

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

A2

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number	wo 98/57982
C07K 14/00	A2	(43) International Publication Date:	23 December 1998 (23.12.98)

(21) International Application Number:

PCT/US98/12689

(22) International Filing Date:

17 June 1998 (17.06.98)

(30) Priority Data:

60/049,728

17 June 1997 (17.06.97) US

(71) Applicant (for all designated States except US): THE UNITED STATES OF AMERICA, represented by THE [US/US]; SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICESNATIONAL INSTITUTES OF HEALTH, Office of Technology Transfer, Suite 325, 6011 Executive Boulevard, Rockville, MD 20852-3804 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): MELTZER, Paul [US/US]; 5906 Bloomingdale Terrace, Rockville, MD 20852 (US). TRENT, Jeffrey, M. [US/US]; 10 Fairwood Court, Rockville, MD 20850 (US).
- (74) Agent: NOONAN, William, D.; Klarquist, Sparkman, Campbell, Leigh & Whinston, LLP, One World Trade Center, Suite 1600, 121 S.W. Salmon Street, Portland, OR 97204 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NIL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: AIB1, A NOVEL STEROID RECEPTOR CO-ACTIVATOR

(57) Abstract

The invention features a substantially pure DNA which includes a sequence encoding a novel steroid receptor co-activator which is overexpressed in breast cancer cells, diagnostic assays for steroid hormone-responsive cancers, and screening assays to identify compounds which inhibit an interaction of the co-activator with the steroid hormone.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑŲ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	Œ	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	π	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzatan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		·
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		•
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

AIB1, A NOVEL STEROID RECEPTOR CO-ACTIVATOR

BACKGROUND OF THE INVENTION

Breast cancer arises from estrogen-responsive breast epithelial cells. Estrogen activity is thought to promote the development of breast cancer, and many breast cancers are initially dependent on estrogen at the time of diagnosis. Anti-estrogen compositions have therefore been used to treat breast cancer.

5

10

15

20

25

30

35

A frequent mechanism of increased gene expression in human cancers is amplification, i.e., the copy number of a DNA sequence is increased, in a cancer cell compared to a non-cancerous cell. In breast cancer, commonly amplified regions are derived from 17q21, 8q24, and 11q13 which encode erbB-2, c-myc, and cyclic D1 respectively (Devilee et al., 1994, Crit. Rev. Oncog. 5:247-270). Recently, molecular cytogenetic studies have revealed the occurrence in breast cancers of additional regions of increased DNA copy number (Isola et al., Am. J. Pathol. 147:905-911, 1995; Kallioniemi et al., Proc. Natl. Acad. Sci. USA 91:2156-2160, 1994; Muleris et al., Genes Chromo. Cancer 10:160-170, 1994; Tanner et al., Cancer Research 54:4257-4260, 1994; Guan et al., Nat. Genet. 8:155-161, 1994).

Breast cancer is the second leading cause of cancer deaths in American women, and it is estimated that an American woman has at least a 10% cumulative lifetime risk of developing this disease. Early diagnosis is an important factor in breast cancer prognosis and affects not only survival rate, but the range of therapeutic options available to the patient. For instance, if diagnosed early, a "lumpectomy" may be performed, whereas later diagnosis tends to be associated with more invasive and traumatic surgical treatments such as radical mastectomy. The treatment of other cancers likewise is benefitted by early diagnosis, for instance the prognosis in the treatment of lung cancer, colorectal cancer and prostate cancers is greatly improved by early diagnosis. There is a need for a simple and reliable method of diagnosis of cancers in general and of breast cancer in particular. There is a need for a method of screening for compounds that inhibit the interaction between an estrogen receptor ER and an ER-dependent nuclear receptor co-activator molecule in order to identify molecules useful in research diagnosis and treatment of cancer. There is also a need for a method for identifying tamoxifen-sensitive cancer patients in order to better manage treatment. A solution to these needs would improve cancer treatment and research and would save lives.

SUMMARY OF THE INVENTION

The inventors have discovered that the AIB1 protein (Amplified In Breast Cancer-1) is a member of the Steroid Receptor Coactivator - 1 (SRC-1) family of nuclear receptor co-activators that interacts with estrogen receptors (ER) to enhance ER-dependent transcription. The inventors have further discovered that the AIB1 gene is amplified and over-expressed in certain cancers including breast cancer, and that detection of amplified AIB1 genes can therefore be used to detect

15

20

25

30

35

cancerous cells. Importantly, the inventors have also found that AIB1 amplification is not confined to breast cancer but is also found in cancers of the lung, ovary, head and neck, colon, testicles, bladder, prostate, endometrium, kidney, stomach and also in pheochromocytoma, melanoma, ductal carcinoma and carcinoid tumor. Such a finding means that AIB1 may be useful in the detection and treatment of all of the aforementioned cancers which include some of the most-prevalent and deadly diseases in the western world.

The inventors have also discovered that AIB1 interacts with the proteins p300 and CBP, which are nuclear cofactors that interact with other nuclear factors to promote transcription (Chacravarti et al., Nature (383) 99-103 1996; Lundblad et al., Nature (374) 85-88 1995). The inventors have, furthermore, determined that in cells with stable over-expression of AIB1, there is a dramatic increase in steroid receptor activation (almost a 100-fold increase) leading to a corresponding increase in transcriptional activation. The inventors have also used monoclonal anti-AIB1 antibodies to demonstrate that AIB1 gene amplification is directly correlated with increased AIB1 expression, and that these amplified copies of the gene are expressed in physiological conditions. The inventors have found that AIB1 is the human ortholog of the mouse ER-dependent transcriptional activator p/CIP, with the proteins having an overall amino acid identity of 81.6%. These finding support the physiological-role for AIB1 in cancer cells as a cofactor involved in transcriptional regulation.

The invention features a substantially pure DNA which includes a sequence encoding an AIB1 polypeptide, e.g., a human AIB1 polypeptide, or a fragment thereof. The DNA may have the sequence of all or part of the naturally-occurring AIB1-encoding DNA or a degenerate variant thereof. AIB1-encoding DNA may be operably linked to regulatory sequences for expression of the polypeptide. A cell containing AIB1 encoding DNA is also within the invention.

The invention also includes a substantially pure DNA containing a polynucleotides which hybridizes at high stringency to a AIB1-encoding DNA or the complement thereof. A substantially pure DNA containing a nucleotide sequence having at least 50% sequence identity to the full length AIB1 cDNA, e.g., a nucleotide sequence encoding a polypeptide having the biological activity of a AIB1 polypeptide, is also included.

The invention also features a substantially pure human AIB1 polypeptide and variants thereof, e.g., polypeptides with conservative amino acid substitutions or polypeptides with conservative or non-conservative amino acid substitutions which retain the biological activity of naturally-occurring AIB1.

Diagnostic methods, e.g., to identify cells which harbor an abnormal copy number of the AIB1 DNA, are also encompassed by the invention. An abnormal copy number, e.g., greater than the normal diploid copy number, of AIB1 DNA is indicative of an aberrantly proliferating cell, e.g., a steroid hormone-responsive cancer cell.

The invention also includes antibodies, e.g., a monoclonal antibody or polyclonal antisera, which bind specifically to AIB1 and can be used to detect the level of expression of AIB1 in a cell

or tissue sample. An increase in the level of expression of AIB1 in a patient-derived tissue sample compared to the level in normal control tissue indicates the presence of a cell proliferative disorder such as cancer.

Screening methods to identify compounds which inhibit an interaction of AIB1 with a steroid hormone receptor, thus disrupting a signal transduction pathway which leads to aberrant cell-proliferation, is also within the invention. Proliferation of a cancer cell can therefore be reduced by administering to an individual, e.g., a patient diagnosed with a steroid-responsive cancer, a compound which inhibits expression of AIB1.

5

10

15

20

25

30

35

The invention also includes a knockout mutant, for example a mouse (or other mammal) from which at least one AIB1 gene has been selectively deleted from its genome. Such a mouse is useful in research, for instance, the phenotype gives insight into the physiological role of the deleted gene. For instance the mutant may be defective in specific biochemical pathways; such a knockout mutant may be used in complementation experiments to determine the role of other genes and proteins to determine if any such genes or proteins complement for the deleted gene. Homozygous and heterozygous mutants are included in this aspect of the invention.

The present invention also includes a mutant organism, for example a mammal such as a mouse which contains more than the normal number of AIB1 genes in its genome. Such a mouse may contain additional copies of the AIB1 gene integrated into its chromosomes, for instance in the form of a pro-virus, or may carry additional copies on extra-chromosomal elements such as plasmids. Such a mutant mouse is useful for research purposes, to elucidate the physiological or pathological role of AIB1. For instance, the role of AIB1 expression as cause or effect in cancers may be investigated by including or transplanting tumors into such mutants, and comparing such mutants with normal mice having the same cancer.

The present invention also includes a mutant organism, for example a mammal, e.g. a mouse, that contains, either integrated into a chromosome or on a plasmid, at least one copy of the AIB1 gene driven by a non-native promoter. Such a promoter may be constitutive or may be inducible. For instance, the AIB1 gene may be operatively linked to a mouse mammary tumor virus (MMTV) promoter or other promoter from a mammalian virus allowing manipulation of AIB1 expression. Such a mutant would be useful for research purposes to determine the physiological or pathological role of AIB1. For instance, over or under expression could be affected and physiological effects observed.

The invention also includes methods for treatment of cancers that involve functions of or alterations in the signaling pathways that use p300 and/or CBP as signal transducing molecules. The treatments of the invention involve targeting of the AIB1 protein or AIB1 gene to enhance or reduce interaction with p300 and/or CBP proteins. For instance, the AIB1 gene sequence as disclosed herein may be used to construct an anti-sense nucleotide. An anti-sense RNA may be constructed that is anti-parallel and complementary to the AIB1 transcript (or part thereof) and which will therefore form an RNA-RNA duplex with the AIB1 transcript, preventing transcription

15

20

25

35

and expression of AIB1. Alternatively, treatments may comprise contacting an AIB1 protein with a molecule that specifically binds to the AIB1 molecule in vivo, thereby interfering with AIB1 binding with other factors such as p300 or CBP. Such processes are designed to inhibit signal transduction pathways involving AIB1, p300, CBP and other factors and therefore inhibit cancer cell proliferation that is effected via these pathways. As explained in more detail below, AIB1 overexpression results in increased ER-dependent transcriptional activity which confers a growth advantage upon AIB1 amplification-bearing clones during the development and progression of estrogen-dependent cancers.

Compounds which inhibit or disrupt the interaction of an AIB1 gene product with a steroid hormone receptor, e.g., ER, are useful as anti-neoplastic agents for the treatment of patients suffering from steroid hormone-responsive cancers such as breast cancer, ovarian cancer, prostate cancer, and colon cancer.

AIB1 polypeptides or peptide mimetics of such polypeptides, e.g., those containing domains which interact with steroid hormone receptors, can be administered to patients to block the interaction of endogenous intracellular AIB1 and a steroid hormone receptor, e.g., ER in an aberrantly proliferating cell. It is likely that AIB1 interacts with a wide range of human transcriptional factors and that regulation of such interactions will have important therapeutic applications.

Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.

SEQUENCE LISTING

The nucleic acid and amino acid sequences listed in the accompanying Sequence Listing are shown using standard letter abbreviations for nucleotide bases and three-letter code for amino acids. Only one strand of each nucleic acid sequence is shown, but the complementary strand is understood to be included by any reference to the displayed strand.

- SEQ. I.D. No. 1 shows the nucleic acid sequence of the human AIB1 cDNA and the corresponding amino acid sequence.
- SEQ. I.D. No. 2 shows the amino acid sequence of the Per/Arnt/Sim (PAS) domain of AIB1.
 - SEQ. I.D. No. 3 shows the amino acid sequence of the basic helix-loop-helix domain (bHLH) of AIB1.
 - SEQ. I.D. No. 4 shows the amino acid sequence of the human AlB1 protein.
 - SEQ. I.D. No. 5 shows the nucleic acid sequence of primer N8F1.
 - SEQ. I.D. No. 6 shows the nucleic acid sequence of the forward primer designed from the 5' sequence of pCMVSPORT-B11, PM-U2.
 - SEQ. I.D. No. 7 shows the nucleic acid sequence of the reverse primer designed from the 5' sequence of pCMVSPORT-B11, PM-U2.

20

25

30

35

SEQ. I.D. No. 8 shows the amino acid sequence of the ER-interacting domain of AIB1.

SEQ. I.D. No. 9 shows the nucleic acid sequence of pCIP, the mouse ortholog of AIB1 and the amino acid sequence for this gene.

SEQ. I.D. No. 10 shows the nucleic acid sequence of the forward primer AIB1/mESTF1 used to screen mouse BAC.

SEQ. I.D. No. 11 shows the nucleic acid sequence of the reverse primer AIB1/mESTR1 used to screen mouse BAC.

SEQ. I.D. No. 12 shows the amino acid sequence of pCIP, the mouse ortholog of AIB1.

10 FIGURES

Fig. 1A is a diagram of an amino acid sequence of full length AIB1 in which residues highlighted in black are identical in AIB1, TIF2 and SRC1. Residues identical with TIF2 (GenBank accession number X97674) or SRC-1 (GenBank accession number U59302) are highlighted in grey or boxed, respectively.

Fig. 1B is a diagram showing the structural features of AIB1. The following domains are indicated: bHLH domain, PAS domains (with the highly conserved PAS A and B regions shown in dark gray), S/T (serine/threonine)-rich regions, and a group of charged residues (+/-). A glutamine-rich region and polyglutamine tract are also indicated. The numbers beneath the diagram indicate the location (approximate residue number) of the domain with respect to the amino acid sequence shown in Fig. 1A. The alignment was generated using DNASTAR software.

Fig. 2 is a photograph of a Northern blot analysis showing increased expression of AIB1 in the cell lines BT-474, ZR-75-1, MCF7, and BG-1.

Fig. 3 is a bar graph showing that the addition of full length AIB1 DNA to a cell resulted in an increase of estrogen-dependent transcription from an ER reporter plasmid. COS-1 cells were transiently transfected with 250 ng ER expression vector (pHEGO-hyg), 10 ng of luciferase reporter plasmid (pGL3.luc.3ERE or 10 ng pGL3 lacking ERE) and increasing amounts of pcDNA3.1-AIB1 and incubated in the absence (open bars) or presence of 10 nM 17β-stradiol (E2, solid bars) or 100 nM 4-hydroxytamoxifen (hatched bars). Luciferase activity was expressed in relative luminescence units (RLU). The data are the mean of three determinations from one of four replicate experiments. Error bars indicate one standard deviation.

Fig. 4 is a schematic diagram comparing the DNA and protein structures of pCIP (the mouse ortholog of AIB1) and the human AIB1; exons are shown as black boxes.

Fig. 5 is a table showing the introns and exons of the mouse AIB1 gene (pCIP). The "Exon" column refers to the number of the exon; "cDNA bp 5'-exon" refers to the nucleotide position in the mouse cDNA sequence for the 5' exon. "3' intron splice cite" refers to the last few nucleotides of the 3' position of the intron. "Exon sequence" refers to the exon itself. "5' intron" refers to the adjacent intron reading from the exon into the splice donor elinucleotides (usually GT).

Fig. 6 is a table showing the introns and exons of the human AIB1 gene. The "Exon" column refers to the number of the exon; "cDNA bp 5'-exon" refers to the nucleotide position in the mouse cDNA sequence for the 5' exon. "3' intron splice cite" refers to the last few nucleotides of the 3' position of the intron. "Exon sequence" refers to the exon itself. "5' intron" refers to the adjacent intron reading from the exon into the splice donor nucleotides (usually GT).

DETAILED DESCRIPTION

5

10

15

20

25

30

35

The invention is based on the discovery of a novel gene, amplified in breast cancer-1 (AIB1), which is overexpressed in breast cancer. AIB1 has the structural features of a co-activator of the steroid hormone receptor family. The steroid hormone estrogen and other related steroid hormones act on cells through specific steroid receptors.

Members of the steroid receptor coactivator (SRC) family of transcriptional co-activators interact with nuclear hormone receptors to enhance ligand-dependent transcription. AIB1 is a novel member of the SRC family which was found to be overexpressed in breast cancers. The AIB1 gene is located at human chromosome 20q. High-level AIB1 amplification and overexpression were observed in several estrogen receptor (ER) positive breast and ovarian cancer cell lines, as well as in uncultured breast cancer specimens. AIB1 amplification is not confined to breast cancer but is also found in cancers of the lung, ovary, head and neck, colon, testicles, bladder, prostate, endometrium, kidney, stomach and also in pheochromocytoma, melanoma, ductal carcinoma and carcinoid tumor.

Transfection of AIB1 into cells resulted in marked enhancement of estrogen-dependent transcription. These observations indicated that AIB1 functions as a co-activator of steroid hormone receptors such as ER (including estrogen receptor α (ER α) and estrogen receptor β (ER β)), androgen receptor (e.g., expressed in prostate cells), retinoid receptor (e.g., isoforms α , γ , and retinoid X receptor (RXR)), progesterone receptor (e.g., expressed in breast cells), mineralocorticoid receptor (implicated in salt metabolism disorders), vitamin D receptor (implicated in calcium metabolism disorders), thyroid hormone receptor (e.g., thyroid hormone receptor α), or glucocorticoid receptor (e.g., expressed in spleen and thymus cells). The altered expression of AIB1 contributes to the initiation and progression of steroid hormone-responsive cancers by increasing the transcriptional activity of the steroid receptor.

A substantially pure DNA which includes an AIB1-encoding polynucleotides (or the complement thereof) is claimed. By "substantially pure DNA" is meant DNA that is free of the genes which, in the naturally-occurring genome of the organism from which the DNA of the invention is derived, flank the AIB1 gene. The term therefore includes, for example, a recombinant DNA which is incorporated into a vector, into an autonomously replicating plasmid or virus, or into the genomic DNA of a prokaryote or eukaryote at a site other than its natural site; or which exists as a separate molecule (e.g., a cDNA or a genomic or cDNA fragment produced by PCR or restriction endonuclease digestion) independent of other sequences. It also includes a

recombinant DNA which is part of a hybrid gene encoding an additional polypeptide sequence. Preferably, the polypeptide includes a Per/Arnt/Sim (PAS) domain (LLQALDGFLFVVNRDGNIVFVSENVTQYLQYKQEDLVNTSVYNILHEEDRKDFLKNLPKSTVNGVSWTNETQRQKSHTFNCRMLMKTPHDILEDINASPEMRQRYETMQCFALSQPRAMME 5 EGEDLQSCMICVARRITTGERTFPSNPESFITRHDLSGKVVNIDTNSLRSSMRPGFEDHRRCIO ; SEQ. I.D. NO. 2) and/or a basic helix-loop-helix (bHLH) domain (RKRKLPCDTPGQGLTCSGEKRRREQESKYIEELAELISANLSDIDNFNVKPD KCAILKETVRQIRQIKEQGKT; SEQ. I.D. NO. 3); more preferably, the AIB1 polypeptide includes the amino acid sequence of the entire naturally-occurring AIB1 protein (Fig. 1; SEQ. I.D. 10 NO. 4). Preferably, the peptide includes an ER-interacting domain of AIB1 (e.g., a domain comprising approximately amino acids 300 to 1250: CIQRFFSLNDGQSWSQKRHYQEAYLNGHAETPVYRFSLADGTIVTAQTKSKLF RNPVTNDRHGFVSTHFLQREQNGYRPNPNPVGQGIRPPMAGCNSSVGGMSMS PNQGLQMPSSRAYGLADPSTTGQMSGARYGGSSNIASLTPGPGMQSPSSYQNNNYGLNMSS PPHGSPGLAPNQQNIMISPRNRGSPKIASHQFSPVAGVHSPMASSGNTGNHSFSSSSLSALQAI 15 SEGVGTSLLSTLSSPGPKLDNSPNMNITQPSKVSNQDSKSPLGFYCDQNPVESSMCQSNSRDH LSDKESKESSVEGAENQRGPLESKGHKKLLQLLTCSSDDRGHSSLTNSPLDSSCKESSVSVTS PSGVSSSTSGGVSSTSNMHGSLLQEKHRILHKLLQNGNSPAEVAKITAEATGKDTSSITSCGD GNVVKQEQLSPKKKENNALLRYLLDRDDPSDALSKELQPQVEGVDNKMSQCTSSTIPSSSQE 20 KDPKIKTETSEEGSGDLDNLDAILGDLTSSDFYNNSISSNGSHLGTKQQVFQGTNSLGLKSSQ SVQSIRPPYNRAVSLDSPVSVGSSPPVKNISAFPMLPKQPMLGGNPRMMDSQENYGSSMGGP NRNVTVTQTPSSGDWGLPNSKAGRMEPMNSNSMGRPGGDYNTSLPRPALGGSIPTLPLRSN SIPGARPVLQQQQMLQMRPGEIPMGMGANPYGQAAASNQLGSWPDGMLSMEQVSHGTQ NRPLLRNSLDDLVGPPSNLEGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQA 25 LEPKQDAFQGQEAAVMMDQKAGLYGQTYPAQGPPMQGGFHLQGQSPSFNSMMNQMNQQ GNFPLQGMHPRANIMRPRTNTPKQLRMQLQQRLQGQQFLNQSRQALELKMENPTAGGAA VMRPMMQPQQGFLNAQMVAQRSRELLSHHFRQQRVAMMMQQQQQQQ (SEQ. I.D. NO. 8). A cell containing substantially purified AIB1-encoding DNA is also within the invention.

The invention also includes a substantially pure DNA which contains a polynucleotide which hybridizes at high stringency to an AIB1 cDNA having the sequence of SEQ. I.D. NO. 1, or the complement thereof and a substantially pure DNA which contains a nucleotide sequence having at least 50% (for example at least 75%, 90%,95%, or 98-100%) sequence identity to SEQ. I.D. NO. 1, provided the nucleotide sequence encodes a polypeptide having the biological activity of a AIB1 polypeptide. By "biological activity" is meant steroid receptor co-activator activity. For example, allelic variations of the naturally-occurring AIB1-encoding sequence (SEQ. I.D. NO. 1) are encompassed by the invention. Sequence identity can be determined by comparing the nucleotide sequences of two nucleic acids using the BLAST sequence analysis software, for instance, the

30

35

10

15

20

25

30

35

NCBI gapped BLAST 2.0 program set to default parameters. This software is available from The National Center for Biotechnology Information (www.ncbi.nlm,nih.gov/BLAST).

Hybridization is carried out using standard techniques such as those described in Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, (1989). "High stringency" refers to DNA hybridization and wash conditions characterized by high temperature and low salt — concentration, e.g., wash conditions of 65° C at a salt concentration of approximately 0.1 X SSC. "Low" to "moderate" stringency refers to DNA hybridization and wash conditions characterized by low temperature and high salt concentration, e.g. wash conditions of less than 60° C at a salt concentration of at least 1.0 X SSC. For example, high stringency conditions may include hybridization at about 42°C, and about 50% formamide; a first wash at about 65°C, about 2X SSC, and 1% SDS; followed by a second wash at about 65°C and about 0.1% x SSC. Lower stringency conditions suitable for detecting DNA sequences having about 50% sequence identity to an AIB1 gene are detected by, for example, hybridization at about 42°C in the absence of formamide; a first wash at about 42°C, about 6X SSC, and about 1% SDS; and a second wash at about 50°C, about 6X SSC, and about 1% SDS.

A substantially pure DNA including (a) the sequence of SEQ ID NO. 1 or (b) a degenerate variant thereof is also within the invention. The AIB1-encoding DNA is preferably operably linked to regulatory sequences (including, e.g., a promoter) for expression of the polypeptide.

By "operably linked" is meant that a coding sequence and a regulatory sequence(s) are connected in such a way as to permit gene expression when the appropriate molecules (e.g., transcriptional activator proteins) are bound to the regulatory sequence(s).

The invention also includes a substantially pure human AIB1 polypeptide or fragment thereof. The AIB1 fragment may include an ER-interaction domain such as one having the amino acid sequence of SEQ. I.D. NO. 8. Alternatively, the fragment may contain the amino acid sequence of SEQ. I.D. NOS. 2, 3, or 4.

Screening methods to identify candidate compounds which inhibit estrogen-dependent transcription, AIB1 expression, or an AIB1/ER interaction (and as a result, proliferation of steroid hormone-responsive cancer cells) are within the scope of the invention. For example, a method of identifying a candidate compound which inhibits ER-dependent transcription is carried out by contacting the compound with an AIB1 polypeptide and determining whether the compound binds to the polypeptide. Binding of the compound to the polypeptide indicates that the compound inhibits ER-dependent transcription, and in turn, proliferation of steroid hormone-responsive cancer cells. Preferably, the AIB1 polypeptide contains a PAS domain or a bHLH domain. Alternatively, the method is carried out by contacting the compound with an AIB1 polypeptide and an ER polypeptide and determining the ability of the compound to interfere with the binding of the ER polypeptide with the AIB1 polypeptide. A compound which interferes with an AIB1/ER interaction inhibits - ER-dependent transcription.

A method of screening a candidate compound which inhibits an interaction of an AIB1 polypeptide with an ER polypeptide in a cell includes the steps of (a) providing a GAL4 binding site linked to a reporter gene; (b) providing a GAL4 binding domain linked to either (i) an AIB1 polypeptide or (ii) an ER polypeptide; (c) providing a GAL4 transactivation domain II linked to the ER polypeptide if the GAL4 binding domain is linked to the AIB1 polypeptide or linked to the AIB1 polypeptide if the GAL4 binding domain is linked to the ER polypeptide; (d) contacting the cell with the compound; and (e) monitoring expression of the reporter gene. A decrease in expression in the presence of the compound compared to that in the absence of the compound indicates that the compound inhibits an interaction of an AIB1 polypeptide with the ER polypeptide.

5

10

15

20

25

30

35

Diagnostic methods to identify an aberrantly proliferating cell, e.g., a steroid hormoneresponsive cancer cell such as a breast cancer cell, ovarian cancer cell, or prostate cancer cell, are
also included in the invention. For example, a method of detecting an aberrantly proliferating cell
in a tissue sample is carried out by determining the level of AIB1 gene expression in the sample.

An increase in the level of gene expression compared to that in a normal control tissue indicates the
presence of an aberrantly proliferating cell. AIB1 gene expression is measured using an AIB1
gene-specific polynucleotides probe, e.g. in a Northern assay or polymerase chain reaction (PCR)based assay, to detect AIB1 mRNA transcripts. AIB1 gene expression can also be measured using
an antibody specific for an AIB1 gene product, e.g., by immunohistochemistry or Western blotting.

Aberrantly proliferating cells, e.g., cancer cells, in a tissue sample may be detected by determining the number of cellular copies of an AIB1 gene in the tissue. An increase in the number of gene copies in a cell of a patient-derived tissue, compared to that in normal control tissue indicates the presence of a cancer. A copy number greater than 2 (the normal diploid copy number) is indicative of an aberrantly proliferative cell. Preferably, the copy number is greater than 5 copies per diploid genome, more preferably 10 copies, more preferably greater than 20, and most preferably greater than 25 copies. An increase in copy number compared to the normal diploid copy number indicates that the tissue sample contains aberrantly proliferating steroid hormone-responsive cancer cells. AIB1 copy number is measured by fluorescent in situ hybridization (FISH), Southern hybridization techniques, and other methods well known in the art (Kallioniemi et al., PNAS 91: 2156-2160 (1994); Guan et al., Nature Genetics 8: 155-161 (1994); Tanner et al., Clin. Cancer Res. 1: 1455-1461 (1995); Guan et al., Cancer Res. 56: 3446-3450 (August 1996); Anzick et al., Science 277: 965-968 (August 1997)).

Aberrantly proliferating cells can also be identified by genetic polymorphisms in the polyglutamine tract of AIB1, e.g., variations in the size of this domain which alter AIB1 co-activator activity.

The invention also includes methods of treating a mammal, e.g., a human patient. For example, a method of reducing proliferation of a steroid hormone-responsive cancer cell, e.g., an estrogen-responsive breast cancer cell, in a mammal is carried out by administering to the mammal a compound which inhibits expression of AIB1. The compound reduces transcription of AIB1-

encoding DNA in the cell. Alternatively, the compound reduces translation of an AIB1 mRNA into an AIB1 gene product in the cell. For example, translation of AIB1 mRNA into an AIB1 gene product is inhibited by contacting the mRNA with antisense polynucleotides complementary to the AIB1 mRNA.

A method of inhibiting ER-dependent transcription in a breast cell of a mammal is carried out by administering an effective amount of an AIB1 polypeptide or a peptide mimetic thereof to the mammal. Preferably, the polypeptide inhibits an AIB1/ER interaction; more preferably, the polypeptide contains an ER-interacting domain; a PAS domain or a bHLH domain of AIB1. By binding to ER, such a polypeptide inhibits binding of AIB1 to ER, thereby inhibiting ER-dependent transcription.

5

10

15

20

25

30

35

The invention also includes antibodies, e.g., a monoclonal antibody or polyclonal antisera, which bind specifically to AIB1. The term "antibody" as used in this invention includes whole antibodies as well as fragments thereof, such as Fab, Fab', F(ab')2, and Fv which bind to an AIB1 epitope. These antibody fragments are defined as follows: (1) Fab, the fragment which contains a monovalent antigen-binding fragment of an antibody molecule produced by digestion of whole antibody with the enzyme papain to yield an intact light chain and a portion of one heavy chain; (2) Fab', the fragment of an antibody molecule obtained by treating whole antibody with pepsin, followed by reduction, to yield an intact light chain and a portion of the heavy chain; two Fab' fragments are obtained per antibody molecule; (3) (Fab')2, the fragment of the antibody obtained by treating whole antibody with the enzyme pepsin without subsequent reduction; F(ab')2, a dimer of two Fab' fragments held together by two disulfide bonds; (4) Fv, a genetically engineered fragment containing the variable region of the light chain and the variable region of the heavy chain expressed as two chains; and (5) single chain antibody ("SCA"), a genetically engineered molecule containing the variable region of the light chain, the variable region of the heavy chain, linked by a suitable polypeptide linker as a genetically fused single chain molecule. Methods of making these fragments are routine.

Also within the invention is a method of identifying a tamoxifen-sensitive patient (one who is likely to respond to tamoxifen treatment by a reduction in rate of tumor growth) wherein the method includes the steps of (a) contacting a patient-derived tissue sample with tamoxifen; and (b) determining the level of AIB1 gene expression or amplification in the sample. An increase in the level of expression or gene copy number compared to the level or cellular copy number in normal control tissue indicates that the patient is tamoxifen-sensitive.

AIB1 gene expression is measured using an AIB1 gene-specific polynucleotide probe, e.g., in a Northern blot or PCR-based assay to detect AIB1 mRNA transcripts or in a Southern blot or FISH assay to detect amplification of the gene (which correlates directly with AIB1 gene expression). Alternatively, AIB1 gene expression is measured by detecting an AIB1 gene product, e.g., using an AIB1-specific antibody.

10

15

20

25

35

Transgenic mammals, e.g., mice, which overexpress an AIB1 gene product, e.g., by virtue of harboring multiple copies of AIB1-encoding DNA, are also within the invention.

"Transgenic" as used herein means a mammal which bears a transgene, a DNA sequence which is inserted by artifice into an embryo, and which then becomes part of the genome of the mammal that develops from that embryo. Any non-human mammal which may be produced by transgenic technology is included in the invention; preferred mammals include, mice, rats, cows, pigs, sheep, goats, rabbits, guinea pigs, hamsters, and horses.

By "transgene" is meant DNA which is partly or entirely heterologous (i.e., foreign) to the transgenic mammal, or DNA homologous to an endogenous gene of the transgenic mammal, but which is inserted into the mammal's genome at a location which differs from that of the natural gene.

Also within the invention is a knockout mutant, for instance a knockout mouse wherein the mouse has had at least one copy of the AIB1 gene (also called the pCIP gene in mice) deleted from its genome. Such a knockout mutant would be useful in research, for instance the phenotype gives insight into the physiological role of AIB1. Complementation experiments using such a knockout mutant can be used to identify other genes and proteins that make up for the lack of AIB1 in the mutant to restore wild-type phenotype.

Also within the invention is a mutant, such as a mouse, which contains more than the normal number of copies of the AIB1 (pCIP) gene, either integrated into a chromosome, for instance as a pro-virus, or in an extra-chromosomal element, such as on a plasmid.

Also within the invention is a mutant, for example, a mouse, which contains the AIB1 (pCIP) gene driven by a non-native promoter, such as a constitutive or an inducible promoter, such as the mouse mammary tumor virus (MMTV) promoter.

The invention also includes methods of treatment for cancers the growth of which involves alternations of signaling pathways involving p300 and/or CBP. For example, AIB1 (pCIP) may be contacted with a molecule that binds to AIB1 and inhibits AIB1's interaction with p300, thereby disrupting signaling of this pathway and reducing transcription of molecules whose transcription is positively regulated by this pathway; thereby reducing tumor growth.

30 Example 1: Cloning and Expression of AIB1

A. Cloning of AIB1

Chromosome microdissection and hybrid selection techniques were used to isolate probes and clone gene sequences which map to chromosome 20q, one of the recurrent sites of DNA amplification in breast cancer cells identified by molecular cytogenetics (Kallioniemi et al., *PNAS* 91: 2156-2160 (1994); Guan et al., *Nature Genetics* 8: 155-161 (1994); Tanner et al., *Clin. Cancer Res.* 1: 1455-1461 (1995); Guan et al., *Cancer Res.* 56: 3446-3450 (August 1996); Anzick et al., *Science* 277: 965-968 (August 1997)). AIB1 is a member of the SRC-1 family of nuclear receptor (NR) co-activators. AIB1 functions to enhance ER-dependent transcription. SRC-1 and the closely

10

15

20

25

30

35

related TIF2 are steroid receptor co-activators with an affinity for NRs. The mouse ortholog of human AIB1 is called pCIP. In this application pCIP and AIB1 will be used synonymously unless the contrary is clearly expressed.

To characterize AIB1, the full length cDNA was cloned and sequenced. An AIB1 specific primer N8F1 (5'-TCATCACTTCCGACAACAGAGG-3'; SEQ. I.D. NO. 5) was biotinvlated and used to capture cDNA clones from a human lung cDNA library (Gibco, BRL) using the GENETRAPPER cDNA Positive Selection System (Gibco, BRL). The largest clone (5.8 kb), designated pCMVSPORT-B11, was selected for sequence analysis. To obtain full-length AIB1encoding DNA, a random-primed library from BT-474 was constructed in bacteriophage λ-Zap (Stratagene) and hybridized with a 372 bp ³²P-labeled PCR product amplified from a human spleen cDNA library using primers designed form the 5' sequence of pCMVSPORT-B11, PM-U2 (5'-CCAGAAACGTCACTATCAAG-3', forward primer; SEQ. I.D. NO. 6) and B11-11RA (5'-TTACTGGAACCCCCATACC-3', reverse primer; SEQ. I.D. NO. 7). Plasmid rescue of 19 positive clones yielded a clone, pBluescript-R22, which overlapped pCMVSPORT-B11 and contained the 5' end of the coding region. To generate a full length AIB1 clone, the 4.85 kb HindIII/XhoI fragment of pCMVSPORT-B11 was subcloned into HindIII/XhoI sites of pBluescript-R22. The 4.84 kb NotI/NheI fragment of the full length clone containing the entire coding region was then subcloned into the NotI/XbaI sites of the expression vector, pcDNA3.1 (Invitrogen), generating pcDNA3.1-AIB1.

The cloned DNA sequence (SEQ. I.D. No. 1) revealed an open reading frame (beginning at the underlined "ATG") encoding a protein of 1420 amino acids with a predicted molecular weight of 155 kDa (Fig. 1A). Database searches with BLASTP identified a similarity of AIB1 with TIF2 (45% protein identity) and SRC-1 (33% protein identity). Like TIF2 and SRC-1, AIB1 contains a bHLH domain preceding a PAS domain, serine/threonine-rich regions, and a charged cluster (Fig. 1B). There is also a glutamine-rich region which, unlike SRC-1 and TIF2, contains a polyglutamine tract (Fig. 1B). The polyglutamine tract of AIB1 is subject to genetic polymorphism. Variations in the size of this domain alter AIB1 co-activator activity.

B. Expression of AIB1

Amplification and expression of AIB1 in several ER positive and negative breast and ovarian cancer cell lines was examined. Established breast cancer cell lines used in the experiments described below (see, e.g., Fig. 2) were obtained from the American Type Culture Collection (ATCC): BT-474, MCF-7, T-47D, MDA-MB-361, MDA-MB-468, BT-20, MDA-MB-436, and MDA-MB-453; the Arizona Cancer Center (ACC): UACC-812; or the National Cancer Institute (NCI): ZR75-1.

AIB1 gene copy number was determined by FISH. For FISH analysis, interphase nuclei—were fixed in methanol:acetic acid (3:1) and dropped onto microscope slides. AIB1 amplification was detected in the breast cancer cell line ZR75-1, the ovarian cancer cell line BG-1, and two

10

15

20

25

30

35

uncultured breast cancer samples. Intra-chromosomal amplification of AIB1 was apparent in metaphase chromosomes of ZR75-1 and BG1. Numerous copies of AIB1 were resolved in the adjacent interphase nuclei. Extrachromosomal copies (e.g., in episomes or double minute chromosomes) of AIB1 have also been detected. The Spectrum-Orange (Vysis) labeled AIB1 P1 probe was hybridized with a biotinylated reference probe for 20q11 (RMC20P037) or a fluorescein labeled probe for 20p (RMC20C039).

High level amplification of AIB1 (greater than 20 fold), similar to that observed in BT-474 and MCF-7, was seen in two additional ER-positive cell lines, breast carcinoma ZR75-1, and ovarian carcinoma BG-1 (see Fig. 2). Interphase FISH studies demonstrated that amplification of chromosome 20q in breast cancer is complex, involving several distinct variably co-amplified chromosomal segments derived from 20q11, 20q12, and 20q13. Probes for the 20q11 and 20q13 regions of amplification did not detect amplification in ZR75-1 and BG-1, suggesting that amplification of AIB1 (which maps to 20q12) occurred independently in these cell lines.

To determine if AIB1 amplification also occurred in uncultured cells from patient biopsies, breast cancer specimens were screened for AIB1 amplification by interphase FISH. In two of 16 specimens analyzed, high AIB1 copy number (up to 25 copies/cell) was detected. Both tumor specimens tested came from post-menopausal patients and were ER/PR positive. One of the specimens was obtained from a metastatic tumor of a patient who subsequently responded favorably to tamoxifen treatment.

AIB1 expression was also examined in cells with and without AIB1 amplification and compared to expression of ER, SRC-1 and TIF2 by Northern blotting. In accordance with its amplification status, AIB1 was highly overexpressed in BT-474, MCF-7, ZR75-1, and BG-1 (Fig. 2). Three of the four cell lines exhibiting AIB1 overexpression also demonstrated prominent ER expression, while two others displayed lower but detectable ER expression (BT-474 and BT-20). Fig. 2 also shows that the expression of TIF2 and SRC-1 remained relatively constant in all cell lines tested. Taken together, these observations demonstrate that AIB1 amplification is associated with significant overexpression of AIB1 gene product. The correlation of elevated AIB1 expression with ER positivity in tumors indicates that AIB1 is a component of the estrogen signaling pathway, the amplification of which is selected during cancer development and progression.

To determine whether expression of AIB1 increases ER ligand-dependent transactivation, transient transfection assays were performed. The effect of increasing levels of AIB1 on transcription of an ER dependent reporter was measured. The results demonstrated that cotransfection of AIB1 led to a dose dependent increase in estrogen-dependent transcription (Fig. 3). This effect was not observed when the estrogen antagonist, 4-hydroxytamoxifen (4-OHT), was substituted for 17β-estradiol or when the estrogen response element (ERE) was removed from the reporter plasmid (Fig. 3). A modest increase in basal transcription levels was observed with higher concentrations of AIB1 even in the absence of an ERE suggesting that AIB1 may have an intrinsic

10

15

20

25

30

35

transactivation function. These results demonstrate that, like the closely related TIF2 and SRC-1, AIB1 functions as an ER co-activator.

Example 2: Characterization of AIB1

A. Functional Domains of AIB1

TIF-2, SRC-1, and AIB1 are characterized by highly conserved N-terminal bHLH and PAS domains. The PAS region functions as a protein dimerization interface in the mammalian aryl hydrocarbon receptor and the aryl hydrocarbon receptor nuclear transporter proteins, as well as the *Drosophila* transcription factors *sim* and *per*. The PAS region (SEQ. I.D. NO. 2) of AIB1 functions as a protein interaction domain, mediating binding between AIB1 and other proteins. However, steroid hormone activators lacking the PAS domain are capable of interacting with nuclear steroid hormone receptors. The highly conserved bHLH domain (SEQ. I.D. NO. 3) participates in protein interactions which mediate or modulate transmission of the hormone signal to the transcriptional apparatus. The ER-interacting domain (SEQ. I.D. NO. 8) mediates binding of AIB1 with a steroid hormone receptor protein.

AIB1 also interacts with the transcriptional integrators CREB binding protein (CBP) and p300. These transcriptional integrators interact directly with the basal transcriptional machinery. The CBP/p300 receptor association domain of AIB1 does not encompass the bHLH/PAS regions.

B. Purification of Gene Products

DNA containing a sequence that encodes part or all of the amino acid sequence of AIB1 can be subcloned into an expression vector, using a variety of methods known in the art. The recombinant protein can then be purified using standard methods. For example, a recombinant polypeptide can be expressed as a fusion protein in procaryotic cells such as *E. coli*. Using the maltose binding protein fusion and purification system (New England Biolabs), the cloned human cDNA sequence is inserted downstream and in frame of the gene encoding maltose binding protein (malE). The malE fusion protein is overexpressed in *E. coli* and can be readily purified in quantity. In the absence of convenient restriction sites in the human cDNA sequence, PCR can be used to introduce restriction sites compatible with the pMalE vector at the 5' and 3' end of the cDNA fragment to facilitate insertion of the cDNA fragment into the vector. Following expression of the fusion protein, it can be purified by affinity chromatography. For example, the fusion protein can be purified by virtue of the ability of the maltose binding protein portion of the fusion protein to bind to amylase immobilized on a column.

To facilitate protein purification, the pMalE plasmid contains a factor Xa cleavage site upstream of the site into which the cDNA is inserted into the vector. Thus, the fusion protein purified as described above can be cleaved with factor Xa to separate the maltose binding protein portion of the fusion protein from recombinant human cDNA gene product. The cleavage products can be subjected to further chromatography to purify recombinant polypeptide from the maltose binding protein. Alternatively, an antibody specific for the desired recombinant gene product can

be used to purify the fusion protein and/or the gene product cleaved from the fusion protein. Many comparable commercially available fusion protein expression systems can be utilized similarly.

AIB1 polypeptides can also be expressed in eucaryotic cells, e.g., yeast cells, either alone or as a fusion protein. For example, a fusion protein containing the GAL4 DNA-binding domain or activation domain fused to a functional domain of AIB1, e.g., the PAS domain, the bHLH-domain, or the ER-interacting domain, can be expressed in yeast cells using standard methods such as the yeast two hybrid system described below. Alternatively, AIB1 polypeptides can be expressed in COS-1 cells using methods well known in the art, e.g., by transfecting a DNA encoding an AIB1 polypeptide into COS-1 cells using, e.g., the Lipofectamine transfection protocol described below, and culturing the cells under conditions suitable for protein expression.

Example 3: Detection of AIB1

5

10

15

20

25

30

35

A. Detection of Nucleotides Encoding AIB1

Determination of gene copy number in cells of a patient-derived sample is known in the art. For example, AIB1 amplification in cancer-derived cell lines as well as uncultured breast cancer cells was carried out using bicolor FISH analysis as follows. A genomic P1 clone containing AIB1 was labeled with Spectrum Orange-dUTP (Vysis) using the BioPrime DNA Labeling System (Gibco BRL). A 20q11 P1 clone was labeled with Biotin-16-dUTP (BMB) using nick translation. Fluorescent images were captured using a Zeiss axiophot microscope equipped with a CCD camera and IP Lab Spectrum software (Signal Analytics). Interphase FISH analysis of uncultured breast cancer samples was performed using known methods (Kallioniemi et al., PNAS 91: 2156-2160 (1994); Guan et al., Nature Genetics 8: 155-161 (1994); Tanner et al., Clin. Cancer Res. 1: 1455-1461 (1995); Guan et al., Cancer Res. 56: 3446-3450 (August 1996); Anzick et al., Science 277: 965-968 (August 1997)). Alternatively, standard Southern hybridization techniques can be employed to evaluate gene amplification. For example, Southern analysis is carried out using a non-repetitive fragment of genomic AIB1 DNA, e.g., derived from the 20q11 P1 clone described above or another AIB1 gene-containing genomic clone, as a probe.

The level of gene expression may be measured using methods known in the art, e.g., in situ hybridization, Northern blot analysis, or Western blot analysis using AIB1-specific monoclonal or polyclonal antibodies. AIB1 gene transcription was measured using Northern analysis. For example, the data shown in Fig. 2 was obtained as follows. The blot was hybridized sequentially with a probe (ER, AIB1, TIF2, SRC-1, or β-actin as indicated to the left of the photograph). AIB1 expression was compared to that of ER, TIF2, and SRC-1. cDNA clones were obtained from Research Genetics [TIF2 (clone 132364, GenBank accession no. R25318); SRC-1 (clone 418064, GenBank accession no. W90426)], the American Type Culture Collection (pHEGO-hyg, ATCC number 79995), or Clontech (β actin). The AIB1 probe was a 2.2kb Notl/SacI fragment of pCMVSPORT-B11. The β-actin probe was used as a control for loading error. To avoid cross-hybridization between these related genes and to match signal intensities, similar sized probes from

15

25

30

35

the 3'UTRs of AIB1, TIF2, and SRC-1 were utilized. Each of these probes detected a signal in normal mammary RNA on longer exposure. Electrophoresis, transfer and hybridization of 15 μ g total RNA was performed by standard methods.

5 B. Detection of AIB1 Gene Products

AIB1 polypeptides to be used as antigens to raise AIB1-specific antibodies can be generated by methods known in the art, e.g., proteolytic cleavage, de novo synthesis, or expression of a recombinant polypeptide from the cloned AIB1 gene or a fragment thereof. AIB1-specific antibodies are then produced using standard methodologies for raising polyclonal antisera and making monoclonal antibody-producing hybridoma cell lines (see Coligan et al., eds., Current Protocols in Immunology, 1992, Greene Publishing Associates and Wiley-Interscience). To generate monoclonal antibodies, a mouse is immunized with an AIB1 polypeptide, antibody-secreting B cells isolated from the mouse, and the B cells immortalized with a non-secretory myeloma cell fusion partner. Hybridomas are then screened for production of an AIB1-specific antibody and cloned to obtain a homogenous cell population which produces a monoclonal antibody.

For administration to human patients, antibodies, e.g., AIB1 specific monoclonal antibodies, can be humanized by methods known in the art. Antibodies with a desired binding specificity can be commercially humanized (Scotgene, Scotland; Oxford Molecular, Palo Alto, CA).

20 Example 4: Detection of AIB1-related cell proliferative disorders

A. Diagnostic and Prognostic Methods

The invention includes a method of detecting an aberrantly proliferating cell, e.g., a steroid hormone-responsive cancer cell such as a breast cancer cell, an ovarian cancer cell, colon cancer cell, or prostate cancer cell, by detecting the number of AIB1 gene copies in the cell and/or the level of expression of the AIB1 gene product. AIB1 gene amplification or gene expression in a patient-derived tissue sample is measured as described above and compared to the level of amplification or gene expression in normal non-cancerous cells. An increase in the level of amplification or gene expression detected in the patient-derived biopsy sample compared to the normal control is diagnostic of a diseased state, i.e., the presence of a steroid hormone responsive cancer.

Because of the importance of estrogen exposure to mammary carcinogenesis and of antiestrogen treatment in breast cancer therapy, such assays are also useful to determine the frequency of alterations of AIB1 expression in pre-malignant breast lesions (e.g. ductal carcinoma *in situ*) and during the progression from hormone dependent to hormone independent tumor growth.

The diagnostic methods of the invention are useful to determine the prognosis of a patient and estrogen responsive status of a steroid hormone-responsive cancer.

AIB1 expression can also be measured at the protein level by detecting an AIB1 gene products with an AIB1-specific monoclonal or polyclonal antibody preparation.

10

15

20

25

30

B. Diagnosis of Tamoxifen-Sensitivity

Overexpression of AIB1, e.g., as a result of AIB1 gene amplification, in steroid hormone-responsive cancers can predict whether the cancer is treatable with anti-endocrine compositions, e.g., tamoxifen. AIB1 amplification or overexpression in a patient-derived tissue sample compared to a normal (non-cancerous) tissue indicates tumor progression.

Absence of AIB1, e.g., loss of all or part of the AIB1 gene, but retention of ER-positivity in steroid hormone-responsive cancers predicts failure or poor responsiveness to anti-endocrine therapy, e.g., administration of anti-estrogen compositions such as tamoxifen. Since loss of AIB1 expression in a cancer cell may indicate a disruption of the ER signal transduction pathway, anti-estrogen therapy may be ineffective to treat such cancers. Patients identified in this manner (who would otherwise be treated with anti-estrogens) would be treated with alternative therapies.

Loss of estrogen receptor in recurrent breast caner is also associated with poor response to endocrine therapy. Up to 30% to 40% of metastases from hormone receptor-positive primary breast cancer do not respond to endocrine therapy. The frequency of hormone receptor status changes between primary and recurrent tumors and whether such a change might explain unresponsiveness to endocrine therapy was examined. Primary breast cancer samples and matched asynchronous recurrences were studied from 50 patients who had not received any adjuvant therapy. ER and progesterone receptor (PR) status was determined immunohistochemically from histologically representative formalin-fixed paraffin-embedded tumor samples. ER status was ascertained by mRNA in situ hybridization. Thirty-five (70%) of 50 primary tumors were positive for ER and 30 (60%) for PR. Hormone receptor status of the recurrent tumor differed from that of the primary tumor in 18 cases (36%). Discordant cases were due to the loss of ER (n=6), loss of PR (n=6), or loss of both receptors (n=6). Receptor-negative primary tumors were always accompanied by receptor-negative recurrences. Among 27 patients with ER-positive primary tumors, loss of ER was a significant predictor (P=.0085) of poor response to subsequent endocrine therapy. Only one of eight patients (12.5%) with lost ER expression responded to tamoxifen therapy, whereas the response rate was 74% (14 of 19) for patients whose recurrent tumors retained ER expression. Loss of ER expression in recurrent breast cancer predicts poor response to endocrine therapy in primarily ER-positive patients. Evaluation of ER expression and/or AIB1 expression (or gene copy number) is useful to determine the most effective approach to treatment of steroid-responsive cancers.

Example 5: Screening of candidate compounds

A. In vitro assays

The invention includes methods of screening to identify compounds which inhibit the interaction of AIB1 with ER, thereby decreasing estrogen dependent transcription which leads to-aberrant cell proliferation. A transcription assay is carried out in the presence and absence of the candidate compound. A decrease in transcription in the presence of the compound compared to that

10

15

20

25

30

35

in its absence indicates that the compound blocks an AIB1/ER interaction and inhibits estrogen dependent transcription.

To determine the effect of AIB1 on estrogen-dependent transcription, an ER reporter plasmid can be used. The transcription assays described herein were conducted as follows. COS-1 cells were grown and maintained in phenol-red free DMEM medium supplemented with 10% charcoal-stripped fetal bovine serum. Cells were plated into 6-well culture dishes at 1.5 X 10⁵ cells/well and allowed to grow overnight. Transfection of cells with the ER reporter plasmid was performed with Lipofectamine (Gibco, BRL) following the manufacturer's protocol. Three ng pRL-CMV were used as an internal control for transfection efficiency. Ligand or ethanol vehicle was added 234 hours post-transfection and cell lysates were harvested 48 hours post-transfection. Reporter activities were determined using the Dual-Luciferase Reporter Assay System (Promega) and the results expressed in relative luminescence units (RLU; luciferase/Renilla luciferase). pRL-CMV and pGL3-promoter were obtained from Promega. pHEGO-hyg was obtained from ATCC. The ER reporter pGL3.luc.3ERE contains three tandem copies of the ERE upstream from the SV40 promoter driving the luciferase gene. Standard mammalian expression vectors were utilized. Empty pcDNA3 vector was added to each of the pcDNA3.1-AIB1 dilutions to maintain constant amounts of plasmid DNA.

Compounds which inhibit the interaction of AIB1 with ER are also identified using a standard co-precipitation assay. AIB1/ER co-precipitation assays are carried out as follows. An AIB1 polypeptide and an ER polypeptide are incubated together to allow complex formation. One of the polypeptides is typically a fusion protein, e.g., GST-AIB1, and the other is tagged with a detectable label, e.g., ³²P-labeled ER). After incubation, the complex is precipitated, e.g., using glutathione-Sepharose beads. The beads are washed, filtered through a glass fiber filter, and collected. The amount of co-precipitated ³²P-label is measured. A reduction in the amount of co-precipitated label in the presence of a candidate compound compared to that in the absence of the candidate compound indicates that the compound inhibits an AIB1/ER interaction

Alternatively, a standard in vitro binding assay can be used. For example, one polypeptide, e.g., AIB1, can be bound to a solid support and contacted with the second polypeptide, e.g., ER. The amount of the second polypeptide which is retained on the solid support is then measured. A reduction in the amount of retained (second) polypeptide in the presence of a candidate compound compared to that in its absence indicates that the compound inhibits an AIB1/ER interaction. Techniques for column chromatography and coprecipitation of polypeptides are well known in the art.

An evaluation of AIB1/ER interaction and identification of compounds that blocks or reduces the interaction can also be carried out *in vivo* using a yeast two-hybrid expression system in which the activity of a transcriptional activator is reconstituted when the two proteins or polypeptides of interest closely interact or bind to one another.

10

15

20

25

30

35

The yeast GAL4 protein consists of functionally distinguishable domains. One domain is responsible for DNA-binding and the other for transcriptional activation. In the two-hybrid expression system, plasmids encoding two hybrid proteins, a first fusion protein containing the GAL4 DNA-binding domain fused to a first protein, e.g., AIB1, and the second fusion protein containing the GAL4 activation domain fused to a second protein, e.g., ER, are introduced-into yeast. If the two proteins are able to interact with one another, the ability to activate transcription from promoters containing Gal4-binding sites upstream from an activating sequence from GAL1 (UAS_G) is reconstituted leading to the expression of a reporter gene. A reduction in the expression of the reporter gene in the presence of a candidate compound compared to that in the absence of the compound indicates that the compound reduces an AIB1/ER interaction.

A method of identifying a DNA-binding protein which regulates AIB1 transcription can be carried out as follows:

A DNA containing a cis-acting regulatory element can be immobilized on polymeric beads, such as agarose or acrylamide. A mixture of proteins, such as a cell lysate, is allowed to come in contact with and bind to the DNA. Following removal of non-binding proteins, specifically-bound proteins, are eluted with a competing DNA sequence which may be identical to the immobilized sequence. Specific binding of a protein to the DNA regulatory element indicates that the protein may regulate AIB1 transcription. Functional activity of the identified trans-acting factor can be confirmed with an appropriate functional assay, such as one which measures the level of transcription of a reporter gene having the cis-acting regulatory gene 5' to the transcription start site of AIB1.

A method of identifying a compound which decreases the level of AIB1 transcription can be accomplished by contacting an immobilized AIB1-derived cis-acting regulatory element with a trans-acting regulatory factor in the presence and absence of candidate compound. A detectable change, i.e., a reduction, in specific binding of the trans-acting factor to its DNA target indicates that the candidate compound inhibits AIB1 transcription.

In addition to interacting with ER, AIB1 also interacts with the transcriptional integrators CBP and p300. CBP and p300 participate in the basal transcriptional apparatus in a cell. Thus, another approach to inhibit signal transduction through AIB1 is to prevent the formation of or disrupt an interaction of AIB1 with CBP and/or p300. Compounds which inhibit signal transduction (and therefore cell proliferation) can be identified by contacting AIB1 (or a fragment thereof which interacts with CBP or p300) with CBP or p300 (or a fragment thereof containing an AIB1-interacting domain, e.g., a C-terminal fragment) in the presence and absence of a candidate compound. For example, a C-terminal fragment of CBP involved in steroid receptor co-activator interaction contains 105 amino acids in the Q-rich region of CBP (Kamei et al., 1996, Cell 85:403-414; Yao et al., 1996, Proc. Natl. Acad. Sci. USA 93:10626-10631; Hanstein et al., 1996, Proc. Natl. Acad. Sci. USA 93:11540-11545). A decrease in AIB1 interaction with CBP or p300 in the presence of a candidate compound compared to that its absence indicates that the compound inhibits AIB1 interaction with these transcriptional integrators, and as a result, AIB1-mediated signal

transduction leading to DNA transcription and cell proliferation. Compounds which inhibit AIB1 interaction with transcriptional integrators can also be identified using a co-precipitation assay and the yeast two-hybrid expression system described above.

B. In vivo assays

5

10

15

20

25

30

35

Transgenic mice are made by standard methods, e.g., as described in Leder et al., U.S. Patent No. 4,736,866, herein incorporated by reference, or Hogan et al., 1986 Manipulating the Mouse Embryo. Cold Spring Harbor Laboratory* New York.

Briefly, a vector containing a promoter operably linked to AIB1-encoding cDNA is injected into murine zygotes, e.g., C57BL/6J X DBA/2F2 zygotes. Incorporation of the transgene into murine genomic DNA is monitored using methods well known in the art of molecular biology, e.g., dot blotting tail DNA with a probe complimentary to the 3' region of the gene contained in the AIB1 transgene construct. Mice thus confirmed to harbor the transgene can then be used as founders. Animal lines are created by crossing founders with C57BL/6J mice (The Jackson Laboratory, Bar Harbor, ME). AIB1 transgenic mice can be used to screen candidate compounds in vivo to identify compounds which inhibit aberrant cell proliferation, e.g., as measured by reduction tumor growth or metastasis. AIB1 transgenic mice are also useful to identify other genes involved in steroid hormone receptor-dependent cancers and to establish mouse cell lines which overexpress AIB1. AIB1-overexpressing cell lines are useful to screen for compounds that interfere with AIB1 function, e.g., by blocking the interaction of AIB1 with a ligand.

Example 6: AIB1 therapy

As discussed above, AIB1 is a novel member of the SRC-1 family of transcriptional coactivators. Amplification and overexpression of AIB1 in ER-positive breast and ovarian cancer
cells and in breast cancer biopsies implicate this protein as a critical component of the estrogen
response pathway. AIB1 overexpression results in increased ER-dependent transcriptional activity
which confers a growth advantage of AIB1 amplification-bearing clones during the development
and progression of estrogen-dependent cancers.

Compounds which inhibit or disrupt the interaction of an AIB1 gene product with a steroid hormone receptor, e.g., ER, are useful as anti-neoplastic agents for the treatment of patients suffering from steroid hormone-responsive cancers such as breast cancer, ovarian cancer, prostate cancer, and colon cancer. Likewise, compounds which disrupt interaction between AIB1 and p300 and/or CBP are also useful as anti-neoplastic agents.

AIB1 polypeptides or peptide mimetics of such polypeptides, e.g., those containing domains which interact with steroid hormone receptors, can be administered to patients to block the interaction of endogenous intracellular AIB1 and a steroid hormone receptor, e.g., ER in an aberrantly proliferating cell. A mimetic may be made by introducing conservative amino acid substitutions into the peptide. Certain amino acid substitutions are conservative since the old and

35

40

45

the new amino acid share a similar hydrophobicity or hydrophylicity or are similarly acidic, basic or neutrally charged (Stryer "Biochemistry" 1975, Ch.2, Freeman and Company, New York). Conservative substitutions replace one amino acid with another amino acid that is similar in size, hydrophobicity, etc. Examples of conservative substitutions are shown in the table below (Table 1).

TABLE 1

	Original Residue	Conservative Substitutions	,
-	Ala	ser	
	Arg	lys	
	Asn	gln, his	
	Asp	glu	
	Cys	ser	
	Gln	asn	
	Glu	asp	
	Gly	pro	
	His	asn; gln	
	Ile	leu, val	
	Leu	ile; val	
	Lys	arg; gln; glu	
	Met	leu; ile	
	Phe	met; leu; tyr	
	Ser	thr	
	Thr	ser	
	Trp	tyr	
	Tyr	trp; phe	
	Val	ile; leu	

Variations in the cDNA sequence that result in amino acid changes, whether conservative or not, should be minimized in order to preserve the functional and immunologic identity of the encoded protein.

Compositions administered therapeutically include polypeptide mimetics in which one or more peptide bonds have been replaced with an alternative type of covalent bond which is not susceptible to cleavage by peptidases. Where proteolytic degradation of the peptides following injection into the subject is a problem, replacement of a particularly sensitive peptide bond with a noncleavable peptide mimetic yields a more stable and thus more useful therapeutic polypeptide. Such mimetics, and methods of incorporating them into polypeptides, are well known in the art. Similarly, the replacement of an L-amino acid residue with a D-amino acid residue is a standard way of rendering the polypeptide less sensitive to proteolysis. Also useful are amino-terminal blocking groups such as t-butyloxycarbonyl, acetyl, theyl, succinyl, methoxysuccinyl, suberyl, adipyl, azelayl, dansyl, benzyloxycarbonyl, fluorenylmethoxycarbonyl, methoxyazelayl, methoxyadipyl, methoxysuberyl, and 2,4,-dinitrophenyl.

10

15

20

25

30

35

AIB1 polypeptides or related peptide mimetics may be administered to a patient intravenously in a pharmaceutically acceptable carrier such as physiological saline. Standard methods for intracellular delivery of peptides can be used, e.g. packaged in liposomes. Such methods are well known to those of ordinary skill in the art. It is expected that an intravenous dosage of approximately 1 to 100 μ moles of the polypeptide of the invention would be administered per kg of body weight per day. The compositions of the invention are useful for parenteral administration, such as intravenous, subcutaneous, intramuscular, and intraperitoneal.

The therapeutic compositions of this invention may also be administered by the use of surgical implants which release the compounds of the invention. These devices could be readily implanted into the target tissue, e.g., a solid tumor mass, and could be mechanical or passive. Mechanical devices, such as pumps, are well known in the art, as are passive devices (e.g., consisting of a polymer matrix which contains therapeutic formulations; these polymers may slowly dissolve or degrade to release the compound, or may be porous and allow release via pores).

Antisense therapy in which a DNA sequence complementary to an AIB1 mRNA transcript is either produced in the cell or administered to the cell can be used to decrease AIB1 gene expression thereby inhibiting undesired cell proliferation, e.g., proliferation of steroid hormone-responsive cancer cells. An antisense polynucleotide, i.e., one which is complementary of the coding sequence of the AIB1 gene, is introduced into the cells in which the gene is overproduced. The antisense strand (either RNA or DNA) may be directly introduced into the cells in a form that is capable of binding to the transcripts. Alternatively, a vector containing a DNA sequence which, once within the target cells, is transcribed into the appropriate antisense mRNA, may be administered. An antisense nucleic acid which hybridizes to the coding strand of AIB1 DNA can decrease or inhibit production of an AIB1 gene product by associating with the normally single-stranded mRNA transcript, and thereby interfering with translation.

DNA is introduced into target cells of the patient with or without a vector or using standard vectors and/or gene delivery systems. Suitable gene delivery systems may include liposomes, receptor-mediated delivery systems, naked DNA, and viral vectors such as herpes viruses, retroviruses, and adenoviruses, among others. The DNA of the invention may be administered in a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers are biologically compatible vehicles which are suitable for administration to an animal e.g., physiological saline. A therapeutically effective amount is an amount of the nucleic acid of the invention which is capable of producing a medically desirable result in a patient. As is well known in the medical arts, dosage for any given patient depends upon many factors, including the patient's size, body surface area, age, the particular compound to be administered, sex, time and route of administration, general health, and other drugs being administered concurrently. Dosages will vary, but a preferred dosage for intravenous administration of a nucleic acid is from approximately 106 to 1022 copies of the nucleic acid molecule.

10

15

20

25

30

35

Determination of optimal dosage is well within the abilities of a pharmacologist of ordinary skill.

Example 7: AIB1 Knockout and Overexpression Mouse Mutants

Mutants organism that underexpress or overexpress AIB1 are useful for research. Such mutants allow insight into the physiological and/or pathological role of AIB1 in a healthy and/or pathological organism. These mutants are said to be "genetically engineered," meaning that information in the form of nucleotides has been transferred into the mutant's genome at a location. or in a combination, in which it would not normally exist. Nucleotides transferred in this way are said to be "non-native." For example, a WAP promoter inserted upstream of a native AIB1 gene would be non-native. An extra copy of a mouse AIB1 gene present on a plasmid and transformed into a mouse cell would be non-native. Mutants may be, for example, produced from mammals, such as mice, that either overexpress AIB1 or underexpress AIB1 or that do not express AIB1 at all. Overexpression mutants are made by increasing the number of AIB1 genes in the organism, or by introducing an AIB1 gene into the organism under the control of a constitutive or inducible or viral promoter such as the mouse mammary tumor virus (MMTV) promoter or the whey acidic protein (WAP) promoter or the metallothionein promoter. Mutants that underexpress AIB1 may be made by using an inducible or repressible promoter, or by deleting the AIB1 gene, or by destroying or limiting the function of the AIB1 gene, for instance by disrupting the gene by transposon insertion.

Anti-sense genes may be engineered into the organism, under a constitutive or inducible promoter, to decrease or prevent AIB1 expression. A gene is said to be "functionally deleted" when genetic engineering has been used to negate or reduce gene expression to negligible levels. When a mutant is referred to in this application as having the AIB1 gene altered or functionally deleted, this reference refers to the AIB1 gene and to any ortholog of this gene, for instance "a transgenic animal wherein at least one AIB1 gene has been functionally deleted" would encompass the mouse ortholog of the AIB1 gene, pCIP. When a mutant is referred to as having "more than the normal copy number" of a gene, this means that it has more than the usual number of genes found in the wild-type organism, eg: in the diploid mouse or human.

A mutant mouse overexpressing AIB1 may be made by constructing a plasmid having the AIB1 gene driven by a promoter, such as the mouse mammary tumor virus (MMTV) promoter or the whey acidic protein (WAP) promoter. This plasmid may be introduced into mouse oocytes by microinjection. The oocytes are implanted into pseudopregnant females, and the litters are assayed for insertion of the transgene. Multiple strains containing the transgene are then available for study.

WAP is quite specific for mammary gland expression during lactation, and MMTV is expressed in a variety of tissues including mammary gland, salivary gland and lymphoid tissues.

10

15

20

25

30

Many other promoters might be used to achieve various paterns of expression, e.g., the metallothionein promoter.

An inducible system may be created in which AIB1 is driven by a promoter regulated by an agent which can be fed to the mouse such as tetracycline. Such techniques are well known in the art.

A mutant knockout mouse from which the AIB1 (also called pCIP) gene is deleted was made by removing coding regions of the AIB1 gene from mouse embryonic stem cells. Fig. 5 shows the intron/exon structure for pCIP. Using this table, mutations can be targeted to coding sequences, avoiding silent mutations caused by deletion of non-coding sequences. (Fig. 6 shows the intron/exon structure for the human AIB1 gene). These cells were microinjected into mouse embryos leading to the deletion of the mouse AIB1 gene in the germ line of a transgenic mouse. The mouse AIB1 gene was mapped and isolated by the following method: The primers AIB/mEST F1

(5'-TCCTTTTCCCAGCAGCAGTTTG-3'; SEQ.I.D. 10) and AIB1/mEST R1
(5'ATGCCAGACATGGGCATGGG-3' SEQ.I.D.11) were used to screen a mouse Bacterial
Artificial Chromosome (BAC) library and to isolate a mouse BAC (designated 195H10). This
BAC was assigned to mouse chromosome 2 by fluorescence in situ hybridization (FISH). This

region is the mouse equivalent of the portion of human chromosome 20 which carries AIB1.

To map the structure of the gene, first the structure of the human AIB1 gene was determined by polymerase chain reaction of a human genomic DNA clone containing AIB1 using standard methods (Genomics 1995 Jan 20;25(2):501-506) and then the sequences of the intron exon boundaries were determined (Fig.4). Based on this information, the corresponding regions of the mouse BAC were sequenced. The structure of the mouse gene corresponds closely to that of the human gene (Fig. 4). This information localizes the coding regions of the mouse AIB1 gene so that a targeting vector can be constructed to remove these regions from mouse embryonic stem cells. These cells can be then injected into mouse embryos leading to deletion of the mouse AIB1 gene in the germ line of a transgenic mouse. The methods of creating deletion mutations by using a targeting vector have been described in Cell (Thomas and Capecch, Cell 51(3):503-512, 1987).

References and patents referred to herein are incorporated by reference.

The above examples are provided by way of illustration only and are in no way intended to limit the scope of the invention. One of skill in the art will see that the invention may be modified in various ways without departing from the spirit or principle of the invention. We claim all such modifications.

Sequence Listing

	(1)	GENERAL INFORMATION (i) APPLICANT: Meltzer and Trent
5		(ii) TITLE OF INVENTION: AIB1, A NOVEL RECEPTOR CO-ACTIVATOR AMPLIFIED IN CANCER
10		(iii) NUMBER OF SEQUENCES: 12
		 (iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Klarquist Sparkman Campbell Leigh & Whinston, LLP (B) STREET: One World Trade Center 121 S.W. Salmon Street, Suite 1600
15		 (C) CITY: Portland (D) STATE: Oregon (E) COUNTRY: United States of America (F) ZIP: 97204-2988
20		(v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Disk, 3-1/2 inch (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: Widows NT (D) SOFTWARE: WordPerfect 7.0 & ASCII
25		
30		(vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: (C) CLASSIFICATION:
30		(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: (C) CLASSIFICATION:
35		(viii) ATTORNEY/AGENT INFORMATION: (A) NAME: William D. Noonan, M.D. (B) REGISTRATION NUMBER: 30,878 (C) REFERENCE/DOCKET NUMBER: 4239-49944
40		(ix) TELECOMMUNICATION INFORMATION:
•		(A) TELEPHONE: (503) 226-7391 (B) TELEFAX: (503) 228-9446
	(2)	INFORMATION FOR SEQ ID NO: 1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6837 nucleotides; 1419 amino acid residues (B) TYPE: Human DNA & Amino Acid (C) STRANDEDNESS: Single
50		(D) TOPOLOGY: Linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
55		G GCG GCT GCG GCT TAG TCG GTG GCG GCC GGC GGC TGC GGG CTG AGC GGC
55	GAG TT	5 10 15 I CCG ATT TAA AGC TGA GCT GCG AGG AAA ATG GCG GCG GGA GGA TCA AAA TAC 25 30 35

	TTG	_	GAT	GGT	GGA	CTC		GAC	CAA	TAA	AAA		ACT	GCT	TGA	ACA		TTT	GAC
	TCC	40 TTD	ccc	አርጥ	TCC	TCA	45 TCT	מידמ	TTC	אממ	አጥር	50 AGT	GGA	מידים	CCA	CAA	55	መ ሞር	CAT
	100	IIA	GCC	AGI	160	IGA	101	MIN	110	AAG			Gly						
5			60					65					70		~_,	014		75	
	CCA	CTG	GCC	AGT	GAT	TCA	CGA	AAA	CGC	AAA	TTG	CCA	TGT	GAT	ACT	CCA	GGA	CAA	GGT
	Pro	Leu	Ala	Ser	Asp	Ser	Arg	Lys	Arg	Lys	Leu	Pro	Cys	Asp	Thr	Pro	Gly	Gln	Gly
				80					85					90					95
10													GAA						
10	ьeu	Thr	Cys	ser	100	GIU	rys	Arg	Arg	105	GIU	GIU	Glu	ser	110	Tyr	11e	GIU	GIU
	TTG	GCT	GAG	CTG		TCT	GCC	ААТ	CTT	-	GAT	ATT	GAC	ААТ	_	ААТ	GTC	AAA	CCA
		_	_		_								Asp						
	115					120					125		_			130		-	
15													ATA						
	Asp		Cys	Ala	Ile	Leu		Glu	Thr	Val	Arg		Ile	Arg	Gln	Ile	. = .	Glu	Gln
	CCA	135	A CT	ልጥጥ	ጥርር	חתמ	140 GAT	СУП	CAT	CTT	CAA	145	GCC	CMT	CID N	m/cm	150	707	ccc
													Ala						
20	,	~,0	155					160				-,-	165			501	501	170	OLY
	CAG	GGA	GTT	ATT	GAT	AAA	GAC	TCC	TTA	GGA	CCG	CTT	TTA	CTT	CAG	GCA	TTG	GAT	GGT
	Gln	Gly	Val		Asp	Lys	Asp	Ser		Gly	Pro	Leu	Leu		Gln	Ala	Leu	Asp	Gly
				175					180					185					190
25													TTT						
23	rne	ьеи	rne	vaı	195	ASII	Arg	Азр	GTA	200	TIE	val	Phe	vaı	205	GIU	ASI	vaı	Thr
	CAA	TAC	CTG	CAA		AAG	CAA	GAG	GAC		GTT	AAC	ACA	AGT		TAC	ААТ	ATC	TTA
	Gln	Tyr	Leu	Gln	Tyr	Lys	Gln	Glu	Asp	Leu	Val	Asn	Thr	Ser	Val	Tyr	Asn	Ile	Leu
	210					215			•		220					225			
30													CCA						
	HIS	230	GIU	Asp	Arg	ьуs	235	Pne	rea	гÀ2	Asn	240	Pro	Lys	Ser	Thr	245	Asn	GLY
	GTT		TGG	ACA	ААТ	GAG		CAA	AGA	CAA	AAA		CAT	ACA	ጥጥጥ	ААТ		ССТ	እጥር
													His						
35			250					255	-		-		260				•	265	
													AAC.						
	Leu	Met	Lys		Pro	His	Asp	Ile		Glu	Asp	Ile	Asn		Ser	Pro	Glu	Met	
	CAG	אכא	ייי אייי	270	እሮአ	איזיכי	CAC	TOO	275	ccc	ርሞር	ጥርጥ	CAG	280	CCA	CCT	איזייכי	אשכ	285
40													Gln						
		9	-] -		290			0,10		295		552			300			1100	014
	GAA	GGG	GAA	GAT	TTG	CAA	TCT	TGT	ATG	ATC	TGT	GTG	GCA	CGC	CGC	ATT	ACT	ACA	GGA
		Gly	Glu	qeA	Leu		Ser	Cys	Met	Ile		Val	Ala	Arg	Arg		Thr	Thr	Gly
45	305		202		003	310		COM	~~~	300	315	3.00				320			
43													ACC Thr						
	Gru	325	1111	1110	110	ber	330	LLU	GIU	Ber	Line	335	1111	ALG	1113	изр	340	Ser	Gly
	AAG		GTC	AAT	ATA	GAT		AAT	TCA	CTG	AGA		TCC	ATG	AGG	CCT		TTT	GAA
	Lys	Val	Val	Asn	Ile	Asp	Thr	Asn	Ser	Leu	Arg	Ser	Ser	Met	Arg	Pro	Gly	Phe	Glu
50			345					350					355					360	
								_					CTA						
	ASP	TTE	TTE	365	Arg	Cys	TIE		370	Pne	rne	ser	Leu	375	Asp	GIĀ	GIN	ser	380
	TCC	CAG	AAA		CAC	TAT	CAA			TAT	CTT	AAT	GGC		GCA	GAA	ACC	CCA	
55													Gly						
					385					390			_		395				
													GCA						
	Tyr 400	Arg	Phe	Ser	Leu	405	Asp	GIY	Thr	ше		Thr	Ala	GIn	Thr		Ser	Lys	Leu
60	400					405					410					415			
••	TTC	CGA	AAT	CCT	GTA	ACA	AAT	GAT	CGA	CAT	GGC	TTT	GTC	TCA	ACC	CAC	TTC	СТТ	CAG
													Val						
		420					425	-	,		-	430					435		
<i>c</i> =	AGA	GAA	CAG	AAT	GGA	. TAT	AGA	CCA	AAC	CCA	AAT	CCT	GTT	GGA	CAA	GGG	ATT	AGA	CCA
65	Arg	Glu		Asn	GIŸ	тyr	Arg		Asn	Pro	Asn	Pro	Val	Gly	Gln	Gly	Ile	-	Pro
	CCT	ል ጥር	440 GCT	CCM	ጥርር	ממ	ልርተ	445 TCG	GTD.	GGC	GGC	Δ Τ С	450 AGT	አ ጥሮ	TCC	CCA	አኮሮ	455	ccc
	Pro	Met	Ala	Glv	Cvs	Asn	Ser	Ser	Val	Glv	Glv	Met	Ser	Met	Ser	Pro	Asn	Gln	Glv
				460					465					470					475
70	TTA	CAG	ATG	CCG	AGC	AGC	AGG	GCC	TAT	GGC	TTG	GCA	GAC	CCT	AGC	ACC	ACA	GGG	CAG
	Leu	Gln	Met	Pro	Ser	Ser	Arg	Ala	Tyr	Gly	Leu	Ala	Asp	Pro	Ser	Thr	Thr	Gly	Gln

					480					485					490				
																		GGG	
		ser	GIÀ	Ala	Arg		GIÀ	GIA	Ser	Ser		TTE	Ala	Ser	Leu		Pro	Gly	Pro
_	495					500					505					510			
5																		AGT	
	GIA		GIn	Ser	Pro	Ser		Tyr	GIn	Asn	Asn		Tyr	Gly	Leu	Asn		Ser	Ser
		515					520					525					530	•	
																		TCT	
10	Pro	Pro		GIA	Ser	Pro	GTA		Ala	Pro	Asn	Gln		Asn	Ile	Met	Ile	Ser	Pro
10			535					540					545					550	
																		GGT	
	Arg	Asn	Arg		Ser	Pro	Lys	He		Ser	His	GIn	Phe		Pro	Val	Ala	Gly	
				555					560					565					570
1.5	CAC	TCT	CCC	ATG	GCA	TCT	TCT	GGC	AAT	ACT	GGG	AAC	CAC	AGC	TTT	TCC	AGC	AGC	TCT
15	Hls	Ser	Pro	Met		Ser	Ser	GIY	Asn		GIA	Asn	His	ser		Ser	Ser	Ser	Ser
					575					580	:_				585				
•	Crc	AGT	GCC	CTG	CAA	GCC	ATC	AGT	GAA	GGT	GTG	GGG	ACT	TCC	CTT	TTA	TCT	ACT	CTG
		ser	Ата	ьeu	GIN		TIE	ser	GIU	GTA		GTA	Thr	Ser			Ser	Thr	Leu
20 .	590	m dia				595					600					605			
20																		CCA	
	Ser		PIO	GIÀ	PIO	гÀз		Asp	Asn	Ser	Pro		Met	Asn	TTe	Thr		Pro	Ser
	אאא	610	NCC.	አአጥ	CAC	CAT	615 TCC	770	NCT.	COT	CTC	620	di di di	m a m	mcc.	C 7 C	625	AAT	
	Luc	UAL	AGC	AAI	CAG	MAI	100	Tue	HGI	CCI	LOU	Cliv	Dha	TAT	TGC	GAC	CAA	Asn	CCA
-25	пуэ	vai	630	ASII	GIII	ASP	ser	635	Ser	FIO	ьеи	GTĀ	640	ıyı	Cys	Asp	GIN		Pro
23	GTG	CAC		ጥሮል	NTC	ጥርጥ	CNG		ידית מ	NGC.	ncn	ሮአጥ		CTC	2 50	ChC	מממ	645 GAA	n.cm
	Val	Clu	202	Sor	Mot	Cve	CAG	Ser	Nen Ani	202	AGA	yez.	Uic	Lou	VG1	DAC	AAA	Glu	AGT
	V 61 1	Giu	261	650	Mec	Cys	GIII	Set	655	Ser	Ary	Map	nis	660	Set	АЗР	гух	GIU	665
	AAG	GAG	AGC		GTT	GAG	GGG	GCA		ΑΑΤ	CAA	AGG	COT		ጥጥር	CAD	ACC	AAA	
30	Lvs	Glu	Ser	Ser	Val	Glu	Glv	Δla	Glu	Asn	Gln	Ara	Gly	Pro	LOU	GLu	ZO.	Lys	Cli
50	-,0	014		001	670	014	O. y			675	01	nry	O.L.y	110	680	GIU	Set	гуэ	GLY
	CAT	AAA	AAA	TTA		CAG	TTA	CTT	ACC		TCT	тст	GAT	GAC		GGT	САТ	TCC	ጥርር
	His	Lvs	Lvs	Leu	Leu	Gln	Leu	Leu	Thr	Cvs	Ser	Ser	Asp	Asp	Ara	GIV	His	Ser	Ser
	685		-1-			690				-1-	695					700			501
35	TTG	ACC	AAC	TCC	CCC		GAT	TCA	AGT	TGT		GAA	TCT	TCT	GTT		GTC	ACC	AGC
																		Thr	
		705					710			-	-	715					720		
	CCC	TCT	GGA	GTC	TCC	TCC	TCT	ACA	TCT	GGA	GGA	GTA	TCC	TCT	ACA	TCC	AAT	ATG	CAT
																		Met	
40			725					730					735					740	
	GGG	TCA	CTG	TTA	CAA	GAG	AAG	CAC	CGG	ATT	TTG	CAC	AAG	TTG	CTG	CAG	AAT	GGG	AAT
	Gly	Ser	Leu	Leu	Gln	Glu	Lys	His	Arg	Ile	Leu	His	Lys	Leu	Leu	Gln	Asn	Gly	Asn
				745					750					755					760
	TCA	CCA	GCT	GAG	GTA	GCC	AAG	TTA	ACT	GCA	GAA	GCC	ACT	GGG	AAA	GAC	ACC	AGC	AGT
45	Ser	Pro	Ala	Glu		Ala	Lys	Ile	Thr		Glu	Ala	Thr	Gly		Asp	Thr	Ser	Ser
					765					770					775				
																		AAG	
		Thr	Ser	Cys	GIÀ		Gly	Asn	Val	Val		Gln	Glu	Gln	Leu		Pro	Lys	Lys
50	780	~~~				785					790					795			
50	AAG	GAG	AAT	AAT	GCA	CIT	CTT	AGA	TAC	CTG	CTG	GAC	AGG	GAT	GAT	CCT	AGT	GAT	GCA
	ràs		Asn	ASI	Ala	ren			Tyr	ren	Leu		Arg	Asp	Asp	Pro	~	Asp	Ala
		800					805					810					815		
	CTC	m cm	מממ	CNN	CTTA	CAC	ccc	CNN	CTC	CDD	CCA	CMC	C N III	n n m		B.M.C	n.c.m	030	maa
55	Lau	Sor	Luc	Clu	LOU	Cla	Bro	Cln	V-1	Clu	Class	17-1	GMI	WWI	THE	Mot	AGT	CAG Gln	TGC
33	пеа	261	820	GIU	Leu	GIII	FIO	825	Val	GIU	GIY	Val	830	ASII	гуз	net	ser	835	Cys
	ACC	AGC		ACC	Δጥጥ	- CCT	AGC		AGm	247	GAG	מממ		CCT	מממ	ልጥጥ	N N C	ACA	CAC
	Thr	Ser	Ser	Thr	Tle	Pro	Ser	Ser	Ser	Gin	Glu	LVS	Asn	Pro	Lug	Tle	Luc	Thr	Glu
				840			~~_	001	845	02	014	Dy o	,,op	850	Lys	116	шуз	1111	855
60	ACA	AGT	GAA		GGA	TCT	GGA	GAC		GAT	ТАА	ΑТЭ	GAT		ΔTT	СФФ	CCT	GAT	
•••	Thr	Ser	Glu	Glu	Glv	Ser	Glv	Asp	Len	Asn	Asn	Len	Asn	Ala	Tle	Len	Glv	Asp	Lou
				~	860		~_1	p		865		204	ор		870		O _T y	пор	Dea
	ACT	AGT	TCT	GAC		TAC	AAT	AAT	TCC		TCC	TCA	ААТ	GGT		САТ	CTG	GGG	יויי) מ
	Thr	Ser	Ser	Asp	Phe	Tvr	Asn	Asn	Ser	Ile	Ser	Ser	Asn	Glv	Ser	His	T.eu	Gly	Thr
65	875					880					885			U -J		890	204	O _Z y	****
		CAA	CAG	GTG	TTT		GGA	ACT	AAT	TCT		GGT	TTG	AAA	AGT		CAG	TCT	GTG
	Lys	Gln	Gln	Val	Phe	Gln	Glv	Thr	Asn	Ser	Leu	Glv	Leu	Lvs	Ser	Ser	Gln	Ser	Val
	-	895					900					905					910	_ ~ ~	
	CAG	TCT	ATT	CGT	CCT	CCA		AAC	CGA	GCA	GTG		CTG	GAT	AGC	CCT		TCT	GTT
70	Gln	Ser	Ile	Arg	Pro	Pro	Tyr	Asn	Arq	Ala	Val	Ser	Leu	Asp	Ser	Pro	Val	Ser	Val
			915	_			-	920	•				925	•	-			930	
																		- -	

	GGC ?																		
	Gly S	Ser	Ser	Pro	Pro	Val	Lys	Asn	Ile	Ser	Ala	Phe	Pro	Met	Leu	Pro	Lys	Gln	Pro
				935					940					945			=		950
	ATG :	TTG	GGT	GGG	AAT	CCA	AGA	ATG	ATG	GAT	AGT	CAG	GAA	AAT	TAT	GGC	TCA	AGT	ATG
5	Met 1	Leu	Glv	Glv	Asn	Pro	Arq	Met	Met	Asp	Ser	Gln	Glu	Asn	Tvr	Glv	Ser	Ser	Met
			-	•	955		-			960					965	2			
	GGT (GGG	CCA	AAC	CGA	AAT	GTG	ACT	GTG	ACT	CAG	ACT	CCT	TCC		GGA	GAC	TGG	GGC
	Gly	31 v	Pro	Asn	Arg	Asn	Val	Thr	Val	Thr	Gln	Thr	Pro	Ser	Ser	Gly	Aen	Trn	Gly
	970	,				975					980			001	DCI	985	nsp		GLY
10	TTA (CCA	מממ	TCA	DAG		GGC	ACA	ΔΤG	CAA		ልጥር	ידממ	ጥርል	220		እጥር	CCA	אכא
10	Leu	Dro.	A en	Sor	Tue	212	Clu	Nra Nra	Mot	Clu	Dro	Mot	Ven	Sor.	AAC	500	Mat	Clas	AGA
		990	11011	UCI	ay 5	AIG	995	nrg	1100	OIU	110	1000		Ser	N311	Ser			ALG
	CCA		CCA	CAT	тат	חתת		T CT	ጥጥ አ	CCC	NCN.			CTC	CCT	000	1005		000
	Pro		Clu	GUI	TUI	UUI	TIP ~	202	110	D×0	AGA Awa	D	DIA	CIG	Clas	666	TCI	ATT	CCC
15	PIO (ora			TYL	ASII	Int	1015		PIO	Arg	Pro			GTA	GIA	Ser		
1.5	707	mm.c	1010		000	mam	3-3-m			003	C C M	000	1020					1025	
	ACA !	TIG	CCT	CTT	200	TCT	AAT	AGC	ATA	CCA	GGT	GCG	AGA	CCA	GTA	TTG	CAA	CAG	CAG
	Thr :	Leu	Pro			ser	Asn	ser			GIA	АТА	Arg			Leu	GIN		
		~~ ~		1030					1035					1040	,			1	.045
20	CAG	CAG	ATG	CTT	CAA	ATG	AGG	CCT	GGT	GAA	ATC	CCC	ATG	GGA	ATG	GGG	GCT	AAT	CCC
20	Gln (Gln	Met	Leu			Arg	Pro	Gly			Pro	Met	Gly	Met	Gly	Ala	Asn	Pro
					1050					105					1060				
	TAT	GGC	CAA	GCA	GCA	GCA	TCT	AAC	CAA	СТG	GGT	TCC	TGG	CCC	GAT	GGC	ATG	TTG	TCC
	Tyr (Gly	Gln	Ala	Ala	Ala	Ser	Asn	Gln	Leu	Gly	Ser	Trp	Pro	Asp	Gly	Met	Leu	Ser
	1065					1070					1075					1080			
25	ATG (GAA	CAA	GTT	TCT	CAT	GGC	ACT	CAA	AAT	AGG	CCT	CTT	CTT	AGG	AAT	TCC	CTG	GAT
	Met (Glu	Gln	Val	Ser	His	Gly	Thr	Gln	Asn	Arg	Pro	Leu	Leu	Arg	Asn	Ser	Leu	Asp
		1085					1090)				1095	5				1100)	-
	GAT	CTT	GTT	GGG	CCA	CCT	TCC	AAC	CTG	GAA	GGC	CAG	AGT	GAC	GAA	AGA	GCA	TTA	TTG
	Asp :	Leu	Val	Gly	Pro	Pro	Ser	Asn	Leu	Glu	Gly	Gln	Ser	Asp	Glu	Arq	Ala	Leu	Leu
30			1105	,				1110			_		1115			-		1120	
	GAC	CAG	CTG	CAC	ACT	CTT	CTC	AGC	AAC	ACA	GAT	GCC	ACA	GGC	CTG	GAA	GAA	ATT	GAC
	Asp (Gln	Leu	His	Thr	Leu	Leu	Ser	Asn	Thr	qeA	Ala	Thr	Glv	Leu	Glu	Glu	Ile	Asp
	-			1125					1130		•			1135					140
	AGA (GCT	TTG	GGC	ATT	CCT	GAA	CTT	GTC	AAT	CAG	GGA	CAG			GAG	CCC		
35	Arg .																		
	,			,	1145					1150		1			1155		110	цуз	GIII
	GAT	CCT	ጥጥር	CAA			GAA	GCA	CCA			ΔΤС	CAT	CAG			CCA	ጥጥአ	ጥለጥ
	Asp	Δla	Phe	Gln	Glv	Gln	Glu	Ala	Ala	Val	Met	Met	Asn	Gln	Lve	NI n	Clu	Lon	TAL
	1160		1110	0111	CLY	1165		Ard	A1 a	V	1170		AJP.	GIII	БуЗ	1175		rea	TAT
40	GGA	CAG	202	ጥልሮ	CCA			ccc	CCT	CCN			CCA	CCC	ውውሙ			CAC	CCN
10	Gly	Cln	Th.	Tire	Dro	712	CYG	C1	D~C	Dro	Mot	Cla	Cl	C1	Dho	ULL	Tan	CAG	Class
		1180		1 7 2	110	ALG	118		r r o	110	Mec	1190		GIA	FILE	uis			GIA
	CAA			m cm	TTTT	מממ			חתכ	7 7 77	CAC			CNC	C	cca	1195		000
	CAA	CO.	Dea	Con	Dho	AAC	Con	Mat	Mob	AAT	CAG	ATG	AAC	CAG	CAA	GGC	AAT	TTT	CCT
45	Gln	ser			Pne	ASII	ser			ASI	GIN	Met			GIN	GIA	Asn		
73			1200	,				1205	,				1210	,				1215	•
	CMC .	~~~	cc2	3 mc	CDC	CC3	00.8		220	***			000						
	CTC	CAA	Olas	Mak	UAC	Des	T	71-	AAC	ATC	ATG	AGA	CCC	CGG	ACA	AAC	ACC	CCC	AAG
	Leu	GIN	GIÀ			PIO	Arg	Ala			met	Arg	Pro			Asn	Thr		
50	C2.2	~~~		1220		~~~	~~~	~~~	1225		~			1230				1	.235
50	CAA	CIT	AGA	ATG	CAG	CTT	CAG	CAG	AGG	CTG	CAG	GGC	CAG	CAG	TTT	TTG	AAT	CAG	AGC
	Gln	ьeu	Arg	мет								GIA	Gin	GIN			Asn	Gln	Ser
		~- ~			1240										1250)			
	CGA	CAG	GCA	CTT	GAA	TTG	AAA	ATG	GAA	AAC	CCT	ACT	GCT	GGT	GGT	GCT	GCG	GTG	ATG
	Arg	Gln	Ala	Leu	GIU			Met	Glu	Asn		Thr	Ala	Gly	Gly	Ala	Ala	Val	Met
						1260	7				1265	ξ.							
55	1255															1270			
33	1255 AGG	ССТ	ATG	ATG	CAG	CCC	CAG	CAG	GGT	TTT	CTT	AAT	GCT	CAA	ATG	GTC	GCC	CAA	CGC
J J	1255	ССТ	ATG Met	ATG Met	CAG Gln	CCC	CAG	CAG Gln	GGT Gly	TTT Phe	CTT	AAT	GCT Ala	CAA Gln	ATG Met	GTC	GCC	CAA Gln	CGC Arg
<i>J</i> 3	1255 AGG Arg	CCT Pro 1275	Met	Met	Gln	CCC Pro	CAG Gln 128	Gln)	Gly	Phe	CTT Leu	AAT Asn 1285	Ala	Gln	Met	GTC Val	GCC Ala 1290	Gln	Arg
	1255 AGG Arg	CCT Pro 1275 AGA	Met GAG	Met CTG	Gln.	CCC Pro	CAG Gln 1280 CAT	Gln) CAC	Gly TTC	Phe CGA	CTT Leu CAA	AAT Asn 1285 CAG	Ala AGG	Gln GTG	Met GCT	GTC Val ATG	GCC Ala 1290 ATG	Gln) ATG	Arg CAG
60	1255 AGG Arg	CCT Pro 1275 AGA	Met GAG	Met CTG	Gln.	CCC Pro	CAG Gln 1280 CAT	Gln) CAC	Gly TTC	Phe CGA	CTT Leu CAA	AAT Asn 1285 CAG	Ala AGG	Gln GTG	Met GCT	GTC Val ATG	GCC Ala 1290 ATG	Gln) ATG	Arg CAG
	AGC Ser	CCT Pro 1275 AGA Arg	Met GAG Glu 1295	Met CTG Leu	Gln CTA Leu	CCC Pro AGT Ser	CAG Gln 1280 CAT His	Gln CAC His 1300	Gly TTC Phe	Phe CGA Arg	CTT Leu CAA Gln	AAT Asn 1285 CAG Gln	Ala AGG Arg 1305	GIn GTG Val	Met GCT Ala	GTC Val ATG Met	GCC Ala 1290 ATG Met	Gln) ATG Met 1310	Arg CAG Gln
	AGC Ser	CCT Pro 1275 AGA Arg CAG	GAG Glu 1295 CAG	Met CTG Leu CAG	Gln CTA Leu CAG	CCC Pro AGT Ser	CAG Gln 1280 CAT His	Gln CAC His 1300 CAG	Gly TTC Phe CAG	Phe CGA Arg CAG	CTT Leu CAA Gln CAG	AAT Asn 1285 CAG Gln CAG	Ala AGG Arg 1305 CAG	GIn GTG Val	Met GCT Ala CAG	GTC Val ATG Met	GCC Ala 1290 ATG Met	Gln ATG Met 1310 CAA	Arg CAG Gln CAG
	AGC Ser	CCT Pro 1275 AGA Arg CAG	GAG Glu 1295 CAG	Met CTG Leu CAG	Gln CTA Leu CAG	CCC Pro AGT Ser	CAG Gln 1280 CAT His	Gln CAC His 1300 CAG	Gly TTC Phe CAG	Phe CGA Arg CAG	CTT Leu CAA Gln CAG	AAT Asn 1285 CAG Gln CAG	Ala AGG Arg 1305 CAG	GIn GTG Val	Met GCT Ala CAG	GTC Val ATG Met	GCC Ala 1290 ATG Met	Gln ATG Met 1310 CAA	Arg CAG Gln CAG
	AGC Ser	CCT Pro 1275 AGA Arg CAG	GAG Glu 1295 CAG	Met CTG Leu CAG	CTA Leu CAG Gln	CCC Pro AGT Ser	CAG Gln 1280 CAT His	Gln CAC His 1300 CAG	Gly TTC Phe CAG Gln	Phe CGA Arg CAG Gln	CTT Leu CAA Gln CAG	AAT Asn 1285 CAG Gln CAG	Ala AGG Arg 1305 CAG	GIn GTG Val	Met GCT Ala CAG Gln	GTC Val ATG Met	GCC Ala 1290 ATG Met	Gln ATG Met 1310 CAA Gln	Arg CAG Gln CAG Gln
	AGC Ser CAG Gln	CCT Pro 1275 AGA Arg CAG Gln	GAG Glu 1295 CAG Gln	CTG Leu CAG Gln 131	Gln CTA Leu CAG Gln	CCC Pro AGT Ser CAA Gln	CAG Gln 1280 CAT His CAG Gln	Gln CAC His 1300 CAG Gln	Gly TTC Phe CAG Gln 1320	CGA Arg CAG Gln	CTT Leu CAA Gln CAG Gln	AAT Asn 1285 CAG Gln CAG Gln	Ala AGG Arg 1305 CAG Gln	Gln GTG Val CAG Gln 1325	GCT Ala CAG Gln	GTC Val ATG Met CAA Gln	GCC Ala 1290 ATG Met CAG Gln	Gln ATG Met 1310 CAA Gln	CAG Gln CAG Gln 330
60	AGC Ser CAG Gln	CCT Pro 1275 AGA Arg CAG Gln	GAG Glu 1295 CAG Gln CAA	CTG Leu CAG Gln 1315 CAG	Gln CTA Leu CAG Gln 5 CAG	CCC Pro AGT Ser CAA Gln	CAG Gln 1280 CAT His CAG Gln	Gln CAC His 1300 CAG Gln CAG	Gly TTC Phe CAG Gln 1320 CAA	Phe CGA Arg CAG Gln	CTT Leu CAA Gln CAG Gln	AAT Asn 1285 CAG Gln CAG Gln	Ala AGG Arg 1305 CAG Gln	Gln GTG Val CAG Gln 1325 AGC	Met GCT Ala CAG Gln	GTC Val ATG Met CAA Gln CCT	GCC Ala 1290 ATG Met CAG Gln	Gln ATG Met 1310 CAA Gln AAT	CAG Gln CAG Gln 330 GTG
60	AGC Ser CAG Gln	CCT Pro 1275 AGA Arg CAG Gln	GAG Glu 1295 CAG Gln CAA	CTG Leu CAG Gln 1315 CAG	CTA Leu CAG Gln CAG Gln	CCC Pro AGT Ser CAA Gln CAA Gln	CAG Gln 1280 CAT His CAG Gln	Gln CAC His 1300 CAG Gln CAG	Gly TTC Phe CAG Gln 1320 CAA	CGA Arg CAG Gln ACC	CTT Leu CAA Gln CAG Gln CAG	AAT Asn 1285 CAG Gln CAG Gln	Ala AGG Arg 1305 CAG Gln	Gln GTG Val CAG Gln 1325 AGC	Met GCT Ala CAG Gln CCA Pro	GTC Val ATG Met CAA Gln CCT Pro	GCC Ala 1290 ATG Met CAG Gln	Gln ATG Met 1310 CAA Gln AAT	CAG Gln CAG Gln 330 GTG
60	AGC Ser CAG Gln CAA Gln	CCT Pro 1275 AGA Arg CAG Gln CAG	GAG Glu 1295 CAG Gln CAA Gln	CTG Leu CAG Gln 1315 CAG Gln	CTA Leu CAG Gln CAG Gln 133	CCC Pro AGT Ser CAA Gln CAA Gln	CAG Gln 1280 CAT His CAG Gln CAG	CAC His 1300 CAG Gln CAG Gln	TTC Phe CAG Gln 1320 CAA Gln	CAG Gln ACC Thr	CTT Leu CAA Gln CAG Gln CAG	AAT Asn 1285 CAG Gln CAG Gln GCC Ala	Ala AGG Arg 1305 CAG Gln TTC Phe	GIn GTG Val CAG Gln 1325 AGC Ser	GCT Ala CAG Gln CCA Pro 1345	GTC Val ATG Met CAA Gln CCT Pro	GCC Ala 1290 ATG Met CAG Gln CCT Pro	Gln ATG Met 1310 CAA Gln AAT	CAG Gln CAG Gln 330 GTG Val
60	AGC Ser CAG Gln CAA Gln ACT	CCT Pro 1275 AGA Arg CAG Gln CAG Gln	GAG Glu 1295 CAG Gln CAA Gln	CTG Leu CAG Gln 1319 CAG Gln	CTA Leu CAG Gln CAG Gln 133!	CCC Pro AGT Ser CAA Gln CAA Gln	CAG Gln 1280 CAT His CAG Gln CAG Gln	CAC His 1300 CAG Gln CAG Gln	Gly TTC Phe CAG Gln 1320 CAA Gln	CGA Arg CAG Gln ACC Thr 1340	CTT Leu CAA Gln CAG Gln CAG Gln	AAT Asn 1285 CAG Gln CAG Gln GCC Ala	Ala AGG Arg 1305 CAG Gln TTC Phe	GIn GTG Val CAG Gln 1325 AGC Ser	GCT Ala CAG Gln CCA Pro 1345 ATG	GTC Val ATG Met CAA Gln CCT Pro	GCC Ala 1290 ATG Met CAG Gln CCT Pro	Gln ATG Met 1310 CAA Gln AAT ASn	CAG Gln CAG Gln 330 GTG Val
60	AGC Ser CAG Gln CAA Gln ACT Thr	CCT Pro 1275 AGA Arg CAG Gln CAG Gln GCT Ala	GAG Glu 1295 CAG Gln CAA Gln	CTG Leu CAG Gln 1319 CAG Gln	CTA Leu CAG Gln CAG Gln 133!	CCC Pro AGT Ser CAA Gln CAA Gln 5	CAG Gln 1280 CAT His CAG Gln CAG Gln	CAC His 1300 CAG Gln CAG Gln	Gly TTC Phe CAG Gln 1320 CAA Gln	CGA Arg CAG Gln ACC Thr 1340	CAA Gln CAG Gln CAG Gln GCA Ala	AAT Asn 1285 CAG Gln CAG Gln GCC Ala GGA Gly	Ala AGG Arg 1305 CAG Gln TTC Phe	GIn GTG Val CAG Gln 1325 AGC Ser	GCT Ala CAG Gln CCA Pro 1345 ATG	GTC Val ATG Met CAA Gln CCT Pro	GCC Ala 1290 ATG Met CAG Gln CCT Pro	Gln ATG Met 1310 CAA Gln AAT ASn	CAG Gln CAG Gln 330 GTG Val
60	AGC Ser CAG Gln CAA Gln ACT	CCT Pro 1275 AGA Arg CAG Gln CAG Gln GCT Ala	GAG Glu 1295 CAG Gln CAA Gln TCC Ser	CTG Leu CAG Gln 1319 CAG Gln	CTA Leu CAG Gln CAG Gln 133! AGC Ser	CCC Pro AGT Ser CAA Gln CAA Gln 5 ATG Met 1359	CAG Gln 1280 CAT His CAG Gln CAG Gln GAT Asp	CAC His 1300 CAG Gln CAG Gln GGG Gly	Gly TTC Phe CAG Gln 1320 CAA Gln CTT Leu	CGA Arg CAG Gln ACC Thr 1340 TTG	CAA Gln CAG Gln CAG Gln GCA Ala 1360	AAT Asn 1285 CAG Gln CAG Gln GCC Ala GGA Gly	Ala AGG Arg 1305 CAG Gln TTC Phe CCC	GIn GTG Val CAG Gln 1325 AGC Ser ACA Thr	GCT Ala CAG Gln CCA Pro 1345 ATG Met	GTC Val ATG Met CAA Gln CCT Pro	GCC Ala 1290 ATG Met CAG Gln CCT Pro	ATG Met 1310 CAA Gln AAT ASn GCT	CAG Gln CAG Gln 330 GTG Val CČT

	_					_		_	_	_						_			_
	Pro	Gln 1370		Phe	Pro	Tyr	Gln 1375		Asn	Tyr	Gly	Met 1380		Gln	Gln	Pro	Asp 1385	Pro	Ala
																		CCC Pro	
5	THE	GIY	1390		Der	Der	110	1395		VIG	Mec	Mec	1400		ALG	Met	GIY	1405	
																		GAA Glu	
				1410)				1415	•				1420)]	1425
10																		CAG Gln	
	-	_	-		1430) ~				1435	i				1440)			
-																		AGT Ser	
	1445	5				1450)		_		1455	5				1460)		-
15	CAC	ATG	GGA	CAG	ATG	AAC	ATG	AAC	CCC	ATG	CCC	ATG	TCT	GGC	ATG	CCT	ATG	GGT Gly	CCT
		1465	5				1470)				1475	5				1480)	
		CAG Gln					CAT	CTC	TGC	ACC	AGG	ACC	TCT	TAA	GGA	AAC	CAC	TGT	ACA
20	-		1485	5	_			1490					1495					1500)
	AAT	GAC	ACT	GCA 1505		GGA	TTA	TTG	GGA 1510		AAT	CAT	TGT	TCC 1515		CAT	CCA	TCT	TGG L520
	AAG	AAA	GGA	CCA			AGC	TCC		AAG		ATT	TTA		GAT		ATT	TGA	
25	GGA	CTG	GAT	ттт	1525 AAG		AAG	GGC	AAT	1530 ATC		GTG	ттт	TTC	1535 CCC		ССТ	TCT	GCT
	1540)				1545	5				1550)				1555	5		-
	GIG	1560		GGT	GII	CAA	1565		AAT	GTT	111	1570		TCC	ACC	TCC	TAG 1575	GGA	TAT
30	AAT	TCT	GGA 1580		ATG	GAG	TGT	TAC 1585		TCA	TAA	AAC			GTC	ACT	TTT	TTC	
30	CTT	GCT			AAT	CTC	ΤŢΑ			CGT	AGG	TGG	1590 GCC		GAA	CAT	TGG	1595 AAG	
	CDD	GAG	DCD.	1600		тат	ርሞር	CTT	1605		CTT	CCA	СТА	1610		מממ	CNC	CAT	1615
					1620)				1625	5				1630)			
35	CCC 163		CTT	CAG	GTG	TAG 1640		TTC	TGT	GTT	GAC 1645		TTG	TCC	AGT	GGA 1650		GGT	GAT
		GAA		TCC	TTT		AAT		GTT	GAG		CTC		CCC	TAT		TTG	ccc	TAG
		1655)				1660)				1665)				1670)	
40	GCT	TTC		_	TGA	AGG	TTT			GCC	ATT	CAT			TAA	TAC	TTC	ACC	
	AGG	AAC	1675 TGT		GGA	TGT	CCA	1680 AAT		TTT	GCA	GAA	1685 AGG		TGA	GAT	GAC	1690 AGT	ATT
	ДДТ	ፐርፍ	CAG	1695		CAA	ΔСΤ	ተ ተተተ	1700		ረ ሞጋ	አ ጥር	ጥርር	1705		CTC	CAC	TTT	710
45					1715	5				1720)				1725	5			
	TAA 1730		GAA	TGG	ATA	AAT 1735		ATA	TTC	TTG	AGG 1740		TGA		TAA	AGT 1745		ACA	CAT
		TGG		TTG	CCT		CTT		TGT	TAG		AGA		ATG	ATT		TTT	TTA	AAG
50	TAC	1750 TGG		CAC	CCT	TTG	1755 CCT		TGG	TAG	AGC	1760		GCT	ттт	ТАА	1765	TAA	АСТ
			1770)				1775	5				1780)				1785	5
				1790)				1795	5				1800)			TTC	1805
55	GAA	TAG	ATT	TTT			ATA	TGA	CCT			TAT	TGT	ATT			AAT	ATG	TAT
	ATA	ССТ	TTT	TTT	1810 GTA		CAC	AAC	AAC	1815 TCA		TTA	CAG	AGT	1820 TTG		AGC	TAA	ATA
	.182		ልጥጥ	ርጥጥ	СУП	1830		D D C	CTC	чисти	1835 GGT		CCT	»cc	n.cm	1840		GAC	7 M.C
		1845	5				1850)				1855	5				1860)	
60	CCT	TGA	CTT 1865		TGG	CCT	GGG	GGA 1870		GTA	GTG	CTC	CAC 1875		TTT	TCC	TTC	CCC 1880	
	CCC	CAG		TAG		CCT	CGC		TTT		TCT	CTT		CTA		GCT	TTT	TAA	AGA
	GAT	TAT	TTG	1885		TGT	AGG	CAT	1890		ттт	тта	AAA	189!		СТА	CCA	GAA	1900 בידים
65					190	5				1910)				1915	5			
	AGC 192		ттс	TTA	ATT	TGG 1925		GAA	AGA	ATA	GAT 1930		GGG	AAA	TAA	ACT 1935		AAA	AAA
		AGG		TTA	AAA		CGA		ATT	TGA		GAA		TTT	GGA	TTT	TAA	GCA.	GTC
70	CGA	1940 AAT		AGC	AAT	TCA	1945 TGG		GTG	TGT	GTG	1950 TGT		TGT	GTG	TGT	1955 GTG	TGT	GTG
			1960					196					1970					1975	

65

	TAT	GTT	TAA															TGG	
	CTD	n C n	CCT															TCT	
					2000)				2005	5				2010)			
5	GTC	TGC	TCA	GCT	GTC	CCC	TCA	TTC	TAC	TAA	TGT	GAT	GCT	TTC	ATT	ATG	TCC	CTG	TGG
	2015					2020)				2025	5				2030			
																		GTT	OP COLUMN
	AII																		IIM
																	2050		
	CTG	TGA																TCT	GCC
10			205	5				2060)				2065	5				2070)
	CCC	TAC	CAC	TTT	TCT	GCT	GTT	GCC	TCT	CTT	TGA	CAC	CTG	TTT	TAG	TCA	GTT	GGG	AGG
			-	207				-	2080)				208	5			2	2000
	AAC	CCN	מממ	ATC	אמנ	արտա	יים ממ	TCC	CTT	ጥለጥ	CTC	COTT	ጥአአ	TTC.		TICC	mmc	AAA	mac.
	MO	GGA	~~	AIC	200		WYI	100	CII	2100	CIG	GGI	IAA	110	AII	166	110	AAA	TAG
					209:	·				2100	, 				210	•			
15			GAA	TTG	GGT	TTC	TGA	ATG	TCT	GTG	AAT							CCT	TGG
	2110)				2113	5				2120)				2125	5		
	TAT	CAT	TTT	CTA	GCA	ATA	ACT	GAG	AGC	CAG	TTA	ATT	TTA	AGA	ATT	TCA	CAC	ATT	TAG
		2130) '				2135	5				2140)				2145	i	
	CCA												ממיחי	ጥልጥ	CTT	ጥር አ		GCT	ጥአር
20	••••	0	2150	١	0	0.0		215	;			****	21.60	`	CII	IOA	LAI	2165	
20	C 2 C		213	, , , , , , ,	a a m	03 M	~~~	ZIJ.	, 		~~~	~~~	2100	, 				210	.
	GAG	TAA	GTG	AAT	CCT	GAT	TAT	TTC	CAG	ACC	CAC	CAC	CAG	AGT	GGA	TCT	TAT	TTT	
				2170)				2175	•				2180)			2	2185
	AGC	AGT	ATA	GAC	AAT	TAT	GAG	TTT	GCC	CTC	TTT	CCC	CTA	CCA	AGT	TCA	AAA	TAT	ATC
					2190)				2199	5				2200				
25	TAA	GAA	AGA	TTG											GTG	СТТ	TTC	AGA	TAG
	220											5				2220			
		•	CTC	CTC	ጥጥጥ													TTC	100
	171	2225		CIG	111	GGA	OAC	AGA	GGA	AGA	ACC	AGG	TCH	GIC	IGI	CTC			AGC
			-				223	J				223	•				2240		
	TCA	ATT	GTA	TCT	GAC	CCT	TCT	TTA	AGT	TAT	GTG	TGT	GGG	GAG	AAA	TAG	TAA	GGT	GCT
30			224	5				2250)				2255	5				2260)
	CTT	ATC	TTT	CTT	GAC	TTT	AAA	AAA	ATT	ATT	AAA	AAC	AAA	AAA	AAA	AAA	AAA	AA	
				226	5				2270)				227	5		-		
					-					-					•				

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 186

- (B) TYPE: amino acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear
- 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Leu Leu Gln Ala Leu Asp Gly Phe Leu Phe Val Val Asn Arg Asp Gly Asn Ile Val 5 10 15 Phe Val Ser Glu Asn Val Thr Gln Tyr Leu Gln Tyr Lys Gln Glu Asp Leu Val Asn 45 25 Thr Ser Val Tyr Asn Ile Leu His Glu Glu Asp Arg Lys Asp Phe Leu Lys Asn Leu 40 45 50 55 Pro Lys Ser Thr Val Asn Gly Val Ser Trp Thr Asn Glu Thr Gln Arg Gln Lys Ser 60 65 70 75 His Thr Phe Asn Cys Arg Met Leu Met Lys Thr Pro His Asp Ile Leu Glu Asp Ile 80 85 90 50 85 90 Asn Ala Ser Pro Glu Met Arg Gln Arg Tyr Glu Thr Met Gln Cys Phe Ala Leu Ser 100 105 Gln Pro Arg Ala Met Met Glu Glu Gly Glu Asp Leu Gln Ser Cys Met Ile Cys Val 115 120 125 130 55 Ala Arg Arg Ile Thr Thr Gly Glu Arg Thr Phe Pro Ser Asn Pro Glu Ser Phe Ile 135 140 145 150 Thr Arg His Asp Leu Ser Gly Lys Val Val Asn Ile Asp Thr Asn Ser Leu Arg Ser 155 160 . Ser Met Arg Pro Gly Phe Glu Asp Ile Ile Arg Arg Cys Ile Gln 175 180

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 73
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: Single

(D) TOPOLOGY: Linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Arg Lys Arg Lys Leu Pro Cys Asp Thr Pro Gly Gln Gly Leu Thr Cys Ser Gly Glu Lys Arg Arg Arg Glu Gln Glu Ser Lys Tyr Ile Glu Glu Leu Ala Glu Leu Ile Ser 20 25 130 135 130 135 Ala Asn Leu Ser Asp Ile Asp Asn Phe Asn Val Lys Pro Asp Lys Cys Ala Lle Leu 140 145 150 155 145 Lys Glu Thr Val Arg Gln Ile Arg Gln Ile Lys Glu Gln Gly Lys Thr

(2) INFORMATION FOR SEQ ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
- 15 (A) LENGTH: 1419
 - (B) TYPE: human amino acid of AIB1
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4: 20 Met Ser Gly Leu Gly Glu Asn Leu Asp Pro Leu Ala Ser Asp Ser Arg Lys Arg Lys Leu Pro Cys Asp Thr Pro Gly Gln Gly Leu Thr Cys Ser Gly Glu Lys Arg Arg 30 Glu Gln Glu Ser Lys Tyr Ile Glu Glu Leu Ala Glu Leu Ile Ser Ala Asn Leu Ser 40 55 55 Asp Ile Asp Asn Phe Asn Val Lys Pro Asp Lys Cys Ala Ile Leu Lys Glu Thr Val 60 65 70 75 Arg Gln Ile Arg Gln Ile Lys Glu Gln Gly Lys Thr Ile Ser Asn Asp Asp Asp Val 80 85 90 95 30 Gln Lys Ala Asp Val Ser Ser Thr Gly Gln Gly Val Ile Asp Lys Asp Ser Leu Gly
100 105 110 100 Pro Leu Leu Gln Ala Leu Asp Gly Phe Leu Phe Val Val Asn Arg Asp Gly Asn 115 120 125 130 Ile Val Phe Val Ser Glu Asn Val Thr Gln Tyr Leu Gln Tyr Lys Gln Glu Asp Leu 135 140 145 150 35 Val Asn Thr Ser Val Tyr Asn Ile Leu His Glu Glu Asp Arg Lys Asp Phe Leu Lys 160 165 Asn Leu Pro Lys Ser Thr Val Asn Gly Val Ser Trp Thr Asn Glu Thr Gln Arg Gln 175 180 185 195 40 Lys Ser His Thr Phe Asn Cys Arg Met Leu Met Lys Thr Pro His Asp Ile Leu Glu 200 Asp Ile Asn Ala Ser Pro Glu Met Arg Gln Arg Tyr Glu Thr Met Gln Cys Phe Ala 210 215 220 225 215 220 225 45 Leu Ser Gln Pro Arg Ala Met Met Glu Glu Gly Glu Asp Leu Gln Ser Cys Met Ile 230 235 240 245 Cys Val Ala Arg Arg Ile Thr Thr Gly Glu Arg Thr Phe Pro Ser Asn Pro Glu Ser 250 265 265 260 Phe Ile Thr Arg His Asp Leu Ser Gly Lys Val Val Asn Ile Asp Thr Asn Ser Leu 270 275 280 285 50 Arg Ser Ser Met Arg Pro Gly Phe Glu Asp Ile Ile Arg Arg Cys Ile Gln Arg Phe 290 295 300 Phe Ser Leu Asn Asp Gly Gln Ser Trp Ser Gln Lys Arg His Tyr Gln Glu Ala Tyr 305 310 315 320 55 Leu Asn Gly His Ala Glu Thr Pro Val Tyr Arg Phe Ser Leu Ala Asp Gly Thr Ile 325 330 335 340 Val Thr Ala Glm Thr Lys Ser Lys Leu Phe Arg Asm Pro Val Thr Asm Asp Arg His 345 350 355 360 Gly Phe Val Ser Thr His Phe Leu Gln Arg Glu Gln Asn Gly Tyr Arg Pro Asn Pro 365 370 375 380 60 375 Asn Pro Val Gly Gln Gly Ile Arg Pro Pro Met Ala Gly Cys Asn Ser Ser Val Gly 385 390 395 Gly Met Ser Met Ser Pro Asn Gln Gly Leu Gln Met Pro Ser Ser Arg Ala Tyr Gly 400 405 410 415 Leu Ala Asp Pro Ser Thr Thr Gly Gln Met Ser Gly Ala Arg Tyr Gly Gly Ser Ser 420 425 430 Asn Ile Ala Ser Leu Thr Pro Gly Pro Gly Met Gln Ser Pro Ser Ser Tyr Gln Asn 450

		•		63	•			0	0	D 4	D	***	03	.		01	•		_
			=	Gly 460					465				_	470		_			475
	Asn	Gln	Gln	Asn	Ile 480	Met	Ile	Ser	Pro	Arg 485	Asn	Arg	Gly	Ser	Pro 490	Lys	Ile	Ala	Ser
5	His 495	Gln	Phe	Ser	Pro	Val 500	Ala	Gly	Val	His	Ser 505	Pro	Met	Ala	Ser	Ser 510	Gly	Asn	Thr
	Gly	Asn 515	His	Ser	Phe	Ser	Ser 520	Ser	Ser	Leu	Ser	Ala 525	Leu	Gln	Ala	Ile	Ser 530	Glu	Gly
10	Val	Gly	Thr 535	Ser	Leu	Leu	Ser	Thr 540	Leu	Ser	Ser	Pro	Gly 545	Pro	Lys	Leu	Asp	Asn 550	Ser
	Pro	Asn	Met	Asn 555	Ile	Thr	Gln	Pro	Ser 560	Lys	Val	Ser	Asn	Gln 565	qeA	Ser	ГЛЗ		Pro 570
•	Leu	Gly	Phe	Tyr	Cys 575	Asp	Gln	Asn	Pro	Val 580	Glu	Ser	Ser	Met	Cys 585	Gln	Ser	Asn	Ser
15	Arg 590	Asp	His	Leu	Ser	Asp 595	Lys	Glu	Ser	Lys	Glu 600	Ser	Ser	Val	Glu	Gly 605	Ala	Glu	Asn
	Gln	Arg 610	-	Pro	Leu	Glu	Ser 615	Lys	Gly	His	Lys	Lys 620	Leu	Leu	Gln	Leu	Leu 625	Thr	Cys
20	Ser	Ser	Asp 630	Asp	Arg	Gly.	His	Ser 635	Ser	Leu	Thr	Asn	Ser 640	Pro	Leu	Asp	Ser	Ser 645	Cys
	_			Ser 650					655			_		660					665
	Gly	Val	Ser	Ser	Thr 670	Ser	Asn	Met	His	Gly 675	Ser	Leu	Leu	Gln	Glu 680	Lys	His	Arg	Ile
25	685			Leu		690		_			695					700			
	Glu	Ala 705	Thr	Gly	Lys	Asp	Thr 710	Ser	Ser	Ile	Thr	Ser 715	Cys	Gly	Asp	Gly	Asn 720	Val	Val
30			725	Gln				730					735				_	740	
		-	-	Asp 745	-			•	750			•		755					760
	_		_	Asn	765				_	770					775				
35	780	-	_	Pro	-	785	_				790			_		795	-		•
		800	_	Ala			805	_				810	_		_		815		
40			820	Gly				825					830			-		835	
				Lys 840					845				_	850		_		-	855
45				Asp	860					865					870	-			
45	875			Met		880	-				885	-	_			89Õ			Ī
		895		Asn			900					905					910		
50			915			_	-	920	_				925	_		-	_	930	
				Ser 935				_	940		_	_	_	945					950
55					955	_				960					965				Pro
33	970		_	Pro	-	975					980					985		Ī	
		990		_		_	995			_		100	0				100	5	Leu
60			101					101	5				102	0		_		102	5
	104		Leu	Leu 103		ASII	Ser	Leu	103		reu	. vai	GIĀ	104	_	ser	Asn	Leu	GIU
65			Ser	Asp	Glu 105		Ala	Leu	Leu	Asp 105		Leu	His	Thr	Leu 106		Ser	Asri	Thr
	Asp 106		Thr	Gly				Ile	Asp				Gly	Ile				Val	Asn
				Ala	Leu				Gln	Asp				Gly	Gln	Glu	Ala 110		Val
70	Met				Lys	Ala				Gly	Gln				Ala	Ģln			Pro.

	Met Gln		Gly Pho 1125	e His	Leu	Gln	Gly 1130		Ser	Pro	Ser	Phe 1135		Ser	Met	Met	Asn
	1140	_			_		_	_									
· 5	Gln Met		11	45				1150)	_			1155	5 -			
	Met Arg 1160			116	5				1170)				117	5		
	Gln Gly 118	0			1185	5		_		1190)			•	1195	5 -	
10	Pro Thr	1200				120	5				1210)				121	5
	Leu Asn 1235		Gln Me 1220	t Val	Ala	Gln	Arg 122		Arg	Glu	Leu	Leu 1230		His	His	Phe	Arg
15	Gln Gln	Arg	Val Al		Met	Met	Gln	Gln 1245		Gln	Gln	Gln	Gln 1250		Gln	Gln	Gln
	Gln Gln 1255			126	0				1265	5				1270	0		
20	Gln Ala 127	5			1280	0				1285	5				1290)	
	Ala Gly	1295				130	0				1305	5				131	0 -
25	Gly Met		1315				1320)				1325	5				1330
25	Met Met		13	35				1340	כ				1345	5			
	Ala Ser 1350 Asn Ser			135	5				1360)				1369	5		-
30	137 Met Val	0			137	5				1380)				1385	ò	
	Pro Met	1390				139	5				1400)		Mec	MSII	140	
			1410			,	141		· · · ·	2,5	- , -	1420					
35	(0)	TA I DC	D	ON D	on 01			_									
	(2)		DRMAT			-											
			SEQUE (A) LE	NGTH	I: 22		EKIS	HCS	:								
40			(B) TY (C) ST				Singl	e									
			(D) TO	POLO	GY:	Linea	ır			10.5							
			SEQUE							10:5:							
45		5'	'-TCATC	ACTT(CCGA	CAA	CAGA	.GG-3	•								
	(2)		ORMATI SEQUE			-											
			(A) LE	NGTH	I: 20		LKIS	1103									
50			(B) TY (C) ST				Singl	е									
		(mi)	(D) TO	POLO	GY:	Linea	ır		. ID.	NO.							
			SEQUE						י עו ג	NU:b	:						
55			'-CCAG		•												
	(2)	INFO	ORMATI SE	ON FO QUENO													
					(A)		ENGT										
60					(B)		YPE : TRAN					=					
			\ -=-		(D)	T	OPOI	OGY	: Li	near	:						
		(xi)) SEQ	UENC	s DE	SCRI	PTIC	N:	SEÇ	ID	NO:	7:					
		5	'-TTAC	rggaa(cccc	CATAC	CC-3	•									

(2) INFORMATION FOR SEQ ID NO: 8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 950
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

10	1			-	5					10	_			-	15	Gln	-	_	
	20				_	25		_			30				-	Arg 35			
	Ala	Asp 40	Gly	Thr	Ile	Val	Thr 45	Ala	Gln	Thr	Lys	Ser 50	Lys	Leu	Phe	Arg	Asn 55	Pro	Val
15	Thr	Asn	Asp 60	Arg	His	Gly	Phe	Val 65	Ser	Thr	His	Phe	Leu 70	Gln	Arg	Glu	Gln	Asn 75	Gly
	Tyr	Arg	Pro	Asn 80	Pro	Asn	Pro		Gly 85	Gln	Gly	Ile	Arg	Pro 90	Pro	Met	Ala		Cys
20	Asn	Ser	Ser		Gly 100	Gly	Met	Ser	Met	Ser 105	Pro	Asn	Gln		Leu 110	Gln	Met	Pro	Ser
	Ser 115	Arg	Ala	Tyr	Gly	Leu 120	Ala	Asp	Pro		Thr 125	Thr	Gly	Gln		Ser 130	Gly	Ala	Arg
		Gly 135	Gly	Ser	Ser		Ile 140	Ala	Ser	Leu		Pro 145	Gly	Pro	Gly	Met	Gln 150	Ser	Pro
25	Ser		Tyr 155	Gln	Asn	Asn		Tyr 160	Gly	Leu	Asn		Ser 165	Ser	Pro	Pro		Gly 170	Ser
	Pro	Gly		Ala 175	Pro	Asn	Gln		Asn 180	Ile	Met	Ile		Pro 185	Arg	Asn	Arg		Ser 190
30	Pro	Lys	Ile	Ala	Ser 195	His	Gln	Phe		Pro 200	Val	Ala	Gly		His 205	Ser	Pro	Met	
	Ser 210	Ser	Gly	Asn	Thr	Gly 215	Asn	His	Ser	Phe	Ser 220	Ser	Ser	Ser	Leu	Ser 225	Ala	Leu	Gln
	Ala	Ile 230	Ser	Glu	Gly	Val	Gly 235	Thr	Ser	Leu	Leu	Ser 240	Thr	Leu	Ser	Ser	Pro 245	Gly	Pro
35	Lys	Leu	Asp 250	Asn	Ser	Pro	Asn	Met 255	Asn	Ile	Thr	Gln	Pro 260	Ser	Lys	Val	Ser	Asn 265	Gln
	Asp	Ser	Lys	Ser 270	Pro	Leu	Gly	Phe	Tyr 275	Cys	Asp	Gln	Asn	Pro 280	Val	Glu	Ser	Ser	Met 285
40	Суз	Gln	Ser	Asn	Ser 290	Arg	Asp	His	Leu	Ser 295	Asp	Lys	Glu	Ser	Lys 300	Glu	Ser	Ser	Val
	Glu 305	Gly	Ala	Glu	Asn	Gln 310	Arg	Gly	Pro	Leu	Glu 315	Ser	Lys	Gly	His	Lys 320	Lys	Leu	Leu
		325			_		330	_		_	_	335				Thr	340		
45			345		-			350					355			Ser	•	360	
				365					370					375	_	Ser			380
50					385					390					395	Pro			
	400					405				-	410					Thr 415		-	-
.		420					425					430		-		Glu	435		
55			440					445					450			Ser		455	
				460		_		_	465	-				470		Ser			475
60					480					485					490	Ser			_
	495					500					505					Ser 510			
65	Tyr	515		ser	He	ser	520	Asn	GIA	Ser	HIS	Leu 525	GIÀ	Thr	Lys	Gln	Gln 530	Val	Phe
65	Gln	Gly		Asn	Ser	Leu	Gly		Lys	Ser	Ser	Gln		Val	Gln	Ser	Ile		Pro
	Pro	Tyr	535 Asn		Ala	Val	Ser	540 Leu			Pro	Val	545 Ser			Ser	Ser	550 Pro	
				555					560					565	•				570

```
Val Lys Asn Ile Ser Ala Phe Pro Met Leu Pro Lys Gln Pro Met Leu Gly Gly Asn
                                                             585
                     575
                                         580
     Pro Arg Met Met Asp Ser Gln Glu Asn Tyr Gly Ser Ser Met Gly Gly Pro Asn Arg
                         595
                                             600
                                                                 605
     Asn Val Thr Val Thr Gln Thr Pro Ser Ser Gly Asp Trp Gly Leu Pro Asn Ser Lys
                            615
        610
                                                 620
     Ala Gly Arg Met Glu Pro Met Asn Ser Asn Ser Met Gly Arg Pro Gly Gly Asp Tyr
             630
                           635
                                                    640
     Asn Thr Ser Leu Pro Arg Pro Ala Leu Gly Gly Ser Ile Pro Thr Leu Pro Leu Arg
10
                 650
                                    655
                                                        660
     Ser Asn Ser Ile Pro Gly Ala Arg Pro Val Leu Gln Gln Gln Gln Met Leu Gln
                                         675
     Met Arg Pro Gly Glu Ile Pro Met Gly Met Gly Ala Asn Pro Tyr Gly Gln Ala Ala
                         690
                                            695
                                                                 700
15
     Ala Ser Asn Gln Leu Gly Ser Trp Pro Asp Gly Met Leu Ser Met Glu Gln Val Ser
                            710
                                                 715
     His Gly Thr Gln Asn Arg Pro Leu Leu Arg Asn Ser Leu Asp Asp Leu Val Gly Pro
                                 730
                                                     735
     Pro Ser Asn Leu Glu Gly Gln Ser Asp Glu Arg Ala Leu Leu Asp Gln Leu His Thr
20
                 745
                                     750
     Leu Leu Ser Asn Thr Asp Ala Thr Gly Leu Glu Glu Ile Asp Arg Ala Leu Gly Ile
                    765
                                         770
                                                             775
     Pro Glu Leu Val Asn Gln Gly Gln Ala Leu Glu Pro Lys Gln Asp Ala Phe Gln Gly
                         785
                                             790
25
     Gln Glu Ala Ala Val Met Met Asp Gln Lys Ala Gly Leu Tyr Gly Gln Thr Tyr Pro
800 805 815
                                                810
                            805
     Ala Gln Gly Pro Pro Met Gln Gly Gly Phe His Leu Gln Gly Gln Ser Pro Ser Phe
                                 825
                                                     830
     Asn Ser Met Met Asn Gln Met Asn Gln Gln Gly Asn Phe Pro Leu Gln Gly Met His
30
                 840
                                    845
                                                         850
     Pro Arg Ala Asn Ile Met Arg Pro Arg Thr Asn Thr Pro Lys Gln Leu Arg Met Gln
                                        865
     Leu Gln Gln Arg Leu Gln Gly Gln Gln Phe Leu Asn Gln Ser Arg Gln Ala Leu Glu
                        880
                                            885
                                                                 890
35
     Leu Lys Met Glu Asn Pro Thr Ala Gly Gly Ala Ala Val Met Arg Pro Met Met Gln
                             900
                                                 905
      Pro Gln Gln Gly Phe Leu Asn Ala Gln Met Val Ala Gln Arg Ser Arg Glu Leu Leu
                                                     925
             915
                                 920
      Ser His His Phe Arg Gln Gln Arg Val Ala Met Met Gln Gln Gln Gln Gln Gln
40
                                     940
     Gln
```

(2) INFORMATION FOR SEQ ID NO: 9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4621 nucleotides; 1539 amino acid residues
 - (B) TYPE: mouse DNA and amino acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

G GCG GCG AAC GGA TCA AAA GAA TTT GCT GAA CAG TGG ACT CCG AGA TCG GTA AAA CGA ACT CTT CCC TGC CCT TCC TGA ACA GCT GTC AGT TGC TGA TCT GTG ATC AGG ATG AGT GGA CTA GGC GAA AGC TCT TTG GAT CCG CTG GCC GCT GAG TCT CGG AAA Met Ser Gly Leu Gly Glu Ser Ser Leu Asp Pro Leu Ala Ala Glu Ser Arg Lys CGC AAA CTG CCC TGT GAT GCC CCA GGA CAG GGG CTT GTC TAC AGT GGT GAG AAG Arg Lys Leu Pro Cys Asp Ala Pro Gly Gln Gly Leu Val Tyr Ser Gly Glu Lys TGG CGA CGG GAG CAG GAG AGC AAG TAC ATA GAG GAG CTG GCA GAG CTC ATC TCT Trp Arg Arg Glu Gln Glu Ser Lys Tyr Ile Glu Glu Leu Ala Glu Leu Ile Ser GCA AAT CTC AGC GAC ATC GAC AAC TTC AAT GTC AAG CCA GAT AAA TGT GCC ATC Ala Asn Leu Ser Asp Ile Asp Asn Phe Asn Val Lys Pro Asp Lys Cys Ala Ile CTA AAG GAG ACA GTG AGA CAG ATA CGG CAA ATA AAA GAA CAA GGA AAA ACT ATT Leu Lys Glu Thr Val Arg Gln Ile Arg Gln Ile Lys Glu Gln Gly Lys Thr Ile

	TCC	AGT	GAT	GAT	GAT	GTT	CAA	AAA	GCT	GAT	GTG	TCT	TCT	ACA	GGG	CAG	GGA	GTC
				Asp														
	Der	JEI	130	пор	АЗР	V 4 1	GIII	135	ALU	АЗР	val	Der		1111	Gry	GIII	GIY	_
		a		~~~									140					145
_	ATT	GAT	AAA	GAC	TCT	TTA	GGA	CCG	CTT	TTA	CTA	CAG	GÇA	CTG	GAT	GGT	TTC	CTG
5	Ile	Asp	Lys	Asp	Ser	Leu	Gly	Pro	Leu	Leu	Leu	Gln	Ala	Leu	Asp	Gly	Phe	Leu
					150					155					160	-		
	ጥጥጥ	GTG.	GTG	AAT		CAT	CCA	DAC	ΔΤΤ		דידיר	CTC	TCD	CAD.		GTC	מכמ	CNG
	rne		vai	Asn	Arg	Asp		Asn	116	Val	Pne		ser	GTU	Asn	vaı		GIN
		165					170					175					180	
10	TAT	CTG	CAG	TAC	AAG	CAG	GAG	GAC	CTG	GTT	AAC	ACA	AGT	GTC	TAC	AGC	ATC	TTA
				Tyr														
	- 1 -			185	-1-				190					195	-1-			
	0 m m	~~~	an n		~~~		0 m m	mmm			~~~							
				GAC														
	His	Glu	Gln	Asp	Arg	Lys	Asp	Phe	Leu	Lys	His	Leu	Pro	Lys	Ser	Thr	Val	Asn
15	200					205					210					215		
	GGA	GTT	TCT	TGG	ACT	AAT	GAG	AAC	CAG	AGA	CAA	AAA	AGC	CAT	ACA	ጥጥጥ	ΔΔT	TCT
				Trp														
	Gry	vai		тър	1111	TOIL	GIU		GIII	nry	GIII	Lys		urs	IIII	rne	ASII	
			220					225					230					235
				ATG														
20	Arg	Met	Leu	Met	Lys	Thr	His	Asp	Ile	Leu	Glu	Asp	Val	Asn	Ala	Ser	Pro	Glu
					240)		_		245	5	_			250)		
	ACA	CGC	CAG	AGA	TAT	GAA	ACA	ATG	CAG			GCC	CTG	ጥርጥ	CAG	CCT	CCC	CCT
	IIII		GIII	Arg	ıyı	GIU		mer	GIII	cys	rne		rea	ser	GIN	Pro	-	ALA
		255					260					265					270	
25				GAA														
	Met	Leu	Glu	Glu	Gly	Glu	Asp	Leu	Gln	Cvs	Cvs	Met	Ile	Cvs	Val	Ala	Ara	Ara
				275	-		•		280	-	-			285			9	
	CTC	እርጥ	ccc		TO C	CCA	TOC	n cm		CNC	ACC.	mmm	מתת		707	C D C	030	amm.
	616	MCI	33	CCA	110	CCA	100	WGI	CCI	GAG	AGC	111	AIT	ACC	AGA	CAT	GAC	CTT
		Thr	Ala	Pro	Pne		Ser	Ser	Pro	GIU		Phe	TTE	Thr	Arg	His	Asp	Leu
30	290					295					300					305		
	TCC	GGA	AAG	GTT	GTC	AAT	ATA	GAT	ACA	AAC	TCA	CTT	AGA	TCT	TCC	ATG	AGG	CCT
•	Ser	Glv	Lvs	Val	Val	Asn	Ile	Asp	Thr	Asn	Ser	Leu	Ara	Ser	Ser	Met	Ara	Pro
•		3	310					315					320				9	325
	000	mmm		~ ~ ~	3073	3 m O	003		mam	* 77.0	030		320	mmo				323
25	996	111	GAA	GAC	ATA	ATC	CGA	AGA	161	ATC	CAG	AGG	TTC	TTC	AGT	CTG	AAT	GAT
35	Gly	Phe	Glu	Asp	Ile	Ile	Arg	Arg	Cys	Ile	Gln	Arg	Phe	Phe	Ser	Leu	Asn	Asp
					330					335	•				340			
	GGG	CAG	TCA	TGG	TCC	CAG	AAG	CGT	CAC	TAT	CAA	GAA	GCT	TAT	GTT	CAT	GGC	CAC
				Trp														
	0-3	345		_		01	350	1119	1115	1 y 1	0111		211.0	1 7 1	Val	1113	_	1112
40					~~~							355					360	
40	GCA	GAG	ACC	CCC	GTG	TAT	CGT	TTC	TCC	TTG	GCT	GAT	GGA	ACT	ATT	GTG	AGT	GCG
	Ala	Glu	Thr	Pro	Val	Tyr	Arg	Phe	Ser	Leu	Ala	Asp	Gly	Thr	Ile	Val	Ser	Ala
		•		365					370					375				
	CAG	ACA	AAA	AGC	AAA	CTC	TTC	CGC	AAT	CCT	GTA	ACG	AAT	GAT	CGT	CAC	GGC	TTC
				Ser														
45		1111	цуз	Ser	Буз		rne	n.y	H211	FIU		1111	ASII	ASP	Arg		GIY	Pne
43	380					385					390					395		
	ATC	TCG	ACC	CAC	TTT	CTT	CAG	. AGA	GAA	CAG	AAT	GGA	TAC	AGA	CCA	AAC	CCA	TAA
	Ile	Ser	Thr	His	Phe	Leu	Gln	Arg	Glu	Gln	Asn	Gly	Tyr	Arg	Pro	Asn	Pro	Asn
			400					405				_	410	_				415
									•					•				
50																		
50	000	003	CCA	017	000	N/m/c	CCN	com	COM	CCI	C C N	000	m c m	-	0.00			
				CAA														
	Pro	Ala	GIA	Gln		тте	Arg	Pro	Pro		Ala	GTA	Cys	GTA	Val	Ser	Met	Ser
					420					425					430			
	CCA	AAT	CAG	TAA	GTA	CAG	ATG	ATG	GGC	AGC	CGG	ACC	TAT	GGC	GTG	CCA	GAC	CCC
55	Pro	Asn	Gln	Asn	۷al	Gln	Met	Met	Glv	Ser	Ara	Thr	Tur	Glv	Val	Pro	Asn	Pro
•••		435					440		U -1		••••	445	- , -	O _T y	• 44	110		LIO
	***		3.03		~~~	3.000		~~~	~~~				~~ ~	m 0 m			450	
				GGG														
	Ser	Asn	Thr	Gly	Gln	Met	Gly	Gly	Ala	Arg	Tyr	Gly	Ala	Ser	Ser	Ser	Val	Ala
				455					460					465				-
60	TCA	CTG	ACG	CCA	GGA	CAA	AGC	CTA	CAG	TCG	CCA	TCT	TCC	TAT	CAG	AAC	AGC	AGC
		Deu	1111	Pro	Gry		Ser	Deu	Gin	261		Ser	Set	IAT	GIII		ser	ser
	470					475					480					485		
	TAT	GGG	CTC	AGC	ATG	AGC	AGT	CCC	CCC	CAC	GGC	AGT	CCT	GGT	CTT	GGT	CCC	AAC
	Tyr	Gly	Leu	Ser	Met	Ser	Ser	Pro	Pro	His	Gly	Ser	Pro	Gly	Leu	Gly	Pro	Asn
65	-	_	490					495			-		500	-		-		505
	CAG	CAG		ATC	ATC	ATT	TCC		CGG	ΔΔT	ССТ	GGC		CCP	ם מ מ	ATC.	GCC.	TO CO
	Gla	61-	A	T10	Mot	T1.	200	D=-	7~~	V	7	C1	2.50	D	T	Met	77-	100
	GIN	GTII	nsn	Ile		TTG	Jer	LIO	Arg		Arg	GTÅ	ser	PEO		met	АТА	ser
	_				510					515					520			
	CNC	CAG	TTC	TCT	CCT	GCT	GCA	GGT	GCA	CAC	TCA	CCC	ATG	GGA	CCT	TCT	GGC	AAC
	CAC																	
70	His	Gln	Phe	Ser	Pro	Ala	Ala	Gly	Ala	His	Ser	Pro	Met	Glv	Pro	Ser	Glv	Asn
70	His	Gln 525	Phe	Ser	Pro	Ala	Ala 530	Gly	Ala	His	Ser	Pro 535	Met	Gly	Pro	Ser	Gly 540	Asn

		GGG																
	Thr	Gly	Ser		Ser	Phe	Ser	Ser		Ser	Leu	Ser	Ala		Gln	Ala	Ile	Ser
	~			545					550					555				
•		GGC																
5		Gly	vaı	GIÀ	Thr		тел	Leu	Ser	Thr		Ser	ser	Pro	GTĀ		гÀг	Leu
	560	יווית מ	መረጥ	ccc	יחתת	565	חתת	z m z	300	CNC	570	N C m	***	CMC	3.CIII	575 CCM	03.0	C2.C
		AAT Asn																
	nsp	HOII	580	FIO	MOII	Met	Man	585	ser	GIII	FIO	ser	590	Val	Ser	GTA	GIU	595
10	ጥርጥ	AAG		CCC	СТД	GGC	מידיד		тст	CDD	CAG	דעע		GTG	CAC	ACT	ጥርል	
••		Lys																
		-,-			600	2		-3-	-,-	605					610	001	DC1	, u _
	TGT	CAG	TCA	AAC		AGA	GAT	CAC	CCA		GAA	AAA	GAA	AGC		GAG	AGC	AGT
		Gln																
15		615					620					625			-		630	
		GAG																
	Gly	Glu	Val	Ser	Glu	Thr	Pro	Arg		Pro	Leu	Glu	Ser	Lys	Gly	His	Lys	Lys
				635					640					645				
••		CTG																
20		Leu	Gln	Leu	Leu		Cys	Ser	Ser	Asp		Arg	Gly	His	Ser		Leu	Thr
	650	mom	222	OTO C	~~ m	655		maa		~~	660					665		
		TCT																
	ASII	Ser	670	reu	ASP	Pro	ASn	675	rys	Asp	ser	ser		ser	vaı	Thr	Ser	
25	ጥርጥ	GGA	-	TCC	TCC	ጥሮል	מיאמ	-	ccc	מיאמ	CTC.	TOT	680	NCC	TOC	N N M	cmc	685
20		Gly																
	001	O- J		501	690		****	001	OLY	695	vai	JCI	561	700	Der	ASII	Vai	птэ
	GGG	TCT	CTG	TTG			AAA	CAC	CGG		TTG	CAC	AAG		CTG	CAG	AAT	GGC
	Gly	Ser	Leu	Leu	Gln	Glu	Lys	His	Arg	Ile	Leu	His	Lys	Leu	Leu	Gln	Asn	Gly
30	705					710					715					720		
		TCC																
	Asn	Ser		Ala	Glu	Val	Ala		Ile	Thr	Ala	Glu		Thr	Gly	Lys	Asp	Thr
			725	~~~				730					735					740
35		AGC																
33	per	Ser	IIII	MIG	745	Cys	GIY	GLU	GIA	750	Thr	Arg	GIn	GIU		ren	Ser	Pro
	DAG	AAG	מממ	GAG		ייעמ	CCT	CTC	ርጥጥ		ጥልር	СТС	СТС	CDC	755	Chm	CNC	CCC
	Lvs	Lys	Tivs	Glu	Asn	Asn	Ala	Len	Len	Ara	Tur	Len	Len	Asn	Arα	Den	yer.	Pro
	-1-	760					765			5	- , -	770			9		775	110
40	AGT	GAT	GTG	CTT	GCC	AAA	GAG	CTG	CAG	CCC	CAG	GCC	GAC	AGT	GGG	GAC	AGT	AAA
	Ser	Asp	Val	Leu	Ala	Lys	Glu	Leu	Gln	Pro	Gln	Ala	Asp	Ser	Gly	Asp	Ser	Lys
				780					785					790				
45		AGT																
45	795	Ser	GIN	Cys	ser	800		Thr	Asn	Pro		ser	GIY	GIN	GTB	-	Asp	Pro
		ATT	nnc	NCC	CNC			CNC	CAC	Cmp	805	CCA	CAC	CTC	CMT	810	CIDA	CAM
		Ile																
	-,,		815					820		,	00,	O- J	825	пса	nop	non.	пец	830
50	GCC	ATT	CTT	GGA	GAT	TTG	ACC		TCT	GAC	TTC	TAC		AAT	CCT	ACA	AAT	
	Ala	Ile	Leu	Gly	Asp	Leu	Thr	Ser	Ser	Asp	Phe	Tyr	Asn	Asn	Pro	Thr	Asn	Glv
	•				835					840					845			-
	GGT	CAC	CCA	GGG	GCC	AAA	CAG	CAG	ATG	TTT	GCA	GGA	CCG	AGT	TCT	CTG	GGT	TTG
	Gly			Gly	Ala	Lys			Met	Phe	Ala			Ser	Ser	Leu	Gly	Leu
55	~~~	850					855					860					865	
		AGT																
	Arg	Ser	PLO	870	rro	vai	GIN	Ser	875		Pro	Pro	Tyr			Ата	val	Ser
	CTG	GAT	D.C.C		GTG.	ጥርጥ	ርጥጥ	ccc			ccc	CCA	GT/G	880		CTC	A CID	CCM
60		Asp																
	885					890		,		,	895			2,5		900	Der	ALG
	TTC	CCT	GGG	TTA	CCA			CCC	ATA	CTG			AAT	CCA	AGA		ATG	GAT
	Phe	Pro	Gly	Leu	Pro	Lys	Gln	Pro	Ile	Leu	Ala	Gly	Asn	Pro	Arg	Met	Met	Asp
			905					910					915				920	-
65		CAG																
	Ser	Gln	Glu			Gly	Ala				Pro	Asn	Arg		Val	Pro	Val	Asn
	~~~	7.00	mac	925			^-		. 930				m	935				
	Dwa	ACT	TCC	TCC	D=-	GGA	GAC	TGG	GGC	TTA	GCT	AAC	TCA	AGG	GCC	AGC	AGA	ATG
70	940		ser	ser	rro	945		rrp	GTĀ	neu	950		ser	Arg	ALA		Arg	Met
		CCT	CTG	GCD	מיד			ርጥር	CCV	מממ			GCC	Cnr	ጥአር	955	ccc	y Cm
			-10	JUA	200	-,51	500	19	GGM	יייייי	1	JUM	300	GHI	. IAC	VO.I.	GCC	ACT

	Glu	Pro	Leu 960	Ala	Ser	Ser	Pro	Leu 965	Gly	Arg	Thr	Gly	Ala 970	Asp	Tyr	Ser	Ala	Thr 975
_			AGA					GGC		Val			TTG	CCA Pro				AAT
5	CGA	CTG	CCA	GGT	980 GCA	AGA	CCA	TCG	TTG	985 CAG	CAA	CAG	CAG	CAG	990 CAA	CAG	CAG	CAA
		995					1000	)				1005	<b>5</b>	Gln			1010	)
10					Gln					Gln				CAG Gln 1025	Gln			
				CAA	ATG				GAG	ATT				ATG	GGA			
	1030	)				1035	5				1040	)		Met	_	1045	;	
15														CCA Pro				
			1050	)				105	;				1060			_		1065
••	Ser	Met	Glu	Gln	Gly	Pro	His	Gly	Ser	Gln	Asn	Arg	Pro	Leu	Leu	Arg	Asn	Ser
20	CTG	GAT	GAT	CTG	1070		CCA	CCT	TCT	1075 AAC		GAG	GGC	CAG	1080 AGT		GAG	AGA
	Leu	Asp 1085	Asp	Leu	Leu	Gly	Pro	Pro	Ser	Asn	Ala	Glu	Gly	Gln	Ser	Asp	Glu	Arg
	GCT			GAC	CAG	CTG	1090 CAC		CTC	CTG	AGC	1095 AAC		GAT	GCC	ACA	1100 GGT	
25	Ala	Leu	Leu	Asp 1105		Leu	His	Thr	Leu 1110		Ser	Asn	Thr	Asp 1115		Thr	Gly	Leu
,	GAG	GAG	ATC	GAC	AGG	GCC	TTG	GGA	ATT	CCT	GAG	CTC	GTG	AAT	CAG	GGA	CAA	GCT
	1120	)				1125	5				1130	)		Asn		1135	5	
30	TTG	GAG	TCC	AAA	CAG	GAT	GTT	TTC	CAA	GGC	CAA	GAA	GCA	GCA	GTA	ATG	ATG	GAT
	ъеп	GIU	1140		GIII	мзр	val	1145		GTÀ	GIII	GIU	1150	Ala	vaı	met	met	1155
														GGT Gly				
.25	GIII	ny 5	nra	A1 a	1160		GLY	GIII	1111	1165		ATO	GIII	GIY	1170		reu	GIII
35																,		
33														TCT	ATG	ATG		
	Gly	Gly 1179	Phe	Asn	Leu	Gln	Gly 1180	Gln )	Ser	Pro	Ser	Phe 1185	Asn	Ser	ATG Met	ATG Met	Gly 1190	Gln
40	Gly ATT	Gly 1179 AGC	Phe CAG	Asn CAA Gln	Leu GGC Gly	Gln AGC	Gly 1180 TTT	Gln CCT	Ser CTG Leu	Pro CAA Gln	Ser GGC	Phe 1185 ATG	Asn CAT	Ser CCT Pro	ATG Met AGA Arg	ATG Met	Gly 1190 GGC	Gln ) CTC
	Gly ATT Ile	Gly 1179 AGC Ser	Phe CAG Gln	CAA Gln 119	Leu GGC Gly	Gln AGC Ser	Gly 1180 TTT Phe	Gln CCT Pro	Ser CTG Leu 1200	Pro CAA Gln	Ser GGC Gly	Phe 1185 ATG Met	Asn CAT His	Ser CCT Pro 1205	ATG Met AGA Arg	ATG Met GCC Ala	Gly 1190 GGC Gly	Gln ) CTC Leu
40	Gly ATT Ile GTG Val	Gly 1175 AGC Ser AGA Arg	Phe CAG Gln CCA	CAA Gln 1199 AGG	Leu GGC Gly ACC	Gln AGC Ser AAC Asn	Gly 1180 TTT Phe ACC Thr	Gln CCT Pro	Ser CTG Leu 1200 AAG	Pro CAA Gln CAG	Ser GGC Gly CTG Leu	Phe 1185 ATG Met AGA Arg	Asn CAT His	Ser CCT Pro	ATG Met AGA Arg	ATG Met GCC Ala CAG Gln	Gly 1190 GGC Gly CAG Gln	Gln CTC Leu AGG
	Gly ATT Ile GTG Val 1210 CTA	Gly 1175 AGC Ser AGA Arg CAG	Phe CAG Gln CCA Pro	CAA Gln 1195 AGG Arg	GGC Gly ACC Thr	Gln AGC Ser AAC Asn 1215	Gly 1180 TTT Phe ACC Thr	Gln CCT Pro CCG Pro	CTG Leu 1200 AAG Lys CAG	CAA Gln CAG Gln	Ser GGC Gly CTG Leu 1220 CGG	Phe 1185 ATG Met AGA Arg CAG	Asn CAT His ATG Met	Ser CCT Pro 1205 CAG Gln CTT	ATG Met AGA Arg CTT Leu GAA	ATG Met GCC Ala CAG Gln 1225 ATG	Gly 1190 GGC Gly CAG Gln	Gln CTC Leu AGG Arg
40	Gly ATT Ile GTG Val 1210 CTA	Gly 1175 AGC Ser AGA Arg CAG	CAG Gln CCA Pro GGC Gly	CAA Gln 1199 AGG Arg CAG Gln	GGC Gly ACC Thr	Gln AGC Ser AAC Asn 1215	Gly 1180 TTT Phe ACC Thr	CCT Pro CCG Pro AAT Asn	CTG Leu 1200 AAG Lys CAG Gln	CAA Gln CAG Gln	Ser GGC Gly CTG Leu 1220 CGG	Phe 1185 ATG Met AGA Arg CAG	Asn CAT His ATG Met GCA Ala	Ser CCT Pro 1205 CAG Gln CTT Leu	ATG Met AGA Arg CTT Leu GAA	ATG Met GCC Ala CAG Gln 1225 ATG	Gly 1190 GGC Gly CAG Gln	Gln CTC Leu AGG Arg ATG Met
40	Gly ATT Ile GTG Val 1210 CTA Leu GAG	Gly 1175 AGC Ser AGA Arg CAG Gln	CAG Gln CCA Pro GGC Gly 1230 CCT	CAA Gln 1199 AGG Arg CAG Gln O	GGC Gly ACC Thr CAG Gln	Gln AGC Ser AAC Asn 1215 TTT Phe ACT	Gly 1180 TTT Phe ACC Thr TTA Leu	CCT Pro CCG Pro AAT Asn 123: GTG	CTG Leu 1200 AAG Lys CAG Gln 6	CAA Gln CAG Gln AGC Ser	Ser GGC Gly CTG Leu 1220 CGG Arg	Phe 1185 ATG Met AGA Arg CAG Gln	CAT His ATG Met GCA Ala 1240	CCT Pro 1205 CAG Gln CTT Leu	ATG Met AGA Arg CTT Leu GAA Glu	ATG Met GCC Ala CAG Gln 1225 ATG Met	Gly 1190 GGC Gly CAG Gln AAA Lys	CTC Leu AGG Arg ATG Met 1245
40	Gly ATT Ile GTG Val 1210 CTA Leu GAG	Gly 1175 AGC Ser AGA Arg CAG Gln	CAG Gln CCA Pro GGC Gly 1230 CCT	CAA Gln 1199 AGG Arg CAG Gln O	GGC Gly ACC Thr CAG Gln GGC Gly	Gln AGC Ser AAC Asn 1215 TTT Phe ACT Thr	Gly 1180 TTT Phe ACC Thr TTA Leu	CCT Pro CCG Pro AAT Asn 123: GTG	CTG Leu 1200 AAG Lys CAG Gln 6	CAA Gln CAG Gln AGC Ser AGG Arg	Ser GGC Gly CTG Leu 1220 CGG Arg CCC Pro	Phe 1185 ATG Met AGA Arg CAG Gln	CAT His ATG Met GCA Ala 1240	CCT Pro 1205 CAG Gln CTT Leu	ATG Met AGA Arg CTT Leu GAA Glu CAG	ATG Met GCC Ala CAG Gln 1225 ATG Met GCT Ala	Gly 1190 GGC Gly CAG Gln AAA Lys	CTC Leu AGG Arg ATG Met 1245
40	Gly ATT Ile GTG Val 1210 CTA Leu GAG Glu AAT	Gly 1179 AGC Ser AGA Arg CAG Gln AAC Asn	CAG Gln CCA Pro GGC Gly 1230 CCT Pro	CAA Gin 1199 AGG Arg CAG Gin O GCT Ala	GGC Gly CAG Gln GGC Gly 1250 GCT	AGC Ser  AAC Asn 1215 TTT Phe ACT Thr	Gly 1180 TTT Phe ACC Thr TTA Leu GCT Ala	CCT Pro CCG Pro AAT Asn 123: GTG Val	CTG Leu 1200 AAG Lys CAG Gln 6 ATG Met	CAA Gln CAG Gln AGC Ser AGG Arg 1255 CGA	Ser GGC Gly CTG Leu 1220 CGG Arg CCC Pro GAG	Phe 1185 ATG Met AGA Arg CAG Gln ATG Met	Asn CAT His ATG Met GCA Ala 1240 ATG Met	CCT Pro 1205 CAG Gln CTT Leu	ATG Met AGA Arg CTT Leu GAA Glu CAG Gln 1260 CAT	ATG Met GCC Ala CAG Gln 1225 ATG Met GCT Ala CAC	Gly 1190 GGC Gly CAG Gln AAA Lys TTC Phe	CTC Leu AGG Arg ATG Met 1245 TTT Phe
40	Gly ATT Ile GTG Val 1210 CTA Leu GAG Glu AAT	Gly 1179 AGC Ser AGA Arg CAG Gln AAC Asn	CAA GIn  CCA Pro  GGC G1y 1230 CCT Pro  CAA GIn	CAA Gin 1199 AGG Arg CAG Gin O GCT Ala	GGC Gly CAG Gln GGC Gly 1250 GCT	AGC Ser  AAC Asn 1215 TTT Phe ACT Thr	Gly 1180 TTT Phe ACC Thr TTA Leu GCT Ala	CCT Pro CCG Pro AAT Asn 123: GTG Val CAG Gln	CTG Leu 1200 AAG Lys CAG Gln 6 ATG Met	CAA Gln CAG Gln AGC Ser AGG Arg 1255 CGA	Ser GGC Gly CTG Leu 1220 CGG Arg CCC Pro GAG	Phe 1185 ATG Met AGA Arg CAG Gln ATG Met	Asn CAT His ATG Met GCA Ala 1240 ATG Met	CCT Pro 1205 CAG Gln CTT Leu CCC Pro	ATG Met AGA Arg CTT Leu GAA Glu CAG Gln 1260 CAT	ATG Met GCC Ala CAG Gln 1225 ATG Met GCT Ala CAC	Gly 1190 GGC Gly CAG Gln AAA Lys TTC Phe	CTC Leu AGG Arg ATG Met 1245 TTT Phe CAG Gln
40	Gly ATT Ile GTG Val 1210 CTA Leu GAG Glu AAT Asn CAG	Gly 1175 AGC Ser AGA Arg CAG Gln AAC Asn GCC Ala 1265 CAG	Phe CAG Gln CCA Pro GGC Gly 123 CCT Pro CAA Gln 5	CAA Gin 1199 AGG Arg CAG GIn GCT Ala ATG Met	GGC Gly  ACC Thr  CAG Gln  GGC Gly 1250 GCT Ala	AGC Ser  AAC Asn 1215 TTT Phe ACT Thr GCC Ala	Gly 1180 TTT Phe ACC Thr TTA Leu GCT Ala CAG Gln 1270 ATG	Gln CCT Pro CCG Pro AAT Asn 123: GTG Val CAG Gln	CTG Leu 1200 AAG Lys CAG Gln ATG Met AAA Lys	CAA Gln CAG Gln AGC Ser AGG Arg 1255 CGA Arg	Ser GGC Gly CTG Leu 1220 CGG Arg CCC Pro GAG Glu CCA	Phe 1185 ATG Met AGA Arg CAG Gln ATG Met CTG Leu 1275 CAG	ASN CAT His ATG Met GCA Ala 1240 ATG Met ATG Met	CCT Pro 1205 CAG Gln CTT Leu CCC Pro AGC Ser CAG	ATG Met AGA Arg CTT Leu GAA Glu CAG Gln 1260 CAT His	ATG Met GCC Ala CAG Gln 1225 ATG Met GCT Ala CAC His	Gly 1190 GGC Gly CAG Gln AAA Lys TTC Phe CTG Leu 1280 AGC	CTC Leu AGG Arg ATG Met 1245 TTT Phe CAG Gln
40 45 50	Gly ATT Ile GTG Val 1210 CTA Leu GAG Glu AAT Asn CAG Gln	Gly 1175 AGC Ser AGA Arg CAG Gln AAC Asn GCC Ala 1265 CAG Gln	Phe CAG Gln CCA Pro GGC Gly 1236 CCT Pro CAA GIn AGG Arg	CAA Gin 1199 AGG Arg CAG Gin GCT Ala ATG Met 1289	GGC Gly CAG GIn GGC Gly 1250 GCT Ala GCG Ala	AGC Ser  AAC Asn 1215 The  ACT Thr  GCC Ala  ATG Met	Gly 1180 TTT Phe ACC Thr STTA Leu GCT Ala CAG Gln 1270 ATG Met	GIn CCT Pro CCG Pro AAT Asn 123: GTG Val CAG GIn O ATG	CTG Leu 1200 AAG Lys CAG Gln ATG Met AAA Lys TCA Ser 1290	CAA Gln CAG Gln AGC Ser AGG Arg 125: CGA Arg	GGC Gly CTG Leu 1220 CGG Arg CCC Pro GAG GGlu CCA Pro	Phe 1185 ATG Met AGA Arg CAG Gln ATG Met CTG Leu 1275 CAG Gln	ASN CAT His ATG Met 1240 ATG Met ATG Met CCT Pro	CCT Pro 1205 CAG Gln CTT Leu CCC Pro AGC Ser CAG Gln 1295	ATG Met AGA Arg CTT Leu GAA Glu CAG Gln 1260 CAT His	ATG Met GCC Ala CAG Gln 1225 ATG Met CAC His	Gly 1190 GGC Gly CAG Gln AAA Lys TTC Phe CTG Leu 1280 AGC Ser	CTC Leu AGG Arg ATG Met 1245 TTT Phe CAG Gln
40 45 50	Gly ATT Ile GTG Val 1210 CTA Leu GAG Glu AAT Asn CAG Gln CCT	Gly 1179 AGC Ser AGA Arg CAG Gln AAC Asn GCC Ala 1266 CAG Gln CCC	Phe CAG Gln CCA Pro GGC Gly 1230 CCT Pro CAA Gln AGG AAG	Asn CAA Gin 1199 AGG Arg CAG Gin O GCT Ala ATG Met 1289 GTC	GGC Gly  ACC Thr  CAG Gln  125 GCT  Ala  GCG Ala  ACC Ala	Gln AGC Ser AAC Asn 1215 TTT Phe ACT Thr GCC Ala ATG Met	Gly 1180 TTT Phe ACC Thr TTA Leu GCT Ala CAG Gln 1270 ATG Met TCC	GIn CCT Pro CCG Pro AAT Asn 1233 GTG Val CAG GIn ATG ATG CCC	Ser CTG Leu 1200 AAG Lys CAG Gln 5 ATG Met AAA Lys TCA Ser 1290 AGC	Pro CAA Gln CAG Gln AGC Ser AGG Arg 125: CGA Arg CAA Arg CAA Arg	Ser GGC Gly CTG Leu 1222 CGG Arg CCC Pro GAG Glu CCA GAC GAC	Phe 1185 ATG Met AGA Arg CAG Gln ATG Met CTG Leu 1275 CAG Gln	Asn CAT His ATG Met GCA Ala 1240 ATG Met CCT Pro	Ser CCT Pro 1205 CAG Gln CTT Leu CCC Pro AGC Ser CAG GG TTG	ATG Met AGA Arg CTT Leu GAA Glu CAG Gln 1260 CAT His GCC ACI ACI ACI ACI ACI ACI ACI ACI ACI A	ATG Met GCC Ala CAG Gln 1225 ATG Met CAC His TTC Phe	Gly 1190 GGC Gly CAG Gln AAA Lys TTC Phe CTG Leu 1280 AGC Ser TCA	Gln CTC Leu AGG Arg ATG Met 1245 TTT Phe CAG Gln CCA Pro
40 45 50	Gly ATT Ile GTG Val 1211CTA Leu GAG Glu AATT Asn CAG Gln CCT Pro 1300	Gly 1177 AGC Ser AGA Arg CAG Gln AAC Asn CCC GGn CCC CAG Gln CCC Pro 0	Phe CAG Gln CCA Pro GGC Gly 123 CCT Pro CAA Gln AGG Arg	Asn CAA Gin 1199 AGG Arg CAG GIn O GCT Ala ATG Met 128: GTC Val	GGC Gly  ACC Thr  CAG Gln  GGC Gly  125  GCT Ala  GCG Ala  ACC Thr	Gln AGC Ser AAC Asn 1215 TTT Phe ACT Thx GCC Ala ATG Met GCC Ala 1305	Gly 1186 TTT Phe ACC Thr TTA Leu GCT Ala CAG Gln 1270 ATG Met TCC Ser	GIn CCT Pro CCG Pro AAT Asn 123 GTG Val CAG GIn ATG Met CCC Pro	CTG Leu 1200 AAG Lys CAG Gln 5 ATG Met AAA Lys TCA Ser 1290 AGC Ser	Pro CAA Gln CAG Gln AGC Ser AGG Arg 1255 CGA Arg CAA Gln ATG Met	GGC GGC CCG Arg CCC GGG GGC GGC GGC ASp GAC GAC ASp 1311	Phe 1185 ATG Met AGA Arg CAG Gln ATG Leu 1275 CAG Gln GGG Gly	Asn CAT His ATG Met GCA Ala 1240 ATG Met CCT Pro	Ser CCT Pro 1205 CAG Gln CTT Leu CCC Pro AGC Ser CAG Gln 1295 TTG Leu	ATG Met AGA Arg CTT Leu GAA Glu CAG Gln 1260 CAT His GCC Ala	ATG Met GCC Ala 1225 ATG Met GCT Ala CAC GIn TCCAC His TCC Phe GGT Gly 1315	Gly 1190 GGC Gly CAG Gln AAAA Lys TTC Phe CTG Leu L280 AGC Ser TCA Ser Ser	CTC Leu AGG Arg ATG Met 1245 TTT Phe CAG Gln CCA Pro
40 45 50	Gly ATT Ile GTG Val 1211CTA Leu GAG Glu AAT Asn CAG Gln CCT Pro 1300ATG	Gly 1177 AGC Ser AGA Arg CAG Gln AAC Asn GCC Gla A126 CAG Gln CCC CCC CCC CCC CCC CCC CCC CCC CCC C	Phe CAA ASD CAA CAA CAA CAA CAA CAA CAA CAA CAA CA	Asn CAA Gin 1199 AGG Arg CAG GIn O GCT Ala ATG Met 1288 GTC Val	GGC GGC GGC Ala GCC Thr	GIn AGC ASR 1219 TTT Phe ACT Thr GCC Ala ATG Met GCC Ala 1300 CCA	Gly 1188 TTT Phe ACC Thr 5 TTA Leu GCT Ala CAG Gln 127 ATG Met TCC Ser 5 CAA	GIn CCT Pro CCG Pro AAT Asn 1233 GTG Val CAG ATG ATG CCC Pro CAG CAG CCC	CTG Leu 1200 AAG Lys CAG GIn ATG Met AAA Lys TCA Ser 1290 AGC Ser	Pro CAA Gln CAG Gln AGC Ser AGG Arg 1255 CGA Arg CAA Gln ATG ATG CAA CCA CCA CCA CCA CCA CCA CCA CCA CC	Ser GGC Gly CTG Leu 1222 CGG Arg CCC Pro GAG GLU GAC Asp 1311 TAT	Phe 1185 ATG Met AGA Arg CAG Gln ATG Met CTG Leu 1275 CAG Gln GGG	Asn CAT His ATG Met GCA Ala A124( ATG Met CCT Pro GTT Val	Sér CCT Pro 1205 CAG Gln CTT Leu CCC Pro AGC Ser CAG Gln 1295 TTG Leu AAT	ATG Met AGA Arg CTT Leu GAA Glu CAG Gln 1266 CAT His GCC Ala GCA Ala	ATG Met GCC Ala 1225 ATG Met GCT Ala CAC His TTC Phe GGT Gly GGA	Gly 1190 GGC Gly CAG Gln AAAA Lys TTC Phe CTG Leu AGC Ser TCA Ser Ser ATG	Gln CTC Leu AGG Arg ATG Met 1245 TTT Phe CAG Gln CCA Pro GCA Ala GGA
40 45 50	Gly ATT Ile GTG Val 1210 CTA Leu GAG Glu AAT Asn CAG Gln CCT Pro 1300 ATG Met	Gly 1177 AGC Ser AGA Arg CAG Gln AAC Ala 1266 CGG CAG Gln CCC Pro CCC Pro	Phe CAG Gln CCA Pro GGC Gly 123 CCT Pro AAC AAR AC AAR 132	Asn CAA Gln 1199 AGG Arg CAG Gln O GCT Ala ATG Met 1288 GTC Val	GGC GCT Ala GCC Ala CCT Thr	GIn AGC Ser AAC Asn 1215 TTT Phe ACT Thx GCC Ala ATG Met GCC Ala 1305 CCA Pro	Gly 1180 TTT Phe ACC Thr TTA Leu GCT Ala CAG Gln 1270 Met TCC Ser CAA Gln	GIn CCT Pro CCG Pro AAT Asn 123: GTG Val CAG GIn O ATG	Ser CTG Leu 1200 AAG Lys CAG Gln ATG Met AAA Lys TCA Ser 1290 AGC Ser TTT Phe	Pro CAA Gln CAG Gln CAG Gln AGC Ser AGG Arg 125: CGA Arg CAA Gln ATG Met CCA Pro	Ser GGC Gly CTG Leu 1220 CGG Arg CCC Pro GAG Glu CCA Pro GAC Asp 1310 TAT Tyr	Phe 1185 ATG Met AGA Arg CAG Gln ATG Met CTG Leu 1275 CAG Gln GGG CCA Fro	Asn CAT His ATG Met GCA Ala 124( ATG Met CCT Pro GTT Val GCA Ala 133(	Sér CCT Pro 1205 CAG Gln CTT Leu CCC Pro AGC Ser CAG Gln 1295 TTG Leu AAT Asn	ATG Met AGA Arg CTT Leu GAA Glu CAG Gln 1260 CAT His GCC Ala TAC Tyr	ATG Met GCC Ala CAG Gln 1225 ATG Met GCT Ala CAC His TTC Phe GGT Gly 1315 GGA Gly	Gly 1190 GGC Gly CAG Gln AAA Lys TTC Phe CTG Leu 1280 Ser TCA Ser AGC Ser ATG Met	Gln CTC Leu AGG Arg ATG Met 1245 TTT Phe CAG Gln CCA Pro GCA Ala GGA GGI 1335
40 45 50	Gly ATT Ile GTG Val 1210 CTA Leu GAG Glu AAT Asn CAG Gln CCT Pro 1300 ATG Met	Gly 1177 AGC Ser AGA Arg CAG Gln ASn GCC Ala 1266 Gln CCC Pro CCG Pro CCCA CCG CCCA CCCA CCCA CCCA CCCA CCCA	Phe 5 CAG Gln CCA Pro GGC Gly 123 CCT Pro AGG Arg AAC Asn CAA Gln 132 CCA	Asn CAA Gln 1199 AGG Arg CAG Gln O GCT Ala ATG Met 1288 GTC Val GCC GCC GCC GCC GCC GCC GCC GCC GCC GC	GGC CThr CCAG Ala SCC Thr CCThr CCAG ACC Thr CCThr CCAG ACC Thr CCThr CCCA Pro	GIn AGC Ser AAC Asn 1215 TTT Phe ACT Thx O GCC Ala 1300 CCA APro GCC Ala	Gly 1180 TTT Phe ACC Thr TTA Leu GCT Ala CAG Gln 1270 ATG Met TCC Ser CAA Gln TTT	GIn CCT Pro CCG Pro AAT Asn 1233 GVal CAG GIn O ATG Met CCC Pro CAG GIn 132 GGT	Ser CTG Leu 1200 AAG Lys CAG Gln ATG Met AAA Lys TCA Ser 1290 AGC Ser TTT Phe 5	Pro CAA Gln CAG Gln CAG Gln AGC Ser AGG Arg 125: CGA Arg CAA Arg CCAA Arg CCAA Gln ATG Met CCA Gln Gln Gln GGC GGC GGC GGC GGC	Ser GGC Gly CTG Leu 1220 CGG Arg CCC Pro GAG Glu CCA Asp 1311 TAT Tyr TCG Ser	Phe 1185 ATG Met  AGA Arg  CAG Gln  ATG Met  CTG Leu 1275 CAG Gln  GGG Gly  CCA AGT	Asn CAT His ATG Met GCA Ala 1240 ATG Met CCT Pro GTT Val GCA Ala 333 CCT	Sér CCT Pro 1205 CAG Gln CTT Leu CCC Pro AGC Ser CAG Gln 1295 TTG Leu AAT Asn	ATG Met AGA Arg CTT Leu GAA Glu CAG Gln 1260 CAT His GCC Ala TAC Tyr AGT	ATG Met GCC Ala CAG Gln 1225 ATG Met CAC His TTC Phe GGT Gly 1315 GGA Gly GCA	Gly 1190 GGC Gly CAG GGIn AAAA Lys TTC Phe CTG Leu 1280 AGC Ser TCA Ser ATG Met ATG	GIN CTC Leu AGG Arg ATG Met 1245 TTT Phe CAG GIN CCA Pro GCA Ala GGA GGIY 1335 ATG
40 45 50 55 60	Gly ATT Ile GTG Val 1211CTA Leu GAG Glu AATT Asn CAG Gln CCT Pro 1300 ATG Met CAA	Gly 1177 AGC Ser AGA Arg CAG Gln AAC Asn CCC Ala A126 CAG Gln CCC Pro CCA Pro	Phe CAG GIn CCA Pro CAA AGIn AAC Asn CAA GIn 132 CCA Pro	Asn CAA Gin 1199 AGG Arg CAG GIn O GCT Ala ATG Met 128C GTC Val GCC Ala O GAG GAG GIU	GGC Gly 125 GCT Ala GCG Ala 5 ACC Thr CCT Pro	Gln AGC Ser AAC Asn 1219 TTT The ACT Thx O GCC Ala 1309 CCA Pro GCC Ala 0	Gly 1188 TTT Phe ACC Thr 5 TTA Leu GCT Ala CAG Gln 1270 ATG Met CCC Ser CAA Gln TTT Phe	CCC Pro  CAG Gln  CCC Pro  AAT  Asn  CAG Gln  CCC Pro  CAG Gln  132  GTG  GTG  ATG  ATG  ATG  ATG  ATG  AT	Ser CTG Leu 1200 AAG Lys CAG Gln ATG Met AAAA Lys TCA Ser 1290 AGC Ser TTT Phe 5 CGA Arg	Pro CAA Gln CAG Gln AGC Ser AGG Arg 1255 CGA Arg 1257 CGA Arg CAA Gln ATG CCA Pro GGC GGL 1344	Ser  GGC Gly  CTG Leu 1222 CGG Arg  CCC Pro GAG GAG Pro GAC Asp 1311 TAT Tyr  TCG Ser	Phe 1185 ATG Met AGA Arg CAG Gln ATG Met CTG Leu 1275 CAG Gln CCAG Gln CTG CAG CTG CTG CAG CTG CAG CTG CTG CAG CTG CAG CTG CAG CTG CAG CTG CAG CTG CTG CAG CTG CTG CTG CTG CTG CTG CTG CTG CTG CT	Asn CAT His ATG Met GCA A124(ATG Met CCT Pro GTT Val GCA Ala A133(CCT Pro	CCC CAG Gln CCT Leu CCC Pro AGC Ser CAG Gln L295 TTG Leu AAT Asn CCC CCC Pro CCC CCC Pro CCC CCC CCC CCC CCC CCC CCC CCC CCC C	ATG Met AGA Arg CTT Leu GAA Glu CAG Gln 1260 CAT His GCC Ala GCA Ala TAC Tyr AGT Ser 1350	ATG Met GCC Ala 1225 ATG Met GCT Ala CAC GIn TCAC GCT Ala CAC GCT GGT GGG Gly GGA Gly GCA Ala	Gly 1190 GGC Gly CAG Gln AAAA Lys TTC Phe CTG Leu L280 AGC Ser TCA Ser ATG Met ATG Met	CTC Leu AGG Arg ATG Met 1245 TTT Phe CAG Gln CCA Pro GCA Ala GGA Gly 1335 ATG Met
40 45 50 55 60	Gly ATT Ile GTG Val 1211CTA Leu GAG Glu AAT Asn CAG Gln CCT Pro 1300 ATG Met CAA Gln TCA	Gly 1177 AGC Ser AGA Arg CAG Gln AAC Asn GCC A126 CAG Gln CCC Pro CCG Pro CCA Ser Ser Ser AGA Ser AGA AGA AGA AGA AGA AGA AGA AGA AGA AG	Phe CAG GIn CCA Pro CAA Arg AAC Arg AAAC Arg AAAC ARG	ASN CAA Gin 1199 AGG Arg CAG GIn O GCT Ala ATG Met 128: GTC Val GCC Ala O GAG GLU ATG	GGC Gly 125 GCT Ala GCG Ala 5 ACC Thr CCT Pro CCA Pro 1344 GGG	AGC Ala ATG ACC ACC ACC ACC ACC ACC ACC ACC ACC AC	Gly 1188 TTT Phe ACC Thr TTA Leu GCT Ala CAG Gln 1271 ATG Met TCC Ser TTT TTT TTT TTT TTT TTT TTT TTT TTT T	CCC Pro  CAG GIn  ATG GTG  CCG GIn  ATG GTG  CAG GIn  CCC CAG GIN	Ser CTG Leu 1200 AAG Lys CAG GIn ATG Met AAAA Lys TCA Ser 1290 AGC Ser TTT Phe CGA Arg	Pro CAA Gln CAG Gln AGC Ser AGG Arg 1255 CGA Arg CAA Gln ATG Met CCA Pro GGC Gly GGC GGC GGC GGC GGC GGC GGC GGC GGC GG	Ser  GGC G1y  CTG Leu 122(CGG Arg  CCC Pro GAG GAG Pro GAC Asp 131(TAT Tyr  TCG Ser ATG	Phe 1185 ATG Met AGA Arg CAG Gln ATG Met CTG Leu 1275 CAG Gln CTAG GLO ATG CTAG GLO ATG CTAG CTAG CTAG CTAG CTAG CTAG CTAG	Asn CAT His ATG Met GCA Ala 124( ATG Met CCT Pro GTT Val GCA Ala 1333 CCT Pro	Sér CCT Pro 1205 CAG Gln CTT Leu CCC Pro AGC Ser CAG Gln 1295 TTG Leu AAT Asn CCC	ATG Met AGA Arg CTT Leu GAA Glu CAG Gln 1260 CAT His GCC Ala TAC Tyr AGT Ser 1350 CCT	ATG Met GCC Ala 1225 ATG Met CAG Gln 1225 ATG CAC His TTC Phe GGT Gly GGA Gly GCA Ala CAG	Gly 1190 GGC Gly CAG Gln AAAA Lys TTC Phe CTG Leu 1280 AGC Ser TCA AGC Met ATG Met CCC Pro	Gln CTC Leu AGG Arg ATG Met 1245 TTT Phe CAG Gln CCA Pro GCA Ala GGA Gly 1335 ATG Met ACA Thr
40 45 50 55 60	Gly ATT Ile GTG Val 1210 CTA Leu GAG Glu AAT Asn CAG Gln CCT Pro 1300 Met CAA Gln TCA Ser	Gly 1175 AGC Ser AGA Arg CAG Gln AAC Asn GCC AI26 Gln CCC Pro CCA Pro CCA Pro TCA Ser 135:	Phe CAG Gln CCA Pro CAA Arg AAC ARA Arg AGA Arg 5	ASN CAA Gln 1199 AGG Arg CAG Gln OGCT Ala ATG Met 128 GTC Val GCC Ala OGAG Glu ATG Met	GGC Gly 1250 GCT Ala GCG Ala 5 ACC Thr CCT Pro CCA Pro 1344 GGG Gly	GIn AGC Ser AAC ASn 1219 TTT Phe ACT Thr GCC Ala ATG Met GCC Ala 1300 CCA Pro GCC Ala CCA Pro	Gly 1180 TTT Phe ACC Thr TTA Leu GCT Ala CAG Gln TCC Ser TTT TCA TCC Ser TTT TCA TCC Ser TTT TCC Ser TTT TCC Ser TTCC Ser	Gln CCG Pro AAT Asn 123: GTG Val CAG Gln ATG	CTC Leu 1200 AAG Lys CAG GIn ATG Met AAA Lys TCA Ser 1290 AGC Ser TTT Phe 5 CGA Arg	Pro CAA Gln CAG Gln CAG Gln AGC Ser AGG Arg 125: CGA Arg CAA Gln ATG Met CCA Pro GGC Gly 134: GCC Ala	Ser GGC Gly CTG Leu 1220 CGG Arg CCC Pro GAG Glu CCA App 1310 TTyr TCG Ser ATG Met	Phe 1185 ATG Met AGA Arg CAG Gln ATG Met CTG Gln GGn ATG GFN ATG GFN ATG GFN CAG GIN GGG G1y CCA AGT Ser GTG GTG GTG TGGTG TGGTG TGGTG	Asn CAT His ATG Met GCA Ala 124( ATG Met CCT Pro GTT Val GCA Ala 133( CCT Pro	Sér CCT Pro 1205 CAG Gln CTT Leu CCC Pro AGC Ser CAG Gln 1295 TTG Leu AAT Asn CCC CAT CCC CAT CCC CAT CCC CAT CCC CCC	ATG Met AGA Arg CTT Leu GAA Glu CAG Gln 1260 CAT His GCC Ala TAC Tyr AGT Ser 1350 CCT Pro	ATG Met GCC Ala CAG Gln 1225 ATG Met GCT Ala CAC His GGT GGA GGY GCA Ala CAG Gln CAG Gln CAG Gln	Gly 1190 GGC Gly CAG GGIn AAAA Lys TTC Phe CTG Leu 1280 Ser TCA Ser ATG Met ATG Met CCC Pro 1370	Gln CTC Leu AGG Arg ATG Met 1245 TTT Phe CAG Gln CCA Pro GCA Ala GGA GGY 1335 ATG Met

				137					1380					138				
	AAT Asn	GGC Gly	TCC Ser 1390	Phe	CCC Pro	CAG Gln	CAG Gln	CAG Gln 1395	Phe	GCT Ala	CCC Pro	CAG Gln	GGG Gly 140	Asn	CCT Pro	GCA Ala	GCC Ala	TAC Tyr 1405
5	AAC Asn	ATG Met	GTG	CAT	ATG Met 1410	Asn	AGC Ser	AGC	GGT	GGG Gly 1419	His	TTG Leu	GGA Gly	CAG	ATG Met 1420	Ala	ATG Met	ACC
10	CCC Pro	ATG Met 142	Pro	ATG Met	TCT	GGC	ATG Met 1430	Pro	ATG Met	GGC	CCC	GAT Asp 143	CAG	AAA Lys	TAC	TGC	***	His
	CTC Leu	CCT	AGT	GGG Gly 144	Thr	GAC Asp	TGT	ACA	GAT Asp 1450	.Asp	ACT Thr	GCA	CAG Gln	Asp	His	CAG Gln	GAC Asp	GTG
15		Ala		CAT	TGT		Ser		CAG	CTT		Asn	AAG Lys		AGC		Thr	
	AGC	GGG	Val	Суѕ	GCT Ala	GTC	ATT	***	_	GAG			CTC		GAA			
20				GCC	1500	)			GGC	1505	5		1490 TGC	CTC	1510	)		
25		151	5	AAA	GTC		1520	0	ATC	TAG	TCT	1525	ACG	TCA	CTC	CCT	TCT 1530	
-25	(2)		INFO	1539 DRM	o ATIO	N FO	R SE	Q ID	1540 :NO									
30				(A)	UENO LENO TYPE	GTH:	22		ERIST	rics:				•				
				(C) (D)	STR/	NDE OLOC	EDNE SY: L	ESS: S Linear				•						
35			(XI) ·		UEN						i ID I	NO:10	):			•		
	(2)				ATIO													
40			``	(A)	UENO LENO TYPE	GTH:	20		ERIST	rics:								
			( <del>r</del> i)	(D)	STRA TOPO UEN	OLOG	3Y: L	_inear			י חו	J∩-1:	1 •					
45					CCAC						101	10.1	••					
	(2)		(i) :	SEQU	ATIO	E CI	IAR/	CTE										
50				(B) (C)	LENG TYPE STRA	E: am	ino ac EDNE	cid ESS: S	_	<b>:</b>					•			
			(xi)		TOPO					SEQ	ID 1	NO:12	2:					
55			40					45					Ala 50					55
<b>60</b>		Arg			60		Ser			65			Val Leu		70			-
60		75					80					85	Pro				90	
	Leu 110	Lys	Glu		Val	Arg 115	Gln	Ile		Gln	Ile 120	Lys	Glu	Gln	Gly	Lys 125	Thr	Ile

	Ser	Ser	Asp 130	Asp	Asp	Val	Gln	Lys 135	Ala	Asp	Val	Ser	Ser 140	Thr	Gly	Gln	Gly	Val 145
	Ile	Asp	Lys	Asp	Ser 150	Leu	Gly	Pro	Leu	Leu 155	Leu	Gln	Ala	Leu	Asp 160	Gly	Phe	Leu
5	Phe	Val 165	Val	Asn	Arg	Asp	Gly 170	Asn	Ile	Val	Phe	Val 175	Ser	Glu	Asn	Val	Thr 180	Gln
	Tyr	Leu	Gln	Tyr 185	Lys	Gln	Glu	Asp	Leu 190	Val	Asn	Thr	Ser	Val 195	Tyr	Ser	Ile	Leu
10	200			-	Arg	205	_			7	210			_		215		
			220		Thr			225					230					235
					Lys 240	)				245	5	_			250	)		
15		255			Tyr		260					265					270	
				275	Gly				280					285			_	-
20	290	Thr	AIA	Pro	Phe	295	Ser	Ser	Pro	GI'n	300	Phe	TIE	Thr	Arg	305	Asp	Leu
			310		Val			315					320				_	325
25					11e 330					335					340			_
		345			Ser		350					355					360	
30				365	Val				370					375				
30	380				Lys Phe	385					390					395	_	
			400		Gly			405					410					415
35					420 Val					425					430			
		435			Gln		440					445					450	
40				455	Gly				460					465				
	470				Met	475					480					485		
			490		Met			495					500	_		_		505
45					510 Pro					515	•				520			
		525			Ser		530					535		_			540	
50				<b>54</b> 5	Thr				550					555				
	560					565					570					575	_	Asp
			580		Leu			585					590					595
55					600 Şer					605					610			
		615			Glu		620					625			-		630	
60				635	Leu				640					645				
	650				Asp	655	_			_	660	_	-			665		
			670		Ser			675					680					685
65					690 Gln					695				700				
	705					710					715					720		Thr
70			725		Ser			730					735				_	740
					745	-	_		-	750					755			

	T	T	7	C1	D ===	D	n1 -	7	÷	<b>.</b>	<b>m</b>	*	<b>.</b>		_	_		_
		760					765				Tyr	770					775	
	Ser	Asp	Val	Leu 780	Ala	Lys	Glu	Leu	Gln 785	Pro	Gln	Ala	Asp	Ser 790	Gly	Asp	Ser	Lys
5	795					800					Ser 805					810	_	
	Lys	Ile	Lys 815	Thr	Glu	Thr	Asn	Glu 820	Glu	Val	Ser	Gly	Asp 825	Leu	Asp	Asn	Leu	Asp 830
10					835					840	Phe				845			-
		850					855				Ala	860					865	
				870					875		Pro			880				
15	885					890					Pro 895					900		
			905					910			Ala		915		_		920	-
20				925					930		Pro			935				
	940					945					Ala 950					955	•	
25			960					965			Thr		970					975
25					980					985	Pro				990	-		
		995					1000	)			Gln	1005	5				1010	j
30				1015	5				1020	)	Gln			1025	5			
	1030	)				1035	5				Pro 1040 Gly	)			_	1045	5	
35			1050	)				105	5		Asn		1060	)		_		1065
55		•			1070	)				1075					1080	)		
		1085	5				1090	)				1095	5			_	1100	) •
40				1105	5				1110	)	Ser			1115	5		_	
	1120	)				1125	5				Glu 1130	)				1135	5	
45			1140	)				1145	5		Gln		1150	)				1155
43					1160	)				1165					1170	)		
		1175	5				1180	)			Ser	1185	5				1190	)
50				1199	5				1200	)	Gly			1205	5		_	
	'Val 1210	)				1215	5				1220	)				1225	5	_
55			1230	)				1235	5		Arg Pro		1240	)			_	1245
33				•	1250	)				1255	Glu				1260	)		
		1265	5				1270	)			Pro	1275	5				1280	)
60				1285	5				1290	)				1295	5			
	1300	)				1305	5				Asp 1310	)				1315	5	
65			1320	)				1325	5		Tyr		1330	)				1335
05					1340	)				1345	Ser Met				1350	)		
		1355	5				1360	)				1365	5				1370	)
70				1375	5				1380	)	Trp			1385	5			-
	11511	O T Y	JGL	T 11G	E T O	GTII	GTII	GTII	E116	wrg	Pro	GTII	٥ıγ	asn	rro	мта	мта	TVr

25

30

#### What is claimed is:

- 1. A substantially pure DNA comprising a sequence encoding an AIB1 polypeptide.
- 5 2. The DNA of claim 1, wherein the polypeptide is human AIB1.
  - The DNA of claim 1, wherein the polypeptide comprises the amino acid sequence of SEQ. I.D. NO. 4.
- 4. The DNA of claim 1, wherein the polypeptide comprises the amino acid sequence of SEQ. I.D. NO. 2.
  - 5. The DNA of claim 1, wherein the polypeptide comprises the amino acid sequence of SEQ. I.D. NO. 3.
  - 6. The DNA of claim 1, wherein the polypeptide comprises the amino acid sequence of SEQ. I.D. NO. 8.
- 7. A substantially pure DNA comprising a polynucleotide which hybridizes at high stringency to a DNA having the sequence of SEQ. I.D. NO. 1, or the complement thereof.
  - 8. A substantially pure DNA comprising a nucleotide sequence having at least 50% sequence identity to SEQ. I.D. NO. 1, the nucleotide sequence encoding a polypeptide having the biological activity of a AIB1 polypeptide.
  - 9. A substantially pure DNA comprising (a) the sequence of SEQ. I.D. NO. 1 or (b) a degenerate variant thereof.
  - 10. The DNA of claim 1, wherein the DNA is operably linked to regulatory sequences for expression of the polypeptide, the regulatory sequences comprising a promoter.
    - 11. A cell comprising the DNA of claim 1.
    - 12. A substantially pure human AIB1 polypeptide.
- 35 13. The polypeptide of claim 12, wherein the polypeptide comprises the amino acid sequence of SEQ. I.D. Nos. 2, 3, 4, or 8.

14. A method of identifying a candidate compound which inhibits estrogen receptor (ER)-dependent transcription comprising contacting the compound with an AIB1 polypeptide and determining whether the compound binds to the polypeptide, wherein binding of the compound to the polypeptide indicates that the compound inhibits ER-dependent transcription.

5

- 15. The method of claim 14, wherein the AIB1 polypeptide comprises a Per/Arnt/Sim (PAS) domain.
- 16. The method of claim 14, wherein the AIB1 polypeptide comprises a basic helixloop-helix (bHLH) domain.
  - 17. The method of claim 14, wherein the AIB1 polypeptide comprises an ER-interacting domain.
  - 18. A method of identifying a candidate compound which inhibits ER-dependent transcription comprising:

contacting the compound with an AIB1 polypeptide and an ER polypeptide and determining the ability of the compound to interfere with the binding of the ER polypeptide with the AIB1 polypeptide.

20

15

- 19. The method of claim 18, wherein the AIB1 polypeptide comprises a PAS domain.
- 20. The method of claim 18, wherein the AIB1 polypeptide comprises a bHLH domain.

25

- 21. A method of screening a candidate compound which inhibits an interaction of an AIB1 polypeptide with an ER polypeptide in a cell comprising
  - (a) providing a GAL4 binding site linked to a reporter gene;
- (b) providing a GAL4 binding domain linked to either (i) an AIB1 polypeptide or (ii) an ER polypeptide;

30

- (c) providing a GAL4 transactivation domain II linked to the ER polypeptide if the GAL4 binding domain is linked to the AIB1 polypeptide or linked to the AIB1 polypeptide if the GAL4 binding domain is linked to the ER polypeptide;
  - (d) contacting the cell with the compound; and
- (e) monitoring expression of the reporter gene, wherein a decrease in expression in the presence of the compound compared to that in the absence of the compound indicates that the compound inhibits an interaction of an AIB1 polypeptide with the ER polypeptide.

22. A method of detecting an aberrantly proliferating cell in a tissue sample comprising determining the level of AIB1 gene expression in the sample, wherein an increase in the level of expression compared to the level in normal control tissue indicates the presence of an aberrantly proliferating cell.

5

- 23. The method of claim 21, wherein the aberrantly proliferating cell is a steroid hormone-responsive cancer cell.
- 24. The method of claim 23, wherein the steroid hormone-responsive cancer cell is a breast cancer cell.
  - 25. The method of claim 23, wherein the cell is a steroid hormone-responsive cancer cell is an ovarian cancer cell.
  - 26. The method of claim 21, wherein the AIB1 gene expression is measured using an AIB1 gene-specific polynucleotide probe.
    - 27. The method of claim 21, wherein the AIB1 gene expression is measured using an antibody specific for an AIB1 gene product.

20

15

28. A method of detecting breast cancer in a tissue sample, comprising determining the number of cellular copies of an AIB1 gene in the tissue sample, wherein an increase in the number of copies compared to the number of copies in a normal control tissue indicates the presence of a breast carcinoma.

- 29. The method of claim 28, wherein the number of copies in the tissue is greater than 2.
- 30. The method of claim 29, wherein the number of copies in the tissue is greater than 30 10.
  - 31. The method of claim 30, wherein the number of copies in the tissue is greater than 20.
- 35. A method of reducing proliferation of a cancer cell in a mammal comprising administering to the mammal a compound which inhibits expression of AIB1...

- 33. The method of claim 32, wherein the compound reduces transcription of DNA encoding AIB1 in the cell.
- 34. The method of claim 32, wherein the compound reduces translation of an AIB1 mRNA into an AIB1 gene product in the cell.
  - 35. The method of claim 34, wherein the translation is reduced by contacting the AIB1 mRNA with an antisense DNA complementary to the AIB1 mRNA.
- 36. A method of inhibiting ER-dependent transcription in a breast cell of an mammal, comprising administering an effective amount of an AIB1 polypeptide to the mammal.
  - 37. The method of claim 36, wherein the polypeptide comprises a PAS domain.
  - 38. The method of claim 36, wherein the polypeptide comprises a bHLH domain.
  - 39. The method of claim 36, wherein the polypeptide comprises an ER-interacting domain
- 40. A method of inhibiting ER-dependent transcription in a cancer cell of a mammal, comprising administering an effective amount of a peptide mimetic of an AIB1 polypeptide to the mammal.
  - 41. A monoclonal antibody which binds specifically to AIB1.

30

- 42. A method of identifying a tamoxifen-sensitive patient, comprising
- (a) contacting a patient-derived tissue sample with tamoxifen; and
- (b) determining the level of AIB1 gene expression in the sample, wherein an increase in the level of expression compared to the level in normal control tissue indicates that the patient is tamoxifen-sensitive.
- 43. The method of claim 42, wherein the AIB1 gene expression is measured using an AIB1 gene-specific polynucleotide probe.
- 35 44. The method of claim 42, wherein the AIB1 gene expression is measured using an antibody specific for an AIB1 gene product.

- 45. A transgenic animal wherein at least one copy of the AIB1 gene has been functionally deleted.
- 46. A transgenic mouse wherein at least one copy of the pCIP gene has been functionally deleted.
  - 47. The invention of claim 45 wherein at least one copy of the gene has been functionally deleted using a method selected from the group consisting of: anti-sense technology, transposon mutagenesis, homologous recombination with a non-functional gene homolog of AIB1.

25

- 48. A transgenic animal genetically engineered to have more than the normal copy number of the AIB1 gene.
- 49. The invention of claim 48 wherein at least one copy of the AIB1 gene has been introduced into the animal on an extra-chromosomal element.
  - 50. A transgenic animal having at least one AIB1 gene operatively linked to a non-native promoter.
- 51. The invention of claim 50 wherein the non-native promoter is selected from the group consisting of: a mouse mammary tumor virus promoter, a whey acidic protein promoter and a metallothionein promoter.
  - 52. The invention of claim 50 wherein transcription from the promoter has the characteristic selected from the group consisting of: being inducible, being repressible and being constitutive.
  - 53. A method of reducing proliferation of a cancer cell comprising administering to the mammal a compound which inhibits interaction of AIB1 with a molecule selected from the group consisting of steroid receptors and nuclear co-factors.
    - 54. The method of claim 58 wherein the molecule is selected from the group consisting of: p300 and CBP.

Figure 1



Figure 2



Figure 3





4/8
SUBSTITUTE SHEET (RULE 26)

FIGURE 5: MOUSE AIB1 (pCIP) INTRONÆXON BOUNDARIES

	CDNA	O	3'intron	Exon sednence	dneuce	5'intron
Exon	Exon 5'exon	3'exon	splice site	(5' to 3')	(53)	splice site
-		Ξ			GGCGGCGAACG	
7	12			GATCAAAAGAATTTGCTGAA		
7		06			CCTTCCTGAACAGCTGTCAG	•
ო	91		TGTCACCTCTTCTTCCGCAG	TTGCTGATCTGTGATCAGGA		
က		195			TGTGATGCCCCAGGACAGGG	
4	196		GGCTTTTCTCCGCCTTCCAG	GCTTGTCTACAGTGGTGAGA		
4		368			<b>ACGGCAAATAAAAGAACAAG</b>	GTAACACAGAGTCAGAAAAA
2	369		GCTTCCTTCTGTGTCTTCAG	GAAAACTATTTCCAGTGAT		
9		469			TAGGACCGCTTTTACTACAG	ATTITCTTACAAACGAGGCT
9	470		<b>ATTAACACATTCCACTGTAG</b>	GCACTGGATGGTTTCCTGTT		
9		644			ACACTTACCAAAATCCACAG	<b>вт</b> вветсттетвтетт
7	645		TITTAATITGITTTTCAAAG	TTAATGGAGTTTCTTGGACT		
7		830			TATGCTGGAAGAAGGAGAAG	GTGAGAGGCGGGTCCACTGT
ω	831		CTGGTGACCTTTCGTTGTAG	ACTTGCAGTGCTGTATGATC		
œ		923			TACCAGACATGACCTTTCCG	GTAAGACCAGTCTTCACTGG
0	924		TCTGTTTTATCTTTAATAG	GAAAGGTTGTCAATATAGAT		
თ		1064			GAAGCGTCACTATCAAGAAG	GTGAGGGAGGCGTTTGGGGT
10	1065		GTGTGCTTCCCCTCCGTAG	CTTATGTTCATGGCCACGCA		
10		1212			TCGACCCACTTTCTTCAGAG	GTGATGACACTAAAGCACCC
7	1213		TTGCGTGTTTTGTTTGCAG	<b>AGAACAGAATGGATACAGAC</b>		
7		1589			CCAGTTCTCCTGCTGCAG	GTATCCACAGCTGCGTTTTC
12	1590		CGACCTTTCTCCATATGCAG	GTGCACACTCACCCATGGGA		
12		2458			<b>AGACCGAGACGAACGAGGAG</b>	GAGGTAAGGTACTCTCTGTT
13	2459		TITAAAAGGITCATITICAG	GTATCGGGAGACCTGGATAA		
13		2588			TGCAGGACCGAGTTCTCTGG	GTAAGGAAAACCAGAGTTTT
4	2589		AGCTTCTGTGTTTTCAACAG	GTTTGCGAAGTCCACAGCCT		-
14		2783			GAATTACGGTGCCAACATGG	GTAGGTCATGTCTAAGTGTG

FIGURE 5: MOUSE AIBI (pCIP) INTRON/EXON BOUNDARIES

	CDNA	CDNA CDNA	3'intron	Exon sednence	dnence	5'Intron
Exon	bp Exon 5'exon	bp 3.exon	splice site	(5' to 3')	0.3")	splice site
15	2784		TGAGCCCTCCCTAATTTTAG	GCCCAAACAGAAATGTTCCT		
15		3095			GCAGCAGATGCTTCAAATGA	GTAAGCTGTCCCTTTCAATA
16	3096		ATTITGATTIGCICCCCAG	GAACTGGTGAGATTCCCATG		
16		3222			CCTCACGGGTCTCAAAATAG	GTAGGGTTTTATTTTGGGAT
17	3223		TGACTCACGTCTCTCTAG	GCCTCTTCTTAGAAACTCTC		
17		3394			TTCCTGAGCTCGTGAATCAG	GTGGAGTTGCAATCTGTGAG
48	3395		CTTTGTGTTTGATGTTTAAG	GGACAAGCTTTGGAGTCCAA		
18		3688			<b>AGAGGCTACAGGGCCAGCAG</b>	GTAAGACCGGGCTGTCAGGG
19	3689		<b>ACTAACCCAACTCTGTTCAG</b>	TTTTTAAATCAGAGCCGGCA		
19		3772			TGAGGCCCATGATGCCCCAG	GTACGTTCCCTGCAGAGAAG
20	3773		TGTCTTGGCTACCAGCAG	GCTTTCTTTAATGCCCAAAT		
20		3989			TCCATATCCAGCAAATTACG	GTAAACCTGTCAGATTGTGC
21	3990		TITCIGITCATITCTITAAG	GAATGGGACAACCACCAGAG		
21		4164			GGGAACCTGGCCAGGAATGG	GTAAGGATGGGACTTACTTT
22	4165		CTGTTACCCTTTCTTTGCAG	CTCCTTCCCCCAGCAGCAGT		
22		4306			TGCCCATGGGCCCCGATCAG	<b>GTACGGGCATCTATTCTTAC</b>
23	4307		стететтстеттаасав	<b>AAATACTGCTGACATCTCCC</b>		
23		4622				

FIGURE 6: HUMAN AIBI INTRONÆXON BOUNDARIES

	CDNA	CDNA	3'infron	Exon Se	Exon seguence	5'intron
	pp	đ				
Exon	Ω.	3'exon	splice site	(5. t	(5' to 3')	splice site
<del></del>		102			GAGGAAAATGGCGGCGGGAG GTGAGTGGAGATAAAGGAGG	GTGAGTGGAGATAAAGGAGG
8	103		CCTCTTCTTTTGTCCTCAG	GATCAAAATACTTGCTGGAT		
7		181			TCCTTTGACTGGTTAGCCAG	GTAATTCAGCTTTAGTTTGA
ო	182		TTCTCATTATTCTCTTAG	TTGCTGATGTATATTCAAGA		
က		283			TGTGATACTCCAGGACAAGG	GTAGGTGACTTATTTCCTGG
4	284		TTCTACGCCTTTTCCCTTAG	TCTTACCTGCAGTGGTGAAA		
4		456			<b>ACGTCAAATAAAAGAGCAAG</b>	GTAATAAAAACACTCATGTC
2	457		ACCACCTTCTGTCTTTCAG	GAAAACTATTTCCAATGAT		
2		227			TAGGACCGCTTTTACTTCAG	GCAAGTATAAAGATTTTAAC
9	558		<b>ATTAACATATCCTATTITAG</b>	GCATTGGATGGTTTCCTATT		
9		732			GAATTTACCAAAATCTACAG	GTAGGCTTTTAATGTGTATT
7	733		TITCAATITGITTTCCAAAG	TTAATGGAGTTTCCTGGACA		
7		921			TATGATGGAGGAAGGGGAAG	GTAAGAGCTATTATATGTTT
80	922		GGGTGAATTTTTATTGTAG	<b>ATTTGCAATCTTGTATGATC</b>		
80		1023			TACCAGACATGATCTTTCAG	GTAAAAATCTTTTTTGTCC
თ	1024		TTCCTTTTTTTTAATAG	GAAAGGTTGTCAATATAGAT		
6		1164			GAAACGTCACTATCAAGAAG	GTAAAGAATTTTGGGGTTGA
10	1165		TGGGATATTTTCCCCAACAG	CTTATCTTAATGGCCATGCA		
5		1312			TCAACCCACTTCCTTCAGAG	<b>GTAATG</b> ATAGATTACTGTGT
1	1313		GTTTGATGTTTGTTTTGCAG	<b>AGAACAGAATGGATATAGAC</b>		
=		1704			TCAGTTTTCTCCTGTTGCAG	GTATITGIGITGACATITCC
12	1705		<b>AAATTITITITCAAATTCAG</b>	GTGTGCACTCTCCCATGGCA		
12		2576			<b>AGACAGAGACAAGTGAAGAG</b>	GTAATTTGTTTTCTGTATAT
13	2577		TTTTAAAACTTTATTTTCAG	GGATCTGGAGACTTGGATAA		
13		2712			TCAAGGAACTAATTCTCTGG	<b>GTAAGAATGAACTAGGTTTT</b>

	FIGU	IRE 6:	HOMAN AIBI	INTRON/EXON BOUNDARIES		
	cDNA bp	CDNA CDNA bp	3'intron	Exon sequence	rence	5'intron
Exon	5'exon	3'exon	splice site	(5' to 3')	ជ	splice site
14	2713		TTGTATTGTGTTTTCAACAG	GTTTGAAAAGTTCACAGTCT		
4		2907			<b>AAATTATGGCTCAAGTATGG</b>	GTATGTTATTTCTAATTAGT
15	2908		AGTATGGCTACCTGTTTTAG	AGTATGGCTACCTGTTTTAG GTGGGCCAAACCGAAATGTG		
15		3280			TCTCATGGCACTCAAAATAG	GTGGGGTGTTATTTGTGAC
16	3281		GATTGCAAGTCTTTTTCTAG	GCCTCTTCTTAGGAATTCCC		
16		3452			TTCCTGAACTTGTCAATCAG	GTAGGTTGCATTAACATGGA
17	3453		TITTATGTGTTGTGTTTAAG	GGACAGGCATTAGAGCCCAA		
17		3746		1	AGAGGCTGCAGGCCAGCAG GTAACCAGTCATGTGTTCTT	GTAACCAGTCATGTGTTCTT
<del>2</del>	3747		ACCAACTTGTCTCACCTCAG	TITITGAATCAGAGCCGACA		
18		3839			GGCCTATGATGCAGCCCCAG GTGAGCTCCCAGGTGAGGAT	GTGAGCTCCCAGGTGAGGAT
19	3840		CACTCTTTCTTGGGTATTAG	CAGGGTTTTCTTAATGCTCA		
19		4134			TCCATATCAACCAAATTATG	GTAAATCTGACAATGAAAAT
20	4135		TTCTGTTTTATTTTGTAAG	GAATGGGACAACAACCAGAT		
20		4309			GGAAATTTGGCCAGGAACAG GTAAAGAACAGTGACTTATA	GTAAAGAACAGTGACTTATA
21	4310		TACCATTTGTTTACTTACAG	CTCCTTTTCCCAGCAGCAGT		
21		4450			TGCCTATGGGTCCTGATCAG GTATGGGATCGATTCCTTAC	GTATGGGATCGATTCCTTAC
22	4451		TTTTCCTGGTTGCTGACAG	<b>AAATACTGCTGACATCTCTG</b>		
(18)						

```
IPC (255)
                                              Queue: LAH1/CN=PARALEGAL Q.O=LAHBOS*
 User name:
                                              Server: PARALEGAL
 File name:
* Directory:
 Description: http://www.micropat.com/180654/.PDF
               January 26, 2000
                                                       4:42pm
                                  III
                                       PPPP
                                               CCC
                                            PC
                                   Ι
                                       P
                                   Ι
                                       Ρ
                                            P C
                                   Ι
                                              С
                                       PPPP
                                   Ι
                                        Ρ
                                              C
                                   Ι
                                       P
                                              С
                                                  C
                                  III
                                       P
                                               CCC
                                     SSS
                                           TTTTT
                              L
                             L
                                    S
                                        S
                                             Т
                                    S
                                             Т
                              L
                                                   ::
                              L
                                     SSS
                                             Т
                                                   ::
                                             Т
                                         S
                                             Т
                              L
                                    S
                                         S
                                                   ::
                                             Т
                              LLLLL
                                     SSS
                                                   ::
```

## WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (51) International Patent Classification 6: WO 98/57982 (11) International Publication Number: C07K 14/72, C12N 15/12, 15/11, C07K 16/18 **A3** C12Q 1/68, G01N 33/53, A01K 67/027, 38/17, 38/18 (43) International Publication Date: 23 December 1998 (23.12.98) (21) International Application Number: PCT/US98/12689 (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, (22) International Filing Date: 17 June 1998 (17.06.98) GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, (30) Priority Data: TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian 60/049,728 17 June 1997 (17.06.97) US patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, (71) Applicant (for all designated States except US): THE UNITED IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). STATES OF AMERICA, represented by THE [US/US]; SECRETARY, DEPARTMENT OF HEALTH AND HU-MAN SERVICESNATIONAL INSTITUTES OF HEALTH, Office of Technology Transfer, Suite 325, 6011 Executive Published Boulevard, Rockville, MD 20852-3804 (US). With international search report. (72) Inventors: and (88) Date of publication of the international search report: (75) Inventors/Applicants (for US only): MELTZER, Paul 18 March 1999 (18.03.99) [US/US]; 5906 Bloomingdale Terrace, Rockville, MD 20852 (US). TRENT, Jeffrey, M. [US/US]; 10 Fairwood Court, Rockville, MD 20850 (US). (74) Agent: NOONAN, William, D.; Klarquist, Sparkman, Campbell, Leigh & Whinston, LLP, One World Trade Center, Suite 1600, 121 S.W. Salmon Street, Portland, OR 97204 (US).

#### (54) Title: AIB1, A STEROID RECEPTOR CO-ACTIVATOR

#### (57) Abstract

The invention features a substantially pure DNA which includes a sequence encoding a novel steroid receptor co-activator which is overexpressed in breast cancer cells, diagnostic assays for steroid hormone-responsive cancers, and screening assays to identify compounds which inhibit an interaction of the co-activator with the steroid hormone.

### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΛT	Austria	FR	Prance	LU	Luxembourg	SN	Senegal
ΑŪ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
۸Z	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korca	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Pederation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EB	Estonia	LR	Liberia	SG	Singapore		

Inte onal Application No PCT/US 98/12689

4 6: : 5 =					.,,
IPC 6	FICATION OF SUBJECT C07K14/72 G01N33/53	C12N15/12 A01K67/027	C12N15/11 A61K38/17	C07K16/18 A61K38/18	C12Q1/68
According t	o International Patent Clas	ssification (IPC) or to bett	national alongidisation		
	SEARCHED	on to both	Thaterial Cassilication a	andiro	
Minimum de	ocumentation searched (c	assification system folio	wed by classification syr	nbols)	
IPC 6	C12N C07K				
Documenta	ition searched other than n	ninimum documentation (	to the extent that such d	ocuments are included in	n the fields searched
Electronic o	data base consulted during	the international soarch	Inamo of data have an		
	·		( ) and base and	o, where practical, search	interins used)
C. DOCUM	ENTS CONSIDERED TO	BE RELEVANT			
Category *	Citation of document, wi	ith indication, where app	ropriate, of the relevant	passages	Relevant to claim No.
X	transcribed	AL.,: "Hybrates for a sequence of fine and the sequence of genes of genes of genes of the sequence of the sequ	rom microdiss	of sected	1,2
	amplified r	region at 20q	11-q13.2 in b	preast	
	CANCER RESE	EARCH, D. 15, 1996, _I	2446-24	IFO	
	XP002088091			150,	
	see the who	ne application ble document	n		
			-/	•	
		•			
					· ·
			·		
X Furti	her documents are listed in	the continuation of box	с. Х	Patent family membe	rs are listed in annex.
° Special ca	tegories of cited documen	ts:	*T* la	ter document published a	ifter the International filling date
consid	ent defining the general sta lered to be of particular rel	evance		or priority date and not in	conflict with the application but inciple or theory underlying the
tiling a			¹⁾ "X" d	ocument of particular rele	vance; the claimed invention rei or cannot be considered to
WILLICE	int which may throw doubt is cited to establish the put n or other special reason (a	blication date of another	"Y" d	involve an inventive step to ocument of particular rele	when the document is taken alone vance; the claimed invention
"O" docume other r	ent referring to an oral disc means	losure, use, exhibition o	r	document is combined will	nvolve an inventive step when the th one or more other such docu- being obvious to a person skilled
"P" docume later th	ant published prior to the in nan the priority date claime	ternational filing date bud	rt '	in the art, ocument member of the s	
Date of the	actual completion of the in	ternational search		Date of mailing of the inter	
10	6 December 199	8		13/01/1999	
Name and n	nailing address of the ISA European Patent Offic	ce, P.B. 5818 Patentiaan		Authorized officer	
	NL - 2280 HV Rijswij Tel. (+31-70) 340-204 Fax: (+31-70) 340-30	0, Tx. 31 651 epo nl.		Mateo Rosel	1. A.M.

Inte onal Application No PCT/US 98/12689

Category *	ation) DOCUMENTS CONSIDERED TO BE RELEVANT  Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	Appropriate, or the relevant passages	Helevant to claim No.
	WO 97 10337 A (BAYLOR COLLEGE MEDICINE) 20 March 1997  see page 5, line 10 - page 6, line 28 see page 15, line 20 - page 17, line 5	1,2, 10-12, 15-20, 22-28, 32-40, 43-45,53
	see page 15, line 16-22 see page 19, line 6 - page 20, line 28	
	GLASS C K ET AL: "NUCLEAR RECEPTOR COACTIVATORS" CURRENT OPINION IN CELL BIOLOGY, vol. 9, no. 2, April 1997, pages 222-232, XP002045759 see the whole document	1
	OGRYZKO V V ET AL: "THE TRANSCRIPTIONAL COACTIVATORS P300 AND CBP ARE HISTONE ACETYLTRANSFERASES" CELL, vol. 87, no. 5, 29 November 1996, pages 953-959, XP002050401 see specially page 953	53,54
	WO 95 21940 A (SALK INST FOR BIOLOGICAL STUDIES) 17 August 1995 see abstract see page 5, line 7 - page 8, line 18; examples I-IV	53,54
,А	DATABASE EMBL NUCLEOTIDE AND PROTEIN SEQUENCES, - 1 July 1997 XP002088092 HINXTON, GB AC= 009000. P300/CBP/Co-integrator protein Mus musculus. see abstract	46
, А	-& J. TORCHIA ET AL., : "The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function" NATURE, vol. 387, no. 6634, 1997, pages 677-684, XP002088153 see the whole document	46
	-/	

Inte onal Application No PCT/US 98/12689

(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT  alegory Citation of document, with indication, where appropriate, of the relevant passages    Relevant to claim No.				
	on another decignment, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
·, X	S.L. ANZICK ET AL.,: "AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer" SCIENCE, vol. 277, no. 5328, 15 August 1997, pages 965-968, XP002088093 Washington, DC, US cited in the application see the whole document and specially Figure X	1,7-9		
, X	H. LI ET AL.,: "RAC3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF-2" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 94, 1 August 1997, pages 8479-8984, XP002088094 WASHINGTON DC, US see the whole document and specially Figure y	1,7-9		
P,X	A. TAKESHITA ET AL.,: "TRAM-1, a novel 160-kDa thyroid hormone receptor activator molecule, exhibits distinct properties from steroid receptor coactivator-1" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 272, 31 October 1997, pages 27629-27634, XP002088095 Bethesda, MD US see the whole document and specially Figure Z	1,7-9		
P,X	H. CHEN ET AL.,: "Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and formsa multimeric activation complex with P/CAF and CBP/p300" CELL, vol. 90, no. 3, 8 August 1997, pages 569-580, XP002088096 see the whole document and specially Figure W	1,7-9		
P,X	FOROZAN F ET AL: "Genome screening by comparative genomic hybridization" TRENDS IN GENETICS, vol. 13, no. 10, October 1997, page 405-409 XP004090560 see the whole document and specially page 407, column 1	1		
, X	WO 98 03652 A (US HEALTH) 29 January 1998 see page 3, line 1 - page 6, line 10 see page 33, line 15-28	53,54		

PCT/US 98/12689

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)						
This Inter	This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:						
. —	Claims Nos.: 32-40, 53-54 because they relate to subject matter not required to be searched by this Authority, namely:  Remark: Although claims 32-40, 53-54  are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.						
ــــا	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically:						
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).						
Box II	Observations where unity of invention is lacking(Continuation of item 2 of first sheet)						
This Inter	rnational Searching Authority found multiple inventions in this international application, as follows:						
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.						
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.						
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:						
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims: it is covered by claims Nos.:						
Remark e	The additional search fees were accompanied by the applicant's protest.  No protest accompanied the payment of additional search fees.						

information on patent family members

Inta Ional Application No PCT/US 98/12689

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9710337	Α	20-03-1997	AU EP	7103896 A 0871729 A	01-04-1997 21-10-1998
WO 9521940	Α	17-08-1995	US	5750336 A	12-05-1998
WO 9803652	Ä	29-01-1998	AU,	4043897 A	10-02-1998

Form PCT/ISA/210 (patent family annex) (July 1992)

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.