18.06-Pan Solving Ax = b and Orthogonal complement Worksheet 6

Solving Ax = b

- 1. When A is invertible, i.e., if $A_{n\times n}$ has rank n, then Ax = b always has \underline{O} Unique solution.
- 2. When A is singular.
 - (a) x is a least squares solution if |Ax-b| is as small as possible.
 - (b) x is a least norm if furthermore \boxed{XU} is as small as possible.
 - (c) Given $A = U\Sigma V^T = U_1\Sigma_r V_1^T$, the solution $x = \sqrt{\Sigma_r} \sqrt{\Sigma_r}$ is always a least-squares, least-norm solution.

Orthogonal complement

- 1. If V and W are vector subspaces of \mathbb{R}^n , we say that V and W are orthogonal if for every $v \in V$, and $w \in W$, we have $V \perp w$
- 2. V^{\perp} is the set of all $w \in \mathbb{R}^n$ such that w is perpendicular to each vector $v \in V$.
- 3. $V = (V^{\perp})^{\perp}$
 - $\operatorname{Col}(A)^{\perp} = \operatorname{Leftnull}(A)$
 - $\operatorname{Row}(A)^{\perp} = \operatorname{Null}(A)$
 - $\operatorname{Null}(A)^{\perp} = \operatorname{Row}(A)$
 - Leftnull $(A)^{\perp} = \operatorname{Col}(A)$
- 4. Suppose A is a $m \times n$ matrix with rank r, then
 - dim $Row(A) = \Upsilon$
 - dim $Null(A) = \Gamma$
- Page 1 of 3

18.06-Pan Solving Ax = b and Orthogonal complement Worksheet 6

Problems

1. Let $A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

(a) What is the rank of A?

2

(b) What is the dimension of the solution space of Ax = 0? What is the dimension of the solution space of $A^Tx = 0$?

$$\dim Null(A) = 3-2=1$$

(c) Does $A^{T}y = \begin{pmatrix} 1\\1\\0\\-1 \end{pmatrix}$ has a solution? If not, find the least norm. (Hint: First, write down a SVD for A^{T} .) $\begin{pmatrix} 1&0&0\\0&i&0\\0&i&0&0\\0&i&0&0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}}&0\\0&\frac{1}{\sqrt{2}}&0\\0&\frac{1}{\sqrt{2}}&0\\0&\frac{1}{\sqrt{2}}&0\\0&\frac{1}{\sqrt{2}}&0 \end{pmatrix} \begin{pmatrix} \sqrt{2}&0\\0&\sqrt{2}&1&0\\0&\frac{1}{\sqrt{2}}&0\\0&\frac{1}{\sqrt{2}}&0 \end{pmatrix}$

So least norm solution

$$y = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} \frac{1}$$

Page 2 of 3

18.06-Pan Solving Ax = b and Orthogonal complement Worksheet 6

2. Let
$$V$$
 be subspace of \mathbb{R}^4 $V = span(\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\0\\0 \end{pmatrix})$.

(a) Find the orthogonal complement of V .

 $Span\left(\begin{pmatrix} b \\ 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}\right)$

(b) Write down all the solutions of
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$
.

that $rank(A) + rank(B) \le n$.

$$\begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ \chi_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \left[\left\langle \begin{pmatrix} 0 \\ 0 \\ -1 \\ -1 \end{pmatrix} \right] + \left[\left\langle \begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix} \right]$$

Since
$$AB=0 = D$$
 rank $B \leq null (A)$

$$null(A) = n - rank(A)$$

3. Let A be an $m \times n$ matrix and B be an $n \times k$ matrix. Suppose we have AB = 0. Show

So rank (B)
$$\leq N - rank(A)$$

=1) rank (A) + rank (B) $\leq N$.