Linear Algebra II (MATH1049) — Coursework Sheet 1 — 2020/21

Submit a single pdf with scans of your work to Blackboard by Monday, 15 February 2021, 17:00.

Exercise 1

Let G and H be groups with binary operations \boxplus and \odot , respectively. We define a binary operation * on the cartesian product $G \times H$ by

$$(a,b)*(a',b'):=(a\boxplus a',b\odot b')\quad (\text{for }a,a'\in G\text{ and }b,b'\in H).$$

Show that $G \times H$ together with this operation is a group.

Exercise 2

For $a, b \in \mathbb{R}$ we define $a * b := a + b + ab \in \mathbb{R}$. Furthermore let $G := \mathbb{R} \setminus \{-1\}$.

- (a) Show that $a * b \in G$ for all $a, b \in G$.
- (b) Show that G together with the binary operation $G \times G \to G$, $(a, b) \mapsto a * b$, is a group.

Exercise 3

Let $G = \{s, t, u, v\}$ be a group with s * u = u and t * t = v. Determine the group table of G. (There is only one way of completing the group table for G. Give a reason for each step.)

Exercise 4

Write down the group tables for the groups C_4 and $C_2 \times C_2$ (cf. Exercise 1). For every element a in C_4 and $C_2 \times C_2$ determine the smallest positive integer m such that ma equals the identity element.

Extra question (not assessed — no need to submit)

Let G be a group whose binary operation is written additively, i.e. $G \times G \to G$, $(a,b) \mapsto a+b$. Show that m(na) = (mn)a for all $a \in G$ and $m, n \in \mathbb{Z}$. (Hint: You need to distinguish up to 9 cases.) Write down the other two exponential laws in additive notation as well. (Formulate these laws as complete mathematical statements including all quantifiers. No proofs are required.)