

Praktikum Physik für Naturwissenschaftler

Bericht zum Versuch

Drehschwingungen

Durchgeführt am 7. Dezember 2023

Gruppe 6

Moritz Wieland und Dominik Beck

(moritz.wieland@uni-ulm.de) (dominik.beck@uni-ulm.de)

Betreuer: Stefan Pokrivka

Wir bestätigen hiermit, dass wir die Ausarbeitung selbständig erarbeitet haben und detaillier	rte
Kenntnis vom gesamten Inhalt besitzen.	
und	

Dominik Beck

Moritz Wieland

Inhaltsverzeichnis

Napitei		1 Einleitung	Seite 2
Kapitel		2 Versuchsdurchführung und Auswertung	Seite 3
	2.1	Versuch 1: Frequenz und Dämpfung der freien Schwingung Versuchsaufbau und -durchführung — 3	3
	2.2	Versuch 2: Computersimulation Versuchsaufbau und -durchführung — 5 ● Ergebnisse & Diskussion — 5	5
	2.3	Versuch 3: Erzwungene Schwingungen Versuchsaufbau und -durchführung — 6 ● Ergebnisse & Diskussion — 6	6

1 Einleitung

TODO: Einleitung schreiben

2 Versuchsdurchführung und Auswertung

2.1 Versuch 1: Frequenz und Dämpfung der freien Schwingung

2.1.1 Versuchsaufbau und -durchführung

Das Drehpendel in 2.1.1 besteht aus einer horizontalen Achse (A) einem darum drehenden Kupferring (R), der über eine Spiralfeder (SF) mit einem Hebel (H) verbunden ist und über eine Stange (S) in Bewegung versetzt werden kann. Die Amplitude kann an einer festen Skala (Sk) abgelesen werden.

Teil 1: Eigenfrequenz

Der Aufbau ist in 2.1.1 zu sehen. Die Schwingungsdauer wird mit einer Stoppuhr gemessen. Die Messung wird 5 mal wiederholt und läuft über 10 Perioden. Die Messergebnisse sind in Tabelle 2.1.1 zu sehen.

Tabelle 2.1: Messergebnisse Eigenfrequenz

			-	0	
Messung #	1	2	3	4	5
t[s]					

Ergebnisse & Diskussion

Man erhält für die 5 Messungen einen Mittelwert für die Periodendauer von TODO. Wir nehmen nun TODO als Messefehler, da Begründung TODO. Da wir über 10 Perioden messen, teilen wir den Messwert durch 10. So erhalten wir den Fehler für eine Periode. Damit ergibt sich nun einen mittlere Periodendauer von DAUER ± FEHLER. Die Frequenz können wir nun mit folgender Formel berechnen:

$$f = \frac{1}{T} \tag{2.1}$$

Daraus resultiert eine Eigenfrequenz von:

$$\omega_0 = 2\pi \cdot f = 2\pi \cdot \frac{1}{T} = TODO \tag{2.2}$$

Nun können wir noch den geforderten Größtfehler $\Delta\omega_0$ berechnen. Dazu verwenden wir folgende Formel:

$$\Delta f = f \cdot \frac{\Delta T}{T}$$

$$\Delta \omega_0 = \left| 2\pi \cdot -\frac{1}{T^2} \cdot \Delta T \right|$$
(2.3)

TODO Diskussion?

Teil 2: Dämpfung

Der Versuchsaufbau ist auch hier in 2.1.1 zu sehen. Wir möchten hier nun die Dämpungskonstante β sowie das Dämpfungsverhältnis K bestimmen. Letzteres beschreibt die relative Veränderung der Amplitude pro Periode. Die Dämpfungskonstante lässt sich nun mit folgender Formel berechnen:

$$\beta = \frac{\ln K}{T} \tag{2.4}$$

Zur Dämpfung des Drehpendels werden bei diesem Versuch Dämpfungspannungen von 2V bzw 4V angelegt und dann die Periodendaer T bestimmt. Die Amplitude A wird and der Skala des Drehpendels nach jeder Periode abgelesen.

Ergebnisse & Diskussion

Man erhält nun folgenden Werte für die Dämpfung β : Fehler in der Tabelle nicht vergessen

Tabelle 2.2: Dämpfung bei 2V und 4V

rabelle 2.2. Damprang bei 2 v and 1 v							
Dämpfungsspannung	T[s]	K	$\beta[\frac{1}{s}]$				
2V							
4V							

TODO: Ergebnisse & Diskussion

 $^{^{1}\}mathrm{Die}$ Formel wurde in der Anleitung Drehpendel hergeleitet und von uns übernommen.

2.2 Versuch 2: Computersimulation

2.2.1 Versuchsaufbau und -durchführung

Teil 1: Erzwungene Schwingungen

TODO: Versuchsaufbau und -durchführung Teil 1

Teil 2: Infrarotspektroskopie

TODO: Versuchsaufbau und -durchführung Teil 2

2.2.2 Ergebnisse & Diskussion

TODO: Ergebnisse & Diskussion

2.3 Versuch 3: Erzwungene Schwingungen

2.3.1 Versuchsaufbau und -durchführung

Teil 1: Resonanzfrequenz

TODO: Versuchsaufbau und -durchführung Teil 1

Teil 2: Resonanz- und Phasenkurve

TODO: Versuchsaufbau und -durchführung Teil 1

Teil 3: Auswertung der Resonanzkurve

TODO: Versuchsaufbau und -durchführung Teil 1

2.3.2 Ergebnisse & Diskussion

TODO: Ergebnisse & Diskussion