

# Department Of Computer Science, CUI Lahore Campus

CSC102 - Discrete Structures

By

Mahwish Waqas

### Course Outline

- Sets
  - Set Operations
  - Inclusion-Exclusion Principle of Sets
  - Set Identities
  - Membership Tables

### **Set Operations**

Two sets can be combined in many different ways.

Set operations can be used to combine sets.

### Union

- Let A and B be sets.
- The union of A and B, denoted by A∪B, is the set containing those elements that are either in A or in B, or in both.
- $A \cup B = \{x \mid x \in A \lor x \in B\}$



 $A \cup B$  is shaded.

### Intersection

- Let A and B be sets.
- The **intersection** of A and B, denoted by  $\mathbf{A} \cap \mathbf{B}$ , is the set containing those elements in both A and B.
- $A \cap B = \{x \mid x \in A \land x \in B\}$



 $A \cap B$  is shaded.

# Union (example)

• Let 
$$A = \{1,2,3\}$$
  
 $B = \{2,4,6,8\}$   
 $A \cup B = \{1,2,3,4,6,8\}$ 

• Let 
$$A = \{x \mid x \in \mathbf{Z} \land x \text{ is even}\}$$
  
 $B = \{x \mid x \in \mathbf{Z} \land x \text{ is odd}\}$   
 $A \cup B = \mathbf{Z}$ 

### Intersection (example)

• Let 
$$A = \{1,2,3\}$$
  
 $B = \{2,4,6,8\}$   
 $A \cap B = \{2\}$ 

### Disjoint Sets

• Two sets are called **disjoint** if their intersection is empty.

• Let 
$$A = \{x \mid x \in \mathbf{Z} \land x \text{ is even}\}$$
  
 $B = \{x \mid x \in \mathbf{Z} \land x \text{ is odd}\}$   
 $A \cap B = \emptyset$ 

# The Cardinality of the Union of Sets

- Principle of inclusion-exclusion
- $|A \cup B| = |A| + |B| |A \cap B|$

### The Cardinality of the Union of Sets

• Find  $|A \cup B| = ?$ 

#### Solution:

• Let 
$$A = \{1,2,3\}$$
  
 $B = \{2,3,4\}$   
 $A \cap B = \{2,3\}$   
 $A \cup B = \{1,2,3,4\}$ 

• 
$$|A| = 3$$
  $|B| = 3$   $|A \cap B| = 2$ 

• 
$$|A \cup B| = 4$$

### Difference

- Let A and B be sets.
- The difference of A and B, denoted by A B, is the set containing those elements that are in A but not in B. (also called complement of B with respect to A).
- A B =  $\{x \mid x \in A \land x \notin B\}$



### Difference (example)

• Let 
$$A = \{1,2,3\}$$
  
 $B = \{2,4\}$   
 $A - B = \{1,3\}$ 

### Complement

- Let U be the universal set and A be a set.
- The **complement** of A, denoted by  $\overline{\mathbf{A}}$ , is the complement of A with respect to U (which is U - A).

$$\bullet \overline{A} = \{ x \mid x \notin A \}$$



A is shaded.

# Complement (example)

```
    Let A = { a, b, c, d } and
    U is the set of English alphabet
    \overline{A} = { e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z }
```

Let A = { x | x ∈ Z ∧ x is odd } and U is Z
 Ā = { x | x ∈ Z ∧ x is even }

# **Summary Set Operations**

| Operation          | Notation                                      |  |  |
|--------------------|-----------------------------------------------|--|--|
| Union              | $A \cup B = \{x \mid x \in A \lor x \in B\}$  |  |  |
| Intersection       | $A \cap B = \{x \mid x \in A \land x \in B\}$ |  |  |
| Difference         | $A - B = \{x \mid x \in A \land x \notin B\}$ |  |  |
| Complement (U - A) | $\overline{A} = \{ x \mid x \notin A \}$      |  |  |

# Inclusion-Exclusion Principle of Sets

### 2 and 3 - Set Venn Diagram





### 2 - Set Venn Diagram

- Region I represents the elements in set A that are not in set B.
- Region II represents the elements in both sets A and B.
   Region III represents the elements in set B that are not in set A.
- **Region IV** represents the elements in the universal set that are in neither set A nor set B.



Suppose a list A contains the 30 students in a mathematics class, and a list B contains the 35 students in an English class, and suppose there are 20 names on both lists.

Find the number of students:

- only on list A
- only on list B
- on list A or B (or both)
- on exactly one list.

#### Solution:

- 30 20 = 10 names are only on list A.
- 35 20 = 15 are only on list *B*.
- $|A \cup B| = |A| + |B| |A \cap B| = 30 + 35 20 = 45$ .
- 10 + 15 = 25 names are only on one list; that is,  $|A \oplus B| = 25$ .

### 3 - Set Venn Diagram

- Region I represents the elements in set A but not in set B or set C.
- Region II represents the elements in set A and set B but not in set C.
- Region III represents the elements in set B but not in set A or set C.
- Region IV represents the elements in sets A and C but not in set B.
- Region V represents the elements in sets A, B, and C.
- Region VI represents the elements in sets B and C but not in set A.
- Region VII represents the elements in set C but not in set A or set B.
- **Region VIII** represents the elements in the universal set U, but not in set A, B, or C.



Consider the following data for 120 mathematics students at a college concerning the languages French, German, and Russian:

65 study French, 45 study German,

42 study Russian, 20 study French and German,

25 study French and Russian,

15 study German and Russian.

8 study all three languages.

Determine how many students study exactly 1 language course and fill the correct numbers of students in each eight region of Venn diagram shown in figure.





$$U = 120$$
$$F = 65$$

$$G = 45$$

$$R = 42$$

$$F \cap G = 20$$

$$F \cap R = 25$$

$$G \cap R=15$$

$$F \cap G \cap R=8$$



$$R1 - |F| = 65 - 12 - 8 - 17 = 28$$
  
 $R3 - |G| = 45 - 12 - 8 - 7 = 18$ 

$$R7 - |R| = 42 - 17 - 8 - 7 = 10$$

$$R2 - |F \cap G| = 20 - 8 = 12$$

$$R4 - |F \cap R| = 25 - 8 = 17$$

$$R6 - |G \cap R| = 15 - 8 = 7$$

$$R5-|F\cap G\cap R|=8$$

$$|F \cup G \cup R| = 65 + 45 + 42 - 20 - 25 - 15 + 8 = 100$$

$$R8 - |U| - |F \cup G \cup R| = 120 - 100 = 20$$

Total number of students exactly registered in one course
= 28+18+10=56



 $A \cup \emptyset = A$ 

Identity Laws

 $A \cap U = A$ 

 $A \cup U = U$ 

 $A \cap \emptyset = \emptyset$ 

**Domination Laws** 

 $A \cup A = A$ 

 $A \cap A = A$ 

**Idempotent Laws** 

 $\overline{(\overline{A})} = A$ 

Complementation Law

 $A \cup \overline{A} = U$ 

 $A \cap \overline{A} = \emptyset$ 

**Complement Laws** 

 $A \cup B = B \cup A$ 

 $A \cap B = B \cap A$ 

**Commutative Laws** 

 $A \cup (B \cup C) = (A \cup B) \cup C$ 

 $A \cap (B \cap C) = (A \cap B) \cap C$ 

**Associative Laws** 

 $A \cup (A \cap B) = A$ 

 $A \cap (A \cup B) = A$ 

**Absorption Laws** 

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
  
 $\overline{A \cap B} = \overline{A} \cup \overline{B}$ 

De Morgan's Law

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Distributive Law

$$A - B = A \cap \overline{B}$$

**Difference Law** 

### How to Prove a Set Identity

- Four methods:
  - Use membership tables
  - Use the basic set identities
  - Prove each set is a subset of each other
  - Use set builder notation and logical equivalences

### What is a membership table

- Membership tables show all the combinations of sets an element can belong to
  - 1 means the element belongs, 0 means it does not
- Consider the following membership table:

| A | В | A U B | $A \cap B$ | A - B |
|---|---|-------|------------|-------|
| 1 | 1 | 1     | 1          | 0     |
| 1 | 0 | 1     | 0          | 1     |
| 0 | 1 | 1     | 0          | 0     |
| 0 | 0 | 0     | 0          | 0     |

# Membership Table

| A | В | В-А | $\overline{A}$ | $\overline{\mathbf{B}}$ | $\overline{A \cap B}$ | $\overline{A} \cup \overline{\mathbf{B}}$ |
|---|---|-----|----------------|-------------------------|-----------------------|-------------------------------------------|
| 1 | 1 | 0   | 0              | 0                       | 0                     | 0                                         |
| 1 | 0 | 0   | 0              | 1                       | 1                     | 1                                         |
| 0 | 1 | 1   | 1              | 0                       | 1                     | 1                                         |
| 0 | 0 | 0   | 1              | 1                       | 1                     | 1                                         |

### Membership Table

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
  
 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ 

#### **Distributive Law**

| A | В | С | <b>B</b> ∩ <b>C</b> | <b>A</b> ∪ <b>(B</b> ∩ <b>C)</b> | A∪B | $A \cup C$ | (A ∪ B) ∩ (A ∪ C) |
|---|---|---|---------------------|----------------------------------|-----|------------|-------------------|
| 1 | 1 | 1 | 1                   | 1                                | 1   | 1          | 1                 |
| 1 | 1 | 0 | 0                   | 1                                | 1   | 1          | 1                 |
| 1 | 0 | 1 | 0                   | 1                                | 1   | 1          | 1                 |
| 1 | 0 | 0 | 0                   | 1                                | 1   | 1          | 1                 |
| 0 | 1 | 1 | 1                   | 1                                | 1   | 1          | 1                 |
| 0 | 1 | 0 | 0                   | 0                                | 1   | 0          | 0                 |
| 0 | 0 | 1 | 0                   | 0                                | 0   | 1          | 0                 |
| 0 | 0 | 0 | 0                   | 0                                | 0   | 0          | 0                 |

### Set Identities (example)

• Show  $\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$ 

### Set Identities (example)

• Show  $\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$ 

#### Solution:

```
\overline{A \cup (B \cap C)}
= \overline{A} \cap (\overline{B} \cap C) (By DeMorgan's Law)
= \overline{A} \cap (\overline{B} \cup \overline{C}) (By DeMorgan's Law)
= \overline{A} \cap (\overline{C} \cup \overline{B}) (By Commutative Law)
= (\overline{C} \cup \overline{B}) \cap \overline{A} (By Commutative Law)
```

$$A \cup (B-A) = A \cup B$$

$$L.H.S = A \cup (B-A)$$

$$=A\cup (B\cap \overline{A})$$

$$=(A\cup B)\cap (A\cup \overline{A})$$

$$=(A\cup B)\cap\bigcup$$

$$= A \cup B$$

$$= R.H.S$$

Difference Law

Distribution Law

Complement Law

**Identity Law** 

### **Exercise Questions**

Chapter # 2
Topic # 2.2
Question # 1, 2, 3,4,5,6,15,16,17,18,
19,20,21,22,23,24,25