Oil Spill v. Struct

- Main
- OilSpillModel

Para cada día

Para cada paso de tiempo

- Libera nuevas partículas
- Grafica la posición de las partículas
- Obten los campos de velocidad
- Mueve a las partículas
- Elimina partículas
- Grafica las estadísticas
- Guarda los datos

Revisión de algunos parámetros

Passow, U., and R.D. Hetland. 2016. What happened to all of the oil? Oceanography 29(3):88–95, http://dx.doi.org/10.5670/oceanog.2016.73.

- Subsurface plume at ~1,100 m (1,000-1,400 m) and 400 m
- While rising, the plume spread laterally forming a cone, but remained predominantly within a 1–2 km radius around the leak.
- 400 m plume was less pronounced than that at 1100 m.
- Some fraction of the oil lingered in the water for many months after the leak was sealed.
- It is assumed that microbial degradation of the surface slick was slower.
 (implementar degradación diferencial por profundidad)

Revisión de algunos parámetros

Passow, U., and R.D. Hetland. 2016. What happened to all of the oil? Oceanography 29(3):88–95, http://dx.doi.org/10.5670/oceanog.2016.73.

Revisión del Oil Budget Calculator (2010)

Superficie

Evaporación, quema, recolección, dispersión natural, dispersión química

Subsuperficie

Dispersión natural de subsuperficie, dispersión química de subsuperficie

Ecuaciones confusas

No considera distintos tipos de petróleo

- Lectura de NecCDFs
 - Comandos de alto nivel (eg. ncread)
 - Comandos de bajo nivel (eg. netcdf.open, netcdf.getvar, netcdf.close)
 - No reconoce fill-values
 - Requiere dividir entre 1000
 - Más líneas de comando
- Guardado de datos

Guardado por filas (paso de tiempo)

Guardado de imágenes / videos

Solo guardar datos
Solo visuallización
Videos con visualización
Videos sin visualización
Imágenes sin visualización
Lento

Funciones

Rápido	Lento
numel	length
res	mod
datenum	datetime
epx fig	print

- Disfusión-Turbulenta U = u + u'; u' = uR; R = -a : a
 - $a = b/dt^1/2$

- a = b/dt^1/3 (Döös et al., 2011)

 Degradación exponencial thresholds = threshold_expDegr(Porcentaje,Días,TS)

thresholds = threshold_expDegr([Pz1,Pz2,PzN],[Dz1,Dz2,DzN],TS)

- thresholds = threshold_expDegr(50,4,TS)

Dia obs 4.3

Otras implementaciones

- Función correctLagrtTimeStep_hrs
- Interpola los archivos de viento a la malla de los archivos oceánicos
- Restringir el área de datos NetCDF a leer.
- Cuando una partícula se va a costa o se sale del dominio.

Interfáz gráfica

• Archivo ejecutable

Adaptarlo al derrame Usumacinta, 2007

- Tener listo el pronóstico de HYCOM para adaptarlo.
- Adaptar a ADCIR
- Verificar ecuaciones del OBC, 2010, o adaptar la degradación exponencial empiricamente.

