AMENDMENT

Claims 1 – 28 (Canceled)

29. (Original) A compound having the formula V

wherein R^1 and R^3 are, independently, substituted or unsubstituted, branched or straight chain C_1 to C_{20} alkyl; substituted or unsubstituted C_3 to C_8 cycloalkyl; substituted or unsubstituted or unsubstituted C_4 to C_{20} heteroaryl, wherein R^1 can also be hydrogen,

 R^6 is substituted or unsubstituted, branched or straight chain C_1 to C_{20} alkyl or substituted or unsubstituted C_3 to C_8 cycloalkyl, and

n is from 0 to 5.

- 30. (Original) The compound of Claim 29, wherein n is 2 and R¹ is hydrogen.
- 31. (Original) The compound of Claim 30, wherein R³ is methyl or ethyl.

32. (Original) The compound of Claim 31, wherein R⁶ is methyl or ethyl.

33. (Original) A method of producing the compound of Claim 29, comprising reacting a compound having the formula IV

$$X$$
 $COOR^3$ N O IV

wherein R^1 and R^3 are, independently, substituted or unsubstituted, branched or straight chain C_1 to C_{20} alkyl; substituted or unsubstituted C_3 to C_8 cycloalkyl; substituted or unsubstituted or unsubstituted C_4 to C_{20} heteroaryl, wherein R^1 can also be hydrogen,

X is fluoride, chloride, bromide, or iodide, and

n is from 0 to 5,

with a phosphite having the formula $P(OR^6)_3$, wherein R^6 is substituted or unsubstituted, branched or straight chain C_1 to C_{20} alkyl or substituted or unsubstituted C_3 to C_8 cycloalkyl.

- 34. (Original) The method of Claim 33, wherein X is chloride or bromide.
- 35. (Original) The method of Claim 33, wherein R⁶ is methyl or ethyl.
- 36. (Original) The method of Claim 33, wherein the phosphite is present in the

amount from 0.8 to 1.2 equivalents per 1.0 equivalent of the compound having the formula IV.

37. (Original) A method of producing a compound having the formula IV,

$$X$$
 $COOR^3$ N O IV

wherein R^1 and R^3 are, independently, substituted or unsubstituted, branched or straight chain C_1 to C_{20} alkyl; substituted or unsubstituted C_3 to C_8 cycloalkyl; substituted or unsubstituted or unsubstituted C_4 to C_{20} heteroaryl, wherein R^1 can also be hydrogen,

X is fluoride, chloride, bromide, or iodide, and

n is from 0 to 5,

comprising reacting a compound having the formula III

$$R^{4}O$$
 $COOR^{3}$ N O III

wherein R^1 , R^3 , and R^4 are, independently, a substituted or unsubstituted, branched or straight chain C_1 to C_{20} alkyl group; a substituted or unsubstituted C_3 to C_8 cycloalkyl group; a substituted or unsubstituted C_6 to C_{20} aryl group; or a substituted or unsubstituted C_4 to C_{20} heteroaryl group, wherein R^1 can also be hydrogen, and

n is from 0 to 5,

with a compound having the formula PX₃, wherein X is fluoro, chloro, bromo, or iodo.

Claims 38 – 41 (Canceled)

42. (Currently Amended) A method for producing the compound of Claim 38, a compound having formula VI

comprising reacting a compound having the formula V

$$R^{6}O$$
 $R^{6}O$
 $R^{6}O$
 $R^{6}O$
 $R^{1}O$
 R

wherein R^4 and R^3 are, independently, substituted or unsubstituted, branched or straight chain C_4 to C_{20} alkyl; substituted or unsubstituted C_3 to C_8 cycloalkyl; substituted or unsubstituted or unsubstituted C_4 to C_{20} heteroaryl, wherein R^4 can be hydrogen,

R⁶ is substituted or unsubstituted, branched or straight chain C₁ to C₂₀ alkyl or substituted or unsubstituted C₃ to C₈ cycloalkyl, and

n is from 0 to 5.

with an aldehyde having the formula $HC(O)R^2$ in the presence of a base, wherein R^2 is hydrogen, substituted or unsubstituted, branched or straight chain C_1 to C_{20} alkyl; substituted or unsubstituted C_3 to C_8 cycloalkyl; substituted or unsubstituted C_6 to C_{20} aryl; or substituted or unsubstituted C_4 to C_{20} heteroaryl in the presence of a base

wherein R^1 , R^2 , and R^3 are, independently, substituted or unsubstituted, branched or straight chain C_1 to C_{20} alkyl; substituted or unsubstituted C_3 to C_8 cycloalkyl; substituted or unsubstituted C_6 to C_{20} aryl; or substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted, branched or straight chain C_1 to C_{20} alkyl or substituted or unsubstituted C_3 to C_8 cycloalkyl; R^1 and R^2 may, independently, be hydrogen; and n is from 0 to 5.

43. (Original) The method of Claim 42, wherein the base comprises an amidine base or a guanidine base.

- 44. (Original) The method of Claim 42, wherein the base comprises 1,5-diazabicyclo(4.3.0)non-5-ene; 1,8-diazabicyclo(5.4.0)undec-7-ene, or tetramethylguanidine.
- 45. (Original) The method of Claim 42, wherein the base is present in the amount from 1.0 to 2.0 equivalents per 1.0 equivalent of the compound having the formula V.
- 46. (Original) The method of Claim 42, wherein the aldehyde is present in the amount from 0.8 to 1.5 equivalents per 1.0 equivalent of the compound having the formula V.
- 47. (Original) The method of Claim 42, wherein the aldehyde is acetaldehyde.

Claims 48 - 50 (Canceled)

- 51. (New) The compound of Claim 42 wherein n is 2 and R¹ is hydrogen.
- 52. (New) The compound of Claim 51 wherein R² and R³ are methyl.
- 53. (New) The compound of Claim 51 wherein R² is methyl and R³ is ethyl.
- 54. (New) The method of Claim 52 or 53 wherein R⁶ is methyl or ethyl.