高雄中學 109 學年度第一學期期末考高三自然組數學科試題

一、是非題:20分(正確打O,錯誤打X,每題2分)

- 1.設 z=1-sin130°+icos130°,判定下列各題的真假:
- (1)|z|<1 °
- (2)-70° 可為 z 的一個輻角。
- (3) $n \in N$, 使 $\overline{z}^n = -z^n$ 的最小 n 值為 9。
- 2. 如圖為複數平面上的兩正方形 $OA_1A_2A_3 \cdot OB_1B_2B_3 \circ O$ 為原點, $A_k(\alpha_k)$, $B_k(\beta_k)$,k=1,2,3。

若已知 $|\alpha_1|$ =1且 $\frac{\alpha_2}{\beta_1}$ = $\frac{-\sqrt{3}+i}{2}$,判定下列各題的真假:

- (2) \triangle OA₁B₁面積為 $\frac{\sqrt{3}+1}{4}$
- (3) $\alpha_1 + i \alpha_1 = \alpha_2$

3. z是一個虛數, Arg(z)表 z 的主輻角, 判定下列各題的真假:

- (1) Arg(z)+ Arg(z)=2 π
- (2) $\text{Arg}(\bar{z}) = \text{Arg}(\frac{1}{z})$
- (3) Arg(iz)= $\frac{\pi}{2}$ +Arg(z)
- $(4) \operatorname{Arg}(z^2) = 2\operatorname{Arg}(z)$

二、填充題:(注意:以標準式作答即寫成 a+bi,其中 a、b 為已知實數)

1. 設 $z=\frac{2020}{i}$,將 z 化為極式,並以主輻角作答 :_____。

2. 圓內接四邊形 ABCD 中,已知 $\overline{AB} = \overline{BC}$, $\overline{AD} = 2$, $\overline{BD} = 3$, $\overline{CD} = 1$,試求 \angle ABC=________。

3. 設 $\frac{(\cos 343^{\circ} + i \sin 197^{\circ})^{6}(-\sin 203^{\circ} + i \cos 157^{\circ})^{4}}{(\cos 320^{\circ} + i \sin 140^{\circ})^{5}} = a + bi$,則實數對(a,b)=______。

4. 兩複數 z_1 , z_2 均在複數平面的第二象限。已知 $Arg(z_1)=\alpha$, $Arg(z_2)=\beta$,且 $\sin\alpha = \frac{11}{14}$, $\sin\beta = \frac{13}{14}$ 。 試求 $Arg(z_1 \cdot z_2)=$ _____。

1

- 6. 已知 z₁=-3+4i, $\frac{z_2}{z_1}$ = -1+ $\sqrt{3}i$ 。複數平面上 O 為原點,A(z₁),B(z₂),設 $l=\overline{AB}$ 的長,a= \triangle OAB 面積,試求數對(l ,a)=_____。
- 7. 複數平面上 O 為原點,A(z),B($\frac{\sqrt{3}+i}{2}$),|z|=3且 $\overline{AB}=\sqrt{7}$ 。試求 z=______。(兩解,以標準式作答)

10. 複數 z,已知 |z+3|=4,|z-3|=5,求 |z|=______。

11. 如右圖:矩形 ABCD 中, $\overline{AB}=8$, $\overline{AD}=6$ 。將 \overline{AD} 摺到 \overline{AD} ',若 已知 \overline{D} '到 \overline{AB} 距離為 $\frac{24}{5}$,試求梯形 ABCE 的面積______。

12. 自地平面上一點 P 觀測某大樓樓頂得仰角 22°,以等速度向大樓走 5 分鐘後到達 Q 點,此時測得仰角為 θ 。 再以相同速度向大樓走 T 分鐘後到達 R 點,此時測得仰角為 45°。請利用下表求數對(θ ,T)=______ (θ 四捨五入到分)

角度x	22°	26°30'	θ	26°40'
tanx	0.4	0.4986	0.5	0.5022

三、計算題:(請詳列計算過程,否則不計分)

設 $f(x)=x^3+ax^2+bx+c$ 方程式 f(x)=0 三根在複數平面對應的點為 $A(\alpha)$, $B(\beta)$, $C(\gamma)$,如圖:

B 點在實軸正向上。若 $|\alpha|=|\beta|=|\gamma|$ 且 $\alpha+\gamma=\beta$,又四邊形 OABC 面積為 $2\sqrt{3}$ 。

試求:(1)∠AOC。(2)不等式 f(x)>0 的解。(3)序數組(a,b,c)。

高雄中學 109 學年度第一學期期末考高三(自然組)數學科

一、是非題:20分(正確打O,錯誤打X,每題2分)

	1.			2.		3.				
(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)	(4)	
О	О	О	О	О	(3) O	О	О	X	X	

二、填充題:(70分)

格數	1	2	3	4	5	6	7	8	9	10	11	12
得分	8	16	24	32	40	45	50	55	60	65	68	70

待欠				J_								, 0				
1.						2	2.						3			
$2020(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2})$							60°							$(-\frac{\sqrt{3}}{2},\frac{1}{2})$		
4.						5	5.						6)•		
	240°						-1-i							$(5\sqrt{7}, \frac{25\sqrt{3}}{2})$		
7.						8	3.						9.			
•	3i or $\frac{3\sqrt{3}}{2} - \frac{3}{2}i$							(-	$\frac{1}{\sqrt{26}}$	$,\frac{5}{\sqrt{2}}$	=)			$\frac{\sqrt{6}}{3}$		
10.						1	1						1	2.		
	$\frac{\sqrt{46}}{2}$						42							(26°34′, 10)		
		4	2													

三、計算題:(1)2分(2)3分(3)5分

 $(1) 120^{\circ}$

答:(2) x>2

(3) (-4,8,-8)