Computer Science and Engineering, IIT Palakkad CS 5003: Parameterized Algorithms

The set $\{1, 2, ..., n\}$ is denoted by [n]. For an undirected graph G, let V(G) and E(G) denote the set of its vertices and the set of its edges, respectively. A path $P = (v_1, ..., v_\ell)$ is a sequence of distinct vertices such that $\{v_i, v_{i+1}\}$ is an edge for each $1 \le i \le \ell - 1$. The length of a path P is defined as the number of vertices in it and we call a path of length k as a k-path. The LONGEST PATH problem is defined as follows.

Input: An undirected graph G on n vertices and a positive integer k

Question: Does G have a path of length at least k?

Parameter: k

As Hamiltonian Path is a special case of Longest Path and is NP-hard, it follows that Longest Path is NP-hard. Given an instance (G,k) of Longest Path, we color the vertices of G uniformly at random from the color set [k]. Let $\chi:V(G)\to [k]$ denote this coloring. A path P is said to be χ -colorful if for any two distinct vertices $u,v\in V(P),\ \chi(u)\neq \chi(v)$ holds. The dynamic programming algorithm that we discussed in the class leads to the following result.

Lemma 1. Let G be an undirected graph and χ be a coloring on its vertices. If G has a χ -colorful k-path, then there is an algorithm that finds such a path in $\mathcal{O}(2^k n^2)$ time.

Executing the algorithm given by Lemma 1 by iterating over all possible coloring functions χ (instead of random colorings) and declaring that G has no k-path if and only if all the executions fail to find a χ -colorful k-path, shows that Longest Path can be solved in $\mathcal{O}(k^n 2^k n^2)$ time. In this lecture, we will discuss a smaller family of coloring functions that leads to a deterministic FPT algorithm for Longest Path. We will prove the following theorem.

Theorem 2. Given integers $n, k \geq 1$, there is a family \mathcal{F}_{n,k^2}^* of coloring functions $\chi : [n] \to [k^2]$ of size $\mathcal{O}(n^2)$ that can be constructed in $n^{\mathcal{O}(1)}$ time satisfying the following property: for every set $S \subseteq [n]$ of size k, there is a function $\chi \in \mathcal{F}_{n,k^2}^*$ such that $\chi(u) \neq \chi(v)$ for any two distinct vertices $u, v \in S$.

Then, we have the following result.

Theorem 3. Longest Path can be solved in $\mathcal{O}^*(2^k \binom{k^2}{k})$ time.

Proof. Consider an instance $\mathcal{I}=(G,k)$ of Longest Path. First, we compute the family \mathcal{F}_{n,k^2}^* of $\mathcal{O}(n^2)$ coloring functions using Theorem 2 where n is the number of vertices in G. Then, for each coloring function $\chi:V(G)\to[k^2]$ in \mathcal{F}_{n,k^2}^* and for each set $X\subseteq[k^2]$ of k colors, we determine if G has a χ -colorful k-path using colors from X. For this purpose, we delete the vertices of G that are colored using colors from $[k^2]\setminus X$ to obtain the graph G' and use Lemma 1 to determine if G' has a χ -colorful k-path or not. Due to the properties of \mathcal{F}_{n,k^2}^* guaranteed by Theorem 2, it follows that \mathcal{I} is a yes-instance if and only if there is a coloring function $\chi\in\mathcal{F}_{n,k^2}^*$ and a subset $X\subseteq[k^2]$ of k colors such that $G[\{v\in V(G):\chi(v)\in X\}]$ has a χ -colorful k-path. The overall running time is $\mathcal{O}^*(2^k\binom{k^2}{k})$.

A faster algorithm for LONGEST PATH may be obtained by using the following variant of Theorem 2.

Theorem 4. Given integers $n, k \geq 1$, there is a family $\widehat{\mathcal{F}}_{n,k}$ of coloring functions $\chi : [n] \to [k]$ of size $e^k k^{(\log k)} \log n$ that can be constructed in $e^k k^{(\log k)} n \log n$ time satisfying the following property: for every set $S \subseteq [n]$ of size k, there is a function $\chi \in \widehat{\mathcal{F}}_{n,k}$ such that $\chi(u) \neq \chi(v)$ for any two distinct vertices $u, v \in S$.

Theorem 5. Longest Path can be solved in $\mathcal{O}^*((2e)^k k^{(\log k)})$ time.

Proof. Consider an instance $\mathcal{I} = (G, k)$ of Longest Path. First, we compute the family $\widehat{\mathcal{F}}_{n,k}$ of $e^k k^{\mathcal{O}(\log k)} \log n$ coloring functions using Theorem 4 where n is the number of vertices in G. Then, for each coloring function $\chi: V(G) \to [k]$ in $\widehat{\mathcal{F}}_{n,k}$, we determine if G has a χ -colorful k-path using Lemma 1. Due to the properties of $\widehat{\mathcal{F}}_{n,k}$ guaranteed by Theorem 4, it follows that \mathcal{I} is a yes-instance if and only if G has a k-path that is colorful with respect to at least one of the coloring functions. The overall running time is $\mathcal{O}^*((2e)^k k^{(\log k)})$. \square

Proof of Theorem 2

Let U denote the universe $\{0,1,\ldots,u-1\}$ where u is a prime number such that $n\leq u\leq 2n$. Let T denote $\{0,1,\cdots,t-1\}$. For elements $a,b\in U$ with $a\neq 0$, let $h_{a,b}:U\to U$ be defined as $h_{a,b}(x)=(ax+b)\mod u$. Let $g: U \to T$ denote the function defined as $g(x) = x \mod t$. Let $\mathcal{F}_{u,t} = \{g(h_{a,b}) : a, b \in U, a \neq 0\}$. Observe that $|\mathcal{F}_{u,t}| = u(u-1) \leq n^2$.

Lemma 6. For each pair of distinct elements $x,y \in U$ and for each pair $a,b \in U$ with $a \neq 0$, we have $h_{a,b}(x) \neq h_{a,b}(y)$.

Proof. Assume on the contrary that for some $a, b, x, y \in U$ satisfying the given properties, we have $h_{a,b}(x) =$ $h_{a,b}(y)$. Then, $(ax+b) \equiv (ay+b) \mod u$ implying that a(x-y) is divisible by u. As u is a prime, it follows that either a is divisible by u or x-y is divisible by u. As $a \in U$ and $a \neq 0$, a cannot be divisible by u. As $x, y \in U$ and x > y, x - y cannot be divisible by u. Hence, we arrive at a contradiction in each of the cases.

Lemma 7. Given $q, r \in U$ such that $r, q \neq 0$, there is at most one element $p \in U$ satisfying $pq \equiv r \mod u$.

Proof. Assume on the contrary that there are two distinct elements $p, p' \in U$ such that $pq \equiv r \mod u$ and $p'q \equiv r \mod u$. Without loss of generality assume that p > p'. Then, it follows that (p - p')q is divisible by u. However, this leads to a contradiction as r, q, p - p' > 0 and $q, p, p' \in U$.

Lemma 8. For every pair of distinct elements $x, y \in U$, $\Pr_{f \in R\mathcal{F}_{u,t}}(f(x) = f(y)) \leq \frac{1}{t}$.

Proof. Consider a pair of distinct elements $x, y \in U$. Without loss of generality, assume x > y. We need to show that $\ell = |\{f : f \in \mathcal{F}_{u,t}, f(x) = f(y)\}| \leq \frac{|\mathcal{F}_{u,t}|}{t}$. In order words, for any pair of distinct elements $x,y \in U$, there are at most $\frac{|\mathcal{F}_{u,t}|}{t}$ functions in $\mathcal{F}_{u,t}$ that map x and y to the same element in T. Observe that $\ell = |\{(a,b) : a,b \in U, a \neq 0, g(h_{a,b}(x) \mod u) = g(h_{a,b}(y) \mod u)\}|.$

Let $f \in_R \mathcal{F}_{u,t}$ where $f = g(h_{a,b})$. Let $(ax + b) \mod u = r$ and $(ay + b) \mod u = s$ for some $r, s \in U$. From Lemma 6, $r \neq s$. Consider the system of equations $ax + b \equiv r \mod u$ and $ay + b \equiv s \mod u$ where $r \neq s$. Then, $a(x-y) \equiv (r-s) \mod u$. As x-y>0 and $r\neq s$, there is a unique solution for a in the range $\{1,\ldots,u-1\}$ from Lemma 7. Then, it follows there is a unique solution for b in the range $\{0,1,\ldots,u-1\}$ as $b \equiv (r - ax) \mod u$. Consequently, there is exactly one pair (a, b) such that $a, b \in U$, $a \neq 0$, (ax + b) $mod u = r \text{ and } (ay + b) \mod u = s.$

Thus, ℓ is upper bounded by the number of pairs $r, s \in U$ such that $r \neq s$ and $r \mod t = s \mod t$. For each choice of $r \in U$, there are at most $\lceil \frac{u}{t} \rceil - 1$ such choices for s. Then, it follows that $\ell \leq u(\lceil \frac{u}{t} \rceil - 1) \leq u(\lceil \frac{u}{t} \rceil - 1)$ $u(\frac{u+t-1}{t}-1) = \frac{u(u-1)}{t} = \frac{|\mathcal{F}_{u,t}|}{t}.$

Lemma 9. If $t = k^2$, then for each $S \subseteq U$ with |S| = k, there exists a function $f_S \in \mathcal{F}_{u,t}$ such that for each pair x, y of distinct elements of S, $f_S(x) \neq f_S(y)$.

Proof. Consider a subset $S \subseteq U$ with |S| = k. Let $f \in_R \mathcal{F}_{u,t}$. Let C(S) be the random variable denoting the number of pairs of distinct elements $x,y \in S$, such that f(x) = f(y). For each pair of elements $x,y \in U$, define the random variable Z(x,y) as Z(x,y) = 1 if f(x) = f(y) and 0 otherwise. Then, $C(S) = \sum_{x,y \in S, x \neq y} Z(x,y). \text{ Now, } \mathsf{E}(C(S)) = \mathsf{E}(\sum_{x,y \in S, x \neq y} Z(x,y)). \text{ By linearity of expectation, we have } \mathsf{E}(C(S)) = \sum_{x,y \in S, x \neq y} \mathsf{E}(Z(x,y)) = \sum_{x,y \in S, x \neq y} \mathsf{Pr}(f(x) = f(y)). \text{ By Lemma 8, } \mathsf{Pr}_{f \in \mathcal{F}_{u,t}}(f(x) = f(y)) \leq \frac{1}{t}.$

Therefore, it follows that $\mathsf{E}(C(S)) \leq \frac{k(k-1)}{2k^2} < 1$. Thus, there exists a function $f_S \in \mathcal{F}_{u,t}$ such that C(S) = 0.

Taking \mathcal{F}_{n,k^2}^* as \mathcal{F}_{u,k^2} restricted to the domain [n] completes the proof of Theorem 2.

References

- [1] N. Alon, R. Yuster, and U. Zwick. Color-Coding. Journal of the ACM, 42(4):844-856, 1995.
- [2] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. *Parameterized Algorithms*. Springer, 2015.
- [3] M. Mitzenmacher and E. Upfal. Probability and Computing. Cambridge University Press, 2017.
- [4] M. Naor, L. J. Schulman, and A. Srinivasan. Splitters and Near-optimal Derandomization. In *Proceedings of IEEE 36th Annual Foundations of Computer Science*, pages 182–191, 1995.