Assignment on Uncertainty

Ayesha Binte Mostofa 1805062

Department of Computer Science and Engineering Bangladesh University of Engineering and Technology

January 13, 2023

Scenario

Given Problem

 Given, Train state = delayed. Find updated probability distributions of other variables Rain and Maintenance. You must mathematically derive these probability distributions using the given formula.

Distribution of Rain States

Rain States			
None	Light	Heavy	
0.7	0.2	0.1	

Distribution of Maintenance States

Maintenance States				
Rain	Yes	No		
None	0.4	0.6		
Light	0.2	0.8		
Heavy	0.1	0.9		

Distribution of Train State - Delayed

Train State : Delayed			
Rain	Maintenance	Delayed	
None	Yes	0.2	
None	No	0.1	
Light	Yes	0.4	
Light	No	0.3	
Heavy	Yes	0.6	
Heavy	No	0.5	

Probability Calculation of Train States

$$P(None, Yes, Delayed) = P(None)P(Yes|None)P(Delayed|None, Yes)$$
 $= 0.7*0.4*0.2 = 0.056$
 $P(None, No, Delayed) = P(None)P(No|None)P(Delayed|None, No)$
 $= 0.7*0.6*0.1 = 0.042$

Probability Calculation of Train States

$$P(Light, Yes, Delayed) = P(Light)P(Yes|Light)P(Delayed|Light, Yes)$$
 $= 0.2*0.2*0.4 = 0.016$
 $P(Light, No, Delayed) = P(Light)P(No|Light)P(Delayed|Light, No)$
 $= 0.2*0.8*0.3 = 0.048$

Probability Calculation of Train States

```
P(Heavy, Yes, Delayed) =
P(Heavy)P(Yes|Heavy)P(Delayed|Heavy, Yes)
= 0.1*0.1*0.6 = 0.006
P(Heavy, No, Delayed) =
P(Heavy)P(No|Heavy)P(Delayed|Heavy, No)
= 0.1*0.9*0.5 = 0.045
```

Probability Distribution of Rain State

Marginalization of Rain States, given that train = delayed

$$P(None|delayed) = P(None, Yes|delayed) + P(None, No|delayed)$$

= .056 + .042 = .098
 $P(Light|delayed) = P(Light, Yes|delayed) + P(Light, No|delayed)$
= .016 + .048 = .064

$$P(Heavy|delayed) = P(Heavy, Yes|delayed) + P(Heavy, No|delayed)$$

= .006 + .045 = .051

Probability Distribution of Rain States:

$$P(Rain|train = delayed)$$

$$= \alpha <$$
0.098,0.064,0.051 $>$

$$= < 0.46, 0.3005, 0.2395 >$$

Probability Distribution of Maintenance State

Marginalization of Maintenance States, given that train = delayed

$$P(Yes|delayed) = \\ P(Yes, None|delayed) + P(Yes, Light|delayed) + P(Yes, Heavy|delayed) \\ = 0.056 + 0.016 + 0.006 = .078 \\ P(No|delayed) = \\ P(No, None|delayed) + P(No, Light|delayed) + P(No, Heavy|delayed) = \\ 0.042 + 0.048 + 0.045 = .135 \\ Probability Distribution of Maintenance States : \\ P(Maintenance|train = delayed) \\ = \alpha < .078, .135 > \\ = < 0.3662..6338 > \\ \\$$

Code

```
for node, prediction in zip(model.states,predictions):
```

Result

