MATH 425 Lecture 21

Chris Camano: ccamano@sfsu.edu

4/14/2022

SVD part 2

The best way to find the rank of a matrix is by computing the number of singular values in the sigma matrix of the singular value decomposition.

we can orthogonally diagonalize AA^T or A^TA and work with which ever is smaller to find the singular values.

Let A be an mxn matix and $\{v_1,...,v_n\}$ be orthonormal vectors of A^TA corresponding to $\lambda_1,...,\lambda_n$ ordered such that $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda + n$ If A has r non zero singular values. Then:

$$\{Av_1, Av_2, ..., Av_r\}$$

is an orthogonal basis for the row space for the columns space of A and rank A is equal to r.

$$\left\{\frac{Av_1}{\sigma_1},...,\frac{Av_r}{\sigma_r}\right\}$$

Forms an orthogonormal basis of ColA.

ColA will have dim r nul A^T will have dim m-r Orthonormal basis for $NulA^T$ Gives : $\{u_{r+1}, ..., u_m\}$

The four fundemental subspaces

The U matrix in SVD:

$$U = [U_r U_{m-r}]$$
 $U_r = [u_1, ..., u_r]$ $U_{m-r} = [u_{r+1}, ..., u_m]$

 U_r is an orthogonormal basis for ColA U_{m-r} is an orthonormal basis for Nul A^T

$$V = [V_r V_n - r]$$
 $V_R = [v_1, ..., v_r]$ $V[v_{r+1}, ..., v_n]$

 V_r is an orthonormal basis for Rowspace of A

 V_{n-r} is an orthonormal basis for NulA