

CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, Youngjoon Yoo ICCV, 2019, Naver Clova AI

Wonhee Cho

Vision and Learning Laboratory School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea Emails: wonhee4274@cau.ac.kr

Index

- 01 Introduction
- **02** Related Works
- 03 CutMix
- **04** Experiments
- 05 Conclusion

Sangdoo Yun Clova Al Naver

Dongyoon Han Clova Al Naver

Seong Joon Oh Clova Al LINE+

Sanghyuk Chun Clova Al Naver

Junsuk Choe* Yonsei University

Youngjoon Yoo Clova Al Naver

How to get a model with high-performance??

Accuracy Generalization

All we need is Augmentation!

In the early image classification

Input Image

Model

Target

Bear = 1.0

I'm shallow and weak, but I'll try to learn.

Introduction

Nowadays

I'm deep and complex. It's easy, maybe I can remember them!

Input Image

Model

Bear = 1.0

e.g) ResNet, DenseNet, EfficientNet, etc.

Introduction

Goal

- Better generalization and robustness
 - Improve image classification accuracy
 - Improve transfer learning performance
- Simple and easy to use
 - No modification of network architecture (e.g., attention module)
 - No additional training cost (e.g., adversarial training)

Related Works

Data Augmentation

Decrease the gap between training and test data by transforming training data.

Tiger

Related Works

Regularization

Regional Dropout[1,2]: randomly remove image regions.

Make "occlusion-robust" model

Sea Otter

- **Good generalization ability**
- Can't utilize full image regions
- [1] Improved regularization of convolutional neural networks with cutout, Devries et al, 2017, arXiv
- [2] Random erasing data augmentation, Zhong et al, 2017, arXiv

Regional Dropout

Random erasing[2]

Cutout[3]

- [1] Improved regularization of convolutional neural networks with cutout, Devries et al, 2017, arXiv
- [2] Random erasing data augmentation, Zhong et al, 2017, arXiv

Related Works

Regularization: *Mixup* [1]

Make model robust to uncertain samples

- Good generalization ability
- Use full image region
- **Locally unrealistic image**

 $\tilde{\mathbf{x}} = \lambda \mathbf{x}_i + (1 - \lambda)\mathbf{x}_j$, where $\mathbf{x}_i, \mathbf{x}_j$ are raw input vectors $\tilde{\mathbf{y}} = \lambda \mathbf{y}_i + (1 - \lambda)\mathbf{y}_j$, where $\mathbf{y}_i, \mathbf{y}_i$ are one-hot label encodings

[1] Mixup: Beyond empirical risk minimization, Zhang et al, 2018, ICLR

Patch

Paste

Cut

CutMix

Kangaroo

What is this?

VILAB VISION & LEARNING LABORATORY

Pangaroo?!

Cut

Cat

Label is decided by the pixel ratio of each image

Paste

CutMix_Algorithm

Generate new training sample: (\tilde{x}, \tilde{y}) Combining two training samples: $(x_{A_j} x_B)$ and $(y_{A_j} y_B)$

Binary mask indication where to drop out and fill in from two images

$$\tilde{x} = M \odot x_A + (1 - \lambda) \odot x_B$$
 $\tilde{y} = \lambda y_A + (1 - \lambda) y_B$
 $M \in \{0, 1\}^{W \times H}$

element-wise multiplication

$$\tilde{x}$$
 x_A x_B x_B

CutMix_Algorithm

Generate new training sample: (\tilde{x}, \tilde{y}) Combining two training samples: (x_A, x_B) and (y_A, y_B)

$$\tilde{\chi} = M \odot \chi_A + (1 - \lambda) \odot \chi_B \qquad \mathbf{M} \in \{0, 1\}^{W \times H}$$

$$\tilde{y} = \lambda y_A + (1 - \lambda) y_B$$

 x_A

 χ_B

CutMix_Algorithm

 λ : combination ratio It is sampling from the beta distribution $Beta(\alpha, \alpha)$.

To sample the binary mask M, sample the bounding box coordinates $\mathbf{B} = (r_x, r_y, r_w, r_h)$

$$r_x \sim \text{Unif} (0, W), \quad r_w = W\sqrt{1-\lambda},$$

 $r_y \sim \text{Unif} (0, H), \quad r_h = H\sqrt{1-\lambda}$

Cat 40% Dog 60%

Image

Target Label

Make model robust to both occlusion and uncertain samples

	Original	Mixup	Cutout	CutMix
Image				
Target Label	Dog 1.0	Dog 0.5 Cat 0.5	Dog 1.0	Dog 0.6 Cat 0.4

- Unlike Cutout, CutMix uses full image region.
- Unlike Mixup, CutMix makes realistic local image patches.

Class Activation Map(CAM)

Original Samples

Input Image

CAM for 'St. Bernard'

CAM for 'Poodle'

Cutout

CutMix

	Mixup	Cutout	CutMix
Usage of full image region	~	×	~
Regional dropout	×	~	V
Mixed image & label	~	×	~

Mixup

Cat 40% Dog 60%

Image

Finding "what", "where" and "how large" the objects are in the image

Cat Upper-left 40%

Dog Remaining region 60%

ImageNet classification

Model	# Params	Top-1 Err (%)	Top-5 Err (%)
ResNet-50 (Baseline)	25.6 M	23.68	7.05
ResNet-50 + Cutout [3]	25.6 M	22.93	6.66
ResNet-50 + StochDepth [17]	25.6 M	22.46	6.27
ResNet- $50 + Mixup [47]$	25.6 M	22.58	6.40
ResNet-50 + Manifold Mixup [41]	25.6 M	22.50	6.21
ResNet-50 + DropBlock* [8]	25.6 M	21.87	5.98
ResNet-50 + Feature CutMix	25.6 M	21.80	6.06
ResNet-50 + CutMix	25.6 M	21.40	5.92

Model	# Params	Top-1 Err (%)	Top-5 Err (%)
ResNet-101 (Baseline) [12]	44.6 M	21.87	6.29
ResNet-101 + Cutout [3]	44.6 M	20.72	5.51
ResNet-101 + Mixup [47]	44.6 M	20.52	5.28
ResNet-101 + CutMix	44.6 M	20.17	5.24
ResNeXt-101 (Baseline) [44]	44.1 M	21.18	5.57
ResNeXt-101 + CutMix	44.1 M	19.47	5.03

- Outperforming existing methods

PyramidNet-200 (α=240) (# params: 26.8 M)	Top-1 Err (%)	Top-5 Err (%)
Baseline	16.45	3.69
+ StochDepth [17]	15.86	3.33
+ Label smoothing (ε=0.1) [37]	16.73	3.37
+ Cutout [3]	16.53	3.65
+ Cutout + Label smoothing (ϵ =0.1)	15.61	3.88
+ DropBlock [8]	15.73	3.26
+ DropBlock + Label smoothing (ϵ =0.1)	15.16	3.86
+ Mixup (α=0.5) [47]	15.78	4.04
+ Mixup (α=1.0) [47]	15.63	3.99
+ Manifold Mixup (α=1.0) [41]	16.14	4.07
+ Cutout + Mixup (α =1.0)	15.46	3.42
+ Cutout + Manifold Mixup (α=1.0)	15.09	3.35
+ ShakeDrop [45]	15.08	2.72
+ CutMix	14.47	2.97
+ CutMix + ShakeDrop [45]	13.81	2.29

Table 5: Comparison of state-of-the-art regularization methods on CIFAR-100.

Figure 3: Impact of α and CutMix layer depth on CIFAR-100 top-1 error.

PyramidNet-200 (~=240)	Top-1 Error (%)
Baseline	3.85
+ Cutout	3.10
+ Mixup (α=1.0)	3.09
+ Manifold Mixup (α=1.0)	3.15
+ CutMix	2.88

Table 7: Impact of CutMix on CIFAR-10.

Transfer learning to object detection and image captioning

Backbone	ImageNet Cls	Detection		Image Captioning	
Network	Top-1 Error (%)	SSD [23]	Faster-RCNN [29]	NIC [42]	NIC [42]
Network	10p-1 E1101 (%)	(mAP)	(mAP)	(BLEU-1)	(BLEU-4)
ResNet-50 (Baseline)	23.68	76.7 (+0.0)	75.6 (+0.0)	61.4 (+0.0)	22.9 (+0.0)
Mixup-trained	22.58	76.6 (-0.1)	73.9 (-1.7)	61.6 (+0.2)	23.2 (+0.3)
Cutout-trained	22.93	76.8 (+0.1)	75.0 (-0.6)	63.0 (+1.6)	24.0 (+1.1)
CutMix-trained	21.40	77.6 (+0.9)	76.7 (+1.1)	64.2 (+2.8)	24.9 (+2.0)

© CutMix-pretrained model brings great performance improvement

Robustness

(a) Analysis for occluded samples

(b) Analysis for in-between class samples

	Baseline	Mixup	Cutout	CutMix
Top-1 Acc (%)	8.2	24.4	11.5	31.0

Table 11: Top-1 accuracy after FGSM white-box attack on ImageNet validation set.

- Adversarial attacks
 - adversarial examples are perturbed inputs designed to fool machine learning models

Uncertainty

Method	TNR at TPR 95%	AUROC	Detection Acc.
Baseline	26.3 (+0)	87.3 (+0)	82.0 (+0)
Mixup	11.8 (-14.5)	49.3 (-38.0)	60.9 (-21.0)
Cutout	18.8 (-7.5)	68.7 (-18.6)	71.3 (-10.7)
CutMix	69.0 (+42.7)	94.4 (+7.1)	89.1 (+7.1)

Table 12: Out-of-distribution (OOD) detection results with CIFAR-100 trained models. Results are averaged on seven datasets. All numbers are in percents; higher is better.

Conclusions

- Easy to use and has no computational overhead, while being surprisingly effective on various tasks
- Strong classification and localization ability
 - Image classification
 - Weakly supervised object localization
 - Transfer learning of pre-trained model
 - Robustness and Uncertainty

