

Data & Analyse

- "Location Köppen Geiger Classification"
- Beste planten per locatie

CLIMATE SCORE	GROWTH SPEED	NUTRITION	WATER EFFICIENCY	TOTAL SCORE
1	0.96	0.52	1	1
1	0.53	0.71	1	0.91
1	0.84	0.24	1	0.91
1	0.31	0.77	1	0.86
1	0.18	0.93	1	0.85
1	0.1	0.96	1	0.83
1	0.27	0.64	1	0.82


```
# Create a scoring dataframe
plant_scores = pd.DataFrame(
    'Name': PLANTS_DF['Name'],
    'Climate_Score': [COMPATIBILITY_MATRIX[climate_type][name] for name in PLANTS_DF['Name']],
    'Growth_Speed': 100 / PLANTS_DF['Time to Consumable (days)'],
    'Nutrition_Score': PLANTS_DF['Kcal per 100g'] * 0.7 + PLANTS_DF['Proteins per 100g (g)'] * 3,
    'Water_Efficiency': 2 - PLANTS_DF['Watering Needs']
})
```


- Backend & Analyse:
 - Python
 - FastAPI
- Frontend:
 - Typescript
 - Three.js
 - Tailwind

