CO20-320241

Computer Architecture and Programming Languages

CAPL

Lecture 9

Dr. Kinga Lipskoch

Fall 2019

BCD Addition (1)

- ► If the sum of each decimal digit is less than 9 then the operation is the same as normal binary addition
- ► If the sum of each decimal digit is greater than 9 then a binary 6 is added, this will always cause a carry
- 4 bits are used per digit
- ▶ BCD subtraction a more complicated operation will not be discussed here

BCD Addition (2)

► Seems to work just as normal binary addition

Another example

▶ Both examples do not create carries

BCD Addition (3)

► Seems to work just as normal binary addition

$$\frac{5}{9}$$
 0101 (BCD for 5)
 $\frac{+4}{9}$ +0100 (BCD for 4)
(BCD for 9)

Another example

Both examples do not create carries

BCD Addition (4)

▶ But does not work if sum > 9

0001 0011

0110

6

(BCD for 13)

(BCD for 6)

▶ 0110 is added to the invalid sum, produces carry

Hexadecimal Arithmetic (1)

Hex addition:

- ► Add the hex digits in decimal
- ▶ If the sum is 15 or less then express it directly in hex digits
- ► If the sum is greater than 15 then subtract 16 and carry 1 to the next position

58 +<u>4B</u>

Hexadecimal Arithmetic (2)

- ► Hex subtraction use the same method as for binary numbers (hex \rightarrow binary \rightarrow 2's complement \rightarrow hex)
- ▶ A quicker method to get 2's complement is illustrated below
- Find 2's complement for 73A:

Hexadecimal Representation of Negative Numbers

- ▶ Negative number: Highest bit is 1 (binary)
- ▶ Positive number: Highest bit is 0 (binary)
- ▶ If the MSD (Most Significant Digit) in a hex number is 8 or greater then the number is negative
- ▶ If the MSD is 7 or less then the number is positive

Arithmetic Circuits (1)

- An arithmetic/logic unit (ALU) accepts data stored in memory and executes arithmetic and logic operations as instructed by the control unit
- Contains at least two flip-flop registers:
 - B register
 - Accumulator register

Arithmetic Circuits (2)

- ► Typical sequence of operations:
 - Control unit is instructed to add a specific number from a memory location to a number stored in the accumulator register
 - ▶ The number is transferred from memory to the B register
 - Number in the B register and accumulator register are added in the logic circuit, with sum sent to the accumulator for storage
 - ► The new number remains in the accumulator for further operations or can be transferred to memory for storage
- Register accumulates the sums when performing successive additions

Parallel Binary Adder

- ► The A and B variables represent two 5-bit numbers to be added
- ▶ The C variables are the carries
- ► The S variables are the sum bits

Design of a Full Adder

- Construct a truth table of 3 inputs (2 numbers to be added and carry in) and 2 outputs (sum and carry out)
- Parallel adder: all bits of the augend and addend are present and are fed into the adder circuit simultaneously

Design of a Full Adder: Truth Table

Augend	Addend	Carry bit	Sum bit	Carry bit
bit input	bit input	input	output	output
Α	В	C _{IN}	S	C _{OUT}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Two outputs, circuitry needs to be designed for each individually

Desgin of a Full Adder: The Logic Circuit

Augend	Addend	Carry bit	Sum bit	Carry bit
bit input	bit input	input	output	output
Α	В	C _{IN}	5	C _{OUT}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = \overline{A} \overline{B} C_{IN} + \overline{A} B \overline{C_{IN}} + A \overline{B} \overline{C_{IN}} + A B C_{IN}$$

$$S = \overline{A} (\overline{B} C_{IN} + B \overline{C_{IN}}) + A (\overline{B} \overline{C_{IN}} + B C_{IN})$$

$$S = \overline{A} (B \oplus C_{IN}) + A (\overline{B} \oplus \overline{C_{IN}})$$

Sum Bit Output

$$S = \overline{A} (B \oplus C_{IN}) + A (\overline{B \oplus C_{IN}})$$

Note
$$X = B \oplus C_{IN}$$

$$S = \overline{A} \cdot X + A \cdot \overline{X} = A \oplus X$$

$$S = A \oplus (B \oplus C_{IN})$$

Carry Bit Output

$$C_{OUT} = \overline{A} B C_{IN} + A \overline{B} C_{IN} + A B \overline{C_{IN}} + A B C_{IN}$$

Use $A B C_{IN}$ three times, since it has common factors with each other terms

$$C_{OUT} = B \ C_{IN}(\overline{A} + A) + A \ C_{IN}(\overline{B} + B) + A \ B(\overline{C_{IN}} + C_{IN})$$

= $B \ C_{IN} + A \ C_{IN} + A \ B$

Logic Circuit for Full Adder

K-maps for the Full Adder Outputs

$$\overline{C_{IN}} \quad C_{IN}$$

$$\overline{AB} \quad 0 \quad 0$$

$$\overline{AB} \quad 0 \quad 1$$

$$AB \quad 1 \quad 1$$

$$AB \quad 0 \quad 1$$

$$K \text{ map for } C_{OUT}$$

$$C_{OUT} = BC_{IN} + AC_{IN} + AB$$

Complete Parallel Adder With Registers (1)

► Register notation to indicate the contents of a register we use brackets:

$$[A] = 1011$$
 is the same as $A_3 = 1$, $A_2 = 0$, $A_1 = 1$, $A_0 = 1$

► A transfer of data to or from a register is indicated with an arrow

 $[B] \rightarrow [A]$ means the contents of register B have been transferred to register A

This is a common form of notation

Complete Parallel Adder With Registers (2)

- Augend bits A_3 through A_0 are stored in the accumulator [A]
- Addend B_3 through B_0 in [B]
- ► Contents of [A] is added to [B] by four FAs and sum is produced at outputs S₃ through S₀
- C₄ carry of fourth FA, can be used as overflow or as C_{IN} for fifth FA
 - Sum outputs connected to D inputs so sum can be stored in [A]
- ► [A] can be transferred elsewhere

Complete Parallel Adder With Registers (3)

The following describes adding binary 1001 and 0101 using the circuit on right

- ► A CLEAR pulse is applied at t₁
- ► The first binary number 1001 is transferred from memory to [B] at t₂
- The sum of 1001 and 0000 is transferred to the [A] at t₃
- ▶ 0101 is transferred from memory to the [B] at t₄
- ► The sum outputs are transferred to the [A] at t₅
- The sum of the two numbers is now present in the accumulator

Carry Propagation

- Parallel adder speed is limited by carry propagation (also called carry ripple)
- Carry propagation results from having to wait for the carry bits to "ripple" through the device
- ► Additional bits will introduce more delay
- ▶ Various techniques have been developed to reduce the delay
- ► The look-ahead carry, using logic gates to look at lower order bits of augend and addend to see if higher-order carry is to be generated, is commonly used in high speed devices

Integrated Circuit Parallel Adder (1)

- The most common parallel adder is a 4 bit device with 4 interconnected FAs and look-ahead carry circuits
- The A and B lines each represent 4 bit numbers to be added
- The C₀ is the carry in, the C₄ is the carry out, and the ∑ lines are the sum of the 2 numbers
- ightharpoonup symbol (greek for sigma) is used for S outputs

Integrated Circuit Parallel Adder (2)

Parallel adders may be cascaded together as shown to add larger numbers, in this case two 8 bit numbers

CAPL Fall 2019 24/29

2's Complement System

An adder can be used to perform addition and subtraction by designing a way to take the 2's complement for subtraction as described in figure

- Addition of negative and positive numbers using adders is done by placing the negative number into 2's complement form and performing normal addition
- Subtraction is done by converting the number to be subtracted (subtrahend) to 2's complement and adding to the minuend

Subtraction with a Parallel Adder

- ▶ Parallel adder used to perform subtraction (A B) using the 2's-complement system
- ▶ The bits of the subtrahend (B) are inverted, and $C_0 = 1$ to produce the 2's complement

Subtracting 6 from 4


```
|A| = 0100 4_{10} |B| = 0110 6_{10} B is inverted and fed with carry C_0 = 1 into adder 1 C_0 0100 |A| 1001 |B| 1110 |S| = |A| - |B|
```

CAPL Fall 2019 27 / 29

Combined Circuit to Perform Addition or Subtraction (1)

- Controlled by two control signals ADD and SUB
- Circuits like adder/subtractor are used in computers
- S output lines are usually then transferred into the accumulator
- Accomplished by TRANSFER pulse to the CLK input of register A

Combined Circuit to Perform Addition or Subtraction (2)

Addition

- ► ADD = 1, SUB = 0
- ► SUB = 0 inhinbits AND gates 2, 4, 6, 8 holding their outputs at 0
- ► ADD = 1 enables AND gates 1, 3, 5, 7 allowing outputs to pass to Bx levels
- \triangleright B_0 to B_3 pass through OR gate into adder
- ▶ Sum appears at the outputs S_0 to S_3 , SUB = 0 causes carry $C_0 = 0$

Subtraction

- ▶ ADD = 0 and SUB = 1
- ► ADD = 0 inhibits AND gates 1, 3, 5, 7
- ▶ SUB = 1 enables AND gates 2, 4, 6 and 8 so outputs pass the B_0 , B_1 , B_2 , B_3 levels
- $ightharpoonup \overline{B_0}$, $\overline{B_1}$, $\overline{B_2}$, $\overline{B_3}$ pass through OR gates into adder to be added
- ho $C_0=1$, B now contains 2's complement, difference appears at the outputs S_0 to S_3