Relación de problemas nº 0: Cálculo vectorial.

UNIVERSIDAD DE JAÉN

1.- Dados los vectores: $\mathbf{a} = (1,2,3)$, $\mathbf{b} = (2,1,0)$, $\mathbf{c} = (1,0,0)$, $\mathbf{d} = (0,1,1)$, realizar las siguientes operaciones:

a)
$$e = a+b$$

b)
$$h = b+c$$

c)
$$k = 2b-c$$

d)
$$n = b+4c$$
 e) $f = a+c$

e)
$$f = a + c$$

$$f) i = b+d$$

g)
$$l = b-2d$$

h)
$$o = -4b-2d$$
 i) $g = a+d$

i)
$$\mathbf{g} = \mathbf{a} + \mathbf{d}$$

$$j) j = c+d$$

k)
$$m = 2c + 3d$$
 l) $p = c - d + 6a$

Solución: a) (3,3,3); b) (3,1,0); c) (3,2,0); d) (6,1,0); e) (2,2,3); f) (2,2,1); g) (2,-1,-2); h) (-8,-6,-2); i) (1,3,4); j) (1,1,1); k) (2,3,3); l) (7,11,17).

2.- Dados los vectores del anterior ejercicio, calcular los siguientes productos escalares:

a) **a**·**b**

c) a·c

e) a·d

f) c·d

Solución: *a*) 4; *b*) 2; *c*) 1; *d*) 1; *e*) 5; *f*) 0.

3.- Calcular el producto vectorial de los vectores a y b de la figura, sabiendo que sus módulos son respectivamente: a=10 N y b=5 N.

Solución: El producto vectorial de los dos vectores es un vector con dirección perpendicular a la hoja de papel, sentido saliendo de la misma y módulo $25 \cdot (3)^{1/2}$ N².

4.- Dado los vectores $\mathbf{a} = 3\mathbf{i} - 2\mathbf{j} + 6\mathbf{k} \ \mathbf{y} \ \mathbf{b} = 5\mathbf{i} + \mathbf{j} + 2\mathbf{k}$, calcular:

(a) 3a + b; (b) a - 4b; (c) $a \cdot b$; (d) $a \times b$; (e) ¿Cuál es el ángulo entre $a \times b$?; (f) Encontrar un vector perpendicular a a y b.

Solución: *a)* 14**i**–5**j**+20**k**; *b)* -17**i**–6**j**-2**k**; *c)* 25; *d)* -10**i**+24**j**+13**k**; *e)* 49.3°; *f)* (845)^{-1/2}(-10**i**+24**j**+13**k**).

5.- Para los vectores de la figura, obtener: a) expresión analítica; b) módulo y ángulo que forma con el eje x el vector A+B.

Solución: *a)* **A=**1.414**i**–1.414**j** y **B=**1.732**i-j**; *b)*3.173 y 7.5°

6.- Dados los vectores $\mathbf{u}_1 = 2\mathbf{i} - \mathbf{j} + \mathbf{k}$, $\mathbf{u}_2 = \mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$, $\mathbf{u}_3 = -2\mathbf{i} + \mathbf{j} - 3\mathbf{k}$ y $\mathbf{u}_4 = 3\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}$, hallar los valores de los escalares a, b, y c de forma que $\mathbf{u}_4 = a\mathbf{u}_1 + b\mathbf{u}_2 + c\mathbf{u}_3$.

Solución: a = -2, b = 1, c = -3.

7.- Hallar la suma o resultante de los siguientes vectores desplazamientos: U, 10 m hacia el Noroeste; v, 20 m Este-30°-Norte; w, 35 m hacia el Sur (Fig. 1.7).

Figura 1.7. Resultante de la suma de tres vectores.

Solución: s = 20.6 m; $\alpha \approx 60^{\circ}$.

8.- Dados los vectores $\mathbf{u} = 2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ y $\mathbf{v} = 6\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$, calcular: (a) El ángulo que forman. (b) La proyección de \mathbf{u} sobre la dirección de \mathbf{v} .

Solución: (a) $\alpha \approx 79^{\circ}$. (b) $p = u_n = 4/7$.

9.- Un punto recorre una circunferencia de radio R, de modo que en cada instante el vector que une el centro de la circunferencia con el punto forma un ángulo α con el eje OX. (a) Encuentra la expresión del vector de posición del punto en función del ángulo α . (b) Calcula la derivada del vector de posición respecto del ángulo α . (c) Si el ángulo α depende del tiempo como $\alpha = \omega t$, calcula la derivada del vector de posición respecto del tiempo.

Solución: (a)
$$R\cos\alpha\vec{i} + R\sin\alpha\vec{j}$$
; (b) $-R\sin\alpha\vec{i} + R\cos\alpha\vec{j}$; (c) $-R\omega\sin(\omega t)\vec{i} + R\omega\cos(\omega t)\vec{j}$

10.- Hallar el vector unitario perpendicular al plano formado por los vectores $\mathbf{u} = 2\mathbf{i} - 6\mathbf{j} - 3\mathbf{k}$ y $\mathbf{v} = 4\mathbf{i} + 3\mathbf{j} - \mathbf{k}$.

Solución: $(3\mathbf{i} - 2\mathbf{j} + 6\mathbf{k})/7$