Проектная работа. Knapsack problem

Студент 01: Статный Дмитрий Студент 02: Смирнов Алексей

Весенний семестр

Overview

- Одномерный рюкзак
- Многомерный рюкзак
- ③ Одномерный Мультирюкзак
- Многомерный Мультирюкзак
- 5 Дальнейшие планы
- 6 [Доп.] SCSK. Построение матрицы Q
- 7 [Доп.] MCSKS. Построение матрицы Q
- [Доп.] МСМКЅ. Построение матрицы Q

Одномерный рюкзак

Формулировка проблемы

Дано N предметов, n_i предмет имеет массу $w_i>0$ и стоимость $c_i>0$. Необходимо выбрать из этих предметов такой набор, чтобы суммарная масса не превосходила заданной величины W (вместимость рюкзака), а суммарная стоимость была максимальна.

Одномерный рюкзак

Формулировка проблемы

Дано N предметов, n_i предмет имеет массу $w_i>0$ и стоимость $c_i>0$. Необходимо выбрать из этих предметов такой набор, чтобы суммарная масса не превосходила заданной величины W (вместимость рюкзака), а суммарная стоимость была максимальна.

Линейно-алгебраическая формулировка

Дано два вектора $w=(w_1,w_2,\dots,w_n)\in\mathbb{R}^n$ и $c=(c_1,c_2,\dots,c_n)\in\mathbb{R}^n.$ Нужно построить битовый вектор $b\in\{0,1\}^n$:

$$\begin{cases} (w,c) \to \mathbf{max} \\ (w,b) \leqslant W \end{cases}$$

Не будем задерживаться на простой постановке задачи и перейдём сразу к многомерному случаю.

Многомерный рюкзак

Формулировка проблемы в терминах задач и серверов

Дано N задач, i задача имеет следующие параметры: потребление памяти диска $\alpha_i>0$, потребление оперативной памяти $\beta_i>0$ и требует ядер $\gamma_i>0$. Необходимо выбрать такое подмножество задач, чтобы их суммарное потребление памяти на диске не превосходило A, количество ядер — B, а потребление оперативной памяти — C, но при этом распределение ресурсов было максимально.

Описание тестов

Тестирование будем производить на Simulated Annealing, который основывается на имитации физического процесса, который происходит при кристаллизации вещества.

Описание тестов

Тестирование будем производить на Simulated Annealing, который основывается на имитации физического процесса, который происходит при кристаллизации вещества.

Рассмотрим набор из 500 задач.

Tect №1. num_reads: 1000

img/MCSKS/data_1/autosave_test_1.png

Видно, что заполнение происходит на довольно хорошем уровне.

Видно, что заполнение происходит на довольно хорошем уровне.

А теперь рассмотрим больший масштаб: с набор из 5000 задач! Соответственно, увеличим и ограничения.

Выводы

Одномерный Мультирюкзак

Формулировка в терминах предметов и рюкзаков

Дано N предметов, M рюкзаков, n_i предмет имеет массу $w_i>0$ и стоимость $v_i>0$. Необходимо распределить из этих предметов такое подмножество предметов по M рюкзакам, чтобы масса предметов в i-м рюкзаке не превосходила заданной величины c_i (вместимость i-го рюкзака), а суммарная стоимость была максимальна.

Многомерный Мультирюкзак

Формулировка в терминах задач и серверов

Дано N задач, M серверов, i задача имеет следующие параметры: потребление памяти диска $\alpha_j>0$, потребление оперативной памяти $\beta_j>0$ и требует ядер $\gamma_j>0$. Необходимо найти такое подмножество задач, чтобы распределение ресурсов по M серверам было максимально, но количество ядер потребляемых совокупностью задач на i сервере не превосходило заданной величины A_i (вместимость в ядрах i-го сервера), по потребляемой памяти диска — B_i (вместимость i-го сервера по памяти диска), а также по оперативной памяти — C_i . Более того, каждая задача может быть запущена не более чем K раз (если не оговорено иного, K=1).

Описание тестов

Рассмотрим постановку, в которой есть 12 серверов. Сначала для набора из 300 задач, а затем — из 2000.

Описание тестов

Рассмотрим постановку, в которой есть 12 серверов. Сначала для набора из 300 задач, а затем – из 2000.

Hастройки при тестировании и sampler возьмём с многомерного рюкзака.

Тест №1 (1). num_reads: 10

Распределение ресурсов на сервере. Количество задач: 300. Значение num reads: 10. Время работы: 7.037 s.

Тест №1 (2). Увеличиваем num_reads до 100

Распределение ресурсов на сервере. Количество задач: 300. Значение num reads: 100. Время работы: 70.307 s.

Тест №1 (3). Увеличиваем num_reads до 500

Распределение ресурсов на сервере. Количество задач: 300. Значение num reads: 500. Время работы: 307.003 s.

Хорошо видно, что даже для набора из 300 задач ждать приемлемого ответа приходится уже 5 минут.

Хорошо видно, что даже для набора из 300 задач ждать приемлемого ответа приходится уже 5 минут.

А теперь рассмотрим более трудную задачу: 2000 задач и всё те же 12 серверов, только незначительно увеличим ограничение на вместимость по ядрам.

Тест №2 (1). num_reads: 10

Распределение ресурсов на сервере. Количество задач: 2001. Значение num_reads: 10. Время работы: 451.767 s.

Тест №2 (2). num_reads: 100

Распределение ресурсов на сервере. Количество задач: 2001. Значение num_reads: 100. Время работы: 1922.635 s.

А что если 16 серверов?

Тест №3 (1). num_reads: 10

Распределение ресурсов на сервере. Количество задач: 2001. Значение num_reads: 100. Время работы: 2587.031 s.

Тест №3 (2). num_reads: 100

Распределение ресурсов на сервере. Количество задач: 2001. Значение num_reads: 100. Время работы: 3075.365 s.

Замечание

Сложность решения задачи с многими серверами полным перебором составляет $\mathcal{O}(M^N)$, где M – количество серверов, N – количество задач

Замечание

Сложность решения задачи с многими серверами полным перебором составляет $\mathcal{O}(M^N)$, где M – количество серверов, N – количество задач

Можно видеть, что с увеличение количества задач и серверов сложность задачи растёт очень быстро, что подчёркивает остающуюся NP сложность.

Замечание

Сложность решения задачи с многими серверами полным перебором составляет $\mathcal{O}(M^N)$, где M – количество серверов, N – количество задач

Можно видеть, что с увеличение количества задач и серверов сложность задачи растёт очень быстро, что подчёркивает остающуюся NP сложность.

Ключевым моментом являются высокие требования данного решения к оперативной памяти на компьютере.

Замечание

Сложность решения задачи с многими серверами полным перебором составляет $\mathcal{O}(M^N)$, где M – количество серверов, N – количество задач

Можно видеть, что с увеличение количества задач и серверов сложность задачи растёт очень быстро, что подчёркивает остающуюся NP сложность.

Ключевым моментом являются высокие требования данного решения к оперативной памяти на компьютере.

Реализованное решение чувствительно относительно рассматриваемой задачи и сервера, поэтому все перечисленные для них [задач] характеристики могут быть различны на каждом из серверов.

Формулировка проблемы

Формулировка проблемы

Дано $6000\leqslant N\leqslant 10000$ задач, $500\leqslant M\leqslant 600$ серверов. Задача j имеет следующие характеристики: α_j – потребление памяти диска, β_j – потребление оперативной памяти, γ_j – количество ядер, которое требуется на выполнение задачи, τ_j – некоторые обобщённые требования, а общее время выполнения задачи есть величина $t=\tau_j/p_i$ на i сервере. Каждый i сервер имеет ограничения по памяти диска – A_i , по оперативной памяти – B_i , по количеству ядер – C_i , а также имеет некоторую производительность p_i и стоимость минуты работы на этом сервере – $cost_i$.

Требования

Требования

Необходимо реализовать алгоритм, который

- Максимально утилизирует ресурсы
- Время простоя ресурсов должно быть минимально
- Время выполнения всех задач должно быть минимально
- Стоимость выполнения задач должно быть минимальным, но при этом есть ограничение на общее время работы T

Дополнительные условия:

- ullet Время старта / восстановления задачи t_{start}
- ullet Время завершения / засыпания задачи t_{stop}
- ullet Время перемещения задачи на другой сервер t_{move}

Замечания

С одной стороны, минимальная оценка на количество кубитов (т. е. переменных, которые будут использоваться в матрице) $-3\,015\,000$, если мы рассматриваем лишь заполнение серверов, не говоря о дополнительных условиях на время.

Замечания

С одной стороны, минимальная оценка на количество кубитов (т. е. переменных, которые будут использоваться в матрице) — 3 015 000, если мы рассматриваем лишь заполнение серверов, не говоря о дополнительных условиях на время.

С другой стороны, оперативной памяти, чтобы сохранить матрицу (если считать, что каждая ячейка занимает 1 байт), потребуется 8381,9 ГБ.

Общее заключение:

Дополнительный раздел

[Доп.] Решение на квантовом компьютере

Квантовые компьютеры DWave, к примеру, умеют решать лишь одну задачу — нахождение минимума энергии гамильтониана, поэтому для получения ответа на какую-то проблему необходимо интерпретировать условие в матрицу QUBO.

[Доп.] Решение на квантовом компьютере

Квантовые компьютеры DWave, к примеру, умеют решать лишь одну задачу — нахождение минимума энергии гамильтониана, поэтому для получения ответа на какую-то проблему необходимо интерпретировать условие в матрицу QUBO.

QUBO (Quadratic unconstrained binary optimization) формулировка

$$f_Q(x) \,=\, x^T Q x \,=\, \sum\limits_{i=1}^N \sum\limits_{j\geqslant i}^N Q_{ij} x_i x_j$$
, где $x_i \,\in\, \{0,1\}$

Необходимо понять, как свести данную постановку [рюкзак] к матрице QUBO.

Необходимо понять, как свести данную постановку [рюкзак] к матрице QUBO.

Из определения видно, что нам нужно составить матрицу Q, следовательно, использовать неравенства мы не можем.

Во-первых, начнём с самой QUBO-формулировки:

$$\min_{x} x^{T} Q x = \min_{x} \left(\sum_{i=1}^{N} \sum_{j \geqslant i}^{N} Q_{ij} x_{i} x_{j} \right) = \dots$$

Во-первых, начнём с самой QUBO-формулировки:

$$\min_{x} x^{T} Q x = \min_{x} \left(\sum_{i=1}^{N} \sum_{j \ge i}^{N} Q_{ij} x_{i} x_{j} \right) = \dots$$

Заметим, что в силу определений $x_i x_i \equiv x_i$:

$$\cdots = \min_{x} \left(\sum_{i=1}^{N} Q_{ii} x_i + \sum_{i=1}^{N} \sum_{j>i}^{N} Q_{ij} x_i x_j \right)$$

Во-первых, начнём с самой QUBO-формулировки:

$$\min_{x} x^{T} Q x = \min_{x} \left(\sum_{i=1}^{N} \sum_{j \geqslant i}^{N} Q_{ij} x_{i} x_{j} \right) = \dots$$

Заметим, что в силу определений $x_i x_i \equiv x_i$:

$$\cdots = \min_{x} \left(\sum_{i=1}^{N} Q_{ii} x_i + \sum_{i=1}^{N} \sum_{j>i}^{N} Q_{ij} x_i x_j \right)$$

Задача поиска минимума гамильтониана эквивалентна нахождению минимума $f_Q(x) = x^T Q x$, где Q – матрица QUBO.

Обозначения:

- ullet x_i переменная регистра. $x_i=1\Leftrightarrow i$ предмет находится в рюкзаке
- ullet w_i вес i-го предмета
- c_i стоимость i-го предмета
- N общее количество предметов
- ullet W максимальный вес, который можно положить в рюкзак

Заметим, что мы умеем находить минимальную энергию гамильтониана, а по условиям проблемы необходима максимальная стоимость.

Заметим, что мы умеем находить минимальную энергию гамильтониана, а по условиям проблемы необходима максимальная стоимость.

Но если умеем находить минимум, то легко найдём и максимум, рассмотрев $f_{-Q}(x) = -f_Q(x).$

Как было оговорено ранее, неравенств у нас нет. Для их «имитации» введём понятие пенальти.

Как было оговорено ранее, неравенств у нас нет. Для их «имитации» введём понятие пенальти.

То есть если мы набрали больше, чем нужно, то получаем какой-то большой штраф, показывая таким образом, что такой выбор был не оптимален.

Введём вспомогательную функцию, отслеживающую переполнение.

Введём вспомогательную функцию, отслеживающую переполнение.

Рассмотрим её как
$$\rho(x) = \sum\limits_{i=1}^N w_i x_i + \sum\limits_{k=1}^W k y_k - W$$
, где y_k – дополнительные переменные регистра, отличные от x_i .

Иными словами, слагаемое $\sum\limits_{k=1}^W ky_k$ будет равняться значению, которое необходимо набрать, чтобы получить вес W.

Иными словами, слагаемое $\sum\limits_{k=1}^W ky_k$ будет равняться значению, которое необходимо набрать, чтобы получить вес W.

Тогда мы сможем сказать следующее: $\rho(x)=0\Leftrightarrow \sum\limits_{i=1}^N w_ix_i\leqslant W$, а в остальных случаях $\rho(x)\neq 0$.

Таким образом, при переполнении рюкзака получаем слишком большое отклонение – пенальти (штраф).

Итого, построили такую функцию для пенальти:

$$\rho(x) = \sum_{i=1}^{N} w_i x_i + \sum_{k=1}^{W} k y_k - W.$$

Итого, построили такую функцию для пенальти:

$$\rho(x) = \sum_{i=1}^{N} w_i x_i + \sum_{k=1}^{W} k y_k - W.$$

Казалось бы, уже хорошо, но можно лучше: сократим количество слагаемых в вспомогательной функции $\rho(x)$ до $N+\lfloor \log_2 W \rfloor +1.$

Итого, построили такую функцию для пенальти:

$$\rho(x) = \sum_{i=1}^{N} w_i x_i + \sum_{k=1}^{W} k y_k - W.$$

Казалось бы, уже хорошо, но можно лучше: сократим количество слагаемых в вспомогательной функции $\rho(x)$ до $N+\lfloor \log_2 W \rfloor +1.$

Итого, построили такую функцию для пенальти:

$$\rho(x) = \sum_{i=1}^{N} w_i x_i + \sum_{k=1}^{W} k y_k - W.$$

Казалось бы, уже хорошо, но можно лучше: сократим количество слагаемых в вспомогательной функции $\rho(x)$ до $N+\lfloor \log_2 W \rfloor +1.$

Тогда имеем следующую функцию, где уже представлены дополнительные переменные регистра y_k' , отличные от y_k и x_i :

$$\rho(x) = \sum_{i=1}^{N} w_i x_i + \sum_{k=0}^{\lfloor \log_2 W \rfloor} 2^k y'_k - W$$

Подставим $\rho(x)$ в $f_Q(x)$:

$$f_Q(x) = -\sum_{i=1}^{N} c_i x_i + \lambda (\sum_{i=1}^{N} w_i x_i + \sum_{k=0}^{\lfloor \log_2 W \rfloor} 2^k y_k' - W)^2$$

Для удобства записи будем считать, что $k = i - N - 1: \ y_k' = x_i$ и $2^k = w_i \ \forall i > N.$

Эта договорённость сделает форму записи более компактной:

$$f_Q(x) = -\sum\limits_{i=1}^N c_i x_i + \lambda (\sum\limits_{i=1}^M w_i x_i - W)^2$$
, где $M = N + \lfloor \log_2 W \rfloor + 1$

В итоге имеем следующую функцию, максимум которой будем искать:

$$f_Q(x) = -\sum\limits_{i=1}^N c_i x_i + \lambda (\sum\limits_{i=1}^M w_i x_i - W)^2$$
, где $M = N + \lfloor \log_2 W \rfloor + 1$

В итоге имеем следующую функцию, максимум которой будем искать:

$$f_Q(x) = -\sum\limits_{i=1}^N c_i x_i + \lambda (\sum\limits_{i=1}^M w_i x_i - W)^2$$
, где $M = N + \lfloor \log_2 W \rfloor + 1$

Продолжаем упрощать:

$$\left(\sum_{i=1}^{M} w_i x_i - W\right)^2 = \sum_{i=1}^{M} \sum_{j=1}^{M} w_i w_j x_i x_j - 2W \sum_{i=1}^{M} w_i x_i + W^2 =$$

В итоге имеем следующую функцию, максимум которой будем искать:

$$f_Q(x) = -\sum\limits_{i=1}^N c_i x_i + \lambda (\sum\limits_{i=1}^M w_i x_i - W)^2$$
, где $M = N + \lfloor \log_2 W \rfloor + 1$

Продолжаем упрощать:

$$(\sum_{i=1}^{M} w_i x_i - W)^2 = \sum_{i=1}^{M} \sum_{j=1}^{M} w_i w_j x_i x_j - 2W \sum_{i=1}^{M} w_i x_i + W^2 = 2 \sum_{i=1}^{M} \sum_{j>i}^{M} w_i w_j x_i x_j - \sum_{i=1}^{M} (2W - w_i) w_i x_i + W^2$$

В итоге имеем следующую функцию, максимум которой будем искать:

$$f_Q(x) = -\sum\limits_{i=1}^N c_i x_i + \lambda (\sum\limits_{i=1}^M w_i x_i - W)^2$$
, где $M = N + \lfloor \log_2 W \rfloor + 1$

Продолжаем упрощать:

$$\left(\sum_{i=1}^{M} w_i x_i - W\right)^2 = \sum_{i=1}^{M} \sum_{j=1}^{M} w_i w_j x_i x_j - 2W \sum_{i=1}^{M} w_i x_i + W^2 = 2 \sum_{i=1}^{M} \sum_{j>i}^{M} w_i w_j x_i x_j - \sum_{i=1}^{M} (2W - w_i) w_i x_i + W^2$$

Тогда элементы матрицы Q:

В итоге имеем следующую функцию, максимум которой будем искать:

$$f_Q(x) = -\sum\limits_{i=1}^N c_i x_i + \lambda (\sum\limits_{i=1}^M w_i x_i - W)^2$$
, где $M = N + \lfloor \log_2 W \rfloor + 1$

Продолжаем упрощать:

$$\left(\sum_{i=1}^{M} w_i x_i - W\right)^2 = \sum_{i=1}^{M} \sum_{j=1}^{M} w_i w_j x_i x_j - 2W \sum_{i=1}^{M} w_i x_i + W^2 = 2 \sum_{i=1}^{M} \sum_{j>i}^{M} w_i w_j x_i x_j - \sum_{i=1}^{M} (2W - w_i) w_i x_i + W^2$$

Тогда элементы матрицы Q:

$$\begin{cases} Q_{ii} = -c_i - \lambda w_i (2W - w_i) \\ Q_{ij} = 2\lambda w_i w_j \end{cases}$$

[Доп.] MCSKS. Формулировка проблемы.

Формулировка проблемы в терминах задач и серверов

Дано N задач, i задача имеет следующие параметры: потребление памяти диска $\alpha_i>0$, потребление оперативной памяти $\beta_i>0$ и требует ядер $\gamma_i>0$. Необходимо выбрать такое подмножество задач, чтобы их суммарное потребление памяти на диске не превосходило A, количество ядер — B, а потребление оперативной памяти — C, но при этом распределение ресурсов было максимально.

Введём обозначения:

ullet x_i – переменная регистра. $x_i=1\Leftrightarrow i$ задача на сервере.

- ullet x_i переменная регистра. $x_i=1\Leftrightarrow i$ задача на сервере.
- ullet $lpha_i$ память диска, которую потребляет i задача

- x_i переменная регистра. $x_i = 1 \Leftrightarrow i$ задача на сервере.
- ullet $lpha_i$ память диска, которую потребляет i задача
- ullet eta_i оперативная память, которую потребляет i задача

- x_i переменная регистра. $x_i = 1 \Leftrightarrow i$ задача на сервере.
- ullet α_i память диска, которую потребляет i задача
- ullet eta_i оперативная память, которую потребляет i задача
- ullet γ_i количество ядер, потребляемых i задачей

- ullet x_i переменная регистра. $x_i=1\Leftrightarrow i$ задача на сервере.
- ullet α_i память диска, которую потребляет i задача
- ullet eta_i оперативная память, которую потребляет i задача
- ullet γ_i количество ядер, потребляемых i задачей
- a_k дополнительные переменные регистра для контроля потребления памяти диска задачами

- ullet x_i переменная регистра. $x_i=1\Leftrightarrow i$ задача на сервере.
- ullet α_i память диска, которую потребляет i задача
- ullet eta_i оперативная память, которую потребляет i задача
- ullet γ_i количество ядер, потребляемых i задачей
- a_k дополнительные переменные регистра для контроля потребления памяти диска задачами
- b_k дополнительные переменные регистра для контроля потребления количества ядер задачами

- x_i переменная регистра. $x_i = 1 \Leftrightarrow i$ задача на сервере.
- ullet α_i память диска, которую потребляет i задача
- ullet eta_i оперативная память, которую потребляет i задача
- ullet γ_i количество ядер, потребляемых i задачей
- a_k дополнительные переменные регистра для контроля потребления памяти диска задачами
- b_k дополнительные переменные регистра для контроля потребления количества ядер задачами
- c_k дополнительные переменные регистра для контроля потребляемой оперативной памяти

Тогда функция в ведённых переменных, минимум которой будем искать, примет вид:

Тогда функция в ведённых переменных, минимум которой будем искать, примет вид:

$$f_{Q}(x) = \left[-\sum_{i=1}^{N} \alpha_{i} x_{i} - \sum_{i=1}^{N} \beta_{i} x_{i} - \sum_{i=1}^{N} \gamma_{i} x_{i} \right] +$$

$$+ \lambda_{1} \left(\sum_{i=1}^{N} \alpha_{i} x_{i} + \sum_{k=0}^{\lfloor \log_{2} A \rfloor + 1} 2^{k} a_{k} - A \right)^{2} +$$

$$+ \lambda_{2} \left(\sum_{i=1}^{N} \beta_{i} x_{i} + \sum_{k=0}^{\lfloor \log_{2} B \rfloor + 1} 2^{k} b_{k} - B \right)^{2} +$$

$$+ \lambda_{3} \left(\sum_{i=1}^{N} \gamma_{i} x_{i} + \sum_{k=0}^{\lfloor \log_{2} C \rfloor + 1} 2^{k} c_{k} - C \right)^{2}.$$

[Доп.] MCMKS. Формулировка проблемы

Формулировка в терминах задач и серверов

Дано N задач, M серверов, i задача имеет следующие параметры: потребление памяти диска $\alpha_j>0$, потребление оперативной памяти $\beta_j>0$ и требует ядер $\gamma_j>0$. Необходимо найти такое подмножество задач, чтобы распределение ресурсов по M серверам было максимально, но количество ядер потребляемых совокупностью задач на i сервере не превосходило заданной величины A_i (вместимость в ядрах i-го сервера), по потребляемой памяти диска — B_i (вместимость i-го сервера по памяти диска), а также по оперативной памяти — C_i . Более того, каждая задача может быть запущена не более чем K раз (если не оговорено иного, K=1).

Введём обозначения:

ullet x_{ij} – переменная регистра. $x_{ij}=1\Leftrightarrow j$ задача на i сервере.

- \bullet x_{ij} переменная регистра. $x_{ij} = 1 \Leftrightarrow j$ задача на i сервере.
- α_{ij} память диска, которую потребляет j задача на i сервере

- ullet x_{ij} переменная регистра. $x_{ij}=1\Leftrightarrow j$ задача на i сервере.
- ullet $lpha_{ij}$ память диска, которую потребляет j задача на i сервере
- β_{ij} оперативная память, которую потребляет j задача на i сервере

- ullet x_{ij} переменная регистра. $x_{ij}=1\Leftrightarrow j$ задача на i сервере.
- ullet $lpha_{ij}$ память диска, которую потребляет j задача на i сервере
- β_{ij} оперативная память, которую потребляет j задача на i сервере
- ullet γ_{ij} количество ядер, потребляемых j задачей на i сервере

- ullet x_{ij} переменная регистра. $x_{ij}=1\Leftrightarrow j$ задача на i сервере.
- ullet $lpha_{ij}$ память диска, которую потребляет j задача на i сервере
- β_{ij} оперативная память, которую потребляет j задача на i сервере
- ullet γ_{ij} количество ядер, потребляемых j задачей на i сервере
- a_{pk} дополнительные переменные регистра для контроля потребления памяти диска задачами на p-м сервере

- ullet x_{ij} переменная регистра. $x_{ij}=1\Leftrightarrow j$ задача на i сервере.
- ullet $lpha_{ij}$ память диска, которую потребляет j задача на i сервере
- β_{ij} оперативная память, которую потребляет j задача на i сервере
- γ_{ij} количество ядер, потребляемых j задачей на i сервере
- a_{pk} дополнительные переменные регистра для контроля потребления памяти диска задачами на p-м сервере
- b_{pk} дополнительные переменные регистра для контроля потребления количества ядер задачами на p-м сервере

- ullet x_{ij} переменная регистра. $x_{ij}=1\Leftrightarrow j$ задача на i сервере.
- ullet $lpha_{ij}$ память диска, которую потребляет j задача на i сервере
- β_{ij} оперативная память, которую потребляет j задача на i сервере
- ullet γ_{ij} количество ядер, потребляемых j задачей на i сервере
- a_{pk} дополнительные переменные регистра для контроля потребления памяти диска задачами на p-м сервере
- b_{pk} дополнительные переменные регистра для контроля потребления количества ядер задачами на p-м сервере
- c_{pk} дополнительные переменные регистра для контроля потребляемой оперативной памяти на p-м сервере

Опуская подробности, получаем:

Опуская подробности, получаем:

$$f_{Q}(x) = -\lambda_{1} \cdot \sum_{i=1}^{N} \sum_{j=1}^{M} (\alpha_{ij} + \beta_{ij} + \gamma_{ij}) \cdot x_{ij} +$$

$$+ \lambda_{2} \cdot \sum_{i=1}^{M} \left[\left(\sum_{j=1}^{N} \alpha_{ij} \cdot x_{ij} \right) + \left(\sum_{b=0}^{\lfloor \log_{2} A_{i} \rfloor} 2^{b} \cdot \widetilde{a}_{ib} \right) - A_{i} \right]^{2} +$$

$$+ \lambda_{3} \cdot \sum_{i=1}^{M} \left[\left(\sum_{j=1}^{N} \beta_{ij} \cdot x_{ij} \right) + \left(\sum_{b=0}^{\lfloor \log_{2} B_{i} \rfloor} 2^{b} \cdot \widetilde{b}_{ib} \right) - B_{i} \right]^{2} +$$

$$+ \lambda_{4} \cdot \sum_{i=1}^{M} \left[\left(\sum_{j=1}^{N} \gamma_{ij} \cdot x_{ij} \right) + \left(\sum_{b=0}^{\lfloor \log_{2} C_{i} \rfloor} 2^{b} \cdot \widetilde{c}_{ib} \right) - C_{i} \right]^{2} +$$

$$+ \lambda_{5} \cdot \sum_{i=1}^{N} \prod_{k=0}^{K} \sum_{i=1}^{M} (x_{ij} - k)$$

Конец