ЛАБОРАТОРНАЯ РАБОТА №3 ОЦЕНКА ЧИСЛОВЫХ ХАРАКТЕРИСТИК СЛУЧАЙНЫХ ВЕЛИЧИН

3.1 Цель работы

Изучить методы нахождения числовых характеристик случайных величин (с.в.); произвести экспериментальные исследования зависимости точности оценок числовых характеристик от объема выборки случайной величины.

3.2 Теоретический раздел

Неслучайные параметры, выражающие в сжатой форме наиболее существенные особенности распределения *случайной величины*, называются ее *числовыми характеристиками*. Эти числовые характеристики находятся, как правило, путем осреднения по всему числу испытаний некоторых неслучайных функций исследуемой с.в.

Допустим, что с.в. ξ в j-м испытании приняла конкретное значение x_j^* и полное число этих испытаний есть N. Тогда среднее арифметическое величины ξ , обозначаемое как \widetilde{M}_1 , есть

$$\widetilde{M}_{1} = \frac{1}{N} \sum_{i=1}^{N} x_{j}^{*} . \tag{3.1}$$

Эта величина случайна, однако при $N \to \infty$ она в силу статистической устойчивости стремится к некоторому пределу, носящему название математического ожидания (МО) величины ξ . Оно обозначается как M_1 . Для дискретной с.в. оно выражается формулой (3.2):

$$M_1 = M[\xi] = \sum_{i=1}^{n} x_i P_i$$
 (3.2)

а для непрерывной – формулой (3.3):

$$M_1 = M[\xi] = \int_{-\infty}^{\infty} x p(x) dx.$$
 (3.3)

В формуле (3.2) n величин x_i представляют собой полную совокупность значений, которые может принимать дискретная с.в. ξ , а P_i вероятности этих значений. В формуле (3.3) p(x) есть плотность вероятности непрерывной с.в. ξ .

Строго говоря, \widetilde{M}_1 не совпадает с M_1 , и это совпадение достигается только при $N \to \infty$. Следовательно, точное значение МО может быть найдено по формулам (3.2) и (3.3) при точном знании P_i или p(x), которые не всегда известны. В то же время экспериментально-расчетным путем по формуле (3.1) может быть найдено только его приближенное значение \widetilde{M}_1 , которое в связи с этим называется оценкой математического ожидания.

Итак, в силу данных выше определений M_1 является числовой характеристикой с.в., а \widetilde{M}_1- ее приближенной оценкой. Величина M_1 определяет некоторую среднюю величину ξ , вокруг которого группируются ее все возможные значения.

Другие числовые характеристики с.в. ξ находятся путем осреднения некоторых детерминированных функций случайного аргумента $\varphi(\xi)$. Если число испытаний, конечно, то по аналогии с формулой (3.1) получим оценки таких характеристик в виде

$$\widetilde{\varphi}\left(\xi\right) = \frac{1}{N} \sum_{j=1}^{N} \varphi\left(x_{j}^{*}\right). \tag{3.4}$$

При $N \to \infty$ они переходят в MO этих функций:

$$M[\varphi(\xi)] = \sum_{i=1}^{n} \varphi(x_i) P_i$$
(3.5)

для дискретной с.в. ξ и

$$M[\varphi(\xi)] = \int_{-\infty}^{\infty} \varphi(x) p(x) dx$$
 (3.6)

для непрерывной.

На практике наибольшую применимость имеют *центральные моменты* различных порядков, обозначаемые как μ_k . Для них $\varphi(\xi) = (\xi - M_1)^k$, где порядок k – целые неотрицательные числа. Величина $(\xi - M_1)$, получаемая из каждого значения ucxodhoù с.в. ξ вычитанием ее МО, называется ucxodhoù, а сама процедура этого вычитания – ucxodhoù исмента ucxodhoù оценку момента ucxodhoù оценку оценку оценку момента ucxodhoù оценку оценк

$$\widetilde{\mu}_{k} = \frac{1}{N} \sum_{j=1}^{N} \left(x_{j}^{*} - M_{1} \right)^{k}$$
(3.7)

При $N \to \infty$ отсюда получим

$$\mu_k = \sum_{i=1}^n (x_i - M_1)^k P_i$$
(3.8)

для дискретной с.в. и

$$\mu_{k} = \int_{-\infty}^{\infty} (x - M_{1})^{k} p(x) dx$$
 (3.9)

для непрерывной с.в.

Физическая размерность μ_k и $\widetilde{\mu}_k$ есть

$$\left[\mu_{k}\right] = \left[\widetilde{\mu}_{k}\right] = \left[\xi\right]^{k}.\tag{3.10}$$

Центральный момент второго порядка

$$\sigma^2 = \mu_2, \tag{3.11}$$

называется дисперсией с.в. ξ , а квадратный корень из нее σ – среднеквадратическим отклонением с.в. ξ . Величина

$$\widetilde{\sigma}^2 = \widetilde{\mu}_2 \tag{3.12}$$

есть *оценка* этой дисперсии, а $\widetilde{\sigma} = \sqrt{\widetilde{\sigma}^2}$ — оценка среднеквадратического значения с.в. ξ . Величина σ характеризует полуширину распределения вероятности или плотности распределения вероятности.

Нетрудно показать, что центральный момент третьего порядка μ_3 равен

нулю, если распределение симметрично относительно своего МО, и отличен от нуля в противном случае. Однако применять его непосредственно для оценки степени асимметрии распределения неудобно, так как он имеет размерность $[\xi]^3$. Для этого применяют *безразмерную* величину

$$\gamma_1 = \mu_3 / \sigma^3 \tag{3.13}$$

называемую коэффициентом асимметрии величины ξ . Этот коэффициент характеризует скошенность распределения или плотности распределения вероятности. Одновершинное распределение с $\gamma_1 < 0$ имеет левосторонною (отрицательную) асимметрию, т.е. распределение имеет слева «хвост». Если $\gamma_1 > 0$, оно имеет «хвост» справа. Для симметричного распределения $\gamma_1 = 0$.

Безразмерная величина

$$\gamma_2 = \frac{\mu_4}{\sigma^4} - 3 \tag{3.14}$$

называется коэффициентом эксцесса распределения и характеризует степень его островершинности в сравнении с нормальным (гауссовским) распределением. Для нормального распределения эта величина равна нулю. Для более островершинного распределения $\gamma_2 > 0$. Для менее островершинного $\gamma_2 < 0$. При этом сравнении необходимо считать, что у всех рассматриваемых распределений величина σ^2 одинакова.

Статистический пакет Statistics & Machine Learning Toolbox системы MATLAB поддерживает 20 видов распределений вероятности: 14 непрерывных и 6 дискретных (таблица 3.1).

В этой таблице: A, B, MU, NU, NU1, NU2, V1, V2, DELTA, LAMBDA, NN, M, K, P, RR — параметры, описывающие распределения; R — матрица размером $m \times n$, состоящая из случайных величин ξ , имеющих указанное распределение; M —математическое ожидание $M[\xi]$ и V — дисперсия с.в. ξ . Команда из столбца IV

дает возможность вычислить теоретическое значение MO $M_1 = M[\xi]$, обозначаемое здесь как M, и теоретическую дисперсию σ^2 , обозначаемую как V.

Входящий в MATLAB пакет Statistics Toolbox имеет в своем составе демонстрационные программы, создающие интерактивную среду для генерации случайных чисел, изучения их различных распределений вероятностей и других целей.

Таблица 3.1 – Распределение вероятностей, команды генерации случайных величин и команды вычисления их числовых характеристик

№	Вид распределения	Команда генерации случайной величины	Команда вычисления \mathbf{M}_1 и $\boldsymbol{\sigma}^2$					
Непрерывные распределения								
1	Бета	R=betarnd(A,B,m,n)	[M,V]=betastat(a,b)					
2	Экспоненциальное	R=exprnd(MU,m,n)	[M,V]=expstat(MU)					
3	Гамма	R=gamrnd(A,B,m,n)	[M,N]=gamstat(A,B)					
4	Логнормальное	R=lognrnd(MU,SIGMA,m,n)	[M,V]=lognstat(MU,SIGMA)					
5	Нормальное (гауссов- ское)	R=normrnd(MU,SIGMA,m,n)	[M,V]=normstat(MU,SIGMA)					
6	Релея	R=raylrnd(B,m,n)	[M,V]=raylstat(B)					
7	Равномерное	R=unifrnd(A,B,m,n)	[M,V]=unifstat(A,B)					
8	Вейбулла	R=weibrnd(A,B,m,n)	[M,V]=weibstat(A,B)					
9	Хи-квадрат	R=chi2rnd(NU,m,n)	[M,V]=chi2stat(NU)					
10	Нецентральное хи-квадрат	R=ncx2rnd(NU,DELTA,m,n)	[M,V]=ncx2stat(NU,DELTA)					
11	Фишера-Снекора (F-распредел.)	R=frnd(V1,V2,m,n)	[M,V]=fstat(V1,V2)					
12	Нецентральное F- распределение	R=ncfrnd(NU1,NU2,DELTA,m,n)	[M,V]=ncfstat(NU1,NU2,DELTA)					
13	Стьюдента (t-распределение)	R=trnd(NU,m,n)	[M,V]=tstat(NU)					
14	Нецентральное t- распределение	R=nctrnd(NU,DELTA,m,n)	[M,V]=nct(NU,DELTA)					
Дискретные распределения								
1	Биномиальное	R=binornd(NN,P,m,n)	[M,V]=binostat(NN,P)					
2	Равновероятное	R=unidrnd(NN,m,n)	[M,V]=unidstat(NN)					
3	Геометрическое	R=geornd(P,m,n)	[M,V]=geostat(P)					
4	Гипергеометрическое	R=hygernd(M,K,NN,m,n)	[M,V]=hygestat(M,K,NN)					
5	Отрицательное биномиальное	R=nbinrnd(RR,P,m,n)	[M,V]=nbinrnd(RR,P)					
6	Пуассона	R=poissrnd(LAMBDA,m,n)	[M,V]=poisstat(LAMBDA)					

Так, оператор **disttool**, введенный в командном окне MATLAB, открывает окно, в котором изображены кривые теоретических зависимостей любого из имеющихся в MATLAB распределений. Последние могут быть выбраны в выпадающем меню в середине верхней части этого окна. Если вверху в правой части окна выбрать pdf (probability density function), на графике будет изображена кривая плотности вероятности p(x) рассматриваемой непрерывной с.в. или набор значений вероятности P_i дискретной с.в. Если же выбрать cdf (cumulative distribution function), то отобразится интегральная функция распределения F(x) данной с.в.

Если в командном окне ввести оператор **randtool**, то откроется окно, в котором в виде гистограммы будет продемонстрировано эмпирическое распределение данной случайной величины при заданном (вверху справа) числе ее отсчетов.

3.3 Ход работы

1. Получить у преподавателя вариант задания (таблица 3.2). Во всех заданиях положить m=1 и считать n текущим, изменяющимся от 1 до 1000.

Таблица 3.2 – Варианты заданий

Вид распределения	Вариант	Параметры распределения
Нормальное	1.	MU=4, SIGMA=2
Рэлея	2.	B=3
Кэцел	3.	B=0,7
Равномерное непрерывное	4.	A=0, B=2
Вейбулла	5.	A=0,4, B=3
Хи-квадрат	6.	NU=3
Нецентральное хи-квалрат	7.	NU= 3, DELTA=4
F-распределение	8.	V1= 8, V2=10
Нецентральное	9.	NU1=20, NU2=100, DELTA=6
F-распределение		1NU1-20, NU2-100, DELTA-0
Стьюдента	10.	NU=4
Нецентральное	11.	NU=8, DELTA=1,5
t-распределение		110-0, DELTA-1,3
Биномиальное	12.	NT=7, P= 0,8
Равновероятное дискретное	13.	NN=120
Геометрическое	14.	P=0,0006

Продолжение таблицы 3.2.

Вид распределения	Вариант	Параметры распределения
Гипергеометрическое	15.	M= 1000, K= 40,NN=30
Отрицательное биномиаль-	16.	RR= 3, P=0,01
ное		KK- 3, F-U,U1
Пуассона	17.	LAMBDA=2
Бета	18.	A= 2, B= 4
Экспоненциальное	19.	MU= 2
Гамма	20.	A=4, B=8
Логнормальное	21.	MU= 0,7, SIGMA= 0,25

2. Написать в системе MATLAB коды для вычисления оценок моментов \widetilde{M}_1 , $\widetilde{\mu}_1$, $\sigma^2=\widetilde{\mu}_2$, $\widetilde{\mu}_3$, $\widetilde{\mu}_4$, оценки коэффициента асимметрии

$$\widetilde{\gamma}_1 = \frac{\widetilde{\mu}_3}{\sqrt{\widetilde{\mu}_2^3}} \tag{3.15}$$

и оценки коэффициента эксцесса

$$\widetilde{\gamma}_2 = \frac{\widetilde{\mu}_4}{\widetilde{\mu}_2^2} - 3. \tag{3.16}$$

- 3. С помощью этих кодов рассчитать зависимости указанных оценок от числа испытаний N- для $1 \le N \le 1000$ и изобразить их графически в линейном и полулогарифмическом (по оси x) масштабах. Для графиков добавить обозначения переменных по осям.
- 4. Найти теоретические значения M_1 , σ^2 и сравнить их с экспериментальными.
- 5. Применив, оператор **disttool**, установить вид теоретических кривых, характеризующих закон распределения данного варианта случайной величины. Распечатать соответствующие графики.
- 6. Применив оператор **randtool**, проследить, как меняются эмпирические распределения данной с.в. при последовательном выборе ее числа отсчетов N=100, 200, 500, 1000. Распечатать соответствующие графики.
 - 7. Дать письменное объяснение всем наблюдаемым зависимостям.
 - 8. Оформить отчет.

3.4 Содержание отчёта

- 1. Цель работы.
- 2. Краткое теоретическое введение.
- 3. Теоретический расчёт математического ожидания и дисперсии для заданного типа распределения.
- 4. Графики теоретических кривых, характеризующих закон распределения указанного варианта случайной величины (интегральная функция распределения, функция плотности вероятности).
- 5. Графики эмпирических распределений указанного варианта случайной величины.
- 6. Программа на языке MATLAB для практического расчёта числовых характеристик случайной величины.
- 7. Выводы по работе в развернутом виде, сравнительная характеристика полученных теоретических значений с практическими, дать письменное объяснение всем наблюдаемым зависимостям.

3.5 Контрольные вопросы

- 1. Что такое числовые характеристики случайных величин?
- 2. Геометрический смысл математического ожидания.
- 3. Геометрический смысл дисперсии.
- 4. Геометрический смысл среднеквадратического отклонения.
- 5. Геометрический смысл коэффициента асимметрии.
- 6. Геометрический смысл коэффициента эксцесса.
- 7. Что такое случайная величина?
- 8. Каким образом зависят от числа отсчетов случайной величины оценки числовых характеристик?
 - 9. В чем отличие числовых характеристик с.в. от их оценок?

- 10. Что такое гистограмма?
- 11. Чем отличаются гистограммы непрерывных и дискретных случайных величин?
- 12. Какие особенности гистограмм характеризуют найденные числовые характеристики?
 - 13. Что такое начальный момент распределения?
 - 14. Что такое центральный момент распределения?
 - 15. Какой цели служат начальные и центральные моменты распределения?
- 16. В чем сходство и различие в статистическом описании дискретных и случайных непрерывных величин?