Einleitung in die Stochastik

Datum: February 1, 2024

Grundlagen der Wahrscheinlichkeitstheorie

Ziel: Mathematisches Modell, welches die intuitive Idee "Wahrscheinlichkeit" (= "relative Häufigkeit") beschreibt.

Anwendung:

- Modellierung von Komplecxen Systemen (Aktienmarkt, Verkehr, Anfragen bei einem Server)
- Randomisierte Algorithmen (Las-Vegas Algo., Modelierungs Algo. Primzahlentest)
- Performance-Annalyse von Algorithmen (Durchschnittliche Laufzeit bei zufälligen Input)

Informelle Einführung:

Experiment: Würfeln mit zwei Würfeln A und b

Ausgang: Ein Paar von Augenzahlen je zwischen 1 und 6 z.B. A zeigt 1 und B zeigt $4 \rightsquigarrow (1,4)$ Elementarereignis Ausgangsraum: $6 \cdot 6 = 36$ Möglichekeiten.

```
\Omega = \{ (1,1), (1,2), (1,3), \cdots, (1,6) \\ (2,1), (2,2), (2,3), \cdots, (2,6) \\ \cdots \}
```

Sinnvolle Modellierung:

- (i) Eine Aussage des Experiments sollte genau einem $w \in \Omega$ entsprechen.
- (ii) Ω sollte keine unmöglichen Ausgänge enthalten.

Wahrscheinlichkeiten

Zuweisungen: Zu jedem $w \in \Omega$ $p(w) \in [0,1]$ zuweisen sodass $\Sigma_{w \in \Omega} p(w) = 1$ Idee: Ein Elementarereignis muss auftreten. Hier: "faire Würfel" => gibt keinen Grund p(1,3) > p(5,6) Also $p(1,1) = \cdots = p(6,6) = \frac{1}{36}$ Möchten umfassende Ereignisse beschreiben z.B. die Summe der Augenzahl ist 3. $A = \{(1,2),(2,1)\} \subseteq \Omega$ intuitiv: $P(A) = p(1,2) + p(2,1) = 2 \cdot \frac{1}{36} = \frac{1}{18}$

Formale Einführung (Kolmogorov, 1933)

Definition: Ein **diskreter Wahrscheinlichkeitsraum** ist ein Paar (Ω, P) wobei: Ω eine endliche oder eine abzählbar unendliche Menge ist (**Elementarereignise**) und $P \cdot \mathcal{P} \rightarrow \mathbb{R}$ ein **Wahrscheinlichkeitsmaß**, d.h (Wahrscheinlichkeitsverteilung)

- (i) $P(A) \ge 0 \forall A \in \mathcal{P}(A)$ Nichtnegativitätsgesetz
- (ii) $P(\Omega) = 1$ (Normierung)
- (iii) Für jede Folge $(A_i)_{i\in\mathbb{N}}$, $A_i\in\mathcal{P}(\Omega)$, sodass $A_i\cap A_i=\emptyset \forall i\neq j$ gilt $P(\cup_{i\in\mathbb{N}}A_i)=\Sigma_{i\in\mathbb{N}}P(A_i)$

Insbesondere: $A, B \in \mathcal{P}(\Omega), A \cap B \neq \emptyset$ $P(A \cup B) = P(A) + P(B)$

Eigenschaften: (Ω, P) diskreter W-raum $A, B \subseteq \Omega$ (Ereignisse)

(a)
$$P(\emptyset) = 0$$

Denn:
$$1 =_{(ii)} P(\Omega) = P(\Omega \cup \varnothing) =_{(iii)} P(\Omega) + P(\varnothing) =_{(ii)} 1 + P(\varnothing) => P(\varnothing) = 0$$

(b)
$$P(A^c)(=\Omega/A) = 1 - P(A)$$

Denn:
$$P(A) + P(A^c) =_{(iii)} P(A \cup A^c) =_{(ii)} P(\Omega) = 1$$

(c)
$$A \subseteq B \Longrightarrow P(A) \le P(B)$$

Denn:
$$P(B) = P(A \cup (B/A)) =_{(iii)} P(A) + P(B/A) \leq_{(i)} P(A)$$

(d)
$$P(A \cup B) = P((B/A) \cup (A \cap B)) = P(B/A) + P(A \cap B)$$

Denn:
$$P(B) = P((B/A) \cup (A \cap B)) = P(B/A) + P(A \cap B) => P(B) - P(A \cap B)$$

 $P(A \cup B) = P(A \cup (B/A) =_{(iii)})P(A) + P(B/A) =_{(*)} P(A) + P(B) - P(A \cap B)$

(e)
$$P(A \cup B) \leq P(A) + P(B)$$
 (folgt aus d + (i))

Gesetz disjunktiver Wahrscheinlichkeiten

$$(\Omega, P)$$
 diskreter W-Raum, $A = \{w_1, w_2, \dots\} \subseteq \Omega$
Ereignis $P(A) = \{u_1, u_2, \dots\} \subseteq \Sigma_{i \in \mathbb{N}} P(\{w_i\}) + P(\{w_2\} + \dots) = \Sigma_{i \in \mathbb{N}} P(\{w_i\})$

Definition : Eine Funktion $p:\Omega\to [0,1] sodass \Sigma_{w\in\Omega} p(w)=1$ heißt **Wahrscheinlichkeitsfunktion**.

Beispiel: Würfel mit zwei Würfeln $Ω = \{1, 2, 3, 4, 5, 6\}^2, p(w) = \frac{1}{36} \forall w \in Ω$ $P(A) = Σ_{w \in A} p(w) = Σ_{w \in A} \frac{1}{36} = \frac{|A|}{36} \forall A \subseteq Ω$

(i)
$$P(A) = \frac{|A|}{36} \le 0$$

(ii)
$$P(\Omega) = \frac{|\Omega|}{36} = 1$$

 $A \cap B = \varnothing P(A \cup B) = \frac{|A \cup B|}{36} = \frac{|A| + |B|}{36} = \frac{|A|}{36} + \frac{|B|}{36} = P(A) + P(B)$

Beschreibe das Ereignis, dass mind. ein Würfel eine 1 zegt $A=\{(1,1),\cdots,(1,6),(6,1)\cdots,(2,1)\}$ $P(A=\frac{11}{36})$

Definition: Ein **endlicher** diskreter W-raum (Ω, P) heißt **gleichverteilt**, falls $P(A) = \frac{|A|}{|\Omega|} \forall A \subseteq \Omega$ Wir können die gleichverteilung auf jeder endlcihen Menge Ω Definition iniert und erhalten ein W-Maß.

Beispiel:

- (a) Würfer mit 2 roten Seiten und 4 blauen Seiten. $\Omega = \{rot, blau\}, p(rot) = \frac{2}{6} = \frac{1}{3}, p(blau) = \frac{2}{3}$
- (b) $\Omega = \{a, b, c, d\}$ (nicht gleichverteilt) $p: \Omega \to [0, 1]$ mit $\Sigma_w \in \Omega p(w) = 1$ hier tabelle einfügen a = 1/10, b= 1/5, c = 1/2, d = ? $P(A) = \Sigma_{w \in A} p(w)$
- (c) abzählbar unendlich $\Omega=\mathbb{N}, p(n)=(\frac{1}{2})^n$ $P(\Omega)=\Sigma_{n=1}^{unendlich}(\frac{1}{2})^n=\frac{1}{1-\frac{1}{2}}-1=1$ Viele Experimente bestehen aus der Wiederholung desselben grundlegenden Experiments.

Definition : Seien $\Omega_1, \cdots, \Omega_n$ diskrete W-Räume mit W-funktionen p_1, \cdots, p_m . Dann ist der **Produktraum** von $\Omega_1, \cdots, \Omega_n$, das karteische Proukt $\Omega_1 \times \cdots \times \Omega_n = \{(w_1, \cdots, w_n), w_i \in \Omega_i, 1 \leq i \leq n\}$ zusammen mit dem W-Maß Definition iniert durch die W-funktionen Definition iniert durch

$$p((w_1, \dots, w_n)) = P_1(w_1) \cdot p_n(w_n) = \prod_{i=1}^n p_i(w_i)$$

Beispiel: Mit zwei Würfeln. Sei $\Omega'=\{1,2,3,4,5,6\}$ mit $p'=\frac{1}{6} \forall a \in \Omega'$ der W-Raum der den Wurf von einem Würfel beschreibt, dann $\Omega=\Omega'\times\Omega'$ $p((a,b))=p'(a)\cdot p'(b)=\frac{1}{6}\cdot\frac{1}{6}=\frac{1}{36}$

Satz: Der Produkraum $\Omega_1 \times \Omega \times \cdots \Omega_n$ ist ein diskreter W-Raum.

Beweis:
$$1 \ge P((w_1, \dots, w_n)) = p_1(w_1) \dots p_n(w_n) \ge 0$$
 $p: \Omega_1 \times \dots \Omega_n \to [0, 1]$

$$\Sigma_{(w_1,\dots,w_n)\in\Omega_1\times\dots\times\Omega_n}p((w_1,\dots,w_n))$$

$$=\Sigma_{w_1\in\Omega_1}\Sigma_{w_2\in\Omega_2}\dots\Sigma_{w_n\in\Omega_n}p_1(w_1\dots p_n(w_n))$$

$$=(\Sigma_{w_1\in\Omega_1}p_1(w_1))(\Sigma_{w_2\in\Omega_2}p_2(w_2))\dots(\Sigma_{w_n\in\Omega_n}p_n(w_n))$$

Unabhängigkeit

Diskreter W-Raum (Ω, P) Ereignis $A \subseteq \Omega$ Formalisierung Für die Idee, dass zwei Ereignisse A und B ich nicht beeinflussen.

Def: Zwei Ereignisse $A, B \subseteq \Omega$ heißen **Unabhängig**, falls $P(A \cap B) = P(A)P(B)$

Bsp: Wurf eines Würfels $\leadsto \Omega = \{1, 2, 3, 4, 5, 6\}, A = \{2, 4, 6\}, B = \{1, 2\}, C = \{2, 3, 5\} P(A \cap B) = P(\{2\}) = \frac{1}{6} P(A) \cdot P(B) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6} => A$ und B Unabhängig $P(A \cap B) = \frac{1}{6} P(A) \cdot P(C) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} => A$ und C sind nicht Unabhängig.

Def: Eine Menge $\{A_1, \dots, A_2\}$ von Ereignissen ist **Unabhängig** falls $P(\bigcap_{i=1}^n A_i) = \prod_{i=1}^n P(\bigwedge, i)$

Im Bsp: Angenommen wir wissen, dass A eingetreten ist. Is es dann meht oder weniger wahrscheinlich, dass auch C eingetreten ist? $P(C|A) = \frac{1}{3}$, $P(C) = \frac{1}{2}$

Def: Die **bedingte Wahrscheinlichkeit** P(B|A) vin B unter der Annahme, dass A eingetreten ist, ist $P(B|A) = \frac{P(B \cap A)}{P(A)}$, P(A) > 0

Angenommen $A \subseteq B$ $P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A)}{P(A)} = 1$

Beobachtung: Seien A und B unabhängig. Dann $P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A) \cdot P(B)}{P(A)} = P(B)$ (A liefert keine zusätzliche Information ob B eingetreten ist!)

Bsp: Würfer mit zwei Würfeln B: Ereignis, dass die Summe der Augenzahl = p ist A: Ereignis, dass der 1. Wurf = 5 ist.

$$B = \{(4,5), (5,4), (3,6), (6,3)\}$$

$$A = \{(5,1), (5,2), ...\}$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{1}{\frac{36}{6}} = \frac{1}{6}$$

$$P(B) = \frac{4}{22} = \frac{1}{2}$$

Gesetz der totalen Wahrscheinlichkeit

⊎ soll später getauscht werden mit punkt drin symbol!!!!

$$\Omega = \bigcup_{i=1}^{n} E_i, E_i \cap E_j = \emptyset i \neq j, A \subseteq \Omega$$

Dann:
$$P(A) = Sigma_{i=1}^{n} P(A|E_i) \cdot P(E_i)$$

Beweis:
$$A = \bigcup_{i=1}^{n} (A \cap E_i), P(A \cap E_i) = P(A|E_i)$$

hiertexteinfgennochwasfehlt...

Also
$$P(A) =_{3.Axiom} \Sigma$$

Satz von Bayes:

$$A, B \subseteq \Omega, P(A), P(B) \neq 0$$

Dann $P(B|A) = P(A|B) \cdot \frac{P(B)}{P(A)}$

Beweis:
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
, $P(B|A) = \frac{P(A \cap B)}{P(A)}$
=> $P(A|B) \cdot P(B) = P(B|A) = P(A) \square$

Diskrete Zufallszahlen

Oft möchte man Ereignissen einen nummerischen Wert zuordnen (Summe der Augenzahlen, Gewinn).

Def: Eine **diskrete Zufallszahlen** X ist eine Funktion $X : \Omega \to \mathbb{R}$ auf einen diskreten W-Raum (Ω, P)

Bem: X ist keine "Variable" im üblichen Sinne, sondern eine Funktion.

Wir können einen W-Raum auf den Werten (Bilderraum) von X definieren.

Satz Sei X diskreter zufallsvariable auf (Ω, P) . $\Omega_X = im(X) = \{x \in \mathbb{R} | E?? =_w \in \Omega : X(w) = x\} \ Px^{(x)} = P(X^{-1}(x))P = (\{w \in \Omega | X(w) = x\})$ deiniert eine W-funktion auf Ω_X .

HierwichtigcheckeobXrichtiggrooderkleinist!!!

Beweis: $0 \le P_X(x) \le 1 \quad \forall Ax \in \Omega_X$ bei def (hier photos checken!!?) $\Omega = \bigcap_{x \in \Omega_X} X^{-1}(x), \sigma_{x \in \Omega_X} P_X(x) = \Sigma_{x \in \Omega_X}$ <- Das ist einfach komplet falsch ich muss das noch mal über arbeiten??

Def: Das Wahrscheinlichkeitsmaß definiert auf $\Omega_X = im(X)$ mittels $P_X(x) = P(X = x)$ heißt die **Verteilung** von X.

Bsp: Bei einem Wurf eines fairen Würfels werden den Agenzahlen folgende Gewinne zugewiesen.

definiert Zufallsvariable
$$X:\{1,2,3,4,5,6\}\to\mathbb{R}$$
 $P(X=1)=P(X^{-1}(1))=P(\{w\in\Omega|X(w)=1\})=P(\{1,2,3\})=\frac{3}{6}=\frac{1}{2}\Omega_X=\{1,2,3\}$

hiernochmaltabelle:'(

(Verteilung)

Binomialverteilung:

mit Parametern $n \in \mathbb{N}$, $p \in [0,1]$. ist definiert ais $\Omega_X = \{0,1,\cdots,n\}$ durch die W-funktion $b(k,n,p) = \binom{n}{k} p^k (1-p)^{n-k}$

Bernoulli-Experiment:

Versucgh mit zwei Ausgängen $\{1,0\}$ P(1) = p, P(o) = q = 1 - p.

Bernouilli-Prozess:

Die Folge von Wiederholungen dasselben Bernoulli-Experiments. Ein Prozess mit n Versuchen kann mittels Ω^n beschreiben werden. $(0,1,0,0,1,1,\cdots)$

Die Wahrscheinlichkeit für k Erfolge ist gegeben durch b(k, n, p).

Hypergeometrische Verteilung

parameter
$$K, n, r, m \in \mathbb{Z}_{\geq 0}$$
 mit $0 \leq k \leq n \leq m, k \leq r$. Defininiert durch $h(K, n, r, m) = \frac{\binom{r}{k}\binom{m-r}{n-k}}{\binom{m}{n}}$

Interpretation: Urne mit r roten Kugeln, m-r blaue Ziehen n Kugeln ohne zurückzlegen (auf einmal)

 Ω = Jede Menge von n Kugeln

P =gleichverteilt

h(k; n, r, m) = P was kommt hier rein????

Def: Der **Erwartungswert** einer diskreter Zufallsvariable X ist (Was für n komisches E ist das denn bitt??) $E[x] = \sum_{x \in \Omega_X} p_X(x) X = \sum_{x \in \Omega_X} P(X = x) \cdot x$ und wird oft mit mü (wie mükrosekunde) bezeichnet.

Bsp: Beim Würfeln einer geraden Augenzahl verliert man ???? Beim Würfeln einer ungeraden gewinnt man die Augenzahl in ???.

$$\Omega_X = \{-3, 1, 3, 5\}$$

hiernochtabelle

??? =????

Satz: X diskreter Zufallsvariable über (Ω, P) . Dann $??? = \sum_{w \in \Omega} X(w)p(w)$

Beweis:
$$??? = \Sigma_{x \in \Omega_X} X p_x(x) = \Sigma_{x \in \Omega_X} x \cdot P(X^{-1})(x)) = \Sigma_{x \in im(X)} X$$