

Data de Emissão: 21/07/2016

Instituto de Matemática e Estatística Departamento de Matemática Pura e Aplicada

Dados de identificação

Disciplina: CÁLCULO NUMÉRICO A

Período Letivo: 2016/2 Período de Início de Validade: 2016/2

Professor Responsável pelo Plano de Ensino: RUDNEI DIAS DA CUNHA
Sigla: MAT01032 Créditos: 4 Carga Horária: 60

Súmula

Erros; ajustamento de equações; interpolação, derivação e integração; solução de equações lineares e não lineares; solução de sistemas de equações lineares e não lineares; noções de otimização; solução de equações diferenciais e equações diferenciais parciais; noções do método Monte Carlo em suas diferentes aplicações.

Currículos		
Currículos	Etapa Aconselhada	Natureza
LICENCIATURA EM ESTATÍSTICA		Eletiva
LICENCIATURA EM MATEMÁTICA - (032.00)	7	Obrigatória
LICENCIATURA EM MATEMÁTICA - NOTURNA - (033.00)	9	Obrigatória
BACHARELADO EM MATEMÁTICA - ÊNFASE MATEMÁTICA APLICADA COMPUTACIONAL - V1		Eletiva
QUÍMICA INDUSTRIAL V2	4	Obrigatória
CIÊNCIAS ATUARIAIS - (117.00)	6	Obrigatória
LICENCIATURA EM MATEMÁTICA	8	Alternativa
LICENCIATURA EM MATEMÁTICA - NOTURNO	10	Alternativa
QUÍMICA INDUSTRIAL - NOTURNO V1		Eletiva
QUÍMICA INDUSTRIAL - V1		Eletiva
QUÍMICA INDUSTRIAL		Eletiva
QUÍMICA INDUSTRIAL - NOTURNA		Eletiva
BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO	3	Obrigatória
BACHARELADO EM QUÍMICA - V3		Eletiva
BACHARELADO EM QUÍMICA		Eletiva
BACHARELADO EM ESTATÍSTICA - V 1	4	Obrigatória
BACHARELADO EM MATEMÁTICA- ÊNFASE MATEMÁTICA PURA	6	Obrigatória
BACHARELADO EM MATEMÁTICA - ÊNFASE MATEMÁTICA APLIC COMPUTACIONAL	3	Obrigatória
CIÊNCIAS ATUARIAIS - NOTURNO	7	Obrigatória
BACHARELADO EM ESTATÍSTICA	4	Obrigatória

Objetivos

Discutir e aplicar técnicas de solução de alguns problemas matemáticos do Cálculo

Numérico, com a utilização de computadores e/ou calculadoras científicas programáveis.

Conteúdo Programático

Semana: 1 a 2

Título: Introdução à Computação Científica

Conteúdo: Aritmética ponto flutuante. Erros de arredondamento, precisão e exatidão em máquinas

digitais. Erros Computacionais e medidas de exatidão. Subtração catastrófica. Propagação de erro nas operações numéricas.

Semana: 3 a 6

Título: Solução Numérica de Equações Não Lineares

Conteúdo: Método da Bissecção e variantes, métodos do ponto fixo, método de Newton, método da secante, raízes simples e múltiplas, métodos

para raízes de polinômios.

Semana: 7a9

Título: Solução Numérica de Sistemas de Equações Algébricas (prova 1)

Data de Emissão: 21/07/2016

Conteúdo: Solução de sistemas de equações lineares algébricas. Eliminação gaussiana com pivotamento. Estabilidade Numérica, Numero de

condicionamento. Introdução aos métodos iterativos: Jacobi, Gauss-Seidel, SOR. Solução numérica de sistemas de equações

não-lineares pelo método de Newton.

Semana: 10

Título: Exercicios e Prova

Conteúdo: Exercícios e primeira verificação

Semana: 11 a 12

Título: Interpolação Polinomial e ajuste de dados via mínimos quadrados

Conteúdo: Técnicas clássicas de interpolação não-segmentada. Técnicas clássicas de interpolação segmentada. Splines Cúbicos. Ajuste via

critério dos Mínimos Quadrados linear e equações normais e introdução ao ajuste não linear (Leverberg-Marquardt)

Semana: 12 a 14

Título: Diferenciação e Integração Numérica

Conteúdo: Diferenciação: Aproximações por diferenças finitas e splines.

Integração: Quadraturas: Aproximação polinomial, algorítmos de Newton-Cotes, fórmulas do trapézio e Simpson; Romberg. Quadraturas Gaussianas: Legendre, Chebychev, Laguerre, Hermite. Método Estocástico: Noções do método de Monte Carlo.

Semana: 15 a 17

Título: Solução Numérica de Equações Diferenciais

Conteúdo: EDO: Problema de Valor Inicial: Euler, Runge-Kutta, Métodos de multi passo, Método adaptativo com controle de erro

Problema de Valor de contorno: Método de Diferenças finitas.

EDP: Noções do método de diferença finita

Semana: 17

Título: Otimização

Conteúdo: Noções de otimização: Método da procura em uma dimensão, problemas multidimensionais.

Semana: 18

Título: Exercicios e prova

Conteúdo: Exercicios e segunda verificação

Semana: 19

Título: Recuperação e exame **Conteúdo:** Recuperação e exame final

Metodologia

As aulas expositivas serão destinadas à apresentação e à exemplificação dos métodos e das técnicas listados no cronograma, bem como à realização das provas de verificação de aprendizagem.

O laboratório de informática poderá ser utilizado para experimentação numérica.

O exercício e aplicação dos métodos e técnicas desenvolvidos na disciplina se dará através de estudo pessoal do aluno, e ficará à cargo de cada estudante, que poderá agendar uso de laboratório de informática do Instituto de Matemática.

Carga Horária

Teórica: 60 Prática: 0

Experiências de Aprendizagem

O exercício e aplicação dos métodos e técnicas desenvolvidos na disciplina se dará através de estudo pessoal do aluno, ficará à cargo de cada estudante, que poderá agendar uso de laboratório de informática do Instituto de Matemática.

Critérios de avaliação

A avaliação do desempenho do aluno dar-se-á através de duas verificações de conhecimentos. As verificações de conhecimentos versarão sobre os itens do conteúdo programático.

O aluno obterá duas notas nas verificações de conhecimento – N1 e N2 – cada uma com pontuação entre 0,0 (zero) e 10,0 (dez) pontos. As notas N1 e N2 das duas provas comporão a nota N, calculada como a média aritmética das notas das duas provas, (N=(N1+N2)/2.

Data de Emissão: 21/07/2016

Serão utilizados os seguintes critérios para avaliação do desempenho do(a) aluno(a):

- 1. Se o(a) aluno(a) tiver freqüência igual ou superior a 75%, então:
- (A) Se N>=6,0 pontos, o(a) aluno(a) será considerado(a) aprovado(a);
- (B) Se 4,0<=N<6,0 pontos, o(a) aluno(a) poderá recuperar a prova na qual obteve menor nota. A nota N será recalculada substituindo-se a menor nota por aquela obtida na recuperação; caso N>=6,0 pontos, o(a) aluno(a) será considerado(a) aprovado(a);
- (C) Se N<4,0 pontos, o(a) aluno(a) poderá responder a exame geral dos conteúdos da disciplina ao final do semestre. A nota do exame substituirá a nota N; caso N>=6,0 pontos, o(a) aluno(a) será considerado(a) aprovado(a);

Serão utilizados os seguintes critérios para atribuição do conceito ao(a) aluno(a):

- 1. Alunos com frequência igual ou superior a 75% e que tenham participado das verificações de conhecimento ou exame terão o conceito atribuído de acordo com a seguinte regra:
- 0,0 <= N < 6,0 : conceito final D 6,0 <= N < 7,5 : conceito final C 7,5 <= N < 9,0 : conceito final B 9,0 <= N <= 10,0 : conceito final A
- 2. Alunos que apresentem freqüência inferior a 75%, serão reprovados na disciplina, com conceito FF, nos termos do Art. 134 do Regimento Geral da UFRGS.

Para qualquer uma das provas e o exame final: estruturação, duração, data, uso de ferramentas e ambientes de auxílio, e critérios de correção ficam a critério de cada professor, devendo ser comunicados aos respectivos estudantes com antecedência.

Atividades de Recuperação Previstas

Como atividade de recuperação estão previstas provas de recuperação ou exame final conforme explicado nos critérios de avaliação da disciplina

Prazo para Divulgação dos Resultados das Avaliações

Os resultados das avaliações serão divulgados em até duas semanas após a realização das mesmas, garantindo-se o prazo mínimo de uma semana entre a divulgação e a realização de recuperações e exame final.

Bibliografia

Básica Essencial

Dalcídio Moraes Cláudio. Cálculo Numérico Computacional: Teoria e Prática. São Paulo: Atlas, 2000. ISBN 8522424853.

Marcia A. Gomes Ruggiero. Cálculo numérico: aspectos teóricos e computacionais. Makron Books, 1997. ISBN 8534602042.

Básica

A.L. Bortoli; C. Cardoso; M.P.G. Fachin; R.D. Cunha. Introdução ao cálculo Numérico (Cadernos de Matemática e Estatística). UFRGS, 2001. Richard L. Burden; J. Douglas Faires. Análise Numérica. São Paulo: CENGAGE, 2008. ISBN 85-221-0601-0.

Complementar

David Kincaid; Ward Cheney. Numerical Analysis: Mathematics of Scientific Computing. American Mathematical Society, 2002. ISBN 978-0-8218-4788-6. Disponível em: www.amsorg/bookpages/amstext-2

Forsythe, George Elmer; Moler, Cleve B.. Computer solution of linear algebraic systems. Englewood Cliffs: Prentice-Hall, 1967.

Gilat, Amos. Matlab com aplicações em engenharia. Porto Alegre: Bookman, 2006. ISBN 8536306920.

Golub, Gene Howard. Scientific computing and differential equationsan introduction to numerical methods. San Diego: Academic Press, 1991. ISBN

Data de Emissão: 21/07/2016

0-12-289255-0.

Lambert, J. D.. Numerical methods for ordinary differential systems. New York: Wiley, 1991. ISBN 0471929905.

Press, Saul A.; Vetterling, William T.; Flannery, Brian P.. Numerical Recipes in Fortran 77 :the Art of Scientific Computing. Cambridge, UK, 1992. ISBN 9780521430647.

Outras Referências

Não existem outras referências para este plano de ensino.

Observações

Alunos de doutorado vinculados aos programas de pós-graduação em Matemática ou em Matemática Aplicada poderão realizar seu estágio de docência nesta disciplina.