

RELATÓRIO PRÁTICO DE CIRCUITOS ELÉTRICOS 1

Prática 5

Transformação Δ -Y

Guilherme Rodrigues do Santos - RA: 2199580

Luiz Eduardo Caldas Kramer - RA: 2199661

Figura 1. Circuito Δ

Figura 2. Circuito Y

3.2)

Figura 1. Circuito Δ

Figura 2. Circuito Y

3.3) Tabela 1 – Tabela com dados calculados e medidos do circuito Δ e Y das figuras 1 e 2

	Resistência Ω (calculado)	Resistência Ω (medido)
R₁	3000	3000
R ₂	3000	3000
R ₃	3000	3000

	Resistência Ω (calculado)	Resistência Ω (medido)
R _A	1000	1000
R _B	1000	1000
R _c	1000	1000

$$R_{A} = \frac{R1 * R2}{R1 + R2 + R3} = \frac{3000 * 3000}{3000 + 3000} = 1000\Omega$$

$$R_{B} = \frac{R2 * R3}{R1 + R2 + R3} = \frac{3000 * 3000}{3000 + 3000 + 3000} = 1000\Omega$$

$$R_{C} = \frac{R1 * R3}{R1 + R2 + R3} = \frac{3000 * 3000}{3000 + 3000 + 3000} = 1000\Omega$$

Tabela 2 – Tabela com dados calculados e medidos do circuito Δ das figuras 1 e 2

	Dados (calculados)	Dados (medidos)
I ₁ [A]	0,005	0,005
I ₂ [A]	0,00	0,00
I ₃ [A]	0,005	0,005
I _{AB} [A]	0,001667	0,00167
I _{BC} [A]	0,001667	0,00167
I _{CA} [A]	0,003333	0,00333

	Dados (calculados)	Dados (medidos)
V _{ABA} [V]	5,00	5,00
V _{BCA} [V]	5,00	5,00
V _{CAA} [V]	10,00	10,00
V _{ABY} [V]	5,00	5,00
V _{BCY} [V]	5,00	5,00
V _{CAY} [V]	10,00	10,00

Os Resultados Calculados em ambas as tabelas foram compatíveis com os Simulados, pois nas simulações são usados componentes ideais, que não sofrem com perda de energia por aquecimento.

$$5 - 3000I_{AB} = 0$$
 $5 - 3000I_{BC} = 0$ $5 - 3000I_{CA} + 5 = 0$

$$I_{AB} = \frac{5}{3000} = -0,001667A$$

$$I_{BC} = \frac{5}{3000} = -0,001667A$$

$$I_{CA} = \frac{10}{3000} = 0,003333A$$

$$I_{1} + I_{CA} = -I_{AB}$$

$$I_{2} + I_{AB} = I_{BC}$$

$$I_{3} - I_{CA} = I_{BC}$$

$$I_{3} = 0,005A$$

$$Vab_{\Delta} = 3000I_{AB}$$

$$Vbc_{\Delta} = 3000I_{BC}$$

$$Vbc_{\Delta} = 5 V$$

$$Vca_{\Delta} = 3000I_{CA}$$

$$Vca_{\Delta} = 10 V$$