为什么需要超快时间分辨测量

- □ 很多原子分子中发生的过程在飞秒和皮秒量级
- □ 虽然荧光寿命在纳秒量级,非辐射驰豫过程可能要快得多

$$1/t_{\rm ex} = 1/t_{\rm fl} + 1/t_{\rm nr}$$

- □ 生物中很多重要的过程利用的是激发能,这些过程比荧光 要快很多
- □ 室温下液体中的碰撞过程发生在几飞秒的量级,因此大多数液体中的过程都是超快的
- □半导体中很多我们感兴趣的过程是超快的

第十二章 飞秒激光光谱技术

- 12.1 激光脉冲的测量
- 12.2 飞秒分辨光谱技术

12.1.1 能量和功率的测量

热电探测器和硅探测器的频谱响应

功率计的参数(Model 407A, Spectra-Physics)

Wavelength range	$250\mathrm{nm}{-}11\mathrm{\mu m}$		
Power range			
Continuous	$< 5\mathrm{mW}$ to $20\mathrm{W}$		
Intermittent	up to $30\mathrm{W}$		
Maximum power density	$20\mathrm{kW/cm^2}$		
Peak pulsed energy density (in 50 ns pulses)	$300\mathrm{mJ/cm^2}$		
Sensitivity variation	$\pm 1\%,\ 4001000\mathrm{nm} \ \pm 3\%,\ 250\mathrm{nm}11\mu\mathrm{m}$		
Detector spatial sensitivity variation (2 mm beam)	$\pm 2.5\%$		
Meter time constant	$< 0.5 \mathrm{s}, 1 \mathrm{W} \mathrm{scale}$ or higher $< 1 \mathrm{s}, 30 \mathrm{mW} \mathrm{scale}$		

12.1.2 脉冲形状的测量

一. 纯电学方法

a. 光电二极管

Model (Si PIN)		FWHM pulse response [ps]	-3dB Bandwith [GHz]	Responsivity $[V/W]$	Responsivity (in terms of density) [V/(W/mm ²)]
AR-S1	< 100	< 180	> 3.5	16	4
AR-S2	< 35	< 65	> 10	5	0.018
AR-S3	< 25	< 45	> 14	3.75	0.014

一些光电二极管的数据

利用光电二极管测量飞秒脉冲得到的信号和电路

b. 条纹相机

利用条纹相机测量荧光光谱

条纹相机的输出

时间分辨测量的两种方式

1. 连续光源 + 时间分辨的记录系统

时间分辨率由记录系统决定

2. 脉冲光源 + 无时间分辨的记录系统

过程: 1. 触发: 声或扳机

2. 延时:控制测量时刻

3. 测量: 曝光

时间分辨率: 源的脉冲宽度 + 触发、延时系统精度

连续测量需要过程可重复

为了在时间上测量一个事件, 你需要一个更短的时间尺子

为了研究这样一个事件,需要一个更短的闪光灯脉冲

Photograph taken by Harold Edgerton, MIT

但是,为了测量闪光灯的脉冲,需要一个响应时间更短的探测器

等等... ...

于是,如何测量最短的事件?

二、全光学方法

两个关键:

- 相关函数, $G(\tau) = \int_{-\infty}^{+\infty} F'(t)F(t-\tau)dt$ 如果 $G(\tau)$ 和F'(t)已知,则可以求出F(t)
- 时间一空间转换, 1ps ↔ 300μm;

自相关:
$$G_1(\tau) = \int_{-\infty}^{+\infty} F(t)F(t-\tau)dt$$

$$G_2(\tau) = \int_{-\infty}^{+\infty} [F(t)F(t-\tau)]^2 dt$$
 $G_3(\tau) = \int_{-\infty}^{+\infty} [F(t)F(t-\tau)]^3 dt$

未知脉冲本身作为测试函数,称为"自相关函数" (autocorrelation functions)。

干涉仪自相关器的基本原理

光电场: $E_1(t,\tau) = E(t) + E(t-\tau)$ $\tau \ll$ 探测器的响应时间

$$I_{1}(\tau) = \int_{-\infty}^{\infty} [E^{2}(t) + E^{2}(t - \tau) + 2|E(t)E(t - \tau)|]dt$$

$$= 2 \int I(t)dt + 2G(\tau)$$

$$I_{1}(\tau = 0) = 4 \int I(t)dt \qquad I_{1}(\tau \to \infty) = 2 \int I(t)dt$$

度的信息

800nm、100fs脉冲的一阶相关

二阶自相关器示意图

$$I_2(\tau) = \int_{-\infty}^{+\infty} \left| \left[\mathbf{E}(t) + \mathbf{E}(t - \tau) \right]^2 \right|^2 dt$$

二阶非线性 过程

$$I_{2}(\tau) = \int_{-\infty}^{+\infty} \left| \{ E(t) \exp i[\omega t + \Phi(t)] + E(t - \tau) \exp i[\omega(t - \tau) + \Phi(t - \tau)] \}^{2} \right|^{2} dt$$

展开并对eiot求模:

$$I_{2}(\tau) = \int_{-\infty}^{+\infty} |2E^{4} + 4E^{2}(t)E^{2}(t - \tau) + 4E(t)E(t - \tau)[E^{2}(t) + E^{2}(t - \tau)] \cdot \cos[\omega \tau + \Phi(t) - \Phi(t - \tau)] + 2E^{2}(t)E^{2}(t - \tau)\cos\{2[\omega \tau + \Phi(t) - \Phi(t - \tau)]\} |dt$$

$$I_2(\tau = 0) = 2^4 \int E^4(t)dt$$

$$I_2(\tau \to \infty) = 2\int E^4(t)dt$$

二阶自相关:
$$G_2(\tau) = \frac{\int I(t)I(t-\tau)dt}{\left|\int I^2dt\right|}$$

改变两个脉冲间的延时,在两个脉冲重叠处二阶相关不为零

二阶自相关: 能给出脉冲重叠的信息, 无论两个脉冲是否相干

$$I_{2}(\tau) = \int_{-\infty}^{+\infty} |2E^{4} + 4E^{2}(t)E^{2}(t-\tau) + 4E(t)E(t-\tau)[E^{2}(t) + E^{2}(t-\tau)] \cdot \cos[\omega\tau + \Phi(t) - \Phi(t-\tau)] + 2E^{2}(t)E^{2}(t-\tau)\cos\{2[\omega\tau + \Phi(t) - \Phi(t-\tau)]\} |dt$$

$$S_1 = 2\int I^2 dt + 4\int I(t)I(t-\tau)dt$$

对比度为3:1

原始脉冲

经过5cm厚玻璃板 展宽后的脉冲

强度(实线)和干涉(点)相关轨迹

方形脉冲和它的自相关

Pulse

Autocorrelation

$$I(t) = \begin{cases} 1; |t| \le \Delta \tau_p^{FWHM} / 2 \\ 0; |t| > \Delta \tau_p^{FWHM} / 2 \end{cases}$$

$$G^{(2)}\left(au
ight) = egin{cases} 1 - \left| rac{ au}{\Delta au_A^{FWHM}}
ight|; \ | au| \leq \Delta au_A^{FWHM} \ 0; \ | au| > \Delta au_A^{FWHM} \end{cases}$$

$$\Delta \tau_p^{FWHM} = \Delta \tau_A^{FWHM}$$

						<u> </u>	
I(t)	Δt	I(ω)	Δω	Δω∙Δt	$G_2(\tau)$	Δτ	Δτ/Δt
e^{-t^2}	1.665	$e^{-\omega^2}$	1.665	2.772	$e^{-\frac{\tau^2}{2}}$	2.355	1.414
sech ² (t)	1.763	$\operatorname{sec} h^2 \left(\frac{\pi}{2} \omega \right)$	1.122	1.978	$\frac{3[\tau \cosh(\tau) - \sinh(\tau)]}{\sinh^3(\tau)}$	2.720	1.543
$\frac{1}{e^{t/(t-A)} + e^{-t/(t-A)}}$							
A=1/4		$\Delta \tau =$	1	54,	Δt	2.648	1.544
						iz mili Heri e	
	a bioxi i		J- 11-1				
						10.00	
A=1/2	1.565	$\sec h \left(\frac{3\pi}{4}\omega\right)$	1.118	1.749	$\frac{3\sinh(\frac{8}{3}\tau) - 8\tau}{4\sinh^3\left(\frac{4}{3}\tau\right)}$	2.424	1.549

单脉冲二阶自相关

单脉冲非共线干涉自相关仪的原理

偏离中心 x_0 处的光脉冲时间波形为 I_1 (t- τ)和 I_2 (t+ τ) 倍频光正比于 I_1 (t- τ) I_2 (t+ τ)

延时:
$$\tau = \frac{nx_0 \sin(\Phi/2)}{c}$$

12.2 飞秒分辩光谱技术

- 12.2.1 泵浦一探测方法
- 12.2.2 时间分辨发射谱: 光学方法
- 12.2.3 瞬态光栅技术

给出光信号随延时的变化关系,时间分辨率为脉冲宽度

时间分辨光谱

激发脉冲将分子激发到激发态,改变吸收、折射率和布居数。

经一段时间,系统恢复原状(设弛豫为单指数)

吸收: $\alpha(t) = \alpha_0 \left[1 - \exp(-t/\tau) \right]$ for t > 0 (时间分辨率: 脉冲宽度)

荧光: $I(t) = I_0 \exp(-t/\tau)$ for t > 0

12.2.1 泵浦一探测方法

两种方法分析泵浦光对样品的作用引起的改变:

- (1)比较泵浦光作用前后探测光的改变(密度、相位和波矢),叫做时间分辩吸收技术;
- (2)观察泵浦光作用前后探测光本身引起的新的效应,如喇曼散射光谱、光荧光谱和相干反斯托克斯喇曼谱等。

泵浦一探测技术:通过测量泵浦光照射前和照射后探测光的变化,给出吸收随时间的变化,以此来构造布居动力学。

泵浦一探测实验

泵浦一探测实验示意图

双束泵浦一探测实验

泵浦一探测实验

扫描一次延时线只能测量一个探测波长

利用超连续光的泵浦一探测技术

利用超连续光的产生可以覆盖整个可见光和近红外波段

不同时间延时克尔门所采到的一系列光谱

时间分辨红外谱的实验装置

2. 时间分辨发射谱 (1)克尔开关

超快荧光测量示意图

克尔开关示意图

利用光克尔门的时间分辨发射技术

(2)荧光上转换

三. 时间分辨荧光参量放大技术

SH1, SH2, PA: 0.5 mm厚BBO晶体

注意事项: 1. 波长选择, 2. 匹配光谱范围

Appl. Phys. Lett. 86, 021909 (2005)

12.2.3 瞬态光栅技术

泵浦脉冲强度在样品内为正 弦分布,引起折射率栅。

研究激发态动力学的瞬态栅技术

简并四波混频实验示意图