Sum vs XOR

Given an integer n, find each x such that:

- $0 \le x \le n$
- $n+x=n\oplus x$

where \oplus denotes the bitwise XOR operator. Return the number of x's satisfying the criteria.

Example

n = 4

There are four values that meet the criteria:

- $4+0=4\oplus 0=4$
- $4+1=4\oplus 1=5$
- $4+2=4\oplus 2=6$
- $4+3=4\oplus 3=7$

Return 4.

Function Description

Complete the sumXor function in the editor below.

sumXor has the following parameter(s):

- int n: an integer

Returns

- int: the number of values found

Input Format

A single integer, n.

Constraints

• $0 \le n \le 10^{15}$

Subtasks

• $0 \le n \le 100$ for 60% of the maximum score.

Output Format

Sample Input 0

5

Sample Output 0

2

Explanation 0

For n=5, the $oldsymbol{x}$ values $oldsymbol{0}$ and $oldsymbol{2}$ satisfy the conditions:

•
$$5 + 0 = 5$$
, $5 \oplus 0 = 5$

•
$$5+2=7$$
, $5\oplus 2=7$

Sample Input 1

10

Sample Output 1

4

Explanation 1

For n=10, the $m{x}$ values $m{0}$, $m{1}$, $m{4}$, and $m{5}$ satisfy the conditions:

•
$$10 + 0 = 10$$
, $10 \oplus 0 = 10$

•
$$10 + 1 = 11$$
, $10 \oplus 1 = 11$

•
$$10 + 4 = 14$$
, $10 \oplus 4 = 14$

•
$$10+5=15$$
, $10 \oplus 5=15$