Aplicação da Teoria de Valores Extremos no estudos de dados da Covid-19: análise probabilística do número de novos óbitos diários

(Relatório Parcial)

Bolsista: Ana Carolina Matiussi

Orientador: Prof. Dr. Gilberto Rodrigues Liska - DTAiSeR

Universidade Federal de São Carlos (UFSCar) Campus Araras - CCA

Introdução

- A incidência do Coronavírus no Brasil é preocupante, pois a estimativa de infectados e mortos concorre diretamente com o impacto sobre o sistema de saúde.
- No Brasil, o **primeiro caso confirmado** ocorreu em 26 de fevereiro, após 20 dias, houve o **primeiro caso de morte** em 17 de março de 2020 e com 121 novos casos registrados. É evidente que a doença apresenta um crescimento diário significativo.
- Nessa lógica, é possível **prever a sua ocorrência** e compreender o padrão de eventualidade desses valores, quantificando a **probabilidade desse caso** acontecer.
 - Prevenção ou a redução dos potenciais efeitos drásticos, como um estado de calamidade pública.

Introdução

- A Teoria dos Valores Extremos (TVE) é muito utilizada para o estudo de eventos raros de um determinado fenômeno, sendo eles epidemiológicos, econômicos ou climáticos.
- Em muitas aplicações estatísticas o interesse é direcionado para a estimação de características centrais, por exemplo, o valor médio de precipitação ou o valor médio de temperatura. Em registros epidemiológicos, o valor médio de mortes ou o valor médio de casos.
 - O que os extremos podem nos mostrar e quais informações esses dados contêm?
 - Mas qual a consequência desses valores extremos no sistema de saúde pública?

Objetivos

Introdução

000

O projeto tem como objetivo analisar os dados do **número de óbitos** decorrentes da COVID-19 no Brasil e, com base nesses dados, utilizar a Teoria de Valores Extremos (TVE) para avaliar a probabilidade de eventos extremos ocorrerem futuramente.

- **Compreender** as distribuições de variáveis aleatórias ao longo do tempo, obtendo a probabilidade de ocorrência máxima mensal do número de novos óbitos diários causados pela COVID-19.
- Modelagem dos dados das metodologias de Blocos Máximos (BM) e Picos Acima do Limiar (POT - Peaks Over Threshold) com suas respectivas distribuições.

Dados

- Os dados foram obtidos de publicações oficiais e diárias do *Our World in Data*, ligada à Universidade de Oxford – Reino Unido.
- Separados em dois intervalos:
 - O período de 26 de fevereiro de 2020 a 31 de março de 2021 como série de dados de treinamento.
 - O períodos de 1 de abril de 2021 a 31 de janeiro de 2022 como série de dados para comparação.
- Os dados diários foram organizados em períodos mensais:
 - Considerando como variável o número de mortalidade e obtendo o seu valor máximo.

Materiais e Métodos

- Modelos probabilísticos
 - ► Metodologia de **Blocos Máximos** (BM):
 - Distribuição generalizada de valores extremos (GVE) e distribuição Gumbel
 - Metodologia dos Picos Acima do Limiar (POT Peaks Over Threshold):
 - Distribuição generalizada de Pareto (DGP) e distribuição Exponencial
- Estimação dos parâmetros
 - Método da máxima verossimilhança (MV)

Materiais e Métodos

- Testes de Hipóteses (valor p>0,01)
 - ► Teste **Ljung-Box**
 - Teste de Mann-Kendall
 - ► Teste de aderência de **Kolmogorov-Smirnov** (KS)
 - Teste da **razão de verossimilhança** (TRV)
- Avaliação dos modelos
 - Raiz quadrada do erro quadrático médio (RMSE), Erro percentual absoluto médio (MAPE), Erro Absoluto Médio (MAE), índice de concordância de Willmott modificado (md). Amplitude Média Intervalar (AMI) e o Critério de eficiência de Nash-Sutcliffe (NSE).
- Recurso computacional: Software R com os pacotes evd, extRemes, hydroGOF

Resultados Parciais

Tabela 1: Resultados das estimativas dos parâmetros das distribuições da metodologia BM e seus respectivos testes de hipótese para o número de novos óbitos de Covid-19

Metodologia dos Blocos Máximos (BM) Análise Mensal										
Distribuição	μ	σ	ξ				0 50/1			
GVE	1064,78	679,60	-0,0407	0,7903	0,583	0,01118	0,5841			
Gumbel	1057,39	1057,39 690,22 -					0,5682			

Tabela 2: Resultados das estimativas dos parâmetros das distribuições da metodologia POT e seus respectivos testes de hipótese para o número de novos óbitos de Covid-19

Metodologia dos Picos Acima do Limiar (POT)										
Análise Mensal										
		Parâmetro	S	TRV	Mann-Kendal	Ljung-Box	KS			
Distribuição	μ	σ	ξ				0.6506			
Exponencial	2800	577,71	-	0,1191	0,0162	0,0896	0,6596			
DGP	2800	726,71	-0,5963				0,4912			

Resultados Parciais

Tabela 3: Probabilidade de ocorrência de novos óbitos de Covid-19 da metodologia BM e o valor máximo esperado

Metodologia dos Blocos Máximos (BM)											
Análise Mensal											
Probabilidades							Esperado (meses)				
Distribuição	>1000	>2000	> 3000	> 4000	>5000	2	3	4	5	6	
GVE	66,71	21,54	4,73	0,86	0,14	1312	1667	1890	2053	2182	
Gumbel	66,27	22,52	5,82	1,40	0,33	1310	1680	1917	2093	2232	

Tabela 4: Probabilidade de ocorrência de novos óbitos de Covid-19 da metodologia POT e o valor máximo esperado

Metodologia dos Picos Acima do Limiar (POT)											
Análise Mensal											
Probabilidades							Esperado (meses)				
Distribuição	>1000	>2000	> 3000	> 4000	>5000	2	3	4	5	6	
Exponencial	17,71	3,14	0,56	0,10	0,02	2328	2562	2728	2857	2963	
DGP	5,61	0,00	0,00	0,00	0,00	2035	2461	2707	2870	2988	

Em uma segunda análise, será feito a análise para a 1º quinzena e 2º quinzena do mês, totalizando três séries de observações para as duas metodologias propostas.

Realizar a análise para o **número de casos** confirmados de COVID-19, seguindo a mesma dinâmica da primeira análise.

Utilizar outras medidas de qualidade de ajuste para avaliar possíveis incertezas nas estimativas de ambos os modelos.

Referências Bibliográficas

- ANTUNES, J. L. F.; CARDOSO, M. R. A. **Uso da análise de séries temporais em estudos epidemiológicos**. Epidemiologia e Serviços de Saúde, v. 24, no 3, p. 565–576, 2015. Disponível em: https://doi.org/10.5123/S1679-49742015000300024.
- ATKESON, Andrew. What will be the economic impact of COVID-19 in the US? Rough estimates of disease scenarios. National Bureau of Economic Research, 2020. Disponível em: http://www.nber.org/papers/w26867.pdf.
- COLES, Stuart. **An Introduction to Statistical Modeling of Extreme Values.** Springer series in statistics, v. 1, no 1, p. 1-219, 2001. Disponível em: https://doi.org/10.1007/978-1-4471-3675-0.
- GUILLOU, A.; KRATZ, M.; STRAT, Y. Le. An extreme value theory approach for the early detection of time clusters. A simulation-based assessment and an illustration to the surveillance of Salmonella. Statistics in Medicine, v. 33, no 28, p. 5015–5027, 2014. Disponível em: http://doi.wiley.com/10.1002/sim.6275.
- OPAS, O. P.-A. de S. Folha informativa sobre COVID-19 OPAS/OMS | Organização Pan-Americana da Saúde. paho.org. 2021. Disponível em: https://www.paho.org/pt/covid19.
- R CORE TEAM. **R: A language and environment for statistical computing**. Foundation for Statistical Computing. 2021. Disponível em: https://www.r-project.org/.
- THOMAS, M. et al. **Applications of extreme value theory in public health.** PLoS ONE, v. 11, no 7, p. e0159312, 2016. Disponível em: https://doi.org/10.1371/journal.pone.0159312.

