Birla Institute of Technology & Science, Pilani Work-Integrated Learning Programmes Division First Semester 2024-2025 Comprehensive Examination EC-3 Regular

Course No. : SE ZG557

Course Title : Artificial and Computational Intelligence

Nature of Exam : Open Book No. of Pages = 3 Weightage : 40% No. of Questions = 5

Duration : 2.5 Hours

Date of Exam : 25/05/2025 (AN)

Note:

1. Please follow all the Instructions to Candidates given on the cover page of the answer book.

2. All parts of a question should be answered consecutively. Each answer should start from a fresh page.

3. Assumptions made if any, should be stated clearly at the beginning of your answer.

- 1. Recall from class that if h_1 and h_2 are admissible heuristics, then $\max\{h_1, h_2\}$ are also admissible. Assume that $h_1, h_2 > 0$. Which of the following other possibilities are always admissible?
 - (a) $h_1 + h_2$
 - (b) $h_1 \times h_2$
 - (c) h_1/h_2 , assuming $h_2 > 0$
 - (d) $||h_1 h_2||$

 $[2 \times 4 = 8 \text{ Marks}]$

2. Consider the following 2 level adversarial zero-sum game where Player 1 starts and player 2 responds. Finally in the leaf nodes, we show the utilities of Player 1.

Answer the following questions based on the above game:

(a) Assuming minimax, what is the utility of Players 1 and 2. Fill the table below.

	Node	A	В	С	D	E
ſ	Player 1					
ĺ	Player 2					

(b) Assuming $\alpha - \beta$ pruing, and left \rightarrow right traversal, which leaf node would <u>not</u> be visited. (Note: identify the node using the value).

(c) Suppose the traversal order of the second level nodes are changed from B, C, D, E to E, B, C, D, then how many leaf nodes would be pruned.

[8 Marks]

3. Let P, Q, R denote the atoms in propositional logic. Let the knowledge base consist of the statements -

$$\begin{array}{lll} \phi_1 & := & (P \Rightarrow Q) \land (R \Rightarrow Q) \\ \phi_2 & := & P \lor R \\ \phi_3 & := & \neg (P \land R) \end{array}$$

(a) Complete the following Truth Table (T stands for TRUE, F stands for FALSE)

Р	Q	R	φ,	ϕ_2	do
			φ_1	φ_2	φ_3
Т	Т	Т			
T	Т	F			
Τ	F	Т			
Τ	F	F			
F	Т	Т			
F	Т	F			
F	F	Т			
F	F	F			

- (b) Does the knowledge base entail Q??
- (c) Does the knowledge base entail R??

[8 Marks]

4. Consider the following Bayesian network with 5 binary random variables - X_1, X_2, X_3, X_4, X_5 with the edges given by $X_1 \to X_3, X_2 \to X_3, X_3 \to X_4, X_3 \to X_5$. The conditional probability tables are given below

Node	Parents	P(node = 1)			
X_1	_	0.001			
X_2	_	0.002			
	X_1, X_2	X_1	X_2	$P(X_3 = 1$.)
		0	0	0.001	
X_3		0	1	0.29	
		1	0	0.94	
		1	1	0.95	
	X_3	X	$I_3 \mid P$	$P(X_4 = 1)$	
X_4)	0.05	
		1		0.90	
	X_3	X	$I_3 \mid F$	$P(X_5 = 1)$	
X_5		()	0.01	
		1		0.70	

The aim is to compute $P(X_3 = 1 \mid X_4 = 1, X_5 = 0)$. We wish to draw <u>one</u> sample using importance sampling.

- (a) What is the value of the initial weight w
- (b) Complete the procedure in the table below for this. Assumed that in the sample drawn we have $X_1 = 1, X_2 = 0$, and $X_3 = 1$

Step	Variable processed	Assigned value	Weight multiplier	Cumulative weight
1	X_1	1		
2	X_2	0		
3	X_3	1		
4	X_4			
5	X_5			

[8 Marks]

5. Consider an MDP as shown below with 4 states. For simplicity, assume the discounting factor $\gamma = 1$. The transition $S_3 \to S_4$ receives a reward of +1, and all other steps taken will get a reward of -1.

Recall the Bellman optimality equations-

$$U^*(s) = \max_{a} \sum_{s'} P(s' \mid s, a) [R(s, a, s') + \gamma U^*(s')]$$

Note: Assume that all actions from all states are deterministic, i.e. $P(s' \mid (s, a)) = 1$. Answer the following questions:

- (a) What should be the value of $U^*(S_4)$?
- (b) Write the Bellman optimality equation for $U^*(S_3)$.
- (c) Write the Bellman optimality equation for $U^*(S_2)$.
- (d) Write the Bellman optimality equation for $U^*(S_1)$.
- (e) Give the values for $U^*(S_i)$ for all i which satisfy the above equations.

[8 Marks]