Illumination and shading (2)

Adding "reality" to images
Shading algorithms
Flat
Gouraud
Phong

Algorithms for shading of surfaces

- Shading model so far showed how to compute reflectance for individual points on a surface
- · Shading varies across surfaces
- Point-by-point computation very expensive
- Three approaches for computing shading for polygonal surfaces
 - Flat shading
 - Gouraud shading
 - Phong shading

Flat shading

- One reflectance value per polygon surface
- Advantages
 - Computationally simple
- Drawbacks
 - Not very realistic for curved surfaces
 - Polygon structure visibly obvious

Gouraud shading

- Interpolates the reflectance (colour) across the surface of each polygon from a subset of points for which reflectance has been computed from the model
- Advantages
 - Visually more realistic than flat shading
- Drawbacks
 - Some artifacts may still be visible
 - Computationally more expensive than flat shading

• Algorithm 3. Compute reflectance for points on the edges for every scan-line by interpolating vertex intensities 4. Compute reflectances for every point within the patch of surface by interpolating along each scan-line between edge reflectances

Technical issues

- Normal vectors must be normalised (i.e. length always set to 1) (WHY?)
- After interpolation vectors must be re-normalised
- Transforming normal vectors (e.g. after change of the view or after changing position of an object) is not straighforward
- see e.g. http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture15/lecture15.ppt

Credits

- This presentation has used slides from various web sources, including:
 - www.classes.cec.wustl.edu/~cse452/lectures/lect11_Illumina tion_2pp.pdf
 - http://www1.cs.columbia.edu/~cs4160/slides/lecture15.ppt#7 67,2,Rendering: 1960s (visibility)
 - groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture15/lecture15.ppt
 - $-\ http://artis.imag.fr/{\sim} Nicolas.Holzschuch/cours/class9.pdf$

Homework

- A surface is of a uniform red colour.
 - Given two vertices at
 - V1 = [-80 00 58]
 - V2 = [-65 -47 58]

their vertex normals

- N1 = [-0.80 -0.04 0.60]
- N2 = [-0.65 -0.50 0.60]
 a vector specifying the direction of light

• [-0.30 -2.20 2.80]

- and light colour vector
- [1 0.5 0.5]

compute the colours (RGB vectors) of the 10 points lying on the line joining the two vertices V1 and V2 $\,$

Next lecture

Colour