unique p-periodic generalized solution

$$u(t) = T(t) f + \int_{0}^{p} T(p-s) F(s) ds$$

is asymptotically stable; i.e., for every generalized solution $v(\cdot)$ of (2.1) we have $\lim_{t\to\infty}\|v(t)-u(t)\|=0$.

Example 2.5. Let E be the Banach space $C_O(\mathbb{R}_+)$; $A = \frac{d}{dx}$ with $D(A) = \{f \in E: f' \in C^1 \text{ and } f' \in E\}$ is the generator of the uniformly stable translation semigroup T(t)f(x) := f(t+x). Applying (1.14) we obtain that im $A = \{f : \int_O^\infty f(x) dx \text{ exists}\}$ is dense in $C_O(\mathbb{R}_+)$. Let $r \in \text{im } A$ and let $F(\cdot)$ be a p-periodic real-valued function.

We apply Theorem 2.4 to the initial value problem

(*)
$$\frac{d}{dt} u(t,x) = \frac{d}{dx} u(t,x) + r(x)F(x+t) , u(0,\cdot) \in D(A) .$$

We may rewrite (*) as

$$(**)$$
 $\dot{v}(t) = Av(t) + G(t)$

where $v(t) = u(t, \cdot)$ and $G : \mathbb{R}_+ \to E$ is defined by G(t)(x) = r(x)F(x+t) .

G is p-periodic with values in E and $h_0:=\int_0^p T(p-t)G(t) \ dt$ is the function $x \to [\int_0^p T(p-t)G(t) \ dt](x) = F(x)\int_x^{x+p} r(s) \ ds$. For the function $f=\sum_{k=0}^\infty T(kp)h_0$, which is given by $x \to F(x)\int_x^\infty r(s) \ ds$, we clearly have (Id - T(p)) $f=h_0$. Therefore (**) has a unique p-periodic generalized solution (Thm.2.4) although iR $\in \sigma(A)$ (compare with Remark 2.3).

The unique p-periodic generalized solution $u(t,\cdot)$ is given by $u(t,x) = F(x+t) \int_{x+t}^{\infty} r(s) \, ds + F(x+t) \int_{x}^{x+t} r(s) \, ds = F(x+t) \int_{x}^{\infty} r(s) \, ds$. For every solution $v(t,\cdot)$ of (*) we have, by Thm.2.4: $\sup\{|v(t,x) - F(x+t)| \int_{x}^{\infty} r(s) \, ds| : x \in \mathbb{R}_{+}\} \to 0$ as $t \to 0$.

NOTES.

Section 1. The exponential growth bounds $\omega(f)$ and $\omega(A)$ as well as the characterizations (1.2), (1.6) and Theorem 1.3 (i) can be found in Hille-Phillips (1957). Growth bounds similar to $\omega_1(A)$ were considered first in [D'Jacenko (1976)] and in [Zabczyk (1979), Prop.2]. Example 1.2.(2) is taken from Wolff (1981); other 'counterexamples' can be found in Hille-Phillips (1957), Foias (1973), Triggiani (1975), Zabczyk (1975) and Greiner-Voigt-Wolff (1981). The statements (1.2), (1.6) and Theorem 1.3.(i) are semigroup versions of results of classical Laplace transform