Carburisation by CO₂?

David Young

1

REACTION WITH CO₂

Alloys: Fe-9Cr, P91, P92

Gas: Ar-20CO₂

T: 650°C

 p_{O_2} = 10⁻⁷ atm, a_C = 10⁻¹⁵

 $7\underline{Cr} + 3\underline{C} = Cr_7C_3$

For 9 Cr steel, need $a_{Cr} \sim 10^{-2}$

The required carbon activity is 10¹³ times higher than the gas can provide!

CARBON PENETRATION

Gas

 $CO_2 = CO + \frac{1}{2}O_2$

 $a_O = K \frac{p_{CO_2}}{p_{CO}}$

MO

Metal

 $2CO = CO_2 + C$

 $a_C = K \frac{p_{CO}^2}{p_{CO_2}}$

Oxygen activity gradient corresponds to varying CO/CO₂ ratio

 p_{CO_2}

 \mathbf{a}_{O}

5

CARBON PENETRATION II

$$2CO = CO_2 + C$$

$$a_C = K \frac{p_{CO}^2}{p_{CO}}$$

Gas

CONCLUSION: Carbon activity increased within/beneath oxide scale

TEST a_{C} CALCULATION

Method	a _C
Scale-alloy Equilibrium	0.47
From measured f _V	0.43

11

CARBURISATION KINETICS

CARBON PERMEABILITY

$$X_C^2 = 2k_p t$$

$$k_p = \varepsilon \frac{N_C^{(s)} D_C}{\nu N_{Cr}^{(0)}}$$

$$N_C^{(s)}D_C = 6.5 \times 10^{-11} \text{ cm}^2 \text{ s}^{-1}$$

Use independently measured $\mathbf{D}_{\mathbf{C}}$ to calculate $\mathbf{N}_{\mathbf{C}},$ hence $\mathbf{a}_{\mathbf{C}}$

VERIFY a_C CALCULATION

Method	a_{C}
Scale-alloy Equilibrium	0.47
From measured f_V	0.43
From carburisation rate	0.25

CONCLUSION: Carbon beneath oxide scale supersaturates with respect to gas, but represents local equilibrium

15

HIGHER Cr ALLOYS?

Fe-20Cr, Ar-CO₂, 650°C

Carbides in Fe-20Cr at 650°C

Under iron-rich oxide nodule

19

Carbides in Fe-20Cr at 650°C

Under chromia scale

IINTERFACE a_C UNDER Cr₂O₃

Method $a_{C}(Dry)$

FeO-alloy Equilibrium 0.47

Cr₂O₃-alloy Equilibrium >10⁴

From measured f_V 0.1

From carburisation rate 0.01

CONCLUSION: Oxide scale provides partial, transient protection against carburisation

21

How Does C Penetrate Oxide Scale?

BACKGROUND KNOWLEDGE

- Diffusion of Cr or O in Cr₂O₃ along grain boundaries
- C is "insoluble" in Cr₂O₃
- PROPOSAL: C moves via oxide grain boundaries

Atom Probe Tomography

Mill very fine tips from oxide

Cr₂O₃ scale

Alloy

23

FIB MILLED TIP FOR ATOM PROBE

Bright field TEM view

CO₂ Corrosion of 9Cr Steels: Questions

What is the rate compared with air oxidation? Why is the oxide scale in two layers? Why is the interface between them at the former steel surface?

What transports across the scale, metal or oxygen? What controls the scaling rate?

> Why does internal carburisation occur? How fast is it, and what controls its rate?

UNSW

External or Internal Cr Oxide

$$N_{\rm Cr}\left({\rm crit}\right) = \left(\frac{\pi_g N_0^s D_0 V_{\rm m}}{{}_{3D_{\rm Cr}} V_{\rm OX}}\right)^{1/2}$$

Same alloy, same T, but:

 N_{Cr}

 N_{Cr}

29

Rates in Air and CO₂

120 h in Air

 $M_7C_3 + \underline{O} \rightarrow M_3O_4 + \underline{C}$

Carbides oxidised in place; Cr-rich oxides end up in inner scale

33

Explains why 9Cr alloy nonprotective in CO_2

Air reaction

Enough Cr to diffuse to surface and form:

Explains why 9Cr alloy nonprotective in

Air reaction

Enough Cr to diffuse to surface and form: External Cr-rich scale

- Fast inward C diffusion
- C reacts with:
- Result:
- Consequence:

35

CO₂ Corrosion of 9Cr Steels: Questions

What is the rate compared with air oxidation? ok Why is the oxide scale in two layers? Why is the interface between them at the former steel surface?

What transports across the scale, metal or oxygen? What controls the scaling rate?

> Why does internal carburisation occur? How fast is it, and what controls its rate?

UNSW

Mass Transport Mechanisms

- Inward O diffusion confirmed by tracer experiments (¹⁶O then ¹⁸O)
- · Outward Fe diffusion from alloy via cation vacancies in FeO
- · Inward C diffusion?

41

Mass Transport Mechanisms

- · Outward Fe diffusion from alloy via cation vacancies in FeO
- Inward C diffusion?
- · Inward O diffusion?

Mass Transport Mechanisms: Outer layer FeO+(Fe,Cr)₃O₄ J_{Fe} J_C J_O

- Background: O lattice diffusion in FeO does not happen
- · C is not soluble in FeO

50um

43

Mass Transport Mechanisms: Inner Layer

Inner layer is fine-grained, 2-phase and porous

45

CO₂ Corrosion of 9Cr Steels: Questions

What is the rate compared with air oxidation? OK

Why is the oxide scale in two layers?

Why is the interface between them at the former steel surface?

What transports across the scale, metal or oxygen?

What controls the scaling rate?

Why does internal carburisation occur?

How fast is it, and what controls its rate?

OK

Next Time

Alloy design to resist CO₂ attack

