1. The pseudo-inverse of **X** is $(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 \end{bmatrix}$

Ans c

2. Since $\bar{\mathbf{x}} \ge \mathbf{0}$, it follows that $\bar{\mathbf{c}}^T \bar{\mathbf{x}} \ge \min\{\mathbf{c}_i\} \sum_{i=1}^n x_i = \min\{\mathbf{c}_i\}$. This can be achieved by setting x_i corresponding to index i for which c_i is minimum to 1 and rest to 0

Ans d

- 3. The constraint for the beamformer $\overline{\mathbf{w}}$, with estimate of the nominal CSI denoted by $\overline{\mathbf{h}}_e$, for a suitable matrix \mathbf{P} , is $\|\mathbf{P}^T \overline{\mathbf{w}}\| \leq \overline{\mathbf{w}}^T \overline{\mathbf{h}}_e 1$
- 4. Given the base station cooperation problem with K base stations, M users, $P_{i,j}$, $h_{i,j}$ denoting the power and channel coefficient from base station i to user j, respectively. As shown in lectures, the minmax optimization problem is

min.
$$t$$

s. t. $\sum_{j} P_{i,j} \le t$, $1 \le i \le K$
 $\sum_{i} P_{i,j} |h_{i,j}|^2 \ge \tilde{P}_j$, $1 \le j \le M$

Ans c

5. The channel estimate is

$$\begin{aligned} (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{y} \\ &= \begin{pmatrix} \begin{bmatrix} -1 & 1 & 1 & -1 \\ 1 & -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} ^{-1} \begin{bmatrix} -1 & 1 & 1 & -1 \\ 1 & 1 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 1 \\ -2 \end{bmatrix} \\ &= \begin{bmatrix} 2 \\ 0 \end{bmatrix} \end{aligned}$$

Ans c

- 6. The pseudo-inverse of **X** is $(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T = \frac{1}{4} \begin{bmatrix} -1 & 1 & 1 & -1 \\ 1 & -1 & 1 & -1 \end{bmatrix}$ Ans a
- 7. The optimal vector $\bar{\mathbf{x}}$ that minimizes the regularized least-squares cost function min. $\|\mathbf{A}\bar{\mathbf{x}} \bar{\mathbf{b}}\|^2 + \lambda \|\bar{\mathbf{x}}\|^2$ is $(\mathbf{A}^T\mathbf{A} + \lambda \mathbf{I})^{-1}\mathbf{A}^T\bar{\mathbf{b}}$
- 8. Given the full column rank matrix **A**. The projection matrix for the column space of **A** is $\mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T$

Ans d

- 9. Given the least-squares problem min. $\|\bar{\mathbf{y}} \mathbf{A}\bar{\mathbf{x}}\|^2$, with $\bar{\mathbf{y}} \mathbf{A}\bar{\mathbf{x}} = \bar{\mathbf{e}}$. For the optimal solution $\hat{\mathbf{x}}$, the corresponding error vector $\bar{\mathbf{a}}$ is perpendicular to each column of \mathbf{A} Ans c
- 10. The channel estimate is

$$(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Ans a