Grundlagen der Informatik

Betriebssysteme

Prof. Dr. Peter Jüttner

Definition:

Sammlung von Programmen zur Verwaltung der Hardware

Grundlagen der Informatik

Betriebssysteme

Prinzipien Schichtenmodell:

- Schicht nutzt ausschließlich Dienste (Schnittstellen) der direkt darunter liegenden Schicht
- kein schichtenübergreifender Zugriff

Betriebssystembeispiele:

- CP/M (DOS-ähnlich ~1980)
- BS2000 (u.a. Siemens ~1975)
- MS DOS (Disk Operating System, Microsoft ~1981)
- MS Windows ... (Microsoft ab ~1983)
- LINUX (~1991)

Aufgaben des Betriebssystems, u.a.:

- Verwaltung des Hauptspeichers
 - physikalisch vorhandener Speicher
 - virtueller Speicher
- Verwaltung externer Speicher (z.B. Festplatte)
- Steuerung des Zugriffs auf Peripherie (z.B. Drucker)
- Steuerung des Ablaufs von Programmen

Grundlagen der Informatik

Betriebssysteme

Aufgaben des Betriebssystems, u.a.:

- Zugriffsschutz
- Abrechnungsinformation

im Detail: Verwaltung einer Festplatte:

- Struktur eines Dateisystems
 - Blockweise Übertragung von externem Speicher vom/zum Rechner
 - Dateien belegen i.d.R. mehrere Blöcke auf der Festplatte (meist nicht konsekutiv)
 - Zusätzlich zum eigentlichen Inhalt wird für jede Datei weitere Information vewaltet (z.B. Zugriff, Typ der Datei, Länge)

im Detail: Verwaltung einer Festplatte:

- Dienste
 - Anlegen, Wiederfinden, Ändern, Löschen einer Datei
 - Verwalten der Dateiblöcke
 - Koordination der Plattenzugriffe, z.B. Nutzen der Zugriffszeit für andere Rechenoperationen, Minimierung der Zugriffszeit (minimale Bewegung des Schreib-/Lesekopfs)

im Detail: Verwaltung einer Festplatte - Beispiel:

im Detail: Verwaltung einer Festplatte - Beispiel:

Verwaltungsinformationen:

- Verz
- Typ Ordner
- schreibbar
- Größe 150 Bytes
- Blöcke 4
- Datei1
- Typ Textdatei
- schreibbar
- Größe 15000 Bytes
- Blöcke 1, 3, 8, 10,

im Detail: Verwaltung einer Festplatte - Beispiel:

Verwaltungsinformationen:

- Struktur auf Festplatte:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10

- Verz
- Typ Ordner
- schreibbar
- Größe 150 Bytes
- Blöcke 5
- Datei1
- Typ Textdatei
- schreibbar
- Größe 15000 Bytes
- Blöcke 1, 3, 8, 10, ...

- Datei2
- Typ Textdatei
- schreibbar
- Größe 20000 Bytes
- Blöcke 2, 4, 6, 7, 9,

• • •

im Detail: Prozessverwaltung:

- Prozess: Eigenständiger Ablauf eines Programms auf einem Rechner
- i.d.R. Mehrprozesssysteme
 - mehrere Programme eines Benutzers laufen parallel
 - Programme verschiedener Benutzer laufen parallel auf dem selben Rechner

im Detail: Prozessverwaltung – Dienste:

- Zuteilung von Ressourcen (z.B. Prozessor, Speicher) an Prozesse
- Schutz der Prozesse voreinander vor gegenseitiger Störung (Überschreiben des Speichers, Belegen von Betriebsmitteln, Verzögerung)

im Detail: Prozessverwaltung – Dienste:

- Zuteilung von Rechenzeit an Prozesse am Beispiel von Zeitscheiben (time slicing)
- Prinzip: Ein Prozess bekommt den Prozessor exklusiv für einen bestimmten Zeitraum, dann wird der Prozessor einem anderen Prozess zugeteilt.
 - → quasiparallele Abläufe mehrerer Prozesse auf einem Prozessor (Eindruck)

im Detail: Prozessverwaltung – Dienste:

 Zuteilung von Rechenzeit an Prozesse am Beispiel von Zeitscheiben (time slicing)

im Detail: Speicherverwaltung:

- Mögliche Probleme: Prozesse greifen auf die selbe Speicherstelle zu (über Adresse) und überschreiben gegenseitig Information
- → Jeder Prozess bekommt seinen eigenen Speicher, der physikalisch von den Speichern anderer Prozesse getrennt wird. (jeder Prozess hat den Eindruck, den Hauptspeicher exklusiv zu besitzen)

im Detail: Speicherverwaltung - Prinzip:

- Speicher wird in <u>Seiten</u> (pages) fester Größe (z.B. 4kB) aufgeteilt.
- In einer Tabelle wird jeder Seite eines Prozesses eine Seite im physikalischen Speicher (<u>Kachel</u>) zugeordnet.
- Jeder Prozess kennt nur seine logischen Adressen.
- Betriebssystem ordnet logische Adressen zu physikalischen Adressen zu

Speichersicht P1: physikalischer Speicher:

0 - 99
100 – 199
200 – 299

100 – 199		2
		3
200 – 299		Λ
	ahelle:	4
		5
		6
		7
Zuordnungsta		8
Zaoranangsie	abelie.	

Speichersicht P2:

0 - 99
100 - 199
200 - 299
300 - 399
400 - 499

Zuordnungstabelle:

0 1 2 3 4 1 4 6 5 10

0 1 2

3 9 7

10

im Detail: Speicherverwaltung - Prinzip:

Speichersicht P1:

physikalischer Speicher:

0 - 99
100 – 199
200 – 299 🔨

Adressierung der logischen Speicherzelle 205: Suchen Kachel der Seite 2 in Zuordnungstabelle, Ergebnis 7

Adressieren der physikalischen Adresse 705 Zuordnungstabelle:

0 1 2 3 9 7

1
2
3
4
5
6
7
8
9
10

im Detail: Speicherverwaltung - virtueller Speicher:

- Speicher logisch größer als physikalisch
- Seitengröße = Blockgröße der Festplatte
- Jeder Seite des virtuellen Speichers wird ein Block der Festplatte zugeordnet (für alle Seiten ein zusammenhängender Bereich)

- Seitentabelle gibt an
 - ob und ggf. in welcher Kachel des phys. Speichers die Seite liegt
 - oder in welchem Block der Festplatte (falls nicht im phys.
 Speicher)

im Detail: Speicherverwaltung - virtueller Speicher:

- benötigte Seite nicht im phys. Speicher → Holen von Platte
 - Laden in freie Kachel (falls vorhanden)
 - Auslagern einer nicht benötigten Seite auf Platte und Laden der benötigten in die frei gewordene Kachel

im Detail: Speicherverwaltung - virtueller Sp.:

Zum Schluss dieses Abschnitts ...

Noch Fragen 77