

Monitoring environment-parameters for research towards energy-efficient buildings

Speaker's Intro

Speaker

Bart Voet

Day Job

Practice Lead Java Development at AXA

Evening and weekend

Family

Programming and hacking

Learning electronics

Skateboarding and snowboarding

. . .

Intro

What is the content of this thesis?

Stakeholders

Primary stakeholder

Division of Building Physics KUL

(Department Civil Engineering)

System capturing data from digital sensors

Scalable to different scenario's

Research facility

Educational environment

External research

Stakeholders

```
Stakeholder
```

Groep T

Evolution

Smart sensors

Digital interfaces

Sensor networking

New devices (and open source)

Rapsberry Pi, BeagleBoard, Cubieboard AVR, Arduino, ...

. . .

Stakeholders

Stakeholder

Author (and other hobbyist)

Learning platform

Experienced Java Developer Learning embedded development

Open source platform

Scalable to different devices

Focused on monitoring

Integrable in different scenario's

Requirements and scope What is expected?

Context

Department of Building Physics KUL performing

research on energy efficient buildings

Demand

System(s) for continuous measurement that is

Reliable

Inexpensive system(s)

Continuous measurement

Use Raspberry Pi as a device for sensing

Use Raspberry Pi as a device for **sensing** environment **parameters**

Important for

Indoor climate

Energy consumption

Example given

Relative humidity

Temperature

Differential pressure

... and **other** measurements in the future

More specifically, use Raspberry Pi as a device to

Control and **configure** sensors

Collect data

Store sensor measurements

(for later evaluation and analysis)

Correlate stored measurements

configuration

timing

Using sensors (Sensirion)

SHT21 (STS21-SHT25)

temperature relative humidity

5000

SDP600 (later phase) differential pressure

(Not requested by stakeholder)

BMP180 (Bosh)

Barometric pressure

DHT11

Temperature

User profile

Taking into account profile of the users

Students

Researchers

Assuming only basic knowledge of

Electronics

Command line

High level programming construct

(but not advanced)

Scope and focus

Scope limited to digital (smart) sensors

Digital interface (i2c, spi or custom)

Integrated MCU performing

Calibration

Linearization

No focus on classic sensors

Manual calibration

Precision resistors

. . .

(although not excluded)

Scope and focus

Consequence

Focus on **system design** (not hardware design)

Integration

Extensibility

Ease of use

Reliability

Documentation

. . .

Scope and position

Consequence

Focus on a **pluggability** and **portability**Different hardware

Different systems (OS or not)

Different network-integration

. . .

Open for extension Closed for modification

Environment

Research-process and its components

Scenario's

Primary scenario: Research-facility in Gent

HVAC-infrastructure deployed

Electricity and ethernet

Deploy, install and configure sensors
Aggregate data
Long time

Scenario's

Scenario: Educational environment (students)

Class-room environment

Labo

Experiment and learn Explore sensors

Scenario's

Scenario: Large buildings

Mobile scenario

No HVAC

No assumptions on

Electricity

Network

Similar to primary scenario

More constrained environment

TOP Challenges

Multiple sensors

Concurrent access

e.g. Sensirion-sensors having same i2c-adress (40)

Large area's

i2c and spi not developedfor long distance(even if you lower the clock)

TOP Challenges

Reliability, durability and resilience

Ability to recover from

Power interruption

Network incidents ...

Alerting-capability

Sensor goes down

Errors coming from sensors

Processing device not working

Heating ...

TOP Challenges

Usability

Scalable to different scenario's

Users are no software- or hardwareengineers

Need an interface that's

Easy to integrate with other systems
Easy to integrate in personal computing
(structured txt-files)

TOP Challenges

Extensibility

Adding new sensors and configure

Adding new sensor-type without changing the system (open-closed-system)

Configurability

Changing sensor-parameters

Changing scheduling

TOP Challenges

Correlation and timing

Measurements need to be correlated to

Time

Configuration of sensors

Approach Process of development? Building blocks?

Approach

Approach

Category of building blocks (solutions)

Hardware, software, documentation

Serve as annotation in thesis

Approach

Category of solutions

Hardware, software, documentation

Serve as annotation in thesis

STORAGE	INTEGRATION	
APPLICATION		TOOLS FRAMEWORKS
LIBRARY		
DRIVER		

Design and architecture

Concept?

Principles?

Design?

Building blocks?

System Concept

System-concept: runtime and dependencies

System Concept

System-concept Runtime

Scheduling measurements

Relying on system abstractions

Integration

Storage

Device-abstractions

More sensors

Of different types

System Concept

System-concept: Support different sensors

System supports

Extracting data from multiple Sensors

Multiple types via Sensor-abstraction

System Concept

System-concept: Support different devices

Isolate system-dependencies

Scheduling

Digital interfaces

. . .

Support for

Low level (c-api)

High level (java)

System Concept

System-concept: Network independence

Integration-capability isolated

Local integration

Zigbee

WIFI

MQTT

. . .

!! System provides abstraction and pluggability to adapt, not all implementations exists!!

System Concept

System-concept: Data exposure

Connectors for clients

Open protocols to integrate with various kind of devices

Current provided protocol

REST exposing

JSON

CSV (under construction)

5

Single Responsibility Principle

O

Open Closed Principle

Liskov Substitution Principle

Interface Segregation Principle

D

Dependency Inversion Principle

Test-Driven Development for Embedded C

James W. Grenning
Forewords by Jack Ganssle

SOLID

Introduced by Robert C-Martin

Principles for improving

Flexibility

Extensibility

Modularity

Testability

Introduced in OO but applicable to all programming-paradigms

Test-Driven Development for Embedded C

James W. Grenning
Forewords by Jack Ganssle
and Robert C. Martin

Modularity

Package code and classes into reusable and composable package

Provide

api-components(interfaces and types)

concrete implementations

Code needs to be **SOLID**

Test Driven Development (**TDD**)

Drive your code trough tests

Just enough code

Isolate dependencies

(Discovered/invented by Kent Beck)

Design-concept: Layering

Different building blocks

Built on top

Inner layers can be used independently

Segregation by interface

Layer: **Sensor-API**

Sensor- and SensorType-abstraction

Interfaces key-value pair based

Modules containing concrete implementations Standardized exceptions

Goal

Provide a repository for reuse (Github-project)

Isolate the processing logic

Provide an abstraction layer for Sensor-agent

Translate the datasheet behind an abstraction

Layer: **Sensor-API**

System-abstraction of

Digital interfaces (i2c, spi, uart)

Pin-access

Timing

Goal

Portability (vs scenario's)

Choice of libraries (e.g. RPi can work JME or Pi4j)

Layer: **Sensor-Agent**

Runtime or application

Captures data at interval

Manages sensors via sensor-api-abstraction

Notifies and communicates via sensor-events

Goal

Use the sensor-api without low-level coding
Set up a measurement system based on configuration
Plug-in architecture for cross-cutting-concerns

sensor-api

sensirion

Sensor

Layer: **Sensor-Agent**

Depends on abstractions

Logging

Storing the sensor-measurement (locally)

Storing the sensor-**configuration** (might be another storage-medium than measurement)

Integrates with the outside-world via sensor-events

New measurement (out)
Sensor activated or reconfigured (out)
Instructions for reconfiguration (in)

Layer: **Sensor-Agent**

Abstractions

are interchangeable
interface segregation
dependency injection
can be combined (or composed)
are deactivated by default
by default empty implementations

Layer: **Sensor-Agent**

Runtime sequence

Layer: **Sensor-Agent**

Configuration sequence

Layer: **Sensor-Hub**

Runtime or (web-)application

Communicating with agents

Centralizing data-storage

Exposing data to users (and other devices/servers)

Goal

Collecting and storing data from different sensors

Enable user to query the data

Interface for configuring remotely the sensors

Layer: **Sensor-Hub**

Link between agent and hub

Measurements are pushed

Instructions are forwarded to

Events

Confirmation of configuration

Errors

Sensor-hub-events and sensor-events

Should integrate with same protocol

Code is message based

Layer: **Sensor-Hub**

Datamodel

Layer: **Monitoring**

Monitor tool can query for

Error events

Deactivated agents or sensors (activity-monitoring)

REST-interface

In practice

Today?

Status?

Future?

SDP600 SHT21

Today

BMP180

Both BMP180 (77) and SDP600 (40) on same bus

Today

Multiple sensors

Support for "heterogeneous sensor networks"

Reliability

Data Loss

Local and centralized storage Scalability of sensor-hub and centralized storage

Support for different devices

For different non-functional requirements

Monitoring

Sensor-Hub can propagate errors Sensor-Hub can non-activity of Sensor-agents

Correlation and timing

Data-model integrates configuration-id's

Timing is kept centralized

Few seconds difference can be tolerated

Sensor-Hub can be programmed to check differences (if required)

Usability and Configurability

System requires no low-level programming to set up sensors

Sensor-configuration and -timing can be configured via hub

Extensibility

Sensor-implementation are abstracted behind generic interface

New sensors can be added by implementing an interface

Status

Java-implementations

Sensor-API

SHT21 and SDP600 done

STS21, BMP118 ongoing

Sensor-Agent (activemq)

READY TO BE TESTED!!!

Sensor-HUB (Activemq and Tomcat)

READY TO BE TESTED!!!

DEPLOYMENT-refinements (configuration and discovery)

Status

C-implementations

Sensor-API

SHT21 done

SDP600, STS21, BMP118 ongoing

System-support limited to RPI

Sensor-Agent

Raspberry Pi ongoing

AVR ongoing

Status

Documentation

Deployment-guide

Mini-training on Raspberry Pi

Structured documentation on supported sensors ongoing

Adding sensors

Sensor-abstraction

Adding new implementation to sensor-agent

Keep attention

C and Java-implementation should remain in sync

Elaborating/Finishing the C-agents

(currently only on Raspberry Pi)

Support for AVR

Allowing low-level devices

Larger scenario's (networks)

Constrained environments

New integration-mechanisms

Data-Link, Network, Transport

Meshing networks

Zigbee - IEEE 802.15.4 – Bluetooth light – RF

Middleware

MQTT (Message Queuing Telemetry Transport)

MQTT-SN (MQTT for Sensor Networks)

Scaling

Adding more sensor-hubs

(load balancing ActiveMq)

Storage and backup on server

Monitoring

Monitor rest-interface with Nagios

SensorHub: Raspberry Pi best option?

	Raspberry Pi	BeagleBone Black	pcDuino	Olinuxino Micro	Cubietruck
Memory	4 / 32 GB DDR-1600	4 / 32 GB DDR-1600 ECC	2 / 16 GB DDR-1600	2 / 16 GB DDR-1600	2 / 16 GB DDR-1600
Clockspeed	700 MHz	1 GHz	1 GHz	1 GHz	1 GHz
CPU-core(s)	ARM-11	ARM-Cortex-A8	ARM-Cortex-A8	Dual ARM-Cortex-A7	Dual ARM-Cortex-A7
GPU-core	Videocore IV	SGX530	Mali-400	Dual Mali-400	Dual Mali-400
Hardware Codecs	H264, MPEG-4 AVC (MPEG-2, VC-1 optioneel)	-	MPEG-1/2/4 AVC, JPEG, H.263, H.264, AVS, VC1, WMV7/8, VP-6	MPEG-1/2/4 AVC, JPEG, H.263, H.264, AVS, VC1, WMV7/8, VP-6	MPEG-1/2/4 AVC, JPEG, H.263, H.264, AVS, VC1, WMV7/8, VP-6
RAM	512 MB	512 MB	1 GB	1 GB	2 GB
Flash	-	2 GB	2 GB	4 GB	2 GB

SensorHub: Raspberry Pi best option?

		<u> </u>			
	Raspberry Pi	BeagleBone Black	pcDuino	Olinuxino Micro	Cubietruck
Lithium-battery	-	-	-	Supported	Supported
Video	HDMI, Composer	Micro-HDMI	HDMI	HDMI, VGA (adapter)	HDMI, VGA
Connections	2 * USB 2.0	USB 2.0	2 * USB 2.0	3 * USB 2.0	3 * USB 2.0, Bluetooth
Audio	Audio-jack	-	-	Audio-jack, Micro	Audio-jack, SPDIF
Network	Fast Ethernet	Fast Ethernet	Fast Ethernet	Fast Ethernet	Gigabit, WIFI
Storage	SD	micro-SD	micro-SD	SD, micro-SD, SATA	SD, micro-SD, SATA
Usage	Media Center ++ PC + Home automation +	Home automation ++	PC+	Media Center + Router + NAS ++ SERVER ++ Home automation + Mobile ++	Media Center + Router ++ NAS +++ SERVER ++ Home automation + Mobile +
Price	35 €	45€	60 €	65 €	95 €

SensorHub: Raspberry Pi best option?

Depends on scenario

- + Accessible
- + Well documented and supported by community
- Stability and industry compliance
- Performance (strength is GPU not CPU)

Recommended for educational scenario's

Depending on storage-setup and power required

BeagleBone

Olinuxino

Cubieboard

SensorHub: Raspberry Pi best option?

Sensor-hub and -agent

Portable

Java is supported on most (all) high-level devices

C is supported on all low-level devices

System-dependencies isolated

Recommended for educational scenario's

Depending on storage-setup and power required

BeagleBone

Olinuxino

Cubieboard

More information

Code and documentation on https://github.com/bartvoet/

Thank you for the attention! Ready for Questions.