Divisors, line bundles, and all that X a Riemann surface A <u>divisor</u> on X is a function $D: X \rightarrow \mathbb{Z}$ such that 3χ € X 1 D(x) ≠03 is discrete in X. Notation: $D = \sum D(x) \cdot x$ G multiplicity of Dat a If X is compact, this is a finite sum. Div (x) = Set q divisors on X, group under + If X is compact Div(X) = Free abelian group on X.Example 1) f a menomorphic function on X. $\mathbb{D}_{\mathsf{IV}}(f): X \to \mathbb{Z}$ $\mathsf{a} \mapsto \mathsf{ord}_{\mathsf{a}} f$ () u principal (fg) = (f)(g); (1) = 0; (4) = -(f)so $f \mapsto (f)$ is a hom. $\mathcal{M}(x)^* \longrightarrow Div(x)$ nonzen mero. fun.

Example 2:
$$P: X \rightarrow Y$$
 non const.

For $y \in Y$, get $Q^*(y) = \sum (\text{mutl}_2 Q) \cdot x$
 $x \in Q^*(y)$

More generally, for $D \in \text{Div}(Y)$ we get $Q^*(D) \in \text{Div}(X)$.

 $Q^*: \text{Div}(Y) \rightarrow \text{Div}(X)$
 $Q^*: \text{Div}(Y) \rightarrow \text{Div}(X)$

Example 3:

 $Q: X \rightarrow Y$
 $Q: X \rightarrow Y$

Def:
$$D_1 \sim D_2$$
 if $D_1 - D_2 \in PDiv(X)$.

5 Linearly equivalent. $CI(X) = \frac{Div}{PDiv(X)}$
 $EX: P: X \longrightarrow PP$
 $P^*(P) \sim P^*(P)$ for any $P, q \in P$

Obs:
$$\varphi^*(f) = (f \circ \varphi) \times \xrightarrow{\varphi} Y$$

So if $D_1 \sim D_2$ on Y
 $D_1 - D_2 = (f)$

Then $\varphi^* D_1 - \varphi^* D_2 = (f \circ \varphi)$

so $\varphi^* D_1 \sim \varphi^* D_2$

So $\varphi^* : D_1 \circ (Y) \rightarrow D_1 \circ (X)$ respects linch of $C(Y) \rightarrow C(X)$

Degree: X compact.

 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow Z \circ (X) \rightarrow Z \circ (X)$
 $Q \circ (Y) \rightarrow$

More examples coming soon.

des descends to

 $deg: Cl(X) \rightarrow \mathbb{Z}.$

Line bundles X a complex manifold. A line bundle on X is a mild L& a map 1 -> X such that J open cover {Ui} of X $U_{i} \times C \xrightarrow{\varphi_{i}} \overline{f}(U_{i}) \longrightarrow \mathcal{L}$ and Ti(vixvj) = Ti(vinvj)Vixyx & Viny; $\varphi_{ij} = \varphi_{i} \circ \varphi_{j} : V_{ij} \times \mathbb{C} \xrightarrow{\varphi_{ij}} V_{ij} \times \mathbb{C}$ Pij is fiberwise linean. ie. (t,v) > (t, M,v) $M_{t} \in GL(\mathbb{C}) = \mathbb{C}^{*}$

Similarly a vector fundle of rank n.

X Riemann surface $L \xrightarrow{\pi} X$ a line bundle Consider a "holomorphic section" o: X -> L 1 C Ux C $\downarrow \qquad \downarrow \qquad \circlearrowleft \quad \sigma: \ \mathsf{U} \mapsto \ (\mathsf{U}, \mathsf{S}(\mathsf{U}))$ $S: V \rightarrow C$ must be hol. $TF = \sigma \neq 0$, we get $\text{Div}(\sigma) = \sum_{x \in X} (\text{Ord}_{x}\sigma) \cdot \infty$ (Extends to "meromorphic sections"). Suppose σ_1 , σ_2 are two meromorphic sections of L. Then $\exists f \in \mathcal{M}(x)^*$ s.t. OT = f 52. So $(\sigma_1) = (\sigma_2) + (f)$ i.e. two sections give linearly egu. divisors. Imp: Tx > X the tangent fundle Dx T X the cotangent bundle σ a mer sect. of ΩX . (Locally $\sigma = f(z)dz$ (o) called a convonicel divisor.

Ex.
$$X = P' = C_x U C_y$$
 $y = \frac{1}{x}$
 $dx \quad a \quad section \quad g \quad SQ \quad on \quad C_z$
 $dy \quad a \quad section \quad g \quad SQ \quad on \quad C_y$
 $dx \quad dy \quad C_x^*$

so there must be a transition function

$$dy = \frac{-1}{x^2} dx$$

$$dy = -\frac{1}{x} dx$$

$$dy = -\frac{1}{x^2} dx$$

$$dx = -x^{2} dy$$

$$= -\frac{1}{y^{2}} dy \iff \text{mer. section } g$$

$$\int \Omega dy \iff \Omega dy$$

and dx is a mer. sec. of Ω on P' $(dx) = -2.\infty$

$$(dy) = -2.0$$

$$d_{\mathcal{G}}(\Omega_{\mathcal{P}'}) = -2.$$

⇒ dn has a simple zero when f(x)=0⇒ dn has 2n zeros on V.

But dn on P^1 has a pole of order 2 also a pole of order 2 at the two points over ∞ 80 $(dx) = \sum_{i=1}^{2n} (0, \pi_i) - 2P_\infty^2 - 2P_\infty^2$ nook f(x)

so $\deg(dx) = 2n - 4 = 29x - 2$. Recall $g_x = n - 1$.