

# Text Mining 2 Unsupervised Methods

Madrid Summer School on Advanced Statistics and Data Mining

Florian Leitner Data Catalytics, S.L. leitner@datacatytics.com



### Sentence segmentation

- Sentences are the fundamental linguistic unit
- Sentences are the boundaries or "constraints" for linguistic phenomena.
- Collocations ["United Kingdom", "vice president"], idioms ["drop me a line"], phrases [e.g., the preposition phrase "of great fame"], clauses, statements, ... all occur within a sentence.
- Rule/pattern-based segmentation
- ▶ Segment sentences if the marker is followed by an upper-case letter
- Works well for "clean text" (news articles, books, papers, ...)
- ▶ **Special cases**: abbreviations, digits, lower-case proper nouns (genes, "amnesty international", ...), hyphens, quotation marks, ...
- Supervised sentence boundary detection
- Use some Markov model or a conditional random field to identify possible sentence segmentation tokens
- Requires labeled examples (segmented sentences)

## Punkt Sentence Tokenizer (PST) 1/2

- Unsupervised sentence boundary detection
- $P(\bullet|\mathbf{w}_{-1}) > \mathbf{c}_{cpc}$

Dr.

- Determines if a marker is used as an **abbreviation** marker by comparing the **conditional probability** that the word w₁ before is followed by the marker against some (high) cutoff probability.
- $P(\bullet|\mathbf{w}_{-1}) = P(\mathbf{w}_{-1}, \bullet) \div P(\mathbf{w}_{-1})$
- K&S set c = 0.99
- $P(\mathbf{w}_{+1}|\mathbf{w}_{-1}) > P(\mathbf{w}_{+1})$

#### Mrs. Watson

- Evaluates the likelihood that w<sub>-1</sub> and w<sub>+1</sub> surrounding the marker are more commonly collocated than would be expected by chance: is assumed an **abbreviation** marker ("not independent") if the LHS is greater than the RHS.
- $F_{length}(\mathbf{w}) \times F_{markers}(\mathbf{w}) \times F_{penalty}(\mathbf{w}) \ge \mathbf{c}_{abbr}$  U.S.A.
- Evaluates if any of w's morphology (length of w w/o marker characters, number of periods inside w (e.g., ["U.S.A"]), penalized when w is not followed by a ●) makes it more likely that w is an abbreviation against some (low) cutoff.
- $F_{ortho}(\mathbf{w}); P_{sstarter}(\mathbf{w}_{+1}|\bullet); \dots$

#### . Therefore

- Orthography: Iower-, upper-case or capitalized word after a probable or not
- Sentence Starter: Probability that w is found after a

## Punkt Sentence Tokenizer (PST) 2/2

- Unsupervised Multilingual
   Sentence Boundary Detection
- ▶ Kiss & Strunk, MIT Press 2006.
- Available from NLTK: nltk.tokenize.punkt (<u>http://www.nltk.org/api/nltk.tokenize.html</u>)
- PST is language agnostic
- Requires that the language uses the sentence segmentation marker as an abbreviation marker
- Otherwise, the problem PST solves is not present

- PST factors in word length
- Abbreviations are relatively shorter than regular words
- PST takes "internal" markers into account
- ▶ E.g., "U.S.A"
- Main weakness: long lists of abbreviations
- ▶ E.g., author lists in citations
- Can be fixed with a pattern-based postprocessing strategy
- NB: a marker must be present
- ▶ E.g., chats or fora

## From syntactic to semantic similarity

Cosine Similarity,  $\chi^2$ , Spearman's  $\rho$ , LSH, etc. all compare equal tokens.

But what if you are talking about "automobiles" and I am lazy, calling it a "car"?

We can solve this with Latent Semantic Indexing!

## Latent Semantic Analysis (LSI 1/3)

- a.k.a. Latent Semantic Indexing (in Text Mining): feature extraction for semantic inference
- Linear algebra background

orthonormal factors of  $Q(QQ^T \text{ and } Q^TQ)$ 

• Singular value decomposition of a matrix Q:  $\mathbf{Q} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$ 

the factors "predict" Q in terms of similarity (Frobenius norm) using as many factors as the lower dimension of Q

singular values: scaling factor



- SVD in text mining
- ▶ Inverted index = doc. eigenvectors × singular values × term eigenvectors

## Latent Semantic Analysis (LSI 2/3)

 $C = \hat{F}eat$ . extraction by selecting only the largest n eigenvalues



• Image taken from: Manning et al. An Introduction to IR. 2009

### Latent Semantic Analysis (LSI 3/3)

[Spearman's] rho(human, user) = -0.38rho(human, minors) = -0.29

| c1: | Iuman machine interface for ABC computer applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| c2: | survey of user opinion of computer system response time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| c3: | The EPS user interface management system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| -1. | the state of the s |  |

System and human system engineering testing of EPS c4: Relation of *user* perceived *response time* to error measurement c5:

The generation of random, binary, ordered *trees* m1:

m2: The intersection *graph* of paths in *trees* 

m3: Graph minors IV: Widths of trees and well-quasi-ordering

m4: Graph minors: A survey

|           | c1 | c 2 | c3 | c4 | c5 | m1 | m2  | m3 | m4 |
|-----------|----|-----|----|----|----|----|-----|----|----|
| human     | 1  | 0   | 0  | 1  | 0  | 0  | 0   | 0  | 0  |
| interface | 1  | 0   | 1  | 0  | 0  | 0  | 0   | 0  | 0  |
| computer  | 1  | 1   | 0  | 0  | 0  | 0  | 0   | 0  | 0  |
| user      | 0  | 1   | 1  | 0  | 1  | 0  | 0   | 0  | 0  |
| system    | 0  | 1   | 1  | 2  | 0  | 0  | 0   | 0  | 0  |
| response  | 0  | 1   | 0  | 0  | 1  | 0  | 0   | 0  | 0  |
| time      | 0  | 1   | 0  | 0  | 1  | 0  | 0   | 0  | 0  |
| EPS       | 0  | 0   | 1  | 1  | 0  | 0  | 0 _ | 0  | 0  |
| survey    | 0  | 1   | 0  | 0  | 0  | 0  | 0   | 0  | 1  |
| trees     | 0  | 0   | 0  | 0  | 0  | 1  | 1   | 1  | 0  |
| graph     | 0  | 0   | 0  | 0  | 0  | 0  | 1   | 1  | 1  |
| minors    | 0  | 0   | 0  | 0  | 0  | 0  | 0   | 1  | 1  |

| Ĉ |           | o1    | <sub>2</sub> 2 | 2     | 24    | o <b>5</b> | m1    | 2     | -m2   | 1     |   |
|---|-----------|-------|----------------|-------|-------|------------|-------|-------|-------|-------|---|
|   |           | c1    | c2             | c3    | c4    | c5         | m1    | m2    | m3    | m4    | _ |
|   | human     | 0.16  | 0.40           | 0.38  | 0.47  | 0.18       | -0.05 | -0.12 | -0.16 | -0.09 |   |
|   | interface | 0.14  | 0.37           | 0.33  | 0.40  | 0.16       | -0.03 | -0.07 | -0.10 | -0.04 | _ |
|   | computer  | 0.15  | 0.51           | 0.36  | 0.41  | 0.24       | 0.02  | 0.06  | 0.09  | 0.12  |   |
|   | user      | 0.26  | 0.84           | 0.61  | 0.70  | 0.39       | 0.03  | 0.08  | 0.12  | 0.19  |   |
|   | system    | 0.45  | 1.23           | 1.05  | 1.27  | 0.56       | -0.07 | -0.15 | -0.21 | -0.05 |   |
|   | response  | 0.16  | 0.58           | 0.38  | 0.42  | 0.28       | 0.06  | 0.13  | 0.19  | 0.22  |   |
|   | time      | 0.16  | 0.58           | 0.38  | 0.42  | 0.28       | 0.06  | 0.13  | 0.19  | 0.22  |   |
|   | EPS       | 0.22  | 0.55           | 0.51  | 0.63  | 0.24       | -0.07 | -0.14 | -0.20 | -0.11 |   |
|   | survey    | 0.10  | 0.53           | 0.23  | 0.21  | 0.27       | 0.14  | 0.31  | 0.44  | 0.42  |   |
|   | trees     | -0.06 | 0.23           | -0.14 | -0.27 | 0.14       | 0.24  | 0.55  | 0.77  | 0.66  |   |
|   | graph     | -0.06 | 0.34           | -0.15 | -0.30 | 0.20       | 0.31  | 0.69  | 0.98  | 0.85  |   |
|   | minors    | -0.04 | 0.25           | -0.10 | -0.21 | 0.15       | 0.22  | 0.50  | 0.71  | 0.62  | ] |

MSS/ASDM: Text Mining

From: Landauer et al. An Introduction to LSA. 1998

rho(human, user) = 0.94

rho(human, minors) = -0.83

top 2 dim

test # dim to

use via

synonyms or

missing

words

37

## Principal Component vs. Latent Semantic Analysis

best Frobenius norm: minimize "std. dev." of matrix best affine subspace: minimize dimensions while maintaing the form

- LSA seeks for the best linear subspace in Frobenius norm, while PCA aims for the best affine linear subspace.
- LSA (can) use TF-IDF weighting as preprocessing step.
- PCA requires the (square) covariance matrix of the original matrix as its first step and therefore can only compute term-term or doc-doc similarities.
- PCA matrices are more dense (zeros occur only when true independence is detected).

### **Text Summarization**

Russian defense minister Ivanov called on Sunday for the creation of a global front for combating terrorism.

- Extractive summarization
- Select the most informative sentences.
- Order sentences (or leave in order).

Ivanov called for a global front combating terrorism.



- Generate new text given the input document.
- Very unique but still rather experimental.

Russia calls for a joint effort against terrorism.





## **Extractive Summarization**with TextRank

tokens, n-grams or whole sentences

- Collect all text shingles (→ graph vertices) from the input document[s].
- Quantify relation strength (→ edges) between those shingles from their context (co-occurrence) or content (TF-IDF).
- 3. Iterate a graph ranking algorithm (**PageRank**) to convergence.
- 4. Sort the vertices on their final score to identify the most informative shingles.



Mihalcea, R., and Tarau, P. (2004). TextRank: Bringing order into texts.

MSS/ASDM: Text Mining

### **TextRank Summarization** with Okapi-BM25 Ranking

2. Quantify relation strength (→ edges) between those shingles from their content.

"Classical" TF-IDF
$$TFIDF(D_n,Q) = \sum_{i}^{|Q|} TF(q_i,D_n) \times IDF(q_i) \qquad TF(q_i,D_n) = log(|q_i \in D_n|)$$

$$Okapi \ BM25 \ "TF modification"$$
 
$$BM25(D_n,Q) = \sum_{i}^{|Q|} Okapi(q_i,D_n) \times IDF(q_i) \qquad Okapi(q_i,D_n) = \frac{TF(q_i,D_n)(k+1)}{TF(q_i,D_n) + k(1-b+b\frac{|D_n|}{mean(|D|)})}$$

Main difference: the Okapi function flattens out much faster than a log-scaled Term Frequency function (alone).

https://en.wikipedia.org/wiki/Okapi\_BM25

Barrios, F., López, F., Argerich, L., and Wachenchauzer, R. (2016). Variations of the similarity function of TextRank for automated summarization.

### LexRank vs. TextRank

- Published simultaneously in 2004 by two independent groups
- Both are based on the same idea (graph similarity ranking)
- LexRank is part of a larger supervised summarization system ("MEAD") that uses features like sentence position and length.
- LexRank additionally covered a multi-document summarization approach (requiring post-processing; "CSIS")
- The **TextRank** authors expanded their work to keyword extraction

Erkan, G., and Radev, D.R. (2004). LexRank: Graph-based Lexical Centrality as Salience in Text Summarization.

## **Abstractive Summarization with Recurrent Neural Networks**



Generates new text using the full sentence context (attention mechanism) from the current text (word embeddings), while at the same time it can copy facts/words (pointer generator) over to the new text.

See, A., Liu, P.J., and Manning, C.D. (2017). Get To The Point: Summarization with Pointer-Generator Networks.

# A first look at probabilistic graphical models

- Latent Dirichlet Allocation: LDA
- ▶ Blei, Ng, and Jordan. Journal of Machine Learning Research 2003
- For assigning "topics" to "documents" i.e., for text classification
- An unsupervised, generative model

## Latent Dirichlet Allocation (LDA 1/3)

- Intuition for LDA
- From: Edwin Chen. Introduction to LDA. 2011
- "Document Collection"
- I like to eat broccoli and bananas.
- I ate a banana and spinach smoothie for breakfast.
- Chinchillas and kittens are cute.
- My sister adopted a kitten yesterday.
- Look at this cute hamster munching on a piece of broccoli.

- → Topic A
- → Topic B
- **→** Topic 0.6A + 0.4B

Topic A: 30% broccoli, 15% bananas, 10% breakfast, 10% munching, ...

Topic B: 20% chinchillas, 20% kittens, 20% cute, 15% hamster, ...

### The Dirichlet process

A Dirichlet process is like drawing from an (infinite) "bag of dice" (with finite faces).

 A Dirichlet is a [possibly continuos] distribution over [discrete/multinomial] distributions (probability masses).

$$D(\boldsymbol{\theta}, \boldsymbol{\alpha}) = \frac{\Gamma(\sum \alpha_i)}{\prod \Gamma(\alpha_i)} \prod_{i}^{\alpha_i - 1} \theta_i^{\alpha_i - 1}$$
 a Dirichlet prior:  $\forall \; \alpha_i \in \alpha: \alpha_i > 0$  
$$\sum \theta_i = 1; \; a \; \textit{Probability Mass Function}$$

• The **Dirichlet Process samples** multiple independent, discrete **distributions**  $\theta_i$  with repetition from  $\theta$  ("statistical clustering").



- 1. Draw a new distribution X from  $D(\theta, \alpha)$
- 2. With probability  $\alpha \div (\alpha + n 1)$  draw a new X With probability  $n \div (\alpha + n 1)$ , (re-)sample an X<sub>i</sub> from X

### The Dirichlet prior $\alpha$

"density plots over the probability simplex in R3"



Documents and topic distributions (N=3)



- → equal, =1
- → uniform distribution
- → equal, <1
- → marginal distrib. ("choose few")
- → equal, >1
- ⇒ symmetric, mono-modal distrib.
- → not equal, >1 → non-symmetric distribution

Frigyik et al. Introduction to the Dirichlet Distribution and Related Processes. 2010

### Latent Dirichlet Allocation (LDA 2/3)

A Document-Topic is the assignment of a Document to some Topic. A Word-Topic is the assignment of a (non-unique!) Word (in a Document) to Some Topic



Joint Probability 
$$P(B,\Theta,Z,W) = \left(\prod_{k}^{K} P(\beta_{k}|\eta)\right) \left(\prod_{d}^{D} P(\theta_{d}|\alpha) \prod_{n}^{N} P(z_{d,n}|\theta_{d}) P(w_{d,n}|\beta_{1:K},z_{d,n})\right)$$
 P(Topic) P(Word-T. I Document-T.)

- $\alpha$  per-document Dirichlet prior
- $\theta_d$  topic distribution of document d
- z<sub>d,n</sub> word-topic assignments

- $w_{d,n}$  observed words
- $\beta_k$  word distrib. of topic k
- η per-topic Dirichlet prior

dampens the topic-specific score of terms assigned to many topics

ments 
$$termscore_{k,n} = \hat{\beta}_{k,n} \log \frac{\hat{\beta}_{k,n}}{\left(\prod_{j}^{K} \hat{\beta}_{j,n}\right)^{1/K}}$$
 what Topics is a Word assigned to?

## Latent Dirichlet Allocation (LDA 3/3)

- LDA sampling/inference in a nutshell
- ▶ Initialization: Choose K, the number of Topics, and randomly assign one out of the K Topics to each of the N Words in each of the D Documents.
- The **same word** can have different Topics **at different positions** in the Document.
- Calculate the posterior probability that Topic t generated Word w.
- ▶ Then, for each Topic and for each Word in each Document:
- 1. Compute P(Word-Topic | Document): the proportion of [Words assigned to] Topic t in Document d
- 2. Compute P(Word | Topics, Word-Topic): the probability a Word w is assigned a Topic t (using the general distribution of Topics and the Document-specific distribution of [Word-] Topics)
- Note that a Word can be assigned a different Topic each time it appears in a Document.
- 3. Given the prior probabilities of a Document's Topics and that of Topics in general, reassign P(Topic | Word) = P(Word-Topic | Document) \* P(Word | Topics, Word-Topic)
- Repeat until P(Topic | Word) stabilizes (e.g., Collapsed Gibbs sampling)
- Better: Use collapsed variational inference (i.e., combining Variational Bayes)

Teh, Newman, Welling (2006). A Collapsed Variational Bayes Inference Algorithm for LDA

MSS/ASDM: Text Mining