# Primera sesión Análisis Convexo - CM3E2

Jonathan Munguia<sup>1</sup>

<sup>1,2</sup>Facultad de Ciencias Universidad Nacional de Ingeniería

13 de abril de 2021





#### Outline

- Convexidad
  - Conjuntos convexos

2/15

#### Motivación

Si  $x^*$  es un punto crítico de  $f: \mathbb{R}^n \to \mathbb{R}$  y la matriz hesiana de f es semidefinida positiva en  $\mathbb{R}^n$ , es decir:

$$\forall x \in \mathbb{R}^n$$
,  $\forall z \in \mathbb{R}^n : \langle Hf(x)z, z \rangle \geq 0$ .

Entonces  $x^*$  es un minimizador global.



#### Observación 1

La idea de la prueba se sigue evaluando la segunda derivada unidimensional a lo largo del segmento  $[x, x^*]$ , lo cual funciona bien en  $\mathbb{R}^n$ , caso contrario en conjuntos donde el segmento se escapa.

#### Definición 1 (Conjunto convexo)

Un conjunto  $U \subset \mathbb{R}^n$  es convexo si

$$\forall x, y \in U, \forall t \in (0,1) : tx + (1-t)y \in U.$$

Es decir el el segmento de recta

$$[x, y] := \{z \in \mathbb{R}^n : z = (1 - t)x + ty, 0 \le t \le 1\}$$

queda contenido en U.



#### **Ejemplos**

• Esfera:  $B(x_0, r) := \{x \in \mathbb{R}^n : \|x - x_0\|_2 < r\}$ . En efecto, basta observar que: Dados  $x, y \in B(x_0, r)$ 

$$||tx + (1-t)y - x_0||_2 = ||t(x-x_0) + (1-t)(y-x_0)||_2$$

- ullet el vacío y  $\mathbb{R}^n$
- Hiperplano:  $H := \{x \in \mathbb{R}^n : \langle x, a \rangle = b\} \ (a \neq 0)$



4□ > 4□ > 4≡ > 4≡ > 3 € < 9 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 € < 10 €

### Ejemplos

• Esfera:  $B(x_0, r) := \{x \in \mathbb{R}^n : ||x - x_0||_2 < r\}.$ En efecto, basta observar que: Dados  $x, y \in B(x_0, r)$ 



$$\| \underbrace{tx + (1-t)y}_{2} - x_{0} \|_{2} = \| t(x-x_{0}) + (1-t)(y-x_{0}) \|_{2}$$

$$+ (1-t)x_{0} \leq tr + (1-t)r$$

- ullet el vacío y  $\mathbb{R}^n$
- Hiperplano:  $H := \{x \in \mathbb{R}^n : \langle x, a \rangle = b\} \ (a \neq 0)$
- (t~+1-ty,a) = t(xa> +(1-t)</a>= 6  $x_0$



$$a^T x = b$$
  $\langle x_{\alpha} \rangle = \langle x_{\alpha} \alpha \rangle$ 

#### Ejemplos (cont...)

• Semiespacio:  $\mathcal{H} := \{x \in \mathbb{R}^n : \langle x, a \rangle \leq b\} \ (a \neq 0)$ 





• Elipsoide:  $E(x_c, A) := \{x_c + Au \in \mathbb{R}^n : ||u||_2 \le 1\}$  (A matriz cuadrada no singular)





#### Definición 2 (Combinación convexa)

Sea  $U \subset \mathbb{R}^n$ . Un elemento  $x \in \mathbb{R}^n$  es una combinación convexa de U, si existen  $p \in \mathbb{N}$ ,  $\{t_i\}_{i=1}^p \subset [0,1]$  y  $\{x_i\}_{i=1}^p \subset U$  tales que

$$\sum_{i=1}^{p} t_i = 1 \quad \mathbf{y} \quad \mathbf{x} = \sum_{i=1}^{p} t_i \mathbf{x}_i.$$

#### Lema 1

El conjunto de todas las combinaciones convexas de un conjunto, es convexo.

#### Proposición 1

Un conjunto es convexo si y solo si contiene a todas sus combinaciones convexas.





UCR<sup>n</sup>

$$A = \begin{cases} x \in \mathbb{R}^n : \exists p \in \mathbb{N}, \exists \{t_i\}_{i=1}^p \subset [t_0]_i\} \\ \text{Combinationes} \end{cases} \exists \{x_i\}_{i=1}^p \subset U \neq q \end{cases}$$

$$\sum t_i = 1 \qquad x = \sum t_i x_i \end{cases}$$

$$A = \sum x_i x_i \qquad Z = \sum x_i x_i \end{cases}$$

$$\sum x_i = 1 \qquad \sum x_i = 1$$

$$\sum x_i = 1 \qquad \sum x_i = 1$$

$$\sum x_i = 1 \qquad \sum x_i = 1$$

$$\sum x_i = 1 \qquad \sum x_i = 1$$

$$\sum x_i = 1 \qquad \sum x_i = 1$$

$$\sum x_i = 1 \qquad \sum x_i = 1$$

$$\sum x_i = 1 \qquad \sum x_i = 1$$

$$\sum x_i = 1 \qquad \sum x_i = 1$$

$$\sum x_i = 1 \qquad \sum x_i = 1$$

$$\sum x_i = 1 \qquad \sum x_i = 1$$

$$\sum x_i = 1 \qquad \sum x_i = 1$$

$$\sum x_i = 1 \qquad \sum x_i = 1$$

$$\sum x_i = 1 \qquad \sum x_i = 1$$

$$\sum x_i = 1 \qquad \sum x_i = 1$$

$$\sum x_i = 1 \qquad \sum x_i = 1$$

$$\sum x_i = 1 \qquad \sum x_i = 1$$

$$\sum x_i = 1 \qquad \sum x_i = 1$$

$$\sum x_i = 1 \qquad \sum x_i = 1$$

$$\sum x_i = 1 \qquad \sum x_i = 1$$

$$\sum x_i = 1 \qquad \sum x_i = 1$$

$$\sum x_i = 1 \qquad \sum x_i = 1$$

converses harta et orden p estan en U

Proposición 2

La intersección de conjuntos convexos es convexo. La unión no es convexa en general.

#### Proposición 3



Sean  $U_1 \subset \mathbb{R}^n$  y  $U_2 \subset \mathbb{R}^p$  subconjuntos convexos. Entoncess el producto cartesiano  $U_1 \times U_2$  es un subconjunto convexo de  $\mathbb{R}^n \times \mathbb{R}^p$ .

#### Definición 3 (Transformación afín)

Una función  $B: \mathbb{R}^n \to \mathbb{R}^p$  es afín si

$$\forall x, y \in \mathbb{R}^n, \ \forall \lambda \in \mathbb{R} : B(\lambda x + (1 - \lambda)y) = (\lambda B(x) + (1 - \lambda)B(y)).$$

Munguia (FC-UNI) 13 de abril de 2021 9 / 15

$$U_{1}CTR^{1}$$

$$U_{2}CTR^{1}$$

$$Q = (a_{1}, a_{2}), telo_{1})$$

$$b = (b_{1}, b_{2})$$

$$ta + (1-t)b = (ta_{1}+(1-t)b_{1}, ta_{2}+(-t)b_{2})$$

$$EU_{1}$$

$$EU_{2}$$

$$EU_{1} \times U_{2}$$

A: 
$$R^{\Omega} \rightarrow R^{\Omega}$$

$$A(\alpha x) = A(\alpha x + (-\lambda)\Omega) = \lambda A(\alpha) + (-\lambda)A(\alpha) = \lambda A(\alpha)$$
Proposición 4  $A(\alpha + 1) = 2A(\frac{1}{2}x + \frac{1}{2}x) = 2 \cdot \frac{1}{2}A(\alpha + 2 \cdot \frac{1}{2}A(\alpha$ 

Bafin, a em => Cik B'ta esafin Proposición 5

Las traslaciones de transformaciones afines son afines.

#### Teorema 1

Una función  $B:\mathbb{R}^n\to\mathbb{R}^p$  es una transformación afín si y solo si existe una transformación lineal  $A: \mathbb{R}^n \to \mathbb{R}^p$  y un elemento  $b \in \mathbb{R}^p$  tal que B(x) = A(x) + b para todo  $x \in \mathbb{R}^n$ .

4 D > 4 B > 4 B > 4 B > B

#### Demostración

 $\Rightarrow$ ) Sea b = B(0), luego A = B - b es una transformación afín que lleva el cero en el cero y por tanto lineal. Así, se concluye que B = A + (b) $\leftarrow$ ) Dados  $x, y \in \mathbb{R}^n$  y  $\lambda \in \mathbb{R}$ , se tiene de la linealidad de A:

$$B(\lambda x + (1 - \lambda)y) = A(\lambda x + (1 - \lambda)y) + b$$

$$= \lambda A(x) + (1 - \lambda)A(y) + b$$

$$= \lambda \left(A(x) + b\right) + (1 - \lambda)\left(A(y) + b\right).$$





Sea  $B: \mathbb{R}^n \to \mathbb{R}^p$  una transformación afín. Sean  $U \subset \mathbb{R}^n$  v  $V \subset \mathbb{R}^p$ subconjuntos convexos. Entonces B(U) es un subconjunto convexo de  $\mathbb{R}^p$  $(B^{-1}(V))$ es un subconjunto convexo de  $\mathbb{R}^n$ .

#### Demostración

• Sean  $a, b \in B(U)$  y  $\lambda \in (0,1)$ . Entonces, existen  $x, y \in U$  tal que a = B(x) y b = B(y). Desde que U es convexo, se tiene que  $\lambda x + (1 - \lambda)y \in \mathcal{U}$ . Entonces, la convexidad de  $B(\mathcal{U})$  se sigue de

$$\frac{\lambda a + (1 - \lambda)b = \lambda B(x) + (1 - \lambda)B(y)}{= B(\lambda x + (1 - \lambda)y) \in B(U).}$$

ل کے

4日本4個本4日本4日本 日

#### Demostración(cont...)

• Sean  $x, y \in B^{-1}(V)$ , y  $\lambda \in (0, 1)$ , entonces  $B(x), B(y) \in V$ . Por la convexidad de V y por ser B afín, se tiene que

$$V \ni \lambda B(x) + (1 - \lambda)B(y) = B(\lambda x + (1 - \lambda)y),$$

por tanto  $\lambda x + (1 - \lambda)y \in B^{-1}(V)$ .

#### **Ejemplos**

Las siguientes operaciones preservan la covexidad de U:

- Traslación: U + b para todo  $b \in \mathbb{R}^n$ .
- Escalación:  $\mathcal{N}$  para todo  $\lambda \in \mathbb{R}$ .
- Proyección ortogonal:  $T = \{x_1 \in \mathbb{R}^{n_1} : (x_1, x_2) \in U \text{ para algun } x_2 \in \mathbb{R}^{n_2} \}$ , con  $n = n_1 + n_2$ .

- 4 ロ ト 4 昼 ト 4 差 ト 4 差 ト 2 × 9 Q C

#### Ejemplos (cont...)

• Conjunto suma:  $U_1 + U_2 = \{x_1 + x_2 : x_1 \in U_1, x_2 \in U_2\}$ . En efecto: este conjunto es la imagen de  $U_1 \times U_2$  a través de la transformación afín  $f(x_1, x_2) = x_1 + x_2 = \langle (1, 1), (x_1, x_2) \rangle$ .

Munguia (FC-UNI)

## **FIN**



15 / 15