HarvardX PH125.9xData Science: Capstone Choose Your Own!(House Pricing)

Jose Quesada

27/12/2020

Introduccion

This project consists of determining the value of a house according to its location, property characteristics and payment methods using the data set from kaggle House Prices - Advanced Regression Techniques https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data (kaggle competitions download -c house-prices-advanced-regression-techniques).

Importing Data.

```
Files:
```

```
train.csv - the training set
test.csv - the test set
data_description.txt - full description of each column, originally prepared by Dean De Cock but lightly
sample_submission.csv - a benchmark submission from a linear regression on year and month of sale, lot
read_csv <- function(file){
    path_data <- "data"
    filename <- paste(path_data,file,sep="/")
    csv__ <- read.csv(filename)
    csv__ }
}

test_set <-read_csv('test.csv')
train_set<- read_csv('train.csv')

#Join datasets, For this project we going to join train and set data for the cleansing and EDA,
#later we going to split again by SalesPrices not null as train set and test set is null.
df<- bind_rows(train_set,test_set)</pre>
```

EDA

```
train_set:
  * Dimensions: 1460, 81
  * Memory Usage: 0.7 Mb
test_set:
  * Dimensions: 1459, 80
```

* Memory Usage: 0.7 Mb

Comparing amount of columns between each dataset we can see that we have 1 more column in the train set vs the test set. **SalePrice** is the additional column in the train set and our **target value** for this model We going to use the train set to predict **SalePrice** on the test, first we going to make some EDA and data cleaning.

Total categorical columns: 43

Categorical Columns				
MSZoning	Street	Alley	LotShape	LandContour
Utilities	LotConfig	LandSlope	Neighborhood	Condition1
Condition2	BldgType	HouseStyle	RoofStyle	RoofMatl
Exterior1st	Exterior2nd	MasVnrType	ExterQual	ExterCond
Foundation	BsmtQual	BsmtCond	BsmtExposure	BsmtFinType1
BsmtFinType2	Heating	HeatingQC	CentralAir	Electrical
KitchenQual	Functional	FireplaceQu	GarageType	GarageFinish
GarageQual	GarageCond	PavedDrive	PoolQC	Fence
MiscFeature	SaleType	SaleCondition	MSZoning	Street
Alley	LotShape	LandContour	Utilities	LotConfig

Total numeric columns: 38

Numerical Columns			
Id	MSSubClass	LotFrontage	LotArea
OverallQual	OverallCond	YearBuilt	YearRemodAdd
MasVnrArea	BsmtFinSF1	BsmtFinSF2	BsmtUnfSF
TotalBsmtSF	X1stFlrSF	X2ndFlrSF	LowQualFinSF
GrLivArea	BsmtFullBath	BsmtHalfBath	FullBath
HalfBath	BedroomAbvGr	KitchenAbvGr	TotRmsAbvGrd
Fireplaces	GarageYrBlt	GarageCars	GarageArea
WoodDeckSF	OpenPorchSF	EnclosedPorch	X3SsnPorch
ScreenPorch	PoolArea	MiscVal	MoSold
YrSold	SalePrice	Id	MSSubClass

Im going to handle MSSubClass as categorical data although it is shown as numeric column, is actually a categorical data, the numbers is the columns are the type of dwelling involved in the sale, im removing from numeric columns and append as categorical.

Missing Values

For this analysis we going to select just the columns that have missing values, **if they not in plot or table its because they not have missing values**.

Description of columns with Missing Values:

M: . O .	. 101	
Missing Categorical Columns		
name	prc_na	
PoolQC	0.9965742	
MiscFeature	0.9640288	
Alley	0.9321686	
Fence	0.8043851	
FireplaceQu	0.4864680	
GarageFinish	0.0544707	
GarageQual	0.0544707	
GarageCond	0.0544707	
GarageType	0.0537855	
BsmtCond	0.0280918	
BsmtExposure	0.0280918	
BsmtQual	0.0277492	
BsmtFinType2	0.0274066	
BsmtFinType1	0.0270641	
MasVnrType	0.0082220	
MSZoning	0.0013703	
Utilities	0.0006852	
Functional	0.0006852	
Exterior1st	0.0003426	
Exterior2nd	0.0003426	
Electrical	0.0003426	
KitchenQual	0.0003426	
SaleType	0.0003426	

Missing Numerical Columns		
name	prc_na	
SalePrice	0.4998287	
LotFrontage	0.1664954	
GarageYrBlt	0.0544707	
MasVnrArea	0.0078794	
BsmtFullBath	0.0006852	
BsmtHalfBath	0.0006852	
BsmtFinSF1	0.0003426	
BsmtFinSF2	0.0003426	
BsmtUnfSF	0.0003426	
TotalBsmtSF	0.0003426	
GarageCars	0.0003426	
GarageArea	0.0003426	

By looking in the data_description file, we can determine that we have columns that show us measurements, condition and qualities of additional features of the houses, They are defined with NA when they do not have one of them. To determine if they are really null values, we must compare multiple columns, example if we have NA PoolQC and PoolArea equal to 0 is the NA is not a Missing value, because the house doesnt have a pool, if PoolQC is NA but the PoolArea is greater than 0, we have a missing value.

Identify associated columns

Poloted Footunes			
Related Features			
name_features MasVnr	dim_features	dtype	
MasVnr	MasVnrArea		
		numeric	
MasVnr	MasVnrType	categorical	
Bsmt	D 40 1		
Bsmt	BsmtCond	categorical	
Bsmt	BsmtExposure	categorical	
Bsmt	BsmtFinSF1	numeric	
Bsmt	BsmtFinSF2	numeric	
Bsmt	BsmtFinType1	categorical	
Bsmt	BsmtFinType2	categorical	
Bsmt	BsmtFullBath	numeric	
Bsmt	BsmtHalfBath	numeric	
Bsmt	BsmtQual	categorical	
Bsmt	BsmtUnfSF	numeric	
Bsmt	TotalBsmtSF	numeric	
Fireplace			
Fireplace	FireplaceQu	categorical	
Fireplace	Fireplaces	numeric	
Pool			
Pool	PoolArea	numeric	
Pool	PoolQC	categorical	
Heating	-		
Heating	Heating	categorical	
Heating	HeatingQC	categorical	
Misc	0 •		
Misc	MiscFeature	categorical	
Misc	MiscVal	numeric	
Kitchen			
Kitchen	KitchenAbvGr	numeric	
Kitchen	KitchenQual	categorical	
Exterior	-		
Exterior	Exterior1st	categorical	
Exterior	Exterior2nd	categorical	
Garage	2	00008011001	
Garage	GarageArea	numeric	
Garage	GarageCars	numeric	
Garage	GarageCond	categorical	
Garage	GarageFinish	categorical	
Garage	GarageQual	categorical	
Garage	GarageType	categorical	
Garage	GarageYrBlt	numeric	
Garage	Garage IIDII	numenc	

Masonry veneer

Columns:

- MasVnrType.
- MasVnrArea.

This plot show us between 1950 and 2005 BrkFace was the predominant type of MasVnr and after 2005 was Stone, we going to get the mode in every yearn and fill Na values with mode by year and look how many null values we get.

Mansory Veneer		
name	prc_na	type
MasVnrArea	0	numerical
MasVnrType	0	categorical

Basement

First we are going to replace the null values of columns Bsmt fSF, BsmtFinSF1, BsmtFinSF2 and TotalBsmtSF, by 0. After this we are going to replace the null values of the categorical columns by "No Basement" and "No Basement 1" when BsmtFinSF1 is equal to 0 and "No Basement 2" when BsmtFinSF2 is equal to 0. After the first cleaning we are going to convert the BsmtCond columns, BsmtExposure, BsmtFinType1, BsmtFinType2 and BsmtQual, in numerical values, giving as a classification based on the descriptions that are in the file "data/data_description.txt", to be able to find correlations and finish replacing the null values in these columns, we also transform the BsmtUnfSF column into a percentage of the TotalBsmtSF.

Basement Dimensions

