Chapter 1

Method

The main goal of this work is to achieve a secure open platform on the hardware.

1.1 Detailed Problem

- Lots of functionality
 - Sensitive data
 - Mobile computing
- Performance driven
 - All resources to functionality
 - Little room for security
 - Extensive security measures needed
- Hardware security solution
 - Security embedded in hardware
 - Better for performance
 - Correct implementation required

1.2 System Model

- Open platform
 - Multiple software providers
 - Platform owned by user
- Secure software execution

- Software isolation
- Secure data storage

The system model describes an open platform with no or minimal trust among stakeholders.

1.3 Attacker Model

- Physical access
 - Threats
 - Vulnerabilities
- OS/Firmware attacks
 - Threats
 - Vulnerabilities
- Software attacks
 - Threats
 - Vulnerabilities

The attacker has physical access, can launch OS/firmware and software attacks. The Trusted Platform Module is assumed to be tamper resistent.

1.4 Solution

- Secure boot
 - Root of Trust
 - Chain of Trust
 - Secure starting point
- User attestation
 - Integrity (control flow, data structures, $\ldots)$
 - Authenticity (code, ...)
- Trust
 - Execution
 - Data protection

Ideally the device is started with secure boot, this makes sure the SW is started from a known secure state.

During operation the user should be able to attest whether their device is still in a secure state.

This can be done using a TA that makes measurements on their device and reports back to them.

These measurements are checking the integrity of the code section of the running applications and OS.