计算方法 作业 5

刘彦铭 ID: 122033910081

Last Edited: 2022 年 11 月 19 日

李庆杨等, 数值分析, 第 5 版, 华中科大, P.43, 1,2,5,6,7,11,12,14,16,17,18,19,21,23,25

1. 习题 1

对行列式按最后一行展开,有 $V_n(x) = \sum_{k=0}^n x^k \cdot M_{n+1,k+1}$, 其中 $M_{n+1,k+1}$ 是元素 $V_{n+1,k+1}$ 的代数余子式。显然这是一个 n 次多项式,且 n 次项系数非零当且仅当 x_0, \cdots, x_{n-1} 互异。用数学归纳法可以证明,Vandermonde 行列式 $\forall n \in \mathbb{N}^\star, V_n(x_0, x_1, \cdots, x_n) = \prod_{0 \le i \le j \le n} (x_j - x_i)$. 所以有

$$V_n(x) = V_n(x_0, \dots, x_{n-1}, x) = \prod_{0 \le i < j \le n-1} (x_j - x_i) \prod_{0 \le i \le n-1} (x - x_i)$$
$$= V_{n-1}(x_0, \dots, x_{n-1})(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

由此知 x_0, x_1, \dots, x_{n-1} 是 $V_n(x)$ 的根。

2. 习题 2

$$f(x) = f(x_1)l_1(x) + f(x_2)l_2(x) + f(x_3)l_3(x) = -3 \cdot \frac{(x-1)(x-2)}{(-1-1)(-1-2)} + 4 \cdot \frac{(x-1)(x+1)}{(2-1)(2+1)}$$
$$= \frac{5}{6}x^2 + \frac{3}{2}x - \frac{7}{3}$$

3. 习题 5

$$l_2(x) = \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)} = -\frac{1}{2h^3}(x-x_0)(x-x_0-h)(x-x_0-3h).$$
令 $t=x-x_0$,考虑 $f(t)=t(t-h)(t-3h)$ 在 $(0,3h)$ 上的两个极值, $f'(t)=3t^2-8ht+3h^2$,两个极值点分别为 $t_1=\frac{4-\sqrt{7}}{3}h$ 与 $t_2=\frac{4+\sqrt{7}}{3}h$,代入有 $f(t_1)=\frac{-20+14\sqrt{7}}{27}h^3$, $f(t_2)=-\frac{20+14\sqrt{7}}{27}h^3$.所以有 $\max_{x_0\leq x\leq x_3}|l_2(x)|=\frac{20+14\sqrt{7}}{27}h^3\cdot\frac{1}{2h^3}=\frac{10+7\sqrt{7}}{27}.$

4. 习题 6

- (1) 设 $f(x) = \sum_{j=0}^{n} x_{j}^{k} l_{j}(x)$, 显然 f(x) 是一个 n 次多项式。且有 $f(x_{i}) = \sum_{j=0}^{n} x_{j}^{k} l_{j}(x_{i}) = \sum_{j=0}^{n} x_{j}^{k} \delta_{ij} = x_{i}^{k}, \forall i \in \{0, 1, \dots, n\}$. 由于 x_{i} 互异,满足上述条件的 n 次多项式有且仅有 x^{k} 这一个, 所以 $f(x) \equiv x^{k}$.
- (2) 利用 (1) 中的结果, 当 $k \in \{1, 2, \dots, n\}$ 时, 有

$$\sum_{j=0}^{n} (x_j - x)^k l_j(x) = \sum_{j=0}^{n} \sum_{i=0}^{k} {k \choose i} (-x)^{k-i} x_j^i l_j(x)$$

$$= \sum_{i=0}^{k} {k \choose i} (-x)^{k-i} \sum_{j=0}^{n} x_j^i l_j(x)$$

$$= \sum_{i=0}^{k} {k \choose i} (-x)^{k-i} x^i$$

$$= (x - x)^k = 0$$

5. 习题 7

对 f 在做线性插值,得到 L(x)=0. 由线性插值的误差分析可知,当 $x\in[a,b]$ 时,有 $f(x)=f(x)-L(x)=\frac{1}{2}f^{(2)}(\xi)(x-a)(x-b)$. 所以 $|f(x)|\leq\frac{1}{2}|(x-a)(x-b)||f^{(2)}(\xi)|\leq\frac{1}{8}(b-a)^2\max_{a< x< b}|f^{(2)}(x)|$.

6. 习题 11

$$\Delta(f_k g_k) = f_{k+1} g_{k+1} - f_k g_k$$

$$= f_{k+1} g_{k+1} - f_k g_{k+1} + f_k g_{k+1} - f_k g_k$$

$$= (f_{k+1} - f_k) g_{k+1} + f_k (g_{k+1} - g_k)$$

$$= g_{k+1} \Delta f_k + f_k \Delta g_k$$

7. 习题 12

$$\sum_{k=0}^{n-1} f_k \Delta g_k = \sum_{k=0}^{n-1} f_k g_{k+1} - f_k g_k$$

$$= \sum_{k=0}^{n-1} f_k g_{k+1} - f_{k+1} g_{k+1} + f_{k+1} g_{k+1} - f_k g_k$$

$$= \sum_{k=0}^{n-1} -g_{k+1} \Delta f_k + \sum_{k=0}^{n-1} f_{k+1} g_{k+1} - f_k g_k$$

$$= -\sum_{k=0}^{n-1} g_{k+1} \Delta f_k + f_n g_n - f_0 g_0$$

8. 习题 14

 $f(x) = a_n \prod_{i=1}^n (x - x_i)$, 对于任意 $x_i, i \in \{1, 2, \dots, n\}$, $f'(x_i) := \lim_{x \to x_i} \frac{f(x) - f(x_i)}{x - x_i} = a_n \prod_{j \neq i} (x_i - x_j)$. 记 $V_n(x_1, x_2, \dots, x_n)$ 表示 Vandermonde 行列式,

$$\sum_{j=1}^{n} \frac{x_{j}^{k}}{f'(x_{j})} = \sum_{j=1}^{n} \frac{x_{j}^{k}}{a_{n} \prod_{j \neq i} (x_{i} - x_{j})}$$

$$= a_{n}^{-1} \sum_{j=1}^{n} \frac{x_{j}^{k} (-1)^{n-j} V_{n-1} (x_{1}, \dots, x_{j-1}, x_{j+1}, \dots, x_{n})}{V_{n} (x_{1}, x_{2}, \dots, x_{n})}$$

$$= a_{n}^{-1} V_{n} (x_{1}, x_{2}, \dots, x_{n})^{-1} \begin{vmatrix} 1 & x_{1} & \dots & x_{1}^{n-2} & x_{1}^{k} \\ 1 & x_{2} & \dots & x_{2}^{n-2} & x_{2}^{k} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_{n} & \dots & x_{n}^{n-2} & x_{n}^{k} \end{vmatrix}$$

$$= \begin{cases} 0, & 0 \leq k \leq n-2; \\ a_{n}^{-1}, & k = n-1. \end{cases}$$

其中,第二个等号是由通分得到,第三个等号是由行列式按最后一列展开得到。

9. 习题 16

$$f[2^{0}, 2^{1}, \cdots, 2^{7}] = \frac{f^{(7)}(\xi)}{7!} = \frac{7!}{7!} = 1, \ \sharp r \notin \xi \in [1, 2^{7}].$$

$$f[2^{0}, 2^{1}, \cdots, 2^{8}] = \frac{f^{(8)}(\xi)}{8!} = 0, \ \sharp r \notin \xi \in [1, 2^{8}].$$

10. 习题 17

完全类同 Lagrange 插值误差的证明,由于设 $L_3(x)$ 是两点三次 Hermite 插值,则 $R_3(x) = f(x) - L_3(x)$ 在 x_k, x_{k+1} 处分别有至少两重零点,即 $R_3(x) = K(x)(x - x_k)^2(x - x_{k+1})^2$.

固定 x (x 异于 x_k, x_{k+1}), 令 $\phi(t) = f(t) - L_3(t) - K(x)(t - x_k)^2(t - x_{k+1})^2$. ϕ 在 $[x_k, x_{k+1}]$ 上有 x_k, x_{k+1}, x 三个不同零点。故根据微分中值定理知, ϕ' 在 (x_k, x) , (x_k, x_{k+1}) 上各有一个零点。而根据 Hermite 插值条件有 $\phi'(x_k) = \phi'(x_{k+1}) = 0$, 故 ϕ' 在 $[x_k, x_{k+1}]$ 上有四个不同的零点。对 ϕ' 连续使用三次微分中值定理,可知存在 $\xi \in (x_k, x_{k+1})$ 使得 $0 = \phi^{(4)}(\xi) = f^{(4)}(\xi) - K(x) \cdot 4!$,整理得到 $K(x) = \frac{f^{(4)}(\xi)}{4!}$,从而 $R_3(x) = \frac{f^{(4)}(\xi)(x - x_k)^2(x - x_{k+1})^2}{4!}$.

对于分段三次 Hermite 插值,若分段区间的最大长度是 I,那么其误差限为 $\frac{1}{4!} \times \frac{I^4}{2^4} \times \sup_{x_0 < x < x} |f^{(4)}(x)|$.

11. 习题 18

实在是没看明白这道题想要表达什么。

12. 习题 19

直接待定系数求解即可 $P(x) = ax^4 + bx^3 + cx^2 + dx + e$,

13. 习题 21

按照 $(x_0,x_1)=(-5,-4),(x_1,x_2)=(-4,-3),\cdots,(x_9,x_{10})=(4,5)$ 进行分段, 当 $x_k \leq x \leq x_{k+1}$ 时, $I_h(x)=\frac{1}{1+x_k^2}\cdot\frac{x-x_{k+1}}{x_k-x_{k+1}}+\frac{1}{1+x_{k+1}^2}\cdot\frac{x-x_k}{x_{k+1}-x_k}$. 列出各区间中点处的函数值与插值多项式的值:

\overline{x}	-4.5	-3.5	-2.5	-1.5	-0.5	0.5	1.5	2.5	3.5	4.5
f(x)	0.0471	0.0755	0.1379	0.3077	0.8000	0.8000	0.3077	0.1379	0.0755	0.0471
$I_h(x)$	0.0486	0.0794	0.1500	0.3500	0.7500	0.7500	0.3500	0.1500	0.0794	0.0486

误差不超过 0.05

14. 习题 23

对 $f(x) = x^4$ 在 [a,b] 上作分段三次 Hermite 插值, $x_0 = a, x_n = b, x_{k+1} = x_k + h$. 设插值函数为 $I_h(x)$,则当 $x_k < x < x_{k+1}$ 时, $I_h(x) = H_3(x) = f(x_k)\alpha_k(x) + f(x_{k+1})\alpha_{k+1}(x) + f'(x_k)\beta_k(x) + f'(x_{k+1})\beta_{k+1}(x) = x_k^4 \left(1 + 2\frac{x - x_k}{h}\right) \left(\frac{x - x_{k+1}}{h}\right)^2 + x_{k+1}^4 \left(1 - 2\frac{x - x_{k+1}}{h}\right) \left(\frac{x - x_k}{h}\right)^2 + 4x_k^3(x - x_k) \left(\frac{x - x_{k+1}}{h}\right)^2 + 4x_{k+1}^3(x - x_{k+1}) \left(\frac{x - x_k}{h}\right)^2.$

由于 $|f'(x_k)| = |4x_k^3| \le 4 \max\{|a|, |b|\}^3$ 误差限 $|f(x) - I_h(x)| \le \sup_{|x_1 - x_2| < h} |f(x_1) - f(x_2)| + \frac{8}{27} h \cdot 4 \max\{|a|, |b|\}^3$ 或根据习题 17 中的结论,有 $|f(x) - I_h(x)| \le \frac{1}{4!} \times \frac{h^4}{16} \times \sup_{x \in [a,b]} f^{(4)}(x) = \frac{h^4}{16}$.

15. 习题 25

(1) 积分是线性的, 所以该等式显然成立:

$$\begin{split} &\int_a^b [f''(x)]^2 \mathrm{d}x - \int_a^b [S''(x)]^2 \mathrm{d}x = \int_a^b \left([f''(x)]^2 - [S''(x)]^2 \right) \mathrm{d}x = \int_a^b \left([f''(x)] - [S''(x)] \right)^2 + 2S''(x) [f''(x) - S''(x)] \mathrm{d}x \\ &S''(x) [\mathrm{d}x = \int_a^b [f''(x) - S''(x)]^2 \mathrm{d}x + 2 \int_a^b S''(x) [f''(x) - S''(x)] \mathrm{d}x \end{split}$$

(2) 由分部积分容易得到

$$\begin{split} \int_a^b S^{\prime\prime}(f^{\prime\prime}-S^{\prime\prime})\mathrm{d}x &= \int_a^b S^{\prime\prime}\mathrm{d}\left(f^\prime-S^\prime\right) \\ &= \left[S^{\prime\prime}(f^\prime-S^\prime)\right]|_a^b - \int_a^b (f^\prime-S^\prime)\mathrm{d}S^{\prime\prime} \end{split}$$

注意到 S''' = C 是常数, $\int_a^b (f' - S') dS'' = \int_a^b (f' - S') S''' dx = C(f - S)|_a^b = 0$. (由插值条件, f(a) = S(a), f(b) = S(b)). 所以 $\int_a^b S''(f'' - S'') dx = [S''(f' - S')]|_a^b = S''(b)[f'(b) - S'(b)] - S''(a)[f'(a) - S'(a)]$.