PN - JP62262165 A 19871114

PD - 1987-11-14

PR - JP19860103888 19860508

OPD - 1986-05-08

TI - INFORMATION PROCESSOR

IN - UCHIDA AKIO

PA - NIPPON ELECTRIC CO

EC - G06F13/42C1S

IC - G06F1/04; G06F11/24; G06F13/42

4) PALL IPO

PN - JP62262165 A 19871114

PD - 1987-11-14

AP - JP19860103888 19860508

IN - UCHIDA AKIO PA - NEC CORP

TI - INFORMATION PROCESSOR

AB - PURPOSE:To periodically and automatically execute a clock margin test by executing the instruction of an information processor itself, by providing a monitor consisting of plural clock generating circuits and a means such as for selecting one of them in the information processor.

- CONSTITUTION:A bus monitor 4 is constituted of a clock generating circuit 101, a selecting circuit 102, a bus clock circuit 103, an instruction receiving circuit 104, a watch dog timer circuit 105, and a selection control circuit 106, and connected to a bus 5. The circuit 101 consists of a clock for generating a standard frequency, and other prescribed number of clocks for generating a frequency increased or decreased by a prescribed amount from the standard frequency. A processor 1 operates the circuit 102 by a prescribed program, performs periodically and automatically a clock margin test, and in case of a failure, the circuit 105 is operated and it is displayed by a buzzer, and a part in which a clock margin is short is informed beforehand.
- G06F13/42 ;G06F1/04 ;G06F11/24

1

19日本国特許庁(JP)

⑩特許出願公開

四公開特許公報(A)

昭62-262165

⑤Int Cl.⁴

∢?

識別記号

庁内整理番号

④公開 昭和62年(1987)11月14日

G 06 F 13/42 1/04 11/24 350

B-7165-5B

7157-5B

7368-5B 審査請求 未請求 発明の数 1 (全4頁)

9発明の名称

情報処理装置

2)特 願 昭61-103888

砂出 翮 昭61(1986)5月8日

73発 明者 内 H

昭 雄

坦

東京都港区芝5丁目33番1号 日本電気株式会社内

仍出 頣 人

日本電気株式会社

東京都港区芝5丁目33番1号

30代 理 人 弁理士 芦田

外2名

阴 細

1. 発明の名称

情報処理装置

2. 特許請求の範囲

2 つ以上のクロック発生回路と。前記クロ ック発生回路の出力のうち任意の1つを選択しり るセレクト回路と,前記セレクト回路の出力をも ってパスクロックとしてパスに供給するパスクロ ック回路と,前記プロセッサからの命合によりバ スクロック切替え情報を受信する命令受信回路と。 前記命令受信回路の出力とバスからの初期化信号 とウォッチドッグタイマ回路の出力とから前記セ レクト回路に切替信号を印加する選択制御回路と を含むパス監視装置を有することを特徴とする情 報処理装置。

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は情報処理装置に関し、特にパスクロッ ク変動試験を自動実行する情報処理装置に関する。 〔従来の技術〕

従来,情報処理装置において,その装置を構成 する論理素子の不良を摘出したり,あるいは.パ スに接続されたプロセッサを含む各種入出力制御 **基置、主記憶装置の動作マージン不良を摘出する** 方法として、動作クロックを若干変動させて動作 試験を行う方法は一般に知られている。特に間欠 的に発生する比較的発生頻度の低い不具合現象に 対して、不良部分を指摘する場合に、有効である ことも知られている。

一般に上記試験方法はクロックマージン試験と 呼ばれ、当該試験を実施することで、動作の安定 性・すなわち半導体素子の遅延特性のバラッキ等 による誤動作の要因がないことを保証することに もなり、予防保守的に実施される。

しかし、従来この種の情報処理装置、特に中、 小型の情報処理装置においては,前記クロックマ ージン試験を手動操作かもしくは特殊測定工具を 用いて行うにすぎなかった。すなわち、当該情報 処理装置内のクロック原を手動で切替えるか、ま たは、外部から印加させることで、情報処理装置 全体の動作を確認せざるを得なかった。

[発明が解決しようとする問題点]

上述した従来の情報処理装置のクロックマージン試験方法は,手動操作のため,少くとも通常運転中にある情報処理装置を一旦停止させ業務を中断して試験するという運用上の問題点がある。

[問題点を解決するための手段]

ックマージン試験を実施する際の動作について主 に説明する。

第2図は第1図のバス監視装置4の構成をより 詳細に説明するための図である。なおこのバス監 視装置4は本発明に関係ある部分のみを図示して ある。

さらに201はパスドライバレシーパ回路,

散とする情報処理装置が得られる。

[实施例]

次に本発明について図面を参照して説明する。 第1図は本発明の一実施例を示すプロック図、第 2図は第1図のペス監視装置の主要部分の一例を 示すプロック図である。

第1図において、1はプロセッサ、2は主記憶 装置、3は各種入出力装置、4はペス監視装置で あり、各々は単一ペス5を介してデータ送受が行 なわれる。また101は複数のクロック発生回絡、 102はセレクト回路、103はペスクロック回 路、104は命令受信回路、105はウォッチド ッグタイマ回路、106は選択制御回路である。

この実施例の情報処理装置はバス監視回路 4 からバス 5 上に印加されるクロックを基準にすべてのデータ送受の動作が行なわれるものであり,通常すなわち初期状態においては,あらかじめ定められた規定の周波数のクロックに同期して動作する。

以下に。本発明の情報処理装置において、クロ

202はバス制御回路,203は命令デコーダ回路で,以上によりプロセッサからの命令を解釈する命令受信回路(第1図の104)を構成する。

また、105はウォッチドッグタイマ回路で、 定期的に本回路に信号が印加されるものとし、万 一動作不良でプロセッサからの信号印加が断たれ たときにアラーム信号を発生するものである。

一方・204は選択信号デコーダ回路・205・206は各々信号線220,221に対応するフリップ・フロップであり、以上で選択制御回路 (第1図の106)を構成する。信号線222は初別化信号線で、ベスから供給され、また207はオアゲートである。

次にこの実施例の効作を説明する。電源投入時等初期状態においては、フリップ・フロップ 205、206は各々リセットされ、信号線220,221によりクロック発生回路101-1の出力がバス5に印加され、バス5上の全装置は通常の効作を行う。

さて、当該クロックマージン試験を行う祭プロ

セッサ 1 は、プログラム命令によりバス監視装置 4 に対し、クロック周波数の変更、例えば + 1 0 形 又は - 1 0 形の変更を指示する。前記命令は命令アコーダ回路 2 0 3 、選択信号アコーダ回路 2 0 4 によりフリップ・フロップ 2 0 5 、 2 0 6 のいずれかをセットし、クロック 発生回路 1 0 1 - 2 又は 1 0 1 - 3 のいずれか対応する方のクロック信号が 選択され、バス 5 に供給される。

このとき・クロック信号の切替時の位相調整が必要になり、選択信号アコーダ回路 2 0 4 の出力によりパスクロック回路 1 0 3 はチャッタ等の不正ペルスを出さないよう、最小ペルス間隔を保証するよう機能する。

以上によりクロック変更後の情報処理装置全体の動作に異常がなければ、クロックマージン試験は終了されるが、不幸にして動作不良が発生した場合は、プロセッサ1のプログラム命令により、ウェッチドッグタイマ回路105への信号が断たれ、アラーム信号が出力される。アラーム信号は信号線223によりオアケート207に印加され

接躍・4 … バス監視装置 、5 … バス 、1 0 1 … クロック発生回路、1 0 2 … セレクト回路、1 0 3 … バスクロック回路、1 0 4 …命令受信回路、1 0 6 …選け 制御回路、2 0 1 …バスドライバレシーバ回路.2 0 2 … バス別御回路、2 0 3 …命令デコーダ回路、2 0 5 、2 0 6 … フリップ・フロップ、2 0 7 … オアゲート。

代理人 (7783) 非理士 池 田 意 保

初期化時と同様・クロック発生回路 101-1 を選択するよう 機能する。よって正常に試験が実行されたならば、このとき当該情報処理装置はその時点でクロックマージンは充分であり、予防保守としても実施されたことになる。また、エラーがあった場合はクロックマージンの不足している部分を事前に把握できるので障害発生を未然に防ぐことができる。

[発明の効果]

本発明は,以上説明したように,情報処理装置自身の命令実行により,自らのパスクロックを制御することで自動的に,且つ定期的にクロックマージン試験を実施し,機能動作の安定性を確認し、不具合を事前に発見できるという効果がある。

4.図面の簡単な説明

第1図は本発明の一実施例のプロック構成図、第2図は第1図のパス監視装置の主要部分の1例のプロック構成図である。

1 …プロセッサ . 2 … 主記憶装置 . 3 … 入出力

