The statistical estimation of a mean, fair games

Sample mean: $S_n/n = (X_1 + \cdots + X_n)/n$

Sample mean: $S_n/n = (X_1 + \cdots + X_n)/n$

$$\mathbf{P}\left\{\left|\frac{S_n}{n}-\mu\right|>\epsilon\right\}\to 0 \qquad (n\to\infty).$$

Sample mean: $S_n/n = (X_1 + \cdots + X_n)/n$

$$\mathbf{P}\left\{\left|\frac{S_n}{n}-\mu\right|>\epsilon\right\}\to 0\qquad (n\to\infty).$$

Slogan

The sample mean is approximately equal to the true mean (with high probability).

Sample mean: $S_n/n = (X_1 + \cdots + X_n)/n$

$$\mathbf{P}\left\{\left|\frac{S_n}{n}-\mu\right|>\epsilon\right\}\to 0\qquad (n\to\infty).$$

Slogan

The sample mean is approximately equal to the true mean (with high probability).

Random sample: X_1, \ldots, X_n

Sample mean: $S_n/n = (X_1 + \cdots + X_n)/n$

$$\mathbf{P}\left\{\left|\frac{S_n}{n}-\mu\right|>\epsilon\right\}\to 0\qquad (n\to\infty).$$

Slogan

The sample mean is approximately equal to the true mean (with high probability).

- * The estimation of a mean
 - * Polls

Sample mean: $S_n/n = (X_1 + \cdots + X_n)/n$

$$\mathbf{P}\left\{\left|\frac{S_n}{n}-\mu\right|>\epsilon\right\}\to 0\qquad (n\to\infty).$$

Slogan

The sample mean is approximately equal to the true mean (with high probability).

- * Polls
- * Expected performance: the mileage of a new model electric car

Random sample: X_1, \ldots, X_n

Sample mean: $S_n/n = (X_1 + \cdots + X_n)/n$

$$\mathbf{P}\left\{\left|\frac{S_n}{n}-\mu\right|>\epsilon\right\}\to 0\qquad (n\to\infty).$$

Slogan

The sample mean is approximately equal to the true mean (with high probability).

- * Polls
- * Expected performance: the mileage of a new model electric car
- * Time to failure: light bulbs, aeroplanes, bridges

Random sample: X_1, \ldots, X_n

Sample mean: $S_n/n = (X_1 + \cdots + X_n)/n$

$$\mathbf{P}\left\{\left|\frac{S_n}{n}-\mu\right|>\epsilon\right\}\to 0\qquad (n\to\infty).$$

Slogan

The sample mean is approximately equal to the true mean (with high probability).

- * Polls
- * Expected performance: the mileage of a new model electric car
- * Time to failure: light bulbs, aeroplanes, bridges
- * Actuarial models: life expectancy

Random sample: X_1, \ldots, X_n

Sample mean: $S_n/n = (X_1 + \cdots + X_n)/n$

$$\mathbf{P}\left\{\left|\frac{S_n}{n}-\mu\right|>\epsilon\right\}\to 0\qquad (n\to\infty).$$

Slogan

The sample mean is approximately equal to the true mean (with high probability).

- * Polls
- * Expected performance: the mileage of a new model electric car
- * Time to failure: light bulbs, aeroplanes, bridges
- * Actuarial models: life expectancy
- * The theory of fair games

Random sample: X_1, \ldots, X_n

Sample mean: $S_n/n = (X_1 + \cdots + X_n)/n$

$$\mathbf{P}\left\{\left|\frac{S_n}{n}-\mu\right|>\epsilon\right\}\to 0\qquad (n\to\infty).$$

Slogan

The sample mean is approximately equal to the true mean (with high probability).

- * Polls
- * Expected performance: the mileage of a new model electric car
- * Time to failure: light bulbs, aeroplanes, bridges
- * Actuarial models: life expectancy

* The theory of fair games

* Gambling: fair entry fees

Random sample: X_1, \ldots, X_n

Sample mean: $S_n/n = (X_1 + \cdots + X_n)/n$

$$\mathbf{P}\left\{\left|\frac{S_n}{n}-\mu\right|>\epsilon\right\}\to 0\qquad (n\to\infty).$$

Slogan

The sample mean is approximately equal to the true mean (with high probability).