

Exercise 2

Particle

Exercise 2 – Particle

Exercise 2 – Particle

1. Sphere Raycasting

Tasks:

- a) Render silhouette quad
- b) Discard fragment
- c) Ray intersection with sphere
- d) Depth test

Intermediate Results

a) Render silhouette quad

b) Discard fragment not on sphere

- c) Ray intersection with sphere
- d) Depth test

a) Vertex Shader *sphere_raycast.glvs*

- Compute silhouette parameter *sps* in **parameter space**:
 - orthogonal directions of silhouette quad with length ρ :

•
$$y_{tilde} = \rho \cdot \hat{y}$$

• x tilde =
$$\rho \cdot \hat{x}$$

$$\rho^2 = 1 - \frac{r_i^2}{e^2}$$

eye point e_tilde $\tilde{e} = \frac{1}{r_i} (\underline{e} - \underline{p_i})$

e ... eye point in world coordinates

 p_i ... sphere center in world coordinates

 r_i ... sphere radius

e ... length of vector $(e-p_i)$

Parameter space:

Sphere center at origin

Hints for a)

Inverse of the Model View Matrix

•
$$iMV = \begin{bmatrix} \\ \\ \end{bmatrix}$$

 Each column describes a vector in world coordinates

 Relation to orthogonal directions of the silhouette quad:

• Crossproduct: $c = a \times b$

Hints for b)

- Silhouette Quad easy sphere intersection check
 - Attach texture coordinates q_tilde $\in [-1,1]^2$ to the quad corners (struct *sphere_quad_info* in *sphere_raycast.glgs*)

This simplifies the ray intersection to:

$$||q_tilde|| \le 1$$

c) Rayintersection with Sphere

• special form where λ_+ is first intersection along ray:

$$\underline{\mathbf{x}}_{\pm} = \underline{\mathbf{e}} + \lambda_{\pm} \, \overline{\mathbf{V}}, \lambda_{\pm} = \frac{1}{1 \pm \beta}$$

$$\beta = r_i \sqrt{1 - \left\| \underline{\mathbf{q}} \right\|^2} / \left\| \underline{\mathbf{e}} - \underline{\mathbf{p}}_i \right\|$$

Hint for calculation in eye coordinates:

 \underline{e} ... is origin

x ... intersection point in eye coordinates

 ${\it V} \dots {\it ray}$ in eye coordinates

Normal:

$$n = normalize((NM * \tilde{e}) + \lambda * (NM * (\tilde{v} - \tilde{e})))$$

NM ... Normal Matrix

 $\tilde{\boldsymbol{v}}$... point on silhouette in parameter space

invariant parts:

could be already computed in the vertex shader

could be already computed in the geometry shader

Hints for d) Depth Correction

- In order to correct the depth we only need the deph-value (z) and w
- Therefore compute two 2D-vectors containing the z and w component of the clip coordinates of the eye and the current point on the silhouette
- Compute the intersection point with the previous vectors as eye position and for ray calculation:

$$\underline{x}_{\pm} = \underline{e} + \lambda_{\pm} \, \overrightarrow{V},$$

 Perform a w-clip and remapped to range of window coordinates


```
// vertex/geometry shader
out vec2 zw_cl;
:
    zw_cl = (MVP*position).zw;
:

// fragment shader
in vec2 zw_clip;
:
    float z_NDC = zw_cl.z/zw_cl.w;
    gl_FragDepth = 0.5*(z_NDC+1.0);
:
```

Exercise 2 – Particle

2. Cylinder Raycasting

- Render silhouette as bounding box
- Ray intersection with cylinder
 - Test for planar sides of cylinder
 - Intersection with cylinder mantle

Depth correction

Cylinder Raycasting

Definition: start and end points p_0 and p_1 plus radius R.

Silhouette Cover

 tessellate object oriented bounding box (OOBB)

Ray Intersection

- represent cylinder as intersection of two planar half-spaces and cylinder barrel
- Intersection is first ray point that is inside of all three parts

Cylinder Raycasting - OOBB

OOBB Tessellation

- ullet compute tangent vector $\hat{m{t}}$ from $m{p}_{0|1}$
- extent to orthonormal object coordinate system \hat{u} , \hat{v} and \hat{t} :

$$\hat{\boldsymbol{u}} = \text{normalize} \left(\hat{\boldsymbol{t}} \times \begin{cases} \hat{\boldsymbol{z}} & t_x^2 + t_y^2 > \epsilon \\ \hat{\boldsymbol{y}} & \text{sonst} \end{cases} \right)$$
 $\hat{\boldsymbol{v}} = \hat{\boldsymbol{t}} \times \hat{\boldsymbol{u}}$

 For more efficient transformation encode information in a single 4x4-matrix:

$$\widetilde{\boldsymbol{B}}^{\text{world}} = \begin{pmatrix} \underline{\boldsymbol{p}}_0 & \underline{\boldsymbol{p}}_1 & R\widehat{\boldsymbol{u}} & R\widehat{\boldsymbol{v}} \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

Cylinder Raycasting

OOBB Tessellation

 already in vertex shader transform to clip coordinates

$$\widetilde{\boldsymbol{B}}^{\mathrm{clip}} = \boldsymbol{MVP} \cdot \widetilde{\boldsymbol{B}}^{\mathrm{world}}$$

• Pass $\widetilde{\mathbf{B}}^{\text{clip}}$ to geometry shader, recover clip space corners and emit length 2 triangle strip per OOBB face $\underline{\mathbf{b}}_2$

$$\widetilde{\boldsymbol{b}}_{1..8}^{\text{clip}} = \widetilde{\boldsymbol{B}}_{0|1}^{\text{clip}} \pm \widetilde{\boldsymbol{B}}_{2}^{\text{clip}} \pm \widetilde{\boldsymbol{B}}_{3}^{\text{clip}}$$

- Careful: this pre-transformation only works with points/vectors that have either 1 or 0 in the w-component.
- Optionally perform culling of backfacing facettes

Hints for b) Ray Intersection

- Check if fragment on planar sides of cylinder:
 - $||pos_{ucyl}.uv||^2 < 1$ (fragment inside cylinder)
 - pos_{ucyl} . $t < \epsilon$ or $> \epsilon$ (fragment on planar parts)

Compute ray intersection in unit cylinder coordinates

$$x = e + \lambda v$$

 $r^2 = 1 = x^2 = (e + \lambda v)^2 = e^2 + 2\lambda(e \cdot v) + \lambda^2 v^2$
 $\Rightarrow 0 = e^2 - 1 + 2(e \cdot v)\lambda + v^2 \lambda^2$

$$\Rightarrow \lambda_{\pm} = \left(-(e \cdot v) \pm \sqrt{(e \cdot v)^2 - v^2(e^2 - 1)} \right) / v^2$$