PRESENTATION

TECHNICAL ENVIRONMENTAL SYSTEMS

PROFESSOR Behzad Najafi

STUDENTS

Aiuti Francesca - 10525998 Colombi Giacomo - 10491155 Contessi Nicola - 10488523 Magnaghi Lorenzo - 10491304

A.Y. 2019 - 2020

Geometry and buildings characteristics

Building type: commercial / office

Total building area: 3.375 m² (3 floors)

Our chosen cities

Stratigraphy of the wall

Basic wall	thickness (m)	conductivity (W/m*K)	density (kg/m³)	specific heat (J/kg*K)	thermal absorptance	solar absorptance	visible absorptance	R-value (m²*C/W)
1IN Stucco	0.025300	0.691800	1858.0	837	0.900000	0.920000	0.920000	0.036
8IN Concrete HW	0.203300	1.729600	2243.0	837	0.900000	0.650000	0.650000	0.12
Wall insulation (44)	0.110400	0.043200	91.0	837	0.900000	0.500000	0.500000	2.56
1/2IN Gypsum	0.012700	0.160000	784.9	830	0.900000	0.400000	0.400000	0.079

Consumption comparison of the chosen cities

	MILAN (Italy)	DUBLINO (Ireland)	NEW DELHI (India)
Average outdoor annual temperature	13.1 °C	9.7 °C	25.2 °C
Heating consumption (W)	256939.62 30/JAN	246181.75 13/FEB	184634.75 30/DEC
Cooling consumption (W)	77707.52 24/JUL	40814.87 05/JUL	193902.50 20/JUL
Electricity:			
interior lighting (W)	20249.34	20249.34	20249.34
interior equipment (W)	12748.78	12748.78	12748.78
		Heating consumption	Heating consumption

4.18% lower

Cooling consumption

47.48% lower

(than Milan)

28.14% lower

Cooling consumption 49.53% higher

(than Milan)

Diagrams

Annual Overview

Milan

Dublin

New Delhi

Conclusions

From this simulation project it is possible to understand that the energy consumption of the same building depends on the climate zone in which it is located and on the materials that compose it (if we keep the same material for different climate zones, it is not efficient).

OpenStudio allowed us to calculate all the values with regard to the consumptions and the loads of the same building, especially useful to prevent extracosts.

EnergyPlus allowed us to calculate the heating and cooling consumptions for the compared cities.

SketchUp allowed us to create the model building.