Edge Computing

Lecture 03: Edge Systems: Architecture

Recap

- Evolution of computing paradigm
 - Dist. vs Cent.
 - Cloud View vs Edge View
- Virtualization
 - Virtual machine & containers
- Applications
- From design to deployment

Agenda

- The IoT Challenge
- Bandwidth, latency, throughput, pipeline
- Example system architectures
- Close-the-loop: sensing, compute, actuation

The IoT Challenge

- IoT devices have been viewed as simple nodes that collect data from sensors and then transmit it to a central location for processing.
- Cloud computing -> Edge computing (BLERP)
 - o Bandwidth, latency, economics, reliability, privacy
- But how much compute?

How much compute?

Perception → Localization → Prediction → Reasoning → Planning

FPS! (Frame per Second)

- Let's say the car is driving on a freeway at 65 mph (105 km/h).
- That means it's going at 95 feet per second (~29 meters).
- Average stopping time at that speed is 120 feet.
- If the decision your car has to make is an immediate stop from the moment an object is detected, then the stopping distance will be:

Frames per Second	Distance (feet / m)	Comparison		
1	215 / 65	Statue of liberty (w/o foundation)		
5	139 / 42	The Arc de Triomphe		
15	126 / 38.4	Football field + a refrigerator		
30	123 / 37.4	Football Field		

Flash activity

- Quiz 00: What is Bandwidth, Latency, Throughput, Pipelining
 - Join Mural workspace: <u>link</u>
 - Open whiteboard: <u>link</u>

Latency vs Throughput

Latency vs Throughput

Questions

Larger bandwidth == shorter latency?

Latency vs Throughput

Questions

- Larger bandwidth == shorter latency?
- Larger bandwidth == larger throughput?

Pipeline

Execution Time

Example

- Optimal latency?
- Optimal FPS / throughput?

Latency and Frame Rate

AVR induces 96 ms processing delay

AVR achieves 30 fps using a 3-stage pipeline

- Wildlife Monitoring
- Voice Assistant
- Self-driving Cars

Wildlife Monitoring

- Wildlife Monitoring
 - Periodic GPS beacons -> cloud

Device	Bandwidth	Latency	Edge/Cloud
Compute	Available	Requirement	Compute

- Voice Assistant
 - "Hey Google" "Hey Siri" "Alexa" "Cortana"

- Voice Assistant
 - Wake-up word -> device
 - Large language model -> cloud

Device	Bandwidth	Latency	Edge/Cloud
Compute	Available	Requirement	Compute

Self-driving cars

- Self-driving cars
 - Sensor data -> onboard compute

Device	Bandwidth	Latency	Edge/Cloud
Compute	Available	Requirement	Compute

Offloading

Workload vs compute

More Compute

Higher workload

Device type	Low- frequency time series	High- frequency time series	Audio	Low- resolution image	High- resolution image	Video
Low-end \	Limited	Limited	None	None	None	None
High-end MCU	Full	Full	Full	Full	Limited	Limited
High-end MCU with accelera- tor	Full	Full	Full	Full	Full	Limited
DSP	Full	Full	Full	Full	Limited	Limited
SoC	Full	Full	Full	Full	Full	Full
SoC with accelerator	Full	Full	Full	Full	Full	Full
FPGA/ASIC	Full	Full	Full	Full	Full	Full
Edge server	Full	Full	Full	Full	Full	Full
Cloud	Full	Full	Full	Full	Full	Full

Close-the-loop: sensing, compute, actuation

Moving Data to Compute vs Moving Compute to Data

Remote Operation for Self-driving Cars

Smart Home Actuation

- "Hey Google, turn off lights"
- "Hey Siri, close curtains"

Telesurgery

Robot arm actuation

Summary

- The IoT Challenge
- Bandwidth, latency, throughput, pipeline
- Example system architectures
- Close-the-loop: sensing, compute, actuation

Next Lectures

- Lab 1: profile performance, data for design optimization
- Optimization techniques
- Edge ML basics