## **Healthcare Project - Profitability of Various Procedures**

We calculate the total revenue generated by each procedure and assess its profitability by comparing the revenue to associated costs. This helps us identify the most financially efficient procedures, prioritize high-margin services, and pinpoint areas that may require cost optimization or reevaluation.

```
# Modules
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

```
# Load data
path = "C:/Users/rvrei/Documents/Healthcare_df.csv"
healthcare_df = pd.read_csv(path)
healthcare_df.head(3)
```

| <b>→</b> |   | claim_id | patient_id | procedure_id | claim_date | claim_amount | claim_status | insurance_provider | procedure_type | pr |
|----------|---|----------|------------|--------------|------------|--------------|--------------|--------------------|----------------|----|
|          | 0 | CLM0001  | PAT0001    | 41           | 2024-03-29 | 1997.79      | approved     | Blue Shield        | CT Scan        |    |
|          | 1 | CLM0001  | PAT0001    | 41           | 2024-03-29 | 1997.79      | approved     | Blue Shield        | CT Scan        |    |
|          | 2 | CLM0016  | PAT0016    | 41           | 2023-09-16 | 1080.34      | approved     | Aetna              | MRI            |    |

3 rows × 21 columns

```
# Calculate profitability for each procedure: revenue - cost
healthcare_df['profit'] = healthcare_df['revenue'] - healthcare_df['procedure_cost']
healthcare_df.head(3)
```

claim\_id patient\_id procedure\_id claim\_date claim\_amount claim\_status insurance\_provider procedure\_type pr

1 of 4 12/4/2024, 9:32 AM

| 0 | CLM0001 | PAT0001 | 41 | 2024-03-29 | 1997.79 | approved | Blue Shield | CT Scan |
|---|---------|---------|----|------------|---------|----------|-------------|---------|
| 1 | CLM0001 | PAT0001 | 41 | 2024-03-29 | 1997.79 | approved | Blue Shield | CT Scan |
| 2 | CLM0016 | PAT0016 | 41 | 2023-09-16 | 1080.34 | approved | Aetna       | MRI     |

3 rows × 22 columns

# # Calculate total Revenue, total Cost, and total Profit

profitability\_df['total cost (\$)'] = profitability\_df['total\_cost'].apply(lambda x: f"\${x:,.2f}")
profitability\_df['total profit (\$)'] = profitability\_df['total\_profit'].apply(lambda x: f"\${x:,.2f}")

|   | procedure_type | total revenue (\$) | total cost (\$) | total profit (\$) |
|---|----------------|--------------------|-----------------|-------------------|
| 2 | MRI            | \$272,910.28       | \$151,208.13    | \$121,702.15      |
| 1 | Lab Test       | \$146,980.83       | \$83,787.66     | \$63,193.17       |
| 4 | X-Ray          | \$111,395.57       | \$61,889.94     | \$49,505.63       |
| 0 | CT Scan        | \$55,699.21        | \$34,156.26     | \$21,542.95       |

profitability\_df.drop(['total\_revenue','total\_cost','total\_profit'], axis=1)

2 of 4 12/4/2024, 9:32 AM

3 Physical Exam

\$73,545.90

\$56,477.52

\$17,068.38

```
# Visualization: Plot Profitability by Procedure
plt.figure(figsize=(8,4))
sns.barplot(x='total_profit', y='procedure_type', data=profitability_df, palette='viridis')
plt.title('Profitability of Different Procedures')
plt.xlabel('Profit ($)')
plt.ylabel('Procedure Name')
plt.show()
```



This breakdown offers insight into the profitability of each procedure, with MRI being the most profitable and the Physical Exam the least. This information is valuable for assessing which services contribute most to the organization's overall profitability.

3 of 4 12/4/2024, 9:32 AM

4 of 4 12/4/2024, 9:32 AM