METHOD OF MANUFACTURING III NITRIDE BASE COMPOUND SEMICONDUCTOR SUBSTRATE

Patent number:

JP2000357663

Publication date:

2000-12-26

Inventor

YURI MASAAKI; KONDO OSAMU; NAKAMURA SHINJI;

ISHIDA MASAHIRO; ORITA KENJI

Applicant:

MATSUSHITA ELECTRONICS INDUSTRY CORP

Classification:

- International;

H01L21/205; C30B29/38; H01L33/00; H01S5/323

- european:

Application number: JP20000108497 20000410

Priority number(s):

Abstract of JP2000357663

PROBLEM TO BE SOLVED: To manufacture a large-area III nitride base compound semiconductor substrate with a satisfactory yield and satisfactory reproducibility. SOLUTION: First, a first semiconductor film 13 that is formed of a first III nitride based compound semiconductor having a stepped portion 13c is formed on a substrate 11 (Fig. b). Thereafter, a second semiconductor film 14a composed of a second III nitride based compound semiconductor having a thermal expansion coefficient that is different from that of the first III nitride based compound semiconductor is formed (Fig. c). Thereafter, the substrate 11 is cooled, and the second semiconductor film 14a is isolated from the first semiconductor film 13 to obtain the III nitride based compound semiconductor substrate 14.

Data supplied from the esp@cenet database - Patent Abstracts of Japan

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-357663 (P2000-357663A)

(43)公寓日 平成12年12月26日(2000.12.28)

(51) IntCl.'	微別記号	13.1	7,000	
	uneff.1br. (3)	FI		テーマュード(参考)
H01L 21/205		HOlL	21/205	
C30B 29/38		C30B	29/38	D
H01L 33/00		HOIL	33/00	č
H01\$ 5/323		H018		C

梅査請求 未請求 請求項の数10 Ol (全 10 頁)

(21) 出顧番号	特爾2000-108497(P2000-108497)	(71) 出題人 00000584	3	
(22)出顧日	平成12年4月10日(2000.4.10)	大阪府高	工業株式会社 機市幸町1番1号	
(31)優先権主張番号 (32)優先日	特展平11-108278 平成1464-814日(1999-4-10)		機市幸町1番1号 松下電子工業	
(33)優先権主張國	平成11年4月14日(1999.4.14) 日本(JP)	株式会社内 (72)発明者 今醫 修		
		株式会社	•	
		(74)代選人 10009555 <u> </u>		

最終頁に続く

(54) 【発明の名称】

Ⅰ Ⅰ Ⅰ 族空化物系化合物半導体基板の製造方法

(57) 【要約】

【課題】 大面積の111族窒化物系化合物半導体基板を 歩留まり良く、かつ再現性良く製造できる111族窒化物 系化合物半導体基板の製造方法を提供する。

【解決手段】 まず、基板11上に、第1のIII 族室化物系化合物半導体からなり、段差13cを備える第1の半導体膜13を形成する(図1(b))。その後、第1のIII 族窓化物系化合物半導体とは異なる熱膨張係数を有する第2のIII 族窓化物系化合物半導体からなる第2の半導体膜14aを形成する(図1(c))。その後、基板11を冷却し、第2の半導体膜14aを第1の半導体膜13から分離してIII 族窓化物系化合物半導体基板14を得る。

(2)

特開2000-357663

【特許請求の範囲】

【請求項1】 III 族窒化物系化合物半導体基板の製造 方法であって、

1

- (a) 蒸板上に、第1の川 族蛮化物系化合物半導体からなり段差を備える第1の半導体膜を形成する工程と、
- (b) 前記第1の半導体膜上に、前記第1のIII族業化物系化合物半導体とは異なる熱膨張係数を有する第2のIII族変化物系化合物半導体からなる第2の半導体膜を形成する工程と、
- (c) 前記基板を冷却し、前記第2の半導体膜を前記第 10 1の半導体膜から分離する工程とを有することを特徴と するIII 族変化物系化合物半導体基板の製造方法。

【請求項2】 前記(a)の工程は、

(a-1) 前記基板上に、前記第1の川族窒化物系化合物半導体からなる膜を形成する工程と、

(a-2) 前記膜の一部を除去することによって複数の 海を備える第1の半導体膜を形成する工程とを含む請求 項1に記載の11族塞化物系化合物半導体基板の製造方 法。

【請求項3】 前記(a)の工程は、

(a-1) 前記基板上に、前記第1の111族窒化物系化 合物半導体からなる膜と絶縁膜とをこの順序で形成する 工程と、

(a-2) 前記膜の一部を除虫することによって、複数の溝を備える第1の半導体膜を形成する工程とを含む請求項1に記載のIII族窓化物系化合物半導体基板の製造方法。

【請求項4】 前記絶縁膜が、SiO2およびSiaN4から選ばれる少なくとも1つからなる請求項3に記載の 111族窓化物系化合物半導体基板の製造方法。

【請求項5】 前記(b)の工程ののちであって前記(c)の工程の前に、前記絶縁膜を選択的に除去する工程をさらに含む請求項3に記載のIII族致化物系化合物半導体基板の製造方法。

【請求項6】 前記(a-2)の工程において、前記複数の溝をストライプ状に形成する請求項2~5のいずれかに記載のIII族窒化物系化合物半導体基板の製造方法。

【請求項7】 前記基板が(0001)面サファイア基板であり、前記簿が [11-20] 方向に形成されてい、 40る請求項6に記載のIII族変化物系化合物半導体基板の製造方法。

【請求項8】 前配第1のIII族案化物系化合物半導体の格子定数が前配第2のIII族整化物系化合物半導体の格子定数よりも小さい請求項1~7のいずれかに配載のIII族業化物系化合物半導体基板の製造方法。

【請求項9】 前記第1のIII 族室化物系化合物半導体がAlxGal-xN(ただし、0<X≦1)であり、前記第2のIII 族変化物系化合物半導体がGaNである請求項1~7のいずれかに記載のIII 族変化物系化合物半導

体基板の製造方法。

【請求項10】 前記(c)の工程は、前記基板を冷却 したのち、さらに前記基板を加熱し冷却する工程を含む 請求項1~7のいずれかに記載の11族窒化物系化合物 半導体基板の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、III族窯化物系化 合物半導体基板の製造方法に関する。

[0002]

【従来の技術】一般式がAlxGal-x-YInvN(ただし、0≦X≦1、0≦Y≦1、0≦X+Y≦1である)で表されるIII 族窒化物系化合物半導体は、バンドギャップエネルギーを、1.9eV~6.2eVという広い範囲で変化させることができる。このため、III 族窒化物系化合物半導体は、可視域から紫外域までをカバーする発光・受光デバイス用の半導体材料として有望である。

【0003】||| 検室化物系化合物半導体デバイスを作 20 製する際の基板として、大面積で良質な||| 検室化物系化合物半導体基板が求められている。これに対して、従来から、|| || 検室化物系化合物半導体基板を製造する方法が報告されている(たとえば、ジャパニーズ・ジャーナル・オブ・アプライド・フィジックス第37巻(1998年) L309ページ~L312ページ、Japanase Journal of Applied Physics Vol. 37(1998)pp. L309-L312)。以下、図8を参照しながら、この従来の製造方法について説明する。

30 【0004】上記従来の製造方法では、まず、直径5.08cm(2インチ)のサファイア基板1を有機金属気相エピタキシ装置(以下、MOVPE装置という場合がある)内に配置する。そして、サファイア基板1上にMOVPE法によって、GaNパッファ居2とGaN居3とを順次形成する(図8(a))。以下、何らかの層が形成されたサファイア基板1をウェハと呼ぶ場合がある。

【0005】次に、ウェハをMOVPE装置から取り出す。そして、GaN層3の表面にSiOz膜4を形成 0 し、さらにSiOz膜4に数μmビッチでストライプ状 の窓4aを形成する(図8(b))。

【0006】その後、ウェハを、ハイドライド気相エピタキシ(以下、HVPEという場合がある)装置内に配置し、SiOz膜4上にGaN厚膜5a(膜厚約100 μ m)を形成する(図8(c))。

【0007】その後、ウェハをHVPE装置から取り出す。最後に、サファイア基板1側からGaN厚膜5aに達するまでウェハを研磨することによって、膜厚約80μm程度のGaN基板5が得られる(図8(d))。

50 [0008]

(3)

特開2000-357663

3 【発明が解決しようとする課題】しかしながら、上記従来の方法では、以下のような課題があった。

【0009】上記方法では、サファイア基板1とGaN 厚膜5aとは、格子定数および熱膨慢係数が異なるため、GaN厚膜5aを結晶成長させたのちウェハの温度を窒温に戻す過程で、サファイア基板1とGaN厚膜5aとの間に応力がかかる。このため、上記方法では、ウェハが反って、GaN厚膜5aの主面に垂直な方向にクラックが生じたり、GaN厚膜5aが部分的に剥離したりしていた。その結果、従来の方法で得られるGaN基10板5の大きさはせいぜい1cm角程度であり、サファイア基板1と同程度の大面積のGaN基板5を歩留まり良く、かつ再現性良く得ることが困難であった。特に、上記従来の方法では、サファイア基板1-GaNバッファ層2-GaN層3の間に応力が集中し、さらに、これらは互いに主面全体で密着しているため、無秩序にクラックが形成されるという問題があった。

【0010】上記課題を解決するため、本発明は、大面積の111族窒化物系化合物半導体基板を歩留まり良く、かつ再現性良く製造できる111族窒化物系化合物半導体基板の製造方法を提供することを目的とする。

[0011]

【課題を解決するための手段】上記目的を達成するた め、本発明の川族窒化物系化合物半導体基板の製造方 法は、(a)基板上に、第1の111族窒化物系化合物半 導体からなり段差を備える第1の半導体膜を形成する工 程と、(b)第1の半導体膜上に、第1のⅢ族窒化物 系化合物半導体とは異なる熱膨脹係数を有する第2の11 l族窒化物系化合物半導体からなる第2の半導体膜を形 成する工程と、(c)基板を冷却し、第2の半導体膜を 30 第1の半導体膜から分離する工程とを有することを特徴 とする。上記本発明の製造方法では、(c)の工程にお いて基板を冷却すると、第1の半導体膜の段差部分か ら、第2の半導体膜内であって第2の半導体膜の主面に 平行な方向にクラックが生じる。このため、上記本発明 の製造方法によれば、大面積の111族窒化物系化合物半 導体基板を歩留まり良く、かつ再現性良く製造できる上 記本発明の製造方法では、(a)の工程は、(a-1) 基板上に、第1の111族致化物系化合物半導体からなる 膜を形成する工程と、(a-2)膜の一部を除去するこ 40 とによって複数の電を備える第1の半導体膜を形成する 工程とを含むことが好ましい。 上記構成によれば、段差 を備える第1の半導体膜を容易に形成できる。

【0012】また、上記本発明の製造方法では、(a)の工程は、(a-1) 基板上に、第1の川族窓化物系化合物半導体からなる膜と絶縁膜とをこの順序で形成する工程と、(a-2) 膜の一部を除去することによって、複数の溝を備える第1の半導体膜を形成する工程とを含むことが好ましい。上記構成によれば、第1の川・族蛮化物系化合物半導体からなる膜と絶縁膜との間・ま

たは絶縁膜と第2の半導体膜との間でクラックがより生じやすくなる。このため、上記構成によれば、特に大面積の111族蜜化物系化合物半導体基板を容易に製造できる。

【0013】上記本発明の製造方法では、絶縁膜が、SiO2およびSisN4から選ばれる少なくとも1つからなることが好ましい。上記構成によれば、SiO2やSiNxとその表面に堆積されたIII族窒化物系化合物半導体とが材料および結晶構造において互いに異なるため、両者の界面に安定した化学結合が形成されず、第2の半導体膜の剥離が容易になる。

【0014】上記本発明の製造方法では、(b)の工程ののちであって(c)の工程の前に、絶縁膜を選択的に除去する工程をさらに含むことが好ましい。上記構成によれば、第1の半導体膜から川、族窒化物系化合物半導体基板を分離したときに、川、族蜜化物系化合物半導体基板上に絶縁膜が残らないため、川、族窒化物系化合物半導体基板を歩留まりおよび生産性よく製造できる。

【0015】上記本発明の製造方法では、(a-2)の 20 工程において、複数の滞をストライプ状に形成すること が好ましい。上記構成によれば、桁に大面積の川族室 化物系化合物半導体基板を容易に製造できる。

【0016】上記本発明の製造方法では、基板が (0001) 面サファイア基板であり、滞が [11-20] 方向に形成されていることが好ましい。上記構成によれば、結晶性が良好な第2の半導体膜を容易に形成できる。

【0017】上記本発明の製造方法では、第1の川族 繁化物系化合物半導体の格子定数が第2の川族窒化物 系化合物半導体の格子定数よりも小さいことが好まし い。上記構成によれば、第1の半導体膜に対して引っ張 り至が加わるため、特に大面積の川族窒化物系化合物 半導体基板を製造できる。

【0018】上記本発明の製造方法では、第1の川族 窒化物系化合物半導体がAlxGal-xN(ただし、0< X≦1)であり、第2の川族窓化物系化合物半導体が GaNであることが好ましい。上記構成によれば、第1 の半導体膜の格子定数を、第2の半導体膜の格子定数よ りも小さくできる。

40 【0019】上記本発明の製造方法では、(c)の工程は、基板を冷却したのち、さらに基板を加熱し冷却する工程を含むことが好ましい。上記構成によれば、クラックが確実に形成され、III族変化物系化合物半導体基板を歩留まりよく製造できる。

[0020]

【発明の実施の形態】以下、本発明の実施の形態について、図面を参照しながら一例を説明する。

た、複数の研を備える第1の中海体膜を形成する工程と を含むことが好ましい。上記構成によれば、第1のIII の製造方法について、工程図を図1に示す。なお、図1 族産化物系化合物半導体からなる膜と絶縁膜との間、ま 50 の斯面図は、基板の一部のみを示している。

【0022】本発明の製造方法では、まず、基板11上に出族窓化物系化合物半導体からなるバッファ層12と、第1の川・族窓化物系化合物半導体からなる版13aとをこの順序で形成する(図1(a))。基板11には、たとえば、サファイア基板、炭化ケイ素基板、スピネル基板、シリコン、ガリウム砒素、インジウム燐などを用いることができる。(0001)面サファイア基板を用いることができる。(0001)面サファイア基板を用いることができる。(0001)面サファイア基板を用いることができる。(0001)面サファイア基板を用いることによって、基板11上に川族窒化物系化合物半導体を容易に結晶成長させることができる。なお、基板11の細類によってはバッファ層12を省略することも可能である。また、バッファ層12と膜13aとの間に、他の川・族窒化物系化合物半導体を積層してもよい。

【0023】次に、腹13aの一部を除去することによって、第1の川族窒化物系化合物半導体からなり段差を備える第1の半導体膜13を形成する。膜13aの一部の除去は、ドライエッチングやウエットエッチングによって行うことができる。たとえば、図1(b)に示すように、ストライブ状の溝13bを形成することによって、段差13cを備える第1の半導体膜13を形成すればよい。図1(b)の工程における第1の半導体膜13の平面図を図2に示す。図2に示すように、複数の溝13bは、路平行に形成されている。ストライブ状の溝13bは、基板11が(0001)面サファイア基板からなる場合には、[11-20]方向に形成されることが好ましい。なお、「[11-20]方向」という表現の中の2の前にあるマイナスはバーを意味し、[11-20]は、

[0024]

【数1】

[1120]

【0025】を表す。また、 [11-20] 方向とは、 <11-20>方向ならびにそれと等価な方向すなわち <1-210>方向および<-2110>方向を表す。 【0028】溝13bの拡大図を図3に示す。滯13b の開口部の幅Wopは、1μm~10μmであることが 好ましい。また、溝13bの深さDは0.5 mm以上で あることが好ましい。深さDを0.5μm以上とするこ 40 とによって、第2の半導体膜にかかる応力が大きくな り、川丁族窓化物系化合物半導体基板を剝離することが 容易になる。また、溝136の中心と隣接する溝136 の中心との距離(周期) Pと、幅Wopとは、P≧O. 5Wopの関係を満たすことが好ましい。これによっ て、応力が加わる部分の体積が大きくなり、剥離を容易 に行うことができる。また、歳13bでは、開口部の幅 Wopが底の幅Wbtよりも大きいことが好ましい。な お、図3には、断面形状が順メサ型の流を示したが、他

(4)

特開2000-357663

6

逆メサ型の段差や側面が垂直な段差を形成してもよい。 また、海136は、ストライブ状ではなく格子状に形成 してもよい。

【0027】次に、第1の半導体膜13を覆うように、第2のIII族窒化物系化合物半導体からなる第2の半導体膜14aを第1の半導体膜13上に形成する(図1(c))。ここで、第2のIII族窓化物系化合物半導体は、第1のIII族窒化物系化合物半導体とは組成および熱膨張係数が異なる。なお、第2の半導体膜14aの形成は、基板11を加熱しながら行われる。

【0028】最後に、第2の半導体膜14aが形成された基板11を冷却し、第2の半導体膜14aを第1の半導体膜13から分離し、川族窒化物系化合物半導体基板14を得る(図1(d)を開)。なお、図1(d)に示すように、第2の半導体膜14aのうち満13b内に形成された部分15は、満13b内に残る場合がある。このようにして、川族窒化物系化合物半導体基板を製造できる。なお、第2の半導体膜14aの分離を容易にするために、基板11を冷却したのち、さらに加熱・冷却を繰り返してもよい。また、必要に応じて、川族窒化物系化合物半導体基板14の裏面側(第1の半導体膜13に接していた側)を研磨してもよい。川族窒化物系化合物半導体基板14の裏面に第2の半導体膜13の一部が付着しているような場合であっても、それらの膜は薄いため、研磨によって容易に除去できる。

【0029】上記工程において、第1の川族空化物系化合物半導体(第1の半導体膜13)および第2の川 族変化物系化合物半導体(第2の半導体膜14a)には、それぞれ、組成がAlxGai-x-yInyN(ただし、0≦X≤1、0≦Y≤1、0≤X+Y≤1)で表される化合物半導体を用いることができる。そして、上述したように、第1の川族変化物系化合物半導体と第2の川族変化物系化合物半導体とは、組成が異なり、熱膨張係数が異なる。なお、第2の半導体膜14aに不純物を添加し、p形またはn形の半導体膜を形成してもよい。これによって、p形またはn形の川族策化物系化合物半導体基板が得られる。

【0030】また、第1の半導体膜13と第2の半導体膜14aとは、熱態張係数が大きく異なることが好ましい。たとえば、GaNからなる基板を製造する場合には、第2の半導体膜14aがGaNからなり、第1の半導体膜13がAlxGal-xN(ただし、0.1 $\leq X\leq 0$.3)からなることが好ましい。また、AlxGal-xN(ただし、0.1 $\leq X\leq 0$.2)からなる基板を製造する場合には、第2の半導体膜14aがAlxGal-xN(ただし、0.1 $\leq X\leq 0$.2)からなり、第1の半導体膜13がGaNからなることが好ましい。

お、図3には、断面形状が順メサ型の譲を示したが、他 00μ 以上とすることによって、第 1μ の半導体膜 1μ は、厚さが 2μ の形状の段差を形成してもよい。たとえば、断面形状が 1μ 以上とすることによって、第 1μ の半導体膜 1μ 3と第 2μ の形状の段差を形成してもない。たとえば、断面形状が 1μ 以上とすることによって、第 1μ の半導体膜 1μ 3と第 2μ 以上とすることによって、第 1μ 2 μ 3と第 2μ 以上とすることによって、第 1μ 3 μ 4 μ 4 μ 4 μ 5 μ 5 μ 4 μ 5 μ 6 μ 7 μ 6 μ 6 μ 7 μ 6 μ 7 μ 6 μ 7 μ 7 μ 7 μ 8 μ 9 μ 7 μ 8 μ 9 μ

半導体膜14aとの界面に応力を集中させることができるため、第2の半導体膜14aの剥離が容易になる。

【0032】上記工程において、第1のIII族産化物系化合物半導体からなる膜13a、および第2の半導体膜14aは、たとえば、HVPE法、MOVPE法などによって形成することができる。

【0033】なお、本発明の製造方法では、以下の実施例で説明するように、第1の半導体膜13と第2の半導体膜14aとの界面の一部に、絶縁膜を形成する工程をさらに含んでもよい。これによって、第2の半導体膜14aをさらに容易に剥離できる。絶縁膜には、たとえば、SiOz、Si3Na、またはA12O3などを用いることができる。この場合には、第2の半導体膜14aを形成した後に、絶縁膜を選択的に除去する工程をさらに含んでもよい。絶縁膜を選択的に除去することよって、第2の半導体膜14aの剥離がさらに容易になる。

【0034】上記本発明の製造方法では、第1の半導体膜13の熱膨張係数と第2の半導体膜14aの熱膨張係数とが異なり、第1の半導体膜13には段差13cが形成されている。したがって、段差13cの部分から、第20半導体膜14aの表面に平行にクラックが生じる。このため、本発明の製造方法によれば、大面積の111族 窒化物系化合物半導体基板を容易に製造できる。

[0035]

【実施例】以下、実施例を用いて本発明をさらに詳細に 説明する。

【0036】(実施例1)実施例1では、本発明の製造 方法によって111族窒化物系化合物半導体基板を製造し た一例について、図4を参照しながら説明する。

【0037】まず、基板であるサファイア基板41 (直 30径5.08cm (2インチ)、厚さ300μm)を、リン酸と塩酸の混合溶液 (90℃に加熱)中で15分間浸漬することによって、サファイア基板41の表面をエッチングした。次に、サファイア基板41を水洗して乾燥*

(5)

特開2000-357663

*した。次に、サファイア基板41をMOVPE装置に導入した。そして、1.013×10⁻⁶Pa (1気圧)の 京素雰囲気下で、サファイア基板41を30分間105 0℃に加熱することによって、サファイア基板41のサーマルクリーニングを行った。

【0038】次に、結晶成長温度(サファイア基板41 の温度)が500℃の条件で、GaNバッファ熔42 (厚さ50nm)をサファイア基板41上にエピタキシャル成長させた。次に、結晶成長温度が1000℃の条 作で、GaN屑43とAlo.1Gao.aN層44aとを、それぞれが1μmの厚さになるようにエピタキシャル成長させた(図4(a))。結晶成長には、トリメチルガリウム、トリメチルアルミニウムおよびアンモニアを原料ガスとして用いた。Alo.1Gao.aN層44aが、図1の膜13aに対応する。以下、何らかの層が形成されたサファイア基板41をウェハという。

【0040】その後、ウェハをハイドライド気相成長装置(以下、HVPE装置という場合がある)に導入し、Alo.1 Gao.8 N暦44上にGa N膜45a(厚さ200μm)をエピタキシャル成長させた(図4(c))。なお、Ga NとAlo.1 Gao.8 Nとは、表1に示すように、線熱膨張係数が異なる。

【0041】

	線熱膨張係数の値(×10 ⁻⁶ /K)		
	室温(27℃)	1000°C	
GeN	5. 59	5. 59	
Al _{o. 1} Ga _{o. s} N	5. 41	5. 70	

【0042】GaN族45aの形成方法について以下に 説明する。HVPE装置の一例について、断面図を図5 に模式的に示す。なお、図5では、理解を容易にするため、部分的にハッチングを省略している。図5を参照し て、HVPE装置は、石英製の反応炉51と、反応炉5 1の内部に配置されたサセプタ52と、反応炉51に取り付けられた窓条導入管53a、アンモニア導入管53 b、塩化水崇導入管53cおよび排気管54と、塩化水 条導入管53cの先端に配置された原料室55とを備え 50 で、以下に説明する。

る。原料室55内には、原料(金属ガリウム)56が入れられたトレー57が配置されている。HVPE装置は、さらに、サセプタ52に配置されるウェハ52aを加熱するための基板加熱ヒータ58と、原料56を加熱するための原料加熱ヒータ59とを備える。なお、基板加熱ヒータ58は、反応炉51に対して平行にスライドできるようになっている。

【0043】GaN膜45aの結晶成長の方法について、以下に説明する。

【0044】まず、アンモニア導入管53bおよび原料 室55に対向するようにサセプタ52上にウェハを戴置 した。そして、窒素導入管53gから反応炉51に密素 を導入し、反応炉51内を1.013×10-5Pg (1 気圧)の窒素雰囲気で満たした。

【0045】その後、基板加熱ヒータ58および原料加 熱ヒータ59を用い、ウェハの温度を1000℃、原料 56の温度を800℃とした。そして、アンモニア導入 管53bからアンモニアを反応炉51に導入した。ま 導入し、原料室55において原料56の金属ガリウムと 塩化水素とを反応させて塩化ガリウムを発生させた。

【0046】そして、反応第51内に導入した塩化ガリ ウムとアンモニアとを原料ガスとして、ウェハ上にGa N膜45aを結晶成長させた(図4(c))。

【0047】その後、GaN腺45aとAlo.1Gao.s N層44とを分離することによって、GaN基板45を 得た。具体的には、GaN膜45aを結晶成長させたの ち、窒素雰囲気のHVPE装置中で20分間自然冷却す ることによって、ウェハの温度を室温まで下げ、GaN 膜45aをAlo.1Gao.9N層44から分離した。最後 に、分離されたGaN基板45をHVPE装置より取り 出した。このようにして、GaN基板45を得た。この とき、GaN膜45aの一部46が溝44b内に残っ た。

【0048】GaN膜45aに形成されるクラックの様 子を見るために、GαN膜45αに代えて、膜厚が2μ mのG a N層 6 1 を結晶成長させたウェハを作製し、上 記実施例1と同様の方法で冷却した。そして、このウェ ハを劈開し、劈開面を電子顕微鏡で観察して、GaN層 30 61内に生じた欠陥やクラックの様子を調べた。その結 果を図6に模式的に示す。なお、図6では、GaN層6 1のハッチングを省略する。

【0049】図6に示すように、GaN層61内には、 貫通転移62とクラック63とが形成されている。 クラ ック63は、Alo.1Gao.8N層44に形成された段差 部分44cから溝44bの中央方向に向かって、GaN 暦 8 1 の主面に平行に形成されていた。このクラック 6 3は、(1) Alo.1Gao.9N層44とGaN層61と で熱膨張係数が異なること、(2) Alo.1Gao.eNの 40 格子定数がGaNの格子定数よりも小さく、Alo.1G 80.6 N層44に対して引っ張り歪が加わったこと、お よび(3) Ala. + Gao. + N居44に段第44cが形成 され、段差44cの斜面上にもGaNが結晶成長したこ と、のためであると考えられる。GaN膜45aの場合 も、GaN層61と同様に、段差44c部分から主面に 平行にクラックが生じ、GaN膜45aが剥離しやすく なるものと考えられる。

【0050】実際に、実施例1においては、ウェハの約

(6)

特開2000-357663

部分にクラックが生じ、GaN膜45aを分離すること ができた。その結果、直径約2.54cm(約1イン チ)のGaN基板45を得ることができた。

【0051】以上のように、実施例1の製造方法では、 A 10.1 G a 0.8 N層 4 4 の熱膨脈係数と G a N膜 4 5 a の熱膨張係数とが異なり、かつAlo.1Gao.8N層44 には段差44cが形成された。このため、GaN膜45 a中において、GaN膜45aの表面に対して平行に段 差44cからクラックが生じ、GaN厚膜45aを分離 た、塩化水素導入管 5 3 c から塩化水素を原料室 5 5 に 10 することができた。その結果面積の大きな G a N基板 4 5を得ることができた。

> 【0052】特に、Alo.1Gao.9Nの格子定数はGa Nの格子定数よりも小さく、A lo.1G ao.9 N層 4 4に 対して引っ張り歪が加わるので、Al0.1G80.0N層4 4とGaN膜45aとの間においてクラックが生じやす くなり、大面積のGaN膜45aを分離することができ た。その結果、大面積のGaN基板45が得られた。

【0053】(実施例2)実施例2では、本発明の製造 方法によって|||族箋化物系化合物半導体基板を製造し た他の一例について説明する。実施例2の製造方法で は、実施例1の製造方法とは基板の冷却方法のみが異な るため、重複する説明は省略する。

【0054】図4(a)~図4(c)の工程を行い、A lo.1Gao.9N居44上にGaN膜45a(厚さ200 μm)を結晶成長させた。その後、窒素雰囲気のHVP E装置中で20分間自然冷却することによって、ウェハ の温度を室温まで下げた。その後、窒素雰囲気のHVP E装置中で、30分の時間をかけてウェハの浪度を10 00℃まで上げた。1000℃まで加熱したのち紊混ま で冷却する熱サイクルを5回繰り返すことによって、A 10.1Ga0.9N層44からGaN膜45aを分離し、G a N基板45を得た(図4(d)参照)。最後に、分離 されたGaN基板45をHVPE装置より取り出した。 このようにして、川は族変化物系化合物半導体基板を得 た。

【0055】実施例2の製造方法では、実施例1の製造 方法で得られる効果に加え、G a N基板を分離する際に 熱サイクルを行うことによる効果が得られる。 したがっ て、実施例2の製造方法では、実施例1よりも大面積の GaN膜45aを分離することができ、大面積のGaN 基板を得ることができた。

【0056】実際、実施例2においては、ウェハの全面 にわたって、段差44cから溝44bの中央部に向かっ て、GaN膜45aの表面に平行な方向にGaN膜45 a内にクラックが生じ、GaN膜45aを分離すること ができた。その結果、直径が約5.08cm(約2イン チ)のGaN基板45を得ることができた。

【0057】熱サイクルを行うことによって、より大面 積のGaN基板45を分離することができるのは、A1 6 0 %の領域において、G a N 腠 4 5 a の 段差 4 4 c の 50 0.1 G a 0.4 N 層 4 4 と G a N 膜 4 5 a との界面に繰り返

し応力が加わり、クラックがより生じやすくなったため であると考えられる。

【0058】(実施例3) 実施例3では、本発明の製造方法によって!!!族蛮化物系化合物半導体基板を製造したその他の一例について説明する。実施例3の製造方法は、実施例1の製造方法とは基板の冷却方法のみが異なるため、重複する説明は省略する。

【0059】図4(a)~図4(c)の工程を行い、A lo.1Gao.9N層44上にGaN膜45a(厚さ200μm)を結晶成長させた。そして、GaN膜45aを結晶成長させた直後に、基板加熱ヒータ58をスライドさせ、窒素ガスをウェハに吹き付けてウェハを急速(3分以内)に冷却し、ウェハの温度を室温まで下げた。この窒素ガスによる冷却によってGaN膜45aを分離し、GaN基板45を得た。そして、得られたGaN基板45をHVPE装置より取り出した。

【0060】ウェハを冷却する際に基板加熱ヒータ58をスライドさせたのは、基板加熱ヒータ58が有する熱によって、ウェハの冷却に時間がかかるのを防止するためである。基板加熱ヒータ58をスライドさせることに 20よって、ウェハを室温まで急速に冷却することができた。

【0061】実施例3の製造方法では、実施例1の製造方法と同様の効果に加え、実施例1に比べてウェハをより急速に冷却する効果が得られる。したがって実施例3の製造方法では、より大面積のGaN膜45aを分離することができ、その結果、より大面積のGaN基板を得ることができた。

【0062】実際、実施例3においては、ウェハの全面にわたって、段差44cから溝44bの中央部に向かって、GaN膜45aの表面に平行な方向にGaN膜45a内にクラックが生じ、GaN膜45aを分離することができた。その結果、直径が約5.08cm(約2インチ)のGaN基板45を得ることができた。

【0063】 実施例3の製造方法で大面積のGaN基板が得られるのは、Alo.1Gao.3N居44とGaN膜45aとの界面に応力が急速にかかり、クラックがより生じやすくなったためであると考えられる。

【0064】(実施例4)実施例4では、本発明の製造方法によってIII族窒化物系化合物半導体基板を製造したその他の一例について図7を参照しながら説明する。実施例4の製造方法は、第1の半導体膜と第2の半導体膜との間に絶縁膜を形成する方法である。なお、実施例1と同様の部分については、重複する説明を省略する。【0065】まず、(0001)面サファイア基板41(直径5.08cm(2インチ)、厚さ300μm)を開意し、実施例1と同様の方法で、洗浄、エッチング、およびサーマルクリーニングを行った。そして、実施例1と同様の方法で、サファイア基板41上に、GaNボッファ層42(厚さ50nm)、GaN層43(厚さ150く得ることができる。

(7)

特開2000-357663

μm)、およびAlo.1Gao.0N層44a(厚さ1μm)を、順次結晶成長させた(図7 (a))。

【0066】次に、Alo.1Gao.*N層44aが形成されたサファイア基板41 (以下、ウェハという場合がある)を、常圧CVD設置内に配置した。そして、CVD法によって、Alo.1Gao.●N層44a上に、SiO2 膜71 (厚さ約0.3μm)を形成した。

【0067】その後、ウェハを常圧CVD装置から取り出した。そして、Alo.1Gao.9N層44aの [ll-20]方向に、幅Wopが5μm、深さDが0.8μm、距離(周期)Pが10μmの滞44bをドライエッチングによって形成し、Alo.1Gao.9N層44を形成した(図7(b))。

【0068】さらに、実施例1と同様の方法で、腹厚2 00μmのGaN膜45aを結晶成長させた(図7 (c))。なお、結晶成長温度は、実施例1と同様に1 000℃とした。

【0069】その後、N₂雰囲気のHVPE装置内で、 20分間ウェハを自然冷却し、ウェハの温度を室温まで 下げ、GaN膜45aを分離した。最後に、分離された GaN基板45をHVPE装置より取り出し、GaN基 板45を得た(図7 (d))。

【0070】実施例4の製造方法では、(1) Alo.1 Gao.9 N層44の熱膨張係数とGa N膜45aの熱膨 張係数とが異なり、(2) Alo.1 Gao.8 N層44に、 構型の段差44cが形成されており、(3) Alo.1 G ao.8 N 44上にSi O2 膜71が形成されている。

【0071】実施例4の製造方法では、SiO2膜71を用いているため、隣44b部分のAlo.1Gao.0N層44からSiO2膜71に回り込むように結晶が成長する。したがって、SiO2膜71とGaN膜45aとの界面に結晶の歪みによる応力が加わり、この界面でクラックがさらに生じやすくなる。したがって、実施例4の製造方法によれば、より大面積のGaN基板45を得ることができた。

【0072】実際、実施例4においては、ウェハの全面にわたって、段差44cから牌44bの中央部に向かって、GaN膜45aの表面に平行な方向にGaN膜45a内にクラックが生じ、GaN膜45aを分離することができた。その結果、直径が約5.08cm(約2インチ)のGaN基板45を得ることができた。

【0073】なお、実施例4において、HVPE装置よりウェハを取り出した後に、ウェハを希フッ酸(体積比でH2O:HF=10:1)に30分間浸漬し、SiO2膜71のみを選択的にエッチングしてもよい。そして、さらに熱サイクルを行い、GaN基板を分離してもよい。このようにすれば、GaN灰45aを分離する際に、GaN基板45の表面にSiO2膜71が残留しないので、面積の大きなGaN基板45をより歩留まり良く得ることができる。

【0074】また、実施例4の製造方法において、上記 実施例と同様に、熱サイクルを行ったり、ウェハを急速 に冷知してもよい。

【0075】また、SiOz膜71の代わりに、Si3N4からなる膜を用いてもよい。

【0076】以上、本発明の実施の形態について例を挙げて説明したが、本発明は、上記実施の形態に限定されず本発明の技術的思想に基づき他の実施形態に適用することができる。

【0077】たとえば、上記実施例では、Alo.1Ga 0.6N層44に形成する溝44bの深さDを、GaN層43に達しない深さである0.8μmとした。しかし、深さDを、GaN層43に達する深さとしてもよく、サファイア港板41が露出する深さとしてもよい。溝を形成することによってGaN層43またはサファイア基板41が露出する場合でも、GaN膜45aの成長初期のガス流量や成長温度などの成長条件を最適化することによって、良好な結晶性を有するGaN膜45aを得ることができる。

[0078]

【発明の効果】以上説明したように、本発明のIII 族空化物系化合物半導体基板の製造方法は、第1のIII 族空化物系化合物半導体からなり段差を備える第1の半導体膜を形成する工程と、第1の半導体膜上に、第1のIII 族窒化物系化合物半導体とは異なる熱膨張係数を有する第2のIII 族窒化物系化合物半導体からなる第2の半導体膜を形成する工程と、基板を冷却し、第2の半導体膜を第1の半導体膜から分離する工程とを有する。したがって、本発明の製造方法によれば、大面積のIII 族窒化物系化合物半導体基板を歩留まり良く、かつ再現性良く製造できる。

【図面の簡単な説明】

【図1】 本発明の111族窒化物系化合物半導体基板の 製造方法について一例を示す工程図である。 (8)

特開2000-357663

【図2】 図1(b)の工程における溝13bの形状の一例を示す平面図である。

【図3】 溝13bの形状の一例を示す断面図である。

【図4】 本発明の111族窒化物系化合物半導体基板の 製造方法について他の一例を示す工程図である。

【図5】 本発明のIII族室化物系化合物半導体基板の 製造方法に用いるHVPE装置について一例を模式的に 示す断面図である。

【図6】 Alo.1Gao.eN層44とGaN層71との 10 境界に生じるクラックの様子を模式的に示す図である。

【図7】 本発明のIII族窒化物系化合物半導体基板の 製造方法についてその他の一例を示す工程図である。

【図8】 従来の111族窓化物系化合物半導体基板の製造方法について一例を示す工程図である。

【符号の説明】

11 基板

12 パッファ層

13 第1の半導体膜

13a 膜

20 135、446 撰

13c、44c 段类

14a 第2の半導体膜

14 川族窦化物系化合物半導体基板

4.1 サファイア基板

42 GaNバッファ層

43 GaN層

44、44a Alo.1Gao.8N層

4.5 GaN基板

45a GaN膜

30 61 GaN際

62 貫通転移

63 クラック

71 絶縁膜

[图3]

(図5)

(9)

特開2000-357663

(10)

特朗2000-357663

【図7】

フロントページの続き

(72)発明者 中村 真嗣

大阪府高槻市幸町1番1号 松下電子工業 株式会社内

(72) 発明者 石田 昌宏

大阪府高槻市幸町1番1号 松下電子工業

株式会社内

(72) 発明者 折田 賢児

大阪府高槻市幸町1番1号 松下電子工業 株式会社内