SISTEMAS DISTRIBUIDOS Y PARALELOS

Carrera: Ingeniería en computación Facultad de Informática — Universidad Nacional de La Plata

Matrices triangulares

Una matriz triangular es una matriz cuadrada donde los elementos por encima o por debajo de la diagonal son cero:

$$U = \begin{pmatrix} u_{0,0} & u_{0,1} & u_{0,2} \\ 0 & u_{1,1} & u_{1,2} \\ 0 & 0 & u_{2,2} \end{pmatrix}$$

Matriz Triangular Superior

$$L = \begin{pmatrix} l_{0,0} & 0 & 0 \\ l_{1,0} & l_{1,1} & 0 \\ l_{2,0} & l_{2,1} & l_{2,2} \end{pmatrix}$$

Matriz Triangular Inferior

Matrices triangulares

- Cuando los requerimientos de memoria son críticos y estas matrices son muy grandes, no es necesario almacenar una gran cantidad de ceros.
- La idea es minimizar el espacio de almacenamiento evitando guardar los elementos de la parte nula de la matriz.

Vamos a suponer que NUNCA accederemos a las posiciones nulas. Cualquier operación que las involucre da como resultado cero. Ejemplo: Multiplicación de matrices.

$$U = \begin{pmatrix} u_{0,0} & u_{0,1} & u_{0,2} \\ 0 & u_{1,1} & u_{1,2} \\ 0 & 0 & u_{2,2} \end{pmatrix} = \begin{pmatrix} u_{0,0} & u_{0,1} & u_{0,2} \\ \frac{u_{1,0}}{u_{1,0}} = 0 & u_{1,1} & u_{1,2} \\ \frac{u_{2,0}}{u_{2,0}} = 0 & \frac{u_{2,1}}{u_{2,2}} = 0 & u_{2,2} \end{pmatrix}$$

¿Cómo accedemos a la posición U[i,j] de una matriz triangular almacenada en forma reducida?

Matrices triangulares

- El acceso a una matriz triangular almacenada de forma minimizada en memoria va a depender de si es triangular superior (U) o inferior (L), y si está almacenada por filas o columnas.
- La combinación de estas características nos da 4 posibilidades:
 - Matriz triangular superior almacenada por filas
 - Matriz triangular inferior almacenada por columnas
 - Matriz triangular inferior almacenada por filas
 - Matriz triangular superior almacenada por columnas

Una matriz triangular superior almacenada por filas como un vector en memoria:

$$U = \begin{pmatrix} u_{0,0} & u_{0,1} & u_{0,2} \\ 0 & u_{1,1} & u_{1,2} \\ 0 & 0 & u_{2,2} \end{pmatrix}$$

$u_{0,0}$	<i>u</i> _{0,1}	<i>u</i> _{0,2}	<i>u</i> _{1,1}	u _{1,2}	u _{2,2}
0	1	2	3	4	5

- Cada vez que se accede a una nueva fila hay que restar del cálculo U[i*N+j] la cantidad de elementos en cero que hay hasta esa posición:
- En el ejemplo:
 - Si se accede a un elemento de la fila 0, no hay elementos anteriores en cero.
 - Si se accede a un elemento de la fila 1, hay 1 elemento anterior en cero.
 - □ Si se accede a un elemento de la fila 2, hay 3 elementos anteriores en cero.

 \Box En general, para una matriz de N*N:

$$U = \begin{pmatrix} u_{0,0} & u_{0,1} & u_{0,2} & \dots & u_{0,n-1} \\ 0 & u_{1,1} & u_{1,2} & \dots & u_{1,n-1} \\ 0 & 0 & u_{2,2} & \dots & u_{2,n-1} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & u_{n-1,n-1} \end{pmatrix}$$

- La cantidad de ceros hasta la fila 0 es: 0
- La cantidad de ceros hasta la fila 1 es: 1
- La cantidad de ceros hasta la fila 2 es: 3 (1 cero de la fila 1 y 2 ceros de la fila 2)
- La cantidad de ceros hasta la fila 3 es: 6 (1 cero de la fila 1, 2 ceros de la fila 2 y 3 ceros de la fila 3)
- La cantidad de ceros hasta la fila 4 es: 10 (1 cero de la fila 1, 2 ceros de la fila 2, 3 ceros de la fila 3 y 4 ceros de la fila 4)

□ La cantidad de ceros hasta la fila i-esima es:

$$\sum_{a=0}^{i} a = \frac{i \cdot (i+1)}{2}$$

lacktriangle Por lo tanto, para acceder al elemento U[i,j]:

$$U[i,j] = U_{vector} \left[i \cdot N + j - \frac{i \cdot (i+1)}{2} \right]$$

Volviendo al ejemplo (N=3):

$$U = \begin{pmatrix} u_{0,0} & u_{0,1} & u_{0,2} \\ 0 & u_{1,1} & u_{1,2} \\ 0 & 0 & u_{2,2} \end{pmatrix}$$

<i>u</i> _{0,0}	<i>u</i> _{0,1}	<i>u</i> _{0,2}	<i>u</i> _{1,1}	u _{1,2}	u _{2,2}
0	1	2	3	4	5

	i	j	$U[i,j] = U_{vector} \left[i \cdot N + j - \frac{i \cdot (i+1)}{2} \right]$
$u_{0,0}$	0	0	0
<i>u</i> _{0,1}	0	1	1
<i>u</i> _{0,2}	0	2	2
<i>u</i> _{1,1}	1	1	3
<i>u</i> _{1,2}	1	2	4
u _{2,2}	2	2	5

□ Una matriz triangular inferior almacenada por columnas como un vector en memoria:

$$L = \begin{pmatrix} l_{0,0} & 0 & 0 \\ l_{1,0} & l_{1,1} & 0 \\ l_{2,0} & l_{2,1} & l_{2,2} \end{pmatrix}$$

$l_{0,0}$	<i>l</i> _{1,0}	l _{2,0}	<i>l</i> _{1,1}	l _{2,1}	l _{2,2}
0	1	2	3	4	5

- La idea es la misma a la anterior como si tuviéramos intercambiadas las filas por columnas:
- En el ejemplo:
 - Si se accede a un elemento de la columna 0, no hay elementos anteriores en cero.
 - Si se accede a un elemento de la columna 1, hay 1 elemento anterior en cero.
 - □ Si se accede a un elemento de la columna 2, hay 3 elementos anteriores en cero.

En general, para una matriz de N*N:

$$L = \begin{pmatrix} l_{0,0} & 0 & 0 & \dots & 0 \\ l_{1,0} & l_{1,1} & 0 & \dots & 0 \\ l_{2,0} & l_{2,1} & l_{2,2} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ l_{n-1,0} & l_{n-1,1} & l_{n-1,2} & \dots & l_{n-1,n-1} \end{pmatrix}$$

- La cantidad de ceros hasta la columna 0 es: 0
- La cantidad de ceros hasta la columna 1 es: 1
- La cantidad de ceros hasta la columna 2 es: 3 (1 cero de la columna 1 y 2 ceros de la columna 2)
- La cantidad de ceros hasta la columna 3 es: 6 (1 cero de la columna 1, 2 ceros de la columna 2 y 3 ceros de la columna 3)
- La cantidad de ceros hasta la columna 4 es: 10 (1 cero de la columna 1, 2 ceros de la columna 2, 3 ceros de la columna 3 y 4 ceros de la columna 4)

□ La cantidad de ceros hasta la columna j-esima es:

$$\sum_{a=0}^{j} a = \frac{j \cdot (j+1)}{2}$$

lacktriangle Por lo tanto, para acceder al elemento L[i,j]:

$$L[i,j] = L_{vector} \left[i + j \cdot N - \frac{i \cdot (i+1)}{2} \right]$$

Volviendo al ejemplo (N=3):

$$L = \begin{pmatrix} l_{0,0} & 0 & 0 \\ l_{1,0} & l_{1,1} & 0 \\ l_{2,0} & l_{2,1} & l_{2,2} \end{pmatrix}$$

$l_{0,0}$	<i>l</i> _{1,0}	$l_{2,0}$	l _{1,1}	l _{2,1}	l _{2,2}
0	1	2	3	4	5

	'		'
	i	j	$L[i,j] = L_{vector} \left[i + j \cdot N - \frac{j \cdot (j+1)}{2} \right]$
$l_{0,0}$	0	0	0
$l_{1,0}$	1	0	1
$l_{2,0}$	2	0	2
$l_{1,1}$	1	1	3
$l_{2,1}$	2	1	4
$l_{2,2}$	2	2	5

Una matriz triangular inferior almacenada por columnas como un vector en memoria:

$$L = \begin{pmatrix} l_{0,0} & 0 & 0 \\ l_{1,0} & l_{1,1} & 0 \\ l_{2,0} & l_{2,1} & l_{2,2} \end{pmatrix}$$

$l_{0,0}$	l _{1,0}	l _{1,1}	l _{2,0}	l _{2,1}	l _{2,2}
0	1	2	3	4	5

- □ Siguiendo el mismo razonamiento.
- En el ejemplo:
 - □ Si se accede a un elemento de la fila 0, no hay elementos anteriores en cero.
 - Si se accede a un elemento de la fila 1, hay 2 elementos anteriores en cero.
 - □ Si se accede a un elemento de la fila 2, hay 3 elementos anteriores en cero.

En general, para una matriz de N*N:

$$L = \begin{pmatrix} l_{0,0} & 0 & 0 & \dots & 0 \\ l_{1,0} & l_{1,1} & 0 & \dots & 0 \\ l_{2,0} & l_{2,1} & l_{2,2} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ l_{n-1,0} & l_{n-1,1} & l_{n-1,2} & \dots & l_{n-1,n-1} \end{pmatrix}$$

- La cantidad de ceros hasta la fila 0 es: 0
- La cantidad de ceros hasta la fila 1 es: N-1
- La cantidad de ceros hasta la fila 2 es: 2N 3 (N-1 ceros de la fila 1 y N-2 ceros de la fila 2)
- La cantidad de ceros hasta la fila 3 es: 3N 6 (N-1 ceros de la fila 1, N-3 ceros de la fila 2 y N-3 ceros de la fila 3)
- La cantidad de ceros hasta la fila 4 es: 4N 10 (N-1 ceros de la fila 1, N-2 ceros de la fila 2, N-3 ceros de la fila 3 y N-4 ceros de la fila 4)

La cantidad de ceros hasta la fila i-ésima es:

$$i \cdot N - \sum_{a=0}^{i} a = \frac{i \cdot (i+1)}{2}$$

lacktriangle Por lo tanto, para acceder al elemento L[i,j]:

$$L[i,j] = L_{vector} \left[i \cdot N + j - \left(i \cdot N - \frac{i \cdot (i+1)}{2} \right) \right]$$

□ Volviendo al ejemplo (N=3):

$$L = \begin{pmatrix} l_{0,0} & 0 & 0 \\ l_{1,0} & l_{1,1} & 0 \\ l_{2,0} & l_{2,1} & l_{2,2} \end{pmatrix} \qquad \boxed{ \begin{array}{c} l_{0} \\ 0 \\ 0 \\ \end{array} }$$

$l_{0,0}$	$l_{1,0}$	l _{1,1}	l _{2,0}	l _{2,1}	l _{2,2}
0	1	2	3	4	5

	i	j	$L[i,j] = L_{vector} \left[i \cdot N + j - \left(i \cdot N - \frac{i \cdot (i+1)}{2} \right) \right]$
$l_{0,0}$	0	0	0
$l_{1,0}$	1	0	1
$l_{1,1}$	1	1	2
l _{2,0}	2	0	3
l _{2,1}	2	1	4
l _{2,2}	2	2	5

□ Una matriz triangular superior almacenada por filas como un vector en memoria:

$$U = \begin{pmatrix} u_{0,0} & u_{0,1} & u_{0,2} \\ 0 & u_{1,1} & u_{1,2} \\ 0 & 0 & u_{2,2} \end{pmatrix}$$

<i>u</i> _{0,0}	<i>u</i> _{0,1}	<i>u</i> _{1,1}	<i>u</i> _{0,2}	u _{1,2}	u _{2,2}
0	1	2	3	4	5

- La idea es la misma a la anterior como si tuviéramos intercambiadas las filas por columnas:
- En el ejemplo:
 - Si se accede a un elemento de la columna 0, no hay elementos anteriores en cero.
 - Si se accede a un elemento de la columna 1, hay 2 elementos anteriores en cero.
 - □ Si se accede a un elemento de la columna 2, hay 3 elementos anteriores en cero.

En general, para una matriz de N*N:

$$U = \begin{pmatrix} u_{0,0} & u_{0,1} & u_{0,2} & \dots & u_{0,n-1} \\ 0 & u_{1,1} & u_{1,2} & \dots & u_{1,n-1} \\ 0 & 0 & u_{2,2} & \dots & u_{2,n-1} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & u_{n-1,n-1} \end{pmatrix}$$

- La cantidad de ceros hasta la columna 0 es: 0
- La cantidad de ceros hasta la columna 1 es: N-1
- La cantidad de ceros hasta la columna 2 es: 2N 3 (N-1 ceros de la columna 1 y N-2 ceros de la columna 2)
- La cantidad de ceros hasta la columna 3 es: 3N 6 (N-1 ceros de la columna 1, N-2 ceros de la columna 2 y N-3 ceros de la columna 3)
- La cantidad de ceros hasta la columna 4 es: 10 (N-1 ceros de la columna 1, N-2 ceros de la columna 2, N-3 ceros de la columna 3 y N-4 ceros de la columna 4)

□ La cantidad de ceros hasta la columna j-ésima es:

$$j \cdot N - \sum_{a=0}^{j} a = \frac{j \cdot (j+1)}{2}$$

 \square Por lo tanto, para acceder al elemento U[i,j]:

$$U[i,j] = U_{vector} \left[i + j \cdot N - \left(j \cdot N - \frac{j \cdot (j+1)}{2} \right) \right]$$

□ Volviendo al ejemplo (N=3):

$$U = \begin{pmatrix} u_{0,0} & u_{0,1} & u_{0,2} \\ 0 & u_{1,1} & u_{1,2} \\ 0 & 0 & u_{2,2} \end{pmatrix}$$

<i>u</i> _{0,0}	<i>u</i> _{0,1}	<i>u</i> _{1,1}	<i>u</i> _{0,2}	<i>u</i> _{1,2}	u _{2,2}
0	1	2	3	4	5

	i	j	$U[i,j] = U_{vector} \left[i + j \cdot N - \left(j \cdot N - \frac{j \cdot (j+1)}{2} \right) \right]$
$u_{0,0}$	0	0	0
$u_{0,1}$	0	1	1
<i>u</i> _{1,1}	1	1	2
<i>u</i> _{0,2}	0	2	3
<i>u</i> _{1,2}	1	2	4
u _{2,2}	2	2	5

Resumen

$$U[i,j] = U_{filas} \left[i \cdot N + j - \frac{i \cdot (i+1)}{2} \right]$$

$$L[i,j] = L_{columnas} \left[i + j \cdot N - \frac{i \cdot (i+1)}{2} \right]$$

$$L[i,j] = L_{filas} \left[i \cdot N + j - \left(i \cdot N - \frac{i \cdot (i+1)}{2} \right) \right] = L_{filas} \left[\frac{i \cdot N}{2} + j - \frac{i \cdot N}{2} + \frac{i \cdot (i+1)}{2} \right] = L_{filas} \left[j + \frac{i \cdot (i+1)}{2} \right]$$

$$U[i,j] = U_{columnas} \left[i + j \cdot N - \left(j \cdot N - \frac{j \cdot (j+1)}{2} \right) \right] = U_{columnas} \left[i + \frac{j \cdot N}{2} - \frac{j \cdot N}{2} + \frac{j \cdot (j+1)}{2} \right] = U_{columnas} \left[i$$

Trade-off Cómputo - Memoria

- Trade-off: es la decisión tomada en una situación en la cual se debe perder cierta cualidad a cambio de ganar en otra cualidad.
- En este caso:
 - Ganamos espacio de almacenamiento
 - La cantidad de cálculos es mayor por lo tanto se puede perder en rendimiento
- Si el overhead no se puede evitar se debe tratar de optimizar al máximo el overhead introducido por la mejora, y de esta forma mitigar el impacto negativo en el rendimiento.