

INDIVIDUAL ASSIGNMENT 1

COURSE CODE: DDWD 3343

COURSE NAME : COMPUTER SECURITY

YEAR / PROGRAMME : 3 DDWD

SUBMISSION :

INSTRUCTION / ARAHAN:

1. THIS ASSESSMENT WILL CONTRIBUTE 5% OF THE ASSESSMENT.

- 2. PLEASE SUBMIT THIS LAB SKILL IN FORM OF PDF (SOFTCOPY) / A4 PAPER SIZE (HARDCOPY) BEFORE 15 SEPTEMBER 2024.
- 3. MAKE SURE TO COMPLETE ALL ASSESSMENT
- 4. PLEASE FOLLOW THE FORMAT:
 - a. TIMES NEW ROMAN FONT SIZE 12.
 - b. SPACING 1.5.
 - c. JUSTIFY ALIGNMENT THE PARAGRAPH.
- 5. THE FAILURE FOLLOWING THE REQUIREMENT WILL CAUSE LOSING MARK
- 6. PLEASE FOLLOW THE RUBRIC ASSESSMENT:

CRITERIA	4POINTS	3POINTS	2POINTS	1POINTS
SUBMISSION	FOLLOW ALL FORMAT	DID NOT FOLLOW 1-2	DID NOT FOLLOW 2-	NOT
FORMAT [/4]	INSTRUCTION	OF	3	MAINTAINING
		THE FORMATS	OF THE FORMATS	THE TIDY OF THE
				TASK
UNDERSTANDNG	ABLE TO UNDERSTAND	ABLE TO	ABLE TO	ABLE TO
VALUE [/4]	THE BASIC CONCEPT OF	UNDERSTAND	UNDERSTAND THE	UNDERSTAND
	SECURITY, GIVING	THE BASIC CONCEPT	BASIC CONCEPT OF	THE
	EXAMPLE AND RELATE	OF	SECURITY, GIVING	BASIC CONCEPT
	ТО	SECURITY, GIVING	EXAMPLE THAT	OF
	THE THREAT BY	EXAMPLE AND	RELATE TO THE	SECURITY AND
	EXLAINING HOW TO	RELATE	TOPIC.	LIST THE
	SOLVE THE PROBLEM	TO THE THREAT AND		EXAMPLE.
		HOW TO SOLVE THE		
		PROBLEM		

ANSWER	STUDENT ABLE TO	STUDENT ABLE TO	STUDENT ABLE TO	STUDENT ABLE
ELABORATION [/4]	ANSWER ALL QUESTION	ANSWER ALL	ANSWER ALL	ТО
	GIVEN, DISCUSS AND	QUESTION	QUESTION GIVEN,	ANSWER ALL
	ELABORATE THE ISSUE,	GIVEN STUDENT ABLE	ELABORATE THE	QUESTION GIVEN
	RELATE TO THE	TO ELABORATE THE	ISSUE, RELATE TO	ELABORATE THE
	CURRENT	ISSUE, RELATE TO THE	THE CURRENT	ISSUE, AND LIST
	SITUATION, AND	CURRENT SITUATION,	SITUATION, AND	TO OTHER
	COMPARE TO OTHER	AND COMPARE TO	LIST TO OTHER	ALTERNATIVE
	ALTERNATIVE	OTHER ALTERNATIVE	ALTERNATIVE	SOLUTION OR
	SOLUTION OR ISSUE.	SOLUTION OR ISSUE.	SOLUTION OR	ISSUE.
			ISSUE.	
EXAMPLE	STUDENT ABLE TO LIST	STUDENT ABLE TO	STUDENT ABLE TO	STUDENT ABLE
PROVIDE AND	AT	LIST	LIST 1 EXAMPLE	ТО
DISCUSSION	LEAST 2 EXAMPLE THAT	AT LEAST 2 EXAMPLE	THAT CONTAINS	LIST 1 EXAMPLE
[/4]	CONTAINS PRO AND	THAT CONTAINS PRO	PRO	THAT CONTAINS
	CONS	AND CONS OF THE	AND CONS OF THE	PRO AND CONS OF
	OF THE SITUATION,	SITUATION AND	SITUATION AND	THE SITUATION
	EXPLAIN THE EXAMPLE	EXPLAIN THE	EXPLAIN THE	
	THAT RELATE TO THE	EXAMPLE.	EXAMPLE.	
	CURRENT SITUATION.			
PLAGIARISM	NO PLAGIARISM DETECT	1- 20% PLAGIARISM	21-50% PLAGIARISM	>50% PLAGIARISM
[/4]	(ORIGINALLY FORM	DETECTED	DETECTED	
	STUDENT)			
STUDENT NAME:	DAYANG N	UR NAZIHAH BIN	TI M ROSLAN	
MATRIC NUMBER:	A22DW0255	 5		
	H22D W 023	,		
	<u> </u>			

INSTRUCTION: ANSWER ALL QUESTIONS

CHAPTER 1:

- 1. Define what is computer security.
- 2. List and explain important terminologies in computer security.
- 3. List and discuss threats with regard to computer security.
- 4. Understand what are security vulnerabilities.
- 5. Explain security principles (goals).
- 6. Discuss security strategies and controls.

CHAPTER 2:

- 1. Explain cryptography and its importance in computer security.
- 2. Describe cryptosystem, and encryption / decryption process.
- 3. Differentiate between symmetric and asymmetric cryptosystem.

DDWD 3343 COMPUTER SECURITY

MISS SITI FATIMAH BTE MOHAMAD AYOP

- 4. List and explain **THREE** (3) various encryption/decryption algorithms.
- 5. Cryptography:
 - a. Solve encryption for message: "Malaysia Madani" and key: "c" using ceaser cipher.
 - b. Solve encryption for message: "Computer Security" and key: "begin" using vernam cipher.
 - c. Solve encryption for message: "Saya Sayang Miss Fatimah" and key: "iyelatu" using columnar transposition cipher.
- 6. Discuss and list the **STRENGTH** and the **WEAKNESS** of each encryption method.
- 7. Given p=23 and q= 17, encrypted message = 11 using RIvest Shamir Adelman (RSA) algorithm.
- 8. Given p=27 and g=13, using Diffie Hilam Algorithm, solve:
 - a. Private key for Ilyas, given public key = 9.
 - b. Private key for Ibrahim, given public key = 7.
 - c. Find share key.

CHAPTER 3:

- 1. Define the concept of secured program.
- 2. Differentiate malicious and non-malicious code.
- 3. Identify and describe programming errors with security implication.
- 4. List and explain different types of viruses, how and where it attacks and how it gains controls.
- 5. Explain virus signature.
- 6. Identify the impact of viruses to the computing system.
- 7. Discuss and explain various policies, procedures and technical controls against virus threats.

CHAPTER 1

INTRODUCTION

1.1 Introduction

Computer security involves safeguarding computers, their associated data, networks, software and hardware from unauthorized access, misuse, theft, information loss, and various security threats. While the internet has greatly simplified our lives and offered numerous benefits, it has also exposed our systems to risks such as viruses, hacking, data theft, and potential damage to the system. The basic guideline for computer security is CIA.

- 1. Confidentiality: ensures that computer related assets are accessed only by authorized parties.
- 2. Integrity: assets can be modified only by authorized parties or by authorized ways.
- 3. Availability: accessible to authorized parties at appropriate times.

1.2 Important Terminologies

Terminologies	Explanation
Computer System or Assets	Hardware, software, data, people
Exposure	A form of possible loss or harm
Vulnerability	A weakness in the system that can be exploited
Threat	Potentiality for loss or harm during human attacks, natural
	disasters, errors
Attack	Realization of a threat
Control	A protective measure/action/procedure to remove or reduce
	a vulnerability
Unauthorized access	Accessing a server or website using someone else's account
	details
Antivirus or Antimalware	A software that operates on different OS which is used to
	prevent from malicious software

1.3 Threats regarding computer security

1.3.1 Interception

A type of security threat when an unauthorized party gains access to an asset or computer system. Some examples are wiretapping, illicit copying programs or files, capturing information during transmission and so on and so forth. This happens without the knowledge of the subject involved.

Sensitive information such as login credentials, personal data can be stolen during an interception as their privacy is breached. This can lead to identity theft, reputational damage and legal consequences. Issues in data integrity can also arise as intercepted data can be altered before it reaches its destination.

How does interception occur? One of the ways is attackers would use tools knows as sniffers to monitor and capture data that travels over a network. Unencrypted data that are being transmitted over devices are the most vulnerable assets.

1.3.2 Interruption

A type of security threat where an asset or service becomes unavailable or unusable due to unauthorized access. An attacker would disrupt the normal function of a system, preventing legitimate users from accessing resources or services they need.

Legitimate users are blocked from accessing critical resources, which can halt business operations, delay services, and cause financial loss.

How does interruption occur? A common method is through Distributed Denial of Service (DDoS). DDoS is when malware is turned into a network of interconnected devices called botnets. These botnets are tasked to send false request that disrupts the traffic of a server. The server is needs to filter out which makes normal traffic denied of service.

1.3.3 Modification

A type of security threat where changes are made to an asset or system, altering the original data or functionality. In this type or attack, an intruder gains access to a system and changer critical information, affecting its integrity and reliability. From altering files, configurations, to disruption communications between systems.

A common example is Man-in-the-Middle (MitM) attack, where an attacker intercepts and modifies data being exchanged between two parties. This can result in corrupted data, unauthorize transactions, or even the introduction of further vulnerabilities into the system. Modification attacks can lead to compromised data integrity, system malfunctions and loss of user trust, making them a serious threat to both individuals and organizations.

1.4 Security vulnerabilities

Asset	Vulnerabilities	Result	Method	Additional
Hardware	Destroyed (deleted)	Information	Keystroke	
Software	Stolen	leak	Logic	
	(pirated)		bomb,	
	Altered		trojan	
	(but still running)		horse,	
			virus,	
			trapdoor	
Data				Fabricated
				data

1.5 Security Principles (Goals)

Security Principle	Description				
	- Only authorized recipients can access				
	the contents of an encrypted message.				
Confidentiality	- Ensures that computer-related assets are				
Confidentiality	accessed only by authorized parties.				
	- Prevents improper disclosure of				
	information.				
	- Ensures that the recipient can determine				
Integrity	if the message has been altered during				
	transmission.				
	- Ensures that the recipient can identify				
Availability	the sender and verify that the purported				
	sender actually sent the message.				
	- Ability to map actions within a system				
Accountability	to responsible parties.				
	- Prevents improper use of resources.				

Access Control	- Specifies and controls who can access specific resources.		
Authentication	- Identifies the user of the computer system and builds trust with the recipient.		
Non-Repudiation	- Ensures that the sender of a message cannot deny having sent the message.		

1.6 Security Strategies and Controls

Security Measure	Description Example 1 - Examp		Example 2 – E-		
Security Weasure	Description	Private Property	Commerce		
Prevention	Take measures to prevent assets from being damaged.	- Lock door, window	- Encrypt orders		
Detection	Take measures to detect when, how, and by whom an asset has been affected.	- Missing item, alarm sounding	- Unauthorized transaction appears		
Reaction	Recover assets or recover from damage to assets.	- Call police, claim insurance	- Complain, discontinue card, get a new card		

CHAPTER 2

CRYPTOGRAPHY

2.1 Introduction

Cryptography – the practice (or art) of using encryption to conceal text. It plays a vital role in computer security by ensuring:

- Confidentiality: Only authorized parties can understand the message.
- Integrity: The data cannot be altered without detection.
- Authentication: Verifies the identities of the parties involved in communication.
- Non-repudiation: Prevents denial of sending or receiving the data.

2.2 Cryptosystem and its process

A cryptosystem is a framework consisting of algorithms for encryption and decryption, keys, and key management processes used for secure communication.

- Encryption: The process of converting plain text into ciphertext using an algorithm and a key, making it unreadable to unauthorized users.
- Decryption: The process of converting ciphertext back into its original plain text form using a key, allowing authorized users to read it.

2.3 Symmetric and asymmetric cryptosystem

Aspect	Symmetric Cryptosystem	Asymmetric Cryptosystem	
Key Usage	Same key for both encryption and decryption	Pair of keys: public key for encryption, private key for decryption	
Speed	Faster and more efficient, especially for large data	Slower due to complex calculations	
Security	Less secure; requires secure key distribution	More secure; public key can be shared openly	
Common Algorithms	AES, DES, 3DES	RSA, ECC (Elliptic Curve Cryptography)	
Typical Use Cases	Bulk data encryption, real- time applications	Digital signatures, secure key exchange	

Key Management	Challenging, as the same key	Easier, as only the private
	must be shared securely	key must be kept secret

2.4 Algorithms

1. AES (Advanced Encryption Standard):

AES is a widely adopted symmetric encryption algorithm known for its security and efficiency. It encrypts data in fixed 128-bit blocks using key sizes of 128, 192, or 256 bits. AES provides robust encryption for a variety of applications, including secure communications, data protection, and online transactions. Its balance of security and speed makes it suitable for both software and hardware use, and it is trusted by governments and industries worldwide.

2. RSA (Rivest-Shamir-Adleman):

RSA is an asymmetric encryption algorithm that uses two keys: a public key for encryption and a private key for decryption. It relies on the difficulty of factoring large prime numbers, providing secure data transmission. RSA is commonly used in digital signatures, secure key exchanges, and protecting sensitive information over the internet. Though slower than symmetric algorithms, RSA is highly secure and foundational in modern encryption systems.

3. DES (Data Encryption Standard):

DES is a symmetric encryption algorithm that encrypts data in 64-bit blocks using a 56-bit key. Once widely used, DES has become outdated due to vulnerabilities from its shorter key length, making it susceptible to brute-force attacks. However, it was pivotal in the development of more secure algorithms, like AES, and is still referenced in cryptography history.

2.5Cryptography solution

a. Malaysia Madani – Caesar (key=c)

M	Α	L	Α	Υ	S	I	Α	M	Α	D	Α	N	I
12	0	11	0	24	18	8	0	12	0	3	0	13	8
14	2	13	2	26	20	10	2	14	2	5	2	15	10
				1									
0	С	n	С	b	u	k	С	0	С	f	С	p	k

=Ocncbukc Ocfcpk

b. Computer security – Vernam (key=begin)

b	е	g	i	n	
1	4	6	8	13	

С	0	М	Р	U	Т	E	R
2	14	12	15	20	19	4	17
1	4	6	8	13	1	4	6
3	18	18	23	33	20	8	23
				8			
3	18	18	23	8	20	8	23
D	S	S	Χ	1	U	I	Χ
S	Е	С	U	R	1	Т	Υ
18	4	2	20	17	8	19	24
1	4	6	8	13	1	4	6
19	8	8	28	30	9	23	30
			3	5			5
19	8	8	3	5	9	23	5
T	ı	ı	D	F	J	X	F

c. Saya Sayang Miss Fatimah – columnar transposition (key=iyelatu)

	3	7	2	4	1	5	6
I	Υ	E	L	Α	Т	U	
S	Α	Υ	Α	X	X	X	

= AXEYISLATXUXYA

3	7	2	4	1	5	6	
I	Υ	E	L	Α	Т	U	
S	Α	Υ	Α	N	G	Χ	

=ANEYISLATGUXYA

3	7	2	4	1	5	6	
I	Υ	E	L	Α	Т	U	
М	I	S	S	Χ	Χ	Χ	

=AXESIMLSTXUXYI

3	7	2	4	1	5	6
I	Υ	E	L	Α	T	U
F	Α	T	I	М	Α	Н

=AMETIFLITAUHYA

2.6 Strength and weakness

Encryption Method	Strengths	Weaknesses
Caesar Cipher	Simple and fast	Easily broken by frequency analysis
Vernam Cipher	Perfect security if used with a truly random key (one-time pad)	Difficult key management; requires key as long as the message
Columnar Transposition	Fairly strong against brute force if the key is complex	Vulnerable to pattern recognition and plaintext attacks if the key is short

2.7RSA

p = 23

q = 17

 $n = p \times q$

 $= 23 \times 17$

=391

 $\phi(n) = (p-1) \cdot (q-1)$

 $\phi(n)=(23-1)\cdot(17-1)$

 $\phi(n)=352$

$$e = \{3,5,7...\}$$

 1×352

2 × 176

 4×88

 8×44

 11×32

 16×22

$$d = 1 + k(\phi n) / e$$

K=0

= 1/3

K=1

=353/3

K=2

=235 d=235

Encrypted message (c) = 11

Decrypted message (m) = $11^235 \mod 391 = 148$

2.8Diffie-Hellman

$$p=27 g = 13$$

Ilyas(A) = 9, Ibrahim(B) = 7

 $x = g \wedge A \mod p$

= 13 ^ 9 mod 27

=1

 $z1 = B \land x \mod p$

= 4 ^ 9 mod 27

= 1

Shared key = 1, z1 = z2

 $y = g^B \mod p$

 $= 13^7 \mod 27$

= 4

 $z2 = B \land x \mod p$

 $= 1^7 \mod 27$

= 1

CHAPTER 3

PROGRAM SECURITY

3.1 Secured program concept

A secured program is designed and implemented to prevent unauthorized access, manipulation, or damage to data and systems. It includes features such as authentication, encryption, and input validation to protect against vulnerabilities and attacks like data breaches, malware, or system crashes.

3.2 Malicious code

Type	Description	Examples
Malicious Code	Software or scripts intentionally created to cause harm, steal information, or disrupt operations.	Viruses, Worms, Trojans, Ransomware
Non-malicious Code	Code not created with harmful intent but may still cause security vulnerabilities if poorly written (e.g., insecure code, unhandled exceptions).	Insecure code, unhandled exceptions

3.3Programming errors

- 1. Buffer Overflows:
- Occurs when a program writes more data to a buffer than it can hold.
- Leads to data overwriting adjacent memory, causing potential execution of arbitrary code.
- Attackers can exploit this vulnerability to gain control over the system.
- 2. Incomplete Mediation:
- Happens when user inputs or data are not properly validated or sanitized.

- Can result in injection attacks (e.g., SQL Injection, Cross-Site Scripting).
- Allows attackers to manipulate data or gain unauthorized access.
- 3. Time-of-Check to Time-of-Use (TOCTOU) Errors:
- Arises when there's a delay between validation and the actual use of a resource.
- Attackers can exploit this timing gap to modify the resource after validation.
- Can result in privilege escalation or system compromise.
- 4. Combination of Non-malicious Program Flaws:
- Minor flaws (e.g., poor exception handling, insecure configurations) may seem harmless individually.
- When combined, these flaws create vulnerabilities that attackers can exploit.
- Insecure handling of sensitive data or weak encryption practices can expose systems to threats.

3.4Virus

			How They Gain
Type of Virus	How They Attack	Where They Attack	Control
	Attaches to the end of	Program files (e.g.,	Replaces or appends
Appended Virus	executable files.	.exe, .com).	itself to the host file.
	Wraps around the		Gains control by
	executable, modifying		executing before and
Surrounding Virus	both start and end.	Program files.	after the host program.
	Replaces entire code		Fully integrates itself
	of a program with its	System files, critical	and replaces the
Integrated Virus	own.	applications.	original program.
			Executes macros
	Infects documents		automatically when
Document Virus	with embedded macro	Document files (e.g.,	the document is
(Macros)	code.	Word, Excel).	opened.
	Infects the boot sector		Gains control during
	of storage media (e.g.,		system startup before
Boot Sector Virus	hard disks).	Boot sector.	the OS loads.
	Loads into memory		Remains in memory,
	and stays active even		infecting files and
Memory Resident	after infected		programs running on
Virus	programs are closed.	RAM (memory).	the system.

			Constantly changes its
			appearance, making it
	Alters its code to evade	System files, program	harder for antivirus to
Polymorphic Virus	detection.	files.	detect.
			Gains control by
	Encrypts user files and		encrypting files and
	demands payment for		locking the user out
Ransomware	decryption.	User files, databases.	until ransom is paid.

3.5 Virus signature

A virus signature is a unique pattern or sequence of bytes that identifies a particular virus or malware. Antivirus software uses virus signatures to detect known viruses by comparing files and programs against its database of known signatures.

3.6 Impact

- 1. Data Loss Erasure or corruption of files leading to permanent loss of important data.
- 2. System Performance Issues Sluggish performance or crashes due to excessive resource consumption by viruses.
- 3. Unauthorized Access Potential breaches of sensitive information through unauthorized control gained by certain viruses.
- 4. Financial Costs Expenses for system repairs, replacements, and downtime resulting from virus infections.

3.7 Control against virus threats

Category	Policy/Procedure/Control	Description
		Break down tasks into
		subtasks to manage
		complexity and enhance
Developmental Controls	Modularity	development.
		Hide implementation details
		of components, treating
	Encapsulation and	them as "black boxes" with
	Information Hiding	defined inputs and outputs.
		Conduct formal reviews,
	Peer Reviews	walkthroughs, and

		inspections to identify and
		address errors.
		Use systematic techniques
		to uncover and mitigate
	Hazard Analysis	potential system hazards.
		Focus on making the
		product failure-free or
		tolerant, and handle faults to
	Testing	minimize disruption.
		Anticipate and prepare for
		unwanted events to
	Prediction	minimize their impact.
		Examine design aspects
		such as control flow and
		data structure for
	Static Analysis	robustness.
		Control changes during
		development and
	Configuration	maintenance to ensure
	Management	system integrity.
		Document decisions and
		learn from errors to prevent
	Lessons from Mistakes	recurrence.
		Use software with rigorous
		development and analysis to
Operating Systems		ensure reliability and
Controls	Trusted Software	security.
		Assume other programs
		may be malicious or
		incorrect to enhance
	Mutual Suspicion	security.
		Maintain logs of access to
		system resources to detect
	Access Logs	unauthorized access.

		Limit software to necessary
		system resources to reduce
	Confinement	potential damage.
		Establish standards to
		guarantee correctness,
	Standards of Program	quality, and security of
Administrative Controls	Development	programs.
		Focus individuals on
		specific tasks to reduce the
		risk of malicious or
	Separation of Duties	erroneous actions.