组合计数中的递推问题

Elegia 李白天

清华大学, 交叉信息研究院

2024年2月2日

• 组合计数明明处处都有递推, 所以几乎什么都可以讲.

- 组合计数明明处处都有递推, 所以几乎什么都可以讲.
- 基于生成函数的处理手法,部分经典算法,以及它们一些 OI 之外的故事.

- 组合计数明明处处都有递推, 所以几乎什么都可以讲.
- 基于生成函数的处理手法,部分经典算法,以及它们一些 OI 之外的故事.
- 不追求困难性, 所以只会有比较简单但典型的例子.

- 组合计数明明处处都有递推, 所以几乎什么都可以讲.
- 基于生成函数的处理手法,部分经典算法,以及它们一些 OI 之外的故事.
- 不追求困难性, 所以只会有比较简单但典型的例子.
- 所以,以下内容全都不会讲:
 - ► UOJ593 新年的军队
 - ▶ UOJ633 你将如闪电般归来
 - Codeforces1687F Koishi's Unconscious Permutation
 - ▶ SDOI2022 多边形
 - ▶ CTS2023 另一个欧拉数问题

- 组合计数明明处处都有递推, 所以几乎什么都可以讲.
- 基于生成函数的处理手法,部分经典算法,以及它们一些 OI 之外的故事.
- 不追求困难性, 所以只会有比较简单但典型的例子.
- 所以,以下内容全都不会讲:
 - ► UOJ593 新年的军队
 - ▶ UOI633 你将如闪电般归来
 - Codeforces1687F Koishi's Unconscious Permutation
 - ▶ SDOI2022 多边形
 - ▶ CTS2023 另一个欧拉数问题
- 当然, 欢迎大家补题!

- 🕕 组合类与生成函数
 - 组合构造的字典
 - 连通图计数
 - n 王问题
- ② 有关递推式的算法
 - 半在线卷积的更快算法 超越 "CDQ 分治"
 - 线性递推的 Bostan-Mori 算法
 - 多项式 Euclid 算法
 - Hermite-Padé 逼近
- ③ 整式递推的理论
 - 为什么要研究整式递推
 - 线性空间的表述方式
 - 代数幂级数
 - 多元微分有限
 - 整式递推在 OI 中的未来

从组合类到生成函数

图: n 个顶点的 Cayley 树

Kilom691, CC BY-SA 3.0, via Wikimedia Commons

组合类:

$$\mathscr{A} = \{\alpha_1, \alpha_2, \dots, \alpha_k, \dots\}$$
 (3)

• 生成函数:

$${a_n}_{n\geq 0} = {0, 1, 1, 3, 16, \dots}$$
 (1)

Generating Function 生成函数

$$A(x) = \sum_{n=1}^{\infty} n^{n-2} \cdot x^n$$
 (2)

 $A(x) = \sum x^{|\alpha|}.$

(4)

基本运算

	$\mathcal{A} = \{\alpha_1, \alpha_2, \ldots\}$	$egin{aligned} A(x) \ &= \sum\limits_{lpha \in \mathscr{A}} x^{ lpha } \end{aligned}$	a_n = $\#\{\alpha: \alpha =n\}$
 无交并	$\mathscr{C} = \mathscr{A} \sqcup \mathscr{B}$	C = A + B	$c_n = a_n + b_n$
积	$\mathscr{C} = \mathscr{A} \times \mathscr{B}$	$C = A \cdot B$	$c_n = \sum_{k=0}^n a_k b_{n-k}$
 序列	$\mathscr{B} = Seq \mathscr{A}$	$B = 1 + A + A^2 + \cdots$	
	$= \epsilon \sqcup \mathscr{A} \times \mathscr{B}$	$=1+A\cdot B$	$b_n = \sum_{k=1}^n a_k b_{n-k}$
		$=\frac{1}{1-A}$	
多重集	$\mathscr{B} = MSet\mathscr{A}$		
	$= \prod_{\alpha \in \mathscr{A}} (Seq\alpha)$	$= \prod_{n=1}^{\infty} (1 - x^n)^{-a_n}$?
幂集	$\mathscr{B} = Set \mathscr{A}$		
	$= \textstyle\prod_{\alpha \in \mathcal{A}} (\epsilon \sqcup \alpha)$	$= \prod_{n=1}^{\infty} (1+x^n)^{a_n}$?

同一个世界,不同的梦想

如果 𝒜 = MSet 𝒜, 那么

$$A(x) = \exp\left(\sum_{k=1}^{\infty} \frac{B(x^k)}{k}\right),\tag{5}$$

$$B(x) = \sum_{k=1}^{\infty} \frac{\mu(k)}{k} \log A(x^k).$$
 (6)

• 考虑同一个生成函数

$$A(x) = \frac{1}{1 - qx} = 1 + qx + q^2x^2 + \cdots,$$
 (7)

- 对于组合类 $\mathscr A$ 的两种解释: 字符集为 $|\Sigma|=q$ 的字符串 Σ^* , 或有限域上的多项式 $\mathbb F_q[T]$.
- 组合类 \mathscr{B} 的解释: 字符串的 Lyndon 分解, 或者 $\mathbb{F}_q[T]$ 分解成不可约 因子之乘积.

同一个世界,不同的梦想

● 组合类 ℬ 的解释:

$$\Sigma^* = \mathsf{MSet}[\mathcal{L}yndon] \tag{8}$$

$$\mathbb{F}_q[T] = \mathsf{MSet}[\mathscr{I}rreducible]. \tag{9}$$

• 得到同样的牛成函数和数列:

$$B(x) = \sum_{k=1}^{\infty} \frac{\mu(k)}{k} \log \frac{1}{1 - qx^k}$$
 (10)

$$b_n = \frac{1}{n} \sum_{k|n} \mu(k) q^{n/k}.$$
 (11)

- Lyndon 串的组合意义还算好理解, 但后者的组合意义恐怕需要一点更多的知识.
- Lyndon 串和不可约多项式之间的双射也是不太显然的, 这个双射也不是很典则, 一般来说要选取域扩张 $\mathbb{F}_{a^n}/\mathbb{F}_a$ 的一个正规基.

指数生成函数的基本运算

如果 α, β 有 $\binom{|\alpha|+|\beta|}{|\alpha|}$ 种组合方式, 那么就要考虑

$$\frac{x^n}{n!} \cdot \frac{x^m}{m!} = \binom{n+m}{n} \frac{x^{n+m}}{(n+m)!}.$$
 (12)

	$\mathcal{A} = \{\alpha_1, \alpha_2, \ldots\}$	$A(x) = \sum_{\alpha \in \mathscr{A}} x^{ \alpha }$	a_n = $\#\{\alpha: \alpha = n\}$
无交并	$\mathscr{C} = \mathscr{A} \sqcup \mathscr{B}$	C = A + B	$c_n = a_n + b_n$
积	$\mathscr{C} = \mathscr{A} \times \mathscr{B}$	$C = A \cdot B$	$c_n = \sum_{k=0}^n \binom{n}{k} a_k b_{n-k}$
k 元集	$\mathscr{B} = MSet_k \mathscr{A}$	$B = A^k/k!$?
多重集	$\mathscr{B} = MSet\mathscr{A}$		
	$=\bigsqcup_{k=0}^{\infty}MSet_{k}\mathscr{A}$	$B = \exp A$?

微分算子

• 定义

$$\partial \left(\sum_{n=0}^{\infty} a_n x^n \right) = \sum_{n=0}^{\infty} a_n \cdot n x^{n-1}, \tag{13}$$

• 对于普通生成函数,有

$$\partial \cdot x^n = nx^{n-1}. (14)$$

• 对于指数型生成函数, 有关递推式的算法

$$\partial \cdot \frac{x^n}{n!} = \frac{x^{n-1}}{(n-1)!}.\tag{15}$$

• 从组合意义的角度, 它们相当于对于组合类进行了什么变换?

和微分有关的运算律

直接从组合意义的角度,解释如下运算律:

● 可加性:

$$\partial(A+B) = \partial A + \partial B. \tag{16}$$

• Lebniz 律:

$$\partial(A \cdot B) = (\partial A) \cdot B + A \cdot (\partial B). \tag{17}$$

● 复合:

$$\partial(A \circ B) = ((\partial A) \circ B) \cdot (\partial B). \tag{18}$$

多重集构造的递推式

● 微分方程 ⇔ 组合解释.

$$\mathscr{B} = \mathsf{MSet}\mathscr{A} \tag{19}$$

$$B = \exp A \tag{20}$$

$$B' = B \cdot A' \tag{21}$$

$$b_n = \sum_{k=1}^n \binom{n-1}{k-1} a_k b_{n-k}.$$
 (22)

例子 — 连通图

$$\mathscr{G} = \mathsf{MSet}\mathscr{C}.$$
 (23)

尝试解释以下两种不同的递推式,分别从 组合意义 和 代数推导:

$$C_n = 2^{n(n-1)/2} - \sum_{k} {n-1 \choose k-1} C_k 2^{(n-k)(n-k-1)/2},$$
 (24)

$$C_n = \sum_{k} {n-2 \choose k-1} C_k C_{n-k} \cdot (2^k - 1).$$
 (25)

例子 — n 王问题

• 有多少 n 阶排列 σ 使得相邻两项的差的绝对值不是 1?

例子 一 n 王问题

- 有多少 n 阶排列 σ 使得相邻两项的差的绝对值不是 1? **E**ncyclopedia of **I**nteger **S**equences
- 查表发现这被收录于
 整数
 场
 列百科的第A002464项.
 设这个数列叫做 *An*, 有如下递推式:

$$A_n = (n+1)A_{n-1} - (n-2)A_{n-2} - (n-5)A_{n-3} + (n-3)A_{n-4}.$$
 (26)

如何证明?

组合证明?有的,但是...

一道组合题的线性时间做法 - 递推树上递推果、递推树下你和我 狗雷布是真的伊 🤒 列苗作定共1017 直的狗胸真的狗 93 人赞同了该文章 前言: 这篇文章说的是BZOJ上的4321号题目(昨天可爱的小灰机 @FFiet 给我的),然后本龙做了一 天,写了一下午,改了半个晚上,才出来这篇文章。 原题里给的 n 是有范围的, $1 \le n \le 1000$,也就是说,爆搜无望,原题目要求基本上 $O(n^3)$ 到顶了。下面解法的线性的复杂度已经尽我所能了。现在网上大部分做法是 $O(n^2)$ 的动态规划。 (事实上我要是最后不化简也是 $O(n^2)$ 的,最后化简成 O(n) 的算法) 好吧这个题目真的难,如果改成证明题的话,放到CMO里面也可以当3和6了qwq 现在, 启动发动机, 开始起飞---

https://zhuanlan.zhihu.com/p/56537011

长达几页纸的双射... 有没有更简单的方法?

生成函数与递推式

对于相邻关系容斥,可以写出生成函数

$$\sum_{n} A_{n} x^{n} = \left(\sum_{n=0}^{\infty} n! T^{n}\right) \circ \left(x - 2x^{2} + 2x^{3} - 2x^{4} + 2x^{5} + \cdots\right)$$

$$= \left(\sum_{n=0}^{\infty} n! T^{n}\right) \circ \left(x \frac{1-x}{1+x}\right).$$
(27)

生成函数与递推式

对于相邻关系容斥,可以写出生成函数

$$\sum_{n} A_{n} x^{n} = \left(\sum_{n=0}^{\infty} n! T^{n}\right) \circ \left(x - 2x^{2} + 2x^{3} - 2x^{4} + 2x^{5} + \cdots\right)$$
 (27)

$$= \left(\sum_{n=0}^{\infty} n! T^n\right) \circ \left(x \frac{1-x}{1+x}\right). \tag{28}$$

记 $S(T) = \sum_{n=0}^{\infty} n! T^n$, 将递推式 $S_n = nS_{n-1} + [n=0]$ 转化为生成函数的微分方程

$$S(T) = 1 + (S(T) \cdot T)' \cdot T \tag{29}$$

$$S = 1 + TS + T^2S'. (30)$$

"Algebra is the offer made by the devil to the mathematician. The devil says: I will give you this powerful machine, it will answer any question you like. All you need to do is give me your soul: give up geometry and you will have this marvelous machine"

— Michael Atiyah

生成函数是魔鬼和我们的交易. 魔鬼说: 我给你这个强大的机器,它能回答任何你想问的问题. 但是,你必须付出代价,你必须给我你的灵魂: 放弃组合意义,然后你就能得到这台威力无穷的机器!

课间休息, 思考题

记 🛮 为 2-正则图构成的组合类,证明其指数型生成函数是

$$A(x) = \exp\left(-\frac{x}{2} - \frac{x^2}{4}\right) \frac{1}{\sqrt{1-x}}.$$
 (31)

生成函数 / 多项式 — 算法

以下内容不会讲, 但是只假设它存在, 对后续内容的理解也基本没有影响.

- 快速 Fourier 变换: 高效计算 $A(x)B(x) \mod x^n$.
- Newton 迭代法: 高效计算 $A(x)^{-1}$, $\log A(x)$, $\exp A(x)$ 等基本初等函数.

时间一般认为是 $\mathcal{O}(n \log n)$ 的, 但仔细思考计算模型会发现并不显然, 这里就记作 M(n).

• Колмого́ров 的猜测: $M(N) = \Omega(N^2)$

• Колмого́ров 的猜测: $M(N) = \Omega(N^2)$

分治乘法!

• $M(N) = \mathcal{O}(N^{\log 3/\log 2})$: [Karatsuba 1962]

• Колмого́ров 的猜测: $M(N) = \Omega(N^2)$

分治乘法!

- $M(N) = \mathcal{O}(N^{\log 3/\log 2})$: [Karatsuba 1962]
- $M(N) = N2^{O(\sqrt{\log N})}$: [Toom 1963], [Schönhage 1966], [Knuth 1969]

• Колмого́ров 的猜测: $M(N) = \Omega(N^2)$

分治乘法!

- $M(N) = \mathcal{O}(N^{\log 3/\log 2})$: [Karatsuba 1962]
- $M(N) = N2^{\mathcal{O}(\sqrt{\log N})}$: [Toom 1963], [Schönhage 1966], [Knuth 1969]

快速 Fourier 变换 [Gauß 1876], [Cooley-Tukey 1965], 但单位根怎么存?

- $M(N) = \mathcal{O}(N \log N \log \log N \log \log N \cdots)$: [Pollard 1971]
- $M(N) = \mathcal{O}(N \log N \log \log N)$: [Schönhage-Strassen 1971] **GMP**

• Колмого́ров 的猜测: $M(N) = \Omega(N^2)$

分治乘法!

- $M(N) = \mathcal{O}(N^{\log 3/\log 2})$: [Karatsuba 1962]
- $M(N) = N2^{\mathcal{O}(\sqrt{\log N})}$: [Toom 1963], [Schönhage 1966], [Knuth 1969] 快速 Fourier 变换 [Gauß 1876], [Cooley-Tukey 1965], 但单位根怎么存?
 - $M(N) = \mathcal{O}(N \log N \log \log N \log \log \log N \cdots)$: [Pollard 1971]
 - $M(N) = \mathcal{O}(N \log N \log \log N)$: [Schönhage-Strassen 1971] **GMP**
 - $\mathsf{M}(N) = N \log N 2^{\mathcal{O}(\log^* N)}$: [Fürer 2007], Harvey, van der Hoeven, Lecerf...
 - $M(N) = \mathcal{O}(N \log N)$: [Harvey-van der Hoeven 2019]

模型是多带 Turing 机, 可以大概理解成要衡量一个一个 bit 的操作.

• Колмого́ров 的猜测: $M(N) = \Omega(N^2)$

分治乘法!

- $M(N) = \mathcal{O}(N^{\log 3/\log 2})$: [Karatsuba 1962]
- $M(N) = N2^{O(\sqrt{\log N})}$: [Toom 1963], [Schönhage 1966], [Knuth 1969]

快速 Fourier 变换 [Gauß 1876], [Cooley-Tukey 1965], 但单位根怎么存?

- $M(N) = \mathcal{O}(N \log N \log \log N \log \log \log N \cdots)$: [Pollard 1971]
- $M(N) = \mathcal{O}(N \log N \log \log N)$: [Schönhage-Strassen 1971] **GMP**
- $M(N) = N \log N 2^{\mathcal{O}(\log^* N)}$: [Fürer 2007], Harvey, van der Hoeven, Lecerf...
- $M(N) = \mathcal{O}(N \log N)$: [Harvey-van der Hoeven 2019]

模型是多带 Turing 机, 可以大概理解成要衡量一个一个 bit 的操作.

Network Coding Conjecture

● 如果 网络编码猜想 成立,那么这是不可改进的. [Afshani-Freksen-Kamma-Larsen 2019]

半在线卷积

• 一般的卷积式

$$c_n = \sum_k a_k b_{n-k} \tag{32}$$

也可以看做是一个递推式, 如果我们只有知道了 c_n 才知道 Relaxed Convolution a_{n+1}, b_{n+1} . 这是 在线卷积 问题.

半在线卷积

• 一般的卷积式

$$c_n = \sum_k a_k b_{n-k} \tag{32}$$

也可以看做是一个递推式,如果我们只有知道了 c_n 才知道 Relaxed Convolution a_{n+1},b_{n+1} . 这是 在线卷积 问题.

Semi Relaxed Convolution

如果序列 b 是一开始就完全知道的, 这是¥ 在 线 卷 积 问题.

半在线卷积

• 一般的卷积式

$$c_n = \sum_k a_k b_{n-k} \tag{32}$$

也可以看做是一个递推式, 如果我们只有知道了 c_n 才知道 Relaxed Convolution a_{n+1}, b_{n+1} . 这是 在线卷积 问题.

Semi Relaxed Convolution

- 如果序列 b 是一开始就完全知道的, 这是 半 在 线 卷 积 问题.
- 通过外层分治可以发现, 在线卷积并不比半在线卷积要难.

半在线卷积的算法 [van der Hoeven 2002, 2007]

• 直接的半在线卷积算法: 每次分治成两半, 递归求解, 时间复杂度 $\mathcal{O}(N\log^2 N)$.

半在线卷积的算法 [van der Hoeven 2002, 2007]

- 直接的半在线卷积算法: 每次分治成两半, 递归求解, 时间复杂度 $\mathcal{O}(N\log^2 N)$.
- 每次分成 $B = \mathcal{O}(\log N)$ 块: 时间复杂度 $\mathcal{O}\left(\frac{N\log^2 N}{\log\log N}\right)$.

半在线卷积的算法 [van der Hoeven 2002, 2007]

- 直接的半在线卷积算法:每次分治成两半,递归求解,时间复杂度 $\mathcal{O}(N\log^2 N)$.
- 每次分成 $B = \mathcal{O}(\log N)$ 块: 时间复杂度 $\mathcal{O}\left(\frac{N\log^2 N}{\log\log N}\right)$.
- 形如 $T(N) = 3\sqrt{N}T(\sqrt{N}) + \mathcal{O}(N \log N)$ 的递归式:

$$\mathcal{O}\left(N(\log N)^{\log 3/\log 2}\right) \tag{33}$$

半在线卷积的算法 [van der Hoeven 2002, 2007]

- 直接的半在线卷积算法:每次分治成两半,递归求解,时间复杂度 $\mathcal{O}(N\log^2 N)$.
- 每次分成 $B = \mathcal{O}(\log N)$ 块: 时间复杂度 $\mathcal{O}\left(\frac{N\log^2 N}{\log\log N}\right)$.
- 形如 $T(N) = 3\sqrt{N}T(\sqrt{N}) + \mathcal{O}(N \log N)$ 的递归式:

$$\mathscr{O}\left(N(\log N)^{\log 3/\log 2}\right) \tag{33}$$

• 形如 $T(N) = 2\ell N^{1-1/\ell} T(N^{1/\ell}) + \mathcal{O}(\ell N \log N)$ 的递归式:

$$\mathscr{O}\left(N\log N\exp\left(2\sqrt{\log 2\log\log N}\right)\right) \tag{34}$$

半在线卷积的算法 [van der Hoeven 2002, 2007]

- 直接的半在线卷积算法:每次分治成两半,递归求解,时间复杂度 $\mathcal{O}(N\log^2 N)$.
- 每次分成 $B = \mathcal{O}(\log N)$ 块: 时间复杂度 $\mathcal{O}\left(\frac{N\log^2 N}{\log\log N}\right)$.
- 形如 $T(N) = 3\sqrt{N}T(\sqrt{N}) + \mathcal{O}(N \log N)$ 的递归式:

$$\mathscr{O}\left(N(\log N)^{\log 3/\log 2}\right) \tag{33}$$

• 形如 $T(N) = 2\ell N^{1-1/\ell} T(N^{1/\ell}) + \mathcal{O}(\ell N \log N)$ 的递归式:

$$\mathscr{O}\left(N\log N\exp\left(2\sqrt{\log 2\log\log N}\right)\right) \tag{34}$$

● 没有平衡?

$$R(n) = \mathcal{O}\left(N\log N \exp\left(\sqrt{2\log 2\log\log N}\right)\sqrt{\log\log N}\right)$$
 (35)

线性递推的简洁算法 [Bostan-Mori 2021]

● 将生成函数写作 P(x)/Q(x) 的形式

线性递推的简洁算法 [Bostan-Mori 2021]

- 将生成函数写作 P(x)/Q(x) 的形式
- ② 不妨分子分母同乘 Q(-x), 得到 P(x)Q(-x)/Q(x)Q(-x), 分母有什么特点?

线性递推的简洁算法 [Bostan-Mori 2021]

- 将生成函数写作 P(x)/Q(x) 的形式
- ② 不妨分子分母同乘 Q(-x), 得到 P(x)Q(-x)/Q(x)Q(-x), 分母有什么特点?
- ③ 求第 K 项的时间复杂度: $\mathcal{O}(M(N)\log K)$. 只需要实现多项式乘法.

多项式 Euclid

● 给定多项式 *A*(*T*),*B*(*T*), 求 *X*(*T*),*Y*(*T*) 使得

$$AX + BY = \gcd(A, B). \tag{36}$$

多项式 Euclid

◆ 给定多项式 A(T),B(T), 求 X(T),Y(T) 使得

$$AX + BY = \gcd(A, B). \tag{36}$$

• 说真的, 我们除了辗转相除法以外没有别的什么思路.

$$A_0, B_0 \tag{37}$$

$$A_1 = B_0, B_1 = A_0 \bmod B_0 \tag{38}$$

$$A_2 = B_1, B_2 = A_1 \mod B_1 \tag{39}$$

$$A_{\ell} = B_{\ell-1}, B_{\ell} = A_{\ell-1} \mod B_{\ell-1} \tag{41}$$

不妨设 $\deg A > \deg B$.

$$A_0,B_0 \tag{42}$$

$$A_1 = B_0, B_1 = A_0 - B_0 \cdot Q_1 \tag{43}$$

$$A_2 = B_1, B_2 = A_1 - B_1 \cdot Q_2 \tag{44}$$

$$A_{\ell} = B_{\ell-1}, B_{\ell} = A_{\ell-1} - B_{\ell-1} \cdot Q_{\ell}, \tag{46}$$

不妨设 $\deg A > \deg B$.

$$A_0, B_0 \tag{42}$$

$$A_1 = B_0, B_1 = A_0 - B_0 \cdot Q_1 \tag{43}$$

$$A_2 = B_1, B_2 = A_1 - B_1 \cdot Q_2 \tag{44}$$

$$A_{\ell} = B_{\ell-1}, B_{\ell} = A_{\ell-1} - B_{\ell-1} \cdot Q_{\ell}, \tag{46}$$

• 如果有一个函数 $HalfGCD_N(A,B)$ 将两个次数 < N 的多项式求出 $Q_1, ..., Q_\ell$ 使得 $\deg B_\ell < N/2$, 但 $\deg A_\ell \ge N/2$...

不妨设 $\deg A > \deg B$.

$$A_0,B_0 \tag{42}$$

$$A_1 = B_0, B_1 = A_0 - B_0 \cdot Q_1 \tag{43}$$

$$A_2 = B_1, B_2 = A_1 - B_1 \cdot Q_2 \tag{44}$$

$$A_{\ell} = B_{\ell-1}, B_{\ell} = A_{\ell-1} - B_{\ell-1} \cdot Q_{\ell}, \tag{46}$$

- 如果有一个函数 $HalfGCD_N(A,B)$ 将两个次数 < N 的多项式求出 $Q_1, ..., Q_\ell$ 使得 $\deg B_\ell < N/2$, 但 $\deg A_\ell \ge N/2$...
- 那么调用 $\log N$ 次就可以得到完整的 Euclid 过程商的序列, 而且复杂度可以被主定理控制.

不妨设 $N \in 2$ 的幂, $\deg A > \deg B$.

• 函数 $HalfGCD_N(A,B)$ 的目的: 将两个次数 < N 的多项式求出 $Q_1, ..., Q_\ell$ 使得 $\deg B_\ell < N/2$, 但 $\deg A_\ell \ge N/2$.

不妨设 $N \in 2$ 的幂, $\deg A > \deg B$.

- 函数 $HalfGCD_N(A,B)$ 的目的: 将两个次数 < N 的多项式求出 $Q_1, ..., Q_\ell$ 使得 $\deg B_\ell < N/2$, 但 $\deg A_\ell \ge N/2$.
- 前期的计算不会影响太低位: $\deg(Q_1 \cdots Q_\ell) = \deg A_0 \deg A_\ell < N/2$.

不妨设 N 是 2 的幂, $\deg A > \deg B$.

- 函数 $HalfGCD_N(A,B)$ 的目的: 将两个次数 < N 的多项式求出 Q_1, \ldots, Q_ℓ 使得 $\deg B_\ell < N/2$, 但 $\deg A_\ell \ge N/2$.
- 前期的计算不会影响太低位: $\deg(Q_1\cdots Q_\ell) = \deg A_0 \deg A_\ell < N/2$.
- 如果对于 $A = T^L A' + O(T^{L-1})$, $B = T^L B' + O(T^{L-1})$ 做 HalfGCD_{N/2}(A',B')...

不妨设 N 是 2 的幂, $\deg A > \deg B$.

- 函数 $HalfGCD_N(A,B)$ 的目的: 将两个次数 < N 的多项式求出 Q_1, \ldots, Q_ℓ 使得 $\deg B_\ell < N/2$, 但 $\deg A_\ell \ge N/2$.
- 前期的计算不会影响太低位: $\deg(Q_1 \cdots Q_\ell) = \deg A_0 \deg A_\ell < N/2$.
- 如果对于 $A = T^L A' + O(T^{L-1})$, $B = T^L B' + O(T^{L-1})$ 做 HalfGCD_{N/2}(A',B')...
- 由于我们可以写成矩阵,

$$A_{i} = B_{i-1}, B_{i} = A_{i-1} - B_{i-1} \cdot Q_{i} \iff \begin{pmatrix} A_{i} \\ B_{i} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & -Q_{i} \end{pmatrix} \begin{pmatrix} A_{i-1} \\ B_{i-1} \end{pmatrix}.$$
 (47)

• 有

$$\begin{pmatrix} 0 & 1 \\ 1 & -Q_{\ell} \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ 1 & -Q_{1} \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = T^{L} \begin{pmatrix} A' \\ B' \end{pmatrix} + O(T^{L-1}) \cdot O(T^{N/4-1}). \tag{48}$$

• 如果对于 $A = T^L A' + O(T^{L-1})$, $B = T^L B' + O(T^{L-1})$ 做 HalfGCD $_{N/2}(A',B')$, 有

$$\begin{pmatrix} 0 & 1 \\ 1 & -Q_{\ell} \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ 1 & -Q_{1} \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = T^{L} \begin{pmatrix} A' \\ B' \end{pmatrix} + O(T^{L-1}) \cdot O(T^{N/4-1}). \tag{49}$$

• 如果对于 $A = T^LA' + O(T^{L-1})$, $B = T^LB' + O(T^{L-1})$ 做 HalfGCD $_{N/2}(A',B')$, 有

$$\begin{pmatrix} 0 & 1 \\ 1 & -Q_{\ell} \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ 1 & -Q_{1} \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = T^{L} \begin{pmatrix} A' \\ B' \end{pmatrix} + O(T^{L-1}) \cdot O(T^{N/4-1}). \tag{49}$$

• 第一次取 L = N/2, 将 (A,B) 约化到 $\deg A \ge 34N > \deg B$, 然后做一次取模.

• 如果对于 $A = T^L A' + O(T^{L-1})$, $B = T^L B' + O(T^{L-1})$ 做 HalfGCD_{N/2}(A',B'), 有

$$\begin{pmatrix} 0 & 1 \\ 1 & -Q_{\ell} \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ 1 & -Q_{1} \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = T^{L} \begin{pmatrix} A' \\ B' \end{pmatrix} + O(T^{L-1}) \cdot O(T^{N/4-1}). \tag{49}$$

- 第一次取 L = N/2, 将 (A,B) 约化到 $\deg A \ge 34N > \deg B$, 然后做一次取模.
- 第二次取 L = N/4, 将 (A,B) 约化到 $\deg A \ge \frac{1}{2}N > \deg B$.

• 如果对于 $A=T^LA'+O(T^{L-1})$, $B=T^LB'+O(T^{L-1})$ 做 HalfGCD $_{N/2}(A',B')$, 有

$$\begin{pmatrix} 0 & 1 \\ 1 & -Q_{\ell} \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ 1 & -Q_{1} \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = T^{L} \begin{pmatrix} A' \\ B' \end{pmatrix} + O(T^{L-1}) \cdot O(T^{N/4-1}). \tag{49}$$

- 第一次取 L = N/2, 将 (A,B) 约化到 $\deg A \ge 34N > \deg B$, 然后做一次取模.
- 第二次取 L = N/4, 将 (A,B) 约化到 $\deg A \ge \frac{1}{2}N > \deg B$.
- 这总共调用了两次分治,有

$$T(N) = 2T(N/2) + \mathcal{O}(\mathsf{M}(N)), \tag{50}$$

解得 $T(N) = \mathcal{O}(M(N) \log N)$.

连分式展开

我们求出的序列的一种直观解释:

$$\frac{A}{B} = Q_1 + \frac{A \mod B}{B} \tag{51}$$

$$=Q_1 + \frac{1}{B/(A \bmod B)} \tag{52}$$

$$=Q_1 + \frac{1}{Q_2 + \frac{$$

$$:= [Q_1; Q_2, \dots, Q_\ell].$$
 (54)

● 已知一个 $\leq N$ 阶线性递推式的前 2N 项 $\alpha_0, \ldots, \alpha_{2N-1}$, 求递推式.

- 已知一个 $\leq N$ 阶线性递推式的前 2N 项 $a_0,...,a_{2N-1}$, 求递推式.
- 我们知道, 这是要找 P,Q 满足 $A \equiv P/Q \pmod{x^{2N}}$, 且 $\deg P < N, \deg Q \le N$.

- 已知一个 ≤ N 阶线性递推式的前 2N 项 $a_0,...,a_{2N-1}$, 求递推式.
- 我们知道, 这是要找 P,Q 满足 $A \equiv P/Q \pmod{x^{2N}}$, 且 $\deg P < N, \deg Q \le N$.

定义 (Padé 逼近)

给定 A(x), 求 $\deg P \leq N_1$, $\deg Q \leq N_2$ 满足

$$P - AQ \equiv 0 \pmod{x^{N_1 + N_2 + 1}}.$$
 (55)

- 已知一个 $\leq N$ 阶线性递推式的前 2N 项 $a_0,...,a_{2N-1}$, 求递推式.
- 我们知道, 这是要找 P,Q 满足 $A \equiv P/Q \pmod{x^{2N}}$, 且 $\deg P < N, \deg Q \le N$.

定义 (Padé 逼近)

给定 A(x), 求 $\deg P \leq N_1$, $\deg Q \leq N_2$ 满足

$$P - AQ \equiv 0 \pmod{x^{N_1 + N_2 + 1}}.$$
 (55)

定义 (有理函数重建)

给定 A(x) 和模 M(x), 求 $\deg P \leq N_1$, $\deg Q \leq N_2$ 满足

$$P - AQ \equiv 0 \pmod{M},$$

其中 $\deg M = N_1 + N_2 + 1$.

4□ > 4□ > 4 = > 4 = > = 90

(56)

定义 (有理函数重建)

给定 A(x) 和模 M(x), 求 $\deg P \leq N_1$, $\deg Q \leq N_2$ 满足

$$P - AQ \equiv 0 \pmod{M},\tag{57}$$

其中 $\deg M = N_1 + N_2 + 1$.

定义 (有理函数重建)

给定 A(x) 和模 M(x), 求 $\deg P \leq N_1$, $\deg Q \leq N_2$ 满足

$$P = AQ + BM, (57)$$

其中 $\deg M = N_1 + N_2 + 1$.

定义 (有理函数重建)

给定 A(x) 和模 M(x), 求 $\deg P \leq N_1$, $\deg Q \leq N_2$ 满足

$$P = AQ + BM, (57)$$

其中 $\deg M = N_1 + N_2 + 1$.

$$A_0 = M ag{58}$$

$$A_1 = A (59)$$

$$A_2 = A_0 - A_1 \cdot Q_1 \tag{60}$$

... (61)

定义 (有理函数重建)

给定 A(x) 和模 M(x), 求 $\deg P \leq N_1$, $\deg Q \leq N_2$ 满足

$$P = AQ + BM, (57)$$

其中 $\deg M = N_1 + N_2 + 1$.

$$A_0 = M ag{58}$$

 $\deg < \deg A_0$

$$A_1 = A = O(x^{\deg A_0 - \deg A_0}) \cdot (M, A)$$
 (59)

 ${\rm deg}{<}{\rm deg}A_1$

$$A_2 = A_0 - A_1 \cdot Q_1 = O(x^{\deg A_0 - \deg A_1}) \cdot (M, A)$$
 (60)

(61)

间奏: 纠错码的快速算法

纠错码是通信的基础, 考虑固定的一个有限的字符集 Σ , 一个**纠错码**可以看做一个函数 $C: \Sigma^n \to \Sigma^m$ $(m \ge n)$.

所以为了保证纠错码的可靠性, 我们关心 "距离":

$$d = \min_{\substack{x,y \in \Sigma^n \\ x \neq y}} \delta(C(x), C(y)), \tag{62}$$

其中 $\delta \in \Sigma^m$ 上的 Hamming 距离. 易见, 如果传输中错误的字符数量 < d/2, 那么我们可以完美地恢复原来的信息.

基于多项式求值的编码 [Reed-Solomon 1960]

令字符集为有限域 \mathbb{F} 满足 $|\mathbb{F}| \ge m$, 令 $\alpha_1, ..., \alpha_m$ 是 \mathbb{F} 的 m 个不同的元素, 考虑如下的映射:

$$C(a_0, \dots, a_{n-1}) \mapsto \left(\sum_{j=0}^{n-1} a_j \alpha_i^j\right)_{i=1}^m, \tag{63}$$

也即将信息 $a_0,...,a_{n-1}$ 看做一个 n-1 次多项式 $f(x) = \sum_{j=0}^{n-1} a_j x^j$, 在 m 个给定点处的取值.

注意到 n 个点值就足够确定一个 n-1 次多项式, 所以 Reed–Solomon 码的距离满足 $d \ge m-n+1$.

Reed-Solomon 编码的快速纠错 [Berlekamp-Welch 1986]

给一个 n-1 次多项式 f(x), 如果 $f(\alpha_1), \dots, f(\alpha_m)$ 中有 $\leq (m-n)/2$ 个错误, 一定可以唯一地还原出 f 的系数, 但是如何快速计算?

不妨设给定的 $y_1,...,y_m$ 确定出来的多项式是 g(x), 那么 g(x)-f(x) 只在 $\beta_1,...,\beta_k$ 上非零, 所以

$$(g(x) - f(x))(x - \beta_1) \cdots (x - \beta_k) \equiv 0 \pmod{(x - \alpha_1) \cdots (x - \alpha_m)}, \tag{64}$$

注意写作 $r(x) = (x - \beta_1) \cdots (x - \beta_k)$, 那么

$$\deg r + \deg(f \cdot r) = k + (n - 1 + k) \le m - 1, \tag{65}$$

可以考虑直接对 g(x) 进行有理函数重建.

更加一般的问题

定义 (Hermite-Padé 逼近)

给定多项式 $A_1,...,A_m$ 和度数限制 $d_1,...,d_m$, 求 $P_1,...,P_m$ 使得

- $\deg P_i < d_i$,
- $P_1A_1 + \cdots + P_mA_m \equiv 0 \pmod{x^{d_1 + \cdots + d_m 1}}$.

更加一般的问题

定义 (Hermite-Padé 逼近)

给定多项式 $A_1,...,A_m$ 和度数限制 $d_1,...,d_m$, 求 $P_1,...,P_m$ 使得

- $\deg P_i < d_i$,
- $P_1 A_1 + \dots + P_m A_m \equiv 0 \pmod{x^{d_1 + \dots + d_m 1}}$.

Min25 BM

- 找寻整式递推式 可以直接对 $(A,A',...,A^{(m-1)})$ 调用 Hermite-Padé 逼近的算法.
- 找寻最小多项式可以直接对 $(1,A,...,A^{m-1})$ 调用 Hermite-Padé 逼近的算法.

更加一般的问题

定义 (Hermite-Padé 逼近)

给定多项式 $A_1,...,A_m$ 和度数限制 $d_1,...,d_m$, 求 $P_1,...,P_m$ 使得

- \bullet deg $P_i < d_i$,
- $P_1A_1 + \dots + P_mA_m \equiv 0 \pmod{x^{d_1 + \dots + d_m 1}}$.

Min25 BM

- 找寻整式递推式 可以直接对 $(A,A',...,A^{(m-1)})$ 调用 Hermite-Padé 逼近的算法.
- 找寻最小多项式可以直接对 $(1,A,...,A^{m-1})$ 调用 Hermite-Padé 逼近的算法.
- 记 $\sigma=d_1+\dots+d_m-1$, Hermite–Padé 逼近的时间复杂度可以在 $\widetilde{\mathcal{O}}(m^{\omega-1}\sigma)$ 的时间内完成, 其中 ω 是矩阵乘法的指数*. [Labahn–Zhou 2012]

^{*}现在 $\omega \le 2.371552$. [Williams-Xu-Xu-Zhou 2023]

解 Toeplitz 方程

定义 (Toeplitz 矩阵)

形如 $(a_{i-j})_{i,j}$ 的矩阵, 其中 a 是下标从 -(N-1) 到 N-1 的数列.

解 Toeplitz 方程

定义 (Toeplitz 矩阵)

形如 $(a_{i-j})_{i,j}$ 的矩阵, 其中 a 是下标从 -(N-1) 到 N-1 的数列.

● Toeplitz 方程可以写作

$$a(T) \cdot x(T) = b(T) + \Omega(T^{N-2}) + O(T^{2N-1}), \tag{66}$$

解 Toeplitz 方程

定义 (Toeplitz 矩阵)

形如 $(a_{i-j})_{i,j}$ 的矩阵, 其中 a 是下标从 -(N-1) 到 N-1 的数列.

● Toeplitz 方程可以写作

$$a(T) \cdot x(T) = b(T) + \Omega(T^{N-2}) + O(T^{2N-1}), \tag{66}$$

• 转化成

$$a(T) \cdot \underbrace{x(T)}_{\deg < N} - b(T) \cdot \underbrace{1}_{\deg < 1} - 1 \cdot \underbrace{r(T)}_{\deg < N-1} \equiv 0 \pmod{T^{2N-1}}. \tag{67}$$

解 Toeplitz 方程

定义 (Toeplitz 矩阵)

形如 $(a_{i-j})_{i,j}$ 的矩阵, 其中 a 是下标从 -(N-1) 到 N-1 的数列.

● Toeplitz 方程可以写作

$$a(T) \cdot x(T) = b(T) + \Omega(T^{N-2}) + O(T^{2N-1}), \tag{66}$$

• 转化成

$$a(T) \cdot \underbrace{x(T) - b(T)}_{\deg < N} \cdot \underbrace{1}_{\deg < 1} - 1 \cdot \underbrace{r(T)}_{\deg < N-1} \equiv 0 \pmod{T^{2N-1}}.$$
 (67)

• 刚好 N+1+(N-1)-1=2N-1, 符合 Hermite-Padé 逼近的形式.

解的多项式基

- 给定 $\mathbf{A} \in \mathbb{F}[x]^m$, 定义 $V_s = \{\mathbf{P} \in \mathbb{F}[x]^m : \mathbf{P} \cdot \mathbf{A} \equiv 0 \pmod{x^s}\}$.
- 记 $\deg(\mathbf{P}) = \max_{1 \leq i \leq m} \{\deg(\mathbf{P}_i)\}$, $\operatorname{type}(\mathbf{P})$ 为取到最大值的最大的 i.
- V_s 的 **极小基**: 对每个 i, 选取 Q_i 是 type(P) = i 中度数最小的一个.

性质:

解的多项式基

- 给定 $\mathbf{A} \in \mathbb{F}[x]^m$, 定义 $V_s = \{\mathbf{P} \in \mathbb{F}[x]^m : \mathbf{P} \cdot \mathbf{A} \equiv 0 \pmod{x^s}\}$.
- 记 $\deg(\mathbf{P}) = \max_{1 \leq i \leq m} \{\deg(\mathbf{P}_i)\}$, $\operatorname{type}(\mathbf{P})$ 为取到最大值的最大的 i.
- V_s 的 **极小基**: 对每个 i, 选取 Q_i 是 type(P) = i 中度数最小的一个.

性质:

• 确实是基: $\mathbf{Q}_1, \ldots, \mathbf{Q}_m$ 可以组合出 V_s 中的元素.

解的多项式基

- 给定 $\mathbf{A} \in \mathbb{F}[x]^m$, 定义 $V_s = \{\mathbf{P} \in \mathbb{F}[x]^m : \mathbf{P} \cdot \mathbf{A} \equiv 0 \pmod{x^s}\}$.
- 记 $\deg(\mathbf{P}) = \max_{1 \leq i \leq m} \{\deg(\mathbf{P}_i)\}$, $\operatorname{type}(\mathbf{P})$ 为取到最大值的最大的 i.
- V_s 的 **极小基**: 对每个 i, 选取 Q_i 是 type(P) = i 中度数最小的一个.

性质:

- 确实是基: $\mathbf{Q}_1,...,\mathbf{Q}_m$ 可以组合出 V_s 中的元素.
- 最优性: V_{md-1} 的一组极小基中, 次数最小的 Q_i 是 $\deg < d$ 的 Hermite-Padé 逼近的形式的一组解.

- 按照 s 从小到大的顺序逐渐维护 V_s 的一组极小基.
- V_0 是平凡情况, 有 $Q_{ij} = [i = j]$.
- 从 V_s 推到 V_{s+1} 的极小基 $\{\tilde{Q}_i\}$:

- 按照 s 从小到大的顺序逐渐维护 V_s 的一组极小基.
- V_0 是平凡情况, 有 $Q_{ij} = [i = j]$.
- 从 V_s 推到 V_{s+1} 的极小基 { \tilde{Q}_i }:
 - ▶ 如果 $x^{s+1} | \mathbf{Q}_i \cdot \mathbf{A}$, 可以直接保留, $\tilde{\mathbf{Q}}_i = \mathbf{Q}_i$.

- 按照 s 从小到大的顺序逐渐维护 V_s 的一组极小基.
- V_0 是平凡情况, 有 $Q_{ij} = [i = j]$.
- 从 V_s 推到 V_{s+1} 的极小基 { \tilde{Q}_i }:
 - ▶ 如果 $x^{s+1} | \mathbf{Q}_i \cdot \mathbf{A}$, 可以直接保留, $\widetilde{\mathbf{Q}}_i = \mathbf{Q}_i$.
 - ▶ 否则存在 x^s 次项, 设 ℓ 是这种情况的 i 中按照 (deg,type) 的字典序比较下最小的那个.

- 按照 s 从小到大的顺序逐渐维护 V_s 的一组极小基.
- V_0 是平凡情况, 有 $Q_{ij} = [i = j]$.
- 从 V_s 推到 V_{s+1} 的极小基 { \tilde{Q}_i }:
 - ▶ 如果 $x^{s+1} | \mathbf{Q}_i \cdot \mathbf{A}$, 可以直接保留, $\widetilde{\mathbf{Q}}_i = \mathbf{Q}_i$.
 - ► 否则存在 x^s 次项, 设 ℓ 是这种情况的 i 中按照 (deg, type) 的字典序比较下最小的那个.
 - ▶ 对于这样的 $i \neq \ell$, 通过 $\tilde{\mathbf{Q}}_i = \mathbf{Q}_i \lambda \cdot \mathbf{Q}_\ell$ 消去 x^s 次项 (为什么 type($\tilde{\mathbf{Q}}_i$) = i?)

- 按照 s 从小到大的顺序逐渐维护 V_s 的一组极小基.
- V_0 是平凡情况, 有 $Q_{ij} = [i = j]$.
- 从 V_s 推到 V_{s+1} 的极小基 { \tilde{Q}_i }:
 - ▶ 如果 $x^{s+1} | \mathbf{Q}_i \cdot \mathbf{A}$, 可以直接保留, $\widetilde{\mathbf{Q}}_i = \mathbf{Q}_i$.
 - ► 否则存在 x^s 次项, 设 ℓ 是这种情况的 i 中按照 (deg, type) 的字典序比较下最小的那个.
 - ▶ 对于这样的 $i \neq \ell$, 通过 $\tilde{\mathbf{Q}}_i = \mathbf{Q}_i \lambda \cdot \mathbf{Q}_\ell$ 消去 x^s 次项 (为什么 type($\tilde{\mathbf{Q}}_i$) = i?)
 - ▶ 对于 ℓ , 必须有 $\tilde{Q}_{\ell} = x \cdot Q_{\ell}$. (总得牺牲一个)

- 按照 s 从小到大的顺序逐渐维护 V_s 的一组极小基.
- V_0 是平凡情况, 有 $Q_{ij} = [i = j]$.
- 从 V_s 推到 V_{s+1} 的极小基 { \tilde{Q}_i }:
 - ▶ 如果 $x^{s+1} | \mathbf{Q}_i \cdot \mathbf{A}$, 可以直接保留, $\tilde{\mathbf{Q}}_i = \mathbf{Q}_i$.
 - ► 否则存在 x^s 次项, 设 ℓ 是这种情况的 i 中按照 (deg, type) 的字典序比较下最小的那个.
 - ▶ 对于这样的 $i \neq \ell$, 通过 $\tilde{\mathbf{Q}}_i = \mathbf{Q}_i \lambda \cdot \mathbf{Q}_\ell$ 消去 x^s 次项 (为什么 type($\tilde{\mathbf{Q}}_i$) = i?)
 - ▶ 对于 ℓ , 必须有 $\tilde{\mathbf{Q}}_{\ell} = x \cdot \mathbf{Q}_{\ell}$. (总得牺牲一个)
- 正确性: 考虑消元.

- 按照 s 从小到大的顺序逐渐维护 V_s 的一组极小基.
- V_0 是平凡情况, 有 $Q_{ij} = [i = j]$.
- 从 V_s 推到 V_{s+1} 的极小基 { \tilde{Q}_i }:
 - ▶ 如果 $x^{s+1} | \mathbf{Q}_i \cdot \mathbf{A}$, 可以直接保留, $\tilde{\mathbf{Q}}_i = \mathbf{Q}_i$.
 - ▶ 否则存在 x^s 次项, 设 ℓ 是这种情况的 i 中按照 (deg, type) 的字典序比较下最小的那个.
 - ▶ 对于这样的 $i \neq \ell$, 通过 $\tilde{\mathbf{Q}}_i = \mathbf{Q}_i \lambda \cdot \mathbf{Q}_\ell$ 消去 x^s 次项 (为什么 type($\tilde{\mathbf{Q}}_i$) = i?)
 - ▶ 对于 ℓ , 必须有 $\tilde{\mathbf{Q}}_{\ell} = x \cdot \mathbf{Q}_{\ell}$. (总得牺牲一个)
- 正确性: 考虑消元.
- 时间复杂度: $\mathcal{O}(m^3d^2) = \mathcal{O}(m\sigma^2)$. [Derksen 1994]

- 按照 s 从小到大的顺序逐渐维护 V_s 的一组极小基.
- V_0 是平凡情况, 有 $Q_{ij} = [i = j]$.
- 从 V_s 推到 V_{s+1} 的极小基 { \tilde{Q}_i }:
 - ▶ 如果 $x^{s+1} | \mathbf{Q}_i \cdot \mathbf{A}$, 可以直接保留, $\tilde{\mathbf{Q}}_i = \mathbf{Q}_i$.
 - ► 否则存在 x^s 次项, 设 ℓ 是这种情况的 i 中按照 (deg, type) 的字典序比较下最小的那个.
 - ▶ 对于这样的 $i \neq \ell$, 通过 $\tilde{\mathbf{Q}}_i = \mathbf{Q}_i \lambda \cdot \mathbf{Q}_\ell$ 消去 x^s 次项 (为什么 type($\tilde{\mathbf{Q}}_i$) = i?)
 - ▶ 对于 ℓ , 必须有 $\tilde{Q}_{\ell} = x \cdot Q_{\ell}$. (总得牺牲一个)
- 正确性: 考虑消元.
- 时间复杂度: $\mathcal{O}(m^3d^2) = \mathcal{O}(m\sigma^2)$. [Derksen 1994]
- 改进成一般情况: 把 deg 的定义改为 $deg(\mathbf{P}) = \max_i \{ deg(\mathbf{P}_i) d_i \}$.

- 按照 s 从小到大的顺序逐渐维护 V_s 的一组极小基.
- V_0 是平凡情况, 有 $Q_{ij} = [i = j]$.
- 从 V_s 推到 V_{s+1} 的极小基 { \tilde{Q}_i }:
 - ▶ 如果 $x^{s+1} | \mathbf{Q}_i \cdot \mathbf{A}$, 可以直接保留, $\tilde{\mathbf{Q}}_i = \mathbf{Q}_i$.
 - ► 否则存在 x^s 次项, 设 ℓ 是这种情况的 i 中按照 (deg, type) 的字典序比较下最小的那个.
 - ▶ 对于这样的 $i \neq \ell$, 通过 $\tilde{\mathbf{Q}}_i = \mathbf{Q}_i \lambda \cdot \mathbf{Q}_\ell$ 消去 x^s 次项 (为什么 type($\tilde{\mathbf{Q}}_i$) = i?)
 - ▶ 对于 ℓ , 必须有 $\tilde{Q}_{\ell} = x \cdot Q_{\ell}$. (总得牺牲一个)
- 正确性: 考虑消元.
- 时间复杂度: $\mathcal{O}(m^3d^2) = \mathcal{O}(m\sigma^2)$. [Derksen 1994]
- 改进成一般情况: 把 deg 的定义改为 $deg(\mathbf{P}) = \max_i \{ deg(\mathbf{P}_i) d_i \}$.
- 改进复杂度: 将 HalfGCD 的思想应用到上述过程!

大炮现状

定义 (Hermite 标准型)

任何一个多项式矩阵 $\mathbf{A} \in \mathbb{F}[x]^{m \times m}$, 存在 $\mathbf{H} = \mathbf{A}\mathbf{U}$ (det(\mathbf{U}) $\in \mathbb{F}^{\times}$) 使得

- H 是下三角矩阵.
- $\deg(\boldsymbol{H}_{ij}) < \deg(\boldsymbol{H}_{ii})$.
- 在 $\widetilde{\mathcal{O}}(m^{\omega} \operatorname{deg}(\mathbf{A}))$ 时间内计算 Hermite 标准型和 $\operatorname{det}(\mathbf{A})$. ($\operatorname{deg}(\mathbf{A})$ 是 "平均次数"!) [Labahn–Neiger–Zhou 2012]
- Popov 标准型, s-约化型, ...
- Hermite-Padé 逼近, 但是从 $\operatorname{mod} x^{\sigma}$ 改成 $\operatorname{mod} M(x)$.
- 多项式矩阵的 "gcd".
- ...

很多算法在

延伸阅读

Algorithmes Efficaces en Calcul Formel

Alin Bostan Frédéric Chyzak Marc Giusti Romain Lebbeton Grégoire Lecerf Bruno Salvy Éric Schost

- von zur Gathen & Gerhard: 经典之作.
- AECF: 成书时间较新, 有网络版, 但是是法语.

定义

定义 (整式递推)

P-Recursive

对于一个数列 $\{a_n\}_{n\geq 0}$, 我们称其为 **整式递推** 的, 当且仅当存在多项式 $p_0(x), p_1(x), \ldots, p_m(x)$ 使得, 对于 $n\geq m$, 有

$$p_0(n)a_n + p_1(n)a_{n-1} + \dots + p_m(n)a_{n-m} = 0.$$
 (68)

定义

定义 (整式递推)

P-Recursive

对于一个数列 $\{a_n\}_{n\geq 0}$, 我们称其为 **整式递推** 的, 当且仅当存在多项式 $p_0(x), p_1(x), \ldots, p_m(x)$ 使得, 对于 $n\geq m$, 有

$$p_0(n)a_n + p_1(n)a_{n-1} + \dots + p_m(n)a_{n-m} = 0.$$
 (68)

定义 (微分有限)

D-Finite

对于一个生成函数 A(x), 我们称其为 **微分有限** 的, 当且仅当存在多项式 $f_0(x),\ldots,f_m(x)$, 有

$$f_0(x)A(x) + f_1(x)A'(x) + \dots + f_m(x)A^{(m)}(x) = 0.$$
 (69)

定义

定义 (整式递推)

P-Recursive

对于一个数列 $\{a_n\}_{n\geq 0}$, 我们称其为 **整式递推** 的, 当且仅当存在多项式 $p_0(x), p_1(x), \ldots, p_m(x)$ 使得, 对于 $n\geq m$, 有

$$p_0(n)a_n + p_1(n)a_{n-1} + \dots + p_m(n)a_{n-m} = 0.$$
 (68)

定义 (微分有限)

D-Finite

对于一个生成函数 A(x), 我们称其为 **微分有限** 的, 当且仅当存在多项式 $f_0(x),\ldots,f_m(x)$, 有

$$f_0(x)A(x) + f_1(x)A'(x) + \dots + f_m(x)A^{(m)}(x) = 0.$$
 (69)

定理: $\{a_n\}$ 整式递推 $\iff A(x)$ 微分有限.

- 4 ロ ト 4 団 ト 4 珪 ト 4 珪 - り Q (C)

为什么要研究整式递推?

• 大量的组合计数问题的数列最终都被发现是整式递推的.

为什么要研究整式递推?

- 大量的组合计数问题的数列最终都被发现是整式递推的.
- 以 k-正则图计数为例.
- 之前的思考题里提到了, k = 2 的时候生成函数形如

$$A(x) = \exp\left(-\frac{x}{2} - \frac{x^2}{4}\right) \frac{1}{\sqrt{1-x}},\tag{70}$$

● 微分有限的生成函数关于各种运算 **具有良好的封闭性**, 我们之后会 看到有办法直接证明上述序列是整式递推的.

为什么要研究整式递推?

- 大量的组合计数问题的数列最终都被发现是整式递推的.
- 以 k-正则图计数为例.
- 之前的思考题里提到了, k = 2 的时候生成函数形如

$$A(x) = \exp\left(-\frac{x}{2} - \frac{x^2}{4}\right) \frac{1}{\sqrt{1-x}},\tag{70}$$

- 微分有限的生成函数关于各种运算具有良好的封闭性,我们之后会看到有办法直接证明上述序列是整式递推的.
- 随后, k=3 和 k=4 的情况也被证明是整式递推的, 这一方法并非出于对于正则图组合结构的归纳. [Goulden-Jackson 1986]
- 之后, 任意 k 的情况也被证明. [Gessel 1990] 他们的证明方法源于发展了 无穷元对称微分有限生成函数 的理论.

线性代数 101

- 域 \mathbb{F} 上的一个线性空间 V 是一个集合, 配备加法和对 \mathbb{F} 的数乘运算, 满足线性性 ($\alpha,\beta\in\mathbb{F},u,v\in V$):
 - $\alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v$
 - $(\alpha + \beta) \cdot u = \alpha \cdot u + \beta \cdot v,$
 - $\quad \alpha \cdot (\beta \cdot v) = (\alpha \beta) \cdot v.$
- 我们会用到的线性空间: 多项式 $\mathbb{F}[x]$, 形式幂级数 $\mathbb{F}[x]$, 形式 Laurent 级数 $\mathbb{F}[x]$, 数列 $\mathbb{F}^{\mathbb{Z}_{\geq 0}}$, ...
- 线性变换 $T: V \to W$ 是一个函数, 保持线性性:
 - $T(u + \alpha v) = Tu + \alpha Tv$.
- 我们关心的运算 ∂ 在 F[x], F[x] 和 F(x) 都是 F-线性的.
- 每个线性空间都有个维数, 是它的基的大小, 如果基的大小是有限的, 称是有限维线性空间 ($\dim V = n < \infty$).
- 比如 $\mathbb{F}[x]$ 不是有限维的, \mathbb{F}^n 是 n 维的, 次数 $\leq n$ 的多项式是 n+1 维的.

微分有限的线性空间表述

- 有理分式 F(x) 由于可以做除法, 所以它是个域.
- F(x) 不仅是 F-线性空间, 还具有 F(x)-线性结构!
 - ▶ 商 $\mathbb{F}[x]^{-1}\mathbb{F}[x] \hookrightarrow \mathbb{F}(x)$ 容易识别, 这一嵌入进一步是同构, 但在多元情况并不典范.

定义 (微分有限)

一个生成函数 F(x) 是 **微分有限** 的当且仅当

$$\mathscr{D}F := \operatorname{span}_{\mathbb{F}(x)} \left\{ \partial^k F : k \in \mathbb{Z}_{\geq 0} \right\}$$
 (71)

是有限维 $\mathbb{F}(x)$ -线性空间.

• 这和我们之前的定义等价, 但更容易推广到多元情况.

定理

若 F(x),G(x) 微分有限,则 F+G 微分有限.

证明.

令 $\{\alpha_1,...,\alpha_n\}$ 为 $\mathcal{D}F$ 的基, $\{\beta_1,...,\beta_m\}$ 为 $\mathcal{D}G$ 的基, 那么

$$\partial^{k}(F+G) = \partial^{k}F + \partial^{k}G = \sum a_{i}\alpha_{i} + \sum b_{i}\beta_{i}. \tag{72}$$

故 $\dim_{\mathbb{F}(x)} \mathcal{D}(F+G) \leq n+m < \infty$.

定理

若 F(x),G(x) 微分有限,则 FG 微分有限.

证明.

令 $\{\alpha_1, ..., \alpha_n\}$ 为 $\mathcal{D}F$ 的基, $\{\beta_1, ..., \beta_m\}$ 为 $\mathcal{D}G$ 的基, 那么 $\partial^k(FG)$ 被 $\partial^i F \partial^j G$ 线性表出, 因此被 $\{\alpha_i \beta_j\}$ 线性表出. 故 $\dim_{\mathbb{F}(x)} \mathcal{D}(FG) \leq nm < \infty$.

定理

若 F(x),G(x) 微分有限,则 F+G 微分有限.

定理

若 F(x),G(x) 微分有限,则 FG 微分有限.

• 如何在计算上得到之前定义的对应的方程?

定理

若 F(x),G(x) 微分有限,则 F+G 微分有限.

定理

若 F(x),G(x) 微分有限,则 FG 微分有限.

- 如何在计算上得到之前定义的对应的方程?
- *F/G* 并不一定是微分有限的:

$$\frac{x}{\exp x - 1}. (73)$$

作为一个关心计算的人, 我为什么要研究整式递推?

- ∂ 连同四则运算, 很大程度上勾勒了我们有哪些工具计算一个序列.
- 生成函数的层级:

D-Algebraic

有理 ⊂ 代数 ⊂ 微分有限 ⊂ 微分代数 ⊂ F[[x]]

作为一个关心计算的人, 我为什么要研究整式递推?

- ∂ 连同四则运算, 很大程度上勾勒了我们有哪些工具计算一个序列.
- 生成函数的层级:

D-Algebraic 有理 ⊂ 代数 ⊂ 微分有限 ⊂ 微分代数 ⊂ F[x]

- ▶ 如果是有理函数, 我们可以 $O(\log N)$ 就计算出第 N 项, 相当快速.
- ▶ 如果微分有限, 我们可以 $O(M(\sqrt{N}))$ 就计算出第 N 项 [Chudnovsky-Chudnovsky 1988] [Bostan-Gaudry-Schost 2007], 或者 O(N) 计算出前 N 项.
- ▶ 如果微分代数, 我们至少可以用半在线卷积的方法 O(R(N)) 计算出前 N 项.

题外话: 疑难数列之整数拆分

• 整数拆分的生成函数

$$F(x) = \prod_{n=1}^{\infty} \frac{1}{1 - x^n},$$
 (74)

题外话: 疑难数列之整数拆分

• 整数拆分的生成函数

$$F(x) = \prod_{n=1}^{\infty} \frac{1}{1 - x^n},$$
 (74)

看起来应该是非常困难的序列, 但它居然 是 微分代数的!

$$4F^{3}F'' + 5xF^{3}F''' + x^{2}F^{3}F^{(4)} - 16F^{2}F'^{2} - 15xF^{2}F'F'' + 20x^{2}F^{2}F'F''' - 39x^{2}F^{2}F''^{2} + 10xFF'^{3} + 12x^{2}FF'^{2}F'' + 6x^{2}F'^{4} = 0.$$
 (75)

题外话: 疑难数列之整数拆分

• 整数拆分的生成函数

$$F(x) = \prod_{n=1}^{\infty} \frac{1}{1 - x^n},$$
 (74)

看起来应该是非常困难的序列, 但它居然 是 微分代数的!

$$4F^{3}F'' + 5xF^{3}F''' + x^{2}F^{3}F^{(4)} - 16F^{2}F'^{2} - 15xF^{2}F'F'' + 20x^{2}F^{2}F'F''' - 39x^{2}F^{2}F''^{2} + 10xFF'^{3} + 12x^{2}FF'^{2}F'' + 6x^{2}F'^{4} = 0.$$
 (75)

Modular Form

● 深层原因或许要涉及 模形式 , 这是现代数学的重要分支之一, 远远超出了本次讲故事的狩猎范围.

• 给定一个有限个排列构成的集合 \mathscr{F} , 记 $A_n(\mathscr{F})$ 是所有没有出现过 \mathscr{F} 中结构的 n 阶排列的数量.

- 给定一个有限个排列构成的集合 \mathscr{F} , 记 $A_n(\mathscr{F})$ 是所有没有出现过 \mathscr{F} 中结构的 n 阶排列的数量.
- 例如 $A_n(\{123\})$ 就是 Catalan 数 C_n .

- 给定一个有限个排列构成的集合 \mathscr{F} , 记 $A_n(\mathscr{F})$ 是所有没有出现过 \mathscr{F} 中结构的 n 阶排列的数量.
- 例如 $A_n(\{123\})$ 就是 Catalan 数 C_n .
- 但到了形态有 4 阶排列, 就已经出现了没法解决的问题了, 例如 A_n({1324}).

- 给定一个有限个排列构成的集合 \mathscr{F} , 记 $A_n(\mathscr{F})$ 是所有没有出现过 \mathscr{F} 中结构的 n 阶排列的数量.
- 例如 $A_n(\{123\})$ 就是 Catalan 数 C_n .
- 但到了形态有 4 阶排列, 就已经出现了没法解决的问题了, 例如 A_n({1324}).
 - ▶ 人们现在 **不知道** 如何在多项式时间内计算 $A_n(\{1324\})$. 尽管人们现在已经确认计算 $A_n(\mathscr{F})$ **很可能**是困难的. (如果存在多项式时间算法计算 $A_n(\mathscr{F})$ mod 2, 那么 EXP = \oplus EXP. [Garrabrant-Pak 2015])

题外话: 疑难数列之禁子结构排列

- 给定一个有限个排列构成的集合 \mathscr{F} , 记 $A_n(\mathscr{F})$ 是所有没有出现过 \mathscr{F} 中结构的 n 阶排列的数量.
- 例如 $A_n(\{123\})$ 就是 Catalan 数 C_n .
- 但到了形态有 4 阶排列, 就已经出现了没法解决的问题了, 例如 A_n({1324}).
 - ▶ 人们现在 **不知道** 如何在多项式时间内计算 $A_n(\{1324\})$. 尽管人们现在已经确认计算 $A_n(\mathscr{F})$ **很可能**是困难的. (如果存在多项式时间算法计算 $A_n(\mathscr{F})$ mod 2, 那么 EXP = \oplus EXP. [Garrabrant-Pak 2015])
 - ト 人们现在 **不知道** 如何证明 $A_n(\{1324\})$ 并非整式递推. 尽管已经知道存在 $\mathscr{G} \subset \mathscr{G}_{80}$ 使得 $A_n(\mathscr{F})$ 不是整式递推. [Garrabrant-Pak 2015]

题外话: 疑难数列之禁子结构排列

- 给定一个有限个排列构成的集合 \mathscr{F} , 记 $A_n(\mathscr{F})$ 是所有没有出现过 \mathscr{F} 中结构的 n 阶排列的数量.
- 例如 $A_n(\{123\})$ 就是 Catalan 数 C_n .
- 但到了形态有 4 阶排列, 就已经出现了没法解决的问题了, 例如 A_n({1324}).
 - ▶ 人们现在 **不知道** 如何在多项式时间内计算 $A_n(\{1324\})$. 尽管人们现在已经确认计算 $A_n(\mathscr{F})$ **很可能**是困难的. (如果存在多项式时间算法计算 $A_n(\mathscr{F})$ mod 2, 那么 EXP = \oplus EXP. [Garrabrant-Pak 2015])
 - ト 人们现在 **不知道** 如何证明 $A_n(\{1324\})$ 并非整式递推. 尽管已经知道存在 $\mathscr{G} \subset \mathscr{G}_{80}$ 使得 $A_n(\mathscr{F})$ 不是整式递推. [Garrabrant-Pak 2015]
 - ► 人们现在甚至不能证明 $A_n(\{1324\})$ 的渐进行为, 只能根据 $n \le 50$ 的数值结果做出猜测: [Conway–Guttmann–Zinn-Justin 2017]

$$A_n(\{1324\}) \sim C \cdot \lambda^n \mu^{\sqrt{n}} n^{\alpha}. \tag{76}$$

代数幂级数

定义 (代数幂级数)

 $F(x) \in \mathbb{F}(x)$ 是 代数 的当且仅当有多项式方程 $P \in \mathbb{F}[X,T]$ 满足

$$P(x,F)=0.$$

(77)

代数幂级数关于除法是封闭的!

定理

代数幂级数构成域, 也即 F+G,FG,F/G 都是代数幂级数.

加法和乘法略去,仅勾勒除法的封闭性.

证明.

如果 P(x,F) = 0, 写作 $P(X,T) = \prod_{\alpha} (T - \alpha(x))$, 那么

$$\prod_{\alpha} (T - 1/\alpha) = 0 \implies \prod_{\alpha} (\alpha T - 1) = 0 \implies T^{\deg P} P(x, 1/T) = 0.$$

代数幂级数的微分有限性

定理

如果 u(x) 是代数的, 那么它是微分有限的.

证明(勾勒).

设 u 满足一个次数为 n 的代数方程 P(x,u) = 0, 求导可以得到 $\mathcal{D} u \subset \operatorname{span}_{\mathbb{F}(x)} \{u^k : 0 \leq k < n\}$.

后者其实就是代数扩张 $\mathbb{K} := \mathbb{F}(x)(u)$.

定理

如果 F(x) 是微分有限的, u(x) 是代数的, 那么 F(u(x)) 是微分有限的.

证明(勾勒).

只需证明 $\partial^k(F \circ u)$ 张成的是有限维 \mathbb{K} -空间.

$$A(x) = \exp\left(-\frac{x}{2} - \frac{x^2}{4}\right) \frac{1}{\sqrt{1-x}}.$$
 (79)

• 2-正则图构成的组合类, 其指数型生成函数是

$$A(x) = \exp\left(-\frac{x}{2} - \frac{x^2}{4}\right) \frac{1}{\sqrt{1-x}}.$$
 (79)

• $\exp\left(-\frac{x}{2} - \frac{x^2}{4}\right)$ 是微分有限的, 因为

$$A(x) = \exp\left(-\frac{x}{2} - \frac{x^2}{4}\right) \frac{1}{\sqrt{1-x}}.$$
 (79)

- $\exp\left(-\frac{x}{2} \frac{x^2}{4}\right)$ 是微分有限的, 因为
 - ▶ expx 是微分有限的.

$$A(x) = \exp\left(-\frac{x}{2} - \frac{x^2}{4}\right) \frac{1}{\sqrt{1-x}}.$$
 (79)

- $\exp\left(-\frac{x}{2} \frac{x^2}{4}\right)$ 是微分有限的, 因为
 - ▶ expx 是微分有限的.
 - ▶ $-\frac{x}{2} \frac{x^2}{4}$ 是有理的, 所以是代数的.

$$A(x) = \exp\left(-\frac{x}{2} - \frac{x^2}{4}\right) \frac{1}{\sqrt{1-x}}.$$
 (79)

- $\exp\left(-\frac{x}{2} \frac{x^2}{4}\right)$ 是微分有限的, 因为
 - ▶ expx 是微分有限的.
 - ▶ $-\frac{x}{2} \frac{x^2}{4}$ 是有理的, 所以是代数的.
- $\frac{1}{\sqrt{1-x}}$ 是微分有限的, 因为它是代数的.

$$A(x) = \exp\left(-\frac{x}{2} - \frac{x^2}{4}\right) \frac{1}{\sqrt{1-x}}.$$
 (79)

- $\exp\left(-\frac{x}{2} \frac{x^2}{4}\right)$ 是微分有限的, 因为
 - ightharpoonup expx 是微分有限的.
 - ▶ $-\frac{x}{2} \frac{x^2}{4}$ 是有理的, 所以是代数的.
- $\frac{1}{\sqrt{1-x}}$ 是微分有限的, 因为它是代数的.
- 因此 A(x) 是微分有限的.

更多代数幂级数

二元分式

$$\frac{1}{1 - x - y} = \sum_{n, m \ge 0} {n + m \choose n} x^n y^m$$
 (80)

的对角线是

$$\sum_{n=0}^{\infty} \binom{2n}{n} x^n = \frac{1}{\sqrt{1-4x}},\tag{81}$$

根据后见之明, 可以用广义二项式, 但如何直接得到?

有理分式的对角线

定理

对于有理分式 Q(x,y), 其对角线 $\sum_{n=0}^{\infty}([x^ny^n]Q)T^n$ 是代数的.

证明 (勾勒).

欲提取 Q(S,T/S) 的 S^0 次项, 分式分解展开成

$$Q(S, T/S) = \sum_{\alpha_i, \beta_i, n_i} \frac{\alpha_i}{(S - \beta_i)^{n_i}},$$
(82)

提取其常数项,一些代数函数的和,还是代数的.

为什么有的向 $+\infty$ 方向展开, 有的向 $-\infty$ 方向展开?

• 在 $\mathbb{Z}_{\geq 0}$ 上游走, 有 a,b,c,d 种方法走 +1,+2,-1,-2 的位移, 有多少种 走法走 n 步从原点回到原点?

- 在 $\mathbb{Z}_{\geq 0}$ 上游走, 有 a,b,c,d 种方法走 +1,+2,-1,-2 的位移, 有多少种 走法走 n 步从原点回到原点?
- 设 *F*_{0.0}, *F*_{1.0}, *F*_{0.1}, *F*_{1.1}, 分别表示最初和最终欠几步.

$$F_{0,0} = \frac{1}{1 - x^2 (acF_{0,0} + adF_{1,0} + bcF_{0,1} + cdF_{1,1})},$$
 (83)

$$F_{1,0} = x(cF_{0,0} + dF_{0,1}) \cdot F_{0,0}, \tag{84}$$

$$F_{0,1} = x(aF_{0,0} + bF_{1,0}) \cdot F_{0,0}, \tag{85}$$

$$F_{1,1} = F_{0,0} + x(cF_{0,0} + dF_{0,1}) \cdot F_{0,0} \cdot x(aF_{0,0} + bF_{1,0}). \tag{86}$$

- 在 $\mathbb{Z}_{\geq 0}$ 上游走, 有 a,b,c,d 种方法走 +1,+2,-1,-2 的位移, 有多少种 走法走 n 步从原点回到原点?
- 设 *F*_{0.0}, *F*_{1.0}, *F*_{0.1}, *F*_{1.1}, 分别表示最初和最终欠几步.

$$F_{0,0} = \frac{1}{1 - x^2 (acF_{0,0} + adF_{1,0} + bcF_{0,1} + cdF_{1,1})},$$
 (83)

$$F_{1,0} = x(cF_{0,0} + dF_{0,1}) \cdot F_{0,0}, \tag{84}$$

$$F_{0,1} = x(aF_{0,0} + bF_{1,0}) \cdot F_{0,0}, \tag{85}$$

$$F_{1,1} = F_{0,0} + x(cF_{0,0} + dF_{0,1}) \cdot F_{0,0} \cdot x(aF_{0,0} + bF_{1,0}). \tag{86}$$

● 数值实验表明 $F_{0,0}$ 满足一个次数 ≤ 6 的代数方程.

- $F_{0,0}$ 满足一个次数 ≤ 6 的代数方程.
- 我们有四个未知量, 列了四个方程.
- $i \exists \mathbb{K} = \mathbb{F}(x, a, b, c, d)$.

- $F_{0,0}$ 满足一个次数 ≤ 6 的代数方程.
- 我们有四个未知量, 列了四个方程.
- $\mathbb{R} = \mathbb{F}(x, a, b, c, d)$.

Bézout 定理

"一般" 的 n 个 n 元多项式方程组, 次数分别为 $d_1, ..., d_n$, 在 $\overline{\mathbb{R}}$ 上有 $d_1 \cdots d_n$ 个解.

- $F_{0,0}$ 满足一个次数 ≤ 6 的代数方程.
- 我们有四个未知量, 列了四个方程.
- $i \mathbb{R} = \mathbb{F}(x, a, b, c, d)$.

Bézout 定理

"一般" 的 n 个 n 元多项式方程组, 次数分别为 $d_1,...,d_n$, 在 $\overline{\mathbb{K}}$ 上有 $d_1\cdots d_n$ 个解.

• 所以容易用 Hermite-Padé 逼近猜出最小多项式.

- $F_{0,0}$ 满足一个次数 ≤ 6 的代数方程.
- 我们有四个未知量, 列了四个方程.
- $\mathbb{R} = \mathbb{F}(x, a, b, c, d)$.

Bézout 定理

"一般" 的 n 个 n 元多项式方程组, 次数分别为 d_1,\ldots,d_n , 在 $\overline{\mathbb{K}}$ 上有 $d_1\cdots d_n$ 个解.

- 所以容易用 Hermite-Padé 逼近猜出最小多项式.
- 一个构成证明的计算过程可以考虑使用 Gröbner 基, 给 $\mathbb{K}[F_{0,0},F_{1,0},F_{0,1},F_{1,1}]$ 设置主元的 "顺序" $F_{0,0} \prec F_{1,0} \prec F_{0,1} \prec F_{1,1}$,最 后会消出一个只含 $F_{0,0}$ 的多项式, 这就给出了 $F_{0,0}$ 满足的一个多项式方程.

作为一个关心封闭形式的人, 我为什么要研究整式递推?

- 首先, 大部分数列如果有比较 **正常** 的封闭形式, 这个封闭形式也很多时候是整式递推的.
- 如何证明 *A* = *B*? 其中 *A*,*B* 都是组合求和式.
 - ① 在计算机的辅助下,设计对应的消元算法,分别得到 A,B 的一个整式 递推式.
 - ② 找到它们公共满足的整式递推式.
 - 3 暴力验证前面充分多项, 说明两个数列相等.

- 定义 *q*(*i*, *j*; *n*) 是满足如下要求的 *n* 步游走, 从 (0,0) 到达 (*i*, *j*) 的方案数:
 - ▶ 途中位置只能在 $\mathbb{Z}_{>0}^2$ 上.
 - ▶ 每一步只能是 {←,→,/,/}.

- 定义 *q*(*i*, *j*; *n*) 是满足如下要求的 *n* 步游走, 从 (0,0) 到达 (*i*, *j*) 的方案数:
 - ▶ 途中位置只能在 $\mathbb{Z}_{>0}^2$ 上.
 - ▶ 每一步只能是 {←,→, /, /}.
- Gessel 猜想 $q(0,0;2n) = 16^n \frac{(5/6)_n(1/2)_n}{(2)_n(5/3)_n}$, 在计算机的辅助下被证明. [Kauers–Koutschan–Zeilberger 2008]

- 定义 *q*(*i*, *j*; *n*) 是满足如下要求的 *n* 步游走, 从 (0,0) 到达 (*i*, *j*) 的方案数:
 - 途中位置只能在 Z²_{≥0} 上.
 - ▶ 每一步只能是 {←,→,/,/}.
- Gessel 猜想 $q(0,0;2n)=16^n\frac{(\S(6)_n(\frac{1}{2})_n}{(2)_n(\S(3)_n)}$, 在计算机的辅助下被证明. [Kauers–Koutschan–Zeilberger 2008]
- 过了很久才得到一个完全由人类完成的证明, 并且过程并不初等, 用到了椭圆函数. [Bostan-Kurkova-Raschel 2017]

- 定义 *q*(*i*, *j*; *n*) 是满足如下要求的 *n* 步游走, 从 (0,0) 到达 (*i*, *j*) 的方案数:
 - ▶ 途中位置只能在 $\mathbb{Z}_{>0}^2$ 上.
 - 每一步只能是 {←,→, /, /}.
- Gessel 猜想 $q(0,0;2n)=16^n\frac{(\S(6)_n(1/2)_n}{(2)_n(\S(3)_n)}$, 在计算机的辅助下被证明. [Kauers–Koutschan–Zeilberger 2008]
- 过了很久才得到一个完全由人类完成的证明, 并且过程并不初等, 用到了椭圆函数. [Bostan-Kurkova-Raschel 2017]

Proof of the algebraicity of the trivariate GF. We start by proving the algebraicity of Q(0,y) as a function of y,z. We consider the representation of $r_y(\omega)$ given in Theorem 3 and apply eight times the addition theorem (P4) for ζ -functions, namely (for suitable values of $k \in \mathbf{Z}$ that can be deduced from (21))

$$\zeta_{1,3}(\omega - k\omega_2/8) = \zeta_{1,3}(\omega) - \zeta_{1,3}(k\omega_2/8) + \frac{1}{2} \frac{\wp'_{1,3}(\omega) + \wp'_{1,3}(k\omega_2/8)}{\wp_{1,3}(\omega) - \wp_{1,3}(k\omega_2/8)}$$

We then make the weighted sum of the eight identities above (corresponding to the good values of k in (21)); this way, we obtain

$$r_{v}(\omega) = U_1(\omega) + U_2 + U_3(\omega),$$

图:证明一瞥

- 定义 *q*(*i*, *j*; *n*) 是满足如下要求的 *n* 步游走, 从 (0,0) 到达 (*i*, *j*) 的方案数:
 - ▶ 途中位置只能在 \mathbb{Z}_0^2 上.
 - ▶ 每一步只能是 {←,→,/,/}.
- Gessel 猜想 $q(0,0;2n)=16^n\frac{(\S_0)_n(1/2)_n}{(2)_n(\S_3)_n}$, 在计算机的辅助下被证明. [Kauers–Koutschan–Zeilberger 2008]
- 过了很久才得到一个完全由人类完成的证明, 并且过程并不初等, 用到了椭圆函数. [Bostan-Kurkova-Raschel 2017]
- 大结局: 在计算机的辅助下被证明, 整个 3 维序列的生成函数 G(x,y;t) 是 **代数** 的. [Bostan-Kauers 2010]
 - ▶ 需要计算前 $n \le 1200$ 的所有项, 大概 1.5×10^9 项.
 - ▶ 求出的最小多项式 P(G(x,y;t);x,y,t)=0 的系数有 10^{11} 项, 需要 30 Gb 才能存下!

多元整式递推: 如何定义?

• Zeilberger 最初的尝试: 一个 $f: \mathbb{Z}_{\geq 0}^n \to \mathbb{F}$ 的 n 元数列, 对于每个 $1 \leq i \leq n$, 存在一组多项式 $P_j^{[i]}$ $(1 \leq j \leq r_i)$, 使得满足递推式

$$\sum_{j=0}^{r_i} P_j^{[i]}(\mathbf{m}) f(m_1, \dots, m_i - j, \dots, m_n) = 0.$$
 (87)

多元整式递推: 如何定义?

• Zeilberger 最初的尝试: 一个 $f: \mathbb{Z}_{\geq 0}^n \to \mathbb{F}$ 的 n 元数列, 对于每个 $1 \leq i \leq n$, 存在一组多项式 $P_j^{[i]}$ $(1 \leq j \leq r_i)$, 使得满足递推式

$$\sum_{j=0}^{r_i} P_j^{[i]}(\mathbf{m}) f(m_1, \dots, m_i - j, \dots, m_n) = 0.$$
 (87)

• 这个定义有严重的问题! Stanley 给出了一个例子: 对于 $f(n,m)(n^2-m)=0$ 这个方程, 有一组解

$$\sum_{n=0}^{\infty} x^n y^{n^2},\tag{88}$$

但是这个函数的性质相当复杂, 是我们想要排除的. [Gessel 90]

多元微分有限

定义 (多元微分有限)

一个 n 元生成函数 $F(x_1,...,x_n) \in \mathbb{F}[x_1,...,x_n]$ 是 **微分有限** 的当且仅当

$$\mathcal{D}F := \operatorname{span}_{\mathbb{F}(x_1, \dots, x_n)} \left\{ \partial_{x_1}^{k_1} \cdots \partial_{x_n}^{k_n} F : \mathbf{k} \in \mathbb{Z}_{\geq 0}^n \right\}$$
 (89)

是有限维 $\mathbb{F}(x_1,\ldots,x_n)$ -线性空间.

- 等等, 如何赋予 $\mathbb{F}[x_1,...,x_n]$ 以 $\mathbb{F}(x_1,...,x_n)$ -线性结构? (考虑如何展开 1/(x-y))
- 当然嵌入到 $\mathbb{F}(|x_1|)\cdots(|x_n|)$ 是一种办法, 不过这钦定了一个顺序, 并不典范.
- 一个重要的 等价定义: 放宽成对于每个 1≤ i ≤ n,

$$\dim \operatorname{span}_{\mathbb{F}(x_1,\dots,x_n)} \left\{ \partial_{x_i}^k F : k \in \mathbb{Z}_{\geq 0} \right\} < \infty$$
 (90)

4 D > 4 D > 4 E > 4 E > E *) 4 (*

多元微分有限的基本性质

定理

如果 $F,G \in \mathbb{F}[x_1,...,x_n]$ 是微分有限的, $u_1,...,u_n \in \mathbb{F}[t_1,...,t_m]$ 是代数的, 那么以下生成函数微分有限:

- \bullet F+G.
- \bullet $F \cdot G$.
- 良定义的 $F(u_1,...,u_n)$.

多元微分有限的基本性质

定理

如果 $F,G \in \mathbb{F}[x_1,...,x_n]$ 是微分有限的, $u_1,...,u_n \in \mathbb{F}[t_1,...,t_m]$ 是代数的, 那么以下生成函数微分有限:

- \bullet F+G.
- \bullet $F \cdot G$.
- 良定义的 $F(u_1,...,u_n)$.
- 对角线 [Lipshitz 1988]

$$\sum_{i_1...,i_{n-1}\in\mathbb{Z}_{>0}} f_{i_1...i_{n-1}i_{n-1}} x_1^{i_1} \cdots x_{n-1}^{i_{n-1}}.$$
 (91)

终结比赛的对角线 [Lipshitz 1988]

• 几乎所有正常的和式都是微分有限的!

$$c_{i,j} = \sum_{k} a_{i,k} b_{k,j}.$$
 (92)

终结比赛的对角线 [Lipshitz 1988]

• 几乎所有正常的和式都是微分有限的!

$$c_{i,j} = \sum_{k} a_{i,k} b_{k,j}.$$
 (92)

• 首先 A(X,Y)B(Y',Z), 然后缩并 Y 和 Y', 然后带入 Y=1.

证明勾勒: 对角线的微分有限性 [Lipshitz 1988]

为了使得呈现更加清晰,我们只证明二元情况 (F(x,y)), 多元情况可以照猫画虎.

- ① 换元为 $G = s^{-1}F(x/s,s)$, 这是关于 x,s "微分有限" 的, 不是形式幂级数, 但是仍然满足前述的 $\dim \mathcal{D}G < \infty$.
- ② 证明存在非零解满足

$$\sum_{k,\ell} p_{k,\ell}(x) \partial_x^k \partial_s^\ell G = 0.$$
 (93)

③ 设 o 是 ∂_s^ℓ 的系数不为零的最小的 ℓ , 那么上式的 s^{-o-1} 次项系数给出等式

$$\sum_{k} p_{k,o}(x) \partial_x^k ([s^{-1}]G) = 0.$$
 (94)

③ 说明 $[s^{-1}]G$ 也即 F 的对角线微分有限!

关键引理 [Lipshitz 1988]

欲证 $\sum_{k,\ell} p_{k,\ell}(x) \partial_x^k \partial_s^\ell G = 0$.

• 根据微分有限性条件, 得到多项式方程 $(\deg L = \ell)$

$$L(x,s)\partial_x^d G = O(s^d, \partial_x^{d-1})G,$$
(95)

$$L(x,s)\partial_s^d G = O(s^d, \partial_s^{d-1})G.$$
(96)

• 考虑一个大 N, 以及所有 $\alpha+\beta\leq N$, 考虑 $L^N\partial_x^\alpha\partial_s^\beta G$, 通过上述方程不断约化为

$$L^{N}\partial_{x}^{\alpha}\partial_{s}^{\beta}G = O(s^{(d+\ell)N}, \partial_{x}^{d-1}, \partial_{s}^{d-1})G.$$
(97)

- 全体 α,β 一共有 $\Omega(N^2)$ 种选择, 但右侧的 $s^i \partial_x^j \partial_s^k$ 只有 $\mathcal{O}(N)$ 种情况, 所以当 N 充分大, 一定可以将左侧 $\mathbb{F}(x)$ -线性组合得到右侧为 0.
- 计算这种解的任务一般被称作计算 合冲.

来不及讲的话题

- 小模数 p?
 - ▶ 固定模数 p, 代数幂级数的单项求值都有 "数位 DP" 算法.
 - ▶ p-自动机和代数幂级数的等价性.
 - ▶ 整式递推除以 0?
- Weyl 代数 $\mathbb{F}[x, \partial]$ 和 Ore 代数 $\mathbb{F}[x_1, ..., x_n, \partial_1, ..., \partial_n]$?
 - ▶ 快速计算乘法 (矩阵乘法)?
 - ▶ 不交换的代数结构, 但是可以定义一个方向的 Euclid 算法和 gcd.
- q-整式递推?

q-analog

▶ 咬文嚼字: [二项式 / 整式递推 / 超几何级数 / ...] 的 *q*-类比, 或者 *q*-[二项式 / 整式递推 / 超几何级数 / ...], 而不是单独说 "*q*-类比"?

"还有许多问题我愿意告诉你们, 但是你们现在尚不能接受."

— А. Кострикин, 代数学引论

延伸阅读

"很多序列都是整式递推的",这是一个对于我们理解问题的正面消息,同时也是对出题人的新考验.

- "很多序列都是整式递推的",这是一个对于我们理解问题的正面消息,同时也是对出题人的新考验.
- 出题人: 我动用了很多智慧, 最后得到了这个问题答案的递推式!

- "很多序列都是整式递推的",这是一个对于我们理解问题的正面消息,同时也是对出题人的新考验.
- 出题人: 我动用了很多智慧, 最后得到了这个问题答案的递推式!
- 选手: 跑几项暴力, Min25 BM 直接秒了, 真简单!

- "很多序列都是整式递推的", 这是一个对于我们理解问题的正面消息, 同时也是对出题人的新考验.
- 出题人: 我动用了很多智慧, 最后得到了这个问题答案的递推式!
- 选手: 跑几项暴力, Min25 BM 直接秒了, 真简单!

● 出题人:

没有绝对的"最小递推式", 只有 Pareto 最优!

Example 1.36 The formal power series

$$\frac{1+x^5}{\sqrt{x+1}} + \frac{2x+3}{\sqrt{1-x}} + (3x^4 - 4x^3 + 8) \exp\left(\frac{x}{1-x}\right) = 12 + 11x + \frac{29}{2}x^2 + \cdots$$

satisfies a differential equation of order r with polynomial coefficients of degree d for every point (r, d) in the gray region in the figure below.

图: 递推式的长度-多项式次数的权衡 [Kauers 2023]

- 微分有限这一定义本身并不能完整捕捉 有效 的递推式.
- 回归一个古老的启蒙问题: 给定多项式 f(x), 求出 $f(x)^n$ 的各项系数.

- 微分有限这一定义本身并不能完整捕捉 有效 的递推式.
- 回归一个古老的启蒙问题: 给定多项式 f(x), 求出 $f(x)^n$ 的各项系数.
 - ▶ 记 $g(x) = f(x)^n$, 那么可以利用 g'f = nf'g 来递推.

- 微分有限这一定义本身并不能完整捕捉 有效 的递推式.
- 回归一个古老的启蒙问题: 给定多项式 f(x), 求出 $f(x)^n$ 的各项系数.
 - ▶ 记 $g(x) = f(x)^n$, 那么可以利用 g'f = nf'g 来递推.
 - ▶ 如果 f(x) 不是低次多项式, 而是 稀疏多项式, 方法仍然奏效, 但难以用 Min25 BM 解决.

- 微分有限这一定义本身并不能完整捕捉 有效 的递推式.
- 回归一个古老的启蒙问题: 给定多项式 f(x), 求出 $f(x)^n$ 的各项系数.
 - ▶ 记 $g(x) = f(x)^n$, 那么可以利用 g'f = nf'g 来递推.
 - ▶ 如果 f(x) 不是低次多项式, 而是 稀疏多项式, 方法仍然奏效, 但难以用 Min25 BM 解决.
 - ▶ 稀疏整式递推,需要理解操作原理才能得到 有效 递推式的问题.

- 微分有限这一定义本身并不能完整捕捉 有效 的递推式.
- 回归一个古老的启蒙问题: 给定多项式 f(x), 求出 $f(x)^n$ 的各项系数.
 - ▶ 记 $g(x) = f(x)^n$, 那么可以利用 g'f = nf'g 来递推.
 - ▶ 如果 f(x) 不是低次多项式, 而是 稀疏多项式, 方法仍然奏效, 但难以用 Min25 BM 解决.
 - ▶ 稀疏整式递推,需要理解操作原理才能得到 有效 递推式的问题.
- **隐式整式递推**: 答案序列 f(n) 本身并非整式递推, 但是计算某一项的时候具有整式递推的内核.

- 微分有限这一定义本身并不能完整捕捉 有效 的递推式.
- 回归一个古老的启蒙问题: 给定多项式 f(x), 求出 $f(x)^n$ 的各项系数.
 - ▶ 记 $g(x) = f(x)^n$, 那么可以利用 g'f = nf'g 来递推.
 - 如果 f(x) 不是低次多项式, 而是 稀疏多项式, 方法仍然奏效, 但难以用 Min25 BM 解决.
 - ▶ 稀疏整式递推,需要理解操作原理才能得到 有效 递推式的问题.
- **隐式整式递推**: 答案序列 f(n) 本身并非整式递推, 但是计算某一项的时候具有整式递推的内核.
 - ▶ 截取-Taylor-截取: $\mathcal{O}(n)$ 计算 Bernoulli 数 $B_n = [x^n/n!] \frac{x}{\exp x 1}$.

- 微分有限这一定义本身并不能完整捕捉 有效 的递推式.
- 回归一个古老的启蒙问题: 给定多项式 f(x), 求出 $f(x)^n$ 的各项系数.
 - ▶ 记 $g(x) = f(x)^n$, 那么可以利用 g'f = nf'g 来递推.
 - ▶ 如果 f(x) 不是低次多项式, 而是 稀疏多项式, 方法仍然奏效, 但难以用 Min25 BM 解决.
 - 稀疏整式递推,需要理解操作原理才能得到 有效 递推式的问题.
- **隐式整式递推**: 答案序列 f(n) 本身并非整式递推, 但是计算某一项的时候具有整式递推的内核.
 - ▶ 截取-Taylor-截取: $\mathcal{O}(n)$ 计算 Bernoulli 数 $B_n = [x^n/n!] \frac{x}{\exp x 1}$.
 - ▶ 思考题: $\tilde{\mathcal{O}}(n)$ 计算 n 个顶点的, **不存在** 2 度点的图的数量.

- 微分有限这一定义本身并不能完整捕捉 有效 的递推式.
- 回归一个古老的启蒙问题: 给定多项式 f(x), 求出 $f(x)^n$ 的各项系数.
 - ▶ 记 $g(x) = f(x)^n$, 那么可以利用 g'f = nf'g 来递推.
 - ▶ 如果 f(x) 不是低次多项式, 而是 稀疏多项式, 方法仍然奏效, 但难以用 Min25 BM 解决.
 - ▶ 稀疏整式递推,需要理解操作原理才能得到 有效 递推式的问题.
- **隐式整式递推**: 答案序列 f(n) 本身并非整式递推, 但是计算某一项的时候具有整式递推的内核.
 - ▶ 截取-Taylor-截取: $\mathcal{O}(n)$ 计算 Bernoulli 数 $B_n = [x^n/n!] \frac{x}{\exp x 1}$.
 - ト 思考题: $\widetilde{\mathcal{O}}(n)$ 计算 n 个顶点的, **不存在** 2 度点的图的数量.
- 相信大家的智慧!

感谢倾听

"此时相望不相闻,愿逐月华流照君."

PinkRabbitsys.ix35he ___he yyc 樱初音 negiizhao感谢:陈亮舟 ,任舍予, 史钰申, 万成章, 许庭强 , 杨亦诚 , 赵雨扬 † 协助我准备本次报告.

[†]按照字典顺序排列.