Nome:	Ra:	$ADS M_{\square} N_{\square}$
Nome:	Ra:	$ADS M_{\square} N_{\square}$
Nome:	Ra:	$ADS M_{\square} N_{\square}$
Nome:	$oxed{Ra}$:	$ADS M_{\square} N_{\square}$
Nome:	Ra:	$ADS M_{\square} N_{\square}$

Orientações Gerais:

- Todo tipo de cópia não referenciada será considerada plágio.
- O trabalho deverá conter:
 - 1. CAPA: Utilize exclusivamente esta página como capa;
 - 2. INTRODUÇÃO: Breve Introdução e desenvolvimento teórico;
 - 3. RESULTADOS: Resultados obtidos comentados;
 - 4. BIBLIOGRAFIA: Referências bibliográficas utilizadas no desenvolvimento do trabalho e citadas na INTRODUÇÃO;
 - 5. APÊNDICE: listagens dos códigos desenvolvidos.
- O trabalho deverá ser entregue a mim em mãos. Os códigos deverão ser enviados por e-mail ao monitor com o assunto Trabalho 1 Matemática Discreta. O corpo do e-mail deverá conter o NOME e RA dos integrantes do grupo.

1. Questões

- 1. Escreva um programa em C que calcule a derivada numérica de uma função f(x) em um ponto x_0 , ou seja:
 - Dada uma função f(x).
 - Dada uma amplitude $x x_0$.
 - O usuário entra com um valor $x_0 \in \mathbb{R}$.
 - O algoritmo calcula $f'(x_0) \approx \frac{f(x) f(x_0)}{x x_0}$.
 - Teste o seu código com f'(2) para a função $f(x) = e^x + x^2 3$ e uma amplitude $x x_0 = 0,0001$. Faça os calculos na mão e compare com o valor aproximado do seu código através do erro $E = |f'_{ex}(2) f'_{aprox}(2)|$.
 - Faça o teste acima com outras amplitude, como por exemplo: 0,1 0,01 0,001.