Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of Computer Engineering

					,								
Course(Category) Code	Course Name		Feachi (Hr:	ng Sc s/wee			C	redits	s Assi	gned			
Code		L	T	P	О	E	E L T		P	Total			
		3	0	2	5	10	3	0	1	4			
(PC)	Artificial	Examination				natior	n Scheme						
	Intelligence and	Component			ISE	I	MSE	E	SE	Total			
CS307B	Machine Learning	Theory		Theory		Theory 75		75		75		50	300
			ratory		50				50	100			

Pre-requisit	e Course Codes, if any.	CS202/IT202: Data Structures, MA203: Probability and				
		Statistics				
Course Obje	Course Objective: This course covers the fundamental concepts of Artificial Intelligence and					
machine lear	ning.					
Course Outo	Course Outcomes (CO): At the End of the course students will be able to					
CS307B.1	Understand AI building b	locks presented in intelligent agents				
CS307B.2	Solve the problems using	suitable searching methods.				
CS307B.3	CS307B.3 Solve the problems using suitable reasoning and knowledge representation methods.					
CS307B.4 Apply suitable machine learning technique for a given problem						
CS307B.5	Design an intelligent syste	em using different AIML techniques for real life problems.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

20 1 0 Correlation Matrix (3 Strong, 2 Moderate, 1 Weak Correlation)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO1
											1	2
CS307B.1	2	3	-	-	2	-	-	-	-	-	2	-
CS307B.2	2	3	2	2	-	-	-	-	-	-	2	-
CS307B.3	2	3	2	2	-	-	-	-	-	1	2	-
CS307B.4	2	3	-	_	2	-	-	-	-	2	2	-
CS307B.5	2	3	2	2	2	-	-	-	-	2	2	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CS307B.1	-	-	-	-	-	-	-
CS307B.2	-	-	-	-	-	-	-
CS307B.3	-	-	-	-	-	-	-
CS307B.4	CS1/IT-1	CS:1/IT-1	CS:1/IT-1	-	-	-	-
CS307B.5	CS: 2	CS: 2/IT-	CS: 2/IT-	-	IT-2	CS: 2	-
	IT-2	2	2				

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate√	Create

Theory Component

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of Computer Engineering

Modul e No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction to Artificial Intelligence	1	04
	1.1	Definition of AI, History and Future of AI, Problem solving Approach to Typical AI problem.		
	1.2	Intelligent Agents and Environment What is an Intelligent Systems, Types of Agents, structure of agent.		
	1.3	Environments and Its Properties, PEAS Representation for an Agent		
2	Title	Problem solving by Searching	1	10
	2.1	Searching: characteristics and issues in design of search programs		
	2.2	Uninformed search techniques: State Space Search, Depth First Iterative Deepening		
	2.3	Informed Search methods: Heuristic Search, Hill Climbing.		
	2.4	Adversarial Search: Game playing, Min-Max Search, Alpha-Beta Pruning		
3	Title	Knowledge Representation and Reasoning		08
	3.1	Reasoning: Representing and Reasoning with Uncertain Knowledge		
	3.2	Knowledge representation: A Knowledge-Based Agent, The Wumpus World.		
	3.3	Propositional Logic, First-order predicate logic, Forward and Backward Chaining		
4	Title	Introduction to Machine Learning		12
	4.1	Introduction: What is Machine Learning, History and overview of machine learning,	2,3	
	4.2	Types of Machine Learning – Supervised, Unsupervised Semi-Supervised Learning and Reinforcement Learning, Design a Learning System, The curse of dimensionality		
	4.3	Evaluating a hypothesis: Model selection, training/validation/testing procedures, diagnosing bias versus variance and vice versa, regularization and bias/variance, learning curves	2,3	
5	Title	Linear Models for Regression		8
	5.1	Two Simple Approaches to Prediction: Least Squares and Nearest Neighbors	4	
	5.2	Linear Regression, Multivariate Regression, Subset Selection, Shrinkage Methods		
6	Self Study	Linear model for Classification : Logistic Regression, Linear Discriminant Analysis, Perceptron, Support Vector Machines, PCA	3,4	5*
	<u> </u>	Total(* Not incl	uded)	42

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of Computer Engineering

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Implement an Intelligent agent.
2	Implement a given problem using the searching technique.
3	Implement a given problem using knowledge representation and reasoning rules
4	To design and implement an intelligent system, incorporating the matching algorithm and
	the rule language.
	1. It should provide a fact base updating function.
	2. It should provide a function that checks the rules' LHS and return which rules were
	matched.
	3. It should support firing RHS according to matches.
	Using SWISH Prolog or Java or Python or any other open-source tool
5	Implement supervised learning algorithms.
6	Implement unsupervised learning algorithms.
7	Implement the regression model
8	Minor project covering the concepts of AIML on the real life problem statements.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Artificial Intelligence: A	Third	Stuart Russell and	Prentice-Hall	2009
	Modern Approach	Edition	Peter Norvig		
2	Machine Learning	First Edition	Kevin P. Murphy	Massachusetts	2012
	A Probabilistic			Institute of	
	Perspective			Technology	
3	Machine Learning,	First Edition	Tom.M.Mitchell	McGraw Hill	1997
				International	
				Edition	
4	The Elements of	Second	Trevor Hastie	Springer	2009
	Statistical Learning	Edition	Robert Tibshirani		
			Jerome Friedman		

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
5	Artificial Intelligence: Making a System Intelligent	First Edition	Nilakshi Jain	Wiley Publication	2019
6	Pattern Recognition and Machine Learning,	First Edition	C. M. Bishop	Springer	2013