# Al5026 Computer Graphics



## Transformations – Model Space

- Models contain local vertices
  - Center of origin is often at model center
- To "move" an object, transform all vertices
  - From object space to world space





## Transformations – World Space

- Euclidean coordinate system
- World space is arbitrary
  - Sizes defined
  - Center of origin defined





#### Transformations — Translation

- Movement in nD space
  - On every axis
- Translate(x, y)
- Example in 2D:
  - Translate(2, 1)
  - Bottom left as center of origin
- Position + Translation
  - Element-wise addition





#### <u>Transformations</u> – Rotation

- Rotation in nD space
  - Around single axis
- Rotate\_axis(degrees)
- Example in 2D:
  - Rotate\_Z(45)
  - Bottom left as center of origin

2D around Z:

X = X \* cos(degr) - Y \* sin(degr)

Y = X \* sin(degr) + Y \* cos(degr)





#### <u>Transformations</u> – Scale

- Scaling in nD space
  - Often uniform
- Scale(x, y)
- Example in 2D:
  - Scale(2, 2)
  - Bottom left as center of origin
- Position \* Scale
  - Element-wise multiplication





#### <u>Transformations</u> — Order

- Order of applied transformations important
- Example (approximation):
  - Translation → Rotation → Scale



#### <u>Transformations</u> — Order

- Order of applied transformations important
- Example (approximation):
  - Translation → Scale → Rotation



#### Transformations – Order

- Order of applied transformations important
- Example (approximation):
  - Rotation → Translation → Scale





## <u>Transformations</u> — Order

- Order of applied transformations important
- Example (approximation):
  - Rotation → Scale → Translation





## Transformations — Order

- Order of applied transformations important
- Example (approximation):
  - Scale → Rotation → Translation





#### Transformations – Matrices

- Transforms are one of the major operations in rendering
  - Needs to be performant
- Solution: Matrices
  - Every transform can be represented by matrix
  - Matrix can be multiplied to combine operations
    - Single matrix for [translation, rotation, scale]
    - Retains order of operations

$$M_{SRT} = M * S * R * T$$

$$M_{SRT} = M_{SR} * R * T$$

$$M_{SRT} = M_{SR} * T$$



#### Transformations – Matrices

As a refresher on matrices:

#### row major

$$\begin{bmatrix} x'y'z' \end{bmatrix} = \begin{bmatrix} xyz \end{bmatrix} \times \begin{bmatrix} abc \\ def \\ ghi \end{bmatrix}$$

$$x' = x \times a + y \times d + z \times g$$

$$x' = x \times b + y \times e + z \times h$$

$$x' = x \times c + y \times f + z \times i$$

#### column major

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} ad & g \\ be & h \\ cf & i \end{bmatrix} \times \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$x' = a \times x + b \times y + c \times z$$

$$x' = d \times x + e \times y + f \times z$$

$$x' = g \times x + h \times y + i \times z$$

#### In our case

- No mismatched matrix sizes (always NxN \* NxN or Nx1)
- Free to use either major layout, can always transpose()



#### Transformations – Scale

- Row and column major are the same
- Scale matrix S
  - Parameters a, b, c
  - Dimensions x, y, z respectively

$$S = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$



#### Transformations – Rotation

- Simple derivation for 2D as example
  - Rotating point P by angle  $\theta$

```
r = |P|
P_x = r \times \cos(\alpha)
P_y = r \times \sin(\alpha)
P'_x = r \times \cos(\alpha + \theta)
P'_y = r \times \sin(\alpha + \theta)
P'_y = P_x \times \cos(\theta) - P_y \times \sin(\theta)
P'_y = P_x \times \cos(\theta) + P_y \times \sin(\theta)
```





#### Transformations – Rotation

- Row Major
- Need to rotate around every axis individually
  - Combine as matrices
- Rotate by angle  $\theta$  around given axis

$$R_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix} \qquad \begin{bmatrix} R_y = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix} \end{bmatrix} \qquad \begin{bmatrix} R_z = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_z = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$



#### Transformations – Translation

- Row Major
- 3D Translation not representable as 3x3 matrix
  - Extend dimensions by 1
  - Homogeneous coordinates
    - Every vertex position should be [x, y, z, 1]
- Translation matrix T to translate point by [x, y, z]

$$T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ x & y & z & 1 \end{bmatrix}$$



#### Transformations - Overview

#### Scale

$$S = \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

#### Rotation

$$R_{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{y} = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{z} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

#### **Translation**

$$T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ x & y & z & 1 \end{bmatrix}$$



## Camera Space

World space: World origin as center

**View space**: Camera as the world center

Clip space: 3D → 2D projection

**Screen space**: Screen coordinates (e.g. 1920 x 1080)





#### View



- Camera as center of world
  - Camera has its own transform
    - Rotation, translation
  - Apply inverse camera translation and rotation to every vertex
    - Invert [x, y, z] or θ
- View matrix V = inverse(T) \* inverse(R)

## Example: $T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ x & y & z & 1 \end{bmatrix}$ $T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -x & -y & -z & 1 \end{bmatrix}$



#### Projection

View Space

Projection Matrix

Clip Space

- Transform to clip space through projection
  - Normalized coordinates { -1.0f, 1.0f }
- Projection of objects onto near plane
  - Near plane can be viewed as the screen



## Projection – Orthographic

- Render objects in view frustrum
  - Between near and far plane
  - Near plane as screen
  - No perspective
- Useful for modelling software
  - We won't use this one





#### Projection – Perspective

- Most common projection
  - 3D perspective modelling reality
- Near and far planes
  - Near plane smaller
  - Near plane as screen
  - View frustrum volume





## Projection

View Space Projection

Clip Space

- Objects are smaller at a distance
- Projection to clip space with projection matrix
  - Clip space is normalized frustrum
  - Clip space coordinate w contains depth





## Projection



Perspective projection matrices can differ

One example with horizontal FOV

Field of view as fov and near/far plane distances as n and f respectively

$$S = \frac{1}{\tan\left(\frac{fov}{2} * \frac{\pi}{180}\right)}$$

$$T = \begin{bmatrix} S & 0 & 0 & 0 \\ 0 & S & 0 & 0 \\ 0 & 0 & -(\frac{f}{f-n}) & -1 \\ 0 & 0 & -(\frac{f*n}{f-n}) & 0 \end{bmatrix}$$

