

基于高云半导体 FPGA 的 MIPI 接口匹配方案

移动产业处理器接口(MIPI)是一种手机模块间互联的通用标准,MIPI 协议的物理层定义了 MIPI D-PHY 规范,主要包括图像传感器接口(CSI)和显示屏接口(DSI)。

图 1 定义 MIPI DPHY 的电气特性,MIPI 标准主要有两种工作模式,即高速(HS)模式和低功耗(LP)模式。

- 高速模式: 信号的电压摆幅较小, 大约在 200mV, 用于高速数据的传输。
- 低功耗模式: 电压摆幅较大,达到了 1.2V,用于传输控制信息。

图 1 MIPI DPHY 电气特性

TN100-1.00 1(5)

表 1~表 4 定义了 MIPI 在两种模式下发送侧和接收侧的直流参数,表 5 和表 6 定义了高云器件 LVCMOS12 和 LVDS25 两种电平标准的直流参数。 通过对比可以发现,高云器件 LVCMOS12 可以满足低功耗模式的电气特性, 而高云器件 LVDS25 加上合适的外部匹配网络可以兼容高速模式的电气特性。

表 1 MIPI LP 发送模式直流参数

Parameter	Description	Min	Nom	Max	Units	Notes
Voh	Thevenin output high level	1.1	1.2	1.3	V	
Vol	Thevenin output low level	-50		50	mV	
Zolp	Output impedance of LP	110			Ω	
	transmitter					

表 2 MIPI HS 发送模式直流参数

Parameter	Description	Min	Nom	Max	Units	Notes
Vcmtx	HS transmit static common mode voltage	150	200	250	mV	
ΔVcmtx	Vcmtx mismatch when output is Diff-1 or Diff-0			5	mV	
Vod	HS transmit differential voltage	140	200	270	mV	
ΔVod	Vod mismatch when output is Diff-1 or Diff-0			10	mV	
Vohhs	HS output high voltage			360	mV	
Zos	Single-ended output impedance	40	50	62.5	Ω	
ΔZos	Single-ended output impedance mismatch			10	%	

表 3 MIPI LP 接收模式直流参数

Parameter	Description	Min	Nom	Max	Units	Notes
Vih	Logic 1 input voltage	880			mV	
Vil	Logic 0 input voltage,not in ULP state			550	mV	
Vil-ulps	Logic 0 input voltage,ULP state			300	mV	
Vhyst	Input hysteresis	25				

表 4 MIPI HS 接收模式直流参数

Parameter	Description	Min	Nom	Max	Units	Notes
Vcmrx	Common mode voltage HS	70		330	mV	
	receive mode					
Vidth	Differential input high threshold 70 mV					
Vidtl	Differential input low threshold -70 mV		mV			
Vihhs	Single-ended input high voltage 460		460	mV		
Vilhs	Single-ended input low voltage	led input low voltage -40 mV				
Vterm-en	Single-ended threshold for HS	HS 450 mV				
	termination enable					
Zid	Differential input impedance	80	100	125	Ω	

www.gowinsemi.com.cn 2(5)

表 5 LVCMOS 直流参数

Parameter	Vil Max	Vil Min	Vih Max	Vih Min	Vol Max	Voh Min
LVCMOS12	0.42V	-0.3V	3.6V	0.78V	0.8V	0.4V

表 6 LVDS25 直流参数

Parameter	Description	Min	Nom	Max	Units	Notes
Vthd	Differential input threshold	+/-100			mV	
Vcm	Input common mode voltage	0.05		2	V	
Voh	Output high voltage		1.375		V	
Vol	Output low voltage		1.025		V	
Vod	Output voltage differential	250	350	450	mV	

当 FPGA 作为 MIPI 接收器件时,LVDS25 差分对的正端和负端分别串联 50Ω 到 LVCMOS12,高速模式下 LVCMOS12 固定输出 0,相当于 LVDS25 差分对的正端和负端端接了一个 100Ω 的电阻,如图 2 所示。

图 2 FPGA 作为接收器件匹配网络

www.gowinsemi.com.cn 3(5)

当 FPGA 作为 MIPI 发送器件时,其电阻匹配网络如图 3 所示。 100Ω 电阻和 LVDS25 输出 3.5mA 差分电流产生偏置电压,最终得到 0mV ~ 400mV 差分输出。

高速模式下,LVDS25 驱动输出,LVCMOS12 固定输出 0,低功耗模式下,LVDS25 处于高阻状态,LVCMOS12 驱动输出。这种方式的好处在于100 Ω 电阻同时起到了终端电阻的作用,对于保持高速信号的完整性有很大好处,因此电阻位置需要尽量靠近终端。

图 3 FPGA 作为发送器件匹配网络

在实际应用场合,信号的衰减与 PCB 密切相关,用户可以根据实际阻抗改变电阻值来匹配。图 4 是高速信号的摆幅随电阻值变化的仿真图。

图 4 高速信号摆幅和电阻值变化仿真图

www.gowinsemi.com.cn 4(5)

技术支持与反馈

高云半导体提供全方位技术支持,在使用过程中如有任何疑问或建议,可直接与公司联系:

网址: http://www.gowinsemi.com.cn/

E-mail: support@gowinsemi.com

Tel: 00 86 0755 82620391

版本信息

日期	版本	说明
2016/09/26	1.00	初始版本。

TN100-1.00 5(5)

版权所有© 2016 广东高云半导体科技股份有限公司

未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除高云半导体在其产品的销售条款和条件中声明的责任之外,高云半导体概不承担任何法律或非法律责任。高云半导体对高云半导体产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。高云半导体对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,高云半导体保留修改文档中任何内容的权利,恕不另行通知。高云半导体不承诺对这些文档进行适时的更新。