TU Dortmund I IEEM Dr. Lukas Baumanns

PRÄSENZÜBUNG

Mathematisches Argumentieren im kleinen Einmaleins

Austausch in Kleingruppen

Erkundungen an der Einmaleinstafel

Rechts sind Rautenausschnitte aus der Einmaleinstafel gegeben. Wir betrachten in diesen Ausschnitten jeweils die Zeilensumme (2.7 + 3.8 =) und die Spaltensumme (3.7 + 2.8 =).

- a. Rechnen Sie einige Zeilen- und Spaltensummen eines Rautenausschnitts aus.
- b. Welche Gesetzmäßigkeit vermuten Sie hinter den Ergebnissen?
- c. Begründen Sie diese Vermutung zunächst formal (algebraisch), um den allgemeinen, strukturellen Zusammenhang offenzulegen.
- d. Entwickeln Sie eine inhaltlich-anschauliche Begründung unter Verwendung der räumlich-simultanen Grundvorstellung der Multiplikation.

Diese Aufgabenteile sollen Sie in der jeweiligen Tabellenzelle der nächsten Seite bearbeiten. Reflektieren Sie zudem über Ihre Vorgehen mittels des folgenden Arbeitsauftrags:

e. Markieren Sie neben den Bearbeitungen der Aufgabenteile a.-d., um welchen Typ von Argumentation es sich handelt, welche Funktion die Argumente jeweils erfüllen und in welcher Stufe Sie sich im Argumentationsprozess befinden.

Typen			Funktionen			Stufen		
Experimentell	anhand von keine abs über die 0	nes Sachverhalts on Einzelbeispielen chließende Gewissheit Gültigkeit des nten Sachverhalts	Entdeckung	•	Erforschen neuer Zusammenhän ge	Entdecken	*	Generieren von Beispielen Suche nach Mustern und Strukturen
Inhaltlich- anschaulich	Operation erkennba	ctionen und nen, von denen intuitiv r ist, dass sie sich auf e Klasse von Beispielen n lassen"	Erklärung		Einsicht, warum eine Aussage wahr ist	Vermuten	*	Aussagen anhand von Beispielen testen (Allgemeine) Aussagen über mathematische Zusammenhänge und Auffälligkeiten anstellen ("Das ist immer")
Formal- deduktiv	das sich f	haftliches Vorgehen, formaler Sprache und Schlussfolgerungen	Verifikation	•	Überzeugung von der Richtigkeit einer Aussage	Hinterfragen	>	Suche nach Gegenbeispielen Erkennen einer Begründungsnotwendigkeit ("Warum stimmt das?", "Stimmt das immer?")
						Begründen	*	Wahrheitsgehalt der Aussage untersuchen Vom Einzelbeispiel zum Allgemeinen

Aufgabenbearbeitung	e.
a. Beispiele ausrechnen 2·3 + 3·4 2·3 + 3·4 3·3 + 2·4 2·4 3·5 2·4 + 3·5 3·4 + 2·5 3·4 + 2·5	Typen Experimentell Inhaltlich-anschaulich Formal-deduktiv Funktionen Entdeckung Erklärung Verifikation Stufen Entdecken Vermuten Hinterfragen Begründen
b. Gesetzmäßigkeit ("Die Zeilensumme ist <i>immer</i> …")	Typen Experimentell Inhaltlich-anschaulich Formal-deduktiv Funktionen Entdeckung Erklärung Verifikation Stufen Entdecken Hinterfragen Begründen
c. Formaler Beweis	Typen Experimentell Inhaltlich-anschaulich Formal-deduktiv Funktionen Entdeckung Erklärung Verifikation Stufen Entdecken Vermuten Hinterfragen Begründen
d. Inhaltlich-anschauliche Begründung	Typen Experimentell Inhaltlich-anschaulich Formal-deduktiv Funktionen Entdeckung Erklärung Verifikation Stufen Entdecken Hinterfragen Begründen