CONFIDENTIAL B

P40 Color Engine New Flexibility Usage

Agenda

- Smooth Color Coding Guidelines
- Troubleshooting

CONFIDENTIAL B

FW Color Simulator

CODING GUIDELINES

Block Diagram

MT6771 NVRAM IF *.xlsx

Sheet: UserTable Sheet: M! COLOR

camera_isp_regs_*.h

```
.Lv_Env={
.IDX_Partition ={-30, -10, 10, 50, 100, 120}},
.Ct_Env={
.IDX_Partition ={2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500}},
```

*_Scenario_COLOR.cpp

Scenario and CT/LV mapping table

NVRAM

Smooth Color

*Per frame active

Interpolation by CT

Modulation by LV

IIR

Color Engine

HW

mt6771/hal/imgsensor/ver1/**Sensor**_mipi_raw/MT6771_NVRAM_IF_**Sensor**mipiraw.xlsx mt6771/hal/imgsensor/ver1/**Sensor**_mipi_raw/camera_isp_regs_**Sensor**mipiraw.h mt6771/hal/imgsensor/ver1/**Sensor**_mipi_raw/**Scenario**/**Sensor**mipiraw_**Scenario**_COLOR.cpp

MT6771_NVRAM_IF_Sensormipiraw.xlsx (Sheet: UserTable)

Scenario	ССМ	COLOR
Scene_Capture	Scene_Capture	Scene_Capture
Face_Capture	Face_Capture	Face_Capture
Zoom_Capture	Scene_Capture	Scene_Capture
Professional_Capture	Scene_Capture	Scene_Capture
Flash_Capture	Flash_Capture	Flash_Capture
FaceBeauty_Capture	FaceBeauty_Capture	FaceBeauty_Capture
HDR_Capture	HDR_Capture	HDR_Capture
Panorama_Capture	Scene_Capture	Scene_Capture
Video_Capture	Scene_Capture	Scene_Capture
Capture_Preview	Scene_Capture	Scene_Capture
Capture_Preview_Zoom1	Scene_Capture	Scene_Capture
Capture_Preview_Zoom2	Scene_Capture	Scene_Capture
Video_Preview	Scene_Capture	Scene_Capture
Video_Preview_Zoom1	Scene_Capture	Scene_Capture
Video_Preview_Zoom2	Scene_Capture	Scene_Capture
Video_Recording	Scene_Capture	Scene_Capture
Video_Recording_Zoom1	Scene_Capture	Scene_Capture
Video_Recording_Zoom2	Scene_Capture	Scene_Capture
FaceBeauty_Preview	FaceBeauty_Capture	FaceBeauty_Capture
WeChatQQ	WeChatQQ	WeChatQQ
3rd_1080P	Scene_Capture	Scene_Capture
3rd_720P	Scene_Capture	Scene_Capture
3rd_480P	Scene_Capture	Scene_Capture

MT6771_NVRAM_IF_Sensormipiraw.xlsx (Sheet: M! COLOR)

LV	СТ	ISO	Index	Folder	File	Scenario
IDX_00	IDX_00		0	Scene_Capture	COLOR	Scene_Capture
IDX_00	IDX_01		1	Scene_Capture	COLOR	Scene_Capture
				60 :		
IDX_00	IDX_09		9	Scene_Capture	COLOR	Scene_Capture
IDX_01	IDX_00		10	Scene_Capture	COLOR	Scene_Capture
IDX_01	IDX_01		11	Scene_Capture	COLOR	Scene_Capture
	:					
IDX_01	IDX_09		19	Scene_Capture	COLOR	Scene_Capture
IDX_05	IDX_00		50	Scene_Capture	COLOR	Scene_Capture
IDX_05	IDX_01		51	Scene_Capture	COLOR	Scene_Capture
		,1				
IDX_05	IDX_09		59	Scene_Capture	COLOR	Scene_Capture
IDX_00	IDX_00		60	Face_Capture	COLOR	Face_Capture
IDX_00	IDX_01		61	Face_Capture	COLOR	Face_Capture
2	5		2	2	?	3
IDX_05	IDX_09		119	Face_Capture	COLOR	Face_Capture
IDX_00	IDX_00		0	Scene_Capture	COLOR	Zoom_Capture
IDX_00	IDX_01		1	Scene_Capture	COLOR	Zoom_Capture
2	2	Y	?	2	?	?
IDX_05	IDX_09		59	Scene_Capture	COLOR	Zoom_Capture
٤ ٢	5 5		? ?	₹ ₹	₹ ₹	5 5
IDX_00	IDX_00		120	Flash_Capture	COLOR	Flash_Capture
IDX_00	IDX_01		121	Flash_Capture	COLOR	Flash_Capture
2	5	7	₹	?	2	₹
IDX_05	IDX_09		179	Flash_Capture	COLOR	Flash_Capture
₹ ₹	5 5		5 5	₹ ₹	₹ ?	5 5

NVRAM by Scenario

- Each Scenario has 60 COLOR_TBLs, the output COLOR_TBL is bilinear interpolation result by 1/CT(Mired) and LV
 - 6 LV partitions
 - 10 CT partitions

Individual Scene Tuning

- Database
 - Different CT
 - Different lighting condition
- Scene
 - Indoor

Outdoor

Decide SW Register

- LUM/HUE/SAT SPEED
 - Unit: 1 code/frame
 - Default: 4 code/frame
- LSP LV TH
 - LSP effective range by LV

```
mt6771/hal/imgsensor/ver1/Sensor_mipi_raw/Scenario/Sensormipiraw_Scenario_COLOR.cpp
const ISP_NVRAM_COLOR_PARAM_T Sensormipiraw_COLOR_PARAM_0000 = {
    0, //DC OFFSET : unused
    4, //LUM SPEED
    4, //HUE SPEED
    4, //SAT SPEED
    30, //LSP LV TH
    0, //OUTDOOR EN : unused
    4, //OUTDOOR SPEED : unused
    16 //OUTDOOR RATIO : unused
};
```


Fill in NVRA

Step

Tools Others

Tool → ISP Reg Header File Tool

- → Open "NVRAM_IF.xlsx" → Select "More Feature"
- → Select "Write" → Select "Color" → Select "Scenario"
- \rightarrow Select "LV" \rightarrow Select "CT" \rightarrow Run

CONFIDENTIAL B

Check on Phone

- Field test
 - Check setting in EXIF
 - Check preview screen
- Troubleshooting

Troubleshooting

- Bypass Y/S/H Engine and Memory Color
- Dump Input Parameters
- Dump Interpolation Results
 - Dump Global Brightness/Contrast/Saturation
 - Dump Partial Y
 - Dump Partial H
 - Dump Partial S
 - Dump S Gain by Y
 - Dump LSP
 - Dump Memory Color

Bypass Y/S/H Engine and Memory Color

Be used to debug abnormal color effect in preview or video

- Step 1: Turn on debug enable
 - adb shell setprop debug.smooth_color.enable 1
- Step 2: Bypass Y/S/H engine and memory color
 - adb shell setprop debug.smooth_color.bypass.yeng 1
 - adb shell setprop debug.smooth_color.bypass.heng 1
 - adb shell setprop debug.smooth_color.bypass.seng 1
 - adb shell setprop debug.smooth color.bypass.cm 1

Dump Input Parameters

- Step 1: Turn on debug enable
 - adb shell setprop debug.smooth_color.dump 1
- Step 2: Check the debug info (=>Note)

```
[SmoothCOLOR()] u4RealCT = 3164, u4LowerCT = 3000, u4UpperCT = 3500, i4RealLV = 27, i4LowerLV = 10, i4UpperLV = 50

=> CT/LV info
[SmoothCOLOR()] IsCapture = 0, IsBoot = 0

=> If IsCapture = 1 or IsBoot = 1, there is no IIR
[SmoothCOLOR()] In Ram: 000, 004, 004, 030, 000, 004, 016

=> See below description
[SmoothCOLOR()] LSP = (1, 1)

=> (1,1) : COLOR_LSP_EN = 1, otherwise COLOR_LSP_EN = 0
[SmoothCOLOR()] Interpolated mode !!

=> Output "Interpolated mode !!" or "Force Lock !!"
```

```
mt6771/hal/imgsensor/ver1/Sensor_mipi_raw/Scenario/Sensormipiraw_Scenario_COLOR.cpp
const ISP_NVRAM_COLOR_PARAM_T Sensormipiraw_COLOR_PARAM_0000 = {
            0, //DC OFFSET : unused
            4, //LUM SPEED
            4, //HUE SPEED
            4, //SAT SPEED
            30, //LSP LV TH
            0, //OUTDOOR EN : unused
            4, //OUTDOOR SPEED : unused
            16 //OUTDOOR RATIO : unused
};
```

Dump Global Brightness/Contrast/Saturation

- Step 1: Tuning on debug log.
 - adb shell setprop debug.smooth_color.lvdump.global 1
- Step 2: Check log if anything strange.
 - Keyword : [InterParamGlobal()]

```
[InterParamGlobal()] u4RealMired = 200, u4UpperMired = 181, u4LowerMired = 250, i4RealLV = 60, i4UpperLV = 100, i4LowerLV = 50 [InterParamGlobal()] (LV Lower, Mired Lower) B:128,C:128,S:128 [InterParamGlobal()] (LV Upper, Mired Lower) B:128,C:128,S:128 [InterParamGlobal()] (LV Upper, Mired Upper) B:128,C:128,S:128 [InterParamGlobal()] (LV Upper, Mired Upper) B:128,C:128,S:128 [InterParamGlobal()] (Target) B:128,C:128,S:128 [InterParamGlobal()] (Final ) B:128,C:128,S:128
```

Dump Partial Y

- Step 1: Tuning on debug log.
 - adb shell setprop debug.smooth_color.lvdump.lum 1
- Step 2: Check log if anything strange.
 - Keyword : [InterParamPartialY()]

Dump Partial H

- Step 1: Tuning on debug log.
 - adb shell setprop debug.smooth_color.lvdump.hue 1
- Step 2: Check log if anything strange.
 - Keyword : [InterParamPartialH()]

Dump Partial \$1/3

- Step 1: Tuning on debug log.
 - adb shell setprop debug.smooth_color.lvdump.sat 1
- Step 2: Check log if anything strange.
 - Keyword : [InterParamPartialS()]

Dump Partial \$2/3

[InterParamPartialS()]u4RealMired = 200, u4UpperMired = 181, u4LowerMired = 250, i4RealLV = 60, i4UpperLV = 100, i4LowerLV = 50 [InterParamPartialS()] PartialS gain2 Lv Lower Mired Lower: 140,140,140,140,120,120,120,144,144,132,140,140,112,120,144,140,140,140,140,140 [InterParamPartialS()] PartialS gain2 Lv Lower Mired Upper: 136,144,144,144,120,120,120,120,144,144,132,144,144,144,144,144,144,144,144,136,128 [InterParamPartialS()] PartialS gain2 Lv Upper Mired Upper: 138,138,138,138,120,112,116,128,128,128,138,142,148,142,138,138,128,128,128,128 [InterParamPartialS()] PartialS gain3 Lv Lower Mired Lower: 120,119,121,120,139,138,136,114,113,124,120,121,139,134,118,120,120,121,119,120 [InterParamPartialS()] PartialS gain3 Lv Lower Mired Upper: 123,116,118,118,139,138,136,114,113,124,117,118,117,116,118,117,119,122,128 [InterParamPartialS()] PartialS gain3 Lv Upper Mired Upper: 121,121,122,121,136,143,139,128,128,128,121,120,115,118,122,121,128,128,128

Dump Partial \$3/3

[InterParamPartialS()] PartialS output2 Lv Lower Mired Lower: 064,064,064,064,064,066,056,056,056,066,062,064,064,064,055,058,065,064,064,064,064,064 [InterParamPartialS()] PartialS output2 Lv Lower Mired Upper: 063,065,065,065,065,066,056,066,066,066,062,065,065,065,065,065,065,065,066,060 [InterParamPartialS()] PartialS output2 Lv Upper Mired Upper: 063,063,063,063,063,057,053,054,060,060,060,060,064,066,064,063,063,060,060,060 [InterParamPartialS()] PartialS output 2 Target : 063,065,065,065,065,056,056,056,066,066,062,065,065,063,064,065,065,065,065,063,061 [InterParamPartialS()] PartialS gain2 Target: 138,144,144,144,122,122,120,144,144,133,144,144,138,141,144,144,144,144,138,131 [InterParamPartialS()] PartialS gain2 Final: 138,144,144,144,122,122,120,144,144,133,144,144,138,141,144,144,144,144,138,131 [InterParamPartialS()] PartialS gain3 Target: 122,116,118,118,137,136,136,115,114,123,117,118,122,119,118,118,117,119,121,126 [InterParamPartialS()] PartialS gain3 Final: 122,116,118,118,137,136,136,115,114,123,117,118,122,119,118,118,117,119,121,126

Dump S Gain by Y_{1/2}

- Step 1: Tuning on debug log.
 - adb shell setprop debug.smooth_color.lvdump.sgy 1
- Step 2: Check log if anything strange.
 - Keyword : [InterParamSGainByY()]

Dump S Gain by Y_{2/2}

```
[InterParamSGainByY()]u4RealMired = 200, u4UpperMired = 181, u4LowerMired = 250, i4RealLV = 60, i4UpperLV = 100, i4LowerLV = 50
[InterParamSGainByY()] SGainByY064 LV Lower, Mired Upper: 127,127,121,122,122,121,119,120,120,120,123,128,123,122,131,130,131,116,117,125
[InterParamSGainByY()] SGainByY064 LV Upper, Mired Lower: 127,127,123,122,131,130,131,116,117,125,121,122,122,121,119,120,120,120,123,128
[InterParamSGainByY()] SGainByY064 Target: 127,127,124,125,125,125,123,123,123,123,125,125,125,125,131,130,131,121,122,126
[InterParamSGainByY()] SGainByY064 Final: 127,127,124,125,125,124,123,123,123,123,125,128,125,125,131,130,131,121,122,126
[InterParamSGainByY()] SGainByY128 LV Lower, Mired Upper: 124,122,122,121,120,122,126,125,124,125,127,128,125,125,131,131,131,131,127,126,127
[InterParamSGainByY()] SGainByY128 LV Upper, Mired Lower: 124,122,125,125,131,131,131,127,126,127,122,121,120,122,126,125,124,125,127,128
[InterParamSGainByY()] SGainByY128 Target: 126,125,125,124,123,125,127,126,126,126,127,128,126,126,131,131,131,131,127,127,127
[InterParamSGainByY()] SGainByY128 Final: 126,125,125,124,123,125,127,126,126,126,126,126,126,126,131,131,131,131,127,127
[InterParamSGainByY()] SGainByY192 LV Lower, Mired Upper: 125,121,128,127,127,127,122,122,124,124,123,128,120,120,140,140,138,116,116,126
[InterParamSGainByY()] SGainByY192 LV Upper, Mired Lower: 125,121,120,120,140,140,138,116,116,126,128,127,127,127,122,122,124,124,123,128
[InterParamSGainByY()] SGainByY192 Target: 126,124,128,127,128,125,124,125,126,125,128,123,123,137,137,135,121,121,127
[InterParamSGainByY()] SGainByY192 Final: 126,124,128,127,128,125,124,125,126,125,128,123,123,137,137,135,121,121,127
```

Dump LSP

- Step 1: Tuning on debug log.
 - adb shell setprop debug.smooth_color.lvdump.lsp 1
- Step 2: Check log if anything strange.
 - Keyword : [InterParamLSP()]

```
[InterParamLSP()]u4RealMired = 200, u4UpperMired = 181, u4LowerMired = 250, i4RealLV = 60, i4UpperLV = 100, i4LowerLV = 50
[InterParamLSP()] LSP1 LV Lower, Mired Lower: 000,000,127,000
[InterParamLSP()] LSP1 LV Lower, Mired Upper: 000,000,127,000
[InterParamLSP()] LSP1 LV Upper, Mired Lower: 000,000,127,000
[InterParamLSP()] LSP1 Target: 000,000,127,000
[InterParamLSP()] LSP1 Final: 000,000,127,000
[InterParamLSP()] LSP2 LV Lower, Mired Lower: 127,000,127,127
[InterParamLSP()] LSP2 LV Lower, Mired Upper: 127,000,127,127
[InterParamLSP()] LSP2 LV Upper, Mired Lower: 127,000,127,127
[InterParamLSP()] LSP2 LV Upper, Mired Upper: 127,000,127,127
[InterParamLSP()] LSP2 LV Upper, Mired Upper: 127,000,127,127
[InterParamLSP()] LSP2 Target: 127,000,127,127
[InterParamLSP()] LSP2 Final: 127,000,127,127
```

Dump Memory Color_{1/2}

- Step 1: Tuning on debug log.
 - adb shell setprop debug.smooth_color.dump.cm 1
- Step 2: Check log if anything strange.
 - Keyword : [InterParam3DLUT()]

Dump Memory Color_{2/2}

[InterParam3DLUT()]u4RealMired = 200, u4UpperMired = 181, u4LowerMired = 250, i4RealLV = 60, i4UpperLV = 100, i4LowerLV = 50

Only show W3 Hue

```
[InterParam3DLUT()] 3DLUT W3 Hue Input Ly Lower Mired Lower: 0806,0829,0852,0875,0898,0921,0944
[InterParam3DLUT()] 3DLUT W3 Hue Input Ly Lower Mired Upper: 0806.0829.0852.0875,0898,0921,0944
[InterParam3DLUT()] 3DLUT W3 Hue Input Lv Upper Mired Lower: 0806,0829,0852,0875,0898,0921,0944
[InterParam3DLUT()] 3DLUT W3 Hue Input Lv Upper Mired Upper: 0806,0829,0852,0875,0898,0921,0944
[InterParam3DLUT()] 3DLUT W3 Hue Input Target: 0806,0829,0852,0875,0898,0921,0944
[InterParam3DLUT()] 3DLUT W3 Hue Input Final: 0806,0829,0852,0875,0898,0921,0944
[InterParam3DLUT()] 3DLUT W3 Hue Otput Lv Lower Mired Lower: 0806,0829,0852,0875,0898,0921,0944
[InterParam3DLUT()] 3DLUT W3 Hue Otput Ly Lower Mired Upper: 0806,0829,0852,0875,0898,0921,0944
[InterParam3DLUT()] 3DLUT W3 Hue Otput Lv Upper Mired Lower: 0806,0829,0852,0875,0898,0921,0944
[InterParam3DLUT()] 3DLUT W3 Hue Otput Lv Upper Mired Upper: 0806,0847,0888,0929,0934,0939,0944
[InterParam3DLUT()] 3DLUT W3 Hue Otput Target: 0806,0832,0857,0883,0903,0000,0944
[InterParam3DLUT()] 3DLUT W3 Hue Slope Lv Lower Mired Lower: 128,128,128,128,128
[InterParam3DLUT()] 3DLUT W3 Hue Slope Lv Lower Mired Upper: 128,128,128,128,128
[InterParam3DLUT()] 3DLUT W3 Hue Slope Lv Upper Mired Lower: 128,128,128,128,128
[InterParam3DLUT()] 3DLUT W3 Hue Slope Lv Upper Mired Upper: 230,230,230,026,026,026
[InterParam3DLUT()] 3DLUT W3 Hue Slope Target: 145,139,145,111,000,255
[InterParam3DLUT()] 3DLUT W3 Hue Slope Final: 145,139,145,111,000,255
[InterParam3DLUT()] 3DLUT W3 Hue Lv Lower Mired Lower: WGT LSLOPE = 000, WGT USLOPE = 000
[InterParam3DLUT()] 3DLUT W3 Hue Ly Lower Mired Upper: WGT LSLOPE = 016, WGT USLOPE = 016
[InterParam3DLUT()] 3DLUT W3 Hue Lv Upper Mired Lower: WGT LSLOPE = 016, WGT USLOPE = 016
[InterParam3DLUT()] 3DLUT W3 Hue Lv Upper Mired Upper: WGT LSLOPE = 016, WGT USLOPE = 016
[InterParam3DLUT()] 3DLUT W3 Hue Target: WGT LSLOPE = 014, WGT USLOPE = 014
[InterParam3DLUT()] 3DLUT W3 Hue Final: WGT LSLOPE = 014, WGT USLOPE = 014
```

APPENDIX: P23 OR ENGINE

CONFIDENTIAL B

CONFIDENTIAL B

P23/P40 Color Engine

Index

- Support chip
- Document revision
- Function introduction
- Block diagram
- Function
 - Global control
 - H Engine
 - Y Engine
 - S Engine
 - Memory Color

Support Chip

- P23
- P40

Document Revision

Date	Note	Modify by
2017/02/18	Initial draft	Jay Huang
2017/03/08	Update new UI (Partial S/LSP)	Jay Huang
2017/05/09	Add Memory Color	Jay Huang

Index

- Support chip
- Document revision
- Function introduction
- Block diagram
- Function
 - Global contro
 - H Engine
 - Y Engine
 - S Engine
 - Memory Color

Function Introduction

Color Engine can process color in YSH domain.

Index

- Support chip
- Document revision
- Function introduction
- Block diagram
- Function
 - Global contro
 - H Engine
 - Y Engine
 - S Engine
 - Memory Color

Block Diagram

Index

- Support chip
- Document revision
- Function introduction
- Block diagram
- Function
 - Global control
 - H Engine
 - Y Engine
 - S Engine
 - Memory Color

Global Control

- COLOR EN (Default = 1)
 - Module enable
- YENG/SENG/HENG BYPASS (Default = 0)
 - Bypass sub modules
- S G Y EN (Default = 1)
 - Enable Saturation Gain by Y
- SEQ SEL (Default = 0)
 - Switch between original hue (0) and processed hue (1)

Global Contrast / Brightness / Sat.

BRIGHTNESS

• 0.0 x:0

• 1.0 x : 1024

• 2.0 x: 2047

CONTRAST

• 0.0 x: 0

• 1.0 x: 128

• 7.992 x: 1023

SATURATION

• 0.0 x: 0

• 1.0 x:128

7.992 x: 1023

Index

- Support chip
- Document revision
- Function introduction
- Block diagram
- Function
 - Global contro
 - H Engine
 - Y Engine
 - S Engine
 - Memory Color

Hue Phase Division

20 hue phases, denser around skin tone

Partial Hue

- Modify hue angle for specific hue phase
 - Register adjust range is 0 ~ 255
 - Corresponds to $-45^{\circ} \sim +44.65^{\circ}$

Simulation Result

Partial Hue output

Global Hue output

Adjustment in Hue

Index

- Support chip
- Document revision
- Function introduction
- Block diagram
- Function
 - Global contro
 - H Engine
 - Y Engine
 - S Engine
 - Memory Color

Hue Phase Division

16 hue phases

Partial Y

- Modify Y for specific hue phase
 - 16 hue phases available
 - Register adjust range is 0 ~ 255
 - Corresponds to 0x ~ 1.992x

Simulation Result

Input

Adjustment in Luma

Index

- Support chip
- Document revision
- Function introduction
- Block diagram
- Function
 - Global contro
 - H Engine
 - Y Engine
 - S Engine
 - Memory Color

S Engine

- Partial Saturation
- Saturation Gain by Y (SGainByY)
- Low Saturation Protection (LSP)

CONFIDENTIAL B

Hue Phase Division

20 hue phases, denser around skin tone

Partial Saturation

- Modify saturation for specific hue phase
 - 3 gains & 2 control points for each phase
 - Gain adjust range is 0x ~ 1.992x (Register : 0 ~ 255)
 - P1/P2 adjust range is 0 ~ 130

Simulation Result

Partial S output

MEDIATEK

Global S output

Adjustment in **Saturation**

S Engine

- Partial Saturation
- Saturation Gain by Y (SGainByY)
- Low Saturation Protection (LSP)

CONFIDENTIAL B

Saturation Gain by Y

- 5 control gains for each phase
- The gain interpolated based on Y is applied to S
 - Adjust range is 0x ~ 1.992x (Register : 0 ~ 255)

Simulation Result

S Engine

- Partial Saturation
- Saturation Gain by Y (SGainByY)
- Low Saturation Protection (LSP)

CONFIDENTIAL B

Low Saturation Protection (LSP)_{1/2}

- Control registers shared by all hue phases
 - LSP EN
 - Enable LSP
 - LSP INK EN
 - Enable ink mode of LSP
 - LSP LSAT STH
 - Low sat. region threshold
 - LSP LSAT SSLOPE
 - Low sat. region slope

Low Saturation Protection (LSP)_{2/2}

- (Cont.)
 - LSP LIRE STH
 - Low IRE region saturation threshold
 - LSP LIRE YTH
 - Low IRE region luma threshold
 - LSP LIRE SSLOPE
 - Low IRE region saturation slope
 - LSP LIRE YLOPE
 - Low IRE region saturation slope

CONFIDENTIAL B

Simulation Result

Index

- Support chip
- Document revision
- Function introduction
- Block diagram
- Function
 - Global contro
 - H Engine
 - Y Engine
 - S Engine
 - Memory Color

Hue-based Tuning Limitation

One Hue phase as a processing unit

Memory Color_{1/2}

Three sets of Color Mapping window

• Order: $W_1 > W_2 > W_3$

Memory Color_{2/2}

Window range

- UB: Upper boundary
- LB: Lower boundary

5 turning points & 6 slopes for each of Y/S/H

1) Turn on Memory Color

2) Enable Window

Use COLOR/NR3D output as new input

File name: Capture20100103-040813ISOAutopure_4032x3016_8d_s1_NR3D_A.yuv422

4) Load target image

5) Crop ROI

Input

Target

6) Press "Auto Center"

7) Check ink

 After confirm ROI is included, disable ink mode.

Ink mode

Contour

w/o Weighting

9) Fine tune window area

- Enlarge Window Range
- Adjust Target Offset

Auto Center

10) Fine tune effect

- Enable Weighting function
- Click FineTune Mode

- Adjust WGT LSLOPE and USLOPE
 - SLOPE ↑, stronger effect

```
41 $\frac{1}{41}$ LUMA WGT LSLOPE (ref: 41)
41 $\frac{1}{41}$ LUMA WGT USLOPE (ref: 41)
```

recommend value

Simulation Result

Input

w/o Weighting

w/ Weighting

FW Color Simulator

Step 1: Select NvRam file

MEDIATEK

CONFIDENTIAL B

2018/3/26

69

FW Color Simulato

Step 2: Check Enable

Version: SmoothColor simulator version

[LV]

LV00~LV05: Defined LV partition in NvRam

LV CURR: LV Info from EXIF

[Color Temperature Info]

CT00~CT09: Defined CT partition in NvRam

[Index Info from EXIF]

LV UP CT UP IDX : upper bound of LV index / upper bound of CT index LV LO CT UP IDX: lower bound of LV index / upper bound of CT index LV UP CT LO IDX : upper bound of LV index / lower bound of CT index LV LO CT LO IDX: lower bound of LV index / lower bound of CT index

FW PARAM IDX: FW PARAM index info from EXIF

MEDIATEK

everyday genius

Copyright © MediaTek Inc. All rights reserved.