浙江工业大学 线性代数期末试卷 (2019~2020第二学期)

任课教师:	学院:	班级:			
学号:		姓名:			
题号	_	=	三	四	
海八					

一. 填空题(每空 3 分, 共 30 分)

本题得分

- 1. 排列 2, 4, 6, 7, 3, 1, 5 的逆序数是_____
- 2. 矩阵 $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$, 则矩阵 A 的秩 R(A) =______.
- 3. 行列式 $\begin{vmatrix} 2 & -1 & 0 & 3 \\ 1 & 2 & 2 & -3 \\ -1 & 0 & 1 & 1 \\ -3 & 3 & -2 & 2 \end{vmatrix}$ 中元素 a_{ij} 的代数余子式为 A_{ij} ,则

$$A_{31} + 2A_{32} + A_{33} - 3A_{34} =$$

4. 设三阶矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 3 & 0 & 4 \end{pmatrix}$, 三维列向量 $\boldsymbol{\beta} = (a, 1, 1)^T$, 已知 $\mathbf{A}\boldsymbol{\beta} = \boldsymbol{\beta}$ 线性相

美,则 *a*=_____.

5. 矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 4 & 5 \end{pmatrix}$, $\mathbf{A}^* \neq \mathbf{A}$ 的伴随矩阵,则 $(\mathbf{A}^*)^{-1} =$

1

			2						
6.	设矩阵 $A =$	4	t	3	,	B为三阶非零矩阵,	AB = O,	则 <i>t</i> =	
			-1						

- 7. 设向量 $\alpha = (1 \ 1 \ 0 \ -1)^{\mathrm{T}}$,则 $\|\alpha\| = \underline{\hspace{1cm}}$ 。若向量 $\beta = (1 \ k \ 1 \ 0)^{\mathrm{T}}$ 与 α 的 夹角是 45 度,则 k =
- 设矩阵 $A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & a \\ 6 & -6 & b \end{pmatrix}$ 的特征值为 $\lambda_1 = \lambda_2 = -2$, $\lambda_3 = 4$,则 $a = \underline{\hspace{1cm}}$, $b = \underline{\hspace{1cm}}$.
- 二. 单项选择题(每小题 2 分,共 10 分)

1. 已知行列式

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 3, \quad D_1 = \begin{vmatrix} 2a_{11} & 2a_{12} & 2a_{13} \\ 2a_{31} & 2a_{32} & 2a_{33} \\ 2a_{21} & 2a_{22} & 2a_{23} \end{vmatrix}, \quad \mathbb{A} \angle D_1 = ().$$

- (A) 6 (B) -6 (C) 24

2. 设A为n阶可逆矩阵,则().

- (A) $AA^T = E$
- (B) $(2A)^{-1} = 2A^{-1}$ (C) $[(A^{-1})^{-1}]^T = [(A^T)^{-1}]^{-1}$
- (D) $\left[(A^T)^T \right]^{-1} = \left[(A^{-1})^{-1} \right]^T$
- 3. 下列命题正确的是(
 - (A)若A是n阶方阵,且A≠O,则A可逆。
 - (B) 若 A 、 B 都是 n 阶可逆方阵,则 A+B 也可逆。
 - (C) 若 AB=O,且 $A \neq O$,则必有 B=O。
 - (D) 若A是n阶可逆方阵,则A^T可逆。
- 4. A 为 $m \times n$ 矩阵,则关于 $Ax = b(b \neq 0)$ 的解的命题正确的是 ().

 - (C) 若 R(A) = n,则 Ax = b一定有解 (D) 若 R(A:b) = n,则 Ax = b一定有解
- 5. 设 $A \in m \times n$ 矩阵, $C \in n$ 阶可逆矩阵,A的秩为 r_1 , B = AC的秩为 r_2 ,则 ().

(A) $r_2 > r_1$ (B) $r_2 < r_1$ (C) $r_2 = r_1$ (D) $r_2 与 r_1$ 的关系不确定

三、计算题(每题10分,共50分)

1	2	3	4	5	本题总得分

1. 求行列式
$$D = \begin{vmatrix} 2 & 1 & 4 & 1 \\ 3 & -1 & 2 & 1 \\ 1 & 2 & 3 & 2 \\ 5 & 0 & 6 & 2 \end{vmatrix}$$
 的值。

2. 已知矩阵
$$A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 5 & -3 \end{pmatrix}$, X 满足 $AX + B = X$, 求矩阵 X 。

3. 求向量组
$$\boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
, $\boldsymbol{\alpha}_2 = \begin{pmatrix} 3 \\ 4 \\ -2 \end{pmatrix}$, $\boldsymbol{\alpha}_3 = \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix}$, $\boldsymbol{\alpha}_4 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ 的秩以及它的一个极大无关

组,并用该极大无关组表示其余向量。

4. 线性方程组

$$\begin{cases} 2x_1 + \lambda x_2 - x_3 = 1 \\ \lambda x_1 - x_2 + x_3 = 2 \\ 4x_1 + 5x_2 - 5x_3 = -1 \end{cases}$$

在λ取何值时无解、有唯一解、有无穷多解,并在有无穷多解时求其通解。

5. 设矩阵
$$A = \begin{pmatrix} -2 & 0 & -4 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}$$
,

- (1) 求 A 的特征值和特征向量;
- (2) A能不能对角化?请说明理由。

四、证明题(共10分)

1	2	本题总得分

1. (6 分) 已知向量组 $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ 线性无关,证明:向量组 $\mathbf{a}_1 + \mathbf{a}_2, \mathbf{a}_2 + \mathbf{a}_3, \mathbf{a}_3 + \mathbf{a}_1$ 线性无关。

2. $(4 \, \beta)$ 设向量 α 与向量 β 都是n维非零列向量,矩阵 $A=\alpha\beta^T$ 。证明 R(A)=1