Algotheorie-Database

May 2021

1 Algorithmen-Übersicht

	Algorithm List					
Kategorie	Problem	Algorithmus/Strategie	Related/Example Problems	Laufzeit	Facts	
Stable Matching	Stable Matching	Stable Matching/Propose and Reject	Ordne Medizinstudierende Praktikumsplätzen in Kran- kenhäusern zu, wobei die gegen- seitigen Präferenzen beachtet werden	$\mathcal{O}(n^2)$	 Frauenoptimal (jede Frau bekommt bestmöglichen Mann zugeordnet) Jeder Mann bekommt schlechtmöglichste Frau zugeordnet 	
Graphtraversierur und Co.	igBFS	Breitensuche mit FIFO		$\mathcal{O}(n+m)$	n = Anzahl Knoten und m = Anzahl Kanten im Graph	
	TFS	Tiefensuche mit Stack		$\mathcal{O}(n+m)$	n = Anzahl Knoten und m = Anzahl Kanten im Graph	
	Stark Zusam- menhängender Graph	BFS von beliebigem Knoten aus		$\mathcal{O}(n+m)$	Ein gerichteter Graph heißt stark zusam- menhängend falls jedes Knotenpaar wechselseitig durch jeweils mindestens einen gerichteten Pfad verbunden ist	
	Topologische Sortierung	Rekursiv	DAG - Directed Acyclic Graph	$\mathcal{O}(n+m)$	G ist DAG \Leftrightarrow G hat topologische Sortierung	

	Algorithm List					
Kategorie	Problem	Algorithmus/Strategie	Related/Example Problems	Laufzeit	Facts	
Greedy	Intervall Schedu-	Wähle Prozess mit		$\mathcal{O}(nlogn)$		
	ling	frühestmöglicher Endzeit				
	Intervall Partioning	Greedy - IP	nichts	$\mathcal{O}(nlogn)$		
					 Eingabe: Intervalle (Jobs) mit Startzeit und Endzeiten f_i, 1 ≤ i ≤ n. Aufgabe: finde kleinstmögliche Menge von Zeitstrahlen, sodass alle Jobs, auf diese verteilt, nicht überlappen. Greedy - IP liefert immer optimale Lösung. 	
	Verspätungsmin.	Führe Jobs gemäß ansteigender Frist d_j aus		$\mathcal{O}(nlogn)$	 Eingabe: Jobs j, i ≤ jn, mit Zeitdauer tj und Frist dj. Aufgabe: : Finde Ausfuhrungsreihenfolge der Jobs, so dass maximale Versp¨atung minimiert wird liefert immer optimale Lösung. 	

Algorithm List						
Kategorie	Problem	Algorithmus/Strategie	Related/Example Problems	Laufzeit	Facts	
Greedy	Kürzeste Wege in Graphen	Dijikstra		O(E + V log V)	 Eingabe: Gerichteter Graph G = (V,E) mit Längenangabe I_e ≥ 0 für jede Kante e ∈ E, Startknoten s und Endknoten t. Aufgabe: Finde kürzesten Pfad (Summe der Kantenlängen) von s nach t liefert immer optimale Lösung. 	
	Minimale Spannbäume (MST)	Prim (Kruskal auch möglicher, aber schlechter) Erzeuge Baum ausgehend von einem Startknoten durch fortwährende Erweiterung um billigste Kante.	Kurzeste Wege (genau zwei Blätter)	$\mathcal{O}(m + nlogn)$	 Eingabe: Zusammenhängender ungerichteter Graph G mit beliebigen Kantengewichten. Aufgabe: Finde einen Baum in G, der alle Knoten von G enthält und bei dem die Summe der Kantengewichte minimal ist. 	

Algorithm List					
Kategorie	Problem	Algorithmus/Strategie	Related/Example Problems	Laufzeit	Facts
Greedy	Kodierung (Huffman Codes)	Huffman Algorithmus - Bottom Up	Treatedy Example 1 Toblems	$\mathcal{O}(nlogn)$	 Eingabe: Zeichenkette T über endlichem Alphabet Σ = {c₁,,c_n} für jeden Buchstaben c_i eine "relative Häufigkeit" f(c_i) ≥ 0, wobei die Summe der Häufigkeiten 1 ist. Aufgabe: Kodiere T mit Binäralphabet {0,1}, sodass der entstehende Code minimale Länge hat und präfixfrei ist. Algorithmus liefert optimale präfixfreie Binärkodierung.

Algorithm List					
Kategorie	Problem	Algorithmus/Strategie	Related/Example Problems	Laufzeit	Facts
Divide and Conquer	Rekursionsgl.	Master Theorem			WICHTIG DAS ZU VER- STEHEN (VL 4)
	Inversionen Zählen	Divide and Conquer halt :D		$\mathcal{O}(nlogn)$	 Eingabe: Eine feste Ordnung a₁, a₂,, a_n der Zahlen von 1 bis n. Aufgabe: Bestimme die Anzahl von Inversionen im Vergleich zur ORdnung 1,2,,n wobei eine Inversion ein Paar (i,j), 1 ≤ i < j ≤ n mit a_i > a_j ist. Algorithmus liefert optimale präfixfreie Binärkodierung.
	Closest Pair	Divide and Conquer halt :D		$\mathcal{O}(nlogn)$	 Eingabe: n Punkte in der Euklidischen Ebene Aufgabe: Finde Punktepaar mit geringstem Abstand. Algorithmus liefert optimale präfixfreie Binärkodierung.