Zusammenfassung Stochastik I

© M Tim Baumann, http://timbaumann.info/uni-spicker

Der abstrakte Maß- und Wkts-Begriff

Def. Eine **Ereignisalgebra** oder **Boolesche Algebra** ist eine Menge $\mathfrak A$ mit zweistelligen Verknüpfungen \wedge ("und") und \vee ("oder"), einer einstelligen Verknüpfung $\overline{\cdot}$ (Komplement) und ausgezeichneten Elementen $U \in \mathfrak A$ (unmögliches Ereignis) und $S \in \mathfrak A$ (sicheres Ereignis), sodass für alle $A, B, C \in \mathfrak A$ gilt:

- $\bullet \ \ A \wedge A = A \qquad \bullet \ \ A \wedge B = B \wedge A \qquad \bullet \ \ A \wedge S = A$
- $A \wedge U = U$ $A \wedge \overline{A} = U$ $A \wedge (B \wedge C) = (A \wedge B) \wedge C$
- $\bullet \ \ A \lor A = A \qquad \bullet \ \ A \lor B = B \lor A \qquad \bullet \ \ A \lor S = S$
- $\bullet \ A \lor A = A$ $\bullet \ A \lor B = B \lor A$ $\bullet \ A \lor S = S$ $\bullet \ A \lor U = A$ $\bullet \ A \lor \overline{A} = S$ $\bullet \ A \lor (B \lor C) = (A \lor B) \lor C$
- $A \lor C A$ $A \lor A \equiv S$ • $A \land (B \lor C) = (A \land B) \lor (A \land C)$

Def. Sei $\mathfrak A$ eine Ereignisalgebra und A, B Ereignisse.

- Durch $A \leq B :\iff A \wedge B = B$ (gesprochen A impliziert B) ist auf $\mathfrak A$ eine Partialordnung definiert.
- A und B heißen **äquivalent**, falls $A \leq B$ und $B \leq A$.
- A und B heißen unvereinbar, falls $A \wedge B = U$.

Korollar. In einer Ereignisalgebra \mathfrak{A} gilt mit $A, B \in \mathfrak{A}$:

- $\overline{\overline{A}} = A$
- $A < B \iff \overline{B} < \overline{A}$ (Kontraposition)
- $\overline{A \vee B} = \overline{A} \wedge \overline{B}$ $\overline{A \wedge B} = \overline{A} \vee \overline{B}$ (De Morgansche Regeln)

Korollar. Durch Induktion folgt aus den De Morganschen Regeln:

$$\overline{\left(\bigvee_{i=1}^{n}A_{i}\right)}=\bigwedge_{i=1}^{n}\overline{A_{i}}\quad\text{und}\quad\overline{\left(\bigwedge_{i=1}^{n}A_{i}\right)}=\bigvee_{i=1}^{n}\overline{A_{i}}\quad\text{für }A_{1},...,A_{n}\in\mathfrak{A}.$$

Def. Eine Algebra (Mengenalgebra) über Ω ist ein System von Teilmengen $\mathfrak{A} \subset \mathcal{P}(\Omega)$ mit $\Omega \in \mathfrak{A}$, das unter endl. Vereinigungen und Komplementen stabil ist, d. h. für alle $A, B \in \mathfrak{A}$ gilt:

- $\bullet \ \Omega \in \mathfrak{A}$
- $A \cup B \in \mathfrak{A}$
- $A^c := \Omega \setminus A \in \mathfrak{A}$

Bem. Aus den De Morganschen Regeln folgt, dass Mengenalgebren auch unter endlichen Schnitten stabil sind.

Satz (Isomorphiesatz von Stone). Zu jeder Ereignisalgebra $\mathfrak A$ gibt es eine Menge Ω , sodass $\mathfrak A$ isomorph zu einer Mengenalgebra über Ω ist.

Notation. $A \triangle B := (A \setminus B) \cup (B \setminus A)$ heißt symm. Differenz.

Def. Eine σ -Algebra über Ω ist eine Algebra $\mathfrak{A} \subset \mathcal{P}(\Omega)$ über Ω , die auch unter abzählbaren Vereinigungen stabil ist, d. h.

$$\bigcup_{n=0}^{\infty} A_n \in \mathfrak{A} \quad \text{für alle Folgen } (A_n)_{n \in \mathbb{N}} \text{ in } \mathfrak{A}.$$

Bem. Jede σ -Algebra ist auch unter abzählb. Schnitten stabil.

Def. Sei $(A_n)_{n\in\mathbb{N}}$ eine Folge in einer σ -Algebra \mathfrak{A} . Setze

$$\limsup_{n \to \infty} A_n := \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_n \in \mathfrak{A}, \quad \liminf_{n \to \infty} A_n := \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_n \in \mathfrak{A}.$$

Bem. In einer σ -Algebra, in der die Mengen mögliche Ereignisse beschreiben, ist der Limes Superior das Ereignis, das eintritt, wenn unendlich viele Ereignisse der Folge A_n eintreten. Der Limes Infinum tritt genau dann ein, wenn alle bis auf endlich viele Ereignisse der Folge A_n eintreten.

Def. Eine Folge $(A_n)_{n\in\mathbb{N}}$ in einer σ -Algebra \mathfrak{A} konvergiert gegen $A\in\mathfrak{A}$, notiert $\lim_{n\to\infty}A_n=A$, falls $A=\liminf_{n\to\infty}A_n=\limsup_{n\to\infty}A_n$.

Satz. Für isotone / antitone Folgen $(A_n)_{n\in\mathbb{N}}$ in \mathfrak{A} gilt:

$$\lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n \quad / \quad \lim_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n$$

Def. Ein Ring (Mengenring) über Ω ist ein System von Teilmengen $\mathfrak{R} \subset \mathcal{P}(\Omega)$ mit $\emptyset \in \mathfrak{R}$, das unter endlichen Vereinigungen und Differenzen stabil ist, d. h. für alle $A, B \in \mathfrak{R}$ gilt:

- ∅ ∈ ℜ
- $A \cup B \in \mathfrak{R}$
- A \ B ∈ ℜ

Bem. Ein Ring ist auch unter Schnitten stabil, da

$$A \cap B = (A \cup B) \setminus (A \triangle B).$$

Def. Ein σ -Ring über Ω ist ein Ring $\mathfrak{R} \subset \mathcal{P}(\Omega)$ über Ω , der auch unter abzählbaren Vereinigungen stabil ist, d. h.

$$\bigcup_{n=0}^{\infty} A_n \in \mathfrak{A} \quad \text{für alle Folgen } (A_n)_{n \in \mathbb{N}} \text{ in } \mathfrak{A}.$$

Bem. Jeder σ -Ring ist auch unter abzählb. Schnitten stabil.

Satz. \mathfrak{A} ist $(\sigma$ -) Algebra $\iff \mathfrak{A}$ ist $(\sigma$ -) Ring mit $\Omega \in \mathfrak{A}$.

Satz. Sei $(\mathfrak{A}_i)_{i\in I}$ Familie von $(\sigma$ -) Ringen / $(\sigma$ -) Algebren über Ω . Dann ist der Schnitt $\bigcap_{i\in I} \mathfrak{A}_i$ ein $(\sigma$ -) Ring / eine $(\sigma$ -) Algebra über Ω .

Def. Sei $E \subset \mathcal{P}(\Omega)$. Setze

$$\mathcal{R}(E) \coloneqq \{ \mathfrak{R} \subset \mathcal{P}(\Omega) \, | \, E \subset \mathfrak{R}, \mathfrak{R} \text{ σ-Ring} \} \text{ und}$$
$$\mathcal{A}(E) \coloneqq \{ \mathfrak{A} \subset \mathcal{P}(\Omega) \, | \, E \subset \mathfrak{A}, \mathfrak{A} \text{ σ-Algebra} \}.$$

 $\text{Dann heißen} \quad \rho(E) \coloneqq \bigcap_{\mathfrak{R} \in \mathcal{R}(E)} \mathfrak{R}, \quad \sigma(E) \coloneqq \bigcap_{\mathfrak{A} \in \mathcal{A}(E)} \mathfrak{A}$

von E erzeugter Ring bzw. von E erzeugte σ -Algebra.

Def. Die Borel-Mengen in \mathbb{R}^1 sind $\mathfrak{B}(\mathbb{R}^1) \coloneqq \sigma(\mathcal{E})$, wobei wir \mathcal{E} aus folgenden äquivalenten Optionen wählen dürfen:

- $\begin{array}{lll} \bullet & \{(a,b) \mid a \leq b\} & \bullet & \{(a,b) \mid a \leq b\} & \bullet & \{G \subset \mathbb{R}^1 \mid G \text{ abgeschl.}\} \\ \bullet & \{[a,b] \mid a \leq b\} & \bullet & \{[a,b) \mid a \leq b\} & \bullet & \{F \subset \mathbb{R}^1 \mid F \text{ offen}\} \end{array}$
- _

Notation. $\overline{\mathbb{R}^1} \coloneqq \mathbb{R} \cup \{-\infty, +\infty\} = [-\infty, \infty]$

Def. Funktionen mit Wertebereich $\overline{\mathbb{R}^1}$ heißen numerisch.

Def. Sei \Re ein Ring über Ω . Eine Fkt. $\mu:\Re\to[0,\infty]$ heißt

• Inhalt auf \mathfrak{R} , falls $\mu(\emptyset) = 0$ und $\mu(A \cup B) = \mu(A) + \mu(B)$ für alle $A, B \in \mathfrak{R}$ mit $A \cap B = \emptyset$ gilt.

• Prämaß auf \Re , wenn μ ein Inhalt ist und für alle Folgen $(A_n)_{n\in\mathbb{N}}$ in \Re mit $A_i\cap A_j=\emptyset$ für $i\neq j$ und $\bigcup_{n=1}^\infty A_n\in\Re$ gilt:

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n)$$
 (\sigma-Additivit\text{\text{it}})

 Maß, wenn μ Prämaß und ℜ in Wahrheit sogar eine σ-Algebra ist. Dann ist die letzte Vorraussetzung in Punkt 2 immer erfüllt.

Def. Ein Inhalt/Maß μ auf einem Ring / einer σ -Algebra $\mathfrak A$

- heißt endlich, falls $\mu(\Omega) < \infty$,
- heißt σ -endlich, falls eine Folge A_n in $\mathfrak A$ existiert, sodass

$$\Omega = \bigcup_{n \in \mathbb{N}} A_n \quad \text{und} \quad \forall i \in \mathbb{N} : \mu(A_i) < \infty.$$

Notation. Sei Ω eine Menge, $A \subset \Omega$. Dann heißt

$$\chi_1 = \mathbbm{1}_A : \Omega \to \mathbb{R}, \quad \omega \mapsto |\{\star \mid \omega \in A\}| = \begin{cases} 1, & \text{falls } \omega \in A \\ 0, & \text{falls } \omega \not \in A \end{cases}$$

Indikatorfunktion von A.

Bsp. Sei \Re ein Ring über Ω und $\omega \in \Omega$. Die Abbildung

$$\delta_{\omega}: \mathfrak{R} \to [0, \infty], \quad A \mapsto \mathbb{1}_A(\omega)$$

ist dann ein Prämaß auf R, genannt Dirac-(Prä)-Maß.

Lemma. Sei μ ein Inhalt auf einem Ring \Re . Seien $A, B \in \Re$ und $(A_n)_{n \in \mathbb{N}}$ Folge in \Re mit $\mu(A) < \infty$ und $\forall n \in \mathbb{N} : \mu(A_n) < \infty$. Dann:

- $\bullet \ \mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B)$
- $A \subset B \implies \mu(A) \le \mu(B)$ (Isotonie)
- $A \subset B \implies \mu(B \setminus A) = \mu(B) \mu(A)$
- $\mu(\bigcup_{i=1}^{n} A_i) \le \sum_{i=1}^{n} \mu(A_i)$ (Subadditivität)

Satz. Sei \Re ein Ring und μ ein Inhalt. Es gelten für $n\in\mathbb{N}$ und $A_1,...,A_n\in\Re$ die Ein- und Ausschlussformeln

$$\mu(A_1 \cup \dots \cup A_n) = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le n} \mu(A_{i_1} \cap \dots \cap A_{i_k}),$$

$$\mu(A_1 \cap \dots \cap A_n) = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le n} \mu(A_{i_1} \cup \dots \cup A_{i_k}).$$

Satz. Sei μ ein Inhalt auf $\mathfrak{R} \subset \mathcal{P}(\Omega)$. Wir betrachten die Aussagen:

- (i) μ ist ein Prämaß auf ℜ.
- (ii) Stetigkeit von unten: Für jede monoton wachsende Folge $(A_n)_{n\in\mathbb{N}} \text{ in } \mathfrak{R} \text{ mit } A \coloneqq \lim_{n\to\infty} A_n = \bigcup_{n=0}^\infty A_n \in \mathfrak{R} \text{ gilt}$ $\lim_{n\to\infty} \mu(A_n) = \mu(A).$
- (iii) Stetigkeit von oben: Für jede monoton fallende Folge $(A_n)_{n\in\mathbb{N}}$ in $\mathfrak R$ mit $\mu(A_0)<\infty$ und $A:=\lim_{n\to\infty}A_n=\bigcap_{n=0}^\infty A_n\in\mathfrak R$ gilt $\lim_{n\to\infty}\mu(A_n)=\mu(A).$
- (iv) Für jede monoton fallende Folge $(A_n)_{n\in\mathbb{N}}$ in $\mathfrak R$ mit $\mu(A_0)<\infty$ und $\lim_{n\to\infty}A_n=\bigcap_{n=0}^\infty A_n=\emptyset$ gilt $\lim_{n\to\infty}\mu(A_n)=0$.

Dann gilt (i) \iff (ii) \implies (iii) \iff (iv). Falls μ endlich ist, so gilt auch (iii) \implies (ii). **Def.** Seien $a = (a_1, ..., a_d), b = (b_1, ..., b_d) \in \mathbb{R}^d$. Wir schreiben $a \le b$, falls $a_i \le b_i$ für alle $i \in \{1, ..., d\}$ gilt. Dann heißt

$$(a, b] := \{(x_1, ..., x_d) \in \mathbb{R}^d \mid a_i < x_i \le b_i \text{ für alle } i \in \{1, ..., d\}\}$$

von a und b aufgespannter Elementarquader in \mathbb{R}^d .

Def. Sei $f: \mathbb{R}^d \to \mathbb{R}^1$ eine Funktion, $x = (x_1, ..., x_d) \in \mathbb{R}^d$ und $h = (h_1, ..., h_d) \in \mathbb{R}^d_{>0}$. Dann heißt

$$(\triangle f)((x, x + h]) := \sum_{\delta_1, \dots, \delta_d \in \{0, 1\}} (-1)^{d - (\delta_1 + \dots + \delta_k)} f(x_1 + \delta_1 h_1, \dots, x_d + \delta_d h_d)$$

Zuwachs von f im Elementarquader (x, x + h].

Def. $G: \mathbb{R}^d \to \mathbb{R}$ heißt maßerzeugende Funktion, falls

- G ist nicht-fallend in jedem Argument, d. h. für alle $k \in \{1,...,d\}$ und $x_1,...,x_d \in \mathbb{R}$ ist $f(x_1,...,x_{k-1},-,x_{k+1},...,x_d)$ nicht-fallend.
- G ist rechtsseitig stetig in jedem Argument, d.h. für alle $k\in\{1,...,d\}$ und $x_1,...,x_d\in\mathbb{R}$ gilt

$$\lim_{h \to 0} f(x_1, ..., x_{k-1}, x_k + h, x_{k+1}, ..., x_d) = f(x_1, ..., x_d).$$

• Für alle $x \in \mathbb{R}^d$ und $h \in \mathbb{R}^d_{\geq 0}$ ist der Zuwachs $(\triangle G)((x,x+h]) \geq 0$.

Def. Eine maßerzeugende Funktion F heißt **Verteilungsfunktion** (VF) in \mathbb{R}^d , falls zusätzlich gilt:

$$\lim_{\substack{x_1 \to \infty \\ x_d \to \infty}} F(x_1,...,x_d) = 1 \qquad \text{ und } \quad \lim_{\substack{x_i \to -\infty \\ x_d \to \infty}} F(x_1,...,x_d) = 0$$

für alle $i \in \{1, ..., d\}$ und $x_1, ..., \widehat{x_i}, ..., x_d \in \mathbb{R}$ fest.

Bem. Sei $G_i:\mathbb{R}^1\to\mathbb{R}^1_{>0}$ für $i\in\{1,...,d\}$ maßerzeugende Funktion im $\mathbb{R}^1,$ dann ist

$$G: \mathbb{R}^d \to \mathbb{R}^1_{>0}, \quad (x_1, ..., x_d) \mapsto G_1(x_1) \cdot ... \cdot G_d(x_d)$$

eine maßerzeugende Funktion in \mathbb{R}^d und es gilt für jeden Elementarquader $(a,b] \subset \mathbb{R}^d$ mit $a=(a_1,...,a_d), b=(b_1,...,b_d)$:

$$(\triangle G)((a,b]) = \prod_{i=1}^{d} (G_i(b_i) - G_i(a_i)).$$

Satz. Der Ring aller Elementarquader im \mathbb{R}^d ist

$$\mathfrak{R} \coloneqq \{ \bigsqcup_{i=1}^{m} \left(a_i, b_i \right] \mid m \in \mathbb{N} \text{ und } \left(a_1, b_1 \right], ..., \left(a_m, b_m \right]$$
disjunkte Elementarquader im \mathbb{R}^d

und für jede maßerzeugende Funktion $G: \mathbb{R}^d \to \mathbb{R}^1$ definiert

$$\mu_G: \mathfrak{R} \to [0, \infty), \quad \coprod_{i=1}^m (a_i, b_i] \mapsto \sum_{i=1}^m (\triangle G)((a_i, b_i))$$

einen Inhalt auf R, der sogar ein Prämaß ist.

Def. Eine numerische Funktion $\mu^* : \mathcal{P}(\Omega) \to \overline{\mathbb{R}}$ heißt **äußeres Maß** auf Ω , wenn gilt:

$$\bullet \ \mu^*(\emptyset) = 0 \qquad \qquad \bullet \ A \subset B \implies \mu^*(A) \leq \mu^*(B) \qquad \text{(Monotonie)}$$

• Für eine Folge $(A_n)_{n\in\mathbb{N}}$ in $\mathcal{P}(\Omega)$ gilt $\mu^*\left(\bigcup_{n\in\mathbb{N}}A_n\right)\leq \sum_{n=0}^{\infty}\mu^*(A_n)$.

Bem. Wegen $\mu^*(\emptyset) = 0$ und der Monotonie nimmt ein äußeres Maß nur Werte in $[0,\infty]$ an.

Def. Eine Teilmenge $A \subset \Omega$ heißt μ^* -messbar, falls

$$\mu^*(Q) = \mu^*(Q \cap A) + \mu^*(Q \setminus A)$$
 für alle $Q \subset \Omega$.

Satz (Carathéodory). Für ein äußeres Maß $\mu^* : \mathcal{P}(\Omega) \to [0, \infty]$ ist

- $\mathfrak{A}^* := \{A \subset \Omega \mid A \text{ ist } \mu^*\text{-messbar }\}$ eine σ -Algebra und
- $\mu^*|_{\mathfrak{A}^*}$ ein Maß auf \mathfrak{A}^* .

Satz (1. Fortsetzungssatz). • Sei μ ein Prämaß auf einem Ring $\mathfrak R$ über Ω . Dann existiert eine Fortsetzung $\widetilde{\mu}$ von μ zu einem Maß auf der von $\mathfrak R$ erzeugten σ -Algebra $\mathfrak A := \sigma(\mathfrak R)$, sodass $\widetilde{\mu}|_{\mathfrak R} = \mu$.

• Falls μ σ -endlich ist, so ist die Fortsetzung eindeutig.

Bem. Im Beweis wird ein äußeres Maß μ^* auf Ω so definiert:

$$\mathfrak{U}(Q) := \left\{ (A_n)_{n \in \mathbb{N}} \,\middle|\, Q \subset \bigcup_{n=0}^{\infty} A_n \text{ und } A_n \text{ Folge in } \mathfrak{R} \right\},$$
$$\mu^*(Q) := \inf \left(\left\{ \sum_{i=0}^{\infty} \mu(A_n) \,\middle|\, (A_n)_{n \in \mathbb{N}} \in \mathfrak{U}(Q) \right\} \cup \{\infty\} \right).$$

Das äußere Maß μ^* eingeschränkt auf $\mathfrak{A}^* \supset \mathfrak{A}(\mathfrak{R})$ ist ein Maß.

Def. Sei Ω eine Menge und $\mathfrak{A} \subset \mathcal{P}(\Omega)$ eine σ -Algebra auf Ω , sowie ggf. μ ein Maß auf \mathfrak{A} . Dann heißt

- das Tupel (Ω, \mathfrak{A}) messbarer Raum,
- das Tripel $(\Omega, \mathfrak{A}, \mu)$ Maßraum.

Satz. Unter den Bedingungen des 1. Fortsetzungssatzes ist \mathfrak{A}^* die größte σ -Algebra $\overline{\mathfrak{A}}$ mit $\mathfrak{A} \subset \overline{\mathfrak{A}}$, sodass $\mu^*|_{\overline{\mathfrak{A}}}$ ein Maß ist.

Def. Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum. Eine Menge $N \subset \Omega$ heißt **Nullmenge**, falls es ein $A \in \mathfrak{A}$ gibt, sodass $N \subset A$ und $\mu(A) = 0$.

Def. Ein Maßraum $(\Omega, \mathfrak{A}, \mu)$ heißt vollständig, falls jede Nullmenge $N \subset \Omega$ ein Element von \mathfrak{A} ist.

Satz. $(\Omega, \mathfrak{A}^*, \mu^*|_{\mathfrak{A}^*})$ ist vollständig für jedes bel. äußere Maß μ^* .

Satz. Jeder Maßraum $(\Omega, \mathfrak{A}, \mu)$ kann zu einem vollständigen Maßraum $(\Omega, \mathfrak{A}_c, \mu_c)$ erweitert werden mit

$$\mathfrak{A}_c := \{A \cup N \,|\, A \in \mathfrak{A}, \; N \; \mu\text{-Nullmenge}\}, \quad \mu_c(A \cup N) := \mu(A).$$

Satz. Sei μ ein σ -endliches Prämaß auf dem Ring \Re über Ω sowie $\widetilde{\mathfrak{A}} := \sigma(\Re)$. Dann gilt $\mathfrak{A}^* = \mathfrak{A}_c$ und $\mu^*|_{\mathfrak{A}^*} = \widetilde{\mu}_c$, wobei $\widetilde{\mu}$ das eindeutig fortgesetzte Maß ist.

Sprechweise. Eine Eigenschaft oder Aussage gilt für **fast alle** $\omega \in \Omega$ oder μ -fast-überall, wenn es eine Nullmenge $N_0 \subset \Omega$ gibt, sodass die Aussage oder Eigenschaft für alle $\omega \in N_0^c$ gilt.

Def. Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum.

• Dann heißt μ diffus (atomlos), falls $\mu(\{\omega\}) = 0$ für alle $\omega \in \Omega$.

• Sei η ein weiteres Maß auf (Ω, \mathfrak{A}) . Dann heißt μ absolut stetig bezüglich η (notiert $\mu \ll \eta$), falls

$$\eta(A) = 0 \implies \mu(A) = 0$$
 für alle $A \in \mathfrak{A}$.

Def. Die von den Elementarquadern im \mathbb{R}^d erzeugte σ-Algebra heißt **Borel-**σ-**Algebra** $\mathfrak{B}(\mathbb{R}^d)$. Das von der maßerzeugenden Funktion

$$G: \mathbb{R}^d \to \mathbb{R}, \quad (x_1, ..., x_d) \mapsto x_1 \cdot ... \cdot x_d$$

erzeugte Prämaß auf dem von den Elementarquadern erzeugten Ring μ_G , das zu einem Maß $\widetilde{\mu}_G$ auf $\mathfrak{B}(\mathbb{R}^d)$ fortgesetzt wird, heißt **Lebesgue-Borel-Maß**. Die durch Hinzunahme aller Nullmengen vervollständigte σ -Algebra $\mathfrak{A}^* = \mathfrak{B}(\mathbb{R}^d)_c$ heißt **Lebesgue-** σ -**Algebra** und das fortgesetzte Maß $\lambda_d := \mu_G^*$ **Lebesgue-Maß**.

Satz. Das Lebesgue-Maß auf dem \mathbb{R}^d ist bewegungsinvariant, d. h.

$$\forall A \in \mathfrak{B}(\mathbb{R}^d), O \in SO_d, x \in \mathbb{R}^d : \lambda_d(O \cdot A + x) = \lambda_d(A).$$

Das Lebesgue-Maß ist bis auf einen multiplikativen Faktor das einzige verschiebungsinvariante Maß auf $(\mathbb{R}^d, \mathfrak{B}(\mathbb{R}^d))$.

Sprechweise. Sei (Ω, \mathfrak{A}) ein messbarer Raum. Wir nennen Ω abstrakte Grundmenge und die Elemente von Ω Elementarereignisse. Die σ -Algebra \mathfrak{A} enthält zufällige Ereignisse, unter anderem das sichere Ereignis Ω und das unmögliche Ereignis \emptyset .

Def. Sei $(\Omega, \mathfrak{A}, \mathbb{P})$ ein Maßraum mit $\mathbb{P}(\Omega) = 1$. Dann heißt \mathbb{P} Wahrscheinlichkeitsmaß (W-Maß) und das Tripel $(\Omega, \mathfrak{A}, \mathbb{P})$ Wahrscheinlichkeitsraum (W-Raum).

Sprechweise. Sei $(\Omega, \mathfrak{A}, \mathbb{P})$ ein W-Raum und $A, B \in \mathfrak{A}$. Wir sagen:

- A ist fast sicher, wenn $\mathbb{P}(A) = 1$.
- A ist fast unmöglich, wenn $\mathbb{P}(A) = 0$.
- A und B sind **äquivalent**, wenn $\mathbb{P}(A \triangle B) = 0$.

Bem. Sei μ ein W-Maß auf $\mathfrak{L}(\mathbb{R}^1).$ Dann definiert $x\mapsto F_{\mu}(x):=\mu((-\infty,x])$ eine VF. Für eine VF $F:\mathbb{R}\to [0,1]$ definiert umgekehrt $\mu_F((a,b]):=F(b)-F(a)$ ein W-Maß auf $\mathfrak{L}(\mathbb{R}^1)$ Analog funktioniert dies auf dem $\mathbb{R}^d.$

Def (Wichtige Verteilungsfunktionen).

• Exponential verteilung mit Parameter $\lambda > 0$:

$$F_{\lambda}(x) = \max(0, 1 - \exp(-\lambda x))$$
 Exp(λ)

• Poisson-Verteilung mit Parameter $\lambda > 0$:

$$F_{\lambda}(x) = \sum_{0 \le n \le x} \frac{\lambda^n}{n!} \exp(-\lambda)$$
 Poi(\lambda)

- Gleichverteilung auf (a, b]: $F(x) = \min(1, \max(0, \frac{x-a}{b-a}))$
- Normalverteilung (Gaußverteilung) mit EW μ und Varianz σ^2 :

$$F_{\mu\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^x \exp\left(\frac{-(t-\mu)^2}{2\sigma^2}\right) dt \qquad \qquad N(\mu, \sigma^2)$$

besitzt die Dichte $F'_{\mu\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$ und die Symmetrie $F_{\mu\sigma^2}(\mu-x) = 1 - F_{\mu\sigma^2}(\mu+x)$.

• d-dimensionale Normalverteilung mit Erwartungswertvektor $m \in \mathbb{R}^d$ positiv definiter Kovarianzenmatrix $C \in \mathbb{R}^{d \times d}$:

$$F(x) = \frac{1}{\sqrt{(2\pi)^d \det C}} \int_{(-\infty, x]} \exp(-\frac{1}{2}(y - m)^T C^{-1}(y - m)) \, \mathrm{d}y$$

• 2-dimensionale Exponential verteilung mit $\lambda, \mu > 0, \nu \geq 0$:

$$F(x,y) = \begin{cases} 0, \text{ falls } x < 0 \text{ oder } y < 0, \text{ ansonsten:} \\ 1 - e^{-(\lambda + \nu)x} - e^{-(\mu + \nu)y} + e^{-(\lambda x + \mu y + \nu \max(x,y))} \end{cases}$$

Elementare Wahrscheinlichkeitsrechnung

Def. Ein Ereignis $A \in \mathfrak{A}$ trete bei n Versuchen genau $h_n(A) \in \mathbb{N}$ mal auf. Dann heißt

- $h_n(A)$ absolute Häufigkeit von A,
- $H_n(A) := \frac{h_n(A)}{n}$ relative Häufigkeit von A.

Bem. Unmittelbar klar:

- $H_n(A) \in [0,1]$ $H_n(A) \le H_n(B)$ für $A \subset B$
- $H_n(A \sqcup B) = H_n(A) + H_n(B)$ für $A \cap B = \emptyset$

Bem. Bei wachsendem n stabilisiert sich normalerweise der Wert $H_n(A).$ Dieser Grenzwert ist die Wahrscheinlichkeit von A.

 $\textbf{Def.}\,$ Seien $A,B\in\mathfrak{A}\,$ Ereignisse, $n\in\mathbb{N}$ die Anzahl der Versuche. Dann heißt

$$H_n(A \mid B) := \frac{H_n(A \cap B)}{H_n(B)} = \frac{h_n(A \cap B)}{h_n(B)}$$

die relative Wahrscheinlichkeit von A unter der Bedingung B.

Bem. Offenbar gilt:

- $H_n(A \mid B) \in [0,1]$ $H_n(A_1 \mid B) \le H_n(A_2 \mid B)$ für $A_1 \subset A_2$
- $H_n(A_1 \sqcup A_2 \mid B) = H_n(A_1 \mid B) + H_n(A_2 \mid B)$ für $A_1 \cap A_2 = \emptyset$

Def. Sei $\Omega \in \mathfrak{L}(\mathbb{R}^d)$ mit $\lambda_d(\Omega) > 0$. Dann heißt das W-Maß

$$\mathbb{P}: \mathfrak{L}(\Omega) \to [0,1], \quad A \mapsto \frac{\lambda_d(A)}{\lambda_d(\Omega)}$$
 Gleichverteilung.

Def. Sei Ω eine endliche Menge. Dann definiert

$$\mathbb{P}: \mathcal{P}(\Omega) \to [0,1], \quad A \mapsto \frac{|A|}{|\Omega|} = \frac{\# \text{ günstige F\"{a}lle}}{\# \text{ m\"{o}gliche F\"{a}lle}}$$

ein W-Maß auf $(\Omega, \mathcal{P}(\Omega))$, genannt Laplace'sche Wkt.

Bem. Damit sind Berechnungen von W
kten mit kombinatorischen Überlegungen möglich.

Lemma (Fundamentalprinzip des Zählens). Seien $A_1, ..., A_n$ endliche Mengen. Dann gilt $|A_1 \times ... \times A_n| = |A_1| \cdots |A_n|$.

Lemma. Sei A eine endliche Menge, $r \le n \coloneqq |A| < \infty$. Dann ist die Anzahl der r-Tupel mit Elementen aus A gleich

Mit Ordnung
$$n^r$$
 $\frac{n!}{(n-r)!}$ Ohne Ordnung $\frac{(n+r-1)!}{r!}$ $\binom{n}{r} := \frac{n!}{r!(n-r)!}$

Lemma. Sei A eine endliche Menge, $n := |A| < \infty$. Dann ist die Anzahl der möglichen Zerlegungen von A in disjunkte Mengen $B_1, ..., B_k$ mit $|B_i| = n_i$ und $n_1 + ... + n_k = n$ gleich

$$\binom{n}{n_1,\dots,n_k} := \frac{n!}{n_1!\dots n_k!}$$
. (Multinomialkoeffizient)

Modell. Eine Urne enthalte N Kugeln, darunter $M \leq N$ schwarze. Dann ist ist die Wkt für das Ereignis A_m^n , dass sich unter n gezogenen Kugeln genau $m \leq \min(n, M)$ schwarze Kugeln befinden,

$$\mathbb{P}(A_m^n) = \frac{\binom{M}{m}\binom{N-M}{n-m}}{\binom{N}{n}}.$$
 (hypergeometrische Verteilung)

Bem. Für Maximum-Likelihood-Schätzungen:

- Der Ausdruck $\binom{N-M}{n-m}/\binom{N}{n}$ wird maximal bei $N\coloneqq \lfloor\frac{n-M}{m}\rfloor.$
- Der Ausdruck $\binom{M}{m}\cdot \binom{N-M}{n-m}$ wird maximal bei $M\coloneqq \lfloor \frac{m(N-1)}{n}\rfloor$

Modell. Eine Urne enthalte N Kugeln in $k \leq N$ verschiedenen Farben, darunter N_1 in der ersten Farbe, ..., N_k in der k-ten Farbe, $N_1 + \ldots + N_k = N$. Dann ist ist die Wkt für das Ereignis $A^n_{n_1,\ldots,n_k}$, dass sich unter n gezogenen Kugeln genau $n_1 \leq N_1$ Kugeln der ersten Farbe, ..., und $n_k \leq N_k$ Kugeln der k-ten Farbe befinden, $n_1 + \ldots + n_k = n$, gleich

$$\mathbb{P}(A_{n_1,\dots,n_k}^n) = \frac{\binom{N_1}{n_1} \cdots \binom{N_k}{n_k}}{\binom{N_k}{n}}.$$

Diese W-Verteilung heißt polyhypergeometrische Verteilung.

Def. Sei $(\Omega, \mathfrak{A}, \mathbb{P})$ ein W-Raum und $A, B \in \mathfrak{A}$. Dann heißt

$$\mathbb{P}(A \mid B) := \begin{cases} \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}, & \text{falls } \mathbb{P}(B) > 0\\ 0, & \text{falls } \mathbb{P}(B) = 0 \end{cases}$$

Wahrscheinlichkeit von A unter der Bedingung B.

Bem. Falls $\mathbb{P}(B)>0$ gilt, so ist $\mathbb{P}(-\mid B)$ ein W-Maß über B auf der Spur- $\sigma\text{-Algebra}\ \mathfrak{A}|_B.$

Lemma. Seien $A_1, ..., A_k \in \mathfrak{A}$, dann gilt die Pfadregel:

$$\mathbb{P}(A_1 \cap \dots \cap A_k) = \mathbb{P}(A_1) \cdot \prod_{i=2}^k \mathbb{P}(A_i \mid A_1 \cap \dots \cap A_{i-1}).$$

Satz. Sei $(\Omega, \mathfrak{A}, \mathbb{P})$ ein W-Raum und $A_1, \ldots \in \mathfrak{A}$ ein vollständiges Ereignissystem, d. h. paarweise disjunkt mit

$$\Omega = \bigsqcup_{i=1}^{\infty} A_i.$$

Dann gilt für jedes $B \in \mathfrak{A}$ mit $\mathbb{P}(B) > 0$

$$\mathbb{P}(B) = \sum_{i=1}^{\infty} \mathbb{P}(B \mid A_i) \cdot \mathbb{P}(A_i) \quad \text{(Formel der totalen Wkt)}$$

$$\mathbb{P}(A_n \mid B) = \frac{\mathbb{P}(B \mid A_n) \cdot \mathbb{P}(A_n)}{\sum_{i=1}^{\infty} \mathbb{P}(B \mid A_i) \cdot \mathbb{P}(A_i)}$$
 (Bayessche Formel)

Sprechweise. In der Bayesischen Statistik heißt

- $\mathbb{P}(A_i)$ A-priori-Wahrscheinlichkeit,
- $\mathbb{P}(A_i \mid B)$ A-posteriori-Wahrscheinlichkeit.

Def. Zwei Ereignisse $A, B \in \mathfrak{A}$ heißen (\mathbb{P} -)unabhängig, falls

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B).$$

Bem. • $A \in \mathfrak{A}$ mit $\mathbb{P}(A) = 0$ ist unabhängig zu jedem $B \in \mathfrak{A}$.

• Wenn $A, B \in \mathfrak{A}$ unabhängig, dann sind auch unabhängig:

$$(A^c, B), \quad (A, B^c), \quad (A^c, B^c)$$

Satz. $A, B \in \mathfrak{A}$ unabhängig $\iff \mathbb{P}B \mid A = \mathbb{P}(B)$.

Def. Sei $(A_i)_{i\in I}$ (I bel.) eine Familie von Ereignissen in \mathfrak{A} .

• vollständig unabhhängig, falls

$$\mathbb{P}(A_{i_1}\cap A_{i_2}\cap\ldots\cap A_{i_n})=\mathbb{P}(A_{i_1})\cdot\mathbb{P}(A_{i_2})\cdot\ldots\cdot\mathbb{P}(A_{i_n})$$

für alle $i_1, ..., i_n \in I$ mit $2 \le n < \infty$ und

paarweise unabhängig, falls

$$\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i) \cdot \mathbb{P}(A_j)$$
 für alle $i, j \in I, i \neq j$.

Achtung. Aus paarweiser Unabhängigkeit folgt nicht vollständige Unabhängigkeit (Gegenbeispiel: Bernsteins Tetraeder).

Def. Sei $(\Omega, \mathfrak{A}, \mathbb{P})$ ein W-Raum und $\mathfrak{A}_1, \mathfrak{A}_2 \subset \mathfrak{A}$ Ereignissysteme. Dann heißen \mathfrak{A}_1 und \mathfrak{A}_2 unabhängig, falls

$$\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2)$$
 für alle $A_1 \in \mathfrak{A}_1, A_2 \in \mathfrak{A}_2$.

Satz. Seien $\mathfrak{A}_1,\mathfrak{A}_2\subset\mathfrak{A}$ unabhängige Ereignissysteme, die Algebren sind. Dann sind auch die σ -Algebren $\sigma(\mathfrak{A}_1)$ und $\sigma(\mathfrak{A}_2)$ unabhängig.

Satz. Sei $(\Omega, \mathfrak{A}, \mathbb{P})$ ein W-Raum, $(A_i)_{i \in \mathbb{N}}$ Folge von unabhängigen Ereignissen mit gleicher Erfolgswkt $\mathbb{P}(A_i) = p$ für alle $i \in \mathbb{N}$. Für $k \leq n, \ k, n \in \mathbb{N}$ ist dann die Wahrscheinlichkeit, dass genau k Stück der Ereignisse $A_1, ..., A_n$ eintreten, genau

$$B(k, n, p) := \binom{n}{k} p^k (1 - p)^{n - k}$$

Die zugehörige VF $x\mapsto \sum\limits_{0\leq k\leq x}\!\!B(k,n,p)$ heißt Binomialverteilung.

Lemma. Voraussetzung wie im vorherigen Satz. Sei $r, k \in \mathbb{N}, 1 \leq r$, dann ist die Wkt für das Ereignis $A_k^{(r)}$, dass beim Versuch A_{k+r} der r-te Erfolg eintritt, gleich

$$\mathbb{P}(A_k^{(r)}) = {\binom{k+r-1}{r-1}} p^r (1-p)^k.$$

Im Spezialfall r = 1 ist $\mathbb{P}(A_k^{(1)}) = p(1-p)^k$.

Satz. Sei $(\Omega, \mathfrak{A}, \mathbb{P})$ ein W-Raum, $A_1, ..., A_r \in \mathfrak{A}$ mit $p_i := \mathbb{P}(A_i)$ für i = 1, ..., k und $p_1 + ... + p_r = 1$. Dann ist die Wahrscheinlichkeit, dass bei $n \in \mathbb{N}$ Versuchen A_1 genau n_1 -mal, A_2 genau n_2 -mal, ..., A_r genau n_r -mal auftritt $(n_1 + ... + n_r = n)$, genau

$$B(n_1,...,n_r,n,p_1,...,p_r) := \binom{n}{n_1,...,n_r} p_1^{n_1} \cdots p_r^{n_r}.$$

Diese W-Verteilung heißt Multinomialverteilung.

Satz. Für $0 \le m \le n$, $p \in [0,1]$ gilt

$$\frac{\binom{M}{m}\binom{N-M}{n-m}}{\binom{N}{n}} \xrightarrow{M,N\to\infty} \binom{n}{M/N\to p} \binom{n}{m} p^m (1-p)^{n-m}.$$

Satz (GWS von Poisson). Für $m \in \mathbb{N}$, $\lambda \in \mathbb{R}_{>0}$ gilt

$$\binom{n}{m} p_n^m (1 - p_n)^{n-m} \xrightarrow[np_n \to \lambda]{n \to \infty} \frac{\lambda^m}{m!} \exp(-\lambda).$$

Def. Sei (Ω, \mathfrak{A}) ein messbarer Raum mit zwei W-Maßen \mathbb{P}_1 und \mathbb{P}_2 . Dann heißt

$$d_{\infty}(\mathbb{P}_1, \mathbb{P}_2) := \sup_{A \in \mathfrak{A}} |\mathbb{P}_1(A) - \mathbb{P}_2(A)|$$

Totalvariation des signierten Maßes $\mathbb{P}_1 - \mathbb{P}_2$.

Satz. Seien \mathbb{P}_1 und \mathbb{P}_2 zwei W-Maße auf $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$, $\mathbb{P}_1(\{i\}) = p_i$, $\mathbb{P}_2(\{i\}) = q_i$ für alle $i \in \mathbb{N}$. Dann gilt

$$d_{\infty}(\mathbb{P}_1, \mathbb{P}_2) = \frac{1}{2} \sum_{i=0}^{\infty} |p_i - q_i|.$$

Lemma. Für $n, k \in \mathbb{N}, p \in [0, 1]$ und \mathbb{P}_1 und \mathbb{P}_2 wie eben definiert durch $p_i := \binom{n}{k} p^k (1-p)^{n-k}, q_i := \frac{(np)^k}{k!} \exp(-np)$ gilt

$$d_{\infty}(\mathbb{P}_1,\mathbb{P}_2) \leq 2np^2$$
.

Lemma (Borel-Cantelli). Sei $(A_n)_{n\in\mathbb{N}}$ eine Folge von Ereignissen über $(\Omega, \mathfrak{A}, \mathbb{P})$. Dann gilt für $A = \limsup A_n$

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty \implies \mathbb{P}(A) = 0.$$

Falls die Ereignisse $(A_n)_{n\in\mathbb{N}}$ unabhängig sind, so gilt

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty \implies \mathbb{P}(A) = 1,$$

also zusammengefasst $\mathbb{P}(A) \in \{0, 1\}.$

Def. Sei $(\mathfrak{A}_n)_{n\in\mathbb{N}}$ Folge von σ -Algebren über Ω . Dann ist

$$\mathcal{T}_{\infty} = \bigcap_{n=1}^{\infty} \mathcal{T}_n \quad \text{mit} \quad \mathcal{T}_n \coloneqq \sigma \left(\bigcup_{k=n}^{\infty} \mathfrak{A}_k \right)$$

die terminale σ -Algebra von $(\mathfrak{A}_n)_{n\in\mathbb{N}}$.

Satz (Null-Eins-Gesetz von Kolmogorow). Sei $(\mathfrak{A}_n)_{n\in\mathbb{N}}$ eine Folge von unabhängigen Unter- σ -Algebren in einem W-Raum $(\Omega, \mathfrak{A}, \mathbb{P})$. Dann gilt $\mathbb{P}(A) \in \{0,1\}$ für alle Ereignisse $A \in \mathcal{T}_{\infty}$ der terminalen σ -Algebra.

Integrationstheorie

Def. Seien $(\Omega_1, \mathfrak{A}_1)$ und $(\Omega_2, \mathfrak{A}_2)$ messbare Räume. Dann heißt $f:\Omega_1\to\Omega_2$ ($\mathfrak{A}_1,\mathfrak{A}_2$)-messbar, falls

$$f^{-1}(A_2) \in \mathfrak{A}_1$$
 für alle $A_2 \in \mathfrak{A}_2$.

Notation. Für solches f schreiben wir $f:(\Omega_1,\mathfrak{A}_1)\to(\Omega_2,\mathfrak{A}_2)$.

Beobachtung. Sei (Ω, \mathfrak{A}) messbarer Raum, $A \subset \Omega$, dann gilt

$$\mathbb{1}_A \ (\mathfrak{A}, \mathfrak{L}(\mathbb{R}^1))$$
-messbar $\iff A \in \mathfrak{A}.$

Lemma. Die Verkettung messbarer Abbildungen ist messbar, d. h. für $f:(\Omega_1,\mathfrak{A}_1)\to(\Omega_2,\mathfrak{A}_2)$ und $g:(\Omega_2,\mathfrak{A}_2)\to(\Omega_3,\mathfrak{A}_3)$ gilt $g \circ f: (\Omega_1, \mathfrak{A}_1) \to (\Omega_3, \mathfrak{A}_3).$

Lemma. Sei $f: \Omega \to \Omega'$ eine Abb. und $\mathcal{E}' \subset \mathcal{P}(\Omega)$, dann ist $\mathfrak{A}(f^{-1}(\mathcal{E}')) = f^{-1}(\mathfrak{A}(\mathcal{E}')).$

Lemma. Sei (Ω, \mathfrak{A}) ein messbarer Raum und $f: \Omega \to \Omega'$ eine Abbildung, sowie $\mathcal{E} \subset \mathbb{P}(\Omega')$. Dann gilt

$$f$$
 ist $(\mathfrak{A}, \sigma(\mathcal{E}))$ -messbar \iff $f^{-1}(E) \in \mathfrak{A}$ für alle $E \in \mathcal{E}$.

Notation. Seien $f, q: \Omega \to \overline{\mathbb{R}^1}$ zwei numerische Funktionen. Setze

$$\{f \leq g\} := \{\omega \in \Omega \,|\, f(\omega) \leq g(\omega)\} \subset \Omega$$

und definiere analog $\{f < g\}, \{f \ge g\}, \{f > g\}, \{f = g\}, \{f \ne g\}.$

Satz. Für eine Funktion $f:(\Omega,\mathfrak{A})\to(\overline{\mathbb{R}^1},\overline{\mathfrak{B}})$ sind äquivalent:

- f ist messbar $\forall a \in \mathbb{R} : \{f \ge a\} = f^{-1}([a, \infty]) \in \mathfrak{A}$
- $\forall a \in \mathbb{R} : \{f > a\} \in \mathfrak{A}$ • $\forall a \in \mathbb{R} : \{f < a\} \in \mathfrak{A}$
- $\forall a \in \mathbb{R} : \{f < a\} \in \mathfrak{A}$

Def. • Sei (Ω, \mathfrak{A}) ein messbarer Raum, $f: \Omega' \to \Omega$ eine Abbildung, dann heißt

$$\sigma(f) \coloneqq f^{-1}(\mathfrak{A}) \coloneqq \{f^{-1}(A) \,|\, A \in \mathfrak{A}\}$$

die von f erzeugte σ -Algebra.

• Sei $(\Omega_i, \mathfrak{A}_i)_{i \in I}$ eine Familie von messbaren Räumen, $f_i : \Omega' \to \Omega_i$ für alle $i \in I$ eine Abbildung. Dann heißt

$$\sigma((f_i)_{i \in I}) := \sigma(\bigcup_{i \in I} \sigma(f_i)) = \sigma(\bigcup_{i \in I} f_i^{-1}(\mathfrak{A}_i))$$

die von der Familie $(f_i)_{i \in I}$ erzeugte σ -Algebra.

Def. Sei $(\Omega', \mathfrak{A}', \mu')$ ein Maßraum, (Ω, \mathfrak{A}) ein messbarer Raum, $f:(\Omega',\mathfrak{A})\to(\Omega,\mathfrak{A})$. Dann ist durch

$$\mu'_f \coloneqq \mu' \circ f^{-1} : \mathfrak{A} \to [0, \infty], \quad A \mapsto \mu'(f^{-1}(A))$$

ein Maß auf (Ω, \mathfrak{A}) , das sog. Bildmaß von μ' unter f, definiert.

Satz. Für zwei numerische Funktionen $f, g: (\Omega, \mathfrak{A}) \to (\overline{\mathbb{R}^1}, \overline{\mathfrak{B}})$ gilt:

- $\{f < g\} \in \mathfrak{A}$

 - $\{f > g\} \in \mathfrak{A}$ $\{f = g\} \in \mathfrak{A}$
- $\{f < q\} \in \mathfrak{A}$
- $\{f > q\} \in \mathfrak{A}$ $\{f \neq q\} \in \mathfrak{A}$

Satz. Seien $f, g: (\Omega, \mathfrak{A}) \to (\overline{\mathbb{R}^1}, \overline{\mathfrak{B}})$ messbare numerische Funktionen und $\lambda, \mu \in \mathbb{R}$. Dann auch messbar (‡: falls $0 \notin \text{Bild}(f)$):

 λ · f • $f + \mu \cdot g$ • $f \cdot g$ • $\frac{1}{f}(\ddagger)$ • $\frac{g}{f}(\ddagger)$

Satz. Seien $f_n:(\Omega,\mathfrak{A})\to(\overline{\mathbb{R}^1},\overline{\mathfrak{B}}), n\in\mathbb{N}$ messbare numerische Funktionen, dann auch messbar:

• $\sup f_n$ • $\inf_{n\in\mathbb{N}} f_n$ • $\liminf_{n \in \mathbb{N}} f_n$ • $\limsup_{n \in \mathbb{N}} f_n$ Dabei werden Infimum, Supremum, usw. punktweise gebildet.

Def. Für $f:\Omega\to\overline{\mathbb{R}^1}$ heißen die Funktionen

- $|f| := \max(f, -f) : \Omega \to [0, \infty]$ Betrag von f
- $f^+ := \max(f, 0) : \Omega \to [0, \infty]$ Positivteil von f

• $f^- := -\min(f, 0) : \Omega \to [0, \infty]$ Negativteil von f

Satz. Falls $f:(\Omega,\mathfrak{A})\to(\overline{\mathbb{R}^1},\overline{\mathfrak{B}})$ messbar, dann auch $|f|,f^+$ und

Satz. • Sei (Ω, \mathcal{O}) ein topologischer Raum und $f: \Omega \to \mathbb{R}^n$ stetig. Dann ist $f(\sigma(\mathcal{O}), \mathfrak{B}(\mathbb{R}^n))$ -messbar.

• $\sigma(\mathcal{O})$ ist die kleinste σ -Algebra, bezüglich der alle stetigen Funktionen $f: \Omega \to \mathbb{R}^n$ Borel-messbar sind.

Satz (von Lusin). Sei $M \in \mathfrak{L}(\mathbb{R}^n)$ mit $\lambda_n(M) < \infty$ und $f: M \to \mathbb{R}$ beschränkt. Dann ist f genau dann Borel-messbar, wenn gilt:

 $\forall \epsilon > 0 : \exists K_{\epsilon} \subset M \text{ kompakt } : \lambda_n(M \setminus K_{\epsilon}) < \epsilon \text{ und } f|_{K_{\epsilon}} \text{ stetig.}$

Def. Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ heißt Càdlàg-Funktion (continue à droite, limite à gauche), falls für alle $x \in \mathbb{R}$ gilt:

$$\lim_{y \uparrow x} f(y) \text{ existiert} \quad \text{und} \quad \lim_{y \downarrow x} f(y) = f(x).$$

Beobachtung. Jede kumulierte VF ist eine Càdlàg-Funktion.

Def. Die Variation von $g:[a,b]\to\mathbb{R}$ bzgl. einer Zerlegung $Z = \{a = x_0 < ... < x_n = b\}$ von [a, b] ist die nicht-negative Zahl

$$V(g,Z) := \sum_{j=1}^{n} |g(x_j) - g(x_{j-1})|.$$

Die **Totalvariation** von $q:[a,b] \to \mathbb{R}$ ist

 $V_a^b(q) := \sup \{V(q, Z) : Z \text{ Zerlegung von } [a, b]\} \in \mathbb{R}_{\geq 0} \cup \{\infty\}.$

Falls $V_a^b(q) < \infty$, so heißt q von beschränkter Variation.

Satz. Es sind messbar:

- Monotone Funktionen Càdlàg-Funktionen
- Funktionen von beschränkter Variation

Def. Eine \mathfrak{A} -messbare numerische Funktion X über einem W-Raum $(\Omega, \mathfrak{A}, \mathbb{P})$ heißt **Zufallsgröße** (ZG) oder **Zufallsvariable**.

Bem. Häufig fordert man zusätzlich $\mathbb{P}(X = \pm \infty) = 0$.

Notation. Für eine ZG X und eine Fkt. $q: \mathbb{R}^1 \to \overline{\mathbb{R}^1}$ schreiben wir $f(X) := f \circ X : \Omega \to \overline{\mathbb{R}^1}.$

 $\mathbf{Def.}$ Das durch die ZG X induzierte Bildmaß

$$P_X : \mathfrak{L}(\mathbb{R}^1) \to [0, 1], \quad B \mapsto \mathbb{P}(\{X \in B\}) = \mathbb{P}(X^{-1}(B))$$

heißt Verteilungsgesetz der ZG X und

$$F_X : \mathbb{R} \to \mathbb{R}, \quad x \mapsto P_X((-\infty, x]) = \mathbb{P}(\{X \le x\})$$

heißt Verteilungsfunktion (VF) der ZG X.

Satz. Sei F eine VF auf \mathbb{R}^1 . Dann existiert ein W-Raum $(\Omega, \mathfrak{A}, \mathbb{P})$ und eine ZG X auf Ω derart, dass $F_X = F$.

Beweis. 1. Möglichkeit: Wähle $\Omega := \mathbb{R}^1$, $\mathfrak{A} := \mathfrak{L}(\mathbb{R}^1)$ und $\mathbb{P} := \mu_F$ als das von von F erzeugte Maß und setze X := id.

2. Möglichkeit: Wähle $\Omega := [0,1], \mathfrak{A} := \mathcal{L}([0,1]), \mathbb{P} := \lambda_1$. Setze

$$X(w) \coloneqq F^-(w) \coloneqq \inf\{F \ge w\} \quad \text{für } w > 0, \quad X(0) \coloneqq \lim_{w \downarrow 0} F^-(w)$$

Def. Sei $X_1, ..., X_n$ eine endliche Familie von ZGn über $(\Omega, \mathfrak{A}, \mathbb{P})$. Diese Familie heißt stochastisch unabhängig, falls

$$\mathbb{P}(\bigcap_{i=1}^n \{X_i \in B_i\}) = \prod_{i=1}^n \mathbb{P}(\{X_i \in B_i\}) \quad \text{für alle } B_1, ..., B_n \in \mathfrak{L}(\overline{\mathbb{R}^1}).$$

Satz. Seien $X_1, ..., X_n$ unabhängige ZGn über $(\Omega, \mathfrak{A}, \mathbb{P})$ und $g_1,...,g_n:\mathbb{R}\to\mathbb{R}$ Borel-messbar. Setze $Y_i\coloneqq g_i(X_i)\coloneqq g_i\circ X_i$ für i = 1, ..., n, dann sind auch $Y_1, ..., Y_n$ unabhängige ZGn.

Def. Eine Funktion $f:(\Omega,\mathfrak{A})\to(\mathbb{R},\mathfrak{B})$ heißt einfache Funktion oder **Elementarfunktion** auf (Ω, \mathfrak{A}) , wenn gilt:

• f ist messbar • $f(\Omega) \subset [0,\infty)$ • $f(\Omega)$ ist endlich Die Menge aller elementaren Funktionen auf (Ω, \mathfrak{A}) ist $\mathbb{E}(\Omega, \mathfrak{A})$.

Notation. $a \wedge b := \min\{a, b\}$ und $a \vee b := \max\{a, b\}$

Satz. Seien $f, g \in \mathbb{E}(\Omega, \mathfrak{A})$ und $a \geq 0$. Dann auch in $\mathbb{E}(\Omega, \mathfrak{A})$:

•
$$f+g$$
 • $f \cdot g$ • $f \wedge g$ • $f \wedge g$

Def. Sei $f \in \mathbb{E}(\Omega, \mathfrak{A})$ und $\Omega = A_1 \sqcup ... \sqcup A_k$ eine disjunkte Vereinigung von Mengen mit $A_i \in \mathfrak{A}$ für alle j = 1, ..., k, sodass $f(A_i) = \{y_i\}$, dann heißt die Darstellung

$$f = \sum_{j=1}^{k} y_j \cdot \mathbb{1}_{A_j}$$
 kanonische Darstellung.

Def. Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum, $f: \Omega \to \mathbb{R}$ elementar. Dann heißt die (von der Darstellung $f = \sum\limits_{i=1}^k y_j \cdot \mathbbm{1}_{A_j}$ unabh.) Zahl

$$\iint_{\Omega} d\mu := \sum_{j=1}^{k} y_j \mu(A_j) \quad \mu\text{-Integral von } f.$$

Satz. Es gilt für $f, g \in \mathbb{E}(\Omega, \mathfrak{A}), a, b \geq 0$:

- $\int \mathbb{1}_A d\mu = \mu(A)$ $f \leq g \implies \int f d\mu \leq \int g d\mu$
- $\bullet \ \ \underline{\int} a \cdot f + b \cdot g \, \mathrm{d}\mu = a \cdot \underline{\int} f \, \mathrm{d}\mu + b \cdot \underline{\int} g \, \mathrm{d}\mu$

Satz. Sei $(f_n)_{n\in\mathbb{N}}$ eine isotone (= monotone) Folge elementarer Funktionen über (Ω, \mathfrak{A}) . Dann gilt für jede elementare Funktion fmit $f \leq \sup_{n \in \mathbb{N}} f_n$ die Ungleichung $\int_{\Omega} f d\mu \leq \sup_{n \in \mathbb{N}} \int_{\Omega} f_n d\mu$.

Korollar. Seien $(f_n)_{n\in\mathbb{N}}$ und $(g_n)_{n\in\mathbb{N}}$ isotone Folgen elementarer Funktionen mit $\sup_{n\in\mathbb{N}} f_n = \sup_{n\in\mathbb{N}} g_n$. Dann ist $\sup_{n\in\mathbb{N}} \int f_n d\mu = \sup_{n\in\mathbb{N}} \int g_n d\mu$.

Satz. Sei $f:(\Omega,\mathfrak{A},\mu)\to(\overline{\mathbb{R}^1},\mathfrak{L}(\overline{\mathbb{R}^1}))$ nichtnegativ. Dann gibt es eine isotone Folge $(f_n)_{n\in\mathbb{N}}$ elementarer Funktionen mit sup $f_n=f$.

Def. Sei $f:(\Omega,\mathfrak{A},\mu)\to(\overline{\mathbb{R}^1},\mathfrak{L}(\overline{\mathbb{R}^1}))$ nichtnegativ und $(f_n)_{n\in\mathbb{N}}$ eine Folge elementarer Funktionen mit sup $f_n=f.$ Dann heißt

$$\int_{\Omega} f \, \mathrm{d}\mu \coloneqq \sup_{n \in \mathbb{N}} \int_{\Omega} f_n \, \mathrm{d}\mu \quad \mu\text{-Integral von } f.$$

Def. Eine \mathfrak{A} -messbare, numerische Fkt. $f:(\Omega,\mathfrak{A},\mu)\to(\overline{\mathbb{R}^1},\mathfrak{L}(\overline{\mathbb{R}^1}))$ heißt μ -integrierbar, falls

$$\int_{\Omega} f^{+} d\mu < \infty \quad \text{und} \quad \int_{\Omega} f^{-} d\mu < \infty.$$

In diesem Fall definieren wir das Lebesgue-Integral von f als

$$\int_{\Omega} f \, \mathrm{d}\mu := \int_{\Omega} f^+ \, \mathrm{d}\mu - \int_{\Omega} f^- \, \mathrm{d}\mu.$$

Satz. Sei $f:(\Omega,\mathfrak{A},\mu)\to(\overline{\mathbb{R}^1},\mathfrak{L}(\mathbb{R}^1))$ messbar. Dann sind äquivalent:

- f ist μ -integrierbar f^+ und f^- sind μ -integrierbar
- |f| ist μ -integrierbar $\exists \mu$ -integrierbare Funktion g mit $|f| \leq g$

Satz. Seien $f, g: (\Omega, \mathfrak{A}, \mu) \to (\overline{\mathbb{R}^1}, \mathfrak{L}(\overline{\mathbb{R}^1}))$ μ -integrierbar und $\alpha, \beta \in \mathbb{R}$. Dann sind auch μ -integrierbar:

 f ∨ g • $f \pm q$

Es gilt: $\bullet \int_{\Omega} (\alpha \cdot f + \beta \cdot g) d\mu = \alpha \int_{\Omega} f d\mu + \beta \int_{\Omega} g d\mu$

• $|\int_{\Omega} f \, \mathrm{d}\mu| \le \int_{\Omega} |f| \, \mathrm{d}\mu$ • $f \le g \implies \int_{\Omega} f \, \mathrm{d}\mu \le \int_{\Omega} g \, \mathrm{d}\mu$ (Monotonie)

Achtung. Das Produkt $(f \cdot q)$ ist i. A. nicht μ -integrierbar!

Def. Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum und $f: (\Omega, \mathfrak{A}) \to (\overline{\mathbb{R}^1}, \mathcal{L}(\overline{\mathbb{R}^1}))$. Für $p \in [1, \infty)$ heißt f p-integrierbar, falls $|f|^p$ μ -integrierbar ist.

$$L^p(\Omega,\mathfrak{A},\mu) \coloneqq \{f:\Omega \to \overline{\mathbb{R}^1} \,|\, f \text{ p-integrierbar, also } \smallint_{\Omega} |f|^p \,\mathrm{d}\mu < \infty\},$$

$$L^{\infty}(\Omega, \mathfrak{A}, \mu) := \{ f : \Omega \to \overline{\mathbb{R}^1} \mid \exists C > 0 : |f| \le C \text{ fast "überall} \}$$

ist dann ein VR, genannt Lebesgue-Raum (L^p -Raum), mit Norm

$$||f||_p := \left(\int |f|^p d\mu\right)^{\frac{1}{p}}$$

$$\|f\|_{\infty} \coloneqq \operatorname*{ess\,sup}_{\omega \in \Omega} |f(\omega)| \coloneqq \inf\{C \in \mathbb{R} \,|\, |f| \leq C \text{ fast-""uberall}\}$$

Wir betrachten in L^p zwei Funktionen als gleich, wenn sie bis auf einer Nullmenge übereinstimmen. Die \triangle -Ungleichung in L^p wird auch Minkowski-Ungleichung genannt.

Satz. Der $L^p(\mu)$ ist ein vollständiger normierter Raum, d. h. jede Cauchy-Folge bzgl. der Norm $\|-\|_{n}$ ist auch konvergent.

Satz. Sei $f \in L^p(\Omega, \mathfrak{A}, \mu), g \in L^q(\Omega, \mathfrak{A}, \mu)$ mit $\frac{1}{n} + \frac{1}{n} = 1$. Dann ist $fq \in L^1(\Omega, \mathfrak{A}, \mu)$ und es gilt

$$\|fg\|_1 \leq \|f\|_p \cdot \|g\|_q \quad \text{(H\"{o}lder-Ungleichung)}.$$

Bem. Für p=2 ist $L^p(\Omega,\mathfrak{A},\mu)$ der Hilbertraum der quadratisch integrierbaren Funktionen mit dem Skalarprodukt

$$\langle f, g \rangle \coloneqq \int_{\Omega} (f \cdot g) \, \mathrm{d}\mu.$$

Mit q=2 folgt aus der Hölder-Ungleichung

$$|\langle f,g\rangle| = \|fg\|_1 \leq \|f\|_2 \cdot \|g\|_2 \quad \text{(Cauchy-Schwarz-Ungl.)}$$

Satz. Sei $f:(\Omega,\mathfrak{A},\mu)\to(\overline{\mathbb{R}^1},\mathcal{L}(\overline{\mathbb{R}^1}))$ nichtnegativ. Dann gilt

$$\int_{\Omega} f \, \mathrm{d}\mu = 0 \quad \iff \quad f \stackrel{\text{f.ü.}}{=} 0.$$

Satz (von der monotonen Konvergenz). Sei für alle $n \in \mathbb{N}$ die Funktion $f_n:(\Omega,\mathfrak{A},\mu)\to(\mathbb{R}^1,\mathfrak{L}(\mathbb{R}^1))$ nicht negativ und \mathfrak{A} -messbar, sodass $(f_n)_{n\in\mathbb{N}}$ eine isotone Folge ist. Dann gilt

$$\int\limits_{\Omega}\lim_{n\to\infty}f_n\,\mathrm{d}\mu=\int\limits_{\Omega}\sup_{n\in\mathbb{N}}f_n\,\mathrm{d}\mu=\sup_{n\in\mathbb{N}}\int\limits_{\Omega}f_n\,\mathrm{d}\mu=\lim_{n\to\infty}\int\limits_{\Omega}f_n\,\mathrm{d}\mu.$$

Korollar (Beppo Levi). Sei $(f_n)_{n\in\mathbb{N}}$ eine Folge nicht negativer, \mathfrak{A} -messbarer, numerischer Funktionen auf $(\Omega, \mathfrak{A}, \mu)$. Dann gilt

$$\int_{\Omega} \sum_{n=1}^{\infty} f_n \, \mathrm{d}\mu = \sum_{n=1}^{\infty} \int_{\Omega} f_n \, \mathrm{d}\mu.$$

Satz. Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum und $f: (\Omega, \mathfrak{A}) \to (\overline{\mathbb{R}^1}, \mathcal{L}(\overline{\mathbb{R}^1}))$ nichtnegativ und μ -integrierbar. Dann definiert

$$\nu : \mathfrak{A} \to [0, \infty], \quad A \mapsto \int_A f \, \mathrm{d}\mu = \int_\Omega f \cdot \chi_A \, \mathrm{d}\mu$$

ein zu μ absolut stetiges, endliches Maß auf (Ω, \mathfrak{A}) .

Lemma (Fatou). Sei für $n \in \mathbb{N}$ die Fkt. $f_n : (\Omega, \mathfrak{A}, \mu) \to (\mathbb{R}^1, \mathfrak{L}(\mathbb{R}^1))$ nicht negativ und A-messbar. Dann gilt

$$\int_{\Omega} \liminf_{n \to \infty} f_n \, \mathrm{d}\mu \le \liminf_{n \to \infty} \int_{\Omega} f_n \, \mathrm{d}\mu.$$

Falls $\int_{\Omega} \sup_{n \in \mathbb{N}} f_n d\mu < \infty$, gilt zusätzlich

$$\int_{\Omega} \limsup_{n \to \infty} f_n \, \mathrm{d}\mu \ge \limsup_{n \to \infty} \int_{\Omega} f_n \, \mathrm{d}\mu.$$

 $\mathbf{Def.}\,$ Eine Folge $(f_n)_{n\in\mathbb{N}}$ 21-messbarer, numerischer Fktn. über $(\Omega, \mathfrak{A}, \mu)$ konvergiert μ -fast-überall gegen $f: \Omega \to \mathfrak{A}$, falls

$$\lim_{n\to\infty} f_n(\omega) = f(\omega) \quad \text{für } \mu\text{-fast-alle } \omega \in \Omega \text{ gilt.}$$

Satz (Riesz). Sei $(f_n)_{n\in\mathbb{N}}$ Folge in $L^p(\Omega,\mathfrak{A},\mu)$, $f_n \xrightarrow[n\to\infty]{\text{f.ü.}} f$ mit $f \in L^p(\mu)$. Dann gilt

$$f_n \xrightarrow[n \to \infty]{L^p(\mu)} f \iff \int_{\Omega} |f_n|^p d\mu \xrightarrow[n \to \infty]{} \int_{\Omega} |f|^p d\mu.$$

Satz (von der majorisierten Konvergenz). Sei $(f_n)_{n\in\mathbb{N}}$ Folge \mathfrak{A} -messbarer numerischer Funktionen auf $(\Omega, \mathfrak{A}, \mu)$ und $q \in L^1(\mu)$ nicht negativ, sodass $|f_n| \leq g$ für alle $n \in \mathbb{N}$. Sei desweiteren $f:\Omega \to \overline{\mathbb{R}^1}$ messbar mit $f_n \xrightarrow[n \to \infty]{\mu\text{-f.ü.}} f$. Dann ist

$$f \in L^1(\mu)$$
 mit $\int_{\Omega} f \, d\mu = \lim_{n \to \infty} \int_{\Omega} f_n \, d\mu$.

Satz. Sei $f:(\Omega,\mathfrak{A},\mu)\to(\Omega',\mathfrak{A}')$ und $\mu'\coloneqq\mu\circ f^{-1}$ das Bildmaß von μ unter f. Sei $q:(\Omega',\mathfrak{A}')\to(\mathbb{R}^1,\mathfrak{B}(\mathbb{R}^1))$ nicht negativ. Dann gilt

$$\int_{\Omega'} g \, \mathrm{d}\mu' = \int_{\Omega} (g \circ f) \, \mathrm{d}\mu.$$

Satz (Transformationssatz). Sei $U, \widetilde{U} \subseteq \mathbb{R}^d$ und sei $\phi: U \to \widetilde{U}$ ein \mathcal{C}^1 -Diffeomorphismus. Dann ist eine Funktion $f: \widetilde{U} \to \overline{\mathbb{R}^1}$ genau dann auf U Lebesgue-Borel-integrierbar, wenn $(f \circ \phi) \cdot |\det(D\phi)| : U \to \overline{\mathbb{R}^1}$ auf U Lebesgue-Borel-interierbar ist. In diesem Fall gilt

$$\smallint_U (f \circ \phi) \cdot \left| \det(D\phi) \right| \mathrm{d}\lambda_d = \smallint_{\phi(U)} f \, \mathrm{d}\lambda_d = \smallint_{\widetilde{U}} f \, \mathrm{d}\lambda_d.$$

Obige Gleichung ist auch erfüllt, wenn lediglich f > 0 gilt.

Def. Für eine ZG $X:(\Omega,\mathfrak{A},\mathbb{P})\to(\overline{\mathbb{R}^1},\mathfrak{B}(\overline{\mathbb{R}^1}))$ heißt die Zahl

$$\mathbb{E} X := \smallint_{\Omega} X \, \mathrm{d} \mathbb{P} \qquad \mathbf{Erwartungswert} \ (\mathrm{EW}) \ \mathrm{von} \ X.$$

Bem. Für eine konstante ZGe $X: \Omega \to \mathbb{R}$, also $\forall \omega \in \Omega: X(\omega) = x$, gilt $\mathbb{E}X = x$.

Satz. Der Erwartungswert ist linear, d. h. für ZGn X und Y und $\lambda \in \mathbb{R} \text{ gilt } \mathbb{E}(\lambda X + Y) = \lambda \mathbb{E}X + \mathbb{E}Y.$

Satz.
$$\mathbb{E}X = \int_{\mathbb{R}^1} \mathrm{id} \, \mathrm{d}P_X$$
, wobei $P_X := \mathbb{P} \circ X^{-1}$.

Korollar. Sei $g: \mathbb{R}^1 \to \mathbb{R}^1$ messbar und P_X -integrierbar. Dann gilt

$$\mathbb{E}g(X) = \int_{\mathbb{R}^1} g \, dP_X = \int_{-\infty}^{\infty} g(x) \, dP_X(x),$$

wobei rechts ein uneigentliches Riemann-Stieltjes-Integral steht.

Def. Für Zufallsvektoren $X = (X_1, ..., X_k)$ mit Werten in \mathbb{R}^k definieren wir $\mathbb{E}X := (\mathbb{E}X_1, ..., \mathbb{E}X_k)$.

Bem. Sei $X = (X_1, ..., X_k)$ ein Zufallsvektor und $q : \mathbb{R}^k \to \mathbb{R}$ Borel-messbar und P_X -integrierbar. Dann ist

$$\mathbb{E}g(X_1,...,X_k) = \int_{\mathbb{R}^k} g \, \mathrm{d}P_X.$$

Satz. Sei F_X VF einer ZG $X:(\Omega,\mathfrak{A},\mathbb{P})\to(\mathbb{R}^1,\mathfrak{L}(\mathbb{R}^1).$ Dann existiert für Lebesgue-fast-alle $x \in \mathbb{R}^1$ die Ableitung F'(x).

Def. Sei F_X VF einer ZG $X: (\Omega, \mathfrak{A}, \mathbb{P}) \to (\mathbb{R}^1, \mathfrak{L}(\mathbb{R}^1))$.

• F_X heißt diskret, falls F_X höchstens abzählbar viele Sprungstellen $x_1, x_2, ... \in \mathbb{R}$ besitzt mit

$$\forall j \in J \subset \mathbb{N} : p_j \coloneqq F_X(x_j) - \lim_{x \uparrow x_j} F_X(x) > 0, \quad \sum_{j=1}^{\infty} p_j = 1.$$

Dann ist F_X zwischen den Sprüngen konstant.

• F_X heißt stetig (diffus, atomlos), wenn F_X in jedem Punkt stetig ist. Dann gilt $P_X(\{X=x\})=0$ für alle $x\in\mathbb{R}$.

Für stetige Verteilungen ergibt sich eine weitere Unterteilung:

• F_X heißt absolutstetig (totalstetig), wenn es für alle $\epsilon > 0$ ein $\delta > 0$ gibt, sodass für höchstens abzählbar viele, disjunkte Intervalle $I_k = (a_k, b_k]$ mit $k \in J \subset \mathbb{N}$ gilt:

$$\sum_{k \in I} (b_k - a_k) < \delta \implies \sum_{k \in I} (F_X(b_k) - F_X(a_k)) < \epsilon.$$

• F_X heißt singulärstetig (stetig, aber nicht absolutstetig), wenn die Wachstumspunkte von F_X eine Nullmenge bilden, also

$$\lambda_1(\lbrace x \in \mathbb{R}^1 \mid \forall \, \epsilon > 0 : F(x+\epsilon) - F(x-\epsilon) > 0 \rbrace) = 0$$

oder äguivalent dazu die Ableitung fast-überall verschwindet, also

$$\lambda_1(\{x \in \mathbb{R}^1 \mid F_X'(x) = 0\}) = 1.$$

Satz. Jede VF F auf \mathbb{R}^1 besitzt eine eindeutige Zerlegung (Lebesgue-Zerlegung) als konvexe Linearkombination einer diskreten, einer singulär-stetigen und einer absolut-stetigen VF

$$F = \alpha_d F_d + \alpha_s F_s + \alpha_a F_a \quad \text{mit} \quad \alpha_d, \alpha_s, \alpha_a \geq 0, \ \alpha_d + \alpha_s + \alpha_a = 1.$$

Def. Falls F_X absolut-stetig, dann heißt die nicht negative, Lebesgue-messbare Funktion

$$f = f_X = F_X' : \mathbb{R} \to \mathbb{R}_{\geq 0}, \quad x \mapsto \begin{cases} F_X'(x), & \text{falls Ableitung ex.} \\ 0, & \text{sonst} \end{cases}$$

(Wahrscheinlichkeits-)Dichte (WD) von F_X bzw. von X.

Bem. Dann gilt für alle $y \in \mathbb{R}$:

$$\int\limits_{-\infty}^y f_X(x)\,\mathrm{d}x = F_X(y),\quad \text{also insbesondere}\quad \int\limits_{-\infty}^\infty f_X(x)\,\mathrm{d}x = 1.$$

Bem. F_X ist als VF genau dann absolut stetig, wenn das Maß P_X bezüglich λ_1 absolut stetig ist (also $P_V \ll \lambda_1$ gilt).

Satz (Erwartungswerte bekannter Zufallsverteilungen).

- Für $X \sim \text{Poi}(\lambda)$: $\mathbb{E}X = \lambda$ Für $N \sim N(\mu, \sigma^2)$: $\mathbb{E}X = \mu$
- Für $X \sim \text{Exp}(\lambda)$: $\mathbb{E}X = \frac{1}{\lambda}$ Für $N \sim N(0, 1)$: $\mathbb{E}|X| = \sqrt{\frac{2}{\pi}}$

Bem. Die Cauchy-Verteilung hat die VF bzw. die W-Dichte

$$F(x) = \frac{1}{\pi} \arctan(x) + \frac{1}{2}, \qquad f(x) = \frac{1}{\pi(1+x^2)}.$$

Eine Cauchy-verteilte ZG X hat keinen EW, da $\int |x| \cdot f(x) \, \mathrm{d}x = \infty$.

$$\begin{split} \mathbf{Def.} \ \, & \mathrm{Seien} \,\, X_1,...,X_d: (\Omega,\mathfrak{A},\mathbb{P}) \to (\mathbb{R}^1,\mathfrak{B}(\mathbb{R}^1)) \,\, \mathrm{ZGn}, \\ F &= F_{(X_1,...,X_d)}: \mathbb{R}^d \to [0,1] \,, \quad (x_1,...,x_d) \mapsto \mathbb{P}(X_1 {\leq} x_1,...,X_k {\leq} x_k) \\ & \mathrm{die} \,\, \mathrm{dazugeh\"{o}rige} \,\, \mathrm{VF} \,\, \mathrm{und} \,\, P &= P_{(X_1,...,X_d)} \,\, \mathrm{das} \,\, \mathrm{von} \,\, \mathrm{der} \,\, \mathrm{VF} \\ & \mathrm{induzierte} \,\, \mathrm{Maß} \,\, \mathrm{auf} \,\, \mathfrak{B}(\mathbb{R}^d). \end{split}$$

• F heißt diskret, falls es eine höchstens abzählbare Menge $\{y_i \in \mathbb{R}^d \mid i \in I\} \text{ mit } I \subset \mathbb{N} \text{ gibt, sodass}$

$$\forall i \in I \,:\, P(\{y_i\}) > 0 \quad \text{und} \quad \textstyle\sum_{i \in I} P(\{y_i\}) = 0.$$

• F heißt stetig, wenn $P(\{y\}) = 0$ für alle $y \in \mathbb{R}^1$.

• F heißt absolut stetig, falls das Maß P absolut stetig bzgl, dem Lebesgue-Maß ist, also $P \ll \lambda_d$ gilt. Dazu äquivalent: Für alle $\epsilon > 0$ gibt es ein $\delta > 0$, sodass für höchstens abzählbar viele, disjunkte Elementarquader $Q_i = (a_i, b_i]$ mit $i \in J \subset \mathbb{N}$ gilt:

$$\textstyle \sum\limits_{j \in J} \lambda_d(Q_j) \leq \delta \implies \sum\limits_{j \in J} P(Q_j) = \sum\limits_{j \geq J} (\triangle F) Q_j \leq \epsilon.$$

• F heißt singulär stetig, wenn F stetig ist und eine Lebesgue-Menge S mit $\lambda_d(S) = 0$ und P(S) = 1 existiert.

Bem. Falls F absolut stetig, ex. die W-Dichte, die f. ü. durch

$$f = f_{(X_1,...,X_d)} : \mathbb{R}^d \to \mathbb{R}_{\geq 0}, \quad (x_1,...,x_d) \mapsto \frac{\partial^d}{\partial x_1 \cdots \partial x_d} F(x_1,...,x_d)$$

gegeben ist und $\int f(y) dy = F(x)$ für alle $x \in \mathbb{R}^d$ erfüllt.

Satz. Sei X eine ZG und $q: \mathbb{R}^1 \to \mathbb{R}^1$ messbar. Dann gilt

$$\mathbb{E}g(X) = \begin{cases} \int\limits_{\mathbb{R}^1} g(x) \cdot f_X(x) \, \mathrm{d}x, & \text{falls } F_X \text{ absolutstetig mit WD } f_X \\ \sum\limits_{j \in J} g(x_j) \cdot p_j, & \text{falls } F_X \text{ diskret mit Sprüngen } j_k \\ \text{bei } x_j, \ j \in J \subset \mathbb{N} \text{ (und wohldefiniert)} \end{cases}$$

Def. Eine **Zerlegung** eines Intervalls [a, b] ist eine geordnete endliche Menge $Z = \{a = x_0 < x_1 < \dots < x_k = b\} \subset [a, b]$. Eine weitere Zerlegung \widetilde{Z} desselben Intervalls heißt Verfeinerung von Z, falls $Z \supset Z$.

Notation. Die Menge aller Zerlegungen von [a, b] ist $\mathcal{Z}([a, b])$.

Def. Eine Menge von Stützstellen bzgl. einer Zerlegung $\{x_0 < ... < x_k\}$ von [a, b] ist eine Menge $\{\xi_1, ..., \xi_k\}$ mit $\xi_i \in (x_{i-1}, x_i)$ für $i \in \{1, ..., k\}$.

Def. Für zwei Funktionen $f, g: [a, b] \to \mathbb{R}$, eine Zerlegung $Z = \{a = x_0 < ... < x_n = b\}$ von [a, b] und Stützstellen $\xi_1, ..., \xi_n$ bzgl. Z heißt die Summe

$$S(f, dg, Z, \xi_1, ..., \xi_n) := \sum_{j=1}^n f(\xi_j)(g(x_j) - g(x_{j-1}))$$

Riemann-Stieltjes-Summe von f bzgl. g und der Zerlegung Zmit Stützstellen $\xi_1, ..., \xi_n$.

Def. Seien $f, G : [a, b] \to \mathbb{R}$. Die Funktion f heißt Riemann-Stieltjes-integrierbar (RS-integrierbar) bzgl. der Gewichtsfunktion G, wenn gilt: Es gibt ein $\iota \in \mathbb{R}$, sodass für alle $\epsilon > 0$ eine Zerlegung Z_{ϵ} von [a, b] existiert, sodass für alle Verfeinerungen $Z \supset Z_{\epsilon}$ und Wahlen von Stützstellen $\xi_1, ..., \xi_n$ gilt:

$$|\iota - S(f, dG, Z, \xi_1, ..., \xi_n)| \le \epsilon.$$

Dieses (eindeutig bestimmte) ι heißt Riemann-Stieltjes-Integral (RS-Integral) von f bzgl. G, geschrieben

$$\int_{a}^{b} f(x) \, \mathrm{d}G(x) \coloneqq \iota.$$

Bem. Mit G := id erhalten wir aus dem RS-Integral das gewöhnliche Riemann-Integral.

Satz. Das RS-Integral ist sowohl in der integrierten Funktion als auch der Gewichtsfunktion linear.

Satz. Für f bzgl. G auf [a, b] RS-int'bar und G stetig diff'bar gilt

$$\int_{a}^{b} f(x) dG(x) = \int_{a}^{b} f(x) \cdot G'(x) dx.$$

Satz (Partielle Integration). Sei $f:[a,b]\to\mathbb{R}$ bzgl. $G:[a,b]\to\mathbb{R}$ RS-integrierbar. Dann ist auch G bzgl. f RS-integrierbar und es gilt

$$\int_{a}^{b} f(x) dG(x) = [G(x) \cdot f(x)]_{a}^{b} - \int_{a}^{b} G(x) df(x).$$

Bem. Wir können uneigentliche RS-Integrale analog zu uneigentlichen Riemann-Integralen definieren.

Satz. Sei
$$\mathbb{E}|X| = \int_{0}^{\infty} 1 - F_X(x) + F_X(-x) \, \mathrm{d}x < \infty$$
 und
$$\lim_{x \to \infty} x \cdot F_X(-x) = \lim_{x \to \infty} x \cdot (1 - F_X(x)) = 0. \text{ Dann gilt}$$

$$\mathbb{E}X = \int_{0}^{\infty} 1 - F_X(x) - F_X(-x) \, \mathrm{d}x.$$

Satz.
$$\mathbb{E}X = \int\limits_{\mathbb{R}^1} \mathrm{id} \ \mathrm{d}P_X = \int\limits_{-\infty}^{\infty} x \, \mathrm{d}F_X(x)$$

Def. Sei X eine ZG über $(\Omega, \mathfrak{A}, \mathbb{P})$ und $k \in \mathbb{N}$. Dann heißt

- $\mathbb{E}X^k$ k-tes Moment,
- $\mathbb{E}|X|^k$ k-tes absolutes Moment,
- $\mathbb{E}(X \mathbb{E}X)^k$ k-tes zentriertes Moment,
- $\mathbb{E}|X \mathbb{E}X|^k$ k-tes zentriertes absolutes Moment,
- $Var(X) := \mathbb{D}^2 X := \mathbb{E}(X \mathbb{E}X)^2$ Varianz (Dispersion, Streuung),
- $\sqrt{\operatorname{Var}(X)}$ Standardabweichung von X.

Lemma. Es gilt $Var(X) = \mathbb{E}(X - \mathbb{E}X)^2 = \mathbb{E}X^2 - (\mathbb{E}X)^2 > 0$.

Korollar. $(\mathbb{E}X)^2 \leq \mathbb{E}(X^2)$

Bem. Falls $\mathbb{E}|X|^k < \infty$, dann existiert auch $\mathbb{E}X^k$.

Lemma. Es gilt für eine ZG X und $a, b, c \in \mathbb{R}^1$:

- $Var(aX + b) = a^2 Var(X)$ $Var(X) \le \mathbb{E}(X c)^2$
- $\operatorname{Var}(X) = 0 \iff \mathbb{E}(X \mathbb{E}X) = 0 \iff X \equiv \operatorname{const} \mathbb{P}$ -fast-sicher

Satz (Verallgemeinerte Tschebyschow-Ungleichung). Sei X sei eine ZG und $q:[0,\infty)\to[0,\infty)$ nicht fallend. Dann gilt für alle $\epsilon>0$:

$$\mathbb{P}(|X| \ge \epsilon) \le \frac{\mathbb{E}g(|X|)}{g(\epsilon)}$$

Korollar. • Markow-Ungleichung: $\mathbb{P}(|X| \ge \epsilon) \le \frac{\mathbb{E}|X|}{\epsilon}$.

- Tschebyschow-Ungleichung: $\mathbb{P}(|X \mathbb{E}X| \ge \epsilon) \le \frac{\text{Var}(X)}{\epsilon^2}$.
- Für alle a > 0 gilt $\mathbb{P}(|X| \ge \epsilon) \le \frac{\mathbb{E} \exp(a|X|)}{\exp(a\epsilon)}$

Def. Die Abbildung $t \mapsto \mathbb{E} \exp(tX) = \sum_{n=0}^{\infty} \frac{t^n}{n!} \mathbb{E} X^n$ heißt momenterzeugende Funktion der ZG X oder VF F_X .

Bsp. Für
$$X \sim N(\mu, \sigma^2)$$
 gilt $\mathbb{E} \exp(zX) = \exp\left(z\mu + \frac{\sigma^2}{2}z^2\right)$.

Satz. Für
$$p,q\in(1,\infty)$$
 mit $\frac{1}{p}+\frac{1}{q}=1$ und ZGen X,Y gilt
$$|\mathbb{E}XY|\leq \mathbb{E}|XY|\leq (\mathbb{E}|X|^p)^{\frac{1}{p}}\cdot (\mathbb{E}|X|^q)^{\frac{1}{q}}\quad \text{(H\"{o}lder-Ungl)}.$$

Korollar. Cauchy-Schwarz-Ungl:
$$|\mathbb{E}XY| \leq \sqrt{\mathbb{E}(X^2) \cdot \mathbb{E}(Y^2)}$$

Def. Eine Funktion $q: J \to \mathbb{R}$ heißt konvex, falls gilt:

$$\forall x, y \in J : \forall t \in [0, 1] : g(ta + (1-t)b) \le tg(a) + (1-t)g(b)$$

Satz. Sei $g: \mathbb{R}^1 \to \mathbb{R}^1$ konvex auf einem Intervall J und X eine ZG mit $\mathbb{P}(X \in J) = 1$ und $\mathbb{P}|X| < \infty$. Dann gilt für $x, y \in I$, $t \in [0, 1]$:

$$g(\mathbb{E}X) \leq \mathbb{E}g(X)$$
 (Jensen-Ungleichung).

Korollar. Ljapunow-Ungleichung: $|\mathbb{E}X|^{\frac{n}{m}} \leq \mathbb{E}|X|^{\frac{n}{m}}$

Frage (Momentenproblem (MP)). Unter welchen Bedingungen ist eine Folge $(c_i)_{i\in\mathbb{N}}$ eine Momentenfolge einer ZG X d. h. $c_i=\mathbb{E}X^i$?

Antwort. Genau dann, wenn

$$\forall\,n\in\mathbb{N}\,:\,\det\begin{pmatrix}c_0&c_1&\cdots&c_n\\c_1&c_2&\cdots&c_{n+1}\\\vdots&\vdots&&\vdots\\c_n&c_{n+1}&\cdots&c_{2n}\end{pmatrix}\geq 0.$$

Frage. Wann ist die zugehörige VF F_X eindeutig festgelegt?

Bem. Dabei unterscheiden wir folgende Momentenprobleme:

• Stieltjes: $c_n = \int_0^\infty x^n dF_X(x)$ • Hamburger: $c_n = \int_{-\infty}^\infty x^n dF_X(x)$

Antwort. Hinreichende Bedingung für Bestimmtheit (Çarleman):

• Stieltjes: $\sum_{n=1}^{\infty} c_n^{-\frac{1}{2n}} = \infty$ • Hamburger: $\sum_{n=1}^{\infty} c_{2n}^{-\frac{1}{2n}} = \infty$

Bem. Sei $X=(X_1,...,X_k)$ eine k-dimensionale ZG über $(\Omega,\mathfrak{A},\mathbb{P})$. Die ZG $X_1,...,X_k$ heißen stochastisch unabhängig, falls

$$\mathbb{P}(\bigcap_{i=1}^{k} \{X_i \in B_i\}) = \prod_{i=1}^{k} \mathbb{P}(\{X_i \in B_i\})$$

für alle $B_1,...,B_k\in\mathcal{L}(\mathbb{R}^1)$. Dies ist genau dann der Fall, wenn

$$\mathbb{P}(X_1 \le x_1, ..., X_k \le x_k) = \mathbb{P}(X_1 \le x_1) \cdot ... \cdot \mathbb{P}(X_k \le x_k)$$

für alle $x_1,...,x_k \in \mathbb{R}$. Falls F_X absolut stetig ist, also die W-Dichte $f_X(x_1,...,x_k) = \frac{\partial F(x_1,...,x_k)}{\partial x_1 \cdots \partial x_k}$ existiert, ist dies äquivalent zu

$$\forall x_1, ..., x_k \in \mathbb{R} : f_X(x_1, ..., x_k) = f_{X_1}(x_1) \cdot ... \cdot f_{X_k}(x_k).$$

Für diskrete Verteilungen ist dies äquivalent zu

$$\forall x_1, ..., x_k \in \mathbb{R} : \mathbb{P}(X_1 = x_1, ..., X_k = x_k) = \mathbb{P}(X_1 = x_1) \cdot ... \cdot \mathbb{P}(X_k = x_k).$$

Def. Für eine k-dimensionale ZV $X = (X_1, ..., X_k)$ heißt

$$F_{(X_{i_1},...,X_{i_l})}(x_{i_1},...,x_{i_l}) = \lim_{\substack{x_j \to \infty \\ j \in \{1,...,k\} \setminus \{i_1,...,i_l\}}} F_X(x_1,...,x_k)$$

mit $l \in \{1,...,k-1\}$ und $1 \le i_1 < ... < i_l \le k$ l-dimensionale Rand-(Marginal-)verteilungsfunktion.

Bem. Falls $f_X(x_1,...,x_k)$ ex., so existieren alle Randdichten

$$f_{(X_{i_1},...,X_{i_l})}(x_{i_1},...,x_{i_l}) = \int_{\mathbb{D}^k - l} f_X(x_1,...,x_k) dx_{i_1} \cdots dx_{i_l}.$$

Für k=2 und ZV diskret mit Masseschwerpunkten $x_m=(x_m^1,x_m^2)$: $\mathbb{P}(X_1=x_m^1)=\sum_{x^2}\mathbb{P}(X_1=x_m^1,X_2=x_m^2)$

Bem. Im Allgemeinen bestimmen die Randverteilungen nicht die gemeinsame Verteilung des Vektors.

Def. (X,Y) sei eine zweidimensionale ZV über $(\Omega,\mathfrak{A},\mathbb{P})$ mit $\mathbb{E}X^2<\infty$ und $\mathbb{E}Y^2<\infty$. Dann heißen

$$Cov(X,Y) := \mathbb{E}(X \cdot Y) - \mathbb{E}X \cdot \mathbb{E}Y = \mathbb{E}((X - \mathbb{E}X) \cdot (Y - \mathbb{E}Y))$$
$$Cor(X,Y) := \frac{Cov(X,Y)}{\sqrt{\text{Var}(X) \cdot \text{Var}(Y)}}$$

Kovarianz bzw. **Korrelation** von X und Y.

Satz. • Falls X, Y unabhängig, so gilt $\operatorname{Cov}(X, Y) = \operatorname{Cor}(X, Y) = 0$ • $|\operatorname{Cor}(X, Y)| \le 1$ • $\operatorname{Cor}(X, Y) = 1 \iff \exists \ a, b \in \mathbb{R} : \mathbb{P}(Y = aX + b) = 1$

Def. Falls Cor(X,Y) = 0, so heißen X,Y unkorreliert.

Sprechweise. • $Cor(X,Y) \approx 1$: positive Korrelation

• $Cor(X,Y) \approx -1$: negative Korrelation

Achtung. Aus Unkorreliertheit folgt i. A. nicht Unabhängigkeit!

 $\mathbf{Bsp.}\,$ Sei X eine ZG mit der symmetrischen Dichte

$$f_X(x) = f_X(-x)$$
 und
$$\int_{-\infty}^{\infty} |x|^3 f_X(x) dx < \infty,$$

dann ist $\operatorname{Cov}(X,X^2)=0$, aber X und X^2 nicht unabhängig.

Bem. Falls (X,Y)eine zweidimensionale Normalverteilung besitzt, so folgt aus $\mathrm{Cor}(X,Y)=0$ die Unabhängigkeit von X und Y.

Satz. $X_1,...,X_n$ seien paarweise unkorrelierte ZGn mit $\mathbb{E}X_i^2<\infty$ für i=1,...,n. Dann gilt

$$Var(X_1 + \dots + X_n) = Var(X_1) + \dots + Var(X_n)$$

Bem. Seien X und Y ZGen. Gesucht: $\mathbb{E}(X \cdot Y)$

• Angenommen, es existiert eine gemeinsame WD $f_{(X,Y)}$. Dann:

$$\mathbb{E}(XY) = \int_{\mathbb{R}^2} xy \cdot f_{(X,Y)}(x,y) \, \mathrm{d}(x,y)$$
$$\mathbb{E}X = \int_{-\infty}^{\infty} x \left(\int_{-\infty}^{\infty} f_{(X,Y)}(x,y) \, \mathrm{d}y \right) \, \mathrm{d}x$$

• Angenommen, (X,Y) hat Werte in einer höchstens abzählbaren Menge $(x_i,y_j)_{(i,j)\in IJ}$ mit $IJ\subset \mathbb{N}\times\mathbb{N}$, die mit Wahrscheinlichkeit $p_{ij}>0$ angenommen werden. Dann gilt

$$\mathbb{E}(XY) = \sum_{(i,j) \in IJ} x_i y_j p_{ij}$$

$$\mathbb{E}X = \sum_{i \in \pi_1(IJ)} x_i \cdot \mathbb{P}(X=x_i) = \sum_{(i,j) \in IJ} x_i p_{ij}$$

$$Cov(X,Y) = \sum_{(i,j) \in IJ} x_i y_j \left(p_{ij} - \mathbb{P}(X=x_i) \cdot \mathbb{P}(Y=y_j) \right)$$

• Angenommen, (X, Y) ist singulär-stetig verteilt oder besitzt eine singulärstetige Komponente. Dann gilt:

$$\mathbb{E}(XY) = \int_{-\infty - \infty}^{\infty} \int_{-\infty}^{\infty} x \cdot y \, dF(x, y)$$

$$\mathbb{E}(XY) = \int_{0}^{\infty} \int_{0}^{\infty} \mathbb{P}(X > x, Y > y) \, dx \, dy \quad \text{für } X, Y \ge 0.$$

Satz. Sei Y := g(X), wobei $g : \mathbb{R}^1 \to \mathbb{R}^1$ mb und X eine ZG. Dann: $F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(X \in g^{-1}((-\infty, y])).$

Satz. X sei absolut stetig mit Dichte f_X und $\mathbb{P}(X \in D) = 1$ für $D \subset \mathbb{R}^1$ offen und $g: D \to \mathbb{R}^1$ eine \mathcal{C}^1 -Funktion mit g'(x) > 0 für alle $x \in D$. Dann ist Y := g(X) absolut-stetig mit der Dichte

$$f_Y(y) = \begin{cases} 0, & \text{für } y \in \mathbb{R}^1 \setminus g(D) \\ \frac{f_X(g^{-1}(y))}{|g'(g^{-1}(y))|} & \text{für } y \in g(D) \end{cases}$$

Bem. Falls die Ableitung $g':D\to\mathbb{R}^1$ wechselndes Vorzeichen besitzt, so muss in Monotoniebereiche unterteilt werden.

Satz. Sei $X=(X_1,...,X_k)$ ein k-dimensionaler Zufallsvektor mit WD f_X , G, H \otimes \mathbb{R}^k offen und $g=(g_1,...,g_k):G\to H$ ein \mathcal{C}^1 -Diffeo. Dann findet man Funktionen $h_i:H\to\mathbb{R}^1$, i=1,...,k mit $h(y_1,...,y_k)=(h_1(y_1,...,y_k),...,h_k(y_1,...,y_k))$ für $(y_1,...,y_k)\in H$, sodass für die Dichte von $Y=(Y_1,...,Y_k)$ gilt:

$$f_Y(y_1,...,y_k) = \begin{cases} 0, & \text{für } (y_1,...,y_k) \not\in H, \text{ ansonsten} \\ \frac{f_X(h_1(y_1,...,y_k),...,h_k(y_1,...,y_k))}{|\det Dg(h_1(y_1,...,y_k),...,h_k(y_1,...,y_k))|} \end{cases}$$

Satz. (X,Y) besitze eine gemeinsame Dichte $f_{(X,Y)}$. Dann gilt für die Dichten von $Z_1:=X+Y,\,Z_2:=X\cdot Y,\,Z_3:=\frac{V}{V}$:

$$\begin{split} f_{Z_1}(z) &= \int\limits_{-\infty}^{\infty} f_{(X,Y)}(z-y,y) \,\mathrm{d}y \overset{\mathrm{Unabh.}}{=} \int\limits_{-\infty}^{\infty} f_X(z-y) \cdot f_Y(y) \,\mathrm{d}y \\ f_{Z_2}(z) &= \int\limits_{-\infty}^{\infty} f_{(X,Y)}(\frac{z}{y},y) \cdot \frac{1}{|y|} \,\mathrm{d}y \overset{\mathrm{Unabh.}}{=} \int\limits_{-\infty}^{\infty} f_X(\frac{z}{y}) \cdot f_Y(y) \cdot \frac{1}{|y|} \,\mathrm{d}y \\ f_{Z_3}(z) &= \int\limits_{-\infty}^{\infty} f_{(X,Y)}(zy,y) \cdot |y| \,\mathrm{d}y \overset{\mathrm{Unabh.}}{=} \int\limits_{-\infty}^{\infty} f_X(zy) \cdot f_Y(y) \cdot |y| \,\mathrm{d}y \end{split}$$

Bsp. Seien X, Y unabhängig, N(0, 1)-verteilt, $Z := \frac{X}{Y}$. Dann: $f_Z(z) = ... = \frac{1}{\pi(1+z^2)}$ (Cauchy-verteilt).

Def. Seien X und Y unabhängige ZGen. Dann gilt für $z \in \mathbb{R}$:

$$F_{X+Y}(z) = \mathbb{P}(X+Y \le z) = \int_{\mathbb{R}^1} F_X(z-y) \, dF_Y(y) =: (F_X * F_Y)(z).$$

Dabei heißt $(F_X * F_Y)$ Faltung von F_X und F_Y .

Prop. • $F_X * F_Y = F_Y * F_X$ (Kommutativität)

- $F_{X+Y} = F_X * F_Y$, wenn X und Y unabhängig
- Falls X oder Y eine Dichte besitzen, so auch X+Y bei Unabh.:

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(z-y) \, \mathrm{d}F_Y(y) \stackrel{\text{oder}}{=} \int_{-\infty}^{\infty} f_Y(z-x) \, \mathrm{d}F_X(x)$$

$$\stackrel{\text{oder}}{=} \int_{-\infty}^{\infty} f_Y(z-x) \, \mathrm{d}f_X(x)y$$

Satz. • Seien X_1 und X_2 unabhängig und (X_1+X_2) normalverteilt (also $X_1+X_2 \sim N(\mu, \sigma^2)$). Dann sind X_1 und X_2 normalverteilt.

• Seien X_1 und X_2 unabhängig und (X_1+X_2) Poisson-verteilt (also $X_1+X_2 \sim Poi(\lambda)$). Dann sind auch X_1 und X_2 Poisson-verteilt.

Satz. Seien $X_1, ..., X_n$ unabhängig. Dann gilt:

- $\frac{1}{n}(X_1 + ... + X_n) \xrightarrow{n \to \infty} \mathbb{E}X_1$, falls $X_1, ..., X_n$ identisch verteilt.
- $\sqrt{n}(\frac{1}{n}(X_1 + \dots + X_n) \mathbb{E}X_1) \xrightarrow{n \to \infty} N(0, \text{Var}(X_1))$, falls $\text{Var}(X_1) < \infty$

Produkt-Maße und der Satz von Fubini-Tonelli

Voraussetzung. Seien $(\Omega_i, \mathfrak{A}_i)$ für $i \in \{1, ..., n\}$ messbare Räume und $\Omega := \Omega_1 \times ... \times \Omega_n$ das kartesische Produkt der Mengen.

Notation. $\pi_i: \Omega \to \Omega_i, \ (\omega_1, ..., \omega_1) \mapsto \omega_i \ (\text{Projektionsabbildung})$

Def. Die **Produkt-** σ **-Algebra** von $\mathfrak{A}_1,...,\mathfrak{A}_n$ ist definiert durch

$$\mathfrak{A} := \mathfrak{A}_1 \otimes ... \otimes \mathfrak{A}_n := \sigma \left(\pi_1^{-1}(\mathfrak{A}_1) \cup ... \cup \pi_n^{-1}(\mathfrak{A}_n) \right).$$

Satz. $\mathfrak{A} = \sigma(\{A_1 \times ... \times A_n \mid A_1 \in \mathfrak{A}_1, ..., A_n \in \mathfrak{A}_n\})$

Lemma. Sei \mathcal{E}_i mit $\sigma(E_i) = \mathfrak{A}_i$ und es existieren Folgen $(E_i^k)_{k \in \mathbb{N}}$ in \mathcal{E}_i mit $E_i^k \uparrow \Omega_i$. Dann gilt:

$$\mathfrak{A}_1 \otimes ... \otimes \mathfrak{A}_n = \sigma \left(\{ E_1 \times ... \times E_n \mid E_1 \in \mathcal{E}_1, ..., E_n \in \mathcal{E}_n \} \right)$$

Bem. Auf die Zusatzvoraussetzung der monoton aufsteigenden Mengenfolge können wir nicht verzichten.

Satz. $\mathcal{L}(\mathbb{R}^n) = \mathcal{L}(\mathbb{R}^1) \otimes ... \otimes \mathcal{L}(\mathbb{R}^1)$

Lemma. $(\widetilde{\Omega}',\widetilde{\mathfrak{A}})$ sei ein messbarer Raum. Dann gilt: $f:\widetilde{\Omega} \to \Omega_1 \times ... \times \Omega_n$ genau dann $(\widetilde{\mathfrak{A}},\mathfrak{A})$ -messbar, wenn für alle $i \in \{1,...,n\}$ die Abbildung $f_i \coloneqq \pi_i \circ f: \widetilde{\Omega} \to \Omega_i$ $(\widetilde{\mathfrak{A}},\mathfrak{A}_i)$ -messbar ist.

Satz. Sei μ_1 auf $(\Omega_1, \mathfrak{A}_1)$ und μ_2 auf $(\Omega_2, \mathfrak{A}_2)$ zwei σ -endliche Maße. Dann ex. genau ein Maß $\mu := \mu_1 \times \mu_2$ auf $\mathfrak{A} = \mathfrak{A}_1 \otimes \mathfrak{A}_2$ mit

 $\forall A_1 \in \mathfrak{A}_1, A_2 \in \mathfrak{A}_2 : (\mu_1 \times \mu_2)(A_1 \times A_2) = \mu_1(A_1) \cdot \mu_2(A_2).$

Das Maß μ ist dann auch σ -endlich auf (Ω, \mathfrak{A}) .

Korollar. Das Produkt-W-Maß $\mathbb{P}=\mathbb{P}_1\times\mathbb{P}_2$ ist das einzige W-Maß auf $\mathfrak{A}_1\otimes\mathfrak{A}_2$ mit der Eigenschaft:

- $\mathbb{P}(A_1 \times \Omega_2) = \mathbb{P}_1(A_1)$ und $\mathbb{P}(\Omega_1 \times A_2) = \mathbb{P}_2(A_2)$
- $\mathbb{P}(B_1 \cap B_2) = \mathbb{P}(B_1) \times \mathbb{P}(B_2)$ für $B_1 = A_1 \times \Omega_2$, $B_2 = \Omega_1 \times A_2$

Korollar. Für $k, l \in \mathbb{N}_{>0}$ mit k + l = n gilt $\lambda_n = \lambda_k \times \lambda_l$

Def. Sei $A \subset \Omega_1 \times \Omega_2$, $\omega_1 \in \Omega_1$, $\omega_2 \in \Omega_2$, $f: \Omega_1 \to \Omega_2 \to \mathbb{R}^1$. Dann heißen

$$\begin{split} A_{\omega_1} &\coloneqq \{\omega_1 \,|\, (\omega_1, \omega_2) \in A\} = \pi_2(A \cap \pi_1^{-1}(\omega_1)) \ \omega_1\text{-Schnitt von } A, \\ A_{\omega_2} &\coloneqq \{\omega_1 \,|\, (\omega_1, \omega_2) \in A\} = \pi_1(A \cap \pi_2^{-1}(\omega_2)) \ \omega_2\text{-Schnitt von } A, \\ f_{\omega_1} &\colon \Omega_2 \to \mathbb{R}^1, \ \omega_2 \mapsto f(\omega_1, \omega_2) \quad \omega_1\text{-Schnitt von } f, \\ f_{\omega_2} &\colon \Omega_1 \to \mathbb{R}^1, \ \omega_1 \mapsto f(\omega_1, \omega_2) \quad \omega_2\text{-Schnitt von } f. \end{split}$$

Satz. Sei $A \in \mathfrak{A}_1 \otimes \mathfrak{A}_2$ und f sei $(\mathfrak{A}_1 \otimes \mathfrak{A}_2)$ -messbar. Dann gilt

$$\forall \, \omega_1 \in \Omega_1 \, : \, A_{\omega_1} \in \mathfrak{A}_2 \quad \text{und} \quad \forall \, \omega_2 \in \Omega_2 \, : \, A_{\omega_2} \in \mathfrak{A}_1$$

$$\forall \, \omega_1 \in \Omega_1 \, : \, f_{\omega_1} \text{ ist } \mathfrak{A}_2\text{-messbar} \quad \text{und} \quad \forall \, \omega_2 \in \Omega_2 \, : \, f_{\omega_2} \text{ ist } \mathfrak{A}_1\text{-messbar}$$

Lemma. Sei μ_i ein σ -endliches Maß auf $(\Omega_i, \mathfrak{A}_i)$ für i = 1, 2. Dann sind für $A \in \mathfrak{A}_1 \otimes \mathfrak{A}_2$ die Funktionen $f_1(\omega_1) = \mu_2(A_{\omega_1})$ bzw. $f_2(\omega_2) = \mu_1(A_{\omega_2})$ nichtnegative \mathfrak{A}_1 - bzw. \mathfrak{A}_2 -messbare Funktionen auf Ω_1 bzw. Ω_2 und es gilt

$$\int_{\Omega_1} f_1 \, \mathrm{d}\mu_1 = \mu(A) = \int_{\Omega_2} f_2 \, \mathrm{d}\mu_2,$$

wobei $\mu = \mu_1 \times \mu_2$ das Produktmaß auf $\mathfrak{A}_1 \otimes \mathfrak{A}_2$ ist.

Satz (Fubini, Tonelli). Seien $(\Omega_1, \mathfrak{A}_1, \mu_1)$ und $(\Omega_2, \mathfrak{A}_2, \mu_2)$ zwei σ -endliche Maßräume und sei

$$f: \Omega_1 \times \Omega_2 \to \overline{\mathbb{R}^1}$$

eine nichtnegative, numerische ($\mathfrak{A}_1 \otimes \mathfrak{A}_2)\text{-messbare}$ Funktion. Dann sind

$$\omega_1 \mapsto \int_{\Omega_2} f_{\omega_1} d\mu_2$$
 und $\omega_2 \mapsto \int_{\Omega_1} f_{\omega_2} d\mu_1$

 \mathfrak{A}_1 - bzw. \mathfrak{A}_2 -messbare Funktionen und es gilt

Bem. Falls f ($\Omega_1 \otimes \Omega_2$)-messbar mit Vorzeichenwechsel, so muss $\int\limits_{\Omega_1 \times \Omega_2} |f| \, \mathrm{d}(\mu_1 \times \mu_2) \text{ vorausgesetzt werden.}$