"Wiederholungsaufgaben, Ungleichungen"

1. Für welche reellen x gilt die Gleichung $(x-2)^2 - 9 = (x-5)(x+1)$?

Lösung

 \Leftrightarrow $x^2 - 4x + 4 - 9 = x^2 + x - 5x - 5 <math>\Rightarrow$ Die Gleichung gilt für alle reellen x.

2. Für welche reellen a haben die folgenden Gleichungen genau eine , genau 2 , gar keine reelle Lösung x ?

a)
$$x^2 + 6x + a = 0$$
, b) $x^2 - 2ax + a^2 = 0$, c) $x^2 - 2ax + a = 0$.

Lösung

$$a) \quad x_{1,2} = -3 \pm \sqrt{9-a} \quad \Rightarrow \quad \begin{cases} \text{genaueineL\"osung} & \text{f\"ur} & a=9 \\ \text{genau} & 2 & \text{L\"osungen} & \text{f\"ur} & a<9 \\ \text{keine L\"osungf\"ur} & a>9 \end{cases} \ ,$$

b) $x_{1,2} = a \pm \sqrt{a^2 - a^2} \implies \text{für jedes} a \in R \text{ immergenaueineL\"osung}$,

$$c) \quad x_{1,2} = a \pm \sqrt{a^2 - a} = a \pm \sqrt{a(a-1)} \ \Rightarrow \begin{cases} \text{genaueineLsung für} & a \in \{0,1\} \\ \text{genau2L\"osungenf\"ur} & a \in \left(1,\infty\right) \cup \left(-\infty,0\right) \\ \text{keineL\"osungf\"ur} & a \in \left(0,1\right) \end{cases} \ .$$

3. Bestimmen Sie alle reellen x mit der Eigenschaft : $\frac{3}{|x-9|} > \frac{2}{x+2}$.

Tip: welche reellen Zahlen x scheiden von vornherein aus?

Lösung

x = -2 und x = 9 scheiden von vornherein aus, da dann einer der Nenner = 0 wird. Wir unterscheiden darum die folgenden Fälle und Unterfälle :

1.
$$x > -2$$
: $\frac{3}{|x-9|} > \frac{2}{x+2} \Leftrightarrow 3(x+2) > 2|x-9|$,

$$1.1 \quad -2 < x < 9 \Leftrightarrow 3(x+2) > 2(-x+9) \Leftrightarrow 5x > 12 \Leftrightarrow x > \frac{12}{5} \quad .$$

$$1.2 \quad x > 9 \iff 3\big(x+2\big) > 2\big(x-9\big) \iff x > -24 \quad .$$

$$2. \qquad x<-2: \ \frac{3}{\left|x-9\right|}>\frac{2}{x+2} \Leftrightarrow 3\big(x+2\big)<2\big|x-9\big| \Leftrightarrow 3\big(x+2\big)<2\big(9-x\big)$$

$$\Leftrightarrow 5x < 12 \Leftrightarrow x < \frac{12}{5}$$
.

Die Ungleichung ist also genau für die x mit x < -2 oder 2,4 < x < 9 oder x > 9 erfüllt. Mit Intervallschreibweise : $x \in (-\infty, -2) \cup (2.4, 9) \cup (9, \infty)$.

 Skizzieren Sie in einem rechtwinkligen Koordinatensystem die Menge der Punkte (x,y) mit

a)
$$|x+y| \le 1$$
, b) $|x| + |y| \le 1$, c) $x^2 + y^2 \le 4$, d) $x^2 - 2x + y^2 - 3 \ge 0$.

Lösung

a)
$$|x + y| \le 1 \Leftrightarrow -1 \le x + y \le 1 \Leftrightarrow -1 - x \le y \le 1 - x$$
,

b)
$$|y| \le 1 - |x| \iff -1 + |x| \le y \le 1 - |x|$$
,

c) $x^2 + y^2 \le 4$ \Rightarrow Inneres des Kreises um (0, 0) mit r = 2.

d)
$$x^2 - 2x + y^2 - 3 \ge 0 \Leftrightarrow x^2 - 2x + 1 + y^2 \ge 4 \Leftrightarrow (x - 1)^2 + y^2 \ge 4$$

 \Rightarrow Äußeres des Kreises um (1, 0) mit Radius 2.

5. Zeigen Sie durch vollständige Induktion nach n:

a)
$$\sum_{k=1}^{n} k^3 = \frac{1}{4} n^2 (n+1)^2$$
, b) $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$.

Lösung

Die Struktur eines Induktionsbeweises ist bekannt ; daher hier nur die Rechnungen für den Induktionsschluss "von n auf n+1":

a)
$$\sum_{k=1}^{n+1} k^3 = \frac{1}{4} n^2 (n+1)^2 + (n+1)^3 = (n+1)^2 \left(\frac{1}{4} n^2 + n + 1\right) = \frac{1}{4} (n+1)^2 (n^2 + 4n + 4) = \frac{1}{4} (n+1)^2 (n+2)^2$$

$$\sum_{k=1}^{n+1} \frac{1}{k(k+1)} = \frac{n}{n+1} + \frac{1}{(n+1)(n+2)} = \frac{n(n+2)+1}{(n+1)(n+2)} = \frac{n^2+2n+1}{(n+1)(n+2)} = \frac{(n+1)^2}{(n+1)(n+2)} = \frac{n+1}{n+2}$$

6. Wie lauten die der 1. binomischen Formel entsprechenden Aussagen für

$$(a+b)^5$$
 und $(a+b)^6$?

Lösung

Pascal-Dreieck:

						1						
					1		1					
				1		2		1				
			1		3		3		1			
		1		4		6		4		1		
	1		5		10		10		5		1	
1		6		15		20		15		6		1

a)
$$(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$$
,

b)
$$(a+b)^6 = a^6 + 6a^5b + 15a^4b^2 + 20a^3b^3 + 15a^2b^4 + 6ab^5 + b^6$$
.

7. Berechnen Sie die Binomialkoeffizienten

$$\begin{pmatrix} 10 \\ 0 \end{pmatrix} \quad , \quad \begin{pmatrix} 10 \\ 1 \end{pmatrix} \quad , \quad \begin{pmatrix} 10 \\ 2 \end{pmatrix} \quad , \quad \begin{pmatrix} 100 \\ 97 \end{pmatrix} \quad , \quad \begin{pmatrix} 45 \\ 6 \end{pmatrix} \quad .$$

Lösung

$$\binom{10}{0} = 1, \ \binom{10}{1} = 10 \ , \ \binom{10}{2} = 45 \ \ (allg.: \binom{n}{2} = \frac{n(n-1)}{2}) \quad \ ,$$

$$\binom{100}{97} = \binom{100}{3} = \frac{100}{3! \cdot 97!} = 161700,$$

$$\binom{45}{6}$$
 = 8145060.

 $8. \quad \text{Zeigen Sie für natürliche} \ k \ \text{ und } n \ \text{ mit } \ 1 \leq k \leq n \ ; \qquad k \binom{n}{k} = n \binom{n-1}{k-1} \quad .$

Lösung

$$k\binom{n}{k} = \frac{k \cdot n!}{k! \cdot (n-k)!} = \frac{n \cdot (n-1)!}{(k-1)! \cdot (n-k)!} = n \frac{(n-1)!}{(k-1)! \cdot ((n-1)-(k-1))!} = n \binom{n-1}{k-1}$$