Group 11

Wage difference between Black & White People and the reason behind it

Chen (Cici) Chen cc4291
Sixing Hao sh3799
Wenwen Shen ws2561
Yuting He yh3054
Yang Meng ym2696

Introduction

- Data
- Histogram of Wage
- Test for normality

Data

The data is roughly about 25,000 records of people between the ages of 18 and 70, and the data are taken many decades ago so the wages are lower compared to current times.

Wages	Education +	Experience +	Region	Race \$	Commute Distance +	Employee 🖣
354.94	7	45	northeast	white	24.3	200
370.37	9	9	northeast	white	26.2	130
754.94	11	46	northeast	white	26.4	153
377.23	16	22	northeast	white	7.1	181
284.9	8	51	northeast	white	11.4	32
264.06	12	0	northeast	white	1	166
1643.83	14	18	northeast	white	10.2	195
A						J

Response

Predictors

Histogram of Wage

Test for Normality

QQ-plot

Shapiro-wilk Test for Wage

```
## Shapiro-Wilk normality test
##
## data: log(wage.test)
## W = 0.99418, p-value = 2.273e-13
```

Even using **Log transformation**, it is still not normal, so that is the reason why we go to **Non-parametric** methods.

Exploratory Data Analysis

- Difference of wage
- Correlation between variables

Wage

Different!

Education (in Years)

Different!

Number of Employees

Commuting Distance

Not a big difference!

Not a big difference!

Working Experience in Years (Need Further Research)

Different!

Scatter Plot

Wage (log)
 against other
 numeric variables

 Scatter plot and best fitting line displayed similar results

Correlation

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

$$r_s = \frac{\sum_{i=1}^{n} (R_i^x - \frac{n+1}{2})(R_i^y - \frac{n+1}{2})}{\sqrt{\sum_{i=1}^{n} (R_i^x - \frac{n+1}{2})^2 \sum_{i=1}^{n} (R_i^y - \frac{n+1}{2})^2}}$$

$$t_{corr} = \sqrt{\frac{n-2}{1-r^2}} r \sim t_{(n-2)} \quad under \ H_0$$

$$Z = \frac{r_s}{\sqrt{Var(r_s)}} = r_s \sqrt{n-1} \sim N(0,1) \quad under \ H_0$$

$$r_s = \frac{\sum_{i=1}^{n} (R_i^x - \frac{n+1}{2})(R_i^y - \frac{n+1}{2})}{\sqrt{\sum_{i=1}^{n} (R_i^x - \frac{n+1}{2})^2 \sum_{i=1}^{n} (R_i^y - \frac{n+1}{2})^2}}$$

$$Z = \frac{r_s}{\sqrt{Var(r_s)}} = r_s \sqrt{n-1} \sim N(0,1) \quad under \ H_0$$

$$r_{ au}=2rac{\sum_{i=1}^{n-1}V_i}{C_n^2}-1$$

$$Z=rac{r_{ au}}{\sqrt{Var(r_{ au})}}=rac{r_{ au}}{\sqrt{rac{4n+10}{9(n^2-n)}}}\sim N(0,1) \quad under \; H_0$$
 where V_i is the number of pairs (X_i,Y_i) that are concordant

Short Conclusion for EDA

Boxplot

Variables	Wage	Education Years	Number of employees	Commuting Distance	Working years
Conclusion	Different	Different	Not a big difference	Not a big difference	Need further research

Correlation

Tests

- Two-sample tests for wage
- Survival Analysis for education years
- M-H test for work experience

Two Sample Tests for Difference in Wage

	Output	Standard Version	Permutation Version
t-test	Welch Two Sample t-test data: black and white t = -22.975, df = 2952.7, p-value < 0.00000000000000022 alternative hypothesis: true difference in means is not equal	P-value ≈ 0	P-value ≈ 0
Wilcoxon Rank-sum test	Wilcoxon rank sum test with continuity correction data: black and white W = 12537000, p-value < 0.00000000000000022 alternative hypothesis: true location shift is not equal to 0	P-value ≈ 0 Differ	
F-test	Analysis of Variance Table Response: wage Df Sum Sq Mean Sq F value Pr(>F) race 1 56713844 56713844 275.6 < 0.000000000000000022 *** Residuals 20237 4164404694 205782	P-value ≈ 0	P-value ≈ 0
Kruskal-Wallis test	Kruskal-Wallis rank sum test data: wage by race Kruskal-Wallis chi-squared = 446.68, df = 1, p-value < 0.00000000000000022	P-value ≈ 0	P-value ≈ 0

Survival Analysis for Education (in Years)

Black People receive less education compared to White People.

Chi-square test of Experience between Races

	Inexperienced	Experienced	
Black	954	980	
White	9333	8972	

Basic Approach

- Experienced = (Working years > 16)
 (16 years is the median)
- Chi-square test leads to the same result by p-value=0.1728
- So, the proportion of experienced workers in two races has no difference in this test.
- But...

Further Research

Simpson's Paradox!

The difference in midwest and northeast region is significant, but their population is less than a half.

Midwest

Midwest	Inexperienced	Experienced
Black	153	154
White	2366	2179

South

South	Inexperienced	Experienced
Black	577	568
White	2673	2609

Northeast

Northeast	Inexperienced	Experienced
Black	134	183
White	2144	2189

West

West	Inexperienced	Experienced
Black	90	75
White	2150	1995

Mantel-Haenszel Test

- In M-H test, p-value=0.0946, which is different from that of Chi-square test (p-value=0.1728). So Black have more working experience.
- Recall the education they received, it leads to the conclusion that Black tend to go to work with lower degree.

Conclusion

Thank you!