Week 11 Lab (Hierarchical Clustering)

COSC 3337 Dr. Rizk

About The Data

We'll be using the Credit Card Dataset from kaggle for this lab, but feel free to follow along with your own dataset. We will develop a customer segmentation to define marketing strategy. The sample Dataset summarizes the usage behavior of about 9000 active credit card holders during the last 6 months. The file is at a customer level with 18 behavioral variables:

- CUSTID: Identification of Credit Card holder (Categorical) • BALANCE : Balance amount left in their account to make purchases (
- BALANCEFREQUENCY: How frequently the Balance is updated, score between 0 and 1 (1 = frequently updated, 0 = not
- frequently updated) • PURCHASES: Amount of purchases made from account
- ONEOFFPURCHASES: Maximum purchase amount done in one-go
- INSTALLMENTSPURCHASES: Amount of purchase done in installment
- CASHADVANCE: Cash in advance given by the user PURCHASESFREQUENCY: How frequently the Purchases are being made, score between 0 and 1 (1 = frequently purchased,
- 0 = not frequently purchased) ONEOFFPURCHASESFREQUENCY: How frequently Purchases are happening in one-go (1 = frequently purchased, 0 = not frequently purchased)
- PURCHASESINSTALLMENTSFREQUENCY: How frequently purchases in installments are being done (1 = frequently done, 0 = not frequently done)
- CASHADVANCEFREQUENCY: How frequently the cash in advance being paid CASHADVANCETRX: Number of Transactions made with "Cash in Advanced"
- PURCHASESTRX: Numbe of purchase transactions made
- CREDITLIMIT: Limit of Credit Card for user • PAYMENTS : Amount of Payment done by user
- MINIMUM_PAYMENTS: Minimum amount of payments made by user
- PRCFULLPAYMENT : Percent of full payment paid by user
- TENURE: Tenure of credit card service for user
- **About Hierarchical clustering** Hierarchical clustering is a method which seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall
- into two types:

moves down the hierarchy.

• Agglomerative: This is a "bottom-up" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy. • Divisive: This is a "top-down" approach: all observations start in one cluster, and splits are performed recursively as one

- In general, the merges and splits are determined in a greedy manner, and the results of hierarchical clustering are usually presented in a dendrogram.
- **Agglomerative Clustering**

 Compute the proximity matrix Let each data point be a cluster

Repeat: Merge two closest clusters and update the proximity matrix until 1/ K cluster remains

The algorithm goes as follows:

- For example, say we have six data points {a,b,c,d,e,f}
 - In the initial step, we consider all the six data points as individual clusters as shown in the image below.
- The first step is to determine which elements to merge in a cluster. Usually, we want to take the two closest elements, according to the chosen distance. We construct a distance matrix at this stage, where the number in the i-th row j-th column is the distance

between the i-th and j-th elements. Then, as clustering progresses, rows and columns are merged as the clusters are merged and the distances updated.

Computation of Proximity/Distance Matrix

following: • The maximum distance between elements of each cluster (also called complete-linkage clustering) The minimum distance between elements of each cluster (also called single-linkage clustering)

To calculate the proximity between two clusters, we need to define the distance between them. Usually the distance is one of the

Note: Euclidean, Manhattan, Mahalanobis, etc. distance formulas can be used when calculating distances for each of the above.

The mean distance between elements of each cluster (also called average linkage clustering)

- **Implementation**
- Similarly to the K Means lab, we'll skip the data exploration portion and jump to implementation, but you're welcome to explore

import matplotlib.pyplot as plt

rcParams['figure.figsize'] = 15, 5

0.818182

0.909091

The sum of all intra-cluster variance.

this data, or your own if working with a different dataset.

import numpy as np import pandas as pd

cc df.head()

1 3202.467416

0

Out[5]: BALANCE

40.900749

BALANCE FREQUENCY

ONEOFF PURCHASES

CASH ADVANCE TRX

PRC FULL PAYMENT

dtype: int64

TENURE

INSTALLMENTS PURCHASES

CASH ADVANCE FREQUENCY

ONEOFF PURCHASES FREQUENCY

PURCHASES INSTALLMENTS FREQUENCY

PURCHASES FREQUENCY

PURCHASES

CASH ADVANCE

import seaborn as sns

sns.set_style('darkgrid')

from matplotlib import rcParams

Let's first load the data into a pandas DataFrame. MINIMUM_PAYMENTS and CREDIT_LIMIT are missing a few values, so we'll go

BALANCE BALANCE_FREQUENCY PURCHASES ONEOFF_PURCHASES INSTALLMENTS_PURCHASES CASH_ADVANCE PURCH

0.00

0.00

773.17

0.000000

6442.945483

95.4

0.0

ahead and fill them with their respective column mean. We'll also go ahead and drop CUST_ID while we're at it since it serve's us no valuable information. cc_df = pd.read_csv('cc.csv') cc df.drop('CUST ID', axis = 1, inplace=True) cc df['MINIMUM PAYMENTS'].fillna(value=cc df['MINIMUM PAYMENTS'].mean(), inplace = True) cc_df['CREDIT_LIMIT'].fillna(value=cc_df['CREDIT_LIMIT'].mean(), inplace = True)

2 2495.148862 0.000000 1.000000 773.17 0.0 1499.00 **3** 1666.670542 0.636364 1499.00 0.0 205.788017 817.714335 1.000000 16.00 0.0 0.000000 16.00 Checking to see that there are no more missing values: cc df.isnull().sum()

95.40

0.00

0 0

0 0

0

0

0

0

0

0 0

PURCHASES TRX 0 0 CREDIT LIMIT PAYMENTS 0 MINIMUM PAYMENTS 0

We'll now standardize and normalize the data as follows: from sklearn.preprocessing import StandardScaler, normalize scaler = StandardScaler() scaled_df = scaler.fit_transform(cc_df) normalized df = normalize(scaled df) # Converting the scaled data back into a pandas DataFrame normalized df = pd.DataFrame(data=normalized df) Next (optional, but recommended), we will reduce the dimensions of the data using PCA from sklearn.decomposition import PCA pca = PCA(n_components = 2) X principal = pca.fit transform(normalized df)

X_principal.head()

0 -0.489826 -0.679678

-0.482374 -0.092114

4 -0.563289 -0.481914

40

30

20

10

X principal = pd.DataFrame(X_principal) X principal.columns = ['P1', 'P2']

P2

-0.518791 0.545010 0.330885 0.268980

import scipy.cluster.hierarchy as shc plt.title('visualising the data') Dendrogram = shc.dendrogram((shc.linkage(X principal, method ='ward'))) 60 50

Note: The cell below might take a while to run.

from sklearn.cluster import AgglomerativeClustering from sklearn.metrics import silhouette score # where we'll save scores for later plotting silhouette_scores = [] # testing different cluster values in range [2,8) for n cluster in range(2, 8): silhouette_scores.append(silhouette_score(X_principal, AgglomerativeClustering(n_clusters = n_cluster).fit_predict(X_

Creating bar graph to compare the results. You can use a line plot if you prefer (similar to K Means lab)

Number of clusters

Next, we'll use a dendrogram to visualize the linkage of the reduced data (X_principal) using **method='ward'**.

visualising the data

Silhouette Score 0.2 0.1

plt.bar(x=range(2, 8), height=silhouette scores)

plt.xlabel('Number of clusters') plt.ylabel('Silhouette Score')

creating and fitting model

Out[13]: AgglomerativeClustering(n_clusters=3)

Visualizing the clustering

agg.fit(X_principal)

agg = AgglomerativeClustering(n clusters=3)

plt.show()

0.4

0.3

0.0

0.50

In [14]:

We can also determine the optimal number of clusters using silhouette score:

plt.scatter(X_principal['P1'], X_principal['P2'], c = AgglomerativeClustering(n clusters = 3).fit predict(X principal)) plt.show()

We'll go ahead and build and visualize a clustering model for n_clusters = 3

1.00 0.75

0.50

0.75

1.00

0.25 0.00 -0.25

-0.50-0.75

Congrats! (2) Now try repeating the lab steps on your own data for practice.