

Global United Technology Services Co., Ltd.

Report No.: GTS201607000010E05

FCC REPORT

Applicant: Quantum Creations LLC.

Address of Applicant: 16410 NE 19th Avenue Suite 102 North, Miami Beach, Florida

United States 33162

Equipment Under Test (EUT)

Product Name: Mini PC

Model No.: A-1062-ABP, A-1062-ABP-1, A-1062-ABP-2, A-1062-ABP-3,

A-1062-ABP-4, A-1062-ABP-5, A-1062-ABP-6, A-1062-ABP-

7, A-1062-ABP-8

Trade Mark: Azulle

FCC ID: 2AFJI20161062

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.407:2015

Date of sample receipt: July 11, 2016

Date of Test: July 12-21, 2016

Date of report issued: July 22, 2016

Test Result: PASS *

Authorized Signature:

Robinson Lo V Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	July 22, 2016	Original

Prepared By:	Yang liu	Date:	July 22, 2016	
	Project Engineer			
Check By:	Andy W	Date:	July 22, 2016	

Project No.: GTS201607000010

Page 2 of 51

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
-	4.1	MEASUREMENT UNCERTAINTY	
5	GEN	IERAL INFORMATION	5
	5.1 5.2 5.3	CLIENT INFORMATIONGENERAL DESCRIPTION OF EUT	5
	5.4 5.5 5.6	DESCRIPTION OF SUPPORT UNITS TEST FACILITY TEST LOCATION	7 7
6		T INSTRUMENTS LIST	
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5	POWER SPECTRAL DENSITY	
	7.6 7.6.1	BAND EDGES 1 Radiated Emission Method	
	7.0. 7.7	SPURIOUS EMISSION	
		1 Radiated Emission Method	
	7.8	FREQUENCY STABILITY	
8	TES	T SETUP PHOTO	
9	FUT	CONSTRUCTIONAL DETAILS	51

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407(a)(3)	Pass
Channel Bandwidth	15.407(e)	Pass
Power Spectral Density	15.407(a)(3)	Pass
Band Edge	15.407(b)(4)	Pass
Spurious Emission	15.205/15.209/15.407(b)(4)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013 and ANSI C63.4:2014.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 40GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)
Note (1): The measurement u	ncertainty is for coverage factor of	of k=2 and a level of confidence	of 95%.

5 General Information

5.1 Client Information

Applicant:	Quantum Creations LLC.
Address of Applicant:	16410 NE 19th Avenue Suite 102 North, Miami Beach, Florida United States 33162
Manufacturer:	SHENZHEN MELE STAR TECHNOLOGY LIMITED
Address of Manufacturer:	3F,Bldg#1,28 Cuijing Road, Pingshan New District, Shenzhen, PR China.
Factory:	Shenzhen MeLE Precision Technology Limited
Address of Factory:	3F East,Bldg#1,28 Cuijing Road, Pingshan New District, Shenzhen, PR China.

5.2 General Description of EUT

Product Name:	Mini PC
Model No.:	A-1062-ABP, A-1062-ABP-1, A-1062-ABP-2, A-1062-ABP-3,
	A-1062-ABP-4, A-1062-ABP-5, A-1062-ABP-6, A-1062-ABP-7,
	A-1062-ABP-8
Operation Frequency:	802.11a/802.11n(HT20)/802.11ac(HT20) @5.8G Band: 5745MHz ~ 5825MHz
	802.11n(HT40)/ 802.11ac(HT40) @ 5.8G Band: 5755MHz ~ 5795MHz 802.11ac(HT80): 5775MHz
Channel numbers:	802.11a/802.11n(HT20)/802.11ac(HT20) @5.8G Band: 6
	802.11n(HT40)/ 802.11ac(HT40) @ 5.8G Band: 2
	802.11ac(HT80): 1
Channel bandwidth:	802.11a/802.11n(HT20)/802.11ac(HT20): 20MHz
	802.11n(HT40)/802.11ac(HT40) : 40MHz
	802.11ac(HT80): 80MHz
Modulation technology:	802.11a/802.11n(H20)/802.11n(H40)/802.11ac(HT20)/802.11ac(HT40) /802.11ac(HT80):
	Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	Integral Antenna
Antenna gain:	2.0dBi (declare by Applicant)
Power supply:	SWITCHING ADAPTER:
	Model No.:S12B22-120A100-04
	Input: AC 100~240V~50/60Hz 0.5A
	Output: DC 12V 1A

	Operation Frequency each of channel @ 5.8G Band							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency						Frequency		
149	5745MHz	153	5765MHz	155	5775MHz	157	5785MHz	
161	5805MHz	165	5825MHz					

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Charmon doe bolow.					
		Frequency (MHz)			
	5.8G Band				
Test channel	802.11a 802.11n(HT20) 802.11ac(HT20)	802.11n(HT40) 802.11ac(HT40)	802.11ac(HT80)		
Lowest channel	5745	5755			
Middle channel	5785		5775		
Highest channel	5825	5795			

5.3 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6Mbps
802.11n(HT20)	6.5Mbps
802.11n(HT40)	13Mbps
802.11ac(HT20)	6.5Mbps
802.11ac(HT40)	13.5Mbps
802.11ac(HT80)	29.3Mbps

5.4 Description of Support Units

None.

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. Has been

Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Rac	liated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 27 2016	Mar. 26 2017
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 29 2016	June 28 2017
4	Spectrum analyzer	Agilent	E4447A	GTS516	June 29 2016	June 28 2017
5	Spectrum Analyzer	Agilent	E4440A	GTS533	Nov. 18 2015	Nov. 17 2016
6	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	Feb. 21 2016	Feb. 20 2017
7	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 29 2016	June 28 2017
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 27 2016	Mar. 26 2017
9	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
10	Coaxial Cable	GTS	N/A	GTS213	Mar. 27 2016	Mar. 26 2017
11	Coaxial Cable	GTS	N/A	GTS211	Mar. 27 2016	Mar. 26 2017
12	Coaxial cable	GTS	N/A	GTS210	Mar. 27 2016	Mar. 26 2017
13	Coaxial Cable	GTS	N/A	GTS212	Mar. 27 2016	Mar. 26 2017
14	Amplifier(100kHz- 3GHz)	HP	8347A	GTS204	June 29 2016	June 28 2017
15	Amplifier(2GHz- 20GHz)	HP	8349B	GTS206	June 29 2016	June 28 2017
16	Amplifier (18-40GHz)	MITEQ	AMF-6F-18004000- 29-8P	GTS534	June 29 2016	June 28 2017
17	Band filter	Amindeon	82346	GTS219	Mar. 27 2016	Mar. 26 2017
18	Constant temperature and humidity box	Oregon Scientific	BA-888	GTS248	Mar. 27 2016	Mar. 26 2017
19	D.C. Power Supply	Instek	PS-3030	GTS232	Mar. 27 2016	Mar. 26 2017
20	Universal radio communication tester	Rohde & Schwarz	CMU200	GTS235	Mar. 27 2016	Mar. 26 2017
21	Splitter	Agilent	11636B	GTS237	Mar. 27 2016	Mar. 26 2017
22	Power Meter	Anritsu	ML2495A	GTS540	June 29 2016	June 28 2017
23	Power Sensor	Anritsu	MA2411B	GTS541	June 29 2016	June 28 2017

Con	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	June 29 2016	June 28 2017	
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	June 29 2016	June 28 2017	
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	June 29 2016	June 28 2017	
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 29 2016	June 28 2017	
5	LISN	SCHWARZBECK MESS- ELEKTRONIK	NSLK 8127	GTS226	June 29 2016	June 28 2017	
6	Coaxial Cable	GTS	N/A	GTS227	June 29 2016	June 28 2017	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

Gen	General used equipment:											
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)						
1	Barometer	ChangChun	DYM3	GTS257	July 06 2016	July 05 2017						

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is integral antenna. The best case gain of the antenna is 2dBi.

i

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207	,				
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto				
Limit:	Frequency range (MHz)	Limit (c	dBuV)			
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithn	n of the frequency.				
Test setup:	Reference Plane		_			
	AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Filter — AC pow				
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Measurement data

Line:

Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2013 LINE Job No. : 0010

Job No. : 0010 Test Mode : WiFi mode Test Engineer: Boy

	Freq	Read Level		LISN Factor			Over Limit	Remark
-	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1 2 3 4 5	0. 240 0. 406 0. 471	45. 44 38. 92 39. 84 38. 14	39.16 40.06 38.37	0.14 0.12	0.12 0.11 0.11	63.84 62.08 57.73 56.49	-18.13 -22.92 -17.67 -18.12	QP QP QP QP

Neutral:

Site : Shielded room

Condition : EN 55022 CLASSB QP LISN-2013 NEUTRAL

Job No. : 0010 Test Mode : WiFi mode Test Engineer: Boy

	Freq			LISN Factor				Remark	
	MHz	dBuV	dBuV	dB	dB	dBuV	dB		
1 2 3 4 5	0. 188 0. 234 0. 406 0. 452	45.86 39.44 37.83	46.06 39.62 38.00 37.03	0.06	0.13 0.12 0.11	64.11 62.30 57.73 56.85	-18.05 -22.68 -19.73 -19.82	QP QP QP QP	

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407(a)(3)					
Test Method:	NSI C63.10:2013 and KDB789033 D02 General UNII Test Procedures New Rules v01					
Limit:	30dBm					
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Measurement Data

Test CH	802.11a	802.11n	802.11ac	802.11n	802.11ac	802.11ac	Limit(dBm)	Result
	002.11a	(HT20)	(HT20) (HT40) (HT40) (HT80)					
Lowest	14.17	12.41	12.19	12.88	7.91			Pass
Middle	14.15	12.77	11.80			7.85	30.00	
Highest	14.19	12.96	11.16	12.26	7.87			

Remark: "---" is not applicable

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 E Section 15.407(e)					
Test Method:	ANSI C63.10:2013 and KDB789033 D02 General UNII Test Procedures New Rules v01					
Limit:	>500KHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Measurement Data

	5.8G Band									
Test			Channel Ban	dwidth (MHz)			Limit			
CH	802.11a	802.11a 802.11n(H 802.11ac(802.11n(H 802.11ac(HT20) HT20) HT40) HT40) HT80)								
Lowest	16.513	17.770	17.759	35.205	35.190					
Middle	16.475	17.732	17.736			75.064	>500	Pass		
Highest	16.513	17.740	17.717	35.182	35.187					

Remark: "---" is not applicable

Test plot as follows:

Test mode: 802.11a

Lowest channel

Middle channel

Highest channel

Project No.: GTS201607000010

Page 16 of 51

Test mode: 802.11n(HT20) @ 5.8G Band

Lowest channel

Middle channel

Highest channel

Test mode: 802.11ac(HT20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT40) @ 5.8G Band

Lowest channel

Highest channel

Test mode: 802.11ac(HT40)

Lowest channel

Highest channel

Test mode: 802.11ac(HT80)

Middle channel

7.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407(a)(3)
Test Method:	ANSI C63.10:2013 and KDB789033 D02 General UNII Test Procedures New Rules v01
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data

	5.8G Band										
Test			Limit								
CH	802.11a	802.11n(HT 20)	802.11ac(H T20)	802.11n(HT 40)	802.11ac(H T40)	802.11ac(H T80)	(dBm/500kH z)	Result			
Lowest	4.83	1.30	2.00	-0.03	-3.77						
Middle	4.37	2.16	1.38			-7.08	30.00	Pass			
Highest	3.92	1.36	2.57	-0.54	-4.36						

Remark: "---" is not applicable

Page 22 of 51

Test plot as follows:

Test mode: 802.11a

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT20) @ 5.8G Band

Lowest channel

Middle channel

Highest channel

Project No.: GTS201607000010

Page 24 of 51

Test mode: 802.11ac(HT20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT40) @ 5.8G Band

Lowest channel

Highest channel

Test mode: 802.11ac(HT40)

Lowest channel

Highest channel

Test mode: 802.11ac(HT80)

Middle channel

7.6 Band edges

7.6.1 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2	013					
Test Frequency Range:	30MHz to 40GH	lz, only worse o	ase is repo	rted			
Test site:	Measurement D	istance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
	Above 1GHz	Peak	1MHz	3MHz	Peak		
	Above 1GHZ	RMS	1MHz	3MHz	AV		
Limit:	Freque	ncy I	Limit (dBuV	/m @3m)	Value		
	Above 1	GH ₇	54.0		AV		
	Above i	OFIZ	74.0	0	Peak		
Test setup:	Turn Table 1.5m	Horn Antenna Spectrum Analyzer					
Test Procedure:	the ground at determine the 2. The EUT was antenna, white tower. 3. The antenna ground to det horizontal an measurement 4. For each sus and then the and the rotal the maximum 5. The test-recesspecified Ball 6. If the emission the limit specified ball the limit specified ball of the EUT with have 10dB min peak or average sheet. 7. The radiation and found the worst case minimum the second sheet.	t a 3 meter came position of the set 3 meters a ch was mounted the management of the set of the management of the set of	aber. The talk highest rack highest rack way from the don the top of the talk of the talk highest at the talk highest hight hi	ble was rotal diation. The interference of a variable neter to four the of the field the antenna at the was arranged has from 1 mgrees to 360 at Detect Full diagnostic mode was a stopped and the emissione by one und then reported in X, Y, it is worse call	le-height antenna r meters above the I strength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find unction and 10dB lower than d the peak values ions that did not sing peak, quasi-		
Test Instruments:	Refer to section						
Test mode:	Refer to section	5.3 for details					
Test results:	Pass						

Measurement data:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test mode:		802.1	1a	Test channel:			Lowest		
Peak value:		•		•		•			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	40.52	32.68	9.97	23.86	59.31	74.00	-14.69	Horizontal	
5725.00	41.08	32.68	9.97	23.86	59.87	74.00	-14.13	Vertical	
RMS value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	30.15	32.68	9.97	23.86	48.94	54.00	-5.06	Horizontal	
5725.00	30.56	32.68	9.97	23.86	49.35	54.00	-4.65	Vertical	
Test mode:		802.1	1a	Te	st channel:	ŀ	Highest		
Peak value:	1				1	Ī	1		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	38.21	32.7	9.99	23.87	57.03	74.00	-16.97	Horizontal	
5850.00	40.04	32.7	9.99	23.87	58.86	74.00	-15.14	Vertical	
RMS value:						_			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	28.77	32.7	9.99	23.87	47.59	54.00	-6.41	Horizontal	
5850.00	28.86	32.7	9.99	23.87	47.68	54.00	-6.32	Vertical	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode:	802.1	1n(HT20) @	20) @ 5.8G Band Test channel:				Lowest		
Peak value:	1								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Facto (dB	or	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	37.77	32.68	9.97	23.8	6	56.56	74.00	-17.44	Horizontal
5725.00	40.03	32.68	9.97	23.8	6	58.82	74.00	-15.18	Vertical
RMS value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Facto (dB	or	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	28.25	32.68	9.97	23.8	6	47.04	54.00	-6.96	Horizontal
5725.00	29.57	32.68	9.97	23.8	6	48.36	54.00	-5.64	Vertical
									-
Test mode:	Test mode: 802.11n(HT20) @ 5.8G Band Test channel:					Highest			
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Facto (dB	or	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization
5850.00	38.48	32.70	9.99	23.8	7	57.30	74.00	-16.70	Horizontal
5850.00	40.25	32.70	9.99	23.8	7	59.07	74.00	-14.93	Vertical
RMS value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Facto (dB	or	Level (dBuV/m)	Limit Line (dBuV/m)	I Limit	Polarization
5850.00	28.06	32.7	9.99	23.8	7	46.88	54.00	-7.12	Horizontal
5850.00	29.15	32.7	9.99	23.8	7	47.97	54.00	-6.03	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode:	: 802.11ac(HT20) Test channel:					Lowest		
Peak value:	1							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	37.98	32.68	9.97	23.86	56.77	74.00	-17.23	Horizontal
5725.00	39.32	32.68	9.97	23.86	58.11	74.00	-15.89	Vertical
RMS value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	27.23	32.68	9.97	23.86	46.02	54.00	-7.98	Horizontal
5725.00	28.34	32.68	9.97	23.86	47.13	54.00	-6.89	Vertical
Test mode:	802.1	1ac(HT20)		Tes	t channel:		Highest	
Peak value:				T	T	T		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	37.34	32.74	10.04	23.87	56.25	74.00	-17.75	Horizontal
5850.00	39.15	32.74	10.04	23.87	58.06	74.00	-15.94	Vertical
RMS value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	27.68	32.74	10.04	23.87	46.59	54.00	-7.41	Horizontal
5850.00	28.34	32.74	10.04	23.87	47.25	54.00	-6.75	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode:	: 802.11n(HT40) @ 5.8G Band Test channel: Lowest							
Peak value:	1				_			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	38.79	32.53	9.83	23.84	57.31	74.00	-16.69	Horizontal
5725.00	37.86	32.53	9.83	23.84	56.38	74.00	-17.62	Vertical
RMS value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	30.25	32.53	9.83	23.84	48.77	54.00	-5.23	Horizontal
5725.00	28.33	32.53	9.83	23.84	46.85	54.00	-7.15	Vertical
Test mode:								
rest mode.	802.1	1n(HT40) @	5.8G Band	d Tes	t channel:	I	Highest	
Peak value:		1n(HT40) @	5.8G Band	d Tes	t channel:		Highest	
		Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
Peak value: Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polarization Horizontal
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	
Frequency (MHz) 5850.00	Read Level (dBuV) 38.96 42.65	Antenna Factor (dB/m) 32.70	Cable Loss (dB)	Preamp Factor (dB) 23.87	Level (dBuV/m) 57.78	Limit Line (dBuV/m) 74.00	Over Limit (dB) -16.22	Horizontal
Frequency (MHz) 5850.00	Read Level (dBuV) 38.96 42.65	Antenna Factor (dB/m) 32.70	Cable Loss (dB)	Preamp Factor (dB) 23.87	Level (dBuV/m) 57.78	Limit Line (dBuV/m) 74.00	Over Limit (dB) -16.22	Horizontal
Frequency (MHz) 5850.00 5850.00 RMS value:	Read Level (dBuV) 38.96 42.65	Antenna Factor (dB/m) 32.70 32.70 Antenna Factor	Cable Loss (dB) 9.99 9.99 Cable Loss	Preamp Factor (dB) 23.87 23.87 Preamp Factor	Level (dBuV/m) 57.78 61.47	Limit Line (dBuV/m) 74.00 74.00 Limit Line	Over Limit (dB) -16.22 -12.53 Over Limit	Horizontal Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode:	802.1	2.11ac(HT40) Test channel: Lowest							
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	36.27	32.53	9.83	23.84	54.79	74.00	-19.21	Horizontal	
5725.00	38.28	32.53	9.83	23.84	56.80	74.00	-17.20	Vertical	
RMS value:								_	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	27.84	32.53	9.83	23.84	46.36	54.00	-7.64	Horizontal	
5725.00	29.05	32.53	9.83	23.84	47.57	54.00	-6.43	Vertical	
Test mode:	802.1	1ac(HT40)		Test channel:			Highest		
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	37.28	32.70	9.99	23.87	56.10	74.00	-17.90	Horizontal	
5850.00	40.45	32.70	70 9.99 23.8		59.27	74.00	-14.73	Vertical	
RMS value:								_	
Frequency (MHz)	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit	Polarization	
(1711 12)	(dBuV)	(dB/m)	(dB)	(dB)	(======================================	,	(dB)		
5850.00		(dB/m) 32.70	(dB) 9.99	(dB) 23.87	47.23	54.00	-6.77	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode:		802.1	1ac(HT80)		Test channel: Middle				
Peak value									
Frequency (MHz)	Le	ead vel suV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization
5725.00	36	.72	32.53	9.83	23.84	55.24	74.00	-18.76	Horizontal
5850.00	36	.48	32.70	9.99	23.87	55.30	74.00	-18.70	Horizontal
5725.00	37	.59	32.53	9.83	23.84	56.11	74.00	-17.89	Vertical
5850.00	37	.06	32.70	9.99	23.87	55.88	74.00	-18.12	Vertical
RMS value:									
Frequency (MHz)	Le	ead vel suV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization
5725.00	27	.51	32.53	9.83	23.84	46.03	54.00	-7.97	Horizontal
5850.00	26	.74	32.70	9.99	23.87	45.56	54.00	-8.44	Horizontal
5725.00	27	.55	32.53	9.83	23.84	46.07	54.00	-7.93	Vertical
5850.00	28	.07	32.70	9.99	23.87	46.89	54.00	-7.11	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

7.7 Spurious Emission

7.7.1 Radiated Emission Method

7.7.1 Radiated Ellission Weti	1						
Test Requirement:	FCC Part15 C Section 15.209, Part 15E Section 15.407(b)(4)						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	30MHz to 40GHz						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value		
	AL - 4011	Peak	1MHz	3MHz	Peak Value		
	Above 1GHz	RMS	1MHz	3MHz	AV Value		
Limit:	Frequen	су	Limit (dBuV/	/m @3m)	Remark		
	30MHz-88	MHz	40.0)	Quasi-peak Value		
	88MHz-216		43.5		Quasi-peak Value		
	216MHz-96		46.0		Quasi-peak Value		
	960MHz-1		54.0		Quasi-peak Value		
	Frequen		Limit (dBn		Remark		
Test setup:	Above 10	iHZ	-27.	0	Peak Value		
	Turn Table Turn Table Turn Table Turn Table 1.5	4m		Antenna Towe Search Antenna RF Test Receiver Antenna Towe Horn Antenna Spectrum Analyzer Amplifier			
Test Procedure:	1. The EUT was	nlaced on the	ton of a rote	ating table (0 8m for below		
rest riocedule.	i. The EUT Was	piaceu on the	יטף טו מ וטני	amy table (O.OIII IOI DEIOW		

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

 ${\it Xixiang Road, Baoan District, Shenzhen, Guangdong, China}$

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

	1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi- peak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Remark:

According to KDB 789033 D02V01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Page 36 of 51

Measurement Data

■ Below 1GHz

Only the data of worst case at each channel plan (nominal bandwidth =20MHz, 40MHz, 80MHz) is reported.

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
36.77	38.36	14.77	0.63	30.06	23.70	40.00	-16.30	Vertical
84.41	35.67	12.16	1.07	29.77	19.13	40.00	-20.87	Vertical
137.42	56.68	10.35	1.49	29.47	39.05	43.50	-4.45	Vertical
325.60	50.98	15.59	2.49	29.85	39.21	46.00	-6.79	Vertical
340.78	45.10	16.15	2.57	29.77	34.05	46.00	-11.95	Vertical
962.16	36.23	23.49	5.09	29.10	35.71	54.00	-18.29	Vertical
38.21	25.54	15.15	0.64	30.05	11.28	40.00	-28.72	Horizontal
78.14	30.23	10.31	1.01	29.81	11.74	40.00	-28.26	Horizontal
135.51	56.51	10.51	1.47	29.48	39.01	43.50	-4.49	Horizontal
143.83	54.76	10.22	1.53	29.44	37.07	43.50	-6.43	Horizontal
337.22	43.37	16.05	2.56	29.79	32.19	46.00	-13.81	Horizontal
958.79	30.08	23.49	5.08	29.10	29.55	46.00	-16.45	Horizontal

■ Above 1GHz

802.11a,11nH20,11acH20,11nH40,11acH40,11acH80 all have been tested ,Only the data of worst case at each channel plan (nominal bandwidth =20MHz, 40MHz, 80MHz) is reported.

Test mode:		802.	802.11a Te		Test channel:		lowest	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector	
V	11510.00	26.52	21.64	48.16	54(Note3)	-5.84	PK	
V	17265.00	24.25	21.80	46.05	54(Note3)	-7.95	PK	
Н	11510.00	24.32	21.83	46.15	54(Note3)	-7.85	PK	
Н	17265.00	23.20	21.67	44.87	54(Note3)	-9.13	PK	

Test mode:		802.	02.11a		Test channel:		
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11570.00	25.68	21.64	47.32	54(Note3)	-6.68	PK
V	17355.00	24.05	21.80	45.85	54(Note3)	-8.15	PK
Н	11570.00	22.71	21.83	44.54	54(Note3)	-9.46	PK
Н	17355.00	23.45	21.67	45.12	54(Note3)	-8.88	PK

Test mode:			802.11a		Test channel:		t
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11650.00	25.92	21.64	47.56	54(Note3)	-6.44	PK
V	17475.00	23.60	21.80	45.40	54(Note3)	-8.60	PK
Н	11650.00	23.47	21.83	45.30	54(Note3)	-8.70	PK
Н	17475.00	22.05	21.67	43.72	54(Note3)	-10.28	PK

Test mode: 802.11ac(HT40)			Test	Test channel: Lowest			
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11510.00	26.98	21.67	48.65	54(Note3)	-5.35	PK
V	17265.00	25.72	21.83	47.55	54(Note3)	-6.45	PK
Н	11510.00	25.06	21.67	46.73	54(Note3)	-7.27	PK
Н	17265.00	24.33	21.83	46.16	54(Note3)	-7.84	PK

Test mode: 802.11ac(HT40)		1ac(HT40)		Test	Test channel:		t
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11590.00	27.93	21.67	49.6	54(Note3)	-4.40	PK
V	17385.00	24.75	21.83	46.58	54(Note3)	-7.42	PK
Н	11590.00	25.78	21.67	47.45	54(Note3)	-6.55	PK
Н	17385.00	26.35	21.83	48.18	54(Note3)	-5.82	PK

Test mode: 802.11ac(HT80)		Test	Test channel:		Middle		
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11550.00	26.25	21.65	47.9	54(Note3)	-6.10	PK
V	17325.00	24.38	21.81	46.19	54(Note3)	-7.81	PK
Н	11550.00	23.72	21.65	45.37	54(Note3)	-8.63	PK
Н	17325.00	23.18	21.81	44.99	54(Note3)	-9.01	PK

Note:

- 1. Measure Level = Reading Level + Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

7.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)					
Test Method:	ANSI C63.10:2013, FCC Part 2.105	55				
Limit:	Manufactures of U-NII devices are r stability such that an emission is ma under all conditions of normal operations.	aintained within the band of operation				
Test Procedure:		The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.				
Test setup:	Spectrum analyzer Att. Note: Measurement setup for testing on A	Temperature Chamber EUT Variable Power Supply Antenna connector				
Test Instruments:	Refer to section 5.10 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Measurement data:

			802.11a		
		Frequen	cy stability versus T	emp.	
			Supply: AC 120V/60		
Temp.	Operating	0 minute	2 minute	5 minute	10 minute
(°C)	Frequency	Measured	Measured	Measured	Measured
(C)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
	5745	5744.9831	5744.9839	5744.9852	5744.9859
-30	5785	5784.9836	5784.9844	5784.9856	5784.9864
	5825	5824.9841	5824.9849	5824.9860	5824.9868
	5745	5744.9850	5744.9857	5744.9868	5744.9875
-20	5785	5784.9854	5784.9861	5784.9872	5784.9879
	5825	5824.9859	5824.9865	5824.9876	5824.9882
	5745	5744.9867	5744.9873	5744.9883	5744.9889
-10	5785	5784.9871	5784.9877	5784.9887	5784.9892
	5825	5824.9874	5824.9880	5824.9890	5824.9895
	5745	5744.9836	5744.9844	5744.9856	5744.9863
0	5785	5784.9841	5784.9848	5784.9860	5784.9867
	5825	5824.9845	5824.9853	5824.9864	5824.9871
	5745	5744.9854	5744.9861	5744.9872	5744.9879
10	5785	5784.9859	5784.9865	5784.9876	5784.9882
	5825	5824.9863	5824.9869	5824.9880	5824.9886
	5745	5744.9871	5744.9877	5744.9886	5744.9892
20	5785	5784.9874	5784.9880	5784.9890	5784.9895
	5825	5824.9878	5824.9884	5824.9893	5824.9898
	5745	5744.9830	5744.9838	5744.9851	5744.9858
30	5785	5784.9835	5784.9842	5784.9855	5784.9862
	5825	5824.9839	5824.9847	5824.9859	5824.9866
	5745	5744.9849	5744.9856	5744.9867	5744.9874
40	5785	5784.9853	5784.9860	5784.9871	5784.9878
	5825	5824.9857	5824.9864	5824.9875	5824.9881
	5745	5744.9865	5744.9872	5744.9882	5744.9888
50	5785	5784.9869	5784.9876	5784.9885	5784.9891
	5825	5824.9873	5824.9879	5824.9889	5824.9894
	•		The worst case	•	•
Т-	mn (°C)	Operating	Measured	Fragues at Ta	Jaranas (DDM)
ie	mp. (°C)	Frequency (MHz)	Frequency (MHz)	Frequency Tolerance(PPM)	
	30	5745	5744.9830	2.	96

	Frequency stability versus Voltage								
Temperature: 25°C									
Power	Operating	0 minute	2 minute	5 minute	10 minute				
Supply	Frequency	Measured	Measured	Measured	Measured				
(VAC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)				
	5745	5744.9849	5744.9856	5744.9868	5744.9874				
102	5785	5784.9854	5784.9861	5784.9872	5784.9878				
	5825	5824.9858	5824.9865	5824.9875	5824.9882				
	5745	5744.9866	5744.9872	5744.9882	5744.9888				
120	5785	5784.9870	5784.9876	5784.9886	5784.9892				
	5825	5824.9874	5824.9880	5824.9889	5824.9895				
	5745	5744.9881	5744.9887	5744.9896	5744.9901				
138	5785	5784.9884	5784.9890	5784.9899	5784.9904				
	5825	5824.9888	5824.9893	5824.9902	5824.9907				
			The worst case						
Dower S	tunnly (\/AC)	Operating	Measured	Eroguenov To	Joropoo(DDM)				
rowers	Supply (VAC)	Frequency (MHz)	Frequency (MHz)	I Fradilancy Loier					
102		5745	5744.9849	2.63					

			802.11n(HT20)		
		Frequen	cy stability versus T	emp.	
			Supply: AC 120V/60	•	
Tomn	Operating	0 minute	2 minute	5 minute	10 minute
Temp. (°C)	Frequency	Measured	Measured	Measured	Measured
(0)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
	5745	5744.9864	5744.9871	5744.9881	5744.9887
-30	5785	5784.9868	5784.9875	5784.9884	5784.9890
	5825	5824.9872	5824.9878	5824.9888	5824.9893
	5745	5744.9879	5744.9885	5744.9894	5744.9900
-20	5785	5784.9883	5784.9889	5784.9897	5784.9903
	5825	5824.9886	5824.9892	5824.9900	5824.9905
	5745	5744.9893	5744.9898	5744.9906	5744.9911
-10	5785	5784.9896	5784.9901	5784.9909	5784.9913
	5825	5824.9899	5824.9904	5824.9911	5824.9916
	5745	5744.9868	5744.9874	5744.9884	5744.9890
0	5785	5784.9872	5784.9878	5784.9888	5784.9893
	5825	5824.9876	5824.9882	5824.9891	5824.9896
	5745	5744.9883	5744.9888	5744.9897	5744.9902
10	5785	5784.9886	5784.9892	5784.9900	5784.9905
	5825	5824.9890	5824.9895	5824.9903	5824.9908
	5745	5744.9896	5744.9901	5744.9909	5744.9913
20	5785	5784.9899	5784.9904	5784.9911	5784.9916
	5825	5824.9902	5824.9907	5824.9914	5824.9918
	5745	5744.9863	5744.9870	5744.9880	5744.9886
30	5785	5784.9867	5784.9873	5784.9883	5784.9889
	5825	5824.9871	5824.9877	5824.9887	5824.9892
	5745	5744.9878	5744.9884	5744.9893	5744.9899
40	5785	5784.9882	5784.9887	5784.9896	5784.9902
	5825	5824.9885	5824.9891	5824.9899	5824.9904
	5745	5744.9892	5744.9897	5744.9905	5744.9910
50	5785	5784.9895	5784.9900	5784.9908	5784.9913
	5825	5824.9898	5824.9903	5824.9911	5824.9915
		1	The worst case		1
_	(00)	Operating	Measured		
I er	np. (°C)	Frequency (MHz)	Frequency (MHz)	Frequency To	lerance(PPM)
	30	5745	5744.9863	2.	38

	Frequency stability versus Voltage								
Temperature: 25°C									
Power	Operating	0 minute	2 minute	5 minute	10 minute				
Supply	Frequency	Measured	Measured	Measured	Measured				
(VAC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)				
	5745	5744.9853	5744.9860	5744.9871	5744.9878				
102	5785	5784.9858	5784.9865	5784.9875	5784.9882				
	5825	5824.9862	5824.9868	5824.9879	5824.9885				
	5745	5744.9870	5744.9876	5744.9886	5744.9892				
120	5785	5784.9874	5784.9880	5784.9889	5784.9895				
	5825	5824.9877	5824.9883	5824.9892	5824.9898				
	5745	5744.9884	5744.9890	5744.9899	5744.9904				
138	5785	5784.9888	5784.9893	5784.9901	5784.9906				
	5825	5824.9891	5824.9896	5824.9904	5824.9909				
			The worst case						
Dower S	upply (\/AC\	Operating	Measured	Frequency Tolerance(PPM)					
Power S	upply (VAC)	Frequency (MHz)	Frequency (MHz)	riequency id	nerance(PPIVI)				
102		5745	5744.9853	2.56					

802.11ac(HT20)						
Frequency stability versus Temp.						
Power Supply: AC 120V/60Hz						
Tomp	Operating	0 minute	2 minute	5 minute	10 minute	
Temp.	Frequency	Measured	Measured	Measured	Measured	
(°C)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	
	5745	5744.9856	5744.9863	5744.9874	5744.9880	
-30	5785	5784.9860	5784.9867	5784.9877	5784.9884	
	5825	5824.9864	5824.9871	5824.9881	5824.9887	
	5745	5744.9872	5744.9878	5744.9888	5744.9893	
-20	5785	5784.9876	5784.9882	5784.9891	5784.9897	
	5825	5824.9879	5824.9885	5824.9894	5824.9900	
	5745	5744.9886	5744.9892	5744.9900	5744.9905	
-10	5785	5784.9890	5784.9895	5784.9903	5784.9908	
	5825	5824.9893	5824.9898	5824.9906	5824.9911	
	5745	5744.9860	5744.9867	5744.9877	5744.9883	
0	5785	5784.9864	5784.9871	5784.9881	5784.9887	
	5825	5824.9868	5824.9874	5824.9884	5824.9890	
	5745	5744.9876	5744.9882	5744.9891	5744.9896	
10	5785	5784.9879	5784.9885	5784.9894	5784.9899	
	5825	5824.9883	5824.9888	5824.9897	5824.9902	
	5745	5744.9889	5744.9895	5744.9903	5744.9908	
20	5785	5784.9893	5784.9898	5784.9906	5784.9911	
	5825	5824.9896	5824.9901	5824.9909	5824.9913	
	5745	5744.9855	5744.9861	5744.9872	5744.9879	
30	5785	5784.9859	5784.9866	5784.9876	5784.9882	
	5825	5824.9863	5824.9869	5824.9880	5824.9886	
	5745	5744.9871	5744.9877	5744.9887	5744.9892	
40	5785	5784.9875	5784.9881	5784.9890	5784.9895	
	5825	5824.9878	5824.9884	5824.9893	5824.9899	
	5745	5744.9885	5744.9891	5744.9899	5744.9904	
50	5785	5784.9889	5784.9894	5784.9902	5784.9907	
	5825	5824.9892	5824.9897	5824.9905	5824.9910	
	-		The worst case			
Τ.	(°C)	Operating	Measured	F## T-	Jaranaa (DDMA)	
ıeı	np. (°C)	Frequency (MHz)	Frequency (MHz)	Frequency 10	elerance(PPM)	
	30	5745	5744.9855	2.	52	

Frequency stability versus Voltage						
Temperature: 25°C						
Power	Operating	0 minute	2 minute	5 minute	10 minute	
Supply	Frequency	Measured	Measured	Measured	Measured	
(VAC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	
	5745	5744.9848	5744.9855	5744.9866	5744.9905	
102	5785	5784.9852	5784.9859	5784.9870	5784.9906	
	5825	5824.9856	5824.9863	5824.9874	5824.9908	
	5745	5744.9865	5744.9871	5744.9881	5744.9887	
120	5785	5784.9869	5784.9875	5784.9885	5784.9891	
	5825	5824.9872	5824.9879	5824.9888	5824.9894	
	5745	5744.9880	5744.9886	5744.9895	5744.9900	
138	5785	5784.9883	5784.9889	5784.9898	5784.9903	
	5825	5824.9887	5824.9892	5824.9901	5824.9906	
			The worst case			
Power Supply (VAC)		Operating	Measured	Fragues au Talarana (DDM)		
rowers	supply (VAC)	Frequency (MHz)	Frequency (MHz)	Frequency Tolerance(PPM)		
102		5745	5744.9848	2.65		

802.11n(HT40)							
	Frequency stability versus Temp.						
	Power Supply: AC 120V/60Hz						
Tomp	Operating	0 minute	2 minute	5 minute	10 minute		
Temp.	Frequency	Measured	Measured	Measured	Measured		
(°C)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)		
20	5755	5754.9849	5754.9856	5754.9868	5754.9874		
-30	5795	5794.9853	5794.9860	5794.9871	5794.9878		
20	5755	5754.9858	5754.9864	5754.9875	5754.9881		
-20	5795	5794.9862	5794.9868	5794.9879	5794.9885		
40	5755	5754.9866	5754.9872	5754.9882	5754.9888		
-10	5795	5794.9870	5794.9876	5794.9886	5794.9892		
	5755	5754.9874	5754.9880	5754.9889	5754.9895		
0	5795	5794.9877	5794.9883	5794.9892	5794.9898		
4.0	5755	5754.9881	5754.9886	5754.9895	5754.9901		
10	5795	5794.9884	5794.9890	5794.9898	5794.9904		
00	5755	5754.9888	5754.9893	5754.9901	5754.9906		
20	5795	5794.9891	5794.9896	5794.9904	5794.9909		
00	5755	5754.9853	5754.9860	5754.9871	5754.9878		
30	5795	5794.9858	5794.9864	5794.9875	5794.9881		
40	5755	5754.9862	5754.9868	5754.9879	5754.9885		
40	5795	5794.9866	5794.9872	5794.9882	5794.9888		
50	5755	5754.9870	5754.9876	5754.9886	5754.9891		
50	5795	5794.9884	5794.9890	5794.9898	5794.9904		
	•	•	The worst case		•		
T (00)		Operating	Measured	F T.	Inner and (DDM)		
I ei	mp. (°C)	Frequency (MHz)	Frequency (MHz)	Frequency Tolerance(PPM)			
	-30	5755	5754.9849	2.	62		

Frequency stability versus Voltage							
	Temperature: 25°C						
Power	Operating	0 minute	2 minute	5 minute	10 minute		
Supply	Frequency	Measured	Measured	Measured	Measured		
(VAC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)		
102	5755	5754.9894	5754.9899	5754.9907	5754.9912		
102	5795	5794.9847	5794.9855	5794.9866	5794.9873		
120	5755	5754.9852	5754.9859	5754.9870	5754.9877		
120	5795	5794.9856	5794.9863	5794.9874	5794.9880		
120	5755	5754.9860	5754.9867	5754.9878	5754.9884		
138	5795	5794.9864	5794.9871	5794.9881	5794.9887		
The worst case							
Dower S	upply (\/AC)	Operating	Measured	Fragues av Toloropeo (DDM)			
Power Supply (VAC)		Frequency (MHz)	Frequency (MHz)	Frequency Tolerance(PPM)			
	102	5795	5794.9847	2.	64		

802.11ac(HT40)							
Frequency stability versus Temp.							
		Power	Supply: AC 120V/60)Hz			
Tomp	Operating	0 minute	2 minute	5 minute	10 minute		
Temp.	Frequency	Measured	Measured	Measured	Measured		
(°C)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)		
20	5755	5754.9857	5754.9864	5754.9874	5754.9881		
-30	5795	5794.9861	5794.9868	5794.9878	5794.9884		
-20	5755	5754.9865	5754.9871	5754.9882	5754.9888		
	5795	5794.9869	5794.9875	5794.9885	5794.9891		
40	5755	5754.9873	5754.9879	5754.9888	5754.9894		
-10	5795	5794.9876	5794.9882	5794.9892	5794.9897		
0	5755	5754.9880	5754.9886	5754.9895	5754.9900		
U	5795	5794.9884	5794.9889	5794.9898	5794.9903		
10	5755	5754.9887	5754.9892	5754.9901	5754.9906		
10	5795	5794.9890	5794.9895	5794.9904	5794.9909		
20	5755	5754.9893	5754.9898	5754.9906	5754.9911		
20	5795	5794.9896	5794.9901	5794.9909	5794.9914		
20	5755	5754.9861	5754.9867	5754.9878	5754.9884		
30	5795	5794.9865	5794.9871	5794.9881	5794.9887		
40	5755	5754.9869	5754.9875	5754.9885	5754.9891		
40	5795	5794.9873	5794.9879	5794.9888	5794.9894		
ΕO	5755	5754.9876	5754.9882	5754.9891	5754.9897		
50	5795	5794.9880	5794.9886	5794.9895	5794.9900		
			The worst case				
To	mn (°C)	Operating	Measured	Fraguana, Ta	Joronas (DDM)		
Iei	mp. (°C)	Frequency (MHz)	Frequency (MHz)	Frequency Tolerance(PPM)			
	-30	5755	5754.9857	2.	48		

Frequency stability versus Voltage							
	Temperature: 25°C						
Power	Operating	0 minute	2 minute	5 minute	10 minute		
Supply	Frequency	Measured	Measured	Measured	Measured		
(VAC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)		
102	5755	5754.9868	5754.9875	5754.9885	5754.9890		
102	5795	5794.9872	5794.9878	5794.9888	5794.9894		
400	5755	5754.9876	5754.9882	5754.9891	5754.9897		
120	5795	5794.9880	5794.9885	5794.9894	5794.9900		
120	5755	5754.9883	5754.9889	5754.9897	5754.9903		
138	5795	5794.9887	5794.9892	5794.9900	5794.9905		
	The worst case						
Power Supply (VAC)		Operating	Measured	Frequency Tolerance(PPM)			
		Frequency (MHz)	Frequency (MHz)				
102		5755	5754.9868	2.:	29		

	802.11ac(HT80)						
	Frequency stability versus Temp.						
		Power	Supply: AC 120V/60)Hz			
Tomp	Operating	0 minute	2 minute	5 minute	10 minute		
Temp.	Frequency	Measured	Measured	Measured	Measured		
(°C)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)		
-30	5775	5774.9862	5774.9869	5774.9879	5774.9885		
-20	5775	5774.9866	5774.9873	5774.9883	5774.9889		
-10	5775	5774.9870	5774.9876	5774.9886	5774.9892		
0	5775	5774.9874	5774.9880	5774.9889	5774.9895		
10	5775	5774.9878	5774.9884	5774.9893	5774.9898		
20	5775	5774.9881	5774.9887	5774.9896	5774.9901		
30	5775	5774.9885	5774.9890	5774.9899	5774.9904		
40	5775	5774.9888	5774.9893	5774.9902	5774.9907		
50	5775	5774.9891	5774.9896	5774.9905	5774.9909		
The worst case							
Temp. (°C)		Operating	Measured	Francisco V Talaranas (DDM)			
rei	np. (C)	Frequency (MHz)	Frequency (MHz)	Frequency Tolerance(PPM)			
	-30	5775	5774.9862	2.:	39		

Frequency stability versus Voltage							
	Temperature: 25°C						
Power	Operating	0 minute	2 minute	5 minute	10 minute		
Supply	Frequency	Measured	Measured	Measured	Measured		
(VAC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)		
102	5775	5774.9870	5774.9876	5774.9886	5774.9892		
120	5775	5774.9874	5774.9880	5774.9889	5774.9895		
138	5775	5774.9878	5774.9883	5774.9893	5774.9898		
	The worst case						
Dower S	Power Supply (VAC) Operating Measured Frequency Tolerance(PPM)						
Power 3	supply (VAC)	Frequency (MHz)	Frequency (MHz)	Frequency Tolerance(PPM)			
102 5775 5774.9			5774.9870	2.:	25		