Ideal Transformer

Properties

- High permeability of the core
- No Leakage Flux
- No winding resistances.
- Ideal core has no reluctance.
- No Core losses.

Faraday's Law

If a flux ϕ passes through N turn of a coil, the induced in the coil is given by

$$e_{ind} = -N \frac{d\varphi}{dt}$$

The negative sign is the statement of the Lenz's law stating that the polarity of the induced voltage should be such that a current produced by it produces a flux in the opposite of the original flux. This is illustrated below

<u>Relationships</u>

From Faraday's Law

$$\begin{cases} v_{P}(t) = -N_{P} \frac{d\varphi}{dt} \\ v_{S}(t) = -N_{S} \frac{d\varphi}{dt} \end{cases} \rightarrow \frac{v_{P}(t)}{v_{S}(t)} = \frac{N_{P}}{N_{S}} = a$$

 Since there is no magnetic potential drop in the ideal core,

$$N_s I_p(t) = N_s I_s(t)$$

$$\frac{I_p(t)}{I_s(t)} = \frac{N_s}{N_p} = \frac{1}{a}$$

<u>Relationships</u>

$$\frac{N_p}{N_s} = \frac{V_p}{V_s} = \frac{I_s}{I_p}$$

then

$$V_p I_p = V_s I_s$$

$$P_p = P_s$$

Power in equals power out.

No power loss in ideal transformer!

Relationships

Reflected Impedance

$$Z_{L}' = \frac{V_{p}}{I_{p}} = \frac{\frac{N_{p}}{N_{s}}V_{s}}{\frac{N_{s}}{N_{p}}I_{s}} = \frac{aV_{s}}{\frac{1}{a}I_{s}} = a^{2}Z_{L}$$

Dot Convention

- Help to determine the polarity of the voltage and direction of the current in the secondary winding.
- Voltages at the dots are in phase.
- When the <u>primary current</u> flows <u>into the dotted</u> end of the primary winding, the <u>secondary current</u> will <u>flow out of the dotted end</u> of the secondary winding.

Compare the following distribution schemes

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(b)

 I_G

Case a: No transformer

$$I_L = \frac{V}{Z_{Line} + Z_{load}} = \frac{480 < 0^{\circ}}{(0.18 + j0.24) + (4 + j3)}$$
$$= 90.8 < -37.8 A$$

$$V_{Load} = I_L Z_{Load} = (90.8 < -37.8 \text{ A})(4 + \text{j3}) = 453 < -0.9^{\circ}$$

$$P_{Line} = (I_{line})^2 R_{line} = (90.8)^2 (0.18) = 1484 W$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(b)

Case b: Two transformers

$$I_L = \frac{V}{Z_{Line} + Z_{load}} = \frac{480 < 0^{\circ}}{(0.0018 + j0.0024) + (4 + j3)}$$

= 95.9 < -36.9 A

$$V_{Load} = I_L Z_{Load} = (95.9 < -36.9 A)(4 + j3)$$

= 479.5 < -0.01°

$$P_{Line} = (I_{line})^2 R_{line} = \left(\frac{95.9}{10}\right)^2 (0.18) = 16.6 W$$

= $(95.9)^2 (0.0018) = 16.6 W$

Higher voltage w/ less line losses!

Non-Ideal Single-Phase Transformers

Non-ideal facts:

- Winding resistances modeled as series resistors R_p and R_s Also called Copper Losses.
- Leakage flux modeled as series inductances X_p and X_s
- Core Losses (Eddy Current and Hysteresis Losses) produce heating losses modeled as a shunt resistor R_C in the primary winding.
- •<u>Magnetizing Current flows in the primary to establish the flux in the core. Modeled as a shunt inductance X_m in the primary winding.</u>

Mutual (M) and Leakage (L) Flux

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

In a well designed transformer $\emptyset_M >> \emptyset_L$

Excitation Current

- When ac source is connected to the primary of the transformer a current flows even when the secondary winding circuit is open circuited. This <u>excitation current</u> (I_{ex}) is required to produce the flux in the core. It consists of two components:
- 1. <u>Magnetization Current</u> (I_M): is the current required to produce the flux in the transformer core.
- Core-loss current (I_{h+e}): is the current required to overcome the hysteresis and eddy currents flux in the transformer core.

$$I_{ex} = I_M + I_{h+e}$$

 $\underline{\textit{Magnetization Current}}$ (I_{M}) is not sinusoidal because of the non-linear relation between the current and flux (magnetization curve)

<u>Core-loss Current</u> (I_{h+e}) is not sinusoidal due to the non-linear effects of hysteresis. It peaks as flux passes through zero because of eddy currents are proportional to d^{\emptyset}/dt Faraday's law.

Total Excitation Current

$$I_{ex} = I_M + I_{h+e}$$

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

In a well designed transformer I_{ex} is small.

The <u>equivalent circuit</u> for a single-phase non-ideal transformer is shown below:

 The equivalent circuit may be simplified by reflecting impedances, voltages, and currents from the secondary to the primary as shown below:

 Below is the transformer model referred to Secondary Side.

Simplified equivalent circuit referred to primary side:

Simplified equivalent circuit referred to secondary side:

Transformer Equivalent Circuit without Excitation Branch

Transformer Voltage Regulation

- Because a real transformer has series impedances within it, the <u>output voltage will vary with the load</u> even if the input voltage remains constant.
- Voltage Regulation compares the no load to full load voltage.

$$VR = \frac{|V_{S,nl}| - |V_{S,fl}|}{|V_{S,fl}|} \times 100\% = \frac{|V_p|/a - |V_{S,fl}|}{|V_{S,fl}|} \times 100\%$$

Transformer Phasor Diagram

Applying Kirchhoff 's law

$$\frac{V_p}{a} = V_s + R_{eq}I_s + jX_{eq}I_s$$

For a Lagging PF (I lags V)

Transformer Efficiency

•
$$P_{out} = P_s = V_s I_s Cos(\theta_s)$$

•
$$P_{in} = P_s + P_{Losses} = V_s I_s Cos(\theta_s) + P_{core} + P_{cu}$$

•
$$\eta = \frac{P_{out}}{P_{in}} = \frac{V_s I_s Cos(\theta_s)}{V_s I_s Cos(\theta_s) + P_{core} + P_{cu}} \times 100\%$$

Ex.. <u>Given</u>: 2.2 kVA, 440/220V transformer. Equiv. circuit parameters referred to the primary are : Req = 3Ω , Xeq = 4Ω , Rc = $2.5k\Omega$, Xm = $2~K\Omega$ <u>Find</u>: **VR** and **η.** Assume transformer is delivering rated current and voltage at full load and 0.707 pf.

Solution:

1.
$$V_{s,fl} = 220 V < 0^{\circ}$$

This is the full load secondary voltage.

We must now find the secondary voltage assuming the load was removed $V_{s,nl}$. This is found by adding in the voltage drop across Req + j Xeq that occurs at full load.

$$V_{s,nl} = \frac{V_p}{a} = V_{s,fl} + I_s(Req + jXeq)$$

2.
$$I_s = 2200 \text{ VA} / 220 \text{V} = 10 \text{ A}$$

3.
$$\theta = \cos^{-1}(0.707) = 45^{\circ}$$

4. Using the primary referred circuit we get $V_{p,nl}$

$$V_{p,nl} = \frac{I_s}{a} (Req + jXeq) + aV_s$$

$$= (10 < -45^{\circ})/2 * (3+j4) + 2(220)$$

$$= 464.8 < 0.4^{\circ}$$

$$So,$$

$$V_{s,nl} = \frac{V_{p,nl}}{a} = 232.4 < 0.4$$

$$V_{p,nl} = \frac{V_{p,nl}}{a} = 232.4 < 0.4$$

$$VR = \frac{|V_{S,nl}| - |V_{S,fl}|}{|V_{S,fl}|} \times 100\% = \frac{232.4 - 220}{220} =$$
5.63%

- To find n we need Pin and Pout
- 1. Pin = $Vp \cdot Ip \cos(\emptyset) = Re\{Vp \cdot Ip^*\}$

= Re{
$$(464.8 < 0.4^{\circ})(\frac{464.8 < 0.4}{2500} + \frac{464.8 < 0.4}{j2000} + \frac{10 < -45^{\circ}}{2})^{*}$$
}
=Re{ $(464.8 < 0.4^{\circ})(5.29 < 45.3^{\circ})$ } = 1,717 W

- **2.** Pout = Vs Is $cos(\emptyset) = |S| pf = 2200*0.707 = 1,555 W$
- 3. $\eta = \frac{1,555}{1,717} = 90.6\%$
- 4. Note: Pin = Pout + $P_{\text{copper loss}}$ + $P_{\text{core loss}}$ = Pout + $\frac{I_s^2}{a}R_{eq} + \frac{V_p^2}{R_c}$ = 1555 + (5)²3 + (464.8)²/2500

Determining the Values of Components in the Transformer Model

Transformer impedances may be obtained from two tests:

 Open-circuit test: to determine core losses and magnetizing reactance (R_c and X_m)

Short-circuit test: to determine equivalent Series
 Impedance R_{eq}. and equivalent leakage reactances, X_{eq})

Open-Circuit Test to Determine R_c and X_m

With secondary open, V_{oc} , I_{oc} , and P_{oc} are measured on the primary side.

$$PF = \cos\theta = \frac{P_{\infty}}{V_{\infty}I_{\infty}}$$

$$\overline{Y}_{\varepsilon} = \frac{I_{\infty}}{V} \angle -\theta = \frac{I_{\infty}}{V} \angle -(\cos^{-1}PF) = \frac{1}{R_{\infty}} - j\frac{1}{X_{\infty}}$$

Short-Circuit Test to Determine R_{eq} and X_{eq}

With secondary shorted, a reduced voltage is applied to primary such that rated current flows in the primary. V_{SC} , I_{SC} , and P_{SC} are measured on the primary side.

$$PF = \frac{P_{sc}}{\int_{sc}^{V} V_{sc}} = Cos(\theta_{sc})$$

$$\frac{Z_{eq}}{\int_{sc}^{V} V_{sc}} \left[-\cos^{-1} PF = R_{eq} + jX_{eq} \right]$$
Transformer

PRIOR PREPARATION:

Lab 3

Complete the following at a time determined by the laboratory instructor.

 Given the following transformer open circuit and short circuit test data determine the resulting transformer equivalent circuit components.

Open Circuit Test	Short Circuit Test	
Voc = 120 V	Vsc = 10 V	
Ioc = 0.02 A	Isc = 0.4 A	
Poc = 2.0 W	Psc = 3.0 W	

Pre- lab 3 Solution

Open circuit (oc) test data to find Rc and Xm
 PFoc = cos(θoc) = Poc/(Voc loc) = 2.0 / (120.0)(0.02) = 0.8333
 θoc = arcos(0.833) = 33.6 deg.

Y=
$$1/Rc - j/Xm = loc/Voc <- \theta oc = 0.02/120.0 <-33.6$$

= $1.6667 \times 10^{-4} <-33.6 = (1.3882 - j 0.92232) \times 10^{-4}$

Rc =
$$1/1.3882 \times 10^{-4} = 7,204 \Omega$$

Xm = $1/0.92232 \times 10^{-4} = 10,842 \Omega$

Pre- lab 3 Solution (continued)

2. Short circuit (sc) test data to find Req and Xeq PFsc = $\cos(\theta sc)$ = Psc/(Vsc Isc) = 3.0 / (10.0)(0.4) = 0.75 θsc = $\arccos(0.75)$ = 41.4 deg.

Zeq = Req + j Xeq = Vsc/lsc <
$$\theta$$
sc = $10.0/0.4 < 41.4 = 25.0 < 41.4 = 18.8 + j16.5 $\Omega$$

Req = 18.8Ω Xeq = 16.5Ω

Pre- lab 3 Solution (continued)

<u>VRc and ηc</u>

1. Find secondary voltage using input voltage and voltage divider w/ ZL = 300 Ω

$$V_s = \frac{Z_L}{Z_L + Z_{eq}} V_P = \frac{300}{300 + 18.8 + j16.5} 120.0 = 112.8 \text{ volts}$$

2. Find secondary current in load

$$I_s = \frac{V_s}{Z_L} = \frac{112.8}{300} = 0.376A$$

3. Find losses using eqv. circuit values

Pcopper = $(Is)^2$ Req = $(0.376)^2$ 18.8 = 2.66 w Pcore = $(Vprimary/a)^2$ / Rc = $(120.0)^2$ / 7204 = 2.0 W (note Pcor = Poc) 4. Find efficiency <u>nc</u> and VRc using eqv. circuit values

$$VR_c = \frac{V_{s,noLoad} - V_{s,fullLoad}}{V_{s,fullLoad}} x100\% = \frac{V_p - V_s}{V_s} x100\% = \frac{120.0 - 112.8}{112.8} x100\% = 6.38\%$$

Pout = Vs Is PF = (112.8)(0.376)(1) = 42.4 w since PF = 1 for Z = 300 Ω

$$\eta_c = \frac{P_{out}}{P_{in}} x 100\% = \frac{P_{out}}{P_{out} + P_{cop} + P_{core}} x 100\% = \frac{42.4}{42.4 + 2.66 + 2.0} x 100\% = 90.1\%$$

Three-Phase Transformers

Figure 2-35

A three-phase transformer bank composed of independent transformers

Three-Phase Transformers

Figure 2-36

A three-phase transformer wound on a single three-legged core.

Three-Phase Transformers

Fou	/ wass to comest	3 phase primasies : see	onobssissa
	,		
AW T LOUBLAND		2-7 Transformers in Three-Phase Circuits 79	
A-1	1—→ √3 aI ——	aī/√3	
	V/V3 V/V3 a	V V/a √3 V/a	
	(a) Y-A connection	(δ) Δ-Y connection	
	•••		
	T \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V/\sqrt{3} \qqrt{1-1}	
	1/√3 (41/√3)		
vi	(c) ∆-∆ connection	(d) Y-Y connection	
	Fig. 2-19. Common three-phase transform cated by the heavy lines.	er connections; the transformer windings are indi-	
A Terroritant Service	a = 1/2	2 = tuens ratio of each	phose.
	Luc _{tor} and the second		

Y-Y Transformer Connection

$$\frac{V_{\emptyset P}}{V_{\emptyset S}} = a$$

$$\frac{V_{LP}}{V_{LS}} = \frac{\sqrt{3}V_{\emptyset P}}{\sqrt{3}V_{\emptyset S}} = a$$

- Problems: 1. If loads are unbalanced, transformer phase voltages will be severely unbalanced. {Use neutral line}
 - 2. Large third harmonic voltages since they add. {Use a third Δ connected winding to cancel}

Y- A Transformer Connection

$$\frac{V_{\emptyset P}}{V_{\emptyset S}} = a$$

$$\frac{V_{LP}}{V_{LS}} = \frac{\sqrt{3}V_{\emptyset P}}{V_{\emptyset S}} = \sqrt{3}a$$

Note: 1. Secondary phase voltage shifted by 30° due to connection.

△-Y Transformer Connection

$$\frac{V_{\emptyset P}}{V_{\emptyset S}} = a$$

$$\frac{V_{LP}}{V_{LS}} = \frac{V_{\emptyset P}}{\sqrt{3}V_{\emptyset S}} = \frac{a}{\sqrt{3}}$$

Note: 1. Secondary phase voltage shifted by 30° due to connection.

Δ- Δ Transformer Connection

Note: No issues.

Transformer Ratings

Voltage and Frequency rating

- Protects the winding insulation from excessive voltage.
- Protects winding from large magnetization currents resulting from large voltages or low frequencies. Since

$$\emptyset(t) = \frac{1}{N_p} \int v(t)dt = \frac{1}{N_p} \int V\sin \omega t \ dt$$
$$= -\frac{V}{\omega N_p} \cos \omega t \quad \Rightarrow$$

Voltage and Frequency rating

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$\emptyset max = \frac{V max}{\omega N_p}$$

Φ increases as V increases

+ F (= Ni), A • turns

Φ increases as ω decreases

In sat. region large Φ causes extremely large i_M

For f change from 60 to 50 Hz i_M can increase 60%.