1. Installing Kaggle:

```
!pip install kaggle
Requirement already satisfied: kaggle in /usr/local/lib/python3.10/dist-packages (1.6.17)
     Requirement already satisfied: six>=1.10 in /usr/local/lib/python3.10/dist-packages (from kaggle) (1.16.0)
     Requirement already satisfied: certifi>=2023.7.22 in /usr/local/lib/python3.10/dist-packages (from kaggle) (2024.8.30)
     Requirement already satisfied: python-dateutil in /usr/local/lib/python3.10/dist-packages (from kaggle) (2.8.2)
     Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from kaggle) (2.32.3)
     Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from kaggle) (4.66.6)
     Requirement already satisfied: python-slugify in /usr/local/lib/python3.10/dist-packages (from kaggle) (8.0.4)
     Requirement already satisfied: urllib3 in /usr/local/lib/python3.10/dist-packages (from kaggle) (2.2.3)
     Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages (from kaggle) (6.2.0)
     Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach->kaggle) (0.5.1)
     Requirement already satisfied: text-unidecode>=1.3 in /usr/local/lib/python3.10/dist-packages (from python-slugify->kaggle) (1.3)
     Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->kaggle) (3.4.0)
     Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->kaggle) (3.10)
from google.colab import files
files.upload()
                                        Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to
\overline{2}
     Choose Files No file chosen
     enable.
     | |
!mkdir -p ~/.kaggle
!cp kaggle.json ~/.kaggle/
!chmod 600 ~/.kaggle/kaggle.json
!kaggle datasets download -d camnugent/california-housing-prices
Dataset URL: <a href="https://www.kaggle.com/datasets/camnugent/california-housing-prices">https://www.kaggle.com/datasets/camnugent/california-housing-prices</a>
     License(s): CC0-1.0
     Downloading california-housing-prices.zip to /content
       0% 0.00/400k [00:00<?, ?B/s]
     100% 400k/400k [00:00<00:00, 86.7MB/s]
!unzip california-housing-prices.zip
→ Archive: california-housing-prices.zip
       inflating: housing.csv
   2. Importing relevant Python packages:
# for data manipulation
import pandas as pd
import numpy as np
# for data visualization
import matplotlib.pyplot as plt
from pandas.plotting import scatter_matrix
# for data modelling
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear model import LinearRegression
# for metrics and helpful functions
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
   3. Loading the dataset:
# loading the dataset into a dataframe
df = pd.read_csv('housing.csv')
# displaying the first few rows of the dataframe
df.head()
```

		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
	0	-122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	452600.0
	1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	358500.0
	2	-122.24	37.85	52.0	1467.0	190.0	496.0	177.0	7.2574	352100.0
	3	-122.25	37.85	52.0	1274.0	235.0	558.0	219.0	5.6431	341300.0
	A	100 05	27 95	£2 U	1697 N	28U U	565 0	2E0 U	2 0163	343300 0
	4									•

4. Initial data exploration and data cleaning:

 $\label{eq:continuous} \mbox{\em \# gathering basic information about the data} \\ \mbox{\em df.info()}$

<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):

Data	columns (total 10 c	olumns):	
#	Column	Non-Null Count	Dtype
0	longitude	20640 non-null	float64
1	latitude	20640 non-null	float64
2	housing_median_age	20640 non-null	float64
3	total_rooms	20640 non-null	float64
4	total_bedrooms	20433 non-null	float64
5	population	20640 non-null	float64
6	households	20640 non-null	float64
7	median_income	20640 non-null	float64
8	median_house_value	20640 non-null	float64
9	ocean_proximity	20640 non-null	object
dtype	es: float64(9), obje	ct(1)	
memoi	ry usage: 1.6+ MB		

 $\mbox{\tt\#}$ gathering descriptive statistics about the data $\mbox{\tt df.describe()}$

→ *		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median
	count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000000	20640.000000	20640.000000	20640.000000	
	mean	-119.569704	35.631861	28.639486	2635.763081	537.870553	1425.476744	499.539680	3.870671	2
	std	2.003532	2.135952	12.585558	2181.615252	421.385070	1132.462122	382.329753	1.899822	
	min	-124.350000	32.540000	1.000000	2.000000	1.000000	3.000000	1.000000	0.499900	
	25%	-121.800000	33.930000	18.000000	1447.750000	296.000000	787.000000	280.000000	2.563400	
	50%	-118.490000	34.260000	29.000000	2127.000000	435.000000	1166.000000	409.000000	3.534800	1
	75%	-118.010000	37.710000	37.000000	3148.000000	647.000000	1725.000000	605.000000	4.743250	2
	mav ∢	11/ 210000	41 QEQQQQ	£2 000000	30330 000000	6445 000000	3E683 000000	EU83 UUUUUU	15 000100	>

checking for missing values
df.isna().sum()

dropping the missing values from the dataset
df = df.dropna()

rechecking for missing values
df.isna().sum()

5. Feature exploration through visualization:

visualizing the data through histograms
df.hist(bins=50, figsize=(12,8))
plt.show()

plotting the correlations between the features against each other
attributes = ['longitude', 'latitude', 'housing_median_age', 'total_rooms', 'total_bedrooms', 'population', 'households', 'median_income
scatter_matrix(df[attributes], figsize=(12,8))
plt.show()

diving deeper into the correlation between median_income and median_house_value
df.plot(kind="scatter", x="median_income", y="median_house_value")
plt.show()

list of all the relevant correlation values
df1 = df[['longitude', 'latitude', 'housing_median_age', 'total_rooms', 'total_bedrooms', 'population', 'households', 'median_income',
corr = df1.corr()
corr['median_house_value'].sort_values(ascending=True)

```
\overline{\Rightarrow}
                            median_house_value
            latitude
                                      -0.144638
           longitude
                                      -0.045398
           population
                                      -0.025300
         total_bedrooms
                                      0.049686
           hausahalda
                                       0 064004
   6. Feature selection:
                                      0 133294
          total rooms
# features for linear regression
X = df[['longitude', 'latitude', 'housing_median_age', 'total_rooms', 'total_bedrooms', 'population', 'households', 'median_income', 'o‹
# target variable
y = df['median_house_value']
   7. Converting the categorical variable
# using one-hot encoding
X = pd.get_dummies(X, columns=['ocean_proximity'], drop_first=True)
   8. Building and testing the linear regression model:
# splitting the data into training set and testing set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# fitting the model
regression_pipeline = Pipeline([
    ('scaler', StandardScaler()),
    ('regressor', LinearRegression())
])
regression_pipeline.fit(X_train, y_train)
₹
               Pipeline
                             (i) (?
            StandardScaler 🕐
           LinearRegression ?
```

```
# prediction and evaluation
y_pred = regression_pipeline.predict(X_test)
r2_score(y_test, y_pred)
```

→ 0.6400865688993737