ECON-613 HW #3

Peter Kim '2019-03-17

Exercise1

```
#Reading Data
data(margarine)
#Subsetting Data
mar_choicePrice = margarine$choicePrice %>% as.data.frame()
mar_demos = margarine$demos %>% as.data.frame()
#Average and Spread by Columns
avg_col = mar_choicePrice[, 3:12] %>% colMeans()
spread_col = mar_choicePrice[, 3:12] %>% apply(MARGIN = 2, FUN = var)
#Dataframe of Average and Spread by Columns
avg_spread_col_df = data.frame(
 avg_col,
 spread_col
colnames(avg_spread_col_df) = c("average", "spread")
#Table of Average and Spread by Columns
kable(avg_spread_col_df, digits = 4,
      caption = "Table of Average and Spread of Product Characteristics")
```

Table 1: Table of Average and Spread of Product Characteristics

	average	spread
PPk_Stk	0.5184	0.0227
PBB_Stk	0.5432	0.0145
PFl_Stk	1.0150	0.0018
$PHse_Stk$	0.4371	0.0141
$PGen_Stk$	0.3453	0.0012
$PImp_Stk$	0.7808	0.0131
PSS_Tub	0.8251	0.0037
PPk_Tub	1.0774	0.0009
PFl_Tub	1.1894	0.0002
$PHse_Tub$	0.5687	0.0052

```
#Average and Spread by Stick and Tubs
stick_avg_spread = select(mar_choicePrice, contains("Stk")) %>%
  gather(key = "stk", value = vals) %>%
  summarise(mean = mean(vals), var = sd(vals)^2)
rownames(stick_avg_spread) = "Stick"
```

```
tub_avg_spread = select(mar_choicePrice, contains("Tub")) %>%
  gather(key = "tub", value = vals) %>%
  summarise(mean = mean(vals), var = var(vals))
rownames(tub_avg_spread) = "Tub"

avg_spread_char_df = rbind(stick_avg_spread, tub_avg_spread)

kable(avg_spread_char_df, digits = 4)
```

	mean	var
Stick	0.6066	0.0622
Tub	0.9151	0.0599

Table 3: Table of Market Share Based on Products

	Market Share
PPk_Stk	0.3951
PBB_Stk	0.1564
PFl_Stk	0.0544
$PHse_Stk$	0.1327
$PGen_Stk$	0.0705
$PImp_Stk$	0.0166
PSS_Tub	0.0714
PPk_Tub	0.0454
PFl_Tub	0.0503
PHse_Tub	0.0074

```
#Finding Indices of Sticks and Tubs
stk_idx = colnames(mar_choicePrice[3:12]) %>%
  ends_with(match = "stk", ignore.case = TRUE)
tub_idx = colnames(mar_choicePrice[3:12]) %>%
  ends_with(match = "tub", ignore.case = TRUE)

#Calculating the Total Numbers of Sticks and Tubs
```

Table 4: Table of Market Shares Based on Sticks vs. Tubs

	Market Share
Sticks	0.8255
Tubs	0.1745

```
#Creating Mode Function to Map Between Observed Attributed and Choices
getmode = function(v) {
  uniq = unique(v)
  return( uniq[which.max(tabulate(match(v, uniq)))] )
}
#Creating getcolNames Function to Convert Results to Names
getcolNames = function(m) {
 names = colnames(mar_choicePrice[3:12])[m] %>% unlist()
  return(names)
#Finding Mode of Choices Based on Income Categories
map_df = left_join(x = mar_choicePrice, y = mar_demos, by = "hhid") %>%
  select(choice, Income) %>%
  group_by(Income) %>%
 summarise( mode = getmode(choice) )
#Adding a Column of Product Mostly Purchased
map_df = map_df %>%
 mutate(
   map_chr(map_df$mode, getcolNames)
colnames(map_df) = c("Income", "Mode", "Product Mostly Purchased")
kable(map_df, digits = 4,
      caption = "Mapping Between Observed Attributes and Choices")
```

Table 5: Mapping Between Observed Attributes and Choices

Income	Mode	Product Mostly Purchased
2.5	1	PPk_Stk
7.5	1	PPk_Stk
12.5	1	PPk_Stk
17.5	1	PPk_Stk
22.5	1	PPk_Stk
27.5	1	PPk_Stk
32.5	1	PPk_Stk
37.5	1	PPk_Stk
42.5	1	PPk_Stk
47.5	1	PPk_Stk
55.0	1	PPk_Stk
67.5	1	PPk_Stk
87.5	9	PFl_Tub
130.0	4	PHse_Stk

Exercise2

For this exercise, I propose to use a conditional logit model.

According to the class slide, for conditional logit model,

$$p_{ij} = \frac{exp(x_{ij}\beta)}{\sum_{l=1}^{m} exp(x_{il}\beta)}$$

According to page 496 of textbook,

$$L(\beta \mid x_{ij}, y_{ij}) = \prod_{i=1}^{n} \prod_{j=1}^{m} p_{ij}^{y_{ij}}$$

But before we calculate the likelihood, we have to calculate the indicator variable y_{ij} for $i \in \{1, ..., 4470\}$ and $j \in \{1, ..., 10\}$. y is choice, in the dataset.

$$y_{ij} = \begin{cases} 1 & y = j \\ 0 & y \neq j \end{cases}$$

Now, we implement the conditional logit likelihood.

```
#Condtional Likelihood Function
cond_logit_lik = function(beta){
  #Intercept Matrix
  alpha = matrix(rep(c(0, beta[1:9]), each = n), nrow = n, ncol = 10)
  \#Non-Intercept\ Matrix
  xbeta = as.matrix( mar_choicePrice[, 3:12] ) * beta[10]
  #Calculating XB
  XB = alpha + xbeta
  #Calculating Numerator
  N = \exp(XB)
  #Calculating Denominator
  D = \exp(XB) \% \text{rowSums}()
  #Calculating Probability p
 p_{ij} = N / D
  #Calculating Likelihood
  likelihood = prod( p_ij^(y) )
 return(likelihood)
```

The log likelihood of the conditional logit model is the following. Note that negative of the log likelihood value is returned.

```
#Conditional Logit Log Likelihood
cond_logit_log_lik = function(beta){

#Intercept Matrix
alpha = matrix( rep( c(0, beta[1:9]), each = n ), nrow = n, ncol = 10)

#Non-Intercept Matrix
xbeta = as.matrix( mar_choicePrice[, 3:12] ) * beta[10]

#Calculating XB
XB = alpha + xbeta

#Calculating Numerator
N = exp(XB)

#Calculating Denominator
D = exp(XB) %>% rowSums()

#Calculating Probability p
p_ij = N / D

#Calculating log Likelihood
```

```
log_lik = sum( y * log( p_ij ) )
return(-log_lik)
}
```

Since the likelihood and loglikelihood functions are defined above, we now optimize the model and present the results. Note that $\hat{\alpha}$'s represent intercepts.

Table 6: Price Coefficient Under Conditional Logit

	Optimized Coefficient
$\hat{\alpha}_1$	-0.8600
\hat{lpha}_2	1.2275
\hat{lpha}_3	-1.6640
\hat{lpha}_4	-2.7915
\hat{lpha}_{5}	-1.8773
\hat{lpha}_6	0.1990
\hat{lpha}_7	1.3123
\hat{lpha}_8	1.9900
\hat{lpha}_{9}	-3.8600
$\hat{\beta}_{price}$	-6.3206

Interpretation

According to the table, $\hat{\beta}_{price} = -6.3206$. This means that the likelihood of product being purchased decreases as the price increases.

Exercise3

For this exercise, I propose to use multinomial logit model.

According to page 494 of the textbook, for multinomial logit model,

$$p_{ij} = \frac{exp(\alpha_j + \beta_{Ij}I_i)}{\sum_{k=1}^{m} exp(\alpha_k + \beta_{Ik}I_i)}$$

where I denotes income.

According to page 496 of textbook,

$$L(\beta \mid x_{ij}, y_{ij}) = \prod_{i=1}^{n} \prod_{j=1}^{m} p_{ij}^{y_{ij}}$$

Since we have calculated y in exercise 2, we proceed to implementing the multinomial logit likelihood. We also merge choicePrice data frame and demos data frame here.

```
#Merging Data to Put Choice and Income in One Data Frame
merged_data = left_join(x = mar_choicePrice, y = mar_demos, by = "hhid")

#Choice and Income Data Frame
choice_I_df = merged_data %>%
    select(choice, Income) %>%
    arrange(Income)

#Defining Variable I
I = choice_I_df$Income
```

```
#Multinomial Logit Likelihood
multi_logit_lik = function(beta){
  #Intercept Matrix
  alpha = matrix( rep( beta[1:10], each = n ), nrow = n, ncol = 10 )
  #Non-Intercept Matrix
  xbeta = matrix( rep( beta[11:20], each = n), nrow = n, ncol = 10) * I
  #Calculating XB
  XB = alpha + xbeta
  #Calculating Numerator
  N = exp(XB)
  #Calculating Denominator
  D = \exp(XB) \%\% \text{ rowSums}()
  #Calculating Probability p
  p_{ij} = N / D
  \#Calculating\ Likelihood
  likelihood = prod( p_ij^(y) )
  return(likelihood)
```

}

We now calculate the log likelihood.

```
#Multinomial Logit Likelihood
multi_logit_log_lik = function(betas){
  #Intercept Matrix
  alpha = matrix( rep( betas[1:10], each = n), nrow = n, ncol = 10 )
  \#Non-Intercept\ Matrix
  xbeta = matrix( rep( betas[11:20], each = n), nrow = n, ncol = 10 ) * I
  #Calculating XB
  XB = alpha + xbeta
  #Calculating Numerator
  N = exp(XB)
  #Calculating Denominator
  D = \exp(XB) \%\% \text{ rowSums}()
  #Calculating Probability p
  p_{ij} = N / D
  #Calculating log Likelihood
  log_logit = sum( y*log( p_ij ) )
  return(-log_logit)
}
```

Since the likelihood and loglikelihood functions are defined above, we now optimize the model.

Optimized $\hat{\alpha}$ Optimized $\hat{\beta}$

Table 7: Price Coefficient Under Conditional Logit

	Optimized $\hat{\alpha}$	Optimzed $\hat{\beta}$
Reference	-0.1616	0.0034
2	-0.9018	-0.0005
3	-1.5586	-0.0175
4	-1.3626	0.0058
5	-2.1882	0.0163
6	-3.4089	0.0012
7	-1.8481	0.0025
8	-2.0928	-0.0082
9	-2.0756	-0.0066
10	-4.1647	0.0020

Interpretation

 β_{Income_2} : It is more likely for an individual to choose choice 1 than choice 2 if his or her income increases. β_{Income_4} : It is more likely for an individual to choose choice 1 than choice 3 if his or her income increases. β_{Income_4} : It is more likely for an individual to choose choice 4 than choice 1 if his or her income increases. β_{Income_5} : It is more likely for an individual to choose choice 5 than choice 1 if his or her income increases. β_{Income_6} : It is more likely for an individual to choose choice 6 than choice 1 if his or her income increases. β_{Income_7} : It is more likely for an individual to choose choice 7 than choice 1 if his or her income increases. β_{Income_8} : It is more likely for an individual to choose choice 1 than choice 8 if his or her income increases. β_{Income_9} : It is more likely for an individual to choose choice 1 than choice 9 if his or her income increases. $\beta_{Income_{10}}$: It is more likely for an individual to choose choice 1 than choice 9 if his or her income increases.

Exercise4

Exercise5