PHY453: Computational Physics | Assignment 3

Anantha Rao | Reg no 20181044

20 Sept 2021

1 Question 1

- Q: Suppose all the spins in the lattice were pointing in the same direction (i.e. -1) in the initial configuration (L=20). The total magnetic moment (in simulation units) of the entire lattice in this initial configuration will be
- A: Here, the total initial magnetization is $M_{init} = -8000$ units.

2 Question 2

- Q: Suppose all the spins in the lattice were pointing in the same direction (i.e. +1) in the initial configuration (L=10). The total total energy (in simulation units where $J_i sing=1$) of the entire lattice is ____
- A: Here, the total initial energy of the system is -3000 units and the energy per particle/spin is -3 units.

3 Question 3

- Q: For Parameters $k_BT = 4.7$, L =10, niter =50000. The instantaneous magnetization per spin (value of magnetic moment per spin in a microstate: M) fluctuates around the value:
- Magnetization per spin (m): 0.000560632126425395 + 0.22345478952815492
 - Energy per spin (e): -0.8881889177835255 +- 0.11753972092194877

4 Question 4

- Q: 4. Parameters $k_BT = 4.0$, L = 10, niter = 50000. The instantaneous energy per spin (value of the energy per spin in a microstate: E) fluctuates around the value:
- Magnetization per spin (m): -0.750900980196033 + -0.045736468183973984
 - Energy per spin (e): -1.9085144228845716 + 0.14030824830682637

5 Question 5

- Q: Parameters k_BT =4.1, L =10, niter =50000. The instantaneous magnetization M per spin and instantaneous energy E per spin fluctuates around the value:
- Magnetization per spin (m): -0.70883640728144 +- 0.054877413831968126
 - Energy per spin (e): -1.7774392478495595 +- 0.15129859653340746

6 Code

PHY453 6 CODE

Figure 1: Fortran code to simulate a 3D Ising model (available in file $\verb"ising_3d.f90"$) 20181044