Hochschule Karlsruhe

University of Applied Sciences

Fakultät für

Elektro- und Informationstechnik

Machine Learning (SS2025)

Source: DALL.E

Common Terms And Machine Learning

- + Artificial intelligence is the ability of a machine to perform cognitive functions that we associate with the human mind. (understand-think-act-adapt)
- + Machine learning uses statistical techniques to give computers the ability to learn from data without being explicitly programmed.
- + Deep learning refers to artificial neural networks with at least two hidden layers. Neural networks, especially larger ones, can achieve higher performance levels compared to traditional AI methods.
- + Generative AI models are built to create new, human-like content mirroring existing data.

- + Supervised Learning: Training models on a dataset that provides both inputs and their corresponding correct outputs.
 - Classification
 - Regression

Classification

Regression

Supervised Learning - Solar Cells Classification

- + Supervised Learning: Training models on a dataset that provides both inputs and their corresponding correct outputs.
 - Regression
 - Classification
- + Unsupervised Learning: The algorithm independently identifies patterns and insights in unlabeled data.
 - Clustering
 - Dimension Reduction

Clustering

Unsupervised Learning - Condition Monitoring

DBSCAN - Density-Based Spatial Clustering of Applications with Noise

- + Supervised Learning: Training models on a dataset that provides both inputs and their corresponding correct outputs.
 - Regression
 - Classification
- + Unsupervised Learning: The algorithm independently identifies patterns in unlabeled data.
 - Clustering
 - Dimension Reduction
- + Self-Supervised Learning: Models learn from unlabeled data by predicting parts of the input data itself, without external labels.

Self-Supervised Learning: Autoencoders for ECG Anomalies Detection

Self-Supervised Learning: Autoencoders for ECG Anomalies Detection

Self-Supervised Learning: Autoencoders for ECG Anomalies Detection

- + Supervised Learning: Training models on a dataset that provides both inputs and their corresponding correct outputs.
 - Regression
 - Classification
- + Unsupervised Learning: The algorithm independently identifies patterns in unlabeled data.
 - Clustering
 - Dimension Reduction
- + Self-Supervised Learning: Models learn from unlabeled data by predicting parts of the input data itself, without external labels.
- + Semi-Supervised Learning: when only part of the given input data has been labeled.
- + Reinforcement Learning: agents learning by themselves how to behave in their environments.

- + Supervised learning: Training models on a dataset that provides both inputs and their corresponding correct outputs.
 - Regression
 - Classification
- + Unsupervised learning: The algorithm independently identifies patterns in unlabeled data.
 - Clustering
 - Dimension Reduction
- + Self-Supervised learning: Models learn from unlabeled data by predicting parts of the input data itself, without external labels.

+ Data

Nr.	Date	To-do list				
1	20.03.2025	Introduction, Data Preparation and Feature Engineering				
2	27.03.2025	Data Preparation and Feature Engineering, Regression_1				
3	03.04.2025	Regression_2				
4	10.04.2025	Model Selection and Cross-Validation				
5	17.04.2025	Principal Component Analysis				
6	24.04.2025	Classification_1				
7	01.05.2025	Workers' Day				
8	08.05.2025	Classification_2				
9	15.05.2025	Neural Networks_1				
10	22.05.2025	Neural Networks_2				
11	29.05.2025	Holiday				
12	05.06.2025	Autoencoders/Variational Autoencoder				
13	12.06.2025	Lecture-free days				
14	19.06.2025	Holiday				
15	26.06.2025	k-means/ DBSCAN Clustering				
16	03.07.2025	Wrap-up Meeting				

+ Data

+ Supervised Learning

Nr.	Date	To-do list
1	20.03.2025	Introduction, Data Preparation and Feature Engineering
2	27.03.2025	Data Preparation and Feature Engineering, Regression_1
3	03.04.2025	Regression_2
4	10.04.2025	Model Selection and Cross-Validation
5	17.04.2025	Principal Component Analysis
6	24.04.2025	Classification_1
7	01.05.2025	Workers' Day
8	08.05.2025	Classification_2
9	15.05.2025	Neural Networks_1
10	22.05.2025	Neural Networks_2
11	29.05.2025	Holiday
12	05.06.2025	Autoencoders/Variational Autoencoder
13	12.06.2025	Lecture-free days
14	19.06.2025	Holiday
15	26.06.2025	k-means/ DBSCAN Clustering
16	03.07.2025	Wrap-up Meeting

- + Data
- + Supervised Learning
- + Model selection and validation

Nr.	Date	To-do list				
1	20.03.2025	Introduction, Data Preparation and Feature Engineering				
2	27.03.2025	Data Preparation and Feature Engineering, Regression_1				
3	03.04.2025	Regression_2				
4	10.04.2025	Model Selection and Cross-Validation				
5	17.04.2025	Principal Component Analysis				
6	24.04.2025	Classification_1				
7	01.05.2025	Workers' Day				
8	08.05.2025	Classification_2				
9	15.05.2025	Neural Networks_1				
10	22.05.2025	Neural Networks_2				
11	29.05.2025	Holiday				
12	05.06.2025	Autoencoders/Variational Autoencoder				
13	12.06.2025	Lecture-free days				
14	19.06.2025	Holiday				
15	26.06.2025	k-means/ DBSCAN Clustering				
16	03.07.2025	Wrap-up Meeting				

- + Data
- + Supervised Learning
- + Model Selection and Validation
- + Unsupervised Learning

Nr.	Date	To-do list					
1	20.03.2025	Introduction, Data Preparation and Feature Engineering					
2	27.03.2025	Pata Preparation and Feature Engineering, Regression_1					
3	03.04.2025	Regression_2					
4	10.04.2025	Model Selection and Cross-Validation					
5	17.04.2025	Principal Component Analysis					
6	24.04.2025	Classification_1					
7	01.05.2025	Workers' Day					
8	08.05.2025	Classification_2					
9	15.05.2025	Neural Networks_1					
10	22.05.2025	Neural Networks_2					
11	29.05.2025	Holiday					
12	05.06.2025	Autoencoders/Variational Autoencoder					
13	12.06.2025	Lecture-free days					
14	19.06.2025	Holiday					
15	26.06.2025	k-means/ DBSCAN Clustering					
16	03.07.2025	Wrap-up Meeting					

- + Data
- + Supervised Learning
- + Model Selection and Validation
- + Unsupervised Learning
- + Self-Supervised Learning

Nr.	Date	To-do list				
1	20.03.2025	Introduction, Data Preparation and Feature Engineering				
2	27.03.2025	Data Preparation and Feature Engineering, Regression_1				
3	03.04.2025	Regression_2				
4	10.04.2025	Model Selection and Cross-Validation				
5	17.04.2025	Principal Component Analysis				
6	24.04.2025	Classification_1				
7	01.05.2025	Workers' Day				
8	08.05.2025	Classification_2				
9	15.05.2025	Neural Networks_1				
10	22.05.2025	Neural Networks_2				
11	29.05.2025	Holiday				
12	05.06.2025	Autoencoders/Variational Autoencoder				
13	12.06.2025	Lecture-free days				
14	19.06.2025	Holiday				
15	26.06.2025	k-means/ DBSCAN Clustering				
16	03.07.2025	Wrap-up Meeting				

Course Assessment

- + A 3-hour written exam (100% of the final grade)
 - The exam consists of **two tasks**:
 - Task 1: 30 multiple-choice questions (MCQS) in 20 minutes (30%)
 - Task 2: A programming task with 3 subtasks in 160 minutes (70%)
- + Plus up to **15 bonus points** can be earned through lab assignments.

Bonus Points Table

Bonus Points	A1	A2	A3	A4	A5	A6	Total
Maximum score	0	3	3	3	3	3	15

Material

+ Slides of the lecture (on ILIAS)

+ The following books are used to prepare for the lecture

+ Stanford University Course: <u>CS231n: Deep Learning for Computer Vision</u>

Hochschule Karlsruhe

University of Applied Sciences

Fakultät für

Elektro- und Informationstechnik

www.h-ka.de

