PRACTICE PROBLEMS BASED ON FULLY ASSOCIATIVE MAPPING-

(Ref: https://www.gatevidyalay.com/fully-associative-cache-practice-problems/

Problem-01:

Consider a fully associative mapped cache of size 16 KB with block size 256 bytes. The size of main memory is 128 KB. Find-

- 1. Number of bits in tag
- 2. Tag directory size

Solution-

Given-

- Cache memory size = 16 KB
- Block size = Frame size = Line size = 256 bytes
- Main memory size = 128 KB

We consider that the memory is byte addressable.

Number of Bits in Physical Address-

We have,

Size of main memory

- = 128 KB
- $= 2^{17}$ bytes

Thus, Number of bits in physical address = 17 bits

Number of Bits in Block Offset-

We have,

Block size

- = 256 bytes
- = 2⁸ bytes

Thus, Number of bits in block offset = 8 bits

Number of Bits in Tag-

Number of bits in tag

- = Number of bits in physical address Number of bits in block offset
- = 17 bits 8 bits
- = 9 bits

Thus, Number of bits in tag = 9 bits

Number of Lines in Cache-

Total number of lines in cache

- = Cache size / Line size
- = 16 KB / 256 bytes
- = 2^{14} bytes / 2^8 bytes
- = 2⁶ lines

Tag Directory Size-

Tag directory size

- = Number of tags x Tag size
- = Number of lines in cache x Number of bits in tag
- $= 2^6 \times 9 \text{ bits}$
- = 576 bits
- = 72 bytes

Thus, size of tag directory = 72 bytes

Problem-02:

Consider a fully associative mapped cache of size 512 KB with block size 1 KB. There are 17 bits in the tag. Find-

- 1. Size of main memory
- 2. Tag directory size

Solution-

Given-

- Cache memory size = 512 KB
- Block size = Frame size = Line size = 1 KB
- Number of bits in tag = 17 bits

We consider that the memory is byte addressable.

Number of Bits in Block Offset-

We have,

Block size

- = 1 KB
- $= 2^{10}$ bytes

Thus, Number of bits in block offset = 10 bits

Number of Bits in Physical Address-

Number of bits in physical address

- = Number of bits in tag + Number of bits in block offset
- = 17 bits + 10 bits
- = 27 bits

Thus, Number of bits in physical address = 27 bits

Size of Main Memory-

We have,

Number of bits in physical address = 27 bits

Thus, Size of main memory

- $= 2^{27}$ bytes
- = 128 MB

Number of Lines in Cache-

Total number of lines in cache

- = Cache size / Line size
- = 512 KB / 1 KB
- = 512 lines
- = 29 lines

Tag Directory Size-

Tag directory size

- = Number of tags x Tag size
- = Number of lines in cache x Number of bits in tag
- $= 2^9 \times 17 \text{ bits}$
- = 8704 bits

= 1088 bytes

Thus, size of tag directory = 1088 bytes

Also Read- Practice Problems On Set Associative Mapping

Problem-03:

Consider a fully associative mapped cache with block size 4 KB. The size of main memory is 16 GB. Find the number of bits in tag.

Solution-

Given-

- Block size = Frame size = Line size = 4 KB
- Size of main memory = 16 GB

We consider that the memory is byte addressable.

Number of Bits in Physical Address-

We have,

Size of main memory

- = 16 GB
- $= 2^{34}$ bytes

Thus, Number of bits in physical address = 34 bits

Number of Bits in Block Offset-

We have,

Block size

= 4 KB

 $= 2^{12}$ bytes

Thus, Number of bits in block offset = 12 bits

Number of Bits in Tag-

Number of bits in tag

- = Number of bits in physical address Number of bits in block offset
- = 34 bits 12 bits
- = 22 bits

Thus, Number of bits in tag = 22 bits

