2.6: Multiple Inference and Multicollinearity

Dr. Bean - Stat 5100

1 Why Multiple Inference?

We already have tools to test:

• Individual coefficients: t-tests

• All coefficients: model F-test

What if we want to consider the singnificance of a subset of the X predictor variables? (More than one, but not all of them).

(Individual) Why might we be interested in a "subset" F test?

We may wish to know if a group of predictors have a singificance influence on the response variable, after accounting for another set of variables that are already in the model.

Example: Bodyfat Dataset (Handout 2.6.1)

 $Y = \text{body}, X_1 = \text{triceps}, X_2 = \text{thigh}, X_3 = \text{midarm}$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$$

We've looked at the model F-test $(H_0: \beta_1 = \beta_2 = \beta_3 = 0)$

- also individual t-tests $(H_0: \beta_1 = 0, H_0: \beta_2 = 0, H_0: \beta_3 = 0)$
- what about subset tests?

Consider $H_0: \beta_2 = \beta_3 = 0$ – how to test this?

- basically, compare model fit with and without this assumption (H_0)
- Notation: $SSE(X_1, X_2, X_3) = SS_{error}$ when model has predictors X_1, X_2 , and X_3 represents amount variation in Y left unexplained by model
- Assuming $H_0: \beta_2 = \beta_3 = 0$ is true, fit "reduced" model (only predictor X_1) and calculate $SSE(X_1)$
- Note that $SSE(X_1) > SSE(X_1, X_2, X_3)$
 - ALWAYS true, as a "worthless" X variable can, at worst, do nothing to reduce the SSE, but it can never increase it.
 - NOT true of validation error (more discussion in Module 4).
 - then define "extra sum of squares"

$$SSR(X_2, X_3|X_1) = SSE(X_1) - SSE(X_1, X_2, X_3)$$

Note: this represents amount variation in Y accounted for by $X_2 \& X_3$ when X_1 already in model

• Define

$$MSR(X_2, X_3|X_1) = \frac{SSR(X_2, X_3|X_1)}{2}$$

- think of this as the mean square reduction
- \bullet Build test statistic for H_0 : $\beta_2=\beta_3=0$

$$F^* = \frac{MSR(X_2, X_3|X_1)}{MSE(X_1, X_2, X_3)}$$
$$= \frac{SSR(X_2, X_3|X_1)/(2)}{SSE(X_1, X_2, X_3)/(16)}$$

• When H_0 : $\beta_2 = \beta_3 = 0$ is true, $F^* \sim F_{2,16}$

General test of any # of β_k 's:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_{p-1} X_{p-1} + \epsilon$$

$$H_0 : \beta_q = \beta_{q+1} = \ldots = \beta_{p-1} = 0$$

$$p = \# \text{ of } \beta \text{'s in full model (incl. intercept)}$$

$$q = \# \text{ of } \beta \text{'s in reduced model (incl. intercept)}$$

$$p - q = \# \text{ of } \beta \text{'s being tested in } H_0$$

$$F^* = \frac{[(\text{SSE in reduced model}) - (\text{SSE in full model})]/(p - q)}{[\text{SSE in full model}]/(n - p)}$$

Under H_0 , $F^* \sim F_{p-q,n-p}$

How does this relate to t-statistic from test of individual predictor $(H_0: \beta_k = 0)$?

$$t^* = \frac{b_k}{s\{b_k\}}$$

– if only have one predictor in model:

SSR also called sequential sums of squares or Type I SS; example in SAS:

- $SSR(X_1) \approx$
- $SSR(X_2|X_1) \approx$
- $SSR(X_3|X_1,X_2) \approx$

Related concept: "Coefficients of Partial Determination"

• what proportion of [previously unexplained] variation in Y can be explained by addition of predictor X_k to model

$$R_{Y3|12}^2 = \frac{SSR(X_3|X_1,X_2)}{SSE(X_1,X_2)}$$
 reduction in SSE by adding X_3 when X_1 and X_2 are already in model

amount unexplained variation in Y when X_1 and X_2 are in model

• example in SAS:

$$-R_{Y1}^2 \approx$$

$$-R_{Y2|1}^2 \approx$$

$$-R_{Y3|12}^2 \approx$$

Textbook sections 7.6 and 10.5

In bodyfat example (full model), compare model F-test to individual predictor t-tests