The absolute center of finite groups

Hangyang Meng and Xiuyun Guo

Communicated by Evgenii I. Khukhro

Abstract. In this paper we first investigate the relationship between the absolute center L(G) and the Frattini subgroup $\Phi(G)$ for a finite group G, and then we describe the structure of finite groups G satisfying $L(G) \leq \Phi(G)$. For example, we prove that a finite group G is an \mathcal{F} -group if and only if G/L(G) is an \mathcal{F} -group, where \mathcal{F} is a saturated formation containing Z_2 . Next we determine all finite groups X such that X/L(X) is isomorphic to $Z_{p^\omega} \times Z_p$, where ω is a positive integer and Z_{p^ω} is a cyclic group of order p^ω .

1 Introduction

A group G is said to be capable if there exists a group H such that H/Z(H) is isomorphic to G. The study of capable groups plays a central role in various group-theoretical problems. Many mathematicians, such as Baer, Hall, Senior, Schur, Isaacs and so on, have investigated capable groups [1,4,8] and many interesting results have been given. For example, a classical result due to Schur states that if the central quotient G/Z(G) of a group G is finite, then the commutator subgroup G' is also finite, see [7]. In 1994, Hegarty [5] introduced the autocommutator subgroup

$$K(G) = \langle g^{-1}g^{\alpha} : g \in G, \alpha \in Aut(G) \rangle$$

of a group G and its absolute center

$$L(G) = \{g \in G : g^{\alpha} = g \text{ for all } \alpha \in Aut(G)\}.$$

Furthermore, Hegarty proved an analogue of Schur's theorem for the absolute center and the autocommutator subgroup of a group, that is, if G is a group such that G/L(G) is finite, then K(G) is also finite.

Following Chaboksavar, Ghouchan and Saeedi [3], we say that a group G is autocapable if there exists a group M such that M/L(M) is isomorphic to G. In 1997, Hegarty [6] proved that for any finite autocapable group G there are finitely

The research of the work was partially supported by the National Natural Science Foundation of China (11371237) and a grant of "The First-Class Discipline of Universities in Shanghai".

many finite groups M such that M/L(M) is isomorphic to G. However, it is not easy to see if a group G is autocapable. In 2014, Chaboksavar, Ghouchan and Saeedi proved that there is no group G such that G/L(G) is isomorphic to Q_8 , and there are infinitely many finite and infinite non-autocapable groups. Now the following questions naturally arise.

- Can we describe the structure of a finite group G if G/L(G) is known?
- Which finite groups X satisfy the equation $X/L(X) \cong G$ for a given finite autocapable group G?

In this paper we first investigate the relationship between L(G) and the Frattini subgroup $\Phi(G)$ for a finite group G, and then we describe the structure of finite groups G satisfying $L(G) \leq \Phi(G)$. For example, we prove that a finite group G is an \mathcal{F} -group if and only if G/L(G) is an \mathcal{F} -group, where \mathcal{F} is a saturated formation containing Z_2 (Corollary 3.8). Next we determine the structure of the absolute center of all finite minimal non-abelian p-groups, and then we determine all finite groups X such that X/L(X) is isomorphic to $Z_{p^\omega} \times Z_p$, where ω is a positive integer and Z_{p^ω} is a cyclic group of order p^ω .

2 Preliminary results

In this section we list some basic results, which are frequently used in this paper.

Lemma 2.1. Let H_1, \ldots, H_s be subgroups of a finite group G such that

$$G = H_1 \times \cdots \times H_s$$
.

Then

$$L(G) \leq L(H_1) \times \cdots \times L(H_s).$$

Moreover, if H_i is characteristic in G for i = 1, ..., s, then

$$L(G) = L(H_1) \times \cdots \times L(H_s).$$

Proof. Let α_i be an automorphism of H_i for i = 1, ..., s. Then we define a map

$$\alpha: G \to G, \ x = (h_1, \dots, h_s) \mapsto \alpha(x) = (h_1, \dots, h_{i-1}, \alpha_i(h_i), h_{i+1}, \dots, h_s).$$

It is easy to see that α is an automorphism of G. If $x = (h_1, \dots, h_s) \in L(G)$, then it follows from

$$(h_1,\ldots,h_s)=x=\alpha(x)=(h_1,\ldots,\alpha_i(h_i),\ldots,h_s)$$

that $\alpha_i(h_i) = h_i$ and so $h_i \in L(H_i)$. Thus $L(G) \leq L(H_1) \times \cdots \times L(H_s)$.

If H_i is characteristic in G for each i, then $\operatorname{Aut}(G) = \operatorname{Aut}(H_1) \times \cdots \times \operatorname{Aut}(H_s)$, which implies that $L(H_1) \times \cdots \times L(H_s) \leq L(G)$. Whence the result follows. \Box

Lemma 2.2 ([2, Theorem 3.2.]). Let H and K be subgroups of a finite group G such that $G = H \times K$. If H and K have no common direct factor, then

$$\operatorname{Aut}(G) \cong \left\{ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} : \alpha \in \operatorname{Aut}(H), \ \beta \in \operatorname{hom}(K, Z(H)), \\ \gamma \in \operatorname{hom}(H, Z(K)), \ \delta \in \operatorname{Aut}(K) \right\}.$$

Lemma 2.3. Let G be a finite group. Then L(G) = G if and only if $G \cong 1$ or \mathbb{Z}_2 .

Proof. This lemma is a special case of [3, Lemma 2.2].

3 The absolute center and the Frattini subgroup

Recall that a group H is said to be a direct factor of a group G if there exist subgroups K and T of G such that $K \cong H$ and $G = K \times T$. In this section, we investigate the relationship between L(G) and the Frattini subgroup $\Phi(G)$ for a finite group G. The following lemma is the key lemma in this paper.

Lemma 3.1. Let G be a finite group. If \mathbb{Z}_2 is not a direct factor of G, then

$$L(G) \leq \Phi(G)$$
.

Proof. Suppose that the lemma is false. Let G be a group such that Z_2 is not a direct factor of G and L(G) is not contained in $\Phi(G)$. Then there exists a maximal subgroup M of G such that $L(G) \not\leq M$. Since $L(G) \leq Z(G)$, the maximality of M implies that G = ML(G) and $M \lhd G$. Hence we assume that |G/M| = p, where p is a prime number. Now we consider the following two cases.

Case 1: $p \mid |L(G) \cap M|$. Choose $z \in L(G) \cap M$ such that o(z) = p and fix $g \in L(G) \setminus M$. It is clear that

$$G = \bigsqcup_{i=0}^{p-1} Mg^i.$$

where " \sqcup " means disjoint union of sets. For any $x \in G$, there exist unique $m \in M$ and $i \in \{0, 1, ..., p-1\}$ such that $x = mg^i$. Define a map

$$\alpha: G \to G, \quad x = mg^i \mapsto mg^i z^i.$$

We claim that α is an automorphism of G. In fact, for any two elements $x = mg^i$ and $y = ng^j$ of G, where $i, j \in \{0, 1, ..., p-1\}$ and $m, n \in M$, we see

$$xy = mg^i ng^j = mng^{i+j}.$$

Since $0 \le i + j < 2p - 1$ and $g^p \in M$, we consider two possibilities.

If $i + j \ge p$, then

$$\alpha(xy) = \alpha((mng^p)g^{i+j-p})$$

$$= (mng^p)g^{i+j-p}z^{i+j-p}$$

$$= (mg^iz^i)(ng^jz^j)$$

$$= \alpha(x)\alpha(y).$$

If i + j < p, then

$$\alpha(xy) = \alpha((mn)g^{i+j})$$

$$= (mn)g^{i+j}z^{i+j}$$

$$= (mg^{i}z^{i})(ng^{j}z^{j})$$

$$= \alpha(x)\alpha(y).$$

In a word, $\alpha(xy) = \alpha(x)\alpha(y)$. In addition, for any element $x = mg^i$ $\in \text{Ker}(\alpha)$, in which $m \in M$ and $i \in \{0, 1, ..., p-1\}$,

$$1 = \alpha(x) = \alpha(mg^i) = mg^i z^i,$$

which implies i = 0 and m = 1. Thus $Ker(\alpha) = 1$, and so the finiteness of G implies that α is an automorphism of G.

Since $g \in L(G)$, it follows from the definition of L(G) and α that

$$g = \alpha(g) = \alpha(1 \cdot g^1) = gz.$$

Hence z = 1, which is a contradiction.

Case 2: $p \nmid |L(G) \cap M|$. In this case, since

$$p = |G/M| = |ML(G)/M| = |L(G)/L(G) \cap M|,$$

we see that p divides |L(G)| and we may choose $z \in L(G)$ such that o(z) = p and $z \notin M$. Hence $G = \langle M, z \rangle = M \times \langle z \rangle$.

The hypothesis of the lemma implies p > 2. It is clear that for any $x \in G$, there exist unique $m \in M$ and $i \in \{0, 1, ..., p-1\}$ such that $x = mz^i$. Consider the map

$$\beta: G \to G, \quad x(=mz^i) \mapsto mz^{2i}.$$

We claim that the map β is an automorphism of G; the proof is similar to Case 1. Since $z \in L(G)$, it is clear that $z = \alpha(z) = \alpha(1 \cdot z^1) = z^2$, a contradiction. The proof of the lemma is complete.

Remark 3.2. The hypothesis that Z_2 is not a direct factor of G in Lemma 3.1 can not be removed. In fact, let a be an element of order 2, let H be a group of odd order and let

$$G = \langle a \rangle \times H.$$

Then

$$L(G) = L(\langle a \rangle) \times L(H) = \langle a \rangle \times L(H)$$

by Lemmas 2.1 and 2.2, and

$$\Phi(G) = \Phi(\langle a \rangle) \times \Phi(H) = \Phi(H).$$

Hence $L(G) \not\leq \Phi(G)$.

Lemma 3.3. Let G be a finite group such that $G \cong E_n \times H$, where H is a group such that Z_2 is not a direct factor of H and

$$E_n \cong \underbrace{Z_2 \times Z_2 \times \cdots \times Z_2}_{n}.$$

If n > 1, then $L(G) \leq \Phi(G)$.

Proof. Lemma 3.1 implies that $L(H) \le \Phi(H)$ and [3, Lemma 2.1] implies that $L(E_n) = 1$. Hence, by Lemma 2.1, we see that

$$L(G) \le L(E_n) \times L(H) = 1 \times L(H) \le \Phi(E_n) \times \Phi(H) = \Phi(G).$$

The lemma follows.

Lemma 3.4. Let $G = \langle a \rangle \times H$ be a finite group, where a is an element of order two and H has no normal subgroup of order two. Then $L(G) = \langle a \rangle \times L(H)$.

Proof. By Lemma 2.1, $L(G) \le L(\langle a \rangle) \times L(H) = \langle a \rangle \times L(H)$. So we only need to prove $\langle a \rangle \times L(H) \le L(G)$. Since H has no normal subgroup of order two, $\langle a \rangle$ and H have no common direct factor. Using Lemma 2.2, we see that every automorphism θ of G can be expressed as

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$
,

where $\alpha \in \operatorname{Aut}(\langle a \rangle) = 1$, $\beta \in \operatorname{hom}(H, \langle a \rangle)$, $\gamma \in \operatorname{hom}(\langle a \rangle, Z(H))$, $\delta \in \operatorname{Aut}(H)$, which is defined by the rule

$$\theta \begin{pmatrix} a^i \\ h \end{pmatrix} \triangleq \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} a^i \\ h \end{pmatrix} = \begin{pmatrix} \alpha(a^i)\beta(h) \\ \gamma(a^i)\delta(h) \end{pmatrix}$$

for all i = 0, 1 and $h \in H$.

By hypothesis, Z(H) has no subgroup of order two. Thus $\gamma(\langle a \rangle) = 1$ and $\gamma = 0$ (where 0 denotes the zero homomorphism). Hence, any $\theta \in \operatorname{Aut}(G)$ can be expressed as

$$\begin{pmatrix} 1 & \beta \\ 0 & \delta \end{pmatrix},$$

where $\beta \in \text{hom}(H, \langle a \rangle), \delta \in \text{Aut}(H)$. Therefore, for any $\binom{a^i}{h} \in \langle a \rangle \times L(H)$,

$$\theta \begin{pmatrix} a^i \\ h \end{pmatrix} = \begin{pmatrix} 1 & \beta \\ 0 & \delta \end{pmatrix} \begin{pmatrix} a^i \\ h \end{pmatrix} = \begin{pmatrix} a^i \beta(h) \\ \delta(h) \end{pmatrix} = \begin{pmatrix} a^i \beta(h) \\ h \end{pmatrix}.$$

Noticing that $H = \text{Ker}(\beta)$ or $\text{Ker}(\beta)$ is a maximal subgroup of H for any element $\beta \in \text{hom}(H, \langle a \rangle)$, we see $\Phi(H) \leq \text{Ker}(\beta)$. By Lemma 3.1, we have

$$L(H) \le \Phi(H) \le \text{Ker}(\beta).$$

Thus $\beta(h) = 1$ for all $\beta \in \text{hom}(H, \langle a \rangle)$ and $h \in L(H)$ and therefore

$$\langle a \rangle \times L(H) \le L(G).$$

The lemma is proved.

From the above lemmas, we obtain the key theorem in this paper.

Theorem 3.5. Let G be a finite group. The following conclusions are equivalent:

- (1) $G \cong Z_2 \times H$, where H is a group such that |Z(H)| is odd.
- (2) $G \cong \mathbb{Z}_2 \times H$, where H has no normal subgroup of order two.
- (3) $L(G) \not\leq \Phi(G)$.

Proof. It is clear that (1) implies (2) and that (3) follows from (2) by Lemma 3.4. Next we prove that (3) implies (1). If $L(G) \not\leq \Phi(G)$, we may assume $G = \langle a \rangle \times H$ by Lemma 3.1 and Lemma 3.3, where o(a) = 2 and Z_2 is not a direct factor of H. If $2 \mid |Z(H)|$, then we may choose $b \in Z(H)$ such that o(b) = 2. Define a map $\gamma_0 \in \text{hom}(\langle a \rangle, Z(H))$,

$$\gamma_0: \langle a \rangle \to Z(H), \quad a^i \mapsto b^i, \quad i = 0, 1.$$

According to Lemma 2.2, there is an automorphism θ_0 of G such that it can be expressed as

$$\begin{pmatrix} 1 & 0 \\ \gamma_0 & 1 \end{pmatrix}$$
.

We claim that $L(G) \leq H$. In fact, for any $x = \binom{a^i}{h} \in L(G)$ with i = 0, 1 and $h \in H$, we have

$$\begin{pmatrix} a^i \\ h \end{pmatrix} = \theta_0 \begin{pmatrix} a^i \\ h \end{pmatrix} = \begin{pmatrix} a^i \\ \gamma_0(a^i)h \end{pmatrix} = \begin{pmatrix} a^i \\ b^i h \end{pmatrix}.$$

Thus $b^i = 1$ and i = 0. It follows that $x \in H$ and therefore $L(G) \le H$. On the other hand, by Lemma 2.1, we have $L(G) \le \langle a \rangle \times L(H)$. Thus

$$L(G) \le H \cap (\langle a \rangle L(H)) = L(H) (H \cap \langle a \rangle) = L(H).$$

Since H has no direct factor of order two, $L(H) \leq \Phi(H)$ by Lemma 3.1. Hence $L(G) \leq L(H) \leq \Phi(H) = \Phi(G)$, in contradiction to $L(G) \not\leq \Phi(G)$.

Now we give some applications of Theorem 3.5.

Corollary 3.6. *If* G *is a group of odd order, then* $L(G) \leq \Phi(G)$.

Proof. It is clear that the corollary is true by Lemma 3.1.

Corollary 3.7. Let p be a prime number and let G be a finite p-group except Z_2 . Then $L(G) < \Phi(G)$.

Proof. If p is an odd prime, then it is clear that $L(G) \leq \Phi(G)$ by Lemma 3.1. Now we assume that G is a 2-group. If $L(G) \nleq \Phi(G)$, then, by Lemma 3.5, we may assume that $G = \langle a \rangle \times H$ such that o(a) = 2 and |Z(H)| is odd. It follows that Z(H) = 1 and therefore H = 1. Hence $G = Z_2$, a contradiction.

Recall that a formation is a class of groups closed under taking homomorphic images and such that if G/M and G/N are in the formation, then so is $G/M \cap N$. Let $\mathcal F$ be a formation; a group G is called an $\mathcal F$ -group if $G \in \mathcal F$. Then $\mathcal F$ is said to be saturated provided the following condition is satisfied: If G is a group but not an $\mathcal F$ -group and M is a minimal normal subgroup of G such that G/M is an $\mathcal F$ -group, then G has a complement and all such complements are conjugate in G. A famous result states that if $\mathcal F$ is a saturated formation, then G is an $\mathcal F$ -group if and only if $G/\Phi(G)$ is an $\mathcal F$ -group. The following corollary is an analogue of that result.

Corollary 3.8. Let \mathcal{F} be a saturated formation containing \mathbb{Z}_2 . Then a finite group G is an \mathcal{F} -group if and only if G/L(G) is an \mathcal{F} -group.

Proof. It is clear that we only need to prove the sufficiency part. Suppose that the sufficiency is false and let *G* be a counterexample of minimal order.

If $L(G) \leq \Phi(G)$, then it is clear that $G/L(G) \in \mathcal{F}$ implies that $G/\Phi(G) \in \mathcal{F}$. Since \mathcal{F} is a saturated formation, it follows that $G \in \mathcal{F}$. Now we assume that $L(G) \not\leq \Phi(G)$. By Theorem 3.5, we may assume that $G = \langle a \rangle \times H$ such that o(a) = 2 and H has no normal subgroup of order two. By Lemma 3.4, we have $L(G) = \langle a \rangle \times L(H)$. Thus we have

$$G/L(G) = \langle a \rangle L(H)H/\langle a \rangle L(H) \cong H/(L(H)\langle a \rangle \cap H) = H/L(H),$$

and so $H/L(H) \in \mathcal{F}$. By induction, $H \in \mathcal{F}$. It follows from $G/H \cong Z_2 \in \mathcal{F}$ and $G/\langle a \rangle \cong H \in \mathcal{F}$ that $G \cong G/(H \cap \langle a \rangle) \in \mathcal{F}$, a contradiction.

Remark 3.9. The condition " $Z_2 \in \mathcal{F}$ " in Corollary 3.8 cannot be removed. In fact, let \mathcal{F} be the class of all groups of odd order. It is clear that \mathcal{F} is a saturated formation and $Z_2 \notin \mathcal{F}$. We take a group $G = \langle a \rangle \times H$ such that o(a) = 2 and H is a group of odd order. It is clear that $G \notin \mathcal{F}$ but G/L(G) is a group of odd order.

Recall that a group G is said to be p-solvable group if its upper p-series reaches G:

$$1 = P_0(G) \triangleleft M_0(G) \triangleleft P_1(G) \triangleleft M_1(G) \triangleleft \cdots \triangleleft P_l(G) \triangleleft M_l(G) = G,$$

where

$$M_i(G)/P_i(G) = O_{p'}(G/P_i(G)), P_i(G)/M_{i-1}(G) = O_p(G/M_{i-1}(G)).$$

The minimum number l is called the p-length of G and denoted by $l_p(G)$. The p-length of p-solvable groups is an interesting topic in finite group theory. The following corollary shows that for $p \neq 2$ a p-solvable group G and its quotient group G/L(G) have the same p-length.

Corollary 3.10. Let G be a p-solvable group, where p is an odd prime. Then $l_p(G) = l_p(G/L(G))$.

Proof. It is clear that $l_p(G) \geq l_p(G/L(G))$. If $L(G) \leq \Phi(G)$, then $G/\Phi(G)$ is a factor group of G/L(G). Thus $l_p(G/L(G)) \geq l_p(G/\Phi(G)) = l_p(G)$ and so we get $l_p(G) = l_p(G/L(G))$. Now we assume that $L(G) \not\leq \Phi(G)$. By Theorem 3.5, we may assume that $G = \langle a \rangle \times H$ such that o(a) = 2 and G = 2 is not a direct factor of the group G = 2. By Lemma 3.4, we have G = 2 and G = 2. By Theorem 3.5, we may assume that $G/L(G) \cong G/L(G) = I_p(G/L(G)) = I_p(G/L(G))$. By Lemma 3.1, $G/L(G) \cong G/L(G) = I_p(G/L(G)) = I_p(G/L(G))$. By Lemma 3.1, $G/L(G) \cong G/L(G) = I_p(G/L(G))$. Furthermore, it follows from $G/L(G) = I_p(G/L(G))$. Furthermore, it follows from $G/L(G) = I_p(G/L(G))$.

$$l_p(G/L(G)) = l_p(H/L(H)) = l_p(H) = l_p(G).$$

The proof is now complete.

4 The absolute center of finite minimal non-abelian *p*-groups

Recall that a p-group is called a minimal non-abelian p-group if it is a non-abelian group and all its maximal subgroups are abelian. It is well-known that finite minimal non-abelian p-groups play an important role in finite group theory. In this section, we determine the absolute center of finite minimal non-abelian p-groups. First we list the following result due to Redei [9].

Lemma 4.1 ([9]). Let G be a finite minimal non-abelian p-group. Then G is one of the following groups:

- (1) Q_{8} ,
- (2) $M_p(n,m) = \langle a, b : a^{p^n} = b^{p^m} = 1, [a,b] = a^{p^{n-1}} \rangle$, where $n \ge 2$, $m \ge 1$ (metacyclic),
- (3) $M_p(n,m,1) = \langle a,b,c : a^{p^n} = b^{p^m} = c^p = 1, [a,b] = c, [a,c] = 1, [b,c] = 1 \rangle$, where $n \ge m \ge 1$, m + n > 2 (non-metacyclic).

The following equivalent conditions about finite minimal non-abelian p-groups are always used.

Lemma 4.2 ([9]). Let G be a finite p-group. Then the following conditions are equivalent:

- (1) G is a minimal non-abelian p-group.
- (2) d(G) = 2 and |G'| = p.
- (3) d(G) = 2 and $Z(G) = \Phi(G)$.

The following lemma plays an important role in the theory of automorphism groups of finite groups.

Lemma 4.3. Let $G = \langle a_1, \ldots, a_n : f_i(a_1, \ldots, a_n) = 1, i \in I \rangle$ be a finite group, where $\{f_i : i \in I\}$ is a set of generated relations of G. Let $Gen(G) = \{a_1, \ldots, a_n\}$ be a set of generators. If φ is a map from Gen(G) to G such that

$$G = \langle \varphi(a_1), \dots, \varphi(a_n) : f_i(\varphi(a_1), \dots, \varphi(a_n)) = 1, i \in I \rangle, \tag{4.1}$$

then there exists a unique automorphism $\widetilde{\varphi} \in Aut(G)$ such that $\widetilde{\varphi}|_{Gen(G)} = \varphi$.

For convenience, we use

$$Gen(G) \times \varphi(Gen(G)) = \{(a_1, \varphi(a_1)), \dots, (a_n, \varphi(a_n))\}\$$

to denote the automorphism $\widetilde{\varphi}$ of G determined by the set Gen(G) and the map φ from Gen(G) to G with (4.1).

Lemma 4.4. Let $G = \langle a_1 \rangle \times \cdots \times \langle a_n \rangle$ be a finite abelian p-group, in which

$$o(a_i) = p^{n_i}$$
 and $n_1 \ge \cdots \ge n_k$.

Then

$$L(G) = \begin{cases} 1 & \text{if } p \text{ is odd, or } p = 2 \text{ and } n_1 = n_2, \\ \langle a_1^{p^{n_1 - 1}} \rangle & \text{if } p = 2, \text{ and } k = 1 \text{ or } n_1 > n_2. \end{cases}$$

Proof. If p is odd or p=2 with $n_1=n_2$, then L(G)=1 by [3, Lemma 2.1]. If p=2 and k=1, then $L(G)\cong Z_2$ by [3, Lemma 2.1]. Now we assume that p=2 and $n_1>n_2$. In this case we assume that

$$\alpha = \{(a_1, a_1^{s_{11}} a_2^{s_{12}} \cdots a_k^{s_{1k}}), \dots, (a_k, a_1^{s_{k1}} a_2^{s_{k2}} \cdots a_k^{s_{kk}})\}\$$

is an automorphism of G. Lemma 4.3 implies $o(\alpha(a_1)) = 2^{n_1}$ so that

$$(a_1^{s_{11}}a_2^{s_{12}}\cdots a_k^{s_{1k}})^{2^{n_1-1}}=a_1^{2^{n_1-1}s_{11}}\neq 1.$$

Thus $2 \nmid s_{11}$ and so

$$\alpha(a_1^{2^{n_1-1}}) = (\alpha(a_1))^{2^{n_1-1}} = (a_1^{s_{11}}a_2^{s_{12}}\cdots a_k^{s_{1k}})^{2^{n_1-1}} = a_1^{2^{n_1-1}s_{11}} = a_1^{2^{n_1-1}}.$$

Hence $\langle a_1^{2^{n_1-1}} \rangle \leq L(G)$. By [3, Lemma 2.1], the lemma follows.

Lemma 4.5. Let $G = \langle a, b : a^{p^n} = b^{p^m} = 1, [a, b] = a^{p^{n-1}} \rangle$ be a finite group, where $m > n \ge 2$ or p = 2, n = m = 2. If

$$\beta = \beta(i, j, s, t) = \{(a, a^i b^j), (b, a^s b^t)\}\$$

is an automorphism of G with $1 \le i, s \le p^n$ and $1 \le j, t \le p^m$, then

$$(i, p) = 1, \quad t \equiv 1 \pmod{p}, \quad p^{m-n+1} \mid j.$$
 (4.2)

Proof. By Lemma 4.3, β satisfies relation (4.1).

If $m > n \ge 2$, then $o(\beta(a)) = p^n$ implies that

$$\begin{cases} 1 = (a^{i}b^{j})^{p^{n}} = a^{ip^{n}}b^{jp^{n}}[b^{j}, a^{i}]^{\frac{1}{2}p^{n}(p^{n}-1)} = b^{jp^{n}}a^{-\frac{1}{2}ijp^{2n-1}(p^{n}-1)}, \\ 1 \neq (a^{i}b^{j})^{p^{n-1}} = a^{ip^{n-1}}b^{jp^{n-1}}[b^{j}, a^{i}]^{\frac{1}{2}p^{n-1}(p^{n-1}-1)}. \end{cases}$$

We see $p \mid j$ from m > n and thus $[b^j, a^i] = [b, a]^{ij} = 1$. It follows that

$$\begin{cases} p^{m-n} \mid j, \\ (i, p) = 1 \text{ or } p^{m-n+1} \nmid j. \end{cases}$$

In addition, $[\beta(a), \beta(b)] = \beta(a)^{p^{n-1}}$ implies that

$$[a^{i}b^{j}, a^{s}b^{t}] = (a^{i}b^{j})^{p^{n-1}}.$$

Considering $p \mid j$, we see

$$(a^i b^j)^{p^{n-1}} = (a)^{ip^{n-1}} (b)^{jp^{n-1}}$$

and

$$[a^i b^j, a^s b^t] = [a^i, a^s b^t]^{b^j} [b^j, a^s b^t] = [a, b]^{it} = a^{itp^{n-1}},$$

which implies that $a^{ip^{n-1}(t-1)}b^{jp^{n-1}}=1$. Clearly, p^{m-n+1} divides j and thus (i,p)=1, which implies that $t\equiv 1\pmod p$. Hence β satisfies relation (4.2).

If p = 2 and m = n = 2, then $o(\beta(a)) = 4$ implies that

$$1 \neq (a^{i}b^{j})^{2} = a^{2i}b^{2j}[b^{j}, a^{i}]^{\frac{2(2-1)}{2}} = a^{2i(1-j)}b^{2j},$$

and therefore $2 \nmid i$ or $2 \nmid j$. Also $o(\beta(b)) = 4$ implies that $2 \nmid s$ or $2 \nmid t$. It follows from $[\beta(a), \beta(b)] = \beta(a)^2$ that $[a^i b^j, a^s b^t] = (a^i b^j)^2$. Notice that

$$(a^i b^j)^2 = (a)^{2i} (b)^{2j} [b^j, a^i] = a^{2i(1-j)} b^{2j}$$

and

$$[a^i b^j, a^s b^t] = [a^i, a^s b^t]^{b^j} [b^j, a^s b^t] = [a, b]^{it} = a^{2it},$$

we see $a^{2i(t+j-1)}b^{2j}=1$. Clearly, $2\mid j$ and thus $2\nmid i$. Furthermore, $2\mid t-1$. Hence β satisfies relation (4.2).

Lemma 4.6, Let

$$G = \langle a, b, c : a^{2^n} = b^{2^m} = c^2 = 1, [a, b] = c, [a, c] = 1, [b, c] = 1 \rangle$$

be a finite group, where n > m > 1, n > 3. If

$$\gamma = \gamma(i, j, k, r, s, t) = \{(a, a^i b^j c^k), (b, a^r b^s c^t), (c, c)\}$$

is an automorphism of G, where $1 \le i, r \le 2^n, 1 \le j, s \le 2^m, 1 \le k, t \le 2$, then

$$2 \nmid i, \quad 2 \nmid s, \quad 2^{n-m} \mid r. \tag{4.3}$$

Proof. By Lemma 4.3, γ satisfies relation (4.1). Since $n > m \ge 1$, $o(\gamma(b)) = 2^m$ implies that

$$(a^r b^s c^t)^{2^m} = a^{2^m r} b^{2^m s} c^{2^m t} [b^s, a^r]^{2^{m-1} (2^m - 1)} = a^{2^m r} c^{2^{m-1} (2^m - 1)rs} = 1.$$

Then we have $2^{n-m} \mid r$. Considering $[a^i b^j c^k, a^r b^s c^t] = c$, we see

$$[a^{i}b^{j}c^{k}, a^{r}b^{s}c^{t}] = [a^{i}b^{j}, a^{r}b^{s}] = [a^{i}b^{j}, b^{s}][a^{i}b^{j}, a^{r}]^{b^{s}}$$
$$= [a^{i}b^{j}, b^{s}] = [a^{i}, b^{s}] = c^{is},$$

which implies that $2 \mid is - 1$. It is clear that $2 \nmid i$ and $2 \nmid s$. Thus γ satisfies relation (4.3).

If G is a finite group and A is a subset of Aut(G), then we use $C_G(A)$ to denote the centralizer of A in G, which consists of all elements in G fixed by A. The following theorem shows the structure of the absolute center of finite minimal non-abelian p-groups.

Theorem 4.7. *Let G be a finite minimal non-abelian p-group.*

- (1) If p > 2, then the following hold.
 - (a) If $G = M_p(n, m)$, $n \ge 2$, $m \ge 1$, then

$$L(G) = \begin{cases} \langle b^{p^{m-1}} \rangle & if \, n < m, \\ 1 & if \, n \geq m. \end{cases}$$

(b) If $G = M_p(n, m, 1)$, $n \ge m \ge 1$, m + n > 2, then

$$L(G) = 1.$$

- (2) If p = 2, then the following hold.
 - (a) If $G \cong O_8$, then

$$L(G) = Z(O_8) = (O_8)' = \Phi(O_8) \cong Z_2.$$

(b) If $G = M_2(n, m)$, $n \ge 2$, $m \ge 1$, then

$$L(G) = \begin{cases} \langle a^{2^{n-1}} \rangle \times \langle b^{2^{m-1}} \rangle & \text{if } n < m \text{ or } n = m = 2, \\ \langle a^{2^{n-1}} \rangle & \text{if } n > m \text{ or } n = m \ge 3. \end{cases}$$

(c) If $G = M_2(n, m, 1)$, $n \ge m \ge 1$, m + n > 2, then

$$L(G) = \begin{cases} \langle c \rangle & \text{if } n = m \text{ or } n = 2, m = 1, \\ \langle a^{2^{n-1}} \rangle \times \langle c \rangle & \text{otherwise.} \end{cases}$$

Proof. We prove the results by considering the following cases.

Case 1: p > 2. Since G is a finite minimal non-abelian p-group and p > 2, the map

$$\alpha: G \to G, \quad x \mapsto x^{1+p}$$

is an automorphism of G. For any element x of L(G), $x = \alpha(x) = x^{1+p}$ and so $x^p = 1$. Hence $\exp(L(G)) = p$.

Case (a): $G = M_p(n, m), n \ge 2, m \ge 1$. In this case $\alpha_1 = \{(a, a^2), (b, b)\}$ is an automorphism of G and therefore $L(G) \le C_G(\alpha_1) = \langle b \rangle$. It follows from $\exp(G) = p$ that $L(G) \le \langle b^{p^{m-1}} \rangle$. If $n \ge m$, then we consider the automorphism $\alpha_2 = \{(a, a), (b, a^{p^{n-m}}b)\}$ and so

$$L(G) \le C_G(\alpha_2) \cap \langle b^{p^{m-1}} \rangle = \langle a \rangle \cap \langle b^{p^{m-1}} \rangle = 1.$$

If n < m, for any automorphism $\beta = \{(a, a^i b^j), (b, a^s b^t)\}$ of G, β satisfies relation (4.2) by Lemma 4.5. We see

$$\beta(b^{p^{m-1}}) = (\beta(b))^{p^{m-1}} = (a^s b^t)^{p^{m-1}}$$
$$= a^{sp^{m-1}} b^{tp^{m-1}} [b, a]^{\frac{1}{2} stp^{m-1} (p^{m-1} - 1)}.$$

It follows from $m - 1 \ge n \ge 2$ and $t \equiv 1 \pmod{p}$ that

$$\beta(b^{p^{m-1}}) = b^{p^{m-1}}.$$

Therefore $L(G) = \langle b^{p^{m-1}} \rangle$ and (a) follows.

Case (b): $G = M_p(n, m, 1), n \ge m \ge 1, m + n > 2$. In this case, considering the following two automorphisms and their centralizers in G, we have

$$\alpha_3 = \{(a, a^2), (b, b), (c, c^2)\}, \quad C_G(\alpha_3) = \langle b \rangle,$$

 $\alpha_4 = \{(a, a), (b, b^2), (c, c^2)\}, \quad C_G(\alpha_4) = \langle a \rangle.$

Then $L(G) \leq C_G(\alpha_3) \cap C_G(\alpha_4) = 1$ and (b) follows.

Case 2: p = 2. Noticing that |G'| = 2 and G' char G, we see $G' \le L(G)$.

Case (a): $G = Q_8$. It is easy to verify (a).

Case (b): $G = M_2(n, m), n \ge 2, m \ge 1$. In this case $\alpha_5 = \{(a, a^3), (b, b^3)\}$ is an automorphism of G and therefore

$$L(G) \le C_G(\alpha_5) = \langle a^{2^{n-1}} \rangle \times \langle b^{2^{m-1}} \rangle.$$

Thus

$$G' = \langle a^{2^{n-1}} \rangle \le L(G) \le \langle a^{2^{n-1}} \rangle \times \langle b^{2^{m-1}} \rangle.$$

If n > m or $n = m \ge 3$, then $\alpha_6 = \{(a, a), (b, a^{2^{n-m}}b)\}$ is an automorphism of G and $C_G(\alpha_6) = \langle a \rangle$. We see

$$L(G) \le C_G(\alpha_6) \cap (\langle a^{2^{n-1}} \rangle \times \langle b^{2^{m-1}} \rangle) = \langle a^{2^{n-1}} \rangle.$$

Therefore $L(G) = \langle a^{2^{n-1}} \rangle$.

Now we assume n < m or m = n = 2. As in Case (1.a), we may have

$$\langle b^{2^{m-1}} \rangle \le L(G)$$

by Lemma 4.5. Therefore, $L(G) = \langle a^{2^{n-1}} \rangle \times \langle b^{2^{m-1}} \rangle$ and (b) follows.

Case (c): $G = M_2(n, m, 1), n \ge m \ge 1, m + n > 2$. In this case it is clear that $\langle c \rangle = G' \le L(G)$. Consider the following automorphisms and their centralizers in G:

$$\alpha_7 = \{(a, a), (b, a^{2^{n-m}}b), (c, c)\}, \quad C_G(\alpha_7) = \langle a \rangle \times \langle c \rangle,$$

$$\alpha_8 = \{(a, a^3), (b, b), (c, c)\}, \qquad C_G(\alpha_8) = \langle a^{2^{n-1}} \rangle \times \langle b \rangle \times \langle c \rangle.$$

Thus
$$\langle c \rangle \leq L(G) \leq C_G(\alpha_7) \cap C_G(\alpha_8) = \langle a^{2^{n-1}} \rangle \times \langle c \rangle$$
.

If m = n, then $\alpha_9 = \{(a, b), (b, a), (c, c)\}$ is an automorphism of G. It follows that

$$\langle c \rangle \le L(G) \le (\langle a^{2^{n-1}} \rangle \times \langle c \rangle) \cap C_G(\alpha_9)$$
$$= (\langle a^{2^{n-1}} \rangle \times \langle c \rangle) \cap (\langle a^2 b^2 \rangle \times \langle c \rangle) = \langle c \rangle,$$

so $L(G) = \langle c \rangle$.

If $n > m \ge 1$ and n = 2, then n = 2, m = 1 and $\alpha_{10} = \{(a, ab), (b, b), (c, c)\}$ is an automorphism of G. Thus

$$L(G) \le (\langle a^{2^{n-1}} \rangle \times \langle c \rangle) \cap C_G(\alpha_{10}) = (\langle a^{2^{n-1}} \rangle \times \langle c \rangle) \cap (\langle b \rangle \times \langle c \rangle) = \langle c \rangle$$

and therefore $L(G) = \langle c \rangle$.

If n > m > 1 and n > 3, then

$$\gamma = \gamma(i, j, k, r, s, t) = \{(a, a^i b^j c^k), (b, a^r b^s c^t), (c, c)\}$$

as an automorphism of G. By Lemma 4.5, γ satisfies relation (4.3). Notice that

$$\gamma(a^{2^{n-1}}) = (\gamma(a))^{2^{n-1}} = (a^i b^j c^k)^{2^{n-1}}$$
$$= a^{2^{n-1}i} b^{2^{n-1}j} [b, a]^{\frac{2^{n-1}(2^{n-1}-1)ij}{2}} c^{2^{n-1}k} = a^{2^{n-1}i}.$$

It follows from $i \equiv 1 \pmod{2}$ that $\gamma(a^{2^{n-1}}) = a^{2^{n-1}}$. Since γ is arbitrary, we see

$$\langle a^{2^{n-1}} \rangle \le L(G).$$

Thus $L(G) = \langle a^{2^{n-1}} \rangle \times \langle c \rangle$ and (c) follows.

Remark 4.8. We can find many interesting examples using Theorem 4.7. For example,

- there exist finite groups of odd order whose absolute centers are non-trivial, such as $M_p(m,n)$ with p > 2 and $m > n \ge 2$,
- there exists a finite group G such that $\Phi(G) = L(G) \neq 1$, such as $M_2(2,2)$ or Q_8 ,
- there exists a finite group G such that $1 < L(G) < \Phi(G)$, such as $M_2(n, m, 1)$ with $n \ge m \ge 1$ and m + n > 2.

5 Applications

In this section we hope to extend the result of Chaboksavar, Farrokhi Derakhshandeh Ghouchan and Saeedi [3]. In fact, we determine all solutions of the equation $X/L(X) \cong G$ whenever $G \cong Z_{p^{\omega}} \times Z_p$, where ω is a positive integer and $Z_{p^{\omega}}$ is a cyclic group of order p^{ω} .

Theorem 5.1. Let p be a prime number and let ω be a positive integer. Then G is a finite group such that $G/L(G) \cong Z_{p^{\omega}} \times Z_{p}$ if and only if G is isomorphic to one of the following groups:

- (I) When p is odd,
 - (1) $Z_{p^{\omega}} \times Z_p$,
 - (2) $Z_{p^{\omega}} \times Z_{p} \times Z_{2}$.
- (II) When p = 2,
 - (1) $Q_8 (\omega = 1)$,
 - (2) $Z_2 \times Z_2 \ (\omega = 1)$,
 - $(3) \ Z_{2^{\omega+1}} \times Z_2,$
 - (4) $M_2(\omega + 1, 1)$,
 - (5) $M_2(2, \omega + 1)$,
 - (6) $M_2(\omega + 1, 1, 1) (\omega \ge 2)$,
 - (7) $M_2(2,1,1)$ ($\omega = 2$).

Proof. (I) Let p be odd. Since $L(G) \leq Z(G)$ and G/L(G) is abelian, G is nilpotent and $c(G) \leq 2$. Suppose that $G = P \times Q_1 \times \cdots \times Q_s$, where P is a Sylow p-subgroup of G and Q_i is a Sylow q_i -subgroup of G, for $i = 1, \ldots, s$. By Lemma 2.1,

$$L(G) = L(P) \times L(Q_1) \times \cdots \times L(Q_s).$$

Therefore,

$$G/L(G) \cong P/L(P) \times Q_1/L(Q_1) \times \cdots \times Q_s/L(Q_s)$$

is a *p*-group. It follows that $L(Q_i) = Q_i$ for i = 1, ..., s. By Lemma 2.3, we see $Q_i = 1$ or $Q_i \cong Z_2$. Hence we may assume that G = P or $G \cong P \times Z_2$, where P is a p-group such that $P/L(P) \cong Z_{p^{\omega}} \times Z_p$.

Now we only discuss the structure of the *p*-group *P*. By Corollary 3.6, we see $L(P) \le \Phi(P)$. It is clear that

$$P/\Phi(P) \cong P/L(P)/\Phi(P)/L(P) = P/L(P)/\Phi(P/L(P)) \cong Z_p \times Z_p.$$

Therefore d(P), the rank of P, is two. Now suppose that $P/L(P) = \langle \overline{a} \rangle \times \langle \overline{b} \rangle$, where $\overline{a} = aL(P)$, $\overline{b} = bL(P)$ and $o(\overline{a}) = p^{\omega}$, $o(\overline{b}) = p$. Clearly,

$$P = \langle a, b, L(P) \rangle = \langle a, b \rangle$$

and thus $P' = \langle [a, b], P_3 \rangle$, where $P_3 = [[P, P], P]$. It follows from $c(P) \leq 2$ that $P' = \langle [a, b] \rangle$. Since $b^p \in L(P) \leq Z(P)$, we have $[a, b]^p = [a, b^p] = 1$, which implies that |P'| = 1 or p.

- If |P'| = p, then P is a finite minimal non-abelian p-group by Lemma 4.2. Since P/L(P) is abelian, we have $P' \leq L(P)$, which is contradictory to Theorem 4.7 (1).
- If |P'|=1, then P is an abelian p-group. It follows from Lemma 4.7 that L(P)=1. Hence $P\cong Z_{p^\omega}\times Z_p$.

In a word, G is isomorphic to the group (1) or (2).

(II) Let p=2. As in (I), we have that G is a 2-group. The hypotheses of the theorem imply $G \not\cong Z_2$. It follows from Corollary 3.7 that $L(G) \leq \Phi(G)$. Thus we have d(G) = 2 and |G'| = 1 or 2 as in (I).

If |G'| = 1, it is obvious that G is of type (4) or (5) ($\omega = 1$) by Lemma 4.4.

If |G'| = 2, then G is a finite minimal non-abelian 2-group. Using the results of Theorem 4.7(2), we consider the following cases.

- (a) If $G \cong Q_8$, then $G/L(G) \cong Z_2 \times Z_2$, which satisfies the condition when $\omega = 1$. In this case, G is isomorphic to the group (3).
 - (b) If $G = M_2(n, m), n \ge 2, m \ge 1$, then we discuss the following cases.
 - If m > n or m = n = 2, then $L(G) = \langle a^{2^{n-1}} \rangle \times \langle b^{2^{m-1}} \rangle$ and hence

$$G/L(G) \cong Z_{2^{n-1}} \times Z_{2^{m-1}}.$$

We see $n=2, m=1+\omega$ ($\omega \ge 1$) and G is isomorphic to the group (7).

• If n > m or $n = m \ge 3$, then $L(G) = \langle a^{2^{n-1}} \rangle$ and hence

$$G/L(G) \cong Z_{2^{n-1}} \times Z_{2^m}$$
.

It is clear that $n=1+\omega$, m=1 ($\omega \geq 1$). In this case, G is isomorphic to the group (6).

- (c) If $G = M_2(n, m, 1)$, $n \ge m \ge 1$, n + m > 2, then we discuss the following two cases.
- If m = n or n = 2, m = 1, at this time, $L(G) = \langle c \rangle$. Therefore

$$G/L(G) \cong Z_{2^n} \times Z_{2^m}$$
.

This implies that n=1, m=1 ($\omega=1$) or n=2, m=1 ($\omega=2$), which is impossible because of n+m>2.

• If $n > m \ge 1$ and $n \ge 3$, then $L(G) = \langle a^{2^{n-1}} \rangle \times \langle c \rangle$. Therefore

$$G/L(G) \cong Z_{2^{n-1}} \times Z_{2^m}$$
.

Clearly, $n = 1 + \omega$, m = 1 ($\omega \ge 2$). Thus G is of type (8) or (9).

Conversely, it is easy to verify that a group isomorphic to one of the groups (1)–(9) satisfies $G/L(G) \cong Z_{p^{\omega}} \times Z_{p}$.

Bibliography

- [1] R. Baer, Groups with abelian central quotient group, *Trans. Amer. Math. Soc.* 44 (1938), 357–386.
- [2] J. N. S. Bidwell, M. J. Curran and D. J. McCaughan, Automorphisms of direct products of finite group, *Arch. Math.* **86** (2006), 481–489.
- [3] M. Chaboksavar, M. Farrokhi Derakhshandeh Ghouchan and F. Saeedi, Finite groups with a given absolute central factor group, *Arch. Math.* **102** (2014), 401–409.
- [4] M. Hall and J. K. Senior, *The Groups of Order* 2^n ($n \le 6$), The Macmillan Company, New York, 1964.
- [5] P. V. Hegarty, The absolute center of a group, *J. Algebra* **169** (1994), 929–935.
- [6] P.V. Hegarty, Autocommutator subgroups of finite groups, *J. Algebra* **190** (1997), 556–562.
- [7] B. Huppert, *Endliche Gruppen I*, Springer, Berlin, 1976.
- [8] I. M. Isaacs, Derived subgroups and centers of capable groups, *Proc. Amer. Math. Soc.* **129** (2001), 2853–2859.
- [9] L. Redei, Endliche p-Gruppen, Akademiai Kiado, Budapest, 1989.

Received November 20, 2014; revised February 18, 2015.

Author information

Hangyang Meng, Department of Mathematics, Shanghai University, Shanghai 200444, P. R. China.

Xiuyun Guo, Department of Mathematics, Shanghai University, Shanghai 200444, P. R. China.

E-mail: xyguo@staff.shu.edu.cn