Package 'cloneid'

March 8, 2019

Type Package

Version 1.0.1

Title Clone Identity Inference Framework

Date 2017-03-03
Author Noemi Andor
Maintainer Noemi Andor <cloneid.r@gmail.com></cloneid.r@gmail.com>
Description Takes on a `Manager's" role, coordinating between perspectives, interacting with a MySQL database and enabling users to: i) view individual clone perspectives; ii) measure how well they agree and iii) merge clone perspectives to characterize a clone's identity (e.g. its genomic instability).
License GPL-2
URL https://github.com/noemiandor/cloneid
Depends R (>= 3.0)
Imports RMySQL, qualV, gplots(>= 3.0.1), gdata (>= 2.17.0), RColorBrewer, gtools, flexclust, Matrix, expands, liayson (>= 1.0.0), rJava (>= 0.5-0), matlab (>= 1.0.2)
NeedsCompilation no
Repository CRAN
Date/Publication 2017-04-03 08:11:04
RoxygenNote 6.0.1
R topics documented:
compare display getPathThroughRegions getState getSubclones getSubProfiles hyper merge parseLOCUS viewPerspective
inuca
·

2 display

|--|

Description

Compares two clones with respect to user-specified perspectives.

"heatmap").

Usage

```
compare(cloneID1,cloneID2,perspective1="GenomePerspective",perspective2="GenomePerspective", col
```

Arguments

cloneID1 The ID of the first clone (integer).

cloneID2 The ID of the second clone (integer).

perspective1 The perspective on the first clone: GenomePerspective or TranscriptomePerspective.

perspective2 The perspective on the second clone: GenomePerspective or TranscriptomePerspective.

col The colors according to which to code clones.

plotType Whether to make a scatter plot (plotType = "scatter") or heatmap (plotType =

Author(s)

Noemi Andor

Examples

```
#par(mfrow=c(3,1))
#display(cloneID_or_sampleName = "KATOIII", whichP = "GenomePerspective")
#display(cloneID_or_sampleName = "KATOIII", whichP = "TranscriptomePerspective")
#compare(4,1,perspective1 = "GenomePerspective",perspective2 = "TranscriptomePerspective")
```

display Visualization of a biosample's/clone's subclonal composition

Description

Given the name of a biosample or the ID of a clone, the method displays its subclonal composition.

Usage

```
display(cloneID_or_sampleName, whichP="GenomePerspective", colorBy = NULL, deep = F, save = F)
```

getPathThroughRegions

Arguments

cloneID_or_sampleName

Clone ID (integer) or biosample name (character).

whichP What populations to vizualize: GenomePerspective (default), TranscriptomePer-

spective or Identity.

colorBy What aspect of the populations vizualize: GenomePerspective>XX, Transcrip-

tomePerspective>XX or Identity>XX, where XX is a specific locus within the

chosen perspective and is optional.

deep Whether to display the direct subclones or go one level deeper and display the

subclones' subclones.

save Whether to save the plot as .tif file.

Author(s)

Noemi Andor

getPathThroughRegions Naive traveling salesman heuristic without return

Description

Finds a minimum length Hamiltonian path through the sampled regions of a tumor, given their coordinates.

Usage

getPathThroughRegions(coord)

Arguments

coord Matrix with one row per sample and two columns containing the sample's x-

and y-coordinates.

Author(s)

Noemi Andor

4 getSubclones

getState

Retrieving state associated with a clone

Description

The state in which a clone was sequenced

Usage

getState(cloneID, whichP="TranscriptomePerspective"

Arguments

cloneID Clone ID (integer).

whichP What to vizualize: GenomePerspective (default), TranscriptomePerspective or

Identity.

Value

A string describing subclones' state.

Author(s)

Noemi Andor

getSubclones

Retrieving subclones

Description

Given the name of a biosample or the ID of a clone, the method retrieves all its subclones.

Usage

getSubclones(cloneID_or_sampleName,whichP="GenomePerspective")

Arguments

cloneID_or_sampleName

Clone ID (integer) or biosample name (character).

whichP What to vizualize: GenomePerspective (default), TranscriptomePerspective or

Identity.

Value

A map of each clone to its unique ID.

Author(s)

Noemi Andor

getSubProfiles 5

getSubProfiles	Retrieving subclone profiles

Description

Given the name of a biosample or the ID of a clone, the method retrieve the profiles of all its subclones.

Usage

```
getSubProfiles(cloneID_or_sampleName,whichP="TranscriptomePerspective", includeRoot = FALSE)
```

Arguments

cloneID_or_sampleName

Clone ID (integer) or biosample name (character).

whichP What to vizualize: GenomePerspective (default), TranscriptomePerspective or

Identity.

includeRoot Whether or not to include the parent clone's profile into the output.

Value

A matrix with rows corresponding to features and columns corresponding to subclones.

Author(s)

Noemi Andor

Examples

```
pm=getSubProfiles(cloneID_or_sampleName = "LGG2T1", whichP = "GenomePerspective")
```

hyper	Subpopulation relatedness assessment	
-------	--------------------------------------	--

Description

Calculates probability that two subpopulations are related, modelling overlapping mutations as hypergeometric distribution.

Usage

```
hyper(p,r=NULL)
```

Arguments

p	A numeric vector or matrix holding the mutation profile of one or multiple sub-
	populations (0 denotes absence; values >0 denote presence).

r The mutation profile of the other subpopulation. Can be NULL if p is a matrix.

6 merge

Details

Let SP_P be a subpopulation within one perspective and SP_R , a subpopulation within another perspective of the same tumor (perspectives may be of same type). Further, let M_P , M_R be the set of SNVs assigned to SP_P and SP_R , while M_{PR} is the set of overlapping SNVs between SP_P and SP_R . We calculate how likely is it to observe at least $|M_{PR}|$ common SNVs between SP_P and SP_R just by chance, by calculating: a) how likely it is to observe at least $|M_{PR}|$ common SNVs in SP_P b) how likely it is to observe at least $|M_{PR}|$ common SNVs in SP_R Both probabilities are modeled as Hypergeometric distributions: For (b), we draw $x \in M_R$ and each time $x \in MP$ we count the draw as success. Conversely, if $x \notin M_P$, the draw is considered a failure. For (a) we proceed in the same way, but reverse the role of SP_R with that of SP_P . The likelihood that SP_P is related to SP_R is calculated as the minimum among the two probabilities (a,b).

Value

Probability that SP_P is related to SP_R .

Author(s)

Noemi Andor

merge

Merging perspectives into clones' identities

Description

Merges either 2 different perspectives on the clonal composition of the same specimen OR the same perspective on the clonal composition of 2 or more different specimens to approximate each clone's identity as the consensus across perspectives/specimens.

Usage

```
merge(perspectives, specimens, simM = "euclidean", t=-Inf)
```

be merged.

Arguments

perspectives	Minimal one and maximal two perspectives on a specimen. Two perspectives are required if only one specimen is provided.
specimens	The name of the specimen(s). Exactly one specimen is required if more than one perspectives are provided. Two or more specimens are required if only one perspective is provided.
simM	What similarity measure to use in order to match clonal components across perspectives/specimens. Options are: inverse of euclidean distance (euclidean default), correlation coefficient (either pearson or spearman), mutation overlap significance as assessed by hypergeometric distribution (hyper).
t	Minimum similarity threshold below which two subpopulations will no longer

parseLOCUS 7

Details

Let S_i be the set of subpopulations detected in sample i and $S := \bigcup S_i$ – the set of clones detected across all biopsies of a given patient. Further let L be the set of all non-private loci, in which an SNV is detected in at least two samples and $M_x \subset L$ the set of loci mutated in $x \in S_i$.

Next, subpopulations S are grouped into categories by hierarchical cluster analysis of their SNV profiles M_S , using a distance metric defined by the hypergeometric probability calculated above (agglomeration method: "single"). Subpopulations from distinct samples, falling within the same category (hypergeometric $P \ge t$) are considered different perspectives on the same clone.

Value

List with four fields:

sp2clone Matrix with rows denoting clones and columns holding the different perspec-

tives on a clone. Entries contain the size of each clone and its ID in the database. Last column contains the Identity of each clone calculated across the preceding

columns.

sp2clone_sim Matrix with rows denoting clones and columns holding the different perspec-

tives on a clone. Entries contain a measure of how confidently a clone could be

assigned to the clone from the preceding column.

consdat The consensus profile of each clone.

usedOrder The path taken through persepctives to match clones.

Author(s)

Noemi Andor

Examples

```
#par(mfrow=c(4,1))
#display(cloneID_or_sampleName = "KATOIII", whichP = "GenomePerspective")
#display(cloneID_or_sampleName = "KATOIII", whichP = "TranscriptomePerspective")
#merge(perspectives=c("GenomePerspective", "TranscriptomePerspective"), specimens="KATOIII")
##compare(4,1,perspective1 = "GenomePerspective",perspective2 = "Identity")
```

parseLOCUS

Parsing locus string to numeric

Description

Transforms locus string "chr:start-end" to three corresponding numeric values.

Usage

```
parseLOCUS(loci)
```

Arguments

loci

Vector of strings holding genomic coordinates.

8 viewPerspective

Value

Numeric matrix with columns "chr", "startpos", "endpos".

Author(s)

Noemi Andor

viewPerspective

Biosample's subclonal composition inference

Description

Calculates user-specified perspective of the subclonal composition of a biosample and saves it to the database.

Usage

viewPerspective(pathToSample, whichP, tissue = NULL, expandsD = "expands", liaysonD = "liayson", suf

Arguments

pathToSample The path towards the perspective to be viewed (character). If no such path is

found, cloneID will call the corresponding algorithm to create it.

whichP What to calculate: GenomePerspective or TranscriptomePerspective.

tissue The tissue type of the specimen.

expandsD The output directory for the GenomePerspective.

liaysonD The output directory for the TranscriptomePerspective.

suffix The suffix of the file within the output directory, containing the desired perspec-

tive.

xy Two-dimensional vector containing the geographic location of the specimen.

Author(s)

Noemi Andor

Index

```
compare, 2
display, 2
getPathThroughRegions, 3
getState, 4
getSubclones, 4
getSubProfiles, 5
hyper, 5
merge, 6
parseLOCUS, 7
viewPerspective, 8
```