A-Levels Math Notes

Grass

Contents

1	Inequalities and Equations 1.1 Solving Inequalities	1 1 1 1 2
2	Sequences and Series 2.1 Binomial Theorem and Series 2.2 APGP 2.3 Summation 2.4 Method of Differences	3 3 4 4 5
3	Recurrence Relations	6
4	Induction	8
5	Differentiation	9
6		10 10 11 12 12 13
7	Complex Numbers 7.1 Complex Number I	14 14 15
8	Linear Algebra	18
9	1 0 1	20 20 21 22 22 23 23
10	Polar Curves	24

CONTENTS	ii
----------	----

11 Conic Sections	28
12 Functions	30
13 Permutations and Combinations	31
14 Vectors	33
15 Probability	36
16 Differential Equations 16.1 First Order D.E.s 16.1.1 Elementary Solving Techniques 16.1.2 Numerical Methods 16.2 Second Order D.E. 16.3 Applications 16.3.1 Exponential Growth 16.3.2 Logistics Growth 16.3.3 Harvesting 16.3.4 Physics	37 37 37 39 39 39 41 41
17 Discrete Random Variables	43
18 Special Discrete Random Variables	44
19 Continuous Random Variables	48
20 Special Continuous Random Variables	49
21 Correlation and Linear Regression	50
22 Bibliography	51

Inequalities and Equations

1.1 Solving Inequalities

General Methods

- 1. Quadratic formula for factorisation / finding roots (of polynomial).
- 2. Completing the square.
- 3. Discriminant/Completing the square to eliminate factors which are always positive or negative (e.g. removing $x^2 3x + 4$). Note to include coefficient of x^2 in the argument.
- 4. GC (include sketch).
- 5. Rational Functions: Move everything to one side by adding or subtracting, then use a number line.

1.2 Modulus Inequalities

Fact

Given $x \in \mathbb{R}$, we have that

- $\bullet |x| \ge 0,$
- $\bullet \ |x^2| = |x|^2 = x^2,$
- $\bullet \ \sqrt{x^2} = |x|.$

And as long as $x \in \mathbb{R}^+$,

 $\bullet \ \sqrt{x}^2 = |x|.$

Useful Properties

For every $x, k \in \mathbb{R}$:

- (a) |x| < k iff -k < x < k.
- (b) |x| > k iff x < -k or x > k.

1.3 System of Linear Equations

General Information

• For more complicated real-world-context qns, try playing around with the values (e.g. use simultaneous equations) first. It may work out nicer than expected.

1.4 Summary

G.C. Skills

- 1. Plotting curves y = f(x) in G.C.
- 2. How to use simultaneous equation solver.

Important Notes

- Eliminating Factors only works for c=0 in $f(x) \ge c$ or $f(x) \le c$. Counterexample: It is false that $P(x) = x(3x^2 - 9x + 10) \le 2$ iff $x \le 2$. Notice that $P(1.8) = 6.336 \le 2$.
- Discriminant include coefficient of x^2 in argument.
- When using factor elimination to remove some f(x), we only need to say that "f(x) is negative".
- Rational functions exclude the values that causes division by zero to occur.
- With inequalities, be really careful about multiplication! If x > y and z > 0, then xz > yz.
- Cross multiplication preserves order for $\frac{x}{y} < \frac{x'}{y'}$ iff y and y' are both positive or negative. Note the counterexample $\frac{1}{2} < \frac{1}{-3}$.
- Squaring preserves/reverses order for x < y iff x and y are both positive or negative.
- Can't necessarily use differentiation to solve if qns asks for algebraic method.
- Safer to graph out the two functions separately!
- Be careful about whether to include equality! Don't forget to account for it!
- Note that when solving for |x| = y, |x| < y, etc, y must be greater than or equal to 0. In other words, there may be solutions we will need to reject.
- Carelessness: Look at the question carefully! If they ask for a *set* of values, then rmb to give it as a *set*!
- Exponentiation and Logarithms: Simply use ln and avoid \log_c for c < 1.

 Order is *Preserved* under exponentiation/logarithms if the base is *larger than* one. Otherwise, when it is *less than* one, the order is *reversed*. https://www.desmos.com/calculator/gd8z5fa0bg
- For more complicated real-world-context qns, try playing around with the values (e.g. use simultaneous equations) first. It may work out nicer than expected.

Sequences and Series

2.1 Binomial Theorem and Series

Theorem 2.1.1: The Binomial Theorem

$$(a+b)^n = \sum_{r=0}^n \binom{n}{r} a^{n-r} b^r,$$

where $n \in \mathbb{Z}^+$.

Theorem 2.1.2: The Binomial Series

$$(1+x)^p = \sum_{r=0}^{\infty} \binom{p}{r} x^r,$$

where $p \in \mathbb{Q}$, |x| < 1, and

$$\binom{p}{r} := \frac{p(p-1)\cdots(p-r+1)}{r!}.$$

Corollary 2.1.3

Clearly,

$$(a+x)^p = a^p \left(1 + \frac{x}{a}\right)^p = a^p \sum_{r=0}^{\infty} {p \choose r} \frac{x^r}{a^r},$$

under the same conditions.

Fact

We can expand $(a+x)^p$ in descending powers of x by using $(a+x)^p=x^p\left(1+\frac{a}{x}\right)^p$.

Note

Sometimes computing a couple terms can be useful in finding a pattern. For example, to get the coefficient of x^k explicitly.

2.2 APGP

\mathbf{T}	
к	asics
ப	α

	A.D.		
	AP	GP	
21	$u_n = S_n - S_{n-1}$		
u_n	$u_n = a + (n-1)d$	$u_n = ar^{n-1}$	
S_n	$S_n = \frac{n}{2}[2a + (n-1)d]$ $= \frac{n}{2}(a+\ell)$	$S_n = \frac{a(1-r^n)}{1-r}$ $= \frac{a(r^n-1)}{r-1}$	
S_{∞}	Divergent	Converges to $S_{\infty} = \frac{a}{1-r}$ when $ r < 1$.	
Prove AP/GP	I Show $u_n - u_{n-1}$ is a constant/independent of n . II Show $u_n = a + (n-1)d$ explicitly.	I Show $\frac{u_n}{u_{n-1}}$ is constant/independent of n . II Show $u_n = ar^{n-1}$ explicitly	
Mean	$u_{n+1} = \frac{u_n + u_{n+2}}{2}.$ (Arithmetic Mean)	$\frac{u_{n+1}}{u_n} = \frac{u_{n+2}}{u_{n+1}}$ $u_{n+1}^2 = u_n \cdot u_{n+2}$ (Geometric Mean)	

Important Notes

Applications: Write out a few terms in a table and observe the trend. (You can literally say "By observing a trend, \dots ")

G.C. Skills

Table function

- 1. Enter eqn into GC.
- 2. 2nd graph to show table
- 3. 2nd tblset for setup options

2.3 Summation

Fact

$$\sum_{i=m}^{n} f(i) + g(i) = \sum_{i=m}^{n} f(i) + \sum_{i=m}^{n} g(i)$$

$$\sum_{i=m}^{n} af(i) = a \sum_{i=m}^{n} f(i)$$

$$\sum_{i=m}^{n} a = (n-m+1)a, \text{ for any constant a}$$

$$\sum_{i=m}^{n} f(i) = \sum_{i=1}^{n} f(i) - \sum_{i=1}^{m-1} f(i)$$

Note

- Look out for sums being AP and GPs.
- Results to be provided:

$$-\sum_{i=1}^{n} i^{2} = \frac{n}{6}(n+1)(2n+1)$$
$$-\sum_{i=1}^{n} i^{3} = \frac{1}{4}n^{2}(n+1)^{2}$$

2.4 Method of Differences

General Information

$$\sum_{i=1}^{n} u_i = \sum_{r=1}^{n} f(r) - f(r-1) = f(n) - f(0).$$

• Explain convergence of a function h(x) = f(x) + g(x): As $n \to \infty$, $f(x) \to 0$ and $g(x) \to 0$. Hence, h(x) converges to...

G.C. Skills

Know how to generate sequences using the two methods:

1. Table method — Present by showing two consecutive values of n so that the values of the sequence are of opposite signs. E.g.:

n	S_n
182	561.28 < 0
183	-1935.91 < 0

2. 2nd stat seq (& we can use operations on seq, e.g. sum)

Recurrence Relations

General Information

- 1. Recurrence relation is homogenous if constant (b below) is zero.
- 2. First order linear recurrence relation: $u_n = au_{n-1} + b$, with $a \neq 0$.
- 3. Second order homogenous linear recurrence relation: $u_n = a_1 u_{n-1} + a_2 u_{n-2}, a_2 \neq 0$.
- 4. Solving RRs in general:
 - (a) Continually expand u_n in terms of u_{n-1} , then in terms of u_{n-2} , ..., till an explicit formula is obtained.
 - (b) Use a_1 to generate a_2, a_3, \ldots, a_n .
- 5. Solving 1st order RRs, $u_{n+1} = au_n + b$:
 - (a) Iteration Essentially technique 4(a). Will need to use G.P. formula at the end.
 - (b) Rewriting RR + Using G.P. Formulas ((c) is better)
 - i. Write RR as $u_n k = a(u_{n-1} k)$, where $k = \frac{b}{1-a}$. Let $v_n = u_n k$.
 - ii. $\frac{v_n}{v_{n-1}} = a$, a constant and $\{v_n\}$ is a G.P. with first term $v_1 k$ and common ratio a.
 - iii. So, $v_n = (u_1 k)a^{n-1}$, and accordingly, $u_n = v_n + k = (u_1 k)a^{n-1} + k$.
 - (c) \bigstar Let $u_n = Aa^n + \frac{b}{1-a}$. Then solve for the constant A with info provided.
- 6. Solving 2nd order (homogenous) RRs, $u_{n+2} = au_{n+1} + bu_n$: Assume $u_n = m^n$, then $m^2 - am - b = 0$ (is the *characteristic/auxillary equation* of the RR). Solve for the roots, say m_1 and m_2 . Then, the general solution for u_n is

$$u_n = \begin{cases} Am_1^n + Bm_2^n & \text{if } m_1, m_2 \in \mathbb{R}, \text{ and } m_1 \neq m_2, \\ (C + Dn)m_1^n & \text{if } m_1, m_2 \in \mathbb{R}, \text{ and } m_1 = m_2, \\ r^n[A\cos(n\theta) + B\sin(n\theta)] & \text{if } m_1, m_2 \in \mathbb{C}, m_1 = re^{i\theta}, \text{ and } m_2 = re^{-i\theta}. \end{cases}$$

Note

Let $x_{n+1} = f(x_n)$ and $L := \lim x_n$. To find the possible values of L, we can compare the graph of y = f(x) against the identity function y = x. This is done by seeing if f(x) < x, f(x) = x, or f(x) > x.

Example 3.1

Figure 3.1: The RR $x_{n+1} = \sqrt{x_n^2 - 3x_n + 4} + x_n - 3$.

Let $f(x) = \sqrt{x^2 - 3x + 4} + x - 3$.

- 1. Suppose $x_1 \leq \frac{3+\sqrt{29}}{2}$. For $x_1 < \frac{3-\sqrt{29}}{2}$, we see that f(x) > x. So x_n increases till $\frac{3-\sqrt{29}}{2}$. While for $\frac{3-\sqrt{29}}{2} < x_1 < \frac{3+\sqrt{29}}{2}$, we have f(x) < x. Thus x_n decreases till $\frac{3-\sqrt{29}}{2}$. Notice the graphs intersects at $x = \frac{3-\sqrt{29}}{2}$. So, when $x_n = \frac{3-\sqrt{29}}{2}$, if ever, then $x_{n+1} = x_n$. That is, $L = \frac{3-\sqrt{29}}{2}$.
- 2. Similarly, if $x_1 = \frac{3+\sqrt{29}}{2}$, then $x_n = \frac{3+\sqrt{29}}{2}$ is a constant function; $L = \frac{3+\sqrt{29}}{2}$.
- 3. Presume that $x_n > \frac{3+\sqrt{29}}{2}$. Then, f(x) > x tells us x_n is an increasing sequence that is unbounded. In other words, L does not exist.

Induction

General Information

```
Let P(x) be the statement that "...".

When n=1,\ldots
\Rightarrow P(1) is true.

Assume P(k) is true for some k\in\mathbb{Z}^+.

Then, ...
\Rightarrow P(k+1) is true.

Therefore, since P(1) is true and P(k) true \Rightarrow P(k+1) true, P(n) is true for all n\in\mathbb{Z}^+.
```

Differentiation

Definition

- 1. A function f is called (strictly) increasing on an interval I iff f'(x) > 0 for all $x \in I$.
- 2. A function f is called monotonically increasing on an interval I iff $f'(x) \geq 0$ for any $x \in I$.

General Information

- 1. How to sketch the graph of the integral or derivative of a function f.
- 2. Relationship btw. a function f and its derivative, f':

y = f(x)	y = f'(x)	
Vertical asymptote at $x = a$	Vertical asymptote at $x = a$.	
Horizontal asymptote at $y = a$	Horizontal asymptote $y = 0$.	

3. Recap:

1		
f(x)	f'(x)	
$\sin^{-1}\left(\frac{x}{a}\right)$	$\frac{1}{\sqrt{a^2 - x^2}}, x < a$	
$\cos^{-1}\left(\frac{x}{a}\right)$	$-\frac{1}{\sqrt{a^2 - x^2}}, x < a$	
$\tan^{-1}\left(\frac{x}{a}\right)$	$\frac{a}{a+x^2}, x \in \mathbb{R}$	
$\log_a(f(x))$	$\frac{1}{x \ln(a)}$	
a^x	$a^x \ln(a)$	

- 4. Implicit differentiation: $\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$. \bigstar Makes life much easier (e.g. finding $f^{(n)}(x)$).
- 5. Parametric Differentiation: $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}.$
- 6. Small angle approximation:
 - (a) $\sin(x) \approx x$,
 - (b) $\cos(x) \approx 1 \frac{x^2}{2}$,
 - (c) $\tan(x) \approx x$.
- 7. Maclaurin Series: $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x$.

Integration Techniques

6.1 Basic Integration (IBS, IBP, etc)

General Information

- 1. Factor Formulae \bigstar (must rmb):
 - (a) $\sin(mx)\cos(nx) = \frac{1}{2}[\sin((m+n)x) + \sin((m-n)x)],$
 - (b) $\cos(mx)\cos(nx) = \frac{1}{2}[\cos((m+n)x) + \cos(m-n)x],$
 - (c) $\sin(mx)\sin(nx) = -\frac{1}{2}[\cos((m+n)x) \cos((m-n)x)].$
- 2. Common classes of integrals:
 - (a) Apply partial fractions:

$$\int \frac{f(x)}{g(x)} \, dx.$$

(b) Split px + q, then complete the square:

$$\int \frac{px+1}{\sqrt{ax^2+bx+c}} dx \quad \text{or} \quad \int \frac{px+1}{ax^2+bx+c} dx$$

3. Integration by Substitution:

$$\int f(x) dx = \int f(x) \frac{dx}{du} du.$$

- 4. Use Pythagoras' Theorem / draw a right-angled triangle to help with trig conversions, e.g.: $\tan(\theta)$ to $\frac{x+1}{\sqrt{2-(x+1)^2}}$.
- 5. Integration by Parts:

Let
$$u = g(x)$$
, $\frac{dv}{dx} = h(x)$,

$$\frac{du}{dx} = g'(x), v = \int h(x) dx.$$

$$\int u\left(\frac{dv}{dx}\right) dx = uv - \int v\left(\frac{du}{dx}\right) dx.$$

6.2 Areas & Volumes

General Information

- 1. Volume of revolution when rotated about x-axis:
 - (a) The disc method

$$\int_{x_1}^{x_2} \pi y^2 \, dx = \int_{x=x_1}^{x=x_1} \pi y^2 \, \frac{dx}{dt} \, dt.$$

(b) The shell method:

$$\int_{x_1}^{x_2} 2\pi y x \, dy.$$

2. Arc length:

$$\int_{x_1}^{x_2} \sqrt{\left(\frac{dy}{dx}\right)^2 + 1} \, dx = \int_{y_1}^{y_2} \sqrt{\left(\frac{dx}{dy}\right)^2 + 1} \, dy = \int_{t_1}^{t_2} \sqrt{\left(\frac{dy}{dt}\right)^2 + \left(\frac{dx}{dt}\right)^2} \, dt = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \, d\theta.$$

3. Surface area of revolution when rotated about *x*-axis:

$$\int_{x_1}^{x_2} 2\pi \mathbf{y} \sqrt{\left(\frac{dy}{dx}\right)^2 + 1} \, dx = \int_{y_1}^{y_2} 2\pi \mathbf{y} \sqrt{\left(\frac{dx}{dy}\right)^2 + 1} \, dy = \int_{t_1}^{t_2} 2\pi \mathbf{y} \sqrt{\left(\frac{dy}{dt}\right)^2 + \left(\frac{dx}{dt}\right)^2} \, dx = \int_{\alpha}^{\beta} \frac{1}{2} r^2 \, d\theta.$$

 \star Rotating about x-axis $\Longrightarrow y$ in integrand Rotating about y-axis $\Longrightarrow x$ in integrand.

6.3 Numerical Methods

6.3.1 Trapezium Rule

General Information

1. Formula for n intervals, or (n+1) ordinates, of width h:=(b-a)/n:

$$\int_a^b y \, dx = \frac{h}{2} (y_0 + 2y_1 + 2y_2 + \dots + 2y_{n-1} + y_n).$$

2. Illustration

Figure 6.1: Trapezium rule

- 3. Error:
 - (a) Concave upwards, i.e. $(f'(x) \text{ is increasing } / f''(x) > 0) \implies \text{overestimation.}$
 - (b) Concave downwards, i.e. $(f'(x) \text{ is decreasing } / f''(x) < 0) \implies \text{underestimation.}$

6.3.2 Simpson's Rule

General Information

1. Formula for n intervals, or (n+1) ordinates, of width h:=(b-a)/n:

$$\int_a^b y \, dx = \frac{h}{3} (y_0 + 4y_1 + 2y_2 + 4y_3 + \dots + 2y_{n-2} + 4y_{n-1} + y_n).$$

Note that the number of intervals n should be even, that of ordinates odd.

2. Illustration

Figure 6.2: Simpson's rule

Note

Accuracy of the Trapezium rule vs Simpson's Rule: "Simpson's Rule uses quadratic curves to interpolate the points on the curve so it usually gives a better approximation to the actual curve than the trapezium rule which uses straight lines to interpolate the ordinates."

Complex Numbers

7.1 Complex Number I

General Information

- 1. Find the square root of x + iy: Let $\sqrt{x + iy} = a + bi$. Then square both sides & solve.
- 2. Simplifying fractions: multiply by the denominator's conjugate

$$\frac{a+bi}{c+di} = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} = \cdots.$$

- 3. Polynomials:
 - (a) Fundamental Theorem of Algebra: If $p(z) := \sum_{i=0}^{n} a_i z^i$ is a polynomial of degree $n \ge 1$ with complex coefficients, then there exists complex numbers c_i for each $1 \le i \le n$ such that

$$p(z) = a_n \prod_{i=1}^{n} (z - c_i).$$

(b) If a polynomial in real coefficients only has root a + bi, then a - bi is another root.

Example 7.1

Find the roots of $iz^2 + 2z + 3i = 0$.

$$z^{2} - 2iz + 3 = 0$$

$$z = \frac{2i \pm \sqrt{(2i)^{2} - 4(1)(3)}}{2(1)} = i \pm \frac{\sqrt{-16}}{2} = i \pm 2i$$

So, z = 3i or z = -i.

Example 7.2: N2010/2/1

One root of the equation $x^4 + 4x^3 + ax + b = 0$, where a and b are real, is x = -2 + i. Find the values of a and b and the other roots.

Substitute -2 + i into the equation:

$$(-2+i)^4 + 4(-2+i)^3 + (-2+i)^2 + a(-2+i) + b = 0$$
$$-12+16i = 2a - b - ai$$
$$a = -16, \quad 2a - b = -12$$

Therefore, a = -16, b = -20.

Since all the coefficients of the polynomial are real (explain), -2-i is another root. Now, $x^4 + 4x^3 + ax + b = (x - (-2+i))(x - (-2-i))(cx + d)$ for some $c, d \in \mathbb{R}$.

Accordingly, substitute x=0, then x=2, and solve. Alternatively, notice $x^4+4x^3+ax+b=(x^2-2(-2)x+((-2)^2+1^2))(x^2+cx+d)=(x^2+4x+5)(x^2+4x+5)$. Either ways, we have c=0 and d=-4. As such, the last two roots are $x=-2\pm i$ and $x=\pm 2$.

14

- (c) Simultaneous equations: Solve as usual.
- (d) Properties of modulus: $|z_1^x z_2^y| = |z_1|^x |z_2|^y$, for any $x, y \in \mathbb{R}$.
- (e) Properties of arguments (same as log): $\arg(z) \in (-\pi, \pi]$ and $\arg(z_1^x z_2^y) = n \arg(z_1) + m \arg(z_2)$ for any $x, y \in \mathbb{R}$.
- (f) Polar form: $z = re^{i\theta}$.
- (g) Polar/Trigonometric form: $z = r[\cos(\theta) + i\sin(\theta)]$.

Note

Show that the value of w^n is either 2^n or 2^{-n} for integers n.

Then we **must** show that $w^n = \cdots = \begin{cases} 2^n(1) = 2^n & \text{if } n \text{ even,} \\ 2^n(-1) = -2^n & \text{if } n \text{ odd.} \end{cases}$

7.2 Complex Numbers II

Theorem 7.2.1: De Moivre's Theorem

Let z be a complex number, n an integer, and θ an angle. Suppose $z = re^{i\theta}$. Then,

$$z^{n} = e^{i\theta} = r^{n}[\cos(n\theta) + i\sin n\theta].$$

General Information

- 1. All nth roots of any complex number are the same distance r from the origin and have the same angular separation, π/n .
- 2. Note that $1 + e^{i\theta} = e^{i\theta/2}(e^{-i\theta/2} + e^{i\theta/2})$.
- 3. For $z = re^{i\theta}$, we have $z^n + z^{-n} = 2\cos(n\theta)$ and $z^n z^{-n} = 2i\sin(n\theta)$.
- 4. The geometric meaning of multiplying by i is a anti-clockwise rotation by π radians.
- 5. Loci (Use a compass)
 - (a) The locus represented by |z a| = r (or $z = a + re^{i\theta}$) is a *circle* of radius r centered at A(x,y) (where a := x + iy).

Figure 7.1: The locus of |z - a| = r.

- i. Either label the four points to the direct North, South, East, West of the circle, or denote the radius clearly.
- ii. The line segment, representing the furthest distance from a point to a circle, always cuts through the circle's centre. So, the distance

$$OP_{max} - OP_{min} = 2 \cdot radius.$$

iii. The line segments, from a point to a circle that produces the largest angle, are tangents to the circle.

Figure 7.2: Maxmium distance and angle of a point from a circle

(b) The locus represented by |z-a|=|z-b| is the *perpendicular bisector* of the line segment joining A and B.

Figure 7.3: The locus of |z - a| = |z - b|, a perpendicular bisector

(c) The locus represented by $\arg(z-a)=\theta$ is the half-line from A (excluding A) that makes an angle θ with the positive real axis.

Figure 7.4: The locus of $arg(z - a) = \theta$, a half-line.

6. There is no need to find the points of intersection between two loci, unless the questions states so.

Example 7.3: TQ 10(b)

Show that $\cot^2(2\pi/5)$ is a root of the equation $px^2 + qx + r = 0$, where we are given

$$\cot(4\theta) = \frac{\cot^4(\theta) - 6\cot^2(\theta) + 1}{4\cot^3(\theta) - 4\cot(\theta)}.$$

First notice that $\cot(8\pi/5) = -\cot(2\pi/5)$. So,

$$-\cot(2\pi/5) = \frac{\cot^4(2\pi/5) - 6\cot^2(2\pi/5) + 1}{4\cot^3(2\pi/5) - 4\cot(2\pi/5)}.$$

Simplifying gives

$$5[\cot^2(2\pi/5)]^2 - 10[\cot^2(2\pi/5)] + 1 = 0.$$

Thus, $x = \cot^2(2\pi/5)$ is a root of the equation $5x^2 - 10x + 1 = 0$.

Linear Algebra

Definition 8.1

A vector space (or linear space) V over a field \mathbb{F} consists of a set on which two operations (called addition and multiplication respectively here) are defined so that;

- (A) (V is Closed Under Addition) For all $\mathbf{x}, \mathbf{y} \in V$, there exists a unique element $\mathbf{x} + \mathbf{y} \in V$.
- (M) (V is Closed Under Scalar Multiplication) For all elements $a \in \mathbb{F}$ and elements $\mathbf{x} \in V$, there exists a unique element $a\mathbf{x} \in V$.

Such that the following properties hold:

- (VS 1) (Commutativity of Addition) For all $\mathbf{x}, \mathbf{y} \in V$, we have $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$.
- (VS 2) (Associativity of Addition) For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, we have $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$.
- (VS 3) (Existence of The Zero/Null Vector) There exists an element in V denoted by $\mathbf{0}$, such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for all $\mathbf{x} \in V$.
- (VS 4) (Existence of Additive Inverses) For all elements $\mathbf{x} \in V$, there exists an element $\mathbf{y} \in V$ such that $\mathbf{x} + \mathbf{y} = \mathbf{0}$.
- (VS 5) (Multiplicative Identity) For all elements $x \in V$, we have $1\mathbf{x} = \mathbf{x}$, where 1 denotes the multiplicative identity in \mathbb{F} .
- (VS 6) (Compatibility of Scalar Multiplication with Field Multiplication) For all elements $a, b \in \mathbb{F}$ and elements $\mathbf{x} \in V$, we have $(ab)\mathbf{x} = a(b\mathbf{x})$.
- (VS 7) (Distributivity of Scalar Multiplication over Vector Addition) For all elements $a \in \mathbb{F}$ and elements $\mathbf{x}, \mathbf{y} \in V$, we have $a(\mathbf{x} + \mathbf{y}) = a\mathbf{x} + a\mathbf{y}$.
- (VS 8) (Distributivity of Scalar Multiplication over Field Addition) For all elements $a, b \in \mathbb{F}$, and elements $\mathbf{x} \in V$, we have $(a + b)\mathbf{x} = a\mathbf{x} + b\mathbf{x}$.

General Information

- 1. Let V be a vector space and W a subset of V. Then W is a subspace of V iff the following 3 conditions hold for the operations defined in V.
 - (a) $\mathbf{0} \in W$
 - (b) $\mathbf{x} + \mathbf{y} \in W$ whenever $\mathbf{x} \in W$ and $\mathbf{y} \in W$.
 - (c) $c\mathbf{x} \in W$ whenever $c \in \mathbb{F}$ and $\mathbf{x} \in W$.
- 2. For any matrix, its row space, column space, and dimension are identical.
- 3. A system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is homogeneous iff $\mathbf{b} = 0$; otherwise it is nonhomogeneous.
- 4. A system $\mathbf{A}\mathbf{x} = \mathbf{b}$ of m linear equations in n unknowns has a solution space of dimension n rank(A).
- 5. A system $\mathbf{A}\mathbf{x} = \mathbf{b}$ of linear equations is *consistent* iff its solution set is nonempty; otherwise it is *inconsistent*.
- 6. A system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent iff $rank(\mathbf{A}) = rank(\mathbf{A}|\mathbf{b})$.
- 7. A matrix is said to be in reduced row echelon form iff

- (a) Any row containing a nonzero entry precedes any row in which all the entries are zero (if any).
- (b) The first nonzero entry in each row is the only nonzero entry in its column.
- (c) The first nonzero entry in each row is 1 and it occurs in a column to the right of the first nonzero entry in the preceding row.
- 8. Gaussian elimination.
 - (a) In the forward pass, the augmented matrix is transformed into an upper triangular matrix in which the first nonzero entry of each row is 1 and it occurs in a column to the right of the first nonzero entry of each preceding row.
 - (b) In the backward pass, the upper triangular matrix is transformed into reduced row echelon form by making the first nonzero entry of each row the only nonzero entry of its column.
- 9. Let **A** be an $m \times n$ matrix, and \mathbf{a}_j its jth column. For any $\mathbf{x} = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \end{pmatrix}^{\top}$,

$$\mathbf{A}\mathbf{x} = \sum_{j=1}^{n} x_j \mathbf{a}_j.$$

10. Let **A** and **B** be matrices having n rows. For any matrix **M** with n columns, we have

$$\mathbf{M}(\mathbf{A}|\mathbf{B}) = (\mathbf{M}\mathbf{A}|\mathbf{M}\mathbf{B}).$$

11. The determinant of a square matrix can be evaluated by cofactor expansion along any row. That is, if $\mathbf{A} \in \mathcal{M}_{n \times n}(\mathbb{F})$, then for any integer $1 \le i \le n$,

$$\det(\mathbf{A}) = \sum_{j=1}^{n} (-1)^{i+j} \mathbf{A}_{ij} \cdot \det(\widetilde{\mathbf{A}}_{ij}).$$

Here, $\widetilde{\mathbf{A}}_{ij}$ is the $(n-1) \times (n-1)$ matrix obtained from \mathbf{A} by deleting its *i*th row and *j*th column.

12. The determinant of a square matrix can also be evaluated by cofactor expansion along any column, since

$$\det(\mathbf{A}) = \det(\mathbf{A}^\top).$$

- 13. A matrix **A** is invertible iff its determinant is nonzero.
- 14. Let **A** be an invertible $n \times n$ matrix. Then, for some elementary row matrices \mathbf{E}_1 to \mathbf{E}_p ,

$$\mathbf{E}_{p}\mathbf{E}_{p-1}\dots\mathbf{E}_{1}(\mathbf{A}\mid\mathbf{I}_{n})=\mathbf{A}^{-1}(\mathbf{A}\mid\mathbf{I}_{n})=(\mathbf{I}_{n}\mid\mathbf{A}^{-1}).$$

In other words, we can perform Gaussian elimination, so that $(\mathbf{A} \mid \mathbf{I}_n) \to (\mathbf{I}_n \mid \mathbf{A}^{-1})$.

15. Alternatively, letting **C** be the cofactor matrix of A, i.e. $c_{ij} = (-1)^{i+j} \det(\widetilde{\mathbf{A}}_{ij})$, we have

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \mathbf{C}^{\top}.$$

Graphing Techniques

9.1 Graphing 'Familiar' Functions and Asymptotic bois

Definition

- 1. **Lines of Symmetry**: A *line of symmetry* of a function is a line, such that the function is a reflection of itself about that line.
- 2. Horizontal Asymptotes: A (horizontal) line g(x) = c is the horizontal asymptote of the curve f(x) iff $\lim_{x\to\infty} f(x) = c$ (or with $-\infty$ instead of ∞).
- 3. Vertical Asymptotes: A (vertical) line x = c is a vertical asymptote of the curve f(x) iff $\lim_{x\to c} f(x) = \infty$ or $-\infty$.
- 4. **Oblique Asymptotes**: A line g(x) = mx + c where $m \neq 0$ is an *oblique asymptote* of the curve f(x) iff $\lim_{x\to\infty} [f(x)-g(x)]=0$ (or with $-\infty$ instead of ∞).

Curve Sketching of Rational Functions

- S Stationary points
- I Intersection with axes
- A Asymptotes
- i Know how to sketch the graphs of $y = \frac{ax+b}{cx+d}$ and $y = \frac{ax^2+bx+c}{dx+e}$.
- ii Rectangular Hyperbolas (of the form $y = \frac{ax+b}{cx+d}$):
 - Two asymptotes, namely $x = -\frac{d}{c}$ and $y = \frac{a}{c}$.
 - Two lines of symmetry with gradients ± 1 and pass through the intersection point of the aforementioned two asymptotes.
- iii If $n = \deg P = \deg Q$, then
 - y = R(x) is the *horizontal* asymptote of $\frac{P(x)}{Q(x)} = R(x) + \frac{S(x)}{Q(x)}$.
 - \bullet Equivalently, $y=\frac{\mathrm{coeff}_P(x^n)}{\mathrm{coeff}_Q(x^n)}$ is a horizontal asymptote. a
- iv If deg $P = \deg Q + 1$, then R(x) is an oblique asymptote of $\frac{P(x)}{Q(x)} = R(x) + \frac{S(x)}{Q(x)}$.
- v Write down asymptotes and lines of symmetry. b If none are present indicate with "No lines of symmetry."

```
^a\text{E.g.:}\ y=\frac{1}{15} is a horizontal asymptote of y=\frac{\textbf{l}x^2+2x-3}{(\textbf{5}x+1)(\textbf{3}x+2)} ^b\text{E.g.:}
```

Asymptotes: x = 4, y = 20.

Lines of Symmetry: y = x + 16, y = -x + 24.

^aOtherwise notated by $f(x) \to c$ as $x \to \infty$.

Important Notes

- The discriminant can be very useful.
- Know how to use the G.C. Transfrm app. It allows you to vary the value of some parameter A for a function f(Ax). Use this to graphically find the values of integer k satisfying some conditions.

9.2 Conics

"Tikz is pain, PGFPlots is suffering" — Wise Man.

	Ellipses	Hyperbolas
Standard Forms	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	$\frac{\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1}{\frac{(y-k)^2}{b^2} - \frac{(x-h)^2}{a^2} = 1}$
General Equation	$ax^{2} + by^{2} + cx^{2} + dx + e = 0,$ where $\operatorname{sgn}(a) = \operatorname{sgn} b$.	$ax^{2} + by^{2} + cx^{2} + dex + e = 0,$ where $sgn(a) \neq sgn b.$
Center	(h	(n,k)
Vertical 'Radius'		b
(variables here from standard form!)		
Horizontal 'Radius' (variables here from standard form!)		a
Vertical Vertices	(b. l	$(k \pm b)$
(variables here from standard form!)	(11, 1	1 ± 0)
Horizontal Vertices	h + h	=a,k)
(variables here from standard form!)	(10 =	- 4, 10)
Shape	$ \begin{array}{c} y \\ \hline a \\ (h,k) \end{array} $	$coeff(x^{2}) < 0$ y (h, k) $coeff(y^{2}) < 0$ y (h, k) (h, k)
Asymptotes	-	$y = k \pm \frac{b(x-h)}{a}$
(No need to rmb!)	7	
Lines of Symmetry	x = h	y, y = k

General Information

 $\bullet\,$ To find asymptote of hyperbolas, just solve

$$\frac{(x-h)^2}{a^2} = \frac{(y-k)^2}{b^2}.$$

• Label vertices or radii, together with the center and asymptotes.

9.3 Parametric Equations

Important Notes

- * Check the qns for any *restrictions* on the parameter! And modify that of the G.C.'s accordingly (Tmin & Tmax).
- \star Vary the t-step or resolution (when using cartesian coordinates) when the graph is oddly jagged.

9.4 Scaling, Translations, and Reflections

Playing With x			
Function x is replaced with		(Horizontal) Transformation	
$f(x+a) \qquad x+a$		Translate a units in the positive $(a \le 1)$ O/R negative x -direction $(a \ge 1)$.	
f(-x)	-x	Reflect about the y -axis	
f(ax) ax		Scale parallel to the x-axis by a scale factor of $\frac{1}{a}$ if $a \ge 1$.	
Playing With $f(x)$			
Function / Change to $f(x)$		(Vertical) Transformation	
f(x) + a		Translate a units in the positive $(a \ge 1)$ O/R negative y -direction $(a \le 1)$.	
-f(x)		Reflect about the x -axis.	
af(x)		Scale parallel to the y -axis by scale factor a .	

9.5 |f(x)| and f(|x|)

General Information

- For |f(x)|, simply flip the part of the graph of f(x) that is below the x-axis, to above the x-axis.
- For f(|x|), its graph is symmetric about the x-axis

9.6
$$y = \frac{1}{f(x)}$$

Behavior of $f(x)$	Behavior of $1/f(x)$	
f(x) > 0	$\frac{1}{f(x)} > 0$	
f(x) < 0	$\frac{1}{f(x)} < 0$	
Vertical Asymptote at $x = c$	$\frac{1}{f(x)} tends \text{ to } 0$ $* \frac{1}{f(x)} \text{ is undefined at } x = c$	
$\frac{df}{dx} = -\frac{d}{dx} \left(\frac{1}{f(x)} \right)$		
i.e. when $f(x)$ increases, $\frac{1}{f(x)}$ decreases.		
(a,b) is a minimum pt	$\left(a,\frac{1}{b}\right)$ is a maximum pt	
(a,b) is a maximum pt	$\left(a,\frac{1}{b}\right)$ is a minimum pt	

Polar Curves

Definition

- 1. The pole is the origin, i.e. the point 0.
- 2. The initial line / polar axis is the half line $\theta = 0$.

General Information

 $\circ\,$ Coordinate Conversion

$$r = \sqrt{x^2 + y^2}$$
 $x = r\cos(\theta)$
 $\theta = \tan^{-1}\left(\frac{y}{x}\right)$ $y = r\sin(\theta)$

 \circ Standard Functions

Polar Equation		Cartesian Equation	
$ heta=rac{\pi}{2}$			
0		$\theta = 0$	x = a
$r\cos(\theta) = a$			

$\theta = \frac{\pi}{2} \qquad r\sin(\theta) = a$ $0 \qquad \theta = 0$	y = a	
$\theta = \frac{\pi}{2}$ $\theta = \alpha$ $\theta = 0$	$y = x \tan(\alpha)$	
$\theta = \frac{\pi}{2} r = a$ $0 \qquad \theta = 0$	$x^2 + y^2 = a^2$	
$\theta = \frac{\pi}{2} r = a \cos(\theta)$ 0 $\theta = 0$	$(x - \frac{a}{2})^2 + y^2 = \frac{a^2}{4}$	
$\theta = \frac{\pi}{2} r = a \sin(\theta)$ $\theta = 0$	$x^2 + (y - \frac{a}{2})^2 = \frac{a^2}{4}$	

- \circ Tangent lines at the pole are obtained by solving r = 0.
- Know how to find range of r and θ (given a func/eqn).
- $\circ r = f(\theta)$ is symmetrical about the polar (horizontal) axis iff $f(\theta) = f(-\theta)$.
 - Suppose r is a function of $\cos(n\theta)^a$ only. Then, the lines of symmetry are $n\theta=0,\pi,2\pi,\ldots$
- $\circ r = f(\theta)$ is symmetrical about the vertical line $\theta = \frac{\pi}{2}$ iff the equation $f(\theta) = f(\pi \theta)$.
 - Suppose r is a function of $\sin(n\theta)$ only. Then, the lines of symmetry are $n\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \dots, \frac{(2m+1)\pi}{2}, \dots$
- $\circ r = f(\theta)$ is symmetrical about the pole iff (r, θ) is a point on the curve whenever $(-r, \theta)$ is.
- $\circ\,$ R-formula may be necessary
- Area of a sector: $A = \frac{1}{2} \int_{\alpha}^{\beta} r^2 d\theta$, where $\alpha < \beta$.
- Arc length= $\int_{\theta_1}^{\theta_2} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$
- ^aE.g.: $r = a\sqrt{(4 + \sin^2(\theta))^2 \cos(\theta)}$

Important Notes

- 1. r is normally ≥ 0 . But, in some questions, it can be negative.
- 2. No need to fully expand; a final answer such as $(x^2 + y^2)^2 = 3y(x^2 + y^2) 4y^2$ suffices.
- 3. Polar curve sketching essentials:
 - (a) Shape of curve
 - (b) Intersection(s) with ('axial') half lines
 - (c) Nothing else unless the qns asks for it
 - □ Be careful of the sharpness / smoothness of points! Points supposed to be sharp should be sufficiently so, and those supposed to be smooth should be sufficiently rounded / not look sharp.
 - \Box Check whether the polar axes are tangents at pole. Use this information to draw accurate graphs.
 - \square Best to add a small dotted line to show tangentiality at intercepts.
 - \square Careful about constants like a in $r = a\sin(\theta)$ for axial intercepts.
 - \square No need to state points at the pole unless they are 'axial', i.e. $\theta = 0$, or $\frac{\pi}{2}$, etc.
- 4. When finding maximum / minimum y values $\left(\frac{dy}{d\theta} = 0\right)$, we need to check its nature (1st/2nd deriv test). However, this is unnecessary for max / min r values.
- 5. For stuff like $\frac{dy}{dx}$, try to keep it in polar form if possible instead of converting to cartesian form.
- 6. As usual, be careful! E.g. Which values need to be rejected.
- 7. When reflecting/rotating, a diagram may be useful in finding the necessary angle/expression to replace θ with. E.g.:
 - (a) In the case of reflecting about $r = \theta$ or y = x, $(r, \theta) \to (r, \frac{\pi}{2} \theta)$.
 - (b) Reflect about the half-line $\theta = \frac{\pi}{2} \implies (r, \theta) \to (r, \pi \theta)$.

G.C. Skills

- 1. Nice polar \implies Zoom fit + Zoom square
- 2. Simply press alpha trace 1 to get r_1 . In fact, this works for the other modes available in the GC as well.
- 3. We can type $\frac{d}{d\theta}r_1\big|_{\theta=\theta}$ info formulas (like the one for arc length) without having to manually differentiate it!

Conic Sections

Definition 11.1

Eccentricity, e, is defined as

 $\frac{\text{distance of } P \text{ from focus}}{\text{distance of } P \text{ from directrix}}.$

General Information

 $\circ\,$ Shapes associated with the value of e

-e=0: Circle

 $-\ 0 < e < 1$: Ellipse

 $-\ e=1$: Parabola

-e > 1: Hyperbola

Conic	Parabolas		Ellipses		Hyperbolas	
Equation	$x^2 = 4py$	$y^2 = 4px$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \ a > b$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \ b > a$	$\frac{x^2}{a^2} - \frac{y^2}{b^2}$	$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$
Foci	(0, p)	(p, 0)	$(\pm c, 0)$	$(0, \pm c)$	$(\pm c, 0)$	$(0, \pm c)$
a, b, c	N.A.		$c^2 = a^2 - b^2$	$c^2 = b^2 - a^2$	$c^2 = a$	$a^2 + b^2$
Directrices	y = -p	x = -p	$x = \pm \frac{a}{e} = \pm \frac{a^2}{c}$	$y = \pm \frac{b}{e} = \pm \frac{b^2}{c}$	$x = \pm \frac{a}{e} = \pm \frac{a^2}{c}$	$y = \pm \frac{b}{e} = \pm \frac{b^2}{c}$
e	e = 1		$0 < \epsilon$	e < 1	e >	> 1
	N.A.		$e = \frac{c}{a}$ $= \frac{\sqrt{a^2 - b^2}}{a}$ $= \sqrt{1 - \frac{b^2}{a^2}}$	$e = \frac{c}{b}$ $= \frac{\sqrt{b^2 - a^2}}{b}$ $= \sqrt{1 - \frac{a^2}{b^2}}$	$e = \frac{c}{a}$ $= \frac{\sqrt{a^2 + b^2}}{a}$ $= \sqrt{1 + \frac{b^2}{a^2}}$	$e = \frac{c}{b}$ $= \frac{\sqrt{a^2 + b^2}}{b}$ $= \sqrt{1 + \frac{a^2}{b^2}}$
Reflective Property	When light parallel to its axis of symmetry $(x = 0 \text{ or } y = 0)$ hits its concave side, the light is reflected to the focus.		For any point P on th $a > b$, $PF_1 + PF_2$	•	For any point P with coeff(x^2) > 0 $ PF_1 - P $,

 \circ Polar Form: x = p, x = -p, y = p, or y = -p being the directrix

	Top $r = \frac{ep}{1 + e\sin(\theta)}$	
Left $r = \frac{ep}{1 - e\cos(\theta)}$		Right $r = \frac{ep}{1 + e\cos(\theta)}$
	Bottom $r = \frac{ep}{1 - e\sin(\theta)}$	

Definition

- \circ Major / minor axes \implies lengths of longest and shortest diameters respectively.
- $\circ\,$ Semi-major / semi-minor \implies half of major / minor axes respectively.
- $\circ\,$ Focal radius \implies distance from point on conic section to focus.

Note

Some possible things to try:

- Using the fact that $PF_1 + PF_2 = 2a$ to do simultaneous equations.
- Converting to polar form (when e < 1 so $r \ge 0$) for distances.
- Congruent/Similar triangles.
- Classic use of discriminants.
- Sum and product of roots: Given any polynomial $ax^2 + bx + c$ with the roots α and β ,

$$\alpha + \beta = -\frac{b}{a}$$
 and $\alpha \beta = \frac{c}{a}$.

Functions

General Information

- 1. Horizontal Line Test:
 - (a) Fail: Since y = k intersects the graph of y = f(x) more than once, therefore f is not injective.
 - (b) Success: Since any horizontal line y = k will intersect the graph of y = g(x) at most once, so f(x) is one-one.
- 2. The inverse function, f^{-1} , of a function f exists iff f is one-one.
- 3. $y = f^{-1}$ is a reflection of y = f(x) about the line y = x.
- 4. The composite function gf exists iff $R_f \subseteq D_g$.
- 5. $D_{gf} = D_f \& R_{gf} = R_g$.
- 6. Finding the range:
 - (a) Graphing method:
 - (b) Mapping method, e.g.: $D_f = (0, \infty) \xrightarrow{f} (1, \infty) \xrightarrow{g} (0, \infty) = R_{gf}$

^asome specific k, e.g. y = 1/2

Permutations and Combinations

Definition 13.1

The terms n pick r and n choose r respectively denote

$$^{n}P_{r}:=rac{n!}{(n-r)!}$$
 and $egin{pmatrix} n \ r \end{pmatrix}={}^{n}C_{r}:=rac{n!}{(n-r)!r!}.$

General Information

- Addition and multiplication principles
- Know how to 'bundle' objects together so as to calculate the total no. of permutations.
- There are $\frac{n!}{n_1!n_2!\cdots n_r!}$ number of ways to arrange n objects, of which n_1 are 'similar', n_2 are 'alike', ..., n_r are 'the same'.

Fact

Intuition: If there are n_1 objects are non-distinct out of n objects, then there are n_1 ! ways to arrange these objects that results in 'the same' permutation.

- Case-wise considerations/calculations (then summing together the total number of permutations)
- Unordered circular permutations: There are $\frac{n!}{n} = (n-1)!$ number of ways of arranging n distinct objects in a circle.

Fact

For unordered circular permutations, we do not care if you rotate the seating arrangement, as long as neighbours are preserved for each object. i.e. $(A, B, C, D) \sim (B, C, D, A)$. As a result, each such collection of n permutations reduces down to one. Thus, explaining the division by n.

• Complementary Method, i.e. taking number of arrangements without restriction - number of arrangements with the opposite of that restriction.

Example 13.1

Number of ways two girls *cannot* sit next to each other = number of arrangements *without restriction* – number of arrangements with girls sitting *together*.

• Insertion Method, place down some of your objects and then insert the rest in the gaps.

Example 13.2

Boys sit at table first: 2! ways.

From the 3 gaps, choose 2 for the 2 girls to sit at: 3 ways.

The girls can arrange themselves in 2! ways.

So, total no. of ways is $2! \cdot 3 \cdot 2! = 12$.

• Ordered circular permutations: First calculate the number of unordered permutations, then add the ordering at the end.

Note

Circular arrangements are not the same as row arrangements.

We know that A and B are not considered to be seating together in the row arrangement of (A, C, D, E, B). But, they are seating together in a corresponding row arrangement. The number of row arrangements can be less than, equal to, or more than the number of circular arrangements.

Vectors

Lines	Planes			
Equiv	Equivalent Forms			
	1. Vector Equation:			
	Π : $\mathbf{r} = \mathbf{a} + \lambda \mathbf{m_1} + \mu \mathbf{m_2}$ where $\lambda, \mu \in \mathbf{R}$,			
1. Vector Equation:	2. Scalar Product Form:			
ℓ : $\mathbf{r} = \mathbf{a} + \lambda \mathbf{m}, \ \lambda \in \mathbb{R},$	$\Pi \colon \mathbf{r} \cdot \mathbf{n} = p$			
2. Cartesian Equation:	where the scalar $p := \mathbf{a} \cdot \mathbf{n}$,			
$x-a_1 \ \underline{} y-a_2 \ \underline{} z-a_3$	3. Cartesian Equation:			
$\frac{x-a_1}{m} = \frac{y-a_2}{m_2} = \frac{z-a_3}{m_3}.$	$n_1x + n_2x + n_3z = p$			
	where the normal vector $\mathbf{n} := \begin{pmatrix} n_1 & n_2 & n_3 \end{pmatrix}^{T}$.			
Foot of Perpendicular				
M1: (a) $\overrightarrow{ON} = \mathbf{a} + \lambda \mathbf{m}$, (b) $\overrightarrow{QN} \cdot \mathbf{m} = 0$, solve for λ ,	(a) $\ell_{NQ} : \mathbf{r} = \overrightarrow{OQ} + \lambda n$, where $\lambda \in \mathbb{R}$, and $\Pi : \mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$,			
(c) Substitute λ into (a). M2: (a) $\overrightarrow{AN} = \left(\overrightarrow{AQ} \cdot \hat{\mathbf{m}}\right) \hat{\mathbf{m}}$,	(b) $(\overrightarrow{OQ} + \lambda \mathbf{n}) \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$, solve for λ ,			
(b) $\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AN}$.	(c) $\overrightarrow{ON} + \overrightarrow{OQ} + \lambda \mathbf{n}$.			
Shortest Disance	of Point To Line, QN			
	M1: $\left\ \overrightarrow{AQ} \cdot \hat{\mathbf{n}} \right\ $.			
M1: $\ \overrightarrow{AQ} \times \hat{\mathbf{m}}\ $.	M2: for distance of plane to <i>origin</i> : If Π : $\mathbf{r} \cdot \mathbf{n} = p$, $\frac{p}{\ \mathbf{n}\ }$ is the shortest distance from the ori-			
M2: (a) $AN = \ \overrightarrow{AQ} \cdot \hat{\mathbf{m}}\ ,$	gin to the plane Π . <i>Note:</i>			
(b) Pythagoras' Theorem.	• If $\frac{p}{\ \mathbf{n}\ } > 0$, then Π 'above' 0.			
M3: Using the foot of perpendicular, find distance QN .	• If $\frac{p}{\ \mathbf{n}\ } < 0$, then Π 'below' 0.			
vance giv.	M3: Using the foot of perpendicular, then find distance QN .			

Relationship Btw 2 Lines	Relationship Btw Line & Plane
	1. ℓ lies in Π
1. Parallel, Non-Intersecting	M1: i. $\mathbf{m} \cdot \mathbf{n} = 0$ says $\ell / / \Pi$, ii. Combined with $\mathbf{a} \cdot \mathbf{n} = p$, we conclude ℓ lies in Π .
 (a) m₁ // m₂, (b) Solving ℓ₁ = ℓ₂ gives no real solution. 2. Parallel, Coinciding 	M2: Substitute ℓ into Π and show the system (of lin eqns) is consistent for all λ .
(a) $\mathbf{m_1} / \mathbf{m_2}$, (b) a lies in ℓ_1 and ℓ_2 .	2. ℓ // Π but Nonintersecting
3. Non-Parallel, Intersecting	M1: i. Show $\mathbf{m} \cdot \mathbf{n} = 0$, so $\ell / / \Pi$. ii. Then $\mathbf{a} \cdot \mathbf{n} \neq p$, tells us ℓ and Π are nonintersecting.
 (a) m₁ not // m₂, (b) Solve ℓ₁ = ℓ₂ to find intersection. 	M2: Substitute ℓ into Π , and show the system (of lin eqns) is inconsistent.
4. Skew Lines (Non-Parallel, Non-Intersecting)	3. Intersect at 1 point
(a) $\mathbf{m_1}$ not $/\!\!/ \mathbf{m_2}$, (b) Solving $\ell_1 = \ell_2$ gives no real solution.	M1: $\mathbf{m} \cdot \mathbf{n} \neq 0$. To find point of intersection: For the plane Π and ℓ defined by $\mathbf{n} : \mathbf{r} \cdot \mathbf{n} = p$ Solve for ℓ using simultaneous equations or G.C.
-	Relationship Btw 2 Planes 1. Parallel Planes: Show there exists an a for which
	(a) $\mathbf{a} \cdot \mathbf{n_1} = p_1,$ (b) $\mathbf{a} \cdot \mathbf{n_2} \neq p_2.$
	2. Same Plane: Show there exists an a for which
	(a) $\mathbf{a} \cdot \mathbf{n_1} = p_1,$ (b) $\mathbf{a} \cdot \mathbf{n_2} = p_2.$
	3. Intersect in a line ℓ ; To find this line:
	M1: $\mathbf{n_1} \times \mathbf{n_2}$ gives the direction vector. So find a common point with simultaneous equations.
	M2: Solving system of linear equations, from the <i>cartesian</i> form of the planes, using G.C.
	Reflection \longrightarrow
1. Find foot of perpendicular,	1. Find the position vector \overrightarrow{ON} ,
2. Notice $\overrightarrow{OA'} = \overrightarrow{OA} + 2\overrightarrow{AN} = 2\overrightarrow{ON} - \overrightarrow{OA}$.	2. Notice $\overrightarrow{OA'} = \overrightarrow{OA} + 2\overrightarrow{AN} = 2\overrightarrow{ON} - \overrightarrow{OA}$.

Angle Between				
2 Lines	Line and Plane	2 Planes		
$\theta = \cos^{-1} \widehat{\mathbf{m}}_{1} \cdot \widehat{\mathbf{m}}_{2} .$	$\theta = \sin^{-1} \widehat{\mathbf{m}} \cdot \widehat{\mathbf{n}} .$	$\theta = \cos^{-1} \widehat{\mathbf{n}}_1 \cdot \widehat{\mathbf{n}}_2 .$		

Probability

General Information

- 1. Principle of Inclusion and Exclusion for
 - (a) Two events:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B),$$

(b) Three events:

$$\mathbf{P}(A \cup B \cup C) = \mathbf{P}(A) + \mathbf{P}(B) + \mathbf{P}(C) - \mathbf{P}(A \cap B) - \mathbf{P}(A \cap C) - \mathbf{P}(B \cap C) + \mathbf{P}(A \cap B \cap C).$$

2. Mutually Exclusive Events:

$$P(A \cap B) = 0,$$

$$P(A \cup B) = P(A) + P(B).$$

3. Independent Events:

$$P(A | B) = P(A),$$

$$P(A \cap B) = P(A) P(B).$$

4. Conditional Probability:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$

- 5. Use PnC to help compute stuff faster.
- 6. When we want to find the greatest and least possible probability (e.g. of $P(A^{\complement} \cap B^{\complement} \cap C^{\complement})$), it is advisable to draw a Venn diagram and fill in all relevant probabilities.

Example 15.1

There are 6 white balls and 5 black balls. Two are randomly drawn. What is the probability that one is white and the other black?

$$\left(\frac{5}{11}\right)\left(\frac{6}{10}\right) + \left(\frac{6}{11}\right)\left(\frac{5}{10}\right) = \frac{6}{11}$$
 vs $\frac{\binom{6}{1}\binom{5}{1}}{\binom{11}{2}} = \frac{6}{11}$.

Differential Equations

16.1 First Order D.E.s

16.1.1 Elementary Solving Techniques

General Information

1. Separable Variables:

$$\frac{dy}{dx} = f(y)g(x), \int \frac{1}{f(y)} dy = \int g(x) dx.$$

2. Integrating Factor:

$$\frac{dy}{dx} + P(x)y = Q(x), \quad \text{let I.F.} = e^{\int P(x) dx}$$

$$e^{\int P(x) dx} \frac{dy}{dx} + y e^{\int P(x) dx} P(x) = Q(x) e^{\int P(x) dx},$$

$$y e^{\int P(x) dx} = \int Q(x) e^{\int P(x) dx} dx.$$

16.1.2 Numerical Methods

General Information

1. Euler's Method:

$$y_{i+1} + hf(x_i, y_i).$$

Example 16.1

Let (step size) h = 0.25 and $f(x, y) = \frac{dy}{dx}$:

By MF26,
$$y_2 = \frac{2}{3} + hf\left(0, \frac{2}{3}\right)$$

= $\frac{13}{18}$
 $y_3 = \frac{13}{18} + hf\left(0.25, \frac{13}{18}\right)$
= 0.6701865657 .

Therefore, $y(0.5) \approx 0.670$.

1. Improved Euler's Method:

$$i_{i+1} = y_i + hf(x_i, y_i)$$
 & $y_{i+1} = y_i + \frac{h}{2}[f(x_i, y_i) + f(x_{i+1}, u_{i+1})].$

- 2. Error:
 - (a) If $\frac{dy}{dx}$ can be shown to be increasing from the calculations of f(x,y), then the curve is concave upwards, leading to a underestimate.

(b) If $\frac{dy}{dx}$ can be shown to be decreasing from the calculations of f(x,y), then the curve is concave downwards, leading to a overestimate.

Example 16.2

From the computation, the values of $\frac{dy}{dx}$ increases, i.e. $\frac{d^2y}{dx^2} > 0$, and thus implying the solution curve to be concave upwards. Therefore, we have an underestimation.

Example 16.3: Misc

It is suggested that the estimation in part $(ii)^a$ can be further improved by reducing the step size. Sketch the solution curve and hence comment on this suggestion.

The solution curve has a stationary point at x = 1.47, which is between 1 and 2 and also the gradient of the curve is close to zero for x value beyond this stationary point. Thus, when the step size is reduced, tangent at point close to this stationary point becomes almost parallel to the curve, making little improvement to the estimation due to little difference in y.

^aGiven the point (1,1), we estimated the value of y(2) using the Improved Euler's Method

Example 16.4

It is found that the approximation obtained in (i) for the y-coordinate where x = 0.75 is an underestimation and has a percentage error of 120.633%. Explain why there is such a substantial error.

From gradient values calculated above, we suspect sharp charges in gradient values within the interval (from negative to positive). Yet Euler's $Method^a$ simply uses a straight line segment with gradient b –4.6409 to estimate the curve for the first iteration, which could have lead to a significant underestimation of the y-value.

Example 16.5

Compare the relative merits of Euler's Method and the Improved Euler's Method.

Euler's Method: It is computationally simpler.

Improved Euler's Method More accurate as it takes the mean of the initial and next gradient.

^aWe are explaining what it does

^bEmphasising negative gradient (Show its value)

16.2 Second Order D.E.

Homogenous				
Roots	Roots Solution y_c			
$m_1 \neq m_2$	$y = Ae^{m_1x} + Be^{m_2x}$			
$m := m_1 = m_2$	$y = (Ax + B)e^{mx}$			
$m = \mathbf{p} \pm qi$	$y = e^{\mathbf{p}x} (A\cos(qx) + B\sin(qx))$			
Non-Homogenous, $c_2 \frac{d^2 y}{dx^2} + c_1 \frac{dy}{dx} + c_0 y = f(x)$				
$y = y_c + y_p \text{ (C.F. + P.I.)}$				
f(x) Trial Function for P.I.				
Degree n polynomial	$y_p = \sum_{i=0}^n a_i x^i$			
ke^{ax}	$y_p = ae^{ax}.$			
$\alpha\cos(kx) + \beta\sin(kx)$	$(kx) + \beta \sin(kx)$ $y_p = a\cos(kx) + b\sin(kx)$			

Note

If y_c and f(x) share some common term, then y_p should be multiplied by x (some least $i \in \mathbb{N}$ times till $x^i y_p$ has no common term with y_c).

Example 16.6

- 1. If $y_c = A^{-3x}$ and $f(x) = 10e^x$, then $y_p = kxe^x$
- 2. If $y_c = Ae^x + Be^{-3x}$ and $f(x) = 10e^x$, then $y_p = kxe^x$.
- 3. If $y_c = Ae^x + Bxe^x + Ce^{-3x}$ and $f(x) = 10e^x$, then $y_p = kx^2e^x$.

16.3 Applications

16.3.1 Exponential Growth

General Information

Let k be the per-capita growth rate and P(t) be the population at time t. Then we have the model:

$$\frac{dP}{dt} = kP,$$

with the solution

$$P(t) = P_0 e^{kt}.$$

16.3.2 Logistics Growth

General Information

Let k be the per-capita growth $rate^a$, P(t) be the population at time t, and N be the carrying capacity of the system. Then we have the model:

$$\frac{dP}{dt} = kP\left(1 - \frac{P}{N}\right).$$

1. Without solving the logistics equation, we can sketch the solution curve by noting the sign of $\frac{dP}{dt}$:

^ai.e. after accounting for births and deaths.

- (a) Equilibrium population values occur at P = 0 and P = N.
- (b) If, for instance k > 0,

$$\begin{split} 0 & 0 \text{ so } \frac{dP}{dt} > 0, \\ P &> N \colon \ 1 - \frac{P}{N} < 0 \text{ so } \frac{dP}{dt} < 0. \end{split}$$

"As t increases, the population of _____ increases to the stable population of _____."

 a i.e. after accounting for births and deaths.

Example 16.7: Neat trick of letting $A = \pm constant$

$$\frac{dP}{dt} = 3P \left(1 - \frac{P}{200} \right),$$

$$\int \frac{1}{3P} + \frac{1}{600 - 3P} dP = \int 1 dt,$$

$$\ln \left| \frac{3P}{600 - 3P} \right| = 3t + 3c,$$

$$\frac{3P}{600 - 3P} = Ae^{3t}, \text{ where } A = \pm e^{3c},$$

$$P = \frac{200A}{A + e^{-3t}}$$

Figure 16.1: Logistics curve

16.3.3 Harvesting

General Information

Let k be the per-capita growth rate, P(t) be the population at time t, N be the carrying capacity of the system, and H the constant harvesting rate. Then we have the model:

$$\frac{dP}{dt} = kP\left(1 - \frac{P}{N}\right) - H.$$

- 1. Bifurcation Point
 - (a) When $0 \le H < \frac{kN}{4}$, there are two equilibrium points, $P = \frac{N}{2} \pm \sqrt{\frac{N^2}{4} \frac{HN}{k}}$.
 - (b) When $H = \frac{kN}{4}$, there is one equilibrium point at $P = \frac{N}{2}$ (the bifurcation point).
 - (c) When $H > \frac{kN}{4}$, there is no equilibrium point
- 2. For Non-Extinction:

$$\frac{N^2}{4} - \frac{HN}{k} \ge 0$$
 and $P_0 \ge 450 - \sqrt{\frac{N^2}{4} - \frac{HN}{k}}$.

16.3.4 Physics

General Information

MUST rmb the forms.

1. Spring System (where k > 0 is the spring constant)

$$\ddot{x} + \frac{k}{m}x = 0.$$

Solution: use R-formula to convert to $A\cos(\omega t + \phi)$ where angular frequency $\omega = \sqrt{\frac{k}{m}}$. Period $T = \frac{2\pi}{\omega} = 2\pi\sqrt{\frac{m}{k}}$.

2. Simple Pendulum (where ℓ is its length)

$$\ddot{x} + \frac{g}{\ell}x = 0.$$

Angular frequency $\omega = \sqrt{\frac{g}{\ell}}$ and period $T = 2\pi\sqrt{\frac{\ell}{g}}$.

3. Spring-Mass-Dashpot System (where c > 0 is the damping constant)

$$\ddot{x} + \frac{c}{m}\dot{x} + \frac{k}{m}x = 0.$$

Solution

- (a) Real and Distinct Roots: Overdamped
- (b) Identical Real Roots: Critically Damped
- (c) Complex Conjugate Roots: Underdamped "It will oscillate about the equilibrium position with decreasing amplitude."

Figure 16.2: Oscillatory behaviors

Discrete Random Variables

General Information

1. Expectation / Mean,

$$E(X) := \sum_{\text{all } x} x P(X = x).$$

2. Variance

$$Var(X) := E(X^2) - [E(X)]^2.$$

3. Standard Deviation

$$\sigma := \sqrt{\operatorname{Var}(X)}.$$

4. Properties for two independent random variables X and Y; two independent observations X_1 and X_2 of X:

(a)
$$E(aX + bY + c) = a E(X) + b E(Y) + c$$
,

(b)
$$E(X_1 + X_2) = E(X_1) + E(X_2) = 2E(X)$$
.

(c)
$$Var(aX + bY + c) = a Var(X) + b Var(Y)$$
,

(d)
$$Var(X_1 + X_2) = Var(X_1) + Var(X_2) = 2 Var(X)$$
.

5. Probability Distribution Table:

x	1	 n
P(X = x)	P(X=1)	 P(X=n)

Special Discrete Random Variables

Definition 18.1

A discrete random variable X which takes in \mathbb{Z}_0^+ is a binomial distribution with probability of success p, denoted by $X \sim \mathrm{B}(n,p)$, iff

$$P(X = x) = \binom{n}{x} p^x (1 - p)^{n - x}.$$

Definition 18.2

A discrete random variable X which takes all values in \mathbb{Z}^+ has a geometric distribution with probability of success p, denoted by $X \sim \text{Geo}(p)$, iff

$$P(X = x) = (1 - p)^{x-1}p.$$

Note

We can assume $X \sim \mathrm{B}(n,p)$ or $W \sim \mathrm{Geo}(n,p)$ iff the following three conditions hold

- 1. The event of a [trial in context] is independent of that of another [trial in context].
- 2. The probability of each [trial in context] is constant.
- 3. Each trial has only 2 mutually exclusive outcomes.

Note

Defining random variables:

- 1. Binomial distribution: Let X be the number of [trial in context], out of [number of trials n in context].
- 2. Geometric distribution: Let W be the number of [trial in context], up to and including the first [successful trial in context].

Note

Let $W \sim \text{Geo}(p)$, and q := 1 - p. Then,

$$P(W > m) = q^m$$
 and $P(X > m + n \mid X > n) = P(X > m) = q^m$.

Definition 18.3

A discrete random variable X which takes all values in \mathbb{Z}_0^+ has a Poisson Distribution with parameter $\lambda > 0$, denoted by $X \sim \text{Po}(\lambda)$, iff

$$P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}.$$

Note

We can assume $Y \sim Po(\lambda)$ iff the following 5 conditions hold

- 1. The event of a [trial in context] is *independent* of that of another [trial in context].
- 2. The mean number of occurrences of [trial in context] is constant over an fixed interval of time/space.
- 3. The mean number of occurrences of [trial in context] is proportional to the length of the space/time interval.
- 4. The *probability* of [trial in context] occurring at *any point* in space/time within a small fixed interval of space/time is *the same*.
- 5. The probability of more than one occurrence in any infinitesimally small interval is negligible.

The first three assumptions are the most important.

Note

Additive property of the Poisson distribution: If $U \sim \text{Po}(\mu)$ and $V \sim \text{Po}(\lambda)$ are independent variables, then

$$W \sim \text{Po}(\mu + \lambda)$$
.

Note

Defining random variables: Let Y be the number of [event in context], in [space/time interval in context].

General Information

1. Expectation and Mean:

Distribution	Expectation	Variance
$X \sim B(n, p)$	np	np(1-p)
$Y \sim \text{Po}(\lambda)$	λ	
$W \sim \text{Geo}(p)$	p^{-1}	$(1-p)p^{-2}$

- 2. Use graphing or a table to deal with questions involving inequalities
- 3. It is helpful to remember the following formulas for when you're asked to derive a formula for mean/mode:

$$\sum_{r=1}^{\infty} rx^{r-1} = (1-x)^{-2} \quad \text{and} \quad \sum_{r=1}^{\infty} r^2x^{r-1} = \frac{1+x}{(1-x)^3}.$$

- 4. Why is the probability for (b) is smaller than that for (a): The case of (b) is a proper subset of (a).
- 5. A discrete random variable M can have other probability distributions. In such cases, defining a random variable W having a Binomial/Poisson/Geometric distribution, and then writing M as a function of W may help.

For example, it may be that M = W - 1, or $M = W_1 + W_2$.

Note

When the question asks for the *most likely* number of [event], it is asking for the *mode*.

G.C. Skills

Finding mode (e.g. for binomial distributions):

- 1. Set $Y_1 = \mathtt{binompdf}(n, p, X)$.
- 2. Go to table.
- 3. Find the value of X for which the highest value of Y_1 occurs.

G.C. Skills

- 1. 2nd + Vars + 'A' \Longrightarrow binompdf $(n,p,x)=\mathrm{P}(X=x)$
- 2. 2nd + Vars + 'B' \Longrightarrow binomcdf $(n,p,x) = P(X \le x)$

Note

Let X be the random variable such that $X \sim B(n, p)$. If P(X = n) is the highest probability that occurs, X = n is the modal value. So, we solve the two inequalities P(X = 5) > P(X = 4) and P(X = 5) > P(X = 6). This gives the strictest range of values that p can take (Fig 17.1).

Figure 18.1: In this case, X = 10 is the mode.

Example 18.1: 2018 TPJC JC2 H2 MYE P2 8

On average, 3.5% of a certain brand of chocolate turn out misshapen. The chocolates are sold in packets of 25.

- (i) State, in context, two assumptions needed for the number of misshapen chocolates in a packet to be well modelled by a binomial distribution.
- (ii) Explain why one of the assumptions stated in part (i) may not hold in this context.

Answer:

- (i) 1. Each chocolate is equally likely (3.) to be misshapen.
 - 2. The event that a chocolate is misshapen is *independent* (2.) of the event that another chocolate is misshapen.
- (ii) While on average, the probability that a chocolate is misshapen is 3.5%, it is possible that there are more misshapen chocolates at certain times, possible due to equipment malfunction, which would mean the probability is not constant.

OR

Misshapen chocolates could be the result of equipment used and as the equipment used would not be the same for the same portion of the chocolate produced, whether a chocolate is misshapen may not be independent of another chocolate being misshapen.

Continuous Random Variables

General Information

- A function $f: \mathbb{R} \to \mathbb{R}$ is a probability mass function (pdf) of a continuous random variable X iff f is nonnegative and $\int_{-\infty}^{\infty} f(x) dx = 1$.
- For any probability mass function f, we have $P(a \le X \le b) = \int_a^b f(x) dx$. Whether the inequality is strict or nonstrict does not affect the above identity.
- A mode of X is any value m such that f(m) is maximum.
- A cumulative distribution function (cdf) $F: \mathbb{R} \to [0,1]$ of a random variable X is defined by

$$F(x) := P(X \le x) = \int_{-\infty}^{x} f(x) dx.$$

- When writing out the cdf as a piecewise function, we explicitly write out the range of values for each case. We reserve the use of "otherwise" for pdf's.
- Any cdf is continuous and nondecreasing.
- Let X be a continuous random variable with cdf F. To find the pdf g of any y(X), we first find its cdf, then differentiate. We achieve this by reverse engineering $y(X) \leq y$ to find an inequality that relates X with y. E.g. $e^X \leq y$ iff $X \leq \ln(y)$.
- A median of X is any value m such that $P(X \le m) = F(m) = 1/2$.
- Mean/Expectation:

$$\mu = \mathrm{E}(X) := \int_{-\infty}^{\infty} x f(x) \, dx$$
 and $\mathrm{E}(g(X)) = \int_{-\infty}^{\infty} g(x) f(x) \, dx$.

• Important property:

$$E(ag(X) \pm bh(x)) = a E(g(X)) \pm E(h(X)).$$

• Variance:

$$Var(X) := E(X^2) - [E(X)]^2.$$

• Important property:

$$Var(aX \pm b) = a^2 Var(X).$$

• A continuous random variable X has a uniform distribution over the interval [a, b] iff its pdf f is such that

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a < x < b, \\ 0 & \text{otherwise.} \end{cases}$$

Special Continuous Random Variables

Definition 20.1

A continuous random variable X has a normal distribution with mean μ and standard deviation σ , denoted by $X \sim N(\mu, \sigma^2)$, iff its pdf f is such that

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

General Information

1. A normal distribution is symmetrical about the line $x = \mu$. That is

$$P(X \le \mu - \delta) = P(X \ge \mu + \delta)$$

for each $\delta > 0$. Note that the mean, median, and mode coincide with μ .

- 2. Properties of the normal distribution. Let X and Y be independent, such that $X \sim \mathcal{N}(\mu, \sigma^2)$ and $Y \sim \mathcal{N}(m, s^2)$. Then, for any $n \in \mathbb{N}$ and $x, y \in \mathbb{R}$,
 - (a) $nX \sim N(n\mu, n^2\sigma^2)$,
 - (b) $X_1 + X_2 + \dots + X_n \sim N(n\mu, n\sigma),$
 - (c) $aX \pm bY \sim N(a\mu \pm bm, a^2\sigma^2 + b^2s^2)$.

Correlation and Linear Regression

Note

A good scatter diagram should follow the guidelines below.

- The relative position of each point on the scatter diagram should be clearly shown.
- ullet The range of values for the set of data should be clearly shown by marking out the extreme x and y values on the corresponding axis.
- The axes should be labeled clearly with the variables.

General Information

Bibliography

- 1. Fig 6.1 Trapezium rule: https://tex.stackexchange.com/a/110618
- 2. Fig 6.2 Simpson's rule: https://tex.stackexchange.com/a/439119
- 3. Oscillatory behavior of DEs modelling physical phenomena Fig 15.2 https://tikz.net/dynamics_oscillator/
- 4. Mode of a binomial distribution Fig 17.1 https://math.oxford.emory.edu/site/math117/normalApproxToBinomial/