$12n_{0223} (K12n_{0223})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -1.05608 \times 10^{32}u^{27} + 2.39983 \times 10^{32}u^{26} + \dots + 4.71199 \times 10^{33}d - 1.14579 \times 10^{30}, \\ &- 7.16121 \times 10^{28}u^{27} + 2.11432 \times 10^{32}u^{26} + \dots + 9.42397 \times 10^{33}c + 9.50662 \times 10^{33}, \\ &- 7.43837 \times 10^{31}u^{27} - 2.05180 \times 10^{32}u^{26} + \dots + 4.71199 \times 10^{33}b - 3.81499 \times 10^{32}, \\ &- 5.68907 \times 10^{31}u^{27} - 1.81131 \times 10^{32}u^{26} + \dots + 1.88479 \times 10^{34}a - 1.63326 \times 10^{34}, \ u^{28} - 3u^{27} + \dots - 64u + \\ &I_2^u &= \langle -7778149750u^{19}a + 21085480149u^{19} + \dots + 37111822100a - 70739740318, \\ &- 18555911050u^{19}a - 33847094283u^{19} + \dots - 266919956828a + 210342367834, \\ &- 4182326921u^{19}a + 3076005459u^{19} + \dots - 29433713862a + 28068851486, \\ &- 49133842327u^{19}a - 33157787379u^{19} + \dots - 204672432210a + 75288972938, \\ &- u^{20} + u^{19} + \dots - 8u - 4 \rangle \end{split}$$

$$I_1^v &= \langle c, \ d - v, \ b, \ a - 1, \ v^2 + v + 1 \rangle$$

$$I_2^v &= \langle a, \ d + v, \ -av + c - v - 1, \ b + 1, \ v^2 + v + 1 \rangle$$

$$I_2^v &= \langle a, \ d - 1, \ c + a, \ b + 1, \ v + 1 \rangle$$

$$I_4^v &= \langle a, \ d^2a + d^2v + dc - dv - d + v + 1, \ d^2v^2 - v^2d - dv + v^2 + 2v + 1, \\ &- dca + dcv - da - dv + c^2 - cv - av - 2c - a + 1, \ v^2dc - v^2d - v^2c - v^2a - cv - 2av - a, \\ &- dav + da + dv + cv + c - v - 1, \ c^2v^2 + v^2ca + a^2v^2 + cav - v^2c + 2a^2v + v^2a + a^2 + av + v^2, \ b + 1 \rangle$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 73 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

* 1 irreducible components of $\dim_{\mathbb{C}}=1$

 $^{^{-2}}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. $I_1^u = \langle -1.06 \times 10^{32} u^{27} + 2.40 \times 10^{32} u^{26} + \dots + 4.71 \times 10^{33} d - 1.15 \times 10^{30}, -7.16 \times 10^{28} u^{27} + 2.11 \times 10^{32} u^{26} + \dots + 9.42 \times 10^{33} c + 9.51 \times 10^{33}, 7.44 \times 10^{31} u^{27} - 2.05 \times 10^{32} u^{26} + \dots + 4.71 \times 10^{33} b - 3.81 \times 10^{32}, 5.69 \times 10^{31} u^{27} - 1.81 \times 10^{32} u^{26} + \dots + 1.88 \times 10^{34} a - 1.63 \times 10^{34}, u^{28} - 3 u^{27} + \dots - 64 u + 32 \rangle$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.00301840u^{27} + 0.00961014u^{26} + \cdots - 0.512168u + 0.866547 \\ -0.0157861u^{27} + 0.0435442u^{26} + \cdots - 1.70037u + 0.0809635 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.00301840u^{27} + 0.00961014u^{26} + \cdots - 0.512168u + 0.866547 \\ 0.0152750u^{27} - 0.0402637u^{26} + \cdots + 1.56827u - 0.0632056 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 7.59893 \times 10^{-6}u^{27} - 0.0224355u^{26} + \cdots + 3.09707u - 1.00877 \\ 0.0224127u^{27} - 0.0509304u^{26} + \cdots + 1.00828u + 0.000243166 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.00253011u^{27} - 0.00819574u^{26} + \cdots + 1.54524u - 1.53844 \\ 0.000554935u^{27} - 0.00115373u^{26} + \cdots + 0.673369u + 0.0965888 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.00197517u^{27} + 0.00934947u^{26} + \cdots + 0.673369u + 0.0965888 \\ 0.000554935u^{27} - 0.00115373u^{26} + \cdots + 0.673369u + 0.0965888 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.00578915u^{27} - 0.00833409u^{26} + \cdots - 1.28926u + 0.936700 \\ -0.00325904u^{27} + 0.0165298u^{26} + \cdots - 0.255976u + 0.601743 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.00186302u^{27} - 0.00814762u^{26} + \cdots + 1.14940u - 0.178203 \\ 0.0260420u^{27} - 0.0682809u^{26} + \cdots + 2.68644u - 0.560928 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.0188045u^{27} + 0.0531544u^{26} + \cdots - 2.21254u + 0.947510 \\ 0.00903337u^{27} - 0.0298398u^{26} + \cdots + 1.30721u - 0.185253 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-0.217306u^{27} + 0.532528u^{26} + \cdots - 20.8205u - 2.69421$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_9	$u^{28} + 9u^{27} + \dots + u + 1$
c_2, c_4, c_6 c_8	$u^{28} - 5u^{27} + \dots - 3u + 1$
c_3, c_7	$u^{28} - 3u^{27} + \dots - 64u + 32$
c_5,c_{11}	$u^{28} + u^{27} + \dots + 8u + 4$
c_{10}	$u^{28} - u^{27} + \dots + 1736u + 1252$
c_{12}	$u^{28} + 9u^{27} + \dots - 56u + 16$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1,c_9	$y^{28} + 31y^{27} + \dots + 39y + 1$
c_2, c_4, c_6 c_8	$y^{28} - 9y^{27} + \dots - y + 1$
c_3, c_7	$y^{28} - 15y^{27} + \dots + 3072y + 1024$
c_5, c_{11}	$y^{28} + 9y^{27} + \dots - 56y + 16$
c_{10}	$y^{28} + 33y^{27} + \dots - 17874936y + 1567504$
c_{12}	$y^{28} + 21y^{27} + \dots - 6432y + 256$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.387721 + 0.851263I		
a = 0.488405 - 0.103669I		
b = -0.747142 - 0.797802I	-4.11180 - 3.97036I	-11.03599 + 5.92521I
c = -0.79488 - 1.41620I		
d = -0.89737 + 1.22574I		
u = 0.387721 - 0.851263I		
a = 0.488405 + 0.103669I		
b = -0.747142 + 0.797802I	-4.11180 + 3.97036I	-11.03599 - 5.92521I
c = -0.79488 + 1.41620I		
d = -0.89737 - 1.22574I		
u = -0.048850 + 0.802561I		
a = 0.570907 + 0.125829I		
b = -0.313957 + 0.493682I	-1.00554 + 1.45329I	-3.70692 - 4.69342I
c = 0.167451 + 0.444862I		
d = 0.365209 - 0.112658I		
u = -0.048850 - 0.802561I		
a = 0.570907 - 0.125829I		
b = -0.313957 - 0.493682I	-1.00554 - 1.45329I	-3.70692 + 4.69342I
c = 0.167451 - 0.444862I		
d = 0.365209 + 0.112658I		
u = 1.195800 + 0.230197I		
a = 0.28063 - 1.44187I		
b = -0.310268 + 1.162650I	0.294538 + 1.243650I	-3.92766 - 2.52803I
c = 1.94455 - 0.47579I		
d = -2.43482 + 0.12132I		
u = 1.195800 - 0.230197I		
a = 0.28063 + 1.44187I		
b = -0.310268 - 1.162650I	0.294538 - 1.243650I	-3.92766 + 2.52803I
c = 1.94455 + 0.47579I		
d = -2.43482 - 0.12132I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.512543 + 0.548760I a = 0.810755 + 0.367303I		
b = 0.214405 + 0.021676I	0.77284 + 1.38296I	2.12358 - 4.20585I
c = 0.211109 + 0.0210701 c = 1.012830 - 0.121876I	0.77201 1.002001	2.12000 1.200001
d = -0.586000 - 0.493336I		
u = 0.512543 - 0.548760I		
a = 0.810755 - 0.367303I		
b = 0.214405 - 0.021676I	0.77284 - 1.38296I	2.12358 + 4.20585I
c = 1.012830 + 0.121876I		
d = -0.586000 + 0.493336I		
u = 1.240340 + 0.558685I		
a = -0.19285 - 1.48947I		
b = -0.74229 + 1.43353I	-1.36469 + 9.34331I	-7.27750 - 7.90351I
c = -2.20653 - 0.25596I		
$\frac{d = 2.59385 + 1.55023I}{u = 1.240340 - 0.558685I}$		
a = -0.19285 + 1.48947I		
b = -0.74229 - 1.43353I	$\begin{bmatrix} -1.36469 - 9.34331I \end{bmatrix}$	$\begin{bmatrix} -7.27750 + 7.90351I \end{bmatrix}$
c = -2.20653 + 0.25596I	1.00103 3.010011	1.21700 1.309011
d = 2.59385 - 1.55023I		
u = -0.306891 + 1.332240I		
a = 0.448937 + 0.172706I		
b = -0.32703 + 1.40380I	2.80790 + 2.77377I	-2.82329 - 2.35775I
c = -0.489703 - 0.253197I		
d = -0.487603 + 0.574696I		
u = -0.306891 - 1.332240I		
a = 0.448937 - 0.172706I		
b = -0.32703 - 1.40380I	2.80790 - 2.77377I	-2.82329 + 2.35775I
c = -0.489703 + 0.253197I		
d = -0.487603 - 0.574696I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.599185 + 0.160658I		
a = 1.279080 - 0.454824I		
b = -0.032693 + 0.151013I	-0.29820 + 2.58448I	1.60498 - 4.48843I
c = 0.283924 - 1.075350I		
d = -0.002639 - 0.689945I		
u = -0.599185 - 0.160658I		
a = 1.279080 + 0.454824I		
b = -0.032693 - 0.151013I	-0.29820 - 2.58448I	1.60498 + 4.48843I
c = 0.283924 + 1.075350I		
d = -0.002639 + 0.689945I		
u = 0.449039 + 1.329150I		
a = 0.437109 - 0.156367I		
b = -0.53079 - 1.49203I	2.18074 - 8.77807I	-4.21049 + 7.13120I
c = 0.884456 + 0.900024I		
d = 0.79911 - 1.57972I		
u = 0.449039 - 1.329150I		
a = 0.437109 + 0.156367I		
b = -0.53079 + 1.49203I	2.18074 + 8.77807I	-4.21049 - 7.13120I
c = 0.884456 - 0.900024I		
d = 0.79911 + 1.57972I		
u = -1.36520 + 0.37405I		
a = 0.022772 + 1.320010I		
b = -0.40047 - 1.49490I	3.38586 - 5.92225I	-1.05943 + 5.53498I
c = -0.019011 + 0.257960I		
d = 0.070537 + 0.359277I		
u = -1.36520 - 0.37405I		
a = 0.022772 - 1.320010I		
b = -0.40047 + 1.49490I	3.38586 + 5.92225I	-1.05943 - 5.53498I
c = -0.019011 - 0.257960I		
d = 0.070537 - 0.359277I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.128781 + 0.527754I		
a = 0.536628 - 0.033094I		
b = -0.720363 - 0.196098I	-2.91457 + 1.71407I	-11.28016 - 2.34859I
c = 0.53943 + 1.55105I		
d = 0.749102 - 0.484434I		
u = 0.128781 - 0.527754I		
a = 0.536628 + 0.033094I		
b = -0.720363 + 0.196098I	-2.91457 - 1.71407I	-11.28016 + 2.34859I
c = 0.53943 - 1.55105I		
d = 0.749102 + 0.484434I		
u = 1.36013 + 0.80195I		
a = -0.423558 - 1.271240I		
b = -1.02615 + 1.75013I	5.1047 + 16.3284I	-4.49305 - 9.50798I
c = 1.77646 + 0.86372I		
d = -1.72355 - 2.59940I		
u = 1.36013 - 0.80195I		
a = -0.423558 + 1.271240I		
b = -1.02615 - 1.75013I	5.1047 - 16.3284I	-4.49305 + 9.50798I
c = 1.77646 - 0.86372I		
d = -1.72355 + 2.59940I		
u = -1.41454 + 0.73498I		
a = -0.342095 + 1.249650I		
b = -0.89493 - 1.79229I	6.34910 - 10.12380I	-2.60535 + 5.05088I
c = 0.231981 - 0.161062I		
d = 0.209770 - 0.398331I		
u = -1.41454 - 0.73498I		
a = -0.342095 - 1.249650I	0.04040 . 40.40222	2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
b = -0.89493 + 1.79229I	6.34910 + 10.12380I	-2.60535 - 5.05088I
c = 0.231981 + 0.161062I		
d = 0.209770 + 0.398331I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
$\begin{array}{rl} u = & 1.57578 + 0.34473I \\ a = & 0.317772 + 0.829753I \\ b = & 0.74767 - 1.25595I \\ c = -1.012250 - 0.840874I \\ d = & 1.30521 + 1.67398I \end{array}$	9.40632 + 3.24641I	0.187126 - 1.202849I
u = 1.57578 - 0.34473I $a = 0.317772 - 0.829753I$ $b = 0.74767 + 1.25595I$ $c = -1.012250 + 0.840874I$ $d = 1.30521 - 1.67398I$	9.40632 - 3.24641I	0.187126 + 1.202849I
u = -1.61547 + 0.19947I $a = 0.265518 - 0.890486I$ $b = 0.58401 + 1.42833I$ $c = -0.318722 + 0.271187I$ $d = -0.460792 + 0.501668I$	9.82407 + 3.16258I	0.50415 - 3.81889I
u = -1.61547 - 0.19947I $a = 0.265518 + 0.890486I$ $b = 0.58401 - 1.42833I$ $c = -0.318722 - 0.271187I$ $d = -0.460792 - 0.501668I$	9.82407 - 3.16258I	0.50415 + 3.81889I

II. $I_2^u = \langle -7.78 \times 10^9 au^{19} + 2.11 \times 10^{10} u^{19} + \cdots + 3.71 \times 10^{10} a - 7.07 \times 10^{10}, \ 1.86 \times 10^{10} au^{19} - 3.38 \times 10^{10} u^{19} + \cdots - 2.67 \times 10^{11} a + 2.10 \times 10^{11}, \ 4.18 \times 10^9 au^{19} + 3.08 \times 10^9 u^{19} + \cdots - 2.94 \times 10^{10} a + 2.81 \times 10^{10}, \ 4.91 \times 10^{10} au^{19} - 3.32 \times 10^{10} u^{19} + \cdots - 2.05 \times 10^{11} a + 7.53 \times 10^{10}, \ u^{20} + u^{19} + \cdots - 8u - 4 \rangle$

(i) Arc colorings

$$\begin{array}{l} a_4 = \begin{pmatrix} 0 \\ u \end{pmatrix} \\ a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ a_6 = \begin{pmatrix} -0.154609au^{19} - 0.113711u^{19} + \dots + 1.08808a - 1.03762 \end{pmatrix} \\ a_8 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix} \\ a_9 = \begin{pmatrix} 0.154609au^{19} + 0.113711u^{19} + \dots - 1.08808a + 1.03762 \end{pmatrix} \\ a_3 = \begin{pmatrix} -u \\ u \end{pmatrix} \\ a_{12} = \begin{pmatrix} -0.171490au^{19} + 0.312807u^{19} + \dots + 2.46682a - 1.94394 \\ 0.143768au^{19} - 0.389735u^{19} + \dots - 0.685959a + 1.30752 \end{pmatrix} \\ a_5 = \begin{pmatrix} -0.272020au^{19} + 0.0220200u^{19} + \dots + 2.18366a - 0.183663 \\ 0.227980u^{19} + 0.382589u^{18} + \dots - 1.74114u - 1.81634 \end{pmatrix} \\ a_2 = \begin{pmatrix} 0.272020au^{19} - 0.250000u^{19} + \dots - 2.18366a + 2 \\ 0.227980u^{19} + 0.382589u^{18} + \dots - 1.74114u - 1.81634 \end{pmatrix} \\ a_1 = \begin{pmatrix} 0.392720au^{19} - 0.370700u^{19} + \dots - 2.80210a + 2.61843 \\ -0.120700au^{19} + 0.348680u^{19} + \dots + 0.618434a - 2.43477 \end{pmatrix} \\ a_{11} = \begin{pmatrix} 0.486024au^{19} + 0.312807u^{19} + \dots + 3.53102a - 1.94394 \\ 0.345654au^{19} - 0.0895665u^{19} + \dots + 1.54407a + 0.431179 \end{pmatrix} \\ a_{10} = \begin{pmatrix} -0.154609au^{19} - 0.113711u^{19} + \dots + 2.08808a - 1.03762 \\ 0.409919au^{19} + 0.367791u^{19} + \dots + 1.57088a + 0.0883006 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{4263121051}{13525530286}u^{19} - \frac{7308875275}{13525530286}u^{18} + \cdots + \frac{12379392387}{13525530286}u - \frac{17100277556}{6762765143}u^{18} + \cdots + \frac{12379392387}{13525530286}u^{18} + \cdots + \frac{12379392387}{135255530286}u^{18} + \cdots + \frac{1237939275}{135255530286}u^{18} + \cdots + \frac{123793927}{135255550286}u^{18} + \cdots + \frac{123793927}{13525553$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_9	$u^{40} + 19u^{39} + \dots + 288u + 256$
c_2, c_4, c_6 c_8	$u^{40} - 3u^{39} + \dots + 40u - 16$
c_{3}, c_{7}	$(u^{20} + u^{19} + \dots - 8u - 4)^2$
c_5,c_{11}	$(u^{20} + 2u^{19} + \dots - 2u + 1)^2$
c_{10}	$(u^{20} - 2u^{19} + \dots + 36u + 17)^2$
c_{12}	$(u^{20} + 6u^{19} + \dots - 2u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_9	$y^{40} + y^{39} + \dots - 4022784y + 65536$
c_2, c_4, c_6 c_8	$y^{40} - 19y^{39} + \dots - 288y + 256$
c_3, c_7	$(y^{20} - 15y^{19} + \dots - 24y + 16)^2$
c_5, c_{11}	$(y^{20} + 6y^{19} + \dots - 2y + 1)^2$
c_{10}	$(y^{20} + 30y^{19} + \dots + 1254y + 289)^2$
c_{12}	$(y^{20} + 18y^{19} + \dots - 86y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.685016 + 0.443026I		
a = 0.458140 - 0.042470I		
b = -1.314980 - 0.467098I	-4.73160 + 1.82256I	-11.12541 - 5.12436I
c = -1.19123 - 1.35374I		
d = 1.34492 + 3.28525I		
u = 0.685016 + 0.443026I		
a = -0.09245 - 3.22238I		
b = -0.921725 + 0.625666I	-4.73160 + 1.82256I	-11.12541 - 5.12436I
c = -3.57126 - 2.48620I		
d = 0.21627 + 1.45508I		
u = 0.685016 - 0.443026I		
a = 0.458140 + 0.042470I		
b = -1.314980 + 0.467098I	-4.73160 - 1.82256I	-11.12541 + 5.12436I
c = -1.19123 + 1.35374I		
d = 1.34492 - 3.28525I		
u = 0.685016 - 0.443026I		
a = -0.09245 + 3.22238I		
b = -0.921725 - 0.625666I	-4.73160 - 1.82256I	-11.12541 + 5.12436I
c = -3.57126 + 2.48620I		
d = 0.21627 - 1.45508I		
u = -1.176520 + 0.244065I		
a = 0.577483 - 0.947538I		
b = 0.310218 + 0.817249I	0.28251 - 3.88098I	-3.93502 + 4.02252I
c = 1.70100 - 0.02090I		
d = -1.82568 + 1.36744I		
u = -1.176520 + 0.244065I		
a = 0.27911 + 1.47852I		
b = -0.342116 - 1.145120I	0.28251 - 3.88098I	-3.93502 + 4.02252I
c = -1.71890 + 0.80569I		
d = 1.99616 - 0.43974I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.176520 - 0.244065I		
a = 0.577483 + 0.947538I		
b = 0.310218 - 0.817249I	0.28251 + 3.88098I	-3.93502 - 4.02252I
c = 1.70100 + 0.02090I		
d = -1.82568 - 1.36744I		
u = -1.176520 - 0.244065I		
a = 0.27911 - 1.47852I		
b = -0.342116 + 1.145120I	0.28251 + 3.88098I	-3.93502 - 4.02252I
c = -1.71890 - 0.80569I		
d = 1.99616 + 0.43974I		
u = -1.256010 + 0.124886I		
a = 0.339080 + 1.286040I		
b = -0.124777 - 1.175340I	1.249910 + 0.191668I	-2.26430 + 0.22109I
c = 0.00787 - 1.59574I		
d = 0.528809 + 0.982333I		
u = -1.256010 + 0.124886I		
a = 0.408592 + 0.009946I		
b = -2.08731 + 0.17219I	1.249910 + 0.191668I	-2.26430 + 0.22109I
c = 0.339897 + 0.815901I		
d = -0.18941 - 2.00525I		
u = -1.256010 - 0.124886I		
a = 0.339080 - 1.286040I		
b = -0.124777 + 1.175340I	1.249910 - 0.191668I	-2.26430 - 0.22109I
c = 0.00787 + 1.59574I		
d = 0.528809 - 0.982333I		
u = -1.256010 - 0.124886I		
a = 0.408592 - 0.009946I	1 0 10010 0 101 0007	2 24 42 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
b = -2.08731 - 0.17219I	1.249910 - 0.191668I	-2.26430 - 0.22109I
c = 0.339897 - 0.815901I		
d = -0.18941 + 2.00525I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.268400 + 0.295253I		
a = 0.150939 - 1.397650I		
b = -0.352887 + 1.306450I	0.89345 + 5.67427I	-3.40403 - 5.66395I
c = 0.00100 + 1.90027I		
d = -0.322075 - 1.194470I		
u = 1.268400 + 0.295253I		
a = 0.406505 - 0.023413I		
b = -2.08796 - 0.41006I	0.89345 + 5.67427I	-3.40403 - 5.66395I
c = 0.448812 + 0.837239I		
d = 0.55980 - 2.41060I		
u = 1.268400 - 0.295253I		
a = 0.150939 + 1.397650I		
b = -0.352887 - 1.306450I	0.89345 - 5.67427I	-3.40403 + 5.66395I
c = 0.00100 - 1.90027I		
d = -0.322075 + 1.194470I		
u = 1.268400 - 0.295253I		
a = 0.406505 + 0.023413I		
b = -2.08796 + 0.41006I	0.89345 - 5.67427I	-3.40403 + 5.66395I
c = 0.448812 - 0.837239I		
d = 0.55980 + 2.41060I		
u = -0.439566 + 0.534727I		
a = 0.820860 - 0.314763I		
b = 0.162005 - 0.050556I	-2.07115 + 0.86143I	-6.44675 + 0.99952I
c = 1.70038 - 0.48109I		
d = 0.255350 + 0.690923I		
u = -0.439566 + 0.534727I		
a = 0.487252 + 0.053221I		
b = -1.007970 + 0.455517I	-2.07115 + 0.86143I	-6.44675 + 0.99952I
c = -0.536806 + 0.918810I		
d = 0.490181 - 1.120710I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.439566 - 0.534727I		
a = 0.820860 + 0.314763I		
b = 0.162005 + 0.050556I	-2.07115 - 0.86143I	-6.44675 - 0.99952I
c = 1.70038 + 0.48109I		
d = 0.255350 - 0.690923I		
u = -0.439566 - 0.534727I		
a = 0.487252 - 0.053221I		
b = -1.007970 - 0.455517I	-2.07115 - 0.86143I	-6.44675 - 0.99952I
c = -0.536806 - 0.918810I		
d = 0.490181 + 1.120710I		
u = -0.089922 + 1.317200I		
a = 0.481544 - 0.234697I		
b = 0.209138 - 1.109080I	3.24441 + 2.97363I	-2.07664 - 2.68538I
c = -0.377586 + 0.174434I		
d = -0.78245 - 1.28050I		
u = -0.089922 + 1.317200I		
a = 0.469189 + 0.202331I		
b = -0.034817 + 1.235550I	3.24441 + 2.97363I	-2.07664 - 2.68538I
c = 0.927267 - 0.657327I		
d = 0.195810 + 0.513040I		
u = -0.089922 - 1.317200I		
a = 0.481544 + 0.234697I		
b = 0.209138 + 1.109080I	3.24441 - 2.97363I	-2.07664 + 2.68538I
c = -0.377586 - 0.174434I		
d = -0.78245 + 1.28050I		
u = -0.089922 - 1.317200I		
a = 0.469189 - 0.202331I	0.04441 0.050007	0.05004 . 0.005005
b = -0.034817 - 1.235550I	3.24441 - 2.97363I	-2.07664 + 2.68538I
c = 0.927267 + 0.657327I		
d = 0.195810 - 0.513040I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.36144		
a = 0.339214 + 1.109820I		
b = 0.119387 - 1.233010I	4.11381	0.668270
c = 0.299266 + 0.242908I		
d = -0.407433 + 0.330704I		
u = 1.36144		
a = 0.339214 - 1.109820I		
b = 0.119387 + 1.233010I	4.11381	0.668270
c = 0.299266 - 0.242908I		
d = -0.407433 - 0.330704I		
u = -0.610309		
a = 0.465000		
b = -1.32374	-2.43031	-0.135410
c = -0.750025		
d = 1.42139		
u = -0.610309		
a = 2.94194		
b = -0.435716	-2.43031	-0.135410
c = 2.32897		
d = -0.457747		
u = 0.078647 + 0.574169I		
a = 0.556867 - 0.032704I		
b = -0.612405 - 0.165972I	-2.82359 - 2.30782I	-10.11267 + 3.58910I
c = 2.18886 - 0.63265I		
d = -3.72549 + 1.36694I		
u = 0.078647 + 0.574169I		
a = -7.02820 - 1.64334I		
b = -1.287020 + 0.071600I	-2.82359 - 2.30782I	-10.11267 + 3.58910I
c = -1.46449 - 6.68908I		
d = -0.535397 - 1.207020I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.078647 - 0.574169I		
a = 0.556867 + 0.032704I		
b = -0.612405 + 0.165972I	-2.82359 + 2.30782I	-10.11267 - 3.58910I
c = 2.18886 + 0.63265I		
d = -3.72549 - 1.36694I		
u = 0.078647 - 0.574169I		
a = -7.02820 + 1.64334I		
b = -1.287020 - 0.071600I	-2.82359 + 2.30782I	-10.11267 - 3.58910I
c = -1.46449 + 6.68908I		
d = -0.535397 + 1.207020I		
u = -1.47182 + 0.62184I		
a = 0.387142 - 0.708904I		
b = 1.015300 + 0.883621I	7.69158 - 9.88458I	-1.61748 + 5.77638I
c = -1.36735 + 0.63910I		
d = 1.04280 - 2.20163I		
u = -1.47182 + 0.62184I		
a = -0.227488 + 1.225540I		
b = -0.69209 - 1.80855I	7.69158 - 9.88458I	-1.61748 + 5.77638I
c = 1.13747 - 1.01527I		
d = -1.61508 + 1.79092I		
u = -1.47182 - 0.62184I		
a = 0.387142 + 0.708904I		
b = 1.015300 - 0.883621I	7.69158 + 9.88458I	-1.61748 - 5.77638I
c = -1.36735 - 0.63910I		
d = 1.04280 + 2.20163I		
u = -1.47182 - 0.62184I		
a = -0.227488 - 1.225540I		
b = -0.69209 + 1.80855I	7.69158 + 9.88458I	-1.61748 - 5.77638I
c = 1.13747 + 1.01527I		
d = -1.61508 - 1.79092I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.52621 + 0.50989I		
a = 0.360132 + 0.757386I		
b = 0.921521 - 1.050930I	8.58220 + 3.56941I	-0.284129 - 1.007355I
c = -0.411289 + 0.112437I		
d = 0.106033 - 0.813106I		
u = 1.52621 + 0.50989I		
a = -0.127382 - 1.185430I		
b = -0.49179 + 1.81736I	8.58220 + 3.56941I	-0.284129 - 1.007355I
c = 0.097619 + 0.500148I		
d = 0.685044 + 0.038109I		
u = 1.52621 - 0.50989I		
a = 0.360132 - 0.757386I		
b = 0.921521 + 1.050930I	8.58220 - 3.56941I	-0.284129 + 1.007355I
c = -0.411289 - 0.112437I		
d = 0.106033 + 0.813106I		
u = 1.52621 - 0.50989I		
a = -0.127382 + 1.185430I		
b = -0.49179 - 1.81736I	8.58220 - 3.56941I	-0.284129 + 1.007355I
c = 0.097619 - 0.500148I		
d = 0.685044 - 0.038109I		

III.
$$I_1^v = \langle c, d-v, b, a-1, v^2+v+1 \rangle$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ v \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ -v - 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} v - 1 \\ v + 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ v+1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -v \\ v \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4v 1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^2$
c_3, c_6, c_7 c_8, c_9	u^2
C4	$(u+1)^2$
c_5, c_{10}, c_{12}	$u^2 + u + 1$
c_{11}	$u^2 - u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^2$
c_3, c_6, c_7 c_8, c_9	y^2
c_5, c_{10}, c_{11} c_{12}	$y^2 + y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -0.500000 + 0.866025I		
a = 1.00000		
b = 0	-1.64493 - 2.02988I	-3.00000 + 3.46410I
c = 0		
d = -0.500000 + 0.866025I		
v = -0.500000 - 0.866025I		
a = 1.00000		
b = 0	-1.64493 + 2.02988I	-3.00000 - 3.46410I
c = 0		
d = -0.500000 - 0.866025I		

$$\text{IV. } I_2^v = \langle a, \; d+v, \; -av+c-v-1, \; b+1, \; v^2+v+1 \rangle$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} v+1 \\ -v \end{pmatrix}$$

$$a_5 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} v+1\\1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ a_{10} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = (1)$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4v 5

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_7	u^2
c_5, c_{10}	$u^2 - u + 1$
c_6	$(u-1)^2$
c_8, c_9	$(u+1)^2$
c_{11}, c_{12}	$u^2 + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_7	y^2
$c_5, c_{10}, c_{11} \\ c_{12}$	$y^2 + y + 1$
c_6, c_8, c_9	$(y-1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -0.500000 + 0.866025I		
a = 0		
b = -1.00000	-1.64493 + 2.02988I	-3.00000 - 3.46410I
c = 0.500000 + 0.866025I		
d = 0.500000 - 0.866025I		
v = -0.500000 - 0.866025I		
a = 0		
b = -1.00000	-1.64493 - 2.02988I	-3.00000 + 3.46410I
c = 0.500000 - 0.866025I		
d = 0.500000 + 0.866025I		

V.
$$I_3^v = \langle a, \ d-1, \ c+a, \ b+1, \ v+1 \rangle$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6	u-1
c_3, c_5, c_7 c_{10}, c_{11}, c_{12}	u
c_4, c_8, c_9	u+1

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_6, c_8, c_9	y-1
c_3, c_5, c_7 c_{10}, c_{11}, c_{12}	y

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0		
b = -1.00000	-3.28987	-12.0000
c = 0		
d = 1.00000		

$$\begin{array}{c} \text{VI.} \\ I_4^v = \langle a,\ d^2v - dv + \cdots - d + 1,\ d^2v^2 - dv^2 + \cdots + 2v + 1,\ cdv - dv + \cdots - a + \\ 1,\ cdv^2 - dv^2 + \cdots - 2av - a,\ adv + dv + \cdots + c - 1,\ c^2v^2 + acv^2 + \cdots + av + a^2,\ b + 1 \rangle \end{array}$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} c \\ d \end{pmatrix}$$

$$a_5 = \begin{pmatrix} c - 1 \\ dc - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -c+v+1\\ -dc+1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -c+1\\ -dc+1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -c+1 \\ -dc+1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} c \\ d+c \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-d^2c + d^2 + 2dc v^2 4c 9$
- (iv) u-Polynomials at the component: It cannot be defined for a positive dimension component.
- (v) Riley Polynomials at the component: It cannot be defined for a positive dimension component.

(iv) Complex Volumes and Cusp Shapes

Solution to I_4^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
$v = \cdots$		
$a = \cdots$		
$b = \cdots$	-3.28987 + 2.02988I	-8.38377 - 3.11850I
$c = \cdots$		
$d = \cdots$		

VII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{2}(u-1)^{3}(u^{28}+9u^{27}+\cdots+u+1)(u^{40}+19u^{39}+\cdots+288u+256)$
c_2, c_6	$u^{2}(u-1)^{3}(u^{28} - 5u^{27} + \dots - 3u + 1)(u^{40} - 3u^{39} + \dots + 40u - 16)$
c_3, c_7	$u^{5}(u^{20} + u^{19} + \dots - 8u - 4)^{2}(u^{28} - 3u^{27} + \dots - 64u + 32)$
c_4, c_8	$u^{2}(u+1)^{3}(u^{28} - 5u^{27} + \dots - 3u + 1)(u^{40} - 3u^{39} + \dots + 40u - 16)$
c_5, c_{11}	$u(u^{2} - u + 1)(u^{2} + u + 1)(u^{20} + 2u^{19} + \dots - 2u + 1)^{2}$ $\cdot (u^{28} + u^{27} + \dots + 8u + 4)$
<i>c</i> 9	$u^{2}(u+1)^{3}(u^{28}+9u^{27}+\cdots+u+1)(u^{40}+19u^{39}+\cdots+288u+256)$
c_{10}	$u(u^{2} - u + 1)(u^{2} + u + 1)(u^{20} - 2u^{19} + \dots + 36u + 17)^{2}$ $\cdot (u^{28} - u^{27} + \dots + 1736u + 1252)$
c_{12}	$u(u^{2} + u + 1)^{2}(u^{20} + 6u^{19} + \dots - 2u + 1)^{2}$ $\cdot (u^{28} + 9u^{27} + \dots - 56u + 16)$

VIII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_9	$y^{2}(y-1)^{3}(y^{28} + 31y^{27} + \dots + 39y + 1)$ $\cdot (y^{40} + y^{39} + \dots - 4022784y + 65536)$
c_2, c_4, c_6 c_8	$y^{2}(y-1)^{3}(y^{28}-9y^{27}+\cdots-y+1)(y^{40}-19y^{39}+\cdots-288y+256)$
c_3, c_7	$y^{5}(y^{20} - 15y^{19} + \dots - 24y + 16)^{2}$ $\cdot (y^{28} - 15y^{27} + \dots + 3072y + 1024)$
c_5, c_{11}	$y(y^{2} + y + 1)^{2}(y^{20} + 6y^{19} + \dots - 2y + 1)^{2}$ $\cdot (y^{28} + 9y^{27} + \dots - 56y + 16)$
c_{10}	$y(y^{2} + y + 1)^{2}(y^{20} + 30y^{19} + \dots + 1254y + 289)^{2}$ $\cdot (y^{28} + 33y^{27} + \dots - 17874936y + 1567504)$
c_{12}	$y(y^{2} + y + 1)^{2}(y^{20} + 18y^{19} + \dots - 86y + 1)^{2}$ $\cdot (y^{28} + 21y^{27} + \dots - 6432y + 256)$