

CRIC HACKATHON 2017

COMPUTER VISION, BIG DATA & MACHINE LEARNING

Dani Ushizima Romuere Silva Flávio Araújo

Objetivo

- O hackathon visa possibilitar que os participantes desenvolvam trabalhos de visão computacional, visualização, aprendizado de máquina e bases de dados gigantes;
- Cada equipe deve ser composta por até 3 membros (sem exceção) e terá tema diferente, então não se preocupe - não tem como colar!
- Teremos snacks durante o evento;
- Premiação em dinheiro (valor a ser divulgado) ao melhor (1o. lugar) projeto.

Temas

- Investigação de epidemias desenhar ferramentas para metadado e geolocalização em mapas usando séries temporais (DB: mosquito outbreak);
- 2. Busca otimizada por similaridade;
- Cortador automático de células;
- 4. Métodos de detecção de saliência.

Hackathon

- Terá duração de 24 horas, sem interrupção;
- Os concorrentes poderão utilizar as salas reservadas para o evento CRIC
 2017 para desenvolvimento do projeto;
- Alimentos e bebidas serão doados pelos organizadores do evento.

Ajuda externa ao time

 Três professores estarão disponíveis durante o evento para ajudar com possíveis dúvidas, com agendamento de horários a ser divulgado.

** ATENÇÃO: Todos os códigos submetidos serão publicados no site do evento bem como no GITHUB do projeto.

Apresentação

- Cada equipe terá a chance de mostrar o que conseguiu realizar através de uma concisa apresentação de 10 min;
- Será realizada na terça-feira (04/07/2017) às 10:00 horas;
- Junto com a apresentação o time deverá entregar o código-fonte gerado.

Obs: apresentações que passem

de 10 minutos serão penalizadas

1 ponto/minuto, que serão

subtraídos da nota final.

Critérios de Avaliação

- Linguagem de Programação (python e/ou free software preferível);
- Criatividade;
- Precisão;
- Apresentação;
- Integração do Time;
- Engenharia de Software.

Payattention

Encontre a célula mais semelhante

Busca otimizada por similaridade

Objetivo

- Encontrar uma amostra através de seu respectivo vetor de características;
- Busca otimizada imaginando que o banco de imagens terá milhões de amostras até o final de 2017;
- 3. Dada uma amostra, encontrar as 10 outras amostras mais semelhantes
- Utilizar persistência de dados. Ex:
 SQL.

Dados

- 1. Há 2 planilhas num arquivo csv:
 - a. cada amostra corresponde a uma linha e cada coluna corresponde a uma medida da amostra
 - b. os labels de cada amostra (0-5)
- Amostras pertencem ao cricdatabase.com.br

Facilitamos seu trabalho: encontre todas as medidas em:

https://www.dropbox.com/s/nb7qg7h4g3zz4r5/busca%20hackathon.zip?dl=0

Hadouken

Entenda a rota do mosquito Aedes sp.

Estatísticas e visualização de rotas

Objetivo

O objetivo é desenhar um protótipo de ferramenta que auxilia os investigadores a visualizar rotas utilizadas pelo mosquito e possíveis novos pontos baseados em direções anteriores. Por exemplo, dado que existe uma epidemia que começa em Catuana, depois vai a Guararu, então Caucaia, qual a probabilidade de as pessoas de Fortaleza serem as próximas vítimas?

Dados

- 1. Há 2 planilhas num arquivo excel:
 - a. cidades brasileiras e georef
 - lista de ocorrências de doença relacionada ao mosquito
- Dados são parcialmente ficticios e sao provenientes de: https://www.binapratica.com.br/port al-transparencia-odv
- 3. Caso queira ampliar o volume de dados, divirta-se.

Facilitamos seu trabalho: encontre as planilhas em:

https://www.dropbox.com/s/rq8oyi5jxc0ezcf/MUNICIPIOS-LATITUDE%20E%20LC NGITUDE-BRASIL.xlsx?dl=0

Scorpius

Quais pontos chamam atenção?

Métodos de detecção de saliência

Objetivo

- Entender como relacionar mapas de saliência com dados de observadores rastreados com "eye tracker"
- Testar 2+ métodos de detecção de saliência dada a base do MIT
- 3. Ilustrar com uma aplicação de detecção de saliência

Dados

- 1. 300 imagens;
- 2. dados de 39 observadores rastreados com "eye tracker"
- 3. <u>saliency.mit.edu/results_mit300</u>
 .html

Facilitamos seu trabalho: encontre imagens e realidade terrestre em: saliency.mit.edu/results_mit300.html

PaoDeQueijo

Cortador automático de células

Detector automático de células

Objetivo

- Encontrar o ponto central de núcleos de células cervicais para cortar uma janela que contém a célula;
- Detecção automática, sem interação manual, isto é, na mão;
- Dada uma imagem de campo de lâmina de Papanicolau, salve as coordenadas daquela imagem.

Dados

- 30 imagens com cerca de 20 células em cada;
- 2. 22 imagens serão disponibilizadas para treino e 8 serão utilizadas para avaliação;
- 3. Link da base de treino:

 https://www.dropbox.com/s/r2jixnmx7qrun1s/find_cells_hackathon.zip?dl=0

Divirtam-se e boa sorte!

