EECS 203 Discussion 3

Proof by Contrapositive & Contradiction

Important Forms

- Two beginning-of-semester surveys on Canvas
 - FCI BoT Survey and Better Belonging in Computer Science (BBCS) Entry Survey
 - Due: Friday, Feb. 2nd @11:59pm
- Exam Date Confirmation Survey
 - Due: Friday, Feb. 2nd @11:59pm
 - Please fill this out, even if you don't have an exam conflict!
- They are each worth a few points, so make sure to fill them out!

Upcoming Homework

- Homework/Groupwork 3 will be due Feb. 8th
 - Don't forget to match pages!
 - Please note as soon as you press submit you've successfully submitted by the deadline. You can still match pages with no rush without adding to your submission time.

Groupwork

- Groupwork can be done alone, but the problems tend to be more difficult, and the goal is for you to puzzle them out with others!
- Your discussion section is a great place to find a group!
- There is also a pinned Piazza thread for searching for homework groups.o

Proof Techniques

Proof Methods

Direct Proof: Proves p → q by showing

$$p \rightarrow stuff \rightarrow q$$

• Proof by Contraposition: Proves $p \rightarrow q$ by showing

$$\neg q \rightarrow stuff \rightarrow \neg p$$

Proof by Contradiction: Proves p by showing

$$\neg p \rightarrow F$$

Proof by Cases: next week

Some Methods of Proving $p \rightarrow q$

• Direct Proof:

Proves $p \rightarrow q$ by showing $p \rightarrow stuff \rightarrow q$

Proof by Contraposition:

Proves $p \to q$ by showing $\neg q \to stuff \to \neg p$ (Knowing $\neg q \to \neg p$ enables concluding $p \to q$ because $\neg q \to \neg p \equiv p \to q$)

Proof by Contradiction:

Proves p by showing $\neg p \rightarrow F$ To prove p \rightarrow q, assume the negation: $\neg (p \rightarrow q) \equiv \neg (\neg p \lor q) \equiv p \land \neg q$ Derive a contradiction (F) from this assumption by arriving at a mathematically

incorrect statement (ex: 0 = 2) or two statements that contradict each other (x = y and x \neq y). Therefore, p \rightarrow q.

1. Proof by Contraposition \star

Prove that if $n^2 + 2$ is even, then n is even using a proof by contrapositive.

Proof by Contradiction

Proof by Contradiction

- When trying to prove p implies q, assume p is true and q is false. Derive a contradiction, (something that is always false, ex: 0 = 2, ex: x = y and x ≠ y). Therefore, p → q.
 - We assume the negation of what we want to prove
 - We arrive at something false
 - Therefore the negation of the thing we assumed must be true (ie the thing we wanted to prove)

2. Contraposition vs Contradiction *

Show that for an integer n: if $n^3 + 5$ is odd, then n is even, using

- a) a proof by contraposition.
- b) a proof by contradiction.

Note: The algebra in either case is the same. You don't need to rewrite the algebra for part (b), just reformat your proof from (a) into a proof by contradiction.

3. Proof Practice

Prove or disprove that the sum of a rational number and an irrational number must be irrational.

4. Odd Proof III

Prove that for all integers a and b, if a divides b and a + b is odd, then a is odd.

5. Proofs *

- 1. Prove or disprove: For all nonzero rational numbers x and y, x^y is rational
- 2. Prove or disprove: For all even integers x and all positive integers y, x^y is even.
- 3. Prove or disprove: For all real numbers x and y, if x^y is irrational, then x is not a positive integer or y is not a positive integer

