

deeplearning.ai

Basics of Neural Network Programming

Logistic Regression

Logistic Regression

Given
$$x$$
, want $y = P(y=1|x)$
 $x \in \mathbb{R}^{n}x$
Parareters: $w \in \mathbb{R}^{n}x$, $b \in \mathbb{R}$.
Output $y = \sigma(w^{T}x + b)$
Output $y = \sigma(x^{T}x + b)$

$$X_0 = 1, \quad x \in \mathbb{R}^{n_x + 1}$$

$$\hat{y} = 6 (0^{7}x)$$

$$0 = 0^{7}b \leftarrow$$

Basics of Neural Network Programming

deeplearning.ai

Logistic Regression cost function

Logistic Regression cost function

$$\hat{y}^{(i)} = \sigma(w^T \underline{x}^{(i)} + b), \text{ where } \sigma(z^{(i)}) = \frac{1}{1 + e^{-z}} (i) \qquad \forall (i) = w^T \underline{x}^{(i)} + b$$
Given $\{(\underline{x}^{(1)}, \underline{y}^{(1)}), \dots, (\underline{x}^{(m)}, \underline{y}^{(m)})\}, \text{ want } \hat{y}^{(i)} \approx \underline{y}^{(i)} \qquad \forall (i) = w^T \underline{y}^{(i)} = w^T \underline{$

Andrew Ng