Lógica - Práctico 6 (Lógica de Predicados)

Ejercicio 1.

Considere un conjunto A de números reales que incluya al 0. Considere un lenguaje de primer orden con un símbolo de relación binario M que denota la relación < de los reales y otro símbolo binario =' que denota la igualdad. Considere un símbolo de función binario m que denota la multiplicación.

Podemos definir muchos objetos usando el lenguaje de primer orden. Por ejemplo, el siguiente renglón define al cero.

$$Es_cero(x_1) := ((\forall x_2) m(x_1,x_2) = x_1)$$

Usando solamente los símbolos dados, escriba fórmulas de primer orden que definan las siguientes nociones.

- a) x₁ es el *máximo*
- b) x_1 es un sucesor inmediato de x_2
- c) No hay ningún elemento entre x₁ e x₂
- d) La función cuadrado es creciente

Ejercicio 2.

Considere un lenguaje de primer orden del tipo $\langle 1,2;2;0 \rangle$ con dos símbolos de relación P_1 (unario) y P_2 (binario) y un símbolo de función f_1 (binario). Sea *FORM* el conjunto de fórmulas de dicho lenguaje.

Indique cuáles de las siguientes son fórmulas bien formadas de dicho lenguaje (o sea, cuáles cumplen la definición de *FORM*).

- 1. $((\forall x_1) ((\exists x_2) P_2(x_1,x_2)))$
- 2. $(P_1(x_1) \rightarrow (((\exists x_2) f_1(x_1, x_2) = x_2) \land ((\exists x_1) P_2(x_1, x_2))))$
- 3. $(((\exists x_1)((\exists x_2) f_1(x_1,x_2))) \leftrightarrow ((\forall x_1)P_1(f_1(x_1,x_1))))$
- 4. $((\forall x_1) ((\forall x_2) (P_1(x_1) \lor ((\exists x_1) P_2(x_1,x_2)))))$
- 5. $(P_1((\forall x_1)P_2(x_1,x_2)) \leftrightarrow ((\forall x_1)P_1(P_2(x_1,x_2))))$
- 6. $((\exists x_1) \land ((\forall x_2) P_2(x_1, x_2)))$
- 7. $((\forall x_1) (P_1(x_1) \rightarrow (P_1(f_1(x_1,x_2)) \land ((\exists x_1) P_1(f_1(x_1,f_1(x_1,x_2)))))))$

Ejercicio 3.

a) Escriba el tipo de similaridad de las siguientes estructuras:

```
i. \langle Q, <, 0 \rangle

ii. \langle N, +, *, S, 0, 1, 2, 3, 4, ..., n, ... \rangle donde S(x) = x+1

iii. \langle P(N), \subseteq, \cup, \cap, {}^c, \emptyset, \{1,2\} \rangle

iv. \langle N, \{x \in N / x \text{ es impar} \}, \{x \in N / x \text{ es primo} \}, +, {}^2, 0, 1 \rangle

v. \langle R, 1 \rangle

vi. \langle R, N, <, T, 0, 1, 2 \rangle donde T(a,b,c) es la relación "b está entre a y c".

vii. \langle \{0,1,2\}, \{(0,1),(0,2),(1,2)\}, \{0,2\}, 0, 1, 2 \rangle
```

b) Dé estructuras que tengan los siguientes tipos de similaridad:

```
\langle 1,1;-;3 \rangle \langle 4;-;0 \rangle \langle 1,2;1,2;1 \rangle \langle -;2,3;0 \rangle
```

- c) Considere los tipos de similaridad de la parte (a). Para cada uno de ellos, escriba un alfabeto para un lenguaje de dicho tipo.
- d) A partir de un tipo y de un alfabeto (considerando la definición del conjunto FORM) queda determinado un lenguaje de primer orden. Entonces:
 - Escriba 3 términos pertenecientes al lenguaje del punto (a-iii).
 - Escriba 3 términos pertenecientes al lenguaje del punto (a-iv).
 - Escriba 3 átomos pertenecientes al lenguaje del punto (a-v).
 - Escriba 3 átomos cerrados pertenecientes al lenguaje del punto (a-vi).
 - Escriba 3 átomos pertenecientes al lenguaje del punto (a-vii)
 - Escriba 3 sentencias pertenecientes al lenguaje del punto (a-iv).

Ejercicio 4.

Para aquellas fórmulas bien formadas del ejercicio 2, determine cuáles ocurrencias de variables son libres y cuáles son ligadas. Para aquellas que sean ligadas, señale el cuantificador al cual están ligadas. ¿Cuáles de las fórmulas anteriores son sentencias?

Curso de

Nivelación de matemática

Ejercicio 5.

Considere un lenguaje de primer orden del tipo $\langle -; 2; 1 \rangle$ con un símbolo de función f_1 y un símbolo de constante c_0 . Verifique cuáles de las siguientes afirmaciones son correctas y realice la sustitución correspondiente cuando sea posible.

- a) x_1 es libre para x_1 en la fórmula $x_2 = x_1$
- b) x_3 es libre para x_1 en la fórmula $x_1 = x_1$
- c) c_0 es libre para $f_1(x_1,c_0)$ en la fórmula $f_1(x_1,c_0) = c_0$
- d) $f_1(x_1,x_3)$ es libre para x_3 en la fórmula $x_2 = c_0$
- e) x_1 es libre para $f_1(x_1,c_0)$ en la fórmula $f_1(x_1,c_0)$ = c_0
- f) x_1 es libre para $f_1(x_1,c_0)$ en la fórmula $((\forall x_1)f_1(x_1,c_0) = c_0)$
- g) $f_1(c_0,x_2)$ es libre para x_2 en la fórmula $((\exists x_2) \ x_2 = \dot{x}_1)$
- h) $f_1(x_1,x_2)$ es libre para x_4 en la fórmula $((\exists x_3) \ f_1(x_3,x_1)='c_0)$
- i) $f_1(x_1,x_2)$ es libre para x_3 en la fórmula $((\exists x_2) \ f_1(x_2,x_3) = \ c_0)$
- j) x_2 es libre para $f_1(x_1,c_0)$ en la fórmula $((\forall x_1)f_1(x_1,c_0) = c_0)$
- k) $f_1(x_1,x_2)$ es libre para x_3 en la fórmula ((($\forall x_4$) $f_1(x_1,x_3) = c_0$) \land (($\exists x_2$) $x_3 = x_1$))
- 1) $f_1(x_1,x_2)$ es libre para x_5 en la fórmula ((($\forall x_3$) x_3 = ' x_4) \rightarrow (($\forall x_5$) x_5 = ' x_2))
- m) $f_1(x_1,x_2)$ es libre para x_3 en la fórmula ((($\exists x_3$) x_3 = ' c_0) \lor (($\exists x_4$) x_3 = ' x_4))
- n) $f_1(c_0,x_1)$ es libre para $f_1(x_1,c_0)$ en la fórmula $((\forall x_1)f_1(x_1,c_0)='c_0)$

Ejercicio 6.

Considere el conjunto N de los números naturales. Considere un lenguaje de primer orden con un símbolo de predicado P_1 (unario) que denota la relación "ser par", un símbolo de relación binario =' que denota la igualdad, dos símbolos de función f_1 y f_2 (binarios) que denotan la suma y el producto respectivamente y tres símbolos de constante c_0 , c_1 , c_2 que denotan las constantes 1,2,6.

Traduzca a fórmulas de primer orden (utilizando solamente los símbolos definidos) cada uno de los siguientes enunciados:

- a) Todo natural n cumple que $n^2 + n$ es par.
- b) Para todo natural par p existe un natural x tal que p = 2*x.
- c) La suma de dos naturales impares cualesquiera es un número par.
- d) Para todo natural n existe un natural x tal que n*(n+1)*(n+2) = 6*x.
- e) No hay ningún natural que sea par e impar a la vez.
- f) Hay un natural n que es par y que además cumple que $n+n=n^*n$.
- g) La suma posee un neutro, que además es único.

Página 3 de 5

<u>Ejercicio 7.</u>

Considere un lenguaje de primer orden del tipo $\langle -; 1,2; 1 \rangle$ con dos símbolos de función f_1 (unario) y f_2 (binario) y un símbolo de constante c_0 .

- a) Defina inductivamente el conjunto $TERM_{\rm C}$ de los términos cerrados pertenecientes a dicho lenguaje.
- b) Defina recursivamente la función F: $TERM_C \rightarrow N$ que calcula la cantidad de *ocurrencias* de \underline{c}_0 en un término $t \in TERM_C$.
- c) Demuestre por inducción que para todo $t \in TERMC$ se cumple que F(t) > 0.

Ejercicio 8. (2do parcial del 2010)

Sea L un lenguaje de primer orden con igualdad de tipo de similaridad <1;1;0> cuyo alfabeto cuenta con los símbolos de relación P y =', el símbolo de función f, las variables $\{x_i : i \in N \}$, los conectivos \neg y \rightarrow , el cuantificador universal \forall , y los símbolos auxiliares) y (.

- a) Enuncie el PIP para las fórmulas del lenguaje L.
- b) Para cualquier fórmula $\varphi \in L$ y variables x_i , x_j tales que x_i no aparece en φ ($x_i \notin V(\varphi)$), pruebe que : $\varphi[x_i / x_i][x_j / x_i] = \varphi$
- c) Muestre que la condición sobre la variable x_i es necesaria para que se cumpla la propiedad anterior.

Ejercicio 9.

Considere un lenguaje de primer orden del tipo $\langle 1; -; 0 \rangle$ con un símbolo de predicado P (unario). Sea $Var = \{x_1, x_2,\}$ el conjunto de variables del lenguaje y sea FORM el conjunto de fórmulas del lenguaje.

- a) Defina recursivamente la función V: $FORM \rightarrow Pot(Var)$ tal que V(α) denota el conjunto de variables que ocurren en la fórmula α .
- b) Defina recursivamente la función FV: FORM \rightarrow Pot (Var) tal que FV(α) denota el conjunto de variables que ocurren libres en la fórmula α .
- c) Demuestre por inducción que para todo $\alpha \in FORM$ se cumple que: $FV(\alpha) \subseteq V(\alpha)$.

Ejercicio 10. (Examen Diciembre de 2006)

Sea un lenguaje de primer orden con tipo de similaridad <-; 1, 2,2; 0> y símbolos de función f de aridad 1, g y h de aridad 2.

Sea PROP* el conjunto de las fórmulas proposicionales que sólo emplean los conectivos \neg , \land y \lor .

- 1. Defina inductivamente el conjunto TERM de los términos del lenguaje.
- 2. Defina recursivamente una función biyectiva $C: TERM \rightarrow PROP^*$ que cumpla:

$$C(g(x_1, x_3)) = p_1 \wedge p_3.$$

- 3. Defina recursivamente una función $R:TERM \rightarrow TERM$ tal que para todo término t se cumpla C(t) eq C(R(t)) y el conectivo \vee no ocurre en C(R(t)).
- 4. Demuestre que para todo término t, C(t) eq C(R(t)).

LUMETRIO

	Ejercicio 1-
	A (Conjunto de los números reales)
	M (<)
	= ' (=)
	m (function multiplicación)
	Usando solamente los símbolos dados, escriba formulas de primer orden que
	definan las signientes nociones:
	a). X1 es el máximo.
	4). X1 es el maximo-
	Es_m>x (x1):= (Yx2) M (X2, X1)
	ES_ Max (X1):= (VX2)11 (AL/A1)
	in the de ve
	b)_ X1 es un succesor immediato de X2
	Surgeon 1= $(x_1 = 'x_2 + x_3) \wedge ((\forall x_4) m(x_3, x_4) = 'x_4)$ $(x_3 = 4)$
	Succesor := $(x_1 = 'x_2 + x_3) \wedge ((\forall x_4) m(x_3, x_4) = 'x_4)$ $(x_3 = 1)$
92	
	c). No hay ningún elemento entre x1 e x2
	(7)(M(V2 V2))
	No - existe:= 7 (3x3) (M(x1, x3) \ M(x3, x2))
	d). La función euadrado es creciente.
	Es_ Creciente := $(\forall x_1)(\forall x_2)(\forall (x_1,x_2) \rightarrow M(m(x_1,x_1),m(x_2,x_2)))$

Aprendé de la mejor manera Programación | Big Data | Al

Ir al sitio

	Ejercicio 2.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Considere un lenguaje de primer orden de tipo <1,2;2;0> con dos símbolos de
_	relación Pa (unario) y Pa (binario) y un símbolo de función fa (binario). Sea FORM
	el conjunto de formulas de dicho lenguaje.
	Indique encles de les signientes son formules bien formades de dicho lenguaje
	Indipla cistes de les significations son
	1_ ((\(\frac{1}{2}\)) \(\frac{1}{2}\) \(\frac
	€ FORM
Ī	€ FORM
-	€ FORM
	2 (P1(x1) → (((3x2) f1 (x1, x2) = (x2) ∧ ((3x1) P2(x1, x2)))) € FORM
	E FORM ETERM E FORM
-	E FORM E FORM
	E FORM .
	€ FORM € FORM
	€ FORM
	CALLED A FORM
	3. (((∃x1)((∃x2) f1(x1, x2))) ↔ ((∀x1) P1(f1(x1, x1)))) & FORM
	E TERM
	€ FORM
	4- ((\form \(\form \) \(\fo
	EFORM
	5_ (Pr ((\frac{1}{2} \text{Pr (x1, x2)}) \in ((\frac{1}{2} \text{x1}) Pr (Pr (x1, x2)))) \in FORM
	E FORM E FORM
	€ FORM € TORM
	E FORM
	6- ((∃x1) ∧ ((∀x2) P2(x1, x2))) & FORM
	EFORM
	= ((\)(2()) \ (2(((\))) \ ((\ \ \) \ 2. (\ \ (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	TO ME TERM
,	ETERM ETERM
1	Nerd E FORM
1	Etokin E tokin

Ejercicio 3.

a). Escriba el tipo de similaridad de las siguientes estructuras:

i. < 9, < , 07 - < 2; -; 17

11. < N,+, *, S, 0,1,2,3,4,..., n,...> donde 5(x) = x+1 → <-;2,2,1; ∞>

(a) strep of do policy in any

iii_ < P(N), < 10,0, 6, \$, \$, \$, \$, \$, 2; 2,2,1; --; 2)

iv - < N, {x ∈ N/x es impor}, {x ∈ N/x es primo}, +, 2,0,1) -> <1,1;2,1;2)

V- < R,1> , <-;-;1>

Vi. (R, N, <, T, 0,1,2) donde T(a,b,c) es la relación "b está entre a y c"

Vii $< \frac{3}{2}$ or (2), $\frac{3}{2}$ (0,1), (0,2), (1,2), $\frac{3}{2}$, 0,1, $\frac{3}{2}$, 0,1, $\frac{3}{2}$, $\frac{3}{2}$,

6). Dé estructures que tengen les signientes fipes de similaridad:

<4;-;0> (R,P) donde P(a,b,e,d) es la relación "b está entre q

<1,2;1,2;1> < N, {x ∈ N/x es impar}, <,2,+,0>

 $\langle -i 2,3 | 0 \rangle \rightarrow \langle R,+,f \rangle$ donde $f(a_1b_1c_1) = (a_1^b)^c$

Escribe 3 sentancions perteneriontes at longuage del punto (a-iv)

Nerd

(+xx) 2 (xx) (+xx) 2 (xx) (+xx) 3 (4x (xx))

Curso de Cálculo DIV

Ejercicio 4_ Para squellas fórmulas bien formadas del ejercicio 2, determine cuáles ocurrencias de variables son libres y ender son ligadas. Para aquellas que sean ligadas, señale el cuantificador al cual estan ligadas, à ludles de las formulas son sentencias? 1- ((\(\frac{1}{2}\x_1\)) ((\(\frac{1}{2}\x_2\)) \(\frac{1}{2}\x_1\) \(\x_2\)) = \(\frac{1}{2}\x_1\) -> la primer ocurrencia de X1 es lipada al Y 3 la primer ocurrencia de X2 es ligada de 3 la sepunda ocurrencia de XI es lipada al V la segunda ocurrencia de X2 es ligada 21 3 Como FV(4) = \$ 4 es sentencis 2 (P1 (x1) -> (((3x2) f1 (x1, x2) = 'x2) 1 ((3x1) P2 (x1, x2)))) = 42 * : -> Primer ocurrencis: libre, ye que no esté en el donce de ningún cuentificador asociado à X1 = 15 18 18 3> Sepunda ocurrencia: Idem. Freeze ourrencis: ligade por el cuantificador 3(2) = Coorto ocurrencia: Idem. *2: 3 Primer ocurrencia: Ligada por el cuantificador 3 an 4) Segunda ocurrencia: Idem >> Tercer ourrence: Idem -> Cuarta ourrencia: Libre, ya que no está al alcance de ningún cuantificador Como $FV(\varphi_2) \neq \phi \Rightarrow \varphi_2$ no es sentencia.

4- ((Xx) ((Xx) (P1(x1) V ((= x1) P2(x1, x2)))) = 64 Fire spells formules been formedos del ejercicio 2 defermina cuales ocurrencias X1: -> Primer = 20 w rencist: ligade of al 2 4(n) 1 mos release y cord 1 mos relatives of smors/1/3 Segundo Deurrencia: Idemi, rabogi notes has la volusifitario la elevaz Tercer occurrencia, Lipsde 2 3(3) 5 Cuerts ourrencis. Idem Xu: 2 Primer ourrencis: (igade al 4(2) 5 Segundo ocurrencio: Idem & Maril 19 M Como FV (P4) = \$ > P4 es sentencia. 7. ((∀x1) (P1(x1) → (P1(f1(x1, x2)) ∧ ((∃x1) P1(f1(x1, f1(x1, x2)))))) = 47 1 (4) 1 8 = (((198) + 2) & (+x E.)) 1. (+x + 19x + 2) & (+x E)) + (+x + 19) . 1 X1: -> Primer ocurrencia: Ligado al Y(1) 2) Segundo ocurrencia: Idem 3 Tercer ocurrencia . Idem 5 Charts ocurrencis: Cipada al 3(e) 6) Quints ocurrencia: Idem 7 Sexto occivenció: Idem de la voe sheet sursano X2: 4 Primer ocurrencis. Cibre, ye pue no esta el elcence de ningun crantificador in Essociado la X2 la voy dessil dismortes years 3 Seand's ourrencis; Idem. Como $FV(\varphi_7) \neq \phi \rightarrow \varphi_7$ no es sentencia.

∭ Curso de Cálculo DIVV ∭

	Ejercicia S. (xx ax (ax E)) should al no ax organist so (ax a) A (
	5×2- (xx) = 5×2- (xx) = 6×3 = 5×6x) = 5×6x
	Considere un lenguage de primer orden del tipo <-12,1> con un símbolo de
	función for y un símbolo de constante co. Verifique cuáles de las siguientes afirma
	crones son corrects y redice la sustitución correspondiente evando sea posible.
	1 (cell)
	a) - X1 es libre pero X1 en la formula Xe = 'X1
	Como X2 = X1 es Homico, por def 2.3.11 se comple.
	Sot: (xe=1x1)[x1/x1] = (xe[x1/x1] = x1[x1/x1]) = xe=1x1
	(A styring as 18.53 by ing (0'=(xx ex)+7(xx 5)) it by a
	b). X3 es libre para X1 en la formula X1=1X1.
	Como X= x1 es atómica, por det 2.3.11 se comple
82	$\underbrace{5-5+}: (x_1 = 'x_1)[x_3/x_1] = (x_1[x_3/x_1] = 'x_1[x_3/x_1]) = x_3 = 'x_3$
	e) - co es libre poro filx, co) en le formula filx, co) = co
	(100) W (100) W (100) W (100) W (100) (
	Como fa (xx, co) es un termino y no una variable, no se puede realizar sustitue
	1 de stre d'are d'are de mailler en part (a) a (ex. ex) à l'a (ex. ex) a (ex ex)
	d)- fa(x1, x3) es libre para x3 en la formula xe=1co
(2	Como X2 = 'Co es stómics, por def 2.3.11 se cample.
	Sust: (x2='Co) [fr(x1)x3/x3] = (x2[fr(x1,x3)/x3]='Co[fr(x1,x3)/x3]) = x2='Co
	e) - X1 es libre para fa (x1, ca) en la férmula fa (x1, ca) = 1 co
	* * * * * * * * * * * * * * * * * * *
	((xx Idem (ac) 5)) / (3' = (xx xx) + (xx x))) alonged at no ex may so hit so = (5x xx) it
	Language and the second of the stand of the stand
	f) - X1 es libre para fr (x1, a) en la formula ((\(\frac{1}{2}\text{X1}\)) fr (\(\text{X1}\), (a) = 1 (b)
	Explain to the first so the following state of the first
	[] * Idem () **** (** **) ** = { ** (** **) ** = (** **) ** = (** **) ** (**
	A like to the second like to be a like the second like the second to the like the like the second like the sec


```
g) - fr (co, x2) es libre pere x2 en le formula ((3x2) x2 = 'x1)
          FV ((3x2) x2= x1) = FV (x2= x1) - {x2} = FV (x2) U FV (x1) - {x2}
         she aladmis in the fixe for xx for $ xx for the xx form of a proposed on assessed
Como X2 & FV ((3x2) X2 = 1X1) por def 2.3.11 se comple g)
Sustitución: ((3x2)x2= x1)[fr(co)x2) = ((3x2)x2= x1)
h) for (x1, x2) es libre para X4 en la formula (( 3x3) for (x3, x1) = co)
        FV((3x3)f1(x3, x1)='co) = FV(f1(x3, x1)='co) - {x3} = FV(f1(x3, x1)) U FV(co) - {x3}
                                                = FV(x3) U FV(x1) Up - {x3} = {x3} U {x1} - {x3} = {x1}
      Como X4 & FV ((3x3)f1(x3, x1)='(0) por def 2.3.11 se comple h)
Sustitución: ((3x3) f1(x3,x1)='co) [F1(x1,x2) x4] = (3x3) (f1(x3,x1) [f1(x1,x2) x4] = co [f1(x1,x2)]
                        = (\exists x_3) \left( f_1 \left( x_3 \left[ f_1(x_1, x_2) \right], x_1 \left[ f_1(x_1, x_2) \right] \right) = C_0 = (\exists x_3) \left( f_1 \left( x_3, x_1 \right) = C_0 \right)
i) - f1(x1, x2) es libre para x3 en la formula ((3x2)f1(x2, x3)='co)
        FV((3x2)f1(x2, X3)='co) = FV(f1(x2, X3)='co) - {X2} = FV(f1(x2, X3)) U FV(co) - {X2}
 = FV(x2)UFV(x3)Up - {x2} = {x2}U{x3} - {x2} = {x3}
      Como X3 E FV ((3x2) f1(x2, x3) = (co), hay gue verificar la segunda parte de la
definición (xi & FV(t) y t está libre para x en an , con xi = x2 y t = fr(x1,x2))
      FV (fa (x1, x2)) = FV (x1) U FV(x2) = {x1, x2}
      Como X2 E FV (fr (x1, x2)) no se comple i)
D- Xo as libre para fi(x1, co) en la formula (( Vx1) fi(x1, co) = co). Idem c)
K)_ fi(x1, x2) es libre para x3 en la formula ((( \(\frac{1}{2}\x2)\) fi(\(\frac{1}{2}\x3)\)= (6) \(\frac{1}{2}\x2)\) \(\frac{1}{2}\x2)\)
     d es de la forma d = an 11 dz (parte ii de la definición 2.3.11) hay que ver que
t está libre para x en da (ay en dext) shumad al no (o, no) no areg entil es 1x - (2
@ fr(x1, x2) es libre para x3 en la formula (( \times x4) fr(x1, x3) = 10)?
      FV((\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\frac{1}{2}(\frac{1}{2}x4)\frac{1}{2}=\f
                                                 = FV(x1) U FV(x3) U $ - {x4} = {x1} U {x3} - {x4} = {x1, x3}
      Como X3 E FV ((VX4)fr(X1, X3) = 1co), by pre resificar la sepunda parte de la def.
                               Nerd
```

(FV(f1(x1,x2)) = FV(x1) U FV(x2) = {x1} U {x2} = {x1, x2} Como Xy € FV (f1 (x1, x2)) se cumple d1. FV ((3x3) xx = 6) = FV (xx = 6) - (xx) + FV (xx) + FV (xx) + (xx) = (xx) 1. fr(x1, x2) es libre para x3 en la formala ((3x2) x3 = 1x1)? FV ((3x2) x3 = 1x1) = FV (x3 = 1x1) - {x2} = FV (x3) v FV (x1) - {x2} = { x3} U { x1} - { x2} = { x3, x1} Como X3 E FV ((3x2) x3 = 1x1), hay que verificar la segunda parte de la definición FV (fx (x1, x2)) = {x1, x2} ~ (x) ~ = {xx} = = (xx) + (x2) V = (xx) V = (xx Como X2 E FV (f1 (x1, x2)) no se emple de x/xx Finalmente como se comple da y no se comple de, no se comple 1) - $f_1(x_1, x_2)$ es libre para x_s en la formula $(((\forall x_3) x_3 = 'x_4) \rightarrow ((\forall x_5) x_5 = 'x_2))$ 1 tes libre para x en on? FV ((\forall x3) x3 = 1 x4) = FV (x3 = 1 x4) - \forall x3 = FV (x3) U FV (x4) - \forall x3 } = {x3}~ {x4} - {x3} = {x4} Como Xs & FV ((\(\frac{1}{2}\) \(\text{X}_3\) \(\text{X}_4\) \) se comple @ @ tes libre para x en de? source de ma (a, x) of any ordit or (x, a) of (n FV ((+x5) X5 = 1x2) = FV (x5 = 1x2) - {x5} = FV (x5) U FV (x2) - {x5} = {x5} - {x2} - {x5} = {x2} Como Xs & FV((\forall Xs) Xs = 1 X2) se comple @ (vego, como se complen 1 y 2 se comple l). Sustitución: (((Yx3)x3 = 'x4) -> ((Yx5)x5 = 'x2)) [fr(x1,x2)] = $= ((\forall x_3) x_3 = x_4) \begin{bmatrix} f_1(x_1 \times s) \\ \times s \end{bmatrix} \rightarrow ((\forall x_5) \times s = x_2) \begin{bmatrix} f_1(x_1 \times s) \\ \times s \end{bmatrix} = (((\forall x_3) \times_3 = x_4) \rightarrow ((\forall x_5) \times_5 = x_2)$

Curso de GAL Uno

t x 2	
m) - $f_1(x_1, x_2)$ es libre para x_3 en la formula $(((\exists x_3)x_3 = G)) \vee ((\exists x_4)x_3 = G))$	
1) tes libre para x en da? . Ab demos as ((+x +x) +2) +3 & x mes	15
FV ((3x3)x3=16) = FV (x3=16) - {x3} = FV (x3) UFV (6) - {x3} = {x3} - {x3}	} = \$
(Lipita ex (ax E)) stanish at no ex any englines (ex ex) at . I	
Como X3 & FV ((3x3) x3 = 1co) se comple (1) = xx) V= = xx = xx = xx = xx	
10x,0x = 12x = 10x	
Dit es libre para X en de?	
FV ((3 x4) x3 = 1 X4) = FV (X3 = 1 X4) - { X4} = FV (X3) U FV (X4) - { X4} = {X3}	
Como X3 E FV ((= X4) X3 = 1 X4), hay que verificar la segunda parte de la def.	
FV (f1 (x1, x2)) = FV(x1) U FV(x2) = {x1, x2}	
Como $x_4 \notin FV(f_1(x_1, x_2))$ se comple 2	
(%)	
(Findmente, como se comple) (y D) se comple m).	
No 100 X 47.00 and to 4 10	
Justifición. (((3x3)x3=1co) V ((3x4) x3=1x4))[fa(x1, x2)] x3	
$ (((\exists \times_3) \times_3 = 'c_0) \begin{bmatrix} f_1(x_1, x_2) \\ x_3 \end{bmatrix} \vee ((\exists x_4) \times_3 = 'x_4) \begin{bmatrix} f_2(x_1, x_2) \\ x_3 \end{bmatrix} = (((\exists \times_3) \times_3 = 'c_0) \vee ((\exists x_4) \cdot f_1(x_1, x_2) \cdot f_2(x_1, x_2) \cdot f_3(x_1, $	= ' ×4)
(1=3)	
n) - fr (co, x1) es libre para fr (x1, co) en la fórmula ((xx1) fr (x1, co) = co)	
FU((Yx)) x= = (x) = FV(x== xi) - {x=} = FV(x=) U FV(x) - {x;}	
Idem 0)-	
(and Xx & FV((\xx) Xx = Xx) se comple (1).	
Obs: Los sustituciones siempre se restizan (evando ses posible) por variables!	
= (+x+1) ((+x++1) + (+x+1)) ((x+1+x+1)) ((x+1+x+1)))	

Hecho para

Ejercicio 6. "conjunto de las números naturales " Ser Par" Pr (unario) "igualded" fo (binacio) fe (binario) 20 26 0 2h 5 0 4 Traduzca a formulas de primer orden (utilizando salamente los símbolos definidos) esds uno de los signientes emneisdos: ((ex = ex) = (ex = (ex =x) A) A (ex = (ex ex) A)) (ex) a). Todo natural n comple que nº + n es par (\(\tau_1 \) P1 (f1 (f2(x1, x1), x1)) 6) - Para todo natural par p existe un natural x tal que p= 2 * x. (∀x1)(R(x1) → (∃x2) x1 = f2(G1, X2)) c). La suma de dos naturales impares cualesquiera en un número par (∀x1)(∀x2)(¬R(X1)∧¬R(X2) → Pr(f1(X1, X2))) d). Para todo natural in existe in natural x tal que n*(n+1)*(n+2) = 6 *x (\(\frac{1}{2} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2

- No hay	ningún natural p	are sea par e impar	à là vez.	- di elercia de	
	1 maturales .	Lersmin tel el eturpoù	W		
)(rxE) r	(B(X1) 17 B(X1))	" 70°F 70°F	(wissing) if		
,		"Lobbergi"	- T		
Hay in r	notural n que es	par y pre sdema	is comple igne	n+h = n * n	
() (rxE)	1 (x1) 1 (f1 (x1, x1)) = ' fe (x1, x1)))	اله		
		City Company Company			
		3	Ċ ₁		
ls sums	posee in neutr	ro, pre odemás es ú	nieo so		
				3 8380beT	
(∃x1)(∀x2)(((fr(x1, x2) = 1 x	2) A (fo (x2, x1) = 1 x2)	Nog ab ed moved	the one was	
(∃x1)(∀x2)(((fr(x1, x2) = 1 x	2) A (fo (x2, x1) = 1 x2)	Nog ab ed moved	the one was	
(∃x1)(∀x2)(((fr(x1, x2) = 1 x	2) A (fo (x2, x1) = 1 x2)	Nog ab ed moved	the one was	
(3x1)(4x2)(((fr(x1, x2) = 1 x	2) A (fo (x2, x1) = 1 x2)	Nog ab ed moved	the one was	

Curso de

GAL Dos

	Ejercicio 7.	Nontental and
		(4)7 = (4)9 (H
	Considere un lenguaje de primer orden del tip	
	función for (unbrio) y fe(binario) y un símbol	o de constante eo.
		Demostración
	a) - Defins inductivamente el conjunto TERM.	
	necientes a dicho lenguaje.	(3 3d) (
		5 ((6)) 7
		(11) 4
	ii). Si ty E TERMo enfonces fa(ty) E TER	
	iii). Si to, to E TERM c entonces felto,	(2) E TERMC
_		I sermont a
- AL	b) Defind recursivamente la función F: TE	
	de locurrencias de co en un término t E	
	F(44) + F(48) > 0	= ((6),62)03)? (T
	F: TERME -> N	
	F(c ₀) = 1	74533 S7 12 SU
	F(f(G)) = F(G)	(704, 2) 2) 7
	F(f2(t1, t2)) = F(t1) + F(t2)	
	F(f2(t1, t2)) = F(t1) + F(t2)	F(H) + F(H)
	F(f2(t1, t2)) = F(t1) + F(t2) c) - Demuestre por Inducción pue para todo	t E TERM c Se comple que FCH
	$F(f_2(t_1, t_2)) = F(t_1) + F(t_2)$ c) Demuestre por Inducción que para todo	t E TERM c Se comple que FCH
	$F(f_2(t_1, t_2)) = F(t_1) + F(t_2)$ c) - Demuestre por Inducción que para todo $(F \in TERM_c) F(t_1) > 0 \qquad Propiedad a n$	t \in TERM \in Se comple que FCE nostrar \Rightarrow $P(\xi) := F(\xi) > 0$
	$F(f_2(t_1, t_2)) = F(t_1) + F(t_2)$ c) - Demuestre por Inducción que para todo $(F \in TERM_c) F(t_1) > 0 \qquad Propiedad a n$	t E TERM c Se comple que FCH
	$F(f_2(t_1, t_2)) = F(t_1) + F(t_2)$ c) Demuestre por Inducción que para todo ($\overline{F} \in TERMC$) $F(t) > 0$ Propiedad a In	t \in TERM c se comple que FCE 1) = \downarrow 0 < (\downarrow) = \downarrow (\downarrow) > 0 \downarrow (\downarrow) = \downarrow (\downarrow) > 0
	$F(f_2(t_1,t_2)) = F(t_1) + F(t_2)$ c) Demuestre por Induceion que para todo ($F(t) = TERMC$) $F(t) > 0$ Propiedad a M	t \in TERM \in Se comple que FCE nostrar \Rightarrow $P(\xi) := F(\xi) > 0$
	$F(f_2(t_1, t_2)) = F(t_1) + F(t_2)$ c) Demuestre por Inducción que para todo ($\overline{Y} \in TERMC$) $F(t) > 0$ Propiedad à M Paso base: T) . $P(c_0) = F(c_0) > 0$	t \in TERM c se comple que FCE nostrar \Rightarrow $P(\xi) := F(\xi) > 0$
	$F(f_2(t_1, t_2)) = F(t_1) + F(t_2)$ c) Demuestre por Inducción que para todo ($\overline{F} \in TERMC$) $F(t) > 0$ Propiedad a In	t \in TERM c se comple que FCE nostrar \Rightarrow $P(\xi) := F(\xi) > 0$
	$F(f_{2}(t_{1},t_{2})) = F(t_{1}) + F(t_{2})$ $c) - Demuestre por' Induceion que para todo$ $(\overline{Y} \in TERM_{c}) F(t) > 0 \qquad \text{Propiedad a in}$ $Paso b \ge se :$ $T) - P(e_{0}) = F(t_{0}) > 0$ $Demostración :$ $F(t_{0}) > 0$	t \in TERM c se comple que FCE nostrar \Rightarrow $P(\xi) := F(\xi) > 0$
	F($f_2(t_1, t_2)$) = F(f_1) + F(f_2) c) - Demuestre por' Induceion que para todo ($\overrightarrow{F} \in TERMc$) F(f_1) > f_2 0 Propiedad a in Paso base: T) . P($f_2(t_1, t_2)$) = F($f_2(t_1)$) 0 Demostración: F($f_2(t_1, t_2)$) = F($f_2(t_1)$) = F($f_2(t_2)$) 0	t \in TERM c se comple que FCE nostrar \Rightarrow $P(\xi) := F(\xi) > 0$
	$F(f_{2}(t_{1},t_{2})) = F(t_{1}) + F(t_{2})$ $c) - Demuestre por' Induceion que para todo$ $(\overline{Y} \in TERM_{c}) F(t) > 0 \qquad \text{Propiedad a in}$ $Paso b \ge se :$ $T) - P(e_{0}) = F(t_{0}) > 0$ $Demostración :$ $F(t_{0}) > 0$	t \in TERM c se comple que FCE nostrar \Rightarrow $P(\xi) := F(\xi) > 0$


```
Peso Inductivo 1.
                                                               H)_ P(4) = F(4) >0
                                                        10T) - P(f1(4)) = F(f1(4)) > Ocobro reming so squared no endicad
                                                             fi (merio) y te (hinaria) y un simbola de constante co
          Demostración.
                                                       a) Define industrancente el conjunto TERMO O Colombiano
                                                      → (def F)
                                                                  F(t1)>0
                                                     → (HI)
 Paso Inductivo 2.
H Define recognishments of depote TEOK (4) 7 = (4) 9 = (H) develor logisterici d
                                                                             P(tz) = F(tz) > of animit in me as ab zeigner weet, it
                                                           T) . P(f2(t1,t2)) = F(t1) + F(t2) > 0
  Demostración
                                                                  F(f2(61, t2))
                                                    ⇒ (Def F)
                                                                                                                                   F(F(F(F))= F(F) + F(F)
                                                                   F(tr) + F(tr)
d) Demostre per Inducion pur para todo t E TERME (IH) copple pur FCH>0
                                                                    F(6) >0 y F(62) >0
                              OK () => (sums) de términos positivos) = ( OK (D) = ( O
                                                                   FCHI + FCt2) >0
      Entonces F(+) >0 Y & ETERM.
                                                                                                                                             0 < (63) 9 = /69) 9
```


Ejercicio 97. any alguno az 14907 3 to abot any any mismby ny ortanisty to Considere un longueje de primer orden del tipo <1; -jo) con un símbolo de predicada P(mario). Sea Nor = {x1, x2,...} el conjunto de variables del lenguaje y sea FORM el conjunto de formulas del longuaje. a). Defins recursivemente la función V: FORM -> Pot (Var) tal que V(d) denota el conjunto de variables que ocurren en la formula a Conjunto de Variables libres F: TERM -> Pot (Var) F(xi) = {xi} Yie in V: FORM -> Pot (V&r) N(T) = \$ V(P(t)) = F(t) V(t1='t2)= F(t1) U F(t2) V(20 p) = V(2) ~ V(B) V(72) = V(d)

b) - Defina recursivemente la función FV: FORM -> Pot (Var) tel que FV(d) denota el conjunto de variables que ouvren libres en la fórmula or. (x1x+) FV: FORM -> Po+ (Ver) 0 V = (N) V = 2 1 X = (N) V = (N)

(x(x)) > 2 ((xx)) V3 (2 to

V((4xi)d)= V(a) U {xi} = (6-1)

V((3x)) = V(a) = {xi}

FV (1) = 0

FV (P(E)) = F(E)

FV (t1='t2) = F (t1) U F (t2)

FV (dOp) = FV (d) U FV (p)

FV (7a) = FV(a)

D(= D = FV ((+xi)a) = FV(a) - 3 xi} (b) v= = 5 xi - 10) v= = (2014 = 1)

Curso de

Física Uno


```
@ Por PB. 1,2 y 3, Pagos inductives 1,2,3 y 4. El pip & FORM nor
     Eseguis que factorn (FV(a) CV(a)
of Demoestre por inducción que para todo of E FORM se comple que: FV(a) EV(a)
PB1 ab all FV(1) C V(1) of $ $ $ del led right seming to also good in sent
FV (tn='t2) EV(tn='t2) F(tn) UF(t2) E F(tn) UF(t2)
                                                               @ Def FV y V
benesion V: FORM - Pot (Next) tal per V(d) demotes
PIn). H) - FV(a) SV(a) Syn FV(p) SV(p)
       T) _ FV((dOB)) SV((ADB))
Dem: FV((dOB)) = FV(d) UFV(B)
         FV(d)UFV(B) SV(d)UV(B)
          FV((\alpha \circ \beta)) \cdot S \vee (\alpha) \cup V(\beta) = V((\alpha \circ \beta))
PI2) H) - EV(d) CV (a)
       T) = FV(7a) C V(7a)
Dem: FV(7a) = FV(a) (V(a) = V(7a) = FV(7a) (V(7a))
PI3) - H) - FV (a) (V (a)
record variable 12 Friend FV FO(x(1x)) V 2 ((b(1x)) ) FV FO (x) books
               to slumper al me condition all destroy as destroy
Dem: Fu((4xi)d) = Fu(d) - {xi} EFU(d) EV(d) EV(d) U {xi} = V((4xi)d)
     lugo (transitividad s) FV ((\forall xi) x) S V ((\forall xi) a)
PI4)_ H)_ FV(a) S V (a)
      (b(ixE))V \ge (b(ixE))V7 - (T
Dem: FV((3xi)d) = FV(d) - {xi} & FV(d) & V(d) & V(d) U {xi} = V((3xi)a)
     lugo FV ((3xi)d) = V ((3xi)d) por fransitive de c
```


Ejercicio 10. (Examen Diciembre de 2006

Sea un lenguage de primer orden con tipo de similaridad <-; 1,2,2;07 y símbolos de función f de aridad 1,9 y h de aridad 2.

Sea PROP* el conjunto de las fórmulas proposicionales que sólo emplean los conectia vos 7, 1, 2 y v.

1. Defins inductivamente el conjunto TERM de los términos del lenguaje

i. XI E TERM, I EN ii. Si t E TERM entonces f(t) E TERM iii. Si t1, t2 E TERM entonces q(t1, t2) E TERM

iv. Si to te E TERM entonces h(to, te) & TERM

2. Defina recursivemente una función biyectiva C: TERM → PROP* que cumpla: C(g(X1,X3)) = p1 1 p3.

C: TERM \rightarrow PROP* $C(xi) = p; \quad \forall i \in IN$ $C(f(\xi)) = \neg C(\xi)$ $C(h(\xi_1,\xi_2)) = C(\xi_1) \lor C(\xi_2)$ $C(g(\xi_1,\xi_2)) = C(\xi_1) \land C(\xi_2)$

3. Define recursivemente una función R: TERM -> TERM tel que para todo termino to se compla C(t) eq C(R(t)) y el conectivo V no ocurre en C(R(t)).

c(h(tr,te))= c(tr) > c(te) eq

7 (7 E(E) 1 7 C(E2))

R: TERM \rightarrow TERM $R(xi) = xi , \forall i \in \mathbb{N}$ R(f(e)) = f(R(e)) $R(h(e_1,e_2)) = f(g(f(R(e)), f(R(e))))$ $R(g(e_1,e_2)) = g(R(e), R(e))$

Ejercicio 10. (Examen Diciembre de 2006

Sea un lenguage de primer orden con tipo de similaridad <-; 1,2,2;07 y símbolos de función f de aridad 1,9 y h de aridad 2.

Sea PROP* el conjunto de las fórmulas proposicionales que sólo emplean los conectia vos 7, 1, 2 y v.

1. Defins inductivamente el conjunto TERM de los términos del lenguaje

i. XI E TERM, I EN ii. Si t E TERM entonces f(t) E TERM iii. Si t1, t2 E TERM entonces q(t1, t2) E TERM

iv. Si to te E TERM entonces h(to, te) & TERM

2. Defina recursivemente una función biyectiva C: TERM → PROP* que cumpla: C(g(X1,X3)) = p1 1 p3.

C: TERM \rightarrow PROP* $C(xi) = p; \quad \forall i \in IN$ $C(f(\xi)) = \neg C(\xi)$ $C(h(\xi_1,\xi_2)) = C(\xi_1) \lor C(\xi_2)$ $C(g(\xi_1,\xi_2)) = C(\xi_1) \land C(\xi_2)$

3. Define recursivemente una función R: TERM -> TERM tel que para todo termino to se compla C(t) eq C(R(t)) y el conectivo V no ocurre en C(R(t)).

c(h(tr,te))= c(tr) > c(te) eq

7 (7 E(E) 1 7 C(E2))

R: TERM \rightarrow TERM $R(xi) = xi , \forall i \in \mathbb{N}$ R(f(e)) = f(R(e)) $R(h(e_1,e_2)) = f(g(f(R(e)), f(R(e))))$ $R(g(e_1,e_2)) = g(R(e), R(e))$

