Semantics.

FO language L = (R, F, C)

Need to define Ite following.

- Fix an underlying set

- Specify the interpretation for each relation symbol reR.

- Specify the interpretation for each function symbol FEF.

- Specify the interpretation for each constant symbol CEC.

Done using a first order structure

FO structure for L is a pair M= (5, T)

- S is a non-empty set - T is a function over RUFUC such that

• Foreach $x \in R$ with #(x) = n, $T(x) \subseteq S^n$.

· For each feF with # (f)=n, T(f)= 5 →3

• For each $C \in C$, $T(C) \in S$.

Notation. Denote $T(Y): Y^M$, $T(f): f^M$, $T(C): C^M$.

FO structure for L is colled an L-structure

Interpretation: Lat (= (R.F.C) An interpretation is

Interpretation. Let L=(R,F,C). An interpretation is $I=(M,\sigma)$ where M=(S,z) and $\sigma: Var \rightarrow S$.

(assignment)

Given $\sigma: Var \rightarrow S$, $\sigma: S_1 \rightarrow S_1, x_2 \rightarrow S_2, ..., x_n \rightarrow S_n$ Ite

Given $\sigma: Var \rightarrow S$, $\sigma[x_1 \rightarrow S_1, x_2 \rightarrow S_2, ..., x_n \rightarrow S_n]$ to assignment σ' where $\sigma'(x_i) = S_i \ \forall i \in \{1, -, n\} \ and$ $\sigma'(z) = \sigma(z) \ \forall z \notin \{x_1, ... x_n\}$.

For $I = (M, \sigma)$ denote by $I[x_1 \mapsto b_1, \dots, x_n \mapsto s_n]$ Ite modified interpretation $(M, \sigma[x_1 \mapsto s_n, \dots, x_n \mapsto s_n])$.

Given $I = (M, \sigma)$ where $M = (S, \tau)$ each term tOver L maps to a unique element in $S - t^T$

- if t is a constant CEC, $t^{T}=C^{M}$.

- if t is a variable $x \in Var$, $t^{I} = \sigma(x)$ - if t is of the form $f(t_1, t_2, --t_n)$, $t^T = f^{T'}(t_1^T, --t_n^T)$

Satisfaction relation for FO formula.

Let L=(R,F,C):FO language and $I=(M,\sigma):$ interpretation

 $I \models \varphi$ ($\varphi \in \overline{\varphi}_L$ is satisfied under I) defined as: $- I = t_1 \equiv t_2 \quad \text{if} \quad t_1^T = t_2^T$

- I = 8(t,,-tn) if (t, I, ... tn) ∈ y M.

- I = 7φ if I = φ. - IF YVY if IFY OY IFY.

- I F 3x φ if 3b ES bt I [x Hb] F q.

-IF You of if YSES, I[xHS] = φ

 $\varphi \in \overline{\Phi}_L$ is satisfiable if there is an interpretation I based on an L-structure M st $I \models \varphi$

 $\varphi \in \Phi_L$ is valid if for every L-structure M and every interpretation I based on M, $I \models \varphi$.

A model of φ is an interpretation I st IEq.

Bound and Free variables.

An assignment of fixes the value of all variables.

- 3x Ψ , Y x Ψ . Value assigned by σ to x
is irrelevant.

Scope of a quantifier: $3 \times \psi$: Scope of $3 \times is \psi$. Variable x is free in ψ if it is not in the scope of a quantifier $3 \times (4 \times)$

a quantifier $\exists x' (\forall x)$ Inductive definition of $\forall FV(y)$.

- if φ is an atomic formula: $\mathcal{E}(t, -tn)$ $FV(\varphi)$ is the set of variables in $t_1, -tn$

-if φ is an atomic formula $t_1 \equiv t_2$, $FV(\varphi)$ is the set of variable in t_1 and t_2 .

 $-FV(7\varphi) = FV(\varphi)$

- $FV(\Psi V\Psi) = FV(\Psi)UFV(\Psi)$

 $-FV(\exists x \varphi) = FV(\varphi) \setminus \{x\}.$

Notation. $\varphi(x_1, x_2, ... x_n)$ denotes that $FV(\varphi) \subseteq \{x_1, x_2, ... x_n\}$.

Proposition: Let L be a FO Language and $\varphi \in \overline{\Phi}_L$ Let M be an L-structure and σ, σ' be assignments that agree on $FV(\varphi)$ then $(M, \sigma) \models \varphi$ iff $(M, \sigma') \models \varphi$.

Sentence: A first order formula with no free variable.

Corollary. Let L be a FO language and $\varphi \in \overline{\Phi}_L$ be a sentence. Let π be an L-structure and σ, σ' be assignments.

Example. How to characterise equivalence relation.

Let VER be a binony relation symbol

#(V) = 2

How to ensure that v is interpreted as an equivalence

relation?

 $\begin{array}{ll} & \text{relation?} \\ & \Psi_1 - \forall x \ \forall (x,x) \\ & \Psi_2 - \forall x \ \forall y \ \big(\ \forall (x,y) \leftrightarrow \forall (y,x) \big) \end{array}$

 $f_3 - 4x + y + z (\gamma(x,y) \wedge \gamma(y,z)) \rightarrow \gamma(x,z))$

Example. Strict linear order <: Binary relation over a set S that is irreflexive, transitive and satisfies the property

- Any two distinct elements in S are related by <.

Example: < on natural numbers.

How to ensure that $\angle \in R$ is interpreted as a strict linear order? - $\forall z \in (\neg \angle (x, z)) : \forall x \in (\neg (x \angle x))$

- ¥x ¥y ¥Z((x< y ∧ y < z) → x< z) - ¥x ¥y (x< y v x ≡y V y < x)

Example. Ψ_{≥2}: ∃x ∃y 7(x ≡y) Any structure that models 4>2 should have at least two distinct elements in the underlying set S. $\Psi_{\geq n}$: $\exists x, \exists x_2 \cdots \exists x_n \land 7(x_i = x_j)$ $i \neq j$ 7 422: $4 \propto 4 y (\propto = y)$ Atmost one element in the underlying set S. (Exactly one element since 5 is assumed to be non-empty).