CIVE 546 Structural Design Optimization

(3 units)

A Truss Optimization Example and Optimality Condition for Unconstrained Nonlinear Optimization

Instructor: Prof. Yi Shao

Class always starts at 11:40am

Administrative announcements

- Tuesdays 3-4pm or by appointment MD480
- HW I assigned, recommended completion date:
 Jan 27
- Project 3D printing
 - Another possible on-campus 3D printing service <u>The factory</u>
 - The Schulich library 3D printing service cannot guarantee time-sensitive deliveries
- Exercises are in MATLAB. For project, you may try to find and use other TopOpt program in python.

General form of an optimization problem

Objective function
$$\min f(\underline{x})$$

Subject to:
Inequality constraints $g_j(\underline{x}) \leq 0$ $j = 1, , , , p$
Equality constraints $h_k(\underline{x}) = 0$ $k = 1, , , , m$
Box constraints $x_i^L \leq x_i \leq x_i^U$

A Simple yet Powerful Example

Two-bar truss optimization

Design the 2-bar Truss of r_2 (radius of cross-section of bar 2) and H to minimize volume of material such that the stress in the bars are below the yield and buckling stress

$$0 \le r_2 \le 100 \ mm$$

 $1000 \le H \le 7000 \ mm$

$$r_1 = 5 mm$$

 $L = 1000 mm$
 $P = 50,000 N$
 $E = 200,000 N/mm^2$
 $\sigma_v = 400 N/mm^2$

From CIVE 207 Solid Mechanics

Columns and Buckling with Different End Conditions

$$P_{
m cr} = rac{\pi^2 E I}{\left(KL
ight)^2}$$

$$L_e=KL$$

MATLAB Code

- We will use the optimizer in MATLAB called fmincon
 - Function minimizer with constraints
 - See also fminunc (name should make it obvious)
- Usage

```
[X, FVAL, EXITFLAG] = fmincon (FUN, X0, A, B, Aeq, Beq, LB, UB, NONLCON, OPTIONS)
```

- FUN: Objective function f(x)
- X0: Starting point x_0
- Linear inequalities are expressed $Ax \leq B$
- Linear equalities are expressed $A_{eq}x=B_{eq}$
- LB: Lower bound for variable x
- UB: Upper bound for variable x
- NONLCON: Nonlinear constraints function $\mathcal{C}\left(x
 ight)\leq0$ and $\mathcal{C}_{eq}\left(x
 ight)=0$
 - This function should return both, C and Ceq
- Note that x can be a vector (not a single variable)

MATLAB Code

```
Clear variables, screen and close all windows
   clear all;clc;close all;
   %x(1):r2
   %x(2):H
   r1=5;
                                                                                        => Given values
   L=1000;
   P=50000;
   sigma_y=400;
   E=200000;
   GetVolume = @(x)pi*x(1)^2*sqrt(x(2)^2+L^2);
 LB = [0,1000];
UB = [100,7000]; } Box Constraints
function [c,ceq] = GetConstraints(x,r1,L,P,sigma_y,E) Given
C = [P*sqrt(y/2)A2+LA2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) // (2) /
  c = [P*sqrt(x(2)^2+L^2)/(x(2)*pi*x(1)^2*sigma_y)-1]
  4*P*(L^2+x(2)^2)^(3/2)/(E*x(2)*pi^3*x(1)^4)-1];
   ceq = [];
   End
```

MATLAB Code (Continued)

Remark:

- Use help function to understand the usage of different functions
- Use plot for line figures
- Use contour for contour figures

Results

Effects of changing E

$$\sigma_y = 400 \text{ N/mm}^{2}$$

 $E = 200,000 \text{ N/mm}^2$

Optimal point: r2=10.8 mm, H=1591.5mm

$$\sigma_y = 400 \text{ N/mm}^{2}$$

 $E = 20,000 \text{ N/mm}^2$

Optimal point: r2=19.2 mm, H=1591.5mm

Effects of changing E

 $\sigma_y = 400 \text{ N/mm}^{2}$; $E = 200,000 \text{ N/mm}^2$

Optimal point: r2=10.8 mm, H=1591.5mm

Optimal point: r2=6.9 mm, H=1591.5mm

Results

Effects of changing σ_y

$$\sigma_y = 400 \text{ N/mm}^{2}$$
;
 $E = 200,000 \text{ N/mm}^2$

Optimal point: r2=10.8 mm, H=1591.5mm

$$\sigma_y = 200 \text{ N/mm}^{2}$$

 $E = 20,000 \text{ N/mm}^2$

Optimal point: r2=24.8 mm, H=3183.1mm

How can we recognize/certify if a point is a (local) minimum point in an optimization problem?

Optimality condition!

General form of an optimization problem

Objective function $\min f(x)$

Inequality constraints

 f_{s} $g_{j}(\underline{x}) \leq 0$ j = 1, , , , p $h_{k}(\underline{x}) = 0$ k = 1, , , , mEquality constraints

 $x_i^L \leq x_i \leq x_i^U$ Box constraints

Temporarily ignore

To understand the optimality condition, let's first ignore constraints and look at Unconstrained Optimization using Calculus

Example: Taylor series for a function of I variable Approximate $f(x) = \sin x$ around $x_0 = \pi/4$ to the first 3 orders

Example: Taylor series for a function of I variable Approximate $f(x) = \sin x$ around $x_0 = \pi/4$ to the first 3 orders

Generalization for a function of n variables Approximate $f(\underline{x})$ around $\underline{x_0}$

Example: Taylor series for a function of 2 variable Approximate $f(\underline{x}) = \sin x_1 \cdot \sin x_2$ around $\underline{x_0} = (\pi/4, \pi/4)$ to the first 2 orders

Example: Taylor series for a function of 2 variable Approximate $f(\underline{x}) = \sin x_1 \cdot \sin x_2$ around $\underline{x_0} = (\pi/4, \pi/4)$ to the first 2 orders

Remark:

Let's check $f(\underline{x})$, and $S(\underline{x})$ at $(\pi/5, 3\pi/10)$, around 0.22 Euclidean distance from $\underline{x_0}$

Exact: $f(\pi/5, 3\pi/10)=0.47553$

Approx: $S(\pi/5, 3\pi/10) = 0.47533$

Only 0.05% error

Question:

How to determine whether \underline{x}^* represents a local minimum point for $f(\underline{x})$?

Answer:

It depends on Gradient and Hessian

Ist order condition: gradient vector is a zero vector 2nd order condition: Hessian matrix is positive semidefinite

Mathematical definition:

If for any non-zero real \underline{x}

 $\underline{x}^T \underline{H} \underline{x} > 0, \underline{H}$ is positive definite

 $\underline{x}^T \underline{H} \underline{x} \ge 0, \underline{H}$ is positive semidefinite

Method for assessing:

 \underline{H} is positive definite if and only if all its eigenvalues are positive

 \underline{H} is positive semidefinite if and only if all its eigenvalues are nonnegative

Eigenvalues and Eigen-vectors

Let \underline{H} be a n x n matrix, if there exists a real number λ and n x l vector \underline{v} , so

$$\underline{H}\,\underline{v} = \lambda\,\underline{v}$$

λ: eigenvalue

 \underline{v} : eigenvectors

Example:

Calculate the gradient and Hessian of function:

$$f(\underline{x}) = 100 \cdot (x_2 - x_1^2)^2 + (1 - x_1)^2$$

Show that $\underline{x^*} = (1,1)$ is a minimum point