NOM : PRENOM :....

GROUPE :.....

Partiel Architecture des Systèmes

CORRIGE

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif. Réponses exclusivement sur le sujet

Exercice 1. <u>Problème d'indicateur de niveaux de réservoirs (6 points)</u>

Soient deux réservoirs R_1 et R_2 dont le niveau pour chacun est contrôlé par un détecteur de niveau haut (apour R_1 , b pour R_2) et un détecteur de niveau bas (c pour R_1 , d pour R_2). Les variables a, b, c, d sont à 1lorsqu'il y aura du liquide devant le détecteur et à 0 en l'absence de liquide. On dispose de trois voyants V_1 , V_2 , V_3 , qui fonctionnent dans les conditions suivantes:

- $V_1 = 1$ si les deux réservoirs sont pleins.
- $V_2 = 1$ si les deux réservoirs sont vides.
- V3 = 1 dans tous les autres cas (réservoir à moitié plein ou un plein un vide...).

Un certain nombre de combinaisons sont technologiquement impossibles, les sorties V_1 , V_2 , V_3 , prendront dans ces cas là une valeur indifférente (X).

Etablir la table de vérité et les équations logiques simplifiées de ce système. Pour vous aider, deux lignes sont déjà remplies.

а	b	С	d	V_1	V_2	V_3
0	0	0	0	0	1	0
0	0	0	1	0	Ö	1
0	0	1	0	0	0	1
0	0	1	1	0 x 0	O ×	1
0	1	0	0	×	×	×
0	1	0	× 1	0	0	1
0	1	1	0	×	×	×
0	1	1	1	0	0	1
1	0	0	0	X	Ø X	Χ.
1	0	0	1	×	×	×
1	0	1	0	0	0	1
1	0	1	1	0	0	1
1	1	0	0	×	×	×
1	1	0	1	×	×	×
1	1	1	0	×	×	X
1	1	1	1	1	0	Ö,

V_1		cd				
		00	01	11	10	
	00	0	0	0	0	
ab	01	×	0	0	×	
	11	X	X	1	×	
	10	X	X	0	O	

$$V_1 = ab$$

V_2		cd			
		00	01	11	10
	00	(1)	0:	0	0
ab	01	X	0	0	X
	11	x	X	0	X
	10	(x)	×	0	0

V_3		cd				
		00	01	.11	10	
	00	0	A	D	11	
ab	01	×	(1	1	X	
	11	X	×	0	X	
	10	X	X	A	D	

Exercice 2. Synthèse d'un codeur prioritaire (5 points)

Un codeur prioritaire est un circuit disposant de 2^n entrées E_i (avec i: indice de l'entrée) et de n sorties (...C, B, A) plus une sortie auxiliaire V.

- Si l'on ne valide aucune entrée, les sorties restent toutes à 0 et la sortie V aussi. Cette sortie passe à 1 dès qu'au moins une entrée est validée.
- Si l'on ne valide qu'une seule des entrées (par un 1 logique), le nombre binaire correspondant à l'indice de cette entrée s'affiche en sortie.
- Si l'on valide plusieurs entrées en même temps, le nombre binaire correspondant à l'indice de la plus grande entrée validée s'affiche en sortie (d'où le terme de codeur prioritaire).

Exemple sur un codeur à 8 entrées (E_0 à E_7) et 3 sorties C (poids fort) E_0 et E_0 (poids faible) plus E_0 0.

- Aucune entrée validée : C = B = A = V = 0
- E_0 validée seule : C = B = A = 0 et V = 1
- E_5 validée seule : C = 1; B = 0; A = 1 et V = 1 (car $CBA = \%101 = 5_{10}$)
- E_3 , E_5 et E_6 , validées : C = 1; B = 1; A = 0 et V = 1 (car $CBA = \%110 = 6_{10}$)

On veut réaliser un codeur 4 vers 2 c'est à dire possédant 4 entrées $(E_0 \ \text{à} \ E_3)$ et 2 sorties : B en poids fort et A en poids faible plus une sortie auxiliaire V.

Compléter les tables de vérité puis les tableaux de Karnaugh des sorties A et B, faire apparaître les regroupements et en tirer les équations de A et B, ainsi que celle de V qui est ... triviale !

E ₃	E ₂	E_1	E ₀	В	A
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	1	0
0	1	0	1	1	0
0	1	1	0	1	0
0	1	1	1	1	0
1	0	0	0	1	1
1	0	0	1	1	1
1	0	1	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1
1	1	0	1	1	1
1	1	1	0	1	1
1	1	1	1	1	1

В		E_1E_0			
		00	01	11	10
	00	0	0	0	0
E_3E_2	01	15	1	1	1
	11	A	1	1	1
	10	1	1	1	1

A		E_1E_0			
		00	01	11	10
	00	0	0	U	11
$E_3\dot{E}_2$	01	0	0	0	0
	11	1	1	1	1
	10	1	1	a	1

$$A = E_3 + E_1 \overline{E}_2$$

$$V = E_3 + E_2 + E_1 + E_0$$

Exercice 3. Opérations et Conversion (3 points)

Effectuer les opérations suivantes en binaire et convertir le résultat en décimal selon qu'on travaille en nombres signés (sur 8 bits y compris le bit de signe) ou non (toujours sur 8 bits). S'il y a erreur de débordement, écrire "erreur" dans les cases "valeur décimale" à la place du résultat.

	Résultat binaire	valeur décimale		
		non signés	Signés	
10110001 + 01001010	1101 1111 %	251	-5	
01111001 - 01100110	(1) & 000 1 00M	19	19	
10011110 - 00011110	(1)% 1000 0000	128	-128	

Exercice 4. Simplification de fonction (2 points)

Simplifier au maximum l'équation suivante. (Détailler les étapes, le résultat seul ne sera pas accepté.)

$$S = (a+b+c) \cdot (\bar{a}+b+c) + ab + bc = (b+c) + a\bar{a} + ab + bc$$
 (Distribution in du ou sur le Eq
$$= b + ab + c + bc$$
$$= b + c.$$

Exercice 5. Logique Séquentielle (4 points)

- On utilise une bascule RS synchrone à marche prioritaire. Compléter les chronogrammes de la sortie Q (jusqu'après le dernier front descendant) selon que la bascule est synchronisée sur :
 - a) front descendant
 - b) impulsion positive

(On admettra : Q = 0 à t = 0)

Rq: Sur un de ces chronogrammes, il existe un intervalle de temps où l'état de Q est indéterminé. Le faire apparaître

Q est indéterminé. Le faire apparaître clairement en hachurant la zone correspondante sur le bon chrono.

2. Compléter le chronogramme des sorties Q_A et Q_B du circuit suivant jusqu'à retrouver l'état initial (On admettra que $Q_A = Q_B = 0$ à t = 0)

3. Compléter le chronogramme de la sortie Q pour le câblage suivant :

