End-to-End Framework for Keyword Spotting

Students:

Ivancich Stefano

Masiero Luca

Supervisors:

Prof. Rossi Michele

Meneghello Francesca

Outline

- The Problem
- The Solution
- What we tried
- Architecture 1: 1DCNN on raw data
- Architecture 2: DSConv
- Architecture 3: Ensemble
- Performance comparisons vs. other papers
- Conclusions

The Problem

Keyword Spotting

- Detect a relatively small set of predefined keywords (10 or 21) in a stream of user utterances.
- **Application**: Mobile phone, smart home device, consumer and robotics.
- Constraints: small footprint and fast (Real Time).

Metrics

- Accuracy
- # of parameters
- Prediction speed (milliseconds)

The Solution

Ivancich S. - Masiero L.

What we tried

Datasets (Google Speech Dataset V2)

- 10-commands ("yes", "no", "up", "down", "left", "right", "on", "off", "stop", "go");
- 21-commands ([...], "zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", unknown).

Data Preprocessing techniques

- No preprocessing (Raw Waveform)
- 80 Mel spectrogram
- 40MFCC
- $40MFCC + 40\Delta + 40\Delta s$ (=120)

Learning Architectures

- 1DCNN on RAW data
- DSConv (Small Medium Large)
- Ensemble (Small Medium Large)

1D CNN on RAW data

	10 commands (30k - 3k - 3k)	21 commands (84k - 9k - 11k)
Accuracy %	93.0	89.1
# parameters	257,018	257,733
Speed (ms)	28.71	28.25

Separable CONV

Separable convolution performs better than regular convolutional layers.

Two types of Separable convolution: Spatial and Depthwise.

Spatial separable convolution divides a kernel into two smaller kernels.

E.g. divides a 3x3 kernel into a 3x1 and 1x3 kernel. Instead of doing one convolution with 9 multiplications, we do two convolutions with 3 multiplications each (6 in total) to achieve the same result.

Problem: not all kernels can be "separated" (mathematically) into two.

Depthwise Separable convolution uses kernels that cannot be "factored" into two smaller kernels.

It splits a kernel into two separate kernels that do two convolutions:

- the depthwise convolution;
- the pointwise (1x1) convolution.

Depth-wise Sep. CONV

1 Filter Normal Convolution

Separaple Depthwise Convolution

DepthWise Convolution = 1 filter KxKx1 for each channel

DSConv Model - Large

	10 commands (30K-3K-3K)		21 commands (84K-9K-11K)			
	80 Mels	80 Mels 40MFCC $40 + \Delta s$ MFCC				40 + ∆s MFCC
Accuracy	96.0	95.3	95.5	93.4	93.7	92.7
# params	874,930	571,330	1,178,530	1,375,881	738,321	2,013,441
Speed (ms) With FE	33.39 41.44	30.24 45.32	33.42 44.25	33.79 41.62	30.87 39.66	33.13 44.62

Ivancich S. - Masiero L.

DSConv Model - Medium

	10-commands (30K-3K-3K)		21-commands (84K-9K-11K)			
	80 Mels	40MFCC	$40 + \Delta s$ MFCC	80 Mels	40MFCC	$40 + \Delta s$ MFCC
Accuracy	94.3	95.0	94.8	92.7	92.2	91.7
# params	469,398	262,998	675,798	832,673	399,233	1,266,113
Speed (ms) With FE	30.75 38.49	29.55 38.23	30.76 41.82	32.25 39.72	30.01 46.76	33.03 47.08

Ivancich S. - Masiero L.

DSConv Model - Small

Ivancich S. - Masiero L.

22 September 2020

10

Ensemble: 10-commands =

Ensemble between the best models.

	10-commands (30K-3K-3K)			
	Large	Medium	Small	
	DSConv L 80 Mels + DSConv L 40 MFCC + DSConv L 40 MFCC Δ	DSConv L 40 MFCC + DSConv M 80 Mels + DSConv M 40 MFCC Δ	DSConv M 40 MFCC + DSConv S 80 Mels + DSConv S 40 MFCC	
Accuracy	96.8	96.4	95.6	
# params	2,624,790	1,303,726	691,463	
Speed (ms)	131.01	122.04	106.09	

Ivancich S. - Masiero L.

Ensemble: 21-commands

Ensemble between the best models.

		21-commands (84K-9K-11K)	
	Large	Medium	Small
	DSConv L 80 Mels + DSConv L 40 MFCC + DSConv L 40 MFCC Δ	DSConv L 40 MFCC + DSConv M 80 Mels + DSConv M 40 MFCC	DSConv L 40 MFCC + DSConv M 40 MFCC + DSConv S 40 MFCC
Accuracy	95.2	95.0	94.2
# params	2,498,019	1,970,227	1,379,431
Speed (ms)	125.9	114.21	109.03

Ivancich S. - Masiero L.

22 September 2020

12

Performances: 10-commands

	Accuracy %	# Parameters	Speed (ms)
SincConv [Mittermaier et al.]	97.4	162K	40.35
Our Ensemble Large	96.8	2,624,790	131.01
Our Ensemble Medium	96.4	1,303,726	122.04
Our DSConvLarge + 80Mels	96.0	874,930	41,44
Our Ensemble Small	95.6	691,463	106.09
Our DSConvMedium + 40MFCC	95.0	262,998	38,23
Our 1D CNN on raw data	93,0	257,018	28,71
Our DSConvSmall + 40MFCC	92,9	127,818	38,23

• **Best**: Ensemble Large

• Smaller: DSConvSmall + 40MFCC

• Fastest: 1DCNN on raw data

Performances: 21-commands

	Accuracy %	# Parameters	Speed (ms)
SincConv [Mittermaier et al.]	97.4	162K	40.35
Our Ensemble Large	95.2	2,498,019	125.9
Our Ensemble Medium	95.0	1,970,227	114.21
Our Ensemble Small	94.2	1,379,431	109.03
Our DSConvLarge + 40MFCC	93.7	738,321	39.66
Our DSConvMedium + 80Mels	92,7	832,673	39,72
Our DSConvSmall + 80Mels	90,0	604,757	37,97
Our 1D CNN on raw data	89,1	257,733	28,25

• **Best**: Ensemble Large

• Smaller: 1DCNN on raw data

• Fastest: 1DCNN on raw data

Conclusions

Conclusions

- Tests: our model is very good at classifying keywords;
- We did not beat the state-of-the-art models;
- We found that the number of convolutional layers played a key role in detecting high-level concepts;
- No difference between 80 Mels or 40 MFCCs;
- Different model sizes in order to fit different devices.

Future Work

- Try different hyperparameters during training;
- Change the **structure** of the **network** using:
 - SincConv;
 - GDSConv.

Thank you for your attention! Any questions?

1D CNN on RAW data

Ivancich S. - Masiero L.

1D CNN on RAW data

Top Mistakes:

- 85 "Four"-Unknown
- 65 "Three"-Unknown

Actually it confuses

• "Four" – "For"

1000

"Three" – "Tree"

Ivancich S. - Masiero L.

How we have tackled it

1) Literature from:

- Teacher's material
- ArchiveX
- paperswithcode.com
- Reddit
- GitHub

How we have tackled it

3) Try to mix from things written down

Example:

- Paper X says that MFCC are good for human voice ...
- Paper Y says that DSConv are faster than normal CNN ...

Mixing X and Y will work?

4) Debugging:

- Bias vs Variance
- Error Analysis: look at the misclassified examples
- Why didn't work? When explaining we discovered other things to try