CSC301 HW4

Alex Zhang

Feb 2023

Question 1

Proof: $\mathbf{B} = \mathbf{A}\mathbf{A} = \mathbf{A}^2$

If there exists a path of length two between vertex u and w, then $\exists i$ which in adjacency matrix \mathbf{A} , both \mathbf{a}_{ui} and \mathbf{a}_{iw} exists. In order to ensure both \mathbf{a}_{ui} and \mathbf{a}_{iw} exists, their product $\mathbf{a}_{ui} \cdot \mathbf{a}_{iw}$ has to be 1.

Since **B** is counting the number of two-paths in the given graph. With given vertex u, and vertex w, \mathbf{B}_{uw} is just the sum of all exist two-paths. In mathematical expression

$$\mathbf{B}_{uw} = \sum_{i=0}^{n} \mathbf{a}_{ui} \cdot \mathbf{a}_{iw}$$

Also by the definition of matrix multiplication,

$$\mathbf{A}\mathbf{A}_{uw} = \sum_{i=0}^{n} \mathbf{a}_{ui} \cdot \mathbf{a}_{iw}$$

for all vertex u and w. This implies that, $\mathbf{B} = \mathbf{A}\mathbf{A} = \mathbf{A}^2.\blacksquare$

Question 2