STA401

Statistique et Calcul des Probabilités

Responsable: Carole Durand-Desprez

- 13 Séances de Cours Amphi
- 12 Séances de TD
- 12 séances de TP

Modalités d'examen

CC1: Tp (20%)

CC2: Td (20%)

Examen: Ecrit final (60%)

CHAPITRE 1 : Calcul de Probabilité et Statistique (révision + nouveautés).

- 1. Statistiques descriptives sur un échantillon.
- 2. Rappels de Probabilité (généralités et formules Proba conditionnelle Bayes)
- 3. Lois de probabilité discrètes (Uniforme, Bernoulli, Binomiale, Hypergéométrique, Poisson).
- 4. Inégalités de Markov et de Bienaymé Tchebychev.

CHAPITRE 2 : Lois continues ("Autour" de la loi Normale)

- 1. Lois de probabilité continues (Généralités. Uniforme, Exponentielle ...).
- 2. Loi Normale (Gauss) Proriétés Lecture de table.
- 3. Théorème Central Limite. Théorème de Moivre-Laplace.
- **4.** Intervalles de fluctuation.
- 5. Quelques autres lois usuelles continues (liens avec la loi normale).

CHAPITRE 3 : Statistique décisionnelle - Estimation

- **1.** Estimation ponctuelle (estimateur, maximum de vraisemblance, lois des estimateurs)
- 2. Estimation par intervalles de confiance.

CHAPITRE 4 : Tests Statistiques

- 1. Généralités sur les tests. Notion de risques et d'hypothèses.
- 2. Tests de conformité (paramétriques) : moyenne, variance, probabilité.
- 3. La Pvaleur d'un test.
- **4.** La puissance d'un test.
- 5. Un test paramétrique particulier : le test de données appariées.
- 6. Tests de comparaison de 2 éch. indépendants (moyennes, variances, probabilités)
- 7. Tests du Khi-deux (ajustement et indépendance).

CHAPITRE 1 : Remise à niveau – Révision

A quoi servent les statistiques ? Pour quoi faire ?

1. Statistiques descriptives. Données sur un échantillon :

X variable numérique (quantitative). Données : valeurs sur un échantillon : x_1, x_2, \ldots, x_n

Moyenne empirique :
$$\bar{x} = \frac{1}{n} \sum x_i$$

Varianceempirique:
$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i)^2 - (\bar{x})^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Ecart type empirique : s

Fréquence empirique : $f = \frac{k}{n}$ (k nombre de réalisations d'un évènement A)

<u>La médiane</u> m_d est la plus petite valeur prise par X telle qu'au moins la moitié des effectifs soit inférieur. <u>Le premier quartile</u> q_1 est la plus petite valeur prise par X telle qu'au moins le quart des effectifs soit inférieur. <u>Le troisième quartile</u> q_3 est la plus petite valeur prise par X telle qu'au moins les $\frac{3}{4}$ des effectifs soit inférieur.

Un échantillon est centré si sa moyenne est 0. Il est réduit si sa variance est 1

<u>Cas de données regroupées en classes</u>: $C_1, ..., C_k$ de centres $c_1, ..., c_k$ Soient $n_1, ..., n_k$ les effectifs de chaque classe, et n la taille de l'échantillon

$$\bar{x} = \frac{1}{n} \sum x_{j} = \frac{1}{n} \sum_{i=1}^{k} n_i c_i$$
 $s^2 = \frac{1}{n} \sum (x_j - \bar{x})^2 = \frac{1}{n} \sum (n_i c_i - \bar{x})^2$

Graphiques:

→ Cas discret : diagramme en bâton

> Cas continu : histogramme

Fonction de répartition: $F(x) = P(X \le x)$

2. Probabilités (généralités et formules - révisions)

Soit Ω l'ensemble de toutes les éventualités d'une expérience. Soit E l'ensemble des évènements possibles. A un évènement et A son évènement complémentaire.

Une probabilité P est une application de E dans [0;1].

$$P(\Omega) = 1, \quad P(\emptyset) = 0, \quad 0 \le P(A) \le 1,$$
 $P(\bar{A}) = 1 - P(A)$
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $P(A) = P(A \cap B) + P(A \cap \bar{B})$
 $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$
 $P(A \mid B) = P(A \mid B)P(B) + P(A \mid \bar{B})P(\bar{B})$

A et B sont disjoints (incompatibles) si :

$$P(A \cap B) = 0$$
 (ou bien : $A \cap B = \emptyset$)

A et B sont indépendants si :

$$P(A \cap B) = P(A) * P(B)$$
 ou $P(A \mid B) = P(A)$

Autre notation:
$$P(A \mid B) = P_B(A)$$

Formule de Bayes :

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)} = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid \bar{A})P(\bar{A})}$$

$$Cas\ g\'{e}n\'{e}ral\ (Si\ A=A_1\cup\ldots\cup A_n, et\ disjoints): \qquad P(A_1\mid B)=\frac{P(B\mid A_1)P(A_1)}{\sum_{i=1}^n P\left(B\mid A_i\right)P(A_i)}$$

Var1 \ Var2	Α	Ā	Total
В	$P(A \cap B)$	$P(\bar{A}\cap B)$	P(B)
B	$P(A \cap \bar{B})$	$P(\bar{A} \cap \bar{B})$	$P(\bar{B})$
Total	P(A)	$P(\bar{A})$	1

Arbre pondéré

Tableau croisé

Sur le graphique ...

$$P(A \cap B) = P(B) * P(A \mid B)$$

Dans le tableau ...

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

3. Lois de probabilités usuelles discrètes :

 \longrightarrow Une variable variable X est une application sur Ω .

Exemple: On lance un dé (expérience). $\Omega = \{f_1, ..., f_6\}$.

Evènement A: "tomber sur un nombre pair"; B: "tomber sur un nombre inférieur à 5"

X la variable : $X(f_i)$ = 'gain de i euros' ... Les valeurs possibles de X : $\{1,2,3,4,5,6\}$

Y variable : Y(f_i) = 'gain de i € si i pair, sinon 0' ... Les valeurs possibles de Y : {0,2,4,6}

 \rightarrow Loi de probabilité P d'une variable X discrète (finie), valeurs possibles $\{x_1, ..., x_n\}$:

$$P(X = x_i) = p_i \quad \forall i, \qquad \sum_{i=1}^{n} p_i = 1$$

$$E[X] = \mu = \sum_{i=1}^{n} x_i p_i$$

$$V[X] = \sigma^2 = E[X - E[X]]^2$$

$$= \sum_{i=1}^{n} (x_i - \mu)^2 p_i = \sum_{i=1}^{n} (x_i)^2 p_i - \mu^2$$

---> Espérance

----> Variance

$$\longrightarrow Propriété: E[aX + bY] = aE[X] + bE[Y]$$

Linéarité de l'espérance évidente.

Propriétés:
$$V[X] = E[X - E[X]]^2 = E[X^2] - (E[X])^2$$
$$V[aX + b] = a^2V[X]$$

$$\longrightarrow$$
 Loi uniforme (équiprobable) : $\forall i$, $p_i = 1/n$

Exemple: Un dé non pipé,
$$\Omega = \{1, ..., 6\}$$
, variable $X(i) = i$, $P(X=i) = p_i = 1/6$
 $E[X] = 1*1/6 + 2*1/6 + ... + 6*1/6 = 3,5$ $V[X] = (1^2 + ... + 6^2)/6 - 3,5^2 = 2,916...$

-> Loi Bernoulli (p): A un évènement qui se réalise avec une probabilité p.

$$X = \begin{cases} 1 & \text{si A se r\'ealise avec proba } (p) \\ 0 & \text{si A non r\'ealis\'e proba } (1-p) \end{cases}$$
 X suit la loi Bernoulli (p)

$$P(X = 1) = p \ et \ P(X = 0) = 1 - p \ ; \ E[X] = p \ ; \ V[X] = p(1 - p)$$

Loi Binomiale (n,p): A est un évènement qui se réalise avec une probabilité p. On refait n expériences indépendantes. X_i variables de Bernoulli (p) <u>indépendantes</u>

$$X = \sum_{i} X_{i}$$
 est le nombre de réalisations de A parmi les n possibles.

X suit la loi Binomiale (n,p) Valeurs possibles de X : {0,1, ..., n}

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k} \; ; \; E[X] = np \; ; \; V[X] = np(1 - p)$$

Rappel: Combinatoire

On prend simultanément k objets parmi un ensemble en contenant n $(n \ge k)$.

Le nombre de combinaisons possibles est : $\binom{n}{k} = \frac{n!}{(n-k)! \ k!}$ autre notation : C_n^k

Exemple: A: "être un étudiant de la filière INF dans l'amphi", probabilité p=90%. Dans un amphi N=60, on prend n=10 individus (tirages indépendants, avec remise). X : nombre d'étudiants du groupe INF parmi les n=10

Indépendance (avec remise) X suit B(10; 0,9)

 $P(X=0)=(0,1)^{10}=10^{-10}$... voir calculatrice aussi ...

$$E(X) = 10*0.9 = 9$$

V(X) = 10*0.9*0.1 = 0.9

→ Loi Hypergéométrique (N,m,n):

Soit une population de N individus dont m individus réalisent un évènement A. On prend un échantillon de n individus (sans remise).

y est le nombre d'individus qui réalisent A parmi les n possibles.

X suit la loi Hypergéométrique (N,m,n) Valeurs possibles de X : {0,1, ..., min(n;m)}

$$P(X = k) = \frac{\binom{m}{k} \binom{N - m}{n - k}}{\binom{N}{n}} \quad ; \quad E[X] = \frac{nm}{N} \quad ; \quad V[X] = n\left(\frac{m}{N}\right) \left(\frac{N - m}{N}\right) \left(\frac{N - m}{N}\right)$$

Exemple: Population: "amphi de sta401" avec N=60 étudiants, A: "être un étudiant de la filière INF", m=50 étudiants sont des INF.

On prend un échantillon de n=8 individus (tirages sans remise).

X : nombre d'étudiants du groupe INF parmi les n=8

Indépendance (sans remise)

X suit H(60;50;8)

 $P(X=0) = 1*45 / 2558620845 = 1,7588.10^{-8} \dots$ voir calculatrice aussi ...

E(X) = 8*50/60 = 6,66666...

\rightarrow Loi de Poisson (λ):

Soit un évènement A qui arrive 'rarement' dans le temps.

On observe pendant un certain laps de temps cet évènement.

X est le nombre d'évènements qui se réalisent.

X suit la loi de Poisson (λ) Valeurs possibles de X : {0,1, ...}

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda} \; ; \quad E(X) = \lambda \; ; \quad V(X) = \lambda$$

Exemple: En sta401, on a constaté qu'en moyenne 2 étudiants posaient une question pendant l'examen.

X : nombre d'étudiants qui posent des questions cette année \implies X suit P(2) $P(X=4) = 2^4 e^{-2} / 4! = 0,0902...$

Propriété 1 :

Soient X suit $P(\lambda_1)$ et Y suit $P(\lambda_2)$ indépendantes, alors : X+Y suit $P(\lambda_1+\lambda_2)$

Propriété 2 : Approximation d'une loi Binomiale par une loi de Poisson

Lorsque n est grand (n>50) et p est petit (p<0,1) alors : $B(n;p) \approx P(\lambda)$ avec $\lambda = np$

<u>Dém</u>: Voir les 2 démonstrations en TD à titre d'exercices.

4. Inégalités à connaître (également applicables au cas continu du chapitre suivant) :

+ Inégalité de Markov

Soit X v.a. positive, pour tout a > 0: $P(X \ge a) \le \frac{E(X)}{a}$

$$P(X \ge a) \le \frac{E(X)}{a}$$

<u>Dém</u>: Soient $(x_i)_i$ les valeurs possibles prises par X, alors :

$$E(X) = \sum_{x_i} P(X = x_i) x_i = \sum_{x_i < a} P(X = x_i) x_i + \sum_{x_i \ge a} P(X = x_i) x_i \ge 0 + \sum_{x_i \ge a} P(X = x_i) x_i$$

$$\ge a \sum_{x_i \ge a} P(X = x_i) \ge a P(X \ge a) . \quad Donc, \qquad P(X \ge a) \le \frac{E(X)}{a}$$

Inégalité de Bienaymé Tchebychev

Soit X v.a. positive, pour tout
$$a > 0$$
: $P(|X - E(X)| \ge a) \le \frac{V(X)}{a^2}$

<u>Dém</u>: Dans l'inégalité de Markov on remplace a par a^2 et X par $(X - E(X))^2$:

Donc,
$$P\left(\left(X - E(X)\right)^2 \ge a^2\right) \le \frac{E\left(X - E(X)\right)^2}{a^2}$$
. On déduit aisément : $P(|X - E(X)| \ge a) \le \frac{V(X)}{a^2}$

<u>Application</u>: Trouver le plus petit h tel que (interv. centré sur moyenne): $P[E(X) - h \le X \le E(X) + h] \ge 0.95$

$$\longrightarrow P[|X - E(X)| \le h] \ge 0.95 \Rightarrow P[|X - E(X)| \ge h] \le 0.05 \quad IBT : h = \sqrt{V(X)/0.05}$$