

தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் ஐந்தாம் தவணைப் பரீட்சை - 2022

Conducted by Field Work Centre, Thondaimanaru. 5th Term Examination - 2022

இரசாயனவியல்	1	Two Hours	02		
Chemistry		Gr -13 (2022)		ال	الناا

பகுதி – I

1) பின்வரும் கூற்றுக்கள் I, II என்பவற்றைக் கருதுக.

கூற்று 1 :- ஓர் அணுவிலுள்ள எந்த இரு இலத்திரன்களுக்கும் நான்கு சக்திச்சொட்டெண்களும் ஒரே பெறுமானத்தைக் கொண்டிருக்க முடியாது.

கூற்று II :- அணுக்கருவிலுள்ள நேரேற்றமானது தனி இலத்திரன் அலகுகளால் அதிகரிக்கின்றது.

மேலுள்ள கூற்றுக்களின் மூலம் குறிப்பிடப்படும் கோட்பாடுகளை முன்வைத்த விஞ்ஞானிகள் முறையே,

- (1) நீல்ஸ்போர், மக்ஸ் பிளாங்க்
- (2) லூயிஸ் டீ புரொக்லி, அல்பேட் ஜன்ஸ்டீன்
- (3) ஏர்னஸ்ட் ரதபோட், மக்ஸ் பிளாங்
- (4) Wolfgang Pauli, Jeffrey Moseley
- (5) மக்ஸ் பிளாங், அல்பேட் ஜன்ஸ்டீன்
- 2) B, C, N, P, S, Cl ஆகிய அணுக்களின் நியம முதலாம் அயனாக்கற் சக்திகள் அதிகரிக்கும் ஒழுங்கு
 - (1) B < C < N < P < S < CI

(2) B < N < C < P < S < Cl

(3) B < S < P < C < CI < N

(4) N < P < S < C < CI < B

- (5) S < P < C < CI < B , N
- பின்வரும் சேர்வையின் IUPAC பெயர்.

$$CH_2 = C - C - CH - CH_2OH$$
 $CH_2CH_3CH_3$

- (1) 4 ethyl 1 hydroxy 2 methylpent 4 en 3 one
- (2) 1 hydroxy 2 methyl 4 enylhexan 3 one
- (3) 2 ethyl 5 hydroxy 4 methyl 1 penten 3 one
- (4) 4 ethyl 2 methyl 3 oxopent 4 en 1 ol
- (5) 2 ethyl 5 hydroxy 4 methyl 3 oxopent 1 ene
- இரண்டாம் ஆவர்த்தன மூலகங்களான C, N, O, என்பவற்றின் ஐதரைட்டுக்களான CH₄, NH₃, H₂O என்பன தொடர்பான பின்வரும் கூற்றுக்களில் சரியானது எது?
 - (1) இவற்றின் மூலக்கூற்றிடைக் கவர்ச்சி விசைகளின் பருமன் $CH_4 < H_2O < NH_3$ எனும் ஒழுங்கில் அமையும்.
 - (2) இவை யாவும் நான்முகி இலத்திரன் சோடிக்கேத்திர கணிதத்தைக்கொண்டவை.
 - (3) இவை ஒவ்வொன்றும் தத்தமது கூட்ட ஐதரைட்டுக்களில் கொதிநிலை கூடியனவாகும்.
 - (4) இவற்றின் பிணைப்புக் கோணங்கள் CH₄ < NH₃ < H₂O எனும் ஒழுங்கில் அமையும்
 - (5) இவற்றின் மைய அணுக்கள் வெவ்வேறு கலப்பாக்கத்திற்குபட்டுக் காணப்படும்.

- S குழு மூலகங்கள் மற்றும் அவற்றின் சேர்வைகள் பற்றிய சரியான கூற்று எது?
 - (1) S குழுவில் அடங்கும் எல்லா உலோகங்களும் நீருடன் H₂ வாயுவை உருவாக்குகின்றன.
 - (2) S குழுவின் எல்லா உலோகங்களும் NH_{3(g)} உடன் தாக்கமுற்று amide வகைச் சேர்வைகளையும் H₂ வாயுவையும் உருவாக்குகின்றன.
 - (3) காரவுலோகக் காபனேற்றுக்கள் யாவும் வெப்பத்திற்கு உறுதியானவை.
 - (4) கூட்டம் 2 இன் இருகாபனேற்றுக்களின் நீர்க்கரைசல்கள் சூடாக்கப்படுகையில் திண்மநிலைக்கு மாறாமலே பிரிகையடைகின்றன.
 - (5) எல்லா S குழு உலோகங்களும் H_{2(g)} உடன் வன்கார ஐதரைட்டுக்களை உருவாக்குகின்றன.
- 6) 3d மூலகங்கள் பற்றிய தவறான கூற்று
 - (1) Cr, Mn, Fe ஆகியவற்றின் கற்றயன்கள் மிகை NH_{3(aq)} உடன் இலகுவில் அமைன் சிக்கல்களை உருவாக்கமாட்டா.
 - (2) அவற்றின் அணு ஆரைகள் Sc இலிருந்து Ni வரையில் குறைவடைந்து பின் அதிகரிக்கும்.
 - (3) அவற்றின் மின்னெதிர்த்தன்மைப்பெறுமானங்கள் 4s மூலகங்களின் மின்னெதிர்த்தன்மையை விட உயர்வாகும்.
 - (4) அவற்றின் மின்னெதிர்த்தன்மைகள் Sc இலிருந்து Zn வரை தொடர்ச்சியாக அதிகரிக்கின்றன.
 - (5) அதி உயர் ஒட்சியேற்ற நிலைக்குரிய அவற்றின் ஒட்சி அன்னயன்கள் ஒட்சியேற்றும் கருவிகளாகத் தொழிற்படுகின்றன.
- 7) HO CH = CH CH₃ எனும் சேர்வையானது மிகையான HBr உடன் தாக்கமுறும் போது கிடைக்கப் பெறும் பிரதான விளைவு

CH₂OH

8) 0.8 mol X, 0.5 mol Y அடங்கிய 1 dm³ நீர் மாதிரியொன்று 500 cm³ CCl₄ உடன் குலுக்கப்பட்டது. இதன்போது கரையம் X மாத்திரம் இரு படைகளிலும் பரம்பலடைகின்ற அதே வேளை நீர்ப்படையில் பின்வரும் மீள்தாக்க இயக்கச் சமநிலையொன்று X, Y இற்கிடையே தோற்றுவிக்கப்பட்டது.

 $X_{(aq)} + 2Y_{(aq)} \neq XY_{2(aq)}$

 CCl_4 இற்கும் நீருக்குமிடையிலான X இன் பங்கீட்டுக் குணகம் 2 ஆவதுடன் $[X]_{CCl_4}=0.6\ moldm^{-3}$ ஆகக் காணப்பட்டதாயின் மேற்படி சமநிலையின், சமநிலை மாறிலி K_c ஆனது $(mol^{-2}dm^6$ இல்)

- (1) 33.3
- (2) 100
- (3) 4
- (4) 66.7
- (5) 125

- A ஆனது நீரில் கரையக்கூடிய ஓர் அசேதன உப்பாகும். A ஐ ஐதான HCl இல் கரைத்த போது நிறமுடைய கரைசல் Q உம் நிறமற்ற வாயு G உம் பெறப்பட்டன. கரைசல் Q இற்கு செறிந்த HCI சேர்க்க மஞ்சள் நிறக்கரைசல் பெறப்பட்டது. வாயு G ஐ Br₂ நீர்க்கரைசலினுள் செலுத்த அதன் நிறத்தை நீக்கியதுடன் கரைசல் T ஐத் தந்தது. கரைசல் T இந்கு ஐதான HNO₃ முன்னிலையில் Ba(NO₃)_{2(aq)} சேர்ந்த போது வெண்ணிற வீழ்படிவு பெறப்பட்டதெனின் A ஆக இருக்கக்கூடியது. (1) NI(NO₂)₂ (2) NISO₃ (3) CuCO₃ (4) CuCl₂
- 10) 25°C இல் 0.1 moldm⁻³ NaCl கரைசலின் 500 cm³ இனூடாக 1.93 mA மின்னோட்டம் செலுத்தப்பட்ட போது குறித்த ஒரு நேரத்தின் பின் கரைசலின் pH = 12 ஆகக்காணப்பட்டதாயன் மேற்படி மின்னோட்டம் செலுத்தப்பட்ட நேரம் (1F = 96,500 Cmol⁻¹)
 - (1) $5 \times 10^5 s$ (2) $4 \times 10^4 s$
- (3) 3 x 104s
- (4) $2.5 \times 10^5 s$ (5) $1 \times 10^4 s$

(5) CuSO₄

- 11) 25°C M(OH)₂ எனும் அரிதிற்கரையும் பதார்த்தமொன்றின் மூலர்க்கரைதிறன் s moldm⁻³ ஆகும். M(OH)_{2(s)} இன் மிகையளவை தூய நீரில் கரைத்துப் பெறப்பட்ட நிரம்பற் கரைசலின் 1 dm³ இனுள் நன்கு கரையும் அயன்திண்மம் MCI₂ ஐக் கரைப்பதன் மூலம் அக்கரைசலில் உள்ள OH⁻ அயன் செறிவை முன்னைய செறிவின் அரைப்பங்காக்க வேண்டுமாயின் சேர்க்கப்படவேண்டிய MCl_{2(s)} மூல்களின் எண்ணிக்கை.
 - (1) 1.5 s
- (2) 2 s
- (3) 3 s
- (4) 3.5 s
- (5) 4 5

- 12) C₆H₅NH₂ (aniline) பற்றிய பின்வரும் கூற்றுக்களில் பொய்யானது எது?
 - (1) ஏமைட்டுக்களை விடக்கூடிய மூல இயல்புடையது.
 - (2) கருநாடியாகத் தொழிற்படக்கூடியது.
 - (3) C₆H₅CH₂NH₂ இலும் பார்க்க கூடிய மூலத்தன்மையுடையது.
 - (4) CH₃CHO உடன் தாக்கமுற்று C₆H₅ N = CH CH₃ எனும் சேர்வையை உருவாக்கும்.
 - (5) Br_{2(aq)} உடன் வெண்ணிற வீழ்படிவைத் தோற்றுவிக்கும்.
- 13) பின்வரும் மின்னிரசாயனக் கலத்தைக் கருதுக.

 $Pt_{(s)}|Y_{(aq)}^{3+}, Y_{(aq)}^{2+}||XO_{4(aq)}^{-}, X_{(aq)}^{2+}, H_{(aq)}^{+}|Pt_{(s)}$

மேற்படி மின்கலத்திலிருந்து மின் பிறப்பிக்கப்படும் போது பின்வரும் கூற்றுக்களில் எது சரியானது?

- (1) $XO_{4(aq)}^{-}$ ஆனது $X_{(aq)}^{2+}$ ஆகத் தாழ்த்தலடைகின்றது.
- (2) மின்னோட்டமானது $Y_{(aq)}^{2+}$, $Y_{(aq)}^{3+}$ கரைசலிற்குள் உள்ள Pt இலிருந்து $XO_{4(aq)}^{-}$, $X_{(aq)}^{2+}$ இனுள் அமிழ்த்தப்பட்ட Pt ஐ நோக்கிப் பாய்கின்றது.
- (3) Y³⁺ ஆனது Y²⁺ ஆகத் தாழ்த்தலடைகின்றது.
- (4) H+ ஆனது H₂ ஆக ஒட்சியேற்றமடைகின்றது.
- (5) XO_{4(aq)}, X²⁺_(aq) இன் நியமத் தாழ்த்தல் அழுத்தமானது Y³⁺_(aq) | Y²⁺_(aq) இன் நியமத் தாழ்த்தல் அழுத்தத்தை விடக் குறைவாகும்.
- 14) தாக்கவீதம் மற்றும் ஊக்கி என்பன பற்றிய பின்வரும் கூற்றுக்களில் உண்மையானது எது?
 - (1) ஒரு தாக்கத்தில் ஈடுபடும் எந்தவொரு தாக்கியினது செறிவை அதிகரிப்பினும் தாக்கவீதம் கட்டாயமாக அதிகரிக்கும்
 - (2) தாழ்ந்த ஏவற்சக்தியுடைய ஒரு தாக்கத்தின் வீதமானது உயர்ந்த ஏவற்சக்தியுடைய தாக்கத்தின் வீதத்தைக் காட்டிலும் எப்பொழுதும் உயர்வானதாகும்.

(3) ஊக்கியொன்றைப் பயன்படுத்துவதால் மாத்திரமே உயர்ந்த ஏவற்சக்தியுடைய தாச்சு மான்றின் தாக்கவீதத்தை அதிகரிக்கச்செய்யமுடியும்.

(4) ஒரு தாக்கத்தின் ஒட்டுமொத்த வீதமானது தாக்கத்தில் சம்பந்தப்பட்ட எல்லாப்படிகளினதும் நாக்கவீதங்களின் சராசரியினால் நரப்படும்.

- (5) ஊக்கியானது தாக்கவீதமாறிலியின் பெறுமானத்தை மாற்றுவதுடன் தாக்கப் பொறிமுறையையும் மாற்றக்கூடும்.
- 15) N_{2(g)} + 3H_{2(g)} ⇌ 2NH_{3(g)} எனும் சமநிலைத் தொகுதியின் செறிவுகள் நேரத்துடன் மாறுபடும் விதம் அருகிலுள்ள வரைபில் தரப்பட்டுள்ளது. இத்தொகுதி தொடர்பாக சரியானது.

(1) 5 ஆவது s இல் சிறிகளவு H_{2(g)} சேர்க்கப்பட்டுள்ளது.

(3) 5 s - 9 s நேர ஆயிடையில் நாக்க ஈவு Qc < Kc ஆகும்.

(4) 5 s இற்கு முன்னர் முற்தாக்க வீதம் பிற்தாக்கவீதத்திலும் உயர்வாகும்

(5) 9 s இன் பின்னர் முற்காக்க வீதமாறிலியும் பிற்தாக்க வீத மாறிலியும் சமனாகும்.

16) கூட்டம் 13 மூலகங்கள் / அவற்றின் சேர்வைகளின் இரசாயனம் பற்றிய தவறான கூற்று எது?

(1) இக்கூட்டத்தில் எந்த ஒரு மூலகமும் தனியே அல்லுலோகமாக கருதப்படமுடியாது.

(2) +3 ஓட்சியேற்ற நிலையின் உறுதி கூட்டத்தில் கீழ்நோக்கிச் செல்ல குறைந்து செல்லும்.

(3) இவற்றின் சில உலோக ஒட்டைடுக்கள் ஈரியல்புடையன.

(4) AlCl₃ இன் நீர்க்கரைசலொன்று Na₂CO_{3(aq)} உடன் பரிகரிக்கப்படுகையில் வாயு வெளியேற்றம் மட்டுமே ஒரேயொரு அவதானமாகும்.

(5) AlCl₃ ஆனது லூயி அமிலமாகத் தொழிற்படக்கூடும்.

17) கீழே தரப்பட்டவை ஒரு குறித்த மாறா வெப்பநிலையில் காணப்படும் மூன்று சமநிலைகளாகும். அவ்வெப்பநிலையில் அவற்றின் சமநிலை மாறிலிகள் அருகே தரப்பட்டுள்ளன.

$$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$$

$$2NO_{2(g)} \rightleftharpoons N_{2(g)} + 2O_{2(g)}$$

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightleftharpoons H_2O_{(g)}$$

K3

K₁ , K₂ , K₃ என்பன சார்பாக பின்வரும் சமநிலைத் தாக்கத்தின் சமநிலை மாறிலி யாதாகும்?

$$2NH_{3(g)} + \frac{7}{2}O_{2(g)} \rightleftharpoons 2NO_{2(g)} + 3H_2O_{(g)}$$

(1) $K_1K_2K_3^3$ (2) $\frac{K_1K_2}{K_1^3}$ (3) $\frac{K_3^3K_2}{K_1}$ (4) $\frac{K_3^3}{K_1K_2}$

(5) K1K2

18) ACl₂ என்பது நீரில் அரிதாகக் கரையும் ஓர் அயன் திண்மமாகும். குறித்த ஒரு வெப்பநிலையில் இதன் $K_{\rm sp}=4\,{
m x}\,10^{-12}{
m mol}^3{
m dm}^{-9}$ ஆகும். ${
m ACl}_2$ இன் நிரம்பிய நீர்க்கரைசல் தொடர்பாகச் சரியானது எது?

(1) கரைசலில் உள்ள Cl⁻ அபன் செறிவை 2 x 10⁻⁴ moldm⁻³. இலும் ஆகிகரிக்க முடியாது.

(2) NaCl_(s) ஐ சேர்ப்பின் சமநிலை பின்னோக்கி நகர்ந்து Cl⁻ ஆயன் செறிவு மாற்றமடையாது.

(3) கரைசலிலிருந்து நீர் ஆவியாகும் போது கரைசலிலுள்ள A²⁺ மற்றும் குளோரைட்டு அயன் செறிவகள் மாற்றமடையும்

(4) காய்ச்சி வடித்த நீரைச் சேர்த்து நிரம்பல் நிலையை பேணுவதன் மூலம் குளோரைட்டு அயன்

செறிவைக் குறைக்க முடியாது.

(5) எந்த வெப்பநிலையிலும் மேற்படி கரைசலில் A²⁺ அயன் செறிவு 1 x 10⁻⁴ moldm⁻³ ஆகவே காணப்படும்.

19) H_{2(g)} இன் மூலக்கதிவர்க்க இடையானது N_{2(g)} இன் மூலக்கதிவர்க்க இடையின் √7 மடங்காகும். T என்பது வாயுவின் தனி வெப்பநிலையைக் குறிப்பின் பின்வரும் தொடர்புகளில் சரியானது எது? (1) $T_{(H_2)} = T_{(N_2)}$ (2) $T_{(H_2)} > T_{(N_2)}$ (3) $T_{(H_2)} < T_{(N_2)}$ (4) $T_{(H_2)} = \sqrt{7} T_{(N_2)}$ (5) $T_{(H_2)} = 7 T_{(N_2)}$ 20) H₂O₂ பற்றிய பின்வரும் கூற்றுகளில் எது உண்மையானதன்று? (1) வெப்பப்படுத்தும் போது H₂O₂ இரு வழிவிகாரமடைகின்றது. (2) H₂O₂ இன் கொதிநிலை OH – CH₂ – CH₂ – OH (கிளைக்கோல்) ஐ விட அதிகமாகும். (3) Ag₂O ஆனது H₂O₂ ஐ O₂ ஆக ஒட்சியேற்றும். (4) H₂O₂ கிருமி கொல்லியாகவும் வெளிற்றியாகவும் தொழிற்படக்கூடியது. (5) H_2O_2 இலுள்ள O-O பிணைப்பு நீளமானது O_2F_2 இலுள்ள O-O பிணைப்பு நீளத்திலும் பெரிதாகும். 21) ஓர் எகத்தரைத் தருவதற்கு காபொட்சிலிக்கமிலமொன்றுக்கும் ஓர் அற்ககோலுக்குமிடையில் நடைபெறும் தாக்கம் தொடர்பான பின்வருவனவற்றுள் சரியான கூற்று எது? (1) இத்தாக்கத்தில் முதலில் கருநாட்டக்கூட்டல் நடைபெற்று தொடர்ந்து கருநாட்டப் பிரதியீடு நிகமும். (2) தாக்கத்தில் காபொட்சிலிக்கமிலத்தினது O – H பிணைப்பு உடைக்கப்படுகிறது. (3) ஒட்டுமொத்தத் தாக்கமானது ஒரு காபனைல் சேர்வையின் கருநாட்டக் கூட்டலாகக் கருதமுடியும். (4) அது ஓர் அமில -- மூலத்தாக்கமாகும். கருநாட்டக்கூட்டலைத் தொடர்ந்து நீக்கல் நிகழ்வதுடன் (5) இத்தாக்கத்தில் அற்க கோல் கருநாடியாகத் தொழிற்படும். 22) $25^{\circ}C$ இல் $0.2~{
m moldm^{-3}}$ செறிவுடைய மென்னமிலம் ${
m HA}_{(aq)}$ இன் $50{
m cm^3}$ ஐயும் $2~{
m moldm^{-3}}$ செறிவுடைய மென்னமிலம் HB(aa) இன் 50cm³ Bullip கலந்து கரைசலொட்று தயாரிக்கப்பட்டதெனின் அவ்விளைவுக்கரைசலில் $m H_3O^+_{(aq)}$ அயன் செறிவு ($m moldm^{-3}$ இல்) ($m 25^{o}C$ இல் HA, HB ஆகியவற்றின் அயனாக்கமாறிலிகள் முறையே 1 x 10⁻⁵ moldm⁻³, 1 x 10⁻⁶ moldm⁻³ எனத் தரப்பட்டுள்ளது) (1) 1×10^{-3} (2) 1.41×10^{-3} (4) 1.5 x 10⁻³ (5) 1.2 x 10⁻³ (3) 2 x 10^{-3} 23) மிகையான நீர் Na₂CO₃ விளைபொருள் CH₂ — C — Cl மேலுள்ள தாக்கத்தின் விளைபொருளாக அமைவது COOH (1) (2) O-Na+ 0-Na+ CH2COO-Na+ COONa COONa COONa

(4)

- 24) பின்வரும் எத்தாக்கத்தில் இரண்டு சமச்சீரற்ற காபன் (கைரல் காபன்) அணுக்களையுடைய ஒரு சேர்வை தோன்றும்?
 - CH₂ = CH CH₂CH₂CI இற்கு ஐதான காரத்தைச் சேர்த்தல்.
 - (2) CH₃C C(CH₃), இ Zn / Hg , செறி HCl உடன் தாக்கமுறவிடல்.
 - (3) CH₃CH₂ CHO ஐ HCN உடன் தாக்கமுறவிடல்.
 - (4) $CH_3CH_2CH = CH_2$ ஐ Br_2 உடன் தாக்கமுறவிடல்.
 - (5) CH₃CH₂CHO இற்கு ஐதான NaOH_(aq) ஐச் சேர்த்தல்.
- 25) 25°C இல் 0.2 moldm^{−3} NH₄OH கரைசலின் 25.00cm³ ஆனது 0.05 moldm^{−3} HCl கரைசலினால் (அளவியிலிருந்து) நியமிக்கப்பட்டது. இந்நியமிப்பு தொடர்பான பின்வரும் சுற்றுக்களில் உண்மையற்றது எது? ($25^{\circ}C$ இல் NH₃ இன் K_b = 1×10^{-5} moldm⁻³, $\log 3 = 0.4770$)
 - (1) HCl இன் 25 cm³ சேர்க்கப்பட்ட நிலையில் நியமிப்புக் குடுவையிலுள்ள கரைசலின் pH ஆனது 9.477 ALOSIO.
 - (2) HCl இன் 25 cm³ சேர்க்கப்பட்ட நிலையில் விளைவுக் கரைசல் தாங்கற் தொழிற்பாட்டைக் காட்டும்.
 - (3) மேற்படி நியமிப்பின் சமவலுப்புள்ளியில் pH ஆனது 7 ஐ விடக்குறைவாகும்.
 - (4) சமவலு நிலையில் விளைவுக்கரைசலுக்கு நீர் சேர்த்து ஐதாக்கும் போது pH குறையும்.
 - (5) இந்நியமிப்பின் முடிவுப்புள்ளியை துணிவதற்கு மெதயிற்செம்மஞ்சள் ஓர் உகந்த காட்டியாகும்.
- 26) உயர் வெப்பநிலைகளில் CH₃OH₍₁₎ ஆனது பின்வரும் சமன்பாட்டுக்கமைய CO, H₂ வாயுக்களாகப் பிரிகையடையக்கூடியது.

 $CH_3OH_{(l)} \rightarrow CO_{(g)} + 2H_{2(g)}$ $\Delta H = +128kJmol^{-1}$

பின்வருவனவற்றுள் எது மேற்குறித்த தாக்கம் தொடர்பாக சரியானதன்று? (H = 1, C = 12, O = 16)

- (1) 64 g CH₃OH₍₂₎ மேலுள்ளவாறு பிரிகையடையும் போது உறிஞ்சப்படும் வெப்பம் 256 kJ இலும் பார்க்கக் குறைவானதாகும்.
- (2) CH₃OH₍₁₎ இன் வெப்பவுள்ளுறையிலும் CO_(g) + 2H_{2(g)} இன் வெப்பவுள்ளுறை உயர்ந்தது.
- (3) எத் தாழ் வெப்பநிலையிலும் மேற்படி தாக்கம் சுயமாக நடைபெறும்.
- (4) CH₃OH₍₁₎ இன் 128 g பிரிகையடையும் போது 512 kJ வெப்பம் உறிஞ்சப்படும்.
- (5) மேலுள்ள தாக்கம் ஒரு மூடிய தொகுதியில் நிகழும் போது தொகுதியின் வெப்பவுள்ளுறை அதிகரிக்கின்றது.
- 27) பின்வரும் கரைசல்களைக் கருதுக.
 - A :- தூய எதனொல்.
 - B :- ஒவ்வொன்றினதும் மூல்ப்பின்னம் 0.5 ஆகவுள்ள குளுக்கோசினதும் நீரினதும் கரைசல்.
 - C :- ஒவ்வொன்றினதும் மூல்ப்பின்னம் 0.5 ஆகவுள்ள எதனொலினதும் குளுக்கோசினதும் கலவை.
 - D:- Bru diethyl ether.

மேலுள்ள கரைசல்களின் கொதிநிலைகளின் அதிகரிக்கும் வரிசை.

- (1) A < B < C < D
- (2) D < A < B < C
- (3) C < D < B < A

- (4) B < C < D < A
- (5) D < A < C < B

செறிவுள்ள சோடியம் உப்பு NaA ஐயும் சம கனவளவுகளில் கலந்து pH = 5 ஐயுடைய தாங்கற்கரைசலொன்று தயாரிக்கப்பட்டது. இக்கரைசலின் 20 cm3 எடுக்கப்பட்டு $0.1~\mathrm{moldm^{-3}}~HA_{(eq)}$ இன் ஒரு குறித்த கனவளவைச் சேர்த்த போது விளைவுக்கரைசலின் pHஆனது ஓர் அலகினால் மாற்றமடைந்தது. சேர்க்கப்பட்ட மென்னமிலம் HA இன் கண்ணவு, HA சேர்த்த பின் கரைசலின் pH என்பன முறையே

(1) 100 cm3 .6

- (2) 90 cm³ . 4
- (3) 90 cm³ .6

(4) 20 cm3 , 4

(5) 20 cm3 .6

30) இரண்டு திரவங்கள் A, B என்பன இலட்சியக்கரைசலை ஆக்குவனவாகும். A, B இன் திரவக்கலவையொன்று அதன் ஆவியுடன் சமநிலையில் உள்ள போது திரவ, அவத்தையில் A இன் மூலர் சதவீதம் 25% ஆகவும் அதனுடன் சமநிலையில் உள்ள ஆவியானது A இன் மூலர் சதவீதம் 50 % ஆகவும் காணப்பட்டது எனின் தூய A , தூய B இன் நிரம்பலாவி அமுக்கங்களிற்கிடை யிலான விகிதம் <u>நீ</u> ஆனது,

(1)

(2) $\frac{1}{3}$ (3) $\frac{1}{2}$

 $(4)^{\frac{1}{4}}$

(5) =

💠 31 தொடக்கம் 40 வரையுள்ள வினாக்கள் ஒவ்வொன்றிற்கும் (a), (b), (c), (d) எலும் நான்கு தெரிவுகள் தரப்பட்டுள்ளன. அவற்றுள் ஒன்று திருத்தமானது அல்லது ஒன்றுக்கு மேற்பட்டவை திருத்தமானவை. திருத்தமான தெரிவை / தெரிவுகளை கேர்நதெடுக்குக

1	2	3	4	5
(a),(b) ஆகியவை மாத்திரம் திருத்தமானவை	(b) (c) ஆகியவை மாத்திரம் திருத்தமானவை	(c) (d) ஆகியவை மாத்திரம் திருத்தமானவை	(d) (a) ஆகியவை மாத்திரம் திருத்தமானவை	வேறு தெரிவுகளின் எண்ணோ சேர்மானவைகளோ திருத்தமானவை

- 31) தாக்க இயக்கவியல் தொடர்பான பின்வரும் கூற்றுக்களில் சரியானது / சரியனாவை எது ! அவை?
 - (a) ஓர் ஊக்கியானது தரப்பட்ட தாக்கத்தின் ஏவற்சக்தியைக் குறைப்பதன் மூலம் அதன் தாக்கவீதத்தை அதிகரிக்கின்றது
 - (b) பூச்சிய வரிசைத் தாக்கமொன்றின் அரைவாழ்வுக்காலமானது தாக்கியின் ஆரம்பச்செறிவில் தங்கியிருக்கும்.
 - (c) ஒரு தாக்கத்தில் குறித்த ஒரு தாக்கியின் செறிவு ஏனையவற்றுடன் ஒப்பிடுகையில் ஒப்பீட்டளவில் மிகவுயர்வு எனின் தாக்கவீதம் அத்தாக்கியின் செறிவில் தங்கியிராது.
 - (d) குறித்த ஒரு தாக்கி சார்பான தாக்கவரிசை பூச்சியமாக அமையமுடிவதுடன் தாக்கத்தின் மூலக்கூற்றுத்திற்னும் பூச்சியமாக இருக்கக்கூடும்.
- 32) CH₂ CH = CH Cl எனும் சேர்வை தொடர்பான சரியான கூற்று / கூற்றுக்கள் எது / எவை? OH
 - (a) Mg / உலர் ஈதருடன் பரிகரிப்பதன் மூலம் கிரிக்நாட் சோதனைப்பொருளொன்றைத் தயாரிக்கமுடியும்.
 - (b) HBr இடுவதன் மூலம் ஒளியியல் சமபகுதியத்தைக் காட்டும் சேர்வையைப் பெறமுடியும்.
 - (c) NaOH நீரக்கரைசலுடன் கருநாட்டப் பிரதியீட்டுத் தாக்கத்தில் ஈடுபடாது.
 - (d) கூட்டல் தாக்கத்தில் மட்டும் ஈடுபடும்.
- 33) MX என்பது அரிதாகக் கரையும் ஒர் அயன் திண்மமும் HX என்பது அயனாக்கம் மிகக்குறைவான ஒரு மென்னமிலமும் ஆகும். இவை தொடர்பாக பின்வரும் கூற்றுக்களில் சரியானது / சரியானவை எது / எவை?
 - (a) MX திண்மம் வன்னமிலங்களில் நன்கு கரையும்.
 - (b) MX இன் நிரம்பற்கரைசலிற்குள் $HNO_{3(aq)}$ ஐச் சேர்ப்பின் H^{+} அயன் செறிவு குறையும்.
 - (c) M⁺ இன் நீர்க்கரைசலொன்றை $HX_{(aq)}$ இன் நீர்க்கரைசலிற்குள் சேர்ப்பின், மென்னமிலத்தின் pH அதிகரிக்கும்.
 - (d) MX இன் நிரம்பிய நீர்க்கரைசலொன்றினுள் HX_(aq) ஐச் சேர்த்தால் எப்பொழுதும் வீழ்படிவோன்று உருவாகும்.
- 34) Sn²⁺, Mg²⁺, Zn²⁺ ஆகிய அயன்களைக் கொண்ட ஒரு நீர்க்கரைசல் தொடர்பான சரியான கூற்று / கூற்றுக்கள்.
 - (a) அதனை ஐதான HCl இனால் அமிலப்படுத்திய பின் H_2S வாயுவைச் செலுத்தும் போது மஞ்சள் நிற வீழ்படிவு தோன்றும்.
 - (b) கார ஊடகத்தில் கரைசலுக்குள் H₂S வாயுவைச் செலுத்தும் போது ZnS மட்டும் வீழ்படிவாகும்.
 - (c) கரைசலுக்கு NH₄Cl,NH₄OH என்பவற்றின் கலவையை இடும்போது Mg²⁺ அயன்கள் வீழ்படிவாகாது எனிலும் முதலில் NH₄OH மட்டும் இடப்படின் உருவாகும் வீழ்படிவு NH₄Cl இடுகையில் கரைந்துவிடும்.
 - (d) கரைசலில் மிகையான $Ba(OH)_2$ ஐ இடும்போது வீழ்படிவொன்றை அவதானிக்க முடியும்.

- 35) வாயுக்கள் தொடர்பான சரியான கூற்று / கூற்றுக்கள்
 - (a) தரப்பட்ட ஒரு நேரத்தில் சுவருடனான மோதல் எண்ணிக்கை வாயுவின் அடர்த்திக்கு நேர்விகிதசமனாகும்.
 - (b) போயில் வெப்பநிலையில் அமுக்கத்தின் மிகப்பெரிய வீச்சுக்கு அமுக்கப்படுதன்மைக்காரணி 1 இற்கு சமனாகும்.
 - (c) உயர் அமுக்கத்தின் மூலம் மெய் வாயுக்களை அவதி வெப்பநிலையை விட உயர்ந்த வெப்பநிலையில் திரவமாக்க முடியும்.
 - (d) மெய்வாயுக்களிற்கான வந்தர்வாலின் சமன்பாட்டிலுள்ள அமுக்கத்திருத்தக்காரணியுடன் தொடர்பான மாறிலி a இன் பருமன் மூலக்கூற்றிடைக் கவர்ச்சி விசையுடன் தொடர்புடையதும் வெப்பநிலை, அமுக்கத்தைச் சாராததும் ஆகும்.
- - (a) ஆரம்பத்தில் $N_{2(g)}$. $H_{2(g)}$ மற்றும் $NH_{3(g)}$ ஆகியவற்றின் பகுதியமுக்கங்கள் அதிகரிக்கும்.
 - (b) புதிய சமநிலை அடையும் வரை Qp > Kp ஆக அமையும்.
 - (c) புதிய சமநிலை அடையும் வரை * $N_{2(g)}$. $H_{2(g)}$ என்பவற்றின் அளவுகள் அதிகரிக்கும்.
 - (d) $N_{2(g)}$, $NH_{3(g)}$ ஆகியவற்றின் பகுதியமுக்கங்கள் மாறாதமையால் சமநிலைத் தானம் பாதிப்படையாது
- 37) பின்வரும் சேர்வைகளில் எதன் / எவற்றின் கரைதிறனானது நீரைவிட அமில நீர்க்கரைசலில் உயர்வானதாகும்?
 - (a) PbSO4
- (b) CuS
- (c) PbC2O4
 - (d) AgCl
- 38) சில சேர்வைகள் / அயன் இனங்கள் தொடர்பான கலப்பாக்கம் , இலத்திரன் சோடிக்கேத்திரகணிதம மற்றும் வடிவம் பற்றிய பின்வரும் கூற்றுக்களில் உண்மையானது / உண்மையானவை?
 - (a) 13 அபனின் மைய அணுவைச் குழவுள்ள இலத்திரன் சோடிக்கேத்திரகணிதம் முக்கோண இரு சும்பகமாகும்.
 - (b) № 0 இல் மைய அணு SP² கலப்புக்குட்பட்டிருக்கும்.
 - (c) CIF₃ மூலக்கூறின் மைய அணு ஒரு தனிச்சோடி இலத்திரனைக் கொண்டிருக்கும்.
 - (d) XeOF₄ மூலக்கூறு சதுரக்கூம்பக் வடிவமுடையது.
- 39) கூட்டம் 17 மூலகங்கள் பற்றிய தவறான கூற்று எது / எவை?
 - (a) பிணைப்புப் பிரிகை வெப்பவுள்ளுறைகள் $F_2 > Cl_2 > Br_2$ எனும் வரிசையில் அமையும்.
 - (b) புளோரீன் தவிர்ந்த ஏனைய மூலகங்கள் எல்லாம் சேர்வைகளில் -1 தொடக்கம் +7 வரையான உறுதியான ஒட்சியேற்ற நிலைகளை வெளிக்காட்டும்.
 - (c) NH_{3(g)} இற்கும் Cl_{2(g)} இற்குமிடையிலான தாக்கத்தில் உருவாகு**ம் ஒரு சேர்வை**யின் நீர்க்கரைசல் வெளிற்றும் இயல்பைக் காட்டும்.
 - (d) செறிந்த H_2SO_4 ஐ KCl, KBr, Kl என்பவற்றுடன் தனித்தனி தாக்கமுறவிடுவதன் மூலம் முறையே Cl_2 , Br_2 , I_2 என்பவற்றைத் தயாரிக்கமுடியும்

- 40) எதனோல், நீர் என்பவற்றின் கலவை பற்றிய பின்வரும் கூற்றுக்களில் சரியானது / சரியானவை எது / எவை?
 - (a) கரைசலாக்கத்தின் போது வெப்பம் உள்ளெடுக்கப்படும்.
 - (b) கலவையின் அமைப்புக்கு எதிரான கொதிநிலையின் மாறல் ஓர் இழிவு மாறாக் கொதிநிலைக் கரைசலைக் கொண்டிருக்கும்.
 - (c) கலவையின் கொதிநிலை எப்பொழுதும் தாய எதனோல் மற்றும் தாய நீர் ஆகியவற்றின் கொதிநிலைகளுக்கு இடைப்பட்டதாகவே அமைந்திருக்கும்.
 - (d) கரைசலின் மொத்தக்கனவளவு தனித்தனி எதனொல், நீர் என்பவற்றின் கனவளவுகளின் கூட்டுத் தொகைக்குச் சமனாகும்.

💠 41 தொடக்கம் 50 வரையுள்ள வினாக்கள் ஒவ்வொன்றிலும் இரண்டு கூற்றுக்கள் தரப்பட்டுள்ளன.

தெரிவுகள்	முதலாம் கூற்று	இரன்டாம் கூற்று
(1)	உண்மை	உண்மையாக இருந்து முதலாம் கூற்றுக்கு திருத்தமான விளக்கத்தை தருவது -
(2)	உண் மை	உண்மையாக இருந்து முதலாம் கூற்றுக்கு திருத்தமான விளக்கத்தை தராதது
(3)	உண்மை	பொய்
(4)	Gurrú	உன்மை
(5)	Gunú	பொய்

	முதலாம் கூற்று	இரண்டாம் கூற்று
41)	கிரிக்நாட் சோதனைப்பொருளுடன் உலர் ஈதர் முன்னிலையில் $CH_3 - NH_2$ உடனான தாக்கத்தில் அற்கேன் பெறப்படமுடியும்.	கிரிக்நாட் சோதனைப்பொருளிலுள்ள அற்கைல் கூட்டம் சிறந்த கருநாடியாகும்.
42)	PbI ₂ ,PbC ₂ O ₄ எனும் அரிதிற் கரையும் சேர்வைகளில் PbC ₂ O ₄ ஆனது ஐதான HNO ₃ இல் கரைகின்ற போதிலும் PbI ₂ அவ்வாறு கரையமாட்டாது	அரிதிற்கரையும் உப்பொன்றின் அன்னயனானது வன்னமிலமொன்றின் இணை மூலமாக இருப்பின் அவ்வுப்பின் கரைதிறன் அமில ஊடகத்தில் ஒரு போதும் அதிகரிக்க முடியாது.
43)	உப்புப்பாலமாகப் பயன்படுத்தப்படும் மின்பகுபொருளொன்றில் காணப்படும் கற்றயனும் அன்னயனும் சமனான அசைதிறனைக்கொண்டிருத்தல் வேண்டும்.	கதோட்டறையும் அனோட்டறையும் மென்சவ்வினால் பிரிக்கப்படும் போது திரவச்சந்தி அமுத்தம் ஏற்படும் எனினும் உப்புப்பாலத்த்தில் இவ்விளைவு குறைக்கப்படுகின்றது.
44)	CH3COO" அயனானது CH3O" அயனிலும் கூடிய மூலத்தன்மையுள்ளது.	CH3COO அயன் பரிவினால் உறுதியடையக்கூடியது

45)	Al ³⁺ இன் நீர்க்கரைசலொன்றுக்குள் NaHCO ₃ நீர்க்கரைசலைச் சேர்க்கும் போது ஜெலற்றின் போன்ற வெண் வீழ்படிவொன்று உருவாகும்.	HCO; பகுதியாக நீரப்பகுப்படைவதால் உருவாகும் OH அயன்செறிவு ஆனது Al ³⁺ அயன்களை Al(OH); ஆக வீழ்படிவாக்கப்போதுமானதாகும்.
46)	2AO _(p) + B _{2(p)} ⇌ 2AOB _(p) என்ற சமநிலைத்தொகுதியில் மாறாவெப்பநிலையில் கனவளவை குறைப்பதன் மூலம் அமுக்கத்தை அதிகரிப்பின் முற்தாக்க, பிற்தாக்க வீதங்கள் இரண்டும் அதிகரிக்கும்.	இச்சமழிலைத் தொகுதியின் சமநிலைத் தானமானது மாறா வெப்பநிலையில் அமுக்க அதிகரிப்புடன் வலப்புறம் நகர்த்தப்படும்
47)	$25^{\circ}C$ இல் $CH_{3}COOH_{(aq)}$ ஆனது (கூட்டப்பிரிகை மாறிலி $Ka)NH_{3(aq)}$ உடன் (கூட்டப்பிரிகை மாறிலி K_{b}) நியமிக்கப்படுகையில் சமவலு நிலையில் கரைசலின் pH ஆனது $pH = 7 + \frac{1}{2}(pK_{a} - pK_{b})$ இனால் தரப்படலாம்.	மென்னமில – மென்கார உப்பின் நீர்க்கரைசலானது மென்னமிலத்தின் K_{a} , மென்காரத்தின் K_{b} பெறுமானங்களைப் பொறுத்து அமில இயல்பை அல்லது மூல இயல்பை கொண்டிருக்க முடியும்.
48)	Ethylamine, ethanamide என்பவற்றை NaOH _(aq) ஐப் பயன்படுத்தி வேறுபடுத்தி இனங்காண முடியாது:	Ethylamine இன் மூல இயல்பு ethanamide இலும் அதிகம்.
49)	CH ₃ COOH இன் நீர்க்கரைசலிற்குள் CH ₃ COONa சேர்க்கப்படுகையில் கரைசலின் அமிலத்தன்மை குறைவடையும்.	குறித்த வெப்பநிலையில் மென்னமிலமொன்றின் நீர்க்கரைசலை ஐதாக்கப்படுகையில் அதன் pH மற்றும் அயனாக்கத்தின் அளவு என்பன அதிகரிக்கும்.
50)	கேத்திரகணித சமபகுதியங்கள் ஈர்வெளிமய சமபகுதியத்தின் ஒரு வகையைச் சார்ந்தன.	ஒன்று மற்றையதுடன் மேற்பொருந்தாத ஒன்றுக்கொன்று ஆடிவிம்பங்களாக அமையாத திண்மத் தோற்ற சமபகுதியங்கள் யாவும் கேத்திரகணித சமபகுதியம் என அழைக்கப்படும்.

தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் ஐந்தாம் தவணைப் பரீட்சை - 2022

Conducted by Field Work Centre, Thondalmanaru.

5th Term Examination - 2022

இரசாயனவியல் II A	Three hours and 10 minutes 02 T IIA
Chemistry II A	Gr -13 (2022)
அமைப்புக்க	தி – II A ட்டுரை வினாக்கள்
 (a) பின்வரும் வினாக்களுக்குப் பொருத்தம எழுதுக. 	றான விடையை தரப்பட்டுள்ள புள்ளிக்கோட்டின் மீது -
	யுயன்களில நீரேற்றத்தின் போ <i>து</i> ற்றுவது.
(ii) Sc, Ti , Cr, Mn என்பவற்றில் உருகு	
그 그리고 있다. 하나가 아트라이트라이트 그리고 있다면 되었다. 그 그리고 있다고 있다고 있다.	மூலக்கூறுகளில் அதிகுறைந்த
[]	ரங்களில் எது மிகக் குறைவான
	ங்களில் மிக உயர்ந்த இரண்டாம்
	, H ₂ O ₂ என்பவற்றில் அதிகூடிய
என்பவற்றில் பங்களிப்புச் செய்யும் ஒ	ெய்வு மற்றும் ஒளியிரசாயனப் புகாரின் உருவாக்கம் ரு வாயுவாகும். தாழ் வெப்ப நிலையில் இரண்டு NO னும் சேர்வையை உருவாக்கும். №20 ₂ மூலக்கூறின்
i) N ₂ O ₂ மூலக்கூறுக்கான மிக உறுதியா	ன லூயி கட்டமைப்பை வரைக
•••••••••••••••••••••••••••••••••••••••	
ii) இம்மூலக்கூறுக்கான மேலும் 5 பரிக வரைக,	வுக்கட்டமைப்புகளை (பகுதி (i) இல் வரைந்து தவிர)

	······································
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************
•	

(8)(0)	றும் தாக்கம			பநிலையில்	சுயமாக
நடைபெற்றபோதிலும் ெ இயக்கவியல் கோட்பாட்டில		புதிகழிக்க ஆ இதன்ன விளக்	டிவ்வாறு குக.	நிகழவில்லை.	வெப்ப
		••••••			
	2.7				
I. SF₂NO¯ எனும் அயனுக்கான				வரைக.	
r					**********
		ir			
				• • • • • • • • • • • • • • • • • • • •	***************************************
III. பின்வரும் லூயி கட்டவ அட்டவணையைப் பூரணப்ப	டுத்துக. : ೧ •	ப்படையாகக்	கொண்டு	க் ழே தற	ரப்பட்டுள்
	. ii -c ≡ c - c - i :0	i:			
மேற்படி சேர்வையின் மூல	க்கூறிலுள்ள அத	றுக்கள் கீழுள்	ளவாறு இல	க்கமிடப்பட்டுவ	ांबाळा.
ompay try	0				
1 2	2 C - C - N - C				
H - 0,- C	C - C - N - C Cl	1			
	01	C ²	€3	C ⁴	N ⁵
(i) அணுவைச் க	ந்றி '	-			
(1)	EPR	1			

		01	C ²	€3	C ⁴	N ⁵
(i)	அணுவைச் சுற்றி உள்ள VSEPR சோடிகள்					1
(ii)	அணுவைச் கற்றி உள்ள இலத்திரன் சோடிக்கேத்திரகணிதம்					
(iii)						
(iv)	அணுவின் கலப்பு வகை					
(v)	அணுவின் ஒட்சியேற்ற நிலை					

(c)	6	நரசன் அணுவிலுள்ள சக்தி மட்டமொன்றின் சக்தி (E) ஆனது முடிவிலியிலிருந்து இலத்திரன் நிறை குறித்த சக்தி மட்டத்துக்கு கொண்டவருவதற்கான சக்தியாக வரையறுக்கப்பட்டு அது நிவரும் சமன்பாட்டினால் தரப்படுகின்றது.
		$E = -hcR_H(\frac{1}{h^2})$
		இங்கு h = பிளாஙகின் மாறிலி
		C = ஒளியின் வேகம்
		R _H = நிட்பேர்க் மாறிலி (Rydberg constant)
		n = சக்தி மட்டத்துக்குரிய பிரதான சக்திச்சொட்டெண்
	i)	ஐதரசன் அணுவின் முதலாவது பிரதான சக்தி மட்டத்தில் உள்ள 1 mol இலத்திரன்களின்
		சக்தி (kJ mol ⁻¹ இல்) யாது? (hcR _H = 2.18 x 10 ⁻¹⁸ J எனத் தரப்பட்டுள்ளது)
	ii)	இதிலிருந்து H இன் முதலாம் அயனாக்கற் சக்தியை கணிக்க.
		[உதவிக்குறிப்பு : ஒரு சக்தி மட்டத்திலிருந்து இன்னொரு சக்தி மட்டத்தக்கு இலத்திரன்
		நகரும்போது காலப்படும் / உறிஞ்சப்படும் சக்திக்கான சமன்பாடு $E_f-E_l=\Delta E=$
		$-hcR_H\left(rac{1}{n_f^2}-rac{1}{n_l^2} ight)$]. இங்கு $n_f=$ இறுதி சக்தி மட்டம், $n_l=$ ஆரம்ப சக்திமட்டம்

	iii)	மேலுள்ள சமன்பாட்டைப் பயன்படுத்தி H அணுக் காலல் நிறமாலையின் பாமர் தொடரில் பெறப்படும் மிகக்கூடிய அலை நீளத்துக்குரிய கோட்டுடன் தொடர்புடைய சக்தி மாற்றத்தையும் அதன் மீடிறனையும் கணிக்குக. இக்கோட்டின் நிறம் யாது?
		······································

2) (a)	நைத்திரேற்றின் வெப்பப்பிரிகையின் போது செங்கபில நிறமுடைய P எனும் வாயு வெளியேறியது.
	மூலகம் B ஆவர்த்தன அட்டவணையில் A இருக்கும் கூட்டத்தில் A இற்கு நேர் கீழே இருப்பதுடன் B இனது நைத்திரேற்று வெப்பப்பிரிகையில் மேலே குறிப்பிட்ட செங்கபில நிற வாயுவைக் கொடுக்கவில்லை.
	C, D, E என்பனவும் S தொகுப்பைச் சார்ந்த ஆனால் B இருக்கும் கூட்டத்தில் அமையாத மூன்று மூலகங்கள். அவை மூன்றும் சுவாலைச் சோதனையில் நிறங்களைக் கொடுக்கின்றன. அத்துடன் அவற்றின் ஒட்சலேற்றுக்களின் கரைதிறன் C < E < D எனும் குமுன்கில் அமைக்களின் கரைதிறன் C < E < D எனும் குமுன்கில் அமைக்கும்.
i)	மூலகங்கள A, B, C, D, E என்பவற்றை இனங்காண்க. A D E
115	
ii)	கவாலைச் சோதனையில் C, D, E என்பன கொடுக்கும் நிறங்களைக் குறிப்பிடுக. C = E =
iii)	வாயு P இன் இரசாயனப் பெயரைக் குறிப்பிட்டு A, B இன் நைத்திரேற்றுக்களின் வெப்பப் பிரிகைக்கான ஈடுசெய்த சமன்பாடுகளை எழுதுக. வாயு P :
	A இன் நைத்திரறே்றின் பிரிகை :-
	B இன் நைத்திரேற்றின் பிரிகை :-
iv) v)	A இனது நைத்திரைட்டுக்கு நீர் சேரக்கும் போது நடைபெறும் தாக்கச்சமன்பாட்டை எழுதுக. மேலே பகுதி (iv) இல் குறிப்பிட்ட வாயுவை இனங்காணப்பதற்கு சோதனையொன்றைக் குறிப்பிடுக.
	குறப்படுக்.
vi)	மேற்குறிப்பிட்ட வாயு குறித்த சில நிபந்தனைகளில் Cl_2 வாயுவுடன் தாக்கமுற்று உருவாக்கும் சேர்வை நீர்க்கரைசல் நிலையில் வெளிற்றும் இயல்பைக் காட்டுகின்றது. பொருத்தமான சமன்பாடுகளின் உதவியுடன் இக்கூற்றை விளக்குக.
vii	i) மூலகங்கள் C, D, E என்பவற்றின் சில சேர்வைகளின் கீழ்க்குறிப்பிட்ட இயல்புகளின் அதிகரிக்கும் வரிசையைக் குறிப்பிடுக.
	I. காபனேற்றுகளின் வெப்பவுறுதி < <
	II. சல்பேற்றுக்களின் நீர்க்கரைதிறன் < <
	III. ஒட்சலேற்றுக்களின் CH ₃ COOH _(aq) இலான கரைதிறன் < <

	பற்றை இனங்காணப்பதற்கு மேற்கொள் பதானங்களும் கீழே தரப்பட்டுள்ளன. சோதனை	ளப்பட்ட சில சோதனைகளும் அவழ்றுக் அவதானம்
(1)		வெண்ணிற வீழ்படிவு தோன்றி மிகையான இல் வீழ்படிவு கரைந்தது.
(2)	B ஐயும் E ஐயும் கலத்தல்	வெண்ணிற வீழ்படிவு தோன்றி சிறி நேரத்தின் பின் கரிய நிறமாக மாழியது.
(3)	D இற்குள் C ஐச் சேர்த்தல்	வெண்ணிற வீழ்படிவு தோன்றி இவ்வீழ்படி கபிலமாக மாறியது.
(4)	A ஐயும் D ஐயும் கலத்தல்	தெளிவான கரைசல்.
ID	D B	
	பெறப்படக்கூடிய வாயு வெளியேற்றம் தவி	ந்த ஒரு அவதானத்தைக் குறிப்பிடுக.
iii)	தொடர்பான தாக்கங்களிற்கு ஈடு செய்த ச	மன்பாடுகள் தருக.
	தொடர்பான தாக்கங்களிற்கு ஈடு செய்த ச சாதனை (2) இல் வீழ்படிவின் நிறமாற்றத்	மன்பாடுகள் தருக.
iv)	தொடர்பான தாக்கங்களிற்கு ஈடு செய்த ச சோதனை (2) இல் வீழ்படிவின் நிறமாற்றத் E இற்கு HCl _(aq) சேர்க்கும் போது பெறப்ப	மன்பாடுகள் தருக. துக்கு காரணமான தாக்கச்சமன்பாட்டை எழுத படும் 2 அவதானங்களைக் குறிப்பிடுக.

	 பொது அயனொன்று காணப்படும் நீர்க்கரைசலொன்றில் அறிதிற் கரையும் அயன் சேர்வையொன்றின் கரைதிறனானது அதே வெப்பநிலையில் அவ்வயன் சேர்வையின் நீரில் கரைதிறனை விட எப்போதும் சிறிதாகவேயிருக்கும்.
	iii) NH ₃ வாயுவை விட CO ₂ வாயு அவதி வெப்பநிலை கூடியது. ()
	iv) NaF, KF, KBr எனும் மூன்று அயன் சேர்வைகளில் நீரில் மிகக்குறைவான கரைதிறன் கொண்டது NaF ஆகும். ()
	v) அலசன்களின பிணைப்பு பிரிகை வெப்பவுள்ளுறை $F_2 > Cl_2 > Br_2$ எனும் வரிசையில் அமைந்திருக்கும்.
3) (a)	25°C இல் HA, HB எனும் இரண்டு ஒரு மூல அமிலங்களின் முறையே V₁, V₂ கனவளவுகள் தனித்தனி இரு நியமிப்புக்குடுவைகளில் எடுக்கப்பட்டு அளவியொன்றிலுள்ள 0.5 moldm ⁻³
	NaOH _(aq) உடன் பொருத்தமான காட்டி முன்னிலையில் நியமிப்புச் செய்யப்பட்டன.
	இந்நியமிப்பின் போது ஏற்படும் pH மாற்றங்கள் சேர்க்கப்பட்ட NaOH _(aq) இன் கனவளவுக்கெதிராக வரைபுபடுத்தப்பட்ட போது கீழ்த்தரப்பட்ட வளையிகள் பெறப்பட்டன.
	pH t
	9 +
	*
	6 + HA
	i P
	சேர்க்கப்பட்ட NaOH _(ag)
	10 20 இன் கனவளவு / cm ³
	இரு நியமிப்புகளினதும் சமவலு நிலையில் $V_{NaOH}=20\ cm^3$ ஆகும். மேற்படி வரைபில் புள்ளி
	P ஆனது HA _(aq) இற்கு NaOH _(aq) இன் 10 cm³ சேர்க்கும் போதான pH ஐயும் Q என்பது
	அமிலம் HA இன் நியமிப்பின் சமவலு நிலையையும் குறிக்கின்றன. இவ்வரைபு தொடர்பாக கீழே தரப்பட்ட வினாக்களுக்கு விடையளிக்குக.
i)	HA, HB ஆகியவற்றில் வன்னமிலமாக இருக்கக்கூடியது எது? காரணம் தருக.

	*
ii)	V₂ இன் பெறுமானம் யாது?

	=
iii)மென்னமிலத்தின் K _a பெறுமானம் யாது?

iv) V₁ இன் பெறுமானம் யாது?
······································
······································
••••••••••••••••••••••••••••••••••••••
v) புள்ளி Q இற்கு ஒத்த pH பெறுமானத்தைக் கணிப்பொன்றின் மூலம் துணிக
vi)பிறிதொரு ஒரு மூல மென்னமிலம் HC ஆனது HA இனது அதே செறிவைக் கொண்டதுடன் அதனது K _a = 1.6 x 10 ⁻⁶ moldm ⁻³ . இதன் V ₁ cm ³ ஆனது வினாவில் குறிப்பிடப்பட்ட அதே (0.5 moldm ⁻³) NaOH உடன் நியமிக்கப்படின் தற்போதைய சமவலுப்புள்ளியின் pH ஆனது புள்ளி Q இலும் கூடியதா? உமது விடையை சுருக்கமாக விளக்குக.
b) உலோகம் - உலோக அயன் கரைசல், உலோகம் அதன் கரையா உப்பு, மற்றும் வாடி மின்வாய் என்பன மின்வாய் வகைகளில் சிலவாகும். b) உலோகம் — கரையா உப்பு வகையைச் சார்ந்த ஒரு மின்வாய் நியம கலமல் மின்வாய
ஆகும். இதில் இடம்பெறும் சமநிலை மின்வாய்த்தாக்கத்தை எழுதுக.
 நியம கலமல் மின்வாயையும் நியம குளோரீன் மின்வாயையும் இணைத்து உருவாக்கப்பட்ட நியம மின் கலத்தின் பெயரிடப்பட்ட வரிப் படத்தை வரைந்து அதன் IUPAC குறியீட்டையுட தருக.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

And the second s

L	மைலே பகுதி (ii) இல் வரையப்பட்ட மன் கலம் தொழுற்படுகையில் குளோர்ன் மின்ஹய் நேர் முனைவாகத் தொழிற்பட்டுள்ளது எனத் தரப்பட்டுள்ளதுடன் அவ்விரு மின்வாய்களினதும் நியம மின்வாய் அமுத்தங்கள் (ஒழுங்கிலன்றி) 0.24 V , 1.36 V எனவும் தரப்பட்டுள்ளது பகுதி (ii) இல் குறிப்பிட்ட கலத்துக்குரிய மி. இ. வி. ஐக் காண்க.
iv) (மேற்குறிப்பிட்ட கலத்தின் கதோட், அனோட் என்பவற்றைக் குறிப்பிடுக.
	கதோட்டிலும் அனோட்டிலும் நிகமும் அரைக்கலத் தாக்கங்களை எமுதுக.
+)	
	கலத்தாக்கத்தை எழுதுக.
vii)	உலோகம் - அதன் கரையா உப்பு வகைக்குரிய பிறிதொரு மின்வாயின் குறியீடு
A LD	$Ag_{(s)} \mid AgCl_{(s)} \mid Cl_{(aq)}$ ஆகும். தற்காலத்தில் இது நியம H – மின்வாய்க்குப் பதிலாக மாட்டேற்று மின்வாயாகப் பயன்படுத்தப்படுகின்றது. நியம H மின்வாயுடன் ஒப்பிடுகையில்
2	இதிலுள்ள 3 அனுகூலங்களைக் குறிப்பிடுக.
	$A_{(g)} o 3 \ B_{(g)}$ எனும் முதன்மைத் தாக்கத்தைக் கருதுக. குறித்த ஒரு வெப்பநிலையில் நேரம்
t =	$= 0$ இல் $A_{(g)}$ இன் குறித்த அளவு மூடிய, விறைத்த குடுவை ஒன்றினுள் இடப்பட்ட போது
en.	அமுக்கம் P ₀ ஆகக் காணப்பட்டதுடன் ஆரம்பத் தாக்கவீதம் R ₀ ஆக இருந்தது. t நேரத்தின்
வீ	ின்னர் தொகுதியின் அமுக்கம் P_t ஆகக் காணப்பட்ட போது தாக்கவீதமானது ஆரம்ப S_t தத்தின அரைப்பங்காகியது எனின் $\frac{P_t}{P_0}$ இற்குரிய பெறுமானத்தைக் கணிக்க.
***	Po DDG DDG DDG GWAGG.
••••	,
***	***************************************

ஒவ்வொரு சேர்வையும் இரண்டு விளைவுகளைக் கொடுத்தன. R. இன் NaOH _(aq) உடனான தாக்கத்தில் X, Y எனும் விளைவுகளும் S இன் NaOH ₍ உடனான தாக்கத்தில் X, W எனும் விளைவுகளும் பெறப்பட்டன. W. ஆனது லூக்காசின் சோதனைப்பொருளுடன் சிழிது நேரத்தின் பின் கலங்கடை கொடுத்தது. மேற்படி NaOH உடனான தாக்கத்தில் P இலிருந்து M, L எனும் விளைவுகளும் Q இலிரு N, Z எனும் விளைவுகளும் பெறப்பட்டன. P, Q ஆகியவற்றை தனித்தனியே LiAIH₄ கொண்டு தாழ்த்திப் பின் நீர்ப்பகுப்புச் செ போது P ஆனது ஒரே விளைவு L ஐயும் Q ஆனது Y, Z என்பவற்றையும் விளைவுகளடுக்கை கொடுத்தன. i) P, Q, R, S, X, Y, Z, W, L, M, N என்பவற்றின் கட்டமைப்புக்களை கீழுள்ள பெட்டிகளில் எழுதும் Z			a உடன் H ₂ வாயுவைக் கொடுக டன் தாக்கமடைந்தன. மேற்படி N	
உடனான தாக்கத்தில் X , W எனும் விளைவுகளும் பெறப்பட்டன. • W ஆனது லூக்காசின் சோதனைப்பொருளுடன் சிறிது நேரத்தின் பின் கலங்கணை கொடுத்தது. • மேற்படி NaOH உடனான தாக்கத்தில் P இலிருந்து M, L எனும் விளைவுகளும் Q இலிரு N, Z எனும் விளைவுகளும் பெறப்பட்டன. • P, Q ஆகியவற்றை தனித்தனியே LiAlH₄ கொண்டு தாழ்த்திப் பின் நீர்ப்பகுப்புச் செபோது P ஆனது ஒரே விளைவு L ஐயும் Q ஆனது Y, Z என்பவற்றையும் விளைவுகள் கொடுத்தன. i) P, Q, R, S, X, Y, Z, W, L, M, N என்பவற்றின் கட்டமைப்புக்களை கீழுள்ள பெட்டிகளில் எழுதும் இ தன் கட்டைப்புக்களை கீழுள்ள பெட்டிகளில் எழுதும் இ தன் கட்டைப்புக்களை கீழுள்ள பெட்டிகளில் எழுதும் இ தன் கட்டமைப்புக்களை கீழுள்ள பெட்டிகளில் எழுதும் கட்டமைப்புக்களை கீழுள்ள பெட்டிகளில் எழுதும் கட்டமைப்புக்களை கீழுள்ள பெட்டிகளில் எழுதும் கட்டமைப்புக்களை கீழுள்ள பெட்டிகளில் எழுதும் கட்டிகள்கள் கூறுக்கு கட்டிகள்கள் கூறுக்கு கடிகள்கள் கூறுக்கு கடிகள்கள் கூறுக்குக்கு கூறுக்கு கூறுக்கிக்கு கூறுக்கு கூறுக்கு கூறுக்கு கூறுக்கு கூறுக்கு கூறுக்கு கூறு	80	ப்வொரு சேர்வையும் இரண்	டு விளைவுகளைக் கொடுத்தன.	
 W ஆனது லூக்காசின் சோதனைப்பொருளுடன் சிறிது நேரத்தின் பின் கலங்கண கொடுத்தது. கோடுத்தது. ஆனால் Y மிக நீண்ட நேரத்தின் பின்னரேயே கலங்கலைக் கொடுத்தது. மேற்படி NaOH உடனான தாக்கத்தில் P இலிருந்து M, L எனும் விளைவுகளும் Q இலிரு N, Z எனும் விளைவுகளும் பெறப்பட்டன. P, Q ஆகியவற்றை தனித்தனியே LiAlH₄ கொண்டு தாழ்த்திப் பின் நீர்ப்பகுப்புச் செ போது P ஆனது ஒரே விளைவு L ஐயும் Q ஆனது Y, Z என்பவற்றையும் விளைவுகள் கொடுத்தன. i) P, Q, R, S, X, Y, Z, W, L, M, N என்பவற்றின் கட்டமைப்புக்களை கீமுள்ள பெட்டிகளில் எழுதும் S 	•			
கொடுத்தது. ஆனால் Y மிக நீண்ட நேரத்தின் பின்னரேயே கலங்கலைக் கொடுத்தது. ■ மேற்படி NaOH உடனான தாக்கத்தில் P இலிருந்து M, L எனும் விளைவுகளும் Q இலிருந் N, Z எனும் விளைவுகளும் Gupப்பட்டன. ■ P, Q ஆகியவற்றை தனித்தனியே LiAIH₄ கொண்டு தாழ்த்திப் பின் நீர்ப்பகுப்புச் செபோது P ஆனது ஒரே விளைவு L ஐயும் Q ஆனது Y, Z என்பவற்றையும் விளைவுகள்கொடுத்தன. i) P, Q, R, S, X, Y, Z, W, L, M, N என்பவற்றின் கட்டமைப்புக்களை கீமுள்ள பெட்டிகளில் எழுதுக்கும் கூறு கூறு கூறு கூறு கூறு கூறு கூறு கூறு				
 மேற்படி NaOH உடனான தாக்கத்தில் P இலிருந்து M, L எனும் விளைவுகளும் Q இலிரு N, Z எனும் விளைவுகளும் Gupப்பட்டன. P, Q ஆகியவற்றை தனித்தனியே LiAlH₄ கொண்டு தாழ்த்திப் பின் நீர்ப்பகுப்புச் செ போது P ஆனது ஒரே விளைவு L ஐயும் Q ஆனது Y, Z என்பவற்றையும் விளைவுகள் கொடுத்தன. i) P, Q, R, S, X, Y, Z, W, L, M, N என்பவற்றின் கட்டமைப்புக்களை கீழுள்ள பெட்டிகளில் எழுதுக்கு கூறுக்கு கேறுக்கு கூறுக்கு கூற	•			
N, Z, எனும் விளைவுகளும் பெறப்பட்டன. P, Q ஆகியவற்றை தனித்தனியே LiAlH₄ கொண்டு தாழ்த்திப் பின் நீர்ப்பகுப்புச் செபோது P ஆனது ஒரே விளைவு L ஐயும் Q ஆனது Y, Z என்பவற்றையும் விளைவுகள்கொடுத்தன. i) P, Q, R, S, X, Y, Z, W, L, M, N என்பவற்றின் கட்டமைப்புக்களை கீமுள்ள பெட்டிகளில் எழுதும் P Q R X Y Y L	8.50			
P, Q ஆகியவற்றை தனித்தனியே LiAlH₄ கொண்டு தாழ்த்திப் பின் நீர்ப்பகுப்புச் செபோது P ஆனது ஒரே விளைவு L ஐயும் Q ஆனது Y, Z என்பவற்றையும் விளைவுகள் கொடுத்தன. i) P, Q, R, S, X, Y, Z, W, L, M, N என்பவற்றின் கட்டமைப்புக்களை கீழுள்ள பெட்டிகளில் எழுதுக்கும் கூறிய கூற				ம வளைவுகளும் Q <u>இ</u> லருந
போது P ஆனது ஒரே விளைவு L ஐயும் Q ஆனது Y, Z என்பவற்றையும் விளைவுகள் கொடுத்தன. i) P, Q, R, S, X, Y, Z, W, L, M, N என்பவற்றின் கட்டமைப்புக்களை கீமுள்ள பெட்டிகளில் எழுதுக் திரும் கொடிகளில் எழுதுக் கூறிய கூற				கிப் பின் நீர்ப்பகப்பச் செ
Gan () фэрм. i) P, Q, R, S, X, Y, Z, W, L, M, N என்பவற்றின் கட்டமைப்புக்களை கீமுள்ள பெட்டிகளில் எழுதுக் திரும் நிறு நிறு நிறு நிறு நிறு நிறு நிறு நிறு				
P Q R S X Y Z W L				
P Q R S X Y Z W L				
	i) P,	Q, R, S, X, Y, Z, W, L, M, N	என்பவற்றின் கட்டமைப்புக்களை க	ழேள்ள பெட்டிகளில் எழுதுக
	11			
Z W L	_	P	Q	R
Z W L		Service Annal (Metallic Service)		
Z W L				
	-	S	X	Y
	F			
	-	Xa.		
	-	Z	W	L
M N	Γ			
M				
	_	M	N	
		42.5		
	L	М	N	
III (XETEROLEGI V W MIELLI GOLGOTTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTO		얼마나 그리 사이 그 맛이 나는 아이들이 살아 있다.		கும் சப்பது உருவாகும் க
 ii) சேர்வைகள் Y, W ஆகிய ஒவ்வொன்றுக்கும் H⁺/KMnO₄ சேர்க்கும் போது உருவாகும் சே விளைவகளின் கட்டமைப்பக்களைக் கருக. 				_
விளைவுகளின் கட்டமைப்புக்களைத் தருக.		$Y = \frac{H^*/KMn^2}{2}$	04 →	
그렇게 이 중에는 그렇게 되었다. 이 이 없는 대략 네트워크를 보지 않는데, 그렇게 되었다. 그리고 있다. 이 그렇게 그리고 이 대략에서 이번 어떻게 되었다. 이 선생님이 없어 다 먹었다.			1	
விளைவுகளின் கட்டமைப்புக்களைத் தருக.				_
விளைவுகளின் கட்டமைப்புக்களைத் தருக.		H'/KMT	O _A	4

		district and the second	in interest			NAME OF TAXABLE PARTY.
iii) ($Q \xrightarrow{(1) CH_3MgBr}$ $(2) H_3O^+$	விளைவு	மேற்படி	விளைவின்	கட்டமைப்பை	எழுதி தாக்கத்தின்
0	பொறிமுறையையும் தருக.					

	20,100,000,000,000,000	10000				
(b) d	ழே தரப்பட்ட தாக்கச் சமன	ள்பாடுகள் ஒ	வ்வொன்	றிதும் தாக்க	ி, சோதனைப்	பொருட்கள் / ஊக்கி
	தாக்க நிபந்தனை ஏதும் இ முதுக	ருப்பின் அத	னுடன்) (விளைபொரு	ள என்பவற்ை	ற உரய ஐடங்களில்
((і) он					
	_	PCI ₅	>	A		
	CH₂OH —		1 7	>		
. ((ii) CH2CH2OH			СН	= CH ₂	
	_					" % ys
	(P)		_	→ Ψ		
	CONH ₂			CN		
(ili) CH C - O			Victoria de la compansión de la compansi		1
	CH ₃ - C = 0	2, 4 - DN	NP .	>		100
	Un ₃		1			1
(i	iv)	CH ₃ - NH -	- CH			-
	C ₂ H ₅ - MgBr -	Clig - Mil	CHI	>	+	- 1 24
(1	v)					
(,	CH2CH2OH	504 Vel2			100	4
	Υ _	H+/KI	MnO ₄	>		0
	CH	Δ				
111	HO CH3				4-	

தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் ஐந்தாம் தவணைப் பரீட்சை - 2022 Conducted by Field Work Centre, Thondaimanaru.

5th Term Examination - 2022

இரசாயனவியல் II B

Chemistry II B

Gr -13 (2022)

02

T

IIB

பகுதி - II B

- இப்பகுதியிலிருந்து எவையேனும் இரண்டு வினாக்களுக்கு மட்டும் விடையளிக்குக.
- 5) (a)
 - i) பின்வரும் சமநிலைத் தாக்கத்தைக் கருதுக.

 $A_{(g)} + 2B_{(g)} \rightleftharpoons 2C_{(g)}$

ஒரு மூடிய, விறைப்பான பாத்திரத்தில் ஆரம்பத்தில் 1 மூல் $A_{(g)}$ உம் 2 மூல் $B_{(g)}$ உம் இடப்பட்டு வெப்பநிலையை $600~{\rm K}$ இற்கு உயர்த்திய போது மேற்காட்டிய சமநிலை அடையப்பட்டதுடன் சமநிலையில் 0.4 மூல் $C_{(g)}$ உருவாகிக் காணப்பட்டது. சமநிலைத் தொகுதியின் மொத்த அமுக்கம் $2.8\times10^5~{\rm Pa}$ ஆகக் காணப்பட்டதெனின் $600~{\rm K}$ இல் மேற்படி சமநிலைக்குரிய சமநிலை மாறிலி K_p ஐக் காண்க.

- ii) மேலுள்ள சமநிலைத்தொகுதியின் வெப்பநிலையை சடுதியாக 300 K இற்கு குறைத்த போது $A_{(g)}$, $B_{(g)}$ என்பவற்றின் சிறிய அளவுகள் ஒடுங்கித் திரவமாக மாறின. இத் திரவக்கலவை அவற்றின் ஆவி அவத்தைகளுடன் சமநிலையிலுள்ள ஓர் இலட்சியக் கரைசலை ஆக்கியது அத்துடன் மேற்படி திரவக் கலவையில் $C_{(g)}$ கரையாதிருப்பதுடன் வாயு அவத்தையில் $C_{(g)}$ இன் 0.2 மூல் காணப்பட்டது. இதன்போது வாயு அவத்தையின் மொத்த அமுக்கம் $9 \times 10^4 \, \text{Pa}$ ஆக இருந்ததுடன் வாயு அவத்தையில் $A_{(g)}$, $B_{(g)}$ என்பன முறையே 3:5 எனும் மூலர் விகிதத்தில் காணப்பட்டன.
 - 300 K இல் வாயு அவத்தையில் A_(g), B_(g), C_(g) என்பவற்றின் பகுதி அமுக்கங்களைக் காண்க.
 - II. 300 K இல் A_(g) , B_(g) என்பவற்றின் தூயநிலை ஆவி அமுக்கங்களைக் காண்க.
 - III. மேற்படி கணிப்புகளில் பயன்படுத்திய எடுகோள் ஏதும் இருப்பின் அதனைக் குறிப்பிடுக.
- (b) Ag₂CrO_{4(s)} ஆனது நீரில் அரிதாகக் கரையும் வன் மின்பகுபொருளாகும்.
- i) Ag₂CrO_{4(s)} வன்மின்பகுபொருளாகக் கருதப்படுவதன் காரணத்தைத் தருக.
- ii) $Ag_2CrO_{4(s)}$ இன் நிரமபற்கரைசலொன்றில் திண்ம Ag_2CrO_4 அதன் அயன்களுடன் சமநிலையில் உள்ளது. 25^0C இல் மேற்படி கரைசலில் $Ag_{(aq)}^+$ இன் செறிவு 54 ppm எனத் தரப்படின் இவ் வெப்பநிலையில் Ag_2CrO_4 இன் கரைதிறன் பெருக்கத்தைக் (K_{sp}) கணிக்க.

 $(Ag = 108, Cr = 52, O = 16) (1 ppm = 1 mgdm^{-3})$

- iii) $25^{\circ}C$ இல் பகுதி (ii) இல் குறிப்பிட்ட கரைசல் வடிகட்டப்பட்டது. இவ்வடி திரவத்தின் $500~cm^3$ இற்குள் $0.1~moldm^{-3}~Ba(NO_3)_{2(aq)}$ இன் $500~cm^3$ சேர்க்கப்பட்டது. கரைக்கப்பட்டது. பொருத்தமான கணிப்பொன்றின் உதவியுடன் மேற்படி கரைசலில் வீழ்படிவொன்று தோன்றுமெனக் காட்டுக. ($25^{\circ}C$ இல் $BaCrO_{4(s)}$ இன் $K_{sp} = 1 \times 10^{-10} \text{mol}^2 \text{dm}^{-6}$)
- iv) பகுதி (ii) இல் குறிப்பிட்ட கரைசலின் வடிதிரவத்தின் 100 cm³ ஆனது நீர் சேர்த்து 1 dm³ இற்கு ஐதாக்கப்பட்ட பின்னர் NaCl திண்மத்தை இடுவதன் மூலம் $AgCl_{(s)}$ ஐ வீழ்படிவாக்கத் திட்டமிடப்பட்டது. இதற்குத் தேவைப்படும் $NaCl_{(s)}$ இன் இழிவுத் திணிவைக் கணிக்க. (Na = 23, Cl= 35.5, AgCl இன் Ksp = 1 x 10⁻¹⁰ mol² dm⁻⁶)

- (c) i) NH₄Cl நீர்க்கரைசலொன்றின் செறிவு c $moldm^{-3}$ ஆகும். NH₄OH_(aq) இன் கூட்டப்பிரிகை மாறிலி K_b , நீரின் அயன்பெருக்கம் K_w எனின் மேற்தரப்பட்ட NH₄Cl கரைசலின் $pH = \frac{1}{2}[pK_w pK_b \log c]$ எனக் காட்டுக.
 - ii) 0.33 g (NH₄) $_2$ SO_{4(s)} நீரில் கரைக்கப்பட்டு 250 cm³ கரைசலாக்கப்பட்டதெனின் மேற்படி கரைசலின் pH ஐ உய்த்தறிக. [K_{b (NH₃)} = $1 \times 10^{-5} moldm^{-3}$, K_w = $1 \times 10^{-14} mol^2 dm^{-6}$, N = 14, O = 16, S = 32, H = 1]
 - iii) 0.33 g (NH₄)₂SO_{4(s)} ஆனது 500 cm³ 0.1 moldm⁻³ NH₄OH கரைசலில் அதே வெப்பநிலையில் கரைக்கப்படின் விளைவுக்கரைசலின் pH யாது?

6) (a) பின்வரும் தாக்கத்தைக் கருதுக.

$$2A_{(g)} + B_{(g)} \rightarrow C_{(g)} \Delta H < 0$$

மேலுள்ள தாக்கத்தின் A, B சார்பான வரிசைகளை துணிவதற்கு மேற்கொள்ளப்பட்ட இரு பரிசோதனைகள் வருமாறு :

பரிசோதனை I :- B இன் செறிவை மாறாது பேணியவாறு A இன் செறிவை மாற்றி ஆரம்பத் தாக்கவீதங்கள் (R) அளவிடப்பட்ட போது வரைபு (I) பெறப்பட்டது.

பரிசோதனை II:- A இன் செறிவை மாறாது பேணியவாறு B இன் செறிவை மாற்றி தாக்கவீதங்கள் அளவிடப்பட்டு log [B] எதிர் log R வரைபு வரையப்பட்ட போது பெறப்பட்ட வரைபானது வரைபு II இல் தாட்டப்பட்டுள்ளது.

- i) A, B சார்பான தாக்கவரிசைகளை உய்த்தறிக.
- ii) மேற்படி தாக்கத்தின் வீதமாறிலி k எனக் கொண்டு வீத விதிக்கோவையை எழுதுக.
- iii) மேற்படி தாக்கம் முதன்மைத் தாக்கமாகவே இருத்தல் வேண்டும் என மாணவனொருவன் கூறினான். இக்கூற்று ஏற்றுக்கொள்ளத்தக்கதா என்பதனைச் சுருக்கமாக விளக்குக.
- iv) பரிசோதனை (II) இன் நிபந்தனைகளில் தாக்க ஆரம்பத்தில் B இன் செறிவு 1 moldm⁻³ ஆகக் காணப்பட்டது. மேற்படி செறிவு 0.0625 moldm⁻³ ஆக குறைவதற்கு 132 S எடுத்தது எனின் அரைவாழ்வுக் காலம் யாது?

மேற்குறிப்பிட்ட தாக்கத்திற்கு மாணவனொருவனால் பிரேரிக்கப்பட்ட பொறிமுறையொன்று கீழே தரப்பட்டுள்ளன.

- மற்குறிப்பிட்ட இரு படிகளில் வீத நிர்ணயப் படி எது என்பதை இனங்கண்டு அப்படிக்குரிய வீதச் சமன்பாட்டை எழுதுக.
- vi) இதிலிருந்து பகுதி (ii) இல் நீர் எழுதிய வீத விதிக்கான சமன்பாட்டை உய்த்தறிக.
- vii) மேற்படி தாக்கத்தின் தாக்க ஆள்கூறு எதிர் சக்தி வரைபை வரைக. உமது வரைபில் உரிய இடங்களில் தாக்கிகள், விளைவு இடைநிலை ஏவற்படுத்திய சிக்கல் எனபவற்றை குறித்துக்காட்டுக.
- (b) இரண்டு ஆவிப்பறப்புடைய பூரண கலக்கும் தகவுடைய திரவங்கள் A, B என்பன எல்லா அமைப்பு விகிதங்களிலும் இலட்சியக்கரைசலை உருவாக்கக்கூடியன ஆகும். குறித்த வெப்பநிலையில் இவற்றின் கலவையொன்று அதன் ஆவியுடன் சமநிலையில் உள்ளது. குறித்த வெப்பநிலையில் A, B இன் தூய நிலை ஆவியமுக்கங்கள் முறையே PA, PB ஆகும். திரவ அவத்தையில் A, B இன் மூல்ப்பின்னம் XA, XB உம் திரவத்துடன் சமநிலையில் உள்ள ஆவி அவத்தையில் A, B இன் மூல்ப்பின்னங்கள் முறையே XA, XB எனவும் தரப்பட்டுள்ளது.
 - மூலக்கூற்றிடைக் கவர்ச்சியின் அடிப்படையில் AB கரைசலின் இலட்சிய நடத்தையை விளக்குக.
 - ii) இக் கரைசல் தொடர்பான இரவோற்றின் விதியைக்கூறி அதற்கான கணிதக்கோவையொன்றையும் தருக.
 - iii) $\frac{1}{P} = \frac{1 \chi_A'}{P_B^0} + \frac{\chi_A'}{P_A^0}$ எனக் காட்டுக. இங்கு P சமநிலைக்கரைசலின் மொத்த ஆவியமுக்கம்.
 - iv) P_A⁰ = 3 x 10⁴ Pa , P_B⁰ = 2 x 10⁴ Pa எனத்தரப்பட்டுள்ளது. குறிப்பிட்ட ஒரு கரைசலில் ஆவி அவத்தையில் B இன் மூல்ப்பின்னம 0.6 எனின் கரைசலின் மொத்த ஆவியமுக்கம் P ஐக் காண்க.
 - v) A, B ஆகியவற்றின் பகுதி ஆவியமுக்கங்களைக் கணித்து திரவ அவத்தையில் மூல்ப்பின்னங்கள் X_A, X_B ஐயும் கணிக்குக.
 - vi) கலவையின் அமைப்புக்கு எதிராக ஆவியமுக்கம், கொதிநிலை என்பவற்றின் மாறலைக் காட்டுவதற்கு தனித்தனி வரைபுகள் வரைக.
- (c) ஒரு கரைசலானது 0.1 moldm⁻³ செறிவில் Zn²⁺ அயன்களையும் 0.1 moldm⁻³ செறிவில் Fe²⁺ அயன்களையும் கொண்டுள்ளது. இக்கரைசலினூடாக H₂S வாயுவை செலுத்தி நிரம்பலடையச் செய்வதன் மூலம் மேற்படி இரு கற்றயன்களையும் வேறாக்குவதற்குத் திட்டமிடப்பட்டது. இந்நோக்கத்திற்காக கரைசல் பேணப்பட வேண்டிய pH வீச்சை பொருத்தமான ஒரு கணிப்பின் மூலம் உய்த்தறிக.

 ${
m K}_{sp(ZnS)}=2\,{
m x}\,10^{-25}mol^2dm^{-6}$, ${
m K}_{sp(FeS)}=4.9\,{
m x}\,10^{-18}mol^2dm^{-6}$ ${
m H}_2{
m S}$ இன் நிரமபற்கரைசலொன்றில் $\left[H_3O_{(aq)}^+
ight]^2\left[S_{(aq)}^{2-}
ight]=9.1\,{
m x}\,10^{-28}{
m mol}^3{
m dm}^{-9}$

 கீழே வரிப்படத்தில் தரப்பட்டுள்ள மின்னிரசாயனக் கலங்கள் (A), (B) இனை அடிப்படையாகக் கொண்டு அதன் கீழ்த்தரப்பட்டுள்ள வினாக்களுக்கு விடையளிக்குக.

ஒவ்வொரு கலத்தினதும் மின்வாய்கள் (1), (2), (3), (4) என இலக்கமிடப்பட்டுள்ளன.

$$E_{AgCl_{(g)}}^{0} / Ag_{(g)} / Cl_{(aq)}^{-} = 0.22 V$$

கலம் (B) இனை அடிப்படையாகக் கொண்டு (i) தொடக்கம் (iv) வரையான வினாக்களுக்கு விடை தருக.

- i) கலத்தின் மின்னியக்கவிசை யாது?
- அனோட், கதோட் எனபவற்றை இனங்கண்டு கலம் தொழிற்படுமாயின் அவை ஒவ்வொன்றிலும் இடம்பெறும் அரைக்கலத் தாக்கங்களை எழுதுக.
- iii) கலத்தாக்கத்தை தருக.
- iv) கலத்தின் IUPAC குறியீட்டைத் தருக.
- கலம் (A) இன் மின்வாய்கள் (1), (2) ஆகியவை கலம் (B) இன் மின்வாய்கள் (4) , (3) உடன் முறையே தொடுக்கப்படுகின்றதெனக் கருதுக. இந்நிலையில்
- கலம் (A) இனை அடிப்படையாகக் கொண்டு (v) தொடக்கம் (vii) வரையான வினாக்களுக்கு விடைதருக
- v) அனோட், கதோட் என்பவற்றை இனங்கண்டு அவற்றில் இடம்பெறும் அரைக்கலத்தாக்கங்களை எழுதுக.
- vi) கலம் (A) இல் கரைசலில் முதன் முதலில் வீழ்படிவு / கலங்கல் தன்மை உருவாகத் தொடங்குவதற்கு 100 s தேவைப்பட்டது எனின் கலத்தினூடாகச் சென்ற மின்னோட்டத்தைக் கணிக்க. $\left[K_{SpMg(OH)_2} = 3.2 \times 10^{-11} mol^3 dm^{-9}, F = 96,500 Cmol^{-1}\right]$
- (b) I. X, Y, Z என்பன இணைப்புச் சேர்வைகளாகும். இவற்றின் இணைப்புக் கோளங்களின் (மைய அயனும் அதனுடன் இணைந்துள்ள இணையிகளும்) அணு அமைப்புக்கள் (இதே ஒழுங்கிலன்று) NiH₁₀NCO₅, NiH₈N₂C₂O₄, NiH₆N₃C₃O₃ ஆகும். இம் மூன்று சேர்வைகளின் இணைப்புக்கோளங்களும் எண்முகி வடிவமுடையன ஆகும். அத்துடன் X, Y, Z மூன்றிலும் உலோக அயன் ஒரே ஒட்சியேற்ற எண்ணைக் கொண்டிருப்பதுடன் ஒரே மாதிரியான இரண்டு வகை இணையிகள் மட்டுமே உள்ளன.
 - சேர்வை X ஆனது சுவாலைச் சோதனைக்கு ஊதா நிறத்தைக் கொடுக்கின்றது.
 - சேர்வை Y இனது செறிவு 0.1 moldm⁻³ ஆகவுள்ள கரைசலின் 250 cm³ இற்குள் மிகையான AgNO_{3(aq)} சேர்த்தபோது ஐதான HNO₃ இல் கரையாத மஞ்சள் நிற வீழ்படிவொன்று பெறப்பட்டது. இவ்வீழ்படிவின் உலர் திணிவு 5.875 g ஆகக் காணப்பட்டது. மேற்குறிப்பிட்ட வீழ்படிவு NH_{3(aq)} இல் எந்நிலையிலும் கரையவில்லை. L (மஞ்சள் நிற வீழ்படிவுக்குக் காரணமான சேர்வையின் மூலர்த்திணிவு 235 gmol⁻¹ எனத் தரப்பட்டுள்ளது)
 - i) X, Y, Z என்பவற்றில் உலோக அயனுடன் இணைந்துள்ள இணையிகளை இனம் காண்க.
 - ii) மஞ்சள் நிற வீழ்படிவின் இரசாயனச் சூத்திரம் யாது?
 - iii) X, Y, Z ஆகியவற்றின் கட்டமைப்புக்களை உய்த்தறிக.
- II. மேலே (b) I இல் சம்பந்தப்பட்ட கற்றயனை இனங்காண்பதற்கு ஒரு சோதனைப்பொருளாக DMG (dimethyl glyoxine) பயன்படுத்தப்படுகின்றது.
 DMG இன் கட்டமைப்பு வருமாறு

$$H_3C$$
 $C = N$
 $C = N$

DMG மூலக்கூறானது இரு N அணுக்கள் ஊடாகவும் இரண்டு ஈதற்பிணைப்புகளை ஏற்படுத்தக்கூடிய ஒர் இணையி (bidentate ligand) ஆகும். அது NH₄OH முன்னிலையில் Nℓ²+ அயனுடள் தாக்கி தளச்சதுர வடிவ சிக்கலயனொன்றை உருவாக்கும். இதற்கான தாக்கம்

 $Ni_{(aq)}^{2+} + 2 DMG + 2 OH^- \rightarrow [NI(DMG)_2] + 2 H_2 O$

உருவான சிக்கலயனின் கட்டமைப்பை வரைந்து அதன் நிறத்தையும் குறிப்பிடுக.

8) (a) பென்சீனிலிருந்து ஆரம்பித்து N = N O OCH₃ எனும் சேர்வையைத்

தொகுப்பதற்குரிய தாக்கத்திட்டமொன்றைத் தருக. பயன்படுத்தக்கூடிய இரசாயனப் பதார்த்தங்களின் பட்டியல் கீழே தரப்பட்டுள்ளது.

இரசாயனப் பொருட்கள்

NaOH , செறி HCl , Sn , நீரற்ற AlCl₃ , CH₃Cl , செறி. HNO₃ , செறி. H₂SO₄ , NaNO₂ , Na உலோகம் , ஐதான HCl

(b) 8 இற்கு மேற்படாத படிகளைப் பயன்படுத்தி கீழுள்ள மாற்றீட்டை எவ்வாறு மேற்கொள்வீர்?

$$CH_3C \equiv CH \longrightarrow CH_3CH_2 - C - NH - CH - CH_3$$

$$CH_3$$

$$CH_3$$

- (c)i) ethanol ஆனது PCl₅ உடன் chloroethane ஐத் தருமாயினும் phenol இலிருந்து chlorobenzene பெறுவதற்கு PCl₅ பயன்படுத்தமுடியாது. விளக்குக.
 - அமீன்களை விட அற்ககோல்களின் மூல இயல்பு குறைவானது என்பதனை பொருத்தமான அணுக்களின் மின்னெதிரியல்பின் அடிப்படையில் உரிய தாக்கங்களின் உதவியுடன் விளக்குக.
- 9) (a) இரண்டு கற்றயன்களையும் இரண்டு அன்னயன்களையும் கொண்ட நிறமுள்ள கரைசலொன்று (கரைசல் X) தரப்பட்டுள்ளது. இவ்வயன்களை இனம் காண்பதற்கு மேற்கொள்ளப்பட்ட சோதனைகளும் அவற்றுக்கான அவதானங்களும் கீழே தரப்பட்டுள்ளன.

	. சோதனை	அவதானம்		
(1)	கரைசல் X இன் ஒரு பகுதியினுள் ஐதான HCI சேர்த்த பின் H₂S வாயு குமிழியிடப்பட்டது.	குறிப்பிடத்தக்க அவதானம் எதுவும் இல்லை.		
(2)	கரைசல் X இன் பிறிதொரு பகுதிக்கு செறி. HNO₃ சேர்த்து சூடாக்கிய பின் NH₄Cl /NH₄OH இட்டு வெப்பமேற்றப்பட்டது.	வீழ்படிவு எதுவும் தோன்றவில்லை.		
(3)	(2) இல் பெறப்பட்ட விளைவுக் கரைசல் இனூடாக H₂S வாயு குமிழியிடப்பட்டது.	கரிய நிற வீழ்படிவு தோன்றியது.		
(4)	கரைசல் X இன் ஒரு பகுதிக்கு BaCl _{2(aq)} கரைசல் சேர்க்கப்பட்டு கலவை ஐதான HCI உடன் அமிலப்படுத்தப்பட்டது.	வெண்ணிற வீழ்படிவும் நிறமுள்ள ஒரு கரைசலும் பெறப்பட்டன.		
(5)	கரைசல் X இன் இன்னொரு பகுதிக்கு செறி. NaOH கரைசல் மிகையாக சேர்க்கப்பட்டது.	பச்சை நிற வீழ்படிவும் பச்சை நிறக்கரைசலும் பெறப்பட்டதுடன் வாயு வெளியேற்றமும் காணப்பட்டது.		

(6)	(5) இல் பெறப்பட்ட வீழ்படிக்கு NH ₃ கரைசல் மிகையாகச் சேர்க்கப்பட்டது.	வீழ்படிவு கரைந்ததுடன் கரு நீலநிறக்கரைசல் பெறப்பட்டது.				
(7)	(5) இல் பெறப்பட்ட கரைசலுக்குள் நீர்சேர்த்து ஐதாக்கப்பட்டது (அல்லது அமிலம் சேர்க்கப்பட்டது.)	செவ்வு,தாக் கரைசலும் கருங்கபில வீழ்படிவும் தோன்றியது.				
(8)	(7) இல் உருவாகிய கரைசலுக்குள் HCI துளித்துளியாக சேர்க்கப்பட்டது.	வெண்ணிற வீழ்படிவு தோன்றியது. மிகையான HCI சேர்க்கையில் வீழ்படிவு கரைந்தது.				
(9)	(8) இல் பெறப்பட்ட விளைவுக்கரை சலினுள் NH _{3(aq)} சேர்க்கப்பட்டது.	வெண்ணிற வீழ்படிவு உருவாகி மிகையான NH ₃ கரைசலில் கரைந்தது.				

- அவதானிப்புகளுக்குக் காரணமாயிருக்கக்கூடிய இரன்டு கற்றயன்களையும் இரண்டு அன்னயன்களையும் அட்டவணையில் உள்ள அவதானங்களை விளக்கி இனம் காண்க.
- ii) பரிசோதனைச் செயன்முறைகள் 3, 4, 5, 7, 8, 9 என்பவற்றுடன் தொடர்பான அவதானங்களுக்கான சமப்படுத்திய சமன்பாடுகளைக் குறிப்பிடுக.
- (b) ஒரு நீர்க்கரைசலானது CuSO₄ , NISO₄ , Fe₂(SO₄)₃ ஆகியவற்றைக் கொண்டுள்ளது. இக்கரைசலின் $100\ cm^3$ பகுதியினுள் மிகையான $BaCl_{2(aq)}$ ஐச் சேர்த்தபொழுது பெறப்பட்ட வீழ்படிவின் (X) உலர்திணிவு 9.32 g. வீழ்படிவு வடிக்கப்பட்டு வடிதிரவத்தினுள் மேலதிக $KI_{(aq)}$ சேர்த்தபொழுது பெறப்பட்ட வீழ்படிவின் (Y) உலர் திணிவு 1.905 g ஆகும். வீழ்படிவு அகற்றப்பட்ட பின் எஞ்சிய கரைசலானது (Z) $1\ moldm^{-3}\ Na_2S_2O_{3(aq)}$ உடன் காட்டியொன்றின் முன்னிலையில் நியமிக்கப்பட்டது. முடிவுப்புள்ளியில் தேவைப்பட்ட $Na_2S_2O_{3(aq)}$ இன் கனவளவு $20~cm^3$ ஆகக் காணப்பட்டது. (Fe = 56 , Cu = 63.5 , Ni = 58.6 , Ba = 137 , S = 32 , I = 127)
 - X, Y, Z என்பவற்றை இனம் காண்க.
 - ii) KI_(aq) சேர்க்கப்படுகையில் நிகழும் தாக்கங்களுக்கான சமன்பாடுகளை எழுதுக.
 - iii) கரைசலிலுள்ள Cu^{2+} , Ni^{2+} , Fe^{3+} , SO_4^{2-} ஆகிய அயன்களின் செறிவுகளைக் கணிக்க.
 - iv) மேலுள்ள $Na_2S_2O_{3(aq)}$ உடனான நியமிப்பில் பயன்படுத்தப்படும் காட்டியைக் குறிப்பிட்டு நியமிப்பின் முடிவுப் புள்ளி எவ்வாறு துணியப்படுகின்றது என்பதைச் சுருக்கமாக விளக்குக.

10) (a)	A, B எனும் I		இரு	இரு சேர்வைகளின்		நீர்க்கரைசல்களையும்		அவற்றுடன்	தொடர்பான	சில	
	தாக்	கங்	களையும்	கீழ்	கீழ்த்தரப்பட்ட பாய்ச்சற் கோ		கோட்டுப்படம்	காட்டுகின்றது.	து. இவ்வரிப்பட	த்தில்	
	LIMI	ன்ப(டுத்தப்பட்ட	- ලුුණ	ியீடுகள் கீழ	ந்த்தரப்	ப்பட்டு	नोनाञा.		-	

கரைசல் / திரவம்

வீழ்படிவு / திண்மம்

வீழ்படிவு / கலங்கலுடன் கூடிய கலவை

- திண்ம B ஆனது சுவாலைச்சோதனைக்குட்படுத்திய போது மஞ்சள் பச்சை (அப்பிள் பச்சை) நிறம் பெறப்பட்டது.
- P ஆனது வெளிறிய மஞ்சள் நிறக்கலங்கல்.
- i) A தொடக்கம் P வரை குறிப்பிடப்பட்ட சேர்வைகளை இனங்கண்டு அவற்றின் இரசாயனக் குறியீடுகளை எழுதுக.
- தாக்கங்கள் 1 தொடக்கம் 5 வரையானவற்றுக்கு பொருத்தமான ஈடுசெய்த சமன்பாடுகள் தருக.
- (b) M ஆனது அணுவெண் Z உடைய ஒரு 3d வரிசை தாண்டல் மூலமாகும். இது அமில, மூல. ஈரியல்புள்ள ஒட்சைட்டுக்களை உருவாக்கக்கூடியதுடன் வீச்சிலான ஓட்சியேற்ற பரந்த சேர்வைகளில் வெளிக்காட்டக்கூடியதாகும். Dai M இழிவு ஓட்சியேற்ற நிலைக்குரிய கற்றயன் நீர்க்கரைசலில் மென்சிவப்பு நிறமுடையது. அணுவெண் (Z – 1), (Z + 1) உடைய மூலகங்கள் முறையே P, Q ஆகும். P ஆனது ஒரே ஒட்சியேற்ற நிலையில் இரண்டு வெவ்வேறு ஒட்சோ அன்னயன்கள் X, Y ஐ உருவாக்கக் கூடியது. அவற்றுள் Y அமில ஊடகத்தில் உறுதியானதாகும்.

- i) M ஐ இனம் காண்க.
- M இன் தரைநிலை இலத்திரன் நிலையமைப்பை வழமையான முறையில் எழுதுக.
- iii) M உருவாக்கும் இரு ஒட்சோ அன்னயன்களைக் குறிப்பிட்டு அவற்றின் பெயர்களையும் நிறங்களையும் தருக.
- iv) P³⁺ நீர்க்கரைசலுக்குள் சிறிதளவு NaOH_(aq) ஐச் சேர்க்கும் போது ஏற்படும் அவதானத்தையும் அதற்குக் காரணமான சேர்வை / அயன்களையும் குறிப்பிடுக.
- v) P_(aq) இனுள் மிகை NaOH ஐயும் H₂O₂ ஐயும் இட்டால் பெறப்படும் அவதானத்தையும் இதற்குக் காரணமான தாக்கச் சமன்பாட்டையும் எழுதுக.
- vi) M இன் மிகத்தாழ்ந்த ஒட்சியேற்ற நிலைக்குரிய கற்றயன் நடுநிலை ஊடகத்தில் $S_2 O_{8(aq)}^2$ உடன் அடையும் தாக்கத்துக்குரிய ஈடுசெய்த சமன்பாட்டை எழுதுக.
- vii) X, Y ஆகியவற்றை இனம்கண்டு X ஆனது Y ஆக மாற்றப்படுவதுடன் தொடர்பான தாக்கச்சமன்பாட்டை எழுதுக. ஏற்படும் நிறமாற்றம் யாது?
- viii) M, P, Q என்பவற்றை உருகுநிலைகளின் ஏறுவரிசையில் ஒழுங்குபடுத்துக.
- ix) மூலகம் M ஒப்பீட்டளவில் தாழ்ந்த உருகுநிலையை கொண்டிருப்பதன் காரணத்தை சுருக்கமாக விளக்குக.

