

Module 5 Final Project

82 lines (59 sloc) 3.51 KB

Introduction

In this project, news headlines from 2012 - 2018 are classified into different categories using Natural Language Processing.

Data:

The dataset was sourced from Kaggle and has \sim 200k news headlines that are to be classified into 1 of 40 categories. There dataset comes in the form af a JSON file and contains the following fields:

- 1. category:
 - 40 unique entries
 - Examples: POLITICS, TECHNOLOGY, PARENTING, WELLNESS
- 2. headline
- 3. author

- 4. short_description
- 5. link

Methodology:

- 1. Data Cleaning & Organization:
 - The different text fields are explored and common formatting problems are corrected
 - All the fields are combined into a single 'text' field

2. EDA:

- Several areas are explored including:
 - Category Prevalence (showing class imbalance)
 - Author Prevalence (showing which authors write the most articles)
 - Word Frequency (across all categories and within, before and after removing stop words)

3. Preprocessing:

- Need to represent the text in a way that models can understand
 - Vectorizing (strings --> tokens --> vectors)
- There are many ways to represent the text
 - Count Vectorizaiton (binary / counts)
 - Term Frequency / Inverse Document Frequency
 - Word Embeddings (custom vs pre-built models such as GLoVE)
- Stop Words
- Stemming & Lemmatization
- o n-grams

4. Modelling:

Many different models are built including Naive Bayes, Logistic Regression,
 Random Forest, and Neural Networks across these different pre-processing schemes.

EDA Findings:

Category Prevalence:

• There is a strong class imbalance, with Politics being the most prominent category

Unique Categories

Most common words in categories:

 After stopwords were removed, the most common words in each category are explored, and appear to make sense!

```
Category: CRIME
['us', '2015', 'unknown', '2016', 'police', '00', '2014', 'man', '2017', 'shooting']
Category: WEIRD NEWS
['us', '2016', '2015', '2017', 'lee', 'david', 'moye', 'moran', 'unknown', '2014']
Category: SPORTS
['us', '2015', '2016', 'unknown', '2014', '00', 'contributor', 'game', 'nfl', '0000']
Category: RELIGION
['us', 'contributor', '2015', '2014', '2016', 'unknown', 'antonia', 'blumberg', '2017', 'not']
Category: PARENTS
['us', 'contributor', '2017', '2014', '2015', '2016', 'kids', 'caroline', 'bologna', 'mom']
Category: HEALTHY LIVING
['contributor', 'us', '2014', '2015', '2017', '2016', 'health', 'author', 'life', 'not']
Category: WELLNESS
['us', 'contributor', '2013', '2012', 'unknown', 'author', 'life', 'not', 'health', '00']
Category: WEDDINGS
['us', 'wedding', 'unknown', '2013', '2012', 'contributor', 'weddings', 'marriage', '00', 'day']
```

Custom embeddings appear strong:

• Custom word embeddings are created using the articles, and the results (while not perfect) appear to capture some of the semantic meanings

```
senator ['sen', 'senate', 'senators', 'rep', 'sessions', 'ted', 'rnc', 'representative', 'rubio', 'sanders']
son ['sons', 'sister', 'teen', 'sisters', 'siblings', 'screaming', 'seemed', 'scream', 'separated', 'toddler']
daughter ['daughters', 'dad', 'child', 'dear', 'crying', 'father', 'grandmother', 'decided', 'fatherhood', 'daddy']
business ['ceo', 'companies', 'consumer', 'build', 'corporate', 'consulting', 'connections', 'company', 'clear', 'changing']
healthy ['healthier', 'foods', 'healthily', 'intensity', 'habits', 'huffposthealthyliving', 'hormones', 'gluten', 'ingredients', 'grain']
technology ['tech', 'software', 'startup', 'startups', 'technologies', 'smartphones', 'tools', 'smartphone', 'resource', 'se']
```

Model Results

 The two best models both used tri-grams without any stemming, lemmatization, or word embeddings. The best model was a neural network with an accuracy score of ~ 80%, and the second best was a Naive Bayes classifier with ~78% accuracy. The NN has stronger performance, but is not as directly interpretable as the NB classifier!

• Note the gap in accuracy between the validations and test set, there is clear evidence of overfitting here, and some regularization should be attempted.

Neural Network Results:

	precision	recall	f1-score	support
0	0.74	0.80	0.77	315
1	0.85	0.72	0.78	283
2	0.76	0.59	0.66	909
3	0.72	0.68	0.70	1242
4	0.62	0.56	0.59	227
5	0.74	0.72	0.73	1037
6	0.63	0.66	0.65	676
7	0.72	0.69	0.70	189
8	0.87	0.85	0.86	637
9	0.65	0.62	0.63	206
10	0.84	0.84	0.84	3205
11	0.75	0.62	0.68	283
12	0.66	0.61	0.64	290
13	0.89	0.93	0.91	1239
14	0.71	0.53	0.61	275
15	0.59	0.64	0.61	498
16	0.68	0.81	0.74	1327
17	0.90	0.90	0.90	848
18	0.57	0.50	0.53	661
19	0.91	0.55	0.69	262
20	0.74	0.61	0.67	563
21	0.73	0.76	0.75	334
22	0.83	0.85	0.84	1716
23	0.75	0.78	0.76	790
24	0.85	0.89	0.87	6430
25	0.89	0.84	0.86	1270
26	0.75	0.64	0.69	521
27	0.79	0.66	0.72	440
28	0.84	0.85	0.84	986
29	0.83	0.80	0.81	468
30	0.93	0.93	0.93	1963
31	0.86	0.80	0.83	414
32	0.73	0.70	0.72	417
33	0.87	0.90	0.88	1902
34	0.89	0.85	0.87	743
35	0.56	0.66	0.61	557
36	0.87	0.91	0.89	3629
37	0.63	0.60	0.61	694
38	0.61	0.59	0.60	441
39	0.73	0.73	0.73	1281
accuracy			0.80	40168
macro avg	0.76	0.73	0.74	40168
weighted avg	0.80	0.80	0.80	40168

Naive Bayes Results:

	precision	recall	f1-score	support
0	0.83	0.68	0.74	315
1	0.86	0.63	0.73	283
2	0.72	0.62	0.67	909
3	0.69	0.69	0.69	1242
4	0.76	0.52	0.62	227
5	0.67	0.71	0.69	1037
6	0.56	0.73	0.63	676
7	0.82	0.61	0.70	189
8	0.82	0.85	0.84	637
9	0.70	0.51	0.59	206
10	0.79	0.85	0.82	3205
11	0.85	0.43	0.57	283
12	0.87	0.68	0.76	290
13	0.85	0.90	0.87	1239
14	0.81	0.48	0.60	275
15	0.58	0.62	0.60	498
16	0.69	0.67	0.68	1327
17	0.89	0.89	0.89	848
18	0.54	0.57	0.55	661
19	0.91	0.50	0.65	262
20	0.76	0.58	0.66	563
21	0.80	0.68	0.73	334
22	0.71	0.82	0.76	1716
23	0.74	0.67	0.70	790
24	0.84	0.87	0.86	6430
25	0.83	0.83	0.83	1270
26	0.76	0.64	0.70	521
27	0.80	0.64	0.71	440
28	0.81	0.85	0.83	986
29	0.87	0.66	0.75	468
30	0.88	0.94	0.91	1963
31	0.88	0.65	0.75	414
32	0.78	0.60	0.68	417
33	0.81	0.91	0.86	1902
34	0.87	0.81	0.84	743
35	0.60	0.55	0.58	557
36	0.82	0.89	0.85	3629
37	0.61	0.49	0.55	694
38	0.61	0.43	0.50	441
39	0.69	0.74	0.72	1281
accuracy			0.78	40168
macro avq	0.77	0.69	0.72	40168
ighted avg	0.78	0.78	0.78	40168
- 0				

Forward:

- Modelling:
 - The gap between training and validation accuracy in the NN points towards overfitting, and some attempts at regularization can be made.
 - RNNs and LSTM can also be built to try to improve accuracy
- Reframing the problem:
 - Instead of treating these labels and categories, we could treat them as tags, assigning 2-3 to each article
 - This will likely increase the accuracy of the predictions, and also provide more value to the user audience