$11n_{158} (K11n_{158})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle b-u, \ -159345685747u^{18} + 147982590951u^{17} + \dots + 96727442787a + 357093230263, \\ u^{19} &= u^{18} + \dots - u + 1 \rangle \\ I_2^u &= \langle b+u, \ 4343u^{12} + 7110u^{11} + \dots + 4787a + 1912, \\ u^{13} &+ u^{12} - u^{11} - 3u^{10} - 2u^9 + u^8 - 2u^6 + u^5 - 4u^4 - 2u^3 - 2u^2 - 1 \rangle \\ I_3^u &= \langle 1.31062 \times 10^{16}u^{15} - 1.74217 \times 10^{16}u^{14} + \dots + 9.51505 \times 10^{17}b + 6.50537 \times 10^{17}, \\ 1.97533 \times 10^{15}u^{15} - 3.11116 \times 10^{14}u^{14} + \dots + 5.49461 \times 10^{17}a + 2.28716 \times 10^{17}, \ u^{16} - 3u^{15} + \dots + 14u + 10^{17}a + 10^{$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 48 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle b-u, -1.59 \times 10^{11} u^{18} + 1.48 \times 10^{11} u^{17} + \dots + 9.67 \times 10^{10} a + 3.57 \times 10^{11}, \ u^{19} - u^{18} + \dots - u + 1 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ u^2 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1.64737u^{18} - 1.52989u^{17} + \dots + 32.1590u - 3.69175 \\ u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1.64737u^{18} - 1.52989u^{17} + \dots + 31.1590u - 3.69175 \\ u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 2.27741u^{18} - 2.43525u^{17} + \dots + 37.2324u - 9.52801 \\ 0.111340u^{18} - 0.0665068u^{17} + \dots + 2.52989u + 0.117475 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -0.820898u^{18} + 0.672626u^{17} + \dots + 23.6867u - 3.53398 \\ 0.162954u^{18} - 0.347555u^{17} + \dots + 0.470733u - 0.393621 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1.01209u^{18} + 0.851055u^{17} + \dots + 0.470733u - 0.393621 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1.01209u^{18} + 0.851055u^{17} + \dots + 0.649162u - 0.380858 \end{pmatrix}$$

$$a_{70} = \begin{pmatrix} 2.55969u^{18} - 2.59941u^{17} + \dots + 42.1976u - 9.56837 \\ -0.0125024u^{18} - 0.0176043u^{17} + \dots + 2.36573u - 0.000645074 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2.20417u^{18} - 1.64059u^{17} + \dots + 52.9687u + 7.25501 \\ -0.191192u^{18} + 0.178429u^{17} + \dots + 0.201893u + 0.541893 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.426507u^{18} - 0.339257u^{17} + \dots + 12.4593u + 5.79766 \\ -0.340664u^{18} + 0.462435u^{17} + \dots - 0.649162u + 0.380858 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.426507u^{18} - 0.339257u^{17} + \dots + 12.4593u + 5.79766 \\ -0.340664u^{18} + 0.462435u^{17} + \dots + 12.4593u + 5.79766 \\ -0.340664u^{18} + 0.462435u^{17} + \dots + 12.4593u + 5.79766 \\ -0.340664u^{18} + 0.462435u^{17} + \dots + 12.4593u + 5.79766 \\ -0.340664u^{18} + 0.462435u^{17} + \dots + 12.4593u + 5.79766 \\ -0.340664u^{18} + 0.462435u^{17} + \dots + 12.4593u + 5.79766 \\ -0.340664u^{18} + 0.462435u^{17} + \dots + 12.4593u + 5.79766 \\ -0.340664u^{18} + 0.462435u^{17} + \dots + 12.4593u + 5.79766 \\ -0.340664u^{18} + 0.462435u^{17} + \dots + 12.4593u + 5.79766 \\ -0.340664u^{18} + 0.462435u^{17} + \dots + 12.4593u + 5.79766 \\ -0.340664u^{18} + 0.462435u^{17} + \dots + 12.4593u + 5.79766 \\ -0.340664u^{18} + 0.462435u^{17} + \dots + 12.4593u + 5.79766 \\ -0.340664u^{18} + 0.462435u^{17} + \dots + 12.4593u + 5.79766 \\ -0.340664u^{18} + 0.462435u^{17} + \dots + 12.4593u + 5.79766 \\ -0.340664u^{18} + 0.462435u^{17} + \dots + 12.4593u + 5.79766 \\ -0.340664u^{18} + 0.462435u^{17} + \dots + 0.649162u + 0.380858 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= \frac{162836171512}{96727442787}u^{18} - \frac{43813217810}{32242480929}u^{17} + \dots + \frac{1086609567736}{32242480929}u + \frac{428864721314}{96727442787}u^{18} + \dots + \frac{1086609567736}{32242480929}u^{18} + \dots + \frac{1086609567736}{96727442787}u^{18} + \dots + \frac{1086609567736}{9672744278}u^{18} + \dots + \frac{108660956776}{9672742744278}u^{18} + \dots + \frac{108660956776}{967274274}u^{18} + \dots$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{19} - u^{18} + \dots - u + 1$
c_2	$u^{19} - 10u^{17} + \dots + 21u + 6$
<i>c</i> ₃	$u^{19} - 9u^{18} + \dots + 52u - 16$
c_4, c_9, c_{10}	$u^{19} - 9u^{18} + \dots - 4u^2 + 16$
c_6, c_7, c_{11}	$u^{19} + u^{18} + \dots + 2u + 1$
c ₈	$u^{19} + 9u^{18} + \dots + 34u + 4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{19} + 15y^{18} + \dots - 47y - 1$
c_2	$y^{19} - 20y^{18} + \dots + 273y - 36$
<i>c</i> ₃	$y^{19} - 25y^{18} + \dots + 6064y - 256$
c_4, c_9, c_{10}	$y^{19} - 17y^{18} + \dots + 128y - 256$
c_6, c_7, c_{11}	$y^{19} - 33y^{18} + \dots + 12y - 1$
<i>c</i> ₈	$y^{19} - y^{18} + \dots - 116y - 16$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.074551 + 1.005150I		
a = 0.755499 - 0.268182I	-6.47985 - 3.00781I	-9.19206 + 3.40012I
b = -0.074551 + 1.005150I		
u = -0.074551 - 1.005150I		
a = 0.755499 + 0.268182I	-6.47985 + 3.00781I	-9.19206 - 3.40012I
b = -0.074551 - 1.005150I		
u = 0.719291 + 0.870215I		
a = 0.618624 + 0.041528I	-0.22723 + 2.57483I	-7.79227 - 4.00370I
b = 0.719291 + 0.870215I		
u = 0.719291 - 0.870215I		
a = 0.618624 - 0.041528I	-0.22723 - 2.57483I	-7.79227 + 4.00370I
b = 0.719291 - 0.870215I		
u = -0.015666 + 1.186340I		
a = 1.00740 - 1.04818I	-8.13053 + 0.97689I	-10.22917 - 0.27205I
b = -0.015666 + 1.186340I		
u = -0.015666 - 1.186340I		
a = 1.00740 + 1.04818I	-8.13053 - 0.97689I	-10.22917 + 0.27205I
b = -0.015666 - 1.186340I		
u = -0.799079		
a = -0.714422	-1.52055	-7.33430
b = -0.799079		
u = -0.197897 + 0.643434I		
a = -0.839512 + 0.061465I	-0.928589 + 0.684123I	-8.21629 - 4.45735I
b = -0.197897 + 0.643434I		
u = -0.197897 - 0.643434I		
a = -0.839512 - 0.061465I	-0.928589 - 0.684123I	-8.21629 + 4.45735I
b = -0.197897 - 0.643434I		
u = -0.78204 + 1.18371I		
a = -0.553988 + 0.003237I	-5.79784 - 5.72974I	-14.4693 + 5.0563I
b = -0.78204 + 1.18371I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.78204 - 1.18371I		
a = -0.553988 - 0.003237I	-5.79784 + 5.72974I	-14.4693 - 5.0563I
b = -0.78204 - 1.18371I		
u = -0.58654 + 1.32638I		
a = -1.071040 - 0.314706I	-8.63276 - 7.82560I	-8.78089 + 5.39108I
b = -0.58654 + 1.32638I		
u = -0.58654 - 1.32638I		
a = -1.071040 + 0.314706I	-8.63276 + 7.82560I	-8.78089 - 5.39108I
b = -0.58654 - 1.32638I		
u = 0.70619 + 1.27768I		
a = -0.185916 - 1.077090I	-15.6607 + 4.6824I	-10.38940 - 2.40952I
b = 0.70619 + 1.27768I		
u = 0.70619 - 1.27768I		
a = -0.185916 + 1.077090I	-15.6607 - 4.6824I	-10.38940 + 2.40952I
b = 0.70619 - 1.27768I		
u = 0.050654 + 0.205531I		
a = -4.15202 + 6.06789I	2.26122 + 2.63337I	2.15678 + 7.21953I
b = 0.050654 + 0.205531I		
u = 0.050654 - 0.205531I		
a = -4.15202 - 6.06789I	2.26122 - 2.63337I	2.15678 - 7.21953I
b = 0.050654 - 0.205531I		
u = 1.08010 + 1.60653I		
a = 0.778162 - 0.084178I	-16.5060 + 12.7254I	-9.92028 - 5.57941I
b = 1.08010 + 1.60653I		
u = 1.08010 - 1.60653I		
a = 0.778162 + 0.084178I	-16.5060 - 12.7254I	-9.92028 + 5.57941I
b = 1.08010 - 1.60653I		

$$I_2^u = \langle b+u, \ 4343u^{12} + 7110u^{11} + \dots + 4787a + 1912, \ u^{13} + u^{12} + \dots - 2u^2 - 1 \rangle$$

(i) Arc colorings

$$\begin{split} a_2 &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ a_9 &= \begin{pmatrix} 0 \\ u \end{pmatrix} \\ a_1 &= \begin{pmatrix} 1 \\ u^2 \end{pmatrix} \\ a_6 &= \begin{pmatrix} -0.907249u^{12} - 1.48527u^{11} + \dots + 1.45874u - 0.399415 \\ -u \end{pmatrix} \\ a_5 &= \begin{pmatrix} -0.907249u^{12} - 1.48527u^{11} + \dots + 2.45874u - 0.399415 \\ -u \end{pmatrix} \\ a_8 &= \begin{pmatrix} -1.64216u^{12} - 2.04115u^{11} + \dots + 2.52663u - 1.91936 \\ 0.199081u^{12} + 0.339043u^{11} + \dots + 0.0927512u - 0.578024 \end{pmatrix} \\ a_3 &= \begin{pmatrix} -0.578024u^{12} - 1.37894u^{11} + \dots + 1.60058u + 2.09275 \\ -0.300606u^{12} - 0.253812u^{11} + \dots - 0.757050u + 0.0963025 \end{pmatrix} \\ a_4 &= \begin{pmatrix} -0.137456u^{12} - 0.933988u^{11} + \dots + 1.77961u + 1.19553 \\ -0.604972u^{12} - 0.393357u^{11} + \dots - 0.316482u + 0.100689 \end{pmatrix} \\ a_7 &= \begin{pmatrix} -1.74493u^{12} - 2.58450u^{11} + \dots + 4.26154u - 2.09839 \\ 0.194694u^{12} + 0.639022u^{11} + \dots - 0.0100272u - 1.01859 \end{pmatrix} \\ a_{11} &= \begin{pmatrix} -0.399415u^{12} - 1.30666u^{11} + \dots + 5.21370u + 2.45874 \\ 0.440568u^{12} + 0.444955u^{11} + \dots + 0.179027u - 0.897222 \end{pmatrix} \\ a_{10} &= \begin{pmatrix} 0.374556u^{12} + 0.339879u^{11} + \dots + 1.20389u + 1.04470 \\ 0.604972u^{12} + 0.393357u^{11} + \dots + 0.316482u - 0.100689 \end{pmatrix} \\ a_{10} &= \begin{pmatrix} 0.374556u^{12} + 0.339879u^{11} + \dots + 1.20389u + 1.04470 \\ 0.604972u^{12} + 0.339357u^{11} + \dots + 0.316482u - 0.100689 \end{pmatrix} \\ a_{10} &= \begin{pmatrix} 0.374556u^{12} + 0.339879u^{11} + \dots + 1.20389u + 1.04470 \\ 0.604972u^{12} + 0.393357u^{11} + \dots + 0.316482u - 0.100689 \end{pmatrix} \\ a_{10} &= \begin{pmatrix} 0.374556u^{12} + 0.339879u^{11} + \dots + 1.20389u + 1.04470 \\ 0.604972u^{12} + 0.393357u^{11} + \dots + 0.316482u - 0.100689 \end{pmatrix} \\ a_{10} &= \begin{pmatrix} 0.374556u^{12} + 0.339879u^{11} + \dots + 1.20389u + 1.04470 \\ 0.604972u^{12} + 0.393357u^{11} + \dots + 0.316482u - 0.100689 \end{pmatrix} \\ a_{10} &= \begin{pmatrix} 0.374556u^{12} + 0.339879u^{11} + \dots + 1.20389u + 1.04470 \\ 0.604972u^{12} + 0.393357u^{11} + \dots + 0.316482u - 0.100689 \end{pmatrix} \\ a_{10} &= \begin{pmatrix} 0.374556u^{12} + 0.339879u^{11} + \dots + 0.316482u - 0.100689 \end{pmatrix} \\ a_{10} &= \begin{pmatrix} 0.604972u^{12} + 0.393357u^{11} + \dots + 0.316482u - 0.100689 \end{pmatrix} \\ a_{10} &= \begin{pmatrix} 0.604972u^{12} + 0.393357u^{11} + \dots + 0.316482u - 0.100689 \end{pmatrix} \\ a_{11} &= \begin{pmatrix} 0.604972u^{12} + 0.393357u^{11} + \dots + 0.316482u - 0.100689 \end{pmatrix} \\ a_{11} &= \begin{pmatrix} 0.604972u^{12} + 0.393357u^{11} + \dots + 0.316482u - 0.10$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$\frac{14164}{4787}u^{12} + \frac{37634}{4787}u^{11} + \dots - \frac{78472}{4787}u - \frac{64919}{4787}u^{11} + \dots$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing	
c_1, c_5	$ u^{13} + u^{12} - u^{11} - 3u^{10} - 2u^9 + u^8 - 2u^6 + u^5 - 4u^4 - 2u^3 - 2u^2 - 1 $	l
c_2	$u^{13} - 3u^{11} - 2u^{10} + 3u^9 + u^8 - 9u^7 - 11u^6 + u^5 - 2u^4 - 10u^3 - 3u^2$	- 1
c_3	$u^{13} + 10u^{12} + \dots + 19u + 5$	
c_4	$u^{13} - 7u^{11} + \dots + 2u + 1$	
c_6, c_{11}	$u^{13} - u^{12} + \dots + u - 1$	
c_7	$u^{13} + u^{12} + \dots + u + 1$	
c ₈	$u^{13} - 6u^{12} + \dots - 5u^2 + 1$	
c_9, c_{10}	$u^{13} - 7u^{11} + \dots + 2u - 1$	

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{13} - 3y^{12} + \dots - 4y - 1$
c_2	$y^{13} - 6y^{12} + \dots - 6y - 1$
<i>c</i> ₃	$y^{13} - 18y^{12} + \dots - 59y - 25$
c_4, c_9, c_{10}	$y^{13} - 14y^{12} + \dots + 12y - 1$
c_6, c_7, c_{11}	$y^{13} - 7y^{12} + \dots - 9y - 1$
<i>c</i> ₈	$y^{13} - 2y^{12} + \dots + 10y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.900740 + 0.533669I		
a = -1.166450 - 0.261249I	1.59640 + 3.38566I	2.41525 - 6.49353I
b = -0.900740 - 0.533669I		
u = 0.900740 - 0.533669I		
a = -1.166450 + 0.261249I	1.59640 - 3.38566I	2.41525 + 6.49353I
b = -0.900740 + 0.533669I		
u = 0.134578 + 0.883277I		
a = -1.058690 - 0.319537I	-8.02879 - 2.87155I	-15.3113 + 3.5915I
b = -0.134578 - 0.883277I		
u = 0.134578 - 0.883277I		
a = -1.058690 + 0.319537I	-8.02879 + 2.87155I	-15.3113 - 3.5915I
b = -0.134578 + 0.883277I		
u = -0.529571 + 0.532870I		
a = 0.059596 - 1.149930I	-5.39720 + 0.76633I	-5.46823 + 1.57837I
b = 0.529571 - 0.532870I		
u = -0.529571 - 0.532870I		
a = 0.059596 + 1.149930I	-5.39720 - 0.76633I	-5.46823 - 1.57837I
b = 0.529571 + 0.532870I		
u = -1.310290 + 0.394846I		
a = 0.714514 - 0.488710I	-1.52980 - 2.82140I	-9.56946 + 2.96660I
b = 1.310290 - 0.394846I		
u = -1.310290 - 0.394846I		
a = 0.714514 + 0.488710I	-1.52980 + 2.82140I	-9.56946 - 2.96660I
b = 1.310290 + 0.394846I		
u = -0.736626 + 1.155190I		
a = 0.633923 + 0.241978I	-4.89940 - 5.64504I	-5.13604 + 4.51836I
b = 0.736626 - 1.155190I		
u = -0.736626 - 1.155190I		
a = 0.633923 - 0.241978I	-4.89940 + 5.64504I	-5.13604 - 4.51836I
b = 0.736626 + 1.155190I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.266732 + 0.548396I		
a = -1.77971 + 1.81477I	2.09623 + 2.92285I	-9.7624 - 12.7438I
b = -0.266732 - 0.548396I		
u = 0.266732 - 0.548396I		
a = -1.77971 - 1.81477I	2.09623 - 2.92285I	-9.7624 + 12.7438I
b = -0.266732 + 0.548396I		
u = 1.54888		
a = 0.193632	-13.7330	-11.3360
b = -1.54888		

$$\begin{matrix} \text{III. } I_3^u = \\ \langle 1.31 \times 10^{16} u^{15} - 1.74 \times 10^{16} u^{14} + \dots + 9.52 \times 10^{17} b + 6.51 \times 10^{17}, \ 1.98 \times 10^{15} u^{15} - \\ 3.11 \times 10^{14} u^{14} + \dots + 5.49 \times 10^{17} a + 2.29 \times 10^{17}, \ u^{16} - 3u^{15} + \dots + 14u + 41 \rangle \end{matrix}$$

(i) Arc colorings

$$\begin{array}{l} a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ a_9 = \begin{pmatrix} 0 \\ u \end{pmatrix} \\ a_1 = \begin{pmatrix} 1 \\ u^2 \end{pmatrix} \\ a_6 = \begin{pmatrix} -0.00359503u^{15} + 0.000566220u^{14} + \cdots - 0.579421u - 0.416256 \\ -0.0137742u^{15} + 0.0183096u^{14} + \cdots - 1.40476u - 0.683692 \end{pmatrix} \\ a_5 = \begin{pmatrix} 0.0101791u^{15} - 0.0177434u^{14} + \cdots + 0.825342u + 0.267436 \\ -0.0137742u^{15} + 0.0183096u^{14} + \cdots - 1.40476u - 0.683692 \end{pmatrix} \\ a_8 = \begin{pmatrix} 0.00188225u^{15} + 0.00703654u^{14} + \cdots - 0.906661u + 0.946317 \\ 0.00958945u^{15} - 0.0187823u^{14} + \cdots + 0.0486549u + 0.591789 \end{pmatrix} \\ a_3 = \begin{pmatrix} 0.00188723u^{15} + 0.00703654u^{14} + \cdots - 0.200013u + 1.71159 \\ 0.00578290u^{15} - 0.00717672u^{14} + \cdots + 1.12471u + 0.593614 \end{pmatrix} \\ a_4 = \begin{pmatrix} -0.0142111u^{15} + 0.0554273u^{14} + \cdots + 1.17466u - 0.0740275 \\ 0.0136940u^{15} - 0.0307409u^{14} + \cdots + 1.37818u + 1.26107 \end{pmatrix} \\ a_7 = \begin{pmatrix} 0.0120905u^{15} - 0.00811315u^{14} + \cdots - 0.603268u + 2.05812 \\ 0.000452209u^{15} - 0.00935974u^{14} + \cdots + 1.17466u + 0.0740275 \\ -0.000623414u^{15} - 0.0144091u^{14} + \cdots - 0.974645u - 1.78562 \end{pmatrix} \\ a_{10} = \begin{pmatrix} 0.0101791u^{15} - 0.0177434u^{14} + \cdots + 0.825342u + 0.267436 \\ -0.000703594u^{15} - 0.0268404u^{14} + \cdots + 0.825342u + 0.267436 \\ -0.000703594u^{15} - 0.0268404u^{14} + \cdots + 0.825342u + 0.267436 \\ -0.000703594u^{15} - 0.0268404u^{14} + \cdots + 0.825342u + 0.267436 \\ -0.000703594u^{15} - 0.0268404u^{14} + \cdots + 0.825342u + 0.267436 \\ -0.000703594u^{15} - 0.0268404u^{14} + \cdots + 0.825342u + 0.267436 \\ -0.000703594u^{15} - 0.0268404u^{14} + \cdots + 0.825342u + 0.267436 \\ -0.000703594u^{15} - 0.0268404u^{14} + \cdots + 0.825342u + 0.267436 \\ -0.000703594u^{15} - 0.0268404u^{14} + \cdots + 0.825342u + 0.267436 \\ -0.000703594u^{15} - 0.0268404u^{14} + \cdots + 0.825342u + 0.267436 \\ -0.000703594u^{15} - 0.0268404u^{14} + \cdots + 0.825342u + 0.267436 \\ -0.000703594u^{15} - 0.0268404u^{14} + \cdots + 0.825342u + 0.267436 \\ -0.000703594u^{15} - 0.0268404u^{14} + \cdots + 0.825342u + 0.267436 \\ -0.000703594u^{15} - 0.0268404u^{14} + \cdots + 0.825342u + 0.267436 \\ -0.000703594u^{15} - 0.0268404u^{14} + \cdots + 0.825342u + 0.267436 \\ -0.000703594u^{15} - 0.0268404u^{14} + \cdots + 0.825342u + 0.267436 \\ -0.000703594u^{15} - 0.026$$

(ii) Obstruction class = -1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{16} - 3u^{15} + \dots + 14u + 41$
c_2	$u^{16} - u^{15} + \dots - 398u + 359$
<i>c</i> ₃	$(u^4 + 3u^3 + u^2 - 2u + 1)^4$
c_4, c_9, c_{10}	$(u^2 + u - 1)^8$
c_6, c_7, c_{11}	$u^{16} - u^{15} + \dots - 314u + 59$
<i>c</i> ₈	$(u^4 - u^3 + u^2 + 1)^4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{16} - y^{15} + \dots + 6528y + 1681$
c_2	$y^{16} - 13y^{15} + \dots - 519558y + 128881$
<i>c</i> ₃	$(y^4 - 7y^3 + 15y^2 - 2y + 1)^4$
c_4, c_9, c_{10}	$(y^2 - 3y + 1)^8$
c_6, c_7, c_{11}	$y^{16} - 21y^{15} + \dots - 63668y + 3481$
c ₈	$(y^4 + y^3 + 3y^2 + 2y + 1)^4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.070726 + 1.109990I		
a = -0.866375 + 0.712201I	-7.02670 + 3.16396I	-10.17326 - 2.56480I
b = -0.71670 - 1.63688I		
u = 0.070726 - 1.109990I		
a = -0.866375 - 0.712201I	-7.02670 - 3.16396I	-10.17326 + 2.56480I
b = -0.71670 + 1.63688I		
u = 0.779961 + 0.810134I		
a = 0.678421 + 0.218895I	-14.02850 + 1.41510I	-13.8267 - 4.9087I
b = 2.29306 - 1.45821I		
u = 0.779961 - 0.810134I		
a = 0.678421 - 0.218895I	-14.02850 - 1.41510I	-13.8267 + 4.9087I
b = 2.29306 + 1.45821I		
u = -0.749741 + 0.435456I		
a = 1.37743 - 0.41545I	0.86898 - 3.16396I	-10.17326 + 2.56480I
b = 0.996480 - 0.636712I		
u = -0.749741 - 0.435456I		
a = 1.37743 + 0.41545I	0.86898 + 3.16396I	-10.17326 - 2.56480I
b = 0.996480 + 0.636712I		
u = 0.996480 + 0.636712I		
a = -1.021930 - 0.261538I	0.86898 + 3.16396I	-10.17326 - 2.56480I
b = -0.749741 - 0.435456I		
u = 0.996480 - 0.636712I		
a = -1.021930 + 0.261538I	0.86898 - 3.16396I	-10.17326 + 2.56480I
b = -0.749741 + 0.435456I		
u = -0.062069 + 0.700905I		
a = -1.063840 - 0.407726I	-6.13277 - 1.41510I	-13.8267 + 4.9087I
b = -1.11172 - 0.94845I		
u = -0.062069 - 0.700905I		
a = -1.063840 + 0.407726I	-6.13277 + 1.41510I	-13.8267 - 4.9087I
b = -1.11172 + 0.94845I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.11172 + 0.94845I		
a = 0.136782 - 0.531259I	-6.13277 + 1.41510I	-13.8267 - 4.9087I
b = -0.062069 - 0.700905I		
u = -1.11172 - 0.94845I		
a = 0.136782 + 0.531259I	-6.13277 - 1.41510I	-13.8267 + 4.9087I
b = -0.062069 + 0.700905I		
u = -0.71670 + 1.63688I		
a = 0.658359 + 0.232127I	-7.02670 - 3.16396I	-10.17326 + 2.56480I
b = 0.070726 - 1.109990I		
u = -0.71670 - 1.63688I		
a = 0.658359 - 0.232127I	-7.02670 + 3.16396I	-10.17326 - 2.56480I
b = 0.070726 + 1.109990I		
u = 2.29306 + 1.45821I		
a = -0.033000 - 0.293154I	-14.02850 - 1.41510I	-13.8267 + 4.9087I
b = 0.779961 - 0.810134I		
u = 2.29306 - 1.45821I		
a = -0.033000 + 0.293154I	-14.02850 + 1.41510I	-13.8267 - 4.9087I
b = 0.779961 + 0.810134I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u^{13} + u^{12} - u^{11} - 3u^{10} - 2u^9 + u^8 - 2u^6 + u^5 - 4u^4 - 2u^3 - 2u^2 - 1)$ $\cdot (u^{16} - 3u^{15} + \dots + 14u + 41)(u^{19} - u^{18} + \dots - u + 1)$
c_2	$(u^{13} - 3u^{11} - 2u^{10} + 3u^9 + u^8 - 9u^7 - 11u^6 + u^5 - 2u^4 - 10u^3 - 3u^2 - 1)$ $\cdot (u^{16} - u^{15} + \dots - 398u + 359)(u^{19} - 10u^{17} + \dots + 21u + 6)$
c_3	$((u^4 + 3u^3 + u^2 - 2u + 1)^4)(u^{13} + 10u^{12} + \dots + 19u + 5)$ $\cdot (u^{19} - 9u^{18} + \dots + 52u - 16)$
c_4	$((u^{2} + u - 1)^{8})(u^{13} - 7u^{11} + \dots + 2u + 1)(u^{19} - 9u^{18} + \dots - 4u^{2} + 16)$
c_6, c_{11}	$(u^{13} - u^{12} + \dots + u - 1)(u^{16} - u^{15} + \dots - 314u + 59)$ $\cdot (u^{19} + u^{18} + \dots + 2u + 1)$
c_7	$(u^{13} + u^{12} + \dots + u + 1)(u^{16} - u^{15} + \dots - 314u + 59)$ $\cdot (u^{19} + u^{18} + \dots + 2u + 1)$
c_8	$((u^4 - u^3 + u^2 + 1)^4)(u^{13} - 6u^{12} + \dots - 5u^2 + 1)$ $\cdot (u^{19} + 9u^{18} + \dots + 34u + 4)$
c_9, c_{10}	$((u^{2}+u-1)^{8})(u^{13}-7u^{11}+\cdots+2u-1)(u^{19}-9u^{18}+\cdots-4u^{2}+16)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_5	$(y^{13} - 3y^{12} + \dots - 4y - 1)(y^{16} - y^{15} + \dots + 6528y + 1681)$ $\cdot (y^{19} + 15y^{18} + \dots - 47y - 1)$
c_2	$(y^{13} - 6y^{12} + \dots - 6y - 1)(y^{16} - 13y^{15} + \dots - 519558y + 128881)$ $\cdot (y^{19} - 20y^{18} + \dots + 273y - 36)$
c_3	$((y^4 - 7y^3 + 15y^2 - 2y + 1)^4)(y^{13} - 18y^{12} + \dots - 59y - 25)$ $\cdot (y^{19} - 25y^{18} + \dots + 6064y - 256)$
c_4, c_9, c_{10}	$((y^{2} - 3y + 1)^{8})(y^{13} - 14y^{12} + \dots + 12y - 1)$ $\cdot (y^{19} - 17y^{18} + \dots + 128y - 256)$
c_6, c_7, c_{11}	$(y^{13} - 7y^{12} + \dots - 9y - 1)(y^{16} - 21y^{15} + \dots - 63668y + 3481)$ $\cdot (y^{19} - 33y^{18} + \dots + 12y - 1)$
c_8	$((y^4 + y^3 + 3y^2 + 2y + 1)^4)(y^{13} - 2y^{12} + \dots + 10y - 1)$ $\cdot (y^{19} - y^{18} + \dots - 116y - 16)$