

# Predicting Smoking Status for a Smoke-Free Future

### Introduction

This project addresses the global health impact of smoking by developing a machine learning model to **predict an individual's smoking status** using bio-signals.

With smoking being a leading cause of preventable morbidity and mortality, current cessation methods have limited success. By leveraging machine learning, we aim to overcome these limitations and provide a more accurate prediction tool. The motivation stems from the **alarming projection of 10 million smoking-related deaths** by 2030. Our innovative approach seeks to revolutionize smoking cessation strategies, offering a valuable resource for healthcare professionals and contributing to **improved global health** outcomes.

Our goals are the following:

- develop a Machine Learning model with an AUC of at least 80%, to predict the smoking status of a person using bio signals.
- find correlations between each features and labels.

## **Data Description**

Our dataset consists of two subsets:

- training dataset
- test dataset

Within these sets, the relevant columns for analysis have been identified, including:

- **demographic** details (age, height, weight)
- health metrics (cholesterol, blood pressure)
- bio-signals (eyesight, hearing)

Initially unbalanced, the training set had 56% smokers and 44% non-smokers.

To address this, we have used 3 different methods:

- undersampling
- oversampling (SMOTE)
- overundersampling (SMOTETomek)



## **Data Analysis**

We have discovered interesting insights within our dataset. For instance, there is:

- a **negative correlation** between **age** and **smoking**. This is due to individuals who engage in smoking tend to have a shorter lifespan.
- a negative correlation between HDL and smoking. This is a consequence of tabagism. A low HDL can increase cardiovascular risks.
- a positive correlation between LDL and cholesterol levels.
  This can be attributed to the role of LDL as a protein designed to transport cholesterol within the body.
- a **positive correlation** between **smoking** and **hemoglobin**. However, smoking is also correlated with height. The increase in hemoglobin levels is more likely due to an individual's height rather than their smoking habits.





## **Machine Learning Models**

The models trained are:

- Random Forest
- XGBoost
- Gradient Boosting
- AdaBoost
- K-nearest neighbors



- The best model is XGBoost with a score of 0.867.
- The oversampling method:
  - better result on the validation set
  - worst result on the test set
- → sensitivity of models to synthetic examples, their inherent sensitivity to class imbalances, impact of choosing an inappropriate oversampling technique.
- Overall, the undersampling method performed better.

## Conclusion

#### **Summary of results:**

- Most influent features: triglyceride, HDL, and height, however this last might be due to social factors.
- Of all models, the one that performed the best was XGBoost with the undersampling method, having a score of 0.867.

#### **Validation of objectives:**

- Our goals are achieved.
- Results go even beyond the expectation: 0.867 instead of 0.8

#### **Limitations:**

- Feature quality (features informative or not).
- Significant computational resources needed.

#### **Future Perspectives:**

- Enhanced Feature Engineering.
- Incorporating External Data.