25/07/2019 Render

In [1]: from sklearn.decomposition import LatentDirichletAllocation from sklearn.feature extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine similarity from sklearn.metrics import f1 score from itertools import cycle, islice from operator import itemgetter import sif embedding wrapper import pandas as pd import numpy as np import itertools import codecs import utils import os

In [2]: # from gensim.models.keyedvectors import KeyedVectors # model = KeyedVectors.load word2vec format('/home/stirunag/pre-train ed word embeddings/PubMed-and-PMC-w2v.bin', binary=True) # model.save word2vec format('/home/stirunag/pre-trained word embeddi ngs/PubMed-and-PMC-w2v.txt', binary=False) words, embs, weight4ind = sif embedding wrapper.load embeddings("/hom e/stirunag/pre-trained word embeddings/PubMed-and-PMC-FS.txt", '/home/stirunag/ pre-trained word embeddings/wiki/enwiki vocab min200.txt') # words, embs, weight4ind = sif embedding wrapper.load embeddings("/h ome/stirunag/pre-trained word embeddings/glove/glove.6B.300d.txt", '/home/stirun ag/pre-trained word embeddings/wiki/enwiki vocab min200.txt')

In [3]: # get the current working directory data path = os.path.abspath(os.path.join(os.path.dirname(' file '), '..', 'Datasets'))+'/' # Although the dataset says csv, it is tab delimited. In addition to this, they have severe codels problems. # So best to parse throught codes first. # UnicodeDecodeError: 'utf-8' codec can't decode byte 0xfc in positio n 2: invalid start byte #open for reading with "universal" type set doc d t = codecs.open(data path+'EUADR Corpus IBIgroup/'+'EUADR drug target'+'.csv','rU','UTF-8') EUADR_drug_target = pd.read_csv(doc_d_t, sep='\t', na_filter = False) EUADR drug target['CLASS'] = 'drug gene' doc t d = codecs.open(data path+'EUADR Corpus IBIgroup/'+'EUADR targe t disease'+'.csv','rU','UTF-8',errors='ignore') EUADR target disease = pd.read csv(doc t d, sep=' \t^{\prime} , na filter = Fal se) EUADR target disease['CLASS'] = 'gene disease' doc d d = codecs.open(data path+'EUADR Corpus IBIgroup/'+'EUADR drug disease'+'.csv','rU','UTF-8') EUADR_drug_disease = pd.read_csv(doc_d_d, sep='\t', na_filter = False EUADR_drug_disease['CLASS'] = 'drug_disease'

```
25/07/2019
          df = EUADR drug target.append(EUADR target disease).append(EUADR drug
  In [4]:
          df.reset index(inplace=True)
  In [5]:
          doc embeddings = sif embedding wrapper.sentences2vecs(df["SENTENCE"],
          embs, words, weight4ind)
          df["vector"] = pd.Series(list(doc embeddings))
  In [6]:
          ground_truth = {}
          for idx, row in df.iterrows():
              ground truth[idx] = row['CLASS']
          # ground truth
          # inv map = {}
          # for k, v in ground truth.items():
                inv_map[v] = inv_map.get(v, [])
                inv map[v].append(k)
          # inv map
  In [7]:
          categories = list(df["CLASS"].unique())
          categories
  Out[7]: ['drug gene', 'gene disease', 'drug disease']
```

```
# Use LDA to get the topics and assign to class to find top performan
ing sentences
min text length=80
max iter=150
batch size=128
learning offset=300.
n topics = len(categories)
docs = df
unclassifiable = list(docs[docs["SENTENCE"].map(len) < min text lengt</pre>
h].index)
filtered = docs[~docs.index.isin(unclassifiable)]
ids = [d for d in list(filtered.index)[0:10]]
n features = 5000
tf vectorizer = TfidfVectorizer(
    stop words='english',
    max df=0.95,
    min df=0.1,
    max features=n features)
tf = tf vectorizer.fit transform(list(filtered.loc[:, 'SENTENCE']))
lda = LatentDirichletAllocation(
    n components=n topics,
    max iter=max iter,
    batch size=batch size,
    learning method='online',
    learning offset=learning_offset,
    random state=0)
lda.fit(tf)
doc topics = lda.transform(tf)
```

```
25/07/2019
          topic leaders = {"topic {}".format(i): [] for i in iter(range(n topic
  In [9]:
          doc id = filtered.index
          for idx, probs in enumerate(doc_topics):
               score = max(probs)
               topic = np.argmax(probs)
              doc id = filtered.index[idx]
               topic leaders["topic {}".format(topic)].append({"doc id": doc id,
          "score": score})
          for i in iter(range(n topics)):
               topic_leaders["topic_{}".format(i)] = sorted(
                   topic leaders["topic {}".format(i)], key=itemgetter('score'),
          reverse=True)
          topic_leaders
```

```
^{25/07/2019}]: {'topic_0': [{'doc_id': 260, 'score': ^{Re70}.7238185053008797},
             {'doc id': 261, 'score': 0.7238185053008797},
             {'doc id': 273, 'score': 0.7238185053008797}.
             {'doc id': 277, 'score': 0.7238185053008797},
             {'doc id': 278, 'score': 0.7238185053008797},
             {'doc id': 322, 'score': 0.7238185053008797},
             {'doc id': 325, 'score': 0.7238185053008797},
             {'doc id': 326,
                             'score': 0.7238185053008797},
             {'doc id': 327. 'score': 0.7238185053008797}.
             {'doc id': 328, 'score': 0.7238185053008797},
             {'doc id': 346,
                              'score': 0.7238185053008797},
             {'doc id': 347, 'score': 0.7238185053008797},
             {'doc id': 359, 'score': 0.7238185053008797},
             {'doc id': 362, 'score': 0.7238185053008797},
             {'doc id': 367, 'score': 0.7238185053008797},
             {'doc id': 471, 'score': 0.7238185053008797},
             {'doc id': 472, 'score': 0.7238185053008797},
             {'doc id': 503,
                             'score': 0.7238185053008797},
             {'doc id': 558,
                              'score': 0.7238185053008797},
             {'doc id': 570. 'score': 0.7238185053008797}.
             {'doc id': 226, 'score': 0.6666231079772607},
             {'doc_id': 227, 'score': 0.6666231079772607},
             {'doc id': 228, 'score': 0.6666231079772607},
             {'doc id': 235, 'score': 0.6666231079772607},
             {'doc id': 248, 'score': 0.6666231079772607},
             {'doc_id': 249,
                             'score': 0.6666231079772607},
             {'doc id': 283, 'score': 0.6666231079772607},
             {'doc id': 285, 'score': 0.6666231079772607},
             {'doc id': 293, 'score': 0.6666231079772607},
             {'doc id': 294,
                             'score': 0.6666231079772607},
             {'doc id': 318, 'score': 0.6666231079772607},
             {'doc id': 319, 'score': 0.6666231079772607},
             {'doc id': 320, 'score': 0.6666231079772607},
             {'doc id': 338, 'score': 0.6666231079772607},
             {'doc id': 357, 'score': 0.6666231079772607},
             {'doc_id': 360, 'score': 0.6666231079772607},
             {'doc id': 363, 'score': 0.6666231079772607},
             {'doc id': 364, 'score': 0.6666231079772607},
             {'doc id': 366, 'score': 0.6666231079772607},
             {'doc_id': 371, 'score': 0.6666231079772607},
             {'doc id': 372, 'score': 0.6666231079772607},
             {'doc id': 375, 'score': 0.6666231079772607},
             {'doc id': 381, 'score': 0.6666231079772607},
             {'doc_id': 383, 'score': 0.6666231079772607},
             {'doc id': 384, 'score': 0.6666231079772607},
             {'doc id': 386, 'score': 0.6666231079772607},
             {'doc_id': 387, 'score': 0.6666231079772607},
             {'doc id': 389,
                              'score': 0.6666231079772607},
             {'doc id': 415, 'score': 0.6666231079772607},
             {'doc id': 464, 'score': 0.6666231079772607},
             {'doc_id': 483, 'score': 0.6666231079772607},
             {'doc id': 484, 'score': 0.6666231079772607},
             {'doc id': 487, 'score': 0.6666231079772607},
              'doc id': 488, 'score': 0.6666231079772607},
             {'doc_id': 489,
                             'score': 0.6666231079772607},
             {'doc id': 491, 'score': 0.6666231079772607},
             {'doc_id': 500, 'score': 0.6666231079772607},
             {'doc id': 501, 'score': 0.6666231079772607},
                             'score': 0.6666231079772607},
             {'doc id': 502,
             {'doc id': 505, 'score': 0.6666231079772607},
             {'doc_id': 507, 'score': 0.6666231079772607},
             {'doc_id': 508,
                              'score': 0.6666231079772607},
{ 'doc_id': 519, 'score': 0.6666231079772607}, https://github.com/tsantosh7/Unsupervised-Protein-Genes-Diseases-Extraction/blob/master/Code/Few_Shot_Learning_Relation... 5/97
```

```
{'doc id': 520, 'score': 0.6666231679472607}.
{'doc id': 524, 'score': 0.6666231079772607},
{'doc id': 525, 'score': 0.6666231079772607},
{'doc id': 589,
               'score': 0.6666231079772607},
{'doc id': 595,
                'score': 0.6666231079772607},
 'doc id': 603,
                'score': 0.6666231079772607},
{'doc id': 604,
                'score': 0.6666231079772607},
{'doc id': 644, 'score': 0.6666231079772607},
{'doc id': 645, 'score': 0.6666231079772607},
{'doc id': 653, 'score': 0.6666231079772607},
{'doc id': 685,
                'score': 0.6666231079772607},
{'doc id': 699. 'score': 0.6666231079772607}.
                'score': 0.6666231079772607},
{'doc id': 703,
                'score': 0.6666231079772607},
{'doc id': 704,
{'doc id': 707,
                'score': 0.6666231079772607},
{'doc id': 717, 'score': 0.6666231079772607},
{'doc id': 791, 'score': 0.6666231079772607},
{'doc id': 792, 'score': 0.6666231079772607},
{'doc id': 32, 'score': 0.6666173633870782},
{'doc id': 33, 'score': 0.6666173633870782},
 'doc id': 34,
               'score': 0.6666173633870782},
{'doc id': 38,
               'score': 0.6666173633870782},
{'doc id': 39, 'score': 0.6666173633870782},
{'doc id': 205, 'score': 0.6666173633870782},
{'doc id': 206, 'score': 0.6666173633870782},
{'doc id': 210, 'score': 0.6666173633870782},
{'doc id': 216, 'score': 0.6666173633870782},
 'doc id': 219, 'score': 0.6666173633870782},
{'doc id': 288,
                'score': 0.6666173633870782},
{'doc id': 316, 'score': 0.6666173633870782},
{'doc id': 317, 'score': 0.6666173633870782},
{'doc id': 333, 'score': 0.6666173633870782},
                'score': 0.6666173633870782},
{'doc id': 337,
{'doc id': 349, 'score': 0.6666173633870782},
{'doc id': 350, 'score': 0.6666173633870782},
{'doc id': 351,
                'score': 0.6666173633870782},
{'doc id': 352, 'score': 0.6666173633870782},
{'doc id': 353, 'score': 0.6666173633870782},
{'doc id': 376, 'score': 0.6666173633870782},
{'doc id': 418,
               'score': 0.6666173633870782},
{'doc id': 419, 'score': 0.6666173633870782},
{'doc id': 420, 'score': 0.6666173633870782},
{'doc_id': 421,
                'score': 0.6666173633870782},
{'doc id': 423, 'score': 0.6666173633870782},
{'doc id': 446, 'score': 0.6666173633870782},
{'doc id': 452, 'score': 0.6666173633870782},
{'doc_id': 454,
                'score': 0.6666173633870782},
{'doc id': 467, 'score': 0.6666173633870782},
{'doc id': 470,
                'score': 0.6666173633870782},
 'doc_id': 509,
                'score': 0.6666173633870782},
{'doc id': 510,
                'score': 0.6666173633870782},
{'doc id': 532, 'score': 0.6666173633870782},
{'doc id': 534, 'score': 0.6666173633870782},
{'doc_id': 536, 'score': 0.6666173633870782},
{'doc id': 538, 'score': 0.6666173633870782},
{'doc id': 539,
                'score': 0.6666173633870782},
                'score': 0.6666173633870782},
 'doc id': 540,
{'doc_id': 567,
                'score': 0.6666173633870782},
{'doc id': 573, 'score': 0.6666173633870782},
{'doc id': 599, 'score': 0.6666173633870782},
{'doc id': 480, 'score': 0.5860739080994982},
{'doc id': 481, 'score': 0.5860739080994982},
{'doc id': 485, 'score': 0.5860739080994982},
```

```
{'doc id': 486.
            'score': 0.5860739680994982}.
{'doc id': 490, 'score': 0.5860739080994982},
{'doc id': 492, 'score': 0.5860739080994982},
{'doc id': 477,
            'score': 0.5746127905833837},
{'doc id': 138, 'score': 0.5370254512192199},
{'doc id': 141,
             'score': 0.5370254512192199},
{'doc id': 392,
             'score': 0.520664103202985},
{'doc id': 393,
            'score': 0.520664103202985},
{'doc id': 395, 'score': 0.520664103202985},
{'doc id': 396, 'score': 0.520664103202985},
{'doc id': 397,
            'score': 0.520664103202985},
{'doc id': 398.
            'score': 0.520664103202985}.
{'doc id': 400,
            'score': 0.520664103202985},
{'doc_id': 401,
             'score': 0.520664103202985},
{'doc id': 402,
            'score': 0.520664103202985},
{'doc id': 403, 'score': 0.520664103202985},
{'doc id': 404, 'score': 0.520664103202985},
{'doc_id': 405,
            'score': 0.520664103202985},
{'doc id': 407,
            'score': 0.520664103202985},
{'doc id': 408,
            'score': 0.520664103202985},
 'doc id': 409,
             'score': 0.520664103202985},
{'doc id': 410,
             'score': 0.520664103202985},
{'doc id': 411, 'score': 0.520664103202985},
{'doc id': 600, 'score': 0.520664103202985},
{'doc id': 256, 'score': 0.4452637462229781},
{'doc id': 259, 'score': 0.4452637462229781},
{'doc id': 272, 'score': 0.4452637462229781},
'doc id': 275,
             'score': 0.4452637462229781},
{'doc id': 331,
             'score': 0.4452637462229781},
{'doc id': 332, 'score': 0.4452637462229781},
{'doc id': 598, 'score': 0.4438969675154334},
{'doc id': 673, 'score': 0.4438969675154334},
{'doc_id': 674, 'score': 0.4438969675154334},
{'doc id': 675, 'score': 0.4438969675154334},
{'doc id': 1, 'score': 0.3333333333333333},
{'doc_id': 6, 'score': 0.3333333333333333},
{'doc id': 16, 'score': 0.3333333333333333},
{'doc id': 17, 'score': 0.3333333333333333},
{'doc id': 18, 'score': 0.3333333333333333},
{'doc id': 19,
            {'doc id': 20, 'score': 0.333333333333333},
{'doc id': 21, 'score': 0.3333333333333333},
{'doc_id': 35,
            {'doc id': 36,
{'doc id': 37, 'score': 0.333333333333333},
            {'doc id': 40,
{'doc_id': 41,
            {'doc id': 42,
            {'doc id': 43, 'score': 0.3333333333333333},
            {'doc_id': 44,
            {'doc id': 45,
{'doc id': 46,
            {'doc_id': 47,
            {'doc_id': 48,
            {'doc id': 49,
            {'doc id': 50,
            'doc id': 53,
{'doc_id': 54,
            {'doc id': 55,
{'doc id': 56,
            {'doc id': 57,
{'doc id': 58,
            {'doc id': 59, 'score': 0.333333333333333},
```

```
{'doc id': 60, 'score': 0.333333338@38B333},
{'doc id': 61, 'score': 0.3333333333333333},
          {'doc id': 62,
{'doc id': 63,
          {'doc id': 64, 'score': 0.3333333333333333},
{'doc id': 65,
          {'doc id': 66,
          {'doc id': 68,
          {'doc id': 69, 'score': 0.3333333333333333},
{'doc id': 70, 'score': 0.3333333333333333},
{'doc id': 73,
          {'doc id': 76.
{'doc id': 77,
          {'doc id': 78,
{'doc id': 79,
          {'doc id': 80, 'score': 0.333333333333333},
          {'doc id': 81,
{'doc id': 82,
          {'doc id': 83,
{'doc id': 84, 'score': 0.3333333333333333},
{'doc id': 86,
          {'doc id': 87,
{'doc id': 88,
          {'doc id': 89, 'score': 0.3333333333333333},
{'doc id': 90,
          {'doc id': 91,
          {'doc id': 92,
          'doc id': 93,
{'doc id': 94,
          {'doc id': 95,
          {'doc id': 96, 'score': 0.3333333333333333},
          {'doc id': 97,
{'doc id': 98, 'score': 0.333333333333333},
{'doc id': 99, 'score': 0.333333333333333},
{'doc id': 100, 'score': 0.3333333333333333},
{'doc id': 102, 'score': 0.3333333333333333},
{'doc id': 113, 'score': 0.3333333333333333},
{'doc id': 114, 'score': 0.3333333333333333},
{'doc_id': 115, 'score': 0.3333333333333333},
{'doc id': 116, 'score': 0.3333333333333333},
{'doc id': 117, 'score': 0.333333333333333},
{'doc id': 118, 'score': 0.3333333333333333},
{'doc_id': 121, 'score': 0.333333333333333},
{'doc id': 122, 'score': 0.3333333333333333},
{'doc id': 125, 'score': 0.333333333333333},
{'doc id': 126, 'score': 0.333333333333333},
           {'doc_id': 128,
{'doc id': 129, 'score': 0.3333333333333333},
{'doc id': 130, 'score': 0.3333333333333333},
{'doc_id': 131,
           {'doc id': 132,
           {'doc id': 133, 'score': 0.3333333333333333},
{'doc_id': 137, 'score': 0.3333333333333333},
{'doc_id': 139, 'score': 0.33333333333333333},
{'doc id': 140, 'score': 0.333333333333333},
{'doc id': 142, 'score': 0.333333333333333},
{'doc_id': 144,
           {'doc id': 146, 'score': 0.3333333333333333},
{'doc id': 148, 'score': 0.333333333333333},
{'doc id': 149, 'score': 0.33333333333333333},
{'doc id': 151, 'score': 0.3333333333333333},
{'doc id': 152, 'score': 0.3333333333333333},
```

```
{'doc id': 153, 'score': 0.33333338@3@B33333},
{'doc id': 154, 'score': 0.333333333333333},
{'doc id': 155, 'score': 0.33333333333333333},
{'doc id': 156,
           {'doc id': 157,
           {'doc id': 158,
           {'doc id': 159,
           {'doc id': 160,
           {'doc id': 162,
           {'doc id': 163,
{'doc id': 164,
           {'doc id': 166, 'score': 0.333333333333333},
           {'doc id': 173,
           {'doc id': 174,
{'doc id': 175, 'score': 0.3333333333333333},
{'doc id': 176, 'score': 0.333333333333333},
{'doc id': 177, 'score': 0.333333333333333},
{'doc id': 178,
           {'doc id': 179, 'score': 0.3333333333333333},
{'doc id': 180,
           {'doc id': 182,
            {'doc id': 183,
{'doc id': 185, 'score': 0.3333333333333333},
{'doc id': 186, 'score': 0.333333333333333},
{'doc_id': 187, 'score': 0.3333333333333333},
{'doc id': 188, 'score': 0.333333333333333},
{'doc id': 190, 'score': 0.333333333333333},
            {'doc id': 191,
{'doc id': 193,
           {'doc id': 195, 'score': 0.3333333333333333},
{'doc id': 196, 'score': 0.333333333333333},
{'doc id': 197, 'score': 0.3333333333333333},
{'doc id': 198, 'score': 0.333333333333333},
{'doc id': 199, 'score': 0.3333333333333333},
{'doc id': 200,
           {'doc id': 201,
           {'doc id': 202, 'score': 0.333333333333333},
{'doc id': 203, 'score': 0.333333333333333},
{'doc id': 204, 'score': 0.3333333333333333},
           {'doc id': 207,
{'doc id': 208, 'score': 0.333333333333333},
{'doc id': 209, 'score': 0.333333333333333},
{'doc_id': 211,
           {'doc_id': 212, 'score': 0.3333333333333333},
{'doc id': 214, 'score': 0.333333333333333},
{'doc id': 215, 'score': 0.333333333333333},
{'doc_id': 217,
           {'doc id': 220, 'score': 0.333333333333333},
{'doc id': 223,
           {'doc_id': 224,
            {'doc id': 225,
           {'doc id': 229, 'score': 0.3333333333333333},
{'doc_id': 230, 'score': 0.333333333333333},
{'doc_id': 231, 'score': 0.333333333333333},
{'doc id': 232, 'score': 0.3333333333333333},
{'doc id': 233, 'score': 0.333333333333333},
'doc id': 234,
            {'doc_id': 236,
           {'doc id': 237, 'score': 0.3333333333333333},
{'doc id': 238, 'score': 0.333333333333333},
{'doc id': 239, 'score': 0.3333333333333333},
{'doc id': 240, 'score': 0.333333333333333},
{'doc id': 241, 'score': 0.333333333333333},
```

```
{'doc id': 247, 'score': 0.33333338@3@B33333},
{'doc id': 250,
           {'doc id': 253, 'score': 0.3333333333333333},
{'doc id': 254,
           {'doc id': 255,
           {'doc id': 268,
            {'doc id': 279,
           {'doc id': 282,
           {'doc id': 284, 'score': 0.333333333333333},
{'doc id': 287, 'score': 0.3333333333333333},
{'doc id': 289,
           {'doc id': 290.
{'doc id': 291,
           {'doc id': 292,
           {'doc id': 295,
           {'doc id': 297, 'score': 0.333333333333333},
{'doc id': 300, 'score': 0.3333333333333333},
{'doc id': 302,
           {'doc id': 303,
           {'doc id': 304,
{'doc id': 305,
            {'doc id': 306,
           {'doc id': 307, 'score': 0.333333333333333},
{'doc id': 308, 'score': 0.333333333333333},
{'doc_id': 309, 'score': 0.3333333333333333},
{'doc id': 310, 'score': 0.3333333333333333},
{'doc id': 311, 'score': 0.3333333333333333},
           {'doc id': 312,
{'doc id': 313,
           {'doc id': 314, 'score': 0.3333333333333333},
{'doc id': 315, 'score': 0.3333333333333333},
{'doc_id': 321, 'score': 0.3333333333333333},
{'doc id': 323, 'score': 0.333333333333333},
{'doc id': 324, 'score': 0.333333333333333},
{'doc id': 330, 'score': 0.333333333333333},
           {'doc id': 334,
{'doc id': 335, 'score': 0.3333333333333333},
{'doc id': 336, 'score': 0.3333333333333333},
{'doc id': 339, 'score': 0.3333333333333333},
{'doc id': 340,
           {'doc id': 341, 'score': 0.333333333333333},
{'doc id': 342, 'score': 0.333333333333333},
{'doc_id': 343, 'score': 0.333333333333333},
{'doc id': 344, 'score': 0.333333333333333},
{'doc id': 345, 'score': 0.333333333333333},
{'doc id': 348, 'score': 0.333333333333333},
           {'doc_id': 358,
{'doc id': 361, 'score': 0.3333333333333333},
{'doc id': 365,
           {'doc_id': 368,
            {'doc id': 369,
           {'doc id': 370, 'score': 0.3333333333333333},
{'doc id': 373, 'score': 0.333333333333333},
{'doc_id': 374, 'score': 0.3333333333333333},
{'doc id': 378, 'score': 0.333333333333333},
{'doc id': 379, 'score': 0.333333333333333},
            'doc id': 380,
{'doc_id': 382,
           {'doc id': 385, 'score': 0.3333333333333333},
{'doc id': 388, 'score': 0.333333333333333},
{'doc id': 414, 'score': 0.3333333333333333},
{'doc id': 424, 'score': 0.333333333333333},
{'doc id': 425, 'score': 0.333333333333333},
```

```
{'doc id': 426.
            'score': 0.3333333B@@BB33333},
{'doc id': 427, 'score': 0.333333333333333},
{'doc id': 428, 'score': 0.3333333333333333},
{'doc id': 429,
           {'doc id': 430, 'score': 0.333333333333333},
{'doc id': 431,
           {'doc id': 432,
            {'doc id': 433, 'score': 0.3333333333333333},
{'doc id': 434, 'score': 0.333333333333333},
{'doc id': 435, 'score': 0.333333333333333},
{'doc id': 436,
           {'doc id': 437.
{'doc id': 438,
           {'doc_id': 439,
           {'doc id': 440, 'score': 0.333333333333333},
{'doc id': 441, 'score': 0.333333333333333},
{'doc id': 442, 'score': 0.3333333333333333},
{'doc_id': 443,
           {'doc id': 444, 'score': 0.333333333333333},
{'doc id': 445,
           {'doc id': 447,
            {'doc id': 448,
           {'doc id': 449, 'score': 0.3333333333333333},
{'doc id': 450, 'score': 0.333333333333333},
{'doc_id': 453, 'score': 0.33333333333333333},
{'doc id': 456, 'score': 0.3333333333333333},
{'doc_id': 457,
           'doc id': 468,
            {'doc_id': 469,
            {'doc id': 473, 'score': 0.3333333333333333},
{'doc id': 474, 'score': 0.333333333333333},
{'doc id': 482, 'score': 0.3333333333333333},
{'doc id': 493,
           {'doc id': 497,
           {'doc_id': 498, 'score': 0.3333333333333333},
{'doc id': 499, 'score': 0.333333333333333},
{'doc id': 504, 'score': 0.333333333333333},
{'doc id': 506, 'score': 0.3333333333333333},
{'doc id': 512,
           {'doc id': 522, 'score': 0.333333333333333},
{'doc id': 530, 'score': 0.3333333333333333},
{'doc_id': 531,
           {'doc_id': 533, 'score': 0.3333333333333333},
{'doc id': 535, 'score': 0.3333333333333333},
{'doc id': 537, 'score': 0.3333333333333333},
{'doc_id': 542,
           {'doc id': 543, 'score': 0.3333333333333333},
{'doc id': 544, 'score': 0.333333333333333},
{'doc_id': 545,
            {'doc id': 546,
            {'doc id': 560, 'score': 0.33333333333333333},
{'doc id': 563, 'score': 0.3333333333333333},
{'doc_id': 564, 'score': 0.33333333333333333},
{'doc_id': 566, 'score': 0.3333333333333333},
{'doc id': 568, 'score': 0.3333333333333333},
            'doc id': 569,
{'doc_id': 571,
            {'doc id': 572, 'score': 0.3333333333333333},
{'doc id': 574, 'score': 0.333333333333333},
{'doc id': 575, 'score': 0.33333333333333333},
{'doc id': 576, 'score': 0.333333333333333},
{'doc id': 577, 'score': 0.3333333333333333},
```

```
{'doc id': 578, 'score': 0.33333338@3@33333},
{'doc id': 579, 'score': 0.3333333333333333},
{'doc_id': 580, 'score': 0.3333333333333333},
{'doc id': 582,
          {'doc id': 583,
          {'doc id': 584,
           {'doc_id': 585,
           {'doc id': 586,
          {'doc id': 587, 'score': 0.333333333333333},
{'doc id': 588, 'score': 0.3333333333333333},
{'doc id': 592,
          {'doc id': 593, 'score': 0.3333333333333333},
          {'doc id': 594,
{'doc_id': 597,
           {'doc id': 602,
          {'doc id': 605, 'score': 0.3333333333333333},
{'doc id': 606, 'score': 0.3333333333333333},
          {'doc id': 608,
{'doc id': 609, 'score': 0.3333333333333333},
{'doc id': 610,
          {'doc id': 617,
           {'doc id': 618,
{'doc id': 619, 'score': 0.33333333333333333},
{'doc id': 621, 'score': 0.3333333333333333},
          {'doc id': 622,
          {'doc id': 623,
{'doc id': 624,
          'doc id': 625,
           {'doc id': 626,
           {'doc id': 627,
          {'doc id': 628, 'score': 0.3333333333333333},
{'doc id': 629, 'score': 0.3333333333333333},
{'doc id': 630, 'score': 0.3333333333333333},
{'doc id': 631, 'score': 0.3333333333333333},
{'doc id': 632,
          {'doc id': 633,
{'doc id': 635, 'score': 0.3333333333333333},
{'doc id': 636, 'score': 0.3333333333333333},
{'doc id': 637, 'score': 0.3333333333333333},
{'doc id': 638,
          {'doc id': 639, 'score': 0.333333333333333},
{'doc id': 640,
          {'doc_id': 642,
          {'doc id': 643, 'score': 0.333333333333333},
{'doc id': 646, 'score': 0.333333333333333},
{'doc id': 647, 'score': 0.333333333333333},
          {'doc_id': 648,
{'doc id': 649, 'score': 0.3333333333333333},
{'doc id': 650,
          {'doc_id': 651,
           {'doc id': 652,
          {'doc id': 654, 'score': 0.33333333333333333},
{'doc id': 658, 'score': 0.3333333333333333},
{'doc_id': 661, 'score': 0.333333333333333},
{'doc id': 664, 'score': 0.3333333333333333},
{'doc_id': 665,
          'doc id': 666,
{'doc_id': 667,
          {'doc id': 668, 'score': 0.3333333333333333},
{'doc id': 669, 'score': 0.333333333333333},
{'doc id': 678, 'score': 0.33333333333333333},
{'doc id': 679, 'score': 0.3333333333333333},
{'doc id': 680, 'score': 0.333333333333333},
```

```
{'doc id': 681.
           'score': 0.33333338@BB33333}.
{'doc id': 683, 'score': 0.3333333333333333},
{'doc id': 691, 'score': 0.3333333333333333},
{'doc id': 693,
           {'doc id': 694, 'score': 0.333333333333333},
{'doc id': 695,
            {'doc_id': 696,
            {'doc id': 697,
           {'doc id': 698, 'score': 0.3333333333333333},
{'doc id': 700, 'score': 0.3333333333333333},
{'doc id': 714,
           {'doc id': 718, 'score': 0.3333333333333333},
           {'doc id': 719,
{'doc_id': 720,
            {'doc id': 721,
           {'doc id': 722, 'score': 0.333333333333333},
{'doc id': 723, 'score': 0.3333333333333333},
{'doc_id': 724,
           {'doc id': 725,
           {'doc id': 726,
           {'doc id': 727,
            {'doc id': 728,
           {'doc id': 729, 'score': 0.3333333333333333},
{'doc id': 730, 'score': 0.333333333333333},
{'doc_id': 731, 'score': 0.3333333333333333},
{'doc id': 732, 'score': 0.333333333333333},
{'doc id': 733, 'score': 0.333333333333333},
{'doc id': 734,
            {'doc id': 735,
            {'doc id': 736, 'score': 0.3333333333333333},
{'doc id': 738, 'score': 0.333333333333333},
{'doc id': 740, 'score': 0.3333333333333333},
{'doc id': 741,
           {'doc id': 742, 'score': 0.333333333333333},
{'doc id': 744, 'score': 0.333333333333333},
           {'doc id': 745,
{'doc id': 753, 'score': 0.333333333333333},
{'doc id': 754, 'score': 0.333333333333333},
{'doc id': 775, 'score': 0.3333333333333333},
{'doc id': 776,
           {'doc id': 777, 'score': 0.333333333333333},
{'doc id': 779, 'score': 0.333333333333333},
{'doc_id': 786,
            {'doc_id': 787, 'score': 0.3333333333333333},
{'doc id': 788, 'score': 0.333333333333333},
{'doc id': 789, 'score': 0.333333333333333},
           {'doc_id': 790,
{'doc id': 794, 'score': 0.3333333333333333},
{'doc id': 795,
           {'doc_id': 796,
            {'doc id': 797,
           {'doc id': 798, 'score': 0.3333333333333333},
{'doc id': 802, 'score': 0.333333333333333},
{'doc_id': 803, 'score': 0.33333333333333333},
{'doc_id': 807, 'score': 0.3333333333333333},
{'doc id': 810, 'score': 0.3333333333333333},
            'doc id': 811,
{'doc_id': 812,
           {'doc id': 813, 'score': 0.3333333333333333},
{'doc id': 814, 'score': 0.333333333333333},
{'doc id': 815, 'score': 0.33333333333333333},
{'doc id': 816, 'score': 0.3333333333333333},
{'doc id': 817, 'score': 0.3333333333333333},
```

```
{'doc id': 818, 'score': 0.3333333Bease33333}.
{'doc id': 819, 'score': 0.3333333333333333},
{'doc id': 820, 'score': 0.33333333333333333}},
{'doc id': 821,
               {'doc id': 822, 'score': 0.333333333333333},
{'doc id': 823, 'score': 0.333333333333333},
{'doc_id': 824,
                {'doc id': 825, 'score': 0.3333333333333333},
{'doc id': 826, 'score': 0.3333333333333333},
{'doc id': 829, 'score': 0.333333333333333},
{'doc id': 830, 'score': 0.3333333333333333},
{'doc id': 833, 'score': 0.333333333333333},
{'doc id': 834, 'score': 0.3333333333333333},
{'doc id': 835, 'score': 0.3333333333333333},
{'doc id': 836, 'score': 0.3333333333333333},
{'doc_id': 837, 'score': 0.33333333333333333},
{'doc_id': 838, 'score': 0.3333333333333333},
{'doc id': 839, 'score': 0.333333333333333}},
'topic 1': [{'doc id': 0, 'score': 0.6666534244750105},
{'doc id': 2, 'score': 0.6666534244750105},
{'doc id': 3,
             'score': 0.6666534244750105},
{'doc id': 4, 'score': 0.6666534244750105},
{'doc id': 5, 'score': 0.6666534244750105},
{'doc_id': 8, 'score': 0.6666534244750105},
{'doc id': 9, 'score': 0.6666534244750105},
{'doc id': 10, 'score': 0.6666534244750105},
{'doc id': 11, 'score': 0.6666534244750105},
{'doc_id': 12,
               'score': 0.6666534244750105},
{'doc id': 134, 'score': 0.6666534244750105},
{'doc id': 135, 'score': 0.6666534244750105},
{'doc id': 147, 'score': 0.6666534244750105},
{'doc id': 167, 'score': 0.6666534244750105},
{'doc id': 265, 'score': 0.6666534244750105},
{'doc id': 266, 'score': 0.6666534244750105},
{'doc id': 267, 'score': 0.6666534244750105},
{'doc id': 276, 'score': 0.6666534244750105},
{'doc_id': 354, 'score': 0.6666534244750105},
{'doc id': 356, 'score': 0.6666534244750105},
{'doc id': 394, 'score': 0.6666534244750105},
{'doc id': 406, 'score': 0.6666534244750105},
{'doc id': 412, 'score': 0.6666534244750105},
{'doc_id': 413, 'score': 0.6666534244750105},
{'doc id': 416, 'score': 0.6666534244750105},
{'doc id': 417, 'score': 0.6666534244750105},
{'doc id': 461, 'score': 0.6666534244750105},
{'doc_id': 462,
               'score': 0.6666534244750105},
{'doc id': 463, 'score': 0.6666534244750105},
{'doc id': 465, 'score': 0.6666534244750105},
{'doc_id': 466,
                'score': 0.6666534244750105},
{'doc id': 549,
                'score': 0.6666534244750105},
{'doc id': 550, 'score': 0.6666534244750105},
{'doc id': 555, 'score': 0.6666534244750105},
{'doc_id': 556, 'score': 0.6666534244750105},
{'doc id': 657, 'score': 0.6666534244750105},
{'doc id': 662, 'score': 0.6666534244750105},
                'score': 0.6666534244750105},
 'doc id': 782,
{'doc_id': 801,
                'score': 0.6666534244750105},
{'doc id': 804, 'score': 0.6666534244750105},
{'doc id': 805, 'score': 0.6666534244750105},
{'doc id': 806, 'score': 0.6666534244750105},
{'doc id': 778, 'score': 0.5391665330232535},
{'doc id': 780, 'score': 0.5391665330232535},
```

```
25/07/2019
            {'doc id': 262, 'score': 0.4499091B5246539294}.
            {'doc id': 263, 'score': 0.44990913524539294},
            {'doc id': 270, 'score': 0.44990913524539294},
            {'doc id': 271,
                             'score': 0.44990913524539294},
            {'doc id': 296,
                             'score': 0.44990913524539294},
            {'doc id': 458,
                             'score': 0.44990913524539294}.
            {'doc_id': 459,
                             'score': 0.44990913524539294},
            {'doc id': 460,
                             'score': 0.44990913524539294},
            {'doc id': 743,
                             'score': 0.44990913524539294},
            {'doc id': 761,
                             'score': 0.44990913524539294},
            {'doc id': 762,
                             'score': 0.44990913524539294},
            {'doc id': 763.
                             'score': 0.44990913524539294}.
            {'doc id': 764,
                             'score': 0.44990913524539294},
            {'doc id': 765,
                             'score': 0.44990913524539294},
            {'doc id': 766,
                             'score': 0.44990913524539294},
            {'doc id': 767, 'score': 0.44990913524539294},
            {'doc id': 769,
                             'score': 0.44990913524539294},
            {'doc id': 770,
                            'score': 0.44990913524539294},
            {'doc id': 784, 'score': 0.44990913524539294},
                             'score': 0.43698676211708853},
            {'doc id': 399,
              'doc id': 548,
                             'score': 0.43698676211708853},
            {'doc id': 551,
                             'score': 0.43698676211708853},
            {'doc id': 552, 'score': 0.43698676211708853}.
            {'doc id': 676, 'score': 0.43698676211708853},
            {'doc_id': 286, 'score': 0.43566057995314783},
            {'doc id': 329, 'score': 0.43566057995314783},
            {'doc id': 355, 'score': 0.43566057995314783},
            {'doc id': 601,
                             'score': 0.43566057995314783},
            {'doc id': 455, 'score': 0.34490764706053095}],
            'topic 2': [{'doc id': 511, 'score': 0.723367759759252},
            {'doc id': 516, 'score': 0.723367759759252},
            {'doc id': 526, 'score': 0.723367759759252},
            {'doc id': 528, 'score': 0.723367759759252},
            {'doc id': 529, 'score': 0.723367759759252},
            {'doc id': 687,
                             'score': 0.723367759759252},
                             'score': 0.723367759759252},
            {'doc id': 773,
            {'doc id': 783, 'score': 0.723367759759252},
            {'doc id': 785, 'score': 0.723367759759252},
            {'doc id': 611, 'score': 0.7182862983141161},
            {'doc id': 612,
                             'score': 0.7182862983141161},
            {'doc id': 613, 'score': 0.7182862983141161},
            {'doc id': 615,
                             'score': 0.7182862983141161},
            {'doc_id': 616,
                             'score': 0.7182862983141161},
            {'doc id': 181, 'score': 0.66662423509718},
            {'doc id': 184, 'score': 0.66662423509718},
            {'doc id': 189, 'score': 0.66662423509718},
                            'score': 0.66662423509718},
            {'doc_id': 192,
            {'doc id': 194, 'score': 0.66662423509718},
            {'doc id': 221,
                             'score': 0.66662423509718},
            {'doc_id': 242,
                             'score': 0.66662423509718},
            {'doc id': 244,
                             'score': 0.66662423509718},
            {'doc id': 246, 'score': 0.66662423509718},
            {'doc_id': 257, 'score': 0.66662423509718},
            {'doc_id': 258, 'score': 0.66662423509718},
            {'doc id': 264,
                            'score': 0.66662423509718},
            {'doc id': 274,
                            'score': 0.66662423509718},
                             'score': 0.66662423509718},
              'doc id': 280,
            {'doc_id': 298,
                             'score': 0.66662423509718},
            {'doc id': 299, 'score': 0.66662423509718},
            {'doc id': 301, 'score': 0.66662423509718},
            {'doc id': 377, 'score': 0.66662423509718},
            {'doc id': 390, 'score': 0.66662423509718},
            {'doc id': 391, 'score': 0.66662423509718},
```

```
{'doc id': 451. 'score': 0.6666242B509718}.
{'doc id': 475, 'score': 0.66662423509718},
{'doc_id': 476, 'score': 0.66662423509718},
{'doc id': 478, 'score': 0.66662423509718},
{'doc id': 479, 'score': 0.66662423509718},
 'doc id': 494.
                'score': 0.66662423509718},
{'doc_id': 496,
                'score': 0.66662423509718},
{'doc id': 513,
                'score': 0.66662423509718},
{'doc id': 517, 'score': 0.66662423509718},
{'doc id': 518, 'score': 0.66662423509718},
{'doc id': 521,
                'score': 0.66662423509718},
{'doc id': 523.
                'score': 0.66662423509718},
                'score': 0.66662423509718},
{'doc id': 557,
{'doc_id': 559,
                'score': 0.66662423509718},
{'doc id': 561,
               'score': 0.66662423509718},
{'doc id': 562, 'score': 0.66662423509718},
{'doc id': 565, 'score': 0.66662423509718},
{'doc_id': 591,
                'score': 0.66662423509718},
{'doc id': 596, 'score': 0.66662423509718},
                'score': 0.66662423509718},
{'doc id': 607,
 'doc id': 656,
                'score': 0.66662423509718},
{'doc id': 659,
                'score': 0.66662423509718},
{'doc id': 660, 'score': 0.66662423509718},
{'doc id': 663, 'score': 0.66662423509718},
{'doc id': 688, 'score': 0.66662423509718},
{'doc id': 701,
               'score': 0.66662423509718},
{'doc id': 702,
                'score': 0.66662423509718},
                'score': 0.66662423509718},
 'doc id': 705,
{'doc id': 706,
                'score': 0.66662423509718},
{'doc id': 708, 'score': 0.66662423509718},
{'doc id': 709, 'score': 0.66662423509718},
{'doc id': 710, 'score': 0.66662423509718},
{'doc id': 711,
                'score': 0.66662423509718},
{'doc id': 712, 'score': 0.66662423509718},
{'doc id': 713,
                'score': 0.66662423509718},
{'doc id': 715,
                'score': 0.66662423509718},
{'doc id': 716, 'score': 0.66662423509718},
{'doc id': 737, 'score': 0.66662423509718},
{'doc id': 739, 'score': 0.66662423509718},
{'doc id': 746,
                'score': 0.66662423509718},
                'score': 0.66662423509718},
{'doc id': 747,
{'doc id': 748,
                'score': 0.66662423509718},
{'doc_id': 749,
                'score': 0.66662423509718},
{'doc id': 750, 'score': 0.66662423509718},
{'doc id': 751, 'score': 0.66662423509718},
{'doc id': 752, 'score': 0.66662423509718},
{'doc_id': 756,
                'score': 0.66662423509718},
{'doc id': 757,
                'score': 0.66662423509718},
{'doc id': 758,
                'score': 0.66662423509718},
 'doc_id': 759,
                'score': 0.66662423509718},
{'doc id': 760,
                'score': 0.66662423509718},
{'doc id': 768, 'score': 0.66662423509718},
{'doc id': 771, 'score': 0.66662423509718},
{'doc_id': 772, 'score': 0.66662423509718},
{'doc id': 781,
                'score': 0.66662423509718},
{'doc_id': 793,
                'score': 0.66662423509718},
                'score': 0.66662423509718},
 'doc id': 799,
{'doc_id': 800,
                'score': 0.66662423509718},
{'doc id': 808, 'score': 0.66662423509718},
{'doc id': 809, 'score': 0.66662423509718},
{'doc id': 832, 'score': 0.66662423509718},
{'doc id': 840, 'score': 0.66662423509718},
{'doc id': 841, 'score': 0.66662423509718},
```

```
{'doc id': 842, 'score': 0.66662423509718}.
{'doc id': 843, 'score': 0.66662423509718},
{'doc_id': 844, 'score': 0.66662423509718},
{'doc id': 845, 'score': 0.66662423509718},
{'doc id': 7, 'score': 0.6666003786695097},
 'doc_id': 13,
               'score': 0.6666003786695097},
               'score': 0.6666003786695097},
{'doc id': 14,
{'doc id': 15,
               'score': 0.6666003786695097},
               'score': 0.6666003786695097},
{'doc id': 22,
               'score': 0.6666003786695097},
{'doc id': 23,
{'doc id': 24,
               'score': 0.6666003786695097},
               'score': 0.6666003786695097},
{'doc id': 25.
{'doc id': 26,
               'score': 0.6666003786695097},
               'score': 0.6666003786695097},
{'doc id': 27,
{'doc id': 28,
               'score': 0.6666003786695097},
{'doc id': 29,
               'score': 0.6666003786695097},
               'score': 0.6666003786695097},
{'doc id': 30,
{'doc_id': 31,
               'score': 0.6666003786695097},
               'score': 0.6666003786695097},
{'doc id': 52,
               'score': 0.6666003786695097},
{'doc id': 67,
 'doc id': 71,
               'score': 0.6666003786695097},
{'doc id': 72,
               'score': 0.6666003786695097},
{'doc id': 74, 'score': 0.6666003786695097},
{'doc id': 75, 'score': 0.6666003786695097},
               'score': 0.6666003786695097},
{'doc id': 85,
{'doc id': 101, 'score': 0.6666003786695097},
{'doc id': 103, 'score': 0.6666003786695097},
 'doc id': 104, 'score': 0.6666003786695097},
{'doc id': 105,
                'score': 0.6666003786695097},
{'doc id': 106, 'score': 0.6666003786695097},
{'doc id': 107, 'score': 0.6666003786695097},
{'doc id': 108, 'score': 0.6666003786695097},
{'doc id': 109,
               'score': 0.6666003786695097},
{'doc id': 110, 'score': 0.6666003786695097},
{'doc id': 111, 'score': 0.6666003786695097},
{'doc id': 112, 'score': 0.6666003786695097},
{'doc id': 119, 'score': 0.6666003786695097},
{'doc id': 120, 'score': 0.6666003786695097},
{'doc id': 123, 'score': 0.6666003786695097},
{'doc id': 124,
                'score': 0.6666003786695097},
{'doc id': 127, 'score': 0.6666003786695097},
{'doc id': 136, 'score': 0.6666003786695097},
{'doc_id': 161, 'score': 0.6666003786695097},
{'doc id': 165, 'score': 0.6666003786695097},
{'doc id': 168, 'score': 0.6666003786695097},
{'doc_id': 169, 'score': 0.6666003786695097},
{'doc_id': 170, 'score': 0.6666003786695097},
{'doc id': 171, 'score': 0.6666003786695097},
{'doc id': 172, 'score': 0.6666003786695097},
 'doc_id': 213,
                'score': 0.6666003786695097},
{'doc id': 218,
                'score': 0.6666003786695097},
{'doc id': 222, 'score': 0.6666003786695097},
{'doc id': 269, 'score': 0.6666003786695097},
{'doc_id': 514, 'score': 0.6666003786695097},
{'doc id': 515, 'score': 0.6666003786695097},
{'doc_id': 527,
                'score': 0.6666003786695097},
                'score': 0.6666003786695097},
 'doc id': 614,
{'doc_id': 620,
                'score': 0.6666003786695097},
{'doc id': 634, 'score': 0.6666003786695097},
{'doc id': 641, 'score': 0.6666003786695097},
{'doc id': 755, 'score': 0.6666003786695097},
{'doc id': 774, 'score': 0.6666003786695097},
{'doc id': 670, 'score': 0.43959889057783413},
```

{'doc_id': 671, 'score': 0.4395988**90**52783413}, {'doc_id': 672, 'score': 0.43959889057783413}, {'doc_id': 677, 'score': 0.43959889057783413}, {'doc_id': 682, 'score': 0.43959889057783413}]} 25/07/2019

```
25/07/2019
 In [10]: # select only those sentences which have score more than 65%
          sentences = {c:[] for c in categories}
          selected_sentences = {c:[] for c in categories}
          sentences with score = {c:[] for c in categories}
          for each_topic in topic_leaders:
               for each doc in topic leaders[each topic]:
                  gt = ground_truth[each_doc['doc_id']]
                   sentences[gt].append(each doc['doc id'])
                   sentences with score[gt].append(each doc['score'])
                    print(each doc['score'])
                  if each doc['score']>0.66:
                        selected sentences[gt].append(each doc['doc id'])
          selected sentences
```

85, 101, 103, 104, 105,

25/07/2019 386, 387, 389, 415, 464, 483, 484, 487, 488, 489, 491, 500, 501, 502, 505, 507, 508, 519, 520, 524, 525, 589, 595, 288, 316, 317, 333, 337, 349, 350, 351, 352, 353, 376, 418, 419, 420, 421, 423, 446, 452, 454, 467, 470, 509, 510, 532, 534, 536, 538, 539, 540, 567, 573, 599, 265, 266, 267, 276, 354, 356, 394,

791, 25/07/2019 792, 657, 662, 782, 801, 804, 805, 806, 687, 773, 783, 785, 611, 612, 613, 615, 616, 607, 656, 659, 660, 663, 688, 701, 702, 705, 706, 708, 709, 710, 711, 712, 713, 715, 716, 737, 739, 746, 747, 748, 749, 750, 751, 752, 756, 757, 758, 759, 760, 768, 771, 772, 781, 793, 799, 800, 808, 809, 832, 840, 841,

843, 25/07/2019 Render 844, 845, 614, 620, 634, 641, 755, 774]}

```
25/07/2019
In [51]:
           # Get average/mean of the sentence vectors that represent our topics
           category_vecs = {}
           for c in categories:
               vectors = np.asarray(list(df.loc[df.index.isin(selected_sentences
           [c])].vector))
               category vecs[c] = np.mean(vectors, axis=0)
           category_vecs
```

```
^{250772919}]: {'drug gene': array([-3.21358114e-02, Render, 47584684e-02, 8.34615362e-0
              5.54770049e-02.
                   1.22370782e-01. 6.47800698e-02.
                                                     1.48554523e-02. -4.2982385
          5e-02.
                  -5.56380577e-03, -1.21374275e-02, 1.48823383e-02, -7.6925162
          2e-02,
                   6.65993555e-02, -1.31682239e-03, -2.55387447e-02, -5.5226802
          0e-02,
                  -1.05548672e-01. -1.75949691e-01. 1.94938574e-02. 2.3221664
          5e-02.
                  -5.88295000e-02, -8.70603118e-02, -4.02607696e-02, -5.2378134
          7e-02,
                   3.46875427e-02, -6.53689495e-02, 3.71152185e-02, -6.1384682
          9e-03.
                  -2.33896747e-03. -7.99919579e-02. 2.72428694e-02. -1.0019605
          7e-01.
                  -1.26801660e-01, -1.43025047e-02, 6.74936439e-02, -9.0151912
          3e-02,
                  -3.06453595e-02, 3.62881264e-04, -8.61218259e-02, -9.9871398
          3e-02.
                   8.52346434e-03, -4.63008804e-02, 7.61586987e-02,
                                                                       6.0240554
          4e-02,
                   1.49043512e-01, -4.74789195e-02, -1.12607301e-01, -8.3132582
          9e-02,
                   3.59362343e-02, -4.91476457e-02, -5.04195978e-02, -1.7886723
          6e-02.
                  -4.30926206e-02, 1.48498244e-03, -1.17466739e-01, 2.1682045
          4e-02,
                   1.07767951e-01, -9.93113626e-03, -1.24433138e-02,
                                                                       2.5669102
          5e-02,
                   2.71850243e-02, -4.15987103e-02, 8.22673358e-04, -3.4749495
          5e-02,
                   1.32456623e-02, 1.60453196e-02, -4.28071777e-03, 3.0061921
          9e-02,
                  -3.07230631e-02, -7.02779287e-02, -6.12363811e-02, -4.2972348
          3e-02.
                  -6.42761764e-03, -1.09354332e-02, 5.83743663e-02,
                                                                       9.9726325
          1e-02,
                  -8.77940536e-03, 4.00785255e-02, -1.16835386e-02,
                                                                       5.9552757
          6e-02,
                  -8.76003605e-03, -6.34598044e-03, 1.07568391e-02,
                                                                      4.6612890
          2e-02,
                  -4.02505743e-02, 4.01753399e-02, -8.93132851e-02, -5.0025154
          7e-03,
                   3.28462713e-02, 6.83463223e-02, -8.08918575e-02, 2.9325762
          3e-02,
                  -5.23161134e-03, -1.14727769e-01, 4.87972922e-02, -3.9289824
          2e-02,
                  -3.09750358e-02, -1.60451883e-02, 1.10024698e-01,
                                                                       5.7342610
          1e-03,
                                    7.61199947e-02, -5.18658055e-02, -5.3874002
                   8.07251200e-03,
          8e-02,
                   4.25488163e-02,
                                    2.15148309e-02, -3.41121980e-02, 6.9796488
          9e-02,
                                    4.63816486e-02, 3.17021479e-02, -2.7453265
                   4.62249754e-02,
          6e-02,
                   3.22619789e-02, -4.58491603e-02,
                                                     7.02673902e-02, 2.3339126
          2e-02,
                  -1.12527125e-04,
                                    5.00852300e-03,
                                                     2.72571562e-02, -6.6868721
          4e-02,
                                                      1.01255842e-02, -5.5139334
                   4.99662371e-02, 7.79334784e-03,
          2e-02,
```

```
25/07/2019
          2e-02.
                                             Render
                  -6.55510129e-02, -6.93302098e-02, -1.62063832e-02, 4.8118767
          2e-02,
                  -3.48948293e-02, 8.52577989e-02, -3.60349288e-02,
                                                                     2.4698636
          4e-02.
                  -7.10419098e-02, -8.07612406e-02, -3.06760032e-02,
                                                                     7.2486604
          4e-02.
                  -7.84599190e-02.
                                   4.65381260e-02,
                                                    5.71827669e-02,
                                                                     3.0278500
          2e-02,
                  -7.61449952e-02,
                                   3.61775408e-02,
                                                    2.57776465e-02, -2.2741893
          6e-02,
                  5.49456848e-02.
                                  5.22752115e-02, 9.56610620e-02, 2.3250120
          6e-02,
                  3.85851059e-02, -5.21761633e-03, -1.09777188e-02, -3.0703721
          2e-02,
                  -9.00035355e-02, -4.21000435e-02, -3.67912960e-02, -2.1536545
          3e-02.
                  -3.47972345e-03. -1.46597149e-02. 4.61616761e-02.
                                                                    2.8926755
          8e-02,
                  4.50374549e-02, -1.60049456e-02, 7.57737199e-02,
                                                                     5.2776023
          4e-02,
                  1.12110462e-01, 9.67839472e-04, 7.29464514e-03, -1.1062052
          2e-01.
                  -8.76695149e-02, -4.46648288e-02, -1.71999867e-01,
                                                                    2.6458667
          5e-02,
                  -6.13840077e-02, -1.37182222e-01, 1.57664503e-02, -4.2387985
          7e-02,
                  -2.57846754e-02, -3.22512145e-02, -8.39264025e-02, -1.0153204
          4e-01.
                                   7.59434879e-03, -1.05515737e-01, -2.3676074
                  4.18404134e-02.
          0e-02,
                                   7.97219496e-02, -2.97200690e-02, -2.0964563
                  5.94890723e-02,
          9e-02.
                                   8.65183533e-02, -3.40028310e-02, 5.1889590
                  -1.49659041e-02.
          9e-02,
                  9.15189238e-03, 1.50569177e-01, -1.44747186e-02, -1.3732551
          1e-04]),
           36503,
                 0.05994518,
                  0.01016135, -0.04064447, -0.02884977, -0.02125299, 0.028787
          05,
                  -0.00961321, -0.11713743, 0.04926057,
                                                         0.01782062,
                                                                     0.013883
          86,
                  -0.03751719, -0.06298924, -0.13242544, 0.02968876,
                                                                     0.056578
          15,
                  0.02580438, -0.04663612, -0.03478725, -0.0656557, 0.038579
          02,
                  -0.04557844, 0.04125495, -0.06552493, 0.01678645, -0.063438
          93,
                  0.04707222, -0.0485334 , -0.04294874, -0.0002181 , 0.057142
          45,
                  -0.04009597, 0.03610215, 0.02675375, -0.07729152, -0.028768
          31,
                  -0.00098729, -0.0614024 , 0.05501022, 0.05027915, 0.097038
          88,
                  -0.07497141, -0.11520871, -0.09071015, -0.05484232, -0.088313
          72,
                               0.00720131, -0.01327416,
                                                         0.037259 , -0.098706
                  0.02790412,
          81,
                               0.00272046, -0.00166644,
                  0.03853304,
                                                         0.00517164, 0.017588
          52,
                  0.03860681,
                               0.00870928,
                                            0.00118799, -0.02187852,
                                                                     0.061098
```

```
-0.0008905 . -0.02307511. 0R98415092. 0.00600624. -0.012047
25/07/2019
          02,
                   -0.02262991. -0.04427554. -0.03507224. -0.03901289. -0.009809
          61,
                   0.06319557.
                                0.07922085, 0.00570427, -0.04413532, -0.012876
          94,
                   0.04755626. -0.02248873. -0.03658225. -0.02581983. -0.029596
          72,
                   -0.0559589 , -0.10173522, -0.01716438, -0.00368899,
                                                                        0.028118
          68,
                   0.00583557.
                                0.02988015. -0.08527605. -0.06217288.
                                                                        0.027981
          27.
                   0.0033972 .
                                0.00375104. -0.04024579. 0.07685259. -0.053746
          99,
                                              0.00663859, -0.02055714,
                   0.02228696,
                                0.04957056,
                                                                        0.028205
          57,
                                0.02183046.
                                              0.03147696. 0.01271996.
                  -0.03466263.
                                                                        0.008499
          64,
                                              0.03998857, -0.02785565,
                  -0.00071194. -0.02261991.
                                                                        0.071842
          61,
                  -0.01712422,
                                0.01217643,
                                              0.04677326, 0.02842865, -0.004455
          77,
                                              0.0110433 . -0.03783824.
                   0.06404803, -0.04052421.
                                                                        0.007866
          23,
                                0.03350807, -0.06536345, -0.01768567, -0.048658
                   -0.11159688.
          84,
                   0.01291716.
                                0.02250472, -0.06034084,
                                                           0.07633559, -0.026941
          02.
                   0.08186165, -0.0544764, -0.08004978,
                                                           0.00317508.
                                                                        0.010277
          26,
                                0.03649497, 0.05451602,
                  -0.04187827.
                                                           0.08189519,
                                                                        0.004970
          2,
                                0.04395742, -0.03096783,
                  -0.01435066.
                                                           0.02236778.
                                                                        0.073577
          79.
                   0.04618307.
                                0.03032329, 0.02596646, -0.01300092,
                                                                       0.013862
          76,
                   0.00233598, -0.03143857, -0.06299815, -0.02081634, -0.000635
          13,
                   -0.02390152, 0.03012555, -0.00026283,
                                                           0.11429763,
                                                                        0.030054
          69,
                   0.00265592, -0.0012079, 0.06557988,
                                                           0.04042032, -0.009574
          21,
                  -0.02174161, -0.1380254 , 0.00837358, -0.06673517, -0.105917
          6,
                  -0.0392799 , -0.01971467 , -0.10724238 , 0.01637654 , 0.002089
          37,
                  -0.08435808, 0.01913901, -0.08513355, -0.04749972,
                                                                        0.092500
          93,
                   0.03824112, -0.08837281, -0.02147611,
                                                           0.03730662, -0.080697
          29,
                   0.0099313 , -0.01862315,
                                              0.04886034,
                                                           0.07827532, -0.065298
          06,
                  -0.01439844, -0.01804423,
                                              0.1041307 , -0.04506333, 0.006562
          34]),
           'drug disease': array([-8.86178220e-02, 1.23170130e-01, 4.62812525
          e-02, -1.33085024e-02,
                   2.56571521e-02, -2.16187252e-02, 3.85098258e-02, -2.4139740
          9e-05,
                   1.23486649e-02, 6.09282665e-02, -1.06062620e-02, -6.9389112
          9e-02,
                   1.23976207e-01, -1.01147045e-02, -4.99754701e-02, -9.4884857
          1e-02,
```

2.87662765e-02,

-5.98112924e-02, -1.13503379e-01,

3.7594017

25/07/2019	4e-02,	8.68969770e-02,	Render -3.58414404e-02,	-3.72036945e-02,	-7.6340317
	5e-02,	2.36848877e-02,	-2.84954570e-02,	8.44185425e-02,	-2.4765699
	9e-02,	-5.30095734e-02,	-2.50755140e-02,	1.48308931e-02,	-8.6454199
	1e-02,	-2.89538332e-02,	-9.05582890e-02,	8.01440288e-02,	-1.8123613
	9e-02,	-2.28241684e-02,	2.92958882e-02,	-8.88554189e-02,	-6.8000589
	1e-02,	-7.51349604e-02,	-4.16578529e-02,	-7.53319021e-03,	4.7003241
	2e-02,	1.03828027e-01,	-5.00640501e-02,	-7.34445268e-02,	-3.6720579
	4e-02,			4.81136847e-02,	
	4e-02,			-8.18629921e-02,	
	2e-02,			3.06134730e-02,	
	6e-02,	·	·	2.86331937e-02,	
	4e-02,			-1.96849027e-03,	
	8e-02,			6.05962178e-02,	
	8e-02,				
	4e-02,			-2.66848381e-02,	
	6e-03,			-5.95414548e-02,	
	0e-02,			1.15688143e-01,	
	0e-02,			-6.42664748e-02,	
	7e-02,			-7.71755535e-02,	
	0e-02,			4.73831904e-02,	
	9e-03,	8.09394126e-03,	-4.45343608e-02,	4.04076181e-02,	1.8861880
	9e-02,	3.49743790e-03,	-1.47724942e-02,	5.79980115e-02,	-3.0807431
	2e-02,	5.00036306e-02,	1.35764345e-02,	1.52491129e-02,	-3.3508232
	8e-02,	-4.80903336e-02,	3.29257034e-02,	6.45979581e-02,	-6.4279498
	6e-02,	6.12040851e-03,	-1.12536650e-01,	5.59143041e-02,	5.1324418
	5e-02,	2.51608981e-02,	-1.07577571e-01,	5.42231490e-02,	8.4150181
	6e-02,	6.00497451e-02,	-4.13553702e-02,	-1.14999852e-02,	-7.8732717
	9e-02,	-7.14465793e-02,	-7.43784305e-02,	7.39431333e-02,	-6.1815588
	2e-02,	-9.83908507e-03,	-1.09549158e-02,	1.53343238e-02,	1.3255348
	7e-02,	-4.85962171e-02,	-2.51257113e-02,	-1.07426685e-01,	7.1947197
	7e-02,	-1.09830570e-01,	-4.13533681e-02,	-9.44798607e-02,	8.9254474
	1e-01,	-4.07701650e-02,	7.50666822e-03,	2.07753486e-02,	1.0819984
	16-01,				

```
-2.27786469e-02. 2.68488198eer02r 6.49099528e-02. -8.0006273
25/07/2019
          1e-02,
                   1.25897158e-02, 5.03650786e-02, 7.19706704e-02, -1.3705830
          8e-02,
                   6.99947245e-02, -1.62304185e-02, 1.14290488e-01, -1.5905206
          1e-02.
                  -2.13328624e-02. -8.49158600e-02. -1.50532624e-03. -2.1788668
          2e-02,
                  -3.43258364e-02, 5.16449212e-02, 5.49266274e-02, 2.9988891
          3e-02,
                  -5.38857925e-02. 6.17925014e-02. 6.83476099e-02. 5.5455584
          8e-02,
                   8.73546982e-02, -2.37062424e-02, -1.40647141e-02, -1.0641354
          4e-01.
                  -5.39141071e-02, -3.56814369e-02, -1.07482799e-01, 2.2183890
          4e-02,
                  -6.14145386e-03, -7.60363625e-02, 1.74184539e-03, -8.2388111
          6e-02.
                   1.56537835e-02, -8.80889696e-03, -1.13468891e-01, -1.0054183
          5e-01,
                   6.55082564e-02, 3.24151194e-02, -8.83578373e-02, -3.2835205
          1e-02.
                  -4.57187398e-02, -1.94893242e-02, -3.80555925e-02, -1.2367087
          6e-02,
                   8.62890250e-03, -1.50413678e-02, -3.82473940e-02, -4.1833532
          1e-02,
                   3.13958102e-02, 1.38209840e-01, -6.45719768e-02, 1.6321967
          2e-04])}
 In [12]: # Try to predict the label of unknown sentences
          predictions = {}
          selected idx = [j for i in selected sentences.values() for j in i]
          for idx, row in df.iterrows():
              if idx in selected idx:
                  \max sim = 0
                  winner = 'Unknown'
                  for j in category vecs:
                       sim = cosine similarity(row["vector"].reshape(1, -1), cat
          egory_vecs[j].reshape(1, -1)).flatten()[0]
                      if sim > max sim:
                          \max sim = sim
                          winner = j
                  predictions[idx] = winner
```

25/07/2019 In [74]: def get accuracy score(predictions, truth dict): preds = []labels = []mis classified = [] mis pred = [] for k,v in predictions.items(): preds.append(v) labels.append(truth dict[k]) if v!=truth dict[k]: print(str(v) + '--x--' + str(truth dict[k])) mis pred.append(str(v)) mis classified.append(k) return f1_score(labels, preds, average='weighted'), mis_classifie d, mis pred score, miss_classified_df, miss_pred = get_accuracy_score(predictions , ground truth)

```
drug disease--x--drug gene
drug disease--x--drug gene
drug disease--x--drug gene
drug_disease--x--drug gene
drug disease--x--drug gene
drug disease--x--drug gene
drug disease--x--drug gene
drug disease--x--gene disease
drug gene--x--gene disease
drug_gene--x--gene disease
drug gene--x--gene disease
drug disease--x--gene disease
drug_gene--x--gene disease
drug gene--x--gene disease
drug gene--x--gene disease
drug gene--x--gene disease
drug gene--x--gene disease
drug_gene--x--gene_disease
drug gene--x--gene disease
drug_gene--x--gene_disease
drug gene--x--gene disease
drug_disease--x--gene_disease
drug disease--x--gene disease
drug gene--x--gene disease
drug gene--x--gene disease
gene disease--x--drug disease
gene_disease--x--drug_disease
drug gene--x--drug disease
drug_gene--x--drug_disease
```

25/07/2019 In [14]: miss_calssified_df = df.iloc[miss_classified , [12,13]] miss_calssified_df['Predicted-CLASS'] = miss_pred miss_calssified_df

	SENTENCE	CLASS	Predicted- CLASS
11	The expression of ABCG2 may explain in part th	drug_gene	drug_disease
14	Oral administration of GSK221149A (5 mg/kg) wa	drug_gene	drug_disease
15	Intravenous administration of GSK221149A produ	drug_gene	drug_disease
189	Decreased plasma soluble RAGE in patients with	drug_gene	drug_disease
242	A continuous epidural infusion of ropivacaine	drug_gene	drug_disease
244	Patients received 10 mg debrisoquine (a marker	drug_gene	drug_disease
246	A continuous epidural infusion of ropivacaine	drug_gene	drug_disease
264	The prognostic value of the T393C SNP was eval	gene_disease	drug_disease
265	However, the majority of colon cancer cells ha	gene_disease	drug_gene
266	Lysophosphatidic acid facilitates proliferatio	gene_disease	drug_gene
267	A recent study showed that LPA-mediated prolif	gene_disease	drug_gene
269	The A6986G polymorphism of CYP3A5, which is in	gene_disease	drug_disease
301	The results of a phase I clinical trial of the	gene_disease	drug_gene
354	Regulation of hairy and enhancer of split homo	gene_disease	drug_gene
356	Regulation of hairy and enhancer of split homo	gene_disease	drug_gene
412	An anti-inflammatory and anticarcinogenic pote	gene_disease	drug_gene
413	An anti-inflammatory and anticarcinogenic pote	gene_disease	drug_gene
415	In contrast, enhanced COX-2 expression is cons	gene_disease	drug_gene
416	An anti-inflammatory and anticarcinogenic pote	gene_disease	drug_gene
417	An anti-inflammatory and anticarcinogenic pote	gene_disease	drug_gene
511	In CD patients, TLR-induced GM-CSF secretion w	gene_disease	drug_gene
514	Toll-like receptor-induced granulocyte-macroph	gene_disease	drug_gene
515	Toll-like receptor-induced granulocyte-macroph	gene_disease	drug_gene
516	Moreover, TNF-alpha production was induced by	gene_disease	drug_gene
517	CD patients have impaired GM-CSF secretion via	gene_disease	drug_gene
518	CD patients have impaired GM-CSF secretion via	gene_disease	drug_gene
521	CD patients with NOD2 mutations were able to s	gene_disease	drug_gene
523	CD patients have impaired GM-CSF secretion via	gene_disease	drug_gene
526	In CD patients, TLR-induced GM-CSF secretion w	gene_disease	drug_gene
527	Toll-like receptor-induced granulocyte-macroph	gene_disease	drug_gene
528	Moreover, TNF-alpha production was induced by	gene_disease	drug_gene
529	In CD patients, TLR-induced GM-CSF secretion w	gene_disease	drug_gene
555	Vascular endothelial growth factor (VEGF) prom	gene_disease	drug_gene
556	Vascular endothelial growth factor (VEGF) prom	gene_disease	drug_gene
	stant 7/1 Inc. mamiliand Brotain Compa Discours Extraction/blab/r		

	Render SENTENCE	CLASS	Predicted- CLASS
591	However, IL-22R1 was only expressed in 55% of	gene_disease	drug_disease
595	Failure of medical and surgical therapy in CRS	gene_disease	drug_disease
596	Fetuin-A is a calcification inhibitor and corr	gene_disease	drug_gene
599	EGFR gene expression in pancreatic adenocarcin	gene_disease	drug_gene
612	ET-1 mRNA expression was significantly higher	drug_disease	gene_disease
613	ET-1 mRNA expression was significantly higher	drug_disease	gene_disease
614	These results suggest that CsA can modulate th	drug_disease	drug_gene
634	Another important finding was that the cytotox	drug_disease	drug_gene
641	Another important finding was that the cytotox	drug_disease	drug_gene
644	Indomethacin and indomethacin ethyl ester asso	drug_disease	drug_gene
645	Indomethacin and indomethacin ethyl ester asso	drug_disease	drug_gene
774	Absence of villin predisposes mice to dextran	drug_disease	drug_gene

	GAD_ID	GAD_ASSOC	GAD_GENE_SYMBOL	GAD_GENE_NAME	GAD_ENT
0	125111	N	HIF1A	Hypoxia-inducible factor 1, alpha subunit (bas	3091
1	125062	N	HFE	Hemochromatosis	3077
2	125055	Υ	HFE	Hemochromatosis	3077
3	125019	N	HFE	Hemochromatosis	3077
4	125015	Y	HFE	Hemochromatosis	3077
5	125009	N	HEXB	Hexosaminidase B (beta polypeptide)	3074
6	124975	Υ	HCRTR2	Hypocretin (orexin) receptor 2	3062
7	124967	Υ	HCCA2	HCCA2 protein	81532
8	124920	Υ	HAVCR1	Hepatitis A virus cellular receptor 1	26762
9	124896	Υ	GYS1	Glycogen synthase 1 (muscle)	2997
10	124890	N	GUCA1B	Guanylate cyclase activator 1B (retina)	2979
11	124828	Υ	GSTT1	Glutathione S-transferase theta 1	2952
12	124820	Υ	GSTT1	Glutathione S-transferase theta 1	2952
13	124814	Υ	GSTT1	Glutathione S-transferase theta 1	2952

	GAD_ID	GAD_ASSOC	GAD_GENE_SŸMBÖL	GAD_GENE_NAME	GAD_EN
14	124798	Υ	GSTT1	Glutathione S-transferase theta 1	2952
15	124792	N	GSTT1	Glutathione S-transferase theta 1	2952
16	124778	Υ	GSTT1	Glutathione S-transferase theta 1	2952
17	124778	Υ	GSTT1	Glutathione S-transferase theta 1	2952
18	124776	N	GSTT1	Glutathione S-transferase theta 1	2952
19	124772	Υ	GSTT1	Glutathione S-transferase theta 1	2952
20	124744	Υ	GSTT1	Glutathione S-transferase theta 1	2952
21	124745	Y	GSTT1	Glutathione S-transferase theta 1	2952
22	124745	Y	GSTT1	Glutathione S-transferase theta 1	2952
23	124627	N	GSTP1	Glutathione S-transferase pi	2950
24	124626	N	GSTP1	Glutathione S-transferase pi	2950
25	124459	N	GSTM1	Glutathione S-transferase M1	2944
26	124454	Υ	GSTM1	Glutathione S-transferase M1	2944
27	124452	Υ	GSTM1	Glutathione S-transferase M1	2944

	GAD_ID	GAD_ASSOC	GAD_GENE_SŸMBÖL	GAD_GENE_NAME	GAD_EN1
28	124431	Y	GSTM1	Glutathione S-transferase M1	2944
29	124424	Y	GSTM1	Glutathione S-transferase M1	2944
2771	564629	Y	ADAM33	ADAM metallopeptidase domain 33	80332
2772	563212	N	XRCC1	X-ray repair complementing defective repair in	7515
2773	560042	N	TGFB1	transforming growth factor, beta 1	7040
2774	559322	Υ	STIP1	stress-induced- phosphoprotein 1	10963
2775	559277	N	STAT4	signal transducer and activator of transcripti	6775
2776	558924	N	SOD2	superoxide dismutase 2, mitochondrial	6648
2777	558166	N	BRCA2	breast cancer 2, early onset	675
2778	557994	N	BRCA1	breast cancer 1, early onset	672
2779	557423	N	SHMT1	serine hydroxymethyltransferase 1 (soluble)	6470
2780	556700	N	BIK	BCL2-interacting killer (apoptosis-inducing)	638
2781	556671	N	RYR3	ryanodine receptor 3	6263
2782	707750	N	OGG1	8-oxoguanine DNA glycosylase	4968

	GAD_ID	GAD_ASSOC	GAD_GENE_SYMBOL	GAD_GENE_NAME	GAD_EN1
2783	705444	Υ	NAT2	N-acetyltransferase 2 (arylamine N- acetyltrans	10
2784	704807	N	MTHFR	5,10- methylenetetrahydrofolate reductase (NADPH)	4524
2785	703633	N	LTC4S	leukotriene C4 synthase	4056
2786	692713	N	HSD3B1	hydroxy-delta-5-steroid dehydrogenase, 3 beta	3283
2787	691009	N	ALOX5AP	arachidonate 5- lipoxygenase-activating protein	241
2788	690996	N	ALOX5	arachidonate 5- lipoxygenase	240
2789	684878	Υ	FCER2	Fc fragment of IgE, low affinity II, receptor	2208
2790	683138	Y	KIF21B		23046
2791	680619	N	CREG1	cellular repressor of E1A- stimulated genes 1	8804
2792	679932	N	KIF6	kinesin family member 6	221458
2793	679380	N	ADRB3	adrenergic, beta-3-, receptor	155
2794	678519	Υ	ACE	angiotensin I converting enzyme (peptidyl-dipe	1636
2795	677472	N	COMT	catechol-O- methyltransferase	1312
2796	675012	Υ	CD14	CD14 molecule	929
2797	667271	Υ	UGT2B17	UDP glucuronosyltransferase 2 family, polypept	7367

	GAD_ID	GAD_ASSOC	GAD_GENE_SYMBOL	GAD_GENE_NAME	GAD_EN1
2798	667268	N	UGT2B17	UDP glucuronosyltransferase 2 family, polypept	7367
2799	667058	N	TP53	tumor protein p53	7157
2800	666239	N	TNF	tumor necrosis factor (TNF superfamily, member 2)	7124

```
2801 rows × 12 columns
```

```
In [17]:
         doc_embeddings = sif_embedding_wrapper.sentences2vecs(GAD_target_dise
         ase["GAD CONCLUSION"], embs, words, weight4ind)
         GAD target disease["vector"] = pd.Series(list(doc embeddings))
In [18]: test ground truth = {}
```

```
for idx, row in GAD target disease.iterrows():
    test ground truth[idx] = row['CLASS']
# Try to predict the label of unknown sentences
test predictions = {}
for idx, row in GAD target disease.iterrows():
    \max sim = 0.60
    winner = 'unknown'
    for j in category vecs:
        sim = cosine_similarity(row["vector"].reshape(1, -1), categor
y_vecs[j].reshape(1, -1)).flatten()[0]
        if sim > max_sim:
            \max sim = sim
            winner = j
    test_predictions[idx] = winner
```

25/07/2010		D	
25/07/2019		Render	
In [19]:	test_predictions		

```
<sup>25</sup>001(19): {0: 'gene_disease',
            1: 'gene disease',
            2: 'gene disease',
            3: 'gene_disease'
            4: 'gene disease',
            5: 'gene_disease',
            6: 'gene_disease',
            7: 'drug gene',
            8: 'gene disease',
            9: 'gene disease',
            10: 'unknown',
            11: 'gene_disease',
            12: 'gene_disease',
            13: 'gene disease'
            14: 'gene_disease',
            15: 'gene disease',
            16: 'gene disease'
            17:
                'gene_disease'
            18: 'gene_disease',
            19: 'gene disease'
            20: 'gene disease'
            21: 'gene_disease',
            22: 'gene_disease',
            23: 'gene disease',
            24: 'gene_disease'
            25: 'gene disease'
            26: 'gene disease'
            27: 'gene disease'
            28: 'gene_disease'
            29: 'gene_disease',
            30: 'gene disease',
            31: 'gene disease'
                'gene_disease'
            32:
            33: 'gene_disease',
            34: 'gene_disease',
            35: 'gene disease',
            36: 'gene_disease',
            37: 'gene disease',
            38: 'gene disease',
            39: 'unknown',
            40: 'gene disease',
            41: 'gene disease',
            42: 'gene_disease',
            43: 'gene_disease',
            44: 'gene disease',
            45: 'gene_disease'
            46: 'gene_disease'
            47: 'gene_disease',
            48: 'gene_disease',
            49: 'gene_disease',
            50: 'gene_disease',
            51: 'gene_disease',
            52: 'unknown',
                'unknown'
            53:
            54: 'unknown',
            55: 'unknown',
            56: 'gene_disease',
            57: 'gene_disease',
            58: 'gene_disease',
            59: 'gene_disease',
            60: 'unknown',
            61: 'gene_disease',
```

314: 'gene disease',

568: 'gene disease', 569: 'gene_disease', 570: 'gene disease', 571: 'gene disease', 572: 'gene disease' 573: 'gene_disease', 574: 'gene disease', 575: 'unknown', 576: 'unknown', 577: 'gene disease', 578: 'unknown', 579: 'gene disease', 580: 'gene_disease' 581: 'gene disease', 582: 'gene disease', 583: 'gene disease', 584: 'gene disease', 585: 'gene disease', 586: 'unknown', 587: 'gene_disease', 588: 'gene disease' 589: 'gene disease' 590: 'gene disease' 591: 'gene_disease' 592: 'gene disease', 593: 'gene disease', 594: 'gene_disease' 595: 'gene_disease' 596: 'gene disease', 597: 'gene disease', 598: 'gene_disease', 599: 'unknown', 600: 'unknown'. 601: 'unknown' 602: 'unknown' 603: 'unknown', 604: 'gene disease', 605: 'gene_disease', 606: 'gene_disease', 607: 'gene disease', 608: 'gene_disease' 609: 'gene_disease' 610: 'gene disease' 611: 'gene disease' 612: 'gene_disease' 613: 'gene_disease' 614: 'gene disease', 615: 'gene disease', 616: 'gene disease' 617: 'gene disease' 618: 'gene disease', 619: 'gene_disease', 620: 'gene_disease', 621: 'unknown', 622: 'gene disease', 623: 'gene_disease' 624: 'gene_disease' 625: 'gene disease', 626: 'gene disease' 627: 'gene_disease' 628: 'gene disease', 629: 'gene disease',

757: 'gene disease', 758: 'gene_disease', 759: 'gene disease', 760: 'gene disease', 761: 'gene disease' 762: 'gene disease' 763: 'gene disease' 764: 'gene disease' 765: 'gene_disease' 766: 'gene disease', 767: 'gene disease', 768: 'gene disease' 769: 'gene_disease' 770: 'gene disease', 771: 'gene disease', 772: 'gene disease', 773: 'unknown', 774: 'gene_disease', 775: 'gene disease', 776: 'gene_disease' 777: 'gene disease' 778: 'gene disease' 779: 'gene disease' 780: 'gene_disease' 781: 'gene disease', 782: 'gene disease', 783: 'gene disease' 784: 'gene_disease' 785: 'gene disease', 786: 'gene disease' 787: 'gene disease', 788: 'unknown', 789: 'gene disease', 790: 'gene disease' 791: 'gene_disease', 792: 'gene disease', 793: 'gene disease', 794: 'unknown', 795: 'gene disease', 796: 'unknown', 797: 'unknown', 798: 'gene_disease', 799: 'gene disease', 800: 'gene disease' 801: 'gene_disease' 802: 'gene_disease' 803: 'gene disease', 804: 'gene disease', 805: 'gene disease' 806: 'gene disease' 807: 'gene disease' 808: 'gene_disease' 809: 'gene_disease' 810: 'gene disease', 811: 'gene disease', 812: 'gene_disease' 813: 'gene_disease' 814: 'gene disease' 815: 'gene disease' 816: 'gene_disease' 817: 'gene disease', 818: 'gene disease',

```
946:
     'gene disease',
947: 'gene_disease',
948: 'gene disease',
949: 'gene disease',
950: 'gene disease'
951: 'gene_disease'
952: 'gene disease'
953: 'gene disease'
954: 'gene disease'
955: 'gene disease',
956: 'gene disease',
957: 'gene disease'
958: 'gene_disease'
959: 'gene disease'
960: 'gene disease'
961: 'gene_disease'
962: 'gene disease',
963: 'gene disease',
964: 'gene disease',
965: 'unknown',
966: 'unknown',
967: 'gene disease',
968: 'gene disease'
969: 'gene_disease',
970: 'gene disease',
971: 'gene disease',
972: 'gene_disease',
973: 'gene_disease',
974: 'drug gene',
975: 'drug_gene',
976: 'drug_gene',
977: 'drug gene',
978: 'drug gene',
979: 'drug gene',
980: 'gene_disease',
981: 'gene_disease',
982: 'gene disease',
983: 'gene_disease',
984: 'gene disease',
985: 'gene disease',
986: 'gene_disease'
987: 'gene_disease'
988: 'gene disease',
989: 'gene disease',
990: 'gene_disease',
991: 'gene_disease',
992: 'unknown',
993: 'gene disease',
994: 'gene_disease'
995: 'gene_disease',
996: 'gene disease',
997: 'gene_disease',
998: 'gene_disease',
999: 'gene disease',
...}
```

```
25/07/2019
          def get accuracy score(predictions, truth dict):
 In [20]:
               preds = []
               labels = []
              mis classified = []
              mis pred = []
               for k,v in predictions.items():
                   preds.append(v)
                   labels.append(truth dict[k])
                   if v!=truth dict[k]:
          #
                         print(str(v) + '--x--' + str(truth dict[k]))
                       mis classified.append(k)
                       mis pred.append(str(v))
               return f1 score(labels, preds, average='weighted'), mis classifie
          d, mis pred
           score, miss classified, miss pred = get accuracy score(test predictio
           ns, test ground truth)
           score
          /home/stirunag/anaconda3/lib/python3.7/site-packages/sklearn/metrics/
```

classification.py:1145: UndefinedMetricWarning: F-score is ill-define d and being set to 0.0 in labels with no true samples.

'recall', 'true', average, warn for)

Out[20]: 0.9487708763370238

miss_calssified_df_test = GAD_target_disease.iloc[miss_classified , [25/07/2019 In [21]: miss_calssified_df_test['Predicted-CLASS'] = miss_pred miss_calssified_df_test

21]:	GAD_CONCLUSION	CLASS	Predicted- CLASS
7	The novel gene HCCA2 may be related with the i	gene_disease	drug_gene
10	We found no evidence that mutation in GUCA1B,G	gene_disease	unknown
39	Because our samples provided quite high power,	gene_disease	unknown
52	We conclude that GRIK2 does not play a major	gene_disease	unknown
53	We conclude that GRIK2 does not play a major	gene_disease	unknown
54	We conclude that GRIK1 does not play a major	gene_disease	unknown
55	We conclude that GRIK1 does not play a major	gene_disease	unknown
60	Determination of VNTR of the GPIba gene may pr	gene_disease	unknown
62	We found no evidence that mutation in GUCA1B,G	gene_disease	unknown
81	Our results suggest that GAD2 does not play a	gene_disease	unknown
87	These results suggest the GABRA3 gene may be a	gene_disease	drug_gene
114	The results showed that the FGF1 gene is assoc	gene_disease	unknown
148	In conclusion, there was no association betwee	gene_disease	unknown
149	In conclusion, there was no association betwee	gene_disease	unknown
179	In conclusion, our findings support an etiolog	gene_disease	unknown
183	This study suggests that high EGF production m	gene_disease	drug_gene
184	This study suggests that high EGF production m	gene_disease	drug_gene
185	All our results indicate that the presence of	gene_disease	unknown
186	All our results indicate that the presence of	gene_disease	unknown
200	In children with ADHD, possession of the DRD4	gene_disease	unknown
201	In children with ADHD, possession of the DRD4	gene_disease	unknown
202	In children with ADHD, possession of the DRD4	gene_disease	unknown
203	In children with ADHD, possession of the DRD4	gene_disease	unknown
236	These results suggest that DBP does not contri	gene_disease	unknown
253	CYP46 influences brain beta-amyloid load, cere	gene_disease	unknown
258	CYP46 influences brain beta-amyloid load, cere	gene_disease	unknown
270	Our results suggest that rate of gastric empty	gene_disease	unknown
271	Our data suggest that deficient CYP2A6 activit	gene_disease	unknown
278	Our results suggested that the Val CYP1B1 alle	gene_disease	unknown
279	These results do not support a favoring role o	gene_disease	unknown
2482	there is no main effect of APOE in our autism	gene_disease	unknown
2485	we could not find evidence of association betw osh7/Unsupervised-Protein-Genes-Diseases-Extraction/blob/m	gene_disease	unknown

	GAD_CONCLUSION Render	CLASS	Predicted- CLASS
2487	Patients with X-linked retinitis pigmentosa du	gene_disease	unknown
2489	Patients with X-linked retinitis pigmentosa du	gene_disease	unknown
2492	Large genomic rearrangements in SCN5A are not	gene_disease	unknown
2515	These findings provide initial evidence that e	gene_disease	unknown
2516	These findings provide initial evidence that e	gene_disease	unknown
2522	These findings provide initial support for gen	gene_disease	unknown
2523	These findings provide initial support for gen	gene_disease	unknown
2524	These findings provide initial support for gen	gene_disease	unknown
2549	These findings suggest that transforming growt	gene_disease	drug_gene
2608	These preliminary findings are suggestive of a	gene_disease	unknown
2612	According to this study, FGFR4 Arg388 genotype	gene_disease	drug_disease
2627	we could not find evidence of association betw	gene_disease	unknown
2647	The His645Asp polymorphism of the histamine me	gene_disease	unknown
2649	we could not find evidence of association betw	gene_disease	unknown
2657	The results of the present study, which is muc	gene_disease	unknown
2667	These findings bring further evidence on the r	gene_disease	unknown
2672	We found evidence for association between GABR	gene_disease	unknown
2682	this study has found that the IL-9 gene was sl	gene_disease	unknown
2688	it is unlikely that common variants in MLH1, M	gene_disease	unknown
2689	it is unlikely that common variants in MLH1, M	gene_disease	unknown
2692	it is unlikely that common variants in MLH1, M	gene_disease	unknown
2699	PPP2R1B genes may not play a role in the carci	gene_disease	unknown
2700	The present study provides further evidence in	gene_disease	unknown
2703	These findings provide replication of the asso	gene_disease	unknown
2771	Our findings suggest a relevant role of ADAM33	gene_disease	unknown
2789	FCER2 predicts the likelihood of treatment pro	gene_disease	unknown
2793	the Trp(64)Arg mutation of ADRB3 has little or	gene_disease	unknown
2794	The ACE deletion allele may protect against hy	gene_disease	unknown

273 rows × 3 columns

 $\verb|miss_calssified_df_test.to_csv| (result_path+'miss_predictions_test.cs|$ In [22]: v')

```
#Final model
final data 1 = df[['SENTENCE', 'CLASS']][~df.index.isin(miss classifi
ed df)]
final data 2 = GAD target disease[['GAD CONCLUSION', 'CLASS']][~GAD t
arget_disease.index.isin(miss_classified)]
final_data_2.rename(columns={"GAD_CONCLUSION": "SENTENCE"}, inplace =
True)
final data = final data 1.append(final data 2)
final data.reset index(inplace=True)
doc embeddings = sif embedding wrapper.sentences2vecs(final data["SEN
TENCE"], embs, words, weight4ind)
final data["vector"] = pd.Series(list(doc embeddings))
```

```
25/07/2019
In [77]:
                                                   Render
           ground_truth = {}
           for idx, row in final data.iterrows():
               ground_truth[idx] = row['CLASS']
           # ground_truth
           inv_map = \{\}
           for k, v in ground_truth.items():
                inv_map[v] = inv_map.get(v, [])
               inv_{map}[v].append(k)
           inv_map
```

51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, Render

 $62, \\ \text{https://github.com/tsantosh7/Unsupervised-Protein-Genes-Diseases-Extraction/blob/master/Code/Few_Shot_Learning_Relatio...} \qquad 66/97$

25/07/2019 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124,

25/07/2019 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187,

252, 25/07/2019 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313,

25/07/2019 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376,

25/07/2019 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440,

25/07/2019 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502,

504, 25/07/2019 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 800, 801,

25/07/2019 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864,

866, 25/07/2019 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927,

929, 25/07/2019 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990,

992, 25/07/2019 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053,

1054,

25/07/2019 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1070, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091, 1092, 1093, 1094, 1095, 1096, 1097, 1098, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1107, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1116,

25/07/2019 1118, 1119, 1120, 1121, 1122, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1154, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180,

25/07/2019 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1242,

25/07/2019 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1266, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306,

25/07/2019 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1346, 1347, 1348, 1349, 1350, 1351, 1352, 1353, 1354, 1355, 1356, 1357, 1358, 1359, 1360, 1361, 1362, 1363, 1364, 1365, 1366, 1367, 1368, 1369,

25/07/2019 1370, 1371, 1372, 1373, 1374, 1375, 1376, 1377, 1378, 1379, 1380, 1381, 1382, 1383, 1384, 1385, 1386, 1387, 1388, 1389, 1390, 1391, 1392, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1401, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1412, 1413, 1414, 1415, 1416, 1417, 1418, 1419, 1420, 1421, 1422, 1423, 1424, 1425, 1426, 1427, 1428, 1429, 1430, 1431, 1432,

25/07/2019 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644,

646, 25/07/2019 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707,

709, 25/07/2019 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770,

786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799]}

```
<sup>25</sup>007(<sup>2078</sup>): {'drug_gene': array([-0.02259501,
                                               0<sup>R</sup>66660093.
                                                             0.08034494.
                                                                          0.051286
          72.
                0.109773
                    0.07043651.
                                 0.01890659. -0.04447399.
                                                             0.00232815. -0.031831
          96,
                                               0.05480214. -0.0008662 . -0.036251
                    0.02219459. -0.06560161.
          38,
                   -0.03070597, -0.10438451, -0.16020964,
                                                            0.00480927,
                                                                          0.025631
          61,
                   -0.06444762. -0.0747943. -0.02560701. -0.05884123.
                                                                          0.037142
          24.
                                 0.03770538, -0.0045408,
                                                            0.00113782. -0.075157
                   -0.07155826.
          98,
                    0.04877341, -0.08112333, -0.10605722, -0.007455 , 0.061097
          01.
                   -0.08524513, -0.01665239, -0.00193276, -0.08086548, -0.091132
          11,
                    0.01160008, -0.04256436,
                                               0.06923264.
                                                             0.05370258.
                                                                          0.139539
          33,
                                                            0.03560877, -0.044034
                   -0.04828128, -0.10773625, -0.08710372,
          7,
                   -0.04703573. -0.00654404. -0.05748476.
                                                            0.00903911. -0.090228
          5.
                                               0.00662434, -0.02267997,
                    0.02511453.
                                 0.08825264,
                                                                          0.029066
          21.
                    0.01720275. -0.04489324. -0.01539939. -0.0211833.
                                                                         0.008635
          89,
                                               0.02266545, -0.04107853, -0.065592
                    0.01029012. -0.00341215.
          95,
                   -0.0492788 , -0.04646665, -0.00425594, -0.00879286,
                                                                          0.072807
          27,
                    0.09293385. -0.02217183.
                                               0.04853517, -0.01381857,
                                                                          0.071499
          28,
                   -0.0046454 . -0.02435077.
                                                             0.04367903. -0.030009
                                               0.01293399.
          52,
                    0.03377294, -0.07752994,
                                               0.00459051,
                                                             0.01960824,
                                                                          0.053857
          29.
                   -0.06998995.
                                 0.02772035, -0.0112851 , -0.1046491 ,
                                                                          0.051055
          56.
                   -0.01107914, -0.03322789, -0.014381 , 0.11331822,
                                                                          0.013468
          26,
                                 0.09652433, -0.04998231, -0.03524452,
                    0.01423458,
                                                                          0.035954
          67,
                    0.01047966, -0.04607962,
                                               0.07103991,
                                                            0.03767436,
                                                                          0.051907
          8,
                    0.02106631, -0.01602907,
                                               0.03807558, -0.02678066,
                                                                          0.067820
          98,
                    0.01417979, -0.01665879,
                                               0.00436057,
                                                            0.02230283, -0.063107
          81,
                                               0.00540505, -0.04279056,
                    0.04569304,
                                 0.03064912,
                                                                          0.040786
          83,
                                 0.02130368, -0.04016707, -0.06234886, -0.055506
                   -0.0097842 ,
          53,
                   -0.028472
                                 0.03840448, -0.03265039,
                                                            0.07322495. -0.021719
          42,
                    0.0219988 , -0.07528665 , -0.09371537 , -0.02687253 ,
                                                                          0.057981
          7,
                                                            0.04212966, -0.069765
                   -0.06420033,
                                 0.04318409,
                                               0.05758439,
          53,
                    0.03406704.
                                 0.0216992 , -0.01751402,
                                                             0.05846941,
                                                                          0.055000
          27,
                                                             0.01029625, -0.004406
                    0.08659255,
                                 0.01035483,
                                               0.03605185,
          26,
```

25/07/2019	06,	Render -0.00833148, -0.01588855, 0.03042198, 0.03391189, 0.048127
	59,	-0.03573181, 0.06215374, 0.06567121, 0.08501771, 0.005723
	01,	-0.00544842, -0.10782876, -0.0821683 , -0.0439988 , -0.155123
	49,	0.02804725, -0.06658659, -0.11911979, 0.00269219, -0.037008
	09,	-0.02821007, -0.03748677, -0.07513077, -0.10859924, 0.027878
	82,	0.00974063, -0.09650454, -0.02150409, 0.05049756, 0.064454
	23,	
	55,	-0.02594272, -0.00940941, -0.01749841, 0.10001498, -0.028754
	9]),	0.05609788, -0.00061992, 0.14480043, -0.00793043, -0.000522
	-	disease': array([-0.01894094, 0.0026824 , 0.05278864, -0.049
		-0.00715203, -0.03732716, -0.028285 , -0.03021973, 0.017963
	67,	-0.00866856, -0.13118232, 0.02993769, 0.01045083, 0.002905
	35,	-0.06039446, -0.07724169, -0.13998248, 0.02163892, 0.076546
	87,	0.03099466, -0.06496584, -0.04123766, -0.08287935, 0.039962
	92,	-0.03143508, 0.04435205, -0.10256732, 0.0232578, -0.058746
	06,	0.0219973 , -0.0486413 , -0.04402548, -0.00741007, 0.076764
	83,	-0.02208246, 0.04607483, 0.03614996, -0.05852792, -0.025431
	51,	-0.0027273 , -0.06236734, 0.0708188 , 0.04669061, 0.105552
	5 ,	-0.07922249, -0.10981007, -0.11103149, -0.04820119, -0.131596
	94,	0.0110788 , -0.00328608, -0.01818729, 0.04317896, -0.087124
	44,	
	84,	0.04692777, -0.02968445, 0.0111203, 0.01402305, -0.004438
	98,	0.03805884, 0.00645043, -0.01333097, 0.00830524, 0.059119
	78,	-0.00370814, -0.03271034, 0.08991915, 0.01743721, 0.003759
	08,	-0.01801892, -0.04478382, -0.03234207, -0.04723298, -0.035319
	95,	0.03023364, 0.10519775, -0.00099013, -0.0343597, -0.007468
	24,	0.07082928, -0.04647901, -0.03605074, -0.01985432, -0.049707
	26,	-0.03663353, -0.11370036, -0.05383802, 0.00295939, 0.025941
		0.01381267, 0.01257951, -0.1044039 , -0.06473194, 0.016136
	96,	-0.01962321, 0.0079649 , -0.03765243, 0.10690313, -0.064533
	64,	0.01880765, 0.05319942, -0.01443602, -0.02166466, 0.032254
	19,	-0.03917902, 0.01484661, 0.04468778, 0.01132086, -0.004426
	88,	0.01135866, -0.04061285, 0.0470459, -0.01480132, 0.053582
	81.	

```
-0.02430859. -0.00370396.
                                             0R08644308. 0.0112515. -0.009823
25/07/2019
          82,
                   0.06629728. -0.07685832.
                                             0.01149585. -0.03483788. 0.014352
          51,
                                0.03485231, -0.06347502, -0.00572563, -0.067933
                  -0.12354892.
          55.
                   0.0144394 .
                                0.01704359, -0.07134108,
                                                          0.05815698. -0.010918
          13,
                   0.07398397, -0.07420843, -0.07630211,
                                                          0.00325303, -0.002278
          87,
                  -0.0525499 .
                                0.02622819. 0.05983656.
                                                          0.07826244.
                                                                       0.000243
          85.
                  -0.02631064.
                                0.0424064 , -0.05613592,
                                                          0.03854308,
                                                                       0.079826
          39.
                                0.0155632 , 0.0522846 , -0.01499126,
                   0.04066342,
                                                                       0.009874
          8,
                                0.00238626, -0.06941868, -0.03876348, -0.027028
                  -0.0091032 .
          36.
                                0.04179048, -0.00912749,
                  -0.01528063.
                                                          0.11076091,
                                                                       0.025021
          58,
                   0.00408332,
                                0.00341762,
                                             0.04338575,
                                                          0.05023738,
                                                                       0.006381
          38.
                  -0.01582713. -0.12511575.
                                             0.01775416. -0.07794587. -0.115324
          02,
                                0.00726716, -0.16100741, 0.01333724,
                  -0.03153813.
                                                                       0.014803
          09,
                  -0.1028725 , 0.04394676, -0.08594431, -0.03324341,
                                                                       0.101837
          84,
                   0.05323173. -0.05624724. -0.02914044.
                                                          0.03809479. -0.098374
          05,
                   0.03651038, -0.01889545, 0.02978605,
                                                          0.07177132, -0.069190
          33,
                  -0.0336774 , 0.00215992, 0.10554505, -0.05418101, 0.004824
          241).
           'drug disease': array([-8.08392393e-02, 1.07544154e-01, 5.07261586
          e-02, -7.63855879e-03,
                   4.20294581e-02, -1.86339118e-02, 3.45490900e-02, 1.5968065
          5e-03,
                   4.71229241e-03, 4.93887052e-02, -1.51885675e-02, -7.5271002
          8e-02,
                   1.05176153e-01, -2.11550538e-02, -4.61599000e-02, -7.7286075
          8e-02,
                  -8.08744149e-02, -1.05410263e-01, 2.52544196e-02,
          4e-02,
                   8.52303592e-02, -2.81857952e-02, -2.63347009e-02, -6.6486591
          3e-02,
                   6.74278522e-03, -3.47732691e-02, 8.11143022e-02, -3.5568367
          4e-02,
                  -6.12660033e-02, -8.83450442e-03,
                                                     2.71653893e-02, -9.9585942
          1e-02,
                  -3.90031168e-02, -6.72858266e-02, 7.12616571e-02, -2.3815741
          4e-02,
                  -2.84257743e-02, 1.57893809e-02, -9.70614031e-02, -6.4664937
          0e-02,
                  -7.91901072e-02, -2.72769947e-02, 6.38239988e-03, 4.7651791
          7e-02,
                   1.10229683e-01, -5.45760261e-02, -8.71110026e-02, -3.0709936
          2e-02,
                  -4.07317947e-02, -1.01426498e-01, 4.75029037e-02, 7.6334963
          3e-03,
                   4.97566438e-05, -1.10346348e-02, -8.06670487e-02, -3.6846895
```

3e-02,

25/07/2019	3e-03,	Render	
	9e-02,	4.11583412e-02, 1.36420227e-02, 2.91610699e-02, -2.5080944	4
	9e-02,	-6.82629255e-04, 1.56183206e-02, -1.07726300e-02, 2.2636439	9
	0e-02,	6.84676222e-02, 1.87075333e-03, 5.19577105e-02, 1.7809738	8
	0e-02,	-4.85580615e-02, 1.60969578e-02, -2.92258248e-02, 5.8543472	2
	0e-02,	1.17887182e-01, -4.11336059e-02, -5.40964933e-02, 1.4502668	8
		7.74309828e-03, -1.87204061e-02, 1.12390597e-01, -2.0105929	9
	8e-02,	-1.12989185e-01, 5.04171514e-02, -6.25617620e-02, 2.5012505	5
	3e-02,	4.11678011e-02, 3.02352421e-02, -5.43229013e-02, 4.9704823	3
	4e-02,	-4.87038539e-02, 7.65902119e-03, 4.42130840e-02, 3.5862417	7
	5e-02,	1.47823361e-02, -3.77691528e-02, 4.34341766e-02, -1.2229202	2
	9e-02,	-2.75046446e-02, -5.87096100e-03, 3.81385351e-02, -4.2619629	9
	7e-02,	3.15735410e-02, 1.13913980e-02, 1.62923440e-02, -2.4147986	6
	5e-02,	-2.83084175e-02, 4.03391589e-02, 7.36034811e-02, -4.6791143	3
	4e-02,	1.19673244e-02, -9.78305302e-02, 3.54012787e-02, 5.3309452	2
	3e-02,	2.76526361e-02, -8.02144147e-02, 3.65307779e-02, 7.1878540	9
	2e-02,	5.65107900e-02, -5.25904331e-02, -2.00148826e-02, -8.4448027	7
	8e-02,	-6.08861982e-02, -6.45479330e-02, 5.63616355e-02, -7.3794890	9
	1e-02,	-1.23510253e-02, -1.37231388e-03, 1.17334497e-02, 8.0796253	3
	9e-03,	-3.20168359e-02, -2.72035957e-02, -9.13218078e-02, 4.1837185	5
	7e-02,	-1.20814114e-01, -4.35413689e-02, -7.38197109e-02, 6.9802263	3
	7e-02,	-2.02128357e-02, 1.55208874e-02, 8.12812275e-03, 9.2753583	1
	3e-02,	-2.69912140e-02, 2.65074761e-02, 5.08721041e-02, -7.2461008	8
	9e-02,	2.58917041e-02, 5.47822620e-02, 4.45604219e-02, -4.9611432	
	5e-03,	7.12214357e-02, -7.05062708e-03, 1.15441222e-01, -1.7689600	0
	1e-02,	-7.03170819e-03, -6.00978234e-02, -2.82504615e-03, -2.7545736	
	3e-02,	-3.60451418e-02, 3.93191636e-02, 3.93019914e-02, 2.4697148	
	9e-02,	-4.63719877e-02, 4.45779242e-02, 5.14349063e-02, 5.1546710	
	4e-02,	7.38075400e-02, -1.61509765e-02, -1.39308377e-02, -1.0366696	
	0e-01,	-4.38634953e-02, -3.09122887e-02, -9.40224995e-02, 2.6571560	
	2e-02,	-2.34101962e-03, -8.26211852e-02, -9.82162232e-03, -7.0738699	
	7e-02,	6.68611038e-03, -1.01406407e-02, -9.43302041e-02, -9.1638647	
	7e-02,	0.000110500 05, 1.014004070-02, -5.455020416-02, -5.105004	•

```
8e-02.
                 -4.95847725e-02. -2.56343192e-02. -2.02271077e-02. -6.4641612
         2e-03,
                 -1.80915229e-03, 1.09901095e-03, -2.56411728e-02, -5.5804179
         3e-02.
                  2.72605923e-02, 1.20513499e-01, -5.31299967e-02, -7.3606906
         2e-031)}
In [84]:
         # Test new sentence
         test sample = 'This study assessed associations between the CYP4F2 ge
         ne and myocardial infarction (MI), using a haplotype-based case-contr
         ol study of 234 MI patients and 248 controls genotyped for 5 single-n
         ucleotide polymorphisms (rs3093105, rs3093135, rs1558139, rs2108622,
          rs3093200).
         # test sample = 'Assessment of 1177 human immunodeficiency virus (HI
         V) resistance genotypes at an HIV/AIDS clinic showed a decrease in th
         e incidence of the K65R mutation, from 15.2% of isolates during the p
         eriod 2002-2004 to 2.7% of isolates during the period 2005-2006 (P <
          .001), despite elevated and stable rates of tenofovir use.'
         # test sample = 'Doxorubicin-induced DNA damage was also specifically
         abolished by the proteasome inhibitors bortezomib and MG132 and much
          reduced in top2beta(-/-) mouse embryonic fibroblasts (MEF) compared
          with TOP2beta(+/+) MEFs, suggesting the involvement of proteasome an
         d DNA topoisomerase IIbeta (Top2beta).'
         # test sample = 'SLC9A6 at Xg26.3 (Gilfillan et al., 2008)X-linked me
         ntal retardation'
         # test sample = 'DLBCL was identified by a microenvironment gene expr
         ession signature and is associated with increased expression of infla
         mmatory mediators, such as multiple components of the T-cell receptor
         (TCR), molecules associated with T/NK-cell activation and the complem
         ent cascade, downstream targets of IFNy'
         test embedding = sif embedding wrapper.sentences2vecs([test sample],
         embs, words, weight4ind)
         sim = \{\}
         for j in category vecs:
```

sim[j] = cosine similarity(test embedding.reshape(1, -1), categor

5.29445651e-02. 2.56046891e-02; -6.58245566e-02. -1.3110060

```
Out[84]: {'drug gene': 0.27992935769402444,
           'gene disease': 0.6860943582066192,
           'drug disease': 0.36788278692274523}
```

sim

y vecs[j].reshape(1, -1)).flatten()[0]

25/07/2019

```
25/07/2019
 In [83]:
```

Test new sentence

test sample = 'This study assessed associations between the CYP4F2 ge ne and myocardial infarction (MI), using a haplotype-based case-contr ol study of 234 MI patients and 248 controls genotyped for 5 single-n ucleotide polymorphisms (rs3093105, rs3093135, rs1558139, rs2108622, rs3093200).'

test sample = 'Assessment of 1177 human immunodeficiency virus (HI V) resistance genotypes at an HIV/AIDS clinic showed a decrease in th e incidence of the K65R mutation, from 15.2% of isolates during the p eriod 2002-2004 to 2.7% of isolates during the period 2005-2006 (P < P.001), despite elevated and stable rates of tenofovir use.

test sample = 'Doxorubicin-induced DNA damage was also specifically abolished by the proteasome inhibitors bortezomib and MG132 and much reduced in top2beta(-/-) mouse embryonic fibroblasts (MEF) compared with TOP2beta(+/+) MEFs, suggesting the involvement of proteasome an d DNA topoisomerase IIbeta (Top2beta).

test sample = 'SLC9A6 at Xg26.3 (Gilfillan et al., 2008)X-linked me ntal retardation'

test sample = 'DLBCL was identified by a microenvironment gene expr ession signature and is associated with increased expression of infla mmatory mediators, such as multiple components of the T-cell receptor (TCR), molecules associated with T/NK-cell activation and the complem ent cascade, downstream targets of IFNy'

test embedding = sif embedding wrapper.sentences2vecs([test sample], embs, words, weight4ind)

```
sim = \{\}
for j in category vecs :
    sim[j] = cosine similarity(test embedding.reshape(1, -1), categor
y vecs [j].reshape(1, -1)).flatten()[0]
sim
```

```
Out[83]: {'drug gene': 0.27115843650125687,
           'gene disease': 0.6521062059914209,
           'drug disease': 0.3627070600955426}
```