- Adicionar módulo de recepção serial ao MIPS_uC
 - Na interface do MIPS_uC deve ser adicionada a entrada serial de 1 bit (rx)
 - A saída data_av do módulo RX deve ser ligada à irq(3) do PIC a fim de interromper o processador sempre um dado está disponível na saída data_out
 - Adicionar registrador RATE_FREQ_BAUD nos módulos TX e RX a fim de programar velocidade via software (alterar a interface dos módulos)

- Modificar o MIPS_uC de maneira que seja possível carregar as memórias com programa/dados através do módulo RX
 - Os grupos tem total liberdade para modificar o MIPS_uC
 - O programa/dados devem ser transmitidos utilizando um programa de comunicação serial (e.g. Hyper Terminal)
 - As imagens das memórias devem ser binárias (MARS)
 - Apresentar diagrama detalhado do MIPS_uC a fim de suportar a carga das memórias

- Sugestão
 - Utilizar os slide-switches da placa para selecionar o modo de operação do MIPS_uC
 - Modo de programação da memória de instruções
 - Modo de programação da memória de dados
 - Modo de execução
 - Adicionar à interface do MIPS_uC entradas correspondente aos slide-switches que forem utilizados

- Gerando imagens binárias com o MARS
 - Atenção ao ordenamento dos bytes no arquivo binário (litte-endian)

01 10 01 3c 04 00 29 34 00 00 29 8d 01 10 01 3c 0a 00 2a 34 00 00 4a 85 01 10 01 3c 08 00 2b 34 00 00 6b 81 ...

- Enviando arquivos utilizando o Hyper Terminal
 - Qualquer outro programa de comunicação serial pode ser utilizado, desde que seja possível enviar um arquivo

- Enviando arquivos utilizando a linha de comando no windows
 - Utiliza-se os comandos
 - mode: configurar a porta serial
 - copy: enviar o arquivo pela porta serial
 - Exemplo
 - ☐ mode COM3 BAUD=115200 PARITY=n DATA=8
 - copy arquivo.bin COM3

- Aplicações
 - As aplicações devem ser carregadas via módulo RX
 - O programa principal deve configurar a velocidade de comunicação dos módulos para 57600 bps e entrar em um loop infinito esperando pela carga de uma aplicação
 - App1: contador
 - Utilizar o contador com incremento de 1 segundo dos trabalhos anteriores
 - O código deve utilizar variáveis
 - App2: Echo (semelhante ao uart_terminal.bit)
 - Adicionar um handler para tratar dados recebidos pelo módulo RX através de um programa de comunicação serial (e.g. PuttY) quando uma tecla é pressionada
 - O handler deve simplesmente enviar de volta para o terminal (via módulo TX) o código ASCII da tecla pressionada

