

Punkte:

Theoretische Informatik

Prof. Dr. Juraj Hromkovič Dr. Hans-Joachim Böckenhauer

Sessionsprüfung

Zürich, 29. Januar 2021

Note:

							_		-0. 0 milden -0-1
Name:				V	⁷ ORN	AME	:		
LEGINUMM	MER:								
Lesen Sie	e die folge	nden H	Iinweis	e aufm	erksan	ı durcl	ı, bevo	r Sie fo	ortfahren.
• Es sind keine Farbe.	Hilfsmittel	l erlaub	ot, nur	ein dok	umente	nechter	Stift i	n blaue	r oder schwarzer
• Versehen Sie j	edes Blatt	oben m	it Ihrei	n vollst	ändiger	n Name	n.		
einem Extrabl	att, das Sie	e verwei	nden kö	nnen, v	venn de	r Platz	auf der	a Aufgal	7 Aufgaben sowie benblättern nicht fordert werden.
			,				_		n Aufgabenblatt ie hier bearbeiten.
• Sie haben 180	Minuten z	ur Bear	beitung	g der A	ufgaber	ı.			
• Unterschreiber	n Sie die fo	lgende	Eigenst	ändigk	eitserklä	ärung:			
	bei einem			_					mir bekannt en" bewertet
							terschri		
	Aufgabe	1(a)	1(b)	1(c)	2(a)	2(b)	3(a)	3(b)	
	Punkte	4	4	4	4	4	4	4	
	erreicht								
	Aufgabe	4	5(a)	5(b)	6(a)	6(b)	7(a)	7(b)	
	Punkte	8	6	2	4	4	4	4	
	erreicht								

 ${\bf Aufgabe\ 1} \hspace{3.2cm} 4+4+4\ {\bf Punkte}$

(a) Konstruieren Sie einen deterministischen endlichen Automaten in graphischer Darstellung, der die Sprache

$$L = \{w \in \{a,b\}^* \mid |w|_b \geq 2 \text{ und } w \text{ endet mit } aa\}$$

akzeptiert.

(b) Geben Sie für jeden Zustand qIhres in Aufgabenteil (a) konstruierten Automaten die Klasse $\mathrm{Kl}[q]$ an.

Aufgabe 1

4+4+4 Punkte

(c) Zeigen Sie, dass jeder deterministische endliche Automat, der die Sprache

$$L = \{w \in \{a,b\}^* \mid |w|_b \geq 2 \text{ und } w \text{ endet mit } aa\}$$

aus Aufgabenteil (a) akzeptiert, mindestens 5 Zustände hat.

 ${\bf Aufgabe~2} \\ {\bf 4+4~Punkte}$

(a) Geben Sie eine unendliche Folge von natürlichen Zahlen $y_1 < y_2 < y_3 < \cdots$ an, so dass eine Konstante $c \in \mathbb{N}$ existiert, so dass für alle $i \geq 1$

$$K(y_i) \le \log_2 \log_2 \log_2(y_i) + c$$

eine obere Schranke für die Kolmogorov-Komplexität ist.

 ${\bf Aufgabe~2} \\ {\bf 4+4~Punkte}$

(b) Zeigen Sie, dass es für jedes $n \in \mathbb{N}$ und jedes $i \in \mathbb{N}$ mit i < n mindestens $2^n - 2^{n-i}$ unterschiedliche Wörter der Länge n über dem Alphabet $\{0,1\}$ gibt mit $K(x) \ge n-i$.

Aufgabe 3 4+4 Punkte

Wir betrachten die Sprache

$$L = \{0^{i}1^{j}0^{i \cdot j} \mid i, j \in \mathbb{N}\}.$$

(a) Verwenden Sie die Methode der Kolmogorov-Komplexität, um zu zeigen, dass L nicht regulär ist.

Aufgabe 3

(b) Verwenden Sie eine der anderen in der Vorlesung vorgestellten Methoden, um zu zeigen, dass

$$L = \{0^i 1^j 0^{i \cdot j} \mid i, j \in \mathbb{N}\}$$

nicht regulär ist.

Aufgabe 4 8 Punkte

Wir betrachten die Sprache

 $L=\{\mathrm{Kod}(M_1)\#\mathrm{Kod}(M_2)\#k\mid M_1\text{ und }M_2\text{ sind TM "über dem Eingabealphabet }\Sigma$ und $\Sigma^k\not\subseteq L(M_1)\cup L(M_2)\}\,.$

Zeigen Sie, dass $L \notin \mathcal{L}_{RE}$ gilt.

 ${\bf Aufgabe~5} \\ {\bf 6+2~Punkte}$

(a) Sei seine platzkonstruierbare Funktion mit $s(n) \geq \log_2 n.$ Zeigen Sie, dass dann gilt:

$$\mathrm{SPACE}(s(n)) \subseteq \bigcup_{c \in \mathbb{N}} \mathrm{TIME}(c^{s(n)}) \,.$$

$egin{array}{cccc} { m Aufgabe} \; 5 \end{array}$	6+2 Punkte
---	------------

(b) Zeigen Sie, dass $\mathsf{DLOG} \subseteq \mathsf{P} \subseteq \mathsf{PSPACE}$ gilt.

Aufgabe 6 4+4 Punkte

(a) Sei für jedes $k\in\mathbb{N}$ das Problem kSAT definiert als das Teilproblem von SAT eingeschränkt auf KNF-Formeln, die nur Klauseln der Länge höchstens k enthalten.

Zeigen Sie, dass 3SAT NP-schwer ist. Sie dürfen für den Beweis verwenden, dass 4SAT NP-schwer ist.

Aufgabe 6 4+4 Punkte

(b) Wir nennen eine Klausel einer KNF-Formel *monoton*, wenn sie entweder keine negierten Variablen oder nur negierte Variablen enthält. Wir betrachten die Menge monotone-3SAT aller erfüllbaren KNF-Formeln, die ausschliesslich aus monotonen Klauseln der Länge höchstens 3 bestehen.

Zeigen Sie, dass monotone-3SAT NP-vollständig ist.

Sie dürfen für Ihren Beweis voraussetzen, dass das in Aufgabenteil (a) betrachtete Problem 3SAT NP-schwer ist.

Aufgabe 7 4+4 Punkte

(a) Wir betrachten die Grammatik $G = (\{S, X_0, X_1, X_2\}, \{a, b\}, P, S)$ mit

$$P = \{ S \to X_0 a a, \\ X_0 \to a X_0 \mid b X_1, \\ X_1 \to a X_1 \mid b X_2, \\ X_2 \to a X_2 \mid b X_0 \mid \lambda \} .$$

Geben Sie die von G erzeugte Sprache an und begründen Sie ihre Behauptung informell.

 ${\bf Aufgabe~7} \\ {\bf 4+4~Punkte}$

(b) Geben Sie eine reguläre Grammatik für die Sprache

$$L = \{xcy \mid x,y \in \{a,b\}^* \text{ und } |x|_a + |y|_a \text{ mod } 2 = 1\}$$

an und begründen Sie informell die Korrektheit Ihrer Konstruktion.

Weiterer	Raum	für	Lösungen
----------	------	-----	----------

Bitte Aufgabennummer angeben und von der entsprechenden Aufgabe hierher verweisen.

Weiterer Raum für Lösungen Bitte Aufgabennummer angeben und von der entsprechenden Aufga	be hierher verweisen.