Discrete Distributions

ns. xist.

Distribution, notation	Probability function	EX	$\operatorname{Var} X$	$\varphi_X(t)$	
One point $\delta(a)$	p(a) = 1	а	0	e^{ita}	
Symmetric Bernoulli	$p(-1) = p(1) = \frac{1}{2}$	0	1	$t \cos t$	
Bernoulli $\mathrm{Be}(p), 0 \le p \le 1$	$p(0) = q, \ p(1) = p; \ q = 1 - p$	d	bd	$q + pe^{it}$	
Binomial $Bin(n,p), \ n=1,2,\dots, \ 0 \le p \le 1$	$p(k) = \binom{n}{k} p^k q^{n-k}, \ k = 0, 1, \dots, n; \ q = 1 - p$	du	bdu	$(q + pe^{it})^n$	
Geometric $\operatorname{Ge}(p),\ 0 \le p \le 1$	$p(k) = pq^k, \ k = 0, 1, 2,; \ q = 1 - p$	$\frac{d}{b}$	$\frac{d}{p^2}$	$\frac{p}{1 - qe^{it}}$	
First success $\operatorname{Fs}(p), 0 \leq p \leq 1$	$p(k) = pq^{k-1}, \ k = 1, 2, \dots; \ q = 1 - p$	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{pe^{it}}{1 - qe^{it}}$	
Negative binomial NBin (n, p) , $n = 1, 2, 3,$, $0 \le p \le 1$	$p(k) = {n+k-1 \choose k} p^n q^k, \ k = 0, 1, 2,;$ q = 1 - p	$\frac{d}{b}u$	$n \frac{q}{p^2}$	$(rac{p}{1-qe^{it}})^n$	
Poisson $\mathrm{Po}(m), \ m>0$	$p(k) = e^{-m} \frac{m^k}{k!}, \ k = 0, 1, 2, \dots$	m	w w	$e^{m(e^{it}-1)}$	
Hypergeometric $H(N,n,p), n=0,1,\ldots,N,$ $N=1,2,\ldots,$ $p=0,\frac{1}{N},\frac{2}{N},\ldots,1$	$p(k) = \frac{\binom{Np}{k} \binom{Nq}{n-k}}{\binom{N}{n}}, k = 0, 1, \dots, Np;$ $q = 1 - p;$ $n - k = 0, \dots, Nq$	du	$npq\frac{N-n}{N-1}$	*	

Continuous Distributions

Distribution, notation	Density	EX	$\operatorname{Var} X$	$\varphi_X(t)$	
Uniform/Rectangular					
U(a,b)	$f(x) = \frac{1}{b-a}, \ a < x < b$	$\frac{1}{2}(a+b)$	$\frac{1}{12}(b-a)^2$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$	
U(0,1)	$f(x) = 1, \ 0 < x < 1$	□ □	$\frac{1}{12}$	$\frac{e^{it}-1}{it}$	
U(-1,1)	$f(x) = \frac{1}{2}, x < 1$	0	⊣lw	$\frac{\sin t}{t}$	
Triangular $\operatorname{Tri}(a,b)$	$f(x) = \frac{2}{b-a} \left(1 - \frac{2}{b-a} \left x - \frac{a+b}{2} \right \right)$	$\frac{1}{2}(a+b)$	$\frac{1}{24}(b-a)^2$	$\left(\frac{e^{itb/2} - e^{ita/2}}{\frac{1}{2}it(b-a)}\right)^2$	
	a < x < b				
Tri(-1,1)	f(x) = 1 - x , x < 1	0	⊣ I9	$\left(\frac{\sin\frac{t}{2}}{\frac{t}{2}}\right)^2$	
Exponential $\operatorname{Exp}(a), \ a > 0$	$f(x) = \frac{1}{a} e^{-x/a}, \ x > 0$	a	a_2^2	$\frac{1}{1-ait}$	
Gamma $\Gamma(p,a),a>0,p>0$	$f(x) = \frac{1}{\Gamma(p)} x^{p-1} \frac{1}{a^p} e^{-x/a}, \ x > 0$	pa	pa^2	$\frac{1}{(1-ait)^p}$	
Chi-square $\chi^2(n), n = 1, 2, 3, \dots$	$f(x) = \frac{1}{\Gamma(\frac{n}{2})} x^{\frac{1}{2}n-1} (\frac{1}{2})^{n/2} e^{-x/2}, x > 0$	α	2n	$\frac{1}{(1-2it)^{n/2}}$	
Laplace $L(a), \ a > 0$	$f(x) = \frac{1}{2a} e^{- x /a}, -\infty < x < \infty$	0	$2a^2$	$\frac{1}{1+a^2t^2}$	
Beta	$f(x) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} x^{r-1} (1-x)^{s-1},$	r + s	$\frac{rs}{(r+s)^2(r+s+1)}$	*	
eta(r,s),r,s>0	0 < x < 1				

Continuous Distributions (continued)

Distribution, notation	Density	EX	Var X	$\varphi_X(t)$
Weibull $W(\alpha,\beta), \alpha,\beta > 0$	$f(x) = \frac{1}{\alpha \beta} x^{(1/\beta)-1} e^{-x^{1/\beta}/\alpha}, \ x > 0$	$\alpha^{\beta} \Gamma(\beta+1)$	$a^{2\beta} \left(\Gamma(2\beta + 1) - \Gamma(\beta + 1)^2 \right)$	*
Rayleigh $\operatorname{Ra}(\alpha),\ \alpha>0$	$f(x) = \frac{2}{\alpha} x e^{-x^2/\alpha}, \ x > 0$	$\frac{1}{2}\sqrt{\pi\alpha}$	$lpha(1-rac{1}{4}\pi)$	*
Normal $N(\mu,\sigma^2),$ $-\infty < \mu < \infty, \sigma > 0$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(x-\mu)^2/\sigma^2},$	π	σ2 6	$e^{i\mu t - \frac{1}{2}t^2\sigma^2}$
N(0,1)	$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, -\infty < x < \infty$	0	1	$e^{-t^2/2}$
Log-normal $LN(\mu,\sigma^2),$ $-\infty<\mu<\infty,\ \sigma>0$	$f(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{-\frac{1}{2}(\log x - \mu)^2/\sigma^2}, \ x > 0$	$e^{\mu + \frac{1}{2}\sigma^2}$	$e^{2\mu} \left(e^{2\sigma^2} - e^{\sigma^2} \right)$	*
(Student's) t t(n), n = 1, 2,	$f(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{\pi n} \Gamma(\frac{x}{2})} \cdot d \frac{1}{(1+\frac{x^2}{n})(n+1)/2},$ $-\infty < x < \infty$	0	$\frac{n}{n-2}, \ n>2$	*
(Fisher's) F	$f(x) = \frac{\Gamma(\frac{m+n}{2})(\frac{m}{n})^{m/2}}{\Gamma(\frac{2n}{4})\Gamma(\frac{2n}{2})} \cdot \frac{x^{m/2-1}}{(1+\frac{mx}{n})^{(m+n)/2}},$	$\frac{n}{n-2}$,	$\frac{n^2(m+2)}{m(n-2)(n-4)} - \left(\frac{n}{n-2}\right)^2,$	*
$F(m,u),m,u=1,2,\dots$	x > 0	n > 2	n > 4	

Continuous Distributions (continued)

Distribution, notation Density	Density	EX	$\operatorname{Var} X$	$\varphi_X(t)$
Cauchy				
n, a)	$f(x) = \frac{1}{\pi} \cdot \frac{a}{a^2 + (x - m)^2}, -\infty < x < \infty$	R	B	$e^{imt-a t }$
C(0,1)	$f(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2}, -\infty < x < \infty$	RĮ	Ħ	$e^{-\frac{ t }{t}}$
Pareto	$f(x) = \frac{\alpha k^{\alpha}}{x^{\alpha+1}}, \ x > k$	$\frac{\alpha k}{\alpha - 1}, \alpha > 1$	$\frac{\alpha k}{\alpha-1}, \ \alpha>1 \frac{\alpha k^2}{(\alpha-2)(\alpha-1)^2}, \ \alpha>2,$	*