Algorithms

Methods for securing communications

Michael L Perry qedcode.com @michaellperry

Types of Cryptograph Algorithms

- Symmetric
- Asymmetric
- Hash Functions

Cryptographic System

Symmetric Algorithms

One Time Pad

Encrypted message

Block Ciphers

Encrypted message

Rounds

16 bytes (128 bits) Symmetric key Message block **Encrypted block**

Symmetric key Shift XOR Round keys Multiply Key schedule

Why Not XOR?

Message block

Symmetric key

Encrypted block

The Mathematical Theory of Communication
1948

Communication Theory of Secrecy Systems
1949

Claude E. Shannon

Confusion and Diffusion

Confusion

- Relationship between key and ciphertext
- \Box Small change in key \rightarrow large change in ciphertext
- XOR is not sufficient; one-to-one
- Key schedule

Diffusion

Relationship between message and ciphertext

Electronic Code Book (ECB)

Encrypted message

© 1996 Larry Ewing

Diffusion

- Diffuse the information
- Small change in message → large change in ciphertext
- Hides patterns within the message

Cipher Block Chaining (CBC)

Encrypted message

© 1996 Larry Ewing

The First Block

GET http://qedcode.com/ HTTP/1.1 Host: qedcode.com

CBC with IV

- Diffuses information
- Encrypt message of arbitrary length
- Key of fixed length

Data Encryption Standard (DES)

Horst Feistel

IBM

1970s

Standardized

1977

Data Encryption Standard (DES)

Key length

- □ 64 bit input
- 8 bit parity check
- 56 bit effective key

Weaknesses

- Theoretical
- Short key

3DES

- Run the protocol 3 times
- Effective key length up to 168 bits
- Slow

Encryption Standard Selection

National Institute of Standards and Technology (NIST) 1997 - 2000

Vincent Rijmen

Joan Daemen

Rijndael

Advanced Encryption Standard (AES)

Key lengths

128, 192, or 256 bits

Block size

□ 16 bytes

Rounds

- Key expansion
- □ XOR
- Substitution
- Shift rows
- Mix columns

e3	37	90	2a
b3	77	2f	51
7c	de	3a	46
38	65	1f	2b

Key Expansion

- Key schedule
 - Shift
 - □ XOR
 - Multiply
- Confuses key
- 16 byte round key
- XOR key with message block

S-Box

Substitution box

Lookup table

63	7c	77	7b	f2	6b	6f	с5	30	01	67	2b	fe	d7	ab	76
ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9 _C	a4	72	c0
b7	fd	93	26	36	3f	£7	CC	34	a5	e5	f1	71	d8	31	15
04	с7	23	с3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e 3	2f	84
53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3с	9f	a8
51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
e 0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
e7	с8	37	6d	8d	d5	4e	a 9	6c	56	f4	ea	65	7a	ae	08
ba	78	25	2e	1c	a6	b4	с6	e8	dd	74	1f	4b	bd	8b	8a
70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
e1	f8	98	11	69	d9	8e	94	9b	1e	87	e9	ce	55	28	df
8c	a1	89	0d	bf	e 6	42	68	41	99	2d	0f	b0	54	bb	16

e3	37	90	2a
b3	77	2f	51
7c	de	3a	46
38	65	1f	2b

b3	77	2f	51
7c	de	3a	46
38	65	1f	2b
e3	37	90	2a

b3	77	2f	51
7c	de	3a	46
38	65	1f	2b
e3	37	90	2a

b3	77	2f	51
46	7c	de	3a
1f	2b	38	65
37	90	2a	e3

Further confuses key

Recommendations

- AES-256
 - Top Secret level
 - Provides confusion
- Cipher Block Chaining
 - Provides diffusion

Modern Cryptanalysis

Enigma

- 47.1 bits in plug board
- $a 4.7 \times 3 = 14.1 \text{ bits in rotors}$
- □ Total 61.2 64 bits

- No memory
 - Hence, no diffusion
- Predictable key changes
 - Hence, little confusion

AES

128 - 256 bits of entropy

DES

□ 56 bits

- CBC and IV
 - Good diffusion
- Rounds
 - □ Good confusion

Compression

Information content of English text

- 0.6 to 1.3 bits of information per character
- Redundancy
- Patterns
- Predictable

Compressed ASCII

- Theoretical limit: 7.5% to 16% of size
- In practice: 40% of size
- Squeezes out redundancy
- Preserves information

Compressed ZIP

- Ineffective
- Patterns are already removed

Encryption vs Compression

Encryption

- Masks patterns
- Adds information
- Compression after encryption is not effective

Compress before encrypt

- Compression uses redundancy
- Compression removes patterns
- Smaller message
- More diffused

Error Correction

Operation

- Checksums
- Discover errors
- Correct errors

Combined with encryption

- Adds redundancy
- Easier to crack

Correct at time of transmission

- Does not weaken encryption
- Just as effective

Benefits of Information Theory

- Compression
- Error Correction
- Encryption

Asymmetric Algorithms

Diffie-Hellman

Vulnerable to man-in-the-middle attacks

Proof of identity

Means of identification
 Public key

Method of proof
 Private key

Pair of Functions

$$f(x) f^{-1}(x)$$

Function Inverse

Inverse Functions

Message

m

Cyphertext

$$f(m) = c$$

Public key

$$f^{-1}(c) = m$$

Private key

Exponentiation in a Modulus

Jumps around

- Hard to find the root
- Easy to find the exponent

Make up two functions

Encrypting exponent (e)

$$m^e = c_{(mod n)}$$

Modulus (n)

Decrypting exponent (d)

$$c^d = m_{(mod n)}$$

$$m^e = c_{(mod n)}$$
 $c^d = m_{(mod n)}$

$$(m^e)^d = m_{(mod n)}$$

 $m^{ed} = m_{(mod n)}$

$$m^{ed} = m_{(mod n)} \qquad \qquad n = pq$$

$$n = pq$$

$$n = pq$$

$$m^{ed} = m_{(mod p)}$$
 $m^{ed} = m_{(mod q)}$ $n = pq$

$$m^{ed} = m_{(mod p)}$$
 $m^{ed} = 1$ m

$$n = pq$$

$$m^{(ed-1)} m = m_{(mod p)}$$

$$n = pq$$

$$m^{(p-1)} = 1_{(mod p)}$$

$$ed - 1 = h(p-1)$$

$$(m^{(p-1)})^h m = m_{(mod p)}$$

$$n = pq$$

$$ed - 1 = h(p-1)$$

$$(1)^h m = m_{(mod p)}$$

$$n = pq$$

$$ed - 1 = h(p-1)$$

$$1 \text{ m} = \text{m}_{\text{(mod p)}}$$

$$n = pq$$

$$ed - 1 = h(p-1)$$

$$m^{ed} = m_{(mod q)}$$

$$n = pq$$

$$ed - 1 = h(p-1)$$

$$m^{ed} = m_{(mod q)}$$
 $n = pq$
$$ed - 1 = h(p-1)(q-1)$$

$$13 \quad 37 \qquad 7 \qquad 11$$

$$481 \qquad 6 \qquad 10$$

Suitable Numbers

$$n = pq$$

$$ed - 1 = h(p-1)(q-1)$$

Fermat's Little Theorem

$$g^{(p-1)} = 1_{(mod p)}$$

$$g = 2, 3, 4, 5, \dots$$

Primality test

Choosing Numbers

Choose p and q prime

$$n = pq$$

Choose e having no common factor with (p-1)(q-1)

ed - 1 =
$$h(p-1)(q-1)$$

Extended Euclidean Algorithm

Chosen Keys

$$f(m) = m^{13} \pmod{77}$$
 Encrypt

$$f^{-1}(c) = c^{37} \pmod{77}$$
 Decrypt

RSA Algorithm

1977

Ron Rivest

Adi Shamir

Leonard Adleman

Clifford Cocks

1973

Discrete Logarithm Problem

Inverse of exponentiation within a modulus

Given:

 $m^{e}_{(mod n)}$ m n

Find:

e

Trapdoor Function

Big O Notation

Express work as a function of input

Search

O(log n)

 $\log 2n = (\log n) + 1$

Scan

O(n)

2n = 2(n)

Sort

O(n log n)

 $2n \log 2n = 2 (n \log n) + 2n$

Big O of Discrete Logarithm Problem

$$m^e$$
 (mod n)

Try every e

b = number of bits

 $O(2^{b})$

$$2^{(2b)} = (2^b)^2$$

A Heuristic Quasi-Polynomial Algorithm for Discrete Logarithm in Finite Fields of Small Characteristic

March 2014

Razvan Barbulescu Pierrick Gaudry Antoine Joux Emmanuel Thomé

$$n = q^{2k}$$

for q≈k quasi-polynomial

b^{O(log b)}

 $2b^{\log 2b} = (b^{\log b}) 2b$

as q and k diverge approaches exponential

$$if \\ n = q^{2k}$$

then

 $m^e_{(mod n)}$ is not a trapdoor

Diffie-Hellman n is prime

RSA n = pq

Diffie-Hellman and RSA are Safe

(for now)

Elliptic Curve Cryptography

Neal Koblitz

Victor S. Miller

1985

Elliptic Curve Equation

Computed by Wolfram |Alpha

Properties of Elliptic Curves

- A non-vertical line intersecting 2 points also intersects a third
- No line intersects at more than 3 points
- The curve is symmetrical

Two Functions

- Given A_0 , A_1 , n
 - □ Find A_n
 - □ Easy (ish)
- Given A₀, A₁, A_n
 - □ Find n
 - Good luck!
 - Run each iteration until you hit A_n

Public/Private Key Pair

- x and y
 - Integers
 - Prime modulus

$$y^2 = x^3 + 3x + 5 \pmod{p}$$

- Private key (n)
- Public key (A_n)

Key Lengths

ECC (Elliptic Curve Cryptography)

□ 163 - 359 bits (≈ $10^{49} - 10^{108}$)

RSA

□ 2048 bits (≈10⁶¹⁶)

Use of Algorithms

Confidentiality

- Encrypt a message
- Encrypt symmetric key with public key
- Confidence that only recipient can read it

Authenticity

- Guarantee the source
- Digest of message (hash)
- Encrypt digest with private key (signature)
- Compute same hash
- Decrypt signature with public key

$$= f^{-1}($$

$$= f^{-1}(=)$$

$$= f(=)$$

CRC-32

- Cyclic Redundancy Check
- 32-bit hash

$$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$$
 (mod 2)

- Easily reversible
- Intended for error detection
- Not appropriate for digital Signatures

Weakness of CRC-32

Cryptographically Strong Hashing Algorithms

Ralph Merkle

Ivan Damgård

Bit shifts, modulus addition, XOR in rounds

Diffuse message

MD5

- Severe weaknesses
- No longer suitable

SHA-1

- 160 bit hash
- NSA
- Found weaknesses
- No longer recommended after 2010

SHA-2

- NSA
- Family
 - □ SHA-256
 - □ SHA-512
- New functions

SHA-3

- 2012 NIST
- Keccak

Michaël Peeters

Guido Bertoni

Gilles Van Assche

Joan Daemen

- 224 512 bit hash
- More internal state

Give Mallory money

-Bob

Give Bob money

-Bol

The Birthday Attack

Probability that two share a birthday

= 1 – everybody has unique birthday

365/365

364/365 99.7%

364/365

365/365 ×364/365 ×363/365 ×···×346/365 = 58.9% = 1 - 41.1%

With 23 people, the probability of two sharing a birthday is greater than 50%

The Birthday Attack

Give Mallory some money

Give Mallory a little money

Give Bob some money

Give Bob a little money

Never sign someone else's document

Always append randomness

Identity

Private key $-f^{-1}(x)$

Public key - f(x)

Trust?

= f(=)

Trust

Direct key exchange

Community

- Do others trust this key?
- Web of trust
- Have to trick many people
- PGP

Authorities

- Vouch for identity
- Chain of trust
- X.509 certificates

Sign Public Keys

Summary

Asymmetric

- □ RSA
- Elliptic Curve

Symmetric

- DES
- AES

Hash Functions

- MD5
- □ SHA 1, 2, and 3

Confidentiality

- Encrypt message with symmetric
- Encrypt key with public

Authenticity

- Compute digest with hash
- Encrypt digest with private