

Time series modeling and forecasting

Lecture 18 of "Mathematics and Al"

Outline

- 1. Stochastic processes moments, stationarity, autocorrelation, extrapolation
- 2. Linear models for time-series forecasting (vector-)autoregression, moving-average, naïve forecasting
- 3. Nonlinear models for time-series forecasting integrated process, detrending, ARIMA
- 4. Neural networks for time-series forecasting recurrent neural networks, long short-term memory

Stochastic processes

Time series data

- Sequence of observations $x_1, x_2, ..., x_{t-1}, x_t$
- The order of observations matters!
- Forecast: Prediction of future values x_{t^*} with $t^* > t$

Schwarze Math 76.01 Summer 2024

Extrapolation vs. interpolation

- Extrapolation tends to be much harder than interpolation in ML
- Important for AI applications

Schwarze Math 76.01 Summer 2024

A stochastic process

Random variable X defined by prob. distribution $p(x), x \in D_X$

Realization of a random variable

value (can be a vector) $x \in D_X$ drawn from p(x)

Stochastic process X_t defined by joint prob. distribution $p(x_1, x_2, ...), x_i \in D_X$

Realization of a stochastic process

sequence $(x_1, x_2, ..., x_t) \in D_x^t$ drawn from $p(x_1, x_2, ...)$

A stochastic process

Random variable Xdefined by prob. distribution $p(x), x \in D_X$

Moments of a random variable

(for mean-centered
$$x$$
) $\langle x \rangle = \sum_{x \in D_X} p(x)x$ Expectation $\langle x^2 \rangle = \sum_{x \in D_X} p(x) x^2$

Stochastic process X_t defined by joint prob. distribution $p(\{x_t\}_{t=1,2,...}), x_i \in D_X$

Moments of a stochastic process

$$\langle x_t \rangle = \sum_{x \in D_X} p_t(x_t) x_t$$
 Expectation
$$\langle x_{t_1} x_{t_2} \rangle = \sum_{x_{t_1}, x_{t_2} \in D_X} p(x_{t_1}, x_{t_2}) x_{t_1} x_{t_2}$$
 Autocovariance (for mean-centered x_{t_1}, x_{t_2})

Empirical autocorrelation function

- Time series data observed for T time steps with variance $s^2 = \frac{1}{T} \sum_{t=1}^{T} (x_t \bar{x}_t)^2$
- Autocorrelation r_k function measures correlation between mean-centered x_t and mean-centered x_{t-k}

$$r_k = \frac{1}{Ts^2} \sum_{t=k+1}^{T} (x_t - \bar{x}_t)(x_{t-k} - \bar{x}_{t-k})$$

Typically see downward trend with increasing k

A stationary stochastic process

- Stationary stochastic process
 - Process that is not explicitly time-dependent
 - No trend
 - All moments are independent of t
 - Autocorrelation function only depends on $k = \Delta t$, not t
- Weak stationarity:
 - First and second moments are independent of t

Distribution is normal

Example 1: Gaussian white noise

- Sequence $x_1, x_2, ..., x_t$ of samples drawn from a normal distribution
- Samples are drawn iid (identically independently distributed)

 Same normal distribution for x_i

Distribution of x_i does not depend on x_j for $j \neq i$, i.e., $p(x_i, x_j) = p(x_i) p(x_j)$

Stationary process

Example 2: Brownian motion

$$x_t = x_{t-1} + \varepsilon_t$$

- Model for particle movement
- Variance increases with t
- Not stationary

Linear models for timeseries forecasting

Linear models for time-series modeling

• The state x_t can be expressed a linear combination of previous states:

$$\begin{aligned} x_t &= \varphi_{t,0} + \varphi_{t,1} x_{t-1} + \varphi_{t,2} x_{t-2} + \dots + \varphi_{t,k} x_{t-k} + \dots + \varphi_{t,t} x_0 \\ &+ \omega_{t,0} \varepsilon_t + + \omega_{t,1} \varepsilon_{t-1} + \omega_{t,2} \varepsilon_{t-2} + \dots + \omega_{t,k} \varepsilon_{t-k} + \dots + \omega_{t,t} \varepsilon_0 \end{aligned}$$

- There are $t+{t+1\choose 2}$ parameters $\varphi_{i,j}$ and ${t+1\choose 2}$ parameters $\omega_{i,j}!$
- Make some regularizing assumptions about $\varphi_{i,j}$ and $\omega_{i,j}$

Autoregressive (AR) model

$$x_{t} = \varphi_{0} + \varphi_{1}x_{t-1} + \varphi_{2}x_{t-2} + \dots + \varphi_{p}x_{t-p} + \varepsilon_{t}$$

Assumptions

- $\varphi_{i,k} = \varphi_{j,k}$ for all i, j
- $\varphi_{i,k} = 0$ for all k > p
- $\omega_{t,0} = 1$, and
- $\omega_{i,k} = 0$ for all other i, k

Notation

- AR(1) process has p = 1
- AR(p) process typically has p > 1
- Process is a vector-autoregressive (VAR) process if x_t is vector-valued

Moving-average (MA) model

$$x_t = \varepsilon_t + \omega_1 \varepsilon_{t-1} + + \omega_2 \varepsilon_{t-2} + \dots + + \omega_p \varepsilon_{t-p}$$

Assumptions

- $\omega_{i,k} = \omega_{j,k}$ for all i, j
- $\omega_{i,k} = 0$ for all k > p
- $\omega_{t,0} = 1$, and
- $\varphi_{i,k} = 0$ for i, k

Notation

- MA(1) process has p = 1
- MA(p) process typically has p > 1
- ARMA process combines AR and MA process
- VARMA is vector-valued ARMA process

Forecasting with linear models

Nonlinear models for timeseries forecasting

Integrated processes

- Integrated ARI(1) process
 - x_t is not a linear process, but $\Delta x_t \coloneqq x_t x_{t-1}$ is a AR process
- Integrated ARIMA(1) process
 - x_t is not a linear process, but $\Delta x_t \coloneqq x_t x_{t-1}$ is an ARMA process
- Integrated ARIMA(p) process
 - x_t is not a linear process, but $\Delta^p x_t \coloneqq x_t x_{t-1}$ is an ARMA process

Integrated processes

- Integrated processes can have polynomial trends
- Integrated processes are not stationary
- They can be de-trended via differencing

Nonlinear autoregressive (NAR) processes

$$x_t = f(x_{t-1}, x_{t-2}, ..., x_{t-p}) + \varepsilon_t$$

- Nonlinear function f
- cannot be de-trended via differencing (in general)
- Expressiveness depends on choice of *f*

Neural networks for timeseries forecasting

Recurrent neural networks

- Keep track of parts of the network state from previous inputs to mimic autoregression
- Use recurrent network connections
- Consistent with natural neural network architectures outside the visual system

Simple recurrent network

Replace hidden state

$$x_t^{(2)} = \sigma \left(W^{(1)} x_t^{(1)} + b^{(1)} \right)$$

Simple recurrent network

Replace hidden state

$$x_t^{(2)} = \sigma \left(W^{(1)} x_t^{(1)} + b^{(1)} \right)$$

with new hidden state

$$x_t^{(2)} = \sigma_x \left(W^{(1)} x_t^{(1)} + V h_t + b_x^{(1)} \right)$$

New layer of weights!

 $U^{(1)}$

Simple recurrent network

Replace hidden state

$$x_t^{(2)} = \sigma \left(W^{(1)} x_t^{(1)} + b^{(1)} \right)$$

with new hidden state

$$x_t^{(2)} = \sigma_x \left(W^{(1)} x_t^{(1)} + V h_t + b_x^{(1)} \right)$$

With memory state

$$h_{t} = \sigma_{h} \left(U_{t}^{(1)} x_{t}^{(1)} + U_{t}^{(2)} x_{t}^{(2)} + U_{t}^{(h)} h_{t} + b_{h}^{(1)} \right)$$
New layer of weights!

Long short-term memory

Forget gate

Input gate

Output gate

