1 Basic

Math: a = b _____

2 Pictures

2.1 Lines:

using integers, scaling with floats, \LaTeX counters, TeX counters.

2.2 Vectors:

2.3 Boxes;

 \mathbf{A}

 \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}

2.4 Box positioning

Xg vs. Xg vs. Xg vs. Xg vs. Xg vs. Xg vs. Xg

Xg	Xg	Xg	Xg	Xg	Xg
Xg	Xg	_	"	Xg	Xg
Xg	Xg	Xg	Xg	Xg	Xg
Xg_	X	g	Xg	X	g

2.5 Circles:

2.6 Curves:

2.7 Repeats:

3 User Examples

Figure 1: Mapping of two-variable minterms on a Karnaugh map.

4 DLMF Examples

$\begin{bmatrix} 1 & 8 \\ s & E \end{bmatrix}$	23 bits f			N = 32, p = 24
$\begin{bmatrix} 1 & 11 \\ s & E \end{bmatrix}$		52 bits f		$N = 64, \\ p = 53$
$ \begin{array}{c c} 1 & 15 \\ \hline s & E \end{array} $			$\frac{112 \text{ bits}}{f}$]

Figure 2: Floating-point arithmetic. Representation of data in the binary interchange formats for binary32, binary64 and binary128 (previously single, double and quad precision).

Table 1: Cubature formulas for disk and square.

Table 1: Cub	ature formulas for disk a	nd s	quare.
Diagram	(x_j, y_j)	w_j	R
•	(0,0) $(\pm h,0)$ $(0,\pm h)$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{8} \\ \frac{1}{8} \end{array}$	$O(h^4)$
	$(\pm \frac{1}{2}h,\pm \frac{1}{2}h)$	$\frac{1}{4}$	$O(h^4)$
•	$(0,0) (\pm h,0), (0,\pm h) (\pm \frac{1}{2}h, \pm \frac{1}{2}h)$	$\begin{array}{c} \frac{1}{6} \\ \frac{1}{24} \\ \frac{1}{6} \end{array}$	$O(h^8)$
	$(0,0) (\pm \frac{1}{3}\sqrt{6}h,0) (\pm \frac{1}{6}\sqrt{6}h, \pm \frac{1}{2}\sqrt{2}h)$	$\begin{array}{c} \frac{1}{4} \\ \frac{1}{8} \\ \frac{1}{8} \end{array}$	$O(h^6)$
	(0,0) $(\pm h,0), (0,\pm h)$ $(\pm h,\pm h)$	$\frac{\frac{4}{9}}{\frac{1}{9}}$ $\frac{1}{36}$	$O(h^4)$
• •	$(\pm \frac{1}{3}\sqrt{3}h, \pm \frac{1}{3}\sqrt{3}h)$	$\frac{1}{4}$	$O(h^4)$
	$(0,0) (\pm \sqrt{\frac{3}{5}}h,0), (0,\pm \sqrt{\frac{3}{5}}h) (\pm \sqrt{\frac{3}{5}}h,\pm \sqrt{\frac{3}{5}}h)$	$ \begin{array}{r} \frac{16}{81} \\ \frac{10}{81} \\ \underline{25} \\ 324 \end{array} $	$O(h^6)$