Category theory for computer science

generality
abstraction
convenience
constructiveness

Overall idea

look at all objects exclusively through relationships between them

capture relationships between objects as appropriate morphisms between them

(Cartesian) product

- Cartesian product of two sets A and B, is the set $A \times B = \{\langle a, b \rangle \mid a \in A, b \in B\}$ with projections $\pi_1 : A \times B \to A$ and $\pi_2 : A \times B \to B$ given by $\pi_1(\langle a, b \rangle) = a$ and $\pi_2(\langle a, b \rangle) = b$.
- A product of two sets A and B, is any set P with projections $\pi_1: P \to A$ and $\pi_2: P \to B$ such that for any set C with functions $f_1: C \to A$ and $f_2: C \to B$ there exists a unique function $h: C \to P$ such that $h; \pi_1 = f_1$ and $h; \pi_2 = f_2$.

Fact: Cartesian product (of sets A and B) is a product (of A and B).

Recall the definition of (Cartesian) product of Σ -algebras. Define product of Σ -algebras as above. What have you changed?

Pitfalls of generalization

the same concrete definition \simple distinct abstract generalizations

Given a function $f: A \to B$, the following conditions are equivalent:

- f is a surjection: $\forall b \in B \cdot \exists a \in A \cdot f(a) = b$.
- f is an epimorphism: for all $h_1, h_2 : B \to C$, if $f; h_1 = f; h_2$ then $h_1 = h_2$.
- f is a retraction: there exists $g: B \to A$ such that $g; f = id_B$.

BUT: Given a Σ -homomorphism $f:A\to B$ for $A,B\in\mathbf{Alg}(\Sigma)$:

f is retraction $\implies f$ is surjection $\iff f$ is epimorphism

BUT: Given a (weak) Σ -homomorphism $f: A \to B$ for $A, B \in \mathbf{PAlg}(\Sigma)$:

f is retraction $\implies f$ is surjection $\implies f$ is epimorphism

Categories

Definition: Category **K** consists of:

- a collection of objects: |K|
- mutually disjoint collections of morphisms: $\mathbf{K}(A,B)$, for all $A,B \in |\mathbf{K}|$; $m\colon A \to B$ stands for $m\in \mathbf{K}(A,B)$
- morphism composition: for $m: A \to B$ and $m': B \to C$, we have $m; m': A \to C$;
 - the composition is associative: for $m_1:A_0\to A_1$, $m_2:A_1\to A_2$ and $m_3:A_2\to A_3$, $(m_1;m_2);m_3=m_1;(m_2;m_3)$
 - the composition has identities: for $A \in |\mathbf{K}|$, there is $id_A : A \to A$ such that for all $m_1 : A_1 \to A$, $m_1; id_A = m_1$, and $m_2 : A \to A_2$, $id_A; m_2 = m_2$.

BTW: "collection" means "set", "class", etc, as appropriate.

K is *locally small* if for all $A, B \in |\mathbf{K}|$, $\mathbf{K}(A, B)$ is a set.

 \mathbf{K} is *small* if in addition |K| is a set.

Presenting finite categories

0:

1:

2: • → •

(identities omitted)

Generic examples

Discrete categories: A category \mathbf{K} is *discrete* if all $\mathbf{K}(A,B)$ are empty, for distinct $A,B \in |\mathbf{K}|$, and $\mathbf{K}(A,A) = \{id_A\}$ for all $A \in |\mathbf{K}|$.

Preorders: A category **K** is *thin* if for all $A, B \in |\mathbf{K}|$, $\mathbf{K}(A, B)$ contains at most one element.

Every preorder $\leq \subseteq X \times X$ determines a thin category \mathbf{K}_{\leq} with $|\mathbf{K}_{\leq}| = X$ and for $x, y \in |\mathbf{K}_{\leq}|$, $\mathbf{K}_{\leq}(x, y)$ is nonempty iff $x \leq y$.

Every (small) category \mathbf{K} determines a preorder $\leq_{\mathbf{K}} \subseteq |\mathbf{K}| \times |\mathbf{K}|$, where for $A, B \in |\mathbf{K}|$, $A \leq_{\mathbf{K}} B$ iff $\mathbf{K}(A, B)$ is nonempty.

Monoids: A category K is a *monoid* if |K| is a singleton.

Every monoid $\mathcal{X} = \langle X, ;, id \rangle$, where $_;_: X \times X \to X$ and $id \in X$, determines a (monoid) category $\mathbf{K}_{\mathcal{X}}$ with $|\mathbf{K}_{\leq}| = \{*\}$, $\mathbf{K}(*,*) = X$ and the composition given by the monoid operation.

Examples

• Sets (as objects) and functions between them (as morphisms) with the usual composition form the category **Set**.

Functions have to be considered with their sources and targets

- For any set S, S-sorted sets (as objects) and S-functions between them (as morphisms) with the usual composition form the category \mathbf{Set}^S .
- For any signature Σ , Σ -algebras (as objects) and their homomorphisms (as morphisms) form the category $\mathbf{Alg}(\Sigma)$.
- For any signature Σ , partial Σ -algebras (as objects) and their weak homomorphisms (as morphisms) form the category $\mathbf{PAlg}(\Sigma)$.
- For any signature Σ , partial Σ -algebras (as objects) and their strong homomorphisms (as morphisms) form the category $\mathbf{PAlg_s}(\Sigma)$.
- Algebraic signatures (as objects) and their morphisms (as morphisms) with the composition defined in the obvious way form the category **AlgSig**.

Substitutions

For any signature $\Sigma = (S, \Omega)$, the category of Σ -substitutions \mathbf{Subst}_{Σ} is defined as follows:

- objects of \mathbf{Subst}_{Σ} are S-sorted sets (of variables);
- morphisms in $\mathbf{Subst}_{\Sigma}(X,Y)$ are substitutions $\theta:X\to |T_{\Sigma}(Y)|$,
- composition is defined in the obvious way:

for $\theta_1: X \to Y$ and $\theta_2: Y \to Z$, that is functions $\theta_1: X \to |T_\Sigma(Y)|$ and $\theta_2: Y \to |T_\Sigma(Z)|$, their composition $\theta_1; \theta_2: X \to Z$ in \mathbf{Subst}_Σ is the function $\theta_1; \theta_2: X \to |T_\Sigma(Z)|$ such that for each $x \in X$, $(\theta_1; \theta_2)(x) = \theta_2^\#(\theta_1(x))$.

Subcategories

Given a category K, a *subcategory* of K is any category K' such that

- $|\mathbf{K}'| \subseteq |\mathbf{K}|$,
- $\mathbf{K}'(A,B) \subseteq \mathbf{K}(A,B)$, for all $A,B \in |\mathbf{K}'|$,
- ullet composition in ${f K}'$ coincides with the composition in K on morphisms in ${f K}'$, and
- identities in \mathbf{K}' coincide with identities in \mathbf{K} on objects in $|\mathbf{K}'|$.

A subcategory \mathbf{K}' of \mathbf{K} is full if $\mathbf{K}'(A,B) = \mathbf{K}(A,B)$ for all $A,B \in |\mathbf{K}'|$.

Any collection $X \subseteq |\mathbf{K}|$ gives the full subcategory $\mathbf{K}|_X$ of \mathbf{K} by $|\mathbf{K}|_X| = X$.

- The category **FinSet** of finite sets is a full subcategory of **Set**.
- The discrete category of sets is a subcategory of sets with inclusions as morphisms, which is a subcategory of sets with injective functions as morphisms, which is a subcategory of **Set**.
- The category of single-sorted signatures is a full subcategory of AlgSig.

Reversing arrows

Given a category \mathbf{K} , its opposite category \mathbf{K}^{op} is defined as follows:

- objects: $|\mathbf{K}^{op}| = |\mathbf{K}|$
- morphisms: $\mathbf{K}^{op}(A,B) = \mathbf{K}(B,A)$ for all $A,B \in |\mathbf{K}^{op}| = |\mathbf{K}|$
- composition: given $m_1:A\to B$ and $m_2:B\to C$ in \mathbf{K}^{op} , that is, $m_1:B\to A$ and $m_2:C\to B$ in \mathbf{K} , their composition in \mathbf{K}^{op} , $m_1;m_2:A\to C$, is set to be their composition $m_2;m_1:C\to A$ in \mathbf{K} .

Fact: The identities in \mathbf{K}^{op} coincide with the identities in \mathbf{K} .

Fact: Every category is opposite to some category:

$$(\mathbf{K}^{op})^{op} = \mathbf{K}$$

Duality principle

If W is a categorical concept (notion, property, statement, . . .) then its dual , $\mathit{co-W}$, is obtained by reversing all the morphisms in W.

Example:

P(X): "for any object Y there exists a morphism $f: X \to Y$ "

co-P(X): "for any object Y there exists a morphism $f: Y \to X$ "

NOTE: co-P(X) in \mathbf{K} coincides with P(X) in \mathbf{K}^{op} .

Fact: If a property W holds for all categories then co-W holds for all categories as well.

Product categories

Given categories K and K', their product $K \times K'$ is the category defined as follows:

- objects: $|\mathbf{K} \times \mathbf{K}'| = |\mathbf{K}| \times |\mathbf{K}'|$
- morphisms: $(\mathbf{K} \times \mathbf{K}')(\langle A, A' \rangle, \langle B, B' \rangle) = \mathbf{K}(A, B) \times \mathbf{K}'(A', B')$ for all $A, B \in |\mathbf{K}|$ and $A', B' \in |\mathbf{K}'|$
- composition: for $\langle m_1, m_1' \rangle : \langle A, A' \rangle \to \langle B, B' \rangle$ and $\langle m_2, m_2' \rangle : \langle B, B' \rangle \to \langle C, C' \rangle$ in $\mathbf{K} \times \mathbf{K}'$, their composition in $\mathbf{K} \times \mathbf{K}'$ is

$$\langle m_1, m_1' \rangle; \langle m_2, m_2' \rangle = \langle m_1; m_2, m_1'; m_2' \rangle$$

Define \mathbf{K}^n , where \mathbf{K} is a category and $n \geq 1$. Extend this definition to n = 0.

Morphism categories

Given a category \mathbf{K} , its morphism category \mathbf{K}^{\rightarrow} is the category defined as follows:

- objects: $|\mathbf{K}^{\rightarrow}|$ is the collection of all morphisms in \mathbf{K}
- morphisms: for $f:A\to A'$ and $g:B\to B'$ in $\mathbf{K},\ \mathbf{K}^\to(f,g)$ consists of all $\overline{\langle k,k'\rangle}$, where $k:A\to B$ and $k':A'\to B'$ are such that k;g=f;k' in \mathbf{K}
- composition: for $\langle k, k' \rangle : (f : A \to A') \to (g : B \to B')$ and $\overline{\langle j, j' \rangle} : (g : B \to B') \to (h : C \to C')$ in \mathbf{K}^{\to} , their composition in \mathbf{K}^{\to} is $\langle k, k' \rangle; \langle j, j' \rangle = \langle k; j, k'; j' \rangle$.

Check that the composition is well-defined.

Slice categories

Given a category \mathbf{K} and an object $A \in |K|$, the category of \mathbf{K} -objects over A, $\mathbf{K} \downarrow A$, is the category defined as follows:

- objects: $\mathbf{K} \!\!\downarrow\!\! A$ is the collection of all morphisms into A in \mathbf{K}
- morphisms: for $f:B\to A$ and $g:B'\to A$ in $\mathbf K$, $(\mathbf K{\downarrow}A)(f,g)$ consists of all morphisms $k:B\to B'$ such that k;g=f in $\mathbf K$
- composition: the composition in $\mathbf{K}{\downarrow}A$ is the same as in \mathbf{K}

Check that the composition is well-defined.

View $\mathbf{K} \downarrow A$ as a subcategory of \mathbf{K}^{\rightarrow} .

Define $\mathbf{K} \uparrow A$, the category of \mathbf{K} -objects under A.

Fix a category \mathbf{K} for a while.

Simple categorical definitions

• $f:A\to B$ is an epimorphism (is epi): for all $g,h:B\to C$, f;g=f;h implies g=h

In Set, a function is epi iff it is surjective

• $f:A\to B$ is a monomorphism (is mono): for all $g,h:C\to A,\ g;f=h;f$ implies g=h

In Set, a function is mono iff it is injective

Simple facts

- If $f:A\to B$ and $g:B\to C$ are mono then $f;g:A\to C$ is mono as well.
- If $f;g:A\to C$ is mono then $f:A\to B$ is mono as well.

Prove, and then dualise the above facts.

NOTE: A morphism f is mono in \mathbf{K} iff f is epi in \mathbf{K}^{op} .

mono = co-epi

Give "natural" examples of categories where epis need not be "surjective". Give "natural" examples of categories where monos need not be "injective".

Isomorphisms

 $f:A \to B$ is an isomorphism (is iso) if there is $g:B \to A$ such that $f;g=id_A$ and $g;f=id_B$.

Then g is the (unique) inverse of f, $g = f^{-1}$.

In Set, a function is iso iff it is both epi and mono

Fact: If f is iso then it is both epi and mono. Give counterexamples to show that the opposite implication fails.

Fact: $f: A \rightarrow B$ is iso iff

- f is a retraction, i.e., there is $g_1: B \to A$ such that $g_1; f = id_B$, and
- f is a coretraction, i.e., there is $g_2: B \to A$ such that $f; g_2 = id_A$.

Fact: A morphism is iso iff it is an epi coretraction.

Fact: Composition of isomorphisms is an isomorphism.

Dualise!