```
plt.tight_layout()
# Show the plot
plt.show()
```


2. Standard Deviation

```
In [22]:

def StDev_method(df, n, features):
    """

Identify outliers in a DataFrame using the Standard Deviation method.

Parameters:
    df (DataFrame): The input DataFrame.
    n (int): The minimum number of outliers in an observation to be considered.
    features (list): List of feature column names to analyze for outliers.
```

Returns:

```
list: A list of indices corresponding to observations with more than
'n' outliers.
    outlier_indices = []
    for column in features:
        # Calculate the mean and standard deviation of the feature column
        data_mean = df[column].mean()
        data_std = df[column].std()
        # Calculate the cutoff value (3 standard deviations from the
mean)
        cut_off = data_std * 3
        # Determine a list of indices of outliers for the feature column
        outlier_list_column = df[(df[column] < data_mean - cut_off) |</pre>
(df[column] > data_mean + cut_off)].index
        # Append the found outlier indices for the column to the list of
outlier indices
        outlier_indices.extend(outlier_list_column)
    # Select observations containing more than 'n' outliers
    outlier_indices = Counter(outlier_indices)
    multiple_outliers = [k for k, v in outlier_indices.items() if v >
n]
    # Calculate the total number of outliers
    total_outliers = len(multiple_outliers)
    print('Total number of outliers is:', total_outliers)
    return multiple_outliers
                                                                   In [23]:
import seaborn as sns
# Calculate the mean and standard deviation of the 'V11' feature
data_mean, data_std = df['V11'].\underline{mean}(), df['V11'].\underline{std}()
# Calculate the cutoff value (3 standard deviations from the mean)
cut_off = data_std * 3
```

```
# Calculate the lower and upper bounds
lower, upper = data_mean - cut_off, data_mean + cut_off

# Print the lower and upper bound values
print('The lower bound value is:', lower)
print('The upper bound value is:', upper)

# Set the color palette to 'viridis'
sns.set_palette('viridis')

# Create a histogram to visualize the 'V11' feature
plt.figure(figsize=(10, 5))
sns.histplot(x='V11', data=df, bins=70)

# Highlight the regions outside the bounds in red
plt.axvspan(xmin=lower, xmax=df['V11'].min(), alpha=0.2, color='red')
plt.axvspan(xmin=upper, xmax=df['V11'].max(), alpha=0.2, color='red')
# Show the plot
plt.show()
```

The lower bound value is: -3.055958700386002 The upper bound value is: 3.0563622156659207


```
In [24]:
```

```
# detecting outliers using the StDev_method
Outliers_StDev = StDev_method(df, 1, feature_list)
# dropping outliers
df_out2 = df.drop(Outliers_StDev, axis=0).reset_index(drop=True)
# Set the color palette to 'viridis'
sns.set_palette('viridis')
# Create subplots for visualizing the distributions of important features
after outlier removal
fig, axes = plt.subplots(nrows=3, ncols=3, figsize=(13, 8))
fig.suptitle('Distributions of Most Important Features after Dropping
Outliers using Standard Deviation Method\n', size=18)
# Plot histograms for each feature
axes[0, 0].hist(df_out2['V17'], bins=60, linewidth=0.5,
edgecolor="white")
axes[0, 0].set_title("V17 Distribution")
axes[0, 1].<u>hist(df_out2['V10'</u>], bins=60, linewidth=0.5,
edgecolor="white")
axes[0, 1].set_title("V10 Distribution")
axes[0, 2].hist(df_out2['V12'], bins=60, linewidth=0.5,
edgecolor="white")
axes[0, 2].set_title("V12 Distribution")
axes[1, 0].hist(df_out2['V16'], bins=60, linewidth=0.5,
edgecolor="white")
axes[1, 0].set_title("V16 Distribution")
axes[1, 1].<u>hist(df_out2['V14']</u>, bins=60, linewidth=0.5,
edgecolor="white")
axes[1, 1].set_title("V14 Distribution")
axes[1, 2].hist(df_out2['V3'], bins=60, linewidth=0.5,
edgecolor="white")
axes[1, 2].set_title("V3 Distribution")
axes[2, 0].hist(df_out2['V7'], bins=60, linewidth=0.5,
edgecolor="white")
```

```
axes[2, 0].set_title("V7 Distribution")
axes[2, 1].hist(df_out2['V11'], bins=60, linewidth=0.5,
edgecolor="white")
axes[2, 1].set_title("V11 Distribution")
axes[2, 2].hist(df_out2['V4'], bins=60, linewidth=0.5,
edgecolor="white")
axes[2, 2].set_title("V4 Distribution")
# Adjust the layout to avoid overlap
plt.tight_layout()
# Show the plot
plt.show()
```

Total number of outliers is: 14544

3. Z-Score

```
In [25]:
def z_score_method(df, n, features):
    Identify outliers in a DataFrame using the Z-score method.
   Parameters:
    df (DataFrame): The input DataFrame.
   n (int): The minimum number of outliers in an observation to be
considered.
    features (list): List of feature column names to analyze for
outliers.
    Returns:
    list: A list of indices corresponding to observations with more than
'n' outliers.
    0.00
    outlier_list = []
    threshold = 3 # Z-score threshold for identifying outliers
    for column in features:
        # Calculate the mean and standard deviation of the feature column
        data_mean = df[column].mean()
        data_std = df[column].std()
        # Calculate the Z-score for each data point
        z_score = abs((df[column] - data_mean) / data_std)
        # Determine a list of indices of outliers for the feature column
        outlier_list_column = df[z_score > threshold].index
        # Append the found outlier indices for the column to the list of
outlier indices
        outlier_list.extend(outlier_list_column)
    # Select observations containing more than 'n' outliers
    outlier_list = Counter(outlier_list)
    multiple_outliers = [k for k, v in outlier_list.items() if v > n]
    # Calculate the total number of outlier records
```

df1 = df[df.index.isin(multiple_outliers)]

print('Total number of outliers is:', total_outliers)

total_outliers = df1.shape[0]

```
In [26]:
# Detecting outliers using the z_score_method function with a threshold
of 1 outlier per observation
Outliers_z_score = z_score_method(df, 1, feature_list)
# Dropping outliers from the DataFrame
df_out3 = df.drop(Outliers_z_score, axis=0).reset_index(drop=True)
Total number of outliers is: 14544
                                                                   In [27]:
# Set the color palette to 'viridis'
sns.<u>set_palette('viridis')</u>
# Create subplots for visualizing the distributions of important features
after outlier removal
fig, axes = plt.subplots(nrows=3, ncols=3, figsize=(13, 8))
fig.suptitle('Distributions of Most Important Features after Dropping
Outliers using Z-score\n', size=18)
# Plot histograms for each feature
axes[0, 0].<u>hist(df_out3['V17']</u>, bins=60, linewidth=0.5,
edgecolor="white")
axes[0, 0].set title("V17 Distribution")
axes[0, 1].hist(df_out3['V10'], bins=60, linewidth=0.5,
edgecolor="white")
axes[0, 1].set_title("V10 Distribution")
axes[0, 2].<u>hist(df_out3['V12']</u>, bins=60, linewidth=0.5,
edgecolor="white")
axes[0, 2].set_title("V12 Distribution")
axes[1, 0].<u>hist(df_out3['V16']</u>, bins=60, linewidth=0.5,
edgecolor="white")
```

```
axes[1, 0].set_title("V16 Distribution")
axes[1, 1].hist(df_out3['V14'], bins=60, linewidth=0.5,
edgecolor="white")
axes[1, 1].set_title("V14 Distribution")
axes[1, 2].hist(df_out3['V3'], bins=60, linewidth=0.5,
edgecolor="white")
axes[1, 2].set_title("V3 Distribution")
axes[2, 0]. hist(df_out3['V7'], bins=60, linewidth=0.5,
edgecolor="white")
axes[2, 0].set_title("V7 Distribution")
axes[2, 1].hist(df_out3['V11'], bins=60, linewidth=0.5,
edgecolor="white")
axes[2, 1].set_title("V11 Distribution")
axes[2, 2].hist(df_out3['V4'], bins=60, linewidth=0.5,
edgecolor="white")
axes[2, 2].set_title("V4 Distribution")
# Adjust the layout to avoid overlap
plt.tight_layout()
# Show the plot
plt.show()
```


4. Modified Z-Score

for column in features:

```
In [28]:
from scipy.stats import median_abs_deviation

def z_scoremod_method(df, n, features):
    """
    Identify outliers in a DataFrame using the modified z-score method.

    Parameters:
    df (DataFrame): The input DataFrame.
    n (int): The minimum number of outliers in an observation to be considered.
    features (list): List of feature column names to analyze for outliers.

    Returns:
    list: A list of indices corresponding to observations with more than 'n' outliers.
    """
    outlier_list = []
    threshold = 3
```

```
# Calculate the mean and modified Z-score for each data point
        data_mean = df[column].mean()
        data_mad = median_abs_deviation(df[column])
        mod_z = abs(0.6745 * (df[column] - data_mean) / data_mad)
        # Determine a list of indices of outliers for the feature column
        outlier_list_column = df[mod_z_score > threshold].index
        # Append the found outlier indices for the column to the list of
outlier indices
        outlier_list.extend(outlier_list_column)
    # Select observations containing more than 'n' outliers
    outlier_list = Counter(outlier_list)
    multiple_outliers = [k for k, v in outlier_list.items() if v > n]
    # Calculate the total number of outlier records
   df1 = df[df.index.isin(multiple_outliers)]
    total_outliers = df1.shape[0]
   print('Total number of outliers is:', total_outliers)
    return multiple_outliers
                                                                 In [29]:
# Detecting outliers using the z_scoremod_method function with a
threshold of 1 outlier per observation
Outliers_z_score = z_scoremod_method(df, 1, feature_list)
# Dropping outliers from the DataFrame
df_out4 = df.drop(Outliers_z_score, axis=0).reset_index(drop=True)
Total number of outliers is: 64564
```

In [30]:

Create subplots for visualizing the distributions of important features after outlier removal

```
fig, axes = plt.subplots(nrows=3, ncols=3, figsize=(13, 8))
fig.suptitle('Distributions of Most Important Features after Dropping
Outliers using Modified Z-score\n', size=18)
# Plot histograms for each feature
axes[0, 0].hist(df_out4['V17'], bins=60, linewidth=0.5,
edgecolor="white")
axes[0, 0].axvline(np.median(df_out4['V17']), ls=':', c='g',
label="Median")
axes[0, 0].set_title("V17 Distribution")
axes[0, 1].<u>hist(df_out4['V10'</u>], bins=60, linewidth=0.5,
edgecolor="white")
axes[0, 1].\underline{axvline}(np.\underline{median}(df\_out4['V10']), ls=':', c='g',
label="Median")
axes[0, 1].set_title("V10 Distribution")
axes[0, 2].hist(df_out4['V12'], bins=60, linewidth=0.5,
edgecolor="white")
axes[0, 2].\underline{axvline}(np.\underline{median}(df\_out4['V12']), ls=':', c='g',
label="Median")
axes[0, 2].set_title("V12 Distribution")
axes[1, 0].hist(df_out4['V16'], bins=60, linewidth=0.5,
edgecolor="white")
axes[1, 0].set_title("V16 Distribution")
axes[1, 1].hist(df_out4['V14'], bins=60, linewidth=0.5,
edgecolor="white")
axes[1, 1].set_title("V14 Distribution")
axes[1, 2].\underline{\text{hist}}(df_{\text{out4}}['V3'], \text{ bins=60}, \text{ linewidth=0.5},
edgecolor="white")
axes[1, 2].set_title("V3 Distribution")
axes[2, 0].hist(df_out4['V7'], bins=60, linewidth=0.5,
edgecolor="white")
axes[2, 0].set_title("V7 Distribution")
axes[2, 1].hist(df_out4['V11'], bins=60, linewidth=0.5,
edgecolor="white")
axes[2, 1].set_title("V11 Distribution")
```

```
axes[2, 2].hist(df_out4['V4'], bins=60, linewidth=0.5,
edgecolor="white")
axes[2, 2].set_title("V4 Distribution")

# Add legend for the median lines
axes[0, 0].legend()

# Adjust the layout to avoid overlap
plt.tight_layout()

# Show the plot
plt.show()
```


Isolation Forest: An Unsupervised Anomaly Detection Algorithm

```
In [31]:
from sklearn.ensemble import IsolationForest

df5 = df.copy()
df5 = df5.drop(['Class'], axis=1)
```

Key Parameters of Isolation Forest

```
In [32]:
# Import the Isolation Forest model from the scikit-learn library
from sklearn.ensemble import IsolationForest
# Create an Isolation Forest model with specified hyperparameters
# - n_estimators: Number of base estimators in the ensemble (150 in this
case)
# - max_samples: Number of samples to draw from the DataFrame ('auto'
means all samples)
# - contamination: The expected proportion of outliers in the dataset
(0.1 or 10% in this case)
# - max_features: Maximum number of features to consider for each split
(1.0 means all features)
model = IsolationForest(n_estimators=150, max_samples='auto',
contamination=\underline{\text{float}}(0.1), max_features=1.0)
# Fit the Isolation Forest model to the DataFrame 'df5'
model.fit(df5)
                                                                   Out[32]:
                             IsolationForest
IsolationForest(contamination=0.1, n_estimators=150)
Adding Scores and Anomaly Column
                                                                   In [33]:
# Calculate anomaly scores for each data point in 'df5' using the fitted
Isolation Forest model
scores = model.decision_function(df5)
```

Predict whether each data point is an anomaly (outlier) or not

anomaly = model.predict(df5)

```
# Add the calculated anomaly scores as a new column 'scores' in the 'df5'
DataFrame
df5['scores'] = scores

# Add the binary anomaly predictions as a new column 'anomaly' in the
'df5' DataFrame
df5['anomaly'] = anomaly

# Display the first 10 rows of the updated 'df5' DataFrame, including the
'scores' and 'anomaly' columns
df5.head(10)
```

Out[33]:

1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0	5 4 2 6	- 1 4 1 5 8	3 9 6 6	- 1 2 3 5 8
1 0 1 0 1 2 1 1 1 2 2 1 7 9 6 3 1 1 0	0 9 6 1	8 7	0 1 8	3 4
3 5 8 7 2 5 2 6 0 7 1 3 8 1 1 2 2 1 0	1 1 4 1	5 4	7 9	7
0 1 2 2 2 4 7 9 6 3 1 1 0 0 6 6 1 1 4 9 1 1 2 2 2 4 7 9 6 3 1 0 0 6 6 1 1 4 9 1 1 2 2 2 4 7 9 6 3 1 0 0 6 6 1 1 2 2 2 4 7 9 8 2 3 3 5 6 6 6 1 1 1 2 2 2 7 0 0 0 0 0 0 0 0 0 0	- 0 1 6 8	4		
1 0 0 1 0	0 4 2 1		- 1	- 1
7 2 1	- 0 0 3	.		8 0
1 1	0 4 7 6	5		7 9
1 .	0 . 2 6 0			
2 6 0 7 1 3 8 1 1 2 2 1 1 2 2 7 9 6 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 2 7 9 6 3 1 0 0 0 6 6 0 1 1 2 2 2 4 7 0 6 3 1 0 0 0 6 6 6 1 1 1 2 2 2 4 7 0 8 2 3 5 6 6 6 1 1 1 2 2 2 4 7 0 8 2 3 5 6 6 6 6 1 1 1 2 2 2 1 0 1 1 0 0 0 0 0	- 0 . 5 6 9			- 1
6 0 7 1 3 8 1 1 2 2 1 1 2 2 7 9 6 3 1 0 0 6 6 1 1 2 2 2 4 7 9 6 3 1 0 0 6 6 1 1 2 2 2 4 7 9 8 2 3 5 6 6 6 1 1 1 2 2 4 7 9 8 2 3 5 6 6 6 1 1 1 2 2 4 7 7 9 8 2 3 5 6 6 6 1 1 1 1 1 0	- 0 3 7	7	0	
0 7 1 3 8 1 1 2 2 1 1 2 2 2 4 7 9 6 3 1 0 0 0 6 6 1 0 0 6 6 1 0	1 . 3 4 1			
7 1 3 8 1 1 2 2 1 1 2 2 7 9 6 3 1 0 0 6 6 1 1 2 2 2 4 7 9 6 3 1 0 0 6 6 1 1 1 2 2 2 4 7 9 6 3 1 0 0 6 6 1 1 1 2 2 2 4 7 9 8 2 3 5 6 6 6 1 1 1 2 2 2 4 7 9 8 2 3 5 6 6 6 1 1 1 0	0 . 3 6 0			
0 . 2 . 0 2 . . . 1 0 1 0	- 0 3 5 8			
3 8 1 1 2 2 1 1 2 2 7 9 6 3 1 0 0 0 6 0 1 4 9 0 1 2 2 2 4 7 0 8 2 3 5 6 6 1 1 0 1 0 1 2 2 2 4 7 0 8 2 3 5 6 6 1 1 0 1 0 1 0 </td <td>- 0 1 3 7</td> <td>1</td> <td>0 2 8</td> <td>1 6</td>	- 0 1 3 7	1	0 2 8	1 6
2	0 . 5 1 8			
1 1 2 1 1 2 7 9 6 3 1 0 0 6 0 1 1 1 2 5 2 7 9 6 3 1 0 0 6 1 1 2 6 5 8 2 9 8 2 3 5 6 6 1 1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 </td <td>0 4 0 2</td> <td></td> <td></td> <td>- 1</td>	0 4 0 2			- 1
1 2 .	- 0 0 5 8			1
2	0 . 0 6 9	0	9 6	0 . 1
	- 0 0 3 3	.	.	
	0 0 8 5		- 1	
7 9 6 3 1 0 0 6 0 1 7 9 6 3 1 0 0 6 0 1 0 9 8 2 3 5 6 6 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 </td <td>- 0 2 0 8</td> <td></td> <td></td> <td></td>	- 0 2 0 8			
. 9	- 0 5 6 0	-	0 0	
0 0 0 0 0 0 8 0 1 1 1 8 2 3 5 6 6 6 1 1 9 8 9 5 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 0 0 2 6			
0 0 0 0 8 0 1 3 1 0 0 6 6 1 8 9 5 0 0 1 1 0 0 0 6 1 0 0 0 0 2 0 0 0 0 2 0 0 0 0 2 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 0 3 7			
0 0 0 8 0 1 3 5 6 6 6 1 9 5 0 0 1	- 0 2 3		6	
0 0 8 0 1 5 6 6 6 1 5 0 0 1 1 0 0 2 0 0 1 0 0 2 0 0 1 0 0 2 0 1 0 0 2 0 1 1 0 3 0 1 6 6 5 5 5 3 1 0 3 0 1 0 0 0 0 0 0 1 1 1 1 9 6 0 1 9 5 9 2	0 . 1 0 6	5 0		0 1
0 8	0 . 2 5 4			
8	0 . 0 8 1		0	
0 1 1 1 0 0 0 1 5 3 3 0 0	3 6 7 0	9 . 9 9	2 3 . 5 0	8 . 6 6
1	0 . 0 9 2		0 5	0 1
	1	1	1	

```
0 0
                    0 1
                            0
                                                                           0
     0
                    6 2
                                 3
2
4
                                         2 3
                                                      0
                                                           6 4
                                                                  2
                                                                           0 | 1
     7
                              5
            2
                    1
                                              2
       9
                                      7
                                         2 5
                                                           5
                  0
                                                 5
                                                      1
                                                                5
                                                                     8
                    5
                                              5
                      9
                              8
                                                        8
                                                           0
                                                             5
                                                                2
                                      6
                                                                     5
          2 3 0 0
                                 0
                                           0 0 0
                                                                           0
     0
       0
                            0
                              0
                                                        0
                    0 0 0
                                    0 0
                                         0
                                                   0
                                                      0
          6 7
                                                           0 3
               3 8
                                 0
                                              5 0
                                                                           0 | 1
       .
2
7
                                                     2 2
                              2
                                 7
                                              7 5
          7 2
               7
                    9
                      1
                         0
                            1
                              8
                                    2
                                                   7
                                                      6
                                                        0
                                      1
          0 2
                                              0
                                                3
                                                           2
                                                                     2
               0 1
                                 4
                    2 0 5
                            0
                              6
                                    9
                                      0
                                           0 0 0
    1
          0
               0 0
                         1 0 1
                                    0 0
                                                                0 0 0 3
                                                                          0
  1
       0
                    0 0
                                 0
                                                      0 0
                                                           0
     0
               6 0
                            8
                              0
                                                                        6
                                                                           0 | 1
       2 2 2
                                 4
                                                     6 1
                    7 3
                                                           3 0
          9
                                              5 0
               5
                            3
                              0
                                                                           8
3
                    3
                       6
                                                      3
                                                        2
                                                           8
                                              2
               2
                  0
                            6
                                                                   6
                                                                     3
                                                                           3
                                                           5
                                                        1
```

```
In [34]:
```

```
# Create a DataFrame 'anomaly' by selecting rows where the 'anomaly'
column is equal to -1 (indicating outliers)
anomaly = df5.loc[df5['anomaly'] == -1]

# Extract the indices of the outlier data points as a list
anomaly_index = list(anomaly.index)

# Print the total number of detected outliers and display it
print('Total number of outliers is:', len(anomaly))
```

Total number of outliers is: 28373

```
# Select rows from DataFrame 'df5' where the 'anomaly' column is equal to -1 (indicating outliers) outliers_df = df5[df5['anomaly'] == -1]
```

Display the first 10 rows of the DataFrame containing detected outliers outliers_df.head(10)

Out[35]:

	V 1	V 2	V 3	V 4	V 5	V 6	V 7	V 8	V 9	V 1 0	V 1 1	V 1 2	V 1 3	V 1 4	V 1 5	V 1 6	V 1 7	V 1 8	V 1 9	V 2 0	V 2 1	V 2 2	V 2 3	V 2 4	V 2 5	V 2 6	V 2 7	V 2 8	A m o u n t	s c o r e s	a n o m a l
2	1 . 3 5 8	- 1 3 4	1 7 7 3	0 . 3 8 0	- 0 . 5 0 3	1 . 8 0 0	0 7 9 1	0 . 2 4 8	- 1 . 5 1 5	0 . 2 0 8	0 . 6 2 5	0.066	0 7 1 7	- 0 1 6	2 3 4 6	- 2 8 9	1 . 1 1 0	- 0 1 2	- 2 2 6 2	0 . 5 2 5	0 . 2 4 8	0 7 7 2	0 . 9 0 9	- 0 . 6 8 9	- 0 3 2 8	- 0 1 3	- 0 . 0 5 5	- 0 0 6 0	3 7 8 6 6	- 0 0 1	- 1
7	- 0 6 4 4	1 4 1 8	1 0 7 4	- 0 4 9 2	0 . 9 4 9	0 4 2 8	1 1 2 1	. 8 0 8	0 6 1 5	1 2 4 9	- 0 6 1 9	0 2 9 1	1 7 5 8	- 1 3 2 4	0.686	- 0 0 7 6	- 1 2 2 2	- 0 3 5 8	0 3 2 5	- 0 1 5 7	1 9 4 3	- 1 0 1 5	O . O 5 8	- 0 . 6 5 0	- 0 4 1 5	- 0 0 5 2	- 1 2 0 7	- 1 0 8 5	4 0 8 0	- 0 0 1	- 1
1 8	- 5 4 0 1	- 5 4 5 0	1 1 8 6	1 7 3 6	3 0 4 9	- 1 7 6 3	- 1 5 6 0	0 1 6 1	1 . 2 3 3	0 3 4 5	0 9 1 7	0 9 7 0	- 0 2 6 7	- 0 4 7 9	- 0 5 2 7	0 4 7 2	- 0 7 2 5	0 0 7 5	- 0 4 0 7	- 2 1 9 7	- 0 5 0 4	0 9 8 4	2 . 4 5 9	0 0 4 2	- 0 4 8 2	- 0 6 2	0 3 9 2	0 . 9 5 0	4 6 8 0	- 0 0 3 4	- 1

6 0 0
4 8 4
3 4 0 1 6
8 2 5
0 6 5
8 2 9
0 0 9
0 5 2
5 7 3
0 6 7
3 5 4
8 3 7
2 9 2
3 0 4
9 4 2
4 3 5
9 3 4
4 5 7
8 5 2
1 8 1
1 6 4
5 1 6
1 3 6
4 6 0
2 5 1
1 0 6
4 6 0
0 8 1

1 0 4	8 9
- 1 7 6 7	- 0 7 7 3
2 . 3 5 3	- 4 1 4 6
- 0 0 1	- 0 9 3 2
- 0 3 6 4	0 0 2 7
1 4 6 1	- 1 . 6 9 8
- 0 2 0 5	0 4 6 0
0 . 9 0 6	0 7 3 7
- 3 3 8 4	- 0 3 1 4
0 . 3 8 9	- 0 8 4 3
0 7 9 1	0 . 0 1 7
- 0 2 7 0	- 0 6 1 8
0 0 4 7	- 0 1 9 8
1 6 4 3	1 . 5 9 5
- 2 6 7 8	- 0 2 6 0
0 7 2 8	1 2 2 1
0 . 2 8 9	1 . 3 2 5
0 3 8 4	0 . 1 2 1
0 4 5 5	- 1 2 4 9
0 1 1 4	- 0 0 0 5
0 0 7 3	2 . 4 4 3
1 9 6 4	0 . 8 9 1
- 0 8 8 3	0 . 0 2 6
- 0 2 4 8	- 1 1 3 5
- 0 7 5 9	- 0 . 6 5 5
0 0 8 6	0 . 0 9 8
0 2 0 3	- 0 2 0 9
. 0 . 8 9 9	- 0 1 7 2
- 0 9 4 4	0 2 0 8
0 7 6 0	1 1 4 2 0 2 0
- 0 0 1 4	- 0 0 3 3
- 1	- 1

In [36]:

```
# Create a new DataFrame 'df_out5' by dropping rows with outlier indices
# The 'anomaly_index' list contains the indices of detected outliers
df_out5 = df5.drop(anomaly_index, axis=0).reset_index(drop=True)
```

In [37]:

```
# Checking distributions of most important features after dropping outliers
```

```
fig, axes = plt.subplots(nrows=3, ncols=3,figsize=(13,8))
fig.suptitle('Distributions of most important features after dropping
outliers using modified z-score\n', size = 18)

axes[0,0].hist(df_out5['V17'], bins=60, linewidth=0.5,
edgecolor="white")
axes[0,0].axvline(np.median(df_out5['V17']), ls=':', c='g',
label="Median")
axes[0,0].set_title("V17 distribution");

axes[0,1].hist(df_out5['V10'], bins=60, linewidth=0.5,
edgecolor="white")
axes[0,1].axvline(np.median(df_out5['V10']), ls=':', c='g',
label="Median")
```

```
axes[0,1].set_title("V10 distribution");
axes[0,2].hist(df_out5['V12'], bins=60, linewidth=0.5,
edgecolor="white")
axes[0,2].axvline(np.median(df_out5['V12']), ls=':', c='g',
label="Median")
axes[0,2].set_title("V12 distribution");
axes[1,0].hist(df_out5['V16'], bins=60, linewidth=0.5,
edgecolor="white")
axes[1,0].set_title("V16 distribution");
axes[1,1].hist(df_out5['V14'], bins=60, linewidth=0.5,
edgecolor="white")
axes[1,1].set_title("V14 distribution");
axes[1,2].hist(df_out5['V3'], bins=60, linewidth=0.5,
edgecolor="white")
axes[1,2].set_title("V3 distribution");
axes[2,0]. hist(df_out5['V7'], bins=60, linewidth=0.5,
edgecolor="white")
axes[2,0].set_title("V7 distribution");
axes[2,1].hist(df_out5['V11'], bins=60, linewidth=0.5,
edgecolor="white")
axes[2,1].set_title("V11 distribution");
axes[2,2].hist(df_out5['V4'], bins=60, linewidth=0.5,
edgecolor="white")
axes[2,2].set title("V4 distribution");
plt.tight_layout()
```


DBSCAN - Density-Based Spatial Clustering of Applications with Noise

```
In [38]:
# Create a copy of the original DataFrame 'df' as 'df6'
df6 = df.copy()
# Drop the 'Class' column from 'df6'
df6 = df6.drop(['Class'], axis=1)
```

In [39]:

from sklearn.cluster import DBSCAN from sklearn.preprocessing import StandardScaler

Scale the data using StandardScaler
X = StandardScaler().fit_transform(df6.values)

Create a DBSCAN clustering model with specified hyperparameters # 'eps' controls the maximum distance between two samples for one to be considered as in the neighborhood of the other.