

Summary of Progress

Data-Related

- Found dataset categories to support our investment problem
- Set up first version of data
 pipeline to create first versions
 of training sets, and test sets
- (cont here)

Model-Related

- Found an investment strategy to base our model on
- Settled on the TensorFlow as the ML Framework to build model with
- Currently doing more research to investigate the relationship between metrics used in Value Investing and the magnitude of bias the Model should employ

System Integration-Related

- Decided to create a web appusing the following technology stack to support our ML Application: Flask, ReactPy, SQL Cloud Database, TensorFlow.
- Began testing using Edge ML
 with the intention to transfer to
 Cloud ML soon

Ideation for ML Model

Data Engineering

- Identifying the metrics used to exercise Value Investing
- Identifying reputable data sources to scrape data from
- Programmatically defining the preprocessing phase to support the automation of data processing using data analysis tools

Initial ML Solution

- Initial idea: Creating a ML model bias to a subset of metrics. I.E. Influencing the model to prefer one or more metric over other metrics.

Data Validation & Cleaning

How are we collecting quality Datasets?

Collecting relevant data that includes our benchmarks

Using publicly available data of Fortune 500 Companies

Analyze historical data for the past year

Metrics

Price to Earning (P/E) Ratio

- How the stock price compares to earnings:
- A low P/E suggests that the stock is undervalued which is what we are looking for.

Price to Book (P/B) Ratio

- How the market price compares to assets
- < 1 is ideal (means a company is trading for less than its net assets

Debt to Equity (D/B) Ratio

- Shows whether the company is financially stable or not
- <1 is less risk, safer investment

Free Cash Flow

- How much money the company truly makes
- Positive and gradually growing over time
 (means the company is making money
 and has enough to spend after expenses

Benchmarks

S&P 500

- Represents the overall U.S. stock market
- Acts as a baseline to compare our strategy to
 - Essentially if we can't beat it then the strategy does not add value
- Broad baseline

Russell 1000 Value Index

- Focuses on U.S. value
 companies (cheap in relation
 to what their actually worth
- Tracks U.S. companies that look "cheap" based on value measures (like low P/E and P/B)
- More focused on value stocks than the S&P 500.
- Direct comparison

HML Factor

- (High minus Low) return of value stocks - return of growth stocks
- Compares returns of value stocks (high book to market)
 vs. growth stocks (low book to market)
- Negative HML means growth stocks are leading the market
- Positive HML means value stocks are doing better

Benchmarks vs. Metrics: What we want.

- The Strategy: Value investing: buying solid companies when they're undervalued
- P/E & P/B: Lower = cheaper
 - We want below the market AND below Russell Value.
- D/E: Lower = safer
 - We want less than 1.0.
- FCF Yield: Higher = better
 - We want above 6%.
- S&P 500 = overall market test
- Russell 1000 Value = value stock competition
- HML = proof of whether value beats growth historically

Current Goals

Model Training & Evaluation

- Developing an automated system for Model
 Training
- Undergoing a deeper Investigation of the process of getting maximum ROI using Value Investing to improve training set and testing set
- Streamlining Model Training and Model Evaluation Process
- Creating an experiment involving the tradeoff between memory and compute

System-Integration & Model Monitoring

- Finding a reliable medium for ML Application
 Deployment
- Creating pipeline for preprocessed data to storage using ETL procedures
- Conducting more research on Model Monitoring