questaotres

October 17, 2018

1 Questão 3 - Prova 2 de Inteligência Artificial

1.1 Lucas Nóbrega e Nathália de Vasconcelos

2 1. Pré-processamento de dados

```
In [63]: # Importando as bibliotecas
         import numpy as np
         import matplotlib.pyplot as plt
         import pandas as pd
         import warnings
         import matplotlib.cbook
         warnings.filterwarnings("ignore", category=matplotlib.cbook.mplDeprecation)
         # Importando os datasets
        dataset_treino = pd.read_csv('base_treinamento.csv')
        X = dataset_treino.iloc[:, :-2].values
        y = dataset_treino.iloc[:, [5,6]].values
        dataset_teste = pd.read_csv('base_teste.csv')
        Xt = dataset_teste.iloc[:, :-2].values
        yt = dataset_teste.iloc[:, [5,6]].values
In [2]: dataset_treino.describe()
Out[2]:
                     AP1
                                AP2
                                            AP3
                                                        AP4
                                                                    AP5
              262.00000 262.000000
                                     262.000000
                                                 262.000000
                                                             262.000000
        count
       mean
              -67.90458
                         -62.129771 -58.122137
                                                 -71.454198 -65.183206
        std
               10.29165
                           8.530672
                                       8.323924
                                                   9.232823
                                                               7.128596
       min
              -90.00000 -81.000000 -75.000000 -86.000000 -84.000000
       25%
              -75.75000 -68.000000 -65.000000
                                                 -78.000000
                                                            -69.000000
       50%
              -69.00000 -63.000000 -58.000000
                                                 -74.000000
                                                            -65.000000
       75%
              -61.00000 -57.000000 -53.000000
                                                 -66.250000
                                                             -60.000000
       max
              -38.00000 -35.000000 -33.000000 -38.000000 -51.000000
```

Coordenada X Coordenada Y

```
262.000000
                        262.000000
count
mean
          12.026985
                         12.612634
           5.079505
                           5.139619
std
min
            1.390000
                           1.570000
25%
           8.442500
                           9.412500
50%
          12.400000
                          13.630000
75%
          16.357500
                          16.710000
max
          20.450000
                          19.630000
```

In [3]: dataset_teste.describe()

```
Out[3]:
                     AP1
                                AP2
                                            AP3
                                                       AP4
                                                                  AP5
                                                                       Coordenada X
               65.000000
                                     65.000000
                                                                           65.000000
        count
                          65.000000
                                                 65.000000
                                                            65.000000
             -56.953846 -63.815385 -62.030769 -69.261538 -65.815385
                                                                           12.094923
        mean
                                       8.154694
        std
                8.088245
                           7.717456
                                                  9.361285
                                                                            5.005830
        min
              -71.000000 -82.000000 -76.000000 -82.000000 -86.000000
                                                                            2.410000
        25%
              -63.000000 -69.000000 -67.000000 -76.000000 -74.000000
                                                                            8.370000
        50%
              -58.000000 -64.000000 -62.000000 -73.000000 -68.000000
                                                                           12.950000
              -52.000000 -58.000000 -58.000000 -64.000000 -59.000000
        75%
                                                                           15.480000
              -39.000000 -51.000000 -43.000000 -43.000000 -42.000000
                                                                           20.460000
        max
```

	Coordenada Y
count	65.000000
mean	12.153231
std	4.951980
min	2.110000
25%	9.090000
50%	12.580000
75%	17.490000
max	19.120000

2.0.1 Melhorando a visualização dos datasets...

```
In [4]: print(pd.options.display.max_columns, pd.options.display.max_rows)
    pd.options.display.max_columns = 7
    pd.options.display.max_rows = 262
```

20 60

2.0.2 Visualizando os datasets em formato de boxplot...

```
In [5]: dataset_treino.boxplot()
```

Out[5]: <matplotlib.axes._subplots.AxesSubplot at 0x7fa294297fd0>

In [6]: dataset_teste.boxplot()

Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x7fa2906a2470>

2.0.3 Checando se existe algum dado incompleto nos datasets...

In [7]: dataset_treino.isnull().values.any()

Out[7]: False

In [8]: dataset_teste.isnull().values.any()

Out[8]: False

2.0.4 Analisando os histogramas

In [9]: dataset_treino['Coordenada X'].plot(kind='hist')

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x7fa290581748>

In [10]: dataset_treino['Coordenada Y'].plot(kind='hist')

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x7fa2905087f0>

In [11]: dataset_teste['Coordenada X'].plot(kind='hist')

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x7fa290484390>

In [12]: dataset_teste['Coordenada Y'].plot(kind='hist')

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x7fa290471978>

2.0.5 Preparando as variáveis para treino e teste dos algoritmos de aprendizado de máquina...

2.0.6 Plotando os gráficos de correlação dos datasets...

In [14]: plt.matshow(dataset_treino.corr())

Out[14]: <matplotlib.image.AxesImage at 0x7fa29039c1d0>

In [15]: print(dataset_treino.corr())

	AP1	AP2	AP3	AP4	AP5	Coordenada X	\
AP1	1.000000	0.239991	-0.579181	-0.479896	0.749445	-0.732574	
AP2	0.239991	1.000000	-0.009559	-0.552974	0.286467	0.307589	
AP3	-0.579181	-0.009559	1.000000	0.262054	-0.519194	0.635752	
AP4	-0.479896	-0.552974	0.262054	1.000000	-0.336926	0.011004	
AP5	0.749445	0.286467	-0.519194	-0.336926	1.000000	-0.543906	
Coordenada	X -0.732574	0.307589	0.635752	0.011004	-0.543906	1.000000	
Coordenada	Y 0.683116	0.544512	-0.382358	-0.783691	0.676932	-0.236476	

```
Coordenada Y
AP1 0.683116
AP2 0.544512
AP3 -0.382358
AP4 -0.783691
AP5 0.676932
Coordenada X -0.236476
Coordenada Y 1.000000
```

```
In [16]: plt.matshow(dataset_teste.corr())
```

Out[16]: <matplotlib.image.AxesImage at 0x7fa2902fcda0>

In [17]: print(dataset_teste.corr())

		AP1	AP2	AP3	AP4	AP5	Coordenada X	\
AP1		1.000000	-0.624181	-0.116768	0.236859	-0.632930	0.618729	
AP2		-0.624181	1.000000	0.151045	-0.290863	0.849767	-0.720831	
AP3		-0.116768	0.151045	1.000000	-0.625816	0.189058	0.347374	
AP4		0.236859	-0.290863	-0.625816	1.000000	-0.453619	-0.030745	
AP5		-0.632930	0.849767	0.189058	-0.453619	1.000000	-0.753619	
Coordenada	Х	0.618729	-0.720831	0.347374	-0.030745	-0.753619	1.000000	
Coordenada	Y	-0.446523	0.626146	0.578855	-0.791972	0.657350	-0.220059	

```
Coordenada Y
AP1 -0.446523
AP2 0.626146
AP3 0.578855
AP4 -0.791972
AP5 0.657350
Coordenada X -0.220059
Coordenada Y 1.000000
```

2.0.7 Alterando a escala dos dados para que nenhum deles seja menos relevante do que o outro na fase de treinamento do aprendizado de máquina.

```
In [18]: from sklearn.preprocessing import StandardScaler
     sc_X = StandardScaler()
```

```
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
```

/home/nath/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionwarning)

3 2. Regressão Linear Múltipla

```
In [19]: # Realizando o fitting da regressão linear múltipla para a base de treinamento
         from sklearn.linear_model import LinearRegression
         regressor = LinearRegression()
         regressor.fit(X_train, y_train)
Out[19]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
In [20]: # Prevendo os resultados da base de testes
         y_pred = regressor.predict(X_test)
In [87]: # Visualizando os resultados da base de treinamento
         plt.scatter(X_train[:, 0:1], y_train[:, 0:1], color = 'red')
         plt.scatter(X_train[:, 2:3], y_train[:, 0:1], color = 'red')
         plt.scatter(X_train[:, [4]], y_train[:, 0:1], color = 'red')
         plt.plot(X_train, regressor.predict(X_train), color = 'blue')
         plt.title('(Conjunto de treinamento)')
         plt.xlabel('AP1~AP5')
         plt.ylabel('Coordenadas X e Y')
         plt.show()
```


In [91]: # Visualizando os resultados da base de testes

```
plt.scatter(X_test[:, 0:1], y_test[:, 0:1], color = 'red')
plt.scatter(X_test[:, 2:3], y_test[:, 0:1], color = 'red')
plt.scatter(X_test[:, [4]], y_test[:, 0:1], color = 'red')
plt.plot(X_test, regressor.predict(X_test), color = 'blue')
plt.title('(Conjunto de testes)')
plt.xlabel('AP1~AP5')
plt.ylabel('Coordenadas X e Y')
plt.show()
```