Please type a plus sign (+) in this box

Approved for use through 9/30/00, OMB 0651-0031

Page 1 of 3

Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respo a collection of information unless it displays a valid OMB control n **Application Number** 10/770 639 Modified Form 1449/PTO Filing Date February 2, 2004 INFORMATION DISCLOSURE First Named Inventor Sanchez-Madrid STATEMENT BY APPLICANT Group Art Unit 1644 Examiner Name Zachary S. Skelding (use as many sheets as necessary) Attorney Docket Number 27331-501 CIP2A U.S. PATENT DOCUMENTS Exam Initials U.S. Patent Document No. Sub Filing Date Issue Date Name of Patentee(s) or Applicant(s) Class No U.S. PUBLISHED APPLICATION DOCUMENTS Cite No. U.S. Published Published Name of Patentee(s) or Applicant(s) Filing Date Exam Application No. Class Date Appropriate FOREIGN PATENT DOCUMENTS Exam Cite Foreign Patent Document Date of Translation Name of Patentee(s) or Applicant(s) Publication Yes No Initials Office Number OTHER PRIOR ART - NON PATENT LITERATURE DOCUMENTS. Exam Initials Cite Name of Author, Title (when appropriate), Publication, Volume, Page(s), Date, Etc. Ziegler, S.F. et al. (1993) Molecular characterization of the early activation antigen CD69: a type II membrane glycoprotein related to a family of natural killer cell activation antigens. Eur. J. Immunol. 23, 1643-1648 López-Cabrera, M. et al. (1993) Molecular cloning, expression, and chromosomal localization of the human earliest lymphocyte activation antigen AIM/CD69, a new member of the C-type animal lectin superfamily of signal-transmitting receptors. J. Exp. Med. 178, 537-547 Testi, R. et al. (1994) The CD69 receptor: a multipurpose cell-surface trigger for hematopoietic cells. Immunol. Today 15, 479-483 Long, E.O. (1999) Regulation of immune responses through inhibitory receptors. Annu. Rev. Immunol. C4 17, 875-904 Pisegna, S. et al. (2002) Src-dependent Syk activation controls CD69- mediated signaling and function on C5 human NK cells, J. Immunol, 169, 68-74 Zingoni, A. et al. (2000) CD69-triggered ERK activation and functions are negatively regulated by CD94/NKG2-A inhibitory receptor. Eur. J. Immunol. 30, 644-651 Risso, A. et al. (1991) CD69 in resting and activated T lymphocytes. Its association with a GTP binding protein and biochemical requirements for its expression. J. Immunol. 146, 4105-4114 Bikah, G. et al. (2000) Regulating T helper cell immunity through antigen responsiveness and calcium CS entry. Nat. Immunol. 1, 402-412 Sancho, D. et al. (2000) Functional analysis of ligand-binding and signal transduction domains of CD69 and CD23 C-type lectin leukocyte receptors. J. Immunol. 165, 3868–3875

E-filed Page 2 of 3
Date of Deposit: May 18, 2007 Attorney Docket No.: 27331-501 CIP2A

title of 15	e pointer	May 16, 2007 Attorney Docket No.: 27551-501 CH 2A
	C10	Testi, R. et al. (1989) T cell activation via Leu-23 (CD69). J. Immunol. 143, 1123–1128
	C11	Cebrián, M. et al. (1988) Triggering of T cell proliferation through AIM, an activation inducer molecule
		expressed on activated human lymphocytes. J. Exp. Med. 168, 1621–1637
	C12	Santis, A.G. et al. (1992) Tumor necrosis factor-a production induced in T lymphocytes through the
		AIM/CD69 activation pathway. Eur. J. Immunol. 22, 1253–1259
	C13	De-Maria, R. et al. (1994) Triggering of human monocyte activation through CD69, a member of the
	CIS	natural killer cell gene complex family of signal transducing receptors. J. Exp. Med. 180, 1999–2004
	C14	Testi, R. et al. (1990) CD69 is expressed on platelets and mediates platelet activation and aggregation. J.
	C14	Exp. Med. 172, 701–707
	C15	Ramirez, R. et al. (1996) CD69-induced monocyte apoptosis involves multiple nonredundant signaling
	CIS	pathways. Cell. Immunol. 172, 192–199
	C16	Walsh, G.M. et al. (1996) Ligation of CD69 induces apoptosis and cell death in human eosinophils
	CIO	cultured with granulocyte-macrophage colony-stimulating factor. Blood 87, 2815–2821
	C17	Cosulich, M.E. et al. (1987) Functional characterization of an antigen involved in an early step of T-cell
	CI	activation. Proc. Natl. Acad. Sci. U. S. A. 84, 4205–4209
	C18	Feng, C. et al. (2002) A potential role for CD69 in thymocyte emigration. Int. Immunol. 14, 535–544
	C19	Nakayama, T. et al. (2002) The generation of mature, single-positive thymocytes in vivo is dysregulated
		by CD69 blockade or overexpression. J. Immunol. 168, 87–94
	C20	Lauzurica, P. et al. (2000) Phenotypic and functional characteristics of hematopoietic cell lineages in
		CD69-deficient mice. Blood 95, 2312–2320
	C21	Laffón, A. et al. (1991) Upregulated expression and function of VLA-4 fibronectin receptors on human
		activated T cells in rheumatoid arthritis. J. Clin. Invest. 88, 546–552
	C22	Remmers, E.F. et al. (1996) A genome scan localizes five non-MHC loci controlling collagen-induced
		arthritis in rats. Nat. Genet. 14, 82–85
	C23	Mc Indoe, R.A. et al. (1999) Localization of non-MHC collagen-induced arthritis susceptibility loci
		inDBA/1j mice. Proc.Natl.Acad. Sci. U. S. A. 96, 2210–2214
	C24	Brandes, M.E. et al. (1991) Transforming growth factor b1 suppresses acute and chronic arthritis in
		experimental animals. J. Clin. Invest. 87, 1108–1113
	C25	Grewal, J.S. et al. (1999) Serotonin 5-HT2A receptor induces TGF-b1 expression in mesangial cells via
		ERK: proliferative and fibrotic signals. Am. J. Physiol. Renal Physiol. 276, F922–F930
	C26	Gorelik, L. and Flavell, R.A. (2001) Immune-mediated eradication of tumors through the blockade of
		transforming growth factor-b signaling in T cells. Nat. Med. 7, 1118–1122
	C27	Gorelik, L. et al. (2002) Mechanism of transforming growth factor b-induced inhibition of T helper type 1
		differentiation. J. Exp. Med. 195, 1499–1505
	C28	Cazac, B.B. and Roes, J. (2000) TGF-b receptor controls B cell responsiveness and induction of IgA in
		vivo. Immunity 13, 443–451
	C29	Fava, R.A. et al. (1991) Transforming growth factor 1 induced neutrophil recruitment to synovial tissues:
		implications for TGF-b driven synovial inflammation and hyperplasia. J. Exp. Med. 173, 1121–1132
	C30	Sancho, D. et al. (1999) Activation of peripheral blood T cells by interaction and migration through
		endothelium: role of lymphocyte function antigen-1/intercellular adhesion molecule-1 and interleukin-15.
		Blood 93, 886–896
	C31	Fava, R. et al. (1989) Active and latent forms of transforming growth factor b activity in synovial
		effusions. J. Exp. Med. 169, 291–296
	C32	Yu, X. et al. (2001) Anti-CD69 autoantibodies cross-react with low density lipoprotein receptor-related
		protein 2 in systemic autoimmune diseases. J. Immunol. 166, 1360–1369
	C33	Kulkarni, A.B. et al. (1993) Transforming growth factor b1 null mutation in mice causes excessive
		inflammatory response and early death. Proc. Natl. Acad. Sci. U. S. A. 90, 770-774
	C34	Shull, M.M. et al. (1992) Targeted disruption of the mouse transforming growth factor-b1 gene results in
		multifocal inflammatory disease. Nature 359, 693–699
	C35	Shevach, E.M. (2002) CD4 [†] CD25 [†] suppressor T-cells: more questions than answers. Nat. Rev. Immunol.
	033	

E-filed	Page 3 of 3
Date of Deposit: May 18, 2007	Attorney Docket No.: 27331-501 CIP2A

	2, 389–400
C36	Chatenoud, L. et al. (1997) Induced dominant self-tolerance in overtly diabetic NOD mice. J. Immunol. 158, 2947–2954
C37	Ishikawa, S. et al. (1998) A subset of CD4C T cells expressing early activation antigen CD69 in murine lupus: possible abnormal regulatory role for cytokine imbalance. J. Immunol. 161, 1267–1273
C38	Portales-Perez, D. et al. (1997) Abnormalities in CD69 expression, cytosolic pH and Ca2C during activation of lymphocytes from patients with systemic lupus crythematosus. Lupus 6, 48–56
C39	Hernández-García, C. et al. (1996) The CD69 activation pathway in rheumatoid arthritis synovial fluid T cells. Arthritis Rheum. 39, 1277–1286
C40	McGuirk, P. and Mills, L. (2002) Pathogen-specific regulatory T cells provoke a shift in the Th1/Th2 paradigm in immunity to infectious diseases. Trends Immunol. 23, 450–455
C41	Swat, W. et al. (1993) CD69 expression during selection and maturation of CD4C8C thymocytes. Eur. J. Immunol. 23, 739–746
C42	Bendelac, A. et al. (1992) Activation events during thymic selection. J. Exp. Med. 175, 731–742
C43	Yamashita, I. et al. (1993) CD69 cell surface expression identifies developing thymocytes which audition for T cell antigen receptor mediated positive selection. Int. Immunol. 5, 1139–1150
C44	Hare, K.J. et al. (1999) CD69 expression discriminates MHC dependent and -independent stages of thymocyte positive selection. J. Immunol. 162, 3978–3983

^{*} a copy of this reference is not provided as it was previously cited by or submitted to the office in a prior application, Serial No. _____, filled ____, and relied upon for an earlier filling date under 35 U.S.C. §120 (continuation, continuation-in-part, and divisional applications).

Examiner Signature	Date Considered	
-----------------------	--------------------	--

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

ACTIVE 4043457v.1