Feuille 3 : variables aléatoires discrètes

Exercice 1. 1. On lance deux dés équilibrés. On note X_1 le résultat du premier dé, et X_2 le résultat du deuxième dé. Déterminer la loi de $X_1 - X_2$.

2. On lance un dé équilibré, au plus 5 fois, en s'arrêtant dès qu'on obtient 6. Donner la loi du nombre de lancers effectués.

Exercice 2. Un livre de 350 pages contient 450 erreurs d'impression réparties au hasard. Soit X la variable aléatoire du nombre d'erreurs dans une page déterminée.

- **a.** Quelle est la loi de X?
- b. Donner une expression de la probabilité qu'il y ait au moins 3 erreurs dans une page déterminée.

Exercice 3. Montrer que si X est une v. a. de loi géométrique, elle vérifie la propriété d'absence de mémoire suivante : $\forall k \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ \mathbb{P}(X > n + k \mid X > n) = \mathbb{P}(X > k)$. Interpréter ce résultat en considérant une suite d'épreuves répétées.

Exercice 4. Soient X et Y deux v. a. indépendantes de loi uniforme sur $\{0, 1, 2, \dots, 9\}$.

- **a.** Calculer $\mathbb{P}(X = Y)$.
- **b.** Déterminer la loi de X + Y.

Exercice 5. On lance deux dés. On note X le plus grand des numéros obtenus, et Y le plus petit.

- \mathbf{a} . Déterminer les lois de X et de Y. Ces deux variables aléatoires sont-elles indépendantes?
- **b.** Calculer $\mathbb{E}(X)$ et $\mathbb{E}(Y)$, et vérifier que $\mathbb{E}(X) + \mathbb{E}(Y) = 7$. Comment aurait-on pu retrouver ce résultat de manière plus simple?
- **c.** Calculer V(X) et V(Y).

Exercice 6. Soit X une variable aléatoire discrète d'espérance et de variance finies et Y une autre X v. a. telle que Y = aX + b. Calculer $\mathbb{E}(Y)$ et X v. fonction de X v. X

Exercice 7. 1. Déterminer et tracer la fonction de répartition de la loi uniforme sur $\{0, \ldots, n\}$ et de la loi géométrique de paramètre p.

- 2. Calculer l'espérance et la variance d'une variable aléatoire qui suit une loi uniforme sur l'ensemble $\{0, 1, \ldots, n\}$.
- 3. Calculer l'espérance d'une variable aléatoire qui suit une loi géométrique de paramètre p.

Exercice 8. Soient X et Y deux v. a. indépendantes, et de même loi :

$$\mathbb{P}(X=1) = \mathbb{P}(X=2) = \mathbb{P}(X=3) = \mathbb{P}(Y=1) = \mathbb{P}(Y=2) = \mathbb{P}(Y=3) = 1/3.$$

On considère deux nouvelles v.a. Z = X + Y et T = X - Y.

- 1. Donner les lois de Z et T.
- 2. Montrer que les v.a. Z et T ne sont pas indépendantes.
- 3. Calculer $\mathbb{E}(Z)$, $\mathbb{E}(T)$ et $\mathbb{E}(ZT)$ (on remarquera que $\mathbb{E}(ZT) = \mathbb{E}(Z)\mathbb{E}(T)$ bien que Z et T ne soient pas indépendantes).

Exercice 9. Trois amis se retrouvent à une terrasse ensoleillée et commandent 3 cafés. Chacun d'eux met dans sa tasse 2 sucres avec probabilité $\frac{1}{6}$, 1 sucre avec probabilité $\frac{1}{3}$, et pas de sucre avec probabilité $\frac{1}{2}$. Leurs choix sont bien entendu indépendants. On note X_3 le nombre de sucres consommés par les 3 clients, et Y le nombre de sucres consommés par le plus âgé.

- **a.** Donner la moyenne et la variance de X_3 et Y.
- **b.** Ces variables aléatoires sont-elles indépendantes?

Exercice 10. Soient X, Y deux v. a. indépendantes prenant un nombre fini de valeurs, respectivement $(x_i)_{i=1,...,n}$ et $(y_j)_{j=1,...,m}$. En considérant toutes les valeurs possibles pour le couple (X,Y), montrer que $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$.

Exercice 11. Une puce se déplace par sauts successifs sur les sommets A, B, C, et le centre de gravité O d'un triangle équilatéral. Au temps t=0, elle est en O. Puis elle saute en l'un des points A, B ou C de façon équiprobable. Par la suite, elle saute au temps t=n du point où elle se trouve en l'un des autres points de façon équiprobable.

- a. Calculer la probabilité qu'elle revienne en O pour la première fois au temps t=n.
- b. Calculer la probabilité de l'événement : "la puce revient en O". Commenter.

Exercice 12. Un examen consiste en 20 questions auxquelles il faut répondre par oui ou par non; chaque réponse juste est notée 1 point et chaque réponse fausse, 0 point. Un étudiant répond entièrement au hasard : sa note finale est une variable aléatoire X.

- a. Soit X_k la note qu'il obtient à la k-ième question : calculer $\mathbb{E}(X_k)$ et $V(X_k)$.
- **b.** Exprimer X en fonction des X_k ; en déduire $\mathbb{E}(X)$ et V(X).
- \mathbf{c} . Donner la loi de X; calculer la probabilité pour l'étudiant d'avoir une note inférieure à 3.
- **d.** Un étudiant sérieux estime qu'il donnera une réponse exacte à chaque question avec une probabilité de 0,8. Quelle est la loi de sa note, son espérance et sa variance?

Exercice 13. Soit $X = (X_1, X_2)$ une v.a. discrète à valeur dans $E = E_1 \times E_2$, les E_i étant finis ou dénombrables. La loi de X est déterminée par la donnée, pour tout couple (i, j) de E, de :

$$\mathbb{P}(X_1 = i \text{ et } X_2 = j) =: p_{i,j}.$$

- a. Calculer les lois de X_1 et X_2 en fonction de $p_{i,j}$.
- **b.** On suppose que $E_1 = E_2$, calculer $\mathbb{P}(X_1 = X_2)$.
- c. On suppose à partir de cette question que $E_i = \mathbb{N}$. Calculer la loi de $X_1 + X_2$ en fonction de $p_{i,j}$.
- **d.** Application : pour λ et μ positifs stricts, X_1 et X_2 indépendantes, et

$$\mathbb{P}(X_1 = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \qquad \mathbb{P}(X_2 = k) = e^{-\mu} \frac{\mu^k}{k!}, \qquad k \ge 0.$$

Calculer $p_{i,j}$ puis donner une expression simple de la loi de $X_1 + X_2$.

Exercice 14. Dans une promotion de n étudiants, chaque étudiant a une probabilité p de réussir les épreuves écrites et d'être ainsi admis à passer l'oral. Chacun de ceux qui passe l'oral a une probabilité a de le réussir. On note X le nombre d'étudiants admis à passer l'oral, et Y le nombre d'étudiants obtenant finalement le diplôme.

- a. Quelle est la loi de X? Sachant que X = k, quelle est la loi de Y?
- **b.** Donner la loi jointe $p_{k,l}$ de (X,Y). En déduire la loi de Y.

Exercice 15. Un assistant distrait range n lettres au hasard dans les enveloppes qu'il avait préalablement remplies. On note N la variable aléatoire représentant le nombre de courriers qui arrivent effectivement à leur destinataire. Calculer $\mathbb{E}(N)$.