

# Housekeeping

• DataFest tomorrow! See you there!

#### Recap

- We have seen how to perform hypothesis tests for questions involving the following:
  - A single proportion (coffee consumption)
  - Independence of two categorical variables (banker sex discrimination)
    - Think of as one population
  - Difference in two proportions (blood thinner)
    - Think of as two populations
- We are now going to see another hypothesis test, this time for numerical data

# Test for a single mean

#### Running example + form hypotheses

We will use the duke\_forest dataset provided in openintro. It provides data on some houses that were sold in the Duke Forest neighborhood of Durham, NC in November 2020.

- Before we look at the data, we should form our hypotheses. Suppose I am interested in learning if the average price of houses in Duke Forest is \$500,000 or not.
- What might our hypotheses be?
  - $H_0$ :  $\mu = 5$  versus  $H_A$ :  $\mu \neq 5$ , where  $\mu$  is the true average house of prices in Duke Forest in \$100,000
  - Terminology: I will refer to  $\mu_0=$  5 as my "null hypothesized value". (i.e. the specific value of  $\mu$  in  $H_0$ )

#### Collect and summarise data



The observed/sample mean housing price is  $\bar{x} = 5.599$  from a sample of 98 houses.

• Now we must determine if we have "convincing evidence"! Choose  $\alpha=0.05$ 

## Simulating null distribution

To simulate from the null distribution, we need to operate in a world where  $H_0$  is true

- So, I need to repeatedly simulate data sets of size 98 where the true mean is 5, without changing anything else
- If I don't want to make any assumptions about how the data behave, how might I do that?

#### **Bootstrap to the rescue**

How would I obtain a bootstrap distribution of the sample mean price of houses?

Remind ourselves: Where should the bootstrap distribution be centered?



#### Bootstrap to null distribution



- This is **not** the null distribution! The null distribution should be centered at  $\mu_0 = 5$
- However, the null distribution should have the same variability in  $\bar{x}$  as the bootstrap distribution.

• So to get the null distribution, why not just **shift** the bootstrap distribution to be centered where we want it to be?

## Shifting the bootstrap distribution

- In this example, bootstrap distribution is centered at  $\bar{x} = 5.599$
- In order to center this distribution at  $\mu_0 = 5$ , just subtract 5.599 5 = 0.599 from every single bootstrapped mean
  - This will give us a simulated distribution for  $\bar{x}$  centered at  $\mu_0 = 5$ , which is exactly the null distribution!
  - We call this "shifting the bootstrap distribution", because we simply shift where the bootstrap distribution is centered

```
1 mu0 <- 5
2
3 # xbar holds observed sample mean
4 shift <- xbar - mu0
5
6 # boot_means is a vector holding B bootstrapped sample means
7 null_dist <- boot_means - shift</pre>
```

#### **Null distribution**



Notice where the distributions are centered

## Obtain the p-value

 $H_0$ :  $\mu = 5$  versus  $H_A$ :  $\mu \neq 5$ 

Our observed sample mean housing price is 5.599.



What does it mean to be "as or more extreme" now?

#### Two-sided alternative hypothesis

- This is the first time we've seen a *two-sided* hypothesis as a class
- Since the alternative is "double sided", we can be extreme in **both** the positive and negative direction!



## Obtain the p-value (cont.)

Let *shift* represent the amount we shifted the distribution by:

$$shift = 5.599 - 5 = 0.599$$

Simulated means as or more extreme than  $\mu_0 + shift$  or  $\mu_0 - shift$  will contribute:



```
1 sum( (null_dist >= mu0 + shift) | (null_dist <= mu0 - shift))/B
[1] 0.0098</pre>
```

#### Make decision and conclusion

Make a decision and conclusion in the context of the research question.

• Since our p-value of 0.0098 is less than the significance level of 0.05, we reject  $H_0$ . We have convincing evidence to suggest that the true average housing price of homes in Duke Forest in 2020 was not \$500k.

#### **Comprehension questions**

- Why did we shift the bootstrap distribution?
- How do we estimate the p-value in the case of a two-sided alternative hypothesis?