

Network Security Intro

Redes de Computadores

2021/22

Pedro Brandão

References

- Slides are by Mark Stamp "Information Security: Principles and Practice" 2nd edition (Wiley 2011).
- Some other slides from Dr Lawrie Brown (UNSW@ADFA) for "Computer Security: Principles and Practice", 1/e, by William Stallings and Lawrie Brown
- With adaptations/additions by Pedro Brandão

U PORTO

7

Driving questions...

- How to secure protocols?
- What are the key objectives of securing protocols?
- Are security protocols hard or brittle?
- How to use crypto operations to provide those objectives?
- What is the path of a packet in the kernel?
- Can change it in that path?

3

Crypto refresh

Network Security Intro

RCom 21/22 - NetS

How to Speak Crypto

- A cipher or cryptosystem is used to encrypt the plaintext
- The result of encryption is ciphertext
- We decrypt ciphertext to recover plaintext
- A key is used to configure a cryptosystem
- A symmetric key cryptosystem uses the same key to encrypt as to decrypt
- A public key cryptosystem uses a public key to encrypt and a private key to decrypt
- Nonce == number used once

5

Symmetric key

6

Internet security protocols

Network security Intro

Protocols

- Protocol flaws can be very subtle
- Several well-known security protocols have significant flaws
 - Including WEP, GSM, and even IPsec, SSL (<u>POODLE</u> and its <u>extension to TLS</u>, <u>DROWN</u>, <u>ROBOT</u>)
- Implementation errors can occur
 - Such as IE implementation of SSL (<u>CVE-2002-0862</u>), OpenSSL (<u>HeartBleed</u>, <u>FREAK</u>, <u>HEIST</u>)
- Not easy to get protocols right...

More attacks on TLS

13

Security Protocols - Features

- Authentication
 - o Of machines, users, i.e. communication end-points
 - Mutual
- Confidentiality
 - o Exchanged communications are non-readable/understandable by others
 - Flow of information is confidential
 - Usually hard to achieve
- Crypto integrity
 - o Data handled has not been tampered with
 - Discard tampered data
- Non-repudiation
 - Communicators may not denying sending messages
 - Message is associated with peer

1/1

Ideal Security Protocol

- Satisfies security requirements
 - o Requirements must be precise
- Efficient
 - o Small computational requirement
 - o Small bandwidth usage, network delays...
- Robust
 - Works when attacker tries to break it
 - Works even if environment changes
- Easy to use & implement, flexible...
- Difficult to satisfy all of these!

15

Simple Security Protocols

Network security Intro

Secure Entry to NSA

- 1. Insert badge into reader
- 2. Enter PIN
- 3. Correct PIN?

Yes? Enter

No? Get shot by security guard

ATM Machine Protocol

- 1. Insert ATM card
- 2. Enter PIN
- 3. Correct PIN?

Yes? Conduct your transaction(s)

No? Machine (eventually) eats card

18

9

Com 21/22 - NetSecin

Authentication Protocols

Authentication

- Alice must prove her identity to Bob
 - o Alice and Bob can be humans or computers
- May also require Bob to prove he's Bob (mutual authentication)
- Probably need to establish a session key
- May have other requirements, such as
 - Use public keys
 - Use symmetric keys
 - Use hash functions
 - o Anonymity, plausible deniability, etc., etc.

22

Authentication

- Authentication on a stand-alone computer is relatively simple
 - o Hash password with salt, etc.
 - "Secure path," attacks on authentication software, keystroke logging, etc., are issues
- Authentication over a network is challenging
 - o Attacker can passively observe messages
 - Attacker can replay messages
 - Active attacks possible (insert, delete, change)

23

Simple Authentication

- Simple and may be OK for standalone system
- But insecure for networked system
 - Subject to a replay attack (next 2 slides)
 - o Also, Bob must know Alice's password

24

Better Authentication

- Better since it hides Alice's password
 - o From both Bob and Trudy
- Subject to replay?
 - O YES

Challenge-Response

- To prevent replay, use challenge-response
 - Goal is to ensure "freshness"
- Suppose Bob wants to authenticate Alice
 - o Challenge sent from Bob to Alice
- Challenge is chosen so that
 - Replay is not possible
 - Only Alice can provide the correct response
 - o Bob can verify the response

28

Nonce

- To ensure freshness, can employ a nonce
 - Nonce == number used once
- What to use for nonces?
 - o That is, what is the challenge?
- What should Alice do with the nonce?
 - o That is, how to compute the response?
- How can Bob verify the response?
- Should we rely on passwords or keys?

29

Challenge-Response

- Nonce is the challenge
- The hash is the response
- Nonce prevents replay, ensures freshness
- Password is something Alice knows
- Bob must know Alice's pwd to verify

30

Generic Challenge-Response

Nonce

Something that could only be

Alice from Alice (and Bob can verify)

Bob

- In practice, how to achieve this?
- · Hashed pwd works...
- Encryption (using keys) is better here (Why?)

31

Symmetric Keys

Authentication protocols

Network Security Intro

Symmetric Key Notation

• Encrypt plaintext P with key K

$$C = E(P,K)$$

• Decrypt ciphertext C with key K

$$P = D(C,K)$$

- Here, we are concerned with attacks on protocols, not attacks on crypto
 - We assume crypto algorithms secure

Authentication: Symmetric Key

- Alice and Bob share symmetric key K
- Key K known only to Alice and Bob
- Authenticate by proving knowledge of shared symmetric key
- How to accomplish this?
 - Must not reveal key, must not allow replay (or other) attack, must be verifiable, ...

34

Authentication with Symmetric Key

- Secure method for Bob to authenticate Alice
- Alice does not authenticate Bob
- So, can we achieve mutual authentication?

35

Mutual Authentication?

- What's wrong with this picture?
- "Alice" could be Trudy (or anybody else)!

36

18

Mutual Authentication

- Since we have a secure one-way authentication protocol...
- The obvious thing to do is to use the protocol twice
 - Once for Bob to authenticate Alice
 - Once for Alice to authenticate Bob
- This has got to work...

Mutual Authentication

- This provides mutual authentication...
- · ... or does it?

28

Mutual Authentication Attack

Mutual Authentication

- Our one-way authentication protocol is not secure for mutual authentication
 - o Protocols are subtle!
 - o The "obvious" thing may not be secure
- Also, if assumptions or environment change, protocol may not be secure
 - o This is a common source of security failure
 - o For example, Internet protocols

40

Symmetric Key Mutual Authentication

- Do these "insignificant" changes help?
 - o Yes!

41

Symmetric Key Mutual Authentication

RCom 21/22 - NetSe

PORTO

- Is this MiTM?
- What else is needed to thwart this?
 - Session key

42

Public Keys

Authentication protocols

Network Security Intro

Public Key Notation

- Encrypt M with Alice's public key: $\{M\}_{Alice}$
- Sign M with Alice's private key: $[M]_{Alice}$
- Then
 - $\circ [\{M\}_{Alice}]_{Alice} = M$
 - {[M]_{Alice} }_{Alice} = M
- Anybody can use Alice's public key
- Only Alice can use her private key

44

77.17

U PORTC

- Is this secure?
- Trudy can get Alice to decrypt anything!
 - o So, should have two key pairs

45

Public Key Authentication

RCom 21/22 - NetSec in

PORTO

- Is this secure?
- Trudy can get Alice to sign anything!
 - o Same as previous should have two key pairs

16

Public Keys

- Generally, a bad idea to use the same key pair for encryption and signing
- Instead, should have...
 - o ... one key pair for encryption/decryption...
 - o ... and a different key pair for signing/verifying signatures

47

Session Key

- Usually, a session key is required
 - o I.e., a symmetric key for a particular session
 - o Used for confidentiality and/or integrity
- How to authenticate and establish a session key (i.e., shared symmetric key)?
 - When authentication completed, want Alice and Bob to share a session key
 - o Trudy cannot break the authentication...
 - o ... and Trudy cannot determine the session key

48

Authentication & Session Key

- Is this secure?
 - o Alice is authenticated and session key is secure
 - o Alice's "nonce", R, useless to authenticate Bob
 - o The key K is acting as Bob's nonce to Alice
- No mutual authentication

49

Public Key Authentication and Session Key

- Is this secure?
 - o Mutual authentication (good), but...
 - o ... session key is not secret (very bad)

50

25

Public Key Authentication and Session Key

- Is this secure?
- Seems to be OK
- Mutual authentication and session key!

51

Public Key Authentication and Session Key

RCom 21/22 - NetSe

PORTO

- Is this secure?
- Seems to be OK
 - \circ Anyone can see $\left\{R,\!K\right\}_{Alice}$ and $\left\{R+\!1,\!K\right\}_{Bob}$

52

RCom 24/22 - NetSec

Iptables and netfilter

Firewalling

Network Security Intro

Firewalls

- Firewall must determine what to let in to internal network and/or what to let out
- Access control for the network

54

Iptables and netfilter

- \$> man iptables
 administration tool for IPv4/IPv6 packet filtering and NAT
- From <u>netfilter.org</u>
 - "provides packet filtering software for the <u>Linux</u> 2.4.x and later kernel series. The netfilter project is commonly associated with <u>iptables</u> and its successor <u>nftables</u>."
 - onftables replaces the popular {ip,ip6,arp,eb}tables.

55

Tables contain chains

table

Filter

INPUT

FORWARD

OUTPUT

Mangle
PREROUTING

FORWARD

POSROUTING

INPUT

OUTPUT

- Tables enable actions on packets
- Chains are "locations" where the actions can be applied.

56

m 21/22 - NetSecii

Iptables and nftables examples

• iptables:

See Moving from iptables to nftables

Summary

- Secure protocols, what are they good for...
 - Authentication protocols
 - o Symmetric, public key
- iptables and path of a packet in netFilter

60

Homework

1. Review slides

- 2.Read from Tanenbaum
 - Section 8.7.1 Authentication Based on a Shared Secret Key
- 3. Answer questions at Moodle

61

om 21/22 - NetSec intr

End of Network Security Intro