

National University

Of Computer & Emerging Sciences Karachi

Course Outlines of BS (CS) Degree Program

Course Instructor	Ms. Afreen Naz & Urooj		Semester	Fall
Batch/Section(s)	Batch 2020		Year	2021
Course Title	MT 1004-Linear Algebra		Credit Hours	3
Prerequisite(s)			Course TA	
Text Book(s)				
Title of book El	ementary Linear Algebra, 12 th	edition		
Author(s) Ho	oward Anton and Anton Kaul			
Reference Book(s)				
Title of book Li	Linear Algebra and its Applications			
Author(s) Gi	ilbert Strang			
Title of book Co	oding the Matrix: Linear Algeb	ra through Applications to Comput	ter Science	
Author(s)	ailin N Klain			

Course Description:

Elementary operations on matrices, Gaussian and Gauss Jordan elimination, Elementary matrices and matrix factorization, determinants and their properties, vector spaces, subspaces and spanning sets, linear independence, dimensions, rank of a matrix, linear transformation, Eigenvalues and Eigenvectors, inner product and orthogonal basis, diagonalization and orthogonal diagonalization, application of linear algebra.

S. No.	Course Learning Outcomes (CLO)	Domain	Taxonomy Level	PLO
1.	Interpreting and finding the solutions of linear equations in detail.	Cognitive	2	
2.	Understanding the core concepts of Euclidean vector spaces and matrix transformations.	Cognitive	2	2
3.	Applying the basic linear algebra concepts in computer science.	Cognitive	3	

Tentative Weekly Lectures Schedule:

Week	Contents/Topics	Remarks	Exercises	CLO's	Tools
V V CCII	Contents, Topies		Lixer cises	CLO 5	10015
Week 1	Introduction, System of Linear equations, Elementary row operation	Assignment 1	1.1 (1-20)		
Week 2	Solving system of Linear equations: Gaussian Elimination and Gauss Jordan methods Matrix Operations Elementary Matrices, Methods for finding Inverse		1.2 (1-26) 1.3 (1-20) 1.5 (1-6, 11-18) 1.6 (1-20)	1	A1, M1,
Week 3	Invertible Matrices, Diagonal, triangular, and symmetric matrices, Matrix Transformations		1.7 (1-10, 19-28) 1.8 (1-24, 27-41, 45-46) (CLO 2)		F
Week 4	Matrix Transformation (contd) Application no 1: Network Analysis		1.9 (1-26) (CLO 2) 1.10 (1-4) (CLO 3)		
Week 5	Determinants and their properties, Minors, Cofactors, Inverse using cofactors, Cramer's Rule		2.1 (1-32) 2.2 (1-23) 2.3 (1-29,31,32)		
Week 6	1st Mid Term Exam				
Week 7	General Vector Space, Subspaces, Spanning Sets, Linear Independence,	Assignment 2	4.1 (1-14) 4.2 (1-16,19) 4.3 (1-20) 4.4 (1-21)	2	
Week 8	Coordinates and Bases, Dimensions Change of basis		4.5 (1-28) 4.6 (1-20) 4.7 (1-19)	2	A2, A3, M2, F
Week 9	Bases for row, column, and null spaces, Rank and Nullity		4.8 (1-31) 4.9 (1-38)		
Week 10	Eigenvalues and Eigenvectors, Diagonalization	Assignment 3 (5.4)	5.1 (1-16) 5.2 (1-20)		
Week 11	2 nd Mid Term Exam				
	Application no 2: Markov Chains Internet Search Engines	Presentation	5.5	3	
Week 13	Inner product spaces, Orthogonal and orthonormal bases, Gram-Schmidt Process;		6.1 (1-26) 6.2 (1-12, 17-19)		
Week 14	QR-Decomposition. Orthogonal Matrices		6.3 (1-14, 27-31, 44-49) 7.1 (1-6) (CLO 1)	2	
Week 15	Orthogonal Diagonalization, Quadratic Forms		7.2 (1-18) (CLO 1) 7.3 (1-8) (CLO 1)		P, F
Week 16	Revision				

Marks Distribution:

Particulars	% Marks
1. Assignments and Presentations	20
2. First Mid Exam	15
3. Second Mid Exam	15
4. Final Exam	50
Total:	100