

Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons

Author(s): Ralph Allan Bradley and Milton E. Terry

Source: Biometrika, Dec., 1952, Vol. 39, No. 3/4 (Dec., 1952), pp. 324-345 Published by: Oxford University Press on behalf of Biometrika Trust

Stable URL: http://www.jstor.com/stable/2334029

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms

 $\it Oxford\ University\ Press\ and\ }$ are collaborating with JSTOR to digitize, preserve and extend access to $\it Biometrika$

RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS I. THE METHOD OF PAIRED COMPARISONS

BY RALPH ALLAN BRADLEY AND MILTON E. TERRY*

Virginia Agricultural Experiment Station of the Virginia Polytechnic Institute

1. Introduction

The analysis of experiments involving paired comparisons has received considerable attention in statistical methodology. Thurstone (1927) has considered the problem on the assumptions that a linear variate is involved and that perceptible differences exist among the items presented for comparison. More recently, Mosteller (1951 a, b) has elaborated upon Thurstone's method and, having postulated a sensation continuum over which sensations are jointly normally distributed, has developed a χ^2 test following transformation of the observed variates.

Kendall & Babington Smith (1940) proposed a method of analysis for paired comparisons which does not depend on assumptions of a linear variate or of normality, and the procedure may be described as a combinatorial type test. They form a coefficient of agreement which essentially measures discrepancies from perfect agreement, although the model used in the test is not explicitly formulated. In subjective tests the consistency of a judge is measured in terms of circular triads. We note that tests of consistency and tests of agreement, when differences are known to exist, may also be considered to be tests of null hypotheses upon the postulation of absence of differences.

Guttman (1946) has developed a method of quantifying paired comparisons. His problem was to determine a numerical value for each of a number of items which will best represent the comparisons in some sense. The problem may be considered to be one of estimation as distinct from the problem of testing hypotheses.

When only two items are to be compared in a ranking experiment, a test of the hypothesis of no-difference between them on some characteristic may be based on the binomial distribution. The estimation of the probabilities that the items are superior in a given comparison may be accomplished, and these estimates afford a method of rating the items or a method of quantification. In the present paper a generalization of the binomial model and distribution is obtained.

A mathematical model is formulated and maximum-likelihood estimates of treatment ratings provide a simple solution to Guttman's problem of quantification. Likelihood ratio statistics are used for tests of a specified class of hypotheses. Although these tests basically agree with those of Kendall & Babington Smith, they subdivide the possible results from an experiment of a given size into more distinct subclasses, thus perhaps indicating better sensitivity.

The test procedure is flexible. In subjective testing the experimenter may assume a priori that the standards of judging are uniform or that they vary by judges, by time, or by both. That is, true treatment ratings may be considered to be constant throughout an

* This project was supported by funds from the Research and Marketing Act of 1946, under Contract No. A-1s-32683, with the Bureau of Agricultural Economics.

experiment or to be functions of judges and of time. In experiments concerned with the detection of treatment differences the latter alternatives are important. Certain test characteristics may be rather intangible and difficult to describe, with the added difficulty that personal preferences may influence judges' decisions. Even in simpler cases the research worker may desire to forgo the tedious procedure of training and co-ordinating judges. In these situations tests of treatment differences may be performed and a measure of the agreement among judges obtained, although estimates of over-all treatment ratings are not usually meaningful.

Tables for the test procedures for small treatment and sample sizes are provided and asymptotic distributions are considered. The use of the tables and the method of analysis are illustrated with an example of a taste-testing experiment on pork roasts from animals fed on one of three corn rations with peanut supplemements.

2. MATHEMATICAL MODEL

Let us consider t treatments in an experiment involving paired comparisons. We shall first consider that these treatments have true ratings (or preferences), π_1, \ldots, π_t , on a particular subjective continuum throughout an experiment. The continuum is specialized by the requirements that every $\pi_i \geqslant 0$ and that $\Sigma \pi_i = 1$, the latter condition being added for convenience. Further definition follows with the assumption that, when treatment i appears with treatment j in a block, the probability that treatment i obtains top rating (or a rank of 1) is $\pi_i/(\pi_i + \pi_j)$. Later generalization will require the addition of a second subscript on the parameters indicative of judges or time.

Now r_{ijk} will designate the rank of the *i*th treatment in the *k*th repetition of the block in which treatment *i* appears with treatment *j*. Clearly $r_{jik} = 3 - r_{ijk}$. Estimates of $\pi_1, ..., \pi_t$ will be denoted by $p_1, ..., p_t$ respectively, and *n* will be reserved to denote the number of repetitions of the design when a repetition is defined to be a set of all pairs of treatments.

In certain cases, as noted above, repetitions of the design may be performed by different judges or at different times. We shall discuss, in a subsequent section, the analysis when true ratings $\pi_{1u}, \ldots, \pi_{lu}$ exist in the *u*th of *g* groups not necessarily identical from group to group.

3. The likelihood function

We may now obtain the likelihood function, assuming probability independence between blocks or pairs of treatments. Consider the probability of the observed rankings in the kth repetition for the block in which treatments i and j are compared. The probability of the observed result is

 $\left(\frac{\pi_i}{\pi_i+\pi_j}\right)^{2-r_{ijk}}\left(\frac{\pi_j}{\pi_i+\pi_j}\right)^{2-r_{jik}} = \frac{\pi_i^{2-r_{ijk}}\pi_j^{2-r_{jik}}}{(\pi_i+\pi_j)}.$

For if the *i*th treatment obtains top ranking, $r_{ijk} = 1$ and $r_{jik} = 2$, and the expression above becomes $\pi_i/(\pi_i + \pi_j)$; alternatively, $r_{ijk} = 2$, $r_{jik} = 1$, and the probability is $\pi_j/(\pi_i + \pi_j)$. Multiplying the appropriate expressions for all comparisons within a repetition and for all n repetitions, we reach the likelihood function in the general form

$$L = \prod_{i} \pi_{i}^{2n(t-1) - \sum\limits_{j \neq i} \sum\limits_{k} r_{ijk}} \prod_{i < j} (\pi_{i} + \pi_{j})^{-n}.$$
 (1)

When repetitions of the design are performed by groups with distinct parameters, the likelihood function will be a product over the groups of functions of the form of (1).

4. LIKELIHOOD RATIO TESTS AND ESTIMATION

A general class of tests of the null hypothesis,

$$H_0: \pi_i = 1/t \quad (i = 1, ..., t),$$
 (2)

against alternative hypotheses

$$\begin{split} H_a: \pi_i = \pi(h) &\quad (h=1,...,m);\\ i = s_{h-1}+1,...,s_h, &\quad \text{where} \quad s_0 = 0, \ s_m = t \ \text{and} \ \sum\limits_h \left(s_h - s_{h-1}\right) \pi(h) = 1, \end{split} \tag{3}$$

are possible using likelihood ratio tests. That is, tests of the null hypothesis of identical treatment ratings may be performed when the alternative hypothesis specifies that the treatments have identical ratings within each of m groups of treatments while the groups themselves may differ. Alternative hypotheses involving only a subset of parameters do not lead to parameter-free tests. Two special cases of this general class of tests will be considered in the next section.

If p(h) is the maximum-likelihood estimate of $\pi(h)$, these estimates are obtained from the equations

$$\left[\left\{ 2n(t-1)\left(s_{h} - s_{h-1}\right) - \sum_{i=s_{h-1}+1}^{s_{h}} \sum_{j \neq i} \sum_{k} r_{ijk} - \frac{1}{2}n(s_{h} - s_{h-1})\left(s_{h} - s_{h-1} - 1\right) \right\} / p(h) \right] - n(s_{h} - s_{h-1}) \sum_{f \neq h} \left(s_{f} - s_{f-1}\right) / \left\{ p(h) + p(f) \right\} = 0 \quad (h = 1, ..., m), \quad (4)$$

and

$$\sum_{h} (s_h - s_{h-1}) p(h) = 1.$$
 (5)

Equations (4) are obtained from the reduction of the first-order maximizing conditions on the logarithm of the likelihood function when a Lagrange multiplier is used for the restraint on the parameters (3).

The general test statistic,* a monotone function of the likelihood ratio, is

$$B = n \sum_{h < f} (s_h - s_{h-1}) (s_f - s_{f-1}) \log \{p(h) + p(f)\}$$

$$- \sum_{h} \left\{ 2n(t-1) (s_h - s_{h-1}) - \sum_{i=s_{h-1}+1}^{s_h} \sum_{j \neq i} \sum_{k} r_{ijk} - \frac{1}{2} n(s_h - s_{h-1}) (s_h - s_{h-1} - 1) \right\} \log p(h). \quad (6)$$

B is implicitly a function of the treatment sums of ranks.

Solution of equations (4) and (5) provides estimates of the true treatment ratings. Pairwise comparison of these estimates provides a quantitative measure of the ratings of a pair of items relative to the test attribute.

The estimates p_i of π_i may be used for pairwise comparisons of treatments in the sense that the ratio p_i/p_j measures the relative frequency of occurrence of rank 1 for treatment i as compared with treatment j for this particular paired comparison. If the estimates are converted to logarithms, the values $\log p_i$ occur on a linear scale and permit over-all comparisons of the experimental treatments. Any consideration of differences among treatments should be based on the values of the $\log p_i$'s.

5. Special tests

Two special alternative hypotheses are of particular interest.

Case (i). H_1 : no π_i is assumed equal to any π_j ($i \neq j$). That is, in the general hypothesis (3), m = t.

* We use logarithms to base 10 unless otherwise specified.

In this case equations (4) and (5) are simplified and become

$$\frac{a_i}{p_i} - n \sum_{j \neq i} (p_i + p_j)^{-1} = 0 \quad (i, j = 1, ..., t),$$

$$\sum_i p_i = 1.$$
(8)

and

$$\sum_{i} p_i = 1. \tag{8}$$

We define

$$a_{i} = 2n(t-1) - \sum_{j+i} \sum_{k=1}^{n} r_{ijk}.$$
 (9)

Both equations (4) and (7) contain one degree of dependence and imply respectively equations (5) and (8).

The test statistic becomes

$$B_1 = n \sum_{i < j} \log (p_i + p_j) - \sum_{i} \left\{ 2n(t-1) - \sum_{j \neq i} \sum_{k=1}^{n} r_{ijk} \right\} \log p_i.$$
 (10)

The preparation of tables for the exact distribution of B_1 is discussed in the following section.

Case (ii). $H_2: \pi_i = \pi$ ($i=1,\ldots,s$); $\pi_i = \frac{1-s\pi}{(t-s)}$ ($i=s+1,\ldots,t$). This is a reduction of the general hypothesis to the case in which m=2

This special test is similar to certain single degree of freedom comparisons in the analysis of variance. It is possible to compare two groups of items so long as all experimental items are included in one or another of the groups; however, it should be noted that one may always disregard all pairs in the experiment involving one or more extraneous items and proceed with tests based on comparisons within any subgroup of items.

For the special case (ii), the maximum-likelihood equations (4) and (5) may be solved simply and the test statistic written as an explicit function of treatment sums of ranks. When p is the estimate of π , we have

$$p = \frac{ns(4t - s - 3) - 2\sum_{i=1}^{s} \sum_{j \neq i} \sum_{k} r_{ijk}}{ns(5st - 2t^2 - 6s + 3t) - 2(2s - t)\sum_{i=1}^{s} \sum_{j \neq i} \sum_{k} r_{ijk}},$$
(11)

and the statistic, by substitution in (6), is

$$B_{2} = \left\{ \sum_{i=1}^{s} \sum_{j\neq i} \sum_{k} r_{ijk} + \frac{1}{2} n s (s-1) - 2 n (t-1) s \right\} \log \left\{ \frac{(t-s) p}{(t-2s) p+1} \right\} + \left\{ \sum_{i=s+1}^{t} \sum_{j\neq i} \sum_{k} r_{ijk} + \frac{1}{2} n (t-s) (t-s-1) - 2 n (t-1) (t-s) \right\} \log \left\{ \frac{1-sp}{(t-2s) p+1} \right\}.$$
 (12)

A discussion of the distribution of B_2 is included with that of the distribution of B_1 .

6. Tables for B_1 and B_2

It is possible to generate all combinations of treatment sums of ranks for any given number of treatments and repetitions of the paired comparison design. The probability of each such combination may be obtained under the null hypothesis of equality of true treatment ratings.

If three items are compared in a single repetition, the possible sets of rank sums are 2, 3, 4 and 3, 3, 3. Each of the six permutations of the elements of the first set has a probability 1/8, while the probability of the second set is 2/8. The treatment sums of ranks for two repetitions and three treatments are obtained by adding 2, 3, 4 and 3, 3, 3 in turn to corresponding elements in the sets of sums of ranks consisting of all permutations of 2, 3, 4 and to 3, 3, 3. In the sets of sums of ranks so produced, all permutations of a given set of treatment sums of ranks are taken to be equivalent. The probability of a given permutation is obtained by multiplying the basic probabilities of the combination and the permutation used to produce the given permutation. The probability of a given new combination of rank sums is obtained by adding the probabilities obtained for each permutation of the elements of the combination.

The procedure may be arranged systematically as shown in Table 1.

Prob- abilities		1/8	1/8	1/8	1/8	1/8	1/8	2/8
	Rank sums	2, 3, 4	2, 4, 3	3, 2, 4	3, 4, 2	4, 2, 3	4, 3, 2	3, 3, 3
6/8 2/8	2, 3, 4 3, 3, 3	4, 6, 8 5, 6, 7	4, 7, 7 5, 7, 6	5, 5, 8 6, 5, 7	5, 7, 6 6, 7, 5	6, 5, 7 7, 5, 6	6, 6, 6 7, 6, 5	5, 6, 7 6, 6, 6

Table 1. The generation of treatment sums of ranks and probabilities for three treatments and two repetitions

The combination 5, 6, 7, say, appears in its various permutations in nine places in this table. In row 1, column 4, for example, 5, 7, 6 appears and its probability is 6/64 obtained by multiplying marginal probabilities of row and column. The probability of the combination 5, 6, 7 is then the sum of the nine individual probabilities and has the value 36/64. When three repetitions with three treatments are considered, the generating rows at the top of the table are unchanged, but the columns at the left above are replaced by the possible combinations of sums of ranks obtained for two repetitions with their corresponding probabilities. This procedure is continued for larger numbers of treatments and repetitions.

When the sets of possible combinations of treatment sums of ranks are obtained with their probabilities of occurrence, for each such set we may substitute in equations (7), (8) and (9) and obtain estimates $p_1, ..., p_t$. The solution of these equations is tedious; in some cases elementary methods are applicable, in others it is necessary to use repeated approximations in an iterative procedure. In the later work, many of the procedures have been programmed on I.B.M. equipment. When we substitute $p_1, ..., p_t$ in (10), the statistic B_1 is evaluated.

Tables for the distribution of B_1 for three and four items and up to ten repetitions of the design are given in Appendix A. The possible sets of treatment sums of ranks are given in the left-hand columns. Corresponding estimates, $p_1, ..., p_t$, are then given with the value of B_1 . The final column shows significance levels, P, in the form of cumulative probabilities. These probabilities are obtained from the individual probabilities of the possible sets, accumulated beginning with small values of B_1 which are most discordant under the null hypothesis.

The distribution of the statistic B_2 may be recovered from tables for B_1 . When t and n are specified, it is easy to compute values of p and B_2 using (11) and (12). Probabilities may be obtained by elementary considerations.

 B_2 is no longer symmetric over the treatments, and certain permutations of treatment sums of ranks must be considered for each entry in the tables of Appendix A. However,

each such permutation is equally likely, and its probability may be obtained from the cumulative probabilities for B_1 . (Sets grouped together with equal values of B_1 always have equal probabilities.)

For any hypothesis for which B_2 is the appropriate statistic it is possible to evaluate p, B_2 and the corresponding probability of each value of B_2 as obtained from the distribution of B_1 . Tables for the distribution of B_2 will be prepared at a later date and are not presently available.

7. The combination of experiments

As noted in the introduction, it may happen that an experiment is performed in groups* of repetitions of sizes, n_n ($n_n = 1, ..., g$), with $\sum_{i=1}^{g} n_n = n$. Two possible methods of performing an over-all test of significance are available and depend on the specification of the alternative hypotheses. We shall illustrate these methods with reference to the important special test (i), noting that similar procedures may be developed for all tests of the general form specified in § 4.

(i) Pooled analysis

If an experimenter is willing to assume that true treatment ratings, $\pi_1, ..., \pi_l$, exist as the alternative hypothesis for all groups of repetitions, no new analysis is required. Total treatment sums of ranks are obtained by addition of corresponding group treatment sums of ranks over the g groups. The experiment is treated as though one group of n repetitions of the design had been employed and the tables of Appendix A may be used.

(ii) Combined analysis

In many cases the alternative hypothesis that the same true ratings exist for all groups is not realistic. If the detection of treatment differences is the main concern of the experimenter, a pooled analysis may be inappropriate and even give a non-significant result, while each group alone exhibits significant treatment differences. This is particularly likely to happen where judge preferences may prohibit the setting up of uniform ranking criteria.

Let us specify an alternative hypothesis as follows:

- (a) Within the uth of g groups, true ratings $\pi_{1u}, ..., \pi_{lu}, \sum_{i=1}^{t} \pi_{iu} = 1$ exist, and these ratings may change from group to group.
- (b) Group experiments are independent in probability. Then, in addition, we define B_1^u to be the likelihood ratio statistic corresponding to B_1 (6) for the *u*th group (u = 1, ..., g). The statistics B_1^u are self-weighting. That is, the groups may be combined and an over-all test of significance performed depending on a statistic

$$B_1^c = \sum_{u=1}^g B_1^u. {13}$$

This statistic is again a monotone function of the likelihood ratio and does not depend on values of n_u other than in the evaluation of B_1^u .

Tables for the distribution of B_1^c are discussed in the following section.

One note should be added. The decision to pool or combine group results should be made from *a priori* knowledge of group behaviour. When group data may be pooled, it is possible

* These groups may represent judges in sensory difference experimentation, different localities, days, or non-treatment experimental techniques.

Biometrika 39

that the pooled value of B_1 exhibits higher significance than the corresponding value of B_1^c . However, it is easy to show that $B_1 \geqslant B_1^c$ (14) in every situation.

Estimates of the parameters, $p_1, ..., p_l$, should usually be obtained by groups when groups are combined, but over-all estimates are available when groups are pooled.

8. Tables for B_1^c

The probability of a specified value of B_1^c may be simply obtained by elementary probability. Suppose values of n_u are equal in sets of sizes $g_1, ..., g_w, \sum_{i=1}^w g_i = g$, and that values of B_1^u within these sets are equal in subsets of sizes $g_{i1}, ..., g_{iw_1}, \sum_{j=1}^{w_i} g_{ij} = g_i$ (i = 1, ..., w). The probability of a specified value of B_1^c is

$$P(B_1^c) = \prod_{i=1}^w g_i! \left\{ \prod_{j=1}^{w_i} g_{ij}! \right\}^{-1} \prod_{u=1}^g P(B_1^u). \tag{15}$$

Values of B_1^u and $P(B_1^u)$ may be obtained from the table of Appendix A. B_1^c is calculated by addition as in (13), and its probability is evaluated by use of (15).

Using the results above, we have computed tables for B_1^c for certain experiments wherein there are equal numbers of repetitions in each group. Only values at approximately the 0·10 level of significance or higher have been recorded, and these are selected for easy interpolation. These tables are shown in Appendix B.

9. A COEFFICIENT OF AGREEMENT

A measure of consistency of ranking from group to group is naturally provided by the difference between the pooled value of B_1 and B_1^c . Small values of $B_1 - B_1^c$ (note that $B_1 - B_1^c \ge 0$) will exhibit good agreement in ranking from group to group, while large values indicate discordant rankings.

If we set up the hypotheses

and

$$H_0: \pi_{iu} = \pi_i \quad (u = 1, ..., g; i = 1, ..., t) H_1: \pi_{iu} \quad (u = 1, ..., g; i = 1, ..., t) \text{ unrestricted by groups,}$$
(16)

then
$$-2\log_e \lambda = 2(B_1 - B_1^c)\log_e 10, \tag{17}$$

where λ is the likelihood ratio statistic for comparison of H_0 and H_1 . $B_1 - B_1^c$ is then a monotone function of the likelihood ratio statistic.

The distribution of $B_1-B_1^c$ for small samples will depend on parameters π_1,\ldots,π_l under H_0 and is therefore not a parameter-free test. A conditional test, which is exact, may be formed and has some value. Suppose B_1^c is fixed at the observed value. Corresponding to B_1^c we have group sums of ranks. If there is no agreement from group to group, all permutations of group sums of ranks are equally likely, and for each permutation a pooled value of B_1 , and consequently the difference $B_1-B_1^c$, may be obtained. Thus for fixed B_1^c the distribution of $B_1-B_1^c$ can be derived under an assumption of no agreement from group to group. This conditional test reverses the hypotheses (16), and small values of $B_1-B_1^c$ show significant agreement from group to group.

A large sample test of the hypotheses of (16) is discussed in the following section.

10. Large sample distributions

If λ is the likelihood ratio, it is known (Wilks, 1946, pp. 150–2, § 7·2) that $-2\log_e\lambda$ is distributed as χ^2 under very general conditions. This result can be employed in the special cases considered above.

Case (i). In the first special test (§ 5)

$$-2\log_e \lambda_1 = nt(t-1)\log_e 2 - 2B_1\log_e 10 \tag{18}$$

is distributed in the limit as χ^2_{t-1} , i.e. as χ^2 with t-1 degrees of freedom. (It has been noted that B_1 as tabled is a linear function of logarithms to base 10.)

The authors have been unsuccessful in an attempt to evaluate the moments of $-2\log_e \lambda_1$ by theoretical methods. However, numerical values of the mean and variance of this statistic have been computed for small numbers of items and repetitions. These are given in Table 2.

	t =	= 3	t =	= 4
n	Mean	Variance	Mean	Variance
1 2 3 4 5 6 7 8 9	3·12 3·39 2·80 2·54 2·40 2·32 2·27 2·23 2·20 2·18 2·00	3·24 7·27 7·50 6·51 5·83 5·38 5·15 4·95 4·82 4·71 4·00	4·55 3·59 3·33 3·22 3·13 ——————————————————————————————————	9·96 9·51 7·80 7·10 6·66 — — — 6·00

Table 2. Mean and variance of $-2\log_e \lambda_1$

It may be observed that even for these numbers of items and repetitions there is definite evidence of rapid convergence to the limiting values for the means and somewhat slower convergence for the variances. For small samples, on the average $-2\log_e\lambda_1$ will be a little too large, and use of the large sample approximation will tend to lead to the announcement of too many significant results. The approximation appears to be fairly good for practical purposes if the number of repetitions is not too small (say $n \ge 15$).

We may note that the computations are fairly difficult if the approximate test must be used. To compute B_1 it is necessary to solve equations (7) and (8) and substitute in the formula (10) for B_1 . The equations are most easily solved by obtaining a first approximation by comparison with available tables (multiples of $\Sigma r_1, ..., \Sigma r_l$ yield identical estimates $p_1, ..., p_l$) and using an iterative procedure. The iterations consist of obtaining second approximations such as

$$p_i^{(1)} = a_i \left\{ \frac{n}{p_1^{(1)} + p_i^{(0)}} + \ldots + \frac{n}{p_{i-1}^{(1)} + p_i^{(0)}} + \frac{n}{p_i^{(0)} + p_{i-1}^{(0)}} + \ldots + \frac{n}{p_i^{(0)} + p_i^{(0)}} \right\}^{-1},$$

where the superscript in parentheses indicates the order of iteration.

For the combined test, from the additive property of χ^2 , the limiting distribution of

$$-2\log_{e}\lambda_{1}^{c} = -2\sum_{u=1}^{g}\log_{e}\lambda_{1}^{u}$$

$$= nt(t-1)\log_{e}2 - 2B_{1}^{c}\log_{e}10$$
(19)

is that of χ^2 with g(t-1) degrees of freedom. The notation in (19) corresponds to that of §8(b).

If we consider the test specification (16), a parameter-free test of agreement may be formed for the large sample distribution. It follows that $2(B_1 - B_1^c) \log_e 10$ has the χ^2 distribution with (g-1)(t-1) degrees of freedom in the limit. Large values of this statistic show discordant ranking from group to group.

The large sample test may be summarized as in Table 3.

Table 3. Large sample analysis (Note that $\log_e 2 = 0.69315$ and $2\log_e 10 = 4.60518$)

Statistic	Hypotheses	Limiting distribution
$nt(t-1) \log_e 2 - 2B_1 \log_e 10$ $2(B_1 - B_1^e) \log_e 10$	$\begin{cases} H_0 \colon \pi_i = 1/t \\ H_1 \colon \pi_i \\ fH_0 \colon \pi_{iu} = \pi_i \\ H_1 \colon \pi_{iu} \end{cases}$	χ^2_{t-1} $\chi^2_{(\sigma-1)(t-1)}$
$nt(t-1)\log_e 2 - 2B_1^c\log_e 10$	$\begin{cases} H_0 \colon \pi_{iu} = 1/t \\ H_1 \colon \pi_{iu} \end{cases}$	$\chi^2_{\sigma(t-1)}$

Case (ii). In the second special test, the statistic

$$-2\log_e \lambda_2 = 2ns(t-s)\log_e 2 - 2B_2\log_e 10,$$
(20)

has in the limit the distribution of χ^2 with one degree of freedom.

11. THE EXPERIMENTAL PROCEDURE AND ANALYSIS ILLUSTRATED*

In a recent taste-testing experiment, pork roasts were compared by ranking in pairs on their flavour characteristics. The roasts were obtained from three groups of hogs which had been fattened on three different rations: corn (maize), corn plus a peanut supplement, and corn plus a large peanut supplement. The object was to determine whether the addition of peanuts to the diet was recognizable in the fresh-pork roasts or not. One would like to ask expert judges to rank pairs on the basis of flavour attributable to the peanut diet; however, this characteristic proved too intangible to define, and each judge was asked to rank pairs on the basis of his own preferences. This leads a priori to a combined analysis (§ 8) for the experimental data.

When a new procedure is proposed, it is useful for applied work to show a systematic listing of the steps involved. We now indicate these steps with reference to the results of

* The illustrative example is taken from preliminary experimental results of L. L. Davis, C. M. Kincaid and H. R. Thomas at the Virginia Agricultural Experiment Station.

two of the several judges used in the experiment described above. Each judge performed five repetitions of the paired design (t = 3, n = 5).

Procedure

- Step 1 (experimental). A competent panel of judges was selected and so instructed that they all had experience with the experimental material.
- Step 2. For each judge and for each repetition six small containers were coded. Two samples from roasts from each of the three treatment groups of animals were placed in the containers and the three requisite pairs formed. Code numbers were recorded and the pairs presented to the judges in a random order together with score cards.
- Step 3. For each pair a judge tasted each sample and recorded the value 1 for the sample preferred and 2 for the other sample.
- Step 4 (analysis). The experimenter collected and decoded the data for each judge and recorded the results as follows. C denotes the corn ration, Cp the corn plus peanut supplement ration, and CP the corn plus large peanut supplement ration. The treatment sums of ranks, Σr_i , for C, Cp, CP are respectively 19, 13, 13 and 13, 15, 17 for the two judges.

Repetition	1	2	3	4	5
	С Ср СР	С Ср СР	C Cp CP	C Cp CP	C Cp CP
Pair			Judge 1		
C, Cp C, CP Cp, CP	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
			Judge 2		
C, Cp C, CP Cp, CP	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 4. Rankings for two judges in the pork experiment

Step 5. Since it was agreed that the results of the two judges should be combined, we enter the table of Appendix A at n=5. For judge 1, $p_{\rm C}=0.05$, $p_{\rm Cp}=0.47$, $p_{\rm CP}=0.47$, $B_1=2.917$, the significance level is 0.057; for judge 2, $p_{\rm C}=0.53$, $p_{\rm Cp}=0.30$, $p_{\rm CP}=0.17$, $B_1=4.034$ and the significance level is 0.404.

Step 6. The combined statistic B_1^c of equation (13) was obtained and has the value $2 \cdot 917 + 4 \cdot 034 = 6 \cdot 951$. From the table of Appendix B under the two equal groups, n = 10, the significance level for the combined test was found to be $0 \cdot 069$. It was concluded that it had not been demonstrated that ration differences detectable by these judges were present at any usual significance level.

Step 6a. If a decision to pool the data had been made, treatment sums of ranks added over the judges would have been 32, 28, 30, and the table of Appendix A would have been used

for n=10. We would have found $p_{\rm C}=0.24$, $p_{\rm Cp}=0.43$, $p_{\rm CP}=0.32$, $B_1=8.797$ and the significance level would have been 0.630. Since it seems extremely unlikely on the basis of this method that treatment differences are present, it is not here meaningful to compare treatments by use of their estimated ratings.

 $B_1 - B_1^c = 8.7973 - 6.9516 = 1.8459$ and is indicative of poor agreement of the preferences of the two judges. In fact use of the large sample approximation (Table 3) gives $\chi^2 = 8.50$ with 2 degrees of freedom, a result significant at the 2 % level.

12. Discussion

The authors have not attempted to obtain the power of this rank-order test procedure. The method is clear, but any consideration of exact power would require tables for each specified set of parameters of the alternative hypotheses of substantially greater complexity than those for the null distributions. In addition, the simplifications due to symmetry over treatments in certain null cases would disappear. The merits of the test procedure are then dependent on the properties of the maximum-likelihood methods used.

Experiments using the above methods at the Virginia Polytechnic Institute and elsewhere have been satisfactorily conducted. The simplicity and appropriateness of the experimental design, together with the simplicity of the analysis, wherein one has only to add small integers and consult prepared tables, appear to be important factors in the appeal of the methods. The comprehensive tables already prepared are easy to read, and the extension of these tables is proceeding. New computing equipment is expected to speed the tabling work.

One of the questions asked in connexion with this work pertains to the possibility of extending the analysis to incomplete block designs with larger block sizes. We are proceeding with a consideration of such extensions. The method of paired comparisons becomes inefficient where it is possible to rank more than two treatments at a time and where more than a few items or treatments are considered.

Apart from the application of the theoretical considerations for the methods of this paper, it is to be observed that the probabilities of the tables of Appendix A may be useful elsewhere. Whenever ranking methods are used in incomplete blocks of size 2, tests of null hypotheses of treatment equality will depend on the probabilities tabled. The probabilities of individual sets of treatment rank sums may be recovered from the cumulative probabilities given, since all sets bracketed together have equal individual probabilities (that is, sets of rank sums with identical values of B_1 also have identical probabilities). Publication of the totality of possible sets of sums of ranks in Appendix A is necessary for use with Appendix B, and further desirable in that they may form a basis for future tables for methods yet to be devised.

13. SUMMARY

A method of analysis of paired comparisons is provided which permits tests of hypotheses of a general class and the estimation of treatment ratings or preferences. The mathematical model developed is simple and easy to interpret and apply. Ranks are used in incomplete blocks of size 2, and such ranking will permit later generalization to larger block sizes. The method of maximum likelihood is employed and tests depend on the likelihood ratio statistics. Two special tests are featured and test the null hypothesis that true treatment ratings are equal. The alternative hypothesis (i) makes no assumptions of equality of

treatment ratings and (ii) makes the assumption that there are only two groups of treatments wherein within group treatments do not differ in ratings but the two groups themselves may have different ratings.

The procedures shown are applicable in most problems where qualitative measurements alone are reliable and are particularly useful in problems involving subjective ranking by a small panel of judges for the detection of differences. Methods of pooling and of combining the results of several judges are given. The method of combining permits an over-all test of significance without the usual assumption that members of a panel agree upon the nature of the differences to be detected. The decision to pool or to combine is made on the basis of a priori knowledge of judge behaviour. If results are combined, estimates of treatment ratings are usually obtained for judges individually, although average estimates for the group of judges may be obtained by reverting to the pooled analysis for this special purpose. An example from taste testing is given.

The large sample distributions of the statistics are discussed, and tables for the exact test procedures are shown in the two appendices following.

In conclusion, the authors would like to express their appreciation to Prof. Lyle L. Davis, food technologist, for advice on experimental techniques and for trial experimentation. We would also acknowledge the computational and clerical assistance of Mr A. F. Teske, Mrs T. S. Russell, Mrs F. A. Spracher, Mrs M. H. Kirkpatrick and Mrs A. L. Ruiz.

REFERENCES

- COCHRAN, W. G. & Cox, GERTRUDE (1950). Experimental Designs. New York: John Wiley and Sons, Inc.
- FISHER, R. A. & YATES, F. (1948). Statistical Tables for Biological, Agricultural and Medical Research, 3rd ed. Edinburgh: Oliver and Boyd.
- GUTTMAN, LOUIS (1946). An approach for quantifying paired comparisons and rank order. Ann. Math. Statist. 17, 144.
- KENDALL, M. G. & BABINGTON SMITH, B. (1940). On the method of paired comparisons. *Biometrika*, 31, 324.
- Mosteller, Frederick (1951a). Remarks on the method of paired comparisons. I. The least squares solution assuming equal standard deviations and equal correlations. *Psychometrika*, 16, 3.
- Mosteller, Frederick (1951b). Remarks on the method of paired comparisons. II. The effect of an aberrant standard deviation when equal standard deviations and equal correlations are assumed. *Psychometrika*, 16, 203.
- Thurstone, L. L. (1927). Psychophysical analysis. Amer. J. Psychol. 38, 368.
- THURSTONE, L. L. (1945). The prediction of choice. Psychometrika, 10, 237.
- Wilks, S. S. (1946). Mathematical Statistics. Princeton University Press.

TABLES FOR THE RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS

APPENDIX A. The distribution of the likelihood ratio for general alternatives

The following table gives the values of the likelihood ratio statistic, B_1 , and the likelihood estimates of the true treatment ratings, p_1, \ldots, p_l , together with probabilities, P, that B_1 will not be exceeded if the null hypothesis is true. Since low values of B_1 indicate discordant results, P gives the significance level.

n is the number of repetitions of the design and t the number of treatments. The design symbols, t or v, λ , b, r, k are standard and as used, for example, by Fisher & Yates (1948, p. 17, Introduction to Table XVIII) and Coehran & Cox (1950, pp. 270 and 304). λ in this design description should not be confused with the same symbol generally used to indicate a likelihood ratio. Parentheses contain combinations with equal values of B_1 . Σr_i is the sum of ranks for treatment i.

In setting up the table, several conventions have been adopted to simplify the printing: (i) Where p_1 is unity and the remaining probabilities are therefore all zero the result is given as 1 - - or 1 - - -. (ii) The lowest value of B_1 possible for each n is zero and is printed as 0. (iii) Where there are no entries in the final column above a single entry of $\cdot 0000$, the corresponding values of P are less than a half unit in the fourth decimal place.

3 treatments. (Design: $t = 3, \lambda = 1, b = 3, r = 2, k = 3$)	3 treatments.	(Design: t =	$\beta, \lambda = 1$	b = 3	r=2	k = 1	2)
--	---------------	--------------	----------------------	-------	-----	-------	----

$\Sigma r_1 \Sigma r_2 \Sigma r_1$	p_1	p_2 p_3	B_1	P	Σr_1	Σr_2	Σr_3	p_1	p_2	p_3	B_1	P
	1	n = 1							n=4			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 -33 -		0 0.903	·7500 1·0000	8 8 9	12 13 11	16 15 16	1 1 ·75		_}	0 0·977	·0015 ·0132
	1	n = 2	-		8 10	14 10	$\frac{14}{16}$	1 ·50	.50	_}	1.204	•0220
4 6 8 4 7 5 5 5 6 6 6 6 6	·59 ·	$ \begin{array}{cccc} & - & - \\ & - & - \\ & 50 & - \\ & 28 & \cdot 13 \\ & 33 & \cdot 33 \end{array} $	0 0·602 1·498 1·806	·0938 ·2812 ·8438 1·0000	9 9 10 10 10 11	12 13 11 12 13	15 14 15 14 13 14	·77 ·78 ·56 ·59 ·60 ·43	·19 ·13 ·37 ·28 ·20 ·43	·04 ·09 ·06} ·13 ·20 ·14}	2·084 2·468 2·997 3·158	·0513 ·1684 ·3237 ·5347
	1	n = 3			11 12	12 12	$\frac{13}{12}$	·45 ·33	$\begin{array}{c} \cdot 32 \\ \cdot 33 \end{array}$	$\begin{array}{c} \cdot 23 \\ \cdot 33 \end{array}$	3·466 3·614	·9155 1·0000
6 9 13 6 10 1 7 8 13 7 9 1 7 10 16 8 8 1 8 9 16 9 9 9	$\begin{array}{ c c c }\hline 1 & -\\ \cdot 67 & \cdot\\ \cdot 70 & \cdot\\ \cdot 71 & \cdot\\ \cdot 45 & \cdot\\ \cdot 50 & \cdot\\ \hline\end{array}$	$\begin{bmatrix} - & - \\ -33 & - \\ \cdot 22 & \cdot 07 \\ \cdot 14 & \cdot 14 \\ \cdot 45 & \cdot 09 \\ \cdot 31 & \cdot 19 \\ \cdot 33 & \cdot 33 \end{bmatrix}$	0 0·829 1·840 2·077 2·511 2·709	·0117 ·0820 ·2226 ·4336 ·8906 1·0000	10 10 11 10 12	15 16 14 17	20 19 20 18 20	1 1 ·80 1 ·60	n =	5 } }	0 1·087 1·461	·0002 ·0020 ·0057

Σr_1	Σr_2	Σr_3	p_1	p_2	p_3	B_1	P	$\sum r_1$	Σr_2	Σr_3	p_1	p_2	p_3	B_1	P
			n	= 5 (cont.)	1					n	=7 (6	cont.)		
11 11 12	15 16 14	19 18 19	·81 ·82 ·64	·16 ·12 ·32	$03 \\ 06 \\ 05$	2·274 2·767	·0112 ·0386	14 17 15	24 18 21	25 28 27	1 ·57 ·86	 ·43 ·12	_} .02	2·076 2·563	·0004 ·0005
11 13	17 13	17 19	·82 ·47	·09 ·47	$09 \\ 05$	2.917	·0569	15 16	$\frac{22}{20}$	$\frac{26}{27}$	·86 ·73	·10 ·24	03	3.213	.0016
12 12 13	15 16 14	18 17 18	·66 ·66 ·51	·25 ·19 ·38	·09 ·14} ·10}	3·372 3·645	·1000 ·2464	15 17	23 19	25 27	·87 ·60	·08	·05)	3.561	.0039
13 13 14	15 16 14	17 16 17	·53 ·54 ·41	·30 ·23 ·41	.17 $.23$ $.18$	4·034 4·158	·4039 ·6053	15 18 16	24 18 21	$24 \\ 27 \\ 26$	·87 ·48 ·74	·07 ·48 ·20	$07 \\ 04 \\ 06$	3·672 3·942	·0053 ·0076
14 15	15 15	16 15	·43 ·33	·32 ·33	·25 ·33	4·399 4·515	·9313 1·0000	16 17 16	22 20 23	25 26 24	·75 ·62 ·75	·17 ·31 ·14	·08 ·07 ·11	4·372 4·576	·0185
				n =	6			18 17	$\frac{19}{21}$	$\frac{26}{25}$	·51 ·64	·41 ·26	·08∫ ·10	4.884	.0504
12 12 13	18 19 17	24 23 24	1 1 ·83	- - ·17	<u> </u>	0 1·174	·0000	17 18 17	$\frac{22}{20}$	24 25 23	·65 ·54 ·65	·22 ·35 ·18	·14) ·12) ·18)	5.173	·1060
12 14	20 16	22 24	1 .67	.33	_}	1.659	-0010	19 18	19 21	$\begin{array}{c} 25 \\ 24 \end{array}$	·44 ·55	·44 ·30	·12) ·16	5·266 5·544	·1396 ·1992
12 15 13 13	21 15 18 19	21 24 23 22	1 ·50 ·84 ·84	-50 ·14 ·11	_} .02 .04\	1·806 2·431 3·009	·0014 ·0024 ·0082	18 19 19 19	22 20 21 22	23 24 23 22	·55 ·46 ·47 ·47	·25 ·37 ·32 ·26	·20\ ·17\ ·21 ·26\	5·723 5·984	·3716 ·5201
14 13 15	17 20 16	23 21 23	·69 ·85 ·55	·27 ·09 ·41	·04 } ·06 \ ·04 }	3.270	·0178	20	20	23 22	·39 ·40	·39	·22∫ ·27	6.070	·6976 ·9500
14 14 15	18 19 17	$\frac{22}{21}$ $\frac{22}{22}$	·70 ·71 ·58	·22 ·18 ·34	$egin{array}{c} \cdot 07 \\ \cdot 11 \\ \cdot 09 \end{array}$	3·680 4·040	·0282 ·0708	21	21	21	.33	·33 n =	•33	6.322	1.0000
14 16 15	20 16 18	20 22 21	·71 ·45 ·59	·14 ·45 ·28	·14 \ ·09 \}	4·154 4·496	·0976 ·1504	16	24	32	1			0	
15 16	19 17	20 ·21	·60 ·48	·22 ·38	·18) ·14)	4.710	·3139	16 17 16 18	25 23 26 22	$ \begin{array}{r} 31 \\ 32 \\ 30 \\ 32 \end{array} $	1 ·87 1 ·75	·13 ·25	_} _}	1.309	.0000
16 16 17	18 19 17	20 19 20	·50 ·50 ·40	·31 ·25 ·40	·19 ·25) ·20)	5·022 5·123	·4680 ·6575	16 16	27 21	29 32	1 .62	·23 ·38	<u></u>	2.298	·0001
17 18	18 18	19 18	·41 ·33	·33 ·33	·26 ·33	5·321 5·418	·9421 1·0000	16 20 17	28 20 24	32 28 32 31	1 -50 -88	·50 ·11	-) -) -01	2·408 2·678	·0001
	····		1	n =	7		1	17	24 25					2.018	.0001
14 14	21 22	28 27	1		}	1.247	.0000	18 17	$\frac{23}{26}$	30 31 29	·88 ·76 ·88	·09 ·21 ·08	·03 \ ·02 \}	3·390 3·810	·0003
15 14 16	20 23 19	28 26 28	·86 1 ·71	·14 ·29	_}	1.819	.0002	19 17 20	22 27 21	31 28 31	·65 ·88 ·54	·32 ·07 ·43	·03 { ·05 } ·03 }	4.008	.0015

Σr_1	Σr_2	Σr_3	p_1	p_2	p_3	B_1	P	Σr_1	Σr_2	Σr_3	p_1	p_2	p_3	B_1	P
			n	=8 (cont.)				-		n	=9 (c	ont.)		
18 18	24 25	30 29	·77	·19 ·16	.04 .07 ∖	4·168 4·660	·0020 ·0046	20 22	29 25	32 34	·80 ·60	·13 ·34	·07 \ ·06 }	5.252	.0022
19 18 20	$23 \\ 26 \\ 22$	$\frac{30}{28}$ $\frac{30}{30}$	·66 ·78 ·56	·28 ·13 ·37	·06} ·09} ·06}	4.937	.0091	20 23 21	$\frac{30}{24}$ $\frac{27}{27}$	31 34 33	·80 ·51 ·70	·11 ·43 ·22	·09 ·06 ·07	5·416 5·524	·0038 ·0048
18 21	27 21	27 30	·78 ·47	·11	·11 ·07	5.026	·0118	21 22	28 26	32 33	·71 ·62	·20 ·30	·09}	5.923	.0093
19 19 20	24 25 23	29 28 29	·67 ·68 ·58	·24 ·21 ·32	$egin{array}{c} \cdot 08 \\ \cdot 11 \\ \cdot 10 \end{array}$	5·222 5·572	·0158 ·0324	21 23 21	29 25 30	31 33 30	·71 ·53 ·71	·17 ·38 ·14	09	6·156 6·231	·0166 ·0208
19 21	26 22	27 29	·68 ·49	·17	·14 ·10}	5.741	.0560	24 22	24 27	33 32	·45 ·63	·45 ·26	·09∫ ·11	6.390	.0268
20 20 21	24 25 23	28 27 28	·59 ·60 ·51	·28 ·24 ·35	·13 ·16 ·14	5·994 6·236	·0758 ·1419	22 23 22	28 26 29	$\frac{31}{32} \\ 30$	·63 ·55 ·64	·23 ·33 ·20	·14) ·12) ·17)	6.687	·0 4 90
20 22	26 22	26 28	·60 ·43	·20 ·43	·20 ·14}	6.316	·1808	24 23	25 27	32 31	·47	·40 ·29	·12}	6·832 7·049	·0791 ·1029
$\begin{bmatrix} 21\\21\\22 \end{bmatrix}$	$\begin{array}{c} 24 \\ 25 \\ 23 \end{array}$	$27 \\ 26 \\ 27$	·52 ·52 ·44	·30 ·26 ·37	·18 ·22 ·18	6·552 6·705	·2447 ·4211	23 24 23	28 26 29	30 31 29	·56 ·49 ·56	·25 ·35 ·23	·18 ·16 ·22)	7.259	·1772
22 22	24 25	26 25	·45	·32 ·27	·23 ·27)	6·931 7·005	·5631 ·7293	25 24	25 27	31	·42	•42	.16∫	7.524	.2202
23 23 24	23 24 24	$26 \\ 25 \\ 24$	·38 ·39 ·33	$.38 \\ .33 \\ .33$	·23∫ ·28 ·33	7·152 7·225	·9559 1·0000	24 25	28 26	30 29 30	·50 ·50 ·43	·31 ·27 ·37	$egin{array}{c} \cdot 19 \\ \cdot 23 \\ \cdot 20 \\ \end{array}$	7·534 7·668	·2867 ·4638
				n =	9			25 25 26	$27 \\ 28 \\ 26$	29 28 29	·44 ·44 ·38	$egin{array}{c} \cdot 32 \\ \cdot 28 \\ \cdot 38 \\ \end{array}$	$egin{array}{c} \cdot 24 \ \cdot 28 \ \cdot 24 \ \end{array}$	7·868 7·933	·5992 ·7550
18 18 19	27 28 26	36 35 36	1 1 ·89	_ - ·11	}	0 1·363		26 27	27 27	28 27	·38 ·33	·33 ·33	·29 ·33	8·063 8·128	·9606 1·0000
18 20	$\begin{array}{c} 29 \\ 25 \end{array}$	34 36	1 ∙78	-22	_}	2.070					ſ	n =	10	1	1
18 21 18	30 24 31	33 36 32	1 ·67 1	·33 —	_} _}	2·488 2·685		20 20 21 20	36 31 29 32	40 39 40 38	1 1 .90	- ·10	<u> </u>	0 1·412	
22 19	$\begin{array}{c} 23 \\ 27 \end{array}$	36 35	·56 ·89	·44 ·10	·01	2.780	.0000	22	28	4 0	.80	•20	_}}	2.173	
19 20 19	28 26 29	34 35 33	·89 ·79 ·89	·09 ·19 ·07	$02 \\ 02 \\ 03 $	3·545 4·027	·0001	20 23 21	33 27 30	37 40 39	1 ·70 ·90	·30 ·09	<u>-</u> }	2·653 2·861	
19 22	25 30 24	35 32 35	·68 ·89 ·58	·29 ·06 ·39	·02 \\ ·04 \\ ·03 \}	4.027	·0002 ·0003	20 24	34 26	36 40	·60	•40	_}	2.923	
20 19	27 31	34 31	·79 ·89	·17 ·05	.04 .05↓	4·369 4·386	·0004 ·0005	20 25 21	$\frac{35}{25}$	35 40 38	1 ·50 ·90	·50 ·08	$\frac{-}{02}$	3.010	
23 20 21	23 28 26	35 33 34	·48 ·80 ·70	·48 ·15 ·26	·03∫ ·05↓ ·05∫	4.380	·0005	22 21 23	29 32 28	39 37 39	·81 ·90 ·71	·18 ·07 ·27	$egin{array}{c} \cdot 02 \\ \cdot 03 \\ \cdot 02 \\ \end{array}$	3·684 4·220	

Σr_1	Σr_2	Σr_3	p_1	p_2	p_{3}	B_1	\boldsymbol{P}	Σr_1	Σr_2	Σr_3	p_1	p_2	p_3	B_1	P
			<i>n</i> :	= 10 (cont.)						n:	= 10 (cont.)		
22 21	30 33	38 36	·81 ·90	·16 ·06	·03 }	4·549 4·554	·0000	24 25	31 29	35 36	·66 ·58	·22 ·31	$egin{array}{c} 12 \ \cdot 10 \ \end{array}$	7.090	·0157
$\frac{24}{21}$	$\frac{27}{34}$	39 35	·62 ·90	·35 ·05	·02∫ ·04∖	4.715	0001	24 26	$\frac{32}{28}$	34 36	·67 ·51	·19 ·38	·14} ·11}	7.291	.0261
25	26	39	•53	·44	.03∫	4.119	.0001	24 27	$\frac{33}{27}$	33 36	·67 ·44	·17 ·44	${}^{\cdot 17}_{\cdot 11}$	7.357	·0 32 0
22 23	31 29	37 38	·81	·14	·05 }	5.141	.0002	25 25	$\frac{30}{31}$	35 34	·59 ·60	·28 ·24	·13	7.492	.0399
22 24	$\begin{array}{c} 29 \\ 32 \\ 28 \end{array}$	36 38	·72 ·82 ·64	·24 ·12 ·32	·04) ·06) ·05	5.534	.0005	26 25	$\frac{31}{29}$	35 33	·52 ·60	·34 ·21	·14)	7.752	·067 4
22 25	$\frac{26}{33}$ $\frac{27}{27}$	35 38	·82 ·55	·11	·08) ·05}	5.760	.0009	27	28	35	.46	•40	.14	7.879	·1035
20	2.	50	0.0	0.0	00)			26 26	$\frac{30}{31}$	34 33	$\begin{array}{c} \cdot 53 \\ \cdot 54 \end{array}$	·30 ·26	·17 ·20 \	8·069 8·255	·1306 ·2112
$\begin{array}{c} 23 \\ 22 \end{array}$	30 34	37 34	·73 ·82	·21 ·09	·06	5.788	·0012	27 26	$\frac{29}{32}$	$\begin{bmatrix} 34 \\ 32 \end{bmatrix}$	·47 ·54	$\begin{array}{c} \cdot 35 \\ \cdot 23 \end{array}$	·17∫ ·23∖	8.316	•2571
26 23	26 31	38 36	·47 ·73	·47	·05 { ·08 }	5.834	·0014	28	28	34	•41	•41	.18∫		
24	29	37	.65	.28	.07}	6.238	.0025	27 27	30 31	33 32	·48 ·48	·32 ·28	$\frac{.21}{.24}$	8·499 8·619	·3250 ·5009
23	32	35	.74	·16	·10)			28 28	29 30	33 32	·42 ·43	·37 ·32	·21∫ ·24	8.797	·6299
25 23	28 33	37 34	·57	·35	08	6.525	.0046	28 29	$\frac{31}{29}$	$\begin{vmatrix} 31 \\ 32 \end{vmatrix}$	·43 ·38	·28 ·38	$egin{array}{c} \cdot 28 \ \cdot 25 \end{array}$	8.856	.7762
26 24	27 30	37 36	·50 ·66	·42 ·25	·08}	6.665 6.745	·0074 ·0090	29 30	$\frac{30}{30}$	31 30	·38 ·33	33	·29 ·33	8·973 9·031	·9644 1·0000

Rank analysis of incomplete block designs

4 treatments. (Design: $t = 4, \lambda = 1, b = 6, r = 3, k = 2$)

$\sum r_1$	Σr_2	Σr_3	Σr_{4}	p_1	p_2	p_3	p_4	B_1	P	Σr_1	Σr_2	Σr_3	Σr_4	p_1	p_2	p_3	p_4	B_1	P
					n =	1								n:	= 3 (0	cont.)			
3 3 4 4	4 5 4 4	5 5 4 5	6 5 6 5	1 1 ·33 ·38	 ·33 ·38	 ·33 ·12	 } ·12	0 0·903 1·579	·3750 ·6250 1·0000	10 11 10 12 11	14 13 14 12	14 13 15 13	16 17 15 17	·72 ·52 ·73 ·36 ·51	·11 ·22 ·12 ·36 ·33	·11 ·22 ·08 ·24 ·10	·05) ·03) ·08) ·04) ·06	3·837 4·016 4·060	·1030 ·1398 ·1788
				1	n =	2	× 4-11444-1-144	1											
6 6 6 7	8 8 9 7	10 11 9 10	12 11 12 12	1 1 1 .50	_ _ _ .50		<u>-</u> }	0 0.602	·0058 ·0232	11 12 11 11 11	13 12 13 14 13	14 14 15 14 13	16 16 15 15	·53 ·37 ·53 ·54 ·38	·24 ·37 ·24 ·17 ·27	·16 ·18 ·11 ·17 ·27	·07 ·08) ·11) ·12) ·09}	4·397 4·568 4·727	·2521 ·3531 ·4899
7 6 7 6	7 9 8 10	10 9 10 8	11 11 12 10 12	.50 .50 1 .59 1	·50 ·28 - ·33	- - ·13 - ·33		1·204 1·498 1·806	·0290 ·0994 ·1190	12 12 12 13 13	12 13 14 13	15 14 14 13 14	15 15 14 15 14	·38 ·39 ·40 ·29 ·29	·38 ·28 ·20 ·29 ·29	·12 ·19 ·20 ·29 ·21	·12 ·14 ·20 ·14 ·21	4·737 5·046 5·197 5·346	·5246 ·7759 ·8879 1·0000
8 7	8 8	10	11	•60	·29	.08	.04	2.359	.2245						n =	4			
7 7 8 8 8 9	9 9 8 8 9 9	9 10 9 10 9	11 10 11 10 10 9	·62 ·62 ·37 ·38 ·40 ·25	·17 ·18 ·37 ·38 ·23 ·25	·17 ·10 ·21 ·12 ·23 ·25	·05 ·10 ·06 ·12 ·14 ·25	2·631 2·898 3·158 3·389 3·612	·3065 ·5643 ·6639 ·9627 1·0000	12 12 12 13	16 16 17 15	20 21 19 20	24 23 24 24	1 1 1 ·75				0 0.977	
					n =	3				12 12	16 18	22 18	$\begin{array}{c} 22 \\ 24 \end{array}$	1 1			_}	1.204	
9 9 9 10	12 12 13 11	15 16 14 15	18 17 18 18	1 1 1 •67	- - -33		_ _}	0 0.829	·0001 ·0010	14 13 12 13	14 15 17 16	20 21 20 19	24 23 23 24	·50 ·75 1 ·77	·50 ·25 ·19	 •04		1·954 2·084	
10	11 12 13	16 14 15	17 18 17	1	·33	·07	_ _}	1.659	·0018 ·0040	13 14 14 12	15 14 14 17	22 21 22 21	22 23 22 22	·75 ·50 ·50	·25 ·50 ·50		_}	2·181 2·408	.0000
9 10 9 11	14 13 13 11	14 13 16 14	17 18 16 18	1 ·71 1 ·45	·14 — ·45	·14 		2.077	.0072	13 14 12	17 15 18	18 19 19	24 24 23	·78 ·56	·13 ·37	-06 ·06		2.468	-0004
9 11 9 12 10	14 12 15 12 12	15 13 15 12 15	16 18 15 18 17	1 ·50 1 ·33 ·71		 -33 -05	_} } .02	2·511 2·709 2·836	·0144 ·0160 ·0204	12 14 12 12 14 15	18 16 18 19 17	20 18 21 19 17 18	22 24 21 22 24 24	1 ·59 1 1 ·60 ·43	·28 — ·20 ·43	-13 - -20 ·14	_} _} _}	2·997 3·158	·0008
10 11 10 11 10 11	12 11 13 11 13 12	16 15 14 16 15 14	16 17 17 16 16 17	·71 ·46 ·72 ·46 ·72 ·50	·23 ·46 ·16 ·46 ·16 ·32	·03 ·06 ·10 ·04 ·07 ·14	·03) ·02) ·02 ·04 ·05) ·03}	3·069 3·248 3·301 3·659	·0270 ·0361 ·0386 ·0766	13 15 12 14 13	16 16 19 15	20 17 20 20 21	23 24 21 23 22	·78 ·45 1 ·56 ·78	·18 ·32 —	·04 ·23 — ·05	·01 	3·187 3·466 3·568	·0013 ·0021 ·0027

Σr_1	Σr_2	Σr_3	Σr_4	p_1	p_2	p_3	p_4	B_1	P	Σr_1	Σr_2	Σr_3	Σr_4	p_1	p_2	p_3	p_4	B_1	P
				n	=4 (cont.								,	n =	5			
12 16 13	20 16 17	20 16 19	20 24 23	1 ·33 ·78	·33 ·14	·33 ·07 ·10	-\} -01	3·612 3·698 3·854	·0029	15 15 16	20 20 19	25 26 25	30 29 30	1 1 .80	 -20		_ _}	0 1·087	
13 14	18 15	18 21 20	23 22 22	·78 ·56	·10 ·38	·04	·01 ·02	3·834 3·944 4·211	·0035 ·0041 ·0059	15 15 17 15	$21 \\ 20 \\ 18 \\ 22$	24 27 25 23	30 28 30 30	$\begin{vmatrix} 1\\1\\\cdot 60\\1\end{vmatrix}$	 · 4 0		_}	1.461	
14 15 13	16 15 17	$\frac{19}{19}$	$23 \\ 23 \\ 21$	·60 ·43 ·78	·28 ·43 ·14	·10 ·11 ·04	·02} ·02} ·04}	4.368	.0071	16 15	19 21	26 25	29 29	·80 1	·20	_	<u>-</u> }	1·474 2·274	
13 14	18 17	19 18	$\begin{array}{c} 22 \\ 23 \end{array}$	·78 ·61	·11 ·22	·08 ·16	·03 \ ·02 ∫	4.502	·0105	16 16 17	20 19 18	24 27 26	$\frac{30}{28}$ $\frac{29}{29}$	·81 ·80 ·60	·16 ·20 ·40	·03	_} _}	2.548	
14 13 15 14 15	16 18 16 16	20 20 18 21 20	22 21 23 21 22	·60 ·78 ·46 ·60 ·44	·29 ·11 ·33 ·29 ·44	·08 ·06 ·18 ·06 ·09	·04 ·04) ·03 / ·06 (·04 /	4·718 4·794 4·872	·0129 ·0187 ·0219	15 15 16 17	21 22 21 19	26 24 23 24	28 29 30 30	1 1 ·82 ·64	 ·12 ·31	 ·06 ·05	_}	2.767	
13 15 15 13	19 17 15	19 17 21 20	21 23 21 20	·78 ·47 ·44 ·79	·08 ·25 ·44 ·09	·08 ·25 ·06 ·06	·05) ·03) ·06 ·06)	4·928 5·026	·0257 ·0268	15 15 16 18	21 23 22 18	27 23 22 24	27 29 30 30	1 1 ·82 ·47	 ·09 ·47	 ·09 ·05	_} _}	2.917	
16 14	16 17	17 19	23 22	·35	·35	·26	·03∫ ·04	5.063	·0318	17 15 17 16	18 22 20 20	27 25 23 25	28 28 30 29	·60 1 ·66 ·81	·40 ·25 ·16	 ·09 ·02		2·923 3·373 3·458	
14 14 15 15	18 17 16 17	18 20 19 18	22 21 22 22	·62 ·61 ·47 ·48	·17 ·23 ·34 ·26	·17 ·09 ·14 ·20	·05 ·07 \ ·05 } ·06 \	5·262 5·414 5·668	·0407 ·0595 ·0905	15 15	22 23	26 24	27 28	1 1		_	<u> </u>	3.645	
14 15	18 16	19 20	21	·62	·18	·13	·07∫ ·08	5.694	·1067	17 18 16 17	21 19 20 19	22 23 26 25	30 30 28	·67 ·52 ·81	·19 ·38 ·16	·14 ·11 ·02	.01	3.948	.0000
14 16 16 14	18 16 17 19	20 18 17 19	20 22 22 20	·62 ·37 ·37 ·62	·18 ·37 ·28 ·14	·10 ·21 ·28 ·14	·10) ·06) ·06) ·10)	5·797 5·920	·1267 ·1523	15 18 16	23 20 21	25 22 24	29 27 30 29	·64 1 ·53 ·81	·32 ·30 ·13	·04 ·17 ·05	·01)	4·035 4·053	·0001
15 15 16	17 18 16	19 18 19	21 · 21 21	·49 ·49 ·37	·27 ·21 ·37	·16 ·21 ·16	·09 ·09 ·09)	6·064 6·183	·1860 ·2074	16 18 15	20 18 23	27 25 26	27 29 26	·81 ·47	·16 ·47	·01 ·04	·01 ·01	4.098	·00 02
15 16	17 16	20 20	20 20	·49 ·37	·27 ·38	·12 ·12	·12∫ ·12	6·190 6·316	·2506 ·2645	15 18 19	24 21 19	$24 \\ 21 \\ 22$	$\frac{27}{30}$	1 ·54 ·41	 ·23 ·41	·23 ·18		4.158	.0002
16 15 15	17 18 19	18 19 19	21 20 19	·39 · ·50 ·50	·29 ·21 ·17	.16	·10) ·12) ·17)	6.426	·4033	16	22 24	23 25	29 26	·82	·10	·07	·01 }	4·321 4·399	·0002 ·0003
17 16	17 17	17 19	21 20	·30 ·39	·30 ·30	$\cdot 30$	·10) ·13	6·543 6·665	·4325 ·5444	19 17 15	20 19 25	21 26 25	30 28 25	1	·32 ·32	·25 ·03	-) -01 }	4·437 4·516	·0003
16 16 17	18 18 17	18 19 18	20 19 20	·40 ·40 ·31	·23 ·24 ·31	·23 ·18 ·24	·14 ·181 ·14)	6·778 6·892	·6147 ·7915	17	20 19	20 27	30 27	·33	·33	·33	·02}	4.586	.0004
17 17	17 18	19 18	19 19	$.31 \\ .32$	$.31 \\ .25$	·19 ·25	·19 ·19	7·005 7·115	·8470 ·9858	18 16 17	18 21 20	26 25 24	28 28 29		·47 ·13 ·25	·03 ·04 ·08	·02 \ ·02 \ ·01 \	4.649	·0005
18	18	18	18	·25	·25	·25	·25	$7 \cdot 225$	1.0000	18	18	27	27	·47	•47	·02	·02	4.735	·0005

$\sum r_1$	Σr_2	Σr_3	Σr_4	p_1	p_2	p_3	p_4	B_1	P	Σr_1	Σr_2	Σr_3	Σr_4	p_1	p_2	p_3	p_4	B_1	P
				n	= 5 (cont.)		-						n	= 5 (cont.)			
16 18 16 17 16 17	21 19 22 21 23 22	26 24 24 23 23 22	27 29 28 29 28 29	·82 ·52 ·82 ·67 ·82 ·67	·13 ·38 ·10 ·20 ·08 ·16	·03 ·09 ·06 ·12 ·08 ·16	·02 \ ·01 \} ·02 \ ·01 \} ·02 \ ·01 \} ·02 \ ·01 \}	4·917 5·024 5·144	·0006 ·0008 ·0009	19 18 19 18 19	20 22 21 23 22	25 24 23 23 22	26 26 27 26 27	·45 ·56 ·46 ·57 ·46	·35 ·21 ·29 ·17 ·23	·11 ·14 ·18 ·17 ·23	·09 ·09 ·07 ·09 ·07	7·304 7·385 7·482	·0559 ·0729 ·0833
17 16 18 17 18	20 22 20 20 19	25 25 23 26 25	28 27 29 27 28	·66 ·82 ·54 ·66 ·52	·26 ·11 ·31 ·26 ·38	·06 ·05 ·14 ·05 ·07	·02 ·03 ·02 ·04 ·03	5·239 5·401 5·505	·0010 ·0013 ·0017	18 20 18 20 19	22 20 23 21 21	25 23 24 22 24	25 27 25 27 26	·57 ·37 ·57 ·38 ·46	·21 ·37 ·18 ·30 ·29	·11 ·19 ·14 ·24 ·15	·11 ·07 ·11 ·08 ·09	7·486 7·679 7·694	·0937 ·1249 ·1409
16 19 16 18 17	22 19 23 21 21	26 23 24 22 24	26 29 27 29 28	·82 ·42 ·82 ·55 ·67	·11 ·42 ·08 ·24 ·21	·04 ·14 ·06 ·19 ·09	·04 ·02 ·03 ·02 ·03 ·03	5·521 5·629 5·714	·0019 ·0024 ·0027	18 21 19 20 20 19	24 21 21 20 20 22	24 21 25 24 25 23	24 27 25 26 25 26	·57 ·31 ·47 ·37 ·37 ·47	·14 ·31 ·29 ·37 ·37 ·24	·14 ·31 ·12 ·16 ·12 ·19	·14) ·08) ·12) ·10) ·12 ·10	7·775 7·795 7·895 7·884	·1472 ·1673 ·1728 ·1964
18 16 19 17 16 19	19 23 20 22 24 21	26 25 22 23 24 21	27 26 29 28 26 29	·52 ·82 ·44 ·68 ·82 ·44	·38 ·09 ·34 ·17 ·07 ·27	·06 ·05 ·20 ·13 ·07 ·27	·04 ·04 ·02 ·03 ·04 ·02	5·770 5·858 5·938 5·967	·0031 ·0039 ·0044 ·0049	19 20 19 20	22 21 23 22	24 23 23 22	25 26 25 26	·47 ·39 ·48 ·39	·24 ·31 ·20 ·25	·16 ·20 ·20 ·25	·13\ ·10\ ·13\ ·11\	8·077 8·169	·2666 ·3090
16 20 17 18 17 19	24 20 21 20 21 19	25 21 25 24 26 24	25 29 27 28 26 28	·82 ·35 ·67 ·54 ·67 ·42	·07 ·35 ·21 ·31 ·21 ·42	·05 ·27 ·08 ·11 ·06 ·12	·05 ·02 ·04 ·04 ·06 ·04	6·075 6·083 6·201	·0055 ·0068 ·0075	19 21 20 20 20 21	23 21 21 22 22 21	24 22 24 23 24 23	24 26 25 25 24 25	·48 ·32 ·39 ·39 ·40 ·32	·20 ·32 ·31 ·26 ·26 ·32	·16 ·26 ·17 ·21 ·17 ·21	·16 \ ·11 \ ·13 \ ·14 \ ·17 \ ·14 \	8·263 8·269 8·449 8·543	·3605 ·4125 ·4883 ·5800
17 18 18 17 18	22 21 20 23 22	24 23 25 23 22	27 28 27 27 28	·68 ·55 ·54 ·68 ·56	·17 ·25 ·32 ·14 ·20	·10 ·16 ·09 ·14 ·20	·05 ·04 ·05 ·05 ·04	6·408 6·479 6·512	·0099 ·0112 ·0127	20 21 21 21 21	23 22 21 22	23 22 24 23	24 25 24 24 24	·40 ·33 ·32 ·33	·21 ·27 ·32 ·27	·21 ·27 ·17 ·22	·17 ·14 ·17 ·18	8·632 8·634 8·812	·6904 ·7181 ·8782
18 19 17 19 19	20 19 22 20 19	26 25 25 23 26	26 27 26 28 26	·54 ·42 ·68 ·44 ·42	·32 ·42 ·17 ·34 ·42	·07 ·10 ·08 ·17 ·08	·07 ·06 ·07 ·04 ·08	6·566 6·629 6·682	·0143 ·0180 ·0185	21 22	23 22	23 23	23 23	·33 ·27	$ \begin{array}{c} \cdot 22 \\ \cdot 27 \end{array} $ $n =$	·22 ·22	·22 } ·22	8.988	·9423 1·0000
17 19 18 17 20	23 21 21 23 20	24 22 24 25 22	26 28 27 25 28	·68 ·45 ·55 ·68 ·36	·14 ·28 ·26 ·14 ·36	·11 ·22 ·13 ·09 ·23	·07 ·05 ·06 ·09 ·05}	6·835 6·869 6·939	·0242 ·0271 ·0306	18 18 18 19	24 24 25 23	30 31 29 30	36 35 36 36	1 1 1 ·83			_ _} _}	0 1.174	
17 20 18 18 19	24 21 22 21 20	24 21 23 25 24	25 28 27 26 27	·68 ·37 ·56 ·56 ·45	·11 ·29 ·21 ·26 ·35	·11 ·29 ·17 ·10 ·14	·09 ·05 ·06 ·08 ·06	7·040 7·071 7·087	·0349 ·0394 ·0487	18 18 20 18 18 21	24 26 22 24 27 21	32 28 30 33 27 30	34 36 36 36 36	1 1 .67 1 1 .50	 ·33 ·50		_} _}	1.659	

Σr_1	Σr_2	Σr_3	Σr_4	p_1	p_2	p_3	p ₄	B_1	P	$\sum r_1$	Σr_2	Σr_3	Σr_4	p_1	p_2	p_3	p_4	B_1	P
		$n=6 \ (cont.)$						$n=6 \ (cont.)$											
19 18 19 19 20	23 25 24 23 22	31 30 29 32 31	35 35 36 34 35	·83 1 ·84 ·83 ·67	·17 ·14 ·17 ·33	 ·02 	_ _} _}	2·348 2·431 2·833		18 18 22 23 18 23	28 29 25 23 29 24	31 29 25 26 30 25	31 32 36 36 31 36	1 1 ·50 ·40 1 ·41	 ·25 ·40 ·33	 ·25 ·20 ·26	} } }	5·123 5·321	
19 21 18 18 19 20	23 21 25 26 25 23	33 31 31 29 28 29	33 35 34 35 36 36	.83 .50 1 1 .84 .69	·17 ·50 — ·11 ·27	 -04 ·04	_} } }	2·980 3·009		21 19 21 18 24	22 25 23 30 24	32 31 29 30 24	33 33 35 30 36	·55 ·84 ·58 1	·41 ·12 ·34 —	·02 ·02 ·07 —	·02 ·01) ·01) —}	5·355 5·368 5·419	.0000
18 18 19 21 20	25 27 26 22 22	32 28 27 29 32	33 35 36 36 34	1 1 ·85 ·55 ·67	 ·09 ·41 ·33	 ·06 ·04	} }	3·270 3·317		19 20 19 22	26 25 25 22	29 28 32 29	34 35 32 35	·85 ·71 ·84 ·46	·10 ·19 ·12 ·46	·05 ·09 ·02 ·08	$01 \\ 01 \\ 02 \\ 01 $	5·456 5·481	·0001
20 21 21 18 20	22 21 21 26 24	33 32 33 30 28	33 34 33 34 36	·67 ·50 ·50 1 ·70	·33 ·50 ·50 ·22	- - - -07	_} } }	·3465 3·612 3·680		19 20 20 19 21	27 26 24 26 24	28 27 30 30 28	34 35 34 33 35	·85 ·72 ·70 ·85 ·59	·08 ·15 ·23 ·10 ·28	·06 ·12 ·05 ·04 ·11	$ \begin{array}{c} \cdot 01 \\ \cdot 01 \end{array} $ $ \begin{array}{c} \cdot 02 \\ \cdot 02 \\ \cdot 01 \end{array} $	5·667 5·672 5·903	·0001 ·0001 ·0001
19 18 18 20 21	24 26 27 25 23	30 31 29 27 28	35 33 34 36 36	·84 1 1 ·71 ·57	·14 — ·18 ·34	·02 — - ·10 ·09		3·685 4·040		20 21 19 22 20 22	24 23 26 23 24 22	31 30 31 28 32 30	33 34 32 35 32 34	·71 ·58 ·85 ·48 ·71 ·46	·23 ·34 ·10 ·38 ·23 ·46	·04 ·06 ·03 ·12 ·03 ·06	02 02 02 02 01 03 03	6·026 6·114 6·138	·0001 ·0001 ·0001
18 18 20 22	26 28 26 22 24	32 28 26 28	32 34 36 36 36	1 1 ·71 ·45	 ·14 ·45	 -14 -09	} }	4·154		20 19 21 19 21	25 27 25 28 26	29 29 27 28 26	34 33 35 33	·71 ·85 ·60 ·85	·19 ·08 ·23 ·07 ·19	·08 ·05 ·15 ·07	·02 ·02 ·01 ·02 ·01	6·200 6·204 6·301	·0002 ·0002 ·0002
20 19 18 21	23 25 27 24	30 29 30 27	35 35 33 36	·84 ·69 ·84 1 ·59	·27 ·11 — ·28	·03 ·04 — ·13	·01 ·01 ·01 —}	4·262 4·348 4·496		21 21 21 22 20	23 23 22 26	31 32 31 28	35 33 32 33 34	·61 ·58 ·58 ·46 ·72	·34 ·34 ·46 ·16	·19 ·05 ·04 ·05 ·10	·01) ·03 ·04 ·03 ·02	6·378 6·490 6·497	·0002 ·0002 ·0003
19 21 19 18 18 21	24 22 26 27 28 25	32 30 28 31 29 26	33 35 35 32 33 36	.55 .85 1 1 .60	·41 ·09 — — ·22	·01 ·04 ·05 — - ·18	·01 ·01 ·01	4·521 4·703 4·710		19 22 20 22 19	27 24 27 22 27	30 27 27 32 31	32 35 34 32 31	.85	.08	·0 4	·03 ·02 ·02 ·04 ·03	6·505 6·593 6·602	·0003 ·0003
19 20 19 20	23 27 23 25 24	27 27 31 30 29	36 35 34 34 35	·48 ·85 ·69 ·84 ·70	·38 ·07 ·27 ·12 ·23	·14 ·07 ·02 ·03 ·06	-) ·01 ·01 ·01 ·01 }	4·713 4·837 5·012		23 20 21 19	23 25 24 28	27 30 29 29	35 33 34 32	·41 ·71 ·60 ·85	·41 ·19 ·29	·17 ·06 ·09	·02 { ·03 } ·02 }	6·603 6·640 6·694	·0004 ·0004 ·0005
18 22 20 21	28 24 23 22	30 26 32 31	32 36 33 34	1 ·50 ·69 ·55	 ·31 ·27 ·41	 ·19 ·02 ·03		5·023 5·096		22 20 22 19 23	25 25 23 28 24	26 31 29 30 26	35 32 34 31 35	·51 ·71 ·49 ·85 ·42	·26 ·19 ·39 ·07 ·34	·21 ·05 ·10 ·05 ·22	·02 } ·04 \ ·03 } ·04 \ ·02 }	6.848	·0005 ·0006 ·0007

Σr_1	Σr_2	Σr_{\bullet}	\sum_{T_A}	p_1	p_2	p_3	p_4	B_1	P	Σr	$\sum r_{\mathbf{a}}$	Σr_3	Σr_{\star}	p_1	p_2	p_3	p_4	B_1	
								- 1					•						
				<i>n</i> :	= 0 (0	cont.)	n=6 (cont.)												
19 23	29 25	$\begin{array}{c} 29 \\ 25 \end{array}$	31 35	·85 ·42	·06 ·28	·06 ·28	·04 \ ·02 \	6.974	·0008	22 23	$\begin{array}{c} 25 \\ 24 \end{array}$	30 29	$\frac{31}{32}$	·52 ·43	·28 ·36	·11	·09}	8.726	.0294
20	$\frac{25}{26}$	$\frac{2.9}{29}$	33	.72	.16	.08	.03)	5 000	0000	$\frac{23}{22}$	$\frac{24}{26}$	28	$\frac{32}{32}$.53	.24	.16	.07	8.795	.0321
21	25	28	34	.61	.24	.13	.03∫	7.022	.0009	21	28	29	30	.62	·15	.12	.10}	8.859	.0383
$\frac{19}{24}$	$\frac{29}{24}$	$\begin{array}{c} 30 \\ 25 \end{array}$	30 35	·85 ·35	·06	·05 ·28	$05 \\ 02$	7.066	.0010	24	25	26	33	•37	•31	·26	.06∫		
								- 0	0011	22	27	27	32	•53	•20	.20	.07	8.875	0399 0432
$\frac{21}{20}$	$\frac{24}{27}$	30 28	$\begin{vmatrix} 33 \\ 33 \end{vmatrix}$	·60 ·72	·29 ·13	·08	·04 ·04)	7.077	.0011	23 21	$\frac{24}{29}$	$\begin{array}{c} 30 \\ 29 \end{array}$	$\begin{array}{c} 31 \\ 29 \end{array}$	·44 ·62	·36 ·12	·11	·09 ·12)	8.903	
21	26	27	34	·61	·20	·16	$\cdot 03$	7.206	.0013	25	$\frac{25}{25}$	25	33	.31	.31	.31	$\cdot \overline{06}$	8.941	·0444
$\frac{21}{22}$	$\frac{24}{23}$	$\frac{31}{30}$	$\frac{32}{33}$.60	$.29 \\ .39$.06	.05	7.283	.0015	22	26	29	31	.53	.24	.14	.09)	0.050	0506
				•49		•08	.04)			23	25	28	32	· 4 5	•30	·17	∙08∫	9.052	.0536
$\frac{20}{22}$	$\frac{26}{24}$	$\begin{array}{c} 30 \\ 28 \end{array}$	$\begin{bmatrix} 32 \\ 34 \end{bmatrix}$	·72 ·50	$\begin{array}{c} \cdot 16 \\ \cdot 32 \end{array}$	·07	$05 \\ 03$	7.318	.0018	$\begin{array}{c c} 22 \\ 24 \end{array}$	$\begin{array}{c} 26 \\ 24 \end{array}$	$\begin{array}{c} \bf 30 \\ \bf 28 \end{array}$	$\frac{30}{32}$	·53 ·37	·24 ·37	·11 ·18	$\{0.011\}$	9.136	.0590
20	$\frac{24}{26}$	31	31	·72	.16	.06	·06)			22	24 27	28 28	32 31	.53	.20	.17	·10)	0.919	.0710
23	23	28	34	·41	·41	·14	.03∫	7.413	.0020	$\overline{23}$	26	$\frac{1}{27}$	32	.45	.26	·21	.08∫	9.212	·0718
22	23	31	32	.49	.39	.07	·05	7.489	.0021	23	25	29	31	.45	.30	.15	.10	9.307	.0796
21	25	29	33	·61	.24	·11	·04	7.540	.0023	22	27	29	30	.54	.20	.14	$\cdot 12$	9.375	.0976
$\frac{20}{22}$	$\frac{27}{25}$	$\frac{29}{27}$	$\begin{array}{c c} 32 \\ 34 \end{array}$	·72 ·51	·14 ·27	·09	000	7.587	.0028	$\begin{array}{ c c }\hline 24\\ 23\\ \end{array}$	$\frac{25}{25}$	$\frac{27}{30}$	$\frac{32}{30}$	·38 ·45	$.32 \\ .31$	$\begin{array}{c} \cdot 22 \\ \cdot 12 \end{array}$	·08∫ ·12)		
20	$\frac{28}{28}$	$\frac{2}{28}$	32	.72	$\cdot \overline{1} \overline{1}$.11	.05)	- C	0091	24	$\frac{20}{24}$	29	31	.37	.37	.15	.10	9.390	·1069
22	26	26	34	.52	.22	$\cdot 22$.03∫	7.675	•0031	22	28	28	30	.54	.17	.17	·12)		
20	27	30	31	.72	·14	.08	·06)	7.770	•0037	24	26	26	32	.38	.26	.26	$\cdot 08$	9.454	·1175
$\frac{23}{21}$	$\frac{24}{26}$	$\frac{27}{28}$	34 33	·43 ·61	$\begin{array}{c} \cdot 35 \\ \cdot 20 \end{array}$.19	.04∫			24	24 28	$\begin{array}{c} 30 \\ 29 \end{array}$	$\frac{30}{29}$	•38	.38	.12	·12	9.474	·1202
$\frac{21}{21}$	$\frac{20}{25}$	30	$\begin{vmatrix} 33 \\ 32 \end{vmatrix}$	·61	.25	·14 ·09	·05 ·06)	7.806	•0041	$\begin{vmatrix} 22 \\ 25 \end{vmatrix}$	$\frac{28}{25}$	26 26	$\frac{29}{32}$	·54 ·32	$\begin{array}{c} \cdot 17 \\ \cdot 32 \end{array}$	$^{\cdot 14}$ $^{\cdot 27}$	$.14 \} \\ .09 \}$	9.533	·1328
22	24	29	33	·51	•33	·12	.05∫	7.831	.0048	23	26	28	31	.46	.26	.18	·10	9.543	.1455
21	27	27	33	.62	.17	.17	.05	7.892	.0050	23	27	27	31	•46	$\cdot 22$.22	.10	9.620	.1530
21	25	31	31	.61	.25	.07	.07	7.926	.0055	23	26	29	30	•46	.26	.15	$\cdot 13$	9.704	.1888
$\frac{23}{20}$	$\frac{23}{28}$	$\frac{29}{29}$	33 31	·41 ·73	·41 ·12	·12 ·10	·05)			24	25	28	31	·38	•32	·19	-11)		
$\frac{23}{23}$	$\frac{25}{25}$	$\frac{26}{26}$	34	.43	.29	.24	.04∫	7.944	·0064	23	27	28	30	•46	.22	.19	$\cdot 13$	9.858	$\cdot 2382$
20	28	30	30	.73	.12	-08	.08)			24 24	$\frac{26}{25}$	$\begin{array}{c} 27 \\ 29 \end{array}$	$\frac{31}{30}$.39	$\cdot 27 \\ \cdot 32$	·23 ·16	·11∫ ·13	9.864	.2632
24	24	26	34	.36	·36	·24	•04∫	8.032	·0070	23	27	29	29	·46	$\cdot 22$	·16	·16)	9.936	.2923
$\frac{20}{24}$	$\frac{29}{25}$	$\frac{29}{25}$	$\begin{bmatrix} 30 \\ 34 \end{bmatrix}$.73	·10	.10	$\{0.04\}$	8.117	.0076	25	25	27	31	•33	.33	.23	·11)	0 330	2020
$\frac{24}{22}$	$\frac{2.3}{24}$	30	32	·36 ·51	$\cdot 30$	·30 ·10	·04∫ ·06	8.121	.0083	23	28	28	29	•46	·19	·19	·16)	10.012	.3264
21	26	29	32	.00						25 24	26 26	$\frac{26}{28}$	$\frac{31}{30}$	·33 ·39	$\begin{array}{c} \cdot 28 \\ \cdot 28 \end{array}$	·28	·11∫ ·14	10.093	.3669
$\frac{21}{22}$	$\frac{20}{25}$	$\frac{29}{28}$	33	·62 ·52	$\begin{array}{c} \cdot 21 \\ \cdot 28 \end{array}$	·12 ·15	$06 \\ 05$	8.179	•0098	24	27	27	30	•40	.23	.23	.14	10.168	·3906
22	24	31	31	•51	$\cdot 33$.08	∙08∫	8.215	·0106	24	26	29	29	.39	.28	·16	·16)	10.1="	4003
$\frac{23}{23}$	$\frac{23}{23}$	$\frac{30}{31}$	$\frac{32}{31}$	·42 ·42	·42 ·42	·10	·07) ·08	8.308	·0108	25	25	28	30	.33	$\cdot 33$.20	·14∫	10.170	•4382
								0.300	-0108	25 24	$\frac{25}{27}$	29	$\begin{array}{c} 29 \\ 29 \end{array}$	·33 ·40	·33 ·24	·17 ·20	·17	10.247	·4521
$\frac{21}{22}$	$\begin{array}{c} 27 \\ 26 \end{array}$	$\begin{array}{c} .28 \\ 27 \end{array}$	$\frac{32}{33}$	·62 ·52	$\begin{array}{c} \cdot 17 \\ \cdot 23 \end{array}$	·14 ·19	$06 \\ .05 $	8.348	-0130	24 25	27 26	$\begin{array}{c} 28 \\ 27 \end{array}$	30	34	·24 ·28	·20 ·24	$\{ \begin{array}{c} \cdot 17 \\ \cdot 14 \end{array} \}$	10.320	.5826
21	26	30	31	.62	·21	$\cdot 10$.08)	0.050	0170	24	28	28	28	.40	.20	.20	.20		,,c
23	24	28	33	•43	$\cdot 35$	·16	∙05∫	8.359	.0152	26	26	26	30	·29	$\cdot 29$	$\cdot 28$.14∫	10.394	-6081
22	25	29	32	.52	•28	.13	.07	8.548	.0168	25	26	28	29	·34	.28	.20	.17	10.471	·6978
21	27	29	31	.62	.18	.12	.08)	8.610	.0204	25	27	27	29	•34	•24	•24	·17	10.544	·7502
$\frac{23}{21}$	$\frac{25}{28}$	$\begin{array}{c} 27 \\ 28 \end{array}$	33 31	·44 ·62	·30 ·15	·20 ·15	·06)			25 26	$\begin{array}{c} 27 \\ 26 \end{array}$	$\begin{array}{c} 28 \\ 27 \end{array}$	$\begin{array}{c} 28 \\ 29 \end{array}$	·34 ·29	$\begin{array}{c} \cdot 24 \\ \cdot 29 \end{array}$	·21 ·24	$\{ \begin{array}{c} \cdot 21 \\ \cdot 17 \end{array} \}$	10.618	·8726
23	26	$\frac{26}{26}$	33	.44	$\cdot 25$.25	06	8.692	.0226	26	26 26	28	29 28	29	.29	·24 ·21	.21	10.692	·908 4
21	27	30	30	·62	·18	·10	·10)	8.695	.0248	26	27	27	28	·29	$\cdot 25$	$\cdot 25$	$\cdot 21$	10.764	·9919
24	24	27	33	·37	·37	·21	.06∫		52.5	27	27	27	27	·25	·25	·25	•25	10.837	1.0000
				L					<u> </u>	<u> </u>				1				1	L

APPENDIX B. The distribution of the combined likelihood ratio for general alternatives

This table gives selected values of the combined likelihood ratio statistics, B_1^c , together with cumulative probabilities (levels of significance) associated with each tabular value. Only groups of equal size are considered. Thus if n is the total number of repetitions of the design and three groups are considered, each group contains n/3 repetitions.

 B_1^c is computed by adding values of B_1 for each group as obtained from Appendix A. Only values significant at approximately the $0\cdot 10$ level of significance or higher are recorded and these are selected for easy interpolation.

3 treatments. (Design: t = 3, $\lambda = 1$, b = 3, r = 2, k = 2)

B_1^c P	B_1^c P	B_1^c P	B_1^c P	B_1^c P	B_1^c P	B_1^c P	B_1^c P					
	2 equa	al groups	<u> </u>	4 equal groups								
n = 4	n=6	n=8	n = 10	n = 8	n = 12	n = 16	n = 20					
0 ·009 0·6021 ·044 1·2042 ·079 1·4984 ·185	0·8293 ·002 1·6586 ·007 1·8402 ·010 2·5112 ·026 2·7093 ·048 2·9064 ·078 3·3405 ·142	2·4683 ·001 3·4452 ·006 3·9738 ·013 4·1686 ·019 4·3620 ·025 4·4424 ·034 4·5526 ·041 4·6696 ·050 4·9366 ·065 5·0812 ·074 5·2422 ·086 5·4652 ·123	4·3987 ·001 5·2447 ·005 5·6469 ·010 6·2895 ·020 6·4123 ·030 6·6731 ·041 6·8013 ·052 6·9250 ·063 6·9514 ·069 7·0179 ·082 7·0751 ·089 7·1656 ·107	1·2042 ·003 1·8063 ·007 2·1005 ·019 2·4084 ·023 2·7026 ·045 2·9968 ·062 3·0104 ·068 3·3047 ·092 3·5989 ·159	4·3281 ·001 5·1807 ·005 5·5759 ·010 6·0498 ·020 6·3897 ·030 6·6266 ·039 6·6810 ·048 6·8791 ·061 7·0209 ·069 7·0995 ·080 7·2578 ·105	7-9978 ·001 8·9950 ·005 9·4390 ·010 9·9076 ·020 10·0686 ·026 10·1624 ·030 10·3965 ·040 10·5843 ·050 10·7074 ·060 10·8684 ·070 10·9854 ·080 11·0658 ·092 11·1320 ·101	11-7538 ·001 12-7753 ·005 13-2106 ·010 13-6708 ·020 13-8394 ·025 13-9669 ·030 14-1835 ·040 14-3529 ·050 14-4811 ·060 14-6057 ·069 14-7232 ·079 14-8393 ·089 14-9368 ·100					
	l 3 equa	l groups		5 equal groups								
n=6	n = 9	n = 12	n = 15	n = 10	n = 15	n = 20	n=25					
0 ·001 1·2042 ·016 1·4984 ·030 1·8063 ·041 2·1005 ·101	2·5112 ·001 2·7093 ·002 3·3405 ·005 3·7357 ·011 4·1698 ·022 4·5097 ·032 4·5883 ·040 4·7466 ·052 4·9835 ·063 5·0224 ·071 5·2205 ·101	5·3727 ·001 6·2191 ·005 6·6031 ·010 7·0209 ·021 7·1379 ·026 7·3265 ·030 7·5199 ·039 7·6341 ·049 7·8146 ·059 7·9079 ·068 8·0181 ·083 8·0781 ·088 8·1351 ·100	8·0688 ·001 9·0642 ·005 9·4794 ·010 9·8945 ·020 10·0456 ·025 10·1738 ·031 10·4352 ·039 10·5704 ·052 10·6882 ·060 10·8049 ·066 10·9031 ·080 10·9594 ·090 10·9858 ·097	1·8063 ·001 2·4084 ·004 2·7026 ·009 3·3047 ·022 3·5989 ·038 3·6125 ·040 3·9068 ·052 4·2010 ·083 4·2146 ·085 4·4952 ·101	6·0498 ·001 7·0762 ·005 7·5103 ·010 8·0715 ·019 8·2687 ·026 8·3240 ·030 8·5221 ·040 8·7425 ·049 8·9174 ·060 9·0592 ·068 9·1543 ·080 9·2961 ·089 9·3349 ·101	10·7582 ·001 11·8177 ·005 12·2791 ·010 12·8047 ·020 12·9851 ·025 13·0873 ·030 13·3387 ·040 13·5254 ·049 13·6443 ·060 13·7889 ·070 13·9161 ·080 14·0263 ·089 14·1000 ·100	15·4283 ·001 16·4902 ·005 16·9568 ·010 17·4901 ·020 17·6727 ·025 17·8042 ·030 18·0249 ·040 18·2179 ·050 18·3626 ·060 18·4900 ·069 18·6137 ·080 18·7191 ·090 18·7831 ·100					