Name:.		•••••	•••••
Roll No.	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	••••
Invigilate	or's Signature :	•••••	
	CS / B. TECH (IT)	/ SEM-5 / C	S-512 / 2010-11
	CS / B. TECH (IT) / SEM-5 / CS-512 / 2010-11 2010-11 FORMAL LANGUAGE AND AUTOMATA THEORY ime Allotted: 3 Hours Full Marks: 70 The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. GROUP - A (Multiple Choice Type Questions)		
FOF	RMAL LANGUAGE AND	3. TECH (IT) / SEM-5 / CS-512 / 2010-11 2010-11 UAGE AND AUTOMATA THEORY Full Marks: 70 in the margin indicate full marks. ed to give their answers in their own words as far as practicable. GROUP - A e Choice Type Questions) t alternatives for the following: $10 \times 1 = 10$ anguage of the grammar with the following ales? $S \to ASb \mid c$ $A \to a$ $n \in IN$ b) $\{xcb \mid x \in \{a\}^*\}$	
Time Alla	otted: 3 Hours	1 () () () () () () () () () (Full Marks: 70
	The figures in the margin	indicate full n	narks.
Candid	ates are required to give the	ir answers in	their own words
	as far as p	racticable.	
	GROUP	- A	
	(Multiple Choice Ty	pe Question	ns)
1. Cho	pose the correct alternatives	for the follow	ring: $10 \times 1 = 10$
i)	What is the language of the	ne grammar v	vith the following
	production rules?		
	$S \rightarrow A$	$Sb \mid c$	
	$A \rightarrow c$		
	a) $\{a^ncb^n \mid n \in IN\}$	b) {xcb	$x \in \{a\}^*$
	c) $\{acy y \in \{b\}^*\}$	d) None	of these.

5402

[Turn over]

ii) A grammar has the following production:

 $S \rightarrow aSSb \mid a \mid bSa$

Which of the following sentences are in the language that is generated by this grammar?

- a) aaaaabb
- b) aabbaabb
- c) bbbaabbaa
- d) All of these.
- iii) The following grammar generates a small part of the statements in Java:

 $S \rightarrow S$; $S \mid \text{ if Bool then } S \text{ else } S \mid \text{ Identifier : = IN } \mid$

You may assume that an Identifier is represented by a string. What is the most precise statement about this grammar?

- a) This grammar is unambiguous
- b) This grammar is left recursive
- c) This grammar is LL (1)
- d) All three statements are correct.
- iv) Take a look at the following grammar:

 $S \rightarrow AaC \mid Bd$

 $A \rightarrow BC$

 $B \rightarrow bB \mid C$

 $C \rightarrow accS$

For which non-terminals N is symbol a part of the collection follow N? Give the best answer.

- a) $\{A\}$
- b) $\{A, C\}$
- c) $\{A, B, C\}$
- $d) \quad \{A, B, C, S\}$

5402

v) Which of the following grammars is a (right) regular grammar with the same language as the

regular expression a * +b * +ab?

a)
$$S \rightarrow AB$$

 $A \rightarrow aA$

 $B \rightarrow bB$

$$B \rightarrow bB$$

b)
$$S \rightarrow ab \mid A \mid B$$

 $A \rightarrow Aa$

$$B \rightarrow Bb$$

c)
$$S \rightarrow A \mid B$$

 $A \rightarrow aA \mid b$

$$B \rightarrow Bb \mid a$$

d)

$$A \rightarrow aA$$

 $S \rightarrow ab \mid A \mid B$

 $B \rightarrow bB$

- vi) Input sequence of an information lossless machine can be determined from the knowledge of
 - a) only output sequence
 - b) output sequence and initial state
 - c) output sequence, initial state and final state
 - d) initial state.
- vii) The logic pumping lemma is a good example of
 - a) the pigeon-hole principle
 - b) the divide & conquer technique
 - c) recursion
 - d) iteration.
- viii) If S is the number of states in NDFA then equivalent DFA can have maximum of
 - a) S states

- b) S-1 states
- 2^s states c)
- 2^{s} -1 states. d)

5402

3

[Turn over]

- ix) The regular sets are closed under
 - a) Union

- b) Concatenation
- c) Kleene closer
- d) all of these.
- x) Look at the following non-deterministic finite-state automation (NFA), with A as the start state, and D as the only accepting state.

With deterministic finite-state automation (DFA) with d as its state transition function accepts the same language?

a) Start state A, accepting state C and D.

$$dAb = B$$

$$dBa = C$$

$$dCa = D$$

b) Start state A, accepting state C.

$$d A b = B$$

$$d B a = C$$

$$d C a = C$$

c) Start state A, accepting state D.

$$dAb = B$$

$$d B a = D$$

$$d B b = C$$

$$d C a = D$$

d) All of these.

5402

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Find a grammar generating $L = \{a^n, b^n, c^f \mid n >= 1, f >= 0\}$.
- 3. Construct a PDA equivalent to the grammar $S \rightarrow aAAA \rightarrow aS/b$.
- 4. State and prove pumping lemma for CFL's.
- 5. The language defined as $L = \{a^n b^n c^n / n >= 1\}$ is context free or not. Prove it.
- 6. Draw state diagram of a sequence detector which detects the sequence 01101 (Overlapping sequence acceptable).

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

- 7. a) Design a Moore Machine to determine the residue mode 4 for each binary string treated as integer.
 - b) Design a Mealy machine that uses its state to remember the last symbol read and emits output 'y' whenever current input matches to previous one, and emits n otherwise.

5402

5

[Turn over]

8. a) Find the equivalence partition of the machine shown below:

	NS, z		
PS	x = 0	x = 1	
A	B, 1	H, 1	
В	F, 1	D, 1	
С	D, 0	E, 1	
D	C, 0	F, 1	
E	D, 1	C, 1	
F	C, 1	C, 1	
G	C, 1	D, 1	
Н	C, 0	A, 1	

- b) Show a standard form of the corresponding reduced machine.
- c) Find a minimum length input sequence that distinguishes state A from B. 5 + 5 + 5
- 9. a) Develop a procedure to determine the shortest input sequence that distinguishes a state S_i from another state S_j of a given machine.

5402

b) Use the procedure to determine the shortest input sequence that distinguishes state A from state G in the machine given below:

PS	NS, z		
FS	x = 0	x = 1	
Α	A, 0	B, 0	
В	C, 0	D, 1	
C	E, 0	D, 0	
D	F, 0	E, 1	
E	G, 0	A, 0	
F	Ĝ, 0	B, 1	
G	C, Q	F, 1	

c) Draw merger graph for the following incompletely specified machine.

PS	NS, z			
13	I_1	I_2	I_3	<i>I</i> ₄
A	_	-	E, 1	-
В	C, 0	A, 1	B, 0	in the second of
C	C, 0	D, 1	-	A, 0
D	-	E, 1	B, -	1 (-) 1 (
E	<i>B</i> , 0	_	Ċ, -	B, 0

5 + 5 + 5

- 10. a) Define Pushdown Automata. Discuss with an example.
 - b) Find if the string aaa bbb ccc can be derived from the productions.

 $S \rightarrow ABSc, S \rightarrow Abc, BA \rightarrow AB, Bb \rightarrow bb, Ab \rightarrow ab, AA \rightarrow aa$

c) Draw derivation tree for the sentential form *baabaab* for the productions

$$S \rightarrow AB, A \rightarrow Aa, A \rightarrow bB, B \rightarrow a, B \rightarrow Sb$$
 $5 + 5 + 5$

- 11. a) Define Turing Machine.
 - b) Design a Turing machine M to recognize the language $\{ \, 1^n 2^n 3^n \mid n \geq 1 \, \}$
 - c) Construct an FA equivalent to the regular expression (0+1)*(00+11)(0+1)*. 2+8+5

==========