cm008 Exercises: Fix the Plots

In this worksheet, we'll be looking at some erroneous plots and fixing them.

I think you might not have these two packages installed:

```
install.packages("ggridges")
install.packages("scales")
library(tidyverse)
library(gapminder)
library(ggridges)
library(scales)
```

Exercise 1: Overlapping Points

After fixing the error, fix the overlapping problem in the following plot (attribution: "R for data science").

```
ggplot(mpg, aes(cty, hwy)) +
  geom_jitter(alpha=0.3, size=1) +
  geom_smooth(method = "lm") +
  theme_bw()
```


Exercise 2: Line for each Country

Fix this plot so that it shows life expectancy over time for each country. Notice that ggplot2 ignores the grouping of a tibble!

```
gapminder %>%
# group_by(country) %>%
ggplot(aes(year, lifeExp, group = country, colour = country == "Rwanda")) +
geom_line(alpha = 0.4) +
scale_colour_discrete("", labels = c("Other", "Rwanda"))
```


Exercise 3: More gdpPercap vs lifeExp

3(a) Facets

- Change the x-axis text to be in "comma format" with scales::comma_format().
- Separate each continent into sub-panels.

```
ggplot(gapminder, aes(gdpPercap, lifeExp)) +
  geom_point(alpha = 0.2) +
  scale_x_log10(labels = scales::comma_format())+
  facet_wrap(~continent, scales = "free_y")
```


3(b) Bubble Plot

- Put the plots in one row, and free up the axes.
- Make a bubble plot by making the size of the points proportional to population.
 - Try adding a scale_size_area() layer too (could also try scale_radius()).
- Use shape=21 to distinguish between fill (interior) and colour (exterior).

```
gapminder %>%
  filter(continent != "Oceania") %>%
  ggplot(aes(gdpPercap, lifeExp, size=pop, fill=continent)) +
  facet_wrap(~ continent, nrow = 1) +
  geom_point(alpha = 0.5, shape = 21) +
  scale_x_log10(labels = scales::comma_format()) +
  scale_size_area()
```


A list of shapes can be found at the bottom of the scale_shape documentation.

3(c) Size "not working"

Instead of alpha transparency, suppose you're wanting to fix the overplotting issue by plotting small points. Why is this not working? Fix it.

```
ggplot(gapminder) +
  geom_point(aes(gdpPercap, lifeExp, size = 0.1)) +
  scale_x_log10(labels = scales::dollar_format())
```


Exercise 4: Walking caribou

The following mock data set marks the (x,y) position of a caribou at four time points.

- Fix the plot below so that it shows the path of the caribou.
- Add an arrow with arrow = arrow().
- Add the time label with geom_text().

Exercise 5: Life expectancies in Africa

5(a) Unhiding the data

Fix the plot so that you can actually see the data points. Be sure to solve the problem of overlapping text, without rotating the text.

```
gapminder %>%
filter(continent == "Americas") %>%
ggplot(aes(country, lifeExp)) +
geom_point() +
geom_boxplot()
```


5(b) Ridgeplots

We're starting with the same plot as above, but instead of the points + boxplot, try a ridge plot instead using ggridges::geom_density_ridges(), and adjust the bandwidth.

```
gapminder %>%
  filter(continent == "Americas") %>%
  ggplot(aes(country, lifeExp)) +
  geom_point() +
  geom_boxplot()
```



```
gapminder %>%
  filter(continent == "Americas") %>%
  ggplot(aes(lifeExp, country)) +
  ggridges::geom_density_ridges() +
  geom_rug()
```

Picking joint bandwidth of 3.63

Exercise 6: Bar plot madness

6(a) Colour and stacking madness

- Change the following plot so that it shows proportion on the y-axis, not count.
- Change the x-axis so that it doesn't appear to be continuous.
- Put the bars for transmission side-by-side with their own colour.
- Capitalize the legend title.

```
mtcars %>%
  mutate(transmission = if_else(am == 0, "automatic", "manual")) %>%
  ggplot(aes(cyl)) +
  geom_bar(aes(colour = transmission))
```


6(b) Bar heights already calculated

Here's the number of people having a certain hair colour from a sample of 592 people:

```
(hair <- as_tibble(HairEyeColor) %>%
  count(Hair, wt = n))
## # A tibble: 4 x 2
##
     Hair
               n
     <chr> <dbl>
##
## 1 Black
             108
## 2 Blond
             127
## 3 Brown
             286
## 4 Red
              71
```

Fix the following bar plot so that it shows these counts.

```
ggplot(hair, aes(Hair, n)) +
geom_bar()
```

Error: stat_count() must not be used with a y aesthetic.

Exercise 7: Tiling

Here's the number of people having a certain hair and eye colour from a sample of 592 people:

```
(hair_eye <- as_tibble(HairEyeColor) %>%
  count(Hair, Eye, wt = n))
```

```
## # A tibble: 16 x 3
##
      Hair Eye
      <chr> <chr> <dbl>
##
   1 Black Blue
                     20
##
   2 Black Brown
                     68
##
  3 Black Green
                      5
  4 Black Hazel
                     15
##
   5 Blond Blue
                     94
##
   6 Blond Brown
                      7
##
   7 Blond Green
                     16
##
  8 Blond Hazel
                     10
## 9 Brown Blue
                     84
## 10 Brown Brown
                    119
## 11 Brown Green
                     29
## 12 Brown Hazel
                     54
## 13 Red
            Blue
                     17
## 14 Red
            Brown
                     26
## 15 Red
            Green
                     14
## 16 Red
            Hazel
                     14
```

Fix the following plot so that it shows a filled-in square for each combination.

By the way, geom_count() is like geom_bar(): it counts the number of overlapping points.

Additional take-home practice

If you'd like some practice, give these exercises a try

Exercise 1: Make a plot of year (x) vs lifeExp (y), with points coloured by continent. Then, to that same plot, fit a straight regression line to each continent, without the error bars. If you can, try piping the data frame into the ggplot() function.

Exercise 2: Repeat Exercise 1, but switch the *regression line* and *geom_point* layers. How is this plot different from that of Exercise 1?

Exercise 3: Omit the <code>geom_point()</code> layer from either of the above two plots (it doesn't matter which). Does the line still show up, even though the data aren't shown? Why or why not?

Exercise 4: Make a plot of year (x) vs lifeExp (y), facetted by continent. Then, fit a smoother through the data for each continent, without the error bars. Choose a span that you feel is appropriate.

Exercise 5: Plot the population over time (year) using lines, so that each country has its own line. Colour by gdpPercap. Add alpha transparency to your liking.

Exercise 6: Add points to the plot in Exercise 5.