CSE-233 : Section A Summer 2020

Simplification of CFG

Reference:

- i) Book2 Theorem 2.9
- ii) <u>Neso Academy</u>

Common Steps for Simplification

- 1. Reduction of CFG
- 2. Removal of Unit Production Rules (A \rightarrow B)
- 3. Removal of Null Production Rules (A $\rightarrow \epsilon$)

Removal of Unit Production

For the following rules:

- $A \rightarrow B$
- $B \rightarrow m$ [m is a string containing both terminal and non-terminal. It's not a single terminal]

We replace all occurrence of B in unit rules with the value of B (don't remove the rule B \rightarrow m)

After removal, the given rules will become: $A \rightarrow m$, $B \rightarrow m$

Practice

Identify and remove unit productions from the following grammar.

$$S \rightarrow XY, Y \rightarrow a, Y \rightarrow Z \mid b, Z \rightarrow M, M \rightarrow N, N \rightarrow a$$

Removal of Null Productions

For the following rules:

$$A \rightarrow \epsilon$$

For each null production, we create new rules replacing A with empty string in all possible combinations in a rule. For example,

$$S \rightarrow ABA$$

will becomes,
$$S \rightarrow ABA \mid BA \mid AB \mid B$$

First A is removed

Removal of Null Productions

For the following rules:

$$A \rightarrow \epsilon$$

For each null production, we create new rules replacing A with empty string in all possible combinations in a rule. For example,

$$S \rightarrow ABA$$

will becomes, $S \rightarrow ABA \mid BA \mid AB \mid B$

Last A is removed

Removal of Null Productions

For the following rules:

$$A \rightarrow \epsilon$$

For each null production, we create new rules replacing A with empty string in all possible combinations in a rule. For example,

$$S \rightarrow ABA$$

will becomes, $S \rightarrow ABA \mid BA \mid AB \mid B$

Both As are removed

Practice

Identify and remove null productions from the following grammar.

$$S \rightarrow ABAC$$
, $A \rightarrow aA \mid \epsilon$, $B \rightarrow bB \mid \epsilon$, $C \rightarrow c$

Chomsky Normal Form

In Chomsky Normal Form (CNF) we have a restriction on the length of RHS in the production rules. Elements in RHS should either be two variables or a terminal.

A CFG is in Chomsky Normal Form if the all the productions are in any of the two following forms:

 $A \rightarrow a$

 $A \rightarrow BC$

(or $S \rightarrow \varepsilon$ if the language includes empty strings)

Where A, B and C are non-terminals and a is a terminal.

Steps of Converting CFG to CNF

- 1. If S occurs on right side, create a new start symbol S' and add this production rule S' \rightarrow S
- 2. Remove null productions
- 3. Remove unit productions
- 4. Replace rules will length > 2 in RHS to A \rightarrow BC form. For example:

$$A \rightarrow aBCDE$$

$$\Rightarrow$$
 A \rightarrow aX₁, X₁ \rightarrow BCDE

$$\Rightarrow$$
 A \rightarrow aX₁, X₁ \rightarrow BX₂, X₂ \rightarrow CDE

$$\Rightarrow$$
 A \rightarrow aX₁, X₁ \rightarrow BX₂, X₂ \rightarrow CX₃, X₃ \rightarrow DE

5. If the right side of any production is in the form $A \rightarrow aB$ where a is a terminal and A and B are non-terminals, them the production is replaced by $A \rightarrow XB$ and $X \rightarrow a$. Repeat this step for every production which is of the form $A \rightarrow aB$

Let's convert the following grammar in CNF. What will be the first step?

$$S o ASA \mid aB$$
 $A o B \mid S$
 $B o b \mid \epsilon$

New Start symbol added. 2nd step is to remove all null productions.

$$egin{array}{l} oldsymbol{S_0} &
ightarrow oldsymbol{S} \ S &
ightarrow ASA \mid \mathtt{a}B \ A &
ightarrow B \mid S \ B &
ightarrow \mathtt{b} \mid oldsymbol{arepsilon} \end{array}$$

Null productions removed. 3rd step is to remove all unit productions.

Remove ε rules $B \to \varepsilon$, shown on the left, and $A \to \varepsilon$, shown on the right.

$$S_0 o S$$
 $S o ASA \mid aB \mid a$ $S o ASA \mid aB \mid a \mid SA \mid AS \mid S$ $A o B \mid S \mid \varepsilon$ $A o B \mid S$ $B o b$

Removal of unit productions.

3a. Remove unit rules $S \to S$, shown on the left, and $S_0 \to S$, shown on the right.

$$S_0 \rightarrow S \\ S \rightarrow ASA \mid \mathsf{a}B \mid \mathsf{a} \mid SA \mid AS \\ A \rightarrow B \mid S \\ B \rightarrow \mathsf{b}$$

$$S_0 \rightarrow ASA \mid \mathsf{a}B \mid \mathsf{a} \mid SA \mid AS \\ S \rightarrow ASA \mid \mathsf{a}B \mid \mathsf{a} \mid SA \mid AS \\ A \rightarrow B \mid S \\ B \rightarrow \mathsf{b}$$

$$A \rightarrow B \mid S \\ B \rightarrow \mathsf{b}$$

Removal of unit productions.

3b. Remove unit rules $A \to B$ and $A \to S$.

$$S_0 \rightarrow ASA \mid \mathtt{a}B \mid \mathtt{a} \mid SA \mid AS \qquad S_0 \rightarrow ASA \mid \mathtt{a}B \mid \mathtt{a} \mid SA \mid AS \\ S \rightarrow ASA \mid \mathtt{a}B \mid \mathtt{a} \mid SA \mid AS \qquad S \rightarrow ASA \mid \mathtt{a}B \mid \mathtt{a} \mid SA \mid AS \\ A \rightarrow S \mid \mathtt{b} \qquad A \rightarrow b \mid ASA \mid \mathtt{a}B \mid \mathtt{a} \mid SA \mid AS \\ B \rightarrow \mathtt{b} \qquad B \rightarrow \mathtt{b}$$

Converting to proper form

$$S_0
ightarrow AA_1 \mid UB \mid$$
 a $\mid SA \mid AS$
 $S
ightarrow AA_1 \mid UB \mid$ a $\mid SA \mid AS$
 $A
ightarrow$ b $\mid AA_1 \mid UB \mid$ a $\mid SA \mid AS$
 $A_1
ightarrow SA$
 $U
ightarrow$ a
 $B
ightarrow$ b

Practice

Converting CFG to CNF

1.	3.	5.	7.
$S \rightarrow ASB$ $A \rightarrow aAS \mid a \mid \varepsilon$ $B \rightarrow SbS \mid A \mid bb$	$S \rightarrow aXbY$ $X \rightarrow aX \mid \varepsilon$ $Y \rightarrow bY \mid \varepsilon$	$S \rightarrow S_1 \mid S_2$ $S_1 \rightarrow S_1 b \mid Ab \mid \varepsilon$ $A \rightarrow aAb \mid ab$ $S_2 \rightarrow S_2 a \mid Ba \mid \varepsilon$ $B \rightarrow bBa \mid ba$	S → aX bY b ZZc X → Yaa abZ ε Y → bXXb ab cZ Z → a b XZ ε
2.	4.	6.	8.
$S \rightarrow XY$ $X \rightarrow abb \mid aXb \mid \varepsilon$ $Y \rightarrow c \mid cY$	$S \rightarrow aXbX$ $X \rightarrow aY \mid bY \mid \varepsilon$ $Y \rightarrow X \mid c$	$S \rightarrow DBC \mid Ba$ $B \rightarrow 0B1 \mid 01 \mid \varepsilon$ $C \rightarrow aCb \mid aC \mid Bb$ $D \rightarrow bD \mid D$	A -> BAB B ε B -> 00 ε