NAME: ID#: Score: / 110

Guidelines for the exam:

- (1) Make answers short and your point clear.
- (2) You are allowed to use books and notes. However, discussion is not.
- (3) Zoom should be on all the time.
- (4) You may use any theorem except when you are asked to prove it. However, check conditions when you use a theorem.
- (5) Exam ends at 15:20. Scan your exam and upload it by 15:30 (if you have trouble with KLMS, submit your exam in e-mail, hykim0615@kaist.ac.kr).
- (1) Let f be infinite times differentiable.
 - (a) (4pts) Use L'Hopital's rule to show that $\lim_{h\to 0} \frac{f(x+h)+f(x-h)-2f(x)}{h^2} = f''(x)$. (b) (6pts) Use Taylor's theorem and find the convergence order of the above con-
 - (b) (6pts) Use Taylor's theorem and find the convergence order of the above convergence. (Find a largest possible integer $\alpha > 0$ such that $\frac{f(x+h)+f(x-h)-2f(x)}{h^2} f''(x) = O(h^{\alpha})$ as $h \to 0$.)

(Lesson: L'Hopital's rule gives convenience and Taylor's theorem gives detail.)

- (2) (a) (5pts) Show that the total variation $V(\sin x; 0, 2\pi) = 4$. (Use Definition 5.3.2.)
 - (b) (5pts) Show that quotient $\frac{f}{g}$ is in BV(a,b) if f and g are uniformly continuous and have no zero on [a,b]. (You may use theorems in Section 5.3.)
- (3) Prove or disprove.
 - (a) If f is continuous on a compact set [a, b], then $f \in BV(a, b)$ (of bounded variation).
 - (b) If f is continuous on a compact set [a,b], then $f \in R[a,b]$ (of Riemann integrable).
- (4) Let L(f) and U(f) be the lower and upper Riemann integrals, respectively. Let f and g be bounded functions on [a, b]. Let

$$A := L(f+g), \quad B := L(f) + L(g), \quad C := U(f) + U(g), \quad D := U(f+g).$$

- (a) (4pts) Order them in size. (for example $A \leq B \leq C \leq D$)
- (b) (2 pts each) Show the three inequalities in part (a).
- (5) Prove or disprove.
 - (a) Let $f_n \in R[a, b]$ and $\lim_{n \to \infty} f_n(x) = f(x)$ for all $x \in [a, b]$. Then, $f \in R[a, b]$.
 - (b) Let π_1, π_2 are two partitions of an interval [a, b]. Then, for any bounded function $f, L(f, \pi_1) \leq U(f, \pi_2)$ (L and U are lower and upper Riemann sums).
- (6) Let $f_k = \frac{kx}{1+kx}$ for $x \in [0,1]$ and $k = 1, 2, \cdots$. Answer the followings and explain why.
 - (a) (3pts) Find a function f_0 such that $f_k(x) \to f_0(x)$ for all $x \in [0,1]$ as $k \to \infty$.
 - (b) (3pts) Determine whether the convergence is uniform.
 - (c) (4pts) Determine whether $\lim_{k\to\infty} \int_0^1 f_k(x) dx = \int_0^1 (\lim_{k\to\infty} f_k(x)) dx$.

- (7) Prove or disprove
 - (a) A function f: [a, b] → ℝ is continuous and g: [a, b] → ℝ is integrable. Then, there exists c∈ [a, b] such that ∫_a^b f(x)g(x)dx = f(c) ∫_a^b g(x)dx.
 (b) Let f: [a, b] → ℝ⁺ be a nonnegative continuous function. For z∈ [a, b], let
 - (b) Let $f:[a,b] \to \mathbb{R}^+$ be a nonnegative continuous function. For $z \in [a,b]$, let G(z) be the area bounded by the graph of y = f(x), x-axis, x = a, and x = z. Then,

$$\int_{a}^{b} f(x)dx = G(b) - G(a).$$

- (8) Suppose that $f:[a,b]\to\mathbb{R}$ satisfies $|f(x)-f(y)|\leq K|x-y|$ for all $x,y\in[a,b]$ for some K>0.
 - (a) (2pts) Show that f is integrable.
 - (b) (8pts) Show that, for every natural number k,

$$\left| \int_0^1 f(x)dx - \frac{1}{k} \sum_{j=1}^k f\left(\frac{j}{k}\right) \right| \le \frac{K}{2k}.$$

- (9) Let $g:[a,b]\to\mathbb{R}$ be monotone increasing and $f\in RS[g;a,b]$.
 - (a) (8pts) Show that $|f| \in RS[g; a, b]$ and

$$\left| \int_{a}^{b} f(x)dg(x) \right| \le \int_{a}^{b} |f(x)|dg(x).$$

- (b) (2pts) What is the corresponding relation if $g:[a,b]\to\mathbb{R}$ is monotone decreasing.
- (10) (a) (5pts) Let $f: \mathbb{R} \to \mathbb{R}$ satisfy |f'(x)| < 10 for all $x \in \mathbb{R}$. Show that f is uniformly continuous (Find $\delta > 0$ for a given $\epsilon > 0$).
 - (b) (5pts) Prove or disprove that if f and g are bounded and f + g is in R(0, 1), the f and g are in R(0, 1).
- (11) Consider the following six statements:

 $p_1: f$ is continuous on $[a, b], p_2: f$ is uniformly continuous on $[a, b], p_3: f$

 $p_3: f$ is differentiable on [a, b], $p_4: f$ has an antiderivative on [a, b],

 $p_5: f \text{ is } R[a,b],$ $p_6: f \text{ is the indefinite integral of some } g \in R[a,b].$

There are 30 possible statements in the form of $p_i \Rightarrow p_j$. Find true statements among them. (You don't need to explain why. A complete answer is for 10 points. -1 point for each missing true relation. -2 points for each false relation. The minimum score for this problem is 0. Hint: There are 16 true relations. You may simply write such as $1 \Rightarrow 3.5.6 / 2 \Rightarrow 1.3.6 /$ and so on.)