MR202

Electron Microscopy in Materials Characterization

General Introduction, Resolution, Limits on resolution, Lens aberrations

Introduction to SPM/SEM, Electron Optics - Electron Guns and Lenses, Probe diameter and probe current

Electron-Specimen Interactions, Interaction volume, elastic and inelastic scattering

Basics of SEM imaging, Imaging modes, Detectors, Image contrast, Image processing

XEDS and WDS - Principles and practice, Basics

Case studies in Materials Science - Imaging and Analysis

Newer Techniques - EBSD, LVSEM, ESEM

Sample Preparation and a special note about digital imaging/processing

Microscope

Used to 'see' objects not visible to the human eye

Eye can 'resolve' objects ~ 0.1mm apart
For anything closer, we need a means of magnifying

Note: <u>BIG</u> difference between 'seeing' and 'resolving'

<u>Seeing</u> a car approaching (from its headlights)
<u>Resolving</u> the two headlights as separate sources of light

Optical System - Components

Source of Radiation - Visible-light

System of lenses and apertures

Any system used to form an image uses lenses and apertures that have a certain dimension

Limit to resolution arises from the phenomenon of *diffraction*

Point object is not mapped on to a point - spread out

Diffraction from a single slit Intensity $\sim (\sin(x)/x)^2$ A big maxima surrounded by smaller maxima

Rayleigh Criterion

Profiles from two adjacent point will overlap

To be able to resolve two points as distinct

$$\theta_{\rm R} = \sin^{-1}(1.22\lambda/d)$$

This is the diffraction-limited resolution limit

To increase resolution Large d Small λ

Rayleigh Criterion: a picture

The lens will focus the light to a fuzzy DOT rather than a true point.

Rayleigh Criterion: an example

- Consider the (ideal) resolving ability of the eye
- Estimate D, the diameter of the pupil
- Use $\lambda = 550$ nm (middle of visible spectrum)
- Now calculate the minimum angle the eye can resolve.
- Now calculate how far apart two points of light can be if they are 5 meters away.

Rayleigh Criterion: an example

• with D = 5 mm and
$$\lambda$$
 = 550 nm,
 $\theta_{limit} = \sin^{-1}(1.22 \times 5.5 \times 10^{-7} \text{ m/.005 m})$
= 7.7 x 10⁻³ degrees
= .46 arc minutes
so x/L = tan(θ_{limit}), and
x = 5m * tan(7.7 x 10⁻³ degrees) = .67 mm

Limits on Resolution

What diameter of telescope would you require to read the numbers on a license plate from a spy satellite?

Limits on Resolution: Telescope

- need to resolve an "x" size of about 1 cm
- "s" is on order of 100 miles or 150 km
- θ_{limit} then must be (in radians) = 1 cm / 150 km = 7 x 10⁻⁸
- $\theta_{limit} = 1.22 \times 5.5 \times 10^{-7} \text{ m / D} = 7 \times 10^{-8}$ so D = 10 m (Hubble has a 2.4 m diameter)

Lens Aberrations - Other limiting factors for resolution

Astigmatism

Electrons as Waves - The particle-wave duality

Electron moving with a velocity 'v' has a wavelength associated with it

$$\lambda = h/mv \sim 12.247/E(kV)$$

Typical wavelengths

100 kV 0.037 A 200 kV 0.025 A

Basics of SEM Operation

- •Electron gun produces a 'beam'
 - Thermionic/Field-emission guns
- Produce a 'tight' spot on the specimen surface
 - Condenser and Objective lenses
- *Scanning coils 'raster' the beam across the specimen
 - Size of scan -> Magnification
- •Electron-specimen interactions
 - Produces a wide variety of signals
- Detectors to collect the signal
 - Different detectors for different signals

Magnification

Some Examples of SEM Images

Electron Gun

Thermionic Emission

$$\mathbf{J}_{c} = \mathbf{A}_{c} \, \mathbf{T}^{2} \mathbf{exp}(-\mathbf{E}_{w}/\mathbf{kT})$$

Richardson Equation

 E_w = 4.5 eV for W, at T = 2700 K J = 3.4 A/cm²

Use 'thermal' energy to excite electrons from a metal

Field Emission

Tip with small radius of curvature

Very high electric fields

Tungsten Hairpin Filament

Work Function = 4.5 eV

LaB₆ Filament

Work Function = 2.5 eV

Comparison of Electron Sources
(Brightness = Current/area/solid angle)

Source	Brightness (A/cm²sr)	Source Size	Lifetime (h)	Vacuum Level
Tungsten filament	10 ⁵	30-100 um	40-100	10 ⁻⁵ Torr
LaB ₆ <100> (2.5 ev)	10 ⁵	5-50 μm	200- 1000	10 ⁻⁷ Torr
Cold FE	10 ⁸	< 5nm	> 1000	10 ⁻¹⁰ Torr
Thermal FE	10 ⁸	< 5 nm	> 1000	10 ⁻⁹ Torr
Schottky	10 ⁸	15-30 nm	> 1000	

Effect of Bias on the filament emission

This is what happens when you turn the filament knob

Comparison of Electron Sources

Note that a very small FE probe carries a much larger current compared to a W filament.

Lenses in the Electron Microscope

The 'Wehnelt' is the first lens in the SEM

Two sets of lenses in the SEM

Larger current through lens => Smaller Focal Length

Condenser lenses - condense the beam to give smaller beam size

Objective lens - final 'probe-forming' lens in the SEM Larger currents pass through this lens (compared to the condenser lens) - needs to be cooled.

Large working distance

Two types of Objective Lenses

Very small working distance

- (a) Pin-hole lens variable working distance, no size limitation of sample, good depth of field
- (b) Small focal length => High Resolution

Three important parameters for image formation

Probe Size -

Smaller the probe size, higher the resolution Smaller the probe size, lower the brightness

Probe Current/Brightness Imaging requires 'large' currents

Convergence Angle -

Depth of field increases as angle decreases Aberrations decrease as angle decreases Brightness decreases as angle decreases

These three parameters are NOT independent of each other

Probe Size d_p - diameter of beam as it falls on the specimen Brightness β - Current density/solid angle Probe convergence α_p - angle made by the cone of electrons with the central axis at the sample surface

