MA 322: Scientific Computing Lecture - 5

• Let f be real valued function.

- Let f be real valued function.
- Suppose data $(x_0, f(x_0))$ and $(x_1, f(x_1))$ are given..

- Let f be real valued function.
- Suppose data $(x_0, f(x_0))$ and $(x_1, f(x_1))$ are given..
- Then, we can find a polynomial $P_1(x) = a_0x + a_1$ of degree one

- Let f be real valued function.
- Suppose data $(x_0, f(x_0))$ and $(x_1, f(x_1))$ are given..
- Then, we can find a polynomial $P_1(x) = a_0x + a_1$ of degree one such that

$$P_1(x_0) = f(x_0)$$
 and $P_1(x_1) = f(x_1)$.

- Let f be real valued function.
- Suppose data $(x_0, f(x_0))$ and $(x_1, f(x_1))$ are given...
- Then, we can find a polynomial $P_1(x) = a_0x + a_1$ of degree one such that

$$P_1(x_0) = f(x_0)$$
 and $P_1(x_1) = f(x_1)$.

Because, from the conditions, we have

$$f(x_0) = P_1(x_0) =$$

- Let f be real valued function.
- Suppose data $(x_0, f(x_0))$ and $(x_1, f(x_1))$ are given..
- Then, we can find a polynomial $P_1(x) = a_0x + a_1$ of degree one such that

$$P_1(x_0) = f(x_0)$$
 and $P_1(x_1) = f(x_1)$.

Because, from the conditions, we have

$$f(x_0) = P_1(x_0) = a_0x_0 + b$$
 & $f(x_1) = P_1(x_1) =$

- Let f be real valued function.
- Suppose data $(x_0, f(x_0))$ and $(x_1, f(x_1))$ are given...
- Then, we can find a polynomial $P_1(x) = a_0x + a_1$ of degree one such that

$$P_1(x_0) = f(x_0)$$
 and $P_1(x_1) = f(x_1)$.

Because, from the conditions, we have

$$f(x_0) = P_1(x_0) = a_0x_0 + b$$
 & $f(x_1) = P_1(x_1) = a_0x_1 + b$.

- Let f be real valued function.
- Suppose data $(x_0, f(x_0))$ and $(x_1, f(x_1))$ are given..
- Then, we can find a polynomial $P_1(x) = a_0x + a_1$ of degree one such that

$$P_1(x_0) = f(x_0)$$
 and $P_1(x_1) = f(x_1)$.

Because, from the conditions, we have

$$f(x_0) = P_1(x_0) = a_0x_0 + b$$
 & $f(x_1) = P_1(x_1) = a_0x_1 + b$.

$$a_0 =$$

- Let f be real valued function.
- Suppose data $(x_0, f(x_0))$ and $(x_1, f(x_1))$ are given..
- Then, we can find a polynomial $P_1(x) = a_0x + a_1$ of degree one such that

$$P_1(x_0) = f(x_0)$$
 and $P_1(x_1) = f(x_1)$.

Because, from the conditions, we have

$$f(x_0) = P_1(x_0) = a_0x_0 + b$$
 & $f(x_1) = P_1(x_1) = a_0x_1 + b$.

$$a_0 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$
 &

- Let f be real valued function.
- Suppose data $(x_0, f(x_0))$ and $(x_1, f(x_1))$ are given..
- Then, we can find a polynomial $P_1(x) = a_0x + a_1$ of degree one such that

$$P_1(x_0) = f(x_0)$$
 and $P_1(x_1) = f(x_1)$.

Because, from the conditions, we have

$$f(x_0) = P_1(x_0) = a_0x_0 + b$$
 & $f(x_1) = P_1(x_1) = a_0x_1 + b$.

$$a_0 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$
 & then $b =$

- Let f be real valued function.
- Suppose data $(x_0, f(x_0))$ and $(x_1, f(x_1))$ are given..
- Then, we can find a polynomial $P_1(x) = a_0x + a_1$ of degree one such that

$$P_1(x_0) = f(x_0)$$
 and $P_1(x_1) = f(x_1)$.

Because, from the conditions, we have

$$f(x_0) = P_1(x_0) = a_0x_0 + b$$
 & $f(x_1) = P_1(x_1) = a_0x_1 + b$.

$$a_0 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$
 & then $b = f(x_0) - \frac{(f(x_1) - f(x_0))}{(x_1 - x_0)}x_0$.

- Let f be real valued function.
- Suppose data $(x_0, f(x_0))$ and $(x_1, f(x_1))$ are given..
- Then, we can find a polynomial $P_1(x) = a_0x + a_1$ of degree one such that

$$P_1(x_0) = f(x_0)$$
 and $P_1(x_1) = f(x_1)$.

Because, from the conditions, we have

$$f(x_0) = P_1(x_0) = a_0x_0 + b$$
 & $f(x_1) = P_1(x_1) = a_0x_1 + b$.

Subtracting above relations, we obtain

$$a_0 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$
 & then $b = f(x_0) - \frac{(f(x_1) - f(x_0))}{(x_1 - x_0)}x_0$.

• If we estimate f(x) through $P_1(x)$, then it is known as linear curve fitting.

- Let f be real valued function.
- Suppose data $(x_0, f(x_0))$ and $(x_1, f(x_1))$ are given..
- Then, we can find a polynomial $P_1(x) = a_0x + a_1$ of degree one such that

$$P_1(x_0) = f(x_0)$$
 and $P_1(x_1) = f(x_1)$.

Because, from the conditions, we have

$$f(x_0) = P_1(x_0) = a_0x_0 + b$$
 & $f(x_1) = P_1(x_1) = a_0x_1 + b$.

Subtracting above relations, we obtain

$$a_0 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$
 & then $b = f(x_0) - \frac{(f(x_1) - f(x_0))}{(x_1 - x_0)}x_0$.

• If we estimate f(x) through $P_1(x)$, then it is known as linear curve fitting. Roughly, in linear curve fitting, we find a linear polynomial which intersect given curve at at least two points.

Linear Curve Fitting Contd..

Linear Curve Fitting Contd..

Geometrically, linear curve fitting can be described by following figure

• Similarly, in quadratic curve fitting,

• Similarly, in quadratic curve fitting, we find a polynomial of degree two

• Similarly, in quadratic curve fitting, we find a polynomial of degree two which intersect given curve at at least three points.

 Similarly, in quadratic curve fitting, we find a polynomial of degree two which intersect given curve at at least three points.

Geometrically, quadratic curve fitting can be described by following figure

Cubic Curve Fitting

Cubic Curve Fitting

• What is Finite Difference (FD)?

- •What is Finite Difference (FD)?
 - Finite difference is a mathematical tool

- •What is Finite Difference (FD)?
 - Finite difference is a mathematical tool used to study the differences that take place in the value of a function y = f(x)

- •What is Finite Difference (FD)?
 - Finite difference is a mathematical tool used to study the differences that take place in the value of a function y = f(x) from a given set of values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1}.$$

- •What is Finite Difference (FD)?
 - Finite difference is a mathematical tool used to study the differences that take place in the value of a function y = f(x) from a given set of values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1}.$$

More precisely, in finite difference,

- •What is Finite Difference (FD)?
 - Finite difference is a mathematical tool used to study the differences that take place in the value of a function y = f(x) from a given set of values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1}.$$

More precisely, in finite difference, a function is studied with the help of given set of observations

- •What is Finite Difference (FD)?
 - Finite difference is a mathematical tool used to study the differences that take place in the value of a function y = f(x) from a given set of values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1}.$$

More precisely, in finite difference, a function is studied with the help of given set of observations even the function is not known explicitly.

- •What is Finite Difference (FD)?
 - Finite difference is a mathematical tool used to study the differences that take place in the value of a function y = f(x) from a given set of values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1}.$$

More precisely, in finite difference, a function is studied with the help of given set of observations even the function is not known explicitly.

General Result on Polynomial Fitting

- •What is Finite Difference (FD)?
 - Finite difference is a mathematical tool used to study the differences that take place in the value of a function y = f(x) from a given set of values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1}.$$

More precisely, in finite difference, a function is studied with the help of given set of observations even the function is not known explicitly.

- General Result on Polynomial Fitting
 - From a given set of n+1 values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1},$$

- •What is Finite Difference (FD)?
 - Finite difference is a mathematical tool used to study the differences that take place in the value of a function y = f(x) from a given set of values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1}.$$

More precisely, in finite difference, a function is studied with the help of given set of observations even the function is not known explicitly.

- General Result on Polynomial Fitting
 - From a given set of n+1 values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1},$$

we find a polynomial P_n of degree n

- •What is Finite Difference (FD)?
 - Finite difference is a mathematical tool used to study the differences that take place in the value of a function y = f(x) from a given set of values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1}.$$

More precisely, in finite difference, a function is studied with the help of given set of observations even the function is not known explicitly.

- General Result on Polynomial Fitting
 - From a given set of n+1 values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1},$$

we find a polynomial P_n of degree n such that

$$P_n(x_i) = f(x_i), \quad 0 \le i \le n.$$

Motivation to Finite Differences

- •What is Finite Difference (FD)?
 - Finite difference is a mathematical tool used to study the differences that take place in the value of a function y = f(x) from a given set of values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1}.$$

More precisely, in finite difference, a function is studied with the help of given set of observations even the function is not known explicitly.

- General Result on Polynomial Fitting
 - From a given set of n+1 values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1},$$

we find a polynomial P_n of degree n such that

$$P_n(x_i) = f(x_i), \quad 0 \le i \le n.$$

The value $P_n(x)$,

Motivation to Finite Differences

- •What is Finite Difference (FD)?
 - Finite difference is a mathematical tool used to study the differences that take place in the value of a function y = f(x) from a given set of values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1}.$$

More precisely, in finite difference, a function is studied with the help of given set of observations even the function is not known explicitly.

- General Result on Polynomial Fitting
 - From a given set of n+1 values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1},$$

we find a polynomial P_n of degree n such that

$$P_n(x_i) = f(x_i), \quad 0 \le i \le n.$$

The value $P_n(x)$, for $x \neq x_i$,

Motivation to Finite Differences

- •What is Finite Difference (FD)?
 - Finite difference is a mathematical tool used to study the differences that take place in the value of a function y = f(x) from a given set of values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1}.$$

More precisely, in finite difference, a function is studied with the help of given set of observations even the function is not known explicitly.

- General Result on Polynomial Fitting
 - From a given set of n+1 values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1},$$

we find a polynomial P_n of degree n such that

$$P_n(x_i) = f(x_i), \quad 0 \le i \le n.$$

The value $P_n(x)$, for $x \neq x_i$, is called estimate of f(x).

• In general, the estimate $P_n(x)$ and f(x) are not equal.

• In general, the estimate $P_n(x)$ and f(x) are not equal. Geometrically,

• In general, the estimate $P_n(x)$ and f(x) are not equal. Geometrically, a fitted curve and function f can be described by following figure

• In general, the estimate $P_n(x)$ and f(x) are not equal. Geometrically, a fitted curve and function f can be described by following figure

• Although, for non-polynomial function f, we have

$$P_n(x) \neq f(x)$$
 for $x \neq x_i$, $0 < i < n$.

• In general, the estimate $P_n(x)$ and f(x) are not equal. Geometrically, a fitted curve and function f can be described by following figure

• Although, for non-polynomial function f, we have

$$P_n(x) \neq f(x)$$
 for $x \neq x_i$, $0 \le i \le n$.

But, the graphs suggest that f(x) and $P_n(x)$ are very closed to each other.

• In general, the estimate $P_n(x)$ and f(x) are not equal. Geometrically, a fitted curve and function f can be described by following figure

• Although, for non-polynomial function f, we have

$$P_n(x) \neq f(x)$$
 for $x \neq x_i$, $0 \le i \le n$.

But, the graphs suggest that f(x) and $P_n(x)$ are very closed to each other. Interpolation is a process of constructing such polynomial $P_n(x)$.

• For a given set of n+1 values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1},$$

• For a given set of n+1 values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1},$$

can we find a polynomial P_n of degree n

• For a given set of n+1 values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1},$$

can we find a polynomial P_n of degree n such that $P_n(x) = f(x)$.

• For a given set of n+1 values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1},$$

can we find a polynomial P_n of degree n such that $P_n(x) = f(x)$.

• The answer is yes,

• For a given set of n+1 values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1},$$

can we find a polynomial P_n of degree n such that $P_n(x) = f(x)$.

• The answer is yes, when the function f is a polynomial of degree n.

• For a given set of n+1 values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1},$$

can we find a polynomial P_n of degree n such that $P_n(x) = f(x)$.

• The answer is yes, when the function f is a polynomial of degree n.

Geometrically,

• For a given set of n+1 values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1},$$

can we find a polynomial P_n of degree n such that $P_n(x) = f(x)$.

• The answer is yes, when the function f is a polynomial of degree n.

Geometrically, for 10 data points,

• For a given set of n+1 values

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}, x_i > x_{i-1},$$

can we find a polynomial P_n of degree n such that $P_n(x) = f(x)$.

• The answer is yes, when the function f is a polynomial of degree n. Geometrically, for 10 data points, it can be described by following figure

ullet Consider a cubic polynomial function f given by

$$f(x) = x^3 + 2x^2 + 3x + 5.$$

• Consider a cubic polynomial function f given by

$$f(x) = x^3 + 2x^2 + 3x + 5.$$

Let us generate four data points

$$\{(x, f(x)): (1, 11), (2, 27), (3, 59), (5, 195)\},\$$

• Consider a cubic polynomial function f given by

$$f(x) = x^3 + 2x^2 + 3x + 5.$$

Let us generate four data points

$$\{(x, f(x)): (1, 11), (2, 27), (3, 59), (5, 195)\},\$$

and using this data set we wish to estimate f(4)

• Consider a cubic polynomial function f given by

$$f(x) = x^3 + 2x^2 + 3x + 5.$$

Let us generate four data points

$$\{(x, f(x)): (1, 11), (2, 27), (3, 59), (5, 195)\},\$$

and using this data set we wish to estimate f(4) by curve fitting.

• Consider a cubic polynomial function f given by

$$f(x) = x^3 + 2x^2 + 3x + 5.$$

Let us generate four data points

$$\{(x, f(x)): (1, 11), (2, 27), (3, 59), (5, 195)\},\$$

and using this data set we wish to estimate f(4) by curve fitting.

Since, four data points are given,

• Consider a cubic polynomial function f given by

$$f(x) = x^3 + 2x^2 + 3x + 5.$$

Let us generate four data points

$$\{(x, f(x)): (1, 11), (2, 27), (3, 59), (5, 195)\},\$$

and using this data set we wish to estimate f(4) by curve fitting.

 Since, four data points are given, we can find a polynomial P₃ of degree 3,

• Consider a cubic polynomial function f given by

$$f(x) = x^3 + 2x^2 + 3x + 5.$$

Let us generate four data points

$$\{(x, f(x)): (1, 11), (2, 27), (3, 59), (5, 195)\},\$$

and using this data set we wish to estimate f(4) by curve fitting.

 Since, four data points are given, we can find a polynomial P₃ of degree 3, which agrees with f at given points.

• Consider a cubic polynomial function f given by

$$f(x) = x^3 + 2x^2 + 3x + 5.$$

Let us generate four data points

$$\{(x, f(x)): (1,11), (2,27), (3,59), (5,195)\},\$$

and using this data set we wish to estimate f(4) by curve fitting.

- Since, four data points are given, we can find a polynomial P₃ of degree 3, which agrees with f at given points.
- Due to fundamental theorem, we obtain

$$\Delta^4 P_3(x) = 0$$

• Consider a cubic polynomial function f given by

$$f(x) = x^3 + 2x^2 + 3x + 5.$$

Let us generate four data points

$$\{(x, f(x)): (1, 11), (2, 27), (3, 59), (5, 195)\},\$$

and using this data set we wish to estimate f(4) by curve fitting.

- Since, four data points are given, we can find a polynomial P₃ of degree 3, which agrees with f at given points.
- Due to fundamental theorem, we obtain

$$\Delta^4 P_3(x) = 0$$
 equivalently $(E - I)^4 f(x) = 0$.

• Consider a cubic polynomial function f given by

$$f(x) = x^3 + 2x^2 + 3x + 5.$$

Let us generate four data points

$$\{(x, f(x)): (1, 11), (2, 27), (3, 59), (5, 195)\},\$$

and using this data set we wish to estimate f(4) by curve fitting.

- Since, four data points are given, we can find a polynomial P₃ of degree 3, which agrees with f at given points.
- Due to fundamental theorem, we obtain

$$\Delta^4 P_3(x) = 0$$
 equivalently $(E - I)^4 f(x) = 0$.

Then, expanding $(E-I)^4$ by binomial theorem, we obtain

$$(E^4 - 4E^3 + 6E^2 - 4E + I)P_3(x) = 0,$$

• Consider a cubic polynomial function *f* given by

$$f(x) = x^3 + 2x^2 + 3x + 5.$$

Let us generate four data points

$$\{(x, f(x)): (1, 11), (2, 27), (3, 59), (5, 195)\},\$$

and using this data set we wish to estimate f(4) by curve fitting.

- Since, four data points are given, we can find a polynomial P₃ of degree 3, which agrees with f at given points.
- Due to fundamental theorem, we obtain

$$\Delta^4 P_3(x) = 0$$
 equivalently $(E - I)^4 f(x) = 0$.

Then, expanding $(E-I)^4$ by binomial theorem, we obtain

$$(E^4 - 4E^3 + 6E^2 - 4E + I)P_3(x) = 0,$$

which gives

$$P_3(x+4h) - 4P_3(x+3h) + 6P_3(x+2h) - 4P_3(x+h) + P_3(x) = 0.$$

• In the equation

$$P_3(x+4h) - 4P_3(x+3h) + 6P_3(x+2h) - 4P_3(x+h) + P_3(x) = 0,$$

• In the equation

$$P_3(x+4h)-4P_3(x+3h)+6P_3(x+2h)-4P_3(x+h)+P_3(x)=0,$$
 we set $x=1$ and $h=1$ to have
$$P_3(5)-4P_3(4)+6P_3(3)-4P_3(2)+P_3(1)=0.$$

• In the equation

$$P_3(x+4h) - 4P_3(x+3h) + 6P_3(x+2h) - 4P_3(x+h) + P_3(x) = 0,$$

we set x = 1 and h = 1 to have

$$P_3(5) - 4P_3(4) + 6P_3(3) - 4P_3(2) + P_3(1) = 0.$$

Since P_3 agrees with f at given data points, we have

$$f(5) - 4P_3(4) + 6f(3) - 4f(2) + f(1) = 0.$$

• In the equation

$$P_3(x+4h) - 4P_3(x+3h) + 6P_3(x+2h) - 4P_3(x+h) + P_3(x) = 0,$$

we set x = 1 and h = 1 to have

$$P_3(5) - 4P_3(4) + 6P_3(3) - 4P_3(2) + P_3(1) = 0.$$

Since P_3 agrees with f at given data points, we have

$$f(5) - 4P_3(4) + 6f(3) - 4f(2) + f(1) = 0.$$

Using given data, we obtain

$$195 - 4P_3(4) + 6 \times 59 - 4 \times 27 + 11 = 0$$

• In the equation

$$P_3(x+4h) - 4P_3(x+3h) + 6P_3(x+2h) - 4P_3(x+h) + P_3(x) = 0,$$

we set x = 1 and h = 1 to have

$$P_3(5) - 4P_3(4) + 6P_3(3) - 4P_3(2) + P_3(1) = 0.$$

Since P_3 agrees with f at given data points, we have

$$f(5) - 4P_3(4) + 6f(3) - 4f(2) + f(1) = 0.$$

Using given data, we obtain

$$195 - 4P_3(4) + 6 \times 59 - 4 \times 27 + 11 = 0$$

which gives $P_3(4) = 113$.

• In the equation

$$P_3(x+4h) - 4P_3(x+3h) + 6P_3(x+2h) - 4P_3(x+h) + P_3(x) = 0,$$

we set x = 1 and h = 1 to have

$$P_3(5) - 4P_3(4) + 6P_3(3) - 4P_3(2) + P_3(1) = 0.$$

Since P_3 agrees with f at given data points, we have

$$f(5) - 4P_3(4) + 6f(3) - 4f(2) + f(1) = 0.$$

Using given data, we obtain

$$195 - 4P_3(4) + 6 \times 59 - 4 \times 27 + 11 = 0$$

which gives $P_3(4) = 113$. It is interesting to see that f(4) = 113.

• In the equation

$$P_3(x+4h) - 4P_3(x+3h) + 6P_3(x+2h) - 4P_3(x+h) + P_3(x) = 0,$$

we set x = 1 and h = 1 to have

$$P_3(5) - 4P_3(4) + 6P_3(3) - 4P_3(2) + P_3(1) = 0.$$

Since P_3 agrees with f at given data points, we have

$$f(5) - 4P_3(4) + 6f(3) - 4f(2) + f(1) = 0.$$

Using given data, we obtain

$$195 - 4P_3(4) + 6 \times 59 - 4 \times 27 + 11 = 0$$

which gives $P_3(4) = 113$. It is interesting to see that f(4) = 113. Thus $P_3(4) = f(4)$.

• In the equation

$$P_3(x+4h) - 4P_3(x+3h) + 6P_3(x+2h) - 4P_3(x+h) + P_3(x) = 0,$$

we set x = 1 and h = 1 to have

$$P_3(5) - 4P_3(4) + 6P_3(3) - 4P_3(2) + P_3(1) = 0.$$

Since P_3 agrees with f at given data points, we have

$$f(5) - 4P_3(4) + 6f(3) - 4f(2) + f(1) = 0.$$

Using given data, we obtain

$$195 - 4P_3(4) + 6 \times 59 - 4 \times 27 + 11 = 0$$

which gives $P_3(4) = 113$. It is interesting to see that f(4) = 113. Thus $P_3(4) = f(4)$. Why?

• In the equation

$$P_3(x+4h) - 4P_3(x+3h) + 6P_3(x+2h) - 4P_3(x+h) + P_3(x) = 0,$$

we set x = 1 and h = 1 to have

$$P_3(5) - 4P_3(4) + 6P_3(3) - 4P_3(2) + P_3(1) = 0.$$

Since P_3 agrees with f at given data points, we have

$$f(5) - 4P_3(4) + 6f(3) - 4f(2) + f(1) = 0.$$

Using given data, we obtain

$$195 - 4P_3(4) + 6 \times 59 - 4 \times 27 + 11 = 0$$

which gives $P_3(4) = 113$. It is interesting to see that f(4) = 113. Thus $P_3(4) = f(4)$. Why?

 This is due to the fact that the data set is associated with a polynomial of degree three.

• Consider a non-polynomial function f given by $f(x) = 2^x$.

• Consider a non-polynomial function f given by $f(x) = 2^x$. Let us generate four data points

$$\{(x, f(x)): (1,2), (2,4), (3,8), (5,32)\},\$$

• Consider a non-polynomial function f given by $f(x) = 2^x$. Let us generate four data points

$$\{(x, f(x)): (1,2), (2,4), (3,8), (5,32)\},\$$

and using this data set we wish to estimate f(4).

• Consider a non-polynomial function f given by $f(x) = 2^x$. Let us generate four data points

$$\{(x, f(x)): (1, 2), (2, 4), (3, 8), (5, 32)\},\$$

and using this data set we wish to estimate f(4).

• Since, four data points are given,

• Consider a non-polynomial function f given by $f(x) = 2^x$. Let us generate four data points

$$\{(x, f(x)): (1,2), (2,4), (3,8), (5,32)\},\$$

and using this data set we wish to estimate f(4).

 Since, four data points are given, we can find a polynomial P₃ of degree 3,

• Consider a non-polynomial function f given by $f(x) = 2^x$. Let us generate four data points

$$\{(x, f(x)): (1, 2), (2, 4), (3, 8), (5, 32)\},\$$

and using this data set we wish to estimate f(4).

 Since, four data points are given, we can find a polynomial P₃ of degree 3, which agrees with f at given points.

• Consider a non-polynomial function f given by $f(x) = 2^x$. Let us generate four data points

$$\{(x, f(x)): (1,2), (2,4), (3,8), (5,32)\},\$$

and using this data set we wish to estimate f(4).

- Since, four data points are given, we can find a polynomial P₃ of degree 3, which agrees with f at given points.
- Then, arguing as in previous problem, we obtain

$$f(5) - 4P_3(4) + 6f(3) - 4f(2) + f(1) = 0.$$

• Consider a non-polynomial function f given by $f(x) = 2^x$. Let us generate four data points

$$\{(x, f(x)): (1, 2), (2, 4), (3, 8), (5, 32)\},\$$

and using this data set we wish to estimate f(4).

- Since, four data points are given, we can find a polynomial P₃ of degree 3, which agrees with f at given points.
- Then, arguing as in previous problem, we obtain

$$f(5) - 4P_3(4) + 6f(3) - 4f(2) + f(1) = 0.$$

and hence, $P_3(4) = 16.5$,

• Consider a non-polynomial function f given by $f(x) = 2^x$. Let us generate four data points

$$\{(x, f(x)): (1, 2), (2, 4), (3, 8), (5, 32)\},\$$

and using this data set we wish to estimate f(4).

- Since, four data points are given, we can find a polynomial P₃ of degree 3, which agrees with f at given points.
- Then, arguing as in previous problem, we obtain

$$f(5) - 4P_3(4) + 6f(3) - 4f(2) + f(1) = 0.$$

and hence, $P_3(4) = 16.5$, which is very closed to the actual $f(4) = 2^4 = 16$,

• Consider a non-polynomial function f given by $f(x) = 2^x$. Let us generate four data points

$$\{(x, f(x)): (1,2), (2,4), (3,8), (5,32)\},\$$

and using this data set we wish to estimate f(4).

- Since, four data points are given, we can find a polynomial P₃ of degree 3, which agrees with f at given points.
- Then, arguing as in previous problem, we obtain

$$f(5) - 4P_3(4) + 6f(3) - 4f(2) + f(1) = 0.$$

and hence, $P_3(4) = 16.5$, which is very closed to the actual $f(4) = 2^4 = 16$, but not equal.

• Consider a non-polynomial function f given by $f(x) = 2^x$. Let us generate four data points

$$\{(x, f(x)): (1,2), (2,4), (3,8), (5,32)\},\$$

and using this data set we wish to estimate f(4).

- Since, four data points are given, we can find a polynomial P₃ of degree 3, which agrees with f at given points.
- Then, arguing as in previous problem, we obtain

$$f(5) - 4P_3(4) + 6f(3) - 4f(2) + f(1) = 0.$$

and hence, $P_3(4) = 16.5$, which is very closed to the actual $f(4) = 2^4 = 16$, but not equal. Why?

• Consider a non-polynomial function f given by $f(x) = 2^x$. Let us generate four data points

$$\{(x, f(x)): (1,2), (2,4), (3,8), (5,32)\},\$$

and using this data set we wish to estimate f(4).

- Since, four data points are given, we can find a polynomial P₃ of degree 3, which agrees with f at given points.
- Then, arguing as in previous problem, we obtain

$$f(5) - 4P_3(4) + 6f(3) - 4f(2) + f(1) = 0.$$

and hence, $P_3(4) = 16.5$, which is very closed to the actual $f(4) = 2^4 = 16$, but not equal. Why?

• This is due to the fact that the data set is associated with a non-polynomial function.

Problem: Given a data set $(x_0, f_0), \ldots, (x_n, f_n)$ consisting of

distinct nodes: $[x_0, x_1, \dots, x_n]$ and values: $[f_0, f_1, \dots, f_n]$,

construct a polynomial p(x) of degree at most n such that $p(x_j) = f_j$ for j = 0 : n.

Problem: Given a data set $(x_0, f_0), \ldots, (x_n, f_n)$ consisting of

distinct nodes: $[x_0, x_1, ..., x_n]$ and values: $[f_0, f_1, ..., f_n]$,

construct a polynomial p(x) of degree at most n such that $p(x_j) = f_j$ for j = 0 : n. Let \mathcal{P}_n denote the vector space of polynomials of degree at most n. Let $\phi_0(x), \ldots, \phi_n(x)$ be a basis of \mathcal{P}_n .

Problem: Given a data set $(x_0, f_0), \ldots, (x_n, f_n)$ consisting of

distinct nodes: $[x_0, x_1, \dots, x_n]$ and values: $[f_0, f_1, \dots, f_n]$,

construct a polynomial p(x) of degree at most n such that $p(x_j) = f_j$ for j = 0 : n. Let \mathcal{P}_n denote the vector space of polynomials of degree at most n. Let $\phi_0(x), \ldots, \phi_n(x)$ be a basis of \mathcal{P}_n . Let $p(x) = a_0\phi_0(x) + \cdots + a_n\phi_n(x)$. Then $p(x_i) = f_i$ for j = 0 : n yield

Problem: Given a data set $(x_0, f_0), \ldots, (x_n, f_n)$ consisting of

distinct nodes: $[x_0, x_1, \dots, x_n]$ and values: $[f_0, f_1, \dots, f_n]$,

construct a polynomial p(x) of degree at most n such that $p(x_j) = f_j$ for j = 0: n.

Let \mathcal{P}_n denote the vector space of polynomials of degree at most n. Let $\phi_0(x), \ldots, \phi_n(x)$ be a basis of \mathcal{P}_n . Let $p(x) = a_0\phi_0(x) + \cdots + a_n\phi_n(x)$. Then $p(x_i) = f_i$ for j = 0: n yield

 $\begin{bmatrix} \phi_0(x_0) & \phi_1(x_0) & \cdots & \phi_n(x_0) \\ \phi_0(x_1) & \phi_1(x_1) & \cdots & \phi_n(x_1) \\ \vdots & \vdots & \cdots & \vdots \\ \phi_0(x_n) & \phi_1(x_n) & \cdots & \phi_n(x_n) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ f_n \end{bmatrix}.$

Problem: Given a data set $(x_0, f_0), \ldots, (x_n, f_n)$ consisting of

distinct nodes: $[x_0, x_1, \dots, x_n]$ and values: $[f_0, f_1, \dots, f_n]$,

construct a polynomial p(x) of degree at most n such that $p(x_j) = f_j$ for j = 0: n.

Let \mathcal{P}_n denote the vector space of polynomials of degree at most n. Let $\phi_0(x), \ldots, \phi_n(x)$ be a basis of \mathcal{P}_n . Let $p(x) = a_0\phi_0(x) + \cdots + a_n\phi_n(x)$. Then $p(x_i) = f_i$ for j = 0: n yield

$$\begin{bmatrix} \phi_0(x_0) & \phi_1(x_0) & \cdots & \phi_n(x_0) \\ \phi_0(x_1) & \phi_1(x_1) & \cdots & \phi_n(x_1) \\ \vdots & \vdots & \cdots & \vdots \\ \phi_0(x_n) & \phi_1(x_n) & \cdots & \phi_n(x_n) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ f_n \end{bmatrix}.$$

Since the coefficient matrix is nonsingular (Check), the linear system has a unique solution.

Problem: Given a data set $(x_0, f_0), \ldots, (x_n, f_n)$ consisting of

distinct nodes: $[x_0, x_1, ..., x_n]$ and values: $[f_0, f_1, ..., f_n]$,

construct a polynomial p(x) of degree at most n such that $p(x_j) = f_j$ for j = 0: n.

Let \mathcal{P}_n denote the vector space of polynomials of degree at most n. Let $\phi_0(x),\ldots,\phi_n(x)$ be a basis of \mathcal{P}_n . Let $p(x)=a_0\phi_0(x)+\cdots+a_n\phi_n(x)$. Then $p(x_j)=f_j$ for j=0: n yield

$$\begin{bmatrix} \phi_0(x_0) & \phi_1(x_0) & \cdots & \phi_n(x_0) \\ \phi_0(x_1) & \phi_1(x_1) & \cdots & \phi_n(x_1) \\ \vdots & \vdots & \cdots & \vdots \\ \phi_0(x_n) & \phi_1(x_n) & \cdots & \phi_n(x_n) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ f_n \end{bmatrix}.$$

Since the coefficient matrix is nonsingular (Check), the linear system has a unique solution. Thus the polynomial interpolation problem has a unique solution.

Error in Polynomial interpolation

Interpolation: For a given a data set $(x_0, f_0), \ldots, (x_n, f_n)$ consisting of

distinct nodes: $[x_0, x_1, ..., x_n]$ and values: $[f_0, f_1, ..., f_n]$,

we find a unique polynomial p(x) of degree at most n such that $p(x_j) = f_j$ for j = 0: n.

Error in Polynomial interpolation

Interpolation: For a given a data set $(x_0, f_0), \ldots, (x_n, f_n)$ consisting of

distinct nodes: $[x_0, x_1, ..., x_n]$ and values: $[f_0, f_1, ..., f_n]$,

we find a unique polynomial p(x) of degree at most n such that $p(x_j) = f_j$ for j = 0: n. Further, difference between f and p is illustrated in the following result:

Error in Polynomial interpolation

Interpolation: For a given a data set $(x_0, f_0), \ldots, (x_n, f_n)$ consisting of

distinct nodes: $[x_0, x_1, \dots, x_n]$ and values: $[f_0, f_1, \dots, f_n]$,

we find a unique polynomial p(x) of degree at most n such that $p(x_j) = f_j$ for j = 0: n. Further, difference between f and p is illustrated in the following result:

Theorem:

Suppose x_0, x_1, \ldots, x_n are distinct real numbers in the interval [a, b] and $f \in C^{n+1}[a, b]$. Then, for each $x \in [a, b]$, a number ξ_x between x_0, x_1, \ldots, x_n and hence in (a, b) exists such that

$$f(x) - p(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!}(x-x_0)(x-x_1)\dots(x-x_n), \quad (1)$$

where p(x) is an interpolating polynomial of f with degree n.