中南大学模拟电子技术试卷(第1套)

- 二、基本题: (每题 5 分, 共 25 分)
- 1. 如图二所示电路中 D 为理想元件,已知 $u_i = 5\sin \omega tV$,试对应 u_i 画出 u_o 的波形图。

题二、1图

_,

- 2. 测得电路中 NPN 型硅管的各级电位如图所示。试分析管子的工作状态(截止、饱和、放大)。
- 3. 已知 BJT 管子两个电极的电流如图所示。求另一电极的电流,说明管子的类型(NPN 或 PNP)并在圆圈中画出管子。

- $r_{bb'} = 100$ 2 三、如图所示电路中, $\beta = 100$,试计算: (15 分)
- 1. 放大电路的静态工作点; (6分)
- 2. 画出放大电路的微变等效电路; (3分)
- 3. 求电压放大倍数 Au、输入电阻 R_i 和输出电阻 R_o ; (6分)

四、判断如图四所示电路中引入了何种反馈,并在深度负反馈条件下计算闭环放大倍数。(9分)

五、电路如图五所示。试用相位条件判断下面的电路能否振荡,将不能振荡的电路加以改正。(6分)

六、用理想运放组成的电压比较器如图所示。已知稳压管的正向导通压降 $U_{\rm D}$ =0.7V , $U_{\rm Z}$ = 5V。

- 1. 试求比较器的电压传输特性;
- 2. 若 u_i =6sin ωt V, U_R 为方波如图所示,试画出 u_o 的波形。 (10 分)

七、理想运放电路如图所示,设电位器动臂到地的电阻为 KR_W , $0 \le K \le 1$ 。试求该电路电压增益的调节范围。 (10 分)

八、一串联型稳压电路如图所示。已知误差放大器的 $A_{\rm u} >> 1$,稳压管的 $U_{\rm z} = 6{\rm V}$,负载 $R_{\rm L} = 20\,\Omega$ 。

- 1. 试标出误差放大器的同相、反相端;
- 2. 说明电路由哪几部分组成?
- 3. 求 U_{o} 的调整范围;

(10分)

参考答案

一,

1. 电流、正向、反向; 电压。

2. 线性、非线性。

3. 共基、共射、共集。

4.差模、共模、
$$\left| rac{A_{
m od}}{A_{
m oc}}
ight|$$
 。

5. 低通、200、200。

6. 乙类、
$$0$$
、 $\frac{{V_{cc}}^2}{2R_L}$ 、 0.2 。

_,

1.

3.

2. 放大状态。

4. 电压一串联、增大、宽。

三、

1.

$$I_{BQ} \approx 22 \mu A$$
 $I_{CQ} = 2.2 mA$ $U_{CEQ} = 3.2 V$

2.

$$\dot{A}_{u} = \frac{-\beta R_{C} // R_{L}}{r_{be}} = -115$$

$$R_{i} = R_{b1} // R_{b2} // r_{be} \approx r_{be} = 1.3k\Omega \qquad R_{o} = R_{C} = 3K\Omega$$

四、反馈组态为: 电压一串联负反馈

$$\dot{A}_{uf} = \frac{1}{\dot{F}} = 1 + \frac{R_2}{R_1}$$

五、该放大电路为共基接法,根据瞬时极性法可知引入了负反馈,不能振荡。 更正:将变压器副边的同名端标在"地"的位置即可。 六、

1.

$$U_{TH} = -\frac{R_1}{R_2} U_R = -\frac{2}{3} U_R$$

七、运放构成差动输入形式,反相端输入为 $U_{\rm I}$,同相端输入 $U_{I}'=0\sim U_{I}$ 。

$$U_{o} = -\frac{R_{f}}{R_{1}}U_{I} + (1 + \frac{R_{f}}{R_{1}})U_{I}^{'} = -\frac{R_{f}}{R_{1}}U_{I} \sim U_{I}$$

八、

- 1. 误差放大器的同相在下方、反相端在上方。
- 2. 电路由四个部分构成: (1) 由 R_1 、 R_2 和 R_W 构成的取样电路; (2) 由运放构成负反馈误差放大器; (3) 由 R和 D_W 构成基准电压电路; (4) 由 T1和 T2复合管构成调整管。

3.

$$U_o = \frac{R_1 + R_2 + R_w}{R_w'' + R_2} U_Z = \frac{R_1 + R_2 + R_w}{R_2} U_Z \sim \frac{R_1 + R_2 + R_w}{R_w + R_2} U_Z = 15 \sim 10V$$

中南大学 模拟电子技术试卷 (第2套)

一、填空题(除6题外,每空1分,共20分)				
1. 稳压管是一种特殊的二极管,它工作在 状态.				
2. 甲类、乙类和甲乙类放大电路中,				
电路效率较高;				
率一般电路。				
3. 直接耦合放大电路存在 现象。				
4. 图 1 示电路,要求达到以下效果,应该引人什么反馈?				
(1)希望提高从 b1 端看进去的输入电阻,接 Rf 从到;				
(2) 希望输出端接上负载 RL 后, Uo (在给定 Ui 情况下的交流电压有效值) 基本不变,接				
Rf 从; (用 A~F 的字符表示连接点)。				
Rb1 $RC1$ $RC2$ $Re3$ $C2$ $Re3$ $C3$ $C4$ $C4$ $C5$ $C5$ $C5$ $C6$ $C6$ $C6$ $C6$ $C6$ $C6$ $C6$ $C6$				
5. 集成运放内部一般包括四个组成部分,它们是,,,,,,,,,				
6. 在图 2 示差动放大电路中,假设各三极管均有 β = 50, U_{BE} = 0.7V。求				
(1) $I_{\text{CQ1}}=I_{\text{CQ2}}=$ mA; (2 $\%$)				
(2) U _{CQ1} =U _{CQ2} =V (对地); (2分)				
(3) $Ro = \underline{\qquad} K \Omega \circ (2 \%)$				
$10 \text{ k}\Omega$ $+ v_a - 10 \text{ k}\Omega$				

П5кΩ

(图 2)

- 二、OCL 电路如图 3 所示,已知 Vcc=12V, $R_L=8\,\Omega$,vi 为正弦电压。(10 分)
- 1. 求在 $V \cos = 0$ 的情况下,电路的最大输出功率 $P \max$ 、效率 η 和管耗 P_T 。
- 2. 求每个管子的最大允许管耗 Pcm 至少应为多少?

- 三、某放大电路的频率响应如图 4 所示。(12 分)
- 1. 该电路的中频放大倍数|A_{um}| = ?
- 2. 该电路的增益频率响应 $A_U(j\omega)$ 表达式如何?
- 3. 若已知其输出电压最大不失真动态范围为 Uom = 10V , 当输入信号 $Ui = 0.1\sin(2\pi \times 1.5 \times 10^2)t + 2\sin(2\pi \times 50 \times 10^3)t(V)$ 时, 试判断输出信号是否会失真? 说明理由。

四、如图 5 所示电路,设已知各元件参数,包括 T1 的 gm 和 T2 的 β 及 r_{be} ,试求两级增益 Aui、Aus、输入和输出电阻(用表达式表示)。(12 分)

五、在图示 6 电路中,设 R_1 = R_F = 10K Ω , R_2 = 20K Ω , R' = 4K Ω , 两个输入电压 U_{i1} 和 U_{i2} 的波形如图 7 所示,试写出 U_{0} 的表达式,并在对应的坐标上画出输出电压 U_{0} 的波形,且标上相应电压数值。(10 分)

六、用集成运放构成的串联型稳压电路如图 8 所示。在 Dz 的稳压值 Uz=+6V,R1=2k Ω ,R2=1k Ω ,R3=1 k Ω 时,电源电压为 220V,电路输出端接负载电阻 R_L 。

1. 计算输出电压 Uo 的范围为多少?

(12分)

- 2. 若 T1 管的最低管压降为 3V,则变压器副边电压有效值 U2应为多少伏?
- 3. 在 (1) 和 (2) 的条件下,若 R_L 变化范围为 $100 \sim 300 \, \Omega$,试说明三极管 T1 在什么时候 功耗最大?其值如何?

七、理想运放组成如图 9 所示的电压比较电路。已知运放输出 \pm Uomax = \pm 12V,二极管导通压降为 0.7V,发光二极管 LED 导通压降为 1.4V。(12 分)

- 1. 试回答在什么条件下, LED 亮;
- 2. 设 LED 工作电流为 5mA~30mA,确定限流电阻 R 的范围;
- 3. 若将运放 A1、A2 的同相、反相输入端位置对换,电路其他接线都不变,画出变换后的 Uo = f(Ui) 曲线。

八、试用集成运放和乘法器设计,实现以下关系: $U_o = 10U_{i!}^2 - 5U_{i2}^2 + 2U_{i3}$ 设模拟乘法器系数 K=0.5 V^{-1} 。画出电路原理图;估算电阻元件的阻值。所选用的电阻值希望在 $20K\sim200K$ Ω 的范围内。

(12分)

参考答案

1. 1. 反向击穿;

2. 2. 甲类、甲乙类、乙类、甲乙类;

3. 3. 零点漂移;

4. 4. (串联负反馈)从C到F;(电压负反馈)从A到E;

5. 5. 差放输入级、压放中间级、互补输出级、偏置电路;

6. 6. (1) 0.5; (2) 5; (3) 20;

二、 1

$$P_{o \max} = \frac{V_{CC}^{2}}{2R_{L}} = 9W$$

$$I_{C(AV)} = \frac{1}{2\pi} \int_{0}^{\pi} I_{oM} \operatorname{Sin} \omega \operatorname{in} \omega \operatorname{t} = \frac{U_{oM}}{\pi R_{L}}$$

$$P_{V} = 2V_{CC}I_{C(AV)} = \frac{2V_{CC}^{2}}{\pi R_{L}} = 11.46W$$

$$\eta = \frac{P_{o \max}}{P_{V}} = 78.5\%$$

$$P_{T1} = P_{T2} = \frac{1}{2} (P_{V} - P_{o \max}) = 1.23W$$
2.
$$P_{T \max} = 0.2P_{o \max} = 1.8W$$

三、

$$\left| \dot{A}_{um} \right| = 10$$

$$\dot{A}_{u}(j\omega) = \dot{A}_{um} \frac{j\frac{f}{f_{L}}}{(1+j\frac{f}{f_{L}})(1+j\frac{f}{f_{H}})} = \frac{10 \cdot j\frac{f}{10}}{(1+j\frac{f}{10})(1+j\frac{f}{10^{5}})}$$

3. 输出电压会失真。输入信号中有两个频率成分 150Hz 和 50KHz,这两种信号的放大倍数均为 10,所以幅度为 2V 的输入信号被放大后,将超过最大不失真输出幅度 $\sqrt{2}U_{om}=14V$ 而产生非线性失真。

四、

1.

$$\dot{A}_{ui} = \frac{\dot{U}_o}{\dot{U}_{o1}} \cdot \frac{\dot{U}_{o1}}{\dot{U}_I} = \frac{g_m(R_{g3} // R_{i2})}{1 + g_m(R_{g3} // R_{i2})} \cdot \frac{-\beta R_c}{r_{be} + (1 + \beta)R_e} \approx \frac{-\beta R_c}{r_{be} + (1 + \beta)R_e}$$

$$R_{i} = R_{g1} / / R_{g2} \qquad R_{o} = R_{c}$$

$$\dot{A}_{us} = \frac{\dot{U}_{o}}{\dot{U}_{c}} = \frac{\dot{U}_{o}}{\dot{U}_{c}} \cdot \frac{\dot{U}_{I}}{\dot{U}_{c}} = \dot{A}_{u} \cdot \frac{\dot{U}_{I}}{\dot{U}_{c}} = \dot{A}_{u} \cdot \frac{R_{i}}{R_{c} + R_{c}}$$

五、

$$u_o = -\frac{R_f}{R_1}u_{I1} - \frac{R_f}{R_2}u_{I2} = -1 - 0.5\sin\omega t$$

六、

$$U_0 = \frac{R_1 + R_2 + R_3}{R_3 + R_2} U_Z \sim \frac{R_1 + R_2 + R_3}{R_3} U_Z = 12 \sim 24V$$

2.

$$U_I = U_{CE \, min} + U_{o \, max} = 27V$$
 $U_2 \approx \frac{U_I}{1.2} = 22.5V$

3.

$$\begin{split} I_{o\,\text{max}} &= \frac{U_{o\,\text{min}}}{100\Omega} = 0.12A \\ I_{E\,\text{max}} &= I_{o\,\text{max}} + \frac{U_{o\,\text{min}}}{R_1 + R_2 + R_3} \approx I_{o\,\text{max}} = 0.12A \\ P_{T\,\text{max}} &= I_{E\,\text{max}} \left(U_{\,\text{Im}\,ax} - U_{o\,\text{min}} \right) = 1.8W \end{split}$$

七、

- 1. 1. 当 U_I>6V 或 U_I<3V 时, U_O=11.3V, LED 亮;
- 2. 2

$$R = \frac{U_o - 1.4}{I} = 0.33K \sim 1.98K\Omega$$

3.

八、

$$U_{o1} = -\frac{R_{f1}}{R_1} \times 0.5 U_{I1}^2 - \frac{R_{f1}}{R_2} u_{I3}$$

$$U_{o} = -\frac{R_{f2}}{R_{3}}U_{o1} - \frac{R_{f2}}{R_{4}} \times 0.5U_{I2}^{2} = \frac{R_{f1}R_{f2}}{2R_{1}R_{3}}U_{I1}^{2} - \frac{R_{f2}}{2R_{4}}U_{I2}^{2} + \frac{R_{f1}R_{f2}}{R_{2}R_{3}}U_{I3}$$

$$\therefore \frac{R_{f1}R_{f2}}{2R_1R_3} = 10, \frac{R_{f1}R_{f2}}{R_2R_3} = 2, \frac{R_{f2}}{2R_4} = 5$$

取 R_4 =20K,则 R_{f2} =200K, R_{f1} =20K, R_1 =10K, R_2 =100K, R_3 =100k,

$$R_{1}' = R_{1} / / R_{2} / / R_{f1} = 6.2 K\Omega$$
 $R_{2}' = R_{3} / / R_{4} / / R_{f2} = 15 K\Omega$

中南大学 模拟电子技术试卷 (第3套)

一. 填空题 (每空 1 分,共 20 分) (注:同一题中可能只给出部分"空"的选项)					
1. 1. $U_{GS} = 0$ 时,能够工作在恒流区的场效应管有:。					
A. JFET; B. 增强型 MOSFET; C. 耗尽型 MOSFET;					
2. 测得放大电路中某 BJT 各极直流电位 $V_1=12V$, $V_2=11.3V$, $V_3=0V$, 则该 BJT 的基极					
电位等于,由材料制成,管型为。					
3. 现测得两个共射放大电路空载时的 \dot{A}_{u} 均为 $_{-100}$,将它们连成两级放大电路后,其电压					
放大倍数应10000,且与级间耦合方式。					
A.大于; B. 等于; C.小于; E. 有关; F. 无关;					
4. 差分放大电路的等效差模输入信号 u_d 等于两个输入信号 u_1 和 u_2 的					
输入信号 u_c 是两个输入 u_1 和 u_2 的。					
A.差; B.和; C.平均值;					
5. 互补输出级通常采用					
型三极管交替工作。					
A. 负载能力; B.最大不失真输出电压;					
6. 通用型集成运放通常采用					
入级一般为 放大器,其目的是为了。					
7. 恒流源在集成运放中有两个作用: 一是为各级提供, 二是作为					
有源负载用来提高。					
8. 信号处理电路中,为了避免 50Hz 电网电压的干扰进入放大器, 应该选用滤波					
器; 欲从输入信号中取出低于 20kHz 的信号,应该选用滤波器。					
9. 由 FET 构成的放大电路也有三种接法,与 BJT 的三种接法相比,共源放大器相当于					
放大器。					
二. 放大电路及晶体管的输出特性如图所示。设 $U_{\text{BEQ}}=U_{\text{CES}}=0.7\text{V}$ 。 (10分)					
1. 用图解法确定静态工作点 I_{CQ} , U_{CEQ} ;					
2. 确定放大电路最大不失真输出电压的有效值 $U_{\rm om}$ 。					
12V t _c /mA 30 μ Δ					
750 kΩ 4kΩ 3 20 μ A					

- 三. 电路如图所示,已知: BJT 的 $\beta = 80$, $r_{be}=1k\Omega$, $R_L=3k\Omega$.
 - 1. 试指出该放大电路的接法(或称为组态);
 - 2. 画出该电路的微变等效电路;
 - 3. 分别写出 $\dot{A_u}$ 、 R_i 和 R_o 的表达式并计算。

(10分)

四. 已知某电路的频率特性为 (10分)

$$\dot{A}_u = \frac{-32}{(1 + \frac{10}{jf})(1 + j\frac{f}{10^5})}$$

- 1. 试画出对应 Bode 图(包括幅频和相频特性);
- 2. 在图中标出 ft 和 ft 的位置,说明产生 ft 和 ft 的主要因素是什么?
- 3. 该放大电路有几级? 耦合方式是什么?
- 五. 由理想运放构成的电路如图所示。 (10分)
- 1. 试判断电路的反馈极性和反馈类型(或称为反馈组态);
- 2. 说明这种反馈类型对放大电路的哪种性能指标产生何种影响?
- 3. 估算相应的闭环放大倍数 \dot{A}_f 和闭环放大电压倍数 \dot{A}_{uf} 。

六. 如图所示电路,已知: $U_{II} = 4V \, \text{和} \, U_{I2} = 1V$ 。 (12 分)

- 1. 当开关 S 打开时,写出 U_{03} 和 U_{01} 之间的关系式;
- 2. 写出 U_{04} 与 U_{02} 和 U_{03} 之间的关系式;
- 3. 当开关 S 闭合时,分别求 U_{01} U_{02} U_{03} U_{04} 值(对地的电位);
- 4. 设 t = 0 时将 S 打开, 问经过多长时间 $U_{04} = 0$?

题六图

- 1. 试画出下列情况下输出端 uo 的波形, 并标明幅度:
- (1) K1 和 K2 均断开; (2) K1 合, K2 断开; (3) K2 合, K1 断开;
- 2. 写出上述(1)(2)情况下输出电压平均值 $U_{O(AV)}$ 与变压器副边电压有效值 U_2 之间的关系式(忽略 R 的分压作用);

八. 电路如图所示。

(8分)

- 1. 1. 定性说明下列正弦波振荡电路能否起振并产生稳幅振荡,如不能请改正之。
- 2. 2. 说明该振荡电路的类型(或者说名称);
- 3. 3. 说明反馈电压取自何处,并在图中标出。

- 九. 已知某电压比较器的输入与输出波形如图所示。试设计该电压比较器:
- 1. 画出其电压传输特性;

(10分)

- 2. 画出该电压比较器的电路图;
- 3. 电路参数的估算和选择(限流电阻不要求);

参考答案

_,

1. A, C;

2. 11.3V, Si, PNP;

3. C, F;

4. A, C;

5. 共集、A、不同;

6. 直接、低频、差动、抑制共模信号;

7. 稳定的直流偏置、电压放大倍数;

8. 带阻、低通;

9. 共射。

二,

2.

$$U_{\mathit{Om}} = \frac{1}{\sqrt{2}} \mathit{MIN} \{ (U_{\mathit{CEQ}} - U_{\mathit{CES}}), I_{\mathit{CQ}}(R_{\mathit{C}} /\!/ R_{\mathit{L}}) \} = \frac{1}{\sqrt{2}} I_{\mathit{CQ}}(R_{\mathit{C}} /\!/ R_{\mathit{L}}) = 2.1 V$$

三、

1. 共集组态;

2.

3.

$$\dot{A}_{u} = \frac{\dot{U}_{o}}{\dot{U}_{I}} = \frac{(1+\beta)R_{L}^{'}}{r_{be} + (1+\beta)R_{L}^{'}} \approx 1$$

$$R_{i} = R_{b} / / [r_{be} + (1+\beta)R_{L}^{'}] = 76K\Omega$$

$$R_{o} = R_{e} / / \frac{R_{S} / / R_{b} + r_{be}}{1+\beta} \approx 37\Omega$$

四、

1.

- 2. f_L 通常由耦合电容或旁路电容产生, f_H 由三极管结电容产生。
- 3. 放大电路只有一级,为阻容耦合方式。

五、

- 1. 电流一并联负反馈;
- 2. 减小输入电阻,增大输出电阻,稳定输出电流;

3.

 $20 \lg |\dot{A}_{U}| / dB$

$$\begin{split} \dot{F} &= \frac{\dot{I}_f}{\dot{I}_o} = -\frac{R_2}{R_2 + R_f} & \dot{A}_f &= \frac{1}{\dot{F}} = -(1 + \frac{R_f}{R_2}) \\ \dot{A}_{uf} &= \frac{\dot{I}_o R_L}{\dot{I}_I R_1} = \dot{A}_f \cdot \frac{R_L}{R_1} = -(1 + \frac{R_f}{R_2}) \frac{R_L}{R_1} \end{split}$$

六、

$$U_{o3} = -\frac{1}{R_1 C} \int U_{o1} dt = -0.02 U_{o1} \cdot t \qquad (V)$$

$$2. \quad U_{04} = 2U_{02} - U_{03}$$

3.
$$U_{o1} = 7V$$
 $U_{o2} = -2V$ $U_{o3} = 0V$ $U_{o4} = 2U_{o2} = -4V$

4.
$$t = 28ms$$

七、

1.

2.

$$(1)$$
全波整流 $U_o = 0.9U_2$

(2)电容滤波
$$U_o = 1.2U_2$$

八、

- 1. 电路不能振荡;调换变压器同名端即可;
 - 2. 变压器反馈式 LC 振荡器;
 - 3. 从变压器副边取反馈;

九、

解法二:

中南大学 模拟电子技术试卷 (第4套)

一、	填空题 (本题 24 分,每空 1.5 分)				
1.	稳压管通常工作在				
2.	在 OCL 乙类功放中,若其最大输出功率为 1W,则电路中功放管(单管)的集电极最大				
功耒	毛约为。				
3.	某放大电路负载开路时, U_0 =6V,接上 3K Ω 负载后, U_0 =4V,说明该放大电路的输出电				
阻力	R_0 =。				
	正弦波振荡器的振荡条件是。				
	为了避免 50Hz 电网电压的干扰信号进入放大器,应选用滤波电路。				
ь.	在放大电路中,为了稳定静态工作点,应引入				
应号	入				
7.	互补输出级中的 BJT 通常采用接法,其目的是为了提高(A.负载能				
力;	B.最大不失真输出电压)。				
8.	通用型集成运放通常采用				
9.	双极型三极管是				
	置电压,集电极需要加偏置电压;场效应管是 控制器件。				
10.	在运算电路中,运算放大器工作在 区,在滞回比较器中,运算放大器工作				
在	、区。				
	、(共 12 分)				
1.	二极管电路如图所示,考虑二极管的正向压降为 $0.7V$,求输出电压 U 。(6 分)				
2.	测得处于放大状态的三极管三个管脚的直流电位如图所示, (6分)				
	试说明三极管为 () 管, () 类型。 a. 硅管; b. 锗管; c. NPN; d. PNP;				
	a. 硅管; b. 锗管; c. NPN; d. PNP; p,				
	15V U ₀				
	0.25√ oy -6V				
	(a) (b)				
	题二图				

三、电路如图所示,集成运放输出电压的最大幅值为 $\pm 14V$,写出 u_{o1} 、 u_{o2} 的表达式并填表。 (12分)

四、判断图四电路中整体反馈的反馈组态,求 $\dot{U}o$ 的表达式。(12分)

- 五、图五中 β =30, r_{be} =1kΩ, R_{b} =300kΩ, R_{c} = R_{L} =5kΩ, R_{e} =2kΩ, U_{BE} =0.7V, V_{CC} =24V(本题 16 分)
- 1. 计算电路的静态工作点;
- 2. 画出该电路的微变等效电路;
- 3. 计算 Au、Ri、Ro

六、电路如图六所示。

- 1. 分别标出 и01 和 и02 对地的极性;
- 2. 当 U_{21} =18V, U_{22} =22V 时,画出 u_{01} 、 u_{02} 的波形
- 3. 当 U_{21} =18V, U_{22} =22V 时,求出 $U_{01(AV)}$ 和 $U_{02(AV)}$ 各为多少?

七、用理想运放构成的电路如图所示。已知:两个稳压管的性能相同,正向导通电压为 $U_{\rm D\ (on)}=0.7{
m V}$,稳定电压为 $U_{\rm z}=4.3{
m V}$ 。 (12 分)

- 1. 试求电路的电压传输特性并画图;
- 2. $u_i = 2\sin \omega t V$, 试画出电路的输出电压的 u_o 波形。

题七图

参考答案

一、

- 1. 1. 反向击穿;
- 2. 2. 0.2W;
- 3. 3. 1.5K;
- 4. 4. $|\dot{A}\dot{F} \geq 1|_{\pi} \varphi_A + \varphi_B = 2n\pi$;
- 5. 5. 带阻;
- 6. 6. 直流、交流;
- 7. 7. 共集、负载能力;
- 8. 8. 直接;
- 9. 9. 电流、正向、反向、电压;
- 10. 10. 线性、非线性;

二,

- 1. 1. $U_0 = -0.7V$;
- 2. 2. 锗管、PNP;

三、

$$u_{o1} = -10u_I$$
 $u_{o2} = 11u_I$

$u_{\rm I}/{ m V}$	0	0.5	1.0	1.5
$u_{\rm O1}/{ m V}$	0	- 5	-10	-14
<i>u</i> _{O2} /V	0	5.5	11	14

四、电压一串联负反馈

$$F = \frac{U_f}{U_o} = \frac{R_1}{R_1 + R_2} \qquad A_{uf} \approx \frac{1}{F} = 1 + \frac{R_2}{R_1}$$

$$U_o = A_{uf}U_I = (1 + \frac{R_2}{R_1})U_I$$

五、

1.

$$\begin{split} I_{BQ} &= \frac{V_{CC} - U_{BEQ}}{R_b + (1+\beta)R_e} \approx 64 \mu A \\ I_{CQ} &= \beta I_{BQ} = 1.9 mA \\ U_{CEQ} &\approx V_{CC} - I_{CQ}(R_c + R_e) = 10.7 V \end{split}$$

2.3.

$$\dot{A}_{u} = \frac{-\beta(R_{c} // R_{L})}{r_{be} + (1+\beta)R_{e}} = -1.2$$

$$R_{i} = R_{b} // [r_{be} + (1+\beta)R_{e}] = 52K\Omega$$

$$R_{o} = R_{c} = 5K\Omega$$

1. U₀₁ 对地极性为"正", U₀₂ 对地极性为"负";

2.

3.

$$U_{o1(AV)} = -U_{o2(AV)} = 0.45(U_{21} + U_{22}) = 18V$$

七、

$$U_{TH} = \frac{R_1}{R_2} U_Z = 1 V$$

- 二、简单分析题(25分,每题5分)
- 1. 己知某共射放大电路的幅频特性如图所示,
- (1) 电路的中频电压增益 A_{um}=_____。
- (2) 上限截止频率是由_____原因产生的。
- (3) 电压放大倍数的表达式 A_u =

得 分 一、 與 全 憑 (15 分)	母全1分)
评卷人	
1. 二极管两个最主要的参数是	<u> </u>
2. 双极型三极管是	控制器件:
场效应管是	控制器件。
Au1=20, Au2=-10, Au3=1。则可 Au1 是	
4. 在有源滤波器中,运算放大器工作	在区;
在滞回比较器中,运算放大器工作在	区。
5. 通用型集成运放通常采用	耦合方式;

- 二、简单分析题(25分,每题5分)
- 1. 己知某共射放大电路的幅频特性如图所示,
- (1) 电路的中频电压增益 A_{um}=_____。
- (2) 上限截止频率是由_____原因产生的。
- (3) 电压放大倍数的表达式 A_u =

- 2. 电路如图所示: (1) 试定性画出电路的输出波形。
 - (2) 计算电路的振荡频率和输出电压 U。(有效值)。

9

3. 在如图所示电路中,已知增强型 MOS 管的开启电压 UGS (th) 的绝对值均为 2V, 试判断各管的工作状态。

- 二、4. 某电路如图所示: 已知 $R_1=R_2=10$ K Ω ,C=22nF。
 - (1) 试写出其频率特性表达式。
 - (2) 计算其截止频率,并说明电路属于哪种滤波类型?

学

专业班级

- 二、5. 己知 $V_{\rm cc}=15$ V, $R_{\rm L}=4\Omega$, T_1 和 T_2 管的饱和管压降 $|U_{CES}| = 2V$, 输入电压足够大。试问:
 - (1) 最大输出功率 Pom 和效率 η 各为多少?
 - (2) 晶体管的最大功耗 P_{Tmax} 为多少?
 - (3) 二极管 D1和 D2在电路中起到什么作用?

中南大学

学 院

Q

X

○ ⊕ 150% - 🖫 🖵 🔎

3

r[†]

得 分 评卷人

三、直接耦合共射放大电路如图所示,已知晶体管的 β =100, r_{bb} =100 Ω $U_{\text{BE}} = U_{\text{CES}} = 0.7 \text{V}$, $R_{\text{s}} = 2 \text{K} \Omega$, $R_{\text{b}} = 31 \text{K} \Omega$, $R_{\text{c}} = R_{\text{L}} = 2 \text{K} \Omega$, $V_{\text{CC}} = 12 \text{V}$. 计算Q点各值。

- (2) 画出微变等效电路,并求解性能指标Aus、Ri、R。以及 UoM 值。
- (3) 说明电路会首先发生哪种失真? 应该首先考虑调节哪个元件及其参数?
- (4) 当 $U_s = 45 \text{mV}$ (有效值) 时输出波形否会发生失真? 为什么?

Ci

2

6

评卷人

评卷密封线

考试成绩按0分处理

(1) 说明 R5 在放大电路的级间引入了哪种组态的5个

(2) 定性说明所引反馈对放大电路输入电阻和输出 的影响。(3) 在深度负反馈条件下估算放大电路的电压放大倍数 Au。

0 +12V R_4 9 27ΚΩ T_3 本Dz R_5 T_2 R_1 20K Ω $u_{\rm o}$ R_2 R_6 R_3 $u_{\rm S}$ $1K\Omega$ 1.5KΩ 36**Κ**Ω o -12V

学 完

业班级

 \boxtimes \bigcirc

工具

主页

学 院

中南大学

♠ ⊕ ⊖ ⊕ 129% - □ □ ∅

得 分 评卷人

中南大学

六、试设计电路实现如图所示的输入 ui (t) 到输出 uo (t) 的波形转换功能。

- (1) 画出 u,与 u。之间的电压传输特性。(2) 画出电路原理图。
- (3) 进行元件参数选择以实现要求的功能。

×

提供:任意阻值电阻若干:运放 OP07 一片(已知运放的最大输出值 $\pm U_{OM}=\pm 14V$): 稳压管若干(已知稳压管 IN4731 的参数为 Uz=4.3V, Up=0.7V, Iz=5mA, PzM=1W)。

