Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Высшая школа информационных систем и суперкомпьютерных технологий

Низкоуровневое программирование

Отчёт по лабораторной работе №1 Машина Тьюринга-Поста

> Работу выполнил: Унтила А.А. Группа: 3530901/90004 Преподаватель: Алексюк А.О.

Санкт-Петербург 2021

Содержание

1.	Цель работы	9
2.	Программа работы	9
3.	Теоретическая информация	•
4.	Ход выполнения работы 4.1. Постановка задачи	4
	4.4. Реализация машины в симуляторе	ŀ
5.	Вывол	6

1. Цель работы

Построить машину Тьюринга-Поста, реализующую битреверс (запись разрядов в обратном порядке) двочиного числа.

2. Программа работы

- Постановка задачи и теоретическая информация.
- Выбор симулятора машины Тьюринга.
- Выбранный алфавит и состояния.
- Реализация машины в симуляторе.

3. Теоретическая информация

Машина Тьюринга - абстрактная вычислительная машина, являющаяся расширением конечного автомата, каким-либо образом реализующего процесс пошагового вычисления. Всякий интуитивный алгоритм может быть реализован с помощью некоторой машины Тьюринга.

В состав машины Тьюринга входит неограниченная в обе стороны лента, разделённая на ячейки, и каретка (головка записи-чтения) - управляющее устройство, способное находиться в одном из множества состояний. Число возможных состояний управляющего устройства конечно и точно задано. Управляющее устройство может перемещаться влево и вправо по ленте, читать и записывать в ячейки символы некоторого конечного алфавита. Выделяется особый пустой символ, заполняющий все клетки ленты, кроме тех из них (конечного числа), на которых записаны входные данные.

4. Ход выполнения работы

4.1. Постановка задачи

Битреверс - запись разрядов двоичного числа в обратном порядке. Пример: 1101 -> 1011.

Начальное усостояние: каретка на последнем символе (цифре) числа.

Алгоритм:

- Запомнить текущий символ и заменить его на дополнительный символ. Дополнительный символ обработанный разряд.
- Двигаться вправо до первого пробела, заменить пробел на символ в «памяти».
- Двигаться влево до первого символа «1» или «0» (т. е. первый не дополнительный символ), вернуться к первому шагу.
- Если символы «1» и «0» не встречены (т. е. встречен пустой символ) двигаться вправо, по пути меняя дополнительные символы на пустые. Встретив пустой символ, сдвинуть каретку влево и завершить работу.

4.2. Выбор симулятора машины Тьюринга

В данной лабораторной работе был выбран симулятор машины Тьюринга, расположенный по ссылке http://kpolyakov.spb.ru/prog/turing.htm. В данном симуляторе машина Тьюринга описывается таблицей переходов.

4.3. Выбранный алфавит и состояния

Алфавит 01х											
	åШ Шå Ч	ħ									
	Q ₁	Q ₂	Q3	Q ₄	Q ₅						
0	x → Q ₂	0 → Q ₂	0 → Q ₃	0 ← Q ₄	0 → Q ₅						
1	x → Q3	1 → Q ₂	1 → Q ₃	1 ← Q4	1 → Q ₅						
х	x ← Q ₁	x → Q ₂	x → Q3	x ← Q ₁	_ → Q ₅						
1	_ → Q5	0 ← Q ₄	1 ← Q ₄		_ ← 👄						

Рис. 4.3.1. Алфавит и таблица переходов.

Алфавит состоит из символов «0» и «1», необходимых для представления чисел в двоичной системе счисления, и дополнительного символа «х», которым будут помечены ячейки с обработанными символами «0» и «1». Также по умолчанию алфавит содержит пустой символ. Для удобства и наглядности в данном симуляторе пустой символ в таблице переходов помечается как нижнее подчёркивание « $_$ ».

Состояния:

• Q1 - начальное состояние. Отвечает за замену «0» и «1» на символ «х», сдвиг каретки вправо и переход в состояние Q2 для «0» или Q3 для «1». Для «х» осуществляет сдвиг влево до первого символа «1» или «0», для пустого символа - переход в состояние, осуществляющее затирание символов «х» и завершение работы.

- Q2 состояние хранения «0». Для всех символов, кроме пустого, происходит сдвиг вправо. При встрече первого пустого символа он заменяется на «0», происходит свдиг влево и переход в состояние Q4.
- Q3 состояние хранения «1». Для всех символов, кроме пустого, происходит сдвиг вправо. При встрече первого пустого символа он заменяется на «1», происходит свдиг влево и переход в состояние Q4.
- Q4 возвращение в следующем символу для битреверса. Для «0» и «1» сдвиг влево, для «х» сдвиг влево и переход в состояние Q1.
- Q5 затирание символов «х» и завершение работы. Для «0» и «1» сдвиг вправо, для «х» замена на пустой символ и сдвиг вправо. При первом встреченном пустом символе сдвиг влево (размещение картки над последней цифрой "перевёрнутого" числа) и завершение работы.

4.4. Реализация машины в симуляторе

Рассмотрим пример записи разрядов двоичного числа 1010011010 в обратном порядке. Начальное положение каретки - над последней цифрой числа. Положение каретки после выполнения работы - над последней цифрой "перевёрнутого" числа.

Рис. 4.4.1. Начальное состояние.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13\	14	/15
Ī	1	0	1	0	0	x	x	x	x	x	0	1	0	1	1	

Рис. 4.4.2. Выполнение битреверса.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2	n i	1	2	2		_	0	7	0		10	44	10	10	1.4	15	10	17	10	10	bο
---	-----	---	---	---	--	---	---	---	---	--	----	----	----	----	-----	----	----	----	----	----	----

Рис. 4.4.3. Полученное число, начало затирания символов «х».

Рис. 4.4.4. Завершение.

Из приведённых выше рисунков видно, что составленная машина работает корректно.

5. Вывод

В ходе лабораторной работы реализована машина Тьюринга, осуществляющая битреверс двоичного числа (запись разрядов в обратном порядке), описан алгоритм работы машины. Составлена таблица переходов для машины, а также протестирована работа в симуляторе машины Тьюринга. Составленная машина работает корректно и не зависит от разрядности обрабатываемого числа.