Settimona: C <u>Argomenti:</u> Materia: Matematica Classe: 5A Data: 20/10/25 Quesito 116 (1) È continue in x=0? (2) lim f(x) (n (x+1) se existe $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{|x^{2} + x|}{x} = \lim_{x \to 0^{-}} \frac{|x||x+1|}{x} = \lim_{x \to 0^{-}} \left[-|x+1|\right] = -1$ $\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{|x^{2} + x|}{x} = \lim_{x \to 0^{+}} \frac{|x|||x+1||}{x} = 1$ $f(0) = 1 \qquad \text{NoN } \hat{e} \text{ continue}$ $(2) \lim_{x \to 0} \frac{(x^2 + x)}{x} \ln(x + 1) = 0$ Quesito 118 $\pm (x) = \sqrt{x^3 - x} \qquad \text{Ha a sintoti?}$ CE: non c'è C.E. P: R -> R no asintoli verticali Por gli asintori origgontali si Conno i limiti a ±00

lim
$$\sqrt[3]{x^2-x} = \lim_{x\to+\infty} \sqrt[3]{x^3} \left(1-\frac{4}{x^2}\right) = \lim_{x\to+\infty} \sqrt[3]{1-\frac{4}{x^2}} = +\infty$$

lim $\sqrt[3]{x^2-x} = -\infty$

lim $\sqrt[3]{x^2-x} = -\infty$

Potrebbero existere gli asinti obliqui è une rette en cui si spiaccica la fi una rette è della forma que mx + q

Per trovare m si calcola, ce esiste lim $\frac{1}{2}(x) = m$

Re trovare q se m esiste, si calcola lim $(\frac{1}{2}(x) - mx) = q$

L'asinto oblique per esistere due evere m e q finiti. Altriment NON esiste

 $\frac{1}{2}(x) - \sqrt{x^3-x}$

Provo asintoto obliquo:

 $\frac{1}{2}(x) - \sqrt{x^3-x}$
 $\frac{1}{2}(x) - \sqrt{x^3-x}$

Asinto obliquo

 $\frac{1}{2}(x) - \sqrt{x^3-x}$
 $\frac{$

Rog
$$4581 ext{ n35}$$
 $f(x) = \frac{(x-a)(x-b)}{x-c}$
 $a,b,c \in \mathbb{R}$, aso, $x \neq c$

Those above is Asiatoto vertical $x = 2$

(ii) Rossa per $A = (1,0)$

(iii) Un asiatoto delique passe per $B = (0,3)$

(ii) $C \in \mathbb{R}$: $x \neq c$
 $C = 2$ (thice asiatoto vertical $x = 2$)

(iii) $C \in \mathbb{R}$: $C = 2$ (thice asiatoto vertical $C \in \mathbb{R}$)

(iii) $C \in \mathbb{R}$: $C = 2$ (thice asiatoto vertical $C \in \mathbb{R}$)

(iii) $C \in \mathbb{R}$: $C = 2$ (thice asiatoto vertical $C \in \mathbb{R}$)

(iii) $C \in \mathbb{R}$: $C = 2$ (thice asiatoto vertical $C \in \mathbb{R}$)

(iii) $C \in \mathbb{R}$: $C = 2$ (thice asiatoto vertical $C \in \mathbb{R}$)

(iii) $C \in \mathbb{R}$: $C = 2$ (thice asiatoto vertical $C \in \mathbb{R}$)

(iii) $C \in \mathbb{R}$: $C \in$

Disagrave gratico flow (e di g(x) =
$$\frac{1}{12}$$
 Per casa)

(1) Dom (f): $x \neq 2$

P: $\mathbb{R} \setminus \{2\}$ \mathbb{R}

(2) There Asse x $y = 0$ $(x-1)(x+2) = 0$ $x=1,-2$

$$A = (1,0), C = (-2,0)$$

Asse $y: x = 0$ $y = \frac{(-1)(2)}{-2} = 1$ $D = (0,1)$

(3) Legan: $f(x) \ge 0$ $(x-1)(x+2) \ge 0$

$$(3) Legan: f(x) \ge 0$$
 $(x-1)(x+2) \ge 0$

$$(3) Legan: f(x) \ge 0$$
 $(x-1)(x+2) \ge 0$

$$(4) Limit: \lim_{x \to 2^{-1}} f(x) = +\infty \quad \lim_{x \to 2^{-1}} f(x) = -\infty \quad \text{As in the oblique: } y = x+3$$

(4) Limit: $\lim_{x \to 2^{-1}} f(x) = +\infty$ $\lim_{x \to 2^{-1}} f(x) = -\infty$ As in the oblique: $y = x+3$

 $f(x) = \frac{(x-1)(x+2)}{x-2}$

(3bis)
$$Im(f)$$
: $y = \frac{(x-1)(x+2)}{x-2}$ e si ricova x in f_3 di y .

 $xy - 2y = x^2 - x + 2x - 2$
 $x^2 + x(1-y) + 2y - 2 = 0$

Per over soluzione devo imporne $\Delta \ge 0$
 $(1-y)^2 - 4(2y-2) \ge 0$
 $y^2 - 2y + 1 - 8y + 8 \ge 0$
 $y^2 - 10y + 9 \ge 0$ $(y-3)(y-1) \ge 0$ $y = 1, 3$
 $y \le 1$ $y \ge 9$
 $Im(f) = (-\infty; 1J \cup [9; +\infty)$