Metody Obliczeniowe w Nauce i Technice

6 - Kwadratury - całkowanie numeryczne

Marian Bubak, Katarzyna Rycerz

Department of Computer Science
AGH University of Science and Technology
Krakow, Poland
kzajac@agh.edu.pl
dice.cyfronet.pl

Contributors Mateusz Woś Michał Matusiak Rafał Stachura

Outline

- Wstęp
- 2 Kwadratury elementarne
- 3 Kwadratury Newtona-Cotesa
- 4 Złożone kwadratury Newtona-Cotesa
- 6 Całkowanie adaptacyjne
- 6 Kwadratury Gaussa
- Biblioteki

- funkcją elementarną nazywamy funkcję wymierną, trygonometryczną, wykładniczą, lub jedną z ich odwrotności
- weźmy zbiór funkcji, powstałych z elementarnych przez branie ich sumy, iloczynu, ilorazu, złożenia albo ich kombinacji
- pochodną każdej z tych funkcji można znaleźć, posługując się wzorami na pochodną sumy, iloczynu, ilorazu bądź złożenia funkcji.
- Z całkami jest inaczej: gdy musimy znaleźć funkcję pierwotną funkcji z powyższej klasy, to taka pochodna może się już nie dać wyrazić przez funkcje elementarne

Przykład: $\int e^{-x^2} dx \rightarrow \text{funkcja błędu}$

Wstęp

Problem:

- Wiele całek nieoznaczonych nie daje się wyrazić w postaci skończonej przez funkcje elementarne
- Częsta niemożliwość znalezienia dokładnych całek oznaczonych

W praktyce dysponujemy precedurą obliczania f(x) albo jej stablicowanymi wartościami w ustalonych punktach.

Rozwiązanie:

- ullet zastąpienie funkcji podcałkowej f(x) inną bliską funkcją g(x)
- przybliżenie całki przez sumę ważoną:

$$I = \int_a^b f(x) dx \approx \sum_{i=0}^n A_i f(x_i)$$

a) **Istota**:

Podział przedziału całkowania [a,b] na podprzedziały \rightarrow formuły złożone

$$I = \int_{a}^{b} f(x)dx = \sum_{i=0}^{n} \int_{a_{i}}^{a_{i+1}} f(x)dx = \sum_{i=0}^{n} I_{i}$$

b) Stopień dokładności kwadratury:

Stopień dokładności kwadratury to liczba całkowita n > 0 taka, że kwadratura jest dokładna dla wielomianów stopnia $\leq n$ oraz daje niezerowy błąd dla wielomianów stopnia > n.

E - błąd kwadratury,

 P_k - wielomian stopnia k,

$$\forall k \leqslant n : E(P_k) = 0, E(P_{n+1}) \neq 0$$

Ponieważ całkowanie, dodawanie to operacje liniowe \to zamiast dowolnego P_k można sprawdzać jednomian x^k .

c)

Kwadratury:

- otwarte (nie korzystają ze skrajnych punktów)
- zamknięte (korzystają ze skrajnych punktów)
- półotwarte

Ekstrapolacja Richardsona

Metoda uzyskiwania wyników o dużej dokładności przy użyciu formuł niskiego rzędu.

Rząd metody - mówi nam jak zmienia się błąd metody w stosunku do zmiany kroku

Historyczne podejścia:

- Archimedes (200 p.n.e.)
- L. F. Richardson, J. A. Gaunt (1927 n.e)

Niech h - krok metody, k - rząd metody, E(h) - błąd obliczeń \rightarrow postać asymptotyczna (w granicy)

$$E(h) = \sum_{i=k}^{\infty} a_i \cdot h^i, \ a_k \neq 0$$

przy czym:
$$a_i \begin{cases} \text{mogą zależeć od } f(x), \\ \text{nie zależą od h.} \end{cases}$$

Obliczenia dla $h_1 \neq h_2$: φ – dokładna wartość φ_1, φ_2 – wartości wyznaczone

Cel \rightarrow zwiększenie minimalnego wykładnika przy h o 1, początek sumowania w (k+1)

$$\begin{array}{c|c} \varphi = \varphi_1(h_1) + \sum_{i=k}^{\infty} a_i \cdot h_1^i \mid \cdot h_2^k \\ \varphi = \varphi_2(h_2) + \sum_{i=k}^{\infty} a_i \cdot h_2^i \mid \cdot h_1^k \end{array} \bigg| -$$

$$arphi = rac{1}{h_1^k - h_2^k} \cdot (h_1^k \cdot arphi_2 - h_2^k \cdot arphi_1) + \sum_{i=k+1}^{\infty} a_i \cdot rac{h_1^k h_2^i - h_1^i h_2^k}{h_1^k - h_2^k}$$

Wynik \Rightarrow zwiększenie najmniejszego wykładnika potęgi h w E(h)

Szczególny przypadek ER (użyteczny dla kwadratur):

$$\varphi = \phi_1(h) + \sum_{j=1}^{\infty} a_j h^{2j}$$

$$4\varphi = 4\phi_1(\frac{h}{2}) + 4a_1 \frac{h^2}{4} + \sum_{j=2}^{\infty} 4a_j \frac{h^{2j}}{4^j}$$

$$3\varphi = 4\phi_1(\frac{h}{2}) - \phi_1(h) + 0(h^4)$$

Ogólnie:

$$\varphi = N_{j-1}(h) + \sum_{i=1}^{m-1} K_j \cdot h^{2j} + O(h^{2m}),$$

co pozwala na rekurencyjne generowanie:

$$N_j(h) = \frac{1}{4^{j-1}-1} \cdot [4^{j-1} \cdot N_{j-1}(\frac{h}{2}) - N_{j-1}(h)], \quad j = 2, 3, ..., m.$$

Wzór prostokątów

Idea:

$$y_i = \frac{1}{2}(x_i + x_{i+1}),$$
$$\int_{x_i}^{x_{i+1}} f(x) dx \approx f(y_i) h_i$$

Własności:

- stopień dokładności: 1
- kwadratura otwarta

Wyprowadzenie metody (korzystamy ze wzoru Taylora):

$$f(x) = f(y_i) + \sum_{p=1}^{\infty} \frac{(x - y_i)^p}{p!} f^{(p)}(y_i)$$

$$\int f(y) dy = f(y) y + \sum_{p=1}^{\infty} (x - y_i)^{p+1} f^{(p)}(y_i)$$

$$F(x) = \int f(x)dx = f(y_i)x + \sum_{p=1}^{\infty} \frac{(x - y_i)^{p+1}}{(p+1)!} f^{(p)}(y_i)$$

Następnie podstawiając $h = x_{i+1} - x_i$, $\frac{h}{2} = x_{i+1} - y_i = y_i - x_i$

$$(*) \int_{x_i}^{x_{i+1}} f(x) dx = F(x_{i+1}) - F(x_i) =$$

$$\underbrace{f(y_i)h_i}_{B} + \underbrace{\frac{1}{24}h_i^3f''(y_i) + \frac{1}{1920}h_i^5f^{(4)}(y_i) + \dots}_{B}$$

Stopień dokładności dla met.prostokątów

Wzor trapezów

Wzór trapezów

Idea:

$$\int_{x_{i}}^{x_{i+1}} f(x) dx \approx \frac{1}{2} [f(x_{i}) + f(x_{i+1})] \cdot h_{i}$$

Własności:

- stopień dokładności: 1
- kwadratura zamknięta

Wyprowadzenie metody:

$$f(x_i) = f(y_i) - \frac{1}{2}h_if'(y_i) + \frac{(\frac{h_i}{2})^2}{2!}f''(y_i)...$$

$$f(x_{i+1}) = f(y_i) + \frac{1}{2}h_if'(y_i) + \frac{(\frac{h_i}{2})^2}{2!}f''(y_i)...$$

Wzór trapezów

Przy sumowaniu wyrazy z nieparzystymi pochodnymi znoszą się :

$$f(x_i) + f(x_{i+1}) = 2(f(y_i) + \frac{(\frac{h_i}{2})^2}{2!}f''(y_i) + \ldots)$$
$$f(y_i) = \frac{f(x_i) + f(x_{i+1})}{2} - \frac{(\frac{h_i}{2})^2}{2!}f''(y_i) - \ldots$$

Wstawiając do (*) otrzymujemy:

$$\int_{x_{i}}^{x_{i+1}} f(x)dx = f(y_{i})h_{i} + \frac{1}{24}h_{i}^{3}f''(y_{i}) + \frac{1}{1920}h_{i}^{5}f^{(4)}(y_{i}) + \dots = \underbrace{\frac{1}{2}[f(x_{i}) + f(x_{i+1})] \cdot h_{i}}_{T} \underbrace{-\frac{1}{12}h_{i}^{3}f''(y_{i}) - \frac{1}{480}h_{i}^{5}f^{(4)}(y_{i}) + \dots}_{blad\ metody}$$

Wzór Simpsona

Wzór Simpsona

Idea: Całkujemy parabolę przechodzącą przez punkty $x_i + x_{i+1} + x_{i+1}$

$$X_i, \frac{x_i+x_{i+1}}{2}, X_{i+1}$$

$$\int_{x_i}^{x_{i+1}} f(x) dx \approx \frac{1}{6} h_i [f(x_i) + 4f(\frac{x_i + x_{i+1}}{2}) + f(x_{i+1})]$$

Błąd metody:

$$\tilde{E} = -\frac{1}{2880} h_i^5 f^{(4)}(y_i)$$

Uwaga:

Wzór Simpsona oparty na interpolacji 2-go rzędu, ale dokładny dla funkcji sześciennych.

Kwadratury Newtona-Cotesa

Zamiana problematycznej funkcji podcałkowej na prosty wielomian interpolujący.

Charakterystyka kwadratur N-C:

wzór interpolacyjny Lagrange'a:

$$f(x) = \sum_{i=0}^{n} L_i(x)f(x_i) + \frac{f^{(n+1)}(\eta(x))}{(n+1)!} \prod_{j=0}^{n} (x - x_j)$$

• węzły równoodległe

Uwagi:

- metody prostokątów i trapezów są szczególnymi przypadkami kwadratur N-C
- lepsze efekty uzyskuje się zastępując węzły równoodległe wezłami Czebyszewa

Wzory zamknięte N-C

$$h = \frac{b-a}{n}$$
, $a = x_0 < x_1 < \ldots < x_n = b$, $x_i = x_0 + i \cdot h$, $i = 0, 1, \ldots, n$

$$\int_a^b f(x)dx = \sum_{i=0}^n a_i f(x_i) + E$$

Liczby Cotesa:

$$a_i = \int_{x_0}^{x_n} L_i(x) dx = \int_{x_0}^{x_n} \prod_{j=0, j \neq i}^n \frac{x - x_j}{x_i - x_j} dx$$

- wszystkie $a_i > 0$ tylko dla : $n \le 7$, n = 9
- $\sum a_i = \text{dlugości przedzialu calkowania (dlaczego?)}$

• n-parzyste, $f \in C^{n+2}[a, b]$

$$E = \frac{h^{n+3} \cdot f^{(n+2)}(\eta)}{(n+2)!} \int_0^n t^2(t-1) \dots (t-n) dt$$

stopień dokładności: (n+1)

• *n-nieparzyste*, $f \in C^{n+1}[a, b]$

$$E = \frac{h^{n+2} \cdot f^{(n+1)}(\eta)}{(n+1)!} \int_0^n t(t-1) \dots (t-n) dt$$

stopień dokładności: (n)

Najczęściej używane formuły zamknięte N-C

a) n = 1, Trapezoid Rule

$$\int_{x_0}^{x_1} f(x) dx = \frac{h}{2} [f(x_0) + f(x_1)] - \frac{h^3}{12} f''(\eta) , \ \eta \in [a, \ b]$$

b) n = 2, Simpson's Rule

$$\int_{x_0}^{x_2} f(x) dx = \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)] - \frac{h^5}{90} f^{(4)}(\eta)$$

c) n = 3, Simpson's Three-Eights Rule

$$\int_{x_0}^{x_3} f(x)dx = \frac{3h}{8} [f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)] - \frac{3h^5}{80} f^{(4)}(\eta)$$

d)
$$n = 4$$

$$\int_{x_0}^{x_4} f(x)dx = \frac{2h}{45} [7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(x_4)] - \frac{8h^7}{945} f^{(6)}(\eta))$$

Wzory otwarte N-C

$$h = \frac{b-a}{n+2} , a = x_{-1} < x_0 < x_1 < \dots < x_n < x_{n+1} = b,$$

$$x_i = x_0 + i \cdot h, i = 0, 1, \dots, n$$

$$\int_a^b f(x) dx = \int_{x_{-1}}^{x_{n+1}} f(x) dx = \sum_{i=0}^n a_i f(x_i) + E$$

Liczby Cotesa:

$$a_i = \int_a^b L_i(x) dx$$

wszystkie $a_i > 0$ tylko dla n = 1, 2, 3, 5.

Błąd $E, \eta \in [a, b]$

• *n-parzyste*, $f \in C^{n+2}[a, b]$

$$E = \frac{h^{n+3} \cdot f^{(n+2)}(\eta)}{(n+2)!} \int_{-1}^{n+1} t^2(t-1) \dots (t-n) dt,$$

stopień dokładności: (n+1)

• n-nieparzyste, $f \in C^{n+1}[a, b]$

$$E = \frac{h^{n+2} \cdot f^{(n+1)}(\eta)}{(n+1)!} \int_{-1}^{n+1} t(t-1) \dots (t-n) dt,$$

stopień dokładności: (n)

Najczęściej używane kwadratury otwarte Newtona-Cotesa

a) n = 0 , Midpoint Rule, Rectangle Rule

$$\int_{x_{-1}}^{x_1} f(x) dx = 2hf(x_0) + \frac{h^3}{3} f''(\eta) , \ \eta \in [x_{-1}, \ x_{n+1}]$$

b) n = 1

$$\int_{x_{-1}}^{x_2} f(x) dx = \frac{3h}{2} [f(x_0) + f(x_1)] + \frac{3h^3}{4} f''(\eta)$$

c) n = 2 , Milne's Rule

$$\int_{x_1}^{x_3} f(x)dx = \frac{4h}{3} [2f(x_0) - f(x_1) + 2f(x_2)] + \frac{14h^5}{45} f^{(4)}(\eta)$$

d) n = 3

$$\int_{x_{-1}}^{x_4} f(x)dx = \frac{5h}{24} [11f(x_0) + f(x_1) + f(x_2) + 11f(x_3)] + \frac{95h^5}{144} f^{(4)}(\eta)$$

Kwadratury N-C – podsumowanie

- zwiększenie stopnia dokładności (otwartych i zamkniętych) przez dodanie co najmniej 2 nowych węzłów
- w przypadku dodania jednego punktu dla:
 - * parzystej liczby węzłów → brak zmian st. dokładności,
 - * nieparzytej liczby węzłów → wzrost st. dokładności o 2
- otwarte na ogół gorsze od zamkniętych, używane:
 - * osobliwości w granicach przedziału
 - w numerycznym rozwiązywaniu równań różniczkowych zwyczajnych
- możliwe formuły półotwarte (półzamknięte)

• efekty wzrostu n:

- zmniejszanie stałego czynnika w E, lecz wzrost rzędu pochodnej
- * trudności z oszacowaniem E
- * duże wartości $f^{(n+1)}(\eta)$
- * $a_i > 0$: zamknięte tylko n = 1, 2, ... 7 i 9 otwarte tylko n = 1, 2, 3 i 5. złe uwarunkowanie
- * oscylacyjny charakter wielomianu interpolacyjnego (zwłaszcza, że węzły są równoodległe)
- * trudne do uzyskania liczby Cotesa

Złożone kwadratury Newtona-Cotesa

Wzory N-C są niedogodne dla dużych [a, b] – piecewise technique

Problemy:

- wzrost błędu interpolacji dla dużych n
- efekt Rungego (rozwiązanie dla interpolacji to funkcje sklejane oraz interpolacja sześcienna)

Wyprowadzenie złożonej kwadratury:

Przedział [a, b] podzielony na n podprzedziałów n=2m. (Simpson elementarny potrzebuje 3 węzły czyli 2 przedziały)

$$h = \frac{b-a}{2m}, \ x_i = x_0 + i \cdot h, \ i = 0, 1, 2, ..., 2m$$

$$\int_{a}^{b} f(x)dx = \sum_{j=1}^{m} \int_{x_{2j-2}}^{x_{2j}} f(x)dx = \sum_{j=1}^{m} \left\{ \frac{h}{3} [f(x_{2j-2}) + 4f(x_{2j-1}) + f(x_{2j})] - \frac{h^{5}}{90} f^{(4)}(\eta_{j}) \right\}$$

$$\eta_{j} \in \left(x_{2j-2}, x_{2j} \right)$$

 $f(x_{2j})$ występuje w składowych dla $[x_{2j-2}, x_{2j}][x_{2j}, x_{2j+2}]$ i stąd:

$$\int_{a}^{b} f(x)dx = \frac{h}{3}[f(x_{0}) + 4\sum_{j=1}^{m} f(x_{2j-1}) + 2\sum_{j=1}^{m-1} f(x_{2j}) + f(x_{2m})] - \frac{h^{5}}{90}\sum_{j=1}^{m} f^{(4)}(\eta_{j})$$

Uwaga: Analogicznie dla innych kwadratur np. wzoru trapezów

Składanie Simpsona - przykład

$$(f_0 + 4f_1 + f_2) + (f_2 + 4f_3 + f_4) + (f_4 + 4f_5 + f_6)$$
$$(f_0 + 4f_1 + 2f_2 + 4f_3 + 2f_4 + 4f_5 + f_6)$$

Błąd dla wzoru złożonego

Założenia:

- f(x) ciągła w [a,b]
- f⁽⁴⁾ ciągła w [a,b]

Z tw. Weierstrassa:

$$\exists x_1, x_2 \in [a, b] : \min_{x_1 \in [a, b]} f^{(4)}(x_1) \leqslant f^{(4)}(\eta_j) \leqslant \max_{x_2 \in [a, b]} f^{(4)}(x_2)$$

dla każdego przedziału w wyniku dodawania:

$$m \cdot \min_{x_1 \in [a,b]} f^{(4)}(x_1) \leqslant \sum_{j=1}^m f^{(4)}(\eta_j) \leqslant m \cdot \max_{x_2 \in [a,b]} f^{(4)}(x_2),$$

$$\min_{x_1 \in [a,b]} f^{(4)}(x_1) \leqslant \frac{1}{m} \sum_{j=1}^m f^{(4)}(\eta_j) \leqslant \max_{x_2 \in [a,b]} f^{(4)}(x_2),$$

Z tw. o wartości pośredniej (Darboux):

$$\exists \mu \in (a, b): f^{(4)}(\mu) = \frac{1}{m} \sum_{i=1}^{m} f^{(4)}(\eta_i) \Rightarrow$$

$$E = -\frac{h^5}{90} \cdot m \cdot f^{(4)}(\mu), \quad m = \frac{b-a}{2h} \quad \Rightarrow$$

$$E = -\frac{h^4(b-a)}{180}f^{(4)}(\mu)$$

Wpływ błędu wyznaczania f(x)

$$f(x_i) = f^*(x_i) + e_i; \quad i = 0, 1, 2, ..., 2m$$

 $f^*(x)$ - wartość funkcji wynikająca z arytmetyki komputerowej (błąd zaokrąglenia $|e_i|<\epsilon)$

Błąd wzoru złożonego:

$$\Upsilon = \left| \frac{h}{3} [e_0 + 4 \sum_{j=1}^{m} e_{2j-1} + 2 \sum_{j=1}^{m-1} e_{2j} + e_{2m}] \right| \leqslant \frac{h}{3} [\epsilon + 4m\epsilon + 2(m+1)\epsilon + \epsilon] \approx 2mh\epsilon = \boxed{(b-a) \cdot \epsilon}$$

- nie zależy od h
- jeśli zwiększamy ilość punktów to $h \to 0$, błąd zaokrąglenia nie zależy od h \to metoda stabilna
- nie mylić z błędem metody!!!!
- stabilność metody ze względu na błędy zaokrągleń reprezentacji → cecha procedur całkowania numerycznego! (nie ma jej np. różniczkowanie!)

Całkowanie adaptacyjne

Problem:

Wzory złożone posiadają węzły równoodległe, jednak funkcje mogą mieć w przedziale całkowania różny (przedziałami) przebieg.

Przykładowe przebiegi funkcji:

- wolnozmienne
- oscylacyjne

Rozwiązanie problemu:

- Zastosowanie procedury rozpoznającej obszar dobór odpowiedniego kroku!
- Uwzględnienie własności funkcji podcałkowej w obliczeniach

Dane:

- f(x) funkcja podcałkowa
- [a, b] przedział całkowania
- ullet dopuszczalny błąd

Idea metody:

Podział przedziału na fragmenty, dla których zastosowanie jednej z metod klasycznych dało dostatecznie dokładny wynik.

Cel:

Liczymy całkę
$$\int_a^b f(x)dx$$
, z dokładnością $\epsilon>0$, $f\in C^4[a,b]$
1. $m=1$, krok $h=\frac{b-a}{2}$

Korzystamy ze wzoru Simpsona:

$$\int_{a}^{b} f(x)dx = \underbrace{\frac{h}{3}[f(a) + 4f(a+h) + f(b)]}_{S(a,b)} - \underbrace{\frac{h^{5}}{90}f^{(4)}(\mu)}_{\alpha}; \quad \mu \in (a, b)$$

2.
$$m = 2$$
, krok $\frac{h}{2} = \frac{b - a}{4}$

$$\int_{a}^{b} f(x)dx = \frac{h}{6} \underbrace{\left[f(a) + 4f(a + \frac{h}{2}) + f(a + h) + \underbrace{f(a + h) + 4f(a + \frac{3}{2}h) + f(b)}_{S(a, \frac{a+b}{2})} - \underbrace{\left[f(a) + 4f(a + \frac{h}{2}) + f(a + h) + \underbrace{f(a + h) + 4f(a + \frac{3}{2}h) + f(b)}_{S(a, \frac{a+b}{2})} \right]}_{S(a, \frac{a+b}{2})} - \underbrace{\left[f(a) + 4f(a + \frac{h}{2}) + f(a + h) + \underbrace{f(a + h) + 4f(a + \frac{3}{2}h) + f(b)}_{S(a, \frac{a+b}{2})} \right]}_{S(a, \frac{a+b}{2})} - \underbrace{\left[f(a) + 4f(a + \frac{h}{2}) + f(a + h) + \underbrace{f(a + h) + 4f(a + \frac{3}{2}h) + f(b)}_{S(a, \frac{a+b}{2})} \right]}_{S(a, \frac{a+b}{2})} - \underbrace{\left[f(a) + 4f(a + \frac{h}{2}) + f(a + h) + \underbrace{f(a + h) + 4f(a + \frac{3}{2}h) + f(b)}_{S(a, \frac{a+b}{2})} \right]}_{S(a, \frac{a+b}{2})} - \underbrace{\left[f(a) + 4f(a + \frac{h}{2}) + f(a + h) + \underbrace{f(a + h) + 4f(a + \frac{3}{2}h) + f(b)}_{S(a, \frac{a+b}{2})} \right]}_{S(a, \frac{a+b}{2})} - \underbrace{\left[f(a) + 4f(a + \frac{h}{2}) + f(a + h) + \underbrace{f(a + h) + 4f(a + \frac{3}{2}h) + f(b)}_{S(a, \frac{a+b}{2})} \right]}_{S(a, \frac{a+b}{2})} - \underbrace{\left[f(a) + 4f(a + \frac{h}{2}) + f(a + h) + \underbrace{f(a + h) + 4f(a + \frac{3}{2}h) + f(b)}_{S(a, \frac{a+b}{2})} \right]}_{S(a, \frac{a+b}{2})} - \underbrace{\left[f(a) + \frac{h}{2} + f(a + h) + \frac{h}{2} + f(a + h) + \frac{h}{2} + f(a + h) \right]}_{S(a, \frac{a+b}{2})} - \underbrace{\left[f(a) + \frac{h}{2} + f(a + h) + \frac{h}{2} + f(a + h$$

$$(\frac{h}{2})^4 \frac{b-a}{180} f^{(4)}(\mu^*), \ \mu^* \in (a, \ b)$$

przyjmijmy, że: $f^{(4)}(\mu) \approx f^{(4)}(\mu^*)$ oraz podstawiamy b-a=2h wtedy błąd dla (2.) $\frac{h^5}{16.90}f^{(4)}(\mu)$

Z porównania (1.) i (2.) :

$$S(a,b) - \alpha \approx S(a, \frac{a+b}{2}) + S(\frac{a+b}{2}, b) - \frac{1}{16}\alpha \Rightarrow$$

$$\alpha = \frac{16}{15}[S(a, b) - S(a, \frac{a+b}{2}) - S(\frac{a+b}{2}, b)]$$

Uzyskujemy:

$$|\int_a^b f(x)dx - S(a, \frac{a+b}{2}) - S(\frac{a+b}{2}, b)| \approx \frac{1}{15}|s(a, b) - S(a, \frac{a+b}{2}) - S(\frac{a+b}{2}, b)|$$

lewa strona to błąd przy zastosowaniu dokładniejszego sposobu całkowania - chcemy, żeby był on $<\epsilon$

Wtedy:

$$|S(a, b) - S(a, \frac{a+b}{2}) - S(\frac{a+b}{2}, b)| < 15\dot{\epsilon}$$
 (*)

Podsumowanie sposobu postępowania:

- gdy spełnione $(*) \Rightarrow S(a, \frac{a+b}{2}) + S(\frac{a+b}{2}, b)$ przybliża całkę $\int_a^b f(x)dx$ z dokladnością $\epsilon \to \mathsf{STOP}$
- nie jest spełnione (*) stosujemy procedurę oceny błędu do przedziałów $[a, \frac{a+b}{2}], [\frac{a+b}{2}, b]$ w każdym z nich: $\epsilon' = \frac{\epsilon}{2}$
- połowienie podprzedziałów i wyznaczanie S
- ten, na którym odpowiednik (*) nie jest spełniony znów połowimy, pozostałych gotowych nie zmieniamy

Wielomiany ortogonalne - uzupełnienie

Funkcja wagowa w(x) na [a, b]:

- całkowalna na [a, b]
- $w(x) \ge 0 \quad \forall x \in [a, b]$, $w \ne 0 \quad \forall$ podprzedziału [a, b]

Definicja

Iloczyn skalarny:

$$\langle f|g \rangle \stackrel{\mathsf{def}}{=} \int_{a}^{b} w(x) \cdot f(x) \cdot g(x) dx$$

Definicja

Wielomiany ortogonalne i znormalizowane

- f, g ortogonalne, gdy < f|g> = 0
- f znormalizowane gdy < f|f> = 1

Definicja

Zbiór ortonormalny - zbiór funkcji wzajemnie ortogonalnych i indywidualnie znormalizowanych

Definicja

Zbiór liniowo zależny i niezależny

Zbiór funkcji $\{\varphi_i\}_{i=0}^n$ jest liniowo niezależny na [a,b]:

$$(\forall x \in [a, b] : \sum_{i=0}^{n} c_i \varphi_i(x) = 0) \Rightarrow c_0 = c_1 = \dots = c_n = 0$$

w przeciwnym przypadku - zbiór ten jest liniowo zależny

Twierdzenie liniowa niezależność zbioru wielomianów stopnia $\leqslant n$

Założenia:

 φ_i - wielomian stopnia j, $j = 0, 1, \ldots, n$

Teza:

 $\{\varphi_i\}_{i=0}^n$ - jest liniowo niezależny na $\forall [a,b], b>a$

Wniosek:

Zbiór wielomianów ortogonalnych $\{\varphi_i\}_{i=0}^n$ jest liniowo niezależny

Dowolny wielomian stopnia $k \leq n$ można przedstawić jako kombinację liniową takich wielomianów:

$$\exists \{c_j\}; Q_k(x) = \sum_{j=0}^k c_j \varphi_k(x)$$

Konstruowanie zbioru wielomianów ortogonalnych $\{\varphi_i\}_{i=0}^n$:

$$[a, b], \quad w(x)$$

$$\varphi_0(x) = 1; \quad (\varphi_{-1}(x) = 0)$$

$$\varphi_{i+1}(x) = \left(x - \frac{\langle x \cdot \varphi_i | \varphi_i \rangle}{\langle \varphi_i | \varphi_i \rangle}\right) \cdot \varphi_i(x) - \frac{\langle \varphi_i | \varphi_i \rangle}{\langle \varphi_{i-1} | \varphi_{i-1} \rangle} \varphi_{i-1}(x)$$

Twierdzenie o zerach wielomianów ortogonalnych

Założenia:

$$\{\varphi_i\}_{i=0}^n$$
 - zbiór wielomianów ortogonalnych na $[a,b]$, (względem $w(x)$) $\varphi_k(x),\ k=0,1,...,n$

Teza:

- $\varphi_k(x)$, $k \ge 1$ ma k różnych zer i leżą one w (a,b)
- zera $\varphi_{j-1}(x)$ i $\varphi_j(x)$ występują na przemian

Ograniczenia kwadratur Newtona-Cotesa

Uwagi:

- wezły x_0, x_1, \ldots, x_n równoodległe $\rightarrow h = const.$ f - stablicowane
- $\int_a^b f(x) dx \approx \sum_{i=0}^n a_i f(x_i)$ x; - zadane a_i - wyznaczone przez dobór wielomianu stopnia $\leq n$

Podstawowe cechy kwadratur Gaussa

Uwagi:

- możliwość doboru a_i i x_i , $i=1,2,\ldots,n$ czyli 2n parametrów
- za pomocą 2n parametrów można zdefiniować wielomian stopnia 2n-1,
- ullet tak więc można uzyskać stopień dokładności 2n-1 (w przypadku n-punktowej kwadratury)
- szersza klasa funkcji podcałkowych (w sposób naturalny):

$$\int_a^b w(x)f(x)dx \approx \sum_{i=1}^n a_i f(x_i)$$

 w(x) - funkcja ważąca → może zawierać w sobie całkowalną osobliwość

Podstawowe twierdzenie kwadratur Gaussa

Odcięte x_i n-punktowej kwadratury Gaussa z funkcją ważącą w(x) w [a,b] są zerami wielomianu ortogonalnego $\varphi_n(x)$ dla tego samego przedziału i tej samej funkcji ważącej. Jeśli $\{\varphi_i\}_{i=0}^n$ - zbiór wielomianów ortogonalnych w [a,b] to $\varphi_n(x)$ - ma n różnych zer $x_1,x_2,\ldots,x_n\in(a,b)$ Możemy znależć wielomian interpolujący f(x) w tych węzłach:

$$f(x) = \sum_{i=1}^{n} f(x_i) \prod_{j=1, j \neq i}^{n} \frac{x - x_j}{x_i - x_j} + \frac{f^{(n)}(\eta(x))}{n!} \prod_{i=1}^{n} (x - x_i)$$

i policzyć całkę jako:

$$(*) \int_a^b w(x)f(x)dx \approx \sum_{i=1}^n a_i f(x_i), \quad a_i = \int_a^b w(x)L_i(x)dx$$

Całka jest na pewno dokładna, gdy f(x) jest wielomian stopnia $\leq n-1$, bo wtedy $f^n(\eta)=0$

Twierdzenie o stopniu dokładności kwadratur Gaussa

Twierdzenie o stopniu dokładności kwadratury Gaussa

Teza:

Kwadratura ma stopień dokładności 2n-1 (dla n-punktowej kwadratury); t.j. dokładna dla wielomianu:

$$P(x) = Q(x) \cdot \varphi_n(x) + R(x)$$
; Q, R -stopnia $< n$.

Uwaga: każdy wielomian stopnia <math>2n-1 można przedstawić w takiej postaci

Twierdzenie o stopniu dokładności kwadratury Gaussa

Dowód:

$$(**)Q(x) = \sum_{i=1}^{n-1} d_i \varphi_i(x)$$

$$\int_a^b w(x)P(x)dx = \underbrace{\int_a^b w(x) \underbrace{Q(x)}_{(***)} \varphi_n(x)dx}_{(***)} + \int_a^b w(x)R(x)dx$$

$$(***) = \sum_{i=1}^{n-1} d_i \int_a^b w(x)\varphi_i\varphi_n(x)dx = 0 \quad (i < n)$$

Twierdzenie stopień dokładności kwadratury Gaussa

Czyli:

$$\int_a^b w(x) \underbrace{P(x)}_{2n-1} dx = \int_a^b w(x) \underbrace{R(x)}_{\leq n} dx = \sum_{i=1}^n a_i R_i + 0$$

 R_i stopnia $< n \rightarrow$ kwadratura ma przynajmniej taki stopień dokładności.

Z drugiej strony: x_i , $i = 1, 2, \ldots, n$ – pierwiastki $\varphi_n(x)$ tzn.

$$P(x_i) = Q(x_i) \cdot \varphi_n(x_i) + R(x_i) = 0 + R(x_i) = R(x_i)$$

co oznacza, że kwadratura jest dokładna dla $P_{2n-1}(x)$:

$$\int_{a}^{b} w(x) P_{2n-1}(x) dx = \sum_{i=1}^{n} a_{i} P(x_{i})$$

Wyznaczanie wag a_1, a_2, \ldots, a_n

Znając odcięte $x_1, x_2, \ldots, x_n \rightarrow$ wagi wyznaczamy z układu równań:

$$\begin{bmatrix} \varphi_0(x_1) & \dots & \varphi_0(x_n) \\ \vdots & & & \\ \varphi_{n-2}(x_1) & \dots & \varphi_{n-2}(x_n) \\ \varphi_{n-1}(x_1) & \dots & \varphi_{n-1}(x_n) \end{bmatrix} \cdot \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} \int_a^b w(x)\varphi_0(x)dx \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Uwaga: Zera w wektorze z prawej strony powyższego równania - bo $\varphi_1(x)$, . . . , $\varphi_{n-1}(x)$ są ortogonalne do $\varphi_0(x)$ – stałej>0 czyli : dla i=1,...,n-1 $\int_a^b w(x)\varphi_i(x)dx=\frac{1}{\varphi_0}\varphi_0\int_a^b w(x)\varphi_i(x)dx=\int_a^b w(x)\varphi_0(x)\varphi_i(x)dx=0$

Praktyczne postacie kwadratur Gaussa-...

Kwadratura Gaussa-	(a,b)	w(x)	$\{\varphi_i\}_{i=0}^n$
-Legendre'a	(-1,1)	1	$P_0(x) = 1, P_1(x) = x$ $(i+1)P_{i+1} = (2i+1)xP_i - iP_{i-1}$
-Chebyshev'a	(-1,1)	$\frac{1}{\sqrt{1-x^2}}$	$T_0(x) = 1, \ T_1(x) = x$
-Laguerre'a	$(0, \infty)$	$x^c e^{-x}$	$T_{i+1} = 2xT_i - T_{i-1}$ $L_0(x) = 1, \ L_1(x) = 1 - x$
-Daguerre a	$(0, \infty)$		$(i+1)L_{i+1}^c = (-x+2i+c+1)L_i^c -$
TT '4 - '-	()	e^{-x^2}	$-(i+c)L_{i-1}^{c}$
-Hermite'a	$(-\infty,\infty))$	e "	$H_0(x) = 1, \ H_1(x) = 2x$ $H_{i+1} = 2xH_i - 2iH_{i-1}$

Biblioteki do całkowania numerycznego

Biblioteki:

- QUADPACK
 - Klasyczny pakiet, zawiera procedury do obliczania typowych całek jednowymiarowych w języku Fortran
 - http://www.netlib.org/quadpack/
- GSL GNU Scientific Library
 - Reimplementacja metod całkowania z pakietu QUADPACK dla języka C
 - https://www.gnu.org/software/gsl/doc/html/integration.html
- Inne pakiety:
 - Python: https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html
 - Julia: https://github.com/JuliaMath/QuadGK.jl