

Escuela Técnica Superior de Ingenieros Informáticos (UPM)

LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD

FINAL - 1ª EVALUACIÓN (30 de enero de 2021)

Apellidos: Nombre:

Ejercicio 1:

- a) Definir tipos de gramáticas. Jerarquía de Chomsky
- b) Dado el lenguaje $L = \{xx^{-1} / x \in \{a, b\}^*\}$

Obtener una gramática G que lo genere indicando que tipo de gramática es.

25 minutos

a) Gramática de tipo 0

- Reglas de producción del tipo (sin ninguna restricción adicional)
 - u ::= v donde
 - u∈∑⁺
 - \circ $v \in \Sigma$
 - \circ u = xAy
 - x,y ∈∑
 - \circ A $\in \Sigma_N$
- Los lenguajes representados por estas gramáticas se llaman "lenguajes sin restricciones". Lo

Gramática de tipo 1

- Gramáticas sensibles al contexto
- Reglas de producción del tipo
 - xAy ::= xvy donde
 - \circ $v \in \Sigma^+$
 - o x,y ∈∑
 - o A ∈∑N
- Los lenguajes representados por estas gramáticas se llaman "lenguajes dependientes del contexto". L1

Gramática de tipo 2

- Gramáticas de contexto libre
- Reglas de producción del tipo
 - A ::= v donde
 - \circ v ∈∑⁺ (v no puede ser λ)
 - $A \in \sum_{N} (A \text{ es no terminal})$
- Los lenguajes representados por estas gramáticas se llaman "lenguajes independientes del contexto". L2

Gramática de tipo 3

- Gramáticas lineales
- Lineales por la izquierda
 - A ::= a; A ::= Va dónde
 - o $A,V \in \sum N$
 - a ∈∑τ
- Lineales por la derecha
 - A ::= a; A ::= aV dónde
 - \circ A,V $\in \sum N$
 - a ∈∑τ
- Los lenguajes representados por estas gramáticas se llaman "lenguajes regulares" (L₃)

Jerarquía de Chomsky:

- $G_3 \subset G_2 \subset G_1 \subset G_0$
- $L_0 \supseteq L_1 \supseteq L_2 \supseteq L_3$

b)
$$G = (\sum_{T} = \{a, b\}, \sum_{N} = \{S\}, S, P) \\ P = \{S ::= aSa \mid bSb \mid \lambda\} \\ Gramática de tipo 2$$

Escuela Técnica Superior de Ingenieros Informáticos (UPM)

LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD

FINAL - 1ª EVALUACIÓN (30 de enero de 2021)

Apellidos: Nombre:

Ejercicio 2:

Dado el lenguaje representado por la siguiente Expresión Regular L = (0*(101 + 11*)0*) resolver en el siguiente orden:

- a) Construir un Autómata Finito No Determinista que reconozca las palabras de L.
- b) Construir el Autómata Finito Determinista Mínimo a partir del AFND del apartado anterior.

25 minutos

a)

b)

Escuela Técnica Superior de Ingenieros Informáticos (UPM) LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD

FINAL - 2ª EVALUACIÓN (30 de enero de 2021)

Apellidos: Nombre:

Ejercicio 1:

Dada la gramática $G = \{ \Sigma_T, \Sigma_N, S, \mathcal{P} \}$ donde $\Sigma_T = \{ a, +, *,), (\}, \Sigma_N = \{ S, T, F \}, S = axioma y <math>\mathcal{P}$ las producciones: $S ::= S + T \mid T$ $T ::= T * F \mid F$ $F ::= (S) \mid a$

- a) Construir un Autómata a Pila (AP) que reconozca el lenguaje generado por G. (7 puntos) (utilizar el método en el que la gramática G no necesita estar en FNG).
- b) Obtener una derivación de la palabra (a + a * a) en G. (1 punto)
- c) Comprobar el reconocimiento en el AP de dicha palabra. (2 puntos)

25 minutos

a) Se va a construir un AP que acepte el mismo lenguaje generado por la gramática G:

$$G = \{\{a, +, \cdot, \}, (\}, \{S, T, F\}, \mathcal{P}, S\} \qquad \mathcal{P} \equiv \begin{cases} S ::= S + T \mid T \\ T ::= T \cdot F \mid F \\ F ::= (S) \mid a \end{cases}$$

$$AP = \{\{\Sigma_{T}, \{\Sigma_{N} \cup \Sigma_{T}\}, \{q\}, S, q, f, \emptyset\} \}$$

$$AP = \{\{a, +, \cdot, \}, (\}, \{a, +, \cdot, \}, (, S, T, F\}, \{q\}, S, q, f, \emptyset\}$$

Aplicamos el ALGORITMO para obtener los movimientos del AP:

Paso 1	$\forall A :: = X \in P \rightarrow (q, X) \in f(q, \lambda, A)$
Paso 2	$\forall a \in \Sigma_T \rightarrow (q, \lambda) \in f(q, a, a)$

b) Derivación de la palabra (a + a · a) en G:

$$S \to \underline{T} \to \underline{F} \to (\underline{S}) \to (\underline{S} + \underline{T}) \to (\underline{T} + \underline{T}) \to (\underline{F} + \underline{T}) \to (\underline{a} + \underline{T}) \to (\underline{a} + \underline{T} * \underline{F}) \to (\underline{a} + \underline{F} * \underline{F}) \to (\underline{a} + \underline{a} * \underline{F}) \to (\underline{a} + \underline{a} * \underline{a})$$
 Genera la palabra formada por símbolos $\in \Sigma_T$ de G

c) Reconocimiento de la palabra (a + a · a) en el AP:

```
\begin{split} & [q,(a+a\cdot a),S] \vdash [q,(a+a\cdot a),T] \vdash [q,(a+a\cdot a),F] \vdash [q,(a+a\cdot a),(S)] \vdash \\ & [q,a+a\cdot a),S)] \vdash [q,a+a\cdot a),S+T)] \vdash [q,a+a\cdot a),T+T)] \vdash [q,a+a\cdot a),F+T)] \vdash \\ & [q,a+a\cdot a),a+T)] \vdash [q,+a\cdot a),+T)] \vdash [q,a\cdot a),T)] \vdash [q,a\cdot a),T\cdot F)] \vdash \\ & [q,a\cdot a),F\cdot F)] \vdash [q,a\cdot a),a\cdot F)] \vdash [q,\cdot a),\cdot F)] \vdash [q,a),F)] \vdash [q,a),a)] \vdash [q,),)] \vdash \\ & [q,\lambda,\lambda] \quad \text{Acepta la palabra que } \in \Sigma \text{ del } AP \end{split}
```


Escuela Técnica Superior de Ingenieros Informáticos (UPM) LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD

FINAL - 2ª EVALUACIÓN (30 de enero de 2021)

Apellidos: Nombre:

Ejercicio 2:

Sea la Máquina de Turing M definida según el siguiente grafo:

Y cuya configuración inicial es la siguiente:

Donde *x* e *y* son dos números enteros positivos codificados en unario.

M inicialmente está en el estado *q*₀ leyendo el # intermedio.

a) a.1) ¿Qué función aritmética sobre las entradas x e y calcula M? (1 punto)

a.2) Escriban (y describan brevemente) el contenido inicial de la cinta de una Máquina de Turing Universal (MTU) programada para simular a la máquina M con la entrada:

Utilicen la codificación binaria: q_0 = 00 ; q_1 = 01 ; q_2 = 10 ; Desplazamiento izqda. I = 1; Desplazamiento a la dcha. D = 0

- b) Escriban (y describan brevemente) el contenido de la cinta de la MTU después de la ejecución del módulo transcriptor cuando la MTU está simulando el primer movimiento de M con la entrada del apartado a.2). ¿En qué estado termina el módulo transcriptor? ¿Por qué?
- c) Escriban (y describan brevemente) el contenido final de la cinta de la MTU cuando termine de simular a la máquina M con la entrada del apartado a.2). ¿En qué estado se para la MTU? ¿Por qué? (3 puntos)

NOTA: Todos los apartados se responderán en la carilla de atrás.

Durante el examen se da fotocopia con el grafo de los tres módulos de la MTU.

30 minutos

Continuación ejercicio 2. RESPUESTAS. SOLUCIONES

