Job No.:
 Horse Arena
 Address:
 131 Sandon Rd, Feilding, New Zealand
 Date:
 02/09/2024

 Latitude:
 -40.218059
 Longitude:
 175.542694
 Elevation:
 99.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N1	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	3	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	5.781 m
Wind Region	NZ2	Terrain Category	2.25	Design Wind Speed	40.72 m/s
Wind Pressure	0.99 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Gable Free

For roof Cp, i = -0.3

For roof CP,e from 0 m To 5.78 m Cpe = -0.9 pe = -0.81 KPa pnet = -0.81 KPa

For roof CP,e from 5.78 m To 11.56 m Cpe = -0.5 pe = -0.45 KPa pnet = -0.45 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 22 m Cpe = 0.7 pe = 0.63 KPa pnet = 0.93 KPa

For side wall CP,e from 0 m To 5.78 m Cpe = pe = -0.58 KPa pnet = -0.58 KPa

Maximum Upward pressure used in roof member Design = 0.81 KPa

Maximum Downward pressure used in roof member Design = 0.48 KPa

Maximum Wall pressure used in Design = 0.93 KPa

Maximum Racking pressure used in Design = 0.53 KPa

Design Summary

Purlin Design

Purlin Spacing = 900 mm Purlin Span = 5486 mm Try Purlin 250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward =0.57 S1 Downward =12.68 S1 Upward =22.03

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	1.14 Kn-m	Capacity	3.40 Kn-m	Passing Percentage	298.25 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	2.64 Kn-m	Capacity	4.53 Kn-m	Passing Percentage	171.59 %
$M_{0.9 D ext{-W} n Up}$	-1.98 Kn-m	Capacity	-3.35 Kn-m	Passing Percentage	169.19 %
V _{1.35D}	0.83 Kn	Capacity	12.06 Kn	Passing Percentage	1453.01 %

Second page

 $V_{1.2D+1.5L~1.2D+Sn~1.2D+WnDn}$ 1.93 Kn Capacity 16.08 Kn Passing Percentage 833.16 % $V_{0.9D-WnUp}$ -1.44 Kn Capacity -20.10 Kn Passing Percentage 1395.83 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 14.08 mm

Limit by Woolcock et al, 1999 Span/240 = 22.65 mm

Deflection under Dead and Service Wind = 17.36 mm

Limit by Woolcock et al, 1999 Span/100 = 54.36 mm

Reactions

Maximum downward = 1.93 kn Maximum upward = -1.44 kn

Number of Blocking = 1 if 0 then no blocking required, if 1 then one midspan blocking required

Girt Design Front and Back

Girt's Spacing = 0 mm Girt's Span = 2818 mm Try Girt SG8 Dry

Moisture Condition = Wet (Moisture in timber is less than 18% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = NaN

K8 Upward =NaN S1 Downward =NaN S1 Upward =NaN

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = NaN mm Limit by Woolcock et al, 1999 Span/100 = 28.18 mm

Sag during installation = NaN mm

Reactions

Maximum = 0.00 kn

Girt Design Sides

Girt's Spacing = 0 mm Girt's Span = 2750 mm Try Girt SG8 Dry

Moisture Condition = Wet (Moisture in timber is less than 18% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = NaN

K8 Upward =NaN S1 Downward =NaN S1 Upward =NaN

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	0.00 Kn-m	Capacity	NaN Kn-m	Passing Percentage	NaN %
V _{0.9D-WnUp}	0.00 Kn	Capacity	0.00 Kn	Passing Percentage	NaN %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = NaN mm

Limit by Woolcock et al. 1999 Span/100 = 27.50 mm

Sag during installation = NaN mm

Reactions

Maximum = 0.00 kn

Middle Pole Design

Geometry

350 SED H5 (Minimum 375 dia. at Floor Level)	Dry Use	Height	4670 mm
Area	103154 mm2	As	77365.4296875 mm2
Ix	847191750 mm4	Zx	4674161 mm3
Iy	847191750 mm4	Zx	4674161 mm3
Lateral Restraint	1300 mm c/c		

Loads

Total Area over Pole = 61.996 m^2

Dead	15.50 Kn	Live	15.50 Kn
Wind Down	29.76 Kn	Snow	0.00 Kn
Moment wind	18.67 Kn-m		
Phi	0.8	K8	1.00
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	fs =	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNcx Wind	1485.42 Kn	PhiMnx Wind	135.74 Kn-m	PhiVnx Wind	183.20 Kn
PhiNcx Dead	891.25 Kn	PhiMnx Dead	81.44 Kn-m	PhiVnx Dead	109.92 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.18 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.06 < 1 OK$

Deflection at top under service lateral loads = 9.03 mm < 46.70 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

Ds = 0.6 mm Pile Diameter

L = 2200 mm Pile embedment length

f1 = 4336 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 18.67 Kn-m Shear Wind = 4.31 Kn

Pile Properties

Safety Factory 0.55

Hu = 14.52 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 37.54 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.50 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(2200) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(2200)

Skin Friction = 39.09 Kn

Weight of Pile + Pile Skin Friction = 41.52 Kn

Uplift on one Pile = 36.27 Kn

Uplift is ok