Package 'Giotto'

September 18, 2020

```
Title Spatial single-cell transcriptomics toolbox
Version 0.3.6.9048
Description Toolbox to process, analyze and visualize spatial single-cell expression data.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
URL https://rubd.github.io/Giotto/, https://github.com/RubD/Giotto
BugReports https://github.com/RubD/Giotto/issues
RoxygenNote 7.1.1
Depends base (>= 3.5.1),
      utils (>= 3.5.1),
      R (>= 3.5.1)
Imports data.table (>= 1.12.2),
      deldir,
      dendextend (>= 1.13.0),
      ggplot2 (>= 3.1.1),
      Matrix,
      magick,
      matrixStats (\geq 0.55.0),
      methods,
      uwot (>= 0.0.0.9010),
      cowplot (>= 0.9.4),
      ClusterR,
      grDevices,
      graphics,
      RColorBrewer (>= 1.1-2),
      dbscan (>= 1.1-3),
      farver (>= 2.0.3),
      ggalluvial (>= 0.9.1),
      scales (>= 1.0.0),
      ComplexHeatmap (>= 1.20.0),
      qvalue (>= 2.14.1),
      If a >= 1.12.0,
      igraph (>= 1.2.4.1),
      irlba,
```

plotly,

R topics documented:

parallel,

	$\Gamma \cdots \Gamma$
	reticulate (>= 1.14),
	magrittr,
	limma,
	ggdendro,
	smfishHmrf,
	devtools,
	reshape2,
	ggraph, Rcpp,
	Refast,
	Rtsne (>= 0.15),
	rlang (>= $0.4.3$),
	R.utils,
	fitdistrplus,
	quadprog
	ests knitr,
	rmarkdown,
	MAST,
	scran (>= 1.10.1),
	png,
	FactoMineR,
	tiff,
	biomaRt,
	trendsceek,
	multinet ($>= 3.0.2$),
	RTriangle (>= 1.6-0.10)
biocV	iews
	tteBuilder knitr
_	
	ngTo Rcpp,
	RcppArmadillo
Remo	tes lambdamoses/smfishhmrf-r
R to	ppics documented:
	pres documentos.
	addCellIntMetadata
	addCellMetadata
	addCellStatistics
	addGeneMetadata
	addGenesPerc
	addGeneStatistics
	addGiottoImage
	addGiottoImageToSpatPlot
	addHMRF

annotateSpatialNetwork
binSpect
binSpectMulti
binSpectSingle
calculateHVG
calculateMetaTable
calculateMetaTableCells
cellProximityBarplot
cellProximityEnrichment
cellProximityHeatmap
cellProximityNetwork
cellProximitySpatPlot
cellProximitySpatPlot2D
cellProximitySpatPlot3D
cellProximityVisPlot
changeGiottoInstructions
changeImageBg
checkGiottoEnvironment
clusterCells
clusterSpatialCorGenes
colMeans_giotto
colSums_giotto
combCCcom
combineCellProximityGenes
combineCPG
combineMetadata
convertEnsemblToGeneSymbol
createCrossSection
createGiottoImage
createGiottoInstructions
createGiottoObject
createGiottoVisiumObject
createMetagenes
createNearestNetwork
createSpatialDefaultGrid
createSpatialDelaunayNetwork
createSpatialEnrich
createSpatialGrid
createSpatialKNNnetwork
createSpatialNetwork
create_cell_type_random_cell_IDs
create_crossSection_object
crossSectionGenePlot
crossSectionGenePlot3D
crossSectionPlot
crossSectionPlot3D
detectSpatialCorGenes
detectSpatialPatterns
dimCellPlot
dimCellPlot2D
dimGenePlot
dimGenePlot2D

limGenePlot3D	
	86
	87
limPlot3D	91
loHclust	93
loHMRF	94
loKmeans	95
loLeidenCluster	97
loLeidenSubCluster	98
loLouvainCluster	00
loLouvainSubCluster	01
loRandomWalkCluster	03
loSNNCluster	04
estimateImageBg	05
exportGiottoViewer	05
exprCellCellcom	
DataDT	
ilterCellProximityGenes	
ilterCombinations	
ilterCPG	
ilterDistributions	
ilterGiotto	
indCellProximityGenes	
indCPG	
indGiniMarkers	
indGiniMarkers_one_vs_all	
indMarkers	
indMarkers_one_vs_all	
indMastMarkers	
indMastMarkers_one_vs_all	
indNetworkNeighbors	
indScranMarkers	
indScranMarkers_one_vs_all	
get10Xmatrix	
getClusterSimilarity	
tetDendrogramSplits	
tetDistinctColors	
getGiottoImage	
tetSpatialDataset	
giotto-class	
neatmSpatialCorGenes	
nyperGeometricEnrich	
nsertCrossSectionGenePlot3D	
nsertCrossSectionSpatPlot3D	
nstallGiottoEnvironment	
ackstrawPlot	
oadHMRF	
nakeSignMatrixPAGE	
nakeSignMatrixRank	
nean_giotto	
nergeClusters	
nini_giotto_3D	44

	11											
mini_giotto_multi_o mini_giotto_single_												
normalizeGiotto												
PAGEEnrich												
pDataDT												
plotCCcomDotplot												
plotCCcomHeatmap												
plotCellProximityG												
plotCombineCCcon												
plotCombineCellCe	llComm	unica	itio	n.	 	 	 	 				
plotCombineCellPro	oximityC	Genes			 	 	 	 				
plotCombineCPG .												
plotCPG												
plotGiottoImage												
plotHeatmap												
plotICG												
plotInteractionChan	_											
plotMetaDataCellsF	-											
plotMetaDataHeatm	-											
plotPCA												
plotPCA_2D				. 	 	 	 	 				
plotPCA_3D				. . .	 	 	 	 				
plotRankSpatvsExp	r				 	 	 	 				
plotRecovery												
plotRecovery_sub .												
plotStatDelaunayNe												
plotTSNE												
plotTSNE 2D												
_												
plotTSNE_3D												
plotUMAP												
plotUMAP_2D												
plotUMAP_3D												
print.giotto												
rankEnrich				. . .	 	 	 	 				
rankSpatialCorGrou	ps				 	 	 	 				
readExprMatrix					 	 	 	 				
readGiottoInstructio												
removeCellAnnotati												
removeGeneAnnota												
removeGiottoEnviro												
replaceGiottoInstruc												
rowMeans_giotto .												
rowSums_giotto												
runDWLSDeconv .												
runHyperGeometric												
runPAGEEnrich					 	 	 	 				
runPAGEEnrich_OI	LD			. . .	 	 	 	 				
runPatternSimulatio												
runPCA												
runRankEnrich												
runRankEnrich runSpatialDeconv .												

6

runtSNE	. 203
runUMAP	
screePlot	. 207
selectPatternGenes	
show, giotto-method	
showClusterDendrogram	. 210
showClusterHeatmap	. 211
showGiottoImageNames	. 212
showGiottoInstructions	. 213
showGrids	. 213
showNetworks	. 214
showPattern	. 214
showPattern2D	. 215
showPattern3D	. 216
showPatternGenes	. 217
showProcessingSteps	. 219
showSaveParameters	
showSpatialCorGenes	
signPCA	
silhouetteRank	
silhouetteRank_test	
simulateOneGenePatternGiottoObject	
spark	
spatCellCellcom	
spatCellPlot	
spatCellPlot2D	
spatDimCellPlot	
spatDimCellPlot2D	
spatDimGenePlot	
spatDimGenePlot2D	
spatDimGenePlot3D	
spatDimPlot	
spatDimPlot2D	
spatDimPlot3D	
spatGenePlot	
spatGenePlot2D	
spatGenePlot3D	
spatialAEH	
spatialDE	
•	
spatNetwDistributionsDistance	
spatNetwDistributionsKneighbors	
spatPlot	
spatPlot2D	
spatPlot3D	
specificCellCellcommunicationScores	
stitchFieldCoordinates	
stitchTileCoordinates	
subClusterCells	
subsetGiotto	
subsetGiottoLocs	
trendSceek	. 286

addCellIntMetadata 7

Index																		29 3
	writeHMRFresults	 		 	•	 •	•	 •		•			•	•	•		•	291
	violinPlot																	
	viewHMRFresults3																	
	viewHMRFresults2																	
	viewHMRFresults																	
	updateGiottoImage																	
	t_giotto																	

Description

Creates an additional metadata column with information about interacting and non-interacting cell types of the selected cell-cell interaction.

Usage

```
addCellIntMetadata(
  gobject,
  spatial_network = "spatial_network",
  cluster_column,
  cell_interaction,
  name = "select_int",
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object

spatial_network

name of spatial network to use

cluster_column column of cell types

cell_interaction

cell-cell interaction to use

name

name for the new metadata column

return_gobject return an updated giotto object
```

Details

This function will create an additional metadata column which selects interacting cell types for a specific cell-cell interaction. For example, if you want to color interacting astrocytes and oligodendrocytes it will create a new metadata column with the values "select_astrocytes", "select_oligodendrocytes", "other_astrocytes", "other_oligodendrocytes" and "other". Where "other" is all other cell types found within the selected cell type column.

Value

Giotto object

8 addCellMetadata

Examples

```
addCellIntMetadata(gobject)
```

addCellMetadata

addCellMetadata

Description

adds cell metadata to the giotto object

Usage

```
addCellMetadata(
  gobject,
  new_metadata,
  vector_name = NULL,
  by_column = FALSE,
  column_cell_ID = NULL
)
```

Arguments

```
gobject giotto object

new_metadata new cell metadata to use (data.table, data.frame, ...)

vector_name (optional) custom name if you provide a single vector

by_column merge metadata based on cell_ID column in pDataDT (default = FALSE)

column_cell_ID column name of new metadata to use if by_column = TRUE
```

Details

You can add additional cell metadata in two manners:

- 1. Provide a data.table or data.frame with cell annotations in the same order as the cell_ID column in pDataDT(gobject)
- 2. Provide a data.table or data.frame with cell annotations and specificy which column contains the cell IDs, these cell IDs need to match with the cell_ID column in pDataDT(gobject)

Value

giotto object

addCellStatistics 9

addCellStatistics

addCellStatistics

Description

adds cells statistics to the giotto object

Usage

```
addCellStatistics(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0,
  return_gobject = TRUE
)
```

Arguments

Details

This function will add the following statistics to cell metadata:

- nr_genes: Denotes in how many genes are detected per cell
- perc_genes: Denotes what percentage of genes is detected per cell
- total_expr: Shows the total sum of gene expression per cell

Value

```
giotto object if return_gobject = TRUE
```

Examples

```
data(mini_giotto_single_cell)
updated_giotto_object = addCellStatistics(mini_giotto_single_cell)
```

10 addGenesPerc

addGeneMetadata

addGeneMetadata

Description

adds gene metadata to the giotto object

Usage

```
addGeneMetadata(gobject, new_metadata, by_column = F, column_gene_ID = NULL)
```

Arguments

```
gobject giotto object
```

new_metadata new metadata to use

by_column merge metadata based on gene_ID column in fDataDT

column_gene_ID column name of new metadata to use if by_column = TRUE

Details

You can add additional gene metadata in two manners: 1. Provide a data.table or data.frame with gene annotations in the same order as the gene_ID column in fDataDT(gobject) 2. Provide a data.table or data.frame with gene annotations and specificy which column contains the gene IDs, these gene IDs need to match with the gene_ID column in fDataDT(gobject)

Value

giotto object

addGenesPerc

addGenesPerc

Description

calculates the total percentage of (normalized) counts for a subset of selected genes

Usage

```
addGenesPerc(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  vector_name = "gene_perc",
  return_gobject = TRUE
)
```

addGeneStatistics 11

Arguments

```
gobject giotto object
expression_values
expression values to use
genes vector of selected genes
vector_name column name as seen in pDataDT()
return_gobject boolean: return giotto object (default = TRUE)
```

Value

giotto object if return_gobject = TRUE, else a vector with

Examples

addGeneStatistics

addGeneStatistics

Description

adds gene statistics to the giotto object

Usage

```
addGeneStatistics(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0,
  return_gobject = TRUE
)
```

Arguments

12 addGiottoImage

Details

This function will add the following statistics to gene metadata:

- nr_cells: Denotes in how many cells the gene is detected
- per_cells: Denotes in what percentage of cells the gene is detected
- total_expr: Shows the total sum of gene expression in all cells
- mean_expr: Average gene expression in all cells
- mean_expr_det: Average gene expression in cells with detectable levels of the gene

Value

```
giotto object if return_gobject = TRUE
```

Examples

```
data(mini_giotto_single_cell)
updated_giotto_object = addGeneStatistics(mini_giotto_single_cell)
```

addGiottoImage

addGiottoImage

Description

Adds giotto image objects to your giotto object

Usage

```
addGiottoImage(gobject, images)
```

Arguments

gobject giotto object

images list of giotto image objects, see createGiottoImage

Value

an updated Giotto object with access to the list of images

Examples

```
addGiottoImage(mg_object)
```

 $add {\tt GiottoImageToSpatPlot}$

add Giot to Image To Spat Plot

Description

Add a giotto image to a spatial ggplot object post creation

Usage

```
addGiottoImageToSpatPlot(spatpl = NULL, gimage = NULL)
```

Arguments

spatpl a spatial ggplot object

gimage a giotto image, see createGiottoImage

Value

an updated spatial ggplot object

Examples

addGiottoImageToSpatPlot(mg_object)

addHMRF

addHMRF

Description

Add selected results from doHMRF to the giotto object

Usage

```
addHMRF(gobject, HMRFoutput, k = NULL, betas_to_add = NULL, hmrf_name = NULL)
```

Arguments

gobject giotto object

 $HMRF output \qquad \qquad HMRF output \ from \ doHMRF()$

k number of domains

 $betas_to_add \qquad results \ from \ different \ betas \ that \ you \ want \ to \ add$

hmrf_name specify a custom name

Value

giotto object

14 addNetworkLayout

addNetworkLayout

addNetworkLayout

Description

Add a network layout for a selected nearest neighbor network

Usage

```
addNetworkLayout(
  gobject,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  layout_type = c("drl"),
  options_list = NULL,
  layout_name = "layout",
  return_gobject = TRUE
)
```

Arguments

Details

This function creates layout coordinates based on the provided kNN or sNN. Currently only the force-directed graph layout "drl", see layout_with_drl, is implemented. This provides an alternative to tSNE or UMAP based visualizations.

Value

giotto object with updated layout for selected NN network

addStatistics 15

 ${\tt addStatistics}$

addStatistics

Description

adds genes and cells statistics to the giotto object

Usage

```
addStatistics(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0,
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object

expression_values

expression values to use

detection_threshold

detection threshold to consider a gene detected

return_gobject boolean: return giotto object (default = TRUE)
```

Details

See addGeneStatistics and addCellStatistics

Value

```
giotto object if return_gobject = TRUE, else a list with results
```

Examples

```
data(mini_giotto_single_cell)
updated_giotto_object = addStatistics(mini_giotto_single_cell)
```

adjustGiottoMatrix

adjust Giot to Matrix

Description

Adjust expression values to account for known batch effects or technological covariates.

16 anndataToGiotto

Usage

```
adjustGiottoMatrix(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  batch_columns = NULL,
  covariate_columns = NULL,
  return_gobject = TRUE,
  update_slot = c("custom")
)
```

Arguments

Details

This function implements the removeBatchEffect function to remove known batch effects and to adjust expression values according to provided covariates.

Value

giotto object

Examples

```
data(mini_giotto_single_cell)
adjust_gobject = adjustGiottoMatrix(mini_giotto_single_cell)
```

 $ann data To {\tt Giotto}$

anndata To Giotto

Description

Converts a spatial anndata (e.g. scanpy) .h5ad file into a Giotto object

Usage

```
anndataToGiotto(
  anndata_path,
  metadata_cols = c("total_counts", "pct_counts_mt"),
  instructions = NULL,
  ...
)
```

annotateGiotto 17

Arguments

```
anndata_path path to the .h5ad file
metadata_cols metadata columns to include
instructions giotto instructions
... additional parameters to createGiottoObject
```

Details

Function in beta. Converts a .h5ad file into a Giotto object.

Value

Giotto object

annotateGiotto

annotateGiotto

Description

Converts cluster results into a user provided annotation.

Usage

```
annotateGiotto(
  gobject,
  annotation_vector = NULL,
  cluster_column = NULL,
  name = "cell_types"
)
```

Arguments

Details

You need to specifify which (cluster) column you want to annotate and you need to provide an annotation vector like this:

- 1. identify the cell type of each cluster
- 2. create a vector of these cell types, e.g. cell_types = c('T-cell', 'B-cell', 'Stromal')
- 3. provide original cluster names to previous vector, e.g. names(cell_types) = c(2, 1, 3)

Value

giotto object

18 annotateSpatialGrid

Examples

annotateSpatialGrid annotateSpatialGrid

Description

annotate spatial grid with cell ID and cell metadata (optional)

Usage

```
annotateSpatialGrid(
  gobject,
  spatial_grid_name = "spatial_grid",
  cluster_columns = NULL
)
```

Arguments

Value

annotated spatial grid data.table

Examples

```
annotateSpatialGrid()
```

```
annotate {\tt Spatial Network}
```

annotate Spatial Network

Description

Annotate spatial network with cell metadata information.

Usage

```
annotateSpatialNetwork(
  gobject,
  spatial_network_name = "Delaunay_network",
  cluster_column,
  create_full_network = F
)
```

Arguments

Value

annotated network in data.table format

Examples

```
annotateSpatialNetwork(gobject)
```

binSpect

binSpect

Description

Previously: binGetSpatialGenes. BinSpect (Binary Spatial Extraction of genes) is a fast computational method that identifies genes with a spatially coherent expression pattern.

20 binSpect

Usage

```
binSpect(
     gobject,
     bin_method = c("kmeans", "rank"),
     expression_values = c("normalized", "scaled", "custom"),
      subset_genes = NULL,
      spatial_network_name = "Delaunay_network",
      spatial_network_k = NULL,
      reduce_network = FALSE,
     kmeans_algo = c("kmeans", "kmeans_arma", "kmeans_arma_subset"),
     nstart = 3,
      iter_max = 10,
      extreme_nr = 50,
      sample_nr = 50,
     percentage_rank = 30,
     do_fisher_test = TRUE,
     adjust_method = "fdr",
      calc_hub = FALSE,
     hub_min_int = 3,
     get_av_expr = TRUE,
     get_high_expr = TRUE,
      implementation = c("data.table", "simple", "matrix"),
      group_size = "automatic",
     do_parallel = TRUE,
      cores = NA,
      verbose = T,
     knn_params = NULL,
      set.seed = NULL,
     bin_matrix = NULL,
      summarize = c("p.value", "adj.p.value")
   )
Arguments
   gobject
                    giotto object
   bin_method
                    method to binarize gene expression
   expression_values
                    expression values to use
   subset_genes
                    only select a subset of genes to test
   spatial_network_name
                    name of spatial network to use (default = 'spatial_network')
   spatial_network_k
                    different k's for a spatial kNN to evaluate
    reduce_network default uses the full network
   kmeans_algo
                    kmeans algorithm to use (kmeans, kmeans_arma, kmeans_arma_subset)
   nstart
                    kmeans: nstart parameter
                    kmeans: iter.max parameter
   iter_max
   extreme_nr
                    number of top and bottom cells (see details)
```

total number of cells to sample (see details)

sample_nr

binSpect 21

percentage_rank

percentage of top cells for binarization

do_fisher_test perform fisher test

adjust_method p-value adjusted method to use (see p.adjust)

calc_hub calculate the number of hub cells

hub_min_int minimum number of cell-cell interactions for a hub cell

get_av_expr calculate the average expression per gene of the high expressing cells

get_high_expr calculate the number of high expressing cells per gene implementation enrichment implementation (data.table, simple, matrix)

group_size number of genes to process together with data.table implementation (default =

automatic)

do_parallel run calculations in parallel with mclapply cores number of cores to use if do_parallel = TRUE

verbose be verbose

knn_params list of parameters to create spatial kNN network

set.seed set a seed before kmeans binarization

bin_matrix a binarized matrix, when provided it will skip the binarization process

summarize summarize the p-values or adjusted p-values

Details

We provide two ways to identify spatial genes based on gene expression binarization. Both methods are identicial except for how binarization is performed.

- 1. binarize: Each gene is binarized (0 or 1) in each cell with **kmeans** (k = 2) or based on **rank** percentile
- 2. network: Alll cells are connected through a spatial network based on the physical coordinates
- 3. contingency table: A contingency table is calculated based on all edges of neighboring cells and the binarized expression (0-0, 0-1, 1-0 or 1-1)
- 4. For each gene an odds-ratio (OR) and fisher.test (optional) is calculated

Three different kmeans algorithmes have been implemented:

- 1. kmeans: default, see kmeans
- 2. kmeans_arma: from ClusterR, see KMeans_arma
- 3. kmeans_arma_subst: from ClusterR, see KMeans_arma, but random subsetting the vector for each gene to increase speed. Change extreme_nr and sample_nr for control.

Other statistics are provided (optional):

- Number of cells with high expression (binary = 1)
- Average expression of each gene within high expressing cells
- Number of hub cells, these are high expressing cells that have a user defined number of high expressing neighbors

By selecting a subset of likely spatial genes (e.g. soft thresholding highly variable genes) can accelerate the speed. The simple implementation is usually faster, but lacks the possibility to run in parallel and to calculate hub cells. The data.table implementation might be more appropriate for large datasets by setting the group_size (number of genes) parameter to divide the workload.

22 binSpectMulti

Value

```
data.table with results (see details)
```

Examples

```
binSpect(gobject)
```

binSpectMulti

binSpectMulti

Description

binSpect for multiple spatial kNN networks

Usage

```
binSpectMulti(
  gobject,
  bin_method = c("kmeans", "rank"),
  expression_values = c("normalized", "scaled", "custom"),
  subset_genes = NULL,
  spatial_network_k = c(5, 10, 20),
  reduce_network = FALSE,
  kmeans_algo = c("kmeans", "kmeans_arma", "kmeans_arma_subset"),
  nstart = 3,
  iter_max = 10,
  extreme_nr = 50,
  sample_nr = 50,
  percentage_rank = c(10, 30),
  do_fisher_test = TRUE,
  adjust_method = "fdr",
  calc_hub = FALSE,
  hub_min_int = 3,
  get_av_expr = TRUE,
  get_high_expr = TRUE,
  implementation = c("data.table", "simple", "matrix"),
  group_size = "automatic",
  do_parallel = TRUE,
  cores = NA,
  verbose = T,
  knn_params = NULL,
  set.seed = NULL,
  summarize = c("adj.p.value", "p.value")
```

Arguments

binSpectMulti 23

subset_genes only select a subset of genes to test spatial_network_k different k's for a spatial kNN to evaluate reduce_network default uses the full network kmeans_algo kmeans algorithm to use (kmeans, kmeans_arma, kmeans_arma_subset) nstart kmeans: nstart parameter iter_max kmeans: iter.max parameter extreme_nr number of top and bottom cells (see details) total number of cells to sample (see details) sample_nr percentage_rank percentage of top cells for binarization do_fisher_test perform fisher test adjust_method p-value adjusted method to use (see p. adjust) calc_hub calculate the number of hub cells minimum number of cell-cell interactions for a hub cell hub_min_int calculate the average expression per gene of the high expressing cells get_av_expr calculate the number of high expressing cells per gene get_high_expr enrichment implementation (data.table, simple, matrix) implementation group_size number of genes to process together with data.table implementation (default = automatic) do_parallel run calculations in parallel with mclapply number of cores to use if do_parallel = TRUE cores verbose be verbose list of parameters to create spatial kNN network knn_params set.seed set a seed before kmeans binarization summarize the p-values or adjusted p-values summarize

Details

We provide two ways to identify spatial genes based on gene expression binarization. Both methods are identicial except for how binarization is performed.

- 1. binarize: Each gene is binarized (0 or 1) in each cell with **kmeans** (k = 2) or based on **rank** percentile
- 2. network: Alll cells are connected through a spatial network based on the physical coordinates
- 3. contingency table: A contingency table is calculated based on all edges of neighboring cells and the binarized expression (0-0, 0-1, 1-0 or 1-1)
- 4. For each gene an odds-ratio (OR) and fisher.test (optional) is calculated

Three different kmeans algorithmes have been implemented:

- 1. kmeans: default, see kmeans
- 2. kmeans arma: from ClusterR, see KMeans_arma
- 3. kmeans_arma_subst: from ClusterR, see KMeans_arma, but random subsetting the vector for each gene to increase speed. Change extreme_nr and sample_nr for control.

24 binSpectSingle

Other statistics are provided (optional):

- Number of cells with high expression (binary = 1)
- Average expression of each gene within high expressing cells
- Number of hub cells, these are high expressing cells that have a user defined number of high expressing neighbors

By selecting a subset of likely spatial genes (e.g. soft thresholding highly variable genes) can accelerate the speed. The simple implementation is usually faster, but lacks the possibility to run in parallel and to calculate hub cells. The data.table implementation might be more appropriate for large datasets by setting the group_size (number of genes) parameter to divide the workload.

Value

data.table with results (see details)

Examples

binSpectMulti(gobject)

binSpectSingle

binSpectSingle

Description

binSpect for a single spatial network

Usage

```
binSpectSingle(
  gobject,
  bin_method = c("kmeans", "rank"),
  expression_values = c("normalized", "scaled", "custom"),
  subset_genes = NULL,
  spatial_network_name = "Delaunay_network",
  reduce_network = FALSE,
  kmeans_algo = c("kmeans", "kmeans_arma", "kmeans_arma_subset"),
  nstart = 3,
  iter_max = 10,
  extreme_nr = 50,
  sample_nr = 50,
  percentage_rank = 30,
  do_fisher_test = TRUE,
  adjust_method = "fdr",
  calc_hub = FALSE,
  hub_min_int = 3,
  get_av_expr = TRUE,
  get_high_expr = TRUE,
  implementation = c("data.table", "simple", "matrix"),
  group_size = "automatic",
  do_parallel = TRUE,
  cores = NA,
```

binSpectSingle 25

```
verbose = T,
set.seed = NULL,
bin_matrix = NULL
)
```

Arguments

```
giotto object
gobject
bin_method
                  method to binarize gene expression
expression_values
                  expression values to use
                  only select a subset of genes to test
subset_genes
spatial_network_name
                  name of spatial network to use (default = 'spatial_network')
reduce_network default uses the full network
kmeans_algo
                  kmeans algorithm to use (kmeans, kmeans_arma, kmeans_arma_subset)
                  kmeans: nstart parameter
nstart
iter_max
                  kmeans: iter.max parameter
                  number of top and bottom cells (see details)
extreme_nr
                  total number of cells to sample (see details)
sample_nr
percentage_rank
                  percentage of top cells for binarization
do_fisher_test perform fisher test
                  p-value adjusted method to use (see p.adjust)
adjust_method
calc_hub
                  calculate the number of hub cells
                  minimum number of cell-cell interactions for a hub cell
hub_min_int
get_av_expr
                  calculate the average expression per gene of the high expressing cells
get_high_expr
                  calculate the number of high expressing cells per gene
implementation enrichment implementation (data.table, simple, matrix)
                  number of genes to process together with data.table implementation (default =
group_size
                  automatic)
do_parallel
                  run calculations in parallel with mclapply
cores
                  number of cores to use if do_parallel = TRUE
verbose
                  be verbose
                  set a seed before kmeans binarization
set.seed
                  a binarized matrix, when provided it will skip the binarization process
bin matrix
```

Details

We provide two ways to identify spatial genes based on gene expression binarization. Both methods are identicial except for how binarization is performed.

- 1. binarize: Each gene is binarized (0 or 1) in each cell with **kmeans** (k = 2) or based on **rank** percentile
- 2. network: Alll cells are connected through a spatial network based on the physical coordinates

26 calculateHVG

• 3. contingency table: A contingency table is calculated based on all edges of neighboring cells and the binarized expression (0-0, 0-1, 1-0 or 1-1)

• 4. For each gene an odds-ratio (OR) and fisher.test (optional) is calculated

Three different kmeans algorithmes have been implemented:

- 1. kmeans: default, see kmeans
- 2. kmeans_arma: from ClusterR, see KMeans_arma
- 3. kmeans_arma_subst: from ClusterR, see KMeans_arma, but random subsetting the vector for each gene to increase speed. Change extreme_nr and sample_nr for control.

Other statistics are provided (optional):

- Number of cells with high expression (binary = 1)
- · Average expression of each gene within high expressing cells
- Number of hub cells, these are high expressing cells that have a user defined number of high expressing neighbors

By selecting a subset of likely spatial genes (e.g. soft thresholding highly variable genes) can accelerate the speed. The simple implementation is usually faster, but lacks the possibility to run in parallel and to calculate hub cells. The data.table implementation might be more appropriate for large datasets by setting the group_size (number of genes) parameter to divide the workload.

Value

data.table with results (see details)

Examples

binSpectSingle(gobject)

calculateHVG

calculateHVG

Description

compute highly variable genes

Usage

```
calculateHVG(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  method = c("cov_groups", "cov_loess"),
  reverse_log_scale = FALSE,
  logbase = 2,
  expression_threshold = 0,
  nr_expression_groups = 20,
  zscore_threshold = 1.5,
  HVGname = "hvg",
  difference_in_cov = 0.1,
  show_plot = NA,
```

calculateHVG 27

```
return_plot = NA,
  save_plot = NA,
  save_param = list(),
 default_save_name = "HVGplot",
  return_gobject = TRUE
)
```

Arguments

gobject giotto object expression_values expression values to use method to calculate highly variable genes method reverse_log_scale reverse log-scale of expression values (default = FALSE) logbase

if reverse_log_scale is TRUE, which log base was used?

expression_threshold

expression threshold to consider a gene detected

nr_expression_groups

number of expression groups for cov_groups

zscore_threshold

zscore to select hvg for cov_groups

HVGname name for highly variable genes in cell metadata

difference_in_cov

minimum difference in coefficient of variance required

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

list of saving parameters from all_plots_save_function save_param

default_save_name

default save name for saving, don't change, change save_name in save_param

return_gobject boolean: return giotto object (default = TRUE)

Details

Currently we provide 2 ways to calculate highly variable genes:

1. high coeff of variance (COV) within groups:

First genes are binned (nr_expression_groups) into average expression groups and the COV for each gene is converted into a z-score within each bin. Genes with a z-score higher than the threshold (zscore_threshold) are considered highly variable.

2. high COV based on loess regression prediction:

A predicted COV is calculated for each gene using loess regression (COV~log(mean expression)) Genes that show a higher than predicted COV (difference_in_cov) are considered highly variable.

Value

giotto object highly variable genes appended to gene metadata (fDataDT)

28 calculateMetaTable

Examples

calculateMetaTable

calculateMetaTable

Description

calculates the average gene expression for one or more (combined) annotation columns.

Usage

```
calculateMetaTable(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  metadata_cols = NULL,
  selected_genes = NULL
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use

metadata_cols annotation columns found in pDataDT(gobject)
selected_genes subset of genes to use
```

Value

data.table with average expression values for each gene per (combined) annotation

calculateMetaTableCells 29

Examples

calculateMetaTableCells

calculateMetaTableCells

Description

calculates the average metadata values for one or more (combined) annotation columns.

Usage

```
calculateMetaTableCells(
  gobject,
  value_cols = NULL,
  metadata_cols = NULL,
  spat_enr_names = NULL
)
```

Arguments

```
gobject giotto object
value_cols metadata or enrichment value columns to use
metadata_cols annotation columns found in pDataDT(gobject)
spat_enr_names which spatial enrichment results to include
```

Value

data.table with average metadata values per (combined) annotation

```
cellProximityBarplot cellProximityBarplot
```

Description

Create barplot from cell-cell proximity scores

30 cellProximityBarplot

Usage

```
cellProximityBarplot(
  gobject,
  CPscore,
  min_orig_ints = 5,
  min_sim_ints = 5,
  p_val = 0.05,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximityBarplot"
)
```

Arguments

giotto object gobject **CPscore** CPscore, output from cellProximityEnrichment() min_orig_ints filter on minimum original cell-cell interactions min_sim_ints filter on minimum simulated cell-cell interactions p-value p_val show_plot show plot return ggplot object return_plot directly save the plot [boolean] save_plot list of saving parameters from all_plots_save_function save_param ${\tt default_save_name}$ default save name for saving, don't change, change save_name in save_param

Details

This function creates a barplot that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

ggplot barplot

Examples

```
cellProximityBarplot(CPscore)
```

```
cell Proximity Enrichment \\ cell Proximity Enrichment
```

Description

Compute cell-cell interaction enrichment (observed vs expected)

Usage

Arguments

Details

Spatial proximity enrichment or depletion between pairs of cell types is calculated by calculating the observed over the expected frequency of cell-cell proximity interactions. The expected frequency is the average frequency calculated from a number of spatial network simulations. Each individual simulation is obtained by reshuffling the cell type labels of each node (cell) in the spatial network.

Value

List of cell Proximity scores (CPscores) in data.table format. The first data.table (raw_sim_table) shows the raw observations of both the original and simulated networks. The second data.table (enrichm_res) shows the enrichment results.

Examples

```
cellProximityEnrichment(gobject)
```

```
cellProximityHeatmap cellProximityHeatmap
```

Description

Create heatmap from cell-cell proximity scores

Usage

```
cellProximityHeatmap(
  gobject,
  CPscore,
  scale = T,
  order_cell_types = T,
  color_breaks = NULL,
  color_names = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximityHeatmap")
```

Arguments

```
giotto object
gobject
                  CPscore, output from cellProximityEnrichment()
CPscore
scale
                  scale cell-cell proximity interaction scores
order_cell_types
                  order cell types based on enrichment correlation
color_breaks
                  numerical vector of length 3 to represent min, mean and maximum
                  character color vector of length 3
color_names
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

This function creates a heatmap that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

```
ggplot heatmap
```

cellProximityNetwork 33

Examples

```
cellProximityHeatmap(CPscore)
```

```
cell Proximity Network \qquad cell Proximity Network
```

Description

Create network from cell-cell proximity scores

Usage

```
cellProximityNetwork(
  gobject,
  CPscore,
  remove_self_edges = FALSE,
  self_loop_strength = 0.1,
  color_depletion = "lightgreen",
  color_enrichment = "red",
  rescale_edge_weights = TRUE,
  edge_weight_range_depletion = c(0.1, 1),
  edge_weight_range_enrichment = c(1, 5),
  layout = c("Fruchterman", "DrL", "Kamada-Kawai"),
  only_show_enrichment_edges = F,
  edge_width_range = c(0.1, 2),
  node_size = 4,
  node_text_size = 6,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximityNetwork"
```

Arguments

```
gobject
                  giotto object
CPscore
                  CPscore, output from cellProximityEnrichment()
remove_self_edges
                  remove enrichment/depletion edges with itself
self_loop_strength
                  size of self-loops
color_depletion
                  color for depleted cell-cell interactions
color_enrichment
                  color for enriched cell-cell interactions
rescale_edge_weights
                  rescale edge weights (boolean)
{\tt edge\_weight\_range\_depletion}
                  numerical vector of length 2 to rescale depleted edge weights
```

```
edge_weight_range_enrichment
```

numerical vector of length 2 to rescale enriched edge weights

layout algorithm to use to draw nodes and edges

only_show_enrichment_edges

show only the enriched pairwise scores

edge_width_range

range of edge width

node_size size of nodes
node_text_size size of node labels

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

This function creates a network that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

igraph plot

Examples

cellProximityNetwork(CPscore)

 ${\tt cellProximitySpatPlot} \ \ \textit{cellProximitySpatPlot}$

Description

Visualize 2D cell-cell interactions according to spatial coordinates in ggplot mode

Usage

```
cellProximitySpatPlot(gobject, ...)
```

Arguments

gobject giotto object

... Arguments passed on to cellProximitySpatPlot2D

interaction_name cell-cell interaction name
cluster_column cluster column with cell clusters
sdimx x-axis dimension name (default = 'sdimx')
sdimy y-axis dimension name (default = 'sdimy')

cellProximitySpatPlot

```
cell_color color for cells (see details)
cell_color_code named vector with colors
color_as_factor convert color column to factor
show_other_cells decide if show cells not in network
show_network show spatial network of selected cells
show_other_network show spatial network of not selected cells
network_color color of spatial network
spatial_network_name name of spatial network to use
show_grid show spatial grid
grid_color color of spatial grid
spatial_grid_name name of spatial grid to use
coord_fix_ratio fix ratio between x and y-axis
show_legend show legend
point_size_select size of selected points
point_select_border_col border color of selected points
point_select_border_stroke stroke size of selected points
point_size_other size of other points
point_alpha_other opacity of other points
point_other_border_col border color of other points
point_other_border_stroke stroke size of other points
show_plot show plots
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters from all_plots_save_function
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

35

Details

Description of parameters.

Value

ggplot

See Also

cellProximitySpatPlot2D and cellProximitySpatPlot3D for 3D

Examples

cellProximitySpatPlot(gobject)

```
cell Proximity Spat Plot 2D \\ cell Proximity Spat Plot 2D
```

Description

Visualize 2D cell-cell interactions according to spatial coordinates in ggplot mode

Usage

```
cellProximitySpatPlot2D(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = F,
  show_network = F,
  show_other_network = F,
  network_color = NULL,
  spatial_network_name = "Delaunay_network",
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  coord_fix_ratio = 1,
  show_legend = T,
  point_size_select = 2,
  point_select_border_col = "black",
  point_select_border_stroke = 0.05,
  point_size_other = 1,
  point_alpha_other = 0.3,
  point_other_border_col = "lightgrey",
  point_other_border_stroke = 0.01,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximitySpatPlot2D"
)
```

Arguments

sdimy y-axis dimension name (default = 'sdimy') cell_color color for cells (see details) cell_color_code named vector with colors color_as_factor convert color column to factor show_other_cells decide if show cells not in network show_network show spatial network of selected cells show_other_network show spatial network of not selected cells network_color color of spatial network spatial_network_name name of spatial network to use show_grid show spatial grid grid_color color of spatial grid spatial_grid_name name of spatial grid to use coord_fix_ratio fix ratio between x and y-axis show_legend show legend point_size_select size of selected points point_select_border_col border color of selected points point_select_border_stroke stroke size of selected points point_size_other size of other points point_alpha_other opacity of other points point_other_border_col border color of other points point_other_border_stroke stroke size of other points show_plot show plots return_plot return ggplot object save_plot directly save the plot [boolean] list of saving parameters from all_plots_save_function save_param default_save_name default save name for saving, don't change, change save_name in save_param

Details

Description of parameters.

Value

ggplot

Examples

```
cellProximitySpatPlot2D(gobject)
```

```
{\tt cellProximitySpatPlot3D}
```

cellProximitySpatPlot2D

Description

Visualize 3D cell-cell interactions according to spatial coordinates in plotly mode

Usage

```
cellProximitySpatPlot3D(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = T,
  show_network = T,
  show\_other\_network = F,
  network_color = NULL,
  spatial_network_name = "Delaunay_network",
  show_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  show_legend = T,
  point_size_select = 4,
  point_size_other = 2,
  point_alpha_other = 0.5,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximitySpatPlot3D",
)
```

Arguments

gobject giotto object interaction_name cell-cell interaction name cluster_column cluster column with cell clusters x-axis dimension name (default = 'sdimx') sdimx sdimy y-axis dimension name (default = 'sdimy') sdimz z-axis dimension name (default = 'sdimz') cell_color color for cells (see details) cell_color_code named vector with colors color_as_factor convert color column to factor show_other_cells decide if show cells not in network show_network show spatial network of selected cells show_other_network show spatial network of not selected cells network_color color of spatial network spatial_network_name name of spatial network to use show_grid show spatial grid grid_color color of spatial grid spatial_grid_name name of spatial grid to use show_legend show legend point_size_select size of selected points point_size_other size of other points point_alpha_other opacity of other points axis_scale scale of axis custom_ratio custom ratio of axes x_ticks ticks on x-axis y_ticks ticks on y-axis ticks on z-axis z_ticks show_plot show plots return_plot return plotly object save_plot directly save the plot [boolean] list of saving parameters from all_plots_save_function save_param default_save_name default save name for saving, don't change, change save_name in save_param additional parameters

cellProximityVisPlot

Details

Description of parameters.

Value

plotly

Examples

```
cellProximitySpatPlot3D(gobject)
```

```
cellProximityVisPlot cellProximityVisPlot
```

Description

Visualize cell-cell interactions according to spatial coordinates

Usage

```
cellProximityVisPlot(
 gobject,
 interaction_name = NULL,
 cluster_column = NULL,
  sdimx = NULL,
 sdimy = NULL,
 sdimz = NULL,
 cell_color = NULL,
 cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = F,
  show_network = F,
  show_other_network = F,
 network_color = NULL,
  spatial_network_name = "Delaunay_network",
  show\_grid = F,
 grid_color = NULL,
 spatial_grid_name = "spatial_grid",
 coord_fix_ratio = 1,
  show_legend = T,
 point_size_select = 2,
 point_select_border_col = "black",
 point_select_border_stroke = 0.05,
 point_size_other = 1,
 point_alpha_other = 0.3,
 point_other_border_col = "lightgrey",
 point_other_border_stroke = 0.01,
 axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL,
 x_ticks = NULL,
 y_ticks = NULL,
```

cellProximityVisPlot 41

```
z_ticks = NULL,
 plot_method = c("ggplot", "plotly"),
)
```

Arguments

```
gobject
                  giotto object
interaction_name
                  cell-cell interaction name
cluster_column cluster column with cell clusters
                  x-axis dimension name (default = 'sdimx')
sdimx
                  y-axis dimension name (default = 'sdimy')
sdimy
sdimz
                  z-axis dimension name (default = 'sdimz')
                  color for cells (see details)
cell_color
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
show_other_cells
                  show not selected cells
show_network
                  show underlying spatial network
show_other_network
                  show underlying spatial network of other cells
                 color of spatial network
network_color
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
coord_fix_ratio
                  fix ratio between x and y-axis
show_legend
                  show legend
point_size_select
                  size of selected points
point_select_border_col
                  border color of selected points
point_select_border_stroke
                  stroke size of selected points
point_size_other
                  size of other points
point_alpha_other
                  alpha of other points
point_other_border_col
```

border color of other points

```
point_other_border_stroke
stroke size of other points

axis_scale scale of axis

custom_ratio custom ratio of scales

x_ticks x ticks

y_ticks y ticks

z_ticks z ticks

plot_method method to plot

... additional parameters
```

Details

Description of parameters.

Value

```
ggplot or plotly
```

Examples

```
cellProximityVisPlot(gobject)
```

```
change Giot to Instructions
```

change Giot to Instructions

Description

Function to change one or more instructions from giotto object

Usage

```
changeGiottoInstructions(
  gobject,
  params = NULL,
  new_values = NULL,
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object
params parameter(s) to change
new_values new value(s) for parameter(s)
return_gobject (boolean) return giotto object
```

Value

giotto object with one or more changed instructions

changeImageBg 43

Examples

changeGiottoInstructions()

changeImageBg

changeImageBg

Description

Function to change the background color of a magick image plot to another color

Usage

```
changeImageBg(
  mg_object,
  bg_color,
  perc_range = 10,
  new_color = "#FFFFFF",
  new_name = NULL
)
```

Arguments

mg_object magick image or giotto image object bg_color estimated current background color

perc_range range around estimated background color to include (percentage)

new_color new background color

new_name change name of Giotto image

Value

magick image or giotto image object with updated background color

Examples

```
{\tt changeImageBg(mg\_object)}
```

 ${\tt checkGiottoEnvironment}$

checkGiottoEnvironment

Description

check Giot to Environment

Usage

```
checkGiottoEnvironment(verbose = TRUE)
```

44 clusterCells

Arguments

verbose be verbose

Details

Checks if a miniconda giotto environment can be found. Can be installed with installGiottoEnvironment.

clusterCells

clusterCells

Description

cluster cells using a variety of different methods

Usage

```
clusterCells(
 gobject,
 cluster_method = c("leiden", "louvain_community", "louvain_multinet", "randomwalk",
    "sNNclust", "kmeans", "hierarchical"),
 name = "cluster_name",
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 pyth_leid_resolution = 1,
 pyth_leid_weight_col = "weight",
 pyth_leid_part_type = c("RBConfigurationVertexPartition",
    "ModularityVertexPartition"),
 pyth_leid_init_memb = NULL,
 pyth_leid_iterations = 1000,
 pyth_louv_resolution = 1,
 pyth_louv_weight_col = NULL,
  python_louv_random = F,
 python_path = NULL,
  louvain_gamma = 1,
  louvain_omega = 1,
 walk\_steps = 4,
 walk_clusters = 10,
 walk_weights = NA,
  sNNclust_k = 20,
  sNNclust_eps = 4,
  sNNclust_minPts = 16,
 borderPoints = TRUE,
 expression_values = c("normalized", "scaled", "custom"),
 genes_to_use = NULL,
 dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
 dim_reduction_name = "pca",
 dimensions_to_use = 1:10,
 distance_method = c("original", "pearson", "spearman", "euclidean", "maximum",
    "manhattan", "canberra", "binary", "minkowski"),
  km_centers = 10,
  km_iter_max = 100,
```

clusterCells 45

```
km_nstart = 1000,
     km_algorithm = "Hartigan-Wong",
     hc_agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
        "mcquitty", "median", "centroid"),
     hc_k = 10,
     hc_h = NULL
     return_gobject = TRUE,
      set_seed = T,
      seed_number = 1234
   )
Arguments
   gobject
                    giotto object
   cluster_method community cluster method to use
                    name for new clustering result
   name
   nn_network_to_use
                    type of NN network to use (kNN vs sNN)
                    name of NN network to use
   network_name
   pyth_leid_resolution
                    resolution for leiden
   pyth_leid_weight_col
                    column to use for weights
   pyth_leid_part_type
                    partition type to use
   pyth_leid_init_memb
                    initial membership
   pyth_leid_iterations
                    number of iterations
   pyth_louv_resolution
                    resolution for louvain
   pyth_louv_weight_col
                    python louvain param: weight column
   python_louv_random
                    python louvain param: random
   python_path
                    specify specific path to python if required
   louvain_gamma
                    louvain param: gamma or resolution
   louvain_omega
                    louvain param: omega
   walk_steps
                    randomwalk: number of steps
                    randomwalk: number of clusters
   walk_clusters
                    randomwalk: weight column
   walk_weights
                    SNNclust: k neighbors to use
   sNNclust_k
                    SNNclust: epsilon
    sNNclust_eps
    sNNclust_minPts
                    SNNclust: min points
   borderPoints
                    SNNclust: border points
   expression_values
                    expression values to use
```

genes_to_use = NULL,
dim_reduction_to_use

dimension reduction to use

dim_reduction_name

name of reduction 'pca',

dimensions_to_use

dimensions to use

distance_method

distance method

km_centers kmeans centers km_iter_max kmeans iterations

km_nstart kmeans random starting points

km_algorithm kmeans algorithm

hc_agglomeration_method

hierarchical clustering method

hc_k hierachical number of clusters

hc_h hierarchical tree cutoff

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed

Details

Wrapper for the different clustering methods.

Value

giotto object with new clusters appended to cell metadata

See Also

 $\label{lem:cluster_doLouvainCluster_multinet} do Louvain Cluster_community, do Louvain Cluster_multinet, do Louvain Cluster, do Random Walk Cluster, do SNN Cluster, do Kmeans, do H clust Cluster, do Louvain Cluster, do Louva$

Examples

clusterCells(gobject)

clusterSpatialCorGenes

clusterSpatialCorGenes

Description

Cluster based on spatially correlated genes

colMeans_giotto 47

Usage

```
clusterSpatialCorGenes(
  spatCorObject,
  name = "spat_clus",
  hclust_method = "ward.D",
  k = 10,
  return_obj = TRUE
)
```

Arguments

spatCorObject spatial correlation object

name name for spatial clustering results hclust_method method for hierarchical clustering

k number of clusters to extract

return_obj return spatial correlation object (spatCorObject)

Value

spatCorObject or cluster results

Examples

clusterSpatialCorGenes(gobject)

colMeans_giotto colMeans_giotto

Description

colMeans function that works with multiple matrix representations

Usage

```
colMeans_giotto(mymatrix)
```

Arguments

mymatrix matrix object

Value

numeric vector

48 combCCcom

colSums_giotto

colSums_giotto

Description

colSums function that works with multiple matrix representations

Usage

```
colSums_giotto(mymatrix)
```

Arguments

mymatrix

matrix object

Value

numeric vector

combCCcom

combCCcom

Description

Combine spatial and expression based cell-cell communication data.tables

Usage

```
combCCcom(
  spatialCC,
  exprCC,
  min_lig_nr = 3,
  min_rec_nr = 3,
  min_padj_value = 1,
  min_log2fc = 0,
  min_av_diff = 0,
  detailed = FALSE
)
```

```
spatialCC spatial cell-cell communication scores
exprCC expression cell-cell communication scores
min_lig_nr minimum number of ligand cells
min_rec_nr minimum number of receptor cells
min_padj_value minimum adjusted p-value
min_log2fc minimum log2 fold-change
min_av_diff minimum average expression difference
detailed detailed option used with spatCellCellcom (default = FALSE)
```

Value

combined data.table with spatial and expression communication data

Examples

```
combCCcom(gobject)
```

```
combineCellProximityGenes
```

combineCellProximityGenes

Description

Combine CPG scores in a pairwise manner.

Usage

```
combineCellProximityGenes(
  cpgObject,
  selected_ints = NULL,
  selected_genes = NULL,
  specific_genes_1 = NULL,
  specific_genes_2 = NULL,
  min_cells = 5,
  min_int_cells = 3,
  min_fdr = 0.05,
  min_spat_diff = 0,
  min_log2_fc = 0.5,
  do_parallel = TRUE,
  cores = NA,
  verbose = T
)
```

```
cpgObject
                  cell proximity gene score object
                  subset of selected cell-cell interactions (optional)
selected_ints
selected_genes subset of selected genes (optional)
specific_genes_1
                  specific geneset combo (need to position match specific_genes_2)
specific_genes_2
                  specific geneset combo (need to position match specific_genes_1)
min_cells
                  minimum number of target cell type
                  minimum number of interacting cell type
min_int_cells
min_fdr
                  minimum adjusted p-value
                  minimum absolute spatial expression difference
min_spat_diff
                  minimum absolute log2 fold-change
min_log2_fc
do_parallel
                  run calculations in parallel with mclapply
cores
                  number of cores to use if do_parallel = TRUE
verbose
                  verbose
```

50 combineCPG

Value

cpgObject that contains the filtered differential gene scores

Examples

```
combineCellProximityGenes(gobject)
```

combineCPG

combineCPG

Description

Combine CPG scores in a pairwise manner.

Usage

```
combineCPG(
  cpgObject,
  selected_ints = NULL,
  selected_genes = NULL,
  specific_genes_1 = NULL,
  specific_genes_2 = NULL,
  min_cells = 5,
  min_int_cells = 3,
  min_fdr = 0.05,
  min_spat_diff = 0,
  min_log2_fc = 0.5,
  do_parallel = TRUE,
  cores = NA,
  verbose = T
)
```

```
cpgObject
                  cell proximity gene score object
                  subset of selected cell-cell interactions (optional)
selected_ints
selected_genes subset of selected genes (optional)
specific_genes_1
                  specific geneset combo (need to position match specific_genes_2)
specific_genes_2
                  specific geneset combo (need to position match specific_genes_1)
min_cells
                  minimum number of target cell type
                 minimum number of interacting cell type
min_int_cells
                  minimum adjusted p-value
min_fdr
                  minimum absolute spatial expression difference
min_spat_diff
                  minimum absolute log2 fold-change
min_log2_fc
do_parallel
                  run calculations in parallel with mclapply
                  number of cores to use if do_parallel = TRUE
cores
verbose
                  verbose
```

combineMetadata 51

Value

cpgObject that contains the filtered differential gene scores

Examples

```
combineCPG(gobject)
```

combineMetadata

combineMetadata

Description

This function combines the cell metadata with spatial locations and enrichment results from runSpatialEnrich

Usage

```
combineMetadata(gobject, spat_enr_names = NULL)
```

Arguments

```
gobject Giotto object
spat_enr_names names of spatial enrichment results to include
```

Value

Extended cell metadata in data.table format.

```
convertEnsemblToGeneSymbol
```

convert Ensembl To Gene Symbol

Description

This function convert ensembl gene IDs from a matrix to official gene symbols

Usage

```
convertEnsemblToGeneSymbol(matrix, species = c("mouse", "human"))
```

Arguments

matrix an expression matrix with ensembl gene IDs as rownames

species species to use for gene symbol conversion

Details

This function requires that the biomaRt library is installed

Value

expression matrix with gene symbols as rownames

52 createCrossSection

createCrossSection

createCrossSection

Description

Create a virtual 2D cross section.

Usage

```
createCrossSection(
  gobject.
 name = "cross_section",
  spatial_network_name = "Delaunay_network",
  thickness_unit = c("cell", "natural"),
  slice_thickness = 2,
  cell_distance_estimate_method = "mean",
  extend_ratio = 0.2,
 method = c("equation", "3 points", "point and norm vector",
    "point and two plane vectors"),
  equation = NULL,
  point1 = NULL,
  point2 = NULL,
  point3 = NULL,
 normVector = NULL,
 planeVector1 = NULL,
 planeVector2 = NULL,
 mesh\_grid\_n = 20,
  return_gobject = TRUE
)
```

Arguments

gobject giotto object name name of cress section object. (default = cross_section) spatial_network_name name of spatial network object. (default = Delaunay_network) thickness_unit unit of the virtual section thickness. If "cell", average size of the observed cells is used as length unit. If "natural", the unit of cell location coordinates is used.(default = cell)slice_thickness thickness of slice. default = 2 ${\tt cell_distance_estimate_method}$ method to estimate average distance between neighboring cells. (default = mean) deciding the span of the cross section meshgrid, as a ratio of extension compared extend_ratio to the borders of the vitural tissue section. (default = 0.2) method method to define the cross section plane. If equation, the plane is defined by a four element numerical vector (equation) in the form of c(A,B,C,D), corresponding to a plane with equation Ax+By+Cz=D. If 3 points, the plane is define

by the coordinates of 3 points, as given by point1, point2, and point3. If point

createGiottoImage 53

	and norm vector, the plane is defined by the coordinates of one point (point1) in the plane and the coordinates of one norm vector (normVector) to the plane. If point and two plane vector, the plane is defined by the coordinates of one point (point1) in the plane and the coordinates of two vectors (planeVector1, planeVector2) in the plane. (default = equation)
equation	equation required by method "equation".equations needs to be a numerical vector of length 4, in the form of $c(A,B,C,D)$, which defines plane $Ax+By+Cz=D$.
point1	coordinates of the first point required by method "3 points", "point and norm vector", and "point and two plane vectors".
point2	coordinates of the second point required by method "3 points"
point3	coordinates of the third point required by method "3 points"
normVector	coordinates of the norm vector required by method "point and norm vector"
planeVector1	coordinates of the first plane vector required by method "point and two plane vectors"
planeVector2	coordinates of the second plane vector required by method "point and two plane vectors"
mesh_grid_n	numer of meshgrid lines to generate along both directions for the cross section plane.
return_gobject	boolean: return giotto object (default = TRUE)

Details

Creates a virtual 2D cross section object for a given spatial network object. The users need to provide the definition of the cross section plane (see method).

Value

giotto object with updated spatial network slot

createGiottoImage

Description

Creates a giotto image that can be added to a Giotto object and/or used to add an image to the spatial plotting functions

Usage

```
createGiottoImage(
  gobject = NULL,
  spatial_locs = NULL,
  mg_object,
  name = "image",
  xmax_adj = 0,
  xmin_adj = 0,
  ymax_adj = 0,
  ymin_adj = 0
)
```

54 createGiottoInstructions

Arguments

```
gobject
                  giotto object
spatial_locs
                  spatial locations (alternative if giobject = NULL)
mg_object
                  magick image object
                  name for the image
name
                  adjustment of the maximum x-value to align the image
xmax_adj
                  adjustment of the minimum x-value to align the image
xmin_adj
                  adjustment of the maximum y-value to align the image
ymax_adj
ymin_adj
                  adjustment of the minimum y-value to align the image
```

Value

a giotto image object

Examples

```
createGiottoImage(mg_object)
```

createGiottoInstructions

createGiottoInstructions

Description

Function to set global instructions for giotto functions

Usage

```
createGiottoInstructions(
  python_path = NULL,
  show_plot = NULL,
  return_plot = NULL,
  save_plot = NULL,
  save_dir = NULL,
  plot_format = NULL,
  dpi = NULL,
  units = NULL,
  height = NULL,
  width = NULL,
  is_docker = FALSE
)
```

```
python_path path to python binary to use
show_plot print plot to console, default = TRUE
return_plot return plot as object, default = TRUE
save_plot automatically save plot, dafault = FALSE
```

createGiottoObject 55

```
save_dir path to directory where to save plots

plot_format format of plots (defaults to png)

dpi resolution for raster images

units units of format (defaults to in)

height height of plots

width width of plots

is_docker using docker implementation of Giotto (defaults to FALSE)
```

Value

named vector with giotto instructions

See Also

More online information can be found here $https://rubd.github.io/Giotto_site/articles/instructions_and_plotting.html$

Examples

```
createGiottoInstructions()
```

Description

Function to create a giotto object

Usage

```
createGiottoObject(
  raw_exprs,
  spatial_locs = NULL,
  norm_expr = NULL,
  norm_scaled_expr = NULL,
  custom_expr = NULL,
  cell_metadata = NULL,
  gene_metadata = NULL,
  spatial_network = NULL,
  spatial_network_name = NULL,
  spatial_grid = NULL,
  spatial_grid_name = NULL,
  spatial_enrichment = NULL,
  spatial_enrichment_name = NULL,
  dimension_reduction = NULL,
  nn_network = NULL,
  images = NULL,
  offset_file = NULL,
  instructions = NULL,
  cores = NA
)
```

56 createGiottoObject

Arguments

raw_exprs matrix with raw expression counts [required]

spatial_locs data.table or data.frame with coordinates for cell centroids

norm_expr normalized expression values

norm_scaled_expr

scaled expression values

custom_expr custom expression values cell_metadata cell annotation metadata gene_metadata gene annotation metadata

spatial_network

list of spatial network(s)

spatial_network_name

list of spatial network name(s)

spatial_grid list of spatial grid(s)

spatial_grid_name

list of spatial grid name(s)

spatial_enrichment

list of spatial enrichment score(s) for each spatial region

spatial_enrichment_name

list of spatial enrichment name(s)

dimension_reduction

list of dimension reduction(s)

nn_network list of nearest neighbor network(s)

images list of images

offset_file file used to stitch fields together (optional)

 $instructions \hspace{0.5cm} list \ of \ instructions \ or \ output \ result \ from \ {\tt createGiottoInstructions}$

cores how many cores or threads to use to read data if paths are provided

Details

[**Requirements**] To create a giotto object you need to provide at least a matrix with genes as row names and cells as column names. This matrix can be provided as a base matrix, sparse Matrix, data.frame, data.table or as a path to any of those. To include spatial information about cells (or regions) you need to provide a matrix, data.table or data.frame (or path to them) with coordinates for all spatial dimensions. This can be 2D (x and y) or 3D (x, y, x). The row order for the cell coordinates should be the same as the column order for the provided expression data.

[Instructions] Additionally an instruction file, generated manually or with createGiottoInstructions can be provided to instructions, if not a default instruction file will be created for the Giotto object.

[Multiple fields] In case a dataset consists of multiple fields, like seqFISH+ for example, an offset file can be provided to stitch the different fields together. stitchFieldCoordinates can be used to generate such an offset file.

[**Processed data**] Processed count data, such as normalized data, can be provided using one of the different expression slots (norm_expr, norm_scaled_expr, custom_expr).

[Metadata] Cell and gene metadata can be provided using the cell and gene metadata slots. This data can also be added afterwards using the addGeneMetadata or addCellMetadata functions.

[Other information] Additional information can be provided through the appropriate slots:

- · spatial networks
- · spatial girds
- spatial enrichments
- · dimensions reductions
- nearest neighbours networks
- · images

Value

giotto object

Examples

```
createGiottoObject(raw_exprs, spatial_locs)
```

createGiottoVisiumObject

createGiottoVisiumObject

Description

creates Giotto object directly from a 10X visium folder

Usage

```
createGiottoVisiumObject(
  visium_dir = NULL,
  expr_data = c("raw", "filter"),
  gene_column_index = 1,
  png_name = NULL,
  xmax_adj = 0,
  xmin_adj = 0,
  ymax_adj = 0,
  ymin_adj = 0,
  instructions = NULL,
  cores = NA
)
```

```
visium_dir
                  path to the 10X visium directory [required]
                  raw or filtered data (see details)
expr_data
gene_column_index
                  which column index to select (see details)
                  select name of png to use (see details)
png_name
                  adjustment of the maximum x-value to align the image
xmax_adj
                  adjustment of the minimum x-value to align the image
xmin_adj
                  adjustment of the maximum y-value to align the image
ymax_adj
                  adjustment of the minimum y-value to align the image
ymin_adj
instructions
                  list of instructions or output result from createGiottoInstructions
                  how many cores or threads to use to read data if paths are provided
cores
```

58 createMetagenes

Details

expr_data: raw will take expression data from raw_feature_bc_matrix and filter from filtered_feature_bc_matrix

- gene_column_index: which gene identifiers (names) to use if there are multiple columns (e.g. ensemble and gene symbol)
- png_name: by default the first png will be selected, provide the png name to override this (e.g. myimage.png)

Value

giotto object

Examples

```
createGiottoVisiumObject(visium_dir)
```

createMetagenes

createMetagenes

Description

This function creates an average metagene for gene clusters.

Usage

```
createMetagenes(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  gene_clusters,
  name = "metagene",
  return_gobject = TRUE
)
```

Arguments

```
gobject Giotto object
expression_values
expression values to use
gene_clusters numerical vector with genes as names
name name of the metagene results
return_gobject return giotto object
```

Details

```
An example for the 'gene_clusters' could be like this: cluster_vector = c(1, 1, 2, 2); names(cluster_vector) = c('geneA', 'geneB', 'geneC', 'geneD')
```

Value

giotto object

createNearestNetwork 59

Examples

createNearestNetwork createNearestNetwork

Description

create a nearest neighbour (NN) network

Usage

```
createNearestNetwork(
  gobject,
  type = c("sNN", "kNN"),
  dim_reduction_to_use = "pca",
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  genes_to_use = NULL,
  expression_values = c("normalized", "scaled", "custom"),
  name = "sNN.pca",
  return_gobject = TRUE,
  k = 30,
  minimum_shared = 5,
  top_shared = 3,
  verbose = T,
  ...
)
```

Arguments

```
gobject giotto object
type sNN or kNN
dim_reduction_to_use
```

dimension reduction method to use

60 createNearestNetwork

dim_reduction_name

name of dimension reduction set to use

dimensions_to_use

number of dimensions to use as input

genes_to_use if dim_reduction_to_use = NULL, which genes to use

expression_values

expression values to use

name arbitrary name for NN network

return_gobject boolean: return giotto object (default = TRUE)

k number of k neighbors to use minimum_shared minimum shared neighbors

top_shared keep at ...
verbose be verbose

... additional parameters for kNN and sNN functions from dbscan

Details

This function creates a k-nearest neighbour (kNN) or shared nearest neighbour (sNN) network based on the provided dimension reduction space. To run it directly on the gene expression matrix set $dim_reduction_to_use = NULL$.

See also kNN and sNN for more information about how the networks are created.

Output for kNN:

• from: cell_ID for source cell

• to: cell_ID for target cell

· distance: distance between cells

• weight: weight = 1/(1 + distance)

Output for sNN:

• from: cell_ID for source cell

• to: cell_ID for target cell

• distance: distance between cells

• weight: 1/(1 + distance)

· shared: number of shared neighbours

• rank: ranking of pairwise cell neighbours

For sNN networks two additional parameters can be set:

- minimum_shared: minimum number of shared neighbours needed
- top_shared: keep this number of the top shared neighbours, irrespective of minimum_shared setting

Value

giotto object with updated NN network

Examples

 ${\tt createSpatialDefaultGrid}$

createSpatialDefaultGrid

Description

Create a spatial grid using the default method

Usage

```
createSpatialDefaultGrid(
  gobject,
  sdimx_stepsize = NULL,
  sdimy_stepsize = NULL,
  sdimz_stepsize = NULL,
  minimum_padding = 1,
  name = NULL,
  return_gobject = TRUE
)
```

Arguments

Details

Creates a spatial grid with defined x, y (and z) dimensions. The dimension units are based on the provided spatial location units.

Value

giotto object with updated spatial grid slot

```
createSpatialDelaunayNetwork
```

createSpatialDelaunayNetwork

Description

Create a spatial Delaunay network based on cell centroid physical distances.

Usage

```
createSpatialDelaunayNetwork(
  gobject,
  method = c("deldir", "delaunayn_geometry", "RTriangle"),
  dimensions = "all",
  name = "Delaunay_network",
  maximum_distance = "auto",
  minimum_k = 0,
  options = "Pp",
  Y = TRUE,
  j = TRUE,
  S = 0,
  verbose = T,
  return_gobject = TRUE,
  ...
)
```

Arguments

gobject giotto object

method package to use to create a Delaunay network

dimensions which spatial dimensions to use. Use "sdimx" (spatial dimension x), "sdimy",

"sdimz" respectively to refer to X (or the 1st), Y (or the 2nd) and Z(or the 3rd)

dimension, see details. (default = all)

name for spatial network (default = 'delaunay_network')

maximum_distance

distance cuttof for Delaunay neighbors to consider. If "auto", "upper wisker" value of the distance vector between neighbors is used; see the boxplotgraphics

documentation for more details.(default = "auto")

minimum_k minimum number of neighbours if maximum_distance != NULL

options (geometry) String containing extra control options for the underlying Qhull

command; see the Qhull documentation (../doc/qhull/html/qdelaun.html) for the

available options. (default = 'Pp', do not report precision problems)

Y (RTriangle) If TRUE prohibits the insertion of Steiner points on the mesh bound-

ary.

j (RTriangle) If TRUE jettisons vertices that are not part of the final triangulation

from the output.

S (RTriangle) Specifies the maximum number of added Steiner points.

verbose verbose

return_gobject boolean: return giotto object (default = TRUE)

... Other additional parameters

createSpatialEnrich 63

Details

Creates a spatial Delaunay network as explained in delaunayn (default), deldir, or triangulate.

Value

giotto object with updated spatial network slot

Examples

```
createSpatialDelaunayNetwork(gobject)
```

createSpatialEnrich

create Spatial Enrich

Description

Function to calculate gene signature enrichment scores per spatial position using an enrichment test.

Usage

```
createSpatialEnrich(...)
```

Arguments

... Arguments passed on to runSpatialEnrich

gobject Giotto object

enrich_method method for gene signature enrichment calculation

sign_matrix Matrix of signature genes for each cell type / process

expression_values expression values to use

reverse_log_scale reverse expression values from log scale

min_overlap_genes minimum number of overlapping genes in sign_matrix required to calculate enrichment (PAGE)

logbase log base to use if reverse_log_scale = TRUE

p_value calculate p-value (default = FALSE)

n_times (page/rank) number of permutation iterations to calculate p-value

 max_block number of lines to process together (default = 20e6)

top_percentage (hyper) percentage of cells that will be considered to have gene expression with matrix binarization

output_enrichment how to return enrichment output

name to give to spatial enrichment results, default = PAGE

verbose be verbose

return_gobject return giotto object

See Also

runSpatialEnrich

64 createSpatialGrid

Description

Create a spatial grid using the default method

Usage

```
createSpatialGrid(
  gobject,
  name = NULL,
  method = c("default"),
  sdimx_stepsize = NULL,
  sdimy_stepsize = NULL,
  sdimz_stepsize = NULL,
  minimum_padding = 1,
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object

name name for spatial grid

method method to create a spatial grid

sdimx_stepsize stepsize along the x-axis

sdimy_stepsize stepsize along the y-axis

sdimz_stepsize stepsize along the z-axis

minimum_padding

minimum padding on the edges

return_gobject boolean: return giotto object (default = TRUE)
```

Details

Creates a spatial grid with defined x, y (and z) dimensions. The dimension units are based on the provided spatial location units.

• default method: createSpatialDefaultGrid

Value

giotto object with updated spatial grid slot

```
createSpatialKNNnetwork
```

createSpatialKNNnetwork

Description

Create a spatial knn network.

Usage

```
createSpatialKNNnetwork(
  gobject,
  method = "dbscan",
  dimensions = "all",
  name = "knn_network",
  k = 4,
  maximum_distance = NULL,
  minimum_k = 0,
  verbose = F,
  return_gobject = TRUE,
  ...
)
```

Arguments

gobject giotto object

method method to create kNN network

dimensions which spatial dimensions to use (default = all)

maximum_distance

distance cuttof for nearest neighbors to consider for kNN network

minimum_k minimum nearest neighbours if maximum_distance != NULL

verbose verbose

return_gobject boolean: return giotto object (default = TRUE)
... additional arguments to the selected method function

Value

giotto object with updated spatial network slot

dimensions: default = 'all' which takes all possible dimensions. Alternatively you can provide a character vector that specififies the spatial dimensions to use, e.g. c("sdimx', "sdimy") or a numerical vector, e.g. 2:3

maximum_distance: to create a network based on maximum distance only, you also need to set k to a very high value, e.g. k = 100

Examples

```
createSpatialKNNnetwork(gobject)
```

66 createSpatialNetwork

```
create Spatial Network \\ create Spatial Network
```

giotto object

Description

Create a spatial network based on cell centroid physical distances.

Usage

```
createSpatialNetwork(
  gobject,
  name = NULL,
  dimensions = "all",
  method = c("Delaunay", "kNN"),
delaunay_method = c("deldir", "delaunayn_geometry", "RTriangle"),
maximum_distance_delaunay = "auto",
  options = "Pp",
  Y = TRUE,
  j = TRUE,
  S = 0,
  minimum_k = 0,
  knn_method = "dbscan",
  k = 4,
  maximum_distance_knn = NULL,
  verbose = F,
  return_gobject = TRUE,
)
```

Arguments

gobject

name name for spatial network (default = 'spatial_network')
dimensions which spatial dimensions to use (default = all)
method which method to use to create a spatial network. (default = Delaunay)
delaunay_method
Delaunay method to use
maximum_distance_delaunay
distance cuttof for nearest neighbors to consider for Delaunay network
options (geometry) String containing extra control options for the underlying Qhu command; see the Qhull documentation (/doc/qhull/html/qdelaun.html) for the available options. (default = 'Pp', do not report precision problems)
Y (RTriangle) If TRUE prohibits the insertion of Steiner points on the mesh bound ary.
j (RTriangle) If TRUE jettisons vertices that are not part of the final triangulation from the output.
S (RTriangle) Specifies the maximum number of added Steiner points.
minimum_k minimum nearest neigbhours if maximum_distance != NULL

Details

Creates a spatial network connecting single-cells based on their physical distance to each other. For Delaunay method, neighbors will be decided by delaunay triangulation and a maximum distance criteria. For kNN method, number of neighbors can be determined by k, or maximum distance from each cell with or without setting a minimum k for each cell.

dimensions: default = 'all' which takes all possible dimensions. Alternatively you can provide a character vector that specififies the spatial dimensions to use, e.g. c("sdimx', "sdimy") or a numerical vector, e.g. 2:3

Value

giotto object with updated spatial network slot

Examples

```
createSpatialNetwork(gobject)
```

Description

creates randomized cell ids within a selection of cell types

Usage

```
create_cell_type_random_cell_IDs(
  gobject,
  cluster_column = "cell_types",
  needed_cell_types
)
```

```
gobject giotto object to use

cluster_column cluster column with cell type information

needed_cell_types

vector of cell type names for which a random id will be found
```

Details

Details will follow.

Value

list of randomly sampled cell ids with same cell type composition

Examples

```
create_cell_type_random_cell_IDs(gobject)
```

Description

create a crossSection object

Usage

```
create_crossSection_object(
  name = NULL,
  method = NULL,
  thickness_unit = NULL,
  slice_thickness = NULL,
  cell_distance_estimate_method = NULL,
  extend_ratio = NULL,
  plane_equation = NULL,
  mesh_grid_n = NULL,
  mesh_obj = NULL,
  cell_subset = NULL,
  cell_subset_spatial_locations = NULL,
  cell_subset_projection_locations = NULL,
  cell_subset_projection_PCA = NULL,
  cell_subset_projection_coords = NULL
)
```

crossSectionGenePlot 69

```
extend_ratio
                  deciding the span of the cross section meshgrid, as a ratio of extension compared
                  to the borders of the vitural tissue section. (default = 0.2)
plane_equation a numerical vector of length 4, in the form of c(A,B,C,D), which defines plane
                  Ax+By+Cz=D.
mesh_grid_n
                  numer of meshgrid lines to generate along both directions for the cross section
mesh_obj
                  object that stores the cross section meshgrid information.
cell_subset
                  cells selected by the cross section
cell_subset_spatial_locations
                  locations of cells selected by the cross section
cell_subset_projection_locations
                  3D projection coordinates of selected cells onto the cross section plane
cell_subset_projection_PCA
                  pca of projection coordinates
cell_subset_projection_coords
                  2D PCA coordinates of selected cells in the cross section plane
```

```
crossSectionGenePlot crossSectionGenePlot
```

Description

Visualize cells and gene expression in a virtual cross section according to spatial coordinates

Usage

```
crossSectionGenePlot(
  gobject = NULL,
  crossSection_obj = NULL,
  name = NULL,
  spatial_network_name = "Delaunay_network",
  default_save_name = "crossSectionGenePlot",
   ...
)
```

```
gobject giotto object

crossSection_obj

crossSection object

name name of virtual cross section to use

spatial_network_name

name of spatial network to use

default_save_name

default save name for saving, don't change, change save_name in save_param

parameters for spatGenePlot2D
```

70 crossSectionGenePlot3D

Details

Description of parameters.

Value

ggplot

See Also

```
spatGenePlot3D and spatGenePlot2D
```

```
crossSectionGenePlot3D
```

crossSectionGenePlot3D

Description

Visualize cells and gene expression in a virtual cross section according to spatial coordinates

Usage

```
crossSectionGenePlot3D(
  gobject,
  crossSection_obj = NULL,
  name = NULL,
  spatial_network_name = "Delaunay_network",
  other_cell_color = alpha("lightgrey", 0),
  default_save_name = "crossSectionGenePlot3D",
  ...
)
```

Arguments

Details

Description of parameters.

crossSectionPlot 71

Value

ggplot

Examples

```
crossSectionGenePlot3D(gobject)
```

crossSectionPlot

crossSectionPlot

Description

Visualize cells in a virtual cross section according to spatial coordinates

Usage

```
crossSectionPlot(
  gobject,
  crossSection_obj = NULL,
  name = NULL,
  spatial_network_name = "Delaunay_network",
  default_save_name = "crossSectionPlot",
   ...
)
```

Arguments

Details

Description of parameters.

Value

ggplot

See Also

```
crossSectionPlot
```

72 crossSectionPlot3D

crossSectionPlot3D

crossSectionPlot3D

Description

Visualize cells in a virtual cross section according to spatial coordinates

Usage

```
crossSectionPlot3D(
  gobject,
  crossSection_obj = NULL,
  name = NULL,
  spatial_network_name = "Delaunay_network",
  show_other_cells = T,
  other_cell_color = alpha("lightgrey", 0),
  default_save_name = "crossSection3D",
   ...
)
```

Arguments

Details

Description of parameters.

Value

ggplot

Examples

```
crossSectionPlot3D(gobject)
```

detectSpatialCorGenes detectSpatialCorGenes

Description

Detect genes that are spatially correlated

Usage

```
detectSpatialCorGenes(
  gobject,
  method = c("grid", "network"),
  expression_values = c("normalized", "scaled", "custom"),
  subset_genes = NULL,
  spatial_network_name = "Delaunay_network",
  network_smoothing = NULL,
  spatial_grid_name = "spatial_grid",
  min_cells_per_grid = 4,
  cor_method = c("pearson", "kendall", "spearman")
)
```

Arguments

```
gobject
                  giotto object
method
                  method to use for spatial averaging
expression_values
                  gene expression values to use
subset_genes
                  subset of genes to use
spatial_network_name
                  name of spatial network to use
network_smoothing
                  smoothing factor beteen 0 and 1 (default: automatic)
spatial_grid_name
                  name of spatial grid to use
min_cells_per_grid
                  minimum number of cells to consider a grid
cor_method
                  correlation method
```

Details

For method = network, it expects a fully connected spatial network. You can make sure to create a fully connected network by setting $minimal_k > 0$ in the createSpatialNetwork function.

- 1. grid-averaging: average gene expression values within a predefined spatial grid
- 2. network-averaging: smoothens the gene expression matrix by averaging the expression within one cell by using the neighbours within the predefined spatial network. b is a smoothening factor that defaults to 1 1/k, where k is the median number of k-neighbors in the selected spatial network. Setting b = 0 means no smoothing and b = 1 means no contribution from its own expression.

The spatCorObject can be further explored with showSpatialCorGenes()

74 detectSpatialPatterns

Value

```
returns a spatial correlation object: "spatCorObject"
```

See Also

```
showSpatialCorGenes
```

Examples

```
detectSpatialCorGenes(gobject)
```

```
detectSpatialPatterns detectSpatialPatterns
```

Description

Identify spatial patterns through PCA on average expression in a spatial grid.

Usage

```
detectSpatialPatterns(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  spatial_grid_name = "spatial_grid",
  min_cells_per_grid = 4,
  scale_unit = F,
  ncp = 100,
  show_plot = T,
  PC_zscore = 1.5
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
spatial_grid_name
                  name of spatial grid to use (default = 'spatial_grid')
min_cells_per_grid
                  minimum number of cells in a grid to be considered
                  scale features
scale_unit
                  number of principal components to calculate
ncp
show_plot
                  show plots
PC_zscore
                  minimum z-score of variance explained by a PC
```

dimCellPlot 75

Details

Steps to identify spatial patterns:

- 1. average gene expression for cells within a grid, see createSpatialGrid
- 2. perform PCA on the average grid expression profiles
- 3. convert variance of principlal components (PCs) to z-scores and select PCs based on a z-score threshold

Value

spatial pattern object 'spatPatObj'

Examples

detectSpatialPatterns(gobject)

dimCellPlot

dimCellPlot

Description

Visualize cells according to dimension reduction coordinates

Usage

```
dimCellPlot(gobject, ...)
```

Arguments

gobject giotto object Arguments passed on to dimCellPlot2D dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis spat_enr_names names of spatial enrichment results to include cell_annotation_values numeric cell annotation columns show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) network_name name of NN network to use, if show_NN_network = TRUE cell_color_code named vector with colors for cell annotation values cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color paramselect_cells select subset of cells based on cell IDs show_other_cells display not selected cells

76 dimCellPlot

```
other_cell_color color of not selected cells
other_point_size size of not selected cells
show_cluster_center plot center of selected clusters
show_center_label plot label of selected clusters
center_point_size size of center points
center_point_border_col border color of center points
center_point_border_stroke border stroke size of center points
label_size size of labels
label_fontface font of labels
edge_alpha column to use for alpha of the edges
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of dim. reduction points
point_border_col color of border around points
point_border_stroke stroke size of border around points
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

Details

Description of parameters. For 3D plots see dimCellPlot2D

Value

ggplot

See Also

Other dimension reduction cell annotation visualizations: dimCellPlot2D()

Examples

```
dimCellPlot(gobject)
```

dimCellPlot2D 77

dimCellPlot2D

dimCellPlot2D

Description

Visualize cells according to dimension reduction coordinates

```
dimCellPlot2D(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  spat_enr_names = NULL,
  cell_annotation_values = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  edge_alpha = NULL,
  point_shape = c("border", "no_border"),
  point_size = 1,
  point_alpha = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  show_legend = T,
  legend_text = 8,
  legend_symbol_size = 1,
  background_color = "white",
  axis_text = 8,
  axis_title = 8,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
```

78 dimCellPlot2D

```
cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "dimCellPlot2D"
    )
Arguments
    gobject
                     giotto object
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
                     dimension to use on x-axis
    dim1_to_use
                     dimension to use on y-axis
    dim2_to_use
    spat_enr_names names of spatial enrichment results to include
    cell_annotation_values
                     numeric cell annotation columns
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
    network_name
                     name of NN network to use, if show_NN_network = TRUE
    cell_color_code
                     named vector with colors for cell annotation values
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
    select_cells
                     select subset of cells based on cell IDs
    show_other_cells
                     display not selected cells
    other_cell_color
                     color of not selected cells
    other_point_size
                     size of not selected cells
    show_cluster_center
                     plot center of selected clusters
    show_center_label
                     plot label of selected clusters
    center_point_size
                     size of center points
```

dimCellPlot2D 79

```
center_point_border_col
                  border color of center points
center_point_border_stroke
                  border stroke size of center points
                  size of labels
label_size
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
point_shape
                  point with border or not (border or no_border)
point_size
                  size of point (cell)
point_alpha
                  transparancy of dim. reduction points
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
legend_text
                  size of legend text
legend_symbol_size
                  size of legend symbols
background_color
                  color of plot background
axis_text
                  size of axis text
axis_title
                  size of axis title
cow_n_col
                  cowplot param: how many columns
cow_rel_h
                  cowplot param: relative height
cow_rel_w
                  cowplot param: relative width
cow_align
                  cowplot param: how to align
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters. For 3D plots see dimPlot3D

Value

ggplot

See Also

Other dimension reduction cell annotation visualizations: dimCellPlot()

Examples

```
dimCellPlot2D(gobject)
```

80 dimGenePlot

dimGenePlot

dimGenePlot

show_plot show plots

return_plot return ggplot object

Description

Visualize gene expression according to dimension reduction coordinates

Usage

```
dimGenePlot(...)
```

Arguments

```
Arguments passed on to dimGenePlot2D
gobject giotto object
expression_values gene expression values to use
genes genes to show
dim_reduction_to_use dimension reduction to use
dim_reduction_name dimension reduction name
dim1_to_use dimension to use on x-axis
dim2_to_use dimension to use on y-axis
show_NN_network show underlying NN network
nn_network_to_use type of NN network to use (kNN vs sNN)
network_name name of NN network to use, if show_NN_network = TRUE
network_color color of NN network
edge_alpha column to use for alpha of the edges
scale_alpha_with_expression scale expression with ggplot alpha parameter
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of points
cell_color_gradient vector with 3 colors for numeric data
gradient_midpoint midpoint for color gradient
gradient_limits vector with lower and upper limits
point_border_col color of border around points
point_border_stroke stroke size of border around points
show_legend show legend
legend_text size of legend text
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
```

dimGenePlot2D 81

```
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
dimGenePlot3D
```

Other dimension reduction gene expression visualizations: dimGenePlot2D(), dimGenePlot3D()

Examples

```
dimGenePlot(gobject)
```

dimGenePlot2D

dimGenePlot2D

Description

Visualize gene expression according to dimension reduction coordinates

```
dimGenePlot2D(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  edge_alpha = NULL,
  scale_alpha_with_expression = FALSE,
  point_shape = c("border", "no_border"),
  point_size = 1,
  point_alpha = 1,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
```

82 dimGenePlot2D

```
point_border_col = "black",
      point_border_stroke = 0.1,
      show_legend = T,
      legend_text = 8,
      background_color = "white",
      axis_text = 8,
      axis_title = 8,
      cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "dimGenePlot2D"
Arguments
   gobject
                     giotto object
    expression_values
                     gene expression values to use
    genes
                     genes to show
    dim_reduction_to_use
                     dimension reduction to use
   dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    show_NN_network
                     show underlying NN network
   nn_network_to_use
                     type of NN network to use (kNN vs sNN)
   network_name
                     name of NN network to use, if show_NN_network = TRUE
   network_color
                     color of NN network
    edge_alpha
                     column to use for alpha of the edges
    scale_alpha_with_expression
                     scale expression with ggplot alpha parameter
                     point with border or not (border or no_border)
   point_shape
   point_size
                     size of point (cell)
   point_alpha
                     transparancy of points
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
```

dimGenePlot2D 83

```
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
legend_text
                  size of legend text
background_color
                  color of plot background
                  size of axis text
axis_text
                  size of axis title
axis_title
cow_n_col
                  cowplot param: how many columns
                  cowplot param: relative height
cow_rel_h
cow_rel_w
                  cowplot param: relative width
                  cowplot param: how to align
cow_align
show_plot
                  show plots
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
dimGenePlot3D
```

Other dimension reduction gene expression visualizations: dimGenePlot3D(), dimGenePlot()

Examples

```
dimGenePlot2D(gobject)
```

84 dimGenePlot3D

dimGenePlot3D

dimGenePlot3D

Description

Visualize cells and gene expression according to dimension reduction coordinates

Usage

```
dimGenePlot3D(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3\_to\_use = 3,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  cluster_column = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 1,
  edge_alpha = NULL,
  point_size = 2,
  genes_high_color = NULL,
  genes_mid_color = "white",
  genes_low_color = "blue",
  show_legend = T,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "dimGenePlot3D"
)
```

Arguments

```
gobject giotto object
expression_values
gene expression values to use
genes genes to show
dim_reduction_to_use
dimension reduction to use
dim_reduction_name
dimension reduction name
```

dimGenePlot3D 85

```
dim1_to_use
                  dimension to use on x-axis
dim2_to_use
                  dimension to use on y-axis
                  dimension to use on z-axis
dim3_to_use
show_NN_network
                  show underlying NN network
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use, if show_NN_network = TRUE
network_name
                  color of NN network
network_color
cluster_column cluster column to select groups
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
edge_alpha
                  column to use for alpha of the edges
point_size
                  size of point (cell)
genes_high_color
                  color for high expression levels
genes_mid_color
                  color for medium expression levels
genes_low_color
                  color for low expression levels
show_legend
                  show legend
show_plot
                  show plots
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

Other dimension reduction gene expression visualizations: dimGenePlot2D(), dimGenePlot()

Examples

```
dimGenePlot3D(gobject)
```

86 dimPlot

dimPlot dimPlot

Description

Visualize cells according to dimension reduction coordinates

Usage

```
dimPlot(...)
```

Arguments

Arguments passed on to dimPlot2D . . . gobject giotto object group_by create multiple plots based on cell annotation column group_by_subset subset the group_by factor column dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis spat_enr_names names of spatial enrichment results to include show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) network_name name of NN network to use, if show NN network = TRUE cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell color parameter select_cells select subset of cells based on cell IDs show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points center_point_border_col border color of center points center_point_border_stroke border stroke size of center points label_size size of labels label_fontface font of labels

edge_alpha column to use for alpha of the edges

point_shape point with border or not (border or no_border)

```
point_size size of point (cell)
point_alpha transparancy of point
point_border_col color of border around points
point_border_stroke stroke size of border around points
title title for plot, defaults to cell_color parameter
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

Details

Description of parameters, see dimPlot2D. For 3D plots see dimPlot3D

Value

ggplot

See Also

Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()

Examples

dimPlot(gobject)

dimPlot2D

dimPlot2D

Description

Visualize cells according to dimension reduction coordinates

```
dimPlot2D(
  gobject,
  group_by = NULL,
  group_by_subset = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  spat_enr_names = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  edge_alpha = NULL,
  point_shape = c("border", "no_border"),
  point_size = 1,
  point_alpha = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  title = NULL,
  show_legend = T,
  legend_text = 8,
  legend_symbol_size = 1,
  background_color = "white",
  axis_text = 8,
  axis_title = 8,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
```

```
default_save_name = "dimPlot2D"
```

Arguments

gobject giotto object create multiple plots based on cell annotation column group_by group_by_subset subset the group_by factor column dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis spat_enr_names names of spatial enrichment results to include show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select_cells select subset of cells based on cell IDs show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size

size of center points

```
center_point_border_col
                  border color of center points
center_point_border_stroke
                  border stroke size of center points
                  size of labels
label_size
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
                  point with border or not (border or no_border)
point_shape
point_size
                  size of point (cell)
point_alpha
                  transparancy of point
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
title
                  title for plot, defaults to cell_color parameter
                  show legend
show_legend
legend_text
                  size of legend text
legend_symbol_size
                  size of legend symbols
background_color
                  color of plot background
axis_text
                  size of axis text
                  size of axis title
axis_title
cow_n_col
                  cowplot param: how many columns
                  cowplot param: relative height
cow_rel_h
                  cowplot param: relative width
cow_rel_w
cow_align
                  cowplot param: how to align
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters. For 3D plots see dimPlot3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

Examples

```
dimPlot2D(gobject)
```

dimPlot3D 91

dimPlot3D

dimPlot3D

Description

Visualize cells according to dimension reduction coordinates

Usage

```
dimPlot3D(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = 3,
  spat_enr_names = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 2,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  color_as_factor = T,
  cell_color = NULL,
  cell_color_code = NULL,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  label_size = 4,
  edge_alpha = NULL,
  point_size = 3,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "dim3D"
)
```

Arguments

92 dimPlot3D

```
dim3_to_use
                  dimension to use on z-axis
spat_enr_names names of spatial enrichment results to include
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_NN_network
                  show underlying NN network
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
network_name
                  name of NN network to use, if show_NN_network = TRUE
color_as_factor
                  convert color column to factor
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
edge_alpha
                  column to use for alpha of the edges
point_size
                  size of point (cell)
show_plot
                  show plot
                  return ggplot object
return_plot
save_plot
                  directly save the plot [boolean]
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

plotly

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

doHclust 93

Examples

```
dimPlot3D(gobject)
```

doHclust

doHclust

Description

cluster cells using hierarchical clustering algorithm

Usage

```
doHclust(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes_to_use = NULL,
  dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  distance_method = c("pearson", "spearman", "original", "euclidean", "maximum",
  "manhattan", "canberra", "binary", "minkowski"),
agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
    "mcquitty", "median", "centroid"),
  k = 10,
  h = NULL,
  name = "hclust",
  return_gobject = TRUE,
  set_seed = T,
  seed_number = 1234
)
```

Arguments

```
{\tt gobject}
                 giotto object
expression_values
                 expression values to use
genes_to_use
                 subset of genes to use
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimensions reduction name
dimensions_to_use
                 dimensions to use
distance_method
                 distance method
agglomeration_method
                 agglomeration method for hclust
k
                 number of final clusters
```

94 doHMRF

```
h cut hierarchical tree at height = h
name name for hierarchical clustering
return_gobject boolean: return giotto object (default = TRUE)
set_seed set seed
seed_number number for seed
```

Details

Description on how to use Kmeans clustering method.

Value

giotto object with new clusters appended to cell metadata

See Also

hclust

Examples

```
doHclust(gobject)
```

doHMRF

doHMRF

Description

Run HMRF

```
doHMRF(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  spatial_network_name = "Delaunay_network",
  spatial_genes = NULL,
  spatial_dimensions = c("sdimx", "sdimy", "sdimz"),
  dim_reduction_to_use = NULL,
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  name = "test",
  k = 10,
  betas = c(0, 2, 50),
  tolerance = 1e-10,
  zscore = c("none", "rowcol", "colrow"),
  numinit = 100,
  python_path = NULL,
  output_folder = NULL,
  overwrite_output = TRUE
)
```

doKmeans 95

Arguments

gobject giotto object

expression_values

expression values to use

spatial_network_name

name of spatial network to use for HMRF

spatial_genes spatial genes to use for HMRF

spatial_dimensions

select spatial dimensions to use, default is all possible dimensions

dim_reduction_to_use

use another dimension reduction set as input

dim_reduction_name

name of dimension reduction set to use

dimensions_to_use

number of dimensions to use as input

name of HMRF run

k number of HMRF domains

betas betas to test for

tolerance tolerance zscore zscore

numinit number of initializations

python_path python path to use

output_folder output folder to save results

overwrite_output

overwrite output folder

Details

Description of HMRF parameters ...

Value

Creates a directory with results that can be viewed with viewHMRFresults

doKmeans doKmeans

Description

cluster cells using kmeans algorithm

96 doKmeans

Usage

```
doKmeans(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes_to_use = NULL,
  dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  distance_method = c("original", "pearson", "spearman", "euclidean", "maximum",
    "manhattan", "canberra", "binary", "minkowski"),
  centers = 10,
  iter_max = 100,
  nstart = 1000,
  algorithm = "Hartigan-Wong",
  name = "kmeans",
  return_gobject = TRUE,
  set_seed = T,
  seed_number = 1234
)
```

Arguments

```
gobject
                 giotto object
expression_values
                 expression values to use
                 subset of genes to use
genes_to_use
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimensions reduction name
{\tt dimensions\_to\_use}
                 dimensions to use
distance_method
                 distance method
centers
                 number of final clusters
                 kmeans maximum iterations
iter_max
nstart
                 kmeans nstart
                 kmeans algorithm
algorithm
name
                 name for kmeans clustering
return_gobject boolean: return giotto object (default = TRUE)
set seed
                 set seed
                 number for seed
seed_number
```

Details

Description on how to use Kmeans clustering method.

Value

giotto object with new clusters appended to cell metadata

doLeidenCluster 97

See Also

kmeans

Examples

```
doKmeans(gobject)
```

doLeidenCluster

doLeidenCluster

Description

cluster cells using a NN-network and the Leiden community detection algorithm

Usage

```
doLeidenCluster(
  gobject,
  name = "leiden_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  python_path = NULL,
  resolution = 1,
  weight_col = "weight",
  partition_type = c("RBConfigurationVertexPartition", "ModularityVertexPartition"),
  init_membership = NULL,
  n_iterations = 1000,
  return_gobject = TRUE,
  set_seed = T,
  seed_number = 1234
)
```

Arguments

seed_number

number for seed

```
gobject
                  giotto object
                  name for cluster
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use
network_name
python_path
                  specify specific path to python if required
resolution
                  resolution
                  weight column to use for edges
weight_col
partition_type The type of partition to use for optimisation.
init_membership
                  initial membership of cells for the partition
                  number of interations to run the Leiden algorithm. If the number of iterations
n_iterations
                  is negative, the Leiden algorithm is run until an iteration in which there was no
                  improvement.
return_gobject boolean: return giotto object (default = TRUE)
                  set seed
set_seed
```

98 doLeidenSubCluster

Details

This function is a wrapper for the Leiden algorithm implemented in python, which can detect communities in graphs of millions of nodes (cells), as long as they can fit in memory. See the https://github.com/vtraag/leidenalgleidenalg github page or the https://leidenalg.readthedocs.io/en/stable/index.htmlreadthedocs page for more information.

Partition types available and information:

- RBConfigurationVertexPartition: Implements Reichardt and Bornholdt's Potts model with a configuration null model. This quality function is well-defined only for positive edge weights. This quality function uses a linear resolution parameter.
- Modularity Vertex Partition: Implements modularity. This quality function is well-defined only for positive edge weights. It does *not* use the resolution parameter

Set $weight_col = NULL$ to give equal weight (=1) to each edge.

Value

giotto object with new clusters appended to cell metadata

Examples

```
doLeidenCluster(gobject)
```

doLeidenSubCluster

doLeidenSubCluster

Description

Further subcluster cells using a NN-network and the Leiden algorithm

```
doLeidenSubCluster(
  gobject,
  name = "sub_pleiden_clus",
  cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_cov = 1, expression_values =
    "normalized"),
 hvg_min_perc_cells = 5,
 hvg_mean_expr_det = 1,
 use_all_genes_as_hvg = FALSE,
 min_nr_of_hvg = 5,
 pca_param = list(expression_values = "normalized", scale_unit = T),
 nn_param = list(dimensions_to_use = 1:20),
 k_neighbors = 10,
  resolution = 0.5,
 n_{iterations} = 500,
 python_path = NULL,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
```

doLeidenSubCluster 99

```
return_gobject = TRUE,
  verbose = T
)
```

Arguments

gobject giotto object

name name for new clustering result cluster_column cluster column to subcluster

selected_clusters

only do subclustering on these clusters

hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

k_neighbors number of k for createNearestNetwork

resolution resolution of Leiden clustering

n_iterations number of interations to run the Leiden algorithm.

python_path specify specific path to python if required

nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

Details

This function performs subclustering using the Leiden algorithm on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do Leiden clustering

Value

giotto object with new subclusters appended to cell metadata

100 doLouvainCluster

See Also

```
doLeidenCluster
```

Examples

```
doLeidenSubCluster(gobject)
```

doLouvainCluster

doLouvainCluster

Description

cluster cells using a NN-network and the Louvain algorithm.

Usage

```
doLouvainCluster(
  gobject,
  version = c("community", "multinet"),
  name = "louvain_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  python_path = NULL,
  resolution = 1,
  weight_col = NULL,
  gamma = 1,
  omega = 1,
  louv_random = F,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234,
)
```

Arguments

```
gobject
                  giotto object
                  implemented version of Louvain clustering to use
version
                  name for cluster
name
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use
network_name
python_path
                  [community] specify specific path to python if required
resolution
                  [community] resolution
weight_col
                  weight column name
                  [multinet] Resolution parameter for modularity in the generalized louvain method.
gamma
                  [multinet] Inter-layer weight parameter in the generalized louvain method
omega
                  [community] Will randomize the node evaluation order and the community eval-
louv_random
```

uation order to get different partitions at each call

doLouvainSubCluster 101

```
return_gobject boolean: return giotto object (default = TRUE)
set_seed set seed
seed_number number for seed
... additional parameters
```

Details

Louvain clustering using the community or multinet implementation of the louvain clustering algorithm.

Value

giotto object with new clusters appended to cell metadata

See Also

```
doLouvainCluster_community and doLouvainCluster_multinet
```

Examples

```
doLouvainCluster(gobject)
```

doLouvainSubCluster doLouvainSubCluster

Description

subcluster cells using a NN-network and the Louvain algorithm

```
doLouvainSubCluster(
  gobject,
 name = "sub_louvain_clus",
 version = c("community", "multinet"),
 cluster_column = NULL,
 selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_cov = 1, expression_values =
    "normalized"),
 hvg_min_perc_cells = 5,
 hvg_mean_expr_det = 1,
 use_all_genes_as_hvg = FALSE,
 min_nr_of_hvg = 5,
 pca_param = list(expression_values = "normalized", scale_unit = T),
 nn_param = list(dimensions_to_use = 1:20),
 k_neighbors = 10,
 resolution = 0.5,
 gamma = 1,
 omega = 1,
 python_path = NULL,
  nn_network_to_use = "sNN",
```

102 doLouvainSubCluster

```
network_name = "sNN.pca",
return_gobject = TRUE,
verbose = T
)
```

Arguments

gobject giotto object

name name for new clustering result
version version of Louvain algorithm to use

cluster_column cluster column to subcluster

selected_clusters

only do subclustering on these clusters

hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

k_neighbors number of k for createNearestNetwork resolution resolution for community algorithm

gamma gamma omega omega

python_path specify specific path to python if required

nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

Details

This function performs subclustering using the Louvain algorithm on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do Louvain clustering

Value

giotto object with new subclusters appended to cell metadata

doRandomWalkCluster 103

See Also

doLouvainCluster_multinet and doLouvainCluster_community

Examples

```
doLouvainSubCluster(gobject)
```

doRandomWalkCluster

doRandomWalkCluster

Description

Cluster cells using a random walk approach.

Usage

```
doRandomWalkCluster(
  gobject,
  name = "random_walk_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  walk_steps = 4,
  walk_clusters = 10,
  walk_weights = NA,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234
)
```

Arguments

```
gobject
                 giotto object
                 name for cluster
name
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use
network_name
walk_steps
                 number of walking steps
walk_clusters number of final clusters
                 cluster column defining the walk weights
walk_weights
return_gobject boolean: return giotto object (default = TRUE)
set_seed
                 set seed
seed_number
                 number for seed
```

Details

See $cluster_walktrap$ function from the igraph package in R for more information.

Value

giotto object with new clusters appended to cell metadata

104 doSNNCluster

doSNNCluster

doSNNCluster

Description

Cluster cells using a SNN cluster approach.

Usage

```
doSNNCluster(
  gobject,
  name = "sNN_clus",
  nn_network_to_use = "kNN",
  network_name = "kNN.pca",
  k = 20,
  eps = 4,
  minPts = 16,
  borderPoints = TRUE,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234
)
```

Arguments

gobject giotto object
name name for cluster
nn_network_to_use

type of NN network to use (only works on kNN)

 $network_name \qquad name \ of \ kNN \ network \ to \ use$

k Neighborhood size for nearest neighbor sparsification to create the shared NN

graph.

eps Two objects are only reachable from each other if they share at least eps nearest

neighbors.

minPts minimum number of points that share at least eps nearest neighbors for a point

to be considered a core points.

borderPoints should borderPoints be assigned to clusters like in DBSCAN?

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed

Details

See sNNclust from dbscan package

Value

giotto object with new clusters appended to cell metadata

estimateImageBg 105

Examples

```
doSNNCluster(gobject)
```

 $\verb"estimateImageBg"$

estimateImageBg

Description

helps to estimate which color is the background color of your plot

Usage

```
estimateImageBg(mg_object, top_color_range = 1:50)
```

Arguments

```
mg_object magick image or Giotto image object top_color_range top possible background colors to return
```

Value

vector of pixel color frequencies and an associated barplot

Examples

```
estimateImageBg(mg_object)
```

exportGiottoViewer

exportGiottoViewer

Description

compute highly variable genes

```
exportGiottoViewer(
  gobject,
  output_directory = NULL,
  spat_enr_names = NULL,
  factor_annotations = NULL,
  numeric_annotations = NULL,
  dim_reductions,
  dim_reduction_names,
  expression_values = c("scaled", "normalized", "custom"),
  dim_red_rounding = NULL,
  dim_red_rescale = c(-20, 20),
  expression_rounding = 2,
  overwrite_dir = T,
  verbose = T
```

106 exportGiottoViewer

Arguments

```
gobject
                  giotto object
output_directory
                  directory where to save the files
spat_enr_names spatial enrichment results to include for annotations
factor_annotations
                  giotto cell annotations to view as factor
numeric_annotations
                  giotto cell annotations to view as numeric
dim_reductions high level dimension reductions to view
dim_reduction_names
                  specific dimension reduction names
expression_values
                  expression values to use in Viewer
dim_red_rounding
                  numerical indicating how to round the coordinates
dim_red_rescale
                  numericals to rescale the coordinates
expression_rounding
                  numerical indicating how to round the expression data
                  overwrite files in the directory if it already existed
overwrite_dir
verbose
                  be verbose
```

Details

Giotto Viewer expects the results from Giotto Analyzer in a specific format, which is provided by this function. To include enrichment results from createSpatialEnrich include the provided spatial enrichment name (default PAGE or rank) and add the gene signature names (.e.g cell types) to the numeric annotations parameter.

Value

writes the necessary output to use in Giotto Viewer

Examples

```
data(mini_giotto_single_cell)
exportGiottoViewer(mini_giotto_single_cell)
```

exprCellCellcom 107

exprCellCellcom exprCellCellcom

Description

Cell-Cell communication scores based on expression only

Usage

Arguments

```
giotto object to use
gobject
cluster_column cluster column with cell type information
                  number of iterations
random_iter
                  first specific gene set from gene pairs
gene_set_1
gene_set_2
                  second specific gene set from gene pairs
log2FC_addendum
                  addendum to add when calculating log2FC
detailed
                  provide more detailed information (random variance and z-score)
adjust_method
                  which method to adjust p-values
adjust_target
                  adjust multiple hypotheses at the cell or gene level
verbose
                  verbose
```

Details

Statistical framework to identify if pairs of genes (such as ligand-receptor combinations) are expressed at higher levels than expected based on a reshuffled null distribution of gene expression values, without considering the spatial position of cells. More details will follow soon.

Value

Cell-Cell communication scores for gene pairs based on expression only

Examples

```
\verb|exprCellCellcom(gobject)|
```

fDataDT

fDataDT

Description

show gene metadata

Usage

```
fDataDT(gobject)
```

Arguments

gobject giotto object

Value

data.table with gene metadata

Examples

```
data(mini_giotto_single_cell) # loads existing Giotto object
fDataDT(mini_giotto_single_cell)
```

filterCellProximityGenes

 ${\it filter Cell Proximity Genes}$

Description

Filter cell proximity gene scores.

```
filterCellProximityGenes(
  cpgObject,
  min_cells = 4,
  min_cells_expr = 1,
  min_int_cells = 4,
  min_int_cells_expr = 1,
  min_fdr = 0.1,
  min_spat_diff = 0.2,
  min_log2_fc = 0.2,
  min_zscore = 2,
  zscores_column = c("cell_type", "genes"),
  direction = c("both", "up", "down")
)
```

filterCombinations 109

Arguments

```
cpgObject
                 cell proximity gene score object
                 minimum number of source cell type
min_cells
min_cells_expr minimum expression level for source cell type
min_int_cells
                 minimum number of interacting neighbor cell type
min_int_cells_expr
                 minimum expression level for interacting neighbor cell type
min_fdr
                 minimum adjusted p-value
min_spat_diff
                 minimum absolute spatial expression difference
                 minimum log2 fold-change
min_log2_fc
min_zscore
                 minimum z-score change
zscores_column calculate z-scores over cell types or genes
direction
                 differential expression directions to keep
```

Value

cpgObject that contains the filtered differential gene scores

Examples

```
filterCellProximityGenes(gobject)
```

 ${\it filter Combinations} \qquad {\it filter Combinations}$

Description

Shows how many genes and cells are lost with combinations of thresholds.

Usage

```
filterCombinations(
  gobject,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  expression_thresholds = c(1, 2),
  gene_det_in_min_cells = c(5, 50),
  min_det_genes_per_cell = c(200, 400),
  scale_x_axis = "identity",
  x_axis_offset = 0,
  scale_y_axis = "identity",
  y_axis_offset = 0,
  show_plot = TRUE,
  return_plot = FALSE,
  save_plot = NA,
  save_param = list(),
  default_save_name = "filterCombinations")
```

110 filterCombinations

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
expression_thresholds
                  all thresholds to consider a gene expressed
gene_det_in_min_cells
                  minimum number of cells that should express a gene to consider that gene fur-
                  ther
min_det_genes_per_cell
                  minimum number of expressed genes per cell to consider that cell further
                  ggplot transformation for x-axis (e.g. log2)
scale_x_axis
                  x-axis offset to be used together with the scaling transformation
x_axis_offset
scale_y_axis
                  ggplot transformation for y-axis (e.g. log2)
y_axis_offset
                  y-axis offset to be used together with the scaling transformation
show_plot
                  show plot
return_plot
                  return only ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Creates a scatterplot that visualizes the number of genes and cells that are lost with a specific combination of a gene and cell threshold given an arbitrary cutoff to call a gene expressed. This function can be used to make an informed decision at the filtering step with filterGiotto.

Value

list of data.table and ggplot object

Examples

```
data(mini_giotto_single_cell)
# assess the effect of multiple filter criteria
filterCombinations(mini_giotto_single_cell,
gene_det_in_min_cells = c(2, 4, 8),
min_det_genes_per_cell = c(5, 10, 20))
```

filterCPG 111

filterCPG

filterCPG

Description

Filter cell proximity gene scores.

Usage

```
filterCPG(
  cpgObject,
  min_cells = 4,
  min_cells_expr = 1,
  min_int_cells = 4,
  min_int_cells_expr = 1,
  min_fdr = 0.1,
  min_spat_diff = 0.2,
  min_log2_fc = 0.2,
  min_zscore = 2,
  zscores_column = c("cell_type", "genes"),
  direction = c("both", "up", "down")
)
```

Arguments

```
cpgObject
                 cell proximity gene score object
                 minimum number of source cell type
min_cells
min_cells_expr minimum expression level for source cell type
                 minimum number of interacting neighbor cell type
min_int_cells
min_int_cells_expr
                 minimum expression level for interacting neighbor cell type
min_fdr
                 minimum adjusted p-value
                 minimum absolute spatial expression difference
min_spat_diff
min_log2_fc
                 minimum log2 fold-change
min_zscore
                 minimum z-score change
zscores_column calculate z-scores over cell types or genes
                 differential expression directions to keep
direction
```

Value

cpgObject that contains the filtered differential gene scores

Examples

```
filterCPG(gobject)
```

112 filterDistributions

filterDistributions filterDistributions

Description

show gene or cell distribution after filtering on expression threshold

Usage

```
filterDistributions(
  gobject,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  expression_threshold = 1,
  detection = c("genes", "cells"),
  plot_type = c("histogram", "violin"),
  nr_bins = 30,
  fill_color = "lightblue",
  scale_axis = "identity",
  axis_offset = 0,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "filterDistributions"
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
expression_threshold
                  threshold to consider a gene expressed
detection
                  consider genes or cells
                  type of plot
plot_type
nr_bins
                  number of bins for histogram plot
fill_color
                  fill color for plots
scale_axis
                  ggplot transformation for axis (e.g. log2)
axis_offset
                  offset to be used together with the scaling transformation
show_plot
                  show plot
                  return ggplot object
return_plot
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
```

default save name for saving, don't change, change save_name in save_param

filterGiotto 113

Value

```
ggplot object
```

Examples

```
data(mini_giotto_single_cell)

# distribution plot of genes
filterDistributions(mini_giotto_single_cell, detection = 'genes')

# distribution plot of cells
filterDistributions(mini_giotto_single_cell, detection = 'cells')
```

filterGiotto

filterGiotto

Description

filter Giotto object based on expression threshold

Usage

```
filterGiotto(
  gobject,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  expression_threshold = 1,
  gene_det_in_min_cells = 100,
  min_det_genes_per_cell = 100,
  verbose = F
)
```

Arguments

Details

The function filterCombinations can be used to explore the effect of different parameter values.

Value

```
giotto object
```

Examples

findCellProximityGenes

findCellProximityGenes

Description

Identifies genes that are differentially expressed due to proximity to other cell types.

Usage

```
findCellProximityGenes(
 gobject,
 expression_values = "normalized",
  selected_genes = NULL,
 cluster_column,
 spatial_network_name = "Delaunay_network",
 minimum_unique_cells = 1,
 minimum_unique_int_cells = 1,
 diff_test = c("permutation", "limma", "t.test", "wilcox"),
 mean_method = c("arithmic", "geometric"),
 offset = 0.1,
 adjust_method = c("bonferroni", "BH", "holm", "hochberg", "hommel", "BY", "fdr",
    "none"),
 nr_permutations = 1000,
 exclude_selected_cells_from_test = T,
 do_parallel = TRUE,
 cores = NA
)
```

minimum_unique_int_cells

minimum number of interacting cells required

diff_test which differential expression test
mean_method method to use to calculate the mean

offset value to use when calculating log2 ratio

adjust_method which method to adjust p-values

nr_permutations

number of permutations if diff_test = permutation

exclude_selected_cells_from_test

exclude interacting cells other cells

do_parallel run calculations in parallel with mclapply cores number of cores to use if do_parallel = TRUE

Details

Function to calculate if genes are differentially expressed in cell types when they interact (approximated by physical proximity) with other cell types. The results data.table in the cpgObject contains - at least - the following columns:

- genes: All or selected list of tested genes
- sel: average gene expression in the interacting cells from the target cell type
- other: average gene expression in the NOT-interacting cells from the target cell type
- log2fc: log2 fold-change between sel and other
- · diff: spatial expression difference between sel and other
- p.value: associated p-value
- p.adj: adjusted p-value
- cell_type: target cell type
- int_cell_type: interacting cell type
- nr_select: number of cells for selected target cell type
- int_nr_select: number of cells for interacting cell type
- nr_other: number of other cells of selected target cell type
- int_nr_other: number of other cells for interacting cell type
- unif int: cell-cell interaction

Value

cpgObject that contains the differential gene scores

Examples

findCellProximityGenes(gobject)

116 findCPG

findCPG findCPG

Description

Identifies genes that are differentially expressed due to proximity to other cell types.

Usage

```
findCPG(
  gobject,
  expression_values = "normalized",
  selected_genes = NULL,
  cluster_column,
  spatial_network_name = "Delaunay_network",
  minimum_unique_cells = 1,
  minimum_unique_int_cells = 1,
  diff_test = c("permutation", "limma", "t.test", "wilcox"),
  mean_method = c("arithmic", "geometric"),
  offset = 0.1,
 adjust_method = c("bonferroni", "BH", "holm", "hochberg", "hommel", "BY", "fdr",
    "none"),
  nr_permutations = 100,
  exclude_selected_cells_from_test = T,
  do_parallel = TRUE,
  cores = NA
)
```

```
giotto object
gobject
expression_values
                  expression values to use
selected_genes subset of selected genes (optional)
cluster_column name of column to use for cell types
spatial_network_name
                  name of spatial network to use
minimum_unique_cells
                  minimum number of target cells required
minimum_unique_int_cells
                  minimum number of interacting cells required
                  which differential expression test
diff_test
mean_method
                  method to use to calculate the mean
offset
                  offset value to use when calculating log2 ratio
adjust_method
                  which method to adjust p-values
nr_permutations
                  number of permutations if diff_test = permutation
```

findGiniMarkers 117

```
exclude_selected_cells_from_test
exclude interacting cells other cells

do_parallel run calculations in parallel with mclapply

cores number of cores to use if do_parallel = TRUE
```

Details

Function to calculate if genes are differentially expressed in cell types when they interact (approximated by physical proximity) with other cell types. The results data.table in the cpgObject contains - at least - the following columns:

- genes: All or selected list of tested genes
- sel: average gene expression in the interacting cells from the target cell type
- other: average gene expression in the NOT-interacting cells from the target cell type
- log2fc: log2 fold-change between sel and other
- · diff: spatial expression difference between sel and other
- · p.value: associated p-value
- p.adj: adjusted p-value
- cell_type: target cell type
- int_cell_type: interacting cell type
- nr_select: number of cells for selected target cell type
- int_nr_select: number of cells for interacting cell type
- nr_other: number of other cells of selected target cell type
- int_nr_other: number of other cells for interacting cell type
- unif_int: cell-cell interaction

Value

cpgObject that contains the differential gene scores

Examples

findCPG(gobject)

find Gini Markers

findGiniMarkers

Description

Identify marker genes for selected clusters based on gini detection and expression scores.

118 findGiniMarkers

Usage

```
findGiniMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  group_1 = NULL,
  group_2 = NULL,
  min_expr_gini_score = 0.2,
  min_det_gini_score = 0.2,
  detection_threshold = 0,
  rank_score = 1,
  min_genes = 5
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
                  group 1 cluster IDs from cluster_column for pairwise comparison
group_1
group_2
                  group 2 cluster IDs from cluster_column for pairwise comparison
min_expr_gini_score
                  filter on minimum gini coefficient for expression
min_det_gini_score
                  filter on minimum gini coefficient for detection
detection_threshold
                  detection threshold for gene expression
rank_score
                  rank scores for both detection and expression to include
                  minimum number of top genes to return
min_genes
```

Details

Detection of marker genes using the https://en.wikipedia.org/wiki/Gini_coefficientgini coefficient is based on the following steps/principles per gene:

- 1. calculate average expression per cluster
- 2. calculate detection fraction per cluster
- 3. calculate gini-coefficient for av. expression values over all clusters
- 4. calculate gini-coefficient for detection fractions over all clusters
- 5. convert gini-scores to rank scores
- 6. for each gene create combined score = detection rank x expression rank x expr gini-coefficient x detection gini-coefficient
- 7. for each gene sort on expression and detection rank and combined score

As a results "top gini" genes are genes that are very selectivily expressed in a specific cluster, however not always expressed in all cells of that cluster. In other words highly specific, but not necessarily sensitive at the single-cell level.

To perform differential expression between cluster groups you need to specificy cluster IDs to the parameters *group_1* and *group_2*.

Value

data.table with marker genes

Examples

Description

Identify marker genes for all clusters in a one vs all manner based on gini detection and expression scores.

Usage

```
findGiniMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  min_expr_gini_score = 0.5,
  min_det_gini_score = 0.5,
  detection_threshold = 0,
  rank_score = 1,
  min_genes = 4,
  verbose = TRUE
)
```

```
gobject giotto object
expression_values
gene expression values to use
cluster_column clusters to use
```

120 findMarkers

```
subset_clusters

selection of clusters to compare

min_expr_gini_score
filter on minimum gini coefficient on expression

min_det_gini_score
filter on minimum gini coefficient on detection

detection_threshold
detection threshold for gene expression

rank_score
rank scores for both detection and expression to include

min_genes
minimum number of top genes to return

verbose
be verbose
```

Value

data.table with marker genes

See Also

findGiniMarkers

Examples

findMarkers

findMarkers

Description

Identify marker genes for selected clusters.

Usage

```
findMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column = NULL,
  method = c("scran", "gini", "mast"),
  subset_clusters = NULL,
  group_1 = NULL,
  group_2 = NULL,
  min_expr_gini_score = 0.5,
  min_det_gini_score = 0.5,
  detection_threshold = 0,
  rank_score = 1,
  min_genes = 4,
  group_1_name = NULL,
```

findMarkers 121

```
group_2_name = NULL,
adjust_columns = NULL,
...
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
method
                  method to use to detect differentially expressed genes
subset_clusters
                  selection of clusters to compare
                  group 1 cluster IDs from cluster_column for pairwise comparison
group_1
                  group 2 cluster IDs from cluster_column for pairwise comparison
group_2
min_expr_gini_score
                  gini: filter on minimum gini coefficient for expression
{\tt min\_det\_gini\_score}
                  gini: filter minimum gini coefficient for detection
detection_threshold
                  gini: detection threshold for gene expression
                  gini: rank scores to include
rank_score
                  minimum number of top genes to return (for gini)
min_genes
group_1_name
                  mast: custom name for group_1 clusters
                  mast: custom name for group_2 clusters
group_2_name
adjust_columns mast: column in pDataDT to adjust for (e.g. detection rate)
                  additional parameters for the findMarkers function in scran or zlm function in
. . .
                  MAST
```

Details

Wrapper for all individual functions to detect marker genes for clusters.

Value

data.table with marker genes

See Also

 $\verb|findScranMarkers|, \verb|findGiniMarkers| and \verb|findMastMarkers| \\$

Description

Identify marker genes for all clusters in a one vs all manner.

Usage

```
findMarkers_one_vs_all(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 cluster_column,
  subset_clusters = NULL,
 method = c("scran", "gini", "mast"),
 pval = 0.01,
 logFC = 0.5,
 min\_genes = 10,
 min_expr_gini_score = 0.5,
 min_det_gini_score = 0.5,
 detection_threshold = 0,
  rank_score = 1,
 adjust_columns = NULL,
 verbose = TRUE,
)
```

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
                  method to use to detect differentially expressed genes
method
pval
                  scran & mast: filter on minimal p-value
logFC
                  scan & mast: filter on logFC
min_genes
                  minimum genes to keep per cluster, overrides pval and logFC
min_expr_gini_score
                  gini: filter on minimum gini coefficient for expression
min_det_gini_score
                  gini: filter minimum gini coefficient for detection
detection_threshold
                  gini: detection threshold for gene expression
                  gini: rank scores to include
rank_score
adjust_columns mast: column in pDataDT to adjust for (e.g. detection rate)
```

findMastMarkers 123

verbose be verbose

... additional parameters for the findMarkers function in scran or zlm function in

MAST

Details

Wrapper for all one vs all functions to detect marker genes for clusters.

Value

data.table with marker genes

See Also

findScranMarkers_one_vs_all, findGiniMarkers_one_vs_all and findMastMarkers_one_vs_all

findMastMarkers

findMastMarkers

Description

Identify marker genes for selected clusters based on the MAST package.

Usage

```
findMastMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  group_1 = NULL,
  group_1_name = NULL,
  group_2 = NULL,
  group_2_name = NULL,
  adjust_columns = NULL,
  verbose = FALSE,
  ...
)
```

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
group_1
                  group 1 cluster IDs from cluster_column for pairwise comparison
                  custom name for group_1 clusters
group_1_name
                  group 2 cluster IDs from cluster_column for pairwise comparison
group_2
group_2_name
                  custom name for group_2 clusters
adjust_columns column in pDataDT to adjust for (e.g. detection rate)
verbose
                  be verbose
                  additional parameters for the zlm function in MAST
. . .
```

Details

This is a minimal convenience wrapper around the zlm from the MAST package to detect differentially expressed genes.

Value

data.table with marker genes

Examples

Description

Identify marker genes for all clusters in a one vs all manner based on the MAST package.

Usage

```
findMastMarkers_one_vs_all(
   gobject,
   expression_values = c("normalized", "scaled", "custom"),
   cluster_column,
   subset_clusters = NULL,
   adjust_columns = NULL,
   pval = 0.001,
   logFC = 1,
   min_genes = 10,
   verbose = TRUE,
   ...
)
```

findNetworkNeighbors 125

pval filter on minimal p-value

logFC filter on logFC

min_genes minimum genes to keep per cluster, overrides pval and logFC

verbose be verbose

additional parameters for the zlm function in MAST

Value

data.table with marker genes

See Also

findMastMarkers

Examples

findNetworkNeighbors findNetworkNeighbors

Description

Find the spatial neighbors for a selected group of cells within the selected spatial network.

Usage

```
findNetworkNeighbors(
  gobject,
  spatial_network_name,
  source_cell_ids = NULL,
  name = "nb_cells"
)
```

Arguments

Value

data.table

126 findScranMarkers

Examples

findScranMarkers

findScranMarkers

Description

Identify marker genes for all or selected clusters based on scran's implementation of findMarkers.

Usage

```
findScranMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  group_1 = NULL,
  group_2 = NULL,
  verbose = FALSE,
  ...
)
```

Arguments

```
gobject giotto object
expression_values
gene expression values to use

cluster_column clusters to use
subset_clusters
selection of clusters to compare
group_1 group 1 cluster IDs from cluster_column for pairwise comparison
group_2 group 2 cluster IDs from cluster_column for pairwise comparison
verbose be verbose (default = FALSE)
... additional parameters for the findMarkers function in scran
```

Details

This is a minimal convenience wrapper around the findMarkers function from the scran package.

To perform differential expression between cluster groups you need to specificy cluster IDs to the parameters *group_1* and *group_2*.

Value

data.table with marker genes

Examples

```
find Scran Markers\_one\_vs\_all \\ find Scran Markers\_one\_vs\_all
```

Description

Identify marker genes for all clusters in a one vs all manner based on scran's implementation of findMarkers.

Usage

```
findScranMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  pval = 0.01,
  logFC = 0.5,
  min_genes = 10,
  verbose = TRUE,
  ...
)
```

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  subset of clusters to use
                  filter on minimal p-value
pval
logFC
                  filter on logFC
min_genes
                  minimum genes to keep per cluster, overrides pval and logFC
verbose
                  additional parameters for the findMarkers function in scran
. . .
```

128 get10Xmatrix

Value

data.table with marker genes

See Also

findScranMarkers

Examples

get10Xmatrix

get10Xmatrix

Description

This function creates an expression matrix from a 10X structured folder

Usage

```
get10Xmatrix(path_to_data, gene_column_index = 1)
```

Arguments

```
path_to_data path to the 10X folder

gene_column_index

which column from the features or genes toy file
```

which column from the features or genes .tsv file to use for row ids

Details

A typical 10X folder is named raw_feature_bc_matrix or raw_feature_bc_matrix and tt has 3 files:

- barcodes.tsv(.gz)
- features.tsv(.gz) or genes.tsv(.gz)
- matrix.mtx(.gz)

By default the first column of the features or genes .tsv file will be used, however if multiple annotations are provided (e.g. ensembl gene ids and gene symbols) the user can select another column.

Value

sparse expression matrix from 10X

getClusterSimilarity 129

```
getClusterSimilarity
```

Description

Creates data.table with pairwise correlation scores between each cluster.

Usage

```
getClusterSimilarity(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman")
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
cluster_column name of column to use for clusters
cor correlation score to calculate distance
```

Details

Creates data.table with pairwise correlation scores between each cluster and the group size (# of cells) for each cluster. This information can be used together with mergeClusters to combine very similar or small clusters into bigger clusters.

Value

data.table

Examples

```
getClusterSimilarity(gobject)
```

```
{\tt getDendrogramSplits} \qquad {\tt getDendrogramSplits}
```

Description

Split dendrogram at each node and keep the leave (label) information..

130 getDistinctColors

Usage

```
getDendrogramSplits(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman"),
  distance = "ward.D",
  h = NULL,
  h_color = "red",
  show_dend = TRUE,
  verbose = TRUE
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
cluster_column name of column to use for clusters
cor correlation score to calculate distance
distance distance method to use for hierarchical clustering
h height of horizontal lines to plot
h_color color of horizontal lines
```

show_dend show dendrogram

verbose be verbose

Details

Creates a data.table with three columns and each row represents a node in the dendrogram. For each node the height of the node is given together with the two subdendrograms. This information can be used to determine in a hierarchical manner differentially expressed marker genes at each node.

Value

data.table object

Examples

```
getDendrogramSplits(gobject)
```

getDistinctColors

Description

Returns a number of distint colors based on the RGB scale

Usage

```
getDistinctColors(n)
```

getGiottoImage 131

Arguments

n number of colors wanted

Value

number of distinct colors

getGiottoImage

getGiottoImage

Description

```
get get a giotto image from a giotto object
```

Usage

```
getGiottoImage(gobject, image_name)
```

Arguments

gobject giotto object

image_name name of giotto image showGiottoImageNames

Value

a giotto image

Examples

```
getGiottoImage(gobject)
```

 ${\tt getSpatialDataset}$

getSpatialDataset

Description

This package will automatically download the spatial locations and expression matrix for the chosen dataset. These files are already in the right format to create a Giotto object. If wget is installed on your machine, you can add 'method = wget' to the parameters to download files faster.

Usage

```
getSpatialDataset(
  dataset = c("ST_OB1", "ST_OB2", "codex_spleen", "cycif_PDAC", "starmap_3D_cortex",
        "osmfish_SS_cortex", "merfish_preoptic", "seqfish_SS_cortex", "seqfish_OB"),
        directory = getwd(),
        ...
)
```

132 giotto-class

Arguments

dataset dataset to download

directory directory to save the data to

... additional parameters to download.file

giotto-class S4 giotto Class

Description

Framework of giotto object to store and work with spatial expression data

Slots

raw_exprs raw expression counts norm_expr normalized expression counts norm_scaled_expr normalized and scaled expression counts custom_expr custom normalized counts spatial_locs spatial location coordinates for cells cell_metadata metadata for cells gene_metadata metadata for genes cell_ID unique cell IDs gene_ID unique gene IDs spatial_network spatial network in data.table/data.frame format spatial_grid spatial grid in data.table/data.frame format spatial_enrichment slot to save spatial enrichment-like results dimension_reduction slot to save dimension reduction coordinates nn_network nearest neighbor network in igraph format images slot to store giotto images parameters slot to save parameters that have been used instructions slot for global function instructions offset_file offset file used to stitch together image fields OS_platform Operating System to run Giotto analysis on

 $heatmSpatialCorGenes \quad \textit{heatmSpatialCorGenes}$

Description

Create heatmap of spatially correlated genes

Usage

```
heatmSpatialCorGenes(
  gobject,
  spatCorObject,
  use_clus_name = NULL,
  show_cluster_annot = TRUE,
  show_row_dend = T,
  show_column_dend = F,
  show_row_names = F,
  show_column_names = F,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "heatmSpatialCorGenes",
  ...
)
```

```
gobject
                 giotto object
                 spatial correlation object
spatCorObject
use_clus_name
                 name of clusters to visualize (from clusterSpatialCorGenes())
show_cluster_annot
                 show cluster annotation on top of heatmap
show_row_dend
                 show row dendrogram
show_column_dend
                 show column dendrogram
show_row_names show row names
show_column_names
                 show column names
show_plot
                 show plot
return_plot
                 return ggplot object
                 directly save the plot [boolean]
save_plot
save_param
                 list of saving parameters, see showSaveParameters
default_save_name
                 default save name for saving, don't change, change save_name in save_param
                 additional parameters to the Heatmap function from ComplexHeatmap
. . .
```

Value

Heatmap generated by ComplexHeatmap

Examples

heatmSpatialCorGenes(gobject)

hyperGeometricEnrich hyperGeometricEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using a hypergeometric test.

Usage

```
hyperGeometricEnrich(...)
```

Arguments

... Arguments passed on to runHyperGeometricEnrich

gobject Giotto object
sign_matrix Matrix of signature genes for each cell type / process
expression_values expression values to use
reverse_log_scale reverse expression values from log scale
logbase log base to use if reverse_log_scale = TRUE

top_percentage percentage of cells that will be considered to have gene expression with matrix binarization

output_enrichment how to return enrichment output p_value calculate p-values (boolean, default = FALSE) name to give to spatial enrichment results, default = rank return_gobject return giotto object

See Also

run Hyper Geometric Enrich

Description

Visualize cells and gene expression in a virtual cross section according to spatial coordinates

Usage

```
insertCrossSectionGenePlot3D(
 gobject,
 crossSection_obj = NULL,
 name = NULL,
 spatial_network_name = "Delaunay_network",
 mesh_grid_color = "#1f77b4",
 mesh_grid_width = 3,
 mesh_grid_style = "dot",
 sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  show_other_cells = F,
 axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
 default_save_name = "spatGenePlot3D_with_cross_section",
)
```

```
gobject
                  giotto object
crossSection_obj
                  cross section object as alternative input. default = NULL.
                  name of virtual cross section to use
name
spatial_network_name
                  name of spatial network to use
mesh_grid_color
                  color for the meshgrid lines
mesh_grid_width
                  width for the meshgrid lines
mesh_grid_style
                  style for the meshgrid lines
                  x-axis dimension name (default = 'sdimx')
sdimx
sdimy
                  y-axis dimension name (default = 'sdimy')
sdimz
                  z-axis dimension name (default = 'sdimy')
```

```
show_other_cells
                  display not selected cells
axis_scale
                  axis_scale
custom_ratio
                  custom_ratio
show_plot
                  show plots
                  return ggplot object
return_plot
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  parameters for spatGenePlot3D
. . .
```

Details

Description of parameters.

Value

ggplot

Examples

insertCrossSectionGenePlot3D(gobject)

```
insert {\tt CrossSectionSpatPlot3D} \\ insert {\tt CrossSectionSpatPlot3D}
```

Description

Visualize the meshgrid lines of cross section together with cells

Usage

```
insertCrossSectionSpatPlot3D(
 gobject,
 crossSection_obj = NULL,
 name = NULL,
  spatial_network_name = "Delaunay_network",
 mesh_grid_color = "#1f77b4",
 mesh_grid_width = 3,
 mesh_grid_style = "dot",
 sdimx = "sdimx",
  sdimy = "sdimy",
 sdimz = "sdimz",
 show_other_cells = F,
 axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL,
 default_save_name = "spat3D_with_cross_section",
)
```

installGiottoEnvironment 137

Arguments

```
gobject
                  giotto object
crossSection_obj
                  cross section object as alternative input. default = NULL.
                  name of virtual cross section to use
name
spatial_network_name
                  name of spatial network to use
mesh_grid_color
                  color for the meshgrid lines
mesh_grid_width
                  width for the meshgrid lines
mesh_grid_style
                  style for the meshgrid lines
\operatorname{sdim} x
                  x-axis dimension name (default = 'sdimx')
                  y-axis dimension name (default = 'sdimy')
sdimy
                  z-axis dimension name (default = 'sdimy')
sdimz
show_other_cells
                  display not selected cells
axis_scale
                  axis scale
custom_ratio
                  custom_ratio
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  parameters for spatPlot3D
. . .
```

Details

Description of parameters.

Value

ggplot

Examples

insertCrossSectionSpatPlot3D(gobject)

installGiottoEnvironment

installGiottoEnvironment

Description

Installs a giotto environment

jackstrawPlot

Usage

```
installGiottoEnvironment(
  packages_to_install = c("pandas", "networkx", "python-igraph", "leidenalg",
        "python-louvain", "python.app", "scikit-learn"),
  force_miniconda = FALSE,
  force_environment = FALSE,
  verbose = TRUE
)
```

Arguments

Details

This function will install a local giotto environment using the miniconda system as implemented by reticulate. Once this giotto environment is installed it will be automatically detected when you run the Giotto toolbox. If you want to use your own python path then you can set the python_path in the createGiottoInstructions and provide the instructions to the createGiottoObject function.

Value

installs a giotto environment using the reticulate miniconda system

Examples

```
## Not run:

# this command will install r-miniconda
# and a giotto environment with all necessary python modules
installGiottoEnvironment()

## End(Not run)
```

jackstrawPlot

jackstrawPlot

Description

identify significant prinicipal components (PCs)

jackstrawPlot 139

Usage

```
jackstrawPlot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"),
  genes_to_use = NULL,
  center = FALSE,
  scale_unit = FALSE,
  ncp = 20,
  ylim = c(0, 1),
  iter = 10,
  threshold = 0.01,
  verbose = TRUE,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "jackstrawPlot"
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
                  cells or genes
reduction
                  subset of genes to use for PCA
genes_to_use
                  center data before PCA
center
scale_unit
                  scale features before PCA
ncp
                  number of principal components to calculate
                  y-axis limits on jackstraw plot
ylim
                  number of interations for jackstraw
iter
                  p-value threshold to call a PC significant
threshold
verbose
                  show progress of jackstraw method
                  show plot
show_plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
```

Details

The Jackstraw method uses the permutationPA function. By systematically permuting genes it identifies robust, and thus significant, PCs.

default save name for saving, don't change, change save_name in save_param

140 loadHMRF

Value

ggplot object for jackstraw method

Examples

```
data(mini_giotto_single_cell)
# jackstraw package is required to run
jackstrawPlot(mini_giotto_single_cell, ncp = 10)
```

loadHMRF

loadHMRF

Description

load previous HMRF

Usage

```
loadHMRF(
  name_used = "test",
  output_folder_used,
  k_used = 10,
  betas_used,
  python_path_used
)
```

Arguments

```
name_used name of HMRF that was run
output_folder_used
output folder that was used
k_used number of HMRF domains that was tested
betas_used betas that were tested
python_path_used
python path that was used
```

Details

Description of HMRF parameters ...

Value

reloads a previous ran HMRF from doHRMF

 ${\tt makeSignMatrixPAGE}$

make Sign Matrix PAGE

Description

Function to convert a list of signature genes (e.g. for cell types or processes) into a binary matrix format that can be used with the PAGE enrichment option. Each cell type or process should have a vector of cell-type or process specific genes. These vectors need to be combined into a list (sign_list). The names of the cell types or processes that are provided in the list need to be given (sign_names).

Usage

```
makeSignMatrixPAGE(sign_names, sign_list)
```

Arguments

```
sign_names vector with names for each provided gene signature sign_list list of genes (signature)
```

Value

matrix

See Also

PAGEEnrich

Examples

```
makeSignMatrixPAGE()
```

 ${\tt make Sign Matrix Rank}$

makeSignMatrixRank

Description

Function to convert a single-cell count matrix and a corresponding single-cell cluster vector into a rank matrix that can be used with the Rank enrichment option.

Usage

```
makeSignMatrixRank(
   sc_matrix,
   sc_cluster_ids,
   ties_method = c("random", "max"),
   gobject = NULL
)
```

mean_giotto

Arguments

sc_matrix matrix of single-cell RNAseq expression data

sc_cluster_ids vector of cluster ids

ties_method how to handle rank ties

gobject if giotto object is given then only genes present in both datasets will be consid-

ered

Value

matrix

See Also

rankEnrich

Examples

makeSignMatrixRank()

mean_giotto

mean_giotto

Description

mean function that works with multiple matrix representations

Usage

```
mean_giotto(x, ...)
```

Arguments

x vector

... additional parameters

Value

numeric

mergeClusters 143

mergeClusters

mergeClusters

Description

Merge selected clusters based on pairwise correlation scores and size of cluster.

Usage

```
mergeClusters(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman"),
  new_cluster_name = "merged_cluster",
  min_cor_score = 0.8,
  max_group_size = 20,
  force_min_group_size = 10,
  max_sim_clusters = 10,
  return_gobject = TRUE,
  verbose = TRUE
)
```

Arguments

```
giotto object
gobject
expression_values
                  expression values to use
cluster_column name of column to use for clusters
                  correlation score to calculate distance
cor
new_cluster_name
                  new name for merged clusters
                 min correlation score to merge pairwise clusters
min_cor_score
max_group_size max cluster size that can be merged
force_min_group_size
                  size of clusters that will be merged with their most similar neighbor(s)
max_sim_clusters
                  maximum number of clusters to potentially merge to reach force_min_group_size
return_gobject return giotto object
                  be verbose
verhose
```

Details

Merge selected clusters based on pairwise correlation scores and size of cluster. To avoid large clusters to merge the max_group_size can be lowered. Small clusters can be forcibly merged with their most similar pairwise cluster by adjusting the force_min_group_size parameter. Clusters smaller than this value will be merged independent on the provided min_cor_score value. The force_min_group_size might not always be reached if clusters have already been merged before A giotto object is returned by default, if FALSE then the merging vector will be returned.

Value

Giotto object

Examples

```
mergeClusters(gobject)
```

mini_giotto_3D

mini Giotto object for spatial single-cell 3D data

Description

Mini Giotto object created from the STARmap data.

Usage

```
data(mini_giotto_3D)
```

Format

An object of class "giotto"; see createGiottoObject.

References

```
Wang et al. (2018) Science (PubMed)
```

Examples

```
data(mini_giotto_3D)
spatPlot3D(mini_giotto_3D, cell_color = 'cell_types', point_size = 5)
```

```
mini_giotto_multi_cell
```

mini Giotto object for spatial multi-cell resolution data

Description

Mini Giotto object created from the Brain Visium 10X data.

Usage

```
data(mini_giotto_multi_cell)
```

Format

An object of class "giotto"; see createGiottoObject.

References

10 Genomics Visium technology (10xgenomics)

mini_giotto_single_cell 145

Examples

Description

Mini Giotto object created from the seqFISH+ data.

Usage

```
data(mini_giotto_single_cell)
```

Format

An object of class "giotto"; see createGiottoObject.

References

```
Eng et al. (2019) Nature (PubMed)
```

Examples

```
data(mini_giotto_single_cell)
spatPlot2D(mini_giotto_single_cell,cell_color = 'cell_types', point_size = 5)
```

normalizeGiotto

normalizeGiotto

Description

fast normalize and/or scale expresion values of Giotto object

Usage

```
normalizeGiotto(
  gobject,
  norm_methods = c("standard", "osmFISH"),
  library_size_norm = TRUE,
  scalefactor = 6000,
  log_norm = TRUE,
  log_offset = 1,
  logbase = 2,
  scale_genes = T,
  scale_cells = T,
  scale_order = c("first_genes", "first_cells"),
  verbose = F
)
```

146 normalizeGiotto

Arguments

gobject giotto object

norm_methods normalization method to use

library_size_norm

normalize cells by library size

scalefactor scale factor to use after library size normalization

log_norm transform values to log-scale

log_offset offset value to add to expression matrix, default = 1
logbase log base to use to log normalize expression values

scale_genes z-score genes over all cells
scale_cells z-score cells over all genes
scale_order order to scale genes and cells

verbose be verbose

Details

Currently there are two 'methods' to normalize your raw counts data.

A. The standard method follows the standard protocol which can be adjusted using the provided parameters and follows the following order:

- 1. Data normalization for total library size and scaling by a custom scale-factor.
- 2. Log transformation of data.
- 3. Z-scoring of data by genes and/or cells.
- B. The normalization method as provided by the osmFISH paper is also implemented:
 - 1. First normalize genes, for each gene divide the counts by the total gene count and multiply by the total number of genes.
 - 2. Next normalize cells, for each cell divide the normalized gene counts by the total counts per cell and multiply by the total number of cells.

This data will be saved in the Giotto slot for custom expression.

Value

giotto object

```
data(mini_giotto_single_cell)
norm_gobject = normalizeGiotto(mini_giotto_single_cell)
```

PAGEEnrich 147

PAGEEnrich

PAGEEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using PAGE.

Usage

```
PAGEEnrich(...)
```

Arguments

... Arguments passed on to runPAGEEnrich

gobject Giotto object

sign_matrix Matrix of signature genes for each cell type / process

expression_values expression values to use

min_overlap_genes minimum number of overlapping genes in sign_matrix required to calculate enrichment

reverse_log_scale reverse expression values from log scale

logbase log base to use if reverse_log_scale = TRUE

output_enrichment how to return enrichment output

p_value calculate p-values (boolean, default = FALSE)

n_times number of permutations to calculate for p_value

max_block number of lines to process together (default = 20e6)

name to give to spatial enrichment results, default = PAGE

verbose be verbose

return_gobject return giotto object

See Also

runPAGEEnrich

pDataDT

pDataDT

Description

show cell metadata

Usage

pDataDT(gobject)

Arguments

gobject

giotto object

148 plotCCcomDotplot

Value

data.table with cell metadata

Examples

```
data(mini_giotto_single_cell) # loads existing Giotto object
pDataDT(mini_giotto_single_cell)
```

plotCCcomDotplot

plot CC com Dot plot

Description

Plots dotplot for ligand-receptor communication scores in cell-cell interactions

Usage

```
plotCCcomDotplot(
  gobject,
  comScores,
  selected_LR = NULL,
  selected_cell_LR = NULL,
  show_LR_names = TRUE,
  show_cell_LR_names = TRUE,
  cluster_on = c("PI", "LR_expr", "log2fc"),
  cor_method = c("pearson", "kendall", "spearman"),
 aggl_method = c("ward.D", "ward.D2", "single", "complete", "average", "mcquitty",
    "median", "centroid"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCCcomDotplot"
```

```
gobject
                  giotto object
comScores
                  communinication scores from exprCellCellcom or spatCellCellcom
selected_LR
                  selected ligand-receptor combinations
selected_cell_LR
                  selected cell-cell combinations for ligand-receptor combinations
show_LR_names
                  show ligand-receptor names
show_cell_LR_names
                  show cell-cell names
                  values to use for clustering of cell-cell and ligand-receptor pairs
cluster_on
cor_method
                  correlation method used for clustering
aggl_method
                  agglomeration method used by hclust
```

plotCCcomHeatmap 149

```
show_plot show plots

return_plot return plotting object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

Examples

```
plotCCcomDotplot(CPGscores)
```

plotCCcomHeatmap plotCCcomHeatmap

Description

Plots heatmap for ligand-receptor communication scores in cell-cell interactions

Usage

```
plotCCcomHeatmap(
  gobject,
  comScores,
  selected_LR = NULL,
  selected_cell_LR = NULL,
  show_LR_names = TRUE,
  show_cell_LR_names = TRUE,
  show = c("PI", "LR_expr", "log2fc"),
cor_method = c("pearson", "kendall", "spearman"),
 aggl_method = c("ward.D", "ward.D2", "single", "complete", "average", "mcquitty",
    "median", "centroid"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCCcomHeatmap"
)
```

```
gobject giotto object

comScores communinication scores from exprCellCellcom or spatCellCellcom

selected_LR selected ligand-receptor combinations

selected_cell_LR

selected cell-cell combinations for ligand-receptor combinations
```

```
show_LR_names
                 show ligand-receptor names
show_cell_LR_names
                 show cell-cell names
                 values to show on heatmap
show
                 correlation method used for clustering
cor_method
aggl_method
                 agglomeration method used by hclust
show_plot
                 show plots
return_plot
                 return plotting object
save_plot
                 directly save the plot [boolean]
                 list of saving parameters from all_plots_save_function
save_param
default_save_name
                 default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

Examples

```
plotCCcomHeatmap(CPGscores)
```

```
plotCellProximityGenes
```

plotCellProximityGenes

Description

Create visualization for cell proximity gene scores

Usage

```
plotCellProximityGenes(
  gobject,
  cpgObject,
  method = c("volcano", "cell_barplot", "cell-cell", "cell_sankey", "heatmap",
    "dotplot"),
  min_cells = 4,
  min_cells_expr = 1,
  min_int_cells = 4,
  min_int_cells_expr = 1,
  min_fdr = 0.1,
  min_spat_diff = 0.2,
  min_log2_fc = 0.2,
  min_zscore = 2,
  zscores_column = c("cell_type", "genes"),
  direction = c("both", "up", "down"),
  cell_color_code = NULL,
  show_plot = NA,
  return_plot = NA,
```

```
save_plot = NA,
save_param = list(),
default_save_name = "plotCellProximityGenes"
)
```

Arguments

```
gobject
                  giotto object
                  cell proximity gene score object
cpgObject
                  plotting method to use
method
                  minimum number of source cell type
min_cells
min_cells_expr minimum expression level for source cell type
min_int_cells
                  minimum number of interacting neighbor cell type
min_int_cells_expr
                  minimum expression level for interacting neighbor cell type
min_fdr
                  minimum adjusted p-value
min_spat_diff
                  minimum absolute spatial expression difference
min_log2_fc
                  minimum log2 fold-change
min_zscore
                  minimum z-score change
zscores_column calculate z-scores over cell types or genes
direction
                  differential expression directions to keep
cell_color_code
                  vector of colors with cell types as names
show_plot
                  show plots
return_plot
                  return plotting object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

plot

```
plotCellProximityGenes(CPGscores)
```

152 plotCombineCCcom

plotCombineCCcom plotCombineCCcom

Description

Create visualization for combined (pairwise) cell proximity gene scores

Usage

```
plotCombineCCcom(
  gobject,
 combCCcom,
  selected_LR = NULL,
  selected_cell_LR = NULL,
 detail_plot = T,
  simple_plot = F,
  simple_plot_facet = c("interaction", "genes"),
  facet_scales = "fixed",
  facet_ncol = length(selected_LR),
  facet_nrow = length(selected_cell_LR),
  colors = c("#9932CC", "#FF8C00"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCombineCCcom"
)
```

Arguments

```
giotto object
gobject
combCCcom
                  combined communcation scores, output from combCCcom()
selected_LR
                  selected ligand-receptor pair
selected_cell_LR
                  selected cell-cell interaction pair for ligand-receptor pair
                  show detailed info in both interacting cell types
detail_plot
simple_plot
                  show a simplified plot
simple_plot_facet
                  facet on interactions or genes with simple plot
facet_scales
                  ggplot facet scales paramter
facet_ncol
                  ggplot facet ncol parameter
facet_nrow
                  ggplot facet nrow parameter
colors
                  vector with two colors to use
show_plot
                  show plots
return_plot
                  return plotting object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
```

default save name for saving, don't change, change save_name in save_param

Value

ggplot

Examples

```
plotCombineCCcom(CPGscores)
```

```
plot {\tt Combine Cell Cell Communication} \\ plot {\tt Combine Cell Cell Communication} \\
```

Description

Create visualization for combined (pairwise) cell proximity gene scores

Usage

```
plotCombineCellCellCommunication(
  gobject,
  combCCcom,
  selected_LR = NULL,
  selected_cell_LR = NULL,
  detail_plot = T,
  simple_plot = F,
  simple_plot_facet = c("interaction", "genes"),
  facet_scales = "fixed",
  facet_ncol = length(selected_LR),
  facet_nrow = length(selected_cell_LR),
  colors = c("#9932CC", "#FF8C00"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCombineCellCellCommunication"
)
```

```
gobject
                  giotto object
combCCcom
                  combined communcation scores, output from combCCcom()
selected_LR
                  selected ligand-receptor pair
selected_cell_LR
                  selected cell-cell interaction pair for ligand-receptor pair
detail_plot
                  show detailed info in both interacting cell types
simple_plot
                  show a simplified plot
simple_plot_facet
                  facet on interactions or genes with simple plot
facet_scales
                  ggplot facet scales paramter
facet_ncol
                  ggplot facet ncol parameter
```

```
facet_nrow ggplot facet nrow parameter

colors vector with two colors to use

show_plot show plots

return_plot return plotting object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

Examples

```
plotCombineCellCellCommunication(CPGscores)
```

```
plot {\tt Combine Cell Proximity Genes} \\ plot {\tt Combine Cell Proximity Genes}
```

Description

Create visualization for combined (pairwise) cell proximity gene scores

Usage

```
plotCombineCellProximityGenes(
  gobject,
  combCpgObject,
  selected_interactions = NULL,
  selected_gene_to_gene = NULL,
  detail_plot = T,
  simple_plot = F,
  simple_plot_facet = c("interaction", "genes"),
  facet_scales = "fixed",
  facet_ncol = length(selected_gene_to_gene),
  facet_nrow = length(selected_interactions),
  colors = c("#9932CC", "#FF8C00"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCombineCPG"
```

plotCombineCPG 155

Arguments

```
gobject
                  giotto object
combCpgObject
                  CPGscores, output from combineCellProximityGenes()
selected_interactions
                  interactions to show
selected_gene_to_gene
                  pairwise gene combinations to show
                  show detailed info in both interacting cell types
detail_plot
simple_plot
                  show a simplified plot
simple_plot_facet
                  facet on interactions or genes with simple plot
facet_scales
                  ggplot facet scales paramter
facet_ncol
                  ggplot facet ncol parameter
facet_nrow
                  ggplot facet nrow parameter
colors
                  vector with two colors to use
show_plot
                  show plots
                  return plotting object
return_plot
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

Examples

 $\verb|plotCombineCellProximityGenes(CPGscores)| \\$

plotCombineCPG plotCombineCPG

Description

Create visualization for combined (pairwise) cell proximity gene scores

Usage

```
plotCombineCPG(
  gobject,
  combCpgObject,
  selected_interactions = NULL,
  selected_gene_to_gene = NULL,
  detail_plot = T,
  simple_plot = F,
  simple_plot_facet = c("interaction", "genes"),
```

156 plotCombineCPG

```
facet_scales = "fixed",
facet_ncol = length(selected_gene_to_gene),
facet_nrow = length(selected_interactions),
colors = c("#9932CC", "#FF8C00"),
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "plotCombineCPG"
)
```

Arguments

```
giotto object
gobject
combCpgObject
                 CPGscores, output from combineCellProximityGenes()
selected_interactions
                 interactions to show
selected_gene_to_gene
                  pairwise gene combinations to show
detail_plot
                  show detailed info in both interacting cell types
simple_plot
                  show a simplified plot
simple_plot_facet
                  facet on interactions or genes with simple plot
facet_scales
                  ggplot facet scales paramter
facet_ncol
                  ggplot facet ncol parameter
facet_nrow
                  ggplot facet nrow parameter
colors
                  vector with two colors to use
show_plot
                  show plots
                  return plotting object
return_plot
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

```
plotCombineCPG(CPGscores)
```

plotCPG 157

plotCPG plotCPG

Description

Create visualization for cell proximity gene scores

Usage

```
plotCPG(
  gobject,
  cpgObject,
  method = c("volcano", "cell_barplot", "cell-cell", "cell_sankey", "heatmap",
    "dotplot"),
  min_cells = 5,
  min_cells_expr = 1,
  min_int_cells = 3,
  min_int_cells_expr = 1,
  min_fdr = 0.05,
  min_spat_diff = 0.2,
  min_log2_fc = 0.2,
  min_zscore = 2,
  zscores_column = c("cell_type", "genes"),
  direction = c("both", "up", "down"),
  cell_color_code = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCPG"
```

```
gobject
                 giotto object
cpgObject
                 cell proximity gene score object
method
                 plotting method to use
min_cells
                 minimum number of source cell type
min_cells_expr minimum expression level for source cell type
                 minimum number of interacting neighbor cell type
min_int_cells
min_int_cells_expr
                 minimum expression level for interacting neighbor cell type
                 minimum adjusted p-value
min_fdr
min_spat_diff
                 minimum absolute spatial expression difference
min_log2_fc
                 minimum log2 fold-change
min_zscore
                 minimum z-score change
zscores_column calculate z-scores over cell types or genes
```

158 plotGiottoImage

direction differential expression directions to keep

cell_color_code

vector of colors with cell types as names

show_plot show plots

return_plot return plotting object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param

Value

plot

Examples

plotCPG(CPGscores)

plotGiottoImage

plotGiottoImage

Description

get plot a giotto image from a giotto object

Usage

```
plotGiottoImage(gobject, image_name)
```

Arguments

gobject giotto object

image_name name of giotto image showGiottoImageNames

Value

plot

```
plotGiottoImage(gobject)
```

plotHeatmap 159

plotHeatmap

plotHeatmap

Description

Creates heatmap for genes and clusters.

Usage

```
plotHeatmap(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  cluster_column = NULL,
  cluster_order = c("size", "correlation", "custom"),
  cluster_custom_order = NULL,
  cluster_color_code = NULL,
  cluster_cor_method = "pearson",
  cluster_hclust_method = "ward.D"
  gene_order = c("correlation", "custom"),
  gene_custom_order = NULL,
  gene_cor_method = "pearson",
  gene_hclust_method = "complete",
  show_values = c("rescaled", "z-scaled", "original"),
  size_vertical_lines = 1.1,
  gradient_colors = c("blue", "yellow", "red"),
  gene_label_selection = NULL,
  axis_text_y_size = NULL,
  legend_nrows = 1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotHeatmap"
)
```

```
gobject giotto object
expression_values
expression values to use
genes genes to use
cluster_column name of column to use for clusters
cluster_order method to determine cluster order
cluster_custom_order
custom order for clusters
cluster_color_code
color code for clusters
cluster_cor_method
method for cluster correlation
```

160 plotHeatmap

```
cluster_hclust_method
                  method for hierarchical clustering of clusters
                  method to determine gene order
gene_order
gene_custom_order
                  custom order for genes
gene_cor_method
                  method for gene correlation
gene_hclust_method
                  method for hierarchical clustering of genes
                  which values to show on heatmap
show_values
size_vertical_lines
                  sizes for vertical lines
gradient_colors
                  colors for heatmap gradient
gene_label_selection
                  subset of genes to show on y-axis
axis_text_y_size
                  size for y-axis text
                  number of rows for the cluster legend
legend_nrows
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name
```

Details

If you want to display many genes there are 2 ways to proceed:

- 1. set axis_text_y_size to a really small value and show all genes
- 2. provide a subset of genes to display to gene_label_selection

Value

ggplot

plotICG 161

plotICG

plotICG

Description

Create barplot to visualize interaction changed genes

Usage

```
plotICG(
   gobject,
   cpgObject,
   source_type,
   source_markers,
   ICG_genes,
   cell_color_code = NULL,
   show_plot = NA,
   return_plot = NA,
   save_plot = NA,
   save_param = list(),
   default_save_name = "plotICG"
)
```

```
gobject
                  giotto object
cpgObject
                  cell proximity gene score object
                  cell type of the source cell
source_type
source_markers markers for the source cell type
                  named character vector of ICG genes
ICG_genes
cell_color_code
                  cell color code for the interacting cell types
show_plot
                  show plots
                  return plotting object
return_plot
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

plot

Examples

```
plotICG(CPGscores)
```

```
plotInteractionChangedGenes
```

plotInteractionChangedGenes

Description

Create barplot to visualize interaction changed genes

Usage

```
plotInteractionChangedGenes(
   gobject,
   cpgObject,
   source_type,
   source_markers,
   ICG_genes,
   cell_color_code = NULL,
   show_plot = NA,
   return_plot = NA,
   save_plot = NA,
   save_param = list(),
   default_save_name = "plotInteractionChangedGenes")
```

```
gobject
                  giotto object
                  cell proximity gene score object
cpgObject
                  cell type of the source cell
source_type
source_markers markers for the source cell type
                  named character vector of ICG genes
ICG_genes
cell_color_code
                  cell color code for the interacting cell types
                  show plots
show_plot
                  return plotting object
return_plot
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

plot

Examples

```
plotInteractionChangedGenes(CPGscores)
```

```
plotMetaDataCellsHeatmap
```

plotMetaDataCellsHeatmap

Description

Creates heatmap for numeric cell metadata within aggregated clusters.

Usage

```
plotMetaDataCellsHeatmap(
  gobject,
  metadata_cols = NULL,
  spat_enr_names = NULL,
  value_cols = NULL,
  first_meta_col = NULL,
  second_meta_col = NULL,
  show_values = c("zscores", "original", "zscores_rescaled"),
  custom_cluster_order = NULL,
  clus_cor_method = "pearson",
  clus_cluster_method = "complete",
  custom_values_order = NULL,
  values_cor_method = "pearson",
  values_cluster_method = "complete",
  midpoint = 0,
  x_{text_size} = 8,
  x_{text_angle} = 45,
  y_{text_size} = 8,
  strip_text_size = 8,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotMetaDataCellsHeatmap"
)
```

```
gobject giotto object
metadata_cols annotation columns found in pDataDT(gobject)
spat_enr_names spatial enrichment results to include
value_cols value columns to use
first_meta_col if more than 1 metadata column, select the x-axis factor
```

second_meta_col

if more than 1 metadata column, select the facetting factor

show_values which values to show on heatmap

custom_cluster_order

custom cluster order (default = NULL)

clus_cor_method

correlation method for clusters

clus_cluster_method

hierarchical cluster method for the clusters

custom_values_order

custom values order (default = NULL)

values_cor_method

correlation method for values

values_cluster_method

hierarchical cluster method for the values

midpoint midpoint of show_values

x_text_size size of x-axis text

x_text_angle angle of x-axis text

y_text_size size of y-axis text

strip_text_size

size of strip text

 $\verb|show_plot| & show plot|$

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters, see showSaveParameters

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

Creates heatmap for the average values of selected value columns in the different annotation groups.

Value

ggplot or data.table

See Also

plotMetaDataHeatmap for gene expression instead of numeric cell annotation data.

plotMetaDataHeatmap 165

plotMetaDataHeatmap

Description

Creates heatmap for genes within aggregated clusters.

Usage

```
plotMetaDataHeatmap(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  metadata_cols = NULL,
  selected_genes = NULL,
  first_meta_col = NULL,
  second_meta_col = NULL,
  show_values = c("zscores", "original", "zscores_rescaled"),
  custom_cluster_order = NULL,
  clus_cor_method = "pearson",
  clus_cluster_method = "complete",
  custom_gene_order = NULL,
  gene_cor_method = "pearson",
  gene_cluster_method = "complete",
  gradient_color = c("blue", "white", "red"),
  gradient_midpoint = 0,
  gradient_limits = NULL,
  x_{text_size} = 10,
  x_{text_angle} = 45,
  y_{text_size} = 10,
  strip_text_size = 8,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotMetaDataHeatmap"
```

```
clus_cor_method
                  correlation method for clusters
clus_cluster_method
                  hierarchical cluster method for the clusters
custom_gene_order
                  custom gene order (default = NULL)
gene_cor_method
                  correlation method for genes
gene_cluster_method
                  hierarchical cluster method for the genes
gradient_color vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
x_text_size
                  size of x-axis text
x_text_angle
                  angle of x-axis text
y_text_size
                  size of y-axis text
strip_text_size
                  size of strip text
show_plot
                  show plot
                  return ggplot object
return_plot
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name
```

Details

Creates heatmap for the average expression of selected genes in the different annotation/cluster groups. Calculation of cluster or gene order is done on the provided expression values, but visualization is by default on the z-scores. Other options are the original values or z-scores rescaled per gene (-1 to 1).

Value

ggplot or data.table

See Also

plotMetaDataCellsHeatmap for numeric cell annotation instead of gene expression.

```
## Not run:
data(mini_giotto_single_cell)

# get all genes
all_genes = slot(mini_giotto_single_cell, 'gene_ID')
```

plotPCA 167

plotPCA

plotPCA

Description

Short wrapper for PCA visualization

Usage

```
plotPCA(gobject, dim_reduction_name = "pca", default_save_name = "PCA", ...)
```

```
giotto object
gobject
dim_reduction_name
                 name of PCA
default_save_name
                 default save name of PCA plot
                 Arguments passed on to dimPlot2D
. . .
                 group_by create multiple plots based on cell annotation column
                 group_by_subset subset the group_by factor column
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 spat_enr_names names of spatial enrichment results to include
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
                 gradient_limits vector with lower and upper limits
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                 select_cells select subset of cells based on cell IDs
                 show_other_cells display not selected cells
```

168 plotPCA

```
other_cell_color color of not selected cells
other_point_size size of not selected cells
show_cluster_center plot center of selected clusters
show_center_label plot label of selected clusters
center_point_size size of center points
center_point_border_col border color of center points
center_point_border_stroke border stroke size of center points
label_size size of labels
label_fontface font of labels
edge_alpha column to use for alpha of the edges
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of point
point_border_col color of border around points
point_border_stroke stroke size of border around points
title title for plot, defaults to cell color parameter
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotPCA_3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

```
plotPCA(gobject)
```

plotPCA_2D 169

plotPCA_2D

plotPCA_2D

Description

Short wrapper for PCA visualization

Usage

```
plotPCA_2D(
  gobject,
  dim_reduction_name = "pca",
  default_save_name = "PCA_2D",
)
```

```
giotto object
gobject
dim_reduction_name
                 name of PCA
default_save_name
                 default save name of PCA plot
                 Arguments passed on to dimPlot2D
                 group_by create multiple plots based on cell annotation column
                 group_by_subset subset the group_by factor column
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 spat_enr_names names of spatial enrichment results to include
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
                 gradient_limits vector with lower and upper limits
                  select_cell_groups select subset of cells/clusters based on cell_color param-
                      eter
                 select_cells select subset of cells based on cell IDs
                 show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                 other_point_size size of not selected cells
                 show_cluster_center plot center of selected clusters
                 show_center_label plot label of selected clusters
                 center_point_size size of center points
```

plotPCA_2D

```
center_point_border_col border color of center points
center_point_border_stroke border stroke size of center points
label_size size of labels
label_fontface font of labels
edge_alpha column to use for alpha of the edges
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of point
point_border_col color of border around points
point_border_stroke stroke size of border around points
title title for plot, defaults to cell_color parameter
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotPCA_3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

```
plotPCA_2D(gobject)
```

plotPCA_3D 171

plotPCA_3D plotPCA_3D

Description

Visualize cells according to 3D PCA dimension reduction

Usage

```
plotPCA_3D(
  gobject,
  dim_reduction_name = "pca",
  default_save_name = "PCA_3D",
)
```

```
giotto object
gobject
dim_reduction_name
                 name of PCA
default_save_name
                 default save name of PCA plot
                 Arguments passed on to dimPlot3D
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 dim3_to_use dimension to use on z-axis
                 spat_enr_names names of spatial enrichment results to include
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                 select_cells select subset of cells based on cell IDs
                 show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                 other_point_size size of not selected cells
                 show_cluster_center plot center of selected clusters
                 show_center_label plot label of selected clusters
                 center_point_size size of center points
                 label_size size of labels
                 edge_alpha column to use for alpha of the edges
                 point_size size of point (cell)
                 show_plot show plot
```

172 plotRankSpatvsExpr

```
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters.

Value

plotly

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

Examples

```
plotPCA_3D(gobject)
```

```
plotRankSpatvsExpr \\ plotRankSpatvsExpr
```

Description

Plots dotplot to compare ligand-receptor rankings from spatial and expression information

Usage

```
plotRankSpatvsExpr(
  gobject,
  combCC,
  expr_rnk_column = "LR_expr_rnk",
  spat_rnk_column = "LR_spat_rnk",
  midpoint = 10,
  size_range = c(0.01, 1.5),
  xlims = NULL,
  ylims = NULL,
  selected_ranks = c(1, 10, 20),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotRankSpatvsExpr")
```

plotRecovery 173

Arguments

```
gobject
                  giotto object
combCC
                  combined communinication scores from combCCcom
expr_rnk_column
                  column with expression rank information to use
spat_rnk_column
                  column with spatial rank information to use
                  midpoint of colors
midpoint
                  size ranges of dotplot
size_range
xlims
                  x-limits, numerical vector of 2
                  y-limits, numerical vector of 2
ylims
selected_ranks numerical vector, will be used to print out the percentage of top spatial ranks are
                  recovered
                  show plots
show_plot
                  return plotting object
return_plot
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

Examples

```
plotRankSpatvsExpr(CPGscores)
```

plotRecovery plotRecovery

Description

Plots recovery plot to compare ligand-receptor rankings from spatial and expression information

Usage

```
plotRecovery(
  gobject,
  combCC,
  expr_rnk_column = "exprPI_rnk",
  spat_rnk_column = "spatPI_rnk",
  ground_truth = c("spatial", "expression"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotRecovery"
)
```

174 plotRecovery_sub

Arguments

gobject giotto object

combCC combined communinication scores from combCCcom

expr_rnk_column

column with expression rank information to use

spat_rnk_column

column with spatial rank information to use

ground_truth what to consider as ground truth (default: spatial)

show_plot show plots

return_plot return plotting object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param

Value

ggplot

Examples

plotRecovery(CPGscores)

plotRecovery_sub plotRecovery_sub

Description

Plots recovery plot to compare ligand-receptor rankings from spatial and expression information

Usage

```
plotRecovery_sub(combCC, first_col = "LR_expr_rnk", second_col = "LR_spat_rnk")
```

Arguments

combCC combined communinication scores from combCCcom

first_col first column to use second_col second column to use

```
plotRecovery_sub(CPGscores)
```

```
plot Stat Delaunay Network \\ plot Stat Delaunay Network
```

Description

Plots network statistics for a Delaunay network..

Usage

```
plotStatDelaunayNetwork(
  gobject,
  method = c("deldir", "delaunayn_geometry", "RTriangle"),
  dimensions = "all",
  maximum_distance = "auto",
  minimum_k = 0,
  options = "Pp",
  Y = TRUE,
  j = TRUE,
  S = 0,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotStatDelaunayNetwork",
)
```

gobject	giotto object
method	package to use to create a Delaunay network
dimensions	which spatial dimensions to use (maximum 2 dimensions)
maximum_distance	
	distance cuttof for Delaunay neighbors to consider
minimum_k	minimum neigbhours if maximum_distance != NULL
options	(geometry) String containing extra control options for the underlying Qhull command; see the Qhull documentation (/doc/qhull/html/qdelaun.html) for the available options. (default = 'Pp', do not report precision problems)
Υ	(RTriangle) If TRUE prohibits the insertion of Steiner points on the mesh boundary.
j	(RTriangle) If TRUE jettisons vertices that are not part of the final triangulation from the output.
S	(RTriangle) Specifies the maximum number of added Steiner points.
show_plot	show plots
return_plot	return ggplot object
save_plot	directly save the plot [boolean]

176 plotTSNE

```
save_param list of saving parameters, see showSaveParameters

default_save_name

default save name for saving, don't change, change save_name in save_param

Other parameters
```

Value

giotto object with updated spatial network slot

Examples

```
plotStatDelaunayNetwork(gobject)
```

plotTSNE

plotTSNE

Description

Short wrapper for tSNE visualization

Usage

```
plotTSNE(gobject, dim_reduction_name = "tsne", default_save_name = "tSNE", ...)
```

```
gobject
                 giotto object
dim_reduction_name
                 name of TSNE
default_save_name
                 default save name of TSNE plot
                 Arguments passed on to dimPlot2D
                 group_by create multiple plots based on cell annotation column
                 group_by_subset subset the group by factor column
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 spat_enr_names names of spatial enrichment results to include
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
                 gradient_limits vector with lower and upper limits
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                      eter
```

plotTSNE 177

```
select_cells select subset of cells based on cell IDs
show_other_cells display not selected cells
other_cell_color color of not selected cells
other_point_size size of not selected cells
show_cluster_center plot center of selected clusters
show_center_label plot label of selected clusters
center_point_size size of center points
center_point_border_col border color of center points
center_point_border_stroke border stroke size of center points
label_size size of labels
label_fontface font of labels
edge_alpha column to use for alpha of the edges
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of point
point_border_col color of border around points
point_border_stroke stroke size of border around points
title title for plot, defaults to cell_color parameter
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotTSNE_3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

```
plotTSNE(gobject)
```

178 plotTSNE_2D

plotTSNE_2D

plotTSNE_2D

Description

Short wrapper for tSNE visualization

Usage

```
plotTSNE_2D(
  gobject,
  dim_reduction_name = "tsne",
  default_save_name = "tSNE_2D",
  ...
)
```

```
giotto object
gobject
dim_reduction_name
                 name of TSNE
default_save_name
                 default save name of TSNE plot
                 Arguments passed on to dimPlot2D
                 group_by create multiple plots based on cell annotation column
                 group_by_subset subset the group_by factor column
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 spat_enr_names names of spatial enrichment results to include
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
                 gradient_limits vector with lower and upper limits
                  select_cell_groups select subset of cells/clusters based on cell_color param-
                      eter
                 select_cells select subset of cells based on cell IDs
                 show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                 other_point_size size of not selected cells
                 show_cluster_center plot center of selected clusters
                 show_center_label plot label of selected clusters
                 center_point_size size of center points
```

plotTSNE_2D 179

```
center_point_border_col border color of center points
center_point_border_stroke border stroke size of center points
label_size size of labels
label_fontface font of labels
edge_alpha column to use for alpha of the edges
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of point
point_border_col color of border around points
point_border_stroke stroke size of border around points
title title for plot, defaults to cell_color parameter
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotTSNE_3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

```
plotTSNE_2D(gobject)
```

180 plotTSNE_3D

plotTSNE_3D

plotTSNE_3D

Description

Visualize cells according to dimension reduction coordinates

Usage

```
plotTSNE_3D(
  gobject,
  dim_reduction_name = "tsne"
  default_save_name = "TSNE_3D",
)
```

```
giotto object
gobject
dim_reduction_name
                 name of TSNE
default_save_name
                 default save name of TSNE plot
                 Arguments passed on to dimPlot3D
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 dim3_to_use dimension to use on z-axis
                 spat_enr_names names of spatial enrichment results to include
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                 select_cells select subset of cells based on cell IDs
                 show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                 other_point_size size of not selected cells
                 show_cluster_center plot center of selected clusters
                 show_center_label plot label of selected clusters
                 center_point_size size of center points
                 label_size size of labels
                 edge_alpha column to use for alpha of the edges
                 point_size size of point (cell)
                 show_plot show plot
```

plotUMAP 181

```
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters.

Value

plotly

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

Examples

```
plotTSNE_3D(gobject)
```

plotUMAP

plotUMAP

Description

Short wrapper for UMAP visualization

Usage

```
plotUMAP(gobject, dim_reduction_name = "umap", default_save_name = "UMAP", ...)
```

Arguments

```
giotto object
gobject
dim_reduction_name
                 name of UMAP
default_save_name
                 default save name of UMAP plot
                 Arguments passed on to dimPlot2D
                 group_by create multiple plots based on cell annotation column
                 group_by_subset subset the group_by factor column
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 spat_enr_names names of spatial enrichment results to include
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
```

182 plotUMAP

```
color_as_factor convert color column to factor
cell_color_code named vector with colors
cell_color_gradient vector with 3 colors for numeric data
gradient_midpoint midpoint for color gradient
gradient_limits vector with lower and upper limits
select_cell_groups select subset of cells/clusters based on cell_color param-
select_cells select subset of cells based on cell IDs
show_other_cells display not selected cells
other_cell_color color of not selected cells
other_point_size size of not selected cells
show_cluster_center plot center of selected clusters
show_center_label plot label of selected clusters
center_point_size size of center points
center_point_border_col border color of center points
center_point_border_stroke border stroke size of center points
label_size size of labels
label_fontface font of labels
edge_alpha column to use for alpha of the edges
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of point
point_border_col color of border around points
point_border_stroke stroke size of border around points
title title for plot, defaults to cell_color parameter
show_legend show legend
legend_text_size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotUMAP_3D

Value

ggplot

plotUMAP_2D 183

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D()
```

Examples

```
plotUMAP(gobject)
```

plotUMAP_2D

plotUMAP_2D

Description

Short wrapper for UMAP visualization

Usage

```
plotUMAP_2D(
  gobject,
  dim_reduction_name = "umap",
  default_save_name = "UMAP_2D",
   ...
)
```

Arguments

```
gobject
                 giotto object
dim_reduction_name
                 name of UMAP
default_save_name
                 default save name of UMAP plot
                 Arguments passed on to dimPlot2D
. . .
                 group_by create multiple plots based on cell annotation column
                 group_by_subset subset the group_by factor column
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 spat_enr_names names of spatial enrichment results to include
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
                 gradient_limits vector with lower and upper limits
                 select_cell_groups select subset of cells/clusters based on cell_color param-
```

184 plotUMAP_2D

```
select_cells select subset of cells based on cell IDs
show_other_cells display not selected cells
other_cell_color color of not selected cells
other_point_size size of not selected cells
show_cluster_center plot center of selected clusters
show_center_label plot label of selected clusters
center_point_size size of center points
center_point_border_col border color of center points
center_point_border_stroke border stroke size of center points
label_size size of labels
label_fontface font of labels
edge_alpha column to use for alpha of the edges
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of point
point_border_col color of border around points
point_border_stroke stroke size of border around points
title title for plot, defaults to cell color parameter
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotUMAP_3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotTSNE(), plotUMAP_3D(), plotUMAP()
```

Examples

```
plotUMAP_2D(gobject)
```

plotUMAP_3D 185

plotUMAP_3D plotUMAP_3D

Description

Visualize cells according to dimension reduction coordinates

Usage

```
plotUMAP_3D(
  gobject,
  dim_reduction_name = "umap"
  default_save_name = "UMAP_3D",
)
```

Arguments

```
giotto object
gobject
dim_reduction_name
                 name of UMAP
default_save_name
                 default save name of UMAP plot
                 Arguments passed on to dimPlot3D
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 dim3_to_use dimension to use on z-axis
                 spat_enr_names names of spatial enrichment results to include
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                 select cells select subset of cells based on cell IDs
                 show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                 other_point_size size of not selected cells
                 show_cluster_center plot center of selected clusters
                 show_center_label plot label of selected clusters
                 center_point_size size of center points
                 label_size size of labels
                 edge_alpha column to use for alpha of the edges
                 point_size size of point (cell)
                 show_plot show plot
```

print.giotto

```
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters.

Value

plotly

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP()
```

Examples

```
plotUMAP_3D(gobject)
```

print.giotto

Prints giotto object.

Description

Prints giotto object

Usage

```
## S3 method for class 'giotto'
print(object, nr_genes = 5, nr_cells = 5)
```

Arguments

object giotto object

nr_genes number of genes (rows) to print
nr_cells number of cells (columns) to print

rankEnrich 187

rankEnrich

rankEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using a rank based approach.

Usage

```
rankEnrich(...)
```

Arguments

... Arguments passed on to runRankEnrich

gobject Giotto object sign_matrix Matrix of signature genes for each cell type / process expression_values expression values to use reverse_log_scale reverse expression values from log scale logbase log base to use if reverse_log_scale = TRUE output_enrichment how to return enrichment output ties_method how to handle rank ties p_value calculate p-values (boolean, default = FALSE) n_times number of permutations to calculate for p_value rbp_p fractional binarization threshold (default = 0.99) num_agg number of top genes to aggregate (default = 100) name to give to spatial enrichment results, default = rank return_gobject return giotto object

See Also

runRankEnrich

rank Spatial Cor Groups rank Spatial Cor Groups

Description

Rank spatial correlated clusters according to correlation structure

188 readExprMatrix

Usage

```
rankSpatialCorGroups(
  gobject,
  spatCorObject,
  use_clus_name = NULL,
  show_plot = NA,
  return_plot = FALSE,
  save_plot = NA,
  save_param = list(),
  default_save_name = "rankSpatialCorGroups")
```

Arguments

gobject giotto object
spatCorObject spatial correlation object
use_clus_name name of clusters to visualize (from clusterSpatialCorGenes())
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name

default save name for saving, don't change, change save_name in save_param

Value

data.table with positive (within group) and negative (outside group) scores

Examples

```
rankSpatialCorGroups(gobject)
```

readExprMatrix readExprMatrix

Description

Function to read an expression matrix into a sparse matrix.

Usage

```
readExprMatrix(path, cores = NA, transpose = FALSE)
```

Arguments

path path to the expression matrix
cores number of cores to use
transpose transpose matrix

readGiottoInstructions 189

Details

The expression matrix needs to have both unique column names and row names

Value

sparse matrix

Examples

```
readExprMatrix()
```

readGiottoInstructions

readGiottoInstrunctions

Description

Retrieves the instruction associated with the provided parameter

Usage

```
readGiottoInstructions(giotto_instructions, param = NULL)
```

Arguments

giotto_instructions

giotto object or result from createGiottoInstructions()

param

parameter to retrieve

Value

specific parameter

Examples

readGiottoInstrunctions()

 ${\tt removeCellAnnotation} \quad \textit{removeCellAnnotation}$

Description

removes cell annotation of giotto object

Usage

```
removeCellAnnotation(gobject, columns = NULL, return_gobject = TRUE)
```

190 removeGeneAnnotation

Arguments

gobject giotto object

columns names of columns to remove

return_gobject boolean: return giotto object (default = TRUE)

Details

```
if return_gobject = FALSE, it will return the cell metadata
```

Value

giotto object

Examples

removeGeneAnnotation removeGeneAnnotation

Description

removes gene annotation of giotto object

Usage

```
removeGeneAnnotation(gobject, columns = NULL, return_gobject = TRUE)
```

Arguments

gobject giotto object

columns names of columns to remove

return_gobject boolean: return giotto object (default = TRUE)

Details

```
if return_gobject = FALSE, it will return the gene metadata
```

Value

giotto object

removeGiottoEnvironment 191

Examples

removeGiottoEnvironment

removeGiottoEnvironment

Description

removeGiottoEnvironment

Usage

removeGiottoEnvironment()

Details

Removes a previously installed giotto environment. See installGiottoEnvironment.

```
{\tt replaceGiottoInstructions}
```

replace Giot to Instructions

Description

Function to replace all instructions from giotto object

Usage

```
replaceGiottoInstructions(gobject, instructions = NULL)
```

Arguments

gobject giotto object

instructions new instructions (e.g. result from createGiottoInstructions)

Value

giotto object with replaces instructions

Examples

```
replaceGiottoInstructions()
```

rowSums_giotto

rowMeans_giotto

rowMeans_giotto

Description

rowMeans function that works with multiple matrix representations

Usage

```
rowMeans_giotto(mymatrix)
```

Arguments

mymatrix

matrix object

Value

numeric vector

rowSums_giotto

rowSums_giotto

Description

rowSums function that works with multiple matrix representations

Usage

```
rowSums_giotto(mymatrix)
```

Arguments

mymatrix

matrix object

Value

numeric vector

runDWLSDeconv 193

runDWLSDeconv

runDWLSDeconv

Description

Function to perform DWLS deconvolution based on single cell expression data

Usage

```
runDWLSDeconv(
  gobject,
  expression_values = c("normalized"),
  logbase = 2,
  cluster_column = "leiden_clus",
  sign_matrix,
  n_cell = 50,
  cutoff = 2,
  name = NULL,
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use

logbase base used for log normalization
cluster_column name of cluster column
sign_matrix sig matrix for deconvolution
n_cell number of cells per spot
cutoff cut off (default = 2)
name name to give to spatial deconvolution results, default = DWLS
```

Value

giotto object or deconvolution results

return_gobject return giotto object

```
runHyperGeometricEnrich
```

runHyperGeometricEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using a hypergeometric test.

194 runPAGEEnrich

Usage

```
runHyperGeometricEnrich(
  gobject,
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  top_percentage = 5,
  output_enrichment = c("original", "zscore"),
  p_value = FALSE,
  name = NULL,
  return_gobject = TRUE
)
```

Arguments

gobject Giotto object sign_matrix Matrix of signature genes for each cell type / process expression_values expression values to use reverse_log_scale reverse expression values from log scale log base to use if reverse_log_scale = TRUE logbase top_percentage percentage of cells that will be considered to have gene expression with matrix binarization output_enrichment how to return enrichment output calculate p-values (boolean, default = FALSE) p_value to give to spatial enrichment results, default = rank name return_gobject return giotto object

Details

The enrichment score is calculated based on the p-value from the hypergeometric test, -log10(p-value).

Value

data.table with enrichment results

runPAGEEnrich runPAGEEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using PAGE.

runPAGEEnrich 195

Usage

```
runPAGEEnrich(
  gobject,
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  min_overlap_genes = 5,
  reverse_log_scale = TRUE,
  logbase = 2,
  output_enrichment = c("original", "zscore"),
  p_value = FALSE,
  n_times = 1000,
  max_block = 2e+07,
  name = NULL,
  verbose = TRUE,
  return_gobject = TRUE
)
```

Arguments

```
Giotto object
gobject
                  Matrix of signature genes for each cell type / process
sign_matrix
expression_values
                  expression values to use
min_overlap_genes
                  minimum number of overlapping genes in sign_matrix required to calculate en-
                  richment
reverse_log_scale
                  reverse expression values from log scale
logbase
                  log base to use if reverse_log_scale = TRUE
output_enrichment
                  how to return enrichment output
p_value
                  calculate p-values (boolean, default = FALSE)
n_times
                  number of permutations to calculate for p_value
                  number of lines to process together (default = 20e6)
max_block
name
                  to give to spatial enrichment results, default = PAGE
                  be verbose
verbose
return_gobject return giotto object
```

Details

sign_matrix: a binary matrix with genes as row names and cell-types as column names. Alternatively a list of signature genes can be provided to makeSignMatrixPAGE, which will create the matrix for you.

The enrichment Z score is calculated by using method (PAGE) from Kim SY et al., BMC bioinformatics, 2005 as $Z=((Sm^{\circ}mu)*m^{(1/2)})/delta$. For each gene in each spot, mu is the fold change values versus the mean expression and delta is the standard deviation. Sm is the mean fold change value of a specific marker gene set and m is the size of a given marker gene set.

Value

data.table with enrichment results

See Also

make Sign Matrix PAGE

runPAGEEnrich_OLD

runPAGEEnrich_OLD

Description

Function to calculate gene signature enrichment scores per spatial position using PAGE.

Usage

```
runPAGEEnrich_OLD(
  gobject,
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  output_enrichment = c("original", "zscore"),
  p_value = FALSE,
  n_times = 1000,
  name = NULL,
  return_gobject = TRUE
)
```

Arguments

```
gobject
                  Giotto object
sign_matrix
                  Matrix of signature genes for each cell type / process
expression_values
                  expression values to use
reverse_log_scale
                  reverse expression values from log scale
                  log base to use if reverse_log_scale = TRUE
logbase
output_enrichment
                  how to return enrichment output
                  calculate p-values (boolean, default = FALSE)
p_value
                  number of permutations to calculate for p_value
n_times
                  to give to spatial enrichment results, default = PAGE
name
return_gobject return giotto object
```

runPatternSimulation 197

Details

sign_matrix: a binary matrix with genes as row names and cell-types as column names. Alternatively a list of signature genes can be provided to makeSignMatrixPAGE, which will create the matrix for you.

The enrichment Z score is calculated by using method (PAGE) from Kim SY et al., BMC bioinformatics, 2005 as $Z=((Sm\ mu)*m^(1/2))/delta$. For each gene in each spot, mu is the fold change values versus the mean expression and delta is the standard deviation. Sm is the mean fold change value of a specific marker gene set and m is the size of a given marker gene set.

Value

data.table with enrichment results

See Also

makeSignMatrixPAGE

runPatternSimulation runPatternSimulation

Description

Creates a known spatial pattern for selected genes one-by-one and runs the different spatial gene detection tests

Usage

```
runPatternSimulation(
 gobject,
 pattern_name = "pattern",
  pattern_cell_ids = NULL,
  gene_names = NULL,
  spatial\_probs = c(0.5, 1),
  reps = 2,
  spatial_network_name = "kNN_network",
  spat_methods = c("binSpect_single", "binSpect_multi", "spatialDE", "spark",
    "silhouetteRank"),
  spat_methods_params = list(NA, NA, NA, NA, NA),
 spat_methods_names = c("binSpect_single", "binSpect_multi", "spatialDE", "spark",
    "silhouetteRank"),
  save_plot = T,
  save_raw = T,
  save_norm = T,
  save_dir = "~",
 max_col = 4,
 height = 7,
 width = 7,
 run_simulations = TRUE,
```

198 runPCA

Arguments

gobject giotto object

pattern_name name of spatial pattern

pattern_cell_ids

cell ids that make up the spatial pattern

gene_names selected genes

spatial_probs probabilities to test for a high expressing gene value to be part of the spatial

pattern

reps number of random simulation repetitions

spatial_network_name

which spatial network to use for binSpectSingle

spat_methods vector of spatial methods to test

spat_methods_params

list of parameters list for each element in the vector of spatial methods to test

spat_methods_names

name for each element in the vector of spatial elements to test

save_plot save intermediate random simulation plots or not save_raw save the raw expression matrix of the simulation

save_norm save the normalized expression matrix of the simulation

save_dir directory to save results to

max_col maximum number of columns for final plots

height height of final plots width width of final plots

run_simulations

run simulations (default = TRUE)

... additional parameters for spatial gene detection tests

Value

data.table with results

Examples

runPatternSimulation(gobject)

runPCA runPCA

Description

runs a Principal Component Analysis

runPCA 199

Usage

```
runPCA(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"),
  name = "pca",
  genes_to_use = "hvg",
 return_gobject = TRUE,
  center = TRUE,
  scale_unit = TRUE,
 ncp = 100,
 method = c("irlba", "factominer"),
 rev = FALSE,
  set_seed = TRUE,
  seed_number = 1234,
 verbose = TRUE,
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
reduction
                  cells or genes
                  arbitrary name for PCA run
name
                  subset of genes to use for PCA
genes_to_use
return_gobject boolean: return giotto object (default = TRUE)
                  center data first (default = TRUE)
center
scale_unit
                  scale features before PCA (default = TRUE)
                  number of principal components to calculate
ncp
                  which implementation to use
method
                  do a reverse PCA
rev
set_seed
                  use of seed
seed_number
                  seed number to use
verbose
                  verbosity of the function
                  additional parameters for PCA (see details)
```

Details

See prcomp_irlba and PCA for more information about other parameters.

- genes_to_use = NULL: will use all genes from the selected matrix
- genes_to_use = <hvg name>: can be used to select a column name of highly variable genes, created by (see calculateHVG)
- genes_to_use = c('geneA', 'geneB', ...): will use all manually provided genes

200 runRankEnrich

Value

giotto object with updated PCA dimension recuction

Examples

runRankEnrich

runRankEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using a rank based approach.

Usage

```
runRankEnrich(
  gobject,
  sign_matrix,
  expression_values = c("normalized", "raw", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  output_enrichment = c("original", "zscore"),
  ties_method = c("random", "max"),
  p_value = FALSE,
  n_times = 1000,
  rbp_p = 0.99,
  num_agg = 100,
  name = NULL,
  return_gobject = TRUE
)
```

Arguments

runSpatialDeconv 201

output_enrichment

how to return enrichment output

ties_method how to handle rank ties

 $\begin{array}{lll} \textbf{p_value} & calculate \ \textbf{p_values} \ (boolean, default = FALSE) \\ \textbf{n_times} & number \ of \ permutations \ to \ calculate \ for \ \textbf{p_value} \\ \textbf{rbp_p} & fractional \ binarization \ threshold \ (default = 0.99) \\ \textbf{num_agg} & number \ of \ top \ genes \ to \ aggregate \ (default = 100) \\ \textbf{name} & to \ give \ to \ spatial \ enrichment \ results, \ default = rank \\ \end{array}$

return_gobject return giotto object

Details

sign_matrix: a rank-fold matrix with genes as row names and cell-types as column names. Alternatively a scRNA-seq matrix and vector with clusters can be provided to makeSignMatrixRank, which will create the matrix for you.

First a new rank is calculated as $R = (R1*R2)^{\Lambda}(1/2)$, where R1 is the rank of fold-change for each gene in each spot and R2 is the rank of each marker in each cell type. The Rank-Biased Precision is then calculated as: RBP = $(1 - 0.99) * (0.99)^{\Lambda}(R - 1)$ and the final enrichment score is then calculated as the sum of top 100 RBPs.

Value

data.table with enrichment results

See Also

 ${\it make Sign Matrix Rank}$

runSpatialDeconv

runSpatialDeconv

Description

Function to perform deconvolution based on single cell expression data

Usage

```
runSpatialDeconv(
  gobject,
  deconv_method = c("DWLS"),
  expression_values = c("normalized"),
  logbase = 2,
  cluster_column = "leiden_clus",
  sign_matrix,
  n_cell = 50,
  cutoff = 2,
  name = NULL,
  return_gobject = TRUE
)
```

202 runSpatialEnrich

Arguments

```
gobject
                  giotto object
                 method to use for deconvolution
deconv_method
expression_values
                  expression values to use
logbase
                  base used for log normalization
cluster_column name of cluster column
sign_matrix
                  signature matrix for deconvolution
n_cell
                  number of cells per spot
                  cut off (default = 2)
cutoff
                  name to give to spatial deconvolution results
name
return_gobject return giotto object
```

Value

giotto object or deconvolution results

runSpatialEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using an enrichment test.

Usage

```
runSpatialEnrich(
 gobject,
 enrich_method = c("PAGE", "rank", "hypergeometric"),
 sign_matrix,
 expression_values = c("normalized", "scaled", "custom"),
 min_overlap_genes = 5,
 reverse_log_scale = TRUE,
 logbase = 2,
 p_value = FALSE,
 n_{times} = 1000,
 max_block = 2e+07,
  top_percentage = 5,
 output_enrichment = c("original", "zscore"),
 name = NULL,
 verbose = TRUE,
  return_gobject = TRUE
```

runtSNE 203

Arguments

gobject Giotto object

enrich_method method for gene signature enrichment calculation

sign_matrix Matrix of signature genes for each cell type / process

expression_values

expression values to use

min_overlap_genes

minimum number of overlapping genes in sign_matrix required to calculate en-

richment (PAGE)

reverse_log_scale

reverse expression values from log scale

logbase log base to use if reverse_log_scale = TRUE

p_value calculate p-value (default = FALSE)

n_times (page/rank) number of permutation iterations to calculate p-value

max_block number of lines to process together (default = 20e6)

top_percentage (hyper) percentage of cells that will be considered to have gene expression with

matrix binarization

output_enrichment

how to return enrichment output

name to give to spatial enrichment results, default = PAGE

verbose be verbose

return_gobject return giotto object

Details

For details see the individual functions:

PAGE: runPAGEEnrichRank: runRankEnrich

• Hypergeometric: runHyperGeometricEnrich

Value

Giotto object or enrichment results if return_gobject = FALSE

runtSNE runtSNE

Description

run tSNE

204 runtSNE

Usage

```
runtSNE(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"),
 dim_reduction_to_use = "pca",
 dim_reduction_name = "pca",
 dimensions_to_use = 1:10,
 name = "tsne",
 genes_to_use = NULL,
 return_gobject = TRUE,
 dims = 2,
 perplexity = 30,
  theta = 0.5,
 do_PCA_first = F,
  set\_seed = T,
  seed_number = 1234,
 verbose = TRUE,
)
```

Arguments

. . .

```
gobject
                 giotto object
expression_values
                 expression values to use
reduction
                 cells or genes
dim_reduction_to_use
                 use another dimension reduction set as input
dim_reduction_name
                 name of dimension reduction set to use
dimensions_to_use
                 number of dimensions to use as input
                 arbitrary name for tSNE run
name
                 if dim_reduction_to_use = NULL, which genes to use
genes_to_use
return_gobject boolean: return giotto object (default = TRUE)
dims
                 tSNE param: number of dimensions to return
                 tSNE param: perplexity
perplexity
                 tSNE param: theta
theta
                 tSNE param: do PCA before tSNE (default = FALSE)
do_PCA_first
set_seed
                 use of seed
seed_number
                 seed number to use
                 verbosity of the function
verbose
                 additional tSNE parameters
```

runUMAP 205

Details

See Rtsne for more information about these and other parameters.

- Input for tSNE dimension reduction can be another dimension reduction (default = 'pca')
- To use gene expression as input set dim_reduction_to_use = NULL
- If dim_reduction_to_use = NULL, genes_to_use can be used to select a column name of highly variable genes (see calculateHVG) or simply provide a vector of genes
- multiple tSNE results can be stored by changing the *name* of the analysis

Value

giotto object with updated tSNE dimension recuction

Examples

runUMAP

runUMAP

Description

run UMAP

Usage

```
runUMAP(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 reduction = c("cells", "genes"),
 dim_reduction_to_use = "pca",
 dim_reduction_name = "pca",
 dimensions_to_use = 1:10,
 name = "umap",
 genes_to_use = NULL,
 return_gobject = TRUE,
 n_neighbors = 40,
 n_{components} = 2,
 n_{epochs} = 400,
 min_dist = 0.01,
 n_{threads} = NA,
  spread = 5,
```

206 runUMAP

```
set_seed = TRUE,
seed_number = 1234,
verbose = T,
...
)
```

Arguments

```
gobject
                 giotto object
expression_values
                 expression values to use
reduction
                 cells or genes
dim_reduction_to_use
                 use another dimension reduction set as input
dim_reduction_name
                 name of dimension reduction set to use
dimensions_to_use
                 number of dimensions to use as input
                 arbitrary name for UMAP run
name
                 if dim_reduction_to_use = NULL, which genes to use
genes_to_use
return_gobject boolean: return giotto object (default = TRUE)
n_neighbors
                 UMAP param: number of neighbors
                 UMAP param: number of components
n_components
n_epochs
                 UMAP param: number of epochs
min_dist
                 UMAP param: minimum distance
                 UMAP param: threads/cores to use
n_threads
                 UMAP param: spread
spread
                 use of seed
set_seed
seed_number
                 seed number to use
verbose
                 verbosity of function
                 additional UMAP parameters
```

Details

See umap for more information about these and other parameters.

- Input for UMAP dimension reduction can be another dimension reduction (default = 'pca')
- To use gene expression as input set dim_reduction_to_use = NULL
- If dim_reduction_to_use = NULL, genes_to_use can be used to select a column name of highly variable genes (see calculateHVG) or simply provide a vector of genes
- multiple UMAP results can be stored by changing the *name* of the analysis

Value

giotto object with updated UMAP dimension recuction

screePlot 207

Examples

screePlot

screePlot

Description

identify significant prinicipal components (PCs) using an screeplot (a.k.a. elbowplot)

Usage

```
screePlot(
 gobject,
 name = "pca",
 expression_values = c("normalized", "scaled", "custom"),
 reduction = c("cells", "genes"),
 method = c("irlba", "factominer"),
 rev = FALSE,
 genes_to_use = NULL,
 center = F,
  scale_unit = F,
 ncp = 100,
 ylim = c(0, 20),
 verbose = T,
  show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "screePlot",
)
```

Arguments

208 selectPatternGenes

```
subset of genes to use for PCA
genes_to_use
                  center data before PCA
center
                  scale features before PCA
scale_unit
                  number of principal components to calculate
ncp
                  y-axis limits on scree plot
ylim
                  verobsity
verbose
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save name in save param
                  additional arguments to pca function, see runPCA
```

Details

Screeplot works by plotting the explained variance of each individual PC in a barplot allowing you to identify which PC provides a significant contribution (a.k.a 'elbow method'). Screeplot will use an available pca object, based on the parameter 'name', or it will create it if it's not available (see runPCA)

Value

ggplot object for scree method

Examples

```
data(mini_giotto_single_cell)
screePlot(mini_giotto_single_cell, ncp = 10)
```

selectPatternGenes

selectPatternGenes

Description

Select genes correlated with spatial patterns

Usage

```
selectPatternGenes(
  spatPatObj,
  dimensions = 1:5,
  top_pos_genes = 10,
  top_neg_genes = 10,
  min_pos_cor = 0.5,
  min_neg_cor = -0.5,
  return_top_selection = FALSE
)
```

show,giotto-method 209

Arguments

 ${\tt SpatPatObj} \qquad \quad {\tt Output\ from\ detectSpatialPatterns}$

dimensions dimensions to identify correlated genes for.

top_pos_genes Top positively correlated genes.
top_neg_genes Top negatively correlated genes.

min_pos_cor Minimum positive correlation score to include a gene.

min_neg_cor Minimum negative correlation score to include a gene.

return_top_selection

only return selection based on correlation criteria (boolean)

Details

Description.

Value

Data.table with genes associated with selected dimension (PC).

Examples

```
selectPatternGenes(gobject)
```

 $\verb|show,giotto-method||$

show method for giotto class

Description

show method for giotto class

Usage

```
## S4 method for signature 'giotto'
show(object)
```

Arguments

object

giotto object

 $show Cluster Dendrogram \quad show Cluster Dendrogram \quad$

Description

Creates dendrogram for selected clusters.

Usage

```
showClusterDendrogram(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman"),
  distance = "ward.D",
  h = NULL,
  h_color = "red",
  rotate = FALSE,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showClusterDendrogram",
  ...
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
cluster_column name of column to use for clusters
                  correlation score to calculate distance
cor
distance
                  distance method to use for hierarchical clustering
h
                  height of horizontal lines to plot
h_color
                  color of horizontal lines
                  rotate dendrogram 90 degrees
rotate
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  additional parameters for ggdendrogram()
```

Details

Expression correlation dendrogram for selected clusters.

showClusterHeatmap 211

Value

ggplot

Examples

showClusterHeatmap

showClusterHeatmap

Description

Creates heatmap based on identified clusters

Usage

```
showClusterHeatmap(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = "all",
  cluster_column,
  cor = c("pearson", "spearman"),
  distance = "ward.D",
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showClusterHeatmap",
  ...
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
genes vector of genes to use, default to 'all'
cluster_column name of column to use for clusters
cor correlation score to calculate distance
distance distance method to use for hierarchical clustering
show_plot show plot
```

additional parameters for the Heatmap function from ComplexHeatmap

Details

Correlation heatmap of selected clusters.

Value

ggplot

Examples

showGiottoImageNames showGiottoImageNames

Description

Prints the available giotto images that are attached to the Giotto object

Usage

```
showGiottoImageNames(gobject, verbose = TRUE)
```

Arguments

```
gobject a giotto object
verbose verbosity of function
```

Value

a vector of giotto image names attached to the giotto object

Examples

```
showGiottoImageNames(gobject)
```

showGiottoInstructions 213

```
showGiottoInstructions
```

showGiottoInstructions

Description

Function to display all instructions from giotto object

Usage

```
showGiottoInstructions(gobject)
```

Arguments

gobject

giotto object

Value

named vector with giotto instructions

Examples

showGiottoInstructions()

showGrids

showGrids

Description

Prints the available spatial grids that are attached to the Giotto object

Usage

```
showGrids(gobject, verbose = TRUE)
```

Arguments

gobject

a giotto object

verbose

verbosity of function#'

Value

vector

Examples

showGrids()

214 showPattern

showNetworks

showNetworks

Description

Prints the available spatial networks that are attached to the Giotto object

Usage

```
showNetworks(gobject, verbose = TRUE)
```

Arguments

gobject a giotto object

verbose verbosity of function#'

Value

vector

Examples

showNetworks()

showPattern

showPattern

Description

show patterns for 2D spatial data

Usage

```
showPattern(gobject, spatPatObj, ...)
```

Arguments

gobject giotto object

spatPatObj Output from detectSpatialPatterns

... Arguments passed on to showPattern2D

dimension dimension to plot trim Trim ends of the PC values.

background_color background color for plot

grid_border_color color for grid
show_legend show legend of ggplot

point_size size of points
show_plot show plot

return_plot return ggplot object

showPattern2D 215

```
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
in save_param
```

Value

ggplot

See Also

showPattern2D

Examples

showPattern(gobject)

 ${\it showPattern2D}$

showPattern2D

Description

show patterns for 2D spatial data

Usage

```
showPattern2D(
  gobject,
  spatPatObj,
  dimension = 1,
  trim = c(0.02, 0.98),
  background_color = "white",
  grid_border_color = "grey",
  show_legend = T,
  point_size = 1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showPattern2D")
```

Arguments

gobject giotto object

spatPatObj Output from detectSpatialPatterns

dimension dimension to plot

trim Trim ends of the PC values.

background_color

background color for plot

216 showPattern3D

```
grid_border_color
                  color for grid
show_legend
                  show legend of ggplot
point_size
                  size of points
show_plot
                  show plot
                  return ggplot object
return_plot
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

Examples

showPattern2D(gobject)

showPattern3D

showPattern3D

Description

show patterns for 3D spatial data

Usage

```
showPattern3D(
 gobject,
 spatPatObj,
 dimension = 1,
  trim = c(0.02, 0.98),
 background_color = "white",
 grid_border_color = "grey",
 show_legend = T,
 point_size = 1,
 axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL,
 x_ticks = NULL,
 y_ticks = NULL,
 z_ticks = NULL,
 show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "showPattern3D"
```

showPatternGenes 217

Arguments

gobject giotto object

spatPatObj Output from detectSpatialPatterns

dimension dimension to plot

trim Trim ends of the PC values.

background_color

background color for plot

grid_border_color

color for grid

show_legend show legend of plot point_size adjust the point size

axis_scale scale the axis

custom_ratio cutomize the scale of the axis

 x_{ticks} the tick number of x_{axis} y_{ticks} the tick number of y_{axis} z_{ticks} the tick number of z_{axis}

show_plot show plot

return_plot return plot object

save_plot directly save the plot [boolean]

save_param list of saving parameters, see showSaveParameters

default_save_name

default save name for saving, don't change, change save_name in save_param

Value

plotly

Examples

showPattern3D(gobject)

showPatternGenes

showPatternGenes

Description

show genes correlated with spatial patterns

218 showPatternGenes

Usage

```
showPatternGenes(
  gobject,
  spatPatObj,
  dimension = 1,
  top_pos_genes = 5,
  top_neg_genes = 5,
  point_size = 1,
  return_DT = FALSE,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showPatternGenes"
)
```

Arguments

gobject giotto object spatPatObj Output from detectSpatialPatterns dimension to plot genes for. dimension top_pos_genes Top positively correlated genes. top_neg_genes Top negatively correlated genes. point_size size of points if TRUE, it will return the data.table used to generate the plots return_DT show_plot show plot return ggplot object return_plot save_plot directly save the plot [boolean] save_param list of saving parameters, see showSaveParameters default_save_name default save name for saving, don't change, change save_name in save_param

Value

ggplot

```
showPatternGenes(gobject)
```

showProcessingSteps 219

 $show Processing Steps \qquad \textit{show Processing Steps}$

Description

shows the sequential processing steps that were performed on a Giotto object in a summarized format

Usage

```
showProcessingSteps(gobject)
```

Arguments

gobject

giotto object

Value

list of processing steps and names

Examples

```
data(mini_giotto_single_cell)
showProcessingSteps(mini_giotto_single_cell)
```

 $\verb|showSaveParameters||$

showSaveParameters

Description

Description of Giotto saving options, links to all_plots_save_function

Usage

```
showSaveParameters()
```

Value

Instruction on how to use the automatic plot saving options within Giotto

```
showSaveParameters()
```

220 showSpatialCorGenes

showSpatialCorGenes showSpatialCorGenes

Description

Shows and filters spatially correlated genes

Usage

```
showSpatialCorGenes(
  spatCorObject,
  use_clus_name = NULL,
  selected_clusters = NULL,
  genes = NULL,
  min_spat_cor = 0.5,
  min_expr_cor = NULL,
  min_cor_diff = NULL,
  min_rank_diff = NULL,
  show_top_genes = NULL
)
```

Arguments

```
spatCorObject
                  spatial correlation object
use_clus_name
                  cluster information to show
selected_clusters
                  subset of clusters to show
                  subset of genes to show
genes
                  filter on minimum spatial correlation
min_spat_cor
                  filter on minimum single-cell expression correlation
min_expr_cor
                  filter on minimum correlation difference (spatial vs expression)
min_cor_diff
                  filter on minimum correlation rank difference (spatial vs expression)
min_rank_diff
show_top_genes show top genes per gene
```

Value

data.table with filtered information

```
\verb|showSpatialCorGenes(gobject)|
```

signPCA 221

signPCA signPCA

Description

identify significant prinicipal components (PCs)

Usage

```
signPCA(
 gobject,
 name = "pca",
 method = c("screeplot", "jackstraw"),
 expression_values = c("normalized", "scaled", "custom"),
 reduction = c("cells", "genes"),
 pca_method = c("irlba", "factominer"),
  rev = FALSE,
  genes_to_use = NULL,
  center = T,
  scale_unit = T,
 ncp = 50,
  scree_ylim = c(0, 10),
  jack_iter = 10,
  jack_threshold = 0.01,
  jack_ylim = c(0, 1),
  verbose = TRUE,
  show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "signPCA"
)
```

Arguments

gobject giotto object name of PCA object if available name method to use to identify significant PCs method expression_values expression values to use reduction cells or genes pca_method which implementation to use do a reverse PCA rev subset of genes to use for PCA genes_to_use center center data before PCA scale features before PCA scale_unit number of principal components to calculate ncp y-axis limits on scree plot scree_ylim

222 silhouetteRank

```
jack_iter
                  number of interations for jackstraw
jack_threshold p-value threshold to call a PC significant
                  y-axis limits on jackstraw plot
jack_ylim
verbose
                  verbosity
show_plot
                  show plot
                  return ggplot object
return_plot
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Two different methods can be used to assess the number of relevant or significant prinicipal components (PC's).

- 1. Screeplot works by plotting the explained variance of each individual PC in a barplot allowing you to identify which PC provides a significant contribution (a.k.a. 'elbow method').
- 2. The Jackstraw method uses the permutationPA function. By systematically permuting genes it identifies robust, and thus significant, PCs.

Value

ggplot object for scree method and maxtrix of p-values for jackstraw

silhouetteRank silhouetteRank

Description

Previously: calculate_spatial_genes_python. This method computes a silhouette score per gene based on the spatial distribution of two partitions of cells (expressed L1, and non-expressed L0). Here, rather than L2 Euclidean norm, it uses a rank-transformed, exponentially weighted function to represent the local physical distance between two cells. New implementation can be found at silhouetteRank

Usage

```
silhouetteRank(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  metric = "euclidean",
  subset_genes = NULL,
  rbp_p = 0.95,
  examine_top = 0.3,
  python_path = NULL
)
```

silhouetteRank_test 223

Arguments

```
gobject giotto object
expression_values
expression values to use

metric distance metric to use
subset_genes only run on this subset of genes
rbp_p fractional binarization threshold
examine_top top fraction to evaluate with silhouette
python_path specify specific path to python if required
```

Value

data.table with spatial scores

```
silhouetteRank_test silhouetteRank_test
```

Description

Previously: calculate_spatial_genes_python. This method computes a silhouette score per gene based on the spatial distribution of two partitions of cells (expressed L1, and non-expressed L0). Here, rather than L2 Euclidean norm, it uses a rank-transformed, exponentially weighted function to represent the local physical distance between two cells.

Usage

```
silhouetteRank_test(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  subset_genes = NULL,
  overwrite_input_bin = TRUE,
  rbp_ps = c(0.95, 0.99),
  examine_tops = c(0.005, 0.01, 0.05, 0.1, 0.3),
  matrix_type = "dissim",
  num_core = 4,
  parallel_path = "/usr/bin",
  output = NULL,
  query_sizes = 10L,
  verbose = FALSE
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
subset_genes only run on this subset of genes
overwrite_input_bin
overwrite input bin
```

rbp_ps fractional binarization thresholds examine_tops top fractions to evaluate with silhouette

matrix_type type of matrix

num_core number of cores to use parallel_path path to GNU parallel function

output output directory
query_sizes size of query
verbose be verbose

Value

data.table with spatial scores

```
simulate One Gene Pattern Giotto Object \\ simulate One Gene Pattern Giotto Object
```

Description

Create a simulated spatial pattern for one selected gnee

Usage

```
simulateOneGenePatternGiottoObject(
  gobject,
  pattern_name = "pattern",
  pattern_cell_ids = NULL,
  gene_name = NULL,
  spatial_prob = 0.95,
  gradient_direction = NULL,
  show_pattern = TRUE,
  pattern_colors = c(`in` = "green", out = "red"),
  ...
)
```

Arguments

```
giotto object
gobject
                  name of spatial pattern
pattern_name
pattern_cell_ids
                  cell ids that make up the spatial pattern
                  selected gene
gene_name
spatial_prob
                  probability for a high expressing gene value to be part of the spatial pattern
gradient_direction
                  direction of gradient
                  show the discrete spatial pattern
show_pattern
pattern_colors 2 color vector for the spatial pattern
                  additional parameters for (re-)normalizing
```

spark 225

Value

Reprocessed Giotto object for which one gene has a forced spatial pattern

Examples

```
simulateOneGenePatternGiottoObject(gobject)
```

spark spark

Description

Compute spatially expressed genes with SPARK method

Usage

```
spark(
  gobject,
  percentage = 0.1,
  min_count = 10,
  expression_values = "raw",
  num_core = 5,
  covariates = NULL,
  return_object = "data.table",
  ...
)
```

Arguments

```
gobject
                  giotto object
percentage
                  The percentage of cells that are expressed for analysis
                  minimum number of counts for a gene to be included
min_count
expression_values
                  type of values to use (raw by default)
                  number of cores to use
num_core
                  The covariates in experiments, i.e. confounding factors/batch effect. Column
covariates
                  name of giotto cell metadata.
return_object
                  type of result to return (data.table or spark object)
                  Additional parameters to the spark.vc function
```

Details

This function is a wrapper for the method implemented in the SPARK package:

- 1. CreateSPARKObject create a SPARK object from a Giotto object
- 2. spark.vc Fits the count-based spatial model to estimate the parameters, see spark.vc for additional parameters
- 3. spark.test Testing multiple kernel matrices

226 spatCellCellcom

Value

data.table with SPARK spatial genes results or the SPARK object

spatCellCellcom spatCellCellcom

Description

Spatial Cell-Cell communication scores based on spatial expression of interacting cells

Usage

```
spatCellCellcom(
 gobject,
 spatial_network_name = "Delaunay_network",
 cluster_column = "cell_types",
  random_iter = 1000,
 gene_set_1,
 gene_set_2,
  log2FC_addendum = 0.1,
 min_observations = 2,
 detailed = FALSE,
 adjust_method = c("fdr", "bonferroni", "BH", "holm", "hochberg", "hommel", "BY",
    "none"),
  adjust_target = c("genes", "cells"),
 do_parallel = TRUE,
 cores = NA,
  verbose = c("a little", "a lot", "none")
```

Arguments

gobject

```
spatial_network_name
                  spatial network to use for identifying interacting cells
cluster_column cluster column with cell type information
                  number of iterations
random_iter
gene_set_1
                  first specific gene set from gene pairs
gene_set_2
                  second specific gene set from gene pairs
log2FC_addendum
                  addendum to add when calculating log2FC
min_observations
                  minimum number of interactions needed to be considered
detailed
                  provide more detailed information (random variance and z-score)
adjust_method
                  which method to adjust p-values
adjust_target
                  adjust multiple hypotheses at the cell or gene level
                  run calculations in parallel with mclapply
do_parallel
                  number of cores to use if do_parallel = TRUE
cores
                  verbose
verbose
```

giotto object to use

spatCellCellcom 227

Details

Statistical framework to identify if pairs of genes (such as ligand-receptor combinations) are expressed at higher levels than expected based on a reshuffled null distribution of gene expression values in cells that are spatially in proximity to eachother..

- LR_comb:Pair of ligand and receptor
- lig_cell_type: cell type to assess expression level of ligand
- lig_expr: average expression of ligand in lig_cell_type
- · ligand: ligand name
- rec_cell_type: cell type to assess expression level of receptor
- rec_expr: average expression of receptor in rec_cell_type
- · receptor: receptor name
- LR_expr: combined average ligand and receptor expression
- lig_nr: total number of cells from lig_cell_type that spatially interact with cells from rec_cell_type
- rec_nr: total number of cells from rec_cell_type that spatially interact with cells from lig_cell_type
- rand_expr: average combined ligand and receptor expression from random spatial permutations
- av_diff: average difference between LR_expr and rand_expr over all random spatial permutations
- sd_diff: (optional) standard deviation of the difference between LR_expr and rand_expr over all random spatial permutations
- z_score: (optinal) z-score
- log2fc: log2 fold-change (LR_expr/rand_expr)
- pvalue: p-value
- LR_cell_comb: cell type pair combination
- p.adj: adjusted p-value
- PI: significanc score: log2fc * -log10(p.adj)

Value

Cell-Cell communication scores for gene pairs based on spatial interaction

Examples

spatCellCellcom(gobject)

228 spatCellPlot

spatCellPlot

spatCellPlot

Description

Visualize cells according to spatial coordinates

Usage

```
spatCellPlot(...)
```

Arguments

```
Arguments passed on to spatCellPlot2D
gobject giotto object
show_image show a tissue background image
gimage a giotto image
image_name name of a giotto image
sdimx x-axis dimension name (default = 'sdimx')
sdimy y-axis dimension name (default = 'sdimy')
spat_enr_names names of spatial enrichment results to include
cell_annotation_values numeric cell annotation columns
cell_color_gradient vector with 3 colors for numeric data
gradient_midpoint midpoint for color gradient
gradient_limits vector with lower and upper limits
select_cell_groups select subset of cells/clusters based on cell_color param-
select_cells select subset of cells based on cell IDs
point_shape shape of points (border, no_border or voronoi)
point_size size of point (cell)
point_alpha transparancy of spatial points
point_border_col color of border around points
point_border_stroke stroke size of border around points
show_cluster_center plot center of selected clusters
show_center_label plot label of selected clusters
center_point_size size of center points
center_point_border_col border color of center points
center_point_border_stroke border stroke size of center points
label_size size of labels
label_fontface font of labels
show_network show underlying spatial network
spatial_network_name name of spatial network to use
network_color color of spatial network
network_alpha alpha of spatial network
show_grid show spatial grid
spatial_grid_name name of spatial grid to use
```

spatCellPlot 229

```
grid_color color of spatial grid
show_other_cells display not selected cells
other_cell_color color of not selected cells
other_point_size point size of not selected cells
other_cells_alpha alpha of not selected cells
coord_fix_ratio fix ratio between x and y-axis
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
vor_border_color border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha transparancy of voronoi 'cells'
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

Other spatial cell annotation visualizations: spatCellPlot2D()

```
spatCellPlot(gobject)
```

spatCellPlot2D

spatCellPlot2D

Description

Visualize cells according to spatial coordinates

Usage

```
spatCellPlot2D(
 gobject,
  show_image = F,
  gimage = NULL,
  image_name = "image",
  sdimx = "sdimx",
  sdimy = "sdimy"
  spat_enr_names = NULL,
  cell_annotation_values = NULL,
 cell_color_gradient = c("blue", "white", "red"),
 gradient_midpoint = NULL,
 gradient_limits = NULL,
 select_cell_groups = NULL,
  select_cells = NULL,
  point_shape = c("border", "no_border", "voronoi"),
 point_size = 3,
 point_alpha = 1,
 point_border_col = "black",
 point_border_stroke = 0.1,
  show_cluster_center = F,
  show\_center\_label = F,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  show_network = F,
  spatial_network_name = "Delaunay_network",
 network_color = NULL,
 network_alpha = 1,
  show_grid = F,
  spatial_grid_name = "spatial_grid",
 grid_color = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
 other_cells_alpha = 0.1,
  coord_fix_ratio = NULL,
  show_legend = T,
  legend_text = 8,
  legend_symbol_size = 1,
 background_color = "white",
```

```
vor_border_color = "white",
      vor_max_radius = 200,
      vor_alpha = 1,
      axis_text = 8,
      axis_title = 8,
      cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatCellPlot2D"
    )
Arguments
   gobject
                     giotto object
    show_image
                     show a tissue background image
    gimage
                     a giotto image
    image_name
                     name of a giotto image
    sdimx
                     x-axis dimension name (default = 'sdimx')
                     y-axis dimension name (default = 'sdimy')
    sdimy
    spat_enr_names names of spatial enrichment results to include
    cell_annotation_values
                     numeric cell annotation columns
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
                     select subset of cells based on cell IDs
    select_cells
                     shape of points (border, no_border or voronoi)
    point_shape
   point_size
                     size of point (cell)
    point_alpha
                     transparancy of spatial points
   point_border_col
                     color of border around points
   point_border_stroke
                     stroke size of border around points
    show_cluster_center
                     plot center of selected clusters
```

plot label of selected clusters

show_center_label

center_point_size

size of center points

center_point_border_col

border color of center points

center_point_border_stroke

border stroke size of center points

label_size size of labels
label_fontface font of labels

show_network show underlying spatial network

spatial_network_name

name of spatial network to use

network_color color of spatial network network_alpha alpha of spatial network show_grid show spatial grid

spatial_grid_name

name of spatial grid to use

grid_color color of spatial grid

show_other_cells

display not selected cells

other_cell_color

color of not selected cells

other_point_size

point size of not selected cells

other_cells_alpha

alpha of not selected cells

coord_fix_ratio

fix ratio between x and y-axis

show_legend show legend
legend_text size of legend text

legend_symbol_size

size of legend symbols

 $background_color$

color of plot background

vor_border_color

border colorr for voronoi plot

vor_max_radius maximum radius for voronoi 'cells' vor_alpha transparancy of voronoi 'cells'

axis_text size of axis text
axis_title size of axis title

cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align

show_plot show plot

return_plot return ggplot object

```
save_plot directly save the plot [boolean]
```

save_param list of saving parameters, see showSaveParameters

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

Description of parameters.

Value

ggplot

See Also

Other spatial cell annotation visualizations: spatCellPlot()

Examples

```
spatCellPlot2D(gobject)
```

spatDimCellPlot

spatDimCellPlot

Description

Visualize numerical features of cells according to spatial AND dimension reduction coordinates in 2D

Usage

```
spatDimCellPlot(...)
```

Arguments

annotation_values numeric cell annotation columns
dim_reduction_to_use dimension reduction name
dim1_to_use dimension to use on x-axis
sdimx = spatial dimension to use on x-axis

sdimy = spatial dimension to use on y-axis

```
cell_color_gradient vector with 3 colors for numeric data
gradient_midpoint midpoint for color gradient
gradient_limits vector with lower and upper limits
select_cell_groups select subset of cells/clusters based on cell_color param-
select_cells select subset of cells based on cell IDs
dim_point_shape dim reduction points with border or not (border or no_border)
dim_point_size size of points in dim. reduction space
dim_point_alpha transparancy of dim. reduction points
dim_point_border_col border color of points in dim. reduction space
dim_point_border_stroke border stroke of points in dim. reduction space
spat_point_shape shape of points (border, no_border or voronoi)
spat_point_size size of spatial points
spat_point_alpha transparancy of spatial points
spat_point_border_col border color of spatial points
spat_point_border_stroke border stroke of spatial points
dim_show_cluster_center show the center of each cluster
dim_show_center_label provide a label for each cluster
dim_center_point_size size of the center point
dim_center_point_border_col border color of center point
dim_center_point_border_stroke stroke size of center point
dim_label_size size of the center label
dim_label_fontface font of the center label
spat_show_cluster_center show the center of each cluster
spat_show_center_label provide a label for each cluster
spat_center_point_size size of the spatial center points
spat_center_point_border_col border color of the spatial center points
spat_center_point_border_stroke stroke size of the spatial center points
spat_label_size size of the center label
spat_label_fontface font of the center label
show_NN_network show underlying NN network
nn_network_to_use type of NN network to use (kNN vs sNN)
nn_network_name name of NN network to use, if show_NN_network = TRUE
dim_edge_alpha column to use for alpha of the edges
spat_show_network show spatial network
spatial_network_name name of spatial network to use
spat_network_color color of spatial network
spat_network_alpha alpha of spatial network
spat_show_grid show spatial grid
spatial_grid_name name of spatial grid to use
spat_grid_color color of spatial grid
show_other_cells display not selected cells
other_cell_color color of not selected cells
dim_other_point_size size of not selected dim cells
spat_other_point_size size of not selected spat cells
spat_other_cells_alpha alpha of not selected spat cells
```

```
coord_fix_ratio ratio for coordinates
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
dim_background_color background color of points in dim. reduction space
spat_background_color background color of spatial points
vor_border_color border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha transparancy of voronoi 'cells'
axis_text size of axis text
axis_title size of axis title
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

Other spatial and dimension reduction cell annotation visualizations: spatDimCellPlot2D()

Examples

spatDimCellPlot(gobject)

spatDimCellPlot2D

spatDimCellPlot2D

Description

Visualize numerical features of cells according to spatial AND dimension reduction coordinates in 2D

Usage

```
spatDimCellPlot2D(
  gobject,
  show_image = F,
 gimage = NULL,
  image_name = "image",
 plot_alignment = c("vertical", "horizontal"),
 spat_enr_names = NULL,
 cell_annotation_values = NULL,
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2\_to\_use = 2,
  sdimx = "sdimx",
  sdimy = "sdimy",
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  dim_point_shape = c("border", "no_border"),
  dim_point_size = 1,
 dim_point_alpha = 1,
 dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  spat_point_shape = c("border", "no_border", "voronoi"),
  spat_point_size = 1,
  spat_point_alpha = 1,
  spat_point_border_col = "black",
  spat_point_border_stroke = 0.1,
 dim_show_cluster_center = F,
  dim_show_center_label = T,
  dim_center_point_size = 4,
  dim_center_point_border_col = "black",
 dim_center_point_border_stroke = 0.1,
  dim_label_size = 4,
  dim_label_fontface = "bold",
  spat_show_cluster_center = F,
  spat_show_center_label = F,
  spat_center_point_size = 4,
  spat_center_point_border_col = "black",
  spat_center_point_border_stroke = 0.1,
  spat_label_size = 4,
  spat_label_fontface = "bold",
  show_NN_network = F,
 nn_network_to_use = "sNN",
 nn_network_name = "sNN.pca",
  dim_edge_alpha = 0.5,
  spat\_show\_network = F,
  spatial_network_name = "Delaunay_network",
  spat_network_color = "red",
  spat_network_alpha = 0.5,
```

```
spat_show_grid = F,
  spatial_grid_name = "spatial_grid",
  spat_grid_color = "green",
  show_other_cells = TRUE,
  other_cell_color = "grey",
  dim_other_point_size = 0.5,
  spat_other_point_size = 0.5,
  spat_other_cells_alpha = 0.5,
  show_legend = T,
  legend_text = 8,
  legend_symbol_size = 1,
  dim_background_color = "white",
  spat_background_color = "white",
  vor_border_color = "white",
  vor_max_radius = 200,
  vor_alpha = 1,
  axis_text = 8,
  axis_title = 8,
  coord_fix_ratio = NULL,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "spatDimCellPlot2D"
)
```

Arguments

```
gobject
                  giotto object
                  show a tissue background image
show_image
gimage
                  a giotto image
                  name of a giotto image
image_name
plot_alignment direction to align plot
spat_enr_names names of spatial enrichment results to include
cell_annotation_values
                  numeric cell annotation columns
dim_reduction_to_use
                  dimension reduction to use
dim_reduction_name
                  dimension reduction name
                  dimension to use on x-axis
dim1_to_use
dim2_to_use
                  dimension to use on y-axis
                  = spatial dimension to use on x-axis
sdimx
sdimy
                  = spatial dimension to use on y-axis
cell_color_gradient
                  vector with 3 colors for numeric data
```

gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select subset of cells based on cell IDs select_cells dim_point_shape dim reduction points with border or not (border or no_border) dim_point_size size of points in dim. reduction space dim_point_alpha transparancy of dim. reduction points dim_point_border_col border color of points in dim. reduction space dim_point_border_stroke border stroke of points in dim. reduction space spat_point_shape shape of points (border, no_border or voronoi) spat_point_size size of spatial points spat_point_alpha transparancy of spatial points spat_point_border_col border color of spatial points spat_point_border_stroke border stroke of spatial points dim_show_cluster_center show the center of each cluster dim_show_center_label provide a label for each cluster dim_center_point_size size of the center point dim_center_point_border_col border color of center point dim_center_point_border_stroke stroke size of center point dim_label_size size of the center label dim_label_fontface font of the center label spat_show_cluster_center show the center of each cluster spat_show_center_label provide a label for each cluster spat_center_point_size size of the spatial center points ${\tt spat_center_point_border_col}$ border color of the spatial center points

spat_center_point_border_stroke stroke size of the spatial center points spat_label_size size of the center label spat_label_fontface font of the center label show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) nn_network_name name of NN network to use, if show_NN_network = TRUE dim_edge_alpha column to use for alpha of the edges spat_show_network show spatial network spatial_network_name name of spatial network to use spat_network_color color of spatial network spat_network_alpha alpha of spatial network spat_show_grid show spatial grid spatial_grid_name name of spatial grid to use spat_grid_color color of spatial grid show_other_cells display not selected cells other_cell_color color of not selected cells ${\tt dim_other_point_size}$ size of not selected dim cells spat_other_point_size size of not selected spat cells spat_other_cells_alpha alpha of not selected spat cells show legend show_legend size of legend text legend_text legend_symbol_size size of legend symbols dim_background_color background color of points in dim. reduction space spat_background_color background color of spatial points vor_border_color border colorr for voronoi plot vor_max_radius maximum radius for voronoi 'cells'

```
vor_alpha
                  transparancy of voronoi 'cells'
axis_text
                  size of axis text
axis_title
                  size of axis title
coord_fix_ratio
                  ratio for coordinates
                  cowplot param: how many columns
cow_n_col
cow_rel_h
                  cowplot param: relative height
cow_rel_w
                  cowplot param: relative width
                  cowplot param: how to align
cow_align
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

Other spatial and dimension reduction cell annotation visualizations: spatDimCellPlot()

Examples

```
{\tt spatDimCellPlot2D(gobject)}
```

```
spatDimGenePlot spatDimGenePlot
```

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

Usage

```
spatDimGenePlot(...)
```

Arguments

Arguments passed on to spatDimGenePlot2D gobject giotto object show_image show a tissue background image gimage a giotto image image_name name of a giotto image expression_values gene expression values to use plot_alignment direction to align plot genes genes to show dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis dim_point_shape dim reduction points with border or not (border or no_border) dim_point_size dim reduction plot: point size dim_point_alpha transparancy of dim. reduction points dim_point_border_col color of border around points dim_point_border_stroke stroke size of border around points show_NN_network show underlying NN network show_spatial_network show underlying spatial netwok nn_network_to_use type of NN network to use (kNN vs sNN) network_name name of NN network to use, if show_NN_network = TRUE dim_network_color color of NN network dim_edge_alpha dim reduction plot: column to use for alpha of the edges scale_alpha_with_expression scale expression with ggplot alpha parameter sdimx spatial x-axis dimension name (default = 'sdimx') sdimy spatial y-axis dimension name (default = 'sdimy') spatial_network_name name of spatial network to use spatial_network_color color of spatial network show_spatial_grid show spatial grid grid_color color of spatial grid spatial_grid_name name of spatial grid to use spat_point_shape spatial points with border or not (border or no_border) spat_point_size spatial plot: point size spat_point_alpha transparancy of spatial points spat_point_border_col color of border around points spat_point_border_stroke stroke size of border around points spat_edge_alpha edge alpha cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits show_legend show legend legend_text_size of legend text dim_background_color color of plot background for dimension plot spat_background_color color of plot background for spatial plot

```
vor_border_color border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha transparancy of voronoi 'cells'
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plots
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatDimGenePlot3D
```

Other spatial and dimension reduction gene expression visualizations: spatDimGenePlot2D(), spatDimGenePlot3D()

Examples

```
spatDimGenePlot(gobject)
```

spatDimGenePlot2D

spatDimGenePlot2D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

Usage

```
spatDimGenePlot2D(
  gobject,
  show_image = F,
  gimage = NULL,
  image_name = "image",
  expression_values = c("normalized", "scaled", "custom"),
  plot_alignment = c("vertical", "horizontal"),
```

```
genes,
dim_reduction_to_use = "umap",
dim_reduction_name = "umap",
dim1_to_use = 1,
dim2_to_use = 2,
dim_point_shape = c("border", "no_border"),
dim_point_size = 1,
dim_point_alpha = 1,
dim_point_border_col = "black",
dim_point_border_stroke = 0.1,
show_NN_network = F,
show_spatial_network = F,
dim_network_color = "gray",
nn_network_to_use = "sNN",
network_name = "sNN.pca",
dim_edge_alpha = NULL,
scale_alpha_with_expression = FALSE,
sdimx = "sdimx",
sdimy = "sdimy",
spatial_network_name = "Delaunay_network",
spatial_network_color = NULL,
show_spatial_grid = F,
grid_color = NULL,
spatial_grid_name = "spatial_grid",
spat_point_shape = c("border", "no_border", "voronoi"),
spat_point_size = 1,
spat_point_alpha = 1,
spat_point_border_col = "black",
spat_point_border_stroke = 0.1,
spat_edge_alpha = NULL,
cell_color_gradient = c("blue", "white", "red"),
gradient_midpoint = NULL,
gradient_limits = NULL,
cow_n_col = 2,
cow_rel_h = 1,
cow_rel_w = 1,
cow_align = "h",
show_legend = T,
legend_text = 8,
dim_background_color = "white",
spat_background_color = "white",
vor_border_color = "white",
vor_max_radius = 200,
vor_alpha = 1,
axis_text = 8,
axis_title = 8,
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "spatDimGenePlot2D"
```

Arguments

gobject giotto object show a tissue background image show_image gimage a giotto image name of a giotto image image_name expression_values gene expression values to use plot_alignment direction to align plot genes genes to show ${\tt dim_reduction_to_use}$ dimension reduction to use dim_reduction_name dimension reduction name dimension to use on x-axis dim1_to_use dimension to use on y-axis dim2_to_use dim_point_shape dim reduction points with border or not (border or no_border) dim_point_size dim reduction plot: point size dim_point_alpha transparancy of dim. reduction points dim_point_border_col color of border around points dim_point_border_stroke stroke size of border around points show_NN_network show underlying NN network show_spatial_network show underlying spatial netwok dim_network_color color of NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name dim_edge_alpha dim reduction plot: column to use for alpha of the edges scale_alpha_with_expression scale expression with ggplot alpha parameter sdimx spatial x-axis dimension name (default = 'sdimx') spatial y-axis dimension name (default = 'sdimy') sdimy spatial_network_name name of spatial network to use spatial_network_color color of spatial network show_spatial_grid show spatial grid

color of spatial grid

grid_color

```
spatial_grid_name
                  name of spatial grid to use
spat_point_shape
                  spatial points with border or not (border or no_border)
spat_point_size
                  spatial plot: point size
spat_point_alpha
                  transparancy of spatial points
spat_point_border_col
                  color of border around points
spat_point_border_stroke
                  stroke size of border around points
spat_edge_alpha
                  edge alpha
cell_color_gradient
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
cow_n_col
                  cowplot param: how many columns
cow_rel_h
                  cowplot param: relative height
                  cowplot param: relative width
cow_rel_w
cow_align
                  cowplot param: how to align
show_legend
                  show legend
legend_text
                  size of legend text
dim_background_color
                  color of plot background for dimension plot
spat_background_color
                  color of plot background for spatial plot
vor_border_color
                  border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha
                  transparancy of voronoi 'cells'
axis_text
                  size of axis text
                  size of axis title
axis_title
show_plot
                  show plots
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatDimGenePlot3D
Other spatial and dimension reduction gene expression visualizations: spatDimGenePlot3D(),
spatDimGenePlot()
```

Examples

```
spatDimGenePlot2D(gobject)
```

spatDimGenePlot3D

spatDimGenePlot3D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

Usage

```
spatDimGenePlot3D(
 gobject,
  expression_values = c("normalized", "scaled", "custom"),
 plot_alignment = c("horizontal", "vertical"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2\_to\_use = 2,
 dim3_to_use = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  genes,
  cluster_column = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1.5,
 show_NN_network = FALSE,
 nn_network_to_use = "sNN",
 nn_network_color = "lightgrey",
 nn_network_alpha = 0.5,
 network_name = "sNN.pca",
 label_size = 16,
  genes_low_color = "blue",
 genes_mid_color = "white",
 genes_high_color = "red",
  dim_point_size = 3,
```

```
show_spatial_network = FALSE,
      spatial_network_name = "Delaunay_network",
      spatial_network_color = "lightgray",
      spatial_network_alpha = 0.5,
      show_spatial_grid = FALSE,
      spatial_grid_name = "spatial_grid",
      spatial_grid_color = NULL,
      spatial_grid_alpha = 0.5,
      spatial_point_size = 3,
      legend_text_size = 12,
      axis_scale = c("cube", "real", "custom"),
      custom_ratio = NULL,
      x_ticks = NULL,
      y_ticks = NULL,
      z_ticks = NULL,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimGenePlot3D"
    )
Arguments
                     giotto object
    gobject
    expression_values
                     gene expression values to use
    plot_alignment direction to align plot
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
                     dimension to use on x-axis
    dim1_to_use
    dim2_to_use
                     dimension to use on y-axis
    dim3_to_use
                     dimension to use on z-axis
    sdimx
                     spatial dimension to use on x-axis
    sdimy
                     spatial dimension to use on y-axis
    sdimz
                     spatial dimension to use on z-axis
    genes
                     genes to show
    cluster_column cluster column to select groups
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
                     select subset of cells based on cell IDs
    select_cells
    show_other_cells
                     display not selected cells
    other_cell_color
                     color of not selected cells
    other_point_size
                     size of not selected cells
```

show_NN_network nn_network_to_use

show underlying NN network

type of NN network to use (kNN vs sNN)

nn_network_color

color of NN network

nn_network_alpha

alpha of NN network

name of NN network to use, if show_NN_network = TRUE network_name

label_size size of labels

genes_low_color

color for low expression levels

genes_mid_color

color for medium expression levels

genes_high_color

color for high expression levels

dim_point_size dim reduction plot: point size

show_spatial_network

show spatial network (boolean)

spatial_network_name

name of spatial network to use

spatial_network_color

color of spatial network

spatial_network_alpha

alpha of spatial network

show_spatial_grid

show spatial grid (boolean)

spatial_grid_name

name of spatial grid to use

spatial_grid_color

color of spatial grid

spatial_grid_alpha

alpha of spatial grid

spatial_point_size

spatial plot: point size

legend_text_size

size of legend

the way to scale the axis axis_scale custom_ratio customize the scale of the plot x_ticks set the number of ticks on the x-axis y_ticks set the number of ticks on the y-axis z_ticks set the number of ticks on the z-axis

show_plot show plots

return_plot return plotly object

save_plot directly save the plot [boolean]

list of saving parameters, see showSaveParameters save_param

default_save_name

default save name for saving, don't change, change save_name in save_param

spatDimPlot 249

Details

Description of parameters.

Value

plotly

See Also

Other spatial and dimension reduction gene expression visualizations: spatDimGenePlot2D(), spatDimGenePlot()

spatDimPlot

spatDimPlot

Description

Visualize cells according to spatial AND dimension reduction coordinates 2D

Usage

```
spatDimPlot(...)
```

Arguments

```
Arguments passed on to spatDimPlot2D
gobject giotto object
show_image show a tissue background image
gimage a giotto image
image_name name of a giotto image
plot_alignment direction to align plot
dim_reduction_to_use dimension reduction to use
dim_reduction_name dimension reduction name
dim1_to_use dimension to use on x-axis
dim2_to_use dimension to use on y-axis
sdimx = spatial dimension to use on x-axis
sdimy = spatial dimension to use on y-axis
spat_enr_names names of spatial enrichment results to include
cell_color color for cells (see details)
color_as_factor convert color column to factor
cell_color_code named vector with colors
cell_color_gradient vector with 3 colors for numeric data
gradient_midpoint midpoint for color gradient
gradient_limits vector with lower and upper limits
select_cell_groups select subset of cells/clusters based on cell_color param-
    eter
select_cells select subset of cells based on cell IDs
dim_point_shape point with border or not (border or no_border)
```

250 spatDimPlot

```
dim_point_size size of points in dim. reduction space
dim_point_alpha transparancy of point in dim. reduction space
dim_point_border_col border color of points in dim. reduction space
dim_point_border_stroke border stroke of points in dim. reduction space
spat_point_shape shape of points (border, no border or voronoi)
spat_point_size size of spatial points
spat_point_alpha transparancy of spatial points
spat_point_border_col border color of spatial points
spat_point_border_stroke border stroke of spatial points
dim_show_cluster_center show the center of each cluster
dim_show_center_label provide a label for each cluster
dim_center_point_size size of the center point
dim_center_point_border_col border color of center point
dim_center_point_border_stroke stroke size of center point
dim label size size of the center label
dim_label_fontface font of the center label
spat_show_cluster_center show the center of each cluster
spat_show_center_label provide a label for each cluster
spat_center_point_size size of the center point
spat_center_point_border_col border color of spatial center points
spat_center_point_border_stroke border strike size of spatial center points
spat_label_size size of the center label
spat_label_fontface font of the center label
show_NN_network show underlying NN network
nn_network_to_use type of NN network to use (kNN vs sNN)
network_name name of NN network to use, if show_NN_network = TRUE
nn_network_alpha column to use for alpha of the edges
show_spatial_network show spatial network
spat_network_name name of spatial network to use
spat_network_color color of spatial network
spat_network_alpha alpha of spatial network
show_spatial_grid show spatial grid
spat_grid_name name of spatial grid to use
spat_grid_color color of spatial grid
show_other_cells display not selected cells
other_cell_color color of not selected cells
dim_other_point_size size of not selected dim cells
spat_other_point_size size of not selected spat cells
spat_other_cells_alpha alpha of not selected spat cells
dim_show_legend show legend of dimension reduction plot
spat_show_legend show legend of spatial plot
legend_text size of legend text
legend_symbol_size size of legend symbols
dim_background_color background color of points in dim. reduction space
spat_background_color background color of spatial points
```

spatDimPlot2D 251

```
vor_border_color border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha transparancy of voronoi 'cells'
axis_text size of axis text
axis_title size of axis title
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatDimPlot2D and spatDimPlot3D for 3D visualization.

Other spatial and dimension reduction visualizations: spatDimPlot2D(), spatDimPlot3D()
```

Examples

```
spatDimPlot(gobject)
```

spatDimPlot2D

spatDimPlot2D

Description

Visualize cells according to spatial AND dimension reduction coordinates 2D

Usage

```
spatDimPlot2D(
  gobject,
  show_image = F,
  gimage = NULL,
  image_name = "image",
  plot_alignment = c("vertical", "horizontal"),
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  sdimx = "sdimx",
  sdimy = "sdimy",
```

252 spatDimPlot2D

```
spat_enr_names = NULL,
cell_color = NULL,
color_as_factor = T,
cell_color_code = NULL,
cell_color_gradient = c("blue", "white", "red"),
gradient_midpoint = NULL,
gradient_limits = NULL,
select_cell_groups = NULL,
select_cells = NULL,
dim_point_shape = c("border", "no_border"),
dim_point_size = 1,
dim_point_alpha = 1,
dim_point_border_col = "black",
dim_point_border_stroke = 0.1,
spat_point_shape = c("border", "no_border", "voronoi"),
spat_point_size = 1,
spat_point_alpha = 1,
spat_point_border_col = "black",
spat_point_border_stroke = 0.1,
dim_show_cluster_center = F,
dim_show_center_label = T,
dim_center_point_size = 4,
dim_center_point_border_col = "black",
dim_center_point_border_stroke = 0.1,
dim_label_size = 4,
dim_label_fontface = "bold",
spat_show_cluster_center = F,
spat_show_center_label = F,
spat_center_point_size = 4,
spat_center_point_border_col = "blue",
spat_center_point_border_stroke = 0.1,
spat_label_size = 4,
spat_label_fontface = "bold",
show_NN_network = F,
nn_network_to_use = "sNN",
network_name = "sNN.pca",
nn_network_alpha = 0.05,
show_spatial_network = F,
spat_network_name = "Delaunay_network",
spat_network_color = "blue",
spat_network_alpha = 0.5,
show_spatial_grid = F,
spat_grid_name = "spatial_grid",
spat_grid_color = "blue",
show_other_cells = T,
other_cell_color = "lightgrey",
dim_other_point_size = 1,
spat_other_point_size = 1,
spat_other_cells_alpha = 0.5,
dim_show_legend = F,
spat_show_legend = F,
legend_text = 8,
```

spatDimPlot2D 253

```
legend_symbol_size = 1,
      dim_background_color = "white",
      spat_background_color = "white",
      vor_border_color = "white",
      vor_max_radius = 200,
      vor_alpha = 1,
      axis_text = 8,
      axis_title = 8,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimPlot2D"
   )
Arguments
   gobject
                     giotto object
    show_image
                     show a tissue background image
                     a giotto image
    gimage
                     name of a giotto image
    image\_name
    plot_alignment direction to align plot
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
   dim1_to_use
                     dimension to use on x-axis
   dim2_to_use
                     dimension to use on y-axis
    sdimx
                     = spatial dimension to use on x-axis
    sdimy
                     = spatial dimension to use on y-axis
    spat_enr_names names of spatial enrichment results to include
                     color for cells (see details)
    cell_color
    color_as_factor
                     convert color column to factor
    cell_color_code
                     named vector with colors
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
                     select subset of cells based on cell IDs
    select cells
    dim_point_shape
                     point with border or not (border or no_border)
```

dim_point_size size of points in dim. reduction space

254 spatDimPlot2D

dim_point_alpha

transparancy of point in dim. reduction space

dim_point_border_col

border color of points in dim. reduction space

dim_point_border_stroke

border stroke of points in dim. reduction space

spat_point_shape

shape of points (border, no_border or voronoi)

spat_point_size

size of spatial points

spat_point_alpha

transparancy of spatial points

spat_point_border_col

border color of spatial points

spat_point_border_stroke

border stroke of spatial points

dim_show_cluster_center

show the center of each cluster

dim_show_center_label

provide a label for each cluster

dim_center_point_size

size of the center point

dim_center_point_border_col

border color of center point

dim_center_point_border_stroke

stroke size of center point

dim_label_size size of the center label

dim_label_fontface

font of the center label

spat_show_cluster_center

show the center of each cluster

spat_show_center_label

provide a label for each cluster

spat_center_point_size

size of the center point

spat_center_point_border_col

border color of spatial center points

spat_center_point_border_stroke

border strike size of spatial center points

spat_label_size

size of the center label

spat_label_fontface

font of the center label

show_NN_network

show underlying NN network

nn_network_to_use

type of NN network to use (kNN vs sNN)

nn_network_alpha column to use for alpha of the edges show_spatial_network show spatial network spat_network_name name of spatial network to use spat_network_color color of spatial network spat_network_alpha alpha of spatial network show_spatial_grid show spatial grid spat_grid_name name of spatial grid to use spat_grid_color color of spatial grid show_other_cells display not selected cells other_cell_color color of not selected cells dim_other_point_size size of not selected dim cells spat_other_point_size size of not selected spat cells spat_other_cells_alpha alpha of not selected spat cells dim_show_legend show legend of dimension reduction plot spat_show_legend show legend of spatial plot size of legend text legend_text legend_symbol_size size of legend symbols dim_background_color background color of points in dim. reduction space spat_background_color background color of spatial points vor_border_color border colorr for voronoi plot vor_max_radius maximum radius for voronoi 'cells' vor_alpha transparancy of voronoi 'cells' size of axis text axis_text axis_title size of axis title show plot show_plot return_plot return ggplot object save_plot directly save the plot [boolean] save_param list of saving parameters, see showSaveParameters default_save_name default save name for saving, don't change, change save_name in save_param 256 spatDimPlot3D

Details

Description of parameters.

Value

ggplot

See Also

```
spatDimPlot3D
```

Other spatial and dimension reduction visualizations: spatDimPlot3D(), spatDimPlot()

Examples

```
spatDimPlot2D(gobject)
```

spatDimPlot3D

spatDimPlot3D

Description

Visualize cells according to spatial AND dimension reduction coordinates in plotly mode

Usage

```
spatDimPlot3D(
  gobject,
  plot_alignment = c("horizontal", "vertical"),
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  dim3_to_use = 3,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  spat_enr_names = NULL,
  show_NN_network = FALSE,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  nn_network_color = "lightgray",
  nn_network_alpha = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  label_size = 16,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 1.5,
```

spatDimPlot3D 257

```
cell_color = NULL,
      color_as_factor = T,
      cell_color_code = NULL,
      dim_point_size = 3,
      show_spatial_network = F,
      spatial_network_name = "Delaunay_network",
      spatial_network_color = "lightgray",
      spatial_network_alpha = 0.5,
      show_spatial_grid = F,
      spatial_grid_name = "spatial_grid",
      spatial_grid_color = NULL,
      spatial_grid_alpha = 0.5,
      spatial_point_size = 3,
      axis_scale = c("cube", "real", "custom"),
      custom_ratio = NULL,
      x_ticks = NULL,
      y_ticks = NULL,
      z_ticks = NULL,
      legend_text_size = 12,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimPlot3D"
    )
Arguments
                    giotto object
   gobject
   plot_alignment direction to align plot
    dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
   dim1_to_use
                    dimension to use on x-axis
                    dimension to use on y-axis
   dim2_to_use
   dim3_to_use
                    dimension to use on z-axis
    sdimx
                    = spatial dimension to use on x-axis
    sdimy
                    = spatial dimension to use on y-axis
    sdimz
                    = spatial dimension to use on z-axis
    spat_enr_names names of spatial enrichment results to include
    show_NN_network
                    show underlying NN network
    nn_network_to_use
                    type of NN network to use (kNN vs sNN)
                    name of NN network to use, if show_NN_network = TRUE
   network_name
    nn_network_color
                    color of nn network
   nn_network_alpha
```

column to use for alpha of the edges

258 spatDimPlot3D

show_cluster_center show the center of each cluster show_center_label provide a label for each cluster center_point_size size of the center point label size size of the center label select_cell_groups select subset of cells/clusters based on cell_color parameter select subset of cells based on cell IDs select_cells show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors dim_point_size size of points in dim. reduction space show_spatial_network show spatial network spatial_network_name name of spatial network to use spatial_network_color color of spatial network spatial_network_alpha alpha of spatial network show_spatial_grid show spatial grid spatial_grid_name name of spatial grid to use spatial_grid_color color of spatial grid $spatial_grid_alpha$ alpha of spatial grid spatial_point_size size of spatial points the way to scale the axis axis_scale customize the scale of the plot custom_ratio set the number of ticks on the x-axis x_ticks y_ticks set the number of ticks on the y-axis set the number of ticks on the z-axis z_ticks legend_text_size

size of legend

spatGenePlot 259

```
show_plot show plot
```

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters, see showSaveParameters

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

Description of parameters.

Value

plotly

See Also

Other spatial and dimension reduction visualizations: spatDimPlot2D(), spatDimPlot()

Examples

```
spatDimPlot3D(gobject)
```

spatGenePlot

spatGenePlot

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
spatGenePlot(...)
```

Arguments

... Arguments passed on to spatGenePlot2D

gobject giotto object

show_image show a tissue background image

gimage a giotto image

image_name name of a giotto image

sdimx x-axis dimension name (default = 'sdimx')
sdimy y-axis dimension name (default = 'sdimy')

expression_values gene expression values to use

genes genes to show

cell_color_gradient vector with 3 colors for numeric data

gradient_midpoint midpoint for color gradient
gradient_limits vector with lower and upper limits

show_network show underlying spatial network

260 spatGenePlot

```
network_color color of spatial network
spatial_network_name name of spatial network to use
edge_alpha alpha of edge
show_grid show spatial grid
grid_color color of spatial grid
spatial_grid_name name of spatial grid to use
midpoint expression midpoint
scale_alpha_with_expression scale expression with ggplot alpha parameter
point_shape shape of points (border, no_border or voronoi)
point_size size of point (cell)
point_alpha transparancy of points
point_border_col color of border around points
point_border_stroke stroke size of border around points
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_legend show legend
legend_text size of legend text
background_color color of plot background
vor_border_color border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha transparancy of voronoi 'cells'
axis_text size of axis text
axis_title size of axis title
show_plot show plots
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatGenePlot3D and spatGenePlot2D
```

Other spatial gene expression visualizations: spatGenePlot2D(), spatGenePlot3D()

Examples

```
spatGenePlot(gobject)
```

spatGenePlot2D 261

spatGenePlot2D

spatGenePlot2D

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
spatGenePlot2D(
 gobject,
  show_image = F,
 gimage = NULL,
  image_name = "image",
  sdimx = "sdimx",
  sdimy = "sdimy",
  expression_values = c("normalized", "scaled", "custom"),
 genes,
  cell_color_gradient = c("blue", "white", "red"),
 gradient_midpoint = NULL,
 gradient_limits = NULL,
 show_network = F,
 network_color = NULL,
  spatial_network_name = "Delaunay_network",
  edge_alpha = NULL,
 show\_grid = F,
 grid_color = NULL,
  spatial_grid_name = "spatial_grid",
 midpoint = 0,
  scale_alpha_with_expression = FALSE,
 point_shape = c("border", "no_border", "voronoi"),
  point_size = 1,
 point_alpha = 1,
 point_border_col = "black",
 point_border_stroke = 0.1,
  show_legend = T,
 legend_text = 8,
 background_color = "white",
 vor_border_color = "white",
  vor_alpha = 1,
  vor_max_radius = 200,
 axis_text = 8,
 axis_title = 8,
 cow_n_col = 2,
 cow_rel_h = 1,
 cow_rel_w = 1,
  cow_align = "h",
  show_plot = NA,
 return_plot = NA,
  save_plot = NA,
  save_param = list(),
```

262 spatGenePlot2D

```
default_save_name = "spatGenePlot2D"
)
```

Arguments

gobject giotto object

show_image show a tissue background image

gimage a giotto image

image_name name of a giotto image

sdimx x-axis dimension name (default = 'sdimx')
sdimy y-axis dimension name (default = 'sdimy')

expression_values

gene expression values to use

genes genes to show

cell_color_gradient

vector with 3 colors for numeric data

gradient_midpoint

midpoint for color gradient

gradient_limits

vector with lower and upper limits

show_network show underlying spatial network

network_color color of spatial network

spatial_network_name

name of spatial network to use

edge_alpha alpha of edge show_grid show spatial grid grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

midpoint expression midpoint
scale_alpha_with_expression

scale expression with ggplot alpha parameter

point_shape shape of points (border, no_border or voronoi)

point_size size of point (cell)

point_alpha transparancy of points

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

show_legend show legend

legend_text size of legend text

background_color

color of plot background

vor_border_color

border colorr for voronoi plot

spatGenePlot3D 263

```
vor_alpha
                  transparancy of voronoi 'cells'
vor_max_radius maximum radius for voronoi 'cells'
axis_text
                  size of axis text
axis_title
                  size of axis title
                  cowplot param: how many columns
cow_n_col
cow_rel_h
                  cowplot param: relative height
cow_rel_w
                  cowplot param: relative width
                  cowplot param: how to align
cow_align
show_plot
                  show plots
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatGenePlot3D
```

Other spatial gene expression visualizations: spatGenePlot3D(), spatGenePlot()

Examples

```
spatGenePlot2D(gobject)
```

spatGenePlot3D spatGe	enePlot3D
-----------------------	-----------

Description

Visualize cells and gene expression according to spatial coordinates

264 spatGenePlot3D

Usage

```
spatGenePlot3D(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
  genes,
  show_network = FALSE,
 network_color = NULL,
  spatial_network_name = "Delaunay_network",
 edge_alpha = NULL,
 cluster_column = NULL,
  select_cell_groups = NULL,
 select_cells = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
 genes_high_color = NULL,
 genes_mid_color = "white",
 genes_low_color = "blue",
  show_grid = FALSE,
  spatial_grid_name = "spatial_grid",
  point_size = 2,
  show_legend = TRUE,
  axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL,
 x_ticks = NULL,
 y_ticks = NULL,
 z_ticks = NULL,
  show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "spatGenePlot3D"
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
genes
                  genes to show
                  show underlying spatial network
show_network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
edge_alpha
                  alpha of edges
cluster_column cluster column to select groups
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
```

spatGenePlot3D 265

```
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
genes_high_color
                  color represents high gene expression
genes_mid_color
                  color represents middle gene expression
genes_low_color
                  color represents low gene expression
show_grid
                  show spatial grid
spatial_grid_name
                  name of spatial grid to use
point_size
                  size of point (cell)
show_legend
                  show legend
axis_scale
                  the way to scale the axis
custom_ratio
                  customize the scale of the plot
x_ticks
                  set the number of ticks on the x-axis
y_ticks
                  set the number of ticks on the y-axis
z_ticks
                  set the number of ticks on the z-axis
show_plot
                  show plots
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

Other spatial gene expression visualizations: spatGenePlot2D(), spatGenePlot()

Examples

```
spatGenePlot3D(gobject)
```

266 spatialAEH

spatialAEH spatialAEH

Description

Compute spatial variable genes with spatialDE method

Usage

```
spatialAEH(
  gobject = NULL,
  SpatialDE_results = NULL,
  name_pattern = "AEH_patterns",
  expression_values = c("raw", "normalized", "scaled", "custom"),
  pattern_num = 6,
  l = 1.05,
  python_path = NULL,
  return_gobject = TRUE
)
```

Arguments

Details

This function is a wrapper for the SpatialAEH method implemented in the ...

Value

An updated giotto object

spatialDE 267

spatialDE	spatialDE
spatialDE	spati

Description

Compute spatial variable genes with spatialDE method

Usage

```
spatialDE(
  gobject = NULL,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  size = c(4, 2, 1),
  color = c("blue", "green", "red"),
  sig_alpha = 0.5,
  unsig_alpha = 0.5,
  python_path = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "SpatialDE"
)
```

Arguments

```
gobject
                  Giotto object
expression_values
                  gene expression values to use
size
                  size of plot
color
                  low/medium/high color scheme for plot
sig_alpha
                  alpha value for significance
unsig_alpha
                  alpha value for unsignificance
                  specify specific path to python if required
python_path
show_plot
                  show plot
                  return ggplot object
return_plot
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

This function is a wrapper for the SpatialDE method implemented in the ...

Value

a list of data.frames with results and plot (optional)

268 spatNetwDistributions

```
{\tt spatNetwDistributions} \ \textit{spatNetwDistributionsDistance}
```

Description

This function return histograms displaying the distance distribution for each spatial k-neighbor

Usage

```
spatNetwDistributions(
  gobject,
  spatial_network_name = "spatial_network",
  distribution = c("distance", "k_neighbors"),
  hist_bins = 30,
  test_distance_limit = NULL,
  ncol = 1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "spatNetwDistributions"
)
```

Arguments

```
gobject
                  Giotto object
spatial_network_name
                  name of spatial network
distribution
                  show the distribution of cell-to-cell distance or number of k neighbors
hist_bins
                  number of binds to use for the histogram
test_distance_limit
                  effect of different distance threshold on k-neighbors
                  number of columns to visualize the histograms in
ncol
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, alternatively change save_name in save_param
```

Details

The **distance** option shows the spatial distance distribution for each nearest neighbor rank (1st, 2nd, 3th, ... neigbor). With this option the user can also test the effect of a distance limit on the spatial network. This distance limit can be used to remove neigbor cells that are considered to far away. The **k_neighbors** option shows the number of k neighbors distribution over all cells.

Value

```
ggplot plot
```

Examples

```
spatNetwDistributionsDistance(gobject)
```

```
spat {\tt NetwDistributionsDistance} \\ spat {\tt NetwDistributionsDistance}
```

Description

This function return histograms displaying the distance distribution for each spatial k-neighbor

Usage

```
spatNetwDistributionsDistance(
  gobject,
  spatial_network_name = "spatial_network",
  hist_bins = 30,
  test_distance_limit = NULL,
  ncol = 1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "spatNetwDistributionsDistance")
```

Arguments

```
gobject
                  Giotto object
spatial_network_name
                  name of spatial network
                  number of binds to use for the histogram
hist_bins
test_distance_limit
                  effect of different distance threshold on k-neighbors
ncol
                  number of columns to visualize the histograms in
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, alternatively change save_name in save_param
```

Value

```
ggplot plot
```

Examples

```
spatNetwDistributionsDistance(gobject)
```

```
spat Netw Distributions Kneighbors \\ spat Netw Distributions Kneighbors
```

Description

This function returns a histogram displaying the number of k-neighbors distribution for each cell

Usage

```
spatNetwDistributionsKneighbors(
  gobject,
  spatial_network_name = "spatial_network",
  hist_bins = 30,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "spatNetwDistributionsKneighbors")
```

Arguments

```
Giotto object
gobject
spatial_network_name
                  name of spatial network
hist_bins
                  number of binds to use for the histogram
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, alternatively change save_name in save_param
```

Value

ggplot plot

Examples

```
spatNetwDistributionsKneighbors(gobject)
```

spatPlot 271

spatPlot spatPlot

Description

Visualize cells according to spatial coordinates

Usage

```
spatPlot(...)
```

Arguments

```
Arguments passed on to spatPlot2D
gobject giotto object
show_image show a tissue background image
gimage a giotto image
image_name name of a giotto image
group_by create multiple plots based on cell annotation column
group_by_subset subset the group_by factor column
sdimx x-axis dimension name (default = 'sdimx')
sdimy y-axis dimension name (default = 'sdimy')
spat_enr_names names of spatial enrichment results to include
cell_color color for cells (see details)
color_as_factor convert color column to factor
cell_color_code named vector with colors
cell_color_gradient vector with 3 colors for numeric data
gradient_midpoint midpoint for color gradient
gradient_limits vector with lower and upper limits
select_cell_groups select subset of cells/clusters based on cell_color param-
    eter
select_cells select subset of cells based on cell IDs
point_shape shape of points (border, no_border or voronoi)
point_size size of point (cell)
point_alpha transparancy of point
point_border_col color of border around points
point_border_stroke stroke size of border around points
show_cluster_center plot center of selected clusters
show_center_label plot label of selected clusters
center_point_size size of center points
center_point_border_col border color of center points
center_point_border_stroke border stroke size of center points
label_size size of labels
label_fontface font of labels
show_network show underlying spatial network
spatial_network_name name of spatial network to use
```

272 spatPlot

```
network_color color of spatial network
network_alpha alpha of spatial network
show_grid show spatial grid
spatial_grid_name name of spatial grid to use
grid_color color of spatial grid
show_other_cells display not selected cells
other_cell_color color of not selected cells
other_point_size point size of not selected cells
other_cells_alpha alpha of not selected cells
coord_fix_ratio fix ratio between x and y-axis
title title of plot
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
vor_border_color border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha transparancy of voronoi 'cells'
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatPlot3D
```

Other spatial visualizations: spatPlot2D(), spatPlot3D()

Examples

```
spatPlot(gobject)
```

spatPlot2D 273

spatPlot2D

spatPlot2D

Description

Visualize cells according to spatial coordinates

Usage

```
spatPlot2D(
 gobject,
  show_image = F,
  gimage = NULL,
  image_name = "image",
 group_by = NULL,
 group_by_subset = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  spat_enr_names = NULL,
 cell_color = NULL,
 color_as_factor = T,
 cell_color_code = NULL,
 cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
 select_cell_groups = NULL,
  select_cells = NULL,
 point_shape = c("border", "no_border", "voronoi"),
 point_size = 3,
 point_alpha = 1,
 point_border_col = "black",
  point_border_stroke = 0.1,
  show_cluster_center = F,
  show_center_label = F,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
 label_fontface = "bold",
  show_network = F,
  spatial_network_name = "Delaunay_network",
 network_color = NULL,
 network_alpha = 1,
  show_grid = F,
  spatial_grid_name = "spatial_grid",
 grid_color = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
 other_cells_alpha = 0.1,
  coord_fix_ratio = NULL,
```

274 spatPlot2D

```
title = NULL,
  show_legend = T,
  legend_text = 8,
  legend_symbol_size = 1,
  background_color = "white",
  vor_border_color = "white",
  vor_max_radius = 200,
  vor_alpha = 1,
  axis_text = 8,
  axis_title = 8,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
 save_param = list(),
 default_save_name = "spatPlot2D"
)
```

Arguments

```
gobject
                  giotto object
                  show a tissue background image
show_image
                  a giotto image
gimage
                  name of a giotto image
image_name
                  create multiple plots based on cell annotation column
group_by
group_by_subset
                  subset the group_by factor column
                  x-axis dimension name (default = 'sdimx')
sdimx
                  y-axis dimension name (default = 'sdimy')
sdimy
spat_enr_names names of spatial enrichment results to include
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
cell_color_gradient
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
                  shape of points (border, no_border or voronoi)
point_shape
point_size
                  size of point (cell)
```

spatPlot2D 275

point_alpha transparancy of point point_border_col color of border around points point_border_stroke stroke size of border around points show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points center_point_border_col border color of center points ${\tt center_point_border_stroke}$ border stroke size of center points label_size size of labels label_fontface font of labels show_network show underlying spatial network spatial_network_name name of spatial network to use color of spatial network network_color alpha of spatial network network_alpha show_grid show spatial grid spatial_grid_name name of spatial grid to use grid_color color of spatial grid show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size point size of not selected cells other_cells_alpha alpha of not selected cells coord_fix_ratio fix ratio between x and y-axis title title of plot show_legend show legend legend_text size of legend text legend_symbol_size size of legend symbols background_color color of plot background vor_border_color border colorr for voronoi plot vor_max_radius maximum radius for voronoi 'cells' 276 spatPlot3D

```
vor_alpha
                  transparancy of voronoi 'cells'
                  size of axis text
axis_text
                  size of axis title
axis_title
cow_n_col
                  cowplot param: how many columns
                  cowplot param: relative height
cow_rel_h
                  cowplot param: relative width
cow_rel_w
                  cowplot param: how to align
cow_align
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatPlot3D
```

Other spatial visualizations: spatPlot3D(), spatPlot()

Examples

```
spatPlot2D(gobject)
```

spatPlot3D spatPlot3D

Description

Visualize cells according to spatial coordinates

Usage

```
spatPlot3D(
  gobject,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  spat_enr_names = NULL,
  point_size = 3,
  cell_color = NULL,
```

spatPlot3D 277

```
cell_color_code = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  other_cell_alpha = 0.5,
  show_network = F,
  spatial_network_name = "Delaunay_network",
  network_color = NULL,
  network_alpha = 1,
  show\_grid = F,
  spatial_grid_name = "spatial_grid",
  grid_color = NULL,
  grid_alpha = 1,
  title = "",
  show_legend = T,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "spat3D"
)
```

Arguments

```
gobject
                  giotto object
sdimx
                  x-axis dimension name (default = 'sdimx')
sdimy
                  y-axis dimension name (default = 'sdimy')
sdimz
                  z-axis dimension name (default = 'sdimy')
spat_enr_names names of spatial enrichment results to include
                  size of point (cell)
point_size
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
```

278 spatPlot3D

other_cell_alpha

alpha of not selected cells

show_network show underlying spatial network

spatial_network_name

name of spatial network to use

network_color color of spatial network

network_alpha opacity of spatial network

show_grid show spatial grid

spatial_grid_name

name of spatial grid to use

grid_color color of spatial grid grid_alpha opacity of spatial grid

title title of plot show_legend show legend

axis_scale the way to scale the axis

custom_ratio customize the scale of the plot

x_ticks set the number of ticks on the x-axis y_ticks set the number of ticks on the y-axis

z_ticks set the number of ticks on the z-axis

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters, see showSaveParameters

default_save_name

default save name for saving, don't change, change save_name in save_param

Value

ggplot

See Also

Other spatial visualizations: spatPlot2D(), spatPlot()

Examples

spatPlot3D(gobject)

```
specific Cell Cell communication Scores\\ specific Cell Cell communication Scores
```

Description

Specific Cell-Cell communication scores based on spatial expression of interacting cells

Usage

```
specificCellCellcommunicationScores(
  gobject,
  spatial_network_name = "Delaunay_network",
  cluster_column = "cell_types",
  random_iter = 100,
  cell_type_1 = "astrocyte",
  cell_type_2 = "endothelial",
  gene_set_1,
  gene_set_2,
  log2FC_addendum = 0.1,
 min_observations = 2,
 detailed = FALSE,
 adjust_method = c("fdr", "bonferroni", "BH", "holm", "hochberg", "hommel", "BY",
    "none"),
  adjust_target = c("genes", "cells"),
  verbose = T
)
```

Arguments

```
giotto object to use
gobject
spatial_network_name
                  spatial network to use for identifying interacting cells
cluster_column cluster column with cell type information
random_iter
                  number of iterations
cell_type_1
                  first cell type
cell_type_2
                  second cell type
                  first specific gene set from gene pairs
gene_set_1
gene_set_2
                  second specific gene set from gene pairs
log2FC_addendum
                  addendum to add when calculating log2FC
min_observations
                  minimum number of interactions needed to be considered
detailed
                  provide more detailed information (random variance and z-score)
                  which method to adjust p-values
adjust_method
                  adjust multiple hypotheses at the cell or gene level
adjust_target
verbose
                  verbose
```

Details

Statistical framework to identify if pairs of genes (such as ligand-receptor combinations) are expressed at higher levels than expected based on a reshuffled null distribution of gene expression values in cells that are spatially in proximity to eachother.

- LR_comb:Pair of ligand and receptor
- lig_cell_type: cell type to assess expression level of ligand
- lig_expr: average expression of ligand in lig_cell_type
- · ligand: ligand name
- rec_cell_type: cell type to assess expression level of receptor
- rec_expr: average expression of receptor in rec_cell_type
- · receptor: receptor name
- LR_expr: combined average ligand and receptor expression
- lig_nr: total number of cells from lig_cell_type that spatially interact with cells from rec_cell_type
- rec_nr: total number of cells from rec_cell_type that spatially interact with cells from lig_cell_type
- rand_expr: average combined ligand and receptor expression from random spatial permutations
- av_diff: average difference between LR_expr and rand_expr over all random spatial permutations
- sd_diff: (optional) standard deviation of the difference between LR_expr and rand_expr over all random spatial permutations
- z_score: (optinal) z-score
- log2fc: log2 fold-change (LR_expr/rand_expr)
- pvalue: p-value
- LR_cell_comb: cell type pair combination
- p.adj: adjusted p-value
- PI: significanc score: log2fc * -log10(p.adj)

Value

Cell-Cell communication scores for gene pairs based on spatial interaction

Examples

specificCellCellcommunicationScores(gobject)

stitchFieldCoordinates 281

```
stitchFieldCoordinates
```

stitchFieldCoordinates

Description

Helper function to stitch field coordinates together to form one complete picture

Usage

```
stitchFieldCoordinates(
  location_file,
  offset_file,
  cumulate_offset_x = F,
  cumulate_offset_y = F,
  field_col = "Field of View",
  X_coord_col = "X",
  Y_coord_col = "Y",
  reverse_final_x = F,
  reverse_final_y = T
)
```

Arguments

```
location dataframe with X and Y coordinates
location_file
offset_file
                  dataframe that describes the offset for each field (see details)
cumulate_offset_x
                  (boolean) Do the x-axis offset values need to be cumulated?
cumulate_offset_y
                  (boolean) Do the y-axis offset values need to be cumulated?
                  column that indicates the field within the location_file
field_col
                  column that indicates the x coordinates
X_coord_col
                  column that indicates the x coordinates
Y_coord_col
reverse_final_x
                  (boolean) Do the final x coordinates need to be reversed?
reverse_final_y
                  (boolean) Do the final y coordinates need to be reversed?
```

Details

Stitching of fields:

- 1. have cell locations: at least 3 columns: field, X, Y
- 2. create offset file: offset file has 3 columns: field, x_offset, y_offset
- 3. create new cell location file by stitching original cell locations with stitchFieldCoordinates
- 4. provide new cell location file to createGiottoObject

Value

Updated location dataframe with new X ['X_final'] and Y ['Y_final'] coordinates

282 subClusterCells

```
stitchTileCoordinates stitchTileCoordinates
```

Description

Helper function to stitch tile coordinates together to form one complete picture

Usage

```
stitchTileCoordinates(location_file, Xtilespan, Ytilespan)
```

Arguments

 $\begin{array}{ll} \mbox{location_file} & \mbox{location dataframe with } X \mbox{ and } Y \mbox{ coordinates} \\ \mbox{Xtilespan} & \mbox{numerical value specifying the width of each tile} \\ \mbox{Ytilespan} & \mbox{numerical value specifying the height of each tile} \\ \end{array}$

subClusterCells

subClusterCells

Description

subcluster cells

Usage

```
subClusterCells(
 gobject,
 name = "sub_clus",
 cluster_method = c("leiden", "louvain_community", "louvain_multinet"),
 cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_cov = 1, expression_values =
    "normalized"),
 hvg_min_perc_cells = 5,
 hvg_mean_expr_det = 1,
 use_all_genes_as_hvg = FALSE,
 min_nr_of_hvg = 5,
 pca_param = list(expression_values = "normalized", scale_unit = T),
 nn_param = list(dimensions_to_use = 1:20),
 k_neighbors = 10,
 resolution = 1,
 n_{iterations} = 1000,
 gamma = 1,
 omega = 1,
 python_path = NULL,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 return_gobject = TRUE,
  verbose = T
)
```

subClusterCells 283

Arguments

gobject giotto object

name name for new clustering result

cluster_method clustering method to use

cluster_column cluster column to subcluster

selected_clusters

only do subclustering on these clusters

hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

k_neighbors number of k for createNearestNetwork

resolution resolution

n_iterations number of interations to run the Leiden algorithm.

gamma gamma omega omega

python_path specify specific path to python if required

nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

Details

This function performs subclustering on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do clustering

Value

giotto object with new subclusters appended to cell metadata

See Also

doLouvainCluster_multinet, doLouvainCluster_community and @seealso doLeidenCluster

284 subsetGiotto

Examples

```
subClusterCells(gobject)
```

subsetGiotto

subsetGiotto

Description

subsets Giotto object including previous analyses.

Usage

```
subsetGiotto(gobject, cell_ids = NULL, gene_ids = NULL, verbose = FALSE)
```

Arguments

```
gobject giotto object
cell_ids cell IDs to keep
gene_ids gene IDs to keep
verbose be verbose
```

Value

giotto object

Examples

subsetGiottoLocs 285

 $\verb"subsetGiottoLocs"$

subsetGiottoLocs

Description

subsets Giotto object based on spatial locations

Usage

```
subsetGiottoLocs(
  gobject,
  x_max = NULL,
  x_min = NULL,
  y_max = NULL,
  y_min = NULL,
  z_max = NULL,
  z_min = NULL,
  return_gobject = T,
  verbose = FALSE
)
```

Arguments

```
gobject
                 giotto object
x_max
                 maximum x-coordinate
x\_min
                 minimum x-coordinate
                 maximum y-coordinate
y_max
                 minimum y-coordinate
y_min
                 maximum z-coordinate
z_max
z_min
                 minimum z-coordinate
return_gobject return Giotto object
                 be verbose
verbose
```

Details

if return_gobject = FALSE, then a filtered combined metadata data.table will be returned

Value

giotto object

Examples

```
data(mini_giotto_single_cell)
# spatial plot
spatPlot(mini_giotto_single_cell)
# subset giotto object based on spatial locations
```

286 trendSceek

```
subset_obj = subsetGiottoLocs(mini_giotto_single_cell,
x_max = 1500, x_min = 1000,
y_max = -500, y_min = -1000)

# spatial plot of subset giotto object
spatPlot(subset_obj)
```

trendSceek

trendSceek

Description

Compute spatial variable genes with trendsceek method

Usage

```
trendSceek(
  gobject,
  expression_values = c("normalized", "raw"),
  subset_genes = NULL,
  nrand = 100,
  ncores = 8,
  ...
)
```

Arguments

```
gobject Giotto object

expression_values

gene expression values to use

subset_genes subset of genes to run trendsceek on

nrand An integer specifying the number of random resamplings of the mark distribution as to create the null-distribution.

ncores An integer specifying the number of cores to be used by BiocParallel

... Additional parameters to the trendsceek_test function
```

Details

This function is a wrapper for the trendsceek_test method implemented in the trendsceek package

Value

data.frame with trendsceek spatial genes results

t_giotto 287

t_giotto t_giotto

Description

t function that works with multiple matrix representations

Usage

```
t_giotto(mymatrix)
```

Arguments

mymatrix

matrix object

Value

transposed matrix

updateGiottoImage

update Giot to Image

Description

Updates the boundaries of a giotto image attached to a giotto object

Usage

```
updateGiottoImage(
  gobject,
  image_name,
  xmax_adj = 0,
  xmin_adj = 0,
  ymax_adj = 0,
  ymin_adj = 0,
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object
image_name spatial locations

xmax_adj adjustment of the maximum x-value to align the image

xmin_adj adjustment of the minimum x-value to align the image

ymax_adj adjustment of the maximum y-value to align the image

ymin_adj adjustment of the minimum y-value to align the image

return_gobject return a giotto object
```

288 viewHMRFresults

Value

```
a giotto object or an updated giotto image if return_gobject = F
```

Examples

```
updateGiottoImage(gobject)
```

viewHMRFresults

viewHMRFresults

Description

View results from doHMRF.

Usage

```
viewHMRFresults(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  third_dim = FALSE,
  ...
)
```

Arguments

gobject giotto object

HMRF output from doHMRF k number of HMRF domains

betas_to_view results from different betas that you want to view

third_dim 3D data (boolean)

... additional paramters (see details)

Value

spatial plots with HMRF domains

See Also

```
spatPlot2D and spatPlot3D
```

viewHMRFresults2D 289

viewHMRFresults2D viewHMRFresults2D

Description

View results from doHMRF.

Usage

```
viewHMRFresults2D(gobject, HMRFoutput, k = NULL, betas_to_view = NULL, ...)
```

Arguments

gobject giotto object

HMRF output from doHMRF k number of HMRF domains

betas_to_view results from different betas that you want to view

... additional parameters to spatPlot2D()

Value

spatial plots with HMRF domains

See Also

spatPlot2D

viewHMRFresults3D viewHMRFresults3D

Description

View results from doHMRF.

Usage

```
viewHMRFresults3D(gobject, HMRFoutput, k = NULL, betas_to_view = NULL, ...)
```

Arguments

gobject giotto object

HMRF output from doHMRF k number of HMRF domains

betas_to_view results from different betas that you want to view

... additional parameters to spatPlot3D()

Value

spatial plots with HMRF domains

290 violinPlot

See Also

```
spatPlot3D
```

violinPlot

violinPlot

Description

Creates violinplot for selected clusters

Usage

```
violinPlot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  cluster_column,
  cluster_custom_order = NULL,
  color_violin = c("genes", "cluster"),
  cluster_color_code = NULL,
  strip_position = c("top", "right", "left", "bottom"),
  strip_text = 7,
  axis_text_x_size = 10,
  axis_text_y_size = 6,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "violinPlot"
)
```

Arguments

```
giotto object
gobject
expression_values
                  expression values to use
genes
                  genes to plot
cluster_column name of column to use for clusters
cluster_custom_order
                  custom order of clusters
color_violin
                  color violin according to genes or clusters
cluster_color_code
                  color code for clusters
strip_position position of gene labels
                  size of strip text
strip_text
axis_text_x_size
                  size of x-axis text
axis_text_y_size
                  size of y-axis text
```

writeHMRFresults 291

Value

ggplot

Examples

writeHMRFresults

writeHMRFresults

Description

write results from doHMRF to a data.table.

Usage

```
writeHMRFresults(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  print_command = F
)
```

292 writeHMRFresults

Arguments

gobject giotto object

HMRF output from doHMRF

k k to write results for

 $\verb|betas_to_view| results from different betas that you want to view$

print_command see the python command

Value

data.table with HMRF results for each b and the selected k

Index

* datasets	spatDimPlot, 249
mini_giotto_3D, 144	spatDimPlot2D, 251
<pre>mini_giotto_multi_cell, 144</pre>	spatDimPlot3D, 256
<pre>mini_giotto_single_cell, 145</pre>	* spatial cell annotation visualizations
* dimension reduction cell annotation	spatCellPlot, 228
visualizations	spatCellPlot2D, 230
dimCellPlot, 75	* spatial gene expression visualizations
dimCellPlot2D, 77	spatGenePlot, 259
* dimension reduction gene expression	spatGenePlot2D, 261
visualizations	spatGenePlot3D, 263
dimGenePlot, 80	* spatial visualizations
dimGenePlot2D, 81	spatPlot, 271
dimGenePlot3D, 84	spatPlot2D, 273
* giotto,	spatPlot3D, 276
giotto-class, 132	
* giotto	addCellIntMetadata, 7
createGiottoObject, 55	addCellMetadata, 8, 56
* object	addCellStatistics, 9, 15
giotto-class, 132	addGeneMetadata, 10, 56
* reduced dimension visualizations	addGenesPerc, 10
dimPlot, 86	addGeneStatistics, 11, 15
dimPlot2D, 87	addGiottoImage, 12
dimPlot3D, 91	addGiottoImageToSpatPlot, 13
plotPCA, 167	addHMRF, 13
plotPCA_2D, 169	addNetworkLayout, 14
plotPCA_3D, 171	addStatistics, 15
plotTSNE, 176	adjustGiottoMatrix, 15
plotTSNE_2D, 178	all_plots_save_function, 27, 30, 32, 34,
plotTSNE_3D, 180	35, 37, 39, 110, 112, 136, 149–152,
plotUMAP, 181	154–156, 158, 161, 162, 173, 174,
plotUMAP_2D, 183	219, 268–270
plotUMAP_3D, 185	anndataToGiotto, 16
* spatial and dimension reduction cell	annotateGiotto, 17
annotation visualizations	annotateSpatialGrid, 18
spatDimCellPlot, 233	annotateSpatialNetwork, 19
spatDimCellPlot2D, 235	binSpect, 19
* spatial and dimension reduction gene	binSpectMulti, 22
expression visualizations	binSpectrialtt, 22 binSpectSingle, 24
spatDimGenePlot, 240	Sinopectoringic, 27
spatDimGenePlot2D, 242	calculateHVG, 26, 199, 205, 206
spatDimGenePlot3D, 246	calculateMetaTable, 28
* spatial and dimension reduction	calculateMetaTableCells, 29
visualizations	cellProximityBarplot, 29
	- I /

294 INDEX

cellProximityEnrichment, 31	dimPlot2D, 86, 87, 87, 92, 167–170, 172,
cellProximityHeatmap, 32	176–179, 181–184, 186
cellProximityNetwork, 33	dimPlot3D, 79, 87, 90, 91, 168, 170-172, 177
cellProximitySpatPlot, 34	179–181, 183–186
cellProximitySpatPlot2D, 34, 35, 36	doHclust, <i>46</i> , 93
cellProximitySpatPlot3D, 35, 38	doHMRF, 94
cellProximityVisPlot, 40	doKmeans, <i>46</i> , 95
changeGiottoInstructions, 42	doLeidenCluster, 46, 97, 100, 283
changeImageBg, 43	doLeidenSubCluster,98
checkGiottoEnvironment, 43	doLouvainCluster, 46, 100
cluster_walktrap, 103	doLouvainCluster_community, 46, 101, 103
clusterCells, 44	283
clusterSpatialCorGenes, 46	doLouvainCluster_multinet, 46, 101, 103,
colMeans_giotto, 47	283
colSums_giotto, 48	doLouvainSubCluster, 101
combCCcom, 48, <i>173</i> , <i>174</i>	doRandomWalkCluster, 46, 103
combineCellProximityGenes, 49	doSNNCluster, 46, 104
combineCPG, 50	download.file, <i>132</i>
combineMetadata, 51	
convertEnsemblToGeneSymbol, 51	estimateImageBg, 105
<pre>create_cell_type_random_cell_IDs, 67</pre>	exportGiottoViewer, 105
create_crossSection_object, 68	exprCellCellcom, 107, 148, 149
createCrossSection, 52	
createGiottoImage, 12, 13, 53	fDataDT, 108
createGiottoInstructions, 54, 56, 57, 138	filterCellProximityGenes, 108
createGiottoObject, 17, 55, 138, 144, 145,	filterCombinations, 109, 113
281	filterCPG, 111
createGiottoVisiumObject, 57	filterDistributions, 112
createMetagenes, 58	filterGiotto, 113
createNearestNetwork, 59	findCellProximityGenes, 114
createSpatialDefaultGrid, 61, 64	findCPG, 116
createSpatialDelaunayNetwork, 62	findGiniMarkers, 117, 120, 121
createSpatialEnrich, 63, 106	findGiniMarkers_one_vs_all, 119, 123
createSpatialGrid, 64	findMarkers, 120, 126
createSpatialKNNnetwork, 65	findMarkers_one_vs_all, 122
createSpatialNetwork, 66, 73	findMastMarkers, 121, 123, 125
crossSectionGenePlot, 69	findMastMarkers_one_vs_all, 123, 124
crossSectionGenePlot3D, 70	findNetworkNeighbors, 125
crossSectionPlot, 71, 71	findScranMarkers, 121, 126, 128
crossSectionPlot3D, 72	findScranMarkers_one_vs_all, 123, 127
	get10Xmatrix, 128
delaunayn, 63	getClusterSimilarity, 129
deldir, 63	getDendrogramSplits, 129
detectSpatialCorGenes, 73	getDistinctColors, 130
detectSpatialPatterns, 74	getGiottoImage, 131
dimCellPlot, 75, 79	getSpatialDataset, 131
dimCellPlot2D, 75, 76, 77	giotto (giotto-class), 132
dimGenePlot, 80, 83, 85	giotto-class, 132
dimGenePlot2D, 80, 81, 81, 85	510000 01000, 1 <i>02</i>
dimGenePlot3D, <i>81</i> , <i>83</i> , 84	hclust, 94
dimPlot, 86, 90, 92, 168, 170, 172, 177, 179,	Heatmap, <i>133</i>
181, 183, 184, 186	heatmSpatialCorGenes, 133

INDEX 295

hyperGeometricEnrich, 134	plotTSNE, 87, 90, 92, 168, 170, 172, 176, 179
	181, 183, 184, 186
insertCrossSectionGenePlot3D, 135	plotTSNE_2D, 87, 90, 92, 168, 170, 172, 177,
insertCrossSectionSpatPlot3D, 136	178, 181, 183, 184, 186
installGiottoEnvironment, 44, 137, 191	plotTSNE_3D, 87, 90, 92, 168, 170, 172, 177,
jackstrawPlot, 138	179, 180, 183, 184, 186
Jackson am 200, 100	plotUMAP, 87, 90, 92, 168, 170, 172, 177, 179
kmeans, 21, 23, 26, 97	181, 181, 184, 186
KMeans_arma, 21, 23, 26	plotUMAP_2D, 87, 90, 92, 168, 170, 172, 177,
kNN, 60	179, 181, 183, 183, 186
	plotUMAP_3D, 87, 90, 92, 168, 170, 172, 177,
layout_with_drl, <i>14</i>	<i>179, 181–184</i> , 185
loadHMRF, 140	prcomp_irlba, 199
	print.giotto, 186
makeSignMatrixPAGE, 141, <i>196</i> , <i>197</i>	nonk-Enrich 142 197
makeSignMatrixRank, 141, 201	rankEnrich, 142, 187
mean_giotto, 142	rankSpatialCorGroups, 187
mergeClusters, 143	readExprMatrix, 188
mini_giotto_3D, 144	readGiottoInstructions, 189
mini_giotto_multi_cell, 144	removeBatchEffect, 16
mini_giotto_single_cell, 145	removeCellAnnotation, 189
	removeGeneAnnotation, 190
normalizeGiotto, 145	removeGiottoEnvironment, 191
n address 21 22 25	replaceGiottoInstructions, 191
p. adjust, 21, 23, 25	rowMeans_giotto, 192
PAGEEnrich, 141, 147	rowSums_giotto, 192
PCA, 199	Rtsne, 205
pDataDT, 18, 147	runDWLSDeconv, 193
permutationPA, 139, 222	runHyperGeometricEnrich, 134, 193, 203
plotCCcomDotplot, 148	runPAGEEnrich, 147, 194, 203
plotCCcomHeatmap, 149	runPAGEEnrich_OLD, 196
plotCellProximityGenes, 150	runPatternSimulation, 197
plotCombineCCcom, 152	runPCA, 198, 208
plotCombineCellCellCommunication, 153	runRankEnrich, <i>187</i> , 200, <i>203</i>
plotCombineCellProximityGenes, 154	runSpatialDeconv, 201
plotCombineCPG, 155	runSpatialEnrich, <i>51</i> , <i>63</i> , 202
plotCPG, 157	runtSNE, 203
plotGiottoImage, 158	runUMAP, 205
plotHeatmap, 159	
plotICG, 161	screePlot, 207
plotInteractionChangedGenes, 162	selectPatternGenes, 208
plotMetaDataCellsHeatmap, 163, 166	${\sf show}, {\sf giotto-method}, {\sf 209}$
plotMetaDataHeatmap, 164, 165	showClusterDendrogram, 210
plotPCA, 87, 90, 92, 167, 170, 172, 177, 179,	showClusterHeatmap, 211
181, 183, 184, 186	showGiottoImageNames, 131, 158, 212
plotPCA_2D, 87, 90, 92, 168, 169, 172, 177,	showGiottoInstructions, 213
179, 181, 183, 184, 186	showGrids, <i>18</i> , 213
plotPCA_3D, 87, 90, 92, 168, 170, 171, 177,	showNetworks, 214
179, 181, 183, 184, 186	showPattern, 214
plotRankSpatvsExpr, 172	showPattern2D, 214, 215, 215
plotRecovery, 173	showPattern3D, 216
plotRecovery_sub, 174	showPatternGenes, 217
plotStatDelaunayNetwork, 175	showProcessingSteps, 219

296 INDEX

```
showSaveParameters, 76, 79, 81, 83, 85, 87,
                                                  updateGiottoImage, 287
         90, 92, 133, 160, 164, 166, 168, 170,
                                                  viewHMRFresults, 288
         172, 176, 177, 179, 181, 182, 184,
                                                  viewHMRFresults2D, 289
         186, 188, 210, 212, 215–218, 219,
                                                  viewHMRFresults3D, 289
         229, 233, 235, 240, 242, 245, 248,
                                                  violinPlot, 290
         251, 255, 259, 260, 263, 265, 267,
         272, 276, 278, 291
                                                  writeHMRFresults, 291
showSpatialCorGenes, 74, 220
signPCA, 221
                                                  zlm, 124
silhouetteRank, 222, 222
silhouetteRank_test, 223
simulateOneGenePatternGiottoObject,
sNN, 60
sNNclust, 104
spark, 225
spark.vc, 225
spatCellCellcom, 48, 148, 149, 226
spatCellPlot, 228, 233
spatCellPlot2D, 228, 229, 230
spatDimCellPlot, 233, 240
spatDimCellPlot2D, 233, 235, 235
spatDimGenePlot, 240, 246, 249
spatDimGenePlot2D, 241, 242, 242, 249
spatDimGenePlot3D, 242, 246, 246
spatDimPlot, 249, 256, 259
spatDimPlot2D, 249, 251, 251, 259
spatDimPlot3D, 251, 256, 256
spatGenePlot, 259, 263, 265
spatGenePlot2D, 70, 259, 260, 261, 265
spatGenePlot3D, 70, 260, 263, 263
spatialAEH, 266
spatialDE, 266, 267
{\tt spatNetwDistributions}, 268
spatNetwDistributionsDistance, 269
spatNetwDistributionsKneighbors, 270
spatPlot, 271, 276, 278
spatPlot2D, 271, 272, 273, 278, 288, 289
spatPlot3D, 272, 276, 276, 288, 290
specificCellCellcommunicationScores,
         279
stitchFieldCoordinates, 56, 281
stitchTileCoordinates. 282
subClusterCells, 282
subsetGiotto, 284
subsetGiottoLocs, 285
t_giotto, 287
trendSceek, 286
trendsceek_test, 286
triangulate, 63
umap, 206
```