MxNet Gluon

Basics, Computer Vision, NLP (and even more NLP)
Part II (Neural Networks 101)

Leonard Lausen
Haibin Lin
Alex Smola

Outline

8:30-9:15	Installation and Basics (NDArray, AutoGrad, Libraries)
9:15-9:30	Neural Networks 101 (MLP, ConvNet, LSTM, Loss, SGD) - Part I
9:30-10:00	Break
10:00-10:30	Neural Networks 101 (MLP, ConvNet, LSTM, Loss, SGD) - Part II
10:30-11:00	Computer Vision 101 (Gluon CV)
11:00-11:30	Parallel and distributed training
11:30-12:00	Data I/O in NLP (and iterators)
12:00-13:30	Break
13:30-14:15	Embeddings
14:15-15:00	Language models (LM)
15:00-15:30	Sequence Generation from LM
15:30-16:00	Break
16:00-16:15	Sentiment analysis
16:15-17:00	Transformer Models & machine translation
17:00-17:30	Questions

My first Neural Network

Neurons

- Soma (CPU)
 Cell body combines signals
- **Dendrite** (input bus)
 Combines the inputs from several other nerve cells
- Synapse (interface)
 Interface and parameter store between neurons
- Axon (cable)
 May be up to 1m long and will transport the activation signal to neurons at different locations

Neurons

Components of a neural net

- InputsData vector x
- Targets
 What we want model to output
- Architecture
 Connectivity pattern and activation functions
- Learning rule
 Updates the parameters

MxNet Code

```
import mxnet as mx
from mxnet import gluon
                                      create a new model
net = gluon.nn.Sequential()
                                    add fully-connected layer
net.add(gluon.nn.Dense(1))
loss = gluon.loss.SoftmaxCrossEntropyLoss()
                                              instantiate a loss
+ iterator over data (and loader)
+ training loop
```


Linear models

$$y(x) = \sigma(\langle w, x \rangle)$$

Multilayer Perceptron

Multilayer Perceptron

Multilayer Perceptron Training

Layer Representation
 (each layer performs a transformation)

$$x_{i+1} = f_i(x_i, w_i)$$

Recursive Definition

$$x_{i+1} = f_i(x_i, w_i) = f_i(f_{i-1}(x_{i-1}, w_{i-1})) \dots$$

Use the chain rule for gradients

$$\partial_x f(g(x)) = f'(g(x))g'(x)$$

Backpropagation

• Layer Representation (each layer performs a transformation) $x_{i+1} = f_i(x_i, w_i)$

Gradient

$$\partial_{w_1} x_2(x) = \partial_{w_1} f_1(x_1, w_1)$$

$$\partial_{w_1} x_3(x) = \partial_{x_2} f_2(x_2, w_2) \partial_{w_1} x_2(x)$$

. . .

$$\partial_{w_i} x_{i+1}(x) = \partial_{w_i} f_i(x_i, w_i)$$

$$\partial_{w_i} x_{j+1}(x) = \partial_{x_j} f_j(x_j, w_j) \partial_{w_i} x_j(x) \text{ if } i > j$$

Backpropagation

• Layer Representation (each layer performs a transformation) $x_{i+1} = f_i(x_i, w_i)$

Gradient

$$\partial_{w_1} x_2(x) = \partial_{w_1} f_1(x_1, w_1)$$

$$\partial_{w_1} x_3(x) = \partial_{x_2} f_2(x_2, w_2) \partial_{w_1} x_2(x)$$
...

$$\partial_{w_i} x_{i+1}(x) = \partial_{w_i} f_i(x_i, w_i)$$

$$\partial_{w_i} x_{j+1}(x) = \partial_{x_j} f_j(x_j, w_j) \partial_{w_i} x_j(x) \text{ if } i > j$$

That was complicated! MXNet takes care of this for you ...

```
import mxnet as mx
                          from mxnet import gluon, autograd
                                                                nonlinearity
      second layer
                          net = gluon.nn.Sequential()
                          with net.name scope():
                             net.add(gluon.Dense(128, activation='relu'))
                             net.add(gluon.Dense(64, activation='relu'))
      loss function
                             net.add(gluon.Dense(1))
                          cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()
      forward pass
                          with autograd.record():
                              output = net(data)
                               loss = cross entropy(output, label)
backward pass
                           loss.backward()
```

Loss functions (aka - telling the network what to do)

Linear Regression (aka How Much)

Model

$$f(x) = \langle w, x \rangle + b$$

• Loss

$$l(y, f(x)) = \frac{1}{2}(y - f(x))^2$$

Logistic Regression — for "yes/no?" problems

Model (binary classification)

$$p(y|f(x)) = \frac{1}{1 + \exp(-yf(x))}$$

Loss (negative log likelihood)

$$-\log p(y|f(x)) = \log (1 + \exp(-yf(x)))$$

$$\partial_f - \log p(y|f(x)) = \frac{-y}{1 + \exp(yf(x))}$$

Softmax (aka Many Classes)

- We have k outputs
- · We want our output layer to assign probabilities to each output
- Exponential family model ensures that our output is a valid multinomial distribution $\exp(\gamma)$

$$p(y|z) = \frac{\exp(z_y)}{\sum_{y'} \exp(z_{y'})}$$

As before, loss is negative log-likelihood

$$-\log p(y|z) = \log \sum_{y'} \exp(z_{y'}) - z_y$$

Convolutional Networks

Convolutional Layers

Feature Locality
 Relevant information only in neighborhood of pixel

$$y_{ij} = \sum_{a=-\Delta}^{\Delta} \sum_{b=-\Delta}^{\Delta} W_{ij,ab} x_{i+a,j+b}$$

Translation Invariance
 Weights invariant relative to shift in point of view

$$y_{ij} = \sum_{a=-\Delta}^{\Delta} \sum_{b=-\Delta}^{\Delta} W_{ab} x_{i+a,j+b}$$

Subsampling & MaxPooling

Multiple convolutions blow up dimensionality

- Subsampling average over patches (works OK)
- MaxPooling pick the maximum over patches (much better)

LeNet in MXNet

```
net = gluon.nn.Sequential()
with net.name scope():
    net.add(gluon.nn.Conv2D(channels=20, kernel size=5, activation='tanh'))
    net.add(gluon.nn.AvgPool2D(pool size=2))
    net.add(gluon.nn.Conv2D(channels=50, kernel_size=5, activation='tanh'))
    net.add(gluon.nn.AvgPool2D(pool size=2))
    net.add(gluon.nn.Flatten())
    net.add(gluon.nn.Dense(500, activation='tanh'))
    net.add(gluon.nn.Dense(10))
loss = gluon.loss.SoftmaxCrossEntropyLoss()
(size and shape inference is automatic)
```


More Layers

The usual suspects

- gluon.nn.Dense(units=50, ...)
- gluon.nn.Activation(activation='relu')
- gluon.nn.Dropout(rate=0.3)
- gluon.nn.BatchNorm(...)
- gluon.nn.Embedding(...) for text

Convolutions

- gluon.nn.Conv1D, 2D, 3D
- gluon.nn.Conv1DTranspose, 2D, 3D for Deconvolution

Pooling Layers

• gluon.nn.MaxPool1D, 2D, 3D, gluon.nn.AvgPool1D, 2D, 3D

Sequence Models

- Temporal sequence of observations
 Purchases, likes, app use, e-mails, ad clicks, queries, ratings
- Latent state to explain behavior
 - Clusters (navigational, informational queries in search)
 - Topics (interest distributions for users over time)
 - Kalman Filter (trajectory and location modeling)

- Temporal sequence of observations
 Purchases, likes, app use, e-mails, ad clicks, queries, ratings
- Latent state to explain behavior

Are the parametric models really true?

- Temporal sequence of observations

 Purchases, likes, app use, e-mails, ad clicks, queries, ratings
- Latent state to explain behavior
 - Nonparametric model / spectral
 - Use data to determine shape
 - Sidestep approximate inference

$$h_t = f(x_{t-1}, h_{t-1})$$

$$x_t = g(x_{t-1}, h_t)$$

- Temporal sequence of observations

 Purchases, likes, app use, e-mails, ad clicks, queries, ratings
- Latent state to explain behavior
 - Plain deep network = RNN
 - Deep network with attention = LSTM / GRU ...
 (learn when to update state, how to read out)

Long Short Term Memory

Hochreiter & Schmidhuber, 1997

Long Short Term Memory

Hochreiter & Schmidhuber, 1997

$$(z_{t+1}, h_{t+1}, o_t) = \mathrm{LSTM}(z_t, h_t, x_t)$$
rnn.LSTM(num_hidden, num_layers, dropout, input_size)

don't worry - we will practice this A LOT

