高等演算法 HW3

許博翔

May 24, 2024

Notation 1. Let n be a positive integer. $[n] := \{1, 2, ..., n\}$.

Problem 0.

Problem 1, 2, 3, 4: All by myself.

Problem 5, 6: Discuss with: B10401113 張有朋

Problem 1. Consider $(x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2)$.

Equivalent ILP:

$$\max(z_1 + z_2 + z_3 + z_4).$$

$$\begin{cases} y_1 + y_2 \ge z_1 \\ y_1 + 1 - y_2 \ge z_2 \end{cases}$$
subject to:
$$\begin{cases} 1 - y_1 + y_2 \ge z_3 \\ 1 - y_1 + 1 - y_2 \ge z_4 \end{cases}$$

$$\begin{cases} y_i, z_c \in \{0, 1\} \end{cases}$$

One can see that in LP, we can set $y_1 = y_2 = \frac{1}{2}$, and get $z_1 = z_2 = z_3 = z_4 = 1$, which maximizes $z_1 + z_2 + z_3 + z_4 = 4$.

But since exactly one of the 4 clauses above must be false, $\max(z_1+z_2+z_3+z_4)=3$. \therefore the integrality gap is $\frac{3}{4}$ in this case.

Note that it can't be more than $\frac{3}{4}$ since in the following problem (or in class), we've find a solution ALG that satisfies $\frac{3}{4}OPT \leq \frac{3}{4}OPT(LP) \leq ALG \leq OPT$.

 \therefore MAX-SAT has integrality gap $\frac{3}{4}$.

Problem 2. Let the graph decribed in the problem be G.

Consider $H := G \setminus C_m$. That is, H is the single path from u to v with n edges.

Let h'_{uv} be the hitting time on graph H.

Let $R'_{eff}(u, v)$ be the equivalent resistance of u, v on H.

In class, we know that $h'_{uv} + h'_{vu} = 2n \times R'_{eff}(u, v) = 2n \times n$.

Since u, v are symmetric in H.

$$\therefore h'_{uv} = h'_{vu}.$$

$$1 \qquad 1 \qquad 2\pi^2$$

$$\therefore h'_{vu} = \frac{1}{2} \times 2n^2 = n^2.$$

Since when starting from v, one will not walk through any edge of C_m before arriving u.

$$\therefore h_{vu} = h'_{vu} = n^2.$$

Let $R_{eff}(u, v)$ be the equivalent resistance of u, v on G.

Again, in class, we know that $h_{uv} + h_{vu} = 2(m+n) \times R_{eff}(u,v) = 2(m+n)n$.

$$\therefore h_{uv} = 2(m+n)n - h_{vu} = 2(m+n)n - n^2 = 2mn + n^2.$$

Problem 3. Run A for s (we will determine s later) times independently, and let the resulting A(I) of the i-th time be X_i .

Let B(I) be the median of X_1, X_2, \ldots, X_s .

We know that
$$p := \Pr[(1 - \epsilon) \# (I) \le X_i \le (1 + \epsilon) \# (I)] \ge \frac{3}{4}$$
.

Let
$$Y = |\{i : X_i < (1 - \epsilon)\#(I)\}|, Z = |\{i : X_i > (1 + \epsilon)\#(I)\}|.$$

Let $\mu := E[Y + Z]$.

$$\mu = E[Y+Z] = \sum_{i=1}^{s} \Pr[X_i < (1-\epsilon)\#(I) \text{ or } X_i > (1+\epsilon)\#(I)] = \sum_{i=1}^{s} (1-p) = s(1-p).$$

$$\Pr[Y + Z \ge \frac{s}{2}] = \Pr[Y + Z \ge \frac{1}{2(1-p)}\mu] = \Pr[Y + Z \ge (1 + \frac{2p-1}{2(1-p)})\mu] \le \frac{1}{2(1-p)} \exp[\frac{(2p-1)^2}{2(1-p)}] = \frac{1}{2(1-p)} \exp[\frac{(2p-1$$

$$e^{-(\frac{2p-1}{2-2p})^2\mu/3} = e^{-\frac{(2p-1)^2}{4(1-p)}s/3} \stackrel{::2p-1 \ge \frac{1}{2}}{\le} e^{-\frac{1}{16(1-p)}s/3} \stackrel{::1-p \le \frac{1}{4}}{\le} e^{-\frac{s}{12}}.$$

Take $s \ge 12 \ln \frac{1}{\delta}$, and we get $\Pr[Y + Z \ge \frac{s}{2}] \le e^{-\frac{s}{12}} \le \delta$.

$$\therefore \Pr[(1-\epsilon)\#(I) \le B(I) \le (1+\epsilon)\#(I)] = 1 - \Pr[Y \ge \frac{s}{2} \lor Z \ge \frac{s}{2}] \ge 1 - \Pr[Y + Z \ge \frac{s}{2}] \ge 1 - \delta.$$

Time complexity:

Since this algorithm runs algorithm A for $12 \ln \frac{1}{\delta}$ times, it is in polynomial complexity of $n, \frac{1}{\epsilon}, \ln \frac{1}{\delta}$.

Problem 4.

Lemma 4.1. If a process succeeds with probability at least p, where p > 0 is a constant, and each time the process runs, the results are independent, then the expected number of times running the process to get a success is at most $\frac{1}{p}$.

Proof. Let T denote the number of times running the process to get a success.

E[T] = 1 + Pr[the process fails $]E[T] \le 1 + (1 - p)E[T].$

$$\Rightarrow pE[T] \le 1.$$

$$\Rightarrow \mathrm{E}[T] \leq \frac{1}{p}.$$

Lemma 4.2. The expected time complexity of step 3 is O(i).

Proof. The probability that inserting j in the rebuild process fails = the probability that collisions happen on both slots j in the rebuild process fails = the probability that collisions happen on both slots j in the rebuild process fails = the probability that collisions happen on both slots j in the rebuild process fails = the probability that $(j)^2 = (j)^2 = (j)^2$

 $(\frac{i}{4i^{1.5}})^2 = \frac{1}{16i}.$

 \Rightarrow the probability that at least one of the above fails $\leq i \times \frac{1}{16i} = \frac{1}{16}$.

... the probability that the rebuild process succeeds = 1- the probability that at least one of the above fails $\geq \frac{15}{16}$.

By **Lemma (4.1)**, the expected number of times the rebuild process is run $\leq \frac{16}{15} = O(1)$.

Since the rebuild process needs to insert at most i items, its time complexity is O(i).

 \therefore the expected time complexity of step 3 = O(i)O(1) = O(i).

Lemma 4.3. For any i, the expected total number of times step 3 is run when the i, (i + 1), ..., (2i - 1)-th insertion arrive is O(1).

Proof. If step 3 is run for 0 times, then **Lemma (4.3)** holds clearly.

Suppose that step 3 is run for the first time when the j-th insertion arrives.

For all $k = j + 1, j + 2, \dots, 2i - 1$, let p_k denote the expected probability that step

3 is run when the k-th insertion arrives.

 p_k = the expected probability that collisions happen on both slots Both tables have at most k non-empty slots \leq

 $\left(\frac{k}{\text{table size}}\right)^2 \le \left(\frac{k}{4j^{1.5}}\right)^2 \le \left(\frac{2i}{4j^{1.5}}\right)^2 \le \left(\frac{2i}{4i^{1.5}}\right)^2 = \frac{1}{4i}.$

 $\therefore \text{ the expected number of step 3 is called} = 1 + \sum_{k=j+1}^{2i-1} p_k \le 1 + \sum_{k=i}^{2i-1} p_k \le 1 + \sum_{k=i}^{2i-1} \frac{1}{4i} = \frac{5}{4} = O(1).$

Let t_i denote the total expected running time when the i, i+1, ..., 2i-1-th insertion arrive.

By Lemma (4.3), t_i is $(O(i) \text{ step } 1 \text{ or } 2) + (O(1) \text{ step } 3) \stackrel{\text{By Lemma (4.2)}}{=} O(i)O(1) + O(1)O(i) = O(i)$.

Let k be an integer such that $n \leq 2^k < 2n$.

The total expected time complexity $\leq t_1 + t_2 + t_4 + t_8 + \dots + t_{2^k} = O(1) + O(2) + O(4) + O(8) + \dots + O(2^k) = O(2^{k+1}) = O(4n) = O(n).$

Problem 5.

Lemma 5.1. For all $x \ge 0$, there is $f(x) = e^{-x} + x - 1 \ge 0$.

That is, $1 - x \le e^{-x}$.

Proof. $f'(x) = -e^{-x} + 1 \ge 0$ for all $x \ge 0$.

 $\therefore f$ is increasing in $(0, \infty)$.

$$f(0) = 1 + 0 - 1 = 0.$$

$$\therefore f(x) \ge 0 \text{ for all } x \ge 0.$$

Suppose that there are i points P_1, P_2, \ldots, P_i on the circle, where the intervals between any two points are greater than $\frac{1}{n^2}$. Pick the i+1-th point P_{i+1} uniformly at random on the circle. Let E_j denote the event that the interval formed by P_j and the P_{i+1} is less than $\frac{1}{2n^2}$.

Since E_j, E_k are disjoint for all $j \neq k$.

... The probability that the intervals between any two points are still greater than $\frac{1}{n^2} \leq 1 - \Pr[E_1 \cup E_2 \cup \dots \cup E_i] = 1 - (\Pr[E_1] + \Pr[E_2] + \dots + \Pr[E_i]) = 1 - \frac{i}{2n^2}.$... after inserting n points, the probability that the intervals between any two points are greater than $\frac{1}{n^2} \leq (1 - \frac{1}{2n^2})(1 - \frac{2}{2n^2}) \cdots (1 - \frac{n}{2n^2}) \overset{\text{By Lemma (5.1)}}{\leq} e^{-\frac{1}{2n^2}} e^{-\frac{2}{2n^2}} \cdots e^{-\frac{n}{2n^2}} = e^{-\frac{n(n+1)}{4n^2}} \leq e^{-\frac{n^2}{4n^2}} = e^{-\frac{1}{4}}.$

 \therefore the probability that the size of the smallest interval is less than $\frac{1}{n^2}$

= 1– the probability that the intervals between any two points are greater than $\frac{1}{n^2}$ $\geq 1 - e^{-\frac{1}{4}} = \Omega(1)$.

Problem 6. Suppose that the a_1, a_2, \ldots, a_{2n} are 2n points chosen uniform randomly in [0, 1].

WLOG suppose that the intervals of the first slot are $[a_1, a_1 + x], [a_2, a_2 + y] \pmod{1}$, and WLOG suppose that $a_2 - a_1 \pmod{1} \le \frac{1}{-}$.

and WLOG suppose that
$$a_2 - a_1 \pmod{1} \le \frac{1}{2}$$
.

$$\Pr[x + y < \frac{1}{4n\sqrt{n}}] < \Pr[x < \frac{1}{4n\sqrt{n}} \land y < \frac{1}{4n\sqrt{n}}].$$

Let
$$A_1 := [a_1, a_1 + \frac{1}{4n\sqrt{n}}), A_2 := [a_2, a_2 + \frac{1}{4n\sqrt{n}}).$$

There are two cases that $x < \frac{1}{4n\sqrt{n}} \land y < \frac{1}{4n\sqrt{n}}$.

Case 1: $a_2 \in A_1$.

x is guaranteed to $<\frac{1}{4n\sqrt{n}}$ in this case.

The probability that case 1 happens = $\frac{1}{4n\sqrt{n}}$.

$$\Pr[y < \frac{1}{4n\sqrt{n}}] = \Pr[a_3 \in A_2 \lor \dots \lor a_{2n} \in A_2] \le \sum_{i=3}^{2n} \Pr[a_i \in A_2] = \sum_{i=3}^{2n} \frac{1}{4n\sqrt{n}} = \frac{2n-2}{4n\sqrt{n}} \le \frac{2n}{4n\sqrt{n}} = \frac{1}{2\sqrt{n}}.$$
Case 2: $a_0 \notin A_1$

The probability that case 2 happens = $1 - \frac{1}{4n\sqrt{n}}$.

By the assumption that $a_2 - a_1 \pmod{1} \le \frac{1}{2}$, there is $A_1 \cap A_2 = \emptyset$.

$$\Pr[x < \frac{1}{4n\sqrt{n}} \land y < \frac{1}{4n\sqrt{n}}] = \Pr[\bigcup_{i=3}^{2n} \bigcup_{j=i+1}^{2n} (a_i \in A_1 \land a_j \in A_2) \lor (a_i \in A_2 \land a_j \in A_1)] \le$$

$$\sum_{i=3}^{2n} \sum_{j=i+1}^{2n} \Pr[(a_i \in A_1 \land a_j \in A_2) \lor (a_i \in A_2 \land a_j \in A_1)] = \sum_{i=3}^{2n} \sum_{j=i+1}^{2n} 2 \times \frac{1}{4n\sqrt{n}} \times \frac{1}{4n\sqrt{n}} = \sum_{i=3}^{2n} 2 \times \frac{1}{4n\sqrt{n}} = \sum_{i=3}^{2n}$$

$$\binom{2n-2}{2} \times 2 \times \frac{1}{16n^3} \le \frac{4n^2}{16n^3} = \frac{1}{4n}.$$

$$\therefore \Pr[x+y < \frac{1}{4n\sqrt{n}}] \le \frac{1}{4n\sqrt{n}} \times \frac{1}{2\sqrt{n}} + (1 - \frac{1}{4n\sqrt{n}}) \times \frac{1}{4n} \le \frac{1}{8n^2} + \frac{1}{4n} \le \frac{1}{2n}.$$

 $\Pr[\text{ the size of the smallest interval} < \frac{1}{4n\sqrt{n}}]$

=
$$\Pr[\bigcup_{i=1}^{n} (\text{ the size of the interval of the } i\text{-th slot} < \frac{1}{4n\sqrt{n}})]$$

$$\leq \sum_{i=1}^{n} \Pr[$$
 the size of the interval of the *i*-th slot $< \frac{1}{4n\sqrt{n}}]$

$$\leq \sum_{i=1}^{n} \frac{1}{2n} = \frac{1}{2}.$$

... the size of the smallest interval is at least $\frac{1}{4n\sqrt{n}}$ with probability $\geq 1 - \frac{1}{2} = \frac{1}{2} = \Omega(1)$.