6.6 Prove that if V is a real inner-product space, then

$$\langle u, v \rangle = \frac{||u + v||^2 - ||u - v||^2}{4}$$

for all $u.v \in V$.

Proof. Let V be a real inner-product space and let $u, v \in V$. We have that

$$\frac{||u+v||^2 - ||u-v||^2}{4} = \frac{\langle u+v, u+v \rangle - \langle u-v, u-v \rangle}{4}$$

$$= \frac{\langle u, u+v \rangle + \langle v, u+v \rangle - \langle u, u-v \rangle - \langle -v, u-v \rangle}{4}$$

$$= \frac{\langle u+v, u \rangle + \langle u+v, v \rangle - \langle u-v, u \rangle + \langle v, u-v \rangle}{4}$$

$$= \frac{\langle u, u \rangle + \langle v, u \rangle + \langle u, v \rangle + \langle v, v \rangle - \langle u, u \rangle + \langle v, u \rangle + \langle u-v, v \rangle}{4}$$

$$= \frac{\langle v, u \rangle + \langle u, v \rangle + \langle v, v \rangle + \langle v, u \rangle + \langle u-v, v \rangle}{4}$$

$$= \frac{\langle v, u \rangle + \langle u, v \rangle + \langle v, v \rangle + \langle v, u \rangle + \langle u, v \rangle - \langle v, v \rangle}{4}$$

$$= \frac{\langle v, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle u, v \rangle}{4}$$

$$= \frac{\langle v, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle u, v \rangle}{4}$$

$$= \frac{\langle u, v \rangle + \langle u, v \rangle + \langle u, v \rangle + \langle u, v \rangle}{4}$$

$$= \frac{\langle u, v \rangle + \langle u, v \rangle + \langle u, v \rangle + \langle u, v \rangle}{4}$$

$$= \frac{\langle u, v \rangle + \langle u, v \rangle + \langle u, v \rangle + \langle u, v \rangle}{4}$$

$$= \frac{\langle u, v \rangle + \langle u, v \rangle + \langle u, v \rangle + \langle u, v \rangle}{4}$$

$$= \frac{\langle u, v \rangle + \langle u, v \rangle + \langle u, v \rangle + \langle u, v \rangle}{4}$$

6.10 On $\mathcal{P}_2(\mathbb{R})$, consider the inner product given by

$$\langle p, q \rangle = \int_0^1 p(x)q(x)dx.$$

Apply the Gram-Schmidt procedure to the basis $(1, x, x^2)$ to produce an orthonormal basis of $\mathcal{P}_2(\mathbb{R})$.

Solution.

6.13 Suppose (e_1,\ldots,e_m) is an orthonormal list of vectors in V. Let $v\in V$. Prove that

$$||v||^2 = |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_m \rangle|^2$$

if and only if $v \in \text{span}(e_1, \dots, e_m)$.

Proof. Suppose (e_1, \ldots, e_m) is an orthonormal list of vectors in V and let $v \in V$.

(\Leftarrow) Assume that $v \in \text{span}(e_1, \dots, e_m)$. Therefore $v = a_1e_1 + \dots + a_me_m$ for some scalars a_1, \dots, a_m . By the orthonomality of (e_1, \dots, e_m) , it follows that $\langle v, e_i \rangle = a_i$ for

all $j \in \{1, 2, \dots, m\}$, so we have that

$$||v||^2 = ||a_1e_1 + \dots + a_me_m||^2$$

$$= ||\langle v, e_1 \rangle e_1 + \dots + \langle v, e_m \rangle e_m||^2$$

$$= |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_m \rangle|^2$$
 [Proposition 6.15]

6.17 Prove that if $P \in \mathcal{L}(V)$ is such that $P^2 = P$ and every vector in null P is orthogonal to every vector in range P, then P is an orthogonal projection.

Proof.

6.29 Suppose $T \in \mathcal{L}(\mathcal{V})$ and U is a subspace of V. Prove that U is invariant under T if and only if U^{\perp} is invariant under T^* .

Proof.