Qiulin Fan

Assignment webHW5 due 02/19/2024 at 11:59pm EST

ma217-w24

Problem 1. (1 point)

Suppose that A is a matrix with 9 rows and 12 columns, and that there exist vectors $\vec{v}_1, \dots, \vec{v}_5 \in \mathbb{R}^{12}$ for which $A\vec{v}_1, \dots, A\vec{v}_5$ are linearly independent.

- a) What is the minimum possible value of rank(A)? $rank(A) \ge$ _____.
- b) What is the maximum possible value of the nullity of A? nullity(A) \leq _____.

Answer(s) submitted:

57

submitted: (correct) recorded: (correct)

Problem 2. (1 point)

Let

$$A = \left[\begin{array}{rrr} -2 & 2 & 0 \\ 1 & -1 & 0 \\ -2 & 2 & 0 \\ -3 & 3 & 0 \end{array} \right].$$

Find dimensions of the kernel and image of $T(\vec{x}) = A\vec{x}$.

 $\dim(\operatorname{Ker}(A)) = \underline{\hspace{1cm}},$

 $\dim(\operatorname{Im}(A)) = \underline{\hspace{1cm}}.$

Answer(s) submitted:

• 2 • 1

submitted: (correct) recorded: (correct)

Problem 3. (1 point)

Let

$$A = \left[\begin{array}{cccc} 6 & 4 & 4 & 6 \\ 9 & 6 & 6 & 9 \end{array} \right].$$

Find a basis of Ker(A).

$$\left\{ \begin{bmatrix} - \\ - \\ - \end{bmatrix}, \begin{bmatrix} - \\ - \end{bmatrix}, \begin{bmatrix} - \\ - \end{bmatrix} \right\}$$

Answer(s) submitted:

$$\bullet \begin{bmatrix} -\frac{2}{3} \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -\frac{2}{3} \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

submitted: (correct) recorded: (correct)

Problem 4. (1 point)

Let

$$A = \left[\begin{array}{rrrr} 1 & 1 & -1 & 2 \\ 0 & 1 & 4 & 1 \\ 3 & 6 & 9 & 9 \end{array} \right].$$

Find a pair of vectors \vec{u}, \vec{v} in \mathbb{R}^4 that span the set of all $\vec{x} \in \mathbb{R}^4$ that are mapped into the zero vector by the transformation $\vec{x} \mapsto A\vec{x}$.

$$\vec{u} = \begin{bmatrix} --\\ --\\ --\\ -- \end{bmatrix}, \vec{v} = \begin{bmatrix} --\\ --\\ -- \end{bmatrix}$$

Answer(s) submitted:

$$\bullet \left[\begin{array}{c} 5 \\ -4 \\ 1 \\ 0 \end{array} \right], \left[\begin{array}{c} -1 \\ -1 \\ 0 \\ 1 \end{array} \right]$$

submitted: (correct) recorded: (correct)

Problem 5. (1 point)

a) Find the value of k for which the matrix

$$A = \left[\begin{array}{rrr} 9 & 2 & 5 \\ -4 & -4 & 4 \\ -6 & 1 & k \end{array} \right]$$

has rank 2.

 $k = _$

b) For this value of k, find a basis of ker(A).

Answer(s) submitted:

$$\begin{array}{c|c}
\bullet & -8 \\
\bullet & 2 \\
1
\end{array}$$

submitted: (correct) recorded: (correct)

Problem 6. (1 point)

Which of the following are vector spaces?

- A. The set of all diagonal 2×2 matrices.
- B. The set of non-invertible 2×2 matrices.
- C. The set $A, A^2, A^3, A^4 \dots$, where $A = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$.
- D. The set of continuous functions $F(\mathbb{R}, \mathbb{R})$.

Answer(s) submitted:

• AD

submitted: (correct)
recorded: (correct)

1

Problem 7. (1 point)

Find a basis for the space of 2×2 diagonal matrices.

$$Basis = \left\{ \begin{bmatrix} ---- \\ --- \end{bmatrix}, \begin{bmatrix} ---- \\ --- \end{bmatrix} \right\}$$

Answer(s) submitted:

$$\bullet \ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right]$$

submitted: (correct)
recorded: (correct)

Problem 8. (1 point)

Which of the following subsets of $\mathbb{R}^{3\times3}$ are subspaces of $\mathbb{R}^{3\times3}$?

- A. The invertible 3×3 matrices
- B. The 3×3 matrices whose entries are all integers
- C. The 3×3 matrices with all zeros in the third row
- D. The diagonal 3×3 matrices
- E. The 3×3 matrices whose entries are all greater than or equal to 0
- F. The symmetric 3×3 matrices

Answer(s) submitted:

• CDF

submitted: (correct)
recorded: (correct)

Problem 9. (1 point)

Consider the vector space P_2 and the set

$$4-2t-2t^2$$
, $4+2t+3t^2$, $16+kt^2$.

For which $k \in \mathbb{R}$ do these three elements *fail* to be a basis of P_2 ?

Answer(s) submitted:

• 2

submitted: (correct)

recorded: (correct)

Problem 10. (1 point)

Recall that $U^{2\times 2}$ is the vector space of 2×2 upper triangular matrices.

Which of the following functions are isomorphisms?

- A. The function $T: U^{2\times 2} \to P_2$ given by $T(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}) = (a+b)+ct+(a+b)t^2$.
- B. The function $T: \mathbb{C} \to \mathbb{R}^2$ given by $T(a+bi) = \begin{bmatrix} a \\ a+b \end{bmatrix}$.
- C. The function $T: \mathbb{P}_2 \to U^{2\times 2}$ given by $T(a+bt+ct^2) = \begin{bmatrix} a & ab \\ 0 & c \end{bmatrix}$.
- D. The function $T: P_1 \to \mathbb{R}^{2\times 2}$ given by $T(a+bt) = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$.

Answer(s) submitted:

• B

submitted: (correct)
recorded: (correct)

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America