LG 467 Computers in Linguistics

[1-2021] Topic 5: POS tagging

Sakol Suethanapornkul

Previously...

POS tagging = assigning a part of speech to each word in a text

Previously...

Tag Description	Example	Tag	Description	Example	Tag	Description	Example
CC coord. conj.	and, but, or	NNP	proper noun, sing.	IBM	TO	"to"	to
CD cardinal number	one, two	NNPS	proper noun, plu.	Carolinas	UH	interjection	ah, oops
DT determiner	a, the	NNS	noun, plural	llamas	VB	verb base	eat
EX existential 'there'	there	PDT	predeterminer	all, both	VBD	verb past tense	ate
FW foreign word	mea culpa	POS	possessive ending	's	VBG	verb gerund	eating
IN preposition/	of, in, by	PRP	personal pronoun	I, you, he	VBN	verb past partici-	eaten
subordin-conj						ple	
JJ adjective	yellow	PRP\$	possess. pronoun	your, one's	VBP	verb non-3sg-pr	eat
JJR comparative adj	bigger	RB	adverb	quickly	VBZ	verb 3sg pres	eats
JJS superlative adj	wildest	RBR	comparative adv	faster	WDT	wh-determ.	which, that
LS list item marker	1, 2, One	RBS	superlatv. adv	fastest	WP	wh-pronoun	what, who
MD modal	can, should	RP	particle	up, off	WP\$	wh-possess.	whose
NN sing or mass noun	llama	SYM	symbol	+,%,&	WRB	wh-adverb	how, where

Previously...

An off-the-shelf tagger is available for English:

```
from nltk import pos_tag, word_tokenize

text = "John's big idea isn't all that bad."
token = word_tokenize(text)
pos = pos_tag(token)

print(pos)
```

Code 7.1

Question: What tagset is this?

Tag the following sentences with the PTB tags:

```
1. The/ quick/ brown/ fox/ jumps/ over/
the/ lazy/ dog/ ./
```

```
    A/ woman/ needs/ a/ man/ like/
    a/ fish/ needs/ a/ bicycle/ ./ *
```

NOTE: * The phrase is a famous feminist slogan coined by Irina Dunn

Question: Some things aren't right. What are they?

```
from nltk import pos_tag, word_tokenize

txt1 = "The quick brown fox jumps over the lazy dog."
txt2 = "A woman needs a man like a fish needs a bicycle."

pos_tag(word_tokenize(txt1))
pos_tag(word_tokenize(txt2))
```

Code 8.1

Question: Some things aren't right. What are they?

```
pos_tag(word_tokenize(txt1))

[('The', 'DT'), ('quick', 'JJ'), ('brown', 'NN'), ('fox', 'NN'),
    ('jumps', 'VBZ'), ('over', 'IN'), ('the', 'DT'), ('lazy', 'JJ'),
    ('dog', 'NN'), ('.', '.')]

pos_tag(word_tokenize(txt2))
[('A', 'DT'), ('woman', 'NN'), ('needs', 'VBZ'), ('a', 'DT'),
    ('man', 'NN'), ('like', 'IN'), ('a', 'DT'), ('fish', 'JJ'), ('needs', 'VBZ'), ('a', 'DT'), ('bicycle', 'NN'), ('.', '.')]
```

Roughly 15% of word types are ambiguous

Janet is always NNP, hesitantly is always RB

Types:		WS	SJ	Bro	wn
Unambiguous	(1 tag)	44,432	(86%)	45,799	(85%)
Ambiguous	(2+ tags)	7,025	(14%)	8,050	(15%)
Tokens:					
Unambiguous	(1 tag)	577,421	(45%)	384,349	(33%)
Ambiguous	(2+ tags)	711,780	(55%)	786,646	(67%)

But those 15% ambiguous words ten to be common words

- ~60% of word tokens are ambiguous
- For instance, take the word back
 - earnings growth took a back/JJ seat
 - a small building in the back/NN
 - a clear majority of senators back/VBP the bill
 - enable the country to buy back/RP debt
 - I was twenty-one back/RB then

Sources of information for POS tagging

Let's use a more extreme example:

```
pos_tag(word_tokenize("A man needs a woman like a fish
needs water."))

#[('A', 'DT'), ('man', 'NN'), ('needs', 'VBZ'),
# ('a', 'DT'), ('woman', 'NN'), ('like', 'IN'),
# ('a', 'DT'), ('fish', 'JJ'), ('needs', 'NNS'),
# ('water', 'NN'), ('.', '.')]
```

Code 8.2

Question: Which words are mis-tagged?

Sources of information for POS tagging

It seems like the following is probably true in NLTK's training data:

- prior probabilities of words/tags
 - brown is usually NN, i.e., p(NN) > p(JJ)
- conditional probabilities of sequences
 - after IN, JJ usually follows (e.g., he's in/IN the next/JJ room)
 - p(JJ|IN, DT) > p(NN|IN, DT)
- (morphology and wordshape [prefix, suffix, capitalization])

Language models as FSAs

We can model a sequence using a weighted bigram automaton

- Longer contexts possible as "complex" states
- Each transition depends on previous state

But this weighted bigram automaton is for words. How about hidden categories like POS?

Suppose we want to predict p(NN|JJ)

- Markov assumption probability of NN at this point depends on previous word being JJ
 - But typically, we have: the large brown fox....
 - We don't actually know for sure if 'brown' is JJ

We need to:

- estimate likelihood of chain: DT JJ NN NN....?
- Do so for every conceivable chain
- Find most likely one....without running out of memory!

HMM is in fact a weighted FSA

The HMM definition comprises:

•
$$V = V_1 V_V$$

•
$$Q = q_1, ..., q_N (q_0, q_F)$$

•
$$A = a_{11}, a_{12}, ..., a_{n1} ..., a_{nn}$$

•
$$O = \langle O_1, O_T \rangle$$

•
$$B = b_i(o_t)$$

```
# input vocabulary items
```

states

transition prob. matrix

ordered observations of V

prob. of ot given qi

The POS tagging task maps directly to the HMM definition:

- V: words of the English language
- Q: the parts of speech (state: DT, state: NN, etc.)
- A: the probability of NN given DT
- O: the text to be tagged $\langle w_1, ..., w_n \rangle$
- B: the probability of the given DT, i.e., p(the|DT)

Transition probabilities (A):

	NNP	MD	VB	JJ	NN	RB	DT
< <i>s</i> >	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

p(VB|MD) = 0.7968 (rows give the condition)

Emission probabilities (B):

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0	0
NN	0	0.000200	0.000223	0	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

p(will|MD) = 0.31 (assumming this is MD, chance to get 'will')

Standard algorithms for POS tagging

- Supervised Machine Learning Algorithms:
 - Hidden Markov Models
 - Conditional Random Fields (CRF)/ Maximum Entropy Markov Models (MEMM)
 - Neural sequence models (RNNs or Transformers)
 - Large Language Models (like BERT)
- All required a hand-labeled training set, equal performance (97% on English)
- All make use of information sources we discussed

SpaCy

SpaCy: Introduction

NLTK is extremely good for teaching and research

Lots of different algorithms for different purposes

SpaCy is designed for application and production

- Text is fed through an NLP pipeline
- What comes out is different components of NLP processes

SpaCy: Installation

In Terminal (Mac):

```
[NAME]@[NAME] ~ % conda install -c conda-forge spacy
[NAME]@[NAME] ~ % python -m spacy download en_core_web_sm
```

In Anaconda Prompt (Windows):

```
c:\Users\[NAME] conda install -c conda-forge spacy
c:\Users\[NAME] python -m spacy download en_core_web_sm
```

In English, there are four pre-trained pipeline models

- en_core_web_sm [small model, 13 MB]
- en_core_web_md [medium sized model, 44 MB]
- en_core_web_lg [large model, 742 MB]
- en_core_web_trf [Transformer based model, 438 MB]

NOTE: SpaCy provides data sources each model was trained on on its <u>website</u>

SpaCy: Introduction

A text is first tokenized before being processed through a pipeline

These are the first few steps you must do:

```
# #1 Import SpaCy
import spacy
# #2 Load the English model into nlp object
nlp = spacy.load("en_core_web_sm")
# #3 Process a text
doc = nlp("This is an example sentence.")
# Swap #3 with text file
with open('ABC.txt') as f:
    txt = f.read()
doc = nlp(txt)
```

Code 8.3

Now that we have a Document (Doc) object, what's next?

Name	Description	Creates
tagger	Part-of-speech tagger	Token.tag, Token.pos
parser	Dependency parser	Token.dep, Token.head, Doc.sents, Doc.noun_chunks
ner	Named entity recognizer	Doc.ents, Token.ent_iob, Token.ent_type

Now that we have a Document (Doc) object, what's next?

```
# Print indices, tokens, and tags
[tok.i for tok in doc]
[tok.text for tok in doc]
[tok.lemma_ for tok in doc]
[tok pos for tok in doc]
[tok.tag_ for tok in doc]
for tok in doc:
    print(tok.i, tok.text, tok.pos_, tok_tag_)
# If you need help
spacy explain("DET")
spacy.explain("JJ")
```

Code 8.4

Writing your own FreqDist

Previously, we relied on NLTK's FreqDist() to get frequency counts. It's time for our own version!

```
from collections import defaultdict

# Create a dict; use default value for unknown key
pos_ct = defaultdict(int)

# Let's check:
print(pos_ct["DET"])
```

Code 8.5

Writing your own FreqDist

Previously, we relied on NLTK's FreqDist() to get frequency counts. It's time for our own version!

```
for pos in [tok.pos_ for tok in doc]:
    pos_ct[pos] += 1

# To select tags and counts
[(t, c) for (t, c) in pos_ct.items()]

for t, c in pos_ct.items():
    print(t, "\t", c)

# You can use .items(), .keys(), .values()
```

Code 8.5 [Continue]

Our plan next week...

- Parsing, Context-Free Grammar (CFG), and Treebank
- Readings
 - J & M 3rd edition, Chapter 12
 - NLTK 7.4.2 Tree