Содержание

1	Определение графа. Примеры графов. Степени вершин графа. Лемма о рукопожатиях	1
2	Маршруты, цепи, циклы. Лемма о выделении простой цепи. Лемма об объединении простых цепей	2
3	Эйлеровы графы. Критерий существования эйлерова цикла (теорема Эйлера)	2
4	Гамильтоновы графы. Достаточные условия существования гамильтонова цикла (теоремы Оре и Дирака)	2
5	Изоморфизм графов. Помеченные и непомеченные графы. Теорема о числе помеченных пвершинных графов	2
6	Проблема изоморфизма. Инварианты графа. Примеры инвариантов. Пример полного инварианта	2
7	Связные и несвязные графы. Лемма об удалении ребра. Оценки числа ребер связного графа	2
8	Плоские и планарные графы. Графы Куратовского. Формула Эйлера для плоских графов	2
9	Деревья. Теорема о деревьях (критерии)	3
10	Перечисление деревьев. Теорема Кэли о числе помеченных п-вершинных деревьев	5
11	Центр дерева. Центральные и бицентральные деревья. Теорема Жордана	5
12	Изоморфизм деревьев. Процедура кортежирования. Теорема Эдмондса	5
13	Вершинная и реберная связность графа. Основное неравенство связности	5
14	Отделимость и соединимость. Теорема Менгера	5
15	Реберный вариант теоремы Менгера	5
16	Критерии вершинной и реберной к-связности графа (без доказательства)	5
17	Ориентированные графы. Основные понятия. Ормаршруты и полумаршруты. Ориентированые аналоги теоремы Менгера	5
18	Ориентированные графы. Достижимость и связность. Три типа связности. Критерии сильной, односторонней и слабой связности орграфа	5
19	Основные структуры данных для представления графов в памяти компьютера. Их достоинства и недостатки	5
20	Влияние структур данных на трудоемкость алгоритмов (на примере алгоритма отыскания эйлерова цикла)	5
21	Задача о минимальном остовном дереве. Алгоритм Прима	5
22	Задача о кратчайших путях. Случай неотрицательных весов дуг. Алгоритм Дейкстры	5
23	Потоки в сетях. Увеличивающие пути. Лемма об увеличении потока	5
24	Алгоритм Эдмондса-Карпа построения максимального потока	5
25	Разрезы. Лемма о потоках и разрезах. Следствие	5
26	Теорема Форда-Фалкерсона	5
27	Два критерия максимальности потока.	5

- 28 Приложения теории потоков в сетях. Задачи анализа структурно-надежных коммуникационных сетей
- 29 Задачи комбинаторной оптимизации. Массовая и индивидуальная задачи. Трудоемкость алгоритма. Полиномиальные и экспоненциальные алгоритмы
 5

5

5

5

5

- 30 Задачи распознавания свойств. Детерминированные и недетерминированные алгоритмы. Классы Р и NP. Проблема "P vs NP"
- 31 Полиномиальная сводимость задач распознавания. Свойства полиномиальной сводимости
- 32 NP-полные задачи распознавания. Теорема о сложности NP-полных задач. Примеры NPполных задач

1 Определение графа. Примеры графов. Степени вершин графа. Лемма о рукопожатиях

Определение. Граф (неориентированный) состоит из непустого конечно множества V и конечного множества E неупорядоченных пар элементов из V (записывается G = (V, E)).

Элементы множества $V=V_G$ называются **вершинами**, а элементы множества $E=E_G$ - **ребрами** графа G. Те и другие называются **элементами** графа.

Определение. Если $\{u,v\} \in E$, то будем записывать e = uv и говорить, что вершины и и v смежны, а вершина и и ребро е инцидентны (так же, как вершина v и ребро е). Два ребра называются смежными, если они имеют общую вершину.

Определение. Степенью вершины v в графе G называется число ребер, инцидентных вершине v (обозначается $d_G(v) = d(v)$).

Вершина степени 0 - изолированная, вершина степени 1 - висячая. Минимальная и максимальная степени вершин графа G обозначаются $\delta(G), \Delta(G)$.

Последовательность степеней вершин графа G, выписанных в порядке неубывания называется степенной последовательностью или вектором степеней графа G.

Определение. Кратные ребра - два и более ребра, соединяющие одну и ту же пару вершин.

Определение. Петли - ребра, соединяющие вершины сами с собой.

Определение. Мультиграф - граф с кратными ребрами

Определение. Обыкновенный граф - граф без петель и кратных ребер.

Примеры графов:

- 1. Граф G = (V, E) с n вершинами и m ребрами называется (n, m)-графом, (1, 0)-граф называется тривиальным.
- 2. Пустой граф O_n
- 3. Полный граф $K_n, C_n^2 = \frac{n(n-1)}{2}$
- 4. Двудольный граф $G = (V_1, V_2; E)$
- 5. Полный двудольный граф $K_{p,q}$
- 6. Звезда полный двудольный граф $K_{1,q}$
- 7. Простой цикл C_n
- 8. Регулярный (однородный) граф граф, все вершины которого имеют одну и ту же степень. Кубические графы 3-регулярные
- 9. Графы многогранников

Лемма 1.1 (О рукопожатиях). Сумма степеней всех вершин произвольного графа G=(V,E) - четное число, равное удвоенному числу его ребер: $\sum_{v\in V} d_G(v)=2|E|$

Доказательство. Индукция по числу ребер.

База: если в графе G нет ребер, то $\sum_{v \in V} d_G(v) = 0$. Предположим, что формула верна для любого графа, число ребер в котором не превосходит $m \leq 0$.

Пусть |E|=m+1. Рассмотри произвольное ребро $e=uv\in E$ и удалим его из графа G. Получим граф G'=(V,E'), |E'|=m. По предположению индукции $\sum_{v\in V}d_{G'}(v)=2|E'|=2m$ Тогда $\sum_{v\in V}d_{G}(v)=\sum_{v\in V}d_{G}(v)+2=2m+2=2|E|$.

Теорема имеет место быть и для мультиграфов.

Следствие. В любом графе число вершин нечетной степени четно.

- 2 Маршруты, цепи, циклы. Лемма о выделении простой цепи. Лемма об объединении простых цепей
- 3 Эйлеровы графы. Критерий существования эйлерова цикла (теорема Эйлера)
- 4 Гамильтоновы графы. Достаточные условия существования гамильтонова цикла (теоремы Оре и Дирака)
- 5 Изоморфизм графов. Помеченные и непомеченные графы. Теорема о числе помеченных п-вершинных графов
- 6 Проблема изоморфизма. Инварианты графа. Примеры инвариантов. Пример полного инварианта
- 7 Связные и несвязные графы. Лемма об удалении ребра. Оценки числа ребер связного графа
- 8 Плоские и планарные графы. Графы Куратовского. Формула Эйлера для плоских графов

Графы Куратовского

3 амечание. Графы $K_{3,3}$ и K_5 непланарны

Доказательство. $K_{3,2}$ - плоский, в нем по формуле Эйлера 3 грани независимо от способа изображения. Пытаемся добавить 6 вершину, подставляя ее в каждую грань, получаем каждый раз противоречие - невозможность соединить вершину с необходимыми. Аналогично для K_5 . ▶

Теорема 8.1 (Формула Эйлера для плоских графов). Для любого связного плоского графа G=(V,E) верно n-m+l=2, где n=|V|, m=|E|, l - число граней

Доказательство. Рассмотрим две операции перехода от связного плоского графа G к его связному плоскому подграфу, не изменяющие величины n-m+l

- 1. удаление ребра, принадлежащего сразу 2 граням (одна из которых может быть внешней) **уменьшает m и l** на 1
- 2. удаление висячей вершины (вместе с инцидентным ребром) уменьшает m и n на 1

Очевидно, что любой связный граф после этих операций может быть приведен к тривиальному, а для него формула верна ⇒ верна и для данного ►

9 Деревья. Теорема о деревьях (критерии)

Теорема 9.1 (о деревьях $N_{2}1$). Для (n, m)-графа G следующие определения эквивалентны:

- 1. G дерево
- $2. \; G$ связный граф $u \; m = n-1$
- 3. G auuклический граф <math>u m = n-1

 \mathcal{A} оказатель ство. $1 \to 2$ Дерево - связный, планарный граф (имеет 1 грань) $\implies n-m+1=2 \implies m=n-1$

- $2 \to 3$ Пусть граф не ациклический \implies есть цикл и е циклическое ребро. Тогда по лемме об удалении ребра граф G-e также связен и имеет m 1 = n 2 ребер \implies противоречие оценке числа ребер связного графа \implies граф ациклический
- $3 \to 1$ Обозначим число компонент связности k. Пусть T_i iтая компонента, является (n_i, m_i) -графом. Т.к T_i дерево, то по ранее доказанному $(1 \to 2)$ $m_i = n_i 1, i = \overline{1,k} \implies n-1 = m = \sum_{i=1}^k m_i = \sum_{i=1}^k n_i k = n-k \implies k=1 \implies$ граф связный

Теорема 9.2 (о деревьях N2). Для (n, m)-графа G следующие определения эквивалентны:

- 1. G дерево
- 2. G ациклический граф u если \forall пару несмежных вершин соединить ребром, то полученный граф будет содержать ровно 1 цикл
- $3. \ \forall \ 2$ вершины графа G соединены единственной простой цепью
- $2 \to 3$ любые две несмежные вершины u,v графа G соединимы, иначе при добавлении ребра uv не появится цикл \Longrightarrow в силу леммы о выделении простой цепи любые две вершины соединены простой цепью. А она единственная, иначе по лемме об объединении простых цепей в графе G был бы цикл.
- $3 \to 1\;$ из условия следует, что граф связен, а существование цикла противоречит условию единственности цепи \Longrightarrow граф ациклический.

- 10 Перечисление деревьев. Теорема Кэли о числе помеченных n-вершинных деревьев
- 11 Центр дерева. Центральные и бицентральные деревья. Теорема Жордана
- 12 Изоморфизм деревьев. Процедура кортежирования. Теорема Эдмондса
- 13 Вершинная и реберная связность графа. Основное неравенство связности
- 14 Отделимость и соединимость. Теорема Менгера
- 15 Реберный вариант теоремы Менгера
- 16 Критерии вершинной и реберной k-связности графа (без доказательства)
- 17 Ориентированные графы. Основные понятия. Ормаршруты и полумаршруты. Ориентированые аналоги теоремы Менгера
- 18 Ориентированные графы. Достижимость и связность. Три типа связности. Критерии сильной, односторонней и слабой связности орграфа
- 19 Основные структуры данных для представления графов в памяти компьютера. Их достоинства и недостатки
- 20 Влияние структур данных на трудоемкость алгоритмов (на примере алгоритма отыскания эйлерова цикла)
- 21 Задача о минимальном остовном дереве. Алгоритм Прима
- 22 Задача о кратчайших путях. Случай неотрицательных весов дуг. Алгоритм Дейкстры
- 23 Потоки в сетях. Увеличивающие пути. Лемма об увеличении потока
- 24 Алгоритм Эдмондса-Карпа построения максимального потока
- 25 Разрезы. Лемма о потоках и разрезах. Следствие
- 26 Теорема Форда-Фалкерсона
- 27 Два критерия максимальности потока.
- 28 Приложения теории потоков в сетях. Задачи анализа структурнонадежных коммуникационных сетей
- 29 Задачи комбинаторной оптимизации. Массовая и индивидуальная задачи. Трудоемкость алгоритма. Полиномиальные и экспоненциальные алгоритмы