running_ER_on_cluster

Vignette from the ER repository

https://github.com/Hanxi-002/EssReg/blob/main/EssRegVignette_pipeline.pdf

Install development version

```
library(devtools)
# Note: if you submit an array job that calls this function in quick succession,
# you'll get rate limited and error out.
# run this to install
devtools::install_github(repo = "TranscriptionFactory/JishnuLabTools", force = F,
                         dependencies = T,
                         auth_token = "github_pat_11ACCQ6NA0Y200JwWDcXeW_xdHZ52omD3HWE8g2mRfoFc
library(JishnuLabTools)
```

Data format should be saved as a csv or rds file as one of these:

```
Separate X and Y
```

Combined X and Y where Y is the first column

Get example yaml files

You can edit these files to have the paths to your X and Y data by using the list accessors (e.g. regression $x_{path} =$ 'path to x') or you can just save the yaml and edit it. Note the output path should always end in "/"

Example regression yaml

```
regression = JishnuLabTools::regression_params
knitr::kable(data.frame(regression_parameters = unlist(regression)))
```

Example classification yaml

```
classification = JishnuLabTools::classification_params
# this is just for printing here
classification$y_levels = "[0, 1]"
knitr::kable(data.frame(classification_parameters = unlist(classification)))
```

	classification_parameters
x_path	
y_path	
out_path	/
k	5
y_factor	TRUE
y_levels	[0, 1]
eval_type	auc
rep_cv	20
nreps	20
alpha_level	0.05
thresh_fdr	0.2
permute	TRUE
std_cv	FALSE
std_y	FALSE
benchmark	FALSE
delta	0.1
lambda	1
lasso	TRUE
plsr	TRUE
pcr	TRUE

and lambdas, the yaml file should have a list of values for delta and lambda, like this:

If you want to run a coarse grid search over specific (as opposed to the predfined) deltas

```
classification = JishnuLabTools::classification_params
# this is just for printing here
classification$y_levels = "[0, 1]"
classification$delta = "[0.1, 0.05, 0.01]"
classification$lambda = "[1.0, 0.1]"
knitr::kable(data.frame(classification_parameters = unlist(classification)))
                                        classification_parameters
```

	x_path		
	y_path		
	out_path	/	
	k	5	
	y_factor	TRUE	
	y_levels	[0, 1]	
	eval_type	auc	
	rep_cv	20	
	nreps	20	
	alpha_level	0.05	
	thresh_fdr	0.2	
	permute	TRUE	
	std_cv	FALSE	
	std_y	FALSE	
	benchmark	FALSE	
	delta	[0.1, 0.05, 0.01]	
	lambda	[1.0, 0.1]	
	lasso	TRUE	
	plsr	TRUE	
	pcr	TRUE	
Save the proper yaml file somewhere			

classification\$x_path = 'x.csv' classification\$y_path = 'y.csv'

```
classification$out_path = '/'
 yaml::write_yaml(classification, 'where_you_want_to_save_yaml_file')
Slurm script for single submission (put your email into -mail-user=)
```

#!/bin/bash #SBATCH -t 3-00:00 #SBATCH --job-name= ER

```
#SBATCH --mail-user=
 #SBATCH --mail-type=FAIL
 #SBATCH --nodes=1
 #SBATCH --ntasks=1
 #SBATCH --mem=150g
 #SBATCH --cpus-per-task=16
 module load gcc/10.2.0
 module load r/4.2.0
 Rscript runER.R --yaml_path 'path_to_yaml' --coarse_grid F
Save this as runER.R or whatever comes after Rscript above
 #!/usr/bin/env Rscript
 args = commandArgs(trailingOnly=TRUE)
```

library(devtools) library(doParallel) library(foreach)

```
library(tidyverse)
 # if need to install
 devtools::install_github(repo = "TranscriptionFactory/JishnuLabTools@master", force = F,
                           dependencies = T,
                           auth_token = "github_pat_11ACCQ6NA0Y200JwWDcXeW_xdHZ52omD3HWE8g2mRfoFa
 library(JishnuLabTools)
 cores <- as.numeric(Sys.getenv('SLURM_CPUS_PER_TASK', unset=NA))</pre>
 if(is.na(cores)) cores <- detectCores()</pre>
 # if(!is.na(cores) & cores > 1) cores <- cores</pre>
 registerDoParallel(cores)
 cat('number of cores using', cores, '. . .\n')
 # process arguments from command line
 command_args = JishnuLabTools:::arg_loader(args, JishnuLabTools::runER_args)
 yaml_path = command_args$yaml_path
 coarseGrid = command_args$coarse_grid
 # call ER function
 JishnuLabTools::runER(yaml_path, coarseGrid)
Slurm batch submission
You want to point to a folder with yaml files or dataframes (combined X/Y) Note, you should comment out the
install_github() in the runER.R file so that you don't get rate limited
```

Rscript runER.R --yaml_path \$arrayfile --coarse_grid F

#!/bin/bash

```
#SBATCH -t 3-00:00
#SBATCH --array= numbers
#SBATCH --job-name= ER
#SBATCH --mail-user=aar126@pitt.edu
#SBATCH --mail-type=FAIL
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --mem=150g
#SBATCH --cpus-per-task=16
echo "SLURM_JOBID: " $SLURM_JOBID
echo "SLURM_ARRAY_TASK_ID: " $SLURM_ARRAY_TASK_ID
echo "SLURM_ARRAY_JOB_ID: " $SLURM_ARRAY_JOB_ID
cd 'path to where you have yaml files'
arrayfile=`ls | awk -v line=$SLURM_ARRAY_TASK_ID '{if (NR == line) print $0}'`
module load gcc/10.2.0
module load r/4.2.0
echo $arrayfile
# usage: Rscript -d datapath_from_working_dir_including_extension
```