SIMULATION OF HUMAN BEHAVIOR THROUGH LLM-BASED AUTONOMOUS AGENTS

Raymond Fu and Gabriel Xu
May 21, 2025
Systems Lab, Dr. Yilmaz, Period 1

GOAL

- The goal is to simulate human behavior through computer programming
- This comes in the form of a simulated town where each person will act in a human way

THE GOAL

Park et al.

BACKGROUND - AGENTS

- Agents are the people in the simulated world
- An agent usually takes up a role, such as a teacher, cashier, etc.
- Agents are meant to interact and socialize with each other, forming a realistic society

BACKGROUND - LARGE LANGUAGE MODELS (LLM)

- Large language models are Natural Language Processing AI models that generate text given a prompt
- Input: Text written by a user. The input is also called the prompt
- Output: Text generated by the model that answers the prompt
- In this project, each agent has an LLM attached to it that will make decisions for it

BACKGROUND - LARGE LANGUAGE MODELS (LLM)

Input/Prompt-

if 2x + 3 = 7, what is x?

To solve the equation 2x + 3 = 7, follow these steps:

1. Subtract 3 from both sides:

2x = 7 - 3

AI generated output

$$2x = 4$$

2. Divide both sides by 2:

$$x=rac{4}{2}$$

$$x = 2$$

So, x=2.

PROBLEM - MEMORY

- It is difficult to simulate human memory
- People will forget things after it has been too long
- Agents need to be able to forget unimportant things and be able to retrieve memories relevant to their current situation
- For example, an agent about to ask a teacher a question needs to retrieve memories about his question

PROBLEM - COST

- Calling an LLM through an API costs money
- Existing solutions call the API multiple times every second
- For multiple agents making queries with their memories, there would at least tens of thousands of tokens per second
- Even the cheapest API options at around \$0.15 per 1 million tokens would cost around a dollar per minute
- Scaling this to larger games or more users result in thousands of dollars of costs

WHAT MAKES A SUCCESSFUL PROJECT?

- Memory: The agent should be able to recall events from the past and forget less important information
- Society: Multiple agents should create a functional society.
- Role-playing ability: The agents should adhere to their roles and execute on them properly without hallucinations

Pros/Cons

- Pros
 - o <u>Generative Agents: Interactive Simulacra of Human Behavior</u>
 - Successful simulation of human behavior

Cons

- Despite its success, it cost thousands of dollars, which limited the number of simulation days that it was allowed to run
- They were not able to fully test the extent at which the agents stay sane
- Agents never forget anything; not accurate human memory

Planning

- At the beginning of each day, every agents generates a plan for the day
- As the day goes on, their behaviors evolve as they interact with other agents and the world

Memory

- Memory is main source of cost
- They had a memory stream which took a note of everything that happens every tick (smallest unit of time)
- The memory stream is then called upon and searched through by an LLM whenever memories need to be retrieved

Memory

Memory Stream 2023-02-13 22:48:20: desk is idle 2023-02-13 22:48:20: hed is idle 2023-02-13 22:48:10: closet is idle 2023-02-13 22:48:10: refrigerator is idle 2023-02-13 22:48:10: Isabella Rodriguez is stretching 2023-02-13 22:33:30: shelf is idle 2023-02-13 22:33:30: desk is neat and organized 2023-02-13 22:33:10: Isabella Rodriguez is writing in her journal 2023-02-13 22:18:10: desk is idle 2023-02-13 22:18:10: Isabella Rodriguez is taking a break 2023-02-13 21:49:00: bed is idle 2023-02-13 21:48:50: Isabella Rodriguez is cleaning up the 2023-02-13 21:48:50: refrigerator is idle 2023-02-13 21:48:50: bed is being used 2023-02-13 21:48:10: shelf is idle 2023-02-13 21:48:10: Isabella Rodriquez is watching a movie 2023-02-13 21:19:10: shelf is organized and tidy 2023-02-13 21:18:10: desk is idle 2023-02-13 21:18:10: Isabella Rodriguez is reading a book 2023-02-13 21:03:40: bed is idle 2023-02-13 21:03:30: refrigerator is idle 2023-02-13 21:03:30: desk is in use with a laptop and some papers on it

Q. What are you looking forward to the most right now?

I'm looking forward to the Valentine's Day party that I'm planning at Hobbs Cafe!

Park et al.

Park et al.

OTHER SOLUTIONS - GOOGLE FEEDBACK DEMO

OTHER SOLUTIONS - AGENTSIMS

Overview

- AgentSims: An Open-Source Sandbox for Large Language
 Model Evaluation
- Cuts cost relative to Park et al. through developing a vector-based system to retrieve memories
- AgentSims is very extensible by a user
- AgentSims introduces a unique way for agents to interact with objects in their surroundings
- This system condenses memories after each day, so an LLM would still be called for memories within a day

OTHER SOLUTIONS - AGENTSIMS

Feedback System

- For every action, two things need to pass
 - 1. A hard-coded possibility check
 - 2. A possibility check generated by the LLM
- The LLM would then learn from these two checks
- Example:
 - An agent wants to get tea from the stove. The first, hard-coded check says "Meaningless operation." The second, LLM generated check says
 "You cannot get tea from a stove." The model then learns from this

OTHER SOLUTIONS - AGENTSIMS

Systems Architecture

Lin et al.

WHY IS OURS BETTER?

- Ours will be able to significantly cut down on costs by not relying on LLMs as much as previous solutions, especially when it comes to memory
- We will be able to more fully and thoroughly test the project due to new ways to evaluate LLMs

IMPACT

- We introduce a new way to store memories in a realistic way to avoid excessive costs.
- By cutting down on the cost of running such a simulation, we allow smaller game developers, scientists, etc. to run such simulations
- Although games initially came to mind with this project, it could also be used in fields of study such as psychology and behavioral science

MATERIALS

- For the LLM, we are using Llama 3.1 with the Ollama Python package
- We are running the project entirely locally on a computer
- We are using pygame, a Python game development library, to develop the environment/visuals

METHODS - PLANNING

- Much like Park et al., we generate a list of tasks at the beginning of each day
- Each task will have a timestamp assigned to it
- When the time comes, more specific steps are outlined
- This list of tasks change dynamically as unexpected events happen

METHODS - MEMORY STORAGE

- Like Lin et al., we use a vector-based system to store
- For a given set of memories accomplishing one task, this task is stored, rather than the set of memories
- Each memory is tagged with a category (e.g. work, school, food, etc.)
- Each memory has an importance score

METHODS - MEMORY RETRIEVAL

- When a memory retrieval is necessary, past memories' relevance to the current situation and overall importance are weighed
- Relevancy is obtained via the categories
- An LLM then goes through the selected memories and obtains relevant information

METHODS - DIAGRAM

RESULTS

- Turing Test: Have human evaluators separate between text of agents interacting with each other and two humans interacting with each other
- Task Success: How well the agents executed on the tasks they planned out

DEMO

AGENT PROFILES

Alice: You are a student, and you enjoy playing basketball and video games

Mr. Smith: You are a teacher who teaches math and history, and enjoys reading

Bob: You are a cashier, and spends your free time watching TV

Charlie: You are a worker at a construction site and love spending quality time with your family

Classroom Conversation at 09:30 AM:

Mr. Smith: Alice, do you understand the quadratic formula?

Alice: I think so, but I'm not sure about the discriminant part.

Mr. Smith: The discriminant tells us about the nature of the roots. Let me explain...

Alice: Oh, I see now! When it's positive we get two real solutions.

Mr. Smith: Exactly!

Classroom Conversation at 01:30 PM:

Mr. Smith: Today we're discussing the American Revolution. Alice, can you name one cause?

Alice: Was it because of taxation without representation?

Mr. Smith: Excellent! That was indeed one of the main grievances.

Alice: I read about the Boston Tea Party last night.

Mr. Smith: Good preparation! That was a key event leading to the revolution.

LIMITATIONS

- Because we are running the project locally, we are limited by computer specifications. Our laptops aren't suited to run Ollama, but we have computers at home where Ollama works a lot better
- We are limited by time as we do not have the time to try this type of simulation in diverse environments
- When testing, we are limited by the people we are close enough with to test the simulation

FUTURE WORK

- Test the simulation in different, non-preset environments
- Test the simulation in an actual game

Q&A

REFERENCES

- https://arxiv.org/pdf/2305.10250
- https://arxiv.org/pdf/2304.03442
- https://arxiv.org/pdf/2203.11171
- https://arxiv.org/pdf/2201.11903
- https://medium.com/autonomous-agents/mathematically-evaluating-hallucinations-in-llms-like-chatgpt-e9db339b39c2

THANKS!