

FASHİON MNIST GÖRÜNTÜ SINIFLANDIRMA PROJESİ

AYGAZ YAPAY ZEKAYA GIRIŞ MUHAMMED KESKIN

GIRIŞ

 Bu proje, Fashion MNIST veri setini kullanarak derin öğrenme modelleriyle görüntü siniflandırma yapmayı amaçlamaktadır. Bu sayede, görüntü işleme ve yapay zeka konularında temel bilgilerin pekiştirilmesi hedeflenmiştir.

MATERYAL VE METOT

- VERI SETI: FASHION MNIST
- AÇIKLAMA: 28x28 PIKSEL BOYUTLARINDA 70,000 GRI TONLAMALI GÖRÜNTÜ IÇERIR.
- Kategoriler: T-shirt/top, Pantolon, Kazak, Elbise, Ceket, Sandalet,
 Gömlek, Spor Ayakkabi, Çanta, Bot

VERI SETI HAKKINDA BILGI

- Fashion MNIST: 28x28 boyutlarında 70,000 gri tonlamalı görüntü.
- Kategoriler: 10 (T-shirt, Pantolon, Kazak, Elbise, Ceket, Sandalet, Gömlek, Spor Ayakkabi, Çanta, Bot)
- Her kategori için 7,000 görüntü bulunmaktadır.

DENEYDE KULLANILAN MODELLER/MIMARILER

- KULLANILAN MODELLER:
- Konvolüsyonel Sinir Ağları (CNN)
- Daha karmaşık modellerin (örneğin, ResNet ve Inception)
 Kullanılma potansiyeli.

DENEY SONUÇLARI

- Doğruluk:
- EĞITIM SETINDE: 0.8554
- Test setinde: 0.7892
- F1 Skoru:
- EĞITIM SETINDE: 0.8546
- Test setinde: 0.7899
- GERI ÇAĞIRMA:
- EĞITIM SETINDE: 0.8554
- Test setinde: 0.7892
- KESINLIK:
- EĞITIM SETINDE: 0.8578
- Test setinde: 0.7999
- Karmaşıklık Matrisi: Siniflandirmalardaki doğruluk ve hataları gösterir.

TARTIŞMA

- Sonuçların analızı:
- MODEL, EĞITIM VERILERINDE IYI PERFORMANS GÖSTERDI ANCAK TEST VERILERINDE PERFORMANS DÜŞTÜ, BU DA AŞIRI ÖĞRENME OLASILIĞINI GÖSTERIR.
- - GÜÇLÜ YÖNLER: EĞITIM VERILERINDE YÜKSEK KESINLIK VE GERI ÇAĞIRMA.
- - Zayıf yönler: Test verilerinde performans düşüşü.

GELECEKTEKI GELIŞTIRME ÖNERILERI

- Model İyileştirme:
- Daha karmaşık modeller (örneğin, ResNet, Inception) kullanarak doğruluğun artırılması.
- Veri artırma teknikleri kullanarak eğitim veri setinin genisletilmesi.
- - Düzenlileştirme teknikleri kullanarak modelin aşırı öğrenmesinin önlenmesi.
- VERI ÖN İSLEME İYILESTIRMELERI:
- VERILERIN DAHA IYI NORMALIZE EDILMESI.
- VERIDEKI GÜRÜLTÜNÜN AZALTILMASI.
- HIPERPARAMETRE OPTIMIZASYONU:
- GRID SEARCH VEYA RANDOM SEARCH YÖNTEMLERIYLE EN IYI HIPERPARAMETRELERIN BULUNMASI.
- BAYESIAN OPTIMIZATION GIBI SOFISTIKE YÖNTEMLER KULLANARAK HIPERPARAMETRE ARAMASININ YAPILMASI.
- Daha Fazla Veri Toplama:
- EK VERI SETLERININ KULLANILMASI.
- - FARKLI KAYNAKLARDAN VERI TOPLANARAK VERI ÇEŞITLILIĞININ ARTIRILMASI.

REFERANSLAR

Proje sirasinda kullanılan kaynaklar.

NASIL ÇALIŞTIRILIR

- Gerekli Kütüphaneler:
- PYTHON 3.x
- TENSORFLOW
- Keras
- NUMPY
- MATPLOTLIB
- TALIMATLAR:
- 1. GEREKLI KÜTÜPHANELERI YÜKLEYIN:
- !PIP INSTALL -R REQUIREMENTS.TXT
- 2. Jupyter Notebook'u açın:
- JUPYTER NOTEBOOK
- 3. Muhammed_Keskin_fashion_mnist_Aygaz_Yapay_Zekaya_Giriş.ipynb dosyasını açın ve hücreleri sirasiyla çalıştırın.