

Computational Intelligence

Subject9: Fuzzy Controllers

Instructor: Ali Tourani

A.Tourani1991@gmail.Com

Agenda

- Fuzzy controller
- ► Fuzzy controller components
- ► Fuzzy controller in practice

Fuzzy Control System:

- ► A control system based on Fuzzy logic
- ► The 1st consumer product using Fuzzy logic in 1987
 - ► Control of a model steam engine
- ► A control protocol by means of if-then rules
 - ▶ If temperature is high open the valve slightly
- ▶ Some of the most common controllers:
 - ▶ Mamdani controller
 - ► Takagi-Sugeno controller

Goal: proving a proportional relation between the inputs and outputs of a system

Air Conditioning Compressor for Cars

- ▶ Main Goal: adjusting the temperature inside the vehicle
- Output variable: temperature
- ► **Control variable**: thermostat
- ▶ **Obstacle variable**: high engine temperature, etc.

Goal: proving a proportional relation between the inputs and outputs of a system

Inverted Pendulum

- ▶ Main Goal: the object should not fall over
- **Output variable**: angular displacement θ
- ► Control variable: reaction forces (Newton's law)
- ▶ **Obstacle variable**: high speed

Classic controller

- Based on Scientific laws (Physics)
- ► Requires recognition techniques
- ► Applying Mathematical models
- Drawbacks:
 - ▶ Needs theorical concepts for modeling
 - Complexity
 - Sensitive

Fuzzy controller

- ▶ Based on real-world circumstances
- Design and implementation according to human experience
- Simple and flexible design
- ► Reliable against noise data
- Samples:
 - ▶ Rescue robot
 - ► Room temperature controller

Classic controller - Sample

- ► Room Temperature Controller
 - ► Temperature < threshold → turn on heater
 - ► Temperature > threshold → turn on cooler
 - ► Temperature and Intensity should be Fuzzy values
 - ▶ So, we need Fuzzy variables, rules, relations, etc.

Fuzzy Controller Components

- Step 1: What are the variables?
 - Choosing Fuzzy values
 - For input *T* (temperature):
 - ► Cold Cool Normal Warm Hot
 - ► For output *F* (fan speed):
 - ► Very slow Slow Mid Fast Very fast

- Step 1: What are the variables?
 - Choosing Fuzzy values
 - ► Sometimes we can use Qualitative values
 - ▶ **Sample**: for values $\in [-20, 20]$

NL	Negative Large
IVL	9
NM	Negative Medium
NS	Negative Small
AZ	Approximately Zero
PS	Positive Small
PM	Positive Medium
PL	Positive Large

- ► Step 2: Fuzzification
 - ► Now, convert input values to Fuzzy
 - ► Triangles can be good MFs!

$$f: [-a, a] \to R$$

Room Temperature Controller (Fuzzy)

Room Temperature

► Step 2: Fuzzification

$$N$$
: $\mu(T) = 0$

Y:
$$0 < \mu(T) < 1$$

$$Y^*$$
: $\mu(T) = 1$

Temperature (Celsius)	Cold	Cool	Normal	Warm	Hot
0	γ*	N	N	N	N
5	Υ	Υ	N	N	N
10	N	Υ	N	N	N
12.5	N	γ*	N	N	N
15	N	Υ	N	N	N
17.5	N	N	γ*	N	N
20	N	N	N	Υ	N
22.5	N	N	N	Υ*	N
25	N	N	N	Υ	Υ
27.5	N	N	N	N	Υ
30	N	N	N	N ₁	γ*

Room Temperature Controller (Fuzzy)

Fan Speed

► Step 2: Fuzzification

$$N$$
: $\mu(T) = 0$

Y:
$$0 < \mu(T) < 1$$

$$Y^*$$
: $\mu(T) = 1$

	Speed (RPM)	Very Slow	Slow	Mid	Fast	Very Fast
	0	γ*	N	N	N	N
	10	Υ	N	N	N	N
	20	Υ	Υ	N	N	N
	30	N	γ*	N	N	N
	40	N	Υ	N	N	N
	50	N	N	γ*	N	N
	60	N	N	N	Υ	N
	70	N	N	N	Υ*	N
	80	N	N	N	Y	Υ
l	90	N	N	N	N	Υ
	100	N	N	N	N	1 <u>Y</u> *

Room Temperature Controller (Fuzzy)

Step 2: Fuzzification

Membership degree 0.8 Very Slow Slow 0.6^{-} Mid 0.4 Fast Very Fast 0.2 0 20 30 60 70 80 100 10 40 50 90

Speed (RPM)

Fan Speed

- ► Step 3: Fuzzy inference
 - ► Some rules based on our demands

Temperature	Fan Speed
Cold	Very Slow
Cool	Slow
Normal	Mid
Warm	Fast
Hot	Very Fast

Room Temperature Controller (Fuzzy)

- Step 4: Defuzzification
 - ► A common method: **Center of Area (CA)**

discrete
$$D_{CA}(t) = \frac{\sum_{k=1}^{n} C(z_k) z_k}{\sum_{k=1}^{n} C(z_k)}$$

continuous
$$D_{CA}(t) = \frac{\int_{-C}^{C} C(z)zdz}{\int_{-C}^{C} C(z)dz}$$

▶ Other methods: Maximum, Max. Average, etc.

- Step 4: Defuzzification
 - ► Center of Area (CA) Sample:

$$D_{CA}(t) = \frac{\sum_{k=1}^{n} C(z_k) z_k}{\sum_{k=1}^{n} C(z_k)}$$

$$= \frac{0.4 (0 + 1 + 2 + 3 + 4 + 5)}{(0.4 * 6) + (0.6 * 1) + (0.8 * 4)}$$

$$+ \frac{0.6 * 6}{(0.4 * 6) + (0.6 * 1) + (0.8 * 4)}$$

$$+ \frac{0.8 (7 + 8 + 9 + 10)}{(0.4 * 6) + (0.6 * 1) + (0.8 * 4)}$$

Room Temperature Controller (Fuzzy)

Room Temperature Controller (Fuzzy)

Q: Assume the temperature is 16, what will be the fan's speed?

► So, it is 0.3 Cool and 0.4 Normal

$\mu = 0.3$	
$\mu = 0.4$	

Temperature	Fan Speed
Cold	Very Slow
Cool	Slow
Normal	Mid
Warm	Fast
Hot	Very Fast

Room Temperature Controller (Fuzzy)

Room Temperature Controller (Fuzzy)

Room Temperature Controller (Fuzzy)

Room Temperature Controller (Fuzzy)

Q: Assume the temperature is 16, what will be the fan's speed?

$$D_{CA}(t) = \frac{\sum_{k=1}^{n} C(z_k) z_k}{\sum_{k=1}^{n} C(z_k)}$$

$$= \frac{0.125(12.5) + 0.25(15)}{0.125 + 0.25 + 0.3 + \dots + 0.25}$$

$$+ \frac{0.3(17.5 + 20 + \dots + 42.5)}{0.125 + 0.25 + 0.3 + \dots + 0.25}$$

$$+ \frac{0.4(45 + \dots + 55) \dots + 0.25(57.5)}{0.125 + 0.25 + 0.3 + \dots + 0.25}$$

 $= 45.5 \, rpm$

25

What's Next?

Evolutionary Computation

Questions?

