砖块码堆系统仿真

汇报人: 余永强 倪放翊

汇报时间: 2019.7.3

日 CONTENTS

(1) 背景

2) 方案设计

- 3 砖块位姿估计
- 4 控制系统设计

01 背景

近年来,由于物价飞涨、建筑施工事故率起高、企业用工成本大幅度上涨,机器人技术走向成熟。砌筑机器人系统的研发重获发展契机,甚至部分系统已投入商业应用。现有的墙体砌筑机器人大多基于工业机械手改装而成,一般具有"移动平台+递送系统+机械臂"的体系结构。

章节 Part 02 方案设计

2.1 系统工作流程

在系统的实现过程中,对系统进行技术分析,能够对系统的选型及实现过程中有针对性的进行。主要分析点有: **机械臂、感知传感器、末端执行器、决策、安全**。

2.2 仿真环境搭建

表 2-1 仿真环境各选型

类别	名称	类别	名称	
PC 操作系统	Ubuntu	机械臂	UR5	
物理软件仿真	Gazebo	感知传感器	Kinect	
机器人操作系统	ROS	末端执行器	真空泵	
机器人控制组件	MoveIt!	砖块	中国标准砖	

2.3 精度要求

当真空泵与砖块的距离 在4mm以内是,一般是可 以吸附上的。

综合考虑位置和姿态误差后,误差安排:

上下误差: 1.5mm;

砖块的平面上的位置误差:

2.5mm。

姿态误差可为: 0.05rad。

章节 O3 砖块位姿估计

3.1 位姿估计算法

RGB图像

处理后的 二值化图像

选择出 合理的砖块

深度图像

适的砖 块轮廓

位姿矩阵

获得四元数,用 于机械臂控制

brick_mat =
$$\begin{bmatrix} R_{11} & R_{21} & R_{31} & X_0 \\ R_{12} & R_{22} & R_{32} & Y_0 \\ R_{13} & R_{23} & R_{33} & D_0 \\ 0 & 0 & 0 & 1.0 \end{bmatrix}$$

获取RGB-D图像上的 砖块角点及中心点数 据,进行位姿解算

3.2 实验说明

针对本文设计的对砖块位姿估计的算法,通过使仿真软件进行了相应实验。通过多次测试获取Gazebo内部的数据以及算法解算得到的数据进行误差分析,本文得到下列4组数据。

通过分析表格中的数据,我们认为本文所设计的砖块位姿解算是比较可靠的。位置数据和姿态数据的解算结果误差都保持在精度范围以内。

表 4-1 砖块位姿解算算法位置数据实验结果

7/20 10 12/01/20 E327		胖昇昇宏型且级1		1 12 11 2
位置数据	X 轴	Y 轴	Z 轴	直线距离
Gazebo 仿真数据	0.1583	-0.5618	-0.0735	0.5883
算法解算数据	0.1601	-0.5625	-0.0470	0.5868
误差	-0.0018	0.0007	-0.0265	0.0016
	表 4-2 砖块位姿	解算算法姿态数技	居实验结果	
次太粉塀	Poll	Di	tch	Vow

姿态数据	Roll	Pitch	Yaw
Gazebo 仿真数据	0	0	0.9921
算法解算数据	0	0	0.9941
误差	0	0	-0.002

4.1 控制器设计

系统各模块的设计:

- 1.机械臂控制模块:
- 1.1 运动学正逆解:对 UR5 机械臂进行了运动学建模,使用 Movelt!中 TRAC-IK运动学插件(数值解方法)。
- **1.2 碰撞检测:** Movelt!集成了碰撞检测算法作为插件。项目中考虑拾取砖块之后砖块的与机械臂的碰撞问题。
 - 1.3 运动规划:运动规划包括路径规划及优化、轨迹规划。
- 2.砖块搜索策略

4.2 仿真实验效果

感谢观看 THANK YOU

