

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA MÁSTER UNIVERSITARIO EN COMPUTACIÓN LÓGICA E INTELIGENCIA ARTIFICIAL

ANÁLISIS DE LAS TRANSICIONES DE COMPORTAMIENTO EN CRECIMIENTO DE TUMORES USANDO UNA SIMULACIÓN CON AUTÓMATA CELULAR

Realizado por Sergio Rodríguez Calvo 28836487F

Supervisado por Dr. Miguel Ángel Gutiérrez Naranjo

Departamento
Ciencias de la Computación e Inteligencia Artificial

Sevilla, noviembre 2017

Realizado por Sergio Rodríguez Calvo sergiorodriguezcalvo@gmail.com

ÍNDICE GENERAL

1.	Res	umen	7
2.	Introducción		
	2.1.	Objetivos	10
	2.2.	Alcance	10
	2.3.	El cáncer	10
	2.4.	Los autómatas celulares	12
3.	Esta	do del arte	15
	3.1.	Resultado de la búsqueda de artículos	15
	3.2.	Analysis of behaviour transitions in tumour growth using a cellular automaton simulation	16
	3.3.	Cellular automaton of idealized brain tumor growth dynamics	17
4. Modelo de eventos		delo de eventos	19
	4.1.	Objetivos del artículo	19
	4.2.	Las células, genoma y propiedades	20
	4.3.	Parámetros globales	21
	4.4.	Pruebas previas a la mitosis	21
	4.5.	Mitosis	22
	4.6.	Eventos mitóticos	23
	4.7.	Equivalencia temporal	23

ÍNDICE GENERAL

	4.8.	Bucle	principal del modelo de eventos	24
5.	Imp	lement	ación del sistema	27
	5.1.	Tecno	logías	27
	5.2.	Arqui	tectura y diseño	28
	5.3.	3. Módulos del sistema		
		5.3.1.	Módulo genome.py	29
		5.3.2.	Módulo <i>cell.py</i>	30
		5.3.3.	Módulo simulation_globals.py	31
		5.3.4.	Módulo experiments.py	31
		5.3.5.	Módulo grid.py	32
		5.3.6.	Módulo automata.py	33
		5.3.7.	Módulo analytics.py	34
	5.4.	Instala	ación y ejecución	34
		5.4.1.	Prerrequisitos	34
		5.4.2.	Ejecución	35
		5.4.3.	Parámetros de la simulación	36
6.	Expo	erimen	tos de los autores	37
	6.1.	Influe	ncia del parámetro <i>Tasa de mutación base (m)</i>	37
		6.1.1.	Experimento 1: Tasa de mutación base igual a 10.000	38
		6.1.2.	Experimento 2: Tasa de mutación base igual a 1.000	39
		6.1.3.	Experimento 3: Tasa de mutación base igual a 100	40
	6.2.	Influe	ncia del resto de parámetros	41
	6.3.	Influencia de parámetros con rejilla completa de células sanas		
	6.1	Polovancia de los marcadores		

7. Resultados propios				45
7.1. Influencia del parámetro <i>Tasa de mutación base (m)</i>			ncia del parámetro <i>Tasa de mutación base (m)</i>	45
		7.1.1.	Experimento 1: Tasa de mutación base igual a 10.000	45
		7.1.2.	Experimento 2: Tasa de mutación base igual a 1.000	47
		7.1.3.	Experimento 3: Tasa de mutación base igual a 100	49
	7.2. Influencia del resto de parámetros		50	
			50	
	7.4.	Releva	ancia de los marcadores	51
8.	8. Conclusión			59
9.	9. Trabajo futuro			61

ÍNDICE DE FIGURAS

2.1.	Conus textile shell, especie de gasterópodo que presenta un autómata celular natural en su concha.	12
2.2.	Tipos de vecindarios en los autómatas celulares	13
3.1.	Triangulación de Delaunay junto a Polígonos de Thiessen o diagramas de Voronoi para modelizar el tamaño de las células	18
4.1.	Modelo de eventos para simulación del cáncer	24
5.1.	Diagrama de componentes del sistema.	28
5.2.	Código con el bucle principal de la simulación	33
5.3.	Código para configuración por defecto de una simulación	36
6.1.	Resultados obtenidos por los autores para el experimento con $m = 10,000$.	38
6.2.	Resultados obtenidos por los autores para el experimento con $m = 1,000$.	39
6.3.	Resultados obtenidos por los autores para el experimento con $m=100.$.	40
6.4.	Resultado de la simulación para comprobar la influencia del resto de parámetros	41
6.5.	Resultado de la simulación para comprobar la influencia del resto de parámetros con rejilla completa de células sanas	43
6.6.	Resultados de la simulaciones con la eliminación de algún marcador con dos configuraciones diferentes	44
7.1.	Células sanas frente a células cancerosas como resultado de la simulación para el experimento con $m=10,000.$	46

7.2.	Evolución de los marcadores como resultado de la simulación para el experimento con $m = 10,000$	47
7.3.	Rejilla resultante de la simulación para el experimento con $m=10{,}000$	48
7.4.	Células sanas frente a células cancerosas como resultado de la simulación para el experimento con $m=1,000.\ldots$	49
7.5.	Evolución de los marcadores como resultado de la simulación para el experimento con $m=1,000.$	50
7.6.	Rejilla resultante de la simulación para el experimento con $m=10{,}000$	51
7.7.	Células sanas frente a células cancerosas como resultado de la simulación para el experimento con $m=100.\ldots$	52
7.8.	Evolución de los marcadores como resultado de la simulación para el experimento con $m = 100. \dots \dots \dots \dots \dots \dots$	52
7.9.	Rejilla resultante de la simulación para el experimento con $m=100.$	53
7.10.	Células sanas frente a células cancerosas como resultado de la simulación para el experimento con $m=100,000$	53
7.11.	Evolución de los marcadores como resultado de la simulación para el experimento con $m=100,000$	54
7.12.	Rejilla resultante de la simulación para el experimento con $m=100,000$.	54
7.13.	Evolución de las células sanas frente a células cancerosas con rejilla completa de células sanas y parámetros por defecto	55
7.14.	Evolución de los marcadores cancerosos con rejilla completa de células sanas y parámetros por defecto	55
7.15.	Rejilla resultante de la simulación iniciada completa de células sanas	56
7.16.	Efecto de la eliminación de un marcador con parámetros por defecto excpeto con $m = 100. \dots \dots \dots \dots \dots \dots$	56
7.17.	Efecto de la eliminación de un marcador con parámetros del cuadro 7.1.	57

RESUMEN

El cáncer es un nombre genérico que agrupa más de 200 enfermedades¹ que causan proliferación descontrolada de células provocando la aparición de masas anormales. A toda masa anormal se le conoce como neoplasia y, según su invasividad y factor de crecimiento, puede ser maligna (carcinoma) o benigna (adenoma).

Esta enfermedad puede ser vista como un comportamiento emergente, que puede ser explicado a partir de la presencia de ciertos marcadores cancerosos a nivel local.

José Santos y Ángel Monteagudo, autores de una serie de artículos [7] [8] [9] y, entre ellos, el artículo en el que se centra este trabajo [6], proponen el uso de autómatas celulares como técnica para simular dicho comportamiento dada su idoneidad.

Se propone una modelización en la cual se utiliza una rejilla en tres dimensiones donde, sin tener en cuenta el tamaño de la célula, se presenta al comienzo una única célula en el centro de dicha rejilla. Cada célula, cuenta con un genoma asociado que representa la aparición de mutaciones, así como, dos propiedades: tamaño del telómero, y tasa de mutación base.

Todo ello, es utilizado dentro de un modelo de eventos, en el cual, se programan eventos mitóticos en el futuro y en el que se consideran una serie de pruebas previas a la mitosis. Dichas pruebas, modelizan el comportamiento individual de cada célula a la hora de ejecutar la división, así como, todos aquellos factores que pueden derivar en la muerte de la célula y factores provocados por las mutaciones adquiridas.

Finalmente, se realizan una serie de simulaciones, alterando los parámetros de configuración del autómata, con el objetivo de estudiar el nuevo comportamiento, así como, la incidencia de determinadas terapias en el comportamiento global del sistema.

 $^{^{1}} https://www.aacrfoundation.org/Pages/what-is-cancer.aspx \\$

Introducción

Desde el punto de vista de la biología computacional el cáncer puede ser visto como un sistema ecológico y de comportamiento emergente. Lo cual, hace apropiado el uso de autómatas celulares para simular su comportamiento. Es por ello que, cada vez más se opta por el uso de simulaciones por ordenador como la que se presenta en este trabajo ayudando, desde el estudio y comprensión del cáncer, hasta el estudio y desarrollo de nuevas terapias contra él.

El cáncer es una enfermedad cada vez más común debido a sus muy diversos factores que propician su aparición, esto es, mayor esperanza de vida de la población y, por tanto, individuos cuyas células han sufrido más mutaciones, factores ambientales y/o formas de vida poco saludables, mayor estrés de la población, y hasta exposición a fuentes de radiación artificiales.

A pesar de todo, el cuerpo tiene una serie de mecanismos para prevenir la aparición y la proliferación de esta enfermedad. Estos, son muchos y muy diversos, así como, los mecanismos propios de las células que intervienen en este proceso. En esta simulación, por tanto, se pretenden tener en cuenta el enfoque de los autores del trabajo original, eligiendo sólo un subconjunto de todas estas carácteristicas y comportamientos.

La elección de un autómata celular como enfoque para modelizar el comportamiento de esta enfermedad proviene por la relativa facilidad de obtener comportamientos complejos a partir de una reglas relativamente sencillas a nivel local en cada célula.

Este trabajo, como se ha comentado previamente, pretende reproducir el trabajo de José Santos y Ángel Monteagudo [6], uno de los trabajos [7] [8] [9] que dichos autores han realizado siguiendo la idea de realizar simulaciones sobre esta enfermedad y, por ello, aquí se realiza una nueva implementación con el fin de reproducir los resultados obtenidos en el citado artículo.

La implementación consiste en seguir un modelo de eventos, es decir, se pretende simular el proceso que siguen las células para su división, que consiste en, la realización de una serie de pruebas para comprobar si la célula debe reproducirse, la realización de la propia división, y la programación de un nuevo evento de división en el futuro. A lo largo de la ejecución del programa en cada iteración puede haber ninguna, una o varias células que deben seguir el proceso que se acaba de describir brevemente.

Finalmente, para estudiar el comportamiento del cáncer se realizan diversas ejecuciones utilizando diferentes parámetros y configuraciones, y observando en cada caso qué factor es el que provoca el cambio en el comportamiento global.

2.1 OBJETIVOS

En este trabajo, se esperan alcanzar los siguientes objetivos:

- Encontrar artículos científicos de calidad sobre esta temática.
- Extraer información del artículo (o los artículos).
- Elegir un artículo y hacer una implementación propia.
- Reproducir los resultados del artículo.
- Comparar los resultados obtenidos con los del artículo.

2.2 ALCANCE

El presente trabajo tiene como finalidad reproducir el trabajo de José Santos y Ángel Monteagudo [6], realizando una implementación propia del sistema que se describe en su artículo.

No obstante, el comportamiento que se pretende simular cuenta con una serie de pasos en los cuales el comportamiento dependerá de ciertos sorteos con una probabilidad dada. Esta es una limitación a tener en cuenta a la hora de obtener los mismos resultados que los autores de dicho trabajo.

2.3 EL CÁNCER

El cáncer es el nombre genérico usado para referirse a más de 200 enfermedades cuyo resultado es la proliferación descontrolada de las células que se ven afectadas.

Aunque no era común encontrar signos de cáncer en los seres vivos en la antigüedad debido a una menor esperanza media de vida, lo cierto es que es inherente al reino animal.

El origen etimológico del nombre proviene de la antigua grecia, donde un médico llamado Hipócrates utilizaba los términos *carcino* y *carcinoma* para referirse a dicha enfermedad, y las cuales hacían referencia al cangrejo debido a la forma en la que se proyectaban los cánceres.

El cáncer se clasifica como:

- Una **enfermedad genética**, debido a, que es causada por un cambio en el material genético (*ADN*) de las células.
- Una enfermedad multigénica, ya que, afecta a diferentes genes.
- Una enfermedad multifactorial, es decir, tiene causas muy diversas.
- Una **enfermedad multiorgánica**, por tanto, afecta a diferentes tejidos y órganos.

Se conoce como neoplasia a toda masa anormal que tenga lugar en el cuerpo. Esto es, la división descontrolada de la célula y el aumento de tamaño de cada una de ellas, y ocurre por un problema en el *ADN* de la célula, la cual, contiene la información acerca de cuales son las funciones de la misma.

Al producirse en todo tipo de tejidos la evolución y el tratamiento de esta enfermedad varía. El factor determinante entre que este tipo de masas anormales sea benigna (adenoma) o maligna (carcinoma) es el factor de crecimiento y la invasividad de tejido adyacente.

Presenta diferentes fases, partiendo de un crecimiento anormal en tamaño, en la cual, cada vez necesitará más nutrientes. Esa necesidad de nutrientes hace que la célula entre en una segunda fase conocida como *angiogénesis*, en la cual, crea nuevos vasos sanguíneos para lograr su objetivo. Finalmente, la célula se vasculariza, es decir, partes de ella pasan a la sangre, continuando con este comportamiento allí donde se depositen y, además, en muchas ocasiones se observa metástasis.

Es obvio, que la célula para llegar a la última fase va a necesitar cierto grado de daño genético, así como, superar determinadas barreras. Por un lado, obtener todas las capacidades necesarias para poder dividirse sin control, crear sus propios vasos sanguíneos, etc. dependerá de la obtención de mutaciones en su *ADN* que permita

todo esto. Por otro lado, el cuerpo tiene mecanismos para evitar que esto ocurra, como por ejemplo, muerte por daño genético, evitar enviar orden de división e, incluso, el propio sistema inmune interviene para intentar evitar su crecimiento, además de otros muchos mecanismos.

Por tanto, esta es una enfermedad compleja de tipo ecológico y emergente, lo cual, dificulta su estudio, así como, su tratamiento.

2.4 LOS AUTÓMATAS CELULARES

El patrón mostrado en ciertas conchas marinas §2.1 es generado mediante autómatas celulares naturales. Estas conchas muestran un aspecto exterior en el cual se observan patrones, los cuales les han permitido en muchas ocasiones ocultarse mejor en su entorno y, por ello, aumentar su supervivencia. Dichos patrones son de muy diversos tipos, por ejemplo, forman formas reconocibles, o formas fractales, entre otras.

Figura 2.1: *Conus textile shell*, especie de gasterópodo que presenta un autómata celular natural en su concha.

En ellos, cada célula toma un color o forma diferente según sus células vecinas, obedeciendo a una versión natural de unas reglas matemáticas. Basándose en esto, se conoce como autómata celular al modelo matemático abstracto que modela sistemas dinámicos que evolucionan en pasos discretos.

Son muy adecuados para ser implementados por ordenadores, útiles para simular comportamientos de sistemas complejos, como por ejemplo: colonias, epidemias, dinámica de fluidos, etc., y en muy diversas áreas, como por ejemplo, en física, biología, química, socioeconomía, etc.

En el libro *Simulating Complex Systems by Cellular Automata* de Jiri Kroc, Peter M.A. Sloot y Alfons G. Hoekstra [5] se presentan los fundamentos matemáticos que presentan los autómatas celulares.

Fueron descubiertos por John von Neumann en la década de 1950, aunque basado en trabajos teóricos previos de la década de 1940. A modo de resumen, los autómatas celulares cuentan con los siguientes componentes:

- Red regular de nodos, de cantidad finita o infinita, que representa la estructura espacial.
- En cada nodo, se coloca un autómata finito, es decir, representa un número finito de estados posibles. Aquellos que se encuentran ocupados, reciben el nombre de células o celdas.
- Cada célula se comunica con su entorno, pero sólo con una parte de él. Esto se conoce como vecindario, y existen varios tipos, por ejemplo, el vecindario de Moore, o el vecindario de vonNeumann §2.2, entre otros.
- Función que determina la evolución de los estados de las distintas células.

Figura 2.2: Tipos de vecindarios en los autómatas celulares.

Dada una configuración se puede estudiar las transformaciones aplicando las reglas, lo que se conoce como órbita. Dichas órbitas pueden ser muy complejas, a pesar de la sencillez del autómata celular.

Uno de los autómatas celulares más famosos es el *Juego de la vida de Conway*. Diseñado por el matemático John Horton Conway en la década de 1970. Es tan famoso

debido a que es equivalente a una máquina universal de Turing o, lo que es lo mismo, es un modelo de computación universal¹. Esto es, todo lo que se puede computar algorítmicamente se puede computar en el juego de la vida.

Existen, además, muy diversas implementaciones y aplicaciones, como por ejemplo, para hacer música. En el libro *Game of Life Cellular Automata* de Andrew Adamatzky [1] se presenta el juego de la vida, y en el último capítulo se expone una forma de hacer música con él. Para ello, el autor utiliza cada celda ocupada por un autómata en cada iteración para tocar tres notas utilizando las coordenadas (x,y) de la posición del autómata en el plano cartesiano. De este modo, obtiene las tres notas utilizando una nota fija, y dos notas más mediante el valor de x e y como intervalo entre notas de un piano respecto de la nota fija y de la segunda nota respectivamente.

Se puede concluir, por tanto, que un autómata celular es una de las formas más adecuadas de simular comportamientos emergentes, al igual que los sistemas de Lindenmayer y, por tanto, adecuado para este tipo de problemas. José Santos y Ángel Monteagudo [6] optaron por utilizar autómatas celulares para sus trabajos.

En este caso, los autores pretenden simular el comportamiento emergente que presentan los tumores mediante un autómata celular. Ellos parten de los trabajos previos de Douglas Hanahan y Robert A. Weinberg llamados *The hallmarks of cancer* [3] y *The hallmarks of cancer: The next generation* [4] respectivamente. En ellos, se identifican una serie de marcadores asociados a ciertas mutaciones presentes en el genoma de las células que permiten la aparición y evolución de tumores.

¹http://eprints.uwe.ac.uk/22323/1/thesis.pdf

ESTADO DEL ARTE

Para cumplir con uno de los primeros objetivos de este trabajo, se necesitaba realizar una búsqueda de artículos científicos sobre esta temática: *Simulación de crecimiento de tumores con autómatas celulares*.

Tras una primera selección, donde se descartaron los artículos de $arXiv^1$, ya que, podrían estar aún en fase de revisión, así como, artículos demasiado antiguos o artículos cuyo enfoque quedarán fuera del ámbito de la inteligencia artificial, se obtuvo una lista con dos candidatos.

De los artículos seleccionados, se procedió a su estudio y extracción de información. A continuación, se presenta la lista de trabajos obtenidos y, posteriormente, se describen los trabajos candidatos.

3.1 RESULTADO DE LA BÚSQUEDA DE ARTÍCULOS

Los artículos encontrados durante la fase de búsqueda de información respecto a la temática *Simulación de crecimiento de tumores con autómatas celulares* son los siguientes:

- Simulated Brain Tumor Growth Dynamics Using a Three-Dimensional Cellular Automaton de A.R. Kansal, S. Torquato, G.R. Harsh IV, E.A. Chiocca and T.S. Deisboeck, 2000.
- A cellular automaton model for tumour growth in inhomogeneous environment de T. Alarcon, H.M. Byrne, P.K. Maini, 2003.
- *A Cellular automata model of tumor-immune system interactions* de D.G. Mallet, L.G. De Pillis, 2006.
- Cellular Automaton of Idealized Brain Tumor Growth Dynamics de A.R. Kansal, S. Torquato, G.R. Harsh IV, E.A. Chiocca and T.S. Deisboeck, 2009.

¹https://arxiv.org/

- A Review of Cellular Automata Models of tumor Growth de Ankana Boondirek, Wannapong Triampo, Narin Nuttavut, 2010.
- Emergent Behaviors from A Cellular Automaton Model for Invasive Tumor Growth in Heterogeneous Microenvironments de Yang Jiao, Salvatore Torquato, 2011-2012.
- Study of cancer hallmarks relevance using a cellular automaton tumor growth model de José Santos, Ángel Monteagudo, 2012.
- Studying the capability of different cancer hallmarks to initiate tumor growth using a cellular automaton simulation. Application in a cancer stem cell context de José Santos, Ángel Monteagudo, 2013.
- *A Cellular Automaton Model for Tumor Dormancy: Emergence of a Proliferative Switch* de Duyu Chen, Yang Jiao, Salvatore Torquato, 2014.
- Analysis of behaviour transitions in tumor growth using a cellular automaton simulation de José Santos, Ángel Monteagudo, 2014.
- Treatment analysis in a cancer stem cell context using a tumor growth model based on cellular automata de José Santos, Ángel Monteagudo, 2015.

3.2 Analysis of behaviour transitions in tumour growth using a cellular automaton simulation

Este artículo [6] forma parte de una serie de artículos [7] [8] [9] en el cual los autores, con un enfoque genérico, pretenden simular el crecimiento de tumores.

Para ello, se basan en varios trabajos, pero principalmente en los trabajos de Douglas Hanahan y Robert A. Weinberg [3] [4], donde se presentan varios marcadores presentes en las células, los cuales consisten en una serie de mutaciones que permiten a las células presentar un comportamiento canceroso.

En su enfoque, utilizan un autómata celular que sigue un modelo de eventos, esto es, porque los autores necesitan, por un lado, simular las escalas de tiempo, y por otro, modelizar cuándo las células necesitan realizar la mitosis.

En cada uno de sus trabajos, presentan diferentes enfoques. Esto es, se centran, o descartan, varios marcadores y comportamientos. Por ejemplo, en el trabajo en el

que se centra este proyecto [6] los autores deciden ignorar dos marcadores, AG o angiogénesis, y MT o metástasis.

Además, deciden no modelizar el crecimiento celular, es decir, todas las células en la rejilla ocupan el mismo espacio.

Es un enfoque genérico, que permite simular cualquier tipo de tumor modificando los parámetros de la simulación, y permite también estudiar los distintos comportamientos emergentes según qué marcador toma o no relevancia frente al resto.

3.3 Cellular automaton of idealized brain tumor growth dynamics

Este artículo [2] es uno de los dos candidatos estudiados con el objetivo de desarrollar este proyecto.

En él, se presenta un nuevo modelo de autómata celular para simular crecimientos emergente de tumores cerebrales. En concreto, se enfoca a un tipo de tumor, el tumor de Gompertzian. Los autores presentan la consecución de simular el crecimiento de dicho tumor en casi tres órdenes de magnitud en radio utilizando sólo cuatro parámetros microscópicos.

Su estudio tiene un elevado enfoque clínico modelizando la densidad de células y el tamaño de cada célula, empleando el algoritmo de triangulación *Delaunay*² §3.1 junto a Polígonos de *Thiessen* o diagramas de *Voronoi*³ para su representación.

Realizan también un modelado temporal, para así estudiar la velocidad de crecimiento de los tumores. Sus resultados están muy especializados en un tipo de tumor, por lo que no realizan un estudio genérico para varios tipos de tumores, con diferentes parámetros, configuraciones o marcadores.

²https://es.wikipedia.org/wiki/Triangulacion_de_Delaunay

³https://es.wikipedia.org/wiki/Poligonos_de_Thiessen

Figura 3.1: Triangulación de Delaunay junto a Polígonos de Thiessen o diagramas de Voronoi para modelizar el tamaño de las células.

MODELO DE EVENTOS

Los autores, José Santos y Ángel Monteagudo, decidieron utilizar un autómata celular siguiendo un modelo de eventos. Es decir, por un lado, la simulación se realiza sobre una rejilla en tres dimensiones, comenzando con una única célula en el centro de la misma. Por otro lado, se programan una serie de eventos para cada una de las células de la rejilla, aleatoriamente entre 5 y 10 (ambos inclusive) iteraciones en el futuro.

Las características y propiedades del sistema se describen en las secciones de este capítulo que se muestran a continuación.

4.1 OBJETIVOS DEL ARTÍCULO

En este trabajo, los autores tiene como objetivo estudiar las fases iniciales del crecimiento tumoral a nivel celular, estudiando diferentes configuraciones iniciales y observando las diferentes dinámicas y comportamientos. Así como, estudiar, también, la relevancia en la progresión del cáncer de cada uno de los marcadores, y qué dinámicas presenta cada uno de ellos.

Además, centran el foco de su trabajo en las transiciones cuando las células cancerosas mueren con una probabilidad dada durante la progresión del sistema celular.

No son objetivos de este trabajo simular las fases posteriores al crecimiento inicial de tumores, ni el aumento de tamaño de las células. Tampoco es objetivo modelar los diferentes factores que pueden provocar mutaciones y/o muerte celular.

Por último, en este artículo no se presta atención a las células madre del cáncer. Los autores en otros trabajos [9] sí modelizan la presencia de dichas células.

4.2 LAS CÉLULAS, GENOMA Y PROPIEDADES

Cada célula estará alojada en una única posición del autómata. En esta simulación, no se modeliza el tamaño de las células, es decir, aunque en las células cancerosas se observa, además de un comportamiento replicativo sin control, un crecimiento en su tamaño sin control, los autores no han tenido en cuenta esto.

Cada célula presente en la rejilla cuenta con un genoma y unas propiedades únicas para cada una de ellas. En cuanto a su genoma, cuenta con 5 variables binarias que representan la presencia o no de hasta cinco mutaciones, las cuales, definen un determinado comportamiento canceroso en cada caso. Estas mutaciones son las siguientes:

- **SG**: Autogeneración de los mensajes de crecimiento. Esto es, la mutación que permite que la célula genere sus propios mensajes para ejecutar la división con independencia externa.
- IGI: Inhibición de las señales de anticrecimiento. Esto es, ante la recepción de una orden de detener su crecimiento, la célula tiene una mutación que le permite un mecanismo de ignorancia de los mismos.
- EA: Evasión de apoptosis. Esto es, la célula puede, mediante mutación, no hacer caso ante una orden de apoptosis, o muerte celular controlada.
- EI: Inmortalidad efectiva. Esto es, la célula adquiere una mutación que permite evitar un límite replicativo existente, entre otros factores, por el tamaño del telómero.
- **GI**: Inestabilidad genética. Esto es, una mutación que permite a la célula acumular más daño genético, es decir, la tasa de mutación base se va incrementando con el paso del tiempo.

Además, cada célula tiene una tasa de mutación base y un tamaño de telómero. El primero, es utilizado a la hora de añadir nuevas mutaciones a la célula. Y la segunda, es un límite replicativo debido a que el ADN queda desprotegido para futuras mutaciones y podrían ocurrir errores.

4.3 PARÁMETROS GLOBALES

De cara a la simulación, existen una serie de parámetros globales que inciden en determinados mecanismos y, por tanto, afectan en su evolución. Esto son:

- t: Tamaño de la rejilla.
- m: Valor por defecto que indica la tasa de mutación base de cada célula al inicio.
- tl: Valor por defecto que indica el tamaño del telómero de cada célula al inicio.
- e: Valor por defecto utilizado para definir la probabilidad de una célula de morir por daño genético.
- i: Valor por defecto utilizado como factor de aumento de la tasa de mutación base de las células.
- **g**: Valor por defecto para ver qué probabilidad hay de que una célula cancerosa mate a un vecino para poder reproducirse.
- a: Valor por defecto para ver con qué probabilidad una célula muere de forma aleatoria. Este parámetro se introduce como forma de simular las muy diversas causas que pueden originar en la muerte de la célula, por ejemplo, recibir una alta dosis de radiación entre otras.

4.4 Pruebas previas a la mitosis

El modelo de eventos, a la hora de realizar la mitosis (división celular), realiza tres pruebas:

- **Prueba de muerte aleatoria**: La célula muere con una probabilidad dada (1/*a*).
- Prueba de daño genético: A mayor cantidad de mutaciones, mayor probabilidad de que la célula muera (n/e, donde n es el número de mutaciones de la célula). Excepto, que la célula tenga la mutación EA presente en su genoma.
- Prueba de mitosis: En realidad, se trata de tres pruebas cuyo resultado debe ser positivo para que la célula pueda ejecutar la mitosis:

- **Comprobación del factor de crecimiento**: La célula sólo puede realizar la mitosis si se encuentra dentro de un límite espacial predefinido. Es decir, hay suficiente factor de crecimiento. Fuera de este área no podrá realizar la mitosis, excepto si el marcador *SG* está activo.
- Comprobación de ignorancia de inhibición de crecimiento: Si no hay espacio en el vecindario, la célula no podrá realizar la división. Excepto, que la mutación IGI esté presente, en cuyo caso, reemplazará a un vecino con una probabilidad dada (1/g).
- **Comprobación de potencial replicativo sin límites**: Si el tamaño del telómero es 0, la célula muere. Excepto si el marcador *EI* está presente.

En estas pruebas, se utilizan los parámetros globales, además, de las propiedades y el genoma de la célula.

Por tanto, si una célula pasa todas las pruebas podrá entrar en fase de mitosis.

4.5 MITOSIS

La mitosis es la fase donde se realiza la división celular, lo cual origina una nueva célula, llamada célula hija, que es una copia exacta de la célula original.

Durante este proceso, se pueden producir una serie de errores, bien de forma natural, o bien, debido mutaciones presentes en la célula original que hacen más probable un error.

En este trabajo, el proceso de mitosis cuenta con los siguientes pasos:

- Incremento de la tasa de mutación base *m* (de acuerdo al parámetro global *i*) si el marcador *GI* está presente.
- Añadir nuevas mutaciones a la célula de acuerdo a la tasa base de mutación (1/m).
- Decrementar el telómero en ambas células en una unidad, siempre que su tamaño no sea 0.

A continuación, se programan nuevos eventos mitóticos para ambas hijas como se describe a continuación.

4.6 EVENTOS MITÓTICOS

Un evento mitótico se puede ver como la posibilidad de que una célula ejecute o no la división (o mitosis), en el futuro.

Todas las células en la rejilla contarán con un evento mitótico en el futuro. Cuando se selecciona una de las candidatas en cada iteración la célula candidata debe pasar las pruebas previas a la mitosis para ver si la misma puede o no ejecutar la mitosis. Si el resultado es positivo, se realiza la mitosis y se crean nuevos eventos mitóticos en el futuro para la célula original y, también, para la célula hija. Si el resultado es negativo, pero la célula no ha muerto, se programa un nuevo evento mitótico en el futuro.

La programación de eventos mitóticos futuros consiste en la generación, de forma aleatoria, de un valor entre 5 y 10 iteraciones (ambas inclusive) del bucle principal. Estos valores tienen que ver con el ciclo de vida temporal de las células, sobre el cual, se detalla más información en la siguiente sección.

4.7 EQUIVALENCIA TEMPORAL

El ciclo de vida de las células biológicas es de entre 15 y 24 horas. Este ciclo se divide en 5 fases, que son: fase *G*0, fase *G*1, fase *S*, fase *G*2 y fase *M*.

Una célula parte en fase de reposo (*G*0). Si hay espacio suficiente a su alrededor (vecindario) automáticamente pasa a fase *G*1. En la simulación, *G*1 se simula mediante el paso del tiempo (iteraciones) y la programación de eventos mitóticos en el futuro (entre 5 y 10 iteraciones, ambas inclusive). Además, en la simulación no se tiene en cuenta el crecimiento celular.

La fase *S* es cuando tiene lugar la replicación del *ADN*. La cual, puede introducir una mutación ocasionalmente. La célula entra en una última fase previa a la mitosis, llamada fase *G*2, en la cual se producen una serie de comprobaciones sobre el daño genético. Esto, puede provocar la apoptosis (muerte celular programada) en la célula.

Finalmente, la célula entra en la fase M o de mitosis. Todo este ciclo, que en la simulación toma entre 5 y 10 iteraciones (15 y 24 horas en células biológicas) da una media de 2,6 horas por iteración. Por ejemplo, para 5000 iteraciones se tienen unas 77,4 semanas aproximadamente.

4.8 BUCLE PRINCIPAL DEL MODELO DE EVENTOS

El modelo de eventos consiste en realizar un número de iteraciones, y en cada iteración realizar una serie de pruebas con aquellas células que tienen una posibilidad de evento mitótico en ese momento §4.1.

Se realizan tres pruebas, la primera prueba consiste en comprobar si a la célula que tiene un posible evento mitótico en esta iteración aplica o no muerte aleatoria. Esto se realiza mediante un sorteo con una probabilidad dada (1/a). Mediante esta prueba se pretende simular las diferentes causas que pueden llevar a la muerte de una célula.

En la segunda prueba, se pretende simular los mecanismos del cuerpo que evitan que una célula siga reproduciéndose con un elevado daño genético. Esto se realiza mediante un sorteo con una probabilidad dada (n/e) a partir del número de mutaciones de la célula entre un parámetro global establecido para la simulación.

Y, por último, se realiza la prueba para ver si dicha célula realiza o no la mitosis. Para ello, se realizan tres pruebas que deben ser positivas, estas son: comprobación del factor de crecimiento, comprobación de ignorancia de inhibición de crecimiento, y comprobación de potencial replicativo sin límites.

```
t ← 0

Nuevo_Evento_Mitótico(t+5,t+10)

MIENTRAS existan eventos en la cola HACER

Obtener_Evento(t)

PRUEBA 1: MUERTE_ALEATORIA_CELULA()

PRUEBA 2: MUERTE_DAÑO_GENÉTICO()

PRUEBA_MITOSIS():

PRUEBA 3: COMPROBACIÓN_FACTOR_CRECIMIENTO()

PRUEBA 4: COMPROBACIÓN_IGNORANCIA_INHIBICIÓN_CRECIMIENTO()

PRUEBA 5: COMPROBACIÓN_POTENCIAL_REPLICATIVO_SIN_LIMITES()

SI se han pasado las tres pruebas para la mitosis ENTONCES

HACER_MITOSIS()

PUSH_EVENT()

SINO

PUSH_EVENT()
```

Figura 4.1: Modelo de eventos para simulación del cáncer.

La prueba número tres, o comprobación del factor de crecimiento, consiste en com-

probar si la célula está dentro de un espacio predefinido en el cual llegan los mensajes para poder realizar la mitosis, y si no es así, se comprueba que tiene la mutación SG que le permite realizar la mitosis a pesar de estar en dicha posición. En cuanto a la prueba número cuatro, o comprobación de ignorancia de inhibición de crecimiento, consiste en comprobar si hay espacio en el vecindario para realizar la mitosis, o en caso contrario, si tiene el marcador IGI reemplazará a un vecino con una probabilidad dada (1/g) mediante la muerte del vecino elegido. Por último, la prueba número cinco, o comprobación de potencial replicativo sin limites, consiste en comprobar si el tamaño del telómero es mayor a cero, o en caso contrario, si tiene la mutación EI que le permite realizar la mitosis a pesar de no contar con telómero.

Si la célula pasa todas las pruebas se procede a realizar la mitosis y a programar un nuevo evento mitótico para ambas. En otro caso, se programa un nuevo evento mitótico para la misma célula si esta no ha muerto como resultado de alguno de las pruebas previas a la mitosis.

La implementación final en un lenguaje de programación de propósito general varía dada la complejidad de implementación de las pruebas descritas. En el siguiente capítulo se comenta y se muestra la implementación final del algoritmo presentado en esta sección.

IMPLEMENTACIÓN DEL SISTEMA

En este capítulo, se detalla el diseño e implementación del sistema. Tecnologías utilizadas, arquitectura y diseño, así como, detalles de implementación y patrones que se han seguido.

5.1 TECNOLOGÍAS

Este proyecto ha sido desarrollado empleando diversas tecnologías y soluciones de *Python*.

 $Python^1$ es un lenguaje multiparadigma que es ampliamente utilizado en ámbitos científicos y de investigación. Cuenta con multitud de herramientas para la realización de tests, gestión de dependencias, etc., entre las que se encuentran $Unittest^2$ (tests unitarios) y Pip^3 (gestor de dependencias), que han sido empleadas en este trabajo.

Se ha optado por utilizar el lenguaje de programación *Python*, en su versión 3, concretamente, en el momento de la realización de este trabajo el desarrollo se ha realizado bajo la versión 3.6.2 de dicho lenguaje.

La implementación de *Python* utilizada es *CPython*⁴.

Además, se han empleado los siguientes paquetes:

- NumPy como librería fundamental para computación científica del ecosistema SciPy.
- Matplotlib como librería para creación de gráficas del ecosistema SciPy.
- Plotly como librería gráfica, utilizada en este caso sólo para representar figuras en tres dimensiones.

¹https://www.python.org/

²https://docs.python.org/3/library/unittest.html

³https://pypi.python.org/pypi/pip

 $^{^4}$ https://www.toptal.com/python/por-que-hay-tantos-pythons/es

Por último, para su desarrollo, se han utilizado otras herramientas como: *Git* y *Git-flow*, *Github*, *Travis*, *Landscape*, *Coveralls* y *Docker*.

5.2 ARQUITECTURA Y DISEÑO

Para el desarrollo de este proyecto se ha optado por seguir dos paradigmas simultáneamente. Por un lado, se ha seguido el paradigma orientado a objeto, esto es, modelizar las partes del sistema con objetos que encapsulan las propiedades y métodos necesarios según las necesidades u objetivos de cada una de ellas y, las cuales, se describen en la siguiente sección de este capítulo. Por otro lado, se ha seguido el paradigma funcional, esto es, diseñar el sistema, o partes de él, en forma de funciones, las cuales para ejecutar su lógica utilizan únicamente los parámetros que recibe.

Figura 5.1: Diagrama de componentes del sistema.

Ambos paradigmas, comentado brevemente en el párrafo anterior, tienen muchos más aspectos, enfoques y soluciones de las que se comentan. El programa cuenta con un único punto de entrada §5.1, en este caso, siguiendo el patrón *Singleton*. En cuanto a los patrones utilizados, se van a describir en la siguiente sección de este capítulo donde se presentan los diferentes módulos del mismo.

5.3 MÓDULOS DEL SISTEMA

En este caso, el programa cuenta con 6 módulos §5.1. El módulo principal, *automata.py*, presenta una clase que sigue el patrón *Estrategia* y, el cual, engloba la función principal de ejecución, así como, el resto de funciones necesarias para su correcta ejecución. Además, importa y utiliza el resto de módulos, los caules, se describen a continuación.

5.3.1 Módulo genome.py

Este es el primero de los módulos que se ha desarrollado, y es el más simple de todos. Consta de una clase que contiene únicamente cinco variables binarias, una por cada mutación que se modeliza en este sistema.

Como se ha descrito previamente, las mutaciones que contiene esta clase son las siguientes:

- **SG**: Autogeneración de los mensajes de crecimiento. Esto es, la mutación que permite que la célula genere sus propios mensajes para ejecutar la división con independencia externa.
- IGI: Inhibición de las señales de anticrecimiento. Esto es, ante la recepción de una orden de detener su crecimiento, la célula tiene una mutación que le permite un mecanismo de ignorancia de los mismos.
- EA: Evasión de apoptosis. Esto es, la célula puede, mediante mutación, no hacer caso ante una orden de apoptosis, o muerte celular controlada.
- EI: Inmortalidad efectiva. Esto es, la célula adquiere una mutación que permite evitar un límite replicativo existente, entre otros factores, por el tamaño del telómero.
- **GI**: Inestabilidad genética. Esto es, una mutación que permite a la célula acumular más daño genético, es decir, la tasa de mutación base se va incrementando con el paso del tiempo.

Además, expone un método que permite obtener el número de mutaciones que tiene cada instancia de este tipo.

En definitiva, se trata de una clase que, por composición, estará contenida dentro de otra clase que modeliza a la célula, representando su genoma, y que se explica a continuación.

5.3.2 Módulo cell.py

El siguiente módulo, partiendo de la clase genoma, es el que contiene la clase que modeliza a cada una de las células de la simulación.

Como se ha comentado previamente contiene, por composición, un atributo que representa al genoma de la célula y que se trata de un objeto tal y como se ha descrito en la sección anterior de este capítulo. Además, presenta algunos atributos más necesarios para la simulación, y son:

- Atributo que representa el tamaño del telómero.
- Atributo que representa la tasa de mutación de la célula.
- Atributo que representa su posición en la rejilla, es decir, un conjunto de tres elementos que representan su posición en cada una de las dimensiones ((x,y,z)).

Por último, cuenta con varios métodos necesarios para la simulación, y son los siguientes:

- decrease_telomer(): Método que se encarga de cambiar el estado interno del objeto, realizando un decrecimiento en una unidad del telómero.
- *increment_base_muration_rate(i)*: Las células ven alterada su tasa de mutación base, utilizada para originar nuevas mutaciones durante la mitosis, con la presencia de la mutación asociada a la inestabilidad genética o *GI*. Este método realiza este proceso de acuerdo a una tasa de modificación, o incremento, de esta tasa, la cual es recibida por parámetros.
- mutations(): Método que devuelve el número de mutaciones que tiene la célula en su genoma.
- *add_mutations()*: Método que se encarga de generar las nuevas mutaciones que pueden tener lugar durante la mitosis.

 perform_mitosis(): El proceso de mitosis queda modelado en este método, esto es, incrementar tasa de mutación base, añadir nuevas mutaciones y realizar una copia de sí misma.

5.3.3 Módulo simulation_globals.py

De cara a realizar la simulación son necesarios una serie de parámetros que se necesitarán manipular para realizar los experimentos que se describirán en capítulos posteriores. Esto lleva al siguiente módulo, en el cual se tiene una clase que contiene, sólamente, atributos que almacenan todos estos parámetros.

Dichos parámetros son los siguientes:

- Tasa de mutación base o *m*.
- Tamaño del telómero o tl.
- Probabilidad de evasión de apoptosis o *e*.
- Factor de incremento de la tasa de mutación base o *i*.
- Probabilidad de matar a un vecino para realizar la mitosis o *g*.
- Probabilidad de muerte aleatoria de la célula o a.
- Límite espacial predefinido.
- Límite inferior para evento mitótico en el futuro.
- Límite superior para evento mitótico en el futuro.

En este fichero, además, se encuentran los valores por defecto de la simulación según los autores del artículo [6] en el que se basa este trabajo. En este caso, se declaran como constantes, ya que estos, en caso de ser utilizados en la simulación, no varían.

5.3.4 Módulo experiments.py

Para realizar la mitosis, se necesitan realizar varias pruebas o experimentos. Estos están contenidos dentro de una clase como métodos. Los parámetros necesarios para ejecutar dichas pruebas se reciben por parámetros. Los métodos, son los siguientes:

- random_death_test(): Prueba que indica si hay o no muerte aleatoria de la célula.
- random_death_test(n, ea): Prueba que indica si hay muerte por daño genético según el número de mutaciones de la célula que está realizando el proceso de mitosis, excepto que esté presente el marcador con la mutación que permite evadir la apoptosis.
- random_death_test(sg, spatial_boundary): Prueba que está dentro del límite espacial o, lo que es lo mismo, si existe suficiente factor de crecimiento como para ejecutar la mitosis. Excepto, si tiene presente el marcador sg, que permite ejecutar la mitosis si la célula se encuentra fuera de dicho espacio.
- random_death_test(igi): Prueba que comprueba si existe espacio para ubicar la célula hija una vez realizada la mitosis. Si no hay espacio y la célula tiene la mutación asociada al marcador igi, podrá matar a un vecino para ubicar a la célula hija.
- random_death_test(tl, ei): Prueba que comprueba si el telómero tiene tamaño mayor a 0 para realizar la mitosis. Si el tamaño es 0, la célula puede realizar mitosis si tiene presente la mutación asociada al marcador ei.

5.3.5 Módulo grid.py

El módulo *grid.py* almacena la información relativa a la rejilla en la que tiene lugar la simulación. Esto es, tiene como propiedad o atributos el ancho, alto y largo del mismo.

Pero, la parte útil de este módulo son los métodos que permiten a la simulación obtener el vecindario, controlando sus límites, y obtener qué celdas del vecindario están ocupadas y cuales no. Por tanto, sus métodos son los siguientes:

- neighborhood(origin, radio): Método que recibe un centro de tipo (x,y,z) y un radio, para devolver una lista con las posiciones que conforman el vecindario.
- *filter(value, limit)*: Método que permite saber si un valor está dentro de un límite espacial. Es utilizada en únicamente en el siguiente métodos.
- *check_limits(cube, limit)*: Método que comprueba que, de una lista de posiciones que conforman el vecindario, no existe una posición que exceda el límite de la rejilla. Devuelve, la lista sin dichas posiciones.

 classify_neighborhood(cube, cells): Métdodo que clasifica las células de un cubo que representa un vecindario en función de las posiciones ocupadas y las que están libres.

5.3.6 Módulo automata.py

Módulo principal del sistema que contiene la lógica de ejecución del mismo §5.2. El sistema está diseñado siguiendo el patrón *Singleton*, es decir, sólo hay un objeto autómata que, implementando el patrón *estrategia*, tiene un, método con la lógica de ejecución.

La lógica de ejecución se encuentra descrita en la sección 4.8 de este documento.

Además, tiene como atributos la agenda de eventos mitóticos, así como, el objeto que encapsula los experimentos necesarios para saber si se aplica o no mitosis a cada célula, los parámetros de simulación, el objeto con la lógica necesaria para gestionar la rejilla y, por último, la responsabilidad de generar las medidas utilizando el módulo de analítica que se describe a continuación.

```
def run(self, statics_enable):
    if statics_enable:
       statics = dict()
    for iteration in range(self.iterations):
       if statics_enable and iteration%50 == 0:
           statics[iteration] = copy.deepcopy(self.cells)
       events = self.pop_events(iteration) if iteration in self.mitotic_agenda else []
        for event in events: #
           cell = self.cells[event]
if self.experiments.random_death_test():
                 self.kill_cell(event)
            elif self.experiments.genetic_damage_test(cell.mutations(), cell.genome.ea):
                self.kill_cell(event)
                test_1, test_2, test_3 = self.first_test(cell), self.second_test(cell, iteration), self.third_test(cell)
                if test_1 and test_2 and test_3: #
                    self.copy_and_choose_new_position(event, cell, iteration)
                     self.push_event(iteration + self.future_mitotic_event(), event)
                elif test_3:
                    self.push_event(iteration + self.future_mitotic_event(), event)
                else: #
                    self.kill_cell(event)
        if iteration in self.mitotic_agenda: # Remove current iteration
           del self.mitotic_agenda[iteration]
    if statics_enable:
        result = self.analytics.get_measurements(statics)
        self.analytics.plot_grid_plotly(self.cells)
        self.analytics.pretty_show(self.iterations, self.cells)
```

Figura 5.2: Código con el bucle principal de la simulación.

5.3.7 Módulo analytics.py

Este último módulo, reúne las funciones necesarias para hacer medidas sobre las células de la rejilla, como por ejemplo, células sanas o cancerígenas, cuántas células tienen un determinado marcador del cáncer activo, etc.

Además, contiene funciones para construir y mostrar gráficas con vista a presentar la evolución del sistema a lo largo de la simulación.

5.4 INSTALACIÓN Y EJECUCIÓN

En esta última sección del capítulo dedicado a la implementación, se expone la información necesaria para su instalación y uso. Existen dos formas de conseguirlo, la primera, a través de una ejecución nativa, es decir, sobre la propia máquina local. En segundo lugar, sobre *Docker*, lo cual permite no realizar ninguna instalación sobre la máquina local.

5.4.1 Prerrequisitos

Dependiendo del tipo de instalación, se dan los siguientes prerrequisitos:

- Para una ejecución sobre la máquina local, se necesita:
- Instalar la versión 3.6+ de *Python*⁵.
- Instalar el gestor de paquetes de *Python*, *pip*⁶.
- Instalar el control de versiones *Git*⁷.
- Clonar el repositorio ejecutando en consola *git clone https://github.com/MULCIA/TFMSTGCA.git*.
- Instalar dependencias con *pip*, para ello, ejecutar en consola *pip install -r require-ments.txt*.
- Para una ejecución con *Docker* se necesita:

```
<sup>5</sup>https://www.python.org/downloads/
```

⁶https://pip.pypa.io/en/stable/installing/

 $^{^{7}}$ https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

- Instalar la última versión de *Docker*⁸.
- Instalar el control de versiones *Git*⁹.
- Clonar el repositorio ejecutando en consola git clone https://github.com/MULCIA/ TFMSTGCA.git.

5.4.2 Ejecución

Dependiendo del modo elegido, es decir, ejecución en máquina local o ejecución en *Docker*, su ejecución es diferente.

En primer lugar, se describe como hacer una ejecución en máquina local. Una vez cumplidos los requisitos descritos anteriormentes, para ejecutar el proyecto sólo hay que ejecutar, dentro del directorio que contiene el proyecto, el siguiente comando: *python main.py*.

Su ejecución se realiza automáticamente y al finalizar mostrará una serie de gráficas:

- Gráfica que muestra la evolución en número de las células sanas frente a las células cancerosas.
- Gráfica que muestra la evolución en número de los marcadores.
- Gráfica que muestra la rejilla en tres dimensiones mostrando las células sanas (gris) y las células cancerosas (verde).

En segundo lugar, se describe como hacer la ejecución en *Docker*. Una vez cumplido los requisitos anteriores, existen dos formas de ejecutar la simulación: ejecutar los comandos de docker, o emplear unos scripts que se encuentran embebidos en el proyecto. Dichos scripts sólo se pueden emplear de tratarse de una máquina *Linux*.

Los comandos de consola de *Docker* son los siguientes:

■ Para construir la imagen: *docker build -t TFMSTGCA/tfm* . .

⁸https://docs.docker.com/engine/installation/

⁹https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

- Para levantar el contenedor: *docker run —name tfm -d TFMSTGCA/tfm:latest tail -f /dev/null*. Se ejecuta en modo demonio y se mantiene su ejecución. Al finalizar el proceso de creación y ejecución del contenedor, se realiza una ejecución de los tests adjuntos al proyecto.
- Para ejecutar la simulación: *docker exec -it tfm bash*. Una vez ejecutado, con la terminal del contenedor en la consola, ejecutar como se describe previamente para la ejecución en máquina local.

5.4.3 Parámetros de la simulación

La simulación cuenta con la posibilidad de ajustar los parámetros que se describen en la sección anterior, donde se comenta el módulo *simulation_globals.py*. En el punto de entrada de la aplicación, en *main.py*, se encuentra la declaración del objeto *SimulationGlobals*.

Para realizar ajustes, existen dos formas:

- Utilizar la configuración por defecto de los autores.
- Utilizar una configuración propia.

Para el primer caso, se cuenta con una serie de constantes que permiten dejar el sistema con la configuración por defecto que dan los autores

Para el segundo caso, sólo hay que establecer el parámetro deseado sustituyendo cualquiera de las constantes.

Además, existe una configuración en cuanto a tamaño de la rejilla y número de iteraciones §5.3, esto es:

```
simulationGlobals = SimulationGlobals(BASE_MUTATION_RATE, TELOMER_LENGTH, EVADE_APOPTOSIS,
FACTOR_INCREASE_BASE_RATE_MUTATION, KILL_NEIGHBOR_PROBABILITY, RANDOM_CELL_DEATH,
PREDEFINED_SPATIAL_BOUNDARY, MIN_FUTURE_MITOTIC_EVENT, MAX_FUTURE_MITOTIC_EVENT)
automata = Automata(50, 1000, simulationGlobals)
```

Figura 5.3: Código para configuración por defecto de una simulación.

EXPERIMENTOS DE LOS AUTORES

José Santos y Ángel Monteagudo presentan una serie de experimentos para estudiar las propiedades, características y comportamiento del autómata celular.

En esta sección, se presentan los experimentos más relevantes que se presentan en el artículo, así como, también sus resultados. Para ello, se utiliza una rejilla de 125,000 celdas, es decir, 50^3 al tener tres dimensiones.

6.1 INFLUENCIA DEL PARÁMETRO Tasa de mutación base (m)

De cara a estudiar la capacidad del autómata celular para generar diferentes comportamientos, los autores realizaron tres experimentos en los que se presenta una configuración de parámetros locales por defecto, es decir, como se muestra en la tabla 6.1. En cada experimento, la única variación se encuentra en el parámetro *tasa de mutación base* (*m*). Respecto al número de iteraciones en este conjunto de experimento los autores realizan 1,000 iteraciones en cada caso, y siempre comienza con una única célula sana en el centro de la rejilla.

Cuadro 6.1: Valores de los parámetros, excepto *m*.

Nombre	Símbolo	Valor
Tamaño del telómero	tl	50
Muerte por daño genético	e	10
Factor de incremento de tasa de mutación base	i	100
Muerte de un vecino	g	30
Muerte aleatoria	a	1000

Este parámetro influye en la probabilidad de que aparezcan nuevas mutaciones durante el proceso de división celular o mitosis. La probabilidad viene dada por la fórmula 1/m, por lo que un valor grande de m dará una probabilidad más baja de que

aparezca una nueva mutación en cada célula en cada evento mitótico que haya pasado las pruebas.

A continuación, se muestra cada uno de los experimentos (media de realizar 5 veces cada experimento) especificando en cada caso el valor m utilizado, mostrando tres gráficas: una primera gráfica que muestra la evolución de las células cancerosas frente a las células sanas; una segunda gráfica que muestra el número de células que contiene qué marcador o marcadores del cáncer.

6.1.1 Experimento 1: Tasa de mutación base igual a 10.000

En este primer experimento, los autores presentan un valor para el parámetro tasa de mutación base de m = 10,000. Realizan una simulación de 1,000 iteraciones.

Figura 6.1: Resultados obtenidos por los autores para el experimento con m = 10,000.

En la figura §6.1 se presentan los resultados obtenidos tras la ejecución de la simulación. Aquí, la tasa de mutación base hace que la probabilidad de que suceda una mutación durante la mitosis sea especialmente baja.

El número de células cancerosas no presenta una proliferación destacada, y tiende a mantenerse constante debido a que actúan determinados mecanismos sobre este tipo de células, por ejemplo, la apoptosis.

Observando la gráfica que presenta los marcadores más relevantes se observa como *SG* toma ventaja. Este marcador permite a la célula falsificar los mensajes de división celular y realizar así la mitosis. Esto ocurre porque este tipo de células encuentra vía libre para proliferar en la zona exterior de la rejilla, debido a que en ese lugar las células sanas no pueden proliferar por no disponer de suficiente factor de crecimiento, lo que provoca que encuentre espacio libre.

El marcador *EA* permite a la célula evadir la apoptosis, las cuales escapan a los controles que presenta el cuerpo contra el cáncer. Esas células tienden a permanecer en el centro de la rejilla, e incluso, a proliferar si no se encuentran con algún otro límite, como por ejemplo, la falta de espacio.

El resto de marcadores no tienen presencia o su número es despreciable.

6.1.2 Experimento 2: Tasa de mutación base igual a 1.000

En el segundo experimento, los autores alteran el valor para el parámetro tasa de mutación base a m = 1,000. Esto es, una mayor probabilidad de que ocurran mutaciones durante la mitosis.

Figura 6.2: Resultados obtenidos por los autores para el experimento con m = 1,000.

En la figura §6.2 se muestran las mismas dos gráficas que en el experimento anterior. En la primera de ellas, se observa como al finalizar la simulación el número de células cancerosas es mayor, en torno al doble que en el experimento anterior.

En cuanto a los marcadores presentes, en este caso se dan todos los marcadores, aumentan en número durante la simulación. El marcador SG toma cierta ventaja, aunque se ve superado por otros que se comentan a continuación, por el mismo motivo que en el experimento anterior. El marcador más relevante al finalizar la simulación es EA. Esto contribuye a evadir los mecanismo de proliferación, junto a la presencia del marcador IGI, el cual provoca con una probabilidad dada la muerte de una célula sana para ser reemplazada por la célula hija resultante. Esto último, provoca la proliferación mayor en el centro de la rejilla, ya que las células pueden saltarse los límites mayores que se dan en ese lugar.

El resto de marcadores no son especialmente relevantes en esta simulación, como

se podrá comprobar en experimentos posteriores.

6.1.3 Experimento 3: Tasa de mutación base igual a 100

En este tercer, y último experimento, se presenta un experimento con una probabilidad de obtención de mutaciones durante la mitosis mayor que en los dos anteriores.

Figura 6.3: Resultados obtenidos por los autores para el experimento con m = 100.

En la figura §6.3, se observa como en la primera parte de la simulación la proliferación de las células cancerosas es mayor, llegando a suponer casi la totalidad de las células presentes al finalizar la simulación.

En cuanto a los marcadores, los dos marcadores más relevantes son EA e IGI, los cuales permiten la proliferación en el centro de la rejilla, como se ha descrito anteriormente. El resto, aunque están presentes, no son especialmente relevantes, y se obtienen debido a los siguientes dos factores:

- Las mutaciones son adquiridas de forma aleatoria en una célula, por tanto hay células localizadas aleatoriamente con algún marcador adquirido.
- Cuando una célula adquiere un marcador, como el marcador IGI, puede proliferar en su entorno inmediato (donde las nuevas células pueden adquirir nuevos marcadores durante la división), así que hay clústeres de concentraciones o células localizadas con los marcadores adquiridos.

6.2 INFLUENCIA DEL RESTO DE PARÁMETROS

Para comprobar la influencia del resto de parámetros que intervienen en la simulación, los autores realizan una modificación de los mismos. En la tabla 6.2 se muestran los valores utilizados en esta ocasión, alterando el tamaño del telómero (tl), lo que supone menos oportunidades de división de la célula original y de sus descendientes, entre otros cambios.

Nombre	Símbolo	Valor
Tasa de mutación base	m	100.000
Tamaño del telómero	tl	35
Muerte por daño genético	e	20
Factor de incremento de tasa de mutación base	i	100
Muerte de un vecino	g	10
Muerte aleatoria	a	400

Las pruebas anteriores sirven para comprobar la dificultad de aparición del cáncer en función del parámetro m. La configuración inicial es la misma que en los experimentos anteriores, exceptuando el número de iteraciones, que en este caso asciende a 5,000

Figura 6.4: Resultado de la simulación para comprobar la influencia del resto de parámetros.

En la figura §6.4 se presentan las mismas dos gráficas. La primera muestra como al finalizar la simulación se dan el mismo números de células cancerosas que sanas, por lo que el tumor ha proliferado antes de finalizar. Esto se explica, entre otros, por

un menor valor de tl, lo que provoca que aparezcan huecos libres en el centro que permiten la proliferación de las células cancerosas.

En cuanto a los marcadores, EI toma una gran ventaja respecto al resto. Debido, también, a un menor valor de tl, este marcador permite la progresión del cáncer incluso con un tamaño de telómero igual a 0.

El siguiente marcador que toma ventaja al finalizar la simulación es EA. Aparece sobre la iteración 2000, por lo que las células que adquieren este marcador permite que las células cancerosas incrementen en número al permitirles evadir el límite que existe por daño genético.

El marcador IGI no prolifera rápidamente como en el caso previo, porque ahora hay más sitios vacantes porque muchas más células han muerto por alcanzar el número límite de divisiones y han dejado hueco, junto a una mayor tasa de muerte aleatoria por el parámetro a.

Por último, el marcador SG prolifera fuera del límite espacial replicativo, como se ha observado en los experimentos anteriores.

6.3 INFLUENCIA DE PARÁMETROS CON REJILLA COMPLE-TA DE CÉLULAS SANAS

En este caso, se parte con una rejilla completa de células sanas. En cuanto a los parámetros, se utilizan los mismos que en la secciones anteriores. Primero una simulación de 8,000 iteraciones con los parámetros por defecto, y luego una segunda de 100,000 iteraciones con los parámetros utilizados en el experimento de la figura §6.4.

En este caso, la simulación se corresponde con una equivalencia temporal de 2,3 años y 29,7 años respectivamente.

En el primer caso, es importante la aparición del marcador IGI ya que no existe espacio para proliferar en el centro de la rejilla. El siguiente marcador, por relevancia, es EA el cual permite la proliferación evitando otro límite por apoptosis.

El marcador *GI* permite la aparición de más mutaciones en las células durante la mitosis, por ello, se acumulan más mutaciones que no son relevante en esta primera simulación.

Figura 6.5: Resultado de la simulación para comprobar la influencia del resto de parámetros con rejilla completa de células sanas.

En el segundo caso, el marcador EI toma ventaja debido a que permite saltarse el límite por un menor valor de tl, combinado a marcadores como IGI o EA se obtiene una proliferación mayor del tumor.

El resto de mutaciones no son especialmente relevantes.

6.4 RELEVANCIA DE LOS MARCADORES

En este caso, los autores intentan responder a la siguiente pregunta: ¿Cuál sería el comportamiento emergente si algún marcador no estuviera presente y no aplicaran sus efectos?.

Conocer el efecto de cada marcador en el comportamiento emergente para crecimiento de tumores puede resultar útil para mejorar las terapias contra el cáncer. Esto se debe a que una terapia consiste en inhibir un determinado camino del cáncer, aunque diferentes drogas actúan contra marcadores específicos.

En la figura $\S6.4$, se observa el resultado de la simulación. En este caso, el marcador más importante de acuerdo al crecimiento del tumor es EA, porque su eliminación implica un alto decrecimiento en el número de células cancerosas. Esto es, sin considerar

Figura 6.6: Resultados de la simulaciones con la eliminación de algún marcador con dos configuraciones diferentes.

EA, todos las células cancerosas tienen una probabilidad de morir por apoptosis, así la proliferación del cáncer disminuye. Del análisis mostrado se extrae que los siguientes marcadores más relevantes en este caso son *GI* e *IGI*. La relevancia de *GI* se explica porque cuando la rejilla está completa hay menor adquisición de mutaciones durante la división. La relevancia de *IGI* es explicada porque cuando la rejilla está completa, el principal límite para la división durante la mitosis es el espacio libre. En esta situación, las células del cáncer con el marcador *IGI* activado tienen una ventaja, tal que pueden reemplazar (con una probabilidad dada) a un vecino para replicarse. Además, si esta ventaja no existiera cuando el marcador *IGI* no es considerado, las células cancerosas tienden a estabilizarse, incluso con una tasa de mutación base elevada. Los otros marcadores no son especialmente relevantes.

En el otro caso de estudio, es similar pero utilizando los parámetros del experimento utilizados en §6.4, el cual facilita la aparición de células cancerosas. Como se ha sugerido, el marcador más relevante en este caso es *EI*, porque es mantenido casi a 0 de forma estable, porque todas las células tienen el mismo límite de replicación impuesto por el tamaño inicial del telómero.

RESULTADOS PROPIOS

En esta sección, se presentan los resultados obtenidos al reproducir cada uno de los experimentos de la sección anterior, es decir, los experimentos que los autores presentan en su trabajo [6].

Antes de todo, hay que tener en cuenta la componente aleatoria de la simulación. Esto es, por la realización de sorteos de cara a ejecutar la mitosis u otra acción. En consecuencia, la aparición de un marcador u otro, como se verá a continuación, provoca alteraciones en la simulación, de modo que el comportamiento puede variar. En este caso, lo que se pretende es llegar a la misma conclusión que los autores, por tanto, el análisis de los resultados propios debe hacerse con ese objetivo en mente.

7.1 INFLUENCIA DEL PARÁMETRO Tasa de mutación base (m)

Las células de la simulación, y como se ha descrito en secciones previas, tienen asociado una propiedad que está relacionada con la aparición de nuevas mutaciones durante la mitosis, este es, el parámetro *tasa de mutación base* o *m*. En este experimento, se pretende someter a la simulación a diferentes configuraciones de este parametros para estudiar qué progresión presentan los tumores.

Se parte de una probabilidad de aparición de mutaciones baja, ya que, el sorteo se efectúa con una probabilidad de 1/m, por lo que, a mayor valor del parámetro m, menor probabilidad de que ocurre. En este caso, se realizan tres simulaciones, para m = 10,000, m = 1,000 y m = 100.

7.1.1 Experimento 1: Tasa de mutación base igual a 10.000

En esta simulación, se obtienen tres gráficas respecto de la misma. En la primera, se observa la progresión en el número de células sanas frente a células cancerosas.

En cuanto al número de células de uno u otro tipo, se observa una progresión bastante similar a la obtenida por los autores. Por un lado, el número de células sanas crece muy rápido y ocupa el 90% del espacio en torno a las 300 iteraciones. Por otro lado, el número de células cancerosas presenta una progresión similar con un repunte leve en torno a la iteración 300 con un crecimiento muy leve.

Figura 7.1: Células sanas frente a células cancerosas como resultado de la simulación para el experimento con m = 10,000.

En cuanto a los marcadores presentes y a su progresión, se observan algunas diferencias. En primer lugar, el marcador *SG* toma ventaja respecto al resto, hasta que en torno a la iteración 500 aproximadamente también toma relevancia el marcador *EI*. Esto es especialmente relevante, e incluso, coherente con la simulación de los propios autores.

El marcador *SG* tiene una leve caída que se ve frenada cuando aparece el marcador *EI*. Este último, provoca que las células puedan evitar la muerte celular o apoptosis. Esto hace que el marcador *SG* tenga mayor presencia y que el número de células vaya aumentando.

Se produce la peculiaridad de que ambas mutaciones, *SG* y *EI* se dan en las mismas células. Esto, como se observa en la gráfica anterior, no tiene por qué afectar al número total de células cancerosas.

Figura 7.2: Evolución de los marcadores como resultado de la simulación para el experimento con m = 10,000.

Por último, se muestra una vista de la rejilla, marcando las células cancerosas en verde. Tiene aspecto de estar completamente ocupado por células cancerosas, pero esto es un efecto visual. Las células encuentran cabida en los límites de la rejilla al haber obtenido el marcador *SG*, el cual permite ejecutar la mitosis más allá del espacio predefinido con suficiente factor de crecimiento.

En la simulación de los autores se observa este mismo comportamiento. Esto es, por tanto, otro punto que es coherente con los que presentan los autores en su estudio.

7.1.2 Experimento 2: Tasa de mutación base igual a 1.000

El segundo experimento sobre el parámetros tasa de mutación base se mantienen todos los parámetros y se cambia dicho parámetro a m = 1,000.

Al igual que antes, se muestran tres gráficas. En la primera de ellas, que muestra la progresión de células sanas frente a células cancerosas, se observa un comportamiento similar al obtenido por los autores. Es decir, aparición de células cancerosas en torno a la iteración 150, crecimiento moderado, aunque algo mayor, lo que se explica por una mayor probabilidad de aparición de mutaciones durante la mitosis. Al finalizar la simulación, se observa algo más de 17,000 células cancerosas frente a unas 20,000 que

Figura 7.3: Rejilla resultante de la simulación para el experimento con m = 10,000. obtienen los autores.

En cuanto a los marcadores, su progresión es diferente. En las primera 250 iteraciones el comportamiento es similar al obtenido por los autores, el primer marcador en tomar ventaja es EA y justo después se ve superado por SG. La principal diferencia es que en torno a la iteración 450 el marcador EI aparece y tiene un crecimiento fuerte colocándose como el segundo marcador que más relevancia toma.

Como se ha descrito, la aparición de los marcadores se realiza en base a una serie de sorteos con una probabilidad dada. No se puede controlar su aparición. Lo relevante es que el resto de marcadores, *IGI* y *GI*, casi no tienen relevancia ni presencia.

Es decir, se obtiene un comportamiento parecido en cuanto a número de células sanas contra células cancerosas pero con diferente presencia de marcadores. Esto quiere decir que los marcadores que más ventaja toman son los que realmente afectan a la simulación. En este caso, obtener el marcador *EI* hace que perduren las células que cuentan con dicha mutación en su genoma y que se extienda en posteriores divisiones.

En cuanto a la rejilla, al igual que los resultados presentados por los autores, las células cancerosas tienden a ocupar los límites de la rejilla, esto es debido a la pronta aparición del marcador *SG*. Las células con otro tipo de marcadores tienden a encon-

Figura 7.4: Células sanas frente a células cancerosas como resultado de la simulación para el experimento con m = 1,000.

trarse más hacia el centro de la rejilla.

7.1.3 Experimento 3: Tasa de mutación base igual a 100

En este último experimento para el parámetros *tasa de mutación base*, se quiere aumentar la probabilidad de que se produzcan mutaciones durante la mitosis.

En cuanto a células sanas frente a células cancerosas se observa cómo a lo largo de la simulación la tendencia es que las células cancerosas van tomando relevancia frente a las células sanas. Los autores observan que las células cancerosas superan a las sanas en torno a la iteración 180 aproximadamente. En este caso, en la simulación propia no se llega a ese resultado, pero si se observa una tendencia esperada, y es que las células cancerosas superen en algún punto a las células sanas.

En cuanto a las mutaciones, al igual que los autores el marcador EA es el más relevante, aunque lo hace con mayor diferencia. Esto puede explicar la diferencia de comportamiento frente a lo mostrado anteriormente. El marcador IGI va tomando ventaja al final de la simulación, y no desde un principio como sí ocurre en la simulación de los autores.

Figura 7.5: Evolución de los marcadores como resultado de la simulación para el experimento con m = 1,000.

Es relevante como el marcador GI en todas las simulaciones no toma relevancia.

En cuanto a la posición de las células cancerosas en la rejilla, las conclusiones son las mismas que en los dos experimentos anteriores, con mayor presencia de células cancerosas en la parte central de la rejilla, lo que es coherente con lo que han obtenido los autores.

7.2 INFLUENCIA DEL RESTO DE PARÁMETROS

Los autores realizan un segundo experimento con el objetivo de observar los efectos que tienen el resto de parámetros sobre la simulación. Para ello, varían los parámetros de la simulación, como se puede observar en la siguiente tabla:

Los resultados obtenidos se muestran a continuación.

7.3 INFLUENCIA DE PARÁMETROS CON REJILLA COMPLE-TA DE CÉLULAS SANAS

Células sanasCélulas cancerosas

Figura 7.6: Rejilla resultante de la simulación para el experimento con m = 10,000.

Cuadro 7.1: Valores de los parámetros.

Nombre	Símbolo	Valor
Tasa de mutación base	m	100.000
Tamaño del telómero	tl	35
Muerte por daño genético	e	20
Factor de incremento de tasa de mutación base	i	100
Muerte de un vecino	g	10
Muerte aleatoria	a	400

7.4 RELEVANCIA DE LOS MARCADORES

Figura 7.7: Células sanas frente a células cancerosas como resultado de la simulación para el experimento con m = 100.

Figura 7.8: Evolución de los marcadores como resultado de la simulación para el experimento con m=100.

Figura 7.9: Rejilla resultante de la simulación para el experimento con m=100.

Figura 7.10: Células sanas frente a células cancerosas como resultado de la simulación para el experimento con m=100,000.

Figura 7.11: Evolución de los marcadores como resultado de la simulación para el experimento con m = 100,000.

Figura 7.12: Rejilla resultante de la simulación para el experimento con m=100,000.

Figura 7.13: Evolución de las células sanas frente a células cancerosas con rejilla completa de células sanas y parámetros por defecto.

Figura 7.14: Evolución de los marcadores cancerosos con rejilla completa de células sanas y parámetros por defecto.

Figura 7.15: Rejilla resultante de la simulación iniciada completa de células sanas.

Figura 7.16: Efecto de la eliminación de un marcador con parámetros por defecto excpeto con m=100.

Figura 7.17: Efecto de la eliminación de un marcador con parámetros del cuadro 7.1.

Conclusión

El cáncer es una enfermedad compleja y que requiere de una gran cantidad de eventualidades para que se dé su aparición y proliferación.

El cuerpo humano cuenta con mecanismos para evitar la aparición de esta enfermedad, que van desde muerte por daño genético hasta la intervención del propio sistema inmune. Este trabajo se ha centrado en la reproducción de los experimentos para intentar reproducir los resultados de los autores del trabajo original [6].

Desde el punto de vista de los marcadores y los parámetros asociados a la simulación se han realizado distintas configuraciones a fin de estudiar qué comportamiento tiene el sistema y, por tanto, cómo crece el tumor. La aparición y proliferación de determinadas mutaciones en las células, así como, en qué lugar ocurren, provocan determinados comportamientos.

El marcador más destacable es el marcador asociado a la capacidad de las células de generar sus propios mensajes de división celular, o *SG*, el cual propicia la proliferación por la parte exterior de la rejilla. Esto es algo observado en todos los tipos de tumores, y es lo que hace que se convierta en una enfermedad mortal, ya que, provoca que crezca y se expanda provocando compresión en tejidos adyacentes.

Este comportamiento se explica porque encuentra espacio suficiente, y esto permite, además, pasar con éxito dos pruebas previas a la mitosis: comprobación del factor de crecimiento, y comprobación de ignorancia de inhibición de crecimiento. Es decir, obtienen sus propios mensajes para realizar la división celular, y no necesita matar a un vecino para poder realizar la mitosis.

El resto de marcadores, excepto el marcador de inestabilidad genética o *GI*, provocan que la proliferación e invasividad sea mayor, o lo que es lo mismo, que estemos ante una masa anormal maligna, o también llamado carcinoma.

El marcador de inestabilidad genética o *GI* provoca que existan células más propensas a sufrir mutaciones en el proceso de división celular. Esto conlleva la aparición de células cancerosas en la parte central de la rejilla, que combinado a otros marcadores

termina por encontrar el camino a su proliferación. Esto, requiere de mayor tiempo de simulación ya que en el centro de la rejilla hay menos espacio y actúan mecanismos de protección contra el cáncer de manera más efectiva.

Si esta simulación fuese completa y fiel a la realidad de cualquier tipo de cáncer se podría utilizar como herramienta de capacidad predictiva y, también, como herramienta para probar la acción de fármacos mediante la inhibición de varios de los mecanismos que forman la simulación.

TRABAJO FUTURO

Este trabajo presenta varias limitaciones que permiten varias vías de trabajo futuro.

En este trabajo se modelan algunos de los mecanismos que permiten el crecimiento de tumores, así como, su proliferación. Existen más marcadores asociados a mutaciones que derivan en un comportamiento cancerosos de las células que lo contienen que no se tienen en cuenta en este trabajo. Dos de ellos son el marcador que permite una angiogénesis sostenida (AG) y el marcador que permita la metástasis (MT).

Tampoco se tiene en cuenta las células madres del cáncer, que son aquellas células que si tras aplicar una terapia no son completamente eliminadas, provocan la reaparición del tumor, llegando a ser más invasivas que el tumor original en algunos casos.

Otra posibilidad, es tener en cuenta el tamaño y la densidad de las células que componen el tumor, permitiendo una representación más fiel de la realidad.

Por último, se podría permitir activar o desactivar ciertos mecanismos en su conjunto, para poder simular la aplicación de determinadas terapias contra esta enfermedad.

GLOSARIO DE TÉRMINOS

- **Adenoma** Masa anormal que tiene un comportamiento benigno, es decir, un crecimiento leve y una invasividad de tejido adyacente bajo.
- **ADN** Abreviación de ácido desoxirribonucleico, consiste en un ácido nucleico que contiene las instrucciones genéticas usadas en el desarrollos y funcionamiento de todos los organismos vivos.
- **Angiogénesis** Proceso mediante el cual se forman nuevos vasos sanguíneos nuevos a partir de los preexistentes.
- **Apoptosis** Mecanismo de muerte celular programada para controlar y frenar el crecimiento de células que tienen su código genético dañado y, en consecuencia, pueden provocar problemas en el organismo.
- **Autómata Celular** Modelo matemático para un sistema dinámico que evoluciona en pasos discretos en base a unas reglas locales.
- **Cáncer** Nombre genérico para describir a las enfermedades que causa proliferación descontrolada de células que provocan la aparición de masas anormales.
- **Carcinoma** Masa anormal que tiene un comportamiento maligno, es decir, tiene una tasa de crecimiento e invasividad alta.
- **Genoma** Conjunto de genes contenidos en el cromosomas.
- **Metástasis** Reproducción o extensión de una enfermedad o de un tumor a otra parte del cuerpo.
- **Mitosis** Proceso de reproducción de una célula, mediante el cual, se crea una copia exacta de la misma. Puede contener daños genéticos que no se dan en la célula original.
- **Mutación** Alteración repentina y permanente de la estructura genética o cromosómica de la célula de un ser vivo que se transmite a sus descendientes por herencia.

- **Neoplasia** Masa anormal que aparece en alguna parte del cuerpo por el crecimiento descontrolado de células.
- **Singleton** Patrón de diseño en el cual el software tiene un punto único de entrada, o una sóla instancia de la aplicación.
- **Telómero** Son los extremos de los cromosomas, regiones del *ADN* no codificante, cuyo objetivo es proteger la parte codificante para evitar que sufra daños durante el proceso de replicación.

BIBLIOGRAFÍA

- [1] Andrew Adamatzky. *Game of Life Cellular Automata*. Springer-Verlag London Limited, 2010.
- [2] G.R. Harsh IV E.A. Chiocca A.R. Kansal S. Torquato y T.S. Deisboeck. "Cellular automaton of idealized brain tumor growth dynamics". En: *BioSystem, Elsevier* (2000).
- [3] Douglas Hanahan y Robert A. Weinberg. "The hallmarks of cancer". En: *Cell, Cell Press* (2000).
- [4] Douglas Hanahan y Robert A. Weinberg. "The hallmarks of cancer: The next generation". En: *Cell, Cell Press* (2011).
- [5] Peter M.A. Sloot Jiri Kroc y Alfons G. Hoekstra. *Simulating Complex Systems by Cellular Automata*. Springer-Verlag Berlin Heidelberg, 2010.
- [6] José Santos y Ángel Monteagudo. "Analysis of behaviour transitions in tumor growth using a cellular automaton simulation". En: *IET Systems Biology* (2014).
- [7] José Santos y Ángel Monteagudo. "Study of cancer hallmarks relevance using a cellular automaton tumor growth model". En: *Springer* (2012).
- [8] José Santos y Ángel Monteagudo. "Studying the capability of different cancer hall-marks to initiate tumor growth using a cellular automaton simulation. Application in a cancer stem cell context". En: *BioSystem, Elsevier* (2013).
- [9] José Santos y Ángel Monteagudo. "Treatment analysis in a cancer stem cell context using a tumor growth model based on cellular automata". En: *PLoS ONE* (2015).