

CMPT 3830: Project Proposal

1. Project Title:

"Optimized Vehicle Mileage Classification Using Machine Learning: A strategic Solution for Go Auto"

2. Project Overview:

- Objective:

To develop a sophisticated machine learning classification model that segments vehicle into distinct mileage bands (low, medium, high) to enable Go Auto dealerships to strategically align marketing and sales efforts with customer preferences. This initiative aims to empower Go Auto with actionable insights that enhance operational efficiency, improve customer engagement, and drive revenue growth.

- Background:

As the automotive industry becomes increasingly data driven, Go Auto seeks to optimize its inventory management and marketing strategies. Mileage is a critical factor influencing customer decisions, yet current methods of categorization lack scalability and precision. Leveraging the power of machine learning, this project aims to streamline the classification process, enhance the accuracy of mileage-based grouping, and provide visual insights that facilitate informed decision-making.

- Scope:

This project includes:

- Comprehensive data preprocessing to ensure dataset quality.
- Exploratory data analysis (EDA) to uncover pattern and insights.
- Development, evaluation, and optimization of a multi-class classification model using state-of-the-art machine learning algorithms.
- Creation of visuals dashboards for stakeholders to interpret results effectively.

Exclusions:

- Advanced customer segmentation beyond mileage preferences.
- Recommendations regarding dealership operations or hardware improvements.

3. Project Deliverables:

- 1. **Data Preparation Report:** Includes data cleaning methodologies, summary statistics, and resolved quality issues.
- 2. **EDA Insights Document:** Provides visualization and key findings about trends and patterns in the data.
- 3. **Trained Model and Codebase:** A well-documented machine learning model that categorizes vehicle into mileage groups with associated code and reproducibility guidelines.
- 4. **Visualization Dashboard:** Interactive dashboards summarizing model performance, classification outputs, and insights for non-technical stakeholders.
- 5. **Final Presentation:** A professional presentation delivered to stakeholders highlighting the methodology, results, and recommendations.

4. Project Timeline:

Completion date	Details
January 16, 2025	Receive the dataset from Go Auto. Perform and initial review to understand structure and contents, identifying challenges.
January 20, 2025	Define the problem, identify objectives and the target variable, and understand business implications.
January 23, 2025	Submit the team charter outlining roles, responsibilities, and the overall project workflow.
January 30, 2025	 -Perform summary statistics. -Visualize trends, patterns, and anomalies. -Analyze the target variable's class distribution. -Document insights.
	January 16, 2025 January 20, 2025 January 23, 2025

Data Processing	February 3, 2025	-Handle missing values -split the dataset into training and testing sets -encode categorical data -scale or normalize numerical features
Feature Engineering	February 7, 2025	Select relevant features and create new features using domain knowledge or statistical methods to enhance data readiness and improve model performance.
Demo 1: EDA and feature engineering presentation	February 13, 2025	Select relevant features and create new features using domain knowledge or statistical methods to enhance data readiness and improve model performance.
Model Selection	February 17, 2025	Evaluate and select classification algorithms (e.g., Logistic regression, random forest, SVM) based on interpretability, complexity, and computational requirements.
Model Training	February 20, 2025	Train selected models using the preprocessed and engineering data. Perform cross-validation to ensure robust results.
Model Deployment	February 25, 2025	Deploy the trained model on a platform like flask, Django, or a cloud services. Test deployment for scalability and ensure security.
Phase 1 Report submission	February 27, 2025	Submit a detailed report covering EDA, preprocessing, feature engineering, model training, and deployment
Model Optimization	March 5, 2025	Perform hyperparameter tuning using grid search.

-		
		Experiment with ensemble methods to improve performance.
Demo 2: ML Modeling and deployment presentation	March 13, 2025	Present optimized model results, deployment process, and classification insights. Include challenges and solutions encountered during these phases.
Data visualization Using Power BI	March 16, 2025	Develop interactive dashboards to present key EDA insights, feature importance, and model performance.
Phase 2 Report Submission	March 19, 2025	Submit a comprehensive report summarizing modeling optimization, deployment, and insights derived from the classification task.
ML Application for prediction/classification	March 22, 2025	Test the deployed ML model for real-world classification task. Ensure it performs accurately and aligns with business requirements.
Final presentation	April 7, 2025	Present the complete project lifecycle, including all phases: EDA, preprocessing, modeling, deployment, and Power BI dashboard. Submit all deliverables.

6. Project Plan:

- Tasks and Activities:

Task	Owner(s)	Due Date	Details
Dataset Acquisition and	Aditya Mehta &	January 16, 2025	Obtain the dataset,
initial review	Harvir Kaur		verify structures and contents, and
			identify potential
			challenges.

Problem Understanding and definition	Aditya Mehta & Inderjeet Singh	January 20, 2025	Define the problem, set objectives, specify the target variable, and clarify real-world business implications.
Team Charter Submission	Inderjeet Singh	January 23, 2025	Compile and submit the team charter outlining roles, responsibilities, and overall project workflow
Project Charter submission	Inderjeet Singh	January 30, 2025	Document the problem definition, objectives and project scope. Submit the finalized project charter.
Data cleaning and preparation	Harvir Kaur & Ishmeet Singh	February 5, 2025	Clean and preprocess raw data by handling missing values, duplicates, and inconsistencies. Ensure data quality.
Exploratory data Analysis	Aditya Mehta &Inderjeet Singh	February 10, 2025	Perform summary statistics, visualize patterns, and analyze the target variable's distribution. Document findings.
Feature Engineering	Harvir Kaur & Inderjeet Singh	February 12, 2025	Create and select relevant features to enhance predictive performance. Document rationale behind feature selection.
Demo 1: EDA and feature Engineering presentation	All Team members	February 13 2025	Prepare and present insights, trends, and new features derived from EDA and feature engineering.

Model Selection	Aditya Mehta & Inderjeet Singh	February 17, 2025	Evaluate and select classification algorithms based on complexity, interpretability, and computational requirements.
Model training	Aditya Mehta & Inderjeet Singh	February 20, 2025	Train selected models using the preprocessed and engineered data. Document initial performance metrics.
Model Deployment	Inderjeet Singh & Harvir Kaur	February 25, 2025	Deploy the trained model using Flask, Django, or cloud services. Test for scalability, reliability, and security.
Phase 1 Report compilation and submission	Inderjeet Singh	February 27, 2025	Summarize EDA, feature engineering, model selection, and deployment findings for phase 1 report submission.
Model Optimization and validation	Aditya Mehta and Ishmeet Singh	March 5, 2025	Tune hyperparameters and validate models, experiment with ensemble methods to improve performance.
Demo 2: ML Modelling and deployment presentation	All team members	March 13, 2025	Present optimized model results, deployment process, and insights from classification tasks.
Data Visualization Using Power BI	Aditya Mehta & Harvir Kaur	March 16, 2025	Build interactive dashboard to showcase EDA insights, feature

			importance, and model performance.
Phase 2 report compilation and submission	Inderjeet Singh	March 19, 2025	Document modeling results, optimizations, and business recommendations for phase 2 submission.
ML Application for prediction/classification	Aditya Mehta & Inderjeet Singh	March 22, 2025	Test the deployed model for real-world prediction and classification tasks. Validate its accuracy and usability.
Final presentation preparation	Team Collaboration	April 15, 2025	Create a polished presentation summarizing the full project lifecycle, including Power BI dashboards.
Final Presentation	All team members	April 17, 2025	Deliver a comprehensive presentation covering all phases, from problem understanding to deployment and insights.

7. Resources Required:

Resources	Description	purpose	Estimated Cost
Python libraries	Scikit-learn, pandas, NumPy, Matplotlib, Seaborn, Plotly, TensorFlow/keras, PyTorch, XGBoost, LightGBM, Flask,	-Scikit-learn: for preprocessing and machine learning modelsPandas: for data manipulation and analysisNumPy: For numerical operations.	No external cost (Open sources)
	OpenPyXL	- Matplotlib/Seaborn/Plotly:	

		for visualizations (static and interactive)TensorFlow/Keras, PyTorch: for advanced deep learning models (if required)XGBoost/LightGBM: For gradient boosting techniques in classificationFlask: for model deployment as a web applicationOpenPyXL: For working with Excel files (if needed for data export)	
Development environment	Google Colab	For coding, testing, and running machine learning workflows using cloudbased computational resources.	Free (prooption: \$10/month)
Cloud computing services	Google Colab Pro (optional)	Provide enhanced resources like faster GPUs/TPUs and longer session durations	\$100/month (optional)
Visualization tools	Power BI	For creating interactive dashboards to present insights from EDA, feature engineering, and modeling results.	No Cost (Educational License)
Data Storage	Google Drive (integrated with Colab)	To securely store large datasets and ensure easy access for collaboration workflows.	Free (15 GB) or \$10monthly for extra storage
Documentation tools	Microsoft Word, Google Docs, Microsoft presentations	To create detailed project charter, reports, and final documentation, presentations.	No Cost (Educational tools)
Deployment Frameworks	Flask or Django	To deploy the trained machine learning model as a web-based or API application.	No external cost (open source)
Monitoring Tools	Google Colab Logs, Cloud Monitoring	To monitor resources utilization, model	Included in Google Colab Pro (optional)

perf	ormance, and	
depl	oyment metrics	

8. Risk Management Plan:

Risk	Likelihood	impact	description	Mitigation
				strategy
Delayed Data access	Medium	High	Potential delays in acquiring the dataset from the data provider, impacting project timelines.	-initiate early communication with the data providerEstablish clear deadlines for data deliveryPrepare a backup plan, such as using synthetic or public dataset for initial testing.
Data Quality	High	Medium	Challenges with missing, inconsistent, or noisy data that may require extensive cleaning efforts.	-Allocate Extra time in the project schedule for data preprocessingDevelop a structured approach for handling missing or inconsistent datause automated data quality checks and validation scripts.
Computational Resources constraints	Medium	High	Insufficient computing power for model training	-utilize Google Colab Pro for enhanced

			and testing, especially for large datasets or complex models.	computational resourcesstagger model training workloads to optimize resource usageMonitor resource utilization and adapt workflow accordingly.
Skill gaps in advanced machine learning	Low	Medium	Limited expertise in advanced ML techniques (e.g., hyperparameter tuning, ensemble methods).	-conduct internal training sessions and workshopsAssign tasks based on team members' strengthsencourage the use of online resources, such as documentation and tutorials, to bridge knowledge gaps.
Model Deployment challenges	Medium	High	Difficulties in deploying the trained model due to compatibility issues or lack of deployment experience.	-Choose a lightweight and flexible deployment framework (e.g., Flask or Django)Conduct early deployment tests to identify issuesInclude deployment- specific resources in team training sessions.

Data Security Breaches	Low	High	Risk of unauthorized access, data leaks, or breaches during processing, storage, or transmission.	-Use secure platforms like Google Drive with access controlsEncrypt sensitive data during storage and transmissionRegularly audit and update security measures.
Data Loss	Medium	Severe	Risk of accidental deletion or corruption of critical data files during project workflow	-Use automated backups for datasets and project filesMaintain version control for scripts and data files using platforms like Git, -Implement recovery protocols for lost or corrupted files.
Timeline Overruns	Medium	High	Risk of missing deadlines due to unforeseen challenges or bottlenecks in the workflow.	-Use agile practices to monitor progress and adjust prioritiesschedule regular team check-ins by scrum master to identify and address delays early maintain buffer period for critical tasks.

Inaccurate model prediction	Medium	Medium	Risk of the model not meeting performance expectations due to insufficient features engineering or training.	-Conduct thorough features engineering and hyperparameter tuninguse cross- validation to ensure robustnessiterate on model improvements based on performance
				metrics.

9. Budget:

While the project primarily utilizes free and open-source software, minor costs are associated with optional cloud storage and computing resources:

• **Google Drive Storage:** \$15/month for 3 months = \$45

• **Cloud computing:** \$100/month for 2 months = \$200

• Total Estimated cost: \$ 350