Full Wave Rectifier

Semiconductor Devices and Circuits (ECE 181302)

12th November 2021

Full Wave Rectifier Using Transformer and 2 Diodes

Full-Wave Rectification with Center-Tapped Transformer

Positive cycle, D2 off, D1 conducts;

$$Vo - Vs + V\gamma = 0$$

$$Vo = Vs - V\gamma$$

During the positive half-cycle, the upper diode is forward-biased and the lower diode is reverse-biased.

Full-Wave Rectification with Center-Tapped Transformer

Negative cycle, D1 off, D2 conducts;

$$Vo - Vs + V\gamma = 0$$

$$Vo = Vs - V\gamma$$

During the negative half-cycle, the lower diode is forward-biased and the upper diode is reverse-biased.

Positive cycle, D2 off, D1 conducts;

$$Vo - Vs + V\gamma = 0$$

$$Vo = Vs - V\gamma$$

Negative cycle, D1 off, D2 conducts;

$$Vo - Vs + V\gamma = 0$$

$$Vo = Vs - V\gamma$$

- Since a rectified output voltage occurs during both positive and negative cycles of the input signal, this circuit is called a fullwave rectifier.
- Also notice that the polarity of the output voltage for both cycles is the same

$V_s = V_p \sin \omega t$

- Notice that the peak voltage of Vo is lower since $Vo = Vs V\gamma$
- Vs < Vγ, diode off, open circuit, no current flow, Vo = 0V

Full-Wave Rectification with Bridge Rectifier

Positive cycle, D_1 and D_2 conducts, D_3 and D_4 off;

+
$$\forall \gamma$$
 + $\forall o$ + $\forall \gamma$ - $\forall s$ = 0
Vo = $\forall s$ - $\forall s$

Conduction path for the positive half-cycle.

Full-Wave Rectification with Bridge Rectifier

Negative cycle, D3 and D4 conducts, D1 and D2 off $+ V\gamma + Vo + V\gamma - Vs = 0$

Conduction path for the negative half-cycle.

Full-Wave Rectification with Bridge Rectifier

> Also notice that the polarity of the output voltage for both cycles is the same

References:

- Microelectronic Circuits, 7th edition by Adel S. Sedra Kenneth C. Smith.
- G. Streetman, and S. K. Banerjee, "Solid State Electronic Devices," 7th edition, Pearson, 2014.
- D. Neamen, D. Biswas, "Semiconductor Physics and Devices," McGraw-Hill Education.
- Electronic Devices and Circuit Theory 11th Edition by Boylestad, Robert . L, Louis Nashelskyl.
- http://ecee.colorado.edu/~bart/book/book/contents.htm
- http://www.ecse.rpi.edu/~schubert/Course-ECSE-2210-Microelectronics-Technology-2010/