

5

Claims:

1. A process for the catalytic telomerization of acyclic olefins having at least two conjugated double bonds (I)

 $R^{X1} \xrightarrow{R^{X5}} R^{X2} \xrightarrow{R^{X3}} (I)$

with at least one nucleophile,

wherein complexes comprising metals of groups 8 to 10 of the Periodic Table of the Elements and at least one carbene ligand having one of the formulae

where

15

20

R^{X1}, R^{X2}, R^{X3}, R^{X4}, R^{X5}, R^{X6} are identical or different and are each H or a linear, branched, substituted or unsubstituted cyclic or alicyclic aliphatic or aromatic group having from 1 to 24 carbon atoms,

R²; R³: are identical or different and are each a) a linear, branched, substituted or unsubstituted cyclic or alicyclic alkyl group having from 1 to 24 carbon atoms,

or b) a substituted or unsubstituted, monocyclic or polycyclic aryl group

having from 6 to 24 carbon atoms

or c) a monocyclic or polycyclic, substituted or unsubstituted heterocycle having from 4 to 24 carbon atoms and at least one heteroatom from the group consisting of N, O, S,

R⁴, R⁵, R⁶, R⁷: are identical or different and are each

hydrogen, alkyl, aryl, heteroaryl, -CN, -COOH, -COO-alkyl, -COO-aryl, -OCO-alkyl, -OCO-aryl, -OCO-aryl, -OCO-aryl, -OCO-aryl, -CHO, -CO-alkyl, -CO-aryl, -O-alkyl, -O-aryl, -NH₂, -NH(alkyl), -N(alkyl)₂, -NH(aryl), -N(aryl)₂, -F, -Cl, -Br, -I, -OH, -CF₃, -NO₂, -ferrocenyl, -SO₃H, -PO₃H₂, where the alkyl groups have 1-24 carbon atoms and the aryl groups have from 5 to 24 carbon atoms and the radicals R⁴ and R⁵ may also be part of a bridging aliphatic or aromatic ring,

with the proviso that when the metal of groups 8 to 10 of the Periodic Table is Pd, R² and/or R³ have the meaning c), are used as catalyst.

2. The process as claimed in claim 1, wherein R², R³, R⁴, R⁵, R⁶ and R⁷ are identical or different and have at least one substituent from the group consisting of -H, -CN, -COOH, -COO-alkyl, -COO-aryl, -OCO-aryl, -OCO-aryl, -OCOO-alkyl, -OCOO-aryl, -CHO, -CO-alkyl, -CO-aryl, -aryl, -alkyl, -alkenyl, -allyl, -O-alkyl, -O-aryl, -NH₂, -NH(alkyl), -N(alkyl)₂, -NH(aryl), -N(aryl)₂, -F, -Cl, -Br, -I, -OH, -CF₃, -NO₂, -ferrocenyl, -SO₃H, -PO₃H₂, where the alkyl groups have from 1 to 24, the alkenyl groups have from 2 to 24 carbon atoms, the allyl groups have from 3 to 24 carbon atoms and the aryl groups have from 5 to 24 carbon atoms.

25 3. The process as claimed in claim 1 or 2, wherein a nucleophile of the formula (II)

$$R^1-Z-R^1$$
 (II)

where Z is O, N(R¹"), S(O₂), Si(R¹")(OH), C=O, C(H₂), C(H)(NO₂) or N(CH₂CH=CH₂) and R¹, R¹" or R^{1"} are identical or different and are each H, a substituted or unsubstituted, linear, branched or cyclic alkyl or alkenyl group having from 1 to 22 carbon atoms, a carboxyl group or an aryl group, where the radicals R¹, R¹"

10

5

15

20

30

may be joined to one another via covalent bonds and R¹ and R^{1'} may bear identical or different substituents.

4. The process as claimed in at least one of claims 1 to 3, wherein compounds of the formula (IIa) or (IIb)

10

where R¹, R¹ are identical or different and are each H, a substituted or unsubstituted, linear, branched or cyclic alkyl or alkenyl group having from 1 to 22 carbon atoms, a carboxyl group or an aryl group and the radicals R¹, R¹ may be joined to one another via covalent bonds, are used as nucleophile.

15

- 5. The process as claimed in any of claims 1 to 4, wherein water, alcohols, phenols, polyols, carboxylic acids, ammonia and/or primary or secondary amines are used as nucleophiles.
- The process as claimed in any of claims 1 to 5, wherein 1,3-butadiene or isoprene is used as acyclic olefin (I).
 - 7. The process as claimed in any of claims 1 to 6, wherein 1,3-butadiene in admixture with other C₃-, C₄- and/or C₅-hydrocarbons is used as acyclic olefin (I).

25

- 8. The process as claimed in any of claims 1 to 7 carried out in a solvent, where the nucleophile (II) and/or inert organic solvents is/are used as solvent.
- 9. The process as claimed in any of claims 1 to 8, wherein the ratio of carbene ligand to metal [mol/mol] is from 0.01:1 to 250:1.