Homework 8: Compatible Linear Structures

1. Let $\Omega(V)$ and J(V) be the spaces of symplectic forms and complex structures on the vector space V, respectively. Take $\Omega \in \Omega(V)$ and $J \in J(V)$. Let $\mathrm{GL}(V)$ be the group of all isomorphisms of V, let $\mathrm{Sp}(V,\Omega)$ be the group of symplectomorphisms of (V,Ω) , and let $\mathrm{GL}(V,J)$ be the group of complex isomorphisms of (V,J).

Show that

$$\Omega(V) \simeq \mathrm{GL}(V)/\mathrm{Sp}(V,\Omega)$$
 and $J(V) \simeq \mathrm{GL}(V)/\mathrm{GL}(V,J)$.

Hint: The group $\mathrm{GL}(V)$ acts on $\Omega(V)$ by pullback. What is the stabilizer of a given Ω ?

2. Let $(\mathbb{R}^{2n}, \Omega_0)$ be the standard 2n-dimensional symplectic euclidean space. The **symplectic linear group** is the group of all linear transformations of \mathbb{R}^{2n} which preserve the symplectic structure:

$$\mathrm{Sp}(2n) := \{ A \in \mathrm{GL}(2n;\mathbb{R}) \, | \, \Omega_0(Au,Av) = \Omega_0(u,v) \text{ for all } u,v \in \mathbb{R}^{2n} \} \ .$$

Identifying the complex $n \times n$ matrix X+iY with the real $2n \times 2n$ matrix $\left(\begin{array}{cc} X & -Y \\ Y & X \end{array} \right)$, consider the following subgroups of $\mathrm{GL}(2n;\mathbb{R})$:

$$\mathrm{Sp}(2n)$$
 , $\mathrm{O}(2n)$, $\mathrm{GL}(n;\mathbb{C})$ and $\mathrm{U}(n)$.

Show that the intersection of any two of them is $\mathrm{U}(n)$. (From [83, p.41].)

HOMEWORK 8 73

3. Let (V,Ω) be a symplectic vector space of dimension 2n, and let $J:V\to V$, $J^2=-\mathrm{Id}$, be a complex structure on V.

- (a) Prove that, if J is Ω -compatible and L is a lagrangian subspace of (V,Ω) , then JL is also lagrangian and $JL=L^{\perp}$, where \perp denotes orthogonality with respect to the positive inner product $G_J(u,v)=\Omega(u,Jv)$.
- (b) Deduce that J is Ω -compatible if and only if there exists a symplectic basis for V of the form

$$e_1, e_2, \dots, e_n, f_1 = Je_1, f_2 = Je_2, \dots, f_n = Je_n$$

where
$$\Omega(e_i, e_j) = \Omega(f_i, f_j) = 0$$
 and $\Omega(e_i, f_j) = \delta_{ij}$.