Perfect Reconstruction with 2B

UESTC 3018 — Communication Systems and Principles

Lecture 16 — Precursor to Digital Communications

Dr Hasan Abbas

From Last Time **Z**

• Frequency Modulation Detection

Today's Lecture 177

- The (im)Pulse train
- Sampling Theorem
- Interpolation
- Pulse Train

Sampling Theorem

- A signal g(t) with bandwidth < B can be reconstructed exactly from samples taken at any rate R>2B.
- Sampling can be achieved mathematically by multiplying by an impulse train.

$$III(t) = \sum_{k=-\infty}^{\infty} \delta(t-k)$$

Also called a comb function

$$\overline{g}(t) = III(t)g(t) = \sum_{k=-\infty}^{\infty} g(t)\delta(t-kT) = \sum_{k=-\infty}^{\infty} g(kT_s)\delta(t-kT_s)$$

The Impulse Train

- Interesting the Fourier
 Transform of an impulse train
 is also an impulse train
- The complex exponentials cancel at non-integer frequencies and add up to an impulse at integer frequencies

$$\mathcal{F}III(t) = \mathcal{F}\sum_{k=-\infty}^{\infty}g(t)\delta(t-k) = \int_{-\infty}^{\infty}e^{-j2\pi nf} = III(f)$$

Fourier Transform of a Sampled Signal

The impulse train III(t/Ts) is periodic with period T_s and can be represented as the sum of complex exponentials of all multiples of the fundamental frequency,

$$III(t/Ts) = 1/Ts\sum_{k=-\infty}^{\infty}e^{-j2\pi f_s t}$$

•
$$f_s = 1/T_s$$

A Sampled Signal

Sampled Signal and the Fourier Transform

Sampled Cosines

Sampled Examples

The Minimum Sampling Rate

• When the sampling rate is too low, the spectral replicas overlap

Aliasing

• The spectral overlap

- The shaded frequencies overlap and are ambiguous.
- High positive frequencies wrap around to high negative frequencies
- What signal would you reconstruct if you assumed the signal was actually band limited?

Aliasing Contd.

 Cosines at frequencies of 0.75 Hz and 1.25 Hz produce exactly the same samples at a sampling rate of 1 Hz

Anti-aliasing Filter

- In practice, a sampler is always preceded by a filter to limit the signal bandwidth to match the sampling rate
- This may delete part of the signal if it isn't bandlimited.
- It ensures that the signal that is sampled is bandlimited.

Questions ?

• You can ask on Menti

Further Reading

- \bullet Section 5.1 Sampling Theorem Modern Digital and Analog Communication Systems, 5^{th} Edition
- B P Lathi and Zhi Ding

Get in touch

Hasan.Abbas@glasgow.ac.uk