Last name: Andrews First name: Josh

## ECE 484: Communications Engineering

Midterm Examination - Spring 2018

Instructor: Dr. Ali Abedi, Professor of ECE

**Important notes:** Please write your name with pen on top of all pages. This exam is open book and notes and has 4 questions, one per page. Please only use the space provided for your answers, no additional pages are allowed. Phone or internet use is not allowed. Each student is expected to complete this test alone during the time allocated.

**Question-1:** Consider a periodic sinusoidal signal, f(t), and its approximated staircase signal, g(t) as illustrated in the figure below. (a) Write an equation representing f(t), determine its period, and carrier frequency. (b) Are these two signals, energy signal or power signal? (c) find the power or energy of both signals. (d) Determine percentage error in approximating f(t) using g(t). Enter all your final answers in the table below and show your work on the next page.



| f(t)= (05 (14.28TE) | T= 0.14  | fc= 7.14 Hz |           |
|---------------------|----------|-------------|-----------|
| Power or □Energy    | #Pf= 1/2 | /PPg=       | % error = |

First name: Josh

Question-1 (cont.): Show your work on this page.

- We can see From the graph that T = 0.14 that gives a f== 7.14 HE > f(6) = (05 (277.14t)

- because it is a periodic signal => E = 00

but  $0 < \lim_{t \to \infty} \frac{1}{t} |F(t)|^2 dt < \infty$  =) It is a power signal  $-\frac{1}{2}$  (e.g(t) as well

- Pr = + 1/2 1 cos(1428 116) 2 dt

Pa f(t) is also = e 14.287t - j.14.287t

now apply personal's

PF=/2/+/2/2 => PF= 1/2

In not sure what to do with the Stair Foretion, Can see I changes every 0,01 + but I don't know how to get the power or extract error from it.

First name: Josh

Question-2: Consider the following block diagram. (a) what is the function of this communication system? (b) If m(t) is a 1 KHz tone, determine the output of the system in time and frequency assuming that carrier frequency in the system below is 100 KHz. Write down both time and frequency equations and plot them on a labeled graph. Enter all your final answers in the table below and show your work and plot the output signal in time and frequency on the next page.



| Function of this system is    | The function of the system is to convert m(L) into a SSB signal. This system uses phase shifting modulation in order to do So. |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Output in time domain is      |                                                                                                                                |
| 3                             | 4 <sub>55B</sub> (t) = COS (ZT (100 KHz) ± ZT (101 KHz)) t<br>4usB(t) = COS (20-100K+ZT-10K) t fus(t) = COS (ZT-100K-ZT-10K) t |
|                               | Pusa(t) = (05(20-100x+20-10x)+ Pus(t)-(05(20-100x-20-10x)+                                                                     |
| Output in frequency domain is |                                                                                                                                |
|                               | \$ (F+90xHz) +8 (F+110xHz)                                                                                                     |

First name:

Question-2 (cont.): Show your work and out signal time and frequency plots on this page.

Now Shifting to Frequery domain

and to plat

(1) SOB (1)





Last name: Andrews First name: Jo

**Question-3:** Draw block diagram of *Armstrong* indirect modulator and explain each block separately in 1-2 sentences. What is the advantage of using this system over direct FM modulator? Draw block diagram on the next page and enter explanations on the table below.

| Block Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Description                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 1. NBFM -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The NBFAL Generator converts a m(t) input                                                                 |
| 2. Multiplier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - Consists of frequency doublers, triplers, etc. First stage frequency multiplication, affects for 2 DF   |
| 1 2 \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - Shifts the entire spectrum by for which afters for but not DF3. Used to reach desired for and left out. |
| 4. Local osullator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - Generates a fun frequency by which to shift the spectra. Value depends on desired output and the imput  |
| BPT @tc3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Used to filter out noise at new shifted spectra                                                           |
| the second secon | Second stage multiplier, Similar to first stage                                                           |
| 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |
| 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |
| 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |
| 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                           |
| 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |
| Advantages<br>over direct<br>modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The advantage is that indirect modulation has much better frequency stability                             |

First name: Josh

Question-3 (cont.): Draw block diagram on this page.



Last name: Andrews First name: Josh

**Question-4:** Draw block diagram of an FM stereo transmitter and an FM mono receiver. Explain how a mono receiver (single channel) can detect and demodulate a stereo signal (2 channel). Enter your explanations on this page and block diagram on the next page.

A mono receiver can detect a Stereo signal due to the FCC ruling that the Stereo transmitter hood to be able to be received by a mono receiver. Stereo FM had to keep same B=200KHz and BF=75KHz.

Because the Stereo transmitter still keeps the LHR signal at the base frequency, the mono receiver is able to detect that LHR signal and demodulate it. It will just be absent of the Stereo effect

First name: Josh

Question-4 (cont.): Draw the block diagrams on this page.



## FM Mono RX

