VİTMO

Факультет Систем Управления и Робототехники Мехатроника и робототехника

Разработка алгоритма принятия решения в задаче навигации мобильного робота в условиях динамического окружения

Кирбаба Денис Дмитриевич

Научный руководитель: Бжихатлов Ислам Асланович доцент факультета систем управления и робототехники

> 26.05.2024 Санкт-Петербург

Актуальность темы исследования

Тенденции:

- Расширение области применения мобильных роботов
- Большинство окружений являются динамическими
- Возможность доступа человека-оператора снижается
- Необходимость в алгоритмах принятия решений для обработки сложных сценариев

Основные требования к системе:

- Автономность
- Надежность
- Безопасность

Цель и задачи исследования

Цель исследования:

Разработать систему для повышения автономности, безопасности и надежности навигации роботов в динамическом окружении

Задачи исследования:

- 1. Анализ существующих решений для навигации в динамических условиях
- 2. Реализация высокоуровневой системы принятия решений
- 2.1. Оценка состояния робота и системы навигации и соответствующая адаптация поведения
 - 2.2. Учет динамических объектов
- 3. Аппробация системы в среде имитационного моделирования

Существующие подходы

- Единая точка отказа системы
- Отсутствие слоя наблюдения за состоянием системы
- Динамические объекты обрабатываются как статические

Архитектура разработанной системы ИТМО

Система контроля

Поведенческое дерево

Поддерево LIDAR

Пример работы системы контроля

Система учета динамических объектов ИТМО

Обнаружение динамических объектов ИТМО

Бегущие усредняющие фильтры

$$F_f(t+1) = \beta((1-\alpha_f)F_f(t) + \alpha_f C(t)) + \frac{1-\beta}{8} \sum_{i \in N} F_{f,i}(t)$$

$$F_s(t+1) = \beta((1 - \alpha_s)F_s(t) + \alpha_s C(t)) + \frac{1 - \beta}{8} \sum_{i \in N} F_{s,i}(t)$$

$$F_f(t) > c_1$$

$$F_f(t) - F_s(t) > c_2$$

Исходная карта стоимостей

Бинарная карта

Динамический объект

Слежение и оценка скорости

Слежение

Задача о назначении $min \sum_{i \in A} \sum_{j \in B} C_{i,j} X_{i,j},$

где $C_{i,j}$ — стоимость сопоставления отслеживаемого объекта $i \in A$ с обнаруженным объектом $j \in B$, X — булева матрица выбранных пар

Оценка скорости

Фильтр Калмана для задачи слежения. Вектор состояния:

$$x_k = \begin{bmatrix} p_k \\ v_k \end{bmatrix} = \begin{bmatrix} p_{k-1} + v_{k-1}dt + \frac{1}{2}\widetilde{a}_k dt^2 \\ v_{k+1} + \widetilde{a}_{k-1}dt \end{bmatrix}$$

Обнаруженный динамический объект

Отслеживаемый динамический объект

Отображение динамических объектов ИТМО

Область штрафа вокруг объекта:

$$\Phi_{c,\sum_{front},\sum_{back}}(q) = \delta(x_q)\Phi_{c,\sum_{front}}(q) + (1 - \delta(x_q))\Phi_{c,\sum_{back}}(q),$$

где $q=(x_q,y_q)$ — координаты точки в глобальной системе координат, $\Phi_{\mathrm{c},\sum front}(q)$ — функция Гаусса для зоны штрафа перед объектом, $\Phi_{c,\sum back}(q)$ —функция Гаусса для зоны штрафа позади объекта, $\delta(x) = \mathbf{1}_{x>0}(x)$ индикаторная функция для объединения гауссиан.

Функция Гаусса:

$$\Phi_{c,\sum}(q) = A \exp\left[-\frac{(\|q - c\|_2 \cos(\vartheta - \vartheta_c))^2}{2\sigma_x^2} - \frac{(\|q - c\|_2 \sin(\vartheta - \vartheta_c))^2}{2\sigma_y^2}\right]$$

Дисперсии:

$$r = v_{\text{тек}}/v_{\text{макс}}$$

$$\sigma_{x_{back}}^{2} = (1 - r)\sigma_{x_{back}}^{2} \quad \sigma_{y_{back}}^{2} = (1 - \frac{1}{4})\sigma_{y_{back}}^{2}$$

$$\sigma_{x_{front}}^{2} = (1 + r)\sigma_{x_{front}}^{2} \quad \sigma_{y_{front}}^{2} = (1 - \frac{r}{2})\sigma_{y_{front}}^{2}$$

Пример работы системы учета динамических объектов

Тестирование системы учета динамических объектов

Итоги исследования

динамическом окружении

• Система способна реагировать на сбой различных компонент и предсказывать движение динамических объектов

Спасибо за внимание!

ITSMOre than a UNIVERSITY