

Unit 2 - Relations

Definition

"a is related to b by R"

"a is note related to b by R"

Example

Properties of Relation

- *
- *****

- *
- *****
- **❖**

Reflexive Relation

Non Reflexive relation

Irreflexive Relation

Irreflexive Relation....

Symmetric Relation

Asymmetric

relation. (symmetric) (symmetric)

Asymmetric Relation

Antisymmetric Relation

(3,4),(4,3),

Transitive Relation

Equivalence Relation (RST)

<u>i</u>)

<u>ii</u>)

iii)

Partial Ordered Relations (RAT)

Computer Recognition

REPRESENTATION OF RELATION FOR COMPUTER RECOGNITION

Tools for representation of a relation

1

2

Relation Matrix (Zero-One Matrix):

Relation Matrix (Zero-One Matrix)....

"Relation matrix"

"Zero-One Matrix"

Rows of the matrix corresponds to the elements in set A and columns corresponds to the elements in set B

Relation Matrix (Zero-One Matrix)....

$$M(R)=$$

	p	q
0		
4		
1		
2		

Directed Graphs (Digraphs):

- Vertex Set
 Edge set

Directed Graphs (Digraphs): Example:

Directed Graphs (Digraphs) :.....

Isolated Vertex

Self-loop

In-degree

degree

Out

Problems

1.

Problems :....

Problems....

Representation of properties of relation using Zero-One matrix

and digraph

Reflexive Relation:

Diagonal elements should be 1 i.e Mij = 1 (i=j)

Each vertex should have self loop

Irreflexive Relation:

None of the diagonal elements should be 1 i.e mij \neq 1(i=j) None of the vertex should have self loop

Symmetric Relation:

If mij = 1 then mji = 1

There should arrows in both the direction

Asymmetric Relation:

If mij = 1 then $mij \neq 1$

None of the pair of vertex should have bi-directional arrows

If mij = 1 then mji = 0 but mij = 1.(i=j)

None of the pair of vertex should have bi-directional arrows but any vertex

Transitive Relation:

If mik = 1 and mij =1 then mij = 1

If there is a path of length greater than 1 from vertex a to b, then there is path of length 1 from a to b

Problems:

Operations on Relations:

<u>Union of Relations</u>: $(R_1 \cup R_2)$

Intersection of Relations : $(R_1 \cap R_2)$

Complement of a Relation:

Converse of a Relation: R^c

Problem...

A

Problems...

Solution

Problems..

Composition of Relations: •

composition of R and S

product or the

Composition

ems:

Composition

Problems

a)

b)

Solution

Problems:...

Solution

Problems:..

Equivalence Relation, equivalence class and Partition

Equivalence Relation:

- i)
- <u>ii</u>)
- <u>iii</u>)

Equivalence Class:

Partition of a Set:

Fundamental Theorem on Equivalence relations

1)

2)

Problems:

Solution:

Problems:

Partial Order and Hasse Diagrams(simplified Graphs)

i

ii)

iii)

Hasse Diagram

1.

Problems:

Problems:...

2.

Solution 2:

Problems:..

3.

Problems:...

Solution 4:

Problems:...

Problems:..

Solution 6:

Total Order

Note: "Every Total order is a partial order, but not every partial order is a Total order"

Whether the relation " \leq " on a set of natural numbers N is total order or not? (N, \leq)