Programme de la semaine 4 (du 07/10 au 12/10).

Méthodes de base en analyse

Reprise en insistant sur la fin:

Fonctions trigonométriques : propriétés de base, valeurs d'annulation, conditions d'égalités $(\cos(x) = \cos(y), \text{ etc})$, relations élémentaires $(\cos(\pi - x) = \text{, etc})$, valeurs particulières, dérivées et graphes. Formules trigonométriques: addition, duplication. Les formules de transformation de produit en somme et de somme en produit sont à savoir retrouver, les formules avec tan $\frac{\theta}{2}$ ne sont pas au programme.

Logique, méthodes de raisonnement, calculs algébriques

- Quelques éléments de logique : propositions mathématiques, conjonction, disjonction, négation, implication, équivalence.
- Quantificateurs ∀ et ∃, négation d'une proposition comportant des quantificateurs.
- Raisonnements par l'absurde, par double implication, par contraposée, preuve d'une unicité, raisonnements par analyse-synthèse, récurrences simples, doubles, fortes.
- Définition de n! et des coefficients binomiaux, propriétés de base.
- Manipulation du symbole \sum , en particulier changement d'indice et sommes télescopiques. Premières sommes à connaître : $\sum_{k=1}^{n} k$, $\sum_{k=1}^{n} k^2$, $\sum_{k=0}^{n} q^k$. Formule du binôme et factorisation de $a^n - b^n$.
- Sommes doubles : $\sum_{1 \leq i \leq n \text{ et } 1 \leq j \leq p}$, $\sum_{1 \leq i \leq j \leq n}$, $\sum_{1 \leq i < j \leq n}$. Produits : quelques règles de manipulation de \prod , analogues à celle de \sum .

Questions de cours

Demander:

- une définition ou un énoncé du cours;
- une formule trigo;
- et l'une des démonstrations suivantes :
 - Pour $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, en posant $t = \tan\left(\frac{x}{2}\right)$, retrouver les formules (qui ne sont pas à connaître par coeur) : $\cos x = \frac{1-t^2}{1+t^2}$ et $\sin x = \frac{2t}{1+t^2}$. Toute fonction de \mathbb{R} dans \mathbb{R} s'écrit de façon unique comme somme d'une fonction paire et
 - d'une fonction impaire.
 - Formule du binôme : démontrer uniquement l'hérédité, autrement dit, pour $n \in \mathbb{N}^*$ fixé, et a et b fixés :

sachant que
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$
, montrer que $(a+b)^{n+1} = \sum_{k=0}^{n+1} \binom{n+1}{k} a^{n+1-k} b^k$.

Semaine suivante : Raisonnements, calculs algébriques, nouvelles fonctions usuelles.