Mathématique - Devoir Maison n°12

Exercice 1

Le but de cet exercice est d'étudier l'efficacité de la méthode de Simpson pour le calcul approché d'intégrales. Lorsque f est une fonction continue sur le segment [-1, 1], on définit les réels :

$$I(f) = \int_{-1}^{1} f(t) dt$$
 et $S(f) = \frac{f(-1) + 4f(0) + f(1)}{3}$

- 1. Déterminer I(f) et S(f) quand :
 - (a) f est une fonction continue et impaire sur [-1, +1].

(b)
$$f(t) = t^4$$
. (c) $f(t) = \frac{1}{t+2}$ (d) $f(t) = \frac{1}{t^2 + 2t + 3}$.
2. Vérifier que $I(f) = S(f)$ si $f(x) = 1$, $f(x) = x$, $f(x) = x^2$ ou $f(x) = x^3$ (on pourra utiliser certains des calculs précédents

pour abréger dans certains cas).

En déduire que l'égalité reste vraie pour tout polynôme de degré inférieur ou égal à 3.

On revient au cas général et on suppose désormais que f est de classe C^4 sur [-1,1].

- 3. Démontrer qu'il existe un unique polynôme $P_f \in \mathbb{R}_3[X]$ tel que $P_f(1) = f(1), P_f(0) = f(0), P_f(-1) = f(-1)$ et $P_f'(0) = f'(0)$. Exprimer les coefficients de P_f en fonction de f(1), f(0), f(-1) et f'(0).
- 4. On considère un réel $\alpha \in]0,1[$, et on pose $h(x)=f(x)-P_f(x)-kx^2(x^2-1)$, où k est une constante réelle fixée telle que $h(\alpha) = 0$.
 - (a) Vérifier que h'(0) = 0.
 - (b) Pour quelles valeurs de x peut-on affirmer que h(x) = 0?
 - (c) Montrer que h' s'annule en quatre points distincts de l'intervalle [-1,1].
 - (d) En déduire que $h^{(4)}$ s'annule en un certain point $\beta \in [-1, 1]$, et prouver que $k = \frac{f^{(4)}(\beta)}{4!}$.
 - (e) Montrer que $|f(\alpha) P_f(\alpha)| \le \frac{M_4}{4!} \alpha^2 (1 \alpha^2)$, où M_4 est la valeur maximale prise par $|f^{(4)}|$ sur [-1, 1].
- 5. En déduire que $\forall t \in [0,1], |f(t)-P_f(t)| \leq \frac{M_4}{4!}t^2(1-t^2)$. On admet que le résultat reste vrai sur [-1,0].
- 6. En intégrant le résultat précédent, prouver que $|I(f)-S(f)| \le \frac{M_4}{90}$
- 7. Comparer |I(f)-S(f)| avec $\frac{M_4}{90}$ dans le cas où $f(t)=t^4$. En déduire que la majoration précédente ne peut pas être amé-

Exercice 2

Dans l'espace vectoriel $E = \mathbb{R}^3$ on pose $u_0 = (1, -1, 1)$ et on donne les sous-ensembles :

$$F = \{(x, y, z) \in \mathbb{R}^3 / x + y - z = 0 \} \text{ et } G = \text{Vect } (u_0)$$

- 1. (a) Justifier que F et G sont des sous-espaces vectoriels de \mathbb{R}^3 .
 - (b) Montrer que F et G sont supplémentaires dans $\mathbb{R}^3 : \mathbb{R}^3 = F \oplus G$.
 - (c) Pour tout $(x, y, z) \in \mathbb{R}^3$, calculer l'expression de p(x, y, z) où p est la projection de \mathbb{R}^3 sur G parallèlement à la direction de F.
- 2. Soit l'application $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$; $(x, y, z) \longmapsto (-6x 2y + 4z, -3x y + 2z, -9x 3y + 6z)$
 - (a) Montrer que g est une application linéaire.
 - (b) Déterminer Ker(g) le noyau de g. g est-il un automorphisme?
 - (c) Déterminer Im(g) l'image de g.
 - (d) Vérifier que $\text{Im}(g) \subset F$ et $G \subset \text{Ker}(g)$. A-t-on les égalités?
 - (e) En déduire l'expression de $p \circ g$ et $g \circ p$.
 - (f) Déterminer $g \circ g = g^2$ en fonction de g. En déduire, pour $k \in \mathbb{N}$, l'expression de g^k en fonction de k et g.
- 3. On étudie l'ensemble \mathcal{H} des applications linéaires sur \mathbb{R}^3 f qui s'écrivent f = ap + bq où a et b sont des réels :

$$\mathcal{H} = \{ f \in \mathcal{L}(\mathbb{R}^3) / \exists (a, b) \in \mathbb{R}^2 \text{ t.q. } f = a p + b g \}$$

- (a) Montrer que \mathcal{H} est un sous-espace vectoriel de $\mathcal{L}(\mathbb{R}^3)$.
- (b) Soit $(f_1, f_2) \in \mathcal{H}^2$, déterminer $f_1 \circ f_2$ en fonction de p et g.
- (c) Soit $f \in \mathcal{H}$, f = ap + bg avec $(a, b) \in \mathbb{R}^2$. Pour tout entier naturel n, déterminer f^n en fonction de n, a, b, g et p.