不完全な乱数と暗号

安永憲司

金沢大学

暗号理論と乱数

- 鍵生成には乱数が必要
- CPA 安全な PKE では暗号化に乱数が必要
- 素数性判定は乱数を使うと高速に実行可能
- 対話証明系(零知識証明等)も乱数が必要
- 差分プライバシーは雑音(乱数)が必要
- → 暗号では乱数が本質的に必要 理論では、アルゴリズムは「完全な乱数」 が利用できると仮定
- → 乱数が完全でない場合にどうなるか不透明

今回の講義内容

■ Yevgeniy Dodis (New York University) の講義 "Randomness in Cryptography, Spring 2013" の講義資料をベース

■内容

- 不完全な乱数とは
- 不完全な乱数による MAC
- 不完全な乱数による秘匿性技術

不完全な乱数

- ■完全な乱数
 - = 各ビットが独立かつ一様に選ばれる系列
 - U_n: {0,1}ⁿ 上の一様分布

- 不完全さをどう表現するか? → エントロピー
 - シャノンエントロピー (Shannon entropy)
 - 最小エントロピー (min-entropy)

エントロピー

■ 分布 R のシャノンエントロピー H(R)

$$H(R) = \operatorname{E}\left[\log \frac{1}{p_R(r)}\right] = \sum_{r \in \operatorname{supp}(R)} p_R(r) \log \frac{1}{p_R(r)}$$

- $p_R(r) := Pr[R = r]$
- 分布 R の最小エントロピー H_∞(R)

$$H_{\infty}(R) = \min_{r \in \text{supp}(R)} \left[\log \frac{1}{p_R(r)} \right] = \log \left(\frac{1}{guess(R)} \right)$$

- guess(R) := $\max_r(\Pr[R = r])$
- H_∞(R) ≥ k のとき R を k-source と呼ぶ

エントロピーの例

- $\blacksquare H(U_n) = H_{\infty}(U_n) = n$
- 分布 R₁: Pr[R₁ = r*] = 1
 - $H(R_1) = H_{\infty}(R_1) = 0$
- 分布 R₂: S ⊆ {0,1}ⁿ 上の一様分布
 - $\bullet \ \mathsf{H}(\mathsf{R}_2) = \mathsf{H}_{\infty}(\mathsf{R}_2) = \mathsf{log} \ |\mathsf{S}|$
- 分布 R₃: r* だけ 1/2, その他は S 上の一様分布 Pr[R₃ = r*] = 1/2, Pr[R₃ = r] = 1/(2|S|)
 - $H(R_3) = (1/2) \cdot 1 + \sum_{r \in S} 1/(2|S|) \cdot (\log 2|S|)$ = $1/2(1 + \log 2|S|)$
 - $H_{\infty}(R_3) = 1$

One-Time Message Authentication Code (MAC)

$$\forall$$
 E, $E_{r \leftarrow R}[Adv_{r}(r)] \leq \delta$

- $Adv_E(G_r) = Pr[E wins G_r]$
- ゲーム G_r:

 x ← E(·)
 t = Tag(r, x)
 (x', t') ← E(t)
 wins if x'≠ x ∧ Tag(r, x') = t'
- R = U_m のときは単に δ-secure

almost XOR-universal (AXU) functions

■ H = { h_a: {0,1}ⁿ → {0,1}^λ | a ∈ {0,1}^p } 𝒩 δ-almost XOR-universal (δ-AXU)

$$\forall x \neq x' \in \{0,1\}^n, y \in \{0,1\}^{\lambda}$$

 $\Pr[h_a(x) \oplus h_a(x') = y] \leq \delta \quad (ただし a \leftarrow U_p)$

- $\delta = 2^{-\lambda}$ のとき、XOR universal (XU)
- y = 0ⁿ のとき、δ-almost universal (δ-AU)
- $\delta = 2^{-\lambda}$ かつ $y = 0^n$ のとき、universal

δ-AXU の構成法

- 構成法 1: a ∈ {0,1}^{λ×n}, h_a(x) = a·x
 - 鍵長 p = nλ の XU
- 構成法 2: a ∈ GF(2ⁿ) , h_a(x) = (a · x の下位 λ bit)
 - 鍵長 p = n の XU
- 構成法 3: n = λ b, b \in N とする. a = $(a_1, ..., a_b) \in GF(2^{\lambda})^b$, x = $(x_1, ..., x_b) \in GF(2^{\lambda})^b$, $h_a(x) = \langle a, x \rangle = \Sigma_i a_i x_i$
 - 鍵長 p = n の XU
- 構成法 4: n = λb, b ∈ N. h_a(x) = Σ_i aⁱ·x_i
 - 鍵長 $p = \lambda$ の $(2^{-\lambda} \cdot n/\lambda)$ -AXU
 - \Re \forall n, δ, \exists δ-AXU with p = λ = log (n/δ)

δ-AXU の構成法

定理

構成法 3 (n = λ b, b \in N. $h_a(x) = \langle a, x \rangle = \sum_i a_i x_i$, a = $(a_1, ..., a_b) \in GF(2^{\lambda})^b$, $x \in GF(2^{\lambda})^b$) は鍵長 p = n の XU

証明:

```
x \neq x' \in GF(2^{\lambda})^{b} と y \in GF(2^{\lambda}) を固定. z = x - x' \neq 0^{b} とする. このとき Pr_{a}[h_{a}(x) \oplus h_{a}(x') = y] = Pr_{a}[ < a, x > \oplus < a, x' > = y] = Pr_{a}[ < a, z > = y] この確率が <math>2^{-\lambda}であることを示す z_{1} \neq 0 だとすると、任意の a_{2}, ..., a_{b} に対して Pr_{a1}[ < a, z > = y] = Pr_{a1}[a_{1} = c] = 2^{-\lambda} ここで c = (y - \sum_{i>2} a_{i}z_{i}) \cdot z_{1}^{-1} \in GF(2^{\lambda})
```

δ-AXU の構成法

定理

構成法 $4 (n = \lambda b, b \in N. h_a(x) = \sum_i a^i \cdot x_i)$ は 鍵長 $p = \lambda \mathcal{O} (2^{-\lambda} \cdot n/\lambda) - AXU$

証明:

 $x \neq x$ ' と y を固定し、z = x - x' $\neq 0$ ^b とする $z_0 = y$ とすると、

 $Pr_a[h_a(x) \oplus h_a(x') = y] = Pr_a[\sum_{i=0}^{b} a^i \cdot z_i = 0]$ $h_a(x) \oplus h_a(x') = y$ となるのは 多項式 $\phi(s) = \sum z_i \cdot s^i$ が根をもつときだけであり、 $\phi(s)$ は次数 b 以下なので根は $b = n/\lambda$ 個以下

AXU による OT-MAC

定理

H: δ-AXU $r=(a,\,b)\in\{0,1\}^p\times\{0,1\}^\lambda\,$ のとき $Tag(\,r,\,x\,)=h_a(x)\oplus b\ \text{は δ-secure one-time MAC}$

証明:

G_R: 1.
$$X \leftarrow E(\cdot)$$

2. $(A, B) \leftarrow U_p \times U_\lambda$
 $T = Tag_{(A,B)}(X) = h_A(X) \oplus B$
3. $(X', T') \leftarrow E(T)$

4. E wins if $X \neq X' \wedge Tag_{(A,B)}(X') = T'$

証明の続き:

$$G_{R}': 1. X \leftarrow E(\cdot)$$

$$2. (A, B) \leftarrow U_{p} \times U_{\lambda}$$

$$T = h_{A}(X) \oplus B$$

$$3. (X', T \oplus T') \leftarrow E(T)$$

$$4. E \text{ wins if } X \neq X' \wedge h_{A}(X) \oplus h_{A}(X') = T \oplus T'$$

$$G_{R}'': 1. X \leftarrow E(\cdot)$$

$$2. T \leftarrow U_{\lambda}$$

$$3. (X', T \oplus T') \leftarrow E(T)$$

$$4. A \leftarrow U_{p}$$

$$5. E \text{ wins if } X \neq X' \wedge h_{A}(X) \oplus h_{A}(X') = T \oplus T'$$

$$\max_{\mathsf{E}}(\mathsf{Adv}_{\mathsf{E}}(\mathsf{G}_{\mathsf{R}})) = \max_{\mathsf{E}}(\mathsf{Adv}_{\mathsf{E}}(\mathsf{G}_{\mathsf{R}}') = \max_{\mathsf{E}}(\mathsf{Adv}_{\mathsf{E}}(\mathsf{G}_{\mathsf{R}}''))$$
であり、 δ -AXU より、 $\max_{\mathsf{E}}(\mathsf{Adv}_{\mathsf{E}}(\mathsf{G}_{\mathsf{R}}'')) \leq \delta$

不完全乱数による MAC

Tag が (k, δ)-secure MAC
 ⇔ ∀ k-source R, Tag が (R, δ)-secure

定理

Tag が鍵長 m の δ -secure MAC のとき、 すべての k ≤ m に対し、Tag は (k, $2^{m-k} \cdot \delta$)-secure MAC

証明: 以下の補題から示せる □

補題

すべての関数 $f: \{0,1\}^m \to \mathbf{R}_{\geq 0}$ と $\{0,1\}^m$ 上の k-source R に対して、 $\mathsf{E}[\mathsf{f}(\mathsf{R})] \leq 2^{\mathsf{m-k}} \cdot \mathsf{E}[\mathsf{f}(\mathsf{U_m})]$

不完全乱数による MAC の証明

補題

すべての関数 f : {0,1}^m → R_{≥0} と {0,1}^m 上の k-source R に対して、E[f(R)] ≤ 2^{m-k}・E[f(U_m)]

証明: Pr[R=r] ≤ guess(R) であることから

$$E[f(R)] = \sum_{r} Pr[R = r] \cdot f(R)$$

$$\leq guess(R) \cdot 2^{m} \cdot \sum_{r} 2^{-m} \cdot f(r)$$

$$= 2^{m-H \otimes (R)} \cdot E[f(U_{m})]$$

MAC の可能性・不可能性結果

定理(不完全乱数による MAC の可能性)

∀ k s.t. m/2 + log n < k ≤ m に対し、

効率的な Tag: {0,1}^m × {0,1}ⁿ → {0,1}^λ が存在し、

Tag (t, $n \cdot 2^{m/2-k}$)-secure MAC with $\lambda = m/2$

別の言い方をすると、

 \forall n, δ , m \geq 2log(n/ δ), k s.t. m/2+log(n/ δ) < k \leq m に対し、効率的な (k, δ)-secure MAC with λ = m/2 が存在

定理(不完全乱数による MAC の不可能性)

Tag: $\{0,1\}^m \times \{0,1\}^n \rightarrow \{0,1\}^{\lambda}$ とする.

∀ k ≤ m に対し、以下の R with H∞(R) ≥ k と E が存在

- (a) k ≤ m/2 ならば Adv_F(R) = 1
- (b) k > m/2 ならば $Adv_F(R) \ge 2^{m/2-k}$

暗号化方式と統計的距離

- (Enc, Dec) で与えられる
 - Enc: $\{0,1\}^m \times \{0,1\}^n \rightarrow \{0,1\}^{\lambda}$
 - Dec: $\{0,1\}^m \times \{0,1\}^{\lambda} \rightarrow \{0,1\}^n$
 - Enc(r,・) と Dec(r,・) は、Enc_r(・) と Dec_r(・) で表す
 - 正当性: ∀ r, x, Dec_r(Enc_r(x)) = x
- 統計的距離 (statistical distance)
 - SD(A, B) = $\max_{E} | Pr[E(A) = 1] Pr[E(B) = 1] |$ = $1/2 \sum_{r} | Pr[A = r] - Pr[B = r] |$
- 統計的独立性 (statistical independence)
 - $SI(A, B) = SD((A,B), A \times B)$

暗号化方式の安全性

- (Enc, Dec) n (R, ε)-secure \Leftrightarrow SI(X; C) \leq ε, C = Enc_R(X)
- (Enc, Dec) が (k, ε)-secure ⇔ ∀ k-source R, (Enc, Dec) が (R, ε)-secure

定理

One-Time Pad は (m,0)-secure

→ 一様分布が手に入れば十分

乱数抽出

- 不完全乱数から一様乱数を求める手続き
- Ext: $\{0,1\}^m \rightarrow \{0,1\}$ \not \not (k, ε)-bit-extractor $\Leftrightarrow \forall k$ -source R on $\{0,1\}^m$, SD(Ext(R), U₁) $\leq ε$

定理

(m - 1, 0.99)-bit-extractor は存在しない

証明:

bit-extractor Ext に対し、

 $S_0 = \text{Ext}^{-1}(0), \ S_1 = \text{Ext}^{-1}(1) \ とする. \ |S_0| \ge |S_1| \ と仮定.$ このとき、 $H_{\infty}(S_0) \ge m-1$ だが、 $\text{Ext}(S_0) = 0$ である \square

不完全乱数による秘匿性

補題

```
2つの関数 f, g: \{0,1\}^m \to C および 0 \le t \le m に対し \Pr_{r \leftarrow U}[f(r) \ne g(r)] \ge 2^{-t} であるとき、以下の R_1 と R_2 が存在する (a) H_{\infty}(R_1) \ge m-t-1 かつ SD(f(R_1), g(R_1)) \ge 1/2 (b) H_{\infty}(R_2) \ge m-t-2 かつ SD(f(R_2), g(R_2)) \ge 1 (??)
```

証明: アイディア: 値が異なる部分からサンプルした分布

まず C = {0,1} の場合を証明する.

$$D = \{ z : f(z) \neq g(z) \} とすると |D| \ge 2^{m-t}$$

$$S_{01} = \{ z : f(z)=0, g(z)=1 \}, S_{10} = \{ z : f(z)=1, g(z)=0 \}$$

$$R_1 = U_{S01}$$
 とすれば $H_{\infty}(R_1) \ge m-t-1$ であり

| アイディア: ハッシュで潰して | C = {0,1} の場合に帰着

証明の続き(その1):

universal hash H = { h : C \rightarrow {0,1} } ($\forall z \neq z'$, $Pr_{h \leftarrow H}[h(z) \neq h(z')] = 1/2$) $S_{\alpha,\beta}(h) = \{ r \in D \mid h(f(r)) = \alpha \land h(g(r)) = \beta \}$ 今計算したい値は、

$$E_{h \in H} \left[\left| S_{01}(h) \right| + \left| S_{10}(h) \right| \right] = E_{h \in H} \left[\sum_{r \in D} X_{S_{01}(h) \cup S_{10}(h)}(r) \right]$$

$$= \sum_{r \in D} \Pr_{h \in H} \left[r \in S_{01}(h) \cup S_{10}(h) \right] = \sum_{r \in D} \Pr \left[h(f(r)) \neq h(g(r)) \right] \geq \frac{D}{2}$$
 ただし、 $X_A(r) := 1$ if $r \in A$, 0 o.w.
 このとき、ある $h^* : C \rightarrow \{0,1\}$ が存在して、
$$|S_{01}(h^*) \cup S_{10}(h^*)| \geq |D|/2 \geq 2^{m-t-1}$$

$$|S_{01}(h^*)| \geq |S_{10}(h^*)| \geq |C_{01}(h^*)| \geq |C_{01}(h^*)| \geq 2^{m-t-2}$$

証明の続き(その2):

 $R_2: S_{01}(h^*)$ 上の一様分布. $H_{\infty}(R_2) \ge m-t-2$ であり、 $h^*(f(R_2)) = 0$, $h^*(f(R_2)) = 1$ から $SD(f(R_2), g(R_2)) = 1$ \rightarrow (b) が示された

$$R_1: S_{01}(h^*) \cup S_{10}(h^*)$$
 上の一様分布 $H_{\infty}(R_1) \geq m$ -t-1 であり、 $Eve(C) = 1 \Leftrightarrow h^*(C) = 0$ である $Eve(C) = 1 \Leftrightarrow h^*(C) = 0$ $Pr[Eve(E) = 0] = Pr[Eve(E) = 0] = Pv[Eve(E) = 0] = Pv[Eve(E) = 0] = Pv[Eve(E) = 0] = 0$ $eve(E) = 0$ $eve($

不完全乱数による暗号化方式

定理

n = 1 のとき、(m-1, 1/2)-secure または (m-2,0)-secure 暗号化方式は存在しない

証明:

```
f(r) = Enc_r(0), g(r) = Enc_r(1) とする. 暗号化方式の正当性より、 \forall r, Enc_r(0) \neq Enc_r(1) t=0 で補題を適用すると、 R_1, R_2 が存在して、 SD(Enc_{R_1}(0), Enc_{R_1}(1)) \geq 1/2 SD(Enc_{R_2}(0), Enc_{R_2}(1)) = 1 H_{\infty}(R_1) \geq m-1, H_{\infty}(R_2) \geq m-2
```

不完全乱数によるコミットメント

- Com: {0,1} × {0,1}^m → {0,1}^λ が (k,ε)-secure コミットメント
 ⇔
 - Hiding:
 ∀k-source R, SD(Com(0,R), Com(1,R)) ≤ ε
 - (weak) Binding: $Pr_{r \leftarrow U}[Com(0,R) \neq Com(1,R)] \ge 1/2$

■ 不可能性:

f(r) = Com(0,r), g(r) = Com(1,r) とすると、 (m-1, 0.99)-secure コミットメントは存在しない

不完全乱数による秘密分散

■ (Share, Rec) が (k, ε)-secure (2,T)-秘密分散

$$S_1 = Share_1(b;r), ..., S_T = Share_T(b,r) のとき$$

- Rec($S_1, ..., S_T$) = b
- \forall k-source R, i \in [T], SD(Share_i(0,R), Share_i(1,R)) \leq ϵ

不完全乱数による秘密分散

定理

(m - log(T) - 1, 0.99)-secure または (m - log(T) - 2, 1/2)-secure (2,T)-秘密分散は存在しない

証明:

```
すべての r について (Share_1(0,r), ..., Share_T(0,r)) \neq (Share_1(1,r), ..., Share_T(1,r)) \rightarrow ある j \in [T] が存在して Share_j(0,r) <math>\neq Share_j(1,r) \rightarrow ある j* \in [T] が存在して |\{r: Share_{j^*}(0,r) \neq Share_{j^*}(1,r)\}| \geq 2^m/T f(r) = Share_{j^*}(0,r), g(r) = Share_{j^*}(1,r) とすると Pr[ <math>f(r) \neq g(r) \} \geq 1/T であり、あとは補題より \square
```

不可能性の回避策

- 不完全乱数による秘匿性を回避するには?
 - k-source よりも構造をもつ情報源
 - 正当性を緩和
 - 完全乱数 (乱数の抽出可能性) が本質的に必要
 - 公開乱数を利用

ブロック情報源 (block sources)

- 系列 R₁, R₂, ... が (k,m)-block source
 - ⇔ \forall i, $|R_i| = m$ であり、 \forall i, \forall r₁, ..., r_{i-1} ∈ $\{0,1\}^m$, $H_{\infty}(R_i | R_1 = r_1, ..., R_{i-1} = r_{i-1}) ≥ k$
 - m:ブロック長, k/m:エントロピーレート

■ 系列 R_1 , R_2 , ... が (k,m)-enhanced block source $\Leftrightarrow \forall i, |R_i| = m$ であり、

$$\forall$$
 i, \forall I \subseteq [r] s.t. i \notin I, \forall r_I = $(r_i)_{i \in I} \in \{0,1\}^{m \times |I|}$, $H_{\infty}(R_i \mid R_I = r_I) \ge k$

Santha-Vazirani 情報源

■ m = 1 のブロック情報源

■ SV(γ)

```
 = \{ B_1 B_2 \dots \mid \forall i \forall b_1, \dots, b_{i-1} \in \{0,1\}^{i-1} : \\ Pr[B_i=0 \mid B_1=b_1, \dots, B_{i-1}=b_{i-1}] \in ((1-\gamma)/2, (1+\gamma)/2) \} 
 = \{ B_1 B_2 \dots \mid \forall i \forall b_1, \dots, b_{i-1} \in \{0,1\}^{i-1} : \\ Bias(B_i \mid B_{\{1,\dots,i-1\}} = b_{\{1,\dots,i-1\}}) \leq \gamma \}
```

エントロピーレートは log(2/(1 + γ))

■ eSV(γ, N)

```
= { B_1...B_N \mid \forall i \ \forall b_{[N]\setminus \{i\}} : Bias(B_i \mid B_{[N]\setminus \{i\}} = b_{[N]\setminus \{i\}}) \le \gamma }
```

semi-flat 情報源

- γ-semi-flat source $H_S(\gamma, N)$ ($S \subseteq \{0,1\}^N$, $|S| = 2^{N-1}$)
 - $H_S(\gamma, N) =$ $\begin{cases} Pr[R = r] = (1+\gamma) 2^{-N} & \text{if } r ∈ S \\ Pr[R = r] = (1-\gamma) 2^{-N} & \text{if } r ∉ S \end{cases}$
 - γ-biased コインで S or S を選択し、 その後、選んだ集合で一様に選択
 - $H(\gamma, N) = \{ H_S(\gamma, N) \mid S \subseteq \{0,1\}^N, |S| = 2^{N-1} \}$

補題 H(γ, N) ⊂ eSV(γ, N)

証明:
$$\forall b_i \in \{0,1\}, b_{-i} \in \{0,1\}^{N-1}, H_S(\gamma, N) = (B_i, B_{-i})$$

$$\frac{\alpha}{\beta} = \frac{\Pr[B_i = 0 \mid B_{-i} = b_{-i}]}{\Pr[B_i = 1 \mid B_{-i} = b_{-i}]} = \frac{\Pr[(B_i, B_{-i}) = (0, b_{-i})]}{\Pr[(B_i, B_{-i}) = (1, b_{-i})]} \in \left[\frac{1 - \gamma}{1 + \gamma}, \frac{1 + \gamma}{1 - \gamma}\right]$$

$$\alpha + \beta = 1$$
 であり $\alpha, \beta \in [(1-\gamma)/2, (1+\gamma)/2]$

SV 情報源による乱数抽出の不可能性

定理

 \forall N \forall Ext : {0,1}^N→{0,1}, ∃ γ-semi-flat 情報源 R ∈ H(γ, N) ⊂ eSV(γ, N) s.t. Bias(Ext(R)) ≥ γ

証明:

一般性を失うことなく、|Ext⁻¹(0)| ≥ |Ext⁻¹(1)| と仮定. ∀ S ⊆ Ext⁻¹(0), |S| = 2^{N-1} に対して R = H_S(γ, N) とすると

$$Pr[Ext(R) = 1] \ge Pr[R \in S] = (1+\gamma)/2$$

SV 情報源による秘匿性の不可能性

補題

```
関数 f, g: \{0,1\}^N \to C が、ある T \geq 1 に対して Pr_{r \leftarrow U}[f(r) \neq g(r)] \geq 1/T であるとき、ある S \subseteq \{0,1\}^N, |S| = 2^{N-1} が存在し、 R = H_S(\gamma, N) とすると、SD( f(R), g(R) ) \geq \gamma/2T
```

証明:

```
D = \{ z : f(z) \neq g(z) \} とすると |D| \ge 2^N/T universal hash H = \{ h : C \rightarrow \{0,1\} \} を考えると、 (\forall z \neq z', \Pr_{h \leftarrow H}[h(z) \neq h(z')] = 1/2 ) 以前の補題と同様に、ある h^* : C \rightarrow \{0,1\} が存在して、 |S_{01}(h^*) \cup S_{10}(h^*)| \ge |D|/2 \ge 2^N/2T |S_{01}(h^*)| \ge |S_{10}(h^*)| \ge K
```

証明の続き:

```
集合 S ⊆ {0,1}<sup>N</sup>: S<sub>01</sub>(h*) を含み、S<sub>10</sub>(h*) を含まない
                     |S| = 2<sup>N-1</sup> である任意の集合
分布 R = H<sub>S</sub>(γ, N) とする
Eve(C) = 1 ⇔ h*(C) = 0 である Eve を考えると
SD(f(R), g(R))
 \geq | \Pr[h^*(f(R)) = 0] - \Pr[h^*(g(R)) = 1] |
 = Pr[h^*(f(R)) = 0] - Pr[h^*(g(R)) = 0]
  \geq \Pr[R \in S_{01}] - \Pr[R \in S_{10}]
  = (1+\gamma)2^{-N} |S_{01}| - (1-\gamma)2^{-N} |S_{10}|
  = 2^{-N} (|S_{01}| - |S_{10}| + \gamma (|S_{01}| + |S_{10}|))
  \geq 2^{-N} \cdot \gamma |D|/2 \geq \gamma / 2T
```

まとめ

- MAC は k-source を使って安全性を保証できる
- 秘匿性に関する技術(暗号方式、秘密分散等) は k-source では安全の保証が難しい
 - 方式に対して安全性を破る分布が存在
 - Santha-Varizani 情報源に制限してもダメ
 - 乱数抽出可能なことが本質的