Master Thesis Project : Extreme Value Theory

- Introductory Task -

Killian Martin-Horgassan

February 18, 2015

1 SUMMARY - TASKS ASSIGNED

Let us consider a sequence of i.i.d. random variables $X_1, X_2, ... \sim \mathcal{N}(0,1)^1$. Let us define the maximum at stage n as $M_n = \max(X_1, ..., X_n)$. Let us consider the following example :

Figure 1.1: Distribution of the $x_1,...,x_n$ around 0.

Let us draw the plotting of M_n against n :

 (M_n) is a non-decreasing sequence with growth is of order $\sqrt{\log(n)}$.

¹ could be extended to $\mathcal{N}(\mu, \sigma^2)$

1.1 Sub-task 1

Write a R program that will generate the sequence of the maxima $M_1,...,M_n$ and make the plot of M_n against n. The signature is the following: NormMax(N,m,s,DIST), where:

- N is the number of stages
- m is the mean
- · s is the standard deviation
- DIST is the common distribution of the X_i^2

1.1.1 SUB-TASK 2

Let us make the following observation, if F_n denotes the cumulated distribution function of M_n then : $F_n(t) = \Pr(\{M_n \le t\}) = \Pr(\{\max(X_1, ..., X_n) \le t\}) = \Pr(\{X_1 \le t\} \cap ... \cap \{X_n \le t\})$. By independence of the X_i , it boils down to $F_n(t) = \Phi(t)^n$.

- What is the limit, if any, when n goes to infinity?
- Is it possible to find two sequences (a_n) and (b_n) such that $\Pr(a_n + b_n M_n \le t)$ has a limit distribution?

2 RESULTS

2.1 R PROGRAMMING

Soon to be added...

2.2 THEORETICAL PART

WHAT IS THE LIMIT, IF ANY, WHEN N GOES TO INFINITY?

 $\forall t \in \mathbb{R}, 0 < \Phi(t) < 1$. Hence, $\forall t \in \mathbb{R}, \lim_{n \to \infty} \Phi(t) = 0$. Obviously, there is no convergence in distribution³!

Here, the issue is particularly acute as the upper-bound limit of Ω which I hereafter denote by t_+^4 is infinity. If t_+ is finite there is a limiting cumulative distribution function but it is degenerate. That raises an issue as a degenerate distribution is not something it is convenient to work with. It is possible to circumvent that issue by considering a linear renormalization of M_n namely $M_n^* = \frac{M_n - b_n}{a_n}$ 5. That brings us to the next issue: is it possible to find two sequences (a_n) and (b_n) such that (M_n^*) admits a limiting distribution?

²gaussian, exponential or Cauchy for instance.

 $^{^3}$ Of course there is no convergence in distribution: the limiting function is not a cdf. Indeed, a cdf must take value 0 at $-\infty$ and value 1 at ∞ and here the limiting function is constant.

⁴that is the smallest t such that F(t) = 1

⁵I use here the same notation as Coles in his book.

Is it possible to find two sequences (a_n) and (b_n) such that $\Pr(a_n+b_nM_n\leq t)$ has a limit distribution?

The extremal types theorem⁶ provides a related result. It states that **if** there exists $((a_n), (b_n)) \in \mathbb{R}_+^{*\mathbb{N}} \times \mathbb{R}^{\mathbb{N}}$ such that $\lim_{n\to\infty} \Pr(\{\frac{M_n-b_n}{a_n} \le t\}) = F(t)$ **then** F is non-degenerate and either a Grumbel, a Fréchet or a Weibull distribution. These distributions can be regrouped into the Generalized Extreme Value Distribution (**GEV**).

3 WORK DONE

Please report to file 'JournalDeBord.pdf'⁷, section *Week I*.

 $^{^6 \}mbox{also}$ referred to as Fisher-Tippett-Gnedenko theorem in the literature.

 $^{^7}$ available on https://github.com/CillianMH/pdmExtremeValueTheory