Referencias afines Coordenadas cartesianas

Notación

- Como vimos antes, un subespacio vectorial generado por un subconjunto X de vectores será denotado por $\langle X \rangle$.
- Por brevedad, si $\{a_0, a_1, \dots, a_k\} \subseteq A$ es un conjunto finito de puntos de \mathcal{A} , entonces $\langle a_0, a_1, \dots, a_k \rangle$ denotará el subespacio afín de \mathcal{A} que contiene a a_0 y está dirigido por $\langle \overrightarrow{a_0a_1}, \dots, \overrightarrow{a_0a_k} \rangle$.
- Obviamente, este subespacio tiene dimensión a lo sumo k.

Definición

Sea $\mathcal{A}=(A,V)$ un espacio afín. Los puntos $a_0,a_1,\ldots,a_k\in A$ son independientes si la dimensión del subespacio afín $\langle a_0,a_1,\ldots,a_k\rangle$ es k. Si $k=\dim(\mathcal{A})$, se dice que (a_0,a_1,\ldots,a_k) es una referencia afín de \mathcal{A} .

Definición

Sea $\mathcal{A}=(A,V)$ un espacio afín. Los puntos $a_0,a_1,\ldots,a_k\in A$ son independientes si la dimensión del subespacio afín $\langle a_0,a_1,\ldots,a_k\rangle$ es k. Si $k=\dim(\mathcal{A})$, se dice que (a_0,a_1,\ldots,a_k) es una referencia afín de \mathcal{A} .

Ejemplo

Sea $\mathcal{A}=(A,V)$ un plano afín definido por el conjunto de puntos $A=\{(x,y,z)\in\mathbb{R}^3:x+y=z+5\}$, donde V es el subepacio vectorial de \mathbb{R}^3 generado por (1,0,1) y (0,1,1).

Una referencia afín para este espacio es B=(a,b,c)=((0,0,-5),(1,1,-3),(2,3,0)). En este caso, $\dim(\mathcal{A})=\dim(V)=2$ y $(\overrightarrow{ab},\overrightarrow{ac})=((1,1,2),(2,3,5))$ es una base de V.

- Sea $B = (a_0, ..., a_n)$ una referencia afín de \mathcal{A} .
- El punto a_0 será considerado el origen de \mathcal{A} respecto a B.
- Todo $x \in A$ tiene coordenadas $(x_1, ..., x_n)$ definidas por

$$\overrightarrow{a_0x} = \sum_{i=1}^n x_i \overrightarrow{a_0a_i}.$$

 Todo punto x está únicamente determinado por sus coordenadas respecto a la referencia afín B.

- Sea $B = (a_0, ..., a_n)$ una referencia afín de \mathcal{A} .
- El punto a_0 será considerado el origen de \mathcal{A} respecto a B.
- Todo $x \in A$ tiene coordenadas (x_1, \dots, x_n) definidas por

$$\overrightarrow{a_0x} = \sum_{i=1}^n x_i \overrightarrow{a_0a_i}.$$

 Todo punto x está únicamente determinado por sus coordenadas respecto a la referencia afín B.

Ejemplo

Sea $A = \{(x,y,z) \in \mathbb{R}^3 : x+y=z+5\}$ el conjunto de puntos del plano afín del ejemplo anterior. Una referencia afín para este espacio es B = (a,b,c) = ((0,0,-5),(1,1,-3),(2,3,0))

$$B = (a, b, c) = ((0, 0, -5), (1, 1, -3), (2, 3, 0)).$$

Las coordenadas de a, b y c respecto a esta referencia afin están dadas por $a_B = (0,0)$, $b_B = (1,0)$ y $c_B = (0,1)$. El vector de coordenadas del punto p = (2,2,-1) es $p_B = (2,0)$.

Ecuación de un subespacio afín

Si $\mathcal{A}'=(A',F)$ es un subespacio afín de $\mathcal{A}=(A,V)$ sobre un cuerpo \mathbb{K} , entonces para toda base $(\overrightarrow{u_1},\ldots,\overrightarrow{u_k})$ de F y todo punto $p\in A'$, la ecuación paramétrica-vectorial del subespacio afín es

$$A' = \left\{ p + \sum_{i=1}^k \lambda_i \overrightarrow{u_i} : \lambda_1, \dots, \lambda_k \in \mathbb{K} \right\}.$$

Ecuación de un subespacio afín

Si $\mathcal{A}'=(A',F)$ es un subespacio afín de $\mathcal{A}=(A,V)$ sobre un cuerpo \mathbb{K} , entonces para toda base $(\overrightarrow{u_1},\ldots,\overrightarrow{u_k})$ de F y todo punto $p\in A'$, la ecuación paramétrica-vectorial del subespacio afín es

$$A' = \left\{ p + \sum_{i=1}^k \lambda_i \overrightarrow{u_i} : \lambda_1, \dots, \lambda_k \in \mathbb{K} \right\}.$$

Sistema de ecuaciones paramétricas de A'

Si $\overrightarrow{u_i}$ tiene coordenadas $(\alpha_{i1},\ldots,\alpha_{in})$, en la base $(\overrightarrow{a_0a_1},\ldots,\overrightarrow{a_0a_n})$, entonces todo punto $x\in A'$ se expresa en coordenadas por

$$\begin{cases} x_1 = p_1 + \lambda_1 \alpha_{11} + \dots + \lambda_k \alpha_{k1} \\ \vdots \\ x_n = p_n + \lambda_1 \alpha_{1n} + \dots + \lambda_k \alpha_{kn}, \end{cases}$$

donde (p_1,\ldots,p_n) es el vector de coordenadas de p en la referencia afín B. \triangleright

Ejemplo

Si un punto $q \in A \setminus \{p\}$ tiene coordenadas (q_1, \ldots, q_n) , respecto a una referencia afín, entonces la recta p,q esta dada por las ecuaciones paramétricas

$$\begin{cases} x_1 = p_1 + \lambda(q_1 - p_1) \\ \vdots \\ x_n = p_n + \lambda(q_n - p_n). \end{cases}$$

Ejemplo

Si un punto $q \in A \setminus \{p\}$ tiene coordenadas (q_1,\ldots,q_n) , respecto a una referencia afín, entonces la recta p,q esta dada por las ecuaciones paramétricas

$$\begin{cases} x_1 = p_1 + \lambda(q_1 - p_1) \\ \vdots \\ x_n = p_n + \lambda(q_n - p_n). \end{cases}$$

Análogamente, tres puntos no colineales p,q,r inducen un plano dado por el sistema

$$\begin{cases} x_1 = p_1 + \lambda_1(q_1 - p_1) + \lambda_2(r_1 - p_1) \\ \vdots \\ x_n = p_n + \lambda_1(q_n - p_n) + \lambda_2(r_n - p_n). \end{cases}$$

Ejercicio

Sea $A=\{x+2+\alpha e^{-x}+\beta e^x: \alpha,\beta\in\mathbb{R}\}$ un espacio afín de funciones reales. Determina las coordenadas de la función $g(x)=x+2+e^{-x}+2e^x$ respecto a las siguientes referencias afines:

•
$$B = (x+2+e^x, x+2-e^{-x}, x+2+2e^{-x}+e^x)$$

•
$$C = (x+2, x+2+e^{-x}, x+2+e^{x}).$$

Ejercicio

Sea $A=\{x+2+\alpha e^{-x}+\beta e^x: \alpha,\beta\in\mathbb{R}\}$ un espacio afín de funciones reales. Determina las coordenadas de la función $g(x)=x+2+e^{-x}+2e^x$ respecto a las siguientes referencias afines:

•
$$B = (x+2+e^x, x+2-e^{-x}, x+2+2e^{-x}+e^x)$$

•
$$C = (x+2, x+2+e^{-x}, x+2+e^{x}).$$

Solución

• Sea B=(a,b,c). Partiendo de $\overrightarrow{ag}=\lambda_1\overrightarrow{ab}+\lambda_2\overrightarrow{ac}$ se deduce que la función g tiene coordenadas $g_B=(\lambda_1,\lambda_2)=(-1,0)$ respecto a la referencia afín B.

Ejercicio

Sea $A=\{x+2+\alpha e^{-x}+\beta e^x: \alpha,\beta\in\mathbb{R}\}$ un espacio afín de funciones reales. Determina las coordenadas de la función $g(x)=x+2+e^{-x}+2e^x$ respecto a las siguientes referencias afines:

- $B = (x+2+e^x, x+2-e^{-x}, x+2+2e^{-x}+e^x)$
- $C = (x+2, x+2+e^{-x}, x+2+e^{x}).$

Solución

- Sea B=(a,b,c). Partiendo de $\overrightarrow{ag}=\lambda_1\overrightarrow{ab}+\lambda_2\overrightarrow{ac}$ se deduce que la función g tiene coordenadas $g_B=(\lambda_1,\lambda_2)=(-1,0)$ respecto a la referencia afín B.
- Sea C=(p,q,r). Partiendo de $\overrightarrow{pg}=\lambda_1\overrightarrow{pq}+\lambda_2\overrightarrow{pr}$ se deduce que la función g tiene coordenadas $g_C=(\lambda_1,\lambda_2)=(1,2)$ respecto a la referencia afín C.

