上海市精品课程系列——生物化学

- 1 DNA复制的一般特征
- 2 参与复制的主要酶和蛋白质

- **BNA复制的详细机制**
- 4 DNA损伤、修复和突变

● DNA复制的一般特征

- 核酸生物合成的一般规则
- ❖ 绝大多数细胞核酸的合成,都是按照Watson-Crick碱基互补的原则,通过拷贝预先存在的DNA链(模板链)来产生
- ◆ 复制:以亲代DNA或RNA为模板,根据碱基配对原则,合成与亲代相同的子代DNA或RNA的过程
- ◆ 转录:以DNA为模板,按照碱基配对原则合成RNA,即将DNA所含的遗传信息传给RNA,形成一条与DNA链互补的RNA的过程
- ◆ 翻译:也叫转译,以mRNA为模板,将mRNA的密码解读成蛋白质 氨基酸序列的过程
- ◆ 逆转录:以RNA为模板,在逆转录酶的作用下,生成DNA的过程

DNA复制的一般特征

❖ 核酸链的合成方向只有

一↑: 5'→3'

3′, 5′-磷酸二酯键

延伸部位

❖ 特异的聚合酶催化合成 DNA或RNA

● DNA复制的一般特征

■ DNA复制的一般特征

复制的部位

◆ 真核生物: 细胞核

◆ 原核生物:核质区

复制的反应

商 产物

n₁dATP

n₂dGTP

n₃dCTP

n₄dTTP

底物或原料

DNA复制的一般特征

复制的方式

半保留复制

亲代 DNA 的双螺旋先解 旋和分开, 然后以每条 链为模板, 按照碱基配对 原则, 各形成一条互补 链的复制方式。每个子代 DNA分子中有一条链来 自亲代DNA, 另一条则 是新合成的

模板链

● DNA复制的一般特征

复制的启动

3' Leading strand 5' Lagging strand

复制起始区 (ori)

- ◆ 作为复制起点的碱基序列
- ◆ 多个短的重复序列
- ▶ 能被多亚基的复制起始蛋白识别
- ◆ 富含AT碱基对

复制子 (replicon)

- ◆ 每一个复制起始区构成的一个最小独立的复制单位
- ◆ 复制启动,复制区解链形成复制 叉结构

● DNA复制的一般特征

半不连续复制

复制叉推进的方式

前导链: 合成方向和复制叉前进方向相同,

可连续复制

滞后链: 合成方向和复制叉前进方向相反, 不能连续复制, 只能分成几个片段合成

DNA复制的一般特征

半不连续复制: DNA双螺旋的两条链是反向平行的,而合成方向只能是5'→3'。所以在DNA复制时,一条链可连续复制,而另一条链不能连续复制,只能先合成风崎片段后再连接起来

错误率为10-9~10-10

DNA复制的忠实性

- ❖ DNA聚合酶与模板结合后构象发生改变,从而精确选择dNTP (具有高度精确性)
- ◆ DNA聚合酶还对新掺入的核苷酸进行校对,一旦碱基错配,则通过其3'→5'核酸外切酶的活性进行切除
- ❖ DNA合成都是从先合成的一小段RNA引物的3'-OH开始,然后再切除引物
- ❖ DNA的损伤修复系统

参与复制的主要酶和蛋白质

❖ DNA聚合酶

以DNA为模板的DNA合成酶

大肠杆菌

- DNA聚合酶I
- **◆ DNA聚合酶Ⅱ**
- ◆ DNA聚合酶Ⅲ

基本活性

- ◆ 5'→3'聚合活性
- ◆ 3'→5'核酸外切活性

- ◆ 以四种脱氧核苷三磷酸为底物
- ◆ 反应需要有模板的指导
- ◆ 反应需要有3'-OH存在
- ◆ DNA链的合成方向为5'→3'

Klenow片段: DNA 聚合酶I经过枯草杆菌蛋白酶(或胰蛋白酶)处理后切成两个片段,其中大片段分子质量为76kD,通常称为Klenow片段,保留了DNA聚合酶I的5'→3'聚合活性和3'→5'外切活性,但缺少完整酶的5′-3′外切酶活性

参与复制的主要酶和蛋白质

大肠杆菌DNA聚合酶的催化活性和功能

DNA聚合酶	催化活性	功能
	5'→3'核酸聚合酶活性	催化DNA链沿5'→3'方向延长
DNA聚合酶I	5'→3'核酸外切酶活性	切去引物RNA或损伤的DNA片段,补上正确的DNA片段
	3'→5'核酸外切酶活性	切除单链DNA的3'末端,"校对"功能,对DNA复制的忠实性极为重要
DNA聚合酶Ⅱ	5'→3'核酸聚合酶活性	与DNA修复有关
	3'→5'核酸外切酶活性	
DNA聚合酶III	5'→3'核酸聚合酶活性 3'→5'核酸外切酶活性	真正负责从新合成DNA的复制酶

①

参与复制的主要酶和蛋白质

DNA聚合酶的

5'→3'聚合活性

DNA的生物合成与修复

DNA polymerase I

DNA polymerase active site

3'→5' (proofreading) exonuclease active site

is a rare tautomeric form of cytosine (C*) that pairs with A and is incorporated into the growing strand.

Before the polymerase moves on, the cytosine undergoes a tautomeric shift from C* to C. The new nucleotide is now mispaired.

DNA聚合酶 I 催化的反应 (3'→5'外切酶活性)

● 参与复制的主要酶和蛋白质

❖ DNA连接酶

PPi 或 NMN ATP 或 NAD* 催化DNA双链中一条链上的切口 (3'-OH 与它下游相邻的核苷酸的 5'-磷酸之间) 共价连接形成磷酸二酯键

参与复制的主要酶和蛋白质

💠 引物酶

以单链DNA为模板,以ATP、GTP、CTP、UTP为原料,从5'→3'方向合成出RNA片段,即引物

❖ 使DNA双螺旋解开的酶和蛋白质

- ◆ 解螺旋酶 (解链酶)
- ◆ 单链结合蛋白 (SSB)
- ◆ 拓扑异构酶

拓扑异构酶

参与复制的主要酶和蛋白质

参与复制的酶与蛋白质

以大肠杆菌为代表的 "θ-复制"

D N 复 制 的 基 本 过 程

- ❖ 解旋: 拓扑异构酶解除DNA的超螺旋结构
- ❖ 解链:解螺旋酶解开双链DNA,单链结合蛋白与之结合
- ❖ 识别起点:由DNA指导的RNA聚合酶即引物酶完成
- ◆ 合成引物:以DNA为模板在引物酶催化下转录生成RNA引物
- ❖ DNA的合成:在引物3'未端上由DNA聚合酶 Ⅲ催化生成
- ❖ 切除引物:DNA聚合酶 I 催化切除引物即得冈崎片段
- ◆ 补齐封□: DNA聚合酶 I 沿5'→3'填补两个冈崎片段之间的缺□。 其3'末端羟基与下一个DNA片段5'末端磷酸基,在DNA连接酶催 化连接,最终形成DNA模板链的互补链

复制的启动

复制起点 (ori)

→ 原核生物:一般只有一个

◆ 真核生物:多个

复制眼的形成

复制叉:复制眼形成后, 其两端的叉子状结构, 是DNA新链的生长点

复 制 的 推

前导链引物合成

前导链的合成

滞后链引物合成

滞后链的合成

新形成冈崎片段延长至下游冈崎 片段的RNA引物

复制眼的增大

双向复制: DNA复制时,从复制原点向两个方向解链,形成两个推进方向相反的复制叉。两个复制叉都是生长点

每条新合成的DNA链中既有前导链,又有滞后链

复制的结束

原核生物:环状的DNA从单点开始双向复制,使两个复制叉在复制原点的对面处相遇并合并,从而结束复制,形成两个环状DNA分子

真核生物:线状DNA上有多个复制起点,因此形成多个复制眼,复制叉的推进使复制眼增大,直至各个复制眼融合复制终止,形成两个线状DNA分子

■ PCR技术

即聚合酶链式反应,指在引物指导下由酶催化的对特定模板(克隆或基因组DNA)的扩增反应,是模拟体内DNA复制过程,在体外特异性扩增DNA片段的一种技术

PCR反应的五个元素:引物、酶、dNTP、模板和Mg²⁺

PCR反应的基本过程

● DNA损伤、修复和突变

■ DNA的损伤

DNA损伤的类型

碱基脱落

- ◆ 碱基转换
- ◆ 碱基修饰
- ◆ 碱基交联
- ◆ 碱基错配

❖ 碱基损伤

❖ DNA链损伤

细胞内的DNA可能因物理或化学因素而受到损伤,例如射线辐射、化学诱变剂和受热等。此外,DNA复制产生的误差也可能造成DNA损伤

- ◆ 核糖核苷酸的插入
- ◆ DNA链的断裂
- ◆ DNA链的交联
- ◆ DNA与蛋白质之间的交联

DNA损伤、修复和突变

① DNA损伤、修复和突变

■ DNA的修复

- ◆ 直接修复:光复活
- ◆ 切除修复: 碱基、核 苷酸和错配修复
- ◆ 双链断裂修复: 同源 重组、非同源末端连 接修复
- ◆ 损伤跨越: 重组跨越、 跨损伤合成

DNA损伤、修复和突变

❖ 光复活

可见光(400nm)能激活细胞内的光复活酶、光裂合酶,可分解因紫外线照射而形成的嘧啶二聚体

● DNA损伤、修复和突变

❖ 切除修复

最普遍

- ◆ 切开(切)
- ◆ 切除(切)
- ◆ 合成 (补)
- **◆ 连接 (缝)**

DNA损伤、修复和突变

双链断裂修复

- ◆ 同源重组修复:利用细胞内一些促进同源重组的蛋白质,从同重组的蛋白质,从同源全体获取合适的修复断裂信息,进行重组修复
- ◆ 非同源末端连接修复: 再无同源序列的情况 下,让断裂的末端重 新连接,易出错

DNA损伤、修复和突变

❖ 损伤跨越

受损伤的DNA在复制时,跳过损伤部位,在子代DNA链与损伤相对应部位出现缺口。通过分子间重组,从完整的母链上将相应的碱基顺序片段移至子链的缺口处,然后再用合成的多核苷酸来补上子链的空缺,此过程即重组修复,并非完全校正

● DNA损伤、修复和突变

❖ SOS修复

DNA受到严重损伤、细胞处于危急状态时所诱导的一种DNA修复方式,修复结果只是能维持基因组的完整性, 提高细胞的生存率,但留下的错误较多

● DNA损伤、修复和突变

DNA的突变

发生在DNA分子上可以遗传的结构变化

- 李 点突变
- 沉默突变或同义突变
- ◆ 错义突变
- ◆ 无义突变和加长突变

又称碱基对置换,指 DNA分子某一位点上 所发生的一种碱基对 变成另一种碱基对的 变成另一种碱基对的 突变,分为转换(同 类碱基之间)和颠换 (嘌呤碱基与嘧啶碱 基之间)

DNA损伤、修复和突变

移码突变

指一个蛋白质基因的编码 区发生的一个或多个核苷 酸非3整数倍的缺失或插入, 从而导致阅读框发生改变, 致使突变下游的氨基酸序 列发生根本性改变

Frameshift mutation Original DNA code for an amino acid sequence. bases Amino acid Frameshift of one DNA base results in abnormal amino acid sequence. U.S. National Library of Medicine A frameshift mutation changes the amino

acid sequence from the site of the mutation.