LECTURE 18: LINK ANALYSIS: PAGERANK AND HITS COMPACT Second Information Processed Analysis and Engineering Westershop May 67: 2015

How to Organize the Web?

□ How to organize the Web?

- □ First try: Human curated Web directories
 - Yahoo, DMOZ, LookSmart
- □ Second try: Web Search
 - □ Information Retrieval investigates:

Find relevant docs in a small and trusted set

- Newspaper articles, Patents, etc.
- But: Web is huge, full of untrusted documents, random things, web spam, etc.

Web Search: 2 Challenges

- 2 challenges of web search:
 - (1) Web contains many sources of information Who to "trust"?
 - □ Trick: Trustworthy pages may point to each other!
 - (2) What is the "best" answer to query "newspaper"?
 - No single right answer
 - □ Trick: Pages that actually know about newspapers might all be pointing to many newspapers

Ranking Nodes on the Graph

□ All web pages are not equally "important"

www.joe-schmoe.com vs. www.mit.edu

■ We already know:

There is large diversity in the web-graph node connectivity. Let's rank the pages by the link structure!

Link Analysis Algorithms

- We will cover the following Link Analysis approaches to compute importances of nodes in a graph:
 - □ Hubs and Authorities (HITS)
 - □ Page Rank

Sidenote: Various notions of node centrality: Node $oldsymbol{u}$

- Degree centrality = degree of u
- **Betweenness centrality** = #shortest paths passing through u
- \blacksquare Closeness centrality = avg. length of shortest paths from u to all other nodes of the network
- Eigenvector centrality = like PageRank

Link Analysis

- Goal (back to the newspaper example):
 - Don't just find newspapers. Find "experts" pages that link in a coordinated way to good newspapers
- □ Idea: Links as votes
 - □ Page is more important if it has more links
 - In-coming links? Out-going links?

Hubs and Authorities

Each page has 2 scores:

- Quality as an expert (hub):
 - Total sum of votes of pages it pointed to
- Quality as an content (authority):
 - Total sum of votes of experts
- Principle of repeated improvement

Hubs and Authorities

Interesting pages fall into two classes:

- Authorities are pages containing useful information
 - Newspaper home pages
 - Course home pages
 - Home pages of auto manufacturers
- 2. Hubs are pages that link to authorities
 - List of newspapers
 - Course bulletin
 - List of US auto manufacturers

Counting in-links: Authority

(Note this is idealized example. In reality graph is not bipartite and each page has both the hub and authority score)

Expert Quality: Hub

(Note this is idealized example. In reality graph is not bipartite and each page has both the hub and authority score)

Reweighting

(Note this is idealized example. In reality graph is not bipartite and each page has both the hub and authority score)

Mutually Recursive Definition

- A good hub links to many good authorities
- □ A good authority is linked from many good hubs
- □ Model using two scores for each node:
 - □ Hub score and Authority score
 - $\hfill \square$ Represented as vectors h and a

Hubs and Authorities

\Box Each page i has 2 scores:

- \square Authority score: a_i
- \blacksquare Hub score: h_i

HITS algorithm:

- \Box Initialize: $a_i(0)=1/\sqrt{n},\ h_i(0)=1/\sqrt{n}$
- ☐ Then keep iterating until convergence:
 - lacksquare $\forall i$: Authority: $a_i(t+1) = \sum_{j o i} h_j(t)$
 - lacksquare $\forall i$: Hub: $h_i(t+1) = \sum_{i o j} a_j(t)$
 - □ ∀i: Normalize:

$$\sum_{i} (a_i \ (t+1)) 2 = 1, \sum_{j} (h_j \ (t+1)) 2 = 1$$
 $h_i = \sum_{i = j} a_i$

Hubs and Authorities

- □ HITS converges to a single stable point
- □ Notation:

 - \blacksquare Adjacency matrix A ($n \times n$): $A_{ij} = 1$ if $i \rightarrow j$
- □ Then $h_i = \sum_{i \to j} a_i$

can be rewriten as $h_i = \sum_i A_{ij} \cdot a_i$

- \square So: $h = A \cdot a$
- \square And likewise: $a = A^T \cdot h$

Hubs and Authorities

HITS algorithm in vector notation:

$$\square$$
 Set: $a_i = h_i = \frac{1}{\sqrt{n}}$

Repeat until convergence:

$$\blacksquare h = A \cdot a$$

- $\Box a = A^T \cdot h$
- lacksquare Normalize a and h

$$\Box \text{ Then: } a = A^T \cdot (\underbrace{A \cdot a}_{\text{new } h})$$

□ Thus, in 2k steps: $a = (A^T \cdot A)^k \cdot a$ $h = (A \cdot A^T)^k \cdot h$

$$\begin{split} & \text{Convergence criterion:} \\ & \sum_{i} \left(h_{i}^{(t)} - h_{i}^{(t-1)} \right)^{2} < \varepsilon \\ & \sum_{i} \left(a_{i}^{(t)} - a_{i}^{(t-1)} \right)^{2} < \varepsilon \end{split}$$

a is updated (in 2 steps): $a = A^T(A a) = (A^T A) a$ h is updated (in 2 steps): $h = A(A^T h) = (A A^T) h$

Repeated matrix powering

Eigenvalues & Eigenvectors

Definition:

- $\blacksquare \text{ Let } R \cdot x = \lambda \cdot x$ for some scalar λ , vector \boldsymbol{x} , matrix R
- \blacksquare Then x is an eigenvector, and λ is its eigenvalue

- $\begin{tabular}{l} \blacksquare & \mbox{ If } R \mbox{ is symmetric } (R_{ij} = R_{ji}) \\ \mbox{ (in our case } R = A^T \cdot A \mbox{ and } R = A \cdot A^T \mbox{ are symmetric)} \\ \end{tabular}$
- Then R has n orthogonal unit eigenvectors $\mathbf{x}_1 \dots \mathbf{x}_n$ that form a basis (coordinate system) with eigenvalues $\lambda_1 \dots \lambda_n$ $(|\lambda_i| \ge |\lambda_{i+1}|)$
- Authority a is eigenvector of R = ATA
- associated with largest eigenvalue λ_1 = Similarly: hub h is eigenvector of $\mathbf{R} = A\,AT$ with the largest eigenvalue

PAGERANK

Links as Votes

- □ Still the same idea: Links as votes
 - □ Page is more important if it has more links ■ In-coming links? Out-going links?
- □ Think of in-links as votes:
 - www.stanford.edu has 23,400 in-links
 - www.joe-schmoe.com has 1 in-link
- □ Are all in-links are equal?
 - □ Links from important pages count more
 - Recursive question!

PageRank: The "Flow" Model

- A "vote" from an important page is worth more
 - □ A page is important if it is pointed to by other important
 - \square Define a "rank" r_i for node j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 d_i ... out-degree of node i

"Flow" equations: $r_y = r_y/2 + r_a/2$ $r_a = r_v/2 + r_m$ $r_m = r_a/2$

PageRank: Matrix Formulation

□ Stochastic adjacency matrix M

- Let page j has d_j out-links

 If $j \to i$, then $M_{ij} = \frac{1}{d_i}$ else $M_{ij} = 0$ M is a column stochastic matrix

 Columns sum to 1
- □ Rank vector r: vector with an entry per page
- $\sum_i r_i = 1$
- ☐ The flow equations can be written

$$r = M \cdot r$$

$$r_j = \sum_{i \to j} \frac{r_i}{\mathsf{d_i}}$$

Random Walk Interpretation

Imagine a random web surfer:

- \blacksquare At any time t, surfer is on some page i
- \blacksquare At time t+1, the surfer follows an out-link from i uniformly at random
- $lue{}$ Ends up on some page j linked from i
- □ Process repeats indefinitely
- $oldsymbol{p}(t) \dots$ vector whose $i^{ ext{th}}$ coordinate is the prob. that the surfer is at page i at time t
- \square So, p(t) is a probability distribution over pages

The Stationary Distribution

Where is the surfer at time t+1?

□ Follows a link uniformly at random

• Suppose the random walk reaches a state p(t +

PageRank: How to solve?

Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks

- □ Assign each node an initial page rank
- Repeat until convergence $(\Sigma_i | \mathbf{r}_i^{(t+1)} \mathbf{r}_i^{(t)}) < \varepsilon)$
- □ Calculate the page rank of each node

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

 d_i out-degree of node i

PageRank: How to solve?

□ Power Iteration:

And iterate

	у	a	m
у	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

 $r_{y} = r_{y}/2 + r_{a}/2$ $r_a = r_y/2 + r_m$ $r_m = r_a^{-1}/2$

■ Example:

PageRank: Three Questions

$$r_j^{(t+1)} = \sum_{i o i} rac{r_i^{(t)}}{\mathsf{d}_i}$$
 or equivalently $r = Mr$

- □ Does this converge?
- □ Does it converge to what we want?
- □ Are results reasonable?

Does this converge?

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{\mathbf{d}_i}$$

■ Example:

$$r_a = r_b$$

Iteration 0, 1, 2, ...

Does it converge to what we want?

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

■ Example:

0 0

RageRank: Problems

2 problems:

- (1) Some pages are dead ends (have no out-links)
 - Such pages cause importance to "leak out"

(2) Spider traps

(all out-links are within the group)

■ Eventually spider traps absorb all importance

Problem: Spider Traps

■ Power Iteration:

- \square Set $r_i = 1$
- $\mathbf{r}_j = \sum_{i \to j} \frac{r_i}{d_i}$
- And iterate

	у	a	m		
y	1/2	1/2	0		
✓ A	1/2	0	0		
a → m m	0	1/2	1		
	$\mathbf{r}_{y} = \mathbf{r}_{y}/2 + \mathbf{r}_{a}/2$ $\mathbf{r}_{a} = \mathbf{r}_{y}/2$ $\mathbf{r}_{a} = \mathbf{r}_{y}/2 + \mathbf{r}_{z}$				

□ Example:

Solution: Random Teleports

The Google solution for spider traps: At each time step, the random surfer has two options

- \square With prob. β , follow a link at random
- \square With prob. 1- β , jump to some page uniformly at random
- \blacksquare Common values for β are in the range 0.8 to 0.9
- □ Surfer will teleport out of spider trap within a few time steps

Problem: Dead Ends

□ Power Iteration:

- \square Set $r_i = 1$
- $\mathbf{r}_j = \sum_{i \to j} \frac{r_i}{d_i}$

And iterate

$r_a = r_y/2$ $r_m = r_a/2$

■ Example:

$$\left\{ \begin{array}{l} r_y \\ r_a \\ r_{rp} \end{array} \right\} = \begin{array}{lll} 1/3 & 2/6 & 3/12 & 5/24 & 0 \\ 1/3 & 1/6 & 2/12 & 3/24 & \dots & 0 \\ 1/3 & 1/6 & 1/12 & 2/24 & 0 \\ \text{Iteration 0, 1, 2, \dots} \end{array}$$

Solution: Always Teleport

- □ Teleports: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

Solution: Random Jumps

Google's solution: At each step, random surfer has two options:

- \square With probability β , follow a link at random
- \Box With probability 1- β , jump to some random page
- □ PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \, \frac{r_i}{d_i} + (1 - \beta) \frac{1}{n}$$

The above formulation assumes that M has no dead ends. We can either preprocess matrix M (badl) or explicitly follow random teleport links with probability 1.0 from dead-ends. See P. Berkhin, A Survey on PageRank Computing, Internet Mathematics, 2005.

PageRank & Eigenvectors

PageRank as a principal eigenvector

 $r = M \cdot r$ or equivalently $r_i = \sum_i \frac{r_i}{d}$

□ But we really want:

$$r_j = \beta \sum_i \frac{r_i}{d_i} + (1 - \beta) \frac{1}{n}$$

d_i ... out-degree of node i

□ Let's define:

$$M'_{ij} = \beta M_{ij} + (1 - \beta) \frac{1}{n}$$

□ Now we get what we want:

$$r = M' \cdot r$$

 \Box What is $1 - \beta$?

 \blacksquare In practice 0.15 (5 links and jump)

matrix but M' is dense (all entries ≠ 0). In practice we never "materialize" M but rather we use the "sum" formulation

PageRank: The Complete Algorithm

□ Input: A and β

See P. Berkhin, A Survey on PageRank

- \blacksquare Adjacency matrix A of a directed graph with spider traps and dead ends
- \square Parameter β

□ Output: PageRank vector r

$$\square$$
 Set: $r_i^{(0)} = 1/n$

 \blacksquare Repeat until: $\sum_{j} \left| r_{j}^{(t)} - r_{j}^{(t-1)} \right| < \varepsilon$

 $\begin{aligned} & \forall j \colon r_j^{\prime(t)} = \sum_{i \to j} \beta \, \frac{r_i^{(t-1)}}{d_i}, \text{ if in-deg. of } j \text{ is 0 then } r_j^{\prime(t)} = 0 \\ & \text{Now re-insert the leaked PageRank:} \\ & \forall j \colon r_j^{(t)} = r_j^{\prime(t)} + (1-S)/n \end{aligned}$

$$\forall j: r_i^{(t)} = r_i^{(t)} + (1 - S)/n$$

Where: $S = \sum_{i} r_{i}^{\prime(t)}$

Example

PageRank and HITS

- □ PageRank and HITS are two solutions to the same problem:
 - What is the value of an in-link from u to v?
 - □ In the PageRank model, the value of the link depends on the links into u
 - □ In the HITS model, it depends on the value of the other links out of u
- □ The destinies of PageRank and HITS post-1998 were very different