12. ध्वनीचा अभ्यास

> ध्वनीतरंग

> ध्वनीचा वेग

ध्वनीचे परावर्तन

मानवी कर्ण, श्राव्य , अवश्राव्य ध्वनी व श्रव्यातीत ध्वनी

- 1.ध्वनीची गती ही तिच्या वारंवारितेवर कशा प्रकारे अवलंबून असते?
- 2.ध्वनी तरंगात माध्यमाच्या कणांचे दोलन व ध्वनीप्रसारणाची दिशा यात काय संबंध असतो?

ध्वनी ही एक प्रकारची ऊर्जा असून ती आपल्या कानात ऐकण्याची संवेदना निर्माण करते. ही ऊर्जा तरंगाच्या स्वरूपात असते. ध्वनीप्रसारणासाठी माध्यमाची आवश्यकता असते. ध्वनी तरंगामुळे माध्यमात संपिडन (अधिक घनतेचे क्षेत्र) व विरलन (कमी घनतेचे क्षेत्र) यांची शृंखला निर्माण होते. माध्यमांच्या कणांचे दोलन आपल्या मध्य स्थितिच्या आजूबाजूस तरंग प्रसारणाच्या समांतर दिशेने होते, अशा तरंगांना अनुतरंग (Longitudinal Waves) म्हणतात. याउलट पाण्यात खडा टाकल्याने निर्माण होणाऱ्या तरंगात पाण्याचे कण वर खाली दोलन करतात. हे दोलन तरंग प्रसारणाच्या दिशेच्या लंबवत असतात, त्यांस अवतरंग (Transverse Waves) असे म्हणतात.

निरीक्षण करा व चर्चा करा.

एखादा ध्वनीतरंग हा आपण आलेखाच्या स्वरूपात खालीलप्रमाणे दाखवू शकतो. ध्वंनीतरंगाचे प्रसारण होताना कुठल्याही क्षणाला पाहिले तर हवेमध्ये जास्त कमी घनतेचे (संपिडन अथवा विरलन) पट्टे निर्माण झालेले आढळून येतील. आकृती 'अ'मध्ये घनतेमध्ये झालेला बदल दाखवला आहे, तर आकृती 'ब' मध्ये दाबातील बदल दाखवला आहे. घनता/दाबातील हेच बदल आलेखाच्या साहाय्याने आकृती क मध्ये दाखवले आहेत.

12.1 ध्वनीतरंग

ध्वनीतरंगाची तरंगलांबी (Wavelength) λ (लॅम्डा) ह्या ग्रीक अक्षराने दाखवतात, तर वारंवारिता (Frequency) ही υ (न्यू) ह्या ग्रीक अक्षराने दाखवतात. तसेच आयाम (Amplitude) हा A ने दर्शवला जातो. माध्यमातील एखाद्या बिंदूपाशी घनतेचे एक आवर्तन पूर्ण होण्यास लागणाऱ्या कालावधीस तरंगकाल (Period) म्हणतात. तरंगकाल हा 'T' या अक्षराने दर्शवतात.

वारंवारितेच्या मूल्यावरून ध्वनीचे स्वरमान (Pitch) म्हणजेच उच्चनीचता ठरते तर, आयामाचे मूल्य ध्वनीची महत्ता म्हणजेच तीव्रता ठरवते.

- 1. **सा, रे, ग, म, प, ध, नी,** या स्वरांच्या वारंवारिता आपापसात कोणत्या सूत्राने जोडल्या गेल्या आहेत?
- 2. पुरुषांच्या व स्त्रियांच्या आवाजाच्या वारंवारितेत मुख्य फरक कोणता असतो?

ध्वनीचा वेग (Speed of Sound)

- 1. तुम्ही तुमच्या एका मित्राला/मैत्रिणीला घेऊन लोखंडी पाइप असलेल्या ठिकाणी जा. उदा. शाळेचा व्हरांडा, घराचा जिना किंवा एखादे कुंपण.
- 2. तुम्ही पाइपच्या एका टोकाजवळ उभे रहा आणि साधारणपणे 20 ते 25 फूट अंतरावर मित्राला उभे करा.
- 3. मित्राला दगडाच्या साहाय्याने पाइपवरती आघात करायला सांगा व तुम्ही पाईपला कान लावून पाइपमधून येणारा आवाज ऐका.
- 4. दगडाने पाइपवरती केलेला आवाज आपणास हवेतूनही ऐकू येईल परंतु कोणता आवाज आधी आला? वरील कृतींवरून आपणांस असे लक्षात येईल की हवेपेक्षा लोखंडामधून ध्वनीचा आवाज फार जलद ऐकू येतो. म्हणजेच ध्वनीचा वेग हवेपेक्षा लोखंडामध्ये जास्त आहे.

तरंगावरील संपीडन किंवा विरलनसारख्या एखाद्या बिंदूने एकक कालावधीत कापलेले अंतर म्हणजे ध्वनीचा वेग होय.

ध्वनी तरंगावरचा कुठलाही बिंदू T (तरंगकाल) या काळात λ (तरंगलांबी) एवढे अंतर पार करतो, म्हणून ध्वनीचा वेग पुढीलप्रमाणे

वेग =
$$\frac{\pi \dot{v}$$
 तंगलांबी $v = \frac{\lambda}{T}$

$$v = \upsilon \lambda$$
 कारण $\frac{1}{T} = \upsilon$ म्हणजे

ध्वनीचा वेग = वारंवारिता x तरंगलांबी

सारख्याच भौतिक स्थितीत असलेल्या माध्यमातील ध्वनीचा वेग सर्व वारंवारिताकरिता जवळपास सारखाच असतो. स्थायू माध्यमापासून वायू माध्यमांपर्यंत ध्वनीचा वेग कमी कमी होत जातो. जर आपण कोणत्याही माध्यमाचे तापमान वाढवले तर ध्वनीचा वेग देखील वाढतो.

इटालियन भौतिकशास्त्रज्ञ बोरेली व व्हिव्हीयानी यांनी 1660 च्या दशकात ध्वनीची हवेतील गती मोजली. दूर असलेल्या बंदुकीतून गोळी सुटताना निघालेला प्रकाश व आवाज आपल्यापर्यंत पोचण्याच्या वेळा वरून त्यांनी मोजलेली गती 350 m/s आजच्या स्वीकृत मूल्याच्या (346 m/s) खूपच जवळ आहे.

विविध माध्यमांत 25°C तापमानाला ध्वनीचा वेग

अवस्था	पदार्थ	वेग (m/s) मध्ये
स्थायू	ॲल्युमिनिअम	5420
	निकेल	6040
	स्टील	5960
	लोखंड	5950
	पितळ	4700
	काच	3980
द्रव	समुद्राचे पाणी	1531
	शुद्ध पाणी	1498
	इथेनॉल	1207
	मिथेनॉल	1103
वायू	हायड्रोजन	1284
	हेलियम	965
	हवा	346
	ऑक्सिजन	316
	सल्फर डाय ऑक्साइड	213

ध्वनीचा वायूमधील वेग: वायू माध्यमातून जाणाऱ्या ध्वनीतरंगाचा वेग वायूच्या भौतिक स्थितीवर अवलंबून असतो. भौतिक स्थिती म्हणजेच वायूचे तापमान, त्याची घनता व त्याचा रेणूभार.

तापमान (Temperature T) : ध्वनीचा वेग माध्यमाच्या तापमानाच्या (T) वर्गमूळाच्या समानुपाती असतो म्हणजेच तापमान चौपट झाल्यास गती दुप्पट होते. $\nabla \alpha \sqrt{T}$

रेणूभार (Molecular Weight M): ध्वनीचा वेग हा माध्यमाच्या रेणूभाराच्या वर्गमूळाच्या व्यस्त प्रमाणात असतो.

ि विचार करा
$$\sqrt{\frac{1}{M}}$$

ऑक्सिजन वायूचा (O_2) रेणूभार 32 तर हायड्रोजनचा (H_2) रेणूभार 2 असतो. यावरून सिद्ध करा की समान भौतिक स्थितीत ध्वनीचा वेग हा हायड्रोजनमध्ये ऑक्सिजनपेक्षा चौपट असेल. एका स्थिर तापमानावर ध्वनीचा वेग वायूच्या दाबावर अवलंबून नसतो.

श्राव्य, अवश्राव्य व श्राव्यातीत ध्वनी

मानवी कानाची ध्वनी ऐकण्याची मर्यादा 20 Hz ते 20000 Hz आहे म्हणजेच या वारंवारिते मधील ध्वनी मानवी कान ऐकू शकतो म्हणून या ध्वनीला श्राव्य ध्वनी म्हणतात. मानवी कान 20 Hz पेक्षा कमी व 20000 Hz (20 kHz) पेक्षा जास्त वारंवारितेचा ध्वनी ऐकू शकत नाही. 20 Hz पेक्षा कमी वारंवारितेच्या ध्वनीस अवश्राव्य ध्वनी म्हणतात. दोलकाच्या कंपनाने निर्माण झालेला ध्वनी, भूकंप होण्यापूर्वी पृथ्वीच्या पृष्ठभागाची कंपने होऊन निर्माण झालेला ध्वनी हा 20 Hz पेक्षा कमी वारंवारितेचा म्हणजेच अवश्राव्य ध्वनी (Infrasound) आहे. 20000 Hz पेक्षा अधिक वारंवारितेच्या ध्वनीला श्राव्यातीत ध्वनी (Ultrasound) असे म्हणतात.

कुत्रा, उंदीर, वटवाघूळ, डॉल्फिन असे प्राणी त्यांना असणाऱ्या विशेष क्षमतेमुळे मानवाला अवश्राव्य असलेले ध्वनी ऐकू शकतात. या क्षमतेमुळे त्यांना काही आवाजाची चाहूल लागते, जी आपल्याला लागू शकत नाही. पाच वर्षाखालील लहान मुले, काही प्राणी व कीटक 25000 Hz पर्यंतचा ध्वनी ऐकू शकतात. डॉल्फिन्स, वटवाघूळे, उंदीर वगैरे प्राणी श्राव्यातीत ध्वनी निर्माणही करू शकतात.

इतिहासात डोकावताना

इटालियन शास्त्रज्ञ स्पालांझानी याने वटवाघूळांच्या शरीरातील विशिष्ट रचनेचा शोध प्रथम लावला. वटवाघूळांचे एक एक अवयव (कान, नाक, डोळे इत्यादी) एकेक वेळी बंद करून त्यांना अंधारात उडत सोडून वटवाघूळे अंधारात बेधडक कशी उडतात याचे गूढ स्पालांझानीने उकलले. कान बंद केलेले वटवाघूळ धडाधड इतस्ततः आपटू लागले. डोळे उघडे असूनही त्यांना त्याचा उपयोग होत नव्हता. त्यावरून वटवाघूळांच्या अंधारातील भराऱ्याची सारी भिस्त त्यांच्या कानावर असते डोळ्यांवर नसते हे स्पष्ट झाले.

वटवाघूळे जो श्रव्यातीत ध्वनी तोंडाने काढतात तो समोरच्या पदार्थावर आपटून परावर्तित ध्वनी त्यांच्या कानांना ऐकू येतो. अशा रितीने समोरच्या पदार्थाचे अस्तित्व आणि अंतर याबद्दल वटवाघूळांना अंधारातही अचूक ज्ञान होत असते.

श्रव्यातीत ध्वनीचे उपयोग

- 1. एका जहाजावरून दुसऱ्या जहाजावर संपर्क साधण्यासाठी श्रव्यातीत ध्वनी उपयोगी ठरतो.
- 2. प्लॅस्टिकचे पृष्ठभाग एकत्र जोडण्यास श्रव्यातीत ध्वनी उपयोगी ठरतो.
- 3. दुधासारखे द्रव अधिक काळ टिकवून ठेवताना त्यातील जीवाणू मारून टाकण्यासाठी श्राव्यातीत ध्वनीचा उपयोग होतो.
- 4. हृदयाच्या ठोक्याचा अभ्यास करणारे तंत्रज्ञान (Echocardiography) श्राव्यातीत ध्वनी तरंगावर आधारित आहे. (सोनोग्राफी तंत्रज्ञान)
- 5. मानवी शरीराच्या अंतर्गत अवयवांच्या प्रतिमा श्राव्यातीत ध्वनीने मिळवता येतात.
- 6. श्राव्यातीत ध्वनीचा उपयोग कारखान्यामध्ये होतो ज्याठिकाणी हात पोहोचणे शक्य नाही अशा यंत्रांच्या भागाची स्वच्छता करण्यासाठी त्याचा उपयोग होतो.
- 7. धातूच्या ठोकळचातील तडे आणि भेगा शोधण्यासाठीदेखील ह्या ध्वनीचा उपयोग होतो.

ध्वनीचे परावर्तन (Reflection of Sound)

12.2 ध्वनीचे परावर्तन

- 1. कार्डबोर्ड घेऊन त्यापासून पुरेशा लांबीच्या दोन एक-सारख्या नळचा तयार करा.
- 2. टेबलावर भिंतीजवळ आकृतीत दाखवल्याप्रमाणे त्या ठेवा.
- एका नळीच्या उघड्या टोकाशी एक घड्याळ ठेवा आणि दुसऱ्या नळीच्या बाजूने ध्वनी ऐकण्याचा प्रयत्न करा.
- 4. दोन नळ्यांमधील कोन असा असू द्या की, तुम्हांला घड्याळाचा आवाज अत्यंत स्पष्टपणे ऐकू येईल.
- 5. आपाती कोन θ_1 व परावर्तन कोन θ_2 मोजा आणि त्या कोनांमधील संबंध शोधा.

प्रकाश तरंगाप्रमाणेच ध्वनी तरंगाचेदेखील घन किंवा द्रव पृष्ठभागावरून परावर्तन होते. तेदेखील परावर्तनाच्या नियमांचे पालन करतात. ध्वनीच्या परावर्तनासाठी एखाद्या खडबडीत किंवा चकचकीत पृष्ठभागाच्या अडथळ्याची आवश्यकता असते. ध्वनी ज्या दिशेने जातो व परावर्तित होतो त्या दिशा परावर्तक पृष्ठभागाच्या स्तंभिकेशी सारखेच कोन करतात आणि ते एकाच प्रतलात असतात.

ध्वनीचे चांगले परावर्तक व अयोग्य परावर्तक

एखाद्या परावर्तकापासून ध्वनी परावर्तित होत असताना ध्वनी किती प्रमाणात परावर्तित होतो यावरून ध्वनीचे चांगले परावर्तक व अयोग्य परावर्तक असे वर्गीकरण करतात. कठीण व सपाट पृष्ठभागावरून ध्वनीचे परावर्तन चांगल्या प्रकारे होते तर कपडे, पेपर, चटई, पडदे, फर्निचर यांपासून ध्वनीचे परावर्तन न होता ध्वनी शोषला जातो म्हणून यांना अयोग्य परावर्तक असे म्हणतात.

मागील कृतीमध्ये उजवीकडील नळी काही उंचीपर्यंत उचलल्यास काय होईल?

प्रतिध्वनी (Echo)

एखाद्या थंड हवेच्या ठिकाणी प्रतिध्वनी स्थळ म्हणजे एकोपॉइंटजवळ तुम्ही मोठ्याने ओरडल्यानंतर थोड्याच वेळात तुम्हाला पुन्हा तोच ध्वनी ऐकू येतो अशा ध्वनीला प्रतिध्वनी म्हणतात. हा अनुभव तुम्ही घेतला असेल.

प्रतिध्वनी म्हणजे मूळ ध्वनीची कोणत्याही पृष्ठभागावरून होणाऱ्या परावर्तनामुळे झालेली पुनरावृत्ती होय.

ध्वनी व प्रतिध्वनी वेगवेगळे ऐकू येण्यासाठी 22°C तापमानालाध्वनीच्या स्रोतापासून परावर्तनशील पृष्ठभागापर्यंतचे कमीत कमी अंतर किती मीटर असले पाहिजे? 22°C तापमानालाध्वनीचा हवेतील वेग 344 मीटर / सेकंद असतो. आपल्या मेंदूत ध्वनीचे सातत्य सुमारे 0.1 सेकंद असते. त्यामुळेध्वनी अडथळ्यापर्यंत जाऊन पुन्हा श्रोत्यांच्या कानापर्यंत 0.1 सेकंदापेक्षा जास्त वेळाने पोहचला तरच आपल्याला तो स्वतंत्रध्वनी म्हणून ऐकू येईल. ध्वनीच्या स्रोतापासून परावर्तनशील पृष्ठभागापर्यंत आणि पुन्हा मागे असे कमीत कमी अंतर आपण खालील सूत्राने काढू शकतो.

अंतर = वेग × काल

- = 344 मीटर / सेकंद $\times 0.1$ सेकंद
- = 34.4 मीटर

त्यामुळे सुस्पष्ट प्रतिध्वनी ऐकण्यासाठी ध्वनीच्या स्रोतापासून अडथळ्यापर्यंतचे कमीत कमी अंतर वरील अंतराच्या निम्मे म्हणजे 17.2 मीटर असावे लागते. वेगवेगळ्या तापमानाला ही अंतरे वेगवेगळी असतात.

निनाद (Reverberation)

जरा डोके चालवा.

- 1. वेगवेगळ्या तापमानास सुस्पष्ट प्रतिध्वनी ऐकू येण्यासाठी ध्वनीच्या स्रोतापासून अडथळ्यापर्यंतचे अंतर सारखेच असेल का? तमच्या उत्तराचे समर्थन करा.
- 2.काही वेळा ध्वनीचे परावर्तन हानिकारक असू शकते ते कोणते?

परिसरातील विज्ञान

सतत किंवा बऱ्याचदा होणाऱ्या परावर्तनामुळे प्रतिध्वनी अनेक वेळा ऐकू येऊ शकतात याचे उत्तम उदाहरण म्हणजे कर्नाटकातील विजयपूर येथील गोलघुमट होय.

तुलना करा

- एका रिकाम्या बंदिस्त किंवा नुकत्याच बांधून पूर्ण झालेल्या बंदिस्त घरामध्ये तुम्ही काही मित्रांसोबत जा.
- घरात प्रवेश केल्यानंतर मित्रांशी गप्पा मारा.
- 3. तुम्हांला काय जाणवते याची नोंद घ्या.

- घरामध्ये दारे खिडक्या बंद करून म्युझिक सिस्टिम चालू करा.
- म्युझिक सिस्टिमचा आवाज शक्य तितका मोठा करा
- 3. तुम्हाला काय जाणवते याची नोंद घ्या.

इमारतीचे छत व भिंती यावरून ध्वनीतरंगाचे पुन्हा पुन्हा परावर्तन होऊन ध्वनीतरंग एकत्र येऊन सतत जाणवेल असा ध्वनी तयार होतो. त्याचा परिणाम ध्वनीचे सातत्य राहण्यात होते. यालाच निनाद म्हणतात. एकाच ध्वनीतरंगाच्या लगतच्या येण्यातील कालावधी कमी होत जातो आणि परावर्तित ध्वनी एकमेकांमध्ये मिसळून सुस्पष्ट नसणारा व वाढलेल्या महत्तेचा (Intensity) ध्वनी खोलीत निर्माण होतो. काही सार्वजनिक सभागृह किंवा श्रोत्यांच्या बसण्याच्या जागा ध्वनीविषयक निकृष्ट ठरण्याचे कारण निनाद असते.

12.3 निनाद निर्मिती

सार्वजनिक सभागृहे, इमारतीमधील निनाद तुम्ही कसा कमी कराल?

सोनार (SONAR)

Sound Navigation and Ranging याचे लघुरूप म्हणजे SONAR होय. पाण्याखालील वस्तूंचे अंतर, दिशा आणि वेग श्रव्यातीत ध्वनीतरंगाचा उपयोग करून SONAR मोजते. SONAR मध्ये प्रक्षेपक व शोधक असतात. ते जहाजावर किंवा बोटीवर बसवले जातात.

प्रक्षेपक श्राव्यातीत ध्वनीतरंग निर्माण करून प्रसारित करतो. हे तरंग पाण्यामधून प्रवास करतात. समुद्रतळाशी असणाऱ्या वस्तूवर आदळून हे तरंग परावर्तित होतात. परावर्तित झालेले तरंग जहाजावरील ग्राहक ग्रहण करतो.

12.4 सोनार पद्धत

ग्राहकाद्वारे श्राव्यातीत ध्वनीतरंगाचे रूपांतर विद्युत लहरीत होते व त्यातून त्यांचा सुयोग्य अर्थ काढला जातो. श्राव्यातीत ध्वनीच्या प्रक्षेपण व स्वीकृतीमधील कालावधी नोंदवला जातो. ध्वनीचा पाण्यातील वेग जाणून व वरील कालावधी विचारात घेऊन ज्या वस्तूपासून ध्वनी तरंगाचे परावर्तन होते त्याचे अंतर काढता येते.

SONAR तंत्र वापरून समुद्राची खोली काढता येते. पाण्याखालच्या टेकड्या, दऱ्या, पाणबुड्या, हिमनग, बुडालेली जहाजे इत्यादी शोधण्यासाठी याचा उपयोग होतो.

सोनोग्राफी (Sonography)

सोनोग्राफी तंत्रज्ञानामध्ये श्राव्यातीत ध्वनीतरंगांचा उपयोग शरीरांतर्गत भागांच्या चित्रनिर्मितीमध्ये केला जातो. यांच्या साहाय्याने सूज येणे, जंतुसंसर्ग, तसेच वेदनांची कारणे यांचा शोध घेता येतो. हृदयाची स्थिती, हृदयविकाराच्या झटक्यानंतर हृदयाची अवस्था, तसेच गरोदर स्त्रीच्या गर्भाशयामध्ये गर्भाची होणारी वाढ पाहण्यासाठी या तंत्राचा उपयोग केला जातो.

सोनोग्राफी यंत्र

मिळणारी प्रतिमा

12.5 सोनोग्राफी यंत्र व त्यादवारे दिसणारी प्रतिमा

या तंत्रज्ञानामध्ये एक छोटी शोधनी (Probe) व एक विशिष्ट द्रव वापरला जातो. शोधनी व त्वचा यांच्यातील संपर्क योग्य प्रकारे व्हावा व श्रव्यातीत ध्वनी पूर्ण क्षमतेने वापरला जावा, यासाठी हा द्रव वापरला जातो.

परीक्षण करायच्या भागावरील त्वचेवर द्रव लावून शोधनीच्या साहाय्याने उच्च वारंवारितेचा ध्वनी द्रवामधून शरीरामध्ये सोडला जातो. शरीरातील अंतर्गत भागातून परावर्तित झालेला ध्वनी पुन्हा शोधनीच्या साहाय्याने एकत्र केला जातो व या परावर्तीत ध्वनीच्या साहाय्याने संगणक शरीरांतर्गत भागाचे चित्र तयार करतो. हे तंत्रज्ञान वेदनाविरहित असल्याने अचूक निदानासाठी या तंत्रज्ञानाचा उपयोग वैद्यकशास्त्रात वाढत आहे.

शोध घ्या

श्राव्यातीत ध्वनीचा वैद्यकशास्त्रात कोणकोणत्या प्रकारे उपयोग करून घेतला जातो?

विज्ञानाच्या माध्यमातून तंत्रज्ञानाचा झालेला विकास हा मानवाच्या प्रगतीसाठी कारणीभूत ठरला असला तरी तंत्रज्ञानाच्या गैरवापराचे अनेक दुष्परिणामही मानवी जीवनावर झालेले आहेत. सोनोग्राफी तंत्राच्या आधारे आपल्याला जन्मास येणारे अर्भक कसे आहे, त्याची वाढ कशी होत आहे याचा उलगडा होतो. परंतु मुलगा मुलगी असा भेद करत स्त्री भ्रूणहत्या होण्याचे वाढते प्रमाण हा या तंत्राचा गैरवापरच आहे. असे करणे कायद्याने शिक्षापात्र गुन्हा असून त्यासाठीच PNDT Act तयार केला गेला आहे.

मानवी कर्ण (Human Ear)

12.6 मानवी कर्णरचना

कान हे मानवाचे महत्त्वाचे इंद्रिय आहे. कानाने आपण ध्वनी ऐकतो. ध्वनीतरंग कानावर पडल्याने कानातील पडदा कंपित होतो व त्या कंपनांचे विद्युत लहरीत रूपांतर होते. त्या श्रवणविषयक मज्जातंतूद्वारे मेंदूकडे प्रवास करतात. कर्णांचे तीन भाग आहेत.

बाह्यकर्ण (Pinna)

बाह्यभाग ध्वनीतरंग एकत्र करून कर्णनलिकेतून मध्यकर्ण पोकळीत पोहोचवतो. झडपेसारखी रचना असलेल्या पाळीमूळे कानावर पडणारे आवाज नरसाळ्यातून बाहेर पडावे तसे मध्यकर्णापर्यंत पोहोचतात.

मध्यकर्ण (Middle Ear)

मध्यकर्णाच्या पोकळीत पातळ पडदा असतो. जेव्हा माध्यमातील संपीडन पोहचतो तेव्हा तो पडद्याच्या बाहेरील दाब वाढवतो आणि कानाचा पडदा आत ढकलतो तसेच जेव्हा विरलन पडद्यापाशी पोहोचते तेव्हा पडद्याच्या बाहेरील दाब कमी होतो व पडदा बाहेरच्या बाजूला ढकलला जातो. याप्रकारे ध्वनीतरंगामुळे पडद्याचे कंपन होते.

आंतरकर्ण (Inner Ear)

ध्वनीविषयक मज्जातंतूचा भाग आंतरकर्णाला मेंदूशी जोडतो आंतरकर्णात गोगलगाईच्या शंखाप्रमाणे चक्राकार पोकळी असते तिला कर्णावर्त म्हणतात. कर्णावर्तामध्ये कानाच्या पडद्यापासून आलेली कंपने स्वीकारली जाऊन ती मज्जातंतूद्वारे विद्युत संकेतांच्या स्वरूपात मेंदूकडे पाठवली जातात व नंतर मेंदूत त्या संकेतांचे विश्लेषण होते.

हे नेहमी लक्षात ठेवा.

कान हे ऐकण्याचे व शरीराचा तोल सांभाळणारे महत्त्वाचे ज्ञानेंद्रिय आहे. कान स्वच्छ करण्यासाठी कानात काडी, टोकदार वस्तू घालू नयेत. तसेच इअरफोनच्या साहाय्याने मोठ्या आवाजात गाणी ऐकू नयेत. त्यामुळे कानातील पडद्याला गंभीर इजा होण्याची शक्यता असते.

सोडवलेली उदाहरणे

उदाहरण 1: 1.5 kHz वारंवारिता व 25 cm तरंगलांबी असलेल्या ध्वनीला 1.5 km अंतर पार करण्यासाठी किती वेळ लागेल ?

दिलेले : वारंवारिता (
$$\upsilon$$
) = 1.5 kHz = 1.5 × 10³ Hz

तरंगलांबी (
$$\lambda$$
) = 25 cm = 0.25 m
अंतर (s) = 1.5 km = 1.5 × 10³ m
बेळ (t) = ?

ध्वनीचा वेग = वारंवारिता \times तरंगलांबी

$$v = v \lambda$$

 $v = 1.5 \times 10^{3} \times 0.25$
 $v = 0.375 \times 10^{3}$
 $v = 375 \text{ m/s}$

$$t = \frac{s}{v} = \frac{1.5 \times 10^3}{375} = \frac{1500}{375} = 4 s$$

ध्वनीला 1.5 km अंतर पार करण्यासाठी 4 s लागतील.

उदाहरण 2 : SONAR च्या साहाय्याने समुद्रातील पाण्यामध्ये ध्वनीतरंग प्रक्षेपित केल्यानंतर 4s नी प्रतिध्वनी प्राप्त झाला तर त्या ठिकाणी समुद्राची खोली किती असेल?

(समुद्रातील पाण्यामध्ये ध्वनीचा वेग=1550 m/s)

दिलेले:

समुद्रातील पाण्यामध्ये ध्वनीचा वेग =1550 m/s प्रतिध्वनी ऐकू येण्याचा कालावधी = 4s ध्वनीतरंग समुद्राच्या तळापर्यत जाण्यास लागलेला कालावधी

$$= \frac{4}{2} = 2 \text{ s}$$

$$\frac{3 \cdot 4}{2} = 2 \text{ s}$$

$$\frac{3 \cdot 4}{2} = \frac{3 \cdot 4}{2}$$

$$\frac{3 \cdot 4}{2} = 2 \cdot 5$$

$$\frac{3 \cdot 4}{2} = 2 \cdot 5$$

$$\frac{3 \cdot 4}{2} = 2 \cdot 5$$

$$= 2$$

त्या ठिकाणी समुद्राची खोली 3100 m असेल.

उदाहरण 3: 1cm तरंगलाबी असलेला ध्वनी तरंग 340 m/s वेगाने हवेतून जात असल्यास ध्वनीची वारंवारिता किती असेल? तो ध्वनी मानवास ऐकण्याक्षम आहे का?

दिलेल : तरंगलाबी = $\lambda = 1 \text{cm} = 1 \times 10^{-2} \text{m}$, ध्वनीचा वेग = v = 340 m/s

$$v = \upsilon \lambda$$

$$\therefore \upsilon = \frac{\upsilon}{\lambda} = \frac{340}{1 \times 10^{-2}} = 340 \times 10^{2}$$

∴ $\upsilon = 34000 \text{ Hz}$

ही वारंवारिता 20000 Hz पेक्षा जास्त असल्याने तो ध्वनी मानवास ऐकू येणार नाही.

सोनारचे तंत्रज्ञान पहिल्या महायुध्दात शत्रूच्या पाणबुड्या शोधण्यासाठी विकसित केले गेले. हे तंत्रज्ञान हवेतही वापरता येते. वटवाघूळे याच तंत्राचा वापर करून आपल्या वाटेतील अडथळ्यांची माहिती मिळवतात व अंधारातही सहजपणे उडू शकतात.

खालील विधाने पूर्ण करा व त्याचे स्पष्टीकरण क्या.

- अ. ध्वनीचे प्रसारणमधून होत नाही.
- आ. पाण्यातील व स्टीलमधील ध्वनी वेगाची तुलना करतामध्ये ध्वनीचा वेग जास्त असतो.
- इ. दैनंदिन जीवनातील या उदाहरणांवरून ध्वनीचा वेग प्रकाशाच्या वेगापेक्षा कमी आहे, हे सिदध होते.
- ई. समुद्रात बुडालेले एखादे जहाज, मोठी वस्तू शोधण्यासाठी तंत्रज्ञान वापरले जाते.

2. शास्त्रीय कारणे स्पष्ट करा.

- अ. चित्रपटगृह, सभागृह यांची छते वक्राकार स्वरूपात बनलेली असतात.
- आ. रिकाम्या बंदिस्त घरामध्ये निनादाची तीव्रता जास्त असते.
- इ. वर्गात निर्माण झालेला प्रतिध्वनी आपण ऐकू शकत नाही.

3. खालील प्रश्नांची उत्तरे तुमच्या शब्दात लिहा.

- अ. प्रतिध्वनी म्हणजे काय? प्रतिध्वनी सुस्पष्ट ऐकू येण्यासाठी कोणकोणत्या बाबी आवश्यक असतात?
- आ. विजयपूरच्या गोलघुमटाची रचना अभ्यासा व तेथे अनेक प्रतिध्वनी ऐकू येण्याची कारणमीमांसा करा.
- इ. प्रतिध्वनी निर्माण होऊ नये म्हणून वर्गखोलीची मोजमापे व रचना कशी असावी?
- 4. ध्वनीशोषक साहित्याचा वापर कोणत्या ठिकाणी व का केला जातो?

5. उदाहरणे सोडवा.

अ. 0 ° C तापमानाला ध्वनीचा हवेतील वेग 332 m/s आहे. तो प्रतिअंश सेल्सिअस ला 0.6 m/s ने वाढल्यास 344 m/s ला हवेचे तापमान किती असेल?

(उत्तर: 20 °C)

आ. निताला वीज चमकल्याच्या ४ सेकंदांनंतर विजेचा आवाज ऐकू आला तर वीज नितापासून किती अंतरावर असेल? ध्वनीचा हवेतील वेग = 340 m/s

(उत्तर :1360 m)

- इ. सुनील दोन समांतर भिंतींच्यामधे उभा आहे. त्याच्यापासून सर्वात जवळची भिंत 660 मीटर अंतरावर आहे. तो ओरडल्यानंतर 4 सेकंदांनंतर त्याला पहिला प्रतिध्वनी ऐकू आला व नंतर 2 सेकंदानंतर दुसरा प्रतिध्वनी ऐकू आला तर,
 - 1. ध्वनीचा हवेतील वेग किती असेल?
 - 2. दोन भिंतींमधील अंतर किती असेल?

(उत्तर : 330 m/s ; 1650 m)

ई. हायड्रोजन गॅस दोन सारख्या बाटल्यांमध्ये (A a B) एकाच तापमानावर ठेवला आहे. बाटल्यांतील वायूचे वजन अनुक्रमे 12 ग्रॅम व 48 ग्रॅम आहे. कोणत्या बाटलीमध्ये ध्वनीची गती अधिक असेल? किती पटीने?

(उत्तर : A मध्ये ; दुप्पट)

3. दोन सारख्या बाटल्यांमध्ये हेलिअम वायू भरलेला आहे. त्यातील वायूचे वजन 10 ग्रॅम व 40 ग्रॅम आहे. जर दोन्ही बाटल्यांमधील ध्वनीची गती समान असेल तर तुम्ही कोणता निष्कर्ष काढाल?

उपक्रम :

 जलतरंग ह्या वाद्याबद्दल माहिती मिळवा व त्यातून वेगवेगळी स्वरिनिर्मिती कशी होते ते समजून घ्या.

