C	Contents	8 Polynomial	
1	1.1 Default Code 1.2 .vimrc 1.3 Fast IO	1 1 2 2 2 2 2 2	8.1 FWHT 1 8.2 FFT 1 8.3 NTT 1 8.4 Polynomial Operation 2 8.5 Generating Function 2 8.5.1 Ordinary Generating Function 2 8.5.2 Exponential Generating Function 2 8.6 Bostan Mori 2
2	2.1 Heavy-Light Decomposition 2.2 Link Cut Tree 2.3 Treap 2.4 KD Tree	2 2 2 3 4 4	9 String 2 9.1 KMP Algorithm 2 9.2 Manacher Algorithm 2 9.3 MCP 2 9.4 Suffix Array 2 9.5 Suffix Automaton 2 0.6 To allow Algorithm 2
3	3.1 Dinic	4 5 5 5 6 6 6 6 7 7 8	9.6 Z-value Algorithm 2 9.7 Main Lorentz 2 9.8 AC Automaton 2 10 Formula 2 10.1 Recurrences 2 10.2 Geometry 2 10.2.1 Rotation Matrix 2 10.2.2 Triangles 2 10.2.3 Quadrilaterals 2 10.2.4 Spherical coordinates 2 10.2.5 Green's Theorem 2 10.2.6 Point-Line Duality 2
4	4.1 Geometry Template 4.2 Convex Hull 4.3 Minimum Enclosing Circle 4.4 Minkowski Sum 4.5 Polar Angle Comparator 4.6 Half Plane Intersection 4.7 Dynamic Convex Hull 4.8 3D Point 1 4.9 ConvexHull3D 1 4.10 Circle Operations 1 4.11 Delaunay Triangulation 1 4.12 Voronoi Diagram 1 4.13 Polygon Union 1	9 9 10 10 10 11 11 11 12	10.3 Trigonometry
5	Graph 1 5.1 Block Cut Tree 1 5.2 2-SAT 1 5.3 Dominator Tree 1 5.4 Virtual Tree 1 5.5 Directed Minimum Spanning Tree 1 5.6 Fast DMST 1 5.7 Vizing 1 5.8 Maximum Clique 1 5.9 Number of Maximal Clique 1 5.10 Minimum Mean Cycle 1	12 12 13 13 14 14 14 15 15 15	<pre>#define io ios_base::sync_with_stdio(0);cin.tie(0);cerr.tie</pre>
6	6.1 Extended Euclidean Algorithm 6.2 Floor & Ceil 6.3 Legendre 6.4 Simplex 6.5 Floor Sum 6.6 DiscreteLog 6.7 Miller Rabin & Pollard Rho 6.8 XOR Basis 6.9 Linear Equation 6.10 Chinese Remainder Theorem	16 16 16 16 16 17 17 17 18 18	<pre>void debug(){cerr << "\n";} template<class class="" t,="" u=""> void debug(T a, U b){cerr << a << " ", debug(b);} template<class t=""> void pary(T l, T r){ while (1 != r) cerr << *1 << " ", l++; cerr << "\n"; } #else #define debug() void() #define pary() void() #endif template<class a,="" b="" class=""></class></class></class></pre>
7	7.1 Cyclic Ternary Search	18 19	<pre>ostream& operator<<(ostream& o, pair<a,b> p) { return o << '(' << p.ff << ',' << p.ss << ')'; } int main(){ io; }</a,b></pre>

1.2 .vimrc

1.3 Fast IO

```
// from JAW
inline int my_getchar() {
  const int N = 1 << 20;
  static char buf[N];
  static char *p = buf , *end = buf;
  if(p == end) {
    if((end = buf + fread(buf , 1 , N , stdin)) == buf)
        return EOF;
    p = buf;
  }
  return *p++;
}
inline int readint(int &x) {
  static char c , neg;
  while((c = my_getchar()) < '-') {</pre>
    if(c == EOF) return 0;
  neg = (c == '-') ? -1 : 1;
  x = (neg == 1) ? c - '0' : 0;
  while((c = my_getchar()) >= '0') x = (x << 3) + (x << 1)
      + (c - '0');
  x *= neg;
  return 1;
const int kBufSize = 524288;
char inbuf[kBufSize];
char buf_[kBufSize]; size_t size_;
inline void Flush_() { write(1, buf_, size_); size_ = 0; }
inline void CheckFlush_(size_t sz) { if (sz + size_ >
    kBufSize) Flush_(); }
inline void PutInt(int a) {
  static char tmp[22] = "01234567890123456789\n";
  CheckFlush_(10);
  if(a < 0){
    *(buf_ + size_) = '-';
    a = ~a + 1;
    size_++;
  int tail = 20;
  if (!a) {
    tmp[--tail] = '0';
  } else {
    for (; a; a /= 10) tmp[--tail] = (a % 10) ^ '0';
  memcpy(buf_ + size_, tmp + tail, 21 - tail);
  size_ += 21 - tail;
int main(){
  Flush_();
  return 0;
```

1.4 Random

1.5 Checker

```
#!/usr/bin/env bash
set -e
while :; do
    python3 gen.py > test.txt
    diff <(./a.exe < test.txt) <(./b.exe < test.txt)
done</pre>
```

1.6 PBDS Tree

2 Data Structure

2.1 Heavy-Light Decomposition

```
struct Heavy_light_Decomposition { // 1-base
  int n, up[maxn], dep[maxn], to[maxn], siz[maxn], pa[maxn
  int C, ti[maxn], ord[maxn], wdown[maxn], edge[maxn], et =
       0;
  vector<pii> G[maxn];
  void init(int _n) {
    n = n, C = 0, et = 1;
    for (int i = 1;i <= n;i++)</pre>
      G[i].clear(), to[i] = 0;
  void add_edge(int a, int b, int w) {
    G[a].push_back(pii(b, et)), G[b].push_back(pii(a, et));
    edge[et++] = w;
  void dfs(int u, int f, int d) {
    siz[u] = 1, pa[u] = f, dep[u] = d;
    for (auto &v: G[u])
      if (v.ff != f)
        dfs(v.ff, u, d+1), siz[u] += siz[v];
        if (siz[to[u]] < siz[v]) to[u] = v;
  void cut(int u, int link) {
    ti[u] = C;
    ord[C++] = u, up[u] = link;
    if (!to[u]) return;
    cut(to[u], link);
    for (auto v:G[u]) {
      if (v.ff != pa[u] && v.ff != to[u]) cut(v.ff, v.ff);
  void build() { dfs(1, 1, 1), cut(1, 1); }
  int query(int a, int b) {
    int ta = up[a], tb = up[b], re = 0;
    while (ta != tb)
      if (dep[ta] < dep[tb])</pre>
        /*query*/, tb = up[b = pa[tb]];
      else /*query*/, ta = up[a = pa[ta]];
    if (a == b) return re;
    if (ti[a] > ti[b]) swap(a, b);
    /*query*/
    return re;
  }
};
```

2.2 Link Cut Tree

```
struct Splay { // LCT + PATH add
    static Splay nil;
```

```
Splay *ch[2], *f;
int rev;
int sz;
ll val, sum, tag;
Splay() : rev(0), sz(1), val(1), sum(1), tag(0) {
  f = ch[0] = ch[1] = &nil;
bool isr() { return f->ch[0] != this && f->ch[1] != this;
int dir() { return f->ch[0] == this ? 0 : 1; }
void setCh(Splay *c, int d) {
  ch[d] = c;
  if (c != &nil) c->f = this;
  pull();
void push() {
  for(int i = 0; i < 2; i++){
    if(ch[i] == &nil) continue;
    if(rev) swap(ch[i]->ch[0], ch[i]->ch[1]), ch[i]->rev
        ^= 1;
    if(tag != 0){
      ch[i]->tag += tag;
      ch[i]->val += tag;
      ch[i]->sum += tag * ch[i]->sz;
    }
  }
  tag = 0;
  rev = 0;
void pull() {
  // take care of the nil!
  sz = 1;
  sum = val;
  for(int i = 0; i < 2; i++){</pre>
    if(ch[i] == &nil) continue;
    ch[i]->f = this;
    sz += ch[i]->sz;
    sum += ch[i]->sum;
  }
}
void rotate(){
  Splay *p = f;
  int d = dir();
  if (!p->isr()) p->f->setCh(this, p->dir());
  else f = p->f;
  p->setCh(ch[!d], d);
  setCh(p, !d);
  p->pull(), pull();
void update(){
  if(f != &nil) f->update();
  push();
void splay(){
  update():
  for(Splay* fa; fa = f, !isr(); rotate())
    if(!fa->isr()) (fa->dir() == dir() ? fa : this)->
        rotate();
Splay *access(Splay* q = &nil){
  splay();
  setCh(q, 1);
  pull();
  if (f != &nil) return f->access(this);
  else return q;
void root_path(){access(), splay();}
void chroot() {root_path(), swap(ch[0], ch[1]), rev = 1,
    push(), pull();}
void split(Splay* y){chroot(), y->root_path();}
void link(Splay* y){root_path(), y->chroot(), setCh(y, 1)
void cut(Splay* y) {split(y), y->push(), y->ch[0] = y->ch
    [0] - f = &nil;
Splay *get_root(){
  root_path();
```

```
auto q = this;
    for(; q->ch[0] != &nil; q = q->ch[0]) q->push();
    return q;
  Splay *lca(Splay* y){
    access(), y->root_path();
    return y->f == &nil ? &nil : y->f;
  bool conn(Splay* y){return get_root() == y->get_root();}
} Splay::nil;
2.3
      Treap
struct node {
  int data, sz;
  node *1, *r;
  node(int k) : data(k), sz(1), l(0), r(0) {}
  void up() {
    sz = 1;
    if (1) sz += 1->sz;
    if (r) sz += r->sz;
  void down() {}
};
int sz(node *a) { return a ? a->sz : 0; }
node *merge(node *a, node *b) {
  if (!a | | !b) return a ? a : b;
  if (rand() \% (sz(a) + sz(b)) < sz(a))
    return a \rightarrow down(), a \rightarrow r = merge(a \rightarrow r, b), a \rightarrow up(),
            a:
  return b \rightarrow down(), b \rightarrow 1 = merge(a, b \rightarrow 1), b \rightarrow up(), b;
void split(node *o, node *&a, node *&b, int k) {
  if (!o) return a = b = 0, void();
  o->down();
  if (o->data <= k)
    a = o, split(o->r, a->r, b, k), <math>a->up();
  else b = o, split(o \rightarrow l, a, b \rightarrow l, k), b \rightarrow up();
void split2(node *o, node *&a, node *&b, int k) {
  if (sz(o) <= k) return a = o, b = 0, void();
  o->down();
  if (sz(o->1) + 1 <= k)
    a = o, split2(o->r, a->r, b, k - sz(o->l) - 1);
  else b = o, split2(o \rightarrow 1, a, b \rightarrow 1, k);
  o->up();
node *kth(node *o, int k) {
  if (k \le sz(o->1)) return kth(o->1, k);
  if (k == sz(o\rightarrow 1) + 1) return o;
  return kth(o\rightarrow r, k - sz(o\rightarrow 1) - 1);
int Rank(node *o, int key) {
  if (!o) return 0;
  if (o->data < key)</pre>
    return sz(o\rightarrow 1) + 1 + Rank(o\rightarrow r, key);
  else return Rank(o->1, key);
bool erase(node *&o, int k) {
  if (!o) return 0;
  if (o->data == k) {
    node *t = o;
    o->down(), o = merge(o->1, o->r);
    delete t;
    return 1;
  node *\&t = k < o->data ? o->l : o->r;
  return erase(t, k) ? o->up(), 1 : 0;
void insert(node *&o, int k) {
  node *a, *b;
  split(o, a, b, k),
    o = merge(a, merge(new node(k), b));
void interval(node *&o, int 1, int r) {
  node *a, *b, *c;
```

```
split2(o, a, b, l - 1), split2(b, b, c, r);
  // operate
 o = merge(a, merge(b, c));
    KD Tree
2.4
namespace kdt {
 int root, lc[maxn], rc[maxn], xl[maxn], xr[maxn],
 yl[maxn], yr[maxn];
  point p[maxn];
  int build(int 1, int r, int dep = 0) {
    if (1 == r) return -1;
    function<bool(const point &, const point &)> f =
      [dep](const point &a, const point &b) {
        if (dep & 1) return a.x < b.x;</pre>
        else return a.y < b.y;</pre>
    int m = (1 + r) >> 1;
    nth_element(p + 1, p + m, p + r, f);
    x1[m] = xr[m] = p[m].x;
    yl[m] = yr[m] = p[m].y;
lc[m] = build(1, m, dep + 1);
    if (~lc[m]) {
      xl[m] = min(xl[m], xl[lc[m]]);
      xr[m] = max(xr[m], xr[lc[m]]);
      yl[m] = min(yl[m], yl[lc[m]]);
      yr[m] = max(yr[m], yr[lc[m]]);
    rc[m] = build(m + 1, r, dep + 1);
    if (~rc[m]) {
      xl[m] = min(xl[m], xl[rc[m]]);
      xr[m] = max(xr[m], xr[rc[m]]);
      yl[m] = min(yl[m], yl[rc[m]]);
      yr[m] = max(yr[m], yr[rc[m]]);
    }
    return m;
  bool bound(const point &q, int o, long long d) {
    double ds = sqrt(d + 1.0);
    if (q.x < x1[o] - ds || q.x > xr[o] + ds ||
        q.y < y1[o] - ds || q.y > yr[o] + ds
      return false;
    return true;
  long long dist(const point &a, const point &b) {
    return (a.x - b.x) * 111 * (a.x - b.x) +
      (a.y - b.y) * 111 * (a.y - b.y);
  void dfs(
      const point &q, long long &d, int o, int dep = 0) {
    if (!bound(q, o, d)) return;
    long long cd = dist(p[o], q);
    if (cd != 0) d = min(d, cd);
    if ((dep & 1) && q.x < p[o].x ||
        !(dep & 1) && q.y < p[o].y) {
      if (~lc[o]) dfs(q, d, lc[o], dep + 1);
      if (~rc[o]) dfs(q, d, rc[o], dep + 1);
    } else {
      if (~rc[o]) dfs(q, d, rc[o], dep + 1);
      if (~lc[o]) dfs(q, d, lc[o], dep + 1);
 void init(const vector<point> &v) {
    for (int i = 0; i < v.size(); ++i) p[i] = v[i];</pre>
    root = build(0, v.size());
  long long nearest(const point &q) {
    long long res = 1e18;
    dfs(q, res, root);
    return res;
} // namespace kdt
```

```
struct node {
  11 v, data, sz, sum;
  node *1, *r;
  node(ll k)
    : v(0), data(k), sz(1), l(0), r(0), sum(k) {}
11 sz(node *p) { return p ? p->sz : 0; }
11 V(node *p) { return p ? p->v : -1; }
11 sum(node *p) { return p ? p->sum : 0; }
node *merge(node *a, node *b) {
  if (!a || !b) return a ? a : b;
  if (a->data < b->data) swap(a, b);
  a->r = merge(a->r, b);
  if (V(a->r) > V(a->1)) swap(a->r, a->1);
  a -> v = V(a -> r) + 1, a -> sz = sz(a -> 1) + sz(a -> r) + 1;
  a\rightarrow sum = sum(a\rightarrow 1) + sum(a\rightarrow r) + a\rightarrow data;
  return a:
void pop(node *&o) {
  node *tmp = o;
  o = merge(o->1, o->r);
  delete tmp;
     Flow & Matching
3
3.1
     Dinic
struct Dinic { // 0-based, O(V^2E), unit flow: O(min(V
    ^{2/3}E, E^{3/2})), bipartite matching: O(sqrt(V)E)
  struct edge {
    ll to, cap, flow, rev;
  int n, s, t;
  vector<vector<edge>> g;
  vector<int> dis, ind;
  void init(int _n) {
    n = n;
    g.assign(n, vector<edge>());
  void reset() {
    for (int i = 0; i < n; ++i)</pre>
      for (auto &j : g[i]) j.flow = 0;
  void add_edge(int u, int v, ll cap) {
    g[u].pb(edge{v, cap, 0, SZ(g[v])});
    g[v].pb(edge{u, 0, 0, SZ(g[u]) - 1});
    //change g[v] to cap for undirected graphs
  bool bfs() {
    dis.assign(n, -1);
    queue<int> q;
    q.push(s), dis[s] = 0;
    while (!q.empty()) {
      int cur = q.front(); q.pop();
      for (auto &e : g[cur]) {
        if (dis[e.to] == -1 && e.flow != e.cap) {
          q.push(e.to);
          dis[e.to] = dis[cur] + 1;
      }
    return dis[t] != -1;
  11 dfs(int u, ll cap) {
    if (u == t || !cap) return cap;
    for (int &i = ind[u]; i < SZ(g[u]); ++i) {</pre>
      edge &e = g[u][i];
      if (dis[e.to] == dis[u] + 1 && e.flow != e.cap) {
        11 df = dfs(e.to, min(e.cap - e.flow, cap));
        if (df) {
          e.flow += df;
```

g[e.to][e.rev].flow -= df;

int u = q.front();

q.pop(), inq[u] = 0;

```
return df;
        }
     }
    dis[u] = -1;
    return 0;
  11 maxflow(int _s, int _t) {
    s = _s; t = _t;
11 flow = 0, df;
    while (bfs()) {
      ind.assign(n, 0);
      while ((df = dfs(s, INF))) flow += df;
    return flow;
};
    Bounded Flow
struct BoundedFlow : Dinic {
 vector<ll> tot;
 void init(int _n) {
    Dinic::init(_n + 2);
    tot.assign(n, 0);
 void add_edge(int u, int v, ll lcap, ll rcap) {
    tot[u] -= lcap, tot[v] += lcap;
    g[u].pb(edge{v, rcap, lcap, SZ(g[v])});
    g[v].pb(edge{u, 0, 0, SZ(g[u]) - 1});
 bool feasible() {
    11 \text{ sum } = 0;
    int vs = n - 2, vt = n - 1;
    for(int i = 0; i < n - 2; ++i)
      if(tot[i] > 0)
        add_edge(vs, i, 0, tot[i]), sum += tot[i];
      else if(tot[i] < 0) add_edge(i, vt, 0, -tot[i]);</pre>
    if(sum != maxflow(vs, vt)) sum = -1;
    for(int i = 0; i < n - 2; i++)</pre>
      if(tot[i] > 0)
        g[vs].pop_back(), g[i].pop_back();
      else if(tot[i] < 0)</pre>
        g[i].pop_back(), g[vt].pop_back();
    return sum != -1;
  11 boundedflow(int _s, int _t) {
    add_edge(_t, _s, 0, INF);
    if(!feasible()) return -1;
    11 x = g[_t].back().flow;
    g[_t].pop_back(), g[_s].pop_back();
    return x - maxflow(_t, _s); // min
    //return x + maxflow(_s, _t); // max
};
3.3 MCMF
struct MCMF { // 0-based, O(SPFA * |f|)
  struct edge {
    11 from, to, cap, flow, cost, rev;
 }:
 int n;
 int s, t; ll mx;
 //mx: maximum amount of flow
 vector<vector<edge>> g;
 vector<ll> dis, up;
 bool BellmanFord(ll &flow, ll &cost) {
    vector<edge*> past(n);
    vector<int> inq(n);
    dis.assign(n, INF); up.assign(n, 0);
    queue<int> q;
    q.push(s), inq[s] = 1;
```

up[s] = mx - flow, past[s] = 0, dis[s] = 0;

while (!q.empty()) {

```
if (!up[u]) continue;
      for (auto &e : g[u])
        if (e.flow != e.cap &&
            dis[e.to] > dis[u] + e.cost) {
          dis[e.to] = dis[u] + e.cost, past[e.to] = &e;
          up[e.to] = min(up[u], e.cap - e.flow);
          if (!inq[e.to]) inq[e.to] = 1, q.push(e.to);
    if (dis[t] == INF) return 0;
    flow += up[t], cost += up[t] * dis[t];
    for (ll i = t; past[i]; i = past[i] \rightarrow from) {
      auto &e = *past[i];
      e.flow += up[t], g[e.to][e.rev].flow -= up[t];
    }
    return 1;
  }
  pll MinCostMaxFlow(int _s, int _t) {
    s = _s, t = _t;
    11 \text{ flow} = 0, \text{ cost} = 0;
    while (BellmanFord(flow, cost));
    return pll(flow, cost);
  void init(int _n, ll _mx) {
    n = n, mx = mx;
    g.assign(n, vector<edge>());
  void add_edge(int a, int b, ll cap, ll cost) {
    g[a].pb(edge{a, b, cap, 0, cost, SZ(g[b])});
    g[b].pb(edge{b, a, 0, 0, -cost, SZ(g[a]) - 1});
};
3.4 Min Cost Circulation
struct MinCostCirculation { // 0-based, O(VE * ElogC)
  struct edge {
    ll from, to, cap, fcap, flow, cost, rev;
  int n;
  vector<edge*> past;
  vector<vector<edge>> g;
  vector<ll> dis;
  void BellmanFord(int s) {
    vector<int> inq(n);
    dis.assign(n, INF);
    queue<int> q;
    auto relax = [&](int u, ll d, edge *e) {
      if (dis[u] > d) {
        dis[u] = d, past[u] = e;
        if (!inq[u]) inq[u] = 1, q.push(u);
    };
    relax(s, 0, 0);
    while (!q.empty()) {
      int u = q.front();
      q.pop(), inq[u] = 0;
      for (auto &e : g[u])
        if (e.cap > e.flow)
          relax(e.to, dis[u] + e.cost, &e);
    }
  void try_edge(edge &cur) {
    if (cur.cap > cur.flow) return ++cur.cap, void();
    BellmanFord(cur.to);
    if (dis[cur.from] + cur.cost < 0) {</pre>
      ++cur.flow, --g[cur.to][cur.rev].flow;
      for (int i = cur.from; past[i]; i = past[i]->from) {
        auto &e = *past[i];
        ++e.flow, --g[e.to][e.rev].flow;
      }
    ++cur.cap;
```

```
void solve(int mxlg) { // mxlg >= log(max cap)
    for (int b = mxlg; b >= 0; --b) {
      for (int i = 0; i < n; ++i)
        for (auto &e : g[i])
          e.cap *= 2, e.flow *= 2;
      for (int i = 0; i < n; ++i)
        for (auto &e : g[i])
          if (e.fcap >> b & 1)
            try_edge(e);
    }
 }
 void init(int _n) {
    n = _n;
    past.assign(n, nullptr);
    g.assign(n, vector<edge>());
 void add_edge(ll a, ll b, ll cap, ll cost) {
    g[a].pb(edge{a, b, 0, cap, 0, cost, SZ(g[b]) + (a == b)}
    g[b].pb(edge{b, a, 0, 0, -cost, SZ(g[a]) - 1});
};
```

3.5 Gomory Hu

```
void GomoryHu(Dinic &flow) { // 0-based
  int n = flow.n;
  vector<int> par(n);
  for (int i = 1; i < n; ++i) {
    flow.reset();
    add_edge(i, par[i], flow.maxflow(i, par[i]));
    for (int j = i + 1; j < n; ++j)
        if (par[j] == par[i] && ~flow.dis[j])
            par[j] = i;
  }
}</pre>
```

3.6 ISAP Algorithm

```
struct Maxflow { //to be modified
 static const int MAXV = 20010;
 static const int INF = 1000000;
 struct Edge {
   int v, c, r;
   Edge(int _v, int _c, int _r)
      : v(_v), c(_c), r(_r) {}
 };
 vector<Edge> G[MAXV * 2];
 int iter[MAXV * 2], d[MAXV * 2], gap[MAXV * 2], tot;
 void init(int x) {
   tot = x + 2;
    s = x + 1, t = x + 2;
   for (int i = 0; i <= tot; i++) {</pre>
      G[i].clear();
      iter[i] = d[i] = gap[i] = 0;
   }
 void addEdge(int u, int v, int c) {
   G[u].push_back(Edge(v, c, SZ(G[v])));
   G[v].push_back(Edge(u, 0, SZ(G[u]) - 1));
 int dfs(int p, int flow) {
   if (p == t) return flow;
    for (int &i = iter[p]; i < SZ(G[p]); i++) {</pre>
      Edge &e = G[p][i];
      if (e.c > 0 \&\& d[p] == d[e.v] + 1) {
        int f = dfs(e.v, min(flow, e.c));
        if (f) {
          G[e.v][e.r].c += f;
          return f;
        }
     }
```

```
if ((--gap[d[p]]) == 0) d[s] = tot;
else {
    d[p]++;
    iter[p] = 0;
    ++gap[d[p]];
}
return 0;
}
int solve() {
    int res = 0;
    gap[0] = tot;
    for (res = 0; d[s] < tot; res += dfs(s, INF))
    ;
    return res;
}
} flow;</pre>
```

3.7 Stoer Wagner Algorithm

```
struct StoerWagner { // 0-based, 0(V^3)
  int n;
  vector<int> vis, del;
  vector<ll> wei;
  vector<vector<11>> edge;
  void init(int _n) {
    n = n;
    del.assign(n, 0);
    edge.assign(n, vector<ll>(n));
  void add_edge(int u, int v, ll w) {
    edge[u][v] += w, edge[v][u] += w;
  void search(int &s, int &t) {
    vis.assign(n, 0); wei.assign(n, 0);
    s = t = -1;
    while (1) {}
      11 mx = -1, cur = 0;
      for (int i = 0; i < n; ++i)
        if (!del[i] && !vis[i] && mx < wei[i])</pre>
          cur = i, mx = wei[i];
      if (mx == -1) break;
      vis[cur] = 1, s = t, t = cur;
      for (int i = 0; i < n; ++i)</pre>
        if (!vis[i] && !del[i]) wei[i] += edge[cur][i];
    }
  11 solve() {
    11 ret = INF;
    for (int i = 0, x=0, y=0; i < n-1; ++i) {
      search(x, y), ret = min(ret, wei[y]), del[y] = 1;
      for (int j = 0; j < n; ++j)
        edge[x][j] = (edge[j][x] += edge[y][j]);
    }
    return ret;
  }
};
```

3.8 Bipartite Matching

```
//min vertex cover: take all unmatched vertices in L and
    find alternating tree,
//ans is not reached in L + reached in R
// O(VE)
int n; // 1-based, max matching
int mx[maxn], my[maxn];
bool adj[maxn][maxn], vis[maxn];
bool dfs(int u) {
    if (vis[u]) return 0;
    vis[u] = 1;
    for (int v = 1;v <= n;v++) {
        if (!adj[u][v]) continue;
        if (!my[v] || (my[v] && dfs(my[v]))) {
            mx[u] = v, my[v] = u;
            return 1;</pre>
```

```
}
 return 0;
// O(E sqrt(V)), O(E log V) for random sparse graphs
struct BipartiteMatching { // 0-based
  int nl, nr;
  vector<int> mx, my, dis, cur;
  vector<vector<int>> g;
 bool dfs(int u) {
    for (int &i = cur[u]; i < SZ(g[u]); ++i) {</pre>
      int e = g[u][i];
      if (!\sim my[e] \mid | (dis[my[e]] == dis[u] + 1 && dfs(my[e])
        return mx[my[e] = u] = e, 1;
    dis[u] = -1;
    return 0;
 bool bfs() {
    int ret = 0;
    queue<int> q;
    dis.assign(nl, -1);
    for (int i = 0; i < nl; ++i)</pre>
      if (!~mx[i]) q.push(i), dis[i] = 0;
    while (!q.empty()) {
      int u = q.front();
      q.pop();
      for (int e : g[u])
        if (!~my[e]) ret = 1;
        else if (!~dis[my[e]]) {
          q.push(my[e]);
          dis[my[e]] = dis[u] + 1;
    return ret;
 int matching() {
    int ret = 0;
    mx.assign(nl, -1); my.assign(nr, -1);
    while (bfs()) {
      cur.assign(nl, 0);
      for (int i = 0; i < nl; ++i)</pre>
        if (!~mx[i] && dfs(i)) ++ret;
    return ret;
 void add_edge(int s, int t) { g[s].pb(t); }
 void init(int _nl, int _nr) {
    nl = _nl, nr = _nr;
    g.assign(nl, vector<int>());
 }
};
```

3.9 Kuhn Munkres Algorithm

```
struct KM \{ // O\text{-based, maximum matching, } O(V^3) \}
  int n, ql, qr;
  vector<vector<ll>> w;
  vector<ll> hl, hr, slk;
  vector<int> fl, fr, pre, qu, vl, vr;
 void init(int _n) {
    n = _n;
    // -INF for perfect matching
    w.assign(n, vector<ll>(n, 0));
    pre.assign(n, 0);
    qu.assign(n, 0);
 void add_edge(int a, int b, ll wei) {
    w[a][b] = wei;
 bool check(int x) {
    if (vl[x] = 1, \sim fl[x])
      return (vr[qu[qr++] = fl[x]] = 1);
    while (\sim x) swap(x, fr[fl[x] = pre[x]]);
    return 0;
```

```
void bfs(int s) {
    slk.assign(n, INF); vl.assign(n, 0); vr.assign(n, 0);
    ql = qr = 0, qu[qr++] = s, vr[s] = 1;
    for (11 d;;) {
      while (ql < qr)
        for (int x = 0, y = qu[ql++]; x < n; ++x)
          if (!vl[x] \&\& slk[x] >= (d = hl[x] + hr[y] - w[x])
              ][y])) {
            if (pre[x] = y, d) slk[x] = d;
            else if (!check(x)) return;
      d = INF;
      for (int x = 0; x < n; ++x)
        if (!vl[x] \&\& d > slk[x]) d = slk[x];
      for (int x = 0; x < n; ++x) {
        if (vl[x]) hl[x] += d;
        else slk[x] -= d;
        if (vr[x]) hr[x] -= d;
      for (int x = 0; x < n; ++x)
        if (!v1[x] && !s1k[x] && !check(x)) return;
    }
  11 solve() {
    fl.assign(n, -1); fr.assign(n, -1); hl.assign(n, 0); hr
        .assign(n, 0);
    for (int i = 0; i < n; ++i)
      hl[i] = *max_element(iter(w[i]));
    for (int i = 0; i < n; ++i) bfs(i);</pre>
    11 \text{ res} = 0;
    for (int i = 0; i < n; ++i) res += w[i][fl[i]];</pre>
    return res;
};
```

3.10 Max Simple Graph Matching

```
struct Matching { // 0-based, O(V^3)
  queue<int> q; int n;
  vector<int> fa, s, vis, pre, match;
  vector<vector<int>> g;
 int Find(int u)
  { return u == fa[u] ? u : fa[u] = Find(fa[u]); }
 int LCA(int x, int y) {
    static int tk = 0; tk++; x = Find(x); y = Find(y);
    for (;; swap(x, y)) if (x != n) {
      if (vis[x] == tk) return x;
     vis[x] = tk;
     x = Find(pre[match[x]]);
   }
 }
  void Blossom(int x, int y, int 1) {
    for (; Find(x) != 1; x = pre[y]) {
     pre[x] = y, y = match[x];
      if (s[y] == 1) q.push(y), s[y] = 0;
      for (int z: {x, y}) if (fa[z] == z) fa[z] = 1;
   }
 bool Bfs(int r) {
    iota(iter(fa), 0); fill(iter(s), -1);
    q = queue < int > (); q.push(r); s[r] = 0;
    for (; !q.empty(); q.pop()) {
      for (int x = q.front(); int u : g[x])
        if (s[u] == -1) {
          if (pre[u] = x, s[u] = 1, match[u] == n) {
            for (int a = u, b = x, last;
                b != n; a = last, b = pre[a])
              last = match[b], match[b] = a, match[a] = b;
            return true;
          q.push(match[u]); s[match[u]] = 0;
        } else if (!s[u] && Find(u) != Find(x)) {
          int 1 = LCA(u, x);
          Blossom(x, u, 1); Blossom(u, x, 1);
```

}

3.11 Stable Marriage

```
1: Initialize m \in M and w \in W to free
2: while \exists free man m who has a woman w to propose to do
3:
       w \leftarrow first woman on m's list to whom m has not yet proposed
4:
       if \exists some pair (m', w) then
5:
           if w prefers m to m' then
6:
              m' \leftarrow free
7:
              (m, w) \leftarrow engaged
8:
           end if
9:
       else
10:
           (m, w) \leftarrow engaged
        end if
11:
12: end while
```

4 Geometry

4.1 Geometry Template

```
using ld = 11;
using pdd = pair<ld, ld>;
using Line = pair<pdd, pdd>;
#define X first
#define Y second
// Ld eps = 1e-7;
pdd operator+(pdd a, pdd b)
{ return {a.X + b.X, a.Y + b.Y}; }
pdd operator-(pdd a, pdd b)
{ return {a.X - b.X, a.Y - b.Y}; }
pdd operator*(ld i, pdd v)
{ return {i * v.X, i * v.Y}; }
pdd operator*(pdd v, ld i)
{ return {i * v.X, i * v.Y}; }
pdd operator/(pdd v, ld i)
{ return {v.X / i, v.Y / i}; }
ld dot(pdd a, pdd b)
{ return a.X * b.X + a.Y * b.Y; }
ld cross(pdd a, pdd b)
{ return a.X * b.Y - a.Y * b.X; }
ld abs2(pdd v)
{ return v.X * v.X + v.Y * v.Y; };
ld abs(pdd v)
{ return sqrt(abs2(v)); };
int sgn(ld v)
{ return v > 0 ? 1 : (v < 0 ? -1 : 0); }
// int sgn(ld v){    return v > eps ? 1 : ( v < -eps ? -1 : 0)
int ori(pdd a, pdd b, pdd c)
{ return sgn(cross(b - a, c - a)); }
bool collinearity(pdd a, pdd b, pdd c)
{ return ori(a, b, c) == 0; }
bool btw(pdd p, pdd a, pdd b)
{ return collinearity(p, a, b) && sgn(dot(a - p, b - p)) <=
bool seg_intersect(Line a, Line b){
 pdd p1, p2, p3, p4;
  tie(p1, p2) = a; tie(p3, p4) = b;
  if(btw(p1, p3, p4) || btw(p2, p3, p4) || btw(p3, p1, p2)
      || btw(p4, p1, p2))
```

```
return true;
  return ori(p1, p2, p3) * ori(p1, p2, p4) < 0 &&
    ori(p3, p4, p1) * ori(p3, p4, p2) < 0;
pdd intersect(Line a, Line b){
  pdd p1, p2, p3, p4;
  tie(p1, p2) = a; tie(p3, p4) = b;
  ld a123 = cross(p2 - p1, p3 - p1);
ld a124 = cross(p2 - p1, p4 - p1);
return (p4 * a123 - p3 * a124) / (a123 - a124);
pdd perp(pdd p1)
{ return pdd(-p1.Y, p1.X); }
pdd projection(pdd p1, pdd p2, pdd p3)
{ return p1 + (p2 - p1) * dot(p3 - p1, p2 - p1) / abs2(p2 -
     p1); }
pdd reflection(pdd p1, pdd p2, pdd p3)
{ return p3 + perp(p2 - p1) * cross(p3 - p1, p2 - p1) / abs2(p2 - p1) * 2; }
pdd linearTransformation(pdd p0, pdd p1, pdd q0, pdd q1,
    pdd r) {
  pdd dp = p1 - p0, dq = q1 - q0, num(cross(dp, dq), dot(dp
       , dq));
  return q0 + pdd(cross(r - p0, num), dot(r - p0, num)) /
      abs2(dp);
\} // from line p0--p1 to q0--q1, apply to r
4.2 Convex Hull
vector<int> getConvexHull(vector<pdd>& pts){
  vector<int> id(SZ(pts));
  iota(iter(id), 0);
  sort(iter(id), [&](int x, int y){ return pts[x] < pts[y];</pre>
        });
  vector<int> hull;
  for(int tt = 0; tt < 2; tt++){</pre>
    int sz = SZ(hull);
    for(int j : id){
      pdd p = pts[j];
      while (SZ(hull) - sz >= 2 \&\&
           cross(pts[hull.back()] - pts[hull[SZ(hull) - 2]],
             p - pts[hull[SZ(hull) - 2]]) <= 0)</pre>
        hull.pop_back();
      hull.pb(j);
    hull.pop_back();
    reverse(iter(id));
  return hull;
      Minimum Enclosing Circle
using ld = long double;
pair<pdd, ld> circumcenter(pdd a, pdd b, pdd c);
pair<pdd, ld> MinimumEnclosingCircle(vector<pdd> &pts){
  random_shuffle(iter(pts));
  pdd c = pts[0];
  1d r = 0;
  for(int i = 1; i < SZ(pts); i++){</pre>
    if(abs(pts[i] - c) <= r) continue;</pre>
    c = pts[i]; r = 0;
    for(int j = 0; j < i; j++){</pre>
      if(abs(pts[j] - c) <= r) continue;</pre>
      c = (pts[i] + pts[j]) / 2;
      r = abs(pts[i] - c);
```

for(int k = 0; k < j; k++){

if(abs(pts[k] - c) > r)

}

return {c, r};

}

tie(c, r) = circumcenter(pts[i], pts[j], pts[k]);

4.4 Minkowski Sum

```
void reorder_poly(vector<pdd>& pnts){
  int mn = 0;
  for(int i = 1; i < (int)pnts.size(); i++)</pre>
    if(pnts[i].Y < pnts[mn].Y || (pnts[i].Y == pnts[mn].Y</pre>
        && pnts[i].X < pnts[mn].X))
      mn = i;
 rotate(pnts.begin(), pnts.begin() + mn, pnts.end());
vector<pdd> minkowski(vector<pdd> P, vector<pdd> Q){
  reorder_poly(P);
  reorder_poly(Q);
 int psz = P.size();
 int qsz = Q.size();
 P.pb(P[0]); P.pb(P[1]); Q.pb(Q[0]); Q.pb(Q[1]);
 vector<pdd> ans;
 int i = 0, j = 0;
 while(i < psz || j < qsz){</pre>
    ans.pb(P[i] + Q[j]);
    int t = sgn(cross(P[i + 1] - P[i], Q[j + 1] - Q[j]));
    if(t >= 0) i++;
    if(t <= 0) j++;
 return ans;
```

4.5 Polar Angle Comparator

```
// -1: a // b (if same), 0/1: a < b
int cmp(pll a, pll b, bool same = true){
#define is_neg(k) (sgn(k.Y) < 0 \mid \mid (sgn(k.Y) == 0 \&\& sgn(k.Y))
    X) < 0))
  int A = is_neg(a), B = is_neg(b);
  if(A != B)
    return A < B;
  if(sgn(cross(a, b)) == 0)
    return same ? abs2(a) < abs2(b) : -1;</pre>
  return sgn(cross(a, b)) > 0;
```

4.6 Half Plane Intersection

```
// from 8BQube
pll area_pair(Line a, Line b)
{ return pll(cross(a.Y - a.X, b.X - a.X), cross(a.Y - a.X,
    b.Y - a.X)); }
bool isin(Line 10, Line 11, Line 12) {
  // Check inter(l1, l2) strictly in l0
  auto [a02X, a02Y] = area_pair(10, 12);
  auto [a12X, a12Y] = area_pair(l1, l2);
  if (a12X - a12Y < 0) a12X *= -1, a12Y *= -1;
  return (__int128) a02Y * a12X - (__int128) a02X * a12Y > 0; // C^4
/* Having solution, check size > 2 */
/* --^-- Line.X --^-- Line.Y --^-- */
vector<Line> halfPlaneInter(vector<Line> arr) {
  sort(iter(arr), [&](Line a, Line b) -> int {
    if (cmp(a.Y - a.X, b.Y - b.X, 0) != -1)
      return cmp(a.Y - a.X, b.Y - b.X, 0);
    return ori(a.X, a.Y, b.Y) < 0;</pre>
  });
  deque<Line> dq(1, arr[0]);
  for (auto p : arr) {
    if (cmp(dq.back().Y - dq.back().X, p.Y - p.X, 0) == -1)
      continue;
    while (SZ(dq) >= 2 \&\& !isin(p, dq[SZ(dq) - 2], dq.back
      dq.pop_back();
    while (SZ(dq) \ge 2 \&\& !isin(p, dq[0], dq[1]))
      dq.pop_front();
    dq.pb(p);
```

```
while (SZ(dq) >= 3 \&\& !isin(dq[0], dq[SZ(dq) - 2], dq.
      back()))
    dq.pop_back();
  while (SZ(dq) >= 3 \&\& !isin(dq.back(), dq[0], dq[1]))
    dq.pop_front();
  return vector<Line>(iter(dq));
4.7 Dynamic Convex Hull
  11 a, b, 1 = MIN, r = MAX;
  Line(ll a, ll b): a(a), b(b) {}
```

```
struct Line{
  11 operator()(11 x) const{
    return a * x + b;
  bool operator<(Line b) const{</pre>
    return a < b.a;</pre>
  bool operator<(11 b) const{</pre>
    return r < b;
};
11 iceil(11 a, 11 b){
  if(b < 0) a *= -1, b *= -1;
  if(a > 0) return (a + b - 1) / b;
  else return a / b;
11 intersect(Line a, Line b){
  return iceil(a.b - b.b, b.a - a.a);
struct DynamicConvexHull{
  multiset<Line, less<>> ch;
  void add(Line ln){
    auto it = ch.lower_bound(ln);
    while(it != ch.end()){
      Line tl = *it;
      if(tl(tl.r) <= ln(tl.r)){
        it = ch.erase(it);
      else break;
    }
    auto it2 = ch.lower_bound(ln);
    while(it2 != ch.begin()){
      Line tl = *prev(it2);
      if(tl(tl.1) <= ln(tl.1)){</pre>
        it2 = ch.erase(prev(it2));
      else break:
    it = ch.lower_bound(ln);
    if(it != ch.end()){
      Line tl = *it;
      if(tl(tl.1) >= ln(tl.1)) ln.r = tl.1 - 1;
        11 pos = intersect(ln, tl);
        tl.l = pos;
        ln.r = pos - 1;
        ch.erase(it);
        ch.insert(t1);
      }
    it2 = ch.lower_bound(ln);
    if(it2 != ch.begin()){
      Line tl = *prev(it2);
      if(tl(tl.r) >= ln(tl.r)) ln.l = tl.r + 1;
```

11 pos = intersect(t1, ln);

tl.r = pos - 1;

ch.erase(prev(it2));

ln.l = pos;

```
ch.insert(t1);
     }
   if(ln.l <= ln.r) ch.insert(ln);</pre>
 11 query(ll pos){
   auto it = ch.lower_bound(pos);
   if(it == ch.end()) return 0;
    return (*it)(pos);
};
      3D Point
4.8
// Copy from 8BQube
struct Point {
 double x, y, z;
 Point(double _x = 0, double _y = 0, double _z = 0): x(_x)
      y(y), z(z)
 Point(pdd p) { x = p.X, y = p.Y, z = abs2(p); }
Point operator - (Point p1, Point p2)
{ return Point(p1.x - p2.x, p1.y - p2.y, p1.z - p2.z); }
Point operator+(Point p1, Point p2)
{ return Point(p1.x + p2.x, p1.y + p2.y, p1.z + p2.z); }
Point operator*(Point p1, double v)
{ return Point(p1.x * v, p1.y * v, p1.z * v); }
Point operator/(Point p1, double v)
{ return Point(p1.x / v, p1.y / v, p1.z / v); }
Point cross(Point p1, Point p2)
{ return Point(p1.y * p2.z - p1.z * p2.y, p1.z * p2.x - p1.
    x * p2.z, p1.x * p2.y - p1.y * p2.x); }
double dot(Point p1, Point p2)
{ return p1.x * p2.x + p1.y * p2.y + p1.z * p2.z; }
double abs(Point a)
{ return sqrt(dot(a, a)); }
Point cross3(Point a, Point b, Point c)
{ return cross(b - a, c - a); }
double area(Point a, Point b, Point c)
{ return abs(cross3(a, b, c)); }
double volume(Point a, Point b, Point c, Point d)
{ return dot(cross3(a, b, c), d - a); }
//Azimuthal angle (longitude) to x-axis in interval [-pi,
double phi(Point p) { return atan2(p.y, p.x); }
//Zenith angle (latitude) to the z-axis in interval [0, pi]
double theta(Point p) { return atan2(sqrt(p.x * p.x + p.y
     p.y), p.z); }
Point masscenter(Point a, Point b, Point c, Point d)
\{ return (a + b + c + d) / 4; \}
pdd proj(Point a, Point b, Point c, Point u) {
// proj. u to the plane of a, b, and c
 Point e1 = b - a;
 Point e2 = c - a;
  e1 = e1 / abs(e1);
  e2 = e2 - e1 * dot(e2, e1);
 e2 = e2 / abs(e2);
 Point p = u - a;
 return pdd(dot(p, e1), dot(p, e2));
Point rotate_around(Point p, double angle, Point axis) {
 double s = sin(angle), c = cos(angle);
 Point u = axis / abs(axis);
 return u * dot(u, p) * (1 - c) + p * c + cross(u, p) * s;
                                                               };
4.9 ConvexHull3D
struct convex_hull_3D {
struct Face {
  int a, b, c;
  Face(int ta, int tb, int tc): a(ta), b(tb), c(tc) {}
```

```
}; // return the faces with pt indexes
vector<Face> res;
```

```
vector<Point> P;
convex_hull_3D(const vector<Point> &_P): res(), P(_P) {
// all points coplanar case will WA, O(n^2)
  int n = SZ(P);
  if (n <= 2) return; // be careful about edge case</pre>
  // ensure first 4 points are not coplanar
  swap(P[1], *find_if(iter(P), [&](auto p) { return sgn(
  abs2(P[0] - p)) != 0; }));
swap(P[2], *find_if(iter(P), [&](auto p) { return sgn(
      abs2(cross3(p, P[0], P[1]))) != 0; }));
  swap(P[3], *find_if(iter(P), [&](auto p) { return sgn(
      volume(P[0], P[1], P[2], p)) != 0; }));
  vector<vector<int>> flag(n, vector<int>(n));
  res.emplace_back(0, 1, 2); res.emplace_back(2, 1, 0);
  for (int i = 3; i < n; ++i) {</pre>
    vector<Face> next;
    for (auto f : res) {
      int d = sgn(volume(P[f.a], P[f.b], P[f.c], P[i]));
      if (d <= 0) next.pb(f);
      int ff = (d > 0) - (d < 0);
      flag[f.a][f.b] = flag[f.b][f.c] = flag[f.c][f.a] = ff
    for (auto f : res) {
      auto F = [\&](int x, int y) {
        if (flag[x][y] > 0 && flag[y][x] <= 0)</pre>
          next.emplace_back(x, y, i);
      F(f.a, f.b); F(f.b, f.c); F(f.c, f.a);
    }
    res = next;
  }
bool same(Face s, Face t) {
  if (sgn(volume(P[s.a], P[s.b], P[s.c], P[t.a])) != 0)
      return 0;
  if (sgn(volume(P[s.a], P[s.b], P[s.c], P[t.b])) != 0)
      return 0;
  if (sgn(volume(P[s.a], P[s.b], P[s.c], P[t.c])) != 0)
      return 0;
  return 1;
int polygon_face_num() {
  int ans = 0;
  for (int i = 0; i < SZ(res); ++i)</pre>
    ans += none_of(res.begin(), res.begin() + i, [&](Face g
        ) { return same(res[i], g); });
  return ans;
double get_volume() {
  double ans = 0:
  for (auto f : res)
    ans += volume(Point(0, 0, 0), P[f.a], P[f.b], P[f.c]);
  return fabs(ans / 6);
double get_dis(Point p, Face f) {
  Point p1 = P[f.a], p2 = P[f.b], p3 = P[f.c];
  double a = (p2.y - p1.y) * (p3.z - p1.z) - (p2.z - p1.z)
      * (p3.y - p1.y);
  double b = (p2.z - p1.z) * (p3.x - p1.x) - (p2.x - p1.x)
      * (p3.z - p1.z);
  double c = (p2.x - p1.x) * (p3.y - p1.y) - (p2.y - p1.y)
      * (p3.x - p1.x);
  double d = 0 - (a * p1.x + b * p1.y + c * p1.z);
  return fabs(a * p.x + b * p.y + c * p.z + d) / sqrt(a * a
       + b * b + c * c);
// n^2 delaunay: facets with negative z normal of
// convexhull of (x, y, x^2 + y^2), use a pseudo-point
// (0, 0, inf) to avoid degenerate case
```

4.10 Circle Operations

```
// from 8BQube
const double PI=acos(-1);
```

```
vector<pdd> circleLineIntersection(pdd c, double r, pdd a,
 pdd p = a + (b - a) * dot(c - a, b - a) / abs2(b - a);
 double s = cross(b - a, c - a), h2 = r * r - s * s / abs2
      (b - a);
 if (sgn(h2) < 0) return {};
 if (sgn(h2) == 0) return {p};
 pdd h = (b - a) / abs(b - a) * sqrt(h2);
 return \{p - h, p + h\};
double _area(pdd pa, pdd pb, double r){
 if(abs(pa)<abs(pb)) swap(pa, pb);</pre>
 if(abs(pb)<eps) return 0;</pre>
 double S, h, theta;
 double a=abs(pb),b=abs(pa),c=abs(pb-pa);
 double cosB = dot(pb,pb-pa) / a / c, B = acos(cosB);
 double cosC = dot(pa,pb) / a / b, C = acos(cosC);
 if(a > r){
   S = (C/2)*r*r;
   h = a*b*sin(C)/c;
   if (h < r \&\& B < PI/2) S -= (acos(h/r)*r*r - h*sqrt(r*r)
        -h*h));
 else if(b > r){
   theta = PI - B - asin(sin(B)/r*a);
   S = .5*a*r*sin(theta) + (C-theta)/2*r*r;
 else S = .5*sin(C)*a*b;
 return S;
double areaPolyCircle(const vector<pdd> poly,const pdd &O,
    const double r){
  double S=0;
 for(int i=0;i<SZ(poly);++i)</pre>
    S+=_area(poly[i]-0,poly[(i+1)%SZ(poly)]-0,r)*ori(0,poly)
        [i],poly[(i+1)%SZ(poly)]);
 return fabs(S);
bool CCinter(Cir &a, Cir &b, pdd &p1, pdd &p2) {
 pdd o1 = a.0, o2 = b.0;
 double r1 = a.R, r2 = b.R, d2 = abs2(o1 - o2), d = sqrt(
 if(d < max(r1, r2) - min(r1, r2) | | d > r1 + r2) return
 pdd u = (o1 + o2) * 0.5 + (o1 - o2) * ((r2 * r2 - r1 * r1))
     ) / (2 * d2));
 double A = sqrt((r1 + r2 + d) * (r1 - r2 + d) * (r1 + r2)
      - d) * (-r1 + r2 + d));
 pdd v = pdd(o1.Y - o2.Y, -o1.X + o2.X) * A / (2 * d2);
 p1 = u + v, p2 = u - v;
 return 1:
vector<Line> CCtang( const Cir& c1 , const Cir& c2 , int
    sign1 ){
 vector<Line> ret;
 double d_sq = abs2( c1.0 - c2.0 );
 if (sgn(d_sq) == 0) return ret;
 double d = sqrt(d_sq);
 pdd v = (c2.0 - c1.0) / d;
 double c = (c1.R - sign1 * c2.R) / d; // cos t
 if (c * c > 1) return ret;
 double h = sqrt(max( 0.0, 1.0 - c * c)); // sin t
 for (int sign2 = 1; sign2 >= -1; sign2 -= 2) {
   pdd n = pdd(v.X * c - sign2 * h * v.Y,
       v.Y * c + sign2 * h * v.X);
   pdd p1 = c1.0 + n * c1.R;
   pdd p2 = c2.0 + n * (c2.R * sign1);
   if (sgn(p1.X - p2.X) == 0 and
        sgn(p1.Y - p2.Y) == 0)
     p2 = p1 + perp(c2.0 - c1.0);
   ret.pb(Line(p1, p2));
 return ret;
```

4.11 Delaunay Triangulation

```
/* Delaunay Triangulation:
Given a sets of points on 2D plane, find a
triangulation such that no points will strictly
inside circumcircle of any triangle. */
struct Edge {
  int id; // oidx[id]
  list<Edge>::iterator twin;
  Edge(int _id = 0):id(_id) {}
struct Delaunay { // 0-base
  int n, oidx[N];
  list<Edge> head[N]; // result udir. graph
  pll p[N];
  void init(int _n, pll _p[]) {
    n = _n, iota(oidx, oidx + n, 0);
    for (int i = 0; i < n; ++i) head[i].clear();</pre>
    sort(oidx, oidx + n, [&](int a, int b)
    { return _p[a] < _p[b]; });
for (int i = 0; i < n; ++i) p[i] = _p[oidx[i]];
    divide(0, n - 1);
  void addEdge(int u, int v) {
    head[u].push_front(Edge(v));
    head[v].push_front(Edge(u));
    head[u].begin()->twin = head[v].begin();
    head[v].begin()->twin = head[u].begin();
  void divide(int 1, int r) {
    if (1 == r) return;
    if (1 + 1 == r) return addEdge(1, 1 + 1);
    int mid = (1 + r) >> 1, nw[2] = \{1, r\};
    divide(l, mid), divide(mid + 1, r);
    auto gao = [&](int t) {
      pll pt[2] = {p[nw[0]], p[nw[1]]};
      for (auto it : head[nw[t]]) {
        int v = ori(pt[1], pt[0], p[it.id]);
        if (v > 0 || (v == 0 && abs2(pt[t ^ 1] - p[it.id])
            < abs2(pt[1] - pt[0])))</pre>
          return nw[t] = it.id, true;
      return false;
    while (gao(0) || gao(1));
    addEdge(nw[0], nw[1]); // add tangent
    while (true) {
      pll pt[2] = {p[nw[0]], p[nw[1]]};
      int ch = -1, sd = 0;
      for (int t = 0; t < 2; ++t)
          for (auto it : head[nw[t]])
              if (ori(pt[0], pt[1], p[it.id]) > 0 && (ch ==
                    -1 || in_cc({pt[0], pt[1], p[ch]}, p[it.
                   id])))
                  ch = it.id, sd = t;
      if (ch == -1) break; // upper common tangent
      for (auto it = head[nw[sd]].begin(); it != head[nw[sd
          ]].end(); )
        if (seg_strict_intersect(pt[sd], p[it->id], pt[sd ^
             1], p[ch]))
          head[it->id].erase(it->twin), head[nw[sd]].erase(
              it++);
        else ++it;
      nw[sd] = ch, addEdge(nw[0], nw[1]);
    }
} tool;
```

4.12 Voronoi Diagram

```
// all coord. is even, you may want to call halfPlaneInter
    after then
vector<vector<Line>> vec;
void build_voronoi_line(int n, pll *arr) {
    tool.init(n, arr); // Delaunay
    vec.clear(), vec.resize(n);
```

```
for (int i = 0; i < n; ++i)
   for (auto e : tool.head[i]) {
      int u = tool.oidx[i], v = tool.oidx[e.id];
      pll m = (arr[v] + arr[u]) / 2LL, d = perp(arr[v] -
          arr[u]);
      vec[u].pb(Line(m, m + d));
}
4.13 Polygon Union
// from 8BQube
ld rat(pll a, pll b) {
  return sgn(b.X) ? (ld)a.X / b.X : (ld)a.Y / b.Y;
 // all poly. should be ccw
ld polyUnion(vector<vector<pll>>> &poly) {
  1d res = 0:
 for (auto &p : poly)
   for (int a = 0; a < SZ(p); ++a) {
      pll A = p[a], B = p[(a + 1) % SZ(p)];
      vector<pair<ld, int>> segs = {{0, 0}, {1, 0}};
      for (auto &q : poly) {
        if (&p == &q) continue;
        for (int b = 0; b < SZ(q); ++b) {
          pll C = q[b], D = q[(b + 1) \% SZ(q)];
          int sc = ori(A, B, C), sd = ori(A, B, D);
          if (sc != sd && min(sc, sd) < 0) {</pre>
            1d sa = cross(D - C, A - C), sb = cross(D - C,
                B - C);
            segs.pb(sa / (sa - sb), sgn(sc - sd));
          if (!sc && !sd && &q < &p && sgn(dot(B - A, D - C
              )) > 0) {
            segs.pb(rat(C - A, B - A), 1);
            segs.pb(rat(D - A, B - A), -1);
       }
      }
      sort(iter(segs));
      for (auto &s : segs) s.X = clamp(s.X, 0.0, 1.0);
      1d sum = 0;
      int cnt = segs[0].second;
      for (int j = 1; j < SZ(segs); ++j) {</pre>
        if (!cnt) sum += segs[j].X - segs[j - 1].X;
        cnt += segs[j].Y;
      res += cross(A, B) * sum;
 return res / 2;
4.14 Tangent Point to Convex Hull
// from 8BQube
/* The point should be strictly out of hull
 return arbitrary point on the tangent line */
pii get_tangent(vector<pll> &C, pll p) {
  auto gao = [&](int s) {
   return cyc_tsearch(SZ(C), [&](int x, int y)
    { return ori(p, C[x], C[y]) == s; });
 };
 return pii(gao(1), gao(-1));
} // return (a, b), ori(p, C[a], C[b]) >= 0
    Graph
5.1 Block Cut Tree
struct BCC{
 vector<int> v, e, cut;
```

```
vector<int> v, e, cut;
};
struct BlockCutTree{ // 0-based, allow multi edges but not
    allow loops
```

```
int n, m, cnt = 0;
  // n:|V|, m:|E|, cnt:|bcc|
  vector<BCC> bcc;
  vector<vector<pii>>> g; // original graph
  vector<pii> edges; // 0-based
  vector<vector<int>> vbcc;
  // vbcc[i] = BCCs containing vertex i, vbcc[i].size()>1
      iff i is an articulation
  vector<int> ebcc;
  // edge i is a bridge iff bcc[ebcc[i]].e.size() == 1
  // block cut tree:
  // adj[bcc i]: bcc[i].cut
  // adj[cut i]: vbcc[i]
  BlockCutTree(int _n, vector<pii> _edges):
      n(n), m(SZ(edges)), g(n), edges(edges), vbcc(n),
            ebcc(SZ(_edges)){
    for(int i = 0; i < m; i++){}
      auto [u, v] = edges[i];
      g[u].pb(pii(v, i)); g[v].pb(pii(u, i));
  void build(){
    vector\langle int \rangle in(n, -1), low(n, -1);
    vector<vector<int>> up(n);
    vector<int> stk;
    int ts = 0;
    auto _dfs = [&](auto dfs, int now, int par, int pe) ->
      if(pe != -1) up[now].pb(pe);
      in[now] = low[now] = ts++;
      stk.pb(now);
      for(auto [v, e] : g[now]){
        if(e == pe) continue;
        if(in[v] != -1){
          if(in[v] < in[now]) up[now].pb(e);</pre>
          low[now] = min(low[now], in[v]);
          continue;
        dfs(dfs, v, now, e);
        low[now] = min(low[now], low[v]);
      if((now != par && low[now] >= in[par]) || (now == par
           && SZ(g[now]) == 0)){
        bcc.pb();
        while(true){
          int v = stk.back();
          stk.pop_back();
          vbcc[v].pb(cnt);
          bcc[cnt].v.pb(v);
          for(int e : up[v]){
            ebcc[e] = cnt;
            bcc[cnt].e.pb(e);
          if(v == now) break;
        if(now != par){
          vbcc[par].pb(cnt);
          bcc[cnt].v.pb(par);
        cnt++;
      }
    };
    for(int i = 0; i < n; i++){</pre>
      if(in[i] == -1) _dfs(_dfs, i, i, -1);
    for(int i = 0; i < cnt; i++)</pre>
      for(int j : bcc[i].v)
        if(SZ(vbcc[j]) > 1) bcc[i].cut.pb(j);
};
5.2
      2-SAT
```

struct SAT{ // 0-based, [n, 2n) is neg of [0, n)

```
int n;
 vector<vector<int>> g, rg;
 bool ok = true;
 vector<bool> ans;
 void init(int _n){
    n = _n;
    g.resize(2 * n);
    rg.resize(2 * n);
    ans.resize(n);
  int neg(int v){
    return v < n ? v + n : v - n;
 void addEdge(int u, int v){
    g[u].pb(v);
    rg[v].pb(u);
 void addClause(int a, int b){
    addEdge(neg(a), b);
    addEdge(neg(b), a);
  void build(){
    vector<bool> vst(2 * n, false);
    vector<int> tmp, scc(2 * n, -1);
    int cnt = 1;
    function < void(int) > dfs = [&](int now){
      vst[now] = true;
      for(int i : rg[now]){
        if(vst[i]) continue;
        dfs(i);
      tmp.pb(now);
    for(int i = 0; i < 2 * n; i++){
      if(!vst[i]) dfs(i);
    reverse(all(tmp));
    function<void(int, int)> dfs2 = [&](int now, int id){
      scc[now] = id;
      for(int i : g[now]){
                                                                  }
        if(scc[i] != -1) continue;
                                                                };
        dfs2(i, id);
     }
    };
                                                                5.4
    for(int i : tmp){
      if(scc[i] == -1) dfs2(i, cnt++);
    debug(scc);
    for(int i = 0; i < n; i++){
      if(scc[i] == scc[neg(i)]){
        ok = false;
        return:
      if(scc[i] < scc[neg(i)]) ans[i] = true;</pre>
      else ans[i] = false;
 }
};
                                                                }
      Dominator Tree
// copy from 8BQube
struct dominator_tree { // 1-base
  vector<int> G[N], rG[N];
  int n, pa[N], dfn[N], id[N], Time;
  int semi[N], idom[N], best[N];
 vector<int> tree[N]; // dominator_tree
 void init(int _n) {
    for (int i = 1; i <= n; ++i)</pre>
      G[i].clear(), rG[i].clear();
```

void add_edge(int u, int v) {
 G[u].pb(v), rG[v].pb(u);

```
void dfs(int u) {
    id[dfn[u] = ++Time] = u;
    for (auto v : G[u])
      if (!dfn[v]) dfs(v), pa[dfn[v]] = dfn[u];
  int find(int y, int x) {
    if (y <= x) return y;</pre>
    int tmp = find(pa[y], x);
    if (semi[best[y]] > semi[best[pa[y]]])
      best[y] = best[pa[y]];
    return pa[y] = tmp;
  void tarjan(int root) {
    Time = 0;
    for (int i = 1; i <= n; ++i) {
      dfn[i] = idom[i] = 0;
      tree[i].clear();
      best[i] = semi[i] = i;
    dfs(root);
    for (int i = Time; i > 1; --i) {
      int u = id[i];
      for (auto v : rG[u])
        if (v = dfn[v]) {
          find(v, i);
          semi[i] = min(semi[i], semi[best[v]]);
      tree[semi[i]].pb(i);
      for (auto v : tree[pa[i]]) {
        find(v, pa[i]);
        idom[v] =
          semi[best[v]] == pa[i] ? pa[i] : best[v];
      tree[pa[i]].clear();
    for (int i = 2; i <= Time; ++i) {</pre>
      if (idom[i] != semi[i]) idom[i] = idom[idom[i]];
      tree[id[idom[i]]].pb(id[i]);
      Virtual Tree
// copy from 8BQube
vector<int> vG[N];
int top, st[N];
void insert(int u) {
  if (top == -1) return st[++top] = u, void();
  int p = LCA(st[top], u);
  if (p == st[top]) return st[++top] = u, void();
  while (top >= 1 \&\& dep[st[top - 1]] >= dep[p])
    vG[st[top - 1]].pb(st[top]), --top;
  if (st[top] != p)
    vG[p].pb(st[top]), --top, st[++top] = p;
  st[++top] = u;
void reset(int u) {
  for (int i : vG[u]) reset(i);
  vG[u].clear();
void solve(vector<int> &v) {
  top = -1;
  sort(ALL(v),
      [&](int a, int b) { return dfn[a] < dfn[b]; });</pre>
  for (int i : v) insert(i);
  while (top > 0) \ vG[st[top - 1]].pb(st[top]), --top;
  // do something
  reset(v[0]);
```

5.5 Directed Minimum Spanning Tree

```
const 11 INF = LLONG_MAX;
struct edge{
  int u = -1, v = -1;
 11 w = INF;
 int id = -1;
// 0-based, E[i].id = i
bool DMST(int n, vector<edge> &E, int root, vector<edge> &
    sol){
  vector<int> id(n), vis(n);
 vector<edge> in(n);
 for(edge e : E)
    if(e.u != e.v && e.w < in[e.v].w && e.v != root)</pre>
      in[e.v] = e;
 for(int i = 0; i < n; i++)</pre>
    if(i != root && in[i].u == -1) return false; // no sol
  int cnt = 0;
 fill(iter(id), -1); fill(iter(vis), -1);
  for(int u = 0; u < n; u++){}
    int v = u;
    while(vis[v] != u && id[v] == -1 && in[v].u != -1)
      vis[v] = u, v = in[v].u;
    if(v != root && id[v] == -1){
      for(int x = in[v].u; x != v; x = in[x].u)
        id[x] = cnt;
      id[v] = cnt++;
    }
 if(!cnt) return sol = in, true; // no cycle
 for(int u = 0; u < n; u++)</pre>
    if(id[u] == -1) id[u] = cnt++;
  vector<edge> nE;
 for(int i = 0; i < SZ(E); i++){</pre>
    edge tmp = E[i];
    tmp.u = id[tmp.u], tmp.v = id[tmp.v];
    if(in[E[i].v].w != INF) tmp.w -= in[E[i].v].w;
    nE.pb(tmp);
 }
 vector<edge> tsol;
  if(!DMST(cnt, nE, id[root], tsol)) return false;
  sol.resize(n);
 for(int i = 0; i < cnt; i++){</pre>
    if(i == id[root]) continue;
    int t = tsol[i].id;
    sol[E[t].v] = E[t];
 for(int i = 0; i < n; i++)</pre>
    if(sol[i].id == -1) sol[i] = in[i];
  return true;
5.6 Fast DMST
struct Edge { int a, b; ll w; };
struct Node { /// Lazy skew heap node
  Edge key;
 Node *1, *r;
 11 delta;
 void prop() {
    key.w += delta;
    if (1) 1->delta += delta;
    if (r) r->delta += delta;
    delta = 0;
 Edge top() { prop(); return key; }
Node *merge(Node *a, Node *b) {
 if (!a || !b) return a ?: b;
 a->prop(), b->prop();
 if (a->key.w > b->key.w) swap(a, b);
 swap(a->1, (a->r = merge(b, a->r)));
```

return a;

```
void pop(Node*\& a) \{ a->prop(); a = merge(a->l, a->r); \}
pair<ll, vi> dmst(int n, int r, vector<Edge>& g) {
  RollbackUF uf(n); // need to implement this
  vector<Node*> heap(n);
  for (Edge e : g) heap[e.b] = merge(heap[e.b], new Node{e
      });
  11 \text{ res} = 0;
  vi seen(n, -1), path(n), par(n);
  seen[r] = r;
  vector<Edge> Q(n), in(n, \{-1,-1\}), comp;
  deque<tuple<int, int, vector<Edge>>> cycs;
  rep(s,0,n) {
    int u = s, qi = 0, w;
    while (seen[u] < 0) {</pre>
      if (!heap[u]) return {-1,{}};
      Edge e = heap[u]->top();
      heap[u]->delta -= e.w, pop(heap[u]);
      Q[qi] = e, path[qi++] = u, seen[u] = s;
      res += e.w, u = uf.find(e.a);
      if (seen[u] == s) { /// found cycle, contract
        Node* cyc = 0;
        int end = qi, time = uf.time();
        do cyc = merge(cyc, heap[w = path[--qi]]);
        while (uf.join(u, w));
        u = uf.find(u), heap[u] = cyc, seen[u] = -1;
        cycs.push\_front(\{u,\ time,\ \{\&Q[qi],\ \&Q[end]\}\});
    rep(i,0,qi) in[uf.find(Q[i].b)] = Q[i];
  for (auto& [u,t,comp] : cycs) { // restore sol (optional)
    uf.rollback(t);
    Edge inEdge = in[u];
    for (auto& e : comp) in[uf.find(e.b)] = e;
    in[uf.find(inEdge.b)] = inEdge;
  rep(i,0,n) par[i] = in[i].a;
  return {res, par};
5.7
      Vizing
// find D+1 edge coloring of a graph with max deg D
struct vizing { // returns edge coloring in adjacent matrix
     G. 1 - based
  const int N = 105;
  int C[N][N], G[N][N], X[N], vst[N], n; // ans: G[i][j]
  void init(int _n) { n = _n; // n = |V|+1
    for (int i = 0; i <= n; ++i)</pre>
      for (int j = 0; j <= n; ++j)</pre>
        C[i][j] = G[i][j] = 0;
  void solve(vector<pii> &E) {
    auto update = [&](int u)
    { for (X[u] = 1; C[u][X[u]]; ++X[u]); };
    auto color = [&](int u, int v, int c) {
      int p = G[u][v];
      G[u][v] = G[v][u] = c;
      C[u][c] = v, C[v][c] = u;
      C[u][p] = C[v][p] = 0;
      if (p) X[u] = X[v] = p;
      else update(u), update(v);
      return p;
    };
    auto flip = [&](int u, int c1, int c2) {
      int p = C[u][c1];
      swap(C[u][c1], C[u][c2]);
      if (p) G[u][p] = G[p][u] = c2;
      if (!C[u][c1]) X[u] = c1;
      if (!C[u][c2]) X[u] = c2;
      return p;
    fill_n(X + 1, n, 1);
    for (int t = 0; t < SZ(E); ++t) {
```

```
int u = E[t].X, v0 = E[t].Y, v = v0, c0 = X[u], c =
          c0, d;
      vector<pii> L;
      fill_n(vst + 1, n, 0);
      while (!G[u][v0]) {
        L.emplace_back(v, d = X[v]);
        if (!C[v][c]) for (int a = SZ(L) - 1; a >= 0; --a)
            c = color(u, L[a].X, c);
        else if (!C[u][d]) for (int a = SZ(L) - 1; a >= 0;
            --a) color(u, L[a].X, L[a].Y);
        else if (vst[d]) break;
        else vst[d] = 1, v = C[u][d];
      if (!G[u][v0]) {
        for (; v; v = flip(v, c, d), swap(c, d));
        if (int a; C[u][c0]) {
          for (a = SZ(L) - 2; a >= 0 && L[a].Y != c; --a);
          for (; a >= 0; --a) color(u, L[a].X, L[a].Y);
        else --t;
     }
   }
 }
};
```

5.8 Maximum Clique

```
struct MaxClique { // fast when N <= 100</pre>
 bitset<N> G[N], cs[N];
 int ans, sol[N], q, cur[N], d[N], n;
 void init(int _n) {
   for (int i = 0; i < n; ++i) G[i].reset();</pre>
 void add_edge(int u, int v) {
   G[u][v] = G[v][u] = 1;
 void pre_dfs(vector<int> &r, int 1, bitset<N> mask) {
   if (1 < 4) {
      for (int i : r) d[i] = (G[i] & mask).count();
      sort(ALL(r), [\&](int x, int y) \{ return d[x] > d[y];
          });
   vector<int> c(SZ(r));
   int lft = max(ans - q + 1, 1), rgt = 1, tp = 0;
    cs[1].reset(), cs[2].reset();
    for (int p : r) {
      int k = 1;
      while ((cs[k] & G[p]).any()) ++k;
      if (k > rgt) cs[++rgt + 1].reset();
      cs[k][p] = 1;
      if (k < 1ft) r[tp++] = p;
    for (int k = lft; k <= rgt; ++k)</pre>
      for (int p = cs[k]._Find_first(); p < N; p = cs[k].
           _Find_next(p))
        r[tp] = p, c[tp] = k, ++tp;
   dfs(r, c, l + 1, mask);
 void dfs(vector<int> &r, vector<int> &c, int 1, bitset<N>
       mask) {
    while (!r.empty()) {
      int p = r.back();
      r.pop_back(), mask[p] = 0;
      if (q + c.back() <= ans) return;</pre>
      cur[q++] = p;
      vector<int> nr;
      for (int i : r) if (G[p][i]) nr.pb(i);
      if (!nr.empty()) pre_dfs(nr, 1, mask & G[p]);
      else if (q > ans) ans = q, copy_n(cur, q, sol);
      c.pop_back(), --q;
   }
 int solve() {
   vector<int> r(n);
   ans = q = 0, iota(ALL(r), 0);
```

```
pre_dfs(r, 0, bitset<N>(string(n, '1')));
   return ans;
}
```

5.9 Number of Maximal Clique

```
struct BronKerbosch { // 1-base
  int n, a[N], g[N][N];
  int S, all[N][N], some[N][N], none[N][N];
  void init(int _n) {
    for (int i = 1; i <= n; ++i)
      for (int j = 1; j \le n; ++j) g[i][j] = 0;
  void add_edge(int u, int v) {
    g[u][v] = g[v][u] = 1;
  void dfs(int d, int an, int sn, int nn) {
    if (S > 1000) return; // pruning
    if (sn == 0 && nn == 0) ++S;
    int u = some[d][0];
    for (int i = 0; i < sn; ++i) {
      int v = some[d][i];
      if (g[u][v]) continue;
      int tsn = 0, tnn = 0;
      copy_n(all[d], an, all[d + 1]);
      all[d + 1][an] = v;
      for (int j = 0; j < sn; ++j)
        if (g[v][some[d][j]])
          some[d + 1][tsn++] = some[d][j];
      for (int j = 0; j < nn; ++j)</pre>
        if (g[v][none[d][j]])
          none[d + 1][tnn++] = none[d][j];
      dfs(d + 1, an + 1, tsn, tnn);
      some[d][i] = 0, none[d][nn++] = v;
    }
  int solve() {
    iota(some[0], some[0] + n, 1);
    S = 0, dfs(0, 0, n, 0);
    return S;
};
```

5.10 Minimum Mean Cycle

```
// from 8BQube
11 road[N][N]; // input here
struct MinimumMeanCycle {
  11 dp[N + 5][N], n;
  pll solve() {
    ll a = -1, b = -1, L = n + 1;
    for (int i = 2; i <= L; ++i)
      for (int k = 0; k < n; ++k)
        for (int j = 0; j < n; ++j)
          dp[i][j] =
            min(dp[i - 1][k] + road[k][j], dp[i][j]);
    for (int i = 0; i < n; ++i) {
      if (dp[L][i] >= INF) continue;
      11 ta = 0, tb = 1;
      for (int j = 1; j < n; ++j)
        if (dp[j][i] < INF &&</pre>
          ta * (L - j) < (dp[L][i] - dp[j][i]) * tb)
          ta = dp[L][i] - dp[j][i], tb = L - j;
      if (ta == 0) continue;
      if (a == -1 || a * tb > ta * b) a = ta, b = tb;
   if (a != -1)
              _gcd(a, b);
      11 g = 
      return pll(a / g, b / g);
    return pll(-1LL, -1LL);
  void init(int _n) {
```

```
n = _n;
for (int i = 0; i < n; ++i)
    for (int j = 0; j < n; ++j) dp[i + 2][j] = INF;
}
};</pre>
```

5.11 Minimum Steiner Tree

```
// from 8BQube
// O(V 3^T + V^2 2^T)
struct SteinerTree { // 0-base
  static const int T = 10, N = 105, INF = 1e9;
  int n, dst[N][N], dp[1 << T][N], tdst[N];
int vcost[N]; // the cost of vertexs</pre>
  void init(int _n) {
    n = _n;
    for (int i = 0; i < n; ++i) {
      for (int j = 0; j < n; ++j) dst[i][j] = INF;</pre>
      dst[i][i] = vcost[i] = 0;
    }
  void add_edge(int ui, int vi, int wi) {
    dst[ui][vi] = min(dst[ui][vi], wi);
  void shortest_path() {
    for (int k = 0; k < n; ++k)
      for (int i = 0; i < n; ++i)</pre>
        for (int j = 0; j < n; ++j)
          dst[i][j] =
            min(dst[i][j], dst[i][k] + dst[k][j]);
  int solve(const vector<int> &ter) {
    shortest_path();
    int t = SZ(ter);
    for (int i = 0; i < (1 << t); ++i)
      for (int j = 0; j < n; ++j) dp[i][j] = INF;
    for (int i = 0; i < n; ++i) dp[0][i] = vcost[i];</pre>
    for (int msk = 1; msk < (1 << t); ++msk) {</pre>
      if (!(msk & (msk - 1))) {
        int who = __lg(msk);
        for (int i = 0; i < n; ++i)
          dp[msk][i] =
            vcost[ter[who]] + dst[ter[who]][i];
      for (int i = 0; i < n; ++i)
        for (int submsk = (msk - 1) & msk; submsk;
             submsk = (submsk - 1) \& msk)
          dp[msk][i] = min(dp[msk][i],
            dp[submsk][i] + dp[msk ^ submsk][i] -
               vcost[i]);
      for (int i = 0; i < n; ++i) {
        tdst[i] = INF;
        for (int j = 0; j < n; ++j)
          tdst[i] =
            min(tdst[i], dp[msk][j] + dst[j][i]);
      for (int i = 0; i < n; ++i) dp[msk][i] = tdst[i];</pre>
    int ans = INF;
    for (int i = 0; i < n; ++i)
      ans = min(ans, dp[(1 << t) - 1][i]);
    return ans:
};
```

6 Math

6.1 Extended Euclidean Algorithm

```
// ax+ny = 1, ax+ny == ax == 1 (mod n)
void extgcd(ll x,ll y,ll &g,ll &a,ll &b) {
  if (y == 0) g=x,a=1,b=0;
  else extgcd(y,x%y,g,b,a),b-=(x/y)*a;
}
```

6.2 Floor & Ceil

```
int ifloor(int a,int b){
  return a / b - (a % b && (a < 0) ^ (b < 0));
}
int iceil(int a,int b){
  return a / b + (a % b && (a < 0) ^ (b > 0));
}

6.3 Legendre
// the Jacobi symbol is a generalization of the
```

```
// the Jacobi symbol is a generalization of the Legendre
// such that the bottom doesn't need to be prime.
// (n|p) -> same as Legendre
// (n|ab) = (n|a)(n|b)
// work with long long
int Jacobi(int a, int m) {
  int s = 1;
  for (; m > 1; ) {
    a %= m;
    if (a == 0) return 0;
    const int r = __builtin_ctz(a);
    if ((r & 1) && ((m + 2) & 4)) s = -s;
    a >>= r;
    if (a \& m \& 2) s = -s;
    swap(a, m);
  return s;
// 0: a == 0
// -1: a isn't a quad res of p
// else: return X with X^2 \% p == a
// doesn't work with long long
int QuadraticResidue(int a, int p) {
  if (p == 2) return a & 1;
  const int jc = Jacobi(a, p);
  if (jc == 0) return 0;
  if (jc == -1) return -1;
  int b, d;
  for (; ; ) {
    b = rand() \% p;
    d = (1LL * b * b + p - a) % p;
    if (Jacobi(d, p) == -1) break;
  int f0 = b, f1 = 1, g0 = 1, g1 = 0, tmp;
  for (int e = (1LL + p) >> 1; e; e >>= 1) {
    if (e & 1) {
      tmp = (1LL * g0 * f0 + 1LL * d * (1LL * g1 * f1 % p))
           % p;
      g1 = (1LL * g0 * f1 + 1LL * g1 * f0) % p;
      g0 = tmp;
    tmp = (1LL * f0 * f0 + 1LL * d * (1LL * f1 * f1 % p)) %
    f1 = (2LL * f0 * f1) % p;
    f0 = tmp;
  return g0;
```

6.4 Simplex

```
struct LPSolver {
  int m, n;
  vi N, B;
  vvd D;
  LPSolver(const vvd& A, const vd& b, const vd& c) :
    m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2, vd(n+2)) {
      rep(i,0,m) \ rep(j,0,n) \ D[i][j] = A[i][j];
      rep(i,0,m) { B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[
          i];}
      rep(j,0,n) \{ N[j] = j; D[m][j] = -c[j]; \}
      N[n] = -1; D[m+1][n] = 1;
  void pivot(int r, int s) {
    T *a = D[r].data(), inv = 1 / a[s];
    rep(i,0,m+2) if (i != r \&\& abs(D[i][s]) > eps) {
      T *b = D[i].data(), inv2 = b[s] * inv;
      rep(j,0,n+2) b[j] -= a[j] * inv2;
      b[s] = a[s] * inv2;
    rep(j,0,n+2) if (j != s) D[r][j] *= inv;
    rep(i,0,m+2) if (i != r) D[i][s] *= -inv;
    D[r][s] = inv;
    swap(B[r], N[s]);
  bool simplex(int phase) {
    int x = m + phase - 1;
    for (;;) {
      int s = -1;
      rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);
      if (D[x][s] >= -eps) return true;
      rep(i,0,m) {
        if (D[i][s] <= eps) continue;
if (r == -1 || MP(D[i][n+1] / D[i][s], B[i])</pre>
            < MP(D[r][n+1] / D[r][s], B[r])) r = i;
      if (r == -1) return false;
      pivot(r, s);
  T solve(vd &x) {
    int r = 0;
    rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
    if (D[r][n+1] < -eps) {
      pivot(r, n);
      if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;</pre>
      rep(i,0,m) if (B[i] == -1) {
        int s = 0:
        rep(j,1,n+1) ltj(D[i]);
        pivot(i, s);
      }
    bool ok = simplex(1); x = vd(n);
    rep(i,0,m) if (B[i] < n) \times [B[i]] = D[i][n+1];
    return ok ? D[m][n+1] : inf;
  }
6.5 Floor Sum
// from 8BQube
11 floor_sum(ll n, ll m, ll a, ll b) {
  11 \text{ ans} = 0;
  if (a >= m)
    ans += (n - 1) * n * (a / m) / 2, a %= m;
  if (b >= m)
    ans += n * (b / m), b %= m;
  11 y_max = (a * n + b) / m, x_max = (y_max * m - b);
```

```
if (y_max == 0) return ans;
ans += (n - (x_max + a - 1) / a) * y_max;
ans += floor_sum(y_max, a, m, (a - x_max % a) % a);
```

```
return ans;
// sum^{n-1}_0 floor((a * i + b) / m) in log(n + m + a + b)
6.6 DiscreteLog
int DiscreteLog(int s, int x, int y, int m) {
  constexpr int kStep = 32000;
  unordered_map<int, int> p;
  int b = 1;
  for (int i = 0; i < kStep; ++i) {</pre>
    p[y] = i;
    y = 1LL * y * x % m;
    b = 1LL * b * x % m;
  for (int i = 0; i < m + 10; i += kStep) {</pre>
    s = 1LL * s * b % m;
    if (p.find(s) != p.end()) return i + kStep - p[s];
  return -1;
int DiscreteLog(int x, int y, int m) {
  if (m == 1) return 0;
  int s = 1;
  for (int i = 0; i < 100; ++i) {
    if (s == y) return i;
    s = 1LL * s * x % m;
  if (s == y) return 100;
  int p = 100 + DiscreteLog(s, x, y, m);
  if (fpow(x, p, m) != y) return -1;
  return p; //returns: x^p = y \pmod{m}
6.7
      Miller Rabin & Pollard Rho
                          3 : 2, 7, 61
// n < 4,759,123,141
// n < 1,122,004,669,633 4 : 2, 13, 23, 1662803
// n < 3,474,749,660,383 6 : primes <= 13
// n < 2^64
// 2, 325, 9375, 28178, 450775, 9780504, 1795265022
11 mul(l1 a, l1 b, l1 n){
  return (__int128)a * b % n;
bool Miller_Rabin(ll a, ll n) {
  if ((a = a % n) == 0) return 1;
  if (n % 2 == 0) return n == 2;
  11 \text{ tmp} = (n - 1) / ((n - 1) & (1 - n));
  11 t = _{g(((n - 1) \& (1 - n))), x = 1;
  for (; tmp; tmp >>= 1, a = mul(a, a, n))
    if (tmp & 1) x = mul(x, a, n);
  if (x == 1 | | x == n - 1) return 1;
  while (--t)
    if ((x = mul(x, x, n)) == n - 1) return 1;
  return 0;
bool prime(ll n){
  vector<11> tmp = {2, 325, 9375, 28178, 450775, 9780504,
      1795265022};
  for(ll i : tmp)
   if(!Miller_Rabin(i, n)) return false;
  return true;
map<ll, int> cnt;
void PollardRho(ll n) {
  if (n == 1) return;
  if (prime(n)) return ++cnt[n], void();
  if (n % 2 == 0) return PollardRho(n / 2), ++cnt[2], void
      ();
  11 x = 2, y = 2, d = 1, p = 1;
#define f(x, n, p) ((mul(x, x, n) + p) % n)
  while (true) {
    if (d != n && d != 1) {
```

PollardRho(n / d);

PollardRho(d);

```
return;
    if (d == n) ++p;
    x = f(x, n, p), y = f(f(y, n, p), n, p);
    d = gcd(abs(x - y), n);
      XOR Basis
const int digit = 60; // [0, 2^digit)
struct Basis{
  int total = 0, rank = 0;
  vector<ll> b;
  Basis(): b(digit) {}
  bool add(ll v){ // Gauss Jordan Elimination
    total++;
    for(int i = digit - 1; i >= 0; i--){
      if(!(1LL << i & v)) continue;</pre>
      if(b[i] != 0){
        v ^= b[i];
        continue;
      for(int j = 0; j < i; j++)
        if(1LL << j & v) v ^= b[j];</pre>
      for(int j = i + 1; j < digit; j++)</pre>
        if(1LL << i & b[j]) b[j] ^= v;</pre>
      b[i] = v;
      rank++;
      return true;
    return false;
  11 \text{ getmax}(11 \text{ x} = 0)
    for(ll i : b) x = max(x, x ^ i);
    return x;
  11 \text{ getmin}(11 \text{ x} = 0){
    for(ll i : b) x = min(x, x ^ i);
    return x;
  bool can(11 x){
    return getmin(x) == 0;
  11 kth(11 k){ // kth smallest, 0-indexed
    vector<ll> tmp;
    for(ll i : b) if(i) tmp.pb(i);
    11 \text{ ans} = 0;
    for(int i = 0; i < SZ(tmp); i++)</pre>
      if(1LL << i & k) ans ^= tmp[i];</pre>
    return ans;
  }
};
      Linear Equation
vector<int> RREF(vector<vector<11>> &mat){
  int N = mat.size(), M = mat[0].size();
  int rk = 0;
  vector<int> cols;
  for (int i = 0;i < M;i++) {</pre>
    int cnt = -1;
    for (int j = N-1; j >= rk; j--)
      if(mat[j][i] != 0) cnt = j;
    if(cnt == -1) continue;
    swap(mat[rk], mat[cnt]);
    ll lead = mat[rk][i];
    for (int j = 0;j < M;j++) mat[rk][j] /= lead;</pre>
    for (int j = 0; j < N; j++) {
      if(j == rk) continue;
      11 tmp = mat[j][i];
      for (int k = 0; k < M; k++)
```

mat[j][k] -= mat[rk][k] * tmp;

cols.pb(i);

```
rk++;
  }
  return cols;
struct LinearEquation{
  vector<11> par; //particular solution (Ax = b)
  vector<vector<ll>> homo; //homogenous (Ax = 0)
  vector<vector<ll>> rref;
  //first M columns are matrix A
  //last column of eq is vector b
  void solve(const vector<vector<11>> &eq){
    int M = (int)eq[0].size() - 1;
    rref = eq;
    auto piv = RREF(rref);
    int rk = piv.size();
    if(piv.size() && piv.back() == M){
      ok = 0; return;
    ok = 1;
    par.resize(M);
    vector<bool> ispiv(M);
    for (int i = 0;i < rk;i++) {</pre>
      par[piv[i]] = rref[i][M];
      ispiv[piv[i]] = 1;
    for (int i = 0;i < M;i++) {</pre>
      if (ispiv[i]) continue;
      vector<ll> h(M);
      h[i] = 1;
      for (int j = 0;j < rk;j++) h[piv[j]] = -rref[j][i];</pre>
      homo.pb(h);
  }
}
6.10 Chinese Remainder Theorem
pll solve_crt(ll x1, ll m1, ll x2, ll m2){
  11 g = gcd(m1, m2);
  if ((x2 - x1) % g) return {0, 0}; // no sol
  m1 /= g; m2 /= g;
  11 _, p, q;
  extgcd(m1, m2, _, p, q); // p <= C
ll lcm = m1 * m2 * g;
  ll res = ((__int128)p * (x2 - x1) % lcm * m1 % lcm + x1)
      % 1cm;
  // be careful with overflow, C^3
  return {(res + lcm) % lcm, lcm}; // (x, m)
6.11 Sqrt Decomposition
// for all i in [l, r], floor(n / i) = x
for(int l = 1, r; l <= n; l = r + 1){
 int x = ifloor(n, 1);
  r = ifloor(n, x);
// for all i in [l, r], ceil(n / i) = x
for(int 1, r = n; r >= 1; r = 1 - 1){
 int x = iceil(n, r);
  l = iceil(n, x);
     Misc
7
7.1 Cyclic Ternary Search
/* bool pred(int a, int b);
f(0) \sim f(n-1) is a cyclic-shift U-function
```

return idx s.t. pred(x, idx) is false forall x*/

int cyc_tsearch(int n, auto pred) {

```
if (n == 1) return 0;
int l = 0, r = n; bool rv = pred(1, 0);
while (r - 1 > 1) {
   int m = (1 + r) / 2;
   if (pred(0, m) ? rv: pred(m, (m + 1) % n)) r = m;
   else l = m;
}
return pred(l, r % n) ? l : r % n;
```

7.2 Matroid

我們稱一個二元組 $M=(E,\mathcal{I})$ 為一個擬陣,其中 $\mathcal{I}\subseteq 2^E$ 為 E 的子集所形成的 **非空**集合,若:

- 若 $S \in \mathcal{I}$ 以及 $S' \subsetneq S$,則 $S' \in \mathcal{I}$
- 對於 $S_1, S_2 \in \mathcal{I}$ 滿足 $|S_1| < |S_2|$,存在 $e \in S_2 \setminus S_1$ 使得 $S_1 \cup \{e\} \in \mathcal{I}$

除此之外,我們有以下的定義:

- 位於 $\mathcal I$ 中的集合我們稱之為獨立集(independent set),反之不在 $\mathcal I$ 中的 我們稱為相依集(dependent set)
- 極大的獨立集為基底(base)、極小的相依集為迴路(circuit)
- 一個集合 Y 的秩 (rank) r(Y) 為該集合中最大的獨立子集,也就是 $r(Y) = \max\{|X| \mid X \subseteq Y \ \exists X \in \mathcal{I}\}$

性質:

- 1. $X \subseteq Y \land Y \in \mathcal{I} \implies X \in \mathcal{I}$
- 2. $X \subseteq Y \land X \notin \mathcal{I} \implies Y \notin \mathcal{I}$
- 3. 若 B 與 B' 皆是基底且 $B \subseteq B'$,則 B = B' 若 C 與 C' 皆是迴路且 $C \subseteq C'$,則 C = C'
- 4. $e \in E \land X \subseteq E \implies r(X) \le r(X \cup \{e\}) \le r(X) + 1$ i.e. 加入一個元素 後秩不會降底,最多增加 1
- 5. $\forall Y \subseteq E, \exists X \subseteq Y, r(X) = |X| = r(Y)$

一些等價的性質:

- 1. 對於所有 $X \subset E$, X 的極大獨立子集都有相同的大小
- 2. 對於 $B_1, B_2 \in \mathcal{B} \wedge B_1 \neq B_2$,對於所有 $e_1 \in B_1 \setminus B_2$,存在 $e_2 \in B_2 \setminus B_1$ 使得 $(B_1 \setminus \{e_1\}) \cup \{e_2\} \in \mathcal{B}$
- 3. 對於 $X, Y \in \mathcal{I}$ 且 |X| < |Y|,存在 $e \in Y \setminus X$ 使得 $X \cup \{e\} \in \mathcal{B}$
- 4. 如果 $r(X \cup \{e_1\}) = r(X \cup \{e_2\}) = r(X)$,則 $r(X \cup \{e_1, e_2\}) = r(X)$ 。 如果 $r(X \cup \{e\}) = r(X)$ 對於所有 $e \in E'$ 都成立,則 $r(X \cup E') = r(X)$ 。

擬陣交

```
Data: 兩個擬陣 M_1 = (E, \mathcal{I}_1) 以及 M_2 = (E, \mathcal{I}_2) Result: I 為最大的位於 \mathcal{I}_1 \cap \mathcal{I}_2 中的獨立集 I \leftarrow \emptyset X_1 \leftarrow \{e \in E \setminus I \mid I \cup \{e\} \in \mathcal{I}_1\} X_2 \leftarrow \{e \in E \setminus I \mid I \cup \{e\} \in \mathcal{I}_2\} while X_1 \neq \emptyset 且 X_2 \neq \emptyset do if e \in X_1 \cap X_2 then I \leftarrow I \cup \{e\} else däbe discomplete discom
```

8 Polynomial

8.1 FWHT

```
/* x: a[j], y: a[j + (L >> 1)]
or: (y += x * op), and: (x += y * op)
xor: (x, y = (x + y) * op, (x - y) * op)
invop: or, and, xor = -1, -1, 1/2 */
void fwt(int *a, int n, int op) { //or
for (int L = 2; L <= n; L <<= 1)
for (int i = 0; i < n; i += L)
for (int j = i; j < i + (L >> 1); ++j)
a[j + (L >> 1)] += a[j] * op;
```

```
}
const int N = 21;
int f[N][1 << N], g[N][1 << N], h[N][1 << N], ct[1 << N];
void subset_convolution(int *a, int *b, int *c, int L) {
  // c_k = \sum_{i = 0}^{n} a_i * b_j
  int n = 1 << L;</pre>
  for (int i = 1; i < n; ++i)</pre>
    ct[i] = ct[i & (i - 1)] + 1;
  for (int i = 0; i < n; ++i)
    f[ct[i]][i] = a[i], g[ct[i]][i] = b[i];
  for (int i = 0; i <= L; ++i)
    fwt(f[i], n, 1), fwt(g[i], n, 1);
  for (int i = 0; i <= L; ++i)
    for (int j = 0; j <= i; ++j)</pre>
      for (int x = 0; x < n; ++x)
        h[i][x] += f[j][x] * g[i - j][x];
  for (int i = 0; i <= L; ++i) fwt(h[i], n, -1);</pre>
  for (int i = 0; i < n; ++i) c[i] = h[ct[i]][i];</pre>
```

8.2 FFT

```
// Errichto: FFT for double works when the result < 1e15,
    and < 1e18 with long double
using val_t = complex<double>;
template<int MAXN>
struct FFT {
  const double PI = acos(-1);
  val_t w[MAXN];
  FFT() {
    for (int i = 0; i < MAXN; ++i) {
      double arg = 2 * PI * i / MAXN;
      w[i] = val_t(cos(arg), sin(arg));
    }
  void bitrev(vector<val_t> &a, int n) //same as NTT
  void trans(vector<val_t> &a, int n, bool inv = false) {
    bitrev(a, n);
    for (int L = 2; L <= n; L <<= 1) {</pre>
      int dx = MAXN / L, dl = L >> 1;
      for (int i = 0; i < n; i += L) {</pre>
        for (int j = i, x = 0; j < i + dl; ++j, x += dx) {
          val_t tmp = a[j + dl] * (inv ? conj(w[x]) : w[x])
          a[j + dl] = a[j] - tmp;
          a[j] += tmp;
      }
    if (inv) {
      for (int i = 0; i < n; ++i) a[i] /= n;
  //multiplying two polynomials A * B:
  //fft.trans(A, siz, 0), fft.trans(B, siz, 0):
  //A[i] *= B[i], fft.trans(A, siz, 1);
};
8.3 NTT
```

```
//(2^16)+1, 65537, 3
//7*17*(2^23)+1, 998244353, 3
//1255*(2^20)+1, 1315962881, 3
//51*(2^25)+1, 1711276033, 29
// only works when sz(A) + sz(B) - 1 <= MAXN
template<int MAXN, 11 P, 11 RT> //MAXN must be 2^k
struct NTT {
    11 w[MAXN];
    11 mpow(11 a, 11 n);
    11 minv(11 a) { return mpow(a, P - 2); }
NTT() {
        11 dw = mpow(RT, (P - 1) / MAXN);
        w[0] = 1;
```

```
for (int i = 1; i < MAXN; ++i) w[i] = w[i - 1] * dw % P
  void bitrev(vector<ll> &a, int n) {
    int i = 0:
    for (int j = 1; j < n - 1; ++j) {
      for (int k = n >> 1; (i ^= k) < k; k >>= 1);
      if (j < i) swap(a[i], a[j]);</pre>
 }
  void operator()(vector<ll> &a, int n, bool inv = false) {
       //0 <= a[i] < P
    bitrev(a, n);
    for (int L = 2; L <= n; L <<= 1) {
      int dx = MAXN / L, dl = L >> 1;
      for (int i = 0; i < n; i += L) {</pre>
        for (int j = i, x = 0; j < i + dl; ++j, x += dx) \{
          ll tmp = a[j + dl] * w[x] % P;
          if ((a[j + d1] = a[j] - tmp) < 0) a[j + d1] += P;
          if ((a[j] += tmp) >= P) a[j] -= P;
        }
      }
    if (inv) {
      reverse(a.begin()+1, a.begin()+n);
      11 invn = minv(n);
      for (int i = 0; i < n; ++i) a[i] = a[i] * invn % P;</pre>
 }
};
```

8.4 Polynomial Operation

```
// Copy from 8BQube
#define fi(s, n) for (int i = (int)(s); i < (int)(n); ++i)
template<int MAXN, 11 P, 11 RT> // MAXN = 2^k
struct Poly : vector<ll> { // coefficients in [0, P)
 using vector<11>::vector;
 static inline NTT<MAXN, P, RT> ntt;
 int n() const { return (int)size(); } // n() >= 1
 Poly(const Poly &p, int m) : vector<ll>(m) {
   copy_n(p.data(), min(p.n(), m), data());
 Poly& irev() { return reverse(data(), data() + n()), *
 Poly& isz(int m) { return resize(m), *this; }
 Poly& iadd(const Poly &rhs) { // n() == rhs.n()
   fi(0, n()) if (((*this)[i] += rhs[i]) >= P) (*this)[i]
        -= P;
   return *this;
 Poly& imul(ll k) {
   fi(0, n()) (*this)[i] = (*this)[i] * k % P;
   return *this;
 Poly Mul(const Poly &rhs) const {
   int m = 1;
   while (m < n() + rhs.n() - 1) m <<= 1;</pre>
   assert(m <= MAXN);</pre>
   Poly X(*this, m), Y(rhs, m);
   ntt(X, m), ntt(Y, m);
   fi(0, m) X[i] = X[i] * Y[i] % P;
   ntt(X, m, true);
    return X.isz(n() + rhs.n() - 1);
 Poly Inv() const { // (*this)[0] != 0, 1e5/95ms, 2*sz<=
   if (n() == 1) return {ntt.minv((*this)[0])};
   int m = 1;
   while (m < n() * 2) m <<= 1;
   assert(m <= MAXN);</pre>
   Poly Xi = Poly(*this, (n() + 1) / 2).Inv().isz(m);
   Poly Y(*this, m);
   ntt(Xi, m), ntt(Y, m);
   fi(0, m) {
      Xi[i] *= (2 - Xi[i] * Y[i]) % P;
```

```
if ((Xi[i] %= P) < 0) Xi[i] += P;</pre>
 ntt(Xi, m, true);
  return Xi.isz(n());
Poly& shift_inplace(const ll &c) { // 2 * sz <= MAXN
  int n = this->n();
  vector<ll> fc(n), ifc(n);
  fc[0] = ifc[0] = 1;
  for (int i = 1; i < n; i++){</pre>
    fc[i] = fc[i-1] * i % P;
    ifc[i] = ntt.minv(fc[i]);
  for (int i = 0; i < n; i++) (*this)[i] = (*this)[i] *
      fc[i] % P;
  Poly g(n);
  11 cp = 1;
  for (int i = 0; i < n; i++) g[i] = cp * ifc[i] % P, cp
      = cp * c % P;
  *this = (*this).irev().Mul(g).isz(n).irev();
  for (int i = 0; i < n; i++) (*this)[i] = (*this)[i] *
      ifc[i] % P;
  return *this;
Poly shift(const 11 &c) const { return Poly(*this).
    shift_inplace(c); }
Poly _Sqrt() const { // Jacobi((*this)[0], P) = 1
  if (n() == 1) return {QuadraticResidue((*this)[0], P)};
  Poly X = Poly(*this, (n() + 1) / 2)._Sqrt().isz(n());
  return X.iadd(Mul(X.Inv()).isz(n())).imul(P / 2 + 1);
Poly Sqrt() const { // 2 * sz <= MAXN
  Poly a;
  bool has = 0;
  for(int i = 0; i < n(); i++){</pre>
    if((*this)[i]) has = 1;
    if(has) a.push_back((*this)[i]);
  if(!has) return *this;
  if( (n() + a.n()) % 2 || Jacobi(a[0], P) != 1) {
    return Poly();
  a=a.isz((n() + a.n()) / 2)._Sqrt();
  int sz = a.n();
  a.isz(n());
  rotate(a.begin(), a.begin() + sz, a.end());
pair<Poly, Poly> DivMod(const Poly &rhs) const { // (rhs
    .)back() != 0
  if (n() < rhs.n()) return {{0}, *this};</pre>
  const int m = n() - rhs.n() + 1;
  Poly X(rhs); X.irev().isz(m);
  Poly Y(*this); Y.irev().isz(m);
  Poly Q = Y.Mul(X.Inv()).isz(m).irev();
  X = rhs.Mul(Q), Y = *this;
  fi(0, n()) if ((Y[i] -= X[i]) < 0) Y[i] += P;
  return {Q, Y.isz(max(1, rhs.n() - 1))};
Poly Dx() const {
  Poly ret(n() - 1);
  fi(0, ret.n()) ret[i] = (i + 1) * (*this)[i + 1] % P;
  return ret.isz(max(1, ret.n()));
Poly Sx() const {
  Poly ret(n() + 1);
  fi(0, n()) ret[i + 1] = ntt.minv(i + 1) * (*this)[i] %
  return ret;
Poly _tmul(int nn, const Poly &rhs) const {
 Poly Y = Mul(rhs).isz(n() + nn - 1);
  return Poly(Y.data() + n() - 1, Y.data() + Y.n());
vector<ll> _eval(const vector<ll> &x, const vector<Poly>
    &up) const {
  const int m = (int)x.size();
```

```
if (!m) return {};
    vector<Poly> down(m * 2);
    // down[1] = DivMod(up[1]).second;
    // fi(2, m * 2) down[i] = down[i / 2].DivMod(up[i]).
        second:
    down[1] = Poly(up[1]).irev().isz(n()).Inv().irev().
        _tmul(m, *this);
    fi(2, m * 2) down[i] = up[i ^ 1]._tmul(up[i].n() - 1,
        down[i / 2]);
    vector<11> y(m);
    fi(0, m) y[i] = down[m + i][0];
    return y;
  static vector<Poly> _tree1(const vector<ll> &x) {
    const int m = (int)x.size();
    vector<Poly> up(m * 2);
    fi(0, m) up[m + i] = \{(x[i] ? P - x[i] : 0), 1\};
    for (int i = m - 1; i > 0; --i) up[i] = up[i * 2].Mul(
        up[i * 2 + 1]);
    return up;
  vector<ll> Eval(const vector<ll> &x) const { // 1e5, 1s
    auto up = _tree1(x); return _eval(x, up);
 static Poly Interpolate(const vector<11> &x, const vector
      <ll> &y) { // 1e5, 1.4s
    const int m = (int)x.size();
    vector<Poly> up = _tree1(x), down(m * 2);
    vector<ll> z = up[1].Dx()._eval(x, up);
    fi(0, m) z[i] = y[i] * ntt.minv(z[i]) % P;
    fi(0, m) down[m + i] = {z[i]};
    for (int i = m - 1; i > 0; --i) down[i] = down[i * 2].
        Mul(up[i * 2 + 1]).iadd(down[i * 2 + 1].Mul(up[i *
        2]));
    return down[1];
  Poly Ln() const \{ // (*this)[0] == 1, 2*sz <= MAXN \}
    return Dx().Mul(Inv()).Sx().isz(n());
 Poly Exp() const \{ // (*this)[0] == 0,2*sz <= MAXN \}
    if (n() == 1) return {1};
    Poly X = Poly(*this, (n() + 1) / 2).Exp().isz(n());
Poly Y = X.Ln(); Y[0] = P - 1;
    fi(0, n()) if ((Y[i] = (*this)[i] - Y[i]) < 0) Y[i] +=
       Ρ;
    return X.Mul(Y).isz(n());
  // M := P(P - 1). If k >= M, k := k % M + M.
 Poly Pow(ll k) const { // 2*sz<=MAXN
    int nz = 0;
    while (nz < n() && !(*this)[nz]) ++nz;</pre>
    if (nz * min(k, (11)n()) >= n()) return Poly(n());
    if (!k) return Poly(Poly {1}, n());
    Poly X(data() + nz, data() + nz + n() - nz * k);
    const 11 c = ntt.mpow(X[0], k % (P - 1));
    return X.Ln().imul(k % P).Exp().imul(c).irev().isz(n())
  static ll LinearRecursion(const vector<ll> &a, const
      vector<ll> &coef, ll n) { // a_n = \sum c_j a_(n-j)
    const int k = (int)a.size();
    assert((int)coef.size() == k + 1);
    Poly C(k + 1), W(Poly \{1\}, k), M = \{0, 1\};
    fi(1, k + 1) C[k - i] = coef[i] ? P - coef[i] : 0;
    C[k] = 1;
    while (n) {
      if (n % 2) W = W.Mul(M).DivMod(C).second;
      n /= 2, M = M.Mul(M).DivMod(C).second;
    11 \text{ ret} = 0;
    fi(0, k) ret = (ret + W[i] * a[i]) % P;
    return ret;
#undef fi
using Poly_t = Poly<1 << 20, 998244353, 3>;
```

// template<> decltype(Poly_t::ntt) Poly_t::ntt = {};

8.5 Generating Function

8.5.1 Ordinary Generating Function

- C(x) = A(rx): $c_n = r^n a_n$ 的一般生成函數。
- C(x) = A(x) + B(x): $c_n = a_n + b_n$ 的一般生成函數。
- C(x) = A(x)B(x): $c_n = \sum_{i=0}^n a_i b_{n-i}$ 的一般生成函數。
- $C(x) = A(x)^k$: $c_n = \sum_{i_1 + i_2 + \dots + i_k = n} a_{i_1} a_{i_2} \dots a_{i_k}$ 的一般生成函數。
- C(x) = xA(x)': $c_n = na_n$ 的一般生成函數。
- $C(x) = \frac{A(x)}{1-x}$: $c_n = \sum_{i=0}^{n} a_i$ 的一般生成函數。
- $C(x) = A(1) + x \frac{A(1) A(x)}{1 x}$: $c_n = \sum_{i=n}^{\infty} a_i$ 的一般生成函數。

常用展開式

- $\frac{1}{1-x} = 1 + x + x^2 + \ldots + x^n + \ldots$
- $(1+x)^a = \sum_{n=0}^{\infty} {n \choose n} x^n$, ${n \choose n} = \frac{a(a-1)(a-2)...(a-n+1)}{n!}$.

常見生函

• 卡特蘭數: $f(x) = \frac{1-\sqrt{1-4x}}{2x}$

8.5.2 Exponential Generating Function

 a_0, a_1, \ldots 的指數生成函數:

$$\hat{A}(x) = \sum_{i=0}^{\infty} \frac{a_i}{i!} = a_0 + a_1 x + \frac{a_2}{2!} x^2 + \frac{a_3}{3!} x^3 + \dots$$

- $\hat{C}(x) = \hat{A}(x) + \hat{B}(x)$: $c_n = a_n + b_n$ 的指數生成函數
- $\hat{C}(x) = \hat{A}^{(k)}(x)$: $c_n = a_{n+k}$ 的指數生成函數
- $\hat{C}(x) = x\hat{A}(x)$: $c_n = na_n$ 的指數生成函數
- $\hat{C}(x) = \hat{A}(x)\hat{B}(x)$: $c_n = \sum_{k=0}^n \binom{n}{i} a_k b_{n-k}$ 的指數生成函數
- $\hat{C}(x) = \hat{A}(x)^k$: $\sum_{i_1+i_2+\cdots+i_k=n} \binom{n}{i_1,i_2,\ldots,i_k} a_i a_{i_2} \ldots a_{i_k}$ 的指數生成函數
- $\hat{C}(x) = \exp(A(x))$: 假設 A(x) 是一個分量 (component) 的生成函數,那 $\hat{C}(x)$ 是將 n 個有編號的東西分成若干個分量的指數生成函數

8.6 Bostan Mori

```
NTT<262144, 998244353, 3> ntt;
// Finds the k-th coefficient of P / Q in O(d log d log k)
// size of NTT has to > 2 * d
11 BostanMori(vector<11> P, vector<11> Q, long long k) {
  int d = max((int)P.size(), (int)Q.size() - 1);
  P.resize(d, 0);
  Q.resize(d + 1, 0);
  int sz = (2 * d + 1 == 1 ? 2 : (1 << (__lg(2 * d) + 1)));
  while(k) {
    vector<ll> Qneg(sz);
    for(int i = 0; i < (int)Q.size(); i++){
  Qneg[i] = Q[i] * ((i & 1) ? -1 : 1);</pre>
       if(Qneg[i] < 0) Qneg[i] += mod;</pre>
    ntt(Qneg, sz, false);
    vector<ll> U(sz), V(sz);
    for(int i = 0; i < (int)P.size(); i++)</pre>
       U[i] = P[i];
    for(int i = 0; i < (int)Q.size(); i++)</pre>
      V[i] = Q[i];
    ntt(U, sz, false);
    ntt(V, sz, false);
    for(int i = 0; i < sz; i++)</pre>
      U[i] = U[i] * Qneg[i] % mod;
    for(int i = 0; i < sz; i++)</pre>
      V[i] = V[i] * Qneg[i] % mod;
    ntt(U, sz, true);
ntt(V, sz, true);
```

```
National Taiwan University
    for(int i = k & 1; i <= 2 * d - 1; i += 2)
      P[i >> 1] = U[i];
    for(int i = 0; i <= 2 * d; i += 2)
     Q[i \gg 1] = V[i];
 return P[0] * ntt.minv(Q[0]) % mod;
    String
     KMP Algorithm
void kmp(string s){
  int siz = s.size();
 vector<int> f(siz, 0);
 f[0] = 0;
 for (int i = 1;i < siz;i++) {</pre>
   f[i] = f[i-1];
   bool zero = 0;
   while (s[f[i]] != s[i]) {
      if (f[i] == 0) {
       zero = 1;
        break;
      f[i] = f[f[i]-1];
   if (!zero) f[i]++;
 }
}
      Manacher Algorithm
vector<int> manacher(string s) {
 int n = s.size();
 vector<int> v(n);
 int pnt = -1, len = 1;
```

```
vector<int> manacher(string s) {
  int n = s.size();
  vector<int> v(n);
  int pnt = -1, len = 1;
  for (int i = 0;i < n;i++) {
    int cor = 2 * pnt - i;
    if (cor >= 0) v[i] = min(v[cor], cor - pnt + len);
    while (i+v[i] < n && i-v[i] >= 0 && s[i+v[i]] == s[i-v[
        i]]) v[i]++;
    if (i + v[i] >= pnt + len) pnt = i, len = v[i];
  }
  for (int i = 0;i < n;i++) v[i] = 2 * v[i] - 1;
  return v;
}</pre>
```

9.3 MCP

```
string mcp(string s) { //Duval algorithm for Lyndon
    factorization
s += s;
int n = s.size(), i = 0, ans = 0;
while (i < n/2) {
    ans = i;
    int j = i+1, k=i;
    while (j < n && s[k] <= s[j]) {
        if (s[k] < s[j]) k = i;
        else k++;
        j++;
    }
    while (i <= k) i += j - k;
}
return s.substr(ans, n/2);
}</pre>
```

9.4 Suffix Array

```
struct SuffixArray { //tested
  vector<int> sa, lcp, rank; //lcp[i] is lcp of sa[i] and
      sa[i-1]
  //sa[0] = s.size();
  SuffixArray(string& s, int lim=256) { // or basic_string
    int n = s.size() + 1, k = 0, a, b;
    vector<int> x(n, 0), y(n), ws(max(n, lim));
    rank.resize(n);
    for (int i = 0;i < n-1;i++) x[i] = (int)s[i];</pre>
    sa = lcp = y, iota(sa.begin(), sa.end(), 0);
    for (int j = 0, p = 0; p < n; j = max(1, j * 2), lim = 0
      p = j, iota(y.begin(), y.end(), n - j);
      for (int i = 0; i < n; i++) if (sa[i] >= j) y[p++] = sa
          [i] - j;
      for (int &i : ws) i = 0;
      for (int i = 0; i < n; i++) ws[x[i]]++;
      for (int i = 1;i < lim;i++) ws[i] += ws[i - 1];</pre>
      for (int i = n; i--;) sa[--ws[x[y[i]]]] = y[i];
      swap(x, y), p = 1, x[sa[0]] = 0;
      for(int i = 1; i < n; i++) a = sa[i - 1], b = sa[i], x[
        (y[a] == y[b] \&\& y[a + j] == y[b + j]) ? p - 1 : p
    for (int i = 1; i < n; i++) rank[sa[i]] = i;
    for (int i = 0, j; i < n - 1; lcp[rank[i++]] = k)</pre>
      for (k \&\& k--, j = sa[rank[i] - 1];
          s[i + k] == s[j + k]; k++);
};
```

9.5 Suffix Automaton

```
// from 8BQube
// at most 2n-1 states, 3n-4 edges
// to find longest common substring for multiple strings
    S_1, ..., S_k
// assign a special (distinct) character D_i to each string
// Let T = S_1 D_1 \dots S_k D_k, then build SAM of T
// answer is state with max length reachable to all D_i
const int maxn = 1000010:
struct SAM { //1 base
  vector<int> adj[maxn];
  int tot, root, lst, par[maxn], mx[maxn], fi[maxn], iter;
  //mx:maxlen of node, mx[par[i]]+1:minlen of node
  //fi: first endpos
  //corresponding substring of node can be found by fi and
  int nxt[maxn][33];
 int newNode() {
    int res = ++tot:
    fill(nxt[res], nxt[res] + 33, 0);
    par[res] = mx[res] = 0;
    fi[res] = iter;
   return res;
  void init() {
   tot = 0;
    iter = 0;
   root = newNode();
    par[root] = 0, mx[root] = 0;
    lst = root;
 void push(int c) {
    int p = lst;
    int np = newNode();
    mx[np] = mx[p] + 1;
    for (; p && nxt[p][c] == 0; p = par[p])
      nxt[p][c] = np;
    if (p == 0) par[np] = root;
      int q = nxt[p][c];
      if (mx[p] + 1 == mx[q]) par[np] = q;
```

```
else {
        int nq = newNode();
        mx[nq] = mx[p] + 1;
        for (int i = 0; i < 33; i++)
          nxt[nq][i] = nxt[q][i];
        par[nq] = par[q];
        fi[nq] = fi[q];
        par[q] = nq;
        par[np] = nq;
        for (; p && nxt[p][c] == q; p = par[p])
          nxt[p][c] = nq;
      }
    lst = np;
 void push(string str) {
    for (int i = 0; str[i]; i++) {
      iter++:
      push(str[i] - 'a' + 1);
  11 get_diff_strings(){
    11 \text{ tot} = 0:
    for(int i = 1; i <= tot; i++) tot += mx[i] - mx[par[i</pre>
        ]];
    return tot;
 bool in[maxn];
 int cnt[maxn]; //cnt is number of occurences of node
 void count() {
    for (int i = 1; i <= tot; ++i)</pre>
      ++in[par[i]];
    queue<int> q;
    for (int i = 1; i <= tot; ++i)</pre>
      if (!in[i]) q.push(i);
    while (!q.empty()) {
      int u = q.front();
      q.pop();
      cnt[par[u]] += cnt[u];
      if (!--in[par[u]])
        q.push(par[u]);
 }
} sam;
9.6 Z-value Algorithm
vector<int> z_function(string const& s) {
 int n = s.size();
  vector<int> z(n);
 for (int i = 1, l = 0, r = 0; i < n; i++) {
    if (i <= r) z[i] = min(r-i+1, z[i-l]);</pre>
    while (i + z[i] < n \&\& s[z[i]] == s[i+z[i]])
     z[i]++;
    if (i + z[i] - 1 > r)
      l = i, r = i + z[i] - 1;
 return z;
9.7
      Main Lorentz
vector<int> z_function(string const& s);
int get_z(vector<int> const& z, int i) {
 return (0 <= i && i < SZ(z)) ? z[i] : 0;
vector<pair<int, int>> rep;
void convert_to_rep(int shift, bool left, int cntr, int 1,
    int k1, int k2) {
  int lef = max(1, l-k2), rig = min(l, k1);
 int minl, maxl;
 if (left) {
```

rig = min(rig, 1-1);

```
minl = shift + cntr - rig, maxl = shift+cntr-lef;
  } else {
    minl = shift + cntr - l - rig + 1, maxl = shift + cntr
         - l - lef + 1;
  //left endpoint: [minl, maxl], length: 2*l
void find_rep(string s, int shift = 0) {
  int n = s.size();
  if (n == 1) return;
  int nu = n / 2;
  int nv = n - nu;
  string u = s.substr(0, nu);
  string v = s.substr(nu);
  string ru(u.rbegin(), u.rend());
  string rv(v.rbegin(), v.rend());
  find_rep(u, shift);
  find_rep(v, shift + nu);
  vector<int> z1 = z_function(ru);
  vector<int> z2 = z_function(v + '#' + u);
  vector<int> z3 = z function(ru + '#' + rv);
  vector<int> z4 = z_function(v);
  for (int cntr = 0; cntr < n; cntr++) {</pre>
    int 1, k1, k2;
    if (cntr < nu) {</pre>
      1 = nu - cntr;
      k1 = get_z(z1, nu - cntr);
      k2 = get_z(z2, nv + 1 + cntr);
    } else {
      l = cntr - nu + 1:
      k1 = get_z(z3, nu + 1 + nv - 1 - (cntr - nu));
      k2 = get_z(z4, (cntr - nu) + 1);
    if (k1 + k2 >= 1)
      convert_to_rep(shift, cntr < nu, cntr, 1, k1, k2);</pre>
  }
}
      AC Automaton
9.8
const int maxn = 300005, maxc = 26;
struct AC_Automaton { //1-base
  int nx[maxn][maxc], fl[maxn], cnt[maxn], pri[maxn], tot;
  //pri: bfs order of trie (0-base)
  int newnode() {
    tot++:
    fill(nx[tot], nx[tot] + maxc, -1);
    return tot;
  void init() { tot = 0, newnode(); }
  int input(string &s) { // return the end_node of string
    int X = 1;
    for (char c : s) {
      if (!~nx[X][c - 'a']) nx[X][c - 'a'] = newnode();
X = nx[X][c - 'a'];
    }
    return X;
  void make_fl() { //fail link
    queue<int> q;
    q.push(1), fl[1] = 0;
    for (int t = 0; !q.empty();) {
      int R = q.front();
      q.pop(), pri[t++] = R;
for (int i = 0; i < maxc; ++i)</pre>
        if (~nx[R][i]) {
          int X = nx[R][i], Z = fl[R];
          for (; Z && !~nx[Z][i];) Z = f1[Z];
           fl[X] = Z ? nx[Z][i] : 1, q.push(X);
    }
```

```
void get_v(string &s) {
    //number of times prefix appears in strings
   fill(cnt, cnt + tot+1, 0);
    for (char c : s) {
      while (X \&\& !\sim nx[X][c - 'a']) X = fl[X];
      X = X ? nx[X][c - 'a'] : 1, ++cnt[X];
   for (int i = tot-1; i > 0; --i)
      cnt[fl[pri[i]]] += cnt[pri[i]];
} ac;
```

Formula 10

10.1 Recurrences

If $a_n = c_1 a_{n-1} + \dots + c_k a_{n-k}$, and r_1, \dots, r_k are distinct roots of $x^k + c_1 x^{k-1} + \dots + c_k a_{n-k}$ $\cdots + c_k$, there are d_1, \ldots, d_k s.t.

$$a_n = d_1 r_1^n + \dots + d_k r_k^n.$$

Non-distinct roots r become polynomial factors, e.g. $a_n = (d_1n + d_2)r^n$.

10.2Geometry

10.2.1 Rotation Matrix

$$\begin{pmatrix}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{pmatrix}$$

- rotate 90°: $(x,y) \rightarrow (-y,x)$
- rotate -90° : $(x,y) \to (y,-x)$

10.2.2 Triangles

Side lengths: a, b, c

Semiperimeter: $p = \frac{a+b+c}{2}$

Area: $A = \sqrt{p(p-a)(p-b)(p-c)}$ Circumradius: $R = \frac{abc}{4A}$

Inradius: $r = \frac{A}{p}$

Length of median (divides triangle into two equal-area triangles): $m_a =$ $\frac{1}{2}\sqrt{2b^2+2c^2-a^2}$

Length of bisector (divides angles in two): $s_a = \sqrt{bc \left(1 - \left(\frac{a}{b+c}\right)^2\right)}$

Law of sines: $\frac{\sin\alpha}{a} = \frac{\sin\beta}{b} = \frac{\sin\gamma}{c} = \frac{1}{2R}$ Law of cosines: $a^2 = b^2 + c^2 - 2bc\cos\alpha$

Law of tangents: $\frac{a+b}{a-b} = \frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$

Incenter:

 $P_1 = (x_1, y_1), P_2 = (x_2, y_2), P_3 = (x_3, y_3)$ $s_1 = \overline{P_2 P_3}, s_2 = \overline{P_1 P_3}, s_3 = \overline{P_1 P_2}$ $s_1 P_1 + s_2 P_2 + s_3 P_3$

 $s_1 + s_2 + s_3$

Circumcenter:

 $P_0 = (0,0), P_1 = (x_1, y_1), P_2 = (x_2, y_2)$

 $x_c = \frac{1}{2} \times \frac{y_2(x_1^2 + y_1^2) - y_1(x_2^2 + y_2^2)}{y_2(x_1^2 + y_1^2) - y_1(x_2^2 + y_2^2)}$

 $x_c = \frac{1}{2} \times \frac{x_1 + x_1 y_2}{-x_2 y_1 + x_1 y_2}$ $y_c = \frac{1}{2} \times \frac{x_2 (x_1^2 + y_1^2) - x_1 (x_2^2 + y_2^2)}{-x_1 y_2 + x_2 y_1}$

Check if (x_0, y_0) is in the circumcircle:

$$\begin{vmatrix} x_1 - x_0 & y_1 - y_0 & (x_1^2 + y_1^2) - (x_0^2 + y_0^2) \\ x_2 - x_0 & y_2 - y_0 & (x_2^2 + y_2^2) - (x_0^2 + y_0^2) \\ x_3 - x_0 & y_3 - y_0 & (x_3^2 + y_3^2) - (x_0^2 + y_0^2) \end{vmatrix}$$

0: on edge, > 0: inside, < 0: outside

10.2.3 Quadrilaterals

With side lengths a, b, c, d, diagonals e, f, diagonals angle θ , area A and magic flux $F = b^2 + d^2 - a^2 - c^2$:

$$4A = 2ef \cdot \sin \theta = F \tan \theta = \sqrt{4e^2f^2 - F^2}$$

For cyclic quadrilaterals the sum of opposite angles is 180° , ef = ac + bd, and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}.$

10.2.4 Spherical coordinates

$$\begin{aligned} x &= r \sin \theta \cos \phi & r &= \sqrt{x^2 + y^2 + z^2} \\ y &= r \sin \theta \sin \phi & \theta &= a \cos(z/\sqrt{x^2 + y^2 + z^2}) \\ z &= r \cos \theta & \phi &= a \tan 2(y, x) \end{aligned}$$

10.2.5 Green's Theorem

$$\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{L^{+}} (Pdx + Qdy)$$

$$Area = \frac{1}{2} \oint_{L} x \ dy - y \ dx$$

Circular sector:

$$x = x_0 + r \cos \theta$$

$$y = y_0 + r \sin \theta$$

$$A = r \int_{\alpha}^{\beta} (x_0 + \cos \theta) \cos \theta + (y_0 + \sin \theta) \sin \theta \ d\theta$$

$$= r(r\theta + x_0 \sin \theta - y_0 \cos \theta)|_{\alpha}^{\beta}$$

10.2.6 Point-Line Duality

$$p = (a, b) \leftrightarrow p^* : y = ax - b$$

- $p \in l \iff l^* \in p^*$
- p_1, p_2, p_3 are collinear $\iff p_1^*, p_2^*, p_3^*$ intersect at a point
- p lies above $l \iff l^*$ lies above p^*
- lower convex hull \leftrightarrow upper envelope

10.3Trigonometry

$$\sinh x = \frac{1}{2}(e^x - e^{-x}) \qquad \cosh x = \frac{1}{2}(e^x + e^{-x})$$

$$\sin n\pi = 0 \qquad \cos n\pi = (-1)^n$$

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$\sin(2\alpha) = 2\cos \alpha \sin \alpha$$

$$\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha$$

$$= 2\cos^2 \alpha - 1$$

$$= 1 - 2\sin^2 \alpha$$

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha \sin \beta = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\sin \alpha \cos \beta = \frac{1}{2}(\sin(\alpha + \beta) + \sin(\alpha - \beta))$$

$$\cos \alpha \sin \beta = \frac{1}{2}(\sin(\alpha + \beta) - \sin(\alpha - \beta))$$

$$\cos \alpha \cos \beta = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

$$(V+W)\tan(\alpha-\beta)/2 = (V-W)\tan(\alpha+\beta)/2$$
 where V,W are lengths of sides opposite angles α,β .
$$a\cos x + b\sin x = r\cos(x-\phi)$$

$$a\sin x + b\cos x = r\sin(x+\phi)$$
 where $x = \sqrt{a^2 + b^2}, \phi = \tan^2(b,a)$

where $r = \sqrt{a^2 + b^2}$, $\phi = \operatorname{atan2}(b, a)$.

10.4 Derivatives/Integrals

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

$$\frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1 - x^{2}}} \qquad \frac{d}{dx} \arccos x = -\frac{1}{\sqrt{1 - x^{2}}}$$

$$\frac{d}{dx} \tan x = 1 + \tan^{2} x \qquad \frac{d}{dx} \arctan x = \frac{1}{1 + x^{2}}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \qquad \int x \sin ax = \frac{\sin ax - ax \cos ax}{a^{2}}$$

$$\int e^{-x^{2}} = \frac{\sqrt{\pi}}{2} \operatorname{erf}(x) \qquad \int xe^{ax} = \frac{e^{ax}}{a^{2}} (ax - 1)$$

$$\int \sin^{2}(x) = \frac{x}{2} - \frac{1}{4} \sin 2x \qquad \int \sin^{3} x = \frac{1}{12} \cos 3x - \frac{3}{4} \cos x$$

$$\int \cos^{2}(x) = \frac{x}{2} + \frac{1}{4} \sin 2x \qquad \int \cos^{3} x = \frac{1}{12} \sin 3x + \frac{3}{4} \sin x$$

$$\int x \sin x = \sin x - x \cos x \qquad \int x \cos x = \cos x + x \sin x$$

$$\int xe^{x} = e^{x}(x - 1) \qquad \int x^{2}e^{x} = e^{x}(x^{2} - 2x + 2)$$

$$\int x^2 \sin x = 2x \sin x - (x^2 - 2) \cos x$$

$$\int x^2 \cos x = 2x \cos x + (x^2 - 2) \sin x$$

$$\int e^x \sin x = \frac{1}{2} e^x (\sin x - \cos x)$$

$$\int e^x \cos x = \frac{1}{2} e^x (\sin x + \cos x)$$

$$\int x e^x \sin x = \frac{1}{2} e^x (x \sin x - x \cos x + \cos x)$$

$$\int x e^x \cos x = \frac{1}{2} e^x (x \sin x + x \cos x - \sin x)$$

10.5Sums

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c - 1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

Series 10.6

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots, (-\infty < x < \infty)$$