Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2020-21

Παραδείγματα ISA

(η βασική 32-bit αρχιτεκτονική RISC-V)

http://mixstef.github.io/courses/comparch/

Μ. Στεφανιδάκης

RISC-V RV32I R-type

Επιλογή πράξης

funct7	funct3	πράξη
0000000	000	ADD
0100000	000	SUB
0000000	001	SLL
0000000	010	SLT
0000000	011	SLTU
0000000	100	XOR
0000000	101	SRL
0100000	101	SRA
0000000	110	OR
0000000	111	AND

Παράδειγμα

RISC-V RV32I Load

31..20 19..15 14..12 11..7 6..0
offset[11:0] rs1 funct3 rd opcode

funct 3	μεταφορά
000	LB (8 bits)
001	LH (16 bits)
010	LW (32 bits)
100	LBU (8 bits)
101	LHU (16 bits)

εύρος μεταφοράς

0000011

 $rd \leftarrow mem[rs1 \pm offset]$

RISC-V RV32I Store

31..25 24..20 19..15 14..12 11..7 6..0

offs[11:5]	rs2	rs1	funct3	offs[4:0]	opcode

funct 3	μεταφορά
000	SB (8 bits)
001	SH (16 bits)
010	SW (32 bits)

εύρος μεταφοράς

0100011

$$rs2 \rightarrow mem[rs1 \pm offset]$$

RISC-V RV32I Branches

31	3025	2420	1915	1412	118	7	60
offs[12]	offs[10:5]	rs2	rs1	funct3	offs[4:1]	offs[11]	opcode

funct 3	σύγκριση (cmp)
000	BEQ (==)
001	BNE (!=)
100	BLT (<)
101	BGE (>=)
110	BLTU (<)
111	BGEU (>=)

pc
$$\leftarrow$$
 pc \pm offset if rs1 *cmp* rs2 is true

RISC-V RV32I Jump and link (JAL)

rd
$$\leftarrow$$
 pc + 4 (next instruction)
pc \leftarrow pc \pm offset

RISC-V RV32I Jump and link register (JALR)

rd
$$\leftarrow$$
 pc + 4 (next instruction)
pc \leftarrow rs1 \pm offset