7

Symmetric Matrices and Quadratic Forms

7.3

and

Engineers, economists, scientists, and mathematicians often need to find the maximum or minimum value of a quadratic form $Q(\mathbf{x})$ for \mathbf{x} in some specified set. Typically, the problem can be arranged so that x varies over the set of unit vectors. This constrained optimization problem has an interesting and elegant solution.

The requirement that a vector x in \mathbb{R}^n be a unit vector can be stated in several equivalent ways:

equivalent ways:
$$\|\mathbf{x}\| = 1$$
, $\|\mathbf{x}\|^2 = 1$, $\mathbf{x}^T \mathbf{x} = 1$

 $x_1^2 + x_2^2 + \dots + x_n^2 = 1$

The expanded version (1) of $\mathbf{x}^T \mathbf{x} = 1$ is commonly used in applications. When a quadratic form Q has no cross-product terms, it is easy to find the maximum and minimum of $Q(\mathbf{x})$ for $\mathbf{x}^T\mathbf{x} = 1$.

EXAMPLE 1 Find the maximum and minimum values of $Q(\mathbf{x}) = 9x_1^2 + 4x_2^2 + 3x_3^2$ subject to the constraint $\mathbf{x}^T \mathbf{x} = 1$. **SOLUTION** Since x_2^2 and x_3^2 are nonnegative, note that

 $=9(x_1^2+x_2^2+x_2^2)$

Solution since
$$x_2$$
 and x_3 are

$$4x_2^2 \le 9x_2^2 \qquad \text{and} \qquad 3x_3^2 \le 9x_3^2$$
 and hence

$$Q(\mathbf{x}) = 9x_1^2 + 4x_2^2 + 3x_3^2$$

$$\leq 9x_1^2 + 9x_2^2 + 9x_3^2$$

whenever
$$x_1^2 + x_2^2 + x_3^2 = 1$$
. So the maximum value of $Q(\mathbf{x})$ cannot exceed 9 when \mathbf{x} is a unit vector. Furthermore, $Q(\mathbf{x}) = 9$ when $\mathbf{x} = (1,0,0)$. Thus 9 is the maximum

value of $O(\mathbf{x})$ for $\mathbf{x}^T\mathbf{x} = 1$. To find the minimum value of $Q(\mathbf{x})$, observe that

To find the minimum value of
$$Q(\mathbf{x})$$
, observe that $9x_1^2 \ge 3x_1^2$, $4x_2^2 \ge 3x_2^2$

$$9x_1^2 \ge 3x_1^2, \qquad 4x_2^2 \ge 3x_2^2$$

and hence

nd hence
$$Q(\mathbf{x}) \ge 3x_1^2 + 3x_2^2 + 3x_3^2 = 3(x_1^2 + x_2^2 + x_3^2) = 3$$

whenever $x_1^2 + x_2^2 + x_3^2 = 1$. Also, $Q(\mathbf{x}) = 3$ when $x_1 = 0$, $x_2 = 0$, and $x_3 = 1$. So 3 is the minimum value of $Q(\mathbf{x})$ when $\mathbf{x}^T\mathbf{x} = 1$.

■ Theorem 6 Let A be a symmetric matrix, and define m and M as in (2):

$$m = \min\{\mathbf{x}^{T}A\mathbf{x}: ||\mathbf{x}||=1\} \text{ and } M = \max\{\mathbf{x}^{T}A\mathbf{x}: ||\mathbf{x}||=1\}$$
 (2)

- Then M is the greatest eigenvalue λ_1 of A and m is the least eigenvalue of A. The value of x^TAx is M when x is a unit eigenvector u_1 corresponding to M. The value of x^TAx is m when x is a unit eigenvector corresponding to m.
- **Proof** Orthogonally diagonalize *A* as *PDP*⁻¹. We know that

$$x^T A x = y^T D y$$
 when $x = P y$

Also,

$$||x|| = ||Py|| = ||y||$$
 for all y

- Because $P^TP = I$ and $||Py||^2 = (Py)^T(Py) = y^TP^TPy$ = $y^Ty = ||y||^2$. In particular, ||y|| = 1 if and only if ||x|| = 1. Thus, x^TAx and y^TDy assume the same set of values as x and y range over the set of all unit vectors.
- To simplify notation, suppose that A is a 3×3 matrix with eigenvalues $a \ge b \ge c$. Arrange the columns of P so that $P = [u_1 \ u_2 \ u_3]$ and

$$D = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$

Given any unit vector y in R³ with coordinates y₁, y₂, y₃, observe that

$$ay_1^2 = ay_1^2$$

 $by_2^2 \le ay_2^2$
 $cy_3^2 \le ay_3^2$

and obtain these inequalities:

$$y^{T}Dy = ay_{1}^{2} + by_{2}^{2} + cy_{3}^{2}$$

$$\leq ay_{1}^{2} + ay_{2}^{2} + ay_{3}^{2}$$

$$= a(y_{1}^{2} + y_{2}^{2} + y_{3}^{2}) = a||y||^{2} = a$$

■ Thus $M \le a$, by definition of M. However, $y^T D y = a$ when $y = e_1 = (1, 0, 0)$, so in fact M = a. By (3), the x that corresponds by $y = e_1$ is the eigenvector u_1 of A, because

$$x = Pe_1 = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = u_1$$

• Thus $M = a = e_1^T D e_1 = u_1^T A u_1$, which proves the statement about M. A similar argument shows that m is the least eigenvalue, c, and this value of $x^T A x$ is attained when $x = P e_3 = u_3$.

- Example 3 Let $A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 4 \end{bmatrix}$. Find the maximum value of the quadratic form $x^T A x$ subject to the constraint $x^T x = 1$, and find a unit vector at which this maximum value is attained.
- **Solution** By Theorem 6, the desired maximum value is the greatest eigenvalue of A. The characteristic equation turns out to be

$$0 = -\lambda^3 + 10\lambda^2 - 27\lambda + 18 = -(\lambda - 6)(\lambda - 3)(\lambda - 1)$$

- The greatest eigenvalue is 6.
- The constrained maximum of $x^{T}Ax$ is attained when x is a unit eigenvector for $\lambda = 6$. Solve (A 6I)x = 0 and find

an eigenvector
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
. Set $\mathbf{u}_1 = \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}$.

- Theorem 7 Let A, λ_1 , and u_1 be as in Theorem 6. Then the maximum value of x^TAx subject to the constraints $x^Tx = 1, x^Tu_1 = 0$
- is the second greatest eigenvalue λ_2 , and this maximum is attained when x is an eigenvector u_2 corresponding to λ_2 .
- Example 4 Find the maximum value of $9x_1^2 + 4x_2^2 + 3x_3^2$ subject to the constraints $x^Tx = 1$, and $x^Tu_1 = 0$, where $u_1 = (1, 0, 0)$. Note that u_1 is a unit eigenvector corresponding to the greatest eigenvalue $\lambda = 9$ of the matrix of the quadratic form.

• **Solution** If the coordinates of x are x_1 , x_2 , x_3 , then the constraint $x^Tu_1 = 0$ means simply that $x_1 = 0$. For such a unit vector, $x_2^2 + x_3^2 = 1$, and

$$9x_1^2 + 4x_2^2 + 3x_3^2 = 4x_2^2 + 3x_3^2$$

$$\leq 4x_2^2 + 4x_3^2$$

$$= 4(x_2^2 + x_3^2)$$

$$= 4$$

Thus the constrained maximum of the quadratic form does not exceed 4. And this value is attained for x = (0, 1, 0) which is the eigenvector for the second greatest eigenvalue of the matrix of the quadratic form.

■ **Theorem 8** Let A be a symmetric $n \times n$ matrix with an orthogonal diagonalization $A = PDP^{-1}$, where the entries on the diagonal of D are arranged so that $\lambda_1 \ge \lambda_2 \ge \cdots$ $\ge \lambda_n$ and where columns of P are corresponding unit eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_n$. Then for $k = 2, \ldots, n$, the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject to the constraints

$$x^T x = 1, x^T u_1 = 0, \qquad \dots, \qquad x^T u_{\underline{k-1}} = 0$$

• is the eigenvalue $\lambda_{\underline{k}}$, and this maximum is attained at $x = u_k$.