Fusarium Assemblies

Fusarium species assemblies in FASTA format are, as well as a list of assemblies and a *mimp* profile HMM are prepared as input.

Mimp identification

Each Fusarium assembly is searched for mimps using a custom python script (using mimp TIRs) and NHMMER (3.3.1) (using a mimp profile-HMM) to identify mimps.

Sequence Expansion

Sequences 2.5kb upstream and downstream of mimps identified using both approaches are extracted.

Gene Prediction

The extracted sequences are submitted to Augustus (3.3.3) for gene prediction with the "fusarium" species parameter selected.

Signal Peptide Filtering

SignalP (4.1) is used to find predicted genes with a signal peptide.

ORF identification

Getorf from Emboss (6.6.0.0) is used to find and extract open reading frames (ORFs).

ORF Parsing

Custom script is used to extract smaller ORFs from within the getorf output.

Signal Peptide Filtering

SignalP (4.1) is used to find ORFs with a signal peptide.

Non-redundant Protein Sets Generated

Predicted genes and ORFs with a signal peptide are clustered using CD-HIT (4.8.1) generating a non-redundant protein set for each assembly.

Putative Effectors Combined and Clustered

The non-redundant protein sets across all assemblies are combined into one FASTA and clustered using CD-HIT (4.8.1) (90% identity).

EffectorP Scan for Likely Effectors

The longest sequence from each cluster is then submitted to EffectorP (2.0.1) for fungal effector prediction.

Final Candidate Effectors Set Generated

A FASTA file containing the candidate effectors predicted across the Fusarium assemblies is produced.

Fusarium pan-effectorome

ling

Effector

Effector Search

The candidate effector FASTA is queried against the Fusarium assemblies using TBLASTN, with a cut-off 1e-6 and a percentage identity and coverage threshold of 70% and 90%, respectively.

Binary Data Matrix

Using the TBLASTN hist from within the threshold, a binary data matrix indicating presence ("1") or absence ("0") is generated for the candidate effectors across the FOSC assemblies.

Effector Profile Heatmap

An effector profile heatmap generated in R Studio (version 3.6.3), using the package Pheatmap (version 1.0.12).

Fusarium Assembly **Effector Profiles**

