10

15

20

25

CLAIMS

1. An electric motor movement controlling method, the electric motor being fed by a total voltage (V_T) proportional to a network voltage (V_{AC}) ,

the method being characterized by comprising the steps of:

- making a first measurement of level (V_{t10}) of the network voltage (V_{AC}) at a first moment of measurement ($t1_0$);
- making a second measurement of level (V₁₂₀) of the network voltage (V_{AC}) at a second moment of measurement (t2₀);
- calculating the value of the derivative of the voltage values measured in function of the first and second moments of measurement (t1₀, t2₀), to obtain a value of a proportional network voltage (V_{AC}'); and
- altering the value of the total voltage (V_T) fed to the motor, proportionally to the value of the proportional network voltage (V_{AC}).
- 2. A method according to claim 1, characterized in that the value of the total voltage (V_T) is altered in function of the difference between the value of the proportional network voltage (V_{AC}) calculated in a present cycle of the network voltage (V_{AC}) and the value of the proportional network voltage (V_{AC}) calculated in the previous cycle of the network voltage (V_{AC}).
- 3. A method according to claim 1, characterized in that the value of the total voltage (V_T) is altered in function of the difference between the value of the proportional network voltage (V_{AC}) calculated in a current semi-cycle of the network voltage (V_{AC}) and the value of the proportional network voltage (V_{AC}) calculated in the previous semi-cycle of the network voltage (V_{AC}).
- 4. A method according to claim 2 or 3, characterized in that the value of the proportional network voltage (V_{AC}) is obtained from the equation:

$$V_{AC'} = f \bigg(\frac{\partial V_0}{\partial t} \bigg)$$

30 wherein ∂V_0 is obtained by subtracting the first and second measurements of level (Vt₁₀, Vt₂₀), and the value of at is obtained by subtracting the values of

10

15

20

25

30

the first and second moments of measurement (t10, t20).

- 5. A method according to claim 3, characterized in that after the step of obtaining the value of proportional network voltage (V_{AC}') one foresees a step of:
- measuring the lag time (t_D) between the occurrence of the measurement of the first moment of measurement (t1₀) and the occurrence of the measurement of the second moment of measurement (t2₀),
 - comparing the lag time (t_D) with a pre-established time (t_P),
- altering the value of the total voltage (V_T) proportionally to the value of the proportional network voltage (V_{AC}), the value of proportional network voltage (V_{AC}) being proportional to the lag time (t_D), when the lag time (t_D) is different from a pre-established time (t_P).
- 6. A method according to claim 5, characterized in that the preestablished time corresponds to the lag time (t_D) of the previous cycle of the network voltage (V_{AC}).
- 7. A method according to claim 6, characterized in that the in the step of altering the total voltage (V_T) the elevation of the total voltage (V_T) if the lag time (t_D) is longer than the pre-established time (t_P) is foreseen.
- 8. A method according to claim 7, characterized in that in the step of altering the total voltage (V_T) the diminution of the total voltage (V_T) if the lag time (t_D) is shorter than the pre-established time (t_P) is foreseen.
- 9. A method according to claim 8, characterized in that the value of the total voltage (V_T) corresponds to a difference between the value of the piston voltage (V_P) and the value of the proportional network voltage (V_{AC}), the value of the piston voltage (V_P) being previously established.
- 10. A method according to claim 1, characterized in that the total voltage (V_T) feeds an electric motor of a compressor, the compressor comprising a piston.
- 11. An electric motor movement controlling method, the electric motor being fed by a total voltage (V_T) proportional to the network voltage (V_{AC}) , the method being characterized by comprising the steps of:
 - measuring the network voltage (VAC) at a first moment of meas-

urement (t1₀);

5

10

15

20

25

30

- measuring the network voltage (V_{AC}) at a second moment of measurement $(t2_0)$, the second moment of measurement $(t2_0)$ being different from the first moment of measurement $(t1_0)$ and the second measurement of the network voltage (V_{AC}) being carried out at a voltage level different from the level of the first measurement of the network voltage (V_{AC}) ,
- measuring a lag time (t_D) between the occurrence of the measurement of the first moment of measurement (t10) and the occurrence of the measurement of the second moment of measurement $(t2_0)$,
 - comparing the lag time (t_D) with the pre-established time (t_P),
- altering the value of the total voltage (V_T) proportionally to the value of the proportional network voltage (V_{AC}).
- 12. A method according to claim 11, characterized in that the pre-established time (t_P) corresponds to the leg time (t_D) of the previous cycle of the network voltage (V_{AC}).
- 13. A method according to claim 11, characterized in that the pre-established time (t_P) corresponds to a mean of lag times (t_D) of the previous cycles of the network voltage (V_{AC}).
- 14. A method according to any one of claims 12 or 13, characterized in that the value of the proportional network voltage (V_{AC}) is proportional to the lag time (t_D).
- 15. A method according to claim 14, characterized in that, in the step of altering the total voltage (V_T) , it is foreseen to raise the total voltage (V_T) if the lag time (t_D) is longer than the pre-established time (t_D) .
- 16. A method according to claim 15, characterized in that, in the step of altering the total voltage (V_T) , it is foreseen to lower the total voltage (V_T) if the lag time (t_D) is shorter than the pre-established time (t_P) .
- 17. A method according to claim 16, characterized in that the value of the total voltage (V_T) corresponds to a difference between the value of a piston voltage (V_P) and the value of the proportional network voltage (V_{AC}) , the value of the piston voltage (V_P) being previously established.
 - 18. An electric motor movement controlling system controlled by

10

15

20

25

30

an electronic control central (10), the system being characterized in that:

the electric motor is fed by a total voltage (V_T) controlled by the electronic control central (10), the total voltage (V_T) being proportional to a network voltage (V_{AC}) ,

the electronic control central (10) comprises a voltage detecting circuit (50), the voltage detecting circuit (50) detects the network voltage (V_{AC}) ,

the electronic control central (10) makes a first level measurement (V_{t10}) of the network voltage (V_{AC}) at a first moment of measurement ($t1_0$), and makes a second level measurement (V_{t20}) of the network voltage (V_{AC}) at a second moment of measurement (t20),

the electronic control central (10) calculates the value of the values of the network voltage (V_{AC}) measured in function of the measurement times ($t1_0$, $t2_0$) measured and obtains a value of a proportional network voltage (V_{AC}),

the electronic control central (10) altering the value of the total voltage (V_T) to a value of corrected total voltage (V_T) , proportionally to the value of the proportional network voltage (V_{AC}) .

- 19. A system according to claim 18, characterized in that the electronic control central (10) comprises a voltage detecting circuit (50) that measures the network voltage (V_{AC}) at the established level of voltage (V_0) at the first and second moments of measurement ($t1_0$, $t2_0$).
- 20. A system according to claim 19, characterized in that the first and second level measurements (Vt_{10} , Vt_{20}) are carried out, respectively, at a first level of the network voltage (V_{M1}) and at a second level of the network voltage (V_{M2}).
- 21. A system according to claim 20, characterized in that the voltage detecting circuit (50) comprises a first voltage detecting circuit (51) that detects the first level of the network voltage (V_{M1}).
- 22. A system according to claim 21, characterized in that the voltage detecting circuit (50) comprises a second voltage detecting circuit (52) that detects the second level of the network voltage (V_{M2}) .

10

15

20

25

30

- 23. A system according to claim 22, characterized in that the first voltage detecting circuit (51) is adjusted for measuring the first level of the network voltage (V_{M1}) at the time of the respective passage by a zero level.
- 24. A system according to claim 23, characterized ion that the second voltage detecting circuit (52) is adjusted for measuring the second level of the network voltage (V_{M2}), the second level of the network voltage (V_{M2}) being located between the zero level of the network voltage (V_{AC}) and a maximum level of the network voltage (V_{ACM}).
- 25. A system according to claim 24, characterized in that the electronic control central (10) measures a lag time (t_D) between the occurrence of the measurement of the first level of the network voltage (V_{M1}) and the occurrence of the measurement of the second level of the network voltage (V_{M2}), the measurements of the first and second levels of the network voltage (V_{M1} , V_{M2}) being carried out by the voltage detecting circuit (50), the electronic control central (10) comprising a time counting device that compares the lag time (t_D) with a pre-established time (t_P) and alters the total voltage (V_T) proportionally to the lag time (t_D).
- 26. A system according to claim 25, characterized in that the electronic control central (10) generates a value of a proportional network voltage (V_{AC}), value of voltage (V_{AC}) being proportional to the value of the lag time (t_D), and the electronic control circuit (10) altering the value of the total voltage (V_T) to a value of corrected total voltage (V_T) proportionally to the value of the proportional network voltage (V_{AC}) when the lag time (t_D) is different from the pre-established time (t_P).
- 27. A system according to claim 26, characterized in that the electronic control central (10) raises the value of the total voltage (V_T) to a value of corrected total voltage (V_T ') if the lag time (t_D) is longer than the preestablished time (t_P).
- 28. A system according to claim 27, characterized in that the electronic control central (10) lowers the value of the total voltage (V_T) to a value of corrected total voltage (V_T) if the lag time (t_D) is shorter than the preestablished time (t_P) .

10

15

- 29. A system according to claim 28, characterized in that the second voltage detecting circuit (51) signals the passage of the level of the network voltage (V_{AC}) in the second level of voltage (V_{M2}) through a voltage comparator (53), the voltage comparator (53) generating a square wave having a transition moment, the lag time (t_D) being measured between the occurrence of the first level of the network voltage (V_{M1}) and the transition moment.
- 30. A system according to claim 29, characterized in that the total voltage (V_{T}) feeds an electric motor of a compressor, the compressor comprising a piston,

the electronic control central (10) comprising a value of defined voltage (V_P), the defined voltage (V_P) being proportional to an error (E_{DP}) between a reference displacement position (DP_{REF}) and a maximum displacement (DP_{MAX}) of the piston,

the reference displacement position (DP_{REF}) being proportional to the position of the piston in the compressor, and

the maximum displacement (DP_{MAX}) being proportional to a desirable displacement of the piston in the compressor.

- 31. A system according to claim 30, characterized in that the signal generating circuit (50) comprise a D/A converter.
- 32. A compressor having a system characterized by comprising a system such as defined in claims 18 to 30.