Math 121: Hodge Theory

Sair Shaikh

April 24, 2025

Problem 1. Let $U \subset \mathbb{C}^n$ be a domain (i.e., a non-empty connected subset) and let $f: U \to \mathbb{C}$ be a holomorphic function.

- 1. Prove that f satisfies analytic continuation: if it vanishes on an open subset of U, then it vanishes everywhere.
- 2. Prove that f satisfies the maximum principle: if |f| admits a local maximum in U, then f is constant.
- 3. Let M be a compact complex manifold. Prove that any holomorphic function on M is constant.

Solution.

1. Let $V \subseteq U$ be open such that $f|_V \equiv 0$. Let G be the set of points in $z \in U$ such that f vanishes in a neighborhood of z. We want to show that G = U. We do this by showing that G is a non-empty clopen set.

By definition, G is a union of open sets, and thus, G is open.

Let $p \in V$ be arbitrary. Since U is open, and f is holomorphic, there exists an open ball $B_r(p) \subseteq U$ of radius r around p such that f has a convergent power series expansion around p:

$$f(z) = \sum_{\alpha \in \mathbb{N}^n} c_{\alpha} (z - p)^{\alpha}$$

where $\alpha = (\alpha_1, \dots, \alpha_n)$ is a multi-index, $(z-p)^{\alpha} = (z_1 - p_1)_1^{\alpha} \dots (z_n - p_n)_n^{\alpha}$ and $c_{\alpha} \in \mathbb{C}$. Moreover, since V is open, $B_r(p) \cap V \subseteq U$ is an open neighborhood of p such that f vanishes on it. Thus, we have that $c_{\alpha} = 0$ for all $\alpha \in \mathbb{N}^n$. Since $p \in V$ was arbitrary, $V \subseteq G$. Thus, G is non-empty.

To show that G is closed, let $(w_n) \in G$ be a sequence that converges to $w \in U$. Let B be a small open ball around w and consider the power series expansion of f around w in B. We have:

$$f(z) = \sum_{\alpha \in \mathbb{N}^n} c_{\alpha} (z - w)^{\alpha}$$

If all $c_{\alpha} = 0$, we are done. Otherwise, there exists, some minimum α' (with dictionary order) such that $c_{\alpha} \neq 0$. Then, $(z-w)^{\alpha'}$ is a factor of every other non-zero term (since we picked the dictionary order). Thus, we can write:

$$f(z) = c_{\alpha'}(z - w)^{\alpha'}(1 + g(z - w))$$

where $g \to 0$ as $z \to w$. Moroever, we know that eventually $(w_k) \in B$. Since $w_k \neq w$, we have that $(z - w)^{\alpha'} \neq 0$ and $(1 + g(z - w)) \neq 0$. Thus, $f(w_k) \neq 0$, which is a contradiction. Thus, no such α' exists and f(z) = 0 on all of B. Thus, $w \in G$ and G is closed.

Since G is a non-empty open and closed subset of U, and U is connected, we have that G = U. Thus, f vanishes everywhere.

2. Note that we showed the result for $U \subset \mathbb{C}$ in class (using the Cauchy formula in polar form). Assume |f| has a local maximum at $(a_1, \dots, a_n) \in U$. Then, there exists a poly-disk $D = D_1 \times \dots \times D_n$ such that for $p \in D$, we have:

$$|f(p)| \le |f(a_1, \cdots, a_n)|$$

We need to show that for any $(z_1, \dots, z_n) \in D$, we have $f(z_1, \dots, z_n) = f(a_1, \dots, a_n)$.

Consider the function $f_1: \mathbb{C} \to \mathbb{C}$ defined as:

$$f_1(z) = f(z, a_2, \cdots, a_n)$$

Then, $f_1(z)$ attains a maximum on D_1 at a_1 . Thus, by the result in the single-variable case, f_1 is constant on D_1 . Thus, we have:

$$f(z_1, a_2, \cdots, a_n) = f(a_1, \cdots, a_n)$$

and $f(z_1, a_2, \dots, a_n)$ is a local minimum. Thus, we can repeat this process n times to get:

$$f(z_1, z_2, \cdots, z_n) = f(a_1, a_2, \cdots, a_n)$$

Thus, f is constant on an open subset D. Then, we can define $g:U\to\mathbb{C}$ by letting it be:

$$g(z) = f(z) - f(a_1, \cdots, a_n)$$

Then this function is vanishes on D, thus, by the previous part, vanishes on U. Thus, f is constant on U.

3. Let $f: M \to \mathbb{C}$ be a holomorphic function. Since f is holomorphic, it is continuous. Moreover, $|f|: M \to \mathbb{R}$ is also continuous. Since M is compact, |f| attains a maximum at some point $p \in M$.

Let $\{(U_i, \phi_i)\}_{i=1}^n$ be a cover of charts (we can pick finite as M is compact). Then $p \in U_i$ for some i. Then, we have that $f \circ \phi_i^{-1} : \phi_i(U_i) \to \mathbb{C}$ attains a maximum at $\phi_i(p)$. Thus, by the previous part, $f \circ \phi_i^{-1}$ is constant on $\phi_i(U_i)$. Thus, f is constant on U_i (as ϕ^{-1} is bijective).

Then, using part 1), and assuming that M is connected, we can prove that f is constant on all of M, propagating via open intersections of chart domains.

Problem 2.

- 1. Show that the assignment $L \mapsto (L_{\mathbb{R}}, \operatorname{mult}(i))$ gives an equivalence between the category of complex vector spaces and the category of pairs (V, J), where V is a real vector space, $J: V \to V$ is an \mathbb{R} -linear operator satisfying $J^2 = -\operatorname{Id}_{L_{\mathbb{R}}}$, and a morphism $(V, J) \to (W, K)$ is defined as an \mathbb{R} -linear map $f: V \to W$ that intertwines J and K, i.e., such that $K \circ f = f \circ J$.
- 2. Let (V, J) be a pair as above:
 - (a) Let $\iota: v \mapsto v$ be the \mathbb{R} -linear automorphism of $V \otimes_{\mathbb{R}} \mathbb{C}$ induced from conjugation on the second factor. Show that V, seen inside $V \otimes_{\mathbb{R}} \mathbb{C}$ via $v \mapsto v \otimes 1$, is isomorphic to the fixed locus of ι .
 - (b) By diagonalizing J over $V \otimes_{\mathbb{R}} \mathbb{C}$, show that we have a decomposition $V_{\mathbb{C}} = W \oplus \bar{W}$ where J acts on W by multiplication by i and $\bar{W} = \iota(W)$.
 - (c) Show that the projection map $V \to W$ is an \mathbb{R} -linear isomorphism that intertwines J and multiplication by i on W.
 - (d) Each element $v \in V_{\mathbb{C}}$ can be written as $v = v_1 + v_2$ along the above decomposition. Show that $v \in V$ if and only if $v_2 = \bar{v}_1$.

Problem 3. Let E, F be real vector spaces and let G be a complex vector space, all finite-dimensional.

- 1. Show that $E \otimes_{\mathbb{R}} G$ admits a natural structure of a complex vector space. Construct a basis in terms of bases of E and G. Show that $E \otimes_{\mathbb{R}} G = (E \otimes_{\mathbb{R}} \mathbb{C}) \otimes_{\mathbb{C}} G$.
- 2. Show that $\operatorname{Hom}_{\mathbb{R}}(E,G) = \operatorname{Hom}_{\mathbb{C}}(E \otimes \mathbb{C},G)$.
- 3. Show that

$$(E \oplus F) \otimes_{\mathbb{R}} \mathbb{C} = (E \otimes_{\mathbb{R}} \mathbb{C}) \oplus (F \otimes_{\mathbb{R}} \mathbb{C}), \quad (E \otimes_{\mathbb{R}} F) \otimes_{\mathbb{R}} \mathbb{C} = (E \otimes_{\mathbb{R}} \mathbb{C}) \otimes_{\mathbb{C}} (F \otimes_{\mathbb{R}} \mathbb{C})$$

and

$$\Lambda^n E \otimes_{\mathbb{R}} \mathbb{C} = \Lambda^n (E \otimes_{\mathbb{R}} \mathbb{C}).$$

4. Let $f: E \to F$ be a linear map and let $f_{\mathbb{C}} = f \otimes_{\mathbb{R}} \mathbb{C} : E \otimes_{\mathbb{R}} \mathbb{C} \to F \otimes_{\mathbb{R}} \mathbb{C}$ be the induced map. Show that

$$\ker(f_{\mathbb{C}}) = \ker(f) \otimes_{\mathbb{R}} \mathbb{C}, \quad \operatorname{Im}(f_{\mathbb{C}}) = \operatorname{Im}(f) \otimes_{\mathbb{R}} \mathbb{C}.$$

Solution.

1. Let $e \in E$ and $g \in G$. Then, we define the scalar multiplication by $z \in \mathbb{C}$ by using the complex structure of G:

$$z \cdot (e \otimes g) = e \otimes zg$$

and extend linearly. For $z \in \mathbb{R}$, this definition respects the tensor product over \mathbb{R} as:

$$z \cdot (e \otimes g) = e \otimes zg = ze \otimes g$$

If $\{e_i\}_i$ is a basis of E and $\{g_j\}_j$ is a basis of G, then the set $\{e_i \otimes_{\mathbb{R}} g_j\}_{i,j}$ is a \mathbb{R} -linear basis of $E \otimes_{\mathbb{R}} G$ (before we introduce the complex structure). With respect to the complex structure, note that this set is \mathbb{C} -linearly independent as if:

$$\sum_{i,j} z_{ij} (e_i \otimes g_j) = 0$$

then,

$$\sum_{i,j} e_i \otimes z_{ij} g_j = 0$$

which contradicts the \mathbb{R} -linear independence of $\{e_i \otimes_{\mathbb{R}} g_j\}_{i,j}$. Moreover, the set clearly \mathbb{C} -spans $E \otimes_{\mathbb{R}} G$ as it \mathbb{R} -spans it. Thus, the set is a \mathbb{C} -linear basis of $E \otimes_{\mathbb{R}} G$.

Next, we define the homomorphisms $\Phi : E \otimes_{\mathbb{R}} G \to (E \otimes_{\mathbb{R}} \mathbb{C}) \otimes_{\mathbb{C}} G$ and $\Psi : (E \otimes_{\mathbb{R}} \mathbb{C}) \otimes_{\mathbb{C}} G \to E \otimes_{\mathbb{R}} G$ as follows:

$$\Phi(e \otimes g) = (e \otimes_{\mathbb{R}} 1) \otimes_{\mathbb{C}} g$$

$$\Psi((e \otimes_{\mathbb{R}} z) \otimes_{\mathbb{C}} g) = e \otimes_{\mathbb{R}} zg$$

and extending linearly. We show that these are inverses as follows:

$$\Psi \circ \Phi((e \otimes_{\mathbb{R}} g)) = \Psi((e \otimes_{\mathbb{R}} 1) \otimes_{\mathbb{C}} g)$$

$$= e \otimes_{\mathbb{R}} g$$

$$\Phi \circ \Psi((e \otimes_{\mathbb{R}} z) \otimes_{\mathbb{C}} g) = \Phi(e \otimes_{\mathbb{R}} zg)$$

$$= (e \otimes_{\mathbb{R}} 1) \otimes_{\mathbb{C}} zg$$

$$= z \cdot (e \otimes_{\mathbb{R}} 1) \otimes_{\mathbb{C}} g$$

$$= (e \otimes_{\mathbb{R}} z) \otimes_{\mathbb{C}} g$$

where we use the same natural complex structure on $E \otimes_{\mathbb{R}} \mathbb{C}$. Thus, Φ and Ψ are inverses. Thus,

$$E \otimes_{\mathbb{R}} G \cong (E \otimes_{\mathbb{R}} \mathbb{C}) \otimes_{\mathbb{C}} G$$

2. We show this by constructing the linear maps $\Phi : \operatorname{Hom}_{\mathbb{R}}(E,G) \to \operatorname{Hom}_{\mathbb{C}}(E \otimes_{\mathbb{R}} \mathbb{C},G)$ and $\Psi : \operatorname{Hom}_{\mathbb{C}}(E \otimes_{\mathbb{R}} \mathbb{C},G) \to \operatorname{Hom}_{\mathbb{R}}(E,G)$ as follows, for $f \in \operatorname{Hom}_{\mathbb{R}}(E,G)$ and $g \in \operatorname{Hom}_{\mathbb{C}}(E \otimes_{\mathbb{R}} \mathbb{C},G)$:

$$\Phi(f)(e \otimes_{\mathbb{R}} z) = zf(e) \in G$$

$$\Psi(g)(e) = g(e \otimes_{\mathbb{R}} 1) \in G$$

and extending linearly. We show that $\Phi(g)$ is \mathbb{C} -linear and $\Psi(g)$ is \mathbb{R} -linear.

$$\Phi(f)(z \cdot e_1 \otimes_{\mathbb{R}} z_1 + e_2 \otimes_{\mathbb{R}} z_2) = \Phi(f)(e_1 \otimes_{\mathbb{R}} z_2 + e_2 \otimes_{\mathbb{R}} z_2)
= zz_1 f(e_1) + z_2 f(e_2)
= z \cdot \Phi(f)(e_1 \otimes_{\mathbb{R}} z_1) + \Phi(f)(e_2 \otimes_{\mathbb{R}} z_2)$$

Thus, $\Phi(f)$ is \mathbb{C} -linear.

$$\Psi(g)(ze_1 + e_2) = g((ze_1 + e_2) \otimes_{\mathbb{R}} 1)$$

= $g((e_1 \otimes_{\mathbb{R}} z) + (e_2 \otimes_{\mathbb{R}} 1))$
= $\Phi(g)(ze_1) + \Phi(g)(e_2)$

Thus, $\Psi(g)$ is \mathbb{R} -linear. Finally, we wanna show that Φ and Ψ are inverses, for $e \in E$ and $z \in \mathbb{C}$.

$$\Psi(\Phi(f))(e) = \Phi(f)(e \otimes_{\mathbb{R}} 1)$$

$$= f(e)$$

$$\Phi(\Psi(g))(e \otimes_{\mathbb{R}} z) = z\Psi(g)(e)$$

$$= zg(e \otimes_{\mathbb{R}} 1)$$

$$= g(e \otimes_{\mathbb{R}} z)$$

Thus, Φ and Ψ are inverses. Thus, we have the isomorphism:

$$\operatorname{Hom}_{\mathbb{R}}(E,G) \cong \operatorname{Hom}_{\mathbb{C}}(E \otimes_{\mathbb{R}} \mathbb{C},G)$$

- 3. We do this by constructing explicit maps.
 - Let $e \in E$, $f \in F$ and $z \in \mathbb{C}$. Define the two maps:

$$\Phi: (E \oplus F) \otimes_{\mathbb{R}} \mathbb{C} \to (E \otimes_{\mathbb{R}} \mathbb{C}) \oplus (F \otimes_{\mathbb{R}} \mathbb{C})$$

$$(e, f) \otimes_{\mathbb{R}} z \mapsto (e \otimes_{\mathbb{R}} z, f \otimes_{\mathbb{R}} z)$$

$$\Psi: (E \otimes_{\mathbb{R}} \mathbb{C}) \oplus (F \otimes_{\mathbb{R}} \mathbb{C}) \to (E \oplus F) \otimes_{\mathbb{R}} \mathbb{C}$$

$$(e \otimes z_{1}, f \otimes z_{2}) \mapsto (e, 0) \otimes_{\mathbb{R}} z_{1} + (0, f) \otimes_{\mathbb{R}} z_{2}$$

and extend linearly. We show that these are inverses as follows:

$$\Phi \circ \Psi(e \otimes_{\mathbb{R}} z_1, f \otimes_{\mathbb{R}} z_2) = \Phi((e, 0) \otimes_{\mathbb{R}} z_1 + (0, f) \otimes_{\mathbb{R}} z_2)$$

$$= \Phi((e, 0) \otimes_{\mathbb{R}} z_1) + \Phi((0, f) \otimes_{\mathbb{R}} z_2)$$

$$= (e \otimes_{\mathbb{R}} z_1, 0) + (0, f \otimes_{\mathbb{R}} z_2)$$

$$= (e \otimes_{\mathbb{R}} z_1, f \otimes_{\mathbb{R}} z_2)$$

$$\Psi \circ \Phi((e, f) \otimes_{\mathbb{R}} z) = \Psi(e \otimes_{\mathbb{R}} z, f \otimes_{\mathbb{R}} z)$$

$$= (e, 0) \otimes_{\mathbb{R}} z + (0, f) \otimes_{\mathbb{R}} z$$

$$= (e, f) \otimes_{\mathbb{R}} z$$

Thus, Φ and Ψ are inverses. Thus, we have the isomorphism:

$$(E \oplus F) \otimes_{\mathbb{R}} \mathbb{C} \cong (E \otimes_{\mathbb{R}} \mathbb{C}) \oplus (F \otimes_{\mathbb{R}} \mathbb{C})$$

• Let $e \in E$, $f \in F$ and $z \in \mathbb{C}$. Note that a simple tensor in $(E \otimes_{\mathbb{R}} \mathbb{C}) \otimes_{\mathbb{C}} (F \otimes_{\mathbb{R}} \mathbb{C})$ is $(e \otimes_{\mathbb{R}} z) \otimes_{\mathbb{C}} (f \otimes_{\mathbb{R}} 1)$ as we are tensoring over \mathbb{C} . Define the two maps:

$$\Phi: (E \otimes_{\mathbb{R}} F) \otimes_{\mathbb{R}} \mathbb{C} \to (E \otimes_{\mathbb{R}} \mathbb{C}) \otimes_{\mathbb{C}} (F \otimes_{\mathbb{R}} \mathbb{C})$$

$$e \otimes f \otimes_{\mathbb{R}} z \mapsto (e \otimes_{\mathbb{R}} z) \otimes_{\mathbb{C}} (f \otimes_{\mathbb{R}} 1)$$

$$\Psi: (E \otimes_{\mathbb{R}} \mathbb{C}) \otimes_{\mathbb{C}} (F \otimes_{\mathbb{R}} \mathbb{C}) \to (E \otimes F) \otimes_{\mathbb{R}} \mathbb{C}$$

$$(e \otimes z) \otimes (f \otimes 1) \mapsto e \otimes_{\mathbb{R}} f \otimes_{\mathbb{R}} z$$

and extend linearly. We show that these are inverses as follows:

$$\Phi \circ \Psi((e \otimes_{\mathbb{R}} z) \otimes_{\mathbb{C}} (f \otimes_{\mathbb{R}} 1)) = \Phi(e \otimes_{\mathbb{R}} f \otimes_{\mathbb{R}} z)$$

$$= (e \otimes_{\mathbb{R}} z) \otimes_{\mathbb{C}} (f \otimes_{\mathbb{R}} 1)$$

$$\Psi \circ \Phi(e \otimes_{\mathbb{R}} f \otimes_{\mathbb{R}} z) = \Psi(e \otimes_{\mathbb{R}} z) \otimes_{\mathbb{C}} (f \otimes_{\mathbb{R}} 1)$$

$$= e \otimes_{\mathbb{R}} f \otimes_{\mathbb{R}} z$$

Thus, Φ and Ψ are inverses. Thus, we have the isomorphism:

$$(E \otimes_{\mathbb{R}} F) \otimes_{\mathbb{R}} \mathbb{C} \cong (E \otimes_{\mathbb{R}} \mathbb{C}) \otimes_{\mathbb{C}} (F \otimes_{\mathbb{R}} \mathbb{C})$$

• Let $e_1, \dots, e_n \in E$ and $z_1, \dots, z_n \in \mathbb{C}$. Assuming that $\bigwedge^n (E \otimes_{\mathbb{R}} \mathbb{C})$ is wedging over \mathbb{C} . Define the two maps:

$$\Phi: \bigwedge^{n} E \otimes_{\mathbb{R}} \mathbb{C} \to \bigwedge^{n} (E \otimes_{\mathbb{R}} \mathbb{C})$$

$$e_{1} \wedge \cdots \wedge e_{n} \otimes_{\mathbb{R}} z_{1} \mapsto (e_{1} \otimes_{\mathbb{R}} z_{1}) \wedge (e_{2} \otimes_{\mathbb{R}} 1) \wedge \cdots \wedge (e_{n} \otimes_{\mathbb{R}} 1)$$

$$\Psi: \bigwedge^{n} (E \otimes_{\mathbb{R}} \mathbb{C}) \to \bigwedge^{n} E \otimes_{\mathbb{R}} \mathbb{C}$$

$$(e_{1} \otimes_{\mathbb{R}} z_{1}) \wedge \cdots \wedge (e_{n} \otimes_{\mathbb{R}} z_{n}) \mapsto e_{1} \wedge \cdots \wedge e_{n} \otimes_{\mathbb{R}} z_{1} \cdots z_{n}$$

and extend linearly. We show that these are inverses as follows:

$$\Phi \circ \Psi((e_1 \otimes_{\mathbb{R}} z_1) \wedge \cdots \wedge (e_n \otimes_{\mathbb{R}} z_n)) = \Phi(e_1 \wedge \cdots \wedge e_n \otimes_{\mathbb{R}} z_1 \cdots z_n)$$

$$= (e_1 \otimes_{\mathbb{R}} z_1 \cdots z_n) \wedge (e_2 \otimes_{\mathbb{R}} 1) \wedge \cdots \wedge (e_n \otimes_{\mathbb{R}} 1)$$

$$= (e_1 \otimes_{\mathbb{R}} z_1) \wedge \cdots \wedge (e_n \otimes_{\mathbb{R}} z_n)$$

$$\Psi \circ \Phi(e_1 \wedge \cdots \wedge e_n \otimes_{\mathbb{R}} z_1) = \Psi((e_1 \otimes_{\mathbb{R}} z_1) \wedge (e_2 \otimes_{\mathbb{R}} 1) \wedge \cdots \wedge (e_n \otimes_{\mathbb{R}} 1))$$

$$= e_1 \wedge \cdots \wedge e_n \otimes_{\mathbb{R}} z_1$$

Thus, Φ and Ψ are inverses. Thus, we have the isomorphism:

$$\bigwedge^{n} E \otimes_{\mathbb{R}} \mathbb{C} \cong \bigwedge^{n} (E \otimes_{\mathbb{R}} \mathbb{C})$$

4. Let $e \in \ker(f)$. Then, for any $e \otimes_{\mathbb{R}} z \in \ker(f) \otimes_{\mathbb{R}} \mathbb{C}$, we have:

$$f_{\mathbb{C}}(e \otimes_{\mathbb{R}} z) = f(e) \otimes_{\mathbb{R}} z = 0 \otimes_{\mathbb{R}} z = 0$$

Thus, $e \otimes_{\mathbb{R}} z \in \ker(f_{\mathbb{C}})$ for any $z \in \mathbb{C}$. Thus, $\ker(f) \otimes \mathbb{C} \subseteq \ker(f_{\mathbb{C}})$.

Similarly, let $e \otimes_{\mathbb{R}} z \in \ker(f_{\mathbb{C}})$. If z = 0, then, $e \otimes_{\mathbb{R}} z = 0 \otimes 0$ and $0 \in \ker(f)$. Thus, assume $z \neq 0$. Then, $f_{\mathbb{C}}(e \otimes_{\mathbb{R}} z) = 0$ implies that $f(e) \otimes_{\mathbb{R}} z = 0$. Since $z \neq 0$, we have f(e) = 0. Thus, $e \in \ker(f)$. Thus, $\ker(f_{\mathbb{C}}) \subseteq \ker(f) \otimes_{\mathbb{R}} \mathbb{C}$. Hence, we conclude $\ker(f_{\mathbb{C}}) = \ker(f) \otimes_{\mathbb{R}} \mathbb{C}$.

Let $p \in \operatorname{img}(f)$. Then, there exists $e \in E$ such that f(e) = p. Then, we have $f_{\mathbb{C}}(e \otimes_{\mathbb{R}} z) = f(e) \otimes_{\mathbb{R}} z = p \otimes_{\mathbb{R}} z$. Thus, $\operatorname{img}(f) \otimes_{\mathbb{R}} \mathbb{C} \subseteq \operatorname{img}(f_{\mathbb{C}})$.

Conversely, let $p \otimes_{\mathbb{R}} z \in \operatorname{img}(f_{\mathbb{C}})$. Then, there exists $e \otimes_{\mathbb{R}} z' \in E \otimes_{\mathbb{R}} \mathbb{C}$ such that $f_{\mathbb{C}}(e \otimes_{\mathbb{R}} z') = p \otimes_{\mathbb{R}} z$. Then, by the definition of $f_{\mathbb{C}}$, we have z = z' and p = f(e). Thus, $p \in \operatorname{img}(f)$. Thus, $\operatorname{img}(f_{\mathbb{C}}) \subseteq \operatorname{img}(f) \otimes_{\mathbb{R}} \mathbb{C}$. Hence, we conclude $\operatorname{img}(f_{\mathbb{C}}) = \operatorname{img}(f) \otimes_{\mathbb{R}} \mathbb{C}$.

Problem 4. Let $U \subset \mathbb{C}$ be an open subset and let $D \subset \Omega$ be a closed disk.

1. Let $f: U \to \mathbb{C}$ be a \mathcal{C}^1 function. Show that for all $z \in D$, we have:

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(\xi)}{\xi - z} d\xi + \frac{1}{2\pi i} \int_{D} \frac{\partial f}{\partial \bar{z}}(\xi) \frac{d\xi \wedge d\bar{\xi}}{\xi - z}.$$

Hint: Apply Stokes' theorem to $\frac{f(\xi)}{\xi-z}d\xi$ on $D\setminus B(z,\varepsilon)$ and let $\varepsilon\to 0$.

2. Let g be a \mathcal{C}^1 function on $\mathbb C$ with compact support and define

$$f(z) = \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{g(\xi)}{\xi - z} d\xi \wedge d\bar{\xi}.$$

Show that f is C^1 and $\frac{\partial f}{\partial \bar{z}} = g$. Hint: Differentiate under the integral sign after substituting $\xi' = \xi - z$.

- 3. Show that for any function g on U which is \mathcal{C}^1 , there exists a function f on U, also \mathcal{C}^1 , such that $\frac{\partial f}{\partial \bar{z}} = g$ on D.
- 4. In the previous question, show that if g is \mathcal{C}^{∞} , then f can also be chosen to be \mathcal{C}^{∞} .

Problem 5. Let E and F be two holomorphic vector bundles on a complex manifold X. Given an open cover $\{U_{\alpha}\}$ of X that trivializes E, the vector bundle E is described on overlaps $U_{\alpha} \cap U_{\beta}$ by holomorphic transition functions:

$$\rho_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \mathrm{GL}_n(\mathbb{C}).$$

- 1. Prove the cocycle condition: $\rho_{\alpha\gamma} = \rho_{\beta\gamma} \circ \rho_{\alpha\beta}$.
- 2. Let E' be the quotient of $\bigsqcup_{\alpha} U_{\alpha} \times \mathbb{C}^n$ by the equivalence relation on $U_{\alpha} \cap U_{\beta} \times \mathbb{C}^n$ given by

$$(x, v) \sim (x, \rho_{\alpha\beta}(x)(v)).$$

Prove that E' is a holomorphic vector bundle and that it is isomorphic to E as vector bundles over X, i.e., there exists a biholomorphism $f: E \to E'$ commuting with projection to X.

- 3. Conversely, assume that E and F are isomorphic as holomorphic vector bundles. How are their transition functions related?
- 4. Using the transition maps of E and F, construct the following vector bundles by writing down explicitly their transition functions: $E \otimes_{\mathbb{C}} F$, $E \oplus F$, $\Lambda^n E$.

Solution.

1. Let $\{U_{\alpha}\}$ be an open cover of X that trivializes E, with respective maps $\tau_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{C}^n$. Then, note that $\rho_{\alpha\beta} : \tau_{\alpha}(\pi^{-1}(U_{\alpha} \cap U_{\beta})) \to U_{\beta} \times \mathbb{C}^n$ is given by:

$$\rho_{\alpha\beta} = \tau_{\beta} \circ \tau_{\alpha}^{-1}$$

with others defined similarly. Let $x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$ and $E_x = \pi^{-1}(a)$ be the fiber over x in E. Then, we calculate:

$$\rho_{\beta\gamma} \circ \rho_{\alpha\beta}(E_x) = \tau_{\gamma} \circ \tau_{\beta}^{-1} \circ \tau_{\beta} \circ \tau_{\alpha}^{-1}(E_x)$$
$$= \tau_{\gamma} \circ \tau_{\alpha}^{-1}(E_x)$$
$$= \rho_{\alpha\gamma}(E_x)$$

Thus, the cocycle condition holds on every such fiber. Thus, it holds in general. We can also realize this by picking a basis for the image of E_x in each trivialization, and noticing that ρ are just change of basis matrices, which satisfy the cocycle condition.

2. We first check that E' is a holomorphic vector bundle. We write an element of E' as (x, [v]), for $x \in U_{\alpha}$, where [v] is the equivalence class of $\{\rho_{\alpha\beta}(v) : x \in U_{\beta}\}$.

Defining $\pi'(x, [v]) = x$, we note that the projection π' is clearly well-defined and can be made holomorphic by inheriting the holomorphic structure from the base space.

Furthermore, we define the trivialization maps $\tau'_{\beta}: \pi'^{-1}(U_{\beta}) \to U_{\beta} \times \mathbb{C}^{n}$ as follows:

$$\tau'_{\beta}(x, [v]) = (x, v)$$

where v is the representative of [v] such that $(x,v) \in U_{\beta} \times \mathbb{C}^n$. Then, $\tau_{\beta}^{\prime-1}$ is given by taking the equivalence class:

$$\tau_{\beta}^{\prime-1}(x,v)=(x,[v])$$

Thus, the transition maps $\rho'_{\alpha\beta}$ are given by, for $x \in U_{\alpha} \cap U_{\beta}$:

$$\rho'_{\alpha\beta}(x,v) = \tau'_{\beta} \circ \tau'^{-1}_{\alpha}(x,v)$$

$$= (x, [v]))$$

$$= (x, [\rho_{\alpha\beta}(v)])$$

$$= (x, \rho_{\alpha\beta}(v))$$

Thus, the transition functions $\rho'_{\alpha\beta}$ are holomorphic as $\rho_{\alpha\beta}$ are holomorphic. Thus, E' is a holomorphic vector bundle.

Next, to show that E' is isomorphic to E as a vector bundle, we need to find a biholomorphism $f: E \to E'$ that respects the fibers. We can define f as follows: for $x \in U_{\alpha}$, and $\epsilon \in \pi^{-1}(x) = E_x$,

$$f(\epsilon) = \tau_{\alpha}^{\prime - 1} \circ \tau_{\alpha}(\epsilon)$$

To see that f is well-defined, let $x \in U_{\alpha} \cap U_{\beta}$. Then, we have:

$$f(\epsilon) = \tau_{\alpha}^{\prime - 1} \circ \tau_{\alpha}(\epsilon)$$

$$= \tau_{\alpha}^{\prime - 1}(x, v)$$

$$= (x, [v])$$

$$= (x, [\rho_{\alpha\beta}(v)])$$

$$= \tau_{\beta}^{\prime - 1}(x, \rho_{\alpha\beta}(v))$$

$$= \tau_{\beta}^{\prime - 1} \circ \tau_{\beta}(\epsilon)$$

$$= f(\epsilon)$$

Since it is a composition of holomorphic maps, f is holomorphic. Next, we define the inverse $f^{-1}: E' \to E$ as follows: for $x \in U_{\alpha}$ and $(x, [v]) \in E'$, with v being the representative that came from $U_{\alpha} \times \mathbb{C}^n$, we have:

$$f^{-1}(x, [v]) = \tau_{\alpha}^{-1} \circ \tau_{\alpha}'(x, [v])$$

To see that this is well-defined, let $x \in U_{\alpha} \cap U_{\beta}$. Then, we have:

$$f^{-1}(x, [v]) = \tau_{\alpha}^{-1} \circ \tau_{\alpha}'(x, [v])$$

$$= \tau_{\alpha}^{-1}(x, v)$$

$$= \tau_{\beta}^{-1}(x, \rho_{\alpha\beta}(v))$$

$$= \tau_{\beta}^{-1} \circ \tau_{\beta}'(x, [\rho_{\alpha\beta}(v)])$$

$$= \tau_{\beta}^{-1} \circ \tau_{\beta}'(x, [v])$$

$$= f^{-1}(x, [v])$$

Since f^{-1} is also a composition of holomorphic maps, f^{-1} is holomorphic. Moreover, it is easy to see that f^{-1} and f are inverses. Thus, f is a biholomorphism.

Finally, we can see that f and f^{-1} respect the fibers as they are compositons of fiber-preserving maps. Thus, they commute with the projection maps. Moreover, we note that on a particular fiber, E_x , with respect to the trivializations, f is a vector space isomorphism. That is, $\tau'_{\alpha} \circ f \circ \tau_{\alpha}^{-1}$ is an isomorphism on $\{x\} \times \mathbb{C}^n$ as it is linear and has an inverse.

3. Since E and F are isomorphic as holomorphic vector bundles, there exists a biholomorphism $f: E \to F$ that respects the fibers, and is a vector space isomorphism when restricted to each fiber.

By refining the covers over which the trivializations for E and F are defined, choose a cover $\{U_{\alpha}\}$ such that both E and F are trivialized over it. Let $x \in U_{\alpha} \cap U_{\beta}$. Let $\tau_{\alpha,E}$ and $\tau_{\alpha,F}$ be trivializations and ρ_E and ρ_F be the transition functions from $\tau_{\alpha}(\pi^{-1}(U_{\alpha})) \to U_{\beta} \times \mathbb{C}^n$ (sloppily identifying the two projections π). Let $E_{x,\alpha}$, $E_{x,\beta}$ be the trivilized fibers over x and similarly for f. Then, f is such that:

$$\begin{aligned} \tau_{\alpha,F} \circ f \circ \tau_{\alpha,E}^{-1} & \tau_{\beta,F} \circ f \circ \tau_{\alpha,E}^{-1} \\ \tau_{\alpha,F} \circ f \circ \tau_{\beta,E}^{-1} & \tau_{\beta,F} \circ f \circ \tau_{\beta,E}^{-1} \end{aligned}$$

are all isomorphisms. Composition by ρ_E and ρ_F and their inverses permutes them. Write $f_{\alpha} := \tau_{\alpha,F} \circ f \circ \tau_{\alpha,E}^{-1}$. Thus, we have the commutative diagram connecting the two transition functions (where every arrow is invertible):

$$\begin{array}{c|c} E_{x,\alpha} & \xrightarrow{\rho_E} E_{x,\beta} \\ f_{\alpha} & & \downarrow f_{\beta} \\ F_{x,\alpha} & \xrightarrow{-\rho_F} F_{x,\beta} \end{array}$$

4. We can pick a cover $\{U_{\alpha}\}$ that trivializes both E and F. Then, pick $x \in U_{\alpha} \cap U_{\beta}$ and ρ_E and ρ_F be the transiton functions from the U_{α} trivialization to the U_{β} trivialization. Then,

- (a) $\rho_E \otimes_{\mathbb{C}} \rho_F$ is a transition function for $E \otimes_{\mathbb{C}} F$.
- (b) $\rho_E \oplus \rho_F$ be a transition function for $E \oplus F$.
- (c) $\bigwedge^n \rho_E$ be a transition function for $\bigwedge^n E$.

These are all holomorphic, as they are holomorphic on each component.