

Quiz 01	Version 01	Duration: 30 minutes
Student Name:		
Student ID:		
Student Tutorial:		

Part 1: MSQ Questions (20 marks): highest 20/25 correct answers will be considered

- You have to answer by coloring the bubble otherwise the question will **NOT** be marked
- In case of **Otherwise**, you have to fill the dots with the correct answer.

Best of	of Luck
---------	---------

		_	
1	`~	^	١
v	œ.	-9	U

								· <i>j</i> —…	CK U
ш		Questions			Answers				
<u>#</u>		<u>V</u>	<u>uestions</u>			<u>a</u>	<u>b</u>	<u>c</u>	<u>d</u>
1	The car braking system (ABS) is considered a real-time embedded system.								
1	a) Soft	b) Firm	c) Hard		d) Weakly-hard				
2	An embedded system is general-purpose computers embedded into enclosing products and must interact with the physical environment					0	0	0	\bigcirc
	a) True	b) False	c)		d)				
3		egrated circuit the fundervoltage p	-	ible fo	r power handling				
	a) True	b) False	c)		d)				
4	The real-time embedded systems are subjected to several constraints except for								
4	a) Power capabilitie	b) Memory Size	c) No U		d) All of the Above				
5	•	For both μ Controllers and μ Processor, the memory is considered an essential part of the its internal architecture.			\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	a) True	b) False	c)		d)				

6			s, the CPU must ex		0	\bigcirc	\bigcirc	\bigcirc
	a) True	b) False	c)	d)				
7	Struct Ta {				0	0	0	0
8	<pre>void edit (int * a) { a = a+1; } int main(void) { int x = 5; edit(&x); printf(" the value of 'x' after edit is %d ", x); } Choose the correct printed value.</pre>				0	0	0	0
9	a) 5 b) 6 c) 0x00000012 d) 0x00000016 Given that the first arr[0] address is 0x00000000, what will be the printed statement: void edit_array (int * a) { a = a+2; // HINT: a is a local pointer carrying the address of arr (the array name) *(a) = (*a)+5; printf(" address is %p ", a); } int main(void) { int arr[] = {1,2,3,4}; edit_array(arr); } edit_array(arr); } a) address is 0x0000000 0x00000000 0x00000000 0x00000000				0	0	0	0

10	_	stion 9, choose the ter calling edit_a	ne correct values i	f the array ar	r is				\bigcirc
10	a) {1,2,3,4 }	b) {1,2,8,9}	c) {9,8,2,1}	d) Other	wise)
11	Choose the printed output: void multiply (int m) { m = m*5; printf(" 'm' is is %d ", m); } int main(void) { int x = 1; multiply(x); printf(" x is %d", x); }					0	0	0	0
	a) m is 5, x is 5	b) m is 5, x is 0	c) m is 1, x is 1	d) Other	wise 				
12	Choose the printed output: void add (int t) { *t = *t + 5 ; printf(" 't' is is %d " , t); } int main(void) { int x = 1 ; add(&x); printf(" x is %d" , x); }				0	0	0	0	
	a) t is 6, x is 6	b) t is 1, x is 1	c) t is 6, x is 1	d) Other	wise				

13	Given that &x is 0x00000004, &ptr_1 is 0x00000008, &ptr_2 is 0x00000012, and &ptr_3 is 0x00000016 int main(void) { int * ptr_1 = &x int * ptr_2 = &ptr_1; int * ptr_3 = ptr_1; printf(" value is %d", **ptr_2); printf(" ptr_3 is %p", ptr_3); printf(" ptr_1 is %p", ptr_1); }					0	0	0
	a) value is 4, ptr_3 is 0x00000 016, ptr_1 is 0x00000 004	b) value is 16, ptr_3 is 0x000000 04, ptr_1 is 0x000000 08	c) value is 16, ptr_3 is 0x0000000 4, ptr_1 is 0x0000000 4	d) Otherwise				
14	From Figure a) FPGA	1 in page 6, this b) ASIC	shows which type c) μController	d) μProcessor	0	0	0	0
15	From Figure Architecture	1, the architectur	-	is following	0	0	0	0
	a) Harvard	b) Von Neumann	c) Not Clear	d)				
16	From Figure 1	, the shown prod	cessor instruction s	set type is				
10	a) CISC	b) RISC	c) EPIC	d)				
17	From Figure 1, the processor is capable of optimizing the power.							
1/	a) True	b) False	c)	d)				
10	From Figure 1, the core of the processor is component ()							
18	a) (e)	b) (f)	c) (g)	d) (h)				

19	From Figure 1, component () is considered part of the memory that can be erased by the user at any time			0	0	\bigcirc	\bigcirc	
	a) (h)	b) (i)	c) (j)	d) (k))
20	From Figure 1, the interface with the physical environment is done through component ()					0	0	\circ
	a) (a)	b) (b)	c) (e)	d) (l)				
	Given that the temperature being measured is actually (25) ° C. Given that the sensor provides a group of readings as follows: [25.2,24.8]					,24.9,2	25.1]°	С.
	The average of	these readings is	$\overline{X} = \frac{1}{N} \sum_{i}$	$\sum_{n=1}^{N} X_n$				0
21	a) 24.3	b) 25.2	c) 24.76	d) Otherwise	0	O		
22	For sample 5: the measurement error is $\varepsilon_n = X_{n, ideal} - X_{n, actual}$						\bigcirc	
22	a) 0.2	b) 0.02	c) 0.4	d) Otherwise)	
23	For sample 5: the accuracy is $Acc_n = 1 - \left \frac{X_{n, ideal} - X_{n, actual}}{X_{n, ideal}} \right $							
23	a) 99%	b) 97.2%	c) 100%	d) Otherwise				
24	For sample 5: the precision is							
24	a) 99%	b) 97.2%	c) 100%	d) Otherwise				
	These readings indicate that our sensor is characterized by							
25	a) High accuracy, High precision	b) High accuracy, Low precision	c) Low accuracy, High precision	d) Low accuracy, Low precision	0	0	0	0

Figure 1: Refer to for questions 14-20:

