Université des Sciences et de la Technologie Houari Boumediene

Data Mining

Rapport Algorithme Apriori

R'edaction:

MOULAI HASSINA SAFAA Matricule : 201400007564 HOUACINE NAILA AZIZA

Matricule: 201400007594

M2 SII Groupe:3

 $\begin{array}{c} Professeur \\ {\rm Mme.~BABA~ALI} \end{array}$

Contents

1	Apriori		
	1.1	Concepts de base pour apriori	2
	1.2	Principe de fonctionnement	3
	1.3	Pseudo-code	4
	1.4	Déroulement sur un exemple	4

Chapter 1

Apriori

A priori est un algorithme fondamental proposé par R. Agrawal et R. Srikant en 1994 pour d'éléments fréquents pour les règles d'association booléennes [AS94b]. Le nom de l'algorithme est basé sur le fait que l'algorithme utilise connaissance préalable des éléments fréquents comme nous le verrons plus tard. c'est un algorithme facile à comprendre et très utilisé .

1.1 Concepts de base pour apriori

Tout d'abord avant de plonger directement dans le principe de fonctionnement globale de l'algorithme on a à définir quel que notion :

un itemset

un item set (ensemble d'items) est un ensemble comportant des items ou des éléments qui se produisent ensemble . par exemple : un itemset de transactions T=(T1=lait,café,T2=yaourt,crème glacée,T3=couche bébé....)

le support

supp (X) d'un jeu d'éléments X est le rapport entre les transactions dans lesquelles un jeu d'éléments apparaît et le nombre total de transactions.

frequent itemset

Un ensemble d'éléments fréquent est un ensemble d'éléments dont le support est supérieure à une prise en charge minimale spécifiée par l'utilisateur (notée Lk, où k est la taille de l'ensemble d'éléments)

candidate itemset

Un groupe d'éléments candidat est un groupe d'éléments potentiellement fréquent (noté Ck, où k est la taille du groupe d'éléments)

Apriori propriété

chaque subset (sous-ensemble d'item) d'un fréquent itemset doit être fréquent (condition du support minimale vérifié).

Opération JOIN (jointure)

Pour trouver le L_k (frequent itemset de items), on utilise un ensemble de candidate itemset qui sont générés grâce à la jointure de L_{k-1} avec L_{k-1} (produit cartésien).

1.2 Principe de fonctionnement

Apriori emploie un approche itérative tel que chaque k-itemsets est utilisé pour explorer les (k+1)-itemsets .

les differentes étapes :

- 1. Exploration de la base de données pour avoir le support de chaque 1-itemset (ensemble d'un seul item).
- 2. Comparer le support(fréquence) avec le min_supp.
- 3. Supprimer les 1-itemsets ayant un support inférieur au **min_supp** génerer alors L1.
- 4. Faire une jointure de L_{k-1} avec L_{k-1} pour générer les ensembles de candidate k-itemsets.
- 5. Verifier la propriété APRIORI pour élaguer les k-itemsets qui ne sont pas fréquents.
- 6. Exploration de la base de données pour avoir le support de chaque candidate k-itemset vérifiant la propriété apriori.
- 7. Comparer le support de chaque candidate k-itemset avec **min_supp**
- 8. Garder que l'ensemble des k-itemsets vérifiant la condition de $\mbox{min_supp}$ et on aura ainsi L_k
- 9. si L_k est vide alors pour chaque frequent itemset 1 générer les subsets non vide de 1, et pour chaque s subsets non vide de 1, ecrire la regle "s implique(1-s)" si la confidence C de la règle "s implique 1-s" satisfait le **support min de confiance**
- 10. sinon aller à 4

1.3 Pseudo-code

```
Algorithm 1 APRIORI
  Input: D, base de données de transations, support minimum
  Output: L, itemset fréquent dans D
1 L1= find frequent 1-itemsets(D);
2 for k \leftarrow 2; L_{k-1}! = \emptyset; k + + do
      C_k \leftarrow apriori_q en(L_{k-1})
      for transaction t \in D do
4
         scan D for counts
\mathbf{5}
         C_t=subset(C_k,t); génerer les subsets de t qui sont candidats
         for candidate c \in C_t do
6
         c.count++;
7
         L_k = c \in C_k, c.count>support minimum
9 return L = \bigcup L_k
```

1.4 Déroulement sur un exemple

Nous prenons comme exemple applicatif les données de transaction d'un entreprise. Nous y appliquons l'algorithme apriori pour retrouver les motifs fréquents, comme suit:

Figure 1.1: Déroulement de l'algorithme Apriori sur un exemple.