import pandas as pd

data=pd.read_csv("https://www.dropbox.com/s/iy0w25eunwx2qlq/MobilePriceClassification.cs

data

₽		battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mob:
	0	842	0	2.2	0	1	0	7	0.6	
	1	1021	1	0.5	1	0	1	53	0.7	
	2	563	1	0.5	1	2	1	41	0.9	
	3	615	1	2.5	0	0	0	10	8.0	
	4	1821	1	1.2	0	13	1	44	0.6	
	1995	794	1	0.5	1	0	1	2	0.8	
	1996	1965	1	2.6	1	0	0	39	0.2	
	1997	1911	0	0.9	1	1	1	36	0.7	
	1998	1512	0	0.9	0	4	1	46	0.1	
	1999	510	1	2.0	1	5	1	45	0.9	

2000 rows × 21 columns

x=data.drop("price_range",axis=1)

y=data["price_range"]

from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,shuffle=True)

x_train.shape,y_train.shape,x_test.shape,y_test.shape

((1400, 20), (1400,), (600, 20), (600,))

from sklearn.linear_model import LogisticRegression

model=LogisticRegression()

```
model.fit(x_train,y_train)
```

/usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818: Converg STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:

 $\frac{https://scikit-learn.org/stable/modules/linear_model.html\#logistic-regression}{extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,}$

LogisticRegression()

from sklearn.metrics import accuracy_score

predictions=model.predict(x_test)

accuracy_score(y_test,predictions)

0.6316666666666667

Colab paid products - Cancel contracts here

Os completed at 5:48 PM

