

FIG. 1.

Multiple Alignment:

30664188.0.99 VEGFE	1	MHR LI FVYT LICANFC SCR DT SATPQSAS I KALRNAMFLRDES N HLT DLY R RDE TI Q WKG 1 - - M S L E G L L I L T S A L A G Q E Q GT Q A E S N L S S K F Q F S S N K - - E Q N G V Q D P Q - H E R I I T V S T	60 54
30664188.0.99 VEGFE	61 55	NG Y V Q S P R E P N S Y P R E N L L I T W R L H S - Q E N T R I Q L Y F D N Q F G L E A E N D I C R Y D F V E V E D I NG S I H S P R E P H T Y P R E N T V L W W R L V A T E E N W W I Q L T F D E R F G L E D P E D D I C K Y D F V E V E E P	119 114
30664188.0.99 VEGFE	120 115	S E T S T I I R G R W C G H K E W P P R I K S R T N Q K I T F K S D D I F V A K P G E K I Y W S L L E D F Q P A A S S D G - - T I I G R W C G S G T W P G K Q I S K G N Q I R I R F V S D E E V F P S E P G F C I H W N I V M P - - - - - - - - - - 165	179
30664188.0.99 VEGFE	180 166	E T N W E S V T S S I S G W S Y N S P S V T D P - T L I A D A D L D K K I A E F D T V E D L K Y F N P E S W Q E D L I E N - - - - - Q F T E A V S - - - - - P S V L P P S A L P L D I L N N A I T A F S T L E D L I R Y L E P E R W Q L D L I E D	238 214
30664188.0.99 VEGFE	239 215	M Y L D T P R Y R E R S Y H D - R K S - K W D L D R I N D D A K R Y S C T P R N Y S W N I R E E L K L A N V V F F P R G L Y R P T W Q L I E K A F V F G R K S R V W D I N L I T E E V R L Y S C T P R N E S W S I R E E L K R T D T I E W P G S	296 274
30664188.0.99 VEGFE	297 275	L L V Q R C G G N C G C G T V M W R S S T T N S G K T V K K Y H E V L Q F E P G H I K R R G R A K T M A L V D I Q L D H L L V K R C G G N C A C C L H N C N E Q S W P S K V T K K Y H E V L Q L R P - - - K T G V R G L H K S I T D V A L E H	356 331
30664188.0.99 VEGFE	357 332	H E R C D C I C S S R P P R (SEQ ID NO:2) H E E C D C V R G S T G G (SEQ ID NO:28)	370 345

FIG. 2.

FIG. 3.

FIG. 4A

IgK 30664188 V5 His
aa 24-370

FIG. 4B

FIG. 5.

FIG. 6.

BrdU Proliferation NIH 3T3 5-24

FIG. 7.

FIG. 9.

Growth 5-15-00 NHost

FIG. 10.

FIG. 10A (without serum)

FIG. 10B (with serum)

FIG. 11.

FIG. 12

*

hPDGF D	CTPRNYSVNI - REELKLANVVF - - FPRCLLVQRCGGNCACCGTVNWRSCTC
mPDGF D	CTPRNHSVNL - REELKLTNAVF - - FPRCLLVQRCGGNCACCGTVNWKSCTC
PDGF C	CTPRNFSVSI - REELKRTDTIF - - WPGCLLVKRCGGNCACCLHNCNECQC
PDGF B	CKTRTEVFEISRRLIDRTNANFLVWPPCVEQRCSG - - - CNNRNVQCRP
PDGF A	CKTRTVIYEIPRSQVDPTSANFLIWPPCVEVKRCTG - - - CCNTSSVKCQP
hPDGF D	NS - - GKTVKKYHEVLQFEPGHIKRRGRAKTMALVDIQLDHHERCDC (SEQ ID NO:15)
mPDGF D	SS - - GKTVKKYHEVLKFEPGHFKRRGAKNMALVDIQLDHHERCDC (SEQ ID NO:16)
PDGF C	VP - - SKVTKKYHEVLQLRPKTGVRLH - KSLTDVA - - LEHHEECDC (SEQ ID NO:17)
PDGF B	TQVQLRPVQVRKIEIVRKPIF - - - KKAT - VT - - LEDHLACKC (SEQ ID NO:18)
PDGF A	SRVHHRSVKVAKVEYVRKKPKL - - - KEVQ - VR - - LEEHLECAC (SEQ ID NO:19)

FIG. 13

Exon 1
1 DGCAGGGGGGGCGGGGTGCGTGGGAGCAGAACCCGGCTTTTCTTGGAGGACGGCTGTCTAGTGCTGATCCCA
81 AATG[]ACCGGCTCATTTGCTACACTCTAATCTGCCAAACTTTGCAAGCTGCGGACACTTCTGCAACCCGGAGA
M H R L I F V Y T L I C A N F C S C R D T S A T P Q S
161 GCGCATCCATCAAAGCTTGGCGAACGGCAACCTCAGGGAGATGAGGAAATCACCTCACAGACTTGTAACCGAAGAGAT
A S I K A L R N A N L R R D E S N H L T D L Y R R D
241 GAGACCACAGGTGAAAGGAAACGGCTACGTGCAAGAGTCAGATTGGAAACAGCTACCCAGGAACCTGCTCTGAC
E T I Q V K G N G Y V Q S P R F P N S Y P R N L L L T
321 ATGGGGGTTCACTCTCAGGAGAACACGGATAACAGCTAGTGTGTTGACAATCAGTTGGATTAGAGGAAGCAGAAAATG
U R L H S Q E N T P I Q L V F D N Q F G L E E A E N D
401 ATATCTGTAAGTATGATTTGGAAAGTTGAAGATATATCGAAACCGTAGGATTATTAGAGGGACGATGTTGACAC
I C R Y D F V E V E D I S E T S T I I R G R W C G H
481 AANGAAGTTCTCCAAAGGATAAAATCAGAACGAAACAAATTAAATCACATTCAAGTCGGATGACTACTTGTGGCTAA
K E V P P R I K S R T N Q I K I T F K S D D Y F V A K
561 ACCTGGATTCAAGATTATTCTTGTGGAAAGATTTCACCCGGAGCTTCAGAGAACAACTGGAAATCTGTCA
P G F K I Y Y S L L E D F Q P A A A S E T N W E S V T
641 CAAGCTTATTCAGGGGTATCTATAATCTCCATCAAGGATCCCACACTGATTGCGGATGCTCTGGACAAAAAA
S S I S G V S Y N S P S V T D P T L I A D A L D K K
721 ATTGCGAGAATTGATACAGTGGAAAGATCTGTCAGTACTTCATGGCAAGAACAGATTTGAGAATATGTA
I A E F D T V E D L L K Y F N P E S W Q E D L E N M Y
801 TCTGGACACCCCTCGGTATGGGAGGTATACCATGACGGAAACTGGCTGACCTGGATAGGCTCAATGATGATG
L D T P R Y R G R S Y H D R K S K V D L D R L N D D A
881 CCAAGGTTACAGTTGCACTCCAGGAATTACTGGTCAATATAAGAGAACAGCTGAAAGTTGGCCAATGTTGCTT
K R Y S C T P R N Y S V N I R E E L K L A N V V F F
961 CCACGTTGCTCTGCTGCGAGGAAATTGTGGCTGCGAACCTGCAACTGGAGGTCTGCAACATGCAATT
P R C L L V Q R C G G N C G C G T V N W R S C T C N S
1041 AGGGAAACCGTGAAGGATATCATGAGCTTACAGTTGGAGCTGGCACATCAAGAGGGTAGAGCTAACAGCCA
G K T V K K Y H E V L Q F E P G H I K R R G R A K T M
1121 TGGCTCTAGTTGACATCCAGTTGGATCACCATGAAACGATGTGATTGATCTGCAAGAACACCTGGATTAAGAGAA
A L V D I Q L D H H E R C D C I C S S R P P R (SEQ ID NO:20)
1201 GTGCACATCTTACATTAAGGCTGAAAGAACCTTGTGTTAAGGGGGGTGAGATAAGAGAACCTTTCTTACCCAGCAACC
1281 AAACTTACTACTAGCCTGCAATGCAATGAAACACAAAGTGGTGTGAGCTCAGCCTTGCTTGTAAATGCGATGGCAAGT
1361 AGAAAGGTATATCATCAACTCTATAACCTAAGAATATAGGATTGCAATTAAATAATAGTGTGTTGAGGTTATATATGCAACAA
1441 ACACACACAGAAATATTCATGTCATGTGTATATAGATCAAATGTTTTGGTATATATAACCAAGGTACACCAAGAG
1521 CTTACATATGTTGAGTTAGACTCTTAAATGCGAAAGGATGGTCAAATATATGAAACATGCTTTAGAA
1601 AATTAGGAGATAAAATTATTTAAATTGAAACACAAATTTGAATCTGCTCTTAAAGAAAAGCATCTTGT
1681 ATATTAAGGATGAGGCTTCTTACATATACATCTTAGTGT (SEQ ID NO:21)

FIG. 14

FIG. 15

		V5 6HIS
A. 27 KDa		GRSYHDRSKVLDRL (SEQ ID NO:22)
		GRSYHDRSKVD..... (SEQ ID NO:23)
B. 16 KDa		GRSYHDRSKVLDRL (SEQ ID NO:24)
		GRSYHDRSKVD..... (SEQ ID NO:25)
C. 6 KDa		V5 6HIS
		RGRAKTMALVDIQLDHHE (SEQ ID NO:26)
		RGRAKTMALVDIQ..... (SEQ ID NO:27)

FIG. 16

FIG. 17

FIG. 18

Competition of 30664188 p30 or PDGF BB by 30664188 p85

FIG. 19

FIG. 20

CCD1070 Growth: Competition by Anti-Receptor Antibodies

FIG. 21

Smooth Muscle Treated with p30 30664188, PDGF AA, PDGF BB

FIG. 22

FIG. 23

FIG. 24

Neutralization of 30664188 by Fully Human Polyclonal Ab

Fig. 25.

Panel A

Fig. 25 (cont.)

Panel B

FIG. 26.

BrdU CCD1070 Soluble Alpha PDGFR Competition

FIG. 27A

FIG. 27B

FIG. 28

32D Alpha PDGFR Proliferation

FIG. 29A

FIG. 29B

FIG. 29C

FIG. 29D

