Test - ionforbindelser, fældningsreaktioner og kemisk mængdeberegning

HUSK at vise formler og mellemregninger [

Opgave 1 (2,5 point)

Hvad er forskellen på C, Co og CO?

'C' er grundstoffet carbon

'Co' er grundstoffet cobolt

'CO' er ionen carbonmonooxid

Opgave 2 (5 point)

Hvilke grundstoffer og hvor mange af hver indgår i følgende forbindelser?

- a) Na₂CO₃
 - a. Natrium * 2
 - b. Carbon * 1
 - c. Oxygen * 3
- b) $Ca(NO_3)_2$
 - a. Calcium * 1
 - b. Nitrogen * 2
 - c. Oxygen * 6
- c) CH₃COOH
 - a. Carbon * 2
 - b. Hydrogen * 4
 - c. Oxygen * 2

Opgave 3 (10 point)

Vis og forklar med ord, hvordan man afstemmer følgende reaktionsskema:

$$HCI + CaCO_3 \rightarrow CaCl_2 + H_2O + CO_2$$

Man skal gøre, så stofmængden på venstre side af reaktionen er lig stofmængden på højre side. Dette gøres ved at ændre på antallet af molekyler (stor tal foran, fx HCl til 2HCl) og IKKE ved at ændre på molekylerne (fx H₂0 til H₃0)

$$HCI + CaCO_3 \rightarrow CaCl_2 + H_2O + CO_2$$

$$2HCI + CaCO_3 \rightarrow CaCl_2 + H_2O + CO_2$$

Opgave 4 (2,5 point)

Hvilke størrelser gemmer der sig bag symbolerne: n, m og M? Angiv også enheder til størrelserne.

X er en masse, fx 1l vand

'n' er stofmændgen [mol], fortæller hvor mange molekyler x består af

'm' er massen [g], fortæller hvor meget x vejer

'M' er molmassen [g/mol], fortæller hvor meget hvert molekyle i x vejer. Dette er også vægten set på det periodiske system.

Opgave 5 (25 point)

En bilmotor fungerer med stoffet octan (C₈H₁₈). Ved udnyttelsen af octan i motoren sker følgende reaktion:

$$C_8H_{18} + O_2 \rightarrow CO_2 + H_2O$$

a) Afstem reaktionsskemaet.

$$C_8H_{18} + 12,5O_2 \rightarrow 8CO_2 + 9H_2O$$

- b) Hvilken type reaktion er det? Forbrænding, fordi venstre side indeholder oxygen og enten carbon, hydrogen eller begge, og så danner den CO₂ og H₂O. Disse er alle egenskaber af en forbrændingsreaktion
 - c) I en tank benzin er der typisk 55 kg af stoffet C₈H₁₈. Opstil et beregningsskema og bestem derved massen af de andre stoffer, der indgår i reaktionen.

	C ₈ H ₁₈	O ₂		CO ₂	H ₂ O	
forhold	1	12,5		8	9	
n [mol]	m/M=55000 g / 114,232 g/mol= 481,48 mol	481,48 mol*12,5=6018,5 mol		481,48 mol*8=3851,84 mol	481,48 mol*8=4333,3 2 mol	
M [g/mol]	12,011*8+1,008* 18=114,232 g/mol	15,999*2=31,998 g/mol		12,011+15,999*2=4 4,009 g/mol	1,008*2+15,99 9=18,015 g/mol	
m [g]	55kg=55000 g	n*M=192579,96 g		169515,66 g	78064,76 g	

Opgave 6 (15 point)

5,85 g NaCl opløses i H₂O, og der fortyndes til 500 mL. Hvad bliver opløsningens formelle koncentration af NaCl?

Molmassen 'M' af NaCl er 22,990+35,45=58,44 g/mol. Massen 'm' er 5,85 g og stofmængden 'n' er m/M=58,44 g/mol /5,85 g = 9,99 mol. Så den formelle koncentration er 9,99 mol / 0,5L = 19.98 mol/L

$$NaCl(s) \rightarrow Na^{+}(q) + Cl^{-}(q)$$

Opgave 7 (10 point)

Hvad er de aktuelle ion-koncentrationer i følgende vandige opløsninger?

- a) 0,5 M CuSO₄
 - a. $[Cu^{2+}] = 0.5 M$
 - b. $[SO_4^{2-}] = 0.5 M$
 - c. $[CuSO_4] = 0.0 M$
- b) 0,25 M Ca(OH)₂
 - a. $[Ca^{2+}] = 0.25 \text{ M}$
 - b. $[OH^{-}] = 0.5 M$
 - c. $[Ca(OH)_2] = 0.0 M$

Opgave 8 (25 point)

a) Afstem følgende reaktion

$$CaCl_2 + 2AgNO_3 \square 2AgCl + Ca(NO_3)_2$$

b) Hvor mange g AgNO₃ skal der anvendes til reaktion med 8,1 g CaCl₂?

a. 24,80 g

	CaCl ₂	AgNO₃	AgCl	Ca(NO ₃) ₂		
forhold	1	2	2	1		
Stofmængde n [mol]	m/M=8,1 g / 110,978 g/mol=0,07299 mol	0,07299 mol * 2 = 0,145974878 mol	0,07299 mol * 2 = 0,145974878 mol			
Molmasse M [g/mol]	110,978 g/mol	169,874 g/mol	143,32 g/mol			
Masse m [g]	8,1 g	n*M=0,1459748 78 mol*169,874 g/mol=24,80 g	20,92 g			

- c) Hvor mange g AgCl vil der dannes?
 - a. 20,92 g
- d) Der udføres et forsøg i laboratoriet og der dannes 10,5 g AgCl. Hvor mange % er det af det teoretisk mulige? 10,5/20,92=50,19

Opgave 9 (15 point)

Når opløsninger af følgende letopløselige salte blandes, dannes der bundfald (fældningsreaktion):

- a) AgNO₃ og NH₄Br
 - a. $AgNO_3(s) + NH_4Br(s) \rightarrow AgBr(s) + NH_4NO_3(q)$
- b) NaOH og CuSO₄
 - a. $2NaOH(s) + CuSO_4(s) \rightarrow Na_2SO_4(q) + Cu(OH)_2(s)$
- c) ZnCl₂ og Na₂S
 - a. $ZnCl_2(s) + Na_2S(s) \rightarrow ZnS(s) + 2NaCl(q)$

Opskriv afstemte reaktionsskemaer for de 3 fældningsreaktioner (brug tabellen nedenfor og husk tilstandsformer i reaktionen).

	NH ₄ +	Na+	K+	Mg ²⁺	Zn ²⁺	Cu ²⁺	Fe ²⁺	Fe ³⁺	Ca ²⁺	Ba ²⁺	Pb ²⁺	Ag⁺
NO ₃ -	L	L	L	L	L	L	L	L	L	L	L	٦
Cl	L	L	L	L	L	L	L	L	L	L	Т	Т
Bc	L	L	L	L	L	L	L	L	L	L	Т	Т
- 1-	L	L	L	L	L	-	L	-	L	L	Т	Т
SO ₄ ² -	L	L	L	L	L	L	L	L	T	T	Т	Т
CO ₃ ²⁻	L	L	L	T	Т	-	T	-	Т	T	Т	Т
OH-	-	L	L	T	Т	Т	T	Т	Т	L	Т	-
S ²⁻	L	L	L	T	T	T	T	T	Т	Т	Т	Т
PO ₄ 3-	L	L	L	T	T	T	T	T	Т	T	Т	Т

L betyder letopløselig. T betyder tungtopløselig, og - angiver at stoffet ikke eksisterer. Grænsen mellem L og T er sat ved 2g opløst stof i 100g vand. (Mygind, Kemi 2000, C-niveau)

