MULTI-ROBOT WAYPOINT INSPECTION PLAN MIXED INTEGER LINEAR PROGRAMMING PROJECT

Juan Carlos Cruz - ira406

ME 6033 Linear and Mixed Integer Optimization

April 2025

INTRODUCTION

- Based on previous work done in an outdoor concrete inspection multirobot framework
- Precast concrete elements require efficient inspection methods after being transported to a site
- Multi-robot approach:
 - Aerial robots locate targets
 - Ground robots perform detailed inspections
- For this project wanted to see if we could extend this idea to planning of multiple robots across an inspection site

PROBLEM DESCRIPTION

- Two robot types: aerial and ground mobile robots
- Inspection targets as waypoints in a 2D plane
- Depot location for each robot type
- Sequential operation:
 - Aerial robots verify waypoint location first
 - Ground robots perform detailed inspection second
- Robot constraints:
 - Fixed speeds (meters/minute)
 - Limited operation time (battery life time after leaving depot)
 - Required inspection time at waypoints
- Objective: Maximize waypoint visits in a single inspection loop.
- Becomes a MILP problem. Linear objective function and linear constraints but use binary and continuous variables.

LITERATURE REVIEW

- Prior works demonstrate multi-robot planning applications
- Problem resembles multiple traveling salesman problem (mTSP)
- Traditional MILP for mTSP:
 - Routing variables
 - Subtour elimination constraints
- Initially tried this approach but solving time was too slow and larger problems became infeasible (likely implementation error) so used a simplification
- Route approximation: roundtrip distances from depot to waypoints estimate travel times

MODEL

Maximize	$\sum_{i \in \mathcal{N}} \sum_{l \in I} w_i^{q,l}$		(1)
subject to:			
Assignment:	$\sum_{k \in K} w_i^{a,k} \le 1$	$\forall i \in N$	(2)
	$\sum_{i \in L} w_i^{g,l} \le 1$	$\forall i \in N$	(3)
Robot Usage:	$\sum_{i \in N} w_i^{a,k} \geq use_k^a$	$\forall k \in K$	(4)
	$\sum_{i \in N} w_i^{a,k} \leq n \cdot use_k^a$	$\forall k \in K$	(5)
	$\sum_{i \in N} w_i^{g,l} \geq use_l^g$	$\forall l \in L$	(6)
	$\sum_{i \in N} w_i^{g,l} \leq n \cdot use_l^g$	$\forall l \in L$	(7)
Precedence:	$w_i^{g,t} \leq \sum_{k \in K} w_i^{a,k}$	$\forall i \in N, \forall l \in L$	(8)
	$g_i^l \ge a_i^k - M_G \cdot (1 - z_i^{k,l}) - M_G \cdot (2 - use_k^a - use_l^g)$	$\forall i \in N, k \in K, l \in L$	(9)
Linking $z_i^{k,l}$:	$z_i^{k,l} \le w_i^{g,l}$	$\forall i \in N, k \in K, l \in L$	(10)
	$z_i^{k,l} \le w_i^{a,k}$	$\forall i \in N, k \in K, l \in L$	(11)
	$z_i^{k,l} \le use_k^a$	$\forall i \in N, k \in K, l \in L$	(12)
	$z_i^{k,l} \le use_i^g$	$\forall i \in N, k \in K, l \in L$	(13)
	$z_i^{k,l} \ge w_i^{q,l} + w_i^{a,k} + use_k^a + use_l^q - 3$	$\forall i \in N, k \in K, l \in L$	(14)
Time:	$a_i^k \ge t_A^{irop} \cdot w_i^{a,k}$	$\forall i \in N, k \in K$	(15)
	$g_i^l \ge t_G^{imsp} \cdot w_i^{g,l}$	$\forall i \in N, l \in L$	(16)
	$a_i^k + t_{i,d_A}^A \cdot w_i^{a,k} \le T_A^{\text{max}} + M_A \cdot (1 - w_i^{a,k})$	$\forall i \in N, k \in K$	(17)
	$g_i^l + t_{i,d_G}^G \cdot w_i^{g,l} \le T_G^{\text{max}} + M_G \cdot (1 - w_i^{g,l})$	$\forall i \in N, l \in L$	(18)
Route Length:	$\sum_{i \in N} w_i^{s,k} \cdot \left(2 \cdot t_{d_A,i}^A\right) + \sum_{i \in N} w_i^{s,k} \cdot t_A^{trop} \leq T_A^{\max} + M_A \cdot (1 - use_k^a)$	$\forall k \in K$	(19)
	$\sum_{i \in N} w_i^{g,l} \cdot \left(2 \cdot t_{d_G,i}^G\right) + \sum_{i \in N} w_i^{g,l} \cdot t_G^{\text{insp}} \leq T_G^{\max} + M_G \cdot (1 - use_l^g)$	$\forall l \in L$	(20)
Domain:	$w_i^{a,k}, w_i^{g,l}, use_k^a, use_l^g, z_i^{k,l} \in \{0,1\}$	$\forall i \in N, k \in K, l \in L$	(21)
	$a_i^k, g_i^l \ge 0$	$\forall i \in N, k \in K, l \in L$	(22)

SOLUTION METHOD

- Implemented in Python using PuLP library
- CBC solver from PuLP used for optimization
- Interactive browser-based GUI developed:
 - Parameter input for robot specifications
 - Waypoint location setting
 - Real-time solution visualization
- Code available at GitHub repository

NUMERICAL RESULTS - COMPUTATIONAL PERFORMANCE

- Testing environment:
 - Intel i7, Python 3.12 Docker container
- Tested waypoint scaling (5 to 25 waypoints) and map size scaling (100 to 1000 m)
- Non-monotonic scaling behavior:
 - Solution time peaks at 15 waypoints then decreases
 - Computation time peaks at 500m map size

NUMERICAL RESULTS - SENSITIVITY ANALYSIS

- Using fixed waypoints and map size we solve multiple times varying 8 params: robot speeds, operation times, inspection times, and fleet sizes.
- Most influential parameters:
 - Number of ground robots
 - Aerial robot maximum operation time
- Minimal impact: Inspection times

NUMERICAL RESULTS - GROUND ROBOT SENSITIVITY ANALYSIS

NUMERICAL RESULTS - AERIAL ROBOT SENSITIVITY ANALYSIS

DEMO VIDEO

Click to watch the demo video

