мы можем построить m схем, каждая из которых вычисляет φ_i : $G_i \times G_i \to G_i$ и требует количество времени $\tau_i = 2 + \left| \log_{\left[\frac{r+1}{2}\right]} \frac{1}{\left[\frac{r}{2}\right]} \right| \log_d |G_i| [$ для вычисления этой функции.

Так что вся схема может может вычислить свою функцию за время

$$\tau = \max_{1 < i < m} \tau_i = 2 + \left[\log_{\left[\frac{r+1}{2}\right]} \frac{1}{\left[\frac{r}{2}\right]} \right] \log_d \alpha(G) \left[\left[\frac{1}{2} \right] \right]$$

(Идея доказатеьства здесь та же, что в [3].)

Сравнение теоремы 2 с теоремой 1 показывает, что с ростом г время, требующееся для вычисления φ : $G \times G \to G$, для конечной абелевой группы приближается к нижней оценке. Более точно, пусть τ_{act} обозначает время, полученное в теореме 2, а τ_{min} обозначает нижнюю оценку, полученную в теореме 1; тогда

$$\tau_{\text{act}} = 2 + \left[\log_{\left[\frac{r+1}{2}\right]} \frac{1}{\left[\frac{r}{2}\right]} \right] \log_d \alpha(G) \left[\approx 2 + \log_{\left[\frac{r+1}{2}\right]} \frac{1}{\left[\frac{r}{2}\right]} \left[\log_d \alpha(G) \right] \approx 2 - \log_{\left[\frac{r+1}{2}\right]} \left[\frac{r}{2} \right] + \left[\log_r \log_d \alpha(G) \right] \log_{\left[\frac{r+1}{2}\right]} r.$$

Итак, для достаточно больших r, таких, что $\log_{\left[\frac{r+1}{2}\right]}\left[\frac{r}{2}\right] \approx 1$ и $\log_{\left[\frac{r+1}{2}\right]}r \approx 1$, мы получаем $\tau_{\rm act} \approx \tau_{\rm min} + 1$.

5. ОБСУЖДЕНИЕ

3 мы видели, что нижняя оценка времени, мого для вычисления групповой операции, для конечной групзависит логарифма логарифма порядка OTнекоторой p-подгруппы группы G. В случае, когда G - абелева если G есть Z_{μ} , где групповой операцией яв-(и, в частности сложение по модолю μ), эта p-подгруппа представляет ляется наибольшую циклическую подгруппу, порядок есть степень простого. В разд. 4 мы видели, что к этой нижней можно приблизиться, если число входных линий используемых построения ческих элементов, ДЛЯ схемы, увеличивается.

Эти результаты зависят от конкретного определения понятия «логическая схема C способна вычислить функцию ϕ ».

В потребовали, чтобы нашем определении МЫ входы разделены И каждый класс на классы соответствовал аргументу вычисляемой функции. Это было сделано для действительно чтобы функция вычислялась схемой. φ нести информацию только ЭТОГО ВХОДЫ должны об способе их комбинирования получения не ДЛЯ Ο Читатель результата. легко убедиться в том, что если бы g_i в определении заменили требование, наложенное на 3, $I'_{c, j} \subset I_{c, j} \longrightarrow X_j,$ q_i' : ТО существования МЫ получили бы эквивалентное определение.

функции h: $Y \rightarrow O_c$ существования эквивалентно Требование $O'_c \subset O_c \xrightarrow{1:1} Y$. h': Целью требованию существования бования 1:1 для h' было устранить возможность чтобы того, несли точности ту же самую информацию, выходы В ОТР чтобы функция h' «действительно» выполняла входы, и вычис-Разумеется, возможны И другие определения вычисления, которые соответствуют интуитивным нашим еще представлениям. В [4] описана схема сложения, В которой бование, наложенное на h', ослаблено, a именно взамен ПОчтобы TOTже ОДИН КОД использовался И кодирования каждого слагаемых, так И кодирования ИЗ ДЛЯ результата.

чертой определения 3 является фиксированное Другой мя т, через которое обследуется выход. Другой подход состоит время «установления» чтобы рассматривать схем, конкретных конечно, зависит значений, принимаемых otomorphism Tсчитать среднее время «установления» аргументами, И затем [5]). Предполагается, вычисления (см. временем самый порядок, среднее ОТР время имеет тот же ниж-RRH оценка, однако доказать ЭТО предположение нам удалось.

Другое направление исследования состоит рассмотрении В обоих параметров — и времени вычисления и логических числа элементов, требующихся для построения схемы (см. [1]). можно даже соединить с ослаблением допущения о том, информацию ВХОДЫ несут всю об аргументах момент разрешив подавать $\tau=0$, ВХОДЫ В схему «последовавремени тельно».

Автор благодарен М. О. Рабину Благодарности. предлозадачи о времени вычисления сложения при ограничении, что компоненты имеют вхолов. a также за постановrбыть улучшено, вопроса O TOM, может ЛИ ЭТО время если не пользоваться позиционным представлением чисел.