EE2020 (Part 1) Tutorial 2 - Solutions

- 1. (a) $(250)_{10} = (11111010)_2$
 - (b)
 - (i). 11111010(signed magnitude) $\longrightarrow -122$
 - (ii).11111010(1's) $\xrightarrow{\text{complement.}} 00000101(\text{magnitude}) \xrightarrow{\text{--}} -5$
 - (iii).11111010(2's) $\xrightarrow{-1}$ 11111001(1's) $\xrightarrow{\text{complement}}$ 00000110(magnitude) \rightarrow -6
- 2. (a) (-1) + 45 11111111 + 00101101
 - + 00101101

100101100 — 44

(Adding these two numbers causes a carry over into the 9th bit position, which is ignored in the 8-bit arithmetic system.)

- (b) (-128) + (-60)
 - 10000000
 - + 11000100
 - $01000100 \longrightarrow 68$

(Reflect an overflow situation i.e. the correct result cannot be represented with the available number of bits

- 3. $(00100)_{SM} = (00100)_{2's}$ [the number is positive] $(10100)_{2's} + (00100)_{SM} = (10100)_{2's} + (00100)_{2's} = (11000)_{2's}$ Convert to integers and add to verify your result!
- 4. $\underbrace{0100011000100011}_{4} \underbrace{0001100011}_{6}$ = 4623