

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963 A

ESTIMATION IN NONCENTRAL DISTRIBUTIONS

Ву

Alan E. Gelfand

TECHNICAL REPORT NO. 329

JANUARY 10, 1983

Prepared Under Contract NO0014-76-C-0475 (NR-042-267) For the Office of Naval Research

Herbert Solomon, Project Director

Reproduction in Whole or in Part is Permitted for any Purpose of the United States Government

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

ESTIMATION IN NONCENTRAL DISTRIBUTIONS

Alan E. Gelfand
University of Connecticut, Storrs

1. INTRODUCTION

This paper investigates alternatives to minimum variance unbiased (MVU) estimators in noncentral (NC) χ^2 and F distributions. Motivation is provided by noting that if $Z \sim \chi^2(p;\lambda)$, then i) (Z-p)/2, the MVU for $g(\lambda) = \lambda$ is inadmissible under squared error loss (SEL), see, e.g., Perlman and Rasmussen (1975). ii) Z^{-1} , the MVU for $g(\lambda) = E(Z^{-1})$ is inadmissible under any "bowl shaped" loss since $S(Z) = \min(Z^{-1}, (p-2)^{-1})$ dominates. Similar conclusions hold when $W \sim F(p,r;\lambda)$. Case (i) is of obvious interest. Case (ii) arises in estimating the improvement under SEL of the James-Stein estimator of the multivariate normal mean, see, e.g., Efron and Morris (1976).

Two directions will be pursued. In the first a simple approach for uniformly improving upon MVU estimators is described and illustrated. In the second Bayesian procedures are characterized and illustrated. This effort extends earlier work of Perlman and Rasmussen (1975), Neff and Strawderman (1976), and DeWaal (1974).

2. DISTRIBUTION THEORY AND NOTATION

In the NC χ^2 case, the joint density $f(Z,L,\lambda)$ arises from $f(Z|L,\lambda) = f(Z|L) = \chi^2(p+2L)$, $f(L|\lambda) = Po(\lambda)$ (Poisson) and a prior $\tau(\lambda)$ on λ . If $\lambda \sim \gamma/2 \chi^2(p)$ (arising from $\lambda = \mu^T \mu/2$ with $\mu \sim N_p(0,\gamma I)$ as discussed in, e.g., Perlman and Rasmussen (1975)), $f(\lambda|L,Z) = f(\lambda|L) = \rho/2 \chi^2(p+2L)$, where $\rho = \gamma(\gamma+1)^{-1}$, $f(\gamma|Z) = \rho/2 \chi^2(p, \rho Z/2)$, $f(L) = NB(p/2, \rho)$ (negative binomial with mean $p\rho(1-\rho)^{-1}/2$), $f(Z) = (\gamma+1)\chi^2(p)$ and $f(L|Z) = Po(\rho Z/2)$.

If W = Z/U where Z $\sim \chi^2(p;\lambda)$ independent of U $\sim \chi^2(r)$, W has a nonnormalized NC F distribution. The joint density $f(W,L,\lambda)$ arises from $f(W|L,\lambda)$ = f(W|L) = $r^{-1}(p+2L)F(p+2L,r)$, $f(L|\lambda)$ and $\tau(\lambda)$ as above.

The fact that $f(Z|L,\lambda) = f(Z|L)$, $f(W|L,\lambda)$ = f(W|L) is useful in improving upon MVU's. The fact that regardless of τ , $f(\lambda|L,Z) = f(\lambda|L)$, $f(\lambda|L,W)$ = $f(\lambda|L)$ is useful for finding Bayes estimators. In this vein, if $g(\lambda)$ is to be estimated, let b(L) = $E(g(\lambda)|L)$, a(L) be such that $g(\lambda) = E(a(L)|\lambda)$. Then a(L) helps to find improved estimators, b(L) helps to find Bayes estimators.

In Sections 3 and 4 the methodology is examined through a collection of examples. A summary table is given at the end to unify the findings.

3. FINDING IMPROVED ESTIMATORS

We describe a simple approach which has been successful in creating classes of estimators that uniformly improve upon the MVU of $g(\lambda)$ under SEL. We then illustrate with several examples. For the NC χ^2 case, let T(Z) be the MVU of $g(\lambda)$. When will $T(Z) + \phi(Z)$

uniformly improve upon T(Z)? The conditional estimation problem, estimating a(L), provides sufficient conditions while enabling us to work with the simpler central χ^2 distribution. We note that T is unbiased for a(L). By direct calculation we can show that the difference in SEL between T and $T+\phi$ is:

$$-E(I_{\phi}(L)|\lambda) - 2 \operatorname{cov}(a(L),\phi(Z)|\lambda)$$
 (1)

where

$$I_{\phi}(L) = E(\phi^2 | L) + 2E((T-a)\phi | L)$$
 (2)

and the covariance is with respect to the joint distribution of L and Z given λ .

Hence if

$$I_{\phi}(L) \leq 0 \ \forall L$$
 (3a)

with strict inequality for some L and

$$cov(a, \phi) \leq 0,$$
 (3b)

then $T+\phi$ will dominate T. If a(L) is monotone, restriction of ϕ such that $E(\phi|L)$ is nonincreasing in a(L) will satisfy the covariance condition. If the range of $g(\lambda)$ is a subinterval of R^1 , $T+\phi$ should be similarly restricted. In particular, if $g(\lambda) \geq 0$, the positive part estimator, $[T+\phi]^+$, dominates $T+\phi$.

For the NC F all the above remarks apply with Z replaced by $\mbox{W}.$

Examples: NC χ^2

Two convenient choices of ϕ are $\phi_{\alpha,\beta}^{(1)} = \alpha Z^{\beta}$, $\phi_{\alpha,\beta}^{(2)} = \alpha e^{\beta Z}$ in which case the fact that, n < 1/2, m > -p/2,

$$E(Z^{m}e^{nZ}|L) = \frac{\Gamma(p/2 + L + m)}{\Gamma(p/2 + L)} \frac{2^{m}}{(1-2n)^{p/2} + L + m}$$

will be helpful. We assume $p \ge 5$.

i) If $g(\lambda) = \lambda$, T(Z) = (Z-p)/2 and b(L) = L. For $\phi^{(1)}$ (3b) will be satisfied if $\alpha < 0$, $\beta > 0$ or $\alpha > 0$, $-p/2 < \beta < 0$. For $\phi^{(2)}$ (3b) will be satisfied if $\alpha < 0$, $0 < \beta < 1/2$ or $\alpha > 0$, $\beta < 0$. Clearly, for any α, β

$$\operatorname{cov}(L,\phi^{(i)}) \to 0 \text{ as } \lambda \to 0, i = 1,2. \tag{4}$$

If $\beta > -p/4$, $I_{\phi(1)}(L) = 2^{\beta}\alpha(\Gamma(p/2 + L))^{-1}$ $\cdot (2^{\beta}\alpha\Gamma(p/2 + L + 2\beta) + 2\beta\Gamma(p/2 + L + \beta))$. Hence $-p/4 < \beta < 0$ requires $0 < \alpha < -2^{1-\beta}\beta\Gamma(p/2 + L + \beta)$ $\cdot (\Gamma(p/2 + L + 2\beta))^{-1}$ VL. Since the right-hand side is smallest at L = 0, we obtain the condition $0 < \alpha < -2^{1-\beta}\beta\Gamma(p/2 + \beta)(\Gamma(p/2 + 2\beta))^{-1}$ in agreement with Neff and Strawderman (p. 66) and including Perlman and Rasmussen (p. 464). If α exceeds this condition $I_{\phi(1)}(0) > 0$, i.e., with (4), $T + \phi^{(1)}$ can't dominate T. If $\beta > 0$, we require $0 > \alpha > -2^{1-\beta}\beta\Gamma(p/2 + L + \beta)$ $\cdot (\Gamma(p/2 + L + 2\beta))^{-1}$ VL which is impossible as $L + \infty$. Pasmuss: (1973) shows that when $\beta = 1$ no ϕ of the form $\alpha Z + \delta$ yields $T + \phi$ which dominates T, i.e., no linear estimator can dominate T.

If $\beta < 1/4$, $I_{\phi}(2)(L) = \alpha(1-4\beta)^{-(p/2+L)}$. $\alpha+2\beta(1-2\beta)^{-1}(p+2L)\eta_1(L)$ where $\eta_1(L)$ = $[(1-4\beta)/(1-2\beta)]^{p/2+L}$. Similar to the $\phi^{(1)}$ case, $\beta < 0$ requires $0 < \alpha < -2p\beta(1-2\beta)^{-1}\eta_1(0)$ to have $I_{\phi}(2) < 0$ VL. If α exceeds this condition, with (4), $I_{\phi}(2)(0) > 0$, i.e. $T + \phi^{(2)}$ can't dominate T. If $0 < \beta < 1/4$, no $\alpha < 0$ works if L is sufficiently large.

ii) If $g(\lambda) = E(Z^{-1})$ (up to a constant $g(\lambda)$ is the improvement of the James-Stein estimator of the multivariate normal mean when the variance is known), $T(Z) = Z^{-1}$, $b(L) = (p-2+2L)^{-1}$. For $\phi^{(1)}$ (3b) holds if $\alpha < 0$, $-p/2 < \beta < 0$ or $\alpha > 0$, $\beta > 0$. For $\phi^{(2)}$, (3b) holds if $\alpha < 0$, $\alpha <$

If $\beta > -p/4$, $I_{\phi}(1)(L) = 2^{\beta}\alpha(\Gamma(p/2 + L))^{-1}$ $\cdot (2^{\beta}\alpha\Gamma(p/2 + L + 2\beta) - 2\beta(p - 2 + 2L)^{-1}\Gamma(p/2 + L + \beta - 1))$. When p < 8 with $\beta > -p/4$, (i.e., $\beta > -2$), $2^{1-\beta}\beta(p - 2 + 2L)^{-1}$ $\cdot \Gamma(p/2 + L + \beta - 1)(\Gamma(p/2 + L + 2\beta))^{-1} + 0$ as $L + \infty$; no $T + \phi^{(1)}$ which dominate T are revealed. If $p \ge 8$, $-p/4 \le \beta \le -2$, $0 > \alpha > 2^{1-\beta}\beta(p-2)^{-1}\Gamma(p/2 + \beta - 1)(\Gamma(p/2 + 2\beta))^{-1}$, $T + \phi^{(1)}$ will dominate T.

If $\beta < 1/4$, $I_{\phi(2)}(L) = \alpha(1-4\beta)^{-(p/2+L)} \cdot (\alpha-4\beta(p-2+2L)^{-1}\eta_1(L))$. If $\beta < -(p-4)^{-1}$ and $0 > \alpha > 4\beta(p-2)^{-1}\eta_1(0)$ ($\beta < -(p-4)^{-1}$ is needed to insure that $4\beta(p-2+2L)^{-1}\eta_1(L)$ is largest at L = 0), $T+\phi^{(2)}$ will dominate T. If $0 < \beta < 1/4$, no $\alpha > 0$ works if L is sufficiently large.

iii) If $g(\lambda) = c^{\lambda} \iff g(\lambda) = e^{c\lambda}$, c > -1, $T(Z) = (1-d)^{p/2}e^{dZ/2}$ where $d = c(c+1)^{-1}$, $a(L) = (c+1)^{L}$. If, in fact, c > 0 we can show that for both $\phi^{(1)}$ and $\phi^{(2)}$ there exist α, β such that $T+\phi^{(1)}$, $T+\phi^{(2)}$ dominate T. We omit the details.

iv) If $g(\lambda) = \lambda^2$, $T(Z) = Z^2/4 - (p+2)Z/2$ + p(p+2)/4 and a(L) = L(L-1). Since a is monotone on the support of L, (3b) will be satisfied for $\phi^{(1)}$ and $\phi^{(2)}$ over the same ranges as in example (i).

If $\beta > -p/4$, $I_{(1)}(L) = 2^{\beta}\alpha(\Gamma(p/2 + L))^{-1}$ $(2^{\beta}\alpha\Gamma(p/2 + L + 2\beta) + 2\beta(\beta + 2L - 1)\Gamma(p/2 + L + \beta)).$ It is apparent that if $-p/4 < \beta \le 0$, $\alpha > 0$, $I_{(1)}(0)$, $I_{(1)}(1) > 0;$ if $0 < \beta \le 1,$ $\alpha < 0,$ $I_{(1)}(0) > 0.$ Here $T + \phi^{(1)}$ can't dominate T. When $\beta > 1$, no α works if L is sufficiently large; this approach doesn't reveal any $T + \phi^{(1)}$ which dominate T.

If $\beta < 1/4$, $I_{(2)}(L) = \alpha(1-4\beta)^{-(p/2+L)}$ $\cdot (\alpha+2\beta(1-2\beta)^{-2}\eta_1(L)(4L^2(1-\beta) + 2L(p+2\beta) + \beta p(p+2))).$ Again we do not reveal any T + $\phi^{(2)}$ which improve upon T. However $\phi = \alpha Z^{-2} e^{\beta Z}$, for example, can be used successfully. We omit the details.

Examples: NC F

We illustrate for $\phi_{\alpha,\beta} = \alpha W^{\beta}$. (The more general $\phi = \alpha W^{\beta}$ (1+W) can be used to broaden the conclusions. We omit the details.) It is useful to note that, $-p/2 < \beta < r/2$.

$$E(W^{\beta}|L) = \frac{\Gamma(p/2 + L + \beta)}{\Gamma(p/2 + L)} \frac{\Gamma(r/2 - \beta)}{\Gamma(r/2)}$$

which increases in L if $\beta > 0$, decreases in L if $\beta < 0$. We assume p,r ≥ 5 .

v) If $g(\lambda) = \lambda$, T(W) = ((r-2)W-p)/2 and a(L) = L. Condition (3b) will be satisfied if $\alpha > 0$, $-p/2 < \beta < 0$ or $\alpha < 0$, $0 < \beta < r/2$ and for any α, β clearly $cov(L, \phi) \rightarrow 0$ as $\lambda \rightarrow 0$.

For $-p/4 < \beta < r/4$, $I_{\phi}(L) = \alpha n_2(L)$ • $(\alpha + 2\beta n_3(L)(p+r+2L-2)(r-2\beta-2)^{-1})$ where

$$\eta_2(L) = \frac{\Gamma(p/2 + L + 2\beta)}{\Gamma(p/2 + L)} \frac{\Gamma(r/2 - 2\beta)}{\Gamma(r/2)},$$

$$\eta_3(L) = \frac{\Gamma(p/2 + L + \beta)}{\Gamma(p/2 + L + 2\beta)} \frac{\Gamma(r/2 - \beta)}{\Gamma(r/2 - 2\beta)}.$$

Note that $\eta_3(L) = O(L^{-\beta})$ and that $(p+r+2L-2)\eta_3(L)$ increases in L for $-p/4 < \beta < p(p+r-4)^{-1}$. Hence $-p/4 < \beta < 0$, $0 < \alpha < -2\beta\eta_3(0)(p+r-2)(r-2\beta-2)^{-1}$ or $0 < \beta < p(p+r-4)^{-1}$, $0 > \alpha > -2\beta\eta_3(0)(p+r-2)(r-2\beta-2)^{-1}$ yields $T+\phi$ which dominates T. For $\beta < 0$, if α exceeds the condition, $I_{\phi}(0) > 0$. The case $\beta = -1$ is discussed in Perlman and Rasmussen (p. 467). At $\beta = 1$, $\eta_3(L) \cdot (p+r+2L-2)(r-2\beta-2)^{-1} = (p+r+2L-2)(p+2L+2)^{-1} > 1$ so that $-2 < \alpha < 0$, $T+\phi$ will dominate T. In fact, if $\phi = \alpha W+\gamma$

a more general dominating family of linear estimators can be created in agreement with Perlman and Rasmussen (p. 465-6).

vi) For $g(\lambda) = E(W^{-1})$ (up to a constant, $g(\lambda)$ is the improvement of the James-Stein estimator when an independent estimator of the variance having r degrees of freedom is used), $T = W^{-1}$ and $a(L) = r(p-2+2L)^{-1}$. Here $\alpha > 0$, $0 < \beta < r/2$ or $\alpha < 0$, $-p/2 < \beta < 0$ will satisfy the covariance condition.

For $-p/4 < \beta < r/4$, $I_{\phi}(L) = \alpha n_2(L)(\alpha - 4\beta n_3(L)n_4(L))$ where $n_4(L) = (p+r+2L-2)(p+2L-2)^{-1}(p+2L+2\beta-2)^{-1}$ and $n_3(L) \cdot n_4(L)$ increases in L if $-p/4 < \beta < -(p(p-2+2r) \cdot (p(p-2)+r(p+2))^{-1}$. For β in this range, if $0 > \alpha > 4\beta n_3(0)n_4(0)$, $T+\phi$ will dominate T. At $\beta = -1$, $n_3(L)n_4(L) > (r+2)^{-1}$ which requires $0 > \alpha > -4(r+2)^{-1}$. Hence cW^{-1} will dominate W^{-1} when $(r-2)(r+2)^{-1} < c < 1$.

4. BAYES ESTIMATORS

In developing Bayesian procedures under SEL, we again turn to the conditional problem, i.e., Z/L . The relation

$$\pi(L) = \int \frac{\lambda^{L} e^{-\lambda}}{L!} \tau(\lambda) d\lambda$$
 (5)

shows which $\pi(L)$ can arise as priors. In fact, since (5) is an instance of the classical moment problem, if $\pi(L)L!$ is a "moment sequence" (see, e.g., Feller (1966) Sec. VII.3 for conditions) $\pi(L)$ uniquely determines $\tau(\lambda)$. A useful case is, $\nu > -\frac{p-2}{2}$,

$$\lambda \sim G(p/2 + \nu; \gamma^{-1})$$
 (Gamma with mean $(p/2 + \nu)\gamma$), (6)
L $\sim NB(p/2 + \nu; \rho)$ $(\rho = \gamma(\gamma+1)^{-1})$.

Under (6), $\lambda \mid L \sim G(p/2 + v + L; \rho^{-1})$.

Recalling that b(L) = E(g(λ)|L), for the NC χ^2 we have by direct calculation E(g(λ)|Z) = E(b(L)|Z), i.e., we can calculate Bayes rules using the central χ^2 distribution. The same conclusions hold for the NC F with W replacing Z.

Examples: NC χ^2

For a particular π the Bayes rule

$$\delta_{\pi}(Z) = E(b(L)|Z) = \frac{\sum b(L)(Z/2)^{L}\pi(L)(\Gamma(p/2 + L))^{-1}}{\sum (Z/2)^{L}\pi(L)(\Gamma(p/2 + L))^{-1}}.$$
 (7)

Denote the denominator in (7) by $J_{\pi}(Z)$.

i) If $g(\lambda) = \lambda$, then from (5) $b(L) = (L+1) \cdot \pi(L+1)(\pi(L))^{-1}$.

Using this, straightforward manipulation yields

$$\delta_{\pi}(Z) = 2Z \frac{J_{\pi}^{(")}(Z)}{J_{\pi}(Z)} + p \frac{J_{\pi}^{(')}(Z)}{J_{\pi}(Z)}.$$
 (8)

Setting $\delta_{\pi}(Z)$ to be the MVU of λ in (8) leads to a second order homogeneous linear differential equation whose general solution is

$$J_{\pi}(Z) = e^{-Z/2} (c_1 + c_2) Z^{-p/2} e^{Z} dZ$$
 (9)

By the definition of J_{π} c_2 cannot equal 0. But then after multiplying both sides of (9) by $e^{Z/2}$ and differentiating, we see that $c_2 \neq 0$ can't work either. Thus the MVU can't be the limit of Bayes or extended Bayes clarifying its inadmissibility.

Applying the NB priors in (6) to (8) and denoting the resulting rule by $\delta_{\nu,\rho}(Z)$, we have

$$\delta_{\nu,\rho}(z) = \rho(\frac{p}{2} + \nu + \frac{zJ_{\pi}}{J_{\pi}}) . \qquad (10)$$

It is straightforward to show that for fixed ρ , ν + $\frac{ZJ_{\pi}}{J_{\pi}}$ increases in ν whence $\delta_{\nu_1,\rho} < \delta_{\nu_2,\rho}$ if $\nu_1 < \nu_2$. At $\nu = 0$, $J_{\pi}(Z) = ce^{\rho Z/2}$, $\delta_{0,\rho} = \rho(\rho Z + p)/2$ which is discussed at length (particularly when $\rho = 1$) in Perlman and Rasmussen. Corresponding to the noninformative prior, $\pi(L) = 1$ from $\tau(\lambda) = 1$ (which arises in (6) at $\nu = -(p-2)/2$, $\rho = 1$), we have $\delta_{-(p-2)/2} = \frac{Z-p}{2} + (J_{\pi}(Z)\Gamma(p/2-1))^{-1} + 2$ so that the MVU, $T < \delta_{\nu,1}$ Vv. In fact, $\delta_{-(p-2)/2} = T + \phi$ with ϕ satisfying (3b), but we are unable to show that this δ dominates T. We note that Neff and Strawderman derive a subleass of (8) of proper Bayes estimators for λ arising from a two-stage prior distribution and show that none of these dominate T.

ii) Generally from (5) if $g(\lambda) = \lambda^r$, a positive integer $b(L) = (L+r)_r \pi (L+r) (\pi(L))^{-1}$. In particular, for λ^2 the Bayes rule becomes

$$\delta_{\pi}(Z) = 4Z^{2} \frac{J_{\pi}^{(")}(Z)}{J_{\pi}(Z)} + 4Z(p+2) \frac{J_{\pi}^{("')}(Z)}{J_{\pi}(Z)} + p(p+2) \frac{J_{\pi}^{(")}(Z)}{J_{\pi}(Z)} . \quad (11)$$

Using an argument similar to that below (9), it may be possible to show that the MVU can't be the limit of Bayes or extended Bayes. Applying the NB priors in (6) to (11), we obtain, for example, v = 0, $\rho^4 Z^2/4 + \rho^3 Z(p+2)/2 + \rho^2 p(p+2)/4$.

iii) If $g(\lambda) = e^{c\lambda}$, under (6) with $c < \rho^{-1}$, $b(L) = (1-\rho c)^{-(p/2 + \nu + L)}$. Bayes rules take the form

$$\delta_{\pi}(Z) = (1-\rho c)^{-(p/2+\nu)} J_{\pi}((1-\rho c)^{-1}Z)/J_{\pi}(Z)$$
 (12)

At v = 0 we obtain $(1-\rho c)^{-p/2} e^{\rho^2 c Z/2(1-\rho c)}$. The inadmissible MVU estimator would arise if ρ could equal -1.

iv) If $g(\lambda) = E(Z^{-1}) = E((p-2+2L)^{-1}|\lambda)$, then under (6), $b(L) = E((p-2+2M)^{-1}|L)$ where $M|L \sim NB$ (p/2 + v+L), $\rho(\rho+1)^{-1}$, i.e.,

$$b(L) = \sum_{m=0}^{\infty} \frac{\Gamma(p/2 + \nu + L + m)}{\Gamma(p/2 + \nu + L)m!} \cdot (p-2+2m)^{-1} (\frac{\rho}{\rho+1})^m (\frac{1}{\rho+1})^{p/2} + \nu + L .$$

When v is a nonnegative integer, we have the identity

$$\sum_{m=0}^{\infty} \frac{\Gamma(p/2 + \nu + L + m)}{\Gamma(p/2 + \nu + L)m!} \cdot (p-2+2m)^{-1} (\frac{\rho}{\rho+1})^{p/2} + m-1$$

$$= \sum_{n=0}^{\nu+L} {\binom{\nu+L}{n}} (p-2+2n)^{-1} \rho^{p/2} + n-1$$

(derivable by considering the indefinite integral with respect to ρ of $\rho^{p/2}$ $^{-2}(\rho+1)^{L+\nu}$ directly and through its equivalent negative binomial expansion). This yields the Bayes rule in the form

$$\frac{(1-\rho)^{p/2}(\rho+1)^{-(\nu+1)}}{J_{\pi}(Z)\Gamma(p/2+\nu)} \cdot \sum_{L=0}^{\infty} \frac{\Gamma(p/2) + L + \nu}{\Gamma(p/2+L)L!} \left(\frac{\rho}{\rho+1} \frac{Z}{2}\right)^{L}$$

$$\cdot \sum_{n=0}^{\nu+L} {\nu+L \choose n} (p-2+2n)^{-1} \rho^{n} .$$
(13)

At ν =0, interchanging order of summation in (13), we obtain the rule as $(\rho+1)^{-1}E((p-2+2L)^{-1}|Z) = (\rho+1)^{-1} \cdot g(\rho^2Z/2(\rho+1))$ since L|Z has a Poisson distribution.

Examples: NC F

For g(λ), b(L), under π , the Bayes rule becomes (in terms of V = W(1+W) $^{-1}$ \sim NC Beta)

$$\delta_{\pi}(V) = E(a(L)|V) = \frac{\sum b(L)V^{L}_{\pi}(L)\Gamma(\frac{p+r}{2} + L)(\Gamma(\frac{p}{2} + L))^{-1}}{\sum V^{L}_{\pi}(L)\Gamma(\frac{p+r}{2} + L)(\Gamma(\frac{p}{2} + L))^{-1}}.$$
 (14)

Denote the denominator in (14) by $K_{_{\boldsymbol{\pi}}}(\boldsymbol{V}).$

v) If $g(\lambda) = \lambda$ it is straightforward to show that

$$\delta_{\pi}(V) = (K_{\pi}(V))^{-1} V^{-(\frac{p+r}{2})} \int_{V}^{\frac{p+r}{2}} V^{-1} (VK_{\pi}^{(")}(V) + \frac{p}{2}K_{\pi}^{(")}(V)). \tag{15}$$

Under (6), (15) becomes (denoting the rule by $\delta_{\nu,\rho}$)

$$\delta_{v,\rho}(V) = \rho[p/2 + v + VK_{\pi}'/K_{\pi}].$$
 (16)

Note the similarity between (16) and (10). It is straightforward to show that for fixed ρ , ν + VK $_{\pi}$ /K $_{\pi}$ increases in ν whence $\delta_{\nu_1,\rho}$ < $\delta_{\nu_2,\rho}$ if ν_1 < ν_2 . At

v = 0, $K_{\pi}(V) = (1-\rho)^{p/2} (r(p/2))^{-1} r(\frac{p+r}{2}) (1-\rho V)^{-(p+r)/2}$

so that $\delta_{0,\rho}(V) = \rho/2((p+r)\rho V(1-\rho V)^{-1}+p)$ which is discussed in Perlman and Rasmussen (p. 466), particularly when $\rho = 1$, $(\delta_{0,1} = ((p+r)W+p)/2)$. Corresponding to the

noninformative prior, we obtain $\delta = (r-2)W/c$ $-(\frac{p-2}{2}),1$ $-p/2 + (W+1)\cdot(2 + \frac{\Gamma((p+r)/2)}{\Gamma(p/2-1)\cdot K_{\pi}(W(1+W)-1}) \text{ whence}$

T < $\delta_{\nu,1}$, $\forall \nu$, where T is the MVU estimator.

vi) If $g(\lambda) = E((p-2+2L)^{-1}|\lambda)$, under (6) calculations analogous to those leading to (13) yield at $\nu = 0$ the rule $(p+1)^{-1}E((p-2+2L)^{-1}|W)$ as in the NC χ^2 case except L|W has a negative binomial distribution.

5. SUMMARY AND DIRECTION FOR FUTURE WORK

We present a summary table of the disparate findings in this article.

Two problems requiring further investigation are the following. First it would be useful to link the two estimation approaches discussed herein. More precisely, writing the Bayes estimators in Section 4 in the form

T+ ϕ , where T is the corresponding MVU, can we use the method of Section 3 (or some other argument) to obtain Bayes rules which uniformly improve upon the MVU? Do any Bayes rules dominate the MVU? Second, under the priors in (6) at, for example, $\nu = 0$ the marginal distribution of Z is $(1-\rho)^{-1}\chi^2(p)$ suggesting that for the NC χ^2 case convenient "empirical Bayes" estimators can be developed. Do any of these estimators dominate the corresponding MVU? Can the method of Section 3 help in this regard?

Finally, the meticulous and provocative effort of the referee is acknowledged. The paper is much improved as a result.

TABLE I

	g(λ)	Improving Estimator of the Form T+¢	Bayes Estimator under SEL
NC 2	λ	$\phi = \alpha Z^{\beta}$ $\phi = \alpha e^{\beta Z}$ See Ex. 3(1)	General form: (8) Under priors in (6):(10) See Ex. 4(1)
	λ ²	$\phi = \alpha Z^2 e^{\beta Z}$ See Ex. 3(iv)	General form: (11) See Ex. 4(11)
	c ^{\lambda} or e ^{c\lambda}	$\phi = \alpha Z^{\beta}$ $\phi = \alpha e^{\beta Z}$ See Ex. 3(iii)	Under priors in (6):(12) See Ex. 4(iii)
	E(Z ⁻¹)	$\phi = \alpha Z^{\beta}$ $\phi = \alpha e^{\beta Z}$ See Ex. 3(ii)	Under priors in (6):(13) See Ex. 4(iv)
NC F	λ	$\phi = \alpha W^{\beta}$ See Ex. 3(v)	General form: (15) Under priors in (6):(16) See Ex. 4(v)
	E(W ⁻¹)	$\phi = \alpha W^{\beta}$ See Ex. 3(vi)	See Ex. 4(vi)

BIBLIOGRAPHY

- DeWaal, D.J., (1974). Bayes Estimates of Non-Centrality Parameters in Multivariate Analysis. Communications In Statistics 3, 73-79.
- Efron, B., & Morris, C., (1976). Families of minimax estimators of the mean of a multivariate normal distribution. Annals of Statistics 4, 11-21.
- Feller, W., (1966). An Introduction to Probability
 Theory and Its Applications, Vol. II. New York:
 John Wiley & Sons.
- Neff, N., & Stawderman, W., (1976). Further Remarks on Estimating the Parameter of a Non-Central Chi Square Distribution. Communications In Statistics A5, 65-76.
- Perlman, M., & Rasmussen, U., (1975). Some Remarks on Estimating a Non-Centrality Parameter. Communications In Statistics 4, 455-468.
- Rasmussen, U., (1973). Testing and Estimation Problems Concerning Non-Centrality Parameters. Ph.D. dissertation, Univ. of Minnesota, Minneapolis.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT HUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER			
329 AD-A125778				
4. TITLE (and Subulta) ESTIMATION IN NONCENTRAL DISTRIBUTIONS	5. TYPE OF REPORT & PERIOD COVERED			
ESTIMATION IN NUNCENTRAL DISTRIBUTIONS	TECHNICAL REPORT			
	6. PERFORMING ORG, REPORT NUMBER			
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(*)			
ALAN E. GALFAND	N00014-76-C-0475			
ALAN E. Granning				
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
Department of Statistics	NR-042-267			
Stanford University				
Stanford, CA 94305	12. REPORT DATE			
Office Of Naval Research	JANUARY 10, 1983			
Statistics & Probability Program Code 411SP	13. NUMBER OF PAGES			
Arlington, VA 22217 14. MONITORING AGENCY NAME & ADDRESS(II ditterent from Controlling Office)	14 15. SECURITY CLASS, (of this report)			
	1			
	UNCLASSIFIED			
	15. DECLASSIFICATION/DOWNGRADING SCHEDULE			
16. DISTRIBUTION STATEMENT (of this Report)				
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.				
-				
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different from Report)				
19. SUPPLEMENTARY NOTES				
19. KEY WORDS (Continue on reverse side if necessary and identity by block number	77)			
Noncentral χ^2 ; noncentral F; MVU estimators; Bayes estimators.				
Noncentral X ; noncentral 1; 110 65511114 65.5 5 225.5				
20. ASSI RACT (Continue on reverse side if necessary and identify by block number)				
Tal. W23: UNG. (continue at talence and it increased) and talence at talence				
N. TAGE OFF DEVENOE CADE				
PLEASE SEE REVERSE SIDE.				

DD 1 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102- LE- 314-601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

#329

C

ESTIMATION IN NONCENTRAL DISTRIBUTIONS

This paper investigates alternatives to MVU estimators in noncentral χ^2 and F distributions. Two directions are pursued. In the first, a general approach for uniformly improving on MVU estimators is described and illustrated. In the second, Bayesian procedures are characterized and illustrated as well. This effort extends earlier work of Perlman and Rasmussen and of Neff and Strawderman.

5 9 17 12: 49 17 4: 55 27

