Institut für Stochastik

Prof. Dr. D. Hug · Dr. F. Nestmann

Stochastische Geometrie (SS2019)

Übungsblatt 2

Aufgabe 1 (Mengensysteme)

Sind die folgenden Mengensysteme σ -Algebren auf \mathcal{F}^d ?

(a)
$$\mathcal{A} := \{ \mathcal{F}^C : C \in \mathcal{C}^d \} \cup \{ \emptyset \}$$

(b)
$$\mathcal{B} := \{ \mathcal{F}_G : G \in \mathcal{O}^d \}$$

Lösung: Beide Megensysteme sind keine σ -Algebren, da sie insbesondere nicht abgeschlossen unter abzählbaren Durchschnitten sind:

(a) Für $n \geq 3$ setze $A_n := \mathcal{F}^{[1/n\,,\, 1-1/n]^d}.$ Dann gilt

$$\bigcap_{n=3}^{\infty} A_n = \mathcal{F}^{(0,1)^d} \notin \mathcal{A}, \text{ da } (0,1)^d \notin \mathcal{C}^d.$$

(b) Für $n \geq 1$ setze $B_n := \mathcal{F}_{(-1/n, 1+1/n)^d}$. Dann gilt

$$\bigcap_{n=1}^{\infty} B_n = \mathcal{F}_{[0,1]^d} \notin \mathcal{B}, \text{ da } [0,1]^d \notin \mathcal{O}^d.$$

Aufgabe 2 (siehe Satz 1.1.13)

Zeigen Sie:

- (a) Die Abbildung $\mathcal{F}^d \to \mathcal{F}^d$, $F \mapsto \partial F$ ist messbar.
- (b) Die Abbildung $\mathcal{F}^d \to \mathcal{F}^d$, $F \mapsto \operatorname{cl}(\operatorname{conv} F)$ ist messbar.

Lösung:

(a) Wir definieren $\varphi(F) := \partial F$, $F \in \mathcal{F}^d$, und zeigen, dass φ unterhalbstetig ist. Sei zunächst $B \subset \mathbb{R}^d$ eine offene Kugel. Es gilt

$$\varphi^{-1}(\mathcal{F}_B) = \{ F \in \mathcal{F}^d : B \cap \partial F \neq \emptyset \}$$
$$= \{ F \in \mathcal{F}^d : B \cap F \neq \emptyset \text{ und } B \cap F^c \neq \emptyset \}$$
$$= \mathcal{F}_B \cap \{ F \in \mathcal{F}^d : B \subset F \}^c.$$

Da $\{F \in \mathcal{F}^d : B \subset F\}$ abgeschlossen ist (siehe Beweis von Satz 1.1.13), ist $\varphi^{-1}(\mathcal{F}_B)$ offen.

Sei nun $G \subset \mathbb{R}^d$ eine beliebige offene Menge. Es gilt $G = \bigcup_{x \in G} B_x$, wobei für $x \in G$ die Menge $B_x \subset G$ eine offene Kugel um x mit $B_x \subset G$ ist. Es folgt

$$\varphi^{-1}(\mathcal{F}_G) = \varphi^{-1}\left(\bigcup_{x \in G} \mathcal{F}_{B_x}\right) = \bigcup_{x \in G} \varphi^{-1}(\mathcal{F}_{B_x}).$$

Damit ist $\varphi^{-1}(\mathcal{F}_G)$, als Vereinigung offener Mengen, offen, womit die Unterhalbstetigkeit von φ folgt.

(b) Wir definieren $\varphi(F) := \operatorname{cl}(\operatorname{conv}(F)), F \in \mathcal{F}^d$, und zeigen, dass φ unterhalbstetig ist. Dazu sei $G \subset \mathbb{R}^d$ offen. Angenommen

$$\varphi^{-1}(\mathcal{F}_G) = \{ F \in \mathcal{F}^d : \operatorname{cl}(\operatorname{conv}(F)) \cap G \neq \emptyset \}$$

ist nicht offen. Dann gibt es ein $F \in \varphi^{-1}(\mathcal{F}_G)$ und $F_i \in \mathcal{F}^d \setminus \varphi^{-1}(\mathcal{F}_G)$, $i \in \mathbb{N}$, mit $F_i \to F$. Somit gelten insbesondere

$$\operatorname{cl}(\operatorname{conv}(F_i)) \cap G = \emptyset, \ i \in \mathbb{N}, \quad \text{und} \quad \operatorname{cl}(\operatorname{conv}(F)) \cap G \neq \emptyset.$$

Da G offen ist, gilt $\operatorname{conv}(F) \cap G \neq \emptyset$. Es sei $x \in \operatorname{conv}(F) \cap G$. Dann existieren $m \in \mathbb{N}, x_1, \ldots, x_m \in F$ und $\lambda_1, \ldots, \lambda_m \in [0, 1]$ mit

$$\sum_{k=1}^{m} \lambda_k = 1 \quad \text{und} \quad x = \sum_{k=1}^{m} \lambda_k x_k.$$

Wegen Satz 1.1.3 (3) existiert für jedes $k \in \{1, ..., m\}$ eine Folge $(x_{k,j})_{j \in \mathbb{N}}$ mit $x_{k,j} \in F_j$ für fast alle $j \in \mathbb{N}$ und $x_{k,j} \to x_k$. Für $j \in \mathbb{N}$ sei

$$x_j' := \sum_{k=1}^m \lambda_k x_{k,j}.$$

Damit gelten $x'_j \in \operatorname{conv}(F_j)$ für fast alle $j \in \mathbb{N}$ und $x'_j \to x$. Da G offen ist und $x \in G$ gilt, folgt $x'_j \in G$ für fast alle $j \in \mathbb{N}$ und damit $G \cap \operatorname{conv}(F_j) \neq \emptyset$ für fast alle $j \in \mathbb{N}$, was einen Widerspruch liefert. Insgesamt folgt, dass $\varphi^{-1}(\mathcal{F}_G)$ offen ist und somit die Unterhalbstetigkeit von φ .

Aufgabe 3 (Zufällige abgeschlossene Mengen)

(a) Es sei Z eine ZAM im \mathbb{R}^d . Man bezeichnet die Menge

$$F := \{ x \in \mathbb{R}^d : \mathbb{P}(x \in Z) = 1 \}$$

als Menge der Fixpunkte von Z. Zeigen Sie, dass F abgeschlossen ist.

(b) Finden Sie eine ZAM Z im \mathbb{R}^d , für die die Menge

$$G := \{ x \in \mathbb{R}^d : \mathbb{P}(x \in Z) \neq 0 \}$$

offen ist.

(c) Es sei Z eine ZAM im \mathbb{R}^d und

$$p_Z(x) := \mathbb{P}(x \in Z).$$

Zeigen Sie: Für jede Borelmenge $B \subset \mathbb{R}^d$ gilt

$$\mathbb{E}[\lambda^d(Z \cap B)] = \int_B p_Z(x) \, \mathrm{d}x.$$

Lösung:

(a) Es sei $(x_i)_{i\in\mathbb{N}}$ eine Folge von Fixpunkten von Z mit $x_i\to x$. Für $m\in\mathbb{N}$ ist die Menge

$$C_m := \operatorname{cl}\{x_i : i \ge m\}$$

kompakt und es gilt $T_Z(C_m) = \mathbb{P}(Z \cap C_m \neq \emptyset) = 1$. Wegen $C_m \downarrow \{x\}$ und der Stetigkeit von oben des Kapazitätsfunktionals (Proposition 1.3.2 (b)) gilt $T_Z(\{x\}) = 1$. Also ist x ein Fixpunkt von Z und daher ist F abgeschlossen.

(b) Es sei Z := B(0,R), wobei R auf [0,1] gleichverteilt sei und $x \in \mathbb{R}^d$. Dann gilt

$$\mathbb{P}(x \in Z) = \mathbb{P}(R \ge ||x||) = \begin{cases} 0, & ||x|| \ge 1, \\ 1 - ||x||, & ||x|| < 1. \end{cases}$$

Also ist

$$G = \operatorname{int} B(0,1)$$

und somit offen.

(c) Wegen des Satzes von Fubini gilt:

$$\mathbb{E}[\lambda^d(Z \cap B)] = \int_{\Omega} \int_{\mathbb{R}^d} \mathbf{1}_{Z(\omega) \cap B}(x) \, dx \, \mathbb{P}(d\omega) = \int_{\Omega} \int_{\mathbb{R}^d} \mathbf{1}_{Z(\omega)}(x) \mathbf{1}_B(x) \, dx \, \mathbb{P}(d\omega)$$
$$= \int_{\mathbb{R}^d} \mathbb{P}(x \in Z) \mathbf{1}_B(x) \, dx = \int_B \mathbb{P}(x \in Z) \, dx = \int_B p_Z(x) \, dx.$$

Aufgabe 4 (Kapazitätsfunktional zufälliger konvexer Mengen)

Für eine ZAM Z im \mathbb{R}^d und ihr Kapazitätsfunktional T_Z sind äquivalent:

- (a) Z ist fast sicher konvex.
- (b) T_Z ist additiv auf \mathcal{K}^d , der Menge der konvexen und kompakten Teilmengen des \mathbb{R}^d , d.h.

$$T_Z(K \cup K') + T_Z(K \cap K') = T_Z(K) + T_Z(K')$$

für $K, K' \in \mathcal{K}^d$ mit $K \cup K' \in \mathcal{K}^d$.

Hinweis: Für $C_0, \ldots C_k \in \mathcal{C}^d$, $k \ge 1$ und S_k wie in Satz 1.3.2 gilt

$$S_k(C_0; C_1, \dots, C_k) = \sum_{r=0}^k (-1)^{r-1} \sum_{1 \le i_1 < \dots < i_r \le k} T_Z(C_0 \cup C_{i_1} \cup \dots \cup C_{i_r}).$$

Lösung:

(a) \Rightarrow (b) Es seien $K, K' \in \mathcal{K}^d$, sodass $K \cup K' \in \mathcal{K}^d$. Wir können annehmen, dass $K, K' \neq \emptyset$, da andernfalls aus $T_Z(\emptyset) = 0$ leicht die Gleichung aus (b) folgt. Sind also K und K' nicht leer, d.h. es gibt ein $x \in K$ und ein $y \in K'$, dann gilt wegen der Konvexität von $K \cup K'$, dass $[x, y] \subset K \cup K'$, woraus folgt, dass $K \cap K'$ nichtleer, konvex und kompakt ist. Dabei bezeichnet [x, y] die Strecke von x nach y. Ist $Z(\omega)$ eine konvexe Realisierung von Z und $Z(\omega) \cap K \neq \emptyset$, $Z(\omega) \cap K' \neq \emptyset$, so ist auch $Z(\omega) \cap (K \cap K') \neq \emptyset$. Es folgt $\mathbb{P}_Z(\mathcal{F}_{K,K'}^{K \cap K'}) = 0$.

Wegen Proposition 1.3.2 (c) und dem Hinweis gilt

$$0 = \mathbb{P}_{Z}(\mathcal{F}_{K,K'}^{K \cap K'})$$

$$= S_{2}(K \cap K'; K, K')$$

$$= -T_{Z}(K \cap K') + T_{Z}((K \cap K') \cup K) + T_{Z}((K \cap K') \cup K')$$

$$- T_{Z}((K \cap K') \cup K \cup K')$$

$$= -T_{Z}(K \cap K') + T_{Z}(K) + T_{Z}(K') - T_{Z}(K \cup K').$$

(b) \Rightarrow (a) Es sei $F \in \mathcal{F}^d$ eine nicht konvexe Menge. Dann gibt es $x, x' \in F$ mit $[x, x'] \cap F^c \neq \emptyset$. Nun können wir, da F^C offen ist, eine Kugel $B(y_0, \varepsilon)$ mit rationalem Mittelpunkt y_0 und rationalem Radius $\varepsilon > 0$ wählen, sodass $B(y_0, \varepsilon) \subset F^c$ und $[x, x'] \cap \operatorname{int}(B(y_0, \varepsilon)) \neq \emptyset$. Aus letzterem folgt, dass $x_0, x'_0 \in \mathbb{Q}^n$ existieren mit $y_0 \in [x_0, x'_0], \ x \in B(x_0, \varepsilon), \ x' \in B(x'_0, \varepsilon)$. Wir definieren

$$C := \operatorname{conv}(B(x_0, \varepsilon) \cup B(y_0, \varepsilon))$$

$$C' := \operatorname{conv}(B(x'_0, \varepsilon) \cup B(y_0, \varepsilon)).$$

Dann gilt $C, C', C \cup C' \in \mathcal{K}^d$ und $F \in \mathcal{F}_{C,C'}^{C \cap C'}$. Aus (b) folgt

$$\mathbb{P}_{Z}(\mathcal{F}_{C,C'}^{C \cap C'}) = -T_{Z}(C \cap C') + T_{Z}(C) + T_{Z}(C') - T_{Z}(C \cup C') = 0$$

und daher $\mathbb{P}_Z(\bigcup \mathcal{F}^{C\cap C'}_{C,C'})=0$, wobei die Vereinigung über die (abzählbar vielen) möglichen Paare C,C' gebildet wird. Also gilt $Z\notin \bigcup \mathcal{F}^{C\cap C'}_{C,C'}$ mit Wahrscheinlichkeit 1, woraus folgt, dass Z fast sicher konvex ist.