Série d'exercices

Exercice 1

- Répondre par vrai ou faux
 - ☐ Au cours d'une réaction acido-basique, l'acide capte un proton *H*⁺
 - ☐ Une réaction acido-basique se produit entre un acide *HA* et sa base conjuguée *A*¯
 - \square La base conjuguée de l'acide ascorbique C_6H_8 O_6 est l'ion ascorbate C_6H_7 O_6^-
 - ☐ L'ampholyte est une espèce chimique qui se comporte comme un acide dans un couple et comme une base dans un autre couple, selon les conditions expérimentales.

Exercice 2

1 Compléter le tableau ci-dessous

Acide	Base	Couple HA/A ⁻	Demi-équation $A^- + H^+ \rightleftharpoons HA$
		$C_6H_5COOH/C_6H_5COO^-$	
H ₂ S	HS ⁻		
			$NO_3^- + H^+ \rightleftharpoons HNO_3$
			$HCOO^- + H^+ \rightleftharpoons HCOOH$
$C_2H_5NH_3^+$			
	CN-	CN ⁻	

Exercice 3

- Écrire l'équation de la réaction acido-basique entre l'acide ascorbique C_6H_8 O_6 et la méthylamine CH_3NH_2
- ② Écrire l'équation de la réaction acido-basique entre les ions hydrogénocarbonate HCO_3^- et les ions hydroxyde HO^- .

Exercice 4

Le benzoate de de sodium est un conservateur alimentaire (E211) sa formule chimique est

 $C_6H_5CO_2Na$. En solution aqueuse, il se dissocie en ions sodium et ions benzoate $C_6H_5CO_2^-$

- Donner la formule chimique de l'acide conjugué de l'ion benzoate .
- ② On mélange une solution de benzoate de sodium avec une solution de l'acide méthanoïque

HCOOH . Écrire l'équation de la réaction acido-basique qui se produit dans le mélange .

Chimie 1BAC Page 160

Série d'exercices

Exercice 5

On mélange un volume V = 50mL d'une solution (S) de l'acide méthanoïque HCOOH de concentration $C = 1, 5 \times 10^{-2}$. $mol. L^{-1}$, avec un volume V' = 40mL d'une solution (S') d'hydroxyde de sodium $(Na^+ + HO^-)$ de concentration $C' = 2 \times 10^{-2}$. $mol. L^{-1}$. Une réaction acido-basique se produit entre l'acide méthanoïque HCOOH et les ions hydroxyde HO^-

- 1 Calculer les quantités de matières initiales des réactifs.
- 2 Déterminer les couples acido-basiques intervenant dans la réaction qui se produit dans le mélange.
- 6 Écrire l'équation de la réaction acido-basique qui se produit dans le mélange.
- 4 Construire le tableau d'avancement associé à cette réaction.
- 6 Déterminer le réactif limitant et l'avancement maximal de cette réaction.
- 6 Calculer le bilan de la quantité de matière à l'état final.

Exercice 6

L'acide méthanoïque (appelé aussi acide formique) est le plus simple des acides carboxyliques, sa formule chimique est *HCOOH*, sa base conjuguée est l'ion méthanoate.

I-Préparation d'une solution de l'acide méthanoïque.

On prépare une solution aqueuse (S) de l'acide méthanoïque de concentration C_A , et de volume V = 100mL, en dissolvant une masse m = 92mg de l'acide méthanoïque HCOOH dans l'eau distillée.

- Calculer la quantité de matière de l'acide méthanoïque dissoute dans la solution (S)
- 2 Calculer la concentration molaire de la solution (S).
- Oonner la formule chimique de l'ion méthanoate (la base conjuguée de l'acide méthanoïque)

II-Étude de la réaction de l'acide méthanoïque et les ions d'hydroxyde .

On fait diluer la solution (S) et on obtient une solution (S_A) d l'acide méthanoïque de concentration C_A .

On mélange un volume $V_A=20ml$ la solution (S_A) avec une solution (S_B) d'hydroxyde de sodium $(Na^+_{(aq)}+HO^-_{(aq)})$ de concentration $C_B=3\times 10^{-3}mol.L^{-1}$ et de volume $V_B=50mL$

- **0** Calculer la quantité de la matière des ions d'hydroxyde $HO_{(aq)}^-$ dans la solution (S_B) .
- écrire l'équation de la réaction acido-basique modélisant l'action des ions hydroxyde sur l'acide méthanoïque
- © Construire le tableau d'avancement de cette réaction en fonction de C_A , C_B , V_A , V_B , x et l'avancement maximal x_{max}
- **8** La mesure de la conductivité du mélange à l'état final donne la valeur : $\sigma_f = 45$, 12mS. m^{-1}
 - a Montrer que la conductivité du mélange à l'état final s'écrit sous la forme suivante : $\sigma_f=5,34\times10^{-2}-2,07\times10^2.x_{max}$.
 - **b** -Calculer l'avancement final de cette réaction.
 - d Calculer la quantité de matière final des ions hydroxyde $HO_{(aq)}^-$ dans le mélange et déduire le réactif limitant de cette réaction.
 - e -Calculer la concentration C_A de la solution (S_A) et déduire le coefficient de dilution.

Données :Les conductivités molaires ioniques : $\lambda_{HO^-} = 19,92 \text{mS}.m^2.mol^{-1};$ $\lambda_{Na^+} = 5,01 \text{ mS}.m^2.mol^{-1}$; $\lambda_{HCOO^-} = 5,46 \text{ mS}.m^2.mol^{-1}$