Implementation of Univariate Linear Regression

[']Aim:

To implement univariate Linear Regression to fit a straight line using least squares.

² Equipment's required:

- 1. Hardware PCs
- 2. Anaconda Python 3.7 Installation / Moodle-Code Runner

² Algorithm:

- 1. Get the independent variable X and dependent variable Y.
- 2. Calculate the mean of the X -values and the mean of the Y -values.
- 3. Find the slope m of the line of best fit using the formula.

$$m=rac{\sum\limits_{i=1}^{n}(x_{i}-\overline{X})\left(y_{i}-\overline{Y}
ight)}{\sum\limits_{i=1}^{n}\left(x_{i}-\overline{X}
ight)^{2}}$$

4. Compute the y -intercept of the line by using the formula:

$$b = \overline{Y} - m\overline{X}$$

- 5. Use the slope m and the y -intercept to form the equation of the line.
- 6. Obtain the straight line equation Y=mX+b and plot the scatterplot.

Program

```
# Program for Univariate linear regression using the least squares metho
# Developed by:Yogeshvar.M
# RegisterNumber:22003358
import numpy as np
X = np.array(eval(input()))
Y = np.array(eval(input()))
X_mean=np.mean(X)
Y_mean=np.mean(Y)
num=0
denom=0
for i in range(len(X)):
    num+=(X[i]-X_mean)*(Y[i]-Y_mean)
    denom+=(X[i]-X mean)**2
m=num/denom
c=Y_mean-m*X_mean
print (m, c)
Y pred=m*X+c
print (Y_pred)
```

Input:

Inpu	t									Result					
[0, 1	1,	2,	3,	4,	5,	6,	7,	8,	9]	1.16969696969	69697 1.236	3636363636363	3		
[1, 3	3,	2,	5,	7,	8,	8,	9,	10,	12]	[1.23636364 8.25454545			4.74545455 11.76363636]	5.91515152	7.08484848

Output:

	Input	Expected	Got	
~		1.16969696969697 1.2363636363636363 [1.23636364 2.40606061 3.57575758 4.74545455 5.91515152 7.08484848 8.25454545 9.42424242 10.59393939 11.76363636]	1.16969696969697 1.2363636363636363 [1.23636364 2.40606061 3.57575758 4.74545455 5.91515152 7.08484848 8.25454545 9.42424242 10.59393939 11.76363636]	~

[']Result

Thus the univariate Linear Regression was implemented to fit a straight line using least squares.