

Exemple 1 (Forme canonique) Soit f et g deux fonctions définies sur \mathbb{R} par, respectivement :

$$f(x) = 2x^{2} - x - 1$$
$$g(x) = 2\left(x - \frac{1}{4}\right)^{2} - \frac{9}{8}$$

- **1.** Montrer que, pour tout réel x, f(x) = g(x).
- **2.** En déduire l'extremum éventuel de f. Existe-t-il des fonctions sans extrema?
- **3.** En déduire les éventuelles solutions de l'équation f(x) = 0.
- **4.** En factorisant g(x) et en faisant un tableau de signes, en déduire le signe de f selon les valeurs de x.

Exemple 2 (Construction de la forme canonique) Soit f la fonction définie sur \mathbb{R} par $x \mapsto f(x) = ax^2 + bx + c$ où a, b et c sont des réels avec $a \neq 0$.

On cherche à déterminer la forme canonique de f; autrement dit, on cherche à écrire f sous la forme :

$$f(x) = k(x - \alpha)^2 + \beta$$

On veut également donner une relation entre les coefficients a, b et c et les coefficients k, α et β .

- **1.** Pourquoi a-t-on supposé que $a \neq 0$?
- **2.** Développer $k(x-\alpha)^2 + \beta$.
- **3.** En déduire a, b et c en fontion de k, α et β en procédant par identification.
- **4.** Exprimer maintenant k, α et β en fontion de a, b et c.
- **5.** Sous quelles conditions, l'équation f(x) = 0 a des solutions?
- **6.** Sous ces conditions, exprimer les solutions de cette équation en fonction de k, α et β .
- 7. On s'intéresse à la fonction f définie par $f(x) = -3x^2 + 6x 4$ pour tout $x \in \mathbb{R}$.
 - **a.** Déterminer la forme canonique de f.
 - **b.** En déduire l'extremum de f.
 - c. Résoudre f(x) = 0.
 - **d.** En déduire le signe de f en fonction des valeurs de x.
 - **e.** Même questions avec la fonction $f(x) = 3x^2 + 6x + 3$

Exemple 3 (Racines et estimation d'une aire) *Soit* f *la fonction définie sur* \mathbb{R} *par* $f(x) = -x^2 + 4x - 3$.

On note $\mathscr C$ sa représentation graphique dans un repère orthonormé.

- **1.** Déterminer les deux solutions x_1 et x_2 de l'équation f(x) = 0.
- **2.** Quelle est la valeur de f en son extremum x_0 ?
- **3.** Entre les valeurs x_1 et x_2 , l'allure de $\mathscr C$ est la suivante :

1G

On veut déterminer une valeur approchée de l'aire $\mathcal{A}_{\mathcal{D}}$ de la surface hachurée par la méthode Monte-Carlo.

On choisit un point M au hasard appartenant au rectangle ABCD contenant le domaine \mathfrak{D} .

La probabilité p qu'un point M choisi comme précédemment appartienne au domaine \mathcal{D} est égale au quotient de l'aire $\mathcal{A}_{\mathcal{D}}$ par l'aire du rectangle ABCD.

- **a.** Exprimer $\mathcal{A}_{\mathcal{D}}$ en fonction de p.
- **b.** Pour évaluer p, on va simuler une expérience aléatoire qui consiste à choisir n points M(x, y) au hasard dans le rectangle ABCD; la loi des grands nombres nous permet d'affirmer que, lorsque n est suffisamment grand, la fréquence des points dans le domaine $\mathcal D$ parmi les n points approche la valeur p.
 - i. Donner un encadrement de x et de y
 - ii. Compléter l'algorithme suivant qui modélise cette expérience en renvoyant la valeur de la fréquence.

```
def aire(n):
c=0
for i in range(1,n+1):
    x = ... + .. * random()
    y = ..
    if y <= ...:
    c = c + ..
return c / ..</pre>
```

iii. Tester ce programme sur la calculatrice et donner une valeur approchée de p. Ne pas oublier la première ligne : "from random import*".