Amendments to the Claims:

Claim 1 (Cancelled)

, 0 (G (1		T1	-1-:	1 C		
2. (Currenti	y Amended)	The receiver as	ciaimed in cia	nm 1, lurther	comprising A	receiver
comprising:						
a filter	that sends ou	t an output signa	l having a syn	nbol at an arbi	trary time inte	rval;
an inte	rmittent opera	ation part that con	ntrols the filte	r intermittentl	y at the time i	nterval,
according to t	he output sign	al supplied from	the filter; and	<u>l</u>		
a timir	ng signal gene	rator that generat	tes a timing si	gnal for turnir	ng on and off a	power
supply of the	intermittent o	peration part, acc	ording to the	arbitrary time	interval in the	output
signal supplie	d from the filt	ter.				

- 3. (Original) The receiver as claimed in claim 2, wherein the timing signal generator generates a timing signal for turning on and off the power supply of the intermittent operation part, according to the control signal from the intermittent operation part.
- 4. (Original) The receiver as claimed in claim 2, wherein the timing signal generator generates a timing signal for turning on and off the power supply of the intermittent operation part, according to signal strength of the control signal from the intermittent operation part.
- 5. (Original) The receiver as claimed in claim 3, wherein the timing signal generator generates a timing signal for turning on and off the power supply of the intermittent operation part, according to a control signal from the intermittent operation part and an off period of the power supply of the intermittent operation part.
- 6. (Currently Amended) The receiver as claimed in claim 1, further comprising A receiver comprising:

a filter that sends out an output signal having a symbol at an arbitrary time interval;
an intermittent operation part that controls the filter intermittently at the time interval,
according to the output signal supplied from the filter; and

a register that holds a control signal from the intermittent operation part, wherein the filter is controlled according to the control signal held by the register.

- 7. (Original) The receiver as claimed in claim 2, wherein the timing signal generator generates a timing signal for turning on and off the power supply of the intermittent operation part, according to a reference clock in addition to the arbitrary time interval in the output signal.
- 8. (Currently amended) A frequency adjusting circuit including comprising:

a reference filter that sets a phase difference to a reference clock signal;

a multiplication circuit that multiplies the output signal supplied from the reference filter by the reference clock signal; and

a low-pass filter that is connected to an output of the multiplication circuit, the frequency adjusting circuit providing the reference filter with an output voltage supplied from the low-pass filter, to provide the reference filter with negative feedback, so that a cutoff frequency of the reference filter remains constant, the frequency adjusting circuit comprising: constant;

a sample hold circuit that holds an output voltage supplied from the low-pass filter for a constant period;

an analog-to-digital converter that converts an output voltage supplied from the sample hold circuit to digital data;

a digital-to-analog converter that converts the digital data to an analog adjusted value; and a register that holds the digital data converted, wherein the frequency adjusting circuit is operated intermittently according to the digital data held by the register.

9. (Currently amended) A frequency adjusting circuit including: comprising:

a reference filter that sets a phase difference to a reference clock signal; and

an XOR circuit that outputs an exclusive OR of the output signal supplied from the reference filter and the reference clock signal; and

a measurement circuit that measures a duty ratio of the output signal supplied from the XOR circuit, the frequency adjusting circuit using the output signal supplied from the measurement circuit for a control signal of the filter, the frequency adjusting circuit comprising filter; and

____a register that holds the output signal supplied from the measurement circuit as digital data, wherein the frequency adjusting circuit is intermittently operated.

- 10. (Currently Amended) An electronic device loaded with the receiver as claimed in claim—1 2.
- 11. (Original) The receiver as claimed in claim 4, wherein the timing signal generator generates a timing signal for turning on and off the power supply of the intermittent operation part, according to a control signal from the intermittent operation part and an off period of the power supply of the intermittent operation part.
- 12. (New) An electronic device loaded with the receiver as claimed in claim 6.