SMAI-S25-L15: Decision Trees

C. V. Jawahar

IIIT Hyderabad

March 4, 2025

Decision Tree Learning

- Decision tree representation
- A specific (ID3) learning algorithm
- Entropy, Information gain
- Overfitting

Good references (Chapter 3 of Mitchel's ML Book. 1) Also 2

 $^{{}^{1}} https://www.cs.cmu.edu/\ tom/files/MachineLearningTomMitchell.pdf$

²https://www.cs.toronto.edu/~axgao/cs486686_f21/lecture_notes/ Lecture_07_on_Decision_Trees.pdf

Training Examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis	
D1	Sunny	Hot	High	Weak	No	
D2	Sunny	Hot	High	Strong	No	
D3	Overcast	Hot	High	Weak	Yes	
D4	Rain	Mild	High	Weak	Yes	
D5	Rain	Cool	Normal	Weak	Yes	
D6	Rain	Cool	Normal	Strong	No	
D7	Overcast	Cool	Normal	Strong	Yes	
D8	Sunny	Mild	High	Weak	No	
D9	Sunny	Cool	Normal	Weak	Yes	
D10	Rain	Mild	Normal	Weak	Yes	
D11	Sunny	Mild	Normal	Strong	Yes	
D12	Overcast	Mild	High	Strong	Yes	
D13	Overcast	Hot	Normal	Weak	Yes	
D14	Rain	Mild	High	Strong	No	

Decision Tree for PlayTennis

Decision Trees

Decision tree representation:

- Each internal node tests an attribute
- Each branch corresponds to attribute value
- Each leaf node assigns a classification

When to Consider Decision Trees

- Instances describable by attribute-value pairs
- Target function is discrete valued
- Disjunctive hypothesis may be required
- Possibly noisy training data

Examples:

- Equipment or medical diagnosis
- Credit risk analysis
- Modeling calendar scheduling preferences

Top-Down Induction of Decision Trees

Main loop:

- Select the "best" decision attribute for next node
- Assign attribute as decision attribute for node
- 3 For each value of the attribute, create new descendant
- Sort training examples to leaf nodes
- If training examples are perfectly classified, then STOP; otherwise, iterate over new leaf nodes

Entropy

We use entropy in choosing which attribute to pick for splitting.

- S is a sample of training examples
- ullet p_{\oplus} is the proportion of positive examples in S
- p_{\ominus} is the proportion of negative examples in S
- ullet Entropy measures the impurity of S

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

Entropy

Information Gain

Gain(S, A) = expected reduction in entropy due to sorting on attribute A:

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Training Examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis	
D1	Sunny	Hot	High	Weak	No	
D2	Sunny	Hot	High	Strong	No	
D3	Overcast	Hot	High	Weak	Yes	
D4	Rain	Mild	High	Weak	Yes	
D5	Rain	Cool	Normal	Weak	Yes	
D6	Rain	Cool	Normal	Strong	No	
D7	Overcast	Cool	Normal	Strong	Yes	
D8	Sunny	Mild	High	Weak	No	
D9	Sunny	Cool	Normal	Weak	Yes	
D10	Rain	Mild	Normal	Weak	Yes	
D11	Sunny	Mild	Normal	Strong	Yes	
D12	Overcast	Mild	High	Strong	Yes	
D13	Overcast	Hot	Normal	Weak	Yes	
D14	Rain	Mild	High	Strong	No	

Selecting the Next Attribute

Which attribute is the best classifier?

Selecting the Next Attribute

Selecting the Next Attribute

Hypothesis Space Search by ID3

- Hypothesis space is complete!
 - Target function surely in there...
- Outputs a single hypothesis (which one?)
 - Can't play 20 questions...
- No back tracking
 - Local minima...
- Statisically-based search choices
 - Robust to noisy data...
- Inductive bias: approx "prefer shortest tree"

Inductive Bias in ID3

Unbiased?

Not really...

- Preference for short trees, and for those with high information gain attributes near the root
- Bias is a <u>preference</u> for some hypotheses, rather than a <u>restriction</u> of hypothesis space H
- Occam's razor: prefer the shortest hypothesis that fits the data

Occam's Razor

Why prefer short hypotheses?

Argument in favor:

- Fewer short hyps. than long hyps.
 - a short hyp that fits data unlikely to be coincidence
 - a long hyp that fits data might be coincidence

Argument opposed:

- There are many ways to define small sets of hyps
- e.g., all trees with a prime number of nodes that use attributes beginning with "Z"
- What's so special about small sets based on <u>size</u> of hypothesis??

Overfitting in Decision Trees

Consider adding noisy training example #15:

Sunny, Hot, Normal, Strong, PlayTennis = No

What effect on earlier tree?

Overfitting

Consider error of hypothesis h over

- training data: error_{train}(h)
- entire distribution \mathcal{D} of data: $error_{\mathcal{D}}(h)$

Hypothesis $h \in H$ overfits training data if there is an alternative hypothesis $h' \in H$ such that

$$error_{train}(h) < error_{train}(h')$$

and

$$error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h')$$

Overfitting in Decision Trees

Avoiding Overfitting

- Stop growing when data split is not statistically significant
- Grow full tree, then post-prune How can we avoid overfitting?

How to select "best" tree:

- Measure performance over training data
- Measure performance over separate validation data set
- MDL: minimize size(tree) + size(misclassifications(tree))

Reduced-Error Pruning

Split data into training and validation set

- Evaluate impact on validation set of pruning each possible node
- @ Greedily remove the one that most improves validation set accuracy

Do until further pruning is harmful:

- Evaluate impact on validation set of pruning each possible node (plus those below it)
- @ Greedily remove the one that most improves validation set accuracy
 - produces smallest version of most accurate subtree
- What if data is limited?

Reduce Error Pruning

Rule Post-Pruning

- Convert tree to equivalent set of rules
- Prune each rule independently
- Sort final rules into desired sequence

Perhaps most frequently used method (e.g., C4.5)

Converting a Tree to Rules


```
 \begin{array}{ll} \text{IF} & (\textit{Outlook} = \textit{Sunny})(\textit{Humidity} = \textit{High}) \\ \text{THEN} & \textit{PlayTennis} = \textit{No} \\ \text{IF} & (\textit{Outlook} = \textit{Sunny})(\textit{Humidity} = \textit{Normal}) \\ \text{THEN} & \textit{PlayTennis} = \textit{Yes} \\ \end{array}
```

25 / 30

Continuous Valued Attributes

Create a discrete attribute to test continuous values

• Example: (Temperature > 72.3) = true, false

Temperature:	40	48	60	72	80	90
PlayTennis:	No	No	Yes	Yes	Yes	No

Attributes with Many Values

Problem:

- If attribute has many values, Gain will select it
- Imagine using Date = Jun_3_1996 as attribute

One approach: use GainRatio instead

$$GainRatio(S, A) \equiv \frac{Gain(S, A)}{SplitInformation(S, A)}$$

SplitInformation
$$(S, A) \equiv -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$

where S_i is subset of S for which A has value v_i

Problem 1 and 2

For the given problem construct the tree (show all entropy calculations!)

Problem 3

Draw decision tree for (i) A EXOR B (ii) (A AND B) OR (C AND D)

Problem 4 5

Consider a problem with two real attributes.

$$((0,0),+),((1,1),-),((2,2),+),((3,3),+)$$

Draw a decision tree that can classify the training data correctly (no need of formally finding; you should be able to guess)

On a 2 D plane, draw the decision boundary and the traing samples. Should the positive region of a DT be always connected. Argue with an example.