Ask the question

Select the modeling approach

Formulate the

Solve the model

Answer the

Optimizing profit when selling a pig

Jon Sims

February 8, 2016

Modeling Approach

Ask the question

Select the modeling approach

Formulate the model

Solve the model

- Guided by the five-step approach
- Be accurate and use real-world information when it's readily available, but don't fret a few generalizations
- In terms of factors affecting the problem, keep the problem as complex as it's stated (i.e. don't oversimplify or over-complicate)

The Five Step Method

Ask the question

Select the modeling approach

Formulate the model

Solve the model

- 1 Ask the question
- 2 Select the modeling approach
- 3 Formulate the model
- 4 Solve the model
- 5 Answer the question

Ask the Question

Ask the question

Select the modeling approach

Formulate the model

Solve the mode

- Define the problem
- This is given in the report description!
- "Given a starting weight of 200 lb, \$0.45 daily feed cost, \$0.65 initial market price per pound of pork, when should I sell my pig?"

Select the modeling approach

Ask the question

Select the modeling approach

Formulate the model

Solve the mode

- Define the scope and methodology of the problem that we'll model
- We'll consider formulas for determining the pig's daily weight gain, the daily maintenance cost, and daily market price per pound of pork as single-variable functions for a given time t, where t represents each day since the start
- We'll essentially limit ourselves to values of *t* less than 30 to reasonably limit our scope

Select the modeling approach

Ask the question

Select the modeling approach

Formulate the model

Solve the model

- To find a good formula for weight, we'll inform our decision by looking at the simple, 5 pounds per day model, the complex formula given in the report description, and some real world data
- To find a good formula for market price per pound of pork, we'll quickly go beyond the scope of the problem by looking at real-world market prices, so we'll stick to the formulas given in class
- To find a good formula for the cost of maintaining a pig, we'll go beyond the scope of the problem if we look at real-world market prices per pound of feed, but real world data could be useful for finding out how much feed a pig eats as it grows bigger.

Formulate the model

Ask the question

Select the modeling approach

Formulate the model

Solve the mode

- Determine analytic formulas for solving the prior three major factors impacting the problem
 - weight
 - pork price
 - maintenance cost

Pig Weight over Time

Ask the question

Select the modeling approach

Formulate the model

Solve the mode

Answer the

- Simple weight function, w(t) = 200 + 5t
- Unrealistically-overestimating weight function, $w(t) = \frac{800}{1+3e^{\frac{-t}{30}}}$
- More-realistic weight function, $w(t) = 125 + \frac{300}{1+3e^{\frac{-t}{30}}}$

Pig Weight over Time

Ask the questior

Select the modeling approach

Formulate the model

Solve the mode

Pork Price over Time

Ask the question

Select the modeling approach

Formulate the model

Solve the mode

Answer the

- Simple pork price function, p(t) = 0.65 0.01t
- Complex pork price function, $p(t) = 0.65e^{\frac{-0.01t}{0.65}}$

Pork Price over Time

Ask the question

Select the modeling approach

Formulate the model

Solve the mode

Maintenance Cost over Time

Ask the question

Select the modeling approach

Formulate the model

Solve the model

- Simple maintenance cost function, c(t) = 0.45t
- Complex maintenance cost function, $c(t) = 0.45t \times 2^{\frac{t}{70}}$
- Due to time constraints on the report, we only investigated the simple case, but the question is still open for the latter

Solve the model

Ask the question

Select the modeling approach

Formulate the model

Solve the model

- Fixed simple maintenance cost function as the only one compared of the two
- Solved for each variation of pork/weight functions using Newton's method

Solve the model

Ask the question

Select the modeling approach

Formulate the model

Solve the model

Solve the model

Ask the question

Select the modeling approach

Formulate the model

Solve the model

Realistic Weight, Simple Pork	\$130.0 at time $t = 0.0$
Unrealistic Weight, Simple Pork	\$135.42 at time $t = 12.33$
Simple Weight, Simple Pork	\$133.2 at time $t = 8.003$
Realistic Weight, Complex Pork	\$130 at time $t = 0.0$
Unrealistic Weight, Complex Pork	\$144.16 at time $t = 28.64$
Simple Weight, Complex Pork	\$135.98 at time $t = 15.09$

Answer the question

Ask the question

Select the modeling approach

Formulate the model

Solve the mode

- We like the realistic weight, complex pork model the best, so we answer the question using the optimum value for it
- "Sell your pig immediately, and reap an easy \$130 in profit"