- 1. Sejam $f: \mathbb{R}^n \to \mathbb{R}$, A e B subconjuntos não vazios de \mathbb{R}^n tais que $B \subseteq A$. Suponha que f é limitada inferiormente em \mathbb{R}^n . Mostre que
 - i) $\inf_{x \in A} f(x) \le \inf_{x \in B} f(x);$
 - ii) se \overline{x} é minimizador de f em A e $\overline{x} \in B$, então \overline{x} também é minimizador de f em B.
- 2. Encontrar exemplos onde todos os pontos de Ω são minimizadores locais mas $f(x) \neq f(y)$ se $x \neq y$.
- 3. Teorema de Bolzano-Weierstrass: Seja $f:A\subset\mathbb{R}^n\to\mathbb{R}$ contínua onde A é um conjunto compacto (isto é, fechado e limitado). Prove que f tem mínimo global em A.
- 4. Mostrar, com exemplos, o que acontece quando as hipóteses de continuidade e compacidade do Teorema de Bolzano-Weierstrass são eliminadas.
- 5. Provar que se f é contínua em \mathbb{R}^n e, dado $x^0 \in \mathbb{R}^n$, o conjunto de nível $\{x \in \mathbb{R}^n | f(x) \le f(x^0)\}$ é limitado, então f tem minimizador global em \mathbb{R}^n .
- 6. Provar que se f é contínua em \mathbb{R}^n e $\lim_{||x|| \to \infty} f(x) = \infty$, então f tem minizador global em \mathbb{R}^n .
- 7. Encontrar exemplos onde:
 - i) x^* é minimizador local de f em Ω , mas $\nabla f(x^*) \neq 0$;
 - ii) x^* é minimizador local de f em Ω , $\nabla f(x^*) = 0$ mas $\nabla^2 f(x^*)$ não é semi definida positiva;
 - iii) Ω é aberto, $\nabla f(x^*) = 0$ mas x^* não é minimizador local;
 - iv) Ω é aberto, $\nabla f(x^*) = 0$, $\nabla^2 f(x^*) \ge 0$ mas x^* não é minimizador local.