(i) AM × 8M = CM × BM chart of interests (ii) AM × 8M = CM × BM chart of interests of interest	$\sum_{S} \sum_{S} \sum_{S$	(e) so 0 = 62 29	•	(iii) After 2x mea DADC
$=\int_{0}^{\infty}\frac{dx}{dx} dx \qquad x=e^{-x}e$	$=\int_{1}^{2}\frac{d}{dt}dt \qquad x=e^{-t}e^{$	2 sin 8 + sin 8 -1 =0	ř e .	= 4x 2 x 142x S = 722 cm2
$Sin \theta = \frac{1}{2}, Sin \theta = -1$ $Sin $	$Sin \theta = \frac{1}{2}, Sin \theta = -1$ $Sin \theta = \frac{1}{2}, Sin \theta = \frac{1}{2}, Sin \theta = -1$ $Sin \theta = \frac{1}{2}, Sin \theta = 1$	(2 sin 0 - 1) (sin 0 + 1) = 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$0 = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}$ $= \frac{\pi}{6}, \frac{2}{6}, \frac{2}{12}$ $= \frac{\pi}{6}, \frac{2}{6}, \frac{2}{12}$ $= \frac{\pi}{6}, \frac{2}{6}, \frac{2}{12}$ $= \frac{\pi}{6}, \frac{2}{6}, \frac{2}{12}$ $= \frac{\pi}{6}, \frac{2}{6}, 2$	1-20 ris (2=0 ris	Si the du xee u	
(i) AM=BM given Line through the earlier that bisecks the chord is perpendicular to the chord. AB I CD. (ii) AM × BM = CM × BM (iii) AM × BM = CM × BM (iversaling chords) of interesting chords.	(i) AM=BM given Line Hirragh the costree that bisects the chord is perpendicular to the chord. AB LCD. (ii) AM×BM=CM×DM product of interesting finduction of interesting product of interesting chords. S×S=CM×Z CM=12\frac{2}{2} CM=12\frac{2}{2} Tadius OC=7\frac{4}{4} Fractions of Figure 1/4 Fractions OC=7\frac{4}{4} Fractions OC=7\fr	0=7 57 34	- (~ m],	f(i) = e' +1-5
(i) AM=BM given Line through the earlie that bisects the chord is perpendicular to the chord. AB I CD. (ii) AM×BM=CM×DM chords of interesting chords of orders of interesting chords of orders of interesting	(i) AM=BM given Line Hirongh the cashe that bisecks the chord is perpendicular to the chord. The AM x BM = CM x DM (ii) AM x BM = CM x DM (iii) AM x BM = CM x DM (iv) AM x DM (iv) AM x BM = CM x DM (iv) AM x BM = CM x DM (iv) AM x BM = CM x DM (iv) AM x BM x DM (iv) AM x D		= h 2- h 1	f(z) = e ² + 2-5
(i) AM=BM given Line through the earthe that bisects the chord is perpendicular to the chord. AB I CD. (ii) AM×BM=CM×DM chords.	(i) AM=BM given Line through the cohe that Line through the cohe that bisects the chord is perpendicular to the chord. AB 1 CD. (ii) AM×BM=CM×DM (iii) AM×BM=CM×DM (iv) AM=BM (iv			Since f(x) is continuous in
(i) AM=BM given Line through the earlier that bisects the chord is perpendicular to the chord. AB I CD. (ii) AM×BM=CM×DM chords of interseting	(i) AM=BM given Line through the earlier that bisecks the chord is perpendicular to the chord. AB L CD. (ii) AM×BM=CM×DM (iii) AM×BM=CM×DM (iv) AM×BM=CM		X Z/A	there is a sign change between
(i) AM=BM given Line through the earthe that bisects the chord is perpendicular to the chord. AB I CD. AB I CD. (ii) AM×BM=CM×DM chards of interests of interests of interests of interests of interests.	(i) AM=BM given Line through the cohe that bisects the chord is perpendicular to the chord. AB I CD. (ii) AM×BM=CM×DM product of intercepts of intercepts S×S=CM×2 CM=12½ DC=14½ Tadius OC=7½ con the chord of intercepts o			x=1 and x=2 those is a rod
Line through the cashre that Line through the cashre that $f'(x) = e^{x} + b$ bisects the chord is perpendicular to the chord. As $L \subset D$. The through the cashre that $f'(x) = e^{x} + b$ to the chord is perpendicular $f'(x) = e^{x} + b$ to the chord is perpendicular $f'(x) = e^{x} + b$ to the chord is perpendicular $f'(x) = e^{x} + b$ to the chord is perpendicular $f'(x) = e^{x} + b$ to the chord is perpendicular $f'(x) = e^{x} + b$ to the chord is perpendicular $f'(x) = e^{x} + b$ to the chord is perpendicular $f'(x) = e^{x} + b$ $f'(x) = e^{x} + b$ to the chord is perpendicular $f'(x) = e^{x} + b$ $f'(x)$	Line through the control that $f'(x) = e^{-x} + bisects$ the chord is perpendicular $x_i = 1.5 - 40$ the chord. The through the control $x_i = 1.5 - 40$ the chord is perpendicular $x_i = 1.5 - 40$ the chord. The through the control $x_i = 1.5 - 40$ the chord of interesting $x_i = 1.5 - 40$ that the chord of interesting $x_i = 1.5 - 40$ that $x_i = 1.5 - 40$ the chord of interesting $x_i = 1.5 - 40$ that $x_i = 1.5$ that $x_i = 1.5$ that $x_i = 1.5$ that $x_i = 1.5$ that $x_i =$	1 7 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2		(6) C. S. A. A. C.
bisects the chord is perpendicular to the chord. AB I CD. (ii) AM × BM = CM × DM Chords of interests of interesting = 1.3 Frequents of interesting characters.	bisects the chord is perpendicular $x_1 = 1.5 - 40$ the chord. As 1 CD. (ii) AM × BM = CM × DM (iii) AM × BM = CM × DM (iv) AM × DM (iv) AM × BM = CM × DM (iv) AM × DM		I IN through the centre that	f'(x) = 0 x + 1
to the chord. AB I CD. AB I CD. (i) AM × 8M = CM × DM Product of interrepts of interrepts. Chards. U.	to the chord. AB I CD. AB I CD. (ii) AM× BM = CM × DM product of interepts of intereding chards. S× S = CM× 2 CM = 12½ CM = 12½ . DC = 14½ (diameter) radius OC = 7½ cm	22. -2.4+34	bisects the chord is perpendicular	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
(i) AM × BM = CM × DM = 1.5 = 1.5 = 1.5 = 1.3 poduct of interests of interests of interests of interests.	$(ii) AM \times BM = CM \times DM$ $(iii) AM \times BM = CM \times DM$ $(iv) AM \times DM = CM \times DM$ $(iv) AM \times DM = CM \times DM$ $(iv) AM \times DM = C$	3-7	to the chord.	
(ii) AM × BM = CM × DM + 1.3 product of intercepts of inte	product of interests of interesting characting characting characting characters. SxS=cMx2 CM=122 CM=122 CM=124 DC=142 Tadius OC=74 CM=124 Tadius OC=74 CM=124 Tadius OC=74		TAB I CD.	.
	5 x S = CM x 2 CM = 122 . DC = 142 . DC = 142		A W ×	<u></u>
	1	0 - 21-10		
10 CM = 123			1	

2 voc.		avestion 6	(iii) pd = 36° g= 45°
5 - 4 (0 + 4) = 0 0 + 5 + 4 () ()		<	h = 1000 tax 36 tax 45
* + (* + *) - (* + *	(***)(***)*	x x	Sh- 44 + 95 + 44
X x 1 2 x x x 2 x x x 2 x	There is for something	(.09	= 588 m (nearest motte)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Skal (2007) (1007) (1007) (1007) (1007) (1007)	٠	
	= (k+1)(k+4)	(i) A= 2 × × × × sin 60°	() () () () () () () () () ()
(1) PELLODO & Ackt	4(k12)(k13)	Z X X	d ('v') = 6x2
	Sk21 = Sk + (k2)(k22)(k23)	(1) dx 1, xd (1)	4 × × × × × × × × × × × × × × × × × × ×
	= 1/2 (k+3) + 1/2 (htp)	At 6 4x 2	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(har)(har) (har) (har)(har)	To X To X To	
= 4 (P - 2000)	(x+1)(x+3)	5 5 5 5	$\sum_{i=1}^{n} (-2)^{n} = \sum_{i=1}^{n} (1)^{n} + C$
> 4 = 0 P = 2500	T + (5 + 5) ×) = 0	ا ا	0,1 0
AUGO = 2000 + Ae		= 13 cm²s-1	1 1 = 2 x 3
A = 500	1 5 1 X 5 X 5 X 5 X 5 X 5 X 5 X 5 X 5 X	(b) (v) In APVT	12 = 4x3
4 . L . P . 5000		tan & = PV	7 11 11 1 (1)
	(4.4.) (4.4.) (4.4.) (4.4.)	A = VG	Left to the text remains
ب الم	(# * X) (+ X) (- X)	(11) Similarly for DayT	lest, velocity regarrive.
S 5 x	4(k+2)(k+3) 05 required	BY = YB	Particle moves from x=1
112542.0 H	. The for nakal if the for nak	4 M = 2 MD + 2 MD	towards x = 0
0 17: 2000 + 500 c 466	Since true for not also true for	H + + + + + + + + + + + + + + + + + + +	0=X 0:X 升
\$ 650 000	n= 1+1=2, thus true for n= 3 and	ton2 x ton2 & 1000	(∧ ÷ 0 (∧ ÷ 0)
(a) Jay and make ()	for n= 4 and so on the all	12 (in & + tan K) = 10002	no acceleration if particle
	positive cittle Car.	13 1900 taxt 8	reaches origin it stops and no
9	2+021+04 way 5 will (11)	S + th x x + th x + th	acceleration for it to start again
41845, (1-1) 4 (44) (42) 4x23 2 6	1 + 1 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	h = 1000 ten a ten 8	. Velocity work change from
Actor Remark	- 1 11	d tot * * + though	negative to positive.
Assure those for note			I x = 0 to the problem of the control of

2 V 2 3/1/2 E	7	both reach some max int.	S V 2 10 2 V 2 10 2 V 2 10 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2	Ha 2.29		(b)	5.5 COJ X " 4-4 COJ X	0 - (- × - ×) (- × - × -) (+ (0 × - × -)) (- × - × -) (- × - × -) (- × - × -) (- × - × -) (- × - × -) (- × - × -) (- × - × - × -) (- × - × - × -) (- × - × - × - × -) (- × - × - × - × - × - × - × - × - × -		100 0 1 1 507 X	possible)		<u></u>						
) bouter	0 + (x) 2	1962) = 23 + 2 (23) + 2k - 6	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	08 × 30 ((11) Souther 2 = 1442	A Karahan		0 % h (1) way (2505 30, 50)	(1) 1 (1) X	0 (C) (C) (C) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	0. for x vis/	at = Vsn &	V = V = V = V = V = V = V = V = V = V	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	b b con'x	2	(4) May 44. of Q is	Y = (\(\frac{1}{2} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac^	87

·