PSC: Assignment on BJTs

- (a) In a bipolar transistor biased in the forward-active region, the base current is $i_B = 6.0 \,\mu\text{A}$ and the collector current is $i_C = 510 \,\mu\text{A}$. Determine β , α , and i_E . (Note that $i_E = i_C + i_B$.) (b) Repeat part (a) if $i_B = 50 \,\mu\text{A}$ and $i_C = 2.65 \,\text{mA}$.
- A silicon npn bipolar transistor is uniformly doped and biased in the forward-active region. The neutral base width is $x_B = 0.8 \,\mu\text{m}$. The transistor doping concentrations are $N_E = 5 \, \text{x} \, 10^{17} \, \text{cm}^{-3}$, $N_B = 10^{16} \, \text{cm}^{-3}$, and $N_C = 10^{15} \, \text{cm}^{-3}$. (n) Calculate the values of p_{E0} , n_{B0} , and p_{C0} . (b) For $V_{BL} = 0.625 \, \text{V}$, determine n_B at x = 0 and p_E at x' = 0. (c) Sketch the minority carrier concentrations through the device and label each curve.
- A uniformly doped silicon pnp transistor is biased in the forward-active mode. The doping concentrations are $N_E = 10^{18}$ cm⁻³, $N_B = 5 \times 10^{16}$ cm⁻³, and $N_C = 10^{15}$ cm⁻¹. (a) Calculate the values of n_{E0} , p_{B0} , and n_{C0} . (b) For $V_{EB} = 0.650 \text{ V}$, determine p_B at x = 0 and n_L at x' = 0. (c) Sketch the minority carrier concentrations through the device and label each curve.
- An npn silicon bipolar transistor at 7 = 300 K has uniform dopings of $N_E = 10^{19}$ cm⁻³, $N_B = 10^{17}$ cm⁻³, and $N_C = 7 \times 10^{15}$ cm⁻³. The transistor is operating in the inverse-active mode with $V_{BE} = -2$ V and $V_{BC} = 0.565$ V. (a) Sketch the minority carrier distribution through the device. (b) Determine the minority carrier concentrations at $x = x_B$ and x'' = 0. (c) If the metallurgical base width is 1.2 μ m, determine the neutral base width.
- The following currents are measured in a uniformly doped npn bipolar transistor:

$$I_{mC} = 1.20 \text{ mA}$$
 $I_{mC} = 0.10 \text{ mA}$
 $I_{mC} = 1.18 \text{ mA}$ $I_{R} = 0.20 \text{ mA}$
 $I_{G} = 0.001 \text{ mA}$ $I_{pc0} = 0.001 \text{ mA}$

Determine (a) a. (b) γ , (c) α_T , (d) δ , and (e) β .