

Department of Computer Science & Engineering Rajshahi University of Engineering & Technology, Bangladesh

Course Code: CSE 2203
Course Title: Digital Techniques

Course Title: Digital Techniques

Presented by, Md. Zahirul Islam

Common Number Systems

System	Base	Symbols	Used by humans?	Used in computers?
Decimal	10	0, 1, 9	Yes	No
Binary	2	0, 1	No	Yes
Octal	8	0, 1, 7	No	No
Hexa- decimal	16	0, 1, 9, A, B, F	No	No

Quantities/Counting (1 of 3)

Decimal	Binary	Octal	Hexa- decimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7

Quantities/Counting (2 of 3)

Decimal	Binary	Octal	Hexa- decimal
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Quantities/Counting (3 of 3)

Decimal	Binary	Octal	Hexa- decimal
16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13
20	10100	24	14
21	10101	25	15
22	10110	26	16
23	10111	27	17

Conversion Among Bases

The possibilities:

Quick Example

$$25_{10} = 11001_2 = 31_8 = 19_{16}$$
Base

Decimal to Decimal (just for fun)

Binary

Hexadecimal

Binary to Decimal

Binary to Decimal

- Multiply each bit by 2ⁿ, where n is the "weight" of the bit.
- The weight is the position of the bit, starting from o on the right
- Add the results

Octal to Decimal

Binary

Hexadecimal

Octal to Decimal

- Multiply each bit by 8^n , where n is the "weight" of the bit
- The weight is the position of the bit, starting from o on the right
- Add the results

$$724_8 \Rightarrow 4 \times 8^0 = 4$$
 $2 \times 8^1 = 16$
 $7 \times 8^2 = 448$
 468_{10}

Hexadecimal to Decimal

Hexadecimal to Decimal

- Multiply each bit by 16^n , where n is the "weight" of the bit
- The weight is the position of the bit, starting from o on the right
- Add the results

Decimal to Binary

Decimal to Binary

- Divide by two, keep track of the remainder
- First remainder is bit o (LSB, least-significant bit)
- Second remainder is bit 1
- Etc.

$$125_{10} = ?_2$$

Octal to Binary

Octal to Binary

Technique

Convert each octal digit to a 3-bit equivalent binary representation

$$705_8 = ?_2$$

Hexadecimal to Binary

Decimal Octal

Binary Hexadecimal

Hexadecimal to Binary

Technique

Convert each hexadecimal digit to a 4-bit equivalent binary representation

 $10AF_{16} = ?_2$

 $10AF_{16} = 0001000010101111_2$

Decimal to Octal

Binary

Hexadecimal

Decimal to Octal

- Divide by 8
- Keep track of the remainder

$$1234_{10} = ?_{8}$$

Decimal to Hexadecimal

Decimal to Hexadecimal

- Divide by 16
- Keep track of the remainder

$$1234_{10} = ?_{16}$$

Binary to Octal

Binary to Octal

- Group bits in threes, starting on right
- Convert to octal digits

 $1011010111_2 = ?_8$

 $1011010111_2 = 1327_8$

Binary to Hexadecimal

Decimal Octal

Binary

Hexadecimal

Binary to Hexadecimal

Technique

- Group bits in fours, starting on right
- Convert to hexadecimal digits

Example

 $1010111011_2 = ?_{16}$

 $1010111011_2 = 2BB_{16}$

Octal to Hexadecimal

Decimal Octal

Binary

Hexadecimal

Octal to Hexadecimal

Technique

• Use binary as an intermediary

Example

$$1076_8 = ?_{16}$$

$$1076_8 = 23E_{16}$$

Hexadecimal to Octal

Decimal Octal

Binary

Hexadecimal

Hexadecimal to Octal

Technique

• Use binary as an intermediary

Example

 $1F0C_{16} = ?_{8}$

 $1F0C_{16} = 17414_{8}$

Exercise - Convert ...

Decimal	Binary	Octal	Hexa- decimal
33			
	1110101		
		703	
			1AF

Don't use a calculator!

Skip answer

Answer

Exercise - Convert ...

Answer

Decimal	Binary	Octal	Hexa- decimal
33	100001	41	21
117	1110101	165	75
451	111000011	703	1C3
431	110101111	657	1AF

Common Powers (1 of 2)

Base 10

Power	Preface	Symbol	Value
10-12	pico	p	.000000000001
10-9	nano	n	.000000001
10-6	micro	μ	.000001
10-3	milli	m	.001
10^{3}	kilo	k	1000
10^{6}	mega	M	1000000
109	giga	G	1000000000
10^{12}	tera	T	1000000000000

Common Powers (2 of 2)

Base 2

Power	Preface	Symbol	Value
2^{10}	kilo	k	1024
2^{20}	mega	M	1048576
2^{30}	Giga	G	1073741824

- What is the value of "k", "M", and "G"?
- In computing, particularly w.r.t. memory, the base-2 interpretation generally applies

Example

Exercise - Free Space

Determine the "free space" on all drives on a machine in the lab

	Free space		
Drive	Bytes	GB	
A:			
C:			
D:			
E:			
etc.			

Review – multiplying powers

For common bases, add powers

$$a^b \times a^c = a^{b+c}$$

$$2^6 \times 2^{10} = 2^{16} = 65,536$$

or...

$$2^6 \times 2^{10} = 64 \times 2^{10} = 64 k$$

Binary Addition (1 of 2)

Two 1-bit values

A	В	A + B	
0	0	0	
0	1	1	
1	0	1	
1	1	10 🥿	
			"two"

Binary Addition (2 of 2)

Two *n*-bit values

Add individual bits

Propagate carries

E.g.,

Multiplication (1 of 3)

Decimal (just for fun)

```
    \begin{array}{r}
      35 \\
      \times 105 \\
      \hline
      175 \\
      000 \\
      \hline
      35 \\
      \hline
      3675 \\
    \end{array}
```

Multiplication (2 of 3)

Binary, two 1-bit values

A	В	$A \times B$
0	0	0
0	1	0
1	0	0
1	1	1

Multiplication (3 of 3)

Binary, two *n*-bit values
As with decimal values
E.g.,

```
1110

x 1011

1110

1110

0000

1110

10011010
```

Fractions

Decimal to decimal (just for fun)

3.14 =>
$$4 \times 10^{-2} = 0.04$$

$$1 \times 10^{-1} = 0.1$$

$$3 \times 10^{0} = 3$$

$$3.14$$

Fractions

Binary to decimal

10.1011 => 1 x
$$2^{-4} = 0.0625$$

1 x $2^{-3} = 0.125$
0 x $2^{-2} = 0.0$
1 x $2^{-1} = 0.5$
0 x $2^{0} = 0.0$
1 x $2^{1} = 2.0$
2.6875

Fractions

Exercise - Convert ...

Decimal	Binary	Octal	Hexa- decimal
29.8			
	101.1101		
		3.07	
			C.82

Don't use a calculator!

Skip answer

Answer

Exercise - Convert ...

Answer

Decimal	Binary	Octal	Hexa- decimal
29.8	11101.110011	35.63	1D.CC
5.8125	101.1101	5.64	5.D
3.109375	11.000111	3.07	3.1C
12.5078125	1100.10000010	14.404	C.82

Thank You

