Title

Tower structure under a harmonic excitation force

Description

Perform a time history analysis for a steel tower structure subjected to a lateral harmonic excitation force.

Determine the lateral displacements, velocities and accelerations with respect to time variables.

The steel tower structure is modeled as a beam element with equivalent flexural stiffness. A lumped mass is located at the top of the structure.

(a) Tower structure subjected to a harmonic load

Structural geometry and analysis model

Model

Analysis Type

2-D time history analysis (X-Z plane)

Unit System

in, lbf

Dimension

Height H = 100 in

Mass $M = 100 \text{ lbf} \cdot \text{sec}^2/\text{in}$ (in the X direction)

Damping ratio $\xi = 0.0$ Analysis time t = 0.3 secTime step $\Delta t = 0.001 \text{ sec}$

Element

Beam Element

Material

Modulus of elasticity $E = 2.0 \times 10^7 \text{ psi}$

Section Property

Moment of inertia $I_{yy} = 1666.667 \text{ in}^4$

Boundary Condition

Node 1; Constrain all DOFs

Node 2; Constrain Dz. (Dx and Ry allowed)

Analysis Case

A harmonic excitation force is applied at the node 2 in the X direction.

 $P(t) = P_o \sin \omega t$ lbf

Where, $P_0 = 1.0 \times 10^5$ lbf, $\omega = 30$ rad/sec

Results

Eigenvalue Analysis Results

EIGENVALUE ANALYSIS													
	Mode		Frequ	iency		Per	iod	Tolerance					
	No	(rad/	sec)	(cycle	/sec)	(se	ec)	Tolerance					
	1	31	,622780	5	,032922	0	,198692	0,00	00e+000				
MODAL PARTICIPATION MASSES(%) PRINTOUT													
	Mode	TRAN-X		TRAN-Y		TRAN-Z		ROTN-X		ROTN-Y		ROTN-Z	
	No	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM
	1	100,00	100,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	EIGENVECTOR												

Time History Analysis Results

X-displacements at the node 2

X-velocities at the node 2

X-accelerations at the node 2

Comparison of Results

Unit: sec, in

Resul	t	Theoretical	Ref.1	MIDAS/Civil		
Natural p	eriod	0.20	0.1926	0.199		
Lateral	0.1 sec	1.608	1.595	1.607		
displacement	0.2 sec	-3.187	-3.163	-3.186		
(δ_x)	0.3 sec	4.742	4.674	4.709		

Reference

Paz, Mario, "Structural Dynamics ; Theory and Computation", 3rd Edition, Van Nostrand Reinhold, New York, 1991, pp. $84 \sim 87$, EX. 4-5, 4-6.