МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4

по дисциплине «Параллельные алгоритмы»

Тема: Параллельное умножения матриц

Студент гр. 0303	Давыдов М. Д
Преподаватель	Сергеева Е. И.

Санкт-Петербург 2023

Цель работы.

Реализовать параллельный алгоритм умножения матриц с масштабируемым разбиением по потокам.

Исследовать масштабируемость выполненной реализации с реализацией из работы 1.

Реализовать параллельный алгоритм "быстрого" умножения матриц (Штрассена или его модификации).

Проверить, что результаты вычислений реализаций 4.1 и 4.2 совпадают.

Сравнить производительность с реализацией 4.1 на больших размерностях данных (порядка $10^4 - 10^6$)

Выполнение работы.

Для изучения масштабируемой реализации были написаны функции multiple и multipleExtend, которые реализовывают многопоточное перемножение матриц. Однако для ускорения умножения одна из матриц сначала транспонируется.

Для изучения алгоритма Штрассена была реализована функция strassenMultiple, в которой и реализован его алгоритм.

Таблица 1. Замеры времени на 7 потоках

Размер матриц	Параллельное	Алгоритм
	умножение	Штрассена
4	0.0013	0.015
16	0.0013	0.041
64	0.0026	0.053
512	0.5921	0.856
2048	35.5231	25.746
4096	311.3611	290.6627

Выводы.

В ходе выполнения работы был изучен алгоритм Штрассена и было установлено, что он лучше работает на больших объемах данных, а на маленьких работает медленнее, чем просто параллельное умножение.