LUNDS TEKNISKA HÖGSKOLA MATEMATIK

SVAR FLERDIMENSIONELL ANALYS 2013-08-27

- **1. a)** Normalvektor: (1, -4). Tangentlinjens ekvation: x 4y = 6.
 - **b)** Normalvektor: (1, -4, -1). Tangentlinjens ekvation: x 4y z = 4.
- **2. a)** $f(x,y) = g(x^2 + y^2)$, där g är en godtycklig C^1 funktion av en variabel.

b) Ja,
$$f(x,y) = \sqrt{x^2 + y^2}$$
.

- 3. Största värde: 2 (antas i hörnen (-1,1) och (2,4)). Minsta värde: -1/4 (antas i (1/2,1/4) på randen).
- **4. a)** Största värde: 17/16 (antas i $\pm \sqrt{15}/4, 1/8$)). Minsta värde: -1/2 (antas i (0, -1/2)).
 - **b**) 3/20.
- 5. a) $\pi \pi^2/4$.
 - **b**) $\frac{3\pi}{2} \frac{4\sqrt{2}}{3}$
- **6.** T.ex. c=-1. Låt $f(x,y):=\sin(y^5+x+1)+e^{xy}$. Då är f en C^1 funktion och $f_y'(0,-1)=5(-1)^4\cos(0)=5\neq 0$. Enligt implicita funktionssatsen så är y en funktion av x nära x=0 och y(0)=-1. y'(0)=0.