#### Kecerdasan Buatan

Pertemuan 4: Logical Agents

#### Pendahuluan dan Gambaran Umum Materi

- \* Agent yang sudah dibahas sebelumnya termasuk ke dalam **Problem-solving agents** 
  - \* Memiliki pengetahuan yang terbatas dan tidak fleksibel
- Manusia berpikir dengan menggunakan logika dan penalaran
- \* Penalaran logika:
  - \* Knowledge-based agents
- \* Logika dan logika proposisional
- \* Pola penalaran (Reasoning pattern)

# Penalaran Logika (Logical Reasoning)

- \* Ingat materi logika Matematika Diskrit!
- \* Aturan inferensi:
  - \* Semua siswa belajar dengan rajin
  - \* Sita adalah seorang siswa
  - \* Maka, Sita belajar dengan rajin

Silogisme

- \* Penalaran (kt benda): Proses mengambil fakta baru dari fakta yang sudah ada
- \* Logika (kt benda): aturan untuk penalaran yang menghasilkan output valid dari premis yang benar (<u>Premis</u>: apa yang dianggap benar sebagai landasan kesimpulan kemudian; dasar pemikiran; alasan)



### Penalaran Logika (2)

- \* Agent mengetahui fakta tentang dunia sekitarnya dan menggunakan penalaran untuk memilih satu dari beberapa action yang tersedia
- Agent menerima sebuah tugas baru melalui sebuah deskripsi detil tentang tujuan yang harus dicapai dan beradaptasi terhadap perubahan dengan mengupdate pengetahuan mereka

#### Penalaran Logika (3)

- \* Beberapa hal yang harus diketahui oleh sebuah agent:
  - \* (bagian yang relevan dari) keadaan dunia sekitarnya
  - \* Bagaimana cara untuk mendapatkan pengetahuan yang implisit
  - Bagaimana dunia sekitar berubah
  - Apa yang agent inginkan
  - \* Apa yang dihasilkan dari action mereka



### Penalaran Logika: knowledge-based agent (1)

- \* Agent harus dapat:
  - Merepresentasikan keadaan, action, dll
  - \* Memasukkan persepsi baru
  - Meng-update state representasi internal dari dunia sekitar
  - \* Mendeduksi sifat yang tersembunyi dari dunia sekitar
  - Mendeduksi action yang tepat



### Knowledge-based Agent (2)

- \* Komponen inti dari sebuah knowledge-based agent adalah knowledge base (basis pengetahuan)
- \* Sebuah basis pengetahuan merupakan sekumpulan "kalimat"
- \* Diperlukan sebuah cara untuk menambahkan "kalimat baru" ke dalam basis pengetahuan dan juga melakukan query terhadap "kalimat-kalimat" yang sudah ada

#### Knowledge-based agent (3)

- \* Memiliki pengetahuan secara umum
- \* Dapat melihat keadaan sekarang (current perception)
- \* Dapat menarik kesimpulan tentang dunia sekitarnya
- Memilih action
- Dapat menghadapi lingkungan yang hanya teramati sebagian saja

# Studi Kasus: Dunia Wumpus (Wumpus World)



Performance Measure: +1000 (emas), -1000 (pit/wumpus), -1 (setiap langkah), -10 (melepas anak panah)

**Environment**: Kotak 4x4, mulai dari [1,1], lokasi emas dan wumpus dibuat random

**Actuators**: Bergerak ke depan, putar kiri 90°, putar kanan 90°, Grab untuk ambil emas, Shoot untuk menembak, Climb untuk memanjat keluar (hanya dapat dilakukan jika sudah dapat emas)

**Sensors**: Bau, Angin Dingin, Kilauan Emas, Dinding, Teriakan Wumpus

#### \* Dunia:

- Kotak berukuran 4x4
- Kita hanya dapat melihat apa yang ada dalam kotak kita
- Terdapat seekor monster, Wumpus, di suatu sembarang kotak
- Setiap kotak dapat berupa lubang (kecuali kotak[1,1])
- Jika kita masuk ke kotak yang berupa lubang atau terdapat Wumpus, maka kita akan mati
- Langkah dimulai dari kotak [1,1] yang merupakan kotak yang aman

#### Studi Kasus: Dunia Wumpus (2)



#### \* Persepsi:

- \* Jika kita berada di kotak yang bersebelahan dengan kotak Wumpus, akan tercium bau busuk
- Jika kita berada di kotak yang bersebelahan dengan kotak lubang, maka akan terasa hembusan angin
- Emas akan terlihat bersinar jika kita berada dalam kotak emas
- Menabrak dinding berarti mendapatkan persepsi tabrakan
- \* Jika Wumpus mati, jeritannya akan menggema dan terdengar dimanamana

#### Studi Kasus: Dunia Wumpus (3)



- Action yang mungkin:
  - \* Maju
  - \* Belok kiri atau kanan
  - \* Mengambil objek
  - \* Menembakkan satu anak panah
  - Naik ke level berikutnya
- \* Tujuan:
  - Mendapatkan emas dan keluar dengan selamat

#### Dunia Wumpus (4)

- \* Tidak melihat/merasakan apaapa, sehingga aman untuk melangkah ke utara (atas) dan timur (kanan).
- \* Misal: melangkah ke utara



#### Dunia Wumpus (5)

- \* Tercium bau menyengat, maka terdapat Wumpus di salah satu kotak tetangga
- \* Kembali ke kotak semula



### Dunia Wumpus (6)

\* Sekarang melangkah ke timur

| W?    |     |  |
|-------|-----|--|
| ₹°OK! | W?  |  |
| OKI   | OK! |  |

#### Dunia Wumpus (7)

- \* Terasa angin berhembus. Maka pasti terdapat lubang di salah satu kotak tetangga. Hembusan angin tidak terasa ketika kita berada di [1,2], maka lubang pasti berada di [3,1].
- \* Tidak tercium bau busuk, maka tidak ada Wumpus di [2,2] dan pasti ada Wumpus di [1,3].
- Lanjut melangkah ke utara



#### Dunia Wumpus (8)

- \* Tidak ada persepsi apa-apa.
- \* Lanjut melangkah ke timur.



#### Dunia Wumpus (9)

- \* Terasa hembusan angin. Maka, terdapat lubang di salah satu kotak [4,2] atau [3,3]
- \* Melangkah kembali ke barat

| W!   | OK! | P? |    |
|------|-----|----|----|
| wok! | OK! |    | P? |
| OK!  | OK! | P! |    |

### Dunia Wumpus (10)

- \* Tidak terdeteksi apa-apa.
- \* Lanjut ke utara.



#### Dunia Wumpus (11)

- \* Terlihat kilauan emas, maka terdapat emas di kotak tersebut
- \* Ambil emasnya dan lanjut ke level berikutnya.



#### Dunia Wumpus (12)

- \* Yang diperlukan:
  - \* Sebuah bahasa yang dapat mengekspresikan: terdapat Wumpus di salah satu [1,3] atau [2,2] dan tidak mungkin terdapat lubang di [2,2]
  - \* Mekanisme pengambilan kesimpulan yang dapat mengkombinasikan pengetahuan yang didapat pada waktu dan tempat yang berbeda
  - \* Sebuah tempat untuk mengakumulasi semua pengetahuan ini



### Proposisi dan Logika Proposisional

- \* Proposisi: Kalimat yang bisa bernilai benar atau salah
- \* Logika Proposisional: Kalimat yang tersusun atas simbol proposisi dan penghubung logika. Disebut juga Logika Boolean
- \* Contoh Proposisi:
  - \* P, Q, atau R adalah simbol proposisi
- \* Untuk kasus Dunia Wumpus:
  - \* S[x,y] = Ada bau menyengat tercium di kotak x,y
  - \* W[x,y] = Terdapat Wumpus di kotak x,y

#### Logika Proposisional

- \* Operator logika:
  - \* NOT (¬) / Negasi
  - \* AND (∧) / Konjugasi
  - \* OR (V) / Disjungsi
  - \* IMPLIKASI (→) / Jika
  - \* BIIMPLIKASI (↔) / Jika dan hanya jika

## Logika Proposisional untuk Dunia Wumpus (1)



- Misal semua persepsi di area abu-abu sudah ditetapkan:
  - \* Tidak ada bau menyengat di [1,1], [2,1]
  - \* Ada bau menyengat di [1,2]
  - \* Tidak ada hembusan angin di [1,1], [1,2]
  - \* Ada hembusan angin di [2,1]

## Logika Proposisional untuk Dunia Wumpus (2)



\* Bentuk logika proposisionalnya:

\* 
$$\neg S[1,1]$$

\* 
$$\neg S[2,1]$$

\* 
$$\neg B[1,1]$$

\* 
$$\neg B[1,2]$$

## Logika Proposisional untuk Dunia Wumpus (3)



\* Beberapa aturan fakta yang diketahui:

```
Rule 1: \neg S[1,1] \Rightarrow \neg W[1,1] \land \neg W[1,2] \land \neg W[2,1]

Rule 2: \neg S[2,1] \Rightarrow \neg W[1,1] \land \neg W[2,1] \land \neg W[2,2] \land \neg W[3,1]

Rule 3: \neg S[1,2] \Rightarrow \neg W[1,1] \land \neg W[1,2] \land \neg W[2,2] \land \neg W[1,3]

Rule 4: S[1,2] \Rightarrow W[1,3] \lor W[1,2] \lor W[2,2] \lor W[1,1]

...
```

## Logika Proposisional untuk Dunia Wumpus (4)



Rule 1:  $\neg S[1,1] \Rightarrow \neg W[1,1] \land \neg W[1,2] \land \neg W[2,1]$ 

Rule 2:  $\neg S[2,1] \Rightarrow \neg W[1,1] \land \neg W[2,1] \land \neg W[2,2] \land \neg W[3,1]$ 

Rule 3:  $\neg S[1,2] \Rightarrow \neg W[1,1] \land \neg W[1,2] \land \neg W[2,2] \land \neg W[1,3]$ 

Rule 4:  $S[1,2] \Rightarrow W[1,3] \lor W[1,2] \lor W[2,2] \lor W[1,1]$ 

#### \* Kesimpulan apa yg dapat ditarik?

- Rule 1 ∧ ¬s[1,1] (modus ponens)
   ¬W[1,1] ∧ ¬W[1,2] ∧ ¬W[2,1]
- Rule 2 ∧ ¬s[2,1] (modus ponens)
   ¬W[1,1] ∧ ¬W[2,1] ∧ ¬W[2,2] ∧ ¬W[3,1]
- Rule 4 \( \sigma \sigma [1,2] \) (modus ponens)
   W[1,3] \( \varphi \sigma [1,2] \( \varphi \sigma [2,2] \( \varphi \sigma [1,1] \)
- ¬w[1,1] ∧ previous (unit resolution)
   w[1,3] ∨ w[1,2] ∨ w[2,2]
- ¬w[2,2] ∧ previous (unit resolution)
   w[1,3] ∨ w[1,2]
- ¬w[1,2] ∧ previous (unit resolution)
   w[1,3] (the Wumpus is in square [1,3])

## Tetapi... selalu ada unsur ketidakpastian

- Dunia nyata terlalu kompleks untuk dapat direpresentasikan secara utuh
- \* Data mengandung noise dan ketidakkonsistenan
  - \* 32% responden berpendapat angka "7", 68% berpendapat angka "1"
- Seorang pakar dalam mendeskripsikan pengetahuannya sering bersifat samar-samar
- \* Beberapa hal memang benar-benar bersifat acak

## Ketidakpastian dalam Dunia Wumpus

- Beberapa permasalahan yang terlalu kompleks akan sulit dipecahkan dengan logika
- \* Contoh state di samping, dimanakah letak lubangnya?
- \* Kita harus bertaruh dan mencoba pindah ke salah satu kotak untuk mengetahuinya



### Ketidakpastian dalam Dunia Wumpus



#### First-Order Logic/Logika Predikat

#### \* Ada 4 komponen:

- \* **Objects:** sesuatu dengan identitas individual (*people, houses, colors, ...*)
- \* **Properties:** sifat yang membedakannya dari object yang lain (red, round, ...)
- \* **Relations:** hubungan antar-object (brother of, bigger than, part of, ...)
- \* **Functions:** relation yang hanya memiliki 1 nilai (*father of, best friend, ...*)

#### Logika Predikat: Representasi Fakta Sederhana

- \* Misal diketahui fakta sebagai berikut:
  - Anda adalah seorang laki-laki : A
  - \* Ali adalah seorang laki-laki : B
  - \* Amir adalah seorang laki-laki : C
  - \* Anto adalah seorang laki-laki : D
  - \* Agus adalah seorang laki-laki : E
- \* Jika setiap fakta dinyatakan dengan proposisi, terjadi pemborosan.
- \* Contoh di atas dapat ditulis ulang: Laki-laki(x), dimana x adalah variabel yang dapat disubstitusikan dengan Andi, Ali, Amir, Anto, Agus, dan laki-laki yang lain

#### Logika Predikat

#### \* Contoh:

- Andi adalah seorang mahasiswa
- \* Andi masuk Jurusan Elektro
- Setiap mahasiswa Elektro pasti mahasiswa teknik
- \* Kalkulus adalah mata kuliah yang sulit
- \* Setiap mahasiswa teknik pasti akan suka kalkulus atau akan membencinya
- Setiap mahasiswa pasti akan suka terhadap suatu mata kuliah
- \* Mahasiswa yang tidak pernah hadir pada kuliah mata kuliah sulit, maka mereka pasti tidak suka terhadap mata kuliah tersebut
- Andi tidak pernah hadir kuliah mata kuliah Kalkulus

#### Logika Predikat

- \* Jika pernyataan di atas ditulis dalam logika predikat:
  - \* mahasiswa(Andi)
  - \* *Elektro(Andi)*
  - \*  $\forall x : Elektro(x) \rightarrow Teknik(x)$
  - \* sulit(Kalkulus)
  - \*  $\forall x: Teknik(x) \rightarrow suka(x, Kalkulus) \lor \neg suka(x, Kalkulus)$
  - \*  $\forall x: \exists y: suka(x, y)$
  - \*  $\forall x : \forall y : mahasiswa(x) \land sulit(y) \land \neg hadir(x, y) \rightarrow \neg suka(x, y)$
  - $* \neg hadir(Andi, Kalkulus)$
- Pertanyaannya: Apakah Andi suka mata kuliah Kalkulus?

#### Logika Predikat

- \* Apakah Andi suka mata kuliah Kalkulus?
- \* Langkah penyelesaian:
  - \*  $\neg suka(Andi, Kalkulus)$  (q)
  - \* Berdasarkan pernyataan ke-7, dilakukan penalaran backward:
    - \* Substitusi x dengan Andi dan y dengan Kalkulus:  $mahasiswa(Andi) \land sulit(Kalkulus) \land \neg hadir(Andi, Kalkulus)$  (p)
    - \* Kalimat di atas jika bernilai True semua, maka kesimpulannya adalah q
    - \* Pernyataan 1, 4, dan 8 terbukti True
    - \*  $T \wedge T \wedge T \equiv T$
    - \* Maka kesimpulan  $\neg suka(Andi, Kalkulus)$  benar

#### Modus Ponen

$$p \rightarrow q$$

### Representasi Pengetahuan Dunia Wumpus dengan Logika Predikat

- \* Jika agent melihat kilauan emas (glitter), maka dia akan melakukan aksi grab untuk mengambil gold. Aturannya sbb:
  - \*  $\forall s, b, u, c, t \ Percept([s, b, Glitter, u, c], t) \rightarrow Action(Grab, t)$

```
s=Stench
b=Breeze
u=bUmp
c=sCream
t=time
```

#### Latihan Soal

- \* Misal terdapat pernyataan-pernyataan berikut:
  - \* Ita suka semua jenis makanan
  - Pisang adalah makanan
  - Pecel adalah makanan
  - \* Segala sesuatu yang dimakan oleh manusia, dan manusia tidak mati karenanya, dinamakan makanan
  - Hendra adalah seorang laki-laki
  - \* Hendra makan jeruk, dan dia masih hidup
  - \* Rini makan apa saja yang dimakan oleh Hendra
- \* Pertanyaan: Apakah Ita suka jeruk?