<u>תרגול 5</u>

תרגיל:

יהא nים משינו פולינום האפס. הוכיחו כי $F(x_1,x_2,\cdots,x_n)=\sum_{i=1}^k a_i x_1^{m_{1_i}} x_2^{m_{2_i}}\cdots x_n^{m_{n_i}}$ יהא קבוצת השורשים שלו היא קבוצה דלילה במרחב המטרי (\mathbb{R}^n,d_{max})

פתרון:

כי היא (\mathbb{R},d) היא סגורה ב-(\mathbb{R},d_{max}) ל-(\mathbb{R},d_{eucl}). הקבוצה (\mathbb{R}) היא סגורה ב-(\mathbb{R},d_{max}) כי היא (\mathbb{R}^n,d_{max}). מובע כי קבוצת השורשים של F היא F^{-1} והיא סגורה ב-(\mathbb{R}^n,d_{max}).

לכן, $F^{-1}\{0\}=F^{-1}\{0\}$. נותר להראות, אם כן, שמתקיים $\emptyset=0$. נראה זאת באינדוקציה על $\overline{F^{-1}\{0\}}=F^{-1}\{0\}$ לכן, $F^{-1}\{0\}=F^{-1}\{0\}$. נותר להראות, אם כן, שמתקיים $F^{-1}\{0\}=F^{-1}\{0\}$. נותר להראות, אם כן, שמתקיים $F^{-1}\{0\}=F^{-1}\{0\}$. נותר להראות, אם כן במתקיים של שורשים. ראיתם בהרצאה כי קבוצה $F^{-1}\{0\}=F^{-1}\{0\}$ ממיד דלילה.

n+1 נניח, כי הטענה נכונה עבור n ונוכיח את נכונותה בעזרת זה, עבור

לשם כך, נתבונן ב- $G(x_1,\cdots,x_{n+1})=\sum_{i=1}^k a_i x_1^{m_{n_i}}\cdots x_{n+1}^{m_{n+1_i}}$ שניתן להציג באופן הבא:

$$G(x_1, \dots, x_n) = \sum_{j=1}^{k_1} P_j(x_1, x_2, \dots, x_n) x_{n+1}^j$$

:כאשר P_i , לכל j, הם פולינומים ממשתנים x_1,\cdots,x_n ולא כולם פולינומי האפס, כאשר

$$k_1 = \max_{1 \le i \le k} \{m_{(n+1)_i}\}$$

נרצה להראות כי \emptyset $(G^{-1}\{0\})=\emptyset$. נניח בשלילה, אם כן, כי אין זה נכון – כלומר, קיים $Int(G^{-1}\{0\})=\emptyset$ שהוא $Int(G^{-1}\{0\})=\emptyset$ מרכז של כדור פתוח $Int(G^{-1}\{0\})=\emptyset$ אשר כולו מוכל ב- $G^{-1}\{0\}$. כדור זה הוא קובייה סביב $Int(G^{-1}\{0\})=\emptyset$ אשר כולו מוכל ב- $Int(G^{-1}\{0\})=\emptyset$ במרחב $Int(G^{-1}\{0\})=\emptyset$ אשר כולו מוכל ב- $Int(G^{-1}\{0\})=\emptyset$ במרחב $Int(G^{-1}\{0\})=\emptyset$

:כך שמתקיים, r כך שאורכו $\left(a_{j},b_{j}\right)$ קיים קטע באן, שלכל $1\leq j\leq n+1$

$$B = \prod_{j=1}^{n+1} (a_j, b_j) = \left(\prod_{j=1}^{n} (a_j, b_j) \right) \times (a_{n+1}, b_{n+1})$$

(כאשר $x_j\in (a_j,b_j)$ במרחב $x_j\in (a_j,b_j)$. לכן. לכן. $\bar{x}=(x_1,\cdots,x_n)$ היא קוביה סביב $x_j\in (a_j,b_j)$ במרחב $x_j\in (a_j,b_j)$ לכל לכל $x_j\in (a_j,b_j)$ הפולינום:

$$\sum_{j=1}^{k_1} P_j(c_1, c_2, \dots, c_n) x_{n+1}^j$$

שהם $B=\prod_{j=1}^{n+1}(a_j,b_j)$ -ם בקטע זה שהם ערכים של G בהסע הקטע (a_{n+1},b_{n+1}) כי הוא מקבל ערכים בקטע זה שהם ערכים של G בהסער הקטע (a_{n+1},b_{n+1}) כי הוא פולינום האפס, שכן אחרת נקבל מספר אינסופי של שורשים. 0. לכן, בהכרח נסיק כי P_j הנחנו כי לא כל P_j הינם פולינומי האפס, כלומר קיים $1\leq i\leq k$ אינו פולינום אך זה נכון לכל $1\leq i\leq k$ אך הנחנו כי לא כל $1\leq i\leq k$ הינם פולינום ממעלה $1\leq i\leq k$ ארב מהווה נקודה פנימית של $1\leq i\leq k$ ונקבל סתירה להנחת האינדוקציה.