Théorie des Groupes

David Wiedemann

Table des matières

1		Introduction à la Théorie des Catégories Catégories	2 2
${f L}$	ist o	of Theorems	
	1	Definition (Graphe dirigé)	2
	2	Definition (Catégories)	2

Lecture 1: Introduction

Fri 10 Sep

1 Une Introduction à la Théorie des Catégories

Notion Fondamentale: la composition

- Composition d'applications
- l'exemple fondamental d'un groupe est donné par Aut(X), où la multiplication du groupe est donnée par la composition d'automorphismes.

1.1 Catégories

Definition 1 (Graphe dirigé)

Un graphe dirigé G consiste en un couple de classes G_0 et G_1 , muni de deux applications

$$dom: G_1 \to G_0 \ et \ cod: G_1 \to G_0$$

appelées domaine et codomaine. On pense à G_0 comme l'ensemble des sommests et G_1 l'ensemble des arêtes de G.

Par exemple, si $x, y \in G_0, f \in G_1$, alors

$$dom(f) = x, \quad cod(f) = y$$

$$X \xrightarrow{f} Y$$

On introduit la notation

$$G(x,y) = \{ f \in G_1 | \operatorname{dom}(f) = x, \operatorname{cod}(f) = y \}$$

Exemple

Soit X un ensemble, et soit $R \subset X \times X$ une relation sur X. Alors $G_r = (X, R)$ est un graphe dirigé, où

$$dom: R \to X: (x_1, x_2) \to x_1 \ et \ cod: R \to X: (x_1, x_2) \to x_2$$

Observer que $\forall x_1, x_2 \in X$

$$G_R(x_1, x_2) = \begin{cases} \{(x_1, x_2)\} : (x_1, x_2) \in R \\ \emptyset \ sinon \end{cases}$$

Definition 2 (Catégories)

Une catégorie C est un graphe dirigé (C_0, C_1) muni d'applications de composition

$$\gamma_{a,b,c}:C(a,b)\times C(b,c)\to C(a,c):(f,g)\to g\circ f$$

— (Existence d'identités) Il existe une application $Id:C_0\to C_1:c\to Id_c$ tel que

$$f \circ \mathrm{Id}_a = f = \mathrm{Id}_b \circ f \forall f \in C_1(a,b), \forall a,b \in C_0$$

— (Associativité) Quelque soient $a,b,c,d \in C_0$ et $f \in C(a,b),g \in C(b,c)$ et $h \in C(c,d)$

$$(h \circ g) \circ f = h \circ (g \circ f) \in C(a, d)$$

Notation

On note

$$C_0 = \operatorname{Ob} C - \text{ les objets de } C$$

$$C_1 = \operatorname{Mor} C - \text{ les morphismes}$$

- Si C, Mor C sont des ensembles, alors C est petite.
- Si C(a,b) est un ensemble $\forall a,b\in\operatorname{Ob} C$, alors C est localement petite.