Cours 2 : Deep Learning pour les données séquentielles

François HU - 13/10/2020

Data Scientist au DataLab de la Société Générale Assurances Doctorant à l'ENSAE-CREST

Les cours se trouvent ici : https://curiousml.github.io/

Sommaire

1. Introduction

2. Recurrent Neural Network (RNN)

- Modèles RNN « classique »
- D'autres architectures RNN
- Modèle Bidirectional-RNN (BRNN)
- Modèle Deep RNN

3. Problème de la disparition du gradient

- [option] LSTM / GRU
- [option] BERT

Programme

Introduction

Représentations vectorielles

Deep Learning pour NLP

Active Learning

Introduction

Pourquoi les modèles séquentiels?

- classification de textes / analyse de sentiment
- Named Entity Recognition (NER)
- génération de textes / de musiques
- traducteur de langue automatique
- ...

Pourquoi pas les réseaux de neurones « standard » ?

- inputs / outputs peuvent être de tailles différentes
- ne tient pas en compte des différentes positions des mots

2. Recurrent Neural Networks (RNN)

Modèle RNN « classique »

Word embedding (plongement de mot en français) : vectorisation des mots de sorte que les mots apparaissant dans des contextes similaires ont des significations apparentées

- possibilité de manipuler des séquences de taille variable
- tout calcul futur tient compte des calculs passés
- les poids / paramètres sont partagés dans le temps

Modèle RNN « classique »

Propagation avant (forward propagation) d'un RNN :

- possibilité de manipuler des séquences de taille variable
- tout calcul futur tient compte des calculs passés
- les poids / paramètres sont partagés dans le temps