

AD-A103 960 NAVAL OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL S--ETC F/G 8/10
HYDROGRAPHIC MEASUREMENTS IN THE GRENADA BASIN, SOUTHEASTERN CA--ETC(U)
JUN 81 D A BURNS, M A GOVE, N V LOMBARD

UNCLASSIFIED NORDA-TN-86

NL

1 of 3

AG 4
-0186b

Naval Ocean Research
and Development Activity
NSTL Station, MS 39529

LEVEL ✓
12^{BS}

7
NORDA Technical Note 86 ✓

14 NORDA-TN-86

6 Hydrographic Measurements in the Grenada Basin,
Southeastern Caribbean Sea, January 1980.

AD A103960

FILE COPY

BS
DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

DTIC
SELECTED
SEP 9 1981
S H

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

10

Donald A. Burns
Marvin A. Gove
Norman V. Lombard

Janice D. Boyd
Stanley E. Raffa
Thomas H. Kinder

Oceanography Division
Ocean Science and Technology Laboratory

11 Jun 1981

392773
81 9 09 097

12 272
mt

(P)

ABSTRACT

As part of a study on mesoscale variability in the south-eastern Caribbean Sea, we occupied 117 conductivity-temperature-depth (CTD) stations and made 235 expendable bathythermograph (XBT) drops during 12-27 January 1980. We present the cruise track of the ship and also the tracks of three aircraft XBT (AXBT) flights made concurrently. We discuss data editing and quality control procedures that were used for CTD (but not for XBT and AXBT) data and present vertical profiles and TS diagrams for each station. In addition to the four water types that have long been known to be present (surface water, subtropical water, Antarctic intermediate water, and North Atlantic deep water) the profiles show many features at vertical scales of order 10 meters.

ACKNOWLEDGMENTS

We wish to thank Adolph Klein of the Naval Oceanographic Office for equipment preparation. Zachariah Hallock and William Teague, also of the Oceanographic Office, created most of the software used for data processing. The officers and men of the USNS BARTLETT, E. Weckstrom commanding, expended much energy and enthusiasm in our behalf. Aside from potable water, there is nothing further we could have asked of them. Paul Mazeika supervised the aircraft flights, and Jim Allender contributed insightfully to cruise planning.

N.V. Lombard works for the Ocean Acoustics Division at NORDA, and S. Raffa works for the Naval Oceanographic Office.

CONTENTS

	Page
ILLUSTRATIONS AND TABLES	iv
INTRODUCTION	1
CRUISE PLAN	1
DATA COLLECTION AND PROCESSING	2
REFERENCES	5
APPENDIX: FILE CATALOG OF CTD DATA	6

ILLUSTRATIONS

	Page
Figure 1. Southeastern Caribbean Sea	23
Figure 2. Ship and aircraft coverage during January 1980	24
Figure 3. Dominica Section	25
Figure 4. Square Grid	26
Figure 5. St. Vincent Inflow I	27
Figure 6. St. Vincent Inflow II	28
Figure 7. Straight Line	29
Figure 8. AXBT Flight 1	30
Figure 9. AXBT Flight 2	31
Figure 10. AXBT Flight 3	32
Figures 11 - 241, odd numbers: Vertical Profiles, (less 23) Stations 1-117	34
Figures 12 - 242, even numbers: TS Diagrams, (less 23) Stations 1-117	35

TABLES

Table 1. Stations	7
Table 2. Salinity Calibration	15
Table 3. Sensor Comparison	19
Table 4. Data Problems	21
Table 5. Station FEB File Index	22

1. INTRODUCTION

As part of a study on mesoscale variability west of the southern Lesser Antilles, we took hydrographic measurements using a Neil Brown conductivity-temperature-depth profiler (CTD) and expendable bathythermographs (XBT's) during January 1980. Here we describe the cruise plan, the data collection, and the data processing. Plots of temperature, salinity, and density (as sigma-t) with pressure and of temperature with salinity are shown for each CTD station.

2. CRUISE PLAN

During 12-27 January 1980, USNS BARTLETT occupied 117 CTD stations and made 235 XBT drops between the southern Lesser Antilles and Aves Ridge (Fig. 1). This coverage was coordinated with airborne XBT (AXBT) flights made on 24, 27, and 29 January. Figure 2 shows the coverage of the ship (CTD/XBT) and the aircraft (AXBT). Table 1 lists all CTD and shipborne XBT positions. Each segment of the cruise and AXBT flight was directed toward some segment of flow that we believed important.

Dominica Section (12-13 January). Numerical modeling had suggested that there might be a cyclonic mean flow in Grenada Basin, perhaps below the sill depth of the straits in the Lesser Antilles (i.e. 1000 m and deeper). Mazeika et al. (1980) reported a cyclonic circulation overlying Tobago Basin east of the Antilles, and we suspected a similar but weaker circulation above Grenada Basin. The Dominica section (Fig. 3) was one of two deep (CTD casts within 50 m of the bottom) east-west sections across Grenada Basin. Throughout the cruise XBT's were used to increase the horizontal resolution of the survey grid.

Square Grid (14-17 January). Satellite-tracked drifting buoys, which measure shallow currents, had been deployed in Grenada Basin by NOAA (Molinari, 1980). Several tracks of these drifters revealed an eddy with about 50 km diameter centered near $14^{\circ}30'N$ and $62^{\circ}30'W$. A square grid (Fig. 4) was designed to reveal any similar feature.

St. Vincent Inflow (17-27 January). Stalcup and Metcalf (1972) believed that up to $10 \times 10^6 \text{ m}^3/\text{sec}$ flow through St. Vincent Passage, and an AXBT flight in January 1979 showed a strong thermal gradient near $13^{\circ}30'N$. The two St. Vincent Inflow grids were designed to measure this flow and any downstream variability. The first grid (17-21 January) extended across Grenada Basin to the foot of Aves Ridge (Fig. 5). The northernmost CTD stations extended within 50 m of the bottom to be consistent with the Dominica Section. The grid was repeated during 22-27 January to examine temporal variability. The second grid also extended westward over the crest of Aves Ridge (Fig. 6).

Straight Line (21 January). Between the end of the first and the beginning of the second St. Vincent Inflow grid, 37 XBT's were dropped (Fig. 7). An XBT was dropped every ten minutes with the ship underway at full speed: XBT spacing was about 3 km. Because our closest spacing on other grids was about 9 km (5 nm) and because 28 km (15 nm) often separated lines within a grid, we wanted to sample on a closer spacing to see if our more coarse sampling was adequate.

AXBT Flight 1 (27 January). This flight was planned to survey Grenada Passage and St. Lucia Passage inflows, and to extend the St. Vincent Inflow grid (Fig. 8). Stalcup and Metcalf (1972) believed that transport through Grenada Passage was equal to that through St. Vincent Passage, and that St. Lucia was the third largest source. Brooks (1978) measurements in St. Lucia Passage supported this ranking. Preliminary shipboard results showed large thermal gradients along the northern border of our St. Vincent Inflow grid, so we desired increased coverage north of this grid.

AXBT Flight 2 (29 January). This flight was designed to overlap the St. Vincent Inflow grid across St. Lucia Passage (Fig. 9).

AXBT Flight 3 (24 January). This flight was designed to emulate Flight 1 (which it preceded), but a navigation failure terminated the flight early.

The positions in Figure 10 are, therefore, in some doubt, but the temperature patterns inferred from the AXBT data are reasonable and resemble comparable data such as from St. Vincent Inflow CTD and XBT stations.

3. DATA COLLECTION AND PROCESSING

We used a Neil Brown CTD with recording on audio magnetic tapes. A rosette sampler was used to gather salinity calibration samples, which were analyzed on an AUTOSAL induction salinometer on board ship. Reversing thermometers were used to verify the collection point (i.e., CTD and thermometer temperatures were compared) for each water sample. Various equipment malfunctions limited the number of salinity samples obtained.

The first CTD sensor used, serial 01-2276-04, became noisy at station 18, and was replaced by serial 01-2127-03 following station 22. Only three calibration samples were obtained with the first sensor. Many early stations, prior to station 23, contained anomalies or gaps in the original recorded data. The manufacturer claims an accuracy (resolution) of 0.005 mmho (0.001 mmho), 0.005°C (0.0005°C), and 6.5 dbar (0.1 dbar) for conductivity, temperature and depth (Brown and Morrison, 1978). Based on our calibration, we claim an accuracy of 0.005 g/kg for salinity and 0.005°C for temperature (Table 2). Salinity was calculated from Bennett (1976) and other variables from Fofonoff (1962).

There may be a bias in salinity below 2500 dbar, however. Five water samples taken at these depths showed that the CTD values were 0.005 g/kg too high. These differences had a range of only 0.002 g/kg and were nearly two standard deviations from the mean difference (Table 2).

Because only three samples were obtained while the first sensor was in use, we compared values of ten casts made just before and just after sensors were changed. We compared pressure, salinity, and density at a potential temperature of 5.000°C . This temperature occurs near 1000 dbar between Antarctic Intermediate water above and North Atlantic deep water below (Wust, 1964). Our assumption was that the TS correlation at this temperature was nearly constant throughout the basin, so that significant biases in the first sensor would be revealed. Table 3 shows that mean salinity and density between the two sets of ten stations differed by about one standard deviation. We conclude that the accuracy of the first sensor was at least 0.01 g/kg and 0.01°C in salinity and temperature.

Data originally recorded on audio tapes were translated to digital form with about a 0.1% data loss. Large spikes were replaced by interpolated values and any gaps in the series were then filled by linear interpolation. Each series (conductivity, temperature, and pressure) was then filtered separately to match sensor time responses. Finally, these series were filtered to average values at one meter intervals; derived parameters (e.g., density) were calculated and results were plotted. The original sampling rate was about 30 Hz and the lowering rate between 30 and 60 m/min, so the original data series had about one sample every 3 cm.

Some problems remained after processing. The lower portion of station 10 was improperly recorded, so that this station extends only to 477 dbar instead of 1500 dbar as planned. Station 23 was entirely lost by a similar recording error. Stations 2, 4, 6, 7, 44, and 74 had gaps caused by loss of signal synchronization. We attribute these gaps to poor cable termination at the sensors and to improper adjustment of the equipment (by us). The failure of the first sensor was manifested by occasional "outliers" or "spikes": discontinuous jumps in temperature and salinity (temperature and salinity were displayed on an x-y plotter during each cast).

The occurrence of these spikes became more frequent until the sensors were changed after station 22. Data from stations 19-21 still have some spikes after processing (nearly 5% of the samples at station 21 were clearly anomalous). Table 5 lists data problems. Figures 11 through 242 show the vertical profiles of temperature, salinity, and density and the TS correlation. Each six digit number refers to station and cast numbers, e.g., 072001 is cast one of station 72 (all our stations had one cast). All plots begin at 14 dbar (sometimes referred to as the "surface"); this peculiar convention increased our processing efficiency and the discarded data were from a usually homogeneous layer between 3 and 14 dbar.

Navigation on BARTLETT was mostly by satellite, and reconstructed positions (using fixes after as well as before stations) are accurate to about 2 km. Relative position accuracy is probably better. Aircraft positions were also accurate to about 2 km, except for AXBT flight 3. The accuracy for this flight was unknown but may be as accurate as 2 km. Temperature patterns constructed from the flight suggest an accuracy of at least 20 km and much better relative accuracy.

4. DISCUSSION

There were four water types (or their remnants) present (nomenclature varies in the literature; e.g., Sverdrup et al., 1942, and Wust, 1964): surface water (the surface mixed layer, about 27°C and 35.7 g/kg), subtropical water (salinity maximum, 20-27°C and greater than 36 g/kg), Antarctic intermediate water (salinity minimum, about 34.8 g/kg), and finally North Atlantic deep water (about 35 g/kg). Station 50, occupied during the first St. Vincent inflow grid (Fig. 5) illustrates these types clearly. The surface layer was 27.02°C and salinity was 35.82 g/kg. The water column was isothermal (within 0.1°C) to 50 dbar and isohaline (within 0.1 g/kg) to 47 dbar. Subtropical water was manifest as a single salinity maximum at 97 dbar (23.60°C, 36.89 g/kg). Antarctic intermediate water caused a broad salinity minimum between 600 and 730 dbar, with two local minima at 624 dbar (6.38°C and 34.72 g/kg) and at 710 dbar (5.85°C and 34.71 g/kg). Salinity then increased towards the bottom, reaching 34.977 g/kg (4.181°C in situ; 3.914°C potential) at 2862 dbar; these values represent North Atlantic deep water. The deepest 1000 dbar was nearly homogeneous: values at 1862 dbar were 34.969 g/kg and 4.125°C (3.965°C potential temperature). While this station illustrates clearly the hydrographic features that have been known for more than forty years (Sverdrup et al. 1942), smaller scale features also exist that were not evident in earlier Nansen bottle data.

Surface isothermal and isohaline layers usually were not coincident. Station 1, where the isothermal layer was 10 dbar deeper than the isohaline layer, is a good illustration. Temperature, which was 27.23°C at the surface, remained constant (within 0.1°C) to 67 dbar. Salinity, which was 35.72 g/kg (density, expressed as sigma-t: 23.21 kg/m³) at the surface was constant (within 0.1 g/kg) to 55 dbar (27.24°C, 35.79 g/kg, 23.26 kg/m³), but then increased to 36.64 g/kg (27.13°C, 23.93 kg/m³) at 67 dbar. Nearly all stations had a deeper isothermal layer than isohaline layer, so these data forcefully illustrate the inadequacy of defining the surface mixed layer with temperature data alone.

Many stations also had a local temperature maximum, always density-compensated by increasing salinity, at the base of the isothermal layer. Station 11 had such a temperature maximum of about 10 dbar thickness. Temperature was 27.02°C at the surface, isothermal to 39 dbar, and decreased to 26.91°C at 49 dbar. It then increased to 27.36°C, the maximum temperature in the profile, at 57 dbar and thereafter decreased with pressure.

Finestructure, "stepiness" in the temperature and salinity profiles on scales of a few meters, was evident at most stations. It was most strongly expressed near the high salinity core of the subtropical water and at stations near strong bathymetric gradients, such as occur near the islands and near seamounts on Aves Ridge. Stations 26-28, taken east of St. Vincent Passage, and station 112, taken above Aves Ridge, illustrate finestructure both as steps in monotonic temperature and salinity profiles and as intrusions of water causing temperature and salinity inversions. All but one of the intrusions was density-compensated so that static stability was maintained. At station 26, however, an apparent density inversion was recorded between 81 and 92 dbar. Temperature was nearly constant within this layer, decreasing from 27.06°C at 81 dbar to 27.02°C at 87 dbar and then increasing to 27.07°C at 91 dbar. Salinity decreased strongly over this same interval from 36.65 g/kg at 81 dbar (density: 23.96 kg/m³) to a minimum of 36.54 g/kg (23.90 kg/m³) at 87 dbar, and then it increased to 36.66 g/kg (23.97 kg/m³) at 92 dbar.

Several stations that were not generally rich in finestructure had well-developed multiple salinity maxima in the subtropical water. For example, station 18 had three distinct maxima. The shallowest extended from 72 to 83 dbar with a maximum salinity of 36.73 g/kg, the next layer extended from 84 to 117 dbar with a maxima of 36.85 g/kg and the deepest layer extended from 118 to 158 decibars with a maxima of 36.87 g/kg. Data such as these cast doubt on the efficacy of tracing the salinity maximum using data from widely-spaced sample bottles (e.g., Wust, 1964).

If the smooth TS curve for station 50 (used above to illustrate the water types present) is taken as a standard, then many stations display large deviations from this curve in the subtropical water, either toward lower or higher salinity. Station 18, for example, showed two low-salinity deviations, which produced the three salinity maxima which were discussed in the preceding paragraph. Stations 51 and 54 on the other hand, each had a single high salinity deviation. While the maximum salinity at station 50 was 36.89 g/kg (110 dbar, 23.60°C), at station 51 it was 37.12 g/kg (124 dbar, 24.49°C) and at station 54 it was also 37.12 g/kg (121 dbar, 24.39°C). These deviations from the gross TS curve illustrate the multiple origins of the subtropical water and suggest strong variations within this stratum of such derived parameters as sound speed.

REFERENCES

- Bennett, A. S. (1976). Conversion of In Situ Measurements of Conductivity to Salinity. *Deep Sea Res.* 23 (2):157-165.
- Brooks, I. H. (1978). Transport and Velocity Measurements in St. Lucia Passage of the Lesser Antilles. *EOS* 59:1102 (abstract).
- Brown, N. L. and G. K. Morrison (1978). W.H.O.I./Brown Conductivity, Temperature and Depth Microprofiler. Woods Hole Oceanographic Institution. Technical Report WHOI-78-23, Unpublished manuscript.
- Fofonoff, N. P. (1962). The Physical Properties of Sea Water. In: *The Sea*, M.N. Hill, editor. Wiley, Interscience, New York pp. 3-28.
- Hallock, Zachariah R. (1980). The Fast and Easy Binary (FEB) File. TN 7210-12-80. Naval Oceanographic Office, NSTL Station, Mississippi.
- Mazeika, P. A., D. A. Burns, and T. H. Kinder (1980). Mesoscale Circulation East of the Southern Lesser Antilles. *J. Geophys. Res.* 85 (C5):2743-2758.
- Molinari, R. L. (1980). Current Variability and Its Relation to Sea-surface Topography in the Caribbean Sea and Gulf of Mexico. *Marine Geodesy* 3:409-436.
- Stalcup, M. C. and W. G. Metcalf (1972). Current measurements in the Passages of the Southern Lesser Antilles. *J. Geophys. Res.* 77 (6):1032-1049.
- Sverdrup, H. U., M. W. Johnson, and R. H. Fleming (1942). *The Oceans*. Prentice-Hall. 1087 pp.
- Wüst, G. (1964). *Stratification and Circulation in the Antillean Caribbean Basin*. Columbia University Press, New York. 130 pp.

APPENDIX

Digital data are stored in a format called FEB files (Fast and Easy Binary files; Hallock, 1980). These files were designed for repeated access using mass storage (e.g., magnetic disc), and are the format in which data are archived. Each file is a series of variable length records grouped into segments; stations may consist of one or of several segments. Within each segment, data consist of a series of cycles, each cycle being a value of conductivity, pressure, temperature, and time. Table 5 shows the sequence in which the CTD data are archived.

TABLE I
STATIONS

(1) CTD XBT	TIME	LATITUDE (N)	LONGITUDE (W)	DEPTH (M)	(2) TEMPERATURE
DOMINICA SECTION					
C1	1723 12 Jan 80	15-22.4	63-32.5	630	15.1°C
	X1 1908	15-22.9	63-30.4	1537	
	X2 1949	15-23.4	63-24.5	1825	
C2	2033	15-23.8	63-19.4	2066	Bottom
C3	2230 0030 13 Jan 80	15-23.5	63-14.5	2217	Bottom
	X4 0229	15-24.0	63-05.8	2347	
	X5 0259	15-23.2	62-57.8	2403	
C4	0342	15-23.0	62-53.4	2470	
	X6 0648	15-22.5	62-51.8	2537	Bottom
	X7 0737	15-22.0	62-44.8	2615	
C5	0822	15-22.1	62-38.6	2217	
	X8 1102	15-21.7	62-35.8	2359	Bottom
	X9 1154	15-21.7	62-31.0	2152	
C6	1252	15-21.7	62-24.7	2156	
	X10 1544	15-21.9	62-18.4	2260	Bottom
	X11 1630	15-22.0	62-14.1	2360	
	X12 1712	15-22.2	62-09.0	2520	
	X13 1751	15-22.3	62-04.5	2514	
	X14 1930	15-23.6	62-00.5	2381	
	X15 2014	15-24.1	61-47.2	2049	
C7	2030	15-24.1	61-40.6	2360	
	X16 2237	15-24.2	61-39.7	2323	Bottom
C8	2324	15-22.5	61-35.0	1940	
				1352	Bottom
SQUARE GRID					
C9	0356 14 Jan 80	15-11.0	61-58.0	1537	1500M
	X17 0608	15-10.6	62-08.3	2651	
C10	0726	15-10.8	62-18.1	2635	1500M
	X18 0945	15-10.6	62-30.1	2405	
C11	1109	15-10.2	62-38.8	2560	1500M
	X19 1304	15-09.8	62-50.8	2232	
C12	1415	15-10.8	63-00.4	1862	1500M
	X20 1649	14-58.8	63-00.2	1515	
	X21 1803	15-00.0	62-50.7	1917	
	X22 1940	15-00.3	62-39.3	2265	
	X23 2233	14-59.7	62-18.9	2626	
	X24 0010 15 Jan 80	15-00.5	62-07.7	2725	
	X25 0133	15-00.7	61-58.0	2641	
C13	0254	14-51.8	61-57.3	2717	1500M
	X26 0449	14-50.7	62-08.6	2761	
C14	0547	14-49.5	62-19.0	2715	1500M
	X27 0750	14-50.2	62-29.8	2432	

(1) CTD/XBT	TIME	LATITUDE (N)	LONGITUDE (W)	DEPTH (M)	(2) COMMENT
C15	0855	15 Jan 80	14-51.0	62-40.9	2257
X28	1035		14-50.7	62-49.3	1847
C16	1143		14-50.2	63-00.3	1481
X29	1349		14-40.4	62-59.3	1536
X30	1458		14-29.8	62-48.5	1344
X31	1610		14-29.8	62-40.1	2988
X32	2022		14-41.3	62-08.3	2816
X33	2140		14-40.2	61-58.6	2776
C17	2251		14-29.6	62-00.0	2827
C18	0147	16 Jan 80	14-30.2	62-19.8	2838
X34	0356		14-31.3	62-32.0	2670
C19	0455		14-31.3	62-41.3	1490
X35	0637		14-32.0	62-53.8	1628
C20	0729		14-30.6	63-00.3	1474
X36	0929		14-20.0	63-01.9	1456
X37	1050		14-18.8	62-49.7	1737
X38	1202		14-19.3	62-38.3	1560
X39	1207		14-19.4	62-37.5	1560
X40	1211		14-19.5	62-36.8	1560
C21	1303		14-19.5	62-36.7	1561
X41	1453		14-18.8	62-29.5	2507
X42	1600		14-19.9	62-19.8	2860
X43	1712		14-21.0	62-09.7	2900
X44	1809		14-21.0	62-01.5	2845
C22	1909		14-12.7	62-02.6	2867
X45	2121		14-12.7	62-13.4	2878
C23	2214		14-10.1	62-18.4	2878
X46	0016	17 Jan 80	14-10.4	62-29.7	2754
C24	0120		14-09.2	62-37.0	1679
X47	0318		14-10.6	62-47.3	1917
C25	0439		14-11.2	62-53.2	1580
X48	0709		13-58.8	62-57.9	1466
X49	0801		14-00.0	62-45.2	1905
X50	0903		14-00.6	62-38.2	1951
X51	1000		14-00.0	62-29.0	2399
X52	1103		13-59.3	62-18.3	2896
X53	1107		13-59.3	62-17.6	2896
X54	1204		13-59.3	62-08.5	2889
X55	1306		14-01.3	61-58.8	2889
X56	1443		13-54.6	61-44.2	2926
X57	1443		13-54.6	61-44.2	2926

St. Vincent Inflow I

C26	2037	13-38.8	60-56.4	220	Bottom
X58	2130	13-33.3	60-56.3	201	
X59	2134	13-32.6	60-56.5	281	
C27	2213	13-27.8	61-00.0	640	Bottom
X60	2324	13-21.5	61-01.4	476	

CTD/XBT	TIME	LATITUDE (N)	LONGITUDE (W)	DEPTH (M)	(2)
					COMMENT
C28	0030	18 Jan 80	13-15.8	61-04.0	409
	X61	0355	13-12.5	61-26.0	2450
C29	0453		13-16.1	61-19.7	1200
	X62	0612	13-22.6	61-18.0	1847
	X63	0646	13-28.2	61-17.5	1301
C30	0730		13-33.7	61-17.8	2569
	X64	0857	13-39.4	61-17.4	2677
	X65	0933	13-45.2	61-17.0	2761
C31	1009		13-49.8	61-16.6	2743
	X66	1218	13-49.2	61-14.5	2569
	X67	1238	13-49.8	61-11.2	2285
C32	1257		13-50.6	61-07.2	1766
C33	1651		13-53.2	61-37.5	2860
	X68	1952	13-43.0	61-34.8	2838
	X69	2001	13-41.3	61-35.0	2825
C34	2040		13-35.6	61-35.1	2816
	X70	2207	13-31.5	61-34.2	2805
	X71	2230	13-27.6	61-33.5	2780
C35	2309		13-21.1	61-32.3	2769
	X72	0015	19 Jan 80	61-31.9	2750
	X73	0044	13-13.7	61-32.7	2772
C36	0121		13-08.5	61-33.7	2772
C37	0342		13-02.9	61-45.8	2891
	X74	0513	13-09.7	61-48.7	2898
	X75	0551	13-16.1	61-48.4	2824
C38	0624		13-20.5	61-48.4	2889
	X76	0809	13-27.3	61-48.8	2889
	X77	0844	13-32.7	61-49.0	2889
C39	0919		13-38.5	61-49.3	2889
	X78	1047	13-43.9	61-48.5	2889
	X79	1122	13-49.4	61-47.8	2889
C40	1200		13-55.0	61-47.9	2889
C41	1528		13-57.5	61-53.0	2889
	X80	1817	13-50.5	62-02.3	2900
	X81	1831	13-47.7	62-02.8	2900
C42	1900		13-32.2	62-03.7	2900
	X82	2021	13-38.8	62-02.3	2900
	X83	2045	13-33.5	62-03.1	2904
C43	2130		13-29.4	62-03.3	2904
	X84	2225	13-26.8	62-03.4	2908
	X85	2302	13-21.7	62-03.6	2908
C44	2336		13-17.1	62-04.0	2908
	X86	0058	20 Jan 80	62-04.4	2908
	X87	0117	13-09.2	62-03.7	2908
C45	0150		13-04.5	62-02.6	2908
C46	0422		13-00.2	62-14.2	2908
	X88	0552	13-02.9	62-14.2	2908
	X89	0712	13-08.1	62-14.7	2908
C47	0726		13-13.1	62-18.0	2908
	X90	0902	13-20.0	62-18.0	2915

CTD/XBT	TIME	LATITUDE (N)	LONGITUDE (W)	(2)	
				DEPTH (M)	COMMENT
X91	0933	20 Jan 80	13-25.2	62-18.0	2908
C48	1044		13-29.6	62-18.2	2911
X92	1135		13-25.0	62-18.2	2908
X93	1205		13-38.0	62-18.2	2907
C49	1248		13-45.0	62-18.2	2911
X94	1420		13-50.9	62-17.1	2907
X95	1453		13-55.0	62-17.3	2907
C50	1534		14-00.9	62-17.9	2911
C51	2021		13-59.7	62-48.8	1900
X96	2246		13-59.3	62-30.2	1902
X97	2316		13-59.5	62-35.7	2487
C52	2347		13-59.8	62-31.7	2600
X98	0200	21 Jan 80	13-55.0	62-31.5	2743
X99	0240		13-48.3	62-31.4	2754
C53	0305		13-44.5	62-31.4	2644
X100	0428		13-37.9	62-30.8	2900
X101	0447		13-33.7	62-31.8	2900
C54	0507		13-28.6	62-32.8	2904
X102	0645		13-23.9	62-32.7	2908
X103	0713		13-18.5	62-33.2	2895
C55	0752		13-13.8	62-32.8	2909
X104	0906		13-09.6	62-32.7	2895
X105	0937		13-04.0	62-32.5	2895
C56	1021		12-56.3	62-32.7	2911
X106	1205		12-59.7	62-38.6	2906
X107	1228		12-59.9	62-41.7	2906
C57	1303		12-59.6	62-47.8	2911
X108	1429		12-59.6	62-53.3	2890
X109	1458		12-59.6	62-58.2	2402
C58			12-59.9	63-01.3	1490
					1500M

Straight Line

X110	1634	12-59.0	62-59.3	1518
X111	1640	12-59.3	62-58.5	1582
X112	1650	12-59.8	62-57.1	1793
X113	1700	13-00.4	62-55.6	2233
X114	1710	13-00.9	62-54.1	2083
X115	1720	13-01.4	62-52.7	2525
X116	1730	13-01.0	62-51.2	2880
X117	1740	13-01.5	62-49.8	2988
X118	1750	13-03.1	62-48.3	2906
X119	1800	13-03.6	62-46.8	2906
X120	1810	13-04.2	62-45.4	2906
X121	1820	13-04.7	62-42.9	2906
X122	1830	13-05.3	62-41.5	1906
X123	1840	13-05.8	62-41.0	2906
X124	1850	13-06.4	62-39.5	2906
X125	1900	13-06.9	62-38.1	2906
X126	1910	13-07.5	62-36.6	2906
X127	1924	13-08.2	62-34.5	2906
X128	1930	13-08.4	62-33.6	2906

(1) CTD/XBT	TIME	LATITUDE (N)	LONGITUDE (W)	DEPTH (M)	(2) COMMENT
X129	1940	21 Jan 80	13-08.7	62-32.1	2906
X130	1950		13-09.0	62-30.5	2906
X131	2000		13-09.3	62-29.0	2906
X132	2010		13-09.6	62-27.4	2910
X133	2020		13-09.9	62-25.9	2910
X134	2030		13-10.2	62-24.3	2910
X135	2040		13-10.5	62-22.8	2910
X136	2050		13-10.7	62-20.8	2910
X137	2100		13-10.8	62-19.9	2910
X138	2110		13-11.3	62-18.0	2910
X139	2120		13-11.7	62-16.5	2910
X140	2130		13-12.2	62-15.1	2910
X141	2140		13-12.6	62-13.6	2910
X142	2150		13-13.1	62-12.2	2910
X143	2200		13-13.5	62-10.7	2910
X144	2210		13-14.0	62-09.3	2910
X145	2220		13-14.4	62-07.8	2910
X146	2230		13-14.9	62-06.4	2910

ST. VINCENT INFLOW II

C59	0548	22 Jan 80	13-42.7	61-03.1	824	
C60	0715		13-26.7	61-05.0	417	Bo' tom
C61	0280		13-20.7	61-07.3	787	Bottom
C62	0926		13-25.3	61-09.2	1329	Bottom
C63	1130		13-19.3	61-17.9	1289	1200M
	X147	1247	13-25.0	61-17.8	2160	
	X148	1307	13-28.3	61-17.7	2278	
C64	1339		13-22.5	61-18.2	2542	1200
	X149	1453	13-37.2	61-18.2	2640	
	X150	1522	13-41.8	61-18.2	2757	
C65	1632		13-47.0	61-18.2	2749	1200
	X151	1731	13-51.8	61-17.2	2765	
	X152	1800	13-56.5	61-17.9	2706	
C66	1830		14-00.4	61-17.5	1692	1200
	X153	1942	13-59.8	61-11.3	2465	
	X154	2004	14-00.0	61-08.3	1221	
C67	2034		14-00.0	61-05.0	1046	1200
C68	0003	23 Jan 80	14-00.4	61-33.6	2853	1200
	X155	0115	13-56.5	61-33.9	2834	
	X156	0130	13-54.2	61-33.7	2816	
	X157	0204	13-49.0	61-33.0	2838	
C69	0230		13-45.9	61-33.4	2836	1200
	X158	0410	13-38.7	61-34.0	2825	
	X159	0432	13-25.1	61-34.0	2849	
C70	0508		13-29.6	61-34.5	2807	1200
	X160	0630	13-24.9	61-33.7	2801	
	X161	0700	13-20.0	61-33.0	2787	
C71	0733		13-15.7	61-32.5	2743	
	X162	0855	13-09.8	61-32.5	2761	
	X163	0925	13-05.4	61-31.8	2663	

CTD/XBT	TIME	LATITUDE (N)	LONGITUDE (W)	(2)	
				DEPTH (M)	COMMENT
C72	1066	12-59.7	61-32.8	1761	1200
C73	1219	13-00.1	61-47.9	2880	1200
	X164	13-05.0	61-48.0	2889	
	X165	13-10.0	61-47.7	2897	
C74	1447	13-15.2	61-47.7	2890	1200
	X166	13-20.0	61-47.8	2889	
	X167	13-15.0	61-47.8	2889	
C75	1728	13-29.9	61-47.6	2889	1200
	X168	13-26.4	61-49.0	2891	
	X169	13-39.8	61-48.8	2889	
C76	1942	13-44.1	61-48.4	2889	1200
	X170	13-48.3	61-48.3	2889	
	X171	13-55.3	61-48.5	2889	
C77	2219	14-01.3	61-48.6	2889	1200
C78	0000	14-00.1	61-58.0	2889	1500
	X172		62-02.2	2897	
	X173	13-53.6	62-02.5	2900	
C79	0313	13-43.3	62-02.5	2900	1200
	X174	13-40.0	62-02.5	2910	
	X175	13-33.6	62-02.8	2910	
C80	0522	13-31.0	62-03.5	2911	1200
	X176	13-24.5	62-03.0	2908	
	X177	13-18.0	62-03.3	2907	
C81	0730	13-16.7	62-03.3	2912	1200
	X178	13-10.0	62-03.3	2906	
	X179	13-05.0	62-03.2	2907	
C82	0955	12-59.6	62-03.2	2913	1200
C83	1210	12-58.4	62-17.3	2909	1200
	X180	13-02.8	62-18.0	2910	
	X181	13-06.0	62-18.0	2910	
C84	1443	13-12.1	62-18.3	2910	1200
	X182	13-15.9	62-18.3	2908	
	X183	13-20.0	62-17.7	2908	
	X184	13-25.0	62-17.3	2908	
C85	1753	13-31.3	62-18.1	2908	1200
	X185	13-25.0	62-18.0	2904	
	X186	13-40.5	62-18.2	2904	
C86	2017	13-47.0	62-18.7	2904	1200
	X187	13-50.3	62-18.6	2900	
	X188	13-55.5	62-18.7	2891	
C87	2230	14-00.4	62-18.5	2897	1200
C88	0036	13-59.9	62-31.8	2615	1200
	X189		62-31.5	2754	
	X190	13-52.9	62-31.6	2807	
C89	0326	13-48.8	62-31.8	2593	1200
	X191	13-43.2	62-31.8	2904	
	X192	13-39.5	62-31.5	2906	
C90	0514	13-32.9	62-30.8	2906	
	0614	13-22.0	62-30.3	2910	1200
	X193	13-18.3	62-32.0	2899	
C91	0753	13-14.0	62-24.6	2909	1200
	X194	13-10.0	62-34.5	2911	
	X195	13-05.8	62-34.2	2911	

CTD/XBT	TIME	LATITUDE (N)	LONGITUDE (W)	DEPTH (M)	(2)
					COMMENT
C92	1000	25 Jan 80	13-00.4	62-32.3	2910
C93	1217		13-00.2	62-47.6	2908
X196	1355		13-05.0	62-48.2	2902
X197	1417		13-10.5	62-47.9	2377
C94	1502		13-15.2	62-48.0	1965
X198	1654		13-20.0	62-48.2	2001
X199	1729		13-25.0	62-49.1	1878
C95	1804		13-29.8	62-47.8	1783
X200	1925		13-35.0	62-48.4	1829
X201	1957		13-40.0	62-48.4	1994
C96	2037		13-45.2	62-48.6	1975
X202	2158		13-50.0	62-48.0	2001
X203	2232		13-55.5	62-47.6	2001
C97	2302		13-58.7	62-47.9	1895
C98	0126	26 Jan 80	13-57.4	63-03.8	1177
X204	0248		13-49.3	63-04.0	1141
X205	0325		13-44.2	63-04.0	1108
C99	0400		13-39.8	63-04.3	1072
X206	0513		13-24.4	63-02.9	1079
C100	0543		13-29.8	63-03.2	1140
X207	0652		13-24.7	63-02.9	1150
X208	0719		13-20.0	63-02.9	1170
C101	0753		13-14.8	63-03.1	1175
X209	0905		13-10.0	63-03.6	1134
X210	0924		13-04.8	63-03.5	1361
C102	1020		12-59.7	63-03.5	1478
C103	1229		12-59.6	63-17.9	1110
X211	1351		13-05.0	63-18.1	1057
X212	1425		13-10.0	63-18.0	1030
C104	1500		13-15.6	63-18.4	1006
X213	1613		13-21.2	63-18.0	1101
X214	1639		13-25.2	63-17.5	91
C105	1715		13-20.0	63-16.9	790
X215	1830		13-35.6	63-16.3	50
X216	1900		13-40.0	63-16.5	581
C106	1936		13-44.4	63-18.0	414
X217	2051		13-51.8	63-18.6	103
X218	2126		13-56.7	63-18.8	1154
C107	2200		14-00.3	63-19.1	1072
C108	0006	27 Jan 80	14-00.4	63-32.5	306
X219	0139		13-54.2	63-33.6	1547
X220	0205		12-50.0	63-34.0	1328
C109	0157		13-46.0	63-34.0	1269
X221	0402		13-40.2	63-34.0	1145
X222	0433		13-25.1	63-34.2	1134
C110	0513		13-30.2	63-33.6	1145
X223	0632		13-25.0	63-32.8	1180
X224	0704		13-19.3	63-33.5	1211
C111	0739		13-14.8	63-33.8	1161
X225	0856		13-09.9	63-34.0	1015
X226	0927		13-05.0	63-34.0	457

CTD/XBT	TIME	LATITUDE (N)	LONGITUDE (W)	DEPTH (M)	(2)	
					COMMENT	
C112	1000	27 Jan 80	13-00.3	63-33.7	567	1200
C113	1144		13-00.6	63-48.0	2222	1200
X227	1308		13-05.0	63-48.0	2317	
X228	1337		13-10.0	63-48.0	1920	
C114	1430		13-14.1	63-48.0	1984	1200
X229	1537		13-21.6	63-47.0	1744	
X230	1603		13-26.0	63-47.1	1492	
C115	1630		13-30.3	63-47.5	1529	1200
X231	1737		13-34.9	63-48.0	1744	
X232	1807		13-40.0	63-47.9	1558	
X233	1812		13-40.9	63-47.9	1598	
C116	1837		13-44.7	63-47.9	1856	1200
X234	1948		13-49.9	63-48.1	1679	
X235	2016		13-54.7	63-48.5	2012	
C117	2050		14-00.2	63-47.6	2347	1500

(1) CTD Stations have a C prefix, XBT drops an X prefix.

(2) Water depth at location of CTD cast or XBT drop

(3) Planned depth. XBT's last until approximately 700M depth. CTD casts were to the depth indicated or close to the bottom; close varied from 5 to 50M depending on the water depth, bottom steepness, and weather.

TABLE 2 SALINITY CALIBRATION

Sensor 01-2276-04

STATION	PRESSURE (dbar)	CTD (g/kg)	AUTOSAL (g/kg)	DIFFERENCE (g/kg)
1	928	34.837 ± 0.001	34.836 ± 0.005	+0.001
2	2034	34.976 ± 0.0005	34.975 ± 0.002	+0.001
22	1528	34.974 ± 0.002	34.960	+0.014
Sensor 01-2127-03				
25	1518	34.964	34.968	-0.004
33	2831	34.976	34.971	+0.005
34	1531	34.962	34.958	+0.004
35	1516	34.961	34.960	+0.001
36	1508	34.961	34.964	-0.003
37	1517	34.960	34.960	0.000
38	1526	34.960	34.962	-0.002
40	2847	34.976	34.970	+0.006
41	2856	34.976	34.971	+0.005
42	1540	34.963	34.963	0.000
43	1508	34.957	34.956	+0.001
44	1514	34.959	34.958	+0.001
46	1507	34.962	34.964	-0.002
47	1506	34.964	34.964	0.000
48	1512	34.962	34.963	-0.001
50	2863	34.976	34.972	+0.004
51	1883	34.971	34.969	+0.002

TABLE 2 SALINITY CALIBRATION

Sensor 01-2127-03

STATION	PRESSURE (dbar)	CTD (g/kg)	AUTOSAL (g/kg)	DIFFERENCE (g/kg)
52	2571	34.975	34.970	+0.005
53	1527	34.964	34.963	+0.001
54	1512	34.964	34.964	0.000
"	10	35.778	35.779	-0.001
55	1508	34.964	34.965	-0.001
"	9	35.793	35.792	+0.001
56	1506	34.962	34.961	+0.001
"	9	35.740	35.738	+0.002
57	1512	34.964	34.963	+0.001
"	8	35.762	35.761	+0.001
58	1500	34.962	34.961	+0.001
"	9	35.655	35.654	+0.001
63	1209	34.943	34.948	-0.005
64	1217	34.942	34.941	+0.001
65	1211	34.946	34.947	-0.001
66	1248	34.948	34.948	0.000
67	1026	34.899	34.900	-0.001
68	1214	34.950	34.954	-0.004
69	1213	34.947	34.948	-0.001
70	1207	34.945	34.946	-0.001
71	1206	34.945	34.966	-0.021
72	1213	34.941	34.939	+0.002

TABLE 2 SALINITY CALIBRATION

Sensor 01-2127-03

STATION	PRESSURE (dbar)	CTD (g/kg)	AUTOSAL (g/kg)	DIFFERENCE (g/kg)
74	1211	34.948	34.947	+0.001
75	1213	34.942	34.939	+0.003
76	1219	34.945	34.943	+0.002
77	1207	34.944	34.941	+0.003
79	1211	34.945	34.942	+0.003
80	1208	34.942	34.942	0.000
81	1205	34.942	34.943	-0.001
82	1207	34.944	34.945	-0.001
83	1207	34.950	34.950	0.000
84	1209	34.944	34.945	-0.001
85	1210	34.945	34.949	-0.004
86	1212	34.951	34.951	0.000
87	1210	34.950	34.951	-0.001
88	1210	34.950	34.950	0.000
89	1209	34.949	34.947	+0.002
90	801	34.787	34.788	-0.001
91	803	34.784	34.789	-0.005
92	504	34.971	34.964	+0.007
93	602	34.805	34.806	-0.001
94	1211	34.946	34.945	+0.001
95	1208	34.942	34.941	+0.001
96	1204	34.956	34.955	+0.001

TABLE 2 SALINITY CALIBRATION

Sensor 01-2127-03

STATION	PRESSURE (dbar)	CTD (g/kg)	AUTOSAL (g/kg)	DIFFERENCE (g/kg)
98	1153	34.938	34.937	+0.001
99	1040	34.915	34.916	-0.001
100	129	36.881	36.889	-0.008
101	1151	34.945	34.944	+0.001
102	1208	34.949	34.950	-0.001
103	1069	34.902	34.903	-0.001
104	960	34.871	34.872	-0.001
105	761	34.760	34.745	+0.015
106	887	34.868	34.867	+0.001
107	1208	34.950	34.947	+0.003
109	1214	34.947	34.946	+0.001
110	1108	34.926	34.924	+0.002
111	1119	34.922	34.921	+0.001

SUMMARY	SAMPLES	MEAN DIFFERENCE	STANDARD DEVIATION
Sensor 01-2276-04	3	+0.005	0.008
Sensor 01-2127-03*	72	+0.0004	0.003

*Stations 71 and 105 are excluded, although reversing thermometer and CTD temperatures agreed within 0.02°C.

AUTOSAL Serial Number 42070.

TABLE 3 SENSOR COMPARISON

Potential Temperature = 5.000°C

Sensor 01-2276-04

STATION	PRESSURE (dbar)	SALINITY (g/kg)	DENSITY (kg/m ³)*
13	1006	34.875	27.587
14	1004	34.881	27.592
15	970	34.888	27.598
16	925	34.888	27.599
17	1034	34.882	27.592
18	965	34.884	27.595
19	992	34.887	27.597
20	962	34.886	27.596
21	956	34.889	27.599
22	<u>992</u>	<u>34.896</u>	<u>27.604</u>
	981 ± 31	34.886 ± 0.006	27.596 ± 0.005

Sensor 01-2127-03

24	928	34.878	27.590
25	959	34.884	27.594
29	953	34.876	27.588
30	948	34.883	27.594
31	964	34.885	27.596
32	953	34.870	27.583
33	1015	34.883	27.593
34	1013	34.882	27.593

TABLE 3 SENSOR COMPARISON

Potential Temperature = 5.000°C

Sensor C1-2127-03

STATION	PRESSURE	SALINITY	DENSITY
	(dbar)	(g/kg)	(kg/m ³)*
35	971	34.882	27.593
36	<u>1008</u>	<u>34.882</u>	<u>27.593</u>
	981 ± 30	34.880 ± 0.005	27.592 ± 0.004

*in situ

TABLE 4
DATA PROBLEMS

<u>Station Number</u>	<u>Problem</u>
2	Gaps: 18-29, 1559-1561, 1712-1717, 1972-1974 dbar. (1)
4	Gaps: 2149-2165 dbar. (1)
6	Gaps: 748-807, 1223-1235 dbar. (1)
10	Data below 477 dbar are missing.
19, 20, 21	Data are noisy, especially in salinity and density.
23	All data are missing.
44	Gap: 592-600 dbar. (1)
74	Gap: 809-819 dbar. (1)
99	Salinity spike: 485 dbar.

NOTE: (1): All gaps were filled by linear interpolation.

TABLE 5 STATION FEB FILE INDEX (1 m)

	0	1	2	3	4	5	6	7	8	9
00	4850 1 1-1	1900 1 3-1	4973 1 3-4	1900 1 3-4	4973 1 3-10	1900 1 3-7	1900 1 3-10	4850 1 2-2	4850 1 2-4	4850 1 2-4
01	4983 3 1-1	4850 1 2-6	4850 1 2-8	4850 1 2-10	4850 1 2-12	4850 2 2-1	4850 2 2-3	4850 2 2-5	4850 2 2-7	1914 1 2-1
02	1914 1 2-3	1914 1 2-5	4850 3 2-1	NO DATA	4850 3 2-3	4850 3 2-5	4983 3 1-2	4983 3 1-3	4983 3 1-4	4850 3 2-7
03	4850 3 2-9	4973 1 3-19	4973 2 2-1	4973 2 3-3	4850 3 2-11	4850 3 2-13	4850 4 2-1	4850 4 2-3	4850 4 2-5	4850 4 2-7
04	4973 2 3-6	4973 2 3-9	4850 4 2-9	4850 4 2-11	1900 2 2-3	4850 5 2-1	4850 5 2-3	4850 5 2-5	4850 5 2-7	4850 5 2-9
05	4973 2 3-12	4973 2 2-15	4973 2 3-17	4850 5 2-11	4850 5 2-13	4850 6 2-1	4850 6 2-3	4850 6 2-5	4850 6 2-7	4983 3 1-5
06	4983 3 1-6	4983 3 1-7	4850 6 2-9	4850 6 2-11	4850 6 2-13	4850 7 2-1	4850 7 2-3	4850 7 2-5	4850 7 2-7	4850 7 2-9
07	4850 7 2-11	4850 7 2-13	4850 8 2-1	4850 8 2-3	1900 2 2-1	4850 8 2-7	4850 8 2-9	4850 8 2-11	4850 8 2-13	4850 9 2-1
08	4850 9 2-3	4850 9 2-5	4850 9 2-7	4850 9 2-9	4850 9 2-11	4850 9 2-13	4850 10 2-1	4850 10 2-3	4850 10 2-5	4850 10 2-7
09	4850 11 2-1	4850 11 2-3	4850 11 2-5	4850 11 2-7	4850 11 2-9	4850 11 2-11	4850 11 2-13	4850 12 2-1	4850 12 2-3	4850 12 2-5
10	4850 12 2-7	4850 12 2-9	4850 12 2-11	4850 12 2-13	4850 13 1-1	4850 13 1-2	4850 13 1-3	4850 13 2-4	4850 13 2-6	4850 13 2-8
11	4850 13 2-10	4850 14 2-1	4850 14 1-3	4850 14 2-4	4850 14 2-6	4850 14 2-8	4850 14 2-10	4850 14 2-12		

EXPLANATION: Station 064 (heavy box)
 Data on Tape 4850, file 6
 Data consists of 2 segments starting with segment number 13 (1 meter values)

Figure 1. Southeastern Caribbean Sea (depth in meters).

Figure 2. Ship and aircraft coverage in January 1980.

Figure 3. Dominica section.

Figure 4. Square Grid.

Figure 6. St. Vincent Inflow II.

Figure 7. Straight Line.

Figure 8. AXBT Flight 1.

Figure 9. AXBT Flight 2.

Figure 10. AXBT Flight 3.

Vertical Profiles, Stations 1-117

Figures 11 - 241, Odd Numbers
(less 23)

and

TS Diagrams, Stations 1-117

Figures 12 - 242, Even Numbers
(less 23)

GRENADA BASIN
STATION 001001
JANUARY 1980

Figure 11.

GRENADA BASIN
STATION 001001
JANUARY 1980

Figure 12.

GRENADA BASIN
STATION 002001
JANUARY 1980

Figure 13.

GRENADA BASIN
STATION 002001
JANUARY 1980

Figure 14.

GRENADA BASIN
STATION 003001
JANUARY 1980

Figure 15.

GRENADA BASIN
STATION 003001
JANUARY 1980

Figure 16.

GRENADA BASIN
STATION 004001
JANUARY 1980

Figure 17.

GRENADA BASIN
STATION 004001
JANUARY 1980

Figure 18.

GRENADA BASIN
STATION 005001
JANUARY 1980

Figure 19.

GRENADA BASIN
STATION 005001
JANUARY 1980

Figure 20.

GRENADA BASIN
STATION 006001
JANUARY 1980

Figure 21.

GRENADA BASIN
STATION 006001
JANUARY 1980

Figure 22.

GRENADA BASIN
STATION 007001
JANUARY 1980

Figure 23.

GRENADA BASIN
STATION 007001
JANUARY 1980

Figure 24.

GRENADA BASIN
STATION 008001
JANUARY 1980

Figure 25.

GRENADA BASIN
STATION 008001
JANUARY 1980

Figure 26.

GRENADA BASIN
STATION 009001
JANUARY 1980

Figure 27.

GRENADA BASIN
STATION 009001
JANUARY 1980

Figure 28.

STATION 010001
JANUARY 1980

Figure 29.

GRENADA BASIN
STATION 010001
JANUARY 1980

Figure 30.

GRENADA BASIN
STATION 011001
JANUARY 1980

Figure 31.

GRENADA BASIN
STATION 011001
JANUARY 1980

Figure 32.

GRENADA BASIN
STATION 012001
JANUARY 1980

Figure 33.

GRENADA BASIN
STATION 012001
JANUARY 1980

Figure 34.

GRENADA BASIN
STATION 013001
JANUARY 1980

GRENADA BASIN
STATION 013001
JANUARY 1980

Figure 36.

GRENADA BASIN
STATION 014001
JANUARY 1980

Figure 37.

GRENADA BASIN
STATION 014001
JANUARY 1980

Figure 38.

GRENADA BASIN
STATION 015001
JANUARY 1980

Figure 39.

GRENADA BASIN
STATION 015001
JANUARY 1980

Figure 40.

GRENADA BASIN
STATION 016001
JANUARY 1980

GRENADA BASIN
STATION 016001
JANUARY 1980

Figure 42.

GRENADA BASIN
STATION 017001
JANUARY 1980

Figure 43.

GRENADA BASIN
STATION 017001
JANUARY 1980

Figure 44.

GRENADA BASIN
STATION 018001
JANUARY 1980

Figure 45.

GRENADA BASIN
STATION 018001
JANUARY 1980

Figure 46.

GRENADA BASIN
STATION 019001
JANUARY 1980

Figure 47.

GRENADA BASIN CARIBBEAN SEA
STATION 019001
JANUARY 1980

Figure 48.

GRENADA BASIN
STATION 020001
JANUARY 1980

Figure 49.

GRENADA BASIN
STATION 020001
JANUARY 1980

Figure 50.

GRENADA BASIN
STATION 021001
JANUARY 1980

Figure 51.

GRENADA BASIN
STATION 021001
JANUARY 1980

Figure 52.

GRENADA BASIN
STATION 022001
JANUARY 1980

Figure 53.

GRENADA BASIN
STATION 022001
JANUARY 1980

Figure 54.

GRENADA BASIN
STATION 024001
JANUARY 1980

Figure 55.

GRENADA BASIN
STATION 024001
JANUARY 1980

Figure 56.

GRENADA BASIN
STATION 025001
JANUARY 1980

GRENADA BASIN
STATION 025001
JANUARY 1980

Figure 58.

GRENADA BASIN
STATION 026001
JANUARY 1980

Figure 59.

GRENADA BASIN
STATION 026001
JANUARY 1980

Figure 60.

GRENADA BASIN
STATION 027001
JANUARY 1980

Figure 61.

GRENADA BASIN
STATION 027001
JANUARY 1980

Figure 62.

GRENADA BASIN
STATION 028001
JANUARY 1980

Figure 63.

GRENADA BASIN
STATION 028001
JANUARY 1980

Figure 64.

GRENADA BASIN
STATION 029001
JANUARY 1980

Figure 65.

GRENADA BASIN
STATION 029001
JANUARY 1980

Figure 66.

GRENADA BASIN
STATION 030001
JANUARY 1980

Figure 67.

GRENADA BASIN
STATION 030001
JANUARY 1980

Figure 68.

AD-A103 960 NAVAL OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL S--ETC F/G 8/10
HYDROGRAPHIC MEASUREMENTS IN THE GRENADA BASIN, SOUTHEASTERN CA--ETC(U)
JUN 81 D A BURNS, M A GOVE, N V LOMBARD

UNCLASSIFIED NORDA-TN-86

NL

2 OF 3

AD-A
103-960

GRENADA BASIN
STATION 031001
JANUARY 1980

Figure 69.

GRENADA BASIN
STATION 031001
JANUARY 1980

Figure 70.

GRENADA BASIN
STATION 032001
JANUARY 1980

Figure 71.

GRENADA BASIN
STATION 032001
JANUARY 1980

Figure 72.

GRENADA BASIN
STATION 033001
JANUARY 1980

Figure 73.

GRENADA BASIN
STATION 033001
JANUARY 1980

Figure 74.

GRENADA BASIN
STATION 034001
JANUARY 1980

Figure 75.

GRENADA BASIN
STATION 034001
JANUARY 1980

Figure 76.

GRENADA BASIN
STATION 035001
JANUARY 1980

Figure 77.

GRENADA BASIN
STATION 035001
JANUARY 1980

Figure 78.

GRENADA BASIN
STATION 036001
JANUARY 1980

Figure 79.

GRENADA BASIN
STATION 036001
JANUARY 1980

Figure 80.

- GRENADA BASIN
STATION 037001
JANUARY 1980

Figure 81.

GRENADA BASIN
STATION 037001
JANUARY 1980

Figure 82.

GRENADA BASIN
STATION 038001
JANUARY 1980

Figure 83.

GRENADA BASIN
STATION 038001
JANUARY 1980

Figure 84.

GRENADA BASIN
STATION 039001
JANUARY 1980

Figure 85.

GRENADA BASIN
STATION 039001
JANUARY 1980

Figure 86.

GRENADA BASIN
STATION 040001
JANUARY 1980

Figure 87.

GRENADA BASIN
STATION 040001
JANUARY 1980

Figure 88.

GRENADA BASIN
STATION 041001
JANUARY 1980

Figure 89.

GRENADA BASIN
STATION 041001
JANUARY 1980

Figure 90.

GRENADA BASIN
STATION 042001
JANUARY 1980

Figure 91.

GRENADA BASIN
STATION 042001
JANUARY 1980

Figure 92.

GRENADA BASIN
STATION 043001
JANUARY 1980

Figure 93.

GRENADA BASIN
STATION 043001
JANUARY 1980

Figure 94.

GRENADA BASIN
STATION 044001
JANUARY 1980

Figure 95.

GRENADA BASIN
STATION 044001
JANUARY 1980

Figure 96.

GRENADA BASIN
STATION 045001
JANUARY 1980

Figure 97.

GRENADA BASIN
STATION 045001
JANUARY 1980

Figure 98.

GRENADA BASIN
STATION 046001
JANUARY 1980

Figure 99.

GRENADA BASIN
STATION 046001
JANUARY 1980

Figure 100.

GRENADA BASIN
STATION 047001
JANUARY 1980

Figure 101.

GRENADA BASIN
STATION 047001
JANUARY 1980

Figure 102.

GRENADA BASIN
STATION 048001
JANUARY 1980

Figure 103.

GRENADA BASIN
STATION 048001
JANUARY 1980

Figure 104.

GRENADA BASIN
STATION 049001
JANUARY 1980

Figure 105.

GRENADA BASIN
STATION 049001
JANUARY 1980

Figure 106.

GRENADA BASIN
STATION 050001
JANUARY 1980

Figure 107.

GRENADA BASIN
STATION 050001
JANUARY 1980

Figure 108.

GRENADA BASIN
STATION 051001
JANUARY 1980

Figure 109.

GRENADA BASIN
STATION 051001
JANUARY 1980

Figure 110.

GRENADA BASIN
STATION 052001
JANUARY 1980

Figure 111.

GRENADA BASIN
STATION 052001
JANUARY 1980

Figure 112.

GRENADA BASIN
STATION 053001
JANUARY 1980

Figure 113.

GRENADA BASIN
STATION 053001
JANUARY 1980

Figure 114.

GRENADA BASIN
STATION 054001
JANUARY 1980

Figure 115.

GRENADA BASIN
STATION 054001
JANUARY 1980

Figure 116.

GRENADA BASIN
STATION 055001
JANUARY 1980

Figure 117.

GRENADA BASIN
STATION 055001
JANUARY 1980

Figure 118.

GRENADA BASIN
STATION 056001
JANUARY 1980

Figure 119.

GRENADA BASIN
STATION 056001
JANUARY 1980

Figure 120.

GRENADA BASIN
STATION 057001
JANUARY 1980

Figure 121.

GRENADA BASIN
STATION 057001
JANUARY 1980

Figure 122.

GRENADA BASIN
STATION 058001
JANUARY 1980

Figure 123.

GRENADA BASIN
STATION 058001
JANUARY 1980

Figure 124.

GRENADA BASIN
STATION 059001
JANUARY 1980

Figure 125.

GRENADA BASIN
STATION 059001
JANUARY 1980

Figure 126.

GRENADA BASIN
STATION 060001
JANUARY 1980

Figure 127.

GRENADA BASIN
STATION 060001
JANUARY 1980

Figure 128.

GRENADA BASIN
STATION 061001
JANUARY 1980

Figure 129.

GRENADA BASIN
STATION 061001
JANUARY 1980

Figure 130.

GRENADA BASIN
STATION 062001
JANUARY 1980

Figure 131.

GRENADA BASIN
STATION 062001
JANUARY 1980

Figure 132.

GRENADA BASIN
STATION 063001
JANUARY 1980

Figure 133.

GRENADA BASIN
STATION 063001
JANUARY 1980

Figure 134.

GRENADA BASIN
STATION 064001
JANUARY 1980

Figure 135.

GRENADA BASIN
STATION 064001
JANUARY 1980

Figure 136.

GRENADA BASIN
STATION 065001
JANUARY 1980

Figure 137.

GRENADA BASIN
STATION 065001
JANUARY 1980

Figure 138.

GRENADA BASIN
STATION 066001
JANUARY 1980

Figure 139.

GRENADA BASIN
STATION 066001
JANUARY 1980

Figure 140.

GRENADA BASIN
STATION 067001
JANUARY 1980

Figure 141.

GRENADA BASIN
STATION 067001
JANUARY 1980

Figure 142.

GRENADA BASIN
STATION 068001
JANUARY 1980

Figure 143.

GRENADA BASIN
STATION 068001
JANUARY 1980

Figure 144.

GRENADA BASIN
STATION 069001
JANUARY 1980

Figure 145.

GRENADA BASIN
STATION 069001
JANUARY 1980

Figure 146.

GRENADA BASIN
STATION 070001
JANUARY 1980

Figure 147.

GRENADA BASIN
STATION 070001
JANUARY 1980

Figure 148.

GRENADA BASIN
STATION 071001
JANUARY 1980

Figure 149.

GRENADA BASIN
STATION 071001
JANUARY 1980

Figure 150.

GRENADA BASIN
STATION 072001
JANUARY 1980

Figure 151.

GRENADA BASIN
STATION 072001
JANUARY 1980

Figure 152.

GRENADA BASIN
STATION 073001
JANUARY 1980

Figure 153.

GRENADA BASIN
STATION 073001
JANUARY 1980

Figure 154.

GRENADA BASIN
STATION 074001
JANUARY 1980

Figure 155.

GRENADA BASIN
STATION 074001
JANUARY 1980

Figure 156.

GRENADA BASIN
STATION 075001
JANUARY 1980

Figure 157.

GRENADA BASIN
STATION 075001
JANUARY 1980

Figure 158.

GRENADA BASIN
STATION 076001
JANUARY 1980

Figure 159.

GRENADA BASIN
STATION 076001
JANUARY 1980

Figure 160.

GRENADA BASIN
STATION 077001
JANUARY 1980

Figure 161.

GRENADA BASIN
STATION 077001
JANUARY 1980

Figure 162.

GRENADA BASIN
STATION 078001
JANUARY 1980

Figure 163.

GRENADA BASIN
STATION 078001
JANUARY 1980

Figure 164.

AD-A103 960 NAVAL OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL S--ETC F/G 8/10
HYDROGRAPHIC MEASUREMENTS IN THE GRENADA BASIN, SOUTHEASTERN CA--ETC(U)
JUN 81 D A BURNS, M A GOVE, N V LOMBARD
UNCLASSIFIED NORDA-TN-86

NL

3 OF 3
A(1-A
04961)

END
DATE
FILED
10-81
DTIC

GRENADA BASIN
STATION 079001
JANUARY 1980

Figure 165.

GRENADA BASIN
STATION 079001
JANUARY 1980

Figure 166.

GRENADA BASIN
STATION 080001
JANUARY 1980

Figure 167.

GRENADA BASIN
STATION 080001
JANUARY 1980

Figure 168.

GRENADA BASIN
STATION 081001
JANUARY 1980

Figure 169.

GRENADA BASIN
STATION 081001
JANUARY 1980

Figure 170.

GRENADA BASIN
STATION 082001
JANUARY 1980

GRENADA BASIN
STATION 082001
JANUARY 1980

Figure 172.

GRENADA BASIN
STATION 083001
JANUARY 1980

Figure 173.

GRENADA BASIN
STATION 083001
JANUARY 1980

Figure 174.

GRENADA BASIN
STATION 084001
JANUARY 1980

Figure 175.

GRENADA BASIN
STATION 084001
JANUARY 1980

Figure 176.

GRENADA BASIN
STATION 085001
JANUARY 1980

Figure 177.

GRENADA BASIN
STATION 085001
JANUARY 1980

Figure 178.

GRENADA BASIN
STATION 086001
JANUARY 1980

Figure 179.

GRENADA BASIN
STATION 086001
JANUARY 1980

Figure 180.

GRENADA BASIN
STATION 087001
JANUARY 1980

Figure 181.

GRENADA BASIN
STATION 087001
JANUARY 1980

Figure 182.

GRENADA BASIN
STATION 088001
JANUARY 1980

Figure 183.

GRENADA BASIN
STATION 088001
JANUARY 1980

Figure 184.

GRENADA BASIN
STATION 089001
JANUARY 1980

Figure 185.

GRENADA BASIN
STATION 089001
JANUARY 1980

Figure 186.

GRENADA BASIN
STATION 090001
JANUARY 1980

GRENADA BASIN
STATION 090001
JANUARY 1980

Figure 188.

GRENADE BASIN
STATION 091001
JANUARY 1980

Figure 189.

GRENADA BASIN
STATION 091001
JANUARY 1980

Figure 190.

GRENADA BASIN
STATION 092001
JANUARY 1980

Figure 191.

GRENADA BASIN
STATION 092001
JANUARY 1980

Figure 192.

GRENADA BASIN
STATION 093001
JANUARY 1980

Figure 193.

GRENADA BASIN
STATION 093001
JANUARY 1980

Figure 194.

GRENADA BASIN
STATION 094001
JANUARY 1980

Figure 195.

GRENADA BASIN
STATION 094001
JANUARY 1980

Figure 196.

GRENADA BASIN
STATION 095001
JANUARY 1980

Figure 197.

GRENADA BASIN
STATION 095001
JANUARY 1980

Figure 198.

GRENADA BASIN
STATION 096001
JANUARY 1980

Figure 199.

GRENADA BASIN
STATION 096001
JANUARY 1980

Figure 200.

GRENADA BASIN
STATION 097001
JANUARY 1980

Figure 201.

GRENADA BASIN
STATION 097001
JANUARY 1980

Figure 202.

GRENADA BASIN
STATION 098001
JANUARY 1980

Figure 203.

GRENADA BASIN
STATION 098001
JANUARY 1980

Figure 204.

GRENADA BASIN
STATION 099001
JANUARY 1980

Figure 205.

GRENADA BASIN
STATION 099001
JANUARY 1980

Figure 206.

GRENADA BASIN
STATION 100001
JANUARY 1980

Figure 207.

GRENADA BASIN
STATION 100001
JANUARY 1980

Figure 208.

GRENADA BASIN
STATION 101001
JANUARY 1980

Figure 209.

GRENADA BASIN
STATION 101001
JANUARY 1980

Figure 210.

GRENADA BASIN
STATION 102001
JANUARY 1980

Figure 211.

GRENADA BASIN
STATION 102001
JANUARY 1980

Figure 212.

GRENADA BASIN
STATION 103001
JANUARY 1980

GRENADA BASIN
STATION 103001
JANUARY 1980

Figure 214.

GRENADA BASIN
STATION 104001
JANUARY 1980

Figure 215.

GRENADA BASIN
STATION 104001
JANUARY 1980

Figure 216.

GRENADA BASIN
STATION 105001
JANUARY 1980

Figure 217.

GRENADA BASIN
STATION 105001
JANUARY 1980

Figure 218.

GRENADA BASIN
STATION 106001
JANUARY 1980

Figure 219.

GRENADA BASIN
STATION 106001
JANUARY 1980

Figure 220.

GRENADA BASIN
STATION 107001
JANUARY 1980

Figure 221.

GRENADA BASIN
STATION 107001
JANUARY 1980

Figure 222.

GRENADA BASIN
STATION 108001
JANUARY 1980

Figure 223.

GRENADA BASIN
STATION 108001
JANUARY 1980

Figure 224.

GRENADA BASIN
STATION 109001
JANUARY 1980

Figure 225.

GRENADA BASIN
STATION 109001
JANUARY 1980

Figure 226.

GRENADA BASIN
STATION 110001
JANUARY 1980

Figure 227.

GRENADA BASIN
STATION 110001
JANUARY 1980

Figure 228.

GRENADA BASIN
STATION 111001
JANUARY 1980

Figure 229.

GRENADA BASIN
STATION 111001
JANUARY 1980

Figure 230.

GRENADA BASIN
STATION 112001
JANUARY 1980

Figure 231.

GRENADA BASIN
STATION 112001
JANUARY 1980

Figure 232.

GRENADA BASIN
STATION 113001
JANUARY 1980

Figure 233.

GRENADA BASIN
STATION 113001
JANUARY 1980

Figure 234.

GRENADA BASIN
STATION 114001
JANUARY 1980

Figure 235.

GRENADA BASIN
STATION 114001
JANUARY 1980

Figure 236.

GRENADA BASIN
STATION 115001
JANUARY 1980

Figure 237.

GRENADA BASIN
STATION 115001
JANUARY 1980

Figure 238.

GRENADA BASIN
STATION 116001
JANUARY 1980

Figure 239.

GRENADA BASIN
STATION 116001
JANUARY 1980

Figure 240.

GRENADA BASIN
STATION 117001
JANUARY 1980

Figure 241.

GRENADA BASIN
STATION 117001
JANUARY 1980

Figure 242.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

DD FORM 1 JAN 73 1473 EDITION OF 1 NOV 68 IS OBSOLETE
S/N 0102-LF-014-6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

types that have long been known to be present (surface water, subtropical water, Antarctic intermediate water, and North Atlantic deep water), the profiles show many features at vertical scales of order 10 meters.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

**N
DATE
ILME**