Topic(s): gradients, local approximations to a function, tangent planes

Consider $f: \mathbb{R}^n \to \mathbb{R}$. The **gradient** of f is defined to be

$$\nabla f = \begin{bmatrix} f_{x_1} \\ f_{x_2} \\ \vdots \\ f_{x_n} \end{bmatrix}. \quad \begin{array}{l} \text{ For } f \colon \mathbb{R} \to \mathbb{R} \text{ and } \mathbb{Z} \text{ near a, linear approximation is given by} \\ f(\mathbb{X}) \approx f(\mathbb{A}) + f'(\mathbb{A})(\mathbb{X} - \mathbb{A}). \end{array}$$

The gradient of f is a vector-valued function from \mathbb{R}^n to \mathbb{R}^n . For **x** near $\mathbf{a} \in \mathbb{R}^n$, the **linear approximation** to f is

$$f(\mathbf{x}) \approx f(\mathbf{a}) + (\nabla f(\mathbf{a})) \cdot (\mathbf{x} - \mathbf{a})$$

$$= f(\mathbf{a}) + f_{x_1}(\mathbf{a})(x_1 - a_1) + f_{x_2}(\mathbf{a})(x_2 - a_2) + \dots + f_{x_n}(\mathbf{a})(x_n - a_n)$$
where $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ and $\mathbf{a} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$.

For example, if $n = 2$, then $f(x, y) \approx f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$.

For example, if n=2, then $f(x,y)\approx f(a,b)+f_x(a,b)(x-a)+f_y(a,b)(y-b)$.

Example 1. Consider the function $f(x,y) = x^3 + 2x^2y + 4xy^2 - y^3$ near the point $\mathbf{a} = (2,0)$. Use linear approximation to approximate f(2.5, -0.5), f(2.05, -0.05), and f(2.005, -0.005).

We see that
$$f_2 = 3x^2 + 4xy + 4y^2$$
 and $f_3 = 2x^2 + 8xy - 3y^2$. So, $f(\vec{a}) = 8$, $f_4(\vec{a}) = 12$, $f_4(\vec{a}) = 8$.

Hence,

$$f(2.5,-0.5) \approx 8 + 12(2.5-2) + 8(-0.5-0) = 10$$

 $f(2.05,-0.05) \approx 8 + 12(2.05-2) + 8(-0.05-0) = 8.2$
 $f(2.005,-0.005) \approx 8 + 12(2.005-2) + 8(-0.005-0) = 8.02$

Note The actual values are

The linear approximations get better as I gets closer to a

Theorem 11.2.1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function and suppose that $\nabla f(a, b) \neq \mathbf{0}$.

- 1. The gradient $\nabla f(a,b)$ is perpendicular to the level set of f that goes through (a,b); more precisely, the gradient is perpendicular to the tangent line to the level curve. The gradient points in the direction of maximal increase for f for (x,y) moving away from (a,b).
- 2. The mathematical statement of the statement above is: the equation of the line tangent to the level curve of f passing through (a,b) is

$$\nabla f(a,b) \cdot \begin{bmatrix} x-a \\ y-b \end{bmatrix} = 0.$$

More explicitly, this equation is

$$f_x(a,b)(x-a) + f_y(a,b)(y-b) = 0.$$

Example 2. Consider the function f(x,y) = xy - x. The contour plot is shown below; in particular, let us consider the level curve at 2. The gradients at $\mathbf{a} = (1,3)$, $\mathbf{b} = (2,2)$, and $\mathbf{c} = \left(4,\frac{3}{2}\right)$ are shown.

Example 3. For $f(x,y) = \sqrt{1+xy}$, use linear approximation to estimate the value of f(1.1, -0.2).

$$\vec{z} = \begin{bmatrix} 1.1 \\ -0.2 \end{bmatrix}$$
 is near $\vec{\alpha} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, and $f(\vec{a}) = 1$. The gradient is
$$\nabla f = \begin{bmatrix} \frac{y}{2\sqrt{1+xy}} \\ \frac{z}{2\sqrt{1+xy}} \end{bmatrix}$$
,

and so,
$$\nabla f(\vec{a}) = \begin{bmatrix} 0 \\ \frac{1}{2} \end{bmatrix}$$
. Thus,

$$f(\vec{x}) \approx f(\vec{a}) + \nabla f(\vec{a}) \cdot (\vec{x} - \vec{a}) = 1 + \begin{bmatrix} 0 \\ \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} 0.1 \\ -0.2 \end{bmatrix} = 0.9$$

Note The actual value is $f(\vec{x}) = \sqrt{1 + (1.1)(-0.2)} = \sqrt{0.78} = 0.88318$

Theorem 11.2.2. For a function $f : \mathbb{R}^3 \to \mathbb{R}$ and **a** for which $\nabla f(\mathbf{a}) \neq \mathbf{0}$, the gradient vector is perpendicular to the plane tangent to the level set of f through **a**. In particular, this tangent plane has the equation

$$\nabla f(a_1,a_2,a_3)\cdot\begin{bmatrix}x-a_1\\y-a_2\\z-a_3\end{bmatrix}=0.$$
 If \vec{z} is on the targent plane,
$$\nabla f(\vec{x})\cdot(\vec{z}-\vec{x})=0$$

As a special case, the graph of a function $h: \mathbb{R}^2 \to \mathbb{R}$ is the surface S with equation z = h(x,y) that is the level set f = 0 of f(x,y,z) = z - h(x,y) whose gradient $(-h_x, -h_y, 1)$ never vanishes (since the third entry is always nonzero). The tangent plane to S at (a,b,h(a,b)) then has the equation

$$\begin{array}{c|c} \textbf{Vf(a,b,k(a,b))} & \longrightarrow \begin{bmatrix} -h_x(a,b) \\ -h_y(a,b) \end{bmatrix} \cdot \begin{bmatrix} x-a \\ y-b \\ z-h(a,b) \end{bmatrix} = 0, \end{array}$$

which is equivalent to

$$z = h(a,b) + h_x(a,b)(x-a) + h_y(a,b)(y-b).$$

Example 4. Consider the ellipse defined by $4x^2 + 9y^2 = 36$. Find the tangent line to the ellipse at the point $\left(\frac{3\sqrt{2}}{2}, \sqrt{2}\right)$.

he see that
$$\nabla f = \begin{bmatrix} 8x \\ 18y \end{bmatrix}$$
 and $\nabla f(\vec{a}) = \begin{bmatrix} 12\sqrt{2} \\ 18\sqrt{2} \end{bmatrix}$.

$$\begin{bmatrix} 12\sqrt{2} \\ 18\sqrt{2} \end{bmatrix} \cdot \begin{bmatrix} x - \frac{3\sqrt{2}}{2} \\ y - \sqrt{2} \end{bmatrix} = 0$$
yields $12\sqrt{2}x - 36 + 18\sqrt{2}y - 36 = 0$, which reduces to
$$2x + 3y = 6\sqrt{2}.$$

Example 5. Consider the sphere S given by the equation $x^2 + y^2 + z^2 = 14$. Find an equation for the tangent plane to S through the point (3,2,1).

©2023 Gene B. Kim, Stanford Math Dept. This content is protected and may not be shared, uploaded, or distributed.

Level set of
$$f(x,y,z) = Z - (x^2 - y^2)$$
 at 0

Level set of $f(x,y,z) = z - (x^2 - y^2)$ at 0 Example 6. Consider the surface S defined by $z = x^2 - y^2$. Find the equation of the tangent plane to S at the point (0,0,0). Find the equation of the tangent plane to S at the point (2,1,3).

One of the main reasons to study multivariable calculus is to optimize multivariable functions. However, realistic problems of this type cannot be solved exactly; so we need a numerical way to approximate the answer. One powerful method of doing this is the gradient descent. The main idea is

- 1. start at some point (x,y)
- 2. move away from (x, y) in the direction in which f decreases the fastest
- 3. rinse, lather, and repeat

This process will end once we arrive at a local minimum (if there is one). We can modify the "decreases" to "increases" in the second step to find a local maximum; this process is called the gradient ascent.

Theorem 11.3.2. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function and $\mathbf{a} \in \mathbb{R}^n$ is a point at which the gradient $\nabla f(\mathbf{a})$ is non-zero. Then, the unit vector associated with the gradient, $\frac{\nabla f(\mathbf{a})}{\|\nabla f(\mathbf{a})\|}$, is the direction in which f increases most rapidly at **a**. Similarly, the opposite unit vector, $-\frac{\nabla f(\mathbf{a})}{\|\nabla f(\mathbf{a})\|}$, is the direction in which f decreases most rapidly at **a**.

Example 7. Consider the surface defined by $z = -x^2 - y^2$.

©2023 Gene B. Kim, Stanford Math Dept. This content is protected and may not be shared, uploaded, or distributed.

Each step of gradient descent (resp. ascent) is moving from a to

$$\mathbf{a} + t\nabla f(\mathbf{a}),$$

where t is a small negative (resp. positive) number. In order to use this algorithm, we need to decide two things:

- 1. the first **a** the starting point of our gradient descent
- 2. t how far do we go at each step? In the context of machine learning, t is called the learning rate.

Example 8. Consider the surface defined by $z = x^2 + y^2$. Start at (2,1) and apply three steps of gradient descent with t = -0.2.

We see that
$$\nabla f = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$$
.

Step 1:
$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 + (-0.2) $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$ = $\begin{bmatrix} 1.2 \\ 0.6 \end{bmatrix}$

Step 2:
$$\begin{bmatrix} 1.2 \\ 0.6 \end{bmatrix}$$
 + (-0.2) $\begin{bmatrix} 2.4 \\ 1.2 \end{bmatrix}$ = $\begin{bmatrix} 0.72 \\ 0.36 \end{bmatrix}$

Step 3:
$$\begin{bmatrix} 0.72 \\ 0.36 \end{bmatrix}$$
 + $(-0.2)\begin{bmatrix} 1.44 \\ 0.72 \end{bmatrix}$ = $\begin{bmatrix} 0.432 \\ 0.216 \end{bmatrix}$

Example 9. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x,y) = x^2 - y^2$.

(a) Calculate the first two steps of gradient descent using t = -0.1 and starting at $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$, as well as starting at $\begin{bmatrix} 2 \\ 0.6 \end{bmatrix}$. Plot these; do you notice any difference?

$$\nabla f = \begin{bmatrix} x \\ -xy \end{bmatrix}$$

②
$$\begin{bmatrix} 1.6 \\ 0 \end{bmatrix} + (-0.1) \begin{bmatrix} 3.2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1.28 \\ 0 \end{bmatrix}$$

(b) For general $\mathbf{a} = \begin{bmatrix} a \\ b \end{bmatrix}$, where do we wind up after a step of gradient descent with t = -0.1 starting at \mathbf{a} ? Your answer should be a vector whose entries are expressed in terms of a and b.

$$\begin{bmatrix} A \\ b \end{bmatrix} + (-0.1) \begin{bmatrix} 2A \\ -2b \end{bmatrix} = \begin{bmatrix} 0.8A \\ 1.2b \end{bmatrix}$$

(c) Using your formula in part (b), if you start at a general $\mathbf{a} = \begin{bmatrix} a \\ b \end{bmatrix}$, feed the procedure into itself repeatedly to say where one winds up after 2 steps and after 3 steps (in terms of a and b).

$$\begin{bmatrix} \alpha \\ b \end{bmatrix} \rightarrow \begin{bmatrix} 0.8 \alpha \\ 1.2 b \end{bmatrix} \rightarrow \begin{bmatrix} (0.8)^2 \alpha \\ (1.2)^2 b \end{bmatrix} \rightarrow \begin{bmatrix} (0.8)^3 \alpha \\ (1.2)^3 b \end{bmatrix}$$

(d) Explain why iterating gradient descent repeatedly will converge to $\mathbf{0}$ (not a local minimum for f, but rather a saddle point) when we start at any point \mathbf{a} with b=0, but will always diverge when $b\neq 0$. (Hint: for any number 0 < c < 1, the powers c^n converge to 0 as n grows. Use this with c=0.8)

Starting at
$$\begin{bmatrix} a \\ b \end{bmatrix}$$
, we get to $\begin{bmatrix} (0.8)^n a \\ (1.2)^n b \end{bmatrix}$ after N steps.

As
$$n \to \infty$$
, $(0.8)^n \to 0$ and $(1.2)^n \to \infty$.

Hence, if b = 0, gradient descent converges to \vec{O} .

However, if $b \neq 0$, gradient descent "falls off" towards $t \infty$ or $-\infty$ in the Y-direction, depending on the sign of b.