QUADRATIC RESIDUES

* Un denotes the set of presidues modulo in of integers coprime to no [where nezt].

* Definition: An integer a coprime to n
is called quadratic residue
modulo n if it is coprime to n
and is the square of an integer modulo

of n we call it a quadratic residue non-residue.

Example: quadratic residues of Considera.

2 These are the uniques
3 Vectors, which will be
4 repeated when we
do mad 5 operation

we are squaring;

 $\begin{array}{c} =) & 0^{2} = 0 \\ 1^{2} = 1 \\ 2^{2} = 4 \\ 3^{2} = 9 = 4 \pmod{5} \cdot \text{ the Square} \\ 4^{2} = 16 = 1 \pmod{5} \cdot \text{ of unique} \\ 4^{2} = 16 = 1 \pmod{5} \cdot \text{ palares Terms}. \end{array}$

Ois not considered because it is a quadration of sesidire for all numbers

<i>p</i>	* PROPOSITION 5.2! let p	de a prime.
<	The no: of quadratic	
	gesidues modulo,	0 18 P-1.
		2
P		
	proof: As C2=(-c)2, the noiot quadratic	
	sesidues is at most P-1.	
	on the other hand, if 'a' is a	
	quadratic residue of P, it tollows	
	easily that M2 = a mod p has	
	only two solutions modulo P	
,	as follows.	
- (1	let be Up such that b=amodP:	Example: quadiana
		residue of 7.
	$y^2 = a \mod p$.	$=) 1^2 = 1$
	=) n2 = b2 mod P-	22 = 4
		3 = 9 = 2 (mod)
	=) $P \left((n^2 - b^2) \right)$ =) $P \left((n-b) (n+b) \right)$	$4^2 = 16 = 2 \pmod{7}$
ş-		$5^2 = 25 = 4 \pmod{1}$
	=) P (01-b) or P (M+b)	$6^2 = 36 = 1 \pmod{7}$
4	=> \ x = b or or = -b modp.	Here @eafor a=4
	n - Signification	there are two
	As pis odd and bis	Mg 225.
·	Coprime to p, b \display -b mod p.	
·	Herce or = a mod p has precisely two	
	solutions modulo p, namely b and -6	
V	There are exactly P-1 quadratic sesidues	
	There are exactly P-1 quadratic sesidues * There are exactly P-1 quadratic sesidues * There are exactly P-1 quadratic sesidues * There are exactly P-1 quadratic sesidues	
	P-1 quadratic non-residues.	
4	2	
9		

0-

E.

and the same

* * * *