

Data Science and Machine Learning

DATA SAMPLING TECHNIQUES

Sampling

CENSUS VS SAMPLE

- <u>Census</u>: A census is a study of every unit, everyone or everything, in a population. It is known as a complete enumeration, which means a complete count.
- Census not mostly possible: time-consuming, expensive, population hardly still, etc.

 <u>Sample</u>: A sample is a subset of units in a population, selected to represent all units in a population of interest.

TYPES OF SAMPLING

RANDOM SAMPLING

SIMPLE RANDOM SAMPLING (SRS)

- Select n observations randomly from entire population
- Each observation is likely to be selected

SYSTEMATIC SAMPLING

- Arrange the population according to some ordering
- Start randomly and select every kth observation

K = 4

STRATIFIED SAMPLING

- Divide population in homogenous groups called <u>strata</u>
- Do Simple Random Sampling (SRS) from each stratum

Stratified sampling

CLUSTER SAMPLING

- Divide population in heterogenous groups called <u>clusters</u>
- Randomly Sample k clusters; and sample all observations within those clusters

MULTI-STAGE SAMPLING

- Divide population in heterogenous groups called <u>clusters</u>
- Randomly Sample k clusters; and do SRS within those clusters

NON-RANDOM SAMPLING

CONVENIENCE/ACCIDENTAL SAMPLING

- Members of the population are chosen based on their relative ease of access.
- To sample friends, co-workers, or shoppers at a single mall, are all examples of convenience sampling.
- Such samples are biased because researchers may unconsciously approach some kinds of respondents and avoid others (Lucas 2014a), and respondents who volunteer for a study may differ in unknown but important ways from others (Wiederman 1999).

SNOWBALL SAMPLING

 The first respondent refers an acquaintance. The friend also refers a friend, and so on.

 Such samples are biased because they give people with more social connections an unknown but higher chance of selection (Berg 2006), but lead to higher response

rates.

PURPOSIVE/JUDGMENTAL SAMPLING

- The researcher chooses the sample based on who they think would be appropriate for the study.
- This is used primarily when there is a limited number of people that have expertise in the area being researched, or when the interest of the research is on a specific field or a small group.

SAMPLING BIAS VS SELECTION BIAS

- <u>Sampling Bias</u>: A **bias** in which a **sample** is collected in such a way that some members of the intended population are less likely to be included than others; occurs when you choose your sample which is the 1st step of a research.
- <u>Selection Bias</u>: A **bias** introduced by the **selection** of individuals, groups or data for analysis in such a way that proper randomisation is not achieved; occurs when you select which subject goes to the control group and which to the treatment group.

SOURCES OF SAMPLING BIAS

- <u>Convenience Sample</u>: Easily accessible people more likely to be included in the sample.
- *Non-Response*: If only particular type(s) of randomly sampled people respond to survey.
- Voluntary Response: Happens when sample consists of people who volunteered to respond because they are opinionated.

CORRELATION VS CAUSATION

- <u>Correlation</u>: It describes the mutual relationship or connection between an independent and dependent variable.
- <u>Causation</u>: Causation, also known as cause and effect, is when an observed event or action (independent variable) appears to have caused a second event or action (dependent variable).

Correlation does not imply Causation!