Week 2 Exercises

Hunter Huberdeau October 27, 2023

Please complete all exercises below. You may use stringr, lubridate, or the forcats library.

Place this at the top of your script:

```
library(stringr)
library(lubridate)

##
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
##
## date
library(forcats)
```

Exercise 1

Read the sales pipe.txt file into an R data frame as sales.

Exercise 2

You can extract a vector of columns names from a data frame using the columns() function. Notice the first column has some odd characters. Change the column name for the FIRST column in the sales date frame to Row.ID.

Note: You will need to assign the first element of colnames to a single character.

```
# Your code here
colnames(sales)[1] <- "Row.ID"
colnames(sales)[1]
## [1] "Row.ID"</pre>
```

Exercise 3

Convert both Ship.Date and Order.Date to date vectors within the sales data frame. What is the number of days between the most recent order and the oldest order? How many years is that? How many weeks?

Note: Use lubridate

```
# Your code here
sales$Ship.Date <- as.Date(sales$Ship.Date,format='%B %d %Y')
sales$Order.Date <- as.Date(sales$Order.Date,format='%m/%d/%Y')

recent_order<- max(sales$Order.Date)
oldest_order<-min(sales$Order.Date)
order_diff<-recent_order-oldest_order
order_diff

## Time difference of 1457 days

week_diff<- as.numeric(difftime(recent_order, oldest_order, units = 'weeks'))
print(paste('Time difference of', week_diff, 'weeks'))

## [1] "Time difference of 208.142857142857 weeks"
year_diff <- as.period(interval(recent_order, oldest_order))/years(-1)

## estimate only: convert to intervals for accuracy
print(paste('Time difference of', year_diff, 'years'))

## [1] "Time difference of 3.99058863791923 years"</pre>
```

Exercise 4

What is the average number of days it takes to ship an order?

```
# Your code here
mean(sales$Ship.Date-sales$Order.Date)
```

Time difference of 3.908482 days

Exercise 5

How many customers have the first name Bill? You will need to split the customer name into first and last name segments and then use a regular expression to match the first name bill. Use the length() function to determine the number of customers with the first name Bill in the sales data.

```
# Your code here
#Split full name count 'bill' in new column
split_name <- stringr::str_split_fixed(string=sales$Customer.Name,pattern=' ',n=2)
sales$first_name <- split_name[,1]
name_table<-table(sales$first_name)
bill_count <- name_table["Bill"]
bill_count</pre>
## Bill
```

Exercise 6

37

##

How many mentions of the word 'table' are there in the Product.Name column? Note you can do this in one line of code

```
# Your code here
table_count <- sum(str_count(sales$Product.Name,"table"))
table_count</pre>
```

[1] 240

Exercise 7

Create a table of counts for each state in the sales data. The counts table should be ordered alphabetically from A to Z.

```
# Your code here
state_table <- table(sales$State)
state_table</pre>
```

##			
##	Alabama	Arizona	Arkansas
##	28	119	22
##	California	Colorado	Connecticut
##	993	90	50
##	Delaware	District of Columbia	Florida
##	47	1	186
##	Georgia	Idaho	Illinois
##	79	9	286
##	Indiana	Iowa	Kansas
##	74	11	16
##	Kentucky	Louisiana	Maine
##	64	18	4
##	Maryland	Massachusetts	Michigan
##	63	71	142
##	Minnesota	Mississippi	Missouri
##	41	27	37
##	Montana	Nebraska	Nevada
##	2	26	24
##	New Hampshire	New Jersey	New Mexico
##	9	58	11
##	New York	North Carolina	North Dakota
##	555	117	7
##	Ohio	Oklahoma	Oregon
##	211	38	56
##	Pennsylvania	Rhode Island	South Carolina
##	312	25	28
##	South Dakota	Tennessee	Texas
##	9	88	460
##	Utah	Vermont	Virginia
##	27	10	80
##	Washington	West Virginia	Wisconsin
##	254	4	38
##	Wyoming		
##	1		

Exercise 8

Create an alphabetically ordered barplot for each sales Category in the State of Texas.

```
# Your code here

Texas_sales_df = sales[(sales$State=='Texas'), ]
barplot(table(Texas_sales_df$Category))
```


Exercise 9

Find the average profit by region. Note: You will need to use the aggregate() function to do this. To understand how the function works type ?aggregate in the console.

```
# Your code here
aggregate(sales$Profit, list(sales$Region), FUN = mean)

## Group.1 x
## 1 Central 20.46822
## 2 East 29.91937
## 3 South 11.27720
## 4 West 32.77000
```

Exercise 10

Find the average profit by order year. Note: You will need to use the aggregate() function to do this. To understand how the function works type ?aggregate in the console.

```
# Your code here
order_year <- stringr::str_split_fixed(string=sales$Order.Date,pattern='-',n=3)</pre>
```

```
sales$order_year <- order_year[,1]
aggregate(sales$Profit, list(sales$order_year), FUN = mean)</pre>
```

```
## 1 Group.1 x
## 1 2014 32.24582
## 2 2015 21.58676
## 3 2016 30.10960
## 4 2017 21.31825
```