Aufgabe 1. (Punkte: 6)

Gegeben sei die Menge von 2×2 -Matrizen $M := \left\{ \begin{pmatrix} e^x & 0 \\ 0 & e^{-x} \end{pmatrix} \in \mathbb{R}^{2 \times 2} \middle| x \in \mathbb{Z} \right\}.$

- 1. Zeigen Sie, dass die Menge M zusammen mit dem Matrizenprodukt eine kommutative Gruppe ist.
- 2. Geben Sie einen Isomorphismus $\varphi:(M,\cdot)\to(\mathbb{Z},+)$ an und weisen Sie die Isomorphie-Eigenschaften für φ nach.

1) Nachweir der Gruppenaseione oder Untergruppen Erritorium zu all 2/1R/

$$\begin{pmatrix} e^{\times} & 0 \\ 0 & e^{-\times} \end{pmatrix} \cdot \begin{pmatrix} e^{y} & 0 \\ 0 & e^{-y} \end{pmatrix} = \begin{pmatrix} e^{\times + y} & 0 \\ 0 & e^{-(x+y)} \end{pmatrix} \in \mathcal{M}, da \times + y \in \mathbb{Z}$$
 (*)

- (x) =>
$$u({\overset{e^{\times}}{\circ}}{\overset{e^{\times}}{\circ}})$$
 it mit $y = - \times \in \mathbb{Z}$ $({\overset{e^{-\times}}{\circ}}{\overset{e^{\times}}{\circ}})$ dar hverse in M

-
$$(x) = (e^{x} \circ (e^{y}) \cdot (e^{y} \circ (e^{y}) = (e^{y} \circ (e^{y})) \cdot (e^{x} \circ (e^{y})) \cdot (e^{x} \circ (e^{y}) \cdot (e^{y} \circ (e^{y})) \cdot (e^{y} \circ (e^{y}) \cdot (e^{y}) \cdot (e^{y} \circ (e^{y})) \cdot (e^{y} \circ (e^{y}) \cdot (e^{y}) \cdot (e^{y}) \cdot (e^{y} \circ (e^{y})) \cdot (e^{y} \circ (e^{y}) \cdot (e^{y}) \cdot (e^{y}) \cdot (e^{y}) \cdot (e^{y}) \cdot (e^{y} \circ (e^{y}) \cdot ($$

2)
$$\varphi: \{ (P, \cdot) \rightarrow (Z, +) \}$$
 it bipstiv nach Definition von φ .

da zn
$$\times \in \mathbb{Z}$$
 $\exists_1 \begin{pmatrix} e^{\times} & 0 \\ 0 & e^{-\times} \end{pmatrix} \in \mathbb{M}$ mit $\varphi(|e^{\times} & 0 \\ 0 & e^{-\times})| = \times$

$$\varphi((\underbrace{e^{\times} \circ}_{O e^{-\times}})(\underbrace{e^{y} \circ}_{O e^{-y}})) = \varphi((\underbrace{e^{\times + y} \circ}_{O e^{-(x+y)}})) = x + y = \varphi((\underbrace{e^{\times} \circ}_{O e^{-x}})) + \varphi((\underbrace{e^{y} \circ}_{O e^{-y}}))$$

Aufgabe 2. (Punkte: 12)

1 2

Multiple choice-Aufgaben zu Permutationen

Alle Elemente $f \in S_3$ der Permutationsgruppe (S_3, \circ) lassen sich in Werteschreibweise $\begin{pmatrix} 1 & 2 & 3 \\ f(1) & f(2) & f(3) \end{pmatrix}$ oder in Zykelschreibweise $(a \ f(a) \dots)$ mit $a \in \{1, 2, 3\}$ darstellen.

 $U = \{id, (1\ 2)\}$ sei als eine Untergruppe der S_3 gegeben.

Kreuzen Sie bitte jeweils die richtige Aussage bzw. Antwort an. Begründungen werden nicht gewertet.

Lösung von $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ x = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ ist in S_3 :		$\square \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$	$\Box \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$
$ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}^{2008} = $	$\Box \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$		$\square \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$
Mit welchem Element $x \in S_3$ wird $\{id, (1\ 2\ 3), x\}$ zu einer Untergruppe von S_3 ?	$\Box \ x = (1 \ 3)$	$\Box x = (2\ 3\ 1)$	$\mathbf{X} x = (3\ 2\ 1)$
Wieviele verschiedene Untergruppen besitzt die S_3 ?	□ 3	□ 4	又 6
Welche Nebenklassen sind mit $[(1\ 2\ 3)]_U$ identisch?	$\square \ [(1\ 3\ 2)]_U$	\square [(2 3)] _U	$\mathbf{X}[(1\ 3)]_{U}$
Wieviele Elemente besitzt die Faktorgruppe S_3/U ?	X 3	□ 4	□ 6

Wertung: Für jede der 6 Teilaufgaben (Zeilen):

2 Punkte bei korrekter Beantwortung, Punktabzug bei falscher Beantwortung,

kurage: Fin XES, retze [x] =x0U

0 Punkte bei Nichtbearbeitung.

•
$$\times = \begin{pmatrix} 123 \\ 231 \end{pmatrix}^{-1} \circ \begin{pmatrix} 123 \\ 132 \end{pmatrix} = \begin{pmatrix} 123 \\ 312 \end{pmatrix} \circ \begin{pmatrix} 123 \\ 132 \end{pmatrix} = \begin{pmatrix} 123 \\ 321 \end{pmatrix}$$
 (oder ausprobréven)

•
$$\binom{123}{231}^{2008} = \binom{123}{231}^{2007} \cdot \binom{123}{231} = id \cdot \binom{123}{231} = \binom{123}{231}$$
, da 3 teilt 2007

Untergruppen van S3 mid:
 { }, { id, (12) }, { id, (13) }, { id, (23) }, { id, (123), (321) }, S3 also 6

•
$$|S_3/u| = |S_3|/|u| = 6/2 = 3$$

Aufgabe 3. (Punkte: 8)

Gegeben sei die Matrix $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 0 & 3 \\ 0 & 1 & -1 & 2 \end{pmatrix} \in \mathbb{R}^{3 \times 4}$ einer linearen Abbildung

$$f: \mathbb{R}^4 \to \mathbb{R}^3$$
, $x \mapsto y = Ax$ und der Vektor $b = \begin{pmatrix} 2 \\ 3 \\ \alpha \end{pmatrix} \in \mathbb{R}^3$ mit $\alpha \in \mathbb{R}$.

- 1. Bestimmen Sie den Kern von f.
- 2. Geben Sie dim(Bild(f)) und eine Basis des Bildes von f an.
- 3. Bestimmen Sie in Abhängigkeit von α alle Urbilder von b, d.h. alle Lösungen von Ax = b.

1)
$$\underline{\text{horsatz}}$$
: $\begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 2 & 0 & 3 & 0 \\ 0 & 1 & -1 & -2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & 2 & 0 \\ 0 & 1 & -1 & 2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow$

Walle x3= SER, x4= MER => x2= 5-2m 1 x1=- (5-2m)-5-m=-25+m

$$\Rightarrow x = \left(\begin{array}{c} -2 \\ 1 \\ 0 \end{array} \right) + \mu \cdot \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix}, \quad \lambda, \mu \in \mathbb{R} \text{ int Kern}(f)$$

=> Baris van Beld(f) vit 2.B.
$$(\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\-1 \end{pmatrix})$$

3) LGS:
$$\begin{pmatrix} 1 & 1 & 1 & 1 & 2 \\ 1 & 2 & 0 & 3 & 3 \\ 0 & 1 & -1 & 2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & -1 & 2 & 1 \\ 0 & 1 & -1 & 2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow$$

Fallunterscheidung:

Aufgabe 4. (Punkte: 8)

$$\operatorname{Im} \mathbb{R}^3 \text{ sind die Vektoren } v_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \text{ . } v_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \text{ , } v_3 = \begin{pmatrix} 1 \\ \alpha \\ 1 \end{pmatrix} \text{ mit } \alpha \in \mathbb{R} \text{ gegeben.}$$

- 1. Bestimme α so, dass $span(v_1, v_2, v_3)$ ein Untervektorraum von \mathbb{R}^3 der Dimension 2 ist, und begründen Sie Ihr Ergebnis.
- 2. Bestimmen Sie alle $\alpha \in \mathbb{R}$, für die es eine lineare Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^3$ mit

$$f(v_1) = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $f(v_2) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $f(v_3) = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ gibt. Begründen Sie Ihr Ergebnis.

- 3. Sei nun $\alpha=0$ gewählt. Bestimmen Sie das Bild von $v=\begin{pmatrix}2\\4\\2\end{pmatrix}$ unter der linearen Abbildung f aus 2.
- 1) Der Span ist unmer ein Unterverstorraum. Offenrichtlich mid V_1 und V_2 linear unabhängig => dein span $(V_1, V_2, V_3) \ge 2$ \Rightarrow dein span $(V_1, V_2, V_3) = 2 \Rightarrow V_1, V_2, V_3$ linear abhängig (=)

 1. Weg: $\det(V_1, V_2, V_3) = \det\begin{pmatrix} 1 & 0 & 1 \\ 2 & 2 & \alpha \\ 0 & 1 & 1 \end{pmatrix} = 2 + 0 + 2 0 \kappa 0 = 4 \alpha = 0 \Rightarrow \alpha = 4$ 2. Weg: $\operatorname{finatz}: S_1\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + S_2\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ \alpha \\ 1 \end{pmatrix} \Leftrightarrow S_1 = 1 \wedge S_2 = 1 \wedge \alpha = 4$
- 2) Fur $\alpha \neq 4$ mid v_1, v_2, v_3 linear unabhangij und bilden daher eine Basis des \mathbb{R}^3 , deven Bilder $f(v_1)$, $f(v_2)$, $f(v_3)$ eine lineare Abbildery eindentij bertimmen.

 Fur $\alpha = 4$ gilt $f(v_3) = f(v_1 + v_2) = f(v_1) + f(v_2) = {1 \choose 0} + {1 \choose 0} = {2 \choose 1} + {0 \choose 1}$ $\Rightarrow \nexists f \text{ fur } \alpha = 4$
- 3) knowly $\int_{3}^{2} |x_{1}| dx_{2} + \int_{3}^{2} |x_{2}| dx_{2} = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix} dx_{3} = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix} dx_{4} + \begin{pmatrix} 1 & 0 & 1 & 2 \\ 2 & 2 & 0 & 4 \\ 0 & 1 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 2 & -2 & 0 \\ 0 & 1 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 2 & 2 \end{pmatrix}$ $\Rightarrow \int_{3}^{2} |x_{2}| dx_{3} = \int_{3}^{2} |x_{1}| dx_{3} + \int_{3}^{2} |x_{1}| d$

Aufgabe 5. (Punkte: 10)

1	2

Multiple choice-Aufgaben zu Abbildungen

Welche Eigenschaften treffen auf die angegebenen Abbildungen f zu? Kreuzen Sie bitte **alle** richtigen Aussagen an. Begründungen werden nicht gewertet.

$f: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R}^2 \\ x & \mapsto & \begin{pmatrix} x \\ x+1 \end{pmatrix} \right.$	□ linear X nicht linear	injektiv □ nicht injektiv	□ surjektiv inicht surjektiv
$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} & \mapsto & \begin{pmatrix} x_1 + x_2 \\ x_1 \end{pmatrix} \right.$		injektiv □ nicht injektiv	⊠ surjektiv □ nicht surjektiv
$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} & \mapsto & \begin{pmatrix} x_1 \cdot x_2 \\ x_1 - x_2 \end{pmatrix} \right.$	□ linear incht linear	□ injektiv ✓ nicht injektiv {(x,1x,1=f(-x,1-x,1)	□ surjektiv ⋈ nicht surjektiv ᡮ Urbill vm (7)
$f: \left\{ \begin{array}{c} \mathbb{R}^3 & \to & \mathbb{R}^4 \\ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} & \mapsto & A \cdot \begin{pmatrix} x_1 + x_2 \\ x_2 + x_3 \\ x_3 + x_1 \end{pmatrix} \right.$ $\text{mit } A \in \mathbb{R}^{4 \times 3} \text{ und } Kern(A) = \{0\}$	⊠ linear □ nicht linear	⊠ injektiv □ nicht injektiv	□ surjektiv 又 nicht surjektiv
$f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R}^3 \\ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} & \mapsto & A \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \\ \text{mit } A \in \mathbb{R}^{3 \times 3} \text{ und } Kern(A) = \{0\} \end{array} \right.$	□ linear ጆ nicht linear	⊠ injektiv □ nicht injektiv	X surjektiv □ nicht surjektiv

Wertung: Für jede der 5 Teilaufgaben (Zeilen):

2 Punkte bei korrekter Beantwortung, Punktabzug bei falscher Beantwortung,

0 Punkte bei Nichtbearbeitung.

Aufgabe 6. (Punkte: 8)

1 2

Im \mathbb{R} -Vektorraum $\mathbb{R}^{n\times n}$ der $n\times n$ -Matrizen (n>1) sei

$$U = \{ A = (a_{ij}) \in \mathbb{R}^{n \times n} \mid a_{ij} = -a_{ji} \text{ für alle } 1 \le i, j \le n \}$$

- 1. Zeigen Sie: U ist ein Untervektorraum von $(\mathbb{R}^{n\times n}, +, \cdot)$.
- 2. Zeigen Sie: $A = (a_{ij}) \in U \implies a_{ii} = 0$ für alle $1 \le i \le n$.
- 3. Bestimmen Sie für n=3 eine Basis von U.
- 4. Geben Sie dim(U) in Abhängigkeit von $n \in \mathbb{N} \setminus \{0\}$ an.
- 5. Zeigen Sie: Für $n=2k+1, k\in\mathbb{N}$ gilt: $A\in U \Rightarrow det(A)=0$. Hinweis: Betrachten Sie $det(A^T)$!

1) Unter vektorraum sviterium mit AEU (=) AT=-A

- U ≠ Ø, da Nallmatrise O € U und für A,B € U, L ∈ R gelt:
- + abgesehlorsen: $(A+B)^T = A^T + B^T = -A B = -(A+B) \Rightarrow A+B \in \mathcal{U}$
- · abgerhlorsen: $(\lambda \cdot A)^T = \lambda \cdot A^T = \lambda \cdot (-A) = (-\lambda A) = -(\lambda A) = \lambda \cdot A \in \mathcal{U}$ alternatio mit $A = (a_{ij})$, $B = (b_{ij}) \in \mathcal{U}$, $\lambda \in \mathcal{R}$
- · (aij + bij) = (aij) + (bij) = (-aji) + (-bji) = (-(aji+bji))
- · (\(\a_{ij} \) = \(\(\a_{ij} \) = \(\(-a_{ji} \) = (\(a_{ji} \) \\
- 2) $A = (a_{ij}) \in \mathcal{U} \iff a_{ij} = -a_{ji} + i, j \in \{1, ..., n\} \text{ insberondene } \{a_{ij} = i\}$ $\Rightarrow a_{ii} = -a_{ii} + i \in \{1, ..., n\} \Rightarrow a_{ii} = 0 + i \in \{1, ..., n\}$
- 3) n=3, $A \in \mathcal{U} \subset A = \begin{pmatrix} 0 \times \beta \\ -x & 0 & 8 \end{pmatrix} = x \cdot \begin{pmatrix} 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} + \beta \cdot \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} + \gamma \cdot \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ offensichtlich Bymannt u and u die linear unabhair u: $B = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$ $B = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$
- 4) Wesentliche Einträge in A E U nur oberhalb der Lauptdiagonalen => dein(U) = $\sum_{k=1}^{n-1} K = \frac{n(n-1)}{2}$
- 5) $\det(A) = \det(A^T) = \det(A) = (-1)^n \det(A) = -\det(A) \Rightarrow \det(A) = 0$ A $\in \mathcal{U}$ nungerade

Aufgabe 7. (Punkte: 8)

Gegeben sei die Matrix
$$A = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 3 & 4 \\ 0 & 4 & -3 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$
 und der Vektor $v_1 = \begin{pmatrix} 5 \\ 4 \\ 2 \end{pmatrix}$ mit $\alpha \in \mathbb{R}$.

- 1. Begründen Sie, warum A invertierbar ist. Die Bestimmung von A^{-1} ist dabei nicht verlangt!
- 2. Zeigen Sie, dass v_1 ein Eigenvektor von A ist und bestimmen Sie den zugehörigen Eigenwert λ_1 .
- 3. Bestimmen Sie einen Eigenvektor v_2 von A zum Eigenwert $\lambda_2 = -5$.
- 4. Bestimmen Sie den fehlenden Eigenwert $\lambda_3 \notin \{\lambda_1, \lambda_2\}$ von A.
- 5. Geben Sie eine Basis des \mathbb{R}^3 aus Eigenvektoren von A an.

1)
$$det\begin{pmatrix} 3 & 2 & 1 \\ 0 & 3 & 4 \\ 0 & 4 & -3 \end{pmatrix} = 3 \cdot (-9 - 16) = -75 + 0$$
 low $Rg\begin{pmatrix} 3 & 2 & 1 \\ 0 & 3 & 4 \\ 0 & 4 & -3 \end{pmatrix} = Rg\begin{pmatrix} 3 & 2 & 1 \\ 0 & 3 & 4 \\ 0 & 0 & -3 - \frac{36}{3} \end{pmatrix} = 3 \Rightarrow Reh.$

2)
$$A \cdot V_1 = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 3 & 4 \\ 0 & 4 & -3 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 15+8+2 \\ 12+8 \\ 16-6 \end{pmatrix} = \begin{pmatrix} 25 \\ 20 \\ 10 \end{pmatrix} = 5 \cdot \begin{pmatrix} 5 \\ 4 \\ 2 \end{pmatrix} = \lambda_1 V_1 \implies \frac{\lambda_1 = 5}{2}$$

3)
$$(A-(-5)E) \vee_{2}=0$$
: $\begin{pmatrix} 8 & 2 & 1 & 0 \\ 0 & 8 & 4 & 0 \\ 0 & 4 & 2 & 0 \end{pmatrix} \sim \begin{pmatrix} 8 & 2 & 1 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow v_{2}=\mu \cdot \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$, $\mu \in \mathbb{R}$

4) 1. Weg:
$$\lambda_1 \cdot \lambda_2 \cdot \lambda_3 = \det(A) = -75 \Rightarrow \frac{\lambda_3 = 3}{2 \cdot 2}$$
 (mit $\lambda_1 = 5$, $\lambda_2 = -5$)

3. Weg:
$$\chi_{A}(x) = \det(A - x E) = \det\begin{pmatrix} 3 - x & 2 & 1 \\ 0 & 3 - x & 4 \\ 0 & 4 & -3 - x \end{pmatrix} = (3 - x) \cdot \det\begin{pmatrix} 3 - x & 4 \\ 4 & -3 - x \end{pmatrix} = 0$$

$$\Rightarrow \frac{\sqrt{3}}{3} = 3 \quad \left(\chi_{A}(x) = (3 - x)(x - 5)(x + 5) \text{ wind night benotist!} \right)$$

5) Basis aux Eigenvertoven:
$$B = \left(\begin{pmatrix} 5 \\ 4 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right)$$
offensichtlich EV zu EW $L_3 = 3$