臺灣大學數學系 103 學年度碩士班甄試試題 科月:線性代數

2013.10.18

1. (20%)

- (a) Let $A \in M_{m \times n}(F)$, $B \in M_{n \times p}(F)$ where F is a field. Show that $\operatorname{rank}(AB) \leq \min\{\operatorname{rank}(A), \operatorname{rank}(B)\}$. Moreover, if n = p and B is invertible, show that $\operatorname{rank}(AB) = \operatorname{rank}(A)$.
- (b) Let $A \in M_{m \times n}(\mathbb{C})$. Show that $\operatorname{rank}(A^*A) = \operatorname{rank}(A)$ where A^* is the conjugate transpose of A.

2. (20%)

- (a) Let A be an $n \times n$ real symmetric matrix. Show that if λ is an eigenvalue of A in \mathbb{C} , then λ is real.
- (b) Let A be an $n \times n$ real symmetric matrix. Show that one can find an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A.

3. (20%)

- (a) Which $n \times n$ real matrices B have the property that AB = BA for all $n \times n$ real matrices A? Justify your answer.
- (b) Let A, B be two $n \times n$ real symmetric matrices. Show that A and B are simultaneously diagonalizable if and only if AB = BA.
- 4. (20 %) For all $x \in \mathbb{R}^n$, we define the norm of x by $||x|| = \sqrt{\langle x, x \rangle}$ where \langle, \rangle is the standard inner product on \mathbb{R}^n .

Let
$$A = \begin{pmatrix} 0 & 4 & 0 & 4 \\ 1 & 2 & 1 & 2 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$
 and $b = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$.

- (a) Find a vector p in the column space of A (the subspace of \mathbb{R}^3 spanned by the column vectors of A) such that $||p-b|| \leq ||A \cdot x b||$ for all $x \in \mathbb{R}^4$
- (b) Find $s \in \mathbb{R}^4$ such that $A \cdot s = p$ and s has the minimum norm, that is, $||s|| \le ||v||$ for all solutions v (in \mathbb{R}^4) of $A \cdot x = p$. (Justify your answers.)
- 5. (20 %) Find the Jordan form B of

$$A = \begin{pmatrix} 3 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 3 & 0 & 5 & -3 \\ 4 & -1 & 3 & -1 \end{pmatrix}$$

and the matrix P such that $B = P^{-1}AP$.

(Notice! Show your works in details. No points will be assigned for non-substantial answers.)