Discrete Optimization

Linear Programming: Part VI

Goals of the Lecture

- Linear programming
 - -where is this dual coming from?
 - -what does it mean?
 - what is useful for?

can we find an upper bound?

$$10x_1 + 2x_2 + 6x_3 + 16x_4 \le 110$$

max
$$4x_1 + x_2 + 5x_3 + 3x_4$$
 subject to
$$x_1 - x_2 - x_3 + 3x_4 \le 1$$

$$5x_1 + x_2 + 3x_3 + 8x_4 \le 55$$

$$-x_1 + 2x_2 + 3x_3 - 5x_4 \le 3$$

► can we find an upper bound?

$$10x_1 + 2x_2 + 6x_3 + 16x_4 \le 110^{\circ}$$

can we find an upper bound?

$$10x_1 + 2x_2 + 6x_3 + 16x_4 \leq 110$$

max subject to
$$x_1 - x_2 - x_3 + 3x_4 \le 1$$

$$5x_1 + x_2 + 3x_3 + 8x_4 \le 55$$

$$-x_1 + 2x_2 + 3x_3 - 5x_4 \le 3$$

$$\hline$$
 can we find an upper bound?
$$10x_1 + 2x_2 + 6x_3 + 16x_4 \le 110$$

$$4x_1 + 3x_2 + 6x_3 + 3x_4 \le 58$$

can we find an upper bound?

$$10x_1 + 2x_2 + 6x_3 + 16x_4 \le 110$$

 $4x_1 + 3x_2 + 6x_3 + 3x_4 \le 58$

can we find an upper bound?

$$10x_1 + 2x_2 + 6x_3 + 16x_4 \le 110$$

 $4x_1 + 3x_2 + 6x_3 + 3x_4 \le 58$

max subject to
$$x_1 - x_2 - x_3 + 3x_4 \le 1$$

$$5x_1 + x_2 + 3x_3 + 8x_4 \le 55$$

$$-x_1 + 2x_2 + 3x_3 - 5x_4 \le 3$$

$$\hline$$
 can we find an upper bound?
$$10x_1 + 2x_2 + 6x_3 + 16x_4 \le 110$$

$$4x_1 + 3x_2 + 6x_3 + 3x_4 \le 58$$

$$y_1$$
 (x_1 - x_2 - x_3 + $3x_4$) + y_2 ($5x_1$ + x_2 + $3x_3$ + $8x_4$) + y_3 ($-x_1$ + $2x_2$ + $3x_3$ - $5x_4$) \leq y_1 + $55y_2$ + $3y_3$

$$y_1$$
 (x_1 - x_2 - x_3 + $3x_4$) + y_2 ($5x_1$ + x_2 + $3x_3$ + $8x_4$) + y_3 ($-x_1$ + $2x_2$ + $3x_3$ - $5x_4$) \leq

minimize
$$y_1 + 55y_2 + 3y_3$$

Complementarity Slackness

What do these dual variables mean?

Let x^* and y^* be the optimal solutions to the primal and dual. The following conditions are necessary and sufficient for the optimality of x^* and y^* .

$$\sum_{j=1}^{n} a_{ij} x_j^* = b_i \quad \forall y_i^* = 0 \quad (1 \le i \le m)$$

and

$$\sum_{i=1}^{n} a_{ij} y_i^* = c_j \ \lor x_j^* = 0 \ (1 \le j \le n)$$

Economic Interpretation

max
$$\sum_{j=1}^{n} c_{j}x_{j}$$
 subject to
$$\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i}+t_{i} \quad (1 \leq i \leq m)$$

Economic Interpretation

max
$$\sum_{j=1}^{n} c_j x_j$$
 subject to
$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i + t_i \quad (1 \leq i \leq m)$$

► for some small t_i, this linear program has an optimal solution

$$z^* + \sum_{i=1}^m y_i^* t_i$$

optimal primal objective

dual solution

Duality in the Tableau

	0	0	0	0			
	1						
		1					
			1				
				1			

$$c_j - c_B A_B^{-1} A_j$$

Duality in the Tableau

$$c_j - c_B A_B^{-1} A_j$$

Duality in the Tableau

ullet at optimality, the cost become $\,c_j - c_B A_B^{-1} A_j\,$

- ► Primal simplex
 - -primal always feasible; dual not

- Primal simplex
 - primal always feasible; dual not
- Dual simple
 - -dual always feasible; primal not

- Primal simplex
 - primal always feasible; dual not
- Dual simple
 - -dual always feasible; primal not
- Why using the dual?
 - I have an optimal solution and I want to add a new constraint
 - The dual is still feasible (I am adding a variable); the primal is not
 - Optimize the dual and the primal becomes feasible at optimality

- Primal simplex
 - primal always feasible; dual not
- Dual simple
 - -dual always feasible; primal not
- Why using the dual?
 - I have an optimal solution and I want to add a new constraint
 - The dual is still feasible (I am adding a variable); the primal is not
 - Optimize the dual and the primal becomes feasible at optimality
- ► Use the same tableau

9

Until Next Time