

Fig. 4.3: Regression forest: the ensemble model. The regression forest posterior is simply the average of all individual tree posteriors $p(\mathbf{y}|\mathbf{v}) = \frac{1}{T} \sum_{t=1}^{T} p_t(\mathbf{y}|\mathbf{v})$.

actual value. Thus for prediction we can use a probability density function over the continuous variable \mathbf{y} . So, given the t^{th} tree in a forest and an input point \mathbf{v} , the associated leaf output takes the form $p_t(\mathbf{y}|\mathbf{v})$. In the low-dimensional example in fig. 4.2c we assume an underlying linear model of type $y = w_0 + w_1 x$ and each leaf yields the conditional p(y|x).

The ensemble model. Just like in classification, the forest output is the average of all tree outputs (fig. 4.3):

$$p(\mathbf{y}|\mathbf{v}) = \frac{1}{T} \sum_{t}^{T} p_{t}(\mathbf{y}|\mathbf{v})$$

A practical justification for this model was presented in section 2.2.5.

Randomness model. Like in classification here we use a randomized node optimization model. Therefore, the amount of randomness is controlled during training by the parameter $\rho = |\mathcal{T}_j|$. The random subsets of split parameters \mathcal{T}_j can be generated on the fly when training