Diplomvorprüfung zu Experimentalphysik I

28. Februar 2003 Prüfungszeit: 15.00-16.30

Bearbeitungszeit: 90 Minuten Umfang der Aufgaben: 3 Seiten, 5 Aufgaben

Gesamtpunktzahl: 50

Erlaubte Hilfsmittel: Bücher, Skripten, Mitschriften, Musterlösungen, Formelsammlungen,

Netzunabhängige Rechner

Wichtig: Auf jedes Blatt Name und Matrikelnummer schreiben!

Aufgabe 1 (11 Punkte)

Eine Billardkugel (Masse m = 0.25 kg, Radius R = 8 cm) werde durch einen horizontalen, auf den Kugelmittelpunkt gerichteten Stoß auf eine Anfangsgeschwindigkeit $v_0 = 5$ m/s gebracht. Auf die Kugel wirke eine konstante Gleitreibungskraft (Koeffizient $\mu = 0.5$), die reine Rollbewegung sei reibungsfrei. Trägheitsmoment einer homogenen Kugel: $I = \frac{2}{5}mR^2$.

- Berechnen Sie die Zeitdauer, nach welcher die Kugel in die reine Rollbewegung übergeht (Hinweis: Stellen Sie zunächst Ausdrücke für die Zeitabhängigkeit der Translationsgeschwindigkeit und der Winkelgeschwindigkeit auf.)
- b) Wie groß ist zu diesem Zeitpunkt Ihre Translationsgeschwindigkeit?
- c) Welchen Weg hat sie bis dahin zurückgelegt?
- d) Welche Arbeit verrichtet die Reibungskraft insgesamt?

Aufgabe 2 (7 Punkte)

Zur Messung der Geschwindigkeit einer Gewehrkugel (Masse $m_1 = 5$ g) wird diese horizontal in einen ruhenden Holzklotz der Masse $m_2 = 20$ kg geschossen, welcher an einem Pendelstab der Länge l = 1 m hängt. Der maximale Auslenkungswinkel des Holzklotzes mit darin steckender Kugel wird zu $\theta = 1.2^{\circ}$ bestimmt. Die Masse des Pendelstabs ist zu vernachlässigen.

- a) Bestimmen Sie die Geschwindigkeit der Gewehrkugel v_1 .
- b) Welche Geschwindigkeit hat der Holzklotz unmittelbar nach dem Stoß?
- c) Welcher Anteil kinetischer Anfangsenergie der Kugel wird in nicht-kinetische Energie (Wärme) umgewandelt?

Aufgabe 3 (10 Punkte)

Durch einen kugelförmigen Planeten (Masse M, Radius R) mit homogener Massenverteilung werde ein Tunnel entlang des Durchmessers gebohrt. In diesen Tunnel werde eine punktförmige Masse m fallengelassen. Reibungskräfte mit der Tunnelwand sind zu vernachlässigen.

- Wie lautet die Bewegungsgleichung der Punktmasse? Hinweis: Anziehungskrast auf Punktmasse im Abstand r vom Planetenmittelpunkt ist proportional zum Anteil der Planetenmasse, der innerhalb der Kugel mit Radius r liegt. Setzen Sie $g := GM / R^2$. $(G = 6.673 \cdot 10^{-11} \text{ Nm}^2 \text{kg}^{-2})$
- b) Der Planet führe nun eine Rotationsbewegung (raumfeste Drehachse senkrecht zum Tunnel) mit der Winkelgeschwindigkeit Ω aus. Wie lautet jetzt die Bewegungsgleichung?
- c) Geben Sie die Lösung der Bewegungsgleichung aus b) für die Erde an $(R = 6.4 \cdot 10^6 \text{ m})$, Annahme homogener Massenverteilung, $M = 5.977 \cdot 10^{24} \text{ kg}$).
- d) Wie lange müsste ein "Erdtag" (einmalige Rotation) sein, damit die Punktmasse relativ zum Tunnel keine Beschleunigung erfährt?
- e) Die Corioliskraft drückt bei $\Omega>0$ die Punktmasse gegen die Tunnelwand. Erweitern Sie die Bewegungsgleichung aus b) für einen Gleitreibungskoeffizient μ .

Aufgabe 4 (11 Punkte)

Ein Fass (Durchmesser 1 m) ist mit Glycerin ($\rho_{GL} = 1.26 \cdot 10^3 \text{ kg/m}^3$) bis zum oberen Rand gefüllt. Auf Höhe des Fassbodens ragt aus dem Fass ein horizontales Rohr der Länge 70 cm mit Innendurchmesser 1 cm.

- a) Zu Beginn sei das Rohr verschlossen. Zur Bestimmung der Viskosität η des Glycerins wird die Gleichgewichts-Sinkgeschwindigkeit einer Stahlkugel (Durchmesser r_{Kugel} = 6 mm, $\rho_{ST} = 7.8 \cdot 10^3$ kg/m³) mit v = 9 cm/s gemessen. Berechnen Sie η .
- b) Nach Öffnen des Rohrs werde der Pegel des Glycerins durch ständiges Zufüllen von $I = 3.7 \text{ cm}^3 / s$ (Flüssigkeitsstrom) konstant gehalten. Berechnen Sie unter Annahme laminarer Strömung im Rohr die Höhe h des Fasses.
- c) Wie groß ist die mittlere Glyceringeschwindigkeit im Rohr?
- d) Die Zufuhr von Glycerin werde gestoppt. Nach welcher Zeit ist das Fass halbleer?

Aufgabe 5 (11 Punkte)

Mit einer idealen Carnot-Maschine soll ein Kreisprozess durchgeführt werden. Der Zylinder der Maschine ist mit n=0.12 mol eines idealen Gases (Adiabatenkoeffizient $\chi=1.4$) gefüllt und durch einen reibungsfrei gleitenden Kolben abgeschlossen. Die beiden Wärmereservoire haben die Temperaturen $T_1=560$ K und $T_2=300$ K.

Der Ausgangsdruck im Kolben sei $p_A = 7.5 \cdot 10^5 \text{ N/m}^2$, die Ausgangstemperatur T_1 . Gaskonstante $R = 8.314 \text{ JK}^{-1} \text{mol}^{-1}$.

- a) Welches Ausgangsvolumen V_A hat das Gas?
- b) Das Gas werde im ersten Teilprozess isotherm ausgedehnt mit einem Enddruck von $p_1 = 3.3 \cdot 10^5 \text{ N/m}^2$. Welches Volumen V_1 hat das Gas danach?
- c) Welche Arbeit W_1 verrichtet das Gas im ersten Teilprozess, welche Wärmemenge Q_1 wird ihm dabei zugeführt?
- d) Im 2. Teilprozess wird das Gas adiabatisch ausgedehnt, bis es sich auf die Temperatur T_2 abgekühlt hat. Welches Volumen V_2 hat das Gas danach?
- e) Welche Arbeit W_2 muss im folgenden, 3. Teilprozess am Gas verrichtet werden, um es isotherm auf das Volumen $V_3 = 3.55 \cdot 10^{-3}$ m³ zu komprimieren?
- f) Im 4. Teilprozess wird das Gas adiabatisch auf das Ausgangsvolumen V_A komprimiert. Bestimmen Sie die resultierende Endtemperatur T_E des Gases.

Viel Erfolg