DNA RESEARCH 5, 2777-286 (1998)

温馨0004

XP002926060

Prediction of the Coding Sequences of Unidentified Human Genes. XI. The Complete Sequences of 100 New cDNA Clones from Brain Which Code for Large Proteins in vitro

Takahiro NAGASE, Ken-ichi Ishikawa, Mikita Suyama, Reiko Kikuno, Nobuyuki Miyajima, Ayako Tanaka, Hirokazu Kotani, Nobuo Nomura, and Osamu Ohara*

Kazusa DNA Research <u>Inst</u>itute, 1532-9 Yana, Kisarazu, Chiba 292-0812, Japan

(Received 1 October 1998)

Abstract

In ur series of projects for accumulating sequence information on the coding sequences of unidentified human genes, we have newly determined the sequences of 100 cDNA clones from a set of size-fractionated human brain cDNA libraries, and predicted the coding sequences of the corresponding genes, named KIAA0711 to KIAA0810. These cDNA clones were selected according to their coding potentials of large proteins (50 kDa and more) in vitro. The average sizes of the inserts and corresponding open reading frames were 4.3 kb and 2.6 kb (869 amino acid residues), respectively. Sequence analyses against the public databases indicated that the predicted coding sequences of 78 genes were similar to those of known genes, 64% of which (50 genes) were categorized as proteins functionally related to cell signaling/communication, cell structure/motility and nucleic acid management. As additional information concerning genes characterized in this study, the chromosomal locations of the clones were determined by using human-rodent hybrid panels and the expression profiles among 10 human tissues were examined by reverse transcription-coupled polymerase chain reaction which was substantially improved by enzyme-linked immunosorbent assay. Key words: large proteins; in vitro transcription/translation; cDNA sequencing; expression profile; chromosomal location; brain

1. Introduction

As a c implement of human genome sequencing, analysis of cDNAs is expected to provide indispensable information for the interpretation of genomic sequences. In particular, it is very advantageous that cDNA clones convey more unambiguous protein coding information than gen mic clones and that they can be used as versatile reagents in functional studies of gencs. Considering the importance of the cDNA analysis, we began sequencing the entire length of cDNAs in order t accumulate information on the coding sequences of unidentified human genes.2 Recently, we have focused our sequencing efforts on the analysis of large cDNAs (> 4 kb) encoding large proteins (> 50 kDa) in brain, since these g nes are likely to play an important role in mammals.3,4 As an extensi n of the preceding reports, we herein present the entire sequences, expression profiles am ng 10 human tissues and chromosomal locations of 100 new cDNA clones. Furthermore, specific features of the newly predicted protein sequences are described on the basis of the homology/motif

analysis.

2. Materials and Methods

2.1 Source and screening of cDNA clones

The size-fractionated human brain cDNA library Nos. 2 to 5 (average insert size = 3.9, 4.5, 5.3 and 6.1.kb, respectively)3 were used as a source of cDNA clones. Most of the cDNA clones analyzed in this study were selected from library No. 2 (average insert size = 3.9 kb). cDNA clones were first screened according to their in vitro protein-c ding potentials and then by single-pass sequencing of both termini as described previously.3 The sequences thus determined were subjected to homol gy search against the GenBank database (release 102.0) excluding expressed sequence tags and genomic sequences. The clones with unidentified sequences at both ends were sequenced in their entirety as described.3 As an exception, cDNA clones which are likely to c ntain much larger open reading frames (ORFs) than those already registered in the public databases were sequenced in their

2.2. Gene expression profiles

Expression patterns of newly identified genes in 10 human tissues were examined by reverse transcriptionc upled polymerase chain reaction (RT-PCR) as described previously,4 except that the detection and quantification of the PCR products were done by enzymelinked immunosorbent assay (ELISA). For ELISA, the RT-PCR was modified to be conducted in the presence f digoxigenin (DIG)-11-dUTP (DIG PCR labeling mix, Boehringer Mannheim, Germany) while other conditions were unchanged. The nucleotide sequences of respective PCR primers are available upon request. The obtained DIG-labeled PCR products were subjected to quantification with a PCR ELISA kit from Boehringer Mannheim. Since the kit takes advantage of solution hybridization for specific detection of desired PCR products, authentic biotinylated products were prepared from the isolated cDNA clones by PCR in the presence of 0.1 mM biotin-14-dATP (Life Technologies, Inc., USA), purified on agarose gels, and then used as probes for the soluti n hybridization. The RT-PCR ELISA was performed exactly as described by the instructions provided with the kit, except for the following points: Because biotinylated PCR products were used as probes in place of ligomers, the hybridization was carried out in 210 μ l of hybridization solution containing 20 ng of the probe at 65 °C for 16 hr; after the hybridization, biotin-labeled molecules were captured in a well of streptavidin-coated microtiter plate at 55 °C for 30 min. The color development with horseradish peroxidase and 2,2'-azino-bis(3ethylbenzthiazoline-6-sulfonate), the final detection step of the RT-PCR ELISA, was monitored by absorption at 405 nm in a kinetic mode with a SPECTRAmax 250 microtiter plate reader (Molecular Device, Co., Sunnyvale, CA) at 37 °C. The ELISA data were converted to the mRNA levels expressed as equivalent amounts of the cDNA plasmid on the basis of ELISA control curves using PCR products derived from serial dilutions of a known amount of the authentic plasmids with a software package, SOFTmax PRO (Molecular Device, Co.). The digitized mRNA levels were then displayed by color codes to facilitate survey of many gene expression profiles at a glance.

2.3. Other methods

DNA sequencing and homology search of the predicted protein-coding sequences were carried out as described previously, 3,4 except that most DNA sequencing reactions were performed using ABI PRISMTM dRhodamine terminator cycle sequencing ready reaction kit (Perkin-Elmer Co., USA). Plasmid DNAs for sequencing and in vitro transcription/translation were prepared by the Wizard Plus SV Minipreps DNA Purification system (Promega Corp., Madison, WI), except that the spin columns were replaced with MultiScreen-FB

plates (Millipore Corp., Bedford, MA) for adapting the system in the 96-well format. When the possibility of spurious interruption of ORFs was noticed. a likely region which causes the interruption was amplified by RT-PCR and then examined by DNA sequencing as described previously.5 Chromosomal locations of newly identified genes were determined using human-rodent hybrid panels, GeneBridge 4 (Research Genetics Inc., USA)6 if their mapping data were not available in the UniGene database (http:// www.ncbi.nlm.nih.gov/UniGene/index.html). For genes whose chromosomal locations were described in the UniGene database, we did not perform the radiation hybrid mapping experiments as a general rule. The actual primer sequences and the reaction conditions used for PCR-assisted chromosomal mapping are accessible through the World Wide Web at http: //www.kazusa.or.jp.

3. Results and Discussion

9.1. Sequence analysis and prediction of protein-coding regions of cDNA clones

The criteria of cDNA clone selection were the same as reported in the previous studies; they must be uncharacterized and can direct synthesis of pr t ins larger than 50 kDs in vitro. One hundred clones thus selected were subjected to sequencing of entire inserts. Most of the cDNA clones (87 clones) were derived from library No. 2 (average insert size of 3.9 kb) in this study, since cDNA clones in this library had not been extensively characterized yet. As described previously, 5 some clones were found to carry spurious coding interruption(s): Four clones (KIAA0799-0801, and KIAA0810) were found to carry relatively long insertions, probably corresponding to intronic sequences; the ORFs in 5 clones (KIAA0803, KIAA0804, KIAA0807-0809) were frame-shifted by insertion or deletion of a small number of nucleotide residues; the ORFs in 3 clones (KIAA0802, KIAA0805 and KIAA0806) were interrupted by relatively short insertions (152, 94 and 188 bp, respectively). For those genes, the revised sequences by the RT-PCR experiments, not the actual cloned cDNA sequences, were deposited to GenBank/EMBL/DDBJ databases and used for prediction of protein-coding sequences. The sequence data revealed that the average sizes of these cDNA inserts and of their ORFs were 4.3 kb and 2.6 kb (corresponding to 869 amino acid residues), respectively. Physical maps of the 100 cDNA clones analyzed are shown in Fig. 1. wher the ORFs and the first ATG codons in respective ORFs are indicated by solid boxes and triangles, respectively. The in-frame t rminati n codons upstre m of the first ATG codon were identified in 41 clones, among which 33 clones carried the ATG codon within the context of Kozak's rule.7 In Fig. 1, short interspersed nu-

Figure 1. Physical maps of cDNA clones analyzed. The physical maps shown here were constructed on the basis of the sequence data of respective cDNA clones. The horizontal scale represents the cDNA length in kb, and the gene numbers corresponding to respective cDNAs are given on the left. The ORFs and untranslated regions are shown by solid and open boxes, respectively. The positions of the first ATG codons with or without the contexts of the Kozak's rule are indicated by solid and open triangles, respectively. RepeatMasker, which is a program that screens DNA sequences for interspersed repeats known to exist in mammalian genomes, was applied to detect repeat sequences in respective cDNA sequences (Sinit, A. F. A. and Green, P., RepeatMasker at http://ftp.genome.washington.edu/RM/RepeatMasker.html). Short interspersed nucleotide elements (SINEs) including Alu and MIRs sequences and other repetitive sequences thus detected are represented by dotted and hatched boxes, respectively.

Table 1. Information of sequence data and chromosomal locations of the identified genes.

				quence data and					
Gene	Accession	cDNA		Chromosomal	Gene	Accession		-	Chromosomal
number	number ^{a)}		(amino acid	location ^{c)}		$unper_{r}$		(amino acid	location ^{c)}
(KIAA)		(pb)p)	residues)		(KIAA)		(pb) _{p)}	renidues)	····
0711	AB018254	6,706	623	8	0761	AB018304	4,218	392	1
0712	AB018255	6,476	1,587	11	0762	AB018305	3,999	624	11
0713	AB018256	6,817	945	7	0763	AB018306	4,148	841	3
0714	AB018257	5,655	1,112	21	0764	AB018307	4,261	414	2*
0715	AB018258	5,029	914	5	0765	AB018308	4,168	594	20 ~
0716	AB018259	4,652	76.5	7	0766	AB018309	4,185	607	3
0717	AB018260	4,610	627	8	0767	AB018310	4,258	57 3	22°
0718	AB018261	3,742	742	7	0768	AB018311	4,150	872	4-
0719	AB018262	4,017	608	3	0769	AB018312	4,341	684	11.
0720	AB018263	4,066	864	1	0770	AB018313	4,239	731	15*
0721	ABQ18264	4,098	433	6	0771	AB018314	4,250	948	14*
0722	AB018265	4,120	784	12	0772	AB018315	3,879	46 8	9
0723	AB018266	3,803	847	3*	0773	AB018316	4,164	300	7
0724	AB018267	3,893	963	1	0774	AB018317	4,021	1,163	13°
0725	AB018268	3,911	573	8	0775	AB018318	4,121	615	17*
0726	AB018269	4,300	969	12	0776	AB018319	4,174	799	6
0727	AB018270		674	17	0777	ABQ18320	4,118	1,100	4-
0728	AB018271	•	1,065	6	0778	AB018321	4,184	640	1-
0729	AB018272	4,143	1,196	2'	0779	AB018322	3,743	320	3-
0730	AB018273	4,318	1,004	13	0780	AB018323	4,182	1,100	9
0731	AB018274	4,095	1,096	10	0781	AB018324	4,171	637	11-
0732	AB018275	4,193	849	17*	0782	AB018325	4,130	1,179	11
0733	AB018276	3,479	528	6-	0783	AB018326	4,231	888	7.
0734	AB018277	4,518	1,186	16	0784	AB018327	4,282	1,073	20*
0735	AB018278	4,948	683	15	0785	AB018328	4,485	694	2
0736	AB018279	4,353	742	1	0786	AB018329	4,345	1,021	1.
0737	AB018280	4,174	621	14	0787	AB018330	4,427	550	12
0738	AB018281	4,076	921	7	0788	AB018331	4,257	1,324	17*
0739	AB018282	4,079	1,130	12	0789	AB018332	4,480	359	12
0740	AB018283	4,239	5:2	10°	0790	AB018333	4,469	1,319	6
0741	AB018284	4,177	1,220	2*	0791	AB018334	4,200	1,332	5
0742	AB018285	4,309	1,236	2	0792	AB018335	4,074	89 7	1
0743	AB018286	4,149	1,061	14"	0793	AB018336	3,997	1,054	2*
0744	AB018287	4,238	590	7	0794	AB018337	4,656	490	3*
0745	AB018288	4,228	808	8	0795	AB018338	4,273	495	3°
0746	AB018289	4,086	1,029	4*	0796	AB018339	3,900	1,030	6°
0747	AB018290	4,026	1,072	12	0797	AB018340	4,128	1,084	6.
0748	AB018291	4,183	383	12*	0798	AB018341	4,517	652	19
0749	ABQ18292	3,628	678	12	0799 ^{d)}	AB018342	5,613	712	5*
0750	AB018293	3,885	1,124	11	08004)	AB018343	5,984	1,507	3
0751	AB018294	3,854	1,188	8*	0801 ^{d)}		3,740	1,032	5
0752	AB018295	4,332	334	8	0802 ^{d)}		5,252	1,353	18
0753	AB018296	4,424	967	17*	0803 ^d)		5,639	1,708	7
0754	AB018297	-	7 01		0804 ^d)		4,216		3
		4,044		1			•	1,211	
0755	AB018298	3,988	1,032	4		AB018348	4,204	1,327	14
0756	AB018299	4,226	836	1	0806 ^d)	AB018349	4,015	1,065	1*
0757	AB018300	3,970	520	20*	0807 ^{d)}		4,049	1,265	1
0758	AB018301	4,353	986	6	0808 ^d)	AB018351	4,133	526	8*
0759	AB018302	4,006	673	14	0809 ^d)	AB018352	3,901	1,241	3
0760	AB018303	4,194	1,206	16	0810 ^d)	AB018353	4,047	824	7

a) Accession numbers of DDBJ, EMBL and GenBank databases.b) Values excluding poly(A) sequences.

c) Chromosome numbers identified by using GeneBridge 4 radiation hybrid panel unless specified. The chromosomal locations highlighted by asterisks were fetched from the UniGene database.

d) cDNA and ORF lengths were revised by direct analysis of the RT-PCR products.

Table 2. Functional classifications of the gene products based on homologies to known proteins and sequence motifs.

l'imitional calegory"	(KIAA)	Similarity there	Homologous cutry in the database*	Accesive no.*	Mentance (%)"	Overtap (action)	
Cell denating/watnunication	0715	R	probable calchim-transporting ATPase 3 (Sc)	P39524	31.4	475	
	0716	R	K(AA0249 (ii)	A B402297	50.6	56)	
	9717	w	RhoA (†f)	PQ4749	413	112	
	0718	H	diacylglycenil kinese, β (R)	P49621	95.4	742	
	9720	w	Loc oncurrenc (M)	U5820)	31.3	300	
	0712	w	unc-51 dike kingse ULKI (M)	APQUEIS6	¥6.1	785	
	0735	- 11	synaptic veriels protein 2 form D (K)	A47342	94.9	683	
	0736	# 1	transport pretein-like protein pl7 (R)	\$27240	99.1	742	
	6773 9	R	sodinos bicarbonate orgransgurier (1NBC1 (11)	APOSTII6	56.5	953	
	0740	w	res-related C3 borarinum totals substrate (rac) (ff)	P15154	38.7	129	
	0741	1	purculae CTP-binding protein (11)	A/006412	100,0	1721	
	0743	14	neutrain III-a niceibrain-bound type 2 precurage (A)	A 482 B	99.3	833	
1	0746	w	wil-1 protein (Ce)	568307	264	515	
•	0747	R	S/T kinane receptor type I fish (Pr)	AFRI6116	46,4	1103	
	0731	R	mb3 effector RIM (R)	AP007436	38.1	570	
\$	0754	w	rnegakaryonyte minusing factor (H)	U70136	24,5	1411	
·	0754	11	neurofascin (R)	UNIGOS	92.1	561	
. .	075B	\¥	tetraphilis-related protein 1 precessor (R)	UTILIES	22.8	448	
	9762	П	P-spondin precuracy (R)	P35446	96.3	624	
,	முல	R	KIAAGS22 (II)	AD011094	42.0	867	
	0764		latrophilin-related protein 1 precursor (R)	U78105	58.4	637	
	6769	w	SH2/SH3 adaptor protein Net (20	URSTEL	28.0	164	
	0771	R	Dct2, p53 binding protein Bhp/53Bf/2 (H)	U\$4334	26.0 37.7	104 VS 1	
4	0777	R	SID-containing protein p4015 (R)	AF026305	17.7 87.9	1100	
-	0778	ï	Na'/K'-transporting ATPass rs-2 chain (H)	PS699)	190.0		
	U7E2	R	KIAAOSSO (ID	VDD!! 125	40.6	640	
	0716		Introphilis-related projets 1 greensor (R)	UTRICS		922	
	4787	11	Ca**/calmodulis-dependent protein kinne himse () their (R)	JC3660	62,6	1037	
	0793	ĸ	CDEP (H)		92,9	532	
	0403	R	Arbinase uncharing protein AKAPI 20 (Oe)	A 0008400	54.2	1039	
<u>:</u>	9506	k	givit cell mentione glycoprotein LIG-1 precursor (M)	U24360	M.D	871	
1	OWN7	R	ST probein kinase MAST205 (M)	A51532	52,9	910	
cli sanachure/musiticy	0711	~	ring canal protein (D)	A 5 46/02	14.0	1354	
<i>\$</i>	U719	w	mitrichandrial procures peacie langua receptur (No.)	Q0463)	25.6	217	
•	0725	w	cuclifies (M)	P23231 Z71154	214.4	350	
	0727	н	myosis I myr 4 (A)	V2367)	72.2 96.1	108	
	G724	w	spectrin a chaia (R)	P16084	22.7	674	
•••	9750	w	G-actinin 2, skeletal muscle isoform (H)			651	
	0770	w	vacuoler esembly protein VP339 (Sc)	P35609	30.4	181	
	0791		nuclear pore complex protein NUP+35 (st)	Qn74r;d	22.)	40	
į	0725		ting care) postie (D)	P37194	94,1	1332	
*	0796		anthyla (1)	Q04652	37.5	401	
	0790		myosin X (B)	P46939	200	340	
ickic aclu masigajucia	0742		probable fuster emetein (R)	U55042	91.5	637	
	9769		Oif-1/EDF associated 2s finger protein (loss (R)	528499	90.9	1209	
	0780		pustive 90.2 kD tint (inger protein (Sc)	U92564	H2,7	1160	
	G748		putative RMA helicase (H)	P.19934	49.3	211	
•	0798		eine figger prusin #4 (1)	AJ223948	45.8	1036	
•	090)		helicane HBL(17 (R)	P3 \$23 A37514	61,2	449	
•	0809		Indices II RADSAL (H)	A37314 U09820	98,7	1032	
II division	0210		SADI (59)		41.2	217	
cialediam	9773		drysternt-binding protein (RD)	009825	31.9	191	
clasified	0714		probable membrane protein YMR347s (Sc)	P162SI	38.5	277	
	0721		redis-pecific protein TSPY (H)	asidosi Menora	32.4	796	
	0723		maria 3 (H)	U51094	29.5	220	
	0724		hypothetical III.3 kD protein CZ2G7.92 (Sp)	P4324)	99,0	417	
	0736		Carnorhabdids elegans countd (000)4 (Ce)	Q09796	18.9	741	
	9729		Mary (M)	U23525	\$9,0	462	
	673 i		Comorhobdici; elegans cosmid R144 (Cc)	D#3434	65.7	501	
	6734		cumo 23595 (1)	U23513	36.9	366	
	זכש		CAGP (H)	AFOM 191	100,0	343	
	9734		ENGIF (II) ESSK surface artigen M17 procurus (Eh)	UE0736	35.9	329	
	0744		EZIK MITTOR MINGER MITT processor (EN) KIAAOZ88 (II)	Jilozga A Donassa	21,3	326	
	0745	_		AB004676	e7.1	491	
	07 4 3		Exempliabilità elegans counsid C35A5 (Ce)	271183	39.7	695	
	0755		Sentrin (R)	PS4617	74,6	677	
•			KIAA0079 (H)	P\$3992	15.4	985	
	0759		MpH (D)	X8374)	36.7	227	
	0761		ильони канимилосии робий (X)	X9207	\$1.1	231	
	0776	w (Cacconhabditis elegans compil C06(2) (Ca)	U61947	22.4		

Table 2. Continued.

	regn	R	Companyabilitis alaman comunity FOT N12 / Cod	Z61711	31.2	911	
				AF043495	22.3	1107	
	9404		Cacnomabilila elegaju, enemid C42C1 (Ce)				
	cACS	R	pecarica protein (D)	P18490	56.1	319	
	calcus .	R_	CAGITY (H)	1/80736	47.1	534	
No himblegy	0712		Fig. orbit				
	6713		RUNK				
	0730		nonc				
	0732		nc/ic				
	6133		DOM:				
	0741		nne				
	0752		Name				
	9753		DLINE	•			
	9737		ncies .				
	9764		sont:				
	0765		AL STO				
	0766		nure .				
	0767		nunc				
	0773		MIC				
	0774		NORe				
	0775		nane				
	6761		hote				
	9784		nunc				
	97.85		none				
	0700		swine.				
	0792		hime				
	TROZ		nong		_		

a) Classifications based on the annotations of their homologous protein entries in the databases.

b) The gene products were grouped into four similarity classes according to the sequence identities obtained by the GAP program: I, identical to known human gene products (sequence identity, > 90%); H, homologous to known non-human gene products (sequence identity, > 90%); R, related to some known gene products (sequence identity, 30 to 90%); W, very weakly related to known gene products (sequence identity, < 30%).

(c) Organisms in which these entries were identified are given in parentheses: B, bovine; Ce, Cocnorhabditis elegans; D, Drosophila melanogaster; Eh, Entomoeba histolytica; Fr, Fugu rubripes; H, human; M, mouse; Nc, Neurospora crassa; Oc, Oryctolagus cuniculus; R, rat; Rb, rabbit; Sc, Saccharomyces cerevisiae; Sp, Schizosaecharomyces pombe; X, Xenopus laevis.

d) Accession numbers of homologous entries in DDBJ/EMBL/GenBank/OWL/SWISS-PROT/PIR database are shown.

e) The values were obtained by the FASTA program.

cleotide elements (Alu and MIRs sequences) and other repetitive sequences detected by using RepeatMasker pr gram are also displayed by dotted and hatched boxes, respectively. Table 1 lists the gene codes (KIAA numbers), the accession numbers of the nucleotide sequences in GenBank/EMBL/DDBJ databases, the sizes of the cDNA inserts and the identified ORF, and the chromosomal locations of the respective genes. The chromosomal locati ns of 37 genes, which are highlighted by asterisks, were fetched from the UniGene database while the remaining 63 chromosomal locations were experimentally determined in this study.

3.2. Functional classification of predicted gene products

By homology and motif searches against DNA, protein, and protein-motif databases [GenBank (release 108.0), OWL (release 30.3), and PROSITE (release 15.0) databases] using Wisconsin Sequence Analysis PackageTM (version 8; Genetics Computer Group, Inc. USA), the predicted coding sequences of 78 genes were found to exhibit significant similarities to those

acid management. The results of the functional classification of these newly identified genes on the basis of this homology/motif analysis are summarized in Table 2.

Interesting features to be noted are summarized below.

- 1. Except for the C2H2-type zinc finger protein family, 21 newly identified genes constitute 18 independent paralogous groups together with the genes characterized in our cDNA project (Table 3). In this case, genes which exhibit significant similarities throughout the protein-coding sequences, not in distinct domains or motifs, have been assigned as those with a paralogous relationship. Among these paralogous groups, genes in 7 groups were "uncharacterized."
- 2. Several gene products exhibited similarities to synaptic prot ins. Three of them (products of KIAA0735, KIAA0736 and KIAA0743) were human counterparts of rat synaptic vesicle protein 2B, 18 transport protein-like protein p87 (synaptic vesicle protein 2) and Neurexin III, 11 respectively. In addition, KIAA0768 and KIAA0786

Table 3. The newly identified genes in paralogous relationship with genes characterized by our cDNA project.

New gene	Paralogous gene	Accession no.*)	Identities (%)1.)	Corresponding gene product
KIAA0715	KIAA0566	AB011138	49.8	calcium-transporting ATPase
KIAA0716	KIAA0209	D86964	37.3	DOCK180 protein ⁸
	KIAA0299	AB002297	55.8	DOCK180 protein
KIAAD717	KIAA0740F)	AB018283	66.G	uncharacterized
KIAA0722	KIA A0623	AB014523	45.6	protein kinase ULK1 ⁹
KIA A0728	KIAA0465	AB007934	71.5	spectrin α^{10}
KIA A0737	K1AA0808°)	AB018351	43.2	uncharacterized
KIA A0743	KIAA0578	AB011150	77.2	neurexin III11
KIA A0744	ICIA A0288	AB006626	52.8	uncharacterized
KIAA0751	KIAA0340	AB002338	60.0	rab3 effector RIM ¹²
KIA A0755	K1AA0079	D38555	55.9	uncharacterized
KIA A0756	KIAA0343	A B002341	48.6	neurofascin ¹³
KIA AQ763	KIAA0522	AB011091	64.6	uncharacterized
KIAA0768	KIAA0786 ⁿ⁾	AB018329	61.2	latrophilin-related protein 1 ¹⁴
KIA A0782	K1AA0580	AB011152	42.9	uncharactorized
KIAA0795	KIAA0132	D50922	35.7	ring canal protein ¹⁵
KIAA0805	KIAA0435	A B 007895	47.4	pecanex protein ¹⁶
KIAAQ807	KIAA0303	AB002301	58.5	serine/threonine protein kinasc MAST20517
	KIAA0561	AB011133	60.7	serine/threonine protein kinase MAST205
KIAA0810	KIAA0668	A B014568	38.0	uncharacterized

- a) Accession numbers of paralogous genes in DDBJ/EMBL/GenBank database are shown.
- b) The values of the overall identities of amino acid residues were obtained by the GAP program.
- c) These genes are reported in this paper.

Figure 2. Comparison of RT-PCR ELISA method with conventional RT-PCR method coupled with gel electrophoresis. RT-PCR products of 10 previously reported genes were analyzed by gel electrophoresis and RT-PCR ELISA. Ten microliters of RT-PCR products were analyzed on 2.5% NuSeive GTG agarose gels (FMC BioProducts, USA) and stained with ethidium bromide as described previously. In each of the gel images, the first 5 lanes were used for external control reaction products, which allows us to estimate the PCR amplification efficiency. The RT-PCR ELISA data were expressed as amounts (fg) of the corresponding cDNA plasmids in 1 ng of starting poly(A)+ RNAs by color codes using the conversion panel shown in the left side of this figure. RT-PCR products independently prepared were used for gel electrophoresis and ELISA. KIAA gene names are given between the gel images and the ELISA color codes.

which is a member f the secretin family of G protein-coupled receptors. Besides these genes and KIAA0686 previously reported, KIAA0758 gene product als exhibit d weak similarity to rat LPH1

uct exhibited structural similarity in the overall region of rat RIM, which is a putative Rab3 effector in regulating synaptic-vesicle fusion. 12 In accord with their possible pouron specific for

Figure 3. Expression profiles of 100 newly identified genes in 10 different tissues examined by RT-PCR ELISA. The tissue expression levels of 100 human genes newly identified in this study were analyzed by the RT-PCR ELISA. Gene names are given as KIAA numbers at the left side of each set of color codes. Tissue names are indicated on above the top suts of color codes.

than other human tissues as revealed by RT-PCR ELISA experiments described below.

3. Protein motif search against the PROSITE database revealed that protein kinase signatures are present in two genes (KIAA0787 and KIAA0807) and that two genes (KIAA0760 and KIAA0798) contained multiple C2H2-type zinc finger domains in the deduced coding regions. The Dbl homology domain²⁰ is present in the KIAA0720-encoded protein in addition to 10 such genes previously reported (KIAA0006, KIAA0142, KIAA0294, KIAA0337, KIAA0362, KIAA0380, KIAA0382, KIAA0424, KIAA0521 and KIAA0651).

9.9. Expression profiles of predicted genes

In this series f human cDNA analyses, we have used RT-PCR for exploring mRNA expression patterns of newly identified genes. Although this method allows us t detect even a trace amount of mRNA with minimum consumpti n of poly(A)+ RNA, an obvious drawback of the method is the low quantity produced particularly when the signals are analyzed by gel electrophoresis followed by staining with a fluorescent dye. To address this problem, we newly introduced an ELISA-based procedure for quantification of specific PCR products in place of the gel electr phoresis-based one. Figure 2 compares the ELISA outputs of RT-PCR analyses of 10 previously identified genes with the gel images we had reported before.4 Although both procedures gave essentially the same expression patterns for these 10 gencs in a rough sense, it was evident that quantitative characteristics of tissue expression patterns were more clearly seen by the RT-PCR ELISA. Therefore, we decided to obtain the expression patterns of genes reported in this study by the RT-PCR ELISA method. Although the introduction of the ELISA-assisted procedure in the detection of PCR products made the quantitative characteristics of the data more evident, the expression profiles thus obtained still may possess the artifacts present in conventional RT-PCR based method. Since we could monitor the amounts of only a relatively short cDNA region flanked by PCR olig mers, alterations in transcript structure such as alternative splicing or alternative poly(A) addition could not be discriminated form changes in transcription levels. In addition, ince the measurements were not multiplicated due t limitations of cost and labor, run-torun variation c uld not completely be excluded. Taking these possibilities into account, we c nfined these expression profiles to use as important clues for the search of biologically interesting genes.

Figure 3 shows the expression patterns of the 100 newly identified genes reported in this study. By using c lor codes instead of numerals f r displaying the expression levels, the screening of g nes according to their tissue specificity was greatly facilitated. Since the expression

levels are given as equivalent weights of the corresponding plasmid cDNAs, it is possible, at least in principle, t roughly compare the expression levels of a gene among 10 different tissues as well as those of genes within a particular tissue. Since these genes were identified in a human brain cDNA library, it is not surprising that dark blue color codes were hardly seen in the column of the brain. In contrast, the pancreas and the spleen columns contained many dark blue color codes, which suggested that a number of the genes actively expressed in the brain were dormant in these tissues. These expression profiles offer another line of information required for discovering biologically important genes characterized in this project.

Acknowledgments: This project was supported by grants from the Kazusa DNA Research Institute. We thank Tomomi Tajino, Keishi Ozawa, Tomomi Kato, Kazuhiro Sato, Akiko Ukigai, Emiko Suzuki, Kazuko Yamada, Kiyoe Sumi, Takashi Watanabe, Naoko Suzuki, Kozue Kaneko, Naoko Shibano and Taneaki Tsugane for their technical assistance.

References

- Rowen, L., Mahairas, G., and Hood, L. 1997, Sequencing the human genome, Science, 278, 605-607.
- Nomura, N., Miyajima, N., Sazuka, T. et al. 1994, Prediction of the coding sequences of unidentified human genes.
 The coding sequences of 40 new genes (KIAA0001-KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell line KG-1, DNA Res., 1, 27-35.
- Ohara, O., Nagase, T., Ishikawa, K.-I. et al. 1997, Construction and characterization of human brain cDNA libraries suitable for analysis of cDNA clones encoding relatively large proteins, DNA Res., 4, 53-59.
- Ishikawa, K.-I., Nagase, T., Suyama, M. et al. 1998, Prediction of the coding sequences of unidentified human genes. X. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in witro, DNA Res., 5, 169-176.
- Ishikawa, K.-I., Nagase, T., Nakajima, D. et al. 1997, Prediction of the coding sequences of unidentified human genes. VIII. 78 new cDNA clones from brain which code for large proteins in vitro, DNA Res., 4, 307-313.
- Gyapay, G., Schmitt, K., Fizames, C. et al. 1996, A radiation hybrid map of the human genome, Hum. Mol. Genet., 5, 339-346.
- Kozak, M. 1996, Interpreting cDNA sequences: some insights from studies on translation, Mammalian Genome, 7, 563-574.
- Hasegawa, H., Kiyokawa, E., T naka, S. et al. 1996, DOCK180, a major CRK-binding pr tein, alters cell morphology upon translocation to the cell membrane, Mol. Cell. Biol., 16, 1770-1776.
- Yan, J., Kuroyanagi, H., Kuroiwa, A. et al. 1998, Identification of m use ULK1, a novel protein kinase structurally related t C. elegans UNC-51, Biochem. Biophys. Res. Commun., 246, 222-227.
- 10. Hong, W. J. and Doyle, D. 1989, Cloning and analysis

- of cDNA clones for rat kidney alpha-spectrin, J. Biol. Chem., 264, 12758-12764.
- 11. Ushkaryov, Y. A. and Sudhof, T. C. 1993, Neurexin III alpha: extensive alternative splicing generates membrane-bound and soluble forms, *Proc. Natl. Acad. Sci. U.S.A.*, 90, 6410-6414.
- Wang, Y., Okamoto, M., Schmitz, F., Holmann, K., and Sudhof, T. C. 1997, Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion, Nature, 388, 593-598.
- 13. Davis, J. Q., Lambert, S., and Bennett, V. 1996, Molecular composition of the node of Ranvier: identification of ankyrin-binding cell adhesion molecules neurofascin (mucin+/third FNIII domain-) and NrCAM at nodal axon segments, J. Cell Biol., 135, 1355-1367.
- Lelianova, V. G., Davletov, B. A., Sterling, A. et al. 1997, α-Latrotoxin receptor, latrophilin, is a novel member of the secretin family of G protein-coupled receptors, J. Biol. Chem., 272, 21504-21508.
- Xue, F. and Cooley, L. 1993, kelch encodes a component of intercellular bridges in *Drosophila* egg chambers, *Cell*, 72, 681-693.

- LaBonne, S. G., Sunitha, I. and Mahowald, A. P. 1989, Molecular genetics of pecanex, a maternal-effect neurogenic locus of Drosophila melanogaster that p tentially encodes a large transmembrane protein, Dev. Biol., 136, 1-16.
- Walden, P. D. and Cowan, N. J. 1993, A novel 205-kilodalton testis-specific serine/threonine protein kinase associated with microtubules of the spermatid manchette, Mol. Cell. Biol., 13, 7625-7635.
- Bajjalich, S. M., Peterson, K., Linial, M., and Scheller, R. H. 1993, Brain contains two forms of synaptic vesicle protein 2, Proc. Natl. Acad. Sci. U.S.A., 90, 2150-2154.
- Gingrich, J. A., Andersen, P. H., Tiberi, M. et al. 1992, Identification, characterization, and molecular clining of a novel transporter-like protein localized to the central nervous system, FEBS Lett., 312, 115-122.
- Chan, A. M.-L., McGovern, E. S., Catalano, G., Fleming, T. P., and Miki, T. 1994, Expression cDNA cloning of a novel oncogene with sequence similarity to regulators of small GTP-binding proteins, Oncogene, 9, 1057-1063.