Solution for "Quantum Computation and Quantum Information: 10th Anniversary Edition" by Nielsen and Chuang

goropikari

April 7, 2018

Copylight Notice:

@**()**\\$@

This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike $4.0\,$ International License.

Contents

2 Introduction to quantum mechanics

3

Chapter 2

Introduction to quantum mechanics

2.1

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

2.2

$$A |0\rangle = A_{11} |0\rangle + A_{21} |1\rangle = |1\rangle \Rightarrow A_{11} = 0, \ A_{21} = 1$$

$$A |1\rangle = A_{12} |0\rangle + A_{22} |1\rangle = |0\rangle \Rightarrow A_{12} = 1, \ A_{22} = 0$$

$$\therefore A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

input: $\{|0\rangle, |1\rangle\}$, output: $\{|1\rangle, |0\rangle\}$

$$A |0\rangle = A_{11} |1\rangle + A_{21} |0\rangle = |1\rangle \Rightarrow A_{11} = 1, \ A_{21} = 0$$

$$A |1\rangle = A_{12} |1\rangle + A_{22} |0\rangle = |0\rangle \Rightarrow A_{12} = 0, \ A_{22} = 1$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

2.3

From eq (2.12)

$$A |v_i\rangle = \sum_j A_{ji} |w_j\rangle$$
$$B |w_j\rangle = \sum_k B_{kj} |x_k\rangle$$

Thus

$$BA |v_{i}\rangle = B \left(\sum_{j} A_{ji} |w_{j}\rangle \right)$$

$$= \sum_{j} A_{ji} B |w_{j}\rangle$$

$$= \sum_{j,k} A_{ji} B_{kj} |x_{k}\rangle$$

$$= \sum_{k} \left(\sum_{j} B_{kj} A_{ji} \right) |x_{k}\rangle$$

$$= \sum_{k} (BA)_{ki} |x_{k}\rangle$$

$$\therefore (BA)_{ki} = \sum_{j} B_{kj} A_{ji}$$

2.4

$$I |v_j\rangle = \sum_i I_{ij} |v_i\rangle = |v_j\rangle, \ \forall j.$$

$$\Rightarrow I_{ij} = \delta_{ij}$$

2.5

Defined inner product on C^n is

$$((y_1, \dots, y_n), (z_1, \dots, z_n)) = \sum_i y_i^* z_i.$$

Verify (1) of eq (2.13).

$$\left((y_1, \dots, y_n), \sum_i \lambda_i(z_{i1}, \dots, z_{in}) \right) = \sum_i y_i^* \left(\sum_j \lambda_j z_{ji} \right)
= \sum_i y_i^* \lambda_j z_{ji}
= \sum_i \lambda_j \left(\sum_i y_i^* z_{ji} \right)
= \sum_j \lambda_j \left((y_1, \dots, y_n), (z_{j1}, \dots, z_{jn}) \right)
= \sum_i \lambda_i \left((y_1, \dots, y_n), (z_{i1}, \dots, z_{in}) \right).$$

Verify (2) of eq (2.13),

$$((y_1, \dots, y_n), (z_1, \dots, z_n))^* = \left(\sum_i y_i^* z_i\right)^*$$
 (2.1)

$$= \left(\sum_{i} y_i z_i^*\right) \tag{2.2}$$

$$= \left(\sum_{i} z_i^* y_i\right) \tag{2.3}$$

$$=((z_1,\cdots,z_n),(y_1,\cdots,y_n))$$
 (2.4)

Verify (3) of eq (2.13),

$$((y_1, \dots, y_n), (y_1, \dots, y_n)) = \sum_i y_i^* y_i$$

= $\sum_i |y_i|^2$

Since $|y_i|^2 \ge 0$ for all *i*. Thus $\sum_i |y_i|^2 = ((y_1, \dots, y_n), (y_1, \dots, y_n)) \ge 0$. From now on, I will show the following statement,

$$((y_1, \dots, y_n), (y_1, \dots, y_n)) = 0 \text{ iff } (y_1, \dots, y_n) = 0.$$

 (\Leftarrow) This is obvious.

Suppose $((y_1, \dots, y_n), (y_1, \dots, y_n)) = 0$. Then $\sum_i |y_i|^2 = 0$. Since $|y_i|^2 \ge 0$ for all i, if $\sum_i |y_i|^2 = 0$, then $|y_i|^2 = 0$ for all i. Therefore $|y_i|^2 = 0 \Leftrightarrow y_i = 0$ for all i. Thus,

$$(y_1,\cdots,y_n)=0.$$

$$\left(\sum_{i} \lambda_{i} |w_{i}\rangle, |v\rangle\right) = \left(|v\rangle, \sum_{i} \lambda_{i} |w_{i}\rangle\right)^{*}$$

$$= \left[\sum_{i} \lambda_{i} (|v\rangle, |w_{i}\rangle)\right]^{*} (\because \text{ linearlity in the 2nd arg.})$$

$$= \sum_{i} \lambda_{i}^{*} (|v\rangle, |w_{i}\rangle)^{*}$$

$$= \sum_{i} \lambda_{i}^{*} (|w_{i}\rangle, |v\rangle)$$

$$\langle w|v\rangle = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 1 - 1 = 0$$
$$\frac{|w\rangle}{\||w\rangle\|} = \frac{|w\rangle}{\sqrt{\langle w|w\rangle}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$\frac{|v\rangle}{\||v\rangle\|} = \frac{|v\rangle}{\sqrt{\langle v|v\rangle}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

If k = 1,

$$|v_{2}\rangle = \frac{|w_{2}\rangle - \langle v_{1}|w_{2}\rangle |v_{1}\rangle}{\||w_{2}\rangle - \langle v_{1}|w_{2}\rangle |v_{1}\rangle\|}$$

$$\langle v_{1}|v_{2}\rangle = \langle v_{1}|\left(\frac{|w_{2}\rangle - \langle v_{1}|w_{2}\rangle |v_{1}\rangle}{\||w_{2}\rangle - \langle v_{1}|w_{2}\rangle |v_{1}\rangle\|}\right)$$

$$= \frac{\langle v_{1}|w_{2}\rangle - \langle v_{1}|w_{2}\rangle \langle v_{1}|v_{1}\rangle}{\||w_{2}\rangle - \langle v_{1}|w_{2}\rangle |v_{1}\rangle\|}$$

$$= 0.$$

Suppose $\{v_1, \dots v_n\}$ $(n \leq d-1)$ is a orthonormal basis. Then

$$\langle v_j | v_{n+1} \rangle = \langle v_j | \left(\frac{|w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle | v_i \rangle}{\||w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle | v_i \rangle\|} \right) \quad (j \leq n)$$

$$= \frac{\langle v_j | w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle | v_i \rangle |}{\||w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle | v_i \rangle\|}$$

$$= \frac{\langle v_j | w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle | v_i \rangle\|}{\||w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle | v_i \rangle\|}$$

$$= \frac{\langle v_j | w_{n+1}\rangle - \langle v_j | w_{n+1}\rangle}{\||w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle | v_i \rangle\|}$$

$$= 0$$

Thus Gram-Schmidt procedure produces an orthonormal basis.

$$\sigma_0 = I = |0\rangle \langle 0| + |1\rangle \langle 1|$$

$$\sigma_1 = X = |0\rangle \langle 1| + |1\rangle \langle 0|$$

$$\sigma_2 = Y = -i |0\rangle \langle 1| + i |1\rangle \langle 0|$$

$$\sigma_3 = Z = |0\rangle \langle 0| - |1\rangle \langle 1|$$

$$\begin{split} \left| v_{j} \right\rangle \left\langle v_{k} \right| &= I_{V} \left| v_{j} \right\rangle \left\langle v_{k} \right| I_{V} \\ &= \left(\sum_{p} \left| v_{p} \right\rangle \left\langle v_{p} \right| \right) \left| v_{j} \right\rangle \left\langle v_{k} \right| \left(\sum_{q} \left| v_{q} \right\rangle \left\langle v_{q} \right| \right) \\ &= \sum_{p,q} \left| v_{p} \right\rangle \left\langle v_{p} \middle| v_{j} \right\rangle \left\langle v_{k} \middle| v_{q} \right\rangle \left\langle v_{q} \middle| \\ &= \sum_{p,q} \delta_{pj} \delta_{kq} \left| v_{p} \right\rangle \left\langle v_{q} \middle| \right. \end{split}$$

Thus

$$(|v_j\rangle \langle v_k|)_{pq} = \delta_{pj}\delta_{kq}$$

2.11

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \det(X - \lambda I) = \det\left(\begin{bmatrix} -\lambda & 1 \\ 1 & -\lambda \end{bmatrix}\right) = 0 \Rightarrow \lambda \pm 1$$
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Thus

$$|\lambda = -1\rangle = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
 $|\lambda = 1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

If $\lambda = 1$

If $\lambda = -1$,

$$X = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$
 w.r.t. $\{|\lambda = -1\rangle, |\lambda = 1\rangle\}$

2.12

$$\det \left(\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} - \lambda I \right) = (1 - \lambda)^2 = 0 \Rightarrow \lambda = 1$$

Therefore the eigenvector associated with eigenvalue $\lambda = 1$ is

$$\begin{split} |\lambda=1\rangle &= \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{split}$$
 Because
$$|\lambda=1\rangle \left\langle \lambda=1 \right| = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$$

$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \neq c \left| \lambda=1 \right\rangle \left\langle \lambda=1 \right| = \begin{bmatrix} 0 & 0 \\ 0 & c \end{bmatrix}$$

Suppose $|\psi\rangle$, $|\phi\rangle$ are arbitrary vectors in V.

$$(|\psi\rangle, (|w\rangle\langle v|) |\phi\rangle)^* = ((|w\rangle\langle v|)^{\dagger} |\psi\rangle, |\phi\rangle)^*$$
$$= (|\phi\rangle, (|w\rangle\langle v|)^{\dagger} |\psi\rangle)$$
$$= \langle\phi| (|w\rangle\langle v|)^{\dagger} |\psi\rangle.$$

On the other hand,

$$(|\psi\rangle, (|w\rangle\langle v|) |\phi\rangle)^* = (\langle \psi|w\rangle\langle v|\phi\rangle)^*$$
$$= \langle \phi|v\rangle\langle w|\psi\rangle.$$

Thus

$$\langle \phi | (|w\rangle \langle v|)^{\dagger} | \psi \rangle = \langle \phi | v \rangle \langle w | \psi \rangle$$
 for arbitrary vectors $|\psi\rangle$, $|\phi\rangle$
 $\therefore (|w\rangle \langle v|)^{\dagger} = |v\rangle \langle w|$

2.14

$$((a_i A_i)^{\dagger} | \phi \rangle, | \psi \rangle) = (| \phi \rangle, a_i A_i | \psi \rangle)$$

$$= a_i (| \phi \rangle, A_i | \psi \rangle)$$

$$= a_i (A_i^{\dagger} | \phi \rangle, | \psi \rangle)$$

$$= (a_i^* A_i^{\dagger} | \phi \rangle, | \psi \rangle)$$

$$\therefore (a_i A_i)^{\dagger} = a_i^* A_i^{\dagger}$$

$$((A^{\dagger})^{\dagger} | \psi \rangle, | \phi \rangle) = (| \psi \rangle, A^{\dagger} | \phi \rangle)$$

$$= (A^{\dagger} | \phi \rangle, | \psi \rangle)^{*}$$

$$= (| \phi \rangle, A | \psi \rangle)^{*}$$

$$= (A | \psi \rangle, | \phi \rangle)$$

$$\therefore (A^{\dagger})^{\dagger} = A$$

$$P = \sum_{i} |i\rangle \langle i|.$$

$$P^{2} = \left(\sum_{i} |i\rangle \langle i|\right) \left(\sum_{j} |j\rangle \langle j|\right)$$

$$= \sum_{i,j} |i\rangle \langle i|j\rangle \langle j|$$

$$= \sum_{i} |i\rangle \langle j| \delta_{ij}$$

$$= \sum_{i} |i\rangle \langle i|$$

$$= P$$

Suppose $|v\rangle$ is a eigenvector with corresponding eigenvalue λ .

$$\begin{split} U & | v \rangle = \lambda \, | v \rangle \, . \\ 1 &= \langle v | v \rangle \\ &= \langle v | \, I \, | v \rangle \\ &= \langle v | \, U^\dagger U \, | v \rangle \\ &= \lambda \lambda^* \, \langle v | v \rangle \\ &= \|\lambda\|^2 \\ \therefore \lambda &= e^{i\theta} \end{split}$$

2.19

$$X^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$\begin{split} U &\equiv \sum_{i} \left| w_{i} \right\rangle \left\langle v_{i} \right| \\ A_{ij}^{'} &= \left\langle v_{i} | A | v_{j} \right\rangle \\ &= \left\langle v_{i} | U U^{\dagger} A U U^{\dagger} | v_{j} \right\rangle \\ &= \sum_{p,q,r,s} \left\langle v_{i} | w_{p} \right\rangle \left\langle v_{p} | v_{q} \right\rangle \left\langle w_{q} | A | w_{r} \right\rangle \left\langle v_{r} | v_{s} \right\rangle \left\langle w_{s} | v_{j} \right\rangle \\ &= \sum_{p,q,r,s} \left\langle v_{i} | w_{p} \right\rangle \delta_{pq} A_{qr}^{''} \delta_{rs} \left\langle w_{s} | v_{j} \right\rangle \\ &= \sum_{p,r} \left\langle v_{i} | w_{p} \right\rangle \left\langle w_{r} | v_{j} \right\rangle A_{pr}^{''} \end{split}$$

Suppose M be Hermitian. Then $M = M^{\dagger}$.

$$\begin{split} M &= IMI \\ &= (P+Q)M(P+Q) \\ &= PMP + QMP + PMQ + QMQ \end{split}$$

Now $PMP = \lambda P$, QMP = 0, $PMQ = PM^{\dagger}Q = (QMP)^* = 0$. Thus M = PMP + QMQ. Next prove QMQ is normal.

$$\begin{split} QMQ(QMQ)^\dagger &= QMQQM^\dagger Q \\ &= QM^\dagger QQMQ \quad (M=M^\dagger) \\ &= (QM^\dagger Q)QMQ \end{split}$$

Therefore QMQ is normal. By induction, QMQ is diagonal ... (following is same as Box 2.2)

2.22

Suppose A is a Hermitian operator and $|v_i\rangle$ are eigenvectors of A with eigenvalues λ_i . Then

$$\langle v_i | A | v_j \rangle = \lambda_j \langle v_i | v_j \rangle$$
.

On the other hand,

$$\langle v_i|A|v_j\rangle = \langle v_i|A^\dagger|v_j\rangle = \langle v_j|A|v_i\rangle^* = \lambda_i^* \ \langle v_j|v_i\rangle^* = \lambda_i^* \ \langle v_i|v_j\rangle = \lambda_i \ \langle v_i|v_j\rangle$$

Thus

$$(\lambda_i - \lambda_j) \langle v_i | v_j \rangle = 0.$$

If $\lambda_i \neq \lambda_j$, then $\langle v_i | v_j \rangle = 0$.

2.23

Suppose P is projector and $|\lambda\rangle$ are eigenvectors of P with eigenvalues λ . Then $P^2=P$.

$$P |\lambda\rangle = \lambda |\lambda\rangle$$
 and $P |\lambda\rangle = P^2 |\lambda\rangle = \lambda P |\lambda\rangle = \lambda^2 |\lambda\rangle$.

Therefore

$$\lambda = \lambda^{2}$$
$$\lambda(\lambda - 1) = 0$$
$$\lambda = 0 \text{ or } 1.$$

2.24

Def of positive $\langle v|A|v\rangle \geq 0$ for all $|v\rangle$.

Suppose A is a positive operator. A can be decomposed as follows.

$$A = \frac{A + A^{\dagger}}{2} + i \frac{A - A^{\dagger}}{2i}$$

$$= B + iC \quad \text{where } B = \frac{A + A^{\dagger}}{2}, \quad C = \frac{A - A^{\dagger}}{2i}.$$

Now operators B and C are Hermitian.

$$\begin{split} \langle v|A|v\rangle &= \langle v|B+iC|v\rangle \\ &= \langle v|B|v\rangle + i\, \langle v|C|v\rangle \\ &= \alpha + i\beta \ \text{ where } \alpha = \langle v|B|v\rangle \,, \ \beta = \langle v|C|v\rangle \,. \end{split}$$

Since B and C are Hermitian, α , $\beta \in \mathbb{R}$. From def of positive operator, β should be vanished. Hence $\beta = \langle v|C|v \rangle$ for all $|v\rangle$, i.e. C = 0.

Therefore A = B. Since B is Hermitian, positive operator A is also Hermitian.

2.25

$$\langle \psi | A^{\dagger} A | \psi \rangle = \| A | \psi \rangle \|^2 \ge 0 \text{ for all } | \psi \rangle.$$

Thus $A^{\dagger}A$ is positive.

$$|\psi\rangle^{\otimes 2} = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
$$= \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$$
$$= \frac{1}{2}\begin{bmatrix}1\\1\\1\\1\end{bmatrix}$$

$$\begin{split} |\psi\rangle^{\otimes 3} &= \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle \\ &= \frac{1}{2\sqrt{2}}(|000\rangle + |001\rangle + |010\rangle + |011\rangle + |100\rangle + |101\rangle + |111\rangle) \\ &= \frac{1}{2\sqrt{2}} \begin{bmatrix} 1\\1\\1\\1\\1\\1\\1\\1 \end{bmatrix} \end{split}$$

$$X \otimes Z = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}$$

$$I \otimes X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$X \otimes I = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

In general, tensor product is not commutable.

$$(A \otimes B)^* = \begin{bmatrix} A_{11}B & \cdots & A_{1n}B \\ \vdots & \ddots & \vdots \\ A_{m1}B & \cdots & A_{mn}B \end{bmatrix}^*$$

$$= \begin{bmatrix} A_{11}^*B^* & \cdots & A_{1n}^*B^* \\ \vdots & \ddots & \vdots \\ A_{m1}^*B^* & \cdots & A_{mn}^*B^* \end{bmatrix}$$

$$= A^* \otimes B^*.$$

$$(A \otimes B)^{T} = \begin{bmatrix} A_{11}B & \cdots & A_{1n}B \\ \vdots & \ddots & \vdots \\ A_{m1}B & \cdots & A_{mn}B \end{bmatrix}^{T}$$

$$= \begin{bmatrix} A_{11}B^{T} & \cdots & A_{m1}B^{T} \\ \vdots & \ddots & \vdots \\ A_{1n}B^{T} & \cdots & A_{mn}B^{T} \end{bmatrix}$$

$$= \begin{bmatrix} A_{11}B^{T} & \cdots & A_{1m}^{T}B^{T} \\ \vdots & \ddots & \vdots \\ A_{n1}^{T}B^{T} & \cdots & A_{nm}^{T}B^{T} \end{bmatrix}$$

$$= A^{T} \otimes B^{T}.$$

$$(A \otimes B)^{\dagger} = ((A \otimes B)^*)^T$$
$$= (A^* \otimes B^*)^T$$
$$= (A^*)^T \otimes (B^*)^T$$
$$= A^{\dagger} \otimes B^{\dagger}.$$

Suppose U_1 and U_2 are unitary operators. Then

$$(U_1 \otimes U_2)(U_1 \otimes U_2)^{\dagger} = U_1 U_1^{\dagger} \otimes U_2 U_2^{\dagger}$$

= $I \otimes I$.

Similarly,

$$(U_1 \otimes U_2)^{\dagger} (U_1 \otimes U_2) = I \otimes I.$$

2.30

Suppose A and B are Hermitian operators. Then

$$(A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger} = A \otimes B. \tag{2.5}$$

Thus $A \otimes B$ is Hermitian.

2.31

Suppose A and B are positive operators. Then

$$\langle \psi | \otimes \langle \phi | (A \otimes B) | \psi \rangle \otimes | \phi \rangle = \langle \psi | A | \psi \rangle \langle \phi | B | \phi \rangle.$$

Since A and B are positive operators, $\langle \psi | A | \psi \rangle \geq 0$ and $\langle \phi | B | \phi \rangle \geq 0$ for all $|\psi\rangle$, $|\phi\rangle$. Then $\langle \psi | A | \psi \rangle \langle \phi | B | \phi \rangle \geq 0$. Thus $A \otimes B$ is positive if A and B are positive.

Suppose P_1 and P_2 are projectors. Then

$$(P_1 \otimes P_2)^2 = P_1^2 \otimes P_2^2$$
$$= P_1 \otimes P_2.$$

Thus $P_1 \otimes P_2$ is also projector.

2.33

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} \tag{2.6}$$

2.34

Suppose $A = \begin{bmatrix} 4 & 3 \\ 3 & 4 \end{bmatrix}$.

$$det(A - \lambda I) = (4 - \lambda)^2 - 3^2$$
$$= \lambda^2 - 8\lambda + 7$$
$$= (\lambda - 1)(\lambda - 7)$$

Eigenvalues of A are $\lambda = 1$, 7. Corresponding eigenvectors are $|\lambda = 1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $|\lambda = 7\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Thus

$$A = |\lambda = 1\rangle\langle\lambda = 1| + 7 |\lambda = 7\rangle\langle\lambda = 7|$$
.

$$\begin{split} \sqrt{A} &= |\lambda = 1\rangle\langle\lambda = 1| + \sqrt{7} \,|\lambda = 7\rangle\langle\lambda = 7| \\ &= \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} + \frac{\sqrt{7}}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} 1 + \sqrt{7} & -1 + \sqrt{7} \\ -1 + \sqrt{7} & 1 + \sqrt{7} \end{bmatrix} \end{split}$$

$$\begin{split} \log(A) &= \log(1) \, |\lambda = 1\rangle \langle \lambda = 1| + \log(7) \, |\lambda = 7\rangle \langle \lambda = 7| \\ &= \frac{\log(7)}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \end{split}$$

$$\vec{v} \cdot \vec{\sigma} = \sum_{i=1}^{3} v_i \sigma_i$$

$$= v_1 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + v_2 \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} + v_3 \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} v_3 & v_1 - iv_2 \\ v_1 + iv_2 & -v_3 \end{bmatrix}$$

$$\det(\vec{v} \cdot \vec{\sigma} - \lambda I) = (v_3 - \lambda)(-v_3 - \lambda) - (v_1 - iv_2)(v_1 + iv_2)$$
$$= \lambda^2 - (v_1^2 + v_2^2 + v_3^2)$$
$$= \lambda^2 - 1 \quad (\because |\vec{v}| = 1)$$

Eigenvalues are $\lambda = \pm 1$. Let $|\lambda_{\pm 1}\rangle$ be eigenvectors with eigenvalues ± 1 . Since $\vec{v} \cdot \vec{\sigma}$ is Hermitian, $\vec{v} \cdot \vec{\sigma}$ is diagonalizable. Then

$$\vec{v} \cdot \vec{\sigma} = |\lambda_1\rangle\langle\lambda_1| - |\lambda_{-1}\rangle\langle\lambda_{-1}|$$

Thus

$$\begin{split} \exp\left(i\theta\vec{v}\cdot\vec{\sigma}\right) &= e^{i\theta}\,|\lambda_1\rangle\langle\lambda_1| + e^{-i\theta}\,|\lambda_{-1}\rangle\langle\lambda_{-1}| \\ &= \left(\cos\theta + i\sin\theta\right)|\lambda_1\rangle\langle\lambda_1| + \left(\cos\theta - i\sin\theta\right)|\lambda_{-1}\rangle\langle\lambda_{-1}| \\ &= \cos\theta(|\lambda_1\rangle\langle\lambda_1| + |\lambda_{-1}\rangle\langle\lambda_{-1}|) + i\sin\theta(|\lambda_1\rangle\langle\lambda_1| - |\lambda_{-1}\rangle\langle\lambda_{-1}|) \\ &= \cos(\theta)I + i\sin(\theta)\vec{v}\cdot\vec{\sigma}. \end{split}$$

 \because Since $\vec{v} \cdot \vec{\sigma}$ is Hermitian, $|\lambda_1\rangle$ and $|\lambda_{-1}\rangle$ are orthogonal. Thus

$$|\lambda_1\rangle\langle\lambda_1|+|\lambda_{-1}\rangle\langle\lambda_{-1}|=I.$$

$$\operatorname{Tr}(\sigma_1) = \operatorname{Tr}\left(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\right) = 0$$

$$\operatorname{Tr}(\sigma_2) = \operatorname{Tr}\left(\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}\right) = 0$$

$$\operatorname{Tr}(\sigma_3) = \operatorname{Tr}\left(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\right) = 1 - 1 = 0$$

$$\begin{aligned} \operatorname{Tr}(AB) &= \sum_{i} \langle i|AB|i \rangle \\ &= \sum_{i} \langle i|AIB|i \rangle \\ &= \sum_{i,j} \langle i|A|j \rangle \, \langle j|B|i \rangle \\ &= \sum_{i,j} \langle j|B|i \rangle \, \langle i|A|j \rangle \\ &= \sum_{j} \langle j|BA|j \rangle \\ &= \operatorname{Tr}(BA) \end{aligned}$$

$$\operatorname{Tr}(A+B) = \sum_{i} \langle i|A+B|i\rangle$$

$$= \sum_{i} (\langle i|A|i\rangle + \langle i|B|i\rangle)$$

$$= \sum_{i} \langle i|A|i\rangle + \sum_{i} \langle i|B|i\rangle$$

$$= \operatorname{Tr}(A) + \operatorname{Tr}(B).$$

$$\operatorname{Tr}(zA) = \sum_{i} \langle i|zA|i\rangle$$
$$= \sum_{i} z \langle i|A|i\rangle$$
$$= z \sum_{i} \langle i|A|i\rangle$$
$$= z \operatorname{Tr}(A).$$

2.39

(1)
$$(A, B) \equiv \text{Tr}(A^{\dagger}B)$$
.

(i)

$$\begin{pmatrix}
A, \sum_{i} \lambda_{i} B_{i}
\end{pmatrix} = \operatorname{Tr} \left[A^{\dagger} \left(\sum_{i} \lambda_{i} B_{i} \right) \right]
= \operatorname{Tr}(A^{\dagger} \lambda_{1} B_{1}) + \dots + \operatorname{Tr}(A^{\dagger} \lambda_{n} B_{n}) \quad (\because \text{ Execise 2.38})
= \lambda_{1} \operatorname{Tr}(A^{\dagger} B_{1}) + \dots + \lambda_{n} \operatorname{Tr}(A^{\dagger} B_{n})
= \sum_{i} \lambda_{i} \operatorname{Tr}(A^{\dagger} B_{i})$$

(ii)

$$(A,B)^* = \left(\operatorname{Tr}(A^{\dagger}B)\right)^*$$

$$= \left(\sum_{i,j} \langle i|A^{\dagger}|j\rangle \langle j|B|i\rangle\right)^*$$

$$= \sum_{i,j} \langle i|A^{\dagger}|j\rangle^* \langle j|B|i\rangle^*$$

$$= \sum_{i,j} \langle j|B|i\rangle^* \langle i|A^{\dagger}|j\rangle^*$$

$$= \sum_{i,j} \langle i|B^{\dagger}|j\rangle \langle j|A|i\rangle$$

$$= \sum_{i} \langle i|B^{\dagger}A|i\rangle$$

$$= \operatorname{Tr}(B^{\dagger}A)$$

$$= (B,A).$$

(iii)

$$(A, A) = \text{Tr}(A^{\dagger}A)$$

= $\sum_{i} \langle i|A^{\dagger}A|i\rangle$

Since $A^{\dagger}A$ is positive, $\langle i|A^{\dagger}A|i\rangle \geq 0$ for all $|i\rangle$.

Let a_i be i-th column of A. If $\langle i|A^{\dagger}A|i\rangle=0$, then

$$\langle i|A^{\dagger}A|i\rangle=a_i^{\dagger}a_i=\|a_i\|^2=0 \text{ iff } a_i=\mathbf{0}.$$

Therefore (A, A) = 0 iff $A = \mathbf{0}$.

- (2)
- (3)

$$\begin{split} [X,Y] &= XY - YX \\ &= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} - \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\ &= \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} - \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix} \\ &= \begin{bmatrix} 2i & 0 \\ 0 & -2i \end{bmatrix} \\ &= 2iZ \end{split}$$

$$[Y, Z] = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 2i \\ 2i & 0 \end{bmatrix}$$
$$= 2iX$$

$$[Z, X] = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$= 2i \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

$$= 2iY$$

$$\begin{aligned}
\{\sigma_1, \sigma_2\} &= \sigma_1 \sigma_2 + \sigma_2 \sigma_1 \\
&= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} + \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\
&= \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} + \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix} \\
&= 0
\end{aligned}$$

$$\{\sigma_2, \sigma_3\} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
$$= 0$$

$$\{\sigma_3, \sigma_1\} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$= 0$$

$$\begin{split} \sigma_0^2 &= I^2 = I \\ \sigma_1^2 &= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^2 = I \\ \sigma_2^2 &= \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}^2 = I \\ \sigma_3^2 &= \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}^2 = I \end{split}$$

$$\frac{[A,B] + \{A,B\}}{2} = \frac{AB - BA + AB + BA}{2} = AB$$

2.43

From eq (2.75) and eq (2.76), $\{\sigma_j, \sigma_k\} = 2\delta_{jk}I$. From eq (2.77),

$$\sigma_{j}\sigma_{k} = \frac{[\sigma_{j}, \sigma_{k}] + \{\sigma_{j}, \sigma_{k}\}}{2}$$

$$= \frac{2i\sum_{l=1}^{3} \epsilon_{jkl}\sigma_{l} + 2\delta_{jk}I}{2}$$

$$= \delta_{jk}I + i\sum_{l=1}^{3} \epsilon_{jkl}\sigma_{l}$$

2.44

By assumption, [A, B] = 0 and $\{A, B\} = 0$, then AB = 0. Since A is invertible, multiply by A^{-1} from left, then

$$A^{-1}AB = 0$$
$$IB = 0$$
$$B = 0.$$

2.45

$$[A, B]^{\dagger} = (AB - BA)^{\dagger}$$
$$= B^{\dagger}A^{\dagger} - A^{\dagger}B^{\dagger}$$
$$= [B^{\dagger}, A^{\dagger}]$$

2.46

$$[A, B] = AB - BA$$
$$= -(BA - AB)$$
$$= -[B, A]$$

$$\begin{split} (i\left[A,B\right])^{\dagger} &= -i\left[A,B\right]^{\dagger} \\ &= -i\left[B^{\dagger},A^{\dagger}\right] \\ &= -i\left[B,A\right] \\ &= i\left[A,B\right] \end{split}$$

(Positive)

Since P is positive, it is diagonalizable. Then $P = \sum_i \lambda_i |i\rangle\langle i|, (\lambda_i \geq 0)$.

$$J = \sqrt{P^\dagger P} = \sqrt{PP} = \sqrt{P^2} = \sum_i \sqrt{\lambda_i^2} \, |i\rangle\langle i| = \sum_i \lambda_i \, |i\rangle\langle i| = P.$$

Therefore polar decomposition of P is P = UP for all P. Thus U = I, then P = P.

(Unitary)

Suppose unitary U is decomposed by U=WJ where W is unitary and J is positive, $J=\sqrt{U^{\dagger}U}$.

$$J=\sqrt{U^{\dagger}U}=\sqrt{I}=I$$

Since unitary operators are invertible, $W = UJ^{-1} = UI^{-1} = UI = U$. Thus polar decomposition of U is U = U.

(Hermitian)

Suppose H = UJ.

$$J = \sqrt{H^{\dagger}H} = \sqrt{HH} = \sqrt{H^2}.$$

Thus $H = U\sqrt{H^2}$.

In general, $H \neq \sqrt{H^2}$.

From spectral decomposition, $H = \sum_{i} \lambda_i |i\rangle\langle i|, \lambda_i \in \mathbb{R}$.

$$\sqrt{H^2} = \sqrt{\sum_i \lambda_i^2 |i\rangle\langle i|} = \sum_i \sqrt{\lambda_i^2} |i\rangle\langle i| = \sum_i |\lambda_i| |i\rangle\langle i| \neq H$$

2.49

Normal matrix is diagonalizable, $A = \sum_{i} \lambda_{i} |i\rangle\langle i|$.

$$\begin{split} J &= \sqrt{A^{\dagger}A} = \sum_{i} |\lambda_{i}| \, |i\rangle\langle i| \, . \\ U &= \sum_{i} |e_{i}\rangle\langle i| \\ A &= UJ = \sum_{i} |\lambda_{i}| \, |e_{i}\rangle\langle i| \, . \end{split}$$

2.50

Define $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$. $A^{\dagger}A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$.

Characteristic equation of $A^{\dagger}A$ is $\det(A^{\dagger}A - \lambda I) = \lambda^2 - 3\lambda + 1 = 0$. Eigenvalues of $A^{\dagger}A$ are $\lambda_{\pm} = \frac{3 \pm \sqrt{5}}{2}$ and associated eigenvectors are $|\lambda_{\pm}\rangle = \frac{1}{\sqrt{10 \mp 2\sqrt{5}}} \begin{bmatrix} 2\\ -1 \pm \sqrt{5} \end{bmatrix}$.

$$A^{\dagger}A = \lambda_{+} |\lambda_{+}\rangle\langle\lambda_{+}| + \lambda_{-} |\lambda_{-}\rangle\langle\lambda_{-}|.$$

$$J = \sqrt{A^{\dagger}A} = \sqrt{\lambda_{+}} |\lambda_{+}\rangle\langle\lambda_{+}| + \sqrt{\lambda_{-}} |\lambda_{-}\rangle\langle\lambda_{-}|$$

$$= \sqrt{\frac{3+\sqrt{5}}{2}} \cdot \frac{5-\sqrt{5}}{40} \begin{bmatrix} 4 & 2\sqrt{5}-2 \\ 2\sqrt{5}-2 & 6-2\sqrt{5} \end{bmatrix} + \sqrt{\frac{3-\sqrt{5}}{2}} \cdot \frac{5+\sqrt{5}}{40} \begin{bmatrix} 4 & -2\sqrt{5}-2 \\ -2\sqrt{5}-2 & 6+2\sqrt{5} \end{bmatrix}$$

$$J^{-1} = \frac{1}{\sqrt{\lambda_{+}}} |\lambda_{+}\rangle\langle\lambda_{+}| + \frac{1}{\sqrt{\lambda_{-}}} |\lambda_{-}\rangle\langle\lambda_{-}|.$$

$$U = AJ^{-1}$$

I'm tired.

2.51

$$H^{\dagger}H = \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}\right)^{\dagger} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = I.$$

2.52

$$H^{\dagger} = \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \right)^{\dagger} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = H.$$

Thus

$$H^2 = I$$
.

2.53

$$\det(H - \lambda I) = \left(\frac{1}{\sqrt{2}} - \lambda\right) \left(-\frac{1}{\sqrt{2}} - \lambda\right) - \frac{1}{2}$$
$$= \lambda^2 - \frac{1}{2} - \frac{1}{2}$$
$$= \lambda^2 - 1$$

Eigenvalues are $\lambda_{\pm} = \pm 1$ and associated eigenvectors are $|\lambda_{\pm}\rangle = \frac{1}{\sqrt{4\mp2\sqrt{2}}} \begin{bmatrix} 1\\ -1 \pm \sqrt{2} \end{bmatrix}$.

Since [A, B] = 0, A and B are simultaneously diagonalize, $A = \sum_i a_i |i\rangle\langle i|$, $B = \sum_i b_i |i\rangle\langle i|$.

$$\exp(A) \exp(B) = \left(\sum_{i} \exp(a_{i}) |i\rangle\langle i|\right) \left(\sum_{i} \exp(b_{i}) |i\rangle\langle i|\right)$$

$$= \sum_{i,j} \exp(a_{i} + b_{j}) |i\rangle\langle i|j\rangle\langle j|$$

$$= \sum_{i,j} \exp(a_{i} + b_{j}) |i\rangle\langle j| \delta_{i,j}$$

$$= \sum_{i} \exp(a_{i} + b_{i}) |i\rangle\langle i|$$

$$= \exp(A + B)$$

2.55

$$H = \sum_{E} E |E\rangle\langle E|$$

$$U(t_2 - t_1)U^{\dagger}(t_2 - t_1) = \exp\left(-\frac{iH(t_2 - t_1)}{\hbar}\right) \exp\left(\frac{iH(t_2 - t_1)}{\hbar}\right)$$

$$= \sum_{E,E'} \left(\exp\left(-\frac{iE(t_2 - t_1)}{\hbar}\right) |E\rangle\langle E|\right) \left(\exp\left(-\frac{iE'(t_2 - t_1)}{\hbar}\right) |E'\rangle\langle E'|\right)$$

$$= \sum_{E,E'} \left(\exp\left(-\frac{i(E - E')(t_2 - t_1)}{\hbar}\right) |E\rangle\langle E'| \delta_{E,E'}\right)$$

$$= \sum_{E} \exp(0) |E\rangle\langle E|$$

$$= \sum_{E} |E\rangle\langle E|$$

$$= I$$

Similarly, $U^{\dagger}(t_2 - t_1)U(t_2 - t_1) = I$.

$$\begin{split} U &= \sum_i \lambda_i \, |\lambda_i\rangle \langle \lambda_i| \quad \ (|\lambda_i| = 1). \\ &\log(U) = \sum_j \log(\lambda_j) \, |\lambda_j\rangle \langle \lambda_j| = \sum_j i\theta_j \, |\lambda_j\rangle \langle \lambda_j| \ \, \text{where} \, \, \theta_j = \arg(\lambda_j) \\ K &= -i \log(U) = \sum_j \theta_j \, |\lambda_j\rangle \langle \lambda_j| \, . \end{split}$$

$$K^{\dagger} = (-i\log U)^{\dagger} = \left(\sum_{j} \theta_{j} |\lambda_{j}\rangle\langle\lambda_{j}|\right)^{\dagger} = \sum_{j} \theta_{j}^{*} |\lambda_{j}\rangle\langle\lambda_{j}| = \sum_{j} \theta_{j} |\lambda_{j}\rangle\langle\lambda_{j}| = K$$

$$\begin{split} |\phi\rangle &\equiv \frac{L_l \, |\psi\rangle}{\sqrt{\langle\psi|L_l^\dagger L_l |\psi\rangle}} \\ \langle\phi|M_m^\dagger M_m |\phi\rangle &= \frac{\langle\psi|L_l^\dagger M_m^\dagger M_m L_l |\psi\rangle}{\langle\psi|L_l^\dagger L_l |\psi\rangle} \\ \frac{M_m \, |\phi\rangle}{\sqrt{\langle\phi|M_m^\dagger M_m |\phi\rangle}} &= \frac{M_m L_l \, |\psi\rangle}{\sqrt{\langle\psi|L_l^\dagger L_l |\psi\rangle}} \cdot \frac{\sqrt{\langle\psi|L_l^\dagger L_l |\psi\rangle}}{\sqrt{\langle\psi|L_l^\dagger M_m^\dagger M_m L_l |\psi\rangle}} &= \frac{M_m L_l \, |\psi\rangle}{\sqrt{\langle\psi|L_l^\dagger M_m^\dagger M_m L_l |\psi\rangle}} &= \frac{N_{lm} \, |\psi\rangle}{\sqrt{\langle\psi|L_l^\dagger M_m^\dagger M_m L_l |\psi\rangle}} \end{split}$$

2.58

$$\begin{split} \langle M \rangle &= \langle \psi | M | \psi \rangle = \langle \psi | m | \psi \rangle = m \ \langle \psi | \psi \rangle = m \\ \langle M^2 \rangle &= \langle \psi | M^2 | \psi \rangle = \langle \psi | m^2 | \psi \rangle = m^2 \ \langle \psi | \psi \rangle = m^2 \end{split}$$
 deviation = $\langle M^2 \rangle - \langle M \rangle^2 = m^2 - m^2 = 0.$

2.59

$$\begin{split} \langle X \rangle &= \langle 0|X|0 \rangle = \langle 0|1 \rangle = 0 \\ \langle X^2 \rangle &= \langle 0|X^2|0 \rangle = \langle 0|X|1 \rangle = \langle 0|0 \rangle = 1 \\ \text{standard deviation} &= \sqrt{\langle X^2 \rangle - \langle X \rangle^2} = 1 \end{split}$$

2.60

$$\vec{v} \cdot \vec{\sigma} = \sum_{i=1}^{3} v_i \sigma_i$$

$$= v_1 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + v_2 \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} + v_3 \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} v_3 & v_1 - iv_2 \\ v_1 + iv_2 & -v_3 \end{bmatrix}$$

$$\det(\vec{v} \cdot \vec{\sigma} - \lambda I) = (v_3 - \lambda)(-v_3 - \lambda) - (v_1 - iv_2)(v_1 + iv_2)$$
$$= \lambda^2 - (v_1^2 + v_2^2 + v_3^2)$$
$$= \lambda^2 - 1 \quad (\because |\vec{v}| = 1)$$

Eigenvalues are $\lambda = \pm 1$.

(i) if
$$\lambda = 1$$

$$\begin{split} \vec{v} \cdot \vec{\sigma} - \lambda I &= \vec{v} \cdot \vec{\sigma} - I \\ &= \begin{bmatrix} v_3 - 1 & v_1 - iv_2 \\ v_1 + iv_2 & -v_3 - 1 \end{bmatrix} \end{split}$$

Eigenvector is $|\lambda_1\rangle = \sqrt{\frac{1+v_3}{2}} \begin{bmatrix} 1\\ \frac{1-v_3}{v_1-iv_2} \end{bmatrix}$.

$$|\lambda_1\rangle\langle\lambda_1| = \frac{1+v_3}{2} \begin{bmatrix} 1\\ \frac{1-v_3}{v_1-iv_2} \end{bmatrix} \begin{bmatrix} 1 & \frac{1-v_3}{v_1+iv_2} \end{bmatrix}$$

$$= \frac{1+v_3}{2} \begin{bmatrix} 1 & \frac{v_1-iv_2}{1+v_3} \\ \frac{v_1+iv_2}{1+v_3} & \frac{1-v_3}{1+v_3} \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 1+v_3 & v_1-iv_2 \\ v_1+iv_2 & 1-v_3 \end{bmatrix}$$

$$= \frac{1}{2} \left(I + \begin{bmatrix} v_3 & v_1-iv_2 \\ v_1+iv_2 & -v_3 \end{bmatrix} \right)$$

$$= \frac{1}{2} (I + \vec{v} \cdot \vec{\sigma})$$

(ii) If $\lambda = -1$.

$$\vec{v} \cdot \vec{\sigma} - \lambda I = \vec{v} \cdot \vec{\sigma} + I$$

$$= \begin{bmatrix} v_3 + 1 & v_1 - iv_2 \\ v_1 + iv_2 & -v_3 + 1 \end{bmatrix}$$

Eigenvalue is $|\lambda_{-1}\rangle = \sqrt{\frac{1-v_3}{2}} \begin{bmatrix} 1\\ -\frac{1+v_3}{v_1-iv_2} \end{bmatrix}$.

$$\begin{aligned} |\lambda_{-1}\rangle\langle\lambda_{-1}| &= \frac{1-v_3}{2} \begin{bmatrix} 1\\ -\frac{1+v_3}{v_1-iv_2} \end{bmatrix} \begin{bmatrix} 1 & -\frac{1+v_3}{v_1+iv_2} \end{bmatrix} \\ &= \frac{1-v_3}{2} \begin{bmatrix} 1 & -\frac{v_1-iv_2}{1-v_3}\\ -\frac{v_1+iv_2}{1-v_3} & \frac{1+v_3}{1-v_3} \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} 1-v_3 & -(v_1-iv_2)\\ -(v_1+iv_2) & 1+v_3 \end{bmatrix} \\ &= \frac{1}{2} \left(I - \begin{bmatrix} v_3 & v_1-iv_2\\ (v_1+iv_2 & -v_3) \end{bmatrix} \right) \\ &= \frac{1}{2} (I - \vec{v} \cdot \vec{\sigma}). \end{aligned}$$

$$\langle \lambda_1 | 0 \rangle \langle 0 | \lambda_1 \rangle = \langle 0 | \lambda_1 \rangle \langle \lambda_1 | 0 \rangle$$
$$= \langle 0 | \frac{1}{2} (I + \vec{v} \cdot \vec{\sigma}) | 0 \rangle$$
$$= \frac{1}{2} (1 + v_3)$$

Post-measurement state is

$$\frac{|\lambda_1\rangle \langle \lambda_1|0\rangle}{\sqrt{\langle 0|\lambda_1\rangle \langle \lambda_1|0\rangle}} = \frac{1}{\sqrt{\frac{1}{2}(1+v_3)}} \cdot \frac{1}{2} \begin{bmatrix} 1+v_3\\v_1+iv_2 \end{bmatrix}
= \sqrt{\frac{1}{2}(1+v_3)} \begin{bmatrix} 1\\\frac{v_1+iv_2}{1+v_3} \end{bmatrix}
= \sqrt{\frac{1+v_3}{2}} \begin{bmatrix} 1\\\frac{1-v_3}{v_1-iv_2} \end{bmatrix}
= |\lambda_1\rangle.$$

2.62

Suppose M_m is an measurement operator. From the assumption, $E_m = M_m^{\dagger} M_m = M_m$. Then

$$\langle \psi | E_m | \psi \rangle = \langle \psi | M_m | \psi \rangle \ge 0.$$

for all $|\psi\rangle$.

Since M_m is positive operator, M_m is Hermitian. Therefore,

$$E_m = M_m^{\dagger} M_m = M_m M_m = M_m^2 = M_m.$$

Thus the measurement is a projective measurement.

2.63

$$\begin{split} M_m^\dagger M_m &= \sqrt{E_m} U_m^\dagger U_m \sqrt{E_m} \\ &= \sqrt{E_m} I \sqrt{E_m} \\ &= E_m. \end{split}$$

Since E_m is POVM, for arbitrary unitary U, $M_m^{\dagger}M_m$ is POVM.

2.64

Define $E_i = |\psi_i\rangle\langle\psi_i|$ for $1 \le i \le m$ and $E_{m+1} = I - \sum_{i=1}^m E_i$. Then $\sum_{i=1}^{m+1} E_i = I$. And $\langle\psi_i|E_i|\psi_i\rangle = \langle\psi_i|\psi_i\rangle\langle\psi_i|\psi_i\rangle = 1$.

2.65

$$|+\rangle \equiv \frac{|0\rangle + |1\rangle}{\sqrt{2}}, \quad |-\rangle \equiv \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

$$X_1 Z_2 \left(\frac{|00\rangle + |11\rangle}{\sqrt{2}} \right) = \frac{|10\rangle - |01\rangle}{\sqrt{2}}$$

$$\langle X_1 Z_2 \rangle = \left(\frac{\langle 00| + \langle 11|}{\sqrt{2}} \right) X_1 Z_2 \left(\frac{|00\rangle + |11\rangle}{\sqrt{2}} \right) = \frac{\langle 00| + \langle 11|}{\sqrt{2}} \cdot \frac{|10\rangle - |01\rangle}{\sqrt{2}} = 0$$

Unsolved
$$W \subset V \to V = W \oplus W^{\perp}.$$

$$U: W \to V, \ U': V \to V.$$

$$U'|w\rangle = U|w\rangle$$

$$U' \in \mathcal{L}(V)$$

$$U \in \mathcal{L}(W)$$

$$U' = U \oplus I \ ???$$

2.68

$$\begin{aligned} |\psi\rangle &= \frac{|00\rangle + |11\rangle}{\sqrt{2}}. \\ \text{Suppose } |a\rangle &= a_0 |0\rangle + a_1 |1\rangle \text{ and } |b\rangle = b_0 |0\rangle + b_1 |1\rangle. \\ |a\rangle |b\rangle &= a_0 b_0 |00\rangle + a_0 b_1 |01\rangle + a_1 b_0 |10\rangle + a_1 b_1 |11\rangle. \end{aligned}$$

If $|\psi\rangle = |a\rangle |b\rangle$, then $a_0b_0 = 1$, $a_0b_1 = 0$, $a_1b_0 = 0$, $a_1b_1 = 1$ since $\{|ij\rangle\}$ is an orthonormal basis.

If $a_0b_1 = 0$, then $a_0 = 0$ or $b_1 = 0$.

When $a_0 = 0$, this is contradiction to $a_0b_0 = 1$. When $b_1 = 0$, this is contradiction to $a_1b_1 = 1$.

Thus $|\psi\rangle \neq |a\rangle |b\rangle$.

2.69

Define Bell states as follows.

$$|\psi_{1}\rangle \equiv \frac{|00\rangle + |11\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$$

$$|\psi_{2}\rangle \equiv \frac{|00\rangle - |11\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\0\\-1 \end{bmatrix}$$

$$|\psi_{3}\rangle \equiv \frac{|01\rangle + |10\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}$$

$$|\psi_{4}\rangle \equiv \frac{|01\rangle - |10\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\-1\\0 \end{bmatrix}$$

First, we prove $\{|\psi_i\rangle\}$ is a linearly independent basis.

$$a_{1} |\psi_{1}\rangle + a_{2} |\psi_{2}\rangle + a_{3} |\psi_{3}\rangle + a_{4} |\psi_{4}\rangle = 0$$

$$\therefore \frac{1}{\sqrt{2}} \begin{bmatrix} a_{1} + a_{2} \\ a_{3} + a_{4} \\ a_{3} - a_{4} \\ a_{1} - a_{2} \end{bmatrix} = 0$$

$$\therefore \begin{cases} a_{1} + a_{2} = 0 \\ a_{3} + a_{4} = 0 \\ a_{3} - a_{4} = 0 \\ a_{1} - a_{2} = 0 \end{cases}$$

$$\therefore a_1 = a_2 = a_3 = a_4 = 0$$

Thus $\{|\psi_i\rangle\}$ is a linearly independent basis.

Moreover $||\psi_i\rangle|| = 1$ and $\langle \psi_i | \psi_j \rangle = \delta_{ij}$ for i, j = 1, 2, 3, 4. Therefore $\{|\psi_i\rangle\}$ forms an orthonormal basis.

2.70

For any Bell states we get $\langle \psi_i | E \otimes I | \psi_i \rangle = \frac{1}{2} (\langle 0 | E | 0 \rangle + \langle 1 | E | 1 \rangle).$

Suppose Eve measures the qubit Alice sent by measurement operators M_m . The probability that Eve gets result m is $p_i(m) = \langle \psi_i | M_m^{\dagger} M_m \otimes I | \psi_i \rangle$. Since $M_m^{\dagger} M_m$ is positive, $p_i(m)$ are same values for all $|\psi_i\rangle$. Thus Eve can't distinguish Bell states.

2.71

From spectral decomposition,

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle\langle\psi_{i}|, \quad p_{i} \geq 0, \quad \sum_{i} p_{i} = 1.$$

$$\rho^{2} = \sum_{i,j} p_{i}p_{j} |i\rangle\langle i|j\rangle\langle j|$$

$$= \sum_{i,j} p_{i}p_{j} |i\rangle\langle j| \delta_{ij}$$

$$= \sum_{i} p_{i}^{2} |i\rangle\langle i|$$

$$\operatorname{Tr}(\rho^2) = \operatorname{Tr}\left(\sum_i p_i^2 |i\rangle\langle i|\right) = \sum_i p_i^2 \operatorname{Tr}(|i\rangle\langle i|) = \sum_i p_i^2 \langle i|i\rangle = \sum_i p_i^2 \leq \sum_i p_i = 1 \quad (\because p_i^2 \leq p_i)$$

Suppose $\text{Tr}(\rho^2) = 1$. Then $\sum_i p_i^2 = 1$. If $0 \le p_i < 1$, then $p_i^2 < p_i$. Thus only one $p_i = 1$ and otherwise are 0. Therefore $\rho = |\psi_i\rangle\langle\psi_i|$ is pure state.

Conversely if ρ is pure, then $\rho = |\psi\rangle\langle\psi|$.

$$\operatorname{Tr}(\rho^2) = \operatorname{Tr}(|\psi\rangle \langle \psi | \psi\rangle \langle \psi |) = \operatorname{Tr}(|\psi\rangle \langle \psi |) = \langle \psi | \psi\rangle = 1.$$

(1) Since density matrix is Hermitian, matrix representation is $\rho = \begin{bmatrix} a & b \\ b^* & d \end{bmatrix}$, $a, d \in \mathbb{R}$ and $b \in \mathbb{C}$ w.r.t. standard basis. Because ρ is density matrix, $\text{Tr}(\rho) = a + d = 1$. Define $a = (1 + r_3)/2$, $d = (1 - r_3)/2$ and $b = (r_1 - ir_2)/2$, $(r_i \in \mathbb{R})$. In this case,

$$\rho = \begin{bmatrix} a & b \\ b^* & d \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 + r_3 & r_1 - ir_2 \\ r_1 + ir_2 & 1 - r_3 \end{bmatrix} = \frac{1}{2} (I + \vec{r} \cdot \vec{\sigma}).$$

Thus for arbitrary density matrix ρ can be written as $\rho = \frac{1}{2}(I + \vec{r} \cdot \vec{\sigma})$.

Next, we derive the condition that ρ is positive.

If ρ is positive, all eigenvalues of ρ should be non-negative.

$$\det(\rho - \lambda I) = (a - \lambda)(b - \lambda) - |b|^2 = \lambda^2 - (a + d)\lambda + ad - |b^2| = 0$$

$$\lambda = \frac{(a + d) \pm \sqrt{(a + d)^2 - 4(ad - |b|^2)}}{2}$$

$$= \frac{1 \pm \sqrt{1 - 4\left(\frac{1 - r_3^2}{4} - \frac{r_1^2 + r_2^2}{4}\right)}}{2}$$

$$= \frac{1 \pm \sqrt{1 - (1 - r_1^2 - r_2^2 - r_3^2)}}{2}$$

$$= \frac{1 \pm \sqrt{|\vec{r}|^2}}{2}$$

$$= \frac{1 \pm |\vec{r}|}{2}$$

Since ρ is positive, $\frac{1-|\vec{r}|}{2} \ge 0 \rightarrow |\vec{r}| \le 1$.

Therefore an arbitrary density matrix for a mixed state qubit is written as $\rho = \frac{1}{2}(I + \vec{r} \cdot \vec{\sigma})$.

(2) $\rho = I/2 \rightarrow \vec{r} = 0$. Thus $\rho = I/2$ corresponds to the origin of Bloch sphere.

(3)

$$\rho^2 = \frac{1}{2}(I + \vec{r} \cdot \vec{\sigma}) \frac{1}{2}(I + \vec{r} \cdot \vec{\sigma})$$

$$= \frac{1}{4} \left[I + 2\vec{r} \cdot \vec{\sigma} + \sum_{j,k} r_j r_k \left(\delta_{jk} I + i \sum_{l=1}^3 \epsilon_{jkl} \sigma_l \right) \right]$$

$$= \frac{1}{4} \left(I + 2\vec{r} \cdot \vec{\sigma} + |\vec{r}|^2 I \right)$$

$$\operatorname{Tr}(\rho^2) = \frac{1}{4} (2 + 2|\vec{r}|^2)$$

If ρ is pure, then $Tr(\rho^2) = 1$.

$$1 = \text{Tr}(\rho^2) = \frac{1}{4}(2 + 2|\vec{r}|^2)$$
$$\therefore |\vec{r}| = 1.$$

Conversely, if $|\vec{r}| = 1$, then $\text{Tr}(\rho^2) = \frac{1}{4}(2 + 2|\vec{r}|^2) = 1$. Therefore ρ is pure.

2.73

Theorem 2.6

$$\rho = \sum_i p_i \, |\psi_i\rangle \langle \psi_i| = \sum_i |\tilde{\psi}_i\rangle \langle \tilde{\psi}_i| = \sum_j |\tilde{\varphi}_j\rangle \langle \tilde{\varphi}_j| = \sum_j q_j \, |\varphi_j\rangle \langle \varphi_j| \quad \Leftrightarrow \quad |\tilde{\psi}_i\rangle = \sum_j u_{ij} \, |\tilde{\varphi}_j\rangle$$

where u is unitary.

Transformation in theorem 2.6, $|\tilde{\psi}_i\rangle = \sum_j u_{ij} |\tilde{\varphi}_j\rangle$, corresponds to

$$\left[|\tilde{\psi}_1\rangle \cdots |\tilde{\psi}_k\rangle \right] = \left[|\tilde{\varphi}_1\rangle \cdots |\tilde{\varphi}_k\rangle \right] U^T$$

where $k = \text{rank}(\rho)$.

From spectral theorem, density matrix ρ is decomposed as $\rho = \sum_{k=1}^{d} \lambda_k |k\rangle\langle k|$ where $d = \dim \mathcal{H}$. Without loss of generality, we can assume $p_k > 0$ for $k = 1 \cdots, l$ where $l = \operatorname{rank}(\rho)$ and $p_k = 0$ for $k = l + 1, \cdots, d$. Thus $\rho = \sum_{k=1}^{l} p_k |k\rangle\langle k| = \sum_{k=1}^{l} |\tilde{k}\rangle\langle \tilde{k}|$, where $|\tilde{k}\rangle = \sqrt{\lambda_k} |k\rangle$.

Suppose $|\psi_i\rangle$ is a state in support ρ . Then

$$|\psi_i\rangle = \sum_{k=1}^l c_{ik} |k\rangle, \quad \sum_k |c_{ik}|^2 = 1.$$

Define
$$p_i = \frac{1}{\sum_k \frac{|c_{ik}|^2}{\lambda_i}}$$
 and $u_{ik} = \frac{\sqrt{p_i}c_{ik}}{\sqrt{\lambda_k}}$.

Now

$$\sum_{k} |u_{ik}|^2 = \sum_{k} \frac{p_i |c_{ik}|^2}{\lambda_k} = p_i \sum_{k} \frac{|c_{ik}|^2}{\lambda_k} = 1.$$

Next prepare an unitary operator such that (i, k) component of U is u_{ik} . Then we can define another ensemble such that

$$\left[\left| \tilde{\psi}_1 \rangle \cdots \left| \tilde{\psi}_i \right\rangle \cdots \left| \tilde{\psi}_l \right\rangle \right] = \left[\left| \tilde{k}_1 \rangle \cdots \left| \tilde{k}_l \right\rangle \right] U^T$$

where $|\tilde{\psi}_i\rangle = \sqrt{p_i} |\psi_i\rangle$. From theorem 2.6,

$$\rho = \sum_{k} |\tilde{k}\rangle\langle\tilde{k}| = \sum_{k} |\tilde{\psi}_{k}\rangle\langle\tilde{\psi}_{k}|.$$

Therefore we can obtain a minimal ensemble for ρ that contains $|\psi_i\rangle$. Moreover since $\rho^{-1} = \sum_k \frac{1}{\lambda_k} |k\rangle\langle k|$,

$$\langle \psi_i | \rho^{-1} | \psi_i \rangle = \sum_k \frac{1}{\lambda_k} \langle \psi_i | k \rangle \langle k | \psi_i \rangle = \sum_k \frac{|c_{ik}|^2}{\lambda_k} = \frac{1}{p_i}.$$

Hence,
$$\frac{1}{\langle \psi_i | \rho^{-1} | \psi_i \rangle} = p_i$$
.

$$\rho_{AB} = |a\rangle\langle a|_A \otimes |b\rangle\langle b|_B$$

$$\rho_A = \operatorname{Tr}_B \rho_{AB} = |a\rangle\langle a| \operatorname{Tr}(|b\rangle\langle b|) = |a\rangle\langle a|$$

$$\operatorname{Tr}(\rho_A^2) = 1$$

Thus ρ_A is pure.

2.75

Define
$$|\Phi_{\pm}\rangle = \frac{1}{\sqrt{2}}(|00\rangle \pm |11\rangle)$$
 and $|\Psi_{\pm}\rangle = \frac{1}{\sqrt{2}}(|01\rangle \pm |10\rangle)$.

$$|\Phi_{\pm}\rangle\langle\Phi_{\pm}|_{AB} = \frac{1}{2}(|00\rangle\langle00| \pm |00\rangle\langle11| \pm |11\rangle\langle00| + |11\rangle\langle11|)$$

$$\operatorname{Tr}_{B}(|\Phi_{\pm}\rangle\langle\Phi_{\pm}|_{AB}) = \frac{1}{2}(|0\rangle\langle0| + |1\rangle\langle1|) = \frac{I}{2}$$

$$|\Psi_{\pm}\rangle\langle\Psi_{\pm}| = \frac{1}{2}(|01\rangle\langle01| \pm |01\rangle\langle10| \pm |10\rangle\langle01| + |10\rangle\langle10|)$$

$$\operatorname{Tr}_{B}(|\Psi_{\pm}\rangle\langle\Psi_{\pm}|) = \frac{1}{2}(|0\rangle\langle0| + |1\rangle\langle1|) = \frac{I}{2}$$

2.76

Unsolved. I think the polar decomposition can only apply to square matrix A, not arbitrary linear operators. Suppose A is $m \times n$ matrix. Then size of $A^{\dagger}A$ is $n \times n$. Thus the size of U should be $m \times n$. Maybe U is isometry, but I think it is not unitary.

2.77

$$\begin{split} |\psi\rangle &= |0\rangle \, |\Phi_{+}\rangle \\ &= |0\rangle \left[\frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \right] \\ &= (\alpha \, |\phi_{0}\rangle + \beta \, |\phi_{1}\rangle) \left[\frac{1}{\sqrt{2}} (|\phi_{0}\phi_{0}\rangle + |\phi_{1}\phi_{1}\rangle) \right] \end{split}$$

where $|\phi_i\rangle$ are arbitrary orthonormal states and $\alpha, \beta \in \mathbb{C}$. We cannot vanish cross term. Therefore $|\psi\rangle$ cannot be written as $|\psi\rangle = \sum_i \lambda_i |i\rangle_A |i\rangle_B |i\rangle_C$.

2.78

Proof. Former part.

If $|\psi\rangle$ is product, then there exist a state $|\phi_A\rangle$ for system A, and a state $|\phi_B\rangle$ for system B such that $|\psi\rangle = |\phi_A\rangle |\phi_B\rangle$.

Obviously, this Schmidt number is 1.

Conversely, if Schmidt number is 1, the state is written as $|\psi\rangle = |\phi_A\rangle |\phi_B\rangle$. Hence this is a product state.

Proof. Later part.

 (\Rightarrow) Proved by exercise 2.74.

 (\Leftarrow) Let a pure state be $|\psi\rangle = \sum_i \lambda_i |i_A\rangle |i_B\rangle$. Then $\rho_A = \text{Tr}_B(|\psi\rangle\langle\psi|) = \sum_i \lambda_i^2 |i\rangle\langle i|$. If ρ_A is a pure state, then $\lambda_j = 1$ and otherwise 0 for some j. It follows that $|\psi_j\rangle = |j_A\rangle |j_B\rangle$. Thus $|\psi\rangle$ is a product state.

2.79

Procedure of Schmidt decomposition.

Goal: $|\psi\rangle = \sum_{i} \sqrt{\lambda_i} |i_A\rangle |i_B\rangle$

• Diagonalize reduced density matrix $\rho_A = \sum_i \lambda_i |i_A\rangle\langle i_A|$.

• Derive
$$|i_B\rangle$$
, $|i_B\rangle = \frac{(I \otimes \langle i_A|) |\psi\rangle}{\sqrt{\lambda_i}}$

• Construct $|\psi\rangle$.

(i)

 $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ This is already decomposed.

(ii)

$$\frac{|00\rangle+|01\rangle+|10\rangle+|11\rangle}{2} = \left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) \otimes \left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) = |\psi\rangle\,|\psi\rangle \ \ \text{where} \ \ |\psi\rangle = \frac{|0\rangle+|1\rangle}{\sqrt{2}}$$

(iii)

$$|\psi\rangle_{AB} = \frac{1}{\sqrt{3}}(|00\rangle + |01\rangle + |10\rangle)$$
$$\rho_{AB} = |\psi\rangle\langle\psi|_{AB}$$

$$\rho_A = \text{Tr}_B(\rho_{AB}) = \frac{1}{3} \left(2 |0\rangle\langle 0| + |0\rangle\langle 1| + |1\rangle\langle 0| + |1\rangle\langle 1| \right)$$
$$\det(\rho_A - \lambda I) = \left(\frac{2}{3} - \lambda \right) \left(\frac{1}{3} - \lambda \right) - \frac{1}{9} = 0$$
$$\lambda^2 - \lambda + \frac{1}{9} = 0$$
$$\lambda = \frac{1 \pm \sqrt{5}/3}{2} = \frac{3 \pm \sqrt{5}}{6}$$

Eigenvector with eigenvalue $\lambda_0 \equiv \frac{3+\sqrt{5}}{6}$ is $|\lambda_0\rangle \equiv \frac{1}{\sqrt{\frac{5+\sqrt{5}}{2}}} \begin{bmatrix} \frac{1+\sqrt{5}}{2} \\ 1 \end{bmatrix}$.

Eigenvector with eigenvalue $\lambda_1 \equiv \frac{3 - \sqrt{5}}{6}$ is $|\lambda_1\rangle \equiv \frac{1}{\sqrt{\frac{5 - \sqrt{5}}{2}}} \begin{bmatrix} \frac{1 - \sqrt{5}}{2} \\ 1 \end{bmatrix}$.

$$\rho_A = \lambda_0 |\lambda_0\rangle\langle\lambda_0| + \lambda_1 |\lambda_1\rangle\langle\lambda_1|.$$

$$|a_0\rangle \equiv \frac{(I \otimes \langle \lambda_0|) |\psi\rangle}{\sqrt{\lambda_0}}$$
$$|a_1\rangle \equiv \frac{(I \otimes \langle \lambda_1|) |\psi\rangle}{\sqrt{\lambda_1}}$$

Then

$$|\psi\rangle = \sum_{i=0}^{1} \sqrt{\lambda_i} |a_i\rangle |\lambda_i\rangle.$$

(It's too tiresome to calculate $|a_i\rangle$)

2.80

Let
$$|\psi\rangle = \sum_{i} \lambda_{i} |\psi_{i}\rangle_{A} |\psi_{i}\rangle_{B}$$
 and $|\varphi\rangle = \sum_{i} \lambda_{i} |\varphi_{i}\rangle_{A} |\varphi_{i}\rangle_{B}$. Define $U = \sum_{i} |\psi_{j}\rangle\langle\varphi_{j}|_{A}$ and $V = \sum_{j} |\psi_{j}\rangle\langle\varphi_{j}|$. Then

$$(U \otimes V) |\varphi\rangle = \sum_{i} \lambda_{i} U |\varphi_{i}\rangle_{A} V |\varphi_{i}\rangle_{B}$$
$$= \sum_{i} \lambda_{i} |\psi_{i}\rangle_{A} |\psi_{i}\rangle_{B}$$
$$= |\psi\rangle.$$

2.81

Suppose
$$\rho_A = \operatorname{Tr}_R |AR_2\rangle\langle AR_2| = \sum_i \lambda_i |i\rangle\langle i|$$
. Define $|AR_1\rangle = (I_A \otimes U_R) |AR_2\rangle$.
$$\operatorname{Tr}_R(|AR_1\rangle\langle AR_1|) = \operatorname{Tr}_R \left((I_A \otimes U_R) |AR_2\rangle\langle AR_2| (I_A \otimes U_R^{\dagger}) \right)$$

$$= \operatorname{Tr}_R \left(|AR_2\rangle\langle AR_2| (I_A \otimes U_R^{\dagger}) (I_A \otimes U_R) \right)$$

$$= \operatorname{Tr}_R(|AR_2\rangle\langle AR_2|)$$

$$= \rho_A.$$

Thus $|AR_1\rangle$ is also a purification of ρ_A .

2.82

(1) Let
$$|\psi\rangle = \sum_{i} \sqrt{p_i} |\psi_i\rangle |i\rangle$$
.

$$\operatorname{Tr}_{R}(|\psi\rangle\langle\psi|) = \sum_{i} p_{i} |\psi_{i}\rangle\langle\psi_{i}|$$

Thus $|\psi\rangle$ is a purification of ρ .

(2) Probability

$$\operatorname{Tr}\left[\left(I\otimes|i\rangle\langle i|\right)|\psi\rangle\langle\psi|\right] = \langle\psi|\left(I\otimes|i\rangle\langle i|\right)|\psi\rangle = p_i\,\langle\psi_i|\psi_i\rangle = p_i.$$

Post-measurement state

$$\frac{(I \otimes |i\rangle\langle i| |\psi\rangle)}{\sqrt{p_i}} = \frac{\sqrt{p_i} |\psi_i\rangle}{\sqrt{p_i}} = |\psi_i\rangle.$$

(3)

Suppose $|AR\rangle$ is a purification of ρ such that $|AR\rangle = \sum_i \sqrt{p_i} |\psi_i\rangle |r_i\rangle$. By exercise 2.81, the others purification is written as $(I \otimes U) |AR\rangle$.

$$(I \otimes U) |AR\rangle = (I \otimes U) \sum_{i} \sqrt{p_i} |\psi_i\rangle |r_i\rangle$$
$$= \sum_{i} \sqrt{p_i} |\psi_i\rangle U |r_i\rangle$$
$$= \sum_{i} \sqrt{p_i} |\psi_i\rangle |i\rangle$$

where $U = \sum_{i} |i\rangle\langle r_i|$.

By (2), if we measure the system R w.r.t $|i\rangle$, post-measurement state for system A is $|\psi_i\rangle$ with probability p_i , which prove the assertion.