STATS 310A Notes

Kenneth Tay

Basic measure theory (Lec 1-6)

- (Billingsley Prob 2.4, HW1) The union of σ -fields need not be a σ -field. The countable union of fields is a field.
- (Billingsley Prob 2.5) Let \mathcal{A} be a collection of subsets of Ω . The field generated by \mathcal{A} is equal to the collection of sets of the form $\bigcup_{i=1}^{m} \bigcap_{j=1}^{n_i} A_{ij}$, where either $A_{ij} \in \mathcal{A}$ or $A_{ij}^c \in \mathcal{A}$, and where the m sets $\bigcap_{i=1}^{n_i} A_{ij}$ are disjoint.
- **Definition of outer measure**: Let P be a probability on field \mathcal{F}_0 . For every $A \subseteq \Omega$, define $P^*(A) := \inf \sum_{i=1}^{\infty} P(B_i)$, where $A \subseteq \bigcup B_i$, $B_i \in \mathcal{F}_0$. (Covers can be countably infinite in size.) Note that P^* is countably sub-additive.
- A probability measure on a field has a unique extension to the generated σ -field.
- $\pi \lambda$ Theorem: If \mathcal{P} is a π -system and \mathcal{L} is a λ -system and $\mathcal{P} \subseteq \mathcal{L}$, then $\sigma(\mathcal{P}) \subseteq \mathcal{L}$.
- Law of the iterated logarithm: Let $\{Y_n\}$ be iid random variables with zero mean and variance 1. Then almost surely, $\limsup \frac{Y_1 + \dots + Y_n}{\sqrt{2n \log \log n}} = 1$.
- For the simple symmetric (±1) random walk, let $M_n = \max(S_1, \dots, S_n)$. Then for every integer $c \ge 1$, $P(M_n \ge c) \le P(S_n \ge c) + P(S_n > c) \le 2P(S_n \ge c)$.
- For the simple symmetric (±1) random walk, $P\left(\frac{S_n}{n} \ge \varepsilon\right) \le 2 \exp\left(-\frac{n\varepsilon^2}{2}\right)$. (Proof in HW2 Q5.)
- Definition of a general measure on a field: $\mu : \mathcal{F} \mapsto \mathbb{R}$ is a measure if $\mu(\emptyset) = 0$, μ is non-negative and countably additive.
- If μ_1 and μ_2 are measures on $\sigma(\mathcal{P})$ such that they agree on π -system \mathcal{P} and are σ -finite on \mathcal{P} , then they agree on $\sigma(\mathcal{P})$.
- **Definition of outer measure**: A set function μ^* defined on all subsets of Ω is an outer measure if it is non-negative, monotone, countably sub-additive and $\mu^*(\emptyset) = 0$.
- If μ^* is an outer measure on subsets of Ω , then μ^* is a measure on $\mathcal{M}^*(\mu^*) = \{A \subseteq \Omega : \forall E \subseteq \Omega, \mu^*(E) = \mu^*(A \cap E) + \mu^*(A^c \cap E)\}.$
- **Definition of semi-ring**: A collection of subsets \mathcal{R} of Ω is a semi-ring if it contains \emptyset , is closed under finite intersections, and if $A, B \in \mathcal{R}$ with $A \subseteq B$, then $B \setminus A = \bigcup_{i=1}^n C_i$ with $C_i \in \mathbb{R}$, C_i 's disjoint.

Examples of semi-rings: finite subsets of [0,1], ∞ rectangles in \mathbb{R}^d (must extend to ∞ in at least 1 direction), and finite rectangles in \mathbb{R}^d .

• Extension theorem: If $\mu : \mathcal{R} \mapsto [0, \infty]$ such that μ is countably sub-additive, finitely additive on \mathcal{R} and $\mu(\emptyset) = 0$, then μ has an extension to a measure on $\sigma(\mathcal{R})$. If μ is σ -finite, this measure is unique.

Distribution functions, random variables, integration (Lec 7-10, 12)

- Let $F: \mathbb{R}^k \to \mathbb{R}$ be monotonically increasing, right-continuous, such that $F(\infty) = 1$ and $F(-\infty) = 0$. If $\Delta_A(F) \geq 0$ for all finite rectangles A, then there exists a unique probability measure μ on Borel sets of \mathbb{R}^k such that $\mu(A) = \Delta_A(F)$ for all A.
- (Billingsley Prob 14.8, HW4) If a distribution function F is everywhere continuous, then it is uniformly continuous.
- If X has CDF F, then F(X) is a Unif(0, 1) variable.
- Useful proposition to manipulate inverses: Let T be a measurable map from (Ω, \mathcal{F}) to (Ω', \mathcal{F}') . For a collection of sets $\{B'_i\}_{i\in I}$ in \mathcal{F}' ,

1.
$$[T^{-1}(B')]^c = T^{-1}(B'^c)$$
.

2.
$$T^{-1}\left(\bigcup_{i \in I} B_i'\right) = \bigcup_{i \in I} T^{-1}(B_i').$$

3.
$$T^{-1}\left(\bigcap_{i \in I} B_i'\right) = \bigcap_{i \in I} T^{-1}(B_i').$$

• **Definition of push-forward:** Suppose we have $(\Omega, \mathcal{F}, \mu)$ a measure space, (Ω', \mathcal{F}') a measurable space, $T: (\Omega, \mathcal{F}) \to (\Omega', \mathcal{F}')$ measurable. The push-forward $\mu^{T^{-1}}$, a measure on (Ω', \mathcal{F}') , is defined by

$$\mu^{T^{-1}}(B') := \mu(T^{-1}(B'))$$
 for $B' \in \mathcal{F}'$.

- **Definition of simple function:** A measurable function which takes on finitely many values, i.e. exist $x_i \in \mathbb{R} \cup \pm \infty$ and a partition of Ω , $A_i \in \mathcal{F}$, such that $f(\omega) = \sum_{i=1}^n x_i \delta_{A_i}(\omega)$.
- For every non-negative measurable function f, there exists a non-decreasing sequence of simple functions f_n such that $f_n(\omega) \to f(\omega)$ for all ω .
- **Definition of integral:** For $f \ge 0$, define $\int f d\mu := \sup \sum_{i=1}^{n} \nu_i \mu(A_i)$, where the sup is taken over all **finite** measurable partitions $\{A_i\}$ of Ω , and $\nu_i = \inf_{\omega \in A_i} f(\omega)$.
- Monotone Convergence Theorem: For non-negative f, if $f_n(\omega) \nearrow f(\omega)$ for all ω , then $\lim_{n\to\infty} \int f_n d\mu = \int \lim_{n\to\infty} f_n d\mu$.
- Fatou's Lemma: Let $\{f_n\}$ be any sequence of non-negative measurable functions. Then $\int \liminf f_n d\mu \le \liminf \int f_n d\mu$.

- Dominated Convergence Theorem: Let $\{f_n\}$ be a sequence of measurable functions such that $f_n \to f$ a.s. and there exists an integrable function $g \ge 0$ such that $|f_n| \le g$ a.s. Then f is measurable and integrable, and $\lim_{n \to \infty} \int f_n d\mu = \int f d\mu$.
- For $X \ge 0$, $\mathbb{E}X = \int_0^\infty P(X \ge t)dt = \int_0^\infty P(X > t)dt$.
- Let X have MGF M. If M(s) is finite on some non-empty interval $(-s_0, s_0)$, then M is infinitely differentiable and $M^{(k)}(0) = \mathbb{E}[X^k]$.

Product spaces (Lec 11)

Let (X, \mathcal{X}) , (Y, \mathcal{Y}) be two measurable spaces.

- Projection mappings are $\pi_x:(x,y)\mapsto x$ and $\pi_y:(x,y)\mapsto y$.
- **Product** σ -algebra: $\mathcal{X} \times \mathcal{Y} := \sigma(\pi_x, \pi_y)$ (i.e. the σ -algebra generated by the projection mappings).
- Cylinder sets: $C = \{\pi_x^{-1}(A) \cup \pi_y^{-1}(B) : A \in \mathcal{X}, B \in \mathcal{Y}\}.$
- Measurable rectangles: $\mathcal{P} = \{A \times B : A \in \mathcal{X}, B \in \mathcal{Y}\}.$
- $\mathcal{X} \times \mathcal{Y} = \sigma(\mathcal{C}) = \sigma(\mathcal{P}) = \sigma(\{\text{all finite disjoint unions of measurable rectangles}\}).$
- Sections: For $A \subseteq Z$, sections are defined to be $A_x = \{y : (x,y) \in A\}, A_y = \{x : (x,y) \in A\}.$
- Sectioning lemma: If $f:(Z, \mathcal{Z}) \to (W, \mathcal{W})$ is measurable, then $f_x: Y \to W$ is measurable. If $A \in \mathcal{Z}$, then A_x , A_y are measurable.
- Definition of Markov kernel: A Markov kernel is a function $K(x,B):(X,\mathcal{Y})\to [0,1]$ such that
 - 1. For every fixed x, $K(x, \cdot)$ is a probability on (Y, \mathcal{Y}) , and
 - 2. For every fixed B, the map $x \mapsto K(x, B)$ is measurable.
- Let μ be a probability on (X, \mathcal{X}) . We can define a probability $\mu \times K$ on (Z, \mathcal{Z}) by $\mu \times K(A) := \int K(x, A_x) \mu(dx)$.
- Fubini's theorem: If $f:Z\to\mathbb{R}$ is Borel-measurable and non-negative, then
 - 1. $x \mapsto \int f(x,y)K(x,dy)$ is \mathcal{X} -measurable, and 2.

$$\int f d(\mu \times K) = \int_X \left[\int_Y f(x,y) K(x,dy) \right] \mu(dx).$$

• (Durrett Thm 1.7.2 p37) **Durrett's version of Fubini:** If $f \ge 0$ or $\int |f| d\mu < \infty$ (here $\mu = \mu_1 \times \mu_2$, then

$$\int_{X} \int_{Y} f(x, y) \mu_{2}(dy) \mu_{1}(dx) = \int_{X \times Y} f d\mu = \int_{Y} \int_{X} f(x, y) \mu_{1}(dx) \mu_{2}(dy).$$

Convergence, strong & weak law of large numbers (Lec 13)

- (Billingsley Prob 20.24, HW7) In a discrete probability space, convergence in probability is equivalent to a.s. convergence.
- (Durrett Thm 2.4.1 p73) **Strong law of large numbers:** Let $X_1, X_2, ...$ be pairwise independent identically distributed random variables with $\mathbb{E}|X_i| < \infty$. Let $\mathbb{E}X_i = \mu$ and $S_n = X_1 + \cdots + X_n$. Then as $n \to \infty$, $S_n/n \to \mu$ a.s.
- (Durrett Them 2.4.5 p75) Let X_1, X_2, \ldots be i.i.d. with $\mathbb{E}X_i^+ = \infty$ and $\mathbb{E}X^- < \infty$. Then $S_n/n \to \infty$ a.s.
- SLLN without i.i.d. assumption: Let $X_1, X_2, ...$ be mutually independent such that the X_k 's each have finite variance and $\sum_{k=1}^{\infty} \frac{\operatorname{Var} X_k}{k^2} < \infty$. Then $\bar{X}_n \mathbb{E}[\bar{X}_n] \stackrel{a.s.}{\to} 0$.
- Siegmund's theorem about deviations: Let X_i be i.i.d. with mean 0 and variance 1. For each $\varepsilon > 0$, let $m_{\varepsilon} = \sup\{n \geq 0 : |S_n/n| \geq \varepsilon\}$. Then for $0 \leq x < \infty$, $\mathbb{P}(\varepsilon^2 m_{\varepsilon} \leq x) \to 2\Phi(x) 1$ as $\varepsilon \to 0$.
- (Durrett Thm 2.2.6) Weak law for triangular arrays: For each n, let $X_{n,k}$, $1 \le k \le n$ be independent. Let $b_n > 0$ with $b_n \to \infty$, and let $\bar{X}_{n,k} = X_{n,k} 1_{\{|X_{n,k} \le b_n|\}}$. Suppose that as $n \to \infty$,

1.
$$\sum_{k=1}^{n} P(|X_{n,k} > b_n|) \to 0$$
, and

2.
$$\frac{1}{b_n^2} \sum_{k=1}^n \mathbb{E} \bar{X}_{n,k}^2 \to 0.$$

If we let
$$S_n = X_{n,1} + \cdots + X_{n,n}$$
 and $a_n = \sum_{k=1}^n \mathbb{E} \bar{X}_{n,k}$, then $\frac{S_n - a_n}{b_n} \to 0$ in probability.

- (Durrett Thm 2.2.7) Weak law of large numbers: Let X_1, X_2, \ldots be i.i.d. with $xP(|X_i| > x) \to 0$ as $x \to \infty$. If we let $S_n = X_1 + \cdots + X_n$ and $\mu_n = \mathbb{E}\left[X_1 \mathbf{1}_{\{|X_1 \le n|\}}\right]$, then $S_n/n \mu_n \to 0$ in probability.
- Kolmogorov Three Series Theorem: Let $X_1, X_2, ...$ be independent random variables. The random series $\sum_{n=1}^{\infty} X_n$ converges almost surely in \mathbb{R} iff the following conditions hold for some A > 0:

1.
$$\sum_{n=1}^{\infty} \mathbb{P}(|X_n| \ge A) \text{ converges},$$

2. Let
$$Y_n = X_n 1_{\{|X_n| \le A\}}$$
, then $\sum_{n=1}^{\infty} \mathbb{E} Y_n$ converges, and

3.
$$\sum_{n=1}^{\infty} \text{Var } Y_n \text{ converges.}$$

- (Durrett Thm 2.5.3) Special case of three series theorem: In the set-up above, further assume that $\mathbb{E}X_n = 0$ for all n. If $\sum_{n=1}^{\infty} \operatorname{Var} X_n < \infty$, then $\sum_{n=1}^{\infty} X_n$ converges almost surely.
- (Billingsley Prob 22.3, HW7) Generalized Borel-Cantelli lemmas: Suppose $\{X_n\}$ are non-negative. If $\sum \mathbb{E}X_n < \infty$, then $\sum X_n$ converges w.p. 1. If the X_n are independent and uniformly bounded, and $\sum \mathbb{E}X_n = \infty$, then $\sum X_n$ diverges w.p. 1.

Stein's method (Lec 14-15)

- Set-up:
 - $-\{X_i\}_{i\in I}$ a collection of 0/1-valued random variables (I some index set),
 - $-W := \sum_{i \in I} X_i,$
 - $-p_i := \mathbb{E}X_i = P\{X_i = 1\},\$
 - $-\lambda := \sum_{i \in I} p_i = \mathbb{E}W.$
 - A **graph** is an ordered pair (I, E), where I is the set of vertices and $E \subseteq I \times I$ is the set of edges. E must be symmetric (i.e. $(i, j) \in E \Leftrightarrow (j, i) \in E$) and has no loops (i.e. $(i, i) \notin E$ for all i).
 - A graph (I, E) is a **dependency graph** for $\{X_i\}_{i \in I}$ if for any two disjoint subsets $I_1, I_2 \subseteq I$ with no edges between them, $\{X_i\}_{i \in I_1}$, $\{X_j\}_{j \in I_2}$ are independent. (A dependency graph need not be unique.)
 - For a vertex $i \in I$, the **neighborhood** of i is $N_i := \{i\} \cup \{j : (i,j) \in E\}$.
- Let $P_{\lambda}(A) := \text{probability that value of Poisson}(\lambda)$ random variable falls in A. For every $A \subseteq \mathbb{N}$, there is a unique function $f : \mathbb{N} \to \mathbb{R}$ such that

$$\lambda f(w+1) - wf(w) = \delta_A(w) - P_\lambda(A)$$

for $w = 0, 1, 2, \dots$ Moreover, $|f(w)| \le 1.25$ and $|f(w+1) - f(w)| \le \min(3, \lambda^{-1})$.

- Stein's Equation: $Z \sim \text{Poisson}(\lambda)$ if and only if for every $f : \mathbb{N} \to \mathbb{R}$ bounded, $\mathbb{E}\{\lambda f(Z+1) Zf(Z)\} = 0$.
- Let $\{X_i\}_{i\in I}$ be a collection of 0/1-valued random variables, and let (I, E) be a dependency graph for $\{X_i\}_{i\in I}$. Let $p_{ij} = P(X_i = X_j = 1)$, and let P_W denote the probability distribution of $W = \sum X_i$. Then

$$||P_W - \text{Poisson}(\lambda)||_{TV} \le \min(3, \lambda^{-1}) \left[\sum_{i \in I} \sum_{j \in N_i \setminus \{i\}} p_{ij} + \sum_{i \in I} \sum_{j \in N_i} p_i p_j \right].$$

Weak convergence & Central Limit Theorem (Lec 16-18)

- (Lec 18) Slutsky's Theorem: If $X_n \Rightarrow Z$ and $X_n Y_n \Rightarrow 0$, then $Y_n \Rightarrow Z$.
- (Lec 16) Let $C_b^{\infty} = \{f : f : \mathbb{R} \to \mathbb{R}, f \text{ has bounded derivatives of all order}\}$. If F_n , F are distribution functions on \mathbb{R} such that $F_n \Rightarrow F$, then

$$\int_{-\infty}^{\infty} f dF_n \to \int_{-\infty}^{\infty} f dF$$

for all $f \in \mathcal{C}_b^{\infty}$. The converse is true as well.

• (Lec 16) **Lindeberg's CLT**: Let $\{X_{ni}\}$ be a triangular array. Suppose that $\mathbb{E}(X_{ni}) = 0$ for all n and i, and that $\operatorname{Var} X_{ni} = \sigma_{ni}^2 < \infty$. Let $S_n = \sum_{i=1}^{k_n} X_{ni}$, $s_n^2 = \sum_{i=1}^{k_n} \sigma_{ni}^2$ (i.e. sum of the n^{th} row and its variance.)

Suppose for every n, $\{X_{ni}\}_{i=1}^{k_n}$ is independent. Suppose also that the Lindeburg condition holds: i.e. for every $\varepsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{s_n^2} \sum_{i=1}^{k_n} \int_{\{|X_{ni}| > \varepsilon s_n\}} X_{ni}^2 dP = 0.$$

Then for every $x \in \mathbb{R}$,

$$P\left\{\frac{S_n}{s_n} \le x\right\} \to \Phi(x).$$

• (Lec 17) Lyapounov's CLT: Let X_{ni} be a triangular array such that the X_{ni} 's have mean 0, $\mathbb{E}|X_{ni}|^{2+\delta} < \infty$ for some $\delta > 0$.

If Lyapunov's condition holds:

$$\lim_{n \to \infty} \frac{1}{s_n^{2+\delta}} \sum_{i=1}^{k_n} \mathbb{E}|X_{ni}|^{2+\delta} = 0,$$

then
$$P\left\{\frac{S_n}{s_n} \le x\right\} \to \Phi(x)$$
.

- CLT for single variable: Assume X_i 's are i.i.d. with finite mean μ and finite variance σ^2 . Let $S_n = X_1 + \cdots + X_n$. Then $\sqrt{n} \left(\frac{S_n}{n} \mu \right) \stackrel{d}{\to} \mathcal{N}(0, \sigma^2)$. Equivalently, $\frac{S_n n\mu}{\sigma/\sqrt{n}} \stackrel{d}{\to} \mathcal{N}(0, 1)$.
- In trying to prove that the condition for CLT holds (and a direct verification of the conditions doesn't work), consider using truncation or looking at characteristic functions.
- Lindeberg-Feller: Consider the set-up for Lindeberg CLT where instead of a triangular array we just have X_1, X_2, \ldots independent. If this sequence satisfies $\max_{k=1,\ldots,n} \frac{\sigma_k^2}{s_n^2} \to 0$ as $n \to \infty$, then Lindeberg's condition is both necessary and sufficient.
- (Lec 17) Berry-Esseen bounds for CLT approximation: Assume X_1, \ldots, X_n have mean 0, variance σ_i^2 , and $\mathbb{E}|X_i|^3 = r_i$ are finite. Then

$$\sup_{-\infty < x < \infty} \left| P\left\{ \frac{S_n}{s_n} \le x \right\} - \Phi(x) \right| \le \frac{0.78R_n}{s_n^3},$$

where $R_n = \sum_{i=1}^n r_i$. If the X_i 's are iid, the RHS is $\frac{0.78\mathbb{E}|X_1|^3}{\sigma^3\sqrt{n}}$.

Characteristic functions (Lec 18-20)

- (Lec 18) **Skorohod's Theorem:** Let F_n , F be distribution functions on \mathbb{R} such that $F_n \Rightarrow F$. Then there exist (Ω, \mathcal{F}, P) and random variables $\{Y_n\}$, Y with distribution functions $\{F_n\}$, F such that $Y_n(\omega) \to Y(\omega)$ for all ω .
- (Lec 19) Continuity Theorem: $F_n \Rightarrow F$ iff $\phi_n(t) \to \phi(t)$ for all t. (The same is true for MGFs, if they exist.)
- (Lec 19) **Definition of tightness:** A family of probabilities $\{\mu_n\}$ on \mathbb{R} is **tight** if for every $\varepsilon > 0$, there exist a < b so that $\mu_n(a, b] > 1 \varepsilon$ for all n. We say that $\{\mu_n\}$ is **almost compactly supported**.
- (Lec 19) $\{\mu_n\}$ is tight iff for every subsequence $\{n_k\}_{k=1}^{\infty}$, there exists a further subsequence $\{n_{k_i}\}_{i=1}^{\infty}$ and a probability μ so that $\mu_{n_{k_i}} \Rightarrow \mu$.

- (Lec 19) Cantor's diagonal argument: Let $\{X_{ij}\}_{i,j=1}^{\infty}$ be a 2D array of real numbers such that each row is bounded. Then there exists a subsequence $\{n_k\}_{k=1}^{\infty}$ of \mathbb{N} and $\{l_r\}_{r=1}^{\infty}$ such that $x_{rn_k} \to l_r$ as $k \to \infty$ for all $r \in \mathbb{N}$.
- (Lec 19) **Helly selection theorem:** If $\{F_n\}_{n=1}^{\infty}$ are any distribution functions on \mathbb{R} , then there exist monotone, right-continuous F and a subsequence $n_k \nearrow \infty$ such that $F_{n_k}(x) \to F(x)$ for all points of continuity x of F. (If $\{F_n\}$ is tight, the subsequence can be chosen suc that limit F is a distribution function.)
- (Lec 20) Inversion formula: If a < b with $\mu\{a\} = \mu\{b\} = 0$ (i.e. not atoms of the measure), then

$$\mu(a,b] = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{itb}}{it} \phi(t) dt.$$

- (Lec 20) If $\phi_{\mu}(t) = \phi_{\nu}(t)$ for all t, then $\mu = \nu$.
- (Lec 20) Fourier transform: If $\phi(t)$ is integrable, and if F is the corresponding distribution function, then F has density $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \phi(t) dt$.
- (Lec 20) A weighted average of characteristic functions is still a characteristic function.
- (Lec 20) **Pólya's criteria:** If ϕ is continuous, non-negative, even, $\phi(0) = 1$, ϕ convex on $(0, \infty)$ and $(-\infty, 0)$, then ϕ is a characteristic function.
- (Lec 20) 2 characteristic functions can agree in a neighborhood of 0 without having the same measure.
- $\phi_{X+Y} = \phi_X \phi_Y$ does **not** imply that X and Y are independent. (E.g. X = Y = standard Cauchy.) However, if X and Y and \mathbb{R}^d -valued random variables, then

$$X \text{ and } Y \text{ are independent} \quad \Leftrightarrow \quad \mathbb{E}\left[e^{t(X,Y)\cdot(\xi,\eta)}\right] = \mathbb{E}\left[e^{tX\cdot\xi}\cdot\mathbb{E}\left[e^{t(X,Y)\cdot(\xi,\eta)}\right]\right]$$