CLUSTERING

CLUSTERING ALGORITHMS

- K-means and its variants
 - What is k-means / algorithm, how to select the initial centroids for k-means (k-means++, bisecting k-means), limitations of k-means (size, density, shape) and the methods to overcome the limitations.
 - partition based clustering (each cluster / group is not overlapped with any other cluster / group.
- Hierarchical clustering
- Density-based clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

STRENGTHS OF HIERARCHICAL CLUSTERING

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level

- They may correspond to meaningful taxonomies
 - Example: biological science

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains an individual point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

AGGLOMERATIVE CLUSTERING ALGORITHM

Key Idea: Successively merge closest clusters

- Basic algorithm
 - I. Compute the proximity matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - **6. Until** only a single cluster remains

- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

STEPS I AND 2

Start with clusters of individual points and a proximity matrix

	р3	 _	р5	<u> </u>
				_

INTERMEDIATE SITUATION

After some merging steps, we have some clusters

	C1	C2	С3	C4	C 5
<u>C1</u>					
C2					
C 3					
C4					
C 5					

Proximity Matrix

STEP 4

■ We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

C5

STEP 5

The question is "How do we update the proximity matrix?"

Proximity Matrix

HOW TO DEFINE INTER-CLUSTER DISTANCE

	M	IN
--	---	----

- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	р3	р4	p 5	<u>.</u> .
p1						
p2						
р3						
p4						
p 5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	р3	p4	p5	<u> </u>
p1						
p2						
р3						
p4						
p5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p 1	p2	рЗ	p4	p 5	<u> </u>
p1						
p2						
p3						
<u>p4</u> p5						

MAX

Group Average

Zd L201, yi)

- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p 1	p2	р3	p4	р5	<u> </u>
p1						
p2						
р3						
р4						
p5						
						_

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

MIN OR SINGLE LINK

- Proximity of two clusters is based on the two closest points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph
- Example:

Distance Matrix:

	p1	\mathbf{p}^2	<u>р</u> 3	p4	p5	p6
p1	0.00	0.24	-0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
-p3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	(0.14)	0. <mark>2</mark> 8	0.29	0.00	0.39
р6	0.23	0.25	A STATE OF THE STA	0.22	0.39	0.00

Nested Clusters

Dendrogram

STRENGTH OF MIN

Can handle non-elliptical shapes

LIMITATIONS OF MIN

MAX OR COMPLETE LINKAGE

- Proximity of two clusters is based on the two most distant points in the different clusters
 - Determined by all pairs of points in the two clusters

Distance Matrix:

20	p1	p2	p3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
p3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Nested Clusters

Dendrogram

STRENGTH OF MAX

Less susceptible to noise

LIMITATIONS OF MAX

- Tends to break large clusters
- Biased towards globular clusters

GROUP AVERAGE

Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} \sum\limits_{\substack{p_{i} \in Cluster_{j} \\ |Cluster_{i}| \times |Cluster_{j}|}} \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i} \\ |Cluster_{i}|}} \sum\limits_{\substack{p_{i} \in Cluster_{j} \\ |Cluster_{i}|}} \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i} \\ |Cluster_{j}|}} \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i} \\ |Cluster_{i}|}} \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i}|}} \frac{\sum\limits_{\substack{p_{i} \in$$

Distance Matrix:

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

HIERARCHICAL CLUSTERING: GROUP AVERAGE

Nested Clusters

Dendrogram

HIERARCHICAL CLUSTERING: GROUP AVERAGE

Compromise between Single and Complete Link

- Strengths
 - Less susceptible to noise

- Limitations
 - Biased towards globular clusters

CLUSTER SIMILARITY: WARD'S METHOD

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
 - Similar to group average if distance between points is distance squared

- Less susceptible to noise
- Biased towards globular clusters

- Hierarchical analogue of K-means
 - Can be used to initialize K-means

HIERARCHICAL CLUSTERING: COMPARISON

