Питання на семестрову роботу з курсу «Дискретна математика»

1. Нехай дані множини:

U={1;2;3;4;5;6;7;8;9;10;11;12;13;14}, A={1;2;3;4;7;9}, B={3;4;5;6;11;12;13}, C={2;3;4;7;8;12;13;14}, D={1;7;14}.

Обчислити значення виразу: $((A \cup \overline{C}) \cap D) \setminus (C \cup D)$

- 2. Нехай U= $\{1, 2, 3, 4, 5, 6, 7, 8\}$, A= $\{1, 2, 3, 4, 5\}$, B= $\{2, 4, 6, 8\}$, C= $\{1, 3, 5, 7\}$, D= $\{1, 2, 4, 5, 7, 8\}$. Виразити через відомі множини A, B, C, D множину $\{1, 5\}$.
- 3. Нехай U={1, 2, 3, 4, 5, 6, 7, 8}, A={1, 2, 3, 4, 5}, B={2, 4, 6, 8}, C={1, 3, 5, 7}, D={1, 2, 4, 5, 7, 8}. Знайти (D \ A) \cap (B \cup C) \cup (C \triangle D).
- 4. Виразити через множини A, B, C множину E, якій відповідає заштрихована область.

5. Виразити через множини A, B, C, D множину E, якій відповідає зафарбована область.

6. Визначити, чи ε відношення

 $R=\{(x,y)|$ «число x більше числа y на 2» $\}$ відношенням строгого порядку.

- 7. Перелічіть всі можливі варіанти умов, за яких (a,b,c) і (k,l,m) перебувають у відношенні строгого порядку.
- 8. Визначте, чи мають властивості рефлексивності, симетричності, антисиметричності та транзитивності наступні відношення на множині {1, 2, 3, 4, 5}:

 $R1: aR1b \leftrightarrow |a-b| = 1;$

 $R2: aR2b \leftrightarrow 0 < a-b < 3$;

Представте графічно відношення: $R1 \cup R2, R1 \cap R2, (R2)^{-1}$.

9. Визначите, чи мають властивості рефлексивності, симетричності, антисиметричності та транзитивності наступні відношення на множині {1, 2, 3, 4, 5}:

 $R1: aR1b \leftrightarrow a+b$ – парне число;

 $R2: aR2b \leftrightarrow a \ge b^2$.

Представте графічно відношення: $R1 \cup R2, R1 \cap R2, (R2)^{-1}$.

- 10. Дана множина $A = \{1,2,3,4,5\}$ й відношення $R \subseteq A \times A$, що включає такі елементи $R = \{(1,2),(2,3),(3,4),(4,5)\}$. Доповнити його до еквівалентного.
- 11. Із пропорції $C_x^{y+1}:C_x^y:C_x^{y-1}=2:2:1$ знайти x та y.
- 12. З даної пропорції знайти x та y.

$$C_{x+1}^{y+1}: C_{x+1}^{y}: C_{x+1}^{y-1} = 5:4:2.$$

- 13. Із пропорції $C_x^{y+1}:C_x^y:C_x^{y-1}=3:3:2$ знайти x та y .
- 14. Обчислити числові значення елементів множини:

$$A = \left\{ \frac{C_n^3}{C_n^2} \middle| n = 6, 9, 12, 15, 18, 21 \right\}.$$

- 15. Скільки різних слів можна побудувати перестановкою букв у слові *інтеграл* за умови, що в кінці та на початку слова завжди повинна стояти приголосна буква?
- 16. Нехай дана множина $A = \{1, 2, 3, 4, 5\}$. Виписати всі комбінації без повторень C_5^3 , визначити їх кількість за допомогою комбінаторної формули.
- 17. Нехай дано слово *пара*. Виписати всі перестановки букв із повтореннями P(1,2,1), визначити їх кількість за допомогою комбінаторної формули.

- 18. Нехай даний кортеж A = (k, l, m, n). Виписати всі перестановки елементів даного кортежу. Визначити кількість таких перестановок за допомогою комбінаторної формули.
- 19. Нехай відомо, що $C_n^{17} = 171$ й $C_n^{16} = 969$. Визначити, чому дорівнює C_{n+1}^{17} .
- 20. Нехай дані множини $A = \{1, 2, 3, 4, 9\}$, $B = \{3, 4, 5, 6, 9\}$ і $C = \{5, 6, 7, 8, 9\}$. Обчислити $|A \cup B \cup C|$ за допомогою методу включень і виключень.
- 21. Нехай даний граф G(V,E) із загальною сумою степенів вершин $\sum_{v \in V} \deg(v) = 1024$. У скільки разів збільшиться потужність множини ребер, якщо над графом виконати операцію введення вершин, після якої одержимо $\sum_{v \in V} \deg(v) = 1536$.
- 22. Побудувати циркулянтний граф з вершинами $V = \{0,1,2,3,4,5,6,7\}$ й множиною ребер, побудованою за правилом $E = \left\{ (i,j) \middle| (|i-j| \bmod 8) = s_k, s_k = \overline{1,2} \right\}.$
- 23. Нехай даний орграф G(V,E), що складається з вершин $V = (v_1, v_2, v_3, v_4, v_5)$. Дані також прямі відображення кожної з вершин:

$$\Gamma^{+}(v_{1}) = \{v_{2}, v_{3}, v_{4}\}, \Gamma^{+}(v_{2}) = \{v_{3}, v_{4}, v_{5}\}, \Gamma^{+}(v_{3}) = \{v_{4}, v_{5}, v_{1}\}, \Gamma^{+}(v_{4}) = \{v_{5}, v_{1}, v_{2}\}, \Gamma^{+}(v_{5}) = \{v_{1}, v_{2}, v_{3}\}.$$

Обчислити загальну суму напівстепенів заходу даного графа.

24. Нехай даний граф G.

Побудувати 3 можливі правильні підграфи графа G, що не порушують зв'язності початкового графа. Побудувати суграф графа G.

25. Дана матриця суміжності графа G

По матриці побудувати граф і визначити, чи ϵ даний граф неорієнтованим, орієнтованим або змішаним. Чи існують в графі петлі й чи ϵ граф регулярним.

26. Довести ізоморфність графів G_1 і G_2 шляхом запису відображення вершин одного графа у вершини іншого у вигляді $w_i = f\left(v_j\right), i, j = \overline{1,5}$ або таблично.

27. Дано два графа матрицями суміжності:

$$R_{1} = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix} \quad R_{2} = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Скласти матрицю суміжності, відповідну до об'єднання й перетину графів. Намалювати початкові й результуючі графи.

28. Нехай дана матриця ваг ребер А для деякого графа G

$$A = \begin{pmatrix} 0 & 1 & 5 & 0 & 7 & 6 \\ 1 & 0 & 0 & 2 & 0 & 0 \\ 5 & 0 & 0 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 & 3 & 0 \\ 7 & 0 & 2 & 3 & 0 & 8 \\ 6 & 0 & 0 & 0 & 8 & 0 \end{pmatrix}$$

Намалювати граф G і вказати послідовність додавання ребер по алгоритму Краскала при побудові остовного дерева найменшої ваги.

29. Знайти доповнення графа й визначити максимальну довжину елементарного циклу для вершини v_1

30. Даний граф G(V,E)

Побудувати матриці інцидентності й суміжності даного графа. Визначити напівстепені входу і виходу для кожної з вершин.

31. Знайти декартовий добуток графів.

32. Знайти декартовий добуток двох графів

33. Знайти декартовий добуток графів.

34. Знайти декартовий добуток двох графів

35. Знайти декартовий добуток двох графів

36. Даний граф G. Знайдіть матрицю суміжності, інцидентності й усі маршрути довжини 2, що виходять із вершини 1.

37. Знайдіть доповнення графа

38. Знайдіть доповнення графа.

39. Знайти мінімальне остовне дерево в графі

40. Для заданої матриці суміжності намалюйте граф, визначте зв'язність графа й степінь кожної вершини.

$$A = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 2 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

41. Які з представлених матриць суміжності описують дерево?

		F	\ 1								A	2				A3								
	1	2	3	4	5	6	7		1	2	3	4	5	6	7			1	2	3	4	5	6	7
1	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0		1	0	0	1	0	0	0	0
2	0	0	0	0	0	1	0	2	0	0	0	1	1	0	0		2	0	0	0	1	0	0	0
3	0	0	0	0	0	1	0	3	0	0	0	0	1	0	0		3	1	0	0	1	0	0	0
4	1	0	0	0	0	1	0	4	0	1	0	0	0	1	1		4	0	1	1	0	0	1	1
5	0	0	0	0	1	0	1	5	1	1	1	0	0	0	1		5	0	0	0	0	0	1	0
6	0	1	1	1	0	0	1	6	0	0	0	1	0	0	0		6	0	0	0	1	1	0	0
7	0	0	0	0	1	1	0	7	0	0	0	1	1	0	0		7	0	0	0	1	0	0	0

42. Які з представлених матриць суміжності описують дерево?

		F	\ 1						A2													A3							
	1 2 3 4 5 6 7									1	2	3	4	5	6	7			1	2	3	4	5	6	7				
1	0	0	0	1	0	0	0		1	0	0	0	0	1	0	0		1	0	0	1	0	0	0	0				
2	0	0	0	0	0	1	0		2	0	0	0	0	1	0	0		2	0	0	0	1	0	0	0				
3	0	0	0	0	0	1	0		3	0	0	0	0	1	0	0		3	1	0	0	1	0	0	0				
4	1	0	0	0	0	1	0		4	0	0	0	0	0	1	1		4	0	1	1	0	1	1	1				
5	0	0	0	0	1	0	1		5	1	1	1	0	0	0	1		5	0	0	0	1	0	1	0				
6	0	1	1	1	0	0	1		6	0	0	0	1	0	0	0		6	0	0	0	1	1	0	0				
7	0	0	0	0	1	1	0		7	0	0	0	1	1	0	0		7	0	0	0	1	0	0	0				

43. Які з представлених матриць суміжності описують дерево?

		F	\ 1						A2													A3							
	1	1 2 3 4 5 6 7								1	2	3	4	5	6	7			1	2	3	4	5	6	7				
1	0	0	0	1	0	0	0		1	0	0	0	0	1	0	0		1	0	0	1	0	0	0	0				
2	0	0	0	0	0	1	0		2	0	0	0	1	1	0	0		2	0	0	0	1	0	0	0				
3	0	0	0	0	0	1	0		3	0	0	0	0	1	0	0		3	1	0	0	1	0	0	0				
4	1	0	0	0	0	1	0		4	0	1	0	0	0	1	1		4	0	1	1	0	0	1	1				
5	0	0	0	0	0	0	1		5	1	1	1	0	0	0	1		5	0	0	0	0	1	1	0				
6	0	1	1	1	0	0	1		6	0	0	0	1	0	0	0		6	0	0	0	1	1	0	0				
7	0	0	0	0	1	1	0		7	0	0	0	1	1	0	0		7	0	0	0	1	0	0	0				

44. Які з представлених матриць суміжності описують дерево?

		P	\ 1					A2														A3							
	1	2	3	4	5	6	7			1	2	3	4	5	6	7			1	2	3	4	5	6	7				
1	0	0	0	1	0	0	0		1	0	0	0	0	1	0	0		1	0	0	1	0	0	0	0				
2	0	0	0	0	0	1	0		2	0	0	0	1	0	0	0		2	0	0	0	1	0	0	0				
3	0	0	0	0	0	1	0		3	0	0	0	1	1	0	0		3	1	0	0	1	0	0	0				
4	1	0	0	0	0	1	0		4	0	1	1	0	0	1	0		4	0	1	1	0	0	1	1				
5	0	0	0	0	1	0	1		5	1	0	1	0	0	0	1		5	0	0	0	0	0	1	0				
6	0	1	1	1	0	0	1		6	0	0	0	1	0	0	0		6	0	0	0	1	1	0	0				
7	0	0	0	0	1	1	0		7	0	0	0	0	1	0	0		7	0	0	0	1	0	0	0				

45. Які з представлених матриць суміжності описують дерево?

			1	, ,				1	,	J		2			,	,	A3							
	1	2	3	4	5	6	7		1	2	3	4	5	6	7		1	2	3	4	5	6	7	
1	0	0	0	1	0	0	0	1	0	0	0	0	1	0	1	1	0	0	1	0	0	0	0	
2	0	0	0	0	0	1	0	2	0	0	0	0	1	0	0	2	0	0	0	1	0	0	0	
3	0	0	0	0	0	1	0	3	0	0	0	0	1	0	0	3	1	0	0	1	1	0	0	
4	1	0	0	0	0	1	0	4	0	0	0	0	0	1	1	4	0	1	1	0	0	0	1	
5	0	0	0	0	0	1	1	5	1	1	1	0	0	0	1	5	0	0	1	0	0	1	0	
6	0	1	0	0	1	0	0	6	0	0	0	1	0	0	0	6	0	0	0	0	1	0	0	
7	0	0	0	0	1	0	0	7	1	0	0	1	1	0	0	7	0	0	0	1	0	0	0	

- 46. Нехай дано ліс G, що включає 128 вершин та складається з 17 компонент зв'язності. Визначте загальну кількість ребер лісу G.
- 47. Нехай дано незв'язний граф G(V,E), у якому кількість ребер|E| = 456, кількість фундаментальних циклів дорівнює 10, а кількість компонент зв'язності графа дорівнює 6. Скільки вершин буде містити остовний ліс даного графа?
- 48. Нехай дано зв'язний неорієнтований граф G, що складається з 98 вершин і 162 ребер. Скільки ребер потрібно вилучити з даного графа до одержання його остовного дерева?
- 49. Нехай дано незв'язний неорієнтований граф G, що складається з 56 вершин і 184 ребер. Скільки ребер потрібно вилучити з даного графа до одержання його остовного лісу, якщо відомо, що граф включає 8 компонент зв'язності?
- 50. Нехай дано незв'язний неорієнтований граф G. Побудувати доповнення його остовного дерева й указати ті цикли розрізу початковогоого графа, що мають спільне ребро в доповненні.

