ТФКП 2 курс Домашнее задание Владислав Мозговой 1789769386

8 июня 2021 г.

Домашнее задание 10

Цифры Вашего кода — a_0 , ..., a_9 . В каждом из четырех блоков задач Вам нужно решить только один вариант, выбор которого определяется цифрами Вашего кода так, как указано.

- 1. Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа $a_3 + a_5$. Докажите или опровергните следующие утверждения.
- (0) Индекс ветвления рациональной функции степени d>1 ни в какой точке не может быть больше чем d.
- (1) Рациональная функция степени d > 1 не может иметь более двух точек, в которых индекс ветвления равен d.
- (2) Рациональная функция степени d > 1 может иметь максимум 2d 2 критических точки.
- (3) Рациональная функция степени d > 1 ни в одной точке не может иметь полюс порядка выше d.
- (4) Рациональная функция степени d > 1 может иметь более одного полюса порядка d.
- (5) Если рациональная функция f степени d > 1 имеет две геометрически различных точки ветвления степени d, то существует преобразование Мебиуса h, такое, что $h \circ f \circ h^{-1}(z) = z^{\pm d}$.
- (6) Если рациональная функция f степени d>1 имеет полюс степени d, то существует дробно-линейное преобразование h, такое, что $f\circ h(z)$ является многочленом степени d.
- (7) Известно, что рациональная функция f степени 4 имеет два геометрически различных кратных нуля и только один полюс. Тогда f является квадратом некоторой рациональной функции степени 2.
- (8) Известно, что рациональная функция f степени 2 имеет критическую точку c, такую, что f(f(c)) = c. В этом случае найдется такое дробно-линейное преобразование h, что $h \circ f \circ h^{-1}(z) = \frac{a}{z^2 2z}$ для некоторого $a \in \mathbb{C}$ (не зависящего от z) или $h \circ f \circ h^{-1}(z) = 1/z^2$.
- (9) Известно, что рациональная функция f степени 2 имеет критическую точку c, такую, что f(c)=c. В этом случае найдется такое дробно-линейное преобразование h, что $h \circ f \circ h^{-1}(z)=z^2+a$ для некоторого $a \in \mathbb{C}$ (не зависящего от z).

- **2.** Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа a_4+a_6 . Существуют ли многочлен $P:\mathbb{C}\to\mathbb{C}$ и гомеоморфизмы $\alpha,\beta:\mathbb{C}\to\mathbb{C}$ (не обязательно голоморфные), такие что $f=\beta\circ P\circ\alpha$ совпадает с выписанным ниже отображением? Строго обоснуйте ответ.
 - (0) $f(x+iy) = x^2 + iy$.
 - (1) $f(x+iy) = (x^2 y^2) + ixy$.
 - (2) $f(re^{i\theta}) = re^{2i\theta}$.
 - (3) $f(x+iy) = x^3 + iy$.
 - (4) $f(x+iy) = (x^2+y^2)(x^2-y^2+ixy)$.
 - (5) $f(z) = \frac{z|z|^2}{1+|z|^2}$.
 - (6) $f(z) = \frac{z^2|z|^2}{1+|z|^2}$.
 - (7) $f(x+iy) = e^x + iy$.
 - (8) $f(x+iy) = e^x e^{-x} + iy$.
 - (9) $f(x+iy) = \sin x + iy$.
- **3.** Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа a_1+a_5 . В следующих ниже задачах функции $f, g: \mathbb{D} \to \mathbb{C}$ являются голоморфными, а подмножество $K \subset \mathbb{D}$ является компактным. Через \mathbb{D} обозначен единичный диск $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$. Докажите или опровергните следующие утверждения.
 - (0) Множество $f(\mathbb{D} \setminus K) \setminus g(K)$ открыто в \mathbb{C} .
 - (1) Множество $f(K) \setminus g(\mathbb{D} \setminus K)$ компактно.
 - (2) Множество $\{z \in \mathbb{D} \mid \operatorname{Re} f(z) > \operatorname{Im} g(z)\}$ открыто в \mathbb{C} .
 - (3) Множество Re $f(\mathbb{D})$ открыто в \mathbb{R} .
 - (4) Множество $\operatorname{Re} f(\mathbb{D})$ ограниченно.
- **(5)** Точняя верхняя грань чисел $(\text{Re } f(z))^2 + (\text{Im } f(z))^4$ не достигается при $z \in \mathbb{D}$.
 - **(6)** Множество $\operatorname{Re}(f(K)) \setminus \operatorname{Im}(g(\mathbb{D} \setminus K))$ компактно.
- (7) Если ${\rm Re}\, f(z) < {\rm Re}\, g(z)$ для всех z, таких, что |z| = r > 0, то ${\rm Re}\, f(z) < {\rm Re}\, g(z)$ при |z| < r.
- (8) Если $|f(z)|^2 < |g(z)|^3$ для всех z, таких, что |z| = r > 0, то $|f(z)|^2 < |g(z)|^3$ при |z| < r.
 - **(9)** Множество $\{|f(z)|^2 |g(z)|^2 \mid z \in \mathbb{D}\}$ открыто в \mathbb{R} .

- **4.** Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа $a_0 + a_7$.
- (0) Выразив по формуле Коши n-ую производную функции e^z в нуле через интеграл по окружности радиуса ρ с центром в 0, докажите, что

$$\int_0^{2\pi} e^{\rho \cos \phi} \cos(\rho \sin \phi - n\phi) d\phi = 2\pi \frac{\rho^n}{n!}.$$

(1) Вычислите интеграл

$$\int_0^{2\pi} \frac{d\theta}{a + b\cos\theta},$$

сведя его к интегралу от некоторой рациональной функции по окружности $\{|z|=1\}$. Здесь a и b — вещественные параметры, такие, что 0 < b < a.

(2) Докажите, что

$$\int_0^\infty e^{-x^2\cos 2\alpha}\cos(x^2\sin 2\alpha)\,dx = \frac{\sqrt{\pi}}{2}\cos\alpha,$$

проинтегрировав функцию e^{-z^2} по границе области, заданной в полярных координатах (ρ,θ) неравенствами $0<\rho< R$ и $0<\theta<\alpha$, а потом устремив R к бесконечности.

(3) Докажите, что

$$\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

Указание: проинтегрируйте функцию e^{iz}/z по границе области, заданной в полярных координатах (ρ, θ) неравенствами $r < \rho < R$ и $0 < \theta < \pi$ (здесь 0 < r < R). Рассмотрите предельный переход $r \to 0, R \to \infty$.

(4) Пусть $-\pi < a < \pi$. Докажите, что

$$\int_0^\infty \frac{\sin ax}{\sin \pi x} dx = \frac{1}{2} \operatorname{tg} \frac{a}{2}.$$

Здесь $\sh x = (e^x - e^{-x})/2$ обозначает функцию гиперболического синуса. Указание: проинтегрируйте функцию $e^{az}/\sh \pi z$ по границе прямоугольника $\{z \in \mathbb{C} \mid -R \leqslant \operatorname{Re} z \leqslant R, \ 0 \leqslant \operatorname{Im} z \leqslant 1\}$, из которого удалены маленькие диски вокруг точек 0 и i.

(5) Найдите интеграл

$$\int_0^{2\pi} (\cos \theta)^n d\theta$$

для всех целых положительных n.

(6) Докажите, что

$$\int_0^\infty \frac{x}{\sinh x} dx = \frac{\pi^2}{4}.$$

Здесь $\sinh x = (e^x - e^{-x})/2$ обозначает функцию гиперболического синуса.

(7) При a > 0, докажите, что

$$\int_0^\infty \frac{\sin x \, dx}{x(x^2 + a^2)} = \frac{\pi}{2a^2} (1 - e^{-a}).$$

Чему будет равен этот интеграл при a < 0?

(8) Пусть m и n — положительные целые числа, такие, что m < n. Докажите, что

$$\int_0^\infty \frac{x^{2m}}{x^{2n}+1} dx = \frac{\pi}{2n\sin\left(\frac{2m+1}{2n}\pi\right)}.$$

(9) Докажите, что если b > 0, то

$$\int_0^{2\pi} \operatorname{ctg} \frac{\theta - a - bi}{2} d\theta = 2\pi i.$$

Чему равен интеграл в левой части при b < 0?

- **5.** Бонусная задача. Эту задачу не надо записывать. Вы можете рассказать ее вашему семинаристу и получить за нее бонусные баллы. Решайте тот пункт, номер которого совпадает с последней цифрой числа $a_6 + a_9$.
 - (0) Задача 9.1 на стр. 159-160 основного учебника.
 - (1) Задача 9.2 на стр. 160 основного учебника.
 - (2) Задача 9.3 на стр. 160 основного учебника.
 - (3) Задача 9.4 на стр. 160 основного учебника.
 - (4) Задача 9.5 на стр. 160 основного учебника.
- (5) Пусть $f_n : \overline{\mathbb{D}} \to \mathbb{C}$ последовательность отображений, голоморфных в диске \mathbb{D} и непрерывных на его замыкании. Известно, что ограничения отображений f_n на границу диска (т.е. на единичную окружность) сходятся равномерно. Докажите, что последовательность f_n равномерно сходится в $\overline{\mathbb{D}}$.
 - (6) Задача 9.6 на стр. 160 основного учебника.

Решения

Задача 1

Необходимо решить задачу $a_3 + a_5 = 9 + 6 = 5 \mod 10$

5 задача оказалась сложной, поэтому я записал 4

Заметим что рациональную функцию можно представить в виде $\frac{p(z)}{q(z)}$, допустим что у рассматриваемой функции есть хотя бы 2 полюса степени d, назовем их z_1 , z_2 . Тогда функцию можно представить как $\frac{p(z)}{(z-z_1)^d(z-z_2)^dq_1(z)}$, $(z-z_1)^d(z-z_2)^dq_1(z)=q(z)$, тогда $\deg((z-z_1)^d(z-z_2)^dq_1(z))\geqslant 2d$, но $\deg(q(z))\leqslant d$, противоречие.

Задача 2

Необходимо решить задачу $a_4 + a_6 = 7 + 9 = 6 \mod 10$

$$a: z \mapsto \frac{z|z|}{1+|z|}$$

$$P: z \mapsto z^2$$

$$b: id$$

$$a \circ P \circ b = \frac{z^2|z|^2}{1+|z|^2}$$

Задача 3

Необходимо решить задачу $a_1 + a_5 = 7 + 6 = 3 \mod 10$

Заметим что f голоморфна, а следовательно аналитична, откуда следует что так как $\mathbb{D} \subset \mathbb{C}$ открыто, то $f(\mathbb{D})$ либо открыта в \mathbb{C} , либо константа, рассмотрим f(z) = C, $\Re(f(\mathbb{D})) = \Re(C) = \Re(a+bi) = a$, а точка не является открытым множеством

Задача 4

Необходимо решить задачу $a_0 + a_7 = 1 + 3 = 4 \mod 10$

Заметим что функция $\sinh(ax)$ симметрична относительна начала координат

$$\int_{\gamma_R} \frac{\sinh(az)e^{itz}}{\sinh(bz)} dz = 2\pi i \sum_{1 \le n \le Rb/\pi} \text{Res}\left(\frac{\sinh(az)e^{itz}}{\sinh(bz)}, \frac{\pi in}{b}\right)$$

Где γ_R — замкнутый контур, состоящий из полуокружности радиуса R и интервала [-R,R], рассмотрев $R \to +\infty$ получим:

5

$$\begin{split} &\int_{-\infty}^{+\infty} \frac{\sinh(ax)}{\sinh(bx)} e^{itx} dx = 2\pi i \sum_{n=1}^{\infty} \operatorname{Res} \left(\frac{\sinh(az) e^{itz}}{\sinh(bz)}, \frac{\pi i n}{b} \right) \\ &= \frac{2\pi i}{b} \sum_{n=1}^{\infty} \frac{\sinh(a\pi i n/b) e^{-\pi n t/b}}{\cosh(\pi i n)} = -\frac{2\pi}{b} \sum_{n=1}^{\infty} (-1)^n \sin(a\pi n/b) e^{-\pi n t/b} \\ &= -\frac{2\pi}{b} \operatorname{Im} \left(\sum_{n=1}^{\infty} (-1)^n e^{\pi n (-t+ia)/b} \right) = -\frac{2\pi}{b} \operatorname{Im} \left(\frac{1}{1 + e^{\pi (ia+t)/b}} \right) \end{split}$$

Тогда рассмотрим $t \to 0^+$

$$\int_0^\infty \frac{\sinh(ax)}{\sinh(bx)} dx = \frac{\pi}{2b} \cdot \frac{\sin(a\pi/b)}{\cos(a\pi/b) + 1}$$

Откуда при $b=\pi$ получаем

$$\frac{\pi}{2b} \cdot \frac{\sin(a\pi/b)}{\cos(a\pi/b) + 1} = \frac{1}{2} \cdot \frac{\sin(a)}{\cos(a) + 1} = \frac{1}{2} \tan \frac{a}{2}$$