Design proposal

Team Technology Moment

Dante Prins
Leo Zhao
Calista Abuan

Arm system

Dimensions

Attributes

Caster = 52g Motor = 29g Natasha = 31g Boris = 29g Screen= 4g

Servo (large/small) = 57g/10g Blue Pill = 10g Electronics = 35g 9V = 44g

Plastic @ .0002g/mm^3 -> Chassis (with claw) = 183.71g

Total mass = 52+2*29+31+2*29+4+57+10+10+35+4*44+184

Total mass = 675g

Idealized speed is $v = 3\pi rad/s*16mm = 15 cm/s$

V = 15 cm/s - should be tested experimentally in future

Servo torque

Lifting Servo:

$$\tau = rFsin\theta$$

$$r = .0155m \quad \theta = 90^{\circ}$$

$$F = F_{claw} + F_{can} = (m_{claw} + m_{can})g$$

$$= (54.86g + 21.0g) * \frac{1kg}{1000g} * 9.81 \frac{m}{s^2}$$

$$= 0.744N$$

$$\tau = 0.0115N \bullet m$$

Max = .42N-m

Claw Servo:

$$\tau = rFsin\theta$$

$$r = .007m \quad \theta = 45^{\circ}$$

$$F = mg$$

$$= (5.41g) * \frac{1kg}{1000g} * 9.81 \frac{m}{s^{2}}$$

$$= .0530N$$

$$\tau = .000263N \bullet m$$
Max = .015N-m

Turning

Approximating our robot shape to a tilted box with uniform mass

$$I = \frac{m}{12}(l^2 cos(\beta)^2 + d^2 sin(\beta)^2 + w^2)$$

$$I = 2.793 * 10^{-3} m$$

wheel ratio,
$$G = \frac{C_{wheel}}{w * \pi} = 2.34$$

$$T = \frac{2 * .8g * 7.5cm}{32mm} = 3.68Ncm$$
$$\alpha = \frac{T}{I} = 13.17 \frac{rad}{s}$$

We have an acceleration period
$$t_0 = \frac{\omega_{max}}{\alpha} = 0.715s$$
, $\omega_{max} = 3\pi$ from $max RPM = 90$

on 180° turn we have

$$G*\pi - \frac{t_0^2 \alpha}{2} = \omega_{max}(t - t_0), t = 1.148s$$

on 360° turn we have

$$G*2\pi - \frac{t_0^2 \alpha}{2} = \omega_{max}(t - t_0), t = 1.918s$$

Design Choices to Reduce Deflection

- -Heavy components near the front and back of robot overtop of wheels
- -Double thick plastic layer on bottom to increase strength

Tape Layout/ Strategy

Tape barrier will always lead back to bin. Robot must hit tape barrier to exit.

No beacon used/needed.

Minimum capacity of 2 cans in worst case. We plan to take 2 trips and collect 4 cans.

Code design

Search Algorithm

Drive forward 2ft, rotate ~360° if can is detected by sonar drive until it is close enough and pick up

If encountering tape align with normal using tape detectors and exit tape at 45°

Risks:

- Incident angle is calculated incorrectly/turning issues leads to exiting the surface or leaving at weird angles.
- Robot drives too close and knocks away can.

Return Algorithm

Drive in current (random direction) until hitting tape

Drive backwards on tape until triggering docking button/sensor

Risks:

Taking the long way back. Lower control driving forwards.

Electrical Design

H-Bridge

1 9V Battery/Power pack

1 Gate Driver

2 Optoisolators

Noise reducing capacitors

Separate ground (GND1)

Power

2 x 9V batteries

- 3V3 for Bluepil (BP_Power)
- 5V from another battery for servos (5V_Power)

Triggers

Schmitt trigger for button/sensor at rear of robot

Schmitt trigger for sensor on robot arm - signal to close claw

- Threshold adjustable via turnpot
- Frees up analog inputs

Sensors/Servos

Servos powered by separate 5V from Bluepill

4 tape sensors:

- 2 on bottom
- One on arm
- One on rear

3 servos:

- 2 for arm (1 big, 1 small)
- 1 for rear gate

2 Digital pins for ultrasonic sensor

Bluepill Pinout

Almost all PWM and Analog input pins in use

PA1 and PA2 left free if needed in future

Turnpot in PA0 for testing, debugging, parameter adjustment

Free digital I/O pins can be used for buttons - improved user interface

Display

4 LEDs to display up to 4 robot modes

Can also be used for entertainment purposes

OLED to display relevant information - useful at different stages of testing

PCB Design

H-Bridge Board

Power Board

PCB Design

Bluepill Board

PCB Design

Only major components shown

3 boards - 2 Boris, 1 Natasha

 Small PCB could be substituted for power board - more soldering but saves space

Most other components (servos, DC motors) not soldered onto PCB board directly

- interface with Bluepill by plugging into header pins
 - More flexibility in design, easier to debug

Noise Reduction/Grounding

Shielded circuit box

Aluminum foil

Shielded Cable

- Motor wires
- Sensor signal wires
- Long wires extending from circuit box

All power and ground lines connected to power PCB board at one point

Project Organization

Teamwork Strategy

Universal code structure reduces labor

Threshold constants unique for each competition surface and individual robot build

Leo

Division of design tasks to prevent redundancies and encourage specialization

