

Det vil vise sig

• at 1. og 2. har samme CI,

5. CI for
$$\theta = \sigma^2$$
 (normalf.)

Det vil vise sig

- at 1. og 2. har samme CI,
- at 3. er ligesom 1. og 2., men med S i stede for σ ,

5. CI for $\theta = \sigma^2$ (normalf.)

Det vil vise sig

- at 1. og 2. har samme CI,
- at 3. er ligesom 1. og 2., men med S i stede for σ ,
- at 4. (svær) kræver to (nye) fordelinger: χ^2 -fordelingen og t-fordelingen.

Konfidensintervaller

5. CI for $\theta = \sigma^2$ (normalf.)

Kendt varians

1. Kendt σ , asymptotisk CI

- Antagelser: X_1, X_2, \dots, X_n stikprøve med kendt $Var(X_1) = \sigma^2$. n er stor.
- Asymptotisk $(1 \alpha)100\%$ CI for $\theta = \mu$ er

$$\left[\overline{X}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\overline{X}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right].$$

Konfidensintervaller

Kendt varians

1. Kendt σ , asymptotisk CI

- Antagelser: X_1, X_2, \dots, X_n stikprøve med kendt $Var(X_1) = \sigma^2$. n er stor.
- Asymptotisk $(1 \alpha)100\%$ CI for $\theta = \mu$ er

$$\left[\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right].$$

2. Kendt σ , normalfordeling, eksakt CI

- Antagelser: $X_1, X_2, ..., X_n$ normalfordelt stikprøve, kendt $Var(X_1) = \sigma^2$.
- Eksakt $(1 \alpha)100\%$ CI for $\theta = \mu$ er

$$\left[\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right].$$

Ukendt varians

3. Ukendt σ , asymptotisk CI

- Antagelser: $X_1, X_2, ..., X_n$ stikprøve med ukendt varians. n er stor.
- Asymptotisk $(1 \alpha)100\%$ CI for $\theta = \mu$ er

$$\left[\overline{X}-Z_{\alpha/2}\frac{\mathbf{S}}{\sqrt{n}},\overline{X}+Z_{\alpha/2}\frac{\mathbf{S}}{\sqrt{n}}\right].$$

Ukendt varians

3. Ukendt σ , asymptotisk CI

- Antagelser: $X_1, X_2, ..., X_n$ stikprøve med ukendt varians. n er stor.
- Asymptotisk $(1 \alpha)100\%$ CI for $\theta = \mu$ er

$$\left[\overline{X} - z_{\alpha/2} \frac{\mathbf{S}}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \frac{\mathbf{S}}{\sqrt{n}}\right].$$

4. Ukendt σ , normalfordeling, eksakt CI

- Antagelser: X_1, X_2, \dots, X_n normalfordelt stikprøve med ukendt varians.
- Eksakt $(1 \alpha)100\%$ CI for $\theta = \mu$ er

$$\left[\overline{X} - \mathbf{t_{\alpha/2,n-1}} \frac{\mathbf{S}}{\sqrt{n}}, \overline{X} + \mathbf{t_{\alpha/2,n-1}} \frac{\mathbf{S}}{\sqrt{n}}\right].$$

5. CI for varians

5. Ukendt μ , ukendt σ^2 , normalfordeling, eksakt CI for σ^2

- Antagelser: $X_1, X_2, ..., X_n$ normalfordelt stikprøve med ukendt middelværdi og varians.
- Eksakt $(1 \alpha)100\%$ CI for $\theta = \sigma^2$ er

$$\bigg[\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}},\frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}\bigg].$$

