Student Name: ID:

McGill University

Faculty of Science

Department of Mathematics and Statistics

Statistics Part A Comprehensive Exam Theory Paper

Date: Tuesday, May 14, 2013 Time: 13:00 – 17:00

Instructions

- Answer only **two** questions out of Section P. If you answer more than two questions, then only the **FIRST TWO questions will be marked.**
- Answer only **four** questions out of Section S. If you answer more than four questions, then only the **FIRST FOUR questions will be marked.**

Questions	Marks
P1	
P2	
Р3	
S1	
S2	
S3	
S4	
S5	
S6	

This exam comprises the cover page and four pages of questions.

Section P Answer only two questions out of P1–P3

P1.

Consider Lebesgue measure λ on $((0,1],\mathcal{B})$, where \mathcal{B} are the Borel sets of (0,1]. Fix a bijection $\sigma:\{1,2,\ldots\}\to\{1,2,\ldots\}$, and define a map $T:(0,1]\to(0,1]$ as follows. If $x\in(0,1]$ has dyadic expansion $0.x_1x_2\ldots$ set $T(x)=0.x_{\sigma(1)}x_{\sigma(2)}\ldots$

(Note: if this expansion is not unique then $x = m/2^n$ for some $m, n \in \mathbb{N}$ with $m \le 2^n$; in this case we use the expansion that ends with an infinite sequence of zeros rather than an infinite sequence of ones.)

- (a) Prove that $T((0, m/2^n])$ is measurable for all $m, n \in \mathbb{N}$ with $m \leq 2^n$. (4 Marks)
- (b) Show that $\{(0,x]: x=m/2^n, m, n \in \mathbb{N}, m \leq 2^n\}$ generates $\mathcal{B}((0,1])$; conclude that T and T^{-1} are both measurable maps. (8 Marks)

 (Hint: one of these follows from the other by replacing σ by σ^{-1} .)
- (c) Show that that $\lambda(T(B)) = \lambda(B)$ for all $B \in \mathcal{B}$. (8 Marks) (Hint: First show this for some simpler collection of sets, then use the Carathéodory Extension theorem.)

P2.

Let A, B, C be strictly positive, independent random variables with distribution function F. Show that the quadratic equation $Az^2 + Bz + C = 0$ has real zeros with probability

$$\int_0^\infty \int_0^\infty F\left(\frac{x^2}{4y}\right) dF(x) dF(y).$$

(20 Marks)

P3.

Fix a non-negative random variable X on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and a σ -algebra $\mathcal{G} \subset \mathcal{F}$.

- (a) Show that almost surely $\mathbb{E}[X \mid \mathcal{G}] = \int_0^\infty \mathbb{P}[X > t \mid \mathcal{G}] dt$. (10 Marks)
- **(b)** Show that almost surely $\mathbb{P}[X \ge a \mid \mathcal{G}] \le a^{-t} \mathbb{E}[X^t \mid \mathcal{G}].$ (10 Marks)

Section S Answer only four questions out of S1–S6

S1.

Let (S_1, S_2) be a random pair uniformly distributed on the triangle

$$S = \{(x, y) \in [0, \infty)^2 : x + y \le 1\}$$

and set $S_3 = 1 - S_1 - S_2$.

(a) For arbitrary $s_1, s_2, s_3 \in \mathbb{R}$, compute the probability

$$Pr(S_1 > s_1, S_2 > s_2, S_3 > s_3).$$

(7 marks)

(b) Determine the distribution of S_3 .

(6 marks)

(c) Show that the variables

$$\frac{S_1}{S_1 + S_2}$$
 and $\left(\frac{S_1 + S_2}{S_1 + S_2 + S_3}\right)^2$

are independent and uniformly distributed on the interval (0,1). (7 marks)

S2.

Let X_i , i=1,2,... be independent Bernoulli(p) random variables and let $Y_n=(X_1+\cdots+X_n)/n$. Define $\theta_n=Y_n(1-Y_n)$.

- (a) Show that θ_n is a consistent estimator of $var(X_i) = p(1-p)$. (4 marks)
- **(b)** Determine the limit in distribution, as $n \to \infty$, of the sequence

$$\sqrt{n}\{\theta_n - p(1-p)\}.$$

(8 marks)

(c) Determine the limit in distribution of the sequence

$$n\{\theta_n - p(1-p)\}$$

as $n \to \infty$ when p = 1/2. (8 marks)

S3.

Let N be a Poisson(λ) random variable, independent of the sequence of i.i.d. random variables X_i , i = 1, 2, ... satisfying $Pr(X_i > 0) = 1$. Define

$$Z = \sum_{i=1}^{N} X_i.$$

(a) Suppose that $Y_i, i = 1, 2, ...$ is a sequence of i.i.d. random variables, independent of N and such that $\Pr(Y_i > 0) = 1$. Suppose further that X_i is independent of Y_j when $j \neq i$, but possibly dependent when i = j. Compute the linear correlation coefficient $\varrho(Z, W)$, where

$$W = \sum_{i=1}^{N} Y_i.$$

Under which conditions does $\varrho(Z,W)$ exist? Can Z and W ever be independent? Justify your answers. (8 marks)

(b) Suppose that the variables X_i follow the logarithmic series distribution with parameter $p \in (0,1)$, viz.

$$\Pr(X_i = k) = \left\{ -\frac{1}{\ln(p)} \right\} \frac{(1-p)^k}{k}, \quad k = 1, 2, \dots$$

Prove that the distribution of Z is Negative binomial $(-\lambda/\ln(p), p)$. (8 marks)

(**Hint:** You may use, without proof, that the moment generating functions of the Poisson(λ) and Negative binomial(r,p) distributions are, respectively, given by $e^{\lambda(e^t-1)}$, $t \in \mathbb{R}$ and $\lceil p/\{1-(1-p)e^t\}\rceil^r$, $t<-\ln(1-p)$.)

(c) Is the family of distributions of *Z* from part (b) an exponential family? Justify your answer. (4 marks)

S4.

Let X_1, \ldots, X_n be mutually independent copies of a discrete random variable X. Assume that there exists $\theta \in (0,1)$ such that

$$\Pr(X = x) = P_{\theta}(x) \equiv \begin{cases} \theta & \text{if } x = -1, \\ (1 - \theta)^2 \theta^x & \text{if } x = 0, 1, \dots \\ 0 & \text{elsewhere.} \end{cases}$$

Let

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 and $\xi_n = \sum_{i=1}^n \mathbf{1}(X_i = -1),$

where $\mathbf{1}(A)$ denotes the indicator of the event A.

(a) Show that (\overline{X}_n, ξ_n) is jointly sufficient for θ . (4 marks)

(b) Find an algebraic expression for $E(\bar{X}_n)$. You may use the fact that $\sum_{x=0}^{\infty} x\theta^x = \theta(1-\theta)^{-2}$.

(2 marks)

- (c) Using the result from part (b) or otherwise, check whether the family of distributions $\{P_{\theta}: \theta \in (0,1)\}$ is complete for the statistic (\overline{X}_n, ξ_n) . (2 marks)
- (d) Derive the maximum likelihood estimator θ_n of θ . (2 marks)
- (e) Show that θ_n is a consistent estimator of θ . (2 marks)
- **(f)** Compute the Fisher information for θ , viz.

$$I(\theta) = \mathrm{E}\left[\left\{\frac{\partial}{\partial \theta} \ln P_{\theta}(X)\right\}^{2}\right].$$

You may use the fact that $\sum_{x=0}^{\infty} x^2 \theta^x = \theta (1+\theta)(1-\theta)^{-3}$.

(4 marks)

(g) Construct an approximate 95% confidence interval for θ based on θ_n . Justify your answer. (4 marks)

S5.

Let $\{f_{\theta}: \theta \in \Theta \subseteq \mathbb{R}\}$ be a class of densities with common support $\mathcal{X} \subseteq \mathbb{R}$. Assume that for all $x \in \mathcal{X}$, the map $\theta \mapsto f_{\theta}(x)$ is differentiable in θ . Given a random variable X with density f_{θ} and a (measurable) function $g: \Theta \to \mathbb{R}$, consider two classes of estimators defined by

$$\mathcal{U}_g = \{ \delta : \forall_{\theta \in \Theta} \quad \mathcal{E}_{\theta}[\delta(X)] = g(\theta) \},$$

$$\mathcal{U}_0 = \{ \xi : \forall_{\theta \in \Theta} \quad \mathcal{E}_{\theta}[\xi(X)] = 0 \}.$$

In other words, \mathcal{U}_g is the set of all unbiased estimators $\delta(X)$ of $g(\theta)$ while \mathcal{U}_0 is the set of all unbiased estimators $\xi(X)$ of 0. Let also $\psi(X,\theta)$ be a (measurable) function of X and θ .

(a) Show that the following statements are equivalent: (6 marks)

- (i) $\operatorname{cov}_{\theta}[\delta(X) \delta'(X), \psi(X, \theta)] = 0$ for all $\theta \in \Theta$ and all $\delta, \delta' \in \mathcal{U}_q$;
- (ii) $E_{\theta}[\xi(X)\psi(X,\theta)] = 0$ for all $\theta \in \Theta$ and $\xi \in \mathcal{U}_0$.

When (ii) holds, the "estimating function" $\psi(X,\theta)$ is said to be perpendicular to \mathcal{U}_0 .

(b) Fix $\delta_0 \in \mathcal{U}_g$ and suppose that $\psi(X, \theta)$ is not constant and perpendicular to \mathcal{U}_0 . Show that

$$(cov_{\theta}[\delta_0(X), \psi(X, \theta)])^2 \le var_{\theta}[\delta(X)]var_{\theta}[\psi(X, \theta)]$$

holds for all $\delta \in \mathcal{U}_g$. (4 marks)

(c) Now suppose that the identity

$$\frac{\partial}{\partial \theta} \int_{\mathcal{X}} T(x) f_{\theta}(x) dx = \int_{\mathcal{X}} T(x) \frac{\partial}{\partial \theta} f_{\theta}(x) dx$$

is valid for any (measurable) function $T: \mathcal{X} \to \mathbb{R}$.

(i) Show that the score function, viz.

$$s(X, \theta) = \frac{\partial}{\partial \theta} \ln f_{\theta}(X),$$

is perpendicular to U_0 .

(5 marks)

(ii) Assume that g is differentiable on Θ . Show that, for all $\delta \in \mathcal{U}_g$,

$$\operatorname{cov}_{\theta}[\delta(X), s(X, \theta)] = g'(\theta).$$

Using part (b) or otherwise, derive the Fréchet–Cramér–Rao lower bound for the variance of $\delta(X)$ for any $\delta \in \mathcal{U}_g$. (5 marks)

S6.

Let X be a single observation from a density f_{θ} whose parameter $\theta \in \{\theta_0, \theta_1\}$ is unknown. Consider the problem of testing $\mathcal{H}_0 : \theta = \theta_0$ versus $\mathcal{H}_1 : \theta = \theta_1$. Let k > 0 and $\gamma \in [0, 1]$ be fixed constants.

(a) Show that the decision rule

$$\delta(x) = \begin{cases} 1 & \text{if } f_1(x) > kf_0(x), \\ \gamma & \text{if } f_1(x) = kf_0(x), \\ 0 & \text{if } f_1(x) < kf_0(x), \end{cases}$$

is a most powerful test of its size.

(8 marks)

- **(b)** Show that given any $\alpha \in (0,1)$, there exists a test δ of the form given in part **(a)** which is most powerful of size α . **(8 marks)**
- (c) Given a decision rule δ of the form (a) which is most powerful of size α , show that $\alpha \le 1 \beta$, where β stands for the probability of a Type II error. (4 marks)