One-Shot Learning

Alireza Akhavan Pour

AkhavanPour.ir CLASS.VISION

One-Shot Learning

 One-shot learning is a classification task where one, or a few, examples are used to classify many new examples in the future.

The **Omniglot** dataset:

- 1,623 characters
- 50 different alphabets

```
ムップサルカリトのなるなもに大小のこのりりのするからいないないはよりのかん
           五百五ののこのはいます中下下しでいっちどして出るようしょくよりまとは入
         日のでのとしてかっかと生まる町田町は日日日のはお生ししゃっていまがい!
        とのことのでなっしてものととなるとなるといってからのからないでき
K. Laspx ty woz Dob = = om = TOVP La ves WK1105
        DOW - MAXDIXLANDS & EXABUME S CX 4 B N WIN + U BY T T TT
```

https://github.com/brendenlake/omniglot/

meta-learning problem for few-shot classification

https://openai.com/blog/reptile/

One-Shot Learning: Face Recognition

عليرضا اخوان پور

It is hard!

Humans learn new concepts with very little supervision – e.g. a child can generalize the concept of "giraffe" from a single picture in a book – yet our best deep learning systems need hundreds or thousands of examples.

Matching Networks for One Shot Learning, 2017.

http://papers.nips.cc/paper/6385-matching-networks-for-one-shot-learning

One-shot learning is related to but different from zero-shot learning!

This should be distinguished from zero-shot learning, in which the model cannot look at any examples from the target classes.

— Siamese Neural Networks for One-shot Image Recognition, 2015.

https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf

One-shot learning

face recognition is a common example of one-shot learning

- ا مشكلات
- تصاویر بسیار کم.
- و اگر فرد جدید اضافه شود؟

Siamese Network

Siamese Network for One-Shot Learning

Siamese network

[Taigman et. al., 2014. DeepFace closing the gap to human level performance]

One-Shot Learning: Face Recognition

عليرضا اخوان پور

Let's code...

1-OneShot(siamese).ipynb

https://colab.research.google.com/github/Alireza-Akhavan/deep-face-recognition/blob/master/aaiss2020/1-OneShot(siamese).ipynb

Signature Verification using a "Siamese"

 Verification consists of comparing an extracted feature vector with a stored feature vector for the signer. Signatures closer to this stored representation than a chosen threshold are accepted, all other signatures are rejected as forgeries.

Signature Verification using a "Siamese"
 Time Delay Neural Network, 1993.

http://papers.nips.cc/paper/769-signature-verification-using-a-siamese-time-delay-neural-network.pdf

Siamese Neural Networks for One-Shot Image Recognition

Siamese networks were used more recently, where deep convolutional neural networks were used in parallel image inputs in a 2015 paper by Gregory Koch, et al. titled "Siamese Neural Networks for One-Shot Image Recognition."

https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf

Siamese Neural Networks for One-Shot Image Recognition

same

"cow"

same

different

"cow" (speaker #1)

"cat" (speaker #2)

different

"can" (speaker #1)

"can" (speaker #2)

same

different

"can" (speaker #1)

"cab"

(speaker #2)

different

Verification tasks (training)

Siamese Neural Networks for One-Shot Image Recognition

maximize

Anchor

Negative

 $d(Anchor, Positive) + \alpha < d(Anchor, Negative)$

[Schroff et al.,2015, FaceNet: A unified embedding for face recognition and clustering]

Anchor (A)

Positive

Anchor Negative

[Schroff et al., 2015, FaceNet: A unified embedding for face recognition and clustering]

One-Shot Learning: Face Recognition

عليرضا اخوان پور

(A)

Anchor Positive

$$||f(A) - f(P)||_2^2$$

$$||f(A) - f(P)||_2^2 \le ||f(A) - f(N)||_2^2$$

[Schroff et al., 2015, FaceNet: A unified embedding for face recognition and clustering]

One-Shot Learning: Face Recognition

عليرضا اخوان پور

Anchor (A)

Positive

$$||f(A) - f(P)||_2^2$$

$$d(A, P)$$

$$||f(A) - f(P)||_2^2 \le ||f(A) - f(N)||_2^2$$

$$d(A, P)$$

$$d(A, N)$$

Anchor Negative

[Schroff et al., 2015, FaceNet: A unified embedding for face recognition and clustering]

Anchor (A)

Positive

$$||f(A) - f(P)||_2^2$$

$$||f(A) - f(P)||_2^2 \le ||f(A) - f(N)||_2^2$$

 ≤ 0

$$||f(A) - f(P)||_2^2 - ||f(A) - f(N)||_2^2$$

[Schroff et al., 2015, FaceNet: A unified embedding for face recognition and clustering]

One-Shot Learning: Face Recognition

عليرضا اخوان پور

Anchor Negative

Anchor (A)

Positive

$$||f(A) - f(P)||_2^2$$

$$||f(A) - f(P)||_2^2 \le ||f(A) - f(N)||_2^2$$

$$||f(A) - f(P)||_2^2 - ||f(A) - f(N)||_2^2 \le 0$$

One-Shot Learning: Face Recognition

عليرضا اخوان پور

Anchor Negative

$$f(img) = \vec{0}$$

Anchor (A)

Positive

$||f(A) - f(P)||_2^2 + \alpha \le ||f(A) - f(N)||_2^2$

$$||f(A) - f(P)||_2^2 - ||f(A) - f(N)||_2^2 + \alpha \le 0$$
margin

[Schroff et al., 2015, FaceNet: A unified embedding for face recognition and clustering]

One-Shot Learning: Face Recognition

عليرضا اخوان پور

Anchor Negative

$$f(img) = \vec{0}$$

Anchor (A)

$$d(A, P) = 0.6$$

$$||f(A) - f(P)||_2^2 + \alpha \le ||f(A) - f(N)||_2^2$$

$$d(A, P)$$

$$d(A, N)$$

$$||f(A) - f(P)||_{2}^{2} - ||f(A) - f(N)||_{2}^{2} + \alpha \le 0$$
margin

One-Shot Learning: Face Recognition

عليرضا اخوان پور

Anchor Negative

$$f(img) = \vec{0}$$

Anchor (A)

Positive

$$d(A,P) = 0.6 0.2 d(A,N) = 0.63$$

$$||f(A) - f(P)||_2^2 + \alpha \le ||f(A) - f(N)||_2^2$$

$$d(A,P) d(A,N)$$

$$||f(A) - f(P)||_{2}^{2} - ||f(A) - f(N)||_{2}^{2} + \alpha \le 0$$
margin

One-Shot Learning: Face Recognition

عليرضا اخوان پور

Anchor Negative

$$f(img) = \vec{0}$$

Positive Anchor (A)

$$d(A,P) = 0.6 0.2 d(A,N) = 0.63 0.8$$

$$||f(A) - f(P)||_2^2 + \alpha \le ||f(A) - f(N)||_2^2$$

$$d(A,N) = 0.63 0.8$$

$$||f(A) - f(N)||_2^2$$

$$||f(A) - f(P)||_{2}^{2} - ||f(A) - f(N)||_{2}^{2} + \alpha \le 0$$
margin

One-Shot Learning: Face Recognition

عليرضا اخوان پور

Anchor Negative

$$f(img) = \vec{0}$$

$$\mathcal{L}(A, P, N) = \|f(A) - f(P)\|^2 - \|f(A) - f(N)\|^2 + \alpha$$

[Schroff et al.,2015, FaceNet: A unified embedding for face recognition and clustering]

$$\mathcal{L}(A, P, N) = \max(\|f(A) - f(P)\|^2 - \|f(A) - f(N)\|^2 + \alpha, 0)$$

[Schroff et al.,2015, FaceNet: A unified embedding for face recognition and clustering]

$$\mathcal{L}(A, P, N) = \max(\|f(A) - f(P)\|^2 - \|f(A) - f(N)\|^2 + \alpha, 0)$$

$$J = \sum_{i=1}^{m} \mathcal{L}(A^{(i)}, P^{(i)}, N^{(i)})$$

[Schroff et al., 2015, FaceNet: A unified embedding for face recognition and clustering]

□ با فرض داشتن P ,A و N

$$\mathcal{L}(A, P, N) = \max(\|f(A) - f(P)\|^2 - \|f(A) - f(N)\|^2 + \alpha, 0)$$

$$J = \sum_{i=1}^{m} \mathcal{L}(A^{(i)}, P^{(i)}, N^{(i)})$$

□ اگر دیتاستی با ۰۰۰. آتصویر از ۱۰۰۰ فرد داشته باشیم باید از ۱۰۰۰۰ تصویر برای ساخت سه تایی ها استفاده کنیم.

[Schroff et al., 2015, FaceNet: A unified embedding for face recognition and clustering]

انتخاب سه تاییها(Tripletها) A و P و N

$$d(A, P) + \alpha \leq d(A, N)$$

به راحتی بر آورده میشود.

$$d(A, P) + \alpha \leq d(A, N)$$

$$d(A,P) \approx d(A,N)$$

[Schroff et al., 2015, FaceNet: A unified embedding for face recognition and clustering]

مجموعه داده آموزش(Training set) برای Triplet Loss

Anchor

Positive

Negative

انتخاب Tripletها

☐ مشكل اصلى:

چگونه سه تاییها را انتخاب کنیم؟

راه حل؟

○ انتخاب Tripleهای سخت در mini-batch بزرگ (۱۰۰۰<)

انتخاب همه positiveها

Useful triplets = hardest errors

به اندازه کافی سخت -----

انتخاب Tripletها: تله!

maximize

Anchor

Negative

Positive

 $Positive \approx Negative$

[Schroff et al., 2015, FaceNet: A unified embedding for face recognition and clustering]

انتخاب Tripletها: تله!

به جای ...

انتخاب Tripletها: تله!

□ Selecting hardest negative may lead to the collapse early in training

[Schroff et al.,2015, FaceNet: A unified embedding for face recognition and clustering]

One-Shot Learning: Face Recognition

 $d(Anchor, Positive) + \alpha < d(Anchor, Negative)$

[Schroff et al.,2015, FaceNet: A unified embedding for face recognition and clustering]

One-Shot Learning: Face Recognition

 $d(Anchor, Positive) + \alpha < d(Anchor, Negative)$

[Schroff et al., 2015, FaceNet: A unified embedding for face recognition and clustering]

One-Shot Learning: Face Recognition

 $d(Anchor, Positive) + \alpha < d(Anchor, Negative)$

[Schroff et al., 2015, FaceNet: A unified embedding for face recognition and clustering]

One-Shot Learning: Face Recognition

Let's code...

2-losses_triplet.ipynb

http://colab.research.google.com/github/Alireza-Akhavan/deep-face-recognition/blob/master/aaiss2020/2-losses_triplet.ipynb

More...

... for models trained from scratch as well as pretrained ones, using a variant of the triplet loss to perform end-to-end deep metric learning outperforms most other published methods by a large margin.

— In Defense of the Triplet Loss for Person Re-Identification, 2017.

https://arxiv.org/abs/1703.07737

خلاصه Triplet loss

- 🔲 خلاصه:
- (α) margin بزرگ و پیدا کردن mini-batch نیاز به سایز
 - همگرایی کند و آهسته
 - پیاده سازیها(غیر رسمی):
 - (Torch)OpenFace
 - https://github.com/cmusatyalab/openface
 - (Tensorflow)davidsandberg/facenet

https://github.com/davidsandberg/facenet

	LFW	Megaface
Google's Facenet	99.63	70.5

یادگیری تابع «شباهت» (similarity" function)"

If d(img1,img2)
$$\leq \tau$$
 $> \tau$

یکسان Face Verification

تصوير فرد ناشناس

فضای نرونی و خمینه (manifold)

One-Shot Learning: Face Recognition

فضای نرونی خوب و بد

DiCarlo and Cox, TICS (2007)

One-Shot Learning: Face Recognition

فضای 128تایی encoding تصاویر

هدف یادگیری

- را تشکیل می $f(x^{(i)})$ پارامترهای شبکه عصبی encoding پارامترهای سبکه پارامترهای پارامترهای شبکه عصبی
 - یادگیری پارامترها به نحوی که:
- . اگر $x^{(i)}$ دو فرد یکسان بودند، $\|f(x^{(i)}) f(x^{(j)})\|^2$ مقدار کوچکی شود.
- . اگر $x^{(i)}$ دو فرد متفاوت بودند، $\|f(x^{(i)}) f(x^{(j)})\|^2$ مقدار بزرگی شود. $\|f(x^{(i)}) f(x^{(j)})\|^2$

بخش ۲:

یادگیری متریک Metric learning

تابع Softmax

- ویژگیهایی که آموزش میبیند فقط separable هســتند، امــا discriminative
- این ویژگیها به انـدازه کـافی موثر نیستند.

CLASS.

نیاز به metric learning داریم!

Face Images

Discriminative Features

[Yandong Wen et. al., 2016. A Discriminative Deep Feature Learning Approach for Face Recognition]

One-Shot Learning: Face Recognition

نیاز به metric learning داریم!

Tightness of the cluster □ Discriminative features

Learning the similarity function

$$\hat{y} = \sigma \left(\sum_{k=1}^{128} w_i \left| f(x^{(i)})_k - f(x^{(j)})_k \right| + b \right)$$

$$\frac{(f(x^{(i)})_k - f(x^{(j)})_k)^2}{f(x^{(i)})_k + f(x^{(j)})_k} \chi^2$$

[Taigman et. al., 2014. DeepFace closing the gap to human level performance]

One-Shot Learning: Face Recognition

Center loss

Center Loss

☐ Idea: pull the points to class centroids

[Wen et al.,2016, A discriminative feature learning approach for deep face recognition]

One-Shot Learning: Face Recognition

Separable vs Discriminative

Fig. 1. The typical framework of convolutional neural networks.

[Wen et al., 2016, A discriminative feature learning approach for deep face recognition]

One-Shot Learning: Face Recognition عليرضا اخوان يور

A toy example: What's wrong with Softmax

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

	stage 1		stage 2		stage 3		stage 4
Layer	conv	pool	conv	pool	conv	pool	FC
LeNets	$(5,20)_{/1,0}$	$2_{/2,0}$	$(5,50)_{/1,0}$	$2_{/2,0}$			500
LeNets++	$(5,32)_{/1,2} \times 2$	$2_{/2,0}$	$(5,64)_{/1,2} \times 2$	$2_{/2,0}$	$(5,128)_{/1,2} \times 2$	$2_{/2,0}$	(2)

[Wen et al.,2016, A discriminative feature learning approach for deep face recognition]

One-Shot Learning: Face Recognition

A toy example: What's wrong with Softmax

m: mini-batch size

n: the number of class

 x_i : feature vector in R^d (d is the feature dimension)

 $\boldsymbol{w}: R^{(d \times n)}, \boldsymbol{b}: R^n(\text{bias})$

$$\mathcal{L}_{S} = -\sum_{i=1}^{m} \log \frac{e^{w_{y_{i}}^{T} x_{i} + b_{y_{i}}}}{\sum_{j=1}^{n} e^{w_{j}^{T} x_{i} + b_{j}}}$$

[Wen et al.,2016, A discriminative feature learning approach for deep face recognition]

One-Shot Learning: Face Recognition

ایا ویژگیها برای خوشه بندی مناسب است؟

Separable,

the deep features are not discriminative enough.

by intra-class variation

[Wen et al., 2016, A discriminative feature learning approach for deep face recognition]

آیا ویژگیها برای خوشه بندی مناسب است؟

Separable,

the deep features are not discriminative enough.

by intra-class variation

[Wen et al., 2016, A discriminative feature learning approach for deep face recognition]

افزودن center loss برای discriminative شدن ویژگیها!

m: mini-batch size

 C_{y_i} : y_{th} class center in d dimension

 x_i : feature vector in R^d (d is the feature dimension)

اما!
$$C_{y_i}$$
 با آموزش شبکه و تغییرات ویژگیها باید به روز شود.

$$\mathcal{L}_{C} = \frac{1}{2} \sum_{i=1}^{m} \left\| x_{i} - C_{y_{i}} \right\|_{2}^{2}$$

[Wen et al.,2016, A discriminative feature learning approach for deep face recognition]

One-Shot Learning: Face Recognition

$$\mathcal{L} = \mathcal{L}_S + \lambda \, \mathcal{L}_C$$
 تابع نهایی

- SOFTMAX LOSS: encouraging the separability of features.
- CENTER LOSS: simultaneously learning a center for deep features of each class and penalizing the distances between the deep features and their corresponding class centers.
- JOINT SUPERVISION: minimizing the intra-class variations while keeping the features of different classes separable.

$$\mathcal{L} = \mathcal{L}_S + \lambda \mathcal{L}_C$$

$$= -\sum_{i=1}^{m} \log \frac{e^{W_{y_i}^T \boldsymbol{x}_i + b_{y_i}}}{\sum_{j=1}^{n} e^{W_j^T \boldsymbol{x}_i + b_j}} + \frac{\lambda}{2} \sum_{i=1}^{m} \|\boldsymbol{x}_i - \boldsymbol{c}_{y_i}\|_2^2$$

Inter-class Separability

Intra-class Compactness

λ تابع نهایی $\mathcal{L} = \mathcal{L}_{\mathcal{S}} + \lambda \, \mathcal{L}_{\mathcal{C}}$ تابع نهایی

(c) $\lambda = 0.1$

(b) $\lambda = 0.01$

(d) $\lambda = 1$

 $\lambda = 0$

Let's code...

- 3_keras_center_loss_with_embedding.ipynb
 - http://colab.research.google.com/github/Alireza-Akhavan/deep-face-recognition/blob/master/aaiss2020/3 keras center loss with embedding.ipynb

خلاصه center loss

- ا خلاصه:
- ایجاد توده ی درون کلاسی و جدایی بین کلاسها
 - ا کارایی خوب، همگرایی ساده
 - ا پیاده سازیها:
- caffe)ydwen/caffe-face > حدرسمی منتشر شده توسط نویسنده مقاله
 - https://github.com/ydwen/caffe-face
 - (Tensorflow)davidsandberg/facenet

https://github.com/davidsandberg/facenet

	LFW	Megaface
Center Loss	99.28%	65.234%

مقايسه نتايج

	LFW	Megaface
Google's Facenet	99.63	70.5
Center Loss	99.28%	65.234%

□ برای چالش مگافیس تنها از 490 هـزار تصویر برای اموزش استفاده شده است.

MegaFace

- Our model is trained on 490K face images, termed as model C-.

Method	Protocol	Identification Acc. (Set 1)	Verification Acc. (Set 1)
NTechLAB - facenx_large		73.300%	85.081%
Google - FaceNet v8	James	70.496%	86.473%
Beijing Faceall Co FaceAll_Norm_1600	large	64.803%	67.118%
Beijing Faceall Co FaceAll_1600		63.977%	63.960%
Barebones_FR - cnn		59.363%	59.036%
NTechLAB - facenx_small	small	58.218%	66.366%
3DiVi Company – tdvm6		33.705%	36.927%
model A-		41.863%	41.297%
Model B-	small	57.175%	69.897%
Model C- (Proposed)		65.234%	76.516%

One-Shot Learning: Face Recognition

بيشنر بخوانيم

- https://github.com/Alireza-Akhavan/deep-face-recognition
- https://www.aparat.com/v/6Rnxl
- https://www.aparat.com/v/IHIF7

http://iran-celeb.ir/

منابع

- https://www.coursera.org/specializations/deep-learning
- http://blog.class.vision/winter-96-97-syllabus/
- http://www.highload.ru/2017/abstracts/3044.html
- https://medium.com/@ahmdtaha/facenet-a-unified-embedding-for-facerecognition-and-clustering-7d34abde9
- http://ydwen.github.io/papers/WenECCV16-poster.pdf
- https://arxiv.org/abs/1503.03832
- https://ydwen.github.io/papers/WenECCV16.pdf
- https://arxiv.org/abs/1704.08063
- https://arxiv.org/abs/1801.05599
- https://arxiv.org/abs/1801.07698

