

Agenda

4	_	ıfüh		
7	Lin	tub	L I N	na
				11(1
				9

- Wiederholung BB84
- Qubits und Messbasen
- Zusammengesetzte Systeme
- Verschränkung

Anwendung von Verschränkung 16. CHSH-Ungleichung (Quantenversion)

- Shared Randomness
- Schmidt-Darstellung
- Dichtematrizen
- 10. Partielle Spur

- 11. Verschränkungsmaß
- 12. Entropie und Monogamie
- 13. Entanglement Swapping
- 14. Entanglement Distillation
- 15. CHSH-Ungleichung (klassisch)
- - 17. CHSH-Ungleichung (Simulation)
 - 18. Ekert-Protokoll
 - 19. Sicherheit und DIQKD
 - 20. Zusammenfassung

Ouantenkryptographie

Dense Coding (1)

- Bob kann mit Hilfe eines Bell-Zustands durch Übermittlung seines Qubits an Alice 2 Bit Information (z.B. Buchstabe a,b,c, oder d) übertragen.
 - Bob führt hierzu davor eine entsprechende Operation (Manipulation seines Qubits) durch und sendet Alice danach sein Qubit.

Quantenkryptographie

- Alice führt dann eine Bell-Messung an den beiden Qubits durch. Sie erhält eines von vier möglichen Ergebnissen.
 - Ergebnis kann dann entsprechend interpretiert werden.

$$\frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \rightarrow (0,0) \implies a$$

$$\frac{1}{\sqrt{2}} (|00\rangle - |11\rangle) \rightarrow (1,0) \implies b$$

$$\frac{1}{\sqrt{2}} (|01\rangle + |10\rangle) \rightarrow (0,1) \implies a$$

$$\frac{1}{\sqrt{2}} (|01\rangle - |10\rangle) \rightarrow (1,1) \implies a$$

Quantenkryptographie

Teleportation

Bei der Teleportation überträgt Alice mit Hilfe eines verschränkten 2-Qubit-Systems den Zustand eines Qubits an Bob

- Alice und Bob müssen sich hierzu einen Bell-Zustand "teilen".
- Alice Qubit "verliert" bei dem Vorgang seinen Zustand!

Quantenkryptographie

Alice führt mit ihren beiden Qubits eine Bell-Messung durch und teilt Bob das Messergebnis über einen klassischen Kanal mit.

Quantenkryptographie

Bildung des Gesamtsystems (3 Qubits) und Anwendung von CNOT:

$$|\Psi\rangle = (\alpha |0\rangle + \beta |1\rangle) \otimes \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$
$$= \frac{1}{\sqrt{2}} (\alpha |000\rangle + \beta |100\rangle + \alpha |011\rangle + \beta |111\rangle)$$

$$\frac{CNOT_{1\mapsto 2}}{\sqrt{2}} \left(\alpha |000\rangle + \beta |110\rangle + \alpha |011\rangle + \beta |101\rangle \right)$$

$$= \frac{1}{\sqrt{2}} (\alpha |0\rangle (|00\rangle + |11\rangle)) + \beta |1\rangle (|10\rangle + |01\rangle))$$

Quantenkryptographie

Anwendung von Hadamard auf das erste Qubit:

$$\begin{array}{ll} \xrightarrow{H\otimes\mathbb{1}\otimes\mathbb{1}} & \frac{1}{2} \bigg(\alpha(|0\rangle + |1\rangle) \left(|00\rangle + |11\rangle\right) \right) + \beta(|0\rangle - |1\rangle) \left(|10\rangle + |01\rangle\right) \bigg) \\ = & \frac{1}{2} \bigg(\alpha\big(|000\rangle + |011\rangle + |100\rangle + |111\rangle\big) + \beta\big(|010\rangle + |001\rangle - |110\rangle - |101\rangle\big)\bigg) \\ = & \frac{1}{2} \big(|00\rangle \left(\alpha |0\rangle + \beta |1\rangle\right) \big) \\ & + \frac{1}{2} \big(|01\rangle \left(\alpha |1\rangle + \beta |0\rangle\right) \big) \\ & + \frac{1}{2} \big(|10\rangle \left(\alpha |0\rangle - \beta |1\rangle\right) \big) \\ & + \frac{1}{2} \big(|11\rangle \left(\alpha |1\rangle - \beta |0\rangle\right) \big) \end{array}$$

Quantenkryptographie

- Alice misst ihre beiden Qubits und meldet Bob das Messergebnis. Bob muss dann sein Qubit entsprechend nachbearbeiten.
 - Ursprüngliches Qubit von Alice wird hierdurch "zerstört".

Alice Messergebnis		Bobs Nachbearbeitung		
0,0	\longrightarrow	$\mathbb{1}(\alpha 0\rangle + \beta 1\rangle)$	=	$\alpha 0\rangle + \beta 1\rangle$
0, 1	\longrightarrow	$X(\alpha 1\rangle + \beta 0\rangle)$	=	$\alpha 0\rangle + \beta 1\rangle$
1,0	\longrightarrow	$Z(\alpha 0\rangle - \beta 1\rangle)$	=	$\alpha 0\rangle + \beta 1\rangle$
1, 1	\longrightarrow	$ZX(\alpha 1\rangle - \beta 0\rangle)$	=	$\alpha 0\rangle + \beta 1\rangle$

Quantenkryptographie

Intraportation

- Hat man Zugriff auf alle Qubits, kann der Zustand eines Qubits direkt portiert werden.
 - Man spricht dann von Intraportation.

Quantenkryptographie

Simulation mit Qiskit

Quantenkryptographie

Zusammenfassung

- Bekannte Anwendung von zwei verschränkten Qubits:
 - Dense Coding (dichte Kodierung)
 - Teleportation

Quantenkryptographie

