PM 592 Regression Analysis for Public Health Data Science

Week 7

Complex Coding Schemes

1

Complex Coding Schemes

Polynomial Terms

Fractional Polynomials

Splines

Dose-Response Coding

Overfitting

Adjusted R-Squared

2

Lecture Objectives

- > Implement and interpret a polynomial independent variable.
- > Implement and interpret a spline.
- > Implement and interpret dose-response coding.
- > Explain and diagnose over-fitting.
- \succ Explain the meaning and utility of adjusted R-squared.

1. Revie

- ✓ What is confounding?
- ✓ How to detect confounding
- ✓ What is effect modification?
- ✓ How to detect effect modification

4

5

2. Polynomial Terms	
A polynomial regression model includes higher-order polynomial	
terms for X, such that:	
$Y=\beta_0+\beta_1X+\beta_2X^2+\cdots+\beta_hX^h+e$ Where h is the degree of the polynomial.	
Where his the degree of the polynomia.	
7	
2. Polynomial Terms	
A polynomial regression model includes higher-order polynomial terms for X, such that:	
$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + \beta_h X^h + e$	
Where h is the degree of the polynomial.	
This is still considered a form of "linear" regression as the model is linear in the regression coefficients β .	-
in the regression exemicients p.	
	_
8	
	_
2. Polynomial Terms	
Let's examine our regression relationship by considering the following models:	
1) Linear	
$\hat{Y} = \beta_0 + \beta_1 X$	
2) Quadratic	
$\hat{Y} = \beta_0 + \beta_1 X + \beta_2 X^2$ 3) Cubic	
$\hat{Y} = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3$	
10 11 10	

2. Polynomial Terms

Let's examine our regression relationship by examining the following models:

1) Linear

$$\hat{Y} = \beta_0 + \beta_1 X$$

2) Quadratic

$$\hat{Y} = \beta_0 + \beta_1 X + \beta_2 X^2$$

3) Cubic

$$\hat{Y}=\beta_0+\beta_1X+\beta_2X^2+\beta_3X^3$$

10

11

2. Polynomial Terms

What Degree Polynomial to Choose?

There are a couple of ways to determine the degree of the polynomial terms to include in your model.

1) You can "eyeball" it and examine what you believe to be appropriate.

2. Polynomial Terms

What Degree Polynomial to Choose?

2) You can continue to add higher degree terms until they are no longer significant in the model.

What method do we use to check for the significance of adding an additional variable into the regression model?

- 1. We can perform the **extra sums of squares** F-test
- 2. We can examine the **Type I sums of squares** in an ANOVA table

13

2. Polynomial Terms

Recall:

- The Type I Sums of Squares tells us the additional sums of squares that are explained by each additional variable that is added to the model.
- 2) The Type I Sums of Squares is reported by the anova() function.
- 3) The car::Anova() function can provide Type III sums of squares.

14

2. Polynomial Terms

What do the Type I (sequential) Sums of Squares tell us here?

> lm(area ~ age + I(age^2) + I(age^3), data = re) %>% anova()
Analysis of Variance Table

Response: area

Df Sum Sq Mean Sq F value
age 1 3390 3390.2 22.8513 2.444e-06 ***
I(age^2) 1 12020 12019, 981.0194 < 2.2e-16
I(age^3) 1 224 224.4 1.5126 0.2194

Residuals 410 60827 148.4

--Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1

A cubic term does not improve the model fit compared to the model with the linear and quadratic terms (p-22).

Y = β₀ + β₁χ + β₂χ² + β₃χ³

2. Polynomial Terms Therefore our best-fit model should include up to the quadratic polynomial term: $\hat{Y} = 53.4 - 1.93X + 0.04X^2$ > ln(area - age + 1(age^2), data = re) 8.08 summary() Call: ln(formula = area - age + 1(age^2), data = re) Residuals: ln Residua

17

2. Polynomial Terms

Interpreting Beta Coefficients

$$\hat{Y} = 53.4 - 1.93X + 0.04X^2$$

- The β coefficients are less interpretable for variables represented by a polynomial set.
- This is because the effect of a one-unit increase in X on Y <u>depends on the value of X</u>.

Example

```
 \Delta \hat{Y}_{X=2 \text{ vs } X=1} = \left(53.4 - 1.93(2) + 0.04(2^2)\right) - \left(53.4 - 1.93(1) + 0.04(1^2) = -1.81 \right)   \Delta \hat{Y}_{X=1 \text{ vs } X=0} = \left(53.4 - 1.93(1) + 0.04(1^2)\right) - \left(53.4 - 1.93(0) + 0.04(0^2) = -1.89 \right)
```

2. Polynomial Terms

Interpreting Beta Coefficients

 $\hat{Y} = 53.4 - 1.93X + 0.04X^2$

• The intercept is still interpreted the same way.

"The expected selling price is \$53.4 per unit area for a house of age = 0."

19

2. Polynomial Terms

The Hierarchy Principle

In general, if your model includes X^h as a statistically significant predictor of Y, then your model should include X^j for all j < h, regardless of whether the lower-degree terms are significant in the model.

20

2. Polynomial Terms

The Hierarchy Principle

Are there any exceptions to this? Let's look at an equation with a quadratic term.

Note that a quadratic equation can be written the following two ways:

$$\hat{Y} = \beta_0 + \beta_1 X + \beta_2 X^2 = \beta_2 (X - \gamma_1)^2 + \gamma_2$$

Where,

$$-2\beta_2\gamma_1 = \beta_1$$
$$\beta_2\gamma_1^2 + \gamma_2 = \beta_0$$

 $\beta_2 \gamma_1^2 + \gamma_2 = \beta_0$

2. Polynomial Terms

The Hierarchy Principle

In this equation, the value $x=\gamma_1$ reflects the extremum/vertex of the quadratic relationship (the "dip" or "peak" point of the parabola).

$$\hat{Y} = \beta_2 (X - \gamma_1)^2 + \gamma_2$$

So if we don't include a linear term, our equation becomes:

$$\hat{Y} = \beta_0 + \beta_2 X^2 = \beta_2 (X - 0)^2 + \gamma_2$$

In other words, if we exclude the linear term then we essentially force $\gamma_1=0$, thereby forcing the vertex of the parabola at X=0.

22

2. Polynomial Terms

The Hierarchy Principle

What are the implications of this?

- We do not need the linear term if we are <u>certain</u> the vertex of the parabola is at X=0.
- If we are unsure of where the vertex is located (which is usually the case) then we need to include the linear term.
- This reasoning extends to polynomial terms of higher degree as well.

23

2. Polynomial Terms

Centering X with Polynomials

- It is generally a good idea to center your X variables on their means
- One criticism of polynomial equations is that the higher- and lowerorder terms are strongly related.
- Mean-centering reduces the amount of correlation among polynomial terms
- Recall, high correlation (collinearity) among independent variables increases the chance of numerical/estimation problems

> re %>% + select(age) %>% + mutate(age2 = age1age, + age3 = age2*age) %>% + cor() age age2 = age3 = age3*age3 dage3 age 1.80e0000 9.562351 8.9094088 age2 0.9623851 1.0000000 9.9863162 age3 0.9094080 0.9863162 1.0000000 > re %>% + select(age.c) %>% + mutate(age2.c = age2.c*age.c, + mutate(age2.c = age2.c*age.c) %>% + cor() age.c = age2.c = age3.c age.c 1.0000000 0.3606333 0.9015645 age2.c 0.3606333 1.0000000 0.4904115 age3.c 0.9915645 0.4904115 1.00000000	2. Polynomial Terms	25
+ select(age.c) %% + mutate(age2.c = age.c*age.c,	+ select(age) %% + mutate(age2 = age*age, + age3 = age2*age) %% + cor() age age2 = 3ge3 age 1.0000000 0.9623851 0.09094008 age2 0.9623851 1.0900000 0.9863162	
	+ select(age.c) %>% + mutate(age2.c = age.c*age.c, + age3.c = age2.c*age.c) %>% + cor() age.c age2.c age3.e age.c 1.0000000 0.3606333 0*915645 age2.c 0.3606333 1.0000000 0.4004115	

Conclusion Statement Upon visual inspection we found that age was not linearly related to house selling price. We found that a quadratic model fit the data well (p<.001) and a cubic term did not improve model fit (p=0.22). Our bestfit equation for selling price was $\hat{Y}=53.4-1.93X_{AGE}+0.04X_{AGE}^2$, as selling price decreased until house age of approximately 22 years, and then subsequently began to rebound. No need to interpret the beta coefficients directly, but a general description of the quadratic effect should be included.

26

2. Polynomial Terms

Recap

- \bullet By adding polynomial terms, you can fit models where X is not linearly related to Y.
- Polynomial terms have a tendency to be highly correlated; be wary of this when adding many of them to a model.
- It is a good idea to center polynomial terms on their means.

2. Polynomial Terms

Recap

- > Determine if a polynomial term is necessary in a model
- > Determine the order of polynomials to be included
- ➤ Describe the effect of X on Y when polynomial terms are included

28

3. Fractional Polynomials

Fractional Polynomials

The Fractional Polynomials (FP) approach provides a more flexible way to parameterize variables.

Strategy: Find a transformation of X (e.g., $\log(X)$, X^2) that fits the data best.

$$g(x, eta) = eta_0 + \sum_{j=1}^J F_j(x) eta_j$$
 This just means that we'll have some combination of transformations of our X

 $F_j(x)=x^{p_j}, \ if \ p_j\neq p_{j-1}$

$$F_j(x) = F_{j-1} \ln(x)$$
, if $p_j = p_{j-1}$

This means that if we specify two identical values of p, the first term will be x^p and the second will be x^pln(x)

29

3. Fractional Polynomials

Notice that this is similar to a Box-Cox transformation, but:

- It is for the X variables
- Up to two terms are chosen
- In addition to choosing the polynomial term, the algorithm will scale your variables to find an appropriate transformation
- Powers are chosen only from the following discrete set of transformations:

р	l			0			2	3
x*	1/x²	1/x	1/x ^{1/2}	log(x)	x ^{1/2}	х	x ²	x³

3. Fractional Polynom	nials	31
Some Examples: Model (P's) -2, -1	$\frac{g(x)}{\beta_0 + \beta_1 \left(\frac{1}{x^2}\right) + \beta_2 \left(\frac{1}{x}\right)}$	
-2, 0	$\beta_0 + \beta_1 \left(\frac{1}{x^2}\right) + \beta_2(\ln(x))$	
1, 1	$\beta_0 + \beta_1(x) + \beta_2(x) \ln(x)$	

32. Fractional Polynomials The **Multiple Fractional Polynomial** "mfp" package allows for this testing. It will assess: Null/unconditional model (no x) Linear model (linear x, or $\beta_0 + \beta_1 x$) Best fitting J=1 (1-term) model ($\beta_0 + \beta_1 x^{p1}$) Best fitting J=2 (2-term) model ($\beta_0 + \beta_1 x^{p1} + \beta_2 x^{p2}$)

3. Fractional Polynomials

Recap

- Fractional polynomials finds the best-fitting transformations of X variables
- Because the transformations can be complex (and less interpretable), this approach is better suited for prediction models (vs. models of association)
- By examining several possible flexible transformations, the FP approach can sometimes "overfit" the data
- This approach can also be used to generally test for a departure from linearity

34

3. Fractional Polynomials

Recap

- >Implement the fractional polynomials method in analysis
- \succ Describe the strengths and drawbacks of using fractional polynomials in practice

35

Accounting for Non-Linearity In the previous section we examined ways to use polynomial terms to account for nonlinear relationships.

4. Spline

The choice of where to create these spline "knot" points can depend on:

- 1. Data-Driven Approach: choose the knot points that fit the data the best
 - · Good for machine learning
 - Good for prediction modeling
- **2. Theory-Driven Approach**: choose the knot points a priori to answer a specific research question
 - Good for hypothesis testing

We'll focus on the theory-driven approach here

38

4. Splines Examples

- You're modeling out-of-pocket medical expenditures (Y). You're told that HMOs typically only pay for the first week of a hospital stay, after which out-of-pocket expenditures will likely increase dramatically.
- 2. In the US, older adults are eligible for Medicare, a national health insurance program, once they reach the age of 65. Therefore their medical expenditure patterns (Y) may be drastically different after they reach age 65.
- 3. Children in the CHS are followed into early adulthood. We expect a non-linear relationship between FEV1 and age during adolescence.

4. Spline:

This graph depicts the medical expenditures we expect to see in Example 2. This type of model is called a:

- Broken arrow
- · Hockey stick
- · Piecewise linear spline

40

4. Splines

Suppose our regression model is of the form:

We can introduce a spline into this model by including another term:

$$X_{LOS.C7}^{+} = \begin{cases} X_{LOS} - 7, & \text{if } X_{LOS} > \\ 0, & \text{if } X_{LOS} \le 7 \end{cases}$$

Our model then becomes:

$$\hat{Y} = \beta_0 + \beta_1 X_{LOS} + \beta_2 X_{LOS.C7} +$$

41

So when $X \le 7$,

$$\hat{Y} = \beta_0 + \beta_1 X_{LOS}$$

When X > 7,

$$\begin{split} \hat{Y} &= \beta_0 + \beta_1 X_{LOS} + \beta_2 (X_{LOS} - 7) \\ &= \beta_0 + \beta_1 X_{LOS} + \beta_2 X_{LOS} - 7\beta_2 \\ &= (\beta_0 - 7\beta_2) + (\beta_1 + \beta_2) X_{LOS} \\ &= \beta_0^* + \beta_1^* X_{LOS} \end{split}$$

This allows for a different slope after 7 days.

l. Spline

Notes on Splines

 $\hat{Y} = \beta_0 + \beta_1 X_{LOS} + \beta_2 X_{LOS.C7^+}$

- The value of the spline term β_2 quantifies the difference in slopes before the given X value and after.
- The test of H_0 : $\beta_2=0$ is a test of whether there is a significant change in slope after the specified value of X.

43

4. Splines Example

The Affordable Care Act (aka "Obamacare") was initiated in March 2010. Data on the state-level per capita healthcare expenditure was obtained (kff.org) and this data was plotted for the years 2000 through 2014.

While health expenditure per capita (HEPC) tended to increase over time, we want to know if the yearly increase was attenuated after the year 2010.

44

Reparametrizing the spline model.

Note: we can reparametrize the spline model to instead obtain the slope for year after 2010 and the change in slope for years 2010 and prior:

> In(hepc - yearnum + I ((yearnum - 18)* (yearnum < 18)), data = hccp) %3 summary()

(call:

In(formula = hepc - yearnum + I ((yearnum - 18) * (yearnum <= 18)), data = hccp) %3 summary()

Residuals:

Min 10 | Median 30 | Max | -2377, 2 -661.3 -157.6 514.4 3694.3 | 661.3 | 671.6 514.4 3694.3 |

4. Splines	
Recap	
- Splines allow for a different β coefficient across a certain range of X	
Splines can be useful for:	
1) Helping to model a certain effect 2) To time least though the state of the	
2) Testing hypotheses about when a certain effect differs as a function of X	
19	
4. Splines 50	
Recap	
>Create the variables necessary to implement a linear splines approach	
➤ Correctly interpret the slope coefficients from a linear splines analysis	
50	
5. Dose-Response Coding	
Applications	
We often find variables that are only applicable when the participant has	
the existence of some health behavior.	
Examples:	
• For those who smoke, how many packs per week do you smoke?	
• For those who exercise, how many hours per week do you exercise?	
 What is the percent of your named friendships that are reciprocated (reciprocation is undefined for those naming no friends)? 	
· — — — — — — — — — — — — — — — — — — —	

Dose-			

Example

Children in high schools were surveyed about the peers at school they considered a friend. They were also given a survey asking them about their "maladaptive coping" habits (e.g., turning to drugs/alcohol when under duress).

Two network measures were computed:

Reciprocity: The proportion of friendships named by the student that were also named in return (i.e., reciprocated).

Out-degree: The number of friendship nominations made.

The outcome is "maladaptive coping" z-score.

52

5. Dose-Response Coding

Problem: reciprocity is undefined for those who did not name friends.

How do we include these two concepts in a model?

Consider the following coding scheme:

$$X_{any_friends} = \begin{cases} 1, named \ge 1 friends \\ 0, named \ 0 \ friends \end{cases}$$

$$X_{recip} = \begin{cases} reciprocity, named \geq 1 \ friends \\ 0, named \ 0 \ friends \end{cases}$$

53

5. Dose-Response Coding

What is the baseline category?

$$X_{any_friends} = \begin{cases} 1, named \geq 1 friends \\ 0, named \ 0 \ friends \end{cases}$$

$$X_{recip} = \begin{cases} reciprocity, named \geq 1 \ friends \\ 0, named \ 0 \ friends \end{cases}$$

	Dage I				C ~ ~	:
5.	Dose-F	(esi	оют	ıse	Coa	Hate

What is the baseline category?

$$X_{any_friends} = \begin{cases} 1, named \geq 1 friends \\ 0, named \ 0 \ friends \end{cases}$$

$$\textit{X}_{recip} = \begin{cases} reciprocity, named \geq 1 \ friends \\ 0, named \ 0 \ friends \end{cases}$$

Named 0 friends.

55

5. Dose-Response Coding

What does $\beta_{\text{any_friends}}$ represent?

$$X_{any_friends} = \begin{cases} 1, named \ge 1 friends \\ 0, named \ 0 \ friends \end{cases}$$

$$X_{recip} = \begin{cases} reciprocity, named \geq 1 \ friends \\ 0, named \ 0 \ friends \end{cases}$$

56

5. Dose-Response Coding

What does $\beta_{\text{any_friends}}$ represent?

$$X_{any_friends} = \begin{cases} 1, named \ge 1 friends \\ 0, named 0 friends \end{cases}$$

$$\textit{X}_{recip} = \begin{cases} reciprocity, named \geq 1 \ friends \\ 0, named \ 0 \ friends \end{cases}$$

The effect on Y associated with naming any friends (vs. naming no friends), holding reciprocity constant (by necessity, at 0).

i.e., the difference in Y for a student with zero reciprocity who named any friends, compared to a student who named no friends.

5. Dose-Response Coding
What does β_{recip} represent? $ X_{any_friends} = \begin{cases} 1, named \geq 1 friends \\ 0, named \ 0 \ friends \end{cases} $
$X_{recip} = egin{cases} reciprocity, named \geq 1 \ friends \ 0, named \ 0 \ friends \end{cases}$

5. Dose-Response Coding
What does β_{recip} represent? $X_{any_friends} = \begin{cases} 1, named \geq 1 friends \\ 0, named \ 0 \ friends \end{cases}$ $X_{recip} = \begin{cases} reciprocity, named \geq 1 \ friends \\ 0, named \ 0 \ friends \end{cases}$
The predicted change in Y for a 1-unit increase in reciprocity, holding $X_{any_friends}$ constant (by necessity, at 1).
i.e., the difference in Y for a one-unit increase in reciprocity among those who named any friends.

5. Dose-Response Coding

Conclusion

We examined the effect of reciprocity (continuous, between 0 and 1) and naming any friends (1 vs. 0) on maladaptive coping attitudes. These variables were significantly related to maladaptive coping score (p<.001) but only explained 2.6% of the variance in outcome. We found that a one-unit increase in reciprocity was associated with a decrease in maladaptive coping score of 0.24 (p<.001). Furthermore, when compared to somebody who named no friends, naming any friends but having 0 reciprocity was associated with a decrease in maladaptive coping score of 0.30 (p<.001).

62

5. Dose-Response Coding

Recap

- This particular coding scheme can be used when one variable is an indicator of the presence of a phenomenon, and the second variable indicates an additional effect that is contingent on the first variable.
- This can be extended to processes such as:
 - Smoking: variable1=yes/no, variable2=packs per day
 - Exercise: variable1=yes/no, variable2=intensity
 - Disease: variable1=presence/absence, variable2=severity
 - $\bullet \ \, {\sf Dose\text{-}response:} \ \, {\sf variable1\text{-}medication/placebo,} \ \, {\sf variable2\text{-}dose}$

e-Resp		

Recap

- ➤ Create the variables necessary to implement dose-response coding
- >Correctly interpret the slope coefficients from an analysis with doseresponse coding

64

6. Overfitting

Explaining Too Well

- One gut desire when creating a model is to try to explain as much about our Y variable as possible
- When we try to model phenomena, there is always some random component e associated with that phenomenon that cannot be explained
- Overfitting occurs when our model is fit too well to the data and no longer is an accurate representation of the underlying process

65

O١			

Recap

- Error is inherent in life, and in models ($Y = \beta_0 + \beta_1 X + e$)
- Instead of explaining away inherent error with overly-complicated models, be realistic about what your model can and cannot explain
- Parsimony—having the simplest model that still does well explaining an outcome—is desirable

73

6. Overfitting

Recap

- Explain why a model that fits "too well" can be a bad thing
- > Discuss the tradeoffs between model simplicity and complexity

74

7. Adjusted R-Squared

Too Many Variables

- In multiple regression, each additional X variable should improve model fit, even if just due to chance.
- Models with several variables tend to have better fit simply because they have more terms.
- The adjusted R-squared metric is a version of R-squared that adjusts for the number of predictors in the model.
- This is a great way to prevent overfitting!

7. Adjusted R-Squared

Adjusted R-Squared

$$R_{adj}^2 = 1 - \left(\frac{(1 - R^2)(n - 1)}{n - k - 1}\right)$$

Where n is the sample size and k is the number of predictors.

76

7. Adjusted R-Squared Let's revisit the models from the last section. > $\ln(y - x + 1(x^2))$, data = ext) 8.08 summary() Gall: $\ln(formula = y - x + 1(x^2))$, data = ext) 8.08 summary() Gall: $\ln(formula = y - x + 1(x^2))$, data = ext) Residuals: Residuals: (Intercept) 7.7.3460 8.1.3130 9.214 9.773 Confficients: (Intercept) 7.7.3460 8.4.3130 9.213 9.8032 8. $1(x^2)$ 8.2.320 9.2.927 9.0.920 7.943 1.080404 9. $1(x^2)$ 8.2.928 9.2.927 9.0.920 7.943 1.080404 9. (Intercept) 9.306e00 5.313e00 1.657 0.150 1.080504 9. Residuals: Residua

77

7. Adjusted R-Squared

Predicted R-Squared

The predicted R-squared is a measure of how good a particular model is at estimating new values.

That is, what percent of the variation in *new values* can be explained by the model?

This is an even better measure of overfitting.

Here, we see that the amount of variation in new values is much higher for the quadratic model compared to the 8-degree polynomial model. 3		_
To the quadratic model compared to the 8-degree polynomial model.	7. Adjusted R-Squared	
7. Adjusted 8 Squared Feetap Adjusted 8 Squared Public adjusted 8 Squared Recap Public adjusted and predicted R-squared values to assess a model's performance	Here, we see that the amount of variation in new values is much higher	
Compared to the state of the	> lm(y ~ x + I(x^2), data = ex1) %>% pred r squared()	
7. Adjusted R. Squared Recap - Alternate R-squared metrics can help determine if the model's explanatory power is simply due to overfitting 7. Adjusted R. Squared Recap - Alternate R-squared metrics can help determine if the model's explanatory power is simply due to overfitting 80 Recap > Use adjusted R. Squared Recap > Use adjusted and predicted R-squared values to assess a model's performance	[1] 0.6410801	
7. Adjusted R-Squared Recap • Atternate R-squared metrics can help determine if the model's explanatory power is simply due to overfitting 80 7. Adjusted R-Squared Recap > Use adjusted and predicted R-squared values to assess a model's performance	+ pred r squared()	
7. Adjusted R-Squared Recap • Atternate R-squared metrics can help determine if the model's explanatory power is simply due to overfitting 80 7. Adjusted R-Squared Recap > Use adjusted and predicted R-squared values to assess a model's performance		
7. Adjusted R-Squared Recap • Atternate R-squared metrics can help determine if the model's explanatory power is simply due to overfitting 80 7. Adjusted R-Squared Recap > Use adjusted and predicted R-squared values to assess a model's performance		
7. Adjusted R-Squared Recap • Atternate R-squared metrics can help determine if the model's explanatory power is simply due to overfitting 80 7. Adjusted R-Squared Recap > Use adjusted and predicted R-squared values to assess a model's performance		-
7. Adjusted R-Squared Recap • Atternate R-squared metrics can help determine if the model's explanatory power is simply due to overfitting 80 7. Adjusted R-Squared Recap > Use adjusted and predicted R-squared values to assess a model's performance		
7. Adjusted R-Squared Recap • Atternate R-squared metrics can help determine if the model's explanatory power is simply due to overfitting 80 7. Adjusted R-Squared Recap > Use adjusted and predicted R-squared values to assess a model's performance	https://rpubs.com/RatherBit/102428	
7. Adjusted & Squared Recap - Adjusted & Squared 7. Adjusted & Squared Recap - Use adjusted and predicted R-squared values to assess a model's performance		
Recap • Alternate R-squared metrics can help determine if the model's explanatory power is simply due to overfitting 80 7. Adjusted R-Squared Recap > Use adjusted and predicted R-squared values to assess a model's performance	79	
Recap • Alternate R-squared metrics can help determine if the model's explanatory power is simply due to overfitting 80 7. Adjusted R-Squared Recap > Use adjusted and predicted R-squared values to assess a model's performance		
Recap • Alternate R-squared metrics can help determine if the model's explanatory power is simply due to overfitting 80 7. Adjusted R-Squared Recap > Use adjusted and predicted R-squared values to assess a model's performance		
Recap • Alternate R-squared metrics can help determine if the model's explanatory power is simply due to overfitting 80 7. Adjusted R-Squared Recap > Use adjusted and predicted R-squared values to assess a model's performance		
Recap • Alternate R-squared metrics can help determine if the model's explanatory power is simply due to overfitting 80 7. Adjusted R-Squared Recap > Use adjusted and predicted R-squared values to assess a model's performance		
Recap • Alternate R-squared metrics can help determine if the model's explanatory power is simply due to overfitting 80 7. Adjusted R-Squared Recap > Use adjusted and predicted R-squared values to assess a model's performance		
Alternate R-squared metrics can help determine if the model's explanatory power is simply due to overfitting Adjusted R-squared Recap > Use adjusted and predicted R-squared values to assess a model's performance	7. Adjusted R-Squared	
Alternate R-squared metrics can help determine if the model's explanatory power is simply due to overfitting Adjusted R-squared Recap > Use adjusted and predicted R-squared values to assess a model's performance	Recap	
Adjusted R-Squared Recap > Use adjusted and predicted R-squared values to assess a model's performance		
7. Adjusted R-Squared Recap > Use adjusted and predicted R-squared values to assess a model's performance	explanatory power is simply due to overfitting	
7. Adjusted R-Squared Recap > Use adjusted and predicted R-squared values to assess a model's performance		
7. Adjusted R-Squared Recap > Use adjusted and predicted R-squared values to assess a model's performance		
7. Adjusted R-Squared Recap > Use adjusted and predicted R-squared values to assess a model's performance		
7. Adjusted R-Squared Recap > Use adjusted and predicted R-squared values to assess a model's performance		
7. Adjusted R-Squared Recap > Use adjusted and predicted R-squared values to assess a model's performance		
7. Adjusted R-Squared Recap > Use adjusted and predicted R-squared values to assess a model's performance		
7. Adjusted R-Squared Recap > Use adjusted and predicted R-squared values to assess a model's performance		
7. Adjusted R-Squared Recap > Use adjusted and predicted R-squared values to assess a model's performance	80	
Recap > Use adjusted and predicted R-squared values to assess a model's performance		
Recap > Use adjusted and predicted R-squared values to assess a model's performance		
Recap > Use adjusted and predicted R-squared values to assess a model's performance		
Recap > Use adjusted and predicted R-squared values to assess a model's performance		
Recap > Use adjusted and predicted R-squared values to assess a model's performance		
Recap > Use adjusted and predicted R-squared values to assess a model's performance	7 Adjusted P. Squared	
➤ Use adjusted and predicted R-squared values to assess a model's performance		
performance		
	➤ Use adjusted and predicted R-squared values to assess a model's performance	
81	performance	
21		
21		
21		
81		
81		
R1		
	91	

8. Reca

- Plan ahead when modeling. Knowing the type of data you have and how you want to model it will make your job easier. Think about the terms you want to use in your model and why you are using them.
- **Use coding to test hypotheses.** In addition to being more flexible, spline coding can be used to test hypotheses about differences in slopes for a particular range of X.
- Don't be too good. As in: don't over-fit. Good models explain things as simply as possible but as comprehensively as possible.
 Remember—all models are just a simplification of reality.
- Sanity check. Whatever your model estimates are, think about them to make sure they are sensible.

82

Relationship between President's highest approval rating and their ranking by historians Fitted Line Plot Helderster rank = 23.81 - 8.1135 Approval High A

83

3. Reca

Additional Reading

- More on Predicted R-Squared (and function) https://rpubs.com/RatherBit/102428
- More on splines, with applications to machine learning https://bradleyboehmke.github.io/HOML/mars.html

8. Recap		
Packages and Functions • mfp::fp()	_	
	_	
	_	
	_	
	_	
	_	