An Introduction to Algorithms By Hossein Rahmani

h_rahmani@iust.ac.ir http://webpages.iust.ac.ir/h_rahmani/

- Given a <u>weighted directed graph</u>, one common problem is finding the <u>shortest path</u> between <u>two</u> given <u>vertices</u>
- Recall that in a <u>weighted</u> graph, the *length* of a path is the <u>sum of the weights</u> of each of the edges in that path

 Given the graph below, suppose we wish to find the shortest path

from vertex 1 to vertex 13

 After some consideration, we may determine that the shortest path is as follows, with length 14

Other paths exists, but they are longer

Negative Cycles

- Clearly, if we have <u>negative vertices</u>, it may be possible to end up in a cycle whereby <u>each pass</u> through the cycle <u>decreases</u> the total <u>length</u>
- Thus, a shortest length would be <u>undefined</u> for such a graph
- Consider the shortest path from vertex 1 to 4...
- We will <u>only</u> consider <u>non-negative</u> weights.

Shortest Path Example

- Given:
 - Weighted Directed graph G = (V, E).
 - Source s, destination t.
- Find shortest directed path from s to t.

Discussion Items

- How many possible paths are there from s to t?
- Can we safely ignore cycles? If so, how?
- Any suggestions on how to reduce the set of possibilities?
- Can we determine a lower bound on the complexity like we did for comparison sorting?

Key Observation

- A key observation is that if the shortest path contains the node v, then:
 - It will only contain v once, as any cycles will only add to the length.
 - The path from <u>s</u> to <u>v</u> must be the <u>shortest</u> path to <u>v</u> from <u>s</u>.
 - The path from <u>v to t</u> must be the <u>shortest</u> path to t from v.
- Thus, if we can determine the <u>shortest</u> path to <u>all</u> other vertices that are incident to the target vertex we can easily compute the shortest path.
 - Implies a set of sub-problems on the graph with the target vertex removed.

- Works when all of the <u>weights</u> are <u>positive</u>.
- Provides the <u>shortest</u> paths from a source to <u>all</u> other vertices in the graph.
 - Can be terminated early once the shortest path to t is found if desired.

 Consider the following graph with positive weights and cycles.

 A first attempt at solving this problem might require an array of <u>Boolean values</u>, all initially false, that indicate <u>whether we</u> have found a path from the source.

1	F
2	F
3	F
4	F
5	F
6	F
7	F
8	F
9	F

 Graphically, we will denote this with <u>check</u> <u>boxes</u> next to each of the vertices (initially unchecked)

- We will work bottom up.
 - Note that if the <u>starting vertex</u> has any <u>adjacent</u> edges, then there will be one vertex that is the <u>shortest</u> distance from the starting vertex. This is the shortest reachable vertex of the graph.
- We will then try to <u>extend any *existing* paths</u> to new vertices.
- Initially, we will start with the path of length 0
 - this is the trivial <u>path</u> from vertex <u>1</u> to itself

 If we now extend this path, we should consider the paths

- (1, 2)	length 4
-(1, 4)	length 1
- (1, 5)	length 8

The *shortest* path so far is (1, 4) which is of length 1.

- Thus, if we now examine vertex 4, we may deduce that there exist the following paths:
 - (1, 4, 5) length 12
 - (1, 4, 7) length 10
 - -(1, 4, 8) length 9

- We need to <u>remember</u> that the length of that path from node 1 to node 4 is 1
- Thus, we need to <u>store the length of a path</u> that goes through node 4:
 - 5 of length 12
 - 7 of length 10
 - 8 of length 9

- We have <u>already</u> discovered that there is a path of length 8 to vertex 5 with the path (1, 5).
- Thus, we can safely <u>ignore</u> this <u>longer</u> path.

- We now know that:
 - There exist paths from vertex 1 to vertices {2,4,5,7,8}.
 - We know that the shortest path from vertex 1 to vertex 4 is of length 1.
 - We know that the shortest path to the other vertices {2,5,7,8} is at most the length listed in the table to the right.

Vertex	Length
1	0
2	4
4	1
5	8
7	10
8	9

- There cannot exist a shorter path to either of the vertices 1 or
 4, since the distances can only increase at each iteration.
- We consider these vertices to be visited

If you only knew this information and nothing else about the graph, what is the possible lengths from vertex 1 to vertex 2? What about to vertex 7?

Vertex	Length
1	0
2	4
4	1
5	8
7	10
8	9

Relaxation

 Maintaining this shortest discovered distance d[v] is called relaxation:

```
Relax(u,v,w) {
    if (d[v] > d[u]+w) then
        d[v]=d[u]+w;
}

5
2
9
5
4
Relax
V
Relax
V
T
6
```


- In Dijkstra's algorithm, we always take the next unvisited vertex which has the current shortest path from the starting vertex in the table.
- This is vertex 2

- We can try to <u>update the shortest paths</u> to vertices 3 and 6 (both of length 5) however:
 - there already exists a path of length 8 < 10 to vertex 5 (10 = 4 + 6)
 - we already know the shortest path to 4 is 1

- To keep track of those vertices to which <u>no</u>
 <u>path has reached</u>, we can assign those vertices
 an <u>initial distance</u> of either
 - infinity (∞),
 - a number larger than any possible path, or
 - a negative number
- For demonstration purposes, we will use ∞

- As well as finding the length of the shortest path, we'd like to find the corresponding shortest path
- Each time we <u>update</u> the <u>shortest</u> distance to a particular vertex, we will <u>keep track</u> of the <u>predecessor</u> used to reach this vertex on the shortest path.

- We will store a table of pointers, each initially
- This table will be updated each time a distance is updated

1	0
2	0
3	0
4	0
5	0
6	0
7	0
8	0
9	0

- Graphically, we will display the reference to the <u>preceding</u> vertex by a <u>red arrow</u>
 - if the distance to a vertex is ∞, there will be no preceding vertex
 - otherwise, there will be <u>exactly one preceding</u>
 vertex

- Thus, for our initialization:
 - we set the current distance to the <u>initial vertex</u> as
 <u>0</u>
 - for all <u>other</u> vertices, we set the current distance to ∞
 - all vertices are initially marked as unvisited
 - set the previous pointer for all vertices to null

- Thus, we iterate:
 - find an <u>unvisited vertex</u> which has the <u>shortest</u>
 distance to it
 - mark it as visited
 - for each <u>unvisited vertex</u> which is <u>adjacent</u> to the current vertex:
 - add the distance to the current vertex to the weight of the connecting edge
 - if this is less than the current distance to that vertex, <u>update the distance</u> and set the parent vertex of the adjacent vertex to be the current vertex

- Halting condition:
 - we successfully halt when the vertex we are visiting is the <u>target</u> vertex
 - if at some point, all remaining unvisited vertices have distance ∞, then no path from the starting vertex to the end vertex exits
- Note: We do not halt just because we have updated the distance to the end vertex, we have to visit the target vertex.

- Consider the graph:
 - the distances are appropriately initialized
 - all vertices are marked as being unvisited

- Visit vertex 1 and update its neighbours, marking it as visited
 - the shortest paths to 2, 4, and 5 are updated

The next vertex we visit is vertex 4

– vertex 5

 $1 + 11 \ge 8$

don't update

vertex 7

1 + 9 < ∞

update

– vertex 8

1 + 8 < ∞

update

Next, visit vertex 2

vertex 3

vertex 4

 $4 + 6 \ge 8$

vertex 5

vertex 6

4 + 1 < ∞

update already visited

don't update

update

- Next, we have a choice of either 3 or 6
- We will choose to visit 3

vertex 5

5 + 2 < 8

update

vertex 6

 $5 + 5 \ge 5$

don't update

• We then visit 6

– vertex 8

 $5 + 7 \ge 9$

don't update

– vertex 9

5 + 8 < ∞

update

- Next, we finally visit vertex 5:
 - vertices 4 and 6 have already been visited

vertex 7

7 + 1 < 10

update

vertex 8

7 + 1 < 9

update

vertex 9

 $7 + 8 \ge 13$

don't update

- Given a choice between vertices 7 and 8, we choose vertex 7
 - vertices 5 has already been visited
 - vertex 8

$$8 + 2 \ge 8$$

don't update

Next, we visit vertex 8:

 $- \text{ vertex 9} \qquad 8 + 3 < 13$

update

- Finally, we visit the end vertex
- Therefore, the shortest path from 1 to 9 has length 11

 We can find the shortest path by working back from the final vertex:

$$-9, 8, 5, 3, 2, 1$$

• Thus, the shortest path is (1, 2, 3, 5, 8, 9)

- In the example, we visited all vertices in the graph before we finished
- This is not always the case, consider the next example

- Find the shortest path from 1 to 4:
 - the shortest path is found after only three vertices are visited
 - we terminated the algorithm as soon as we reached vertex
 - we only have useful information about 1, 3, 4
 - we don't have the shortest path to vertex 2

Dijkstra's algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
    do d[v] \leftarrow \infty
S \leftarrow \emptyset
Q \leftarrow V \triangleright Q is a priority queue maintaining V - S
while Q \neq \emptyset
    do u \leftarrow \text{Extract-Min}(Q)
         S \leftarrow S \cup \{u\}
         for each v \in Adj[u]
              do if d[v] > d[u] + w(u, v)
                       then d[v] \leftarrow d[u] + w(u, v)
                       p[v] \leftarrow u
```

Dijkstra's algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
    do d[v] \leftarrow \infty
S \leftarrow \emptyset
Q \leftarrow V \triangleright Q is a priority queue maintaining V - S
while Q \neq \emptyset
    do u \leftarrow \text{Extract-Min}(Q)
         S \leftarrow S \cup \{u\}
         for each v \in Adj[u]
                                                              relaxation
             do if d[v] > d[u] + w(u, v)
                      then d[v] \leftarrow d[u] + w(u, v)
                                                                    step
                      p[v] \leftarrow u
```

Implicit Decrease-Key

Graph with nonnegative edge weights:

S: { *A*, *C* }

Find shortest path from s to t.

PQ = { s, 2, 3, 4, 5, 6, 7, t }

S = { } PQ = { s, 2, 3, 4, 5, 6, 7, t }

S = { S } PQ = { 2, 3, 4, 5, 6, 7, t }

S = { s } PQ = { 2, 3, 4, 5, 6, 7, t }

Dijkstra's Shortest Path Algorithm s = {s, 2}

S = { s, 2 } PQ = { 3, 4, 5, 6, 7, t }

S = { s, 2 } PQ = { 3, 4, 5, 6, 7, t }

S = { s, 2 } PQ = { 3, 4, 5, 6, 7, t }

Dijkstra's Shortest Path Algorithm S = { s, 2, 6 }

S = { s, 2, 6 } PQ = { 3, 4, 5, 7, t }

Dijkstra's Shortest Path Algorithm S = { s, 2, 6 }

S = { s, 2, 6 } PQ = { 3, 4, 5, 7, t }

Dijkstra's Shortest Path Algorithm S = { s, 2, 6, 7 }

S = { s, 2, 6, 7 } PQ = { 3, 4, 5, t }

Dijkstra's Shortest Path Algorithm S = { s, 2, 6, 7 }

 $S = \{ s, 2, 6, 7 \}$ PQ = $\{ 3, 4, 5, t \}$

delmin

Dijkstra's Shortest Path Algorithm S = { s, 2, 3, 6, 7 }

 $S = \{ s, 2, 3, 6, 7 \}$ PQ = $\{ 4, 5, t \}$

Dijkstra's Shortest Path Algorithm S = { s, 2, 3, 6, 7 }

 $S = \{ s, 2, 3, 6, 7 \}$ PQ = $\{ 4, 5, t \}$

Dijkstra's Shortest Path Algorithm S = { s, 2, 3, 5, 6, 7 }

 $S = \{ s, 2, 3, 5, 6, 7 \}$ PQ = $\{ 4, t \}$

Dijkstra's Shortest Path Algorithm S = { s, 2, 3, 5, 6, 7 }

 $S = \{ s, 2, 3, 5, 6, 7 \}$ PQ = $\{ 4, t \}$

Dijkstra's Shortest Path Algorithm S = { s, 2, 3, 4, 5, 6, 7 }

S = { s, 2, 3, 4, 5, 6, 7 } PQ = { t }

Dijkstra's Shortest Path Algorithm S = { s, 2, 3, 4, 5, 6, 7 }

S = { s, 2, 3, 4, 5, 6, 7 } PQ = { t }

Dijkstra's Shortest Path Algorithm S = { s, 2, 3, 4, 5, 6, 7, t }

S = { s, 2, 3, 4, 5, 6, 7, t } PQ = { }

Dijkstra's Shortest Path Algorithm S = { s, 2, 3, 4, 5, 6, 7, t }

S = { s, 2, 3, 4, 5, 6, 7, t } PQ = { }

Summary

- Given a weighted directed graph, we can find the shortest distance between two vertices by:
 - starting with a trivial path containing the initial vertex
 - growing this path by always going to the next vertex which has the shortest current path

Practice

Node	Included	Distance	Path
А	t	1	-
В	A t	4	Α
С	/ t	2	А
D	f t	5	Α
E	f t	∞10 9	-/B F
F	f t	∞ 8	<i></i> ✓ B

Give the shortest path tree for node A for this graph using Dijkstra's shortest path algorithm. Show your work with the 3 arrays given and draw the resultant shortest path tree with edge weights included.

Quiz 1

 Consider the directed graph shown in the figure below. There are multiple shortest paths between vertices S and T. Which one

will |

Quiz 2

Calculate shortest paths from A to every other vertex using dijkstra algorithm

Quiz 3

Show the result of Dijkstra's algorithm from F to D

