Álgebra Abstracta y Codificación

Final

Estudiante: ______ Nota:_____

1. [2 pts] Sea C el código lineal de longitud 9, cuya matriz de control es

$$H = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

- a) Encuentre la dimensión de C;
- b) Encuentre la distancia mínima de C;
- c) Calcule los síndromes correspondientes a errores que C puede corregir;
- d) Diga si $000110011 \in C$ o no.
- e) Decodifique 110101101.
- 2. [1.5 pts] Sea G un grupo y sean N y M dos subgrupos normales de G tales que NM = G, donde $NM = \{nm : n \in N, m \in M\}$ y $N \cap M = \{1\}$. Demuestre que:
 - a) Si $n \in N$ y $m \in M$ entonces nm = mn.
 - b) Cada elemento de G se escibe de manera única como nm, con $n \in N$ y $m \in M$.
 - c) Conluya que $G \cong N \times M$.
- 3. [1.5 pts] Sea $f(x) = x^3 + x + 1$ en $\mathbb{Z}_7[x]$.
 - a) Demuestre que f(x) es irreducible.
 - b) Encuentre el inverso de $g(x) = x^2 + 3x + 2$ en $\mathbb{Z}_7[x]/\langle f(x)\rangle$. [Sugerencia: acuérdese del algoritmo euclidiano.]