Amendments to the Specification

Please insert the following paragraph before the paragraph that begins at page 1, line 23:

Description of the Text File Submitted Electronically

The contents of the text file submitted electronically herewith are incorporated herein by reference in their entirety: A computer readable format copy of the Sequence Listing (filename: ARBG 004 07US 2nd Sub SeqList.txt, date recorded: December 4, 2008, file size 157 kilobytes).

Please insert the following on page 6, line 12:

- Fig. 6. Nucleotide sequence of OMT gene and promoter (SEQ ID NO: 130). The start and stop codons and putative TATA box are boxed and the *cis*-elements are double-underlined. The promoter region is in bold.
- Fig. 7. Nucleotide sequence of the 534 bp OMT promoter (SEQ ID NO: 131) showing the motifs (boxed) located within the sequence and the putative TATA box (double-underlined).
- Fig. 8. Nucleotide sequence of the 485 bp fragment of the OMT promoter (SEQ ID NO: 132) showing the motifs (boxed) located within the sequence and the putative TATA box (double-underlined).
- Fig. 9. Nucleotide sequence of the 306 bp fragment of the OMT promoter (SEQ ID NO: 133) showing the motifs (boxed) located within the sequence and the putative TATA box (double-underlined).
- Fig. 10. Nucleotide sequence of the 293 bp fragment of the OMT promoter (SEQ ID NO: 134) showing the motifs (boxed) located within the sequence and the putative TATA box (double-underlined).
- Fig. 11. Nucleotide sequence of the 119 bp fragment of the OMT promoter (SEQ ID NO: 135) showing the motifs (boxed) located within the sequence and the putative TATA box (double-underlined).
- Fig. 12. Nucleotide sequence of the 99 bp fragment of the OMT promoter (SEQ ID NO: 136) showing the motifs (boxed) located within the sequence and the putative TATA box (double-underlined).
- Fig. 13. Nucleotide sequence of the 66 bp fragment of the OMT promoter (SEQ ID NO: 137).

- Fig. 14. Schematic diagram of the *E. grandis* promoter fragments showing the locations of the putative *cis*-elements.
- Fig. 15. GUS expression driven by the OMT promoter and promoter fragments in stained tissue sections of transgenic tobacco plants.

Please insert the following on page 27, after line 14:

EXAMPLE 4

Analysis of promoter fragments using TE assay Details of the procedures used for analysis of promoters in the TE assay are described in a U.S. Provisional Application No. 60/345,397 filed November 9, 2001, and in a related US Patent Application filed on the same date as the instant application.

Zinnia elegans_mesophyll cells were cultured in maintenance medium (FK) or TE inducing medium (FKH). Protoplasts were isolated and transformed with a plasmid containing the GUS (β-D-glucuronidase) reporter gene in frame with the specified *E. grandis* OMT promoter fragments. The constructs were tested, and the results are described in the table, below.

Promoter	SEQ ID	Figure	Relative level of	Enhanced in TE-
construct	NO:		activity in TE assay	forming cells?
534 bp	131	Fig. 7	high	yes
485 bp	132	Fig. 8	high	yes
306 bp	133	Fig. 9	high	yes
293 bp	134	Fig. 10	high	yes
119 bp	135	Fig. 11	low	yes
99 bp	136	Fig. 12	low	yes
66 bp	137	Fig. 13	not detectable	no

General Method

4)

d)

Transformation of tobacco plants: Reporter gene constructs were introduced into transgenic tobacco plants using Agrobacterium-mediated leaf tissue transformation (Burow *et al.*, *Plant Mol. Biol. Rep.* 8:124-139 (1990).

Attorney Docket No.: ARBG 004/07US

Application No. 10/702,319

Page 4

Staining of tissue sections

The GUS staining protocol is described by Campisi et al., Plant J. 17:699-707, 1999.

Please replace the sequence listing that appears after the abstract with the sequence listing submitted electronically herewith.