Pourt - A Fourier's law states that "the negrative gradient of temperature and the time state of heat transfer is peroportional to the corea at exight angles of that gradient through which the heat flows. Law of Thermal conductivity states "that the rate of which heat is transferred trough a material is propositional to the negative of the demperature gradient and is proportional to the area trough which the heat floure. 4 Newton's law of cooling states that the grade at which an object cools is propositional to the difference in temperature flucturen the objects and the Object's swomoundings. When convection takes place due to buoyan force as there is a différence in densities freezed by the difference in temporature it is knowns as national connection Eg: Oceanic cuinds.

(i) The Reynolds number is the gratio of enertial forces to viscoul forces. (ii) The Paranett number is a dimensionless quantity that puts the viscosity of a fluid is consordation with the thornal conductivity Pobot - B. Griven: 2) fluid temperature, T = 200C, velocity, u = 3m/s. Surque temperature, To = 80°C. Déltance, x = 300mm, = 0.3 m Solution, film temperature, Tf = Tw + Tw T = 50°C. Renoperatives of air at 50°C. Denety P=1.093 kg/m3.

	Kinematie vikokity
	Tkinematie viscosity, $v = 17.95 \times 10^6 \text{ m}^2/\text{s}$. Pound the number, $Pr = 0.698$.
JA:	Thermal conductivity, K = 28,96 × 103 W/m-k.
	W.K.T.
	Reynolds number Re = UL/V
	= 3x0,3
	17.95 ×10-6
	Re = 5.01 × 104 < 5 × 105
	Since Re <5 ×10 ⁵ , flow is laminour.
	for flat plate, laminar flow,
	V
1.	Hydrodynamic boundary layor thicknes.
	Hydrodynamic boundary layor thicknes: Shx = 5xx x (Re) 5.5
	$= 5 \times 0.3 \times (5.01 \times 10^{14})^{-0.5}$
	$8hx = 6.7 \times 10^{-3} \text{m}$
	Se to the term of term
0	T
21	Thermal boundary layer thickness:
	Stx - Shx (Pr) -0,333,
	$=87x=(6.7 \times 10^{-3})(0.698)^{-0.333}$
	8tx = 7.5 x 103m,
	A A A A A A A A A A A A A A A A A A A
3,	Local goucleon coefficient
	$C_{4x} = 0604(Re)$
	Local fluiction coefficient: $C_{4x} = 0.60 \mu (Re)^{-0.5}$ $= 0.66 \mu (5.01 \times 10^{4})^{-0.5}$

Cp = 2,96 × 103 H. Ausrage faiction eo-afficient CAT = 1.328 (Re) $= 1.328 (5.01 \times 104)^{-0.5}$ $= 5.9 \times 10^{-3}$ $= 6.9 \times 10^{-3}$ 5. Local head toxusfor coefficient (ha): Local Kulsect Numbes. My = 0.332 (Re) 0.5 (R) 0.333. Nux = 0.332 (Re) 0.5 (R) 0.333. = 0.332 (5.01 ×104) (0.698)0.333. Allor = 65.9. Local Nusself Number Nug = hoxxh/k. 65.9 = hol x 0,3 [.: X=r=0.310] 23,26×10-3 hor = 6.20 W/m2k. Local hear transfer co-efficient by = 6-20 W/m2 Average hout transfer conefficient (h)

h= 2 h= 2/bx = 0/b.20.

h=12.41 W/m2K Heat transfer, Q = hA(Tw-TY) = 12. Hi (1 x 0.3) (80 - 20) Q=23.38 Malls. 8. avoid only co-efficient $= 1.328 \times (20)^{-0.5}$ $= 1.328 \times (5.01 \times 10^{+}).^{-0.5}$ $= 0.0059 - 5.9 \times 10^{-3}$ Dorced foorce Fp = Axî =02 X0.028. Fp= 8.4×10-3N

$$Q = AT = (T_1 - T_4)$$

$$R = \frac{1}{A} \left[\frac{L_1}{K_1} + \frac{L_2}{K_2} + \frac{L_3}{K_2} \right]$$

$$\frac{Q}{A} = \frac{71 - 14}{2}$$

$$\frac{1}{12} + \frac{13}{12}$$

$$\frac{1}{12} + \frac{13}{12}$$

$$\frac{-1043 - 323}{0.1 + 0.25 + 0.05}$$

$$\frac{-1043 - 323}{0.09 + 0.05}$$

$$0 = 1522.22 \text{ W/m}^2$$

Thermal Resistance (D)
$R = R_1 + R_2 + R_3$ $C_A = por moler2 (20 80 A = 1m2)$
$\frac{p = L_1 + L_2 + L_3}{ \kappa \kappa \kappa \kappa \kappa \kappa \kappa \kappa \kappa \kappa $
R = 0.1 + 0.25 + 0.05 $1.04 0.09 1.57$
= 0.0962 + 0.36 + 0.0365
R = 0.4927 K/W
Inner face temperations (T2 = ?, T3 = ?)
$8/A = AT = T_1 - T_4 = T_1 - T_2 = T_2 - T_3 = T_3 - T_4$ R R R R R R
$\frac{Q/A}{RI} = \frac{T_1 - T_2}{RI} = \frac{T_1 - T_2}{LI/kI}$

 $15.22 \quad 1522.22 = 1073 - 72$ 0.0962 $72 = (1522.22 \times 0.0962) - 1073$ 72 = 926.56/c

Q/A = T2-T2/R2

 $1522.22 = 926.56 - \frac{73}{k14k2}$ $1522.22 = 926.56 - \frac{73}{k14k2}$

T3 = 378,56k