Содержание

1	Лекция 1					
	1.1 1.2 1.3 1.4	Состояния равновесия системы Принцип виртуальных перемещений в обобщенных координатах Основные понятия теории устойчивости Функции Ляпунова	2 3 4 4			
2	Пот	Лекция 2				
4	2.1	Основные теоремы прямого метода Ляпунова	5			
	$\frac{2.1}{2.2}$	Теоремы Барбашина-Красовского	6			
	2.3 2.4	Устойчивость положения равновесия консервативных систем	7			
3	Лен	Лекция 3				
	3.1 3.2 3.3	Влияние гироскопических и диссипативных сил на положение равновесия	8			
	9.4	Маиевского-Четаева устойчивости «спящего» волчка Лагранжа)	8			
	$\frac{3.4}{3.5}$	Устойчивость по первому приближению	10			
	3.6	Критерий Рауса-Гурвица	10			
	0.0	притории г адом г дранца	10			
4		кция 4	11			
	4.1 4.2 4.3	Элементы теории бифуркации (катастроф)	11 13 13			
	Лекция 5					
5	Лег	кния 5	14			
5	Лен 5.1 5.2	кция 5 Доказательство первой теоремы Ляпунова об обращении уравнения Лагранжа Влияние внешнего гармонического воздействия на линейные стационарные системы	14 15 15			
5 6	5.1 5.2	Доказательство первой теоремы Ляпунова об обращении уравнения Лагранжа	15			
	5.1 5.2 Лен	Доказательство первой теоремы Ляпунова об обращении уравнения Лагранжа	15 15			
6	5.1 5.2 Лег 6.1 6.2 6.3	Доказательство первой теоремы Ляпунова об обращении уравнения Лагранжа	15 15 17 17 18 19			
	5.1 5.2 Лег 6.1 6.2 6.3	Доказательство первой теоремы Ляпунова об обращении уравнения Лагранжа	15 15 17 17 18 19			
6	5.1 5.2 Лен 6.1 6.2 6.3 Лен 7.1	Доказательство первой теоремы Ляпунова об обращении уравнения Лагранжа	15 15 17 17 18 19			
6	5.1 5.2 Лен 6.1 6.2 6.3 Лен 7.1	Доказательство первой теоремы Ляпунова об обращении уравнения Лагранжа	15 15 17 17 18 19 20 20			
6	5.1 5.2 Лен 6.1 6.2 6.3 Лен 7.1 7.2	Доказательство первой теоремы Ляпунова об обращении уравнения Лагранжа	15 15 17 17 18 19 20 21			
6	5.1 5.2 Лен 6.1 6.2 6.3 Лен 7.1 7.2 7.3	Доказательство первой теоремы Ляпунова об обращении уравнения Лагранжа	15 15 17 17 18 19 20 21 21 21			
6	5.1 5.2 Лен 6.1 6.2 6.3 Лен 7.1 7.2 7.3 7.4 7.5	Доказательство первой теоремы Ляпунова об обращении уравнения Лагранжа	15 15 17 17 18 19 20 21 21 21			
6	5.1 5.2 Jien 6.1 6.2 6.3 Jien 7.1 7.2 7.3 7.4	Доказательство первой теоремы Ляпунова об обращении уравнения Лагранжа	15 15 17 17 18 19 20 21 21 21 21			
6	5.1 5.2 Jier 6.1 6.2 6.3 Jier 7.1 7.2 7.3 7.4 7.5	Доказательство первой теоремы Ляпунова об обращении уравнения Лагранжа	15 15 17 17 18 19 20 21 21 21 21 22 22			
6	5.1 5.2 Лен 6.1 6.2 6.3 Лен 7.1 7.2 7.3 7.4 7.5	Доказательство первой теоремы Ляпунова об обращении уравнения Лагранжа	15 15 17 17 18 19 20 21 21 21 21			
6	5.1 5.2 Лен 6.1 6.2 6.3 Лен 7.1 7.2 7.3 7.4 7.5 7.6 7.7	Доказательство первой теоремы Ляпунова об обращении уравнения Лагранжа	15 15 17 17 18 19 20 21 21 21 22 22 23 23			
7	5.1 5.2 Jer 6.1 6.2 6.3 Jer 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Jer 8.1	Доказательство первой теоремы Ляпунова об обращении уравнения Лагранжа Влияние внешнего гармонического воздействия на линейные стационарные системы кщия 6 Реакция линейной стационарной системы на негармоническое воздействие Влияние внешней периодической силы на колебания консервативной системы Гамильтонова механика. Уравнения Гамильтона (канонические уравнения движения) кщия 7 Уравнение Гамильтона математического маятника Физический смысл функции Гамильтона Интеграл Якоби и циклические первые интегралы в системах Гамильтона Понижение порядка системы уравнений Гамильтона при наличии циклических координат Понижение порядка уравнения Гамильтона для обощенно-консервативной системы. Уравнение Уиттекера Случай обобщенно-консервативной системы с двумя степенями свободы и одной циклической координатой. Скобки Пуассона кщия 8 Необходимое и достаточное условие первого интеграла	15 15 17 17 18 19 20 21 21 21 22 23 23 23			
7	5.1 5.2 Jer 6.1 6.2 6.3 Jer 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Jer 8.1 8.2	Доказательство первой теоремы Ляпунова об обращении уравнения Лагранжа Влияние внешнего гармонического воздействия на линейные стационарные системы кщия 6 Реакция линейной стационарной системы на негармоническое воздействие Влияние внешней периодической силы на колебания консервативной системы Гамильтонова механика. Уравнения Гамильтона (канонические уравнения движения) кщия 7 Уравнение Гамильтона математического маятника Физический смысл функции Гамильтона Интеграл Якоби и циклические первые интегралы в системах Гамильтона Понижение порядка системы уравнений Гамильтона при наличии циклических координат Понижение порядка уравнения Гамильтона для обощенно-консервативной системы. Уравнение Уиттекера Случай обобщенно-консервативной системы с двумя степенями свободы и одной циклической координатой Скобки Пуассона кщия 8 Необходимое и достаточное условие первого интеграла Первые интегралы уравнения Гамильтона	15 15 17 17 18 19 20 21 21 21 22 23 23 23 23			
7	5.1 5.2 Jer 6.1 6.2 6.3 Jer 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Jer 8.1 8.2 8.3	Доказательство первой теоремы Ляпунова об обращении уравнения Лагранжа Влияние внешнего гармонического воздействия на линейные стационарные системы кция 6 Реакция линейной стационарной системы на негармоническое воздействие Влияние внешней периодической силы на колебания консервативной системы Гамильтонова механика. Уравнения Гамильтона (канонические уравнения движения) кция 7 Уравнение Гамильтона математического маятника Физический смысл функции Гамильтона Интеграл Якоби и циклические первые интегралы в системах Гамильтона Понижение порядка системы уравнений Гамильтона при наличии циклических координат Понижение порядка уравнения Гамильтона для обощенно-консервативной системы. Уравнение Уиттекера Случай обобщенно-консервативной системы с двумя степенями свободы и одной циклической координатой Скобки Пуассона кция 8 Необходимое и достаточное условие первого интеграла Первые интегралы уравнения Гамильтона Теорема Якоби-Пуассона	15 15 17 17 18 19 20 21 21 21 22 23 23 23 24			
7	5.1 5.2 Jer 6.1 6.2 6.3 Jer 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Jer 8.1 8.2	Доказательство первой теоремы Ляпунова об обращении уравнения Лагранжа Влияние внешнего гармонического воздействия на линейные стационарные системы кщия 6 Реакция линейной стационарной системы на негармоническое воздействие Влияние внешней периодической силы на колебания консервативной системы Гамильтонова механика. Уравнения Гамильтона (канонические уравнения движения) кщия 7 Уравнение Гамильтона математического маятника Физический смысл функции Гамильтона Интеграл Якоби и циклические первые интегралы в системах Гамильтона Понижение порядка системы уравнений Гамильтона при наличии циклических координат Понижение порядка уравнения Гамильтона для обощенно-консервативной системы. Уравнение Уиттекера Случай обобщенно-консервативной системы с двумя степенями свободы и одной циклической координатой Скобки Пуассона кщия 8 Необходимое и достаточное условие первого интеграла Первые интегралы уравнения Гамильтона	15 15 17 17 18 19 20 21 21 21 22 23 23 23 23			

9	Лекция 9	27
	9.1 Действие по Гамильтону и вариационный принцип Гамильтона-Остроградского	27
	9.2 Характер действия по Гамильтону	27
	9.3 Преобразование переменных в уравнениях Лагранжа второго рода	27
	9.4 Теорема Эмми Нётер	28
10	Лекция 10	28
	10.1 Интегральные инварианты гамильтоновых систем	29
	10.2 Обратные теоремы об интегральным инвариантах	30
11	Лекция 11	31
	11.1 Теорема Лиувиля о сохранении фазового объема	31
	11.2 Теорема Ли Хуачжуна	32
	11.3 Канонические преобразования гамильтоновых систем	33
12	Лекция 12	33
	12.1 Различные типы производящих функций канонического преобразования	34
	12.2 Другие критерии каноничности преобразований	36
13	Лекция 13	36
	13.1 Канонические уравнения Гамильтона как унивалентное преобразование фазового пространства .	37
	13.2 Уравнения Гамильтона-Якоби	37

1 Лекция 1

1.1 Состояния равновесия системы

 $\{P_k\}_{k=1}^N$ - механическая система, свободная или несвободная. Если система несвободная, то у нее есть связи:

- 1. геометрические $f_{\alpha}(\vec{r}_{k},t)=0, \quad \alpha=1,...,r;$
- 2. дифференциальные связи $\sum_{k=1}^N \vec{a}_{\beta k} \vec{v}_k + a_\beta = 0, \quad \beta = 1,...,s;$ $\vec{a}_{\beta k}$ и a_β функции \vec{r}_k,t

Связи: удерживающие, идеальные $(\sum_{k=1}^{N} \vec{R}_k \delta \vec{r}_k = 0)$. \Rightarrow Общее уравнение динамики (принцип Даламбера-Лагранжа):

$$\sum_{k=1}^{N} (\vec{F}_k - m\vec{w}_k) \delta \vec{r}_k = 0 \tag{1}$$

Состояния равновесия (положения равновесия):

Ha $t \in [t_0, t_1]$ $\vec{r}_k = \text{const} = \vec{r}_{k_0}$ $(\vec{v}_k = 0; \vec{w}_k = 0)$

1. Кинематические возможные (удовлетворяющие связям) на $t \in [t_0, t_1]$

$$\begin{cases} f_{\alpha}(\vec{r}_{k_0}, t) = 0 \\ a_{\beta}(\vec{r}_{k_0}, t) = 0 \end{cases}$$

2. Действительные состояния равновесия: кинематические возможные с учетом приложенных сил \vec{F}_k . Необходимое и достаточное условие: принцип виртуальных перемещений или принцип Лагранжа, или общее уравнение статики.

$$(1) \stackrel{\vec{w}_k = \vec{0}}{\Longrightarrow} \left[\sum_{k=1}^N \vec{F}_k \delta \vec{r}_k = 0 \right]$$

Достаточное без доказательства

Для того, чтобы некоторое допускаемое идеальными удерживающими связими состояние равновесия системы было действительным состоянием равновесия на $[t_0, t_1]$ необходимо и достаточно, чтобы $\forall \in [t_0, t_1]$ элементарная работа активных сил на любых виртуальных перемещениях системы равнялась нулю.

1.2Принцип виртуальных перемещений в обобщенных координатах

$$\vec{r}_{k} = \vec{r}_{k}(q_{1}, \dots, q_{m}, t); \quad k = 1, \dots, N$$

$$\vec{v}_{k} = \sum_{j=1}^{m} \frac{\partial \vec{r}_{k}}{\partial q_{j}} \dot{q}_{j} + \frac{\partial \vec{r}_{k}}{\partial t}; \quad k = 1, \dots, N$$

$$\delta \vec{r}_{k} = \sum_{j=1}^{m} \frac{\partial r_{k}}{\partial q_{j}} \delta q_{j}$$
(2)

Пусть система склерономна:

$$\frac{\partial \vec{r_k}}{\partial t} = 0$$

Тогда получаем 3N скалярных соотношений:

$$\vec{0} = \vec{v}_k = \sum_{j=1}^m \frac{\partial \vec{r}_k}{\partial q_j} \dot{q}_j \Leftrightarrow \dot{q}_j = 0 \Leftrightarrow M = \left\| \frac{\partial \vec{r}_k}{\partial q_j} \right\|_{3N \times m}$$

Все q_i независимы $\Rightarrow \operatorname{Rg} M = m$. Тогда система

$$\sum_{j=1}^{m} \frac{\partial \vec{r}_k}{\partial q_j} \dot{q}_j = \vec{0}$$

имеет только тривиальное решение: $\dot{q}_j=0$

Если система реономна:

$$\vec{v}_k = \vec{0} \Rightarrow \dot{q}_i = 0$$

Переходим в НИСО, введем относительные координаты q_1, \ldots, q_m , ищем относительные равновесия.

$$\sum_{k=1}^{N} \vec{F}_k \delta \vec{r}_k = \sum_{j=1}^{m} Q_j \delta q_j = 0 \tag{3}$$

Если система голономна (m=n — число степеней свободы). Все δq_j - независимы.

$$(3) \Rightarrow \boxed{Q_1 = \dots = Q_n = 0}$$

Пусть система голономна в потенциальном поле сил.

$$Q_j = -\frac{\partial \Pi}{\partial q_i}$$

Тогда:

$$\frac{\partial \Pi}{\partial q_j} = 0, \quad j = 1, \dots, n$$

Примеры:

1) Твердое тело, приложены силы $\vec{F}_1, \ldots, \vec{F}_n$

$$d'A = \vec{F}\vec{v}_0dt + \vec{M}_0\vec{\omega}dt$$

$$\vec{F} = \sum_{k=1}^{n} \vec{F}_k; \quad \vec{M} = \sum_{k=1}^{n} \vec{M}_0(F_k)$$

- а) твердое тело склерономная система \Rightarrow виртуальные и возможные перемещения совпадают \Rightarrow действительное одно из виртуальных. Тогда $d'A = \delta A$.
 - б) твердое тело система с идеальными удерживающими связями $\Rightarrow \delta A = 0$ при $\forall \vec{v_0}, \vec{\omega}$. А значит:

$$\vec{F} = \vec{0}; \vec{M}_0 = \vec{0}$$

2)
$$T = \frac{1}{2}m(l^2\dot{\varphi}^2 + l^2\sin^2\varphi\ \omega^2) = T_2 + T_0$$

 $-T_0 = \tilde{\Pi}_e$ - потенциальная энергия переносных сил инерции

$$\Pi_a = -mql\cos\varphi$$

$$\Pi_g = -mgl\cos\varphi$$

$$\Pi = -mgl\cos\varphi - \frac{1}{2}ml^2\omega^2\sin^2\varphi \Rightarrow$$

$$\frac{\partial \Pi}{\partial \varphi} = mgl\sin\varphi - ml^2\omega^2\sin\varphi \cos\varphi = 0 \Rightarrow$$

$$ml\sin\varphi[g - l\omega^2\cos\varphi] = 0$$

Значит $\varphi=0,\pi,\pm\arccosrac{g}{I_{t,t}^2}$ при $\omega\geq\sqrt{rac{g}{t}}$ п положения равновесия.

1.3 Основные понятия теории устойчивости

Механическая система \rightarrow динамическая система.

Onpedenehue. Динамическая система — некоторая система, описанная системой дифференециальных уравнений:

$$\begin{cases} \dot{x} = X(x) \\ x = (x_1, \dots, x_m)^T \\ X(x) = (X_1, \dots, X_m) \end{cases}$$
 (1)

Причем правая часть системы удовлетворяет условию Коши единственного решения при заданном начальном условии. {механическая система: $x = x(q_1, \dots, q_m, \dot{q}_1, \dots, \dot{q}_m), m \geq 2$ }

Положения равновесия системы (1): частные решения вида $x = x^* = \text{const} \Rightarrow X(x) = 0$.

Пусть $x^* = 0$ — положение равновесия (при $x^* \neq 0$ сдвигаем $x \to x - x^*$).

 $x^* = 0$ — невозмущенное движение.

 $\dot{x} = X(x)$ — уравнение возмущения движения.

Onpedenenue. Положение равновесия x = 0 называется устойчивым, если

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : |x_i(t_0)| < \delta \quad \hookrightarrow \quad \forall t > t_0 \quad |x_i(t)| < \varepsilon, \quad i = 1, \dots, m.$$

Onpedenenue. Положение равновесия x=0 называется неустойчивым, если

$$\exists \varepsilon > 0: \ \forall \delta > 0 \ \exists t_1 > t_0 \ \mathtt{u} \ \exists i = i_*: |x_i(t_0)| < \delta \quad \hookrightarrow \quad |x_{i_*}(t)| \ge \varepsilon, \quad i = 1, \dots, m.$$

Onpedenehue. Положение равновесия x=0 называется асимптотически устойчивым, если:

1) оно устойчиво;

2)

$$\exists \Delta > 0: \ |x_i(t_0)| < \Delta$$
 \hookrightarrow $\lim_{t \to +\infty} x_i(t) = 0, \quad i = 1, \dots, m$ (условие притяжения)

Рис. 1:

Пример (рис.1):

а - варьируемый параметр.

$$x(0) = a, \ x(\frac{1}{a}) = 1, \ \lim_{t \to \infty} x(t) = 0$$

С уменьшением $a \downarrow \Rightarrow \frac{1}{a}$ растет и принимает ассимптотически большие значения $\Rightarrow \nexists$ конечно малого времени t=t* при котором $|x(t)| < \varepsilon$.

I метод Ляпунова — установление по линейному приближению.

II метод Ляпунова (прямой метод Ляпунова)

1.4 Функции Ляпунова

 $V(x_1,\ldots,x_m)$:

- 1) непрерывно дифференцируема в области $|x_i| < h$;
- 2) $V(0,\ldots,0)=0$:

3)
$$\frac{dV}{dt} = \sum_{i=1}^{m} \frac{\partial V}{\partial x_i} \dot{x}_i = \sum_{i=1}^{m} \frac{\partial V}{\partial x_i} X_i.$$

Утверждение. Если функция V — знакоопределена, то поверхность V = с $(c \neq 0)$ замкнута и содержит в себе начальные координаты.

Доказательство:

Пусть V — положительна определена. И обозначим a (a>0) точную нижнюю грань функции V на границе области $|x_i|< h$. Рассмотрим кривую, соединяющую начало координат и точку на границе области. В начале координат V=0. Следовательно, в силу непрерывности $V, \forall c< a$ существует точка на кривой такая, что V=c. Т.е. кривая пересекает поверхность V=c. Так как рассматриваемая кривая произвольная, то поверхность V=c замкнута и окружает начало координат.

Рис. 2: Поверхности функций Ляпунова

Следствие. Если $c_2>c_1>0,\ V$ — положительно определена, то поверхность $V=c_2$ содержит в себе поверхность $V=c_1.$ (рис.2)

Замечание. Если V — знакопостоянная или знакопеременная, то поверхности V=c разомкнуты.

2 Лекция 2

2.1 Основные теоремы прямого метода Ляпунова

$$\dot{x} = X(x), \quad x \in \mathbb{R}^m, \quad x = 0$$
 — положение равновесия (1)

Теорема 1. $(oб\ ycmoйчивости)$ Если уравнения возмущенного движения таковы, что \exists знакоопределенная функция $V(x_1,\ldots,x_m): \frac{dV}{dt}$ — знакопостоянная производная, но знакопротивоположная с V или тождественна равна 0, то положение равновесия x=0 — устойчиво.

Доказательство:

Пусть V — положительно определенная функция ($V \ge 0, V = 0 \Leftrightarrow x = 0$). Тогда $\dot{V} \le 0$.

Пусть в момент времени $t=t_0$ т. M_0 находилась на поверхности $V=c_2$ ($c_2 < c_1$). Тогда:

- 1) $\dot{V} \equiv 0 \Rightarrow \forall t > 0 \ V = \text{const} = c_2;$
- 2) $\dot{V} \leq 0 \Rightarrow$ т. M_0 находится внутри поверхности $V = c_2$.

Тогда т. M_0 никогда не покинет поверхность $V=c_2$ и никогда не перечет границу $V=c_1\Rightarrow$ не покинет ε -окрестность \Rightarrow положение устойчиво.

Теорема 2.(об ассимптотической устойчивости) Если уравнения возмущенного движения таковы, что \exists знакоопределенная функция $V(x_1,\ldots,x_m): \frac{dV}{dt}$ — знакоопределена, но знакопротивоположная с V, то положение равновесия x=0 ассимптотически устойчиво.

Доказательство:

V — положительно определенная функция;

 \dot{V} - отрицательно определенная функция;

- 1) Из условия теоремы 1 \Rightarrow положение равновесия устойчиво.
- 2) $\dot{V} < 0 \Rightarrow$ т. M внутри $V = c_2$.

 $V>0,\dot{V}<0\Rightarrow$ функция V- убывает, оставаясь положительной \Rightarrow \exists предел $c=c_3\geq0.$

Пусть $c_3>0$. Рассмотрим область G, \dot{V} — непрерывна, явно не зависит от $t\Rightarrow \exists \sup \dot{V}=-l \ (l>0)$

$$V - V_0 = \int_0^t \dot{V} dt \le \int_0^t (-l) dt = -lt$$

$$V \leq V_0 - lt \Rightarrow$$
 при $t > \frac{c_2}{l}$ $V < 0$

Получили противоречие $\Rightarrow c_3 = 0 \Rightarrow \lim_{t \to \infty} x(t) = 0$.

Определение. Областью V > 0 называем некое подмножество окрестности $|x_i| < h : V > 0$. При этом граничные области V = 0 содержат начало координат (точку x = 0).

Теорема 3.(meopema Четаева о неустойчивости) Пусть уравнения возмущенного движения таковы, что \exists функция $V: \forall$ точки в окресности $|x_i| < h$ \exists область V>0 (с границей V=0, проходящей через начало координат): \dot{V} — положительна для любой точки в области V>0, тогда положение равновесия неустойчиво. Доказательство:

Пусть при t=0 точка M_0 находилась на поверхности $V=V_0>0$.

 $\dot{V}>0\Rightarrow V\uparrow$ при t>0 $V>V_0$. След точка M не пересечет V=0.

V - непрерывно дифференцируемая функция \Rightarrow ограничена в h-окрестности в области $G:V\leq h$.

 $\dot{V} > 0 \Rightarrow \exists \inf_{G} \dot{V} = l \ (l > 0).$

$$V = V_0 + \int_0^t \dot{V} dt \ge V_0 + lt \Rightarrow t > t^*$$

$$V_0 + lt > h \quad (t^* = \frac{h - V_0}{l})$$

Таким образом точка выйдет за пределы h-окрестности \Rightarrow положение неустойчиво.

Пример: случай Эйлера.

$$\begin{cases} A\dot{p} + (C-B)qr = 0\\ B\dot{q} + (A-C)pr = 0\\ C\dot{r} + (B-A)pq = 0 \end{cases}$$

Стационарное вращение — p,q,r=const. Пусть $p=\omega,q=r=0$ и пусть выполняются B>A>C или C>A>B. Возмущение $p=\omega+x;q=y;r=z$

V = qr, область V > 0: q > 0, r > 0

$$\dot{V}=\dot{q}r+q\dot{r}=\frac{C-A}{B}pr^2+\frac{A-B}{C}pq^2=(\omega+x)\left[\frac{C-A}{B}r^2+\frac{A-B}{c}q^2\right]>0$$
 в области $V>0$

Если C>A и $A>B\Rightarrow$ положение неустойчиво. При $B>A>C\Rightarrow V=-qr$.

2.2 Теоремы Барбашина-Красовского

Теорема 1. Пусть уравнения возмущенного движения таковы, что \exists знакоопределенная функция V, производная которой \dot{V} — знакопостоянная, знакопротивоположная с V, причем множество тех точек, для которых $\dot{V}=0$, не содержит целых траекторий системы, кроме положения равновесия в начале координат. Тогда положение равновесия асимптотически устойчиво.

Определение. Целая траектория — траектория, полностью лежащая в плоскости.

Теорема 2. Если \exists функция V и область V > 0 (с границей V = 0, содержащей точку x = 0) такая, что $\dot{V} \geq 0$ в области V > 0, причем множество точек, где $\dot{V} = 0$, не содержит целых траекторий системы (кроме положений равновесия и начала координат), тогда положение равновесия неустойчиво.

2.3 Устойчивость положения равновесия консервативных систем

Динамические системы \rightarrow механические консервативные системы.

$$(x_1,\ldots,x_m)\to (q_1,\ldots,q_m,\dot{q}_1,\ldots,\dot{q}_m).$$

Консервативные системы: скленоромные, силы потенциальные, $\frac{\partial \Pi}{\partial t} = 0$.

$$E = T + \Pi = \text{const}$$

Теорема Лагранжа. (*Лагранжа*-*Дирихле*) Если в положении равновесия потенциальная энергия консервативной системы имеет строгиий локальный минимум, то положение равновесия устойчиво.

Доказательство:

$$\Pi=\Pi(q_1,\dots,q_m)\geq\Pi(0,\dots,0)=0$$
 (равно только в положении равновесия)
$$T=T_2=\frac{1}{2}\sum_{i,j=1}^n a_{ij}(q)\dot{q}_i\dot{q}_j\geq 0 \ (\text{равно только при всех }\dot{q}_i=0)$$

Рассмотрим $E(q,\dot{q})=T+\Pi\geq 0$ в окрестности точки $q=0,\dot{q}=0$

Причем равенство означает, что $q_i = 0$, $\dot{q}_i = 0$.

Значит E — положительно определенная функция (q, \dot{q}) .

$$\begin{cases} E = \text{const} \\ \frac{dE}{dt} = 0 \end{cases} \Rightarrow$$

Пусть $V=E\Rightarrow$ выполняется условие теоремы Ляпунова. Значит положение равновесия устойчиво.

Замечание 1. Для консервативных систем возможно только устойчивое и никогда не бывает асимптотической устойчивости, так как нет свойства притяжения.

Замечание 2. Теорема Лагранжа дает достаточное условие равновесия, но оно не является необходимым.

 Π ример.

1)

$$\Pi = \begin{cases} q^6 \sin^2 \frac{1}{q^2}, & q \neq 0 \\ 0, & q = 0 \end{cases}$$

Положения равновесия: $\sin \frac{1}{q^2} = 0 \Rightarrow q = \pm \frac{1}{\sqrt{\pi n}}, q = 0$ - устойчивые

2)
$$\Pi = (q_1 - q_2)^2, T = \frac{1}{2}(\dot{q}_1^2 + \dot{q}_2^2)$$

$$\left\{ \begin{array}{l} \ddot{q}_1 = -\frac{\partial \Pi}{\partial q_1} = -2(q_1-q_2) \\ \ddot{q}_2 = -\frac{\partial \Pi}{\partial q_2} = 2(q_1-q_2) \end{array} \right. \Rightarrow \text{Семейство решений } q_1 = q_2$$

Есть частное решение $q_1 = q_2 = at + b$. Получаем неустойчивость

2.4 Две теоремы Ляпунова об обращении теоремы Лагранжа

Теорема 1. Если в положении равновесия потенциальная энергия консервативной системы не имеет минимума, и это узнается по системе слагаемых 2-ой степени при разложении функции П в ряд до 2-ой степени, то это положение неустойчиво.

Теорема 2. Если в положении равновесия потенциальная энергия консервативной системы имеет максимум, и это узнается по совокупности слагаемых наименьшей степени, действительно присутствующих при разложении функции в ряд в окрестности положения равновесия, то положение равновесия неустойчиво.

$$\Pi(q_1,\dots,q_n) = \Pi(0,\dots,0) + \sum_{i=1}^n \left. \frac{\partial \Pi}{\partial q_i} \right|_0 q_i + \underbrace{\frac{1}{2} \sum_{i,j=1}^n \left. \frac{\partial^2 \Pi}{\partial q_i \partial q_j} \right|_0 q_i q_j}_{\Pi_2} + \dots \geq 0 \text{ (равно только при } q_i = 0)$$

Достаточно потребовать: Π_2 — положительно определенная квадратичная форма \Rightarrow при достаточно малых q_i применим критерий Сильвестера: $C = \|c_{ij}\|_{i,i=1}^n$

$$\begin{cases} \Delta_1 = C_{11} > 0 \\ \Delta_2 = C_{11}C_{22} - C_{12}C_{21} > 0 \\ \dots \\ \Delta_n = \det C > 0 \end{cases}$$

При нарушении критерия Сильвестера (т.е. не положительной определенности Π_2) \Rightarrow применяем первую теорему Ляпунова. Если $\Pi = \Pi_m + \Pi_{m+1} + \dots, m > 2 \Rightarrow$ применяем вторую теорему Ляпунова.

3 Лекция 3

3.1 Влияние гироскопических и диссипативных сил на положение равновесия

Консервативные системы, положения равновесия — устойчивые в рамках условия теоремы Лагранжа.

Теперь добавились гироскопические и (или) диссипативные силы.

Теорема 1. Если положение равновесия консервативной системы устойчиво при одних потенциальных силах, то в случае добавления произвольных гироскопических сил оно остается устойчивым.

Теорема 2. Если положение равновесия консервативной системы устойчиво при одних потенциальных силах, то в случае добавления произвольных гироскопических сил и диссипативных сил с полной диссипацией оно становится асимптотически устойчивым.

Доказательство производится применением теорем Ляпунова об устойчивости и асимптотической устойчивости. При этом в качестве функции V берется полная механическая энергия: $V=E=T+\Pi$

3.2 Стабилизация неустойчивого равновесия за счет гироскопических и (или) диссипативных сил (теоремы Томсона-Тэта-Четаева)

Пример. Детский волчок (юла) — стабилизация за счет гироскопических кориолисовых сил инерции.

$$\Pi = \frac{1}{2} \sum c_{ij} q_i q_j + \dots, \quad c_{ij} = \frac{\partial^2 \Pi}{\partial q_i \partial q_j} \bigg|_0 \Rightarrow$$

∃ линейная замена переменных такая, что:

$$\Pi = \frac{1}{2} \sum_{i=1}^{n} \lambda_i \theta_i^2 + \dots, \quad q = U\theta$$

Все $\lambda_i > 0$ — устойчивое по теореме Лагранжа, если $\exists \lambda_i < 0$ — неустойчивое.

Степень неустойчивости — число отрицательных коэффициентов λ_i .

Теорема 3. Если среди коэффициентов λ_i есть хотя бы один отрицательный, то положение равновесия не может быть стабилизированно диссипативными силами с полной диссипацией.

Теорема 4. Если степень неустойчивости нечетна, то положение равновесия не может быть стабилизировано гироскопическими силами, если степень — четная, то гироскопическая стабилизация возможна.

Теорема 5. Если при четной степени неустойчивость, возможно, стабилизируется за счет гироскопических сил, то она разрушается при добавлении диссипативных сил с полной диссипацией. (*без доказательства*).

Теоремы 1-5 — результат Томсона-Тэта-Четаева.

Устойчивость за счет потенциальных сил называется вековой.

Устойчивость за счет гироскопических сил нызывается временной.

3.3 Устойчивость вращения тяжелого тела вокруг неподвижной точки в случае Лагранжа (условие Маиевского-Четаева устойчивости «спящего» волчка Лагранжа)

При $\omega=0$ неустойчивое положение.

$$r = r_0 = \dot{\psi}\cos\theta + \dot{\varphi} = \text{const}$$
$$\vec{K}_0 = (Ap, Aq, Cr), \quad \vec{n} = (\gamma_1, \gamma_2, \gamma_3)$$

$$K_z = \vec{K}_0 \vec{n} = A(p\gamma_1 + q\gamma_2) + Cr_0\gamma_3 = A\dot{\psi}\sin^2\theta + Cr_0\cos\theta = \text{const} = A\alpha \Rightarrow$$

$$\dot{\psi} = \frac{\alpha - \frac{Cr_0}{A}\cos\theta}{\sin^2\theta}, \beta = \frac{Cr_0}{A}$$

Если $\alpha \neq \beta$ «спящий» волчок невозможен. Рассмотрим $\alpha = \beta \Rightarrow$

$$\dot{\psi} = \frac{\alpha(1 - \cos\theta)}{\sin^2\theta} = \frac{2\alpha\sin^2\frac{\theta}{2}}{4\sin^2\frac{\theta}{2}\cos^2\frac{\theta}{2}} = \frac{\alpha}{2\cos^2\frac{\theta}{2}}$$

Таким образом:

$$\dot{\psi} = \frac{\alpha}{2\cos^2\frac{\theta}{2}} \tag{*}$$

 $E = T + \Pi = \frac{1}{2}(p^2 + q^2) + \frac{1}{2}Cr_0^2 + mgl\cos\theta$, где l — расстояние от точки опоры до центра масс.

$$E = \frac{1}{2}A(\dot{\psi}^2 + \dot{\theta}^2) + \frac{1}{2}Cr_0^2 + mgl\cos\theta = \{(*)\} = \frac{1}{2}A\sin^2\theta \frac{\alpha^2 4\sin^2\frac{\theta}{2}\cos^2\frac{\theta}{2}}{4\cos^4\frac{\theta}{2}} + \frac{1}{2}A\dot{\theta}^2 + mgl\cos\theta =$$

$$= \underbrace{\frac{1}{2}A\dot{\theta}^2}_{T_{\text{IDMBGL}} \equiv T_{\text{ID}}} + \underbrace{mgl\cos\theta + \frac{1}{2}A\alpha^2 \operatorname{tg}^2\frac{\theta}{2}}_{\Pi_{\text{IDMBGL}} \equiv \Pi_{\text{ID}}}$$

 $\theta=0$ - положение равновесия.

$$\cos \theta \approx 1 - \frac{1}{2}\theta^2, \operatorname{tg} \frac{\theta}{2} \approx \frac{\theta}{2}$$

$$\Pi \approx mgl(1 - \frac{1}{2}\theta^2) + \frac{1}{2}A\alpha^2 \frac{\theta^2}{4} + o_4 = mgl + \frac{1}{2}(-mgl + \frac{A\alpha^2}{4} + o_4)\theta^2$$

Условие устойчивости: $A\alpha^2 > 4mgl$.

$$K_z = A\dot{\psi}^2 \sin^2 \theta + Cr_0 \cos \theta = A\alpha, \ \theta = 0 \Rightarrow \alpha = \frac{Cr_0}{A}$$

Тогда
$$\frac{AC^2r_0^2}{A^2} > 4mgl \Rightarrow$$

$$\boxed{\frac{C^2 r_0^2}{A} > 4mgl}$$

Получили условие Маиевского-Четаева устанавливающие переворачивание «спящего» волчка Лагранжа.

3.4 Устойчивость по первому приближению

Динамическая система: $\dot{x} = X(x), x = (x_1, \dots, x_m).$

Пусть x = 0 — положение равновесия системы $\Rightarrow X(0) = 0$.

Пусть x мало \Rightarrow

 $\dot{x} = Ax +$ «нелинейные слагаемые» — уравнение возмущенного движения.,

где A — постоянная матрица.

$$|\dot{x} = Ax|$$
 — линеаризация (приближение) системы уравнений движения.

Характеричистическое уравнение: $\det(A - \lambda E) = 0 \Rightarrow \lambda_1, \dots, \lambda_m \Rightarrow u_1, \dots, u_m$ — собственные векторы. Все $\lambda_k, k = 1, \dots, m$ различны \Rightarrow Общее решение:

$$x(t) = \sum_{k=1}^{m} C_k u_k e^{\lambda_k t}$$

Если есть кратные корни:

- 1) решение такое же, если A приводится к диагональной форме;
- 2) если не приводится, то пусть λ_1 кратный корень кратности l и $\exists l$ линейно независимых собственных векторов $u_1, \ldots, u_l \Rightarrow$ Общее решение

$$x(t) = \sum_{k=1}^{l} C_k u_k t^{k-1} e^{\lambda_k t} + \sum_{k=l+1}^{m} C_k u_k e^{\lambda_k t}$$

Если все $\mathrm{Re}\lambda_k < 0$, то $\lim_{t \to +\infty} x(t) = 0$ — условие притяжения. Тогда для линейной системы положение равновесия x=0 будет ассимптотически устойчиво.

3.5 Теоремы Ляпунова об устойчивости по линейному приближению

Теорема 1. Если вещественные части всех корней характеристического уравнения линеаризованной в окрестности положения равновесия системы уравнений возмущенного движения отрицательны, то положение равновесия ассимптотически устойчиво, независимо от нелинейных членов разложения.

Если же среди корней характеристического уравнения есть хотя бы один с положительной вещественной частью, то положение равновесия неустойчиво также вне зависимости от нелинейных членов.

Теорема 2. Если среди корней характеристического уравнения линеаризованного уравнения возмущенного движения нет корней с положительными вещественными частями, но есть корни с нулевыми вещественными частями, то выбором нелинейных членов разложения можно добиться как устойчивости, так и неустойчивости. (В этом случае необходимо использовать методы нелинейной теории колебаний) (без доказательства).

3.6 Критерий Рауса-Гурвица

Характеристическое уравнение имеет вид:

$$f(\lambda) = a_0 \lambda^m + a_1 \lambda^{m-1} + \ldots + a_{m-1} \lambda + a_m = 0$$

$$\begin{cases} \lambda_1+\ldots+\lambda_m=-\frac{a_1}{a_0}\\ \lambda_1\lambda_2+\ldots+\lambda_{m-1}\lambda_m=\frac{a_2}{a_0}\\ \ldots\\ \lambda_1\lambda_2\lambda_3\ldots\lambda_m=(-1)^m\frac{a_m}{a_0} \end{cases}$$
 — обобщенная формула Виета

Если все $\mathrm{Re}\lambda_k < 0 \Rightarrow$

$$\begin{cases} \frac{a_1}{a_0} > 0 \\ \frac{a_2}{a_0} > 0 \\ \dots \\ \frac{a_m}{a_0} > 0 \end{cases} \Rightarrow \begin{cases} \text{Коэффициенты } a_0, \dots, a_m \text{ должны быть одного знака} \\ -\text{ необходимое условие ассимптотической устойчивости} \end{cases}$$

Матрица Гурвица $(m \times m)$:

$$N = \begin{pmatrix} a_1 & a_3 & a_5 & \dots & 0 \\ a_0 & a_2 & a_4 & \dots & 0 \\ 0 & a_1 & a_3 & \dots & 0 \\ 0 & a_0 & a_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & a_m \end{pmatrix}$$

Свойства:

- 1. m x m;
- 2. в строке с нечетными номерами стоят коэффициенты с нечетными индексами, а в четной строке с четными;
- 3. позиции с недостающими элементами заполнены 0;
- 4. 3-4 строки получены из 1-ой и 2-ой строки путем сдвига на одну позицию вправо;
- 5. последний столбец состоит из 0 и одного элемента a_m .

Определители Гурвица:
$$\begin{cases} \Delta_1 = a_1 \\ \Delta_2 = \begin{vmatrix} a_1 & a_3 \\ a_0 & a_2 \end{vmatrix} \\ \dots \\ \Delta_m = \det N \end{cases}$$

Критерий Рауса-Гурвица. Для того, чтобы все корни характеристического уравнения имели отрицательную вещественную часть, необходимо и достаточно, чтобы все определители Гурвица были положительны. (без доказательства)

Замечание.

- 1) Если среди определителей Гурвица есть хотя бы один отрицательный, то характеристический многочлен имеет корни с положительными вещественным частями.
- 2) При выполнении необходимого условия достаточно проверить положительность определителей Гурвица только с четными или нечетными индексами (критерий Льенара-Шипара).

4 Лекция 4

4.1 Элементы теории бифуркации (катастроф)

Динамическая система:

$$\dot{x} = f(x, \alpha), \quad x \in \mathbb{R}^m, \alpha \in \mathbb{R}^l,$$

где x — переменная состояния, α — набор параметров.

Положения равновесия динамической системы:

$$f(x, \alpha) = 0$$

Это уравнение задает на плоскости параметров (x, α) кривую в параметрическом виде, называемую кривой равновесий. В общем случае кривая равновесий может иметь несколько ветвей.

- 1. При малом изменении параметров картина равновесия слегка деформируется, но качественно не меняется.
- 2. При переходе через некоторые значения параметром скачкообразно меняется число положений равновесия и (или) характер их устойчивости (бифуркация; бифуркационные значения)

Пусть $x=x_0$ при $\alpha=\alpha_0$ — положение равновесия и $\det \left\| \frac{\partial f_i}{\partial x_k} \right\|_{\alpha=\alpha_0,x=x_0} \neq 0 \Rightarrow$ по теореме о неявной функции

из $f(x,\alpha)=0 \Rightarrow x=x(\alpha)$ в окрестности $x=x_0,\alpha=\alpha_0.$ Тогда выполнено 1.

Бифуркация:
$$\det \left\| \frac{\partial f_i}{\partial x_k} \right\|_{\alpha = \alpha_0, x = x_0} = 0.$$

Пусть теперь m=1, l=1.

- 1. $x \uparrow f \Rightarrow \frac{\partial f}{\partial x} < 0$ асимптотическая устойчивость по теорема Ляпунова об устойчивости по линейному приближению.
- 2. $x\uparrow f \uparrow \Rightarrow \frac{\partial f}{\partial x} > 0$ получаем $\mathrm{Re}\lambda > 0 \Rightarrow$ неустойчивость.

Таким образом, у кривой равновесий имеются ветви, состоящие из устойчивых и неустойчивых положений равновесия. Устойчивые ветви кривой равновесий изображены на рис. 3 сплошными линиями, неустойчивые — пунктирными (+ u - обозначен знак функции f).

Рис. 3: Кривая равновесий.

Основные типы бифуркации:

- 1. Бифуркация «смена устойчивости» ($\alpha = \alpha_1$).
- 2. Бифуркация «складка» ($\alpha = \alpha_2 = \alpha_3$).
- 3. Бифуркация «вилка».

Рис. 4: Бифуркация типа вилка

Примеры.

1) Складка:

$$\dot{x} = -x^2 + \varepsilon$$

Положения равновесия: $x^2 = \varepsilon$, $x = \pm \sqrt{\varepsilon}$, $\varepsilon \ge 0$.

Если $\varepsilon < 0$, нет положения равновесия. Если $\varepsilon = 0$, одно положение равновесия. Соответсвенно верхняя ветвь — асимптотически устойчива $(f' = \ddot{x} < 0)$, а нижняя — неустойчива (f' > 0).

«Жесткая» потеря устойчивости. При переходе через $\downarrow x=0$ смена асимптотической устойчивости на неустойчивость.

2) Вилка:

$$T = \frac{1}{2}ma^{2}(\dot{\varphi}^{2} + \omega^{2}\sin^{2}\varphi), \quad \Pi = -mga\cos\varphi$$

Обобщенная консервативная система: интеграл Якоби.

$$T_2 - T_0 + \Pi = \text{const}$$

$$\underbrace{\frac{1}{2}ma^2\dot{\varphi}^2 - \frac{1}{2}ma^2\omega^2\sin^2\varphi}_{T_r} - \underbrace{mga\cos\varphi = \text{const}}_{\Pi_r}$$

Теорема Лагранжа:

$$\frac{\partial \Pi_r}{\partial \varphi} = -ma^2 \omega^2 \sin \varphi \, \cos \varphi + mga \sin \varphi = ma \sin \varphi (g - a\omega^2 \cos \varphi) = 0$$

$$arphi=0,\pi,\quad arphi_*=\pmrccosrac{g}{a\omega^2}$$
 при $\omega^2\geqrac{g}{a}$

$$\frac{\partial^2 \Pi_r}{\partial \varphi^2} = ma \cos \varphi (g - a\omega^2 \cos \varphi) + ma^2 \sin^2 \varphi \ \omega^2$$

$$\left. \frac{\partial^2 \Pi_r}{\partial \varphi^2} \right|_{\varphi=0} = ma(g-a\omega^2) = \left\{ \begin{array}{ll} >0, & g>a\omega^2-\text{устойчивое} \\ <0, & g$$

$$\left. \frac{\partial^2 \Pi_r}{\partial \varphi^2} \right|_{\varphi=\pi} = -ma(g+a\omega^2) < 0$$
 — неустойчивое

$$\left. \frac{\partial^2 \Pi_r}{\partial \varphi^2} \right|_{\Omega=0^*} = ma^2 \sin^2 \varphi_* \omega^2 \geq 0$$
 при $\varphi_* \neq 0$ — устойчиво в области существования

«Мягкая» потеря устойчивости.

2 сценария потери устойчивости

- 1. Мягкая потеря устойчивости (флаттер). Устойчивость теряется при переходе, но в окрестности неустойчивого равновесия возникает пара устойчивых равновесий, которым передается устойчивость. (при переходе $\lambda_2 = \bar{\lambda}_1$ через мнимую ось) («вилка»)
- 2. Жёсткая потеря устойчивости (дивергенция). $(\lambda_1 = \bar{\lambda}_1 = 0)$ («складка»)

4.2 Бифуркация рождение цикла

В двумерных динамических системах встречается третий тип бифуркаций — рождение предельного цикла. При переходе параметром через бифуркационное значение это положение равновесия теряет устойчивость, однако в его окрестности появляется замкнутая асимптотически устойчивая траектория, характерный размер которой увеличивается при дальнейшем изменении параметра α . Соответствующая бифуркационная картина представлена на рис. 5.

Рис. 5: Бифуркация рождение цикла

Данный тип бифуркации проявляется только в нелинейных системах.

Теорема Пуанкаре-Андронова-Хопфа. Пусть при $\alpha<0$ положение равновесия x=0 ассимптотически устойчиво. При $\alpha=0$ $\operatorname{Re}\lambda_{1,2}(\alpha)=0$, а все остальные корни λ лежат в левой полуплоскости, и при этом ассимптотическая устойчивость сохраняется за счет нелинейных слагаемых, если $\frac{d}{d\lambda}\operatorname{Re}\lambda_{1,2}|_{\alpha=0}>0$, то при $\alpha>0$ устойчивость положения равновесия теряется и при этом в зависимости от нелинейных слагаемых в разложении правой части уравнения возмущенного движения в малой окрестности положения равновесия x=0 рождается устойчивое переодическое движение (устанавливаится предельный цикл, мягкая потеря устойчивости) или исчезает неустойчивое периодическое движение или предельный цикл (жёсткая потеря устойчивости). Амплитуда предельного цикла имеет порядок $\sim \sqrt{\alpha}$.

4.3 Малые колебания консервативных систем в окрестности устойчивого положения равновесия

Консервативная система с $\Pi(q_1,\ldots,q_n),\quad q=0$ — положение равновесия $(\left.\frac{\partial\Pi}{\partial q_i}\right|_0=0,\quad i=1,\ldots,n).$

$$\Pi(q_1, \dots, q_n) = \Pi(0, \dots, 0) + \sum_{i=1}^n \frac{\partial \Pi}{\partial q_i} \bigg|_{0} q_i + \underbrace{\frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 \Pi}{\partial q_i \partial q_j} \bigg|_{0} q_i q_j}_{\Pi_2} + \dots, \quad c_{ij} = \frac{\partial^2 \Pi}{\partial q_i \partial q_j} \bigg|_{0}$$

Пусть $\Pi(0)=0$ — устойчивое положение равновесия. Тогда $\Pi=\Pi_2+\ldots$, где Π_2 — положительно определенная квадратичная форма.

Рассмотрим движение системы в малой окрестности устойчивого положения равновесия. В силу устойчивости при малых начальных отклонениях последующее движение системы будет происходить в малой окрестности равновесия. Поэтому вместо полных нелинейных уравнений возмущенного движения можно рассматривать приближенные линеаризованные уравнения, в которых оставлены только слагаемые, линейные по q и \dot{q} .

Линеаризация уравнения.

 Π и T разложены до квадратов по q и \dot{q} .

$$T = T_2 = \frac{1}{2} \sum_{i,j=1}^{n} a_{ij} (q_i, \dots, q_n) \dot{q}_i \dot{q}_j = \frac{1}{2} \sum_{i,j=1}^{n} \underbrace{(a_{ij} (0, \dots, 0)}_{a_{ij} = \text{const}} + \dots) \dot{q}_i \dot{q}_j = \frac{1}{2} \sum_{i,j=1}^{n} a_{ij} \dot{q}_i \dot{q}_j + \dots$$
$$L = T - \Pi = \frac{1}{2} \sum_{i,j=1}^{n} \dot{q}_i \dot{q}_j - \frac{1}{2} \sum_{i,j=1}^{n} c_{ij} q_i q_j + \dots$$

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} = \sum_{j=1}^n a_{ij}\ddot{q}_j + \dots, \qquad \frac{\partial L}{\partial q_i} = -\frac{1}{2}\sum_{j=1}^n c_{ij}q_j + \dots$$

$$\sum_{j=1}^n (a_{ij}\ddot{q}_j + c_{ij}q_j) + \dots = 0 \Longrightarrow$$

$$\sum_{j=1}^n (a_{ij}\ddot{q}_j + c_{ij}q_j) = 0, \quad i = 1, \dots, n$$

Пусть $q = (q_1, \dots, q_n)^T$, $A = ||a_{ij}||_{i,j=1}^n$, $C = ||c_{ij}||_{i,j=1}^n$. Тогда перепишем уравнение:

$$A\ddot{q} + Cq = 0$$

Главные координаты и главные колебания

Найдем теперь характристические уравнения:

Две квадратичные формы: $\frac{1}{2}\sum_{ij}q_iq_j$ — положительно определена, $\frac{1}{2}\sum_{ij}c_{ij}q_iq_j$ — положительно определена.

Если сущеуствуют две квадратичные формы, одна из которых положительно определена, то существует невырожденное линейное преобразование $q=U\theta\;(U-$ невырожденная матрица, $\theta=(\theta_1,\dots,\theta_n))\Longrightarrow \frac{1}{2}\sum\limits_{i=1}^n\theta_i^2$ и $\frac{1}{2}\sum\limits_{i=1}^n\lambda_i\theta_i^2$. Если Π_2- положительна определена, то все $\lambda_i>0$.

$$q = \sum u_i \theta_i$$
, где u_i — і-ый столбец матрицы U .

Векторы u_1, \ldots, u_n — ортонормированы в метрике, создаваемой в 2T (в A-метрике): $(u_i, Au_j) = (Au_i, u_j) = \delta_{ij}$ — символ Кронекера.

Проведем преобразование $q=U\theta,\;\dot{q}=U\dot{\theta}.$ Тогда $T=\frac{1}{2}\sum\limits_{i=1}^{n}\dot{\theta}_{i}^{2},\quad\Pi=\frac{1}{2}\sum\limits_{i=1}^{n}\lambda_{i}\theta_{i}^{2}.$ Тогда уравнения перейдут в n несвязанных линейных гармонических осцилляторов:

$$\ddot{\theta_i} + \lambda_i \theta = 0, \quad i = 1, \dots, n$$
, где θ_i — главные (нормальные) координаты

Пусть $\lambda_k = \omega_k^2$, тогда $\theta_k = C_k \sin(\omega_k t + \alpha_k)$, $C_k, \alpha_k = \text{const.}$ Общее решение:

$$q = \sum_{k=1}^{n} C_k u_k \sin(\omega_k t + \alpha_k),$$

где u_k — амплитудный вектор (условие нормировки $(Au_i, u_j) = \delta_{ij}$).

Пусть частное решене: $u_k \sin(\omega_k t + \alpha_k)$ — некоторое главное колебание системы. Все коориднаты q_1, \ldots, q_n колеблются с одной и той же частотой, а амплитуды колебаний по разным координатам соотносятся как соответствующие компоненты амплитудного вектора. Произвольное линейное колебание есть линейная суперпозиция главных колебаний.

5 Лекция 5

На практике решение уравнение $\mathrm{A}\ddot{q}+\mathrm{C}q=0$ ищем в виде:

$$q = u\sin(\omega t + \alpha)$$
, где $u = \text{const}$

$$-\omega^2 \mathbf{A}u \sin \omega t + Cu \sin(\omega t + \alpha) = 0$$
$$u(C - \omega^2 \mathbf{A}) = 0 \Longrightarrow$$

$$\det(C - \omega^2 A) = 0$$
, — уравнение частот (вековое уравнение)

 $\Rightarrow \omega_1^2, \ldots, \omega_n^2 \Rightarrow u_1, \ldots, u_n$ — все корни векового уравнения положительны.

- 1. Нет равных корней $\Rightarrow \operatorname{Rg}(C \omega^2 A) = n 1$ и все u_1, \dots, u_n опеределены с точностью до постоянного множителя. Все u_1, \dots, u_n ортогональны.
- 2. Есть кратные корни. Пусть есть один кратные корень кратности $\mathbf{m}\Rightarrow \mathrm{Rg}(C-\omega^2A)=n-m$. Есть процедура, позволяющая найти \mathbf{m} ортонормированных векторов u_1,\ldots,u_m . При этом u_1,\ldots,u_m взаимно ортогнальны u_{m+1},\ldots,u_n .

Пример

$$T = \frac{1}{2}m\dot{x}_1^2 + \frac{1}{2}m\dot{x}_2^2 \Rightarrow A = \begin{pmatrix} m & 0 \\ o & m \end{pmatrix}$$

$$\Pi = \frac{1}{2}cx_1^2 + \frac{1}{2}c(x_2 - x_1)^2 + \frac{1}{2}cx_2^2 = \frac{c}{2}(2x_1^2 - 2x_1x_2 + 2x_2^2) \Rightarrow C = \begin{pmatrix} 2c & -c \\ -c & 2c \end{pmatrix}$$

$$\det(C - \omega^2 A) = \begin{vmatrix} 2c - m\omega^2 & -c \\ -c & 2c - m\omega^2 \end{vmatrix} = (2c - m\omega^2)^2 - c^2 = (c - m\omega^2)(3c - m\omega^2) = 0$$

$$\begin{cases} \omega_1^2 = \frac{c}{m} \\ \omega_2^2 = \frac{3c}{m} \end{cases} - \text{собственные частоты.}$$

1) Для
$$\omega=\omega_1$$
 $u_1=\begin{pmatrix}u_{11}\\u_{21}\end{pmatrix}$

$$(2c-m\frac{c}{m})u_{11}-cu_{21}=0 \Rightarrow u_{11}=u_{21}.$$
 Пусть $u_1=x_1\begin{pmatrix}1\\1\end{pmatrix}$

2) Для
$$\omega = \omega_2 \quad u_2 = \begin{pmatrix} u_{12} \\ u_{22} \end{pmatrix}$$

$$(2c-m\frac{3c}{m})u_12-cu_22=0 \Rightarrow u_{12}=-u_{22}.$$
 Пусть $u_2=x_2\begin{pmatrix}1\\-1\end{pmatrix}$

3) Используем условие нормировки:
$$(Au_1, u_1) = 1$$
, $Au_1 = \begin{pmatrix} x_1 m \\ x_1 m \end{pmatrix} (Au_1, u_1) = x_1^2 m + x_1^2 m = 2x_1^2 m = 1 \Longrightarrow$

$$x_1 = \frac{1}{\sqrt{2m}} = x_2$$

4) Тогда
$$U=rac{1}{\sqrt{2m}}egin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

5.1 Доказательство первой теоремы Ляпунова об обращении уравнения Лагранжа

$$\Pi = \frac{1}{2} \sum_{ij} c_{ij} q_i q_j + \dots$$

$$T = \frac{1}{2} \sum_{ij} q_i q_j + \dots$$

$$T = \underbrace{\frac{1}{2} \sum_{\text{пол.опр.кв.ф.}} a_{ij} q_i q_j}_{\text{пол.опр.кв.ф.}} + \dots$$

 $q = U\theta$, тогда:

$$T = \frac{1}{2} \sum \dot{\theta}_i^2 + \dots, \qquad \Pi = \frac{1}{2} \sum \lambda_i \theta_i^2 + \dots$$

Если есть $\lambda_{j_*} < 0$, то $\ddot{\theta}_{j_*} - |\lambda_{j_*}|\theta_{j_*} = 0 \Rightarrow$ есть корень характеристического уравнения с положительной вещественной частью \Rightarrow неустойчивость по теореме Ляпунова об устойчивости по первому приближению.

5.2 Влияние внешнего гармонического воздействия на линейные стационарные системы

Система:

- 1) есть потенциальная энергия $\Pi(q)$ ($\frac{\partial \Pi}{\partial t} = 0$);
- 2) есть непотенциальные силы с обобщенными силами $Q_i(q,\dot{q})$.

Тогда есть положение равновесия q=0, асимптотически устойчивое.

3) есть внешние зависимые от времени силы с обобщенными силами $Q_i(t)$. (достаточно малые силы, не выводящие систему из малой окрестности q=0)

$$T = \frac{1}{2} \sum a_{ij} q_i q_j + \dots$$

$$\Pi = \frac{1}{2} \sum c'_{ij} q_i q_j + \dots$$

Обобщенную силу можно представить как сумму членов, не зависящих от времени (потенциальная и диссипативная части), и членов, зависящих:

$$Q_i = -\frac{1}{2} \sum c''_{ij} q_j - \frac{1}{2} \sum b_{ij} \dot{q}_j + \ldots + Q_i(t)$$

Тогда уравнение линейного приближения стационарной системы:

$$\sum a_{ij}\ddot{q}_j + \underbrace{\sum \underbrace{(c'_{ij} + c''_{ij})}_{\text{потенц.}} q_j}_{\text{потенц.}} + \underbrace{\sum b_{ij}\dot{q}_j}_{\text{диссип.}} = Q_i(t)$$

Пусть $A = ||a_{ij}||, \quad B = ||b_{ij}||, \quad C = ||c_{ij}||.$

Тогда

$$A\ddot{q} + B\dot{q} + Cq = Q(t) \tag{*}$$

При Q(t)=0 — асимптотически устойчиво. Характеристическое уравнение $\det(A\lambda^2+B\lambda+C)=0$, все $\operatorname{Re}\lambda_k<0$ (нет корней вида $\lambda=i\omega$, т.е. $\det\|A(i\omega)^2+B(i\omega)+c\|\neq0$).

Общее решение (*):

$$q_{\text{o.H.}} = q_{\text{o.o.}} + q_{\text{ч.н.}}$$

- 1) $q_{\text{o.o.}}$ быстро затухает в силу асимптотической устойчивости, при $t > t_*$ пренебрежимо мало. (свободное движение системы при отстутсвии внешнего воздействия)
- 2) $q_{\text{ч.н.}}$ вынужденное движение за счёт действия внешней силы. (установившееся движение). Принцип суперпозиции: $Q_1(t), \ldots, Q_n(t)$ рассматриваем по отдельности, а результаты складываем.

Рассмотрим гармоническое воздействие по одной из координат: $Q_l(t) = A\sin(\Omega t)$ при $k \neq l$ $Q_k(t) = 0$.

Для удобства перейдем от $\sin(\Omega t) \to e^{i\Omega t} = \cos\Omega t + i\sin\Omega t$, т.к.

- 1) воспроизводит сама себя с точностью до множителя;
- 2) при перемножении экспонент аргументы складываются.

При этом $Q_l(t) = \text{Im} A e^{i\Omega t}$.

$$\sum a_{kj}\ddot{q}_j + \sum b_{kj}\dot{q}_j + \sum c_{kj}q_j = \begin{bmatrix} Ae^{i\Omega t}, & k = l\\ 0, & k \neq l \end{bmatrix}$$

Частное решение ищем в виде: $\tilde{q}_{lk}(t) = \mathcal{D}_{lk}e^{i\Omega t}$, тогда

$$(i\Omega)^2 \sum a_{kj} \mathcal{D}_{lk} + (i\Omega) \sum b_{kj} \mathcal{D}_{lk} + \sum c_{kj} \mathcal{D}_{lk} = \begin{bmatrix} A, & k = l \\ 0, & k \neq l \end{bmatrix}$$
$$\sum ((i\Omega)^2 a_{kj} + (i\Omega) b_{kj} + c_{kj}) \mathcal{D}_{lk} = \begin{bmatrix} A, & k = l \\ 0, & k \neq l \end{bmatrix}$$
Tогда $\mathcal{D}_{lk} = \frac{\Delta_{lk}(i\Omega)}{\Delta(i\Omega)} A$

$$\Delta(i\Omega) = \det ||(i\Omega)^2 A + (i\Omega)B + C|| \neq 0$$

 $\Delta_{lk}(i\Omega)$ — алгебраическое дополнение элемента с индексом lk

$$W_{lk}(i\Omega) = \frac{\Delta_{lk}(i\Omega)}{\Delta(i\Omega)}$$
 — амплитудно-фазовая характеристика,

которая является правильной дробно-рациональной функцией относительно $(i\Omega)$ с действительными коэффициентами (степень числителя меньше степени знаменателя).

$$W_{lk}|_{\Omega=0}$$
 — действительные значения

$$W_{lk} = |W_{lk}|e^{i\arg W_{lk}} = \underbrace{\mathrm{R}_{lk}(\Omega)}_{\mathrm{ампл.хар-ка}} \exp[i\underbrace{\psi_{lk}(\Omega)}_{\mathrm{фаз.хар-ка}}]$$

$$\tilde{q}_{lk}(t) = A R_{lk}(\Omega) e^{i(\Omega t + \psi_{lk}(\Omega))}$$

При внешнем гармоническом воздействии на координату с номером l амплитуда координаты с номером k увеличивается в $R_{lk}(\Omega)$ раз, при этом свдиг фазы состовляет $\psi_{lk}(\Omega)$

При этом:

$$q_k = \sum_{l=1}^n \operatorname{Im} A \operatorname{R}_{lk}(\Omega) e^{i(\Omega t + \psi_{lk}(\Omega))} = \sum_{l=1}^n A \operatorname{R}_{lk}(\Omega) \sin \left[\Omega t + \psi_{lk}(\Omega)\right], \quad k = 1, \dots, n$$

Рис. 6: Годограф W_{lk}

6 Лекция 6

 Π ример.

$$a\ddot{q}+b\ddot{q}+cq=Ae^{i\Omega t},\quad q(t)=De^{i\Omega t}$$
 Тогда $a(i\Omega)^2D+b(i\Omega)D+cD=A\Rightarrow D(i\Omega)=rac{A}{a(i\Omega)^2+b(i\Omega)+c}$

- 1) Тогда АФХ: $W(i\Omega)=\frac{1}{a(i\Omega)^2+b(i\Omega)+c}=\mathrm{R}(\Omega)e^{i\psi(\Omega)}$
- 2) При малых b:

Рис. 7: Амплитудная характеристика

Рис. 8: Фазовая характеристика

3) Пусть
$$b=0$$
 (и ${\bf A}=0$). При $\Omega=\omega_c=\sqrt{\frac{c}{a}}$ — резонанс вынужденных колебаний.(рис. 9)

6.1 Реакция линейной стационарной системы на негармоническое воздействие

Рассмотрим теперь случай, когда действует периодическая обобщенная сила с периодом T, заданная функциями $Q_l^*(t)$, удовлетворяющей условиям:

$$Q_l^*(t) = Q_l^*(t+T), \quad l = 1, \dots, n$$

Данная функция представима рядом Фурье:

Рис. 9: Резонанс $\omega = \omega_c$

$$Q_l^*(t) = \sum_{k=0}^{\infty} A_{lk} \sin(k\Omega t + \varphi_{lk}), \Omega = \frac{2\pi}{T}$$

Тогда

$$q_j = \sum_{l,k} A_{lk} R_{jlk}(k\Omega) \sin \left[k\Omega t + \varphi_{lk} + \psi_{jlk}(k\Omega) \right], \quad j = 1, \dots, n$$

Аналогично можно рассмотреть и вообще непериодческую обобщенную силу, представляя её интегралом Фурье.

6.2 Влияние внешней периодической силы на колебания консервативной системы

Консервативная система: q=0 — устойчивое положение равновесия. А также действуют малые периодические по t силы с частотой Ω .

$$\sum a_{ij}\ddot{q}_j + \sum c_{ij}q_j = Q_i(t)$$

q o heta (нормальная, главная координата), $q = U heta; \quad q_i = \sum_{i=1}^n u_{ij} heta_j$

$$\ddot{\theta}_i + \omega_i \theta_i = \Theta_i(t)$$
 — периодическая по $t,\, \delta q_i = \sum\limits_{i=1}^n u_{ij} \delta \theta_i$

$$\delta A = \sum_{i=1}^{n} Q_i(t) \delta q_i = \sum_{i=1}^{n} Q_i(t) \sum_{j=1}^{n} u_{ij} \delta \theta_j = \sum_{j=1}^{n} \underbrace{\sum_{i=1}^{n} Q_i(t) u_{ij}}_{\Theta_i(t)} \delta \theta_j \Longrightarrow$$

$$\Theta_i = \sum_{i=1}^n Q_i(t) u_{ij} \implies \boxed{\Theta = U^T Q(t)}$$

$$\Theta_i(t) = C_i \sin(\omega_i t + \alpha_i) + \Theta_i^*(t)$$
 и $\Theta_i(t) = \sum_{k=0}^{\infty} b_{ik} \sin(k\Omega t + \alpha_{ik})$

Ищем в виде: $\Theta_i^*(t) = \sum_{k=0}^{\infty} d_{ik} \sin(k\Omega t + \alpha_{ik})$

$$-\sum_{k=0}^{\infty} d_{ik}k^2 \Omega^2 \sin(\Omega kt + \alpha_{ik}) + \sum_{k=0}^{\infty} d_{ik} \sin(k\Omega t + \alpha_{ik})\omega_i^2 = \sum_{k=0}^{\infty} b_{ik} \sin(\Omega kt + \alpha_{ik})$$

Значит
$$-d_{ik}k^2\Omega^2 + \omega_i^2 d_{ik} = b_{ik} \Rightarrow d_{ik} = \frac{b_{ik}}{\omega_i^2 - (k\Omega)^2}, \quad i = 1, \dots, n; \ k = 0, 1, \dots$$

Предполагаем, что $\omega_i \neq k\Omega$. Тогда:

$$q = \sum u_i \theta_i = \sum_{i=1}^n c_i u_i \sin(\omega_i t + \alpha_i) + \sum_{i=1}^n u_i \theta_i^*(t)$$

где u_i - i-ый столбец U.

Пусть $\omega_{i_*}=k_*\Omega$ для $i=i_*,\;k=k_*,$ тогда резонанс вынужденных колебаний.

Пример. $\ddot{q} + \omega^2 q = A \sin \omega t$

 $q_{\text{\tiny Y.H.}}(t) = bt \cos \omega t$

 $\dot{q}_{\text{ч.н.}}(t) = b\cos\omega t - b\omega t\sin\omega t$ $\ddot{q}_{\text{ч.н.}}(t) = -b\omega\sin\omega t - b\omega\sin\omega t - b\omega^2 t\cos\omega t$ $-2b\omega\sin\omega t - b\omega^2 t\cos\omega t + \omega^2 bt\cos\omega t = A\sin\omega t$

 $b = -\frac{A}{2\omega} \rightarrow$ получили неограниченную функцию в виде частного решения.

Гамильтонова механика. Уравнения Гамильтона (канонические уравнения дви-6.3жения)

Рассмотрим исключительно голономные системы с n степенями свободы q_1, \ldots, q_n , в потенциальном поле сил.

$$L(\dot{q},q,t) = T - \Pi, \quad \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = 0, \quad i = 1,\dots, n,$$

где $q, \dot{q}, t - 2n + 1$ переменных Лагранжа.

 $\dot{q} \longrightarrow p$ (обобщенные импульсы):

$$p_i = \frac{\partial L}{\partial \dot{q}}, \quad i = 1, \dots, n \tag{1}$$

 $L = T - \Pi = T_2 + T_1 + T_0 - \Pi$

Якобиан по
$$\dot{q}:$$
 $\det \left\| \frac{\partial^2 L}{\partial \dot{q}_i \partial \dot{q}_j} \right\|_{i,j=1}^n = \det \left\| \frac{\partial^2 T_2}{\partial \dot{q}_i \partial \dot{q}_j} \right\|_{i,j=1}^n = \det \|a_{ij}\|_{i,j=1}^n \neq 0$

Из (1) $\iff \dot{q}_i = \dot{q}_i(q,p,t)$ Примеры

1)
$$T = \frac{1}{2}m\dot{x}^2$$
, $p_i = \frac{\partial T}{\partial \dot{x}} = m\dot{x}$ — импульс.

2)
$$T=\frac{1}{2}J_z\dot{\varphi}^2, \quad p_{\varphi}=\frac{\partial T}{\partial \dot{\varphi}}=J_z\dot{\varphi}$$
 — кинетический момент.

Переменные Гамильтона: q, p, t. Каноническое уравнение движения: q_i, p_i — канонические сопряженные переменные.

Пусть $X(x_1,\ldots,x_n)$ — функция n переменных.

$$\det \left\| \frac{\partial^2 X}{\partial x_i \partial x_j} \right\|_{i,j=1}^n \neq 0 \tag{*}$$

Перейдем от $x_1, \ldots, x_n \longrightarrow y_1, \ldots, y_n$ по формулам.

$$y_i = \frac{\partial X}{\partial x_i}, \quad i = 1, \dots, n$$
 (**)

Тогда преобразованием Лежандра называется функция Y: $Y(y_1,\ldots,y_n)=\sum\limits_{i=1}^n y_ix_i-X$, где правая часть получена подстановкой $x_i = x_i(y_1, \dots, y_n)$, полученные из (**), а разрешимость возможна в силу (*).

Теорема Донкина.

- 1. Преобразование Лежандра имеет обратное, причём если $X \to Y$, то $Y \to X$, а обратная пропорция $x_i =$ $i=1,\ldots,n.$
- 2. Если функция $X(x_1,\ldots,x_n,\alpha_1,\ldots,\alpha_m)$ зависит от параметров, то $Y(y_1,\ldots,y_n,\alpha_1,\ldots,\alpha_m)$, причём $\frac{\partial Y}{\partial \alpha_n} =$ $-\frac{\partial X}{\partial \alpha_k}, \quad k=1,\ldots,m$

1.
$$Y(y_1, \dots, y_n) = \sum_{i=1}^n y_i x_i(y_1, \dots, y_n) - X(x_1(y), \dots, x_n(y))$$
, тогда
$$\frac{\partial Y}{\partial y_j} = x_j + \sum_{i=1}^n y_i \frac{\partial x_i}{\partial y_j} - \sum_{i=1}^n \frac{\partial x}{\partial x_i} \frac{\partial x_i}{\partial y_j}, \text{ т.к. } y_i = \frac{\partial x}{\partial x_i} \Rightarrow \frac{\partial Y}{\partial y_j} = x_j$$

2.
$$Y(y,\alpha) = \sum_{i=1}^{n} y_i x_i(y,\alpha) - X(x_1(y,\alpha), \dots, x_n(y,\alpha), \alpha)$$

$$\frac{\partial Y}{\partial \alpha_j} = \sum_{i=1}^{n} y_i \frac{\partial x_i}{\partial \alpha_j} - \sum_{i=1}^{n} \frac{\partial X}{\partial x_i} \frac{\partial x_i}{\partial \alpha_j} - \frac{\partial X}{\partial \alpha_j} \Rightarrow \frac{\partial Y}{\partial \alpha_j} = -\frac{\partial X}{\partial \alpha_j} \quad \blacksquare$$

Пусть
$$X=L, \quad x_1, \dots, x_n=\dot{q}_1, \dots, \dot{q}_n, \quad \alpha_1, \dots, \alpha_n=q_1, \dots, q_n, t$$
 $Y=H, \quad y_1, \dots, y_n=p_1, \dots, p_n, \quad \alpha_1, \dots, \alpha_n=q_1, \dots, q_n, t, \quad p_i=\frac{\partial L}{\partial \dot{a}_i},$ тогда преобразование Лежандра

$$\boxed{H(q,p,t) = \sum_{i=1}^n p_i \dot{q}_i - L(q,\dot{q},t)} - \text{функция Гамильтона}$$

Тогда из теоремы Донкина:

1.
$$\dot{q}_i = \frac{\partial H}{\partial p_i}$$

2. $\frac{\partial H}{\partial q_i} = -\frac{\partial L}{\partial q_i}$, $\frac{\partial H}{\partial t} = -\frac{\partial L}{\partial t}$, $i = 1, \dots, n$

функции $L(q,\dot{q},t)$ по переменным \dot{q}_i $(i=1,\ldots,n)$:

Из уравнение Лагранжа:
$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = 0 \Longrightarrow \quad \frac{dp_i}{dt} = \frac{\partial L}{\partial q_i} = -\frac{\partial H}{\partial q_i}$$

$$\text{Тогда} \left\{ \begin{array}{l} \frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i} \\ \frac{dq_i}{dt} = \frac{\partial H}{\partial p_i} \end{array} \right. \quad i = 1,\dots,n \quad -\text{ канонические уравнения Гамильтона} \right.$$

Свойства системы уравнений:

- 1) Работать можно лишь с одной скалярной функцией $H\colon q,p o ilde{q}, ilde{p}$ (канонические преобразования). При этом H упрощается $H \to H$.
 - 2) $\tilde{H} = \tilde{H}_* + H'$, где H' мала по сравнению с \tilde{H}_* . Тогда система с \tilde{H}_* может быть интегрируемой.

Лекция 7 7

Уравнение Гамильтона математического маятника

$$T = \frac{1}{2}ml^2\dot{\varphi}^2, \quad \Pi = -mgl\cos\varphi, \quad L = T - \Pi = \frac{1}{2}ml^2\dot{\varphi}^2 + mgl\cos\varphi$$

$$\dot{\varphi} \to p_{\varphi}, \quad p_{\varphi} = \frac{\partial L}{\partial \dot{\varphi}} = ml^2\dot{\varphi} \Rightarrow \dot{\varphi} = \frac{p_{\varphi}}{ml^2}$$

$$\text{Тогда } H = p_{\varphi}\dot{\varphi} - T + \Pi = \frac{p_{\varphi}^2}{ml^2} - \frac{1}{2}\frac{p_{\varphi}^2}{ml^2} - mgl\cos\varphi \Rightarrow H = \underbrace{\frac{1}{2}\frac{p_{\varphi}^2}{ml^2}}_{T} - \underbrace{\frac{mgl\cos\varphi}{\Pi}\cos\varphi}_{\Pi}$$

$$\left\{\begin{array}{l} \frac{d\varphi}{dt} = \frac{\partial H}{\partial p_{\varphi}} = \frac{p_{\varphi}}{ml^2} \\ \frac{p_{\varphi}}{dt} = -\frac{\partial H}{\partial \varphi} = -mgl\sin\varphi \end{array}\right. - \text{канонические уравнения}$$

7.2 Физический смысл функции Гамильтона

$$H = \sum_{i=1}^{n} p_i \dot{q}_i - L = \sum_{i=1}^{n} \frac{\partial L}{\partial \dot{q}_i} \dot{q}_i - L$$

$$L = T - \Pi = T_2 + T_1 + (T_0 - \Pi) \equiv L_2 + L_1 + L_0$$

Из теоремы Эйлера об однородных функциях $f(x_1,\ldots,x_n)$ степени $k:\sum_{i=1}^n \frac{\partial f}{\partial x_i}x_i=kf.\Rightarrow$

$$\sum \frac{\partial L_2}{\partial q_i} \dot{q}_i = 2L_2, \quad \sum \frac{\partial L_1}{\partial q_i} \dot{q}_i = L_1, \quad \sum \frac{\partial L_2}{\partial q_i} \dot{q}_i = 0$$

 $H=(2L_2+L_1)-(L_2+L_1+L_0)=L_2-L_0=T_2-T_0+\Pi\Rightarrow ($ если силы имеют обычный потенциал)

$$H = T_2 - T_0 + \Pi$$

Замечание. Функцию Гамильтона можно считать по этой формуле.

Пусть система склерономна или (у́же) консервативная. Тогда $H = T_2 + \Pi = E$ — полная механическая энергия.

7.3 Интеграл Якоби и циклические первые интегралы в системах Гамильтона

Определение. Произвольная функция от гамильтоновых переменных — времени, координат и обобщенных импульсов — называется первым интегралом уравнений движения, если во время любого движения значение этой функции не меняется:

$$f(q, p, t) = \text{const}$$

1. Пусть
$$\frac{\partial H}{\partial q_{i_*}} = 0 \Rightarrow q_{i_*}$$
 — циклическая координата.

Тогда
$$\frac{dp_{i_*}}{dt} = -\frac{\partial H}{\partial a_i} = 0 \Rightarrow$$

$$p_{i_*} = \text{const}$$

2.
$$\frac{dH}{dt} = \sum_{i=1}^{n} \frac{\partial H}{\partial q_i} \dot{q}_i + \sum_{i=1}^{n} \frac{\partial H}{\partial p_i} \dot{p}_i + \frac{\partial H}{\partial t} = \sum_{i=1}^{n} \frac{\partial H}{\partial q_i} \frac{\partial H}{\partial p_i} + \sum_{i=1}^{n} \frac{\partial H}{\partial p_i} \left(-\frac{\partial H}{\partial q_i} \right) + \frac{\partial H}{\partial t} = \frac{\partial H}{\partial t} \Rightarrow \frac{dH}{dt} = \frac{\partial H}{\partial t}$$

Тогда, если $\frac{\partial H}{\partial t} = 0 \Rightarrow H = \text{const} - \text{обобщенно-консервативная система:}$

$$H = T_2 - T_0 + \Pi = h = \mathrm{const}$$
 — интеграл Якоби

7.4 Понижение порядка системы уравнений Гамильтона при наличии циклических координат

 q_i — циклическая координата $\Rightarrow p_i = \text{const} = c$

 $H(q_1,\ldots,q_{i-1},q_{i+1},\ldots,q_n,p_1,\ldots,c,p_{i+1},\ldots,p_n,t)$ — соответствующий системе с n-1 степенями свободы.

Для
$$k \neq i$$

$$\begin{cases}
\frac{dq_k}{dt} = \frac{\partial H}{\partial p_k} \\
\frac{dp_k}{dt} = -\frac{\partial H}{\partial q_k}
\end{cases} \implies \begin{cases}
q_k = \tilde{q}_k(t, c_1, \dots, c_{2n-2}) \\
p_k = \tilde{p}_k(t, c_1, \dots, c_{2n-2})
\end{cases}$$
Для $k = i$

$$\begin{cases}
p_i = c \\
\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}
\end{cases} \implies \begin{cases}
q_k = \tilde{q}_k(t, c, c_1, \dots, c_{2n-2}) \\
p_k = \tilde{p}_k(t, c, c_1, \dots, c_{2n-2})
\end{cases} \implies \frac{dq_k}{dt} = \frac{\partial H}{\partial p_k} \implies q_k = \int \frac{\partial H}{\partial p_k} dt + c_{2n}$$

Т.е. порядок системы понижен на единицу.

7.5 Понижение порядка уравнения Гамильтона для обощенно-консервативной системы. Уравнение Уиттекера

Пусть
$$\frac{\partial H}{\partial t} = 0 \Rightarrow H(q,p) = h = \text{const}$$
 и пусть $\frac{\partial H}{\partial p_1} \neq 0 \Longrightarrow$

$$p_1 = -K(q_1,\ldots,q_n,p_2,\ldots,p_n,h)$$

$$i = 2,\ldots,n: \frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}, \quad \frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}$$

$$i = 1: \frac{dq_1}{dt} = \frac{\partial H}{\partial p_1}, \quad \frac{dp_1}{dt} = -\frac{\partial H}{\partial q_1}$$

$$(1)$$

$$\frac{dq_i}{dq_1} = \frac{\partial H/\partial p_i}{\partial H/\partial p_1}, \quad \frac{dp_i}{dq_1} = -\frac{\partial H/\partial q_i}{\partial H/\partial p_1}, \quad (i = 2, \dots, n)$$
 (*)

$$H(q_1, \dots, q_n, -K(q_1, \dots, q_n, p_2, \dots, p_n, h), p_2, \dots, p_n) \equiv h$$
 (2)

Продифференцируем по q_i и по p_i (2), тогда:

$$\frac{\partial H}{\partial q_i} + \frac{\partial H}{\partial p_1} \left(-\frac{\partial K}{\partial q_i} \right) = 0 \xrightarrow{(*)} \frac{\partial K}{\partial q_i} = \frac{\partial H/\partial q_i}{\partial H/\partial p_1} = -\frac{dp_i}{dq_1}$$

$$\frac{\partial H}{\partial p_i} + \frac{\partial H}{\partial p_1} \left(-\frac{\partial K}{\partial p_i} \right) = 0 \xrightarrow{(*)} \frac{\partial K}{\partial p_i} = \frac{\partial H/\partial p_i}{\partial H/\partial p_1} = \frac{dq_i}{dq_1}$$

Значит
$$\left\{ \begin{array}{l} \frac{\partial K}{\partial q_i} = -\frac{dp_i}{dq_1} \\ \frac{\partial K}{\partial p_i} = \frac{dq_i}{dq_1} \end{array} \right. , \quad (i=2,\ldots,n) \right. \\ - \text{ уравнения Уиттекера, имеют форму канонических уравнений}$$

Тогда интегрирование этих уравнений дает

$$q_i = \tilde{q}_i(q_1, c_1, \dots, c_{2n-2}, h), \quad p_i = \tilde{p}_i(p_1, c_1, \dots, c_{2n-2}, h), \quad (i = 2, \dots, n) \Longrightarrow$$

Подставляя эти выражение в (1):

$$p_{1} = -K(q_{1}, \tilde{q}_{2}(q_{1}, \ldots), \ldots, \tilde{q}_{n}(\ldots), \tilde{p}_{2}, \ldots, \tilde{p}_{n}, h)$$

$$\frac{dq_{1}}{dt} = \begin{cases} p_{1} = \tilde{p}_{1}(q_{1}, \ldots) \\ \vdots \\ p_{i} = \tilde{p}_{i}(q_{1}, \ldots) \\ q_{i} = \tilde{q}_{i}(q_{1}, \ldots) \end{cases}$$

$$= g(q_{1}, c_{1}, \ldots, c_{2n-2}, h)$$

$$\int \frac{dq_{1}}{g(q_{1}, \ldots)} = \int dt = t - t_{0} \implies q_{1} = \tilde{q}_{1}(t, t_{0}, c_{1}, \ldots, c_{2n-2}, h) \implies \begin{cases} q_{i} = q_{i}(\tilde{q}_{1}(t), \ldots) \\ p_{i} = p_{i}(\tilde{q}_{1}(t), \ldots) \\ p_{1} = \ldots (3) \end{cases}$$
, т.е. порядок системы $p_{1} = \ldots (3)$

7.6 Случай обобщенно-консервативной системы с двумя степенями свободы и одной циклической координатой

Пусть $H(q_2, p_2, p_1) = h$, где $p_1 = c = \text{const.}$

понизился на единицу.

Разрешим относительно $p_2 \Rightarrow p_2 = \tilde{p}_2(q_2, h, c)$.

1)
$$\frac{dq_2}{dt} = \frac{\partial H}{\partial p_2} \Big|_{p_1 = c} = f_1(q_2, h, c)$$

$$\int \frac{dq_2}{f_1(q_2, h, c)} = \int dt = t - t_0 \Longrightarrow q_2 = \tilde{q}_2(t, t_0, h, c), \quad p_2 = \tilde{p}_2(\tilde{q}_2(\ldots), h, c)$$
2)
$$\frac{dq_1}{dt} = \frac{\partial H}{\partial p_1} = \begin{cases} p_1 = c \\ q_2 = \tilde{q}_2(t, \ldots) \\ p_2 = \tilde{p}_2(t, \ldots) \end{cases} = f_2(t, t_0, c, h)$$

$$q_1(t) = \int f_2(t, \ldots) dt + q_{10} = \tilde{q}_1(t, \ldots)$$

7.7 Скобки Пуассона

Пусть имеются две дважды непрерывно дифференцируемые функции φ, ψ от $q_1, \dots, q_n, p_1, \dots, p_n$.

Скобкой Пуассона называется величина: $(\varphi, \psi) = \sum_{i=1}^{n} \left(\frac{\partial \varphi}{\partial q_i} \frac{\partial \psi}{\partial p_i} - \frac{\partial \varphi}{\partial p_i} \frac{\partial \psi}{\partial q_i} \right).$

Свойства скобок Пуассона:

1.
$$(\varphi, \psi) = -(\psi, \varphi)$$

2.
$$(c\varphi, \psi) = c(\varphi, \psi)$$
 $(c = const)$

3.
$$(\varphi + \psi, \varkappa) = (\varphi, \varkappa) + (\psi, \varkappa)$$

4.
$$\frac{\partial}{\partial t}(\varphi, \psi) = (\frac{\partial \varphi}{\partial t}, \psi) + (\varphi, \frac{\partial \psi}{\partial t})$$

5. Тождество Пуассона:
$$((\varphi, \psi), \varkappa) + ((\psi, \varkappa), \varphi) + ((\varkappa, \varphi), \psi) = 0$$

Доказательство:

Первые четыре свойства непосредственно вытекают из определения скобки Пуассона.

Для доказательства пятого воспользуемся тем, что каждое слагаемое в левой части тождества есть произведение частной производной второго порядка на две частные производные первого порядка. Поэтому, чтобы показать, что левая часть тождественно равна нулю, достаточно убедиться в том, что она не содержит ни одной производной второго порядка, например, функции φ (так как функции φ , ψ , \varkappa входят в тождество симметрично).

Вторые производные от φ могут дать первое и третье слагамые в 5. Их сумму на основании свойств 1 и 2 можно записать в виде:

$$((\varphi, \psi), \varkappa) + ((\varkappa, \varphi), \psi) = (\varkappa, (\psi, \varphi)) - (\psi, (\varkappa, \varphi))$$

Непосредственным вычислением убеждаемся, что правая часть этого равенства не содержит вторых производных от функции φ .

8 Лекция 8

Необходимое и достаточное условие первого интеграла

Пусть f(q, p, t) = const - первый интеграл

$$\frac{df}{dt} = \sum \frac{\partial f}{\partial q_i} \dot{q}_i + \sum \frac{\partial f}{\partial p_i} \dot{p}_i + \frac{\partial f}{\partial t} = \sum \frac{\partial f}{\partial q_i} \frac{\partial H}{\partial p_i} + \sum \frac{\partial f}{\partial p_i} \left(-\frac{\partial H}{\partial q_i} \right) + \frac{\partial f}{\partial t} = (f, H) + \frac{\partial f}{\partial t} = 0.$$

Итак, доказали необходимое и достаточное условие первого интеграла:

$$\frac{\partial f}{\partial t} + (f, H) = 0$$

Первые интегралы уравнения Гамильтона

$$\left\{ egin{array}{ll} \dot{q}_i = (q_i, H) \\ \dot{p}_i = (p_i, H) \end{array}
ight. \quad i=1,\dots,n \quad - \mbox{ уравнение Гамильтона} \end{array}
ight.$$

1.
$$q_i$$
 — циклическая координата, $\frac{\partial H}{\partial q_i} = 0 \Rightarrow p_i = \text{const:}$

$$\frac{\partial p_i}{\partial t} + (p_i, H) = \left(-\frac{\partial p_i}{\partial p_i}\right) \frac{\partial p_i}{\partial q_i} = 0$$

2. Обобщённо-консервативная система,
$$\frac{\partial H}{\partial t} = 0 \Rightarrow f = H(q,p) = \text{const}$$
:

$$\frac{\partial f}{\partial t} + (H, H) = 0$$

3.
$$H(f_1(q_1, p_1), q_2, \dots, q_n, p_2, \dots, p_n, t)$$
, в этом случае $f_1(q_1, p_1) = \text{const} - \text{первый интеграл.}$

23

$$\begin{array}{l} 3. \ H(f_1(q_1,p_1),q_2,\ldots,q_n,p_2,\ldots,p_n,t), \ \text{в этом случае} \ f_1(q_1,p_1) = \text{const} \ - \ \text{первый интеграл.} \\ \frac{\partial f_1}{\partial t} = 0, \quad (f_1,H) = \frac{\partial f_1}{\partial q_1} \frac{\partial H}{\partial p_1} - \frac{\partial f_1}{\partial p_1} \frac{\partial H}{\partial q_1} = \frac{\partial f_1}{\partial q_1} \frac{\partial H}{\partial f_1} \frac{\partial f_1}{\partial p_1} - \frac{\partial f_1}{\partial p_1} \frac{\partial H}{\partial f_1} \frac{\partial f_1}{\partial q_1} = 0 \end{array}$$

4.
$$H(f_1(q_1, p_1), f_2(q_2, p_2), \dots, f_n(q_n, p_n), t)$$

 $f_i(q_i, p_i) = \text{const}, \quad i = 1, \dots, n$

5.
$$H(f_n(q_n, p_n, f_{n-1}), t)$$

$$f_k = f_k(q_k, p_k, f_{k-1}) = \text{const}, \quad k = 2, \dots, n$$

$$f_1 = f_1(q_1, p_1) = \text{const.}$$

$$\frac{\partial f_k}{\partial t} = 0, \quad (f_k, H) = \sum_{i=1}^n \left(\frac{\partial f_k}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial f_k}{\partial p_i} \frac{\partial H}{\partial q_i} \right) =
= \sum_{i=1}^k \left(\frac{\partial f_k}{\partial f_{k-1}} \frac{\partial f_{k-1}}{\partial f_{k-2}} \dots \frac{\partial f_i}{\partial q_i} \frac{\partial H}{\partial f_n} \frac{\partial f_n}{\partial f_{n-1}} \dots \frac{\partial f_i}{\partial p_i} - \frac{\partial f_k}{\partial f_{k-1}} \dots \frac{\partial f_i}{\partial p_i} \frac{\partial H}{\partial f_n} \dots \frac{\partial f_i}{\partial q_i} \right) = 0$$

6.
$$H(q, p, t) = f(t)H_0(q, p) \Rightarrow H_0(q, p) = \text{const.}$$

$$\frac{\partial H_0}{\partial t} = 0, \quad (H_0, H) = (H_0, f(t)H_0) = f(t)(H_0, H_0) = 0$$

7. (Ханукаев (более общий случай 4), без доказательства, необходим для решения некоторых задач)

$$H = \frac{\sum f_i(q_i, p_i)}{\sum g_i(q_i, p_i)} \Leftrightarrow \sum f_i(q_i, p_i) - H \sum g_i(q_i, p_i) = 0$$

$$f_i - Hg_i = \alpha_i, \quad i = 1, \dots, n - 1$$

$$f_i - Hg_i = \alpha_i, \quad i = 1, \dots, r$$

$$f_n - Hg_n = -\sum_{i=1}^{n-1} \alpha_i$$

 Π ример.

$$H = \sin^2 t \left[\frac{1}{2} \underbrace{(q_1^2 + p_1^2)}_{f_1} + \frac{1}{2} \underbrace{\left(q_2^2 + p_2^2 \underbrace{\frac{f_4}{p_3} \underbrace{(q_4^2 + p_4^2)}_{q_5 p_5}}_{f_5} \right)}_{f_5} \right]$$

8.3 Теорема Якоби-Пуассона

Теорема Якоби-Пуассона

Пусть f_1 и f_2 — два первых интеграла системы уравнений Гамильтона. Тогда (f_1, f_2) сохраняет постоянное значение и в частности может быть первым интегралом.

Дано:
$$\frac{\partial f_1}{\partial t} + (f_1, H) = 0$$
, $\frac{\partial f_2}{\partial t} + (f_2, H) = 0$

Доказать:
$$\frac{\partial}{\partial t}(f_1,f_2)+((f_1,f_2),H)=0.$$
 Тогда используя 1, 2 и 5 свойства скобок Пуассона:

$$\left(\frac{\partial f_1}{\partial t}, f_2\right) + \left(f_1, \frac{\partial f_2}{\partial t}\right) + ((f_1, f_2), H) = (-(f_1, H), f_2) + (f_1, (-f_2, H)) + ((f_1, f_2), H) = ((H, f_1), f_2) + ((f_2, H), f_1) + ((f_1, f_2), H) = 0 \Rightarrow (f_1, f_2) = \text{const.}$$

$$m = 1, \quad T = \frac{1}{2}(p_1^2 + p_2^2 + p_3^2)$$

$$f_1 = q_2 p_3 - q_3 \bar{p}_2 = \text{const.}$$

$$f_2 = q_3 p_1 - q_1 p_3 = \text{const.}$$

$$f_3 = (f_1, f_2) = q_1 p_2 - q_2 p_1 = \text{const.}$$

Onpe denehue. Говорят, что $f_1(q,p,t), f_2, \ldots, f_n$ в инволюции друг к другу или что они образую систему в инволюции, если скобки Пуассона $(f_i, f_k) = 0$ при $i, k = 1, \ldots, n$.

Теорема Лиувилля об интегрируемости гамильтоновых систем

Пусть гамильтонова система имеет n первых интегралов $f_i(q,p,t) = \alpha_i, \quad i = 1, \ldots, n$, находящихся в инволюции и, при этом, $\det \left\| \frac{\partial f_i}{\partial p_k} \right\|_{i,k=1}^{\infty} \neq 0$, тогда она интегрируется в квадратурах.(без доказательства)

ноции и, при этом,
$$\det \left\| \frac{\partial}{\partial p_k} \right\|_{i,k=1} \neq 0$$
, тогда она интегрируется в квадратурах. (без доказательства)

1) $H(f_1(q_1, p_1), \ldots, f_n(q_n, p_n), t)$ $f_i = \text{const} - \text{в}$ инволюции. Тогда при $\frac{\partial f_i}{\partial p_i} \neq 0$ $(i = 1, \dots, n)$ — интегрируется в квадратурах.

2) $H(f_n(q_n, p_n, f_{n-1}), t)$ и т.д.

 $f_k={
m const}-$ в инволюции. При $rac{\partial f_i}{\partial p_i}
eq 0 \quad (i=1,\dots,n).$ — интегрируется в квадратурах.

Принцип Гамильтона-Остроградского

Система материальных точек $\{P_n\}_{k=1}^N$ — система, свободная или с идеальными удерживающими связями \Longrightarrow принцип Даламбера:

$$\sum_{k=1}^{N} (\vec{F}_k - m_k \vec{w}_k) \delta \vec{r}_k = 0 \tag{1}$$

Краевая задача: т. P_k $a_k|_{t=t_0}$ (начальное положение) $\to b_k|_{t=t_1}$ (конечное положение) $(k=1,\ldots,N)$.

 γ_k : действительный (истинный) путь или прямой путь — траектория, которая будет описана точкой системы при перемещении из начального положения в конечное.

 γ'_{l} : окольные пути — бесконечно близкие пути к прямому пути без нарушения связей.

 $\begin{array}{ll} \gamma_k: & \vec{r}_k = \vec{r}_k(t,\alpha_0), \quad \alpha \in (\alpha_1,\alpha_2) \\ \gamma_k': & \vec{r}_k = \vec{r}_k(t,\alpha), \quad \alpha_0 \in (\alpha_1,\alpha_2) \end{array}$

 $\delta \vec{r_k} = \frac{\partial \vec{r_k}}{\partial \alpha} \delta \alpha$ (при t const) Переход от точек прямого пути к окольным путям производится путём синхронного варьирования. $\delta \vec{r_k}$ виртуальные перемещения, δ и $\frac{d}{dt}$ перестановочны.

$$\frac{d}{dt}\delta\vec{r}_{k} = \frac{d}{dt}\frac{\partial\vec{r}_{k}}{\partial\alpha}\delta\alpha = \frac{\partial}{\partial\alpha}\frac{d}{dt}\vec{r}_{k}\delta\alpha = \frac{\partial\dot{r}_{k}}{\partial\alpha}\delta\alpha = \delta\dot{\vec{r}}_{k}$$
$$\delta\vec{r}_{k}(t_{0}) = \delta r_{k}(t_{1}) = 0$$

Расширим координатное пространство: $q_1, \ldots, q_n, t; \quad \alpha \in (\alpha_1, \alpha_2), \quad \delta q_i(t_0) = \delta q_i(t_1) = 0, \quad \frac{d}{dt} \delta q_i = \delta \dot{q}_i$

Рис. 10: Расширенное координатное пространство

Сопряженные кинетические фокусы — две точки, через которые проходит бесконечно много бесконечно близких прямых путей.

 Π ример: $\ddot{q} + q = 0$

1) $q_0=0,\ t_0=0$ (начальная точка), $q_1=0,\ t_1=\pi$ (конечная точка).

Тогда имеем бесконечно близкие один к другому прямые пути:

 $q = A\sin\omega t,\,A$ - произвольная константа

2) Конечная точка: $q_1 = q_{10}$, $t_1 = t_{10} < \pi$. Тогда $A = \frac{q_{10}}{\sin t_{10}}$ — единственное решение.

Теперь проинтегрируем (1):

$$\int_{t_0}^{t_1} \sum_{k=1}^{m} (\vec{F}_k - m_k \vec{w}_k) \delta \vec{r}_k dt = 0 \tag{*}$$

Кинетическая энергия и её приращение:

$$T = \frac{1}{2} \sum_{k=1}^{n} m_k \dot{\vec{r}}_k^2, \quad \delta T = \sum_{k=1}^{n} m_k \dot{\vec{r}}_k \delta \dot{\vec{r}}_k$$

$$\int_{t_0}^{t_1} \delta T dt = \int_{t_0}^{t_1} \sum_{t_0} m_k \dot{\vec{r}}_k \delta \dot{\vec{r}}_k dt = \int_{t_0}^{t_1} \sum_{t_0} m_k \left(\frac{d}{dt} (\dot{\vec{r}}_k \delta \vec{r}_k) - \ddot{\vec{r}}_k \delta \vec{r}_k \right) dt = \sum_{t_0} m_k \dot{\vec{r}}_k \delta \vec{r}_k \Big|_{t=t_0}^{t=t_1} - \int_{t_0}^{t_1} \sum_{t_0} m_k \vec{w}_k \delta \vec{r}_k dt$$

Первое слагаемое равно 0, т.к. $\delta \vec{r}_k(t_0) = \delta \vec{r}_k(t_1) = 0$. Используя (*) получаем математическое выражение принципа Гамильтона-Остроградского:

$$\int_{t_0}^{t_1} (\delta T + \sum_{k=1}^{N} \vec{F}_k \delta \vec{r}_k) dt = 0$$
 (**)

Данный принцип заключается в том, что интеграл (**) равен нулю, если величины $\delta \vec{r}_k(t)$ соответствует синхронному вариьированию прямого пути и $\delta \vec{r}_k(t_0) = \delta \vec{r}_k(t_1) = 0$.

8.5 Связь принципа Гамильтона-Остроградского с уравнениями Лагранжа 2-го ро-

 q_1, \dots, q_n — обобщенные координаты (голономная система). Заметим, что:

$$\begin{split} \sum_{k=1}^{N} \vec{F}_{k} \delta \vec{r}_{k} &= \sum_{i=1}^{n} Q_{i} \delta q_{i} \\ T &= T(\dot{q}, q, t), \quad \delta T = \sum_{i=1}^{n} \left(\frac{\partial T}{\partial \dot{q}_{i}} \delta \dot{q}_{i} + \sum_{i=1}^{n} \frac{\partial T}{\partial q_{i}} \delta q_{i} \right) \end{split}$$

Тогда

$$\int\limits_{t_0}^{t_1}\sum\frac{\partial T}{\partial \dot{q}_i}\delta \dot{q}_idt = \int\limits_{t_0}^{t_1}\sum\frac{\partial T}{\partial \dot{q}_i}\frac{d\delta q_i}{dt}dt = \{\text{интегрирование по частям}\} = \sum_{i=1}^n \left.\frac{\partial T}{\partial \dot{q}_i}\delta q_i\right|_{t_0}^{t_1} - \int\limits_{t_0}^{t_1}\sum_{i=1}^n \frac{d}{dt}\frac{\partial T}{\partial \dot{q}_i}\delta q_idt$$

 Π одставляя в (**):

$$\int_{t_0}^{t_1} \sum_{i=1}^{n} \left(\pm \frac{d}{dt} \frac{\partial T}{\partial \dot{q}_i} \mp \frac{\partial T}{\partial q_i} \mp Q_i \right) \delta q_i dt = 0, \quad \forall \delta q_i - \text{независимые}$$
 (2)

Таким образом, если выполняется уравнение Лагранжа, то удовлетворяется равенство (2) и следовательно принцип Гамильтона-Остроградского. Пусть выполняется (2).

Так как δq_i — независимые, то:

$$\int_{t_{-}}^{t_{1}} \left(\frac{d}{dt} \frac{\partial T}{\partial \dot{q}_{i}} - \frac{\partial T}{\partial q_{i}} - Q_{i} \right) \delta q_{i} dt = 0, \quad i = 1, \dots, n$$

Докажем, что $\frac{d}{dt}\frac{\partial T}{\partial \dot{a}_i} - \frac{\partial T}{\partial a_i} - Q_i = 0$ (*)

Пусть $\exists t_* \in (t_0, t_1) : \frac{d}{dt} \frac{\partial T}{\partial \dot{q}_i} - \frac{\partial T}{\partial q_i} - Q_i \bigg| \neq 0 \Rightarrow$ в силу непрерывности существует интервал $t \in (t_* - \varepsilon, t_* + \varepsilon)$:

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_i} - \frac{\partial T}{\partial q_i} - Q_i \neq 0.$$

 $\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_i} - \frac{\partial T}{\partial q_i} - Q_i \neq 0.$ Пусть δq_i на $t \in (t_* - \varepsilon, t_* + \varepsilon)$ $\delta q_i \neq 0$ и имеет тот же знак, что и (*), и вне интервала $\delta q_i = 0$. Тогда из $(2) \Longrightarrow \int\limits_{t_*-\varepsilon}^{t_*+\varepsilon} \left(\frac{d}{dt} \frac{\partial T}{\partial \dot{q}_i} - \frac{\partial T}{\partial q_i} - Q_i \right) \delta q_i dt = 0$. Противоречие. Значит удовлетворяет уравнению Лагранжа второго

принцип Гамильтона-Остроградского 👄 уравнение Лагранжа второго рода

9 Лекция 9

9.1 Действие по Гамильтону и вариационный принцип Гамильтона-Остроградского

$$\int_{t_0}^{t_1} (\delta T + \sum \vec{F}_k \delta r_k) dt = 0 - \text{принцип Гамильтона-Остроградского}$$
 (1)

Пусть теперь система находится в потенциальном поле сил, тогда:

$$\sum F_k \delta r_k = \sum Q_i \delta q_i = -\delta \Pi \stackrel{(1)}{\Longrightarrow} \int_{t_0}^{t_1} (\delta T - \delta \Pi) dt = 0$$

Рассмотрим интеграл:

$$W=\int\limits_{t_0}^{t_1}L(q_1,\dot{q}_1,t)=dt$$
 — действие по Гамильтону \Rightarrow

Тогда *вариационный принцип Гамильтона-Остроградского* для голономной системы в случае существования потенциальных сил запишется в следующем виде:

$$\delta W=0$$
 — первая вариация действия по Гамильтону

Т.е среди всех (сравниваемых) путей прямой путь выделяется тем, что для него действие по Гамильтону имеет стационарное значение (первая вариация на прямом пути равна нулю).

9.2 Характер действия по Гамильтону

Если начальное и конечное положения системы достаточно близки, то действие по Гамильтону на прямом пути принимает наименьшее значение по сравнению с его значениями на окольных путях, проходимых за то же время. Поэтому он называется принципом наименьшего действия. Если начальное и конечное положение не слишком близки — то определенного ответа о характере экстремума нет.

9.3 Преобразование переменных в уравнениях Лагранжа второго рода

Голономная система в потенциальном поле сил: $L(q,\dot{q},t)$ — уравнение Лагранжа.

Новые переменные: $q, t \longrightarrow q^*, t^*$

$$\begin{cases} q_i^* = q_i^*(q, t) \\ t^* = t^*(q, t) \end{cases}$$

Траектория в пространстве $(q, t) \Longrightarrow$ траектория в пространстве (q^*, t^*) .

$$L^*\left(\frac{dq^*}{dt^*}, q^*, t^*\right) = ?$$

$$W(\alpha) = \int_{t_0}^{t_1} L(\dot{q}, q, t) dt$$

Прямой путь: $\alpha=\alpha_0\Rightarrow$ вне зависимости от выбора координат $\delta W|_{\alpha=\alpha_0}=0\Rightarrow$

$$W^*(\alpha) = \int_{t_0^*}^{t_1^*} L \bigg|_{(*)} \frac{dt}{dt^*} \bigg|_{(*)} dt^*,$$
где $(*) = \begin{cases} q = q(q^*, t^*) \\ t = t(q^*, t^*) \end{cases}$

Тогда

$$L^* = L|_{(*)} \left. \frac{dt}{dt^*} \right|_{(*)}$$

Если $t^* = t$, то $L^* = L|_{(*)}$.

9.4 Теорема Эмми Нётер

Пусть имеется неособое однопараметрическое преобразование координат и времени $q_i^* = q_i^*(q,t,s), \quad t^* = t^*(q,t,s)$ (s - параметр), обладающее свойствами:

- 1) обратимое:
- 2) при s = 0 тождественно: $q_i^* = q_i^*(q, t, 0) = q_i$, $t^* = t^*(q, t, 0) = t$;
- 3) преобразованная функция Лагранжа L^* не зависит от s и имеет вид, совпадающий с исходным видом функции Лагранжа $L: L^* = L(\frac{dq^*}{dt^*}, q^*, t^*).$

Тогда в системе имеется первый интеграл следующего вида:

$$f = \sum_{i=1}^n p_i \xi_i - \eta H$$
, где $\xi(q,t) = \left. \frac{\partial q_i^*}{\partial s} \right|_{s=0}$, $\eta(q,t) = \left. \frac{\partial t^*}{\partial s} \right|_{s=0}$, $p_i = \left. \frac{\partial L}{\partial \dot{q}_i} \right|_{s=0}$, $H = \sum_{i=1}^n p_i \dot{q}_i - L$

Доказательство:

Пусть s — мало:

$$\begin{cases} q_i = q_i^* - s\xi_i(q, t) + \dots = q_i^* - s\xi_i(q^*, t^*) + \dots \\ t = t^* - s\eta(q^*, t^*) + \dots \end{cases}$$

Тогда
$$\frac{dt}{dt^*} = 1 - s\frac{d\eta}{dt^*} + \ldots = 1 - s\dot{\eta} + \ldots$$
 $\left(\dot{\eta} = \frac{d\eta}{dt}\right)$

$$\frac{dq_i^*}{dt^*} = \frac{dq_i^*/dt}{dt^*/dt} = \frac{\dot{q}_i + s\dot{\xi}_i + \dots}{1 + s\dot{\eta} + \dots} = (\dot{q}_i + s\dot{\xi}_i + \dots)(1 - s\dot{\eta} + \dots) = \dot{q}_i - s\dot{q}_i\dot{\eta} + s\dot{\xi}_i + \dots$$

Запишем
$$L^*: L^* = L(\dot{q}|_{(*)}, q|_{(*)}, t^*) \left. \frac{dt}{dt^*} \right|_{(*)} = L(\frac{dq^*}{dt^*}, q^*, t^*)$$

$$\frac{dq_i}{dt} = \frac{dq_i/dt^*}{dt/dt^*} = \frac{\dot{q}_i^* - s\dot{\xi}_i + \dots}{1 - s\dot{\eta} + \dots} = (\dot{q}_i^* - s\dot{\xi}_i^* + \dots)(1 + s\dot{\eta} + \dots) = \dot{q}_i^* + s\dot{\eta}\dot{q}_i - s\dot{\xi}_i + \dots$$

Тогда
$$L^* = L(\dot{q}_i^* + s\dot{\eta}\dot{q}_i - s\dot{\xi}_i + \dots, q_i^* - s\xi_i + \dots, t^* - s\eta + \dots)(1 - s\dot{\eta} + \dots) = L(\frac{dq^*}{dt^*}, q^*, t^*) - s\dot{\eta}L + s\sum_{i=1}^n \underbrace{\frac{\partial L}{\partial \dot{q}_i}}_{i}(\dot{\eta}\dot{q}_i - s\dot{q}_i)$$

$$\dot{\xi}_{i}) + s \sum_{i=1}^{n} \underbrace{\frac{\partial L}{\partial q_{i}}}_{\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_{i}} = \dot{p}_{i}} (-\xi_{i}) - \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \dots = L^{*} + s \left[\sum_{i=1}^{n} p_{i} \dot{q}_{i} \dot{\eta} - \sum_{i=1}^{n} p_{i} \dot{\xi}_{i} + \sum_{i=1}^{n} (-\dot{p}_{i} \xi_{i}) + \dot{H} \eta - \dot{\eta} L \right] = \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = \dot{p}_{i}} (-\xi_{i}) - \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \dots = L^{*} + s \left[\sum_{i=1}^{n} p_{i} \dot{q}_{i} \dot{\eta} - \sum_{i=1}^{n} p_{i} \dot{\xi}_{i} + \sum_{i=1}^{n} (-\dot{p}_{i} \xi_{i}) + \dot{H} \eta - \dot{\eta} L \right] = \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = \dot{p}_{i}} (-\xi_{i}) - \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \dots = L^{*} + s \left[\sum_{i=1}^{n} p_{i} \dot{q}_{i} \dot{\eta} - \sum_{i=1}^{n} p_{i} \dot{\xi}_{i} + \sum_{i=1}^{n} (-\dot{p}_{i} \xi_{i}) + \dot{H} \eta - \dot{\eta} L \right] = \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac{\partial L}{\partial t}}_{-\frac{\partial H}{\partial t} = -\frac{dH}{dt}} s\eta + \underbrace{\frac$$

$$=L^*+s\left[\left(\sum p_i\dot{q}_i-L\right)\dot{\eta}+\dot{H}\eta-rac{d}{dt}\sum p_i\xi_i
ight]=L^*+rac{d}{dt}(H\eta-\sum p_i\xi_i)\,s+\ldots\equiv L^*$$
 (по условию теоремы).

$$\frac{d}{dt}\left(H\eta - \sum p_i \xi_i\right) s = 0 \Longrightarrow \boxed{f = -H\eta + \sum p_i \xi_i = \text{const}}$$

10 Лекция 10

Примеры использования теоремы Эмми-Нётер:

1. Обобщенно-консервативная система.

$$\frac{\partial L}{\partial t} = -\frac{\partial H}{\partial t} = 0, \quad q_i^* = q_i, \ t^* = t+s, \ \alpha \ \text{ He mehstch}, \ \xi_i = 0, \ \eta = 1, \ f = -H = \text{const.}$$

2. Цилиндрические координаты q_{α} .

$$\frac{\partial L}{\partial q_{\alpha}} = 0, \quad q_{\alpha}^* = q_{\alpha} + s, \ q_i^* = q_i \quad (i \neq \alpha), \ t^* = t, \ \alpha \text{ не меняется, } \xi_{\alpha} = 1, \ \xi_i = 0, \ \eta = 0, \quad f = p_{\alpha} = \text{const}$$

3. Замкнутая система

$$x_k^* = x_k + s, \ y_k^* = y_k, \ z_k^* = z_k, \ t^* = t$$

$$T = \frac{1}{2} m_k (\dot{x}_k^2 + \dot{y}_k^2 + \dot{z}_k^2) = \frac{1}{2} \sum_k m_k (x_k^{*\,2} + y_k^{*\,2} + z_k^{*\,2}) = T^* \quad \Pi \text{ не меняется, } \alpha \text{ не меняется.}$$

$$\xi_{kx} = 1, \ \xi_{ky} = \xi_{kz} = 0, \ \eta = 0, \quad p_{kx} = m_k \dot{x}_k, \ p_{ky} = m_k \dot{y}_k, \ p_{kz} = m_k \dot{z}_k$$
 $f = \sum p_k = \sum m_k \dot{x}_k = Q_x$ =const, аналогично Q_y =const, Q_z =const.

$$f = \sum p_k = \sum m_k \dot{x}_k = Q_x = \text{const}$$
, аналогично $Q_y = \text{const}$, $Q_z = \text{const}$.

4. Замкнутая система. Преобразование: поворот вокруг оси O_z : $x_k^* = x_k \cos s + y_k \sin s$, $y_k^* = -x_k \sin s + y_k \cos s$, $z_k^* = z_k$, $t^* = t$, Π не меняется, $x_k^{*2} + y_k^{*2} = \dot{x}_k^2 + \dot{y}_k^2$, $T^* = T$ $\xi_{kx} = y_k$, $\xi_{ky} = -x_k$, $\xi_{kz} = 0$, $\eta = 0 \Rightarrow f = \sum (p_{kx}\xi_{kx} + p_{ky}\xi_{ky}) = \sum m_k(\dot{x}_k y_k - \dot{y}_k x_k) = -K_z$ =const. Аналогично для других поворотов (вокруг O_x, O_y) $\Rightarrow K_x$ =const, K_y =const.

10.1 Интегральные инварианты гамильтоновых систем

Законы сохранения делятся на два типа: первые интегралы и интегральные инварианты.

Интегральные инварианты— некоторые интегральные величины, сохраняющие постоянные значения на некоторых, специальным образом выбранных множествах прямых путей.

$$W=\int\limits_{t_0}^{t_1}L(\dot{q},q,t)dt$$
 — действие по Гамильтону

Рассмотрим координатное пространство $(q,t)_{n+1}$. Границы: $\begin{cases} t_0 = t_0(\alpha) \\ q_i^0 = q_i^0(\alpha) \end{cases}$ $\begin{cases} t_1 = t_1(\alpha) \\ q_i^1 = q_i^1(\alpha) \end{cases}$

Семейство кривых: $q_i = q_i(t, \alpha)$

$$W = \int_{t_0(\alpha)}^{t_1(\alpha)} L(\dot{q}(t,\alpha), q(t,\alpha), t) dt, \quad \delta W = L_1 \delta t_1 - L_0 \delta t_0 + \int_{t_0}^{t_1} \left(\sum_{i=1}^{t_1} \frac{\partial L}{\partial \dot{q}_i} \frac{\delta \dot{q}_i}{\frac{\partial L}{\partial \dot{q}_i}} + \sum_{i=1}^{t_1} \frac{\partial L}{\partial q_i} \delta q_i \right) dt =$$

$$= L_1 \delta t_1 - L_0 \delta t_0 + \sum_{i=1}^{t_1} \frac{\partial L}{\partial \dot{q}_i} \delta q_i \Big|_{t=t_0}^{t=t_1} - \int_{t_0}^{t_1} \sum_{i=1}^{t_1} \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} \right) \delta q_i dt$$

$$q_i^1 = q_i(t_1(\alpha), \alpha), \quad \delta q_i^1 = \dot{q}_i|_{t=t_1} \delta t_1 + \underbrace{\frac{\partial q_i}{\partial \alpha}\Big|_{t=t_1}}_{\delta q_i|_{t=t_1}} \delta \alpha$$

Таким образом $\delta q_i|_{t=t_1} = \delta q_i^1 - \dot{q}_i|_{t=t_1} \delta t_1, \ \delta q_i|_{t=t_0} = \delta q_i^0 - \dot{q}_i|_{t=t_0} \delta t_0.$

Значит
$$\delta W = L_1 \delta t_1 - L_0 \delta t_0 + \sum p_i^1 (\delta q_i^1 - \dot{q}_i|_{t=t_1} \delta t_1) - \sum p_i^0 (\delta q_i^0 - \dot{q}_i|_{t=t_0} \delta t_0) - \int_{t_0}^{t_1} \sum \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} \right) \delta q_i dt = \sum \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} \right) \delta q_i dt$$

$$\left(\sum p_{i}\delta q_{i} - \underbrace{\left(\sum p_{i}\dot{q}_{i} - L\right)}_{H}\delta t\right)\Big|_{t=t_{1}} - \left(\sum p_{i}\delta q_{i} - \underbrace{\left(\sum p_{i}\dot{q}_{i} - L\right)}_{H}\delta t\right)\Big|_{t=t_{0}} - \int_{t_{0}}^{t_{1}} \sum \left(\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_{i}} - \frac{\partial L}{\partial q_{i}}\right)\delta q_{i}dt \Longrightarrow \delta W = \left(\sum p_{i}\delta q_{i} - H\delta t\right)\Big|_{t=t_{0}}^{t=t_{1}} - \int_{t_{0}}^{t_{1}} \sum \left(\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_{i}} - \frac{\partial L}{\partial q_{i}}\right)\delta q_{i}dt$$

На семействе прямых путей выполняется уравнение Лагранжа второго рода:

$$\delta W = \left. \left(\sum p_i \delta q_i - H \delta t \right) \right|_{t=t_0}^{t=t_1}$$

При $\delta q_i(t_0) = \delta q_i(t_1) = 0, \delta t_1 = \delta t_0 = 0 \Rightarrow \boxed{\delta W = 0}$ — принцип Гамильтона.

Пространство $(q,t) \to$ расширенное функциональное пространство $(q,p,t)_{2n+1}$

$$C_0: \begin{cases} t_0 = t_0(\alpha) \\ q_i^0 = q_i^0(\alpha) \\ p_i^0 = p_i^0(\alpha) \end{cases} \quad 0 \le \alpha \le 1,$$

 $\alpha=0$ и $\alpha=1$ — одна точка. Тогда через этот контур проходит бесконечно много прямых путей.

$$lpha=0$$
 и $lpha=1$ — одна точка. Тогда через этот контур проходит б $\left\{ egin{array}{l} q_i=q_i(t,lpha) \\ p_i=p_i(t,lpha) \end{array}
ight.$ $0\leq lpha\leq 1.$ $lpha=0$ и $lpha=1$ — одна и та же прямая.

 \hat{C}_1 — замкнутый контур, охвативший трубку прямых путей при $t_1=t_1(lpha)$. Контуры согласованы.

Рассмотрим и вычислим действие по Гамильтону вдоль каждого прямого пути.

$$W(1) = W(0) \Longrightarrow 0 = W(1) - W(0) = \int_{0}^{1} \left(\sum_{i=t_0} p_i \delta q_i - H \delta t \right) \Big|_{t=t_0}^{t=t_1} \Rightarrow 0 = \oint_{C_1} \left(\sum_{i=t_0} p_i \delta q_i - H \delta t \right) - \oint_{C_0} \left(\sum_{i=t_0} p_i \delta q_i - H \delta t \right) dt dt$$

Рис. 11: Трубка прямых путей

$$\forall C_1,\ C_2\Rightarrow \boxed{\oint \left(\sum p_i \delta q_i - H \delta t\right) = \mathrm{const} = I_{\scriptscriptstyle \Pi \mathrm{K}}}$$
— интегральный инвариант Пуанкаре-Картана

Рассмотрим частный случай — изохронный контур ($t = \text{const}, \delta t = 0$).

 $\left|I_{\Pi}=\oint\sum p_{i}\delta q_{i}\right|$ — универсальный интегральный инвариант Пуанкаре

Рис. 12: Универсальность интеграла Пуанкаре

$$\oint\limits_{H_1} \sum p_i \delta q_i = \oint\limits_{C_0} \sum p_i \delta q_i = \oint\limits_{H_2} \sum p_i \delta q_i \Rightarrow \oint\limits_{H_1} \sum p_i \delta q_i = \oint\limits_{H_2} \sum p_i \delta q_i - \text{универсальность}.$$

Обратные теоремы об интегральным инвариантах

Теорема. Пусть для системы $\left\{ \begin{array}{ll} \dot{q}_i = Q_i(q,p,t) \\ \dot{p}_i = \Phi_i(q,p,t) \end{array} \right.$ $i=1,\ldots,n$ сохраняется универсальность интегрального инварианта Пуанкаре:

1. $I_{\Pi} = \oint \sum p_i \delta_i = \text{const}$

Тогда система Гамильтонова, т.е.
$$\exists H^*(q,p,t): \quad Q_i = \frac{\partial H^*}{\partial p_i}, \quad \Phi_i = -\frac{\partial H^*}{\partial q_i}$$

2. Пусть, кроме того, для системы выполняется интегральный инвариант $\oint (\sum p_i \delta q_i - F \delta t) = \text{const}$, тогда:

$$F = H^* + \frac{\partial f}{\partial t}$$
, где $f(t)$ — произвольная функция времени

Доказательство:

доказательство:
1.
$$I_{\Pi} = \text{const} \Rightarrow \frac{dI_{\Pi}}{dt} = 0 = \oint \sum \frac{dp_i}{dt} \delta q_i + \oint \sum p_i \frac{d}{dt} \delta q_i = \oint \sum \Phi_i \delta q_i + \underbrace{\oint \sum \delta(p_i \dot{q}_i)}_{=0} - \oint \sum \delta p_i \dot{q}_i = \oint \sum (\Phi_i \delta q_i - Q_i \delta p_i) = 0 \quad \forall C \text{ (изохронизм)}.$$

$$=\oint\underbrace{\sum\left(\Phi_{i}\delta q_{i}-Q_{i}\delta p_{i}\right)}_{-\delta H^{*}(q,p,t)}=0\quad\forall C\text{ (изохронизм)}.$$

$$-\delta H^* = \sum \frac{\partial H^*}{\partial q_i} \delta q_i - \sum \frac{\partial H^*}{\partial p_i} \delta p_i \Longrightarrow \left\{ \begin{array}{l} \Phi_i = -\frac{\partial H^*}{\partial q_i} \\ Q_i = \frac{\partial H^*}{\partial p_i} \end{array} \right. \Rightarrow$$
 система Гамильтонова.

$$2. \oint \left(\sum p_i \delta q_i - F \delta t\right) = \text{const} = \oint_{C_0(\text{изохр.})} \sum p_i \delta q_i = I_{\Pi} = I_{\Pi K} \text{ (при } t \neq \text{const}) \Rightarrow$$

$$\forall C \oint_{C_0} \sum p_i \delta q_i = \oint_C \left(\sum p_i \delta q_i - H^* \delta t\right) = \oint_C \underbrace{\left(\sum p_i \delta q_i - F \delta t\right)}_{=I_1}$$
Тогда $I_1 - I_{\Pi K} = 0 = \oint_C \underbrace{\left(H^* - F\right)}_{-\delta f(q, p, t)} \delta t = 0 \quad \forall C.$

$$-\delta f = -\left(\sum \frac{\partial f}{\partial q_i} \delta q_i + \sum \frac{\partial f}{\partial p_i} \delta p_i + \frac{\partial f}{\partial t} \delta t\right) \Longrightarrow f = f(t), \quad H^* - F = \frac{df}{dt}$$

11 Лекция 11

11.1 Теорема Лиувиля о сохранении фазового объема

$$I_\Pi = \oint\limits_C \sum p_i \delta q_i \stackrel{\text{ф-ла}}{=} \stackrel{\text{Стокса}}{=} \iint\limits_S \sum_{i=1}^n \delta p_i \delta q_i$$
 Фазовый объем: $\int \ldots \int\limits_S \delta q_1 \ldots \delta q_n \delta p_1 \ldots p_n = I_{2n}$

Рассмотрим фазовое протстранство (q, p):

$$\dot{x}_i = \varphi_i(x, t), \text{ где } x = (x_1, \dots, x_n)^T, \quad \sum \frac{\partial \varphi_i}{\partial x_i} = 0$$
 (1)

Для гамильтоновых систем:

$$\frac{\partial q_i}{\partial t} = \frac{\partial H}{\partial p_i}; \quad \frac{\partial p_i}{\partial t} = -\frac{\partial H}{\partial q_i}$$
 Тогда $\sum \frac{\partial}{\partial q_i} \left(\frac{\partial H}{\partial p_i} \right) + \sum \frac{\partial}{\partial p_i} \left(-\frac{\partial H}{\partial q_i} \right) = 0$ Пусть
$$x_i = f_i(t, x^0) - \text{решение (1)}$$
 (2)

$$t = t_0: \quad v_0 = \int_{V_0} \cdots \int \delta x_1^0 \dots \delta x_m^0$$

$$\forall t: \quad v(t) = \int_{V(t)} \dots \int \delta x_1 \dots \delta x_m = \int_{V_0} \dots \int I \delta x_1^0 \dots \delta x_m^0, \text{ где } I = \det \left\| \frac{\partial x_i}{\partial x_j} \right\|_{i,j=1}^m, \quad I(t_0) = 1$$

Покажем, что $I(t) = 1 \quad \forall t$

$$rac{dI}{dt} = \sum\limits_{i=1}^{m} I_i$$
, где

$$I_i = \det \begin{bmatrix} & & & \frac{\partial x_1}{\partial x_j} & & \dots \\ & \ddots & & \ddots & & \dots \\ \frac{d}{dt} \left(\frac{\partial x_i}{\partial x_1^0} \right) & & \dots & \frac{d}{dt} \left(\frac{\partial x_i}{\partial x_m^0} \right) \end{bmatrix}$$

Рассмотрим
$$\frac{d}{dt} \frac{\partial x_i}{\partial x_j^0} = \frac{\partial}{\partial x_j^0} \left(\frac{\partial x_i}{\partial t} \right) \stackrel{\text{согл. } (1)}{=} \frac{\partial \varphi_i(x,t)}{\partial x_j^0} = \sum_{l=1}^m \frac{\partial \varphi_i}{\partial x_l} \frac{\partial x_l}{\partial x_j}$$

Умножаем l-ую строку I_i $(l \neq i)$ на $\frac{\partial \varphi_i}{\partial x_l}$ и вычитаем из i-ой строки:

$$I_i = \begin{vmatrix} \dots & \frac{\partial x_1}{\partial x_j} & \dots \\ \dots & \dots & \dots \\ \frac{\partial \varphi_i}{\partial x_i} \frac{\partial x_i}{\partial x_1^0} & \dots & \frac{\partial \varphi_i}{\partial x_i} \frac{\partial x_i}{\partial x_m^0} \end{vmatrix} = \frac{\partial \varphi_i}{\partial x_i} \Longrightarrow \frac{dI}{dt} = \underbrace{\left(\sum \frac{\partial \varphi_i}{\partial x_i}\right)}_{=0 \text{ M3 (1)}} I = 0$$

Значит I = const = 1.

Итак, доказали:

Теорема Лиувиля о сохранении фазового объема. Фазовый объём гамильтоновых систем при движении вдоль траектории в фазовом пространсве сохраняется.

11.2 Теорема Ли Хуачжуна

$$I_1 = \oint \sum_{i=1}^n (A_i(q,p,t)\delta q_i + B_i(q,p,t)\delta p_i)$$
 — универсальный интегральный инвариант первого порядка

Теорема. Если I_1 — универсальный интегральный инвариант первого порядка, то $I_1 = cI_{\Pi}$, где c = const. Доказательство(для случая n = 1):

$$I_1 = \oint (A_i(q, p, t)\delta q + B_i(q, p, t)\delta p)$$

Рассмотрим любую гамильтонову систему с n=1:

Таксию грым инсерто таким постому с и от
$$\frac{dq}{dt} = \frac{\partial H}{\partial p};$$
 $\frac{dp}{dt} = -\frac{\partial H}{\partial q}$ $t=t_0: C_0, \ q=q_0(\alpha), \ p=p_0(\alpha) \ \ (0\leq \alpha \leq 1)$ Траектории $q=q(t,\alpha), \ p=p(t,\alpha), \ \forall t: C, \ q=q(\alpha), \ p=p(\alpha), \ \ (0\leq \alpha \leq 1)$ Пусть I_1 — инвариант:

$$I_1 = \oint_C (A(q(\alpha), p(\alpha), t)\delta q(\alpha) + B(q(\alpha), p(\alpha), t)\delta p(\alpha)) = I_1(t)$$

$$\frac{dI_1}{dt} = 0 = \oint \left(\frac{dA}{dt} \delta q + A \underbrace{\frac{d}{dt} \delta q}_{\delta \dot{q}} + \frac{dB}{dt} \delta p + B \underbrace{\frac{d}{dt} \delta p}_{\delta \dot{p}} \right) =$$

$$\oint A \delta \dot{q} = \oint (\delta (A\dot{q}) - \dot{q} \delta A) = -\oint \dot{q} \delta A, \quad \oint B \delta \dot{p} = -\oint \dot{p} \delta B$$

$$= \oint \left[\left(\frac{\partial A}{\partial q} \dot{q} + \frac{\partial A}{\partial p} \dot{p} + \frac{\partial A}{\partial t} \right) \delta q - \dot{q} \left(\frac{\partial A}{\partial q} \delta q + \frac{\partial A}{\partial p} \delta p \right) + \left(\frac{\partial B}{\partial q} \dot{q} + \frac{\partial B}{\partial p} \dot{p} + \frac{\partial B}{\partial t} \right) \delta p - \dot{p} \left(\frac{\partial B}{\partial q} \delta q + \frac{\partial B}{\partial p} \delta p \right) \right] =$$

$$= \oint \left(\delta q \left(\frac{\partial A}{\partial p} \dot{p} + \frac{\partial A}{\partial t} - \frac{\partial B}{\partial q} \dot{p} \right) + \delta p \left(-\frac{\partial A}{\partial p} \dot{q} + \frac{\partial B}{\partial t} \right) \right) = \oint \left(\delta q \left(-\frac{\partial H}{\partial q} \left(\frac{\partial A}{\partial p} - \frac{\partial B}{\partial q} \right) + \frac{\partial A}{\partial t} \right) + \frac{\partial A}{\partial t} \right) + \delta p \left(-\frac{\partial H}{\partial q} \left(-\frac{\partial H}{\partial q} + \frac{\partial B}{\partial t} \right) \right) = 0, \quad \forall C, \quad \forall \text{ гамильто}$$

новой системы. Данное выражение равно 0 если подыинтегральное выражение — полный дифференциал.

$$\begin{split} &\frac{\partial}{\partial p} \left(-u \frac{\partial H}{\partial q} + \frac{\partial A}{\partial t} \right) = \frac{\partial}{\partial q} \left(-u \frac{\partial H}{\partial p} + \frac{\partial B}{\partial t} \right) \\ &- \frac{\partial u}{\partial p} \frac{\partial H}{\partial q} - u \frac{\partial^2 H}{\partial q \partial p} + \frac{\partial^2 A}{\partial t \partial p} = - \frac{\partial u}{\partial p} \frac{\partial H}{\partial p} - u \frac{\partial^2 H}{\partial p \partial q} + \frac{\partial^2 B}{\partial t \partial q} \Longrightarrow \\ &- \frac{\partial u}{\partial p} \frac{\partial H}{\partial q} + \frac{\partial u}{\partial q} \frac{\partial H}{\partial p} + \frac{\partial u}{\partial t} \underbrace{\left(\frac{\partial A}{\partial p} - \frac{\partial B}{\partial q} \right)}_{} = 0 \end{split}$$

Для любой гамильтоновой системы, любой гамильтониан H.

a)
$$H = H(q, p, t) = 0 \Rightarrow \frac{\partial u}{\partial t} = 0 \Rightarrow u = u(q, p).$$

6)
$$H = q \Rightarrow -\frac{\partial u}{\partial p} = 0 \Rightarrow u = u(q).$$

$$H = p \Rightarrow -\frac{\partial u}{\partial q} = 0 \Rightarrow u = u(p). \text{ T.e } u = \frac{\partial A}{\partial p} - \frac{\partial B}{\partial q} = \text{const. 3} \text{ Яначит } \frac{\partial (A - cp)}{\partial p} = \frac{\partial B}{\partial q} \Rightarrow \exists \varphi(q, p, t) \left\{ \begin{array}{l} A - cp = \frac{\partial \varphi}{\partial q} \\ B = \frac{\partial \varphi}{\partial p} \end{array} \right.$$

$$\delta \varphi = (A - cp)\delta q + B\delta p \Rightarrow \oint\limits_C \delta \varphi = 0 = \oint\limits_C [(A - cp)\delta q + B\delta p] \Rightarrow$$

$$\boxed{\oint\limits_C A\delta q + B\delta p = c \oint\limits_C p\delta q}$$

11.3 Канонические преобразования гамильтоновых систем

$$\frac{\partial q_i}{\partial t} = \frac{\partial H}{\partial p_i}; \quad \frac{\partial p_i}{\partial t} = -\frac{\partial H}{\partial q_i}, \quad i = 1, \dots, n$$
 (1)

$$(q,p) \to (\tilde{q},\tilde{p}): \quad \tilde{q}_i = \tilde{q}_i(q,p,t), \ \tilde{p}_i\tilde{p}_i(q,p,t)$$
 (2)

Определение. Неособая замена переменных называется канонической, если она любую гамильтонову систему переводит в гамильтонову систему, вообще говоря, с другой функцией Гамильтона.

1. Тождественное преобразование (тривиальное): $\tilde{q}_i = q_i, \; \tilde{p}_i = p_i.$

$$2. (*) = \begin{cases} \tilde{q}_i = \alpha q_i \\ \tilde{p}_i = \beta p_i \end{cases}$$

a)
$$\frac{d\tilde{q}_i}{dt} = \alpha \frac{dq_i}{dt} = \alpha \frac{\partial H}{\partial p_i} = \alpha \frac{\partial H}{\partial \tilde{p}_i} \frac{\partial \tilde{p}_i}{\partial p_i} = \alpha \beta \left. \frac{\partial H}{\partial \tilde{p}_i} \right|_{(*)} = \frac{\partial \tilde{H}}{\partial \tilde{p}_i}$$

6)
$$\frac{d\tilde{p}_i}{dt} = \beta \frac{dp_i}{dt} = -\beta \frac{\partial H}{\partial q_i} = -\beta \frac{\partial H}{\partial \tilde{q}_i} \frac{\partial \tilde{q}_i}{\partial q_i} = -\alpha \beta \left. \frac{\partial H}{\partial \tilde{q}_i} \right|_{(\star)} = -\frac{\partial \tilde{H}}{\partial \tilde{q}_i}.$$

Тогда
$$\tilde{H} = \alpha \beta H \left(\frac{\tilde{q}}{\alpha}, \frac{\tilde{p}}{\beta}, t \right)$$
.

3. $\left\{ \begin{array}{ll} \tilde{q}_i = \alpha_i q_i \\ \tilde{p}_i = \beta_i p_i \end{array} \right\} \tilde{H},$ преобразвование не является каноническим.

Критерий каноничности. Для того, чтобы преобразование (2) было каноническим необходимо и достаточно, чтобы $\exists F(q, p, t)$ и c = const, такое что:

$$\sum_{i=1}^{n} \tilde{p}_{i} \delta q_{i} - \tilde{H} \delta t = c \left(\sum_{i=1}^{n} p_{i} \delta q_{i} - H \delta t \right) - \delta F(q, p, t)$$
(3)

F(q, p, t) — производящая функция канонического преобразования, c — валентность.

12 Лекция 12

Доказательство:

Необходимость.

Пусть (2) — каноническое преобразование, гамильтониан $H \to \tilde{H}$. Два расширенных фазовых пространства: $(q, p, t) \rightarrow (\tilde{q}, \tilde{p}, t).$

$$t_0 = \text{const} \quad C_0 \to \tilde{C}_0$$

$$\forall t \quad \forall C \to \tilde{C}$$

$$\oint_C \left(\sum p_i \delta q_i - H \delta t \right) = \oint_{C_0} \sum p_i \delta q_i \tag{4}$$

$$\oint_{\tilde{C}} \left(\sum_{\tilde{p}_i \delta \tilde{q}_i - \tilde{H} \delta t} \right) = \oint_{\tilde{C}_0} \sum_{\tilde{p}_i \delta \tilde{q}_i} \tilde{p}_i \delta \tilde{q}_i \tag{5}$$

В (5) замена (2):

$$\oint\limits_{C} \left(\sum \tilde{p}_i(q,p,t) \delta \tilde{q}_i(q,p,t) - \tilde{H}(q,p,t) \delta t \right) = \oint\limits_{C_0} \sum \tilde{p}_i(q,p,t) \delta \tilde{q}_i(q,p,t) = 0$$

$$= \underbrace{\oint\limits_{C_0} \tilde{p}_i(q,p,t) \left(\sum_{j=1}^n \frac{\partial \tilde{q}_i}{\partial q_j} \delta q_j + \sum_{j=1}^n \frac{\partial \tilde{q}_i}{\partial p_j} \delta p_j \right)}_{\text{T-Ma JIu Zуанчжуна}} \stackrel{\text{T-Ma JIu Zуанчжуна}}{=} c \oint\limits_{C_0} \sum p_i \delta q_i \stackrel{\text{(4)}}{=} c \oint\limits_{C} \left(\sum p_i \delta q_i - H \delta t \right)$$

Тогда:

$$\oint_{C} \left[\underbrace{\left(\sum_{\tilde{p}_{i}} \tilde{p}_{i}(\ldots) \delta \tilde{q}_{i}(\ldots) - \tilde{H}(\ldots) \delta t \right) - c \left(\sum_{\tilde{p}_{i}} p_{i} \delta q_{i} - H \delta t \right)}_{\delta F(q,p,t)} \right] = 0$$

Причем $\forall C (\text{контура}) \Rightarrow$

$$\sum \tilde{p}_i \delta \tilde{q}_i - \tilde{H} \delta t = c \left(\sum p_i \delta q_i - H \delta t \right) - \delta F(q, p, t)$$

Достаточность.

Пусть выполняется (3) : $\exists c = \text{const} \ \text{и} \ F(q,p,t) \ \text{и} \ \forall H \to \exists \tilde{H}.$ Докажем, что \tilde{H} — гамильтониан. Два согласованных контура $C \to \tilde{C}$. В левой части (3) сделаем замену (2):

$$\oint_{C} \left(\sum \tilde{p}_{i}(\ldots) \delta \tilde{q}_{i}(\ldots) - \tilde{H}(\ldots) \delta t \right) = c \oint_{C} \left(\sum p_{i} \delta q_{i} - H \delta t \right) - \oint_{C} \delta F = \oint_{C_{0}} \sum p_{i} \delta q_{i}$$

$$\oint_{C} \left(\sum \tilde{p}_{i} \delta \tilde{q}_{i} - \tilde{H} \delta t \right) = \oint_{C_{0}} \sum \tilde{p}_{i} \delta \tilde{q}_{i}$$

По обратной теореме об интегральным инвариантах преобразованная система Гамильтонова, а \tilde{H} — гамильтониан.

Замечание 1. Валентность $c \neq 0$:

$$F(q(\tilde{q}, \tilde{p}, t), p(\tilde{q}, \tilde{p}, t), t) = \tilde{F}(\tilde{q}, \tilde{p}, t)$$

Из (2)
$$\Longrightarrow \sum_{i=1}^{n} \tilde{p}_{i} \delta \tilde{q}_{i} - \tilde{H} \delta t = c \left(\sum p_{i} \delta q_{i} - H \delta t \right) - \sum \frac{\partial \tilde{F}}{\partial \tilde{q}_{i}} \delta \tilde{q}_{i} - \sum \frac{\partial \tilde{F}}{\partial \tilde{p}_{i}} \delta \tilde{p}_{i} - \frac{\partial \tilde{F}}{\partial t} \delta t$$

Пусть
$$c=0$$
:
$$\delta \tilde{q}_i: \quad \tilde{p}_i = -\frac{\partial \tilde{F}}{\partial \tilde{q}_i} \\ \delta \tilde{p}_i: \quad 0 = -\frac{\partial F}{\partial \tilde{p}_i} \end{aligned} \Longrightarrow \frac{\partial^2 \tilde{F}}{\partial \tilde{q}_i \partial \tilde{p}_i} = -1 \neq \frac{\partial^2 \tilde{F}}{\partial \tilde{p}_i \partial \tilde{q}_i} = 0 \Longrightarrow \Pi$$
ротиворечие.

Замечание 2. При c = 1 — унивалентное преорбразование.

3амечание 3. Если преобразование каноническое с валентностью c и производящей функцией $F\Longrightarrow$ обратное преобразование каноническое с валентностью $\frac{1}{c}$ и производящей функцией $\frac{F}{c}$.

Из
$$(2) \Rightarrow \sum p_i \delta q_i - H \delta t = \frac{1}{c} \left(\sum \tilde{p}_i \delta q_i - \tilde{H} \delta t \right) - \left(-\frac{\delta F}{c} \right).$$

Замечание 4. Часто критерий (3) рассматривют при $t = \text{const} \Longrightarrow$

$$\sum \tilde{p}_i \delta \tilde{q}_i = c \sum p_i \delta q_i - \delta F(q, p, t), \text{ при } t = \text{const}$$

12.1 Различные типы производящих функций канонического преобразования

B (2) 4n переменных $q_i, p_i, \tilde{q}_i, \tilde{p}_i$, из них 2n переменных независимы.

1 вариант. q_i, p_i — независимы.

$$(3): \quad \sum_{i=1}^{n} \tilde{p}_{i} \left(\sum_{j=1}^{n} \frac{\partial \tilde{q}_{i}}{\partial q_{j}} \delta q_{j} + \sum_{j=1}^{n} \frac{\partial \tilde{q}_{i}}{\partial p_{j}} \delta p_{j} + \frac{\partial \tilde{q}_{i}}{\partial t} \delta t \right) - \tilde{H} \delta t = c \left(\sum_{j} p_{j} \delta q_{j} - H \delta t \right) - \sum_{j} \frac{\partial F}{\partial q_{j}} \delta q_{j} - \sum_{j} \frac{\partial F}{\partial p_{j}} \delta p_{j} - \frac{\partial F}{\partial t} \delta t$$

$$\delta q_{j}: \quad \sum_{i=1}^{n} \tilde{p}_{i} \frac{\partial \tilde{q}_{i}}{\partial q_{j}} = c p_{j} - \frac{\partial F}{\partial q_{j}}$$

$$\delta p_{j}: \quad \sum_{i=1}^{n} \tilde{p}_{i} \frac{\partial \tilde{q}_{i}}{\partial p_{j}} = -\frac{\partial F}{\partial p_{j}}$$

$$- \text{ определяет каноническое преобразование} \tag{\$\$}$$

$$\delta t: \sum_{i=1}^n ilde p_i rac{\partial ilde q_i}{\partial t} - ilde H = -cH - rac{\partial F}{\partial t} -$$
 связь функций гамильтона

$$\tilde{H} = cH + \sum \tilde{p}_i \frac{\partial \tilde{q}_i}{\partial \tilde{q}_i} + \frac{\partial F}{\partial t}$$

Недостатки:

1) громозкость формул;

2) неоднозначность восстановаливаемого канонического преобразования по заданным c и F.

Пример. n = 1, c = 1, F = 0

$$\tilde{p}\frac{\partial \tilde{q}}{\partial q} = p, \quad \tilde{p}\frac{\partial \tilde{q}}{\partial p} = 0 \Rightarrow \tilde{q} = \tilde{q}(q,t)$$

Тогда
$$\tilde{p}=rac{p}{\partial \tilde{q}/\partial q},\quad \partial \tilde{q}/\partial q \neq 0 \quad \forall \tilde{q}(q,t)$$

2 вариант. Пусть

$$\det \left\| \frac{\partial \tilde{q}_i}{\partial p_j} \right\|_{i,j=1}^n \neq 0 \tag{*}$$

Такое преобразование называется свободно-каноническим преобразованием.

$$\tilde{q}_i = \tilde{q}_i(q, p, t) \stackrel{(*)}{\Longrightarrow} p = p(q, \tilde{q}, t) \Rightarrow$$

 $F(q,p,t) = F(q,p(q, ilde{q}),t) = S(q, ilde{q},t)$ — производящая функция свободного преобразования.

 q_i, \tilde{q}_i — независимые переменные \Rightarrow

$$\sum \tilde{p}_i \delta \tilde{q}_i - \tilde{H} \delta t = c \left(\sum p_i \delta q_i - H \delta t \right) - \sum \frac{\partial S}{\partial q_i} \delta q_i - \sum \frac{\partial S}{\partial \tilde{q}_i} \delta \tilde{q}_i - \frac{\partial S}{\partial t} \delta t$$

$$\delta q_i: \quad 0 = cp_i - \frac{\partial S}{\partial q_i} \\ \delta \tilde{q}_i: \quad \tilde{p}_i = -\frac{\partial S}{\partial \tilde{q}_i} \\ \end{cases} \Longleftrightarrow \left\{ \begin{array}{l} \frac{\partial S}{\partial q_i} = cp_i \quad (**) \\ \frac{\partial S}{\partial \tilde{q}_i} = -\tilde{p}_i \quad (***) \\ \frac{\partial S}{\partial \tilde{q}_i} = -\tilde{p}_i \quad (***) \end{array} \right. - \text{определено каноническое преобразование (однозначно)}$$

$$\delta t: \quad \tilde{H} = cH + \frac{\partial S}{\partial t}$$
Из $(*) \Rightarrow \det \left\| \frac{\partial p_i}{\partial \tilde{q}_j} \right\|_{i,j=1}^n \neq 0$.
В силу $(**) \Rightarrow \det \left\| \frac{\partial^2 S}{\partial q_i \partial \tilde{q}_j} \right\|_{i,j=1}^n \neq 0$.

Значит (**) можно разрешить относительно $\tilde{q},\;\tilde{p}:\;\;\tilde{q}_i=\tilde{q}_i(q,p,t)$ $\tilde{p}_i=\tilde{p}_i(q,p,t)$

3амечание. Для доказательства каноничности свободного преобразования необходимо найти валентность c и производящую функцию F.

- 1. $\tilde{q}_i = q_i, \ \tilde{p}_i = p_i$ не является свободным;
- 2. $\tilde{q}_{i} = \alpha q_{i}, \ \tilde{p}_{i} = \beta p_{i}$ не является свободным;
- 3. $\tilde{q}_i = \alpha p_i, \ \tilde{p}_i = \beta q_i$ свободное каноническое преобразование.

$$\begin{split} \delta(q,\tilde{q}, \quad & \frac{\partial S}{\partial q_i} = cp_i = \frac{c}{\alpha}\tilde{q}_i, \quad \frac{\partial S}{\partial \tilde{q}_i} = -p_i = -\beta q_i \\ \text{Тогда} \quad & \frac{\partial}{\partial \tilde{q}_i} \left(\frac{c}{\alpha}\tilde{q}_i\right) = \frac{\partial}{\partial q_i} (-\beta q_i) \Rightarrow \boxed{c = -\alpha\beta} \\ & \left\{\begin{array}{l} \frac{\partial S}{\partial q_i} = -\beta \tilde{q}_i \\ \frac{\partial S}{\partial \tilde{q}_i} = -\beta q_i \end{array}\right. \Rightarrow \boxed{S = -\beta \sum_{i=1}^n q_i \tilde{q}_i} \end{split}$$

3 вариант.
$$q_i, \ \tilde{p}_i$$
 — независимые (при $\det \left\| \frac{\partial \tilde{p}_i}{\partial p_j} \right\| \neq 0$).

$$S_1(q, \tilde{p}, t) \Longrightarrow \begin{cases} \frac{\partial S}{\partial q_i} = cp_i \\ \frac{\partial S}{\partial \tilde{p}_i} = \tilde{q}_i \end{cases}$$

Другие критерии каноничности преобразований 12.2

$$(\$\$) \Rightarrow \begin{cases} \frac{\partial F}{\partial q_j} = cp_i - \sum_{i=1}^n \tilde{p}_i \frac{\partial \tilde{q}_i}{\partial q_j} \\ \frac{\partial F}{\partial p_j} = -\sum_{i=1}^n \tilde{p}_i \frac{\partial \tilde{q}_i}{\partial p_j} \end{cases}$$

Условия существования $F: \frac{\partial^2 F}{\partial q_i \partial q_k} = \frac{\partial^2 F}{\partial q_k \partial q_i}$ $-\sum_{i=1}^{n}\frac{\partial \tilde{p}_{i}}{\partial q_{k}}\frac{\partial \tilde{q}_{i}}{\partial q_{i}}-\sum_{i=1}^{n}\tilde{p}_{i}\frac{\partial^{2}\tilde{q}_{i}}{\partial q_{i}\partial q_{k}}=-\sum_{i=1}^{n}\frac{\partial \tilde{p}_{i}}{\partial q_{i}}\frac{\partial \tilde{q}_{i}}{\partial q_{k}}-\sum_{i=1}^{n}\tilde{p}_{i}\frac{\partial^{2}\tilde{q}_{i}}{\partial q_{k}\partial q_{i}}$

$$\sum_{i=1}^n \left(\frac{\partial \tilde{q}_i}{\partial q_i} \frac{\partial \tilde{p}_i}{\partial q_k} - \frac{\partial \tilde{q}_i}{\partial q_k} \frac{\partial \tilde{p}_i}{\partial q_j} \right) = 0 \Longleftrightarrow [q_j, q_k] = 0 - \text{скобки Лагранжа}$$

Oпределение. 2n функций $\varphi_i(x,y), \ \psi_i(x,y), \ i=1,\ldots,n.$

$$[x,y] = \sum_{i=1}^{n} \left(\frac{\partial \varphi_i}{\partial x} \frac{\partial \psi_i}{\partial y} - \frac{\partial \varphi_i}{\partial y} \frac{\partial \psi_i}{\partial x} \right)$$

Критерий каноничности. $[q_j,q_k]=0$ и аналогично $[p_j,p_k]=0,\,[q_j,p_k]=c\delta_{jk},\,$ где $\delta_{jk}-$ символ Кронекера.

13 Лекция 13

 $ilde{q}_i = ilde{q}_i(q,p,t), \; ilde{p}_i = ilde{p}_i(q,p,t)$ — каноническое преобразование.

 $\text{Матрица Якоби: } M = \left\| \frac{\partial \tilde{q}}{\partial q} \frac{\partial \tilde{q}}{\partial p} \right\|_{2n \ge 2n}$ Вспомогательная матрица: $J = \left\| \frac{0}{-E_n} \frac{E_n}{0} \right\| (J^{-1} = J^T = -J, \ J^2 = E_{2n}, \ \det J = 1)$

Тогда критерий каноничности можно записать в виде: $M^T J M = c J$, где c — валентность.

$$M^{T}JM = \begin{bmatrix} \begin{pmatrix} \frac{\partial \tilde{q}}{\partial q} \end{pmatrix}^{T} & \begin{pmatrix} \frac{\partial \tilde{p}}{\partial q} \end{pmatrix}^{T} \\ \begin{pmatrix} \frac{\partial \tilde{q}}{\partial p} \end{pmatrix}^{T} & \begin{pmatrix} \frac{\partial \tilde{p}}{\partial q} \end{pmatrix}^{T} \\ -E_{n} & 0 \end{bmatrix} M = \begin{bmatrix} -\begin{pmatrix} \frac{\partial \tilde{p}}{\partial q} \end{pmatrix}^{T} & \begin{pmatrix} \frac{\partial \tilde{q}}{\partial q} \end{pmatrix}^{T} \\ -\begin{pmatrix} \frac{\partial \tilde{p}}{\partial p} \end{pmatrix}^{T} & \begin{pmatrix} \frac{\partial \tilde{q}}{\partial q} \end{pmatrix}^{T} \end{bmatrix} \bullet \begin{bmatrix} \frac{\partial \tilde{q}}{\partial q} & \frac{\partial \tilde{q}}{\partial p} \\ \frac{\partial \tilde{p}}{\partial q} & \frac{\partial \tilde{p}}{\partial p} \end{bmatrix} = \begin{pmatrix} (1,1) & \vdots & (1,2) \\ \vdots & \vdots & \vdots & \vdots \\ (2,1) & \vdots & (2,2) \end{pmatrix}$$

Блок $(1,1): -\left(\frac{\partial \tilde{p}}{\partial q}\right)^T \frac{\partial \tilde{q}}{\partial q} + \left(\frac{\partial \tilde{q}}{\partial q}\right)^T \frac{\partial \tilde{p}}{\partial q}.$

Элемент (k,l): $\sum_{i=1}^{n} \left(\frac{\partial \tilde{q}_i}{\partial q_k} \frac{\partial \tilde{p}_i}{\partial q_l} - \frac{\partial \tilde{p}_i}{\partial q_k} \frac{\partial \tilde{q}_i}{\partial q_l} \right) = [q_k, q_l].$

 $(1,1): ||[q_k,q_l]||_{k,l=1}^n = ||0||$

Аналогично: блок (1,2) : $\|[q_k,q_l]\|_{k,l=1}^n=\|c\delta_{kl}\|$

блок (2,1) : $\|[p_k,p_l]\|_{k,l=1}^n=\|-c\delta_{kl}\|$ блок (2,2) : $\|[p_k,p_l]\|_{k,l=1}^n=\|0\|$

$$\Rightarrow M^T J M = c J$$

$$\underbrace{(M^{T})^{-1}M^{T}}_{E_{2n}} J \underbrace{MM^{-1}}_{E_{2n}} = c(M^{T})^{-1}JM^{-1}$$

$$\underbrace{\left(\frac{1}{c}J\right)^{-1}}_{=} = \left(\left(M^{T}\right)^{-1}JM^{-1}\right)^{-1} \Rightarrow cJ^{-1} = MJ^{-1}M^{T} \Rightarrow$$

$$MJM^{T} = cJ$$
(2)

$$M o M^T$$
 (по сравнению с (1)) $\frac{\partial \tilde{q}_i}{\partial q_k} o \frac{\partial \tilde{q}_k}{\partial q_i}$, $\frac{\partial \tilde{q}_i}{\partial p_k} o \frac{\partial \tilde{p}_k}{\partial q_i}$ и т.д.
$$[q_k, q_l] o \sum_{i=1}^n \left(\frac{\partial \tilde{q}_l}{\partial q_i} \frac{\partial \tilde{q}_l}{\partial p_i} - \frac{\partial \tilde{q}_k}{\partial p_i} \frac{\partial \tilde{q}_l}{\partial q_i} \right) = (\tilde{q}_k, \tilde{q}_l).$$

Получили критерии каноничности

$$(\tilde{q}_k, \tilde{q}_l) = 0, \quad (\tilde{p}_k, \tilde{p}_l) = 0, \quad (\tilde{q}_k, \tilde{p}_l) = c\delta_{kl}$$

13.1 Канонические уравнения Гамильтона как унивалентное преобразование фазового пространства

$$\begin{split} \frac{dq_i}{dt} &= \frac{\partial H}{\partial p_i}, \quad \frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i} \\ q &= (q_1, \dots, q_n)^T, \quad p = (p_1, \dots, p_n)^T, \quad z = (q, p)^T \ (2n\text{-вектор}). \\ H_z &= (H_q, H_p)^T, \quad H_q = \left(\frac{\partial H}{\partial q_1}, \dots, \frac{\partial H}{\partial q_n}\right)^T, \quad H_p = \dots \\ \frac{dz}{dt} &= JH_z. \text{ Решение } Z = Z(t, Z_0) \\ M &= \frac{\partial Z}{\partial z_0} \ (\text{матрица } 2n \ge 2n). \ z_0 \to z. \end{split}$$

Докажем:

$$M^T J M = J \quad (Z_0 o Z - {
m yhubep}$$
сальное каноническое преобразование

При
$$t=t_0~M=E_{2n}\Rightarrow$$
 свойства выполняются $\forall t.$
$$\frac{\partial}{\partial z_0}\frac{dz}{dt}=\frac{\partial}{\partial z_0}(JH_z)$$

$$\frac{\partial z_0}{\partial t} \frac{dt}{dt} = \frac{\partial z_0}{\partial z_0} (JH_z)$$

$$\frac{d}{dt} \frac{\partial z}{\partial z_0} = JH_{zz} \frac{\partial z}{\partial z_0},$$
где H_{zz} — матрица вторых проихводных $\left(M = \frac{\partial z}{\partial z_0}\right) \Rightarrow$

$$\frac{dM^T}{dt} = M^T H_{zz}^T J^T = -M^T H_{zz} J$$

$$\frac{d}{dt}(M^TJM) = \frac{dM^T}{dt}JM + M^TJ\frac{dM}{dt} = -M^TH_{zz}\underbrace{J^2}_{-E_{2n}} + M^T\underbrace{J^2}_{-E_{2n}}H_{zz}M = 0 \Rightarrow M^TJM = \text{const} = cJ = J \text{ (кооэф-$$

фициенты равны 1, т.е c = 1)

$$M^T J M = J$$
 — симплектическая матрица

 $M^T J M = c J$ — симплектическая обобщенная матрица

13.2 Уравнения Гамильтона-Якоби

$$\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}, \quad \frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}$$

$$(q,p) \to (\tilde{q},\tilde{p}) - \text{свободное универсальное каноническое преобразование с производящей функцией } S(q,\tilde{q},t).$$

$$\frac{\partial S}{\partial q_i} = p_i, \quad \frac{\partial S}{\partial \tilde{q}_i} = -\tilde{p}_i, \quad i = 1, \dots, n$$
 (1)

Считаем, что

$$\det \left\| \frac{\partial^2 S}{\partial q_i \partial \tilde{q}_i} \right\|_{i,i=1}^n \neq 0 \tag{2}$$

 $\tilde{H} = \tilde{H}(\tilde{q}, \tilde{p}, t) = 0 \Rightarrow \tilde{q}_i = \alpha_i = \text{const}, \quad \tilde{p}_i = \beta_i = \text{const}, \quad i = 1, \dots, n$ Учитывая (2) при $\tilde{q}_j = \alpha_j$ разрешаем (1) относительно $q, p \Rightarrow q_i = q_i(t, \alpha, \beta), \quad p_i = p_i(t, \alpha, \beta).$

$$\tilde{H} = 0 = H + \frac{\partial S}{\partial t}$$

$$\boxed{\frac{\partial S}{\partial t} + H(q, \frac{\partial S}{\partial q}, t) = 0} - \text{уравнение Гамильтона-Якоби}$$
 (3)

Полный интеграл — частное решение уравнения (3), зависищее от n произвольных постоянных, т.е. $S(q, \alpha, t)$

Теорема Якоби. Если $S(q,\alpha,t)$ — полный интеграл уравнения (3), то решение исходной системы канонических уравнений Гамильтона записываются не явно с помощью соотношений следующего вида:

$$\frac{\partial S}{\partial q_i} = p_i, \quad \frac{\partial S}{\partial \alpha_i} = -\beta_i \quad (\beta_i = \text{const})$$

Некоторые приёмы исследования:

1. Наличие циклических координат:

., q_n — циклические координаты $\Rightarrow p_{k+1} = \alpha_{n+1} = \text{const.}, \ldots, p_n = \alpha_n = \text{const.}$

$$p_j = \frac{\partial S}{\partial q_j} = \alpha_j, \quad S = \sum_{j=k+1}^n \alpha_j q_j + S^*(q_1, \dots, q_k, \alpha_1, \dots, \alpha_n, t).$$

Уравнение для
$$S^*: \quad \frac{\partial S}{\partial t} + H\left(q, \frac{\partial S^*}{\partial q}, t\right) = 0$$

2. Консервативные и обобщенно консервативные системы $\left(\frac{\partial H}{\partial t} = 0\right)$, H(q,p) = h = const.

$$\frac{\partial S}{\partial t} + H = 0 \Rightarrow \frac{\partial S}{\partial t} = -h = \text{const.}$$

$$S = -ht + V(q, \alpha)$$

Уравнение для V: $H\left(q, \frac{\partial V}{\partial q}\right) = h$ — уравнение Гаильтона-Якоби.

Полный интеграл $V(q, \alpha_1, \dots, \alpha_{n-1}, h) \Rightarrow \frac{\partial V}{\partial a_i} = p_i, \quad (i = 1, \dots, n)$ (соотношения для импульсов).

$$\frac{\partial V}{\partial \alpha_j} = -\beta_j, \quad (j=1,\dots,n-1)$$
 (связывает q,α,β — геометрические соотношения переменных).

$$\frac{\partial S}{\partial h} = -t + \frac{\partial V}{\partial h} = -\beta_h \Rightarrow t = \beta_n + \frac{\partial V}{\partial h}$$
 (вводит время).
3. Разделение переменных в уравнении Гамильтона-Якоби

$$S = S_0(t, \alpha) + \sum_{i=1}^{n} S_i(q_i, \alpha)$$

2 случая:

1) $\overset{\circ}{H}(f_1(q_1,p_1),\dots,f_n(q_n,p_n),t)$ Ранее показано, что $f_k(q_k,p_k)=\alpha_k$ — первый интеграл $(k=1,\dots,n).$

Пусть
$$\frac{\partial f_k}{\partial p_k} \neq 0 \Rightarrow p_k = g_k(q_k, \alpha_k)$$

$$\frac{\partial S}{\partial t} + H = 0 \Rightarrow \frac{\partial S}{\partial t} = -H(\alpha_1, \dots, \alpha_n, t), \quad S = -\int H(\alpha_1, \dots, \alpha_n, t) dt + \sum_{k=1}^n S_k(q_k, \alpha)$$

$$p_k = g_k(q_k, \alpha_k) = \frac{\partial S}{\partial q_k} \Rightarrow S_k = \int g_k(q_k, \alpha_k) dq_k$$

$$\det \left\| \frac{\partial^2 S}{\partial q_i \partial \alpha_j} \right\|_{i,j=1}^n = \det \left\| \frac{\partial g_i}{\partial \alpha_j} \right\| = \left\{ \text{определитель диагональной матрицы} \right\} = \prod_{i=1}^n \frac{\partial q_i}{\partial \alpha_j} = \frac{1}{\prod\limits_{i=1}^n \frac{\partial f_i}{\partial p_i}} \neq 0$$

$$2) \ H = H(f_n(q_n, p_n, f_{n-1}), t)$$

$$f_k = f_k(q_k, p_k, f_{k-1}), \quad k = 2, \dots, n; \ f_1 = f_1(q_1, p_1)$$
Предположим, что $\frac{\partial f_k}{\partial p_k} \neq 0 \Rightarrow p_k = g_k(q_k, \alpha_{k-1}, \alpha_k)$

$$\frac{\partial S}{\partial t} = -H = -H(\alpha_n, t) \Rightarrow S = -\int H(\alpha_n, t) dt + \sum S_k(q_k, \alpha_k, \alpha_{k-1})$$

$$p_k = g_k(q_k, \alpha_k, \alpha_{k-1}) = \frac{\partial S_k}{\partial q_k} \Rightarrow S_k = \int g_k(q_k, \alpha_k, \alpha_{k-1}) dq_k$$

$$\det \left\| \frac{\partial^2 S}{\partial q_i \partial \alpha_j} \right\| = \det \left\| \frac{\partial g_i}{\partial \alpha_j} \right\| = \left\{ \text{определитель диагональной матрицы} \right\} = \prod_{i=1}^n \frac{\partial g_i}{\partial \alpha_i} = \frac{1}{\prod\limits_{i=1}^n \frac{\partial f_i}{\partial p_i}} \neq 0 \Rightarrow \text{нашли}$$

полный интеграл.