### Advancing in R Nonlinear models

Transformations, polynomials and nonlinear least squares

# Outline: nonlinear regression

- Transformations
  - linearizing variables to straighten out relationships
- Polynomials
  - "linear" models with higher order terms that capture curvature in responses
- · Nonlinear least squares
  - fitting custom-made curves

#### Some considerations

- · Modelling assumptions
  - Homogeneity of variance?
- · Theory of the relationship
  - E.g., for growth or decay or survival there there are existing functional models
- Parsimony
  - Straight lines preferred over curves
  - Fewer parameters the better
- · Starting values?





























## Nonlinear least squares

- · Fit pre-defined functions
- Parameters estimated by iteratively changing them to minimize SS or maximize likelihood
- · Often need realistic starting values
  - Educated guesses
  - Try several alternatives to check sensitivity of results
- · Hypothesis testing not straightforward

| lymptotic functions  Asymptotic exponential $(y = \alpha + (\beta - \alpha)e^{-e^{\gamma}x})$                                   |                  |
|---------------------------------------------------------------------------------------------------------------------------------|------------------|
| Used to describe general asymptotic relationships.                                                                              | $\alpha < \beta$ |
| Equivelent to the more simple $y = a - be^{-cx}$ when $a = \alpha$ ,                                                            |                  |
| b = $\beta - \alpha$ and $c = e^{\gamma}$                                                                                       | I Å              |
| $b = \beta - \alpha$ and $c = e^{\gamma}$<br>$\alpha - y$ value of horizontal asymptote. $\beta$ - value of y when $x = 0$ .    | α>β              |
| $\alpha$ - y value of florizontal asymptote. $\beta$ - value of y when $x = 0$ .<br>$\gamma$ - natural log of rate of curvature |                  |
| ,                                                                                                                               |                  |
| <pre>&gt; nls (DV~a+b*exp(c*x), dataset, start=list(a=1,</pre>                                                                  |                  |
| b=-1, c=-1))                                                                                                                    |                  |
| <pre>&gt; nls(DV~SSasymp(IV,a,b,c), dataset)</pre>                                                                              |                  |
| Michaelis-Menten $(y = \frac{\alpha x}{\beta + x})$                                                                             |                  |
| Used to relate rates of enzymatic reactions to substrate concentra-                                                             | β>0              |
| tions                                                                                                                           |                  |
| $\alpha$ – y value of horizontal asymptote. $\beta$ (Mechaelis parameter) -                                                     | β<0              |
| value of x at which half the asymptotic response is obtained.                                                                   |                  |
| > nls(DV~(a*IV)/(b*IV), dataset,                                                                                                |                  |
| start=list(a=1, b=1))                                                                                                           |                  |
| > nls(DV~SSmicmen(IV,a,b), dataset)                                                                                             |                  |

```
> MOD.ASYMP<-nls(BONE~a-b*exp(-c*AGE), data=DEER, start=list(a=120,b=110,c=0.064))
```



#### Suggested reading:

- Ch. 9 in Logan
- Chs. 10, 20 in Crawley The R Book