

DESIGN AND ANALYSIS OF ALGORITHMS

STRASSEN'S MATRIX MULTIPLICATION

PROF. PV NAGESWARA RAO

DEPT. OF COMPUTER SCIENCE AND ENGINEERING

GITAM(DEEMED TO BE UNIVERSITY)

DIVIDE AND CONQUER – GENERAL IDEA

- Divide a problem into subprograms of the same kind
- Solve subprograms using the same approach
- Combine partial solution (if necessary)

MATRIX MULTIPLICATION

The Problem

Multiply two matrices A and B, each of size $[n \times n]$

$$\begin{bmatrix} & A & \\ & A & \\ \\ & & \end{bmatrix}_{n \times n} \cdot \begin{bmatrix} & B & \\ & & \\ \\ & & \end{bmatrix}_{n \times n} = \begin{bmatrix} & C & \\ & & \\ \\ & & \\ \end{bmatrix}_{n \times n}$$

MATRIX MULTIPLICATION – GENERAL METHOD

Mat A

Mat B

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{bmatrix}$$

where, c11=a11*b11+a12*b21+a13*b31+a14*b41

$$Mat C = Mat A * Mat B$$

$$\begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & c_{34} \\ c_{41} & c_{42} & c_{43} & c_{44} \end{bmatrix}$$

and so on.

MATRIX MULTIPLICATION – THE TRADITIONAL WAY

$$C_{ij} = \sum_{k=1}^{n} A_{ik} \times B_{kj}$$

$$T(n) = O(n^3)$$

MATRIX MULTIPLICATION – DIVIDE AND CONQUER WAY

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \qquad \therefore T(n) = 8 \cdot T(\frac{n}{2}) + an^2$$

$$T(n) = 8 \cdot T(\frac{n}{2}) + an^2$$
$$= O(n^3)$$

$$C_{11} = \underline{A_{11} \cdot B_{11}} + \underline{A_{12} \cdot B_{21}}$$

$$C_{12} = \underline{A_{11} \cdot B_{12}} + \underline{A_{12} \cdot B_{22}}$$

$$C_{21} = \underline{A_{21} \cdot B_{11}} + \underline{A_{22} \cdot B_{21}}$$

$$C_{22} = \underline{A_{21} \cdot B_{12}} + \underline{A_{22} \cdot B_{22}}$$

$$C_{22} = \underline{A_{21} \cdot B_{12}} + \underline{A_{22} \cdot B_{22}}$$

Where an² is for addition So, it is no improvement compared with the traditional way

transform the problem of multiplying A and B, each of size $[n \times n]$ into 8 subproblems, each of size $\left| \frac{n}{2} \times \frac{n}{2} \right|$

EXAMPLE: MATRIX MULTIPLICATION USING DANDC

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

use Divide-and-Conquer way to solve it as following:

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 3 & 0 \\ 3 & 3 & 3 & 0 \\ 3 & 3 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$C_{11} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$$

$$C_{12} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 3 & 0 \end{bmatrix}$$

$$C_{21} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 0 & 0 \end{bmatrix}$$

$$C_{22} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}$$

STRASSEN'S MATRIX MULTIPLICATION:

• Discover a way to compute the C_{ij} 's using 7 multiplications and 18 additions or

subtractions

$$P = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$Q = (A_{21} + A_{22})B_{11}$$

$$R = A_{11}(B_{12} - B_{22})$$

$$S = A_{22}(B_{21} - B_{11})$$

$$T = (A_{11} + A_{12})B_{22}$$

$$U = (A_{21} - A_{11})(B_{11} + B_{12})$$

$$V = (A_{12} - A_{22})(B_{21} + B_{22})$$

$$C_{11} = P + S - T + V$$

$$C_{12} = R + T$$

$$C_{21} = Q + S$$

$$C_{22} = P + R - Q + U$$

ALGORITHM: MATRIX MULTIPLICATION STRASSEN'S METHOD


```
Algorithm Strassen (n, A, B, C)
// n is size, A,B the input matrices, C output matrix
        begin
               if n == 2
                                  C_{11} = a_{11} \cdot b_{11} + a_{12} \cdot b_{21}
C_{12} = a_{11} \cdot b_{12} + a_{12} \cdot b_{22}
                                   C_{21} = a_{21} \cdot b_{11} + a_{22} \cdot b_{21}
C_{22} = a_{21} \cdot b_{12} + a_{22} \cdot b_{22}
                else
                       (cont.)
```


else

Partition *A* into 4 submatrices:
$$A_{11}$$
, A_{12} , A_{21} , A_{22} ; Partition *B* into 4 submatrices: B_{11} , B_{12} , B_{21} , B_{22} ; call Strassen $(\frac{n}{2}, A_{11} + A_{22}, B_{11} + B_{22}, P)$;

call Strassen
$$(\frac{n}{2}, A_{21} + A_{22}, B_{11}, Q);$$

call Strassen
$$(\frac{n}{2}, A_{11}, B_{12} - B_{22}, R)$$
;

call Strassen
$$(\frac{n}{2}, A_{22}, B_{21} - B_{11}, S);$$

call Strassen
$$(\frac{n}{2}, A_{11} + A_{12}, B_{22}, T);$$

call Strassen
$$(\frac{n}{2}, A_{21} - A_{11}, B_{11} + B_{12}, U);$$
call Strassen $(\frac{n}{2}, A_{12} - A_{22}, B_{21} + B_{22}, V);$

$$C_{11} = P + S - T + V;$$

$$C_{12} = R + T;$$

$$C_{21} = Q + S;$$

$$C_{22} = P + R - Q + U;$$
end;

TIME COMPLEXITY

$$T(n) = \begin{cases} 7 \cdot T(\frac{n}{2}) + an^2 & n > 2\\ b & n \le 2 \end{cases}$$

$$T(n) = an^{2}[1 + 7/4 + (7/4)^{2} + \dots + (7/4)^{k-1}] + 7^{k}T(1)$$

$$\leq cn^{2}(7/4)^{\log_{2}n} + 7^{\log_{2}n}, c \text{ a constant}$$

$$= cn^{\log_{2}4 + \log_{2}7 - \log_{2}4} + n^{\log_{2}7}$$

$$= O(n^{\log_{2}7}) \approx O(n^{2.81})$$

TIME COMPLEXITY:

$$T(n) = \begin{cases} 7 \cdot T(\frac{n}{2}) + an^2 & n > 2\\ b & n \le 2 \end{cases}$$

$$T(n) = 7 \cdot T(\frac{n}{2}) + an^{2}$$

$$= 7^{2} \cdot T(\frac{n}{2^{2}}) + (\frac{7}{4})an^{2} + an^{2}$$

$$= 7^{3} \cdot T(\frac{n}{2^{3}}) + (\frac{7}{4})^{2} \cdot an^{2} + (\frac{7}{4}) \cdot an^{2} + an^{2}$$

Assume $n = 2^k$ for some integer k

$$= 7^{k-1} \cdot T(\frac{n}{2^{k-1}}) + an^2 \cdot \left[(\frac{7}{4})^{k-2} + \dots + 1 \right]$$

$$= 7^{k-1} \cdot b + an^{2} \left[\frac{(\frac{7}{4})^{k-1} - 1}{\frac{7}{4} - 1} \right]$$

$$\leq b \cdot 7^k + c \cdot n^2 \cdot (\frac{7}{4})^k$$

$$= b \cdot 7^{Lgn} + cn^{2} \cdot (\frac{7}{4})^{Lgn} = b \cdot 7^{Lgn} + cn^{2}(n)^{Lg\frac{7}{4}}$$

$$=b \cdot n^{Lg7} + cn^{Lg7} = (b+c) \cdot n^{Lg7}$$

$$= O(n^{Lg7}) = O(n^{2.81})$$

COMPARISON: STRAIGHT METHOD VS. STRASSEN'S METHOD

IMPROVEMENTS / OTHER METHODS

1978	V. Y. Pan. Strassen's algorithm is not optimal.	O(n ^{2.796})
1979	D. Bini et al. O(n ^{2.7799}) complexity for nxn approximate matrix	O(n ^{2.7799})
	multiplication.	
1981	A. Schönhage. Partial and total matrix multiplication.	O(n ^{2.522})

First to break the 2.5 barrier:

1981	Copper Smith and Winograd On the asymptotic complexity of matrix multiplication.	O(n ^{2.496})
1986	Volker Strassen	O(n ^{2.479})
1989	CopperSmith and Winograd Matrix multiplication via arithmetic progressions.	O(n ^{2.376})

2011	Virginia Vassilevska Williams:	O(n ^{2.3727})
	Breaking the Coppersmith-Winograd barrier	

Q&A