ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСТ Р 54172-2010

СТЕКЛОПАКЕТЫ КЛЕЕНЫЕ

Метод оценки долговечности

EN 1279-2:2002 (NEQ)

Издание официальное

Москва Стандартинформ 2010

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184 - ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0 — 2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

- 1. РАЗРАБОТАН Открытым акционерным обществом «Институт стекла»
- 2. ВНЕСЕН Техническим комитетом по стандартизации ТК 041 «Стекло»
- 3. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 21.12.2010 № 944-ст
- 4 Настоящий стандарт разработан с учетом основных положений европейского стандарта:

EH 1279-2:2002 «Стекло в строительстве. Стеклопакеты. Часть 2. Метод долговременных испытаний и требования к влагопроницаемости» (EN 1279-2:2002 «Glass in building – Insulating glass units – Part 2: Long term test method and requirements for moisture penetration», NEQ)

5. ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомления и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2010

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1 Область применения
2 Нормативные ссылки
3. Термины и определения
4. Обозначения
5 Сущность метода
6 Испытательное оборудование и средства измерений
7. Реактивы и растворы
8. Отбор образцов
9 Проведение испытания стеклопакетов
10 Оценка результатов испытаний
11 Оформление результатов испытаний

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

СТЕКЛОПАКЕТЫ КЛЕЕНЫЕ Метод оценки долговечности

Insulating glass units

Method of determination of life circle

Дата введения – **01.07.2012**

1 Область применения

Настоящий стандарт распространяется на стеклопакеты клееные различного назначения и устанавливает метод оценки их долговечности.

В настоящем стандарте приведены общие требования к проведению испытаний на долговечность. Требования к температуре, влажности и продолжительности испытаний устанавливают в стандартах на стеклопакеты клееные.

Метод, установленный в настоящем стандарте, применяют при проведении квалификационных, типовых, сертификационных, периодических, исследовательских и других видах испытаний.

Метод, установленный в настоящем стандарте, допускается применять для других видов изделий из стекла.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 53288—2008 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ГОСТ Р 54172-2010 Стеклопакеты клееные. Технические условия

ГОСТ 427—75 Линейки измерительные металлические. Технические условия

ГОСТ 450—77 Кальций хлористый технический. Технические условия

Издание официальное

ГОСТ 6709—72 Вода дистиллированная. Технические условия

ГОСТ 7502—98 Рулетки измерительные металлические. Технические условия

ГОСТ 9147—80 Посуда и оборудование лабораторные фарфоровые. Технические условия

ГОСТ 25706—83 Лупы. Типы, основные размеры. Общие технические требования

П р и м е ч а н и е – При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования – на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом, следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3. Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

- **3.1** долговечность: Характеристика стеклопакетов, определяющая способность сохранять эксплуатационные качества в течение заданного срока, подтвержденная результатами лабораторных испытаний и выражаемая в условных годах эксплуатации.
- **3.2** герметичность стеклопакета: Свойство стеклопакета противостоять газообмену внутреннего пространства с окружающей средой, в том числе проникновению газов, водяных паров и воды во внутреннее пространство.
- **3.3** точка росы стеклопакета: Температура воздуха или газа в стеклопакете, при которой находящийся в нем водяной пар достигает состояния насыщения и выпадает на внутренней поверхности стекол в виде конденсата (инея).
- **3.4 показатель влагопроницаемости:** Значение остаточной влагоемкости влагопоглотителя после проведенных испытаний.

3.5 условный год эксплуатации: Единица измерения долговечности изделий, условно соответствующая одному календарному году эксплуатации изделия в реальных условиях.

4. Обозначения

В настоящем стандарте применены следующие обозначения:

I – показатель влагопроницаемости,

 $I_{\rm cp}$ – средний показатель влагопроницаемости,

 m_0 – вес фарфоровой чашки без крышки, г

 m_i – вес фарфоровой чашки без крышки с влагопоглотителем до сушки, г

 m_r – вес фарфоровой чашки без крышки с влагопоглотителем после сушки, г

 m_f – вес арфоровой чашки без крышки с влагопоглотителем до сушки, после циклических испытаний, г

 T_i — начальное влагосодержание влагопоглотителя,

 $T_{i \text{ cp}}$ – среднее начальное влагосодержание влагопоглотителя,

 T_f – конечное влагосодержание влагопоглотителя,

 T_c — стандартное влагосодержание влагопоглотителя,

 $T_{c \text{ cp}}$ — среднее стандартное влагосодержание влагопоглотителя

5 Сущность метода

- 5.1 Сущность метода заключается в определении степени изменения физикомеханических показателей, внешнего вида стеклопакетов в процессе циклических воздействий переменных положительных и отрицательных температур и влажности, имитирующих воздействие критических эксплуатационных нагрузок.
- 5.2 В качестве физико-механических показателей при оценке долговечности стеклопакетов применяют: температура точки росы (далее точка росы), показатель влагопроницаемости.

6 Испытательное оборудование и средства измерений

6.1 При проведении испытаний применяют следующее испытательное оборудование.

Камера, обеспечивающая:

- воздействие отрицательных температур до минус 70 °C;
- воздействие положительных температур до плюс 90 °C;
- погрешность измерения температуры не более 2 °C;
- относительную влажность воздуха (95 ± 5) %;
- скорость изменения температуры не более 3 °C в минуту.
- 6.2 При проведении испытаний применяют следующие приборы, средства измерений и материалы.

Весы лабораторные по ГОСТ Р 53228 с погрешностью измерения не более 0,1 г.

Линейка по ГОСТ 427 с ценой деления не более 1 мм.

Лупа с ценой деления не более 0,25 мм по ГОСТ 25706.

Рулетка с ценой деления не более 1 мм по ГОСТ 7502.

Чашка фарфоровая по ГОСТ 9147.

6.3 Оборудование и средства измерений должны быть поверены в установленном порядке.

7 Реактивы и растворы

7.1 При определении оценки долговечности стеклопакетов используют следующие реактивы и растворы.

Вода дистиллированная по ГОСТ 6709.

Хлористый кальций по ГОСТ 450.

7.2 Приготовление насыщенного раствора хлористого кальция

7.2.1 В емкости не менее 200 мл при температуре (23 \pm 2) $^{\circ}$ С готовят насыщенный раствор хлористого кальция (CaCl₂·6H₂O).

- 7.2.2 Проверяют, чтобы не оставалось нерастворенных кристаллов хлористого кальция.
- 7.2.3 Емкость с насыщенным раствором хлористого кальция помещают в сушильный шкаф при температуре (23 ± 2) °C и закрывают его на 24 ч до достижения равновесного состояния. Полученные условия моделируют как ограничивающие условия окружающей среды температуру (23 ± 2) °C и влажность (50 ± 5) %.

8 Отбор образцов

- 8.1 Порядок отбора образцов для проведения испытаний устанавливают в нормативных документах, утвержденных в установленном порядке, (далее нормативные документы) или в договоре на проведение испытаний.
- 8.2 Для испытаний отбирают не менее 11 образцов стеклопакетов не имеющих пороков внешнего вида.
- 8.3 Отобранные образцы выдерживают при температуре (22 ± 3) °C и относительной влажности (55 ± 5) % не менее суток. При этом образцы должны быть защищены от воздействия прямых солнечных лучей.
 - 8.4 Размеры испытываемых образцов должны составлять $[(500 \times 500) \pm 2]$ мм.

Допускается использовать при испытаниях образцы меньших размеров, принятые в нормативных документах на эти изделия, если размеры изделий не позволяют изготовить образцы размером (500×500) мм.

8.5 Перед загрузкой в испытательное оборудование образцы моют с помощью обычных моющих средств и протирают сухой мягкой неворсистой тканью для удаления загрязнений и проверяют на соответствие требованиям нормативным документам по показателям внешнего вида.

9 Проведение испытания стеклопакетов

- 9.1 Оценку долговечности стеклопакетов проводят в несколько этапов:
- первый этап: определение точки росы стеклопакетов и начальное влагосодержание влагопоглотителя;
 - второй этап: проведение циклических испытаний в испытательной камере;

- третий этап: определение точки росы и конечное влагосодержание влагопоглотителя;
 - четвертый этап: определение показателя влагопроницаемости стеклопакетов.
- 9.2 Точку росы стеклопакетов определяют на 11 стеклопакетах в соответствии с ГОСТ Р 54175.

9.3 Определение начального влагосодержания влагопоглотителя стеклопакетов

- 9.3.1 Определение начального влагосодержания влагопоглотителя стеклопакетов проводят на четырех образцах из числа проверенных в соответствии с 9.2 в следующей последовательности.
- 9.3.2 Фарфоровую чашку (далее чашка), вместимостью не менее 100 мл, и крышку моют в дистиллированной воде и высушивают при температуре 120 °C до постоянного веса. Взвешивают чашку без крышки (m_0).
- 9.3.3 Из каждого стеклопакета в отдельную чашку, насыпают по 20-30 г влагопоглотителя. Не допускается попадание частиц стекла и герметика. Накрывают крышкой и подготавливают для взвешивания. Взвешивают чашку (без крышки) с влагопоглотителем (m_i). Накрывают чашку крышкой и ставят в печь по нормативному документу
 при комнатной температуре. Снимают крышку и нагревают печь до температуры 950 °C
 в течение (60 ± 20) мин. Сушку проводят при температуре (950 ± 50) °C в течение
 (120 ± 5) мин. Вынимают чашку из печи, накрывают крышкой и помещают в сушильный
 шкаф для охлаждения до комнатной температуры. Взвешивают чашку без крышки с влагопоглотителем (m_r).
 - 9.3.4 Начальное влагосодержание влагопоглотителя T_i вычисляют по формуле

$$T_i = \frac{m_i - m_r}{m_r - m_0} \tag{1}$$

Начальное влагосодержание влагопоглотителя T_i допускается выражать в процентах: $100 \times T_i$.

Среднее начальное влагосодержание влагопоглотителя $T_{i\,\mathrm{cp}}$ определяют по формуле

$$T_{icp} = \sum_{n=1}^{4} \frac{T_i n}{4} \tag{2}$$

Среднее начальное влагосодержание влагопоглотителя $T_{i\, {\rm cp}}$ допускается выражать в процентах: $100 \times T_{i\, {\rm cp}}$

9.4 Проведение циклических испытаний стеклопакетов в испытательной камере

9.4.1 После определения точки росы и начального влагосодержания влагопоглотителя пять образцов помещают в испытательную камеру для проведения циклических испытаний.

9.4.2 Режимы циклических испытаний

9.4.2.1 При испытании стеклопакетов, предназначенных для эксплуатации в климатических районах со среднемесячной температурой в январе не выше минус 18 °C, в испытательной камере устанавливают режим испытаний в соответствии с рисунком 1.

 Δt – время выдержки, равное 1 час, t^* – продолжительность одного цикла Рисунок 1 – График испытаний одного цикла

Образцы устанавливают в камере в вертикальном положении так, чтобы они были на расстоянии от 10 до 20 мм друг от друга и на расстоянии не менее 200 мм от стенок камеры.

Образцы испытывают в камере в соответствии с рисунком 1. Продолжительность одного цикла равна 9-10 ч. При определении долговечности стеклопакетов в 20 условных лет проводят 34 цикла.

По истечении времени выдержки образцы извлекают из камеры, выдерживают на воздухе до высыхания, протирают сухой мягкой неворсистой тканью и подвергают контролю.

Образцы осматривают при рассеянном освещении при освещенности от 300 до 600 лк на расстоянии от 0,6 до 1,0 м.

9.4.2.2 При испытании стеклопакетов, предназначенных для эксплуатации в климатических районах со среднемесячной температурой в январе выше минус 18 °C, в испытательной камере устанавливают режим испытаний в соответствии с рисунком 2 и рисунком 3.

1 — первый этап испытаний, 2 — второй этап испытаний, 3 — третий этап испытаний, T_h — температура выдержки, равная (53,0 ± 1,0) °C, T — температура выдержки, равная (58,0 ± 0,5) °C, T_l — температура выдержки, равная минус (18, 0± 2,0) °C,

Рисунок 2 – График испытаний стеклопакетов

Первый этап испытаний содержит 56 температурных циклов по 12 ч каждый. Ориентировочный период проведения испытаний – четыре недели, испытания начинаются с процесса охлаждения. Относительная влажность воздуха ≥ 95 %.

Второй этап испытаний занимает от 2 до 4 ч для перемещения испытательных образцов из первой камеры во вторую, при использовании двух испытательных камер (второй этап может отсутствовать, если испытания проводятся в одной испытательной камере).

Третьим этапом является выдержка образцов при постоянной температуре в течение (1176 ± 4) ч (около семи недель) при относительной влажности воздуха ≥ 95 %.

При проведении климатических испытаний допускается образование конденсата на испытываемых образцах.

Соотношения температура – время и влажность – время при проведении циклических испытаний на первом этапе приведено на рисунке 3.

1 — относительная влажность в течение температурного цикла, T_h — температура выдержки, равная (53,0 ± 1,0) °C, T_l — температура выдержки, равная минус (18,0 ± 2,0) °C, T_s — перепад температур, равный (14 ± 2,0) °C в течение часа, t — интервалы времени Рисунок 3 — График поддержания температуры и влажности в течение одного цикла

При проведении первого этапа испытаний в испытательной камере относительная влажность должна быть ≥ 95 %. При достижении отрицательных температур заданная влажность не поддерживается. При проведении испытаний цикла устанавливаются следующие интервалы времени: $t_1 = 5$ ч, $t_2 = 1$ ч, $t_3 = 5$ ч, $t_4 = 1$ ч.

Общее время цикла (t_5) равно 12 ч.

Допускается по согласованию изготовителя с потребителем применять другие режимы испытаний.

- 9.4.3 При проведении климатических испытаний допускается образование конденсата на наружных поверхностях испытываемых образцов.
- 9.4.4 По истечении времени выдержки образцов в камере образцы извлекают из камеры протирают сухой мягкой тканью и подвергают визуальному контролю.
- 9.4.5 Образцы осматривают при рассеянном освещении при освещенности от 300 до 600 лк на расстоянии от 0,6 до 1,0 м. При необходимости, в соответствии с нормативной документацией на изделия, проводится измерение характеристик продукции.
- 9.5. Определяют точку росы стеклопакетов, прошедших циклические испытания, в соответствии с ГОСТ Р 54175.
- 9.6 Определение конечного влагосодержания влагопоглотителя проводят на пяти образцах стеклопакетов, прошедших циклические испытания.
 - 9.6.1 Чашку готовят по 9.3.2
- 9.6.2 Из каждого стеклопакета в отдельную чашку насыпают по 20-30 г. влагопоглотителя. Не допускать попадания частиц стекла и герметика. Накрывают крышкой и подготавливают для взвешивания. Взвешивают чашку (без крышки) с влагопоглотителем (m_f). Накрывают чашку крышкой и ставят в печь по нормативным документам при комнатной температуре. Снимают крышку и нагревают печь до температуры 950 °C в течение (60 ± 20) мин. Сушку проводят при температуре (950 ± 50) °C в течение (120 ± 5) мин. Вынимают чашку из печи накрывают крышкой и помещают в сушильный шкаф для охлаждения до комнатной температуры. Взвешивают чашку без крышки с влагопоглотителем (m_r).
 - 9.6.3 Конечное влагосодержание влагопоглотителя T_f вычисляют по формуле

$$T_f = \frac{m_f - m_r}{m_r - m_0} \tag{3}$$

Конечное влагосодержание влагопоглотителя допускается выражать в процентах: $100{\times}T_{\rm f}$

Среднее конечное влагосодержание влагопоглотителя $T_{f\, {
m cp}}$ вычисляют по формуле (4)

$$T_{f,cp} = \sum_{n=1}^{5} \frac{T_{f,n}}{5} \tag{4}$$

Среднее конечное влагосодержание влагопоглотителя $T_{f\, {
m cp}}$ допускается выражать в процентах: $100 \times T_{f, {
m cp}}$

9.7 Определение стандартного влагосодержание влагопоглотителя

- 9.7.1 Определение стандартного влагопоглощения влагопоглотителя проводят на двух образцах стеклопакетов.
 - 9.7.2 Подготавливают фарфоровую чашку в соответствии с 9.3.2.
- 9.7.3~ Из каждого стеклопакета в чашку насыпают по 20-30~г. влагопоглотителя и взвешивают.
- 9.7.4 Чашки с влагопоглотителем помещают в сушильном шкафу над раствором хлористого кальция (CaCl $_2$ ·6H $_2$ O) подготовленного в соответствии с 7.2. Емкости без крышки располагают над раствором хлористого кальция на высоте около 20 мм над ним. Емкости с влагопоглотителем должны быть надежно закреплены и не соприкасаться с раствором.
- 9.7.5 Закрывают сушильный шкаф и оставляют на четыре недели. На протяжении указанного периода времени проверяют, чтобы не появлялось нерастворенных кристаллов хлористого кальция.
- 9.7.6 По истечении четырех недель извлекают каждую емкость с влагопоглотителем и взвешивают в течение 30 сек. Затем возвращают чашки с влагопоглотителем в сушильный шкаф и оставляют еще на одну неделю. По истечении одной недели извлекают каждую чашку с влагопоглотителем и взвешивают. Если два последовательных показа-

ния взвешивания отличаются более чем на 0,005 г, то чашку с влагопоглотителем возвращают в сушильный шкаф для насыщения раствором хлористого кальция. Периодичность взвешивания — одна неделя. Достигнутая постоянная масса чашки с влагопоглотителем (m_c) .

- 9.7.7 Помещают каждую чашку с влагопоглотителем в печь. Производят высушивание влагопоглотителя в соответствии с 9.3.2.
 - 9.7.8 Взвешивают каждую чашку с влагопоглотителем (m_r) .
 - 9.7.9 Стандартное влагосодержание влагопоглотителя T_c вычисляют по формуле

$$T_c = \frac{m_c - m_r}{m_r - m_0} \tag{5}$$

Стандартное влагосодержание влагопоглотителя T_c допускается выражать в процентах: $100 \times T_c$.

9.7.10 Среднее стандартное влагосодержание вычисляют по формуле

$$T_{ccp} = \sum_{n=1}^{2} \frac{T_{cn}}{2} \tag{6}$$

Среднее стандартное влагосодержание влагопоглотителя допускается выражать в процентах: $100 \times T_{c \text{ cp.}}$.

9.8 Определение показателя влагопроницаемости стеклопакетов

9.8.1 Показатель влагопроницаемости I для каждого из пяти образцов, прошедших климатические испытания, вычисляют по формуле

$$I = \frac{T_f - T_{icp}}{T_{ccn} - T_{icn}} \tag{7}$$

Показатель влагопроницаемости допускается выражать в процентах: 100×*I*.

9.8.2 Средний показатель влагопроницаемости для пяти образцов определяют по формуле (8)

$$I_{cp} = \sum_{n=1}^{5} \frac{I_n}{5} \tag{8}$$

Средний показатель влагопроницаемости $I_{\rm cp}$ допускается выражать в процентах: $100 \times I_{\rm cp}.$

10 Оценка результатов испытаний

- 10.1 Оценку долговечности изделий производят по числу проведенных циклов климатических испытаний.
 - 10.2 Образцы стеклопакетов считают выдержавшими испытания, если:
- а) все образцы, прошедшие циклические испытания, имеют значения точки росы в соответствии с требованиями нормативных документов;
 - б) средний показатель влагопроницаемости I не превышает 0,20 (20 %).

Допускается значение показателя влагопроницаемости I 0,25 (25 %) не более, чем на одном образце.

11 Оформление результатов испытаний

В протоколе испытаний приводятся следующие данные:

- наименование испытательного центра (лаборатории) и номер аттестата аккредитации, его юридический адрес и контактный телефон;
 - наименование, юридический адрес организации заказчика испытаний;
- наименование, юридический адрес организации изготовителя образцов (если он известен);
- наименование испытываемой продукции, маркировку и нормативный документ на объект испытаний;
- описание образцов (формулу стеклопакетов, их размеры в мм, тип дистанционной рамки, используемые герметики и т.п.);
 - обозначение настоящего стандарта;
 - сведения об отборе образцов;
 - режим проведения испытаний;
- результаты испытаний по следующим показателям: точки росы стеклопакетов
 до и после циклических испытаний, показатель влагопроницаемости для каждого из пяти образцов, прошедших климатические испытания и средний показатель влагопроницаемости для пяти образцов, прошедших климатические испытания;

- дата проведения испытаний;
- подписи руководителя испытательной лаборатории и испытателя, печать испытательного центра.

Допускается указывать в протоколе испытаний дополнительные сведения.

УДК 692.82-033.5

OKC 81.040.30

Группа И19

Ключевые слова: стеклопакеты, долговечность, точка росы, средний показатель влагопроницаемости, испытательное оборудование, проведение испытаний, оценка результатов