FuNet-C

1. Introduction

This project implements **FuNet-C**, a hybrid spectral–spatial neural network combining Graph Convolutional Networks (GCNs) on pixel-level spectral features and 2D Convolutional Neural Networks (2D CNNs) on spatial patches, for hyperspectral image classification. The main objectives are:

- **Spectral–Spatial Fusion**: Leverage both spectral similarity (via GCN) and local spatial context (via CNN).
- **Modular Pipeline**: Clean separation of data preparation (MATLAB scripts) and model training/inference (Python/TensorFlow).
- **Reproducibility**: Shared directory structure and scripts to regenerate training/testing splits, laplacian matrices, and trained network.

2. Directory Structure

FuNet-C/ % Room	t Directory
— 19920612_AVIRIS_IndianPine_Site3.tif % Raw hyperspectral cube	
— 2DCNN_DataPreparatio	on.m % script for CNN input
GCN_DataPreparation.n	m % script for GCN input
TR_TE_Generation2d_0	CNN.m % helper to extract patches
hyperConvert2d.m	% Convert 3D HSI to 2D bands×pixels
hyperConvert3d.m	% Convert normalized 2D back to 3D cube
tf_utils.py	% Mini-batch generators & helpers
FuNet-C.py	% Model definition & training loop
X_train.mat, X_test.mat	, % MATLAB-generated inputs
Train_X.mat, Train_L.mat, TrLabel.mat % GCN features, laplacians, labels	
i features.mat	% Saved latent features after training

3. Data Preparation (MATLAB)

3.1 Hyperspectral Cube Loading

- Script: 2DCNN_DataPreparation.m and GCN_DataPreparation.m load IndianPine_Site3.tif.
- **Band Selection**: Retain bands [1:103,109:149,164:219] to exclude noisy channels.

• **Dimensionality**: Cube size becomes $(m \times n \times z)$, typically ~145×145×188.

3.2 Normalization & Conversion

- **Spectral Normalization**: 2D flattening (hyperConvert2d) yields a (bands × pixels) matrix; each row scaled to [0,1].
- **Spatial Reconstruction**: For CNN inputs, hyperConvert3d reshapes normalized bands back to (m × n × z).

3.3 Train/Test Mask Generation

- **Ground Truth Masks**: IndianTR123_temp123.tif & IndianTE123_temp123.tif define pixel-level train/test labels.
- Patch Extraction: TR_TE_Generation2d_CNN.m pads the cube and slides a $(2r+1)\times(2r+1)$ window, building:
 - HSI_TR, HSI_TE: flattened spectral–spatial patches (size: #samples × patchSize²·z)
 - HSI_TR_P, HSI_TE_P: central pixel's spectral vector (#samples × z)
 - o TR2d, TE2d: one-hot encoded class labels

3.4 GCN Graph Construction

- **Feature Matrix**: Combine all train + test spectral vectors in GCN_DataPreparation.m to form X (bands×N).
- Affinity & Laplacian: Compute K-NN graph (K=10), affinity W, degree D, symmetrically normalized Laplacian $L = D^{(-1/2)} \cdot W \cdot D^{(-1/2)} + I$.
- Outputs: Save ALL_X, ALL_L, ALL_Y in MAT-files for GCN input.

4. Model Architecture (Python / TensorFlow)

4.1 Placeholders & Inputs

• x in: GCN spectral features (batch × 200)

- x in1: CNN spatial patches (batch × 9800)
- lap_train: Laplacian submatrix (batch × batch)
- y in: One-hot labels (batch \times C)

4.2 GCN Branch

- 1. Linear Transform: $x \text{ mid} = x \text{ in} \cdot W1 + b1$
- **2. Graph Convolution**: $x \text{ a1} = \text{ReLU}(L \cdot x \text{ mid})$

4.3 CNN Branch

- 1. Reshape $\rightarrow (7 \times 7 \times 200)$
- 2. Conv1: 3×3 , $200\rightarrow32$ filters + max-pool (2×2) , ReLU
- 3. Conv2: 3×3 , $32\rightarrow64$ filters + max-pool, ReLU
- 4. Conv3: 1×1 , $64\rightarrow128$ filters + max-pool, ReLU
- 5. Flatten \rightarrow 1D features (batch \times 6272)

4.4 Feature Fusion & Classification

- Concatenate GCN output (batch \times 128) and CNN features \rightarrow (batch \times 6400)
- Two Dense Layers: 6400→128→C
- Softmax Cross-Entropy + L2 Regularization

5. Training Pipeline

- 1. Load Inputs: via scio.loadmat for both branches.
- 2. **Mini-batches**: random_mini_batches_GCN1 shuffles and yields synchronized batches of (x, x1, y, L).
- 3. **Optimizer**: Adam with exponential-decay LR (base=0.001, decay 0.5 every 50 epochs).
- 4. **Metrics**: Track train & validation cost and accuracy every 5 epochs; print every 50.

- 5. Visualization: Plot cost & accuracy curves post-training.
- 6. Feature Extraction: Save final layer activations (features.mat).

6. Experimental Results

epoch 0: Train_loss=2.735093, Val_loss=2.132374, Train_acc=0.1845, Val_acc=0.3224 epoch 50: Train_loss=0.412249, Val_loss=0.872993, Train_acc=0.9238, Val_acc=0.7419 epoch 100: Train_loss=0.232829, Val_loss=0.891881, Train_acc=0.9904, Val_acc=0.7760 epoch 150: Train_loss=0.188072, Val_loss=0.910777, Train_acc=0.9970, Val_acc=0.7920 epoch 200: Train_loss=0.173238, Val_loss=0.924551, Train_acc=1.0000, Val_acc=0.7996

Cost Curve:

Accuracy Curve:

Best achieved validation accuracy: ~80% at epoch 200.

7. Conclusion & Future Work

- **Achievements**: Demonstrated effective fusion of spectral and spatial features in hyperspectral classification.
- Limitations: Moderate overfitting beyond epoch 200; deeper graph layers may help.
- Next Steps:
 - \circ Experiment with varying patch sizes (r > 3)
 - Add batch-normalization in conv-branch
 - Replace static Laplacian with learnable adjacency

Github: https://github.com/ashutoshrabia/funetC