Détaillez vos réponses, prouvez vos affirmations.

IMPORTANT : Pensez à noter le numéro du sujet sur votre copie.

Durée : 1h. Documents autorisés. Pas de calculettes. Pas d'ordinateur. Pas de téléphone.

Question 1

Deux joueurs A et B mettent en jeu 3 pièces d'un euro chacun. Il lancent toutes les pièces : le joueur A récolte les piles, le joueur B les faces.

- (a) Des 2⁶ tirages possibles, combien font gagner exactement 4 euros à A?
- (b) Dans combien de tirages A gagne plus que ce qu'il a misé?

Question 2

Pour chacune des fonctions suivantes dire si elle est injective et/ou surjective. Donner une justification dans le cas affirmatif, ou un contre-exemple dans le cas négatif.

- (a) La fonction $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ définie par f(n, m) = mn,
- (b) Le logarithme $\log : \mathbb{R}^+ \to \mathbb{R}$,
- (c) La fonction $\epsilon : \mathbb{N} \to \mathbb{N}$, qui associe à tout entier son nombre de diviseurs premiers (par ex.: $\epsilon(2) = 1, \epsilon(30) = 3$).

Question 3

Soit A l'ensemble $\{0,1,2,3\}$. Pour chacune des relations binaires sur A ci-dessous (exprimées comme des sous-ensembles de $A \times A$), dire si elle est réflexive, symétrique, anti-symétrique, transitive.

- (a) $\mathcal{R} = \{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,2), (3,3)\},\$
- (b) $S = \{(0,0), (1,1), (1,3), (2,0), (2,2)\},\$
- (c) $\mathcal{T} = \{(0,1), (0,3), (1,0), (1,2), (2,1), (2,3), (3,0), (3,2)\}.$

Suggestion: dessinez les diagrammes des relations.

Question 4

On considère la relation \blacktriangle sur les entiers définie par

$$a \blacktriangle b$$
 ssi $\operatorname{pgcd}(a, b) > 1$.

- (a) La relation ▲ est-elle une relation d'équivalence?
- (b) Si oui, décrire la classe d'équivalence de 1. Sinon, exhiber un contre-exemple.

Question 5

Calculer le résultat des expressions suivantes modulo 13 :

- (a) $5 + 13 \cdot 10$,
- (b) $3 \cdot (6 + 20)$,
- (c) $264 \cdot 1311$,
- (d) 4-23,
- (e) 12 · 10

Question 6

Soient

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 4 & 3 & 5 & 1 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 2 & 3 & 4 & 1 & 5 \end{pmatrix}.$$

- (a) Calculer $\sigma_1 \circ \sigma_2$ et σ_1^{-1} .
- (b) Calculer les décompositions en cycles de σ_1 , σ_2 , σ_1^{-1} et σ_2^{-1} .
- (c) Calculer la décomposition en cycles (disjoints) de $(4\ 3)\circ(1\ 2)\circ(5\ 3)\circ(1\ 2)$ (**N.B**: on a utilisé la notation cyclique pour écrire les permutations).