Epreuve écrite

Examen de fin d'études secondaires 2011

Section: D

Branche: Mathématiques I

Numéro d'ordre du candidat

Question 1

Soit
$$P(z) = 2iz^3 + 2(10 + 4i)z^2 + (56 - 51i)z - 27 - 96i$$
.

Résoudre dans $\mathbb C$ dans l'équation P(z) = 0, sachant que P admet une racine imaginaire pure.

(14 points)

Question 2

On considère les nombres complexes suivants :

$$z_{1} = \frac{\left(-1 + \sqrt{3}\right) + i\left(1 + \sqrt{3}\right)}{2 - 2i} \qquad \text{et} \qquad z_{2} = -\frac{3\sqrt{2} - i\sqrt{2}}{1 - 2i}$$

- 1) Ecrire z_1 et z_2 sous leur forme algébrique ainsi que sous leur forme trigonométrique.
- 2) Calculer $z_1 \cdot z_2$ à l'aide des formes algébriques puis à l'aide des formes trigonométriques.
- 3) Déduire des calculs précédents les valeurs exactes de $\cos \frac{23\pi}{12}$ et $\sin \frac{23\pi}{12}$.

(16 points)

Question 3

Résoudre et discuter suivant les valeurs du paramètre réel m le système suivant : $\begin{cases} x - y + z = 0 \\ mx + y - z - 1 = 0 \\ x - y + mz = 0 \end{cases}$

Indiquer dans chaque cas l'ensemble des solutions et donner une interprétation géométrique.

(18 points)

Question 4

Dans un repère orthonormé de l'espace, on donne les points A(-1;2;3), B(1;5;2), le plan $\pi_2 = -x + y + z = 6$

et le plan π_1 vérifiant les équations paramétriques $\begin{cases} x = 5 - \alpha - 2\beta \\ y = 2\alpha + \beta \\ z = 1 + 3\alpha + 3\beta \end{cases} (\alpha, \beta \in IR).$

- 1) Etablir une équation cartésienne du plan π_1 .
- 2) Etablir un système d'équations paramétriques de la droite d passant par A et B.
- 3) Déterminer les coordonnées du point d'intersection I de π_1 et d.
- 4) Montrer que la droite d est incluse dans π_2 .

(12 points)