CS151B Winter 2022

Discussion (Week 3)

CS151B Teaching Team

Agenda

- Logistics
- Review of adders
- HCLA (Hierarchical Carry Look Ahead)
- Multiplication
- Booth's algorithm
- Practice Questions
- Q&A

Logistics

- Homework#3 is due tonight 11:59pm, PST.
- Midterm is two weeks away (Wednesday of Week 5)

Review

Carry-Lookahead Adder (CLA)

cO: ready at the beginning of the computation.

$$c1 = g0 + cOp0$$

$$c2 = g1 + g0p1 + c0p1p0$$

$$c3 = g2 + g1p2 + g0p1p2 + c0p0p1p2$$

$$c4 = g3 + g2p3 + g1p2p3 + g0p1p2p3 + c0p0p1p2p3$$

Q:How to calculate s4?

Carry Lookahead Adder (example)

 Calculate C4 using the pattern from C1-C3.

Note: We can treat C0 as G-1 for simpler reasoning

What about C5?

What's the problem with this design?

A: Equations can get quite long as we progress to the higher order bits

4-bit HCLA (2 stack of 2 bits CLA)

α-block

 $G\alpha = G0P1+G1$ $P\alpha = P0P1$ $C2 = G\alpha + C0P\alpha$

Q: How do we find C1, C3?

A: Use the same formula we use for carry look ahead logic:

C1=C0P0 + G0 C3=C2P2 + G2

β-block

 $G\beta = G2P3+G3$ $P\beta = P2P3$ $C4 = G\beta +$ $G\alpha P\beta + C0P\alpha P\beta$

4-bit HCLA (Full View)

Of course, we still need to implement the logic for the rest of the carry bits and the sum bits, in a few trivial steps. Note that C2 will be used as a carry in for the entire β block, to further calculate other carryout bits.

HCLA - C3 calculation

HCLA - S3 calculation

Multiplication

How do we do multiplication in binary?

(Binary) Multiplication by left-shifting multiplicand

Note we sum left-shifted versions of multiplicand (md)

Depends on multiplier bit (control)

For each bit in multiplier:

Sum += md*bit md left shift

(Binary) Multiplication by left-shifting multiplicand

Is the state diagram clear?

(Binary) Multiplication optimization

```
#1: Use 32-bit ALU. Why?
```

#2: Right-shift product. Why?

Example:

Multiplicand = 100

Multiplier = 101

LSB of multiplier is 1, so product is: 100 101

Right shift: product = 010 010

Next bit is 0, product remains 010 010

Right shift: product = 001 001

Last, bit is 1 so product = 101 001 Right shift: product = 010 100 \Rightarrow Done

(Binary) Multiplication Booth's Algorithm

```
Idea: 1 + 2 + 4 + 8 + ... + 2^n = 2^(n+1) - 1
Leverage this fact to change (n+1) adds into 2 adds
```

```
0011 1110 = ? (in this case it's pretty efficient)
1001 1011 = ? (in this case it's not as efficient)
```



```
5*3 = 15
0101
0011(0)
```

```
key:
00 = shift
11 = shift
10 = subtract
01 = add
```

```
5*3 = 15

0101
0011(0)

-0101 Multiplier bits checked: 10 (subtract)
```

```
key:
00 = shift
11 = shift
10 = subtract
01 = add
```

```
5*3 = 15

0101
0011(0)

-0101
0000 Multiplier bits checked: 11 (shift)
```

```
key:
00 = shift
11 = shift
10 = subtract
01 = add
```

```
5*3 = 15

0101
0011(0)

-0101
0000
+0101 Multiplier bits checked: 01 (add)
```

```
key:
00 = shift
11 = shift
10 = subtract
01 = add
```

```
5*3 = 15

0101
0011(0)

-0101
0000
+0101
0000 Multiplier bits checked: 00 (shift)
```

```
key:
00 = shift
11 = shift
10 = subtract
01 = add
```

```
5*3 = 15
    0101
    0011(0)
   -0101
                              1111 1011
   0000
                                 0 000
 +0101
                                01 01
 0000
                               000 0
                             0000 1111
                             =15
```

```
key:
00 = shift
11 = shift
10 = subtract
01 = add
```

```
7*(-3) = -21
0111
1101(0)
```

```
key:
00 = shift
11 = shift
10 = subtract
01 = add
```

```
7*(-3) = -21

0111
1101(0)

-0111 Multiplier bits checked: 10 (subtract)
```

```
key:
00 = shift
11 = shift
10 = subtract
01 = add
```

```
7*(-3) = -21
0111
1101(0)
-0111
+0111 Multiplier bits checked: 01 (add)
```

```
key:
00 = shift
11 = shift
10 = subtract
01 = add
```

```
7*(-3) = -21

0111
1101(0)

-0111
+0111
-0111 Multiplier bits checked: 10 (subtract)
```

```
key:
00 = shift
11 = shift
10 = subtract
01 = add
```

```
7*(-3) = -21

0111
1101(0)

-0111
+0111
-0111
0000 Multiplier bits checked: 11 (shift)
```

```
key:
00 = shift
11 = shift
10 = subtract
01 = add
```

```
7*(-3) = -21
    0111
    1101(0)
   -0111
                              1111 1001
  +0111
                                 0 111
 -0111
                              1110 01
 0000
                               000 0
                              1110 1011
                              = -21
```

```
key:
00 = shift
11 = shift
10 = subtract
01 = add
```

Practice Questions

One Clarification

P5 (4-bit CLA)

How much optimization??? Leaves have to be done in parallel.

Fan in	Delays
2	4T
3	6T
4	9T
5	13T
6	17T

result table

output	delay
C3	22T
S3	26T
C4	30T

$$c4 = g3 + g2p3 + g1p2p3 + g0p1p2p2 + c0p0p1p2p3$$

 $4T(getting g,p)+13T(5inputand)+13T(5inputor) = 30T$

Practice Questions

P1 - HCLA

1) Find the equations for G_w and P_w in terms of G_α , G_β , G_γ , G_δ , P_α , P_β , P_γ , P_δ

$$G_{W} = G_{\alpha} P_{\beta} P_{\gamma} P_{\delta} + G_{\beta} P_{\gamma} P_{\delta} + G_{\gamma} P_{\delta} + G_{\delta}$$

$$P_{W} = P_{\alpha} P_{\beta} P_{\gamma} P_{\delta}$$

P1 - HCLA

2) Find the delay for calculating the following signals:

G0	
P0	
G3	
P3	
G_{δ}	
P _δ	

P_{W}	
G _w	
P_{Z}	
G _z	
C48	
C64	
C60	
C63	
S63	

fan-in	AND/ OR	XOR
2	1T	2T
3	2T	3T
4	5T	6T
5	7T	9T
6	10T	12T
7	13T	16T
8	15T	18T

This question was collected from a previous midterm exam

P1 - HCLA

2) Find the delay for calculating the following signals:

G0	1T
P0	2T
G3	1T
P3	2T
G_{δ}	12T
P _δ	7T

P _w	12T
G _w	22T
P _Z	12T
G _z	22T
C48	29T
C64	34T
C60	39T
C63	49T
S63	51T

Please watch discussion video for detailed proof! (Student's proofs are correct)

This question was collected from a previous midterm exam

P2 - Multiplication

Calculate 1001 * 1101 by left-shifting the multiplicand. (as unsigned) Repeat, but right-shift the product this time.

P3 - Multiplication

Calculate 1001 * 1101 (as signed using booth's algorithm)

P4 (review, if time permits)

Assume a program requires the execution of 50×10^6 FP instructions, 110×10^6 INT instructions, 80×10^6 L/S instructions, and 16×10^6 branch instructions. The CPI for each type of instruction is 1, 1, 4, and 2, respectively. Assume that the processor has a 2 GHz clock rate.

- 1) By how much must we improve the CPI of FP instructions if we want the program to run two times faster?
- 2) By how much is the execution time of the program improved if the CPI of INT and FP instructions is reduced by 40% and the CPI of L/S and Branch is reduced by 30%?

P4 (review, if time permits)

Assume a program requires the execution of 50×10^6 FP instructions, 110×10^6 INT instructions, 80×10^6 L/S instructions, and 16×10^6 branch instructions. The CPI for each type of instruction is 1, 1, 4, and 2, respectively. Assume that the processor has a 2 GHz clock rate.

- 1) By how much must we improve the CPI of FP instructions if we want the program to run two times faster? ans: It is not possible. The total cycles needed for FP instructions is less than half of total cycles required for the whole program so even if we made FP have a CPI of 0, the program could not be run in less than half the time.
- 2) By how much is the execution time of the program improved if the CPI of INT and FP instructions is reduced by 40% and the CPI of L/S and Branch is reduced by 30%?

CPI for INT: 0.6

CPI L/S: 4 * 0.7 = 2.8 CPI for branch: 1.4

Original T = # instructions * # cycles per instruction * seconds per cycle = (50E6 * 1 + 110E6 * 1 + 80E6 * 4 + 16E6 * 2) / 2E9 = 0.256 SNew T = # instructions * # cycles per instruction * seconds per cycle = (50E6 * 0.6 + 110E6 * 0.6 + 80E6 * 2.8 + 16E6 * 1.4) / 2E9 = 0.171 SOriginal T / New T ~ 1.50 times speedup.

P4 (review, if time permits)

If the current value of the PC is 0x0000 0008, can you use a single jump instruction to get to the PC addresses below?

1) 0010 0000 0000 0001 0100 1001 0010 0100 ?

No, we can't, as the upper four bits of our current PC is 0000, but the target's upper four bits are 0010.

2) 0x0000 0600 ?

Yes, this is possible. The most significant four bits of the target address is: 0000, which is the same as our PC's upper four bits, the lowest two bits of the target is 00, thus we can jump to this address in a single jump.

Q&A

Any questions ? Feedback?

Thanks!

Acknowledgement

Patterson, David, and John Hennessy. Computer Organization and Design MIPS Edition: The Hardware/Software Interface (The Morgan Kaufmann Series in Computer Architecture and Design). 5th ed., Morgan Kaufmann, 2013.

Credit to Prof. (Glenn) Reinman (some practice questions were extracted from previous midterm exams)

Booth's algorithm - example(1)

```
5*3 = 15
    0101
    0011(0)
   -0101
                              1111 1011
   0000
                                 0 000
 +0101
                                01 01
 0000
                               000 0
                             0000 1111
                             =15
```

key:
00 = shift
11 = shift
10 = subtract
01 = add

Booth's algorithm - example(2)

```
7*(-3) = -21
    0111
    1101(0)
   -0111
                              1111 1011
  +0111
                                 0 000
 -0111
                               01 01
 0000
                               000 0
                              0000 1111
                             =15
```

```
key:
00 = shift
11 = shift
10 = subtract
01 = add
```