# On the Value of Sampling and Pruning for Search-Based Software Engineering PhD Defense

#### Jianfeng Chen

Timothy Menzies(Advisor)
Min Chi

Emerson Murphy-hill Xipeng Shen (GSR)

Department of Computer Science North Carolina State University

May 9, 2019



Find this slides at http://tiny.cc/jcdefense

#### Dissertation Statement

For the optimization of search-based software engineering (SBSE) problems,

- given a proper configuration selector or comparator built upon decision space,
- oversampling-and-pruning (OSAP) is better than a standard mutation based evolutionary approach (EVOL);
- where "better" is measured in terms of runtimes, number of evaluations and value of final results.

Major content in this talk: Four generations of configuration selector/comparator, i.e. OSAP1, OSAP2....

#### **Publications List**

- [ASE Submitted] Jianfeng Chen and Tim Menzies. "On the Benefits of Restrained Mutation: Faster Generation of Smaller Test Suites" Submitted to IEEE/ACM International Conference on Automated Software Engineering (ASE 2019).
- **[TSE'18] Jianfeng Chen**, Vivek Nair, Rahul Krishna, and Tim Menzies. ""Sampling" as a Baseline Optimizer for Search-based Software Engineering." IEEE Transactions on Software Engineering (2018).
- [IEEE CLOUD'18] Jianfeng Chen, and Tim Menzies.

  "RIOT: A Stochastic-Based Method for Workflow
  Scheduling in the Cloud." 2018 IEEE 11th International
  Conference on Cloud Computing.
- [IST'17] Jianfeng Chen, Vivek Nair, and Tim Menzies. "Beyond evolutionary algorithms for search-based software engineering." Information and Software Technology (2017).
- \* Covered in this talk.

- [FSE Submitted] Jianfeng Chen, Joymallya Chakraborty, Philip Clark, Kevin Haverlock, Snehit Cherian and Tim Menzies. "Predicting Breakdowns in Cloud Services (with SPIKE)". Submitted to ESEC/FSE 2019 - Industry Paper Track
- [TSE'19] Junjie Wang, et al.. "Characterizing Crowds to Better Optimize Worker Recommendation in Crowdsourced Testing". IEEE Transactions on Software Engineering(2019).
- [EMSE'18] Tianpei Xia, et al.. "Hyperparameter optimization for effort estimation." Empirical Software Engineering (EMSE), 2018
- [MSR'18] Vivek Nair, et al.. "Data-Driven Search-based Software Engineering." The Mining Software Repositories (MSR) 2018.
- [SSBSE'16] Vivek Nair, et al.. "An (accidental) exploration of alternatives to evolutionary algorithms for sbse." In International Symposium on SBSE, 2016.

Dissertation Statement
Publications
Previous feedback & contents of this talk
SBSE
Mativation

# Impact on SE community

- 21 citations per year since 2017, according to the google scholar
- Extended by other researchers in software effort estimation.¹
- Similar insights for space reduction in solving probabilistic constrained simulation optimization problems.[Horng'18]
- and so on

<sup>1</sup> Sarro. Federica et al. "Linear programming as a baseline for software effort estimation." ACM transactions on software engineering and methodology (TOSEM) 2018

<sup>&</sup>lt;sup>2</sup> Horng, Shih-Cheng, and Shieh-Shing Lin. Embedding Ordinal Optimization into Tree-Seed Algorithm for Solving the Probabilistic Constrained Simulation Optimization Problems. Applied Sciences 8.11 (2018)

Dissertation Statement
Publications
Previous feedback & contents of this talk
SBSE
Motivation

## Feedback from the Oral Prelim Exam

- To answer: why does oversampling work
- When to use oversampling. Difference among developed methods
- To revisit: previous problem + improved method
- To explore: the testing problem
- Identify specific propriety in software engineering models

#### This talk ...

- review previous developed algorithms; analysis on their achievements and limitations
- latest oversampling technique
- revisit the old model and
- explore the testing problem.

Dissertation Statement
Publications
Previous feedback & contents of this talk
SBSE
Mathematica

#### Contents of this talk

- Overview
  - What is SBSE?
  - Motivation of this research
- **■** Early generations of OSAP
  - OSAP1, OSAP2, OSAP3
- Delta-oriented surrogate model embedded OSAP
  - OSAP4 ← addressing previous limitations
  - Revisiting XOMO & POM3 model ← old problems first
  - Test suite generation ← a more challenging problem
  - Critics on OSAP4
- Conclusion and future work

Dissertation Statement
Publications
Previous feedback & contents of this talk
SBSE
Motivation

# Modeling SE problems

- (Requirement) What feature to include or develop in the project
- (Deployment) How to assign software to cloud environment
- (Test) How to find smaller set of test suite, converging more code



## Search-based Software Engineering

- Modeling
- Decision space, objective space
- Search for optimal objective/goal within decision space

# Search-based Software Engineering (SBSE)





#### **Dominance**

p dominance q if and only if

- lacktriangle For every objective, p is no worse than q AND
- $\blacksquare$  Exists at least one objective, p is better than q.

Dissertation Statement
Publications
Previous feedback & contents of this talk
SBSE
Motivation

# **Existing Research**



Trom engor comer, ecz

<sup>&</sup>lt;sup>3</sup>[zhang18] A repository and analysis of authors and research articles on search-based Software Engineering.

Dissertation Statement
Publications
Previous feedback & contents of this talk
SBSE
Motivation

# How does Evolutionary algorithms (EVOL) work?



Figure: Framework<sup>4</sup> of the EVOL algorihtms.

<sup>&</sup>lt;sup>4</sup> Doncieux, Stephane, et al. "The ROBUR project: towards an autonomous flapping-wing animat." Proceedings of the Journes MicroDrones, Toulouse (2004).

Previous feedback & contents of this talk Motivation

# Is EVOL good enough?

- © EVOL Treats the problem as black-box
- © EVOL Easy to deploy to new problem
- © Evaluates 1000s, 1,000,000s of configurations
  - Airspace operation model verification 7 days [Krall'14] <sup>5</sup>
     Test suite generation weeks [Yoo'12] <sup>6</sup>

  - Software clone evaluation at pc 15 years [Wang'13] <sup>7</sup>

#### Need a faster framework!

- Economic considerations save computing resources
- Faster response to the environment changes
- As a baseline method judge the problem before exploration
- Opens up a new research direction

<sup>&</sup>lt;sup>5</sup> Krall, Joseph, Tim Menzies, and Misty Davies, "Learning the task management space of an aircraft approach model," (2014).

<sup>&</sup>lt;sup>6</sup> Yoo. Shin. and Mark Harman. "Regression testing minimization, selection and prioritization: a survey." Software Testing, Verification and Reliability

Wang, Tiantian, et al. "Searching for better configurations: a rigorous approach to clone evaluation." Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, ACM, 2013.

## Roadmap

- Overview
- Early generations of OSAP
  - OSAP1 Utilizing "golden" region assumption [SSBSE'16, IST'17]
  - OSAP2 Utilizing the expert or domain knowledge [TSE'18]
  - OSAP3 The linear surrogate model [Cloud'18]
- 3 Delta-oriented surrogate model embedded OSAP
- Conclusion and future work

## OSAP1 - "Golden" region assumption





Assumption: A small region in the decision space covers the majority of the near-optimal configurations.

Question: How to figure out such region?

⇒ Similar decisions implies similar objectives

OSAP3 - The linear surrogate model [Cloud'18]

### WHERE Geometric Learner





14

- $\blacksquare$  step 1: get a random configuration, e.g. P
- $\blacksquare$  step 2: find furthest point to P, as E
- $\blacksquare$  step 3: find furthest point to E, as W
- $\blacksquare$  step 4: connect EW. find medium line (hyperplane)
- lacksquare step 5: compare E and W, select the half-space

■ Recursively execute 1 - 5

### WHERE Geometric Learner



# OSAP2 - Just one "golden" region?

No!





#### Improvement from OSAP1

OSAP2: utilize the domain or expert knowledge to get the rough sub-space.

# OSAP2 - Divide with domain knowledge, and conquer





OSAP1 - Utilizing "golden" region assumption [SSBSE'16, IST'17] OSAP2 - Utilizing the expert or domain knowledge [TSE'18]

OSAP3 - The linear surrogate model [Cloud'18]

#### Comments





### Achievements of OSAP1

- Oversampling can outperform the mutation based EVOL under some circumstances
- An effective geometric learner

#### Comments





## Achievements of OSAP2

- Fixed OSAP1 via doing the decision space partition first, using the domain or expert knowledge
- Tested in two constrainted case studies

#### Comments

#### Limitations of OSAP1

- Majority of optimal solutions can be found in one small region
- Similar decisions implies similar objectives

#### Limitations of OSAP2

- Majority of optimal solutions can be found in several small regions
- Similar decisions implies similar objectives
- Requires the domain or expert knowledge

# OSAP3 - Surrogate model

- ② Just figure out one (or more) region in the decision space is not enough
- Expecting: given any configurations, determine which one is better/best
- Surrogate model: an alternative model to replace the original SE model.
- Simple. fast.
- Estimating the objective is the most directed way
- If SE model has  $\geq 2$  objectives, build  $\geq 2$  surrogate models. (one surrogate for each objective)

OSAP1 - Utilizing "golden" region assumption [SSBSE'16, IST'17] OSAP2 - Utilizing the expert or domain knowledge [TSE'18]

OSAP3 - The linear surrogate model [Cloud'18]

# OSAP3 - Linear surrogate model





$$\frac{|D_p D_q|}{|D_p D_{x'}|} = \frac{O_p^1 - O_q^1}{O_p^1 - O_x^1} = \frac{O_p^2 - O_q^2}{O_p^2 - O_x^2} = \dots$$

$$O_{x}^{1} = O_{p}^{1} - \frac{|D_{p}D_{x'}|}{|D_{p}D_{x'}|} (O_{p}^{1} - O_{q}^{1})$$

$$O_{x}^{2} = O_{p}^{2} - \frac{|D_{p}D_{x'}|}{|D_{p}D_{x'}|} (O_{p}^{2} - O_{q}^{2})$$

$$O_x^2 = O_p^2 - \frac{|D_p D_{x'}|}{|D_p D_{x'}|} (O_p^2 - O_q^2)$$

# OSAP3 - Utilizing the linear surrogate model

- Need a few  $\approx 100$  evaluated configurations (anchors)
- Three ways to assign the anchors: 1) random, 2) diagonal, 3) 1+2
- $\blacksquare$  Given evaluated anchors, estimate over 10,000 other configurations via surrogate models.
- How to select the p and q? Nearest and furthest anchors

```
\begin{array}{lll} & \textit{Anchors} \leftarrow n \ \underline{\text{evaluated}} \ \text{items;} \\ & \textit{Randoms} \leftarrow N \gg n \ \underline{\text{un-evaluated}} \ \text{items;} \\ & \textbf{foreach} \ c \in \textit{Randoms} \ \textbf{do} \\ & & A_n \leftarrow \text{configurations in } \textit{Anchors} \ \text{that nearest to } c; \\ & & A_f \leftarrow \text{configurations in } \textit{Anchors} \ \text{that furthest to } c; \\ & \textbf{foreach} \ o \in \{o_1, o_2, \ldots\} \ \textbf{do} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &
```

8 Collect all items and return all frontiers;

## Recap





$$O_x^1 = O_p^1 - \frac{|D_p D_{x'}|}{|D_p D_{x'}|} (O_p^1 - O_q^1)$$

$$O_x^1 = O_p^1 - \frac{|D_p D_{x'}|}{|D_p D_{x'}|} (O_p^1 - O_q^1)$$

$$O_x^2 = O_p^2 - \frac{|D_p D_{x'}|}{|D_p D_{x'}|} (O_p^2 - O_q^2)$$

#### Achievements of OSAP3

- Replacing previous geometric learners by surrogate model
- Given a small number of configurations evaluated, any configurations' objectives can get estimated

■ Successfully found the deployment plan for complex workflows

OSAP1 - Utilizing "golden" region assumption [SSBSE'16, IST'17] OSAP2 - Utilizing the expert or domain knowledge [TSE'18]

OSAP3 - The linear surrogate model [Cloud'18]

## Recap





$$O_x^1 = O_p^1 - \frac{|D_p D_{x'}|}{|D_p D_{x'}|} (O_p^1 - O_q^1)$$

$$O_x^1 = O_p^1 - \frac{|D_p D_{x'}|}{|D_p D_{x'}|} (O_p^1 - O_q^1)$$

$$O_x^2 = O_p^2 - \frac{|D_p D_{x'}|}{|D_p D_{x'}|} (O_p^2 - O_q^2)$$

#### Limitations of OSAP3

OSAP3 is highly replied on the linear surrogate model.

What if the SE does not have linearity kernel, or the linearity inside is weak?

OSAP4 - Delta-oriented surrogate model [ASE'19\*] Case study II: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

# Roadmap

- Overview
- Early generations of OSAF
- 3 Delta-oriented surrogate model embedded OSAP
  - OSAP4 Delta-oriented surrogate model [ASE'19\*]
  - Case study I: revisit XOMO & POM3
  - Case study II: test suite generation
  - Summary of OSAP4
- Conclusion and future work

# On the surrogate model...

- Ultimate purpose of the surrogate model is to compare or select the better configurations.
- The OSAP3 surrogate model was design to predict the objectives precisely
- Having the objectives, we can do comparisons
- For the purpose of configuration comparisons, is "predicting the objectives" a must?

#### Delta-oriented surrogate model

- Given any two configurations p,q, predict  $[\Delta O]_{pq}$ , i.e.  $(O_p O_q)$ .
- Predict the  $[\Delta O]_{pq}$  from  $[\Delta D]_{pq}$  (again, one predictor for each objective)
- lacktriangle [ $\Delta O$ ] $_{pq}$  need not be precise. Correct sign is good enough. ( $\mathbf{O_p} \mathrel{<_?} \mathbf{O_q}$ )

# Delta-oriented surrogate model





| $[oldsymbol{\Delta}\mathbf{D}]$ (vector) | $[\Delta \mathrm{O}]^1$ | $[\Delta \mathrm{O}]^2$ |
|------------------------------------------|-------------------------|-------------------------|
| (pq) ■■■■                                | *                       | •                       |
| (pr) ■■■■                                | *                       | •                       |
| (uv) ■ ■ ■ ■                             | *                       | •                       |
|                                          |                         |                         |

We found that **KNN** is a proper ML learner here.

# Delta-oriented surrogate model



- Each chart is a actual  $[\Delta O]$  vs. predicted  $[\Delta O]$
- Quadrant I, III : FILLED
- Quadrant II, IV: EMPTY

## Delta-oriented surrogate model

#### Framework of OSAP4

```
1 Samples \leftarrow (n = 100) evaluated items;
_{2} PF ← pareto frontier in Samples;
 3 foreach x \in PF do
       Neighbors \leftarrow Configurations near x in decision space;
       get all [\Delta D]_{pq} and [\Delta O]_{pq}^{i} (i = 1, 2, ...), where pq are pairs in Neighbors;
       train KNN model to predict [\Delta O]_{pq}^{i} from [\Delta D]_{pq} (i=1,2,...#of objs);
       u \leftarrow \text{random configuration}:
       predict [\Delta O]_{xy}^i given [\Delta D]_{xy};
       If exists i such that ([\Delta O]_{xy}^i \ll 0), evaluate y using model;
       repeat Line 7-9, or Goto 3;
  Collect all new evaluated configurations, update Samples;
12 Goto 2 or Terminate:
13 Return all pareto frontiers achieved:
```

OSAP4 - Delta-oriented surrogate model [ASE'19\*] Case study II: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

## Roadmap

- Overview
- Early generations of OSAP
- 3 Delta-oriented surrogate model embedded OSAP
  - OSAP4 Delta-oriented surrogate model [ASE'19\*]
  - Case study I: revisit XOMO & POM3
  - Case study II: test suite generation
  - Summary of OSAP4
- Conclusion and future work

OSAP4 - Delta-oriented surrogate model [ASE'19\*] Case study I: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

## Case study I: revisit XOMO and POM3

## Objectives for the XOMO:

- Reduce risk:
- Reduce effort:
- Reduce defects:
- Reduce develop times.

#### Table: Descriptions of the XOMO decisions.

| scale factors      | prec: have we done this before?       |
|--------------------|---------------------------------------|
| (exponentially     | flex: development flexibility         |
| decrease effort)   | resl: any risk resolution activities? |
| ,                  | team: team cohesion                   |
|                    | pmat: process maturity                |
| upper              | acap: analyst capability              |
| (linearly decrease | pcap: programmer capability           |
| effort)            | pcon: programmer continuity           |
| ,                  | aexp: analyst experience              |
|                    | pexp: programmer experience           |
|                    | Itex: language and tool experience    |
|                    | :                                     |
| lower              | rely: required reliability            |
| (linearly increase | data: 2nd memory requirements         |
| effort)            | cplx: program complexity              |
|                    | ruse: software reuse                  |
|                    | docu: documentation requirements      |
|                    | :                                     |
|                    | stor: main memory requirements        |
|                    | pvol: platform volatility             |

## Case study I: revisit XOMO and POM3

#### Objectives for the POM3:

- Increase completion rates,
- Reduce idle rates,
- Reduce overall cost.

#### Table: List of POM3 decisions.

| Decision             | Description                                             |
|----------------------|---------------------------------------------------------|
| Culture              | Number (%) of requirements that change.                 |
| Criticality          | Requirements cost effect for safety critical systems.   |
| Criticality Modifier | Number of (%) teams affected by criticality.            |
| Initial Known        | Number of (%) initially known requirements.             |
| Inter-Dependency     | Number of (%) requirements that have interdependencies  |
|                      | to other teams.                                         |
| Dynamism             | Rate of how often new requirements are made.            |
| Size                 | Number of base requirements in the project.             |
| Plan                 | Prioritization Strategy: 0= Cost Ascending; 1= Cost De- |
|                      | scending; 2= Value Ascending; 3= Value Descending;      |
|                      | $4=rac{Cost}{Value}$ Ascending.                        |
| Team Size            | Number of personnel in each team                        |

OSAP4 - Delta-oriented surrogate model [ASE'19\*] Case study II: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

#### XOMO and POM3

#### Benchmark scenarios

■ XOMO-OSP: NASA flight guidance system

■ XOMO-OSP2: Another NASA flight guidance system

■ XOMO-Flight: NASA JPL general flight system

■ XOMO-Ground: NASA JPL general ground system

■ POM3a: A broad space of project

■ POM3b: Critical small project

■ POM3c: Highly dynamic large projects

# Comparing the effectiveness



# Comparing the effectiveness (EVOL vs. OSAPs)

|             | Hypervolume |       | General Spread |       | Generated distance |       |
|-------------|-------------|-------|----------------|-------|--------------------|-------|
| model       | OSAP1       | OSAP4 | OSAP1          | OSAP4 | OSAP1              | OSAP4 |
| osp         | •           | •     | •              | •     | •                  | •     |
| osp2        | •           | •     | •              | •     | •                  | •     |
| ground      | •           | •     | •              | •     | •                  | •     |
| flight      | •           | •     | •              | •     | •                  | •     |
| pom3a       | •           | •     | •              | •     | •                  | •     |
| pom3b       | •           | •     | •              | •     | •                  | •     |
| pom3c       | •           | •     | •              | •     | •                  | •     |
| same+better | 1/7         | 6/7   | 4/7            | 6/7   | 0/7                | 5/7   |

- **Hypervolume:** How large the area the obtained PF can covered?
- General Spread: Can PF provide enough choices to the users?
- Generated distance: How close the obtained PF to the theoretically-PF?

#### Observations

- In majority cases, OSAP4 is same or better than EVOL methods;
- OSAP1 is no good enough. Look back the digits, it was worse than EVOL by 27% on average.
- OSAP1 conclusion not consistent with previous? Following an updated HV/GS/GD calculation guidance <sup>a</sup>

<sup>&</sup>lt;sup>a</sup>Li, Miging et al. "A Critical Review of" A Practical Guide to Select Quality Indicators for Assessing Pareto-Based Search Algorithms in Search-Based Software Engineering" 2018 IEEE/ACM 40th International Conference on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER)

# Comparing the effectiveness (EVOL vs. BF)

|             | Hypervolume | General Spread | Generated Distance |
|-------------|-------------|----------------|--------------------|
| model       | BF better?  | BF better?     | BF better?         |
| osp         | •           | •              | •                  |
| osp2        | •           | •              | •                  |
| ground      | •           | •              | •                  |
| flight      | •           | •              | •                  |
| pom3a       | •           | •              | •                  |
| pom3b       | •           | •              | •                  |
| pom3c       | •           | •              | •                  |
| better+same | 6/7         | 6/7            | 5/7                |

- **Hypervolume:** How large the area the obtained PF can covered?
- **General Spread:** Can PF provide enough choices to the users?
- **Generated distance**: How close the obtained PF to the theoretically-PF?

#### Observations

- BF is good enough in majority cases
- If time permits, randomly selecting and evaluating large amount of candidates is a good strategy. Simple! Effective!

■ Is the crossover, mutation in evolutionary algorithms really helpful in SBSE?

### Comparing the efficiency (EVOL vs. OSAPs)



- 4 color bars, left to right: BF, EVOL, OSAP1, OSAP4
- Column 1-4: time@XOMOs, eval@XOMOs, time@POM3s, eval@POM3s
- OSAP1 is always extremely fast.
- OSAP4 is frugal.

OSAP4 - Delta-oriented surrogate model [ASE'19\*] Case study II: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

### Roadmap

- Overview
- Early generations of OSAP
- 3 Delta-oriented surrogate model embedded OSAP
  - OSAP4 Delta-oriented surrogate model [ASE'19\*]
  - Case study I: revisit XOMO & POM3
  - Case study II: test suite generation
  - Summary of OSAP4
- Conclusion and future work

### Case study II: test suite generation

Get diverse solutions(models) to a 3-SAT problems could be helpful to in software testing.

```
1 int mid(int x, int y, int z) {
2   if (x < y) {
3     if (y < z) return y;
4     else if (x < z) return z;
5     else return x;
6 } else if (x < z) return x;
7   else if (y < z) return z;
8   else return y;
9 }</pre>
```

- path 1: [C1: x < y < z] L2->L3
- path 2: [C2: x < z < y] L2->L3->L4
- path 3...

- $\blacksquare \lor C_i$  (Disjunction form, meet any of formula)
- $\blacksquare \Rightarrow \land C'_j$  (Conjunction form, meet all formulas)
- Model checking tools transform a program to CNF (conjunctive normal form)
- A valid assignment to **CNF** ↔ a test case
- A test suite with enough diverse ← figure out enough amount of valid solutions meet the CNF
- NP-Complete Easy to verify, hard to solve
- Decision space:  $2^v(v = \# \text{ of variables}) \rightarrow \underline{\text{valid}}$  configurations
- Objective space: not really interesting. Enough valid solution to guarantee diversity is more important.

OSAP4 - Delta-oriented surrogate model [ASE'19\*] Case study II: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

# Test suite generation::state-of-the-art<sup>8</sup>

### Efficient Sampling of SAT Solutions for Testing

- Introduced by Dutra et al. in ICSE 2018
- Open sourced. Compared to former STOA
- Assert to be better than old STOA
- To achieve diversity, generates huge amount samples (> 2 millions)
- New samples fetched from crossover, or some mutations ~ EVOL
- Limitations:
  - long execution time  $\approx 3$  hrs
  - samples are not verified. (may be invalid)
  - too many samples. Hard to test all suite

<sup>&</sup>lt;sup>8</sup> Dutra, Rafael, et al. "Efficient sampling of SAT solutions for testing," 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE), IEEE, 2018.

### Test suite generation::adapting OSAP4

- 1. Samples  $\leftarrow$  (n = 100) evaluated items
- 2. PF ← pareto frontier in Samples
- 3. foreach  $x \in PF$ 
  - 3.1 Neighbors  $\leftarrow$  Configurations near x in decision space
  - 3.2 train delta-oriented surrogate model
  - 3.3  $u \leftarrow \text{random configuration}$
  - 3.4 predict  $[\Delta O]^{xy}$
  - 3.5 if desired, evaluate y
  - 3.6 repeat from 3.3, or Goto 3
- 4. Collect all new evaluated configurations, update *Samples*
- 5. Goto 2 or Terminate
- 6. Return all pareto frontiers achieved

- No PF here: k-means, centers of cluster
- $\Delta D = p \oplus q$ , exclusive-or
- Local neighbors? To improve diversity, use global pairwise delta from samples
- Predict  $\triangle O$  via  $\triangle D$  → applying a  $\triangle D$  to x, is it still valid?
- Surrogate model: answers ↑
- Learn pairwise  $\Delta D$  from the valid samples. Some  $\Delta D$  are more common

## Test suite generation::adapting OSAP4

- 1. Samples  $\leftarrow$  (n = 100) valid items
- 2.  $PF \leftarrow$  center of k-means clusters
- 3. Get the frequency of unique deltas among all pairs in Samples as the surrogate model
- 4. for each  $x \in PF$ 
  - 4.1 pick one or more  $[\Delta D]$ , with high frequency ones in priority
  - 4.2 verify  $x \oplus [\Delta D]$ ; fix by SAT solvers
  - 4.3 repeat from 5.1 or Goto 5
- 5. Collect all valid configurations, update Samples
- 6. Goto 2 or Terminate
- 7. Return all valid samples achieved

### Test suite generation::experiments

| Benchmarks                | Vars   |
|---------------------------|--------|
| blasted_case47            | 118    |
| blasted_case110           | 287    |
| s820a_7_4                 | 616    |
| s820a_15_7                | 685    |
| s1238a_3_2                | 685    |
|                           |        |
| 35.sk_3_52                | 4894   |
| 80.sk_2_48                | 4963   |
| 7.sk_4_50                 | 6674   |
| doublyLinkedList.sk_8_37  | 6889   |
| 19.sk_3_48                | 6984   |
| 29.sk_3_45                | 8857   |
| isolateRightmost.sk_7_481 | 10024  |
|                           |        |
| LoginService2.sk_23_36    | 11510  |
| sort.sk_8_52              | 12124  |
|                           |        |
| enqueueSeqSK.sk_10_42     | 16465  |
| karatsuba.sk_7_41         | 19593  |
| tutorial3.sk_4_31         | 486193 |

### Research questions

- RQ1 can delta-oriented sampling (OSAP4) return a diverse test suite?
- RQ2 can OSAP4 return the test suite with less test cases?
- RQ3 is the sampling procedure fast?

### Test suite generation::RQ1 - got enough diversity?



- BLUE: OSAP4. RED: QuickSampler(STOA)
- NCD is the **diversity metrics** for this problem.
- Termination rule: NCD got improved by less than 5% within 10 minutes.
- Except in 2 benchmarks, OSAP4 achieved more than 95% of the diverse of STOA.

### Test suite generation::RQ2 - less test cases?

Table: Number of unique cases in the test suite.

| Benchmarks                | OSAP4 O | QuickSampler $Q$ | Q/O    |
|---------------------------|---------|------------------|--------|
| blasted_case47            | 2799    | 71               | 0.00   |
| blasted_case110           | 174     | 2386             | 13.71  |
| s820a_7_4                 | 37363   | 124457           | 3.30   |
| 80.sk_2_48                | 553     | 54440            | 98.44  |
|                           |         |                  | II     |
| doublyLinkedList.sk_8_37  | 178     | 12042            | 67.65  |
| 19.sk_3_48                | 104     | 200              | 1.90   |
| 29.sk_3_45                | 125     | 660              | 5.28   |
| isolateRightmost.sk_7_481 | 15380   | 7510             | 0.49   |
| 7.sk_4_50                 | 158     | 18090            | 114.49 |
| doublyLinkedList.sk_8_37  | 178     | 12042            | 67.65  |
|                           |         |                  |        |
| 77.sk_3_44                | 145     | 33858            | 233.50 |
| karatsuba.sk_7_41         | 39      | 4210             | 107.94 |
| tutorial3.sk_4_31         | 236     | 2953             | 12.51  |

#### Observations

- Q/O is 91x (in average), 14x (in medium).
- That is, sharing the similar diverse, compared to QuickSampler's, running the test suites from OSAP4 can save > 90% testing times.

### Test suite generation::RQ3 - sampling faster?

Table: Termination time (sorted by speedup)

| Model                      | OSAP4   | QuickSampler | Speedup |
|----------------------------|---------|--------------|---------|
| 7.sk_4_50                  | 2.47    | 1833.04      | 739.92  |
| 17.sk_3_45                 | 2.18    | 1503.44      | 687.05  |
| 35.sk_3_52                 | 1.85    | 966.40       | 520.44  |
| 81.sk_5_51                 | 2.06    | 421.63       | 204.13  |
| ProcessBean.sk_8_64        | 115.62  | 9296.81      | 80.40   |
| 20.sk_1_51                 | 32.63   | 2595.68      | 79.54   |
| <br>LoginService2.sk_23_36 | 75.35   | 99.3716      | 1.32    |
| 19.sk_3_48                 | 29.84   | 23.43        | 0.79    |
| isolateRightmost.sk_7_481  | 4031.86 | 1675.66      | 0.42    |
| s832a_15_7                 | 7193.96 | 1465.93      | 0.20    |
| 70.sk_3_40                 | 2605.32 | 288.56       | 0.11    |

On average, it is 53X speedup.

OSAP4 - Delta-oriented surrogate model [ASE'19\*] Case study I: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

### Test suite generation::results

### Summary

Comparing to the state-of-the-art QuickSampler, in majority benchmarks, the OSAP4

- finds test suite with similar diversity
- returns the test suite with much less cases
- terminates in much shorted time

### Recap

### Achievements of OSAP4

- No linearity dependence. Learning or transferring the deltas
- The learning model is not necessary to be accurate
- The initial sample size can be smaller than previous versions of OSAP

#### Limitations of OSAP4

- More model evaluations than previous versions (more uncertainty)
- Other surrogate model kernel (in addition to KNN, or the frequency) needs to be explored
- Local monotonic?

# Roadmap

- Overview
- Early generations of OSAP
- Obligation 

  Delta-oriented surrogate model embedded OSAF
- Conclusion and future work
  - Reviewing OSAP
  - Executive summary
  - Future work













$$O_x^1 = O_p^1 - \frac{|D_p D_{x'}|}{|D_p D_{x'}|} (O_p^1 - O_q^1)$$





| $[oldsymbol{\Delta}\mathbf{D}]$ (vector) | $\left[\Delta \mathrm{O}\right]^{1}$ | $[\Delta \mathrm{O}]^2$ |
|------------------------------------------|--------------------------------------|-------------------------|
| (pq) ■■■■                                | *                                    | •                       |
| (pr) ■ ■ ■ ■                             | *                                    | •                       |
| (uv) ■■■■                                | *                                    | •                       |
|                                          |                                      |                         |

Reviewing OSAP Executive summary

Future work

## OSAP generations

| Gen | Assuming               | Decision<br>space    | Objective<br>space | Study<br>cases          | Constraint exists | Surrogate<br>model |
|-----|------------------------|----------------------|--------------------|-------------------------|-------------------|--------------------|
| 1   | A "golden"<br>region   | numeric              | numeric            | XOMO<br>POM3            | ×                 | ×                  |
| II  | n "golden" regions     | boolean,<br>discrete | numeric            | SPL<br>NRP              | 1                 | Х                  |
| Ш   | Linearity of the model | discrete             | numeric            | Workflow                | ×                 | /                  |
| IV  | Local<br>monotonic     | numeric,<br>discrete | numeric            | XOMO<br>POM3<br>Testing | 1                 | 1                  |

### Executive summary

- Try OSAP before the EVOL
- Always OSAP1 first. Simple, fast! Can use that as baseline method
- For the constraint model, which is not easy to get large amount of samples, OSAP4 could be helpful. (N samples can get  $O(N^2)$  deltas)
- If the model is known to have some linearity features, OSAP3 is a good choice.
- "No free lunch theorem" <sup>9</sup>. No simple optimizer is the best for all problems.

<sup>&</sup>lt;sup>9</sup>Wolpert, et al. "No free lunch theorems for optimization." IEEE transactions on evolutionary computation 1.1 (1997): 67-82.

### Future work

- **Ensemble Learning •** random forest hyperparameter tuning . . .
- Incremental Sampling regression testing dynamic cloud deployment . . .
- More on the constraint models weighted sampling and counting<sup>10</sup> Al applications• . . .
- Not just SBSE boosting stochastic gradient descent feature reduction . . .

<sup>10</sup> Chakraborty, Supratik, et al. "Distribution-aware sampling and weighted model counting for SAT." Twenty-Eighth AAAI Conference on Artificial Intelligence. 2014.

## Questions?



Backup slides

### XOMO and POM3::Metrics

How to measure the results? What is a good pareto frontier?



GS, GD: Less is better HV: Higher is better

## Case study(review): Software Product Line



- Constrained model. Initial configurations given from SAT solver.
- Divided via the number of features  $\rightarrow$  small?, medium product? ...
- OSAP2 is effective, and fast, compared to [Henard'15] <sup>11</sup>

<sup>11</sup> Henard, Christopher, et al. "Combining multi-objective search and constraint solving for configuring large software product lines." Software Engineering (ICSE), 2015

### Case study(review): Next Release Problem

- Which requirements should be implemented for the next version?
- Subject to: customer satisfaction, budget, precedence constraints
- lacktriangle Objective: higher customer satisfaction + less development time + less cost

- Group (divide) the configurations via  $WL(\mathbf{y}) = ||\{y_i < P/2\}||$
- i.e. how many features are scheduled in the first half of the plan
- Compared to the EVOL, OSAP2 was effective and fast.

### Case study (review): Workflow deployment

- A workflow is the combination of sub computing tasks
- Expressed as directed acyclic graph (DAG)
- For each task, what's the best AWS EC2 instance?
- Two objectives to minimize
  - 1. Time to complete the whole workflow
  - 2. \$\$\$ spending
- More than 50 AWS EC2 types. (8 adopted in experiment)
- Experiment outputs:
  - (Efficiency) OSAP3 was 11 to 39 times faster than a state-of-the-art approach (EVOL based).
  - (Effectiveness) In the five largest workflows, OSAP3's results were better among 13/15 (87%) of all the quality indicators.