Paradigm: Divide-and-Conquer

Polynomial Multiplication: FFT

R. Inkulu http://www.iitg.ac.in/rinkulu/

Description

Given two polynomials
$$A(x) = a_0 + a_1x + a_2x^2 + ... + a_{n-1}x^{n-1}$$
, and $B(x) = b_0 + b_1x + b_2x^2 + ... + b_{n-1}x^{n-1}$, computing $C(x) = \sum_{j=0}^{2n-2} c_j x^j$, where $c_j = \sum_{k=0}^{j} a_k b_{j-k}$.

summing along the diagonals yield the required $c_i s \to takes O(n^2)$ time.

Polynomial representations

- The *coefficient representation* of a polynomial $A(x) = \sum_{j=0}^{n-1} a_j x^j$ is a vector of coefficients $(a_0, a_1, \dots, a_{n-1})$.
- A set of points representation of a polynomial A(x) of degree n-1 is a set of n point-value pairs $\{(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\}$ such that all the x_k are distinct and $y_k = A(x_k)$ for $k = 0, 1, \dots, n-1$.

Equivalence between polynomial representations

• coefficient \rightarrow set of points

Horner's rule:
$$A(x') = a_0 + x'(a_1 + x'(a_2 + ... + (x'(a_{n-2} + x'(a_{n-1})))).$$

• set of points \rightarrow coefficient

interpolating the polynomial with the help of matrix algebra

Naive Algorithm

- (1) Since C(x) is of degree 2n-2, we require at least 2n-1 points to recover C(x). Choose x_1, x_2, \ldots, x_{2n} and evaluate A(x) and B(x) at these points. $O(n^2)$ time using Horner's rule
- (2) Compute $C(x_j) = A(x_j)B(x_j)$ for j = 1, 2, ..., 2n 1. O(n) time
- (3) Reconstructing C(x) of degree 2n-2 from $C(x_j)$ for $j=1,2,\ldots,2n-1$. $O(n^3)$ time using techniques from Linear Algebra

Handling (1): Divide-Conquer-Combine

•
$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

= $(a_0 + a_2 x^2 + \dots + a_{n-2} x^{n-2}) + x(a_1 + a_3 x^2 + \dots + a_{n-1} x^{n-2})$
= $(a_0 + a_2 (x^2) + \dots + a_{n-2} (x^2)^{(n-2)/2})$
+ $x(a_1 + a_3 (x^2) + \dots + a_{n-1} (x^2)^{(n-2)/2})$
= $A_{even}(x^2) + x A_{odd}(x^2)$

• Let T(n) be the number of operations required to evaluate A(x) of degree n-1 at 2n points.

Then T(n/2) must denote the number of operations required to evaluate a polynomial of degree $\frac{n}{2} - 1$ at n points.

However, if A_{even} (resp. A_{odd}) is evaluated at only n points how to represent A(x) with 2n points in the combine step?

Handling (1): intro to twiddle factors $(\omega_{j,2n})$

• Choose the 2n points whose x in A(x) equals to each of distinct complex numbers: $\omega_{0,2n}, \omega_{1,2n}, \ldots, \omega_{2n-1,2n}$, where

$$\omega_{j,2n} = e^{\frac{2\pi j}{2n}i} = \cos(\frac{2\pi j}{2n}) + i\sin(\frac{2\pi j}{2n}).$$

representing a polynomial *P* with the set of points corresponding to twiddle factors as *x*-coordinates is known as the *discrete Fourier transform* of *P*

- Given that $\omega_{j,2n}^2 = \omega_{j,n}$ and $\omega_{j+n,2n}^2 = \omega_{j,2n}^2$, $A(\omega_{j,2n}) = A_{even}(\omega_{j,2n}^2) + w_{j,2n}A_{odd}(\omega_{j,2n}^2) = A_{even}(\omega_{j,n}) + w_{j,2n}A_{odd}(\omega_{j,n})$
- Obtaining $A(\omega_{j,2n})$ from $A_{even}(\omega_{j,n})$ and $A_{odd}(\omega_{j,n})$ for all $j = 0, 1, \dots, 2n 1$ together takes O(n) time
- T(n) = 2T(n/2) + O(n) i.e., T(n) is $O(n \lg n)$

Handling (3): algebra to express c_i s in terms of y_k s

• From (2), we have set of points representation for C(x) as: $(\omega_{0,2n}, y_0), (\omega_{1,2n}, y_1), \dots, (\omega_{2n-2,2n}, y_{2n-2})$

and, intend to find coefficients
$$c_0, c_1, \dots, c_{2n-2}$$
 in $C(x) = c_0 + c_1x + c_2x^2 + \dots + c_{2n-2}x^{2n-2}$.

• Substituting these points in C(x) yields: VC = Y, where

C is a column vector of order $(2n-1) \times 1$ comprising the coefficients of $C(x) \to \text{vector } C$ of this form is termed as the *inverse discrete Fourier transform of Y*

Y is a column vector of order $(2n-1) \times 1$ comprising second coordi of points.

V is a Vandermonde matrix of order $(2n-1) \times (2n-1)$ whose $(j,k)^{th}$ entry is $\omega_{j,2n}^k$, which is equal to $\omega_{jk,2n}$.

• Note that (j,k)th entry of V^{-1} is $\frac{\omega_{-jk,2n}}{2n}$ and, $c_j = \frac{1}{2n} \sum_{k=0}^{2n-2} y_k \omega_{-kj,2n}$, for $j = 0, 1, \dots, 2n-2$

Handling (3): reducing inverse DFT computation to DFT computation

- $c_j = \frac{1}{2n} \sum_{k=0}^{2n-2} y_k \omega_{-kj,2n}$, for $j = 0, 1, \dots, 2n-2$. contrast this with the FFT of $(a_0, a_1, \dots, a_{n-1})$ that we have computed as part of (1): $A(\omega_{j,2n}) = \sum_{k=0}^{n-1} a_k \omega_{j,2n}^k = \sum_{k=0}^{n-1} a_k \omega_{kj,2n}$
- Therefore, compute the FFT of $(y_0, y_1, \dots, y_{2n-2})$ and divide each element of the result by 2n to obtain coefficient vector corresp. to C(x).