Chapter I. General Optimization

Lecture 1: The world of Nonlinear Optimization

Yurii Nesterov EPLouvain (UCL)

Outline

- About this course
- General formulation of the problem
- Important examples
- ► Black Box and Iterative Methods
- Analytical and Arithmetical Complexity
- Uniform Grid Method
- Lower complexity bounds
- Lower bounds for Global Optimization
- Rules of the Game

About this course

What we are going to do:

- Give a description of the modern optimization theory.
- ► Take into account the historical aspect in order to understand the logic of the development.
- Develop a "computational sense", which helps us to understand what we *can* and what we *cannot* expect from a numerical method.

Why that is important:

- Optimization formulations are very popular among practitioners.
- ▶ Optimization Theory is simple and easy to learn.
- Optimization is an excellent example of a comprehensive theory.

General formulation of the problem

Let x be an n-dimensional real vector: $x = (x^{(1)}, \ldots, x^{(n)}) \in \mathbb{R}^n$, S be a subset of \mathbb{R}^n : $S \subseteq \mathbb{R}^n$, $f_0(x) \ldots f_m(x)$ are some real-valued function of x.

Problem formulation:

$$\min_{x \in S} f_0(x) \quad (\equiv -\max(-f_0(x))$$
s.t.:
$$f_j(x) \begin{pmatrix} = \\ \leq \end{pmatrix} 0, \ j = 1 \dots m.$$

Terminology:

- $ightharpoonup f_0(x)$ is the objective function,
- $f(x) = (f_1(x), \dots, f_m(x))$ are functional constraints,
- S is the basic feasible set.
- ▶ Q is the feasible set: $Q = \{x \in S \mid f_j(x) \leq 0, j = 1 \dots m\}$.

Types of minimization problems

- ▶ Constrained problems: $Q \subset \mathbb{R}^n$,
- ▶ Smooth problems: all $f_i(x)$ are differentiable,
- Nonsmooth problems: there is a nondifferentiable component $f_k(x)$,
- Linearly constrained problems: all functional constraints are linear:

$$f_j(x) = \sum_{i=1}^n a_j^{(i)} x^{(i)} + b_j \equiv \underbrace{\langle a_j, x \rangle}_{\text{inner product}} + b_j, \ j = 1 \dots m,$$

and S is a polyhedron.

If $f_0(x)$ is also linear, then this is a *Linear Programming Problem*. If $f_0(x)$ is quadratic, then this is a *Quadratic Programming Problem*.

Some terminology

Feasibility:

- ▶ Problem is *feasible* if $Q \neq \emptyset$.
- ▶ Problem is *strictly feasible* if $\exists x \in \text{int } Q$ such that $f_j(x) < 0$ for all inequality constraints and $f_i(x) = 0$ for all equality constraints.

Extremum:

- $ightharpoonup x^*$ is an optimal global solution to the problem if $f_0(x^*) \leq f_0(x)$ for all $x \in Q$ (global minimum).
 - Then $f_0(x^*)$ is called the *optimal value* of the problem.
- x^* is an optimal *local solution* to the problem if $f_0(x^*) \le f_0(x)$ for all $x \in \operatorname{int} \bar{Q} \subset Q$ (*local minimum*).

Example of optimization problem, I

Let $x^{(1)} ext{...} x^{(n)}$ be our design variables.

Then we can fix some *characteristics* of our decision $f_0(x), \ldots, f_m(x)$. That could be:

- ► The price of the project,
- Amount of required resources,
- ► Reliability of the system,

and many others.

We fix the most important characteristics, $f_0(x)$, as our *objective*.

For all others we impose some bounds: $a_i \le f_i(x) \le b_i$.

Thus, we come to the problem:

$$\min_{x \in S} \{ f_0(x) : a_j \le f_j(x) \le b_j, j = 1 \dots m \},$$

where S stands for the *structural* constraints (e.g., positivity of some variables).

Example of optimization problem, II

Let our initial problem be as follows:

Find
$$x \in \mathbb{R}^n$$
: $f_1(x) = a_1, \dots, f_m(x) = a_m$. (1)

Then we can consider the problem: $\min_{x} \sum_{j=1}^{m} (f_j(x) - a_j)^2$ (may be with some additional constraints on x).

Note:

The problem (1) is almost *universal*. It covers:

- Ordinary differential equations
- Partial differential equations
- Problems, arising in Game Theory

and many other fields.

Example of the problem, III.

Let our decision variable $x^{(1)} \dots x^{(n)}$ be integer.

This can be described by the constraint: $sin(\pi x^{(i)}) = 0$, $i = 1 \dots n$.

Thus, we could treat also the *Integer Programming* Problems:

$$\min \ f_0(x),$$
s.t.: $a_j \leq f_j(x) \leq b_j, \ j = 1 \dots m,$
 $x \in S,$

$$\sin(\pi x^{(i)}) = 0, \ i = 1 \dots n.$$

Conclusions

1955:

Nonlinear Optimization is very important. It covers almost all fields of Numerical Analysis.

1975:

In general, optimization problems are UNSOLVABLE.

Performance of Numerical Method

Numerical Method $\mathcal{M} \iff \mathsf{Problem} \ \mathcal{P}$

What we can say about the performance of \mathcal{M} ?

Observations:

1. Best ${\mathcal M}$ for a single problem ${\mathcal P}$ is a silly notion.

(All methods are worse than the trivial one returning the solution of ${\cal P}$ all the time.)

- 2. Therefore we need:
 - ▶ Description of a *class* of problems $\mathcal{F} \supset \mathcal{P}$.
 - Description of an oracle O, which provides M by some information about P.

Class and Oracle compose the MODEL of our problem. (Not unique!)

We can define the *performance* of \mathcal{M} on $(\mathcal{F}, \mathcal{O})$ as its performance on the WORST \mathcal{P}_w from \mathcal{F} .

(This \mathcal{P}_w can be bad only for our \mathcal{M} !)

Some definitions

Performance of \mathcal{M} on \mathcal{P} is

The total amount of *Computational Efforts* which is required by method \mathcal{M} in order to *Solve the Problem* \mathcal{P}

To Solve the Problem could mean:

- 1. Find the exact solution.
 - (Impossible to find in finite time even for the simplest nonlinear problems.)
- 2. Find an approximate solution with a small accuracy $\epsilon > 0$. (For that apply an *iterative process*.)

General Iterative Scheme

Input:

- ightharpoonup Starting point x_0 .
- Accuracy $\epsilon > 0$.

Initialization. Set k = 0, $I_{-1} = \emptyset$, where

- k is the iteration counter.
- \triangleright I_k is the *informational set* accumulated after k iterations.

Main Loop

- 1. Call the oracle \mathcal{O} at x_k .
- 2. Update the informational set: $I_k = I_{k-1} \bigcup (x_k, \mathcal{O}(x_k))$.
- 3. Apply rules of method \mathcal{M} to I_k and form the new test point x_{k+1} .
- 4. Check the stopping criterion. If **yes** then form an output \bar{x} . Otherwise set k = k + 1 and go to 1.

Computational Efforts

1. Analytical complexity:

The number of CALLS OF ORACLE, which is required to solve the problem $\mathcal P$ up to accuracy ϵ .

2. Arithmetical complexity:

The total number of ARITHMETIC OPERATIONS (including the work of oracle and of the method) , which is required to solve the problem $\mathcal P$ up to accuracy ϵ .

Note: The meaning of words *up to accuracy* $\epsilon > 0$ must be *exact*.

Black Box Concept

1. The only information available from the oracle is its answer. No intermediate results are available.

2. The oracle is local:

A small variation of the problem far enough from the test point x does not change the answer at x.

Note: This concept is extremely popular, but it is not the end of the story. We will see this later.

Examples of the oracle

1. Zero-order oracle

- ► Input: test point x.
- ightharpoonup Output: value f(x).

2. First-order oracle

- ► Input: test point x.
- ▶ Output: value f(x) and gradient $f'(x) \in \mathbb{R}^n$.

3. Second-order oracle

- ► Input: test point x.
- ▶ Output: value f(x), gradient $f'(x) \in \mathbb{R}^n$, and Hessian $f''(x) \in \mathbb{S}^n$.

Uniform Grid Method

Problem Formulation: $\min_{x \in \mathbb{B}_n} f(x)$, where \mathbb{B}_n is an *n*-dimensional box in \mathbb{R}^n :

$$\mathbb{B}_n = \left\{ x \in \mathbb{R}^n : \ 0 \le x^{(i)} \le 1, \ i = 1, \dots, n \right\}.$$

Assumption (\equiv Problem Class)

The objective function $f(\cdot)$ is *Lipschitz continuous* on \mathbb{B}_n :

$$| f(x) - f(y) | \le L ||x - y||_{\infty}, \quad \forall x, y \in \mathbb{B}_n,$$

with some constant L (Lipschitz constant).

Here $\|\cdot\|_{\infty}$ is the *infinity-norm* on \mathbb{R}^n :

$$||x||_{\infty} = \max_{1 \le i \le n} |x^{(i)}|.$$

Scheme of method $\mathcal{UG}(p)$

 $(p \ge 1 \text{ is an integer input parameter})$

- 1. Form p^n points $x_{(i_1,i_2,...,i_n)} = \left(\frac{1}{2p} + \frac{i_1}{p}, \dots, \frac{1}{2p} + \frac{i_n}{p}\right)$, where $i_1 = 0, \dots, p-1, \dots, i_n = 0, \dots, p-1$.
- 2. Among all points $x_{(...)}$ find the point \bar{x} with the minimal value of the objective function.
- 3. Return the pair $(\bar{x}, f(\bar{x}))$ as the result.
 - **Note:** 1. This method can be treated as an iterative process with no influence of the accumulated information on the sequence of test points.
 - 2. This is a zero-order method.

Theorem 1.1

Let f* be the global optimal value of our problem. Then

$$f(\bar{x})-f^* \leq \frac{L}{2p}$$
.

Proof. 1. It is clear that $\mathbb{B}_n = \bigcup_{i=(i_1,...,i_n)} \mathcal{B}_{\infty}\left(x_{(i)},\frac{1}{2\rho}\right)$,

where $\mathcal{B}_{\infty}(x,r) = \{y \in \mathbb{R}^n : \|y - x\|_{\infty} \le r\}.$

2. Let x^* be the global minimum of our problem. Then there exists an index $i^* = (i_1^*, \dots, i_n^*)$ such that

$$||x^*-x_{(i^*)}||_{\infty} \leq \frac{1}{2p}.$$

3. Therefore, $f(x_{(i^*)}) - f(x^*) \leq \frac{L}{2p}$. Note that $f(\bar{x}) \leq f(x_{(i^*)})$.

Approximate solution

Find
$$\bar{x} \in \mathbb{B}_n : f(\bar{x}) - f^* \le \epsilon$$
.

Corollary 1.1. The analytical complexity of method \mathcal{UG} is as follows:

$$\mathcal{A}(\mathcal{G}) = \left(\left\lfloor \frac{L}{2\epsilon} \right\rfloor + 1 \right)^n,$$

where $\lfloor a \rfloor$ is the integer part of a.

Proof. Indeed, let us take $p = \left\lfloor \frac{L}{2\epsilon} \right\rfloor + 1$. Then

$$p \geq \frac{L}{2\epsilon}$$

and therefore, in view of T.1.1, $f(\bar{x}) - f^* \leq \frac{L}{2p} \leq \epsilon$.

Questions:

- How good is this estimate?
- How good is this method?

Lower complexity bounds

- 1. Are based on the *Black Box* concept.
- 2. Can be derived for a specific class of problems $\mathcal F$ equipped by an oracle $\mathcal O$.
- 3. Are valid for any iterative scheme.
- 4. Provide us with a lower bound for the analytical complexity of the class \mathcal{F} .
- 5. Use the idea of *resisting* oracle.

Resisting Oracle

- 1. It is trying to create a *worst* problem for each particular method.
- 2. It starts from an "empty" function and it tries to answer each call of the method in the worst possible way.
- 3. However, the answers must be compatible with
 - Previous answers,
 - Description of the problem class.

Note that:

- After the termination of the method, it is possible to *reconstruct* the created problem.
- ▶ If we run the method on this problem, it will reproduce the same sequence of test points.

Lower bounds for Global Optimization

Problem Formulation: $\min_{x \in \mathbb{B}_n} f(x)$.

Problem Class: Objective function $f(\cdot)$ is *Lipschitz continuous* on \mathbb{B}_n .

Approximate solution: Find $\bar{x} \in \mathbb{B}_n : f(\bar{x}) - f^* \leq \epsilon$.

Theorem 1.2. Analytical complexity of this class for 0-order methods is at least $\left\lfloor \frac{L}{2\epsilon} \right\rfloor^n$ calls of oracle.

Proof

Assume that for any problem of our class, method $\mathcal M$ needs no more than $N < p^n$ calls of oracle in order to find ϵ -solution, where

$$p = \lfloor \frac{L}{2\epsilon} \rfloor \ (\geq 1),$$

Let us apply this method to the following resisting oracle:

It reports that f(x) = 0 at any test point x.

Therefore this method can find only $\bar{x} \in \mathbb{B}_n$: $f(\bar{x}) = 0$.

Since $N < p^n$, there exists $i^* = (i_1, \ldots, i_n)$, such that in the box $\mathcal{B}_{\infty}(x_{(i^*)}, \frac{1}{2p})$ there was no test points.

Consider the function $\bar{f}(x) = \min \left\{ 0, L\left(\|x - x_{(i^*)}\|_{\infty} - \frac{1}{2p}\right) \right\}$. Note that

$$\bar{f}^* = -\frac{L}{2p} \leq -\epsilon.$$

On the other hand,

- ▶ \bar{f} is Lipschitz continuous in $\|\cdot\|_{\infty}$ with constant L.
- $\bar{f}(x) = 0$ outside the box $\mathcal{B}_{\infty}(x_{(i^*)}, \frac{1}{2p})$.

What we can say now?

	\mathcal{UG}	Lower bound
Complexity Estimate	$\left(\left\lfloor \frac{L}{2\epsilon} \right\rfloor + 1\right)^n$	$\left\lfloor \frac{L}{2\epsilon} \right\rfloor^n$

Thus, Uniform Grid Method is optimal on our problem class.

What does it mean: unsolvable?

Lower complexity bound: $\left(\frac{L}{2\epsilon}\right)^n$.

Example: L=2, n=10 (very small size), $\epsilon=0.01$ (1% accuracy).

Lower bound: 10²⁰ calls of oracle,

Complexity of the oracle: n a.o., Total complexity: 10^{21} a.o.,

Sun Station (best for 1996): 10⁶ flops per second,

Total time: 10¹⁵ seconds,

1 year: less than $3.2 \cdot 10^7$ sec.

We need: 32 000 000 years.

Note: $n \rightarrow n+1 \Rightarrow \text{Multiply complexity by 100.}$

But: $\epsilon \to 2\epsilon$ \Rightarrow Divide complexity by 1000.

Thus, for $\epsilon = 8\%$ we need two weeks.

Why this works in another fields?

Example: Integration.

Problem: Compute the integral $\mathcal{I} = \int_{0}^{1} f(x) dx$.

Discrete Sum: $S_N = \frac{1}{N} \sum_{i=1}^{n} f(x_i), \quad x_i = \frac{i}{N}, \ i = 1, ..., N.$

Result: If $f(\cdot)$ is Lipschitz continuous then

$$N = L/\epsilon \quad \Rightarrow \quad |\mathcal{I} - S_N| \le \epsilon.$$

This approach is standard. Why?

Because of dimension!

Integration: 1-3

Optimization: $1 - 10^6$.

What is the next?

Reasons to stop:

- We have already proved everything.
- ▶ This problem is too difficult to solve.
- ▶ We cannot wait for 32 000 000 years. Forget it.

Reasons to continue:

- ▶ We need to solve these problems.
- ▶ We know that people have already solved many of them. They are satisfied by the results.
- May be we want too much?

Rules of the Game

Primary:

- Description of goals.
- Description of problem class.
- ▶ Description of oracle.

Secondary:

Desired properties of the methods.

Global Optimization (Lecture 1)

Goals: Find a global minimum.

Problem Class: Continuous functions.

Oracle: 0 - 1 - 2 order black box.

Desired properties: Convergence to a global minimum.

Features:

► This game is too short.

▶ We always loose it.

Problem Sizes: Sometimes people report on solving problems with several thousands of variables. No guarantee for success even for very small problems.

- Starts from 1955.
- Several local peaks of interest (simulated annealing, neural networks, genetic algorithms).

Nonlinear Optimization (Lectures 2, 3)

Goals: Find a local minimum.

Problem Class: Differentiable functions.

Oracle: 1-2 order black box.

Desired properties: Convergence to a local minimum. Fast local convergence.

Features:

- Variability of approaches.
- Most widespread software.
- The goal is not always acceptable.

Problem Sizes: upto 1000 variables.

- ► Starts from 1955.
- ► Peak period: 1965 1975.
- Theoretical activity now is rather low.

Convex Optimization (Lectures 4 – 10)

Goals: Find a global minimum.

Problem Class: Convex sets and functions.

Oracle: 1st and 2nd order Black Box.

Desired properties: Convergence to a global minimum. Rate of convergence can be dependent on dimension.

Features:

- Very reach and interesting theory.
- Comprehensive complexity theory.
- Efficient practical methods.
- ▶ The problem class is sometimes restrictive.

Problem Sizes: upto 1000 variables.

- ► Starts from 1970.
- ▶ Peak period: 1975 1985, 2005 now.
- ► Theoretical activity now is high.

Structural Optimization (Lectures 11 – 16)

Goals: Find a global minimum.

Problem Class: Convex sets and functions.

Oracle: 1st and 2nd order oracle which is not a Black Box.

Desired properties: Fast convergence to a global minimum. Rate of convergence depends on the structure of the problem.

Features:

- New and perspective theory.
- Avoid the black box concept.
- Problem class is the same as in Convex Programming.

Problem Sizes: Sometimes up to $10\,000\,000$ variables. Recent extention on Huge-Scale Problems $(n >> 10^6)$.

- Starts from 1984.
- ▶ Peak period: 1990 2005.
- Very high theoretical activity right now.