In the Claims:

- Claim 1 (currently amended) A method Method for measuring a gas consumption by means of a gas meter (1), in particular for measuring a meterable gas energy supply in the private, public or industrial sphere, sensor signals (S), which are proportional to a flow rate, being determined by the gas meter (1) by means of a thermal flow sensor (1a) and the sensor signals (S) being output as energy value signals (S_E) on the basis of a calibration of the gas meter (1) as energy meter, characterised in that
 - a) a gas type is determined by the gas meter (1) insofar as a noncombustible gas mixture (3) is differentiated from a combustible gas mixture, and
 - b) the gas meter (1), in the presence of a non-combustible gas mixture (3), is operated with a calibration in mass or standard volume units (I/min) and, in the presence of a combustible gas mixture (3), with a calibration in energy units (kWh).

Claim 2 (currently amended) <u>The method</u> Method according to claim 1, <u>wherein</u> characterised in that

- a) by means of a thermal gas quality sensor (1a), at least one gas typedependent parameter (λ , c, α , η) of the gas mixture (3), in particular a heat coefficient (λ , c, α), such as e.g. a heat conductivity (λ) and/or heat capacity (c), is determined, and
- b) by comparison with known values of the parameter (λ , c, α , η) for known gases or gas mixtures, the gas mixture (3) is identified as combustible or non-combustible.

Claim 3. (currently amended) The method Method according to claim 2, wherein characterised in that

- a) the thermal flow sensor (1a) and the gas quality sensor (1a) have an identical sensor construction, the gas mixture (3) being guided over a first temperature sensor (5a), a heating element (6) and a second temperature sensor (5b), and
- b) from a difference of temperature signals of the temperature sensors (5a, 5b), a mass flow signal (S_M) is determined and, from a sum of the temperature signals (T₁ + T₂) or from the temperature signal of the first temperature sensor (5a) alone, a gas type-dependent heat coefficient (λ, c, α) is determined.

Claim 4 (currently amended) The method Method according to claim 1, wherein one of the preceding claims, characterised in that

- a) a measured heat conductivity (λ) is tested for correspondence to a heat conductivity value corresponding to an absolute value of 0.026 W/mK for nitrogen, oxygen or air, in particular 0.0260 W/mK for nitrogen, 0.0263 W/mK for oxygen or 0.0261 W/mK for air, or 0.0168 W/mK for carbon dioxide, a prescribable tolerance of ± 10%, preferably ± 5% and particularly preferred ± 2%, being taken into account,
- b) in the case of correspondence, the gas mixture (3) is categorised categorized as non-combustible and a signal output (8) of the gas meter (1) is operated with a scale (8b) which is calibrated in mass or standard volume units (I/min), and
- c) in the case of non-correspondence, the gas mixture (3) is categorised categorized as combustible and a signal output (8) of the gas meter (1) is operated with a scale (8a) which is calibrated in energy units (kWh).

- Claim 5 (currently amended) The method Method according to claim 1, wherein one of the preceding claims, characterised in that
 - a measured heat capacity (c) is compared with a threshold value corresponding to an absolute value of 1300 J/kgK, a prescribable tolerance of ± 10%, preferably ± 5% and particularly preferred ± 2%, being taken into account,
 - b) upon falling below the threshold value, the gas mixture (3) is categorised categorized as non-combustible and a signal output (8) of the gas meter (1) is operated with a scale (8b) which is calibrated in mass or standard volume units (I/min), and
 - c) upon exceeding the threshold value, the gas mixture (3) is categorised categorized as combustible and a signal output (8) of the gas meter (1) is operated with a scale (8a) which is calibrated in energy units (kWh).
- Claim 6 (currently amended) <u>The method</u> <u>Method</u> according to <u>claim 1, wherein</u> <u>one of the preceding claims, characterised in that</u>
 - a) it is tested periodically whether the gas meter (1) is in contact with a combustible gas (3), in particular natural gas, or with a non-combustible gas (3), in particular nitrogen or air, and/or
 - b) measuring intervals for determining sensor signals (S) are chosen to be large, in the presence of a non-combustible gas mixture (3), in particular 1-minute or longer, and are chosen to be small, in the presence of a combustible gas mixture (3), in particular 10 seconds or shorter.
- Claim 7 (currently amended) The method Method according to claim 1, wherein one of the preceding claims, characterised in that a consumed supply of gas energy is integrated in the gas meter (1) and, when switching the calibration to mass or standard volume units (I/min), is stored intermediately and, when switching back to energy units (kWh), is used as start value.

- Claim 8 (currently amended) The method Method according to claim 1, wherein one of the preceding claims, characterised in that the flow rate (S_M) is integrated in mass or standard volume units (I/min) in the gas meter (1), and
 - a) the flow rate (S_M) , when switching the calibration to energy units (kWh), is further incremented and in particular output, or
 - b) the integrated flow rate is stored intermediately and in particular output and, when switching back to mass or standard volume units (I/min), is used as start value or is set back to zero as start value.

Claim 9 (currently amended) The method Method according to claim 1, wherein one of the preceding claims, characterised in that

- a) by means of an indicator or display (9), it is displayed whether the gas meter (1) is in contact with air or natural gas or a mixture of air and natural gas, and/or
- b) due to a default setting of the gas meter (1), mass or standard volume units (I/min) are indicated and energy units (kWh) are indicated only upon a first contact with useful gas, in particular natural gas, and/or
- c) by means of a first initialisation initialization of the gas meter (1), in particular during assembly, the calibration is switched automatically from mass or standard volume units (I/min) or air to energy units (kWh) or natural gas, and/or
- d) upon contact with air, natural gas and again air, a manipulation indicator (10) of the gas meter (1) is activated.

- Claim 10 (currently amended) The method Method according to claim 1, wherein one of the preceding claims, characterised in that sensor signals (S) dependent upon the flow rate of a calibration gas (3) are determined for the calibration of the gas meter (1) as energy meter and in the form of a sensor calibration curve (F(S)) are stored in the gas meter (1), the sensor calibration curve (F(S)) being corrected with a signal conversion factor (f_{N2-CH}) and with a heat value factor (H_{CH}) for a basic gas mixture (CH) and the obtained product indicating a gas consumption in the energy unit (kWh) or in an output unit.
- Claim 11 (currently amended) A gas Gas meter (1) for measuring a gas consumption according to claim 1 one of the preceding claims.
- Claim 12 (currently amended) A gas Gas meter (1) for measuring a gas consumption, in particular a meterable gas energy supply in the private, public or industrial sphere, the gas meter (1) having a thermal flow sensor (1a) and being calibrated in energy units (kWh) as energy meter, characterised in that wherein
 - a) the gas meter (1) is calibrated in addition as mass flowmeter in mass or standard volume units (I/min),
 - b) the gas meter (1) has a gas quality sensor (1a) which generates a discrimination signal, in particular a gas type-dependent parameter $(\lambda, c, \alpha, \eta)$ in order to differentiate a combustible gas mixture (3) from a non-combustible gas mixture (3), and
 - c) the gas meter (1) can be switched over on the basis of the discrimination signal between an operation as energy meter or as mass flowmeter.

Claim 13 (currently amended) The gas Gas meter (1) according to claim 12, wherein characterised in that

- a) the thermal flowmeter (1a) and the gas quality sensor (1a) have an identical construction, and/or
- b) the thermal flow sensor (1a) and/or the gas quality sensor (1a) are CMOS anemometers (1a) with a heating wire (6) and temperature sensors (5a, 5b) which are disposed upstream and downstream.

Claim 14 (currently amended) The gas Gas meter (1) according to claim 12, wherein one of the claims 12 - 13, characterised in that

- a) the thermal flow sensor (1a) can be operated as a gas quality sensor (1a) if a measured mass flow rate falls below a prescribable threshold value, or
- b) the gas quality sensor (1a) is disposed in a region with a constant flow rate, in particular with extensively static gas (3).

Claim 15 (currently amended) The gas Gas meter (1) according to claim 12, wherein one of the claims 12 – 14, characterised in that

- a) the gas meter (1) has an indicator or a display (9) for gas quality, in particular for the presence of calibration gas (3) or useful gas (3), preferably air, natural gas or air/natural gas mixture, and/or
- b) the gas meter (1) has a manipulation indicator (10) which can be activated upon changing contact with a non-combustible gas (3), in particular calibration gas (3), a combustible gas or useful gas (3) and again a non-combustible gas (3), in particular an environmental gas (3), and/or
- c) the gas meter (1) has a measuring and evaluating unit (7) for determining energy consumption values (S_E) and/or mass flow values (S_M) , and/or
- d) the gas meter (1) has separate data memories (7b, 7c) for storing energy consumption values (S_E) and mass flow values or standard volume flow values (S_M).