SLAM & Perception

Dr. Pawandeep Singh Matharu

What is SLAM Localization and Mapping:

 Computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location

Motivation for SLAM

- There are GPS-denied environments
 - > Indoor
 - Underground
 - Underwater
 - Outdoor with tall obstacles (urban, forest, etc)
- Relative position within a local unknown environment is more important.

Map

- A map defines a local reference frame.
- Maps allow robots to efficiently carry out their tasks, such as localization, path planning.
- 2D occupancy grid map is used in ROS community
 - > Describe the environment as a grid of cells.
 - ➤ Each cell holds a probability value that the cell is occupied or not ([0, 1], 0 represents open space)
 - > -1 or 0.5 indicates unexplored space (space beyond obstacles).

2D Map

Gray: White: Unoccupied Unexplored Black: Occupied

3D Map

Mapping of two floors (1st and mezzanine floors)

L515

L515 + T265

D435i + T265

Localization

Task for localization: pose of robot

- Position
- Orientation

Methods for Localization:

- **GPS**:
 - cannot tell orientation
 - positional error is also large
 - global map required
- Dead reckoning: Integration of acceleration and velocity from inertial measurement sensor
 - Accumulated error
- SLAM:
 - Large calculation burden

SLAM

- Computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it.
- A chicken or egg problem:
 - > An unbiased map is needed for localization.
 - An accurate pose estimate is needed to build the map.
- Odometry information:
 - Control command
 - > IMU readings
 - Iterative closest point (ICP) to match current measurement with respect to the current map.
 - Visual odometry
 - ➤ Kalman Filter/Particle Filter to match the predicted measurement with the actual measurements.

Sensors for SLAM

Sensors for mapping

- LiDAR (Ouster)
- Depth camera (Realsense D435i camera)
- General RGB camera for Visual SLAM

Sensors for localization

- Visual odometry (Realsense T265 camera)
- Inertial Measurement Units (IMUs)
- Encoders

SLAM Techniques

- Scan-based SLAM: Directly utilizes unprocessed scanned data as observations which are generally sets of points obtained from range sensors such as a sonar and a laser range finder.
- Feature-based SLAM: Extracts a set of features including different types of geometric models such as points, lines, curvatures, and any arbitrary shapes from the observation and uses as landmarks.

tf

Many 3D coordinate frames will be involved for even a simple task for your robot.

- Base frame for the vehicle
- World frame for the map
- Laser_scan frame for the localization sensor
- Camera frame for the visual camera
- Gripper/arm/head/another_robot frame, etc.

tf is used in ros to track all these frames over time.

Useful Links

- SLAM simulation
 - https://google-cartographer-ros.readthedocs.io/en/latest/
- 2D SLAM
 - Gmapping (Needs odometry): http://wiki.ros.org/gmapping
 - Hector_slam (Does not need odometry): http://wiki.ros.org/hector_slam
- 3D SLAM
 - RTAB-Map: http://introlab.github.io/rtabmap/
 - SLAM with RealSense RGBD camera: https://github.com/IntelRealSense/realsense-ros/wiki/SLAM-with-D435i
- Tf
 - http://wiki.ros.org/tf

RTAB-Map: Odometry

RTAB-Map: SLAM

SLAM