Kybintro øving 4 - Lars André Roda Jansen

Oppgave 1)

Modell:

$$rac{d}{dt}h = -rac{k}{
ho A}h + rac{1}{
ho A}w_{inn}$$

Vi må anta att massen fra winn jevnes ut med engang med en gang den legges til i tanken. Pådragsorganet vil være røret der w_{inn} kommer fra. Pådraget vil være w_{inn} .

c)

Om $w_{inn}=0$, så vil $t\to\infty,h\to0$. Dette er fordi all massen i tanken vil bare renne ut og bli tom om ingenting annet renner inn.

Dette kan vi se på vår modell. Ettersom $w_{inn}=0$, så vil ifølge modellen

$$rac{d}{dt}h=-rac{k}{
ho A}h$$

Dette fører til att endringen \dot{h} vil være negativ helt til h=0, altså att nivået tilsvarer 0. Modellen vil bli stabil fordi den går mot en bestemt tilstand h=0.

d) Om vi hadde hatt en positiv tilbakekobling i systemet så hadde dette innebært att $\frac{d}{dt}h$ hadde vært positiv, slik att tanken blir bare fylt opp med væske, i stedet for att væske renner ut.

Modellen hadde derfor vært ustabil fordi den aldri når en stasjonærverdi, men vil heller forevig øke.

Oppgave 2)

a)

Oppgane 2)

G) Staying much a

$$a = h_r - h(a)$$
 $f(x) = -\frac{k}{r} h + \frac{1}{r} h h h h$
 $f(x) = -\frac{k}{r} h + \frac{1}{r} h h h h h h$
 $f(x) = -\frac{k}{r} h + \frac{1}{r} h h h h h h$
 $f(x) = -\frac{k}{r} h + \frac{1}{r} h h h h h h$
 $f(x) = -\frac{k}{r} h + \frac{1}{r} h h h h$
 $f(x) = -\frac{k}{r} h h h h h h h h$
 $f(x) = -\frac{k}{r} h h h h h$
 $f(x) = -\frac{k}{r} h h$
 $f(x) = -\frac{k}{r}$

Den er lik og tilsvarer 0.05

d) Man kan unngå problemer med standardavvik med å legge til ett I-ledd i regulatoren.

e)

Stasjonæravviket vårt nå blir på ca $-0.95\,$

f)

$$u=K_p(r-x)+K_i\int r-x\,dt$$

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

%% INIT $h_{max} = 1;$ A = 1;k = 1;rho = 1000; $h_0 = 0;$ $h_r = 0.5$; $K_p = 100;$ $K_i = 2;$ $w_f = 10;$

T = 200;

Vi kan se att ved høyere K_i , så vil antall svingninger til systemet før den når stasjonærverdi øke

i)

j)

Vi kan se att den slutter å bli stabil når au=9, for alle verdier før det så er systemet stabilt.