Mathematics for Computing (IT1030) 2020 – Semester 1

Lab Sheet – 01

Introduction to Octave

Octave is an open-source interactive software system for numerical computations and graphics. It is particularly designed for matrix computations. It can be thought of as a very powerful, programmable, graphical calculator. Octave makes it easy to solve a wide range of numerical problems.

We will be using GNU Octave, version 4.4.0 which can be downloaded from the following url. https://www.gnu.org/software/octave/download.html

Starting Octave

After logging into your account, you can open Octave by double-clicking on the GNU Octave (GUI) shortcut icon on your Windows desktop. You are now in the Octave environment. The >> is the Octave prompt, asking you to type in a command. If you want to leave Octave at any point, type quit at the prompt.

Components of the Octave Window

- The Command Window
- The Command History
- The Workspace
- The Current Directory
- Variable Editor

Exercises

Explore the following options in Octave.

1. Using Octave as a calculator.

The simplest way to use Octave is just to type mathematical commands at the prompt, like a normal calculator. The basic arithmetic operators are + - * /, and ^ is used to mean 'to the power of' (e.g. $2^3=8$). Brackets () can also be used.

```
>> 2+2
ans = 4
```

2. Creating variables.

In any significant calculation you are going to want to store your answers, or reuse values, just like using the memory on a calculator. Octave allows you to define and use named variables. variables are either floating point numbers or strings.

```
>> a = 5
a = 5
>> x = 3+4*(1+6/3)
x = 15
>> str = "example string"
str = example string
```

If the command is ended with a semicolon, the output will be suppressed.

```
>> x = 3+4*(1+6/3);
```

The value of x may now, if desired, be printed out by typing

```
>> x
x = 15
```

You can create variables using previously defined variables.

```
>> f = x+2
f = 17
```

Octave is case-sensitive. Therefore X and x will be treated as two different variable names.

```
>> X = 5
X = 5
>> x = 2
x = 2
```

3. Overwriting variables.

The variable values can be overwritten by re assigning a new value to a previously defined variable.

```
>> y = 2+3

y = 5

>> y = 2+4

y = 6
```

4. Error messages and making corrections.

Octave reports errors for invalid commands.

```
>> y = 2+4
y = 6
>> f = 2y
parse error:
    syntax error
>>> f = 2y
^
```

5. Operator precedence.

Operator precedence determines how operators are grouped, when different operators appear close by in one expression. For example, '*' has higher precedence than '+'. Thus, the expression a + b * c means to multiply b and c, and then add a to the product (i.e., a + (b * c)).

You can overrule the precedence of the operators by using parentheses.

```
>> a=5;

>> b=2;

>> c=3;

>> a+b*c

ans = 11

>> (a+b)*c

ans = 21
```

6. Managing the workspace.

a. clear and clear all functions.

Clear function can be used to remove a variable from the workspace.

	Name	1	Class
	а		double
	b		double
>> clear a	Workspace		
>> clear a			
>> clear a	Workspace Filter		
>> clear a		/	Class

Clear and clear all functions can be used to remove all the variables from the workspace.

b. who and whos functions.

When creating programs it can be very convenient to see which variables are available at the prompt. The function *who* and *whos* will show different information about what is in memory.

```
>> a=5;
>> b=6;
>> c=4;
>> who
Variables in the current scope:
a b c
>> whos
Variables in the current scope:
  Attr Name Size
                                       Bytes Class
  a 1x1
b 1x1
c 1x1
                ----
                                       ____
                                          8 double
                                         8 double
                                          8 double
Total is 3 elements using 24 bytes
```

7. Saving the work session using the diary command.

Octave's diary feature allows you to keep a log of all or part of a session by recording the input you type and the output that Octave produces in a separate file.

```
>> diary '1.txt';
>> diary on
>> 2+4
ans = 6
>> x = 5*5
x = 25
>> diary off
```

- 8. Other commands in Octave.
 - a. Clear the Command Window.

>> clc

b. Abort a computation.

You can stop a running command or script by pressing ctrl + c.

c. Continuing a line.

You can continue a line using three dots.

```
>> s = 1+2+3+4+5+6+...
4+5
s = 30
```

9. Getting help

You can look at the documentation of Octave using the documentation tab.

You can look at the documentation of a known function using the command doc.

>> doc abs

The lookfor command can be used to search for a string in the documentation of all functions.

```
>> lookfor abs
abs
                    Compute the magnitude of Z.
                    Return the absolute name of FILE if it can be found in the list of
file in loadpath
                    directories specified by â€"pathâ€".
                    Return the absolute name of FILE if it can be found in PATH.
file_in_path
is_absolute_filename Return true if FILE is an absolute filename.
make absolute filename Return the full name of FILE beginning from the root of the fil
                    e system.
                    Return the absolute name of the loadpath element matching DIR if i
dir in loadpath
                    t can be found in the list of directories specified by â€~path'.
                    Compute the mean or median absolute deviation of the elements of X
mad
```