Fourmlas Sheet.

David Ponarovsky

January 21, 2023

Probability.

Multiplicative Chernoff bound. Suppose $X_1, ..., X_n$ are independence random variables taking values in $\{0,1\}$ Let X denote their sum and let $\mu = \mathbf{E}\left[\sum_{i=1}^{n} X_i\right]$ denote the sum's expected value. Then for any $\delta > 0$:

$$\begin{aligned} &\mathbf{Pr}\left[X \geq \left(1 + \delta\right)\mu\right] \leq e^{-2\frac{\delta^2\mu^2}{n}} \\ &\mathbf{Pr}\left[|X - \mu| \geq \delta\mu\right] \leq 2e^{-\delta^2\mu/3}, \qquad 0 \leq \delta \leq 1 \end{aligned}$$

Bernstein inequalities. $X_1, ..., X_n$ are independence random variables with zero mean $(\mu = 0)$. Suppose that $|X_i| \leq M$ almost surely, for all *i*. Then, for all positive t:

$$\mathbf{Pr}\left[\sum_{i=1}^{n} X_{i} \ge t\right] \le \exp\left(-\frac{\frac{1}{2}t^{2}}{\sum_{i} \mathbf{E}\left[X_{i}^{2}\right] + \frac{1}{3}M}t\right)$$

For example, consider coins taking values ± 1 with probability $\frac{1}{2}$, then for every positive ε .

$$\mathbf{Pr}\left[\left|\frac{1}{n}\sum_{i}^{n}X_{i}\right| \geq \varepsilon\right] \leq 2\exp\left(-\frac{n\varepsilon^{2}}{2\left(1+\frac{\varepsilon}{3}\right)}\right)$$

Jensen's inequality. If X is a random variable and ϕ is a convex function, then:

$$\phi\left(\mathbf{E}\left[X\right]\right) \leq \mathbf{E}\left[\phi\left(X\right)\right] \Rightarrow \mathbf{E}\left[X\right] \leq \phi^{-1}\left(\mathbf{E}\left[\phi\left(X\right)\right]\right)$$
$$\mathbf{E}\left[X\right] \leq \ln\left(\mathbf{E}\left[e^{X}\right]\right)$$
$$\mathbf{E}\left[X\right] \geq e^{\mathbf{E}\left[\ln\left(X\right)\right]}$$

Paley–Zygmund inequality. bounds the probability that a positive random variable is small, in terms of its first two moments. Could be thought as the lower bound Markov version. If a r.v X is always positive and has a finate variance, then for $0 \le \tau \ge 1$:

$$\mathbf{Pr}\left[X > \tau \mathbf{E}\left[X\right]\right] \ge (1 - \tau)^2 \frac{\mathbf{E}\left[X\right]^2}{\mathbf{E}\left[X^2\right]}$$
$$\mathbf{Pr}\left[X > \mathbf{E}\left[X\right] - \tau\sigma\right] \ge \frac{\tau^2}{1 + \tau^2}$$

Marcinkiewicz–Zygmund inequality. $X_1, ..., X_n$ are independence random variables with zero mean $(\mu = 0)$ and $\mathbf{E}[|X_i|^p] < \infty$, then there exist constants A_p, B_p which depend only on p such:

$$A_p \mathbf{E} \left[\left(\sum_{i=1}^n |X_i|^2 \right)^{p/2} \right] \le \mathbf{E} \left[|\sum_{i=1}^n X_i|^p \right] \le B_p \mathbf{E} \left[\left(\sum_{i=1}^n |X_i|^2 \right)^{p/2} \right]$$

Cauchy–Schwarz Expectation Inequality. Let X, Y be random variables then the inequality becomes:

$$|\mathbf{E}[XY]|^2 \le \mathbf{E}[X^2]\mathbf{E}[Y^2]$$

Inequalitys.

Sedrakyan's inequality. For any reals $a_0, a_1, a_2, \dots a_n$ and positive eals $b_0, b_1, b_2, \dots b_n$ we have:

$$\frac{a_1^2}{b_1} + \frac{a_2^2}{b_2} + \dots + \frac{a_n^2}{b_n} \ge \frac{(a_1 + a_2 + \dots + a_n)^2}{b_1 + b_2 + \dots + b_n}$$