Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Level Examination January 2010

Chemistry

CHEM4

Unit 4 Kinetics, Equilibria and Organic Chemistry

Wednesday 27 January 2010 9.00 am to 10.45 am

For this paper you must have:

- the Periodic Table/Data Sheet provided as an insert (enclosed)
- a calculator.

Time allowed

• 1 hour 45 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. **Answers written** in margins or on blank pages will not be marked.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.
- The Periodic Table/Data Sheet is provided as an insert.
- Your answers to the questions in **Section B** should be written in continuous prose, where appropriate.
- You will be marked on your ability to:
 - use good English
 - organise information clearly
 - use accurate scientific terminology.

Advice

 You are advised to spend about 70 minutes on Section A and about 35 minutes on Section B.

For Exam	iner's Use
Examine	r's Initials
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

SECTION A

Answer all questions in the spaces provided.

1	of w	ater. 1	was prepared using 1.00 mol of propanoic acid, 2.00 mol of ethanol and 5.00 mol At a given temperature, the mixture was left to reach equilibrium according to the equation.
CH	I ₃ CH ₂	COOI	$H + CH_3CH_2OH \rightleftharpoons CH_3CH_2COOCH_2CH_3 + H_2O \qquad \Delta H^{\circ} = -22 \text{ kJ mol}^{-1}$
	The	equili	brium mixture contained 0.54 mol of the ester ethyl propanoate.
1	(a)	(i)	Calculate the amounts, in moles, of propanoic acid, of ethanol and of water in this equilibrium mixture.
			Moles of propanoic acid
			Moles of ethanol
			Moles of water
			(3 marks)
1	(a)	(ii)	Write an expression for the equilibrium constant, K_c , for this equilibrium.
			(1 mark)
1	(a)	(iii)	Calculate a value for K_c for this equilibrium at this temperature. Explain why this K_c value has no units.
			Calculation
			Explanation
			(3 marks)
			(Extra space)

10

1	(b)		his equilibrium, predict the effect of an increase in temperature on each of the wing.
1	(b)	(i)	the amount, in moles, of ester at equilibrium
			(1 mark)
1	(b)	(ii)	the time taken to reach equilibrium
			(1 mark)
1	(b)	(iii)	the value of K_c
			(1 mark)

Turn over for the next question

2	In th	is que	estion, give all values of pH to 2 decimal places.
2	(a)	(i)	Write an expression for the term pH.
			(1 mark)
2	(a)	(ii)	Calculate the concentration, in mol $\rm dm^{-3}$, of an aqueous solution of sulfuric acid that has a pH of 0.25
			(2 marks)
2	(b)	from	udent carried out a titration by adding an aqueous solution of sodium hydroxide a burette to an aqueous solution of ethanoic acid. The end-point was reached a 22.60 cm ³ of the sodium hydroxide solution had been added to 25.00 cm ³ of 0 mol dm ⁻³ ethanoic acid.
2	(b)	(i)	Write an equation for the reaction between sodium hydroxide and ethanoic acid.
			(1 mark)
2	(b)	(ii)	Calculate the concentration, in mol dm ⁻³ , of the sodium hydroxide solution used.
			(2 marks)

2 (h)	(iii)	A list	t of indica	tors is	shown	below
_ ,	\mathbf{U}_{j}	(111)	11 1150	i or marce	1013 13	SHOWH	ociow.

Indicator	pH range
thymol blue	1.2-2.8
bromophenol blue	3.0-4.6
litmus	5.0-8.0
cresol purple	7.6-9.2

			Select from the list the most suitable indicator for the end-point of this titration.
			(1 mark)
2	(b)	(iv)	Suggest why the concentration of sodium hydroxide in a solution slowly decreases when left open to air.
			(1 mark)
2	(c)	At 29 solut	98 K, the value of the acid dissociation constant, K_a , for ethanoic acid in aqueous ion is 1.74×10^{-5} mol dm ⁻³
2	(c)	(i)	Write an expression for the acid dissociation constant, K_a , for ethanoic acid.
			(1 mark)
2	(c)	(ii)	Calculate the pH of 0.410 mol dm ⁻³ ethanoic acid at this temperature.
			(3 marks) (Extra space)
			Ouestion 2 continues on the next page

2	(c)	(iii)	Calculate the pH of the buffer solution formed when $10.00\mathrm{cm}^3$ of $0.100\mathrm{mol}~\mathrm{dm}^{-3}$ potassium hydroxide are added to $25.00\mathrm{cm}^3$ of $0.410\mathrm{mol}~\mathrm{dm}^{-3}$ ethanoic acid.
			(Extra space)(6 marks)

3	Prop	anone and iodine react in acidic c	conditions according to the following equation	n.
		$CH_3COCH_3 + I_2$	\longrightarrow ICH ₂ COCH ₃ + HI	
			eaction using hydrochloric acid and a solution make the results the following rate equation was	
		rate = k	c[CH ₃ COCH ₃][H ⁺]	
3	(a)	Give the overall order for this re-	action.	
				(1 mark)
3	(b)	When the initial concentrations of initial rate of reaction was found	of the reactants were as shown in the table be 1 to be 1.24×10^{-4} mol dm ⁻³ s ⁻¹ .	elow, the
			initial concentration / mol dm ⁻³	
		CH ₃ COCH ₃	4.40	
		I ₂	5.00×10^{-3}	
		H ⁺	0.820	
		Use these data to calculate a valuunits. Calculation	ue for the rate constant, k, for the reaction an	d give its
		Units		(3 marks)
3	(c)		eaction changes when the concentration of ioo of propanone and of hydrochloric acid are und	

3 (d) The following mechanism for the overall reaction has been proposed.

Step 1
$$CH_3COCH_3 + H^+ \longrightarrow H - C - C - CH_3$$

 $H - C - C - CH_3$
 $H - C - C - CH_3$

Step 2
$$H - \overset{H}{\overset{\downarrow}{C}} - \overset{+}{\overset{\downarrow}{C}} - CH_3 \longrightarrow H \overset{H}{\overset{\downarrow}{OH}} C = \overset{C}{\overset{C}{\overset{C}{C}}} - CH_3 + H^+$$

Step 3
$$H$$
 $C = C - CH_3 + I_2 \longrightarrow ICH_2 - C - CH_3 + I^ H$
 OH
 OH
 H

Use the rate equation to suggest which of the four steps could be the rate-determining step. Explain your answer.

Rate-determining step

Explanation

-

(2 marks)

3 (e) Use your understanding of reaction mechanisms to predict a mechanism for Step **2** by adding one or more curly arrows as necessary to the structure of the carbocation below.

(1 mark)

8

4 Two isomeric ketones are shown below.

$$\begin{array}{ccc} CH_3-C-CH_2CH_2CH_3 & CH_3CH_2-C-CH_2CH_3 \\ \parallel & \parallel & \\ O & O \\ \hline Q & R \end{array}$$

4 (a) Name and outline a mechanism for the reaction of compound ${\bf Q}$ with HCN and name the product formed.

Name of mechanism

Mechanism

4	(b)	Som	e students were asked to suggest methods to distinguish between isomers Q and R .
			student suggested testing the optical activity of the products formed when ${\bf Q}$ and ere reacted separately with HCN.
		•	onsidering the optical activity of these products formed from \mathbf{Q} and \mathbf{R} , explain this method would not distinguish between \mathbf{Q} and \mathbf{R} .
		•••••	
			(3 marks)
		(EXII	ra space)
4	(c)		er students suggested using mass spectrometry and the fragmentation patterns of molecular ions of the two isomers to distinguish between them.
		•	predicted that only one of the isomers would have a major peak at $m/z = 57$ in its spectrum so that this method would distinguish between Q and R .
4	(c)	(i)	Identify the isomer that has a major peak at $m/z = 57$ in its mass spectrum.
			(1 mark)
4	(c)	(ii)	Write an equation for the fragmentation of the molecular ion of this isomer to form the species that produces the peak at $m/z = 57$.
4	(c)	(iii)	Predict the m/z value of a major peak in the mass spectrum of the other isomer.
			(1 mark)

13

The triester, T, shown below is found in palm oil. When T is heated with an excess of sodium hydroxide solution, the alcohol glycerol is formed together with a mixture of three other products as shown in the following equation.

$$\begin{array}{c} \text{CH}_{2}\text{OOC}(\text{CH}_{2})_{14}\text{COONa} \\ \text{CH}_{2}\text{OOC}(\text{CH}_{2})_{14}\text{CH}_{3} \\ | \\ \text{CHOOC}(\text{CH}_{2})_{7}\text{CH} = \text{CH}(\text{CH}_{2})_{7}\text{CH}_{3} + 3\text{NaOH} \longrightarrow \begin{array}{c} \text{CH}_{2}\text{OH} \\ | \\ \text{CH}_{2}\text{OOC}(\text{CH}_{2})_{12}\text{CH}_{3} \\ \text{CH}_{2}\text{OOIONa} \\ \text{T} \end{array}$$

(a) Give the IUPAC name for glycerol.

(1 mark)

Give a use for the mixture of sodium salts formed in this reaction. (a)

(1 mark)

- When T is heated with an excess of methanol, glycerol is formed together with a mixture of methyl esters.
- 5 (b) (i) Give a use for this mixture of methyl esters.

(1 mark)

5 (b) One of the methyl esters in the mixture has the IUPAC name methyl (Z)-octadec-9-enoate. Draw two hydrogen atoms on the diagram below to illustrate the meaning of the letter Z in the name of this ester.

$$c=c$$

7	(b)	(iii)	One of the other methyl esters in the mixture has the formula $CH_3(CH_2)_{12}COOCH_3$ Write an equation for the complete combustion of one molecule of this ester.
			(1 mark)
			Turn over for the next question

6 The three amino acids shown below were obtained by hydrolysis of a protein.

alanine valine lysine

6 (a) (i) Draw the zwitterion of alanine.

(1 mark)

6 (a) (ii) Draw the species formed when valine is dissolved in an alkaline solution.

(1 mark)

6 (a) (iii) Draw the species formed by lysine at low pH.

6	(b)	Draw the two dipeptides formed by the reaction of alanine with valine.	
		(2 marks)	
6	(c)	Name a suitable method by which the mixture of amino acids formed by hydrolysis of the protein can be separated.	
		(1 mark)	

Turn over for the next question

7 Organic chemists use a variety of methods to identify unknown compounds. When the molecular formula of a compound is known, spectroscopic and other analytical techniques are used to distinguish between possible structural isomers. Use your knowledge of such techniques to identify the compounds described below.

Use the three tables of spectral data on the Data Sheet where appropriate.

Each part below concerns a different pair of structural isomers.

Draw **one** possible structure for each of the compounds **A** to **J**, described below.

7 (a) Compounds **A** and **B** have the molecular formula C₃H₆O **A** has an absorption at 1715 cm⁻¹ in its infrared spectrum and has only one peak in its

¹H n m r spectrum

B has absorptions at $3300 \,\mathrm{cm}^{-1}$ and at $1645 \,\mathrm{cm}^{-1}$ in its infrared spectrum and does **not** show E-Z isomerism.

A B

(2 marks)

7 (b) Compounds C and D have the molecular formula C_5H_{12} In their 1H n.m.r. spectra, C has three peaks and D has only one.

C D

(2 marks)

7	(c)	Compounds E and F are both esters with the In their 1 H n.m.r. spectra, E has a quartet at $\delta = 4.1$ ppm.	
		E F	
		E	
			(2 marks)
7	(d)	Compounds G and H have the molecular for Each exists as a pair of optical isomers and in its infrared spectrum. G forms a silver material optical content of the cont	each has an absorption at about 1700 cm ⁻¹
		G H	
		o n	
			(2 marks)
			(2 mans)
7	(e)	Compounds I and J have the molecular formamines. In their ¹³ C n.m.r. spectra, I has two	mula $C_4H_{11}N$ and both are secondary to peaks and J has three.
		T	
		I J	

(2 marks)

10

SECTION B

Answer all questions in the spaces provided.

8 Three isomers of $C_6H_4(NO_2)_2$ are shown below.

 \mathbf{W}

X

 \mathbf{Y}

8 (a)	(i)	Give the number	of peaks	in the	¹³ C n.m.r.	spectrum o	of each	isomer
-----	----	-----	-----------------	----------	--------	------------------------	------------	---------	--------

•••••	••••••	•••••	••••••	••••••
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

(3 marks)

8	(a)	(ii)	Draw the displayed formula of the compound used as a standard in recording
			these spectra.

8	(b)	Isomer X is prepared from nitrobenzene by reaction with a mixture of concentrated nitric acid and concentrated sulfuric acid.				
		The t	two acids react to form an inorganic species that reacts with nitrobenzene to form			
8	(b)	(i)	Give the formula of this inorganic species formed from the two acids and write an equation to show its formation.			
			(2 marks)			
8	(b)	(ii)	Name and outline a mechanism for the reaction of this inorganic species with nitrobenzene to form \mathbf{X} .			
			(4 marks)			
			Question 8 continues on the next page			
			Constitution of the same balls			

8	(c)	Isomer Y	is used in	the production	of the polymer Kevlar.
---	-----	----------	------------	----------------	------------------------

Y is first reduced to the diamine shown below.

$$H_2N$$
 \longrightarrow NH_2

8 (c) (i) Identify a suitable reagent or mixture of reagents for the reduction of Y to form this diamine. Write an equation for this reaction using [H] to represent the reducing agent.

8 (c) (ii) This diamine is then reacted with benzene-l,4-dicarboxylic acid to form Kevlar. Draw the repeating unit of Kevlar.

(2 marks)

(2 marks)

18

8	(c)	(iii)	Kevlar can be used as the inner lining of bicycle tyres. The rubber used for the outer part of the tyre is made of polymerised alkenes.
			State the difference in the biodegradability of Kevlar compared to that of rubber made of polymerised alkenes.
			Use your knowledge of the bonding in these polymer molecules to explain this difference.
			(4 marks)
			(Extra space)

Turn over for the next question

9	(a)	Name and outline a mechanism for the reaction of CH ₃ CH ₂ NH ₂ with CH ₃ CH ₂ COCl
		Name the amide formed.
		(6 marks)

9	(b)	Haloalkanes such as CH ₃ Cl are used in organic synthesis.
		Outline a three-step synthesis of CH ₃ CH ₂ NH ₂ starting from methane. Your first step should involve the formation of CH ₃ Cl
		In your answer, identify the product of the second step and give the reagents and conditions for each step.
		Equations and mechanisms are not required.
		(6 marks)
		(Extra space)
		END OF QUESTIONS

