Chandigarh Engineering College/COE Landran, Mohali

Department of Applied Sciences

MST-1

Subject Name and Code: BEE (BTEE-101-18)	1 st Year / 1 st Semester	
Time: 1 hr	Name:	
Max Marks: 24	Roll No.	

Date of Exam: 11/12/2020

Note: Section A is compulsory. Attempt any two questions from section B and section C.

Course Outcomes: Student will be able to

CO1: differentiate circuits based on their composition, terminology and their mathematical analysis.

CO2: analyze the behavior of electrical circuits based on alternating currents as their power supply; solve AC circuits and their mathematical analysis.

CO3: understand the basic magnetic circuit; construction as well as working principle of transformer.

CO4: study the working principles of various electrical machines such as three- phase induction motor, single phase induction motor, dc motor and synchronous generator.

CO5: understand the components of low voltage electrical installations.

	Section A (8 Marks)	Marks Distribution	Relevance to CO no.
Q2:- Draw th Q3:-Differen Q4:- Instanta	perposition Theorem. The Power triangle and define various types of power. The between ideal and practical voltage sources. The source current is given by the relation $i = 30 \text{ Sin } 314t$. Find the r.m.s. value of a.c.	2 1+1 2 1+1	(CO 1) (CO 2) (CO 1) (CO 2)
	Section B (8 Marks)		
Q5:- What an	re transients? Discuss the voltage response of RL series circuit.	1+3	(CO 1)
-	stance of 20Ω and capacitor of $212.2\mu F$ capacitance are series across a $250V$, $50Hz$ supply. Impedance of the circuit Current flowing through the circuit Power factor and phase angle Power consumed in the circuit	1+1+1+1	(CO 2)

Q7:-By using Thevenin's Theorem, find current 10Ω resistor of network as shown in figure below $\frac{5\Omega}{4V} \frac{10\Omega}{15\Omega} \frac{12\Omega}{8\Omega} \frac{12\Omega}{6V}$	4	(CO 1)
Section C (8 Marks)		
Q8:- Derive the relation between phase and line voltages and currents for a balanced 3 phase – Star connected system.	2+2	(CO 2)
Q9:- Explain RLC series circuits. What happens when RLC series circuit is at resonance?	2+2	(CO 2)
Q10:- Find the current through 10Ω resistance across A-B terminals for the circuit shown in figure using Norton's theorem.	4	(CO 1)
5Ω 3Ω Α		
3ον 1οΩ		
В		