Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$

Case2: △=0

Example 2.

y_{1,2=}6,6

Case1: △>0 $y_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the y-intercepts of multiplicity 1. q(0) = c computes the single q-intercept.

Given a quadratic $q(y) = a y^2 + b y + c$ compute its discriminant \triangle :

$$y_{1,2} = \frac{1}{2a}$$
 computes the y-intercepts of muttipticity 1. $q(0) = c$ computes the single q-intercept.

 $q(y) = y^2 - 49$ compute its discriminant \triangle : △=**196**>0

$$y_{1,2} = -7,7$$

 $q(0) = -49$ q-intercept.

$$q(y) = 3y^2 - 36y + 108$$
 compute its discriminant \triangle :

 $y_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a}$ single y-intercept of multiplicity 2.

-100

q(0) = 108 q - intercept.

 $q(y) = -4y^2 + 72y - 405$ compute its discriminant \triangle : $\triangle = -1296 < 0$

However there is a q-intercept.

Example 3.