Problem 1

Solution

- (a) Let $t = \sqrt{1+x}$. Since $x \ge 0$, we have $t \ge 1$. Let $h(t) = 2\log(t) t$, then we have to prove that $h(t) \le 0$ holds for all $t \ge 1$. Since $h'(t) = \frac{2}{t} 1$, we have $h(t) \le h(2) < 0$.
- (b) Let $h(m) = \frac{\log(m)}{m}, m \ge 1$. We have $h'(m) = \frac{1 \log(m)}{m^2}$. Thus, h(m) is decreasing when $m \ge e$. If n = 1, then $m < \log(m) \implies m < 0$. (Acutually, the inequality on left hand is not possible for all m, and thus it can imply any statement.) Similarly, it is trivial if m = 1. For the cases where $n \ge 2$ and $m \ge 2$, we proceed by contradiction. Suppose that $m \ge 2n \log(n) > e$. Since $\frac{m}{\log(m)}$ is increasing when $m \ge e$ and $n \ge 2\log(n)$ (conclusion of (a)), we have $\frac{m}{\log(m)} \ge \frac{2n\log(n)}{\log(2n\log(n))} \ge \frac{2n\log(n)}{\log(n^2)} = n$. Thus $m < n\log(m) \implies m < 2n\log(n)$.

Problem 2

Solution

The Lagrangian of this problem is

$$L(w, b, \xi, \mu, \lambda) = \frac{1}{2}||w||^2 + C\sum_{i=1}^n \xi_i + \sum_{i=1}^n \mu_i (1 - \xi_i - y_i(w^{\mathsf{T}}x_i + b)) - \sum_{i=1}^n \lambda_i \xi_i, \ \mu_i \ge 0 \ and \ \lambda_i \ge 0.$$

Let the gradient of L w.r.t w, b and ξ be 0. We have

$$\nabla_w L = w - \sum_{i=1}^n \mu_i y_i x_i = 0,$$
$$\nabla_b L = \sum_{i=1}^n \mu_i y_i = 0,$$

$$\nabla_{\xi_i} L = C - \lambda_i - \mu_i = 0, \ \forall i.$$

Since $C = \lambda_i - \mu_i = 0$, $\forall i$ and $\lambda_i \geq 0$, we have $\mu_i \leq C$. By substituting $w = \sum_{i=1}^n \mu_i y_i x_i$, we have $D(\mu, \lambda) = \sum_{i=1}^n \mu_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \mu_i \mu_j y_i y_j (x_i^{\mathsf{T}} x_j)$, and λ doesn't appear in the objective function and constraints. Thus, the dual problem is of the same form as the soft-margin version with additional constraints that $\mu_i \leq C$, $\forall i$.

Problem 3

Solution

Let $L_t(\alpha) = \sum_{i=1}^n \exp\left(-\sum_{s=1}^{t-1} \alpha_s y_i h_s(x_i) - \alpha y_i h_t(x_i)\right)$. Then, $\alpha_t = \arg\min L_t(\alpha)$. Suppose that $h_{t+1} = h_t$. Then, $L_{t+1}(\alpha) = L_t(\alpha + \alpha_t)$. Thus, $\alpha_{t+1} = 0 = \arg\min L_{t+1}(\alpha)$. However, since $\epsilon_t < \frac{1}{2}$, $\alpha_{t+1} = \frac{1}{2} \ln \frac{1-\epsilon_{t+1}}{\epsilon_{t+1}} > 0$. Thus, by contradiction, $h_{t+1} \neq h_t$.

Figure 1: Results of AdaBoost.

Problem 4

Solution

- (a) 91%.
- (b) As shown in Fig. 1, test accuracy improves as number of learners increases.

Problem 4

Solution

- (a) Accuracies are 50%, 50%, 52%, 69%, 97%, 98% respectively.
- (b) Linear kernel: 98%. Poly kernel: 99%. RBF kernel: 100%. Sigmoid kernel: 81%.