Optimization-Based Data Analysis – Brett Bernstein

Recitation 2

- 1. For a fixed matrix $A \in \mathbb{R}^{m \times n}$ arrange the following values in order: $||A||_F$, ||A||, $||A||_*$.
 - Solution. We have $||A||_* \ge ||A||_F \ge ||A||$ by the corresponding inequalities on the vectors of singular values.
- 2. Let $A \in \mathbb{R}^{m \times m}$ with SVD $A = USV^T$.
 - (a) Assuming A is invertible, give the SVD for A^{-1} .
 - (b) Give the SVD for A^T .
 - (c) What is the relationship between the SVD of a symmetric matrix and the diagonal factorization given by the spectral theorem?
 - (d) Give the SVD for $A = \mathcal{P}_{\mathcal{S}}$, the orthogonal projection onto the subspace $\mathcal{S} \subseteq \mathbb{R}^m$.

Solution.

- (a) $A^{-1} = VS^{-1}U^T$
- (b) $A^T = VSU^T$
- (c) By the spectral theorem, we have $A = VSV^T$. If A is positive semidefinite then this is also an SVD. Otherwise, we can compute an SVD by $A = \widetilde{V}|S|V^T$ where $\widetilde{V}_{:,i} = V_{:,i}$ if $S_{ii} \geq 0$ and $\widetilde{V}_{:,i} = -V_{:,i}$ if $S_{ii} < 0$. Here |S| is obtained from S by taking the absolute value of each entry.
- (d) Let U be a matrix whose columns form an orthonormal basis for S. Then $A = UU^T = UIU^T$. Note here that I is a $k \times k$ matrix where k is the dimension of S.
- 3. Suppose you are given a dataset $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^m$ as columns of a matrix $X \in \mathbb{R}^{m \times n}$. Your goal is to reduce the dimensionality of the data using PCA.
 - (a) Suppose you want the resulting reduced vectors to be in \mathbb{R}^k . Explain how to obtain this using PCA.
 - (b) How do you determine an appropriate k?
 - (c) How do you determine the amount of sample variance in the first principal direction?

Solution.

(a) Define $\bar{x} := \frac{1}{n} \sum_{k=1}^{n} \vec{x}_{k}$. Let \widetilde{X} denote the centered data matrix with $\widetilde{X}_{:,k} := \vec{x}_{k} - \bar{x}$. Compute the SVD $\widetilde{X} = USV^{T}$. The reduced vectors are computed by $U_{:,1:k}^{T}\widetilde{X}$.

- (b) Plot the elements of S in decreasing order, and choose an index k that accounts for all the "large" singular values. Often people look for an "elbow" in the curve.
- (c) It is given by $S_{11}^2/(n-1)$. Recall this is the same as

$$\begin{split} U_{:,1}^T \left(\frac{1}{n-1} \widetilde{X} \widetilde{X}^T \right) U_{:,1} &= \frac{1}{n-1} U_{:,1}^T \left(U S V^T V S U^T \right) U_{:,1} \\ &= \frac{1}{n-1} U_{:,1}^T \left(U S^2 U^T \right) U_{:,1} \\ &= S_{11}^2 / (n-1). \end{split}$$

4. Let $A \in \mathbb{R}^{m \times n}$. Find maximizers $\vec{x} \in \mathbb{R}^m, \vec{y} \in \mathbb{R}^n$ solving

$$\begin{aligned} \text{maximize} \quad & \vec{x}^T A \vec{y} \\ \text{subject to} \quad & \|\vec{x}\|_2 = 1, \\ & & \|\vec{y}\|_2 = 1. \end{aligned}$$

Also give the maximum value obtained.

Solution. Compute the SVD $A = USV^T$. The maximizers are given by $\vec{x} = U_{:,1}$ and $\vec{y} = V_{:,1}$ with maximum value given by $\sigma_1 = S_{11}$.

To see this is the maximum, note that

$$\vec{x}^T A \vec{y} \le ||\vec{x}|| ||A \vec{y}|| = ||A \vec{y}|| \le S_{11},$$

by Cauchy-Schwarz.

- 5. In the following, assume every day is equally likely to be a birthday, and that there are no leap years.
 - (a) What is the probability, in terms of n, that at least 2 people in a room of n people have the same birthday?
 - (b) Give an upper bound, in terms of n and k, that at least k people in a room of n people have the same birthday.

Solution.

- (a) $1 \frac{365 \cdot 364 \cdots (365 n + 1)}{365^n}$
- (b) The probability that a fixed set of k people all have the same birthday is $\frac{365}{365^k} = 365^{-(k-1)}$. Applying the union bound we obtain an upper bound of $\binom{n}{k} 365^{-(k-1)}$. The union bound is the statement that

$$\mathbb{P}\left(\bigcup_{n} A_{n}\right) \leq \sum_{n} \mathbb{P}(A_{n}),$$

for a finite or infinite sequence of events A_n .

6. If $X \sim \mathcal{N}(0,1)$ then we say that $X^2 \sim \chi_1^2$ (called a chi-squared distribution with 1 degree of freedom). Give the pdf, mean, and variance of the χ_1^2 distribution.

Solution. Let $Y = X^2$. To compute the pdf we use the cdf $F_Y(y)$ of Y for $y \ge 0$:

$$F_Y(y) = \mathbb{P}(Y \le y)$$

$$= \mathbb{P}(X^2 \le y)$$

$$= \mathbb{P}(-\sqrt{y} \le X \le \sqrt{y})$$

$$= \mathbb{P}(-\sqrt{y} < X \le \sqrt{y})$$

$$= F_X(\sqrt{y}) - F_X(-\sqrt{y}).$$

The pdf of Y is given by

$$f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{f_X(\sqrt{y})}{2\sqrt{y}} - \frac{f_X(-\sqrt{y})}{-2\sqrt{y}} = \frac{f_X(\sqrt{y})}{\sqrt{y}} = \frac{e^{-y/2}}{\sqrt{2\pi y}},$$

for y > 0 and 0 otherwise.

7. What is the joint pdf of a random vector $X \sim \mathcal{N}(0, I)$ taking values in \mathbb{R}^n ?

Solution. Since the components are i.i.d. the pdf must factor giving

$$f(x_1, \dots, x_n) = \prod_{k=1}^n \frac{1}{\sqrt{2\pi}} e^{-x_k^2/2} = \frac{e^{-\|x\|_2^2/2}}{(2\pi)^{n/2}},$$

where $x = (x_1, ..., x_n)$.

- 8. Let $A = \begin{bmatrix} 4 & -1 \\ 4 & 1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Suppose $X \sim \mathcal{N}(0, I)$ takes values in \mathbb{R}^2 , and let $Y = AX + \vec{b}$.
 - (a) What is the distribution of Y?
 - (b) What are the marginal distributions of the components of Y?
 - (c) Are the components of Y independent?
 - (d) What do the contour lines of the joint pdf Y look like?

Solution.

- (a) $Y \sim \mathcal{N}(\vec{b}, AA^T)$
- (b) Since

$$AA^T = \begin{bmatrix} 17 & 15 \\ 15 & 17 \end{bmatrix},$$

we have $Y[1] \sim \mathcal{N}(2, 17)$ and $Y[2] \sim \mathcal{N}(3, 17)$.

- (c) No, as they are positively correlated.
- (d) Below we give a contour plot of the joint pdf along with a 3d plot.

This can be understood by computing the SVD of A:

$$A = \begin{bmatrix} 4 & -1 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 4\sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^T.$$

In general, if $A = USV^T$ then V^T applied to an i.i.d. Gaussian vector fixes the contours, S stretches the contours, and then U rotates the stretched contours. Thus, the resulting contours are always ellipsoids.

- 9. Let X_1, \ldots, X_n be i.i.d. random variables taking the values -1, 0, +1 with probabilities 1/3 each. Let X denote the random vector in \mathbb{R}^n having X_i as its ith coordinate.
 - (a) Compute $E[||X||_2^2]$.
 - (b) Compute $E[||X||_{\infty}]$.
 - (c) Compute the covariance matrix of X.

Solution.

- (a) $E[||X||_2^2] = \sum_{k=1}^n E[X_i^2] = 2n/3.$
- (b) $E[||X||_{\infty}] = 1 1/3^n$.
- (c) Let $\Sigma = \text{Cov}(X)$. Then $\Sigma_{ii} = 2/3$ and $\Sigma_{ij} = 0$ for $i \neq j$ by independence.
- 10. Let X be a random vector taking values in \mathbb{R}^n with mean $\vec{\mu} \in \mathbb{R}^n$ and covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$. If $A \in \mathbb{R}^{m \times n}$ and $\vec{b} \in \mathbb{R}^m$ what are the mean and covariance matrix of $AX + \vec{b}$?

Solution. The mean is $A\vec{\mu} + \vec{b}$ and the covariance is given by $A\Sigma A^T$.

To see the mean, note that

$$E[A_{i,:}X] = E[\sum_{k=1}^{n} A_{ik}X[k]] = \sum_{k=1}^{n} A_{ik}E[X[k]] = A_{i,:}E[X],$$

by the linearity of expectation. Applying this to every row shows E[AX] = AE[X].

To see the covariance, recall that $Cov(X) = E[(X - \vec{\mu})(X - \vec{\mu})^T]$. Thus we have

$$Cov(AX + \vec{b}) = E[(AX + \vec{b} - (A\vec{\mu} + \vec{b}))(AX + \vec{b} - (A\vec{\mu} + \vec{b}))^{T}]$$

$$= E[(A(X - \vec{\mu}))(A(X - \vec{\mu}))^{T}]$$

$$= E[A(X - \vec{\mu})(X - \vec{\mu})^{T}A^{T}]$$

$$= AE[(X - \vec{\mu})(X - \vec{\mu})^{T}]A^{T}$$

$$= A\Sigma A^{T}.$$

by linearity of expectation twice (for A on the left and A^T on the right).