Logic Circuit (2015)

Unit 2. Boolean Algebra

Spring 2015

School of Electrical Engineering

Prof. Jong-Myon Kim

Objectives

Topics introduced in this chapter

- ⇒ Understand the basic operations and laws of Boolean algebra
- ⇒ Relate these operations and laws to AND, OR, NOT gates and switches
- ⇒ Prove these laws using a truth table
- Manipulation of algebraic expression using
 - ⇒ Multiplying out
 - ⇒ Factoring
 - ⇒ Simplifying
 - ⇒ Finding the complement of an expression

Introduction

- ⇒ Basic mathematics for logic design: Boolean algebra
- ⇒ Restrict to switching circuits (Two state values 0, 1) Switching algebra
- ⇒ Boolean Variable : X, Y, ... can only have two state values (0, 1)
 - ⇒ representing True(1) False (0)

Not (Inverter)

$$0'=1 \text{ and } 1'=0$$

 $X'=1 \text{ if } X=0 \text{ and } X'=0 \text{ if } X=1$

Gate Symbol

AND

$$0 \cdot 0 = 0$$
, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$, $1 \cdot 1 = 1$

Truth Table

A B	$C = A \cdot B$
0 0	0
0 1	0
1 0	0
1 1	1

Gate Symbol

$$A \longrightarrow C = A \cdot B$$

$$0+0=0$$
, $0+1=1$, $1+0=1$, $1+1=1$

Truth Table

A B	$C = A \cdot B$
0 0	0
0 1	1
1 0	1
1 1	1

Gate Symbol

$$A \longrightarrow C = A + B$$

Apply to Switch

$$0 \longrightarrow X = 0 \rightarrow \text{switch open}$$

$$X = 1 \rightarrow \text{switch closed}$$

AND T=A-B

 $T = 0 \rightarrow 0$ open circuit between terminals 1 and 2 $T = 1 \rightarrow 0$ closed circuit between terminals 1 and 2

Logic Expression :

$$(AB'+C)$$

Circuit of Logic

Logic Expression :

$$[A(C+D)]'+BE$$

Circuit of Logic

$$\begin{array}{c}
C \\
D
\end{array}$$

$$\begin{array}{c}
A(C+D) \\
A
\end{array}$$

$$\begin{array}{c}
A(C+D) \\
BE
\end{array}$$

$$\begin{array}{c}
BE
\end{array}$$

$$\begin{array}{c}
BE
\end{array}$$

Logic Evaluation : A=B=C=1, D=E=0

$$[A(C + D)]' + BE = [1(1 + 0)]' + 1 \cdot 0 = [1(1)]' + 0 = 0 + 0 = 0$$

2-Input Circuit and Truth Table

АВ	A'	F = A' + B
0 0	1	1
0 1	1	1
1 0	0	0
1 1	0	1

Proof using Truth Table

$$AB'+C = (A+C)(B'+C)$$

n variable needs

$$2x2x2x\cdots = 2^n \text{ rows}$$
n times

АВС	В'	AB'	AB' + C	A+C	B' + C	(A+C)(B'+C)
0 0 0	1	0	0	0	1	0
0 0 1	1	0	1	1	1	1
0 1 0	0	0	0	0	0	0
0 1 1	0	0	1	1	1	1
1 0 0	1	1	1	1	1	1
1 0 1	1	1	1	1	1	1
1 1 0	0	0	0	1	0	0
1 1 1	0	0	1	1	1	1

Basic Theorems

Operations with 0, 1

$$X + 0 = X$$

$$X \cdot 1 = X$$

$$X + 1 = 1$$

$$X \cdot 0 = 0$$

Idempotent Laws

$$X+X=X$$
 $X\cdot X=X$

$$X \cdot X = X$$

Involution Laws

$$(X')'=X$$

Complementary Laws

$$X + X' = 1$$

$$X \cdot X' = 0$$

Proof
$$X = 0$$
, $0 + 0' = 0 + 1$, and if $X = 1$, $1 + 1' = 1 + 0 = 1$

$$0+0'=0+1$$
,

and if
$$X = 1$$
,

$$1+1'=1+0=1$$

Examples

$$(AB'+D)E+1=1$$

$$(AB'+D)(AB'+D)'=0$$

Basic Theorems with Switch Circuits

Basic Theorems with Switch Circuits

Commutative, Associative, Distributive

Commutative Laws: XY = YX, X + Y = Y + X

Associative Laws: (XY)Z = X(YZ) = XYZ

$$(X + Y) + Z = X + (Y + Z) = X + Y + Z$$

Proof of Associative Law for AND

XYZ	XY YZ	(XY)Z X(YZ)
0 0 0	0 0	0 0
0 0 1	0 0	0 0
0 1 0	0 0	0 0
0 1 1	0 1	0 0
1 0 0	0 0	0 0
1 0 1	0 0	0 0
1 1 0	1 0	0 0
1 1 1	1 1	1 1

Associative Laws for AND and OR

$$A \longrightarrow + \longrightarrow A \longrightarrow + \longrightarrow C \longrightarrow + \longrightarrow C$$

$$(A+B)+C=A+B+C$$

Commutative, Associative, Distributive

- **AND**: XYZ = 1 iff X = Y = Z = 1
- **OR:** X + Y + Z = 0 iff X = Y = Z = 0
- Distribute Laws: X(Y+Z) = XY + XZ

Valid only Boolean algebra not for ordinary algebra X + YZ = (X + Y)(X + Z)

Proof

$$(X + Y)(X + Z) = X(X + Z) + Y(X + Z) = XX + XZ + YX + YZ$$

= $X + XZ + XY + YZ = X \cdot 1 + XZ + XY + YZ$
= $X(1 + Z + Y) + YZ = X \cdot 1 + YZ = X + YZ$

Simplification Theorems

Useful Theorems for Simplification

$$XY + XY' = X$$
 $(X + Y)(X + Y') = X$
 $X + XY = X$ $X(X + Y) = X$
 $(X + Y')Y = XY$ $XY' + Y = X + Y$

Proof

$$X + XY = X \cdot 1 + XY = X(1+Y) = X \cdot 1 = X$$

 $X(X+Y) = XX + XY = X + XY = X$
 $Y + XY' = (Y+X)(Y+Y') = (Y+X)1 = Y+X$

Proof with Switch

Simplification Theorems

Equivalent Gate Circuits

$$F = A(A'+B) = AB$$

Multiplying Out and Factoring

To obtain a sum-of-product form → Multiplying out using distributive laws

- Sum of product form : AB'+CD'E+AC'E
- Not in sum of product form : (A+B)CD+EF
- Multiplying out and eliminating redundant terms :

$$(A+BC)(A+D+E) = A + AD + AE + ABC + BCD + BCE$$
$$= A(1+D+E+BC) + BCD + BCE$$
$$= A + BCD + BCE$$

Multiplying Out and Factoring

To obtain a product of sum form → all sums are the sum of single variable

Product of sum form : (A+B')(C+D'+E)(A+C'+E')

Circuits of SOP and POS Forms

Sum of product form

DeMorgan's Laws

DeMorgan's Laws

$$(X+Y)'=X'Y'$$

$$(XY)' = X' + Y'$$

Proof

ΧY	X' Y'	X + Y	(X+Y)'	X' Y'	XY	(XY)'	X' + Y'
0 0	1 1	0	1	1	0	1	1
0 1	1 0	1	0	0	0	1	1
1 0	0 1	1	0	0	0	1	1
1 1	0 0	1	0	0	1	0	0

DeMorgan's Laws for n variables

$$(X_1 + X_2 + X_3 + ... + X_n)' = X_1' X_2' X_3' ... X_n' (X_1 X_2 X_3 ... X_n)' = X_1' + X_2' + X_3' + ... + X_n'$$

Example

$$(X_{1} + X_{2} + X_{3})' = (X_{1} + X_{2})' X_{3}' = X_{1}' X_{2}' X_{3}'$$

DeMorgan's Laws

Inverse of A'B + AB'

$$F' = (A'B + AB')' = (A'B)'(AB')' = (A + B')(A' + B)$$
$$= AA' + AB + B'A' + BB' = A'B' + AB$$

АВ	A' B	AB'	F = A'B + AB'	A' B'	AB	F' = A'B' + AB
0 0	0	0	0	1	0	1
0 1	1	0	1	0	0	0
1 0	0	1	1	0	0	0
1 1	0	0	0	0	1	1

Dual: 'dual' is formed by replacing AND with OR, OR with AND, 0 with 1, 1 with 0

$$(XYZ...)^D = X + Y + Z + ...$$
 $(X + Y + Z + ...)^D = XYZ...$

$$(AB'+C)'=(AB')'C'=(A'B)C',$$
 so $(AB'+C)^D=(A+B')C$