

EXPRESS MAIL LABEL NO.: EL395555173US DATE OF DEPOSIT: November 9, 2000

I hereby certify that this paper and/or fee are being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR §1.10 on the date indicated above and is addressed to the Assistant Commissioner of Patents, Washington, D.C. 20231.

  
Karen Roper

**AN APPARATUS AND METHOD TO PROVIDE ONE-CLICK LOGON  
SERVICE FOR WIRELESS DEVICES**

Inventor(s): Hua Jiang  
2501 Plentywood Drive  
Plano, Texas 75025  
Nationality: U.S.A.

Hee C. Lee  
6417 Glenhollow Drive  
Plano, Texas 75093  
Nationality: Republic of Korea

Assignee: Nortel Networks Limited  
380 St. Antoine Street West, 8th Floor  
Montreal, Quebec H2Y 3Y4  
Canada

Carr & Storm, L.L.P.  
670 Founders Square  
900 Jackson Street  
Dallas, Texas 75202

**AN APPARATUS AND METHOD TO PROVIDE ONE-CLICK LOGON  
SERVICE FOR WIRELESS DEVICES**

**TECHNICAL FIELD**

5 The invention relates generally to wireless communications and, more particularly, to the entry of data on wireless devices.

**BACKGROUND**

With the advent of wireless communications has come a 10 multitude of wireless devices fulfilling specific needs of wireless device users. The devices have given users increased mobility and a greater access to information, all in an effort to better and easily manage their daily lives. The devices, however, are typically limited to a specific 15 function, requiring users to maintain multiple devices for the various aspects of their lives. Additionally, since the current technologies and protocols in the wireless communications network do not allow interchangeable devices, the same information is not accessible on all devices.

20 This problem, although applicable in any information network, is particularly apparent in wireless access to the Internet, as illustrated in FIGURE 1. The Mobile Station (MS) ~~110-114~~<sup>110-114</sup> user subscribes to a Wireless Access Network Provider (WANP) 120-126 that provides users with a Radio 25 Frequency (RF) ~~130-36~~<sup>130-36</sup> interface to the Wireless Communications Network (not shown) and the Internet 150. The RF interface comprises a RF carrier and a protocol. The RF carrier, which includes the messaging format for control and user data such as Time Division Multiple Access (TDMA), 30 Code Division Multiple Access (CDMA), and Global System for Mobile Communications (GSM), among others, vary widely, and, as a result, a single MS typically supports only one of the

possible RF interfaces. Furthermore, it is common for a WANP, such as AT&T, Sprint PCS, or AirTouch, to provide services for only a single RF carrier. As a result, MS users are typically restricted to not only a specific RF 5 interface, but also to a particular WANP within any given area.

Moreover, the protocol and presentation formats vary between devices. In comparison with wired data networks, wireless networks must support a variety of MSs: voice-only 10 cellular phones, mini-browser enabled cellular phones (commonly referred to as a WAP phone), Personal Digital Assistants (PDAs), one-way pagers, two-way pagers, and laptop computers. These devices, however, employ different communication protocols, such as Wireless Application 15 Protocol (WAP), Hyper-Text Transfer Protocol (HTTP), and voice communication links. Additionally, the application typically employ different presentation formats, such as Hyper-Text Markup Language (HTML), Wireless Markup Language (WML), and Handheld Device Markup Language (HDML). Because 20 of the relationship between the MS and the RF interfaces and presentation formats, a user is limited to service providers that support a particular RF carrier, protocol, and presentation format. As a result, a user typically subscribes to multiple service providers, one for each MS 25 owned.

Additionally, the MS and its capabilities vary. Unique characteristics of each MS, such as the input capabilities, display capabilities, amount of memory, and bandwidth, create a situation such that the preferred method of 30 communication with one may be inappropriate for another. While some MSs have significant capabilities, such as a laptop computer, other MSs, such as PDAs, mini-browser

enabled cellular phones, or voice-only phones, have significantly limited capabilities.

PDAs are becoming an increasingly popular way for MS users to remain connected. While a PDA has considerable capabilities, such as e-mail, contacts, and calendar functions, a PDA's capabilities are limited compared to a laptop computer. The display size is smaller, the processing capability is less, and, most importantly, the data entry is significantly limited. Data entry in particular is a limiting factor in the use of a PDA, as well as others, to send or retrieve information.

While a device such as a PDA is capable of entering the same data as a laptop or desktop computer, the ease of use and the amount of time required to enter the data significantly limits the functionality of the device. Data entry with a PDA is typically achieved through the use of a stylus and a touch sensitive screen. Generally, a miniature diagram of a keyboard is displayed on which a stylus is used to indicate the keys. The size of the displayed keyboard and the use of a single stylus significantly limit the ability of a user to enter large amounts of data on a PDA.

A mini-browser phone is more limiting. The display is large enough for only a small amount of data, and alphanumeric character entry is extremely difficult, typically requiring depressing a combination of keys or a sequence of keys to enter a single character. Other wireless devices, such as wireless phones and pagers, are typically capable of displaying only the most basic messages.

After the MS has access to a WANP, the MS must also subscribe to one or more wireless portals <sup>140-146</sup> ~~140-46~~. The portal provides the MS with links to content and service

30  
4.1.6  
dated

sites, web server functionality, and network access to the Internet 150. It is common in the industry for the WANP to provide the dial-up access and the web server functionality. Unfortunately, each WANP and MS vendor typically supports 5 only a single type of device and/or RF interface.

Therefore, the MS user typically maintains as many portals as devices. The various accounts, however, are separate and distinct services providing little or no integration between MSs. Information and services available 10 on one MS are generally unavailable on other MSs, regardless of the information content or MS capabilities.

Once connected to a wireless portal, the MS has Internet access to information provided by Internet Content Providers (ICPs) 160, which typically allow customization of 15 the displayed information to suit a user's specific needs. The information, however, is not specific to a particular device and as such may be displayed in a unusable format to the MS user.

As a result, the current architecture does not support 20 operation of multiple MSs while maintaining a single means of access to a variety of information and services. The requirement for an MS user to subscribe to separate WANPs and <sup>ICPs</sup> ~~MSs~~ for each MS device prevents a seamless integration between the devices. As a result, for the MS user to have 25 access to all information, the MS user must simultaneously possess and operate the various devices, complicating instead of easing the MS user's life.

*4.1.6  
bullet*

In addition to problems in providing a seamless integration of devices and services, the architecture 30 described above results in specific problems: providing information that requires data entry, providing location-based services, and providing automatic notification of

specified events, as well as others. Furthermore, since the device characteristics vary, it is difficult to determine how best to display the requested information.

#### ONE-CLICK DATA ENTRY

5 Data entry in the wireless environment is particularly challenging because, as stated above, many of the wireless devices have limited, or an extremely difficult, means of entering alphanumeric data, in addition to being susceptible to security breaches as someone eavesdrops on the RF signal.

10 Devices such as PDAs and wireless Internet browsers typically have only a few keys with which to enter data. Often, the entering of a single character entails depressing a single key multiple times or depressing a combination of keys. The entering of character strings becomes

15 increasingly difficult and time consuming as the length of the string increases.

Other devices, however, may have more capability to enter alphanumeric data but are not secure methods to enter secret data. Wireless devices communicate via RFs that are

20 available to anyone with the appropriate equipment and technology to intercept and decode the signal. Therefore, if secret data, such as passwords and account numbers, are sent, the possibility that someone gains access to private information increases.

25 These limitations particularly restrict a wireless device's use of many applications. For instance, many Internet web sites provide subscription services that allow users to customize displayed information to suit his/her specific needs and desires. The ICPs generally protect the

30 user's information by means of a unique user identifier and password, or other such authentication means. The user is then prompted for the authentication information before

access is allowed. Requiring the user to enter their user id and password with a device with limited data entry capabilities are often prohibitive and discourage use.

ICPs and web browsers often implement an authentication means called a cookie. A cookie is an industry standard mechanism in which an ICP stores user information in a predetermined location on the user's device. The ICP automatically verifies the user information in the cookie when the user accesses the web site. If the user's authentication information is contained in the cookie, the user is automatically granted access to the web site, as customized by the user, without further interaction. If the user's authentication information is not contained in the cookie, the user must manually enter the authentication information manually.

While the cookie authentication mechanism is extremely useful in a desktop environment where the user's device is stationary and provides greater capabilities, the cookie is not useful for wireless devices. First, the use of cookies is not supported by the standard protocols, such as Wireless Application Protocol (WAP). Second, even if cookies were supported by the protocols, the use of cookies stored on a wireless device poses a security risk in the interception of the RF transmission of the cookies and in the potential loss of the wireless device, thereby potentially allowing access to private account information to unauthorized individuals. Finally, MSs have limited capabilities and are frequently unable to perform the complicated authentication procedure. Even if it was capable, the authentication procedure would take valuable bandwidth that further exasperates the problems of wireless networks.

LOCATION-BASED SERVICES

Another limitation of the use of MSs for information-based services is the inability to provide location-based information. Services such as restaurant guides, weather, and movie guides, among others, are popular services based 5 on a particular location. In the landline environment the problem is easier to solve: the user's location may be known, such as Caller-ID or a known home dial-up connection; or the service provider may request the user to input the location information. Since Caller-ID or a known MS is 10 meaningless as a means for determining a wireless user's location, and, as described above, the entry of data in the wireless environment is difficult or impossible, location-based services are problematic to the MS user.

The issues with using a location-based service from an 15 MS can be grouped into two categories. First, the mobile user may not know his/her location in terms required by the ICP. For instance, even if the ICP required only a zip code, it is typical for a mobile user, even within the confines of a city, to move from one zip code to another or 20 venture into an unfamiliar part of the city. Additionally, many MS users are travelers completely unfamiliar with their location. In such a situation, it is literally impossible to provide their location, even without any other limitation.

25 The second category is the inability of the MS user to easily enter the location information, provided it is known. As described above, the limitation of the MS user to enter data easily discourages the user from requesting location-based services.

30 Prior attempts to resolve these issues have been unsuccessful. In one such attempt, the ICP requests the MS location from the wireless network via the Signaling System

7 (SS7) network. The information, however, presents a security and privacy issue as the information passes through the Internet and is susceptible to interception. As a result, the ability of the wireless network to provide the 5 location of a mobile user is limited and, possibly, prohibited.

Another attempt to gain access to the location information merges the ICP with the wireless provider. In this situation, the service provider has access to the 10 mobile user's location without requesting the information from an outside source or transmitting the information over the Internet. This implementation, however, is extremely costly to create and provides poor scalability for the provider.

15 SMART PUSH

Yet another problem experienced by service providers is the inability to accurately deliver messages to users. Message delivery services typically consist of two types: push messages or pull messages. Push messages, such as e-mail, pages, scheduling events, stock quotes, weather, and sports information, among others, are generally delivered at a specified time or event. Delivery is made to a predetermined device and is made regardless of the user's status, device status, or message content. Therefore, if a 20 message is sent to an MS that is not activated or is unavailable to the user, the information may not reach the MS user. Additionally, if the information was of such a type that the information cannot be displayed accurately on the device, the information may be meaningless to the mobile 25 user. Message delivery, therefore, is not guaranteed to reach the mobile user in a useable format.

Pull messages, on the other hand, are the typical requests made by the user. The ICP returns information to the MS user on the device from which the request was submitted. While the MS is known and there is a higher 5 likelihood the information will reach the user, the user must make an explicit request for each pull message.

#### DEVICE AWARE

Yet still another common problem of ICPs and MS users is that the wide diversity of MSs to suit a user's 10 particular needs often result in communications in a manner not optimal for that particular device. Capabilities, such as the display size and quality, the amount of memory, and the input mechanisms, vary between the MSs' and, as a result, so do the preferred communication method.

15 Service providers and content providers generally provide information in a particular format, such as Hyper-Text Markup Language (HTML) or Wireless Markup Language (WML), without regard to the specific device on which the information is displayed. As a result, information for all 20 wireless devices is provided in one particular format, regardless of the device characteristics. Information that is designed for display on a laptop or PDA, for instance, is unlikely to be displayed in an easily readable and accessible format on a web phone.

25 Additionally, the amount of memory affects the method of communication. If the MS's memory is sufficient, an application can utilize the additional memory and download additional information to the device in anticipation of a user's request while the user is reading the first page. 30 For instance, when the user requests a lengthy report, succeeding pages can be downloaded and accessible to the user on demand while the user is reading a particular page.

Furthermore, as stated above, devices vary as to the ability of the user to enter data. Preferably, the information would be displayed in such a format as to accommodate the user's device, not only in terms of display but also in terms of requiring input. For instance, if a device has limited data entry capabilities, requested data is determined by a series of selections as opposed to a query that requires entering a lengthy string.

This creates problems not only between types of MSs, such as laptop computers and PDAs, but also between MS models, such as models of PDAs. For instance, the capability between the various PDA models can vary greatly in terms of memory, display controls, and size, among others.

Therefore, there is a need, either independently or in combination with other needs discussed herein, for a method and apparatus for providing & information easily from an MS.

SUMMARY

The present invention provides a method for Mobile Station (MS) users to request user-dependent data without the need for entering user identification information. The method comprises determining whether a request requires user-dependent data, and, if appropriate, formatting a request with the user-dependent data.

25

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:

FIGURE 1 schematically depicts the typical network environment of the prior art;

FIGURE 2 schematically depicts one embodiment of a network that embodies the present invention;

FIGURE 3 depicts one embodiment of FIGURE 2, in which the Wireless Access Network Provider is a Second Generation Circuit Switched Data network;

FIGURE 4 depicts one embodiment of FIGURE 2, in which the Wireless Access Network Provider is a Cellular Digital Packet Data network;

FIGURE 5 depicts one embodiment of FIGURE 2, in which the Wireless Access Network Provider is a General Packet Radio Service network;

FIGURE 6 depicts one embodiment of FIGURE 2, in which the Wireless Access Network Provider is a CDMA 1x Standards Radio Telecommunications Technology network;

FIGURE 7 schematically depicts one embodiment of the present invention;

FIGURE 8 schematically depicts one embodiment of the Portal Middleware Server;

FIGURE 9A and 9B are flow charts illustrating one embodiment in which the MS user initiates WPM services;

FIGURE 10 is a flow chart illustrating one embodiment in which the MS user subscribes to a service via the present invention;

FIGURE 11 is a flow chart illustrating one embodiment in which the MS user accesses a site that requires user-dependent data via the present invention;

5 FIGURE 12 is a flow chart illustrating one embodiment in which the MS user adds a service provider to the MS user's profile;

FIGURE 13 is a flow chart illustrating one embodiment in which the MS user requests user-dependent data;

10 FIGURE 14 is a flow chart illustrating another embodiment in which the MS user requests user-dependent data;

FIGURE 15 is a flow chart illustrating yet another embodiment in which the MS user requests user-dependent data;

15 FIGURES 16A and 16B are flow charts illustrating one embodiment in which the MS user is provided location-based information;

20 FIGURE 17 is a flow chart illustrating one embodiment in which the MS user is sent messages dependent on the message type and device availability;

FIGURE 18 is a chart illustrating one embodiment in which the priorities of the MSs are determined;

25 FIGURE 19 is a flow chart illustrating one embodiment in which a message is formatted according to the type of device; and

FIGURE 20 is a flow chart illustrating one embodiment in which the type of MS is determined.

DETAILED DESCRIPTION

The principles of the present invention and their advantages are best understood by referring to the illustrated embodiment depicted in FIGURES 2-20.

5 Referring to FIGURE 2 of the drawings, the reference numeral 200 generally designates a wireless communication system, which embodies features of the present invention. Specifically, a method for integrating services and features comprising a Wireless Portal Middleware (WPM) 210 connected to a plurality of Wireless Access Network Providers (WANP) ~~220-26~~ and the Internet 270, wherein the WPM 210 provides a single portal through which a user's MSs 240-46 communicate with ICPs 250-60 via the Internet 270.

10 The WPM 210 is a programmable platform, providing functionality and interfaces for implementing telecommunication services, such as voice mail, e-mail, and Personal Information Management (PIM), and Internet access services. Additionally, the WPM 210 is a scaleable platform, allowing value-added services to be added without 15 hardware and software restructuring. The WPM's standard and open interfaces to wireless and wireline networks allow service providers to integrate service offerings as networks and technologies evolve. Additionally, the WPM provides a services platform from which memory and processor intensive 20 applications are performed and accessible from multiple devices, reducing the need for more powerful MSs and increasing the capability of MSs.

25 Moreover, the combination of the above features allow the WPM 210 to provide a services platform from which integrated services that allow a variety of services and features to interact independent of the access method or 30 type of device are performed.

Furthermore, unlike the prior art discussed above, typically requiring an MS user to subscribe to a portal for each MS, the present invention's novel and useful feature allows a plurality of devices to access services and 5 information from a single portal. A single portal allows value-added services that provide a seamless integration between the various wireless and wireline devices, providing a mechanism to share data and information between MSSs, limiting the impact of device-dependent protocols and 10 service providers. Furthermore, the WPM 210 provides MS users seamless access to information networks regardless of the type of device available to the user, whether it is a cell phone 240, a mini-browser phone 242, a laptop computer 244, or a PDA 246, among others, by providing a central 15 repository for subscriber information and services.

FIGURE 3 illustrates a portion of a wireless Second Generation Circuit Switched Data network (2G CSD), which embodies features of the present invention. Specifically, the wireless communication portion includes a plurality of 20 MSSs 312 communicating via RF signals 322 to a Base Transceiver Station (BTS) 330. The Base Station Controller (BSC) 332 controls the operation of the BTS 330. The BSC 332 routes the call and the signaling information to the Mobile Switching Center (MSC) and Visitor Location Register 25 (VLR) 334. The MSC/VLR 334 interfaces to the Home Location Register (HLR) 336 and the Public Switched Telephone Network (PSTN) 338 for user authorization and call routing purposes. The PSTN 338 also provides wired users 340 access to the WPM via other means, such as a voice access, or a network/dial- 30 up connection.

Optionally, an Inter-Working Function (IWF) 344 may be available. The IWF 344 is generally specific to the 2G CSD

networks and provides an alternate path of communication between the wireless networks and the Internet. The connection between the IWF and the WPM is preferably a Fast Ethernet connection with Layer 2 Tunnel Protocol (L2TP) for 5 extending the PPP protocol to the WPM. Although the connection to the IWF is typically a Fast Ethernet connection, other connections, such as fiber, may be used.

Optionally, a location server 346 may be available in the wireless communications network. The location server 10 346 connects to the HLR 336, typically via a Signaling System 7 (SS7) link, to obtain MS location information. The form of location information retrieved from the location server 346 is dependent on the type of wireless communications network. For instance, GSM provides a cell 15 ID, and CDMA and TDMA provide an MSC ID. The location information is received by the WPM 350 and converted to a format required by the users' function, as discussed below. Importantly, the location server 346 is the access point for 20 location information retrieval from the wireless networks and is owned and controlled by the wireless network provider. Therefore, the access of private information, such as the user's location, is protected, providing the WPM with a secure method of gaining access to the user's 25 location.

Wireless telecommunications and the functioning of the above-mentioned components, except the WPM, are considered well-known in the art and will therefore not be discussed in further detail herein, except insofar as necessary to describe the present invention.

30 In an alternate embodiment, FIGURE 4 depicts a network architecture in a Cellular Digital Packet Data (CDPD) network, which provides packet data services as an overlay

onto existing analog cellular networks and is commonly used to provide Internet access for PDA users. In this scenario, the BTS 330 of FIGURE 3 is replaced with a Mobile Data Base Station (MDBS) 410, which is a BTS that is compatible with 5 the CDPD networks. The Mobile Data-Intermediate System (MD-IS) 412 provides a switching function between network elements as well as providing network access into the CDPD network to the WPM.

As yet another embodiment of the present invention, 10 FIGURE 5 depicts the WPM interfacing with a General Packet Radio Service (GPRS) or, similarly, a Universal Mobile Telecommunications Systems (UMTS) wireless network. GPRS data service provides high speed data access via packet data in Global System for Mobile Communications (GSM) networks. 15 GPRS packets are sent from the BSC 510 to the Serving GPRS Support Node (SGSN) 512 via the Packet Control Unit (PCU) 514. From the SGSN the packets are sent to the Gateway GPRS Support Node (GGSN) 516, which provides access to other networks, such as the Internet and the like.

20 Yet still another embodiment of the present invention is depicted in FIGURE 6 for CDMA 1x Standards Radio Telecommunications Technology (1xRTT) networks. In this situation, the CDMA Interconnect Subsystem (CIS) 610 interconnects the BTS 612 to the System Controller Interface 25 (SCI) 614 and the System Controller Interface Server (SCI-S) 616 to provide a switching function and data access.

While FIGURES 3-6 describe particular wireless networks, the WPM is capable of interfacing with multiple wireless networks simultaneously. It is expected that 30 single devices capable of interfacing to all of these, among others, will be developed. As one of the advantages of the WPM is providing a single interface to the end user

regardless of the type of device or access method, it is also expected that the novel and useful features of the present invention apply equally to other networking methods, regardless of the type or method of access.

5 FIGURE 7 depicts the components and the internal architecture of one particular embodiment of the present invention. Internally, the WPM preferably utilizes distributed processing and employs a plurality of servers. Controlling the WPM 716 is the portal 730 and the Portal  
10 Middleware Server (PMS) 732. The portal 730 is a programmable router, such as a Shasta 5000 Router manufactured by Nortel Networks Corp., that provides termination of Point-to-Point Protocol (PPP) messaging, edge routing, captive portal, and firewall capabilities. The  
15 portal 730 is preferably configurable to re-route data packets to the PMS 732 based on the destination address and the packet type, allowing for quick deployment of additional servers and services. Additionally, the portal provides connectivity to the Internet, preferably via a fiber  
20 connection, and provides standard interfaces to wireless networks, such as analog, TDMA, CDMA, CDPD, 1xRTT, GPRS, Enhanced Data Rates for Global Evolution (EDGE), CDMA2000, UMTS, and wireless LAN (IEEE 802.11b).

The PMS 732 is the central control point for service  
25 characteristics and interaction between the services and system capabilities. The PMS recognizes different wireless devices, acquires information, converts between different protocols and formats, organizes personalized configurations and content, and manages the user's session.

30 The WPM optionally encapsulates other servers to provide services that are not otherwise available in the communications networks, or are available but not integrated

with other services. It will be obvious to one skilled in the art that servers may be added or deleted dependent on the type of service provided and the capabilities located elsewhere in the communications network. Namely, a cache 5 server 740, voice browser 742, Voice Extended Markup Language (VXML) server 743, domain name server (DNS) and Dynamic Host Control Protocol (DHCP) servers 744, directory 746, Authentication, Authorization, Accounting (AAA) server 748, a Personal Information Management (PIM) server 750, and 10 an e-mail server 752 have been found to be useful.

The cache server 740 provides additional storage for service and user information. Features, such as the Smart Push, among others, described below may require additional storage for the delivery of messages. By providing for a 15 cache server 740, the WPM is easily scaleable as the system requirements increase.

The voice browser 742 and the VXML server 743 provide a means for a voice-only device to easily navigate without the need for complicated data entry.

20 The DNS and DHCP servers 744 provide Internet Name and Address Management (INA). The INA manages static addressing (the DNS functionality) and dynamic addressing (DHCP functionality) in the Internet Service Provider (ISP) or enterprise domains, providing the WPM IP name and address 25 conversion, and IP addresses assignment in the IP infrastructure.

The directory 746 provides a storage system for profile schemas and other user information. Additionally, the directory provides authentication data and user access 30 privileges for the AAA server 748 usage.

The AAA server 748, such as the Preside RADIUS Server, provides AAA management and services. The WPM AAA services

SEARCHED  
INDEXED  
SERIALIZED  
FILED

verify incoming users' identity, authorize users' access to services and network resources, and bill users appropriately for services used during a session. In the Authentication phase, the WPM provides the AAA server the Mobile Identification Number (MIN) of the MS and the Personal Identification Number (PIN) of the user. Preferably, the MIN is the wireless subscriber's ID (SID). The AAA server compares the MIN and PIN to the user's information stored in the directory 746. If the subscriber authentication is successful, the AAA server preferably allocates an IP address for a connection. Alternatively, the AAA contacts the DHCP server to request the allocation of an IP address. After authentication is complete, a response is sent to the PMS with the IP address and a connection is established.

In the authorization stage, a user's configuration parameters define the user's session. The AAA server receives a RADIUS request message, including a RADIUS account request message, and verifies the contents against the detail user profile. If the RADIUS message is correct, the AAA server sends an accept message, which includes a set of parameters used to configure the user's session. These configuration parameters define the users' services and network access privileges.

The Remote Access Server (RAS) 754 provides dial-in capabilities to either an MS user 718 or a landline user 720.

Other commonly available optional servers are the PIM server 750 and the e-mail server 752. The PIM server 750 provides users with personal information services, such as calendar events, reminders, contacts, and task lists, among others. The e-mail server 752 provides e-mail services such

as send/receive mail, mail forwarding, and address books, among others.

FIGURE 8 is one embodiment of the PMS 732 of FIG. 7. Preferably, the WPM decomposes into several functional areas, which are used individually or in combination to create customized services. The PMS' HTTP and WAP gateways 810 and 812 provide a web server interface for the WPM, providing users Internet access and information retrieval capabilities.

10        Additionally, the PMS contains a presence manager 814, device manager 816, location manager 818, subscriber manager 824, logon manager 826, event manager 828, Lightweight Directory Access Protocol (LDAP) client 830, push service manager 832, profile manager 834, and servlets 836. The 15 function of each component is described in further detail below.

20        The presence manager 814 detects the availability of a user's device for determining a preferred method of communication by means of user profiles, device registration, on-line device detection, and wireless network queries. Refer to the Smart Push discussion below for further information.

25        The device manager 816 determines the device type a user is currently utilizing and maintains a device state table of the user, comprising the state of devices for active users. The device type is determined by the access method, the access port, the Terminal Identifier (TID), and the agent. Refer to the Device Aware discussion below for further information.

30        The location manager 818 determines whether a user request requires the user's location information. If the location manager 818 detects that location information is

required, the location manager queries either the location server (location server 346 of FIGS. 3-6) or the wireless networks. As discussed above, the location server is an optional component in the wireless network. If the location 5 server is present, the location manager queries the location server via an Extended Markup Language (XML) connection 820. If the location server is not present, however, the location manager 818 queries the wireless network via SS7 links 822. The location manager 818 is also responsible for mapping 10 location information from wireless networks to that required by third party content providers. Refer to the Device Aware discussion below for additional information.

The subscriber manager 824 determines the subscriber identifier (SID) and performs authentication. It is preferred to use the Terminal Identifier (TID) or Mobile 15 Identification Number (MIN) as the SID, and, therefore, allowing the WPM to easily determine if further authentication is necessary by comparing the SID and the TID. If further authentication is necessary, such as the 20 case when the user accesses the system from other devices, the subscriber manager requests user identification for authentication purposes. Preferably, the authorization function is performed by an AAA server.

Additionally, the subscriber manager maintains the 25 subscribers' active IP address for routing of messages. Wireless networks utilize the SID for addressing and routing messages to a specific MS user. Information networks, such as the Internet, however, utilize an IP address for addressing and routing messages. Therefore, communications 30 between the wireless networks and the Internet require a mechanism to route messages between wireless networks and the Internet. Preferably, the subscriber manager maintains

a translation table to efficiently assign and translate SIDs and IP addresses. Alternatively, the SID and/or the IP address is included in the link.

The IP address is a static IP address or a dynamically allocated IP address that may change multiple times during a single call. The allocation and assignment of an IP address to a subscriber is commonly known in the industry and will not be discussed in further detail.

The logon manager 826 provides user access to ICPs requiring user-dependent data. The logon manager 826 optionally captures user-dependent data as the user accesses secure ICPs, or the user enters the data into the user's profile for future use. Thereafter, the logon manager 826 detects the user's request and configures an appropriate request for the ICP containing the user-dependent data. Refer to the One-Click discussion below for additional information.

The event manager 828 controls the interface between the WPM and the Personal Information Management (PIM) server (PIM Server 750 of FIG. 7). The event manager 828 notifies the user of PIM events, such as calendar events and alert services, and delivers push messages.

The LDAP client 830 controls the interface between the WPM and the directory (directory 746 of FIG. 7) for accessing user information. Other functions requiring user data stored in the directory utilize the LDAP client to format and submit a request to the directory server. The directory server retrieves the information and returns the data to the LDAP client 830, who forwards the data to the requesting function.

The push service manager 832 controls the message delivery to a user depending on the device availability, the

type of message, and the user preferences. Refer to the Smart Push discussion below for additional information.

Finally, the profile manager 834 maintains the user's profiles as well as maintains the user's homepage based on 5 those profiles. The user's homepage is the preferred method of the user's interaction between the WPM and the user. Preferably, the WPM allows the user to customize the user's homepage to fulfill the user's specific needs.

The WPM maintains multiple profile schemas, designed to 10 incorporate user preferences, network mobility patterns, administrative convenience, and network resource distributions. The Directory Service technology is the preferred embodiment to implement the profile schemas, which are preferably encrypted to provide additional security. 15 The Directory Service technology is considered well-known in the art and will therefore not be discussed in further detail herein, except insofar as necessary to describe the present invention.

The profile schemas comprises, among others, the user 20 profile, service profile, preference profile, device profile, usage profile, and logon profile. The inclusion or exclusion of any of these profiles is dependent on a particular application or implementation.

The user profile comprises the user's personal 25 identities, such as, among others, names, addresses, e-mail addresses, and the user's role, which define the user's service privileges. The user profile also preferably includes a user identification parameter and value, user password parameter and value, and the request formats for 30 service providers frequented by the user.

The service profile describes service types available for the varying MSs and service applications, such as video,

voice, web access, bulk transfer, preferred web sites, preferred services, subscribed push services, contact lists, and access rights.

The preference profile contains users' preferences with 5 regard to the services and devices. Preferences comprise device activation times, bookmarks, and notification preferences.

The device profile comprises information regarding an 10 MS, such as, among others, device ID, serial number, capabilities, and locality information.

The usage profile comprises the detail records of device usage and service usage.

The logon profile comprises the authentication protocol, user ID, and password to logon on to a content 15 service provider, such as a URL.

FIGURES 9A and 9B illustrate one embodiment of the present invention in which the user initiates a link with the WPM for access to the Internet and other WPM services. As illustrated in step 910, the MS user initiates the 20 connection by preferably depressing a key on the MS. The key preferably initiates a dial-up connection to the WPM via a RAS that is supplied by the wireless network provider. Optionally, the RAS is supplied as optional server as part 25 of the WPM. The depressed key is preferably a speed-dial connection but may be any method to initiate a connection to the WPM.

Thereafter, the MS initiates a PPP connection with the SID as the user identifier, as in step 912. The connection is a communication link establish within the wireless 30 network, such as a PPP connection in a 2G wireless network, a Packet Data Protocol (PDP) Context Connection in a 3G wireless network, and the like. The portal receives the SID

and password from the PPP connection and routes the call for authentication, as in step 914. Preferably, the authentication is performed by an AAA server. If the authentication process is unsuccessful, the MS user is 5 denied access and the call is disconnected, as in steps 916 and 918. If the authentication process is successful, an IP address is assigned from either a list of available IP address or a DHCP server, as in step 920. The authentication response is sent to the PMS via the portal, 10 as in step 922, and the MS user SID and IP address is added to an active subscriber list maintained by the subscriber manager as discussed above, as in step 924.

The PMS notifies the portal of the successful completion and the portal completes the connection to the 15 WPM, granting the MS user access to the WPM services, as in step 926. Thereafter, the MS user has access to the Internet and other services, such as e-mail, PIM, and the like. Preferably, the MS user is presented a user home page from which the user selects the desired options.

20 The use of the Shasta as the portal provides additional capabilities in the authentication and authorization process discussed above. The Shasta is able to be configured to route messages based on the packet type and the destination address. By using the routing capabilities, the Shasta is 25 configurable to route the authorization messages to the PMS, allowing the PMS to maintain the active subscriber information. Alternatively, if the portal is not capable of routing messages in this manner, the Radius protocol is preferably modified to route the authentication and 30 authorization messages to the PMS.

Given the system architecture and capabilities described above, the following paragraphs describe novel and

useful services that are enabled. The descriptions of the services are but one embodiment of the service that have been found to be particularly useful to MS users. It will be obvious to one skilled in the art that variations may be 5 made to fulfill specific needs of other users.

#### ONE-CLICK DATA ENTRY

The one-click data entry service enables a wireless device, which typically has limited input capabilities, to easily interact with services that require long, 10 complicated, user-specific data entry. For instance, logon information required by some content providers allow users to register and customize the web site to suit the users' particular needs and desires. The logon information, however, is typically cumbersome to enter on an MS. The 15 present invention, however, allows the user to interact with such services without the need to enter long strings of data by storing user-dependent data on the WPM.

The one-click data entry also provides additional benefits over the prior art, namely an increase in RF 20 resources and increase of power savings. Since the data is stored on the WPM, less data is being sent via the RF interface, thereby increasing RF resources. Additionally, since less data is being transferred, less power is required, increasing power reserves.

25 FIGURES 10-12 illustrate various methods, among others, in which the user configures the one-click data entry service. In the first option, FIGURE 10, the WPM captures the logon information. In step 1010, the user logs onto the WPM and, using the WPM as a portal to other networks, such 30 as the Internet, the user subscribes to a service requiring user-dependent data, step 1012. The WPM detects that the service requires user-dependent data based on commonly known

keywords, and prompts the user for permission to capture the user data, step 1014. If the user consents to capture, the WPM monitors the interaction and captures the user, service, and site information, step 1016. Generally, the WPM will 5 not need to request additional information from the user, step 1018, however, if the service provider uses non-standard messaging the WPM prompts the user for additional information, as in step 1020. Thereafter, one-click data entry is available to the user, as in step 1022.

10 If the user does not consent to the WPM capture of logon information, as in step 1014, the WPM provides access to the ICP without capturing the data, step 1024.

Another method of initializing the one-click data entry service, illustrated in FIGURE 11, is useful when the user 15 is currently subscribed to a service, such as from a wireline computer connection, and wishes access from an MS. 20 In this situation, the user logs onto the WPM, as in step 1110, and selects a service provider that requires user-dependent data, as in step 1112. The WPM detects that the service provider requires user-dependent data in one of two-ways. First, the service provider is known by the WPM to be an ICP that requires user-dependent data, as in step 1114. Second, after the WPM submits the information request to the service provider, as in step 1116, the WPM detects that the 25 service provider is requesting user-dependant data by examining the response from the service provider, as in step 1118. In either case, the WPM prompts the user for permission to capture the user-dependent data, step 1120. If allowed, the WPM captures the user and service provider 30 information and retains for later use, step 1122, enabling the one-click data entry service for the user, step 1124.

*R.P.6  
exhibit*

Otherwise, the WPM proceeds without capturing the user information, step 1126.

Yet another method of configuring the WPM for the one-click data entry service is illustrated in FIGURE 12. In 5 this scenario, the user registers the site with the WPM, and the WPM determines the correct format by either querying the service provider or determining it is a known site.

The user first logs onto the WPM, as in step 1210, and elects to add a service provider to the user's profile, step

10 1212. The user enters the user-dependent data, such as the URL of the service provider, user identifier, and user password, among others, step 1214. The WPM determines whether the format of the request is known by comparing the service provider request with known service providers. If

15 the WPM determines the format of the request is not known, step 1216, the WPM queries the ICP to determine the correct format, step 1218, and create the completed request, as in step 1220. If the format of the request is known to the WPM, the WPM formats the request with the user-dependent 20 data, as in step 1222. Thereafter, the one-click feature is available to the user, as in step 1224.

As illustrated in FIGURES 13-15, the user invokes the one-click data entry service by entering either a known key sequence, a URL that the WPM intercepts and reformats, or a 25 link that invokes a translation servlet in the WPM. As in step 1310, a known key sequence, similar to a shortcut key, provides the user with the ability to enter a minimal number of keys, which are translated into a command or a series of commands. Preferably, the known key sequences comprise 30 user-defined key sequences and a set of default shortcuts provided by the service provider to commonly requested services and information.

As used throughout this document, a key sequence is understood to comprise any means of entering data. Typically, a user will enter data from an MS by depressing keys on a keypad or keyboard, selecting an option key, 5 selecting an option via a mouse device, and the like. Other means are understood to be included in this specification and are not to be excluded.

When the user depresses a key sequence, as in step 1310, the WPM performs a search for the depressed key sequence within the user profile, steps ~~1312-14~~<sup>1312-1314</sup>. 10 Optionally, the WPM allows the user to create user-programmed shortcut keys. If user-programmed shortcut keys are allowed, the WPM determines whether the key sequence is a user-programmed shortcut key, as in step ~~1016~~<sup>1316</sup>, and 15 replaces the shortcut keystrokes with the programmed information, as in step 1318.

Next, in step 1320 the WPM determines whether the requested information requires user-dependent information, such as user identification and passwords, among others, 20 preferably by filtering the request for user-dependent parameters. If user-dependent data is required by the information provider, the information is retrieved from the user profiles and is formatted with the request, step 1322, and the request is sent to the information source, step 25 1324. Finally, the result of the request is displayed to the user with minimal user interaction, step 1326.

FIGURE 14 illustrates another embodiment of the one-click data entry feature in which the user enters a URL, such as the URL for a brokerage account, an auctioning 30 service, or an e-mail service, and the like. If the user enters a URL, step 1410, the WPM intercepts the URL, step 1412, and searches the directory for a URL translation, step

1414. If the translation requires user-dependent data, preferably determined by filtering the translation, step 1416, the WPM retrieves the user-dependent data and reformats the URL with the user-dependent data, step 1418. 5 The completed request is then sent to the service provider, step 1420, and the results are presented to the user, step 1422.

In yet another embodiment, FIGURE 15 illustrates the user's ability to depress a link, such as a stock portfolio 10 selection on the user's home page, and the like. When the user depresses a link, step 1510, the link invokes a servlet to be performed by the WPM, step 1512. The WPM translates the link, as in step 1514, and determines if the site requires user-dependent data, as in step 1516. If the 15 translated link requires user-dependent data, the WPM reformats the request with the user-dependent data, as in step 1518. The request is then sent to the service provider, as in step 1520, and the results are presented to the user, as in step 1522.

20 A typical scenario where this aspect of the present invention is particularly useful is aiding the wireless user in "surfing the web." Many users take advantage of ICPs that allow the user to customize features or account information, such as brokerage accounts. In these 25 situations, the ICPs require the user to register and to be assigned a user identifier and password. Due to the difficulty in entering the required information, MS users often choose not to access the information from an MS. This limitation, however, is overcome by the present invention.

30 Under the present invention, the user selects the appropriate key sequence, URL, or link from an MS. The WPM determines whether the request requires user-dependent data.

If so, the WPM formats a request comprising the user-dependent data to send to the ICP with little or no further user interaction.

The preferred embodiment of the one-click data entry service is to store the one-click data entry information in the WPM. In this manner, the information is easily available for multiple MSs, as well as a wireline connection. Additionally, storing the information in the WPM provides additional security from loss or interception, thereby enabling services such as e-commerce.

E-commerce applications typically require credit card information, names, addresses, passwords, and delivery information, making security a primary issue for the MS user. By storing the information, preferably encrypted, on the WPM, the MS user can securely utilize e-commerce applications, allowing the WPM to store and transmit the user-dependent data directly to the e-business in a secure manner. In the event of loss of the MS or interception of the transmission, the secured information retained on the WPM is not accessible to unauthorized individuals. Storing the information in an encrypted state is preferable to provide an additional level of security against unauthorized access.

An alternative embodiment, however, is to store the linking information and the service logic in the MS. Under this embodiment, the functions described above as performed in the WPM are performed in the MS, and the MS transmits the completed link.

Alternatively, the one-click data entry is implemented in both the MS and a remote services platform, such as the WPM. In this embodiment, the MS retains one-click data entry information for general access purposes where security

is not an issue. The remote services platform retains information for which security is an issue.

#### LOCATION-BASED SERVICES

The WPM furthers the utility of MSs by providing the 5 users with the ability to request and receive location-based information. For instance, an MS user has the ability to request directions to the nearest restaurant from his current location, or sales at a particular mall are delivered to the user's PDA as he enters the mall.

10 The WPM determines a location request by use of several methods. The first method, as in step 1605, provides the user with pre-selected options, such as options on a personal home page and the like. The preselected options represent services available from the WPM and are performed 15 by a servlet. When the MS user selects the preselected option from the MS, the MS transmits to the WPM, preferably a URL, which corresponds to and initiates a servlet. Since the servlet is invoked directly, the WPM is aware that the request is a location-based service and processes the 20 request accordingly. In this instance, the format of the location request is known by the WPM. Preferably, the WPM provides the information as part of available WPM services, or requests the information from a preselected ICP.

25 In another method, as in step 1610, the MS transmits a shortcut, such as "local restaurant", as a request to the WPM. The request received by the MS is filtered to determine the existence of the shortcut and translates the shortcut to a location-based information request containing a location parameter. Filtering the request comprises 30 parsing the request to determine if the request comprises a shortcut or known keywords. If the request is determined to comprise a shortcut by comparing the request to system

and/or user defined shortcuts, the shortcut is replaced with a link, replacing any known keywords with user-dependent data or location values.

Preferably, the WPM selects the ICP from which to 5 request the information. Alternatively, the MS user selects the ICP from which to request the location-based information.

In another method, as illustrated by step 1612, the 10 request, typically a URL, is entered by the MS user and transmitted to the WPM. The WPM scans the request before transmittal to the service provider to determine if the request contains a location parameter, such as "zip code", "location", "city", and the like. For instance, the user 15 may enter the URL of a mapping service leaving the location parameter undetermined. The WPM scans the request and upon finding the location parameter, formats a request comprising the user's location for transmittal to the service provider.

In yet another method the response from the service provider is analyzed for a location parameter, as in step 20 ~~1614~~ <sup>1616</sup>. Even though service providers generally utilize a few variations, such as the use of a "location" parameter in URLs, the location parameter is not standardized. As a result, this method is not preferred at the current time, but may become more feasible as standards evolve. In any of 25 these methods, if the location parameter is found, the WPM determines how best to complete the request with the location information.

Preferably, the user's location is determined by requesting the information from the wireless networks or 30 knowledge of a known location of a fixed device, such as a home computer. The first step in determining the location, step 1616 determines whether the user is on a mobile device.

If the user transmitted the request from an MS, the user's location is ascertainable by querying the wireless networks, the technique of which is commonly known in the industry, as in step 1618. The information from the wireless network 5 varies by the network type and is typically in terms meaningful only to the wireless networks. As a result, the user's location is translated from a network location to a location relevant to the service provider, such as a zip code. Preferably, the translation is performed by using a 10 translation table between the wireless network location, such as a cell ID, latitude-longitude, or MSC ID, and a format required by the service provider, such as a zip code, city, or street number, among others.

For instance, the location received from the wireless 15 network service provider, such as 35W, RICH1, and the like, are generally dependent on the network configuration and naming standards of each particular wireless network service provider. For the location information to be meaningful to an ICP, and, therefore, the subscriber, the location must be 20 translated to a term meaningful to the ICP, such as a zip code, street address, and the like.

If the user is not on an MS, the WPM preferably prompts the user for the location, as in step 1620. Optionally, the WPM determines the user's location from the user profile or 25 the IP address of the user's device. The greater input capabilities of the wireline devices typically allow users to enter location information with greater ease and specificity. Additionally, the user may desire a prompt if the user is frequently at a different location than the 30 location for which he desires information, such as a traveler in a first city who desires a list of restaurants in a second city near the airport.

16  
3/21/05  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
649  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
699  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
769  
769  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
809  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
969  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
1026  
1027  
1028  
1029  
1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1079  
1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1099  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1129  
1130  
1131  
1132  
1133  
1134  
1135  
1136  
1137  
1138  
1139  
1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1149  
1150  
1151  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1159  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1189  
1189  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1239  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1269  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1289  
1290  
1291  
1292  
1293  
1294  
1295  
1296  
1297  
1298  
1299  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1319  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349  
1349  
1350  
1351  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359  
1359  
1360  
1361  
1362  
1363  
1364  
1365  
1366  
1367  
1368  
1369  
1369  
1370  
1371  
1372  
1373  
1374  
1375  
1376  
1377  
1378  
1379  
1379  
1380  
1381  
1382  
1383  
1384  
1385  
1386  
1387  
1388  
1389  
1389  
1390  
1391  
1392  
1393  
1394  
1395  
1396  
1397  
1398  
1399  
1399  
1400  
1401  
1402  
1403  
1404  
1405  
1406  
1407  
1408  
1409  
1409  
1410  
1411  
1412  
1413  
1414  
1415  
1416  
1417  
1418  
1419  
1419  
1420  
1421  
1422  
1423  
1424  
1425  
1426  
1427  
1428  
1429  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457  
1458  
1459  
1459  
1460  
1461  
1462  
1463  
1464  
1465  
1466  
1467  
1468  
1469  
1469  
1470  
1471  
1472  
1473  
1474  
1475  
1476  
1477  
1478  
1479  
1479  
1480  
1481  
1482  
1483  
1484  
1485  
1486  
1487  
1488  
1489  
1489  
1490  
1491  
1492  
1493  
1494  
1495  
1496  
1497  
1498  
1499  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1509  
1510  
1511  
1512  
1513  
1514  
1515  
1516  
1517  
1518  
1519  
1519  
1520  
1521  
1522  
1523  
1524  
1525  
1526  
1527  
1528  
1529  
1529  
1530  
1531  
1532  
1533  
1534  
1535  
1536  
1537  
1538  
1539  
1539  
1540  
1541  
1542  
1543  
1544  
1545  
1546  
1547  
1548  
1549  
1549  
1550  
1551  
1552  
1553  
1554  
1555  
1556  
1557  
1558  
1559  
1559  
1560  
1561  
1562  
1563  
1564  
1565  
1566  
1567  
1568  
1569  
1569  
1570  
1571  
1572  
1573  
1574  
1575  
1576  
1577  
1578  
1579  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619  
1619  
1620  
1621  
1622  
1623  
1624  
1625  
1626  
1627  
1628  
1629  
1629  
1630  
1631  
1632  
1633  
1634  
1635  
1636  
1637  
1638  
1639  
1639  
1640  
1641  
1642  
1643  
1644  
1645  
1646  
1647  
1648  
1649  
1649  
1650  
1651  
1652  
1653  
1654  
1655  
1656  
1657  
1658  
1659  
1659  
1660  
1661  
1662  
1663  
1664  
1665  
1666  
1667  
1668  
1669  
1669  
1670  
1671  
1672  
1673  
1674  
1675  
1676  
1677  
1678  
1679  
1679  
1680  
1681  
1682  
1683  
1684  
1685  
1686  
1687  
1688  
1689  
1689  
1690  
1691  
1692  
1693  
1694  
1695  
1696  
1697  
1698  
1699  
1699  
1700  
1701  
1702  
1703  
1704  
1705  
1706  
1707  
1708  
1709  
1709  
1710  
1711  
1712  
1713  
1714  
1715  
1716  
1717  
1718  
1719  
1719  
1720  
1721  
1722  
1723  
1724  
1725  
1726  
1727  
1728  
1729  
1729  
1730  
1731  
1732  
1733  
1734  
1735  
1736  
1737  
1738  
1739  
1739  
1740  
1741  
1742  
1743  
1744  
1745  
1746  
1747  
1748  
1749  
1749  
1750  
1751  
1752  
1753  
1754  
1755  
1756  
1757  
1758  
1759  
1759  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
1768  
1769  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
1779  
1780  
1781  
1782  
1783  
1784  
1785  
1786  
1787  
1788  
1789  
1789  
1790  
1791  
1792  
1793  
1794  
1795  
1796  
1797  
1798  
1799  
1799  
1800  
1801  
1802  
1803  
1804  
1805  
1806  
1807  
1808  
1809  
1809  
1810  
1811  
1812  
1813  
1814  
1815  
1816  
1817  
1818  
1819  
1819  
1820  
1821  
1822  
1823  
1824  
1825  
1826  
1827  
1828  
1829  
1829  
1830  
1831  
1832  
1833  
1834  
1835  
1836  
1837  
1838  
1839  
1839  
1840  
1841  
1842  
1843  
1844  
1845  
1846  
1847  
1848  
1849  
1849  
1850  
1851  
1852  
1853  
1854  
1855  
1856  
1857  
1858  
1859  
1859  
1860  
1861  
1862  
1863  
1864  
1865  
1866  
1867  
1868  
1869  
1869  
1870  
1871  
1872  
1873  
1874  
1875  
1876  
1877  
1878  
1879  
1879  
1880  
1881  
1882  
1883  
1884  
1885  
1886  
1887  
1888  
1889  
1889  
1890  
1891  
1892  
1893  
1894  
1895  
1896  
1897  
1898  
1899  
1899  
1900  
1901  
1902  
1903  
1904  
1905  
1906  
1907  
1908  
1909  
1909  
1910  
1911  
1912  
19

Internet with the information. In either case, the WPM detects that the URL requires location information. The WPM optionally queries the user for the location. Since the MS user is visiting a city with which he is unfamiliar, the 5 user elects to let the WPM determine the location. The WPM queries the appropriate wireless network, such as GPS, GSM, or IS-41, among others, to retrieve the user's location. The WPM determines whether the accuracy of the retrieved location satisfies the accuracy requirement of the ICP. If 10 more accurate information is required, the WPM prompts the user for additional information. The type and content of the prompt may varies depending on the type of user's MS, such as voice, mini-browser phone, or laptop. If the user is on a wireless phone, voice prompts are preferred. If the user 15 is on a mini-browser phone, a simple selection list is preferred. If the user is on a laptop, more detailed information is preferred.

Once the information is available in the required accuracy, the WPM translates the location into a format 20 required by the service provider, such as converting the latitude/longitude into a zip code. Finally, the WPM creates a URL, submits it to the service provider, and displays the retrieved information.

#### SMART PUSH

25 Another capability of the present invention is the ability to deliver messages to a user in a manner with a high likelihood that the user receives the message on a preferred device and in a preferred format, referred to as a "smart push." The preferred manner of delivery is dependent 30 upon, as described below, the devices signed-up, the devices the user is currently operating, the content of the

messages, the capability of the devices, message priority, and the preferences of the use, among other things.

Prior to using the smart push capability of the WPM, a user signs-up the device(s) to receive messages, as in step 5 1710. Sign-up is accomplished by accessing the WPM and notifying the WPM of the user's desire to receive messages on a particular device. The user provides information identifying the device, such as the access method, type of device, and the device's capabilities. Optionally, the WPM 10 retains a database of possible devices and the device's capabilities, negating the need for the user to enter the device's characteristics. However, if the user enters an unfamiliar type of device, the WPM preferably prompts the user for information, comprising display abilities, storage, 15 access method, and device identifier, among others.

Thereafter, the smart push service is ready to receive messages for the user, as in step 1712. When a message arrives, the WPM determines available devices for a user, as in step 1714. As illustrated in FIGURE 18, the preferred 20 process for determining the preferred device depends on the type of device and the method of WPM notification.

The preferred methods for determining the availability of a device comprise temporary and permanent profiles, automatic and manual registration, internal or external on-line detection, and a query of the wireless networks. 25

First, the user optionally creates profiles of the user's preference of devices for receiving messages, a permanent 1810 and/or temporary 1812 profile. A permanent profile is a default profile that is active when a temporary 30 profile is unavailable or is not applicable. The permanent profile allows the user to specify when a particular device is the preferred device to receive messages. For instance,

an MS user may specify that a wireless phone is the preferred device during working hours and a PDA is the preferred device during non-working hours.

A temporary profile, on the other hand, contains the 5 same information but over-rides the permanent profile for the times specified, such as when the user goes on vacation and the preferred method of access is a cellular phone. Both profiles, however, are based on static information and, therefore, are preferable as a default if the other methods 10 are unavailable.

Second, available devices are determined by on-line registration, either automatically 1814 or manually 1816. Automatic registration utilizes some devices' capability to download client applications. The application, in this 15 case, sends a registration message to the WPM when the device is activated. The WPM registers the device as active in the respective user's profile. Manual registration, on the other hand, requires the user to explicitly notify the WPM that the device is activated and available to receive 20 messages.

Due to the active nature of the manual registration process, a manually registered device is the preferred device for communications, with the exception of voice-only wireline or voice-only wireless phones, which receive the 25 highest priority when notification is performed explicitly by on-line registration as discussed below. Automatic registration, however, was found to have lower confidence as the preferred device due to the passive nature of the registration process.

30 Third, on-line detection, either internal 1818 or external 1820, determines the state of a particular device. Internally, the WPM detects the user's presence in the

network and indicates the device as active in the user profile when the user explicitly logs onto the WPM.

External on-line detection utilizes networking notification systems such as the Instant Messenger. Instant Messenger sends an on-line notification message to selected locations when the user is present in the system. The use of the Instant Messenger, as well as other notification systems, is well known in the art and will not be discussed in further detail. Due to the current limitations, however, this mechanism is not currently supported with voice-only devices or cellular browsers.

Another mechanism that determines the availability of a device is a direct query of an MS 1822. Wireless networks allow queries to determine whether an MS is currently activated, *i.e.*, turned on. The mechanism to query a wireless network to determine the availability is commonly known in the art and will not be discussed in further detail herein, except insofar as necessary to describe the present invention.

Priorities assigned to the various methods above resolves conflicts when multiple devices are available for communication. Preferably, manual registration is the highest priority except in the case of voice-only devices, in which case internal on-line detection is the highest priority and manual registration is the next highest priority. Internal on-line detection is the next highest priority, except for voice-only devices as stated above. The preferred remaining priorities in descending order, if available, are external on-line detection, query, automatic registration, temporary profile, and automatic profile.

Optionally, if the network provides a message delivery confirmation, such as WAP 1.1, and the message was not

received by the MS, the message is sent to the remaining MSSs in order of priority until the message delivery is confirmed. If the network does not provide a message delivery confirmation, however, the message is preferably 5 sent to the highest priority available device. Alternatively, the message is sent to all available devices.

Preferably, the subscriber is provided the ability to over-ride the priority scheme described above, as in step 1824. The over-ride capability allows the subscriber to 10 specify which devices and, preferably, the priorities of the devices for message delivery.

Referring back to Figure 17, after the WPM determines device availability, the WPM determines the preferred device by selecting the highest priority device given the type of 15 message content, as in step 1716. If the message content is textual, then the preferred order is desktop, laptop, PDA, mini-browser enabled cellular phone, PSTN, and voice-only cellular phone. For audio messages, the preferred order is PSTN, voice-only cellular phone, mini-browser enabled 20 cellular phone, desktop, and laptop. For graphical messages, the preferred order is desktop, laptop, and PDA.

If a suitable device is not currently available, as in step 1718, the WPM optionally sends a notification message to another device(s) indicating the pending delivery of a 25 message, step 1720. At this point, the message is queued for later delivery, as in step 1722.

If an acceptable device is available, the WPM determines whether media conversion, such as text-to-speech or voice-to-audio-file, is required, as in step 1724. If 30 media conversion is required, media conversion is performed, as in step 1726, before the message is transmitted, as in step 1728.

The system capabilities and architecture described above further expands the ability of the smart push service. For instance, the existence of a cache server allows the ability of the push service to bookmark the location of the 5 last push. The push service detects where the user left off and can put the user at that spot when the user returns, regardless of the device. This enables the user to access information, such as lengthy reports

#### DEVICE AWARE

10 The increase in MSs also creates a demand for intelligent presentation mechanisms to provide information in an acceptable format for a given MS. The WPM provides this capability by a series of novel steps as illustrated in FIGURE 19.

15 In step 1910, which is further illustrated in FIGURE 20, the WPM detects the type of device. Referring to FIGURE 20, step 2010 determines whether the call originated through a separate access method. Typically, a voice-only device accesses the WPM via a separate dial-up access and connects 20 to the WPM via a voice channel and the PSTN. If the device is other than a voice-only device, however, the WPM evaluates the protocol to determine if it is HTTP or WAP, as in step 2012. Although both HTTP and WAP devices connect to the WPM, the WAP applications use a different port than 25 HTTP, as defined in the WAP standards. Therefore, by determining which port is used, the WPM determines whether the device is a WAP or an HTTP device.

If the device is an HTTP device, the WPM determines whether the device is a wireline device, a PDA, or other 30 wireless device. The WPM determines whether the device is a wireline device by evaluating the Terminal Identifier (TID) and comparing the TID with known wireline and wireless TIDs,

as in step 2014. The TID identifies the type of device, wireline or wireless, but does not distinguish between PDAs and laptops because both generally use the wireless modem to connect to the WPM. Therefore, to distinguish between a 5 wireless laptop and a wireless PDA, the WPM evaluates the user agent type in the header of the HTTP, step 2016. The user agent identifies the type of user agent, such as IE 5.0, pocket IE 2.0, WAPMAN, and the like. The user agent type is generally distinct for the type of device and, 10 therefore, distinguishes between a PDA and a laptop.

Referring back to FIGURE 19, the WPM adapts the content to the device characteristics, such as the caching ability, display size and quality, and software and hardware support, given the device type, as in step 1912. This is generally 15 achieved in one of two methods. First, the WPM uses typical default values for each type of device discussed above. These values are not generally tailored to a specific make and model of a device but are generally a good representation of the abilities of a particular device type. 20 Second, the WPM maintains a database of the user's available devices, allowing the WPM to format the information for a specific MS.

Next, as in step 1914, the device configuration is determined. The device configuration is determined by 25 examining the protocol header and the user agent type. The protocol header will specify the type of protocol, such as HTTP, WAP, and the like. The user agent type will indicate the type of browser, such as IE 5.0, pocket IE 2.0, WAPMAN, and the like.

Once the device capabilities are known, the WPM formats 30 and delivers the information to the MS, as in step 1914. Thus, the user is presented material in an appropriate form

30  
e.f.6.  
et al.

for the type of information, the protocol, and the device capabilities and configuration.

It is understood that the present invention can take many forms and embodiments. Accordingly, several variations 5 may be made in the foregoing without departing from the spirit or the scope of the invention. For example, specific features such as the location-based services may be extracted without negating the novelty or usefulness of other aspects of the invention. Likewise, the system 10 architecture was designed to easily add new services and features, including, but not limited to, additional servers to provide greater functionality or further take advantage of other existing products.

Having thus described the present invention by 15 reference to certain of its preferred embodiments, it is noted that the embodiments disclosed are illustrative rather than limiting in nature and that a wide range of variations, modifications, changes, and substitutions are contemplated in the foregoing disclosure and, in some instances, some 20 features of the present invention may be employed without a corresponding use of the other features. Many such variations and modifications may be considered obvious and desirable by those skilled in the art based upon a review of the foregoing description of preferred embodiments. 25 Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.