Example (left-tailed test): Highway engineers have found that the proper alignment of the vehicle's headlights is a major factor affecting the performance of reflective highway signs. It is thought that less than 50% of the vehicle on the road have misaimed headlights. 20 vehicles were randomly selected from the roads and headlights inspected and found 8 with misaimed headlights. Design a hypothesis test with the significance level $\alpha = 0.05$.

Let p denote the proportion of vehicle in operation that have misaimed headlights. Since we wish to support the statement that p < 0.5, we have the two hypothesis:

$$H_0: p \ge 0.5; \quad H_1: p < 0.5$$

The critical region method: Let X be the number of cars in the sample with misaimed headlights. X is the test statistic.

If H_0 is true $(p \ge 0.5)$, then X is binomial with n = 20, p = 0.5. (we choose p = 0.5).

If the observed value of X is less than a critical value x_0 , we tend to reject H_0 .

According to the definition of α ,

$$P[type\ I\ error] = P[X \le x_0 | p = 0.5] \approx 0.05$$

From the binomial probability table, we can read out:

$$P[X \le 6|p = 0.5] = 0.0577$$

Hence, the rejection region is [0,1,2,3,4,5,6]

Since X=8 is not inside the rejection region, H_0 can not be rejected.

CUMULATIVE BINOMIAL PROBABILITIES

Tabulated values are P(<= k)
(Computations are rounded at the third decimal place.)

N = 20									
k ∖ p	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.122	0.012	0.001	0.000	0.000	0.000	0.000	0.000	0.000
1 2 3 4 5	0.392 0.677 0.867 0.957 0.989	0.069 0.206 0.411 0.630 0.804	0.008 0.035 0.107 0.238 0.416	0.001 0.004 0.016 0.051 0.126	0.000 0.000 0.001 0.006 0.021	0.000 0.000 0.000 0.000 0.002	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000
6 7 8 9	0.998 1.000 1.000 1.000 1.000	0.913 0.968 0.990 0.997 0.999	0.608 0.772 0.887 0.952 0.983	0.250 0.416 0.596 0.755 0.872	0.058 0.132 0.252 0.412 0.588	0.006 0.021 0.057 0.128 0.245	0.000 0.001 0.005 0.017 0.048	0.000 0.000 0.000 0.001 0.003	0.000 0.000 0.000 0.000 0.000
11 12 13 14 15	1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000	0.995 0.999 1.000 1.000	0.943 0.979 0.994 0.998 1.000	0.748 0.868 0.942 0.979 0.994	0.404 0.584 0.750 0.874 0.949	0.113 0.228 0.392 0.584 0.762	0.010 0.032 0.087 0.196 0.370	0.000 0.000 0.002 0.011 0.043
16 17 18 19 20	1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000	0.999 1.000 1.000 1.000 1.000	0.984 0.996 0.999 1.000 1.000	0.893 0.965 0.992 0.999 1.000	0.589 0.794 0.931 0.988 1.000	0.133 0.323 0.608 0.878 1.000

k: Number of success p: Probability of success of one trial

Example (left-tailed test): Highway engineers have found that the proper alignment of the vehicle's headlights is a major factor affecting the performance of reflective highway signs. It is thought that less than 50% of the vehicle on the road have misaimed headlights. 20 vehicles were randomly selected from the roads and headlights inspected and found 8 with misaimed headlights. Design a hypothesis test with the significance level $\alpha = 0.05$.

Let p denote the proportion of vehicle in operation that have misaimed headlights. Since we wish to support the statement that p < 0.5, we have the two hypothesis:

$$H_0: p \ge 0.5; \quad H_1: p < 0.5$$

The p-value method: Let *X* be the number of cars in the sample with misaimed headlights. *X* is the test statistic.

If H_0 is true $(p \ge 0.5)$, then X is binomial with n = 20, p = 0.5.

Since this is a left-tailed test, the p-value can be calculated as:

$$p_value = P[X \le 8 | p = 0.5]$$

This probability can be read out from the binomial probability table:

$$p_value = P[X \le 8|p = 0.5] = 0.2517$$

Since the p-value (0.2517) is greater than the significance level (0.05), H_0 will not be rejected.

Example (two-tailed test): Highway engineers have found that the proper alignment of the vehicle's headlights is a major factor affecting the performance of reflective highway signs. It is thought that the proportion of the vehicle on the road have misaimed headlights can not be 50%. 20 vehicles were randomly selected from the roads and headlights inspected and found 8 with misaimed headlights. Design a hypothesis test with the significance level $\alpha=0.05$.

we have the two hypothesis: H_0 : p = 0.5; H_1 : $p \neq 0.5$

The critical region method: Let X be the number of cars in the sample with misaimed headlights. X is the test statistic. If H_0 is true (p=0.5), then X is binomial with n=20, p=0.5. E[X]=np=10. If the observed value of X too small or too large, i.e., $X \le x_1$ or $X \ge x_2$, H_0 will be rejected. We will decide the value of x_1 and x_2 so that the probability of type I error is about 0.05

$$P[type\ I\ error] = P[X \le x_1 | p = 0.5] + P[X \ge x_2 | p = 0.5] \approx 0.05$$

 $\Rightarrow P[X \le x_1 | p = 0.5] \approx 0.025, P[X \ge x_2 | p = 0.5] \approx 0.025$

From the binomial probability table, we can find out:

$$x_1 = 5, x_2 = 15$$

The rejection region is [0,1,2,3,4,5], and [15,16,17,18,19,20]Since the observed value of X=8 is not within the rejection region, H_0 will not be rejected. **Example (two-tailed test):** Highway engineers have found that the proper alignment of the vehicle's headlights is a major factor affecting the performance of reflective highway signs. It is thought that proportion of the vehicle on the road have misaimed headlights can not be 50%. 20 vehicles were randomly selected from the roads and headlights inspected and found 8 with misaimed headlights. Design a hypothesis test with the significance level $\alpha = 0.05$.

we have the two hypothesis: $H_0: p = 0.5$; $H_1: p \neq 0.5$

The p-value method: Let X be the number of cars in the sample with misaimed headlights. X is the test statistic.

If H_0 is true (p = 0.5), then X is binomial with n = 20, p = 0.5.

Since this is a two-tailed test, the p-value can be calculated as:

$$p_value = 2\min\{P[X \le 8|p = 0.5], P[X \ge 8|p = 0.5]\}$$

This probability can be read out from the binomial probability table:

$$P[X \le 8|p = 0.5] = 0.2517, P[X \ge 8|p = 0.5] = 1 - P[X \le 7|p = 0.5]$$

= 1 - 0.1316 = 0.8684

Hence, the $p_value = 2 \times 0.2517 = 0.5034$

Since the p value (0.5034) is greater than the significance level (0.05), H_0 will not be rejected.

Hypothesis Test on the Mean

Three forms of tests of hypothesis on the mean of a distribution:

I. H_0 : $\mu \leq \mu_0$, H_1 : $\mu > \mu_0$ right-tailed test (the rejection region is the right-tailed region). II. H_0 : $\mu \geq \mu_0$, H_1 : $\mu < \mu_0$ left-tailed test (the rejection region is the left-tailed region). III. H_0 : $\mu = \mu_0$, H_1 : $\mu \neq \mu_0$ two-tailed test (the rejection region consists of both lower and upper tail regions).

These three forms can also (commonly) be expressed as:

I. H_0 : $\mu = \mu_0$, H_1 : $\mu > \mu_0$ II. H_0 : $\mu = \mu_0$, H_1 : $\mu < \mu_0$ III. H_0 : $\mu = \mu_0$, H_1 : $\mu \neq \mu_0$

Why can we do this?

Values of the test statistic that lead us to reject μ_0 and to conclude that $\mu > \mu_0$ will also lead us to reject any value less than μ_0 .

Values of the test statistic that lead us to reject μ_0 and to conclude that $\mu < \mu_0$ will also lead us to reject any value greater than μ_0 .

Test on the Mean

Example: The maximum acceptable level for exposure to microwave radiation in the USA is an average of 10 microwatts per square centimeter. It is feared that a large television transmitter may be polluting the air nearby by pushing the level of microwave radiation above the safe limit. The microwave radiation level is measured in the area at randomly selected time over a one week period and obtained a sample of 25 readings with sample mean $\bar{X} = 10.3$ and sample standard deviation S = 2. Design a test to find out if the microwave radiation level is above the average safety level.

Hypothesis test on the mean (critical region method):

We intend to rest: H_0 : $\mu=10$, H_1 : $\mu>10$ (right-tailed test with a right-tailed rejection region)

The test statistic is : $\frac{\bar{X}-\mu}{s/\sqrt{n}} \sim T_{n-1}$. Assuming H_0 is true, the test statistic becomes $\frac{\bar{X}-10}{s/\sqrt{25}} \sim T_{24}$

To find the rejection region, we need to select α value, the level of significance. α is also the maximum level of type I error can be tolerated.

If we make a type I error, the transmitter will be shut down unnecessarily; If we make a type II error, we shall fail to detect a potential health hazard; Hence, we want α to be small but not so small as to force β to be extremely large. We choose $\alpha=0.1$

Test on the Mean

Example: (continued)

Hypothesis test on the mean (critical region method):

According to the definition of α : $P[type\ I\ error] = P[T_{24} \ge t_{0.1}] = 0.1$ From the T-table, we read out: $t_{0.1} = 1.318$ (critical point for right-tailed probability of 0.1)

Hence, we shall reject H_0 in favor of H_1 if the observed value of the test statistic is 1.318 or larger.

From the 25 sample data, we calculated that $\bar{x}=10.3~and~s=2$ Then,

$$\frac{\bar{X} - 10}{s/\sqrt{25}} = \frac{10.3 - 10}{2/5} = 0.75 < 1.318$$

We are unable to reject H_0 . I.e., the sample data do not support the contention that the transmitter is lifting the average microwave radiation level above the safe limit.

_{TABLE} VI T distribution

Column heading = cumulative probability Row heading = degrees of freedom Row ∞ = standard normal values

	$P[T_{\gamma} \leq t]$									
γ	.6	.75	.9	.95	.975	.99	.995	.999	.9995	
1	0.325	1.000	3.078	6.314	12.706	31.821	63.657	318.317	636.607	
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925	22.327	31.598	
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841	10.215	12.924	
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	7.173	8.610	
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	5.893	6.869	
6 7 8 9	0.265 0.263 0.262 0.261 0.260	0.718 0.711 0.706 0.703 0.700	1.440 1.415 1.397 1.383 1.372	1.943 1.895 1.860 1.833 1.812	2.447 2.365 2.306 2.262 2.228	3.143 2.998 2.896 2.821 2.764	3.707 3.499 3.355 3.250 3.169	5.208 4.785 4.501 4.297 4.144	5.959 5.408 5.041 4.781 4.587	
11	0.260	0.697	1.363	1.796	2.201	2.718	3.106	4.025	4.437	
12	0.259	0.695	1.356	1.782	2.179	2.681	3.055	3.930	4.318	
13	0.259	0.694	1.350	1.771	2.160	2.650	3.012	3.852	4.221	
14	0.258	0.692	1.345	1.761	2.145	2.624	2.977	3.787	4.140	
15	0.258	0.691	1.341	1.753	2.131	2.602	2.947	3.733	4.073	
16	0.258	0.690	1.337	1.746	2.120	2.583	2.921	3.686	4.015	
17	0.257	0.689	1.333	1.740	2.110	2.567	2.898	3.646	3.965	
18	0.257	0.688	1.330	1.734	2.101	2.552	2.878	3.611	3.922	
19	0.257	0.688	1.328	1.729	2.093	2.539	2.861	3.579	3.883	
20	0.257	0.687	1.325	1.725	2.086	2.528	2.845	3.552	3.850	
21	0.257	0.686	1.323	1.721	2.080	2.518	2.831	3.527	3.819	
22	0.256	0.686	1.321	1.717	2.074	2.508	2.819	3.505	3.792	
23	0.256	0.685	1.319	1.714	2.069	2.500	2.807	3.485	3.768	
24	0.256	0.685	1.318	1.711	2.064	2.492	2.797	3.467	3.745	
25	0.256	0.684	1.316	1.708	2.060	2.485	2.787	3.450	3.725	
26	0.256	0.684	1.315	1.706	2.056	2.479	2.779	3.435	3.707	
27	0.256	0.684	1.314	1.703	2.052	2.473	2.771	3.421	3.690	
28	0.256	0.683	1.313	1.701	2.048	2.467	2.763	3.408	3.674	
29	0.256	0.683	1.311	1.699	2.045	2.462	2.756	3.396	3.659	
30	0.256	0.683	1.310	1.697	2.042	2.457	2.750	3.385	3.646	
31	0.256	0.682	1.309	1.696	2.040	2.453	2.744	3.375	3.633	
32	0.255	0.682	1.309	1.694	2.037	2.449	2.738	3.365	3.622	
33	0.255	0.682	1.308	1.692	2.035	2.445	2.733	3.356	3.611	
34	0.255	0.682	1.307	1.691	2.032	2.441	2.728	3.348	3.601	
35	0.255	0.682	1.306	1.690	2.030	2.438	2.724	3.340	3.591	
36	0.255	0.681	1.306	1.688	2.028	2.434	2.719	3.333	3.582	
37	0.255	0.681	1.305	1.687	2.026	2.431	2.715	3.326	3.574	
38	0.255	0.681	1.304	1.686	2.024	2.429	2.712	3.319	3.566	
39	0.255	0.681	1.304	1.685	2.023	2.426	2.708	3.313	3.558	
40	0.255	0.681	1.303	1.684	2.021	2.423	2.704	3.307	3.55	
41	0.255	0.681	1.303	1.683	2.020	2.421	2.701	3.301	3.54	
42	0.255	0.680	1.302	1.682	2.018	2.418	2.698	3.296	3.53	
43	0.255	0.680	1.302	1.681	2.017	2.416	2.695	3.291	3.53	
44	0.255	0.680	1.301	1.680	2.015	2.414	2.692	3.286	3.52	

Test on the Mean

Example: The maximum acceptable level for exposure to microwave radiation in the USA is an average of Of 10 microwatts per square centimeter. It is feared that a large television transmitter may be polluting the air nearby by pushing the level of microwave radiation above the safe limit. The microwave radiation level is measured in the area at randomly selected time over a one week period and obtained a sample of 25 readings with sample mean $\bar{X}=10.3$ and sample standard deviation S=2. Design a test to find out if the microwave radiation level is above the average safety level.

Hypothesis test on the mean (p-value method) (p test):

We intend to rest: H_0 : $\mu = 10$, H_1 : $\mu > 10$ (right-tailed test)

Assuming H_0 is true, the test statistic is $\frac{\bar{X}-10}{s/\sqrt{25}} \sim T_{24}$. The observed value of this statistic is: $\frac{\bar{X}-10}{s/\sqrt{25}} = 0.75$

Since this is a right-tailed test, the p-value can be evaluated as:

$$p_value = P[X \ge x_{ob}|H_0 \text{ is true}] = P[T_{24} \ge 0.75] = 1 - P[T_{24} < 0.75]$$

From the T-table, we have,

$$P[T_{24} < 0.685] = 0.75, P[T_{24} < 1.318] = 0.90$$

Hence,

$$0.75 < P[T_{24} < 0.75] < 0.90 \Rightarrow 0.1 < P[T_{24} \ge 0.75] < 0.25 \Rightarrow 0.1 < p < 0.25$$

Therefore, H_0 can not be rejected at 0.1 confidence level.

Test on the Variance

Three forms of test of hypothesis on the variance of a distribution:

I.
$$H_0$$
: $\sigma^2 = \sigma_0^2$, H_1 : $\sigma^2 > \sigma_0^2$ right-tailed test II. H_0 : $\sigma^2 = \sigma_0^2$, H_1 : $\sigma^2 < \sigma_0^2$ left-tailed test two-tailed test

The test statistic is $\frac{(n-1)S^2}{\sigma_0^2} \sim X^2_{n-1}$ when H_0 is true.

Let x_{ob} be the observed value of the test statistic, calculated from the sample. Then, to carry out the p-test, we have,

 $p_{value} = P[X \ge x_{ob} | H_0 \text{ is } true], \text{ for right-tailed test}$

 $p_{value} = P[X \le x_{ob} | H_0 \text{ is } true], \text{ for left-tailed test}$

 $p_{value} = 2\min\{P[X \le x_{ob}|H_0 \text{ is true}], P[X \ge x_{ob}|H_0 \text{ is true}]\}, \text{ for two-tailed test}$