

April 1988 Revised October 2000

74F579

8-Bit Bidirectional Binary Counter with 3-STATE Outputs

General Description

The 74F579 is a fully synchronous 8-stage up/down counter with multiplexed 3-STATE I/O ports for bus-oriented applications. It features a preset capability for programmable operation, carry lookahead for easy cascading and a U/\overline{D} input to control the direction of counting. All state changes, whether in counting or parallel loading, are initiated by the rising edge of the clock.

Features

- Multiplexed 3-STATE I/O ports
- Built-in lookahead carry capability
- Count frequency 100 MHz typical
- Supply current 75 mA typical
- Guaranteed 4000V minimum ESD protection

Ordering Code:

Order Number	Package Number	Package Description
74F579SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74F579SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F579PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" tot he ordering code.

Logic Symbol

Connection Diagram

Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}	
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
I/O ₀ –I/O ₇	Data Inputs or	3.5/0.333	70 μA/–0.2 mA	
	3-STATE Outputs	75/15	−3 mA/24 mA	
PE	Parallel Enable Input (Active LOW)	0.25/0.333	5 μA/–0.2 mA	
U/D	Up-Down Count Control Input	0.25/0.333	5 μA/–0.2 mA	
MR	Master Reset Input (Active LOW)	0.25/0.333	5 μA/-0.2 mA	
SR	Synchronous Reset Input (Active LOW)	0.25/0.333	5 μA/-0.2 mA	
CEP	Count Enable Parallel Input (Active LOW)	0.25/0.333	5 μA/-0.2 mA	
CET	Count Enable Trickle Input (Active LOW)	0.25/0.333	5 μA/-0.2 mA	
CS	Chip Select Input Active (Active LOW)	0.25/0.333	5 μA/-0.2 mA	
ŌE	Output Enable Input (Active LOW)	0.25/0.333	5 μA/-0.2 mA	
CP	Clock Pulse Input (Active Rising Edge)	0.25/0.333	5 μA/-0.2 mA	
TC	Terminal Count Output (Active LOW)	25/12.5	−1 mA/5 mA	

Function Table

MR	SR	cs	PE	CEP	CET	U/D	OE	СР	Function
Х	Х	Н	Х	Χ	Χ	Χ	Χ	Х	I/O _a to I/O _h in High Z (PE Disabled)
Х	Χ	L	Н	Χ	Χ	Χ	Н	Χ	I/O _a to I/O _h in High Z
Х	Χ	L	Н	Χ	Χ	Χ	L	Χ	Flip-Flop Outputs Appear on I/O Lines
L	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Asynchronous Reset for all Flip-Flops
Н	L	Χ	Χ	Χ	Χ	Χ	Χ	_	Synchronous Reset for all Flip-Flops
Н	Н	L	L	Χ	Χ	Χ	Χ	_	Parallel Load all Flip-Flops
Н	Н	(Not	LL)	Н	Χ	Χ	Χ	_	Hold
Н	Н	(Not	LL)	Χ	Н	Χ	Χ	_	Hold (TC Held HIGH)
Н	Н	(Not	LL)	L	L	Н	Χ	_	Count Up
Н	Н	(Not	LL)	L	L	L	X	_	Count Down

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

= LOW to HIGH Clock Transition
Not LL = GS and PE should never both be LOW voltage level at the same time.

Absolute Maximum Ratings(Note 1)

-65°C to +150°C

Storage Temperature -55°C to +125°C Ambient Temperature under Bias Junction Temperature under Bias -55°C to $+150^{\circ}\text{C}$ V_{CC} Pin Potential to Ground Pin -0.5V to +7.0V

Input Voltage (Note 2) -0.5V to +7.0VInput Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)

Standard Output -0.5V to V_{CC} 3-STATE Output -0.5V to +5.5V

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA) ESD Last Passing Voltage (Min) 4000V

Recommended Operating Conditions

Free Air Ambient Temperature 0°C to +70°C Supply Voltage +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.4			V	Min	I _{OH} = -3 mA
	Voltage	5% V _{CC}	2.7					G.
V_{OL}	Output LOW	10% V _{CC}			0.5	V	Min	I_{OL} = 20 mA (\overline{TC}), I_{OL} = 24 mA (I/O_n)
	Voltage	$5\% V_{CC}$			0.5	•	IVIIII	$I_{OL} = 20 \text{ mA } (\overline{TC}), I_{OL} = 24 \text{ mA } (I/O_n)$
I _{IH}	Input HIGH				5.0	μА	Max	V _{IN} = 2.7V (Non-I/O Pins)
	Current				3.0	μΛ	IVIAX	VIN - 2.7 V (NOIPI/O FILIS)
I _{BVI}	Input HIGH Current				7.0	μА	Max	V _{IN} = 7.0V (Non-I/O Pins)
	Breakdown Test				7.0	μΛ	IVIAX	VIN = 7.00 (1401-1/0 F1115)
I _{BVIT}	Input HIGH Current				0.5	mA	Max	$V_{IN} = 5.5V (I/O_p)$
	Breakdown (I/O)				0.5	IIIA	IVIAX	$V_{IN} = 5.5 V (I/O_n)$
I _{CEX}	Output HIGH				50		Max	$V_{OUT} = V_{CC}$
	Leakage Current				50	μА	IVIAX	VOUT = VCC
V _{ID}	Input Leakage		4.75			V	0.0	$I_{ID} = 1.9 \mu A$
	Test		4.75			V	0.0	All Other Pins Grounded
I _{OD}	Output Leakage				3.75	μА	0.0	V _{IOD} = 150 mV
	Circuit Control				3.73	μΛ	0.0	All Other Pins Grounded
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0	V _{OUT} = 5.25V
I _{IL}	Input LOW Current				-0.2	mA	Max	V _{IN} = 0.5V (Non-I/O Pins)
I _{IH} & I _{OZH}	Output Leakage Current				70	μΑ	Max	$V_{OUT} = 2.7V (I/O_n)$
I _{IL} & I _{OZL}	Output Leakage Current				-200	μΑ	Max	$V_{OUT} = 0.5V (I/O_n)$
Ios	Output Short-Circuit Currer	nt	-60		-150	mA	Max	V _{OUT} = 0V
Іссн	Power Supply Current			70	110	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			85	120	mA	Max	$V_O = LOW$
I _{CCZ}	Power Supply Current			85	125	mA	Max	V _O = HIGH Z

AC Electrical Characteristics

			$T_A = +25^{\circ}C$		T _A = 0°C		
Symbol	Parameter		$V_{CC} = +5.0V$	V _{CC} =	Units		
- Cymbol			$C_L = 50 \ pF$	C _L =			
		Min	Тур	Max	Min	Max	ŀ
f _{MAX}	Maximum Clock Frequency	70	85		80		
t _{PLH}	Propagation Delay	3.0	5.0	7.5	3.0	8.0	ns
t _{PHL}	CP to I/O _n	5.0	8.0	11.5	5.0	11.5	115
t _{PLH}	Propagation Delay	5.0	7.5	11.5	5.0	12.0	ns
t _{PHL}	CP to TC	5.0	7.0	11.5	5.0	12.0	115
t _{PLH}	Propagation Delay	4.5	7.0	9.0	4.5	10.0	ns
t _{PHL}	U/D to TC	4.5	8.0	9.5	4.5	10.0	115
t _{PLH}	Propagation Delay	2.5	3.8	6.0	2.5	6.5	ns
t _{PHL}	CEP or CET to TC	3.5	6.0	8.0	3.5	8.5	118
t _{PHL}	Propagation Delay	5.0	7.5	10.0	5.0	10.0	ns
	MR to I/O _n	3.0	7.5	10.0	5.0	10.0	115
t _{PHL}	Propagation Delay	6.5	10.0	13.0	6.5	13.5	ns
	MR to TC	0.5	10.0	13.0	0.5	13.3	115
t _{PZH}	Output Enable Time	3.0	5.0	8.5	3.0	9.0	no
t _{PZL}	CS or PE to I/O	5.5	8.0	10.5	5.5	11.5	ns
t _{PHZ}	Output Disable Time	2.0	5.0	8.5	2.0	9.0	no
t _{PLZ}	CS or PE to I/O	2.0	4.5	8.0	2.0	8.5	ns
t _{PZH}	Output Enable Time	3.0	5.0	8.0	3.0	8.5	ns
t _{PZL}	OE to I/O _n	5.0	8.0	11.0	5.0	12.0	115
t _{PHZ}	Output Disable Time	2.0	4.0	6.5	2.0	6.5	ns
t _{PLZ}	OE to I/O _n	2.0	4.0	6.0	2.0	6.5	115

AC Operating Requirements

			$T_A = +25^{\circ}C$	$T_A = 0$ °C to +70°C			
Symbol	Parameter		$V_{CC} = +5.0V$		$V_{CC} = +5.0V$		Units
		Min	Тур	Max	Min	Max	Ī
t _S (H)	Setup Time	4.0			4.0		ns
$t_{S}(L)$	I/O _n to CP	4.0			4.0		115
t _H (H)	Hold Time	0.0			0.0		no
t _H (L)	I/O _n to CP	0.0			0.0		ns
t _S (H)	Setup Time	9.5			9.5		ns
$t_{S}(L)$	PE, CS or SR to CP	9.5			9.5		115
t _H (H)	Hold Time	0.0			0.0		ns
t _H (L)	PE, CS or SR to CP	0.0			0.0		115
t _S (H)	Setup Time	6.5			6.5		no
$t_{S}(L)$	CET or CEP to CP	9.5			9.5		ns
t _H (H)	Hold Time	0.0			0.0		ns
t _H (L)	CET or CEP to CP	0.0			0.0		115
t _S (H)	Setup Time	9.0			9.5		ns
t _S (L)	U/D to CP	9.0			9.5		115
t _H (H)	Hold Time	0.0			0.0		ns
t _H (L)	U/D to CP	0.0			0.0		115
t _W (H)	Clock Pulse Width	4.5			4.5		ns
$t_W(L)$	HIGH or LOW	4.5			4.5		115
t _W (L)	MR Pulse Width	3.0			3.0		ns
t _{REC}	Recovery Time MR to CP	4.0			4.0		ns

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 12.6±0.10 0.40 TYP --A-5.3±0.10 9.27 TYP 7.8 -B-3.9 0.2 C B A ALL LEAD TIPS 10 PIN #1 IDENT.-0.6 TYP 1.27 TYP LAND PATTERN RECOMMENDATION ALL LEAD TIPS SEE DETAIL A 0.1 C 1.8±0.1 -C-L _{0.15±0.05} 0.15-0.25 -1.27 TYP 0.35-0.51 ⊕ 0.12 **(** C A DIMENSIONS ARE IN MILLIMETERS GAGE PLANE 0.25 NOTES: A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998. B. DIMENSIONS ARE IN MILLIMETERS. C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. 0.60±0.15 SEATING PLANE 1.25 -M20DRevB1 DETAIL A 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com