```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]: df=pd.read_csv("/Users/bob/Downloads/3_Fitness-1.csv")
 df.fillna(0,inplace=True)
 df

Out[2]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	E	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170
8	Grand Total	100.00%	100.00%	100.00%	1150

In [3]: df.head()

Out[3]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	Е	25.28%	10.57%	11.82%	179

```
In [4]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 9 entries, 0 to 8
        Data columns (total 5 columns):
         #
             Column
                                  Non-Null Count
                                                   Dtype
             Row Labels
                                  9 non-null
                                                   object
         0
             Sum of Jan
                                  9 non-null
         1
                                                   object
             Sum of Feb
                                  9 non-null
         2
                                                   object
             Sum of Mar
         3
                                  9 non-null
                                                   object
             Sum of Total Sales 9 non-null
                                                   int64
```

dtypes: int64(1), object(4)
memory usage: 488.0+ bytes

```
In [5]: df.columns
```

```
In [6]: sns.pairplot(df)
```

Out[6]: <seaborn.axisgrid.PairGrid at 0x7fc7e2f14970>


```
In [7]: sns.displot(df['Sum of Total Sales'])
```

Out[7]: <seaborn.axisgrid.FacetGrid at 0x7fc7b00ed990>


```
In [8]: df1=df.drop(['Row Labels'],axis=1)
    df1
    df1=df1.drop(df1.index[1537:])
    df1.isna().sum()
```

```
Out[8]: Sum of Jan 0
Sum of Feb 0
Sum of Mar 0
Sum of Total Sales 0
dtype: int64
```

In [9]: sns.heatmap(df1.corr())

/var/folders/2n/rrl24lws3pb1nz8_t911srvm0000gn/T/ipykernel_15617/781785195.py:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

sns.heatmap(df1.corr())

Out[9]: <Axes: >

In [10]: from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

In [11]: df1.isna().sum()

Out[11]: Sum of Jan 0
Sum of Feb 0
Sum of Mar 0
Sum of Total Sales 0
dtype: int64

```
In [18]: y=df1['Sum of Total Sales']
x=df1.drop(['Sum of Jan','Sum of Feb','Sum of Mar'],axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
print(x_train)
```

	Sum	of	Total	Sales
7				170
1				160
0				75
4				179
3				127
5				167

```
In [19]: model=LinearRegression()
    model.fit(x_train,y_train)
    model.intercept_
```

Out[19]: 8.526512829121202e-14

```
In [20]: model.coef_
```

Out[20]: array([1.])

```
In [21]: prediction=model.predict(x_test)
   plt.scatter(y_test,prediction)
```

Out[21]: <matplotlib.collections.PathCollection at 0x7fc7e3bc6380>

In [22]: model.score(x_test,y_test)
Out[22]: 1.0
In []: