luce

$$\mathcal{J}_{i} = \mathcal{J}_{o} + \int_{n_{o}}^{n} (n + y^{2}) dn.$$

$$y_1 = 1 + \int_{N=0}^{N} (n+1) dn$$

$$= 1 + \left[\frac{\eta^2}{2} + \eta \right]_0^{\eta} = 1 + \frac{\eta^4}{2} + \eta$$

Solve
$$\frac{dy}{dn} = x + y^2$$
, it is given that $y = 1$ when $x = 0$

We know
$$y_i = y_0 + \int_{n_0}^{n} f(n, y) dn$$

$$y_i = y_0 + \int_{n_0}^{n} (n+y^2) dn.$$

$$y_0 = 1 + \int_{0}^{M} (n+1) dn$$
 $y_1 = 1 + \int_{0}^{M} (n+1) dn$

$$= 1 + \left[\frac{\eta^2}{2} + \eta \right]_0^M = 1 + \frac{\eta^2}{2} + \eta.$$

$$y_2 = y_0 + \int_0^{\pi} n + (1 + \frac{m^2}{2} + n)^2 dn$$

find the value of
$$y$$
, when $n = 0.25$, 0.5, 1.0
and $\frac{dy}{dn} = \frac{n^2}{y^2+1}$ with the initial Condition
 $y = 0$ when $y = 0$

$$\frac{g_{01}}{g^{2}+1}$$
 $f(n_{1}y) = \frac{n^{2}}{y^{2}+1}$; $n_{0} = 0$, $y_{0} = 0$
 $g_{0} = 0$

X

$$y_1 = y_0 + \int_{n_0}^{n} (n_1 y_0) dn = 0 + \int_{0}^{n} n^2 dn = \frac{\pi^3}{3}$$

$$y_{2} = y_{0} + \int_{0}^{\pi} \frac{1}{(n, y_{1})} dn$$

$$= 0 + \int_{0}^{\pi} \frac{n^{2}}{(x^{3})^{2} + 1} dn$$

$$= \tan^{-1}(\frac{2x^{3}}{3})$$

$$y(0.25) = \frac{1}{3}(0.25)^3 - \frac{1}{81}(0.25)^9$$

 ≈ 0.0520833

$$y(0.5) = \frac{1}{3}(0.05)^3 - \frac{1}{81}(0.5)^9 = 0.0416666$$

 $y(1.0) = \frac{1}{3}(1.0)^3 - \frac{1}{81}(1.0)^9 \approx 0.321$

Solve dy =
$$2n+Z$$
, $dZ = 3ny+n^2Z$
given $y=2$, $z=0$ when $n=0$

$$J_1 = J_0 + \int_{n_0}^{n} (2n + 2n) dn$$

$$= 2 + \int_{0}^{n} 2n dn = 2 + n^2$$

$$Z_1 = Z_0 + \int_{n_0}^{n} (3ny_0 + n^2 z_0) dn$$

$$= 0 + \int_{0}^{N} (3nx_{2} + n^{2}x_{0}) dn$$

$$z_1 = 3n^2$$

$$= 2 + \int_{1}^{N} (2n + 3n^{2}) dn$$

$$Z_{2} = Z_{0} + \int_{0}^{\infty} (3ny_{1} + n^{2}z_{1}) dn$$

$$= \int_{0}^{\infty} [3n(2+n^{2}) + n^{2} \cdot 3n^{2}] dn$$

We get
$$3 = 2 + 2 + 2 + 2 + 3 + 3 + 5 + 26$$

that y=1 at n=0 and y=1+ny connect to the decimal places.

Vote picard's method to approximate the value of y when n=0.1 given that y=1 when n=0 and dy = y-n
when n=0 and dy = y-n
y+n

Approximate y and Z at n=0.1 Using Picard's method for the solution to the Equation $\frac{dy}{dn}=Z$, $\frac{dZ}{dn}=n^2(y+Z)$, given that y(0)=1 and $Z(0)=\frac{1}{2}$.

Ex Use Picard Method to approximate the Value y when n=0.1, 0.2, 0.3, 0.4 and 0.5 given that y=1 at n=0 and y=1+ny correct to three decimal places.

EX Use Picard's Method to approximate the Value of y when n=0.1 given that y=1 when n=0 and $\frac{dy}{dn}=\frac{y-n}{y+n}$

Ex Approximate y and z at n=0.1 Using Picard's method for the solution to the Equation $\frac{dy}{dn}=z$, $\frac{dz}{dn}=n^3(y+z)$, given that y(0)=1 and $z(0)=\frac{1}{2}$