Disciplina de Otimização de Processos Prof. Marcos L. Corazza (DEQ/UFPR)

Data:04/12/2023

Com consulta!

Data entrega:	07/12/2023	até as 1	17h.

Atenção: A entrega deve ser cópia física contento esta folha de prova como capa.

Prova Final					
Nota:					
Aluno:	Aluno:				
GRR:	GRR: _				

Questão 1) (5,0 Pts) Uma planta química produz dois fertilizantes, $A \in B$, a partir da mistura de dois componentes primários $C1 \in C2$ em diferentes proporções. O teor de cada componente químico e os respectivos custos são apresentados na tabela abaixo. O fertilizante A não deve conter mais do que 60% de amônia e o B pelo menos 50% de amônia. A planta vende até 1000 lb/h de produtos e devido a limitações no processo somente 600 lb/h do fertilizante A podem ser produzidos. Assumindo que os custos de produção de A e B são os mesmos e que o preço de venda de A e B são 6 \$/lb e 7 \$/lb, respectivamente, e x_1 e x_2 representam as quantidades dos químicos (componentes) C1 e C2 usados para produzir o fertilizante A, y_1 e y_2 representam as quantidades de C1 e C2 para produzir o fertilizante B, assinale com V (verdadeiro) ou F (falso) as alternativas indicadas abaixo.

	Teor (m/m)			Disponibilidade
Componente	Amônia	Fosfato	Custo (\$/lb)	(lb/h)
C1	0,70	0,30	5	500
<i>C</i> 2	0,40	0,60	4	Ilimitada

Função objetivo:

a) (....) A função objetivo que maximiza o lucro de produção de A e B é dado por:

$$L = 6(x_1 + x_2) + 7(y_1 + y_2) - 5(x_1 + y_1) - 4(x_2 + y_2)$$

Restrições para a produção:

- R1) Quantidade máxima que pode ser vendida pela planta: $(x_1 + x_2) + (y_1 + y_2) \le 1000$
- R2) Disponibilidade de C1: $x_1 + y_1 \le 500$
- R3) A produção é limitada por A: $x_1 + x_2 \le 600$
- R4) O fertilizante A não deve conter mais do que 60% de amônia: $\frac{7}{10}x_1 + \frac{4}{10}x_2 \le \frac{6}{10}(x_1 + x_2)$
- R5) O fertilizante B não deve conter mais do que 60% de amônia: $\frac{7}{10}y_1 + \frac{4}{10}y_2 \ge \frac{5}{10}(y_1 + y_2)$
- b) (....) Todas as restrições acima são verdadeiras e as equações que às representam estão corretas.
- c) (....) Somente as restrições R1, R2 e R3 são verdadeiras, uma vez que as suas respectivas equações estão corretas.
- **d**) (....) Todas as restrições acima são verdadeiras, porém algumas das equações podem estar incorretas e devem ser corrigidas. Quais equações acima devem ser corrigidas e qual é a expressão correta?

e) (....) A produção de ambos os fertilizantes é limitada pela disponibilidade de C1 e C2.

- **f**) (....) A produção de ambos os fertilizantes é influenciada pela disponibilidade de *C*2.
- **g**) (....) O lucro da unidade é definido exclusivamente pela disponibilidade de *C1*, uma vez que este é o componente químico de maior custo.
- **h**) (....) O vértice $[x_1 = 0; x_2 = 0; y_1 = 0; y_2 = 0]^T$ representa uma solução viável para este problema de programação linear.
- i) (....) Considerando as Figura 1(a) e 1(b) abaixo, o conjunto de restrições forma uma região não convexa em $[x_1; x_2]$ e convexa em $[y_1; y_2]$ para este problema.
- **j**) (....) As quantidades de A e B que maximizam o lucro para este problema são representados pelos vértices seguintes vértices da Figura 1: $Q \in \mathbf{x}$ e $\mathbf{T} \in \mathbf{y}$.
- **k**) (....) Este problema de otimização pode ser resolvido usando o Método Simplex para programação linear, no qual deve (obrigatoriamente) ser usada a estratégia Simplex em duas fases.

Figura 1 - Vértices para (a) $[x_1; x_2]$ e (b) $[y_1; y_2]$ para o problema de programação linear apresentado na Questão 1.

Questão 2) (5,0 pts) As figuras (Figuras 2(a)-(d)) representam funções objetivo não lineares (representas pelas curvas de nível) juntamente com as restrições (linhas hachuradas). Considere as seguintes afirmações:

- 1) (....) Nos quatro casos apresentados, os pontos de ótimo (máximo e/ou mínimo) coincidem com o ponto ótimo da função sem considerar as restrições (problema de otimização sem restrições).
- 2) (....) O problema de otimização representado na Figura 2(a) se refere a uma função quadrática com um máximo global.
- 3) (....) As restrições modificam o ótimo dos problemas de otimização não linear em todas os quatro casos apresentados.
- 4) (....) A Figura 2(c) apresenta dois mínimos locais da função sendo o ponto A o ótimo do problema de otimização considerando as restrições.
- 5) (....) Se a aplicado o método de Newton para a solução, nos quatro casos o método converge com uma única iteração exceto paro o caso da Figura 2(c).
- 6) (....) A Figura 2(d) apresenta dois pontos ótimos da função objetivo.
- 7) (....) Para os quatro casos apresentadas nas Figuras (a, b, c, d), os respectivos conjuntos de restrições formam uma região convexa definida para cada problema de otimização.
- 8) (....) O número de restrições em cada um dos problemas representados nas Figuras (a, b, c, d) é igual a 4.
- 9) (....) O vetor $\mathbf{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}^T$ é uma solução viável para o problema de otimização representado na Figura 2(a).
- 10) (....) Na Figura 2(d) o ótimo global é representado pelo ponto $\mathbf{x}_{\text{opt}}^{(1)}$.

Figura 2 – Representação esquemática de diferentes funções objetivo e restrições em um plano $[x_1; x_2]$.