STATISTICAL METHODS IN AI (CS7.403)

Lecture-14: Neural Networks-2

Ravi Kiran (ravi.kiran@iiit.ac.in)

https://ravika.github.io

@vikataravi

Center for Visual Information Technology (CVIT)
IIIT Hyderabad

The Perceptron Cost Function

• Prediction is correct if $y^{(i)} \boldsymbol{x}^{(i)} \boldsymbol{\theta} > 0$

 $J_{0/1}(m{ heta}) = rac{1}{n} \sum_{i=1}^n \ell(sign(x^{(i)}m{ heta}), y^{(i)})$

sign function

where $\ell()$ is 0 if the prediction is correct, 1 otherwise

The Perceptron Cost Function

• Prediction is correct if $y^{(i)} \boldsymbol{x}^{(i)} \boldsymbol{\theta} > 0$

 $\phi(u) \xrightarrow{0} u$ $\phi_{sign}(u) = \begin{cases} 1 & \text{if } u \ge 0 \\ -1 & \text{otherwise} \end{cases}$

sign function

$$J_{0/1}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell(sign(x^{(i)}\boldsymbol{\theta}), y^{(i)})$$

where $\ell()$ is 0 if the prediction is correct, 1 otherwise

The Perceptron Cost Function

• Prediction is correct if $y^{(i)} m{x}^{(i)} m{ heta} > 0$

 $\phi(u) \uparrow \qquad \qquad \downarrow u$ $\phi_{sign}(u) = \begin{cases} 1 & \text{if } u \ge 0 \\ -1 & \text{otherwise} \end{cases}$

sign function

0/1 loss

$$J_{0/1}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell(sign(x^{(i)}\boldsymbol{\theta}), y^{(i)})$$

where $\ell()$ is 0 if the prediction is correct, 1 otherwise

Doesn't produce a useful gradient

No gradient → We cannot use gradient-based optimization methods. Does NOT mean 'unsolvable'

Improving the perceptron

Problem #0: Non-differentiable loss function

Could have used 0/1 loss

$$J_{0/1}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(sign(x^{(i)}\theta), y^{(i)})$$

where $\ell()$ is 0 if the prediction is correct, 1 otherwise

Doesn't produce a useful gradient

Improving the perceptron

Problem #0: Non-differentiable loss function

Could have used 0/1 loss

$$J_{0/1}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell(sign(x^{(i)}\boldsymbol{\theta}), y^{(i)})$$

where $\ell()$ is 0 if the prediction is correct, 1 otherwise

Doesn't produce a useful gradient

Solution: Minimize the 'misclassification distance'

$$J_p(\mathbf{a}) = \sum_{\mathbf{x} \in \mathbb{M}} (-\mathbf{a}^{\mathbf{T}}\mathbf{x})$$

Set of misclassified samples

Minimize # of misclassifications Solution: Minimize the 'misclassification distance'

$$J_p(\mathbf{a}) = \sum_{\mathbf{x} \in \mathbb{M}} (-\mathbf{a}^{\mathbf{T}}\mathbf{x})$$

Set of misclassified samples

$$\nabla J_p(\mathbf{a}) = \sum_{\mathbf{x} \in \mathbb{M}} (-\mathbf{x})$$
$$a^{(k+1)} = a^k - \eta^k \nabla J_p(a)$$
$$a^{(k+1)} = a^k + \eta^k \sum_{\mathbf{x} \in \mathbb{M}} \mathbf{x}$$

c.f. logistic regression

$$\nabla_a J(\hat{y}^{(i)}, y^{(i)}) = (\hat{y}^{(i)} - y^{(i)})\hat{x}^{(i)}$$

ACTIVATION FUNCTIONS

WHY USE ONLY ONE NEURON?

MULTI-NEURON NETWORKS :: ARCHITECTURE

MULTI-NEURON NETWORKS :: ARCHITECTURE

NEURON

MULTI-NEURON NETWORKS :: ARCHITECTURE

```
STRUCTURE
class Neural Network(object):
                                                                                                  (by hyperpurameters)
   def __init__(self):
       #Define Hyperparameters
       self.inputLayerSize = 2
       self.outputLayerSize = 1
       self.hiddenLayerSize = 3
       self.W1 = np.random.randn(self.inputLayerSize,self.hiddenLayerSize)
       self.W2 = np.random.randn(self.hiddenLayerSize,self.outputLayerSize)
```

MULTI-NEURON NETWORKS :: TRAINING

INITIALIZE NETWORK WITH RANDOM WEIGHTS

WHILE [NOT CONVERGED]

DO FORWARD PROP

DO BACKPROP AND DETERMINE CHANGE IN WEIGHTS

UPDATE ALL WEIGHTS IN ALL LAYERS

MULTI-NEURON NETWORKS :: FORWARD PROPAGATION


```
def forward(self, X):
    #Propogate inputs though network
    self.z2 = np.dot(X, self.W1) # z2 = X * W1
    self.a2 = self.sigmoid(self.z2) # a2 = sigmoid(z2)
    self.z3 = np.dot(self.a2, self.W2) # z3 = a2 * W2
    yHat = self.sigmoid(self.z3) # yHat = sigmoid(z3)
    return yHat

def sigmoid(self, z):
    #Apply sigmoid activation function to scalar, vector, or matrix
    return 1/(1+np.exp(-z))
```

MULTI-NEURON NETWORKS :: GRADIENT DESCENT


```
def costFunction(self, X, y):
    #Compute cost for given X,y, use weights already stored in class.
    self.yHat = self.forward(X)
    J = 0.5*sum((y-self.yHat)**2)
    return J
```

MULTI-NEURON NETWORKS :: BACKPROPAGATION

$$\bigwedge_{(s)} = \begin{bmatrix} M_{(s)}^{s_0} \\ M_{(s)}^{s_1} \end{bmatrix}$$

$$\frac{\partial \bigwedge_{(s)}^{s_2}}{\partial \mathcal{I}} = \begin{bmatrix} \frac{\partial M_{(s)}^{s_1}}{\partial \mathcal{I}} \\ \frac{\partial M_{(s)}^{s_2}}{\partial \mathcal{I}} \end{bmatrix}$$

$$\frac{\partial M_{(s)}}{\partial \mathcal{I}} = \begin{bmatrix} \frac{\partial M_{(s)}^{s_1}}{\partial \mathcal{I}} \\ \frac{\partial M_{(s)}^{s_2}}{\partial \mathcal{I}} \end{bmatrix}$$

$$\frac{\partial M_{(s)}}{\partial \mathcal{I}} = \begin{bmatrix} \frac{\partial M_{(s)}^{s_1}}{\partial \mathcal{I}} \\ \frac{\partial M_{(s)}^{s_2}}{\partial \mathcal{I}} \end{bmatrix}$$

$$\frac{\partial M_{(s)}}{\partial \mathcal{I}} = \begin{bmatrix} \frac{\partial M_{(s)}^{s_1}}{\partial \mathcal{I}} \\ \frac{\partial M_{(s)}^{s_2}}{\partial \mathcal{I}} \end{bmatrix}$$

$$\frac{\partial M_{(s)}}{\partial \mathcal{I}} = \begin{bmatrix} \frac{\partial M_{(s)}^{s_1}}{\partial \mathcal{I}} \\ \frac{\partial M_{(s)}^{s_2}}{\partial \mathcal{I}} \end{bmatrix}$$

$$\frac{\partial M_{(s)}}{\partial \mathcal{I}} = \begin{bmatrix} \frac{\partial M_{(s)}^{s_1}}{\partial \mathcal{I}} \\ \frac{\partial M_{(s)}^{s_2}}{\partial \mathcal{I}} \end{bmatrix}$$

$$\frac{\partial M_{(s)}}{\partial \mathcal{I}} = \begin{bmatrix} \frac{\partial M_{(s)}^{s_1}}{\partial \mathcal{I}} \\ \frac{\partial M_{(s)}^{s_2}}{\partial \mathcal{I}} \end{bmatrix}$$

$$\frac{\partial M_{(s)}}{\partial \mathcal{I}} = \begin{bmatrix} \frac{\partial M_{(s)}^{s_1}}{\partial \mathcal{I}} \\ \frac{\partial M_{(s)}^{s_2}}{\partial \mathcal{I}} \end{bmatrix}$$

MULTI-NEURON NETWORKS :: BACKPROPAGATION

backpropagation

$$J = \left| \sum_{i=1}^{n} \frac{1}{2} \left| (y - \hat{y})^{2} \right| \right|$$

$$\frac{\partial J}{\partial W^{(2)}} = (a^{(2)})^T \delta^{(3)}$$

$$\delta^{(3)} = -(y - \hat{y})f'(z^{(3)})$$

$$\frac{\partial J}{\partial W^{(1)}} = X^T \delta^{(2)}$$

$$\delta^{(2)} = \delta^{(3)} (W^{(2)})^T f'(z^{(2)})$$

$$z^{(2)} = XW^{(1)} \quad (1)$$

$$a^{(2)} = f(z^{(2)})$$
 (2)

$$z^{(3)} = a^{(2)} W^{(2)}$$
 (3)

$$\hat{y} = f(z^{(3)})$$
 (4)


```
def costFunctionPrime(self, X, y):
    #Compute derivative with respect to W1 and W2 for a given X and y:
    self.yHat = self.forward(X)

    delta3 = np.multiply(-(y-self.yHat), self.sigmoidPrime(self.z3))
    dJdW2 = np.dot(self.a2.T, delta3)

    delta2 = np.dot(delta3, self.W2.T)*self.sigmoidPrime(self.z2)
    dJdW1 = np.dot(X.T, delta2)

    return dJdW1, dJdW2
```

MULTI-NEURON NETWORKS :: TRAINING

INITIALIZE NETWORK WITH RANDOM WEIGHTS

WHILE [NOT CONVERGED]

DO FORWARD PROP

DO BACKPROP AND DETERMINE CHANGE IN WEIGHTS

UPDATE ALL WEIGHTS IN ALL LAYERS

```
NN = Neural_Network()
cost1 = NN.costFunction(X, y)
print('cost1=',cost1)
dJdW1, dJdW2 = NN.costFunctionPrime(X, y)
print('dJ/dW1=',dJdW1)
print('dJ/dW2=',dJdW2)
eta = 0.01
NN.W1 = NN.W1 - eta * dJdW1
NN.W2 = NN.W2 - eta * dJdW2
```

One Iteration

MULTI-NEURON NETWORKS :: BACKPROPAGATION

$$J = \left| \sum_{i=1}^{n} \frac{1}{2} \left(y - \hat{y} \right)^{2} \right|$$

$$\frac{\partial J}{\partial W^{(2)}} = (a^{(2)})^T \delta^{(3)}$$

$$\delta^{(3)} = -(y - \hat{y})f'(z^{(3)})$$

$$\frac{\partial J}{\partial W^{(1)}} = X^T \delta^{(2)}$$

$$\delta^{(2)} = \delta^{(3)} (W^{(2)})^T f'(z^{(2)})$$

$$z^{(2)} = XW^{(1)} \quad (1)$$

$$a^{(2)} = f(z^{(2)})$$
 (2)

$$z^{(3)} = a^{(2)}W^{(2)}$$
 (3)

$$\hat{y} = f(z^{(3)})$$
 (4)

$$\mathcal{N}_{(s)} = \begin{bmatrix} \mathcal{N}_{(s)}^{2} \\ \mathcal{N}_{(s)}^{1} \\ \mathcal{N}_{(s)}^{2} \end{bmatrix} \qquad \begin{bmatrix} \frac{\partial \mathcal{N}_{(s)}}{\partial \mathbf{I}} \\ \frac{\partial \mathcal{N}_{(s)}}{\partial \mathbf{I}} \end{bmatrix} \qquad \begin{bmatrix} \frac{\partial \mathcal{N}_{(s)}}{\partial \mathbf{I}} \\ \frac{\partial \mathcal{N}_{(s)}}{\partial \mathbf{I}} \end{bmatrix}$$

$$\mathcal{N}_{(s)} = \begin{bmatrix} \mathcal{N}_{(s)}^{s_1} & \mathcal{N}_{(s)}^{s_2} \\ \mathcal{N}_{(s)}^{s_2} & \mathcal{N}_{(s)}^{s_2} \end{bmatrix} \qquad \begin{bmatrix} \frac{\partial \mathcal{N}_{(s)}}{\partial \mathbf{I}} & \frac{\partial \mathcal{N}_{(s)}^{s_2}}{\partial \mathbf{I}} \\ \frac{\partial \mathcal{N}_{(s)}}{\partial \mathbf{I}} & \frac{\partial \mathcal{N}_{(s)}^{s_2}}{\partial \mathbf{I}} & \frac{\partial \mathcal{N}_{(s)}^{s_2}}{\partial \mathbf{I}} \end{bmatrix}$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - F(x)}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - F(x)}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)^2 - x^2}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - x^2}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\Delta x^2 + 2x\Delta x + \Delta x^2 - x^2}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\Delta x^2 + 2x\Delta x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\Delta x^2 + 2x\Delta x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\Delta x^2 + 2x\Delta x}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - F(x)}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)^2 - x^2}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - x^2}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\Delta x^2 + 2x\Delta x + \Delta x^2 - x^2}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\Delta x^2 + 2x\Delta x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\Delta x^2 + 2x\Delta x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\Delta x^2 + 2x\Delta x}{\Delta x}$$

```
t(x) 3
                                     In [4]: def f(x):
                                                 return x**2
                                     In [5]: epsilon = 1e-4
                                             x = 1.5
                                     In [6]: numericGradient = (f(x+epsilon)- f(x-epsilon))/(2*epsilon)
f'(x) = f(x+E)-f(x-E)
                                     In [7]: numericGradient, 2*x
                                     Out[7]: (2.999999999996696, 3.0)
                                     In [ ]: |
```

Parameter vector θ

$$\begin{array}{l} \Rightarrow \theta \in \mathbb{R}^n \quad \text{(E.g. θ is "unrolled" version of } \underline{\Theta^{(1)}, \Theta^{(2)}, \Theta^{(3)}$)} \\ \Rightarrow \theta = \begin{bmatrix} \theta_1, \theta_2, \theta_3, \dots, \theta_n \end{bmatrix} \\ \Rightarrow \frac{\partial}{\partial \underline{\theta_1}} J(\theta) \approx \frac{J(\theta_1 + \underline{\theta_1}, \theta_2, \theta_3, \dots, \theta_n) - J(\theta_1 - \underline{\epsilon}, \theta_2, \theta_3, \dots, \theta_n)}{2\epsilon} \\ \frac{\partial}{\partial \theta_2} J(\theta) \approx \frac{J(\theta_1, \theta_2 + \epsilon, \theta_3, \dots, \theta_n) - J(\theta_1, \theta_2 - \epsilon, \theta_3, \dots, \theta_n)}{2\epsilon} \\ \vdots \end{array}$$

```
f'(x) = f(x+E)-f(x-E)
```

```
= computeNumericalGradient(NN, X, y)
In [4]: grad = NN.computeGradients(X, y)
In [5]: numgrad
Out[5]: array([ -7.10752568e-03,
                                  -6.30194392e-03,
                                                     -4.96392693e-03,
                -6.55946987e-04,
                                   7.57595597e-05,
                                                     -1.11297012e-03,
                -8.81243102e-03.
                                  -4.45550176e-03,
                                                     -1.93471143e-021)
In [6]: grad
Out[6]: array([ -7.10752569e-03,
                                   -6.30194393e-03,
                                                     -4.96392693e-03,
                -6.55946985e-04,
                                   7.57595604e-05,
                                                     -1.11297012e-03,
                -8.81243100e-03,
                                   -4.45550176e-03,
                                                     -1.93471142e-021)
```

```
In [7]: norm(grad-numgrad)/norm(grad+numgrad)
Out[7]: 1.9824969610227768e-09
```

DATA SETUP

- Preprocessing:

WEIGHT INITIALIZATION

- ALL ZEROS
- RANDOM [0,1]
- RANDOM [-1,1]
- w = np.random.randn(n) * sqrt(2.0/n), n = # of inputs to neuron

ACTIVATION FUNCTIONS

MINIBATCH VS SINGLE

- Average error, gradients

TRAINING - SETTING LEARNING RATE

TRAINING - SETTING LEARNING RATE

Dir

lossfunctions

They are a window to your model's heart.

Compute two functions to discountry it cover's matter if your root functions are flat, converge, diverge, deep or outlinks par any continuous of the above. All loss functions are computed beautiful in their own way

WHEN TO STOP TRAINING

WHEN TO STOP TRAINING

Training loss and validation loss

Multi-Class Classification with NN and SoftMax Function

0, 0, 1, 0

computed			ta	rge	ts	 	l	correct?
0.3 0.3 0.3 0.4 0.1 0.2	0.3	İ	0	1	0			yes yes no

Average Classification Error?

computed			ta	rge	ts 	 		correct?
0.3 0.3 0.3 0.4 0.1 0.2	0.3	i	0	1	0			yes yes no

Average Classification Error?

computed		1	targe	ts	 I	correct?
0.1 0.2 0.1 0.7 0.3 0.4	0.2	(0 1	0		yes yes no

Average Classification Error?

computed		I	ta	rge	ts		I	correct?
0.3 0.3 0.3 0.4 0.1 0.2	0.3	Ì	0	1	0		İ	yes yes no

Which classifier is better?

comput	ed		I	tar	get	:3	1	correct?
0.1 0 0.1 0 0.3 0	.7	0.2	İ	0	1	0		yes yes no

computed		I	ta	rge	ts	correct?
0.3 0.3 0.3 0.4 0.1 0.2	0.3	İ	0	1	0	yes yes no

Which classifier is better?

computed		t	arge	ts	 I	correct?
0.1 0.2 0.1 0.7	0.2	0	1	0		yes yes
0.3 0.4	0.3	1	0	0		no

Classification accuracy is a crude way to measure how well NN has been trained!

computed		I	ta	rge	ts	 	I	correct?
0.3 0.3 0.3 0.4 0.1 0.2	0.3	İ	0	1	0		į	yes yes no

Cross-entropy error?

computed	ta	rge	ts	ı	correct?
0.1 0.2					yes ves
0.3 0.4				i	no

MSE?

computed			ta:	rge	ts	 		correct?
0.3 0.3 0.3 0.4 0.1 0.2	0.3	İ	0	1	0		i	yes yes

computed	 ta	arge	ts	I	correct?
0.1 0.2					yes ves
0.3 0.4				i	no

ln() function in cross-entropy takes into account the closeness of a prediction and is a more granular way to compute error.

RESOURCES

- <u>Videos</u>
- <u>Example from lecture: https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU</u>
- <u>3Blue1Brown:</u>
 https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQ0b0WTQDNU6R1_67000Dx_ZCJB-3pi
- StatQuest: https://www.youtube.com/watch?v=zxagGtF9MeU&list=PLblh5JKOoLUIxGDQs4LFFD--41Vzf-ME1
- NN zero to hero: https://www.youtube.com/watch?v=VMj-3S1tku0&list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ
- BP in terms of computational graph (cs221n): https://www.youtube.com/watch?v=i940vYb6noo
- https://theaisummer.com/weights-and-biases-tutorial/