12th Oral Exam of S.-T. Yau College Student Mathematics Contests 2021

Analysis and differential equations Group Contest

- 1. Explain that the dual space of $L^{\infty}(\mathbb{R})$ is not $L^{1}(\mathbb{R})$.
- 2. Let $\varphi:[0,1]\to\mathbb{R}$ be integrable for the Lebesgue measure. Define $G:\mathbb{R}\to\mathbb{R}_+$ by

$$G(t) = \int_{[0,1]} |\varphi(x) - t| dx.$$

- (i) Show that G is continuous on \mathbb{R} ;
- (ii) Show that G is derivable at $t \in \mathbb{R}$ if and only if

$$\lambda_1(\{x:\varphi(x)=t\})=0,$$

here λ_1 denotes the Lebesgue measure on \mathbb{R}^1 .

3. Let $B_1(0)$ be the unit ball in \mathbb{R}^3 centered at the origin. Assume that the function v is a smooth function defined on \mathbb{R}^3 with $v_r = \frac{x \cdot \nabla v}{|x|} \in L^2(B_1(0))$. Prove that

$$\int_{B_1(0)} \frac{|v(x)|^2}{|x|^2} dx \le C(\int_{B_1(0)} |v_r|^2 dx + \int_{\partial B_1(0)} |v|^2 d\sigma)$$

$$\le C_1 \int_{B_1(0)} (|v_r|^2 + |v|^2) dx,$$

where C and C_1 are some constants independent of v.

4. Prove that the life span of any solution to the following differential equation

$$\frac{dy}{dx} = x^2 + y^2$$

is finite.