Statistical Learning

Chapter 1. Overview of Supervised learning

Pedro Delicado and Alex Sanchez

UPC & UB

Outline

- Supervised and Unsupervised learning
- Statistical Decision Theory
- Regression Problems
- Classification problems

Supervised Learning (the prediction problem)

- Let (X,Y) be a r.v. with support $\mathcal{X} \times \mathcal{Y} \subseteq \mathbb{R}^p \times \mathbb{R}$.
- General supervised learning or prediction problem:
 - \bullet Training sample: $S = \{\left(x_1, y_1\right), \dots, \left(x_n, y_n\right)\}$, i.i.d. from (X, Y).
 - The goal is to define a function (possibly depending on the sample) $h_S: \mathcal{X} \mapsto \mathcal{Y} \text{ such that for a new independent observation } (x_{n+1}, y_{n+1})$, from which we only know x_{n+1} , it happens that:

$$\hat{y}_{n+1}=h_{S}\left(x_{n+1}\right)$$
 is close to y_{n+1} (in some sense).

ullet Function h_S is called generically a *prediction function*. (or classification function or regression function, depending on the case).

Classification and Regression problems

The prediction function h_S is said to describe a *classification* or a *regression* problem depending on the case.

- If $\mathcal{Y} \subseteq \mathbb{R}$ (or \mathcal{Y} an interval) we have a standard *regression problem*.
 - Example: Relating Salary and demographic variables
- If $\mathcal{Y} = \{0,1\}$ (or, also, $\mathcal{Y} = \{-1,1\}$) we have a problem of binary classification or discrimination.
 - Example: Predicting if a COVID patient will require (or not) ICU
- If $\mathcal{Y}=\{1,\ldots,K\}$ (or $\mathcal{Y}=\left\{y\in\{0,1\}^K:\sum_{k=1}^Ky_k=1\right\}$) we face a of K classes classification problem.
 - Example: Classifying a tumor into one of many types

Supervised learning

- Probabilistic model for supervised learning
 - ullet Response variable Y.
 - \bullet Explanatory variables (features) $X = \big(X_1, \dots, X_p\big).$
 - \bullet Data $\left(x_i=\left(x_{i1},\ldots,x_{ip}\right),y_i\right),i=1,\ldots,n$ i.i.d. from the random variable

$$\left(X = \left(X_1, \dots, X_p\right), Y\right) \sim \Pr(X, Y)$$

- ullet $\Pr(X,Y)$ denotes the joint distribution of X and Y.
 - \bullet When this joint distribution is continuous, $\Pr(X,Y)$ is the joint probability density function.

- Main interest is predicting Y from X.
- Given the probabilistic model it can be re-stated as *learning the* conditional distribution $Pr(Y \mid X)$.
- In practice we focus on learning a conditional location parameter:

$$\mu(x) = \underset{\mu}{\operatorname{argmin}} \mathbb{E}(L(Y, \mu) \mid X = x),$$

where $L(y,\hat{y})$, loss function, measures the error of predicting y with \hat{y} .

 \bullet For quadratic loss, $L(y,\hat{y})=(y-\hat{y})^2, \mu(x)$ is the regression function:

$$\mu(x) = \mathbb{E}(Y \mid X = x)$$

Unsupervised learning

- It aims at learning relationships and structure from the observed data.
- Probabilistic model:
 - Variables of interest: $X = (X_1, \dots, X_p)$.
 - \bullet Data $x_i = \left(x_{i1}, \dots, x_{ip}\right), i = 1, \dots, n$ i.i.d. from the random variable

$$X = \left(X_1, \dots, X_p\right) \sim \Pr(X).$$

- ullet $\Pr(X)$ denotes the probability distribution of X.
 - ullet If X is continuous, $\Pr(X)$ is the probability density function of X.
- Main interest: To infer properties of Pr(X).

Specific problems in unsupervised learning:

- ullet Estimating directly the density function $\Pr(x)$:
 - Density estimation (histogram, kernel densities, Gaussian MM)
- \bullet Detecting homogeneous subpopulations C_1,\dots,C_k s.t.:

$$\Pr(x) = \sum_{j=1}^k \alpha_j \Pr\left(x \mid C_j\right)$$
 , $\alpha_j \geq 0$, $\sum_j \alpha_j = 1$.

- Clustering (hierarchical clustering, k-means, ...)
- Finding low-dimensional hyper-planes or hyper-surfaces (manifolds) in \mathbb{R}^p around which the probability $\Pr(x)$ is concentrated.
 - Dimensionality reduction (PCA, MDS, Manifold learning ...)
- Proposing generative probabilistic models for X, depending on low-dimensional unobservable random variables F.
 - Extraction of latent variables (Factor Analysis, ...)

Statistical Decision Theory

- The prediction problem can be written as a decision problem which can be casted in the setting of Statistical Decision Theory.
- Let (X,Y) be a r.v. with support $\mathcal{X} \times \mathcal{Y} \subseteq \mathbb{R}^p \times \mathbb{R}$.
- Prediction problem: To look for a prediction function $h: \mathcal{X} \mapsto \mathcal{Y}$ such that h(X) is close to Y in some sense.
- \bullet The (lack of) closeness between h(X) and Y is usually measured by a loss function L(Y,h(X)).
 - \bullet For instance, the squared error loss is $L(Y,h(X))=(Y-h(X))^2.$
 - L(Y,h(X)) is a r.v., with expected value $\mathrm{EL}(h)=\mathbb{E}(L(Y,h(X)))$, called expected loss, that only depends on h.
- Decision problem: To find the prediction function $h: \mathcal{X} \mapsto \mathcal{Y}$ that minimizes the expected loss.

Bayes rule

- Denote by $\Pr_{(X,Y)}(x,y)$ the joint probability distribution of (X,Y).
- Observe that, for any $h: \mathcal{X} \mapsto \mathcal{Y}$ a lower bound for $\mathrm{EL}(h)$ can be set as follows:

$$\begin{split} \operatorname{EL}(h) &= \mathbb{E}(L(Y,h(X))) \\ &= \int_{\mathcal{X} \times \mathcal{Y}} L(y,h(x)) \, d \operatorname{Pr}_{(X,Y)}(x,y) \\ &= \int_{\mathcal{X}} \left(\int_{\mathcal{Y}} L(y,h(x)) \, d \operatorname{Pr}_{Y|X=x}(y) \right) d \operatorname{Pr}_{X}(x) \\ &= \int_{\mathcal{X}} \mathbb{E}(L(Y,h(x)) \mid X=x) \, d \operatorname{Pr}_{X}(x) \\ &\geq \int_{\mathcal{X}} \min_{y \in \mathcal{Y}} \mathbb{E}(L(Y,y) \mid X=x) \, d \operatorname{Pr}_{X}(x) \\ &= \operatorname{EL}(h_{B}) \, . \end{split}$$

- From the previous bound: $\mathrm{EL}(h) \geq \mathrm{EL}\left(h_B\right)$, it follows that, given a loss function L(y,h(x)) no prediction function can be better than the Bayes rule, or equivalently, that
- The optimal prediction function is the Bayes rule or Bayes classifier defined as:

$$h_B(x) = \arg\min_{y \in \mathcal{Y}} \mathbb{E}(L(Y,y) \mid X = x).$$

The regression problem

- Let (X,Y) be a (p+1)-dimensional random variable, with $Y \in \mathbb{R}$.
- ullet The regression problem: To predict Y from known values of X.
- The most common (and convenient) approach is to adopt as loss function is the squared error loss: $L(Y,h(X))=(Y-h(X))^2$.
- Expected loss known as Prediction Mean Squared Error, (PMSE):

$$PMSE(h) = \mathbb{E}\left((Y - h(X))^2\right).$$

• The Bayes rule in this case is

$$h_B(x) = \arg\min_{y \in \mathcal{Y}} \mathbb{E}\left((Y-y)^2 \mid X = x \right).$$

• Observe that, for any $y\in\mathcal{Y}$ one can decompose the conditional expectation of the squared deviation between Y and yh given X=x, $\mathbb{E}\left((Y-y)^2\mid X=x\right)$ in such a way that:

$$\begin{split} & \mathbb{E}\left((Y-y)^2 \mid X=x\right) = \\ & = \mathbb{E}\left(\left((Y-\mathbb{E}(Y\mid X=x)) + (\mathbb{E}(Y\mid X=x)-y))^2 \mid X=x\right) \\ & = \mathbb{E}\left((Y-\mathbb{E}(Y\mid X=x))^2 \mid X=x\right) + \underbrace{\left(\mathbb{E}(Y\mid X=x)-y)\right)^2}_{\geq 0} \\ & + 2(\mathbb{E}(Y\mid X=x)-y)\mathbb{E}(Y-\mathbb{E}(Y\mid X=x)\mid X=x) \\ & \geq \mathbb{E}\left((Y-\underbrace{\mathbb{E}(Y\mid X=x)}_{h_{\mathcal{B}}(x)})^2 \mid X=x\right) \end{split}$$

Optimal predictor in regression

• From the previous development it yields that, for regression problems, the Bayes rule is the conditional expectation of Y given X=x,

$$h_B(x) = \mathbb{E}(Y \mid X = x),$$

ullet It is also known as regression function of Y over x and is usually denoted by

$$m(x) = \mathbb{E}(Y \mid X = x).$$

Parametric regression

ullet Parametric regression models assume that m(x) is known except for a finite number of unknown parameters,

$$m(x) \equiv m(x; \theta), \theta \in \Theta \subseteq \mathbb{R}^q,$$

- For instance, the multiple linear regression model postulates that $m(x) = \beta_0 + x^\top \beta_1$, with unknown parameters $\beta_0 \in \mathbb{R}, \beta_1 \in \mathbb{R}^p$.
- \bullet A training sample, $S=\{(x_1,y_1)\,,\dots\,,(x_n,y_n)\},$ i.i.d. from (X,Y), is used to estimate the parameter $\theta.$
- In this case $h_S(x)=m(x;\hat{\theta})$, where $\hat{\theta}=\hat{\theta}(S)$ is the estimation of θ from sample S.

Least squares estimation

ullet A usual way to estimate heta in parametric models is by least squares:

$$\hat{\theta} = \arg\min_{\theta \in \Theta} \sum_{i=1}^{n} \left(y_i - m\left(x_i; \theta\right)\right)^2$$

- The regression function m(x) is linear in x.
- It can be shown that, independently of the distributions, $\hat{\theta}$ is the Best Linear Unbiased Estimator (BLUE) of θ .
- \bullet Assuming joint normality for X and Y the LS-estimator is equivalent to the maximum likelihood estimator of θ
- In this case, the model is $Y=m(X)+\varepsilon$, where ε is an additive noise normally distributed with zero mean and independent from X, also normally distributed.

Least squares estimation and prediction errors

- \bullet The LS estimator $\hat{\theta}$ minimizes the prediction error, RSS, in the training sample.
- That is, the Residual Sum of Squares,

$$\mathrm{RSS}(\theta) = \sum_{i=1}^{n} \left(y_i - m\left(x_i; \theta \right) \right)^2,$$

takes its minimum value when $\theta = \hat{\theta}$

$$\overline{\text{err}} = \text{RSS}(\hat{\theta}) = \sum_{i=1}^{n} \left(y_i - m\left(x_i; \hat{\theta} \right) \right)^2$$

Different types of prediction error

- $RSS(\theta)$ is the *prediction error* a theoretical quantity, based on the training sample, that needs to be estimated.
- ullet err, known as the *training error* or the *apparent error*, is an approximation to $\mathrm{RSS}(\theta)$.
- We are interested in the error associated when predicting a new observation, that is the Prediction Mean Squared Error (PMSE)

$$\mathrm{PMSE}(\theta) = \mathbb{E}\left(\left(Y_{n+1} - m\left(x_i;\theta\right)\right)^2\right),$$

 \bullet $\overline{\text{err}}$ is an optimistic estimation of the in an observation of (X_{n+1},Y_{n+1}) independent from the training sample,

err and PMSE are not the same

- In some cases such as in linear regression \overline{err} is a good approximation to $\min_{\theta \in \mathbb{R}^q} \mathrm{PMSE}(\theta)$
- But, when the parametric family $m(x;\theta), \theta \in \Theta \subseteq \mathbb{R}^q$, is too flexible:

$$\overline{\operatorname{err}} < \operatorname{PMSE}(\hat{\theta}) \neq \min_{\theta \in \mathbb{R}^q} \operatorname{PMSE}(\theta)$$

- This is the case in non-parametric regression and in many machine learning algorithms. (Example: k-nearest neighbors regression, where the tuning parameter is k).
- We will talk later in the course about cross-validation and tuning parameters.

k nearest-neighbors regression

- K-NN is a flexible approach to regression or classification that, instead of relying on a *global model* based on all observations models each observation locally based on its *nearest neighbors*.
- The k nearest-neighbor estimator of $m(t) = E(Y \mid X = t)$ is:

$$\hat{m}(t) = \frac{1}{|N_k(t)|} \sum_{i \in N_k(t)} y_i,$$

where $N_k(t)$ is the neighborhood of t defined by the k closest points x_i in the training sample.

ullet Closeness is defined according to a previously chosen distance measure d(t,x), for instance, the Euclidean distance.

K-NN is flexible or way too flexible

- K-NN regression is is a great real-world example of how model flexibility impacts training error vs. prediction error:
 - When k=1 the model memorizes training data, leading to zero training error.
 - However, for a new test observation, predictions are **highly unstable** (high variance): $PMSE(\hat{\theta}) \gg \overline{err}$.
 - \bullet As k increases, the model becomes less flexible, reducing variance but increasing bias.
 - ullet The optimal k balances both, minimizing PMSE
- **Conclusion:** Overly flexible models, like small k in k-NN, cause **training error to be misleading**.

Practice session

- The R notebook knn_regr.Rmd illustrates the advantages and drawbacks of K-NN regression using R.
- Run along it and experiment with different settings.

The classification problem

- Let (X,Y) be a r.v. with support $\mathcal{X} \times \mathcal{Y} \subseteq \mathbb{R}^p \times \{1,\ldots,K\}$.
- ullet We want to predict Y from observed values of X.
- ullet The loss function in this case can be represented by a $K \times K$ matrix L, that will be zero on the diagonal and nonnegative elsewhere.
 - The element (j,k) of L is L(j,k): the price paid for classifying in class k an observation belonging to class j.

The zero-one loss function

- A common loss function for classification is the zero-one loss function is used, where *all misclassifications are charged a single unit*.
- With the 0-1 loss function the Bayes rule is

$$\begin{split} h_B(x) &= \arg\min_{y \in \mathcal{Y}} \mathbb{E} \left(L_{0-1}(Y,y) \mid X = x \right) \\ &= \arg\min_{k \in \{1,\dots,K\}} \sum_{j=1}^K L_{0-1}(j,k) \Pr(Y = j \mid X = x) \\ &= \arg\min_{k \in \{1,\dots,K\}} (1 - \Pr(Y = k \mid X = x)) \\ &= \arg\max_{k \in \{1,\dots,K\}} \Pr(Y = k \mid X = x). \end{split}$$

• In this context the Bayes rule is known as the Bayes classifier, and says that we classify to the most probable class, conditional to the observed value x of X.

The problem of binary classification

- In the binary classification problem: $\mathcal{Y} = \{0,1\}$. Then $(Y \mid X = x) \sim \mathrm{Bernoulli}(p = p(x) = \Pr(Y = 1 \mid X = x) = \mathbb{E}(Y \mid X = x))$.
- The Bayes classifier is

$$h_B(x) = \left\{ \begin{array}{ll} 1 & \text{if} & p(x) \geq 1/2 \\ 0 & \text{if} & p(x) < 1/2 \end{array} \right.$$

- As p(x) is unknown, we use a training sample to estimate it.
- \bullet Let $\left(x_{1},y_{1}\right),\ldots,\left(x_{n},y_{n}\right)$ be n independent realizations of (X,Y).
- Given an estimation $\hat{p}(x)$ of the regression function p(x), the estimated version of the Bayes classifier is

$$h_{S}\left(x_{n+1}\right) = \left\{ \begin{array}{ll} 1 & \text{if} & \hat{p}\left(x_{n+1}\right) \geq 1/2 \\ 0 & \text{if} & \hat{p}\left(x_{n+1}\right) < 1/2 \end{array} \right.$$

ullet In practice, cut points different from 1/2 can be used.

Parametric estimation in binary classification

• In parametric modeling it is assumed that $p(x) = \Pr(Y = 1 \mid X = x)$ is known except for a finite number of unknown parameters,

$$p(x) \equiv p(x; \theta), \theta \in \Theta \subseteq \mathbb{R}^q$$
.

• The likelihood and log-likelihood are, respectively:

$$\begin{split} L(\theta) &= \prod_{i=1}^{n} \Pr\left(Y_{i} = y_{i} \mid X_{i} = x_{i}\right) = \prod_{i=1}^{n} p\left(x_{i}; \theta\right)^{y_{i}} \left(1 - p\left(x_{i}; \theta\right)\right)^{1 - y_{i}}, \\ \ell(\theta) &= \log L(\theta) = \sum_{i=1}^{n} \left(y_{i} \log p\left(x_{i}; \theta\right) + \left(1 - y_{i}\right) \log \left(1 - p\left(x_{i}; \theta\right)\right)\right). \end{split}$$

- Let $\hat{\theta} = \arg\max_{\theta \in \Theta} \ell(\theta)$ be the maximum likelihood estimator of θ .
- Then $\hat{p}(x) = p(x; \hat{\theta})$ is used to define the classification rule.

Other optimization criteria for binary classification

- Maximum likelihood is not the only possibility for estimating θ in $p(x;\theta)$.
- Alternatives:
 - Minimization of the misclassification error:

$$\hat{\theta}_{\mathsf{Miss}} \ = \arg\min_{\theta \in \Theta} \sum_{i=1}^{n} \left(y_i - \mathbb{I} \left\{ p \left(x_i; \theta \right) \geq 0.5 \right\} \right)^2.$$

- Least squares estimation: $\hat{\theta}_{LS} = \arg\min_{\theta \in \Theta} \sum_{i=1}^{n} \left(y_i p\left(x_i; \theta\right)\right)^2$.
- Least absolute deviation: $\hat{\theta}_{LAD} = \arg\min_{\theta \in \Theta} \sum_{i=1}^{n} |y_i p\left(x_i; \theta\right)|.$
- Penalized version of these criteria, when the statistical model $p(x;\theta), \theta \in \mathbb{R}^q$, is too flexible.

k-Nearest Neighbors (k-NN) for classification

k-Nearest Neighbors (k-NN) is a simple and effective classification method.

It relies on the idea that similar instances should belong to the same class.

- Given a training set (\mathcal{T}) with labeled instances (x_i, y_i) ,
- To classify a new instance x, we:
 - Find the k closest points x_i to x.
 - 2 Take the *majority vote\$ of their corresponding labels y_i .

The decision boundary of k-NN is **nonlinear** and **flexible**, adapting to local patterns in the data.

k-NN Classification Model

The prediction for a new point (x) is given by:

$$\widehat{Y}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i$$

where:

- $N_k(x)$ is the set of the k nearest neighbors of x.
- ullet y_i are the corresponding labels (0 or 1 in binary classification).
- Closeness is typically measured using Euclidean distance.

For classification:

- If $\hat{Y}(x) > 0.5$, classify as **Class 1**.
- Otherwise, classify as Class 0.

Decision Boundaries - Linear Regression vs. k-NN

- \bullet Linear regression fits a straight line decision boundary: ($x^T \hat{\beta} = 0.5$).
- Misclassifications occur because it assumes a linear separation.
- It does not capture local structures in the data.

k-NN Decision Boundaries

- Uses a majority vote among the 15 closest neighbors.
- The decision boundary is much more **flexible** than linear regression.
- Adapts to **local clusters** of data.

k-NN with k=1

- 1-NN assigns the label of the **single closest** training point.
- Each point belongs to the nearest neighbor's class: Voronoi tessellation.
- Decision boundary is **highly irregular** and sensitive to noise.

Choosing k in k-NN

- The parameter k in K-NN reflects its flexibility
 - \bullet $k{=}1$ leads to $\mathbf{overfitting},$ that is, perfect accuracy on training but poor generalization.
 - ullet Larger k smooths the decision boundary but might lose fine details.

Trade-offs:

- Small (k): low bias, high variance.
- Large (k): high bias, low variance.
- **Optimal k** is chosen via cross-validation (later in the course) that aims at balancing the former error measures.

Summary

- k-NN is flexible and works well for complex decision boundaries.
- It is non-parametric and data-driven.
- The choice of (k) is critical for **generalization**.
- Compared to linear regression, k-NN adapts better to **nonlinear class distributions**.

k-nn classification, in R

Follow the Rmd files

SimMixtNorm.Rmd and knn_class.Rmd

Evaluating a binary classification rule

		B # 4 4 ##			Sources: [1][2][3][4][5][6][7][8]]v6mallik-edit	
		Total population = P + N	Predicted condition	Predicted negative	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold (PT) = \frac{\tau FPR \times FPR}{\tau FPR} - FPR
	Actual condition	Positive (P)	True positive (TP),	False negative (FN), miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $= \frac{TP}{p} = 1 - FNR$	False negative rate (FNR), miss rate type II error [c] $= \frac{FN}{P} = 1 - TPR$
		Negative (N) ^[d]	False positive (FP), false alarm, overestimation	True negative (TN), correct rejection ^[e]	False positive rate (FPR), probability of false alarm, fall-out type I error [f] $= \frac{FP}{N} = 1 - TNR$	True negative rate (TNR), specificity (SPC), selectivity $= \frac{TN}{N} = 1 - FPR$
		$\frac{\text{Prevalence}}{\text{p} + \text{N}}$	Positive predictive value (PPV), $\frac{\text{precision}}{\text{TP}} = \frac{\text{TP}}{\text{TP} + \text{FP}} = 1 - \text{FDR}$	False omission rate (FOR) $= \frac{FN}{TN + FN}$ $= 1 - NPV$	Positive likelihood ratio (LR+) = TPR FPR	Negative likelihood ratio (LR-) = FNR TNR
		Accuracy (ACC) $= \frac{TP + TN}{P + N}$	False discovery rate (FDR) $= \frac{FP}{TP + FP} = 1 - PPV$	$\begin{aligned} & \text{Negative} \\ & \text{predictive value} \\ & \text{(NPV)} \\ & = \frac{\text{TN}}{\text{TN} + \text{FN}} \\ & = 1 - \text{FOR} \end{aligned}$	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) $= \frac{LR+}{LR-}$
		Balanced	F ₁ score	Fowlkes-	Matthews correlation	Threat score (TS), critical success