

The Introduction To Artificial Intelligence

Yuni Zeng yunizeng@zstu.edu.cn 2022-2023-1

The Introduction to Artificial Intelligence

• Part I Brief Introduction to AI & Different AI tribes

Part II Knowledge Representation & Reasoning

OUTLINE

- 1.1 Brief Review
- 1.2 Knowledge Representation & Reasoning

1.1 Brief Review

■ What Is Artificial Intelligence?

Actually,

artificial intelligence is intelligence exhibited by machines.

1.1 Brief Review

■ What Is Artificial Intelligence?

We agree with that:

Intelligence is the <u>ability</u> to <u>learn</u> or <u>understand</u> or to <u>deal</u> with new or trying situations; the <u>ability</u> to apply knowledge to manipulate one's environment or to think abstractly.

1.1 Brief Review

1.2 Different Tribes of AI

1.2 Brief Review

☐ Traditional AI Methods

OUTLINE

- 1.1 Brief Review
- 1.2 Knowledge Representation & Reasoning

- What is knowledge representation?
- Propositional Logic
- Predicate Logic
- Production-rule System
- Frame-Based System
- State Space System
- ■Knowledge graph

- Puzzle Time
- An island has two kinds of inhabitants, *knights*, who always tell the truth, and *knaves*, who always lie.
- You go to the island and meet A and B.
 - A says "B is a knight."
 - B says "The two of us are of opposite types."

Example: What are the types of A and B?

How to represent the problem and solve it by computer?

Knowledge representation and reasoning

■ Knowledge

- the information, understanding and skills accumulated in long-term life and social practice, scientific research and experiments.
- An information structure that links related information together.
- ➤ Knowledge reflects the relationship between things in the objective world.

Example:

- 1. The snow is in white. --- Facts
- 2. If you have a headache and a runny nose, you might have a cold.

--- Rule

- ☐ Characteristic of Knowledge
- > Relative correctness

Any knowledge is produced under certain conditions, and is correct under such conditions.

- ☐ Characteristic of Knowledge
 - >Uncertainty: True, False, state between True and False
 - · Uncertainty caused by randomness
 - · Uncertainty caused by ambiguity
 - · Uncertainty caused by experience
 - · Uncertainty caused by incompleteness

Example:

- 1. If you have a headache and a runny nose, you might have a cold.
- 2. Li is very high.

- ☐ Characteristic of Knowledge
 - ➤ Uncertainty caused by ambiguity

--- A vague concept

- ☐ Characteristic of Knowledge
- ➤ Representability and Exploitability

Representability of knowledge: Knowledge can be expressed in appropriate forms, such as language, writing, graphics, neural networks, etc.

Exploitability of Knowledge: Knowledge can be utilized

- Knowledge Representation
 - Formalize or model human knowledge.
 - ➤ a description of knowledge, or a set of conventions, a data structure that a computer can accept to describe knowledge.
 - ➤ Principles for selecting knowledge representation methods:
 - Fully express domain knowledge.
 - Conducive to the use of knowledge.
 - Easy to organize, maintain and manage
 - Easy to understand and implement.

- What is knowledge representation?
- Propositional Logic
- ■Production-rule System
- ■Frame-Based System
- ■State Space System
- ■Knowledge graph

■ What is propositional logic

Proposition:

A :=The street is wet.

B := It is raining.

A **proposition** is a statement that is either true or false but not *both*.

- Atomic formulas are denoted by letters A, B, C, etc.
- Each atomic formula is assigned a truth value: true (1) or false (0).

- What is propositional logic
 - A proposition is a declarative sentence that is either true or false.
 - Examples of propositions:
 - a) The Moon is made of green cheese.
 - b) Beijing is the capital of China.
 - c) Hangzhou is the capital of Canada.
 - d) 1 + 0 = 1
 - e) 0+0=2
 - Examples that are not propositions.
 - a) Sit down!
 - b) What time is it?
 - c) x + 1 = 2
 - $d) \quad x + y = z$

- What is propositional logic
 - It is possible to determine whether any given statement is a proposition by prefixing it with
 - It is true that . . .
 - and seeing whether the result makes grammatical sense.
 - What is the time?
 - 2 + 3 = 5
 - "Phone" has five letters.
 - 2 + 3 = 6
 - Oh dear!
 - I like AI class.

- What is propositional logic
 - Have a try...
 - 您去电影院吗?
 - 2 + 3 = 5
 - 看花去!
 - 这句话是谎言。
 - X=2
 - 两个奇数之和是奇数。
 - 李白要么擅长写诗,要么擅长喝酒。

不是命题 命题

不是命题

不是命题

不是命题

命题

命题

■ What is propositional logic

Proposition:

A := The street is wet.

B := It is raining.

"Propositional logic is not the study of truth, but of the relationship between the truth of one statement and that of another"

——Hedman 2004

We can connect the two propositions A and B:

If it is raining, the street is wet.

Written more formally

It is raining. \rightarrow The street is wet.

$$A \rightarrow B$$

- What is propositional logic
 - Constructing Propositions
 - Propositional Variables: p, q, r, s, ...
 - The proposition that is always true is denoted by **T** and the proposition that is always false is denoted by **F**.
 - Compound Propositions: constructed from logical connectives and other propositions
 - Negation ¬ (否定联结词)
 - Conjunction A (合取联结词)
 - Disjunction V (析取联结词)
 - Implication → (蕴涵联结词)
 - Biconditional ↔ (等价联结词)

■ Syntax of logical connectives

 \square AND (\land)

读作: "A并且B" "A与B"

称为: A与B的合取式

记作: $A \wedge B$

• The *conjunction 'A AND B'*, written $A \land B$, of two propositions is true when both A and B are true, false otherwise.

Translation of sentences to propositions

A := It's Monday.

B := It's raining.

It's Monday and it's raining. It's Monday but it's raining. It's Monday. It's raining.

ΑΛВ

A	В	AΛB
t	t	t
t	f	f
f	t	f
f	f	f

- Translation of propositions to sentences
 - In propositional logic :
 - A \wedge B and B \wedge A should always have the same meaning.
 - But...
 - A:=She became sick.
 - B:= she went to the doctor.

Logically the same!

- She became sick and she went to the doctor.
- and
- She went to the doctor and she became sick.

 \square OR (V)

读作: "A或者B"

称为: A与B的析取式

记作: $A \lor B$

• Also called *disjunction*.

• The disjunction "A OR B", written $A \lor B$, of two propositions is true when A or B (or both) are true, false otherwise.

A	В	AVB		
t	t	t		
t	f	t		
f	t	t		
f	f	f		

Translation of sentences to propositions

A := It's Monday.

B:= It's raining.

It's Monday or it's raining. A V B

■ NOT

读作: "非A"

称为: A的否定式

记作: $\neg A$

 $\neg A$

Also known as negation

• The negation "NOT A" of a proposition (or $\neg A$) is true when A is false and is false otherwise.

A	$\neg \mathbf{A}$
t	f
f	t

- $\neg A$ may be read that it is
- false that A.

Translation of sentences to propositions

A := AI is easy.

It is false that AI is easy.

It is not the case that AI is easy.

AI is not easy.

 \square If ... Then (\rightarrow)

读作: "如果A则B"

称为: A与B的蕴涵式

记作: $A \rightarrow B$

- Also known as **implication**
- The implication "A IMPLIES B", written $A \rightarrow B$, of two propositions is true when either A is false or B is true, and false otherwise.

A:= I study hard.

B:= I get rich.

If I study hard then I get rich.
Whenever I study hard, I get rich.
That I study hard implies I get rich.
I get rich, if I study hard.

A	В	$A \rightarrow B$
t	t	t
t	f	f
f	t	t
f	f	t

- \square If ... Then (\rightarrow)
 - In $p \rightarrow q$ there does not need to be any connection between the antecedent or the consequent.
 - The "meaning" of $p \rightarrow q$ depends only on the truth values of p and q.
 - These implications are perfectly fine, but would not be used in ordinary English.
 - "If the moon is made of green cheese, then I have more money than Bill Gates."
 - "If the moon is made of green cheese then I'm on welfare."

 \square Different Ways of Expressing $p \rightarrow q$

```
if p, then q p implies q

if p, q p only if q

q unless \neg p q when p

q if p

q whenever p p is sufficient for q

q follows from p q is necessary for p
```

a necessary condition for *p* is *q* a sufficient condition for *q* is *p*

- ☐ Converse, Contrapositive, and Inverse
 - From $p \rightarrow q$ we can form new conditional statements.
 - $q \rightarrow p$ is the **converse** of $p \rightarrow q$
 - $\neg q \rightarrow \neg p$ is the **contrapositive** of $p \rightarrow q$
 - $\neg p \rightarrow \neg q$ is the **inverse** of $p \rightarrow q$

Example: Find the converse, inverse, and contrapositive of "It's raining is a sufficient condition for my not going to town."

Solution:

converse:?

inverse: ?

contrapositive: ?

- ☐ Converse, Contrapositive, and Inverse
 - From $p \rightarrow q$ we can form new conditional statements.
 - $q \rightarrow p$ is the **converse** of $p \rightarrow q$
 - $\neg q \rightarrow \neg p$ is the **contrapositive** of $p \rightarrow q$
 - $\neg p \rightarrow \neg q$ is the **inverse** of $p \rightarrow q$

Example: Find the converse, inverse, and contrapositive of "It's raining is a sufficient condition for my not going to town."

Solution: → "If it is raining, I do not go town."

converse: If I do not go to town, then it is raining.

inverse: If it is not raining, then I will go to town.

contrapositive: If I go to town, then it is not raining.

Biconditional

读作: "A当且仅当B"

称为: A与B的等价式

记作: $A \leftrightarrow B$

• Also known as iff or the biconditional. The biconditional, written as $A \leftrightarrow B$, of two propositions is true when both A and B are true or when both A and B are false, and false otherwise.

A	В	$A \leftrightarrow B$
t	t	t
t	f	f
f	t	f
f	f	t

If p denotes "I am at home." and q denotes "It is raining." then $p \leftrightarrow q$ denotes "I am at home if and only if it is raining."

Semantics

• Example:

A := The street is wet.

B := It is raining.

If A is true, and B is true, then $A \wedge B$ is true.

A	В	$\neg \mathbf{A}$	ΑΛΒ	AVB	$A \rightarrow B$	A ↔ B
t	t	f	t	t	t	t
t	f	f	\mathbf{f}	t	\mathbf{f}	\mathbf{f}
f	t	t	\mathbf{f}	t	t	f
f	f	t	f	f	t	t

Truth table

A	В	ΑΛΒ
t	t	t
t	f	f
f	t	f
f	f	f

Interpretation

-A line in the truth table.

interpretation

- Tautologies, Contradictions, and Contingencies
 - A tautology (永真式) is a proposition which is always true.
 - Example: $p \lor \neg p$
 - A *contradiction* (矛盾式) is a proposition which is always false.
 - Example: $p \land \neg p$
 - A *contingency* is a proposition which is neither a tautology nor a contradiction, such as *p*

- Logical Equivalences
- Two compound propositions p and q are logically equivalent if p↔q is a tautology.
- We write this as $p \Leftrightarrow q$ or as $p \equiv q$ where p and q are compound propositions.
- Two compound propositions *p* and *q* are equivalent if and only if the columns in a truth table giving their truth values agree.
- This truth table shows that $\neg p \lor q$ is equivalent to $p \to q$.

p	q	$\neg p$	$\neg p \lor q$	$p \rightarrow q$
Т	Т	F	T	Т
Т	F	F	F	F
F	Т	Т	Т	T
F	F	Т	Т	Т

■ De Morgan's Laws

$$\neg(p \land q) \equiv \neg p \lor \neg q$$
$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Augustus De Morgan 1806-1871

p	q	$\neg p$	$\neg q$	(<i>p</i> ∨ <i>q</i>)	¬(<i>p</i> ∨ <i>q</i>)	$\neg p \land \neg q$
Т	Т					
Т	F					
F	Т					
F	F					

■ De Morgan's Laws

$$\neg(p \land q) \equiv \neg p \lor \neg q$$
$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Augustus De Morgan 1806-1871

p	q	$\neg p$	$\neg q$	(<i>p</i> ∨ <i>q</i>)	¬(<i>p</i> ∨ <i>q</i>)	$\neg p \land \neg q$
Т	Т	F	F			
Т	F	F	Т			
F	Т	Т	F			
F	F	Т	Т			

■ De Morgan's Laws

$$\neg(p \land q) \equiv \neg p \lor \neg q$$
$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Augustus De Morgan 1806-1871

p	q	$\neg p$	$\neg q$	(<i>p</i> ∨ <i>q</i>)	¬(<i>p</i> ∨ <i>q</i>)	$\neg p \land \neg q$
Т	Т	F	F	Т		
Т	F	F	Т	Т		
F	Т	Т	F	Т		
F	F	Т	Т	F		

■ De Morgan's Laws

$$\neg(p \land q) \equiv \neg p \lor \neg q$$
$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Augustus De Morgan 1806-1871

p	q	$\neg p$	$\neg q$	(p\q)	¬(p∨q)	$\neg p \land \neg q$
Т	Т	F	F	Т	F	
Т	F	F	Т	Т	F	
F	Т	Т	F	Т	F	
F	F	Т	Т	F	Т	

■ De Morgan's Laws

$$\neg(p \land q) \equiv \neg p \lor \neg q$$
$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Augustus De Morgan 1806-1871

p	q	$\neg p$	$\neg q$	(<i>p</i> ∨ <i>q</i>)	¬(p∨q)	$\neg p \land \neg q$
Т	Т	F	F	Т	F	F
Т	F	F	Т	Т	F	F
F	Т	Т	F	Т	F	F
F	F	Т	Т	F	Т	Т

- Key Logical Equivalences
 - Identity Laws:

$$p \wedge T \equiv p$$
 , $p \vee F \equiv p$

- \bullet Domination Laws: $~p \lor T \equiv T~$, $~p \land F \equiv F$
- Idempotent laws: $p \lor p \equiv p$, $p \land p \equiv p$
- Double Negation Law: $\neg(\neg p) \equiv p$
- Negation Laws: $p \vee \neg p \equiv T$, $p \wedge \neg p \equiv F$

- Key Logical Equivalences
 - Commutative Laws: $p \lor q \equiv q \lor p$, $p \land q \equiv q \land p$
 - Associative Laws: $(p \land q) \land r \equiv p \land (q \land r)$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$
 - Distributive Laws: $(p \lor (q \land r)) \equiv (p \lor q) \land (p \lor r)$ $(p \land (q \lor r)) \equiv (p \land q) \lor (p \land r)$
 - Absorption Laws: $p \lor (p \land q) \equiv p \ p \land (p \lor q) \equiv p$

Logical Equivalences

- The operations \land , \lor are commutative and associative, and the
- following equivalences are generally valid:

```
• ¬ A V B
                                                              A \rightarrow B (implication)
                                               \equiv
• A \rightarrow B
                                                                \neg B \rightarrow \neg A (contraposition)
                                               \equiv
                                                   (A \leftrightarrow B) (equivalence)
• (A \rightarrow B) \land (B \rightarrow A)
                                               \equiv
• \neg (A \land B)
                                                              \neg AV \neg B (De Morgan's law)
                                               • \neg (A \lor B)
                                                    \neg A \land \neg B
                                               \equiv
• A V (B \( C \)
                                                             (A \lor B) \land (A \lor C) (distributive law)
                                               \equiv
• A \( \text{(B \text{V C)}}\)
                                               \equiv
                                                              (A \wedge B) \vee (A \wedge C)
• AV \neg A
                                                             t (tautology)
                                               \equiv

    A∧¬A

                                                              f (contradiction)
                                               \equiv

    A V f

                                               \equiv
                                                              Α
• A V t
                                               \equiv
                                                              t

    A \( \) f

                                                              f
                                               \equiv
• A \( \) t
                                                              A
                                               \equiv
```

Logical Equivalences

- The operations Λ , V are commutative and associative, and the
- following equivalences are generally valid:

A	В	$\neg \mathbf{A}$	¬AV B	$A \rightarrow B$
t	t	f	t	t
t	f	f	\mathbf{f}	f
f	t	t	t	t
f	f	t	t	t

■ Equivalence Proofs

Example: Show that $\neg(p \lor (\neg p \land q))$ is logically equivalent to $\neg p \land \neg q$

■ Equivalence Proofs

Example: Show that $\neg(p \lor (\neg p \land q))$ is logically equivalent to $\neg p \land \neg q$

$$\neg(p \lor (\neg p \land q)) \quad \equiv \quad \neg p \land \neg(\neg p \land q) \qquad \text{by the second De Morgan law} \\ \equiv \quad \neg p \land [\neg(\neg p) \lor \neg q] \qquad \text{by the first De Morgan law} \\ \equiv \quad \neg p \land (p \lor \neg q) \qquad \text{by the double negation law} \\ \equiv \quad (\neg p \land p) \lor (\neg p \land \neg q) \qquad \text{by the second distributive law} \\ \equiv \quad F \lor (\neg p \land \neg q) \qquad \text{because } \neg p \land p \equiv F \\ \equiv \quad (\neg p \land \neg q) \lor F \qquad \text{by the commutative law} \\ \qquad \qquad \qquad \text{for disjunction} \\ \equiv \quad (\neg p \land \neg q) \qquad \text{by the identity law for } \mathbf{F}$$

■ Equivalence Proofs

Example: Show that $(p \land q) \rightarrow (p \lor q)$

is a tautology.

■ Equivalence Proofs

Example: Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.

$$\begin{array}{ccccc} (p \wedge q) \to (p \vee q) & \equiv & \neg (p \wedge q) \vee (p \vee q) & \text{by truth table for} \to \\ & \equiv & (\neg p \vee \neg q) \vee (p \vee q) & \text{by the first De Morgan law} \\ & \equiv & (\neg p \vee p) \vee (\neg q \vee q) & \text{by associative and} \\ & & & \text{commutative laws} \\ & & & \text{laws for disjunction} \\ & \equiv & T \vee T & \text{by truth tables} \\ & \equiv & T & \text{by the domination law} \end{array}$$

- Now, we have learned...
 - Three basic elements in proposition logic: propositions, operations, and the truth values.
 - Logical equivalences

- Applications
 - 1. Translate English Sentences
 - 2. System Specifications
 - 3. Logic Puzzles
 - 4. Logic Circuit

Example

Problem: Translate the following sentence into propositional logic: "You can access the Internet from campus if you are a computer science major or you are not a freshman."

Atomic propositions:

- A:= You can access the Internet from campus.
- B:= You are a computer science major.
- C:= You are a freshman.

$$(B \lor \neg C) \rightarrow A$$

Consistent System Specifications

• Definition: A list of propositions is consistent if it is possible to assign truth values to the proposition variables so that each proposition in the list is true.

Consistent System Specifications

Example: Is this list of propositions consistent?

- "The diagnostic message is stored in the buffer or it is retrans mitted."
- "The diagnostic message is not stored in the buffer."
- "If the diagnostic message is stored in the buffer, then it is ret ransmitted."

Consistent System Specifications

Example: Is this list of propositions consistent?

- "The diagnostic message is stored in the buffer or it is retransm itted."
- "The diagnostic message is not stored in the buffer."
- "If the diagnostic message is stored in the buffer, then it is retra nsmitted."

P:= "The diagnostic message is stored in the buffer."

Q:= "The diagnostic message is retransmitted"

 $P \vee Q$

Consistent System Specifications

Example: Is this list of propositions consistent?

- "The diagnostic message is stored in the buffer or it is retransmitted."
- "The diagnostic message is not stored in the buffer."
- "If the diagnostic message is stored in the buffer, then it is retransmitted."

P:= "The diagnostic message is stored in the buffer."

Q:= "The diagnostic message is retransmitted"

 $\neg P$

Consistent System Specifications

Example: Is this list of propositions consistent?

- "The diagnostic message is stored in the buffer or it is retransmitted."
- "The diagnostic message is not stored in the buffer."
- "If the diagnostic message is stored in the buffer, then it is retra nsmitted."

P:= "The diagnostic message is stored in the buffer."

Q:= "The diagnostic message is retransmitted"

$$P \rightarrow Q$$

Consistent System Specifications

Example: Is this list of propositions consistent?

- The diagnostic message is stored in the buffer or it is retransmitted." $P \lor Q$
- The diagnostic message is not stored in the buffer." $\neg P$
- "If the diagnostic message is stored in the buffer, then it is retra nsmitted." $P \rightarrow 0$

P	Q	$P \lor Q$	¬ P	$P \rightarrow Q$
t	t			
t	f			
f	t			
f	f			

Consistent System Specifications

Example: Is this list of propositions consistent?

- "The diagnostic message is stored in the buffer or it is retransm itted."
- "The diagnostic message is not stored in the buffer."
- "If the diagnostic message is stored in the buffer, then it is retra nsmitted."

When P is false and Q is true all three statements are true. So the list of propositions is consistent.

P	Q	$P \lor Q$	¬P	$P \rightarrow Q$
t	t	t	f	t
t	f	t	f	f
f	t	t	t	t
f	f	f	t	t

■ Logic Puzzles

Knights: t

- An island has two kinds of inhabitants, *knights*, who always tell the truth, and *knaves*, who always lie.
- You go to the island and meet A and B.
 - A says "B is a knight."
 - B says "The two of us are of opposite types."

Example: What are the types of A and B?

■ Logic Puzzles

- **Solution:** Let p and q be the statements that A is a knight and B is a knight, respectively. So, then $\Box p$ represents the proposition that A is a knave and $\Box q$ that B is a knave.
 - If A is a knight, then p is true. Since knights tell the truth, q must also be true. Then $(p \land \Box q) \lor (\Box p \land q)$ would have to be true, but it is not. So, A is not a knight and therefore $\Box p$ must be true.
 - If A is a knave, then B must not be a knight since knaves always lie. So, then both $\Box p$ and $\Box q$ hold since both are knaves.

Homework-1

■ Logic Puzzles

Knights: t Knaves: f

- An island has two kinds of inhabitants, *knights*, who always tell the truth, and *knaves*, who always lie.
- You go to the island and meet A and B.
 - A says "At least one of us is a knave."
 - B says nothing.

Example: What are the types of A and B?