Homework 1

Problem1. Let X be a topological space and let μ be a measure on X such that $\mu(X) < \infty$ (in that case μ is said to be a finite measure on X). A family of μ -measurable functions $f_n \colon X \to \mathbb{R}$ is called **uniformly integrable in** X, if for any $\epsilon > 0$, there exists M > 0 such that

$$\int_{\{x: |f_n(x)| > M\}} |f_n(x)| d\mu < \epsilon, \quad \text{for all} \quad n = 1, 2, \dots$$

Similarly $\{f_n\}$ is called **uniformly absolutely continuous** if for any $\epsilon > 0$ there exists $\delta > 0$ such that for any μ -measurable set $A \subset X$ with $\mu(A) < \delta$ one has

$$\left| \int_A f_n(x) d\mu \right| < \epsilon, \quad \text{for all} \quad n = 1, 2, \dots$$

Prove that $\{f_n\}$ is uniformly integrable iff

$$\sup_{n} \int_{X} |f_n(x)| d\mu < \infty,$$

and $\{f_n\}$ is uniformly absolutely continuous.

Proof (\Longrightarrow) Suppose $\{f_n\}$ is uniformly integrable, and let $\varepsilon > 0$ be given. Then there exists M such that the uniform integrability property holds for f_n for all n. Let $\delta = \frac{\varepsilon}{M}$. Then for any μ -measurable set A with $\mu(A) < \delta$,

$$\left| \int_{A} f_{n} d\mu \right| = \left| \int_{A \cap \{|f_{n}| > M\}} f_{n} d\mu + \int_{A \cap \{|f_{n}| \leq M\}} d\mu \right|$$

$$\leq \left| \int_{A \cap \{|f_{n}| > M\}} d\mu \right| + \left| \int_{A \cap \{|f_{n}| \leq M\}} f_{n} d\mu \right|$$

$$\leq \int_{A \cap \{|f_{n}| > M\}} d\mu + \int_{A \cap \{|f_{n}| \leq M\}} d\mu$$

$$< \varepsilon + M\mu(A)$$

$$< \varepsilon + M\delta$$

$$= 2\varepsilon$$

and after rescaling and observing that n was arbitrary, we've shown that $\{f_n\}$ is uniformly absolutely continuous. Now to see that $\sup_n \int_X |f_n| \, d\mu < \infty$, choose any $\varepsilon > 0$ and let M > 0 so that the uniform integrability property hold for all f_n . Then for all n,

$$\int_{X} |f_n| \, d\mu = \int_{\{|f_n| > M\}} |f_n| \, d\mu + \int_{\{|f_n| \le M\}} |f_n| \, d\mu < \varepsilon + M\mu(X),$$

which is finite and constant with respect to n, so the supremum over n is finite as well.

Proof (\Leftarrow) Let $\varepsilon > 0$. Since $\{f_n\}$ is uniformly absolutely continuous, then there exists $\delta > 0$ such that for all $A \subset X$ with $\mu(A) < \delta$, we have

$$\left| \int_A f_n \, d\mu \right| < \varepsilon \quad \forall n.$$

Let
$$M = \frac{1}{\delta} \sup_{n} \int_{X} |f_{n}| d\mu$$
. Since

$$\mu\{|f_n| > M\} \le \frac{1}{M} \int_{\{|f_n| > M\}} |f_n| d\mu \le \frac{1}{M} \sup_n \int_X |f_n| d\mu = \delta,$$

then
$$\left| \int_{\{|f_n| > M\}} f_n d\mu \right| < \varepsilon$$
, so

$$\int_{\{|f_n| > M\}} |f_n| \, d\mu = \int_{\{f_n > M\}} f_n^+ \, d\mu + \int_{\{f_n < -M\}} f_n^- \, d\mu
= \left| \int_{\{f_n > M\}} f_n \, d\mu \right| + \left| \int_{\{f_n < -M\}} f_n \, d\mu \right|
= \left| \int_{\{|f_n| > M\}} d\mu \right| + \left| \int_{\{|f_n| > M\}} f_n \, d\mu \right|
= 2\varepsilon$$

Problem2. Let X be a topological space and let μ be a finite measure on X. Let $f, f_n \colon X \to \mathbb{R}$ be μ -summable on X such that the point-wise convergence $f_n(x) \to f(x)$ holds μ -a.e. in X. Prove that $\{f_n\}$ is uniformly integrable iff

$$\lim_{n \to \infty} \int_X |f_n(x) - f(x)| d\mu = 0.$$

Proof (\Longrightarrow) Let $\varepsilon > 0$. First we establish a few bounds.

- (i) Since f is μ -summable, there exists $\delta_1 > 0$ such that if $\mu(A) < \delta_1$, then $\left| \int_A f \, d\mu \right| < \varepsilon_1$, where $\varepsilon_1 = \frac{\varepsilon}{6}$.
- (ii) Since $\{f_n\}$ is a uniformly integrable sequence, then it is uniformly absolutely continuous, so there exists $\delta_2 > 0$ such that if $\mu(A) < \delta_2$, then $\left| \int_A f_n d\mu \right| < \epsilon_1$ for all n.
- (iii) Since $\mu(X) < \infty$, then by Egoroff's Theorem there exists a set $A \subset X$ such that $f_n \to f$ uniformly on A, and $\mu(A^{\complement}) < \min(\delta_1, \delta_2)$.
- (iv) Since $f_n \to f$ uniformly on A, then there exists N > 0 such that for all n > N, we have $|f_n f| < \varepsilon_2$, where $\varepsilon_2 = \frac{\varepsilon}{3u(A)}$.

Now we apply the results above. For all n > N,

$$\int_{X} |f_{n} - f| d\mu = \int_{A} |f_{n} - f| d\mu + \int_{A^{\complement}} |f_{n} - f| d\mu$$

$$\leq \varepsilon_{2} \mu(A) + \int_{A^{\complement}} |f_{n} - f| d\mu \qquad \text{by (iv)}$$

$$\leq \varepsilon_{2} \mu(A) + \int_{A^{\complement}} |f_{n}| d\mu + \int_{A^{\complement}} |f| d\mu \qquad \Delta \text{ ineq.}$$

$$= \varepsilon_{2} \mu(A) + \left(\left| \int_{A^{\complement} \cap \{f_{n} > 0\}} f_{n} d\mu \right| + \left| \int_{A^{\complement} \cap \{f_{n} \le 0\}} f_{n} d\mu \right| \right) + \left(\left| \int_{A^{\complement} \cap \{f > 0\}} f d\mu \right| + \left| \int_{A^{\complement} \cap \{f \le 0\}} f d\mu \right| \right)$$

$$\leq \varepsilon_{2} \mu(A) + \left(\left| \int_{A^{\complement} \cap \{f_{n} > 0\}} f_{n} d\mu \right| + \left| \int_{A^{\complement} \cap \{f_{n} \le 0\}} f_{n} d\mu \right| \right) + 2\varepsilon_{1} \qquad \text{by (i)}$$

$$\leq \varepsilon_{2} \mu(A) + 2\varepsilon_{1} + 2\varepsilon_{1}$$

$$= \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

$$= \varepsilon$$

Thus $\int_X |f_n - f| d\mu \to 0$ as $n \to \infty$.

Proof (\iff) We will show that (i) $\{f_n\}$ is uniformly absolutely continuous and (ii) $\sup_n \int_X |f_n| \, d\mu < \infty$.

(i) Let $\varepsilon > 0$. Since $\lim_{n \to \infty} \int_X |f_n - f| d\mu = 0$, then there exists N > 0 such that if n > N, then $\int_X |f_n - f| d\mu < \varepsilon$.

CASE I (n > N): Suppose n > N. Since f is μ -summable, then there exists $\delta_0 > 0$ such that for any $A \subset X$ with $\mu(A) < \delta_0$, then $\int_A |f| d\mu < \varepsilon$. Thus we find that

$$\varepsilon > \int_X |f_n - f| \, d\mu \ge \int_A |f_n - f| \, d\mu \ge \int_A |f_n| \, d\mu - \int_A |f| \, d\mu$$

and considering the left and right hand sides from above, we see

$$\left| \int_{A} f_n \, d\mu \right| \le \int_{A} |f_n| \, d\mu < \int_{A} |f| \, d\mu + \varepsilon = 2\varepsilon.$$

CASE II $(n \leq N)$: For each n = 1, ..., N we know that f_n is μ -summable, so there exists δ_n such that if $\mu(A) < \delta_n$, then

$$\left| \int_A f_n \, d\mu \right| < \varepsilon.$$

Thus we set $\delta = \min(\delta_0, \dots, \delta_N)$ and find that for all n, if $\mu(A) < \delta$, then $\left| \int_A f_n d\mu \right| < \varepsilon$. \square

(ii) Let $\varepsilon > 0$. Since $\lim_{n \to \infty} \int_X |f_n - f| d\mu = 0$, then there exists N > 0 such that if n > N, then

$$\varepsilon > \int_X |f_n - f| d\mu \ge \int_X |f_n| d\mu - \int_X |f| d\mu,$$

so $\int_X |f_n| d\mu < \int_X |f| d\mu + \epsilon$. Thus

$$\sup_{n} \int_{X} |f_{n}| d\mu \leq \max \left(\int_{X} |f| d\mu + \epsilon, \int_{X} |f_{1}| d\mu, \dots, \int_{X} |f_{N}| d\mu \right) < \infty.$$

Problem3. Let X be a topological space and let μ be a finite measure on X. Let $f_n: X \to \mathbb{R}$ be μ -measurable such that

$$\sup_{n} \int_{X} |f_n(x)|^{1+\delta} d\mu < \infty$$

for some $\delta > 0$. Prove that $\{f_n\}$ is uniformly integrable.