D.S. Analyse Numérique ISIMA 1ère Année – Session de janvier 2012

V. Barra, J. Koko et Ph. Mahey

27 janvier 2012

Exercice 1 Soit A la matrice 3×3 suivante : $A = \begin{pmatrix} 8 & -1 & 2 \\ 7 & 0 & 2 \\ -18 & 3 & -4 \end{pmatrix}$

- 1. Montrer que $\lambda_1 = 1$ et $\lambda_2 = 2$ sont des valeurs propres de A. En déduire que 1 est valeur propre double.
- 2. Déterminer v_1 un vecteur propre de A associé à λ_1 , et v_2 associé à λ_2 . A est elle diagonalisable?
- 3. Calculer $v_3 \in \mathbb{R}^3$ tel que $Av_3 = v_3 + v_1$
- 4. Montrer que (v_1, v_2, v_3) forme une base de \mathbb{R}^3 . Soit P la matrice formée de ces trois colonnes.
- 5. On pose $T = P^{-1}AP$. Calculer T. Que peut on dire de A?
- 6. Calculer alors T^n pour tout $n \ge 0$ et en déduire A^n .

Exercice 2 Soit la fonction de \mathbb{R}^2 dans \mathbb{R} définie par

$$f(x) = x_1^2 + x_1 x_2 + \frac{\alpha}{2} x_2^2 - x_1 - 3x_2,$$

où α est un paramètre réel.

- 1. Discuter de l'existence de point stationnaire de f en fonction du paramètre α .
- 2. Discuter la nature des points stationnaires de f en fonction de α . On précisera en particulier les valeurs de α pour lesquelles la fonction f est une fonction quadratique convexe dont on calculera le minimum global dans \mathbb{R}^2
- 3. Etudier l'évolution des courbes de niveaux de f quand α devient très grand.
- 4. Application : $\alpha = 3$

Calculer numériquement valeurs propres, vecteurs propres et le point stationnaire de f.

Représenter graphiquement les courbes de niveaux dans \mathbb{R}^2 de la fonction en précisant le point stationnaire et les axes des directions propres.