Universidade Federal da Paraíba Departamento de Sistemática e Ecologia Laboratório de Ecologia Comportamental e Psicobiologia

Métodos de validação de escalas Likert

Danilo Nascimento Rolim dos Santos

Correlação:

Conceito estatístico que busca captar o componente linear de variação conjunta de duas variáveis. Esse coeficiente varia de –1 até +1. Uma correlação perfeita possui o valor 1 (seja esta negativa ou positiva).

Quanto maior a correlação entre duas variáveis mais estas possuem componentes de **covariação** em conjunto, ou seja, quanto mais uma varia (modifica de valor) mais a outra varia. (KLINE,1994; PILATTI, 2008)

- Fator /Componente/
 Dimensões/ Dimensão latente
- Conjuntos de itens que quanto mais correlacionados tem maior chance de formar um fator.

EX.: ESCALA DE PREOCUPAÇÕES AMBIENTAIS, o construto total possui 12 itens, que divididos formam 3 fatores:

Biosférico, Altruísta e Egoísta.

- Carga fatorial / lambda/ saturação
- A relação item-fator é dada por meio da carga fatorial. Esse é um coeficiente que varia de -1 a +1, como a correlação. Quanto mais próximo de 1 maior a relação entre o item e o fator. Saturação adequada deve ser > 0,30; (TABACHNICK; FIDELL, 2013),

Matriz de componente rotativaª

		(
	1		2		3	
Aves		,90		,23		,02
Vida_aquática		,90	 	,22		,02
Plantas		,89		,17		,13
Animais		,88		,09		,15
Pessoas_País		,12		,88		,06
Todas_pessoas		,23		,84	$ \ $,16
Criancas		,22		,77		,15
Meusamigos		,14		,63		,35
Eu		,08		,04		,81
Minha_saude		,10		,27		,80
Meu_est_vida		,09		,05		,80
Meu_futuro		-,01		,38		,70

Método de extração: Análise do Componente principal.

Método de rotação: Varimax com normalização de Kaiser.

a. Rotação convergida em 5 iterações.

Comunalidades

Porção da variância que uma variável compartilha com todas as outras variáveis consideradas. É também a proporção de variância explicada pelos fatores comuns (AKER-KUMAR-DAY, 2001).

Valor de comunalidades deve ser >0,50 (Hair; Anderson; Tatham; Black, 2009).

Valores de comunalidades inferiores sugerem uma contribuição pequena do item ao modelo construído

Comunalidades

	Inicial	Extração
Plantas	1,000	,84
Vida_aquática	1,000	,86
Aves	1,000	,87
Animais	1,000	,81
Eu	1,000	,66
Meu_est_vida	1,000	,65
Minha_saude	1,000	,72
Meu_futuro	1,000	,63
Pessoas_País	1,000	,80
Todas_pessoas	1,000	,78
Criancas	1,000	,66
Meusamigos	1,000	,54

Método de extração: análise do componente principal.

Validação interna

- Validação interna atribui qualidade ao instrumento de medição.
- DUAS CARACTERÍSTICAS
 ESSENCIAIS: CONFIABILIDADE E
 VALIDADE (Hayes, 1995)

Validação interna

- CONFIABILIDADE: refere-se ao grau com que as medições estão isentas de erros (Hayes, 1995). Refere-se ao quanto os itens estão correlacionados entre si. (TROCHIM, 2003).
- Sinônimos: Consistência, estabilidade e previsibilidade.
- Técnicas estatísticas: Mais usado é o Alpha de Cronbach

Validação interna

• VALIDADE: Refere-se ao grau com que a escala utilizada realmente mede o objeto para o qual ela foi criada para medir (Hayes, 1995).

- Técnicas estatísticas: AFE e AFC

Validade x Confiabilidade

... são complementares, a confiabilidade de consistência interna está relacionada à homogeneidade das respostas dos distintos avaliadores, enquanto a validade está associada ao grau de certeza que se tem sobre o conceito medido. (BEM et al., 2010)

 Conceito: Estimativa de consistência interna, o índice do alfa de cronbach varia de 0 a 1, quanto mais perto de 1 mais consistente e confiável é considerado o instrumento (MAROCO; GARCIA-MARQUES, 2006).

Alfa adequada deve ser > 0,70

 Correlação item-item - indicador de homogeneidade, a média deve ser maior que 0,20 (CLARK; WATSON, 1995; HAIR et al., 2009).

 Correlação Item-total – indicador de homogeneidade, a correlação deve ser > 0,50 (HAIR et al., 2009)

- NOTA. SE A ESCALA POSSUIR ITENS COM SEMÂNTICA CONTRÁRIA AO QUE ESTÁ SENDO OBSERVADO, ENTÃO ESSES ITENS DEVERÃO SER INVERTIDOS.
- Ex.: Escala para avaliar nível de conexão com a natureza das pessoas
- Item direto: Com frequência, sinto-me parte da teia da vida
- Item invertido: Frequentemente me sinto desconectado da natureza

Análise Fatorial

Propósito principal é decifrar a estrutura fatorial subjacente a conjunto de dados correlacionados.

Objetivos AFE e AFC

- Fatorial Exploratória vs Fatorial Confirmatória (Brown, 2006)
- **EXPLORATORIA** Descobrir o menor número de fatores interpretáveis necessários para explicar a correlação entre eles. (NÃO CONHECE OS FATORES)
- CONFIRMATORIA O pesquisador especifica diversos aspectos do modelo fatorial, como o numero de fatores, determinando diferentes modelos para encontrar o que mais se ajusta aos dados e tenha maior suporte teórico. (JÁ TEM UMA TEORIA SOBRE OS FATORES DA

 Conceito - Pode ser entendida como um conjunto de técnicas multivariadas que busca encontrar a estrutura subjacente em uma matriz de dados e determinar o número e a natureza de fatores (variáveis latentes) que melhor representam um conjunto de variáveis observadas (construto) (DAMÁSIO, 2012; BROWN, 2006).

Procedimento	O que deve ser observado				
	Nível de mensuração das variáveis, tamanho da				
Verificar a adequabilidade da base de	amostra, razão entre o número de casos e a				
dados	quantidade de variáveis e o padrão de correlação				
	entre as variáveis.				
	O tipo de extração (principal components, principal				
Determinar a técnica de extração e o	factors, image factoring; maximum likelihood				
número de fatores a serem extraídos	factoring; alpha factoring; unweighted least squares;				
	generalized least squares).				
Decidir e tipo de retecõe dos fatores	Se for ortogonal (Varimax, Quartimax, Equamax), se				
Decidir o tipo de rotação dos fatores	for oblíqua (direct oblimin, Promax).				

Fonte: (FIGUEIREDO FILHO; SILVA JUNIOR, 2010)

- 1º PASSO DETERMINAR SE OS DADOS ESTÃO ADEQUADOS À REALIZAÇÃO DA AFE.
- Teste de Kaiser-Meyer-Olkin (KMO)

Índice de KMO	Considerado:
Menor que 0,5	Inaceitável
Entre 0,5 e 0,7	Medíocre
	Ótimo e Excelente

FONTE: (DAMÁSIO, 2012; HUTCHESON; SOFRONIOU, 1999)

1º PASSO – DETERMINAR SE OS DADOS ESTÃO ADEQUADOS À REALIZAÇÃO DA AFE.

Teste de esfericidade de Barllet

 Os valores do teste de esfericidade de Bartlett com níveis de significância p <
 0,05 indicam que a matriz é passível de fatoração (TABACHNICK; FIDELL, 2007),

2º Passo (APÓS RODAR A AFE NO

- Verificar autovalor de Guntman-Kaiser (eigenvalue > 1) (DAMÁSIO 2012)
- Variância acumulada > 60% (FIGUEIREDO FILHO; SILVA JUNIOR, 2010)

		Valores próprios iniciais					
	Componente	Total	variância	% cumulativa			
	1	4,97	41,46	41,46			
	2	2,37	19,74	61,20			
	3	1,48	12,36	73,56			
B	4	,62	5,15	78,70			
	5	,56	4,66	83,37			
	6	,47	3,95	87,31			
7.557	7	,38	3,15	90,47			
	8	,34	2,81	93,28			
	9	,30	2,47	95,75			
	10	,19	1,62	97,37			
	11	,18	1,48	98,85			
	12	,14	1,15	100,00			

3° Passo - ANALISAR A MATRIZ DE COMPONENT ROTATIVA

- Verificar a distribuição dos itens em componentes nos diversos fatores.
- A CARGA FATORIAL INDICA EM QUAL FATOR O ITEM

Matriz de componente rotativa^a

	(
	1	2	3
Aves	,90	,23	,02
Vida_aquática	,90	,22	,02
Plantas	,89	,17	,13
Animais	,88,	,09	,15
Pessoas_País	,12	,88,	,06
Todas_pessoas	,23	,84	,16
Criancas	,22	,77,	,15
Meusamigos	,14	,63	,35
Eu	,08	,04	,81
Minha_saude	,10	,27	,80
Meu_est_vida	,09	,05	,80
Meu_futuro	-,01	,38	,70

Método de extração: Análise do Componente principal.

Método de rotação: Varimax com normalização de Kaiser.

a. Rotação convergida em 5 iterações.

 Conceito: É conhecida como uma das técnicas de modelos de equações estruturais (MEE) e ela permite o teste confirmatório da estrutura psicométrica de escalas de medidas e também pode ser utilizada para analisar relações explicativas entre múltiplas variáveis simultaneamente, sejam elas latentes ou observadas (LAROS, 2007).

- Programas Estatísticos mais usados para AFC – Mplus, Amos, R.
- Mplus e R (pacote lavaan) são através de Scripts. (Admitem variáveis categóricas).

 Amos pela interface do próprio programa (apenas variáveis contínuas)

- 1º PASSO – definir o modelo AFC especificado.

- Exemplo: ESCALA DE PREOCUPAÇOES AMBIENTAIS
- Fator Biosférico item1, item2, item 3, item4
- Fator Egoísta item5, item6, item7, item8
- Fator Altruísta item9, item10, item11, item12

- PASSO Para identificar as estimativas para cada parâmetro do modelo (cargas fatoriais, variâncias, covariâncias fatoriais e variâncias e covariâncias de erros de medida) é necessário escolher o método de estimação (Brown, 2006).
- Estimador mais usado: ML (Máxima Verossimilhança)
- Estimador que está atualmente sendo muito usado: WLSMV (estimador de mínimos quadrados ponderados robustos ajustados)
- Outros estimadores: WLS, ULS e etc.

- 3º PASSO – verificar os principais índices de qualidade ajustes do modelo - goodness-of-fit (Após rodar a AFC no

Índice	Modelo Robusto	Modelo aceitável
χ2/df	Aceitável até 5	Entre 2 e 3
RMSEA	<=0,05	Até 0,08; aceitando até 1,0
TLI	>=0,95	Entre 0,90 e 0,95
CFI	>=0,95	Entre 0,90 e 0,95
GFI	>=0,95	Entre 0,90 e 0,95
AGFI	>=0,95	Entre 0,90 e 0,95
Sente: (BENT = 0,05990; B	ROWN, 2006; Até 0,08 ER, 2006;
LLON,2	<0,90	-

PRÁTICAS

the second			*Sem t	ítulo2 [Co	onju	unto_de_dados1] -	- IBM SPSS Statistic	cs Editor de dado	OS
<u>A</u> rquivo <u>E</u> d	tar <u>V</u> isualizar <u>D</u> ad	los <u>T</u> ransformar	Analisar Marketing direto	<u>G</u> ráficos	U	tilitários <u>J</u> anela <i>F</i>	Aj <u>u</u> da		
		Relatórios Estatísticas descritivas Tabelas				A 14	•		
	Plantas	Vida_aquática	Co <u>m</u> parar médias	+		Eu	Meu_est_vida	Minha_saude	
6	4,0	6,0	Modelo linear geral	-	,0	5,0	5,0	5,0)
7	5,0	4,(Modelos lineares gener	ali <u>z</u> ados	,0	6,0	5,0	7,0)
8	6,0	6,0	Modelos mistos	-	,0	6,0	5,0	5,0)
9	6,0	5,0	<u>C</u> orrelacionar	-	,0	1,0	2,0	2,0)
10	7,0	7,0	<u>R</u> egressão	-	,0	7,0	1,0	7,0)
11	3,0	3,0	Log linear	-	,0	7,0	6,0	7,0)
12	7,0	7,0	Redes neurais		,0	4,0	6,0	6,0)
13	7,0	7,0	Classificar		,0	4,0	1,0	4,0)
14	7,0	6,0	Redução de dimensão		,0	6,0	5,0	5,0)
15	6,0	6,0	Esc <u>a</u> la		Г	Análise de confiab	ahchili	5,0)
16	4,0	5,0	Testes não paramétrico	s Þ				2,0)
17	2,0 7,0 6,0 6,0					Desdobramento multidimensional (PREFSCAL)			
18					"	Escala multidimensional (PROXSCAL)			0
19	5,0	4,0			🔣 Escala <u>m</u> ultidimer	6,0)		
20	7,0	7,0	Análise de valor ausent	,	,0	7,0	6,0	7,0)
21	7,0	7,0		J	,0	6,0	7,0	7,0)
22	5,0	4,0	Imputação múltipla		,0	7,0	6,0	6,0)
23	6,0	6,0	Amostras comp <u>l</u> exas	•	,0	6,0	6,0	7,0	_
24	7,0	4,0	Simulação		,0	7,0	1,0	7,0	
25	7,0	7,0	Controle de <u>q</u> ualidade	•	,0	7,0	6,0	7,0	_
26	7,0	7,0	Curva ROC		,0	7,0	7,0	7,0	_
27	7,0	7,0	IBM SPSS Amos		,0	7,0	2,0	7,0)
	4 -					**			
Visualização	de dados Visualizad	ão da variável							

Alpha de Cronbach

Resumo do processamento de caso

		N	%
Casos	Válido	562	100,0
	Excluídos ^a	0	,0
	Total	562	100,0

 a. Exclusão de lista com base em todas as variáveis do procedimento.

Estatísticas de confiabilidade

	Alfa de	
	Cronbach com base em	
Alfa de	itens	
Cronb ach	padronizados	N de itens
(,88,	,88	12

Alpha de Cronbach

Resumo do processamento de caso

		N	%
Casos	Válido	562	100,0
	Excluídos ^a	0	,0
	Total	562	100,0

 a. Exclusão de lista com base em todas as variáveis do procedimento.

Estatísticas de confiabilidade

	Alfa de	
	Cronbach com base em	
Alfa de	itens	
Cronb ach	padronizados	N de itens
(,88,	,88	12

Alpha de Cronbach

C	orrelação i	tem-	Estatís	ticas de itei	n de resumo			
it	em	Média	Mínimo	Máximo	Amplitude	Máximo / Mínimo	Variância	N de itens
	Médias de item	5,77	5,08	6,22	1,14	1,22	,10	12
	Correlações entre itens	38	11	l en	60	7.45	N3	12

Correlação item
Média de Variância de escala se o Correlação

al	Média de escala se o item for excluído	Variância de escala se o item for excluído	Correlação de item total corrigida	Correlação múltipla ao quadrado	Alfa de Cronbach se o item for exclyido	
Plantas	63,40	107,09	,58	,62	,87	\setminus
Vida_aquática	63,63	105,69	,61	,74	,87	
Aves	63,75	105,06	,61	,74	,86	
Animais	63,21	109,40	,59	,63	,87	l
Eu	63,62	107,24	,49	,45	,87	l
Meu_est_vida	64,18	109,36	,40	,41	,88,	
Minha_saude	63,37	105,10	,63	,55	,86	l
Meu_futuro	63,07	109,98	,52	,46	,87	l
Pessoas_País	63,48	107,68	,58	,62	,87	l
Todas_pessoas	63,62	103,91	,65	,65	,86	l
Criancas	63,04	108,20	,61	,51	,87	I/
Meusamigos	63,41	106,31	,63	,52	,86	ľ

Teste de KMO e Bartlett

Medida Kaiser-Meyer-Olkin de adequação de amostragem.

Teste de esfericidade de Bartlett Qui-quadrado aprox.

df

Sig.

,876 3951,073 66 ,000

KMO entre 0,8 e 0,9 (Considerado ótimo) Bartlett p <0,05 (significativo)

Os resultados estão adequados à realização da AFE.

Comunalidades

	Inicial	Extração
Plantas	1,000	,75
Vida_aquática	1,000	,84
Aves	1,000	,84
Animais	1,000	,77,
Eu	1,000	,67
Meu_est_vida	1,000	,70
Minha_saude	1,000	,71
Meu_futuro	1,000	,62
Pessoas_País	1,000	,78
Todas_pessoas	1,000	,78
Criancas	1,000	,68
Meusamigos	1,000	,67

Método de extração: análise do componente principal. H² > 0,50. Todos os itens estão contribuindo para a formação do construto.

Variância total explicada

	٧	alores próprios in	iciais	Somas de ex	dração de carrega quadrado	amentos ao	Somas rotativas de carregamentos ao quadrado					
Componente	% de Total variância % cumulativa		% de Total variância		% cumulativa	Total	% de variância	% cumulativa				
1	5,25	43,78	43,78	5,25	43,78	43,78	3,22	26,81	26,81			
2	2,11	17,62	61,40	2,11	17,62	61,40	2,94	24,52	51,33			
3	1,43	11,96	73,36	1,43	11,96	73,36	2,64	22,03	73,36			
4	,57	4,77	78,12									
5	,45	3,78	81,90									
6	,43	3,56	85,46									
7	,40	3,35	88,81									
8	,39	3,21	92,02									
9	,32	2,64	94,66									
10	,24	2,02	96,68									
11	,22	1,85	98,53									
12	,18	1,47	100,00									

Método de extração: análise do componente principal.

Valor próprio > 1 = FATOR (Critério de Guntman-Kaiser)

Matriz de componente rotativaª

	(omp	onente)	
	1		2	3	
Aves	,89		,19		,10
Vida_aquática	,88	\	,26		,03
Animais	,85		,13		,16
Plantas	,84		,19		,11
Pessoas_País	,17		,86		,09
Todas_pessoas	,21		,83	\	,19
Criancas	,27		,76		,14
Meusamigos	,16		,74		,32
Meu_est_vida	,08		-,01		,83
Eu	,10		,13		,80
Minha_saude	,16		,33		,76
Meu_futuro	,05		,30		,73

Método de extração: Análise do Componente principal.

Método de rotação: Varimax com normalização de Kaiser.

a. Rotação convergida em 5 iterações.

λ > 0,30 - Por estarem bem próximos de 1, os itens estão bem relacionados com os seus fatores.

O Mplus consegue "ler" a base dados nas extensões .txt ou .dat.

1º Passo – Salvar arquivo com extensão .dat, a

partir do SPSS.

desmarca r

2º Passo – Abrir o Mplus e abrir a sintaxe/script e a base de dados para realizar a AFC.


```
sintaxe_preocupacao.inp
TITLE: CFA de ESC com variveis categoricas, sendo 3 fatores e metodo WLSMV
invariance and correlated residuals across time
DATA: FILE IS base.dat:
VARIABLE: NAMES ARE ESC1-ESC12;
CATEGORICAL ARE ESC1-ESC12:
MODEL: f1 BY ESC1 ESC2 ESC3 ESC4;
   f2 BY ESC5 ESC6 ESC7 ESC8:
   f3 BY ESC9 ESC10 ESC11 ESC12;
   f1 with f2;
   f1 with f3:
   f2 with f3:
ANALYSIS:
ESTIMATOR = WLSMV;
OUTPUT: sampstat standardized residual modindices;
```


Pressionar Enter para que uma linha fique sem números

3	2	2	4	5	4	4	5	6	5	5	6	
7	7	7	7	5	5	6	7	7	6	7	7	
7	7	7	7	7	7	7	7	7	7	7	7	
7	7	7	7	7	7	7	7	5	5	6	5	
7	5	4	6	3	2	4	2	3	1	3	1	
4	6	6	6	5	5	5	5	7	7	7	7	
5	4	4	6	6	5	7	7	6	6	5	4	
6	6	6	7	6	5	5	6	5	5	7	5	
6	5	5	5	1	2	2	4	6	3	7	4	
7	7	7	7	7	1	7	7	7	7	7	7	
3	3	3	4	7	6	7	7	5	5	7	5	
7	7	6	7	4	6	6	6	7	6	3	3	
7	7	7	7	4	1	4	7	7	7	7	7	
7	6	6	6	6	5	5	7	6	5	7	4	
6	6	6	6	5	5	5	6	6	4	6	5	
4	5	5	7	2	2	2	1	2	2	4	1	
2	7	5	7	7	6	4	6	4	6	4	4	
6	6	7	7	4	6	5	3	4	5	7	5	
5	4	4	5	6	6	6	7	7	7	7	7	
7	7	7	7	7	6	7	7	7	7	7	7	
7	7	7	7	6	7	7	7	7	7	7	7	
5	4	3	4	7	6	6	7	3	4	6	6	

3º Passo – Executar a Sintaxe/Script

```
Mplus - sintaxe_preocupacao.inp
            Mplus Graph Window Help
                         Run Mplus
sintaxe_preocupacao.inp
  TITLE: CFA de ESC com variveis categoricas, sendo 3 fatores e metodo WLSMV
  invariance and correlated residuals across time
          FILE IS base.dat;
  DATA:
              NAMES ARE ESC1-ESC12;
  VARIABLE:
  CATEGORICAL ARE ESC1-ESC12;
  MODEL: f1 BY ESC1 ESC2 ESC3 ESC4;
      f2 BY ESC5 ESC6 ESC7 ESC8;
      f3 BY ESC9 ESC10 ESC11 ESC12;
      f1 with f2;
      f1 with f3:
      f2 with f3;
  ANALYSIS:
  ESTIMATOR = WLSMV;
  OUTPUT: sampstat standardized residual modindices;
```

4º Passo – verificar os índices de qualidade de ajuste.

CFA	de	ESC	com	variveis	cat	egoricas,	sendo	3	fatores	e	${\tt metodo}$	WLSMV	
inva	aria	ance	and	correlate	d r	esiduals	across	ti	ime				

SUMMARY OF ANALYSIS

Number of groups

Number	of	observations	562
Number	of	dependent variables	12
Number	of	independent variables	0
Number	of	continuous latent variables	3

1

Observed dependent variables

Binary	and	ordered	categorical	(ordinal)		
ESC1		ESC2	ESC3	ESC4	ESC5	ESC6
ESC7		ESC8	ESC9	ESC10	ESC11	ESC12

Continuous latent variables F1 F2 F3

Estimator	WLSMV
Maximum number of iterations	1000
Convergence criterion	0.500D-04
Maximum number of steepest descent iterations	20
Parameterization	DELTA

Input data file(s) dados.dat

Input data format FREE

- 3º PASSO – verificar os principais índices de qualidade ajustes do modelo - goodness-of-fit (Após rodar a AFC no

Índice	Modelo Robusto	Modelo aceitável
χ2/df	Aceitável até 5	Entre 2 e 3
RMSEA	<=0,05	Até 0,08; aceitando até 1,0
TLI	>=0,95	Entre 0,90 e 0,95
CFI	>=0,95	Entre 0,90 e 0,95
GFI	>=0,95	Entre 0,90 e 0,95
AGFI	>=0,95	Entre 0,90 e 0,95
Sente: (BENT = 0,05990; B	ROWN, 2006; Até 0,08 ER, 2006;
LLON,2	<0,90	-

MODEL FIT INFORMATION

Number of Free Parameters

87

Chi-Square Test of Model Fit

Value Degrees of Freedom P-Value 314.975* 51 0.0000

* The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference testing in the regular way. MLM, MLR and WLSM chi-square difference testing is described on the Mplus website. MLMV, WLSMV, and ULSMV difference testing is done using the DIFFTEST option.

RMSEA (Root Mean Square Error Of Approximation)

Estimate

90 Percent C.I.

Probability RMSEA <= .05

0.096

0.086 0.106

0.000

CFI/TLI

CFI

TLI

0.977

0.970

Chi-Square Test of Model Fit for the Baselike Model

Value

11421.190

Degrees of Freedom

66

P-Value

0.0000

WRMR (Weighted Root Mean Square Residual)

Value

1.128

STD	ID Standardization		Estatisticamente significantes (z > 1,					
		CARGAS FAT		S.E.	Est./S.E.	Two-Tailed P-Value		
F1	В	Y						
	ESC1	0.	859	0.014	61.443	0.000		
	ESC2	0.	914	0.008	108.218	0.000		
	ESC3	0.	933	0.008	122.713	0.000		
	ESC4	0.	880	0.013	70.269	0.000		
F2	В	Y						
	ESC5	0.	771	0.024	31.583	0.000		
	ESC6	0.	658	0.027	24.352	0.000		
	ESC7	0.	914	0.018	51.784	0.000		
	ESC8	0.	804	0.025	32.222	0.000		
F3	В	Y						
	ESC9	0.	844	0.014	58.331	0.000		
	ESC10	0.	898	0.012	77.027	0.000		
	ESC11	0.	846	0.019	44.107	0.000		
	ESC12	0.	831	0.019	44.457	0.000		
F1	W	ITH						
	F2	0.	370	0.042	8.725	0.000		
	F3	0.	549	0.033	16.764	0.000		
F2	W	ITH						
	F3	0.	583	0.034	17.052	0.000		

STD	ID Standardization		Estatisticamente significantes (z > 1,					
		CARGAS FAT		S.E.	Est./S.E.	Two-Tailed P-Value		
F1	В	Y						
	ESC1	0.	859	0.014	61.443	0.000		
	ESC2	0.	914	0.008	108.218	0.000		
	ESC3	0.	933	0.008	122.713	0.000		
	ESC4	0.	880	0.013	70.269	0.000		
F2	В	Y						
	ESC5	0.	771	0.024	31.583	0.000		
	ESC6	0.	658	0.027	24.352	0.000		
	ESC7	0.	914	0.018	51.784	0.000		
	ESC8	0.	804	0.025	32.222	0.000		
F3	В	Y						
	ESC9	0.	844	0.014	58.331	0.000		
	ESC10	0.	898	0.012	77.027	0.000		
	ESC11	0.	846	0.019	44.107	0.000		
	ESC12	0.	831	0.019	44.457	0.000		
F1	W	ITH						
	F2	0.	370	0.042	8.725	0.000		
	F3	0.	549	0.033	16.764	0.000		
F2	W	ITH						
	F3	0.	583	0.034	17.052	0.000		

MODEL MODIFICATION INDICES

NOTE: Modification indices for direct effects of observed dependent variables regressed on covariates and residual covariances among observed dependent variables may not be included. To include these, request MODINDICES (ALL).

Minimum M.I. value for printing the modification index 10.000

M.I. E.P.C. Std E.P.C. StdYX E.P.C.

BY Statements

F1	BY ESC6	30.889	-0.155	-0.133	-0.133
F1	BY ESC7	22.360	0.156	0.134	0.134
F1	BY ESC11	23.229	0.162	0.139	0.139
F2	BY ESC9	41.591	-0.303	-0.234	-0.234
F2	BY ESC12	69.581	0.356	0.274	0.274
F3	BY ESC6	88.544	-0.360	-0.304	-0.304
F3	BY ESC7	39.388	0.282	0.238	0.238

Beginning Time: 21:23:48 Ending Time: 21:23:49 Elapsed Time: 00:00:01

Gráfico de caminhos e AFC no AMOS 1º Passo: Exportar

dados para

o AMOS

(*Sem t	ítulo2 [C	onjunto_d	e_dados1]] - IBM :
<u>A</u> rquivo <u>E</u> d	itar <u>V</u> isua	lizar <u>D</u> ad	ios <u>T</u> ransfor	mar	A <u>n</u> alisar	Marketing direto	<u>G</u> ráficos	<u>U</u> tilitários	<u>J</u> anela	Aj <u>u</u> da
			r 21			tórios lísticas descritivas	+		=	
7:Todas_pe	ssoas	6,0			Tabe	las	.			
	Plan	itas	Vida_aquát	tica	Com	parar médias	.		Eu	Meu
1		3,0		2,0	Mode	elo linear geral	.	,0	5,0	0
2		7,0		7,0	Mode	elos lineares gener	alizados	,0	5,0	0
3		7,0		7,0		elos mistos	- b	,0	7,0	0
4		7,0		7,0	Corre	elacionar	-	,0	7,0	0
5		7,0		5,0	_	essão	-	,0	3,0	
6		4,0		6,0	Logi	inear	-	,0	5,0	
7		5,0		4,0		es neurais	.	,0	6,0	0
8		6,0		6,0	_	sificar	.	,0	6,0	
9		6,0		5,0		- ıção de dimensão	•	,0	1,0	
10		7,0		7,0	Esca	-		,0	7,0	
11		3,0		3,0	_	es <u>n</u> ão paramétrico	is b	,0	7,0	
12		7,0		7,0	Previ	_		,0	4,0	
13		7,0		7,0	_	evivência	,	,0	4,0	
14		7,0		6,0	_	plas respostas	, i	,0	6,0	
15		6,0		6,0		-	. '	,0	5,0	
16		4,0		5,0	_	se de <u>v</u> alor ausento	e	,0	2,0	
17		2,0		7,0		tação múltipla	•	,0	7,0	
18		6,0		6,0		stras comp <u>l</u> exas	•	,0	4,0	
19		5,0		4,0	S <u>i</u> mu	ılação		,0	6,0	
20		7,0		7,0	Cont	role de <u>q</u> ualidade	-	,0	7,0	
21		7,0		7,0	Cury	a ROC		,0	6,0	
22	1	5,0		4,0	IBM S	SPSS <u>A</u> mos		,0	7,0	U
	4									
Visualização	eobsh eb o	Visualiza	cão da variável							

2º Passo – "Criar" as variáveis

Clicar no botão de desenhar variáveis e clicar o número de variáveis observadas

Selecionar o botão rotacionar indicadores de variáveis latentes e depois clicar uma vez na latente

Selecionar botão duplicar objetos, clicar no objeto +segurar + arrastar para o local desejado

Clicar duas vezes em cada latente e nomear.

Selecionar o botão listar variáveis do data set. Clicar e arrastar para cada variável

Clicar duas vezes em cada variável observada e nomear o rótulo (Variable label)

Nomear todas as estimativas de

Selecionar todas as variáveis latentes e desenhar as covariâncias entre elas

Clicar em analisar propriedade

Title

Estimation Numerical Bias Output Bootstrap Permutations Random #

Discrepancy

- Maximum likelihood
- Generalized least squares
- Unweighted least squares
- C Scale-free least squares
- C Asymptotically distribution-free

Estimate means and intercepts

Emulisrel6

Chicorrect

For the purpose of computing fit measures with incomplete data:

- Fit the saturated and independence models
- C Fit the saturated model only
- Fit neither model

Analysis Properties

7

Title Estimation Numerical Bias Output	Bootstrap Permutations Random #
Minimization history	Indirect, direct & total effects
✓ Standardized estimates	<u>F</u> actor score weights
✓ Squared multiple correlations	Covariances of estimates
Sample moments	✓ Correlations of estimates
	Critical ratios for differences
All implied moments	Tests for <u>n</u> ormality and outliers
Residual moments	Observed information matrix
✓ <u>M</u> odification indices	Threshold for modification indices

Clicar em calcular estimativa

Clicar em View Text e depois em Model Fit.

OBRIGADO!

Referencias

- PILATI, Ronaldo; PORTO, Juliana B. Apostila para tratamento de dados via SPSS. Rede Social e Acadêmica da Universidada de São Paulo, https://social. stoa. usp. br/articles/0016/4637/apostila_SPSS_Porto_. pdf [20 de julho de 2016], 2008
- Hair JF, Anderson RE, Tatham RL, Black WC. Análise multivariada de dados. 6ed. Bookman: Porto Alegre; 2009.
- . O'Rourke N, Hatcher L. A step-by-step approach to using SAS for factor analysis and structural equation modeling. 2nd ed. Cary, USA: SAS Institute Inc, 2013.
- Hair JF, Anderson RE, Tatham RL, Black WC. Análise multivariada de dados. 6ed. Bookman: Porto Alegre; 2009.
- Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2009). Análise multivariada de dados. Porto Alegre: Bookman. [Links]
- HAYES, B. E., Medindo a satisfação do cliente, Rio de Janeiro: Editora Qualitymark, 228p. 1995.
- TROCHIM, W. M. The Research Methods Knowledge Base, 2nd Edition. Internet WWW page, at URL: http://trochim.human.cornell.edu/kb/index.htm (version current as of August, 2003).
- DE BEM, Amilton Barreto et al. Validade e confiabilidade de instrumento de avaliação da docência sob a ótica dos modelos de equação estrutural. **Avaliação: Revista da Avaliação da Educação Superior**, v. 16, n. 2, 2011.
- A avaliação da confiabilidade de questionários: uma análise utilizando o coeficiente alfa de Cronbach (PDF Download Available) . Available from:
- https://www.researchgate.net/publication/236036099 A avaliacao da confiabilidade de questionarios uma analise utilizando o coeficiente alfa de Cronbach
 [accessed Aug 24, 2017].
- FIGUEIREDO FILHO, Dalson Brito; SILVA JÚNIOR, José Alexandre da. Visão além do alcance: uma introdução à análise fatorial. **Opinião pública**, v. 16, n. 1, p. 160-185, 2010.
- SCHREIBER, James B. et al. Reporting structural equation modeling and confirmatory factor analysis results: A review. **The Journal of educational research**, v. 99, n. 6, p. 323-338, 2006.
- BENTLER, Peter M. Comparative fit indexes in structural models. **Psychological bulletin**, v. 107, n. 2, p. 238, 1990.
- TIMOTHY, A. Brown; PSYD, Brown. Confirmatory factor analysis for applied research. **New York: Guilford**, 2006.
- LEÓN, Daniela Andrea Droguett. Análise fatorial confirmatória através dos softwares R e Mplus. 2011.