Exp. 2 (Analog) – Differential Amplifier

Steps:

- 1- Implement the circuit as the figure.
- 2- Add your full name to R1 text, and Sec. to R2 text (without delete the description), and change the style to COMPONENT ID.
- 3- Get I_{C1} , I_{E1} , I_{B1} with Ammeter. Then calculate $\beta,\,r_e$, g_m and fill Table 1.
- 4- Fix V1 at 200mV and fill Table 2 (Vo1 and Vo2) at the three modes of the Differential Amplifier:
 - a- Double input mode by putting V2 at 100mV (lick the figure).
 - b- Single input mode by deleting V2 source and connect R2 to the ground.
 - c- Common input mode by connecting R2 to V1 (the same source for 2 input).

- 5- Right click oscilloscope figure and chose Digital oscilloscope. Put all oscilloscope's channels Off except Ch. B to calculate Vo2. Then change Ch. A to be AC and calculate Vo1 (Important order).
- 6- Take 3 screen for the Oscilloscope results at the three modes. Then print them in 1 page, and don't present results without your name (it's really dangerous).
- 7- Calculate Av_{dm} , Av_{cm} , and CMRR and compare it with simulation results.

DC Analysis	I _{C1}	I _{E1}	I _{B1}	β	$r_{\rm e} = \frac{V_T}{I_E}$	$g_{\rm m} = \frac{I_C}{V_T}$
Simulation						
Measurements						

Table 1

V1	V2	Vo1	Vo2	$Av = \frac{Vo1}{V1 - V2}$
200mV	100mV			$Av_{dm} = \dots$
200mV	0			$Av_{dm} = \dots$
The same source (200mV)				$Av_{cm} = \dots$

Table 2

$$r_{\pi} = \frac{V_{T}}{I_{B}} = \dots$$
, $rie = \frac{R_{B} + r_{\pi}}{1 + \beta} + r_{e} = \dots$

$$Av_{dm} = \frac{-Rc}{rie} = \dots, Av_{cm} = \frac{-Rc}{2RE} = \dots$$

$$CMRR = \frac{Av_{dm}}{Av_{cm}} = \dots, \dots$$