Engineering Practice Tutorial #1 (10.21.2022)

October 31, 2022

Engineering Practice Tutorial

In this tutorial, we are going to cover management strategies in the lab

1. Components of paper

Research paper consists of three components

- Code
 - Managed by github
- Table & Graph
 - Research results
- Data

2. Reproducible Research

In user's point of view, they want to utilize or reproduce the results on the paper. Therefore, need to manage packages, code, and data.

• Managing pacakge dependecies

- pip package
 - * managed by 'requirements.txt' file
 - * pip freeze -r
- poetry package
- docker image

• Managing code

- github
 - * snapshots of code

• Managing data

- Publicly
 - * Cloud services (S3)
- Privately (Locally)
 - * NFS
 - * MINIO

3. GPU management

SLURM is used for GPU clustering and allocation

- SLURM open source, fault-tolerant, and highly scalable cluster management and job scheduling system for large and small Linux clusters
- Features
 - Able to use bash scripts to initiate training on multi-GPU clusters
 - Able to assigning priorities over tasks (using multilevel queue)
 - * High
 - * Standard
 - * Low
 - * Intermediate
 - · Debugging or checking whether scripts are running appropriately
- e.g.
 - bash commands

- * using only local desktop GPUs
- qsub bash commands
 - * using server and local GPUs (GPU clusters)
 - * running scripts on local desktop will use server and local desktop GPUs
 - * no need to directly executing scripts on server

4. Data management

- NFS (Network File System)
 - /data, /home directories are NFS
 - Locations
 - * /data
 - · large files w/o backup
 - * /home
 - \cdot small files w/ backup
 - · backup on hourly basis
 - · user accounts are located under /home directory. Therefore, it would be a good practice to save extremely large models and data under /data
- Local
 - /scratch
 - * for high frequency files (files frequently used such as caches)

5. Experiments management

- Parameter Management
 - Framework (easiest, fastest)
 - * comet
 - * wandb
 - * tensorboard
 - Files
 - * JSON
 - * YAML
 - CMD output stdout or file
 - * bash -v
 - · verbose : print each command to stdout before executing it
 - * bash -x
 - · xtrace : Similar to -v, but expands commands
- Model Management
 - One folder per experiemnt
 - * contains all necessary files related to the experiment: tokenizers, parameters, models, and etc.
 - Every experiments should have own unique identifier
 - * e.g.) {Path}/experiment/{github code tag or hash ID}/{slurm_id}/trial_1
- Code Management
 - Use git tag feature (or hash ID) as identifier for training experiment
 - * e.g.) {Path}/experiment/{github code tag or hash ID}/{slurm_id}/trial_2
 - Manage remote repository on individual laptops
 - * Hard to track down corresponding code to each experiment when there are some direct modifications on the server.
 - Git pull codes from remote repository on the server
 - * Easier to find corresponding code to each experiment