CS112 Introduction to Python Programming Session 11: Pandas II

Shengwei Hou
Ph.D., Assistant Professor
Department of Ocean Science and Engineering
Fall 2022

Contents

- Series review
- DataFrame review
- Reading & Writing
- Viewing data
- Sorting data
- Selection
- Boolean indexing
- Dealing with missing data
- concat DataFrames
- merge DataFrames
- Grouping data
- Categoricals

Introductions

- Pandas has two principal data structures: Series and DataFrame, which form the basis for most activities using Pandas.
- The two primary data structures of pandas, Series (one-dimensional) and DataFrame (two-dimensional), handle the vast majority of typical use cases
- Series is a one-dimensional array that can store various data types, including mixed data types
- Any list, tuple, and dictionary can be converted into Series objects
- The basic method to create a Series is to call:

```
pd.Series(data, index=index)
```

• The axis labels in a Series are collectively referred to as the index.

```
>>> import pandas as pd
```

>>> s = pd.Series(data, index=None)

Here, s is a Pandas Series, data can be a Python dict, a ndarray, or a scalar value (like 5). The passed index is a list of axis labels.

• Both integer and label-based indexing are supported. If the index is not provided, then the index will default to range (n) where n is the length of data.

Series

1 - 2.184006

2 - 0.209440

3 - 0.492398

4 - 1.507088

dtype: float64

Create Series from ndarrays:

```
>>> import numpy as np
>>> import pandas as pd
>>> s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
>>> type(s)
<class 'pandas.core.series.Series'>
>>> s
a - 0.3677407
b 0.855453
c -0.518004 \ \-
d -0.060861
e - 0.277982 \rfloor \omega
dtype: float64
>>> s.index
Index(['a', 'b', 'c', 'd', 'e'], dtype='object')
>>> s.values
array([-0.367740, 0.855453, -0.518004, -0.060861, -
0.27\overline{7}9821)
>>> pd.Series(np.random.randn(5))
0 0.334947
```

Create Series from Dictionaries:

```
>>> import numpy as np
>>> import pandas as pd
>>> d = {'a' : 0., 'b' : 1., 'c' : 2.}
>>> pd.Series(d)
a 0.0
b 1.0
c 2.0
dtype: float64
>>> pd.Series(d, index=['b', 'c', 'd', 'a'])
b 1.0
                    When a series is created using dictionaries, by
c 2.0
                    default the keys will be index labels.
d NaN
```

- While creating a series using a dictionary, if labels are passed for the index, the values corresponding to the labels in the index will be pulled out. The order of index labels will be preserved.
- If a value is not associated for a label, then NaN is printed. NaN (not a number) is the standard missing data marker used in pandas.
- You can specify axis labels for index, i.e., index=['a', 'b', 'c', 'd', 'e'].
- When data is a ndarray, the index must be the same length as data. In series s, by default the type of values of all the elements is dtype: float64.

a 0.0

dtype: float64

- You can find out the index for a series using index attribute. The values attribute returns a ndarray containing only values, while the axis labels are removed.
- If no labels for the index is passed, one will be created having a range of index values [0, ..., len (data) 1].

Vectorized operations

- Series can also be passed into most NumPy methods
- Vectorized operations and label alignment with Series:

```
a = np.array(np.random.randint(1,10, size=3))
s = pd.Series(a,index=['Gene1','Gene2','Gene3'])
s
Gene1
          8
                                   s + s
Gene2
                                            16
                                   Gene1
Gene3
                                   Gene2
                                            16
dtype: int64
                                   Gene3
                                   dtype: int64
import numpy as np
                                   s + 1
np.square(s)
Gene1
                                   Gene1
Gene2
                                   Gene2
Gene3
                                   Gene3
dtype: int64
                                   dtype: int64
```

• A key difference between Series and ndarray is that operations between Series automatically align the data based on labels.

```
a1 = np.array(np.random.randint(1,10, size=3))
    pd.Series(a1,index=['Gene1','Gene2','Gene3'])
a2 = np.array(np.random.randint(1,10, size=3))
s2 = pd.Series(a2,index=['Gene1','Gene3','Gene2'])
s1
Gene1
Gene2
Gene3
                                 s1 + s2
dtype: int64
s2
                                 Gene1
Gene1
Gene3
                                 Gene 2
                                                  6
Gene2
dtype: int64
                                 Gene3
                                 dtype:
                                              int64
```

DataFrame

- DataFrame is a two-dimensional, labeled data structure with columns of potentially different types.
- DataFrame accepts many different kinds of input like Dict of onedimensional ndarrays, lists, dicts, or Series, two-dimensional ndarrays, a dictionary of Series, or another DataFrame.

```
df = pd.DataFrame(data=None, index=None,
columns=None)
```

- - Here, data can be NumPy ndarray, dict, or DataFrame.
- - Along with the data, you can optionally pass an index (row labels) and columns (column labels) attributes as arguments.
- - Both index and columns will default to range (n) where n is the length of data, if they are not provided.
- - When the data is a dictionary and columns are not specified, then the DataFrame column labels will be dictionary's keys.

Create a DataFrame

one two

a 1.0 1.0

b 2.0 2.0

c 3.0 3.0

d NaN 4.0

A DataFrame can be created from a Dictionary of Series/Dictionaries/Lists:

```
>>> import pandas as pd
>>> dict series = {'one' : pd.Series([1., 2., 3.], index=['a', 'b', 'c']),
                   'two': pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}
>>> df = pd.DataFrame(dict series)
>>> df.shape
(4, 2)
>>> df.index
Index(['a', 'b', 'c', 'd'], dtype='object')
>>> df.columns
Index(['one', 'two'], dtype='object')
>>> list(df.columns)
['one', 'two']
```

```
a = {'sample1':{'gene1':1,'gene2':2,'gene3':3},
     'sample2':{'gene1':2,'gene2':3,'gene3':4}}
pd.DataFrame(a)
```

```
If the number of labels specified in the various series
are not the same, then the resulting index will be the
union of all the index labels of various series.
```

Get the index labels for the DataFrame using index attribute. With columns attribute, you get all the columns of the DataFrame.

```
a = {\text{'sample1':}[1,2,3], 'sample2':}[2,3,4]}
pd.DataFrame(a,index = ['gene1','gene2','gene3'])
```

sample1 sample2

gene1	1	2
gene2	2	3
gene3	3	4

sample1 sample2

gene1	1	2
gene2	2	3
gene3	3	4

Create a DataFrame

• A DataFrame can be created using the Pandas DataFrame routine based on list-like objects such as list, NumPy array, or dictionary:

```
>>> optmat = {'mat': ['silica', 'titania', 'PMMA', 'PS'], 'index': [1.46, 2.40, 1.49, 1.59],
'density': [2.03, 4.2, 1.19, 1.05]}
>>> omdf = pd.DataFrame(optmat)
>>> omdf
      mat index density
   silica
           1.46
                     2.03
  titania 2.40
                    4.20
      PMMA
           1.49
                    1.19
       PS
            1.59
                     1.05
```

```
a = [[1,2,3],[2,3,4]]
pd.DataFrame(a,index=['sample1','sample2'],
             columns=['gene1','gene2','gene3'])
```

	gene1	gene2	gene3
sample1	1	2	3
sample2	2	3	4

The column order can be changed:

```
>>> omdf = pd.DataFrame(optmat, columns=['index', 'mat', 'density'])
>>> omdf
   index
              mat
                   density
   1.46
           silica
                      2.03
   2.40
                      4.20
         titania
   1.49
                      1.19
             PMMA
   1.59
               PS
                      1.05
```

```
a = [(1,2,3),(2,3,4)]
df = pd.DataFrame(a)
df
```

Reading & Writing

 Reading and writing text and binary files using pandas:

	Data		
Format Type	Description	Reader	Writer
text	CSV	read csv	to csv
text	Fixed-Width Text File	<u>read fwf</u>	
text	<u>JSON</u>	read ison	to ison
text	<u>HTML</u>	<u>read html</u>	to html
text	<u>LaTeX</u>		Styler.to latex
text	XML	read xml	to xml
text	Local clipboard	read clipboard	to clipboard
IGXI	Local clipboard	redd clipbodid	io clipbodi

Format Type	Data Description	Reader	Writer
binary	MS Excel	read_excel	to_excel
binary	<u>OpenDocument</u>	read_excel	
binary	HDF5 Format	read_hdf	to_hdf
binary	Feather Format	read_feather	to_feather
binary	Parquet Format	read_parquet	to_parquet
binary	ORC Format	read_orc	
binary	<u>Stata</u>	<u>read_stata</u>	to_stata
binary	SAS	read_sas	
binary	<u>SPSS</u>	read_spss	
binary	Python Pickle Format	read_pickle	to_pickle
SQL	SQL	read_sql	to_sql
SQL	<u>Google</u> <u>BigQuery</u>	read_gbq	to_gbq

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html

Reading & Writing


```
pd.read_csv (filepath, sep=',' , header = 'infer', names = None,
index_col = None,...)

filepath: a path to a file
sep: Delimiter to use; ','for CSV, '\t' for tab-delimited file
header: Row number(s) to use as the column names. None if file contains no header row
names: List of column names to use
index_col: Column(s) to use as the row labels of the DataFrame, either given as string name or
column index.
```

```
df.to_csv (filepath, sep=',' , header = True, index = True, ...)
sep : str, default ','; '\t' for tab-delimited file
header: bool or list of str, default True Write out the column names
index : bool, default True Write row names (index).
```

Viewing Data

- Use DataFrame.head() and DataFrame.tail() to view the top and bottom rows of the frame, respectively.
- Row index and column names can be obtained via the DataFrame.index and DataFrame.columns, respectively.
- DataFrame.describe() shows a quick statistic summary of your data:

```
>>> import pandas as pd
>>> import numpy as np
>>> dates = pd.date_range("20130101", periods=6)
>>> df = pd.DataFrame(np.random.randn(6, 4),
index=dates, columns=list("ABCD"))
>>> df.head()
```

	A	В	C	D
2013-01-01	-0.023244	0.400826	-1.392608	0.782346
2013-01-02	-1.437795	-0.528897	0.940951	-1.840915
2013-01-03	-0.986200	1.120746	-0.974936	0.474923
2013-01-04	-0.763038	0.477575	-0.585073	-1.098130
2013-01-05	0.621200	-0.618775	1.692731	-0.037749

>>> df.describe()

	Α	В	С	D
count	6.000000	6.000000	6.000000	6.000000
mean	-0.388181	0.006425	-0.213516	-0.312476
std	0.796491	0.770458	1.235727	0.987135
min	-1.437795	-0.812927	-1.392608	-1.840915
25%	-0.930409	-0.596305	-0.971742	-0.862430
50%	-0.393141	-0.064035	-0.773616	-0.096540
75 %	0.189184	0.458387	0.559445	0.346755
max	0.621200	1.120746	1.692731	0.782346

Sorting Data

• DataFrame.sort_index() sorts by an axis

>>> df.sort_index(axis=1, ascending=False)

	D	С	В	Α
2013-01-01	0.782346	-1.392608	0.400826	-0.023244
2013-01-02	-1.840915	0.940951	-0.528897	-1.437795
2013-01-03	0.474923	-0.974936	1.120746	-0.986200
2013-01-04	-1.098130	-0.585073	0.477575	-0.763038
2013-01-05	-0.037749	1.692731	-0.618775	0.621200
2013-01-06	-0.155331	-0.962159	-0.812927	0.259993

>>> df.sort_index(axis=0, ascending=False)

	Α	В	C	D
2013-01-06	0.259993	-0.812927	-0.962159	-0.155331
2013-01-05	0.621200	-0.618775	1.692731	-0.037749
2013-01-04	-0.763038	0.477575	-0.585073	-1.098130
2013-01-03	-0.986200	1.120746	-0.974936	0.474923
2013-01-02	-1.437795	-0.528897	0.940951	-1.840915
2013-01-01	-0.023244	0.400826	-1.392608	0.782346

• DataFrame.sort_values() sorts by value

>>> df.sort_values(by="B")

	A	В	С	D
2013-01-06	0.259993	-0.812927	-0.962159	-0.155331
2013-01-05	0.621200	-0.618775	1.692731	-0.037749
2013-01-02	-1.437795	-0.528897	0.940951	-1.840915
2013-01-01	-0.023244	0.400826	-1.392608	0.782346
2013-01-04	-0.763038	0.477575	-0.585073	-1.098130
2013-01-03	-0.986200	1.120746	-0.974936	0.474923

>>> df.sort_values(by=["B", "C"], ascending=False)

	A	В	С	D
2013-01-03	-0.986200	1.120746	-0.974936	0.474923
2013-01-04	-0.763038	0.477575	-0.585073	-1.098130
2013-01-01	-0.023244	0.400826	-1.392608	0.782346
2013-01-02	-1.437795	-0.528897	0.940951	-1.840915
2013-01-05	0.621200	-0.618775	1.692731	-0.037749
2013-01-06	0.259993	-0.812927	-0.962159	-0.155331

Selection

Selection by Label using DataFrame.loc()
 or DataFrame.at().

	Α	В
2013-01-02	-1.437795	-0.528897
2013-01-03	-0.986200	1.120746
2013-01-04	-0.763038	0.477575

>>> df.at[dates[0], "A"]

-0.02324367422935155

• Selection by Position using DataFrame.iloc() or DataFrame.at()

>>> df.iloc[3:5, 0:2]

-0.528896863769626

By labels: df.loc[row_lable, col_label]

By location: df.iloc[row_loc, col_loc]

Boolean Indexing

• Using a single column's values to select data:

 Selecting values from a DataFrame where a boolean condition is met:

```
>>> df[df > 0]
2013-01-01
                  NaN
                       0.400826
                                      NaN
                                            0.782346
                            NaN
                                  0.940951
2013-01-02
                                                 NaN
                  NaN
2013-01-03
                  NaN
                       1.120746
                                       NaN
                                             0.474923
                       0.477575
2013-01-04
                  NaN
                                       NaN
                                                  NaN
2013-01-05
             0.621200
                            NaN
                                  1.692731
                                                  NaN
2013-01-06
             0.259993
                            NaN
                                       NaN
                                                  NaN
```

• Using the isin() method for filtering:

```
>>> df2 = df.copy()
>>> df2["E"] = ["one", "one", "two", "three", "four", "three"]
>>> df2.head()
```

	A	В	С	D	E
2013-01-01	-0.023244	0.400826	-1.392608	0.782346	one
2013-01-02	-1.437795	-0.528897	0.940951	-1.840915	one
2013-01-03	-0.986200	1.120746	-0.974936	0.474923	two
2013-01-04	-0.763038	0.477575	-0.585073	-1.098130	three
2013-01-05	0.621200	-0.618775	1.692731	-0.037749	four
2013-01-06	0.259993	-0.812927	-0.962159	-0.155331	three

```
>>> df2[df2["E"].isin(["two", "four"])]
```

	A	В	С	D	E
2013-01-03	-0.9862	1.120746	-0.974936	0.474923	two
2013-01-05	0.6212	-0.618775	1.692731	-0.037749	four

Dealing with NA

- pandas primarily uses the value np.nan to represent missing data. It is by default not included in computations.
- isna() gets the boolean mask where values are nan:

```
>>> df.loc[["20130101", "20130106"], ['B', 'D']] = np.nan >>> df
```

	A	В		С	D	
2013-01-01	-0.023244		NaN	-1.392608		NaN
2013-01-02	-1.437795	-0.5	28897	0.940951	-1.8	40915
2013-01-03	-0.986200	1.1	20746	-0.974936	0.4	74923
2013-01-04	-0.763038	0.4	77575	-0.585073	-1.0	98130
2013-01-05	0.621200	-0.6	18775	1.692731	-0.0	37749
2013-01-06	0.259993		NaN	-0.962159		NaN

>>> pd.isna(df)

	A	В	С	D
2013-01-01	False	True	False	True
2013-01-02	False	False	False	False
2013-01-03	False	False	False	False
2013-01-04	False	False	False	False
2013-01-05	False	False	False	False
2013-01-06	False	True	False	True

• DataFrame.dropna() drops any rows that have missing data:

>>> df.dropna(how="any")

	A	В	С	D
2013-01-02	-1.437795	-0.528897	0.940951	-1.840915
2013-01-03	-0.986200	1.120746	-0.974936	0.474923
2013-01-04	-0.763038	0.477575	-0.585073	-1.098130
2013-01-05	0.621200	-0.618775	1.692731	-0.037749

• DataFrame.fillna() fills missing data

>>> df.fillna(value=0.5)

	A	В	С	D
2013-01-01	-0.023244	0.500000	-1.392608	0.500000
2013-01-02	-1.437795	-0.528897	0.940951	-1.840915
2013-01-03	-0.986200	1.120746	-0.974936	0.474923
2013-01-04	-0.763038	0.477575	-0.585073	-1.098130
2013-01-05	0.621200	-0.618775	1.692731	-0.037749
2013-01-06	0.259993	0.500000	-0.962159	0.500000

concat DataFrames

- Concatenating pandas objects together along an axis with concat ():
- concat() across rows:

```
>>> df = pd.DataFrame(np.random.randn(10, 4))
>>> df.columns = ['A', 'B', 'C', 'D']
```

>>> df.head(2)

	A	В	С	D
0	0.596169	1.487679	2.369310	-1.255890
1	1.524799	0.632513	-2.103302	-0.304722

break it into pieces

		Α	В	С	D
ſ	0	-2.783395	-0.210046	-0.569222	0.911045
ı	1	0.381088	-1.226450	0.434870	-0.636089
l	2	1.117621	-0.892886	1.122575	-1.204585
	3	0.097502	-0.696917	1.520378	0.286139
	4	-0.226048	0.661643	-0.380691	0.734967
	5	-0.145784	-2.020037	-1.435043	0.531568
	6	0.531240	-1.430163	-0.766562	0.425568
	7	0.788771	1.343522	-1.301957	-2.234962
	8	1.263672	0.971128	1.173103	-0.111349
l	9	-0.149878	-0.221053	1.383188	1.919177

• concat() across columns:

```
>>> pd.concat([df[["A", "B"]], df.D], axis=1)
```

	Α	В	D
0	-2.783395	-0.210046	0.911045
1	0.381088	-1.226450	-0.636089
2	1.117621	-0.892886	-1.204585
3	0.097502	-0.696917	0.286139
4	-0.226048	0.661643	0.734967
5	-0.145784	-2.020037	0.531568
6	0.531240	-1.430163	0.425568
7	0.788771	1.343522	-2.234962
8	1.263672	0.971128	-0.111349
9	-0.149878	-0.221053	1.919177

Adding a column to a DataFrame is relatively fast. However, adding a row requires a copy, and may be expensive. It's better to pass a pre-built list of records to the DataFrame constructor instead of building a DataFrame by iteratively appending records to it.

merge DataFrames

• merge () enables SQL style join types along specific columns.

>>> left

	key	lval	
0	foo		1
1	foo		2

```
>>> right = pd.DataFrame({"key": ["foo", "foo"], "rval": [4, 5]})
```

>>> right

	key	rval
0	foo	4
1	foo	5

>>> pd.merge(left, right, on="key")

	key	lval	rval
0	foo	1	4
1	foo	1	5
2	foo	2	4
3	foo	2	5

>>> left

	key	lval	
0	foo	1	
1	bar	2	

>>> right = pd.DataFrame({"key": ["foo", "bar"], "rval": [4, 5]})

>>> right

	key	rval
0	foo	4
1	bar	5

>>> pd.merge(left, right, on="key")

	key	lval	rval
0	foo	1	4
1	bar	2	5

Grouping

- By "group by" we are referring to a process involving one or more of the following steps:
 - Splitting the data into groups based on some criteria
 - Applying a function to each group independently
 - Combining the results into a data structure

foo

foo

one

three

```
>>> df = pd.DataFrame(
        "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo"],
        "B": ["one", "one", "two", "three", "two", "two", "one", "three"],
        "C": np.random.randn(8),
        "D": np.random.randn(8),
                          В
                                              D
>>> df
                                    0.526672
                                                0.211162
               0
                     foo
                              one
                                    0.173828
                                               -0.144316
                     bar
                              one
                                    -0.773200
                                                0.965731
                     foo
                              two
                                    -0.126775
                                                0.833290
                            three
                     bar
                                    0.535224
                                                1.559121
                     foo
                              two
                                    -0.233228
                                                0.889734
                     bar
                              two
```

0.023856

-0.730864

-0.305266

0.338401

```
>>> df.groupby("A")[["C", "D"]].sum()

C

A

bar
-0.186175 1.578709

foo -0.418312 2.769149
```


Categoricals

• pandas can include categorical data in a DataFrame

```
>>> df = pd.DataFrame(
...: {"id": [1, 2, 3, 4, 5, 6],
...: "raw_grade": ["a", "b", "b", "a", "a", "e"]}
...: )
# Converting the raw grades to a categorical data type:
>>> df["grade"] = df["raw_grade"].astype("category")
>>> df.dtypes
>>> df
```

	data		id	now anodo	grade
id	int64		±u	raw_grade	graue
		0	1	а	а
raw_grade object grade category		1	2	b	b
	2	3	b	b	
		3	4	а	а
		4	5	а	а
		5	6	е	е

```
# Rename the categories to more meaningful names:
>>> new_categories = ["very good", "good", "very bad"]
>>> df ["grade"] =
...: df ["grade"] .cat.rename_categories (new_categories)
>>> df ["grade"] = df ["grade"].cat.set_categories (
...: ["very bad", "bad", "medium", "good", "very good"])
>>> df ['grade']

0  very good
1     good
2     good
3   very good
4   very good
5   very bad
Name: grade, dtype: category
Categories (5, object): ['very bad', 'bad', 'medium', 'good', 'very good']
```

Sorting is per order in the categories, not lexical order:

>>> df.sort values(by="grade", ascending=True)

	id	raw_grade	grade
5	6	е	very bad
1	2	b	good
2	3	b	good
0	1	а	very good
3	4	а	very good
4	5	а	very good

Exercises

Exercise 1

• Concat the following DataFrames:

	col1	col2	col3
0	1	а	a1
1	2	b	b2
2	3	С	с3

	col1	col2	col3
0	4	d	d4
1	5	е	e5
2	6	f	f6

	col1	col2	col3
0	7	g	g7
1	8	h	h2
2	9	i	i3

	col1	col2	col3
0	1	а	a1
1	2	b	b2
2	3	С	с3
3	4	d	d4
4	5	е	e5
5	6	f	f6
6	7	g	g7
7	8	h	h2
8	9	i	i3

Exercise 2

• Sort the following DataFrame according to the Year categorical order:

	Name	Year	Shirt_Size		Name	Year	Shirt_Size
0	Tim	Junior	S	2	Hasan	Freshman	L
1	Sarah	Senior	M	4	Jack	Freshman	L
2	Hasan	Freshman	L	0	Tim	Junior	s
3	Jyoti	Junior	S	3	Jyoti	Junior	s
4	Jack	Freshman	L	1	Sarah	Senior	М

Exercise 3

• Calculate the mean device price for each company:

	price	brand	device
0	200	apple	phone
1	300	google	phone
2	400	apple	computer
3	500	apple	phone
4	300	google	computer
5	600	apple	computer
6	700	google	phone
7	900	google	computer

		price
brand	device	
apple	computer	500.0
	phone	350.0
google	computer	600.0
	phone	500.0