IN THE CLAIMS:

Please cancel claim 7, amend claims 1, 4, 9 and 10, and add new claim 13 as follows:

1. (Currently amended) A plasma processing method comprising the steps of:

placing a substrate inside a reaction chamber of a plasma processing system, a silicon dioxide film and a resist pattern having been formed in order on the surface of the substrate;

introducing an etching gas composed of a fluorocarbon gas alone into the reaction chamber, wherein the fluorocarbon gas is composed of at least one of C_4F_6 , C_5F_8 , and C_6F_6 gases; and

creating a plasma from the fluorocarbon gas etching gas and etching the silicon dioxide film with the plasma and using the resist pattern as a mask,

wherein a residence time τ of the fluorocarbon gas in the reaction chamber is controlled at a value greater than 0.1 sec and equal to or less than 1 sec, the residence time τ being given by P×V/Q, where P is a pressure (unit: Pa) of the fluorocarbon gas, V is a volume (unit: L) of the reaction chamber and Q is a flow rate (unit: Pa · L/sec) of the fluorocarbon gas.

2. (Cancelled)

- 3. (Original) The plasma processing method of Claim 1, wherein the residence time τ is controlled by a mass flow controller provided for the plasma processing system and/or a valve and a pump provided for the plasma processing system.
- 4. (Currently amended) A plasma processing method comprising the steps of:

placing a substrate inside a reaction chamber of a plasma processing system, a silicon dioxide film having been formed on the surface of the substrate;

introducing an etching gas composed of a fluorocarbon gas alone into the reaction chamber, wherein the fluorocarbon gas is composed of at least one of C₄F₆, C₅F₈, and

C₆F₆ gases; and

creating a plasma from the fluorocarbon gas etching gas and etching the silicon dioxide film with the plasma and using the resist pattern as a mask,

wherein $P \times W/Q$ is controlled at a value greater than $0.8 \times 10_4$ sec • W/m^3 and equal to or less than 8×10^4 sec • W/m^3 , $P \times W/Q$ being a product of a residence time τ of the fluorocarbon gas in the reaction chamber and a power density Pi of power applied to create the plasma, the residence time τ being given by $P \times V/Q$, where P is a pressure (unit: Pa) of the fluorocarbon gas, V is a volume (unit: L) of the reaction chamber and Q is a flow rate (unit: Pa · L/sec) of the fluorocarbon gas, the power density Pi being given by W_0/V , where W_0 is a magnitude (unit: W) of the power and V is the volume (unit: L) of the reaction chamber.

5. (Cancelled)

6. (Original) The plasma processing method of Claim 4, wherein the residence time τ is controlled by a mass flow controller provided for the plasma processing system and/or a valve and a pump provided for the plasma processing system.

Claims 7-8 (Cancelled)

- 9. (Currently amended) The plasma processing method of Claim 7 $\underline{13}$, wherein the residence time τ is controlled by a mass flow controller provided for the plasma processing system and/or a valve and a pump provided for the plasma processing system.
- 10. (Currently amended) A plasma processing method comprising the steps of:

placing a substrate inside a reaction chamber of a plasma processing system; introducing a fluorocarbon gas into the reaction chamber, wherein the fluorocarbon gas is composed of at least one of C₄F₆ and C₅F₈ and C₆F₆ gases; and

creating a plasma from the fluorocarbon gas and depositing an organic film on the substrate using the plasma,

wherein $P \times W_0/Q$ is controlled at 0.8×10^4 sec • W/m^3 or less, $P \times W_0/Q$ being a product of a residence time τ of the fluorocarbon gas and a power density Pi of power

(1

applied to create the plasma, the residence time τ being given by P×V/Q, where P is a pressure (unit: Pa) of the fluorocarbon gas, V is a volume (unit: L) of the reaction chamber and Q is a flow rate (unit: Pa · L/sec of the fluorocarbon gas, the power density Pi being given by W_0/V , where W_0 is a magnitude (unit: W) of the power and V is 'the volume (unit: L) of the reaction chamber.

11. (Cancelled)

12. (Original) The plasma processing method of Claim 10, wherein the residence time τ is controlled by a mass flow controller provided for the plasma processing system and/or a valve and a pump provided for the plasma processing system.

Claims 13-18 (Cancelled)

19

13. (New) A plasma processing method comprising the steps of:

placing a substrate inside a reaction chamber of a plasma processing system, a silicon dioxide film having been formed on the surface of the substrate;

introducing a first fluorocarbon gas into the reaction chamber, wherein the first fluorocarbon gas is composed of at least one of C₄F₆, C₅F₈, and C₆F₆ gases;

creating a first plasma from the first fluorocarbon gas and etching the silicon dioxide film with the first plasma;

introducing a second fluorocarbon gas into the reaction chamber, wherein the second fluorocarbon gas is composed of at least one of C₄F₆, C₅F₈, and C₆F₆ gases; and

creating a second plasma from the second fluorocarbon gas and depositing an organic film on the silicon dioxide film with the second plasma,

wherein a residence time τ of the first fluorocarbon gas in the reaction chamber is controlled at a value greater than 0.1 sec and equal to or less than 1 sec, the residence time τ being given P×V/Q, where P is a pressure (unit: Pa) of the first fluorocarbon gas, V is a volume (unit: L) of the reaction chamber and Q is a flow rate (unit: Pa · L/sec) of the first fluorocarbon gas; and

wherein a residence time τ of the second fluorocarbon gas in the reaction chamber is controlled at a value equal to or less than 0.1 sec, the residence time τ being given by $P \times V/Q$.