DB Module

Activity

Part I

Databases

Day 2

Topics

- Conceptual Data Modeling using Entity –
 Relationship Model
- Entity-Relationship Model
 - Entity
 - **▼** Attribute
 - Key
 - Relationship

Why is Database Design Important?

- Assume that you are given the task of designing a database for a company!
- How do you decide:
 - ▼ How many tables should be there in your database?
 - How many columns should be there in each table?
 - **▼** What are these columns?

Why is Database Design Important (cont...)?

Why is the following table not considered as a good design?

<u>StudentID</u>	Name	<u>ModuleCode</u>	SubjectName	Grade	Description
11111	Alicia	DB	Database	A	Excellent
11111	Alicia	OOP	Object-Oriented Programming	В	Very Good
22222	Peter	СТ	Critical Thinking	С	Good
33333	John	DB	Database	В	Very Good
33333	John	OOP	Object-Oriented Programming	A	Excellent
33333	John	NF	Network Fundamentals	Α	Excellent

School of ICT

Why is Database Design Important (cont...)?

A better design could be:

<u>StudentID</u>	Name	
11111	Alicia	
22222	Peter	
33333	John	

<u>Grade</u>	Description	
Α	Excellent	
В	Very Good	
С	Good	

<u>ModuleCode</u>	SubjectName
DB	Database
OOP	Object-Oriented Programming
СТ	Critical Thinking
NF	Network Fundamentals

<u>StudentID</u>	<u>ModuleCode</u>	Grade
11111	DB	Α
11111	OOP	В
22222	СТ	С
33333	DB	В
33333	OOP	А
33333	NF	Α

Database Design Stage in Database Application Lifecycle

Conceptual Database Design

To construct a model that captures the overall structure of organisational data, while being independent of any DBMS or other implementation consideration.

Conceptual Data Modelling

A tool is required for communications between the database designers and end users during analysis phase of database development.

School of ICT

Conceptual Data Modelling

- E-R (Entity-Relationship)
 Model is the tool often used to construct a conceptual data model.
 - Relative ease of use.
 - Widespread CASE tool support.
 - ▼ Belief that entities and relationships are natural modelling concepts in the real world.

NP40 Book Rental System

E-R MODEL

- E-R Model was introduced in a key article by Chen (1976).
- The model was subsequently extended to include additional constructs by Chen & others (1986, 1991).
- Refer to Appendix for the Notations used for the E-R Model.

E-R Model

- Provides a detailed and logical representation of the data of an organisation or a business area.
- Expressed in terms of <u>Entities</u> of business environment, <u>Relationships</u> (or associations) among these entities, and the <u>Attributes</u> (or properties) of both entities and relationships.

Person, place, object, event or concept in the organisation or business area to be modelled.

Notation:

An entity is represented by a rectangular box.

ENTITY

Examples:

PRODUCT

ORDER

CUSTOMER

SALESPERSON

School of ICT

Can you identify all the entities in this model?

Attribute

Attribute

- A property or characteristic of an entity that is of interest to the organisation or business area concerned.
 - Each entity has a set of attributes associated with it.
- An example:
 - **▼ SALESPERSON** entity has attributes: employee number, name, date of birth, sex ,...

NB: Relationships may also have attributes.

Attribute

Notation:

An attribute is represented by an oval.

Attribute

Each
MEMBER has
an MemberID,
Name, Gender, ...

MemberID

Name

MEMBER

Gender

A line connects an attribute to the entity type that it is associated with.

School of ICT

Classification of Attributes

- An attribute can be classified by the component(s) it has:
 - **▼ SIMPLE** attribute
 - **▼ COMPOSITE attribute**
- An attribute can be classified by the value its holds:
 - **▼ SINGLE-VALUED** attribute
 - **▼ MULTI-VALUED** attribute

Simple Attribute

A simple attribute composed of a <u>SINGLE</u> component with an independent existence.

- Simple attributes cannot be further divided and are sometimes called Atomic attributes.
 - **▼** Examples: Gender, Salary, Color

Notation:

A Simple Attribute is represented by an oval.

Attribute

School of ICT

Composite Attribute

A composite attribute composed of <u>MULTIPLE</u> components, each with an independent existence.

School of ICT

Simple or Composite Attribute?

Simple Attribute

Block 450, Ang Mo Kio Ave 3, #02-333, Singapore 440450

The decision to model the Address attribute as a simple attribute or composite attribute is dependent on whether the user view of the model refers to the Address attribute as a SINGLE UNIT or INDIVIDUAL COMPONENTS.

Single-Valued Attribute

An attribute that holds a single value for a single entity.

▼ Each MEMBER entity has only a single value for MemberID, Name and Gender.

Multi-Valued Attribute

- An attribute that holds multiple values for a single entity.
 - ▼ A SALESPERSON entity can have one or more values for Contact Numbers (hand phone, pager, office) and Qualifications.

Notation

Multi-valued attribute is represented by double ovals.

Single and Multi-Valued Attributes

Student's Particulars

Name: Joshua Tan

Student ID: \$9811111

Date Of Birth: 1 Jan 1981

Hobbies: Cycling, Reading, Swimming

Subjects Registered: Networking, Database,

Operating Systems

Single-valued attributes

Multi-valued attributes

School of ICT

Possible Attribute Types

Simple, Single-Valued Attribute

Simple, Multi-Valued Attribute

Composite, Single-Valued

Composite, Multi-Valued

School of ICT

Derived Attribute

- An attribute that represents a value that is derivable from the value of a related attribute or set of attributes, not necessarily in the same entity.
 - Age of a person can be derived from his date of birth.
 - ▼ Number of employees working for a department can be derived by counting the number of employees that work for that department.

Derived Attribute

Notation

Derived attribute is represented by a dotted oval.

Key Attribute

- Every entity type must have an attribute or a set of attributes that uniquely identifies each entity instance.
 - ▼ This key or uniqueness constraint prohibits any two instances from having the same value for the key attribute simultaneously.
 - **▼** Some entity types have more than one key attribute.

Key Attribute

Examples:

- Each STAFF entity has a unique StaffID.
- Each BRANCH entity has a unique BranchNo.
- Each BOOKCOPY entity is uniquely identified by its ISBN and CopyNo.

Criteria for Selecting a Primary Key

- 1. Choose a candidate key that will not change its value over the life of each instance of the entity type.
- 2. Choose a candidate key such that for each instance of the entity type, the attribute is guaranteed to have <u>valid</u> <u>value</u> and <u>not be null</u>.
- 3. Avoid use of so-called intelligent keys, whose structure indicates classifications, locations, and so on.
- 4. Consider substituting a single-attribute <u>Surrogate Key</u> for a large composite key.

Surrogate Key

- A Surrogate Key is a new attribute that is specifically introduced into an entity to serve as a key to uniquely identify each instance.
- Guidelines for selecting a Surrogate Key:
 - ▼ If we cannot select a natural identifier that can guarantee uniqueness of each instance.
 - **▼** If the primary key is a large composite key that consists of a number of attributes.

Surrogate Key (Cont...)

- LoanNo of Loan table (Refer to Appendix B: pg B-5 & B-6) is a good example for a surrogate key.
- If not the LoanNo, what could have been the primary key of Loan table?
- Answer:
 - (Assuming no member borrows and returns the same book (ISBN) with the same copy number on the same date)
 - ▼ Is this the primary key PK ?==> (ISBN, CopyNo, MemberID, DateOut, DateReturn)

A relationship is an <u>association</u> between the instances of one or more entities that is of interest to the organisation.

A Publisher <u>publishes</u> many Books.

A Branch <u>registers</u>
many Members.
Each Member <u>makes</u>
many Loans.

A relationship is a set of associations between two or more participating entities.

Notation A relationship (R) is represented by a diamond-shaped box and is connected to the entities that are related through this relationship. ENTITY 1 R ENTITY 2

A Branch <u>registers</u>
many Members.
Each Member <u>makes</u>
many Loans.

BRANCH Registers MEMBER

MEMBER Makes LOAN

A Publisher can publish many Books.

PUBLISHER

BOOK

School of ICT

School of ICT

Summary

- E-R Model is a tool used to derive the Conceptual Data Model.
- E-R Model consists of Entities, Attributes and Relationships.