WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

A61K 38/00, C07K 1/00, 16/00, C12Q 1/68, C12P 19/34, C07H 21/02, 21/04

(11) International Publication Number:

WO 99/42118

(43) International Publication Date:

26 August 1999 (26.08.99)

(21) International Application Number:

PCT/US99/03265

A2

(22) International Filing Date:

17 February 1999 (17.02.99)

(30) Priority Data:

09/024,753 09/072,596

18 February 1998 (18.02.98) 5 May 1998 (05.05.98)

US US

(71) Applicant: CORIXA CORPORATION [US/US]; 1124 Columbia Street, Seattle, WA 98104 (US).

(72) Inventors: REED, Steven, G.; 2843 122nd Place N.E., Bellevue, WA 98005 (US). SKEIKY, Yasir, A., W.; 8327 25th Street, Seattle, WA 98107 (US). DILLON, Davin, C., 21607 N.E. 24th Street, Redmond, WA 98053 (US). CAM-POS-NETO, Antonio; 9308 Midship Court N.E., Bainbridge Island, WA 98110 (US). HOUGHTON, Raymond; 2636 242nd Place S.E., Bothell, WA 98021 (US). VEDVICK, Thomas, S.; 124 South 300th Place, Federal Way, WA 98003 (US). TWARDZIK, Daniel, R.; 10195 South Beach Drive, Bainbridge Island, WA 98110 (US). LODES, Michael, J.; 9223 36th Avenue S.W., Seattle, WA 98126 (US). HENDRICKSON, Ronald, C., 4114 S.W. Charlestown Street, Seattle, WA 98116 (US).

(74) Agents: CORUZZI, Laura, A. et al.; Pennie & Edmonds LLP. 1155 Avenue of the Americas, New York, NY 10036 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With declaration under Article 17(2)(a); without abstract; title not checked by the International Searching Authority.

(54) Title: COMPOUNDS AND METHODS FOR DIAGNOSIS OF TUBERCULOSIS

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia .	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegat
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

COMPOUNDS AND METHODS FOR DIAGNOSIS OF TUBERCULOSIS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. Application No. 09/024,753, filed February 18, 1998; which is a continuation-in-part of U.S. Application No. 08/942,341, filed October 1, 1997; which is a continuation-in-part of U.S. Application No. 08/818,111, filed March 13, 1997, which is a continuation-in-part of U.S. Application No. 08/729,622 filed October 11, 1996; which claims priority from PCT Application No. PCT/US 96/14675, filed August 30, 1996; and is a continuation-in-part of U.S. Application No. 08/680,574, filed July 12, 1996; which is a continuation-in-part of U.S. Application No. 08/658,800 filed June 5, 1996; which is a continuation-in-part of U.S. Application No. 08/620,280, filed March 22, 1996, now abandoned; which is a continuation of U.S. Application No. 08/532,136, filed September 22, 1995, now abandoned.

TECHNICAL FIELD

25

The present invention relates generally to the detection of *Mycobacterium tuberculosis* infection. The invention is more particularly related to polypeptides comprising a *Mycobacterium tuberculosis* antigen, or a portion or other variant thereof, and the use of such polypeptides for the serodiagnosis of *Mycobacterium tuberculosis* infection.

BACKGROUND OF THE INVENTION

Tuberculosis is a chronic, infectious disease, that is generally caused by infection with *Mycobacterium tuberculosis*. It is a major disease in developing countries, as well as an increasing problem in developed areas of the world, with about 8 million new cases and 3 million deaths each year. Although the infection may be asymptomatic for a considerable period of time, the disease is most commonly

2

manifested as an acute inflammation of the lungs, resulting in fever and a nonproductive cough. If left untreated, serious complications and death typically result.

Although tuberculosis can generally be controlled using extended antibiotic therapy, such treatment is not sufficient to prevent the spread of the disease. Infected individuals may be asymptomatic, but contagious, for some time. In addition, although compliance with the treatment regimen is critical, patient behavior is difficult to monitor. Some patients do not complete the course of treatment, which can lead to ineffective treatment and the development of drug resistance.

Inhibiting the spread of tuberculosis will require effective vaccination and accurate, early diagnosis of the disease. Currently, vaccination with live bacteria is the most efficient method for inducing protective immunity. The most common Mycobacterium for this purpose is Bacillus Calmette-Guerin (BCG), an avirulent strain of Mycobacterium bovis. However, the safety and efficacy of BCG is a source of controversy and some countries, such as the United States, do not vaccinate the general public. Diagnosis is commonly achieved using a skin test, which involves intradermal exposure to tuberculin PPD (protein-purified derivative). Antigen-specific T cell responses result in measurable incubation at the injection site by 48-72 hours after injection, which indicates exposure to Mycobacterial antigens. Sensitivity and specificity have, however, been a problem with this test, and individuals vaccinated with BCG cannot be distinguished from infected individuals.

While macrophages have been shown to act as the principal effectors of *M. tuberculosis* immunity, T cells are the predominant inducers of such immunity. The essential role of T cells in protection against *M. tuberculosis* infection is illustrated by the frequent occurrence of *M. tuberculosis* in AIDS patients, due to the depletion of CD4 T cells associated with human immunodeficiency virus (HIV) infection. Mycobacterium-reactive CD4 T cells have been shown to be potent producers of gamma-interferon (IFN- γ), which, in turn, has been shown to trigger the antimycobacterial effects of macrophages in mice. While the role of IFN- γ in humans is less clear, studies have shown that 1,25-dihydroxy-vitamin D3, either alone or in combination with IFN- γ or tumor necrosis factor-alpha, activates human macrophages

30

3

to inhibit *M. tuberculosis* infection. Furthermore, it is known that IFN- γ stimulates human macrophages to make 1,25-dihydroxy-vitamin D3. Similarly, IL-12 has been shown to play a role in stimulating resistance to *M. tuberculosis* infection. For a review of the immunology of *M. tuberculosis* infection see Chan and Kaufmann, in *Tuberculosis: Pathogenesis, Protection and Control*, Bloom (ed.), ASM Press, Washington, DC, 1994.

Accordingly, there is a need in the art for improved diagnostic methods for detecting tuberculosis. The present invention fulfills this need and further provides other related advantages.

10

20

25

30

5

SUMMARY OF THE INVENTION

Briefly stated, the present invention provides compositions and methods for diagnosing tuberculosis. In one aspect, polypeptides are provided comprising an antigenic portion of a soluble *M. tuberculosis* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications. In one embodiment of this aspect, the soluble antigen has one of the following N-terminal sequences:

- (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu (SEQ ID NO: 115);
- (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser (SEQ ID NO: 116);
- (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg (SEQ ID NO: 117);
- (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro (SEQ ID NO: 118);
- (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val (SEQ ID NO: 119);
- (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro (SEQ ID NO: 120);
- (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Thr-Ala-Ala-Ser-Pro-Pro-Ser (SEQ ID NO: 121);

4

(h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly (SEQ ID NO: 122);

- (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Leu-Thr-Ser-Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asn-Val-Ser-Phe-Ala-Asn (SEQ ID NO: 123);
- (j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr-Asp-Ala-Ser; (SEQ ID NO: 129)
- (k) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp; (SEQ ID NO: 130) or
- (l) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID NO: 131)

wherein Xaa may be any amino acid.

In a related aspect, polypeptides are provided comprising an immunogenic portion of an *M. tuberculosis* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications, the antigen having one of the following N-terminal sequences:

- (m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID NO: 132) or
- (n) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe; (SEQ ID NO: 124)

wherein Xaa may be any amino acid.

5

10

20

25

In another embodiment, the soluble *M. tuberculosis* antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID NOS: 1, 2, 4-10, 13-25, 52, 94 and 96, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID NOS: 1, 2, 4-10, 13-25, 52, 94 and 96 or a complement thereof under moderately stringent conditions.

In a related aspect, the polypeptides comprise an antigenic portion of a

M. tuberculosis antigen, or a variant of such an antigen that differs only in conservative

5

substitutions and/or modifications, wherein the antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID NOS: 26-51, 133, 134, 158-178, 184-188, 194-196, 198, 210-220, 232, 234, 235, 237-242, 248-251, 256-271, 287, 288, 290-293 and 298-337, 5 the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID NOS: 26-51, 133, 134, 158-178, 184-188, 194-196, 198, 210-220, 232, 234, 235, 237-242, 248-251, 256-271, 287, 288, 290-293 and 298-337, or a complement thereof under moderately stringent conditions.

In related aspects, DNA sequences encoding the above polypeptides. recombinant expression vectors comprising these DNA sequences and host cells transformed or transfected with such expression vectors are also provided.

In another aspect, the present invention provides fusion proteins comprising a first and a second inventive polypeptide or, alternatively, an inventive polypeptide and a known M. tuberculosis antigen.

15

30

In further aspects of the subject invention, methods and diagnostic kits are provided for detecting tuberculosis in a patient. The methods comprise: (a) contacting a biological sample with at least one of the above polypeptides; and (b) detecting in the sample the presence of antibodies that bind to the polypeptide or polypeptides, thereby detecting M. tuberculosis infection in the biological sample. Suitable biological samples include whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid and urine. The diagnostic kits comprise one or more of the above polypeptides in combination with a detection reagent.

The present invention also provides methods for detecting M. tuberculosis infection comprising: (a) obtaining a biological sample from a patient; 25 (b) contacting the sample with at least one oligonucleotide primer in a polymerase chain reaction, the oligonucleotide primer being specific for a DNA sequence encoding the above polypeptides; and (c) detecting in the sample a DNA sequence that amplifies in the presence of the first and second oligonucleotide primers. In one embodiment, the oligonucleotide primer comprises at least about 10 contiguous nucleotides of such a DNA sequence.

In a further aspect, the present invention provides a method for detecting *M. tuberculosis* infection in a patient comprising: (a) obtaining a biological sample from the patient; (b) contacting the sample with an oligonucleotide probe specific for a DNA sequence encoding the above polypeptides; and (c) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe. In one embodiment, the oligonucleotide probe comprises at least about 15 contiguous nucleotides of such a DNA sequence.

In yet another aspect, the present invention provides antibodies, both polyclonal and monoclonal, that bind to the polypeptides described above, as well as methods for their use in the detection of *M. tuberculosis* infection.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

15

10

BRIEF DESCRIPTION OF THE DRAWINGS AND SEQUENCE IDENTIFIERS

Figure 1A and B illustrate the stimulation of proliferation and interferony production in T cells derived from a first and a second *M. tuberculosis*-immune donor, respectively, by the 14 Kd, 20 Kd and 26 Kd antigens described in Example 1.

20

Figures 2A-D illustrate the reactivity of antisera raised against secretory *M. tuberculosis* proteins, the known *M. tuberculosis* antigen 85b and the inventive antigens Tb38-1 and TbH-9, respectively, with *M. tuberculosis* lysate (lane 2), *M. tuberculosis* secretory proteins (lane 3), recombinant Tb38-1 (lane 4), recombinant TbH-9 (lane 5) and recombinant 85b (lane 5).

25

30

Figure 3A illustrates the stimulation of proliferation in a TbH-9-specific T cell clone by secretory *M. tuberculosis* proteins, recombinant TbH-9 and a control antigen, TbRall.

Figure 3B illustrates the stimulation of interferon- γ production in a TbH-9-specific T cell clone by secretory M. tuberculosis proteins, PPD and recombinant TbH-9.

10

15

20

30

Figure 4 illustrates the reactivity of two representative polypeptides with sera from *M. tuberculosis*-infected and uninfected individuals, as compared to the reactivity of bacterial lysate.

Figure 5 shows the reactivity of four representative polypeptides with sera from *M. tuberculosis*-infected and uninfected individuals, as compared to the reactivity of the 38 kD antigen.

Figure 6 shows the reactivity of recombinant 38 kD and TbRall antigens with sera from *M. tuberculosis* patients, PPD positive donors and normal donors.

Figure 7 shows the reactivity of the antigen TbRa2A with 38 kD negative sera.

Figure 8 shows the reactivity of the antigen of SEQ ID NO: 60 with sera from *M. tuberculosis* patients and normal donors.

Figure 9 illustrates the reactivity of the recombinant antigen TbH-29 (SEQ ID NO: 137) with sera from *M. tuberculosis* patients, PPD positive donors and normal donors as determined by indirect ELISA.

Figure 10 illustrates the reactivity of the recombinant antigen TbH-33 (SEQ ID NO: 140) with sera from *M. tuberculosis* patients and from normal donors, and with a pool of sera from *M. tuberculosis* patients, as determined both by direct and indirect ELISA

Figure 11 illustrates the reactivity of increasing concentrations of the recombinant antigen TbH-33 (SEQ ID NO: 140) with sera from *M. tuberculosis* patients and from normal donors as determined by ELISA.

Figures 12A-E illustrate the reactivity of the recombinant antigens MO-1, MO-2, MO-4, MO-28 and MO-29, respectively, with sera from *M. tuberculosis* patients and from normal donors as determined by ELISA.

SEQ. ID NO. 1 is the DNA sequence of TbRa1.

SEQ. ID NO. 2 is the DNA sequence of TbRa10.

SEQ. ID NO. 3 is the DNA sequence of TbRall.

	SEQ. ID NO. 4 is the DNA sequence of Toka12.
	SEQ. ID NO. 5 is the DNA sequence of TbRa13.
	SEQ. ID NO. 6 is the DNA sequence of TbRa16.
	SEQ. ID NO. 7 is the DNA sequence of TbRa17.
5	SEQ. ID NO. 8 is the DNA sequence of TbRa18.
	SEQ. ID NO. 9 is the DNA sequence of TbRa19.
	SEQ. ID NO. 10 is the DNA sequence of TbRa24.
	SEQ. ID NO. 11 is the DNA sequence of TbRa26.
	SEQ. ID NO. 12 is the DNA sequence of TbRa28.
10	SEQ. ID NO. 13 is the DNA sequence of TbRa29.
	SEQ. ID NO. 14 is the DNA sequence of TbRa2A.
	SEQ. ID NO. 15 is the DNA sequence of TbRa3.
	SEQ. ID NO. 16 is the DNA sequence of TbRa32.
	SEQ. ID NO. 17 is the DNA sequence of TbRa35.
15	SEQ. ID NO. 18 is the DNA sequence of TbRa36.
	SEQ. ID NO. 19 is the DNA sequence of TbRa4.
	SEQ. ID NO. 20 is the DNA sequence of TbRa9.
	SEQ. ID NO. 21 is the DNA sequence of TbRaB.
	SEQ. ID NO. 22 is the DNA sequence of TbRaC.
20	SEQ. ID NO. 23 is the DNA sequence of TbRaD.
	SEQ. ID NO. 24 is the DNA sequence of YYWCPG.
	SEQ. ID NO. 25 is the DNA sequence of AAMK.
	SEQ. ID NO. 26 is the DNA sequence of TbL-23.
	SEQ. ID NO. 27 is the DNA sequence of TbL-24.
25	SEQ. ID NO. 28 is the DNA sequence of TbL-25.
	SEQ. ID NO. 29 is the DNA sequence of TbL-28.
	SEQ. ID NO. 30 is the DNA sequence of TbL-29.
	SEQ. ID NO. 31 is the DNA sequence of TbH-5.
	SEQ. ID NO. 32 is the DNA sequence of TbH-8.
30	SEO ID NO 33 is the DNA sequence of ThH-9

- SEQ. ID NO. 34 is the DNA sequence of TbM-1.
- SEQ. ID NO. 35 is the DNA sequence of TbM-3.
- SEQ. ID NO. 36 is the DNA sequence of TbM-6.
- SEQ. ID NO. 37 is the DNA sequence of TbM-7.
- 5 SEQ. ID NO. 38 is the DNA sequence of TbM-9.
 - SEQ. ID NO. 39 is the DNA sequence of TbM-12.
 - SEQ. ID NO. 40 is the DNA sequence of TbM-13.
 - SEQ. ID NO. 41 is the DNA sequence of TbM-14.
 - SEQ. ID NO. 42 is the DNA sequence of TbM-15.
- SEQ. ID NO. 43 is the DNA sequence of TbH-4.
 - SEQ. ID NO. 44 is the DNA sequence of TbH-4-FWD.
 - SEQ. ID NO. 45 is the DNA sequence of TbH-12.
 - SEQ. ID NO. 46 is the DNA sequence of Tb38-1.
 - SEQ. ID NO. 47 is the DNA sequence of Tb38-4.
- SEQ. ID NO. 48 is the DNA sequence of TbL-17.
 - SEQ. ID NO. 49 is the DNA sequence of TbL-20.
 - SEQ. ID NO. 50 is the DNA sequence of TbL-21.
 - SEQ. ID NO. 51 is the DNA sequence of TbH-16.
 - SEQ. ID NO. 52 is the DNA sequence of DPEP.
- SEQ. ID NO. 53 is the deduced amino acid sequence of DPEP.
 - SEQ. ID NO. 54 is the protein sequence of DPV N-terminal Antigen.
 - SEQ. ID NO. 55 is the protein sequence of AVGS N-terminal Antigen.
 - SEQ. ID NO. 56 is the protein sequence of AAMK N-terminal Antigen.
 - SEQ. ID NO. 57 is the protein sequence of YYWC N-terminal Antigen.
- SEQ. ID NO. 58 is the protein sequence of DIGS N-terminal Antigen.
 - SEQ. ID NO. 59 is the protein sequence of AEES N-terminal Antigen.
 - SEQ. ID NO. 60 is the protein sequence of DPEP N-terminal Antigen.
 - SEQ. ID NO. 61 is the protein sequence of APKT N-terminal Antigen.
 - SEQ. ID NO. 62 is the protein sequence of DPAS N-terminal Antigen.
- SEQ. ID NO. 63 is the deduced amino acid sequence of TbM-1 Peptide.

	SEQ. ID NO. 04 is the deduced amino acid sequence of TbRa1.
	SEQ. ID NO. 65 is the deduced amino acid sequence of TbRa10.
	SEQ. ID NO. 66 is the deduced amino acid sequence of TbRa11.
	SEQ. ID NO. 67 is the deduced amino acid sequence of TbRa12.
5	SEQ. ID NO. 68 is the deduced amino acid sequence of TbRa13.
	SEQ. ID NO. 69 is the deduced amino acid sequence of TbRa16.
	SEQ. ID NO. 70 is the deduced amino acid sequence of TbRa17.
	SEQ. ID NO. 71 is the deduced amino acid sequence of TbRa18.
	SEQ. ID NO. 72 is the deduced amino acid sequence of TbRa19.
10	SEQ. ID NO. 73 is the deduced amino acid sequence of TbRa24.
	SEQ. ID NO. 74 is the deduced amino acid sequence of TbRa26.
	SEQ. ID NO. 75 is the deduced amino acid sequence of TbRa28.
	SEQ. ID NO. 76 is the deduced amino acid sequence of TbRa29.
	SEQ. ID NO. 77 is the deduced amino acid sequence of TbRa2A.
15	SEQ. ID NO. 78 is the deduced amino acid sequence of TbRa3.
	SEQ. ID NO. 79 is the deduced amino acid sequence of TbRa32.
	SEQ. ID NO. 80 is the deduced amino acid sequence of TbRa35.
	SEQ. ID NO. 31 is the deduced amino acid sequence of TbRa36.
	SEQ. ID NO. 82 is the deduced amino acid sequence of TbRa4.
20	SEQ. ID NO. 83 is the deduced amino acid sequence of TbRa9.
	SEQ. ID NO. 84 is the deduced amino acid sequence of TbRaB.
	SEQ. ID NO. 85 is the deduced amino acid sequence of TbRaC.
	SEQ. ID NO. 86 is the deduced amino acid sequence of TbRaD.
	SEQ. ID NO. 87 is the deduced amino acid sequence of YYWCPG.
25	SEQ. ID NO. 88 is the deduced amino acid sequence of TbAAMK.
	SEQ. ID NO. 89 is the deduced amino acid sequence of Tb38-1.
	SEQ. ID NO. 90 is the deduced amino acid sequence of TbH-4.
	SEQ. ID NO. 91 is the deduced amino acid sequence of TbH-8.
	SEQ. ID NO. 92 is the deduced amino acid sequence of TbH-9.
30	SEQ. ID NO. 93 is the deduced amino acid sequence of TbH-12.

- SEQ. ID NO. 94 is the DNA sequence of DPAS.
- SEQ. ID NO. 95 is the deduced amino acid sequence of DPAS.
- SEQ. ID NO. 96 is the DNA sequence of DPV.
- SEQ. ID NO. 97 is the deduced amino acid sequence of DPV.
- 5 SEQ. ID NO. 98 is the DNA sequence of ESAT-6.
 - SEQ. ID NO. 99 is the deduced amino acid sequence of ESAT-6.
 - SEQ. ID NO. 100 is the DNA sequence of TbH-8-2.
 - SEQ. ID NO. 101 is the DNA sequence of TbH-9FL.
 - SEQ. ID NO. 102 is the deduced amino acid sequence of TbH-9FL.
- SEQ. ID NO. 103 is the DNA sequence of TbH-9-1.
 - SEQ. ID NO. 104 is the deduced amino acid sequence of TbH-9-1.
 - SEQ. ID NO. 105 is the DNA sequence of TbH-9-4.
 - SEQ. ID NO. 106 is the deduced amino acid sequence of TbH-9-4.
 - SEQ. ID NO. 107 is the DNA sequence of Tb38-1F2 IN.
- SEQ. ID NO. 108 is the DNA sequence of Tb38-1F2 RP.
 - SEQ. ID NO. 109 is the deduced amino acid sequence of Tb37-FL.
 - SEQ. ID NO. 110 is the deduced amino acid sequence of Tb38-IN.
 - SEQ. ID NO. 111 is the DNA sequence of Tb38-1F3.
 - SEQ. ID NO. 112 is the deduced amino acid sequence of Tb38-1F3.
- SEQ. ID NO. 113 is the DNA sequence of Tb38-1F5.
 - SEQ. ID NO. 114 is the DNA sequence of Tb38-1F6.
 - SEQ. ID NO. 115 is the deduced N-terminal amino acid sequence of DPV.
 - SEQ. ID NO. 116 is the deduced N-terminal amino acid sequence of AVGS.
 - SEQ. ID NO. 117 is the deduced N-terminal amino acid sequence of AAMK.
- SEQ. ID NO. 118 is the deduced N-terminal amino acid sequence of YYWC.
 - SEQ. ID NO. 119 is the deduced N-terminal amino acid sequence of DIGS.
 - SEQ. ID NO. 120 is the deduced N-terminal amino acid sequence of AAES.
 - SEQ. ID NO. 121 is the deduced N-terminal amino acid sequence of DPEP.
 - SEQ. ID NO. 122 is the deduced N-terminal amino acid sequence of APKT.
- SEQ. ID NO. 123 is the deduced N-terminal amino acid sequence of DPAS.

SEQ. ID NO. 124 is the protein sequence of DPPD N-terminal Antigen.

SEQ ID NO. 125-128 are the protein sequences of four DPPD cyanogen bromide fragments.

SEQ ID NO. 129 is the N-terminal protein sequence of XDS antigen.

SEQ ID NO. 130 is the N-terminal protein sequence of AGD antigen.

SEQ ID NO. 131 is the N-terminal protein sequence of APE antigen.

SEQ ID NO. 132 is the N-terminal protein sequence of XYI antigen.

SEQ ID NO. 133 is the DNA sequence of TbH-29.

SEQ ID NO. 134 is the DNA sequence of TbH-30.

SEQ ID NO. 135 is the DNA sequence of TbH-32.

5

SEQ ID NO. 136 is the DNA sequence of TbH-33.

SEQ ID NO. 137 is the predicted amino acid sequence of TbH-29.

SEQ ID NO. 138 is the predicted amino acid sequence of TbH-30.

SEQ ID NO. 139 is the predicted amino acid sequence of TbH-32.

15 SEQ ID NO. 140 is the predicted amino acid sequence of TbH-33.

SEQ ID NO: 141-146 are PCR primers used in the preparation of a fusion protein containing TbRa3, 38 kD and Tb38-1.

SEQ ID NO: 147 is the DNA sequence of the fusion protein containing TbRa3, 38 kD and Tb38-1.

SEQ ID NO: 148 is the amino acid sequence of the fusion protein containing TbRa3, 38 kD and Tb38-1.

SEQ ID NO: 149 is the DNA sequence of the M. tuberculosis antigen 38 kD.

SEQ ID NO: 150 is the amino acid sequence of the M. tuberculosis antigen 38 kD.

SEQ ID NO: 151 is the DNA sequence of XP14.

SEQ ID NO: 152 is the DNA sequence of XP24.

SEQ ID NO: 153 is the DNA sequence of XP31.

SEQ ID NO: 154 is the 5' DNA sequence of XP32.

SEQ ID NO: 155 is the 3' DNA sequence of XP32.

SEQ ID NO: 156 is the predicted amino acid sequence of XP14.

5

30

SEQ ID NO: 157 is the predicted amino acid sequence encoded by the reverse complement of XP14.

SEQ ID NO: 158 is the DNA sequence of XP27.

SEQ ID NO: 159 is the DNA sequence of XP36.

SEQ ID NO: 160 is the 5' DNA sequence of XP4.

SEQ ID NO: 161 is the 5' DNA sequence of XP5.

SEQ ID NO: 162 is the 5' DNA sequence of XP17.

SEQ ID NO: 163 is the 5' DNA sequence of XP30.

SEQ ID NO: 164 is the 5' DNA sequence of XP2.

SEQ ID NO: 165 is the 3' DNA sequence of XP2.

SEQ ID NO: 166 is the 5' DNA sequence of XP3.

SEQ ID NO: 167 is the 3' DNA sequence of XP3.

SEQ ID NO: 168 is the 5' DNA sequence of XP6.

SEQ ID NO: 169 is the 3' DNA sequence of XP6.

SEQ ID NO: 170 is the 5' DNA sequence of XP18.

SEQ ID NO: 171 is the 3' DNA sequence of XP18.

SEQ ID NO: 172 is the 5' DNA sequence of XP19.

SEQ ID NO: 173 is the 3' DNA sequence of XP19.

SEQ ID NO: 174 is the 5' DNA sequence of XP22.

SEQ ID NO: 175 is the 3' DNA sequence of XP22.

SEQ ID NO: 176 is the 5' DNA sequence of XP25.

SEQ ID NO: 177 is the 3' DNA sequence of XP25.

SEQ ID NO: 178 is the full-length DNA sequence of TbH4-XP1.

SEQ ID NO: 179 is the predicted amino acid sequence of TbH4-XP1.

SEQ ID NO: 180 is the predicted amino acid sequence encoded by the reverse complement of TbH4-XP1.

SEQ ID NO: 181 is a first predicted amino acid sequence encoded by XP36.

SEQ ID NO: 182 is a second predicted amino acid sequence encoded by XP36.

SEQ ID NO: 183 is the predicted amino acid sequence encoded by the reverse complement of XP36.

SEQ ID NO: 184 is the DNA sequence of RDIF2.

SEQ ID NO: 185 is the DNA sequence of RDIF5.

SEQ ID NO: 186 is the DNA sequence of RDIF8.

SEQ ID NO: 187 is the DNA sequence of RDIF10.

5 SEQ ID NO: 188 is the DNA sequence of RDIF11.

SEQ ID NO: 189 is the predicted amino acid sequence of RDIF2.

SEQ ID NO: 190 is the predicted amino acid sequence of RDIF5.

SEQ ID NO: 191 is the predicted amino acid sequence of RDIF8.

SEQ ID NO: 192 is the predicted amino acid sequence of RDIF10.

SEQ ID NO: 193 is the predicted amino acid sequence of RDIF11.

SEQ ID NO: 194 is the 5' DNA sequence of RDIF12.

SEQ ID NO: 195 is the 3' DNA sequence of RDIF12.

SEQ ID NO: 196 is the DNA sequence of RDIF7.

SEQ ID NO: 197 is the predicted amino acid sequence of RDIF7.

SEQ ID NO: 198 is the DNA sequence of DIF2-1.

SEQ ID NO: 199 is the predicted amino acid sequence of DIF2-1.

SEQ ID NO: 200-207 are PCR primers used in the preparation of a fusion protein containing TbRa3. 38 kD, Tb38-1 and DPEP (hereinafter referred to as TbF-2).

SEQ ID NO: 208 is the DNA sequence of the fusion protein TbF-2.

SEQ ID NO: 209 is the amino acid sequence of the fusion protein TbF-2.

SEQ ID NO: 210 is the 5' DNA sequence of MO-1.

SEQ ID NO: 211 is the 5' DNA sequence for MO-2

SEQ ID NO: 212 is the 5' DNA sequence for MO-4.

SEQ ID NO: 213 is the 5' DNA sequence for MO-8.

SEQ ID NO: 214 is the 5' DNA sequence for MO-9.

SEQ ID NO: 215 is the 5' DNA sequence for MO-26.

SEQ ID NO: 216 is the 5' DNA sequence for MO-28.

SEQ ID NO: 217 is the 5' DNA sequence for MO-29.

SEQ ID NO: 218 is the 5' DNA sequence for MO-30.

SEQ ID NO: 219 is the 5' DNA sequence for MO-34. SEQ ID NO: 220 is the 5' DNA sequence for MO-35. SEQ ID NO: 221 is the predicted amino acid sequence for MO-1. SEQ ID NO: 222 is the predicted amino acid sequence for MO-2. SEQ ID NO: 223 is the predicted amino acid sequence for MO-4. 5 SEQ ID NO: 224 is the predicted amino acid sequence for MO-8. SEO ID NO: 225 is the predicted amino acid sequence for MO-9. SEQ ID NO: 226 is the predicted amino acid sequence for MO-26. SEQ ID NO: 227 is the predicted amino acid sequence for MO-28. SEO ID NO: 228 is the predicted amino acid sequence for MO-29. 10 SEQ ID NO: 229 is the predicted amino acid sequence for MO-30. SEQ ID NO: 230 is the predicted amino acid sequence for MO-34. SEQ ID NO: 231 is the predicted amino acid sequence for MO-35. SEQ ID NO: 232 is the determined DNA sequence for MO-10. SEQ ID NO: 233 is the predicted amino acid sequence for MO-10. 15 SEQ ID NO: 234 is the 3' DNA sequence for MO-27. SEQ ID NO: 235 is the full-length DNA sequence for DPPD. SEO ID NO: 236 is the predicted full-length amino acid sequence for DPPD SEQ ID NO: 237 is the determined 5' cDNA sequence for LSER-10 SEQ ID NO: 238 is the determined 5' cDNA sequence for LSER-11 20 SEQ ID NO: 239 is the determined 5' cDNA sequence for LSER-12 SEQ ID NO: 240 is the determined 5' cDNA sequence for LSER-13 SEQ ID NO: 241 is the determined 5' cDNA sequence for LSER-16 SEQ ID NO: 242 is the determined 5' cDNA sequence for LSER-25 25 SEQ ID NO: 243 is the predicted amino acid sequence for LSER-10 SEO ID NO: 244 is the predicted amino acid sequence for LSER-12 SEQ ID NO: 245 is the predicted amino acid sequence for LSER-13 SEO ID NO: 246 is the predicted amino acid sequence for LSER-16

SEQ ID NO: 247 is the predicted amino acid sequence for LSER-25

SEQ ID NO: 248 is the determined cDNA sequence for LSER-18

30

	SEQ ID NO: 249 is the determined cDNA sequence for LSER-23
	SEQ ID NO: 250 is the determined cDNA sequence for LSER-24
	SEQ ID NO: 251 is the determined cDNA sequence for LSER-27
	SEQ ID NO: 252 is the predicted amino acid sequence for LSER-18
5	SEQ ID NO: 253 is the predicted amino acid sequence for LSER-23
	SEQ ID NO: 254 is the predicted amino acid sequence for LSER-24
	SEQ ID NO: 255 is the predicted amino acid sequence for LSER-27
	SEQ ID NO: 256 is the determined 5' cDNA sequence for LSER-1
	SEQ ID NO: 257 is the determined 5' cDNA sequence for LSER-3
10	SEQ ID NO: 258 is the determined 5' cDNA sequence for LSER-4
	SEQ ID NO: 259 is the determined 5' cDNA sequence for LSER-5
	SEQ ID NO: 260 is the determined 5' cDNA sequence for LSER-6
	SEQ ID NO: 261 is the determined 5' cDNA sequence for LSER-8
	SEQ ID NO: 262 is the determined 5' cDNA sequence for LSER-14
15	SEQ ID NO: 263 is the determined 5' cDNA sequence for LSER-15
	SEQ ID NO: 264 is the determined 5' cDNA sequence for LSER-17
	SEQ ID NO: 265 is the determined 5' cDNA sequence for LSER-19
	SEQ ID NO: 266 is the determined 5' cDNA sequence for LSER-20
	SEQ ID NO: 267 is the determined 5° cDNA sequence for LSER-22
20	SEQ ID NO: 268 is the determined 5" cDNA sequence for LSER-26
	SEQ ID NO: 269 is the determined 5' cDNA sequence for LSER-28
	SEQ ID NO: 270 is the determined 5' cDNA sequence for LSER-29
	SEQ ID NO: 271 is the determined 5' cDNA sequence for LSER-30
	SEQ ID NO: 272 is the predicted amino acid sequence for LSER-1
25	SEQ ID NO: 273 is the predicted amino acid sequence for LSER-3
	SEQ ID NO: 274 is the predicted amino acid sequence for LSER-5
	SEQ ID NO: 275 is the predicted amino acid sequence for LSER-6
	SEQ ID NO: 276 is the predicted amino acid sequence for LSER-8
	SEQ ID NO: 277 is the predicted amino acid sequence for LSER-14
30	SEQ ID NO: 278 is the predicted amino acid sequence for LSER-13

	SEQ ID NO: 2/9 is the predicted amino acid sequence for LSER-1/
	SEQ ID NO: 280 is the predicted amino acid sequence for LSER-19
	SEQ ID NO: 281 is the predicted amino acid sequence for LSER-20
	SEQ ID NO: 282 is the predicted amino acid sequence for LSER-22
5	SEQ ID NO: 283 is the predicted amino acid sequence for LSER-26
	SEQ ID NO: 284 is the predicted amino acid sequence for LSER-28
	SEQ ID NO: 285 is the predicted amino acid sequence for LSER-29
	SEQ ID NO: 286 is the predicted amino acid sequence for LSER-30
	SEQ ID NO: 287 is the determined cDNA sequence for LSER-9
10	SEQ ID NO: 288 is the determined cDNA sequence for the reverse complement
	of LSER-6
	SEQ ID NO: 289 is the predicted amino acid sequence for the reverse
	complement of LSER-6
	SEQ ID NO: 290 is the determined 5' cDNA sequence for MO-12
15	SEQ ID NO: 291 is the determined 5' cDNA sequence for MO-13
	SEQ ID NO: 292 is the determined 5' cDNA sequence for MO-19
	SEQ ID NO: 293 is the determined 5' cDNA sequence for MO-39
	SEQ ID NO: 294 is the predicted amino acid sequence for MO-12
	SEQ ID NO: 295 is the predicted amino acid sequence for MO-13
20	SEQ ID NO: 296 is the predicted amino acid sequence for MO-19
	SEQ ID NO: 297 is the predicted amino acid sequence for MO-39
	SEQ ID NO: 298 is the determined 5' cDNA sequence for Erdsn-1
	SEQ ID NO: 299 is the determined 5° cDNA sequence for Erdsn-2
	SEQ ID NO: 300 is the determined 5' cDNA sequence for Erdsn-4
25	SEQ ID NO: 301 is the determined 5' cDNA sequence for Erdsn-5
	SEQ ID NO: 302 is the determined 5' cDNA sequence for Erdsn-6
	SEQ ID NO: 303 is the determined 5' cDNA sequence for Erdsn-7
	SEQ ID NO: 304 is the determined 5' cDNA sequence for Erdsn-8
	SEQ ID NO: 305 is the determined 5' cDNA sequence for Erdsn-9
30	SEQ ID NO: 306 is the determined 5' cDNA sequence for Erdsn-10

	SEQ ID NO: 30/ is the determined 5' cDNA sequence for Erdsn-12
	SEQ ID NO: 308 is the determined 5' cDNA sequence for Erdsn-13
	SEQ ID NO: 309 is the determined 5' cDNA sequence for Erdsn-14
	SEQ ID NO: 310 is the determined 5' cDNA sequence for Erdsn-15
5	SEQ ID NO: 311 is the determined 5' cDNA sequence for Erdsn-16
	SEQ ID NO: 312 is the determined 5' cDNA sequence for Erdsn-17
	SEQ ID NO: 313 is the determined 5' cDNA sequence for Erdsn-18
	SEQ ID NO: 314 is the determined 5' cDNA sequence for Erdsn-21
	SEQ ID NO: 315 is the determined 5' cDNA sequence for Erdsn-22
10	SEQ ID NO: 316 is the determined 5' cDNA sequence for Erdsn-23
	SEQ ID NO: 317 is the determined 5' cDNA sequence for Erdsn-25
	SEQ ID NO: 318 is the determined 3' cDNA sequence for Erdsn-1
	SEQ ID NO: 319 is the determined 3' cDNA sequence for Erdsn-2
	SEQ ID NO: 320 is the determined 3' cDNA sequence for Erdsn-4
15	SEQ ID NO: 321 is the determined 3' cDNA sequence for Erdsn-5
	SEQ ID NO: 322 is the determined 3' cDNA sequence for Erdsn-7 $$
	SEQ ID NO: 323 is the determined 3' cDNA sequence for Erdsn-8
	SEQ ID NO: 324 is the determined 3' cDNA sequence for Erdsn-9
	SEQ ID NO: 325 is the determined 3' cDNA sequence for Erdsn-10
20	SEQ ID NO: 326 is the determined 3' cDNA sequence for Erdsn-12
	SEQ ID NO: 327 is the determined 3' cDNA sequence for Erdsn-13
	SEQ ID NO: 328 is the determined 3' cDNA sequence for Erdsn-14
	SEQ ID NO: 329 is the determined 3' cDNA sequence for Erdsn-15
	SEQ ID NO: 330 is the determined 3' cDNA sequence for Erdsn-16
25	SEQ ID NO: 331 is the determined 3' cDNA sequence for Erdsn-17
	SEQ ID NO: 332 is the determined 3' cDNA sequence for Erdsn-18
	SEQ ID NO: 333 is the determined 3' cDNA sequence for Erdsn-21
	SEQ ID NO: 334 is the determined 3' cDNA sequence for Erdsn-22
	SEQ ID NO: 335 is the determined 3' cDNA sequence for Erdsn-23
30	SEQ ID NO: 336 is the determined 3' cDNA sequence for Erdsn-25

SEQ ID NO: 337 is the determined cDNA sequence for Erdsn-24

SEQ ID NO: 338 is the determined amino acid sequence for a M. tuberculosis

85b precursor homolog

5

15

20

30

SEQ ID NO: 339 is the determined amino acid sequence for spot 1

SEQ ID NO: 340 is a determined amino acid sequence for spot 2

SEQ ID NO: 341 is a determined amino acid sequence for spot 2

SEQ ID NO: 342 is the determined amino acid seq for spot 4

SEQ ID NO: 343 is the sequence of primer PDM-157

SEQ ID NO: 344 is the sequence of primer PDM-160

SEQ ID NO: 345 is the DNA sequence of the fusion protein TbF-6

SEQ ID NO: 346 is the amino acid sequence of fusion protein TbF-6

SEQ ID NO: 347 is the sequence of primer PDM-176

SEQ ID NO: 348 is the sequence of primer PDM-175

SEQ ID NO: 349 is the DNA sequence of the fusion protein TbF-8

SEQ ID NO: 350 is the amino acid sequence of the fusion protein TbF-8

DETAILED DESCRIPTION OF THE INVENTION

As noted above, the present invention is generally directed to compositions and methods for diagnosing tuberculosis. The compositions of the subject invention include polypeptides that comprise at least one antigenic portion of a *M. tuberculosis* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications. Polypeptides within the scope of the present invention include, but are not limited to, soluble *M. tuberculosis* antigens. A "soluble *M. tuberculosis* antigen" is a protein of *M. tuberculosis* origin that is present in *M. tuberculosis* culture filtrate. As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full length proteins (*i.e.*, antigens), wherein the amino acid residues are linked by covalent peptide bonds. Thus, a polypeptide comprising an antigenic portion of one of the above antigens may consist entirely of the antigenic portion, or may contain additional sequences. The additional sequences may

20

be derived from the native *M. tuberculosis* antigen or may be heterologous, and such sequences may (but need not) be antigenic.

An "antigenic portion" of an antigen (which may or may not be soluble) is a portion that is capable of reacting with sera obtained from an *M. tuberculosis*-infected individual (*i.e.*, generates an absorbance reading with sera from infected individuals that is at least three standard deviations above the absorbance obtained with sera from uninfected individuals, in a representative ELISA assay described herein). An "*M. tuberculosis*-infected individual" is a human who has been infected with *M. tuberculosis* (*e.g.*, has an intradermal skin test response to PPD that is at least 0.5 cm in diameter). Infected individuals may display symptoms of tuberculosis or may be free of disease symptoms. Polypeptides comprising at least an antigenic portion of one or more *M. tuberculosis* antigens as described herein may generally be used, alone or in combination, to detect tuberculosis in a patient.

The compositions and methods of the present invention also encompass variants of the above polypeptides and DNA molecules. A polypeptide "variant," as used herein, is a polypeptide that differs from the recited polypeptide only in conservative substitutions and/or modifications, such that the therapeutic antigenic and/or immunogenic properties of the polypeptide are retained. Polypeptide variants preferably exhibit at least about 70%, more preferably at least about 90% and most preferably at least about 95% identity to the identified polypeptides. For polypeptides with immunoreactive properties, variants may, alternatively, be identified by modifying the amino acid sequence of one of the above polypeptides, and evaluating the immunoreactivity of the modified polypeptide. For polypeptides useful for the generation of diagnostic binding agents, a variant may be identified by evaluating a modified polypeptide for the ability to generate antibodies that detect the presence or absence of tuberculosis. Such modified sequences may be prepared and tested using, for example, the representative procedures described herein.

As used herein, a "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and

21

hydropathic nature of the polypeptide to be substantially unchanged. In general, the following groups of amino acids represent conservative changes: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.

Variants may also, or alternatively, contain other modifications, including the deletion or addition of amino acids that have minimal influence on the antigenic properties, secondary structure and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

A nucleotide "variant" is a sequence that differs from the recited nucleotide sequence in having one or more nucleotide deletions, substitutions or additions. Such modifications may be readily introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis as taught, for example, by Adelman et al. (*DNA*, 2:183, 1983). Nucleotide variants may be naturally occurring allelic variants, or non-naturally occurring variants. Variant nucleotide sequences preferably exhibit at least about 70%, more preferably at least about 80% and most preferably at least about 90% identity to the recited sequence. Such variant nucleotide sequences will generally hybridize to the recite nucleotide sequence under stringent conditions. As used herein, "stringent conditions" refers to prewashing in a solution of 6X SSC, 0.2% SDS; hybridizing at 65 °C, 6X SSC, 0.2% SDS overnight; followed by two washes of 30 minutes each in 1X SSC, 0.1% SDS at 65 °C and two washes of 30 minutes each in 0.2X SSC, 0.1% SDS at 65 °C.

In a related aspect, combination, or fusion, polypeptides are disclosed. A "fusion polypeptide" is a polypeptide comprising at least one of the above antigenic portions and one or more additional antigenic *M. tuberculosis* sequences, which are joined via a peptide linkage into a single amino acid chain. The sequences may be

joined directly (i.e., with no intervening amino acids) or may be joined by way of a linker sequence (e.g., Gly-Cys-Gly) that does not significantly diminish the antigenic properties of the component polypeptides.

In general, *M. tuberculosis* antigens, and DNA sequences encoding such antigens, may be prepared using any of a variety of procedures. For example, soluble antigens may be isolated from *M. tuberculosis* culture filtrate by procedures known to those of ordinary skill in the art, including anion-exchange and reverse phase chromatography. Purified antigens may then be evaluated for a desired property, such as the ability to react with sera obtained from an *M. tuberculosis*-infected individual. Such screens may be performed using the representative methods described herein. Antigens may then be partially sequenced using, for example, traditional Edman chemistry. *See* Edman and Berg, *Eur. J. Biochem.* 80:116-132, 1967.

Antigens may also be produced recombinantly using a DNA sequence that encodes the antigen, which has been inserted into an expression vector and expressed in an appropriate host. DNA molecules encoding soluble antigens may be isolated by screening an appropriate *M. tuberculosis* expression library with anti-sera (e.g., rabbit) raised specifically against soluble *M. tuberculosis* antigens. DNA sequences encoding antigens that may or may not be soluble may be identified by screening an appropriate *M. tuberculosis* genomic or cDNA expression library with sera obtained from patients infected with *M. tuberculosis*. Such screens may generally be performed using techniques well known in the art, such as those described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989.

DNA sequences encoding soluble antigens may also be obtained by screening an appropriate *M. tuberculosis* cDNA or genomic DNA library for DNA sequences that hybridize to degenerate oligonucleotides derived from partial amino acid sequences of isolated soluble antigens. Degenerate oligonucleotide sequences for use in such a screen may be designed and synthesized, and the screen may be performed, as described (for example) in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY (and references cited

23

therein). Polymerase chain reaction (PCR) may also be employed, using the above oligonucleotides in methods well known in the art, to isolate a nucleic acid probe from a cDNA or genomic library. The library screen may then be performed using the isolated probe.

5

Regardless of the method of preparation, the antigens described herein are "antigenic." More specifically, the antigens have the ability to react with sera obtained from an *M. tuberculosis*-infected individual. Reactivity may be evaluated using, for example, the representative ELISA assays described herein, where an absorbance reading with sera from infected individuals that is at least three standard deviations above the absorbance obtained with sera from uninfected individuals is considered positive.

Antigenic portions of *M. tuberculosis* antigens may be prepared and identified using well known techniques, such as those summarized in Paul, *Fundamental Immunology*, 3d ed., Raven Press, 1993, pp. 243-247 and references cited therein. Such techniques include screening polypeptide portions of the native antigen for antigenic properties. The representative ELISAs described herein may generally be employed in these screens. An antigenic portion of a polypeptide is a portion that, within such representative assays, generates a signal in such assays that is substantially similar to that generated by the full length antigen. In other words, an antigenic portion of a *M. tuberculosis* antigen generates at least about 20%, and preferably about 100%, of the signal induced by the full length antigen in a model ELISA as described herein.

Portions and other variants of *M. tuberculosis* antigens may be generated by synthetic or recombinant means. Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. *See* Merrifield, *J. Am. Chem. Soc.* 85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Applied BioSystems, Inc., Foster City, CA, and may be operated

WO 99/42118

5

10

20

24

PCT/US99/03265

according to the manufacturer's instructions. Variants of a native antigen may generally be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis. Sections of the DNA sequence may also be removed using standard techniques to permit preparation of truncated polypeptides.

Recombinant polypeptides containing portions and/or variants of a native antigen may be readily prepared from a DNA sequence encoding the polypeptide using a variety of techniques well known to those of ordinary skill in the art. For example, supernatants from suitable host/vector systems which secrete recombinant protein into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant protein.

Any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides as described herein. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian cell line, such as COS or CHO. The DNA sequences expressed in this manner may encode naturally occurring antigens, portions of naturally occurring antigens, or other variants thereof.

In general, regardless of the method of preparation, the polypeptides disclosed herein are prepared in substantially pure form. Preferably, the polypeptides are at least about 80% pure, more preferably at least about 90% pure and most preferably at least about 99% pure. For use in the methods described herein, however, such substantially pure polypeptides may be combined.

In certain specific embodiments, the subject invention discloses polypeptides comprising at least an antigenic portion of a soluble *M. tuberculosis*

5

10

15

20

25

antigen (or a variant of such an antigen), where the antigen has one of the following N-terminal sequences:

- (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu (SEQ ID NO: 115);
- (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser (SEQ ID NO: 116);
- (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg (SEQ ID NO: 117);
- (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro (SEQ ID NO: 118);
- (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val (SEQ ID NO: 119);
- (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro (SEQ ID NO: 120);
- (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Thr-Ala-Ala-Ser-Pro-Pro-Ser (SEQ ID NO: 121);
 - (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly (SEQ ID NO: 122);
 - (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Gln-Thr-Ser-Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asn-Val-Ser-Phe-Ala-Asn (SEQ ID NO: 123);
 - (j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr-Asp-Ala-Ser; (SEQ ID NO: 129)
 - (k) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp; (SEQ ID NO: 130) or
 - (1) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID NO: 131)

wherein Xaa may be any amino acid, preferably a cysteine residue. A DNA sequence encoding the antigen identified as (g) above is provided in SEQ ID NO: 52, the deduced amino acid sequence of which is provided in SEQ ID NO: 53. A DNA sequence

encoding the antigen identified as (a) above is provided in SEQ ID NO: 96; its deduced amino acid sequence is provided in SEQ ID NO: 97. A DNA sequence corresponding to antigen (d) above is provided in SEQ ID NO: 24, a DNA sequence corresponding to antigen (c) is provided in SEQ ID NO: 25 and a DNA sequence corresponding to antigen (I) is disclosed in SEQ ID NO: 94 and its deduced amino acid sequence is provided in SEQ ID NO: 95.

In a further specific embodiment, the subject invention discloses polypeptides comprising at least an immunogenic portion of an *M. tuberculosis* antigen having one of the following N-terminal sequences, or a variant thereof that differs only in conservative substitutions and/or modifications:

- (m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID NO: 132) or
- (n) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe; (SEQ ID NO: 124)

wherein Xaa may be any amino acid, preferably a cysteine residue. A DNA sequence encoding the antigen of (n) above is provided in SEQ ID NO: 235, with the corresponding predicted full-length amino acid sequence being provided in SEQ ID NO: 236.

In other specific embodiments, the subject invention discloses polypeptides comprising at least an antigenic portion of a soluble *M. tuberculosis* antigen (or a variant of such an antigen) that comprises one or more of the amino acid sequences encoded by (a) the DNA sequences of SEQ ID NOS: 1, 2, +10, 13-25, 52, 94 and 96. (b) the complements of such DNA sequences, or (c) DNA sequences substantially homologous to a sequence in (a) or (b).

20

25

In further specific embodiments, the subject invention discloses polypeptides comprising at least an antigenic portion of a *M. tuberculosis* antigen (or a variant of such an antigen), which may or may not be soluble, that comprises one or more of the amino acid sequences encoded by (a) the DNA sequences of SEQ ID NOS: 26-51, 133, 134, 158-178, 184-188, 194-196, 198, 210-220, 232, 234, 235, 237-

27

242, 248-251, 256-271, 287, 288, 290-293 and 298-337, (b) the complements of such DNA sequences or (c) DNA sequences substantially homologous to a sequence in (a) or (b).

In a related aspect, the present invention provides fusion proteins comprising a first and a second inventive polypeptide or, alternatively, a polypeptide of the present invention and a known *M. tuberculosis* antigen, such as the 38 kD antigen described in Andersen and Hansen, *Infect. Immun.* 57:2481-2488, 1989, (Genbank Accession No. M30046) or ESAT-6 (SEQ ID NOS: 98 and 99), together with variants of such fusion proteins. The fusion proteins of the present invention may also include a linker peptide between the first and second polypeptides.

10

25

A DNA sequence encoding a fusion protein of the present invention is constructed using known recombinant DNA techniques to assemble separate DNA sequences encoding the first and second polypeptides into an appropriate expression vector. The 3' end of a DNA sequence encoding the first polypeptide is ligated, with or without a peptide linker, to the 5' end of a DNA sequence encoding the second polypeptide so that the reading frames of the sequences are in phase to permit mRNA translation of the two DNA sequences into a single fusion protein that retains the biological activity of both the first and the second polypeptides.

A peptide linker sequence may be employed to separate the first and the second polypeptides by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., Gene 40:39-46, 1985; Murphy et al., Proc.

28

Natl. Acad. Sci. USA 83:8258-8562, 1986; U.S. Patent No. 4,935,233 and U.S. Patent No. 4,751,180. The linker sequence may be from 1 to about 50 amino acids in length. Peptide linker sequences are not required when the first and second polypeptides have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric hindrance.

5

20

In another aspect, the present invention provides methods for using the polypeptides described above to diagnose tuberculosis. In this aspect, methods are provided for detecting *M. tuberculosis* infection in a biological sample, using one or more of the above polypeptides, alone or in combination. In embodiments in which multiple polypeptides are employed, polypeptides other than those specifically described herein, such as the 38 kD antigen described in Andersen and Hansen, *Inject. Immun.* 57:2481-2488, 1989, may be included. As used herein, a "biological sample" is any antibody-containing sample obtained from a patient. Preferably, the sample is whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid or urine. More preferably, the sample is a blood, serum or plasma sample obtained from a patient or a blood supply. The polypeptide(s) are used in an assay, as described below, to determine the presence or absence of antibodies to the polypeptide(s) in the sample, relative to a predetermined cut-off value. The presence of such antibodies indicates previous sensitization to mycobacterial antigens which may be indicative of tuberculosis.

In embodiments in which more than one polypeptide is employed, the polypeptides used are preferably complementary (i.e., one component polypeptide will tend to detect infection in samples where the infection would not be detected by another component polypeptide). Complementary polypeptides may generally be identified by using each polypeptide individually to evaluate serum samples obtained from a series of patients known to be infected with *M. tuberculosis*. After determining which samples test positive (as described below) with each polypeptide, combinations of two or more polypeptides may be formulated that are capable of detecting infection in most, or all, of the samples tested. Such polypeptides are complementary. For example, approximately 25-30% of sera from tuberculosis-infected individuals are negative for antibodies to any single protein, such as the 38 kD antigen mentioned above. Complementary

29

polypeptides may, therefore, be used in combination with the 38 kD antigen to improve sensitivity of a diagnostic test.

There are a variety of assay formats known to those of ordinary skill in the art for using one or more polypeptides to detect antibodies in a sample. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988, which is incorporated herein by reference. In a preferred embodiment, the assay involves the use of polypeptide immobilized on a solid support to bind to and remove the antibody from the sample. The bound antibody may then be detected using a detection reagent that contains a reporter group. Suitable detection reagents include antibodies that bind to the antibody/polypeptide complex and free polypeptide labeled with a reporter group (e.g., in a semi-competitive assay). Alternatively, a competitive assay may be utilized, in which an antibody that binds to the polypeptide is labeled with a reporter group and allowed to bind to the immobilized antigen after incubation of the antigen with the sample. The extent to which components of the sample inhibit the binding of the labeled antibody to the polypeptide is indicative of the reactivity of the sample with the immobilized polypeptide.

The solid support may be any solid material known to those of ordinary skill in the art to which the antigen may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681.

The polypeptides may be bound to the solid support using a variety of techniques known to those of ordinary skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "bound" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the antigen and functional groups on the support or may be a linkage by way of a cross-linking agent). Binding by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may

30

be achieved by contacting the polypeptide, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of polypeptide ranging from about 10 ng to about 1 µg, and preferably about 100 ng, is sufficient to bind an adequate amount of antigen.

Covalent attachment of polypeptide to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the polypeptide. For example, the polypeptide may be bound to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the polypeptide (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

In certain embodiments, the assay is an enzyme linked immunosorbent assay (ELISA). This assay may be performed by first contacting a polypeptide antigen that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that antibodies to the polypeptide within the sample are allowed to bind to the immobilized polypeptide. Unbound sample is then removed from the immobilized polypeptide and a detection reagent capable of binding to the immobilized antibody-polypeptide complex is added. The amount of detection reagent that remains bound to the solid support is then determined using a method appropriate for the specific detection reagent.

More specifically, once the polypeptide is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20^{TM} (Sigma Chemical Co., St. Louis, MO) may be employed. The immobilized polypeptide is then incubated with the sample, and antibody is allowed to bind to the antigen. The sample may be diluted with a suitable diluent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (i.e., incubation time) is that period of time that is sufficient to

31

detect the presence of antibody within a *M. tuberculosis*-infected sample. Preferably, the contact time is sufficient to achieve a level of binding that is at least 95% of that achieved at equilibrium between bound and unbound antibody. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20TM. Detection reagent may then be added to the solid support. An appropriate detection reagent is any compound that binds to the immobilized antibody-polypeptide complex and that can be detected by any of a variety of means known to those in the art. Preferably, the detection reagent contains a binding agent (such as, for example, Protein A, Protein G, immunoglobulin, lectin or free antigen) conjugated to a reporter group. Preferred reporter groups include enzymes (such as horseradish peroxidase), substrates, cofactors, inhibitors, dyes, radionuclides, luminescent groups, fluorescent groups, biotin and colliodal particles, such as colloidal gold and selenium. The conjugation of binding agent to reporter group may be achieved using standard methods known to those of ordinary skill in the art. Common binding agents may also be purchased conjugated to a variety of reporter groups from many commercial sources (e.g., Zymed Laboratories, San Francisco, CA, and Pierce, Rockford, IL).

15

20

30

The detection reagent is then incubated with the immobilized antibodypolypeptide complex for an amount of time sufficient to detect the bound antibody. An
appropriate amount of time may generally be determined from the manufacturer's
instructions or by assaying the level of binding that occurs over a period of time.
Unbound detection reagent is then removed and bound detection reagent is detected
using the reporter group. The method employed for detecting the reporter group
depends upon the nature of the reporter group. For radioactive groups, scintillation
counting or autoradiographic methods are generally appropriate. Spectroscopic
methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin
may be detected using avidin, coupled to a different reporter group (commonly a

32

radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

To determine the presence or absence of anti-M. tuberculosis antibodies in the sample, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cutoff value. In one preferred embodiment, the cut-off value is the average mean signal obtained when the immobilized antigen is incubated with samples from an uninfected patient. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for tuberculosis. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve. according to the method of Sackett et al., Clinical Epidemiology: A Basic Science for Clinical Medicine, Little Brown and Co., 1985, pp. 106-107. Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (i.e., sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (i.e., the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for tuberculosis.

In a related embodiment, the assay is performed in a rapid flow-through or strip test format, wherein the antigen is immobilized on a membrane, such as nitrocellulose. In the flow-through test, antibodies within the sample bind to the immobilized polypeptide as the sample passes through the membrane. A detection reagent (e.g., protein A-colloidal gold) then binds to the antibody-polypeptide complex as the solution containing the detection reagent flows through the membrane. The detection of bound detection reagent may then be performed as described above. In the

strip test format, one end of the membrane to which polypeptide is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing detection reagent and to the area of immobilized polypeptide. Concentration of detection reagent at the polypeptide indicates the presence of anti
M. tuberculosis antibodies in the sample. Typically, the concentration of detection reagent at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of polypeptide immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of antibodies that would be sufficient to generate a positive signal in an ELISA, as discussed above. Preferably, the amount of polypeptide immobilized on the membrane ranges from about 25 ng to about 1 µg, and more preferably from about 50 ng to about 500 ng. Such tests can typically be performed with a very small amount (e.g., one drop) of patient serum or blood.

Of course, numerous other assay protocols exist that are suitable for use with the polypeptides of the present invention. The above descriptions are intended to be exemplary only.

In yet another aspect, the present invention provides antibodies to the inventive polypeptides. Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See. e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In one such technique, an immunogen comprising the antigenic polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep and goats). In this step, the polypeptides of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.

34

Monoclonal antibodies specific for the antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, Eur. J. Immunol. 6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (i.e., reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

Antibodies may be used in diagnostic tests to detect the presence of *M. tuberculosis* antigens using assays similar to those detailed above and other techniques well known to those of skill in the art, thereby providing a method for detecting *M. tuberculosis* infection in a patient.

25

Diagnostic reagents of the present invention may also comprise DNA sequences encoding one or more of the above polypeptides, or one or more portions

thereof. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify *M. tuberculosis*-specific cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for a DNA molecule encoding a polypeptide of the present invention. The presence of the amplified cDNA is then detected using techniques well known in the art, such as gel electrophoresis. Similarly, oligonucleotide probes specific for a DNA molecule encoding a polypeptide of the present invention may be used in a hybridization assay to detect the presence of an inventive polypeptide in a biological sample.

10

As used herein, the term "oligonucleotide primer/probe specific for a DNA molecule" means an oligonucleotide sequence that has at least about 80%, preferably at least about 90% and more preferably at least about 95%, identity to the DNA molecule in question. Oligonucleotide primers and/or probes which may be usefully employed in the inventive diagnostic methods preferably have at least about 10-40 nucleotides. In a preferred embodiment, the oligonucleotide primers comprise at least about 10 contiguous nucleotides of a DNA molecule encoding one of the polypeptides disclosed herein. Preferably, oligonucleotide probes for use in the inventive diagnostic methods comprise at least about 15 contiguous oligonucleotides of a DNA molecule encoding one of the polypeptides disclosed herein. Techniques for both PCR based assays and hybridization assays are well known in the art (see, for example, Mullis et al. Ibid; Ehrlich, Ibid). Primers or probes may thus be used to detect M. tuberculosis-specific sequences in biological samples. DNA probes or primers comprising oligonucleotide sequences described above may be used alone, in combination with each other, or with previously identified sequences, such as the 38 kD antigen discussed above.

The following Examples are offered by way of illustration and not by way of limitation.

36

EXAMPLES

EXAMPLE 1

PURIFICATION AND CHARACTERIZATION OF POLYPEPTIDES

5 FROM M. TUBERCULOSIS CULTURE FILTRATE

10

15

20

25

This example illustrates the preparation of *M. tuberculosis* soluble polypeptides from culture filtrate. Unless otherwise noted, all percentages in the following example are weight per volume.

M. tuberculosis (either H37Ra, ATCC No. 25177, or H37Rv, ATCC No. 25618) was cultured in sterile GAS media at 37°C for fourteen days. The media was then vacuum filtered (leaving the bulk of the cells) through a 0.45 μ filter into a sterile 2.5 L bottle. The media was then filtered through a 0.2 μ filter into a sterile 4 L bottle. NaN₃ was then added to the culture filtrate to a concentration of 0.04%. The bottles were then placed in a 4°C cold room.

The culture filtrate was concentrated by placing the filtrate in a 12 L reservoir that had been autoclaved and feeding the filtrate into a 400 ml Amicon stir cell which had been rinsed with ethanol and contained a 10,000 kDa MWCO membrane. The pressure was maintained at 60 psi using nitrogen gas. This procedure reduced the 12 L volume to approximately 50 ml.

The culture filtrate was then dialyzed into 0.1% ammonium bicarbonate using a 8,000 kDa MWCO cellulose ester membrane, with two changes of ammonium bicarbonate solution. Protein concentration was then determined by a commercially available BCA assay (Pierce, Rockford, IL).

The dialyzed culture filtrate was then lyophilized, and the polypeptides resuspended in distilled water. The polypeptides were then dialyzed against 0.01 mM 1.3 bis[tris(hydroxymethyl)-methylamino]propane, pH 7.5 (Bis-Tris propane buffer), the initial conditions for anion exchange chromatography. Fractionation was performed using gel profusion chromatography on a POROS 146 II Q/M anion exchange column 4.6 mm x 100 mm (Perseptive BioSystems, Framingham. MA) equilibrated in 0.01 mM

Bis-Tris propane buffer pH 7.5. Polypeptides were eluted with a linear 0-0.5 M NaCl gradient in the above buffer system. The column eluent was monitored at a wavelength of 220 nm.

The pools of polypeptides eluting from the ion exchange column were dialyzed against distilled water and lyophilized. The resulting material was dissolved in 0.1% trifluoroacetic acid (TFA) pH 1.9 in water, and the polypeptides were purified on a Delta-Pak C18 column (Waters, Milford, MA) 300 Angstrom pore size, 5 micron particle size (3.9 x 150 mm). The polypeptides were eluted from the column with a linear gradient from 0-60% dilution buffer (0.1% TFA in acetonitrile). The flow rate was 0.75 ml/minute and the HPLC eluent was monitored at 214 nm. Fractions containing the eluted polypeptides were collected to maximize the purity of the individual samples. Approximately 200 purified polypeptides were obtained.

5

25

The purified polypeptides were then screened for the ability to induce T-cell proliferation in PBMC preparations. The PBMCs from donors known to be PPD skin test positive and whose T cells were shown to proliferate in response to PPD and crude soluble proteins from MTB were cultured in medium comprising RPMI 1640 supplemented with 10% pooled human serum and 50 µg/ml gentamicin. Purified polypeptides were added in duplicate at concentrations of 0.5 to 10 µg/mL. After six days of culture in 96-well round-bottom plates in a volume of 200 µl, 50 µl of medium was removed from each well for determination of IFN-y levels, as described below. The plates were then pulsed with 1 µCi/well of tritiated thymidine for a further 18 hours, harvested and tritium uptake determined using a gas scintillation counter. Fractions that resulted in proliferation in both replicates three fold greater than the proliferation observed in cells cultured in medium alone were considered positive.

IFN-γ was measured using an enzyme-linked immunosorbent assay (ELISA). ELISA plates were coated with a mouse monoclonal antibody directed to human IFN-γ (Chemicon) in PBS for four hours at room temperature. Wells were then blocked with PBS containing 5% (W/V) non-fat dried milk for 1 hour at room temperature. The plates were then washed six times in PBS/0.2% TWEEN-20 and samples diluted 1:2 in culture medium in the ELISA plates were incubated overnight at

WO 99/42118

10

15

25

room temperature. The plates were again washed and a polyclonal rabbit anti-human IFN-γ serum diluted 1:3000 in PBS/10% normal goat serum was added to each well. The plates were then incubated for two hours at room temperature, washed and horseradish peroxidase-coupled anti-rabbit IgG (Jackson Labs.) was added at a 1:2000 dilution in PBS/5% non-fat dried milk. After a further two hour incubation at room temperature, the plates were washed and TMB substrate added. The reaction was stopped after 20 min with 1 N sulfuric acid. Optical density was determined at 450 nm using 570 nm as a reference wavelength. Fractions that resulted in both replicates giving an OD two fold greater than the mean OD from cells cultured in medium alone, plus 3 standard deviations, were considered positive.

For sequencing, the polypeptides were individually dried onto BiobreneTM (Perkin Elmer/Applied BioSystems Division, Foster City, CA) treated glass fiber filters. The filters with polypeptide were loaded onto a Perkin Elmer/Applied BioSystems Division Procise 492 protein sequencer. The polypeptides were sequenced from the amino terminal and using traditional Edman chemistry. The amino acid sequence was determined for each polypeptide by comparing the retention time of the PTH amino acid derivative to the appropriate PTH derivative standards.

Using the procedure described above, antigens having the following N-terminal sequences were isolated:

- 20 (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Xaa-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu (SEQ ID NO: 54);
 - (b) Ala-Vai-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser (SEQ ID NO: 55);
 - (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg (SEQ ID NO: 56);
 - (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro (SEQ ID NO: 57);
 - (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val (SEQ ID NO: 58);

- (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro (SEQ ID NO: 59);
- (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Ala-Ala-Ala-Ala-Ala-Pro-Pro-Ala (SEQ ID NO: 60); and
- (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly (SEQ ID NO: 61);

wherein Xaa may be any amino acid.

5

15

20

25

An additional antigen was isolated employing a microbore HPLC purification step in addition to the procedure described above. Specifically, 20 µl of a fraction comprising a mixture of antigens from the chromatographic purification step previously described, was purified on an Aquapore C18 column (Perkin Elmer/Applied Biosystems Division, Foster City, CA) with a 7 micron pore size, column size 1 mm x 100 mm, in a Perkin Elmer/Applied Biosystems Division Model 172 HPLC. Fractions were eluted from the column with a linear gradient of 1%/minute of acetonitrile (containing 0.05% TFA) in water (0.05% TFA) at a flow rate of 80 µl/minute. The eluent was monitored at 250 nm. The original fraction was separated into 4 major peaks plus other smaller components and a polypeptide was obtained which was shown to have a molecular weight of 12.054 Kd (by mass spectrometry) and the following N-terminal sequence:

(i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Gln-Thr-Ser-Leu-Leu-Asn-Asn-Leu-Ala-Asp-Pro-Asp-Val-Ser-Phe-Ala-Asp (SEQ ID NO: 62).

This polypeptide was shown to induce proliferation and IFN-y production in PBMC preparations using the assays described above.

Additional soluble antigens were isolated from *M. tuberculosis* culture filtrate as follows. *M. tuberculosis* culture filtrate was prepared as described above. Following dialysis against Bis-Tris propane buffer, at pH 5.5, fractionation was performed using anion exchange chromatography on a Poros QE column 4.6 x 100 mm (Perseptive Biosystems) equilibrated in Bis-Tris propane buffer pH 5.5. Polypeptides

WO 99/42118

20

were eluted with a linear 0-1.5 M NaCl gradient in the above buffer system at a flow rate of 10 ml/min. The column eluent was monitored at a wavelength of 214 nm.

The fractions eluting from the ion exchange column were pooled and subjected to reverse phase chromatography using a Poros R2 column 4.6 x 100 mm (Perseptive Biosystems). Polypeptides were eluted from the column with a linear gradient from 0-100% acetonitrile (0.1% TFA) at a flow rate of 5 ml/min. The eluent was monitored at 214 nm.

Fractions containing the eluted polypeptides were lyophilized and resuspended in 80 µl of aqueous 0.1% TFA and further subjected to reverse phase chromatography on a Vydac C4 column 4.6 x 150 mm (Western Analytical, Temecula, CA) with a linear gradient of 0-100% acetonitrile (0.1% TFA) at a flow rate of 2 ml/min. Eluent was monitored at 214 nm.

The fraction with biological activity was separated into one major peak plus other smaller components. Western blot of this peak onto PVDF membrane revealed three major bands of molecular weights 14 Kd, 20 Kd and 26 Kd. These polypeptides were determined to have the following N-terminal sequences, respectively:

- (j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr-Asp-Ala-Ser, (SEQ ID NO: 129)
- (k) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp; (SEQ ID NO: 130) and
- (l) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID NO: 131), wherein Xaa may be any amino acid.

Using the assays described above, these polypeptides were shown to induce proliferation and IFN- γ production in PBMC preparations. Figs. 1A and B show the results of such assays using PBMC preparations from a first and a second donor, respectively.

DNA sequences that encode the antigens designated as (a), (c), (d) and (g) above were obtained by screening a *M. tuberculosis* genomic library using ³²P end labeled degenerate oligonucleotides corresponding to the N-terminal sequence and containing *M. tuberculosis* codon bias. The screen performed using a probe

5

15

WO 99/42118 PCT/US99/03265

41

corresponding to antigen (a) above identified a clone having the sequence provided in SEQ ID NO: 96. The polypeptide encoded by SEQ ID NO: 96 is provided in SEQ ID NO: 97. The screen performed using a probe corresponding to antigen (g) above identified a clone having the sequence provided in SEQ ID NO: 52. The polypeptide encoded by SEQ ID NO: 52 is provided in SEQ ID NO: 53. The screen performed using a probe corresponding to antigen (d) above identified a clone having the sequence provided in SEQ ID NO: 24, and the screen performed with a probe corresponding to antigen (c) identified a clone having the sequence provided in SEQ ID NO: 25.

The above amino acid sequences were compared to known amino acid sequences in the gene bank using the DNA STAR system. The database searched contains some 173,000 proteins and is a combination of the Swiss, PIR databases along with translated protein sequences (Version 87). No significant homologies to the amino acid sequences for antigens (a)-(h) and (l) were detected.

The amino acid sequence for antigen (i) was found to be homologous to a sequence from *M. leprae*. The full length *M. leprae* sequence was amplified from genomic DNA using the sequence obtained from GENBANK. This sequence was then used to screen an *M. tuberculosis* library and a full length copy of the *M. tuberculosis* homologue was obtained (SEQ ID NO: 94).

The amino acid sequence for antigen (j) was found to be homologous to a known *M. tuberculosis* protein translated from a DNA sequence. To the best of the inventors' knowledge, this protein has not been previously shown to possess T-cell stimulatory activity. The amino acid sequence for antigen (k) was found to be related to a sequence from *M. leprae*.

In the proliferation and IFN-y assays described above, using three PPD positive donors, the results for representative antigens provided above are presented in Table 1:

TABLE 1

RESULTS OF PBMC PROLIFERATION AND IFN-v ASSAYS

Sequence	Proliferation	IFN-y	
(a)	+		
(c)	+++	+++	
(d)	++	++	
(g)	+++		
(h)	+++	+++	

In Table 1, responses that gave a stimulation index (SI) of between 2 and 4 (compared to cells cultured in medium alone) were scored as +, as SI of 4-8 or 2-4 at a concentration of 1 μg or less was scored as ++ and an SI of greater than 8 was scored as ++. The antigen of sequence (i) was found to have a high SI (+++) for one donor and lower SI (++ and +) for the two other donors in both proliferation and IFN-γ assays.

These results indicate that these antigens are capable of inducing proliferation and/or interferon-γ production.

EXAMPLE 2 USE OF PATIENT SERA TO ISOLATE M. TUBERCULOSIS ANTIGENS

15

20

This example illustrates the isolation of antigens from M. tuberculosis lysate by screening with serum from M. tuberculosis-infected individuals.

Dessicated M. tuberculosis H37Ra (Difco Laboratories) was added to a 2% NP40 solution, and alternately homogenized and sonicated three times. The resulting suspension was centrifuged at 13,000 rpm in microfuge tubes and the supernatant put through a 0.2 micron syringe filter. The filtrate was bound to Macro Prep DEAE beads (BioRad, Hercules, CA). The beads were extensively washed with 20 mM Tris pH 7.5 and bound proteins eluted with 1M NaCl. The NaCl elute was dialyzed overnight against 10 mM Tris, pH 7.5. Dialyzed solution was treated with

43

DNase and RNase at 0.05 mg/ml for 30 min. at room temperature and then with α-D-mannosidase, 0.5 U/mg at pH 4.5 for 3-4 hours at room temperature. After returning to pH 7.5, the material was fractionated via FPLC over a Bio Scale-Q-20 column (BioRad). Fractions were combined into nine pools, concentrated in a Centriprep 10 (Amicon, Beverley, MA) and screened by Western blot for serological activity using a serum pool from *M. tuberculosis*-infected patients which was not immunoreactive with other antigens of the present invention.

The most reactive fraction was run in SDS-PAGE and transferred to PVDF. A band at approximately 85 Kd was cut out yielding the sequence:

(m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID NO: 132), wherein Xaa may be any amino acid.

Comparison of this sequence with those in the gene bank as described above, revealed no significant homologies to known sequences.

A DNA sequence that encodes the antigen designated as (m) above was obtained by screening a genomic *M. tuberculosis* Erdman strain library using labeled degenerate oligonucleotides corresponding to the N-terminal sequence of SEQ ID NO:137. A clone was identified having the DNA sequence provided in SEQ ID NO:198. This sequence was found to encode the amino acid sequence provided in SEQ ID NO:199. Comparison of these sequences with those in the genebank revealed some similarity to sequences previously identified in *M. tuberculosis* and *M. bovis*.

EXAMPLE 3

PREPARATION OF DNA SEQUENCES ENCODING M. TUBERCULOSIS ANTIGENS

25

10

15

This example illustrates the preparation of DNA sequences encoding *M. tuberculosis* antigens by screening a *M. tuberculosis* expression library with sera obtained from patients infected with *M. tuberculosis*, or with anti-sera raised against *M. tuberculosis* antigens.

20

A. PREPARATION OF M. TUBERCULOSIS SOLUBLE ANTIGENS USING RABBIT ANTI-SERA RAISED AGAINST M. TUBERCULOSIS SUPERNATANT

Genomic DNA was isolated from the *M. tuberculosis* strain H37Ra. The DNA was randomly sheared and used to construct an expression library using the Lambda ZAP expression system (Stratagene, La Jolla, CA). Rabbit anti-sera was generated against secretory proteins of the *M. tuberculosis* strains H37Ra, H37Rv and Erdman by immunizing a rabbit with concentrated supernatant of the *M. tuberculosis* cultures. Specifically, the rabbit was first immunized subcutaneously with 200 µg of protein antigen in a total volume of 2 ml containing 100 µg muramyl dipeptide (Calbiochem, La Jolla, CA) and 1 ml of incomplete Freund's adjuvant. Four weeks later the rabbit was boosted subcutaneously with 100 µg antigen in incomplete Freund's adjuvant. Finally, the rabbit was immunized intravenously four weeks later with 50 µg protein antigen. The anti-sera were used to screen the expression library as described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989. Bacteriophage plaques expressing immunoreactive antigens were purified. Phagemid from the plaques was rescued and the nucleotide sequences of the *M. tuberculosis* clones deduced.

Thirty two clones were purified. Of these, 25 represent sequences that have not been previously identified in *M. tuberculosis*. Proteins were induced by IPTG and purified by gel elution, as described in Skeiky et al., *J. Exp. Med.* 181:1527-1537, 1995. Representative partial sequences of DNA molecules identified in this screen are provided in SEQ ID NOS: 1-25. The corresponding predicted amino acid sequences are shown in SEQ ID NOS: 64-88.

On comparison of these sequences with known sequences in the gene bank using the databases described above, it was found that the clones referred to hereinafter as TbRA2A, TbRA16, TbRA18, and TbRA29 (SEQ ID NOS: 77, 69, 71, 76) show some homology to sequences previously identified in *Mycobacterium leprae* but not in *M. tuberculosis*. TbRA2A was found to be a lipoprotein, with a six residue lipidation sequence being located adjacent to a hydrophobic secretory sequence.

TbRA11, TbRA26, TbRA28 and TbDPEP (SEQ ID NOS: 66, 74, 75, 53) have been

previously identified in *M. tuberculosis*. No significant homologies were found to TbRA1, TbRA3, TbRA4, TbRA9, TbRA10, TbRA13, TbRA17, TbRA19, TbRA29, TbRA32, TbRA36 and the overlapping clones TbRA35 and TbRA12 (SEQ ID NOS: 64, 78, 82, 83, 65, 68, 76, 72, 76, 79, 81, 80, 67, respectively). The clone TbRa24 is overlapping with clone TbRa29.

B. USE OF SERA FROM PATIENTS HAVING PULMONARY OR PLEURAL TUBERCULOSIS TO IDENTIFY DNA SEQUENCES ENCODING M. TUBERCULOSIS ANTIGENS

10

20

30

The genomic DNA library described above, and an additional H37Rv library, were screened using pools of sera obtained from patients with active tuberculosis. To prepare the H37Rv library, *M. tuberculosis* strain H37Rv genomic DNA was isolated, subjected to partial Sau3A digestion and used to construct an expression library using the Lambda Zap expression system (Stratagene, La Jolla, Ca). Three different pools of sera, each containing sera obtained from three individuals with active pulmonary or pleural disease, were used in the expression screening. The pools were designated TbL, TbM and TbH, referring to relative reactivity with H37Ra lysate (*i.e.*, TbL = low reactivity, TbM = medium reactivity and TbH = high reactivity) in both ELISA and immunoblot format. A fourth pool of sera from seven patients with active pulmonary tuberculosis was also employed. All of the sera lacked increased reactivity with the recombinant 38 kD *M. tuberculosis* H37Ra phosphate-binding protein.

All pools were pre-adsorbed with *E. coli* lysate and used to screen the H37Ra and H37Rv expression libraries, as described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989. Bacteriophage plaques expressing immunoreactive antigens were purified. Phagemid from the plaques was rescued and the nucleotide sequences of the *M. tuberculosis* clones deduced.

Thirty two clones were purified. Of these, 31 represented sequences that had not been previously identified in human *M. tuberculosis*. Representative sequences of the DNA molecules identified are provided in SEQ ID NOS:: 26-51 and 100. Of these, TbH-8-2 (SEQ. ID NO. 100) is a partial clone of TbH-8, and TbH-4 (SEQ. ID

46

NO. 43) and TbH-4-FWD (SEQ. ID NO. 44) are non-contiguous sequences from the same clone. Amino acid sequences for the antigens hereinafter identified as Tb38-1, TbH-4, TbH-8, TbH-9, and TbH-12 are shown in SEQ ID NOS.: 89-93. Comparison of these sequences with known sequences in the gene bank using the databases identified above revealed no significant homologies to TbH-4, TbH-8, TbH-9 and TbM-3, although weak homologies were found to TbH-9. TbH-12 was found to be homologous to a 34 kD antigenic protein previously identified in *M. paratuberculosis* (Acc. No. S28515). Tb38-1 was found to be located 34 base pairs upstream of the open reading frame for the antigen ESAT-6 previously identified in *M. bovis* (Acc. No. U34848) and in *M. tuberculosis* (Sorensen et al., *Infec. Immun. 63*:1710-1717, 1995).

Probes derived from Tb38-1 and TbH-9, both isolated from an H37Ra library, were used to identify clones in an H37Rv library. Tb38-1 hybridized to Tb38-1F2, Tb38-1F3, Tb38-1F5 and Tb38-1F6 (SEQ. ID NOS: 107, 108, 111, 113, and 114). (SEQ ID NOS: 107 and 108 are non-contiguous sequences from clone Tb38-1F2.) Two open reading frames were deduced in Tb38-IF2; one corresponds to Tb37FL (SEQ. ID. NO. 109), the second, a partial sequence, may be the homologue of Tb38-1 and is called Tb38-IN (SEQ. ID NO. 110). The deduced amino acid sequence of Tb38-1F3 is presented in SEQ. ID. NO. 112. A TbH-9 probe identified three clones in the H37Rv library: TbH-9-FL (SEQ. ID NO. 101), which may be the homologue of TbH-9 (R37Ra), TbH-9-1 (SEQ. ID NO. 103), and TbH-8-2 (SEQ. ID NO. 105) is a partial clone of TbH-8. The deduced amino acid sequences for these three clones are presented in SEQ ID NOS: 102, 104 and 106.

Further screening of the *M. tuberculosis* genomic DNA library, as described above, resulted in the recovery of ten additional reactive clones, representing seven different genes. One of these genes was identified as the 38 Kd antigen discussed above, one was determined to be identical to the 14Kd alpha crystallin heat shock protein previously shown to be present in *M. tuberculosis*, and a third was determined to be identical to the antigen TbH-8 described above. The determined DNA sequences for the remaining five clones (hereinafter referred to as TbH-29, TbH-30, TbH-32 and

25

TbH-33) are provided in SEQ ID NO: 133-136, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 137-140, respectively. The DNA and amino acid sequences for these antigens were compared with those in the gene bank as described above. No homologies were found to the 5' end of TbH-29 (which contains the reactive open reading frame), although the 3' end of TbH-29 was found to be identical to the *M. nuberculosis* cosmid Y227. TbH-32 and TbH-33 were found to be identical to the previously identified *M. tuberculosis* insertion element IS6110 and to the *M. tuberculosis* cosmid Y50, respectively. No significant homologies to TbH-30 were found.

Positive phagemid from this additional screening were used to infect *E. coli* XL-1 Blue MRF', as described in Sambrook et al., *supra*. Induction of recombinant protein was accomplished by the addition of IPTG. Induced and uninduced lysates were run in duplicate on SDS-PAGE and transferred to nitrocellulose filters. Filters were reacted with human *M. tuberculosis* sera (1:200 dilution) reactive with TbH and a rabbit sera (1:200 or 1:250 dilution) reactive with the N-terminal 4 Kd portion of lacZ. Sera incubations were performed for 2 hours at room temperature. Bound antibody was detected by addition of ¹²⁵I-labeled Protein A and subsequent exposure to film for variable times ranging from 16 hours to 11 days. The results of the immunoblots are summarized in Table 2.

20

30

10

TABLE 2

	Antigen	Human M. tb <u>Sera</u>	Anti-lacZ <u>Sera</u>
25	Тън-29	45 Kd	45 Kd
	ТъН-30	No reactivity	29 Kd
	ТъН-32	12 Kd	12 Kd
	TbH-33	16 K d	16 Kd

Positive reaction of the recombinant human M. tuberculosis antigens with both the human M. tuberculosis sera and anti-lacZ sera indicate that reactivity of

the human *M. tuberculosis* sera is directed towards the fusion protein. Antigens reactive with the anti-lacZ sera but not with the human *M. tuberculosis* sera may be the result of the human *M. tuberculosis* sera recognizing conformational epitopes, or the antigen-antibody binding kinetics may be such that the 2 hour sera exposure in the immunoblot is not sufficient.

Studies were undertaken to determine whether the antigens TbH-9 and Tb38-1 represent cellular proteins or are secreted into *M. tuberculosis* culture media. In the first study, rabbit sera were raised against A) secretory proteins of *M. tuberculosis*, B) the known secretory recombinant *M. tuberculosis* antigen 85b, C) recombinant Tb38-1 and D) recombinant TbH-9, using protocols substantially as described in Example 3A. Total *M. tuberculosis* lysate, concentrated supernatant of *M. tuberculosis* cultures and the recombinant antigens 85b, TbH-9 and Tb38-1 were resolved on denaturing gels, immobilized on nitrocellulose membranes and duplicate blots were probed using the rabbit sera described above.

The results of this analysis using control sera (panel I) and antisera (panel II) against secretory proteins, recombinant 85b, recombinant Tb38-1 and recombinant TbH-9 are shown in Figures 2A-D, respectively, wherein the lane designations are as follows: 1) molecular weight protein standards: 2) 5 µg of M. tuberculosis lysate: 3) 5 µg secretory proteins; 4) 50 ng recombinant Tb38-1; 5) 50 ng recombinant TbH-9; and 6) 50 ng recombinant 85b. The recombinant antigens were engineered with six terminal histidine residues and would therefore be expected to migrate with a mobility approximately 1 kD larger that the native protein. In Figure 2D, recombinant TbH-9 is lacking approximately 10 kD of the full-length 42 kD antigen, hence the significant difference in the size of the immunoreactive native TbH-9 antigen in the lysate lane (indicated by an arrow). These results demonstrate that Tb38-1 and TbH-9 are intracellular antigens and are not actively secreted by M. tuberculosis.

15

The finding that TbH-9 is an intracellular antigen was confirmed by determining the reactivity of TbH-9-specific human T cell clones to recombinant TbH-9, secretory *M. tuberculosis* proteins and PPD. A TbH-9-specific T cell clone (designated 131TbH-9) was generated from PBMC of a healthy PPD-positive donor.

The proliferative response of 131TbH-9 to secretory proteins, recombinant TbH-9 and a control *M. tuberculosis* antigen, TbRall, was determined by measuring uptake of tritiated thymidine, as described in Example 1. As shown in Figure 3A, the clone 131TbH-9 responds specifically to TbH-9, showing that TbH-9 is not a significant component of *M. tuberculosis* secretory proteins. Figure 3B shows the production of IFN- γ by a second TbH-9-specific T cell clone (designated PPD 800-10) prepared from PBMC from a healthy PPD-positive donor, following stimulation of the T cell clone with secretory proteins, PPD or recombinant TbH-9. These results further confirm that TbH-9 is not secreted by *M. tuberculosis*.

10

20

25

30

C. USE OF SERA FROM PATIENTS HAVING EXTRAPULMONARY TUBERCULOSIS TO IDENTIFY DNA SEQUENCES ENCODING M. TUBERCULOSIS ANTIGENS

Genomic DNA was isolated from M. tuberculosis Erdman strain, randomly sheared and used to construct an expression library employing the Lambda ZAP expression system (Stratagene, La Jolla, CA). The resulting library was screened using pools of sera obtained from individuals with extrapulmonary tuberculosis, as described above in Example 3B, with the secondary antibody being goat anti-human IgG + A + M(H+L) conjugated with alkaline phosphatase.

Eighteen clones were purified. Of these, 4 clones (hereinafter referred to as XP14, XP24, XP31 and XP32) were found to bear some similarity to known sequences. The determined DNA sequences for XP14, XP24 and XP31 are provided in SEQ ID NOS: 151-153, respectively, with the 5' and 3' DNA sequences for XP32 being provided in SEQ ID NOS: 154 and 155, respectively. The predicted amino acid sequence for XP14 is provided in SEQ ID NO: 156. The reverse complement of XP14 was found to encode the amino acid sequence provided in SEQ ID NO: 157.

Comparison of the sequences for the remaining 14 clones (hereinafter referred to as XP1-XP6, XP17-XP19, XP22, XP25, XP27, XP30 and XP36) with those in the genebank as described above, revealed no homologies with the exception of the 3' ends of XP2 and XP6 which were found to bear some homology to known M. tuberculosis cosmids. The DNA sequences for XP27 and XP36 are shown in SEQ ID

PCT/US99/03265

NOS: 158 and 159, respectively, with the 5' sequences for XP4, XP5, XP17 and XP30 being shown in SEQ ID NOS: 160-163, respectively, and the 5' and 3' sequences for XP2, XP3, XP6, XP18, XP19, XP22 and XP25 being shown in SEQ ID NOS: 164 and 165; 166 and 167; 168 and 169; 170 and 171; 172 and 173; 174 and 175; and 176 and 177, respectively. XP1 was found to overlap with the DNA sequences for TbH4, disclosed above. The full-length DNA sequence for TbH4-XP1 is provided in SEQ ID NO: 178. This DNA sequence was found to contain an open reading frame encoding the amino acid sequence shown in SEQ ID NO: 179. The reverse complement of TbH4-XP1 was found to contain an open reading frame encoding the amino acid sequence shown in SEQ ID NO: 180. The DNA sequence for XP36 was found to contain two open reading frames encoding the amino acid sequence shown in SEQ ID NO: 181 and 182, with the reverse complement containing an open reading frame encoding the amino acid sequence shown in SEQ ID NO: 181 and 182, with the reverse complement containing an open reading frame encoding the amino acid sequence shown in SEQ ID NO: 183.

Recombinant XP1 protein was prepared as described above in Example 3B, with a metal ion affinity chromatography column being employed for purification. Recombinant XP1 was found to stimulate cell proliferation and IFN-y production in T cells isolated from an M. tuberculosis-immune donors.

15

30

D. USE OF A LYSATE POSITIVE SERUM POOL FROM PATIENTS HAVING TUBERCULOSIS TO IDENTIFY DNA SEQUENCES ENCODING M. TUBERCULOSIS ANTIGENS

Genomic DNA was isolated from M. tuberculosis Erdman strain, randomly sheared and used to construct an expression library employing the Lambda Screen expression system (Novagen, Madison, WI), as described below in Example 6. Pooled serum obtained from M. tuberculosis-infected patients and that was shown to react with M. tuberculosis lysate but not with the previously expressed proteins 38kD, Tb38-1, TbRa3. TbH4, DPEP and TbRa11, was used to screen the expression library as described above in Example 3B, with the secondary antibody being goat anti-human IgG + A + M (H+L) conjugated with alkaline phosphatase.

Twenty-seven clones were purified. Comparison of the determined cDNA sequences for these clones revealed no significant homologies to 10 of the clones

(hereinafter referred to as LSER-10, LSER-11, LSER-12, LSER-13, LSER-16, LSER-18, LSER-23, LSER-24, LSER-25 and LSER-27). The determined 5' cDNA sequences for LSER-10, LSER-11, LSER-12, LSER-13, LSER-16 and LSER-25 are provided in SEQ ID NO: 237-242, respectively, with the corresponding predicted amino acid sequences for LSER-10, LSER-12, LSER-13, LSER-16 and LSER-25 being provided in SEQ ID NO: 243-247, respectively. The determined full-length cDNA sequences for LSER-18, LSER-23, LSER-24 and LSER-27 are shown in SEQ ID NO: 248-251, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 252-255. The remaining seventeen clones were found to show similarities to unknown sequences previously identified in M. tuberculosis. determined 5' cDNA sequences for sixteen of these clones (hereinafter referred to as LSER-1, LSER-3, LSER-4, LSER-5, LSER-6, LSER-8, LSER-14, LSER-15, LSER-17, LSER-19, LSER-20, LSER-22, LSER-26, LSER-28, LSER-29 and LSER-30) are provided in SEQ ID NO: 256-271, respectively, with the corresponding predicted amino acid sequences for LSER-1, LSER-3, LSER-5, LSER-6, LSER-8, LSER-14, LSER-15, LSER-17, LSER-19, LSER-20, LSER-22, LSER-26, LSER-28, LSER-29 and LSER-30 being provided in SEQ ID NO: 272-286, respectively. The determined full-length cDNA sequence for the clone LSER-9 is provided in SEQ ID NO: 287. The reverse complement of LSER-6 (SEQ ID NO: 288) was found to encode the predicted amino acid sequence of SEQ ID NO: 289.

E. PREPARATION OF M. TUBERCULOSIS SOLUBLE ANTIGENS USING RABBIT ANTI-SERA RAISED AGAINST M. TUBERCULOSIS FRACTIONATED PROTEINS

M. tuberculosis lysate was prepared as described above in Example 2. The resulting material was fractionated by HPLC and the fractions screened by Western blot for serological activity with a serum pool from M. tuberculosis-infected patients which showed little or no immunoreactivity with other antigens of the present invention. Rabbit anti-sera was generated against the most reactive fraction using the method described in Example 3A. The anti-sera was used to screen an M. tuberculosis Erdman strain genomic DNA expression library prepared as described above.

52

Bacteriophage plaques expressing immunoreactive antigens were purified. Phagemid from the plaques was rescued and the nucleotide sequences of the *M. tuberculosis* clones determined.

Ten different clones were purified. Of these, one was found to be TbRa35, described above, and one was found to be the previously identified *M. tuberculosis* antigen, HSP60. Of the remaining eight clones, six (hereinafter referred to as RDIF2, RDIF5, RDIF8, RDIF10, RDIF11 and RDIF12) were found to bear some similarity to previously identified *M. tuberculosis* sequences. The determined DNA sequences for RDIF2, RDIF5, RDIF8, RDIF10 and RDIF11 are provided in SEQ ID NOS: 184-188, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NOS: 189-193, respectively. The 5' and 3' DNA sequences for RDIF12 are provided in SEQ ID NOS: 194 and 195, respectively. No significant homologies were found to the antigen RDIF-7. The determined DNA and predicted amino acid sequences for RDIF7 are provided in SEQ ID NOS: 196 and 197, respectively. One additional clone, referred to as RDIF6 was isolated, however, this was found to be identical to RDIF5.

Recombinant RDIF6, RDIF8, RDIF10 and RDIF11 were prepared as described above. These antigens were found to stimulate cell proliferation and IFN-y production in T cells isolated from *M. tuberculosis*-immune donors.

20

EXAMPLE 4

PURIFICATION AND CHARACTERIZATION OF A POLYPEPTIDE FROM TUBERCULIN PURIFIED PROTEIN DERIVATIVE

25

An M. tuberculosis polypeptide was isolated from tuberculin purified protein derivative (PPD) as follows.

PPD was prepared as published with some modification (Seibert, F. et al., Tuberculin purified protein derivative. Preparation and analyses of a large quantity for standard. The American Review of Tuberculosis 44:9-25, 1941). M. tuberculosis

Rv strain was grown for 6 weeks in synthetic medium in roller bottles at 37°C. Bottles containing the bacterial growth were then heated to 100°C in water vapor for 3 hours. Cultures were sterile filtered using a 0.22 μ filter and the liquid phase was concentrated 20 times using a 3 kD cut-off membrane. Proteins were precipitated once with 50% ammonium sulfate solution and eight times with 25% ammonium sulfate solution. The resulting proteins (PPD) were fractionated by reverse phase liquid chromatography (RP-HPLC) using a C18 column (7.8 x 300 mM; Waters, Milford, MA) in a Biocad HPLC system (Perseptive Biosystems, Framingham, MA). Fractions were eluted from the column with a linear gradient from 0-100% buffer (0.1% TFA in acetonitrile). The flow rate was 10 ml/minute and eluent was monitored at 214 nm and 280 nm.

5

Six fractions were collected, dried, suspended in PBS and tested individually in *M. tuberculosis*-infected guinea pigs for induction of delayed type hypersensitivity (DTH) reaction. One fraction was found to induce a strong DTH reaction and was subsequently fractionated further by RP-HPLC on a microbore Vydac C18 column (Cat. No. 218TP5115) in a Perkin Elmer/Applied Biosystems Division Model 172 HPLC. Fractions were eluted with a linear gradient from 5-100% buffer (0.05% TFA in acetonitrile) with a flow rate of 80 µl/minute. Eluent was monitored at 215 nm. Eight fractions were collected and tested for induction of DTH in *M. tuberculosis*-infected guinea pigs. One fraction was found to induce strong DTH of about 16 mm induration. The other fractions did not induce detectable DTH. The positive fraction was submitted to SDS-PAGE gel electrophoresis and found to contain a single protein band of approximately 12 kD molecular weight.

This polypeptide, herein after referred to as DPPD, was sequenced from the amino terminal using a Perkin Elmer/Applied Biosystems Division Procise 492 protein sequencer as described above and found to have the N-terminal sequence shown in SEQ ID NO: 124. Comparison of this sequence with known sequences in the gene bank as described above revealed no known homologies. Four cyanogen bromide fragments of DPPD were isolated and found to have the sequences shown in SEQ ID NOS: 125-128. A subsequent search of the *M. tuberculosis* genome database released by the Institute for Genomic Research revealed a match of the DPPD partial amino acid

54

sequence with a sequence present within the *M. tuberculosis* cosmid MTY21C12. An open reading frame of 336 bp was identified. The full-length DNA sequence for DPPD is provided in SEQ ID NO: 235, with the corresponding full-length amino acid sequence being provided in SEQ ID NO: 236.

5

EXAMPLE 5

USE OF SERA FROM TUBERCULOSIS-INFECTED MONKEYS TO IDENTIFY DNA SEQUENCES ENCODING M. TUBERCULOSIS ANTIGENS

10

15

20

Genomic DNA was isolated from *M. tuberculosis* Erdman strain. randomly sheared and used to construct an expression library employing the Lambda ZAP expression system (Stratagene, La Jolla, CA). Serum samples were obtained from a cynomolgous monkey 18, 33, 51 and 56 days following infection with *M. tuberculosis* Erdman strain. These samples were pooled and used to screen the *M. tuberculosis* genomic DNA expression library using the procedure described above in Example 3C.

Twenty clones were purified. The determined 5' DNA sequences for the clones referred to as MO-1, MO-2, MO-4, MO-8, MO-9, MO-26, MO-28, MO-29, MO-30, MO-34 and MO-35 are provided in SEQ ID NO: 210-220, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 221-231. The full-length DNA sequence of the clone MO-10 is provided in SEQ ID NO: 232, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 233. The 3' DNA sequence for the clone MO-27 is provided in SEQ ID NO: 234.

Clones MO-1, MO-30 and MO-35 were found to show a high degree of relatedness and showed some homology to a previously identified unknown *M. tuberculosis* sequence and to cosmid MTCI237. MO-2 was found to show some homology to aspartokinase from *M. tuberculosis*. Clones MO-3, MO-7 and MO-27 were found to be identical and to show a high degree of relatedness to MO-5. All four of these clones showed some homology to *M. tuberculosis* heat shock protein 70. MO-27 was found to show some homology to *M. tuberculosis* cosmid MTCY339. MO-4

and MO-34 were found to show some homology to cosmid SCY21B4 and M. smegmatis integration host factor, and were both found to show some homology to a previously identified, unknown M. tuberculosis sequence. MO-6 was found to show some homology to M. tuberculosis heat shock protein 65. MO-8, MO-9, MO-10, MO-26 and MO-29 were found to be highly related to each other and to show some homology to M. tuberculosis dihydrolipamide succinyltransferase. MO-28, MO-31 and MO-32 were found to be identical and to show some homology to a previously identified M. tuberculosis protein. MO-33 was found to show some homology to a previously identified 14 kDa M. tuberculosis heat shock protein.

5

10

25

30

Further studies using the above protocol resulted in the isolation of an additional four clones, hereinafter referred to as MO-12, MO-13, MO-19 and MO-39. The determined 5' cDNA sequences for these clones are provided in SEQ ID NO: 290-293, respectively, with the corresponding predicted protein sequences being provided in SEQ ID NO: 294-297, respectively. Comparison of these sequences with those in the gene bank as described above revealed no significant homologies to MO-39. MO-12, MO-13 and MO-19 were found to show some homologies to unknown sequences previously isolated from *M. tuberculosis*.

EXAMPLE 6

20 ISOLATION OF DNA SEQUENCES ENCODING M. TUBERCULOSIS ANTIGENS BY SCREENING OF A NOVEL EXPRESSION LIBRARY

This example illustrates isolation of DNA sequences encoding *M. tuberculosis* antigens by screening of a novel expression library with sera from *M. tuberculosis*-infected patients that were shown to be unreactive with a panel of the recombinant *M. tuberculosis* antigens TbRall, TbRa3, Tb38-1, TbH4, TbF and 38 kD.

Genomic DNA from *M. tuberculosis* Erdman strain was randomly sheared to an average size of 2 kb, and blunt ended with Klenow polymerase, followed by the addition of EcoRI adaptors. The insert was subsequently ligated into the Screen phage vector (Novagen, Madison, WI) and packaged *in vitro* using the PhageMaker

extract (Novagen). The resulting library was screened with sera from several M. tuberculosis donors that had been shown to be negative on a panel of previously identified M. tuberculosis antigens as described above in Example 3B.

A total of 22 different clones were isolated. By comparison, screening of 5 the λ Zap library described above using the same sera did not result in any positive hits. One of the clones was found to represent TbRall, described above. The determined 5' cDNA sequences for 19 of the remaining 21 clones (hereinafter referred to as Erdsn1, Erdsn2, Erdsn4-Erdsn10, Erdsn12-18, Erdsn21-Erdsn23 and Erdsn25) are provided in SEQ ID NO: 298-317, respectively, with the determined 3' cDNA sequences for Erdsn1, Erdsn2, Erdsn4, Erdsn5, Erdsn7-Erdsn10, Erdsn12-Erdsn18, Erdsn21-Erdsn23 and Erdsn25 being provided in SEQ ID NO: 318-336, respectively. The complete cDNA insert sequence for the clone Erdsn24 is provided in SEQ ID NO: 337. Comparison of the determined cDNA sequences with those in the gene bank revealed no significant homologies to the sequences provided in SEQ ID NO: 304, 311, 313-315, 317, 319, 324, 326, 329, 331, 333, 335 and 337. The sequences of SEQ ID NO: 298-15 303, 305-310, 312, 316, 318, 320-321, 324-326, 328, 330, 332, 334 and 336 were found to show some homology to unknown sequences previously identified in M. tuberculosis.

20

EXAMPLE 7

ISOLATION OF SOLUBLE M. TUBERCULOSIS ANTIGENS USING MASS SPECTROMETRY

This example illustrates the use of mass spectrometry to identify soluble

M. tuberculosis antigens.

In a first approach, *M. tuberculosis* culture filtrate was screened by Western analysis using serum from a tuberculosis-infected individual. The reactive bands were excised from a silver stained gel and the amino acid sequences determined by mass spectrometry. The determined amino acid sequence for one of the isolated antigens is provided in SEQ ID NO: 338. Comparison of this sequence with those in

the gene bank revealed homology to the 85b precursor antigen previously identified in *M. tuberculosis*.

In a second approach, the high molecular weight region of *M. tuberculosis* culture supernatant was studied. This area may contain immunodominant antigens which may be useful in the diagnosis of *M. tuberculosis* infection. Two known monoclonal antibodies, IT42 and IT57 (available from the Center for Disease Control, Atlanta, GA), show reactivity by Western analysis to antigens in this vicinity, although the identity of the antigens remains unknown. In addition, unknown high-molecular weight proteins have been described as containing a surrogate marker for *M. tuberculosis* infection in HIV-positive individuals (*Jnl. Infect. Dis., 176*:133-143, 1997). To determine the identity of these antigens, two-dimensional gel electrophoresis and two-dimensional Western analysis were performed using the antibodies IT57 and IT42. Five protein spots in the high molecular weight region were identified, individually excised, enzymatically digested and subjected to mass spectrometric analysis.

The determined amino acid sequences for three of these spots (referred to as spots 1, 2 and 4) are provided in SEQ ID NO: 339, 340-341 and 342, respectively. Comparison of these sequences with those in the gene bank revealed that spot 1 is the previously identified PcK-1. a phosphoenolpyruvate kinase. The two sequences isolated from spot 2 were determined to be from two DNAks, previously identified in M. tuberculosis as heat shock proteins. Spot 4 was determined to be the previously identified M. tuberculosis protein Kat G. To the best of the inventors' knowledge, neither PcK-1 nor the two DNAks have previously been shown to have utility in the diagnosis of M. tuberculosis infection.

25

30

10

15

20

EXAMPLE 8

SYNTHESIS OF SYNTHETIC POLYPEPTIDES

Polypeptides may be synthesized on a Millipore 9050 peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be

attached to the amino terminus of the peptide to provide a method of conjugation or labeling of the peptide. Cleavage of the peptides from the solid support may be carried using out the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the Following lyophilization of the pure fractions, the peptides may be characterized using electrospray mass spectrometry and by amino acid analysis.

This procedure was used to synthesize a TbM-1 peptide that contains one and a half repeats of a TbM-1 sequence. The TbM-1 peptide has the sequence GCGDRSGGNLDQIRLRRDRSGGNL (SEQ ID NO: 63).

15

EXAMPLE 9

USE OF REPRESENTATIVE ANTIGENS FOR SERODIAGNOSIS OF TUBERCULOSIS

This Example illustrates the diagnostic properties of several 20 representative antigens.

Assays were performed in 96-well plates were coated with 200 ng antigen diluted to 50 µL in carbonate coating buffer, pH 9.6. The wells were coated overnight at 4°C (or 2 hours at 37°C). The plate contents were then removed and the wells were blocked for 2 hours with 200 µL of PBS/1% BSA. After the blocking step, the wells were washed five times with PBS/0.1% Tween 20TM. 50 µL sera, diluted 1:100 in PBS/0.1% Tween 20TM/0.1% BSA, was then added to each well and incubated for 30 minutes at room temperature. The plates were then washed again five times with PBS/0.1% Tween 20TM.

The enzyme conjugate (horseradish peroxidase - Protein A, Zymed, San Francisco, CA) was then diluted 1:10,000 in PBS/0.1% Tween 20TM/0.1% BSA, and 50

PCT/US99/03265

 μ L of the diluted conjugate was added to each well and incubated for 30 minutes at room temperature. Following incubation, the wells were washed five times with PBS/0.1% Tween 20TM. 100 μ L of tetramethylbenzidine peroxidase (TMB) substrate (Kirkegaard and Perry Laboratories, Gaithersburg, MD) was added, undiluted, and incubated for about 15 minutes. The reaction was stopped with the addition of 100 μ L of 1 N H₂SO₄ to each well, and the plates were read at 450 nm.

Figure 4 shows the ELISA reactivity of two recombinant antigens isolated using method A in Example 3 (TbRa3 and TbRa9) with sera from *M. tuberculosis* positive and negative patients. The reactivity of these antigens is compared to that of bacterial lysate isolated from *M. tuberculosis* strain H37Ra (Difco, Detroit, MI). In both cases, the recombinant antigens differentiated positive from negative sera. Based on cut-off values obtained from receiver-operator curves, TbRa3 detected 56 out of 87 positive sera, and TbRa9 detected 111 out of 165 positive sera.

10

15

Figure 5 illustrates the ELISA reactivity of representative antigens isolated using method B of Example 3. The reactivity of the recombinant antigens TbH4, TbH12, Tb38-1 and the peptide TbM-1 (as described in Example 4) is compared to that of the 38 kD antigen described by Andersen and Hansen. *Infect. Immun.* 57:2481-2488, 1989. Again, all of the polypeptides tested differentiated positive from negative sera. Based on cut-off values obtained from receiver-operator curves, TbH4 detected 67 out of 126 positive sera, TbH12 detected 50 out of 125 positive sera, 38-1 detected 61 out of 101 positive sera and the TbM-1 peptide detected 25 out of 30 positive sera.

The reactivity of four antigens (TbRa3, TbRa9, TbH4 and TbH12) with sera from a group of *M. tuberculosis* infected patients with differing reactivity in the acid fast stain of sputum (Smithwick and David, *Tubercle 52*:226, 1971) was also examined, and compared to the reactivity of *M. tuberculosis* lysate and the 38 kD antigen. The results are presented in Table 3, below:

TABLE 3

REACTIVITY OF ANTIGENS WITH SERA FROM M. TUBERCULOSIS PATIENTS

	Acid Fast	ELISA Values					
Patient	Sputum	Lysate	38kD	TbRa9	ТъН12	TbH4	TbRa3
Tb01B93I-2	++++	1.853	0.634	0.998	1.022	1.030	1.314
Ть01В93І-19	++++	2.657	2.322	0.608	0.837	1.857	2.335
Tb01B93I-8	+++	2.703	0.527	0.492	0.281	0.501	2.002
Ть01В93І-10	-++	1.665	1.301	0.685	0.216	0.448	0.458
Ть01В93І-11	+++	2.817	0.697	0.509	0.301	0.173	2.608
Tb01B93I-15	+++	1.28	0.283	0.808	0.218	1.537	0.811
Tb01B93I-16	+++	2.908	>3	0.899	0.441	0.593	1.080
Tb01B93I-25	+	0.395	0.131	0.335	0.211	0.107	0.948
Tb01B93I-87	+++	2.653	2.432	2.282	0.977	1.221	0.857
Tb01B93I-89		1.912	2.370	2.436	0.876	0.520	0.952
Tb01B94I-108		1.639	0.341	0.797	0.368	0.654	0.798
Tb01B94I-201		1.721	0.419	0.661	0.137	0.064	0.692
Tb01B93I-88	-	1.939	1.269	2.519	1.381	0.214	0.530
Tb01B93I-92	-	2.355	2.329	2.78	0.685	0.997	2.527
Tb01B94I-109	:	0.993	0.620	0.574	0.441	0.5	2.558
Tb01B94I-210	++	2.777	>3	0.393	0.367	1.004	1.315
Tb01B94I-224		2.913	0.476	0.251	1.297	1.990	0.256
Tb01B93I-9	+	2.649	0.278	0.210	0.140	0.181	1.586
Ть01В93І-14	+	>3	1.538	0.282	0.291	0.549	2.880
Tb01B93I-21	+	2.645	0.739	2.499	0.783	0.536	1.770

	Acid Fast	ELISA Values					
Patient	Sputum	Lysate	38kD	TbRa9	ТьН12	ТъН4	TbRa3
Tb01B93I-22	+	0.714	0.451	2.082	0.285	0.269	1.159
Tb01B93I-31	+	0.956	0.490	1.019	0.812	0.176	1.293
Tb01B93I-32	-	2.261	0.786	0.668	0.273	0.535	0.405
Tb01B93I-52	-	0.658	0.114	0.434	0.330	0.273	1.140
Ть01В93І-99	_	2.118	0.584	1.62	0.119	0.977	0.729
Tb01B94I-130	-	1.349	0.224	0.86	0.282	0.383	2.146
Tb01B94I-131	-	0.685	0.324	1.173	0.059	0.118	1.431
AT4-0070	Normal	0.072	0.043	0.092	0.071	0.040	0.039
AT4-0105	Normal	0.397	0.121	0.118	0.103	0.078	0.390
3/15/94-1	Normal	0.227	0.064	0.098	0.026	0.001	0.228
4/15/93-2	Normal	0.114	0.240	0.071	0.034	0.041	0.264
5/26/94-4	Normal	0.089	0.259	0.096	0.046	0.008	0.053
5/26/94-3	Normal	0.139	0.093	0.085	0.019	0.067	0.01

Based on cut-off values obtained from receiver-operator curves, TbRa3 detected 23 out of 27 positive sera, TbRa9 detected 22 out of 27, TbH4 detected 18 out of 27 and TbH12 detected 15 out of 27. If used in combination, these four antigens would have a theoretical sensitivity of 27 out of 27, indicating that these antigens should complement each other in the serological detection of *M. tuberculosis* infection. In addition, several of the recombinant antigens detected positive sera that were not detected using the 38 kD antigen, indicating that these antigens may be complementary to the 38 kD antigen.

The reactivity of the recombinant antigen TbRall with sera from M. tuberculosis patients shown to be negative for the 38 kD antigen, as well as with sera from PPD positive and normal donors, was determined by ELISA as described above.

10

The results are shown in Figure 6 which indicates that TbRall, while being negative with sera from PPD positive and normal donors, detected sera that were negative with the 38 kD antigen. Of the thirteen 38 kD negative sera tested, nine were positive with TbRall, indicating that this antigen may be reacting with a sub-group of 38 kD antigen negative sera. In contrast, in a group of 38 kD positive sera where TbRall was reactive, the mean OD 450 for TbRall was lower than that for the 38 kD antigen. The data indicate an inverse relationship between the presence of TbRall activity and 38 kD positivity.

The antigen TbRa2A was tested in an indirect ELISA using initially 50 µ l of serum at 1:100 dilution for 30 minutes at room temperature followed by washing in PBS Tween and incubating for 30 minutes with biotinylated Protein A (Zymed, San Francisco, CA) at a 1:10,000 dilution. Following washing, 50 µl of streptavidin-horseradish peroxidase (Zymed) at 1:10,000 dilution was added and the mixture incubated for 30 minutes. After washing, the assay was developed with TMB substrate as described above. The reactivity of TbRa2A with sera from *M. tuberculosis* patients and normal donors in shown in Table 4. The mean value for reactivity of TbRa2A with sera from *M. tuberculosis* patients was 0.444 with a standard deviation of 0.309. The mean for reactivity with sera from normal donors was 0.109 with a standard deviation of 0.029. Testing of 38 kD negative sera (Figure 7) also indicated that the TbRa2A antigen was capable of detecting sera in this category.

10

20

25

TABLE 4

REACTIVITY OF TBRA2A WITH SERA FROM M. TUBERCULOSIS PATIENTS AND FROM

NORMAL DONORS

Serum ID	Status	OD 450
Тъ85	TB	0.680
Tb86	TB	0.450
Tb87	TB	0.263
Tb88	TB	0.275
Тъ89	TB	0.403
Tb91	TB	0.393
Tb92	TB	0.401

Тъ93	TB	0.232
Тъ94	TB	0.333
Ть95	TB	0.435
Tb96	TB	0.284
Ть97	TB	0.320
Ть99	TB	0.328
Tb100	TB	0.817
Tb101	TB	0.607
Тъ102	TB	0.191
Тъ103	TB	0.228
ТЪ107	TB	0.324
Tb109	TB	1.572
Tb112	TB	0.338
DL+-0176	Normal	0.036
AT4-0043	Normal	0.126
AT4-0044	Normal	0.130
AT4-0052	Normal	0.135
AT4-0053	Normal	0.133
AT4-0062	Normal	0.128
AT4-0070	Normal	0.088
AT4-0091	Normal	0.108
AT4-0100	Normal	0.106
AT4-0105	Normal	0.108
AT4-0109	Normal	0.105

The reactivity of the recombinant antigen (g) (SEQ ID NO: 60) with sera from *M. tuberculosis* patients and normal donors was determined by ELISA as described above. Figure 8 shows the results of the titration of antigen (g) with four *M. tuberculosis* positive sera that were all reactive with the 38 kD antigen and with four donor sera. All four positive sera were reactive with antigen (g).

The reactivity of the recombinant antigen TbH-29 (SEQ ID NO: 137) with sera from *M. tuberculosis* patients, PPD positive donors and normal donors was determined by indirect ELISA as described above. The results are shown in Figure 9. TbH-29 detected 30 out of 60 *M. tuberculosis* sera, 2 out of 8 PPD positive sera and 2 out of 27 normal sera.

Figure 10 shows the results of ELISA tests (both direct and indirect) of the antigen TbH-33 (SEQ ID NO: 140) with sera from M. tuberculosis patients and from normal donors and with a pool of sera from M. tuberculosis patients. The mean

64

OD 450 was demonstrated to be higher with sera from *M. tuberculosis* patients than from normal donors, with the mean OD 450 being significantly higher in the indirect ELISA than in the direct ELISA. Figure 11 is a titration curve for the reactivity of recombinant TbH-33 with sera from *M. tuberculosis* patients and from normal donors showing an increase in OD 450 with increasing concentration of antigen.

The reactivity of the recombinant antigens RDIF6, RDIF8 and RDIF10 (SEQ ID NOS: 184-187, respectively) with sera from *M. tuberculosis* patients and normal donors was determined by ELISA as described above. RDIF6 detected 6 out of 32 *M. tuberculosis* sera and 0 out of 15 normal sera; RDIF8 detected 14 out of 32 *M. tuberculosis* sera and 0 out of 15 normal sera; and RDIF10 detected 4 out of 27 *M. tuberculosis* sera and 1 out of 15 normal sera. In addition, RDIF10 was found to detect 0 out of 5 sera from PPD-positive donors.

10

15

20

The antigens MO-1, MO-2, MO-4, MO-28 and MO-29 described above in Example 5, were expressed in *E. coli* and purified using a hexahistidine tag. The reactivity of these antigens with both *M. tuberculosis* positive and negative sera was examined by ELISA as described above. Titration curves showing the reactivity of MO-1, MO-2, MO-4, MO-28 and MO-29 at different solid phase coat levels when tested against four *M. tuberculosis* positive sera and four *M. tuberculosis* negative sera are shown in Figs. 12A-E, respectively. Three of the clones, MO-1, MO-2 and MO-29 were further tested on panels of HIV positive/tuberculosis (HIV/TB) positive and extrapulmonary sera. MO-1 detected 3/20 extrapulmonary and 2/38 HIV/TB sera. On the same sera groups, MO-2 detected 2/20 and 10/38, and MO-29 detected 2/20 and 8/38 sera. In combination these three clones would have detected 4/20 extrapulmonary sera and 16/38 HIV/TB sera. In addition, MO-1 detected 6/17 sera that had previously been shown only to react with *M. tuberculosis* lysate and not with either 38 kD or with other antigens of the subject invention.

EXAMPLE 10

PREPARATION AND CHARACTERIZATION OF M. TUBERCULOSIS FUSION PROTEINS

A fusion protein containing TbRa3, the 38 kD antigen and Tb38-1 was prepared as follows.

Each of the DNA constructs TbRa3, 38 kD and Tb38-1 were modified by PCR in order to facilitate their fusion and the subsequent expression of the fusion protein TbRa3-38 kD-Tb38-1. TbRa3, 38 kD and Tb38-1 DNA was used to perform PCR using the primers PDM-64 and PDM-65 (SEQ ID NO: 141 and 142), PDM-57 and PDM-58 (SEQ ID NO: 143 and 144), and PDM-69 and PDM-60 (SEQ ID NO: 145-146), respectively. In each case, the DNA amplification was performed using 10 μl 10X Pfu buffer, 2 μ l 10 mM dNTPs, 2 μ l each of the PCR primers at 10 μ M concentration, 81.5 µl water, 1.5 µl Pfu DNA polymerase (Stratagene, La Jolla, CA) and 1 μ l DNA at either 70 ng/μ l (for TbRa3) or 50 ng/μ l (for 38 kD and Tb38-1). For TbRa3, denaturation at 94°C was performed for 2 min, followed by 40 cycles of 96°C for 15 sec and 72°C for 1 min, and lastly by 72°C for 4 min. For 38 kD, denaturation at 96°C was performed for 2 min, followed by 40 cycles of 96°C for 30 sec, 68°C for 15 sec and 72°C for 3 min, and finally by 72°C for 4 min. For Tb38-1 denaturation at 94° C for 2 min was followed by 10 cycles of 96°C for 15 sec. 68°C for 15 sec and 72°C for 1.5 min, 30 cycles of 96°C for 15 sec, 64°C for 15 sec and 72°C for 1.5, and finally by 72°C for 4 min.

10

20

The TbRa3 PCR fragment was digested with NdeI and EcoRI and cloned directly into pT7^L2 IL 1 vector using NdeI and EcoRI sites. The 38 kD PCR fragment was digested with Sse8387I, treated with T4 DNA polymerase to make blunt ends and then digested with EcoRI for direct cloning into the pT7^L2Ra3-1 vector which was digested with StuI and EcoRI. The 38-1 PCR fragment was digested with Eco47III and EcoRI and directly subcloned into pT7^L2Ra3/38kD-17 digested with the same enzymes. The whole fusion was then transferred to pET28b using NdeI and EcoRI sites. The fusion construct was confirmed by DNA sequencing.

20

The expression construct was transformed to BLR pLys S E. coli (Novagen, Madison, WI) and grown overnight in LB broth with kanamycin (30 µg/ml) and chloramphenicol (34 µg/ml). This culture (12 ml) was used to inoculate 500 ml 2XYT with the same antibiotics and the culture was induced with IPTG at an OD560 of 0.44 to a final concentration of 1.2 mM. Four hours post-induction, the bacteria were harvested and sonicated in 20 mM Tris (8.0), 100 mM NaCl, 0.1% DOC, 20 µg/ml Leupeptin, 20 mM PMSF followed by centrifugation at 26,000 X g. The resulting pellet was resuspended in 8 M urea, 20 mM Tris (8.0), 100 mM NaCl and bound to Probond nickel resin (Invitrogen, Carlsbad, CA). The column was washed several times with the above buffer then eluted with an imidazole gradient (50 mM. 100 mM, 500 mM imidazole was added to 8 M urea, 20 mM Tris (8.0), 100 mM NaCl). The eluates containing the protein of interest were then dialzyed against 10 mM Tris (8.0).

The DNA and amino acid sequences for the resulting fusion protein (hereinafter referred to as TbRa3-38 kD-Tb38-1) are provided in SEQ ID NO: 147 and 148, respectively.

A fusion protein containing the two antigens TbH-9 and Tb38-1 (hereinafter referred to as TbH9-Tb38-1) without a hinge sequence, was prepared using a similar procedure to that described above. The DNA sequence for the TbH9-Tb38-1 fusion protein is provided in SEQ ID NO: 151.

A fusion protein containing TbRa3, the antigen 38kD, Tb38-1 and DPEP was prepared as follows.

Each of the DNA constructs TbRa3, 38 kD and Tb38-1 were modified by PCR and cloned into vectors essentially as described above, with the primers PDM-69 (SEQ ID NO:145 and PDM-83 (SEQ ID NO: 200) being used for amplification of the Tb38-1A fragment. Tb38-1A differs from Tb38-1 by a DraI site at the 3' end of the coding region that keeps the final amino acid intact while creating a blunt restriction site that is in frame. The TbRa3/38kD/Tb38-1A fusion was then transferred to pET28b using NdeI and EcoR1 sites.

DPEP DNA was used to perform PCR using the primers PDM-84 and PDM-85 (SEQ ID NO: 201 and 202, respectively) and 1 µl DNA at 50 ng/µl.

10

15

Denaturation at 94 °C was performed for 2 min, followed by 10 cycles of 96 °C for 15 sec, 68 °C for 15 sec and 72 °C for 1.5 min; 30 cycles of 96 °C for 15 sec, 64 °C for 15 sec and 72 °C for 1.5 min; and finally by 72 °C for 4 min. The DPEP PCR fragment was digested with EcoRI and Eco72I and clones directly into the pET28Ra3/38kD/38-1A construct which was digested with DraI and EcoRI. The fusion construct was confirmed to be correct by DNA sequencing. Recombinant protein was prepared as described above. The DNA and amino acid sequences for the resulting fusion protein (hereinafter referred to as TbF-2) are provided in SEQ ID NO: 203 and 204, respectively.

A fusion protein containing TbRa3, the antigen 38kD, Tb38-1 and TbH4 was prepared as follows.

Genomic *M. tuberculosis* DNA was used to PCR full-length TbH4 (FL TbH4) with the primers PDM-157 and PDM-160 (SEQ ID NO: 343 and 344, respectively) and 2 μl DNA at 100 ng/μl. Denaturation at 96 °C was performed for 2 min, followed by 40 cycles of 96 °C for 30 sec, 61 °C for 20 sec and 72 °C for 5 min; and finally by annealing at 72 °C for 10 min. The FL TbH4 PCR fragment was digested with EcoRI and Sca I (New England Biolabs.) and cloned directly into the pET28Ra3/38kD/38-1A construct described above which was digested with DraI and EcoRI. The fusion construct was confirmed to be correct by DNA sequencing. Recombinant protein was prepared as described above. The DNA and amino acid sequences for the resulting fusion protein (hereinafter referred to as TbF-6) are provided in SEQ ID NO: 345 and 346, respectively.

A fusion protein containing the antigen 38kD and DPEP separated by a linker was prepared as follows.

25 38 kD DNA was used to perform PCR using the primers PDM-176 and PDM-175 (SEQ ID NO: 347 and 348, respectively), and 1 μl PET28Ra3/38kD/38-1/Ra2A-12 DNA at 110 ng/μl. Denaturation at 96 °C was performed for 2 min. followed by 40 cycles of 96 °C for 30 sec, 71 °C for 15 sec and 72 °C for 5 min and 40 sec; and finally by annealing at 72 °C for 4 min. The two sets of primers PDM-171. PDM-172, and PDM-173, PDM-174 were annealed by heating to 95 °C for 2 min and

then ramping down to 25 °C slowly at 0.1 °C/sec. DPEP DNA was used to perform PCR as described above. The 38 kD fragment was digested with Eco RI (New England Biolabs) and cloned into a modified pT7\(Delta\)L2 vector which was cut with Eco 72 I (Promega) and Eco RI. The modified pT7\(Delta\)L2 construct was designed to have a MGHHHHHHH amino acid coding region in frame just 5' of the Eco 72 I site. The construct was digested with Kpn 2I (Gibco, BRL) and Pst I (New England Biolabs) and the annealed sets of phosphorylated primers (PDM-171, PDM-172 and PDM-173, PDM-174) were cloned in. The DPEP PCR fragment was digested with Eco RI and Eco 72 I and cloned into this second construct which was digested with Eco 47 III (New England Biolabs) and Eco RI. Ligations were done with a ligation kit from Panvera (Madison, WI). The resulting construct was digested with NdeI (New England Biolabs) and Eco RI, and transferred to a modified pET28 vector. The fusion construct was confirmed to be correct by DNA sequencing.

Recombinant protein was prepared essentially as described above. The DNA and amino acid sequences for the resulting fusion protein (hereinafter referred to as TbF-8) are provided in SEQ ID NO: 349 and 350, respectively.

EXAMPLE 11

20

USE OF M. TUBERCULOSIS FUSION PROTEINS FOR SERODIAGNOSIS OF TUBERCULOSIS

The effectiveness of the fusion protein TbRa3-38 kD-Tb38-1, prepared as described above, in the serodiagnosis of tuberculosis infection was examined by ELISA.

The ELISA protocol was as described above in Example 6, with the fusion protein being coated at 200 ng/well. A panel of sera was chosen from a group of tuberculosis patients previously shown, either by ELISA or by western blot analysis, to react with each of the three antigens individually or in combination. Such a panel enabled the dissection of the serological reactivity of the fusion protein to determine if

all three epitopes functioned with the fusion protein. As shown in Table 5, all four sera that reacted with TbRa3 only were detectable with the fusion protein. Three sera that reacted only with Tb38-1 were also detectable, as were two sear that reacted with 38 kD alone. The remaining 15 sera were all positive with the fusion protein based on a cut-off in the assay of mean negatives +3 standard deviations. This data demonstrates the functional activity of all three epitopes in the fusion protein.

Table 5

Reactivity of Tri-Peptide Fusion Protein with Sera from M. tuberculosis

Patients

10

Serum ID	Status	ELISA	A and/or V	Vestern	Fusion	Fusion
		Blot	Blot Reactivity with			Recombinant
		Indi	vidual pro	teins	OD 450	Status
	<u> </u>	38kd	Тъ38-1	TbRa3		1
01B93I-40	TB	-	-	+	0.413	+
01B93I-41	TB	_	÷	+	0.392	+
01B93I-29	TB	+	-	+	2.217	÷
01 B93 I-109	TB	+	±	+	0.522	+
01 B9 3I-132	TB	+	÷	-	0.937	
5004	TB	=	<u>-</u>	=	1.098	+
15004	TB		-	÷	2.077	
39004	TB	+	4	-	1.675	+
68004	TB	+	÷	+	2.388	
99004	TB	-	+	±	0.607	 +
107004	TB	-	_	=	0.667	
92004	TB	÷-	±	±	1.070	+
97004	TB	+		±		+ .
118004	TB	+			1.152	+
173004	TB	+	+	- - -	2.694	+
175004	ТВ	+	_	+	3.258	+
274004	TB				2.514	+
276004	TB		+	+	3.220	+
282004	TB	+			2.991	+
289004	TB		-	-	0.824	+

308004	TB	-	+	-	3.338	+
314004	TB		+	-	1.362	+
317004	TB	+	-	-	0.763	+
312004	TB	-	-	+	1.079	+
D176	PPD	-	-	_	0.145	
D162	PPD	-	-	_	0.073	_
D161	PPD	-	-	-	0.097	_
D27	PPD	-	-	-	0.082	_
A6-124	NORMAL		-	-	0.053	-
A6-125	NORMAL	-	-	-	0.087	_
A6-126	NORMAL		-	-	0.346	±
A6-127	NORMAL	-	-	-	0.064	-
A6-128	NORMAL	-	-	_	0.034	_
A6-129	NORMAL	_		-	0.037	_
A6-130	NORMAL	-	-	_	0.057	_
A6-131	NORMAL	-	-	_	0.054	
A6-132	NORMAL	-	-		0.022	
A6-133	NORMAL	-	-		0.147	_
A6-134	NORMAL	-	-	-	0.101	_
A6-135	NORMAL	-	-		0.066	_
A6-136	NORMAL	_	-		0.054	_
A6-137	NORMAL	-	-	_	0.065	-
A6-138	NORMAL	-	-	-	0.041	_
A6-139	NORMAL	-	-		0.103	<u>-</u>
A6-140	NORMAL	-	_		0.212	-
A6-141	NORMAL	-	-	-	0.056	_
A6-142	NORMAL	- 1	-		0.050	_
					0.001	

The reactivity of the fusion protein TbF-2 with sera from M. tuberculosis-infected patients was examined by ELISA using the protocol described above. The results of these studies (Table 6) demonstrate that all four antigens function independently in the fusion protein.

71

 $\label{eq:Table 6} \mbox{Reactivity of TbF-2 Fusion Protein with TB and Normal Sera}$

	D Status	TbF OD450	Status	TbF-2 OD450	Status		ELISA	Reactivity	,
B931-40	ТВ					38 kD	TbRa3	Tb38-1	DPEP
B931-41		0.57	÷	0.321	+	-	+	1030-1	+
B931-10		0.601	+	0.396	÷	+	+	+	+
B931-13		0.494	+	0.404	+	+	+	±	
5004	TB	1.502	+	1.292] -	÷	+	+=	1 <u>+</u>
15004	TB	1.806	+	1.666	+	1=	1=	†	-
39004	TB	2.862	+	2.468	+	-	 	 	+
68004	TB	2.443		1.722	+	1-	+	+	+
99004		2.871		2.575	+	-	 	 	+
107004	TB	0.691	-	0.971	-	1.	1 =	 	+
92004	TB	0.875		0.732	-	†	 	<u> </u>	
97004	TB	1.632	_	1.394	-	-	=	+	·
	TB	1.491	+	1.979	7	†	 	 =	ļ <u>.</u>
118004	TB	3.182	+	3.045	+	+	±	 	+
173004	TB	3.644	-	3.578	÷	+	+	-	<u> </u>
175004	TB	3.332	+	2.916	+	+	 -	 	ļ <u>-</u>
274004	TB	3.696	-	3.716		 	-	-	-
276004	TB	3.243		2.56	+	-	 	ļ	+
282004	TB	1.249	-	1.234		-	ļ -	-	<u> </u>
289004	TB	1.373	-	1.17	-	 	<u> - </u>	<u> </u>	<u> </u>
308004	TB	3.708		3.355	+		+	ļ -	-
314004	TB	1.663	-	1.399	-		·	-	<u> </u>
317004	TB	1.163	- 1	0.92		-		-	-
312004	TB	1.709		1.453			-	-	-
380004	TB	0.238		0.461		-	-		l -
451004	TB	0.18		0.2			=	<u> </u>	-
478004	TB	0.188		2 + 5 2	-	-		-	=
410004	TB	0.384 -		2.200	_			-	±
411004	TB	0.306 -		0.004		<u> </u>		-	-
421004	TB	0.357 -					-		-
528004	TB	0.047		2.104			<u>+ i</u>	-	-
A 6- 87	Normal	0.094		2062	-	·	-	-	-
A6-88	Normal	0.214		0.19			•		-
1 6-89	Normal	0.248		0.125			·	-	-
A6-90	Normal	0.179		1006		-	-	-	
16-91	Normal	0.135		0.206	·	-	-		-
16-92	Normai	0.064 -		007			-		-
A6-93	Normal	0.072		0.097 -			-		•
16-94	Normal	0.072		.098 -			•	-	-
16-95	Normal	0.125		.064 -			-	-	-
16-96	Normal	0.121		.159 -				-	
				.12 -			-	-	-
ut-off		0.284		.266					

WO 99/42118 PCT/US99/03265

72

One of skill in the art will appreciate that the order of the individual antigens within the fusion protein may be changed and that comparable activity would be expected provided each of the epitopes is still functionally available. In addition, truncated forms of the proteins containing active epitopes may be used in the construction of fusion proteins.

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purpose of illustration, various modifications may be made without deviating from the spirit and scope of the invention.

10

CLAIMS

We claim:

- 1. A polypeptide comprising an antigenic portion of a soluble *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen has an N-terminal sequence selected from the group consisting of:
 - (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu (SEQ ID NO: 115);
 - (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser (SEQ ID NO: 116);
 - (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg (SEQ ID NO: 17);
 - (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro (SEQ ID NO: 118);
 - (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val (SEQ ID NO: 119);
 - (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro (SEQ ID NO: 120);
 - (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Thr-Ala-Ala-Ser-Pro-Pro-Ser (SEQ ID NO: 121);
 - (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly (SEQ ID NO: 122);
 - (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Leu-Thr-Ser-Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asn-Val-Ser-Phe-Ala-Asn (SEQ ID NO: 123); and
 - (j) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly: (SEQ ID NO: 131)

wherein Xaa may be any amino acid.

- 2. A polypeptide comprising an immunogenic portion of an *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen has an N-terminal sequence selected from the group consisting of:
 - (a) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe; (SEQ ID NO: 124) and
 - (b) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID NO: 132), wherein Xaa may be any amino acid.
- 3. A polypeptide comprising an antigenic portion of a soluble M. tuberculosis antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID NOS: 1, 2, 4-10, 13-25, 52, 94 and 96, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID NOS: 1, 2, 4-10, 13-25, 52, 94 and 96 or a complement thereof under moderately stringent conditions.
- 4. A polypeptide comprising an antigenic portion of a *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID NOS: 26-51, 133, 134, 158-178, 196, 235, 237-242, 248-251, 290-293, 304, 311, 313-315, 317, 319, 323, 324, 328, 330, 332, 334 and 336, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID NOS: 26-51, 133, 134, 158-178, 196, 235, 237-242, 248-251, 290-293, 304, 311, 313-315, 317, 319, 323, 324, 328, 330, 332, 334 and 336, or a complement thereof under moderately stringent conditions.
- 5. A DNA molecule comprising a nucleotide sequence encoding a polypeptide according to any one of claims 1-4.

- 6. A recombinant expression vector comprising a DNA molecule according to claim 5.
 - 7. A host cell transformed with an expression vector according to claim 6.
- 8. The host cell of claim 7 wherein the host cell is selected from the group consisting of *E. coli*, yeast and mammalian cells.
- 9. A method for detecting M. tuberculosis infection in a biological sample, comprising:
- (a) contacting a biological sample with one or more polypeptides according to any of claims 1-4; and
- (b) detecting in the sample the presence of antibodies that bind to at least one of the polypeptides, thereby detecting M. tuberculosis infection in the biological sample.
- 10. A method for detecting M. tuberculosis infection in a biological sample, comprising:
- (a) contacting a biological sample with a polypeptide having an N-terminal sequence selected from the group consisting of sequences provided in SEQ ID NO: 129 and 130; and
- (b) detecting in the sample the presence of antibodies that bind to at least one of the polypeptides, thereby detecting M. tuberculosis infection in the biological sample.
- 11. A method for detecting M. tuberculosis infection in a biological sample, comprising:
- (a) contacting a biological sample with one or more polypeptides encoded by a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-303, 305-310, 312, 316, 318, 320-322, 325-327, 329, 331, 333, 335 and 337, the complements of said

sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-303, 305-310, 312, 316, 318, 320-322, 325-327, 329, 331, 333, 335 and 337; and

- (b) detecting in the sample the presence of antibodies that bind to at least one of the polypeptides, thereby detecting M. tuberculosis infection in the biological sample.
- 12. The method of any one of claims 9-11 wherein step (a) additionally comprises contacting the biological sample with a 38 kD *M. tuberculosis* antigen and step (b) additionally comprises detecting in the sample the presence of antibodies that bind to the 38 kD *M. tuberculosis* antigen.
- 13. The method of any one of claims 9-11 wherein the polypeptide(s) are bound to a solid support.
- 14. The method of claim 13 wherein the solid support comprises nitrocellulose, latex or a plastic material.
- 15. The method of any one of claims 9-11 wherein the biological sample is selected from the group consisting of whole blood, serum, plasma, saliva, cerebrospinal fluid and urine.
- 16. The method of claim 15 wherein the biological sample is whole blood or serum.
- 17. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting the sample with at least two oligonucleotide primers in a polymerase chain reaction, wherein at least one of the oligonucleotide primers is specific for a DNA molecule according to claim 5; and

- (b) detecting in the sample a DNA sequence that amplifies in the presence of the oligonucleotide primers, thereby detecting M. tuberculosis infection.
- 18. The method of claim 17, wherein at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotides of a DNA molecule according to claim 5.
- 19. A method for detecting M. tuberculosis infection in a biological sample, comprising:
- (a) contacting the sample with at least two oligonucleotide primers in a polymerase chain reaction, wherein at least one of the oligonucleotide primers is specific for a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-303, 305-310, 312, 316, 318, 320-322, 325-327, 329, 331, 333, 335 and 337; and
- (b) detecting in the sample a DNA sequence that amplifies in the presence of the first and second oligonucleotide primers, thereby detecting M. tuberculosis infection.
- 20. The method of claim 19, wherein at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotides of a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-303, 305-310, 312, 316, 318, 320-322, 325-327, 329, 331, 333, 335 and 337.
- 21. The method of claims 17 or 19 wherein the biological sample is selected from the group consisting of whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid and urine.
- 22. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:

- (a) contacting the sample with one or more oligonucleotide probes specific for a DNA molecule according to claim 5; and
- (b) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe, thereby detecting M. tuberculosis infection.
- 23. The method of claim 22 wherein the probe comprises at least about 15 contiguous nucleotides of a DNA molecule according to claim 5.
- 24. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting the sample with one or more oligonucleotide probes specific for a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-303, 305-310, 312, 316, 318, 320-322, 325-327, 329, 331, 333, 335 and 337; and
 - (b) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe, thereby detecting M. tuberculosis infection.
- 25. The method of claim 24 wherein the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-303, 305-310, 312, 316, 318, 320-322, 325-327, 329, 331, 333, 335 and 337.
- 26. The method of claims 22 or 24 wherein the biological sample is selected from the group consisting of whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid and urine.
- 27. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:

- (a) contacting the biological sample with a binding agent which is capable of binding to a polypeptide according to any one of claims 1-4; and
- (b) detecting in the sample a protein or polypeptide that binds to the binding agent, thereby detecting M. tuberculosis infection in the biological sample.
- 28. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting the biological sample with a binding agent which is capable of binding to a polypeptide having an N-terminal sequence selected from the group consisting of sequences provided in SEQ ID NO: 129 and 130; and
- (b) detecting in the sample a protein or polypeptide that binds to the binding agent, thereby detecting M. tuberculosis infection in the biological sample.
- 29. A method for detecting M. tuberculosis infection in a biological sample, comprising:
- (a) contacting the biological sample with a binding agent which is capable of binding to a polypeptide encoded by a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-303, 305-310, 312, 316, 318, 320-322, 325-327, 329, 331, 333, 335 and 337, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-303, 305-310, 312, 316, 318, 320-322, 325-327, 329, 331, 333, 335 and 337; and
- (b) detecting in the sample a protein or polypeptide that binds to the binding agent, thereby detecting M. tuberculosis infection in the biological sample.
- 30. The method of any one of claims 27-29 wherein the binding agent is a monoclonal antibody.

- The method of any one of claims 27-29 wherein the binding agent is a polyclonal antibody.
 - 32. A diagnostic kit comprising:
 - (a) one or more polypeptides according to any of claims 1-4; and
 - (b) a detection reagent.
 - 33. A diagnostic kit comprising:
- (a) one or more polypeptides having an N-terminal sequence selected from the group consisting of sequences provided in SEQ ID NO: 129 and 130; and
 - (b) a detection reagent.
 - 34. A diagnostic kit comprising:
- (a) one or more polypeptides encoded by a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-303, 305-310, 312, 316, 318, 320-322, 325-327, 329, 331, 333, 335 and 337, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-303, 305-310, 312, 316, 318, 320-322, 325-327, 329, 331, 333, 335 and 337; and
 - (b) a detection reagent.
- 35. The kit of any one of claims 32-34 wherein the polypeptide(s) are immobilized on a solid support.
- 36. The kit of claim 35 wherein the solid support comprises nitrocellulose, latex or a plastic material.
- 37. The kit of any one of claims 32-34 wherein the detection reagent comprises a reporter group conjugated to a binding agent.

- 38. The kit of claim 37 wherein the binding agent is selected from the group consisting of anti-immunoglobulins, Protein G, Protein A and lectins.
- 39. The kit of claim 37 wherein the reporter group is selected from the group consisting of radioisotopes, fluorescent groups, luminescent groups, enzymes, biotin, dye particles and colloidal particles.
- 40. A diagnostic kit comprising at least two oligonucleotide primers, at least one of the oligonucleotide primers being specific for a DNA molecule according to claim 5.
- 41. A diagnostic kit according to claim 40, wherein at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotide of a DNA molecule according to claim 5.
- 42. A diagnostic kit comprising a at least two oligonucleotide primers, at least one of the primers being specific for a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-303, 305-310, 312, 316, 318, 320-322, 325-327, 329, 331, 333, 335 and 337.
- 43. A diagnostic kit according to claim 42, wherein at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotide of a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-303, 305-310, 312, 316, 318, 320-322, 325-327, 329, 331, 333, 335 and 337.
- 44. A diagnostic kit comprising at least one oligonucleotide probe, the oligonucleotide probe being specific for a DNA molecule according to claim 5.

- 45. A kit according to claim 44, wherein the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a DNA molecule according to claim 5.
- 46. A diagnostic kit comprising at least one oligonucleotide probe, the oligonucleotide probe being specific for a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-303, 305-310, 312, 316, 318, 320-322, 325-327, 329, 331, 333, 335 and 337.
- 47. A kit according to claim 46, wherein the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-303, 305-310, 312, 316, 318, 320-322, 325-327, 329, 331, 333, 335 and 337.
- 48. A monoclonal antibody that binds to a polypeptide according to any of claims 1-4.
- 49. A polyclonal antibody that binds to a polypeptide according to any of claims 1-4.
- 50. A fusion protein comprising two or more polypeptides according to any one of claims 1-4.
- 51. A fusion protein comprising one or more polypeptides according to any one of claims 1-4 and ESAT-6 (SEQ ID NO: 99).
- 52. A fusion protein comprising a polypeptide having an N-terminal sequence selected from the group of sequences provided in SEQ ID NOS: 129 and 130.

- 53. A fusion protein comprising one or more polypeptides according to any one of claims 1-4 and the M. tuberculosis antigen 38 kD (SEQ ID NO: 150).
 - 54. A diagnostic kit comprising:
 - (a) one or more fusion proteins according to any one of claims 50-53; and
 - (b) a detection reagent.

D7 T Cell Proliferation

D7 IFNg

FIG. 1.4

D160 T Cell Proliferation

D160 IFNg

FIG. 1B

FIGS. 2A-D

responds poorly to CSI T cell clone 131TbH9

FIG. 37

T Cell Clone PPD 800-10 IFNg Production

FIG. 3B

('01.1

F1G. 6

Nenetivity of Necombinant 30kD and TWA addigine with som from Af. Laborcalosis patients, PPD poelitive and normal denote

F1G. 7

Hencilvity of DPLEP recombinant with TD positive and negative sera

FIG. 9

FIG. 10

ELISA reactivity of Thift33

0.400

0.200

0.000

A6-156

A6-158

Titration of Mo-28 with TB positive and negative sera

500

recombinent/weil

1000

Titration of Mo-29 with TB positive and negative sera

FTS 12A-10E

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANTS: Reed, Steven G. Skeiky, Yasir A.W. Dillon, Davin C. Campos-Neto, Antonia Houghton, Raymond Vedvick, Thomas S. Twardzik, Daniel R. Lodes, Michael J. Hendrickson, Ronald
- (ii) TITLE OF INVENTION: COMPOUNDS AND METHODS FOR DIAGNOSIS OF TUBERCULOSIS
- (iii) NUMBER OF SEQUENCES: 350
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: SEED and BERRY LLP
 - (B) STREET: 6300 Columbia Center, 701 Fifth Avenue
 - (C) CITY: Seattle
 - (D) STATE: Washington
 - (E) COUNTRY: USA
 - (F) ZIP: 98104-7092
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC comparible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 05-MAY-1998
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Maki, David J.
 - (B) REGISTRATION NUMBER: 31,392
 - (C) REFERENCE/DOCKET NUMBER: 210121.417C9
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (206) 622-4900
 - (B) TELEFAX: (206) 682-6031
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 766 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

WO 99/42118 PCT/US99/03265

2

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

222 22 22						
CGAGGCACCG	GTAGTTTGAA	CCAAACGCAC	AATCGACGGG	CAAACGAACG	GAAGAACACA	60
ACCATGAAGA	TGGTGAAATC	GATCGCCGCA	GGTCTGACCG	CCGCGGCTGC	AATCGGCGCC	120
GCTGCGGCCG	GTGTGACTTC	GATCATGGCT	GGCGGCCCGG	TCGTATACCA	GATGCAGCCG	180
GTCGTCTTCG	GCGCGCCACT	GCCGTTGGAC	CCGGCATCCG	CCCCTGACGT	CCCGACCGCC	240
GCCCAGTTGA	CCAGCCTGCT	CAACAGCCTC	GCCGATCCCA	ACGTGTCGTT	TGCGAACAAG	300
GGCAGTCTGG	TCGAGGGCGG	CATCGGGGGC	ACCGAGGCGC	GCATCGCCGA	CCACAAGCTG	360
AAGAAGGCCG	CCGAGCACGG	GGATCTGCCG	CTGTCGTTCA	GCGTGACGAA	CATCCAGCCG	420
GCGGCCGCCG	GTTCGGCCAC	CGCCGACGTT	TCCGTCTCGG	GTCCGAAGCT	CTCGTCGCCG	480
GTCACGCAGA	ACGTCACGTT	CGTGAATCAA	GGCGGCTGGA	TGCTGTCACG	CGCATCGGCG	540
ATGGAGTTGC	TGCAGGCCGC	AGGGNAACTG	ATTGGCGGGC	CGGNTTCAGC	CCGCTGTTCA	600
GCTACGCCGC	CCGCCTGGTG	ACGCGTCCAT	GTCGAACACT	CGCGCGTGTA	GCACGGTGCG	660
GTNTGCGCAG	GGNCGCACGC	ACCGCCCGGT	GCAAGCCGTC	CTCGAGATAG	GTGGTGNCTC	720
GNCACCAGNG	ANCACCCCCN	NNTCGNCNNT	TCTCGNTGNT	GNATGA		766

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 752 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

ATGCATCACC	ATCACCATCA	CGATGAAGTC	ACGGTAGAGA	CGACCTCCGT	CTTCCGCGCA	60
GACTTCCTCA	GCGAGCTGGA	CGCTCCTGCG	CAAGCGGGTA	CGGAGAGCGC	GGTCTCCGGG	120
GTGGAAGGGC	TCCCGCCGGG	CTCGGCGTTG	CTGGTAGTCA	AACGAGGCCC	CAACGCCGGG	180
TCCCGGTTCC	TACTCGACCA	AGCCATCACG	TCGGCTGGTC	GGCATCCCGA	CAGCGACATA	240
TTTCTCGACG	ACGTGACCGT	GAGCCGTCGC	CATGCTGAAT	TCCGGTTGGA	AAACAACGAA	300
TTCAATGTCG	TCGATGTCGG	GAGTCTCAAC	GGCACCTACG	TCAACCGCGA	GCCCGTGGAT	360
TCGGCGGTGC	TGGCGAACGG	CGACGAGGTC	CAGATCGGCA	AGCTCCGGTT	GGTGTTCTTG	420
ACCGGACCCA	AGCAAGGCGA	GGATGACGGG	AGTACCGGGG	GCCCGTGAGC	GCACCCGATA	480

GCCCCGCGCT GGCCGGGATG TCGATCGGGG CGGTCCTCCG ACCTGCTACG ACCGGATTTT	540
CCCTGATGTC CACCATCTCC AAGATTCGAT TCTTGGGAGG CTTGAGGGTC NGGGTGACCC	600
CCCCGCGGGC CTCATTCNGG GGTNTCGGCN GGTTTCACCC CNTACCNACT GCCNCCCGGN	660
TTGCNAATTC NTTCTTCNCT GCCCNNAAAG GGACCNTTAN CTTGCCGCTN GAAANGGTNA	720
TCCNGGGCCC NTCCTNGAAN CCCCNTCCCC CT	752
(2) INFORMATION FOR SEQ ID NO:3:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 813 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
CATATGCATC ACCATCACCA TCACACTTCT AACCGCCCAG CGCGTCGGGG GCGTCGAGCA	60
CCACGCGACA CCGGGCCCGA TCGATCTGCT AGCTTGAGTC TGGTCAGGCA TCGTCGTCAG	120
CAGCGCGATG CCCTATGTTT GTCGTCGACT CAGATATCGC GGCAATCCAA TCTCCCGCCT	180
GCGGCCGGCG GTGCTGCAAA CTACTCCCGG AGGAATTTCG ACGTGCGCAT CAAGATCTTC	240
ATGCTGGTCA CGGCTGTCGT TTTGCTCTGT TGTTCGGGTG TGGCCACGGC CGCGCCCAAG	300
ACCTACTGCG AGGAGTTGAA AGGCACCGAT ACCGGCCAGG CGTGCCAGAT TCAAATGTCC	360
GACCCGGCCT ACAACATCAA CATCAGCCTG CCCAGTTACT ACCCCGACCA GAAGTCGCTG	420
GAAAATTACA TCGCCCAGAC GCGCGACAAG TTCCTCAGCG CGGCCACATC GTCCACTCCA	480
CGCGAAGCCC CCTACGAATT GAATATCACC TCGGCCACAT ACCAGTCCGC GATACCGCCG	540
CGTGGTACGC AGGCCGTGGT GCTCAMGGTC TACCACAACG CCGGCGGCAC GCACCCAACG	600
ACCACGTACA AGGCCTTCGA TTGGGACCAG GCCTATCGCA AGCCAATCAC CTATGACACG	660
CTGTGGCAGG CTGACACCGA TCCGCTGCCA GTCGTCTTCC CCATTGTTGC AAGGTGAACT	720
GAGCAACGCA GACCGGGACA ACWGGTATCG ATAGCCGCCN AATGCCGGCT TGGAACCCNG	780
TGAAATTATC ACAACTTCGC AGTCACNAAA NAA	813

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 447 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

~~~						
	ACGGCCGCGT					60
CATTCCGATC	GGGCAGGCGA	TGGCGATCGC	GGGCCAGATC	CGATCGGGTG	GGGGGTCACC	120
CACCGTTCAT	ATCGGGCCTA	CCGCCTTCCT	CGGCTTGGGT	GTTGTCGACA	ACAACGGCAA	180
CGGCGCACGA	GTCCAACGCG	TGGTCGGGAG	CGCTCCGGCG	GCAAGTCTCG	GCATCTCCAC	240
CGGCGACGTG	ATCACCGCGG	TCGACGGCGC	TCCGATCAAC	TCGGCCACCG	CGATGGCGGA	300
CGCGCTTAAC	GGGCATCATC	CCGGTGACGT	CATCTCGGTG	AACTGGCAAA	CCAAGTCGGG	360
CGGCACGCGT	ACAGGGAACG	TGACATTGGC	CGAGGGACCC	CCGGCCTGAT	TTCGTCGYGG	420
ATACCACCCG	CCGGCCGGCC	AATTGGA				447

#### (2). INFORMATION FOR SEQ ID NO:5:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 604 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GTCCCACTGC GGTCGCCGAG TATGTCGCCC AGCAAATGTC TGGCAGCCGC CCAACGGAAT 60 CCGGTGATCC GACGTCGCAG GTTGTCGAAC CCGCCGCCGC GGAAGTATCG GTCCATGCCT AGCCCGGCGA CGGCGAGCGC CGGAATGGCG CGAGTGAGGA GGCGGGCAAT TTGGCGGGGC 180 CCGGCGACGG NGAGCGCCGG AATGGCGCGA GTGAGGAGGT GGNCAGTCAT GCCCAGNGTG 240 ATCCAATCAA CCTGNATTCG GNCTGNGGGN CCATTTGACA ATCGAGGTAG TGAGCGCAAA 300 TGAATGATGG AAAACGGGNG GNGACGTCCG NTGTTCTGGT GGTGNTAGGT GNCTGNCTGG 360 NGTNGNGGNT ATCAGGATGT TCTTCGNCGA AANCTGATGN CGAGGAACAG GGTGTNCCCG 420 NNANNCCNAN GGNGTCCNAN CCCNNNNTCC TCGNCGANAT CANANAGNCG NTTGATGNGA 480 NAAAAGGGTG GANCAGNNNN AANTNGNGGN CCNAANAANC NNNANNGNNG NNAGNTNGNT NNNTNTTNNC ANNNNNNTG NNGNNGNNCN NNNCAANCNN NTNNNNGNAA NNGGNTTNTT 600 NAAT 604

#### (2) INFORMATION FOR SEQ ID NO:6:

# (i) SEQUENCE CHARACTERISTICS:

2110

WO 99/42118 PCT/US99/03265

5

(A) LENGTH: 633 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

TTGCANGTCG AACCACCTCA CTAAAGGGAA CAAAAGCTNG AGCTCCACCG CGGTGGCGGC 60 CGCTCTAGAA CTAGTGKATM YYYCKGGCTG CAGSAATYCG GYACGAGCAT TAGGACAGTC 120 TAACGGTCCT GTTACGGTGA TCGAATGACC GACGACATCC TGCTGATCGA CACCGACGAA 180 CGGGTGCGAA CCCTCACCCT CAACCGGCCG CAGTCCCGYA ACGCGCTCTC GGCGGCGCTA 240 CGGGATCGGT TTTTCGCGGY GTTGGYCGAC GCCGAGGYCG ACGACGACAT CGACGTCGTC 300 ATCCTCACCG GYGCCGATCC GGTGTTCTGC GCCGGACTGG ACCTCAAGGT AGCTGGCCGG 360 GCAGACCGCG CTGCCGGACA TCTCACCGCG GTGGGCGGCC ATGACCAAGC CGGTGATCGG 420 CGCGATCAAC GGCGCCGCGG TCACCGGCGG GCTCGAACTG GCGCTGTACT GCGACATCCT 480 GATCGCCTCC GAGCACGCCC GCTTCGNCGA CACCCACGCC CGGGTGGGGC TGCTGCCCAC CTGGGGACTC AGTGTGTGCT TGCCGCAAAA GGTCGGCATC GGNCTGGGCC GGTGGATGAG 600 CCTGACCGGC GACTACCTGT CCGTGACCGA CGC 633

# (2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1362 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

CGACGACGAC GGCGCCGGAG AGCGGGCGCG AACGGCGATC GACGCGGCCC TGGCCAGAGT 60 CGGCACCACC CAGGAGGGAG TCGAATCATG AAATTTGTCA ACCATATTGA GCCCGTCGCG 120 CCCCGCCGAG CCGGCGGCGC GGTCGCCGAG GTCTATGCCG AGGCCCGCCG CGAGTTCGGC 180 CGGCTGCCCG AGCCGCTCGC CATGCTGTCC CCGGACGAGG GACTGCTCAC CGCCGGCTGG 240 GCGACGTTGC GCGAGACACT GCTGGTGGGC CAGGTGCCGC GTGGCCGCAA GGAAGCCGTC 300 GCCGCCGCCG TCGCGCCAG CCTGCGCTGC CCCTGGTGCG TCGACGCACA CACCACCATG 360 CTGTACGCGG CAGGCCAAAC CGACACCGCC GCGGCGATCT TGGCCGGCAC AGCACCTGCC 420 GCCGGTGACC CGAACGCGCC GTATGTGGCG TGGGCGGCAG GAACCGGGAC ACCGGCGGGA 480

CCCCCCCC	~ ~~~					
		GGATGTCGCC				540
CACTTCATC	G CACGCCTGG1	CCTGGTGCTG	CTGGACGAAA	CCTTCCTGCC	GGGGGCCCG	600
CGCGCCCAA	C AGCTCATGCC	CCGCGCCGGT	GGACTGGTGT	TCGCCCGCAA	GGTGCGCGCG	660
GAGCATCGG	C CGGGCCGCTC	CACCCGCCGG	CTCGAGCCGC	GAACGCTGCC	CGACGATCTG	720
GCATGGGCAI	A CACCGTCCGA	GCCCATAGCA	ACCGCGTTCG	CCGCGCTCAG	CCACCACCTG	780
GACACCGCG	CGCACCTGCC	GCCACCGACT	CGTCAGGTGG	TCAGGCGGGT	CGTGGGGTCG	840
TGGCACGGC	AGCCAATGCC	GATGAGCAGT	CGCTGGACGA	ACGAGCACAC	CGCCGAGCTG	900
CCCGCCGACC	TGCACGCGCC	CACCCGTCTT	GCCCTGCTGA	CCGGCCTGGC	CCCGCATCAG	960
		CGCGGCCCGA				1020
GGCGCCCTGG	CCTGGGCCGC	CTTCACCGCC	GCGCGGCGCA	TCGGCACCTG	GATCGGCGCC	1080
		GCGGCAAAAC				1140
		GAGGGATCTC				1200
		TGCGCCCCAA				1260
		GCCCTTGGCC				1320
		GTCACCCTGC (			william	1362

# (2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1458 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GCGACGACCC CGATATGCCG GGCACCGTAG CGAAAGCCGT CGCCGACGCA CTCGGGCGCG 60
GTATCGCTCC CGTTGAGGAC ATTCAGGACT GCGTGGAGGC CCGGCTGGGG GAAGCCGGTC 120
TGGATGACGT GGCCCGTGTT TACATCATCT ACCGGCAGCG GCGCCGGAG CTGCGGACGG 180
CTAAGGCCTT GCTCGGCGTG CGGGACGAGT TAAAGCTGAG CTTGGCGGCC GTGACGGTAC 240
TGCGCGAGCG CTATCTGCTG CACGACGAGC AGGGCCGGCC GGCCGAGTCG ACCGGCGAGC 300
TGATGGACCG ATCGGCGCG TGTGTCGCGG CGGCCGAGGA CCAGTATGAG CCGGGCTCGT 360
CGAGGCGGTG GGCCGAGCG TTCGCCACGC TATTACGCAA CCTGGAATT CTGCCGAATT 420
CGCCCACGTT GATGAACTCT GGCACCGACC TGGGACTGCT CGCCGGCTGT TTTGTTCTGC 480

WO 99/42118 PCT/US99/03265

	A TTCGCTGCAA					540
	G CGGCACCGGA					600
CCTCCACGG	G CGGCACGGCC	AGCGGACCGG	TGTCGTTTCT	ACGGCTGTAT	GACAGTGCCG	660
	T CTCCATGGGC					720
	A TATCTGTGAT					780
ATTTCAACC	T ATCGGTTGGT	GTGACCGACG	CGTTCCTGCG	GGCCGTCGAA	CGCAACGGCC	840
TACACCGGCT	GGTCAATCCG	CGAACCGGCA	AGATCGTCGC	GCGGATGCCC	GCCGCCGAGC	900
TGTTCGACGC	CATCTGCAAA	GCCGCGCACG	CCGGTGGCGA	TCCCGGGCTG	GTGTTTCTCG	960
ACACGATCAA	TAGGGCAAAC	CCGGTGCCGG	GGAGAGGCCG	CATCGAGGCG	ACCAACCCGT	1020
GCGGGGAGGT	' CCCACTGCTG	CCTTACGAGT	CATGTAATCT	CGGCTCGATC	AACCTCGCCC	1080
GGATGCTCGC	CGACGGTCGC	GTCGACTGGG	ACCGGCTCGA	GGAGGTCGCC	GGTGTGGCGG	1140
TGCGGTTCCT	TGATGACGTC	ATCGATGTCA	GCCGCTACCC	CTTCCCCGAA	CTGGGTGAGG	1200
CGGCCCGCGC	CACCCGCAAG .	ATCGGGCTGG	GAGTCATGGG	TTTGGCGGAA	CTGCTTGCCG	1260
CACTGGGTAT	TCCGTACGAC	agtgaagaag	CCGTGCGGTT	AGCCACCCGG	CTCATGCGTC	1320
GCATACAGCA	GGCGGCGCAC 1	ACGGCATCGC (	GGAGGCTGGC	CGAAGAGCGG	GGCGCATTCC	1380
CGGCGTTCAC	CGATAGCCGG 1	TTCGCGCGGT (	CGGGCCCGAG (	GCGCAACGCA	CAGGTCACCT	1440
CCGTCGCTCC	GACGGGCA					1458

# (2) INFORMATION FOR SEQ ID NO:9:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 862 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ACGGTGTAAT CGTGCTGGAT CTGGAACCGC GTGGCCCGCT ACCTACCGAG ATCTACTGGC 60
GGCGCAGGGG GCTGGCCCTG GGCATCGCGG TCGTCGTAGT CGGGATCGCC GTGGCCATCG 120
TCATCGCCTT CGTCGACAGC AGCGCCGGTG CCAAACCGGT CAGCGCCGAC AAGCCGGCCT 180
CCGCCCAGGAG CCATCCGGGC CCGCCGCAC CCCAAGCACC CCAGCCGGCC GGGCAAACCG 240
AAGGTAACGC CGCCGCGGCC CCGCCGCAGG GCCAAAACCC CGAGACACCC ACGCCCACCG 300

CCGCGGTGC	A GCCGCCCCC					
					TCGACGCTGG	360
			ACTACGTCGG			420
			GTAAACGCGA			480
			GGTTGTGGTC			540
			CCGGTGAGCA			600
GGACCGGGAT	GGGATCGGCG	CCGCGCTGCC	CATTGCCGCG	GCCGGCGATC	GGGCCGGGCA	660
CCTACAATCT	CGTGGTACAA	CTGGGCAATC	TGCGCTCGCT	GCCGGTTCCG	TTCATCCTGA	720
ATCAGCCGCC	GCCGCCGCCC	GGGCCGGTAC	CCGCTCCGGG	TCCAGCGCAG	GCGCCTCCGC	780
CGGAGTCTCC	CGCGCAAGGC	GGATAATTAT	TGATCGCTGA	TGGTCGATTC	CGCCAGCTGT	840
GACAACCCCT	CGCCTCGTGC	CG				262
(2)						862

# (2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 622 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

TTGATCAGCA C	CGGCAAGGC	GTCACATGCC	TCCCTGGGTG	TGCAGGTGAC	CAATGACAAA	60
GACACCCCGG G						80
						120
GTGCCGAAGG G						180
TTGGTTGCCG C						240
CCCTCGGGCG G	TAGCCGCAC	AGTGCAAGTC	ACCCTCGGCA	AGGCGGAGCA	GTGATGAAGG	300
TCGCCGCGCA G						360
TGGTGGTTGG CO						360
						420
ACCACAGCGG GC						480
TGGTGGCGGT GT	CCGCCCGAC (	GAGGTCGAGA	TCCGAAATGC	GCTGAACACA	GCGGTGATCG	540
GCGGGGTGGA CC	TGGTGGTG	TCGGTCGGCG	GGACCGGNGT	GACGNCTCGC	GATCTCACCC	600
CGGAAGCCAC CC						800
		-				622

# (2) INFORMATION FOR SEQ ID NO:11:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1200 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GGCGCAGCGG	TAAGCCTGTT	GGCCGCCGGC	ACACTGGTGT	TGACAGCATG	CGGCGGTGGC	60
ACCAACAGCT	' CGTCGTCAGG	CGCAGGCGGA	ACGTCTGGGT	CGGTGCACTG	CGGCGGCAAG	120
AAGGAGCTCC	ACTCCAGCGG	CTCGACCGCA	CAAGAAAATG	CCATGGAGCA	GTTCGTCTAT	180
GCCTACGTGC	GATCGTGCCC	GGGCTACACG	TTGGACTACA	ACGCCAACGG	GTCCGGTGCC	240
GGGGTGACCC	AGTTTCTCAA	CAACGAAACC	GATTTCGCCG	GCTCGGATGT	CCCGTTGAAT	300
CCGTCGACCG	GTCAACCTGA	CCGGTCGGCG	GAGCGGTGCG	GTTCCCCGGC	ATGGGACCTG	360
CCGACGGTGT	TCGGCCCGAT	CGCGATCACC	TACAATATCA	AGGGCGTGAG	CACGCTGAAT	420
CTTGACGGAC	CCACTACCGC	CAAGATTTTC	AACGGCACCA	TCACCGTGTG	GAATGATCCA	480
CAGATCCAAG	CCCTCAACTC	CGGCACCGAC	CTGCCGCCAA	CACCGATTAG	CGTTATCTTC	540
CGCAGCGACA	AGTCCGGTAC	GTCGGACAAC	TTCCAGAAAT	ACCTCGACGG	TGTATCCAAC	600
GGGGCGTGGG	GCAAAGGCGC	CAGCGAAACG	TTCAGCGGGG	GCGTCGGCGT	CGGCGCCAGC	660
GGGAACAACG	GAACGTCGGC	CCTACTGCAG	ACGACCGACG	GGTCGATCAC	CTACAACGAG	720
TGGTCGTTTG	CGGTGGGTAA	GCAGTTGAAC	ATGGCCCAGA	TCATCACGTC	GGCGGGTCCG	780
GATCCAGTGG	CGATCACCAC	CGAGTCGGTC	GGTAAGACAA	TCGCCGGGGC	CAAGATCATG	840
GGACAAGGCA						900
TCTTACCCGA						9 <b>6</b> 0
ACCGGTACTG						1020
GACCAATACG						1080
AATGCTATTT						1140
GGGTCGCAAT						1200
						1200

# (2) INFORMATION FOR SEQ ID NO:12:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1155 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GCAAGCAGC'	r GCAGGTCGTG	CTGTTCGACG	AACTGGGCAT	GCCGAAGACC	AAACGCACCA	60
AGACCGGCT	A CACCACGGAT	GCCGACGCGC	TGCAGTCGTT	GTTCGACAAG	ACCGGGCATC	120
CGTTTCTGC	A ACATCTGCTC	GCCCACCGCG	ACGTCACCCG	GCTCAAGGTC	ACCGTCGACG	180
GGTTGCTCC	AGCGGTGGCC	GCCGACGGCC	GCATCCACAC	CACGTTCAAC	CAGACGATCG	240
CCGCGACCG	CCGGCTCTCC	TCGACCGAAC	CCAACCTGCA	GAACATCCCG	ATCCGCACCG	300
ACGCGGGCCG	GCGGATCCGG	GACGCGTTCG	TGGTCGGGGA	CGGTTACGCC	GAGTTGATGA	360
CGGCCGACTA	CAGCCAGATC	GAGATGCGGA	TCATGGGGCA	CCTGTCCGGG	GACGAGGGCC	420
TCATCGAGGC	GTTCAACACC	GGGGAGGACC	TGTATTCGTT	CGTCGCGTCC	CGGGTGTTCG	480
GTGTGCCCAT	CGACGAGGTC	ACCGGCGAGT	TGCGGCGCCG	GGTCAAGGCG	ATGTCCTACG	540
GGCTGGTTTA	CGGGTTGAGC	GCCTACGGCC	TGTCGCAGCA	GTTGAAAATC	TCCACCGAGG	<b>60</b> 0
AAGCCAACGA	GCAGATGGAC	GCGTATTTCG	CCCGATTCGG	CGGGGTGCGC	GACTACCTGC	660
GCGCCGTAGT	CGAGCGGGCC	CGCAAGGACG	GCTACACCTC	GACGGTGCTG	GGCCGTCGCC	720
GCTACCTGCC	CGAGCTGGAC	AGCAGCAACC	GTCAAGTGCG	GGAGGCCGCC	GAGCGGGCGG	780
CGCTGAACGC	GCCGATCCAG	GGCAGCGCGG	CCGACATCAT	CAAGGTGGCC	ATGATCCAGG	840
TCGACAAGGC	GCTCAACGAG	GCACAGCTGG	CGTCGCGCAT	GCTGCTGCAG	GTCCACGACG	900
AGCTGCTGTT	CGAAATCGCC	CCCGGTGAAC	GCGAGCGGGT	CGAGGCCCTG	GTGCGCGACA	960
AGATGGGCGG	CGCTTACCCG	CTCGACGTCC	CGCTGGAGGT	GTCGGTGGGC	TACGGCCGCA	1020
GCTGGGACGC	GGCGGCGCAC	TGAGTGCCGA	GCGTGCATCT	GGGGCGGAA	TTCGGCGATT	1080
TTTCCGCCCT	GAGTTCACGC '	TCGGCGCAAT	CGGGACCGAG	TTTGTCCAGC	GTGTACCCGT	1140
CGAGTAGCCT	CGTCA					1155

## (2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1771 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

TCGGGCCTCG GGTTGGCGAT	CGTCAAACAG	GTGGTGCTCA	ACCACGGCGG	ATTGCTGCGC	120
ATCGAAGACA CCGACCCAGG	CGGCCAGCCC	CCTGGAACGT	CGATTTACGT	GCTGCTCCCC	180
GGCCGTCGGA TGCCGATTCC	GCAGCTTCCC	GGTGCGACGG	CTGGCGCTCG	GAGCACGGAC	240
ATCGAGAACT CTCGGGGTTC	GGCGAACGTT	ATCTCAGTGG	AATCTCAGTC	CACGCGCGCA	300
ACCTAGTTGT GCAGTTACTG	TTGAAAGCCA	CACCCATGCC	AGTCCACGCA	TGGCCAAGTT	360
GGCCCGAGTA GTGGGCCTAG	TACAGGAAGA	GCAACCTAGC	GACATGACGA	ATCACCCACG	420
GTATTCGCCA CCGCCGCAGC	AGCCGGGAAC	CCCAGGTTAT	GCTCAGGGGC	AGCAGCAAAC	480
GTACAGCCAG CAGTTCGACT	GGCGTTACCC	ACCGTCCCCG	CCCCCGCAGC	CAACCCAGTA	540
CCGTCAACCC TACGAGGCGT	TGGGTGGTAC	CCGGCCGGGT	CTGATACCTG	GCGTGATTCC	600
GACCATGACG CCCCCTCCTG (	GGATGGTTCG	CCAACGCCCT	CGTGCAGGCA	TGTTGGCCAT	6 <b>6</b> 0
CGGCGCGGTG ACGATAGCGG	TGGTGTCCGC	CGGCATCGGC	GCCGCGCCG	CATCCCTGGT	720
CGGGTTCAAC CGGGCACCCG (	CCGGCCCCAG	CGGCGGCCCA	GTGGCTGCCA	GCGCGGCGCC	780
AAGCATCCCC GCAGCAAACA	reccecces	GTCGGTCGAA	CAGGTGGCGG	CCAAGGTGGT	840
GCCCAGTGTC GTCATGTTGG A	AAACCGATCT	GGGCCGCCAG	TCGGAGGAGG	GCTCCGGCAT	900
CATTCTGTCT GCCGAGGGGC 1	rgatcttgac	CAACAACCAC	GTGATCGCGG	CGGCCGCCAA	960
GCCTCCCCTG GGCAGTCCGC (	CGCCGAAAAC	GACGGTAACC	TTCTCTGACG	GGCGGACCGC	1020
ACCCTTCACG GTGGTGGGGG	CTGACCCCAC	CAGTGATATC	GCCGTCGTCC	GTGTTCAGGG	1080
CGTCTCCGGG CTCACCCCGA 1	CTCCCTGGG	TTCCTCCTCG	GACCTGAGGG	TCGGTCAGCC	1140
GGTGCTGGCG ATCGGGTCGC	CGCTCGGTTT	GGAGGGCACC	GTGACCACGG	GGATCGTCAG	1200
CGCTCTCAAC CGTCCAGTGT C	CGACGACCGG	CGAGGCCGGC	AACCAGAACA	CCGTGCTGGA	1260
CGCCATTCAG ACCGACGCCG C	GATCAACCC	CGGTAACTCC	GGGGGCGCGC	TGGTGAACAT	1320
GAACGCTCAA CTCGTCGGAG T	CAACTCGGC	CATTGCCACG	CTGGGCGCGG	ACTCAGCCGA	1380
TGCGCAGAGC GGCTCGATCG G	TCTCGGTTT	TGCGATTCCA	GTCGACCAGG	CCAAGCGCAT	1440
CGCCGACGAG TTGATCAGCA C	CGGCAAGGC	GTCACATGCC	TCCCTGGGTG	TGCAGGTGAC	1500
CAATGACAAA GACACCCCGG G	CCCCAAGAT	CGTCGAAGTA	GTGGCCGGTG	GTGCTGCCGC	1560
GAACGCTGGA GTGCCGAAGG G	CGTCGTTGT	CACCAAGGTC	GACGACCGCC	CGATCAACAG	1620
CGCGGACGCG TTGGTTGCCG C	CGTGCGGTC	CAAAGCGCCG	GGCGCCACGG	TGGCGCTAAC	1680
CTTTCAGGAT CCCTCGGGCG G	TAGCCGCAC	AGTGCAAGTC	ACCCTCGGCA	AGGCGGAGCA	1740

12

GTGATGAAGG TCGCCGCGCA GTGTTCAAAG C

1771

## (2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1058 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

CTCCACCGCG GTGGCGGCCG CTCTAGAACT AGTGGATCCC CCGGGCTGCA GGAATTC	GGC 60
ACGAGGATCC GACGTCGCAG GTTGTCGAAC CCGCCGCCGC GGAAGTATCG GTCCATG	CCT 120
AGCCCGGCGA CGGCGAGCGC CGGAATGGCG CGAGTGAGGA GGCGGGCAAT TTGGCGGC	GC 180
CCGGCGACGG CGAGCGCCGG AATGGCGCGA GTGAGGAGGC GGGCAGTCAT GCCCAGCC	GTG 240
ATCCAATCAA CCTGCATTCG GCCTGCGGGC CCATTTGACA ATCGAGGTAG TGAGCGCA	AAA 300
TGAATGATGG AAAACGGGCG GTGACGTCCG CTGTTCTGGT GGTGCTAGGT GCCTGCCT	CGG 360
CGTTGTGGCT ATCAGGATGT TCTTCGCCGA AACCTGATGC CGAGGAACAG GGTGTTCC	CG 420
TGAGCCCGAC GGCGTCCGAC CCCGCGCTCC TCGCCGAGAT CAGGCAGTCG CTTGATGC	GA 480
CAAAAGGGTT GACCAGCGTG CACGTAGCGG TCCGAACAAC CGGGAAAGTC GACAGCTT	GC 540
TGGGTATTAC CAGTGCCGAT GTCGACGTCC GGGCCAATCC GCTCGCGGCA AAGGGCGT	AT 600
GCACCTACAA CGACGAGCAG GGTGTCCCGT TTCGGGTACA AGGCGACAAC ATCTCGGT	<b>GA</b> 660
AACTGTTCGA CGACTGGAGC AATCTCGGCT CGATTTCTGA ACTGTCAACT TCACGCGT	GC 720
TCGATCCTGC CGCTGGGGTG ACGCAGCTGC TGTCCGGTGT CACGAACCTC CAAGCGCA	AG 780
GTACCGAAGT GATAGACGGA ATTTCGACCA CCAAAATCAC CGGGACCATC CCCGCGAG	CT 840
CTGTCAAGAT GCTTGATCCT GGCGCCAAGA GTGCAAGGCC GGCGACCGTG TGGATTGC	CC 900.
AGGACGGCTC GCACCACCTC GTCCGAGCGA GCATCGACCT CGGATCCGGG TCGATTCAC	GC 960
TCACGCAGTC GAAATGGAAC GAACCCGTCA ACGTCGACTA GGCCGAAGTT GCGTCGACG	GC 1020
GTTGNTCGAA ACGCCCTTGT GAACGGTGTC AACGGNAC	1058

## (2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 542 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single

13

(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GAATTCGGCA	CGAGAGGTGA	TCGACATCAT	CGGGACCAGC	CCCACATCCT	GGGAACAGGC	60
GGCGGCGGAG	GCGGTCCAGC	GGGCGCGGGA	TAGCGTCGAT	GACATCCGCG	TCGCTCGGGT	120
CATTGAGCAG	GACATGGCCG	TGGACAGCGC	CGGCAAGATC	ACCTACCGCA	TCAAGCTCGA	180
AGTGTCGTTC	AAGATGAGGC	CGGCGCAACC	GCGCTAGCAC	GGGCCGGCGA	GCAAGACGCA	240
AAATCGCACG	GTTTGCGGTT	GATTCGTGCG	ATTTTGTGTC	TGCTCGCCGA	GGCCTACCAG	300
GCGCGGCCCA	GGTCCGCGTG	CTGCCGTATC	CAGGCGTGCA	TCGCGATTCC	GGCGGCCACG	360
CCGGAGTTAA	TGCTTCGCGT	CGACCCGAAC	TGGGCGATCC	GCCGGNGAGC	TGATCGATGA	420
CCGTGGCCAG	CCCGTCGATG	CCCGAGTTGC	CCGAGGAAAC	GTGCTGCCAG	GCCGGTAGGA	480
AGCGTCCGTA	GGCGGCGGTG	CTGACCGGCT	CTGCCTGCGC	CCTCAGTGCG	GCCAGCGAGC	540
<b>G</b> G						542

## (2) INFORMATION FOR SEQ ID NO:16:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 913 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

CGGTGCCGCC	CGCGCCTCCG	TTGCCCCCAT	TGCCGCCGTC	GCCGATCAGC	TGCGCATCGC	60
CACCATCACC	GCCTTTGCCG	CCGGCACCGC	CGGTGGCGCC	GGGGCCGCCG	ATGCCACCGC	120
TTGACCCTGG	CCGCCGGCGC	CGCCATTGCC	ATACAGCACC	CCGCCGGGGG	CACCGTTACC	180
GCCGTCGCCA	CCGTCGCCGC	CGCTGCCGTT	TCAGGCCGGG	GAGGCCGAAT	GAACCGCCGC	240
CAAGCCCGCC	GCCGGCACCG	TTGCCGCCTT	TTCCGCCCGC	cccgccggcg	CCGCCAATTG	300
CCGAACAGCC	AMGCACCGTT	GCCGCCAGCC	CCSCCGCCGT	TAACGGCGCT	GCCGGGCGCC	360
GCCGCCGGAC	CCGCCATTAC	CGCCGTTCCC	GTTCGGTGCC	CCGCCGTTAC	CGGCGCCGCC	420
GTTTGCCGCC	AATATTCGGC	GGGCACCGCC	AGACCCGCCG	GGGCCACCAT	TGCCGCCGGG	480
CACCGAAACA	ACAGCCCAAC	GGTGCCGCCG	GCCCCGCCGT	TTGCCGCCAT	CACCGGCCAT	540
TCACCGCCAG	CACCGCCGTT	AATGTTTATG	AACCCGGTAC	CGCCAGCGCG	GCCCCTATTG	600
CCGGGCGCCG	GAGNGCGTGC	ccaccagcac	CGCCAACGCC	CAAAAGCCCG	GGGTTGCCAC	660

14

CGGCCCCGCC	GGACCCACCG	GTCCCGCCGA	TCCCCCCGTT	GCCGCCGGTG	CCGCCGCCAT	720
TGGTGCTGCT	GAAGCCGTTA	GCGCCGGTTC	CGCSGGTTCC	GGCGGTGGCG	CCNTGGCCGC	780
CGGCCCCGCC	GTTGCCGTAC	AGCCACCCCC	CGGTGGCGCC	GTTGCCGCCA	TTGCCGCCAT	840
TGCCGCCGTT	GCCGCCATTG	CCGCCGTTCC	CGCCGCCACC	GCCGGNTTGG	CCGCCGGCGC	900
CGCCGGCGGC	CGC					913

### (2) INFORMATION FOR SEQ ID NO:17:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1872 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GACTACGTTG GTGTAGAAAA ATCCTGCCGC CCGGACCCTT AAGGCTGGGA CAATTTCTGA 60 TAGCTACCCC GACACAGGAG GTTACGGGAT GAGCAATTCG CGCCGCCGCT CACTCAGGTG 120 GTCATGGTTG CTGAGCGTGC TGGCTGCCGT CGGGCTGGGC CTGGCCACGG CGCCGGCCCA 180 GGCGGCCCCG CCGGCCTTGT CGCAGGACCG GTTCGCCGAC TTCCCCGCGC TGCCCCTCGA 240 CCCGTCCGCG ATGGTCGCCC AAGTGGCGCC ACAGGTGGTC AACATCAACA CCAAACTGGG 300 CTACAACAAC GCCGTGGGCG CCGGGACCGG CATCGTCATC GATCCCAACG GTGTCGTGCT 360 GACCAACAAC CACGTGATCG CGGGCGCCAC CGACATCAAT GCGTTCAGCG TCGGCTCCGG 420 CCAAACCTAC GGCGTCGATG TGGTCGGGTA TGACCGCACC CAGGATGTCG CGGTGCTGCA 480 GCTGCGCGGT GCCGGTGGCC TGCCGTCGGC GGCGATCGGT GGCGGCGTCG CGGTTGGTGA 540 GCCCGTCGTC GCGATGGGCA ACAGCGGTGG GCAGGGCGGA ACGCCCCGTG CGGTGCCTGG 500 CAGGGTGGTC GCGCTCGGCC AAACCGTGCA GGCGTCGGAT TCGCTGACCG GTGCCGAAGA 660. GACATTGAAC GGGTTGATCC AGTTCGATGC CGCAATCCAG CCCGGTGATT CGGGCGGGCC 720 CGTCGTCAAC GGCCTAGGAC AGGTGGTCGG TATGAACACG GCCGCGTCCG ATAACTTCCA 780 GCTGTCCCAG GGTGGGCAGG GATTCGCCAT TCCGATCGGG CAGGCGATGG CGATCGCGGG 840 CCAAATCCGA TCGGGTGGGG GGTCACCCAC CGTTCATATC GGGCCTACCG CCTTCCTCGG 900 CTTGGGTGTT GTCGACAACA ACGGCAACGG CGCACGAGTC CAACGCGTGG TCGGAAGCGC 960 TCCGGCGGCA AGTCTCGGCA TCTCCACCGG CGACGTGATC ACCGCGGTCG ACGGCGCTCC 1020

15

GA:	ICAACTC(	G GCCACCGCGA	TGGCGGACGC	GCTTAACGGG	CATCATCCCG	GTGACGTCAT	1080
CT	CGGTGAA	TGGCAAACCA	AGTCGGGCGG	CACGCGTACA	GGGAACGTGA	CATTGGCCGA	1140
GGC	SACCCCC	GCCTGATTTG	TCGCGGATAC	CACCCGCCGG	CCGGCCAATT	GGATTGGCGC	1200
CAG	CCGTGAT	TGCCGCGTGA	GCCCCCGAGT	TCCGTCTCCC	GTGCGCGTGG	CATTGTGGAA	1260
GCA	ATGAACG	AGGCAGAACA	CAGCGTTGAG	CACCCTCCCG	TGCAGGGCAG	TTACGTCGAA	1320
				GACTTCGGCA			1380
				TACGAGGTGC			1440
				GGACTCATCG			1500
				CGTTCCTACG			1560
				CTGCCCGAAT			1620
				GGTATCCGCA			
				CAGGAGTCCC			1680
				AGCGAGCGCT			1740
				TTCGATCCTG			1800
	CGATTC			- redarcele	rccgccgaca (	GTTNCTACTG	1860
							1872

## (2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1482 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (x1) SEQUENCE DESCRIPTION: SEQ ID NO:18:

CTTCGCCGAA ACCTGATGCC GAGGAACAGG GTGTTCCCGT GAGCCCGACG GCGTCCGACC 60 CCGCGCTCCT CGCCGAGATC AGGCAGTCGC TTGATGCGAC AAAAGGGTTG ACCAGCGTGC 120 ACGTAGCGGT CCGAACAACC GGGAAAGTCG ACAGCTTGCT GGGTATTACC AGTGCCGATG 180 TCGACGTCCG GGCCAATCCG CTCGCGGCAA AGGGCGTATG CACCTACAAC GACGAGCAGG 240 GTGTCCCGTT TCGGGTACAA GGCGACAACA TCTCGGTGAA ACTGTTCGAC GACTGGAGCA 300 ATCTCGGCTC GATTTCTGAA CTGTCAACTT CACGCGTGCT CGATCCTGCC GCTGGGGTGA 360 CGCAGCTGCT GTCCGGTGTC ACGAACCTCC AAGCGCAAGG TACCGAAGTG ATAGACGGAA 420 TTTCGACCAC CAAAATCACC GGGACCATCC CCGCGAGCTC TGTCAAGATG CTTGATCCTG 480

16

GCGCCAAGAG TGCAAGGCCG GCGACCGTGT				540
TCCGAGCGAG CATCGACCTC GGATCCGGGT (				600
AACCCGTCAA CGTCGACTAG GCCGAAGTTG				6 <b>6</b> 0
AACGGTGTCA ACGGCACCCG AAAACTGACC C				720
GACCGGGCGG TTGGTGGTTA TTCTTCGGTG				780
CGGTCTTTGA GCCGGTAGCT GTCGCCTTTG A				840
CGGTCGATCA TGGCGGCAGC AACGACGTCG T				900
AAGGCCTTAT TGGACGTGAC GATCAAGCTG G				960
AAGAAGAGGT TGGCGGCCTC GGGCTCAAAC G				1020
AGCGGATAGC GGCCAAACCG GGTGAGTTCG G	CGTAGATGC	GCCCGGCGTG	GTGAGCCTCG	1080
GCGAACCGTG CTACCCATTC GGCGGCGGTG GG	CGAACAGCA	CCCGATGACC (	GGCCTGACAC	1140
GCGCGTATCG CCAGGCCGAC CGCAAGATGA G	ICTTCCCGG	TGCCAGGCGG (	GCCCAAAAA	1200
CACGACGTTA TCGCGGGCGG TGATGAAATC CA	AGGGTGCCC	AGATGTGCGA 1	rggtgtcgcg	1260
TTTGAGGCCA CGAGCATGCT CAAAGTCGAA CT	CTTCCAAC (	SACTTCCGAA (	CGGGAAGCG	1320
GGCGGCGCG ATGCGGCCCT CACCACCATG GG	SACTCCCGG (	GCTGACACTT (	CCGCTGCAG	1380
GCAGGCGGCC AGGTATTCTT CGTGGCTCCA GT				1440
GGACACTGAC TCACGCAGGG TGGGAGCTTT CA				1482
(2) TYPODYS ==				

## (2) INFORMATION FOR SEQ ID NO:19:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 876 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

GAATTCGGCA CGAGCCGGCG ATAGCTTCTG GGCCGGGGCC GACCAGATGG CTCGAGGGTT 60
CGTGCTCGGG GCCACCGCC GGCGCACCAC CCTGACCGGT GAGGGCCTGC AACACGCCGA 120
CGGCTCACTGG TTGCTGCTGG ACGCCACCAA CCCGGCGGTG GTTGCCTACG ACCCGGCCTT 180
CGCCTACGAA ATCGGCTACA TCGNGGAAAG CGGACTGGCC AGGATGTGCG GGGAGAACCC 240
GGAGAACATC TTCTTCTACA TCACCGTCTA CAACGAGCCG TACCGTGCAGC CGCCGGAGCC 300

17

GGAGAACTTC	GATCCCGAGG	GCGTGCTGGG	GGGTATCTAC	CGNTATCACG	CGGCCACCGA	360
GCAACGCACC	AACAAGGNGC	AGATCCTGGC	CTCCGGGGTA	GCGATGCCCG	CGGCGCTGCG	420
GGCAGCACAG	ATGCTGGCCG	CCGAGTGGGA	TGTCGCCGCC	GACGTGTGGT	CGGTGACCAG	480
TTGGGGCGAG	CTAAACCGCG	ACGGGGTGGT	CATCGAGACC	GAGAAGCTCC	GCCACCCGA	540
TCGGCCGGCG	GGCGTGCCCT	ACGTGACGAG	AGCGCTGGAG	AATGCTCGGG	GCCCGGTGAT	600
CGCGGTGTCG	GACTGGATGC	GCGCGGTCCC	CGAGCAGATC	CGACCGTGGG	TGCCGGGCAC	660
ATACCTCACG	TTGGGCACCG	ACGGGTTCGG	TTTTTCCGAC	ACTCGGCCCG	CCGGTCGTCG	720
TTACTTCAAC	ACCGACGCCG	AATCCCAGGT	TGGTCGCGGT	TTTGGGAGGG	GTTGGCCGGG	780
TCGACGGGTG	AATATCGACC	CATTCGGTGC	CGGTCGTGGG	ccgcccgccc	AGTTACCCGG	840
ATTCGACGAA	GGTGGGGGGT	TGCGCCCGAN	TAAGTT			876

### (2) INFORMATION FOR SEQ ID NO:20:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1021 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

ATCCCCCCGG GCTGCAGGAA TTCGGCACGA GAGACAAAAT TCCACGCGTT AATGCAGGAA 60 CAGATTCATA ACGAATTCAC AGCGGCACAA CAATATGTCG CGATCGCGGT TTATTTCGAC 120 AGCGAAGACC TGCCGCAGTT GGCGAAGCAT TTTTACAGCC AAGCGGTCGA GGAACGAAAC 180 CATGCAATGA TGCTCGTGCA ACACCTGCTC GACCGCGACC TTCGTGTCGA AATTCCCGGC 240 GTAGACACGG TGCGAAACCA GTTCGACAGA CCCCGCGAGG CACTGGCGCT GGCGCTCGAT 300 CAGGAACGCA CAGTCACCGA CCAGGTCGGT CGGCTGACAG CGGTGGCCCG CGACGAGGGC 360 GATTTCCTCG GCGAGCAGTT CATGCAGTGG TTCTTGCAGG AACAGATCGA AGAGGTGGCC 420 TTGATGGCAA CCCTGGTGCG GGTTGCCGAT CGGGCCGGGG CCAACCTGTT CGAGCTAGAG 480 AACTTCGTCG CACGTGAAGT GGATGTGGCG CCGGCCGCAT CAGGCGCCCC GCACGCTGCC 540 GGGGGCCGCC TCTAGATCCC TGGGGGGGAT CAGCGAGTGG TCCCGTTCGC CCGCCCGTCT 600 TCCAGCCAGG CCTTGGTGCG GCCGGGGTGG TGAGTACCAA TCCAGGCCAC CCCGACCTCC 660 CGGNAAAAGT CGATGTCCTC GTACTCATCG ACGTTCCAGG AGTACACCGC CCGGCCCTGA 720 GCTGCCGAGC GGTCAACGAG TTGCGGATAT TCCTTTAACG CAGGCAGTGA GGGTCCCACG 780

GCGGTTGGCC CGACCGCCGT GGCCGCACTG CTGGTCAGGT ATCGGGGGGT CTTGGCGAGC	840
AACAACGTCG GCAGGAGGGG TGGAGCCCGC CGGATCCGCA GACCGGGGGG GCGAAAACGA	900
CATCAACACC GCACGGGATC GATCTGCGGA GGGGGGTGCG GGAATACCGA ACCGGTGTAG	960
GAGCGCCAGC AGTTGTTTTT CCACCAGCGA AGCGTTTTCG GGTCATCGGN GGCNNTTAAG	1020
T	1021
(2) INFORMATION FOR SEQ ID NO:21:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 321 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
CGTGCCGACG AACGGAAGAA CACAACCATG AAGATGGTGA AATCGATCGC CGCAGGTCTG	60
ACCGCCGCGG CTGCAATCGG CGCCGCTGCG GCCGGTGTGA CTTCGATCAT GGCTGGCGGN	120
CCGGTCGTAT ACCAGATGCA GCCGGTCGTC TTCGGCGCGC CACTGCCGTT GGACCCGGNA	180
TCCGCCCCTG ANGTCCCGAC CGCCGCCCAG TGGACCAGNC TGCTCAACAG NCTCGNCGAT	240
CCCAACGTGT CGTTTGNGAA CAAGGGNAGT CTGGTCGAGG GNGGNATCGG NGGNANCGAG	300
GGNGNGNATC GNCGANCACA A	321
(2) INFORMATION FOR SEQ ID NO:22:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 373 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
TCTTATCGGT TCCGGTTGGC GACGGGTTTT GGGNGCGGGT GGTTAACCCG CTCGGCCAGC	60
CGATCGACGG GCGCGGAGAC GTCGACTCCG ATACTCGGCG CGCGCTGGAG CTCCAGGCGC	120
CCTCGGTGGT GNACCGGCAA GGCGTGAAGG AGCCGTTGNA GACCGGGATC AAGGCGATTG	180
ACGCGATGAC CCCGATCGGC CGCGGGCAGC GCCAGCTGAT CATCGGGGAC CGCAAGACCG	240
GCAAAAACCG CCGTCTGTGT CGGACACCAT CCTCAAACCA GCGGGAAGAA CTGGGAGTCC	300
GGTGGATCCC AAGAAGCAGG TGCGCTTGTG TATACGTTGG CCATCGGGCA AGAAGGGGAA	360

PCT/US99/03265 WO 99/42118

	373
(2) INFORMATION FOR SEQ ID NO:23:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 352 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
GTGACGCCGT GATGGGATTC CTGGGCGGGG CCGGTCCGCT GGCGGTGGTG GATCAGCAAC	60
TGGTTACCCG GGTGCCGCAA GGCTGGTCGT TTGCTCAGGC AGCCGCTGTG CCGGTGGTGT	120
TCTTGACGGC CTGGTACGGG TTGGCCGATT TAGCCGAGAT CAAGGCGGGC GAATCGGTGC	180
TGATCCATGC CGGTACCGGC GGTGTGGGCA TGGCGGCTGT GCAGCTGGCT CGCCAGTGGG	240
GCGTGGAGGT TTTCGTCACC GCCAGCCGTG GNAAGTGGGA CACGCTGCGC GCCATNGNGT	300
TTGACGACGA NCCATATCGG NGATTCCCNC ACATNCGAAG TTCCGANGGA GA	352
(2) INFORMATION FOR SEQ ID NO:24:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 726 base pairs  (B) TYPE: nucleic acid	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
(D) TOPOLOGY: linear	60
(XI) SEQUENCE DESCRIPTION: SEQ ID NO:24:	60 120
(D) TOPOLOGY: linear  (XI) SEQUENCE DESCRIPTION: SEQ ID NO:24:  GAAATCCGCG TTCATTCCGT TCGACCAGCG GCTGGCGATA ATCGACGAAG TGATCAAGCC	_
(XI) SEQUENCE DESCRIPTION: SEQ ID NO:24:  GAAATCCGCG TTCATTCCGT TCGACCAGCG GCTGGCGATA ATCGACGAAG TGATCAAGCC GCGGTTCGCG GCGCTCATGG GTCACAGCGA GTAATCAGCA AGTTCTCTGG TATATCGCAC	120
(XI) SEQUENCE DESCRIPTION: SEQ ID NO:24:  GAAATCCGCG TTCATTCCGT TCGACCAGCG GCTGGCGATA ATCGACGAAG TGATCAAGCC GCGGTTCGCG GCGCTCATGG GTCACAGCGA GTAATCAGCA AGTTCTCTGG TATATCGCAC CTAGCGTCCA GTTGCTTGCC AGATCGCTTT CGTACCGTCA TCGCATGTAC CGGTTCGCGT	120
(XI) SEQUENCE DESCRIPTION: SEQ ID NO:24:  GAAATCCGCG TTCATTCCGT TCGACCAGCG GCTGGCGATA ATCGACGAAG TGATCAAGCC GCGGTTCGCG GCGCTCATGG GTCACAGCGA GTAATCAGCA AGTTCTCTGG TATATCGCAC CTAGCGTCCA GTTGCTTGCC AGATCGCTTT CGTACCGTCA TCGCATGTAC CGGTTCGCGT GCCGCACGCT CATGCTGGCG GCGTGCATCC TGGCCACGGG TGTGGCGGGT CTCGGGGTCG	120 180 240
(XI) SEQUENCE DESCRIPTION: SEQ ID NO:24:  GAAATCCGCG TTCATTCCGT TCGACCAGCG GCTGGCGATA ATCGACGAAG TGATCAAGCC GCGGTTCGCG GCGCTCATGG GTCACAGCGA GTAATCAGCA AGTTCTCTGG TATATCGCAC CTAGCGTCCA GTTGCTTGCC AGATCGCTTT CGTACCGTCA TCGCATGTAC CGGTTCGCGT GCCGCACGCT CATGCTGGCG GCGTGCATCC TGGCCACGGG TGTGGCGGGT CTCGGGGTCG GCGCGCAGTC CGCAGCCCAA ACCGCGCGGG TGCCCGACTA CTACTGGTGC CCGGGGCAGC CTTTCGACCC CGCATGGGGG CCCAACTGGG ATCCCTACAC CTGCCATGAC GACTTCCACC GCGACAGCGA CGGCCCGAC CACAGCCGCG ACTACCCCGG ACCCATCCTC GAAGGTCCCG	120 180 240 300
(XI) SEQUENCE DESCRIPTION: SEQ ID NO:24:  GAAATCCGCG TTCATTCCGT TCGACCAGCG GCTGGCGATA ATCGACGAAG TGATCAAGCC GCGGTTCGCG GCGCTCATGG GTCACAGCGA GTAATCAGCA AGTTCTCTGG TATATCGCAC CTAGCGTCCA GTTGCTTGCC AGATCGCTTT CGTACCGTCA TCGCATGTAC CGGTTCGCGT GCCGCACGCT CATGCTGGCG GCGTGCATCC TGGCCACGGG TGTGGCGGGT CTCGGGGTCG GCGCGCAGTC CGCAGCCCAA ACCGCGCGG TGCCCGACTA CTACTGGTGC CCGGGGCAGC CTTTCGACCC CGCATGGGG CCCAACTGGG ATCCCTACAC CTGCCATGAC GACTTCCACC GCGACAGCGA CGGCCCCGAC CACAGCCGCG ACTACCCCGG ACCCATCCTC GAAGGTCCCG TGCTTGACGA TCCCGGTGCT GCGCCGCCGC CCCCGGCTGC CGGTGGCGGC GCATAGCCGT	120 180 240 300 360
(XI) SEQUENCE DESCRIPTION: SEQ ID NO:24:  GAAATCCGCG TTCATTCCGT TCGACCAGCG GCTGGCGATA ATCGACGAAG TGATCAAGCC  GCGGTTCGCG GCGCTCATGG GTCACAGCGA GTAATCAGCA AGTTCTCTGG TATATCGCAC  CTAGCGTCCA GTTGCTTGCC AGATCGCTTT CGTACCGTCA TCGCATGTAC CGGTTCGCGT  GCCGCACGCT CATGCTGGCG GCGTGCATCC TGGCCACGGG TGTGGCGGGT CTCGGGGTCG  GCGCGCAGTC CGCAGCCCAA ACCGCGCCGG TGCCCGACTA CTACTGGTGC CCGGGGCAGC  CTTTCGACCC CGCATGGGGG CCCAACTGGG ATCCCTACAC CTGCCATGAC GACTTCCACC  GCGACAGCGA CGGCCCGAC CACAGCCGCG ACTACCCCGG ACCCATCCTC GAAGGTCCCG  TGCTTGACGA TCCCGGTGCT GCGCCGCCGC CCCCGGCTGC CGGTGGCGGC GCATAGCGCT  CGTTGACCG GCCGCATCAG CGAATACGCG TATAAACCCG GGCGTGCCCC CGGCAAGCTA	120 180 240 300 360 420
(XI) SEQUENCE DESCRIPTION: SEQ ID NO:24:  GAAATCCGCG TTCATTCCGT TCGACCAGCG GCTGGCGATA ATCGACGAAG TGATCAAGCC GCGGTTCGCG GCGCTCATGG GTCACAGCGA GTAATCAGCA AGTTCTCTGG TATATCGCAC CTAGCGTCCA GTTGCTTGCC AGATCGCTTT CGTACCGTCA TCGCATGTAC CGGTTCGCGT GCCGCACGCT CATGCTGGCG GCGTGCATCC TGGCCACGGG TGTGGCGGGT CTCGGGGTCG GCGCGCAGTC CGCAGCCCAA ACCGCGCGG TGCCCGACTA CTACTGGTGC CCGGGGCAGC CTTTCGACCC CGCATGGGG CCCAACTGGG ATCCCTACAC CTGCCATGAC GACTTCCACC GCGACAGCGA CGGCCCCGAC CACAGCCGCG ACTACCCCGG ACCCATCCTC GAAGGTCCCG TGCTTGACGA TCCCGGTGCT GCGCCGCCGC CCCCGGCTGC CGGTGGCGGC GCATAGCCGT	120 180 240 300 360 420 480

GGCGACAGCG CCTCCACCAT CGACATCGAC AAGGTTGTTA CCCGCACACC CGTTCGCCGG	720
ATCGTG	726
(2) INFORMATION FOR SEQ ID NO:25:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 580 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
CGCGACGACG ACGAACGTCG GGCCCACCAC CGCCTATGCG TTGATGCAGG CGACCGGGAT	60
GGTCGCCGAC CATATCCAAG CATGCTGGGT GCCCACTGAG CGACCTTTTG ACCAGCCGGG	120
CTGCCCGATG GCGGCCCGGT GAAGTCATTG CGCCGGGGCT TGTGCACCTG ATGAACCCGA	180
ATAGGGAACA ATAGGGGGT GATTTGGCAG TTCAATGTCG GGTATGGCTG GAAATCCAAT	240
GGCGGGGCAT GCTCGGCGCC GACCAGGCTC GCGCAGGCGG GCCAGCCCGA ATCTGGAGGG	300
AGCACTCAAT GGCGGCGATG AAGCCCCGGA CCGGCGACGG TCCTTTGGAA GCAACTAAGG	360
AGGGGCGCGG CATTGTGATG CGAGTACCAC TTGAGGGTGG CGGTCGCCTG GTCGTCGAGC	420
TGACACCCGA CGAAGCCGCC GCACTGGGTG ACGAACTCAA AGGCGTTACT AGCTAAGACC	480
AGCCCAACGG CGAATGGTCG GCGTTACGCG CACACCTTCC GGTAGATGTC CAGTGTCTGC	540
TCGGCGATGT ATGCCCAGGA GAACTCTTGG ATACAGCGCT	580
(2) INFORMATION FOR SEQ ID NO:26:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 160 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
AACGGAGGCG CCGGGGGTTT TGGCGGGGCC GGGGCGGTCG GCGGCAACGG CGGGGCCGGC	60
GGTACCGCCG GGTTGTTCGG TGTCGGCGGG GCCGGTGGGG CCGGAGGCAA CGGCATCGCC	120
GGTGTCACGG GTACGTCGGC CAGCACACCG GGTGGATCCG	160
(2) INFORMATION FOR SEQ ID NO:27:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 272 base pairs	

<ul><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
GACACCGATA CGATGGTGAT GTACGCCAAC GTTGTCGACA CGCTCGAGGC GTTCACGATC	60
CAGCGCACAC CCGACGGCGT GACCATCGGC GATGCGGCCC CGTTCGCGGA GGCGGCTGCC	120
AAGGCGATGG GAATCGACAA GCTGCGGGTA ATTCATACCG GAATGGACCC CGTCGTCGCT	
GAACGCGAAC AGTGGGACGA CGGCAACAAC ACGTTGGCGT TGGCGCCCGG TGTCGTTGTC	240
GCCTACGAGC GCAACGTACA GACCAACGCC CG	272
(2) INFORMATION FOR SEQ ID NO:28:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 317 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
GCAGCCGGTG GTTCTCGGAC TATCTGCGCA CGGTGACGCA GCGCGACGTG CGCGAGCTGA	60
AGCGGATCGA GCAGACGGAT CGCCTGCCGC GGTTCATGCG CTACCTGGCC GCTATCACCG	120
CGCAGGAGCT GAACGTGGCC GAAGCGGCGC GGGTCATCGG GGTCGACGCG GGGACGATCC	180
GTTCGGATCT GGCGTGGTTC GAGACGGTCT ATCTGGTACA TCGCCTGCCC GCCTGGTCGC	240
GGAATCTGAC CGCGAAGATC AAGAAGCGGT CAAAGATCCA CGTCGTCGAC AGTGGCTTCG	300
CGGCCTGGTT GCGCGGG	317
(2) INFORMATION FOR SEQ ID NO:29:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 182 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
GATCGTGGAG CTGTCGATGA ACAGCGTTGC CGGACGCGCG GCGGCCAGCA CGTCGGTGTA	60
GCAGCGCCGG ACCACCTCGC CGGTGGGCAG CATGGTGATG ACCACGTCGG CCTCGGCCAC	120
CGCTTCGGGC GCGCTACGAA ACACCGCGAC ACCGTGCGCG GCGGCGCCGG ACGCCGCCGT	180
GG	182

(2) INFORMATION FOR SEQ ID NO:30:

WO 99/42118 PCT/US99/03265

<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 308 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
GATCGCGAAG TTTGGTGAGC AGGTGGTCGA CGCGAAAGTC TGGGCGCCTG CGAAGCGGGT	60
CGGCGTTCAC GAGGCGAAGA CACGCCTGTC CGAGCTGCTG CGGCTCGTCT ACGGCGGGCA	120
GAGGTTGAGA TTGCCCGCCG CGGCGAGCCG GTAGCAAAGC TTGTGCCGCT GCATCCTCAT	180
GAGACTCGGC GGTTAGGCAT TGACCATGGC GTGTACCGCG TGCCCGACGA TTTGGACGCT	240
CCGTTGTCAG ACGACGTGCT CGAACGCTTT CACCGGTGAA GCGCTACCTC ATCGACACCC	300
ACGTTTGG	308
(2) INFORMATION FOR SEQ ID NO:31:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 267 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
CCGACGACGA GCAACTCACG TGGATGATGG TCGGCAGCGG CATTGAGGAC GGAGAGAATC	60
CGGCCGAAGC TGCCGCGCG CAAGTGCTCA TAGTGACCGG CCGTAGAGGG CTCCCCCGAT	120
GGCACCGGAC TATTCTGGTG TGCCGCTGGC CGGTAAGAGC GGGTAAAAGA ATGTGAGGGG	180
ACACGATGAG CAATCACACC TACCGAGTGA TCGAGATCGT CGGGACCTCG CCCGACGGCG	240
TCGACGCGGC AATCCAGGGC GGTCTGG	267
(2) INFORMATION FOR SEQ ID NO:32:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 1539 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
CTCGTGCCGA AAGAATGTGA GGGGACACGA TGAGCAATCA CACCTACCGA GTGATCGAGA	60
TCGTCGGGAC CTCGCCCGAC GGCGTCGACG CGGCAATCCA GGGCGGTCTG GCCCGAGCTG	120

23

CGCAGACCAT	GCGCGCGCTG	GACTGGTTCG	AAGTACAGTC	AATTCGAGGC	CACCTGGTCG	180
ACGGAGCGGT	CGCGCACTTC	CAGGTGACTA	TGAAAGTCGG	CTTCCGCTGG	AGGATTCCTG	240
AACCTTCAAG	CGCGGCCGAT	AACTGAGGTG	CATCATTAAG	CGACTTTTCC	AGAACATCCT	300
GACGCGCTCG	AAACGCGGTT	CAGCCGACGG	TGGCTCCGCC	GAGGCGCTGC	CTCCAAAATC	360
CCTGCGACAA	TTCGTCGGCG	GCGCCTACAA	GGAAGTCGGT	GCTGAATTCG	TCGGGTATCT	420
GGTCGACCTG	TGTGGGCTGC	AGCCGGACGA	AGCGGTGCTC	GACGTCGGCT	GCGGCTCGGG	480
GCGGATGGCG	TTGCCGCTCA	CCGGCTATCT	GAACAGCGAG	GGACGCTACG	CCGGCTTCGA	540
TATCTCGCAG	AAAGCCATCG	CGTGGTGCCA	GGAGCACATC	ACCTCGGCGC	ACCCCAACTT	600
CCAGTTCGAG	GTCTCCGACA	TCTACAACTC	GCTGTACAAC	CCGAAAGGGA	AATACCAGTC	660
ACTAGACTTT	CGCTTTCCAT	ATCCGGATGC	GTCGTTCGAT	GTGGTGTTTC	TTACCTCGGT	720
GTTCACCCAC	ATGTTTCCGC	CGGACGTGGA	GCACTATCTG	GACGAGATCT	CCCGCGTGCT	780
GAAGCCCGGC	GGACGATGCC	TGTGCACGTA	CTTCTTGCTC	AATGACGAGT	CGTTAGCCCA	840
CATCGCGGAA	GGAAAGAGTG	CGCACAACTT	CCAGCATGAG	GGACCGGGTT	ATCGGACAAT	900
CCACAAGAAG	CGGCCCGAAG	AAGCAATCGG	CTTGCCGGAG	ACCTTCGTCA	GGGATGTCTA	960
TGGCAAGTTC	GGCCTCGCCG	TGCACGAACC	ATTGCACTAC	GGCTCATGGA	GTGGCCGGGA	1020
ACCACGCCTA	AGCTTCCAGG	ACATCGTCAT	CGCGACCAAA	ACCGCGAGCT	AGGTCGGCAT	1080
CCGGGAAGCA	TCGCGACACC	GTGGCGCCGA	GCGCCGCTGC	CGGCAGGCCG	ATTAGGCGGG	1140
CAGATTAGCC	CGCCGCGGCT	CCCGGCTCCG	AGTACGGCGC	CCCGAATGGC	GTCACCGGCT	1200
GGTAACCACG	CTTGCGCGCC	TGGGCGGCGG	CCTGCCGGAT	CAGGTGGTAG	ATGCCGACAA	1260
AGCCTGCGTG	ATCGGTCATC	ACCAACGGTG	ACAGCAGCCG	GTTGTGCACC	AGCGCGAACG	1320
CCACCCCGGT	CTCCGGGTCT	GTCCAGCCGA	TCGAGCCGCC	CAAGCCCACA	TGACCAAACC	1380
CCGGCATCAC	GTTGCCGATC	GGCATACCGT	GATAGCCAAG	ATGAAAATTT	AAGGGCACCA	1440
ATAGATTTCG	ATCCGGCAGA	ACTTGCCGTC	GGTTGCGGGT	CAGGCCCGTG	ACCAGCTCCC	1500
GCGACAAGAA	CCGTATGCCG	TCGATCTCGC	CTCGTGCCG			1539

#### (2) INFORMATION FOR SEQ ID NO:33:

⁽i) SEQUENCE CHARACTERISTICS:

⁽A) LENGTH: 851 base pairs

⁽B) TYPE: nucleic acid

⁽C) STRANDEDNESS: single

24

#### (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

CTGCAGGGTG	GCGTGGATGA	GCGTCACCGC	GGGGCAGGCC	GAGCTGACCG	CCGCCCAGGT	60
CCGGGTTGCT	GCGGCGGCCT	ACGAGACGGC	GTATGGGCTG	ACGGTGCCCC	CGCCGGTGAT	120
CGCCGAGAAC	CGTGCTGAAC	TGATGATTCT	GATAGCGACC	AACCTCTTGG	GGCAAAACAC	180
CCCGGCGATC	GCGGTCAACG	AGGCCGAATA	CGGCGAGATG	TGGGCCCAAG	ACGCCGCCGC	240
GATGTTTGGC	TACGCCGCGG	CGACGGCGAC	GGCGACGGCG	ACGTTGCTGC	CGTTCGAGGA	300
GGCGCCGGAG	ATGACCAGCG	CGGGTGGGCT	CCTCGAGCAG	GCCGCGCGG	TCGAGGAGGC	360
CTCCGACACC	GCCGCGGCGA	ACCAGTTGAT	GAACAATGTG	CCCCAGGCGC	TGAAACAGTT	420
GGCCCAGCCC	ACGCAGGGCA	CCACGCCTTC	TTCCAAGCTG	GGTGGCCTGT	GGAAGACGGT	480
CTCGCCGCAT	CGGTCGCCGA	TCAGCAACAT	GGTGTCGATG	GCCAACAACC	ACATGTCGAT	540
GACCAACTCG	GGTGTGTCGA	TGACCAACAC	CTTGAGCTCG	ATGTTGAAGG	GCTTTGCTCC	600
GGCGGCGGCC	GCCCAGGCCG	TGCAAACCGC	GGCGCAAAAC	GGGTCCGGG	CGATGAGCTC	660
GCTGGGCAGC	TCGCTGGGTT	CTTCGGGTCT	GGGCGGTGGG	GTGGCCGCCA	ACTTGGGTCG	720
GGCGGCCTCG	GTACGGTATG	GTCACCGGGA	TGGCGGAAAA	TATGCANAGT	CTGGTCGGCG	780
GAACGGTGGT	CCGGCGTAAG	GTTTACCCC	GTTTTCTGGA	TGCGGTGAAC	TTCGTCAACG	840
GAAACAGTTA	С					851

#### (2) INFORMATION FOR SEQ ID NO:34:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 254 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

GATCGATCGG	GCGGAAATTT	GGACCAGATT	CGCCTCCGGC	GATAACCCAA	TCAATCGAAC	60
CTAGATTTAT	TCCGTCCAGG	GGCCCGAGTA	ATGGCTCGCA	GGAGAGGAAC	CTTACTGCTG	120
CGGGCACCTG	TCGTAGGTCC	TCGATACGGC	GGAAGGCGTC	GACATTTTCC	ACCGACACCC	180
CCATCCAAAC	GTTCGAGGGC	CACTCCAGCT	TGTGAGCGAG	GCGACGCAGT	CGCAGGCTGC	240
GCTTGGTCAA	GATC					254

⁽²⁾ INFORMATION FOR SEQ ID NO:35:

25

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1227 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

GATCCTGACC	GAAGCGGCCG	CCGCCAAGGC	GAAGTCGCTG	TTGGACCAGG	AGGGACGGGA	60
CGATCTGGCG	CTGCGGATCG	CGGTTCAGCC	GGGGGGTGC	GCTGGATTGC	GCTATAACCT	120
TTTCTTCGAC	GACCGGACGC	TGGATGGTGA	CCAAACCGCG	GAGTTCGGTG	GTGTCAGGTT	180
GATCGTGGAC	CGGATGAGCG	CGCCGTATGT	GGAAGGCGCG	TCGATCGATT	TCGTCGACAC	240
TATTGAGAAG	CAAGGTTCAC	CATCGACAAT	CCCAACGCCA	CCGGCTCCTG	CGCGTGCGGG	300
GATTCGTTCA	ACTGATAAAA	CGCTAGTACG	ACCCCGCGGT	GCGCAACACG	TACGAGCACA	360
CCAAGACCTG	ACCGCGCTGG	AAAAGCAACT	GAGCGATGCC	TTGCACCTGA	CCGCGTGGCG	420
GGCCGCCGGC	GGCAGGTGTC	ACCTGCATGG	TGAACAGCAC	CTGGGCCTGA	TATTGCGACC	480
AGTACACGAT	TTTGTCGATC	GAGGTCACTT	CGACCTGGGA	GAACTGCTTG	CGGAACGCGT	540
CGCTGCTCAG	CTTGGCCAAG	GCCTGATCGG	AGCGCTTGTC	GCGCACGCCG	TCGTGGATAC	600
CGCACAGCGC	ATTGCGAACG	ATGGTGTCCA	CATCGCGGTT	CTCCAGCGCG	TTGAGGTATC	660
CCTGAATCGC	GGTTTTGGCC	GGTCCCTCCG	AGAATGTGCC	TGCCGTGTTG	GCTCCGTTGG	720
TGCGGACCCC	GTATATGATC	GCCGCCGTCA	TAGCCGACAC	CAGCGCGAGG	GCTACCACAA	780
TGCCGATCAG	CAGCCGCTTG	TGCCGTCGCT	TCGGGTAGGA	CACCTGCGGC	GGCACGCCGG	940
GATATGCGGC	GGGCGGCAGC	GCCGCGTCGT	CTGCCGGTCC	CGGGGCGAAG	GCCGGTTCGG	900
CGGCGCCGAG	GTCGTGGGG	TAGTCCAGGG	CTTGGGGTTC	GTGGGATGAG	GGCTCGGGGT	960
ACGGCGCCGG	TCCGTTGGTG	CCGACACCGG	GGTTCGGCGA	GTGGGGACCG	GGCATTGTGG	1020
TTCTCCTAGG	GTGGTGGACG	GGACCAGCTG	CTAGGGCGAC	AACCGCCCGT	CGCGTCAGCC	1080
GGCAGCATCG	GCAATCAGGT	GAGCTCCCTA	GGCAGGCTAG	CGCAACAGCT	GCCGTCAGCT	1140
CTCAACGCGA	CGGGGCGGC	CGCGGCGCCG	ATAATGTTGA	AAGACTAGGC	AACCTTAGGA	1200
ACGAAGGACG	GAGATTTTGT	GACGATC				1227

#### (2) INFORMATION FOR SEQ ID NO:36:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 181 base pairs

<ul><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:	
GCGGTGTCGG CGGATCCGGC GGGTGGTTGA ACGGCAACGG CGGGGCCGGC GGGGCCGGCG	60
GGACCGGCGC TAACGGTGGT GCCGGCGGCA ACGCCTGGTT GTTCGGGGCC GGCGGGTCCG	120
GCGGNGCCGG CACCAATGGT GGNGTCGGCG GGTCCGGCGG ATTTGTCTAC GGCAACGGCG	180
G	181
(2) INFORMATION FOR SEQ ID NO:37:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 290 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
GCGGTGTCGG CGGATCCGGC GGGTGGTTGA ACGGCAACGG CGGTGTCGGC GGCCGGGGCG	60
GCGACGGCGT CTTTGCCGGT GCCGGCGGCC AGGGCGGCCT CGGTGGGCAG GGCGGCAATG	120
GCGGCGGCTC CACCGGCGGC AACGGCGGTC TTGGCGGCGC GGGCGGTGGC GGAGGCAACG	180
CCCCGGACGG CGGCTTCGGT GGCAACGGCG GTAAGGGTGG CCAGGGCGGN ATTGGCGGCG	240
GCACTCAGAG CGCGACCGGC CTCGGNGGTG ACGGCGGTGA CGGCGGTGAC	290
(2) INFORMATION FOR SEQ ID NO:38:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 34 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
GATCCAGTGG CATGGNGGGT GTCAGTGGAA GCAT	34
(2) INFORMATION FOR SEQ ID NO:39:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:         <ul> <li>(A) LENGTH: 155 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul> </li> </ul>	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

GATCGCTGCT CGTCCCCCCC TTGCCGCCGA CGCCACCGGT CCCACCGTTA CCGAACAAGC	60
TGGCGTGGTC GCCAGCACCC CCGGCACCGC CGACGCCGGA GTCGAACAAT GGCACCGTCG	120
TATCCCCACC ATTGCCGCCG GNCCCACCGG CACCG	155
(2) INFORMATION FOR SEQ ID NO:40:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 53 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:	
ATGGCGTTCA CGGGGCGCCG GGGACCGGGC AGCCCGGNGG GGCCGGGGGG TGG	53
(2) INFORMATION FOR SEQ ID NO:41:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 132 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
GATCCACCGC GGGTGCAGAC GGTGCCCGCG GCGCCACCCC GACCAGCGGC GGCAACGGCG	60
GCACCGGCGG CAACGCCGCG AACGCCACCG TCGTCGGNGG GGCCGGCGGG GCCGGCGGCA	120
AGGGCGGCAA CG	132
(2) INFORMATION FOR SEQ ID NO:42:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 132 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
GATCGGCGGC CGGNACGGNC GGGGACGGCG GCAAGGGCGG NAACGGGGGC GCCGNAGCCA	60
CCNGCCAAGA ATCCTCCGNG TCCNCCAATG GCGCGAATGG CGGACAGGGC GGCAACGGCG	120
GCANCGGCGG CA	132
(2) INFORMATION FCR SEQ ID NO:43:	
(i) SEQUENCE CHARACTERISTICS:	

(A) LENGTH: 702 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

•	CGGCACGAGG	ATCGGTACCC	CGCGGCATCG	GCAGCTGCCG	ATTCGCCGGG	TTTCCCCACC	60
•	CGAGGAAAGC	CGCTACCAGA	TGGCGCTGCC	GAAGTAGGGC	GATCCGTTCG	CGATGCCGGC	120
ž	ATGAACGGGC	GGCATCAAAT	TAGTGCAGGA	ACCTTTCAGT	TTAGCGACGA	TAATGGCTAT	180
į	AGCACTAAGG	AGGATGATCC	GATATGACGC	AGTCGCAGAC	CGTGACGGTG	GATCAGCAAG	240
i	AGATTTTGAA	CAGGGCCAAC	GAGGTGGAGG	CCCCGATGGC	GGACCCACCG	ACTGATGTCC	300
(	CCATCACACC	GTGCGAACTC	ACGGNGGNTA	AAAACGCCGC	CCAACAGNTG	GTNTTGTCCG	360
(	CGACAACAT	GCGGGAATAC	CTGGCGGCCG	GTGCCAAAGA	GCGGCAGCGT	CTGGCGACCT	420
(	GCTGCGCAA	CGCGGCCAAG	GNGTATGGCG	AGGTTGATGA	GGAGGCTGCG	ACCGCGCTGG	480
1	ACAACGACGG	CGAAGGAACT	GTGCAGGCAG	AATCGGCCGG	GGCCGTCGGA	GGGGACAGTT	540
(	GGCCGAACT	AACCGATACG	CCGAGGGTGG	CCACGGCCGG	TGAACCCAAC	TTCATGGATC	600
7	CAAAGAAGC	GGCAAGGAAG	CTCGAAACGG	GCGACCAAGG	CGCATCGCTC	GCGCACTGNG	660
C	GGATGGGTG	GAACACTINC	ACCCTGACGC	TGCAAGGCGA	CG		702

#### (2) INFORMATION FOR SEQ ID NO:44:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 298 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

GAAGCCGCAG	CGCTGTCGGG	CGACGTGGCG	GTCAAAGCGG	CATCGCTCGG	TGGCGGTGGA	60
GGCGGCGGG	TGCCGTCGGC	GCCGTTGGGA	TCCGCGATCG	GGGGCGCCGA	ATCGGTGCGG	120
CCCGCTGGCG	CTGGTGACAT	TGCCGGCTTA	GGCCAGGGAA	GGGCCGGCGG	CGGCGCCGCG	180
CTGGGCGGCG	GTGGCATGGG	AATGCCGATG	GGTGCCGCGC	ATCAGGGACA	AGGGGGCGCC	240
AAGTCCAAGG	GTTCTCAGCA	GGAAGACGAG	GCGCTCTACA	CCGAGGATCC	TCGTGCCG	298

#### (2) INFORMATION FOR SEQ ID NO:45:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1058 base pairs
  - (B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

CGGCACGAGG	ATCGAATCGC	GTCGCCGGGA	GCACAGCGTC	GCACTGCACC	AGTGGAGGAG	60
CCATGACCTA	CTCGCCGGGT	AACCCCGGAT	ACCCGCAAGC	GCAGCCCGCA	GGCTCCTACG	120
GAGGCGTCAC	ACCCTCGTTC	GCCCACGCCG	ATGAGGGTGC	GAGCAAGCTA	CCGATGTACC	180
TGAACATCGC	GGTGGCAGTG	CTCGGTCTGG	CTGCGTACTT	CGCCAGCTTC	GGCCCAATGT	240
TCACCCTCAG	TACCGAACTC	GGGGGGGTG	ATGGCGCAGT	GTCCGGTGAC	ACTGGGCTGC	300
CGGTCGGGGT	GGCTCTGCTG	GCTGCGCTGC	TTGCCGGGGT	GGTTCTGGTG	CCTAAGGCCA	360
AGAGCCATGT	GACGGTAGTT	GCGGTGCTCG	GGGTACTCGG	CGTATTTCTG	ATGGTCTCGG	420
CGACGTTTAA	CAAGCCCAGC	GCCTATTCGA	CCGGTTGGGC	ATTGTGGGTT	GTGTTGGCTT	480
TCATCGTGTT	CCAGGCGGTT	GCGGCAGTCC	TGGCGCTCTT	GGTGGAGACC	GGCGCTATCA	540
CCGCGCCGGC	GCCGCGGCCC	AAGTTCGACC	CGTATGGACA	GTACGGGCGG	TACGGGCAGT	600
ACGGGCAGTA	CGGGGTGCAG	CCGGGTGGGT	ACTACGGTCA	GCAGGGTGCT	CAGCAGGCCG	660
CGGGACTGCA	GTCGCCCGGC	CCGCAGCAGT	CTCCGCAGCC	TCCCGGATAT	GGGTCGCAGT	720
ACGGCGGCTA	TTCGTCCAGT	CCGAGCCAAT	CGGGCAGTGG	ATACACTGCT	CAGCCCCCGG	780
CCCAGCCGCC	GGCGCAGTCC	GGGTCGCAAC	AATCGCACCA	GGGCCCATCC	ACGCCACCTA	840
CCGGCTTTCC	GAGCTTCAGC	CCACCACCAC	CGGTCAGTGC	CGGGACGGGG	TCGCAGGCTG	900
GTTCGGCTCC	AGTCAACTAT	TCAAACCCCA	GCGGGGGCGA	GCAGTCGTCG	TCCCCCGGGG	960
GGGCGCCGGT	CTAACCGGGC	GTTCCCGCGT	CCGGTCGCGC	GTGTGCGCGA	AGAGTGAACA	1020
GGGTGTCAGC	AAGCGCGGAC	GATCCTCGTG	CCGAATTC			1058

### (2) INFORMATION FOR SEQ ID NO:46:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 327 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

CGGCACGAGA GACCGATGCC GCTACCCTCG CGCAGGAGGC AGGTAATTTC GAGCGGATCT 60
CCGGCGACCT GAAAACCCAG ATCGACCAGG TGGAGTCGAC GGCAGGTTCG TTGCAGGGCC 120

AGTGGCGCGG CGCGGCGGGG ACGGCCGCCC AGGCCGCGGT GGTGCGCTTC CAAGAAGCAG	180
CCAATAAGCA GAAGCAGGAA CTCGACGAGA TCTCGACGAA TATTCGTCAG GCCGGCGTCC	240
AATACTCGAG GGCCGACGAG GAGCAGCAGC AGGCGCTGTC CTCGCAAATG GGCTTCTGAC	300
CCGCTAATAC GAAAAGAAAC GGAGCAA	327
(2) INFORMATION FOR SEQ ID NO:47:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 170 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:	
CGGTCGCGAT GATGGCGTTG TCGAACGTGA CCGATTCTGT ACCGCCGTCG TTGAGATCAA	60
CCAACAACGT GTTGGCGTCG GCAAATGTGC CGNACCCGTG GATCTCGGTG ATCTTGTTCT	120
TCTTCATCAG GAAGTGCACA CCGGCCACCC TGCCCTCGGN TACCTTTCGG	170
(2) INFORMATION FOR SEQ ID NO:48:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 127 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:	
GATCCGGCGG CACGGGGGGT GCCGGCGGCA GCACCGCTGG CGCTGGCGGC AACGGCGGGG	60
CCGGGGGTGG CGGCGGAACC GGTGGGTTGC TCTTCGGCAA CGGCGGTGCC GGCGGGCACG	120
GGGCCGT	127
(2) INFORMATION FOR SEQ ID NO:49:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 81 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:	
CGGCGGCAAG GGCGGCACCG CCGGCAACGG GAGCGGCGCG GCCGGCGGCA ACGGCGGCAA	60
CGGCGGCTCC GGCCTCAACG G	81
(2) INFORMATION FOR SEQ ID NO:50:	

(1) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 149 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:	
GATCAGGGCT GGCCGGCTCC GGCCAGAAGG GCGGTAACGG AGGAGCTGCC GGATTGTTTG	60
GCAACGGCGG GGCCGGNGGT GCCGGCGCGT CCAACCAAGC CGGTAACGGC GGNGCCGGCG	120
GAAACGGTGG TGCCGGTGGG CTGATCTGG	149
(2) INFORMATION FOR SEQ ID NO:51:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 355 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:	
CGGCACGAGA TCACACCTAC CGAGTGATCG AGATCGTCGG GACCTCGCCC GACGGTGTCG	60
ACGCGGNAAT CCAGGGCGGT CTGGCCCGAG CTGCGCAGAC CATGCGCGCG CTGGACTGGT	120
TCGAAGTACA GTCAATTCGA GGCCACCTGG TCGACGGAGC GGTCGCGCAC TTCCAGGTGA	180
CTATGAAAGT CGGCTTCCGC CTGGAGGATT CCTGAACCTT CAAGCGCGGC CGATAACTGA	240
GGTGCATCAT TAAGCGACTT TTCCAGAACA TCCTGACGCG CTCGAAACGC GGTTCAGCCG	300
ACGGTGGCTC CGCCGAGGCG CTGCCTCCAA AATCCCTGCG ACAATTCGTC GGCGG	355
(2) INFORMATION FOR SEQ ID NO:52:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 999 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:	
ATGCATCACC ATCACCATCA CATGCATCAG GTGGACCCCA ACTTGACACG TCGCAAGGGA	60
CGATTGGCGG CACTGGCTAT CGCGGCGATG GCCAGCGCCA GCCTGGTGAC CGTTGCGGTG	120
DECEGERACES CEAACECEGA TECEGRAGECA GEGECETEGE TACCERCARAE GECEGETEG	180
COGCOGTOGA COGCTGCAGO GCCACOGGCA COGGCGACAC CTGTTGCCCC CCCACCACCA	240

GCCGCCGCCA	ACACGCCGAA	TGCCCAGCCG	GGCGATCCCA	ACGCAGCACC	TCCGCCGGCC	300
GACCCGAACG	CACCGCCGCC	ACCTGTCATT	GCCCCAAACG	CACCCCAACC	TGTCCGGATC	360
GACAACCCGG	TTGGAGGATT	CAGCTTCGCG	CTGCCTGCTG	GCTGGGTGGA	GTCTGACGCC	420
GCCCACTTCG	ACTACGGTTC	AGCACTCCTC	AGCAAAACCA	CCGGGGACCC	GCCATTTCCC	480
GGACAGCCGC	CGCCGGTGGC	CAATGACACC	CGTATCGTGC	TCGGCCGGCT	AGACCAAAAG	540
CTTTACGCCA	GCGCCGAAGC	CACCGACTCC	AAGGCCGCGG	CCCGGTTGGG	CTCGGACATG	600
GGTGAGTTCT	ATATGCCCTA	CCCGGGCACC	CGGATCAACC	AGGAAACCGT	CTCGCTCGAC	660
GCCAACGGGG	TGTCTGGAAG	CGCGTCGTAT	TACGAAGTCA	AGTTCAGCGA	TCCGAGTAAG	720
CCGAACGGCC	AGATCTGGAC	GGGCGTAATC	GGCTCGCCCG	CGGCGAACGC	ACCGGACGCC	780
GGCCCCCTC	AGCGCTGGTT	TGTGGTATGG	CTCGGGACCG	CCAACAACCC	GGTGGACAAG	840
GGCGCGGCCA	AGGCGCTGGC	CGAATCGATC	CGGCCTTTGG	TCGCCCCGCC	GCCGGCGCCG	900
GCACCGGCTC	CTGCAGAGCC	CGCTCCGGCG	ccgccgccgg	CCGGGGAAGT	CGCTCCTACC	960
CCGACGACAC	CGACACCGCA	GCGGACCTTA	CCGGCCTGA			999

#### (2) INFORMATION FOR SEQ ID NO:53:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 332 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

Met His His His His His His Met His Gln Val Asp Pro Asn Leu Thr 1 5 10 15

Arg Arg Lys Gly Arg Leu Ala Ala Leu Ala Ile Ala Ala Met Ala Ser 20 25 30

Ala Ser Leu Val Thr Val Ala Val Pro Ala Thr Ala Asn Ala Asp Pro 35 40 45

Glu Pro Ala Pro Pro Val Pro Thr Thr Ala Ala Ser Pro Pro Ser Thr 50 55 60

Ala Ala Ala Pro Pro Ala Pro Ala Thr Pro Val Ala Pro Pro Pro Pro 65 70 75 80

Ala Ala Ala Asn Thr Pro Asn Ala Gln Pro Gly Asp Pro Asn Ala Ala 85 90 95

Pro Pro Pro Ala Asp Pro Asn Ala Pro Pro Pro Pro Val Ile Ala Pro

100 105 110

Asn Ala Pro Gln Pro Val Arg Ile Asp Asn Pro Val Gly Gly Phe Ser 115 120 125

Phe Ala Leu Pro Ala Gly Trp Val Glu Ser Asp Ala Ala His Phe Asp 130 135 140

Tyr Gly Ser Ala Leu Leu Ser Lys Thr Thr Gly Asp Pro Pro Phe Pro 145 150 155 160

Gly Gln Pro Pro Pro Val Ala Asn Asp Thr Arg Ile Val Leu Gly Arg 165 170 175

Leu Asp Gln Lys Leu Tyr Ala Ser Ala Glu Ala Thr Asp Ser Lys Ala 180 185 190

Ala Ala Arg Leu Gly Ser Asp Met Gly Glu Phe Tyr Met Pro Tyr Pro 195 200 205

Gly Thr Arg Ile Asn Gln Glu Thr Val Ser Leu Asp Ala Asn Gly Val 210 220

Ser Gly Ser Ala Ser Tyr Tyr Glu Val Lys Phe Ser Asp Pro Ser Lys 225 230 235 240

Pro Asn Gly Gln Ile Trp Thr Gly Val Ile Gly Ser Pro Ala Ala Asn 245 250 255

Ala Pro Asp Ala Gly Pro Pro Gln Arg Trp Phe Val Val Trp Leu Gly 260 265 270

Thr Ala Asn Asn Pro Val Asp Lys Gly Ala Ala Lys Ala Leu Ala Glu 275 280 285

Ser Ile Arg Pro Leu Val Ala Pro Pro Pro Ala Pro Ala Pro Ala Pro 290 295 300

Ala Glu Pro Ala Pro Ala Pro Ala Pro Ala Gly Glu Val Ala Pro Thr 305 310 315 320

Pro Thr Thr Pro Thr Pro Gln Arg Thr Leu Pro Ala 325 330

#### (2) INFORMATION FOR SEQ ID NO:54:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 20 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

Asp Pro Val Asp Ala Val Ile Asn Thr Thr Xaa Asn Tyr Gly Gln Val

1 10 15 Val Ala Ala Leu 20 (2) INFORMATION FOR SEQ ID NO:55: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55: Ala Val Glu Ser Gly Met Leu Ala Leu Gly Thr Pro Ala Pro Ser (2) INFORMATION FOR SEQ ID NO:56: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56: Ala Ala Met Lys Pro Arg Thr Gly Asp Gly Pro Leu Glu Ala Ala Lys 10 Glu Gly Arg (2) INFORMATION FOR SEQ ID NO:57: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57: Tyr Tyr Trp Cys Pro Gly Gln Pro Phe Asp Pro Ala Trp Gly Pro (2) INFORMATION FOR SEQ ID NO:58: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 amino acids (B) TYPE: amino acid

(C) STRANDEDNESS:
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58: Asp Ile Gly Ser Glu Ser Thr Glu Asp Gln Gln Xaa Ala Val 5 (2) INFORMATION FOR SEQ ID NO:59: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: Ala Glu Glu Ser Ile Ser Thr Xaa Glu Xaa Ile Val Pro (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:60: Asp Pro Glu Pro Ala Pro Pro Val Pro Thr Ala Ala Ala Ala Pro Pro 1 5 10 Ala (2) INFORMATION FOR SEQ ID NO:61: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61: Ala Pro Lys Thr Tyr Xaa Glu Glu Leu Lys Gly Thr Asp Thr Gly 10 (2) INFORMATION FOR SEQ ID NO:62: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids (B) TYPE: amino acid

(C) STRANDEDNESS:
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gln Gln Thr Ser 1 5 10 15

Leu Leu Asn Asn Leu Ala Asp Pro Asp Val Ser Phe Ala Asp
20 25 30

- (2) INFORMATION FOR SEQ ID NO:63:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 24 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

Gly Cys Gly Asp Arg Ser Gly Gly Asn Leu Asp Gln Ile Arg Leu Arg 1 5 10 15

Arg Asp Arg Ser Gly Gly Asn Leu 20

- (2) INFORMATION FOR SEQ ID NO:64:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 187 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

Thr Gly Ser Leu Asn Gln Thr His Asn Arg Arg Ala Asn Glu Arg Lys

1 10 15

Asn Thr Thr Met Lys Met Val Lys Ser Ile Ala Ala Gly Leu Thr Ala 20 25 30

Ala Ala Ala Ile Gly Ala Ala Ala Gly Val Thr Ser Ile Met Ala 35 40 45

Gly Gly Pro Val Val Tyr Gln Met Gln Pro Val Val Phe Gly Ala Pro 50 55 60

Leu Pro Leu Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gln 65 70 75 80

Leu Thr Ser Leu Leu Asn Ser Leu Ala Asp Pro Asn Val Ser Phe Ala 85 90 95

Asn Lys Gly Ser Leu Val Glu Gly Gly Ile Gly Gly Thr Glu Ala Arg 100 105 110

Ile Ala Asp His Lys Leu Lys Lys Ala Ala Glu His Gly Asp Leu Pro 115 120 125

Leu Ser Phe Ser Val Thr Asn Ile Gln Pro Ala Ala Ala Gly Ser Ala 130 135 140

Thr Ala Asp Val Ser Val Ser Gly Pro Lys Leu Ser Ser Pro Val Thr 145 150 155 160

Gln Asn Val Thr Phe Val Asn Gln Gly Gly Trp Met Leu Ser Arg Ala 165 170 175

Ser Ala Met Glu Leu Leu Gln Ala Ala Gly Xaa 180 185

#### (2) INFORMATION FOR SEQ ID NO:65:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 148 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

Asp Glu Val Thr Val Glu Thr Thr Ser Val Phe Arg Ala Asp Phe Leu

1 5 10 15

Ser Glu Leu Asp Ala Pro Ala Gln Ala Gly Thr Glu Ser Ala Val Ser 20 25 30

Gly Val Glu Gly Leu Pro Pro Gly Ser Ala Leu Leu Val Val Lys Arg 35 40 45

Gly Pro Asn Ala Gly Ser Arg Phe Leu Leu Asp Gln Ala Ile Thr Ser 50 55 60

Ala Gly Arg His Pro Asp Ser Asp Ile Phe Leu Asp Asp Val Thr Val 70 75 80

Ser Arg Arg His Ala Glu Phe Arg Leu Glu Asn Asn Glu Phe Asn Val 85 90 95

Val Asp Val Gly Ser Leu Asn Gly Thr Tyr Val Asn Arg Glu Pro Val 100 105 110

Asp Ser Ala Val Leu Ala Asn Gly Asp Glu Val Gln Ile Gly Lys Leu 115 120 125

Arg Leu Val Phe Leu Thr Gly Pro Lys Gln Gly Glu Asp Asp Gly Ser

Thr Gly Gly Pro 145

#### (2) INFORMATION FOR SEQ ID NO:66:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 230 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:
- Thr Ser Asn Arg Pro Ala Arg Arg Gly Arg Arg Ala Pro Arg Asp Thr
  1 5 10 15
- Gly Pro Asp Arg Ser Ala Ser Leu Ser Leu Val Arg His Arg Arg Gln
  20 25 30
- Gln Arg Asp Ala Leu Cys Leu Ser Ser Thr Gln Ile Ser Arg Gln Ser 35 40 45
- Asn Leu Pro Pro Ala Ala Gly Gly Ala Ala Asn Tyr Ser Arg Arg Asn 50 55 60
- Phe Asp Val Arg Ile Lys Ile Phe Met Leu Val Thr Ala Val Val Leu 65 70 75 80
- Leu Cys Cys Ser Gly Val Ala Thr Ala Ala Pro Lys Thr Tyr Cys Glu 85 90 95
- Glu Leu Lys Gly Thr Asp Thr Gly Gln Ala Cys Gln Ile Gln Met Ser
- Asp Pro Ala Tyr Asn Ile Asn Ile Ser Leu Pro Ser Tyr Tyr Pro Asp 115 120 125
- Gln Lys Ser Leu Glu Asn Tyr Ile Ala Gln Thr Arg Asp Lys Phe Leu 130 135 140
- Ser Ala Ala Thr Ser Ser Thr Pro Arg Glu Ala Pro Tyr Glu Leu Asn 145 150 155 160
- Ile Thr Ser Ala Thr Tyr Gln Ser Ala Ile Pro Pro Arg Gly Thr Gln 165 170 175
- Ala Val Val Leu Xaa Val Tyr His Asn Ala Gly Gly Thr His Pro Thr 180 185 190
- Thr Thr Tyr Lys Ala Phe Asp Trp Asp Gln Ala Tyr Arg Lys Pro Ile 195 200 205
- Thr Tyr Asp Thr Leu Trp Gln Ala Asp Thr Asp Pro Leu Pro Val Val 210 215 220

Phe Pro Ile Val Ala Arg

#### (2) INFORMATION FOR SEQ ID NO:67:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 132 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gln Gly Phe
1 5 10 15

Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser 20 25 30

Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly
35 40 45

Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val 50 55 60

Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val 65 70 75 80

Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala 85 90 95

Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Asn Trp
100 105 110

Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu 115 120 125

Gly Pro Pro Ala 130

#### (2) INFORMATION FOR SEQ ID NO:68:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 100 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

Val Pro Leu Arg Ser Pro Ser Met Ser Pro Ser Lys Cys Leu Ala Ala 1 5 10 15

Ala Gln Arg Asn Pro Val Ile Arg Arg Arg Arg Leu Ser Asn Pro Pro 20 25 30

Pro Arg Lys Tyr Arg Ser Met Pro Ser Pro Ala Thr Ala Ser Ala Gly 35 40

Met Ala Arg Val Arg Arg Arg Ala Ile Trp Arg Gly Pro Ala Thr Xaa 50 55 60

Ser Ala Gly Met Ala Arg Val Arg Arg Trp Xaa Val Met Pro Xaa Val 65 70 75 80

Ile Gln Ser Thr Xaa Ile Arg Xaa Xaa Gly Pro Phe Asp Asn Arg Gly 85 90 95

Ser Glu Arg Lys

#### (2) INFORMATION FOR SEQ ID NO:69:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 163 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

Met Thr Asp Asp Ile Leu Leu Ile Asp Thr Asp Glu Arg Val Arg Thr 1 5 10 15

Leu Thr Leu Asn Arg Pro Gln Ser Arg Asn Ala Leu Ser Ala Ala Leu 20 25 30

Arg Asp Arg Phe Phe Ala Xaa Leu Xaa Asp Ala Glu Xaa Asp Asp Asp 35 40 45

Ile Asp Val Val Ile Leu Thr Gly Ala Asp Pro Val Phe Cys Ala Gly
50 60

Leu Asp Leu Lys Val Ala Gly Arg Ala Asp Arg Ala Ala Gly His Leu 65 70 75 80

Thr Ala Val Gly Gly His Asp Gln Ala Gly Asp Arg Arg Asp Gln Arg

Arg Arg Gly His Arg Arg Ala Arg Thr Gly Ala Val Leu Arg His Pro 100 105 110

Asp Arg Leu Arg Ala Arg Pro Leu Arg Arg His Pro Arg Pro Gly Gly
115 120 125

Ala Ala Ala His Leu Gly Thr Gln Cys Val Leu Ala Ala Lys Gly Arg
130 135 140

His Arg Xaa Gly Pro Val Asp Glu Pro Asp Arg Arg Leu Pro Val Arg 145 150 155 160

Asp Arg Arg

41

#### (2) INFORMATION FOR SEQ ID NO:70:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 344 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

Met Lys Phe Val Asn His Ile Glu Pro Val Ala Pro Arg Arg Ala Gly 10

Gly Ala Val Ala Glu Val Tyr Ala Glu Ala Arg Arg Glu Phe Gly Arg

Leu Pro Glu Pro Leu Ala Met Leu Ser Pro Asp Glu Gly Leu Leu Thr

Ala Gly Trp Ala Thr Leu Arg Glu Thr Leu Leu Val Gly Gln Val Pro **5**5

Arg Gly Arg Lys Glu Ala Val Ala Ala Val Ala Ala Ser Leu Arg

Cys Pro Trp Cys Val Asp Ala His Thr Thr Met Leu Tyr Ala Ala Gly

Gln Thr Asp Thr Ala Ala Ala Ile Leu Ala Gly Thr Ala Pro Ala Ala 100 105

Gly Asp Pro Asn Ala Pro Tyr Val Ala Trp Ala Ala Gly Thr Gly Thr 120

Pro Ala Gly Pro Pro Ala Pro Phe Gly Pro Asp Val Ala Ala Glu Tyr 130 140

Leu Gly Thr Ala Val Gln Phe His Phe Ile Ala Arg Leu Val Leu Val 150

Leu Leu Asp Glu Thr Phe Leu Pro Gly Gly Pro Arg Ala Gln Gln Leu 165 170

Met Arg Arg Ala Gly Gly Leu Val Phe Ala Arg Lys Val Arg Ala Glu

His Arg Pro Gly Arg Ser Thr Arg Arg Leu Glu Pro Arg Thr Leu Pro

Asp Asp Leu Ala Trp Ala Thr Pro Ser Glu Pro Ile Ala Thr Ala Phe

Ala Ala Leu Ser His His Leu Asp Thr Ala Pro His Leu Pro Pro Pro 230 235

42

Thr Arg Gln Val Val Arg Arg Val Val Gly Ser Trp His Gly Glu Pro
245 250 255

Met Pro Met Ser Ser Arg Trp Thr Asn Glu His Thr Ala Glu Leu Pro 260 260 270

Ala Asp Leu His Ala Pro Thr Arg Leu Ala Leu Leu Thr Gly Leu Ala 275 280 285

Pro His Gln Val Thr Asp Asp Asp Val Ala Ala Ala Arg Ser Leu Leu 290 295 300

Asp Thr Asp Ala Ala Leu Val Gly Ala Leu Ala Trp Ala Ala Phe Thr 305 310 315 320

Ala Ala Arg Arg Ile Gly Thr Trp Ile Gly Ala Ala Ala Glu Gly Gln 325 330 235

Val Ser Arg Gln Asn Pro Thr Gly 340

#### (2) INFORMATION FOR SEQ ID NO:71:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 485 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

Asp Asp Pro Asp Met Pro Gly Thr Val Ala Lys Ala Val Ala Asp Ala 1 5 10 15

Leu Gly Arg Gly Ile Ala Pro Val Glu Asp Ile Gln Asp Cys Val Glu 20 25 30

Ala Arg Leu Gly Glu Ala Gly Leu Asp Asp Val Ala Arg Val Tyr Ile
35 40 45

Ile Tyr Arg Gln Arg Arg Ala Glu Leu Arg Thr Ala Lys Ala Leu Leu 50 55 60

Gly Val Arg Asp Glu Leu Lys Leu Ser Leu Ala Ala Val Thr Val Leu
65 70 75 80

Arg Glu Arg Tyr Leu Leu His Asp Glu Gln Gly Arg Pro Ala Glu Ser 85 90 95

Thr Gly Glu Leu Met Asp Arg Ser Ala Arg Cys Val Ala Ala Ala Glu

Asp Gln Tyr Glu Pro Gly Ser Ser Arg Arg Trp Ala Glu Arg Phe Ala

 Thr
 Leu
 Leu
 Asn
 Leu
 Glu
 Phe
 Leu
 Pro
 Asn
 Ser
 Pro
 Thr
 Leu
 Met

 Asn
 Ser
 Gly
 Thr
 Asp
 Leu
 Gly
 Leu
 Aleu
 Ale

Arg Ala Val Glu Arg Asn Gly Leu His Arg Leu Val Asn Pro Arg Thr 275 280 285

Gly Lys Ile Val Ala Arg Met Pro Ala Ala Glu Leu Phe Asp Ala Ile 290 295 300

Cys Lys Ala Ala His Ala Gly Gly Asp Pro Gly Leu Val Phe Leu Asp 305 310 315 320

Thr Ile Asn Arg Ala Asn Pro Val Pro Gly Arg Gly Arg Ile Glu Ala 325 330 335

Thr Asn Pro Cys Gly Glu Val Pro Leu Leu Pro Tyr Glu Ser Cys Asn 340 345 350

Leu Gly Ser Ile Asn Leu Ala Arg Met Leu Ala Asp Gly Arg Val Asp 355 360 365

Trp Asp Arg Leu Glu Glu Val Ala Gly Val Ala Val Arg Phe Leu Asp 370 380

Asp Val Ile Asp Val Ser Arg Tyr Pro Phe Pro Glu Leu Gly Glu Ala 385 390 395 400

Ala Arg Ala Thr Arg Lys Ile Gly Leu Gly Val Met Gly Leu Ala Glu
405 410 415

Leu Leu Ala Ala Leu Gly Ile Pro Tyr Asp Ser Glu Glu Ala Val Arg
420 425 430

Leu Ala Thr Arg Leu Met Arg Arg Ile Gln Gln Ala Ala His Thr Ala 435 440 445

Ser Arg Arg Leu Ala Glu Glu Arg Gly Ala Phe Pro Ala Phe Thr Asp 450 455 460

Ser Arg Phe Ala Arg Ser Gly Pro Arg Arg Asn Ala Gln Val Thr Ser 465 470 475 480

Val Ala Pro Thr Gly

#### (2) INFORMATION FOR SEQ ID NO:72:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 267 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

Gly Val Ile Val Leu Asp Leu Glu Pro Arg Gly Pro Leu Pro Thr Glu
1 5 10 15

Ile Tyr Trp Arg Arg Gly Leu Ala Leu Gly Ile Ala Val Val Val 20 25 30

Val Gly Ile Ala Val Ala Ile Val Ile Ala Phe Val Asp Ser Ser Ala 35 40 45

Gly Ala Lys Pro Val Ser Ala Asp Lys Pro Ala Ser Ala Gln Ser His 50 55 60

Pro Gly Ser Pro Ala Pro Gln Ala Pro Gln Pro Ala Gly Gln Thr Glu 65 70 75 80

Gly Asn Ala Ala Ala Pro Pro Gln Gly Gln Asn Pro Glu Thr Pro 85 90 95

Thr Pro Thr Ala Ala Val Gln Pro Pro Pro Val Leu Lys Glu Gly Asp 100 105 110

Asp Cys Pro Asp Ser Thr Leu Ala Val Lys Gly Leu Thr Asn Ala Pro 115 120 125

Gln Tyr Tyr Val Gly Asp Gln Pro Lys Phe Thr Met Val Val Thr Asn 130 135 140

Ile Gly Leu Val Ser Cys Lys Arg Asp Val Gly Ala Ala Val Leu Ala 145 150 155 160

PCT/US99/03265

Ala Tyr Val Tyr Ser Leu Asp Asn Lys Arg Leu Trp Ser Asn Leu Asp 165 170 175

Cys Ala Pro Ser Asn Glu Thr Leu Val Lys Thr Phe Ser Pro Gly Glu 180 185 190

Gln Val Thr Thr Ala Val Thr Trp Thr Gly Met Gly Ser Ala Pro Arg 195 200 205

Cys Pro Leu Pro Arg Pro Ala Ile Gly Pro Gly Thr Tyr Asn Leu Val 210 215 220

Val Gln Leu Gly Asn Leu Arg Ser Leu Pro Val Pro Phe Ile Leu Asn 225 230 235 240

Gln Pro Pro Pro Pro Pro Gly Pro Val Pro Ala Pro Gly Pro Ala Gln
245
250
255

Ala Pro Pro Pro Glu Ser Pro Ala Gln Gly Gly 260 265

#### (2) INFORMATION FOR SEQ ID NO:73:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 97 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

Leu Ile Ser Thr Gly Lys Ala Ser His Ala Ser Leu Gly Val Gln Val

10 15

Thr Asn Asp Lys Asp Thr Pro Gly Ala Lys Ile Val Glu Val Val Ala 20 25 30

Gly Gly Ala Ala Ala Asn Ala Gly Val Pro Lys Gly Val Val Val Thr 35 40 45

Lys Val Asp Asp Arg Pro Ile Asn Ser Ala Asp Ala Leu Val Ala Ala 50 60

Val Arg Ser Lys Ala Pro Gly Ala Thr Val Ala Leu Thr Phe Gln Asp 65 70 75 80

Pro Ser Gly Gly Ser Arg Thr Val Gln Val Thr Leu Gly Lys Ala Glu 85 90 95

Gln

#### (2) INFORMATION FOR SEQ ID NO:74:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 364 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

Gly Ala Ala Val Ser Leu Leu Ala Ala Gly Thr Leu Val Leu Thr Ala 1 5 10 15

46

Cys Gly Gly Gly Thr Asn Ser Ser Ser Ser Gly Ala Gly Gly Thr Ser 20 25 30

Gly Ser Val His Cys Gly Gly Lys Lys Glu Leu His Ser Ser Gly Ser 35 40 45

Thr Ala Gln Glu Asn Ala Met Glu Gln Phe Val Tyr Ala Tyr Val Arg 50 55 60

Ser Cys Pro Gly Tyr Thr Leu Asp Tyr Asn Ala Asn Gly Ser Gly Ala 65 70 75 80

Gly Val Thr Gln Phe Leu Asn Asn Glu Thr Asp Phe Ala Gly Ser Asp 85 90 95

Val Pro Leu Asn Pro Ser Thr Gly Gln Pro Asp Arg Ser Ala Glu Arg 100 105 110

Cys Gly Ser Pro Ala Trp Asp Leu Pro Thr Val Phe Gly Pro Ile Ala 115 120 125

Ile Thr Tyr Asn Ile Lys Gly Val Ser Thr Leu Asn Leu Asp Gly Pro
130 135 140

Thr Thr Ala Lys Ile Phe Asn Gly Thr Ile Thr Val Trp Asn Asp Pro 145 150 155 160

Gln Ile Gln Ala Leu Asn Ser Gly Thr Asp Leu Pro Pro Thr Pro Ile 165 170 175

Ser Val Ile Phe Arg Ser Asp Lys Ser Gly Thr Ser Asp Asn Phe Gln 180 185 190

Lys Tyr Leu Asp Gly Val Ser Asn Gly Ala Trp Gly Lys Gly Ala Ser 195 200 205

Glu Thr Phe Ser Gly Gly Val Gly Val Gly Ala Ser Gly Asn Asn Gly 210 215 220

Thr Ser Ala Leu Leu Gln Thr Thr Asp Gly Ser Ile Thr Tyr Asn Glu 225 230 235 240

Trp Ser Phe Ala Val Gly Lys Gln Leu Asn Met Ala Gln Ile Ile Thr 245 250 255

Ser Ala Gly Pro Asp Pro Val Ala Ile Thr Thr Glu Ser Val Gly Lys
260 265 270

Thr Ile Ala Gly Ala Lys Ile Met Gly Gln Gly Asn Asp Leu Val Leu 275 280 285

Asp Thr Ser Ser Phe Tyr Arg Pro Thr Gln Pro Gly Ser Tyr Pro Ile 290 295 300

Val Leu Ala Thr Tyr Glu Ile Val Cys Ser Lys Tyr Pro Asp Ala Thr 305 310 315 320

Thr Gly Thr Ala Val Arg Ala Phe Met Gln Ala Ala Ile Gly Pro Gly 325 330 335

Gln Glu Gly Leu Asp Gln Tyr Gly Ser Ile Pro Leu Pro Lys Ser Phe 340 345 350

Gln Ala Lys Leu Ala Ala Ala Val Asn Ala Ile Ser 355 360

#### (2) INFORMATION FOR SEQ ID NO:75:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 309 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

Gln Ala Ala Gly Arg Ala Val Arg Arg Thr Gly His Ala Glu Asp 10 15

Gln Thr His Gln Asp Arg Leu His His Gly Cys Arg Arg Ala Ala Val 20 25 30

Val Val Arg Gln Asp Arg Ala Ser Val Ser Ala Thr Ser Ala Arg Pro 35 40 45

Pro Arg Arg His Pro Ala Gln Gly His Arg Arg Arg Val Ala Pro Ser 50 55

Gly Gly Arg Arg Pro His Pro His His Val Gln Pro Asp Asp Arg
65 70 75 80

Arg Asp Arg Pro Ala Leu Leu Asp Arg Thr Gln Pro Ala Glu His Pro
85 90 95

Asp Pro His Arg Arg Gly Pro Ala Asp Pro Gly Arg Val Arg Gly Arg

Gly Arg Leu Arg Arg Val Asp Asp Gly Arg Leu Gln Pro Asp Arg Asp 115 120 125

Ala Asp His Gly Ala Pro Val Arg Gly Arg Gly Pro His Arg Gly Val 130 135 140

Gln His Arg Gly Gly Pro Val Phe Val Arg Arg Val Pro Gly Val Arg 145 150 155 160

Cys Ala His Arg Arg Gly His Arg Arg Val Ala Ala Pro Gly Gln Gly
165 170 175

Asp Val Leu Arg Ala Gly Leu Arg Val Glu Arg Leu Arg Pro Val Ala 180 185 190

Ala Val Glu Asn Leu His Arg Gly Ser Gln Arg Ala Asp Gly Arg Val 195 200 205

Phe Arg Pro Ile Arg Arg Gly Ala Arg Leu Pro Ala Arg Arg Ser Arg 210 215 220

Ala Gly Pro Gln Gly Arg Leu His Leu Asp Gly Ala Gly Pro Ser Pro 225 230 235 240

Leu Pro Ala Arg Ala Gly Gln Gln Gln Pro Ser Ser Ala Gly Gly Arg
245 250 255

Arg Ala Gly Gly Ala Glu Arg Ala Asp Pro Gly Gln Arg Gly Arg His 260 265 270

His Gln Gly Gly His Asp Pro Gly Arg Gln Gly Ala Gln Arg Gly Thr 275 280 285

Ala Gly Val Ala His Ala Ala Ala Gly Pro Arg Arg Ala Ala Val Arg 290 295 300

Asn Arg Pro Arg Arg

#### (2) INFORMATION FOR SEQ ID NO:76:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 580 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

Ser Ala Val Trp Cys Leu Asn Gly Phe Thr Gly Arg His Arg His Gly 1 5 10 15

Arg Cys Arg Val Arg Ala Ser Gly Trp Arg Ser Ser Asn Arg Trp Cys 20 25 30

Ser Thr Thr Ala Asp Cys Cys Ala Ser Lys Thr Pro Thr Gln Ala Ala 35 40 45

Ser Pro Leu Glu Arg Arg Phe Thr Cys Cys Ser Pro Ala Val Gly Cys 50 55 60

- Arg Phe Arg Ser Phe Pro Val Arg Arg Leu Ala Leu Gly Ala Arg Thr 65 70 75 80
- Ser Arg Thr Leu Gly Val Arg Arg Thr Leu Ser Gln Trp Asn Leu Ser 85 90 95
- Pro Arg Ala Gln Pro Ser Cys Ala Val Thr Val Glu Ser His Thr His 100 105 110
- Ala Ser Pro Arg Met Ala Lys Leu Ala Arg Val Val Gly Leu Val Gln
  115 120 125
- Glu Glu Gln Pro Ser Asp Mer Thr Asn His Pro Arg Tyr Ser Pro Pro 130 135 140
- Pro Gln Gln Pro Gly Thr Pro Gly Tyr Ala Gln Gly Gln Gln Gln Thr 145 150 155 160
- Tyr Ser Gln Gln Phe Asp Trp Arg Tyr Pro Pro Ser Pro Pro Pro Gln
  165 170 175
- Pro Thr Gln Tyr Arg Gln Pro Tyr Glu Ala Leu Gly Gly Thr Arg Pro 180 185 190
- Gly Leu Ile Pro Gly Val Ile Pro Thr Met Thr Pro Pro Pro Gly Met
  195 200 205
- Val Arg Gln Arg Pro Arg Ala Gly Met Leu Ala Ile Gly Ala Val Thr 210 215 220
- Ile Ala Val Val Ser Ala Gly Ile Gly Gly Ala Ala Ala Ser Leu Val 225 230 230 235 240
- Gly Phe Asn Arg Ala Pro Ala Gly Pro Ser Gly Gly Pro Val Ala Ala 245 250 255
- Ser Ala Ala Pro Ser Ile Pro Ala Ala Asn Met Pro Pro Gly Ser Val 260 265 270
- Glu Gln Val Ala Ala Lys Val Val Pro Ser Val Val Met Leu Glu Thr
  275 280 285
- Asp Leu Gly Arg Gln Ser Glu Glu Gly Ser Gly Ile Ile Leu Ser Ala
  290 295 300
- Glu Gly Leu Ile Leu Thr Asn Asn His Val Ile Ala Ala Ala Ala Lys
- Pro Pro Leu Gly Ser Pro Pro Pro Lys Thr Thr Val Thr Phe Ser Asp 325 330 335
- Gly Arg Thr Ala Pro Phe Thr Val Val Gly Ala Asp Pro Thr Ser Asp

50

			340					345					350		
Ile	Ala	Val 355	Val	Arg	Val	Gln	Gly 360	Val	Ser	Gly	Leu	Thr 365	Pro	Ile	Ser
Leu	Gly 370	Ser	Ser	Ser	Asp	Leu 375	Arg	Val	Gly	Gln	Pro 380	Val	Leu	Ala	Ile
Gly 385	Ser	Pro	Leu	Gly	Leu 390	Glu	Gly	Thr	Val	Thr 395	Thr	Gly	Ile	Val	Ser 400
Ala	Leu	Asn	Arg	Pro 405	Val	Ser	Thr	Thr	Gly 410	Glu	Ala	Gly	Asn	Gln 415	Asn
Thr	Val	Leu	Asp 420	Ala	Ile	Gln	Thr	Asp 425	Ala	Ala	Ile	Asn	Pro 430	Gly	Asn
Ser	Gly	Gly 435	Ala	Leu	Val	Asn	Met 440	Asn	Ala	Gln	Leu	Val 445	Gly	Val	Asn
Ser	Ala 450	Ile	Ala	Thr	Leu	Gly 455	Ala	Asp	Ser	Ala	Asp 460	Ala	Gln	Ser	Gly
Ser 465	Ile	Gly	Leu	Gly	Phe 470	Ala	Ile	Pro	Val	Asp 475	Gln	Ala	Lys	Arg	Ile 480
Ala	Asp	Glu	Leu	Ile 485	Ser	Thr	Gly	Lys	Ala 490	Ser	His	Ala	Ser	Leu 495	Gly
Val	Gln	Val	Thr 500	Asn	Asp	Lys	Asp	Thr 505	Pro	Gly	Ala	Lys	Ile 510	Val	Glu
Val	Val	Ala 515	Gly	Gly	Ala	Ala	Ala 520	Asn	Ala	Gly	Val	Pro 525	Lys	Gly	Val
Val	Val 530	Thr	Lys	Val	Asp	Asp 535	Arg	Pro	Ile	Asn	Ser 540	Ala	Asp	Ala	Leu
Val 545	Ala	Ala	Val	Arg	<b>Ser</b> 550	Lys	Ala	Pro	Gly	Ala 555	Thr	Val	Ala	Leu	Thr 560
Phe	Gln	Asp	Pro	<b>Ser</b> <b>5</b> 65	Gly	Gly	Ser	Arg	Thr 570	Val	Gln	Val	Thr	Leu 575	Gly
Lys	Ala	Glu	Gln 580												

## (2) INFORMATION FOR SEQ ID NO:77:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 233 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

Met Asn Asp Gly Lys Arg Ala Val Thr Ser Ala Val Leu Val Val Leu

1 10 15

Gly Ala Cys Leu Ala Leu Trp Leu Ser Gly Cys Ser Ser Pro Lys Pro 20 25 30

Asp Ala Glu Glu Gln Gly Val Pro Val Ser Pro Thr Ala Ser Asp Pro 35 40 45

Ala Leu Leu Ala Glu Ile Arg Gln Ser Leu Asp Ala Thr Lys Gly Leu 50 55 60

Thr Ser Val His Val Ala Val Arg Thr Thr Gly Lys Val Asp Ser Leu 70 75 80

Leu Gly Ile Thr Ser Ala Asp Val Asp Val Arg Ala Asn Pro Leu Ala 85 90 95

Ala Lys Gly Val Cys Thr Tyr Asn Asp Glu Gln Gly Val Pro Phe Arg

Val Gln Gly Asp Asn Ile Ser Val Lys Leu Phe Asp Asp Trp Ser Asn 115 120 125

Leu Gly Ser Ile Ser Glu Leu Ser Thr Ser Arg Val Leu Asp Pro Ala 130 135 140

Ala Gly Val Thr Gln Leu Leu Ser Gly Val Thr Asn Leu Gln Ala Gln 145 150 150 160

Gly Thr Glu Val Ile Asp Gly Ile Ser Thr Thr Lys Ile Thr Gly Thr  $_{165}$   $_{175}$ 

Ile Pro Ala Ser Ser Val Lys Met Leu Asp Pro Gly Ala Lys Ser Ala 180 185 190

Arg Pro Ala Thr Val Trp Ile Ala Gln Asp Gly Ser His His Leu Val

Arg Ala Ser Ile Asp Leu Gly Ser Gly Ser Ile Gln Leu Thr Gln Ser 210 220

Lys Trp Asn Glu Pro Val Asn Val Asp 225 230

# (2) INFORMATION FOR SEQ ID NO:78:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 66 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

Val Ile Asp Ile Ile Gly Thr Ser Pro Thr Ser Trp Glu Gln Ala Ala 1 5 10 15

Ala Glu Ala Val Gln Arg Ala Arg Asp Ser Val Asp Asp Ile Arg Val 20 25 30

Ala Arg Val Ile Glu Gln Asp Met Ala Val Asp Ser Ala Gly Lys Ile
35 40 45

Thr Tyr Arg Ile Lys Leu Glu Val Ser Phe Lys Met Arg Pro Ala Gln 50 55 60

Pro Arg 65

- (2) INFORMATION FOR SEQ ID NO:79:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 69 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

Val Pro Pro Ala Pro Pro Leu Pro Pro Leu Pro Pro Ser Pro Ile Ser 1 5 10 15

Cys Ala Ser Pro Pro Ser Pro Pro Leu Pro Pro Ala Pro Pro Val Ala 20 25 30

Pro Gly Pro Pro Met Pro Pro Leu Asp Pro Trp Pro Pro Ala Pro Pro 35 40 45

Leu Pro Tyr Ser Thr Pro Pro Gly Ala Pro Leu Pro Pro Ser Pro Pro 50 55 60

Ser Pro Pro Leu Pro 65

- (2) INFORMATION FOR SEQ ID NO:80:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 355 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

Met Ser Asn Ser Arg Arg Ser Leu Arg Trp Ser Trp Leu Leu Ser

10 15

- Val Leu Ala Ala Val Gly Leu Gly Leu Ala Thr Ala Pro Ala Gln Ala 20 25 30
- Ala Pro Pro Ala Leu Ser Gln Asp Arg Phe Ala Asp Phe Pro Ala Leu 35 40 45
- Pro Leu Asp Pro Ser Ala Met Val Ala Gln Val Ala Pro Gln Val Val 50 55 60
- Asn Ile Asn Thr Lys Leu Gly Tyr Asn Asn Ala Val Gly Ala Gly Thr 65 70 75 80
- Gly Ile Val Ile Asp Pro Asn Gly Val Val Leu Thr Asn Asn His Val 85 90 95
- Ile Ala Gly Ala Thr Asp Ile Asn Ala Phe Ser Val Gly Ser Gly Gln
  100 105 110
- Thr Tyr Gly Val Asp Val Val Gly Tyr Asp Arg Thr Gln Asp Val Ala 115 120 125
- Val Leu Gln Leu Arg Gly Ala Gly Gly Leu Pro Ser Ala Ala Ile Gly
  130 135 140
- Gly Gly Val Ala Val Gly Glu Pro Val Val Ala Met Gly Asn Ser Gly 145 150 155 160
- Gly Gln Gly Gly Thr Pro Arg Ala Val Pro Gly Arg Val Val Ala Leu 165 170 175
- Gly Gln Thr Val Gln Ala Ser Asp Ser Leu Thr Gly Ala Glu Glu Thr 180 185 190
- Leu Asn Gly Leu Ile Gln Phe Asp Ala Ala Ile Gln Pro Gly Asp Ser
- Gly Gly Pro Val Val Asn Gly Leu Gly Gln Val Val Gly Met Asn Thr 210 215 220
- Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gly Gln Gly Phe Ala 225 230 230 235 240
- Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser Gly
  245 250 255
- Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly Leu 260 265 270
- Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val Val
  275 280 285
- Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val Ile 290 295 300
- Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala Asp

305 310 315 320 Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Asn Trp Gln 330 Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu Gly 345 Pro Pro Ala 355 (2) INFORMATION FOR SEQ ID NO:81: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 205 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:81: Ser Pro Lys Pro Asp Ala Glu Glu Glu Gly Val Pro Val Ser Pro Thr Ala Ser Asp Pro Ala Leu Leu Ala Glu Ile Arg Gln Ser Leu Asp Ala 25 Thr Lys Gly Leu Thr Ser Val His Val Ala Val Arg Thr Thr Gly Lys Val Asp Ser Leu Leu Gly Ile Thr Ser Ala Asp Val Asp Val Arg Ala 55 Asn Pro Leu Ala Ala Lys Gly Val Cys Thr Tyr Asn Asp Glu Gln Gly 75 Val Pro Phe Arg Val Gln Gly Asp Asn Ile Ser Val Lys Leu Phe Asp Asp Trp Ser Asn Leu Gly Ser Ile Ser Glu Leu Ser Thr Ser Arg Val 100 105 Leu Asp Pro Ala Ala Gly Val Thr Gln Leu Leu Ser Gly Val Thr Asn Leu Gln Ala Gln Gly Thr Glu Val Ile Asp Gly Ile Ser Thr Thr Lys 135 Ile Thr Gly Thr Ile Pro Ala Ser Ser Val Lys Met Leu Asp Pro Gly 155 Ala Lys Ser Ala Arg Pro Ala Thr Val Trp Ile Ala Gln Asp Gly Ser

170

His His Leu Val Arg Ala Ser Ile Asp Leu Gly Ser Gly Ser Ile Gln

180 185 190

Leu Thr Gln Ser Lys Trp Asn Glu Pro Val Asn Val Asp 195 200 205

# (2) INFORMATION FOR SEQ ID NO:82:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 286 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

Gly Asp Ser Phe Trp Ala Ala Ala Asp Gln Met Ala Arg Gly Phe Val 1 5 10 15

Leu Gly Ala Thr Ala Gly Arg Thr Thr Leu Thr Gly Glu Gly Leu Gln 20 25 30

His Ala Asp Gly His Ser Leu Leu Leu Asp Ala Thr Asn Pro Ala Val 35 40 45

Val Ala Tyr Asp Pro Ala Phe Ala Tyr Glu Ile Gly Tyr Ile Xaa Glu 50 55 60

Ser Gly Leu Ala Arg Met Cys Gly Glu Asn Pro Glu Asn Ile Phe Phe 65 70 75 80

Tyr Ile Thr Val Tyr Asn Glu Pro Tyr Val Gln Pro Pro Glu Pro Glu 85 90 95

Asn Phe Asp Pro Glu Gly Val Leu Gly Gly Ile Tyr Arg Tyr His Ala 100 105 110

Ala Thr Glu Gln Arg Thr Asn Lys Xaa Gln Ile Leu Ala Ser Gly Val

Ala Met Pro Ala Ala Leu Arg Ala Ala Gln Met Leu Ala Ala Glu Trp 130 135 140

Asp Val Ala Ala Asp Val Trp Ser Val Thr Ser Trp Gly Glu Leu Asn 145 150 155 160

Arg Asp Gly Val Val Ile Glu Thr Glu Lys Leu Arg His Pro Asp Arg 165 170 175

Pro Ala Gly Val Pro Tyr Val Thr Arg Ala Leu Glu Asn Ala Arg Gly
180 185 190

Pro Val Ile Ala Val Ser Asp Trp Met Arg Ala Val Pro Glu Gln Ile 195 200 205

Arg Pro Trp Val Pro Gly Thr Tyr Leu Thr Leu Gly Thr Asp Gly Phe

210 215 220

Gly Phe Ser Asp Thr Arg Pro Ala Gly Arg Arg Tyr Phe Asn Thr Asp 225 230 235 240

56

Ala Glu Ser Gln Val Gly Arg Gly Phe Gly Arg Gly Trp Pro Gly Arg 245 250 255

Arg Val Asn Ile Asp Pro Phe Gly Ala Gly Arg Gly Pro Pro Ala Gln 260 265 270

Leu Pro Gly Phe Asp Glu Gly Gly Gly Leu Arg Pro Xaa Lys 275 280 285

## (2) INFORMATION FOR SEQ ID NO:83:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 173 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:

Thr Lys Phe His Ala Leu Met Gln Glu Gln Ile His Asn Glu Phe Thr 1 5 10 15

Ala Ala Gln Gln Tyr Val Ala Ile Ala Val Tyr Phe Asp Ser Glu Asp 20 25 30

Leu Pro Gln Leu Ala Lys His Phe Tyr Ser Gln Ala Val Glu Glu Arg 35 40 45

Asn His Ala Met Met Leu Val Gln His Leu Leu Asp Arg Asp Leu Arg 50 55 60

Val Glu Ile Pro Gly Val Asp Thr Val Arg Asn Gln Phe Asp Arg Pro 65 70 75 80

Arg Glu Ala Leu Ala Leu Ala Leu Asp Gln Glu Arg Thr Val Thr Asp 85 90 95

Gln Val Gly Arg Leu Thr Ala Val Ala Arg Asp Glu Gly Asp Phe Leu 100 105 110

Gly Glu Gln Phe Met Gln Trp Phe Leu Gln Glu Gln Ile Glu Glu Val

Ala Leu Met Ala Thr Leu Val Arg Val Ala Asp Arg Ala Gly Ala Asn 130 135 140

Leu Phe Glu Leu Glu Asn Phe Val Ala Arg Glu Val Asp Val Ala Pro 150 155 160

Ala Ala Ser Gly Ala Pro His Ala Ala Gly Gly Arg Leu

165 170

## (2) INFORMATION FOR SEQ ID NO:84:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 107 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:

Arg Ala Asp Glu Arg Lys Asn Thr Thr Met Lys Met Val Lys Ser Ile
1 5 10 15

Ala Ala Gly Leu Thr Ala Ala Ala Ala Ile Gly Ala Ala Ala Ala Gly 20 25 30

Val Thr Ser Ile Met Ala Gly Gly Pro Val Val Tyr Gln Met Gln Pro 35 40 45

Val Val Phe Gly Ala Pro Leu Pro Leu Asp Pro Xaa Ser Ala Pro Xaa 50 55 60

Val Pro Thr Ala Ala Gln Trp Thr Xaa Leu Leu Asn Xaa Leu Xaa Asp 70 75 80

Pro Asn Val Ser Phe Xaa Asn Lys Gly Ser Leu Val Glu Gly Gly Ile 85 90 95

Gly Gly Xaa Glu Gly Xaa Xaa Arg Arg Xaa Gln

### (2) INFORMATION FOR SEQ ID NO:85:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 125 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (x1) SEQUENCE DESCRIPTION: SEQ ID NO:85:

Val Leu Ser Val Pro Val Gly Asp Gly Phe Trp Xaa Arg Val Val Asn 1 5 10 15

Pro Leu Gly Gln Pro Ile Asp Gly Arg Gly Asp Val Asp Ser Asp Thr 20 25 30

Arg Arg Ala Leu Glu Leu Gln Ala Pro Ser Val Val Xaa Arg Gln Gly 35 40 45

Val Lys Glu Pro Leu Xaa Thr Gly Ile Lys Ala Ile Asp Ala Met Thr 50 55 60

Pro Ile Gly Arg Gly Gln Arg Gln Leu Ile Ile Gly Asp Arg Lys Thr

65 70 75 80

Gly Lys Asn Arg Arg Leu Cys Arg Thr Pro Ser Ser Asn Gln Arg Glu 85 90 95

Glu Leu Gly Val Arg Trp Ile Pro Arg Ser Arg Cys Ala Cys Val Tyr 100 105 110

Val Gly His Arg Ala Arg Arg Gly Thr Tyr His Arg Arg

- (2) INFORMATION FOR SEQ ID NO:86:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 117 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

Cys Asp Ala Val Met Gly Phe Leu Gly Gly Ala Gly Pro Leu Ala Val

Val Asp Gln Gln Leu Val Thr Arg Val Pro Gln Gly Trp Ser Phe Ala 20 25 30

Gln Ala Ala Ala Val Pro Val Val Phe Leu Thr Ala Trp Tyr Gly Leu
35 40

Ala Asp Leu Ala Glu Ile Lys Ala Gly Glu Ser Val Leu Ile His Ala 50 55 60

Gly Thr Gly Gly Val Gly Met Ala Ala Val Gln Leu Ala Arg Gln Trp
65 70 75 80

Gly Val Glu Val Phe Val Thr Ala Ser Arg Gly Lys Trp Asp Thr Leu 85 90 95

Arg Ala Xaa Yaa Phe Asp Asp Xaa Pro Tyr Arg Xaa Phe Pro His Xaa 100 105 110

Arg Ser Ser Xaa Gly 115

- (2) INFORMATION FOR SEQ ID NO:87:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 103 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

Met Tyr Arg Phe Ala Cys Arg Thr Leu Met Leu Ala Ala Cys Ile Leu 1 5 10 15

59

Ala Thr Gly Val Ala Gly Leu Gly Val Gly Ala Gln Ser Ala Ala Gln 20 25 30

Thr Ala Pro Val Pro Asp Tyr Tyr Trp Cys Pro Gly Gln Pro Phe Asp 35 40 45

Pro Ala Trp Gly Pro Asn Trp Asp Pro Tyr Thr Cys His Asp Asp Phe 50 55 60

His Arg Asp Ser Asp Gly Pro Asp His Ser Arg Asp Tyr Pro Gly Pro 65 70 75 80

Ile Leu Glu Gly Pro Val Leu Asp Asp Pro Gly Ala Ala Pro Pro Pro 90 95

Pro Ala Ala Gly Gly Gly Ala 100

# (2) INFORMATION FOR SEQ ID NO:88:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 88 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

Val Gln Cys Arg Val Trp Leu Glu Ile Gln Trp Arg Gly Met Leu Gly

10 15

Ala Asp Gln Ala Arg Ala Gly Gly Pro Ala Arg Ile Trp Arg Glu His

Ser Met Ala Ala Met Lys Pro Arg Thr Gly Asp Gly Pro Leu Glu Ala 35 40 45

Thr Lys Glu Gly Arg Gly Ile Val Met Arg Val Pro Leu Glu Gly Gly 50 55 60

Gly Arg Leu Val Val Glu Leu Thr Pro Asp Glu Ala Ala Ala Leu Gly 65 70 75 80

Asp Glu Leu Lys Gly Val Thr Ser

# (2) INFORMATION FOR SEQ ID NO:89:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 95 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single

60

### (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:

Thr Asp Ala Ala Thr Leu Ala Gln Glu Ala Gly Asn Phe Glu Arg Ile

Ser Gly Asp Leu Lys Thr Gln Ile Asp Gln Val Glu Ser Thr Ala Gly 25

Ser Leu Gln Gly Gln Trp Arg Gly Ala Ala Gly Thr Ala Ala Gln Ala

Ala Val Val Arg Phe Gln Glu Ala Ala Asn Lys Gln Lys Gln Glu Leu

Asp Glu Ile Ser Thr Asn Ile Arg Gln Ala Gly Val Gln Tyr Ser Arg 65 70

Ala Asp Glu Glu Gln Gln Ala Leu Ser Ser Gln Met Gly Phe

## (2) INFORMATION FOR SEQ ID NO:90:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 166 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

Met Thr Gln Ser Gln Thr Val Thr Val Asp Gln Gln Glu Ile Leu Asn

Arg Ala Asn Glu Val Glu Ala Pro Met Ala Asp Pro Pro Thr Asp Val

Pro Ile Thr Pro Cys Glu Leu Thr Xaa Xaa Lys Asn Ala Ala Gln Gln

Xaa Val Leu Ser Ala Asp Asn Met Arg Glu Tyr Leu Ala Ala Gly Ala 50

Lys Glu Arg Gln Arg Leu Ala Thr Ser Leu Arg Asn Ala Ala Lys Xaa

Tyr Gly Glu Val Asp Glu Glu Ala Ala Thr Ala Leu Asp Asn Asp Gly

Glu Gly Thr Val Gln Ala Glu Ser Ala Gly Ala Val Gly Gly Asp Ser

Ser Ala Glu Leu Thr Asp Thr Pro Arg Val Ala Thr Ala Gly Glu Pro 120

Asn Phe Met Asp Leu Lys Glu Ala Ala Arg Lys Leu Glu Thr Gly Asp 130 140

Gln Gly Ala Ser Leu Ala His Xaa Gly Asp Gly Trp Asn Thr Xaa Thr 145 150 155 160

Leu Thr Leu Gln Gly Asp 165

- (2) INFORMATION FOR SEQ ID NO:91:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 5 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

Arg Ala Glu Arg Met 1 5

- (2) INFORMATION FOR SEQ ID NO:92:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 263 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:

Val Ala Trp Met Ser Val Thr Ala Gly Gln Ala Glu Leu Thr Ala Ala 1 5 10 15

Gln Val Arg Val Ala Ala Ala Ala Tyr Glu Thr Ala Tyr Gly Leu Thr 20 25 30

Val Pro Pro Pro Val Ile Ala Glu Asn Arg Ala Glu Leu Met Ile Leu
35 40 45

Ile Ala Thr Asn Leu Leu Gly Gln Asn Thr Pro Ala Ile Ala Val Asn 50 55 60

Glu Ala Glu Tyr Gly Glu Met Trp Ala Gln Asp Ala Ala Ala Met Phe 65 70 75 80

Gly Tyr Ala Ala Ala Thr Ala Thr Ala Thr Ala Thr Leu Leu Pro Phe 85 90 95

Glu Glu Ala Pro Glu Met Thr Ser Ala Gly Gly Leu Leu Glu Gln Ala 100 105 110

Ala Ala Val Glu Glu Ala Ser Asp Thr Ala Ala Ala Asn Gln Leu Met

115 120 125

Asn Asn Val Pro Gln Ala Leu Lys Gln Leu Ala Gln Pro Thr Gln Gly
130 135 140

Thr Thr Pro Ser Ser Lys Leu Gly Gly Leu Trp Lys Thr Val Ser Pro 145 150 155 160

His Arg Ser Pro Ile Ser Asn Met Val Ser Met Ala Asn Asn His Met 165 170 175

Ser Met Thr Asn Ser Gly Val Ser Met Thr Asn Thr Leu Ser Ser Met 180 185 190

Leu Lys Gly Phe Ala Pro Ala Ala Ala Ala Gln Ala Val Gln Thr Ala 195 200 205

Ala Gln Asn Gly Val Arg Ala Met Ser Ser Leu Gly Ser Ser Leu Gly 210 215 220

Ser Ser Gly Leu Gly Gly Gly Val Ala Ala Asn Leu Gly Arg Ala Ala 225 230 235 240

Ser Val Arg Tyr Gly His Arg Asp Gly Gly Lys Tyr Ala Xaa Ser Gly 245 250 255

Arg Arg Asn Gly Gly Pro Ala 260

# (2) INFORMATION FOR SEQ ID NO:93:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 303 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:

Met Thr Tyr Ser Pro Gly Asn Pro Gly Tyr Pro Gln Ala Gln Pro Ala 1 5 10 15

Gly Ser Tyr Gly Gly Val Thr Pro Ser Phe Ala His Ala Asp Glu Gly
20 25 30

Ala Ser Lys Leu Pro Met Tyr Leu Asn Ile Ala Val Ala Val Leu Gly 35 40 45

Leu Ala Ala Tyr Phe Ala Ser Phe Gly Pro Met Phe Thr Leu Ser Thr 50 55 60

Glu Leu Gly Gly Gly Asp Gly Ala Val Ser Gly Asp Thr Gly Leu Pro
65 70 75 80

Val Gly Val Ala Leu Leu Ala Ala Leu Leu Ala Gly Val Val Leu Val

85 90 Pro Lys Ala Lys Ser His Val Thr Val Val Ala Val Leu Gly Val Leu 105 Gly Val Phe Leu Met Val Ser Ala Thr Phe Asn Lys Pro Ser Ala Tyr 120 Ser Thr Gly Trp Ala Leu Trp Val Val Leu Ala Phe Ile Val Phe Gln 135 Ala Val Ala Ala Val Leu Ala Leu Leu Val Glu Thr Gly Ala Ile Thr 155 Ala Pro Ala Pro Arg Pro Lys Phe Asp Pro Tyr Gly Gln Tyr Gly Arg Tyr Gly Gln Tyr Gly Gln Tyr Gly Val Gln Pro Gly Gly Tyr Tyr Gly 185 Gln Gln Gly Ala Gln Gln Ala Ala Gly Leu Gln Ser Pro Gly Pro Gln 200 Gln Ser Pro Gln Pro Pro Gly Tyr Gly Ser Gln Tyr Gly Gly Tyr Ser Ser Ser Pro Ser Gln Ser Gly Ser Gly Tyr Thr Ala Gln Pro Pro Ala Gln Pro Pro Ala Gln Ser Gly Ser Gln Gln Ser His Gln Gly Pro Ser 250 Thr Pro Pro Thr Gly Phe Pro Ser Phe Ser Pro Pro Pro Pro Val Ser 265 Ala Gly Thr Gly Ser Gln Ala Gly Ser Ala Pro Val Asn Tyr Ser Asn 275 Pro Ser Gly Gly Glu Gln Ser Ser Ser Pro Gly Gly Ala Pro Val 295

### (2) INFORMATION FOR SEQ ID NO:94:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 507 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:

ATGAAGATGG TGAAATCGAT CGCCGCAGGT CTGACCGCCG CGGCTGCAAT CGGCGCCGCT 60

GCGGCCGGTG TGACTTCGAT CATGGCTGGC GGCCCGGTCG TATACCAGAT GCAGCCGGTC 120

GTCTTCGGCG	CGCCACTGCC	GTTGGACCCG	GCATCCGCCC	CTGACGTCCC	GACCGCCGCC	180
CAGTTGACCA	GCCTGCTCAA	CAGCCTCGCC	GATCCCAACG	TGTCGTTTGC	GAACAAGGGC	240
AGTCTGGTCG	AGGGCGGCAT	CGGGGGCACC	GAGGCGCGCA	TCGCCGACCA	CAAGCTGAAG	300
AAGGCCGCCG	AGCACGGGGA	TCTGCCGCTG	TCGTTCAGCG	TGACGAACAT	CCAGCCGGCG	360
GCCGCCGGTT	CGGCCACCGC	CGACGTTTCC	GTCTCGGGTC	CGAAGCTCTC	GTCGCCGGTC	420
ACGCAGAACG	TCACGTTCGT	GAATCAAGGC	GGCTGGATGC	TGTCACGCGC	ATCGGCGATG	480
GAGTTGCTGC	AGGCCGCAGG	GAACTGA				507
(2) INFORMA	TION FOR SE	Q ID NO:95:				
(i) SE	QUENCE CHAR	ACTERISTICS	:			

- (A) LENGTH: 168 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:

Met Lys Met Val Lys Ser Ile Ala Ala Gly Leu Thr Ala Ala Ala Ala 1 5 10 15

Ile Gly Ala Ala Ala Ala Gly Val Thr Ser Ile Met Ala Gly Gly Pro
20 25 30

Val Val Tyr Gln Met Gln Pro Val Val Phe Gly Ala Pro Leu Pro Leu 35 40 45

Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gln Leu Thr Ser 50 55 60

Leu Leu Asn Ser Leu Ala Asp Pro Asn Val Ser Phe Ala Asn Lys Gly 65 70 75 80

Ser Leu Val Glu Gly Gly Ile Gly Gly Thr Glu Ala Arg Ile Ala Asp 85 90 95

His Lys Leu Lys Lys Ala Ala Glu His Gly Asp Leu Pro Leu Ser Phe 100 105 110

Ser Val Thr Asn Ile Gln Pro Ala Ala Ala Gly Ser Ala Thr Ala Asp

Val Ser Val Ser Gly Pro Lys Leu Ser Ser Pro Val Thr Gln Asn Val

Thr Phe Val Asn Gln Gly Gly Trp Met Leu Ser Arg Ala Ser Ala Met 145

### Glu Leu Leu Gln Ala Ala Gly Asn 165

(2)	INFORMATION	FOR	SEO	ID	NO : 96 -

(	i )	SECUENCE	CHARACTERISTICS .
٠	<b>-</b> /	JECCENCE	COMMENCED ISTITUS .

- (A) LENGTH: 500 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

CGTGGCAATG	TCGTTGACCG	TOGGGGCCG	CCTCCCCTCC	0010100000	TGGACGCGGT	
		1000000000	GGTCGCCTCC	GCAGATCCCG	TGGACGCGGT	60
CATTAACACC	ACCTGCAATT	ACGGGCAGGT	AGTAGCTGCG	CTCAACGCGA	CGGATCCGGG	120
GGCTGCCGCA	CAGTTCAACG	CCTCACCGGT	GGCGCAGTCC	TATTTGCGCA	ATTTCCTCGC	180
CGCACCGCCA	CCTCAGCGCG	CTGCCATGGC	CGCGCAATTG	CAAGCTGTGC	CGGGGGCGGC	240
ACAGTACATC	GGCCTTGTCG	AGTCGGTTGC	CGGCTCCTGC	AACAACTATT	AAGCCCATGC	300
GGGCCCCATC	CCGCGACCCG	GCATCGTCGC	CGGGGCTAGG	CCAGATTGCC	CCGCTCCTCA	360
ACGGGCCGCA	TCCCGCGACC	CGGCATCGTC	GCCGGGGCTA	GGCCAGATTG	CCCCGCTCCT	420
CAACGGGCCG	CATCTCGTGC	CGAATTCCTG	CAGCCCGGGG	GATCCACTAG	TTCTAGAGCG	480
GCCGCCACCG	CGGTGGAGCT					500

# (2) INFORMATION FOR SEQ ID NO:97:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 96 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:

Val Ala Met Ser Leu Thr Val Gly Ala Gly Val Ala Ser Ala Asp Pro 1 5 10 15

Val Asp Ala Val Ile Asn Thr Thr Cys Asn Tyr Gly Gln Val Val Ala
20 25 30

Ala Leu Asn Ala Thr Asp Pro Gly Ala Ala Ala Gln Phe Asn Ala Ser 35 40 45

Pro Val Ala Gln Ser Tyr Leu Arg Asn Phe Leu Ala Ala Pro Pro Pro 50 55 60

Gln Arg Ala Ala Met Ala Ala Gln Leu Gln Ala Val Pro Gly Ala Ala 65 70 75 80

Gln Tyr Ile Gly Leu Val Glu Ser Val Ala Gly Ser Cys Asn Asn Tyr 85 90 95	
(2) INFORMATION FOR SEQ ID NO:98:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 154 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:	
ATGACAGAGC AGCAGTGGAA TTTCGCGGGT ATCGAGGCCG CGGCAAGCGC AATCCAGGGA	60
AATGTCACGT CCATTCATTC CCTCCTTGAC GAGGGGAAGC AGTCCCTGAC CAAGCTCGCA	120
GCGGCCTGGG GCGGTAGCGG TTCGGAAGCG TACC	154
(2) INFORMATION FOR SEQ ID NO:99:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 51 amino acids</li> <li>(B) TYPE: amino acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:	
Met Thr Glu Gln Gln Trp Asn Phe Ala Gly Ile Glu Ala Ala Ala Ser 1 5 10 15	
Ala Ile Gln Gly Asn Val Thr Ser Ile His Ser Leu Leu Asp Glu Gly 20 25 30	
Lys Gln Ser Leu Thr Lys Leu Ala Ala Ala Trp Gly Gly Ser Gly Ser 35 40 45	
Glu Ala Tyr 50	
(2) INFORMATION FOR SEQ ID NO:100:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 282 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:	
CGGTCGCGCA CTTCCAGGTG ACTATGAAAG TCGGCTTCCG NCTGGAGGAT TCCTGAACCT	60
TCAAGCGCGG CCGATAACTG AGGTGCATCA TTAAGCGACT TTTCCAGAAC ATCCTGACGC	120

67

GCTCGAAACG	CGGCACAGCC	GACGGTGGCT	CCGNCGAGGC	GCTGNCTCCA	AAATCCCTGA	180
GACAATTCGN	CGGGGGCGCC	TACAAGGAAG	TCGGTGCTGA	ATTCGNCGNG	TATCTGGTCG	240
ACCTGTGTGG	TCTGNAGCCG	GACGAAGCGG	TGCTCGACGT	CG		282

### (2) INFORMATION FOR SEQ ID NO:101:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3058 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:

GATCGTACCC GTGCGAGTGC TCGGGCCGTT TGAGGATGGA GTGCACGTGT CTTTCGTGAT 60 GGCATACCCA GAGATGTTGG CGGCGGCGGC TGACACCCTG CAGAGCATCG GTGCTACCAC 120 TGTGGCTAGC AATGCCGCTG CGGCGGCCCC GACGACTGGG GTGGTGCCCC CCGCTGCCGA 180 TGAGGTGTCG GCGCTGACTG CGGCGCACTT CGCCGCACAT GCGGCGATGT ATCAGTCCGT 240 GAGCGCTCGG GCTGCTGCGA TTCATGACCA GTTCGTGGCC ACCCTTGCCA GCAGCGCCAG 300 CTCGTATGCG GCCACTGAAG TCGCCAATGC GGCGGCGGCC AGCTAAGCCA GGAACAGTCG 360 GCACGAGAAA CCACGAGAAA TAGGGACACG TAATGGTGGA TTTCGGGGCG TTACCACCGG 420 AGATCAACTC CGCGAGGATG TACGCCGGCC CGGGTTCGGC CTCGCTGGTG GCCGCGGCTC 480 AGATGTGGGA CAGCGTGGCG AGTGACCTGT TTTCGGCCGC GTCGGCGTTT CAGTCGGTGG 540 TCTGGGGTCT GACGGTGGGG TCGTGGATAG GTTCGTCGGC GGGTCTGATG GTGGCGGCGG 600 CCTCGCCGTA TGTGGCGTGG ATGAGCGTCA CCGCGGGGCA GGCCGAGCTG ACCGCCGCCC 560 AGGTCCGGGT TGCTGCGGCG GCCTACGAGA CGGCGTATGG GCTGACGGTG CCCCCGCCGG 720 TGATCGCCGA GAACCGTGCT GAACTGATGA TTCTGATAGC GACCAACCTC TTGGGGCAAA 780 ACACCCCGGC GATCGCGGTC AACGAGGCCG AATACGGCGA GATGTGGGCC CAAGACGCCG 840 CCGCGATGTT TGGCTACGCC GCGGCGACGG CGACGGCGAC GGCGACGTTG CTGCCGTTCG 900 AGGAGGCGCC GGAGATGACC AGCGCGGGTG GGCTCCTCGA GCAGGCCGCC GCGGTCGAGG 960 AGGCCTCCGA CACCGCCGCG GCGAACCAGT TGATGAACAA TGTGCCCCAG GCGCTGCAAC 1020 AGCTGGCCCA GCCCACGCAG GGCACCACGC CTTCTTCCAA GCTGGGTGGC CTGTGGAAGA 1080 CGGTCTCGCC GCATCGGTCG CCGATCAGCA ACATGGTGTC GATGGCCAAC AACCACATGT 1140

68

CGATGACCAA	CTCGGGTGTG	TCGATGACCA	ACACCTTGAG	CTCGATGTTG	AAGGGCTTTG	1200
CTCCGGCGGC	GGCCGCCCAG	GCCGTGCAAA	CCGCGGCGCA	AAACGGGGTC	CGGGCGATGA	1260
GCTCGCTGGG	CAGCTCGCTG	GGTTCTTCGG	GTCTGGGCGG	TGGGGTGGCC	GCCAACTTGG	1320
GTCGGGCGGC	CTCGGTCGGT	TCGTTGTCGG	TGCCGCAGGC	CTGGGCCGCG	GCCAACCAGG	1380
CAGTCACCCC	GGCGGCGCGG	GCGCTGCCGC	TGACCAGCCT	GACCAGCGCC	GCGGAAAGAG	1440
GGCCCGGGCA	GATGCTGGGC	GGGCTGCCGG	TGGGGCAGAT	GGGCGCCAGG	GCCGGTGGTG	1500
GGCTCAGTGG	TGTGCTGCGT	GTTCCGCCGC	GACCCTATGT	GATGCCGCAT	TCTCCGGCGG	1560
CCGGCTAGGA	GAGGGGGCGC	AGACTGTCGT	TATTTGACCA	GTGATCGGCG	GTCTCGGTGT	1620
TTCCGCGGCC	GGCTATGACA	ACAGTCAATG	TGCATGACAA	GTTACAGGTA	TTAGGTCCAG	1680
GTTCAACAAG	GAGACAGGCA	ACATGGCCTC	ACGTTTTATG	ACGGATCCGC	ACGCGATGCG	1740
GGACATGGCG	GGCCGTTTTG	AGGTGCACGC	CCAGACGGTG	GAGGACGAGG	CTCGCCGGAT	1800
GTGGGCGTCC	GCGCAAAACA	TTTCCGGTGC	GGGCTGGAGT	GGCATGGCCG	AGGCGACCTC	1860
GCTAGACACC	ATGGCCCAGA	TGAATCAGGC	GTTTCGCAAC	ATCGTGAACA	TGCTGCACGG	1920
GGTGCGTGAC	GGGCTGGTTC	GCGACGCCAA	CAACTACGAG	CAGCAAGAGC	AGGCCTCCCA	1980
GCAGATCCTC	AGCAGCTAAC	GTCAGCCGCT	GCAGCACAAT	ACTTTTACAA	GCGAAGGAGA	2040
ACAGGTTCGA	TGACCATCAA	CTATCAATTC	GGGGATGTCG	ACGCTCACGG	CGCCATGATC	2100
CGCGCTCAGG	CCGGGTTGCT	GGAGGCCGAG	CATCAGGCCA	TCATTCGTGA	TGTGTTGACC	2160
GCGAGTGACT	TTTGGGGCGG	CGCCGGTTCG	GCGGCCTGCC	AGGGGTTCAT	TACCCAGTTG	2220
GGCCGTAACT	TCCAGGTGAT	CTACGAGCAG	GCCAACGCCC	ACGGGCAGAA	GGTGCAGGCT	2280
GCCGGCAACA	ACATGGCGCA	AACCGACAGC	GCCGTCGGCT	CCAGCTGGGC	CTGACACCAG	2340
GCCAAGGCCA	GGGACGTGGT	GTACGAGTGA	AGTTCCTCGC	GTGATCCTTC	GGGTGGCAGT	2400
CTAAGTGGTC	AGTGCTGGGG	TGTTGGTGGT	TTGCTGCTTG	GCGGGTTCTT	CGGTGCTGGT	2460
CAGTGCTGCT	CGGGCTCGGG	TGAGGACCTC	GAGGCCCAGG	TAGCGCCGTC	CTTCGATCCA	2520
TTCGTCGTGT	TGTTCGGCGA	GGACGGCTCC	GACGAGGCGG	ATGATCGAGG	CGCGGTCGGG	2580
GAAGATGCCC	ACGACGTCGG	TTCGGCGTCG	TACCTCTCGG	TTGAGGCGTT	CCTGGGGGTT	2640
GTTGGACCAG	ATTTGGCGCC	AGATCTGCTT	GGGGAAGGCG	GTGAACGCCA	GCAGGTCGGT	2700
GCGGGCGGTG	TCGAGGTGCT	CGGCCACCGC	GGGGAGTTTG	TCGGTCAGAG	CGTCGAGTAC	2760
CCGATCATAT	TGGGCAACAA	CTGATTCGGC	GTCGGGCTGG	TCGTAGATGG	AGTGCAGCAG	2820

PCT/US99/03265 WO 99/42118

GGTGCGCACC	CACGGCCAGG	AGGGCTTCGG	GGTGGCTGCC	ATCAGATTGG	CTGCGTAGTG	2880
GGTTCTGCAG	CGCTGCCAGG	CCGCTGCGGG	CAGGGTGGCG	CCGATCGCGG	CCACCAGGCC	2940
GGCGTGGGCG	TCGCTGGTGA	CCAGCGCGAC	CCCGGACAGG	CCGCGGGCGA	CCAGGTCGCG	3000
GAAGAACGCC	AGCCAGCCGG	CCCCGTCCTC	GGCGGAGGTG	ACCTGGATGC	CCAGGATC	3058
(2) INFORM	ATTON FOR	EN IN MO-10	no .			

#### (2) INFORMATION FOR SEQ ID NO:102:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 391 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

Met Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met

Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Gln Met Trp

Asp Ser Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser

Val Val Trp Gly Leu Thr Val Gly Ser Trp Ile Gly Ser Ser Ala Gly

Leu Met Val Ala Ala Ala Ser Pro Tyr Val Ala Trp Met Ser Val Thr

Ala Gly Gln Ala Glu Leu Thr Ala Ala Gln Val Arg Val Ala Ala Ala

Ala Tyr Glu Thr Ala Tyr Gly Leu Thr Val Pro Pro Pro Val Ile Ala 105

Glu Asn Arg Ala Glu Leu Met Ile Leu Ile Ala Thr Asn Leu Leu Gly 120

Gln Asn Thr Pro Ala Ile Ala Val Asn Glu Ala Glu Tyr Gly Glu Met 130

Trp Ala Glm Asp Ala Ala Ala Met Phe Gly Tyr Ala Ala Ala Thr Ala 145

Thr Ala Thr Ala Thr Leu Leu Pro Phe Glu Glu Ala Pro Glu Met Thr 170

Ser Ala Gly Gly Leu Leu Glu Gln Ala Ala Ala Val Glu Glu Ala Ser 185

PCT/US99/03265 WO 99/42118

	Asp	Thr	195	Ala	Ala	Asn	Gln	Leu 200	Met	Asn	Asn	Val	Pro 205		Ala	Leu	
	Gln	Gln 210	Leu	Ala	Gln	Pro	Thr 215	Gln	Gly	Thr	Thr	Pro 220		Ser	Lys	Leu	
	Gly 225	Gly	Leu	Trp	Lys	Thr 230	Val	Ser	Pro	His	Arg 235	Ser	Pro	Ile	Ser	Asn 240	
	Met	Val	Ser	Met	Ala 245	Asn	Asn	His	Met	Ser 250	Met	Thr	Asn	Ser	Gly 255	Val	
	Ser	Met	Thr	Asn 260	Thr	Leu	Ser	Ser	Met 265	Leu	Lys	Gly	Phe	Ala 270	Pro	Ala	
	Ala	Ala	Ala 275	Gln	Ala	Val	Gln	Thr 280	Ala	Ala	Gln	Asn	Gly 285	Val	Arg	Ala	
	Met	Ser 290	Ser	Leu	Gly	Ser	Ser 295	Leu	Gly	Ser	Ser	Gly 300	Leu	Gly	Gly	Gly	
	Val 305	Ala	Ala	Asn	Leu	Gly 310	Arg	Ala	Ala	Ser	Val 315	Gly	Ser	Leu	Ser	Val 320	
	Pro	Gln	Ala	Trp	Ala 325	Ala	Ala	Asn	Gln	Ala 330	Val	Thr	Pro	Ala	Ala 335	Arg	
	Ala	Leu	Pro	<b>Leu</b> 340	Thr	Ser	Leu	Thr	Ser 345	Ala	Ala	Glu	Arg	Gly 350	Pro	Gly	
	Gln	Met	L <b>e</b> u 3 <b>5</b> 5	Gly	Gly	Leu	Pro	Val 360	Gly	Gln	Met	Gly	Ala 365	Arg	Ala	Gly	
	Gly	Gly 370	Leu	Ser	Gly	Val	Leu . 375	Arg	Val	Pro		Arg 380	Pro	Tyr	Val	Met	
	Pro :	His .	Ser	Pro .		Ala 390	Gly										
(2)	INFOR	MATI	ON F	OR S	EQ I	D NO	:103	:									
	(i) :	(A) (B) (C)	TYP!	STH: E: ni ANDEI	172: icle: ONES:	ERIST 5 bas ic ac 5: s: ineas	se pa cid ingle	airs									
	(xi) 5	EQUE	ENCE	DESC	RIP	CION	: SE(	) ID	NO:	103:							
GACG'	rcagc;	A CCC	GCCC	STGC	AGG	GCTGC	GAG (	GTG	<b>TCG</b>	GT T	TGAT	rctg	c gg:	rcaa:	<b>GGT</b> G		<b>6</b> 0
ACGTCCCTCG GCGTGTCGCC GGCGTGGATC CAGACTCGAT GGGGGTGGATC												120					
	CGTTGA																180

71

CGTGTTGGGG TCGATTTGGC CGGACCAGTC GTCACCAACG CTTG	GGCGTGC GCGCCAGGCG 240
GGCGATCAGA TCGCTTGACT ACCAATCAAT CTTGAGCTCC CGGG	CCGATG CTCGGGCTAA 300
ATGAGGAGGA GCACGCGTGT CTTTCACTGC GCAACCGGAG ATGT	TGGCGG CCGCGGCTGG 360
CGAACTTCGT TCCCTGGGGG CAACGCTGAA GGCTAGCAAT GCCG	CCGCAG CCGTGCCGAC 420
GACTGGGGTG GTGCCCCCGG CTGCCGACGA GGTGTCGCTG CTGC	TTGCCA CACAATTCCG 480
TACGCATGCG GCGACGTATC AGACGGCCAG CGCCAAGGCC GCGG	TGATCC ATGAGCAGTT 540
TGTGACCACG CTGGCCACCA GCGCTAGTTC ATATGCGGAC ACCG	AGGCCG CCAACGCTGT 600
GGTCACCGGC TAGCTGACCT GACGGTATTC GAGCGGAAGG ATTA	TCGAAG TGGTGGATTT 660
CGGGGCGTTA CCACCGGAGA TCAACTCCGC GAGGATGTAC GCCG	
GCTGGTGGCC GCCGCGAAGA TGTGGGACAG CGTGGCGAGT GACC	TGTTTT CGGCCGCGTC 780
GGCGTTTCAG TCGGTGGTCT GGGGTCTGAC GGTGGGGTCG TGGA	
TCTGATGGCG GCGGCGGCCT CGCCGTATGT GGCGTGGATG AGCG	TCACCG CGGGGCAGGC 900
CCAGCTGACC GCCGCCCAGG TCCGGGTTGC TGCGGCGGCC TACG	AGACAG CGTATAGGCT 960
GACGGTGCCC CCGCCGGTGA TCGCCGAGAA CCGTACCGAA CTGA	
CAACCTCTTG GGGCAAAACA CGCCGGCGAT CGAGGCCAAT CAGGC	CCGCAT ACAGCCAGAT 1080
GTGGGGCCAA GACGCGGAGG CGATGTATGG CTACGCCGCC ACGGC	
GGCGTTGCTG CCGTTCGAGG ACGCCCCACT GATCACCAAC CCCGC	GCGGGC TCCTTGAGCA 1200
GGCCGTCGCG GTCGAGGAGG CCATCGACAC CGCCGCGGCG AACCA	
GCCCCAAGCG CTGCAACAGC TGGCCCAGCC AGCGCAGGGC GTCGT	
GGGTGGGCTG TGGACGGCGG TCTCGCCGCA TCTGTCGCCG CTCAG	
AGCCAACAAC CACATGTCGA TGATGGGCAC GGGTGTGTCG ATGAC	
GATGTTGAAG GGCTTAGCTC CGGCGGCGGC TCAGGCCGTG GAAAC	CGCGG CGGAAAACGG 1500
GGTCTGGGCG ATGAGCTCGC TGGGCAGCCA GCTGGGTTCG TCGCT	GGGTT CTTCGGGTCT 1560
GGGCGCTGGG GTGGCCGCCA ACTTGGGTCG GGCGGCCTCG GTCGG	TTCGT TGTCGGTGCC 1620
GCCAGCATGG GCCGCGGCCA ACCAGGCGGT CACCCCGGCG GCGCG	
CAGCCTGACC AGCGCCGCCC AAACCGCCCC CGGACACATG CTGGG	1725
(2) INFORMATION FOR THE	

⁽²⁾ INFORMATION FOR SEQ ID NO:104:

⁽i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 359 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:

Val Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met

1 10 15

Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Lys Met Trp 20 25 30

Asp Ser Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser 35 40 45

Val Val Trp Gly Leu Thr Val Gly Ser Trp Ile Gly Ser Ser Ala Gly 50 55 60

Leu Met Ala Ala Ala Ala Ser Pro Tyr Val Ala Trp Met Ser Val Thr 65 70 75 80

Ala Gly Gln Ala Gln Leu Thr Ala Ala Gln Val Arg Val Ala Ala Ala 85 90 95

Ala Tyr Glu Thr Ala Tyr Arg Leu Thr Val Pro Pro Pro Val Ile Ala 100 105 110

Glu Asn Arg Thr Glu Leu Met Thr Leu Thr Ala Thr Asn Leu Leu Gly
115 120 125

Gln Asn Thr Pro Ala Ile Glu Ala Asn Gln Ala Ala Tyr Ser Gln Met 130 135 140

Trp Gly Gln Asp Ala Glu Ala Met Tyr Gly Tyr Ala Ala Thr Ala Ala 145 150 155 160

Thr Ala Thr Glu Ala Leu Leu Pro Phe Glu Asp Ala Pro Leu Ile Thr 165 170 175

Asn Pro Gly Gly Leu Leu Glu Gln Ala Val Ala Val Glu Glu Ala Ile 180 185 190

Asp Thr Ala Ala Ala Asn Gln Leu Met Asn Asn Val Pro Gln Ala Leu 195 200 205

Gln Gln Leu Ala Gln Pro Ala Gln Gly Val Val Pro Ser Ser Lys Leu 210 215 220

Gly Gly Leu Trp Thr Ala Val Ser Pro His Leu Ser Pro Leu Ser Asn 225 230 235 240

Val Ser Ser Ile Ala Asn Asn His Met Ser Met Met Gly Thr Gly Val 245 250 255

Ser	Met	Thr	Asn 260	Thr	Leu	His	Ser	<b>Me</b> t 265	Leu	Lys	Gly	Leu	Ala 270	Pro	Ala
Ala	Ala	Gln 275	Ala	Val	Glu	Thr	Ala 280	Ala	Glu	Asn	Gly	Val 285	Trp	Ala	Met
Ser	Ser 290	Leu	Gly	Ser	Gln	Leu 295	Gly	Ser	Ser	Leu	Gly 300	Ser	Ser	Gly	Leu
Gly 305	Ala	Gly	Val	Ala	Ala 310	Asn	Leu	Gly	Arg	Ala 315	Ala	Ser	Val	Gly	Ser 320
Leu	Ser	Val	Pro	Pro 325	Ala	Trp	Ala	Ala	Ala 330	Asn	Gln	Ala	Val	Thr 335	Pro
Ala	Ala	Arg	Ala 340	Leu	Pro	Leu	Thr	Ser 345	Leu	Thr	Ser	Ala	Ala 350	Gln	Thr
Ala	Pro	Gly	His	Met	Leu	Gly									

# (2) INFORMATION FOR SEQ ID NO:105:

355

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 3027 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:

AGTTCAGTCG	AGAATGATAC	TGACGGGCTG	TATCCACGAT	GGCTGAGACA	ACCGAACCAC	60
CGTCGGACGC	GGGGACATCG	CAAGCCGACG	CGATGGCGTT	GGCCGCCGAA	GCCGAAGCCG	120
CCGAAGCCGA	AGCGCTGGCC	GCCGCGGCGC	GGGCCCGTGC	CCGTGCCGCC	CGGTTGAAGC	180
GTGAGGCGCT	GGCGATGGCC	CCAGCCGAGG	ACGAGAACGT	CCCCGAGGAT	ATGCAGACTG	240
GGAAGACGCC	GAAGACTATG	ACGACTATGA	CGACTATGAG	GCCGCAGACC	AGGAGGCCGC	300
ACGGTCGGCA	TCCTGGCGAC	GGCGGTTGCG	GGTGCGGTTA	CCAAGACTGT	CCACGATTGC	360
CATGGCGGCC	GCAGTCGTCA	TCATCTGCGG	CTTCACCGGG	CTCAGCGGAT	ACATTGTGTG	420
GCAACACCAT	GAGGCCACCG	AACGCCAGCA	GCGCGCGCG	GCGTTCGCCG	CCGGAGCCAA	480
GCAAGGTGTC	ATCAACATGA	CCTCGCTGGA	CTTCAACAAG	GCCAAAGAAG	ACGTCGCGCG	540
TGTGATCGAC	AGCTCCACCG	GCGAATTCAG	GGATGACTTC	CAGCAGCGGG	CAGCCGATTT	600
CACCAAGGTT	GTCGAACAGT	CCAAAGTGGT	CACCGAAGGC	ACGGTGAACG	CGACAGCCGT	660
CGAATCCATG	AACGAGCATT	CCGCCGTGGT	GCTCGTCGCG	GCGACTTCAC	GGGTCACCAA	720

74

TTCCGCTGGG	GCGAAAGACG	AACCACGTGC	GTGGCGGCTC	AAAGTGACCG	TGACCGAAGA	780
GGGGGGACAG	TACAAGATGT	CGAAAGTTGA	GTTCGTACCG	TGACCGATGA	CGTACGCGAC	840
GTCAACACCG	AAACCACTGA	CGCCACCGAA	GTCGCTGAGA	TCGACTCAGC	CGCAGGCGAA	900
GCCGGTGATT	CGGCGACCGA	GGCATTTGAC	ACCGACTCTG	CAACGGAATC	TACCGCGCAG	960
AAGGGTCAGC	GGCACCGTGA	CCTGTGGCGA	ATGCAGGTTA	CCTTGAAACC	CGTTCCGGTG	1020
ATTCTCATCC	TGCTCATGTT	GATCTCTGGG	GGCGCGACGG	GATGGCTATA	CCTTGAGCAA	1080
TACGACCCGA	TCAGCAGACG	GACTCCGGCG	CCGCCCGTGC	TGCCGTCGCC	GCGGCGTCTG	1140
ACGGGACAAT	CGCGCTGTTG	TGTATTCACC	CGACACGTCG	ACCAAGACTT	CGCTACCGCC	1200
AGGTCGCACC	TCGCCGGCGA	TTTCCTGTCC	TATACGACCA	GTTCACGCAG	CAGATCGTGG	1260
CTCCGGCGGC	CAAACAGAAG	TCACTGAAAA	CCACCGCCAA	GGTGGTGCGC	GCGGCCGTGT	1320
CGGAGCTACA	TCCGGATTCG	GCCGTCGTTC	TGGTTTTTGT	CGACCAGAGC	ACTACCAGTA	1380
AGGACAGCCC	CAATCCGTCG	ATGGCGGCCA	GCAGCGTGAT	GGTGACCCTA	GCCAAGGTCG	1440
ACGGCAATTG	GCTGATCACC	AAGTTCACCC	CGGTTTAGGT	TGCCGTAGGC	GGTCGCCAAG	1500
TCTGACGGGG	GCGCGGGTGG	CTGCTCGTGC	GAGATACCGG	CCGTTCTCCG	GACAATCACG	1560
GCCCGACCTC	AAACAGATCT	CGGCCGCTGT	CTAATCGGCC	GGGTTATTTA	AGATTAGTTG	1620
CCACTGTATT	TACCTGATGT	TCAGATTGTT	CAGCTGGATT	TAGCTTCGCG	GCAGGGCGGC	1680
TGGTGCACTT	TGCATCTGGG	GTTGTGACTA	CTTGAGAGAA	TTTGACCTGT	TGCCGACGTT	1740
GTTTGCTGTC	CATCATTGGT	GCTAGTTATG	GCCGAGCGGA	AGGATTATCG	AAGTGGTGGA	1800
CTTCGGGGCG	TTACCACCGG	AGATCAACTC	CGCGAGGATG	TACGCCGGCC	CGGCTTCGGC	1860
CTCGCTGGTG	GCCGCCGCGA	AGATGTGGGA	CAGCGTGGCG	AGTGACCTGT	TTTCGGCCGC	1920
GTCGGCGTTT	CAGTCGGTGG	TCTGGGGTCT	GACGACGGGA	TCGTGGATAG	GTTCGTCGGC	1980
GGGTCTGATG	GTGGCGGCGG	CCTCGCCGTA	TGTGGCGTGG	ATGAGCGTCA	CCGCGGGGCA	2040
GGCCGAGCTG	ACCGCCGCCC	AGGTCCGGGT	TGCTGCGGCG	GCCTACGAGA	CGGCGTATGG	2100
GCTGACGGTG	CCCCCGCCGG	TGATCGCCGA	GAACCGTGCT	GAACTGATGA	TTCTGATAGC	2160
GACCAACCTC	TTGGGGCAAA	ACACCCCGGC	GATCGCGGTC	AACGAGGCCG	AATACGGGGA	2220
GATGTGGGCC	CAAGACGCCG	CCGCGATGTT	TGGCTACGCC	GCCACGGCGG	CGACGGCGAC	2280
CGAGGCGTTG	CTGCCGTTCG	AGGACGCCCC	ACTGATCACC	AACCCCGGCG	GGCTCCTTGA	2340
GCAGGCCGTC	GCGGTCGAGG	AGGCCATCGA	CACCGCCGCG	GCGAACCAGT	TGATGAACAA	2400

TGTGCCCCAA	GCGCTGCAAC	AACTGGCCCA	GCCCACGAAA	AGCATCTGGC	CGTTCGACCA	2460
ACTGAGTGAA	CTCTGGAAAG	CCATCTCGCC	GCATCTGTCG	CCGCTCAGCA	ACATCGTGTC	2520
GATGCTCAAC	AACCACGTGT	CGATGACCAA	CTCGGGTGTG	TCGATGGCCA	GCACCTTGCA	2580
CTCAATGTTG	AAGGGCTTTG	CTCCGGCGGC	GGCTCAGGCC	GTGGAAACCG	CGGCGCAAAA	2640
CGGGGTCCAG	GCGATGAGCT	CGCTGGGCAG	CCAGCTGGGT	TCGTCGCTGG	GTTCTTCGGG	2700
TCTGGGCGCT	GGGGTGGCCG	CCAACTTGGG	TCGGGCGGCC	TCGGTCGGTT	CGTTGTCGGT	2760
GCCGCAGGCC	TGGGCCGCGG	CCAACCAGGC	GGTCACCCCG	GCGGCGCGG	CGCTGCCGCT	2820
GACCAGCCTG	ACCAGCGCCG	CCCAAACCGC	CCCCGGACAC	ATGCTGGGCG	GGCTACCGCT	2880
GGGGCAACTG	ACCAATAGCG	GCGGCGGGTT	CGGCGGGGTT	AGCAATGCGT	TGCGGATGCC	2940
GCCGCGGGCG	TACGTAATGC	CCCGTGTGCC	ceccecese	TAACGCCGAT	CCGCACGCAA	3000
TGCGGGCCCT	CTATGCGGGC	AGCGATC				3027

## (2) INFORMATION FOR SEQ ID NO:106:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 396 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:

Val Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met

1 5 10 15

Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Lys Met Trp 20 25 30

Asp Ser Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser 35 40 45

Val Val Trp Gly Leu Thr Thr Gly Ser Trp Ile Gly Ser Ser Ala Gly 50 55 60

Leu Met Val Ala Ala Ala Ser Pro Tyr Val Ala Trp Met Ser Val Thr 65 70 75 80

Ala Gly Gln Ala Glu Leu Thr Ala Ala Gln Val Arg Val Ala Ala Ala 85 90 95

Ala Tyr Glu Thr Ala Tyr Gly Leu Thr Val Pro Pro Pro Val Ile Ala 100 105 110

Glu Asn Arg Ala Glu Leu Met Ile Leu Ile Ala Thr Asn Leu Leu Gly

115 120 1

Gln Asn Thr Pro Ala Ile Ala Val Asn Glu Ala Glu Tyr Gly Glu Met 130 135 140

Thr Ala Thr Glu Ala Leu Leu Pro Phe Glu Asp Ala Pro Leu Ile Thr 165 170 175

Asn Pro Gly Gly Leu Leu Glu Gln Ala Val Ala Val Glu Glu Ala Ile 180 185 190

Asp Thr Ala Ala Ala Asn Gln Leu Met Asn Asn Val Pro Gln Ala Leu 195 200 205

Gln Gln Leu Ala Gln Pro Thr Lys Ser Ile Trp Pro Phe Asp Gln Leu 210 215 220

Ser Glu Leu Trp Lys Ala Ile Ser Pro His Leu Ser Pro Leu Ser Asn 225 230 235 240

Ile Val Ser Met Leu Asn Asn His Val Ser Met Thr Asn Ser Gly Val 245 250 255

Ser Met Ala Ser Thr Leu His Ser Met Leu Lys Gly Phe Ala Pro Ala 260 265 270

Ala Ala Gln Ala Val Glu Thr Ala Ala Gln Asn Gly Val Gln Ala Met 275 280 285

Ser Ser Leu Gly Ser Gln Leu Gly Ser Ser Leu Gly Ser Ser Gly Leu 290 295 300

Gly Ala Gly Val Ala Ala Asn Leu Gly Arg Ala Ala Ser Val Gly Ser 305 310 315 320

Leu Ser Val Pro Gln Ala Trp Ala Ala Ala Asn Gln Ala Val Thr Pro 325 330 335

Ala Ala Arg Ala Leu Pro Leu Thr Ser Leu Thr Ser Ala Ala Gln Thr 340 345 350

Ala Pro Gly His Met Leu Gly Gly Leu Pro Leu Gly Gln Leu Thr Asn 355 360 365

Ser Gly Gly Phe Gly Gly Val Ser Asn Ala Leu Arg Met Pro Pro 370 375 380

Arg Ala Tyr Val Met Pro Arg Val Pro Ala Ala Gly 385 390 395

(2) INFORMATION FOR SEQ ID NO:107:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1616 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

CATCGGAGGG	AGTGATCACC	ATGCTGTGGC	ACGCAATGCC	ACCGGAGTAA	ATACCGCACG	60
GCTGATGGCC	GGCGCGGGTC	CGGCTCCAAT	GCTTGCGGCG	GCCGCGGGAT	GGCAGACGCT	120
TTCGGCGGCT	CTGGACGCTC	AGGCCGTCGA	GTTGACCGCG	CGCCTGAACT	CTCTGGGAGA	180
AGCCTGGACT	GGAGGTGGCA	GCGACAAGGC	GCTTGCGGCT	GCAACGCCGA	TGGTGGTCTG	240
GCTACAAACC	GCGTCAACAC	AGGCCAAGAC	CCGTGCGATG	CAGGCGACGG	CGCAAGCCGC	300
GGCATACACC	CAGGCCATGG	CCACGACGCC	GTCGCTGCCG	GAGATCGCCG	CCAACCACAT	360
CACCCAGGCC	GTCCTTACGG	CCACCAACTT	CTTCGGTATC	AACACGATCC	CGATCGCGTT	420
GACCGAGATG	GATTATTTCA	TCCGTATGTG	GAACCAGGCA	GCCCTGGCAA	TGGAGGTCTA	480
CCAGGCCGAG	ACCGCGGTTA	ACACGCTTTT	CGAGAAGCTC	GAGCCGATGG	CGTCGATCCT	540
TGATCCCGGC	GCGAGCCAGA	GCACGACGAA	CCCGATCTTC	GGAATGCCCT	CCCCTGGCAG	600
CTCAACACCG	GTTGGCCAGT	TGCCGCCGGC	GGCTACCCAG	ACCCTCGGCC	AACTGGGTGA	660
GATGAGCGGC	CCGATGCAGC	AGCTGACCCA	GCCGCTGCAG	CAGGTGACGT	CGTTGTTCAG	720
CCAGGTGGGC	GGCACCGGCG	GCGGCAACCC	AGCCGACGAG	GAAGCCGCGC	AGATGGGCCT	780
GCTCGGCACC	AGTCCGCTGT	CGAACCATCC	GCTGGCTGGT	GGATCAGGCC	CCAGCGCGGG	840
CGCGGGCCTG	CTGCGCGCGG	AGTCGCTACC	TGGCGCAGGT	GGGTCGTTGA	CCCGCACGCC	900
GCTGATGTCT	CAGCTGATCG	AAAAGCCGGT	TGCCCCCTCG	GTGATGCCGG	CGGCTGCTGC	960
CGGATCGTCG	GCGACGGGTG	GCGCCGCTCC	GGTGGGTGCG	GGAGCGATGG	GCCAGGGTGC	1020
GCAATCCGGC	GGCTCCACCA	GGCCGGGTCT	GGTCGCGCCG	GCACCGCTCG	CGCAGGAGCG	1080
TGAAGAAGAC	GACGAGGACG	ACTGGGACGA	AGAGGACGAC	TGGTGAGCTC	CCGTAATGAC	1140
AACAGACTTC	CCGGCCACCC	GGGCCGGAAG	ACTTGCCAAC	ATTTTGGCGA	GGAAGGTAAA	1200
GAGAGAAAGT	AGTCCAGCAT	GGCAGAGATG	AAGACCGATG	CCGCTACCCT	CGCGCAGGAG	1260
GCAGGTAATT	TCGAGCGGAT	CTCCGGCGAC	CTGAAAACCC	AGATCGACCA	GGTGGAGTCG	1320
ACGGCAGGTT	CGTTGCAGGG	CCAGTGGCGC	GGCGCGGCGG	GGACGGCCGC	CCAGGCCGCG	1380
GTGGTGCGCT	TCCAAGAAGC	AGCCAATAAG	CAGAAGCAGG	AACTCGACGA	GATCTCGACG	1440

AATATTCGTC	AGGCCGGCGT	CCAATACTCG	AGGGCCGACG	AGGAGCAGCA	GCAGGCGCTG	1500
TCCTCGCAAA	TGGGCTTCTG	ACCCGCTAAT	ACGAAAAGAA	ACGGAGCAAA	AACATGACAG	1560
AGCAGCAGTG	GAATTTCGCG	GGTATCGAGG	CCGCGGCAAG	CGCAATCCAG	GGAAAT	1616

#### (2) INFORMATION FOR SEQ ID NO:108:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 432 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:

CTAGTGGATG	GGACCATGGC	CATTTTCTGC	AGTCTCACTG	CCTTCTGTGT	TGACATTTTG	60
GCACGCCGGC	GGAAACGAAG	CACTGGGGTC	GAAGAACGGC	TGCGCTGCCA	TATCGTCCGG	120
AGCTTCCATA	CCTTCGTGCG	GCCGGAAGAG	CTTGTCGTAG	TCGGCCGCCA	TGACAACCTC	180
TCAGAGTGCG	CTCAAACGTA	TAAACACGAG	AAAGGGCGAG	ACCGACGGAA	GGTCGAACTC	240
GCCCGATCCC	GTGTTTCGCT	ATTCTACGCG	AACTCGGCGT	TGCCCTATGC	GAACATCCCA	300
GTGACGTTGC	CTTCGGTCGA	AGCCATTGCC	TGACCGGCTT	CGCTGATCGT	CCGCGCCAGG	360
TTCTGCAGCG	CGTTGTTCAG	CTCGGTAGCC	GTGGCGTCCC	ATTTTTGCTG	GACACCCTGG	420
TACGCCTCCG	AA					432

### (2) INFORMATION FOR SEQ ID NO:109:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 368 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (x1) SEQUENCE DESCRIPTION: SEQ ID NO:109:

Met Leu Trp His Ala Met Pro Pro Glu Xaa Asn Thr Ala Arg Leu Met 1 5 10 15

Ala Gly Ala Gly Pro Ala Pro Met Leu Ala Ala Ala Ala Gly Trp Gln 20 25 30

Thr Leu Ser Ala Ala Leu Asp Ala Gln Ala Val Glu Leu Thr Ala Arg 35 40 45

Leu Asn Ser Leu Gly Glu Ala Trp Thr Gly Gly Gly Ser Asp Lys Ala 50 55 60

Leu Ala Ala Ala Thr Pro Met Val Val Trp Leu Gln Thr Ala Ser Thr Gln Ala Lys Thr Arg Ala Met Gln Ala Thr Ala Gln Ala Ala Ala Tyr Thr Gln Ala Met Ala Thr Thr Pro Ser Leu Pro Glu Ile Ala Ala Asn 105 His Ile Thr Gln Ala Val Leu Thr Ala Thr Asn Phe Phe Gly Ile Asn 120 Thr Ile Pro Ile Ala Leu Thr Glu Met Asp Tyr Phe Ile Arg Met Trp 135 Asn Gln Ala Ala Leu Ala Met Glu Val Tyr Gln Ala Glu Thr Ala Val 150 155 Asn Thr Leu Phe Glu Lys Leu Glu Pro Met Ala Ser Ile Leu Asp Pro 170 Gly Ala Ser Gln Ser Thr Thr Asn Pro Ile Phe Gly Met Pro Ser Pro 185 Gly Ser Ser Thr Pro Val Gly Gln Leu Pro Pro Ala Ala Thr Gln Thr 200 Leu Gly Gln Leu Gly Glu Met Ser Gly Pro Met Gln Gln Leu Thr Gln 215 Pro Leu Gln Gln Val Thr Ser Leu Phe Ser Gln Val Gly Gly Thr Gly 230 Gly Gly Asn Pro Ala Asp Glu Glu Ala Ala Gln Met Gly Leu Leu Gly Thr Ser Pro Leu Ser Asn His Pro Leu Ala Gly Gly Ser Gly Pro Ser Ala Gly Ala Gly Leu Leu Arg Ala Glu Ser Leu Pro Gly Ala Gly Gly 280 Ser Leu Thr Arg Thr Pro Leu Met Ser Gln Leu Ile Glu Lys Pro Val

Ala Pro Ser Val Met Pro Ala Ala Ala Ala Gly Ser Ser Ala Thr Gly 315

310

Gly Ala Ala Pro Val Gly Ala Gly Ala Met Gly Gln Gly Ala Gln Ser

Gly Gly Ser Thr Arg Pro Gly Leu Val Ala Pro Ala Pro Leu Ala Gln

Glu Arg Glu Glu Asp Asp Glu Asp Asp Trp Asp Glu Glu Asp Asp Trp

355 360 365

i	2	INFORMATION	FOR	SEO	TD	NO.	110.
ı		INFORMATION	FUR	350		NO.	

1:1	CECTENCE	CHARACTERISTICS:	
(1)	SECUENCE	CHARACTERISTICS:	

- (A) LENGTH: 100 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:

Met Ala Glu Met Lys Thr Asp Ala Ala Thr Leu Ala Gln Glu Ala Gly

1 10 15

Asn Phe Glu Arg Ile Ser Gly Asp Leu Lys Thr Gln Ile Asp Gln Val 20 25 30

Glu Ser Thr Ala Gly Ser Leu Gln Gly Gln Trp Arg Gly Ala Ala Gly
35 40 45

Thr Ala Ala Gln Ala Ala Val Val Arg Phe Gln Glu Ala Ala Asn Lys
50 55 60

Gln Lys Gln Glu Leu Asp Glu Ile Ser Thr Asn Ile Arg Gln Ala Gly 65 70 75 80

Val Gln Tyr Ser Arg Ala Asp Glu Glu Gln Gln Gln Ala Leu Ser Ser 85 90 95

Gln Met Gly Phe 100

### (2) INFORMATION FOR SEQ ID NO:111:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 396 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:

GATCTCCGGC GACCTGAAAA CCCAGATCGA CCAGGTGGAG TCGACGGCAG GTTCGTTGCA 60

GGGCCAGTGG CGCGGCGCG CGGGGACGGC CGCCCAGGCC GCGGTGGTGC GCTTCCAAGA 120

AGCAGCCAAT AAGCAGAAGC AGGAACTCGA CGAGATCTCG ACGAATATTC GTCAGGCCGG 180

CGTCCAATAC TCGAGGGCCG ACGAGGAGCA GCAGCAGGCG CTGTCCTCGC AAATGGGCTT 240

CTGACCCGCT AATACGAAAA GAAACGGAGC AAAAACATGA CAGAGCAGCA GTGGAATTTC 300

GCGGGTATCG AGGCCGCGC AAGCGCAATC CAGGGAAATG TCACGTCCAT TCATTCCCTC 360

CTTGACGAGG GGAAGCAGTC CCTGACCAAG CTCGCA 3						
(2) INFORMATION FOR SEQ ID NO:112:						
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 80 amino acids</li> <li>(B) TYPE: amino acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>						
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:						
Ile Ser Gly Asp Leu Lys Thr Gln Ile Asp Gln Val Glu Ser Thr Ala 1 5 10 15						
Gly Ser Leu Gln Gly Gln Trp Arg Gly Ala Ala Gly Thr Ala Ala Gln 20 25 30						
Ala Ala Val Val Arg Phe Gln Glu Ala Ala Asn Lys Gln Lys Gln Glu 35 40 45						
Leu Asp Glu Ile Ser Thr Asn Ile Arg Gln Ala Gly Val Gln Tyr Ser 50 55 60						
Arg Ala Asp Glu Glu Gln Gln Gln Ala Leu Ser Ser Gln Met Gly Phe 65 70 75 80						
(2) INFORMATION FOR SEQ ID NO:113:						
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 387 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear						
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:						
GTGGATCCCG ATCCCGTGTT TCGCTATTCT ACGCGAACTC GGCGTTGCCC TATGCGAACA	60					
TCCCAGTGAC GTTGCCTTCG GTCGAAGCCA TTGCCTGACC GGCTTCGCTG ATCGTCCGCG	120					
CCAGGTTCTG CAGCGCGTTG TTCAGCTCGG TAGCCGTGGC GTCCCATTTT TGCTGGACAC	180					
CCTGGTACGC CTCCGAACCG CTACCGCCCC AGGCCGCTGC GAGCTTGGTC AGGGACTGCT	240					
TCCCCTCGTC AAGGAGGGAA TGAATGGACG TGACATTTCC CTGGATTGCG CTTGCCGCGG	300					
CCTCGATACC CGCGAAATTC CACTGCTGCT CTGTCATGTT TTTGCTCCGT TTCTTTTCGT	360					
ATTAGCGGGT CAGAAGCCCA TTTGCGA	387					

(2) INFORMATION FOR SEQ ID NO:114:

PCT/US99/03265

(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 272 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:	
CGGCACGAGG ATCTCGGTTG GCCCAACGGC GCTGGCGAGG GCTCCGTTCC GGGGGCGAGC	60
TGCGCGCCGG ATGCTTCCTC TGCCCGCAGC CGCGCCTGGA TGGATGGACC AGTTGCTACC	120
TTCCCGACGT TTCGTTCGGT GTCTGTGCGA TAGCGGTGAC CCCGGCGCGC ACGTCGGGAG	180
TGTTGGGGGG CAGGCCGGGT CGGTGGTTCG GCCGGGGACG CAGACGGTCT GGACGGAACG	240
GGCGGGGGTT CGCCGATTGG CATCTTTGCC CA	272
(2) INFORMATION FOR SEQ ID NO:115:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 amino acids  (B) TYPE: amino acid  (C) STRANDEDNESS:  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:	
Asp Pro Val Asp Ala Val Ile Asn Thr Thr Cys Asn Tyr Gly Gln Val 1 5 10 15	
Val Ala Ala Leu 20	
(2) INFORMATION FOR SEQ ID NO:116:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 15 amino acids</li> <li>(B) TYPE: amino acid</li> <li>(C) STRANDEDNESS:</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:	
Ala Val Glu Ser Gly Met Leu Ala Leu Gly Thr Pro Ala Pro Ser 1 5 10 15	
(2) INFORMATION FOR SEQ ID NO:117:	
<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 19 amino acids</li><li>(B) TYPE: amino acid</li><li>(C) STRANDEDNESS:</li></ul>	

(D) TOPOLOGY: linear

82

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:

Ala Ala Met Lys Pro Arg Thr Gly Asp Gly Pro Leu Glu Ala Ala Lys 1 5 10 15

Glu Gly Arg

- (2) INFORMATION FOR SEQ ID NO:118:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 15 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:

Tyr Tyr Trp Cys Pro Gly Gln Pro Phe Asp Pro Ala Trp Gly Pro 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:119:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 14 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:

Asp Ile Gly Ser Glu Ser Thr Glu Asp Gln Gln Xaa Ala Val

- (2) INFORMATION FOR SEQ ID NO:120:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 13 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:

Ala Glu Glu Ser Ile Ser Thr Xaa Glu Xaa Ile Val Pro 1 5 10

- (2) INFORMATION FOR SEQ ID NO:121:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 17 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear

84

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:

Asp Pro Glu Pro Ala Pro Pro Val Pro Thr Thr Ala Ala Ser Pro Pro 5 10

Ser

- (2) INFORMATION FOR SEQ ID NO:122:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 15 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:

Ala Pro Lys Thr Tyr Xaa Glu Glu Leu Lys Gly Thr Asp Thr Gly 10

- (2) INFORMATION FOR SEQ ID NO:123:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 30 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:

Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gln Leu Thr Ser 5 10

Leu Leu Asn Ser Leu Ala Asp Pro Asn Val Ser Phe Ala Asn 25 20

- (2) INFORMATION FOR SEQ ID NO:124:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 22 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:

Asp Pro Pro Asp Pro His Gln Xaa Asp Met Thr Lys Gly Tyr Tyr Pro 10

Gly Gly Arg Arg Xaa Phe

20

(2) INFORMATION FOR SEQ ID NO:125:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 7 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:

Asp Pro Gly Tyr Thr Pro Gly
1 5

- (2) INFORMATION FOR SEQ ID NO:126:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 10 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (ix) FEATURE:
- (D) OTHER INFORMATION: /note= "The Second Residue Can Be Either a Pro or Thr"
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:

Xaa Xaa Gly Phe Thr Gly Pro Gln Phe Tyr
1 5 10

- (2) INFORMATION FOR SEQ ID NO:127:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 9 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (ix) FEATURE:
- (D) OTHER INFORMATION: /note= "The Third Residue Can Be Either a Gln or Leu"
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:

Xaa Pro Xaa Val Thr Ala Tyr Ala Gly

- (2) INFORMATION FOR SEQ ID NO:128:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 9 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:

Xaa Xaa Xaa Glu Lys Pro Phe Leu Arg 1 5

- (2) INFORMATION FOR SEQ ID NO:129:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 15 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:

Xaa Asp Ser Glu Lys Ser Ala Thr Ile Lys Val Thr Asp Ala Ser

- (2) INFORMATION FOR SEQ ID NO:130:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 15 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:

Ala Gly Asp Thr Xaa Ile Tyr Ile Val Gly Asn Leu Thr Ala Asp 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:131:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 15 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:

Ala Pro Glu Ser Gly Ala Gly Leu Gly Gly Thr Val Gln Ala Gly
1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:132:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 21 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:

Xaa Tyr Ile Ala Tyr Xaa Thr Thr Ala Gly Ile Val Pro Gly Lys Ile 1 5 10 15 Asn Val His Leu Val 20

### (2) INFORMATION FOR SEQ ID NO:133:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 882 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:

GCAACGCTGT	CGTGGCCTTT	GCGGTGATCG	GTTTCGCCTC	GCTGGCGGTG	GCGGTGGCGG	60
TCACCATCCG	ACCGACCGCG	GCCTCAAAAC	CGGTAGAGGG	ACACCAAAAC	GCCCAGCCAG	120
GGAAGTTCAT	GCCGTTGTTG	CCGACGCAAC	AGCAGGCGCC	GGTCCCGCCG	CCTCCGCCCG	180
ATGATCCCAC	CGCTGGATTC	CAGGGCGGCA	CCATTCCGGC	TGTACAGAAC	GTGGTGCCGC	240
GGCCGGGTAC	CTCACCCGGG	GTGGGTGGGA	CGCCGGCTTC	GCCTGCGCCG	GAAGCGCCGG	300
CCGTGCCCGG	TGTTGTGCCT	GCCCCGGTGC	CAATCCCGGT	CCCGATCATC	ATTCCCCCGT	360
TCCCGGGTTG	GCAGCCTGGA	ATGCCGACCA	TCCCCACCGC	ACCGCCGACG	ACGCCGGTGA	420
CCACGTCGGC	GACGACGCCG	CCGACCACGC	CGCCGACCAC	GCCGGTGACC	ACGCCGCCAA	480
CGACGCCGCC	GACCACGCCG	GTGACCACGC	CGCCAACGAC	GCCGCCGACC	ACGCCGGTGA	540
CCACGCCACC	AACGACCGTC	GCCCCGACGA	CCGTCGCCCC	GACGACGGTC	GCTCCGACCA	600
CCGTCGCCCC	GACCACGGTC	GCTCCAGCCA	CCGCCACGCC	GACGACCGTC	GCTCCGCAGC	660
CGACGCAGCA	GCCCACGCAA	CAACCAACCC	AACAGATGCC	AACCCAGCAG	CAGACCGTGG	720
CCCCGCAGAC	GGTGGCGCCG	GCTCCGCAGC	CGCCGTCCGG	TGGCCGCAAC	GGCAGCGGCG	780
GGGGCGACTT	ATTCGGCGGG	TTCTGATCAC	GGTCGCGGCT	TCACTACGGT	CGGAGGACAT	840
GGCCGGTGAT	GCGGTGACGG	TGGTGCTGCC	CTGTCTCAAC	GA		882

## (2) INFORMATION FOR SEQ ID NO:134:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 815 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (11) MOLECULE TYPE: DNA (genomic)

88

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:

CCATCAACCA	ACCGCTCGCG	ccgcccgcgc	CGCCGGATCC	GCCGTCGCCG	CCACGCCCGC	60
CGGTGCCTCC	GGTGCCCCCG	TTGCCGCCGT	CGCCGCCGTC	GCCGCCGACC	GGCTGGGTGC	120
CTAGGGCGCT	GTTACCGCCC	TGGTTGGCGG	GGACGCCGCC	GGCACCACCG	GTACCGCCGA	180
TGGCGCCGTT	GCCGCCGGCG	GCACCGTTGC	CACCGTTGCC	ACCGTTGCCA	CCGTTGCCGA	240
CCAGCCACCC	GCCGCGACCA	CCGGCACCGC	cgccccccc	CGCACCGCCG	GCGTGCCCGT	300
TCGTGCCCGT	ACCGCCGGCA	CCGCCGTTGC	CGCCGTCACC	GCCGACGGAA	CTACCGGCGG	360
ACGCGGCCTG	CCCGCCGGCG	CCGCCCGCAC	CGCCATTGGC	ACCGCCGTCA	CCGCCGGCTG	420
GGAGTGCCGC	GATTAGGGCA	CTGACCGGCG	CAACCAGCGC	AAGTACTCTC	GGTCACCGAG	480
CACTTCCAGA	CGACACCACA	GCACGGGGTT	GTCGGCGGAC	TGGGTGAAAT	GGCAGCCGAT	540
AGCGGCTAGC	TGTCGGCTGC	GGTCAACCTC	GATCATGATG	TCGAGGTGAC	CGTGACCGCG	600
CCCCCCGAAG	GAGGCGCTGA	ACTCGGCGTT	GAGCCGATCG	GCGATCGGTT	GGGGCAGTGC	660
CCAGGCCAAT	ACGGGGATAC	CGGGTGTCNA	AGCCGCCGCG	AGCGCAGCTT	CGGTTGCGCG	720
ACNGTGGTCG	GGGTGGCCTG	TTACGCCGTT	GTCNTCGAAC	ACGAGTAGCA	GGTCTGCTCC	780
GGCGAGGGCA	TCCACCACGC	GTTGCGTCAG	CTCGT			815

### (2) INFORMATION FOR SEQ ID NO:135:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1152 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:

ACCAGCCGCC GGCTGAGGTC TCAGATCAGA GAGTCTCCGG ACTCACCGGG GCGGTTCAGC 60

CTTCTCCCAG AACAACTGCT GAAGATCCTC GCCCGCGAAA CAGGCGCTGA TTTGACGCTC 120

TATGACCGGT TGAACGACGA GATCATCCGG CAGATTGATA TGGCACCGCT GGGCTAACAG 180

GTGCGCAAGA TGGTGCAGCT GTATGTCTCG GACTCCGTGT CGCGGATCAG CTTTGCCGAC 240

GGCCGGGTGA TCGTGTGGAG CGAGGAGCTC GGCGAGAGCC AGTATCCGAT CGAGACGCTG 300

GACGGCATCA CGCTGTTTGG GCGCCGACG ATGACAACGC CCTTCATCGT TGAGATGCTC 360

AAGCGTGAGC GCGACATCCA GCTCTTCACG ACCGACGGCC ACTACCAGGG CCGGATCTCA 420

ACACCCGACG	TGTCATACGC	GCCGCGGCTC	CGTCAGCAAG	TTCACCGCAC	CGACGATCCT	480
GCGTTCTGCC	TGTCGTTAAG	CAAGCGGATC	GTGTCGAGGA	AGATCCTGAA	TCAGCAGGCC	540
TTGATTCGGG	CACACACGTC	GGGGCAAGAC	GTTGCTGAGA	GCATCCGCAC	GATGAAGCAC	600
TCGCTGGCCT	GGGTCGATCG	ATCGGGCTCC	CTGGCGGAGT	TGAACGGGTT	CGAGGGAAAT	660
GCCGCAAAGG	CATACTTCAC	CGCGCTGGGG	CATCTCGTCC	CGCAGGAGTT	CGCATTCCAG	720
GGCCGCTCGA	CTCGGCCGCC	GTTGGACGCC	TTCAACTCGA	TGGTCAGCCT	CGGCTATTCG	780
CTGCTGTACA	AGAACATCAT	AGGGCGATC	GAGCGTCACA	GCCTGAACGC	GTATATCGGT	840
TTCCTACACC	AGGATTCACG	AGGGCACGCA	ACGTCTCGTG	CCGAATTCGG	CACGAGCTCC	900
GCTGAAACCG	CTGGCCGGCT	GCTCAGTGCC	CGTACGTAAT	CCGCTGCGCC	CAGGCCGGCC	960
CGCCGGCCGA	ATACCAGCAG	ATCGGACAGC	GAATTGCCGC	CCAGCCGGTT	GGAGCCGTGC	1020
ATACCGCCGG	CACACTCACC	GGCAGCGAAC	AGGCCTGGCA	CCGTGGCGGC	GCCGGTGTCC	1080
GCGTCTACTT	CGACACCGCC	CATCACGTAG	TGACACGTCG	GCCCGACTTC	CATTGCCTGC	1140
GTTCGGCACG	AG				•	115

# (2) INFORMATION FOR SEQ ID NO:136:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 655 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:

CTCGTGCCGA TTCGGCAGGG TGTACTTGCC GGTGGTGTAN GCCGCATGAG TGCCGACGAC 60 CAGCAATGCG GCAACAGCAC GGATCCCGGT CAACGACGCC ACCCGGTCCA CGTGGGCGAT 120 CCGCTCGAGT CCGCCCTGGG CGGCTCTTTC CTTGGGCAGG GTCATCCGAC GTGTTTCCGC 180 CGTGGTTTGC CGCCATTATG CCGGCGCGCC GCGTCGGGCG GCCGGTATGG CCGAANGTCG 240 ATCAGCACAC CCGAGATACG GGTCTGTGCA AGCTTTTTGA GCGTCGCGCG GGGCAGCTTC 300 GCCGGCAATT CTACTAGCGA GAAGTCTGGC CCGATACGGA TCTGACCGAA GTCGCTGCGG 360 420 TGCAGCCCAC CCTCATTGGC GATGGCGCCG ACGATGGCGC CTGGACCGAT CTTGTGCCGC TTGCCGACGG CGACGCGGTA GGTGGTCAAG TCCGGTCTAC GCTTGGGCCT TTGCGGACGG 480

PCT/US99/03265

TCCC	GACGC	T GG	TCGC	GGTT	GCG	CCGC	GAA /	AGCG	GCGG	GT C	GGTG	CCAT	r cao	GGAA.	rgcc		540
TCAC	:CGCCG	C GG	CACT	GCAC	GGC	CAGT	GCC	GCGG	CGAT	GT C	AGCC	ATCG	G GA	CATC	ATGC		600
	GTTCA								GCTC	GA T	rccco	GAC	C GC	CCA			655
(2)	INFOR																
	(i)	(A) (B) (C)	LEN TYP STR	GTH: PE: a LANDE	RACT 267 mino DNES Y: 1	ami aci S: s	no a d ingl	cids									
	(ii)	MOLE	CULE	TYP	E: p	epti	de										
	(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	137:							
	Asn 1	Ala	Val	Val	Ala 5	Phe	Ala	Val	Ile	Gly 10	Phe	Ala	Ser	Leu	Ala 15	Val	
	Ala	Val	Ala	Val 20	Thr	Ile	Arg	Pro	Thr 25	Ala	Ala	Ser	Lys	Pro 30	Val	Glu	
	Gly	His	Gln 35	Asn	Ala	Gln	Pro	Gly 40	Lys	Phe	Met	Pro	Leu 45	Leu	Pro	Thr	
	Gln	Gln 50	Gln	Ala	Pro	Val	Pro 55	Pro	Pro	Pro	Pro	Asp 60	Asp	Pro	Thr	Ala	
	Gly 65	Phe	Gln	Gly	Gly	Thr 70	Ile	Pro	Ala	Val	Gln 75	Asn	Val	Val	Pro	Arg 80	
	Pro	Gly	Thr	Ser	Pro 85	Gly	Val	Gly	Gly	Thr 90	Pro	Ala	Ser	Pro	Ala 95	Pro	
	Glu	Ala	Pro	Ala 100		Pro	Gly	Val	Val 105	Pro	Ala	Pro	Val	Pro 110	Ile	Pro	
	Val		Ile 115		Ile					Gly			Pro 125		Met	Pro	
	Thr	Ile 130	Pro	Thr	Ala	Pro	Pro 135		Thr	Pro	Val	Thr 140		Ser	Ala	Thr	
	Thr 145		Pro	Thr	Thr	Pro 150		Thr	Thr	Pro	Val 155	Thr	Thr	Pro	Pro	Thr 160	
	Thr	Pro	Pro	Thr	Thr 165		Val	Thr	Thr	Pro 170		Thr	Thr	Pro	Pro 175		
				180	)				185					190	)		
	Pro	Thr	Thi	. Val	i Ala	Pro	Thi	r Thi	c Vai	l Ala	Pro	Thi	Thr	va)	Ala	Pro	

195 200 205

Ala Thr Ala Thr Pro Thr Thr Val Ala Pro Gln Pro Thr Gln Gln Pro 210 215 220

Thr Gln Gln Pro Thr Gln Gln Met Pro Thr Gln Gln Gln Thr Val Ala
225 230 235 240

Pro Gln Thr Val Ala Pro Ala Pro Gln Pro Pro Ser Gly Gly Arg Asn 245 250 255

Gly Ser Gly Gly Gly Asp Leu Phe Gly Gly Phe
260 265

### (2) INFORMATION FOR SEQ ID NO:138:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 174 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:

Ile Asn Gln Pro Leu Ala Pro Pro Ala Pro Pro Asp Pro Pro Ser Pro 1 5 10 15

Pro Arg Pro Pro Val Pro Pro Val Pro Pro Leu Pro Pro Ser Pro Pro 20 25 30

Ser Pro Pro Thr Gly Trp Val Pro Arg Ala Leu Leu Pro Pro Trp Leu
35 40 45

Ala Gly Thr Pro Pro Ala Pro Pro Val Pro Pro Met Ala Pro Leu Pro 50 55 60

Pro Ala Ala Pro Leu Pro Pro Leu Pro Pro Leu Pro Pro Leu Pro Thr 55 70 75 80

Ser His Pro Pro Arg Pro Pro Ala Pro Pro Ala Pro Pro Ala Pro Pro 85 90 95

Ala Cys Pro Phe Val Pro Val Pro Pro Ala Pro Pro Leu Pro Pro Ser 100 105 110

Pro Pro Thr Glu Leu Pro Ala Asp Ala Ala Cys Pro Pro Ala Pro Pro 115 120 125

Ala Pro Pro Leu Ala Pro Pro Ser Pro Pro Ala Gly Ser Ala Ala Ile 130 135 140

Arg Ala Leu Thr Gly Ala Thr Ser Ala Ser Thr Leu Gly His Arg Ala 145 150 155 160

92

Leu Pro Asp Asp Thr Thr Ala Arg Gly Cys Arg Arg Thr Gly
165 170

- (2) INFORMATION FOR SEQ ID NO:139:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 35 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:

Gln Pro Pro Ala Glu Val Ser Asp Gln Arg Val Ser Gly Leu Thr Gly
1 5 10 15

Ala Val Gln Pro Ser Pro Arg Thr Thr Ala Glu Asp Pro Arg Pro Arg 20 25 30

Asn Arg Arg

- (2) INFORMATION FOR SEQ ID NO:140:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 104 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:

Arg Ala Asp Ser Ala Gly Cys Thr Cys Arg Trp Cys Xaa Pro His Glu 1 5 10 15

Cys Arg Arg Pro Ala Met Arg Gln Gln His Gly Ser Arg Ser Thr Thr 20 25 30

Pro Pro Gly Pro Arg Gly Arg Ser Ala Arg Val Arg Pro Gly Arg Leu
35 40 45

Phe Pro Trp Ala Gly Ser Ser Asp Val Phe Pro Pro Trp Phe Ala Ala 50 55 60

Ile Met Pro Ala Arg Arg Val Gly Arg Pro Val Trp Pro Xaa Val Asp 65 70 75 80

Gln His Thr Arg Asp Thr Gly Leu Cys Lys Leu Phe Glu Arg Arg Ala 85 90 95

Gly	Gln	Leu	Arg	Arg	Gln	Phe	Tyr
			100				

- (2) INFORMATION FOR SEQ ID NO:141:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 53 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: other nucleic acid
    - (A) DESCRIPTION: /desc = "PCR primer"
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Mycobacterium tuberculosis
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:

### GGATCCATAT GGGCCATCAT CATCATCATC ACGTGATCGA CATCATCGGG ACC

53

- (2) INFORMATION FOR SEQ ID NO:142:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 42 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: other nucleic acid
    - (A) DESCRIPTION: /desc = "PCR Primer"
  - (vi) ORIGINAL SCURCE:
    - (A) ORGANISM: Mycobacterium tuberculosis
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:

# CCTGAATTCA GGCCTCGGTT GCGCCGGCCT CATCTTGAAC GA

42

- (2) INFORMATION FOR SEQ ID NO:143:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 31 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: other nucleic acid
    - (A) DESCRIPTION: /desc = "PCR Primer"
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Mycobacterium tuberculosis
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:

PCT/US99/03265

33

GAGAGAATTC TCAGAAGCCC ATTTGCGAGG ACA

GGATCCTGCA	GGCTCGAAAC CACCGAGCGG T	31
(2) INFORM	ATION FOR SEQ ID NO:144:	
	EQUENCE CHARACTERISTICS:  (A) LENGTH: 31 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	OLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PCR primer"	
• -•	RIGINAL SOURCE: (A) ORGANISM: Mycobacterium tuberculosis	
(xi) SI	EQUENCE DESCRIPTION: SEQ ID NO:144:	
CTCTGAATTC	AGCGCTGGAA ATCGTCGCGA T	31
(2) INFORM	ATION FOR SEQ ID NO:145:	
	EQUENCE CHARACTERISTICS:  (A) LENGTH: 33 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	OLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PCR primer"	
,	RIGINAL SOURCE: (A) ORGANISM: Mycobacterium tuberculosis	
(xi) Si	EQUENCE DESCRIPTION: SEQ ID NO:145:	
GGATCCAGCG	CTGAGATGAA GACCGATGCC GCT	33
(2) INFORM	ATION FOR SEQ ID NO:146:	
	EQUENCE CHARACTERISTICS:  (A) LENGTH: 33 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	OLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PCR primer"	
,	RIGINAL SOURCE: (A) ORGANISM: Mycobacterium tuberculosis	
(xi) S	EQUENCE DESCRIPTION: SEQ ID NO:146:	

(2)	INF	ORMA!	rion	FOR	SEQ	ID 1	NO : 14	17:									
	(i)	() ()	QUENCA) LI B) TI C) SI O) TO	engti YPE : Irani	H: 19 nucl	993 l Leic ESS:	ació sing	pair l	cs								
	(ii)	MOI	LECUI	LE T	PE:	DNA	(ger	omic	=)								
	(vi)		IGINA A) OI				bact	eriu	ım tı	ubero	ulos	is					
	(ix)	( )	ATURI A) NI B) LO	AME/I			127	73									
	(xi)	SEC	QUENC	CE DI	ESCRI	PTIC	ON: S	EQ :	D NO	0:147	7:						
rg:r:	CTTC	EGA (	:GGC	AGGCT	rg G1	rggac	GGAAC	G GG	CCAC	CCGA	ACAC	CTG	TC :	CCT	CGCCGA		60
AGC	ATGCC	GA A	AACC	CCCC	GA TA	CGT	CGCCC	GAG	CTGT	GGG	GGA	GTC	LAG (	BACGO	CAAGO	•	120
3CG(	TAAAT	rtg ?	AAGA	GCACI	AG AJ	AAGGT	FATGO							CAT A			172
														GCG Ala			220
														GGC Gly			268
														GCG Ala			316
														CCG Pro 70			364
														ACC Thr	GGT Gly		412
														ATT Ile			460
							Glu			Met				AAG Lys			508

	ATG Met															556
	CCC															604
	ATG Met															652
	CTC Leu															700
	CGC Arg 185															748
Ser 200	AAG Lys	Gln	Asp	Pro	Glu 205	Gly	Trp	Gly	Lys	<b>Ser</b> 210	Pro	Gly	Phe	Gly	Thr 215	796
Thr	GTC Val	Asp	Phe	Pro 220	Ala	Val	Pro	Gly	Ala 225	Leu	Gly	Glu	Asn	Gly 230	Asn	844
Gly	GGC Gly	Met	Val 235	Thr	Gly	Cys	Ala	Glu 240	Thr	Pro	Gly	Cys	Val 245	Ala	Tyr	892
Ile	GGC Gly	Ile 250	Ser	?he	Leu	Asp	Gln 255	Ala	Ser	Gln	Arg	Gly 260	Leu	Gly	Glu	940
	CAA Gln 265															988
Ser 280	ATT	Gln	Ala	Ala	Ala 285	Ala	Gly	Phe	Ala	Ser 290	Lys	Thr	Pro	Ala	Asn 295	1036
Gln	GCG Ala	Ile	Ser	<b>Me</b> t 300	Ile	Asp	Gly	Pro	Ala 305	Pro	Asp	Gly	Tyr	Pro 310	Ile	1084
Ile	AAC Asn	Tyr	Glu 315	Tyr	Ala	Ile	Val	Asn 320	Asn	Arg	Gln	Lys	Asp 325	Ala	Ala	1132
	GCG Ala															1180

3	330		335			340	
						CCG CTG CCC Pro Leu Pro	
			Asp Ala			ATT TCC AGG	
TAGCCTCGT	TT GACC	ACCACG (	GACAGCAA	CTCCGTC	GGG CCAT	cggcr gcr	TTGCGGA 133:
GCATGCTGG	SC CCGT	SCCGGT (	SAAGTCGGCC	GCGCTGG	CCC GGCC	ATCCGG TGG	TTGGGTG 139:
GGATAGGTG	GGTG	ATCCCG (	TGCTTGCGC	TGGTCTT	GGT GCTG	GTGGTG CTG	GTCATCG 145
AGGCGATGG	G TGCG	ATCAGG (	TCAACGGGT	TGCATTI	CTT CACC	GCCACC GAA	TGGAATC 151
CAGGCAACA	AC CTACO	GCGAA A	CCGTTGTC	CCGACGC	GTC GCCC	ATCCGG TCG	GCGCCTA 157:
CTACGGGGC	G TTGC	CGCTGA 1	CGTCGGGAC	GCTGGCG	ACC TCGG	CAATCG CCC	IGATCAT 163
CGCGGTGCC	G GTCT	TGTAG C	AGCGGCGCT	GGTGATO	GTG GAAC	GGCTGC CGA	AACGGTT 169
GGCCGAGGC	T GTGGG	GAATAG 1	CCTGGAATT	GCTCGCC	GGA ATCC	CCAGCG TGG	rcgrcgg 175
TTTGTGGGG	G GCAAT	GACGT T	CGGGCCGTT	CATCGCT	CAT CACA	TCGCTC CGG	rgatcgc 181
ICACAACGC	T CCCGA	ATGTGC C	GGTGCTGAA	CTACTTG	CGC GGCG	ACCCGG GCA	ACGGGGA 187
GGGCATGTT	G GTGTC	CGGTC I	GGTGTTGGC	GGTGATG	GTC GTTC	CCATTA TCG	CCACCAC 193
CACTCATGA	C CTGTI	CCGGC A	GGTGCCGGT	GTTGCCC	CGG GAGG	GCGCGA TCG	GGAATTC 199
(2) INFOR	MATION	FOR SEC	ID NO:14	8:			

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 374 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:

Val Lys Ile Arg Leu His Thr Leu Leu Ala Val Leu Thr Ala Ala Pro 1 5 10 15

Leu Leu Leu Ala Ala Gly Cys Gly Ser Lys Pro Pro Ser Gly Ser

Pro Glu Thr Gly Ala Gly Ala Gly Thr Val Ala Thr Thr Pro Ala Ser 35 40 45

Ser Pro Val Thr Leu Ala Glu Thr Gly Ser Thr Leu Leu Tyr Pro Leu

50 55 Phe Asn Leu Trp Gly Pro Ala Phe His Glu Arg Tyr Pro Asn Val Thr Ile Thr Ala Gln Gly Thr Gly Ser Gly Ala Gly Ile Ala Gln Ala Ala Ala Gly Thr Val Asn Ile Gly Ala Ser Asp Ala Tyr Leu Ser Glu Gly 100 Asp Met Ala Ala His Lys Gly Leu Met Asn Ile Ala Leu Ala Ile Ser 120 Ala Gln Gln Val Asn Tyr Asn Leu Pro Gly Val Ser Glu His Leu Lys Leu Asn Gly Lys Val Leu Ala Ala Met Tyr Gln Gly Thr Ile Lys Thr 150 Trp Asp Asp Pro Gln Ile Ala Ala Leu Asn Pro Gly Val Asn Leu Pro 165 170 Gly Thr Ala Val Val Pro Leu His Arg Ser Asp Gly Ser Gly Asp Thr 185 Phe Leu Phe Thr Gln Tyr Leu Ser Lys Gln Asp Pro Glu Gly Trp Gly Lys Ser Pro Gly Phe Gly Thr Thr Val Asp Phe Pro Ala Val Pro Gly 215 Ala Leu Gly Glu Asn Gly Asn Gly Gly Met Val Thr Gly Cys Ala Glu 230 235 Thr Pro Gly Cys Val Ala Tyr Ile Gly Ile Ser Phe Leu Asp Gln Ala 250 Ser Gln Arg Gly Leu Gly Glu Ala Gln Leu Gly Asn Ser Ser Gly Asn Phe Leu Leu Pro Asp Ala Gln Ser Ile Gln Ala Ala Ala Ala Gly Phe 275 280 Ala Ser Lys Thr Pro Ala Asn Gln Ala Ile Ser Met Ile Asp Gly Pro 295 Ala Pro Asp Gly Tyr Pro Ile Ile Asn Tyr Glu Tyr Ala Ile Val Asn 315 Asn Arg Gln Lys Asp Ala Ala Thr Ala Gln Thr Leu Gln Ala Phe Leu His Trp Ala Ile Thr Asp Gly Asn Lys Ala Ser Phe Leu Asp Gln Val 345

PCT/US99/03265 WO 99/42118

His Phe Gln Pro Leu Pro Pro Ala Val Val Lys Leu Ser Asp Ala Leu 360

Ile Ala Thr Ile Ser Ser 370

### (2) INFORMATION FOR SEQ ID NO:149:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1993 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:

TGTTCTTCGA CGGCAGGCTG GTGGAGGAAG GGCCCACCGA ACAGCTGTTC TCCTCGCCGA 60 AGCATGCGGA AACCGCCCGA TACGTCGCCG GACTGTCGGG GGACGTCAAG GACGCCAAGC 120 GCGGAAATTG AAGAGCACAG AAAGGTATGG CGTGAAAATT CGTTTGCATA CGCTGTTGGC 180 CGTGTTGACC GCTGCGCCGC TGCTGCTAGC AGCGGCGGGC TGTGGCTCGA AACCACCGAG CGGTTCGCCT GAAACGGCCG CCGGCCGCCG TACTGTCGCG ACTACCCCCG CGTCGTCGCC 300 GGTGACGTTG GCGGAGACCG GTAGCACGCT GCTCTACCCG CTGTTCAACC TGTGGGGTCC 360 GGCCTTTCAC GAGAGGTATC CGAACGTCAC GATCACCGCT CAGGGCACCG GTTCTGGTGC 420 CGGGATCGCG CAGGCCGCCG CCGGGACGGT CAACATTGGG GCCTCCGACG CCTATCTGTC 480 GGAAGGTGAT ATGGCCGCGC ACAAGGGGCT GATGAACATC GCGCTAGCCA TCTCCGCTCA 540 GCAGGTCAAC TACAACCTGC CCGGAGTGAG CGAGCACCTC AAGCTGAACG GAAAAGTCCT 600 GGCGGCCATG TACCAGGGCA CCATCAAAAC CTGGGACGAC CCGCAGATCG CTGCGCTCAA 660 CCCCGGCGTG AACCTGCCCG GCACCGCGGT AGTTCCGCTG CACCGCTCCG ACGGGTCCGG 720 TGACACCTTC TTGTTCACCC AGTACCTGTC CAAGCAAGAT CCCGAGGGCT GGGGCAAGTC 780. GCCCGGCTTC GGCACCACCG TCGACTTCCC GGCGGTGCCG GGTGCGCTGG GTGAGAACGG 840 CAACGGCGGC ATGGTGACCG GTTGCGCCGA GACACCGGGC TGCGTGGCCT ATATCGGCAT 900 CAGCTTCCTC GACCAGGCCA GTCAACGGG ACTCGGCGAG GCCCAACTAG GCAATAGCTC 960 TGGCAATTTC TTGTTGCCCG ACGCGCAAAG CATTCAGGCC GCGGCGGCTG GCTTCGCATC 1020 GAAAACCCCG GCGAACCAGG CGATTTCGAT GATCGACGGG CCCGCCCCGG ACGGCTACCC 1080 GATCATCAAC TACGAGTACG CCATCGTCAA CAACCGGCAA AAGGACGCCG CCACCGCGCA 1140

GACCTTGCAG GCATTTCTGC ACTGGGCGAT CACCGACGGC AACAAGGCCT CGTTCCTCGA 1200 CCAGGTTCAT TTCCAGCCGC TGCCGCCCGC GGTGGTGAAG TTGTCTGACG CGTTGATCGC 1260 GACGATTTCC AGCTAGCCTC GTTGACCACC ACGCGACAGC AACCTCCGTC GGGCCATCGG 1320 GCTGCTTTGC GGAGCATGCT GGCCCGTGCC GGTGAAGTCG GCCGCGCTGG CCCGGCCATC 1380 CGGTGGTTGG GTGGGATAGG TGCGGTGATC CCGCTGCTTG CGCTGGTCTT GGTGCTGGTG 1440 GTGCTGGTCA TCGAGGCGAT GGGTGCGATC AGGCTCAACG GGTTGCATTT CTTCACCGCC 1500 ACCGAATGGA ATCCAGGCAA CACCTACGGC GAAACCGTTG TCACCGACGC GTCGCCCATC 1560 CGGTCGGCGC CTACTACGGG GCGTTGCCGC TGATCGTCGG GACGCTGGCG ACCTCGGCAA 1620 TCGCCCTGAT CATCGCGGTG CCGGTCTCTG TAGGAGCGGC GCTGGTGATC GTGGAACGGC 1680 TGCCGAAACG GTTGGCCGAG GCTGTGGGAA TAGTCCTGGA ATTGCTCGCC GGAATCCCCA 1740 GCGTGGTCGT CGGTTTGTGG GGGGCAATGA CGTTCGGGCC GTTCATCGCT CATCACATCG 1800 CTCCGGTGAT CGCTCACAAC GCTCCCGATG TGCCGGTGCT GAACTACTTG CGCGGCGACC 1860 CGGGCAACGG GGAGGGCATG TTGGTGTCCG GTCTGGTGTT GGCGGTGATG GTCGTTCCCA 1920 TTATCGCCAC CACCACTCAT GACCTGTTCC GGCAGGTGCC GGTGTTGCCC CGGGAGGGCG 1980 CGATCGGGAA TTC 1993

# (2) INFORMATION FOR SEQ ID NO:150:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 374 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:150:

Met Lys Ile Arg Leu His Thr Leu Leu Ala Val Leu Thr Ala Ala Pro

Leu Leu Leu Ala Ala Ala Gly Cys Gly Ser Lys Pro Pro Ser Gly Ser 20 25 30

Pro Glu Thr Gly Ala Gly Ala Gly Thr Val Ala Thr Thr Pro Ala Ser 35 40 45

Ser Pro Val Thr Leu Ala Glu Thr Gly Ser Thr Leu Leu Tyr Pro Leu 50 55 60

Phe Asn Leu Trp Gly Pro Ala Phe His Glu Arg Tyr Pro Asn Val Thr 65 70 75 80

Ile Thr Ala Gln Gly Thr Gly Ser Gly Ala Gly Ile Ala Gln Ala Ala 85 90 95

Ala Gly Thr Val Asn Ile Gly Ala Ser Asp Ala Tyr Leu Ser Glu Gly 100 105 110

Asp Met Ala Ala His Lys Gly Leu Met Asn Ile Ala Leu Ala Ile Ser 115 120 125

Ala Gln Gln Val Asn Tyr Asn Leu Pro Gly Val Ser Glu His Leu Lys 130 135 140

Leu Asn Gly Lys Val Leu Ala Ala Met Tyr Gln Gly Thr Ile Lys Thr 145 150 155 160

Trp Asp Asp Pro Gln Ile Ala Ala Leu Asn Pro Gly Val Asn Leu Pro 165 170 175

Gly Thr Ala Val Val Pro Leu His Arg Ser Asp Gly Ser Gly Asp Thr 180 185 190

Phe Leu Phe Thr Gln Tyr Leu Ser Lys Gln Asp Pro Glu Gly Trp Gly 195 200 205

Lys Ser Pro Gly Phe Gly Thr Thr Val Asp Phe Pro Ala Val Pro Gly 210 215 220

Ala Leu Gly Glu Asn Gly Asn Gly Gly Met Val Thr Gly Cys Ala Glu 225 230 235 240

Thr Pro Gly Cys Val Ala Tyr Ile Gly Ile Ser Phe Leu Asp Gln Ala 245 250 255

Ser Gln Arg Gly Leu Gly Glu Ala Gln Leu Gly Asn Ser Ser Gly Asn 260 265 270

Phe Leu Leu Pro Asp Ala Gln Ser Ile Gln Ala Ala Ala Ala Gly Phe 275 280 285

Ala Ser Lys Thr Pro Ala Asn Gln Ala Ile Ser Met Ile Asp Gly Pro 290 295 300

Ala Pro Asp Gly Tyr Pro Ile Ile Asn Tyr Glu Tyr Ala Ile Val Asn 305 310 315

Asn Arg Gln Lys Asp Ala Ala Thr Ala Gln Thr Leu Gln Ala Phe Leu 325 330 335

His Trp Ala Ile Thr Asp Gly Asn Lys Ala Ser Phe Leu Asp Gln Val

His Phe Gln Pro Leu Pro Pro Ala Val Val Lys Leu Ser Asp Ala Leu 355 360 365

Ile Ala Thr Ile Ser Ser

102

370

## (2) INFORMATION FOR SEQ ID NO:151:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1777 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:

GGTCTTGACC	ACCACCTGGG	TGTCGAAGTC	GGTGCCCGGA	TTGAAGTCCA	GGTACTCGTG	60
GGTGGGGCGG	GCGAAACAAT	AGCGACAAGC	ATGCGAGCAG	CCGCGGTAGC	CGTTGACGGT	120
GTAGCGAAAC	GGCAACGCGG	CCGCGTTGGG	CACCTTGTTC	AGCGCTGATT	TGCACAACAC	180
CTCGTGGAAG	GTGATGCCGT	CGAATTGTGG	CGCGCGAACG	CTGCGGACCA	GGCCGATCCG	240
CTGCAACCCG	GCAGCGCCCG	TCGTCAACGG	GCATCCCGTT	CACCGCGACG	GCTTGCCGGG	300
CCCAACGCAT	ACCATTATTC	GAACAACCGT	TCTATACTTT	GTCAACGCTG	GCCGCTACCG	360
AGCGCCGCAC	AGGATGTGAT	ATGCCATCTC	TGCCCGCACA	GACAGGAGCC	AGGCCTTATG	420
ACAGCATTCG	GCGTCGAGCC	CTACGGGCAG	CCGAAGTACC	TAGAAATCGC	CGGGAAGCGC	480
ATGGCGTATA	TCGACGAAGG	CAAGGGTGAC	GCCATCGTCT	TTCAGCACGG	CAACCCCACG	540
TCGTCTTACT	TGTGGCGCAA	CATCATGCCG	CACTTGGAAG	GGCTGGGCCG	GCTGGTGGCC	600
TGCGATCTGA	TCGGGATGGG	CGCUTCGGAC	AAGCTCAGCC	CATCGGGACC	CGACCGCTAT	660
AGCTATGGCG	AGCAACGAGA	CTTTTTGTTC	GCGCTCTGGG	ATGCGCTCGA	CCTCGGCGAC	720
CACGTGGTAC	TGGTGCTGCA	CGACTGGGGC	TCGGCGCTCG	GCTTCGACTG	GGCTAACCAG	780
CATCGCGACC	GAGTGCAGGG	GATCGCGTTC	ATGGAAGCGA	TCGTCACCCC	GATGACGTGG	840
GCGGACTGGC	CGCCGGCCGT	GCGGGGTGTG	TTCCAGGGTT	TCCGATCGCC	TCAAGGCGAG	900
CCAATGGCGT	TGGAGCACAA	CATCTTTGTC	GAACGGGTGC	TGCCCGGGGC	GATCCTGCGA	960
CAGCTCAGCG	ACGAGGAAAT	GAACCACTAT	CGGCGGCCAT	TCGTGAACGG	CGGCGAGGAC	1020
CGTCGCCCCA	CGTTGTCGTG	GCCACGAAAC	CTTCCAATCG	ACGGTGAGCC	CGCCGAGGTC	1080
GTCGCGTTGG	TCAACGAGTA	CCGGAGCTGG	CTCGAGGAAA	CCGACATGCC	GAAACTGTTC	1140
ATCAACGCCG	AGCCCGGCGC	GATCATCACC	GGCCGCATCC	GTGACTATGT	CAGGAGCTGG	1200
CCCAACCAGA	CCGAAATCAC	AGTGCCCGGC	GTGCATTTCG	TTCAGGAGGA	CAGCGATGGC	1260
GTCGTATCGT	GGGCGGGCGC	TCGGCAGCAT	CGGCGACCTG	GGAGCGCTCT	CATTTCACGA	1320

103

GACCAAGAAT GTGATTTCCG GCGAAGGCGG CGCCCTGCTT GTCAACTCAT AAGACTTCCT	1380
GCTCCGGGCA GAGATTCTCA GGGAAAAGGG CACCAATCGC AGCCGCTTCC TTCGCAACGA	1440
GGTCGACAAA TATACGTGGC AGGACAAAGG TCTTCCTATT TGCCCAGCGA ATTAGTCGCT	1500
GCCTTTCTAT GGGCTCAGTT CGAGGAAGCC GAGCGGATCA CGCGTATCCG ATTGGACCTA	1560
TGGAACCGGT ATCATGAAAG CTTCGAATCA TTGGAACAGC GGGGGCTCCT GCGCCGTCCG	1620
ATCATCCCAC AGGGCTGCTC TCACAACGCC CACATGTACT ACGTGTTACT AGCGCCCAGC	1680
GCCGATCGGG AGGAGGTGCT GGCGCGTCTG ACGAGCGAAG GTATAGGCGC GGTCTTTCAT	1740
TACGTGCCGC TTCACGATTC GCCGGCCGGG CGTCGCT	1777
(2) INFORMATION FOR SEQ ID NO:152:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 324 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:152:	
GAGATTGAAT CGTACCGGTC TCCTTAGCGG CTCCGTCCCG TGAATGCCCA TATCACGCAC	60
GGCCATGTTC TGGCTGTCGA CCTTCGCCCC ATGCCCGGAC GTTGGTAAAC CCAGGGTTTG	120
ATCAGTAATT CCGGGGGACG GTTGCGGGGAA GGCGGCCAGG ATGTGCGTGA GCCGCGGCGC	180
CGCCGTCGCC CAGGCGACCG CTGGATGCTC AGCCCCGGTG CGGCGACGTA GCCAGCGTTT	240
GGCGCGTGTC GTCCACAGTG GTACTCCGGT GACGACGCGG CGCGGTGCCT GGGTGAAGAC	300
CGTGACCGAC GCCGCCGATT CAGA	324
(2) INFORMATION FOR SEQ ID NO:153:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:         <ul> <li>(A) LENGTH: 1338 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul> </li> <li>(xi) SEQUENCE DESCRIPTION: SEQ ID NO:153:</li> </ul>	
GCGGTACCGC CGCGTTGCGC TGGCACGGGA CCTGTACGAC CTGAACCACT TCGCCTCGCG	60
AACGATTGAC GAACCGCTCG TGCGGCGGCT GTGGGTGCTC AAGGTGTGGG GTGATGTCGT	120

CGATGACCGG CGCGGCACCC GGCCACTACG CGTCGAAGAC GTCCTCGCCG CCCGCAGCGA 180

GCACGACTTC	CAGCCCGACT	CGATCGGCGT	GCTGACCCGT	CCTGTCGCTA	TGGCTGCCTG	240
GGAAGCTCGC	GTTCGGAAGC	GATTTGCGTT	CCTCACTGAC	CTCGACGCCG	ACGAGCAGCG	300
GTGGGCCGCC	TGCGACGAAC	GGCACCGCCG	CGAAGTGGAG	AACGCGCTGG	CGGTGCTGCG	360
GTCCTGATCA	ACCTGCCGGC	GATCGTGCCG	TTCCGCTGGC	ACGGTTGCGG	CTGGACGCGG	420
CTGAATCGAC	TAGATGAGAG	CAGTTGGGCA	CGAATCCGGC	TGTGGTGGTG	AGCAAGACAC	480
GAGTACTGTC	ATCACTATTG	GATGCACTGG	ATGACCGGCC	TGATTCAGCA	GGACCAATGG	540
AACTGCCCGG	GGCAAAACGT	CTCGGAGATG	ATCGGCGTCC	CCTCGGAACC	CTGCGGTGCT	600
GGCGTCATTC	GGACATCGGT	CCGGCTCGCG	GGATCGTGGT	GACGCCAGCG	CTGAAGGAGT	660
GGAGCGCGGC	GGTGCACGCG	CTGCTGGACG	GCCGGCAGAC	GGTGCTGCTG	CGTAAGGGCG	720
GGATCGGCGA	GAAGCGCTTC	GAGGTGGCGG	CCCACGAGTT	CTTGTTGTTC	CCGACGGTCG	780
CGCACAGCCA	CGCCGAGCGG	GTTCGCCCCG	AGCACCGCGA	CCTGCTGGGC	ccccccccc	840
CCGACAGCAC	CGACGAGTGT	GTGCTACTGC	GGGCCGCAGC	GAAAGTTGTT	GCCGCACTGC	900
CGGTTAACCG	GCCAGAGGGT	CTGGACGCCA	TCGAGGATCT	GCACATCTGG	ACCGCCGAGT	960
CGGTGCGCGC	CGACCGGCTC	GACTTTCGGC	CCAAGCACAA	ACTGGCCGTC	TTGGTGGTCT	1020
CGGCGATCCC	GCTGGCCGAG	CCGGTCCGGC	TGGCGCGTAG	GCCCGAGTAC	GGCGGTTGCA	1080
CCAGCTGGGT	GCAGCTGCCG	GTGACGCCGA	CGTTGGCGGC	GCCGGTGCAC	GACGAGGCCG	1140
CGCTGGCCGA	GGTCGCCGCC	CGGGTCCGCG	AGGCCGTGGG	TTGACTGGGC	GGCATCGCTT	1200
GGGTCTGAGC	TGTACGCCCA	GTCGGCGCTG	CGAGTGATCT	GCTGTCGGTT	CGGTCCCTGC	1260
TGGCGTCAAT	TGACGGCGCG	GGCAACAGCA	GCATTGGCGG	CGCCATCCTC	cgcgcggccg	1320
GCGCCCACCG	CTACAACC					1338

## (2) INFORMATION FOR SEQ ID NO:154:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 321 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:

CCGGCGGCAC CGGCGGCACC GGCGGTACCG GCGGCAACGG CGCTGACGCC GCTGCTGTGG 60

TGGGCTTCGG CGCGAACGGC GACCCTGGCT TCGCTGGCGG CAAAGGCGGT AACGGCGGAA 120

TAGGTGGGGC CGCGGTGACA GGCGGGGTCG CCGGCACCGGC GGCAAAGGTG 180

GCACCGGCGG TGCCGGCGGC GCCGGCAACG ACGCCGGCAG CACCGGCAAT CCCGGCGGTA	240
AGGGCGGCGA CGGCGGGATC GGCGGTGCCG GCGGGGCCGGCG CGGCGCGGCC GGCACCGGCA	300
ACGGCGGCCA TGCCGGCAAC C	321
(2) INFORMATION FOR SEQ ID NO:155:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 492 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:155:	
GAAGACCCGG CCCCGCCATA TCGATCGGCT CGCCGACTAC TTTCGCCGAA CGTGCACGCG	60
GCGGCGTCGG GCTGATCATC ACCGGTGGCT ACGCGCCCAA CCGCACCGGA TGGCTGCTGC	120
CGTTCGCCTC CGAACTCGTC ACTTCGGCGC AAGCCCGACG GCACCGCCGA ATCACCAGGG	180
CGGTCCACGA TTCGGGTGCA AAGATCCTGC TGCAAATCCT GCACGCCGGA CGCTACGCCT	240
ACCACCCACT TGCGGTCAGC GCCTCGCCGA TCAAGGCGCC GATCACCCCG TTTCGTCCGC	300
GAGCACTATC GGCTCGCGGG GTCGAAGCGA CCATCGCGGA TTTCGCCCGC TGCGCGCAGT	360
TGGCCCGCGA TGCCGGCTAC GACGGCGTCG AAATCATGGG CAGCGAAGGG TATCTGCTCA	420
ATCAGTTCCT GGCGCCGCCG ACCAACAAGC GCACCGACTC GTGGGGCGGC ACACCGGCCA	480
ACCGTCGCCG GT	492
(2) INFORMATION FOR SEQ ID NO:156:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 536 amino acids</li> <li>(B) TYPE: amino acid</li> <li>(C) STRANDEDNESS:</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:156:	
Phe Ala Gln His Leu Val Glu Gly Asp Ala Val Glu Leu Trp Arg Ala 1 5 10 15	
Asn Ala Ala Asp Gln Ala Asp Pro Leu Gln Pro Gly Ser Ala Arg Arg 20 25 30	
Gln Arg Ala Ser Arg Ser Pro Arg Arg Leu Ala Gly Pro Asn Ala Tyr 35 40 45	
His Tyr Ser Asn Asn Arg Ser Ile Leu Cys Gln Arg Trp Pro Leu Pro	

50 55 Ser Ala Ala Gln Asp Val Ile Cys His Leu Cys Pro His Arg Gln Glu Pro Gly Leu Met Thr Ala Phe Gly Val Glu Pro Tyr Gly Gln Pro Lys Tyr Leu Glu Ile Ala Gly Lys Arg Met Ala Tyr Ile Asp Glu Gly Lys Gly Asp Ala Ile Val Phe Gln His Gly Asn Pro Thr Ser Ser Tyr Leu 120 Trp Arg Asn Ile Met Pro His Leu Glu Gly Leu Gly Arg Leu Val Ala Cys Asp Leu Ile Gly Met Gly Ala Ser Asp Lys Leu Ser Pro Ser Gly 150 Pro Asp Arg Tyr Ser Tyr Gly Glu Gln Arg Asp Phe Leu Phe Ala Leu 165 170 Trp Asp Ala Leu Asp Leu Gly Asp His Val Val Leu Val Leu His Asp Trp Gly Ser Ala Leu Gly Phe Asp Trp Ala Asn Gln His Arg Asp Arg Val Gln Gly Ile Ala Phe Met Glu Ala Ile Val Thr Pro Met Thr Trp 215 Ala Asp Trp Pro Pro Ala Val Arg Gly Val Phe Gln Gly Phe Arg Ser 235 Pro Gln Gly Glu Pro Met Ala Leu Glu His Asn Ile Phe Val Glu Arg 245 250 Val Leu Pro Gly Ala Ile Leu Arg Gln Leu Ser Asp Glu Glu Met Asn His Tyr Arg Arg Pro Phe Val Asn Gly Glu Asp Arg Arg Pro Thr 280 Leu Ser Trp Pro Arg Asn Leu Pro Ile Asp Gly Glu Pro Ala Glu Val Val Ala Leu Val Asn Glu Tyr Arg Ser Trp Leu Glu Glu Thr Asp Met 305 315 Pro Lys Leu Phe Ile Asn Ala Glu Pro Gly Ala Ile Ile Thr Gly Arg Ile Arg Asp Tyr Val Arg Ser Trp Pro Asn Gln Thr Glu Ile Thr Val 345

Pro Gly Val His Phe Val Gln Glu Asp Ser Asp Gly Val Val Ser Trp 355 360 365

Ala Gly Ala Arg Gln His Arg Arg Pro Gly Ser Ala Leu Ile Ser Arg 370 375 380

Asp Gln Glu Cys Asp Phe Arg Arg Arg Arg Pro Ala Cys Gln Leu 385 390 395 400

Ile Arg Leu Pro Ala Pro Gly Arg Asp Ser Gln Gly Lys Gly His Gln 405 410 415

Ser Gln Pro Leu Pro Ser Gln Arg Gly Arg Gln Ile Tyr Val Ala Gly
420 425 430

Gln Arg Ser Ser Tyr Leu Pro Ser Glu Leu Val Ala Ala Phe Leu Trp 435 440 445

Ala Gln Phe Glu Glu Ala Glu Arg Ile Thr Arg Ile Arg Leu Asp Leu 450 460

Trp Asn Arg Tyr His Glu Ser Phe Glu Ser Leu Glu Gln Arg Gly Leu 465 470 475 480

Leu Arg Arg Pro Ile Ile Pro Gln Gly Cys Ser His Asn Ala His Met
485 490 495

Tyr Tyr Val Leu Leu Ala Pro Ser Ala Asp Arg Glu Glu Val Leu Ala 500 505 510

Arg Leu Thr Ser Glu Gly Ile Gly Ala Val Phe His Tyr Val Pro Leu 515 520 525

His Asp Ser Pro Ala Gly Arg Arg 530 535

## (2) INFORMATION FOR SEQ ID NO:157:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 284 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:157:

Asn Glu Ser Ala Pro Arg Ser Pro Met Leu Pro Ser Ala Arg Pro Arg 1 5 10 15

Tyr Asp Ala Ile Ala Val Leu Leu Asn Glu Met His Ala Gly His Cys 20 25 30

Asp Phe Gly Leu Val Gly Pro Ala Pro Asp Ile Val Thr Asp Ala Ala
35 40 45

- Gly Asp Asp Arg Ala Gly Leu Gly Val Asp Glu Gln Phe Arg His Val 50 55 60
- Gly Phe Leu Glu Pro Ala Pro Val Leu Val Asp Gln Arg Asp Asp Leu 65 70 75 80
- Gly Gly Leu Thr Val Asp Trp Lys Val Ser Trp Pro Arg Gln Arg Gly 85 90 95
- Ala Thr Val Leu Ala Ala Val His Glu Trp Pro Pro Ile Val Val His 100 105 110
- Phe Leu Val Ala Glu Leu Ser Gln Asp Arg Pro Gly Gln His Pro Phe 115 120 125
- Asp Lys Asp Val Val Leu Gln Arg His Trp Leu Ala Leu Arg Arg Ser
- Glu Thr Leu Glu His Thr Pro His Gly Arg Arg Pro Val Arg Pro Arg 145 150 155 160
- His Arg Gly Asp Asp Arg Phe His Glu Arg Asp Pro Leu His Ser Val
- Ala Met Leu Val Ser Pro Val Glu Ala Glu Arg Arg Ala Pro Val Val 180 185 190
- Gln His Gln Tyr His Val Val Ala Glu Val Glu Arg Ile Pro Glu Arg 195 200 205
- Glu Gln Lys Val Ser Leu Leu Ala Ile Ala Ile Ala Val Gly Ser Arg 210 215 220
- Trp Ala Glu Leu Val Arg Arg Ala His Pro Asp Gln Ile Ala Gly His 225 230 235 240
- Gln Pro Ala Gln Pro Phe Gln Val Arg His Asp Val Ala Pro Gln Val 245 250 255
- Arg Arg Gly Val Ala Val Leu Lys Asp Asp Gly Val Thr Leu Ala 260 265 270
- Phe Val Asp Ile Arg His Ala Leu Pro Gly Asp Phe 275 280
- (2) INFORMATION FOR SEQ ID NO:158:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 264 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:158:

109

ATGAACATGT	CGTCGGTGGT	GGGTCGCAAG	GCCTTTGCGC	GATTCGCCGG	CTACTCCTCC	60
GCCATGCACG	CGATCGCCGG	TTTCTCCGAT	GCGTTGCGCC	AAGAGCTGCG	GGGTAGCGGA	120
ATCGCCGTCT	CGGTGATCCA	cccgccccrc	ACCCAGACAC	CGCTGTTGGC	CAACGTCGAC	180
CCCGCCGACA	TGCCGCCGCC	GTTTCGCAGC	CTCACGCCCA	TTCCCGTTCA	CTGGGTCGCG	240
GCAGCGGTGC	TTGACGGTGT	GGCG				264

#### (2) INFORMATION FOR SEO ID NO:159:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1171 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:159:

TAGTCGGCGA CGATGACGTC GCGGTCCAGG CCGACCGCTT CAAGCACCAG CGCGACCACG 60 AAGCCGGTGC GATCCTTACC CGCGAAGCAG TGGGTGAGCA CCGGGCGTCC GGCGGCAAGC 120 AGTGTGACGA CACGATGTAG CGCGCGCTGT GCTCCATTGC GCGTTGGGAA TTGGCGATAC 180 TCGTCGGTCA TGTAGCGGGT GGCCGCGTCA TTTATCGACT GGCTGGATTC GCCGGACTCG 240 CCGTTGGACC CGTCATTGGT TAGCAGCCTC TTGAATGCGG TTTCGTGCGG CGCTGAGTCG 300 TCGGCGTCAT CATCGGCGAG GTCGGGGAAC GGCAGCAGGT GGACGTCGAT GCCGTCCGGA 360 ACCCGTCCTG GACCGCGGCG GGCAACCTCC CGGGACGACC GCAGGTCGGC AACGTCGGTG 420 ATCCCCAGCC GGCGCAGCGT TGCCCCTCGT GCCGAATTCG GCACGAGGCT GGCGAGCCAC 480 CGGGCATCAC CAAGCAACGC TTGCCCAGTA CGGATCGTCA CTTCCGCATC CGGCAGACCA 540 ATCTCCTCGC CGCCCATCGT CAGATCCCGC TCGTGCGTTG ACAAGAACGG CCGCAGATGT 600 GCCAGCGGGT ATCGGAGATT GAACCGCGCA CGCAGTTCTT CAATCGCTGC GCGCTGCCGC 660. ACTATTGGCA CTTTCCGGCG GTCGCGGTAT TCAGCAAGCA TGCGAGTCTC GACGAACTCG 720 CCCCACGTAA CCCACGGCGT AGCTCCCGGC GTGACGCGGA GGATCGGCGG GTGATCTTTG 780 CCGCCACGCT CGTAGCCGTT GATCCACCGC TTCGCGGTGC CGGCGGGGAG GCCGATCAGC 840 TTATCGACCT CGGCGTATGC CGACGGCAAG CTGGGCGCGT TCGTCGAGGT CAAGAACTCC 900 ACCATCGGCA CCGGCACCAA GGTGCCGCAC CTGACCTACG TCGGCGACGC CGACATCGGC 960 GAGTACAGCA ACATCGGCGC CTCCAGCGTG TTCGTCAACT ACGACGGTAC GTCCAAACGG 1020 WO 99/42118 PCT/U

CGCACCACCG TCGGTTCGCA CGTACGGACC GGGTC	CCGACA CCATGTTCGT GGCCCCAGTA 1080
ACCATCGGCG ACGGCGCGTA TACCGGGGCC GGCAC	PAGTGG TGCGGGAGGA TGTCCCGCCG 1140
GGGGCGCTGG CAGTGTCGGC GGGTCCGCAA C	1171
(2) INFORMATION FOR SEQ ID NO:160:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 227 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID	NO:160:
GCAAAGGCGG CACCGGCGGG GCCGGCATGA ACAGG	CCTCGA CCCGCTGCTA GCCGCCCAAG 60
ACGGCGGCCA AGGCGGCACC GGCGGCACCG GCGGC	PAACGC CGGCGCCGGC GGCACCAGCT 120
TCACCCAAGG CGCCGACGGC AACGCCGGCA ACGGC	GGTGA CGGCGGGGTC GGCGGCAACG 180
GCGGAAACGG CGGAAAACGGC GCAGACAACA CCACG	PACCGC CGCCGCC 227
(2) INFORMATION FOR SEQ ID NO:161:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:         <ul> <li>(A) LENGTH: 304 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul> </li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID	NO:161:
CCTCGCCACC ATGGGCGGC AGGGCGGTAG CGGTC	GCGCC GGCTCTACCC CAGGCGCCAA 60
GGGCGCCCAC GGCTTCACTC CAACCAGCGG CGGCC	BACGGC GGCGACGGCG GCAACGGCGG 120
CAACTCCCAA GTGGTCGGCG GCAACGGCGG CGACC	GCGGC AATGGCGGCA ACGGCGGCAG 180
CGCCGGCACG GGCGGCGAACG GCGGCCGCGC CGGCC	BACGGC GCGTTTGGTG GCATGAGTGC 240
CAACGCCACC AACCCTGGTG AAAACGGGCC AAACC	GGTAAC CCCGGCGGCA ACGGTGGCGC 300
CGGC	304
(2) INFORMATION FOR SEQ ID NO:162:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 1439 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:162:

GT	EGGACGCT	GCCGAGGCTG	TATAACAAGG	ACAACATCGA	CCAGCGCCGG	CTCGGTGAGC	60
TGA	ATCGACCT	ATTTAACAGT	GCGCGCTTCA	GCCGGCAGGG	CGAGCACCGC	GCCCGGGATC	120
TG	ATGGGTGA	GGTCTACGAA	TACTTCCTCG	GCAATTTCGC	TCGCGCGGAA	GGGAAGCGGG	180
GTO	GCGAGTT	CTTTACCCCG	CCCAGCGTGG	TCAAGGTGAT	CGTGGAGGTG	CTGGAGCCGT	240
CGA	AGTGGGCG	GGTGTATGAC	CCGTGCTGCG	GTTCCGGAGG	CATGTTTGTG	CAGACCGAGA	300
AGT	TTCATCTA	CGAACACGAC	GGCGATCCGA	AGGATGTCTC	GATCTATGGC	CAGGAAAGCA	360
TTO	BAGGAGAC	CTGGCGGATG	GCGAAGATGA	ACCTCGCCAT	CCACGGCATC	GACAACAAGG	420
GGC	TCGGCGC	CCGATGGAGT	GATACCTTCG	CCCGCGACCA	GCACCCGGAC	GTGCAGATGG	480
ACT	ACGTGAT	GGCCAATCCG	CCGTTCAACA	TCAAAGACTG	GGCCCGCAAC	GAGGAAGACC	540
CAC	GCTGGCG	CTTCGGTGTT	CCGCCCGCCA	ATAACGCCAA	CTACGCATGG	ATTCAGCACA	600
TCC	TGTACAA	CTTGGCGCCG	GGAGGTCGGG	CGGGCGTGGT	GATGGCCAAC	GGGTCGATGT	660
CGI	CGAACTC	CAACGGCAAG	GGGGATATTC	GCGCGCAAAT	CGTGGAGGCG	GATTIGGTTT	720
CCI	GCATGGT	CGCGTTACCC	ACCCAGCTGT	TCCGCAGCAC	CGGAATCCCG	GTGTGCCTGT	780
GGT	TTTTCGC	CAAAAACAAG	GCGGCAGGTA	AGCAAGGGTC	TATCAACCGG	TGCGGGCAGG	840
TGC	TGTTCAT	CGACGCTCGT	GAACTGGGCG	ACCTAGTGGA	CCGGGCCGAG	CGGGCGCTGA	900
CCA	ACGAGGA	GATCGTCCGC	ATCGGGGATA	CCTTCCACGC	GAGCACGACC	ACCGGCAACG	960
CCG	GCTCCGG	TGGTGCCGGC	GGTAATGGGG	GCACTGGCCT	CAACGGCGCG	GGCGGTGCTG	1020
GCG	GGGCCGG	CGGCAACGCG	GGTGTCGCCG	GCGTGTCCTT	CGGCAACGCT	GTGGGCGCG	1080
ACG	GCGGCAA	CGGCGGCAAC	GGCGGCCACG	GCGGCGACGG	CACGACGGGC	GGCGCCGGCG	1140
GCA	AGGGCGG	CAACGGCAGC	AGCGGTGCCG	CCAGCGGCTC	AGGCGTCGTC	AACGTCACCG	1200
CCG	GCCACGG	CGGCAACGGC	GGCAATGGCG	GCAACGGCGG	CAACGGCTCC	GCGGGCGC	1260
GCG	GCCAGGG	CGGTGCCGGC	GGCAGCGCCG	GCAACGGCGG	CCACGGCGGC	GGTGCCACCG	1320
GCG	GCGCCAG	CGGCAAGGGC	GGCAACGGCA	CCAGCGGTGC	CGCCAGCGGC	TCAGGCGTCA	1380
TCA	ACGTCAC	CGCCGGCCAC	GGCGGCAACG	GCGGCAATGG	CCGCAACGGC	GGCAACGGC	1439

# (2) INFORMATION FOR SEQ ID NO:163:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 329 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single

(2) INFORMATION FOR SEQ ID NO:166:

WO 99/42118 PCT/US99/03265

112

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:163:	
GGGCCGGCGG GGCCGGATTT TCTCGTGCCT TGATTGTCGC TGGGGATAAC GGCGGTGATG	60
GTGGTAACGG CGGGATGGGC GGGGCTGGCG GGCCTGGCGG GCCGGCGGCC	120
TGATCAGCCT GCTGGGCGGC CAAGGCGCCG GCGGGCCGGC GGGGCCGGCG	180
GTGTTGGCGG TGACGGCGGG GCCGGCGGCC CCGGCAACCA GGCCTTCAAC GCAGGTGCCG	240
GCGGGGCCGG CGGCCTGATC AGCCTGCTGG GCGGCCAAGG CGCCGGCGGG GCCGGCGGGA	300
CCGGCGGGGC CGGCGGTGTT GGCGGTGAC	329
(2) INFORMATION FOR SEQ ID NO:164:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 80 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:164:	
GCAACGGTGG CAACGGCGGC ACCAGCACGA CCGTGGGGAT GGCCGGAGGT AACTGTGGTG	60
CCGCCGGGCT GATCGGCAAC	80
(2) INFORMATION FOR SEQ ID NO:165:	80
	80
(2) INFORMATION FOR SEQ ID NO:165:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 392 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single	80
(2) INFORMATION FOR SEQ ID NO:165:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 392 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	80
(2) INFORMATION FOR SEQ ID NO:165:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 392 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:	60
(2) INFORMATION FOR SEQ ID NO:165:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 392 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:  GGGCTGTGTC GCACTCACAC CGCCGCATTC GGCGACGTTG GCCGCCCAAT ATCCAGCTCA	60 120
(2) INFORMATION FOR SEQ ID NO:165:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 392 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:  GGGCTGTGTC GCACTCACAC CGCCGCATTC GGCGACGTTG GCCGCCCAAT ATCCAGCTCA  AGGCCTACTA CTTACCGTCG GAGGACCGCC GCATCAAGGT GCGGGTCAGC GCCCAAGGAA	60 120 180
(2) INFORMATION FOR SEQ ID NO:165:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 392 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:  GGGCTGTGTC GCACTCACAC CGCCGCATTC GGCGACGTTG GCCGCCCAAT ATCCAGCTCA  AGGCCTACTA CTTACCGTCG GAGGACCGCC GCATCAAGGT GCGGGTCAGC GCCCAAGGAA  TCAAGGTCAT CGACCGCGAC GGGCATCGAG GCCGTCGTCG GCAGGATCCG	60 120 180 240
(2) INFORMATION FOR SEQ ID NO:165:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 392 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:  GGGCTGTGTC GCACTCACAC CGCCGCATTC GGCGACGTTG GCCGCCCAAT ATCCAGCTCA AGGCCTACTA CTTACCGTCG GAGGACCGCC GCATCAAGGT GCGGGTCAGC GCCCAAGGAA  TCAAGGTCAT CGACCGCGAC GGGCATCGAG GCCGTCGTCG GCAGGATCCG CCCCGGCGCA CTTCGCGCGC CAAGCGGGCT CATCGCTCCG AACGGCGCG ATCCTGTGAG	60 120 180 240 300

113

(i)	SEQUENCE	CHARACTERISTICS	:
-----	----------	-----------------	---

(A) LENGTH: 535 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:166:

ACCGGCGCCA CCGGCGGCAC CGGGTTCGCC GGTGGCGCCG GCGGGGCCGG CGGGCAGGGC 60 GGTATCAGCG GTGCCGGCGG CACCAACGGC TCTGGTGGCG CTGGCGGCAC CGGCGGACAA 120 GGCGGCGCCG GGGGCGCTGG CGGGGCCGGC GCCGATAACC CCACCGGCAT CGGCGCGCC 180 GGCGGCACCG GCGCACCGG CGGAGCGGCC GGAGCCGGCG GGGCCGGTGG CGCCATCGGT 240 ACCGGCGGCA CCGGCGGCGC GGTGGGCAGC GTCGGTAACG CCGGGATCGG CGGTACCGGC 300 GGTACGGGTG GTGTCGGTGG TGCTGGTGGT GCAGGTGCGG CTGCGGCCGC TGGCAGCAGC 360 GCTACCGGTG GCGCCGGGTT CGCCGGCGGC GCCGGCGGAG AAGGCGGACC GGGCGGCAAC 420 AGCGGTGTGG GCGGCACCAA CGGCTCCGGC GGCGCCGGCG GTGCAGGCGG CAAGGGCGGC 480 ACCGGAGGTG CCGGCGGGTC CGGCGGGAC AACCCCACCG GTGCTGGTTT CGCCG 535

### (2) INFORMATION FOR SEQ ID NO:167:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 690 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:167:

CCGACGTCGC CGGGGCGATA CGGGGGTCAC CGACTACTAC ATCATCCGCA CCGAGAATCG 60 GCCGCTGCTG CAACCGCTGC GGGCGGTGCC GGTCATCGGA GATCCGCTGG CCGACCTGAT 120 CCAGCCGAAC CTGAAGGTGA TCGTCAACCT GGGCTACGGC GACCCGAACT ACGGCTACTC 180. GACGAGCTAC GCCGATGTGC GAACGCCGTT CGGGCTGTGG CCGAACGTGC CGCCTCAGGT 240 CATCGCCGAT GCCCTGGCCG CCGGAACACA AGAAGGCATC CTTGACTTCA CGGCCGACCT 300 GCAGGCGCTG TCCGCGCAAC CGCTCACGCT CCCGCAGATC CAGCTGCCGC AACCCGCCGA 360 TCTGGTGGCC GCGGTGGCCG CCGCACCGAC GCCGGCCGAG GTGGTGAACA CGCTCGCCAG GATCATCTCA ACCAACTACG CCGTCCTGCT GCCCACCGTG GACATCGCCC TCGCCTGGTC 480 ACCACCOTGC CGCTGTACAC CACCCAACTG TTCGTCAGGC AACTCGCTGC GGGCAATCTG 540

114

I	ATCAACGCGA TCGGCTATCC CCTGGCGGCC ACCGTAGGTT TAGGCACGAT CGATAGCGGG	600
C	CGGCGTGGAA TTGCTCACCC TCCTCGCGGC GGCCTCGGAC ACCGTTCGAA ACATCGAGGG	660
C	CCTCGTCACC TAACGGATTC CCGACGGCAT	690
(	(2) INFORMATION FOR SEQ ID NO:168:	
	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 407 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:168:	
A	ACGGTGACGG CGGTACTGGC GGCGGCCACG GCGGCAACGG CGGGAATCCC GGGTGGCTCT	60
τ	TGGGCACAGC CGGGGGTGGC GGCAACGGTG GCGCCGGCAG CACCGGTACT GCAGGTGGCG	120
G	GCTCTGGGGG CACCGGCGGC GACGGCGGGA CCGGCGGGCG TGGCGGCCTG TTAATGGGCG	180
C	CCGGCGCCGG CGGGCACGGT GGCACTGGCG GCGCGGGCGG TGCCGGTGTC GACGGTGGCG	240
G	GCGCCGGCGG GCCGGCGGCA ACGGCGGCGC CGGGGGTCAA GCCGCCCTGC	300
T	TGTTCGGGCG CGGCGGCACC GGCGGAGCCG GCGGCTACGG CGGCGATGGC GGTGGCGGCG	360
G	FTGACGGCTT CGACGGCACG ATGGCCGGCC TGGGTGGTAC CGGTGGC	407
(	(2) INFORMATION FOR SEQ ID NO:169:	
	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 468 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	(x1) SEQUENCE DESCRIPTION: SEQ ID NO:169:	
G.	SATCGGTCAG CGCATCGCCC TCGGCGGCAA GCGATTCCGC GGTCTCACCG AAGAACATCG	60
T	GCACGCGGC GGCGCGGACC AGCCCGCTGC GCTGCGGCGC GTCGAACGCC TCCAGCAGGC	120
A	CAGCCAGTC CTTGGCGGCC TGCGAGGCGA ACACGTCGGT GTCACCGGTG TAGATCGCCG	180
G	GATGCCCGC CTCCGCCAAC GCATTCCGGC ACGCCCGCGC GTCTTTGTGA TGCTCGACGA	240
T	CACCGCGAT GTCTGCGGCC ACCACGGCCC GCCCGGCGAA GGTGGCCCCG CTGGCCAGTA	300
G	CGCCGCGAC GTCGGCGGCC AGGTCGTCGG GGATGTGCCG GCGCAGCGCT CCGGCGCGAC	360
G	CCCGAAAAA CGACCCTCA CCCAGCTGGG TCCCGCTGGC ATATCCCTTG CCGTCCTGGG	420
C	GATATTGGA CGCGCATGCC CCGACCGCGT ACAGGCCGGC CACCACCG	468

(2)	INFORMATION	FOR	SEQ	ID	NO:170:
-----	-------------	-----	-----	----	---------

(3)	SPOTENCE	CHARACTERISTICS	

- (A) LENGTH: 219 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:170:

GGTGGTAACG GCGGCCAGGG TGGCATCGGC GGCGCCGGCG AGAGAGGCGC CGACGGCGCC 60

GGCCCCAATG CTAACGGCGC AAACGGCGAG AACGGCGGTA GCGGTGGTAA CGGTGGCGAC 120

GGCGGCGCGC GCGCAATGG CGGCGGGC GGCAACGCGC AGGCGGCCG GTACACCGAC 180

GGCGCCACGG GCACCGGCGG CGACGGCGGC AACGGCGGC AACGGCGGC 219

## (2) INFORMATION FOR SEQ ID NO:171:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 494 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:171:

TAGCTCCGGC GAGGGCGGCA AGGGCGGCGA CGGTGGCCAC GGCGGTGACG GCGTCGGCGG 60 CAACAGTTCC GTCACCCAAG GCGGCAGCGG CGGTGGCGGC GGCGCCGGCGG 120 180 CAGCGGCTTT TTCGGCGGCA AGGGCGGCTT CGGCGGCGAC GGCGGTCAGG GCGGCCCCAA CGGCGGCGGT ACCGTCGGCA CCGTGGCCGG TGGCGGCGGC AACGGCGGTG TCGGCGGCCG 240 GGGCGGCGAC GGCGTCTTTG CCGGTGCCGG CGGCCAGGGC GGCCTCGGTG GGCAGGGCGG 300 CAATGGCGGC GGCTCCACCG GCGGCAACGG CGGCCTTGGC GGCGCGGGCG GTGGCGGAGG 360 CAACGCCCCG GCTCGTGCCG AATCCGGGCT GACCATGGAC AGCGCGGCCA AGTTCGCTGC 480 CATCGCATCA GGCGCGTACT GCCCCGAACA CCTGGAACAT CACCCGAGTT AGCGGGGCGC 494 ATTTCCTGAT CACC

### (2) INFORMATION FOR SEQ ID NO:172:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 220 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:172:	
GGGCCGGTGG TGCCGCGGGC CAGCTCTTCA GCGCCGGAGG CGCGGCGGGT GCCGTTGGGG	60
TTGGCGGCAC CGGCGGCCAG GGTGGGGCTG GCGGTGCCGG AGCGGCCGGC GCCGACGCCC	120
CCGCCAGCAC AGGTCTAACC GGTGGTACCG GGTTCGCTGG CGGGGCCGGC GGCGTCGGCG	180
GCCAGAGCGG CAACGCCATT GCCGGCGGCA TCAACGGCTC	220
(2) INFORMATION FOR SEQ ID NO:173:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 388 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:173:	
ATGGCGGCAA CGGGGGCCCC GGCGGTGCTG GCGGGGCCGG CGACTACAAT TTCCAACGGC	60
GGGCAGGGTG GTGCCGGCGG CCAAGGCGGC CAAGGCGGCC TGGGCGGGGC AAGCACCACC	120
TGATCGGCCT AGCCGCACCC GGGAAAGCCG ATCCAACAGG CGACGATGCC GCCTTCCTTG	180
CCGCGTTGGA CCAGGCCGGC ATCACCTACG CTGACCCAGG CCACGCCATA ACGGCCGCCA	240
AGGCGATGTG TGGGCTGTGT GCTAACGGCG TAACAGGTCT ACAGCTGGTC GCGGACCTGC	300
GGGACTACAA TCCCGGGCTG ACCATGGACA GCGCGGCCAA GTTCGCTGCC ATCGCATCAG	360
GCGCGTACTG CCCCGAACAC CTGGAACA	388
(2) INFORMATION FOR SEQ ID NO:174:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:         <ul> <li>(A) LENGTH: 400 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul> </li> </ul>	
(X1) SEQUENCE DESCRIPTION: SEQ ID NO:174:	
GCAAAGGCGG CACCGGCGGG GCCGGCATGA ACAGCCTCGA CCCGCTGCTA GCCGCCCAAG	60
ACGGCGGCCA AGGCGGCACC GGCGGCACCG GCGCCAACGC CGGCGCCGGC GGCACCAGCT	
TCACCCAAGG CGCCGACGGC AACGCCGGCA ACGGCGGTGA CGGCGGGGTC GGCGGCAACG	
GCGGAAACGG CGGAAACGGC GCAGACAACA CCACCACCGC CGCCGCCGGC ACCACAGGCG	
GCGACGGCGG GGCCGGCGGG GCCGGCGGAA CCGGCGGAAC CGGCGGAGCC GCCGGCACCG	
GCACCGGCGG CCAACAAGGC AACGGCGGCA ACGGCGGCAC CGGCGGCAAA GGCGGCACCG	360

GCGGCGACGG TGCACTCTCA GGCAGCACCG GTGGTGCCGG	400
(2) INFORMATION FOR SEQ ID NO:175:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 538 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:175:	
GGCAACGGCG GCAACGGCGG CATCGCCGGC ATTGGGCGGC AACGGCGTTC CGGGACGGGC	60
AGCGGCAACG GCGGCCAACG GCGGCAGCGG CGGCAACGCCG GCATGGGCGG	120
CAACAGCGGC ACCGGCAGCG GCGACGGCGG TGCCGGCGGG AACGGCGGCG CGGCGGCAC	180
GGGCGGCACC GGCGGCGACG GCGGCCTCAC CGGTACTGGC GGCACCGGCG GCAGCGGTGG	240
CACCGGCGGT GACGGCGGTA ACGGCGGCAA CGGAGCAGAT AACACCGCAA ACATGACTGC	300
GCAGGCGGGC GGTGACGGTG GCAACGGCGG CGACGGTGGC TTCGGCGGCG GGGCCGGGGC	360
CGGCGGCGGT GGCTTGACCG CTGGCGCCAA CGGCACCGGC GGGCAAGGCG GCGCCGGCGG	420
CGATGGCGGC AACGGGGCCA TCGGCGGCCA CGGCCCACTC ACTGACGACC CCGGCGGCAA	480
CGGGGGCACC GGCGGCAACG GCGGCACCGG CGGCACCGGC GGCGCGGGCA TCGGCAGC	538
(2) INFORMATION FOR SEQ ID NO:176:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 239 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:176:	
GGGCCGGTGG TGCCGCGGGC CAGCTCTTCA GCGCCGGAGG CGCGGGGGGT GCCGTTGGGG	60
TTGGCGGCAC CGGCGGCCAG GGTGGGGCTG GCGGTGCCGG AGCGGCCGGC GCCGACGCCC	120
CCGCCAGCAC AGGTCTAACC GGTGGTACCG GGTTCGCTGG CGGGGCCGGC GGCGTCGGCG	180
GCCACGGCGG CAACGCCATT GCCGGCGGCA TCAACGGCTC CGGTGGTGCC GGCGGCACC	239
(2) INFORMATION FOR SEQ ID NO:177:	
<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 985 base pairs</li><li>(B) TYPE: nucleic acid</li></ul>	

(C) STRANDEDNESS: single

## (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:177:

AGCAGCGCTA	CCGGTGGCGC	CGGGTTCGCC	GCCGCCCCG	GCGGAGAAGG	CGGAGCGGC	60
GGCAACAGCG	GTGTGGGCGG	CACCAACGGC	TCCGGCGGCG	CCGGCGGTGC	AGGCGGCAAG	120
GGCGGCACCG	GAGGTGCCGG	CGGGTCCGGC	GCGGACAACC	CCACCGGTGC	TGGTTTCGCC	180
GGTGGCGCCG	GCGGCACAGG	TGGCGCGGCC	GCCCCGCCG	GGGCCGGCGG	GGCGACCGGT	240
ACCGGCGGCA	CCGGCGGCGT	TGTCGGCGCC	ACCGGTAGTG	CAGGCATCGG	ceeecceec	300
GGCCGCGGCG	GTGACGGCGG	CGATGGGGCC	AGCGGTCTCG	GCCTGGGCCT	CTCCGGCTTT	360
GACGGCGGCC	AAGGCGGCCA	AGGCGGGGCC	GGCGGCAGCG	cccccccc	CGGCATCAAC	420
GGGCCGGCG	GGGCCGGCGG	CAACGGCGGC	GACGGCGGG	ACGGCGCAAC	CGGTGCCGCA	480
GGTCTCGGCG	ACAACGGCGG	GGTCGGCGGT	GACGGTGGGG	CCGGTGGCGC	CGCCGGCAAC	540
GGCGGCAACG	CGGGCGTCGG	CCTGACAGCC	AAGGCCGGCG	ACGGCGGCGC	CGCGGGCAAT	600
GGCGGCAACG	GGGGCGCCGG	CGGTGCTGGC	GGGGCCGGCG	ACAACAATTT	CAACGGCGGC	660
CAGGGTGGTG	CCGGCGGCCA	AGGCGGCCAA	GGCGGCTTGG	GCGGGGCAAG	CACCACCTGA	720
TCGGCCTAGC	CGCACCCGGG	AAAGCCGATC	CAACAGGCGA	CGATGCCGCC	TTCCTTGCCG	780
CGTTGGACCA	GGCCGGCATC	ACCTACGCTG	ACCCAGGCCA	CGCCATAACG	GCCGCCAAGG	840
CGATGTGTGG	GCTGTGTGCT	AACGGCGTAA	CAGGTCTACA	GCTGGTCGCG	GACCTGCGGG	900
AATACAATCC	CGGGCTGACC	ATGGACAGCG	CGGCCAAGTT	CGCTGCCATC	GCATCAGGCG	960
CGTACTGCCC	CGAACACCTG	GAACA				985

### (2) INFORMATION FOR SEQ ID NO:178:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2138 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:178:

CGGCACGAGG ATCGGTACCC	CGCGGCATCG	GCAGCTGCCG	ATTCGCCGGG	TTTCCCCACC	60
CGAGGAAAGC CGCTACCAGA	TGGCGCTGCC	GAAGTAGGGC	GATCCGTTCG	CGATGCCGGC	120
ATGAACGGGC GGCATCAAAT	TAGTGCAGGA	ACCTTTCAGT	TTAGCGACGA	TAATGGCTAT	180
AGCACTAAGG AGGATGATCC	GATATGACGC	AGTCGCAGAC	CGTGACGGTG	GATCAGCAAG	240

AGATTTTGAA	CAGGGCCAAC	GAGGTGGAGG	CCCCGATGGC	GGACCCACCG	ACTGATGTCC	300
CCATCACACC	GTGCGAACTC	ACGGCGGCTA	AAAACGCCGC	CCAACAGCTG	GTATTGTCCG	360
CCGACAACAT	GCGGGAATAC	CTGGCGGCCG	GTGCCAAAGA	GCGGCAGCGT	CTGGCGACCT	420
CGCTGCGCAA	CGCGGCCAAG	GCGTATGGCG	AGGTTGATGA	GGAGGCTGCG	ACCGCGCTGG	480
ACAACGACGG	CGAAGGAACT	GTGCAGGCAG	AATCGGCCGG	GGCCGTCGGA	GGGGACAGTT	540
CGGCCGAACT	AACCGATACG	CCGAGGGTGG	CCACGGCCGG	TGAACCCAAC	TTCATGGATC	600
TCAAAGAAGC	GGCAAGGAAG	CTCGAAACGG	GCGACCAAGG	CGCATCGCTC	GCGCACTTTG	660
CGGATGGGTG	GAACACTTTC	AACCTGACGC	TGCAAGGCGA	CGTCAAGCGG	TTCCGGGGGT	720
TTGACAACTG	GGAAGGCGAT	GCGGCTACCG	CTTGCGAGGC	TTCGCTCGAT	CAACAACGGC	780
AATGGATACT	CCACATGGCC	AAATTGAGCG	CTGCGATGGC	CAAGCAGGCT	CAATATGTCG	840
CGCAGCTGCA	CGTGTGGGCT	AGGCGGGAAC	ATCCGACTTA	TGAAGACATA	GTCGGGCTCG	900
AACGGCTTTA	CGCGGAAAAC	CCTTCGGCCC	GCGACCAAAT	TCTCCCGGTG	TACGCGGAGT	960
ATCAGCAGAG	GTCGGAGAAG	GTGCTGACCG	AATACAACAA	CAAGGCAGCC	CTGGAACCGG	1020
TAAACCCGCC	GAAGCCTCCC	CCCGCCATCA	AGATCGACCC	GCCCCGCCT	CCGCAAGAGC	1080
AGGGATTGAT	CCCTGGCTTC	CTGATGCCGC	CGTCTGACGG	CTCCGGTGTG	ACTCCCGGTA	1140
CCGGGATGCC	AGCCGCACCG	ATGGTTCCGC	CTACCGGATC	GCCGGGTGGT	GGCCTCCCGG	1200
CTGACACGGC	GGCGCAGCTG	ACGTCGGCTG	GGCGGGAAGC	CGCAGCGCTG	TCGGGCGACG	1260
TGGCGGTCAA	AGCGGCATCG	CTCGGTGGCG	GTGGAGGCGG	CGGGGTGCCG	TCGGCGCCGT	1320
TGGGATCCGC	GATCGGGGGC	GCCGAATCGG	TGCGGCCCGC	TGGCGCTGGT	GACATTGCCG	1380
GCTTAGGCCA	GGGAAGGGCC	GGCGGCGGCG	CCGCGCTGGG	CGGCGGTGGC	ATGGGAATGC	1440
CGATGGGTGC	CGCGCATCAG	GGACAAGGGG	GCGCCAAGTC	CAAGGGTTCT	CAGCAGGAAG	1500
ACGAGGCGCT	CTACACCGAG	GATCGGGCAT	GGACCGAGGC	CGTCATTGGT	AACCGTCGGC	1560
GCCAGGACAG	TAAGGAGTCG	AAGTGAGCAT	GGACGAATTG	GACCCGCATG	TCGCCCGGGC	1620
GTTGACGCTG	GCGGCGCGGT	TTCAGTCGGC	CCTAGACGGG	ACGCTCAATC	AGATGAACAA	1680
CGGATCCTTC	CGCGCCACCG	ACGAAGCCGA	GACCGTCGAA	GTGACGATCA	ATGGGCACCA	1740
GTGGCTCACC	GGCCTGCGCA	TCGAAGATGG	TTTGCTGAAG	AAGCTGGGTG	CCGAGGCGGT	1800
GGCTCAGCGG	GTCAACGAGG	CGCTGCACAA	TGCGCAGGCC	GCGGCGTCCG	CGTATAACGA	1860

CGCGGCGGGC	GAGCAGCTGA	CCGCTGCGTT	ATCGGCCATG	TCCCGCGCGA	TGAACGAAGG	1920
AATGGCCTAA	GCCCATTGTT	GCGGTGGTAG	CGACTACGCA	CCGAATGAGC	GCCGCAATGC	1980
GGTCATTCAG	CGCGCCCGAC	ACGGCGTGAG	TACGCATTGT	CAATGTTTTG	ACATGGATCG	2040
GCCGGGTTCG	GAGGGCGCCA	TAGTCCTGGT	CGCCAATATT	GCCGCAGCTA	GCTGGTCTTA	2100
GGTTCGGTTA	CGCTGGTTAA	TTATGACGTC	CGTTACCA			2138

## (2) INFORMATION FOR SEQ ID NO:179:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 460 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:179:

Met Thr Gln Ser Gln Thr Val Thr Val Asp Gln Gln Glu Ile Leu Asn 1 5 10 15

Arg Ala Asn Glu Val Glu Ala Pro Met Ala Asp Pro Pro Thr Asp Val 20 25 30

Pro Ile Thr Pro Cys Glu Leu Thr Ala Ala Lys Asn Ala Ala Gln Gln 35 40

Leu Val Leu Ser Ala Asp Asn Met Arg Glu Tyr Leu Ala Ala Gly Ala
50 55 60

Lys Glu Arg Gln Arg Leu Ala Thr Ser Leu Arg Asn Ala Ala Lys Ala 65 70 75 80

Tyr Gly Glu Val Asp Glu Glu Ala Ala Thr Ala Leu Asp Asn Asp Gly 85 90 95

Glu Gly Thr Val Gln Ala Glu Ser Ala Gly Ala Val Gly Gly Asp Ser 100 105 110

Ser Ala Glu Leu Thr Asp Thr Pro Arg Val Ala Thr Ala Gly Glu Pro 115 120 125

Asn Phe Met Asp Leu Lys Glu Ala Ala Arg Lys Leu Glu Thr Gly Asp

Gln Gly Ala Ser Leu Ala His Phe Ala Asp Gly Trp Asn Thr Phe Asn 145 150 155 160

Leu Thr Leu Gln Gly Asp Val Lys Arg Phe Arg Gly Phe Asp Asn Trp

Glu Gly Asp Ala Ala Thr Ala Cys Glu Ala Ser Leu Asp Gln Gln Arg

Gln Trp Ile Leu His Met Ala Lys Leu Ser Ala Ala Met Ala Lys Gln 195 200 205

Ala Gln Tyr Val Ala Gln Leu His Val Trp Ala Arg Arg Glu His Pro 210 215 220

Thr Tyr Glu Asp Ile Val Gly Leu Glu Arg Leu Tyr Ala Glu Asn Pro 225 230 235 240

Ser Ala Arg Asp Gln Ile Leu Pro Val Tyr Ala Glu Tyr Gln Gln Arg 245 250 255

Ser Glu Lys Val Leu Thr Glu Tyr Asn Asn Lys Ala Ala Leu Glu Pro 260 265 270

Val Asn Pro Pro Lys Pro Pro Pro Ala Ile Lys Ile Asp Pro Pro Pro 275 280 285

Pro Pro Gln Glu Gln Gly Leu Ile Pro Gly Phe Leu Met Pro Pro Ser 290 295 300

Asp Gly Ser Gly Val Thr Pro Gly Thr Gly Met Pro Ala Ala Pro Met 305 310 315 320

Val Pro Pro Thr Gly Ser Pro Gly Gly Gly Leu Pro Ala Asp Thr Ala 325 330 335

Ala Gln Leu Thr Ser Ala Gly Arg Glu Ala Ala Ala Leu Ser Gly Asp 340 345 350

Val Ala Val Lys Ala Ala Ser Leu Gly Gly Gly Gly Gly Gly Val 355 360 365

Pro Ser Ala Pro Leu Gly Ser Ala Ile Gly Gly Ala Glu Ser Val Arg 370 375 380

Pro Ala Gly Ala Gly Asp Ile Ala Gly Leu Gly Gln Gly Arg Ala Gly 385 390 395 400

Gly Gly Ala Ala Leu Gly Gly Gly Gly Met Gly Met Pro Met Gly Ala 405 410 415

Ala His Gln Gly Gln Gly Gly Ala Lys Ser Lys Gly Ser Gln Gln Glu 420 425 430

Asp Glu Ala Leu Tyr Thr Glu Asp Arg Ala Trp Thr Glu Ala Val Ile 435 440 445

Gly Asn Arg Arg Gln Asp Ser Lys Glu Ser Lys 450 455 460

- (2) INFORMATION FOR SEQ ID NO:180:
  - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 277 amino acids

(B) TYPE: amino acid

- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:180:

Ala Gly Asn Val Thr Ser Ala Ser Gly Pro His Arg Phe Gly Ala Pro

1 5 10 15

Asp Arg Gly Ser Gln Arg Arg Arg His Pro Ala Ala Ser Thr Ala 20 25 30

Thr Glu Arg Cys Arg Phe Asp Arg His Val Ala Arg Gln Arg Cys Gly 35 40 45

Phe Pro Pro Ser Arg Arg Gln Leu Arg Arg Arg Val Ser Arg Glu Ala 50 55 60

Thr Thr Arg Arg Ser Gly Arg Arg Asn His Arg Cys Gly Trp His Pro 65 70 75 80

Gly Thr Gly Ser His Thr Gly Ala Val Arg Arg Arg His Gln Glu Ala 95 90 95

Arg Asp Gln Ser Leu Leu Arg Arg Arg Gly Arg Val Asp Leu Asp 100 105 110

Gly Gly Arg Leu Arg Arg Val Tyr Arg Phe Gln Gly Cys Leu Val

Val Val Phe Gly Gln His Leu Leu Arg Pro Leu Leu Ile Leu Arg Val 130 135 140

His Arg Glu Asn Leu Val Ala Gly Arg Arg Val Phe Arg Val Lys Pro 145 150 155 160

Phe Glu Pro Asp Tyr Val Phe Ile Ser Arg Met Phe Pro Pro Ser Pro 165 170 175

His Val Gln Leu Arg Asp Ile Leu Ser Leu Leu Gly His Arg Ser Ala

Gln Phe Gly His Val Glu Tyr Pro Leu Pro Leu Leu Ile Glu Arg Ser 195 200 205

Leu Ala Ser Gly Ser Arg Ile Ala Phe Pro Val Val Lys Pro Pro Glu 210 215 220

Pro Leu Asp Val Ala Leu Gln Arg Gln Val Glu Ser Val Pro Pro Ile 225 230 235 240

Arg Lys Val Arg Glu Arg Cys Ala Leu Val Ala Arg Phe Glu Leu Pro 245 250 255

i23

Cys Arg Phe Phe Glu Ile His Glu Val Gly Phe Thr Gly Arg Gly His 260 265 270

Pro Arg Arg Ile Gly 275

#### (2) INFORMATION FOR SEQ ID NO:181:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 192 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:181:

Arg Val Ala Ala Ser Phe Ile Asp Trp Leu Asp Ser Pro Asp Ser Pro 1 5 10 15

Leu Asp Pro Ser Leu Val Ser Ser Leu Leu Asn Ala Val Ser Cys Gly 20 25 30

Ala Glu Ser Ser Ala Ser Ser Ser Ala Arg Ser Gly Asn Gly Ser Arg 35 40 45

Trp Thr Ser Met Pro Ser Gly Thr Arg Pro Gly Pro Arg Arg Ala Thr 50 55 60

Ser Arg Asp Asp Arg Ser Ala Thr Ser Val Ile Pro Ser Arg Arg

Ser Val Ala Pro Arg Ala Glu Phe Gly Thr Arg Leu Ala Ser His Arg 85 90 95

Ala Ser Pro Ser Asn Ala Cys Pro Val Arg Ile Val Thr Ser Ala Ser 100 105 110

Gly Arg Pro Ile Ser Ser Pro Pro Ile Val Arg Ser Arg Ser Cys Val

Asp Lys Asn Gly Arg Arg Cys Ala Ser Gly Tyr Arg Arg Leu Asn Arg 130 135 140

Ala Arg Ser Ser Ser Ile Ala Ala Arg Cys Arg Thr Ile Gly Thr Phe
145 150 155 160

Arg Arg Ser Arg Tyr Ser Ala Ser Met Arg Val Ser Thr Asn Ser Pro 165 170 175

His Val Thr His Gly Val Ala Pro Gly Val Thr Arg Arg Ile Gly Gly 180 185 190

⁽²⁾ INFORMATION FOR SEQ ID NO:182:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 196 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:182:

Gln Glu Arg Pro Gln Met Cys Gln Arg Val Ser Glu Ile Glu Pro Arg 5

Thr Gln Phe Phe Asn Arg Cys Ala Leu Pro His Tyr Trp His Phe Pro

Ala Val Ala Val Phe Ser Lys His Ala Ser Leu Asp Glu Leu Ala Pro 40

Arg Asn Pro Arg Arg Ser Ser Arg Arg Asp Ala Glu Asp Arg Arg Val

Ile Phe Ala Ala Thr Leu Val Ala Val Asp Pro Pro Leu Arg Gly Ala

Gly Gly Glu Ala Asp Gln Leu Ile Asp Leu Gly Val Cys Arg Arg Gln 90

Ala Gly Arg Val Arg Arg Gly Gln Glu Leu His His Arg His Arg His

Gln Gly Ala Ala Pro Asp Leu Arg Arg Arg Arg Arg His Arg Arg Val

Gln Gln His Arg Arg Leu Gln Arg Val Arg Gln Leu Arg Arg Tyr Val

Gln Thr Ala His His Arg Arg Phe Ala Arg Thr Asp Arg Val Arg His 150 155

His Val Arg Gly Pro Ser Asn His Arg Arg Arg Arg Val Tyr Arg Gly 165

Arg His Ser Gly Ala Gly Gly Cys Pro Ala Gly Gly Ala Gly Ser Val 180

Gly Gly Ser Ala 195

- (2) INFORMATION FOR SEQ ID NO:183:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 311 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:183:
- Val Arg Cys Gly Thr Leu Val Pro Val Pro Met Val Glu Phe Leu Thr 1 5 10 15
- Ser Thr Asn Ala Pro Ser Leu Pro Ser Ala Tyr Ala Glu Val Asp Lys 20 25 30
- Leu Ile Gly Leu Pro Ala Gly Thr Ala Lys Arg Trp Ile Asn Gly Tyr 35 40 45
- Glu Arg Gly Gly Lys Asp His Pro Pro Ile Leu Arg Val Thr Pro Gly 50 55 60
- Ala Thr Pro Trp Val Thr Trp Gly Glu Phe Val Glu Thr Arg Met Leu 65 70 75 80
- Ala Glu Tyr Arg Asp Arg Lys Val Pro Ile Val Arg Gln Arg Ala 85 90 95
- Ala Ile Glu Glu Leu Arg Ala Arg Phe Asn Leu Arg Tyr Pro Leu Ala 100 105 110
- His Leu Arg Pro Phe Leu Ser Thr His Glu Arg Asp Leu Thr Met Gly
  115 120 125
- Gly Glu Glu Ile Gly Leu Pro Asp Ala Glu Val Thr Ile Arg Thr Gly 130 135 140
- Gln Ala Leu Leu Gly Asp Ala Arg Trp Leu Ala Ser Leu Val Pro Asn 145 150 155 160
- Ser Ala Arg Gly Ala Thr Leu Arg Arg Leu Gly Ile Thr Asp Val Ala 165 170 175
- Asp Leu Arg Ser Ser Arg Glu Val Ala Arg Arg Gly Pro Gly Arg Val 180 185 190
- Pro Asp Gly Ile Asp Val His Leu Leu Pro Phe Pro Asp Leu Ala Asp 195 200 205
- Asp Asp Ala Asp Asp Ser Ala Pro His Glu Thr Ala Phe Lys Arg Leu 210 215 220
- Leu Thr Asn Asp Gly Ser Asn Gly Glu Ser Gly Glu Ser Ser Gln Ser 225 230 235 240
- Ile Asn Asp Ala Ala Thr Arg Tyr Met Thr Asp Glu Tyr Arg Gln Phe 245 250 255
- Pro Thr Arg Asn Gly Ala Gln Arg Ala Leu His Arg Val Val Thr Leu 260 265 270
- Leu Ala Ala Gly Arg Pro Val Leu Thr His Cys Phe Ala Gly Lys Asp 275 280 285

126

Arg Thr Gly Phe Val Val Ala Leu Val Leu Glu Ala Val Gly Leu Asp 290 295 300

Arg Asp Val Ile Val Ala Asp 305 310

# (2) INFORMATION FOR SEQ ID NO:184:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2072 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:184:

CTCGTGCCGA	TTCGGCACGA	GCTGAGCAGC	CCAAGGGGCC	GTTCGGCGAA	GTCATCGAGG	60
CATTCGCCGA	CGGGCTGGCC	GGCAAGGGTA	AGCAAATCAA	CACCACGCTG	AACAGCCTGT	120
CGCAGGCGTT	GAACGCCTTG	AATGAGGGCC	GCGGCGACTT	CTTCGCGGTG	GTACGCAGCC	180
TGGCGCTATT	CGTCAACGCG	CTACATCAGG	ACGACCAACA	GTTCGTCGCG	TTGAACAAGA	240
ACCTTGCGGA	GTTCACCGAC	AGGTTGACCC	ACTCCGATGC	GGACCTGTCG	AACGCCATCC	300
AGCAATTCGA	CAGCTTGCTC	GCCGTCGCGC	GCCCGTTCTT	CGCCAAGAAC	CGCGAGGTGC	360
TGACGCATGA	CGTCAATAAT	CTCGCGACCG	TGACCACCAC	GTTGCTGCAG	CCCGATCCGT	420
TGGATGGGTT	GGAGACCGTC	CTGCACATCT	TCCCGACGCT	GGCGGCGAAC	ATTAACCAGC	480
TTTACCATCC	GACACACGGT	GGCGTGGTGT	CGCTTTCCGC	GTTCACGAAT	TTCGCCAACC	540
CGATGGAGTT	CATCTGCAGC	TCGATTCAGG	CGGGTAGCCG	GCTCGGTTAT	CAAGAGTCGG	600
CCGAACTCTG	TGCGCAGTAT	CTGGCGCCAG	TCCTCGATGC	GATCAAGTTC	AACTACTTTC	660
CGTTCGGCCT	GAACGTGGCC	AGCACCGCCT	CGACACTGCC	TAAAGAGATC	GCGTACTCCG	720
AGCCCCGCTT	GCAGCCGCCC	AACGGGTACA	AGGACACCAC	GGTGCCCGGC	ATCTGGGTGC	780
CGGATACGCC	GTTGTCACAC	CGCAACACGC	AGCCCGGTTG	GGTGGTGGCA	CCCGGGATGC	840
AAGGGGTTCA	GGTGGGACCG	ATCACGCAGG	GTTTGCTGAC	GCCGGAGTCC	CTGGCCGAAC	900
TCATGGGTGG	TCCCGATATC	GCCCCTCCGT	CGTCAGGGCT	GCAAACCCCG	CCCGGACCCC	960
CGAATGCGTA	CGACGAGTAC	CCCGTGCTGC	CGCCGATCGG	TTTACAGGCC	CCACAGGTGC	1020
CGATACCACC	GCCGCCTCCT	GGGCCCGACG	TAATCCCGGG	TCCGGTGCCA	CCGGTCTTGG	1080
CGGCGATCGT	GTTCCCAAGA	GATCGCCCGG	CAGCGTCGGA	AAACTTCGAC	TACATGGGCC	1140

127

TCTTGTTGCT	GTCGCCGGGC	CTGGCGACCT	TCCTGTTCGG	GGTGTCATCT	AGCCCCGCCC	1200
GTGGAACGAT	GGCCGATCGG	CACGTGTTGA	TACCGGCGAT	CACCGGCCTG	GCGTTGATCG	1260
CGGCATTCGT	CGCACATTCG	TGGTACCGCA	CAGAACATCC	GCTCATAGAC	ATGCGCTTGT	1320
TCCAGAACCG	AGCGGTCGCG	CAGGCCAACA	TGACGATGAC	GGTGCTCTCC	CTCGGGCTGT	1380
TTGGCTCCTT	CTTGCTGCTC	CCGAGCTACC	TCCAGCAAGT	GTTGCACCAA	TCACCGATGC	1440
AATCGGGGGT	GCATATCATC	CCACAGGGCC	TCGGTGCCAT	GCTGGCGATG	CCGATCGCCG	1500
GAGCGATGAT	GGACCGACGG	GGACCGGCCA	AGATCGTGCT	GGTTGGGATC	ATGCTGATCG	1560
CTGCGGGGTT	GGGCACCTTC	GCCTTTGGTG	TCGCGCGGCA	AGCGGACTAC	TTACCCATTC	1620
TGCCGACCGG	GCTGGCAATC	ATGGGCATGG	GCATGGGCTG	CTCCATGATG	CCACTGTCCG	1680
GGCGGCAGT	GCAGACCCTG	GCCCCACATC	AGATCGCTCG	CGGTTCGACG	CTGATCAGCG	1740
rcaaccagca	GGTGGGCGGT	TCGATAGGGA	CCGCACTGAT	GTCGGTGCTG	CTCACCTACC	1800
AGTTCAATCA	CAGCGAAATC	ATCGCTACTG	CAAAGAAAGT	CGCACTGACC	CCAGAGAGTG	1860
ecgccgggcg	GGGGGCGCG	GTTGACCCTT	CCTCGCTACC	GCGCCAAACC	AACTTCGCGG	1920
CCCAACTGCT	GCATGACCTT	TCGCACGCCT	ACGCGGTGGT	ATTCGTGATA	GCGACCGCGC	1980
TAGTGGTCTC	GACGCTGATC	CCCGCGGCAT	TCCTGCCGAA	ACAGCAGGCT	AGTCATCGAA	2040
GAGCACCGTT	GCTATCCGCA	TGACGTCTGC	TT			2072

# (2) INFORMATION FOR SEQ ID NO:185:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1923 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:185:

TCACCCCGGA	GAAGTCGTTC	GTCGACGACC	TGGACATCGA	CTCGCTGTCG	ATGGTCGAGA	60
TCGCCGTGCA	GACCGAGGAC	AAGTACGGCG	TCAAGATCCC	CGACGAGGAC	CTCGCCGGTC	120
TGCGTACCGT	CGGTGACGTT	GTCGCCTACA	TCCAGAAGCT	CGAGGAAGAA	AACCCGGAGG	180
CGGCTCAGGC	GTTGCGCGCG	AAGATTGAGT	CGGAGAACCC	CGATGCGGCA	CGAGCAGATC	240
GGTGCGTTTC	ACCCACATCG	CAAGCTCGAG	ACGCCCGTCG	TCCTCTTGCA	CGCTCAGCCA	300
GGTTGGCGTG	TCGCCGCCTT	CCAGCAAGTG	TTCCCACCAC	ACGAAGGGAC	CCTCGCGAAA	360
GGTGACTGAT	CCGCGGACCA	CATAGTCGAT	GCCACCGTGG	CTGACAATTG	CGCCGGGTCC	420

GAGTTGGCGG	GGGCCGAATT	GCGGCATTGC	GTCGAAGGCC	AGCGGATCCC	GGCGCCCGCC	480
CGGCGTGGCT	GGTGTTTTGG	GCCGCCGGAT	GGCCACGACG	AGAACGACGA	TGGCGGCGAT	540
GAACAGCGCC	ACGGCAATCA	CGACCAGCAG	ATTTCCCACG	CATACCCTCT	CGTACCGCTG	600
CGCCGCGGTT	GGTCGATCGG	TCGCATATCG	ATGGCGCCGT	TTAACGTAAC	AGCTTTCGCG	660
GGACCGGGGG	TCACAACGGG	CGAGTTGTCC	GGCCGGGAAC	CCGGCAGGTC	TCGGCCGCGG	720
TCACCCCAGC	TCACTGGTGC	ACCATCCGGG	TGTCGGTGAG	CGTGCAACTC	AAACACACTC	780
AACGGCAACG	GTTTCTCAGG	TCACCAGCTC	AACCTCGACC	CGCAATCGCT	CGTACGTTTC	840
GACCGCGCGC	AGGTCGCGAG	TCAGCAGCTT	TGCGCCGGCA	GCTTTCGCCG	TGAAGCCGAC	900
CAGGGCATCG	TAGGTTGCGC	CACCGGTGAC	ATCGTGCTCG	GCGAGGTGGT	CGGTCAAGCC	960
GCGATATGAG	CAGGCATCCA	GTGCCAGGTA	GTTGCTGGAG	GTGATGTCCG	CCAAGTAGGC	1020
GTGGACGGCA	ACAGGGGCAA	TACGATGCGG	CGGTGGTAGC	CGGGTCAAGA	CCGAATAGGT	1080
TTCCACAGCC	GCGTGCGCGA	TCAGATGGAC	GCCACGGTTG	AGCGCGCGCA	CGGCGGCCTC	1140
GTGCCCTTCG	TGCCAGGTCG	CGAATCCGGC	AACCAGCACG	CTGGTGTCTG	GTGCGATCAC	1200
CGCCGTGTGC	GATCGAGCGT	TTCCCGAACG	ATTTCGTCGG	TCAACGGGGG	CAGGGGACGT	1260
TCTGGCCGTG	CGACGAGAAC	CGAGCCTTCC	CGAACGAGTT	CGACACCGGT	CGGGGCCGGC	1320
TCAATCTCGA	TGCGCCCATC	GCGCTCGGTG	ATCTCCACCT	GGTCGTTCCC	GCGCAAGCCA	1380
AGGCGCTCGC	GAATCCGCTT	GGGAATCACC	AGACGTCCTG	CGACATCGAT	GGTTGTTCGC	1440
ATGGTAGGAA	ATTTACCATC	GCACGTTCCA	TAGGCGTGTC	CTGCGCGGGA	TGTCGGGACG	1500
ATCCGCTAGC	GTATCGAACG	ATTGTTTCGG	AAATGGCTGA	GGGAGCGTGC	GGTGCGGGTG	1560
ATGGGTGTCG	ATCCCGGGTT	GACCCGATGC	GGGCTGTCGC	TCATCGAGAG	TGGGCGTGGT	1620
CGGCAGCTCA	CCGCGCTGGA	TGTCGACGTG	GTGCGCACAC	CGTCGGATGC	GGCCTTGGCG	1680
CAGCGCCTGT	TGGCCATCAG	CGATGCCGTC	GAGCACTGGC	TGGACACCCA	TCATCCGGAG	1740
GTGGTGGCTA	TCGAACGGGT	GTTCTCTCAG	CTCAACGTGA	CCACGGTGAT	GGGCACCGCG	1800
CAGGCCGGCG	GCGTGATCGC	CCTGGCGGCG	GCCAAACGTG	GTGTCGACGT	GCATTTCCAT	1860
ACCCCCAGCG	AGGTCAAGGC	GGCGGTCACT	GGCAACGGTT	CCGCAGACAA	GGCTCAGGTC	1920
ACC						1923

⁽²⁾ INFORMATION FOR SEQ ID NO:186:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1055 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:186:

CTGGCGTGCC AGTGTCACCG GCGATATGAC GTCGGCATTC AATTTCGCGG CCCCGCCGGA 60 CCCGTCGCCA CCCAATCTGG ACCACCCGGT CCGTCAATTG CCGAAGGTCG CCAAGTGCGT 120 GCCCAATGTG GTGCTGGGTT TCTTGAACGA AGGCCTGCCG TATCGGGTGC CCTACCCCCA 180 AACAACGCCA GTCCAGGAAT CCGGTCCCGC GCGGCCGATT CCCAGCGGCA TCTGCTAGCC 240 GGGGATGGTT CAGACGTAAC GGTTGGCTAG GTCGAAACCC GCGCCAGGGC CGCTGGACGG 300 GCTCATGGCA GCGAAATTAG AAAACCCGGG ATATTGTCCG CGGATTGTCA TACGATGCTG 360 AGTGCTTGGT GGTTCGTGTT TAGCCATTGA GTGTGGATGT GTTGAGACCC TGGCCTGGAA 420 GGGGACAACG TGCTTTTGCC TCTTGGTCCG CCTTTGCCGC CCGACGCGGT GGTGGCGAAA 480 CGGGCTGAGT CGGGAATGCT CGGCGGGTTG TCGGTTCCGC TCAGCTGGGG AGTGGCTGTG 540 CCACCCGATG ATTATGACCA CTGGGCGCCT GCGCCGGAGG ACGGCGCCGA TGTCGATGTC 600 CAGGCGGCCG AAGGGGCGGA CGCAGAGGCC GCGGCCATGG ACGAGTGGGA TGAGTGGCAG 660 GCGTGGAACG AGTGGGTGGC GGAGAACGCT GAACCCCGCT TTGAGGTGCC ACGGAGTAGC AGCAGCGTGA TTCCGCATTC TCCGGCGGCC GGCTAGGAGA GGGGGCGCAG ACTGTCGTTA 780 TTTGACCAGT GATCGGCGGT CTCGGTGTTC CCGCGGCCGG CTATGACAAC AGTCAATGTG 840 CATGACAAGT TACAGGTATT AGGTCCAGGT TCAACAAGGA GACAGGCAAC ATGGCAACAC 900 GTTTTATGAC GGATCCGCAC GCGATGCGGG ACATGGCGGG CCGTTTTGAG GTGCACGCCC 960 AGACGGTGGA GGACGAGGCT CGCCGGATGT GGGCGTCCGC GCAAAACATC TCGGGNGCGG 1020 GCTGGAGTGG CATGGCCGAG GCGACCTCGC TAGAC 1055

### (2) INFORMATION FOR SEQ ID NO:187:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 359 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:187:

TCCGGGCTGA CCACCGGGAT CGCCGAACCA TCCGAGATCA CCTCGCAATG ATCCACCTCG 1	20
CGCAGCTGGT CACCCAGCCA CCGGGCGGTG TGCGACAGCG CCTGCATCAC CTTGGTATAG 1	80
CCGTCGCGCC CCAGCCGCAG GAAGTTGTAG TACTGGCCCA CCACCTGGTT ACCGGGACGG 2	40
GAGAAGTTCA GGGTGAAGGT CGGCATGTCG CCGCCGAGGT AGTTGACCCG GAAAACCAGA 3	00
TCCTCCGGCA GGTGCTCGGG CCCGCGCCAC ACGACAAACC CGACGCCGGG ATAGGTCAG 3	59
(2) INFORMATION FOR SEQ ID NO:188:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 350 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:188:	
AACGGGCCCG TGGGCACCGC TCCTCTAAGG GCTCTCGTTG GTCGCATGAA GTGCTGGAAG	60
GATGCATCTT GGCAGATTCC CGCCAGAGCA AAACAGCCGC TAGTCCTAGT CCGAGTCGCC 1.	20
CGCAAAGTTC CTCGAATAAC TCCGTACCCG GAGCGCCAAA CCGGGTCTCC TTCGCTAAGC 1	80
TGCGCGAACC ACTTGAGGTT CCGGGACTCC TTGACGTCCA GACCGATTCG TTCGAGTGGC 2	40
TGATCGGTTC GCCGCGCTGG CGCGAATCCG CCGCCGAGCG GGGTGATGTC AACCCAGTGG 3	00
GTGGCCTGGA AGAGGTGCTC TACGAGCTGT CTCCGATCGA GGACTTCTCC 3	50
(2) INFORMATION FOR SEQ ID NO:189:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 679 amino acids</li> <li>(B) TYPE: amino acid</li> <li>(C) STRANDEDNESS:</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:189:	
Glu Gln Pro Lys Gly Pro Phe Gly Glu Val Ile Glu Ala Phe Ala Asp 1 5 10 15	
Gly Leu Ala Gly Lys Gly Lys Gln Ile Asn Thr Thr Leu Asn Ser Leu 20 25 30	
Ser Gln Ala Leu Asn Ala Leu Asn Glu Gly Arg Gly Asp Phe Phe Ala 35 40 45	
Val Val Arg Ser Leu Ala Leu Phe Val Asn Ala Leu His Gln Asp Asp	

Gln Gln Phe Val Ala Leu Asn Lys Asn Leu Ala Glu Phe Thr Asp Arg Leu Thr His Ser Asp Ala Asp Leu Ser Asn Ala Ile Gln Gln Phe Asp Ser Leu Leu Ala Val Ala Arg Pro Phe Phe Ala Lys Asn Arg Glu Val Leu Thr His Asp Val Asn Asn Leu Ala Thr Val Thr Thr Thr Leu Leu 120 Gln Pro Asp Pro Leu Asp Gly Leu Glu Thr Val Leu His Ile Phe Pro 135 Thr Leu Ala Ala Asn Ile Asn Gln Leu Tyr His Pro Thr His Gly Gly 150 155 Val Val Ser Leu Ser Ala Phe Thr Asn Phe Ala Asn Pro Met Glu Phe 165 170 Ile Cys Ser Ser Ile Gln Ala Gly Ser Arg Leu Gly Tyr Gln Glu Ser Ala Glu Leu Cys Ala Gln Tyr Leu Ala Pro Val Leu Asp Ala Ile Lys Phe Asn Tyr Phe Pro Phe Gly Leu Asn Val Ala Ser Thr Ala Ser Thr 215 Leu Pro Lys Glu Ile Ala Tyr Ser Glu Pro Arg Leu Gln Pro Pro Asn 230 235 Gly Tyr Lys Asp Thr Thr Val Pro Gly Ile Trp Val Pro Asp Thr Pro 245 Leu Ser His Arg Asn Thr Gln Pro Gly Trp Val Val Ala Pro Gly Met Gln Gly Val Gln Val Gly Pro Ile Thr Gln Gly Leu Leu Thr Pro Glu 280 Ser Leu Ala Glu Leu Met Gly Gly Pro Asp Ile Ala Pro Pro Ser Ser 295 Gly Leu Gln Thr Pro Pro Gly Pro Pro Asn Ala Tyr Asp Glu Tyr Pro 305 315 Val Leu Pro Pro Ile Gly Leu Gln Ala Pro Gln Val Pro Ile Pro Pro 330 Pro Pro Pro Gly Pro Asp Val Ile Pro Gly Pro Val Pro Pro Val Leu Ala Ala Ile Val Phe Pro Arg Asp Arg Pro Ala Ala Ser Glu Asn Phe

355 360 Asp Tyr Met Gly Leu Leu Leu Ser Pro Gly Leu Ala Thr Phe Leu 375 Phe Gly Val Ser Ser Ser Pro Ala Arg Gly Thr Met Ala Asp Arg His 390 Val Leu Ile Pro Ala Ile Thr Gly Leu Ala Leu Ile Ala Ala Phe Val 410 Ala His Ser Trp Tyr Arg Thr Glu His Pro Leu Ile Asp Met Arg Leu 425 Phe Gln Asn Arg Ala Val Ala Gln Ala Asn Met Thr Met Thr Val Leu 435 Ser Leu Gly Leu Phe Gly Ser Phe Leu Leu Pro Ser Tyr Leu Gln 455 Gln Val Leu His Gln Ser Pro Met Gln Ser Gly Val His Ile Ile Pro 475 Gln Gly Leu Gly Ala Met Leu Ala Met Pro Ile Ala Gly Ala Met Met 485 490 Asp Arg Arg Gly Pro Ala Lys Ile Val Leu Val Gly Ile Met Leu Ile 500 505 Ala Ala Gly Leu Gly Thr Phe Ala Phe Gly Val Ala Arg Gln Ala Asp Tyr Leu Pro Ile Leu Pro Thr Gly Leu Ala Ile Met Gly Met Gly Met Gly Cys Ser Met Met Pro Leu Ser Gly Ala Ala Val Gln Thr Leu Ala 550 555 Pro His Gln Ile Ala Arg Gly Ser Thr Leu Ile Ser Val Asn Gln Gln Val Gly Gly Ser Ile Gly Thr Ala Leu Met Ser Val Leu Leu Thr Tyr 580 585 Gln Phe Asn His Ser Glu Ile Ile Ala Thr Ala Lys Lys Val Ala Leu Thr Pro Glu Ser Gly Ala Gly Arg Gly Ala Ala Val Asp Pro Ser Ser 615 Leu Pro Arg Gln Thr Asn Phe Ala Ala Gln Leu Leu His Asp Leu Ser 630 635 His Ala Tyr Ala Val Val Phe Val Ile Ala Thr Ala Leu Val Val Ser 645 650

Thr Leu Ile Pro Ala Ala Phe Leu Pro Lys Gln Gln Ala Ser His Arg 660 665 670

Arg Ala Pro Leu Leu Ser Ala 675

- (2) INFORMATION FOR SEQ ID NO:190:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 120 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:190:

Thr Pro Glu Lys Ser Phe Val Asp Asp Leu Asp Ile Asp Ser Leu Ser

1 10 15

Met Val Glu Ile Ala Val Gln Thr Glu Asp Lys Tyr Gly Val Lys Ile 20 25 30

Pro Asp Glu Asp Leu Ala Gly Leu Arg Thr Val Gly Asp Val Val Ala 35 40 45

Tyr Ile Gln Lys Leu Glu Glu Glu Asn Pro Glu Ala Ala Gln Ala Leu 50 55 60

Arg Ala Lys Ile Glu Ser Glu Asn Pro Asp Ala Ala Arg Ala Asp Arg 65 70 75 80

Cys Val Ser Pro Thr Ser Gln Ala Arg Asp Ala Arg Arg Pro Leu Ala 85 90 95

Arg Ser Ala Arg Leu Ala Cys Arg Arg Leu Pro Ala Ser Val Pro Thr

Thr Arg Arg Asp Pro Arg Glu Arg

- (2) INFORMATION FOR SEQ ID NO:191:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 89 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:191:

Leu Ala Cys Gln Cys His Arg Arg Tyr Asp Val Gly Ile Gln Phe Arg 1 5 10 15

Gly Pro Ala Gly Pro Val Ala Thr Gln Ser Gly Pro Pro Gly Pro Ser

20 25 30

Ile Ala Glu Gly Arg Gln Val Arg Ala Gln Cys Gly Ala Gly Phe Leu 35 40 45

Glu Arg Arg Pro Ala Val Ser Gly Ala Leu Pro Pro Asn Asn Ala Ser 50 55 60

Pro Gly Ile Arg Ser Arg Ala Ala Asp Ser Gln Arg His Leu Leu Ala 65 70 75 80

Gly Asp Gly Ser Asp Val Thr Val Gly

## (2) INFORMATION FOR SEQ ID NO:192:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 119 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:192:

Ala Ser Leu Leu Ala Tyr Ser Ala Ala Ala Ala Ser Thr Ala Leu Ala 1 5 10 15

Val Ala Cys Val Arg Ala Asp His Arg Asp Arg Arg Thr Ile Arg Asp 20 25 30

His Leu Ala Met Ile His Leu Ala Gln Leu Val Thr Gln Pro Pro Gly
35 40 45

Gly Val Arg Gln Arg Leu His His Leu Gly Ile Ala Val Ala Pro Gln 50 55 60

Pro Gln Glu Val Val Leu Ala His His Leu Val Thr Gly Thr Gly 70 75 80

Glu Val Gln Gly Glu Gly Arg His Val Ala Ala Glu Val Val Asp Pro 85 90 95

Glu Asn Gln Ile Leu Arg Gln Val Leu Gly Pro Ala Pro His Asp Lys 100 105 110

Pro Asp Ala Gly Ile Gly Gln 115

# (2) INFORMATION FOR SEQ ID NO:193:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 116 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear

135

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:193:

Arg Ala Arg Gly His Arg Ser Ser Lys Gly Ser Arg Trp Ser His Glu

1 10 15

Val Leu Glu Gly Cys Ile Leu Ala Asp Ser Arg Gln Ser Lys Thr Ala 20 25 30

Ala Ser Pro Ser Pro Ser Arg Pro Gln Ser Ser Ser Asn Asn Ser Val
35 40 45

Pro Gly Ala Pro Asn Arg Val Ser Phe Ala Lys Leu Arg Glu Pro Leu 50 55 60

Glu Val Pro Gly Leu Leu Asp Val Gln Thr Asp Ser Phe Glu Trp Leu 65 70 75 80

Ile Gly Ser Pro Arg Trp Arg Glu Ser Ala Ala Glu Arg Gly Asp Val
85 90 95

Asn Pro Val Gly Gly Leu Glu Glu Val Leu Tyr Glu Leu Ser Pro Ile 100 105 110

Glu Asp Phe Ser 115

#### (2) INFORMATION FOR SEQ ID NO:194:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 811 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:194:

TGCTACGCAG CAATCGCTTT GGTGACAGAT GTGGATGCCG GCGTCGCTGC TGGCGATGGC 60 GTGAAAGCCG CCGACGTGTT CGCCGCATTC GGGGAGAACA TCGAACTGCT CAAAAGGCTG 120 STGCGGGCCG CCATCGATCS GGTCGCCGAC GAGCGCACGT GCACGCACTG TCAACACCAC 180 GCCGGTGTTC CGTTGCCGTT CGAGCTGCCA TGAGGGTGCT GCTGACCGGC GCGGCCGGCT TCATCGGGTC GCGCGTGGAT GCGGCGTTAC GGGCTGCGGG TCACGACGTG GTGGGCGTCG 300 ACGCGCTGCT GCCCGCCGC CACGGGCCAA ACCCGGTGCT GCCACCGGGC TGCCAGCGGG 360 TCGACGTGCG CGACGCCAGC GCGCTGGCCC CGTTGTTGGC CGGTGTCGAT CTGGTGTGTC ACCAGGCCGC CATGGTGGGT GCCGGCGTCA ACGCCGCCGA CGCACCCGCC TATGGCGGCC 480 ACAACGATTT CGCCACCACG GTGCTGCTGG CGCAGATGTT CGCCGCCGGG GTCCGCCGTT 540

TGGTGCTGGC	GTCGTCGATG	GTGGTTTACG	GGCAGGGGCG	CTATGACTGT	CCCCAGCATG	600
GACCGGTCGA	CCCGCTGCCG	CGGCGGCGAG	CCGACCTGGA	CAATGGGGTC	TTCGAGCACC	660
GTTGCCCGGG	GTGCGGCGAG	CCAGTCATCT	GGCAATTGGT	CGACGAAGAT	GCCCCGTTGC	720
GCCCGCGCAG	CCTGTACGCG	GCAGCAAGAC	CGCGCAGGAG	CACTACGCGC	TGGCGTGGTC	780
GGAAACGAAT	GGCGGTTCCG	TGGTGGCGTT	G			811

### (2) INFORMATION FOR SEQ ID NO:195:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 966 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:195:

GTCCCGCGAT	GTGGCCGAGC	ATGACTTTCG	GCAACACCGG	CGTAGTAGTC	GAAGATATCG	60
GACTTTGTGG	TCCCGGTGGC	GGGATAGAGC	ACCTGTCGGC	GTTGGTCAGC	GTCACCCGTT	120
GCTCGGACGC	CGAACCCATG	CTTTCAACGT	AGCCTGTCGG	TCACACAAGT	CGCGAGCGTA	180
ACGTCACGGT	CAAATATCGC	GTGGAATTTC	GCCGTGACGT	TCCGCTCGCG	GACAATCAAG	240
GCATACTCAC	TTACATGCGA	GCCATTTGGA	CGGGTTCGAT	CGCCTTCGGG	CTGGTGAACG	300
TGCCGGTCAA	GGTGTACAGC	GCTACCGCAG	ACCACGACAT	CAGGTTCCAC	CAGGTGCACG	360
CCAAGGACAA	CGGACGCATC	CGGTACAAGC	GCGTCTGCGA	GGCGTGTGGC	GAGGTGGTCG	420
ACTACCGCGA	TCTTGCCCGG	GCCTACGAGT	CCGGCGACGG	CCAAATGGTG	GCGATCACCG	480
ACGACGACAT	CGCCAGCTTG	CCTGAAGAAC	GCAGCCGGGA	GATCGAGGTG	TTGGAGTTCG	540
TCCCCGCCGC	CGACGTGGAC	CCGATGATGT	TCGACCGCAG	CTACTTTTTG	GAGCCTGATT	600
CGAAGTCGTC	GAAATCGTAT	GTGCTGCTGG	CTAAGACACT	CGCCGAGACC	GACCGGATGG	660
CGATCGTGGA	TCGCCCCACC	GGCCGTGAAT	GCAGGAAAAA	TAAGAGCCGC	TATCCACAAT	720
TCGGCGTCGA	GCTCGGCTAC	CACAAACGGT	AGAACGATCG	AGACATTCCC	GAGCTGAAGT	780
GCGGCGCTAT	AGAAGCCGCT	CTGCGCGATT	ATCAAACGCA	AAATACGCTT	ACTCATGCCA	840
TCGGCGCTGC	TCACCCGATG	CGACGTTTTT	GCCACGCTCC	ACCGCCTGCC	GCGCGACCTC	900
AAGTGGGCAT	GCATCCCACC	CGTTCCCGGA	AACCGGTTCC	GGCGGGTCGG	CTCATCGCTT	960
CATCCT						966

⁽²⁾ INFORMATION FOR SEQ ID NO:196:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2367 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:196:

CCGCACCGCC GGCAATACCG	CCAGCGCCAC	CGTTACCGCC	GTTTGCGCCG	TTGCCCCCGT	60
TGCCGCCGGT CCCGCCGGCC	CCGCCGATGG	AGTTCTCATC	GCCAAAAGTA	CTGGCGTTGC	120
CACCGGAGCC GCCGTTGCCG	CCGTCACCGC	CAGCCCCGCC	GACTCCACCG	GCCCCACCGA	180
CTCCGCCGCT GCCACCGTTG	CCGCCGTTGC	CGATCAACAT	GCCGCTGGCG	CCACCCTTGC	240
CACCCACGCC ACCGGCTCCG	CCCACCCCGC	CGACACCAAG	CGAGCTGCCG	CCGGAGCCAC	300
CATCACCACC TACGCCACCG	ACCGCCCAGA	CACCAGCGAC	CGGGTCTTCG	TGAAACGTCG	360
CGGTGCCACC ACCGCCGCCG	TTACCGCCAA	CCCCACCGGC	AACGCCGGCG	CCGCCATCCC	420
CGCCGGCCCC GGCGTTGCCG	CCGTTGCCGC	CGTTGCCGAA	CAACAACCCG	cccccccc	480
CGTTGCCGCC CGCGCCGCCG	GTCCCGCCGG	CGCCGCCGAC	GCCAAGGCCG	CTGCCGCCCT	540
TGCCGCCATC ACCACCCTTG	CCGCCGACCA	CATCGGGTTC	TGCCTCGGGG	TCTGGGCTGT	600
CAAACCTCGC GATGCCAGCG	TTGCCGCCGC	TTCCCCCGGG	CCCCCCGTG	GCGCCGTCAC	660
CACCGATACC ACCCGCGCCA	CCGGCGCCAC	CGTTGCCGCC	ATCACCGAAT	AGCAACCCGC	720
CGGCGCCACC ATTGCCGCCA	GCTCCCCCTG	CGCCACCGTC	GGCGCCGGAG	GCGGCACTGG	780
CAGCCCCGTT ACCACCGAAA	CCGCCGCTAC	CACCGGTAGA	GGTGGCAGTG	GCGATGTGTA	840
CGAAAGCGCC GCCTCCGGCG	CCGCCGCTAC	CACCCCCACT	GCCGGCGGCT	ACACCGTCGG	900
ACCCGTTGCC ACCATCACCG	CCAAAGGCGC	TCGCAATGTC	GCCCTGCGCG	ACTCCGCCGT	960
CGCCGCCGTT GCCGCCGCCG	CCACCGGCAG	CGGCGGTACC	GCCGTCACCA	CCGGCACCGC	1020
CGGTGGCCTT GCCCGAGCCT	GCCGTCGCGG	TGGCACCGTC	GCCGCCGGTG	CCACCGGTCG	1080
GCGTGCCGGC AGTGCCATGG	CCGCCCGTGC	CGCCGTCGCC	GCCGGTTTGA	TCACCGATGC	1140
CGGACACATC TGCCGGGCTG	TCCCCGGTGC	TGGCCGCGGG	GCCGGGCGTG	GGATTGACCC	1200
CGTTTGCCCC GGCGAGGCCG	GCGCCGCCGG	TACCACCGGC	GCCGCCATGG	CCGAACAGCC	1260
CGGCGTTGCC GCCGTTACCG	CCCGCACCCC	CGATGCCTGC	GGCCACGCTG	GTGCCGCCGA	1320
CACCGCCGTT GCCGCCGTTG	CCCCACAACC	ACCCCCCGTT	CCCACCGGCA	cccccccccc	1380

CGCCGGTACC	ACCGGCCCCG	CCGTTGCCGC	CGTTGCCGAT	CAACCCGGCC	GCGCCTCCGC	1440
TGCCGCCGGT	TTGACCGAAC	CCGCCAGCCG	CGCCGTTGCC	ACCGTTGCCA	AACAGCAACC	1500
caccaaccac	GCCAGGCTGC	CCGGGTGCCG	TCCCGTCGGC	GCCGTTTCCG	ATCAACGGGC	1560
GCCCAAAAG	CGCCTCGGTG	GGCGCATTCA	CCGCACCCAG	CAGACTCCGC	TCAACAGCGG	1620
CTTCAGTGCT	GGCATACCGA	CCCGCGGCCG	CAGTCAACGC	CTGCACAAAC	TGCTCGTGAA	1680
ACGCTGCCAC	CTGTACGCTG	AGCGCCTGAT	ACTGCCGAGC	ATGGGCCCCG	AACAACCCCG	1740
CAATCGCCGC	CGACACTTCA	TCGGCAGCCG	CAGCCACCAC	TTCCGTCGTC	GGGATCGCCG	1800
CGGCCGCATT	AGCCGCGCTC	ACCTGCGAAC	CAATAGTCGA	TAAATCCAAA	GCCGCAGTTG	1360
CCAGCAGCTG	CGGCGTCGCG	ATCACCAAGG	ACACCTCGCA	CCTCCGGATA	CCCCATATCG	1920
CCGCACCGTG	TCCCCAGCGG	CCACGTGACC	TTTGGTCGCT	GGCTGGCGGC	CCTGACTATG	1980
GCCGCGACGG	CCCTCGTTCT	GATTCGCCCC	GGCGCGCAGC	TTGTTGCGCG	AGTTGAAGAC	2040
GGAGGACAG	GCCGAGCTTG	GTGTAGACGT	GGGTCAAGTG	GGAATGCACG	GTCCGCGGCG	2100
AGATGAATAG	GCGGACGCCG	ATCTCCTTGT	TGCTGAGTCC	CTCACCGACC	AGTAGAGCCA	2160
CTCAAGCTC	TGTCGGTGTC	AACGCGCCCC	AGCCACTTGT	CGGGCGTTTC	CGTGCACCGC	2220
GCCTCGTTG	CGCGTACGCG	ATCGCCTCAT	CGATCGATAA	CGCAGTTCCT	TCGGCCCAGG	2280
CATCGTCGAA	CTCGCTGTCA	CCCATGGATT	TTCGAAGGGT	GGCTAGCGAC	GAGTTACAGC	2340
CGCCTGGTA	GATCCCGAAG	CGGACCG				2367

### (2) INFORMATION FOR SEQ ID NO:197:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 376 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:197:

Gln Pro Ala Gly Ala Thr Ile Ala Ala Ser Ser Pro Cys Ala Thr Val

Gly Ala Gly Gly Gly Thr Gly Ser Pro Val Thr Thr Glu Thr Ala Ala 20 25 30

Thr Thr Gly Arg Gly Gly Ser Gly Asp Val Tyr Glu Ser Ala Ala Ser 35 40 45

Gly Ala Ala Ala Thr Thr Pro Thr Ala Gly Gly Tyr Thr Val Gly Pro 50 55 60

Val Ala Thr Ile Thr Ala Lys Gly Ala Arg Asn Val Ala Leu Arg Asp Ser Ala Val Ala Ala Val Ala Ala Ala Ala Thr Gly Ser Gly Gly Thr Ala Val Thr Thr Gly Thr Ala Gly Gly Leu Ala Arg Ala Cys Arg Arg 105 Gly Gly Thr Val Ala Ala Gly Ala Thr Gly Arg Arg Ala Gly Ser Ala Met Ala Ala Arg Ala Ala Val Ala Ala Gly Leu Ile Thr Asp Ala Gly 135 His Ile Cys Arg Ala Val Pro Gly Ala Gly Arg Gly Ala Gly Arg Gly Ile Asp Pro Val Cys Pro Gly Glu Ala Gly Ala Ala Gly Thr Thr Gly 165 170 Ala Ala Met Ala Glu Gln Pro Gly Val Ala Ala Val Thr Ala Arg Thr 180 Pro Asp Ala Cys Gly His Ala Gly Ala Ala Asp Thr Ala Val Ala Ala 200 Val Ala Pro Gln Pro Pro Pro Val Pro Thr Gly Thr Ala Gly Arg Ala Gly Thr Thr Gly Pro Ala Val Ala Ala Val Ala Asp Gln Pro Gly Arg 230 Ala Ser Ala Ala Gly Leu Thr Glu Pro Ala Ser Arg Ala Val Ala Thr Val Ala Lys Gln Gln Pro Ala Gly Arg Ala Arg Leu Pro Gly Cys Arg Pro Val Gly Ala Val Ser Asp Gln Arg Ala Pro Gln Lys Arg Leu Gly Gly Arg Ile His Arg Thr Gln Gln Thr Pro Leu Asn Ser Gly Phe 290 295 Ser Ala Gly Ile Pro Thr Arg Gly Arg Ser Gln Arg Leu His Lys Leu 310 315 Leu Val Lys Arg Cys His Leu Tyr Ala Glu Arg Leu Ile Leu Pro Ser Met Gly Pro Glu Gln Pro Arg Asn Arg Arg Arg His Phe Ile Gly Ser

Arg Ser His His Phe Arg Arg Arg Asp Arg Arg Gly Arg Ile Ser Arg 355 360 365

Ala His Leu Arg Thr Asn Ser Arg 370 375

# (2) INFORMATION FOR SEQ ID NO:198:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2852 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:198:

GGCCAAAACG	CCCCGGCGAT	CGCGGCCACC	GAGGCCGCCT	ACGACCAGAT	GTGGGCCCAG	60
GACGTGGCGG	CGATGTTTGG	CTACCATGCC	GGGGCTTCGG	CGGCCGTCTC	GGCGTTGACA	120
CCGTTCGGCC	AGGCGCTGCC	GACCGTGGCG	GGCGGCGGTG	CGCTGGTCAG	CGCGGCCGCG	180
GCTCAGGTGA	CCACGCGGGT	CTTCCGCAAC	CTGGGCTTGG	CGAACGTCCG	CGAGGGCAAC	240
GTCCGCAACG	GTAATGTCCG	GAACTTCAAT	CTCGGCTCGG	CCAACATCGG	CAACGGCAAC	300
ATCGGCAGCG	GCAACATCGG	CAGCTCCAAC	ATCGGGTTTG	GCAACGTGGG	TCCTGGGTTG	360
ACCGCAGCGC	TGAACAACAT	CGGTTTCGGC	AACACCGGCA	GCAACAACAT	CGGGTTTGGC	420
AACACCGGCA	GCAACAACAT	CGGGTTCGGC	AATACCGGAG	ACGGCAACCG	AGGTATCGGG	480
CTCACGGGTA	GCGGTTTGTT	GGGGTTCGGC	GGCCTGAACT	CGGGCACCGG	CAACATCGGT	540
CTGTTCAACT	CGGGCACCGG	AAACGTCGGC	ATCGGCAACT	CGGGTACCGG	GAACTGGGGC	600
ATTGGCAACT	CGGGCAACAG	CTACAACACC	GGTTTTGGCA	ACTCCGGCGA	CGCCAACACG	660
GGCTTCTTCA	ACTCCGGAAT	AGCCAACACC	GGCGTCGGCA	ACGCCGGCAA	CTACAACACC	720
GGTAGCTACA	ACCCGGGCAA	CAGCAATACC	GGCGGCTTCA	ACATGGGCCA	GTACAACACG	780
GGCTACCTGA	ACAGCGGCAA	CTACAACACC	GGCTTGGCAA	ACTCCGGCAA	TGTCAACACC	840
GGCGCCTTCA	TTACTGGCAA	CTTCAACAAC	GGCTTCTTGT	GGCGCGGCGA	CCACCAAGGC	900
CTGATTTTCG	GGAGCCCCGG	CTTCTTCAAC	TCGACCAGTG	CGCCGTCGTC	GGGATTCTTC	960
AACAGCGGTG	CCGGTAGCGC	GTCCGGCTTC	CTGAACTCCG	GTGCCAACAA	TTCTGGCTTC	1020
TTCAACTCTT	CGTCGGGGGC	CATCGGTAAC	TCCGGCCTGG	CAAACGCGGG	CGTGCTGGTA	1080
TCGGGCGTGA	TCAACTCGGG	CAACACCGTA	TCGGGTTTGT	TCAACATGAG	CCTGGTGGCC	1140
ATCACAACGC	CGGCCTTGAT	CTCGGGCTTC	TTCAACACCG	GAAGCAACAT	GTCGGGATTT	1200

TTCGGTGGCC	CACCGGTCTT	CAATCTCGGC	CTGGCAAACC	GGGGCGTCGT	GAACATTCTC	1260
GGCAACGCCA	ACATCGGCAA	TTACAACATT	CTCGGCAGCG	GAAACGTCGG	TGACTTCAAC	1320
ATCCTTGGCA	GCGGCAACCT	CGGCAGCCAA	AACATCTTGG	GCAGCGGCAA	CGTCGGCAGC	1380
TTCAATATCG	GCAGTGGAAA	CATCGGAGTA	TTCAATGTCG	GTTCCGGAAG	CCTGGGAAAC	1440
TACAACATCG	GATCCGGAAA	CCTCGGGATC	TACAACATCG	GTTTTGGAAA	CGTCGGCGAC	1500
TACAACGTCG	GCTTCGGGAA	CGCGGGCGAC	TTCAACCAAG	GCTTTGCCAA	CACCGGCAAC	1560
AACAACATCG	GGTTCGCCAA	CACCGGCAAC	AACAACATCG	GCATCGGGCT	GTCCGGCGAC	1620
AACCAGCAGG	GCTTCAATAT	TGCTAGCGGC	TGGAACTCGG	GCACCGGCAA	CAGCGGCCTG	1680
TTCAATTCGG	GCACCAATAA	CGTTGGCATC	TTCAACGCGG	GCACCGGAAA	CGTCGGCATC	1740
GCAAACTCGG	GCACCGGGAA	CTGGGGTATC	GGGAACCCGG	GTACCGACAA	TACCGGCATC	1800
CTCAATGCTG	GCAGCTACAA	CACGGGCATC	CTCAACGCCG	GCGACTTCAA	CACGGGCTTC	1860
TACAACACGG	GCAGCTACAA	CACCGGCGGC	TTCAACGTCG	GTAACACCAA	CACCGGCAAC	1920
TTCAACGTGG	GTGACACCAA	TACCGGCAGC	TATAACCCGG	GTGACACCAA	CACCGGCTTC	1980
TTCAATCCCG	GCAACGTCAA	TACCGGCGCT	TTCGACACGG	GCGACTTCAA	CAATGGCTTC	2040
TIGGTGGCGG	GCGATAACCA	GGGCCAGATT	GCCATCGATC	TCTCGGTCAC	CACTCCATTC	2100
ATCCCCATAA	ACGAGCAGAT	GGTCATTGAC	GTACACAACG	TAATGACCTT	CGGCGGCAAC	2160
ATGATCACGG	TCACCGAGGC	CTCGACCGTT	TTCCCCCAAA	CCTTCTATCT	GAGCGGTTTG	2220
TTCTTCTTCG	GCCCGGTCAA	TCTCAGCGCA	TCCACGCTGA	CCGTTCCGAC	GATCACCCTC	2280
ACCATCGGCG	GACCGACGGT	GACCGTCCCC	ATCAGCATTG	TCGGTGCTCT	GGAGAGCCGC	2340
ACGATTACCT	TCCTCAAGAT	CGATCCGGCG	CCGGGCATCG	GAAATTCGAC	CACCAACCCC	2400
TCGTCCGGCT	TCTTCAACTC	GGGCACCGGT	GGCACATCTG	GCTTCCAAAA	CGTCGGCGGC	2460
GGCAGTTCAG	GCGTCTGGAA	CAGTGGTTTG	AGCAGCGCGA	TAGGGAATTC	GGGTTTCCAG	2520
AACCTCGGCT	CGCTGCAGTC	AGGCTGGGCG	AACCTGGGCA	ACTCCGTATC	GGGCTTTTTC	2580
AACACCAGTA	CGGTGAACCT	CTCCACGCCG	GCCAATGTCT	CGGGCCTGAA	CAACATCGGC	2640
ACCAACCTGT	CCGGCGTGTT	CCGCGGTCCG	ACCGGGACGA	TTTTCAACGC	GGGCCTTGCC	2700
AACCTGGGCC	AGTTGAACAT	CGGCAGCGCC	TCGTGCCGAA	TTCGGCACGA	GTTAGATACG	2760
GTTTCAACAA	TCATATCCGC	GTTTTGCGGC	AGTGCATCAG	ACGAATCGAA	CCCGGGAAGC	2820

#### GTAAGCGAAT AAACCGAATG GCGGCCTGTC AT

2852

#### (2) INFORMATION FOR SEQ ID NO:199:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 943 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:199:
- Gly Gln Asn Ala Pro Ala Ile Ala Ala Thr Glu Ala Ala Tyr Asp Gln

  1 10 15
- Met Trp Ala Gln Asp Val Ala Ala Met Phe Gly Tyr His Ala Gly Ala 20 25 30
- Ser Ala Ala Val Ser Ala Leu Thr Pro Phe Gly Gln Ala Leu Pro Thr 35 40 45
- Val Ala Gly Gly Gly Ala Leu Val Ser Ala Ala Ala Ala Gln Val Thr 50 55 60
- Thr Arg Val Phe Arg Asn Leu Gly Leu Ala Asn Val Arg Glu Gly Asn 65 70 75 80
- Val Arg Asn Gly Asn Val Arg Asn Phe Asn Leu Gly Ser Ala Asn Ile 85 90 95
- Gly Asn Gly Asn Ile Gly Ser Gly Asn Ile Gly Ser Ser Asn Ile Gly 100 105 110
- Phe Gly Asn Val Gly Pro Gly Leu Thr Ala Ala Leu Asn Asn Ile Gly
  115 120 125
- Phe Gly Asn Thr Gly Ser Asn Asn Ile Gly Phe Gly Asn Thr Gly Ser 130 135 140
- Asn Asn Ile Gly Phe Gly Asn Thr Gly Asp Gly Asn Arg Gly Ile Gly 145 150 155 160
- Leu Thr Gly Ser Gly Leu Leu Gly Phe Gly Gly Leu Asn Ser Gly Thr 165 170 175
- Gly Asn Ile Gly Leu Phe Asn Ser Gly Thr Gly Asn Val Gly Ile Gly 180 185 190
- Asn Ser Gly Thr Gly Asn Trp Gly Ile Gly Asn Ser Gly Asn Ser Tyr 195 200 205
- Asn Thr Gly Phe Gly Asn Ser Gly Asp Ala Asn Thr Gly Phe Phe Asn 210 215 220
- Ser Gly Ile Ala Asn Thr Gly Val Gly Asn Ala Gly Asn Tyr Asn Thr

225					230					235					240
Gly	Ser	Tyr	Asn	Pro 245	Gly	Asn	Ser	Asn	Thr 250	Gly	Gly	Phe	Asn	Met 255	Gly
Gln	Tyr	Asn	Thr 260	Gly	Tyr	Leu	Asn	Ser 265	Gly	Asn	Tyr	Asn	Thr 270	Gly	Leu
Ala	Asn	<b>Ser</b> 275	Gly	Asn	Val	Asn	Thr 280	Gly	Ala	Phe	Ile	Thr 285	Gly	Asn	Phe
Asn	Asn 290	Gly	Phe	Leu	Trp	Arg 295	Gly	Asp	His	Gln	Gly 300	Leu	Ile	Phe	Gly
Ser 305	Pro	Gly	Phe	Phe	Asn 310	Ser	Thr	Ser	Ala	Pro 315	Ser	Ser	Gly	Phe	Phe 320
Asn	Ser	Gly	Ala	Gly 325	Ser	Ala	Ser	Gly	Phe 330	Leu	Asn	Ser	Gly	Ala 335	Asn
Asn	Ser	Gly	Phe 340	Phe	Asn	Ser	Ser	Ser 345	Gly	Ala	Ile	Gly	Asn 350	Ser	Gly
Leu	Ala	Asn 355	Ala	Gly	Val	Leu	Val 360	Ser	Gly	Val	Ile	Asn 365	Ser	Gly	Asn
Thr	Val 370	Ser	Gly	Leu	Phe	Asn 375	Met	Ser	Leu	Val	Ala 380	Ile	Thr	Thr	Pro
Ala 385	Leu	Ile	Ser	Gly	Phe 390	Phe	Asn	Thr	Gly	Ser 395	Asn	Met	Ser	Gly	Phe 400
Phe	Gly	Gly	Pro	Pro 405	Val	Phe	Asn	Leu	Gly 410	Leu	Ala	Asn	Arg	Gly 415	۷al
Val	Asn	Ile	Leu 420	Gly	Asn	Ala	Asn	Ile 425	Gly	Asn	Tyr	Asn	Ile 430	Leu	Gly
Ser	Gly	Asn 435	Val	Gly	qzA	Phe	Asn 440	Ile	Leu	Gly	Ser	Gly 445	Asn	Leu	Gly
Ser	Gln 450	Asn	Ile	Leu	Gly	Ser 455	Gly	Asn	Val	Gly	Ser 460	Phe	Asn	Ile	Gly
Ser 465	Gly	Asn	Ile	Gly	Val 470	Phe	Asn	Val	Gly	Ser 475	Gly	Ser	Leu	Gly	<b>As</b> n 480
Tyr	Asn	Ile	Gly	Ser 485	Gly	Asn	Leu	Gly	Ile 490	Tyr	Asn	Ile	Gly	Phe 495	Gly
Asn	Val	Gly	Asp 500	Tyr	Asn	Val	Gly	Phe 505	Gly	Asn	Ala	Gly	Asp 510	Phe	Asn
Gln	Gly	Phe 515	Ala	Asn	Thr	Gly	Asn 520	Asn	Asn	Ile	Gly	Phe 525	Ala	Asn	Thr

Phe Asn Ser Gly Thr Asn Asn Val Gly Ile Phe Asn Ala Gly Thr Gly 565 570 575

Asn Val Gly Ile Ala Asn Ser Gly Thr Gly Asn Trp Gly Ile Gly Asn 580 585 590

Pro Gly Thr Asp Asn Thr Gly Ile Leu Asn Ala Gly Ser Tyr Asn Thr 595 600 605

Gly Ile Leu Asn Ala Gly Asp Phe Asn Thr Gly Phe Tyr Asn Thr Gly 610 620

Ser Tyr Asn Thr Gly Gly Phe Asn Val Gly Asn Thr Asn Thr Gly Asn 625 630 635 640

Phe Asn Val Gly Asp Thr Asn Thr Gly Ser Tyr Asn Pro Gly Asp Thr 645 650 655

Asn Thr Gly Phe Phe Asn Pro Gly Asn Val Asn Thr Gly Ala Phe Asp 660 665 670

Thr Gly Asp Phe Asn Asn Gly Phe Leu Val Ala Gly Asp Asn Gln Gly 675 680 685

Gln Ile Ala Ile Asp Leu Ser Val Thr Thr Pro Phe Ile Pro Ile Asn 690 695 700

Glu Gln Met Val Ile Asp Val His Asn Val Met Thr Phe Gly Gly Asn 705 710 715 720

Met Ile Thr Val Thr Glu Ala Ser Thr Val Phe Pro Gln Thr Phe Tyr
725 730 735

Leu Ser Gly Leu Phe Phe Phe Gly Pro Val Asn Leu Ser Ala Ser Thr 740 745 750

Leu Thr Val Pro Thr Ile Thr Leu Thr Ile Gly Gly Pro Thr Val Thr
755 760 765

Val Pro Ile Ser Ile Val Gly Ala Leu Glu Ser Arg Thr Ile Thr Phe
770 780

Leu Lys Ile Asp Pro Ala Pro Gly Ile Gly Asn Ser Thr Thr Asn Pro 785 790 795 800

Ser Ser Gly Phe Phe Asn Ser Gly Thr Gly Gly Thr Ser Gly Phe Gln 805 810 815

145

Asn Val Gly Gly Gly Ser Ser Gly Val Trp Asn Ser Gly Leu Ser Ser 820 825 830

Ala Ile Gly Asn Ser Gly Phe Gln Asn Leu Gly Ser Leu Gln Ser Gly 835 840 845

Trp Ala Asn Leu Gly Asn Ser Val Ser Gly Phe Phe Asn Thr Ser Thr 850 855 860

Val Asn Leu Ser Thr Pro Ala Asn Val Ser Gly Leu Asn Asn Ile Gly 865 870 875 880

Thr Asn Leu Ser Gly Val Phe Arg Gly Pro Thr Gly Thr Ile Phe Asn 885 890 895

Ala Gly Leu Ala Asn Leu Gly Gln Leu Asn Ile Gly Ser Ala Ser Cys 900 905 910

Arg Ile Arg His Glu Leu Asp Thr Val Ser Thr Ile Ile Ser Ala Phe 915 920 925

Cys Gly Ser Ala Ser Asp Glu Ser Asn Pro Gly Ser Val Ser Glu 930 935 940

- (2) INFORMATION FOR SEQ ID NO:200:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 53 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:200:

GGATCCATAT GGGCCATCAT CATCATCATC ACGTGATCGA CATCATCGGG ACC

53

- (2) INFORMATION FOR SEQ ID NO:201:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 42 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
    - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:201:

CCTGAATTCA GGCCTCGGTT GCGCCGGCCT CATCTTGAAC GA

42

- (2) INFORMATION FOR SEQ ID NO:202:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 31 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:202:	
GGATCCTGCA GGCTCGAAAC CACCGAGCGG T	31
(2) INFORMATION FOR SEQ ID NO:203:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 31 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:203:	
CTCTGAATTC AGCGCTGGAA ATCGTCGCGA T	31
(2) INFORMATION FOR SEQ ID NO:204:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 33 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:204:	
GGATCCAGCG CTGAGATGAA GACCGATGCC GCT	33
(2) INFORMATION FOR SEQ ID NO:205:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 38 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:205:	
GGATATCTGC AGAATTCAGG TTTAAAGCCC ATTTGCGA	38
(2) INFORMATION FOR SEQ ID NO:206:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 30 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:206:	
CCGCATGCGA GCCACGTGCC CACAACGGCC	30
(2) INFORMATION FOR SEQ ID NO:207:	

147

(i)	SEQUENCE	CHARACTERISTICS:
-----	----------	------------------

(A) LENGTH: 37 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:207:

#### CTTCATGGAA TTCTCAGGCC GGTAAGGTCC GCTGCGG

37

#### (2) INFORMATION FOR SEQ ID NO:208:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7676 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:208:

TGGCGAATGG GACGCCCCT GTAGCGGCGC ATTAAGCGCG GCGGGTGTGG TGGTTACGCG CAGCGTGACC GCTACACTTG CCAGCGCCCT AGCGCCCGCT CCTTTCGCTT TCTTCCCTTC 120 CTTTCTCGCC ACGTTCGCCG GCTTTCCCCG TCAAGCTCTA AATCGGGGGC TCCCTTTAGG 180 GTTCCGATTT AGTGCTTTAC GGCACCTCGA CCCCAAAAAA CTTGATTAGG GTGATGGTTC 240 ACGTAGTGGG CCATCGCCCT GATAGACGGT TTTTCGCCCT TTGACGTTGG AGTCCACGTT 300 CTTTAATAGT GGACTCTTGT TCCAAACTGG AACAACACTC AACCCTATCT CGGTCTATTC 360 TTTTGATTTA TAAGGGATTT TGCCGATTTC GGCCTATTGG TTAAAAAATG AGCTGATTTA 420 ACAAAAATTI AACGCGAATT TTAACAAAAT ATTAACGTTT ACAATTTCAG GTGGCACTTT 480 TCGGGGAAAT GTGCGCGGAA CCCCTATTTG TTTATTTTTC TAAATACATT CAAATATGTA 540 TCCGCTCATG AATTAATTCT TAGAAAAACT CATCGAGCAT CAAATGAAAC TGCAATTTAT 600 TCATATCAGG ATTATCAATA CCATATTTTT GAAAAAGCCG TTTCTGTAAT GAAGGAGAAA 660 ACTCACCGAG GCAGTTCCAT AGGATGGCAA GATCCTGGTA TCGGTCTGCG ATTCCGACTC 720 GTCCAACATC AATACAACCT ATTAATTTCC CCTCGTCAAA AATAAGGTTA TCAAGTGAGA 780 AATCACCATG AGTGACGACT GAATCCGGTG AGAATGGCAA AAGTTTATGC ATTTCTTTCC 840 AGACTTGTTC AACAGGCCAG CCATTACGCT CGTCATCAAA ATCACTCGCA TCAACCAAAC 900 CGTTATTCAT TCGTGATTGC GCCTGAGCGA GACGAAATAC GCGATCGCTG TTAAAAGGAC 960 AATTACAAAC AGGAATCGAA TGCAACCGGC GCAGGAACAC TGCCAGCGCA TCAACAATAT 1020 TTTCACCTGA ATCAGGATAT TCTTCTAATA CCTGGAATGC TGTTTTCCCG GGGATCGCAG 1080

148

TGGTGAGTAA	CCATGCATCA	TCAGGAGTAC	GGATAAAATG	CTTGATGGTC	GGAAGAGGCA	1140
TAAATTCCGT	CAGCCAGTTT	AGTCTGACCA	TCTCATCTGT	AACATCATTG	GCAACGCTAC	1200
CTTTGCCATG	TTTCAGAAAC	AACTCTGGCG	CATCGGGCTT	CCCATACAAT	CGATAGATTG	1260
TCGCACCTGA	TTGCCCGACA	TTATCGCGAG	CCCATTTATA	CCCATATAAA	TCAGCATCCA	1320
TGTTGGAATT	TAATCGCGGC	CTAGAGCAAG	ACGTTTCCCG	TTGAATATGG	CTCATAACAC	1380
CCCTTGTATT	ACTGTTTATG	TAAGCAGACA	GTTTTATTGT	TCATGACCAA	AATCCCTTAA	1440
CGTGAGTTTT	CGTTCCACTG	AGCGTCAGAC	CCCGTAGAAA	AGATCAAAGG	ATCTTCTTGA	1500
GATCCTTTTT	TTCTGCGCGT	AATCTGCTGC	TTGCAAACAA	AAAAACCACC	GCTACCAGCG	1560
GTGGTTTGTT	TGCCGGATCA	AGAGCTACCA	ACTCTTTTC	CGAAGGTAAC	TGGCTTCAGC	1620
AGAGCGCAGA	TACCAAATAC	TGTCCTTCTA	GTGTAGCCGT	AGTTAGGCCA	CCACTTCAAG	1680
AACTCTGTAG	CACCGCCTAC	ATACCTCGCT	CTGCTAATCC	TGTTACCAGT	GGCTGCTGCC	1740
AGTGGCGATA	AGTCGTGTCT	TACCGGGTTG	GACTCAAGAC	GATAGTTACC	GGATAAGGCG	1800
CAGCGGTCGG	GCTGAACGGG	GGGTTCGTGC	ACACAGCCCA	GCTTGGAGCG	AACGACCTAC	1860
ACCGAACTGA	GATACCTACA	GCGTGAGCTA	TGAGAAAGCG	CCACGCTTCC	CGAAGGGAGA	1920
AAGGCGGACA	GGTATCCGGT	AAGCGGCAGG	GTCGGAACAG	GAGAGCGCAC	GAGGGAGCTT	1980
CCAGGGGGAA	ACGCCTGGTA	TCTTTATAGT	CCTGTCGGGT	TTCGCCACCT	CTGACTTGAG	2040
CGTCGATTTT	TGTGATGCTC	GTCAGGGGG	CGGAGCCTAT	GGAAAAACGC	CAGCAACGCG	2100
GCCTTTTTAC	GGTTCCTGGC	CTTTTGCTGG	CCTTTTGCTC	ACATGTTCTT	TCCTGCGTTA	2160
TCCCCTGATT	CTGTGGATAA	CCGTATTACC	GCCTTTGAGT	GAGCTGATAC	CGCTCGCCGC	2220
AGCCGAACGA	CCGAGCGCAG	CGAGTCAGTG	AGCGAGGAAG	CGGAAGAGCG	CCTGATGCGG	2280
TATTTTCTCC	TTACGCATCT	GTGCGGTATT	TCACACCGCA	TATATGGTGC	ACTCTCAGTA	2340
CAATCTGCTC	TGATGCCGCA	TAGTTAAGCC	AGTATACACT	CCGCTATCGC	TACGTGACTG	2400
GGTCATGGCT	GCGCCCCGAC	ACCCGCCAAC	ACCCGCTGAC	GCGCCCTGAC	GGGCTTGTCT	2460
GCTCCCGGCA	TCCGCTTACA	GACAAGCTGT	GACCGTCTCC	GGGAGCTGCA	TGTGTCAGAG	2520
GTTTTCACCG	TCATCACCGA	AACGCGCGAG	GCAGCTGCGG	TAAAGCTCAT	CAGCGTGGTC	2580
GTGAAGCGAT	TCACAGATGT	CTGCCTGTTC	ATCCGCGTCC	AGCTCGTTGA	GTTTCTCCAG	2640
AAGCGTTAAT	GTCTGGCTTC	TGATAAAGCG	GGCCATGTTA	AGGGCGGTTT	TTTCCTGTTT	2700

149

GGTCACTGAT	GCCTCCGTGT	AAGGGGGATT	TCTGTTCATG	GGGGTAATGA	TACCGATGAA	2760
ACGAGAGAGG	ATGCTCACGA	TACGGGTTAC	TGATGATGAA	CATGCCCGGT	TACTGGAACG	2820
TTGTGAGGGT	AAACAACTGG	CGGTATGGAT	GCGGCGGGAC	CAGAGAAAAA	TCACTCAGGG	2880
TCAATGCCAG	CGCTTCGTTA	ATACAGATGT	AGGTGTTCCA	CAGGGTAGCC	AGCAGCATCC	2940
TGCGATGCAG	ATCCGGAACA	TAATGGTGCA	GGGCGCTGAC	TTCCGCGTTT	CCAGACTTTA	3000
CGAAACACGG	AAACCGAAGA	CCATTCATGT	TGTTGCTCAG	GTCGCAGACG	TTTTGCAGCA	3060
GCAGTCGCTT	CACGTTCGCT	CGCGTATCGG	TGATTCATTC	TGCTAACCAG	TAAGGCAACC	3120
CCGCCAGCCT	AGCCGGGTCC	TCAACGACAG	GAGCACGATC	ATGCGCACCC	GTGGGGCCGC	3180
CATGCCGGCG	ATAATGGCCT	GCTTCTCGCC	GAAACGTTTG	GTGGCGGGAC	CAGTGACGAA	3240
GGCTTGAGCG	AGGGCGTGCA	AGATTCCGAA	TACCGCAAGC	GACAGGCCGA	TCATCGTCGC	3300
GCTCCAGCGA	AAGCGGTCCT	CGCCGAAAAT	GACCCAGAGC	GCTGCCGGCA	CCTGTCCTAC	3360
GAGTTGCATG	ATAAAGAAGA	CAGTCATAAG	TGCGGCGACG	ATAGTCATGC	CCCGCGCCCA	3420
CCGGAAGGAG	CTGACTGGGT	TGAAGGCTCT	CAAGGGCATC	GGTCGAGATC	CCGGTGCCTA	3480
ATGAGTGAGC	TAACTTACAT	TAATTGCGTT	GCGCTCACTG	CCCGCTTTCC	AGTCGGGAAA	3540
CCTGTCGTGC	CAGCTGCATT	AATGAATCGG	CCAACGCGCG	GGGAGAGGCG	GTTTGCGTAT	3600
TGGGCGCCAG	GGTGGTTTTT	CTTTTCACCA	GTGAGACGGG	CAACAGCTGA	TTGCCCTTCA	3660
CCGCCTGGCC	CTGAGAGAGT	TGCAGCAAGC	GGTCCACGCT	GGTTTGCCCC	AGCAGGCGAA	3720
AATCCTGTTT	GATGGTGGTT	AACGGCGGGA	TATAACATGA	GCTGTCTTCG	GTATCGTCGT	3780
ATCCCACTAC	CGAGATATCC	GCACCAACGC	GCAGCCCGGA	CTCGGTAATG	GCGCGCATTG	3840
CGCCCAGCGC	CATCTGATCG	TTGGCAACCA	GCATCGCAGT	GGGAACGATG	CCCTCATTCA	3900
GCATTTGCAT	GGTTTGTTGA	AAACCGGACA	TGGCACTCCA	GTCGCCTTCC	CGTTCCGCTA	3960
TCGGCTGAAT	TTGATTGCGA	GTGAGATATT	TATGCCAGCC	AGCCAGACGC	AGACGCGCCG	4020
AGACAGAACT	TAATGGGCCC	GCTAACAGCG	CGATTTGCTG	GTGACCCAAT	GCGACCAGAT	4080
GCTCCACGCC	CAGTCGCGTA	CCGTCTTCAT	GGGAGAAAT	AATACTGTTG	ATGGGTGTCT	4140
GGTCAGAGAC	ATCAAGAAAT	AACGCCGGAA	CATTAGTGCA	GGCAGCTTCC	ACAGCAATGG	4200
CATCCTGGTC	ATCCAGCGGA	TAGTTAATGA	TCAGCCCACT	GACGCGTTGC	GCGAGAAGAT	4260
TGTGCACCGC	CGCTTTACAG	GCTTCGACGC	CGCTTCGTTC	TACCATCGAC	ACCACCACGC	4320
TGGCACCCAG	TTGATCGGCG	CGAGATTTAA	TCGCCGCGAC	AATTTGCGAC	GGCGCGTGCA	4390

GGGCCAGACT	GGAGGTGGCA	ACGCCAATCA	GCAACGACTG	TTTGCCCGCC	AGTTGTTGTG	4440
CCACGCGGTT	GGGAATGTAA	TTCAGCTCCG	CCATCGCCGC	TTCCACTTTT	TCCCGCGTTT	4500
TCGCAGAAAC	GTGGCTGGCC	TGGTTCACCA	CGCGGGAAAC	GGTCTGATAA	GAGACACCGG	4560
CATACTCTGC	GACATCGTAT	AACGTTACTG	GTTTCACATT	CACCACCCTG	AATTGACTCT	4620
CTTCCGGGCG	CTATCATGCC	ATACCGCGAA	AGGTTTTGCG	CCATTCGATG	GTGTCCGGGA	4680
TCTCGACGCT	CTCCCTTATG	CGACTCCTGC	ATTAGGAAGC	AGCCCAGTAG	TAGGTTGAGG	4740
CCGTTGAGCA	CCGCCGCCGC	AAGGAATGGT	GCATGCAAGG	AGATGGCGCC	CAACAGTCCC	4800
CCGGCCACGG	GGCCTGCCAC	CATACCCACG	CCGAAACAAG	CGCTCATGAG	CCCGAAGTGG	4860
CGAGCCCGAT	CTTCCCCATC	GGTGATGTCG	GCGATATAGG	CGCCAGCAAC	CGCACCTGTG	4920
GCGCCGGTGA	TGCCGGCCAC	GATGCGTCCG	GCGTAGAGGA	TCGAGATCTC	GATCCCGCGA	4980
AATTAATACG	ACTCACTATA	GGGGAATTGT	GAGCGGATAA	CAATTCCCCT	CTAGAAATAA	5040
TTTTGTTTAA	CTTTAAGAAG	GAGATATACA	TATGGGCCAT	CATCATCATC	ATCACGTGAT	5100
CGACATCATC	GGGACCAGCC	CCACATCCTG	GGAACAGGCG	GCGGCGGAGG	CGGTCCAGCG	5160
GGCGCGGGAT	AGCGTCGATG	ACATCCGCGT	CGCTCGGGTC	ATTGAGCAGG	ACATGGCCGT	5220
GGACAGCGCC	GGCAAGATCA	CCTACCGCAT	CAAGCTCGAA	GTGTCGTTCA	AGATGAGGCC	5280
GGCGCAACCG	AGGGCTCGA	AACCACCGAG	CGGTTCGCCT	GAAACGGGCG	CCGGCGCCGG	5340
TACTGTCGCG	ACTACCCCCG	CGTCGTCGCC	GGTGACGTTG	GCGGAGACCG	GTAGCACGCT	5400
GCTCTACCCG	CTGTTCAACC	TGTGGGGTCC	GGCCTTTCAC	GAGAGGTATC	CGAACGTCAC	5460
GATCACCGCT	CAGGGCACCG	GTTCTGGTGC	CGGGATCGCG	CAGGCCGCCG	CCGGGACGGT	5520
CAACATTGGG	GCCTCCGACG	CCTATCTGTC	GGAAGGTGAT	ATGGCCGCGC	ACAAGGGGCT	5580
GATGAACATC	GCGCTAGCCA	TCTCCGCTCA	GCAGGTCAAC	TACAACCTGC	CCGGAGTGAG	5640
CGAGCACCTC	AAGCTGAACG	GAAAAGTCCT	GGCGGCCATG	TACCAGGGCA	CCATCAAAAC	5700
CTGGGACGAC	CCGCAGATCG	CTGCGCTCAA	CCCCGGCGTG	AACCTGCCCG	GCACCGCGGT	5760
AGTTCCGCTG	CACCGCTCCG	ACGGGTCCGG	TGACACCTTC	TTGTTCACCC	AGTACCTGTC	5820
CAAGCAAGAT	CCCGAGGGCT	GGGGCAAGTC	GCCCGGCTTC	GGCACCACCG	TCGACTTCCC	5880
GGCGGTGCCG	GGTGCGCTGG	GTGAGAACGG	CAACGGCGGC	ATGGTGACCG	GTTGCGCCGA	5940
GACACCGGGC	TGCGTGGCCT	ATATCGGCAT	CAGCTTCCTC	GACCAGGCCA	GTCAACGGGG	6000

WO 99/42118		PCT/US99/03265
	151	

ACTCGGCGAG	GCCCAACTAG	GCAATAGCTC	TGGCAATTTC	TTGTTGCCCG	ACGCGCAAAG	6060
CATTCAGGCC	GCGGCGGCTG	GCTTCGCATC	GAAAACCCCG	GCGAACCAGG	CGATTTCGAT	6120
GATCGACGGG	cccgccccgg	ACGGCTACCC	GATCATCAAC	TACGAGTACG	CCATCGTCAA	6180
CAACCGGCAA	AAGGACGCCG	CCACCGCGCA	GACCTTGCAG	GCATTTCTGC	ACTGGGCGAT	6240
CACCGACGGC	AACAAGGCCT	CGTTCCTCGA	CCAGGTTCAT	TTCCAGCCGC	TGCCGCCCGC	6300
GGTGGTGAAG	TTGTCTGACG	CGTTGATCGC	GACGATTTCC	AGCGCTGAGA	TGAAGACCGA	6360
TGCCGCTACC	CTCGCGCAGG	AGGCAGGTAA	TTTCGAGCGG	ATCTCCGGCG	ACCTGAAAAC	6420
CCAGATCGAC	CAGGTGGAGT	CGACGGCAGG	TTCGTTGCAG	GGCCAGTGGC	GCGGCGCGGC	6480
GGGGACGGCC	GCCCAGGCCG	CGGTGGTGCG	CTTCCAAGAA	GCAGCCAATA	AGCAGAAGCA	6540
GGAACTCGAC	GAGATCTCGA	CGAATATTCG	TCAGGCCGGC	GTCCAATACT	CGAGGCCGA	6600
CGAGGAGCAG	CAGCAGGCGC	TGTCCTCGCA	AATGGGCTTT	GTGCCCACAA	CGGCCGCCTC	6660
GCCGCCGTCG	ACCGCTGCAG	CGCCACCCGC	ACCGGCGACA	CCTGTTGCCC	CCCCACCACC	6720
GGCCGCCGCC	AACACGCCGA	ATGCCCAGCC	GGGCGATCCC	AACGCAGCAC	CTCCGCCGGC	6780
CGACCCGAAC	GCACCGCCGC	CACCTGTCAT	TGCCCCAAAC	GCACCCCAAC	CTGTCCGGAT	6840
CGACAACCCG	GTTGGAGGAT	TCAGCTTCGC	GCTGCCTGCT	GGCTGGGTGG	AGTCTGACGC	6900
CGCCCACTTC	GACTACGGTT	CAGCACTCCT	CAGCAAAACC	ACCGGGGACC	CGCCATTTCC	6960
CGGACAGCCG	CCGCCGGTGG	CCAATGACAC	CCGTATCGTG	CTCGGCCGGC	TAGACCAAAA	7020
GCTTTACGCC	AGCGCCGAAG	CCACCGACTC	CAAGGCCGCG	GCCCGGTTGG	GCTCGGACAT	7080
GGGTGAGTTC	TATATGCCCT	ACCCGGGCAC	CCGGATCAAC	CAGGAAACCG	TCTCGCTTGA	7140
CGCCAACGGG	GTGTCTGGAA	GCGCGTCGTA	TTACGAAGTC	AAGTTCAGCG	ATCCGAGTAA	7200
GCCGAACGGC	CAGATCTGGA	CGGGCGTAAT	CGGCTCGCCC	GCGGCGAACG	CACCGGACGC	7260
CGGGCCCCT	CAGCGCTGGT	TTGTGGTATG	GCTCGGGACC	GCCAACAACC	CGGTGGACAA	7320
GGGCGCGGCC	AAGGCGCTGG	CCGAATCGAT	CCGGCCTTTG	GTCGCCCCGC	CGCCGGCGCC	7380
GGCACCGGCT	CCTGCAGAGC	CCGCTCCGGC	GCCGGCGCCG	GCCGGGGAAG	TCGCTCCTAC	7440
CCCGACGACA	CCGACACCGC	AGCGGACCTT	ACCGGCCTGA	GAATTCTGCA	GATATCCATC	7500
ACACTGGCGG	CCGCTCGAGC	ACCACCACCA	CCACCACTGA	GATCCGGCTG	CTAACAAAGC	7560
CCGAAAGGAA	GCTGAGTTGG	CTGCTGCCAC	CGCTGAGCAA	TAACTAGCAT	AACCCCTTGG	7620
GGCCTCTAAA	CGGGTCTTGA	GGGGTTTTTT	' GCTGAAAGGA	GGAACTATAT	CCGGAT	7676

#### (2) INFORMATION FOR SEQ ID NO:209:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 802 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:209:

Met Gly His His His His His Val Ile Asp Ile Ile Gly Thr Ser
1 5 10 15

Pro Thr Ser Trp Glu Gln Ala Ala Glu Ala Val Gln Arg Ala Arg 20 25 30

Asp Ser Val Asp Asp Ile Arg Val Ala Arg Val Ile Glu Gln Asp Met 35 40 45

Ala Val Asp Ser Ala Gly Lys Ile Thr Tyr Arg Ile Lys Leu Glu Val 50 55 60

Ser Phe Lys Met Arg Pro Ala Gln Pro Arg Gly Ser Lys Pro Pro Ser 65 70 75 80

Gly Ser Pro Glu Thr Gly Ala Gly Ala Gly Thr Val Ala Thr Thr Pro 85 90 95

Ala Ser Ser Pro Val Thr Leu Ala Glu Thr Gly Ser Thr Leu Leu Tyr 100 105 110

Pro Leu Phe Asn Leu Trp Gly Pro Ala Phe His Glu Arg Tyr Pro Asn 115 120 125

Val Thr Ile Thr Ala Gln Gly Thr Gly Ser Gly Ala Gly Ile Ala Gln 130 135 140

Ala Ala Ala Gly Thr Val Asn Ile Gly Ala Ser Asp Ala Tyr Leu Ser 145 150 155 160

Glu Gly Asp Met Ala Ala His Lys Gly Leu Met Asn Ile Ala Leu Ala 165 170 175

Ile Ser Ala Gln Gln Val Asn Tyr Asn Leu Pro Gly Val Ser Glu His 180 185 190

Leu Lys Leu Asn Gly Lys Val Leu Ala Ala Met Tyr Gln Gly Thr Ile 195 200 205

Lys Thr Trp Asp Asp Pro Gln Ile Ala Ala Leu Asn Pro Gly Val Asn 210 215 220

Leu Pro Gly Thr Ala Val Val Pro Leu His Arg Ser Asp Gly Ser Gly 235 230 240

- Asp Thr Phe Leu Phe Thr Gln Tyr Leu Ser Lys Gln Asp Pro Glu Gly 245 250 255
- Trp Gly Lys Ser Pro Gly Phe Gly Thr Thr Val Asp Phe Pro Ala Val
  260 265 270
- Pro Gly Ala Leu Gly Glu Asn Gly Asn Gly Gly Met Val Thr Gly Cys
  275 280 285
- Ala Glu Thr Pro Gly Cys Val Ala Tyr Ile Gly Ile Ser Phe Leu Asp 290 295 300
- Gln Ala Ser Gln Arg Gly Leu Gly Glu Ala Gln Leu Gly Asn Ser Ser 305 310 315 320
- Gly Asn Phe Leu Leu Pro Asp Ala Gln Ser Ile Gln Ala Ala Ala Ala 325 330 335
- Gly Phe Ala Ser Lys Thr Pro Ala Asn Gln Ala Ile Ser Met Ile Asp 340 345 350
- Gly Pro Ala Pro Asp Gly Tyr Pro Ile Ile Asn Tyr Glu Tyr Ala Ile 355 360 365
- Val Asn Asn Arg Gln Lys Asp Ala Ala Thr Ala Gln Thr Leu Gln Ala 370 375 380
- Phe Leu His Trp Ala Ile Thr Asp Gly Asn Lys Ala Ser Phe Leu Asp 385 390 395 400
- Gln Val His Phe Gln Pro Leu Pro Pro Ala Val Val Lys Leu Ser Asp 405 410 415
- Ala Leu Ile Ala Thr Ile Ser Ser Ala Glu Met Lys Thr Asp Ala Ala 420 425 430
- Thr Leu Ala Glu Ala Gly Asn Phe Glu Arg Ile Ser Gly Asp Leu 435 440 445
- Lys Thr Gln Ile Asp Gln Val Glu Ser Thr Ala Gly Ser Leu Gln Gly
  450 455 460
- Gln Trp Arg Gly Ala Ala Gly Thr Ala Ala Gln Ala Ala Val Val Arg 465 470 475 480
- Phe Gln Glu Ala Ala Asn Lys Gln Lys Gln Glu Leu Asp Glu Ile Ser 485 490 495
- Thr Asn Ile Arg Gln Ala Gly Val Gln Tyr Ser Arg Ala Asp Glu Glu 500 505 510
- Gln Gln Gln Ala Leu Ser Ser Gln Met Gly Phe Val Pro Thr Thr Ala 515 520 525

154

Ala	Ser	Pro	Pro	Ser	Thr	Ala	Ala	Ala	Pro	Pro	Ala	Pro	Ala	Thr	Pro
	530					535					540				

- Val Ala Pro Pro Pro Ala Ala Ala Asn Thr Pro Asn Ala Gln Pro 545 550 550 555
- Gly Asp Pro Asn Ala Ala Pro Pro Pro Ala Asp Pro Asn Ala Pro Pro 565 570 575
- Pro Pro Val Ile Ala Pro Asn Ala Pro Gln Pro Val Arg Ile Asp Asn 580 585 590
- Pro Val Gly Phe Ser Phe Ala Leu Pro Ala Gly Trp Val Glu Ser 595 600 605
- Asp Ala Ala His Phe Asp Tyr Gly Ser Ala Leu Leu Ser Lys Thr Thr 610 620
- Gly Asp Pro Pro Phe Pro Gly Gln Pro Pro Pro Val Ala Asn Asp Thr 625 630 635 640
- Arg Ile Val Leu Gly Arg Leu Asp Gln Lys Leu Tyr Ala Ser Ala Glu 645 650 655
- Ala Thr Asp Ser Lys Ala Ala Ala Arg Leu Gly Ser Asp Met Gly Glu 660 665 670
- Phe Tyr Met Pro Tyr Pro Gly Thr Arg Ile Asn Gln Glu Thr Val Ser 675 680 685
- Leu Asp Ala Asn Gly Val Ser Gly Ser Ala Ser Tyr Tyr Glu Val Lys 690 695 700
- Phe Ser Asp Pro Ser Lys Pro Asn Gly Gln Ile Trp Thr Gly Val Ile 705 710 715 720
- Gly Ser Pro Ala Ala Asn Ala Pro Asp Ala Gly Pro Pro Gln Arg Trp
  725 730 735
- Phe Val Val Trp Leu Gly Thr Ala Asn Asn Pro Val Asp Lys Gly Ala 740 745 750
- Ala Lys Ala Leu Ala Glu Ser Ile Arg Pro Leu Val Ala Pro Pro Pro 755 760 765
- Ala Pro Ala Pro Ala Pro Ala Glu Pro Ala Pro Ala Pro Ala Pro Ala 770 780
- Gly Glu Val Ala Pro Thr Pro Thr Pro Thr Pro Gln Arg Thr Leu 785 790 795 800

Pro Ala

(2) INFORMATION FOR SEQ ID NO:210:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 454 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:210: GTGGCGGCGC TGCGGCCGGC CAGCAGAGCG ATGTGCATCC GTTCGCGAAC CTGATCGCGG 60 TCGACGATGA GCGCGCGAA CGCCGCGACG ACGAAGAACG TCAGGAAGCC GTCCAGCAGC GCGGTCCGCG CGGTGACGAA GCTGACCCCG TCGCAGATCA GCAGCACCCC GGCGATGGCG CCGACCAATG TCGACCGGCT GATCCGCCGC ACGATCCGCA CCACCAGCGC CACCAGGACC ACACCCAGCA GGGCGCCGGT GAACCGCCAG CCGAATCCGT TGTGACCGAA GATGGCCTCC CCGATCGCGA TCAGCTGCTT ACCGACCGGC GGGTGAACCA CCAGGCCGTA CCCGGGGTTG TCTTCCACCC CATGGTTGTT CAGCACCTGC CAGGCCTGGC GGTGCGTAAT GCTTCTCGTC 420 GAAGATGGGG GTGCCGGCAT CCGTCACCGA GCCC 454 (2) INFORMATION FOR SEQ ID NO:211: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 470 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:211: TGCAGAAGTA CGGCGGATCC TCGGTGGCCG ACGCCGAACG GATTCGCCGC GTCGCCGAAC GCATCGTCGC CACCAAGAAG CAAGGCAATG ACGTCGTCGT CGTCGTCTCT GCCATGGGGG ATACCACCGA CGACCTGCTG GATCTGGCTC AGCAGGTGTG CCCGGCGCCG CCGCCTCGGG AGCTGGACAT GCTGCTTACC GCCGGTGAAC GCATCTCGAA TGCGTTGGTG GCCATGGCCA TCGAGTCGCT CGGCGCGCAT GCCCGGTCGT TCACCGGTTC GCAGGCCGGG GTGATCACCA 300 CCGGCACCCA CGGCAACGCC AAGATCATCG ACGTCACGCC GGGGCGGCTG CAAACCGCCC 360 TTGAGGAAGG GCGGGTCGTC TTGGTGGCCG GATTCCAAGG GGTCAGCCAG GACACCAAGG 420 ATGTCACGAC GTTGGGCCGC GGCGGCTCGG ACACCACCGC CGTCGCCATG (2) INFORMATION FOR SEO ID NO:212: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 279 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:212: GGCCGGCGTA CCCGGCCGGG ACAAACAACG ATCGATTGAT ATCGATGAGA GACGGAGGAA TCGTGGCCCT TCCCCAGTTG ACCGACGAGC AGCGCGCGGC CGCGTTGGAG AAGGCTGCTG 120 CEGCACGTCG AGCGCGAGCA GAGCTCAAGG ATCGGCTCAA GCGTGGCGGC ACCAACCTCA 180

CCCAGGTCCT	CAAGGACGCG GAGAGCGATG	AAGTCTTGGG	CAAAATGAAG	GTGTCTGCGC	
					279
(	2) INFORMATION FOR SEQ	ID NO:213:			
	SEQUENCE CHARACTERISTI				
	) LENGTH: 219 base pai	rs			
	) TYPE: nucleic acid				
	) STRANDEDNESS: single				
(1)	) TOPOLOGY: linear				
(ii)	MOLECULE TYPE: Genomic	c DNA			
(xi)	SEQUENCE DESCRIPTION:	SEQ ID NO:	213:		
ACACGGTCGA	ACTCGACGAG CCCCTCGTGG	AGGTGTCGAC	CGACAAGGTC	GACACCGAAA	60
TCCCTCGCCG	GCCGCGGGTG TGCTGACCAA	GATCATCGCC	CAAGAAGATG	ACACGGTCGA	120
GGTCGGCGGC	GAGCTCTCTG TCATTGGCGA	CGCCCATGAT	GCCGGCGAGG	CCGCGGTCCC	180
GGCACCCCAG	AAAGTCTCTG CCGGCCCAAC	CCGAATCCA			219
. (	2) INFORMATION FOR SEQ	ID NO:214:			
(i)	SEQUENCE CHARACTERISTION	~c .			
	) LENGTH: 342 base pai:				
	) TYPE: nucleic acid				
	STRANDEDNESS: single				
	) TOPOLOGY: linear				
(ii)	MOLECULE TYPE: Genomic	DNA			
(xi)	SEQUENCE DESCRIPTION:	SEQ ID NO:	214:		
TCGCTGCCGA	CATCGGCGCC GCGCCCGCCC	CCAAGCCCCC	ACCCA ACCCC	CTCCCCACC	60
CAGCGCCGAC	GCCGAAGGCC GAACCCGCAC	CARGCCCCC	CCCCAAGCCC	CCACCCCAGC	120
CGGCCGAGGG	CGCACCGTAC GTGACGCCGC	TECTECENA	COTTCCCCTCC	CARGCCGGIG	
TCGACCTCGC	CGGGGTGACC GGCACCGGAG	TOGTGCGAAA	CATCCCCAAA	CAGAMETEC	180
TGGCCGCGGC	TGAACAAAAG AAGCGGGCGA	1000100100	CATCCGCAAA	CAGGAIGIGC	240
CCGCGCCGGC	CCCGAAAGCG CCGCCTGAAG	ATCCGATGCC	GC	CAGGCCGCCG	300 342
(:	2) INFORMATION FOR SEQ	ID NO:215:			
(i) s	SEQUENCE CHARACTERISTIC	7C.			
	LENGTH: 515 base pain				
	TYPE: nucleic acid	. 5			
	STRANDEDNESS: single				
	TOPOLOGY: linear				
(1)	loronogi. Timear				
(ii)	MOLECULE TYPE: Genomic	DNA			
(xi)	SEQUENCE DESCRIPTION:	SEQ ID NO:	215:		
GGTCTTGGT	CAGTATCAGC GCCGACGAGG	ACGCCACGGT	GCCCGTCGGC	GGCGAGTTGG	60
CCGGATCGG	TGTCGCTGCC GACATCGGCG	CCGCGCCCGC	CCCCAAGCCC	GCACCCAAGC	120
CCGTCCCCGA	GCCAGCGCCG ACGCCGAAGG	CCGAACCCGC	ACCATCGCCG	CCGGCGGCCC	180
AGCCAGCCGG	TGCGGCCGAG GGCGCACCGT	ACGTGACGCC	GCTGGTGCGA	AAGCTGGCGT	240

CATCGACCTC	GCCGGGGTGA	CCGGCACCGG	AGTGGGTGGT	CGCATCCGCA	300
					360
					420
GCAGGCGGTC	GGCGAGCCAG	TTCAGGTTAG	GCGGCCGAAA	TCTTCCAGTT	480
GGCACCCGGA	ACAGGGTCCG	CACCC			515
	GCTGGCCGCG CCCGGTTAAC GCAGGCGGTC	GCTGGCCGCG GCTGAACAAA CCCGGTTAAC CAGCTTGCCC GCAGGCGGTC GGCGAGCCAG	GCTGGCCGCG GCTGAACAAA AGAAGCGGGC CCCGGTTAAC CAGCTTGCCC CAGAAGCCGG	GCTGGCCGCG GCTGAACAAA AGAAGCGGCC GAAAGCACCG CCCGGTTAAC CAGCTTGCCC CAGAAGCCGG CTTCGACCTC GCAGGCGGTC GGCGAGCCAG TTCAGGTTAG GCGGCCGAAA	CATCGACCTC GCCGGGGTGA CCGGCACCGG AGTGGGTGGT CGCATCCGCA GCTGGCCGCG GCTGAACAAA AGAAGCGGGC GAAAGCACCG GCGCCCTGAG CCCGGTTAAC CAGCTTGCCC CAGAAGCCGG CTTCGACCTC TTCGCGGGTC GCAGCCGGT GGCGAGCCAG TTCAGGTTAG GCGGCCGAAA TCTTCCAGTT GGCACCCGGA ACAGGGTCCG CACCC

- (2) INFORMATION FOR SEQ ID NO:216:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 557 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:216:

CCGACCCCAA	GGTGCAGATT	CAACAGGCCA	TTGAGGAAGC	ACAGCGCACC	CACCAAGCGC	60
TGACTCAACA	GGCGGCGCAA	GTGATCGGTA	ACCAGCGTCA	ATTGGAGATG	CGACTCAACC	120
GACAGCTGGC	GGACATCGAA	AAGCTTCAGG	TCAATGTGCG	CCAAGCCCTG	ACGCTGGCCG	180
ACCAGGCCAC	CGCCGCCGGA	GACGCTGCCA	AGGCCACCGA	ATACAACAAC	GCCGCCGAGG	240
CGTTCGCAGC	CCAGCTGGTG	ACCGCCGAGC	AGAGCGTCGA	AGACCTCAAG	ACGCTGCATG	300
ACCAGGCGCT	TAGCGCCGCA	GCTCAGGCCA	AGAAGGCCGT	CGAACGAAAT	GCGATGGTGC	360
TGCAGCAGAA	GATCGCCGAG	CGAACCAAGC	TGCTCAGCCA	GCTCGAGCAG	GCGAAGATGC	420
	CAGCGCATCG					480
CGAGCCTCGA	CGAGGTGCGC	GACAAGATCG	AGCGTCGCTA	CGCCAACGCG	ATCGGTTCGG	540
CTGAACTTGC	CGAGAGT					557

- (2) INFORMATION FOR SEQ ID NO:217:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 223 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:217:

CAGGATAGGT	TTCGACATCC	ACCTGGGTTC	CGCACCCGGT	GCGCGACCGT	GTGATAGGCC	60
AGAGGTGGAC	CTGCGCCGAC	CGACGATCGA	TCGAGGAGTC	AACAGAAATG	GCCTTCTCCG	120
TCCAGATGCC	GGCACTCGGT	GAGAGCGTCA	CCGAGGGGAC	GGTTACCCGC	TGGCTCAAAC	180
AGGAAGGCGA	CACGGTCGAA	CTCGACGAGC	CCCTCGTGGA	GGT		223

- (2) INFORMATION FOR SEQ ID NO:218:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 578 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:218:

AAGAAGTACA	TCTGCCGGTC	GATGTCGGCG	AACCACGGCA	GCCAACCGGC	GCAGTAGCCG	60
ACCAGGACCA	CCGCATAACG	CCAGTCCCGG	CGCACAAACA	TACGCCACCC	CGCGTATGCC	120
AGGACTGGCA	CCGCCAGCCA	CCACATCGCG	GGCGTGCCGA	CCAGCATCTC	GGCCTTGACG	180
CACGACTGTG	CGCCGCAGCC	TGCAACGTCT	TGCTGGTCGA	TGGCGTACAG	CACCGGCCGC	240
AACGACATGG	GCCAGGTCCA	CGGTTTGGAT	TCCCAAGGGT	GGTAGTTGCC	TGCGGAATTC	300
GTCAGGCCCG	CGTGGAAGTG	GAACGCTTTG	GCGGTGTATT	GCCAGAGCGA	GCGCACGGCG	360
TCGGGCAGCG	GAACAACCGA	GTTGCGACCG	ACCGCTTGAC	CGACCGCATG	CCGATCGATC	420
GCGGTCTCGG	ACGCGAACCA	CGGAGCGTAG	GTGGCCAGAT	AGACCGCGAA	CGGGATCAAC	480
CCCAGCGCAT	ACCCGCTGGG	AAGCACGTCA	CGCCGCACTG	TTCCCAGCCA	CGGTCTTTGC	540
ACTTGGTATG	AACGTCGCGC	CGCCACGTCA	ACGCCAGC			578

## (2) INFORMATION FOR SEQ ID NO:219:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 484 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:219:

ACAACGATCG	ATTGATATCG	ATGAGAGACG	GAGGAATCGT	GGCCCTTCCC	CAGTTGACCG	60
ACGAGCAGCG	CGCGGCCGCG	TTGGAGAAGG	CTGCTGCCGC	ACGTCGAGCG	CGAGCAGAGC	120
TCAAGGATCG	GCTCAAGCGT	GGCGGCACCA	ACCTCACCCA	GGTCCTCAAG	GACGCGGAGA	180
GCGATGAAGT	CTTGGGCAAA	ATGAAGGTGT	CTGCGCTGCT	TGAGGCCTTG	CCAAAGGTGG	240
GCAAGGTCAA	GGCGCAGGAG	ATCATGACCG	AGCTGGAAAT	TGCGCCCCAC	CCCGCCGCCT	300
TCGTGGCCTC	GGTGACCGTC	AGCGCAAGGC	CCTGCTGGAA	AAGTTCGGCT	CCGCCTAACC	360
CCGCCGGCCG	ACGATGCGGG	CCGGAAGGCC	TGTGGTGGGC	GTACCCCCGC	ATACGGGGGA	420
GAAGCGGCCT	GACAGGGCCA	GCTCACAATT	CAGGCCGAAC	GCCCCGGTGG	GGGGGAACCC	480
GCCC						484

### (2) INFORMATION FOR SEQ ID NO:220:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 537 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:220:

AGGACTGGCA	CCGCCAGCCA	CCACATCGCG	GGCGTGCCGA	CCAGCATCTC	GGCCTTGACG	60
CACGACTGTG	CGCCGCAGCC	TGCAACGTCT	TGCTGGTCGA	TGGCGTACAG	CACCGGCCGC	120
		CGGTTTGGAT				180
		GAACGCTTTG				240
TCGGGCAGCG	GAACAACCGA	GTTGCGACCG	ACCGCTTGAC	CGACCGCATG	CCGATCGATC	300
GCGGTCTCGG	ACGCGAACCA	CGGAGCGTAG	GTGGCCAGAT	AGACCGCGAA	CGGGATCAAC	360
CCCAGCGCAT	ACCCGCTGGG	AAGCACGTCA	CGCCGCACTG	TCCCCAGCCA	CGGTCTTTGC	420

ACTTGGTACT GACGTCGCGC CGCCACGTCG AACGCCAGCG CCATCGCGCC GAAGAACAGC 480 ACGAAGTACA CGCCGGACCA CTTGGTGGCG CAAGCCAATC CCAAGCAGCA CCCCGGC 537

### (2) INFORMATION FOR SEQ ID NO:221:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 135 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:221:

35 40 45
Pro Val Ala Asp Gln Gln His Pro Gly Asp Gly Ala Asp Gln Cys Arg

50 55 60

Pro Ala Asp Pro Pro His Asp Pro His His Gln Arg His Gln Asp His 65 70 75 80

Thr Gln Gln Gly Ala Gly Glu Pro Pro Ala Glu Ser Val Val Thr Glu 85 90 95

Asp Gly Leu Pro Asp Arg Asp Gln Leu Leu Thr Asp Arg Arg Val Asn 100 105 110

His Gln Ala Val Pro Gly Val Val Phe His Pro Met Val Val Gln His
115 120 125

Leu Pro Gly Leu Ala Val Arg 130 135

### (2) INFORMATION FOR SEQ ID NO:222:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 156 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:222:

### (2) INFORMATION FOR SEQ ID NO:223:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 92 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:223:

 Pro
 Ala
 Tyr
 Pro
 Ala
 Gly
 Thr
 Asn
 Asn
 Asp
 Arg
 Leu
 Ile
 Ser
 Met
 Arg

 Asp
 Gly
 Gly
 Ile
 Val
 Ala
 Leu
 Pro
 Gln
 Leu
 Thr
 Asp
 Glu
 Gln
 Arg
 Ala

 Ala
 Ala
 Leu
 Blu
 Ala
 Ala
 Ala
 Ala
 Arg
 Arg
 Arg
 Ala
 Glu
 Leu
 Arg
 Arg

### (2) INFORMATION FOR SEQ ID NO:224:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 72 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:224:

Gly Asp Ala His Asp Ala Gly Glu Ala Ala Val Pro Ala Pro Gln Lys
50 55 60

Val Ser Ala Gly Pro Thr Arg Ile
65 70

- (2) INFORMATION FOR SEQ ID NO:225:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 113 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:225:

Ala Ala Asp Ile Gly Ala Ala Pro Ala Pro Lys Pro Ala Pro Lys Pro I

Val Pro Glu Pro Ala Pro Thr Pro Lys Ala Glu Pro Ala Pro Ser Pro 20

Pro Ala Ala Gln Pro Ala Gly Ala Ala Glu Gly Ala Pro Tyr Val Thr 35

Pro Leu Val Arg Lys Leu Ala Ser Glu Asn Asn Ile Asp Leu Ala Gly 50

Val Thr Gly Thr Gly Val Gly Gly Arg Ile Arg Lys Gln Asp Val Leu 65

Ala Ala Ala Glu Gln Lys Lys Arg Ala Lys Ala Pro Ala Pro Ala Ala Ala Ala Ala Ala Ala Blu Glu Gly Ala Pro Ala Pro Ala Ala Ala Ala Ala Ala Ala Ala Ala Blu Glu Gln Lys Lys Arg Ala Lys Ala Pro Ala Pro Ala Ala Ala Blu Bs

Gln Ala Ala Ala Pro Ala Pro Lys Ala Pro Pro Glu Asp Pro Met

105

Pro

- (2) INFORMATION FOR SEQ ID NO:226:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 118 amino acids
  - (B) TYPE: amino acid

100

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:226:

Val Leu Val Ser Ile Ser Ala Asp Glu Asp Ala Thr Val Pro Val Gly
1 5 10 15
Gly Glu Leu Ala Arg Ile Gly Val Ala Ala Asp Ile Gly Ala Ala Pro

20 25 30

Ala Pro Lys Pro Ala Pro Lys Pro Val Pro Glu Pro Ala Pro Thr Pro 35 40

Lys Ala Glu Pro Ala Pro Ser Pro Pro Ala Ala Gln Pro Ala Gly Ala 50 55 60

Ala Glu Gly Ala Pro Tyr Val Thr Pro Leu Val Arg Lys Leu Ala Ser

162

65 70 75 80

Glu Asn Asn Ile Asp Leu Ala Gly Val Thr Gly Thr Gly Val Gly Gly 85 90 95

Arg Ile Arg Lys Gln Asp Val Leu Ala Ala Ala Glu Gln Lys Lys Arg 100 105 110

Ala Lys Ala Pro Ala Pro 115

- (2) INFORMATION FOR SEQ ID NO:227:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 185 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:227:

Asp Pro Lys Val Gln Ile Gln Gln Ala Ile Glu Glu Ala Gln Arg Thr 1 5 His Gln Ala Leu Thr Gln Gln Ala Ala Gln Val Ile Gly Asn Gln Arg 25 Gln Leu Glu Met Arg Leu Asn Arg Gln Leu Ala Asp Ile Glu Lys Leu 40 Gln Val Asn Val Arg Gln Ala Leu Thr Leu Ala Asp Gln Ala Thr Ala Ala Gly Asp Ala Ala Lys Ala Thr Glu Tyr Asn Asn Ala Ala Glu Ala 75 Phe Ala Ala Gln Leu Val Thr Ala Glu Gln Ser Val Glu Asp Leu Lys 85 90 Thr Leu His Asp Gln Ala Leu Ser Ala Ala Ala Gln Ala Lys Lys Ala 105 Val Glu Arg Asn Ala Met Val Leu Gln Gln Lys Ile Ala Glu Arg Thr 120 Lys Leu Leu Ser Gln Leu Glu Gln Ala Lys Met Gln Glu Gln Val Ser 135 140 Ala Ser Leu Arg Ser Met Ser Glu Leu Ala Ala Pro Gly Asn Thr Pro 150 155 Ser Leu Asp Glu Val Arg Asp Lys Ile Glu Arg Arg Tyr Ala Asn Ala 165 170 Ile Gly Ser Ala Glu Leu Ala Glu Ser 185

- (2) INFORMATION FOR SEQ ID NO:228:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 71 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

163

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:228:

 Val
 Ser
 Thr
 Ser
 Thr
 Trp
 Val
 Pro
 His
 Pro
 Val
 Arg
 Asp
 Arg
 Asp
 Arg
 Arg
 Arg
 Arg
 Ser
 Ile
 Glu
 Glu
 Ser
 Thr

 Glu
 Met
 Arg
 Arg
 Arg
 Ser
 Ile
 Glu
 Glu
 Ser
 Thr

 Glu
 Met
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Ile
 Glu
 Ser
 Val
 Thr

 Glu
 Gly
 Thr
 Val
 Thr
 Arg
 Trp
 Leu
 Lys
 Glu
 Gly
 Asp
 Thr
 Val
 Glu

 Leu
 Asp
 Glu
 Pro
 Leu
 Val
 Glu
 Fr
 Val
 Glu

 65
 Fr
 Val
 Glu
 Fr
 Val
 Glu
 Fr
 Val
 Glu

### (2) INFORMATION FOR SEQ ID NO:229:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 182 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:229:

Glu Val His Leu Pro Val Asp Val Gly Glu Pro Arg Gln Pro Thr Gly 10 Ala Val Ala Asp Gln Asp His Arg Ile Thr Pro Val Pro Ala His Lys 25 His Thr Pro Pro Arg Val Cys Gln Asp Trp His Arg Gln Pro Pro His 40 Arg Gly Arg Ala Asp Gln His Leu Gly Leu Asp Ala Arg Leu Cys Ala 55 Ala Ala Cys Asn Val Leu Leu Val Asp Gly Val Gln His Arg Pro Gln Arg His Gly Pro Gly Pro Arg Phe Gly Phe Pro Arg Val Val Ala 90 Cys Gly Ile Arg Gln Ala Arg Val Glu Val Glu Arg Phe Gly Gly Val 105 100 Leu Pro Glu Arg Ala His Gly Val Gly Gln Arg Asn Asn Arg Val Ala 120 Thr Asp Arg Leu Thr Asp Arg Met Pro Ile Asp Arg Gly Leu Gly Arg 135 Glu Pro Arg Ser Val Gly Gly Gln Ile Asp Arg Glu Arg Asp Gln Pro 155 150 Gln Arg Ile Pro Ala Gly Lys His Val Thr Pro His Cys Ser Gln Pro 170 Arg Ser Leu His Leu Val 180

#### (2) INFORMATION FOR SEQ ID NO:230:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 160 amino acids
  - (B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:230:

Asn Asp Arg Leu Ile Ser Met Arg Asp Gly Gly Ile Val Ala Leu Pro Gln Leu Thr Asp Glu Gln Arg Ala Ala Ala Leu Glu Lys Ala Ala Ala 25 Ala Arg Arg Ala Arg Ala Glu Leu Lys Asp Arg Leu Lys Arg Gly Gly 40 Thr Asn Leu Thr Gln Val Leu Lys Asp Ala Glu Ser Asp Glu Val Leu 55 Gly Lys Met Lys Val Ser Ala Leu Leu Glu Ala Leu Pro Lys Val Gly Lys Val Lys Ala Gln Glu Ile Met Thr Glu Leu Glu Ile Ala Pro His 85 90 Pro Ala Ala Phe Val Ala Ser Val Thr Val Ser Ala Arg Pro Cys Trp 100 105 Lys Ser Ser Ala Pro Pro Asn Pro Ala Gly Arg Arg Cys Gly Pro Glu 120 Gly Leu Trp Trp Ala Tyr Pro Arg Ile Arg Gly Arg Ser Gly Leu Thr 135 Gly Pro Ala His Asn Ser Gly Arg Thr Pro Arg Trp Gly Gly Thr Arg 150 155

- (2) INFORMATION FOR SEQ ID NO:231:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 178 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:231:

 Asp
 Trp
 His
 Arg
 Gln
 Pro
 Pro
 His
 Arg
 Gly
 Arg
 Ala
 Asp
 Ala
 Arg
 Leu
 Cys
 Ala
 Ala
 Ala
 Arg
 Leu
 Leu
 Cys
 Ala
 Ala
 Ala
 Ala
 Cys
 Asp
 Val
 Cys
 Ala
 Ala
 Cys
 Asp
 Val
 Cys
 Ala
 Ala
 Cys
 Asp
 Pro
 Arg
 Pro
 Arg
 Arg</th

115 120 Val Thr Pro His Cys Pro Gln Pro Arg Ser Leu His Leu Val Leu Thr 135 140 Ser Arg Arg His Val Glu Arg Gln Arg His Arg Ala Glu Glu Gln His 155 Glu Val His Ala Gly Pro Leu Gly Gly Ala Ser Gln Ser Gln Ala Ala 165 170 Pro Arg

### (2) INFORMATION FOR SEQ ID NO:232:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 271 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:232:

ATGCCAAGCC GGTGCTGATG CCCGAGCTCG GCGAATCGGT GACCGAGGGG ACCGTCATTC 60 GTTGGCTGAA GAAGATCGGG GATTCGGTTC AGGTTGACGA GCCACTCGTG GAGGTGTCCA 120 CCGACAAGGT GGACACCGAG ATCCCGTCCC CGGTGGCTGG GGTCTTGGTC AGTATCAGCG CCGACGAGGA CGCCACGGTG CCCGTCGGCG GCGAGTTGGC CCGGATCGGT GTCGCTGCCG 240 AGATCGGCGC CGCGCCCCCC C 271

- (2) INFORMATION FOR SEQ ID NO:233:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 89 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:233:

Ala Lys Pro Val Leu Met Pro Glu Leu Gly Glu Ser Val Thr Glu Gly 5 10 Thr Val Ile Arg Trp Leu Lys Lys Ile Gly Asp Ser Val Gln Val Asp 25 Glu Pro Leu Val Glu Val Ser Thr Asp Lys Val Asp Thr Glu Ile Pro 40 Ser Pro Val Ala Gly Val Leu Val Ser Ile Ser Ala Asp Glu Asp Ala Thr Val Pro Val Gly Gly Glu Leu Ala Arg Ile Gly Val Ala Ala Glu 70 75 Ile Gly Ala Ala Pro Ala Pro Lys Pro 85

(2) INFORMATION FOR SEQ ID NO:234:

PCT/US99/03265 WO 99/42118

		(A (B (C	) LE ) TY ) ST	NGTH PE:	: 10 nucl EDNE	7 ba: eic : SS: :	sing.	airs	:								
		(ii)	MOL	ECUL	E TY	PE: (	Genor	nic I	ONA								
		(xi)	SEQ	UENC	E DES	SCRI	PTION	I: SE	EQ II	NO:	234	:					
GAC	GTA(	GCGG FGTG	ATG(	GCCG( ACCG:	GAG (	GAGCI GTTC(	ACCCC	CA GO	BACCO CGAGO	CGCC	C CGA	ACC(	c GGG	GTGC	CGG1	rca	60 107
		(2	2) II	VFORI	ATIC	ON FO	OR SE	Q II	NO:	235:							
	1	(A) (B) (C)	LEN TYI STI	IGTH : PE : r	339 ucle	bas ic a S: s	ingl	irs									
	(	ii)	MOLE	CULE	TYF	E: G	Senom	ic D	NA								
	(	xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	235:						
GGC TAC TAC	CCTG TATT CCCG TTCG	GCT GCC ACG ATT	CGGT CGGG GCTC GTGT	TGCC TGGC GTTT CAGC	AG C CG A TG G GG C	GCAG TGGG CACC GGTG	GTAC ATCC GTTT AGTG AGCC	A CC T GG G AT C CT	TGAC CGAC GCAA CCCC	CCGC TTGG ACGT GGCC	ATC CCG GGT	AGCC TGTG TTAC	GGA CGA	CATG CGGC	ACGA GAGA	AA AG	120 180
							R SE										337
		i) S (A) (B) (C) (D)	EQUE LEN TYP STR TOP	NCE GTH: E: a: ANDE: OLOG	CHAR 112 mino DNES Y: 1	ACTE ami aci S: s inea	RIST no a d ingl	ICS: cids									
	( .	ii)	MOLE	CULE	TYP:	E: p	rote	in									
	(:	xi)	SEQU	ENCE	DES	CRIP'	TION	: SE	Q ID	NO : 3	236 :						
1				5			Leu		10					15			
			20				Ser	25					3.0	Pro			
		33					Lys					45	Gly				
Gly	Phe 50	Gly	Asp	Leu	Ala	Val 55	Cys	Ąsp	Gly	Glu	Lys	Tyr	Pro	Asp	Gly		
Ser 65	Phe	Trp	His	Gln	Trp 70	Met	Gln	Thr	Trp	Phe	Thr	Gly	Pro	Gln			
Tyr	Phe	Asp	Cys	Val	-	Gly	Gly	Glu	Pro	Leu	Pro	Gly	Pro	Pro	80 Pro		

167

Pro Gly Gly Cys Gly Gly Ala Ile Pro Ser Glu Gln Pro Asn Ala Pro 100 100 105 110

- (2) INFORMATION FOR SEQ ID NO:237:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 371 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: CDNA
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:237:

GTGGCAATGG CGGGCGCCC CAGGTGGCGA GCGCCAACAG	CGGTGGCGCC CGGTGATGGG CGGCGGCAAC CGGCGGCAAA CGGCATCGTC	GGGGGTAACG AGCTTCGGCG GGCGGCAAGG GGCGGCAACG	CTACCAGCGG GCGGCGCCGG GCGGTGCCGG	AGGCGGCAAG CCCCGCCTCC TGGCAGCAAC	GGCGGCGCCG ATCGGGGTCA CCCAACGGCT	60 120 180 240 300 360
GAAACGGCAG	COGCATCGIC	GGCGGTTCCG	GTGGGGCCGG	TGGCGCTGGC	GGCGCCGGCG	360
CAMACGGCAG	C					371

- (2) INFORMATION FOR SEQ ID NO:238:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 424 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:238:

ATGGGCAACA GGTGGTGAGC CCCGTCGGAG CGTCGGCGCC CGAACTACCG	CAAGAAAAGG TCGACGTCGA ATCGGTCTAG CCCGGGGTTG CCAATGGGGT	GCCTTCTGTT CATCTCGGCC CCGTCATAGC TGTCCTACGC GGGAGGCGGT	CCTAGCGGCC TGGTCGGCCA AAGGTCTAGC AGGGTTCGCG GGTGCTCGGA GTTCACCAAG CATCGGGCTG	TGTTGGCATG TCCATGCGAA GTACCTGTTG AAGGGGTCGG	TCGCCGCCGC CCGACGCACA TCGGCAACAT	60 120 180 240 300 360 420
CGAC	GCGTGCAACA	ACTGGGTGGA	CATCGGGCTG	CCCGAGGTGT	ACGACGATCC	420 424

- (2) INFORMATION FOR SEQ ID NO:239:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 317 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:239:

GCGATGGCGG TTGCATCTGG AGGGCGGATG TGGGACTTGG GTCATCGCCG	CGTCAATTGA CGATCCTACT TGGAGTCGCA ACGATATGCG	CTTCAGCCCG GCGCCGTACC GTTGCGCACG	GCCGATTTCG GACCGGCTGC ACCGTCACCG	TCACCGAGGG CTTTCGCCGA CCGACACGGT	CCACCGTCTA GCCGCCGGAT	60 120 180 240 300
CGGCTCTACG	ATTCGTC			CCHARCICAC	CGAATCGCTG	300

# (2) INFORMATION FOR SEQ ID NO:240:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 422 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:240:

TGGCGTATGC	GCTTCGCAGC	CGGTGCCGCG	TCNACCCCC	CC1 CCC1 1 mc	GCTTCGCTGC	
CGAGGAATGG	TTCGATCACC	10000000	TCAACGCGCC	GGAGGCAATC	GCTTCGCTGC	60
TC1100111100	TICGATCACG	ATCGCAGTGT	GCCGTCGTGC	ACCGACACCG	CCGTCCAACG	120
TGAAC TGAGG	GCGGAAAATC	GGCCGAAATC	TCGCCCTCAG	TTCACGCTCC	CCCCCTTTCC	
GTTCTGGAAG	TTGGGTGCGC	Commences	Chacces	TTURCUCTOU	GCGCCTAACG	180
GGACACCAAC	10000000		GAACGCGCGC	GGGCCTTCCT	TGGCGTCGTC	240
GGACAGGAAG	ACCTIGATGC	CGATCTGGGT	GTCGATCTTG	AACGCCTCGT	TTTCGGGCAT	300
GCACTCGGTC	TCGCGGATGG	ACCGCAAGAT	GGCCTGCACC	CCCNCCCCC	COTTO	• • • •
GATGGCGTCG	CCD D CONTOURS	Chacoman	GOCCIGCACG	GCCAGGGGTC	CGTTAGCCGA	360
GATGGCGTCG	OCCAMOTICIA	GAACCTTGGT	CAACGCCTGG	CCGTCGGGCA	CACGTGGCCG	420
AT						422
						422

# (2) INFORMATION FOR SEQ ID NO:241:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 426 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:241:

GGCCCAGGTG CATCGGGCCT GAGTGGCCGT AGTGTTCCCG	CATGGAGTCG GATCAGCCAG GCCACTTCCG CATCGCCTGC	CCGCGGCTGC CGGGGCGCGG ATGATGATGC GACGCGTAGG GCGTGCTCCA GGGATGAATG CGCACAGTGG	CGACCATAAG GACTCTCCAG ACAAGTCGAT CGGCAAATGC GGAACCGCAG	GTCGCTAATG CTCGCCGACC CGAATGCATA CTTGATTTCT	GTGGCCTCCA AGCTCCGCGT	60 120 180 240 300 360 420
						426

# (2) INFORMATION FOR SEQ ID NO:242:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 327 base pairs

- (B) TYPE: nucleic acid(C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:242:

AGACCGGCGA	GGGTGTGGTC	GCTGCCCCCC	CCImmomora			
			GCATTGTCGA	TAATCTGCGC	TGGGTCGACG	60
CGCCGATCAA	CTAGTGAGGC	GCAACGCTAG	لا المامال الم	ACCCA CACCO	AAAAAGTTTA	• •
TCAAACAAAC	G3.3.G3.3.G0===		CCITIGGGAI	MCCCACAGC1	AAAAAGTTTA	120
I CAMAGAMAC	GAAGAAGGTT	GCCATGAGCA	CTGTTGCCGC	CTACGCCGCC	ATGTCGGCGA	180
CCGAACCCCT	GACCAAGACC	ACCAMON GOO			GACATGGCGA	180
COCIDICOCCI	anc chause c	ACGATCACCC	GTCGCGACCC	GGGCCCGCAC	GACATGGCGA	240
TCGACATCAA	ATTCGCCGGA	ATCTGTCGCT	CCCACATCCA	MA CCCMCCA	ACCGAATGGG	
CCCDDCCCDD			COGNCATCCA	TACCGTCCAA	ACCGAATGGG	300
GGCAACCGAA	TITACCTGTG	GTCCCTG				
		_				327

- (2) INFORMATION FOR SEQ ID NO:243:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 123 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:243:

- (2) INFORMATION FOR SEQ ID NO:244:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 104 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:244:

Met Ala Ala Ala Gly Thr Thr Ala Asn Val Glu Arg Phe Pro Asn Pro 10 Asn Asp Pro Leu His Leu Ala Ser Ile Asp Phe Ser Pro Ala Asp Phe 20 25 Val Thr Glu Gly His Arg Leu Arg Ala Asp Ala Ile Leu Leu Arg Arg 40 Thr Asp Arg Leu Pro Phe Ala Glu Pro Pro Asp Trp Asp Leu Val Glu 55 Ser Gln Leu Arg Thr Thr Val Thr Ala Asp Thr Val Arg Ile Asp Val 70 75 Ile Ala Asp Asp Met Arg Pro Glu Leu Ala Ala Ala Ser Lys Leu Thr 85 90 Glu Ser Leu Arg Leu Tyr Asp Ser 100

- (2) INFORMATION FOR SEQ ID NO:245:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 41 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:245:

- (2) INFORMATION FOR SEQ ID NO:246:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 25 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:246:

Val Pro Leu Asn Thr Ser Pro Arg Leu Pro Asp Leu Pro Asp Ser Val 1 5 10 15 15 Val Pro Pro Val Ala Ser Leu Leu Ser 25

- (2) INFORMATION FOR SEQ ID NO:247:
- (i) SEQUENCE CHARACTERISTICS:

367

GGTGGTA

<ul><li>(A) LENGTH: 61 amino acids</li><li>(B) TYPE: amino acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul>	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:247:	
Met Ser Thr Val Ala Ala Tyr Ala Ala Met Ser Ala Thr Glu Pro Leu  1 5 10 15	
Thr Lys Thr Thr Ile Thr Arg Arg Asp Pro Gly Pro His Asp Met Ala 20 25 30	
Ile Asp Ile Lys Phe Ala Gly Ile Cys Arg Ser Asp Ile His Thr Val 35 40 45	
Gln Thr Glu Trp Gly Gln Pro Asn Leu Pro Val Val Pro 50 55 60	
(2) INFORMATION FOR SEQ ID NO:248:	
TTTGACCGCG GCGCGAAACG TTCGCTGCTG CGGCCCATGC AGATCGCACA CGCTTGCTTG	60 120 180 213
<ul> <li>(1) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 367 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:249:	
TGGCACCCGG CGGGGCCGGC GGGGCCGGCG GGCAAGGCGG GGCAGGTGGT GCCCGCAGCG ATGGTGGCGC GTTGGGTGGT ACCGGCGGGA CGGGCGGTAC CGGCGGCGCC GGTGGCGCCG	60 120 180 240 300

GACAAGGCGG CACCGGCGGG GGCCGGCGGA GATGGCGTTC TGGGGGGTGT CAGTGGCACT

## (2) INFORMATION FOR SEQ ID NO:250:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 420 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:250:

AAGGCGTGAT	TGGCAAGGCG	ACCGCGCAGC	GGCCCGTAGC	CGCGGGACGG	CCCAGGCCCC	60
GACCGCAGCG	GCCGGTGTCT	GACCGGGTCA	GCGACCAGCG	GCGCTGACCG	TGCCGCTCGT	120
CTACTTCGAC	GCCAGCGCCT	TCGTCAAACT	TCTCACCACC	GAGACAGGGA	GCTCGCTGGC	180
GTCCGCTCTA	TGGGACGGCT	GCGACGCCGC	ATTGTCCAAC	CCCCTCCCC	ACCCCGAAGT	240
CCGCGCCGCA	CTCGCTGCAA	CGGGCCGCAA	TCACGACCTA	ACCGAATCCG	ACCCCCARACT	300
CGCCGAGCGT	GACTGGGAGG	ACTTCTGGGC	CGCACCCGCC	Cagregaaer	CACCCCCACC	360
GTTGAACAGC	ACGCCGGGCA	CCTCGCCCGA	ACACATECET	TACCCCCACC	CACCOCGACO	
			ACACATOCCI	TACGCGGAGC	CGACACCGTT	420

- (2) INFORMATION FOR SEQ ID NO:251:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 299 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:251:

CTCTTGTCGG	TGGCATCGGC	GGTACCGGCG	GAACCGGCGG	CAACGCCGGT	ATGCTCGCCG	60
GCGCCGCCGG	GGCCGGCGGT	GCCGGCGGGT	TCAGCTTCAG	CACTGCCGGT	GGGGCTGGCG	120
GCGCCGGCGG	GGCCGGTGGG	CTGTTCACCA	CCGGCGGTGT	CGGCGCGCCC	GGTGGGCAGG	180
GTCACACGGG	CGGGGCGGC	GGCGCCGGCG	GGGCCGGCGG	GTTGTTTGGT	GCCGGCGGCA	240
TGGGCGGGGC	GGGCGGATTC	GGGGATCACG	GAACGCTCGG	CACCGGCGG	GCCGGCGGCA	299
				~	0000000	433

- (2) INFORMATION FOR SEQ ID NO:252:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 20 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:252:

Leu Glu Pro Trp Ser Asp Gly Val Gly Leu Gly Val Asp Ser Phe Ser 1 5 10 15 15

- (2) INFORMATION FOR SEQ ID NO:253:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 121 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:253:

- (2) INFORMATION FOR SEQ ID NO:254:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 34 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:254:

  Gly Val Ile Gly Lys Ala Thr Ala Gln Arg Pro Val Ala Ala Gly Arg

  1 5 10 15

  Pro Arg Pro Arg Pro Gln Arg Pro Val Ser Asp Arg Val Ser Asp Gln

  20 25 30
  - (2) INFORMATION FOR SEQ ID NO:255:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 99 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:255:

- (2) INFORMATION FOR SEQ ID NO:256:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 282 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:256:

TCCTGTTCGG	CGCCGGCGGG	GTGGGCGGTG	TTGGCGGTGA	CGGTGTGGCA	TTCCTGGGCA	60
CCGCCCCCGG	CGGGCCCGGT	GGTGCCGGCG	GGGCCGGTGG	CCTCTTCACC	GTCGGTGGGG	
CCGGCGGCGC	CGGCGGAATC	GGATTGGTCC	CCAACACCC	GCTGTTCAGC	TCCGGCGGGT	120
CCGCCCGCCT	CTGGGGGGA	CCCCCCCCC	GGAACAGCGG	TGCCGGGGGG	TCCGGCGGGT	180
CCCCTCCCC	CCCCCCCCCC	GGCGGTGCCG	GCGGCGCGGG	TGGGGTCGGG	TCCACTACCG	240
300010000	الالالالالالالالالالالالالالالالالالالال	GGCAACGCCA	GCCTGCTGGT	AA		282

- (2) INFORMATION FOR SEQ ID NO:257:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 415 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:257:

CGGCACGAGC	CGTGCTACTG	CTCN A CTCN III	000000			
G1.080.080.00	TO TOO TACE	GICAACIGAT	GCCCTGATTG	TGACCTTCCC	GGCGCCGGAT	60
CAGTGCTTCT	CAGGACCGAC	GTAATATTCG	AAAACCAATC	CGGCCGCCGA	GGCGAGGATG	120
AATGCCACAC	CGGCGGCGAT	CACCCACCCC	1000101-		CCCOMOUNIG	120
	COCCOAL	CAGCCACGG	AGCCACAACG	CGATGCCGAC	CGCTGCCACC	180
GAGCCGGACA	ACGCGACCAT	GATCGGCCAC	CAGCTATGCG	GACTGAAGAA	TOO A CITED CONT	240
CCTGCGCCCC		100000		CACIGARGAR	I CCAAGIICI	240
CCIGCGCCGI	CGCTGATTTC	AGCGCCTTCG	TAGTCCTCGG	GCCGGGAATC	TAACCGGCGG	300
GCCACAAACC	GGAAGAAGGT	GGCGACGATG	1100000			300
	GGAAGAAGGT	GGCGACGATC	AACGCCATGC	CGCCGGTGAG	CGCCAACGCA	360

### ATGGTGCCAG CCCACTCGAC ACCACCGGTG GCGAACATCG AGGTCAACAC GCCGT 415 (2) INFORMATION FOR SEQ ID NO:258: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 373 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:258: TCACCGCGTG AACGGTTCGT AACACTGATA CGTATGCTTG TCAGCGAGCA GATCAAGTCC 60 AGTCCGACCA ATGCCAGGAG ATCATCGGCT AGGCTCACGG TTTCGCCTGG GACGAGACGG 120 TATTGAGTTC TGGCGTTGGA CGGTCCGTGG CGTGGTGGGA AGTCTGACGC GGCATCAGAA 180 CGGTTGTCAA TACCAGTCTT TGGGGGATAT GGCCTATTTG GTGTCGTCGG GCCGCTCCAC 240 CGGATCCCTT TTCGAACGTT GCGCAAGCGC GGTCCAGTTA CGGCCTGTTC ACTGCGCGCT 300 GGCGTAGCTG CGCGGCCTCG ATCGGTTTGA ACGTCATCGC AATTCCCGCA ATGGGTGAGT 360 ACCTGACGCT CCT 373 (2) INFORMATION FOR SEQ ID NO:259: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 423 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:259: CCAAACCGGA CAGGCCGGCA GCGACGGTCG GAAGTTGCAC CACGGTGCGC GCTCCATGTA 60 GCCAACCGGT GACCACGGCG TAGACAGCAG ATCCGTGGAT CGCGCGTTCG GTGTCGTCCG 120 GGCCGAGTAC CCGCGGGCCG AACCGCAGCG ACCAAAGCAA CGCGATCGAT ACGGGGATCG 180 CCACTCGTGC CGAATTCGAG CTCCGTCGAC AAGCTTGCGG CCGCACTCGA ACCCGGGTGA 240 ATGATTGAGT TTAAACCGCT TAGCAATAAC TAGCATAACC CCTTGGGGCC TCTAAACGGG 300 TCTTGAGGGG TTTTTTGCTG AAAGGAGGAA CTATATCCGG ATAACCTGGC GTAGTAGCGA 360 AGAGGCCCGC ACCGATCGCC CTTCCCCAACA GTTGCGCAGC CTGAATGGCG AATGGACGCG 420 CCC 423 (2) INFORMATION FOR SEQ ID NO:260: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 404 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:260:

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

GGGTGCCGAC CAGAATGTCG	GTCGTCACAT ACGTCGCGCA	GCTGTGCCGC CCGGCAGGCC GCGGCCGATC	AGCGATTTCG GGGTGCGGTC	GCGAACCGGG GGATCGTGCT	CM3 3 C3 C5 C5	60 120 180 240
CAGCACCCGC CACTAGCAGC CAAACTCTCT	GTGAGCTCAC	CGGTGCTGCG	CATCGTGCCC	ACCCTCACCCT	CCACCACCAC	300 360 404

# (2) INFORMATION FOR SEQ ID NO:261:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 421 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:261:

GTCCTGGTCG	CAGGCTGTTC	TTCGAACCCC	CMCC.CM2			
GTCCTGGTCG		TICGMACCCG	CIGGCTAACT	TCGCACCCGG	GTATCCGCCC	60
ACCATCGAAC	CCGCCCAACC	GGCGGTGTCA	CCCCCTACTT	CCCXXCXCCC	22222	
GTGCGACCAC	TCACCCCCC		CCGCCIACII	CGCAAGACCC	GGCCGGTGCA	120
GTGCGACCAC	AUUUUUU	CCCCCGGGCG	GCACTATTCG	ACAACGGCAC	CCCCCAAmro	1.00
GTGGCTCTGC	GCCCGGGCGC	CGATTCCCCC	00100000		CCGCCAATIG	180
GTGGCTCTGC		COMITCOGCG	GCACCCGCCA	GCATCATGGT	CTTCGATGAC	240
1110CMC011G	CMCCGCGC	CATTITITCTG	CCGGGCCCGG	CACCCCCCC	23 223 2	
GACCACGGCA	CCCCCARCCA	TOOGOOO		CMOCCOCGII	GACCAGCGAC	300
	coocc11CC1	TGCCGCCCCCC	GGCGGCTACT	TCGTGGCCGA	CCTGTCCTCC	360
GGTCACACCG	CACGAGTGAA	TGTCGCTCAC	CCACCCCA		3010100100	200
GGTCACACCG C		TOTOGCIGAC	GCAGCGCACA	CCGATTTCAC	CGCGATCGCC	420
C						
						421

# (2) INFORMATION FOR SEQ ID NO:262:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 426 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:262:

ATGCATATCA CGCTCAACGC CATCCTGCGT GCGATCTTCG GGGGCCGCGG CAGTGAACTA 60 GACGAGCTGC GCCGCCTCAT TCCGCCGTGG GTCACGCTGG GCTCGCGCCT GGCGGCGCTA 120 CCGAAACCCA AACGCGACTA TGGCCGCCTT AGCCCGTGGG GCCGGCTGGC CGAGTGGCGG 180 CGCCAGTACG ACACTGTCAT CGACGAGCTC ATCGAAGCCG AGCGGGCCGA CCCGAACTTC 240 GCCGATCGGA AGGACATTGG CGACGAACTG CTCACGCTGC TTGCCGCCGG GCACGAAACC 360 ACGGCGGCGA CATGGGCTGG GCGTTCGAAC GGCTCAACCG GCACCCCGAC GTGCTCGCGG 420 CTCTCTGG
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

# (2) INFORMATION FOR SEQ ID NO:263:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 522 base pairs
  - (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:263:

GTGCGACCAC GTGGCTCTGC GTGCACGTTG GACCACGGCA	TGAGCGGCCA GCCCGGGCGC CACCGCGCGT CGGCCTTCCT	TTCGAACCCG GGCGGTGTCA CCCCCGGGCG CGATTCGGCG CATTTTTCTG TGCCGCCCGC	CCGCCTACTT GCACTATTCG GCACCCGCCA CCGGGCCCGG	CGCAAGACCC ACAACGGCAC GCATCATGGT CAGCCGCGTT	GGCCGGTGCA CCGCCAATTG CTTCGATGAC GACCAGCGAC	60 120 180 240 300 360
		TGCCGCCCCC	CCCCCCT Company	TCCTCCCCC		
CGCCGCTCCG	ACGGCAAGCT	GGTGCTGGGC	GCAGCGCACA AGCGCAGATG	CCGATTTCAC		420
AAGAACCCGC	AGTTGACCGG	CGTCGGCGCC	GCCACCGTAG	CC	CACGCTTGCC	480 522

- (2) INFORMATION FOR SEQ ID NO:264:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 739 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:264:

TCGGCATCTG GATCGCCATC CGGCCGAGCC CCGTCGTGCT CGTCCTCGTG TTGGGCGCCA 120 AGCGCCTTAG CGCCCTACTG CTGAACTCCT CAGAAGTCAA CGCCGTGATG GGCTCGTCGT 240 CCATGCAGCC GGGCAAACCG ATCACATCGA TGGACTCTTC GCCGGTGATG GGCTCGTCGT 240 CCGCATCAA CGGCTGATT TCATCCGAGC AGGATCCGT GTATGCCGGC ACCGGCTACA AGGCCGTCGT CGCCTTCCG ACCGCCGACAA CTACGAACAT TGGGTGAACC 420 AAAAATGGAA GAACTGCGCA GGCAAGACGG TCACCGTCAC GGATAAAGGCC AAGACCTACC AAAGGCAGCC CGCCGACGAT CACCGTCAC AAAGGCCGCG CGCCGACGAT CACCGTCAC AAAGGCAGCC AAAGGCCAAG CACCGAACAT TGCCGACCG AAAGGCCGCG CGCCGACGAT CACCGTCAC GAATAAGGCC AAGACCTACC AAAGGCAGCC CGCCGACGAT CACCGTCAC GGCCAACAAT GACACCCAAG 600 ACGTCAACGC ATGCGGTAC AACGCCG CGATGAGCGT CCACGGTGACA GTCGTTGTCG 660 GTTGACAAAG TCAACAAGG CCAGATCACC GCCAAGATCT 720	EGGCATCTG EGGCATCTAG EATGCAGCC EGACTGCCA EGCCATCAA EGCCGTCGT EAAATGGAA ETGGACGTT EGGCGCTGA EGCGCTGA	CATCG GATCGCCATC CGGC CTTAG CGCCCTACTG CTG; CCCCCCACTG CGGCAAACCG ATC; CTGCCA GGGCGCGCTG TAT; CATCAA CGGCTTGATT TCAT; CGTCGT CGCCTTTCCG ACCC ATGGAA GAACTGCGCA GGC; CACGTT TGCCGACGTC AAAC CGCTGA GGGCTGGGAA TGCC CACACCC ATGCGGGTAC CAGA	GCCGACG GCCGACGC AACTCCT CAGAAGTCAA ACATCGA TGGACTCTTC ACCAGCC AGGATCCGGT TCCGAGC GCCGACAA AAGCCCGCGC AAGACGC TCACCGTCAC GGCAGCC CGCCGACGAT CGACGCC CGCCGACGAT CGACGCC CGACGACT CAACGCC CGACGACC CGACC CGACGACC CGACGACC CGACGACC CGACGACC CGACGACC CGACGACC CGACGACC CGACGACC CGCCGACC CGACC CGACC CGCCGACC CGACC CCACC C	CGTCCTCGTG GCCTCAGCCG CGCCGTGATG GCCGGTGACG GTATGCCGGC CTACGAACAT GTTCGTGCAG GAATAAGGCC CACGGTGATA	TTGGGCGCA GTTGCGGAGG GGCTCGTCGT GTGTCCCTGC ACCGGCTACA TGGGTGAACC ACTTCGGCCG AAGACCTACC GACACCCAAG	60 120 180 240 300 360 420 480 540 600 660 720 739
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------

- (2) INFORMATION FOR SEQ ID NO:265:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 69 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:265:

WO 99/42118 PCT/

AGACGTCGTC GAGGCCGCCA TCGCCCGCGC CGAAGCCGTT AACCCCGGCAC TGAACGCGTT GGCGTATGC	6 S
(2) INFORMATION FOR SEQ ID NO:266:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 523 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:266:	
ACTGCACCCG GCAGGCGCGA CCAACGGATC GGGTCAACTA GCACTGCCGG TGGAGGCGCC CCCGCGGTCT GTGCCTTCCC ACGGGAACC CTTGGGCAGC GCGGCTCCAG AAGGGTTGGA GCGAAGCGCT CCGAAGCGCT TCAACCCGAT TCCACGACG GTTCCCGGTC TTCAGCTCGC CCGAAGCGCT CGGGGCATGG GTCGCGATGAT GTCCAGTTGA GTGGACTGCG GGGGAGAAGA GCCATCGCGG TGTTCGGTCA CCGCCCGTAT ATCGGAGTGT CCGATGAGTG CGGAGAAACCG GCCCAACTGC CGGGGTGGAA CCGCCAGGCC GTAACCCGGC GGGCAACTGC CGGGGTGGAC CCGCCAACTGC CAGGTCACTG GTTTGGTCGA CCGCAACTTG CGGCCGAACCT CCGCCCGTAT ATCGGAGTGT CGGCCAACTGC CAGGTCACTG GTTTTGGTCGA CCGCCAACTTG CGGCCGGACC GTTTTGGTCGA CTGCAACTTG CGGCCGGACC GTTTTTGGTCGA CTGCAACTTG CGGCCGGACC GTTTTGGTCGA CTGCAACTTG CGGCCGGACC GTTTTGGTCGA CTGCAACTTG CGGCCGGACC GTTTTGGTCGA CTGCAACTTG CGGCCGGACC GTTTTGGTCGA CTGCAACTTG CGGCCGGACC GTTTTTGGTCGA CTGCAACTTG CGGCCGGACC GTTTTTGGTCGA CTGCAACTTG CGGCCGGACC GTTTTTGGTCGA CTGCAACTTG CGGCCGGACC GTTTTTGGTCGA CTGCAACTTG CGGCCGGACC GTTTTTTTTTT	120 180 240 300 360
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 224 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: CDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:267:	
GTGTCGGTGT CGTCGGGGTA GGAGCGACTT CCCCGGCCGG CGCCGGCGCC GGAGCGGGCT CTGCAGGAAC CGGTGCCGGC GCCGGCGGCG GGGCGACCAA AGGCCGGATC GATTCGGCCA GCGCCTTGGC CGCGCCCTTG TCCACCGGGT TGTTGGCGGT CCCGAGCCAT ACCACAAACC AACGCTGAAG GGGCCGGCG TCCGGTGCGT TCGCCGCGGG CGAC	
(2) INFORMATION FOR SEQ ID NO:268:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 521 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:268:	
TGAACTGACT GCCCCGCTCG ATCGGCGGCG GCGGCGTGTC ATAGCTGCGC CGCCAGGCCA	60

TGAACTGCTC TTCGCCATAG CGGGC	CTTGG TCTCGGCCTT	GTCCAAACCC	TGCAGCGCGC	120				
CGTAGTGGCG TTCGTTGAGC CGCCAG	GCTAC GCCGCACGGG	AATCCAGAGC	CGATCCCCCC					
TGTCCAACGC CAGATGCGCG GTGGTC	GATCG CGCGCCGCAG	CAACGAGGTC	TACACCACCE	180				
CGGGCAATAG GTCGTGTTCC GCGATC	CAGCT CGCCGCTTCC	VVCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TAGAGCACGT	240				
TGTCCGTCAG GCCGACATCG ACCCAC	GCCGC TCDACACCTT	CACCOCCICI	GCCTGGCCCT	300				
CGCCGTGGCG CAGCAACACC AGGCTC	CCAC TORROAGGIT	GAGGGCATTC	CAGTCGCTCT	360				
CTCCCGCACT CCTCATCGTG GACCAL	NATE COCCAT	ACCGGCAAGT	CTCTCACGCA	420				
CGTTCATACC GCCGAGGTGG TCGGCA	AGGE LLCGAATTCT	CCTCGGTCCG	CTGCGCAGCG	480				
SELECTION OCCUMENTED TOUGHT	ACCGT AACGGCCGGT	T		521				
(2) INFORMATION FOR SEQ ID NO:269:								
(i) GEOUTHIGH GIVEN -								

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 426 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:269:

GTCGTGATAG	ATTCGCTCGA TCGCGGTACA	GCTGGGCATC	GGGCCCTGGA	CGAACCTCCG	CCCAGGGGCA	60 120
TCGCTGGTCT GTGACCCCGA	TTGACGCGTC AGCGTAGCGC TGTTCCCGCG	AGACTCGGCC CTCGAGCTCA CAGCACCTGC	TCGGCGTCTT CGGCCGAGCC GTGAACTTGA	CCGACGAGGC GTTCCAGCAC	GTGGATCGCC CCAGTCCACC	180 240 300 360 420
TCGCCA						426

## (2) INFORMATION FOR SEQ ID NO:270:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 219 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:

GCGGACACGG CGGACAAAG	C CCN NOCCOO				
GCGGACACGG CGGACAAAG	C GCAATCGGCC	TCGGCGGCGG	CGCCGGCGGC	GACGGGGGCC	60
AGGGCGGCGC CGGCCGCGG	A CTGTGGGGTA	CTGGCGGCGC	CGGCGGACAC	GGCGGGGCAA	120
GGCGGTGGTA CCGGGGGCC	C ACCGCTGCCC	GGTCAGGCAG	GCATCCCCCC	CCCCCCTCCC	120
GCCGGTGGGC TGATCGGCA	A CGGCCCCCCC	CCCCCCCC	GCATGGGCGC	CACAGATAGC	180
J IGHI COGCA	n coocoococc	GGCGGCGAC			219

# (2) INFORMATION FOR SEQ ID NO:271:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 571 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:271:

AAGATCATCG	GCGCCGCTCC	TTAGCATCGC	TGCGCTCTGC	ATCGTCGCCG	GCGCGGATCA	60
CGGAGGTCCG	GCCTTGTACC	CCACTCCTCG	AACGGTCAGC	ACCACAGTCG	GGTTCTCGGG	120
ATCCTTTTCG	ACCTTGGCCC	GCAGACGCTG	GACATGCACG	TTCACCAGCC	TGGTATCGGC	180
TGGGTGCCGG	TAACCCCATA	CCTGTTCGAG	CAGCACATCA	CGAGTAAACA	CCTGGCGCGG	240
CTTGCGCGCC	AATGCGACCA	ACAGGTCGAA	TTCCAGCGGT	GTCAACGAGA	TCTGCTCACC	300
GTTGCGAGTG	ACCTTGTGCG	CCGGTACGTC	GATTTCTACG	TCGGCGATGG	ACAGCATCTC	360
GGCGGGTTCG	TCGTCGTTGC	GGCGCAGCCG	CGCCCGCACC	CGCGCAACCA	GCTCCTTGGG	420
CTTGAACGGC	TTCATGATGT	AGTCGTCGGC	GCCCGACTCC	AGACCCAGCA	CCACATCCAC	480
		GCATCACGAT				540
		TACCGGGGCA				571

## (2) INFORMATION FOR SEQ ID NO:272:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 93 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:272:

 Leu
 Phe
 Gly
 Ala
 Gly
 Gly
 Val
 Gly
 Val
 Gly
 Asp
 Gly
 Val
 Ala

 Phe
 Leu
 Gly
 Thr
 Ala
 Pro
 Gly
 Pro
 Gly
 Gly
 Ala
 G

- (2) INFORMATION FOR SEQ ID NO:273:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 26 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:273:

Met Pro Pro Val Ser Ala Asn Ala Met Val Pro Ala His Ser Thr Pro 1 5 10 15
Pro Val Ala Asn Ile Glu Val Asn Thr Pro

- (2) INFORMATION FOR SEQ ID NO:274:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 26 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:274:

- (2) INFORMATION FOR SEQ ID NO:275:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 20 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:275:

Trp Pro Ala Gly Arg Pro Met His Pro Ala Pro Gly Thr Ser Ala Asp 1 5 10 15 His Pro Pro Asn 20

- (2) INFORMATION FOR SEQ ID NO:276:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 140 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:276:

Val Leu Val Ala Gly Cys Ser Ser Asn Pro Leu Ala Asn Phe Ala Pro 1 Fro Tyr Pro Pro Pro Thr Ile Glu Pro Ala Gly Pro Ala Val Ser Pro Pro Pro Ser Gln Asp Pro Ala Gly Ala Val Ser Gly His Pro Ser Gln Asp Pro Ala Gly Ala Val Arg Pro Leu Ser Gly His Pro Ser Ala Ala Leu Phe Asp Asn Gly Thr Arg Gln Leu Val Ala Leu Arg

### (2) INFORMATION FOR SEQ ID NO:277:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 142 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:277:

Met His Ile Thr Leu Asn Ala Ile Leu Arg Ala Ile Phe Gly Ala Gly Gly Ser Glu Leu Asp Glu Leu Arg Arg Leu Ile Pro Pro Trp Val Thr 25 Leu Gly Ser Arg Leu Ala Ala Leu Pro Lys Pro Lys Arg Asp Tyr Gly 40 Arg Leu Ser Pro Trp Gly Arg Leu Ala Glu Trp Arg Arg Gln Tyr Asp 55 60 Thr Val Ile Asp Glu Leu Ile Glu Ala Glu Arg Ala Asp Pro Asn Phe Ala Asp Arg Thr Asp Val Leu Ala Leu Met Leu Arg Ser Thr Tyr Asp 90 85 Asp Gly Ser Ile Met Ser Arg Lys Asp Ile Gly Asp Glu Leu Leu Thr 100 105 Leu Leu Ala Ala Gly His Glu Thr Thr Ala Ala Thr Trp Ala Gly Arg 120 Ser Asn Gly Ser Thr Gly Thr Pro Thr Cys Ser Arg Leu Trp 135

- (2) INFORMATION FOR SEQ ID NO:278:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 163 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:278:

Val Leu Val Ala Gly Cys Ser Ser Asn Pro Leu Ala Asn Phe Ala Pro 10 Gly Tyr Pro Pro Thr Ile Glu Pro Ala Gln Pro Ala Val Ser Pro Pro 25 Thr Ser Gln Asp Pro Ala Gly Ala Val Arg Pro Leu Ser Gly His Pro 40 Arg Ala Ala Leu Phe Asp Asn Gly Thr Arg Gln Leu Val Ala Leu Arg Pro Gly Ala Asp Ser Ala Ala Pro Ala Ser Ile Met Val Phe Asp Asp 70 75 Val His Val Ala Pro Arg Val Ile Phe Leu Pro Gly Pro Ala Ala Ala 85 90 Leu Thr Ser Asp Asp His Gly Thr Ala Phe Leu Ala Ala Arg Gly Gly 105 Tyr Phe Val Ala Asp Leu Ser Ser Gly His Thr Ala Arg Val Asn Val 120 Ala Asp Ala Ala His Thr Asp Phe Thr Ala Ile Ala Arg Arg Ser Asp 135 Gly Lys Leu Val Leu Gly Ser Ala Asp Gly Ala Val Tyr Thr Leu Ala 145 150 Lys Asn Pro

#### (2) INFORMATION FOR SEQ ID NO:279:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 240 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:279:

Trp 3ly Ala Pro Pro Ser Gly Gly Pro Ser Pro Trp Ala Gln Thr Pro Arg Lys Thr Asn Pro Trp Pro Leu Val Ala Gly Ala Ala Ala Val Val 25 Leu Val Leu Val Leu Gly Ala Ile Gly Ile Trp Ile Ala Ile Arg Pro 40 Lys Pro Val Gln Pro Pro Gln Pro Val Ala Glu Glu Arg Leu Ser Ala 55 Leu Leu Leu Asn Ser Ser Glu Val Asn Ala Val Met Gly Ser Ser Ser 70 75 Met Gln Pro Gly Lys Pro Ile Thr Ser Met Asp Ser Ser Pro Val Thr Val Ser Leu Pro Asp Cys Gln Gly Ala Leu Tyr Thr Ser Gln Asp Pro 105 Val Tyr Ala Gly Thr Gly Tyr Thr Ala Ile Asn Gly Leu Ile Ser Ser 120 125 Glu Pro Gly Asp Asn Tyr Glu His Trp Val Asn Gln Ala Val Val Ala 135 140 Phe Pro Thr Ala Asp Lys Ala Arg Ala Phe Val Gln Thr Ser Ala Asp

184

- (2) INFORMATION FOR SEQ ID NO:280:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 22 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:280:

Asp Val Val Glu Ala Ala Ile Ala Arg Ala Glu Ala Val Asn Pro Ala

1 5 10 15

Leu Asn Ala Leu Ala Tyr
20

- (2) INFORMATION FOR SEQ ID NO:281:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 174 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:281:

Leu His Pro Ala Gly Ala Thr Asn Gly Ser Gly Gln Leu Ala Leu Pro 10 Val Glu Ala Pro Pro Arg Ser Val Pro Ser His Gly Glu Pro Leu Gly 20 25 Ser Ala Ala Pro Glu Gly Leu Glu Gly Glu Phe Asp Asp Arg Ile Asp 40 Glu Arg Phe Pro Val Phe Ser Ser Ala Ser Leu Ala Glu Ala Leu Pro 55 Gly Pro Leu Thr Pro Met Thr Leu Asp Val Gln Leu Ser Gly Leu Arg 75 Ala Ala Gly Arg Ala Met Gly Arg Val Leu Ala Leu Gly Gly Val Val 90 Ala Asp Glu Trp Glu Arg Arg Ala Ile Ala Val Phe Gly His Arg Pro 105 100 Tyr Ile Gly Val Ser Ala Asn Ile Val Ala Ala Ala Gln Leu Pro Gly

Trp Asp Ala Gln Ala Val Thr Arg Arg Ala Leu Gly Glu Gln Pro Gln
130

Val Thr Glu Leu Leu Pro Phe Gly Arg Pro Gln Leu Ala Gly Gly Pro
145

Leu Gly Ser Val Ala Lys Val Val Val Thr Ala Arg Ser Leu
165

#### (2) INFORMATION FOR SEO ID NO:282:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 61 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:282:

Val Gly Val Val Gly Val Gly Ala Gly Ala Thr Ser Pro Ala Gly Ala Gly Ala 1 1 5 15 
Gly Ala Gly Ser Ala Gly Thr Gly Ala Gly Ala Gly Gly Gly Ala Thr 20 25 30 
Lys Gly Arg Ile Asp Ser Ala Ser Ala Leu Ala Ala Pro Leu Ser Thr 35 40 45 
Gly Leu Leu Ala Val Pro Ser His Thr Thr Asn Gln Arg 50 55 55 60

#### (2) INFORMATION FOR SEQ ID NO:283:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 133 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:283:

Met Ala Asn Thr Gly Ser Leu Val Leu Leu Arg His Gly Glu Ser Asp 1 5 10 Trp Asn Ala Leu Asn Leu Phe Thr Gly Trp Val Asp Val Gly Leu Thr 20 25 Asp Lys Gly Gln Ala Glu Ala Val Arg Ser Gly Glu Leu Ile Ala Glu 40 His Asp Leu Leu Pro Asp Val Leu Tyr Thr Ser Leu Leu Arg Arg Ala 55 Ile Thr Thr Ala His Leu Ala Leu Asp Ser Ala Asp Arg Leu Trp Ile 70 75 Pro Val Arg Arg Ser Trp Arg Leu Asn Glu Arg His Tyr Gly Ala Leu 90 Gln Gly Leu Asp Lys Ala Glu Thr Lys Ala Arg Tyr Gly Glu Glu Gln 105

186

Phe Met Ala Trp Arg Arg Ser Tyr Asp Thr Pro Pro Pro Pro Ile Glu 115 120 125 Arg Gly Ser Gln Phe

arg Gly Ser Gln Pho

- (2) INFORMATION FOR SEQ ID NO:284:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 63 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:284:

 Pro Gly Ser
 Phe Ala Arg
 Thr Lys
 Pro Gly Arg
 Thr Ala Asp Ala
 Asp Ala

 1
 5
 10
 15
 15

 Pro Ile Arg
 Cys Arg
 Asp Ser
 Arg Gly Thr Ala Gly His Arg
 Ala Leu

 20
 25
 30
 30

 Asp Glu Pro Pro Pro Pro Arg
 Gly Ser
 Glu Pro Ala Arg
 Arg Arg
 Arg
 Arg

 35
 40
 55
 40
 Leu Ala
 Ala Arg
 Arg
 Arg
 Val

- (2) INFORMATION FOR SEQ ID NO:285:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 72 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:285:

- (2) INFORMATION FOR SEQ ID NO:286:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 74 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:286:

- (2) INFORMATION FOR SEQ ID NO:287:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 174 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:287:

CCGCACGTAA CACCGTGAAT TGAAGGGAGC CGCTGGTCAT GGGCCGATTC TATCCGTGGG 60 CGAACGGTTA TTGACGGCCC GGAGGCCACT CCGCTGCCAC CAAGTGGTGA CTCAGCGCGT 120 TTTCACGGCA ACGAACGGCG GACACACCAC TTGACATTCG ACAGCACGGC CGCG 174

- (2) INFORMATION FOR SEQ ID NO:288:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 404 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:288:

TCGCAAACGG GGTGACGTTC CGTCCGGTGG CGCTAGAGAG TTTGTCGCAC TTTCCGGTGA 60
CCGTCGCCGC GCACCGCAGC ACCGGTGGC TCACGCTGCT AGTGGAGGTG CTCGACGGTG 120
CGCTGGGCAC GATGGCGCC GAAAGCCTCG GCAGGCGGGT GCTGGCTGTG TTACAGCGCT 180
TGGCCGACGC ACCCGGCCTG CCGCTGCGC ACGTCGACAT TCTGCTGGAC GGCGAGCACG 240
ATCCGACCGC ACCCGGCCTG CCGGATGTGA CGACGTCGGC ACCCGCGGTG CATACCCGGT 300
TGACGTACCG GGAGCTGGAT GCATTGGCCG ACCGGCTGGC CACT 404

(2) INFORMATION FOR SEQ ID NO:289:

188

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 134 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:289:

Ala Asn Gly Val Thr Phe Arg Pro Val Ala Leu Glu Ser Leu Ser His Phe Pro Val Thr Val Ala Ala His Arg Ser Thr Gly Glu Leu Thr Leu 20 25 Leu Val Glu Val Leu Asp Gly Ala Leu Gly Thr Met Ala Pro Glu Ser Leu Gly Arg Arg Val Leu Ala Val Leu Gln Arg Leu Val Ser Arg Trp 55 Asp Arg Pro Leu Arg Asp Val Asp Ile Leu Leu Asp Gly Glu His Asp 70 Pro Thr Ala Pro Gly Leu Pro Asp Val Thr Thr Ser Ala Pro Ala Val 90 His Thr Arg Phe Ala Glu Ile Ala Ala Ala Gln Pro Asp Ser Val Ala 105 Val Ser Trp Ala Asp Gly Gln Leu Thr Tyr Arg Glu Leu Asp Ala Leu Ala Asp Arg Leu Ala Thr 130

- (2) INFORMATION FOR SEQ ID NO:290:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 526 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:290:

GCTTCGACGG	CTACGAGTAC	CTGTTCTGGG	TGGGTTGTGC	GGGCGCCTAC	GACGACAAGG	60
CCAAGAAGAC	CACCAAGGCC	GTCGCCGAGC	TGTTCGCCGT	CGCCGGGGTG	AAATACTTGG	120
TGCTGGGCGC	TGGGGAAACC	TGCAACGGCG	ACTCGGCGCG	CCGCTCCGGC	AACGAGTTCC	180
TCTTCCAGCA	GCTGGCACAA	CAGGCCGTCG	AGACCCTGGA	CGGTTTGTTC	GAGGGTGTGG	240
AGACCGTCGA	CCGCAAGATC	GTTGTCACCT	GCCCGCACTG	CTTCAACACC	ATCGGCAAGG	300
AATATCGGCA	GCTGGGCGCC	AACTACACCG	TGCTGCACCA	CACCCAGCTG	CTCAATCGGT	360
TGGTGCGCGA	CAAGAGGCTG	GTCCCTGTCA	CTCCGGTTTC	TCAGGACATC	ACCTACCACG	420
ACCCGTGCTA	CCTGGGTCGG	CACAACAAGG	TCTACGAGGC	ACCACGGGAG	CTGATCGGTG	480
CCGCGGGGGC	CACCTGAGCC	GAGATGCCGC	GCCATGCCGA	CCGCAG		526

- (2) INFORMATION FOR SEQ ID NO:291:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 487 base pairs

- (B) TYPE: nucleic acid (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:291:

TAGACGAACC CCCAGGAACA CGCGGGTAGG TAGGTGATGA CCGCGATAGG AGACCGTACT	CCCGGGTGAG TCGCCAACCC CGACGGCTCC TCGCCGCGGT ACAGGGCGAG	TGCCGGAGC TGCCGAAGC ACCCATCCGA CAGGCGACTG CAGCCCGACC	GCCACCAGCA TGGGAGGCAA GGGGTAGGCG GCCAGCATCC AGCGCAAGCT	CCGCGGGCAT GAAGACGGC TGACGTGCAC GCACCGGACC CACGCAGCGG	GCCGACAATG ATCTCGCTCC GGTCGCAAAA GACACCGGCG	60 120 180 240 300 360 420
AATTGGG	GCACCAACCT	GAAGAGCTGA	ACACTCGCCG	AACGTGCAAC	AGCTGCGAAC	480 487

- (2) INFORMATION FOR SEQ ID NO:292:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 528 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:292:

CCGACGCGG AGCTGGTCGC TGACTTTCAA TGCGCGGACAG GGGAGCGGTT ATCGGCCTGG	CCATGCGATC GTCCTTCGCG GACCGATCAT CATCGGCACC CATCACCGCC GCACCGTCCC	CGGCTGGCCG ATCGATGAAC TTCACCCACT CCATTTCTGC GTCCGATTGC GATGGCCGTT	CGGTGTTGGT CCGCCCACCT TACTGGACTA CCGATGATCC TGCTGGCGGG TGGCCGAGCG	GCACGCTTTG CAAGGCGGCC CCGCTCGCGG TGAGCTAAGC TTTGGAGCCG CCTGGGTGTA	CGGCCATTAA CTGTATGCGC GACCTGAAGT	60 120 180 240 300 360 420
CATTCCAACA		CALGGCCCCTT		G1 GGG1	GATGACCGCT	480 528

- (2) INFORMATION FOR SEQ ID NO:293:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 610 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:293:

CCAAGCCCGT	CAAGGAGCCG	GTGCCGGCC	TCCCTCCCC	~~	CCGGCGTTGC	
CGCCGTTGCC	GCCGTTGCGG	CCCCTAcccc	100010001	GCCGCCGACG	CCGGCGTTGC	60
TGGCCCCCC	CTTTTACCCC	CCGG I MCCGG	GGTTTCCTAC	GGTGCCGCCG	CCGGCGTTGC	120
100000000	GITIAGGCCG	TITTCGCCGG	CCCCGCCGTC	ACCGGCTTTG	CCCGGCATCGC	180
						100

AGCCTCGCC TGCCGCGCA GCCGCCCAAC TGTGTCGCGG CTCCTGCGAT TTGGCCCCGG 360 CCGACGAGAT GATGGGCACC ACCGGAGCCT GCGGCCGTCT GGGGGAGGCC AGCGCGGGTT 420 CCGCGTCACG CCATACGCGA CGGTGCGCCG CCGCTTCGA GATTTGCAGG CTGCGTTGCA 480 CCAGATCGAG CAGCGGTGT CCAGAGCCC CGGTTAGCC GTTGGCGCCG CCGTTGTAGC CGGCTGAGCC CAACCGCGCA TCCATAAGCG ACACCATTCG 600 CCGCTTGATGC	AAGCCTCGCC CCGACGAGAT CGCGGTCACG CCAGATCGAG GGCGAGCGCA	GATGGGCACC CCATACGCGA CAGCGGTGTG ATATCGGTGC	TCGATCGCGG GCCGCCCAAC ACCGGAGCCT CGGTGCGCCG CCCAGGGACT	CGTCGATGGA TGTGTCGCGG GCGGCCGTCT CCGCTTCGGA GGGTTAGCCC	TCCGCCGACC CTCCTGCGAT GGGGGAGGCC GATTTGCAGG GTTGGCGCCG	ACGACGTGCG TTGGCCCCGG AGCGCGGGTT CTGCGTTGCA	240 300 360 420 480 540 600
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------	------------------------------------------------------	--------------------------------------------------------------------	--------------------------------------------------------------------	--------------------------------------------------------------------	------------------------------------------------------	-----------------------------------------------

### (2) INFORMATION FOR SEQ ID NO:294:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 164 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:294:

Phe Asp Gly Tyr Glu Tyr Leu Phe Trp Val Gly Cys Ala Gly Ala Tyr Asp Asp Lys Ala Lys Lys Thr Thr Lys Ala Val Ala Glu Leu Phe Ala 25 Val Ala Gly Val Lys Tyr Leu Val Leu Gly Ala Gly Glu Thr Cys Asn 40 Gly Asp Ser Ala Arg Arg Ser Gly Asn Glu Phe Leu Phe Gln Gln Leu Ala Gln Gln Ala Val Glu Thr Leu Asp Gly Leu Phe Glu Gly Val Glu 70 75 Thr Val Asp Arg Lys Ile Val Val Thr Cys Pro His Cys Phe Asn Thr Ile Gly Lys Glu Tyr Arg Gln Leu Gly Ala Asn Tyr Thr Val Leu His 100 105 His Thr Gln Leu Leu Asn Arg Leu Val Arg Asp Lys Arg Leu Val Pro 120 Val Thr Pro Val Ser Gln Asp Ile Thr Tyr His Asp Pro Cys Tyr Leu 135 140 Gly Arg His Asn Lys Val Tyr Glu Ala Pro Arg Glu Leu Ile Gly Ala 150 155 Ala Gly Ala Thr

### (2) INFORMATION FOR SEQ ID NO:295:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 161 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:295:

WO 99/42118 PCT/US99/03265

191

Arg Arg Arg Asp Leu Ala Gly Glu Leu Arg Gln Cys Ile Gln Thr Pro Thr Ile Ile Asp Gln Ala Asp Ala His Asp His Arg Thr Gly His Gln His Arg Gly His Ala Gly Gly Ile Asp Glu Pro Pro Gly Glu Cys Arg 40 Lys Leu Gly Gly Lys Lys Asp Gly Ala Asp Asn Ala Gln Glu His Arg 55 Gln Pro Thr His Pro Arg Gly Arg Arg Asp Val His Ile Ser Leu Pro 70 75 Arg Val Gly Asp Gly Ser Gln Ala Thr Gly Gln His Pro His Arg Thr 85 90 Gly Arg Lys Ile Gly Asp Asp Arg Arg Gly Gln Pro Asp Gln Arg Lys 105 Leu Thr Gln Arg Asp Thr Gly Ala Ala Ile Gly Gln Gly Glu Gln Ala 120 125 Thr Gly Asn Ala Gly His Ile Ala Gly His Leu Glu Thr Val Leu His 135 140 Gln Pro Glu Glu Leu Asn Thr Arg Arg Thr Cys Asn Ser Cys Glu Gln 150 Leu

## (2) INFORMATION FOR SEQ ID NO:296:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 175 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:296:

Glu Ala Arg Glu Tyr Glu Pro Gly Gln Pro Gly Met Tyr Glu Leu Glu 1.0 Phe Pro Ala Pro Gln Leu Ser Ser Ser Asp Gly Arg Gly Pro Val Leu 20 Val His Ala Leu Glu Gly Phe Ser Asp Ala Gly His Ala Ile Arg Leu 40 Ala Ala Ala His Leu Lys Ala Ala Leu Asp Thr Glu Leu Val Ala Ser 55 60 Phe Ala Ile Asp Glu Leu Leu Asp Tyr Arg Ser Arg Arg Pro Leu Met 70 75 Thr Phe Lys Thr Asp His Phe Thr His Ser Asp Asp Pro Glu Leu Ser Leu Tyr Ala Leu Arg Asp Ser Ile Gly Thr Pro Phe Leu Leu Ala 105 Gly Leu Glu Pro Asp Leu Lys Trp Glu Arg Phe Ile Thr Ala Val Arg 120 Leu Leu Ala Glu Arg Leu Gly Val Arg Gln Asn His Arg Pro Gly His 135 Arg Pro Asp Gly Arg Ser Ala His Thr Thr Asp His Asp Asp Arg Ser

WO 99/42118 PCT/US99/03265

- (2) INFORMATION FOR SEQ ID NO:297:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 178 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:297:

Lys Pro Val Lys Glu Pro Val Pro Ala Leu Pro Pro Val Pro Pro Thr 1 5 10 Pro Ala Leu Pro Pro Leu Pro Pro Leu Pro Pro Val Pro Gly Phe Pro 25 30 Thr Val Pro Pro Pro Gly Ser Met Ala Pro Leu Phe Arg Pro Phe Ser 45 40 Pro Ala Pro Pro Ser Pro Ala Leu Pro Pro Ser Pro Pro Leu Pro Pro Leu Val Gly Val Ala Ala Trp Leu Thr Tyr Cys Ser Thr Gly Pro Ala 70 75 Leu Asp Pro Leu Ala Val Ser Ile Ala Ala Ser Met Asp Pro Pro Thr 85 Thr Thr Cys Glu Ala Ser Pro Ala Ala Ala Ala Gln Leu Cys Arg 105 Gly Ser Cys Asp Leu Ala Pro Ala Asp Glu Met Met Gly Thr Thr Gly 120 125 Ala Cys Gly Arg Leu Gly Glu Ala Ser Ala Gly Ser Arg Ser Arg His 135 Thr Arg Arg Cys Ala Ala Ala Ser Glu Ile Cys Arg Leu Arg Cys Thr 145 150 155 160 Arg Ser Ser Ser Gly Val Pro Arg Asp Trp Val Ser Pro Leu Ala Pro 165 170 Pro Leu

- (2) INFORMATION FOR SEQ ID NO:298:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 921 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:298:

AATTCGGCAC GARCAGCAC AACACCGGCT TCTTCAACTC CGGCGACGTC AATACCGGTA 60
TCGGCAACAC CGGCAGCTTC AACACCGGGCA GCTTCAATCC GGGCGATTCC AACACCGGGG 120

WO 99/42118 PCT/US99/03265

ATTTCAACCC	ANGCAGCTAC	CACACGGGGA	CTCGGAAACA	CCGGCGATTT	TACACCGGCS	180
		AGCAACGGGT		GGAAATTATC		240
GGNTGCACCC	GGSCTTRCGA	ATCCCTCGKG	CCAATTCAAC	TCCTCNACAA	GCTTGCGGCC	300
GCACTCSAGC	CCGGGTGAAT	GATTGAGTTT	AACCGCTNAN	CAATAACTAG	CATAACCCCT	360
				GGANGAACTA		420
				CAGTTGCGCA		480
				GGKGTTACCC		540
GCTACCTTGC	CANNSSCCTN	RSGCCGTCTT	TCSTTTCTTC	CTTCCTTCTC	CCMCTTCGCC	600
	AGCTCTAAAT			CAATTATTGC	TTACNGSCCC	660
CCACCCCAAA	AAYTNATTNG	GGTTAATGTC	CCTTMTTGGG	CNTCCCCCTA	WINANNGTIT	720
TCCCCCTTNA	CTTTGRSTCC	CTTCYTTATW	NTGAMNCTNT	TTCCACYGGA	AAAMNCTCCA	780
	TTTCCTTTGA		AATTSCAATY		TTMAANTTAA	840
CYTATTTCNA	ATTITCCCGM	TTTTMMNATR	TTNSNCKCGM	KNCTCCNRKA	SSGNTTTCCT	900
CCCCCYTTSS	GKTYCCCCRN	G				921

#### (2) INFORMATION FOR SEQ ID NO:299:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1082 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:299:

AATTCGGCAC	GAGATANGGG	CGCACCGGGG	TCCGCAGCCG	GCGGGACCGT	CGCCAGCACC	60
ACCGGGGTCA	ACAGCACCAC	GGTGGCGTCC	ANGCAGAGCG	CCGCGGTGAT	GGCGGCCGAG	120
ACGGCRAACA	CCTGCCGTAG	CAGTCGGTGC	GACTCCGCGC	TCGCTCGANC	CATGGCCGCG	180
CCGGCTGCCT	CGAACANGCC	TTCGTCGTCC	ACAGCTTAGC	CAGCANCCAA	ACCGCACCCA	240
GAAACCCACA	CGCCCGCCGC	CCCGGANACC	TGCGCCATCG	KCTGCTGGGG	CGANATCCCC	300
CGATCGCTNA	CANGATGACC	GCTGCCGGAA	CGCCGCCGCT	GCCTCCGGGC	AGCCGCGTGG	360
GCSGGGCAAC	CGCGAACCCA	NGAACACGGC	AAGCAGTATC	ANCGCAACAG	CAATTGTCAA	420
GGGCTAAACG	CTTCACATCC	AGGGATCTCG	CGGCGCCACA	CCGTCGGMTC	TGCAGSGCGA	480
CCCCNTCCTN	GGGCGGNCAC	TCNTCAAAGA	TGCNGATCNA	CAGKCTAGGT	CTTCGGCCGA	540
TATGSAAGGN	CCCAACGGNT	TTAAAGCGGC	SAAAAAASTC	TCCCANTGGA	TAAAATCAGC	600
CGGGGANCCC	CCCGTGSCMM	NGTCYCGGKC	ATTNTTCAAC	MGGTTTNACG	GCGGKTGCNG	660
GCCAACTKGC	CAAAMTTAAG	KTNGGGGNTY	CGGGGCGGTA	ACCGGCNNTK	NGCCCCTTAA	720
AAAACCGGNC	YTTTCTKGAT	TAMMACCGGN	CCCCCAWTGG	CGGKTGKTCC	CANGNTYAAC	780
AMCCYCCCSS	MNGGGKTGGS	SAACCCTTCC	CGNGGGGTTC	NTKGTTSCYT	AWMCCCCCGG	840
AAACCSGKYG	GGKTGGCRTN	WASSAMNCCC	CMNGYYTCTT	TAAAGGCCAN	KNRAAWGKYT	900.
CCTTGGGAAW	CCTNCAATYC	GAAAAYYCTC	CTYMMGSSCN	CTTKCWRTYN	NRNGGGAACS	960
AMWINYCCNC	GWTTCAWTCG	GGTCCGASMN	AAACKCTTTY	TTTTYCGSSC	STCCMGGSNC	1020
SGGTKNANAN	AAASATTTMC	YYCNNNANKK	YYYCSSGCTT	CYKMGRRNRR	GMGAACCCGR	1080
GS						1082

### (2) INFORMATION FOR SEQ ID NO:300:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 990 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:300:

AATTGGCACG	AGTGATCGCG	CTGAAGCCGG	TAGCGCGGGT	GGCTCGGGTG	GTTTGCGAAC	60
RAAATCCGCT	CGANGTGGTC	TCGGTAGGCG		CGGTGGCGCG		120
ATCTGATCGG	CGCGGCCGTA	GTGCACGTCG	GCGGGCGTGT	GCAGTCCGAT		180
TTGTGTTCGT	GGTTGTACCA	GCCGAAGAAC	CGGTCGCAGT	GCACCCGGGC		240
GACTCGAACC	GTTTCGGGAA	ATCGGGCCGG	TACTTGAAGG	TCTYGAACTG		300
AACGGGTTGT	CTTGCTGGTG	TGCGGGCGTG	AGTGCGACTT	GGTGACACCG	AAGTCGGCCA	360
NCANCAATGC	CACCGGTTTG	GAACTCATCC	ACAACCCCCG	TCCGCGTCMA		420
NCGGCGCTAA	TTTNYTGGGC	GGCAAGGGTT		KCCGCTCGGC		480
ANTCNCSCCA		CCNCCCAAAC		ANAAAAMATV	CAAACAVCAC	540
CYTCCGGKTN	TTATANCTYC					
AWTCCCAACN	CCCKCCAANA	RCYKGGGGCC	CCCNCCAACC	CCCCKCYYKY	MCCCCCINCCA	600
CCCYAACMAW				AGGTTTTSCT		560
ANTCGGAAMC					NAAAGAAASA	720
AKGCCCCCNY		CSGCGGKKKT		CRASATTGSC	NCCSAAWKSA	780
CKYYSSMYCC	CCCCTCCCCM		KKGTTNCCCT	WMRCWMWYTS	GGCCNASCCN	340
YKGCCCCCC	AMMININGGGG			MGGCCCCYTM	GKKCCCWKNT	900
MKCYCCNRAR			CCCCMKRRGM	TCCCNANTGA	MCCTCWGNRA	960
· increditate	MANCOSCHCC	NGCNCRCKNN				990

- (2) INFORMATION FOR SEQ ID NO:301:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 223 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:301:

AATTCGGGTG	GCAACGCGGG	CCTGTTCGGC	AACGGCGGCG	CCGGTGGTGC	CGGTGGGGCT	60
GGTGGTGGCG	CCGGCGGCGC	GGGCGGTAAC	CCCCCCTCCT	TTCCTCITC	GGGCGCTGGC	
GGCGTGGGTG	GTGTANGTGC	CCCCCCCCCC	3255555	LIGGICAIGG	GGGCGCTGGC	120
CCTCCTCCTC	GOGGARGIGE		AACGGTGCTA	CGCCCGGTCA	GGATGGGGCG	180
GCIGGIGITG	CCGGGTCGGA	CRACRCTCGT	GCCGCTCGTG	CCG		223

- (2) INFORMATION FOR SEQ ID NO:302:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 418 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:302:

AATTCGGCAC	GANGCGGCAA	CGGTGGCAGC	GGCGGCACGT	CNGTTGCCAC	CGGGGGGGCC	60
GGGAACGGCG	GTGCCGGCGG	CGCCGGCGGC	GGGGGGGGG	TOTTOCCAL	CGGCSGCAAC	
GCCGCCAGTC	CCCCAATCCC	202200000		TGATCGGCAA	CGGCSGCAAC	120
GGCGGCAGIG	GCGGWAIGGG	CGATGCCCCG	GGCGGCACCG	GCGTCNGCGG	CATCRGTGGG	130
CIGITGITGG	GTTTGGACRG	CGCCAACGCC	CCGGCCAGCA	CCAACCCGCT	GCACACCGCG	240

CAGCACAGGC GTTGGCCGCA	GTCAACGCGC	CCATCCAGGC	CGTGACCGGG	CGCCCCTGAT	300
CGGCAACGCG CCAACGGCGC	CCCGGGCAAC	GGGGCCCCG	GCRGGCACGG	CGGGTGGTTG	360
TTCGGCGGCG GAAGGAACGG	CGGGTCCGGC	GTCANCRGCG	GGGCGGGCGG	AAATGCCG	418

- (2) INFORMATION FOR SEQ ID NO:303:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1049 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:303:

AATTCGGCAC	GAGGGGCACG	ATCGCATACA	GCGCTCGCGG	CAGACCCGCC	CGATACAGCA	5.C
GCTCGGCACA	CGCGAGCGCA	CAATACGGCG	TCTGGCTGTC	CGGCTTGARC	ACCACCGCGT	120
TACCGGCCAC	CAGCGCGGGC	ACCGAGTCCG	ACACCGTAAG	CGTCATGGGG	TAGTTCCACG	180
GCGAGATCAC	CCCCACCACG	CCCTTCGGTT	GATAGCACAC	CGTGGTCTTG	CCTATCCCGG	240
GCAGCAGCGG	CTGTGCCTTA	CGGGGCTTCA	GCAGGTCCAC	ACAGACTCGT		300
TNCGCSTTCC	GCGATCAGAT	CGACAATTTC	CTCTTGCGCC	GCCCATCGGG	CCTTGCCCGC	360
CTCGGCTTGC	AGGAAGTCCA	TGAAGAACTC	GCGGTTCTCG	ATNAACAGGT	CGCGATAGCG	420
GCSGATGACT	GCAGCTCGCT	CGATNACGGG	ACCTTCGCCA	GTCGGTCTGC	GCCGCGCGAN	480
CTTCCGCGAA	TGCCGCTTCG	ACTTCCGCGG	NCGTGCCAAC	GGAATCNTAT	CACGGGTTGC	540
CGGTTAAAAC	TCCTCAATST	NCYGGTCGAA	ATTCGGCAAC	TTCTTATCCC	GGCAGGTRCC	600
AACSANNCAA	ACCTCGGCAA	GGTTAGGMTT	TCCCCCNCTT	YCAAAAATNC	GGKTTTTGGN	660
CMAATTTCGC	CKCNATGKTG	MCAAGGMTCT	CKAANAAKCS	GGGTCYTCTN	NTCNGKGGAK	720
CCAAAMGGKT	TTGGGGMAGC	GKNMNCCAAN	CCTWACCCTG	KTKAANGGNW	TTCCCCCCGG	780
	ATYCYCCSNA	NCCCRGGGG	GNMCARATTC	TYCCGGMCTC	CTCKGGAWTC	840
WGMGSTTTCC	CAAAAAACSC	CCCAAATTMM	TTTTTCCRCN	TRTTGANACW	CTTTTKARCA	900
MMCSSAARNS	ANMCNCTCYC	CKCTKTGKTK	AAAAAGNAYW	CCCCMAAATT	TYTAWTTSSC	960
CCSCGCGGGN	CCCNCTNTTT	TSCNMTWCTM	WNYTNCRMCC	MMMSNCKSNG	KKGGNRCCNN	1020
CRCCSNCCCM	AAWYNTKGYN	KNTATMAGC				1049

- (2) INFORMATION FOR SEQ ID NO:304:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1036 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:304:

AATTCCCCAC	CACCCAATCC	3333555				
WHITCOOCMC	GAGGGAATCG	AGAATCCCGG	AATGGTGAAG	CCTCGGTGCC	TGCCGTTACG	60
CCAAGAKTCA	GGGTGAGCGG	CCCCCCGGTG	GGAATGCTGA	SGCCAACCGG	GAAAAGGGTG	120
AGGGCTGGGG	TGGAATAACT	GAANGTTACT	GGGATGGAAA	ACCCGGTATT	GATATGTATT	180
GGGCCGATCA	ANGTTGTGGG	AATGGGGGAA	GGCTGAGGGC	GACCTGTTGG	ATTTGGGGAA	240
TTGTYRTGGA	CRAKACWGGC	CAGCCMGCGT	GATGGTTTGG	TTSAANTTTT	GTGCCGGCCA	300
CANGGTGATG	GGATTGATTT	TGATGGGGCC	SATCGAAATA	TTGGGTATGC	CNACGCCSAA	360
CGAGATYGCC	GGGACGTTCA	TGGGCGGGAC	AACCMASGGT	CCSANGTAAK	COTTOCTON	420
2 mlmmG2 mCG	CCITTCCCC	3.0774/7000000		CCSANGIAAN	GGTTTCCTIN	42
ALLITIONICO	GGATTCCGGA	ACIMISTOGA	TGSGCTCSAY	MTSATSGCCC	NACNCCWCCG	480

YTTATTTCMS	GCTNAYGGGA	ATBAMRGGAA	CAAYNTCCCT	CCCMGGAAAA	ACCAACMSGC	540
CCTGGTNSYC	CNCCCRCCNC	AKAACCCRTT	KCTGTPSTMC	CCCMAAAmaa	CCCCCCCC	
NACTOCNOSG	AANTMSCCCC	CCCCCVAn	NOTOTROTIC	CCSMANAINA	CSCCCSCITS	600
MCCCCCCCC	AANTNSCCCC	CCCSCKNNTT	ATSTYCCCGK	GTTCCCCCCMC	CCCTTNAAMC	660
ICCCCGGTTA	ACCCCCWTNT	SNCNCCCCCS	YTAAKMNCRG	CCumic diality Can	CCCCCVMDNV	720
CNCCCCCTCK	SAMCWNCCNC	CTCKAACNAC	CCCYCVYCCM	Tiran and	·····	•
KITTINTIMOTIKO	CCAAVINICEC		CCCRCIRGSM	INCCCAATNT	WCMWCKCCNS	780
KIIMINCIKC	CCAAYTNCRC	CCNCRCTCCC	CCKSTSTCAM	WTATAAAACC	WCWYAWYNNK	840
KCNCWMAWTA	MGACWCTCNY	NCCCCNCNCK	NTTKTAMWCC	CKMCCCKCCW	TWOYOUGGO	
CCMTCTMNAC	YCCCCCKKTY	NYWMCCCTTC	0000000000	CIGICCCACSW	IWCICKCSCC	900
Management	7000001011	MAMACCCIIC	CCCCCCTCCC	MCNMBMKTCT	YCSGKTWCWC	960
NCYNTTMTCN	CYNANMCKCK	KICICIICCN	CRNTCTCCCC	CCWCCCCCCV	KKCTCTSKCC	1020
CNCNCTCCSC	MMKGSC					
						1036

## (2) INFORMATION FOR SEQ ID NO:305:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1036 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:305:

AATTCGGCAC	CACATCATCA	30000000				
CLOCOLAC	GAGATCATGA	ATAGCGGGCT	GGTCAGCACC	GAAGTGGTCG	GCGATCTCGC	60
GAGCAAGTCT	CGTCTGCTCG	CCCAGCAGGA	GGTCGGCATC	GATGCGGACA	CCTGCGATGT	120
CTTGGATGGT	GTTCAGTTGC	AGGTAAGGCC		CTTTGCTAGC		
GGCTCTTCGC	ACGTGAGGTA					180
GGGTACCAGG	· •			CCAACTCCGG	CCCTCGATCC	240
		GCCAGCCGTT	GTGCCCCCTG	GGCCGAAGGT	CAGCTGCTGT	300
GCGATCGAAG	TAAGAAACCG	CGCCATGCCC	GTCGCCAAGT	ACGACTGACC	GAGCAAACGA	360
ACGATCGTCG	TCCTTTCCGT	GGGGGTAATC	CANCCCACCA	ACCGCACGAG	GAGCAAACGA	
TTGGGATTCG	-					420
TTCCGCGGGG	- doi: e1 OACC	GACCAACCGC				480
· · · <del>-</del>	CCGCNAACGG	AATCANCGSG	ACGCGCTCGC	CGAASCANCC	GCATANCENT	540
ACATANCAAC	GGNNTCTGCG	CCCACATTTC	GGGSTTMTGC	CCCTCNGCAA	CECNIANVNCC	
CCCAATTCYG	AACNAAAAA	TTGGYCCATY		CCAAAAACCN		500
TCCCCCGGGG	GGGRCCCCYY				AWTCCCCKTA	660
CCCCTTGTCG			CCCWWAANCC	CCSGGGCSCC	CGGGTTRWTN	720
	GCCCNCCSGG	TTTGGTCMCM	GGSCMMTNWN	GGGNTGCSCC	CCCNCNAAAA	780
AAAAAYCKNG	NCAAATYAAA	CCCKYCMAAA	ASKTGGGSSC	CCCMARCCGG	GGKAAKKWWA	
ANTTAANCCY	KAAAAAAAww					340
ARAAAATMTC	CANATMNSSK		NGGGNCCTAA		GTTSTTNANG	900
			ASCCSWAKCC	CCCNNNKKNN	CCAAWKAARR	960
SRCCTTCGGG	TNWNSGGGGG	KKKKKTNCMS	KMNMMTTWGR	CCCNCCGCCN	NNTWKCCTTN	1020
TCCNYGGNGC	RNCAGN					•
						1036

# (2) INFORMATION FOR SEQ ID NO:306:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1060 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:306:

GCCATGGCCA	ACGCCTACTC	GGCCAACCCG	AATCCATTCG	GCGTCTCACC	CCNACCCCC	120
AAACCGGCGA	CCGCGGCATG	GATCAACCCG	CCCACCCCAG	ATCCCAAATA	GCAACCCCCG	
AATGAGACAC	TGGCGCAAAG	AGCTTGACAG	CCCCCCCAC	ACCCUAAAIA		180
CGGTCTTGCA	AGAAGCGGGT					240
	GTATCGCGCT		AGATCACGCC	GCCCAAGGGC	ATCGAGTCAA	300
			CCGCCAAGAA	ATGACGGTGC	GCATTACCAT	360
	ATCACCTITG		CACCANAACT	ATGANCAGCC	TTATGCCGAG	420
TCTCGTGGAC	ATCGGCAGCC	GCTTCAAAAA	CTCCTTGTCG	ACAATSGTAT	TECTENNECC	480
CCGAATTCTT	NTRCTTGCAA	SAACACTNCA	TGTTNCSGGT	NAACAACCYT	GGTTNGAAAA	540
ACANCCAATA				CGGAAGKTGK		
TGKTGCCCAA	AAATCCCGGG	NGGTRAAAWW	CCCNSNATCC	MSAATTTTSC	TOGGAACGAA	600
AAAAGGTCCA	AGKYCAAAGG	MGCCCCCCC	COMMINIO	MSAATTITSC	CINGAACAAM	660
WWWTNCAAAT	MTTNGGGTCC	Name Comm	SGNAAATIGG	TGAACSCAKA	WYANRTICCC	720
NWNMCCCMCN	MTTNGGGTCC				GMGTYTCCCC	780
	CYYCSCCCCA		MTTTCSGKGG	SMGGKKCCCC	CCSGGTYWGG	840
	CCGGKGGGTN		ACCCCCAMS	NGGGGGGAAA	ATTTGNAAWT	900
	SCMACCCCAA		AWNCCCGMGK	SARGGGGRNY	TTMKAGGGMG	960
GNYCCCCCCW	YCGGGGGGNA	Naayaaaagk	NGSNGRGAAT	NILINILLIALGK	BESEDMENT	1020
TYNTCCTYCN	CCNMGNRWWG		NSSGGSGGC		COCOMANIII	
		201120				1060

# (2) INFORMATION FOR SEQ ID NO:307:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1040 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:307:

AATTCGGCAC	GAGCTTCACC	AAAGAGCTGA	CATGCCGGGT	GATGCGACAT	CGCATCGAGG	60
GCAATACGGG	CATGGATGAN	CCGAANGGAN	TCTGGCGTTC			120
CCAAGGTGAA	ACGCTTTGCG	GCGAAAGATG	CGACGCTTAA		CACCGTGCAA	
TGTTNGTATG	GATGCTGGAA	CCGCGCTGAC	NGATAANGAA			180
ATGGATGGTC	CKSTTTTCNC	TCCGCSGTTA			GCCGGGCACN	240
TTCCCGCTAC	RCTGCAGCCC	ATCATGGATG			GCAGGCTATG	300
CAAGCGAMTC	GGGCATSCNC	GCGGCAMTTT		GAANAAGTTA		360
CGAATGCGGC	GCTYAAAAGC		CGCAACCTGC		GCGTMTCAAC	420
CCGNGNMNTG	·	NGGCTTGCGT		CNAACCCNTN	CNATYCTTTG	480
GTTGGACTTA	CGTTCTCTCC	AACTCCGKKG	SYTGCCNCCG	TGAAACCCMA	CTNCCCCCCC	540
	MRTNTTCAAA	AAMCGGMTNA	ACCSGAATNN	SAACCTNCCR	TCAAANTAMM	600
SAANTCGGGC	TTYGGGNRCC	CCCCNGAAYW	TTCKNCNGGG	GMNNTYCTCN	GGTTYNGGCG	660
SAAACNTTTG	CCRTNCYMNN	TTTACAMGGC	NCMTNMTTGM	GGGSCSNNAS	GWCCCGGGKK	720
TNTTTNCAAW	TCNCNSKTTT	TTKGGGGGGG	GGCYGRTRMC	NCGGGCCCC	GGCCCKKMAA	780
AAAAAMCMSA	RRCCNCYGGG	KKCCCCCCCM	NNATNGGGCG	YKCRAAACAA	ACCCCAANRA	
TNGNGMGGGC	SMACCSGNGN	GYNAAAKGGT	TSNSCTMANM	MKGMANNNCT		840
NCTGMGGGKT	TTKGNNGARN				SGMSCCMNSN	900
NGASNGWMGN	CRNNGANRCC	17.50		GAAAGGGSMS	GSCKSCNNGN	960
NSNMMGNNNS	CGYMTNKCGC	MAMMETONA	NNGNNNGNNN	GGGRKNNACN	NMKMCAWSMC	1020
						1040

# (2) INFORMATION FOR SEQ ID NO:308:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 348 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:308:

AATTCGGCAC ( GACCTGTTGG ( AGCGTGAACT ( TKGGGAACGG 1 ANTCCTGATA (	CAAGICGCG CAGGGCGAGA CCAGGGTTCG CTTKGGTACA	TTTCGGCCGT CAAACCACGA TCGTGACCAA	CCGGTCTATG TTTCTCGCCC TCGGGATCGT CTGTGGNCAA	GGGCCTAGTT TGGCTTCACG GCGGTCGGTC	ATCTGCGCCG TTCGGCGAAG	60 120 180 240
ANTCCTGATA (	LINGGTACA	TCGTGACCAA	CTGTGGNCAA	TATTCCCCCC	GCTCCTCGTC	240 300 348

- (2) INFORMATION FOR SEQ ID NO:309:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 332 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:309:

CACCCTGCGT CCCGGCCGCC TGTACGCCGT	ATCCAGCGAA GCGCACCAGC	TTAGCGCCGT CCGCGGATGA ACCATCGAGT TGACTCGTCA	AACGGCTGCG TCTTGTAGCG GCTCCTGCAG CTTCACGCGG	TGCCTGTTTG CACACCAGGC	CCCCTTGCGT CGGTTCTTGA AGGTCCTTCA TCGCCGGGAA GAAGCGCCGA	60 120 180 240 300
						332

- (2) INFORMATION FOR SEQ ID NO:310:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 962 pase pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:310:

AATTCGGCAC	RAGTCGGTCT	AGACGGATTC	AATGCTCCCG	CGAGCACCTC	GCCACTGCAC	60
	WWW TO TOC!	CAATGTGGTG	AACGAGCCCT	TOOLOGO	a	
acac tout co	GCAACGCGC	CAACGGGACT	CCTGGAACCG	CCCCTCTCTCCC	~~~~~~	120
GGTGGCTGTT	CGGCAACGGC	GGCAACGGCG	GETCCCCCCC	GGGCIGACGC	GGGGCCGGCG	180
ACGTGGGGAC	GCGCCCGGCG	GGATTTCTTC	561666666	GAACGGAACC	AACGGCGGG	240
CGCACAACGG	CACCGGGGGG	CACCONCE	GCACCGGSGC	ACCGGCGGGG	CCGGCGGCGT	300
GGTNACGCGG	CICCCCCCCC	GACGCNGCGC	CCGTNGGGCG	GCTTCTKGAT	GGGCTCCGGC	360
GGTNACGCGG	CACOGCGGGG	CCCGGCTCAC	CGCCNGTTGG	GACGCGGGGA	CGCGTNACCC	420
CORICIICII	CCGCNCCCCG	GAAACCGCGG	GGCCGGCCCC	ACA THE AVA CC	CCCCCCC	480
acadirector.	CGGAACGGNG	GGYNTTTTCC	AACGGCGGGG	CCCCCCTTGC	O. T	540
CCIINGGOGA	AGGNCCAAK.	CCCGKCTANC	YVAATCCCCC	AMOGRAMONIA		600
MYTTMAGGAA	CYTNCCCANT	KTTSGRACCW	CRCCNGGAAA	ACDAINMINICE	VCCCALACTA	
				UP LYMMINION T	NGGCAAACNA	660

NNTNCYTTKN NATTKGGNNA AAAANCCCTY CCWCSGRACT NCCCCCCNGM GRGMCNNTNN 720
NTTTYGNCNN CCCGGSNAAM RNTTKATTTC NGGGGGNTCN GGGTKMNNA AACCCCAAAM 780
MNRNNKCSCA ANGGGKSNGC NKNNMMNSGT TTTYCKNMRA MRNWTYKNKN NTCNGARSRN 840
NAAMCNNSNK NGKKKNNKAA ARNNTTWKTN KNSCNNNCNN GRRNGVRGGC CKMKGSNMNG 900
MCWHNAWRNG NNGSNCNCKC NNKMNAAAAA AASGGVNCKS NSMKNKKKKG NRGGGGGGGG 960
GG

### (2) INFORMATION FOR SEQ ID NO:311:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 323 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:311:

AATTCGGCAC	RAGAAGACGC	CCGAANGTTT	GCGCTGGCTC	TACAACTTCA	TCAARGCGCA	60
GGGGGAACGC	AACTTCGGCA	AGATCTACGT	TCGCTTCCCC	GAAGCGGTCT	CGATGCGCCA	120
GTACCTCGGC	GCACCGCACG	GCGAGCTGAC	CCAGGATCCG	GCCGCGAAAC	GGCTTGCGTT	180
GCAGAAGATG	TCGTTCGAGG	TGGCCTGGAG	GATTTTGCAN	GCGACGCCMG	TGACCCCCAC	240
GGGTTTKGTG	TCCGCACTGC	TGCTCACCAC	CCGCGGCACC	GCGTTGACCT	CCACCACCAC	300
CACCACTCGT	GCCGCTCGTG	CCG		occ110Acc1	COACCAGCIO	323
						دےد

- (2) INFORMATION FOR SEQ ID NO:312:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1034 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:312:

AATTCGCAGT	GTGTGTGGCG	GCGTCCAGAA	GAAGATGATC	GCGAACATCG	CCAGCGCCGG	60
CCAGGCTATG	GTGCCGGTGA	TGGCCGACCA	GCCGATCATC	ACCGGCATAC	AGCCGGCCGC	120
	ACCACGTTCT	GTGACGTGCG	TCGCTTGAGC	CAAAGCGTGT	AGACRAACAC	180
ATAAAACGCG	ACGGTGACCA	GGGCCAGCAC	CCCCGCCAGC	AGGTTCGTGG	CGCACCATAG	240
CCAGAAGAAC	GAGATCACCG	TCNACGTCAC		ACGCGTTTCG	GGTCGGCACC	300
GCTTCCCGCG	CCAAGGGCCG	GCGCGCGGTT		CCTTGTCGAT		360
GCNACCAGTT	GAGCGTGTTG	GCGCCGGCGG	CSGCCATCAT	CCCGCCGACN	ANCOTOTTO	420
GCATGANCAG	CGGATGAATG	GCGCCGCGC	TCGTGCCGCT	CGTGCCGAAT		480
CNACAACTTG		CGAACCCGGG		AATTTAAACC		540
AACTACATAA			GTYYTGAANG	GGTTTTTTGC	TTAAAGGAAG	600
AACYATTTCC	GGATANCTGG			CRCCCATNGC		
TTSCCCCTGA	ATGGSAATGG	MNCNCCYKNR	CNGGGNCTTT	AACRCSGGCG	CCTCCACAGT	660
MCCCNNCTKA			SKCCCTTCCK			720
TNCNGKTCCC	CNNAMNYTNW	ACGGGGGGCC	YTNGGGKCRM	TNTYCCCTCC	NTCCCCCNST	780
MAAANASAAN	GGGGKRNGTY		CCCAMAARGG	TWTKKTTTGG		840
CNNTNKGGNN		GAARAMAMCC		NYCCCCCCAM	YTNRRKMCSY	900
CCSCCCCGGY	MNNNAAYAWN	WMNATNCNNS		STINGTYWAG	GNRWKGNSRG	960
	· with TELLIN	WITH THE MINE	STNANMAKKN	NNNNNNSCN	WNGNGNNTCN	1020

WO 99/42118 200

SCNSNGGKBC CSCC 1034

- (2) INFORMATION FOR SEQ ID NO:313:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 331 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:313:

AATTCGGCAC	GAGCCCACAT	CCGGGGCCGC	TCGTTGCATG	ACTCGTTCGT	CATCGTCGAC	60
RAGGCACAGT	CGCTGGAGCG	CAATGTGTTG	CTGACCGTGC	TGTCCCGGTT	GGGGACCGGT	120
TCCCGGGTGG	TGTTGACCCA	CGACATCGCC	CAGCGCGACA	ACCTGCGGGT	CGGCCGCCAC	180
GACGGGTCGC	CGCGGTGATC	GAGAAGCTCA	AAGGTCATCC	GTTGTTCGCC	CACATCACCT	240
TGCTGCGCAG	TGAGCGCTCG	CCGATCGCCG	CGCTGGTCAC	GAGATGCTCG	ANGAGATCAC	300
CGGGCCGCGC						331
CGGGCCGCGC	TGAGTGCGCC	TCCCGCGAGC	A			33

- (2) INFORMATION FOR SEQ ID NO:314:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1026 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:314:

A TOTO COCO A CARCAMO COCO COCO COCO COCO COCO COCO COCO	
AATTCGGCAC GAGATCGTCA CCCTGGCGAC CAGTGCACCC AGGCCACGCC ACCAGTTA	ACG 60
GCTGATGGGC CAGAAGATGG ACCAGGTGCT GCCCATCCCG CCCACCGCAC TGCAGCTC	
CACCGGGATC GCGGTCCTCA GCTACGGCGA TRAGCTGGTG TTCGGCATCA CCGCTGAC	TA 180
TGACGCCGCG TCCGAAATGC AGCAGCTGGT CAACGGTATC GAACTGGGTG TGGCGCGT	
GGTGGCGCTC ANCGACAATT CCGTGCTGCT GTTTACAAGG ATCGGCSTAA GCGTTCAT	
CGCGCACTCC CCANCGCCGC GCGGCSGGGG CGGCCCTCTG TGCCGACCGC CCGAGCGC	
CACTGACGCC ATCTCCGTCG GCGTTAACCC CGTGAGAAGG TGGGTCGTGC GCAAGTTG	
CCCGGTCACC ATCNATCCGC GCCGCCATGA CGCNGTGCTG TTCCACACCA CNTSNGAC	120
CCCCCAGGAA CTGGTCCGGC AMTNCAGGAA NTYCGTGTGG GCACCNGCTT CTTCCGKT	
GGCYTAAACT TCCNATSTIN CSGCSGGCCT CTGGCGTINC GNCCGGGCCG NTCTINCO	3.0
ATCGGSMMAA ATCCCCANMC AAACCCCCCG GGTCTTGSGG GCSGGGGGC GGCCNAWA	
AAACCCCCC NTTAAANTCT TTCVTNCTTT	
MCTTCCCCC CCCAMPTONIA CCCIIICC	
ANTITICS COC COCCANIDA A TIMO CONTROL TRUMBECCICI RIMANAMA	AAA 780
TYCHDIANG NGCANGGGG WALLEST	ISS 840
TAANNCCO TAANNCCO	CN 900
YNCCCSGAAA ATTNNAMAAM CMNNKTGSNG GGGGKTTSNC SGKKGRAGGM AAAAAANF	RSN 960
SKTTNMCNNN SANMNCNSNN SGGNSNNNNN NNNCNCGYKC CSNAANMCCC CGCGGGGG	GG 1020
CCMMCC	1026

- (2) INFORMATION FOR SEQ ID NO:315:
- (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 324 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:315:

GTACCTCGGC GCAGAAGATG GGGTTTKGTG	GAGAAGACGC AACTTCGGCA GCACCGCACG TCGTTCGAGG TCCGCACTGC	AGATCTACGT GCGAGCTGAC TGGCCTGGAN TGCTCACCAC	TCGCTTCCCC CCAGGATCCG GATTTTGCAN	GAAGCGGTCT GCCGCGAAAC GCGACGCCNG	CGATGCGCCA GGCTTGCGTT	60 120 180 240 300
GCACCACTCG	TGCCGCTCGT	GCCG			1 CONCCAGE1	324

- (2) INFORMATION FOR SEQ ID NO:316:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1010 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:316:

AATTCGGCAC	GANGCGTGCC	GCTNAACACC	AGCCCGCGC	TCCCACATAT	CCCCC3 cmcc	
GTAGTGCCGC	CGGTGGCGTC	GTTGCTCTCC	TGACGGGGCG			60
ATGCCCAGGT	<del>-</del>					120
ACCGGGAGCT				TGCGACTCTC	CAGCTCGCCG	180
	TGGCATCGGG	CCTGATCAGC	CAGGACGCGT	AGGACAAGTC	GATCGAATGC	240
ATAGTGGCCT		CGTGCAMTTC	CNGCGTGCTC	CACGGCAAAT	GCCTTGATTT	300
CTACTCCGCG	TANTGTTCCC	GCATCGCCTG	CGGGATGAAT	GGGAACCGCA		
GAACGGGTCT	GANCTCAGGT	TTGCCGCTTT	GCGCACAGTG			360
ATANATCTGG	CCCNAAATCG	GCGCCGACGG				420
CCGCCCCGGT	CACCCNAACA			AANAACGGGC	ACNACAATCG	480
CCCGAACGCC					CTCAANCCGT	540
	- 44.1 6 6 6 6 6 6	NACTITICIT	NNAWTAACTG	CCGCTTCCGK	CCCTGGNGCA	600
WTAAATGGGA	AACCCTTNCC	CCACCTTGAA	GGGGTTGTTG	NATTTTTACT	GSTAACCCCG	660
AATTNTTCCG	GANTCGGTCN	KCCGGGSTTT	YSTNTTCCCC	ACCTINGNAN		
AGSTTTTCTT	SYTGAAGGGG		TTTNTYTYYN		GGGCCGGCCA	720
MNAASCCNKT	CCCCTTTAAC			AACCSCMNAA	MYMTTTYCSG	780
NCCCCYMANG		#2====	AACCGKTMING	NGGKTAAAAA	GGGSKNNKTG	840
	GGGGGRAAAA			ACCMMMMYGN	GTGKKKNKSS	900
GCSAAATTTT	NMMRAACTKN	GGGGCCSSGA	NNTTTNAAAG	MSCCCCCSNN	GSTGKCCCNN	960
NTTTCCNNAA	WMKKGKNWNM	SNMNSCSNGG		NNAAGMGGGG		
				***************************************		1010

- (2) INFORMATION FOR SEQ ID NO:317:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1010 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:317:

AATTCGGCAC	GANGCGTGCC	GCTNAACACC	AGCCCGCGGC	TGCCAGATAT	CCCGGACTCG	60
	CGGTGGCGTC	GTTGCTCTCC		CGGCGACCAT		120
ATGCCCAGGT	AGCGGCCCAG	GTGCATGGAG	TCGATGATGA	TGCGACTCTC	CAGCTCGCCG	180
ACCGGGAGCT	TGGCATCGGG	CCTGATCAGC	CAGGACGCGT	AGGACAAGTC	GATCGAATGC	240
ATAGTGGCCT	CCAGAGTGGC	CGTGCAMTTC	CNGCGTGCTC	CACGGCAAAT	GCCTTGATTT	300
CTACTCCGCG	TANTGTTCCC	GCATCGCCTG	CGGGATGAAT	GGGAACCGCA	SGATGGCGAC	360
GAACGGGTCT		TTGCCGCTTT		GTCNACANCC		420
ATANATCTGG	CCCNAAATCG	GCGCCGACGG	CGCCCACNAT	AANAACGGGC	ACNACAATCG	480
CCGCCCCGGT	CACCCNAACA	ACANCTTGSC	ATCGGATTIT	GTCCCCANCG		540
	TCNTCCGGCG			CCGCTTCCGK	CCCTGGNGCA	600
WTAAATGGGA	AACCCTTNCC	CCACCTTGAA	GGGGTTGTTG	NATTITTACT	GSTAACCCCG	660
AATTNTTCCG			YSTNTTCCCC			720
AGSTTTTCTT	SYTGAAGGGG	GAAACCCAAC	TTTNTYTYYN	AACCSCMNAA	MYMTTTYCSG	780
MNAASCCNKT	CCCCTTTAAC	CAMGGSGGTN	AACCGKTMNG	NGGKTAAAAA	GGGSKNNKTG	840
NCCCCYMANG	GGGGGRAAAA	TSTKTCNNCG	GGGCCKAAAW	ACCMMMMYGN	GTGKKKNKSS	900
GCSAAATTTT	NMMRAACTKN	GGGGCCSSGA	NNTTTNAAAG	MSCCCCCSNN	GSTGKCCCNN	960
NTTTCCNNAA	WMKKGKNWNM	SNMNSCSNGG	GKYNSGGSNN	NNAAGMGGGG		1010

## (2) INFORMATION FOR SEQ ID NO:318:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1092 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:318:

NGNGGGGWNS	MMC2 VC2 VC2					
	NTCAYCAYCA	YCACSGGGYW	CWATTGCGGC	CGCAWCTTGT	MAASAGATCT	60
CGAAYTCGGC		CKCTMGCNCC	GCTGTGCAAN	CCAATRAGGC	CTRATAATTY	120
CCACTCCACA	AAAAACCGTT	GTGTGTAYYT	SCCGRAAATR	AAGGCGCCGG	TNTCAACWYC	180
GCCGGTKTTY	CCRATYCCCG	TKTTGTAMCT	GCCKGGGTSR	AAAYCCCCGG	TGTTGGAYCC	240
CCGGATTGAA	ACTGCCGGKT	TGAAACTGCC	GKTTTSGCSA	TCCGGKWATT	GAMSTCRCGG	300
ATTAAAAAAC	CGGKKTTGGN	GCTGSNCGTG	CCAAATNCGR	AYCCRATAYC	CCATGGCCTG	360
KYCTYCTCCK	YCGGTACCCA	AAYCTGGGTA	TCCTATACTG	GYCCCTAAAK	GCAAWYCKGG	420
GCTGYCMMTK	TTGCKGGSGT	CCNAATTTAS	CACCASCGGT	TCCTTCCATA	CCNAAACNCG	480
CKTGGGCWCC	AGMCCGRAAA	AAAKAATAAT	RAKAAKGGTG	CATNYCCAAA	ACCNCCGCCN	540
CCCNANTNCN	ATCCGNTNCC	MSCNCCCCCA	GCGGTNAAGK	TKSGGAAYTT	CTMMAACCCC	600
CAAANCCCCA	TAACNTNCGR	GAASAAACCC	CTYCNCGGGG	GYCNWNCAAA	ACASCNTTAT	6 <b>6</b> 0
TTGCTKSTTT	CGGGMWCCGT	GCCGCCNAAA	YCCCAAASTA	CTTTYTGGGT	CCNAGAKAAA	720
ACCNCGGGCN	CCMCCCSNAA	NWTATYTCTT	KGGCAANCCC	CSAAACCTTR	TCMNACCNCK	780
ATRMTCCCTT	CCCCVSCAAT	TGGYCGGRAT	NCGSNCCYTY	TCAAAKKKSC	CAKWWNNGNG	840
GRRNNACCMA	ACCCCAAGTY	CCMNAAAATN	GKCCCCGCTC	CNAACACGNK		900
ASCCCWCCCC	CCCCCCCRAA	AACCCCCCNA		AAAACNYNGK		960
CAAACMAAAA	AMCCCCCSGM	RMACSGGGGN	NMCCCCGKKK	KKTTTTCTTT	TKCCMRSCCC	
AAMGCAMWSY	VCVTNIMA A A A A				INCUMRSCUL	1020
	KSKTNMAAAA	GGAAGRANCN	TYCCSANANM	TCCCNYWRSW	CCGSWGMGNA	1080
GAASMCCCCC	CS					1092

⁽²⁾ INFORMATION FOR SEQ ID NO:319:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1251 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:319:

GGGGGGNNN	NATACATCWT	CYGTGYACCG	GGGMTCTAKT	GGCGGGCCGC	AATCTNGTCA	60
ASAGATCTCT	NAMTTCGGGC	ACAAAAACTW	GACAAASYMT	CGNGCNMTCC	GTGTCCTNKA	120
TCGCAAAACG	NGTRACASAC	ASACACRTAT	GTGTGCCCAC	CASCAAYTCK	TTGGGACCTC	180
GCTRACCGGY	TGCCCRNACG	CCACGYTGCS	CWTCTATCCC	RACGCCGGCC	ACGGGYGGGG	240
ATATTCCAGG	CACCACGCCC	AGTTTGGTGG	ACAATGCCCT	GGCAKTTTCC	TCRAANTTCG	300
TGAAACCGAA	TTCNSMTTGA	ACCNCCAARG	CCCCSNCCNR	AACARTTGGG	WTCCGCGGTT	360
CTCCCCACCG	KTTTCCGGGG	GTNTCGGCAN	AANCGCACCC	WTGGWTTCTM	TCNCCGCACC	420
GGGCGGACAA	NTCGGGTTGC	AATTTTGCRA	AYCGGGGCCG	GGATTCCSCA	AACGGGTGCC	480
GAAACTGTTY	YCRAAMACCG	GGAKCCGCAA	TTTCCGGGCR	ANAAATTTCN	YCNCACCACT	540
GCTTRTACTT	CCCCGACCGT	AACMANTTTC	ATCGTCNTNN	CCTCTGCCCT	TGGGGCAGGG	600
CKAAAYACCG	CMTTKGGTTT	CGCAACCTGC	GGCCCAANTC	CCNAMCCRCA	CTTTCNATTT	660
GGNTCGAATT	SCCCCCCGGT	RANAACCSCC	NTGGCCNNYT	CGGASSAAAA	NGGGCCCTNT	720
KGGCNSCCCC	AGTAANACCC	TACCNNAYTS	CAWTCTTTGC		ACGAANSKTG	780
GGNTTCCGGK	ATTTYYTTGS	GGNCNCCCTN	TATNGGSNTN	GGGCCKCYNC	NCSTKTGKCA	840
NASSKAYCCS	NGNKGGGGGT	ACCCCCCTMG	GGGGGTTTTT	NSSGCCCCCC	AWAYGNKSTG	900
GCCCCCNNGG	GGAAKAATWT	MWWTMCNSGG	GGGAAWTTTT	NTSTGGAMCS	SGGACYCCCR	960
GGGGGKTTTT	TCCCCCNCSA	NNAWANGGGG	GGGGGANAYT	NTGNSGNGGG	KWNTTTATTT	1020
YTYYCYCCTM	TKACMSGGGG	GTTTKKAKNG	GGGGGAGAAA	ANAAAAAAA	RAKGGYKNTT	1080
TSKNCACNCT	GKWNWNWANR	NAGAGKTCCT	CKCKCCNCSG	SNTTTCTTTT	MGNSGSYGGG	1140
GNNGNNNAAA	ACNKSRMMAC	KCSYTYCCCG	CGYCTCCTCC	NCNGGGGYGS	NGSCGNSTYN	1200
GNNKGRKWTA	TNTMGNCGTN	SCCTCCNCCC	GCKNKNTGTC	TMTCNMYGSG	С	1251

- (2) INFORMATION FOR SEQ ID NO:320:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1099 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:320:

אאיירכרכאר	MC3 CM3 mc3 c	<b></b>				
AATTCGGCAC	MGAGTATCAC	CAAKCTGYGT	GGCCCAGCAA	AGTGGAGCTA	TTACTACCTG	60
TATGTGATCC	TCRACATCTY	CTCCCGCTAC	KTGGTCGGGT	GGATGGTGGC	CTCGCKTGAK	120
TCRAAGGTCT	TGGCCRAACG	GCTGATCGCG	CAAACCCTTG	CGCCCAGCAC	ATCAKCGCCG	180
AACAGCTGAC	CTGCMCGCCG	ACCGGGGGYC	GNCAATAACT	CCAAACCGGT	GGCMCTGCTG	240
CTGGCCNACY	CCGTGTCCCA	ANTCGAACTC	ASCCSGCNMA	CCAKMAACKA	NAACCGTTGT	300
CTGAAGCCCA	GTTCAAAAAC	CTCAAGTWCC	GGCCCRACTT	CCCGAAACGG	TNCGAGTCKA	360
TCRSAGGSGG	CCGGGTGCMC	TGCAACCGGT	TCTTCGGNTG	GTRCAMCCCN	AAAMCAAGCA	420
TTCCGGGMTC	CGMMTGCCCA	CGCCGCCAAS	TTTMCTACGG	GCSGSCCNAT	CAAATTCGCC	480
GGGAACSGSN	CCMCCKTCNK	GGAMACGCCC	TWCCAAAACC	CYCGAACGGK	ATCCTTCKGY	540
NAACNCCCGA	RCNCCCKSKT	TCCGGGCTTC	NMSGCGAATA	CCCKNSCMNT	CCGAATCCAA	600
TTCCCMKYGG	CTTTTYYYCC	CCCCGGCCCC	AAAYNGGGYC	CCTASSNMKC	KNCCAMNANT	660

PCT/US99/03265

### (2) INFORMATION FOR SEQ ID NO:321:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 296 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:321:

GNGNTATACA	TCWCTGTGYA	CCSAGGATCW	ANTGCGGCCG	MAAKCTWSTM	CASAGATCTC	60
AAAYTCTGCA	MGAGCGGCAC	AKAKYSTCCT	CCMPACCCCC	CAVAGUAGUA	CNCGCCCCWT	
CTTRGACCGG	GGCKATAGMC	70000000000	CCMRACCCGG	CATACWCCWG	CNCGCCCCWT	120
100000000	GGCIATASITC	ACCG11GGCC	CCGGCNCGCA	CCTACACCAC	CCACGCCGCC	180
AGCGCCCCW	TRAMCAAACC	ACCCCGCKTT	TACCGCCCGC	GCCGCCGGGG	CCACCACCAG	240
CCCCACCGGC	ACCACCGGCG	CCGCCGTTGC	CAAAACAGGC	CCGCKTTTGC	CACCRA	296
						2,00

# (2) INFORMATION FOR SEQ ID NO:322:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1073 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:322:

NGNGSGNKMY	ATCATCWTTC	TGCACCSNGG	MTCWATTGCG	GCCGCAATCT	TSTMNASAGA	60
TCTCGAAYTC	GGCAMGARCA	TCTGCGCGGN		AWGTCWKTAA		120
TTTGCCGYCA	ACCACKCTRT	SCAKATGCGG		AACCRATTAT		180
AAAATTTMCG	CKTGTRASCA	ACCTGCAGCG	GGTCAASCAA	CAGCCTCTRA	ACCGTAAATV	240
CKTAGGTNKT	YCCGGCAACA	ASCYCRATAA	TSCGGCCCGC	AMCCACAAAA	CCTGANTMCT	300
TNTTCNCRAA	NCCGGTYCCC	${\tt GRAGGGGTSA}$	ACTGCSGTAR	GCTTNTCWVC	NCCTTPACAT	360
TAAACCCCCC	CGGNTCWTCG	CCGCGCCCAA	ATYCYTGCCC	WTKGCNACCA	VCCCANCCTC	420
CSGTATGGTS	RAANCASTSG			TGGCTGATYC		480
SNAATTCGGG	GATTTACGGS	CAMGGTTAAY	CCAGGYCCCC	THITCOVECKY	CMACAACCC	540
ATCMWCNCCG	TACCTKTTAA	AATTCTTTGT		AWYCKAAAAA		600
		CNACNTGGKT	NACCCCTNCC		TCYTGNCCCC	660
		CCCGGAAYCS	WTAGGCYTCN			720
AATCCKCCAA	CGCTCCCCGG	GGTCSSCCMT	TAAAMTTCCC			720
	CCNCCCNTTT				SNTTSSGCCS	840
GGTTSGAMYC	AAAAWTNGGG	MMCNRAGNCG	SGNAMCCSCN	GKKGGGSATW	TKAAYYCYGG	
		AAGYGTKGGC		CCMARTTTYT	CNGGMRCMAM	900
				CC. MICLALL.	CHOOPINCCHAIN	960

PCT/US99/03265 WO 99/42118

ACCANGGGNG CTCCCGTNCW WGGCTCCCSN SNSMAMAAAN NKCKCCKGGS CKGARRNMNA 1020 MCTCSNGNGG WTCCCKNKTC NSCNSGNCGS YGGNSASWCC YNYCNCCACA ANC 1073

205

- (2) INFORMATION FOR SEQ ID NO:323:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1166 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:323:

CGCCCCGTTC	TTMMMTTCAY	TCATTCACCG	GGMTCTAGTG	CGGCCGCAAK	CTTGTCKACA	60
GATCTCGAAY	TCGGCAMGAS	ACAATSTCGG	GTKGGGCAAT	${\tt GTCNGGTGGG}$	GCAACTTTGG	120
GCTCGGRAAT	YCGGGGTTAA	CGCCGGGTCT	RATGGGTSTG	GGTAATATCG	GGTTTGGTAA	180
TGCCGGCAGC	TACAATTTCG	GTTTGGCAAA	ATATGGGTGT	${\tt GGGCAATATN}$	GGGTYCGCTA	240
ACACCGSCAS	TGGRAATTYC	GGTATTSGGT	NACCGGTRAY	AAYCTGACCG	GGTNCGGTGG	300
TTYCAATACC	GGTAACGGGA	ATGTSGGTTS	YYYACYCCGS	GSAACGGNWW	YTTNGKTCCT	360
TMMCNCTSSM	CCKSAAMTSM	KMGGTSTYCT	MTYCNNGGAS	TAMTYNMCCC	CCGWAYCKSC	420
WAYCCCTCGT	CATYCCMCMC	SGSGYCCTCA	MNCCACCYTG	NGYYCCCTCC	MKMTCYCAYT	480
CMNTCCGGTW	CCTNTMMNCC	CSCNCRYCTC	AMCNCTKSGK	CACCNATMYC	CSACKCHTCT	540
MCYMCSCAKN	MTTCCCCTCN	CCTYTNNCCA	MCMCSCTCTM	TCMAACTCKC	CCGGYCKCNC	600
MYCTCTCXCC	AYNMAACCKK	TYCYWCNWYC	YMYCKCKCAG	WYKNMCTCCW	ACTCIMYNTT	660
TCTCTCNKCC	CMKACCKNTT	CTCWCSCCCC	CCACAKAYMC	YAWCMTMTCC	MCTCKACSCC	720
CYYCNNYCCM	NMCWCMTCWC	TWNAKCANCN	TTCTTCTCTC	MMYMTMACKC	WCNNTCNCCK	780
SGACCYTCTC	ACTKMKCCKM	TCTCCTTMCK	CCYMWCNTCC	MKYNCCCTCC	NMTCMTCKYT	840
CCTCNCNMRY	CYYYAKCAKC	NMCTCCCCAN	KMCAKCTKCT	CCCCCAKMKS	ACNCKCCCWC	900
CCTCCTATCC	ACICICACIX	ATCTCKCTCW	CNYCMYMKMC	ACNCKCYAYT	CNACTMNMWN	960
CCANCNCTCT	CTNYCTCWCK	ACGTYCKCCK	CTMCKCNYMC	NRWCTYRCCT	CKKCCNCCRN	1020
CKNMCMKCTM	CTCTCCWMKM	TCCCWCCCAT	CTMMKSTCTC	WCNCMTCCCT	CNKCCYNYNT	1080
KCYTYCCMYG	CTTCKNTCMT	MCCWCCYATC	TCTMKCCTCT	CWCACYMCAC	WMTTACWNCC	1140
ACTCTCTRCW	CKCCKCMCCR	MTCTCB				1166

- (2) INFORMATION FOR SEQ ID NO:324:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1230 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:324:

60	NCTTGTMNAS	CGCGCCGCAW	NGMTCWATTG	TCTNCACCSG	CWTACATCWN	NGNGGNNNNT
120	CACGCCKTAT	GGCGGGGNGC	TSTMTAKTGT	ANATGTCTTT	AAYTCGGCAC	AGAATCTCNN
180	TSCAGGCCGC	AGGCGGGGRA	CGGGCCRACC	CCCCGCGGCS	GYTRACCCAA	GTGYGCCTGG
240	CGCCGGGTRA	ACGGTSCCGC	TTTTKTRATA	RAAGCGCCGY	GCGGYTATAT	GGCGGCCGCG
300	TTTYCGGGTC	GCAACCAWTT	AACGCTAATT	TTGGGTRTAT	AAYCGGKKTT	TTACGGGCAA
360	WTNTGGGCGC	YMCGCCAAAA	RAGGCGCATT	NCGGGYCNCT	CGWGCANATC	AAAAACYCGG
420	CCCGGGTTAA	GCAAACGCTY	GGYTGCTTCG	TGGGCTATSC	TSYTATTTN	AAAACCCCKT

WO 99/42118 PCT/US99/03265 206

TCCCKTCCGC	GGCGCCGCCN	AAAAACCACC	AATYCCGYTG	GGGGTGKYCC	CMCAGGCSGT	480
TGCTYCGNGY	CACCTGGCCA	AAYYCCCAWT	AKATTGGGTG	SCYCKTSCGG	TTSYTGGGCY	540
CAATTACCCC	CNCGGGNAAA	GRRAAAANAA	ATCNTCCNTT	TGCTCGGYCA	YCTTTMTTGG	600
SAAAAGGGGC	ATGGCSCGGT	TYYTTTACCT	CAAYCCCCNA	NCANTWACCT	YTCCSCCCGG	660
GGGGNCANAA	CGSTTNGCTC	CGSGGNAKCC	TKGTMCCCGN	ATCNAAAGGC	CNGAATTTGG	720
TYYSSTYCNA	ATTWIWKKKY	CCCCWCNTTG	YAAAAAKCCA	AAASAKCCCK	YCNCAMMYKT	780
NGGGGTYSSG	GCCKNYCTIK	SNMTTAAACC	CYCCCCAAAA	YYNSGGGKKT	TCCGCYNSAT	840
KCCACCNCCK	GNGGGGGGNA	SAAAAAAAAY	TTTYCCSAAA	ATCCCACCYY	TCYKTKSTRY	900
AMACCCCCTT	TYYMKKAYTC	CKYSCNATTC	SGMTTCWAAA	TYCCGYGGCT	TNTTCCCCCK	960
CSGGNGCCCC	AAWTTTGKTT	YNCNANTTYC	CCCNAAMNCM	${\tt AWTMGGGGKS}$	KCCATTCTGG	1020
SCYTMAANTA	AAANAANGGG	NKITTYYCTY	MANAAACACN	GTGKCNCNCN	CNAAMAAASN	1080
AKMAAAKAGN	KKKMTKNNSA	AANCCNCCCC	CISTYINYTI	NKTNMNCKCC	CYGGKKNKGM	1140
SWSWYNTTCT	NCCCRCCCC	YNYNKTGANA	AAMMNCYCCS	GGSTMCRNAN	ASNMNTTTCK	1200
STSTNGMGCC	KMBASNANAN	MCAMWKWYCC				1230

#### (2) INFORMATION FOR SEQ ID NO:325:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1022 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:325:

NGNGGGKNNA	TMAYCWTCTC	ACSSGGTCTA	TGCGGCGCAW	CTMGTMAASA	GATCTCNAAY	60
TCGGCAMNAN	GCATMTCMMC	CATATATAAC	CATTGCGTCS	GYWTGCAWCT	CRAAWCTGTC	120
CTTCSKGCCG	TTKTACRAAG	GTGGMWTGYT	CWTYCCTRAA	SCCCTCRATC	TCKTKTATYC	180
CTKGGGCTYC	ACTTTAACSG	RATKSCTGCC	TTKTAYCATT	RATGCAAWTA	WTGGYCRAWT	240
KTTGCAGGCC	RACGGCWYCT	TTTYCCGCRA	GRACAATNGA	TTGGAWYCGC	TYCGCRAGGC	300
CCGGCACCAR	ACCGGGCNCC	AAAGGYCCGC	GCAAWTSCCT	GGKTCAAAAA	TGGTGCAAAC	360
AAAMCNATCC	CCGGYTTRAC	CGCAGYTAMC	ACAAKAAAAT	TCCCWTGGCC	GCACCAWNNT	420
TTYCRATCWY	CWYCCCCACC	TTRAACTTGK	YTGCSGTATT	GCCTKCCTGC	CTCRACAGCM	480
YCNCCCKTCA	AACCTGCGGT	GACTCCAACT	GGTCTGGYCG	AASGGGGGYT	CAMCGGACAA	540
AACCCCRANN	TCGCCAAATT	TTCNCCCCCC	CYCGGGAAAN	GKTGATMTTC	TCSNAACCSA	600
CMGGGNNYTW	NAACCCTGAA	CSSSGSNKGA	MYNSCCSGGA	ANTITTCCCT	TYNGGGCGRN	660
AAANCCTTTT	AAGGTACCCC	KGGNGGGGKG	CCCYYTTGGG	AAAACAACCC	CKATTGGKTT	720
TGGAAATNTT	TKCNCCCCCA	TTCNSGGGGG	${\tt GGGCCCCAMC}$	CCMMCTTTTN	TCMSCNMTYY	780
YCYYGGGAAT	TNYTCGCCSG	GAAYYCGGSM	CCKGYCCTAA	NCCCCMNWGG	GKYSTGSNAR	840
GGRATMAWWT	TYSTTTYYMC	CCGGCNNCCC	CCCKAKMCNT	KGNTGAACMA	AAAKCSGGGG	900
GSCNMYMWYY	YCNNNGNRTT	TNRGGSSNMT	TYMAAAMMAN	GGGGKYWTYY	CKCCNGSCNN	960
GKTYSGGGST	TTTCCNTTTS	GGGSSATYKG	MACCCCKTMT	AYCCGGGGGT	NTKTKYCCCC	1020
SC						1022

#### (2) INFORMATION FOR SEQ ID NO:326:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1083 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

#### (XI) SEQUENCE DESCRIPTION: SEQ ID NO: 326:

NNCGNNKNTA TAMAYCWYCT NCACCSGGGA	TCWATTGCGG	CCGCAATCTT	STMAASAGAT	60
CTCKAAYTCG GCAMGANCCG CAWCTATTTG	KGTGRASCGC	ACCAGCGRGA	CCTCGCSGKT	120
CKTTYCTTGC AGRGAGGCCK TGGGTGGCRC	CGGTGGCAAT	GCCAACCGCC	CCCCAAAACN	180
CCGCAAATMY CRAAAAACAA CCCSGGGGTA	GKTCCSGGCC	GCCAAATMAA	TAACCGTKTT	240
AACKCAGGCN ACGGCCAACC GGYCCCGCCC	AACCAAGCNA	CCTCCCCSCC	NATAGGYCCG	300
GTGGGGGCTG CCKTATYKCC AASTCGTCAY	CTCNACGGGM	CGGYCCMCWT	TCCGCCTCAT	360
CCGTCTCTCC TTMMATTTTC CRTCCACYKG	GCGGGGAACY	TTTTTNYCNC	CCTTGSCMAN	420
CACCNAAGGY CNAAAATTNC CCMTGCCKYG	SNNCAAAYGR	GATTGGGGTY	CGKKTTTTNT	480
TCNMCCMAAC CCCCNTTTNA CGCCCCMATC	CCYTWATACC	CCCWWMCMNS	ANGKTTGNSA	540
AAKTNNCCCC AAATRCCAAA MTTCTTCGCC	NTTIMIWMCY	YYCCTTTCCC	CMCCCWNAAA	600
GGSCCRCCYY TCGGGAANTY TCCCCNCAAA	AWTCAMWCCM	TTTCCCNCCA	AGAAWTTCSG	660
SACTCCTTTN TTCNGGGNAM ATANATYYTT	YCKTNGGGSK	TTCCGMTCNC	AMMAATNTCC	720
REGERAAMCC AGRITHINTCC YYYYCCCCAA	NNTYCCYKGG	RMCYNNYYCY	TTAAANRASR	780
SAACCCKSGG GKCYNCNCSS TARCCCCCAM	KAAAATTTCC	CCCSSKTTTC	TYYNNKKMRW	840
GCCCCCSAAM ACTMTWAYTT TCCCKCGNNN	TTTSYCCKCS	KCAMWMWMTG	KKNCTTTTTT	900
YCSCMATAMA CTTNGGKCCT NTCNYGSGCG	CMAAANAAGG	CGCGSTTCTN	TTCWMAMACA	960
YNTSGNMMA SAAKAKWATA AWNNTRKKYK				1020
GGGKNWNKKR GWCTCCWCNC CKCCCNCKNK	CCKWATMCCC	CCCCSKCCGM	NCMMNTTTKT	1080
ccc			1083	

- (2) INFORMATION FOR SEQ ID NO:327:
- (I) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1069 BASE PAIRS
  - (B) TYPE: NUCLEIC ACID
  - (C) STRANDEDNESS: SINGLE
  - (D) TOPOLOGY: LINEAR
- (II) MOLECULE TYPE: GENOMIC DNA
- (XI) SEQUENCE DESCRIPTION: SEQ ID NO:327:

GAAYTCGGCA MGAAAAAGW GATGTGCTGG ACCTTMCCGC GCGGGACGCR ACCRACAAAG 180 RAASCGCGCC ANAATATTGG CCACAKTTGG TCACATATTT ACCCAATTMT AYCAGGGAYT 180 MCCATTCCKG GGACCRACCG CACAATCCCR ATSKTGGTTT GCRAACCCTR ACCGTCCCCA 240 MYTYCGCCRA STTGAACCAG GGCRAAAAAA CGGCCRAAWY CTCGCCCTGA NTCCCGCTCS 300 GCGCNAATAA CTAGGCCCAT TKAACGGAAC CGGNGGCCSC NANTTGGCCA ACAGGTCCTR 360 ACAAAGGGGC CCCASYYCGG CCGGWTCCCW TTYCACNCCC TNKTCTCKTG CCGAATYCGG 420 WTCCRATNYC CCWTGGGCCT TKTCKYCKYC KYCGGTNCCA AWTCTNGGTA TNCTATRGKG 480 TCCCCTAAAT SCANATCTGG GCKYCCATTT NCTGGSNTTC NATTTAMMAN SRCCGGTTCT 540 TCCCCTAAAT SCANATCTGG GCCCNNMCCA AAAAATGATN ATAATAATGK YGSCTTTCAA 600 ACCCCGCCCC CCCATTCRWI CSGTTCCANC CCCCNGNGGT TAAGKTGGGA ATTTYTNAMC 660 YCNARGCCCT NATTTSGGNA AAAACCYCYC GGGYCTCAAA CMNYTTTTTI GSKSSNTCGG 720 GCTCRTTCSC CAAAACCCAA ATTNTYNYGG GGYCCKTNAA ACMCGGYCRC RCCGGAAATT 780 TTTYTGGTTC AACCCCAACC TTTTCAASCC NTTTTYTYYT TRCCSSCSMN TNGSSGGGNT 840 KSSCCNTTCY RARKKCCNMN GGGGGWYCYN CCCCRMNTTT CTTTTTTTT CCGTNNMAM 900 NGKTTCTTCA AASMCCCCC SCCCCNSAA ACCCCCTNAR GTTTTYCMMA AANNWYNNGN 960 KNCCCCCCCC MMNAAAAAAY YCSCCCGNRN ACSMSNGGGA MCCCCCGGSN NTTRKTTTTT 1020 TNCMSGYCCC CSRMASYYTT TKAMAMANRR GAMNSMTTTY TNNRGNWK 1069	GGGGNNKYAT	MCAYCWTCTS	YACSGGGMNC	TATTGCGGCC	GCAWYTNGTM	GASAGATCTC	60
MCCATTCCKG GGACCRACCG CACAATCCCR ATSKTGGTTT GCRAACCCTR ACCGTCCCCA MYTYCGCCRA STTGAACCAG GGCRAAAAAA CGGCCRAAWY CTCGCCCTGA NTCCCGCTCS 300 GCGCNAATAA CTAGGCCCAT TKAACGGAAC CGGNGGCCSC NANTTGGCCA ACAGGTCCTR 360 ACAAAGGGGC CCCASYYCGG CCGGWTCCCW TTYCACNCCC TNKTCTCKTG CCGAATYCGG 420 WTCCRATNYC CCWTGGGCCT TKTCKYCKYC KYCGGTNCCA AWTCTNGGTA TNCTATRGKG 480 TCCCCTAAAT SCANATCTGG GCKYCCATTT NCTGGSNTTC NATTTAMMAN SRRCGGTTCT 540 TTCWTTCCRA AACCGSNTGG GCCCNNMCCA AAAAATGATN ATAATAATGK YGSCTTTCAA 600 ACCCCGCCCC CCCATTCRWT CSGTTCCANC CCCCNGNGGT TAAGKTGGGA ATTTYTNAMC 660 YCNARGCCT NATTTSGGNA AAAACCYCYC GGGYCTCAAA CMNYTTTTTT GSKSSNTCGG 720 GCTCRTTCSC CAAAACCCAA ATTNTYNYGG GGYCCKTNAA ACMCGGYCRC RCCGGAAATT 780 TTTYTGGTTC AACCCCAACC TTTTCAASCC NTTTTYTYYT TRCCSSCSMN TNGSSGGGNT 840 KKSSCCNTTCY RARKKCCNNN GGGGGWYCYN CCCCRMNTTT CTTTTTTTT CCGTNNMAAM 900 NGKTTCTTCA AASMCCCCC SCCCCCNSAA ACCCCCTNAR GTTTTYCMMA AANNWYNNGN 960 KNCCCCCCCCC MMNAAAAAAY YCSCCCGNRN ACSMSNGGGA MCCCCCGGSN NTTRKTTTTT 1020	GAAYTCGGCA	MGAAAAAAGW	GATGTGCTGG	ACCTTMCCGC	GCGGGACGCR	ACCRACAAAG	120
MYTYCGCCRA STTGAACCAG GGCRAAAAA CGGCCRAAWY CTCGCCCTGA NTCCCGCTCS 300 GCGCNAATAA CTAGGCCCAT TKAACGGAAC CGGNGGCCSC NANTTGGCCA ACAGGTCCTR 360 ACAAAGGGGC CCCASYYCGG CCGGWTCCCW TTYCACNCCC TNKTCTCKTG CCGAATYCGG 420 WTCCRATNYC CCWTGGGCCT TKTCKYCKYC KYCGGTNCCA AWTCTNGGTA TNCTATRGKG 480 TCCCCTAAAT SCANATCTGG GCKYCCATTT NCTGGSNTTC NATTTAMMAN SRCGGTTCT 540 TTCWTTCCRA AACCGSNTGG GCCCNNMCCA AAAAATGATN ATAATAATGK YGSCTTTCAA 600 ACCCCGCCCC CCCATTCRWT CSGTTCCANC CCCCNGNGGT TAAGKTGGGA ATTTYTNAMC 660 YCNARGCCCT NATTTSGGNA AAAACCYCYC GGGYCTCAAA CMNYTTTTTT GSKSSNTCGG 720 GCTCRTTCSC CAAAACCCAA ATTNTYNYGG GGYCCKTNAA ACMCGGYCRC RCCGGAAATT 780 TTTYTGGTTC AACCCCAACC TTTTCAASCC NTTTTYTYYT TRCCSSCSMN TNGSSGGGNT 840 KSSCCNTTCY RARKKCCNNN GGGGGWYCYN CCCCRMNTTT CTTTTTTTTT CCGTNNMAAM 900 NGKTTCTTCA AASMCCCCC SCCCCCNSAA ACCCCCTNAR GTTTTYCMMA AANNWYNNGN 960 KNCCCCCCCCC MMNAAAAAAY YCSCCCGNRN ACSMSNGGGA MCCCCCGGSN NTTRKTTTTT 1020	RAASCGCGCC	ANAATATTGG	CCACAKTTGG	TCACATATTT	ACCCAATTMT	AYCAGGGAYT	180
GCGCNAATAA CTAGGCCCAT TKAACGGAAC CGGNGGCCSC NANTTGGCCA ACAGGTCCTR 360 ACAAAGGGGC CCCASYYCGG CCGGWTCCCW TTYCACNCCC TNKTCTCKTG CCGAATYCGG 420 WTCCRATNYC CCWTGGGCCT TKTCKYCKYC KYCGGTNCCA AWTCTNGGTA TNCTATRGKG 480 TCCCCTAAAT SCANATCTGG GCKYCCATTT NCTGGSNTTC NATTTAMMAN SRCGGTTCT 540 TTCWITCCRA AACCGSNTGG GCCCNNMCCA AAAAATGATN ATAATAATGK YGSCTTTCAA 600 ACCCCGGCCC CCCATTCRWI CSGTTCCANC CCCCNGNGGT TAAGKTGGGA ATTTYTNAMC 660 YCNARGCCT NATTTSGGNA AAAACCYCYC GGGYCTCAAA CMYTTTTTT GSKSSNTCGG 720 GCTCRTTCSC CAAAACCCAA ATTNTYNYGG GGYCCKTNAA ACMCGGYCRC RCCGGAAATT 780 TTTYTGGTTC AACCCCAACC TTTTCAASCC NTTTTYTYYT TRCCSSCSMN TNGSSGGGNT 840 KSSCCNTTCY RARKKCCNNN GGGGGWYCYN CCCCRMNTTT CTTTTTTTTT CCGTNNMAAM 900 NGKTTCTTCA AASMCCCCC SCCCCCNSAA ACCCCCTNAR GTTTTYCMMA AANNWYNNGN 960 KNCCCCCCCC MMNAAAAAAY YCSCCCGNRN ACSMSNGGGA MCCCCCGGSN NTTRKTTTTT 1020							
ACAAAGGGGC CCCASYYCGG CCGGWTCCCW TTYCACNCCC TNKTCTCKTG CCGAATYCGG 420 WTCCRATNYC CCWTGGGCCT TKTCKYCKYC KYCGGTNCCA AWTCTNGGTA TNCTATRGKG 480 TCCCCTAAAT SCANATCTGG GCKYCCATTT NCTGGSNTTC NATTTAMMAN SRRCGGTTCT 540 TTCWTTCCRA AACCGSNTGG GCCCNNMCCA AAAAATGATN ATAATAATGK YGSCTTTCAA 600 ACCCCGCCCC CCCATTCRWT CSGTTCCANC CCCCNGNGGT TAAGKTGGGA ATTTYTNAMC 660 YCNARGCCCT NATTTSGGNA AAAACCYCYC GGGYCTCAAA CMYTTTTTT GSKSSNTCGG 720 GCTCRTTCSC CAAAACCCAA ATTNTYNYGG GGYCCKTNAA ACMCGGYCRC RCCGGAAATT 780 TTTYTGGTTC AACCCCAACC TTTTCAASCC NTTTTYTYYT TRCCSSCSMN TNGSSGGGNT 840 KSSCCNTTCY RARKKCCNMN GGGGGWYCYN CCCCRMNTTT CTTTTTTTTT CCGTNNMAAM 900 NGKTTCTTCA AASMCCCCC SCCCCCNSAA ACCCCCTNAR GTTTTYCMMA AANNWYNNGN 960 KNCCCCCCCC MMNAAAAAAY YCSCCCGNRN ACSMSNGGGA MCCCCCGGSN NTTRKTTTTT 1020	MYTYCGCCRA	STTGAACCAG	GGCRAAAAA	CGGCCRAAWY	CTCGCCCTGA	NTCCCGCTCS	300
WTCCRATNYC CCWTGGGCCT TKTCKYCKYC KYCGGTNCCA AWTCTNGGTA TNCTATRGKG 480 TCCCCTAAAT SCANATCTGG GCKYCCATTT NCTGGSNTTC NATTTAMMAN SRRCGGTTCT 540 TTCWTTCCRA AACCGSNTGG GCCCNNMCCA AAAAATGATN ATAATAATGK YGSCTTTCAA 600 ACCCCGCCCC CCCATTCRWT CSGTTCCANC CCCCNGNGGT TAAGKTGGGA ATTTYTNAMC 660 YCNARGCCCT NATTTSGGNA AAAACCYCYC GGGYCTCAAA CMNYTTTTTT GSKSSNTCGG 720 GCTCRTTCSC CAAAACCCAA ATTNTYNYGG GGYCCKTNAA ACMCGGYCRC RCCGGAAATT 780 TTTYTGGTTC AACCCCAACC TTTTCAASCC NTTTTYTYYT TRCCSSCSMN TNGSSGGGNT 840 KSSCCNTTCY RARKKCCNMN GGGGGWYCYN CCCCRMNTTT CTTTTTTTTT CCGTNNMAAM 900 NGKTTCTTCA AASMCCCCC SCCCCCNSAA ACCCCCTNAR GTTTTYCMMA AANNWYNNGN 960 KNCCCCCCCCC MMNAAAAAAY YCSCCCGNRN ACSMSNGGGA MCCCCCGGSN NTTRKTTTTT 1020	GCGCNAATAA	CTAGGCCCAT	TKAACGGAAC	CGGNGGCCSC	NANTTGGCCA	ACAGGTCCTR	360
TCCCCTAAAT SCANATCTGG GCKYCCATTT NCTGGSNTTC NATTTAMMAN SRRCGGTTCT 540 TTCWITCCRA AACCGSNTGG GCCCNNMCCA AAAAATGATN ATAATAATGK YGSCTTTCAA 600 ACCCCGCCCC CCCATTCRWI CSGTTCCANC CCCCNGNGGT TAAGKTGGGA ATTTYTNAMC 660 YCNARGCCCT NATTTSGGNA AAAACCYCYC GGGYCTCAAA CMYYTTTTTT GSKSSNTCGG 720 GCTCRTTCSC CAAAACCCAA ATTNTYNYGG GGYCCKTNAA ACMCGGYCRC RCCGGAAATT 780 TTTYIGGTTC AACCCCAACC TTTTCAASCC NTTTTYTYYT TRCCSSCSMN TNGSSGGGNT 840 KSSCCNTTCY RARKKCCMM GGGGGWYCYN CCCCRMNTTT CTTTTTTTTT CCGTNNMAM 900 NGKTTCTTCA AASMCCCCC SCCCCCNSAA ACCCCCTNAR GTTTTYCMMA AANNWYNNGN 960 KNCCCCCCCCC MMNAAAAAAY YCSCCCGNRN ACSMSNGGGA MCCCCCGGSN NTTRKTTTTT 1020							
TTCWITCCRA AACCGSNTGG GCCCNNMCCA AAAAATGATN ATAATAATGK YGSCTITCAA 600 ACCCCGCCCC CCCATTCRWI CSGTTCCANC CCCCNGNGGT TAAGKTGGGA ATTTYTNAMC 660 YCNARGCCCT NATTTSGGNA AAAACCYCYC GGGYCTCAAA CMYYTTTITI GSKSSNTCGG 720 GCTCRTTCSC CAAAACCCAA ATTNTYNYGG GGYCCKTNAA ACMCGGYCRC RCCGGAAATT 780 TITYIGGTTC AACCCCAACC TITTCAASCC NTTTTYTYYT TRCCSSCSMN TNGSSGGGNT 840 KSSCCNTTCY RARKKCCMM GGGGGWYCYN CCCCRMNTTI CTTTTTTTT CCGTNNMAM 900 NGKTTCTTCA AASMCCCCC SCCCCCNSAA ACCCCCTNAR GTTTTYCMMA AANNWYNNGN 960 KNCCCCCCCCC MMNAAAAAAY YCSCCCGNRN ACSMSNGGGA MCCCCCGGSN NTTRKTTTTT 1020	WTCCRATNYC	CCWTGGGCCT	TKTCKYCKYC	KYCGGTNCCA	AWTCTNGGTA	TNCTATRGKG	480
ACCCCGCCCC CCCATTCRWT CSGTTCCANC CCCCNGNGGT TAAGKTGGGA ATTTYTNAMC 660 YCNARGCCCT NATTTSGGNA AAAACCYCYC GGGYCTCAAA CMYYTTTTTT GSKSSNTCGG 720 GCTCRTTCSC CAAAACCCAA ATTNTYNYGG GGYCCKTNAA ACMCGGYCRC RCCGGAAATT 780 TITYTGGTTC AACCCCAACC TITTCAASCC NTTTTYTYYT TRCCSSCSMN TNGSSGGGNT 840 KSSCCNTTCY RARKKCCNMN GGGGGWYCYN CCCCRMNTTT CTTTTTTTTT CCGTNNMAM 900 NGKTTCTTCA AASMCCCCC SCCCCCNSAA ACCCCCTNAR GTTTTYCMMA AANNWYNNGN 960 KNCCCCCCCC MMNAAAAAAY YCSCCCGNN ACSMSNGGGA MCCCCCGGSN NTTRKTTTTT 1020							
YCNARGCCCT NATTTSGGNA AAAACCYCYC GGGYCTCAAA CMNYTTTTTT GSKSSNTCGG 720 GCTCRTTCSC CAAAACCCAA ATTNTYNYGG GGYCCKTNAA ACMCGGYCRC RCCGGAAATT 780 TTTYTGGTTC AACCCCAACC TTTTCAASCC NTTTTYTYT TRCCSSCSMN TNGSSGGGNT 840 KSSCCNTTCY RARKKCCNMN GGGGGWYCYN CCCCRMNTTT CTTTTTTTTT CCGTNNMAAM 900 NGKTTCTTCA AASMCCCCCC SCCCCCNSAA ACCCCCTNAR GTTTTYCMMA AANNWYNNGN 960 KNCCCCCCCC MMNAAAAAAY YCSCCCGNRN ACSMSNGGGA MCCCCCGGSN NTTRKTTTTT 1020	TTCWTTCCRA	AACCGSNTGG	GCCCNNMCCA	AAAAATGATN	ATAATAATGK	YGSCTTTCAA	600
GCTCRTTCSC CAAAACCCAA ATTNTYNYGG GGYCCKTNAA ACMCGGYCRC RCCGGAAATT 780 TITYIGGTTC AACCCCAACC TITTCAASCC NTTTTYTYYT TRCCSSCSMN TNGSSGGGNT KSSCCNTTCY RARKKCCNMN GGGGGWYCYN CCCCRMNTTT CTTTTTTTTT CCGTNNMAAM 900 NGKTTCTTCA AASMCCCCCC SCCCCCNSAA ACCCCCTNAR GTTTTYCMMA AANNWYNNGN 960 KNCCCCCCCC MMNAAAAAAY YCSCCCGNRN ACSMSNGGGA MCCCCCGGSN NTTRKTTTTT 1020							
TITYTGGTTC AACCCCAACC TITTCAASCC NTTTTYTYYT TRCCSSCSMN TNGSSGGGNT KSSCCNTTCY RARKKCCNMN GGGGGWYCYN CCCCRMNTTT CTTTTTTTTT CCGTNNMAAM 900 NGKTTCTTCA AASMCCCCCC SCCCCCNSAA ACCCCCTNAR GTTTTYCMMA AANNWYNNGN KNCCCCCCCC MMNAAAAAAY YCSCCCGNRN ACSMSNGGGA MCCCCCGGSN NTTRKTTTTT 1020	YCNARGCCCT	NATTTSGGNA	AAAACCYCYC	GGGYCTCAAA	CMNYTTTTTT	GSKSSNTCGG	720
KSSCCNTTCY RARKKCCNMN GGGGGWYCYN CCCCRMNTTT CTTTTTTTTT CCGTNNMAAM 900 NGKTTCTTCA AASMCCCCCC SCCCCCNSAA ACCCCCTNAR GTTTTYCMMA AANNWYNNGN 960 KNCCCCCCCC MMNAAAAAAY YCSCCCGNRN ACSMSNGGGA MCCCCCGGSN NTTRKTTTTT 1020	GCTCRTTCSC	CAAAACCCAA	ATTNTYNYGG	GGYCCKTNAA	ACMCGGYCRC	RCCGGAAATT	780
NGKTTCTTCA AASMCCCCCC SCCCCCNSAA ACCCCCTNAR GTTTTYCMMA AANNWYNNGN 960 KNCCCCCCCC MMNAAAAAAY YCSCCCGNRN ACSMSNGGGA MCCCCCGGSN NTTRKTTTTT 1020							
KNCCCCCCCC MMNAAAAAY YCSCCCGNRN ACSMSNGGGA MCCCCCGGSN NTTRKTTTT 1020							
TNCMSGYCCC CSRMASYYTT TKAMAMANRR GAMNSMTTTY TNNRGNWNK 1069						NTTRKTTTTT	1020
	TNCMSGYCCC	CSRMASYYTT	TKAMAMANRR	GAMNSMTTTY	TNNRGNWNK		1069

⁽²⁾ INFORMATION FOR SEQ ID NO:328:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1210 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:328:

NGNGGGGKWK	MATACATCWT	TCTTCACGSG	GGATCWATTG	CGGGCCGCAW	TCTNGTMCAA	60
SAGATCTCGA	TYTCGGGCAM	NACCCACCWC	TCCRAAAAA	ACCCRAAWCT	CGGGSKCTYC	120
GARAAGTGTT	GCCCGCKTTR	AATTTAACAA	ATTCAGTGTC	ANAGTGTCAC	GGCKTTACWT	180
YCCCGGCAAA	GGGGCCACAA	CCTGCAGRGA	SCACYCRATG	GKTGYTGKTS	CNCGGGCGGG	240
CCGGKTNAAG	GGACCTGCCT	GGGTKTGCSC	TMCAAANATC	WYCCGCGGGT	YCGCTGGRAT	300
MCNCAGGGGT	GTCAAAAAAC	CGCAAACAGG	CACSCCANCC	NTTTACGGGS	CTTAAAANGA	360
AAAAGGGCTG	ATGCCCCCAA	GGGGGCCCGC	NCCCAACCTT	CCGTTGGTCA	ACAACCCGGT	420
CTCTCKTGCC	RAATCCGRWT	CCRATNYCNC	CWTGGCCTTX	TCKYCTYCTY	CGGTACCCAA	480
ATCTGGGTAT	CCTATASTGT	CCCCTAAWTT	CCAAATCTGG	GCTGTCCATT	TSCTTGGCNT	540
TCCAAATTTA	CCANCAACGG	TTTCTTNCAT	NCCAAAAACC	GNTKGGCKCC	NRACCCRAAA	600
AAATGAATAA	TAATAANNGG	KCNNTTYCNA	ACCNCCCCC	CCCNATTCCA	TYSNGTTCCA	660
NMNCCCCCAG	NGGKTAGGTK	GGGAAANYYC	TCMACCYYCA	ANCCCTWARS	TTTTNGRAAT	720
KAAACCCTYC	YCNGGGTCWW	TYMAAAAAMA	NTTATTTGGN	NGNTTTCGGG	MWNCKRKNST	780
SCCAAAATCC	MAAATANTTT	YYTGGTYCNA	TWAAAAAMCG	YGNCCMNCCC	GGAAAAWTTT	840
TTNTGKTTSA	ACCCCAAAAC	YTTTTCMNAA	NCSSKTTTTY	CYTTCCCCCC	AMNWTGGGYS	900
GGGNATKGYG	SCYTNTCTTA	TKTKYTYMTW	CMGGGGGGNN	MKMTCMMCCC	CCMTTTYYCY	960
NYWRTTTTTN	KCCCCKTNMR	NNRAANNGGN	YTCSYNANAA	AAGCNCCCCC	SCCKNCCCNA	1020
AAAAWCCCCN	NNNARAKTNT	TTMKANNRMN	SCKCNKNGKY	YCCCCCCCWC	YNMNNAAAAA	1080
AATMYCCNCC	RASANMCASM	NMGGRGNRSC	CCCCCCSTT	NNNNTMTTNT	TTTTTTCSRA	1140
GAGCKCCSCG	MNNANMKNCK	CTTTTTKCNC	NNGNNGNGNN	GGNGMNCKCC	CCNAGAAMWK	1200
CTKSTCCCKS						1210

#### (2) INFORMATION FOR SEQ ID NO:329:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1105 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:329:

NGSSSNGNNA	TMCATCWYCT	GYACSGGGMT	CWATTGCGGC	CGCAACTNGT	MAASAGATCT	60
CGAAYTCGGC	AAKANACACC	ACCGCCGTGT	MTATACACCG	CAAATGTTCT	GTKTGCCAAA	120
ACCGAGACGC	GCCGGCCGCG	GGGYTCCAAC	GCKTTACYTR	ACCCGCCAGY	TCAGTGTTRA	180
AACCGGTGYT	RAGGGCCGCA	CCCAACWTAA	ACGCTTTAKC	CAAGRAWYTG	GKTGGCCCGC	240
AGCCACCTGY	TGTGGYTGCC	CTCWYCGGTG	GTAGCGCCGG	TTANCGCCGG	TTGCGCGYTC	300
AMCASCSCGC	CGGTRATCCC	AKCNWTCCCC	CGGCCMRACC	CACCGGGCAC	TTTGRACGGT	360
GCCGCCAATT	CAAAYCKYCT	GRWTCCTTCM	AAACACCACR	AAGGCCACCM	CCMSCACCNA	420
ATMGGGRACT	TTAAGGCCCA	GGCAAAACCT	NTRAKCNOCT	CCCGGGCRAA	GGTCCSGCAA	480
SCRATCCMAA	AAAAKCKNAT	TTCCCCCAGC	AKCAACCCAA	MMCGSTTTGC	TGCTTCCGGA	540
TTCGAAMCCA	ATTMCWGGKT	NCNWGGGAAA	AACASCNNCC	NWTAKCCMGG	CCCMCGGGCA	600

AAAAASGTC CCKNGTTTAA NTTTCCGGKC CGGSSCCCCG CCSGGSCCCT TCCGCGSAAA	GGNCAAANGG AWKSCCTCYY CCGGGKGKGK CCCGGGGGGA TTKRWAAAMN AAATAKMTTT	GCMAAACCCS CTSCCCAAAY WGKYCTMNMA NNTTTTTAMA KCTSCCCCNG SYCCCCCCCNC	YCCTGCTCMG SACCCMACTT TCGGKCMAAA CSTTTNTTTT GKKTYCCCCT GNNGGGGKCM CTCCKNCKNR NSNGKCNWCD	WTTCCRCTTN NNGRKTTGGK SCCCCYKAAA CCCCAMAAAA GGKTTATTMT GKAMSMSCGC	GGGGGGSCWN TTNGGCNACC NYSCCCCCCC ANACCCCNYC NNNCCSCCCC TCCCYCTCNC	660 720 780 840 900 960 1020
GCNKNTWAAN KAAANAAYNC			NSNGKCNWCD	NCCSTSSNCT	NKGCNCKNCN	1080 1105

### (2) INFORMATION FOR SEQ ID NO:330:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 936 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:330:

NGSNSNKNNN	TAMAYCWYYC	TSCACSNGGA	ACWANTGCGG	CCRMAWCTNS	TMKASAGATC	60
TMGAAYTCGG	CAAGAGCGGC	AAGAGTGTGT	GCATCTGGTC	ANAGTSTMMA	CRCGGTGCCG	120
CSGGTGKGTR	GASCACMCAT	NTGCGRACAC	CAAACCCKTC	GCGGGYCACC	GGCKTCGCCT	180
GCAAAWYCCT	CCAGGCCACC	TCRAACAAYW	YCTYCTGCAA	CGCARGCCGT	TYCGCGGCCG	240
RATCCTGGKT	CASYYCGCCK	TGCGGTGCCC	AAGKTACTGG	CSCAYCAAAA	CCGCTCCGGG	300
RAACRAACKT	AAWTYTGCCG	AATTTCNTTC	CCCTGCGCCT	TGATAAATTT	NTNAAGCCAC	360
CGCAAMCCTY	CGGGCKTCTC	CTCKTGCCRA	ATYCGRWTCC	RATAYCGCCA	TGGCCTNKTC	420
KYCTYCKYCS	GTACCCAAAT	CTTGGGTATC	CTATANTKYC	CCWAAANRCA	AWTCTGGGCK	480
KTCCATKTSC	TGGSKTCCRA	ATTTAMMACA	NCGGTTTCTT	TCWTACCAAA	AACCSNTGGG	540
CCCCRACCRA	AAAAKGATAA	TAATAAKGTG	CWWWCAAAAC	CCCGCCCCCC	RRTTCAAYCG	600
GTCCARCACC	CCANGNGGTN	AGGTNGGAAT	TYTMAACCCC	CAGCCCATAA	SNTTNSGNAA	660
AAACCCCCCN	GGGYMYCAAA	AMMCTTTTTG	GGGMTTCSGS	CCATKGYKCC	AAAACCAAAA	720
TMTTTCYGGT	CRWAAAAACC	GGCCCNCCCG	NAAATTTTTT	GKCAACCCCA	AACCTTTMAM	780
CCNNNTTCYY	YCCCNSACAA	TNGGSGGNKN	NGSSCNTTYT	TWTTTYYNNA	GGGGGGRRWC	840
SNCCCCNAAN	YYCCNAANKG	NKCCCGSNMA	AAAGAGANTT	YCMKAAAAAC	CCCCNCNCCC	900
NAAAYACCCC	MAAAKWTTCM	AAASMSCNNG	YCCCCC			936

### (2) INFORMATION FOR SEQ ID NO:331:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1042 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:331:

NNNGN KNNNY	ATMMAYTCWY	YCTSCACCSG	GGNNWCWATT	GCGGCCRMAW	KCTTGTMAAS	60
AGATCTMNAA	YTCGGCACAG	ASSSGCACAG	ASCCGCGGCG	CTATYCMYCC	GYTGCTCATG	120
CTCAACACGC	TCKTCGGCGW	GRATAATGGC	NCGCCGCCGG	CGCCAACACG	YTCAAYTGCT	190
TCGCCAACGC	CATATNTCAA	CAAGGTRATA	AAASCAAAAC	CGCSCGCCGY	GCCCTTGGGC	240

SCGGRAASCG GTGCCAACCC RAAACNCKTT GGGCACYCGG KTSRACTTTA AASGGTAATC	
TOWTCOTTOT COCCURRENCE CONTROL	300
TCKTCCTCCT GGGCTATGGT GCGCCACAAA CCTSYTGGCG WGGGTCTGGC CCTGGGYCAC	360
CGYCRCNTTT TATNTNTCCK YCTACACNCT TKGGTYCAAC CAACCCACTT CACMAAATTG	
TTTTGGGKTG GGGSSGCCGG VTCTNNCCCV TANTANTANT	420
TTTTGGGKTG GGGSSGCCGG YTGTNNCCGK TAATAATCSG NTGKTCSGCC MYCACCGGWA	480
CCATANCCTG GCCGGCSCTG GCAAATTTCC SAAATCATYT CCTTCTGRAC CCCCACAMRC	540
CTNSAAATCC GRATCAATNC CCCNKGGCTT NTCYCTCTCN GTRCCCAATY TGGTTTCTAT	
RKTNCCCYAL TSCALTCCS TOWGODTON	600
RKTNCCCYAA TSCAATTGGS TTYCCRTTSC YGSTTCCAAN TTNACAAMAS GGTTTYTCMT	660
ACCAAAACCC NTGGSCCNNA CMNAAAAKNA RAAAANAKGG KCTTTYAAAC CCCCCCTAT	720
TCAWYCGGTN CMRNWCCCCG NGKAAGGKGN GAAAYTTHRA CCCAANCCMT ARSTTSGNAK	720
	780
AAACCCYYCG GGGTSMCAAA MKNTWTTSSC CTTCGGMCTT YCCAAATMSA AAATYYTCKK	840
KRMNAAAAMC YGNCCCCSAA ANATTITTGT NAAMCCCKMA YYTRTTWMCC WTTTTCCYCC	
COMONINGNES CHIPMOCOCCUTY THE THE THE THREE WITTICCYCC	900
CCMCNNSNSG GNTNCCCTTY TYATTTCYMM MCRNNSGACN CCCCMNTYTT TWTTCKCWCN	960
MMARGSNNYT RGRMMNMNCC CCNCCCCNAK MTCCNCAAAK NTTTNAACNN NNKYCKCCCC	
CCCMWMNKNC CCCCMNCMTT TM	1020
Todamonia 111	1042

# (2) INFORMATION FOR SEQ ID NO:332:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1073 base pairs
  - (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:332:

MICCOCMUTE	3034300					
MNSGSGMAAA	ATAMATCWCT	CTSYACCSNG	GMTCWATTGC	GGCCGMAWTC	TNGTMAASAG	60
ATCTCGAAYT	CGGCAAANAK	ACGCMAYGTC	AAGTGTRAYY	CGGTCACATA		120
TCAACMCCAA	AGCCGNGTCA	CCGYCTCCCT	GGGGCGCCAC		RATGCAACYT	
CGCGCGCCAC						180
CACCGTTNTT	TGGCCCGCCC				TRAGGTYMCN	240
YCGGCTTGGG	_				AATTTGGGCW	300
			GCGGRWTCYC	NCTGGCCGRA	ATTCCCNCAT	360
TCCKTTAACG			GCCGTAAYTG	YTYCNTGGGC	GCCYTCGGCC	420
CRNAGCASYY	4	CMCCAGGCAA	TACCKTTGGC	TTTRAACCAC	CGGRATNAAY	480
TGKTACCCAC	YTCAASSGTS			AANMCCACCN		
RATCTGCTTC	MTCANCWTTT	SCCGGGTTCT				540
GTTTAMTTTC	CCAANRAATT	CGGYTTGCCA			CMTYCAAAAG	600
AMATCCNCCS	GCGGGSAAAN			GGCTGGTTTM	CGMWCCTTRR	660
GNAAATTGSS		AMTTSGGNTT	SGSCCGGTCC	CCCGNAATAT	YCNTGGNCCT	720
		GSGNAYCCGG	CCWTKGGGGK	TNCCCAGTTG	GWACAATTYC	780
WKCCGTTCCA	AACCCGGGNC	CGGGGGGTGG	GSCCCNTTTT	CCTMYNNAAA	AAGKGTTTGN	840
NYYTTTTCCG	CNRAANTICA	CCSKCNKTNT	GGNCCNAACY	YYYCAANTTC		
AASAAANCYK	YGKTYYCCCC	TTTTMCCSGS	SANCCCCCCM			900
TYNGCCTTAN	CNSNKTKTTT			NMSSKNCGGG		960
MKYSKCNNNN				NCBKKCNKRY	NGNSNMNCCT	1020
	OTHER TANK COM	GSNCSGMKYM	CMNNCNGMYK	NGNKSNNCCC	MSC	1073

# (2) INFORMATION FOR SEQ ID NO:333:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1061 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:333:

GNSNGNKNTN	TMCAYCWYCT	SCACSGGGTC	TATTCCCCC	GCAATYTNGT		
CGATYTCGGC	AMNANAARTG	TCGTCGTCAA	TAT TOCOCC	GCAATYTNGT	CKASAGATCT	60
			TTTCAGKKTG	GTCKTCAAAY	GGGCCAGGCC	120
ADMINISTRA	CCCIGNGICA	CCCAAAANAC	CAACAGCWTC	AAATWTCAAG	GCCRAGGCSC	180
	CKASCAKITA	ACCGTRTCCW	TCRAAGGTGC	CRAACCAGGC	ACCCAGVTCA	240
CCGCCSGGCA	AWTCGCGCTG	CCGGCCGGTN	TCAGCCTGAT	TVCTCXCCC	D/ 150	
TGGYCAMCNT	GGTGAAGGCC	CWWCCGCCNA	AGAACTCGAG	GGCRAATTCC	RWICIGISGG	300
GRAACCCNAG	GAACCCGCGG	TAKAANCCCC	CDARGORAG	GCCGYTGGCN	CAGGANCCNA	360
NAMSGGTTTG	CPACNTCCCC	DA A GGGGGGG	CRAAACCRAG	GCCGYTGGCN	ATTCCNATTA	420
TACCCCRMC	CCCCTTACA	RAACCGTTTY	CITGGTCGGC	CTCGGCAACC	CTGGACCANT	480
INCCCCRINC	CCGGMMCMAC	CYCGGGTNCT	TGKYCCCAAT	NTGCYCCCGC	GNRANTNGGC	540
CNAMIICCAG	GGUNCCANCT	TTCCGGCCCN	AATTCCCVTC	CTTAATCACC	2222	600
GGTTTTGGGC	AACCCCNCYS	CTTMTTTAAA	CATTCCGSCC	CAAATGGGNC	STTGGSAAAT	
TCTNTYCGGT	GGGGCSGGCR	ANMYTTCTCT		CTTAMYCCAN		660
CGGKCAAAWS	NGGGGGGGNA				TTCGSSNTCC	720
AANTTTCSGG	CKTSTMCCCC	\Tmagaccccc	CGGMISCKCC	GGGGKKGCCC	CYGGKTTCAA	780
KCMANTCCCA	GKTSTMSCGG	WALCZCCCCC	CSGCCAAGRA	CCGNGGTTTT	TTTTTGAACC	840
	AMCCGCCSSC		GCCTNAAWGR	RAYTTNKSCC	CNNAAACSGG	900
		CNCCSGKKGT	CCMTSTTTMM	MRCCCTTTGN	GNKTTTTAN	
MGSCCTTNNC		GGGKCSMNNA				960
GSGKGGGGKG			YKNTTTCCCC		RSCCCCCCNN	1020
		CONCIM	17011110000	C		1061

# (2) INFORMATION FOR SEQ ID NO:334:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 986 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:334:

GNNGNNNKWN	ATMCAYCWYY	CTSCACCCCC	GMTCWATTGC			
ATCTMGAAYT			GMICNATIGO	GGCCGCAWKY	TNGTMAASAG	60
GGTGCCGCSG	_	oromicatorio	TGTGTGCATC	TGTGTCANAG	CTGTCAACGC	120
	2-2011GHDCM		AACACCAAAC	CCGTCCGCGG	GYCACCGGCK	180
	AAYCCTCCAG		AACAAYWYCT	CCTGCAACSC	ARSCCGTTYC	240
GCGGCCGRAT	an i dout CMD	YTCGCCKTGC	GGTGCGCCAA	COTTA CTTCCCC	CWYCRANACC	
GCTYCGGGRA	ACCNAACGTA	AATCTTGCCN				300
TGTTAAACCA	CGCAAACCTY	CGGGCKTCTC	CTCKTGCCRA	CCCCCTSCCC	TTRATNAATT	360
TGGCCTNKTC	KYCTYCKYCS	GTMCCCAAAR	CICKIGCCKA	WICCGRWTCC	RATNYCGCCA	420
ATCTKGGCTG			CTTGGTATCC	TATATTGTCC	CTAAATGCAA	480
		GGCGTTCAAA	TTWAMANCAG	NGGTTTCTTY	CTTCCNAAAC	540
CC311GGCCC	CAAACCNAAA	AATGATNATA	ATAATGGTGC	TNTCAAACCC	CGCNCCCATY	600
CNATCSGRCC	AMMCCCCRGN	GGKTANKKGG	GNAATTCTMM	AACCCCAAGC		660
SGANAAACCY	NCNCMGGYÇA	CCAAAACANY		SSNTTCGGMN		
CMAAAACCCA		GGYCCAATAA			YCATGGCTNN	720
KYNAAACCNA	AAKCCTTTTT			SAMCCGGAAA	WTTTTYTTGN	780
SSSCTTNCCA	ATGKYCCMAA	2 CNAACCCDAN	WNTYCCTNCC	RCRCMANTGG	CNSGGARTKT	840
TRNAAAAGGG	CVITTIDICIA	AGNGGGRANA	CCARCCCCAA	TTCCTNNNTN	KNKNCCCNST	900
	GAMIINCMAA	AASCNCCNCC	NCNCTCCCAA	AAKAMCCCCN	AAAGAKNTCN	960
NAANASKYSN	NNNSCCCCCC	CCMMMN				986
						700

⁽²⁾ INFORMATION FOR SEQ ID NO:335:

⁽i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1074 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:335:

ngngggnkrn	ATMMAYCWCT	SATYYACCSN	GGMINMWATTG	CGGCCRMAWT	CTNGTMKASA	60
GATCTMGAAA	YTCGGCAAAG	AGYATKCTCG	GGGGCCAGAT	TINTGGCCCG	CAACCGCCGC	120
ACTTTGCAYW	TCAACAKTCC	SGGTGCCCCA	AAAAAWTCWT	ACCCCCATMC	TYCKTGCASM	180
ASYTGCGCCC	RATTRAACAC	CCGGCCGGCW	TGCTGCGCCA	GGTATTYCAS	CAGYTCAAAY	240
YCTTTKTAGK	TAAAATCCAG	CSGGCGGCCA	CNCAGCCGGG	CGGTKTAGGT	GCCTYCRTCA	300
ATMACCAGCY	CGCCCAGGGY	CACCTTGCCC	AAAAYCTCCT	GGGTCAGCCA	AATTYCCGCS	360
CCGGCCAACM	ACCANCCGCA	TYCTGGCNTC	AATCYCACCG	GGCCCGGTGY	TAAAMMANMA	420
GRATCTCXTC	MANCCCCCAN	TCAGCSYTNA	CNGCMACAGC	CCGCCTTCTT	CAMACCGCCA	480
RTACCGGGWT	CAACCGGCCS	GTCAAACTCA	ACAGGCGGNC	AGGCCTCCCC	CGGANSAAAG	540
GTCTTACSCC	NNYAANAAAA	MAAGNTCTGT	TTTCCCCCTC	CASAASNAAA	AANCCCCSGC	600
CGGGCCTTCN	NMMGGGTTTG	GGGMANANAA	AARCNCCGGN	GGAACGNATC	CGAAAMCTCC	660
CAAGTCNCMT	TWAWAACYCN	NNAACCCCCC	ANTTTTGGGA	AAGGNTCCCC	NTTMYCCCCC	720
TTTTASGKTS	GGGMMYYCTY	TAAAAAAATT	CCCCAAAAAG	CCCCGGGAAG	GGTCMAMCTG	780
GGNAAATTTC	CAAMCCNWGK	TTNTTYNGGT	TMCGGGGGRA	AATTYCNCTC	CCYYNNNGGG	840
CSSGSNNNAT	TAYGGMSNMT	TTTNNAAWTM	NSGKKTSAMM	YNNKCCMNNN	SNNMSMANNK	900
TNAMCKCCCN	CCTCNGNGKY	CSCYNCCCSG	GNAGNGGRAS	MKCCNANMAA	AYASGNTTNK	960
CGGAAMMCNN	AATKGNNNSC	CCGGASMCMN	NNNMAAATMT	CNCNKCNSNN	AANRGMRACN	1020
CCCNSNSGMN	RRGAARMTNY	YCCCCCGSKM	GKGNKAAAAW	GKYCCCCCCM	AAAG	1074

- (2) INFORMATION FOR SEQ ID NO:336:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1195 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:336:

NGNGNCNKNT	MTACATCWTT	CTGCACCSGG	GNTCWANTGC	GGCCGCAWKY	TTGTCGASAG	60
ATCTCGAAYT	CGGCAMGAGG	ACWCTCGCRA	CGCCCCCACA	NACTCTGGCG	TGTGTACCCC	120
				TGCCGTYCGC	CKTGCGCGGC	180
GGCCTCACGG	CKCTSCWTCT			TCGGTTTTCT	RAACGCTGGG	240
AAAWTGGCCA	GCCGTCTGGC	TCATGGGNTC	TACGCAACGC	CNGCCCCCAA	CRCTTTCTTA	300
AATCCGGYCC	NTCCTGANCS			ACTGGTTGCS		360
TCGAACTTRK	TCNAAATCCC	GCANAKTGTT	TCNTAMGYCC	CNCCGGAAGG	NGAACCTACT	420
TTCNGGWANG	TCGGCNKCCG			ACGGGGAACT		480
KGGGAAAAAG	RRCCTCAATG			CGCSCCCTGK		540
GAAGGCSMAG	GGTTAANGCC		RSCCGTSTGA		MGGANKAMNN	600
NNKMAMWTTK	TCRGNGGCCW	ATSTSCCGGG	CKSTTAKAGA			660
SAAAGNTKCS	GCGMGTTTTS		YCTGATTTSA	GGGGGKYKCC		720
CGAAWKWRKY	CCYAGGGGGM		CGMNNATNAG	AGNAAGGKTT	RYGSTSKNCC	780
TYTNKGGACC	WSCNNCWSAK			AGNKTNKGRT		840
TAAGAGGAGC	TATKMKCGCC			KYCCCSNKRT		900
				*** ** ** ** ** ** ** ** ** ** ** ** **	TOTAL TION WIND	900

TATKSAGMGG	TKCCGMAGMK	CCSCGTTTKT	TKTGANAAMN	MSMRKNKKTG	CGMGYTCTSC	960
GGGNTTTGTA	GAGTAKTCGS	CSCSSMWGAC	WCSGMCMGNG	AGKNKTNNTS	YANTGARCGY	1020
MNNSKTMKMT	MSCSCGCGNA	GGAGNGCCCC	CSANGMSTGY	NKGGNMSSNG	ARAKGATGGS	1080
GGCCNCGMNN	MGMGGANMGA	SANNGMGGMR	GGGGGKTGKC	TCKCSCCGNS	CSANGRAGAA	1140
GKTCNGSCGC	CGMGGKYGKT	KTKTKNKTGG	YSTCMSSMMM	NAGAAAAGAG	AGGGC	1195

### (2) INFORMATION FOR SEQ ID NO:337:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3572 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:337:

	GTTGGCAACC				AGCATTTGCA	60
	AAAACCGGAC				ATCGGCTGAA	120
TTTGATTGCG	AGTGAGATAT	TTATGCCAGC	CAGCCAGACG	CAGACGCGCC	GAGACAGAAC	180
	CGCTAACAGC				TGCTCCACGC	240
	ACCGTCTTCA				TGGTCAGAGA	300
	TAACGCCGGA				GCATCCTGGT	360
	ATAGTTAATG				TTGTGCACCG	420
	GGCTTCGACG					480
	GCGAGATTTA				AGGGCCAGAC	540
	AACGCCAATC			CAGTTGTTGT	GCCACGCGGT	600
	ATTCAGCTCC			TTCCCGCGTT	TTCGCAGAAA	660
CGTGGCTGGC	CTGGTTCACC	ACGCGGGAAA	CGGTCTGATA	AGAGACACCG	GCATACTCTG	720
CGACATCGTA	TAACGTTACT	GGTTTCACAT	TCACCACCCT	GAATTGACTC	TCTTCCGGGC	780
GCTATCATGC	CATACCGCGA	AAGGTTTTGC	GCCATTCGAT	GGTGTCCGGG	ATCTCGACGC	340
TCTCCCTTAT	GCGACTCCTG	CATTAGGAAG	CAGCCCAGTA	GTAGGTTGAG	GCCGTTGAGC	900
	CAAGGAATGG				CCCGGCCACG	960
GGGCCTGCCA	CCATACCCAC	GCCGAAACAA	GCGCTCATGA	GCCCGAAGTG	GCGAGCCCGA	1020
TCTTCCCCAT	CGGTGATGTC	GGCGATATAG	GCGCCAGCAA	CCGCACCTGT	GGCGCCGGTG	1080
ATGCCGGCCA	CGATGCGTCC	GGCGTAGAGG	ATCGAGATCT	CGATCCCGCG	AAATTAATAC	1140
GACTCACTAT	AGGGGAATTG	TGAGCGGATA	ACAATTCCCC	TCTAGAAATA	ATTTTGTTTA	1200
ACTTTAAGAA	GGAGATATAC	ATATGGGCCA	TCATCATCAT	CATCACGTGA	TCGACATCAT	1260
CGGGACCAGC	CCCACATCCT	GGGAACAGGC	GGCGGCGGAG	GCGGTCCAGC	GGGCGCGGGA	1320
TAGCGTCGAT	GACATCCGCG	TCGCTCGGGT	CATTGAGCAG	GACATGGCCG	TGGACAGCGC	1380
CGGCAAGATC	ACCTACCGCA	TCAAGCTCGA	AGTGTCGTTC	AAGATGAGGC	CGGCGCAACC	1440
GAGGGGCTCG	AAACCACCGA	GCGGTTCGCC	TGAAACGGGC	GCCGGCGCCG	GTACTGTCGC	1500
GACTACCCC	GCGTCGTCGC	CGGTGACGTT	GGCGGAGACC	GGTAGCACGC	TGCTCTACCC	1560
GCTGTTCAAC	CTGTGGGGTC	CGGCCTTTCA	CGAGAGGTAT	CCGAACGTCA	CGATCACCGC	1620
TCAGGGCACC	GGTTCTGGTG	CCGGGATCGC	GCAGGCCGCC	GCCGGGACGG	TCAACATTGG	1680
GGCCTCCGAC	GCCTATCTGT	CGGAAGGTGA	TATGGCCGCG	CACAAGGGGC	TGATGAACAT	1740
CGCGCTAGCC	ATCTCCGCTC	AGCAGGTCAA	CTACAACCTG	CCCGGAGTGA	GCGAGCACCT	1800
CAAGCTGAAC	GGAAAAGTCC	TGGCGGCCAT	GTACCAGGGC	ACCATCAAAA	CCTGGGACGA	1860
CCCGCAGATC	GCTGCGCTCA	ACCCCGGCGT	GAACCTGCCC	GGCACCGCGG	TAGTTCCGCT	1920
			CTTGTTCACC		CCAAGCAAGA	1980
	TGGGGCAAGT		CGGCACCACC		CGGCGGTGCC	2040
GGGTGCGCTG	GGTGAGAACG	GCAACGGCGG	CATGGTGACC	GGTTGCGCCG	AGACACCGGG	2100
	TATATCGGCA	TCAGCTTCCT	CGACCAGGCC	AGTCAACGGG	GACTCGGCGA	2160
GGCCCAACTA	GGCAATAGCT	CTGGCAATTT	CITGTTGCCC	GACGCGCAAA	GCATTCAGGC	2220

```
CGCGGCGGCT GGCTTCGCAT CGAAAACCCC GGCGAACCAG GCGATTTCGA TGATCGACGG 2280
GCCCGCCCCG GACGGCTACC CGATCATCAA CTACGAGTAC GCCATCGTCA ACAACCGGCA 2340
AAAGGACGCC GCCACCGCGC AGACCTTGCA GGCATTTCTG CACTGGGCGA TCACCGACGG 2400
CAACAAGGCC TCGTTCCTCG ACCAGGTTCA TTTCCAGCCG CTGCCGCCCG CGGTGGTGAA 2460
GTTGTCTGAC GCGTTGATCG CGACGATTTC CAGCGCTGAG ATGAAGACCG ATGCCGCTAC 2520
CCTCGCGCAG GAGGCAGGTA ATTTCGAGCG GATCTCCGGC GACCTGAAAA CCCAGATCGA
CGAGATCTCG ACGAATATTC GTCAGGCCGG CGTCCAATAC TCGAGGGCCG ACGAGGAGCA 2760
GCAGCAGGCG CTGTCCTCGC AAATGGGCTT TGGATTCAGC TTCGCGCTGC CTGCTGGCTG 2820
GGTGGAGTCT GACGCCGCCC ACTTCGACTA CGGTTCAGCA CTCCTCAGCA AAACCACCGG 2880
GGACCCGCCA TTTCCCGGAC AGCCGCCGCC GGTGGCCAAT GACACCCGTA TCGTGCTCGG 2940
CCGGCTAGAC CAAAAGCTTT ACGCCAGCGC CGAAGCCACC GACTCCAAGG CCGCGGCCCG 3000
GTTGGGCTCG GACATGGGTG AGTTCTATAT GCCCTACCCG GGCACCCGGA TCAACCAGGA 3060
AACCGTCTCG CTYGACGCCA ACGGGGTGTC TGGAAGCGCG TCGTATTACG AAGTCAAGTT 3120
CAGCGATCCG AGTAAGCCGA ACGGCCAGAT CTGGACGGGC GTAATCGGCT CGCCCGCGGC 3180
GAACGCACCG GACGCCGGGC CCCCTCAGCG CTGGTTTGTG GTATGGCTCG GGACCGCCAA 3240
CAACCCGGTG GACAAGGGCG CGGCCAAGGC GCTGGCCGAA TCGATCCGGC CTTTGGTCGC
CCCGCCGCCG GCGCCGGCCG GGGAAGTCGC TCCTACCCCG ACGACACCGA CACCGCAGCG
GACCTTACCG GCCTGAGAAT TCTGCAGATA TCCATCACAC TGGCGGCCGC TCGAGCACCA
CCACCACCAC CACTGAGATC CGGCTGCTAA CAAAGCCCGA AAGGAAGCTG AGTTGGCTGC 3480
TGCCACCGCT GAGCAATAAC TAGCATAACC CCTTGGGGCC TCTAAACGGG TCTTGAGGGG 3540
TTTTTTGCTG AAAGGAGGAA CTATATCCGG AT
                                                               3572
```

- (2) INFORMATION FOR SEQ ID NO:338:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 20 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: pentide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:338:

Val Gln Phe Gln Ser Gly Gly Asp Asn Ser Pro Ala Val Tyr Kaa Kaa 1 5 10 15 Asp Gly Kaa Arg

- (2) INFORMATION FOR SEQ ID NO:339:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 10 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:339:

Thr Thr Val Pro Xaa Val Thr Glu Ala Arg

- (2) INFORMATION FOR SEQ ID NO:340:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 10 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:340:

Thr Thr Pro Ser Xaa Val Ala Phe Ala Arg
1 5 10

- (2) INFORMATION FOR SEQ ID NO:341:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 12 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:341:

Asp Ala Gly Lys Xaa Ala Gly Xaa Asp Val Xaa Arg 1 5 10

- (2) INFORMATION FOR SEQ ID NO:342:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 18 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:342:

Thr Xaa Glu Glu Xaa Gln Glu Ser Phe Asn Ser Ala Ala Pro Gly Asn 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:343:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 27 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Other (xi) SEQUENCE DESCRIPTION: SEQ ID NO:343: CTAGTTAGTA CTCAGTCGCA GACCGTG 27 (2) INFORMATION FOR SEQ ID NO:344: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Other (xi) SEQUENCE DESCRIPTION: SEQ ID NO:344: GCAGTGACGA ATTCACTTCG ACTCC 25 (2) INFORMATION FOR SEQ ID NO:345: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2412 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:345: CATATGGGCC ATCATCATCA TCATCACGTG ATCGACATCA TCGGGACCAG CCCCACATCC TGGGAACAGG CGGCGGGGA GGCGGTCCAG CGGGCGCGGG ATAGCGTCGA TGACATCCGC 120 GTCGCTCGGG TCATTGAGCA GGACATGGCC GTGGACAGCG CCGGCAAGAT CACCTACCGC 180 ATCAAGCTCG AAGTGTCGTT CAAGATGAGG CCGGCGCAAC CGAGGGGCTC GAAACCACCG 240 AGCGGTTCGC CTGAAACGGG CGCCGGCGCC GGTACTGTCG CGACTACCCC CGCGTCGTCG CCGGTGACGT TGGCGGAGAC CGGTAGCACG CTGCTCTACC CGCTGTTCAA CCTGTGGGGT CCGGCCTTTC ACGAGAGGTA TCCGAACGTC ACGATCACCG CTCAGGGCAC CGGTTCTGGT GCCGGGATCG CGCAGGCCGC CGCCGGGACG GTCAACATTG GGGCCTCCGA CGCCTATCTG TCGGAAGGTG ATATGGCCGC GCACAAGGGG CTGATGAACA TCGCGCTAGC CATCTCCGCT

AATTTCGAGC	GGATCTCCGG	CCICCOOCIA				
	AGGCCAGTG		ACCCAGATCG	ACCAGGTGGA	GTCGACGGCA	1380
		GCGCGGCGCG	GCGGGGACGG	CCGCCCAGGC	CGCGGTCGTC	1440
CGCTTCCAAG		TAAGCAGAAG	CAGGAACTCG	ACGAGATOTO	GACGAATATT	
CGTCAGGCCG	GCGTCCAATA	CTCGAGGGCC		AGCAGCAGGC		1500
CAAATGGGCT		AACGGCCGCC				1560
GCACCGGCGA			CCGGCCGCCGT		AGCGCCACCC	1620
CCGGGCGATC	CCAACGCAGG	ACCEPTAGE A	CCGGCCGCCG	CCAACACGCC	GAATGCCCAG	1680
	ACCOLAGE	ACCICCGCCG	GCCGACCCGA	ACGCACCGCC	GCCACCTGTC	1740
AT TOCCCOM	COCACCCCA	ACCIGICCGG	ATCGACAACC	CGGTTGGAGG	A TITC A COMMO	1800
GCGCTGCCTG		GGAGTCTGAC	GCCGCCCACT	TCGACTACGG		
CTCAGCAAAA	CCACCGGGGA	CCCGCCATTT	CCCGGACAGC	CCCCCCCCC	CCCCTARCAC	1860
ACCCGTATCG	TGCTCGGCCG	GCTAGACCAA				1920
TCCAAGGCCG	CGGCCCGGTT	GGGCTCGGAC			AGCCACCGAC	1980
ACCCGGATCA	ACCAGGAAAC				CTACCCGGGC	2040
TATTACGAAG			GACGCCAACG	GGGTGTCTGG	AAGCGCGTCG	2100
	TCAAGTTCAG	CGATCCGAGT	AAGCCGAACG	GCCAGATCTG	GACGGGCGTA	2160
	CCGCGGCGAA	CGCACCGGAC	GCCGGGCCCC		GTTTGTGGTA	2220
TGGCTCGGGA	CCGCCAACAA	CCCGGTGGAC				
ATCCGGCCTT	TGGTCGCCCC	GCCGCCGGCG	CCGGCNCCCC		GGCCGAATCG	2280
GCGCCGGCGC	CGGCCGGGGA	AGTCGCTCCT	ACCCCCA COS	CTCCTGCAGA	GCCCGCTCCG	2340
TTACCGGCCT	GA		AUCUUGACGA	CACCGACACC	GCAGCGGACC	2400
	<del></del> -					2412

# (2) INFORMATION FOR SEQ ID NO:346:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 802 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: protein

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:346:

Met Gly His His His His His Val Ile Asp Ile Ile Gly Thr Ser Pro Thr Ser Trp Glu Gln Ala Ala Ala Glu Ala Val Gln Arg Ala Arg 25 Asp Ser Val Asp Asp Ile Arg Val Ala Arg Val Ile Glu Gln Asp Met 40 Ala Val Asp Ser Ala Gly Lys Ile Thr Tyr Arg Ile Lys Leu Glu Val 55 Ser Phe Lys Met Arg Pro Ala Gln Pro Arg Gly Ser Lys Pro Pro Ser 70 75 Gly Ser Pro Glu Thr Gly Ala Gly Ala Gly Thr Val Ala Thr Thr Pro 85 Ala Ser Ser Pro Val Thr Leu Ala Glu Thr Gly Ser Thr Leu Leu Tyr 90 105 Pro Leu Phe Asn Leu Trp Gly Pro Ala Phe His Glu Arg Tyr Pro Asn 120 Val Thr Ile Thr Ala Gln Gly Thr Gly Ser Gly Ala Gly Ile Ala Gln 135 Ala Ala Ala Gly Thr Val Asn Ile Gly Ala Ser Asp Ala Tyr Leu Ser 150 155 Glu Gly Asp Met Ala Ala His Lys Gly Leu Met Asn Ile Ala Leu Ala 170 Ile Ser Ala Gln Gln Val Asn Tyr Asn Leu Pro Gly Val Ser Glu His

WO 99/42118 PCT/US99/03265

			180					185					190		
		195					200	Ala	Ala			205	Gly		
	210	,	Asp			215					220				
225	)		Thr		230					235					240
			. Leu	245					250					255	Gly
			Ser 260					265					270	Ala	
		275					280					285			
	290		Pro			295					300				
305			Gln		310					315					320
			Leu	325					330					335	
			Ser 340					345					350		
		355	Pro				360					365			
	0 / د		Arg			375					380				
305			Trp		390					395					400
			Phe	405					410					415	
			Ala 420					425					430		
		435	Gln				140					445			
	420		Ile			455					460				
400			Gly		470					475					180
			Ala	482					490					495	
			Arg 500 Ala					505					510		
		272	Ala				520					525			
	220		Pro			535					540				
343			Pro		550					555					560
			Asn	262					570					575	
			Ile 580 Gly					585					590		
		595	His				600					605			
:	510			- 44		615	OTÀ	ser	Ald	пеп	Leu 620	ser	гÀг	Thr	Thr

34

37

025					630					635			Asn		640
				645					650				Ser	655	Gli
			660					665					<b>Me</b> t 670	Gly	
		6/5					680					685	Thr		
	690					695					700		Glu		
/05					710					715			Gly		720
				725					730				Gln	735	Trp
			/40					745					Lys 750		
		/55					760					765	Pro		
	//0					775					780		Ala		
/85		Val	Ala	Pro	Thr 790	Pro	Thr	Thr	Pro	Thr 795	Pro	Gln	Arg	Thr	<b>Le</b> u 800
Pro	Ala														

- (2) INFORMATION FOR SEQ ID NO:347:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 34 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Other
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:347:

### GGATCCAAAC CACCGAGCGG TTCGCCTGAA ACGG

(2) INFORMATION FOR SEQ ID NO:348:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 37 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Other
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:348:

# CGCTGCGAAT TCACCTCCGG AGGAAATCGT CGCGATC

(2) INFORMATION FOR SEQ ID NO:349:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1962 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:349:

CATATGGGCC	ATCATCATCA	TCATCACGGA	TCCAAACCAC	CGAGCGGTTC	GCCTGAAACG	60
GGCGCCGGCG	CCGGTACTGT	CGCGACTACC	CCCGCGTCGT	CGCCGGTGAC	GTTGGCGGAG	120
ACCGGTAGCA	CGCTGCTCTA	CCCGCTGTTC	AACCTGTGGG	GTCCGGCCTT	TCACGAGAGG	180
TATCCGAACG	TCACGATCAC	CGCTCAGGGC	ACCGGTTCTG	GTGCCGGGAT	CGCGCAGGCC	240
GCCGCCGGGA	CGGTCAACAT	TGGGGCCTCC	GACGCCTATC	TGTCGGAAGG	TGATATGGCC	300
GCGCACAAGG	GGCTGATGAA	CATCGCGCTA	GCCATCTCCG	CTCAGCAGGT	CAACTACAAC	360
CTGCCCGGAG	TGAGCGAGCA	CCTCAAGCTG	AACGGAAAAG	TCCTGGCGGC	CATGTACCAG	420
GGCACCATCA	AAACCTGGGA	CGACCCGCAG	ATCGCTGCGC	TCAACCCCGG	CGTGAACCTG	480
CCCGGCACCG	CGGTAGTTCC	GCTGCACCGC	TCCGACGGGT	CCGGTGACAC	CTTCTTGTTC	540
ACCCAGTACC	TGTCCAAGCA	AGATCCCGAG	GGCTGGGGCA	AGTCGCCCGG	CTTCGGCACC	600
ACCGTCGACT	TCCCGGCGGT	GCCGGGTGCG	CTGGGTGAGA	ACGGCAACGG	CGGCATGGTG	660
ACCGGTTGCG	CCGAGACACC	GGGCTGCGTG	GCCTATATCG	GCATCAGCTT	CCTCGACCAG	720
GCCAGTCAAC	GGGGACTCGG	CGAGGCCCAA	CTAGGCAATA	GCTCTGGCAA	TTTCTTGTTG	780
CCCGACGCGC	AAAGCATTCA	GGCCGCGGCG	GCTGGCTTCG	CATCGAAAAC	CCCGGCGAAC	840
CAGGCGATTT	CGATGATCGA	CGGGCCCGCC	CCGGACGGCT	ACCCGATCAT	CAACTACGAG	900
TACGCCATCG	TCAACAACCG	GCAAAAGGAC	GCCGCCACCG	CGCAGACCTT	GCAGGCATTT	960
CTGCACTGGG	CGATCACCGA	CGGCAACAAG	GCCTCGTTCC	TCGACCAGGT	TCATTTCCAG	1020
CCGCTGCCGC	CCGCGGTGGT	GAAGTTGTCT	GACGCGTTGA	TCGCGACGAT	TTCCTCCGGA	1080
GGTGGCAGTG	${\tt GGGGAGGCTC}$	AGGTGGAGGT	TCTGGCGGGA	GCGTGCCCAC	AACGGCCGCC	1140
TCGCCGCCGT	CGACCGCTGC	AGCGCCACCC	GCACCGGCGA	CACCTGTTGC	CCCCCCACCA	1200
CCGGCCGCCG	CCAACACGCC	JAATGCCCAG	CCGGGCGATC	CCAACGCAGC	ACCTCCGCCG	1260
GCCGACCCGA	ACGCACCGCC	GCCACCTGTC	ATTGCCCCAA	ACGCACCCCA	ACCTGTCCGG	1320
ATCGACAACC	CGGTTGGAGG	ATTCAGCTTC	GCGCTGCCTG	CTGGCTGGGT	GGAGTCTGAC	1380
GCCGCCCACT	TCGACTACGG	TTCAGCACTC	CTCAGCAAAA	CCACCGGGGA	CCCGCCATTT	1440
CCCGGACAGC	CGCCGCCGGT	GGCCAATGAC	ACCCGTATCG	TGCTCGGCCG	GCTAGACCAA	1500
AAGCTTTACG	CCAGCGCCGA	AGCCACCGAC	TCCAAGGCCG	CGGCCCGGTT	GGGCTCGGAC	1560
ATGGGTGAGT	TCTATATGCC	CTACCCGGGC	ACCCGGATCA	ACCAGGAAAC	CGTCTCGCTC	1620
GACGCCAACG	GGGTGTCTGG	AAGCGCGTCG	TATTACGAAG	TCAAGTTCAG	CGATCCGAGT	1680
AAGCCGAACG	GCCAGATCTG	GACGGGCGTA	ATCGGCTCGC	CCGCGGCGAA	CGCACCGGAC	1740
GCCGGGCCCC	CTCAGCGCTG	GTTTGTGGTA	TGGCTCGGGA	CCGCCAACAA	CCCGGTGGAC	1800
AAGGGCGCGG	CCAAGGCGCT	GGCCGAATCG	ATCCGGCCTT	TGGTCGCCCC	GCCGCCGGCG	1860
CCGGCACCGG		GCCCGCTCCG		CGGCCGGGGA	AGTCGCTCCT	1920
ACCCCGACGA	CACCGACACC	GCAGCGGACC	TTACCGGCCT	GA		1962

- (2) INFORMATION FOR SEQ ID NO:350:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 652 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULZ TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:350:

WO 99/42118 PCT/US99/03265

Met 1	Gly	His	His	His 5	His	His	His	Gly	Ser 10	Lys	Pro	Pro	Ser	Gly 15	Ser
			Gly 20					25					30	Ala	
		35	Thr				40					45			
	50		Trp			55					60				
65			Gln		70					75					80
			Val	85					90					95	
			Ala 100					105					110		
		115	Val				120					125			
	130		Lys			135					140				
145			Pro		150					155					160
			Val	165					170					175	
			Thr 180					185					190		
		195	Gly				200					205			
	210		Glu			215					220				
225			Cys		230					235					240
			Gly	245					250					255	
			Pro 260					265					270		
		275	Thr				280					285			
	290		Gly			295					300				
305	Arg	GIN	Lys	Asp	A1a 310	Ala	Thr	Ala	Gln	Thr	Leu	Gln	Ala	Phe	Leu 320
			Ile	325	Asp				330	Ser				335	Val
His			340					345					350		
		355	Ile				360					365			
Gly	370					375					380				
Ala 385	Ala	Ala	Pro	Pro	Ala 390	Pro	Ala	Thr	Pro		Ala	Pro	Pro	Pro	
Ala	Ala	Ala	Asn	Thr 405		Asn	Ala	Gln	Pro	395 Gly	Asp	Pro	Asn	Ala 415	400 Ala
Pro	Pro	Pro	Ala 420	Asp	Pro	Asn	Ala	Pro 425		Pro	Pro	Val	Ile 430	Ala	Pro

222

Asn Ala Pro Gln Pro Val Arg Ile Asp Asn Pro Val Gly Gly Phe Ser 440 Phe Ala Leu Pro Ala Gly Trp Val Glu Ser Asp Ala Ala His Phe Asp 455 Tyr Gly Ser Ala Leu Leu Ser Lys Thr Thr Gly Asp Pro Pro Phe Pro 470 475 Gly Gln Pro Pro Pro Val Ala Asn Asp Thr Arg Ile Val Leu Gly Arg 490 Leu Asp Gln Lys Leu Tyr Ala Ser Ala Glu Ala Thr Asp Ser Lys Ala 505 Ala Ala Arg Leu Gly Ser Asp Met Gly Glu Phe Tyr Met Pro Tyr Pro 520 Gly Thr Arg Ile Asn Gln Glu Thr Val Ser Leu Asp Ala Asn Gly Val 535 Ser Gly Ser Ala Ser Tyr Tyr Glu Val Lys Phe Ser Asp Pro Ser Lys 5**5**0 555 Pro Asn Gly Gln Ile Trp Thr Gly Val Ile Gly Ser Pro Ala Ala Asn 570 Ala Pro Asp Ala Gly Pro Pro Gln Arg Trp Phe Val Val Trp Leu Gly 585 Thr Ala Asn Asn Pro Val Asp Lys Gly Ala Ala Lys Ala Leu Ala Glu 600 605 Ser Ile Arg Pro Leu Val Ala Pro Pro Pro Ala Pro Ala Pro Ala Pro 615 Ala Glu Pro Ala Pro Ala Pro Ala Gly Glu Val Ala Pro Thr 630 635 Pro Thr Thr Pro Thr Pro Gln Arg Thr Leu Pro Ala 645 650

## PATENT COOPERATION TREATY

# **PCT**

# DECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT

(PCT Article 17(2)(a) and Rule 39)

Applicant's or agent's file reference 9532-023-228	IMPORTANT DECLAR	ATION	Date of mailing (day/mo 22 JUNE	th/year) 1999			
International application No.	International filing date (day)	month/year)	(Earliest) Priority Date (day/month/year)				
PCT/US99/03265	17 FEBRUARY 1999		18 FEBRUARY 1998				
International Patent Classification (IPC) Please See Continuation Sheet.	or both national classification	and IPC					
Applicant CORIXA CORPORATION		-					
This International Searching Authority be established on the international app	hereby declares, according to A	article 17(2)(a), and below.	that no international se	arch report will			
1. The subject matter of the int	ernational application relates to	:					
a. scientific theories.							
b. mathematical theori	cs.						
c. plant varieties.							
d. animal varieties.							
e. essentially biologica and the products of	I processes for the production of such processes.	plants and anim	als, other than microbiolo	gical processes			
· L.	nethods of doing business.						
	nethods of performing purely r	nental acts.					
<u>                                   </u>	nethods of playing games.						
i. methods for treatm	ent of the human body by surg	ery or therapy.					
j. methods for treatm	ent of the animal body by surg	ery or therapy.					
k. diagnostic methods	practiced on the human or ani	mal body.					
1. mere presentations	of information.						
m. computer programs	s for which this International S	earching Author	rity is not equipped to see	arch prior art.			
2. The failure of the following meaningful search from bei	parts of the international appling carried out:	ication to comp	ly with prescribed requir	ements prevents a			
the description	the claims		the drawings				
3. X The failure of the nucleotid a meaningful search from b	e and/or amino acid sequence leing carried out:	isting to comply	with the prescribed requ	uirements prevents			
it does not comply	with the prescribed standard						
it is not in the pre	scribed machine readable form						
4. Further comments:							
4. Turner comments.							
		.1					
Name and mailing address of the ISA	/IIS TA.,	thorized of Hodr	101	1. 1			
Name and mailing address of the ISA  Commissioner of Patents and Train	demarks	WU		llins la			
Box PCT Washington, D.C. 20231		MICHAEL W	OODWARD				
Facsimile No. (703) 305-3230	Tc	lephone No.	(703) 308-4028	/			
Form PCT/ISA/203 (July 1992) *				1/			

# DECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/03265

The International Patent Classification (IPC) or National Classification and IPC are as listed below:
IPC(5): A61K 38/00; C07K 1/00; C07K 16/00; C12Q 1/68; C12P 19/34; C07H 21/02, 21/04 US Cl. 530/300, 350, 387.1; 435/6, 91.1, 91.2; 536/23.1, 24.3, 24.31, 24.32,24.33