GIẢI TÍCH SỐ

Giảng viên hướng dẫn: TS.Hà Thị Ngọc Yến

Viện : Toán ứng dụng và tin học

Giới Thiệu

	Nguyễn Thị Duyên	20195866
	2 Phạm Thị Hoa	20195874
CÁC THÀNH	3 Trần Thị Hồng	20195880
VIÊN	4 Nguyễn Như Thuận	20195925
	5 Phạm Thu Trang	20195931
6	Trần Thị Hồng Vân	20195941

Nội Dung

1 Ma trận nghịch đảo

1.1 Định nghĩa

1.2 Tính chất

Phương pháp GAUSS - JORDAN

3 Phương pháp CHOLEVSKY

Phương pháp viền quanh

1.Ý tưởng phương pháp

2. Nội dung phương pháp

3.Sơ đồ thuật toán

4. Ví dụ minh họa

1. Ma trận nghịch đảo

1.1 Định nghĩa

Cho ma trận A vuông cấp n, $det(A) \neq 0$. Ma trận X vuông cấp n thỏa mãn :

$$A.X = X.A = E_n$$

- với E_n là ma trận đơn vị cấp n.

Khi đó, ma trận X được gọi là ma trận nghịch đảo của ma trận A

Kí hiệu : $X = A^{-1}$

Ta nói: ma trận A khả nghịch.

1. Ma trận nghịch đảo

1.2 Tính chất

- 1. A khả nghịch \iff det(A) \neq 0
- 2. A khả nghịch thì A-1 là duy nhất

3.
$$(A^{-1})^{-1} = A$$

4.
$$(A.X)^{-1} = X^{-1}.A^{-1}$$

5.
$$(A^T)^{-1} = (A^{-1})^T$$

Vậy có những phương pháp nào để tìm đúng ma trận nghịch đảo?

Các phương pháp tìm đúng ma trận nghịch đảo

- Trong đại số tuyến tính:

$$A^{-1} = \frac{1}{\det(A)} \cdot \widetilde{A}$$
 Khối lượng tính toán lớn

trong đó : $det(A) \neq 0$ là định thức ma trận A, \widetilde{A} là ma trận phụ đại số của ma trận A.

- Một số phương pháp có khối lượng tính toán tốt hơn :
- Phương pháp GAUSS JORDAN
- Phương pháp CHOLEVSKY
- Phương pháp viền quanh

2.1 Ý tưởng thuật toán

- Gọi ma trận $X = [x_{ij}]_n$ là ma trận nghịch đảo cần tìm của ma trận vuông $A = [a_{ij}]_n$

$$Ta \ c\acute{o} : A.X = E_{n} \qquad hay \ A. \begin{pmatrix} x_{11} & \cdots & x_{1i} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{i1} & \cdots & x_{ii} & \cdots & x_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{ni} & \cdots & x_{nn} \end{pmatrix} = \begin{pmatrix} 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 1 \end{pmatrix}$$
 (1)

- Đặt X_i = $(x_{1i} \ x_{2i} \ ... \ x_{ni})^T$ cột thứ i của ma trận X, I_i = $(0 \ 0...1...0)^T$ cột thứ i của E_n , phần tử hàng thứ i là 1 còn lại là 0, $i = \overline{1,n}$
 - (1) được viết dưới dạng: $A.X_i = I_i$, $i = \overline{1, n}$ (2)
- Sử dụng phương pháp Gauss Jordan để giải n hệ (2) và thu được ma trận X.

Lập ma trận mở rộng:

$$\overline{A} = (A \mid E_n) = \begin{bmatrix} a_{11} & \cdots & a_{1q} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{p1} & \cdots & a_{pq} & \cdots & a_{pn} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & \cdots & a_{nq} & \cdots & a_{nn} \end{bmatrix} E_n$$

- Bước 1 : Biến đổi sơ cấp ma trận A

Chọn phần tử trội

Uu tiên chọn 1 hoặc -1

Nếu không có 1 hoặc -1,chọn phần tử khác 0 có giá trị tuyệt đối lớn nhất

Giả sử a_{pq} là phần tử trội của A, ta thực hiện:

- Giữ nguyên hàng p: $a_{pi}^{(1)} = a_{pi}$, $i = \overline{1, n}$
- Các phần tử khác tính theo công thức : $a_{ii}^{(1)} = a_{ij} a_{iq} a_{ni}^{(1)} \quad \forall i \neq 1, j$ (3)

Khi đó, \overline{A} trở thành:

$$\overline{A}^{(1)} = \begin{bmatrix} a_{11}^{(1)} & \cdots & 0 & \cdots & a_{1n}^{(1)} \\ a_{p1}^{(1)} & \cdots & a_{pq}^{(1)} = a_{pq} & \cdots & a_{pn}^{(1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1}^{(1)} & \cdots & 0 & \cdots & a_{nn}^{(1)} \end{bmatrix} a_{ij}^{(1)} \quad j = \frac{i = \overline{1, n}}{(n+1), (2n)}$$

$$NX : Trên cột q, các phần tử qiải.$$

$$\overrightarrow{a}_{n1}^{(1)} \quad \cdots \quad 0 \quad \cdots \quad a_{nn}^{(1)}$$

$$phần tử giải.$$

- Bước 2 : Lặp lại Bước 1 với ma trận $\overline{A}^{(1)}$
- Kết quả cho ma trận $\overline{A}^{(2)}$
- Tiếp tục quá trình ta thu được $\overline{A}^{(3)}$, $\overline{A}^{(4)}$... đến khi không chọn được phần tử trội nữa.

Lưu ý: Không được chọn phần tử trội ở vị trí cùng hàng hoặc cột với các phần tử trội đã được chọn trước đó.

- Bước 3 : Xử lý kết quả
- Nếu có ít nhất 1 hàng toàn phần tử 0 => A không khả nghịch.
- Sắp xếp lại các hàng và chia các phần tử trong hàng cho phần tử đường chéo tương ứng của nó.

Ta thu được ma trận $[E_n|B] => Ma trận B là ma trận <math>A^{-1}$ cần tìm!

Cho ma trận A =
$$\begin{bmatrix} 50 & 107 & 36 \\ 25 & 54 & 20 \\ 31 & 66 & 21 \end{bmatrix}$$
. Tìm A⁻¹?

- Kết quả được kiểm tra trên excel:

186 129	196
95 -66	-100
-24 17	7 25

3.1 Ý tưởng thuật toán

- Phân tích ma trận đối xứng A thành tích 2 ma trận tam giác trên và tam giác dưới là chuyển vị của nhau.

Với Q là ma trận tam giác trên thỏa mãn, ta có:

$$A = Q \cdot Q^{T}$$

$$\Leftrightarrow A^{-1} = (Q \cdot Q^{T})^{-1}$$

$$\Leftrightarrow A^{-1} = Q^{-1} \cdot (Q^{T})^{-1}$$

$$\Leftrightarrow A^{-1} = Q^{-1} \cdot (Q^{-1})^{T}$$

- Bài toán quy về tìm Q và Q⁻¹ hay tìm ma trận nghịch đảo của ma trận tam giác.

Nội dung thuật toán

- Cho A là ma trận đối xứng. Ta phân tích : $A = Q^{T}.Q$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} q_{11} & 0 & \cdots & 0 \\ q_{12} & q_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ q_{1n} & q_{2n} & \cdots & q_{nn} \end{bmatrix} \begin{bmatrix} q_{11} & q_{12} & \cdots & q_{1n} \\ 0 & q_{22} & \cdots & q_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & q_{nn} \end{bmatrix}$$

- Các bước thực hiện:

Tìm Q⁻¹

Tìm A^{-1} theo $A^{-1} = Q^{-1} \cdot (Q^{-1})^T$

- Bước 1: Tìm Q bằng công thức:

$$\begin{cases} q_{11} = \sqrt{a_{11}} \\ q_{1j} = \frac{a_{1i}}{q_{11}} \\ \end{cases} \qquad \forall j = \overline{2, n}$$

$$q_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{j-1} q_{ki}^2} \quad \forall i = \overline{2, n}$$

$$q_{ij} = \frac{a_{ij} - \sum_{k=1}^{i-1} q_{ki} \cdot qk_j}{q_{ii}} \quad \forall i < j$$

$$q_{ij} = 0 \quad \forall i > j$$

Luu ý:

Nếu gặp q_{ii} = 0 trong quá trình làm thì kết luận ngay "ma trận A không khả nghịch"

- Bước 2 : Tìm Q⁻¹

Đặt
$$Q^{-1} = [p_{ij}]_n$$
. Từ $Q^{-1} \cdot Q = E_n$ ta có:

$$\begin{vmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{vmatrix} \begin{vmatrix} q_{11} & q_{12} & \cdots & q_{1n} \\ 0 & q_{22} & \cdots & q_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & q_{nn} \end{vmatrix} = \begin{vmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 \end{vmatrix}$$

Áp dụng theo công thức : $\begin{cases} p_{ij} = -\frac{\sum_{k=1}^{j-1} p_{ik} q_{kj}}{q_{ii}} & \forall i < j \end{cases}$

$$\nabla p_{ij} = 0$$
 $\forall i > j$

- Bước 3 : Tìm A⁻¹

Sau khi tìm được Q⁻¹ ta thay vào công thức:

$$A^{-1} = Q^{-1} \cdot (Q^{-1})^{T}$$

Trường hợp A không là ma trận đối xứng ?

- Đặt $B = A^T$. ADễ dàng chứng minh : B là ma trận đối xứng $B^T = (A^T.A)^T = A^T.(A^T)^T = A^T.A = B$
- Áp dụng cholevsky cho B, tìm được B-1
- Tim $A^{-1} = B^{-1}.A^{T}$

Nhận xét: Nếu B khả nghịch thì A cũng khả nghịch, ngược lại.

Cho ma trận
$$A = \begin{bmatrix} 1 & 3 & -2 \\ 3 & 4 & -5 \\ -2 & -5 & 3 \end{bmatrix}$$
. Tìm A^{-1} ?

- Kết quả được kiểm tra trên excel:

	-3.25	0.25	-1.75
h n	0.25	-0.25	-0.25
li li	-1.75	-0.25	-1.25

Ý tưởng thuật toán

Cho ma trận vuông $A = [a_{ij}]_n$, $det(A) \neq 0$. Ta chia ma trận A thành 4 khối:

$$A = \begin{bmatrix} A_{11}(n-1, n-1) & A_{12}(n-1,1) \\ A_{21}(1, n-1) & A_{22}(1,1) \end{bmatrix}$$

- Cho ma trận vuông
$$A = [a_{ij}]_n$$
, $\det(A) \neq 0$. Ta chia ma trận A thành 4 khối:
$$A_{11} = \begin{bmatrix} a_{ij} & i = \overline{1,(n-1)} \\ a_{ij} & j = \overline{1,(n-1)} \end{bmatrix} = A_{n-1}$$

$$A = \begin{bmatrix} A_{11}(n-1,n-1) & A_{12}(n-1,1) \\ A_{21}(1,n-1) & A_{22}(1,1) \end{bmatrix} \quad \text{trong đó:} \begin{cases} A_{12} = [a_{in} & i = \overline{1,(n-1)}] \\ A_{12} = [a_{ni} & i = \overline{1,(n-1)}] \end{cases}$$

$$A_{21} = [a_{ni} & i = \overline{1,(n-1)}]$$

$$A_{22} = a_{nn}$$

$$A_{22} = a_{nn}$$

- Tìm
$$A^{-1}$$
 trong dạng $A^{-1} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$ với giả thiết A_{11}^{-1} tồn tại.

Nội dung thuật toán

- Từ định nghĩa ma trận nghịch đảo : A^{-1} . A = A . $A^{-1} = E$

Ta được :
$$\begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \cdot \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} E & 0 \\ 0 & 1 \end{bmatrix}$$

hay
$$\begin{cases} B_{11}A_{11}+B_{12}A_{21}=E & \text{(1)}\\ B_{11}A_{12}+B_{12}A_{22}=0 & \text{(2)}\\ B_{21}A_{11}+B_{22}A_{21}=0 & \text{(3)}\\ B_{21}A_{12}+B_{22}A_{22}=1 & \text{(4)} \end{cases}$$

- Theo giả thiết tồn tại A_{11}^{-1} nên nhân $A_{11}^{-1}A_{12}$ vào bên phải 2 vế của (1):

$$B_{11}A_{11} + B_{12}A_{21} = E$$

$$\triangleright$$
 B₁₁A₁₂ + B₁₂A₂₁A₁₁⁻¹A₁₂ = A₁₁⁻¹A₁₂ (5)

$$\text{Từ (1) (2) (3) (4) (5) ta biến đổi thu được hệ: } \begin{cases} B_{11} = A_{11}^{-1} - B_{12}A_{21}A_{11}^{-1} \\ \\ B_{12} = -A_{11}^{-1}A_{12}(A_{22} - A_{21}A_{11}^{-1}A_{12})^{-1} \\ \\ B_{21} = -B_{22}A_{21}A_{11}^{-1} \\ \\ B_{22} = (A_{22} - A_{21}A_{11}^{-1}A_{12})^{-1} \end{cases}$$

 \triangleright Vậy, nếu biết A_{11}^{-1} thì ta tìm được A^{-1}

$$A^{-1} = \begin{bmatrix} B_{11} = A_{11}^{-1} + X\theta^{-1}Y & B_{12} = -X\theta^{-1} \\ B_{21} = -\theta^{-1}Y & B_{22} = \theta^{-1} \end{bmatrix}$$

Các bước thực hiện phương pháp cụ thể?

(6)

- Với giả thiết ma trận vuông $A = [a_{ii}]_n$ (det $(A) \neq 0$), ta thực hiện như sau :

•
$$X \text{\'et } A_2 = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \text{ tìm được } A_2^{-1} = \frac{1}{\det(A)} \begin{bmatrix} a_{22} & -a_{21} \\ -a_{12} & a_{11} \end{bmatrix}$$

•
$$X \notin A_3 = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \text{ ta } d \notin A_{11} = A_2, A_{12} = \begin{bmatrix} a_{13} \\ a_{23} \end{bmatrix}, A_{21} = \begin{bmatrix} a_{31} & a_{32} \end{bmatrix}, A_{22} = a_{33}$$

Với $A_{11}^{-1} = A_2^{-1}$ áp dụng công thức (6) tìm được A_3^{-1}

• Tiếp tục áp dụng phương pháp, ta tìm được A_4^{-1} , A_5^{-1} A_n^{-1}

Nếu A có định thức con chính bằng 0?

> Khi đó, phương pháp này không được thực hiện !!!

- Đặt B = A^T.A
 Ta có : B là ma trận đối xứng xác định dương.
- Áp dụng phương pháp viền quanh cho B tìm được B-1
- Tim $A^{-1} = B^{-1}.A^{T}$

Cho ma trận A =
$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 4 & 1 & 0 \\ 0 & -1 & 3 & 0 \\ 3 & 1 & 0 & 0 \end{bmatrix}$$
. Tìm A⁻¹?

- Kết quả được kiểm tra trên excel:

0	-0,0833	0,02778	0,36111
0	0,25	-0,0833	-0,0833
0	0,08333	0,30556	-0,0278
1	0	0	0

Hỏi đáp

Thanks

