

$(x_0 - x_1)(x_0 - x_2) = (-32)(-64) = 2048 = 24$
$(x_1 - x_0)(x_1 - x_2) = (32)(-32) = -1024 = -2^{10}$
$(x_2 - x_0)(x_2 - x_1) = (64)(32) = 2048 = 211$
1 (s) - 2 (5) -
3 (5) -

$(x_2 - x_0)(x_2 - x_1) = (64)(32)$	= 2
1 (s) -	
<mark>2</mark> (5) –	
<mark>3</mark> (s) -	
4 (5) -	
5 (4) x ← 1,2	
6 (4) × ← 2,3	
7 (4) × ~ 3,4	
8 (3) x ∈ s	
9 (3) × ← 6	
10 (3) x ← 7	
11 (2) + € 8,10	
12(1) + < 11, 9	
I	

Ciclo 1	1-	(-)
C,clo 2	3	4 ⁻ ×
C10 3		6 ×
c,clo4		x x
Ciclo 5		8 ×
Ciclos		X
C, clo 7	₁₁ (†)	×
ح,داه ۶	12+	

$$Z_1 = \alpha + b$$

 $Z_2 = C(\alpha + b) = C \cdot Z_1$
 $Z_3 = d + e$
 $Z_4 = C(\alpha + b) + d + e = Z_2 + Z_3 \Rightarrow Res$

	1					_	ı		I
	EmR1	F _{mR2}	$F_{n_{R_3}}$	EnRy	E _{™β} γ	E _{m RM}	Sel A	SalB	Estado
Imit	1	1	1	1	1	1	00	00	111000
C1	1	1	0			1	01	91	110010
<i>C</i> ₂	1	_	D		_	Ю	10	lo	10010 0
<i>د</i> ₃	0	-	0			9	19	10	000100
Cy	Q	1	_	-		_	10	10	010100
٠ ₅	1	_	_	_		1	10	10	110100
dome	Q	_	_	-		_	_	_	@10101
	b 5	Ьч	b 3	64	Ьч	64	b2 b1		Val.d

Registos: 6
4:1 MUX; 2
$$A = Add + Mul + 6 \times Reg + 2 \times Mux + 11 = 16 + 120 + 6 \times 10 + 2 \times 32 = 16 + 120$$

Não é jelo Mult jois este esto distribuido jor 3 ciclos!

Latencia → 5 x 12 m s = 60 ms

$$\frac{N-1}{2} \quad |N=31|$$

$$V_{K} = \sum_{i=0}^{N-1} h_{i}(x_{i} + x_{N-i}) \quad x_{i} = 8b_{i}t_{s} \Rightarrow Q_{5.3}$$

$$h_{i} = 16 \text{ bits} \Rightarrow Q_{2.14}$$

a)

X:: Guordar
$$x_0$$
 a x_{21}

$$\downarrow x_1 \rightarrow 8 \text{ bits } \Rightarrow 4_x x_1 \text{ per limba (16 limbas)} \rightarrow 1 \text{ BRAM}$$

$$\begin{array}{c}
x_0 \times_{31} x_1 \times_{30} \\
x_2 \times_{34} x_3 \times_{28} \\
\vdots
\end{array}$$


```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
entity addm is
      Port (
      hi: in std_logic_vector (15 downto 0);
      xi0, xi1: in std_logic_vector (7 downto 0);
      pi : out std_logic_vector ( 24 downto 0 )
      );
end addm;
architecture behavioral of addm is
signal Sigxi0, Sigxi1: signed(7 downto 0);
signal Sighi: signed(15 downto 0);
signal xAux : signed(8 downto 0);
signal pAux : signed(24 downto 0);
begin
Sigxi0 <= signed(xi0);
Sigxi1 <= signed(xi1);
xAux <= Sigxi0 + Sigxi1;
pAux <= xAux * Sighi;
pi <= std_logic_vector(pAux);</pre>
end behavioral;
```

b) Throughput \Rightarrow 2 MAC's for ciclo

Latercy: $N^{2}c_{1}c_{0}c_{0}s = 3 + \frac{16}{2} = 11$ $t_{c}|_{K} = t_{p}|_{Nu|} + t_{p}|_{Ry} + t_{set} = 14 + 2 + 1 = 17 \text{ ms}$ Latercy = $N^{2}c_{1}c_{0}c_{0}s \times t_{c}|_{K} = 187 \text{ ms}$ e) Apemon 1 DSP $-25b_{1}t_{0}prc_{0}-adder_{0}=> aguento_{0}c_{0}m_{1}x_{1}+x_{N-1}$ $-25 \times 18 m_{1}|_{t}|_{t}|_{t}|_{t}rr>> aguento_{0}c_{0}m_{1}(x_{1}+x_{N-1})$ 4 a) $t_{Nim} = t_{p}|_{t} + t_{set} + Max\{t_{p}|_{c}\} = 4 + 2 + 11 = 17 \text{ ms}$ b) $\delta = t_{p}|_{t}|_{t}rr>> 3 = 14 \text{ ms}$

c)
$$t_{HoLD}^{1} \ll t_{P_{FF}}^{+} + M_{in} \left\{ t_{PLog} \right\} - 6 \ll t_{Hold}^{1} \ll 4 + 2 - 3 \ll t_{Hold}^{1} \ll 3 \text{ ms}$$

WHS = $t_{Hold}^{1} - t_{Hold}^{1} = 2 \text{ ms}$

5 1 LUTRAM
$$\Rightarrow$$
 64 bits
$$\left[\frac{112 \times 2}{64}\right] = 4 LU T^{1} A^{1}$$

- Como o mul esto dividido por 3 ciclos o melhor panivel é só passar por um somador!

23 = dte $Z_y = C(a+b) + d + e = Z_2 + Z_3 \Rightarrow Res$

≥₁= a+b

2,=<(a+b)=c.2,

Mux 4:1 :1 Mux 2:1 : 2 A = Add+Mu(+7xRey+2xMux1:1+Mux4:1= $= |6 + 120 + 70 + 2 \times |6 + 32|$ = 270

Registos: 7

t_{c(Kmim} = t_{padd} + t_{prep} + t_{set} = 5+2+1 = 8 ms tpMUX +tpMul + tpRey +tset = 4+14+2+1 = 21ms Não í pelo Mult pos este estó distribuido por 3 ciclos! $\frac{21}{8} = 7ms \qquad 7 \ll 8ms \mid Da' \mid 1$ Latemcia → 5 x 8 ms = 40 ms

	em Ra	e _m Rb	em _{Re}	em _{RI}	CM _{Raux}	SelI	SelII	5e/III	Estado
Init	1	1	1	_	-	0	0	00	11111 0000
C1	1	1	0	0	1	1	_	01	1001 1001
-C2	_	1	_	1	0	—	_	_	111100000
3	_	1	1	-	0	<u></u>	1	_	111 000 111
Cy	1	1	_	_	0	1	_	10	111101110
٠ ₅	_	_	_	1	_	_	_	_	111000
dome	_	_	_	0	_	_	_	_	00000000