PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

1) Convert the following grammar to Chomsky Normal Form

$$S \rightarrow a \mid aA \mid B \mid C$$
, $A \rightarrow aB \mid \lambda$, $B \mid Aa$, $C \rightarrow cCD$, $D \rightarrow add$

Solution:

LHS		RHS	
S	\rightarrow	a	
S	\rightarrow	CA	
S	\rightarrow	AC	
A	\rightarrow	CB	
В	\rightarrow	AC	
C	\rightarrow	a	
В	\rightarrow	a	

2) Convert the following grammar to Greibach Normal From $S \rightarrow AB$, $A \rightarrow aA \mid bB \mid b$, $B \rightarrow b$

Solution: Only the *S* production is not in GNF. Substituting for *A*, we get:

$$S \rightarrow aAB \mid bBB \mid bB, A \rightarrow aA \mid bB \mid b, B \rightarrow b$$

3) Convert the following CFG to PDA $S \rightarrow aA$, $A \rightarrow aABC \mid bB \mid a$, $B \rightarrow b$, $C \rightarrow c$. Show how aaabc is accepted. Solution:

The string *aaabc* is accepted via:

 $(q_0, aaabc, Z), (q_1, aaabc, SZ), (q_1, aabc, AZ), (q_1, abc, ABCZ), (q_1, bc, BCZ), (q_1, c, CZ), (q_1, \lambda, Z), (q_2, \lambda, Z)$

4) Convert the following CFG to PDA $S \rightarrow aA \mid bB \mid cC, A \rightarrow Sa, B \rightarrow Sb, C \rightarrow \lambda$

Solution:

First we need to convert the given grammar to GNF:

 $S \rightarrow aA \mid bB \mid c$, $A \rightarrow aAD \mid bBD \mid cD$, $B \rightarrow aAE \mid bBE \mid cE$, $D \rightarrow a$, $E \rightarrow b$

5) Apply CYK - algorithm to verify the given string (s) can be derived from the below grammar

 $S \rightarrow AB \mid BC$, $A \rightarrow BA \mid a$, $B \mid CC \mid b$, $C \mid AB \mid a$, $w \mid s \mid baaba$

		_			
5	S,A		1		
4	Ø	S,A,C			
3	Ø	В	В		
2	S,A	В	S,C	S,A	
1	В	A,C	A,C	В	A,C
	b	a	a	b	a

baaba belongs to the grammar We can see the table the cell X15 = (S, A, C) then if $S \in X15$ then baaba $\in L(G)$