74F269

8-bit bidirectional binary counter Rev. 05 — 25 March 2010

Product data sheet

1. **General description**

The 74F269 is a fully synchronous 8-stage up/down counter featuring a preset capability for programmable operation, carry look-ahead for easy cascading and a U/D input to control the direction of counting. All state changes, whether in counting or parallel loading, are initiated by the rising edge of the clock.

Features and benefits 2.

- Synchronous counting and loading
- Built-in look-ahead carry capability
- Count frequency 115 MHz (typical)
- Supply current 95 mA (typical)

Ordering information 3.

Table 1. **Ordering information**

Type number	Package						
	Temperature range	Name	Description	Version			
N74F269D	0 °C to 70 °C	SO24	plastic small outline package; 24 leads; body width 7.5 mm	SOT137-1			
N74F269DB	0 °C to 70 °C	SSOP24	plastic shrink small outline package; 24 leads; body width 5.3 mm	SOT340-1			

8-bit bidirectional binary counter

4. Functional diagram

8-bit bidirectional binary counter

74F269

8-bit bidirectional binary counter

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description	Unit load HIGH/LOW	Load value ^[1] HIGH/LOW
U/D	1	up or down count control input	1.0/1.0	$20~\mu\text{A}/0.6~\text{mA}$
Q0 to Q7	2, 3, 4, 5, 6, 8, 9, 10	data output	50/33	1.0 mA/20 mA
GND	7	ground (0 V)	-	-
CP	11	clock input	1.0/1.0	20 μA/0.6 mA
CEP	12	count enable parallel input (active LOW)	1.0/1.0	20 μA/0.6 mA
CET	13	count enable trickle input (active LOW)	1.0/1.0	20 μA/0.6 mA
TC	14	terminal count output (active LOW)	50/33	1.0 mA/20 mA
D0 to D7	23, 22, 21, 20, 18, 17, 16, 15	data input	1.0/1.0	20 μA/0.6 mA
V_{CC}	19	supply voltage	-	-
PE	24	parallel enable input (active LOW)	1.0/1.0	20 μA/0.6 mA

^[1] One FAST Unit Load (UL) is defined as 20 μA in HIGH state, 0.6 μA in LOW state.

8-bit bidirectional binary counter

6. Functional description

6.1 Function table

Table 3. Function table[1]

Operating modes	Input	Input						Output	
	СР	U/D	CEP	CET	PE	Dn	Qn	TC	
Parallel load (Dn to Qn)	↑	X	X	X	I	I	L	*	
	\uparrow	Χ	Χ	Χ	I	h	Н	*	
Count up (increment)	\uparrow	h	I	I	h	Χ	count up	*	
Count down (decrement)	\uparrow	I	I	I	h	Χ	count down	*	
Hold (do nothing)	↑	Χ	h	I	h	Χ	qn	*	
	\uparrow	Χ	Χ	h	h	Χ	qn	Н	

^[1] H = HIGH voltage level steady state

Terminal count up is with all Qn outputs HIGH and terminal count down is with all Qn outputs LOW.

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition

L = LOW voltage level steady state

I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition

qn = Lower case letters indicate state of referenced output prior to the LOW-to-HIGH clock transition

X = don't care

^{↑ =} LOW-to-HIGH clock transition

^{* =} The \overline{TC} is LOW when \overline{CET} is LOW and the counter is at terminal count

8-bit bidirectional binary counter

8-bit bidirectional binary counter

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		<u>[1]</u> –0.5	+7.0	V
Vo	output voltage	output in HIGH-state	<u>[1]</u> –0.5	+5.5	V
I _{IK}	input clamping current	V _I < 0 V	-30	+5	mA
Io	output current	output in LOW-state	-	40	mA
T _{amb}	ambient temperature	in free air	<u>[2]</u> 0	70	°C
T _{stg}	storage temperature		-65	+150	°C

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		4.5	5.0	5.5	V
V _{IH}	HIGH-level input voltage		2.0	-	-	V
V _{IL}	LOW-level input voltage		-	-	0.8	V
I _{IK}	input clamping current		-	-	-18	mA
I _{OH}	HIGH-level output current		-1	-	-	mA
I _{OL}	LOW-level output current		-	-	20	mA

^[2] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C.

8-bit bidirectional binary counter

9. Static characteristics

Table 6. Static characteristics

Symbol	Parameter	Conditions			25 °C		-40 °C t	o +85 °C	Unit
				Min	Typ[1]	Max	Min	Max	
V_{IK}	input clamping voltage	$V_{CC} = 4.5 \text{ V}; I_{IK} = -18 \text{ mA}$	•	-1.2	-0.73	-	-1.2	-	٧
V _{OH}	HIGH-level output	V_{CC} = 4.5 V; V_I = V_{IL} or V_{IH}							
	voltage	$V_{CC} = \pm 10 \%; I_{OH} = -1 \text{ mA}$		-	-	-	2.5	-	V
		$V_{CC} = \pm 5 \%; I_{OH} = -1 \text{ mA}$		-	3.4	-	2.7	-	V
V _{OL} LOW-level of voltage	LOW-level output voltage	V_{CC} = 4.5 V; I_{OL} = 20 mA; V_I = V_{IL} or V_{IH}							
		V _{CC} = ±10 %		-	0.30	-	-	0.50	V
		V _{CC} = ±5 %		-	0.30	-	-	0.50	V
I _I	input leakage current	$V_{CC} = 5.5 \text{ V}; V_I = 7.0 \text{ V}$		-	-	-	-	100	μΑ
I _{IH}	HIGH-level input current	$V_{CC} = 5.5 \text{ V}; V_I = 2.7 \text{ V}$		-	-	-	-	20	μΑ
I _{IL}	LOW-level input current	$V_{CC} = 5.5 \text{ V}; V_I = 0.5 \text{ V}$		-	-	-	-	-0.6	mΑ
Io	output current	V _{CC} = 5.5 V	[2]	-	-	-	-60	-150	mΑ
I _{CC}	supply current	$\overline{PE} = \overline{CET} = \overline{CEP} = U/\overline{D} = GND;$ $V_{CC} = 5.5 \text{ V}; CP = \text{rising edge}$							
		Dn: V _I = 4.5 V		-	93	-	-	120	mΑ
		Dn: V _I = GND		-	98	-	-	125	mΑ

^[1] All typical values are measured at V_{CC} = 5 V.

10. Dynamic characteristics

Table 7. Dynamic characteristics GND = 0 *V; for test circuit, see Figure 13.*

Symbol	Parameter	Conditions		; V _{CC} =	5.0 V		70 °C; V ± 0.5 V	Unit
			Min	Тур	Max	Min	Max	
t_{PLH}	LOW to HIGH	CP to Qn; load; $\overline{PE} = LOW$; see Figure 7	3.0	6.0	8.5	3.0	9.0	ns
	propagation delay	CP to Qn; count; PE = HIGH; see Figure 7	3.0	6.0	9.0	3.0	10.0	ns
		CP to TC; see Figure 7	4.5	6.5	9.5	4.0	10.5	ns
		CET to TC; see Figure 8	3.5	6.0	9.0	3.0	10.0	ns
		U/D to TC; see Figure 9	4.5	7.0	9.0	4.0	10.0	ns
t _{PHL}	HIGH to LOW	CP to Qn; load; $\overline{PE} = LOW$; see $\underline{Figure 7}$	4.0	6.5	8.5	4.0	9.0	ns
	propagation delay	CP to Qn; count; PE = HIGH; see Figure 7	4.5	7.0	10.0	4.0	10.5	ns
		CP to TC; see Figure 7	5.0	6.5	9.5	5.0	10.0	ns
		CET to TC; see Figure 8	3.0	6.5	9.0	3.0	10.0	ns
		U/D to TC; see Figure 9	4.5	7.0	9.5	4.0	10.0	ns

^[2] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

8-bit bidirectional binary counter

Table 7. Dynamic characteristics ...continued GND = 0 V; for test circuit, see <u>Figure 13</u>.

Symbol	Parameter	Conditions		V _{CC} =	5.0 V	0 °C to V _{CC} = 5.0		Unit
			Min	Тур	Max	Min	Max	
t _{su(H)}	set-up time HIGH	Dn to CP; see Figure 10	3.5	-	-	2.5	-	ns
		PE to CP; see Figure 10	5.5	-	-	5.5	-	ns
		CEP or CET to CP; see Figure 11	6.0	-	-	5.0	-	ns
		U/D to CP; see Figure 12	8.0	-	-	6.5	-	ns
t _{su(L)}	set-up time LOW	Dn to CP; see Figure 10	3.5	-	-	2.5	-	ns
		PE to CP; see Figure 10	6.5	-	-	6.5	-	ns
		CEP or CET to CP; see Figure 11	8.0	-	-	6.5	-	ns
		U/D to CP; see Figure 12	6.5	-	-	6.5	-	ns
t _{h(H)}	hold time HIGH	Dn to CP; see Figure 10	1.0	-	-	0	-	ns
		PE to CP; see Figure 10	0	-	-	0	-	ns
		CEP or CET to CP; see Figure 11	0	-	-	0	-	ns
		U/D to CP; see Figure 12	0	-	-	0	-	ns
t _{h(L)}	hold time LOW	Dn to CP; see Figure 10	1.0	-	-	1.0	-	ns
		PE to CP; see Figure 10	0	-	-	0	-	ns
		CEP or CET to CP; see Figure 11	0	-	-	0	-	ns
		U/D to CP; see Figure 12	0	-	-	0	-	ns
t _{WH}	pulse width HIGH	CP; see Figure 7	4.0	-	-	4.0	-	ns
t_{WL}	pulse width LOW	CP; see Figure 7	4.5	-	-	5.0	-	ns
f _{max}	maximum frequency	see Figure 7	100	115	-	85	-	MHz

11. Waveforms

8-bit bidirectional binary counter

Measurement points are given in Table 8.

 $V_{M} = 1.5 V$

 V_{OL} and V_{OH} are the typical output voltage levels that occur with the output load.

Fig 8. Input (CET) to output (TC) propagation delay

Measurement points are given in Table 8.

 $V_{M} = 1.5 V$

 $V_{\mbox{\scriptsize OL}}$ and $V_{\mbox{\scriptsize OH}}$ are the typical output voltage levels that occur with the output load.

Fig 9. The up/down control input (U/\overline{D}) to output (\overline{TC}) propagation delay

The shaded areas indicate when the input is permitted to change for predictable output performance.

Measurement points are given in Table 8.

 $V_{M} = 1.5 V$

Fig 10. Data input (Dn), parallel enable input (PE) and clock input (CP) set-up and hold times

8-bit bidirectional binary counter

The shaded areas indicate when the input is permitted to change for predictable output performance.

Measurement points are given in Table 8.

$$V_{M} = 1.5 \text{ V}$$

 V_{OL} and V_{OH} are the typical output voltage levels that occur with the output load.

Fig 11. Count enable inputs (CEP and CET) and clock input (CP) set-up and hold times

The shaded areas indicate when the input is permitted to change for predictable output performance.

Measurement points are given in Table 8.

 $V_M = 1.5 V$

 V_{OL} and V_{OH} are the typical output voltage levels that occur with the output load.

Fig 12. Up/down count control input (U/D) and clock input (CP) set-up and hold times

8-bit bidirectional binary counter

b. Test circuit

a. Input pulse definition

Test data is given in Table 8.

Definitions for test circuit:

C_L = Load capacitance including jig and probe capacitance.

R_L = Load resistance.

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

 V_{EXT} = External voltage for measuring switching times.

Fig 13. Test circuit for measuring switching times

Table 8. Test data

Input	put			Load	oad V _{EXT}			
V_{I}	f _l	t _W	t _r , t _f	CL	R_L	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
3.0 V	1 MHz	500 ns	≤ 2.5 ns	50 pF	500Ω	open	open	7.0 V

8-bit bidirectional binary counter

12. Package outline

SO24: plastic small outline package; 24 leads; body width 7.5 mm

SOT137-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT137-1	075E05	MS-013			99-12-27 03-02-19	

Fig 14. Package outline SOT137-1 (SO24)

F269_5 All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

SSOP24: plastic shrink small outline package; 24 leads; body width 5.3 mm

SOT340-1

Note

1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT340-1		MO-150			99-12-27 03-02-19	

Fig 15. Package outline SOT340-1 (SSOP24)

F269_5 All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

8-bit bidirectional binary counter

13. Abbreviations

Table 9. Abbreviations

Acronym	Description
BiCMOS	Bipolar Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model

14. Revision history

Table 10. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
74F269_5	20100325	Product data sheet	-	74F269_4	
74F269_4	20100308	Product data sheet	-	74F269_3	
Modifications:	<u>Table 6 "Static characteristics"</u> : Conditions typical values corrected.				
74F269_3	20100126	Product data sheet	-	74F269_2	
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 				
	 Legal texts have been adapted to the new company name where appropriate. 				
	 DIP 24 (SOT222-1) package removed from Section 3 "Ordering information" and Section 12 "Package outline" 				
74F269_2	19960105	Product specification	-	74F269_1	

8-bit bidirectional binary counter

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. The product is not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no

liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the NXP Semiconductors product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. NXP Semiconductors does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

8-bit bidirectional binary counter

16. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

8-bit bidirectional binary counter

17. Contents

1	General description
2	Features and benefits
3	Ordering information 1
4	Functional diagram 2
5	Pinning information 5
5.1	Pinning
5.2	Pin description 5
6	Functional description 6
6.1	Function table 6
7	Limiting values 8
8	Recommended operating conditions 8
9	Static characteristics 9
10	Dynamic characteristics 9
11	Waveforms
12	Package outline
13	Abbreviations
14	Revision history
15	Legal information
15.1	Data sheet status
15.2	Definitions
15.3	Disclaimers
15.4	Trademarks17
16	Contact information 18
17	Contents 10

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.