1. (a) We know that since for any element $x \in G$ that C_x the centralizer of x is a subgroup of G, by orbit stabilizer $\#C_x\#\mathcal{O}_x = \#G$ where \mathcal{O}_x is the orbit of x under the conjugation action. It follows that listing the distinct orbits \mathcal{O}_{x_i} ,

$$\#G = \#\bigsqcup_{i} \mathcal{O}_{x_i} = \sum_{i} \#\mathcal{O}_{x_i}$$

and each $\mathcal{O}_{x_i}|G$ implying that $\#\mathcal{O}_{x_i} \in \{1,p,p^2\}$, if we assume for contradiction that Z(G)=1, then from the above class equation $1+\sum_{i\geq 2}\#\mathcal{O}_{x_i}=1+\sum_{i\geq 2}k_ip=p^2$, taking this equation modulke p we get a contradiction, so that #Z(G)=p or p^2 in the p^2 case we are done, and in the other case we have G/Z(G) is cyclic, so that any element of G can be written in the form x^ia , $a\in Z(G)$, but $(x^ia)(x^jb)=x^{i+j}ab=x^jx^iba=x^jbx^ia$ which shows that G is abelian, this contradicts #Z(G)=p, so #Z(G)=#G and G is abelian. \square

- (b) A group of order p is cyclic and generated by any of its nontrivial elements, so that all of its elements aside from 1 have order p. Hence p-1 such elements. A group of order p^2 is of the form C_p^2 or C_{p^2} by the classification of abelian groups. In the former case, we use the fact that o(x,y) = lcm[x,y], so as long as either x or y have order p we have an element of order p, this gives p^2-1 elements of order p. In the latter case, C_{p^2} is generated by any element k with $\gcd(k,p^2)=1$ the number of these is $\varphi(p^2)=p(p-1)=p^2-p$, so there are $p^2-(p^2-p)-1=p-1$ elements of order p.
- **2.** We can use orbit stabilizer with S_9 acting on the pearls, the stabilizer of the necklace BBBBWWWRR is clearly $S_4 \times S_3 \times S_2$ has cardinality $12 \cdot 4!$, so there are $\frac{9!}{12 \cdot 4!}$ necklaces.

3.

$$X = \{(g_1, \dots, g_p) \mid g_i \in G \text{ and } \prod_{1}^p g_i = 1\}$$

Then we have an action of \mathbf{F}_p on X via $k \cdot (g_i) = (g_{[k+i]})$ where [n] denotes $n \mod p$. Note that when determining an element of X, the first p-1 choices are free, meaning there are n^{p-1} choices for the first p-1 coordinates (here n=#G), but the last coordinate is fixed as $\left(\prod_{i=1}^{p-1}g_i\right)^{-1}$, so X has n^{p-1} elements. In the case where $g_i=g_j, \forall i,j$ the action is trivial, otherwise the orbit of the action has order p. The cardinality of X is the sum of the cardinality of the orbits, letting r be the number of single element orbits, and q the number of p element orbits we get p = r + qp so that since p = r + qp which implies p = r + qp since p = r + qp so that since p = r + qp and the number of element orbit p = r + qp so that since p = r + qp so that since p = r + qp so that since p = r + qp so that p = r + qp so that since p = r + qp so that p

4. Since the groups are not commutative they must have composite order, write $\#G = \prod_1^r p_i$ where $p_r \ge p_{r-1} \ge \cdots \ge p_1$. Then p_1 connot be 11, so p_1 is at most 7, moreover if $p_1 = 7$, then $G = C_{49}, C_7$ or C_7^2 all of which are abelian, so that p_1 is at most 5, if $p_1 = 5$, then once again we get an abelian group since the only possible factorizations are $p_1 = p_2 = 5$ which is abelian by question 1, or $p_2 = 7$, it follows that the subgroup N of order 7 is normal since it has index 5, the smallest prime dividing the order of the group, so this group can't be simple. This implies that $p_1 \in \{2,3\}$.

Now we note that no group of order pq for p,q both primes is simple, this is immediate from Sylows theorem since if q>p, the number of q sylow subgroups must be one hence normal. Now we can look at the case p^2q , if p>q, we are done since the Sylow-p group has to be normal, so assume q>p, then there are either p^2 or 1 sylow q subgroups, in the latter case we are done and in the former case, these sylow q subgroups all need to have intersection 1 since they are cyclic so we have $p^2(q-1)=p^2q-p^2$ elements of order q, the remaining elements must all be in the same sylow p subgroup having order p^2 , so the sylow p subgroup must be normal in this case, contradicting simplicity.

To rule out all groups with 3 prime factors we are thus left with the groups of order 30 and 42, the group of order 42 is easy since the sylow-7 subgroup must be normal by Sylow 2. For the group of order 30, we need only consider the case where there are 6 sylow-5 subgroups and hence 24 elements of order 5,

the sylow 3 subgroup must be normal otherwise there would be 10 sylow 3 subgroups adding 20 elements of order 3 giving too many elements, so at this point we have ruled out all groups with 3 prime factors.

Four prime factors (not all 2,3) gives us groups of order 56 and 40 in the 56 case we get the sylow-7 subgroup has index 1 or 8, in the index 8 case we get 48 elements of order 7, so the remaining 8 elements must constitute a single sylow-2 subgroup, which must be normal so this case is null. In the order 40 case the sylow 5 subgroup must be normal.

Now the problem has been reduced to ≥ 4 prime factors all being 2, 3, for now I will appeal to Burnside's theorem, but I should finish it more satisfyingly later.

- **5.** (a) The types of elements in A_5 are 1, (abc), (ab)(cd), (abcde) The conjugacy classes are each contained in their conjugacy classes in S_5 , i.e. cycle types, and hence the orders are divisors. We compute $\#\mathcal{O}_1 = 1$, the normalizer of elements of the form (ab)(cd) are elements of A_5 sending $\{a,b\} \to \{a,b\}$ and $\{c,d\} \to \{c,d\}$ or $\{a,b\} \to \{c,d\}$ and $\{c,d\} \to \{a,b\}$, of which there are 4 elements
- (b) A normal subgroup of A_5 must be a union of conjugacy classes (including 1) with order dividing $\#A_5 = 60$, by reading the conjugacy class sizes in (a), no such union of conjugacy classes exists.
 - (c)
 - (d)
 - (e)
- **6.** Note first that in general $g \in G$ and z in a left G-set, then $\operatorname{Stab}(gz) = g\operatorname{Stab}(z)g^{-1}$
 - (a) If gx = y, then from the previous remark

$$\operatorname{Stab}(y) = \operatorname{Stab}(gx) = g\operatorname{Stab}(x)g^{-1}$$

(b) First suppose $g\operatorname{Stab}(x)g^{-1} = \operatorname{Stab}(y)$, then let take $F: hx \mapsto hgy$, this is clearly a bijection and a G-set morphism so long as its well defined. If hx = h'x, then $h^{-1}h' \in \operatorname{Stab}(x)$, so that

$$g^{-1}h^{-1}h'gy = y \iff h'gy = hgy$$

as desired.

Conversely, if $F: X \to Y$ is a G-set isomorphism, then write F(x) = gy, then

$$\operatorname{Stab}(x) = \operatorname{Stab}F(x) = g\operatorname{Stab}(y)g^{-1}$$