第2节 双曲线的焦点三角形相关问题(★★★)

强化训练

1. (★★) 已知双曲线 $C: \frac{x^2}{9} - \frac{y^2}{16} = 1$ 的左、右焦点分别为 F_1 , F_2 , P为 C右支上一点,且 $|PF_2| = |F_1F_2|$, 则 ΔPF_1F_2 的面积等于 ()

- (A) 24 (B) 36 (C) 48 (D) 96

答案: C

解析:如图,等腰 ΔPF_1F_2 已知腰长 $\left|F_1F_2\right|$ 和 $\left|PF_2\right|$,求面积再求个底边 $\left|PF_1\right|$ 和高,其中 $\left|PF_1\right|$ 可用定义算,

由题意, $|PF_2| = |F_1F_2| = 10$, $|PF_1| - |PF_2| = 6 \Rightarrow |PF_1| = 16$,取 PF_1 中点 Q,连接 F_2Q ,则 $F_3Q \perp PF_1$,

$$|QF_2| = \sqrt{|PF_2|^2 - |PQ|^2} = 6$$
, $\text{MUL } S_{\Delta PF_1F_2} = \frac{1}{2}|PF_1| \cdot |F_2Q| = \frac{1}{2} \times 16 \times 6 = 48$.

2. $(2020 \cdot 新课标Ⅲ卷 \cdot ★★)$ 设双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点分别为 F_1 , F_2 ,离心率 为 $\sqrt{5}$,P是C上一点, $F_1P \perp F_2P$,若 ΔPF_1F_2 的面积为4,则a = ()

- (A) 1
- $(B) 2 \qquad (C) 4$
- (D) 8

答案: A

解析: 先由离心率把变量统一起来, $e = \frac{c}{a} = \sqrt{5} \Rightarrow c = \sqrt{5}a$, 所以 $|F_1F_2| = 2c = 2\sqrt{5}a$,

焦点三角形中涉及垂直关系,常用勾股定理翻译,并结合定义处理,

设 $|PF_1|=m$, $|PF_2|=n$,如图, $F_1P\perp F_2P\Rightarrow m^2+n^2=\left|F_1F_2\right|^2=20a^2$ ①,由双曲线定义,|m-n|=2a ②,

把①配方可得 $m^2 + n^2 = (m-n)^2 + 2mn = 20a^2$,结合式②可得 $4a^2 + 2mn = 20a^2$,所以 $mn = 8a^2$,

故 $S_{\Delta PF_1F_2} = \frac{1}{2}mn = 4a^2$,由题意, $S_{\Delta PF_1F_2} = 4$,所以 $4a^2 = 4$,故 a = 1.

3. (2022 •江西九江三模 •★★) 双曲线 $\frac{x^2}{t} - \frac{y^2}{1-t} = 1(0 < t < 1)$ 的左、右焦点分别为 F_1 , F_2 , P 为圆 $x^2 + y^2 = 1$ 与该双曲线的一个公共点,则 ΔPF_1F_2 的面积为()

- (A) 1-t (B) t (C) 2t-1 (D) 1

答案: A

解析:由题意,双曲线的半焦距 $c=\sqrt{t+1-t}=1$,

所给圆即为以 F_1F_2 为直径的圆,点P在圆上隐含了 $PF_1 \perp PF_2$,可用勾股定理结合双曲线定义来处理,

如图,设 $\left|PF_1\right|=m$, $\left|PF_2\right|=n$,则 $m^2+n^2=\left|F_1F_2\right|^2=4c^2=4$ ①,由双曲线定义, $\left|m-n\right|=2\sqrt{t}$ ②,

由①可得 $m^2 + n^2 = (m-n)^2 + 2mn = 4$,将②代入得4t + 2mn = 4,所以mn = 2 - 2t,故 $S_{\Delta PF_1F_2} = \frac{1}{2}mn = 1 - t$.

4. (2022 • 广西南宁模拟 • ★★★) 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的右焦点为 F,直线 $y = kx(k \neq 0)$

与双曲线 C 交于 A, B 两点,若 $\angle AFB = 90^{\circ}$,且 ΔOAF 的面积为 $4a^2$,则 C 的离心率为()

(A)
$$\frac{2\sqrt{6}}{5}$$
 (B) $\frac{\sqrt{26}}{5}$ (C) 2 (D) 3

答案: D

解析:看到过原点的直线与双曲线交于A,B两点,想到和两焦点构成平行四边形,

如图,设双曲线 C 的左焦点为 F_1 ,则四边形 AF_1BF 为平行四边形,

又 $\angle AFB = 90^{\circ}$,所以四边形 $_{AF,BF}$ 为矩形,故 $\angle F_1AF = 90^{\circ}$,

 ΔOAF 的面积可换算成 ΔAFF 的面积,于是结合双曲线的定义和勾股定理处理即可,

设 $|AF_1|=m$,|AF|=n,则 $m^2+n^2=|F_1F_2|^2=4c^2$ ①,由双曲线定义,|m-n|=2a②,

由①可得 $m^2 + n^2 = (m-n)^2 + 2mn = 4c^2$,将式②代入可得 $4a^2 + 2mn = 4c^2$,所以 $mn = 2c^2 - 2a^2$,

故 $S_{\Delta AFF_1} = \frac{1}{2}mn = c^2 - a^2$,由题意, $S_{\Delta OAF} = 4a^2$,所以 $S_{\Delta AFF_1} = 2S_{\Delta OAF} = 8a^2$,从而 $c^2 - a^2 = 8a^2$,故 $c^2 = 9a^2$,

所以双曲线 C 的离心率 $e = \frac{c}{-} = 3$.

5. (2012•大纲卷•★★) 已知 F_1 , F_2 为双曲线 $C: x^2 - y^2 = 2$ 的左、右焦点,点P在C上, $|PF_1| = 2|PF_2|$, 则 $\cos \angle F_1 P F_2 =$ ()

- (A) $\frac{1}{4}$ (B) $\frac{3}{5}$ (C) $\frac{3}{4}$ (D) $\frac{4}{5}$

答案: C

解析:条件涉及 $|PF_1|=2|PF_2|$,想到结合定义求出 $|PF_1|$ 和 $|PF_2|$,到 $_{\Delta PF_1F_2}$ 中用余弦定理推论求 $_{\cos \angle F_1PF_2}$, $x^2 - y^2 = 2 \Rightarrow \frac{x^2}{2} - \frac{y^2}{2} = 1 \Rightarrow$ 双曲线的实半轴长 $a = \sqrt{2}$, 焦距 $|F_1F_2| = 4$,

曲题意,
$$\begin{cases} |PF_1| = 2|PF_2| \\ |PF_1| - |PF_2| = 2\sqrt{2} \end{cases} \Rightarrow \begin{cases} |PF_1| = 4\sqrt{2} \\ |PF_2| = 2\sqrt{2} \end{cases}, \quad \text{在 } \Delta PF_1F_2 \Rightarrow \cdot \cos \angle F_1PF_2 = \frac{|PF_1|^2 + |PF_2|^2 - |F_1F_2|^2}{2|PF_1| \cdot |PF_2|} = \frac{3}{4}.$$

6. $(2023 \cdot 河南郑州一模 \cdot ★★★)已知双曲线 <math>C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点分别为 F_1 , F_2 , P_3

为 C 右支上的一点,且 $\cos \angle F_1 PF_2 = \frac{1}{4}$, $\overrightarrow{PF_1} \cdot \overrightarrow{PF_2} = 2a^2$,则双曲线 C 的离心率为(

(A) 2 (B) 4 (C) 6 (D) 9

答案: A

解析: 有 $\cos \angle F_1 PF_2$, 故直接用定义第 $PF_1 \cdot PF_2$,

由题意, $\overrightarrow{PF_1} \cdot \overrightarrow{PF_2} = |PF_1| \cdot |PF_2| \cdot \frac{1}{4} = 2a^2$,所以 $|PF_1| \cdot |PF_2| = 8a^2$ ①,

看到式①,又想到结合由定义求解 $|PF_1|$ 和 $|PF_2|$,

又 $|PF_1| - |PF_2| = 2a$, 所以 $|PF_1| = 2a + |PF_2|$,

代入①解得: $|PF_2| = 2a$ 或 -4a (舍去), 故 $|PF_1| = 4a$,

如图,我们发现 ΔPF_1F_2 三边都表示出来了,可由余弦定理建立方程求离心率,

由余弦定理, $|F_1F_2|^2 = |PF_1|^2 + |PF_2|^2 - 2|PF_1| \cdot |PF_2| \cdot \cos \angle F_1PF_2$,

所以 $4c^2 = 16a^2 + 4a^2 - 2 \times 4a \times 2a \times \frac{1}{4}$, 整理得 $e = \frac{c}{a} = 2$.

7. $(2022 \cdot 河南模拟 \cdot \star \star \star \star)$ 已知 F_1 , F_2 分别是双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点,过 F_1 的直线与双曲线 C 的左、右两支分别交于 A, B 两点,若 ΔABF ,是等边三角形,则 C 的离心率是____. 答案: √7

解析: 涉及双曲线上的点和左、右焦点,优先考虑定义,如图,由双曲线定义, $|BF_1| - |BF_2| = 2a$ ①,

又 ΔABF_2 是正三角形,所以 $|BF_2| = |AB|$,代入①得: $|BF_1| - |BF_2| = |BF_1| - |AB| = |AF_1| = 2a$,

因为点 A 也在双曲线上,所以 $|AF_2| - |AF_1| = 2a$,故 $|AF_2| = |AF_1| + 2a = 4a$,

正三角形除了已知边长关系外,还知道角,可在 ΔAF_1F_2 中由余弦定理建立方程求离心率,

由题意, $\angle BAF_2 = 60^{\circ}$, $\angle F_1AF_2 = 180^{\circ} - \angle BAF_2 = 120^{\circ}$,

在 ΔAF_1F_2 中,由余弦定理, $|F_1F_2|^2 = |AF_1|^2 + |AF_2|^2 - 2|AF_1| \cdot |AF_2| \cdot \cos \angle F_1AF_2$,

所以 $4c^2 = 4a^2 + 16a^2 - 2 \times 2a \times 4a \times \cos 120^\circ$,整理得: $\frac{c^2}{a^2} = 7$,故离心率 $e = \frac{c}{a} = \sqrt{7}$.

- 8. $(2022 \cdot 河南月考改 \cdot ★★★★)$ 已知 F_1 , F_2 分别是双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点,O为原点,双曲线上的点 P 满足 |OP|=b,且 $|PF_2|=3|PF_1|$,则该双曲线的离心率为(
- (A) $\sqrt{2}$ (B) $\frac{\sqrt{6}}{2}$ (C) 2 (D) $\sqrt{3}$

答案: D

解析:由 $PF_2 = 3|PF_1|$ 想到可结合定义求出 PF_1 和 PF_2 ,

由双曲线定义, $|PF_2|-|PF_1|=2a$,结合 $|PF_2|=3|PF_1|$ 可得 $|PF_1|=a$, $|PF_2|=3a$,

到此图中所有线段都已知了,可用"双余弦法"来建立方程求离心率,

在 ΔPF_1O 中, $|OP|^2 + |PF_1|^2 = b^2 + a^2 = c^2 = |OF_1|^2$, 所以 $PO \perp PF_1$, 故 $\cos \angle PF_1O = \frac{|PF_1|}{|OF_1|} = \frac{a}{c}$ ①,

在
$$\Delta PF_1F_2$$
中, $\cos \angle PF_1O = \frac{|PF_1|^2 + |F_1F_2|^2 - |PF_2|^2}{2|PF_1| \cdot |F_1F_2|} = \frac{a^2 + 4c^2 - 9a^2}{2a \cdot 2c} = \frac{c^2 - 2a^2}{ac}$ ②,

由①②可得 $\frac{a}{c} = \frac{c^2 - 2a^2}{ac}$,整理得: $\frac{c^2}{a^2} = 3$,所以双曲线 C 的离心率 $e = \frac{c}{a} = \sqrt{3}$.

9. $(2022 \cdot 湖南长沙模拟 \cdot \star \star \star \star)$ 已知 F_1 , F_2 分别是双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点,

过 $_{F_2}$ 的直线与双曲线的右支相交于 $_P$, $_Q$ 两点,若 $_{PQ}\perp_{PF_1}$,且 $_{Q}$ = $_{Q}$ = $_{Q}$,则 $_{Q}$ 的离心率为()

(A)
$$\sqrt{6} - \sqrt{3}$$

(A)
$$\sqrt{6} - \sqrt{3}$$
 (B) $\sqrt{5 - 2\sqrt{2}}$ (C) $\sqrt{5 + 2\sqrt{2}}$ (D) $1 + 2\sqrt{2}$

(C)
$$\sqrt{5+2\sqrt{2}}$$

(D)
$$1+2\sqrt{2}$$

答案: B

解析:如图,涉及双曲线上的点和左、右焦点,可尝试结合已知条件和双曲线定义研究有关线段的长,

设
$$|PQ| = |PF_1| = m$$
,因为 $PQ \perp PF_1$,所以 $|QF_1| = \sqrt{2}m$,由双曲线定义,
$$\begin{cases} |PF_1| - |PF_2| = 2a \\ |QF_1| - |QF_2| = 2a \end{cases}$$

两式相加得: $|PF_1| + |QF_1| - (|PF_2| + |QF_2|) = |PF_1| + |QF_1| - |PQ| = m + \sqrt{2}m - m = 4a$,所以 $m = 2\sqrt{2}a$,

故 $|PF_1| = 2\sqrt{2}a$, $|PF_2| = |PF_1| - 2a = 2(\sqrt{2} - 1)a$,

接下来只需在 ΔPF_iF_s 中用勾股定理,即可建立a和c的方程求离心率,

因为 $PQ \perp PF_1$,所以 $|PF_1|^2 + |PF_2|^2 = |F_1F_2|^2$,故 $8a^2 + 4(\sqrt{2}-1)^2a^2 = 4c^2$,

整理得: $\frac{c^2}{a^2} = 5 - 2\sqrt{2}$, 所以 $e = \frac{c}{a} = \sqrt{5 - 2\sqrt{2}}$.

10. (★★★★) 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点分别为 F_1 , F_2 , 点 A, B 分别在其左、

右两支上, $\overrightarrow{F_1B}=3\overrightarrow{F_1A}$,T为线段 AB 的中点,且 $F_1T\perp F_2T$,则双曲线的离心率为_____.

答案: √7

解析: 如图, 先由已知条件结合双曲线定义分析有关线段的长,

因为 T 为线段 AB 的中点,且 $F_1T \perp F_2T$,所以 $|AF_2| = |BF_2|$,设 $|AF_2| = |BF_2| = m$,

由双曲线定义, $|AF_2| - |AF_1| = 2a$,所以 $|AF_1| = |AF_2| - 2a = m - 2a$,

又 $\overrightarrow{F_1B} = 3\overrightarrow{F_1A}$,所以 $|BF_1| = 3|AF_1| = 3m - 6a$,因为点B在双曲线右支上,所以 $|BF_1| - |BF_2| = 2a$,

即 3m-6a-m=2a , 故 m=4a , 所以 $|BF_1|=6a$, $|BF_2|=4a$, $|AF_1|=2a$, $|AF_2|=4a$,

注意到 $|AB| = |BF_1| - |AF_1| = 4a$,所以 $|AB| = |AF_2| = |BF_2|$,从而 ΔABF_2 是正三角形,故 $\angle F_1BF_2 = 60^\circ$,

此时 ΔBF_iF_i 三边都已知,还知道一个角,可用余弦定理建立方程求离心率,

由余弦定理, $|F_1F_2|^2 = |BF_1|^2 + |BF_2|^2 - 2|BF_1| \cdot |BF_2| \cdot \cos \angle F_1BF_2$,即 $4c^2 = 36a^2 + 16a^2 - 2 \times 6a \times 4a \times \cos 60^\circ$, 整理得: $\frac{c^2}{a^2} = 7$, 所以双曲线 C 的离心率 $e = \frac{c}{a} = \sqrt{7}$.

11. (2022•云南玉溪模拟•★★★★) 已知双曲线 E 的焦点为 $F_1(-1,0)$, $F_2(1,0)$, 过 F_1 的直线 l与 E 的 左支交于 P, Q 两点,点 P 在以 F_1F_2 为直径的圆上, |PQ|: $|PF_2|$ = 3:4,则 E 的方程为(

(A)
$$2x^2 - 2y^2 = 1$$
 (B) $\frac{17x^2}{9} - \frac{17y^2}{9} = 1$ (C) $3x^2 - \frac{3y^2}{2} = 1$ (D) $4x^2 - \frac{4y^2}{3} = 1$

(B)
$$\frac{17x^2}{9} - \frac{17y^2}{9} = 1$$

(C)
$$3x^2 - \frac{3y^2}{2} =$$

(D)
$$4x^2 - \frac{4y^2}{2} =$$

答案: B

解析: 设双曲线 E 的方程为 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$, 则由题意, $a^2 + b^2 = 1$ ①,

条件有比例式, 想到设 k, 因为 |PQ|: $|PF_2|$ = 3:4, 所以可设 |PQ| = 3k, $|PF_2|$ = 4k(k > 0),

如图,点P在以 $_{F_1F_2}$ 为直径的圆上,所以 $_{PF_1 \perp PF_2}$,故 $\left|QF_2\right| = \sqrt{\left|PQ\right|^2 + \left|PF_2\right|^2} = 5k$,

注意到P,Q 两点在双曲线上,又涉及双曲线的焦点,故想到双曲线的定义,先写出来再看,

曲图可知,
$$\begin{cases} |PF_2| - |PF_1| = 4k - |PF_1| = 2a & 2 \\ |QF_2| - |QF_1| = 5k - |QF_1| = 2a & 3 \end{cases}$$

观察发现两式相加,可把|PF|+|QF|化为|PQ|,找到k与a的关系,

②+③可得9
$$k-(|PF_1|+|QF_1|)=9k-|PQ|=9k-3k=6k=4a$$
, 所以 $k=\frac{2a}{3}$,

代入②得: $|PF_1| = 4k - 2a = \frac{2a}{3}$,又 $|PF_2| = 4k = \frac{8a}{3}$, $|F_1F_2| = 2$,所以 $(\frac{2a}{3})^2 + (\frac{8a}{3})^2 = 2^2$,解得: $a^2 = \frac{9}{17}$,

代入①得 $b^2 = 1 - a^2 = \frac{8}{17}$,所以双曲线 E 的方程为 $\frac{17x^2}{9} - \frac{17y^2}{9} = 1$.

《一数•高考数学核心方法》