Zadanie 1

Oblicz iloczyn macierzy:

(a)
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 2 & -3 & 0 \\ -1 & 4 & -2 \\ 3 & -1 & 1 \end{bmatrix},$$

(b)
$$\begin{bmatrix} 1 & 2 & 4 \\ 1 & 0 & 5 \end{bmatrix}^T \cdot \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \end{bmatrix},$$

(c)
$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 4 & 5 & 2 & 3 \end{bmatrix}^T$$
,

(d)
$$\begin{bmatrix} 3 & 4 & 3 \\ 2 & -6 & 0 \\ 3 & -1 & 2 \end{bmatrix}^T \cdot \begin{bmatrix} -1 & 2 \\ 4 & 9 \\ 3 & 3 \end{bmatrix}.$$

Zadanie 2

Dla macierzy $A=\begin{bmatrix}1&2&1\\0&2&-1\end{bmatrix}$ oraz $B=\begin{bmatrix}2&3&1\\2&1&-3\end{bmatrix}$ oblicz (jeżeli to możliwe):

(a)
$$2A - B$$
,

- (b) AB,
- (c) AB^T ,
- (d) $A^T B$,
- (e) A^3 ,
- (f) $(B^T A)^2$.

Zadanie 3

Oblicz $AA^T - 4I$ oraz $A^TA - 4I$ dla macierzy $A = \begin{bmatrix} 2 & -1 & -3 \\ 0 & 1 & -3 \end{bmatrix}$.

Zadanie 4

Znajdź macierze X oraz Y (Uwaga - zadanie nie wymaga użycia macierzy odwrotnej - to pojęcie poznamy później).

$$\text{(a)} \ \ 2X \cdot \begin{bmatrix} 3 & 0 & 1 \\ 0 & 4 & 0 \\ 1 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} + X \cdot \begin{bmatrix} 2 & 0 & 2 \\ 0 & 4 & 0 \\ 2 & 0 & 0 \end{bmatrix},$$

(b)
$$\begin{cases} X+Y = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \\ X-Y = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix}, \end{cases}$$

(c)
$$\begin{cases} X + \begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix} Y = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \\ \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix} X + Y = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}. \end{cases}$$

Zadanie 5

Znaleźć macierz X dla której zachodzi:

(a)
$$-3X^T + 2X = \begin{bmatrix} 1 & 0 \\ 5 & 4 \end{bmatrix}$$
,

(b)
$$(AA^T)X = \begin{bmatrix} 3 & 6 \\ 1 & 2 \end{bmatrix}$$
, dla $A = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 2 & 1 & -2 \end{bmatrix}$.

Zadanie 6

Znaleźć wszystkie macierze rzeczywiste spełniające warunek:

(a)
$$X^2 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
,

(b)
$$X^2 = \begin{bmatrix} 5 & 1 \\ 1 & 1 \end{bmatrix}$$

Zadanie 7

Macierz A spełniającą warunek $A = -A^T$ nazywamy macierzą antysymetryczną. Podaj przykład takiej macierzy. Co można powiedzieć o elementach zerowych występujących w tych macierzach?

Zadanie 8

Niech A będzie dowolną macierzą kwadratową. Pokaż, że

- (a) macierz $A + A^T$ jest symetryczna,
- (b) macierz $A A^T$ jest antysymetryczna.

Odpowiedzi:

Zad.1. a)
$$\begin{bmatrix} 9 & 2 & -1 \\ 2 & -9 & 1 \end{bmatrix}$$
, b) $\begin{bmatrix} 2 & 1 & 3 \\ 2 & 0 & 2 \\ 9 & 5 & 14 \end{bmatrix}$, c) $\begin{bmatrix} 15 \\ 32 \end{bmatrix}$, d) $\begin{bmatrix} 14 & 33 \\ -31 & -49 \\ 3 & 12 \end{bmatrix}$.

Zad.2. a)
$$\begin{bmatrix} 0 & 1 & 1 \\ -2 & 3 & 1 \end{bmatrix}$$
, b) niekompatybilne wymiary macierzy, c) $\begin{bmatrix} 9 & 1 \\ 5 & 5 \end{bmatrix}$, d) $\begin{bmatrix} 2 & 3 & 1 \\ 8 & 8 & -4 \\ 0 & 2 & 4 \end{bmatrix}$, e) macierz A nie jest

kwadratowa, f)
$$\begin{bmatrix} 4 & 64 & 0 \\ 9 & 64 & 4 \\ 1 & 16 & 16 \end{bmatrix} .$$

Zad.3.
$$AA^T - 4I = \begin{bmatrix} 10 & 8 \\ 8 & 6 \end{bmatrix}, A^TA - 4I = \begin{bmatrix} 0 & -2 & -6 \\ -2 & -2 & 0 \\ -6 & 0 & 14 \end{bmatrix}.$$

$$\mathbf{Zad.4.} \text{ a)} \begin{bmatrix} \frac{1}{4} & 0 & \frac{1}{4} \\ 0 & \frac{1}{4} & 0 \\ \frac{1}{4} & 0 & \frac{1}{4} \end{bmatrix}, \text{ b)} X = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}, Y = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \text{ c)} X = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, Y = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

Zad.5. a)
$$\begin{bmatrix} -1 & -3 \\ -2 & -4 \end{bmatrix}$$
, b) $\frac{1}{17} \begin{bmatrix} 28 & 56 \\ 5 & 10 \end{bmatrix}$.

Zad.6. a) brak, b)
$$\frac{1}{\sqrt{2}}\begin{bmatrix} -3 & -1 \\ -1 & 1 \end{bmatrix}$$
, $\frac{1}{\sqrt{2}}\begin{bmatrix} 3 & 1 \\ 1 & -1 \end{bmatrix}$, $\frac{1}{\sqrt{10}}\begin{bmatrix} -7 & -1 \\ -1 & -3 \end{bmatrix}$, $\frac{1}{\sqrt{10}}\begin{bmatrix} 7 & 1 \\ 1 & 3 \end{bmatrix}$.

Zad.6. a) brak, b)
$$\frac{1}{\sqrt{2}}\begin{bmatrix} -3 & -1 \\ -1 & 1 \end{bmatrix}$$
, $\frac{1}{\sqrt{2}}\begin{bmatrix} 3 & 1 \\ 1 & -1 \end{bmatrix}$, $\frac{1}{\sqrt{10}}\begin{bmatrix} -7 & -1 \\ -1 & -3 \end{bmatrix}$, $\frac{1}{\sqrt{10}}\begin{bmatrix} 7 & 1 \\ 1 & 3 \end{bmatrix}$.

Zad.8. a) Niech $B = A + A^T \implies b_{ij} = a_{ij} + a_{ji} = a_{ji} + a_{ij} = b_{ji}$ b) Niech $B = A - A^T \implies b_{ij} = a_{ij} - a_{ji} = -a_{ji} + a_{ij} = -(a_{ji} - a_{ij}) = -b_{ji}$.