STAT430: Machine Learning for Financial Data

Ensemble methods

Variance and bias

- Estimate $f: y = f(x) + \epsilon$ with $E(\epsilon) = 0, V(\epsilon) = \sigma_{\epsilon}^2$
- Mean square error: $(y, \hat{f}(x), \epsilon)$ are random variables)

$$E((y - \hat{f}(x))^{2}) = (E(f(x) - \hat{f}(x)))^{2}$$
 bias
$$+ V(\hat{f}(x))$$
 variance
$$+ \sigma_{\epsilon}^{2}$$
 irriducible noise

- · An ensemble method is a method that combines weak learners from the same learning algorithm to create a stronger learner.
- · Ensemble methods help reduce bias and/or variance.

Variance and bias

Tree-based methods

- 1. Divide the predictor space into M distinct and non-overlapping regions R_m 's
- 2. For every observation that falls into the region R_m , make the same prediction based on
 - mean of the response values in the same R_m for regression
 - majority votes for the same R_m for classification
- 3. Pros and cons
 - Easy to interpret
 - Not competitive with the best supervised learning approaches in terms of prediction accuracy
 - Ensemble methods such as bagging / random forests / boosting can dramatically improve performance

Terminology for trees

- · Categorical response variable: classification trees
- · Continuous response variable: regression trees
- Leaves (R_m 's) are also called **terminal nodes**
- The other nodes where splits occur are internal nodes
- · Trees are drawn upside down, with the leaves at the bottom

Pruning a tree

- A better strategy is to grow a very large tree T_0 , and then prune it back in order to obtain a subtree
- · Cost complexity pruning. i.e, weakest link pruning is often used
- For a subtree T, define the loss function $\sum_{m=1}^{|T|} N_m L_m + \alpha |T|$, where N_m is the number of obervations in R_m
 - Regression: $L_m = (1/N_m) \sum_{i:x_i \in R_m} (y_i \bar{y}_{R_m})^2$
 - Classification: L_m is either Gini index (G_m) or Cross-entropy (D_m)
- The goal is to minimize the loss function in terms of the **complex parameter** α . Since α corresponds to a unique number of terminal nodes (why?), when α is chosen, the number of terminal nodes is chosen.

Gini index

- · A measure of total variance across the *K* classes
- Gini index for the mth region is $G_m = \sum_{k=1}^K \hat{p}_{mk} (1 \hat{p}_{mk})$
- \hat{p}_{mk} is the proportion of training observations in the mth region (i.e., R_m) and are actually from the kth class.
 - For example: two classes: Y and N, and two regions: R_1 and R_2 . If YYN are in R_1 , and YNNN are in R_2
 - Then $\hat{p}_{11}=2/3$, $\hat{p}_{12}=1/3$, $\hat{p}_{21}=1/4$, $\hat{p}_{22}=3/4$
 - Then Gini index for R_1 is $G_1 = 2/9 + 2/9 = 4/9$, and for R_2 is $G_2 = 3/16 + 3/16 = 3/8$
- A small value indicates that a node contains predominantly observations from a single class (e.g., 3/8 < 4/9)

Cross-entropy (i.e., Deviance)

- · With the same \hat{p}_{mk} as that for Gini index, cross-entropy for the mth region is $D_m = -\sum_{k=1} \hat{p}_{mk} \log \hat{p}_{mk}$
- · Gini index and the cross-entropy are very similar numerically, and can be used alternately.

Implementation of tree pruning

- · Cross validation method is used to choose the optimal α
- Refer to page 20 of ISL slides for a summary of tree algorithm.
- Refer to page 12 of An Introduction to Recursive Partitioning Using the RPART Routines for understanding the algorithm.

Classification trees - R examples

```
library(rpart)
library(rpart.plot)
datXY_up <- data.frame(read.csv("~/Dropbox/Teaching/STAT430/slides/datXY_up.csv", header = T))
datXY_up$Y_dir <- as.factor(datXY_up$Y_dir)
dat_train <- subset(datXY_up,Type=="training")
set.seed(0)
tre <- rpart(Y_dir ~ C + V, data = dat_train, method = "class")
rpart.plot(tre)</pre>
```



```
plot(dat_train$V~dat_train$C,col=ifelse(dat_train$Y_dir=="0","blue","darkorange"))
legend(1632, 80000, legend=c("buy", "nobuy"), col=c("darkorange","blue"), pch=c(1,1))
segments(1642.125, 0, y1=100000, col = "red", lty=2, lwd = 7)
segments(1655.625, 0, y1=100000, col = "red", lty=2, lwd = 5)
segments(1642.125, 12111.500, x1=1655.625, col = "red", lty=2, lwd = 3)
```


tre\$cptable

```
## CP nsplit rel error xerror xstd

## 1 0.33727811 0 1.0000000 1.0000000 0.05941822

## 2 0.01775148 1 0.6627219 0.7041420 0.05461858

## 3 0.01000000 5 0.5917160 0.7869822 0.05637871
```

plot(tre\$cptable[,4]~tre\$cptable[,2], xlab="Number of splits", ylab="xerror")

tre_pru <- prune(tre, cp=tre\$cptable[which.min(tre\$cptable[,"xerror"]),"CP"])
rpart.plot(tre_pru)</pre>

Regression trees

```
tre <- rpart(Y_ret ~ C + V, data = dat_train, method = "anova")
rpart.plot(tre)</pre>
```



```
maxret <- max(dat_train$Y_ret); minret <- min(dat_train$Y_ret)
maxdiff <- maxret - minret

oret <- order(dat_train$Y_ret) # return orders

colvec <- heat.colors(max(oret))
plot(dat_train$V~dat_train$C, col=grey((dat_train$Y_ret-minret+0.3)/(maxdiff+0.3)))
segments(1642.125, 0, y1=100000, col = "red", lty=2, lwd = 7)
segments(1655.625, 0, y1=100000, col = "red", lty=2, lwd = 5)
segments(1636.625, 0, y1=100000, col = "red", lty=2, lwd = 5)
segments(1642.125, 12111.500, x1=1655.625, col = "red", lty=2, lwd = 3)
segments(1636.625, 12206, x1=1642.125, col = "red", lty=2, lwd = 3)</pre>
```


tre_pru <- prune(tre, cp=tre\$cptable[which.min(tre\$cptable[,"xerror"]),"CP"])
rpart.plot(tre_pru)</pre>

Back to Course Scheduler