First Homework of Concurrent Systems

Exercise 1 Consider Peterson algorithm for n > 2 processes, Fig. 2.8 of Rynal's book. Fix a suitable value of n and show an execution of the algorithm where no upper bound can be given on the number of bypasses that process p_1 can undergo.

Exercise 2 Consider the $conc_abort$ primitive of Fig. 2.12 of Rynal's book and assume that there are only two processes, p_1 and p_2 , with p_1 that receives commit. Then, prove that p_2 can never receive commit.

Exercise 3 Consider the $conc_abort$ primitive of Fig. 2.12 of Rynal's book and assume that there are only two processes, p_1 and p_2 . Is it true that in every possible run either p_1 or p_2 will receive commit? If yes, provide a formal proof; if not, provide a counterexample.

Exercise 4 Consider the following simplification of the *lock* primitive in Lamport's Fast MUTEX algorithm:

```
(1)
       FLAG[i] \leftarrow up
(2)
       X \leftarrow i
(3)
       if Y \neq \bot
(3)
       then FLAG[i] \leftarrow down
(4)
              wait Y = \bot
(5)
              goto (1)
(6)
       else Y \leftarrow i
             if X = i
(7)
(8)
             then return
(9)
             else FLAG[i] \leftarrow down
(10)
                    wait Y = \bot
                    goto (1)
(11)
```

Show that it is not deadlock-free.