Human Computer Interaction using Computer-vision technique

(CS323-Computer Vision)

By- Shubham Soni CS22B1053

INTRODUCTION: Why This Project?

- As we move towards more natural ways of interacting with computers, touchless and gesture-based systems are gaining attention.
- In this project, a real-time hand gesture recognition system is developed using CV technique.

What Does the Project Do?

Uses webcam to track hand gestures in real-time.

The system can do:

- Move the mouse cursor
- Perform a right-click
- Scroll up
- Scroll down

Objectives

- Develop a contactless computer interaction system.
- Use computer vision techniques(mediapipe) to track hand landmarks.
- Implement real-time mouse control based on hand gestures.
- Achieve reasonable gesture recognition accuracy.

Tools and Technologies Used

Tool/Technology	Purpose
OpenCV	Image Processing and Webcam Input
MediaPipe	Hand Tracking and Landmark Detection (pre-trained Library)
PyAutoGUI	Mouse Movement and Click Simulation

Technique - MediaPipe Based Gesture Control

Using MediaPipe for Hand Tracking(Hand-Landmark)

- 0. WRIST
- 1. THUMB_CMC
- 2. THUMB_MCP
- 3. THUMB_IP
- 4. THUMB_TIP
- 5. INDEX_FINGER_MCP
- 6. INDEX_FINGER_PIP
- 7. INDEX_FINGER_DIP
- 8. INDEX_FINGER_TIP
- MIDDLE_FINGER_MCP
- 10. MIDDLE_FINGER_PIP

- 11. MIDDLE_FINGER_DIP
- 12. MIDDLE_FINGER_TIP
- 13. RING_FINGER_MCP
- 14. RING_FINGER_PIP
- 15. RING_FINGER_DIP
- 16. RING_FINGER_TIP
- 17. PINKY_MCP
- 18. PINKY_PIP
- 19. PINKY_DIP
- 20. PINKY_TIP

Methodology

- Webcam Initialization:
 - Capture live video feed using OpenCV.
- Hand Tracking Setup:
 - Initialize MediaPipe's Hand module to detect hand landmarks.
- Gesture Detection:

Gesture Detection

Cursor movement, Right click

Scroll up - Scroll down

Accuracy

Gesture	Accuracy
Right Click	40%
Scroll Up	100%
Scroll Down	100%

Testing Accuracy

--- Gesture Accuracy Report
Right_Click:
 Detected: 64
 Performed: 18
 Accuracy: 28.12%

Scroll_Up:
 Detected: 57
 Performed: 57
 Accuracy: 100.00%

Scroll_Down:
 Detected: 67
 Performed: 67

Accuracy: 100.00%

Accuracy: 50.00%

Scroll_Up:
 Detected: 25
 Performed: 25
 Accuracy: 100.00%

Scroll_Down:
 Detected: 31
 Performed: 31
 Accuracy: 100.00%

--- Gesture Accuracy Report ---

Right Click:

Detected: 8

Performed: 4

--- Gesture Accuracy Report
Right_Click:
 Detected: 19
 Performed: 8
 Accuracy: 42.11%

Scroll_Up:
 Detected: 20
 Performed: 20
 Accuracy: 100.00%

Scroll_Down:
 Detected: 61
 Performed: 61
 Accuracy: 100.00%

--- Gesture Accuracy Report
Right_Click:
 Detected: 90
 Performed: 23
 Accuracy: 25.56%

Scroll_Up:
 Detected: 87
 Performed: 87
 Accuracy: 100.00%

Scroll_Down:
 Detected: 52
 Performed: 52
 Accuracy: 100.00%

Conclusion:

- Developed a contactless mouse control system using computer vision.
- Real-time hand gesture detection for efficient interaction.
- High accuracy in scrolling gestures.
- Challenges remain in right-click detection; needs improvement.

Future Work:

- Improve right-click detection accuracy.
- Add support for additional gestures like drag-and-drop, double-click, zoom in/out.
- Extend the system for gesture-controlled games or robot control.
- Make it platform-independent and integrate with mobile devices.

Thank You