# **TD de MECANIQUE 1**

## **Exercice 1**

Une particule M de coordonnées cylindriques  $(\rho, \theta, z)$  décrit une hélice telle que :  $\rho = R$ ,  $\theta = \omega t$ , z = at; où a,  $\omega$  et R sont des constantes.

- 1) Exprimer le pas h de l'hélice
- 2) Exprimer la vitesse et l'accélération de M en coordonnées cylindriques et déterminer la distance parcourue par M pendant le temps t.
- 3) Déterminer le trièdre de Frénet  $(\vec{T}, \vec{N}, \vec{B})$  et exprimer le vecteur vitesse et accélération du point M.

# **Exercice 2**

Un avion vole d'Abidjan vers Korhogo avec une vitesse de 400 km par rapport à l'air au repos.

- 1) Trouver la direction que l'avion devrait suivre pour compenser l'action d'un vent qui souffle de l'Est vers l'Ouest à une vitesse de 57 km par rapport au sol.
- 2) Calculer la vitesse de l'avion par rapport au sol.

#### **Exercice 3**

Une particule M se déplace dans le plan xOy. Sa vitesse est définie par  $\vec{v} = a\vec{u}_{\theta} + b\vec{u}_{y}$  où a et b sont des constantes.

- 1) Déterminer l'équation  $\rho(\theta)$  de la trajectoire en coordonnées polaires.
- 2) On choisit a=3b. Sachant que pour  $\theta=0$ , l'abscisse du point M est  $1\,m$ , donner l'expression de  $\rho(\theta)$ .
- 3) Déterminer l'allure de la trajectoire dans le plan x0y.

## **Exercice 4**

Dans un repère cartésien (0, x, y, z) muni de base  $(\vec{u}_x, \vec{u}_y, \vec{u}_z)$ . Un point M en mouvement a pour équations horaires

$$x = 1 + \cos t$$
  
$$y = \sin t$$
  
$$z = 0$$

- 1) Déterminer l'équation de la trajectoire et montrer que c'est un cercle, préciser le centre et le rayon.
- 2) Exprimer les vecteurs vitesse  $\vec{v}$ , vitesse angulaire  $\vec{\omega}$  et accélération  $\vec{a}$ .
- 3) Représenter la trajectoire et tous les vecteurs de la question 2 en un point M de la trajectoire.

#### **Exercice 5**

Le rotor d'une machine tourne à 1200 tr.min<sup>-1</sup>. A l'instant t=0, il est soumis à une accélération angulaire à supposée constante jusqu'à l'arrêt complet. Il s'arrête en 300 tours.

- 1) Donner les équations horaires de  $\dot{\alpha}$  et  $\alpha$ .
- 2) Calculer la durée du freinage.
- 3) Calculer la valeur de  $\ddot{\alpha}$ .

# **Exercice 6**

Considérons un pendule simple oscillant dans un plan vertical d'un référentiel terrestre galiléen. La position du point matériel est repérée à l'aide de l'angle  $\theta(t)$ .

- 1) Calculer le moment des forces par rapport à l'axe  $(\Delta)$  passant par O et perpendiculaire au plan osculateur.
- 2) Exprimer le moment cinétique  $L_{\Delta}(M)$  du point matériel.
- 3) A l'aide du théorème du moment cinétique, trouvez l'équation différentielle que vérifie  $\theta(t)$ .



## **Exercice 7**

Une particule M se déplace dans le plan xOy. Sa vitesse est définie par  $\vec{v} = a\vec{u}_{\theta} + b\vec{u}_{y}$  où a et b sont des constantes.

- 4) Déterminer l'équation  $\rho(\theta)$  de la trajectoire en coordonnées polaires.
- 5) On choisit a=3b. Sachant que pour  $\theta=0$ , l'abscisse du point M est  $1\,m$ , donner l'expression de  $\rho(\theta)$ .
- 6) Déterminer l'allure de la trajectoire dans le plan xOy.

#### **Exercice 8**

Une roue circulaire de centre C, de rayon a, roule sans glisser sur Ox, tout en restant dans le plan Ox, Oz.

Un point A de la roue coı̈ncide à l'instant t=0 avec l'origine O du repère. Le centre C a une vitesse constante  $V_0$ .

- 1) Déterminer les coordonnées de A à l'instant t.
- 2) Calculer  $\vec{V}$  le vecteur vitesse de A par rapport au sol.



- 3) Donner l'expression du vecteur vitesse angulaire  $\vec{\omega}$ . Calculer le produit vectoriel  $\vec{\omega} \Lambda \vec{IA}$ . Que peut-on en déduire ?
- 4) Calculer  $\vec{a}$ , le vecteur accélération de A par rapport au sol.
- 5) Retrouver les vecteurs vitesse  $\vec{V}$  et accélération  $\vec{a}$  en utilisant la loi de composition des mouvement.

## **Exercice 9**

Un véhicule de masse m=300~kg, animé d'une vitesse  $\vec{v}=80~km/h$ . Pour éviter d'entrer en collision avec un automobiliste stationné à 20~m. Calculer la force de freinage nécessaire pendant une durée de 3~s pour éviter la collision.

# **Exercice 10**

Une poutre de masse M=100~kg et de longueur l=5~m, repose sur deux support A et B distant de d=3~m. Un individu de masse m=75~kg se déplace le long de la poutre en partant de l'extrémité A.

- 1) Calculer la distance maximale à laquelle peut s'éloigner l'individu tout en conservant l'équilibre de la poutre
- 2) Exprimer la réaction du support A sur la poutre en fonction de x.



# **Exercice 11**

Considérons le système ci-dessous formé d'une combinaison de ressorts. Le corps solide de masse m se déplace horizontalement suivant la direction x.

- 1) Calculer la raideur du ressort équivalent.
- 2) Calculer la pulsation propre du système.



<u>Université FHB – UFR Mathématiques et Informatique - Laboratoire de Mécanique</u> Email : coulnamson@hotmail.com