Excitation of the second content of the content of the content of the second content of the cont	dice di an rimuovene l'algoritm i vertici d	rticolazio do v e t 10 della 1	one (cutvert utti gli arch	ex in ingle													-		+					
The control of the co	rimuovene l'algoritm i vertici d	do v e t 10 della 1	utti gli arch		se) se G -																			
Un nodo W e' un abicolazione se IV, K b.c. WYNWK A73 un cammine N K che Non Faccia USO di U. Search Art (G:qyofo) { art : Set for each WeVC) { if (x * y) } if (x * y) }	i vertici d		ricerca in pre			on è conness	so. Modific	eare																
Un nodo W e' un articolazione se 3u, k t.o. un nun nun faccia uso di u. Search. Art. (G:gyofo) artiset for each usu ada for			azione di un	grafo con	nesso; è pos																			
non Facei 2 uso di U. Search Art (G: gyofo) { art : Set for each u e u udo; for each e u uv(c) { for each e u udo; for each e u udo; if (x t) { if (x t) {																								
non Facci 2 uso di u. Search Art (G:gyofo) { art : Set for each us (UC) { for each us (UC) { for each us (UC) {	Un	noda	u	e.	un ai	ticol a	2 zion	e s	e	JV, K	F	c.	421	v N u	vK	Λ-3	Un	C	a Wi W	ino	N	→ K	ch	e
art: Set for each u eV(c) { for each u edd { if (=\pi) {	non	Fac	cci a	NZO	di	u.																		
art: 3et for each ueV(s) { for each ueV(s) { for each ueV(s) { for each ue u.adj { if (xe) pro(s\int u) } if (xe) pro(s\int u) { art. add(u) break } churn art } churn art dininion numer di archi che devono essere eliminati da Gaffinchè Gammetta ordinamenti topologici. Una volta rimesso questo insime minimo di archi determinare tutti gli ordinamenti topologici di G. Possibili ordinamenti topologici di G.					. 4																			
for each wev(s) for each we wad i for each wad in the each w	Searc			:gvaf	ગ્રેશ																			
For each = 6 (a. ady 1 for each 6 (a. ady 1																								
For each \(\epsilon \) \(\epsilon \) \(\frac{1}{2} \) \(\		Fov	each	u eV	(e) {														_					
if (e d prs(c\sigma, e)) \(\			For					<																
if (\$\approx \phi \text{ prs}(\text{G}\sqrt{\lambda}\frac{1}{2}\text{s},\dots)\rangle \text{art. add(\$\alpha}\text{b}) \rangle \text{break} \text{3} \text{4}				tov				1.5																
ave. add (us) break 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3					11	12:	>c d ↑	F5//	-/243	(1)	§													
Besercizio 4 (I. Salvo). Sia G il grafo raffigurato in figura. Determinare il minimo numero di archi che devono essere eliminati da G affinchie G ammetta ordinamenti topologici. Una volta rimosso questo insime minimo di archi, determinare tutti gli ordinamenti topologici di G. Possibili ordinamenti topologici Considerati de Galinchie Gammetta ordinamenti topologici di G.																								
Reburn 2rt 3 Reburn 2rt 3 Reburn 2rt 3 Reburn 2rt 3 Record a Mericine e' inefficente, possi amo Considerare l'albero di vicerc a di una DF3 ed i sui archi all'indietro. Esercizio 4 (I. Salvo). Sia G il grafo raffigurato in figura. Determinare il minimo numero di archi che devono essere eliminati da G affinchè G ammetta ordinamenti topologici. Una volta rimosso questo insime minimo di archi, determinare tutti gli ordinamenti topologici di G. Possibili ordinamenti topologici Os. 2 {c, b, a, f, a, e, d}																								
Considerave l'albero di vicerca di una DFS ed i sui archi all'indietro. Esercizio 4 (I. Salvo). Sia G il grafo raffigurato in figura. Determinare il minimo numero di archi che devono essere eliminati da Gaffinchè Gammetta ordinamenti topologici. Una volta rimosso questo insime minimo di archi, determinare tutti gli ordinamenti topologici di G.						3																		
Questa Mersione e' inefficente, possi amo considerare l'albero di vicerca di una DF3 ed i sui archi all'indietro. Esercizio 4 (I. Salvo). Sia G il grafo raffigurato in figura. Determinare il minimo numero di archi che devono essere eliminati da G affinchè G ammetta ordinamenti topologici. Una volta rimosso questo insime minimo di archi, determinare tutti gli ordinamenti topologici di G. Possibili ordinamenti topologici: Oa= {c, b, a, f, a, e, d}					3																			
Avesta versione e' inefficente, possi amo considerare l'albero di vicenca di una DF5 ed ; sui archi all'indietro. Esercizio 4 (I. Salvo). Sia G il grafo raffigurato in figura. Determinare il minimo numero di archi che devono essere eliminati da G affinchè G ammetta ordinamenti topologici. Una volta rimosso questo insime minimo di archi, determinare tutti gli ordinamenti topologici di G. Possibili ordinamenti topologici: Oa= {c, b, a, f, a, e, d}				3																				
Questa Mersione e' inefficente, possi amo considerare l'albero di vicerca di una DF3 ed i sui archi all'indietro. Esercizio 4 (I. Salvo). Sia G il grafo raffigurato in figura. Determinare il minimo numero di archi che devono essere eliminati da G affinchè G ammetta ordinamenti topologici. Una volta rimosso questo insime minimo di archi, determinare tutti gli ordinamenti topologici di G. Possibili ordinamenti topologici: Oa= {c, b, a, f, a, e, d}		7																						
Questa Mersione e' inefficente, possi amo considerare l'albero di vicerca di una DF3 ed i sui archi all'indietro. Esercizio 4 (I. Salvo). Sia G il grafo raffigurato in figura. Determinare il minimo numero di archi che devono essere eliminati da G affinchè G ammetta ordinamenti topologici. Una volta rimosso questo insime minimo di archi, determinare tutti gli ordinamenti topologici di G. Possibili ordinamenti topologici: Oa= {c, b, a, f, a, e, d}		3																						
Esercizio 4 (I. Salvo). Sia G il grafo raffigurato in figura. Determinare il minimo numero di archi che devono essere eliminati da G affinche G ammetta ordinamenti topologici. Una volta rimosso questo insime minimo di archi, determinare tutti gli ordinamenti topologici di G. Possibili ordinamenti Lopologici Oa= {c, b, a, f, a, e, d}	rceun	n a	246																					
Esercizio 4 (I. Salvo). Sia G il grafo raffigurato in figura. Determinare il minimo numero di archi che devono essere eliminati da G affinchè G ammetta ordinamenti topologici. Una volta rimosso questo insime minimo di archi, determinare tutti gli ordinamenti topologici di G. Possibili ordinamenti topologici Oa= { c, b, a, f, a, e, d}	5																							
Esercizio 4 (I. Salvo). Sia G il grafo raffigurato in figura. Determinare il minimo numero di archi che devono essere eliminati da G affinche G ammetta ordinamenti topologici. Una volta rimosso questo insime minimo di archi, determinare tutti gli ordinamenti topologici di G. Possibili ordinamenti Lopologici Oa= {c, b, a, f, a, e, d}	Ques	L ₂	Nevsi	200	e' in	efF:co	ak-	Does i	2 MO	-	nsia	ev av	ا ا	مطاه	10	di	vice	WC 2	ال	u	W 2	DES	 ام	:
Esercizio 4 (I. Salvo). Sia G il grafo raffigurato in figura. Determinare il minimo numero di archi che devono essere eliminati da G affinchè G ammetta ordinamenti topologici. Una volta rimosso questo insime minimo di archi, determinare tutti gli ordinamenti topologici di G. Possibili ordinamenti Lopologici Oa= {c, b, a, f, a, e, d}		arc	hi a	ll'ind	ietvo		,	7-33,	2,,,,,			CVAV					1100							•
minimo numero di archi che devono essere eliminati da G affinchè G ammetta ordinamenti topologici. Una volta rimosso questo insime minimo di archi, determinare tutti gli ordinamenti topologici di G . Possibili ordinamenti Lopologici Oaz $\{c,b,a,f,g,e,d\}$																								
minimo numero di archi che devono essere eliminati da G affinchè G ammetta ordinamenti topologici. Una volta rimosso questo insime minimo di archi, determinare tutti gli ordinamenti topologici di G . Possibili ordinamenti topologici: Oa= $\{c,b,a,f,g,e,d\}$	_ _						_																	
Possibili ordinamenti topologici. Una volta rimosso questo insime minimo di archi, determinare tutti gli ordinamenti topologici di G.																								
Possibili ordinamenti topologici Oa= {c, b, a, f, 9, e, d}	ordina			rchi ch	e devon	o essere	ешши	ati da (G affin	$\operatorname{chè} G$	amme	tta					_		_					
Possibili ordinamenti topologici Oa= {c, b, a, f, a, e, d}	determ		topolo	gici. U	na volt	a rimos	so que	sto ins																
Possibili ordinamenti topologici Oa={c,b,a,f,g,e,d}	_		topolo	gici. U	na volt	a rimos	so que	sto ins																
Possibili ordinamenti topologici Oa={c,b,a,f,g,e,d}			topolo	gici. U	na volt	a rimos	so que	sto ins																
Possibili ordinamenti topologici Oa={C, b, a, f, g,e,d}			topolo	gici. U	na volt	a rimos	so que	sto ins																
Possibili ordinamenti topologici Oa={C, b, a, f, g,e,d}			topolo	gici. U	na volt	a rimos	so que	sto ins							<i>f</i>)									
Possibili ordinamenti topologici Oa={C, b, a, f, g,e,d}			topolo	gici. U	na volt	a rimos	so que	sto ins																
Possibili ordinamenti topologici Oa={c,b,a,f,g,e,d}			topolo	gici. U	Jna volt	a rimos topolog	sso que	sto ins							f)									
Possibili ordinamenti topologici Os={c, b, a, f, 9, e, d}			topolo	gici. U	Jna volt	a rimos topolog	sso que	sto ins					• (e)											
Os= {c, b, a, f, 9, e, d}			topolo	gici. U	Jna volt	a rimos topolog	sso que	sto ins					• (e)											
Os= {c, b, a, f, 9, e, d}			topolo	gici. U	Jna volt	a rimos topolog	sso que	sto ins					• e											
Os= { c, b, a, f, 9, e, d}			topolo	gici. U	Jna volt	a rimos topolog	sso que	sto ins					e											
		inare	i topolo	gici. U	Ina voltamenti	a rimos topolog	sso que gici di (sto ins					• e											
		inare	i topolo	gici. U	Ina voltamenti	a rimos topolog	sso que gici di (sto ins					<u>e</u>											
O ₂ = ξc, b, a, g, f, e, dξ	Possib	ili	o voi	gici. Uli ordin	a a	a rimos topolog	sso que gici di (sto ins																
	Possib	ili	o voi	gici. Uli ordin	a a	a rimos topolog	sso que gici di (sto ins																
	Possib Oa={	ili c, b	ordi	gici. U li ordir	a a a a a a a a a a a a a a a a a a a	a rimos topolog	sso que gici di (sto ins																
	Possib Oa={	ili c, b	ordi	gici. U li ordir	a a a a a a a a a a a a a a a a a a a	a rimos topolog	sso que gici di (sto ins																
	Possib Oa={	ili c, b	ordi	gici. U li ordir	a a a a a a a a a a a a a a a a a a a	a rimos topolog	sso que gici di (sto ins																
	Possib Oa={	ili c, b	ordi	gici. U li ordir	a a a a a a a a a a a a a a a a a a a	a rimos topolog	sso que gici di (sto ins																
	Possib Oa={	ili c, b	ordi	gici. U li ordir	a a a a a a a a a a a a a a a a a a a	a rimos topolog	sso que gici di (sto ins																
	Possib Oa={	ili c, b	ordi	gici. U li ordir	a a a a a a a a a a a a a a a a a a a	a rimos topolog	sso que gici di (sto ins																
	Possib Oa={	ili c, b	ordi	gici. U li ordir	a a a a a a a a a a a a a a a a a a a	a rimos topolog	sso que gici di (sto ins																
	Possib Oa={	ili c, b	ordi	gici. U li ordir	a a a a a a a a a a a a a a a a a a a	a rimos topolog	sso que gici di (sto ins																
	Possib Oa={	ili c, b	ordi	gici. U li ordir	a a a a a a a a a a a a a a a a a a a	a rimos topolog	sso que gici di (sto ins																
	Possib Oa={	ili c, b	ordi	gici. U li ordir	a a a a a a a a a a a a a a a a a a a	a rimos topolog	sso que gici di (sto ins																

ARIABII = \{ \} = \{ \} = \{ \} FS_and Vi Form Form	\$ 50,0,0 whi (G: is [x] = iov each if	: yrafo, :1 ch({ ~ (Vis [{ ED. e se { ED.	x) { 2==1) add((add(() arch	veice { {\pi, \pi} {\pi, \pi} :(G,	3(s)	hvovo		syaf		ndo ' vi	i) v	Jerso D, Si	de	egli amb	a a a a a a a a a a a a a a a a a a a	erch	i de	Com	e me.	Vev	250	
) = { } s	\$ 50,0,0 chi (G: lis[x]= lov eac if	oo} : 4.ofo, :1 ch(2.ofo (Vis [4.ofo	= : Ne = : 2 : Ne = : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 :){ ∑⟨⟨x, x⟩ i(G,	(s) (s)	hvovo		graf	Ο.													
sEn]= FS_am Vi Fr	\$0,0,0 chi(G: lis[x]= lov eac ifi \$6	: yrafo, :1 ch(xn (Vis [x] ED., e se { ED.	2) { []==1) add((add((add()){ ∑⟨⟨x, x⟩ i(G,	(s) (s)	hvovo		graf	0.													
FS_and Vi	chi(G: lis[x]= for eac if 3e	: yrafo, :1 ch(xn (Vis [x] ED., e se { ED.	2) { []==1) add((add((add()){ ∑⟨⟨x, x⟩ i(G,	(s) (s)	hvovo		graf	О.													
F-6	ir ir ir	ch(20 f (Vis [Yi ED., e se { ED. DFS	add ((add ((add (((γ, ∞) (∞, γ) i(G,	8)	hvovo			Ο,													
3	36	E(Vis [& ED., e se { ED. DFS	add ((add ((add (((γ, ∞) (∞, γ) i(G,	8)	hvovo	y	graf	Ο.													
	3 6	ED., e se { ED. DFS	add((add((i - arch	(γ, ∞) (∞, γ) i(G,	8)	hvovo		graf	O.													
	3	ED.	add((i-arch	(=, y). i(G,	8)	hvovo		y vaf	0.													
		DFS	i-arch	i(G,	(3	hvovo	, (graf	O .													
						hvovo	, (graf	Ю.													
		a' 9li	archi	de		hvovo	,	graf	0.													
D	onterva	a' gli	archi	de		hvovo)	graf	Ο.													
	on terva	a' 91i	archi	de		hvovo	,	y raf	0.													
																1						
								-											+			