基础能力题

【开心提示:以下练习题需要熟练掌握解法】

一、问题求解题

求

1. 下列说法正确的是(). (A) 小数都是有理数 (B) 无限小数都是无理数 (C) 无理数是开方开不尽的数 (D) 零的平方根和立方根都是零 (E) 对数是无理数
2. $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ 2. $$
). (A) 2 (B) 3 (C) 4 (D) 5 (E) 1
3. 计算 $(-1)^{2004} + (\sqrt{3} + 2)^0 - (\frac{1}{2})^{-2}$ 的结果为()).
(A) $\frac{7}{4}$ (B) -3 (C) -2 (D) $\frac{9}{4}$ (E) 2
4. 若 $(ab^3)^3$ <0,则 a 与 b 的关系是().
(A) 异号 (B) 同号 (C) a>0, b<0 (D) a<0, b>0 (E) 不能确定
5. 巳知-1 <b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<a>-1<b<-1>-1<b<a>-1<b<a>-1<b<a>-1<b<-1>-1<b<a>-1<b<a>-1<b<-1>-1<b<a>-1<b<-1>-1<b<-1>-1<b<-1>-1<b<-1>-1<b<-1>-1<b<-1>-1<b<-1>-1<b<-1>-1<b<-1>-1<b<-1>-1<b<-1>-1<b<-1>-1<b<-1>-1<b<-1>-1<b<-1>-1<b<-1>-1<b<-1>-1<b<-1>-1<b<-1>-1<b<-1>-1<b<-1>-1<b<-1>-1<b<-1>-1<b<-1>-1-1<b< th=""></b<></b<-1></b<-1></b<-1></b<-1></b<-1></b<-1></b<-1></b<-1></b<-1></b<-1></b<-1></b<-1></b<-1></b<-1></b<-1></b<-1></b<-1></b<-1></b<-1></b<-1></b<-1></b<-1></b<-1></b<-1></b<a></b<-1></b<a></b<a></b<-1></b<a></b<a></b<a></b<-1></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a></b<a>
6. $\forall \cancel{9} \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{4}\right) \left(1 - \frac{1}{5}\right) \cdots \left(1 - \frac{1}{2014}\right) \left(1 - \frac{1}{2015}\right) = ()$.
(A) $\frac{1}{2013}$ (B) $\frac{1}{2014}$ (C) $\frac{1}{2015}$ (D) $\frac{2014}{2015}$ (E) $\frac{2}{2015}$ 7. 若正数 a 的倒数等于其本身,负数 b 的绝对值等于 3,且 $c < a$, $c^2 = 36$,
代数式 $2(a-2b^2)-5c$ 的值为().
(A) 5 (B) 6 (C) -6 (D) 4 (E) -4
8. 对任意实数 $x \in \left(\frac{1}{8}, \frac{1}{7}\right)$, 代数式 $ 1-2x + 1-3x + 1-4x +\cdots+ 1-10x $ 的值为
(A) 10 (B) 1 (C) 3 (D) 4 (E) 5 9. 计算 $ 1-\sqrt{2} + \sqrt{2}-\sqrt{3} + \sqrt{3}-2 + 2-\sqrt{5} +\dots+ \sqrt{99}-10 $ 结果为 ().
(A) $\sqrt{99} - \sqrt{2}$ (B) 9 (C) $\sqrt{99} - 1$ (D) $10 - \sqrt{2}$ (E) 6

	10. 已知 x²-	$-6x + \left y - 3 \right = 2$	$2x-16$, $M = \frac{1}{x^2}$	$\frac{x}{x^2 + xy + y^2} = ($	().	
	$(A) \ \frac{4}{37}$	(B) $\frac{4}{27}$	(C) $\frac{8}{37}$	(D) $\frac{4}{47}$	(E) $\frac{8}{47}$	
	11. 两个正刻	数加和加满足	$\frac{m}{n}=t(t>1),$	若 $m+n=s$,	则 m , n 中较小	的数可以表
示为	1 () .					
	$(A) \frac{s}{1+t}$	(B) $\frac{s}{1-t}$	(C) $\frac{t}{1+s}$	(D) $\frac{t}{1-s}$	$(E) \frac{-s}{1+t}$	
	10 甘广加·	丁一业要从	田女问加丁	200/ フ女店	1加丁剩下的 950/	五女间加

12. 某厂加工一批零件, 甲车间加工 20%, 乙车间加工剩下的 25%, 丙车间加 工剩下的 40%, 还剩 3600 个零件没有加工, 这批零件一共有() 个.

- (A) 9000 (B) 9500 (C) 9800 (D) 10000 (E) 12000
- 二、充分性判断题【选项说明见第一章第3页,全书同】
- (A) 条件(1) 充分, 但条件(2) 不充分;
- (B) 条件(2) 充分, 但条件(1) 不充分;
- (C) 条件(1) 和条件(2) 单独都不充分, 但条件(1) 和条件(2) 联合 起来充分;
 - (D) 条件(1) 充分, 条件(2) 也充分;
- (E)条件(1)和条件(2)单独都不充分,条件(1)和条件(2)联合起 来也不充分.
 - 1. $m = \sqrt{3} 2$.

(1)
$$m = \frac{\sqrt{3} - 3}{2 + \sqrt{3}}$$
 (2) $m = \frac{1 - \sqrt{3}}{1 + \sqrt{3}}$

2.
$$\sqrt{(5-x)(x-3)^2} = (x-3)\sqrt{5-x}$$
.

- (1) $x \ge 3$ (2) $x \le 6$

3.
$$m = -2\sqrt{6}$$

(1)
$$m = 4\sqrt{24} - 6\sqrt{54} + 3\sqrt{96} - 2\sqrt{150}$$

(2)
$$m = 4\sqrt{24} - 6\sqrt{54} + 2\sqrt{96}$$

4.
$$\frac{\sqrt{x+1} - \sqrt{x-1}}{\sqrt{x+1} + \sqrt{x-1}} + \frac{\sqrt{x+1} + \sqrt{x-1}}{\sqrt{x+1} - \sqrt{x-1}} = \sqrt{5}.$$

(1)
$$x = \sqrt{5}$$
 (2) $x = \frac{\sqrt{5}}{2}$

5. a+b=1.

(1)
$$b = \frac{\sqrt{a^2 - 1} + \sqrt{1 - a^2}}{a + 1}$$
 (2) $b = \frac{\sqrt{a^2 - 1} + \sqrt{1 - a^2}}{a - 1}$

6. m = 1.

(1)
$$m = \frac{|x-2|}{x-2} + \frac{|2-x|}{2-x} + \frac{\sqrt{x-2}}{\sqrt{|x-2|}}$$

(2)
$$m = \frac{|x-2|}{x-2} - \frac{|2-x|}{2-x} - \frac{\sqrt{x-2}}{\sqrt{|x-2|}}$$

7.
$$\frac{|x-1|}{1-x} + \frac{|x-2|}{x-2}$$
 的值为-2.

8.
$$2x + y = -4$$
.

(1)
$$|x+3| + \sqrt{4-2y} = \sqrt{2y-4}$$

(2)
$$|x+3| - \sqrt{4-2y} = -\sqrt{2y-4}$$

基础能力题详解

一、问题求解题

- 1.【解析】D. A 中小数分为有限小数和无限小数,其中有限小数为有理数,所以是错误的; B 中无限小数中无限循环小数属于有理数,所以是错误的; C 中无理数是无限不循环小数,所以该选项说法是错误的; E 中对数有可能为有理数,如 log₂ 2=1.
- 2. 【解析】B. 根据无理数和有理数的定义即可判断出: $(\sqrt{3})^3$, e, π 是无理数.

3. 【解析】 C.
$$(-1)^{2014} + (\sqrt{3} + 2)^0 - (\frac{1}{2})^{-2} = 1 + 1 - 4 = -2$$
.

- 4. 【解析】A. 由题意得: a³b°<0, 即得a, b异号.
- 5. 【解析】C. 方法一: 因为-1 < b < a < 0,所以a + b < a b,因为b > -1,a 1 < a + b,又因为-b < 1,所以a b < a + 1,综上得a 1 < a + b < a b < a + 1. 方法二: 取b = -0.8,a = -0.2.
 - 6. 【解析】C.

$$\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right)\left(1 - \frac{1}{4}\right)\left(1 - \frac{1}{5}\right)\cdots\left(1 - \frac{1}{2014}\right)\left(1 - \frac{1}{2015}\right) = \frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \cdots \times \frac{2014}{2015} = \frac{1}{2015}.$$

7. 【解析】E. 因为a=1, b=-3, c=-6, 所以

$$2(a-2b^2)-5c=2\left[1-2\times(-3)^2\right]-5\times(-6)=2\left[1-18\right]+30=-34+30=-4.$$

8. 【解析】C. 因为 $\frac{1}{8} < x < \frac{1}{7}$, 得7x < 1和8x > 1,从而

原式=
$$(1-2x)+(1-3x)+\cdots+(1-7x)+(8x-1)+(9x-1)+(10x-1)=6-3=3$$
.

9. 【解析】B. 根据绝对值的定义得

$$\left|1 - \sqrt{2}\right| + \left|\sqrt{2} - \sqrt{3}\right| + \left|\sqrt{3} - 2\right| + \left|2 - \sqrt{5}\right| + \dots + \left|\sqrt{99} - 10\right| = \left(\sqrt{2} - 1\right) + \left(\sqrt{3} - \sqrt{2}\right) + \dots + \left(10 - \sqrt{99}\right) = 10 - 1 = 9$$

- 10. 【解析】A. 因为 $x^2 6x + |y 3| = 2x 16$,所以 $(x 4)^2 + |y 3| = 0$,根据非负性,所以x = 4,y = 3. 从而 $\frac{x}{x^2 + xy + y^2} = \frac{4}{37}$.
- 11. 【解析】A. 因为两个正数 $\frac{m}{n}$ =t(t>1), m+n=s, 可得m>n且m+n=s, 因此较小的数可表示为 $n=\frac{s}{1+t}$.
- 12. 【解析】D. $(1-20\%)(1-25\%)(1-40\%) = 0.8 \times \frac{3}{4} \times 0.6 = 0.36$,总零件 $= \frac{3600}{36\%} = 10000 \ (\uparrow)$.

二、充分性判断题

1. 【解析】B. 由(1)
$$m = \frac{\sqrt{3} - 3}{2 + \sqrt{3}} = \frac{(\sqrt{3} - 3)(2 - \sqrt{3})}{(2 + \sqrt{3})(2 - \sqrt{3})} = 5\sqrt{3} - 9$$
,不充分;

(2)
$$m = \frac{1-\sqrt{3}}{1+\sqrt{3}} = \frac{\left(1-\sqrt{3}\right)\left(1-\sqrt{3}\right)}{\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)} = \sqrt{3}-2$$
, $\overrightarrow{\pi}$.

- 2. 【解析】E. 由题, $x-3\geq 0$ 和 $5-x\geq 0$, 得到 $3\leq x\leq 5$, 两个条件单独均不充分, 联合起来也不充分.
 - 3. 【 解 析 】 B. 由 (1)

 $m = 4\sqrt{24} - 6\sqrt{54} + 3\sqrt{96} - 2\sqrt{150} = 4 \times 2\sqrt{6} - 6 \times 3\sqrt{6} + 3 \times 4\sqrt{6} - 2 \times 5\sqrt{6} = -8\sqrt{6}$, 不充分;

由 (2)
$$m = 4\sqrt{24} - 6\sqrt{54} + 2\sqrt{96} = 4 \times 2\sqrt{6} - 6 \times 3\sqrt{6} + 2 \times 4\sqrt{6} = -2\sqrt{6}$$
, 充分.

4. 【解析】B. 先将题干化简:

$$\frac{\sqrt{x+1} - \sqrt{x-1}}{\sqrt{x+1} + \sqrt{x-1}} + \frac{\sqrt{x+1} + \sqrt{x-1}}{\sqrt{x+1} - \sqrt{x-1}}$$

$$= \frac{\left(\sqrt{x+1} - \sqrt{x-1}\right)^2 + \left(\sqrt{x+1} + \sqrt{x-1}\right)^2}{\left(\sqrt{x+1} + \sqrt{x-1}\right)\left(\sqrt{x+1} - \sqrt{x-1}\right)} = \frac{4x}{2} = 2x$$

从而可以看出条件(2)充分.

- 5. 【解析】A. 由(1)可得,分子 $\sqrt{a^2-1} \ge 0$ 且 $\sqrt{1-a^2} \ge 0 \Rightarrow a=\pm 1$,又分母不能为零,故a=1,b=0,充分;同理由(2)可得:a=-1,b=0,不充分.
- 6. 【解析】D. 由于根号里面要保证非负和分母有意义,故两个条件都要求x>2.

由 (1)
$$m = \frac{|x-2|}{x-2} + \frac{|2-x|}{2-x} + \frac{\sqrt{x-2}}{\sqrt{|x-2|}} = 1 - 1 + 1 = 1$$
, 充分;

由 (2)
$$m = \frac{|x-2|}{x-2} - \frac{|2-x|}{2-x} - \frac{\sqrt{x-2}}{\sqrt{|x-2|}} = 1 - (-1) - 1 = 1$$
,充分.

- 7. 【解析】A. 当1 < x < 2 时,x 1 > 0,x 2 < 0,所以 $\frac{|x 1|}{1 x} + \frac{|x 2|}{x 2} = -1 1 = -2$,故条件(1)充分,(2)不充分.
- 8. 【解析】D. 由(1),因为要使根号里面非负,可得: y=2,又|x+3|=0,得到x=-3,从而 $2x+y=2\times(-3)+2=-4$,充分;同理,条件(2)也充分.