TATA24, TENTAMEN 2019-04-23 SVAR OCH KORTFATTADE LÖSNINGSSKISSER

- **1. Svar:** x = 6, y = 4, z = 11.
- 2. Vi har $\mathbf{v}_{\parallel \mathbf{u}} = \frac{\mathbf{v} \bullet \mathbf{u}}{|\mathbf{u}|^2} \mathbf{u} = \frac{18}{6} (1, 2, 0, -1).$

Svar: (3, 6, 0, -3).

3. Beteckna punkterna med P, Q och R i den givna ordningen. Den sökta arean är hälften av arean av den parallellogram som spänns upp av \overline{PQ} och \overline{PR} . Parallellogrammens area är $|\overline{PQ} \times \overline{PR}| = |(1,1,2) \times (3,2,1)| = |(-3,5,-1)| = \sqrt{35}$.

Svar: $\frac{\sqrt{35}}{2}$.

4. Notera att $a\mathbf{f_1} + b\mathbf{f_2} = 5\mathbf{e_1} - 2\mathbf{e_2} \Leftrightarrow (2a + 3b, a + 3b) = (5, -2) \Leftrightarrow a = 7, b = -3.$

Svar: Koordinatmatrisen är $\begin{pmatrix} 7 \\ -3 \end{pmatrix}$.

- **5. Svar:** Egenvärdena är -5 med egenrum [(1,3)] samt 5 med egenrum [(2,1)].
- **6.** Med $\mathbf{n}=(1,1,1)$ har vi $F(\mathbf{u})=\mathbf{u}-2\mathbf{u}_{\parallel\mathbf{n}}$. Sålunda beräknas basvektorernas bilder $F(\mathbf{e_1})=\frac{1}{3}(1,-2,-2),\,F(\mathbf{e_2})=\frac{1}{3}(-2,1,-2)$ och $F(\mathbf{e_3})=\frac{1}{3}(-2,-2,1)$.

Svar: $\frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}$.

7. Låt $\mathbf{v}=(3,3,3,3)$. Det sökta avståndet är $|\mathbf{v}-\mathbf{v}_{\parallel \mathbb{U}}|$. För att bestämma $\mathbf{v}_{\parallel \mathbb{U}}$ konstruerar vi först en ortogonal bas $(\mathbf{b_1}\ \mathbf{b_2})$ för \mathbb{U} med Gram-Schmidt. Tag exempelvis $\mathbf{b_1}=(-1,0,-2,1)$ och $\mathbf{b_2}=(3,2,4,-1)-(3,2,4,-1)_{\parallel \mathbf{b_1}}=(1,2,0,1)$.

Nu gäller $\mathbf{v}_{\parallel \mathbb{U}} = \mathbf{v}_{\parallel \mathbf{b_1}} + \mathbf{v}_{\parallel \mathbf{b_2}} = (1, 0, 2, -1) + (2, 4, 0, 2) = (3, 4, 2, 1)$, så det kortaste avståndet är $|(0, -1, 1, 2)| = \sqrt{6}$.

Svar: $\sqrt{6}$.

8. Systemets koefficientmatris har egenvärdena -2, 2 och 4 med, i tur och ordning, egenrummen $[(1\ 1\ 0)^t]$, $[(0\ 1\ 1)^t]$ och $[(1\ 0\ 1)^t]$.

Svar: $\begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix} = C_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} e^{-2t} + C_2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} e^{2t} + C_3 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} e^{4t}$, där $C_i \in \mathbb{R}$ är godtyckliga.

9. Vi beräknar avbildningsmatrisen A, förslagsvis relativt standardbasen $\underline{\mathbf{x}} = (1 \ x \ x^2 \ x^3)$. Basvektorernas bilder är F(1) = -2, F(x) = -1 - x, $F(x^2) = -2x$ och $F(x^3) = -3x^2 + x^3$, så

$$A = \begin{pmatrix} -2 & -1 & 0 & 0 \\ 0 & -1 & -2 & 0 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Eftersom $\underline{\mathbf{x}}X \in N(F) \Leftrightarrow AX = 0 \Leftrightarrow X = \begin{pmatrix} t \\ -2t \\ t \\ 0 \end{pmatrix}, t \in \mathbb{R}$, så spänns N(F) upp av $1 - 2x + x^2$.

Vidare kan A (medelst en radoperation) överföras på en trappstegsform som har pivotelement i alla kolonner utom den tredje. Alltså utgör bilderna av första, andra och fjärde basvektorerna en bas för V(F).

Svar: En bas för N(F) är $(1-2x+x^2)$. En bas för V(F) är $(-2-1-x-3x^2+x^3)$. Anmärkning. Eftersom de första två vektorerna i basen för V(F) spänner upp \mathbb{P}_1 , kan vi byta dem mot någon annan bas för \mathbb{P}_1 och exempelvis ange den lite prydligare basen $(1-x-3x^2+x^3)$ för V(F).

10.

- (a) Associativitet hos matrisprodukter ger $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AA^{-1} = I$ och, på samma sätt, $(B^{-1}A^{-1})(AB) = I$, som önskat.
- (b) Antag att A är en ON-matris, så $A^tA = I$. Räkneregler för determinanter ger det $(A^tA) = \det A^t \det A = (\det A)^2$. Alltså gäller $(\det A)^2 = \det I = 1$ och påståendet följer.
- (c) Dimensionssatsen säger $\dim N(F) + \dim V(F) = \dim \mathbb{R}^5 = 5$. Eftersom $V(F) \subseteq \mathbb{R}$ måste $\dim V(F) \in \{0,1\}$. Nu gäller $0 \neq F((1,1,1,1,1)) \in V(F)$, så $V(F) \neq \{0\}$ och därför har vi $\dim V(F) = 1$.