

Обобщённая разреженная линейная алгебра и высокопроизводительный анализ графов в экосистеме RISC-V

Семён Григорьев

Санкт-Петербургский Государственный Университет

18 сентября 2025г.

Семён Григорьев

- Доцент кафедры системного программирования
 Санкт-Петербургского Государственного Университета
- Научный сотрудник лаборатории YADRO
- Руководитель исследовательской группы
- Области интересов
 - Высокопроизводительная линейная алгебра для анализа графов
 - Обобщённая: матрицы и вектора параметризованы типом элемента, операции над ними могут быть заданы пользователем
 - Разреженная: специализированные структуры для хранения матриц и векторов, специализированные алгоритмы для их обработки
 - ⋆ В том числе, с использованием графических ускорителей
 - Высокопроизводительный анализ графов

- Email: s.v.grigoriev@mail.spbu.ru
- GitHub: gsvgit
- Google Scholar: Semyon Grigorev
- DBLP: Semyon V. Grigorev

А зачем мне разреженная линейная алгебра?

...а не математик

Разреженная линейная алгебра

- Линейная алгебра: матрицы, вектора, операции над ними
 - Операции естественным образом распараллеливаются по данным: эффективные реализации для многоядерных систем, GPGPU, и т.д.
 - Абстракция по операциям: (полу)кольца, моноиды, . . .
- Разреженная линейная алгебра: в матрице или векторе много одинаковых элементов
 - Часто говорят что в матрице (векторе) много «нейтральных элементов», «нулей» или что-то подобное, но это не всегда так
- Хотим не хранить одинаковые элементы
 - ▶ Специальные структуры для хранения матриц и векторов¹
 - ightharpoonup Специальные алгоритмы для выполнения операций 2

¹COO, CSR, CSC, DCSR, Quad-Tree, ...

²Не забываем про параллельность

Области применения

- Машинное обучение
 - Разреженное внимание (sparse attention)
 - Графовые нейронные сети
- Робототехника
 - Задачи навигации
 - **.** . . .
- Численные методы
 - Разреженные системы уравнений
 - **.**...
- . .

- Анализ графов
 - Графовые базы данных
 - Анализ социальных, банковских и других сетей
 - Статический анализ кода
 - Биоинформатика

Линейная алгебра и анализ графов

- Анализ больших графов: графовые БД, анализ кода, поиск уязвимостей, анализ трафика, анализ транзакций, банковская аналитика, социальные сети...
 - Важна производительность
 - Разнообразные алгоритмы

Линейная алгебра и анализ графов

- Анализ больших графов: графовые БД, анализ кода, поиск уязвимостей, анализ трафика, анализ транзакций, банковская аналитика, социальные сети...
 - Важна производительность
 - Разнообразные алгоритмы
- Путь к унифицированной параллельной обработке графов
 - ▶ Граф ⇔ матрица смежности
 - ▶ Метки на рёбрах ⇔ полукольца, моноиды, . . .

Линейная алгебра и анализ графов

- Анализ больших графов: графовые БД, анализ кода, поиск уязвимостей, анализ трафика, анализ транзакций, банковская аналитика, социальные сети...
 - Важна производительность
 - Разнообразные алгоритмы
- Путь к унифицированной параллельной обработке графов
- Высокопроизводительная линейная алгебра для анализа графов
 - Обобщённая: матрицы и вектора параметризованы типом элемента, операции над ними могут быть заданы пользователем
 - **Разреженная**: специализированные структуры для хранения матриц и векторов, специализированные алгоритмы для их обработки
 - ▶ В том числе, с использованием графических ускорителей, ПЛИС

Знакомьтесь, GraphBLAS Как BLAS, только Graph

Сосед SparseBLAS по палате

GraphBLAS API⁷

- АРІ для создания алгоритмов анализа графов на основе линейной алгебры
 - Различные операции над матрицами и векторами (разреженными)
 - Параметризация алгебраическими структурами: полукольцами, моноидами и т.д.
- Позволяет выражать различные алгоритмы
 - ▶ Обход в ширину, поиск кратчайших путей, достижимость, . . .
 - ▶ Подсчёт треугольников, PageRank, остовные деревья, кластеризация,...
 - ▶ Запросы с регулярными (RPQ) и контекстно-свободными (CFPQ) ограничениями . . .
- Подробнее
 - ► The GraphBLAS C API Specification³
 - ► GraphBLAS Pointers⁴
 - ► Introduction to GraphBLAS⁵
 - ► LAGraph⁶

```
3https://graphblas.org/docs/GraphBLAS_API_C_v2.1.0.pdf
```

⁴https://graphblas.org/GraphBLAS-Pointers/

⁵https://zenodo.org/record/4318870/files/graphblas-introduction.pdf

⁶https://github.com/GraphBLAS/LAGraph

⁷https://graphblas.org/

Реализации GraphBLAS-подобных API

- SuiteSparse:GraphBLAS⁸: <u>эталон</u> на чистом С
- Huawei's GraphBLAS⁹: частичная реализация на C++
- CombBLAS¹⁰: распределённая, частичная реализация на C++
- ullet GraphBLAST 11 : поддержка GPGPU, Cuda C, частичная реализация
- Spla¹²: поддержка GPGPU, OpenCL C, частичная реализация
- GraphLily¹³: подмножество GraphBLAS на FPGA
- Обёртки для различных языков: Python, Rust, ...
- . . .

```
^{8} \verb|https://github.com/DrTimothyAldenDavis/GraphBLAS|
```

⁹https://gitee.com/CSL-ALP/graphblas

¹⁰https://github.com/PASSIONLab/CombBLAS

¹¹https://github.com/gunrock/graphblast

¹²https://github.com/SparseLinearAlgebra/spla

¹³GraphLily: Accelerating Graph Linear Algebra on HBM-Equipped FPGAs

SuiteStarse¹⁴

LAGraph Networkx Коллекция алгоритмов анализа графов, выраденных в FalkorDB (ex RedisGraph) Терминах линейной алгебры OneSparse (PostgreSQL) SuiteSparse Open3d Коллекция пакетов для решения различных задач FD-SLAM разреженной линейной алгебры GraphBLAS API Eigen АРІ для реализации алгоритмов анализа графов Matlab В Терминах линейной алгебры GNU Octave - Полукольца, монопуы, ... SAGE - Macky, purstpbl, coezbl, ... SparseBLAS API Knacchteckaa Bычислительная разреженная линейная алгебра OTGENGHILLE MAKETH GAS BHEWHUE JABUCUMOCTU - Разложения матрии - xxHash - Решатели сисем уравнений - cou_features

¹⁴https://github.com/DrTimothyAldenDavis/SuiteSparse

Кто может написать обход в ширину? А параллельный?

А так, чтобы работало быстро?

А задачи для «настоящих программистов» есть? Допустим, я поверил, что линейная алгебра— это круто ...

Только такие, чтобы я справился . . .

Кросс-сборка и тестирование SuiteSparse²⁰

• Было

- ► Alpine linux + chroot¹⁵
- Сборка и тестирование в эмуляторе $(qemu)^{16}$
- ▶ Продолжительность workflow в GitHub CI: 2 часа 20 минут

 $^{^{15}}$ До недавнего времени не было RISC-V

¹⁶Не для всех компонент

¹⁷Для всех компонент

¹⁸Позже выяснилось, что про них знали и ошибка в GCC а не в SuiteSparse

¹⁹https://github.com/DrTimothyAldenDavis/SuiteSparse/pull/955#discussion_r2103092266

²⁰Соответствующий реквекст: https://github.com/DrTimothyAldenDavis/SuiteSparse/pull/949

Кросс-сборка и тестирование SuiteSparse²⁰

• Было

- ► Alpine linux + chroot¹⁵
- Сборка и тестирование в эмуляторе $(qemu)^{16}$
- ▶ Продолжительность workflow в GitHub CI: 2 часа 20 минут

• Стало

- ▶ Кросс-тулчейн + MultiArch
- Кросс-сборка и тестирование в эмуляторе (qemu-user)¹⁷
- ▶ Продолжительность workflow в GitHub CI: 40 минут
- ▶ Выявлены и локализованы ошибки под х390s и ppc64le¹⁸

¹⁵До недавнего времени не было RISC-V

¹⁶Не для всех компонент

¹⁷Для всех компонент

¹⁸Позже выяснилось, что про них знали и ошибка в GCC а не в SuiteSparse

¹⁹https://github.com/DrTimothyAldenDavis/SuiteSparse/pull/955#discussion_r2103092266

²⁰Соответствующий реквекст: https://github.com/DrTimothyAldenDavis/SuiteSparse/pull/949

Кросс-сборка и тестирование SuiteSparse²⁰

• Было

- ► Alpine linux + chroot¹⁵
- ▶ Сборка и тестирование в эмуляторе $(qemu)^{16}$
- ▶ Продолжительность workflow в GitHub CI: 2 часа 20 минут

• Стало

- ▶ Кросс-тулчейн + MultiArch
- \blacktriangleright Кросс-сборка и тестирование в эмуляторе (qemu-user) 17
- ▶ Продолжительность workflow в GitHub CI: 40 минут
- ▶ Выявлены и локализованы ошибки под х390s и ppc64le¹⁸
- ullet Предложенное нами решение для кросс-сборки начали использовать в GNU Octave 19

 $^{^{15}}$ До недавнего времени не было RISC-V

¹⁶Не для всех компонент

¹⁷Для всех компонент

 $^{^{18}}$ Позже выяснилось, что про них знали и ошибка в GCC а не в SuiteSparse

¹⁹https://github.com/DrTimothyAldenDavis/SuiteSparse/pull/955#discussion_r2103092266

²⁰Соответствующий реквекст: https://github.com/DrTimothyAldenDavis/SuiteSparse/pull/949

Векторизация умножения матриц в SuiteSparse: GraphBLAS²¹

- Оборудование
 - ► X86 64
 - **★ CPU**: Intel Core i7-12700H 800MHz с векторами размером 1024 битов
 - ★ RAM: LPDDR4, 16GB★ Compiler: GCC 14.2.0
 - RISC-V
 - * SoC: SPACEMIT K1/M1, Octa-core X60™(RV64GCVB), RVA22, RVV1.0 1600MHz с векторами размером 2048 битов
 - ★ RAM: LPDDR4X, 16GB
 - **★ Compiler**: GCC 14.2.0 (cross)
- SuiteSparse matrix collection: матрицы разных размеров и разной степени разреженности
- Сравнивали изменение величины среднего времени выполнения 400 запусков умножения матриц

²¹Соответствующий PR: https://github.com/DrTimothyAldenDavis/GraphBLAS/pull/381

Результаты экспериментального исследования векторизованного кода²²

N∘	Matrix name	Rows	Nonzeros	AVX2	No	RVV	No RVV	AVX	RVV
		number		(ms.)	AVX2	(ms.)	(ms.)	speedup	speedup
					(ms.)			(%)	(%)
1	olafu	16146	515651	5327.7	6629.7	43080.7	52940.1	19.6	18.6
2	fd18	16428	63406	476.4	482.0	2212.6	2181.2	1.2	-1.4
3	sme3Da	12504	874887	4236.9	5124.9	32008.0	42763.8	17.3	25.2
4	stokes64	12546	74242	508.8	564.4	2629.7	2814.1	9.8	6.6
5	sinc12	7500	294986	632.6	864.0	5970.1	8593.8	26.8	30.5
6	fd12	7500	28462	90.4	92.3	484.1	555.3	2.0	12.8
7	bcsstk15	3948	60882	87.8	117.9	1271.5	1770.8	25.6	28.2
8	tols4000	4000	8784	17.1	18.2	184.0	203.5	5.9	9.6
9	ex36	3079	53843	28.5	41.0	574.2	584.8	30.5	1.8
10	iprob	3001	9000	25.2	34.7	279.3	344.9	27.5	19.0
11	MISKnowledgeMap	2427	28511	31.3	38.5	401.6	490.0	18.8	18.0
12	LeGresley_2508	2508	16727	10.4	12.1	106.5	97.7	14.3	-8.9
13	reorientation_2	1544	9408	5.6	9.8	117.9	125.4	42.7	6.0
14	netscience	1589	2742	1.5	2.8	31.4	28.5	47.0	-10.0
15	mcfe	765	24382	2.3	5.5	51.1	65.3	58.8	21.8
16	orbitRaising_3	761	3256	0.6	1.6	10.5	13.1	63.0	19.5

 $^{^{22}}$ Во всех экспериментах стандартное отклонение не превосходит 5%

Результаты экспериментального исследования векторизованного кода²²

N∘	Matrix name	Rows	Nonzeros	AVX2	No	RVV	No RVV	AVX	RVV
		number		(ms.)	AVX2	(ms.)	(ms.)	speedup	speedup
					(ms.)			(%)	(%)
1	olafu	16146	515651	5327.7	6629.7	43080.7	52940.1	19.6	18.6
2	fd18	16428	63406	476.4	482.0	2212.6	2181.2	1.2	-1.4
3	sme3Da	12504	874887	4236.9	5124.9	32008.0	42763.8	17.3	25.2
4	stokes64	12546	74242	508.8	564.4	2629.7	2814.1	9.8	6.6
5	sinc12	7500	294986	632.6	864.0	5970.1	8593.8	26.8	30.5
6	fd12	7500	28462	90.4	92.3	484.1	555.3	2.0	12.8
7	bcsstk15	3948	60882	87.8	117.9	1271.5	1770.8	25.6	28.2
8	tols4000	4000	8784	17.1	18.2	184.0	203.5	5.9	9.6
9	ex36	3079	53843	28.5	41.0	574.2	584.8	30.5	1.8
10	iprob	3001	9000	25.2	34.7	279.3	344.9	27.5	19.0
11	MISKnowledgeMap	2427	28511	31.3	38.5	401.6	490.0	18.8	18.0
12	LeGresley_2508	2508	16727	10.4	12.1	106.5	97.7	14.3	-8.9
13	reorientation_2	1544	9408	5.6	9.8	117.9	125.4	42.7	6.0
14	netscience	1589	2742	1.5	2.8	31.4	28.5	47.0	-10.0
15	mcfe	765	24382	2.3	5.5	51.1	65.3	58.8	21.8
16	orbitRaising_3	761	3256	0.6	1.6	10.5	13.1	63.0	19.5

 $^{^{22}}$ Во всех экспериментах стандартное отклонение не превосходит 5%

Результаты экспериментального исследования векторизованного кода²²

Nº	Matrix name	Rows	Nonzeros	AVX2	No	RVV	No RVV	AVX	RVV
		number		(ms.)	AVX2	(ms.)	(ms.)	speedup	speedup
					(ms.)			(%)	(%)
1	olafu	16146	515651	5327.7	6629.7	43080.7	52940.1	19.6	18.6
2	fd18	16428	63406	476.4	482.0	2212.6	2181.2	1.2	-1.4
3	sme3Da	12504	874887	4236.9	5124.9	32008.0	42763.8	17.3	25.2
4	stokes64	12546	74242	508.8	564.4	2629.7	2814.1	9.8	6.6
5	sinc12	7500	294986	632.6	864.0	5970.1	8593.8	26.8	30.5
6	fd12	7500	28462	90.4	92.3	484.1	555.3	2.0	12.8
7	bcsstk15	3948	60882	87.8	117.9	1271.5	1770.8	25.6	28.2
8	tols4000	4000	8784	17.1	18.2	184.0	203.5	5.9	9.6
9	ex36	3079	53843	28.5	41.0	574.2	584.8	30.5	1.8
10	iprob	3001	9000	25.2	34.7	279.3	344.9	27.5	19.0
11	MISKnowledgeMap	2427	28511	31.3	38.5	401.6	490.0	18.8	18.0
12	LeGresley_2508	2508	16727	10.4	12.1	106.5	97.7	14.3	-8.9
13	reorientation_2	1544	9408	5.6	9.8	117.9	125.4	42.7	6.0
14	netscience	1589	2742	1.5	2.8	31.4	28.5	47.0	-10.0
15	mcfe	765	24382	2.3	5.5	51.1	65.3	58.8	21.8
16	orbitRaising_3	761	3256	0.6	1.6	10.5	13.1	63.0	19.5

 $^{^{22}}$ Во всех экспериментах стандартное отклонение не превосходит 5%

А на GPGPU можно? Но чтобы тоже с RISC-V что-нибудь ...

И про линейную алгебру . . .

RISC-V и GPGPU

- RISC-V CPU + Imagination Technologies GPU: самая распространённая (из доступных) конфигурация
- RISC-V CPU + AMD GPU: утверждается, что работает и есть официальная поддержка (Milk-V Pioneer, Milk-V Megrez, RuyiBook)
- RISC-V CPU + Intel GPU: ходят слухи, что можно, но официальной поддержки пока нет
- RISC-V CPU + Nvidia GPU: анонсировано
- RISC-V GPU: Vortex

Spla на SpacemiT M1 (RISC-V) с IMG BXE-2-32 GPU

Triangle Count (TC)

Single Source Shortest Path (SSSP)

PageRank (PR)

Graph

Результаты умножения плотных матриц на SpacemiT M1 с IMG GPU

(Некоторые) GPGPU от Imagination Technologies (пока) не совсем для вычислений

Пара слов про Vortex: RISC-V GPGPU

- Набор инструкций, основанный на RISC-V ISA
- Поддержка OpenCL через POCL
 - 🗱 Spla должна запускаться

Пара слов про Vortex: RISC-V GPGPU

- Набор инструкций, основанный на RISC-V ISA
- Поддержка OpenCL через POCL
 - ✓ Spla запускается (и даже что-то работает)

Пара слов про Vortex: RISC-V GPGPU

- Набор инструкций, основанный на RISC-V ISA
- Поддержка OpenCL через POCL
 - ✓ Spla запускается (и даже что-то работает)
- Проблемы со сбросом регистров
 - Типичные оптимизации не работают
 - ► Issue 1
 - ► Issue 2
- В целом, есть подозрение, что мало регистров
- Для ПЛИС с НВМ
 - ? Бонус для обработки граф-структурированных данных

Куда катится этот мир? мир RISC-V, конечно же, ...

Вместе с линейной алгеброй . . .

Перспективы: RISC-V

- Идёт работа над расширениями²³
 - ► IndexMAC: A Custom RISC-V Vector Instruction to Accelerate Structured-Sparse Matrix Multiplications, 2024 год
 - Optimizations for Very Long and Sparse Vector Operations on a RISC-V VPU: A Work-in-Progress, 2023 год
 - ▶ Optimizing Structured-Sparse Matrix Multiplication in RISC-V Vector Processors, 2025 год
 - Sparse Stream Semantic Registers: A Lightweight ISA Extension Accelerating General Sparse Linear Algebra, 2023 год
 - ► Hardware/Software Co-Design of RISC-V Extensions for Accelerating Sparse DNNs on FPGAs, 2024 год
- В основном для машинного обучения: малая разрядность, относительно большая плотность, фиксированный набор типов и операций (часто для инференса)
- Vortex: GPGPUs on FPGAs: A competitive approach for scientific computing?, 2025 год

²³Оставим в покое RVV, Integrated Matrix Extension, XuanTie Matrix Extension, ...

Специализированные решения для разреженной линейной алгебры

- Dedicated Hardware Accelerators for Processing of Sparse Matrices and Vectors: A Survey,
 2024 год
- A Survey of Accelerating Parallel Sparse Linear Algebra, 2023 год
- A Systematic Literature Survey of Sparse Matrix-Vector Multiplication, 2024 год

Заключение

- Высокопроизводительная разреженная линейная алгебра \Rightarrow высокопроизводительные приложения
 - ▶ Машинное обучение
 - Графовые базы данных
 - Анализ социальных, банковских и других сетей
 - Анализ кода
- Сделать разреженную линейную алгебру высокопроизводительной сложно
 - Нерегулярный доступ к данным
 - Хорошая алгебра обобщённая алгебра
 - Сложности с балансировкой нагрузки
 - **.** . . .
- Но люди пытаются
 - ▶ Даже институты для этого создают²⁴

²⁴Sparsitute: A mathematical Institute for Sparse Computations in Science and Engineering, https://sparsitute.lbl.gov/