Tarea 1

Arruti, Sergio, Jesús

4 de marzo de 2021

1. Ejercicio 1.

Sea $\varphi:R\longrightarrow S$ un morfismo de anillos.

- a) $im(\varphi) \leq S$
- b) $Ker(\varphi) \subseteq R$
- $c) \ \forall S' \subseteq S, \varphi^{-1}(S') \le R$

Demostración. (a) El hecho de que φ sea un morfismo de anillos con uno garantiza que $\varphi(1) = 1$ y que $im(\varphi) \neq \emptyset$.

Por otro lado, sean $a, b \in im(\varphi)$. Por definición, existen $x, y \in R$ tales que $\varphi(x) = a$ y $\varphi(y) = b$. Esto implica que

$$a - b = \varphi(x) - \varphi(y)$$
$$= \varphi(x - y)$$

y que

$$ab = \varphi(x) \varphi(y)$$
$$= \varphi(xy)$$

Así $a - b, ab \in im(\varphi)$. Por tanto $im(\varphi) \leq S$.

[b] Primeramente, como $\varphi(0) = 0$, tenemos que $Ker(\varphi) \neq \emptyset$. De igual manera, $Ker(\varphi) \leq R$. En efecto, si $x, y \in Ker(\varphi)$, entonces $\varphi(x + y) = \varphi(x) + \varphi(y) = 0$. Por lo que $x + y \in Ker(\varphi)$. Ahora, sean $x \in Ker(\varphi)$ y $a \in R$; de manera que $\varphi(ax) = \varphi(a) \varphi(x) = 0$ y $\varphi(xa) = \varphi(x) \varphi(a) = 0$. Por lo que $ax, xa \in Ker(\varphi)$ y por tanto, $Ker(\varphi) \leq R$.

(c) Sea S' un subanillo de S. En este sentido, los hechos de que $1 \in S'$ y de que $\varphi(1) = 1$ implican que $1 \in \varphi^{-1}(S') \neq \emptyset$.

Finalmente, dados $a, b \in \varphi^{-1}(S')$, se tiene por la propia definición, que $\varphi(a), \varphi(b) \in S'$. De tal manera que $\varphi(a-b), \varphi(ab) \in S'$. Por tanto, $a-b, ab \in \varphi^{-1}(S')$.

Concluimos que $\varphi^{-1}(S')$ es un subanillo de S.

2. Ejercicio 4.

Para $\alpha: K \times R \longrightarrow R$, $(k, r) \mapsto kr$, en K_{AC} -Rings, pruebe que $\varphi_{\alpha}: K \longrightarrow R$, con $\varphi_{\alpha}(k) = k \cdot 1_{R}$ es un morfismo de anillos tal que $im(\varphi_{\alpha}) \subseteq C(R)$.

Demostración. Sean $k, r \in K$. Dado que α es una acción, se tiene que

$$\varphi_{\alpha}(k+r) = (k+r) \cdot 1_{R}$$
$$= k \cdot 1_{R} + r \cdot 1_{R}$$
$$= \varphi_{\alpha}(k) + \varphi_{\alpha}(r)$$

У

$$\varphi_{\alpha}(kr) = (kr) \cdot 1_{R}$$

$$= k \cdot (r \cdot 1_{R})$$

$$= (k \cdot 1_{R}) (r \cdot 1_{R})$$

$$= \varphi_{\alpha}(k) \varphi_{\alpha}(r)$$

Además, por la propia regla de correspondencia de φ_{α} , se cumple la igualdad $\varphi_{\alpha}(1) = 1_K \cdot 1_R = 1_R$. Por tanto, φ_{α} es un morfismo de anillos.

Finalmente, de la quinta condición de ser acción a izquierda, se deduce que $im\left(\varphi_{\alpha}\right)\subseteq C\left(R\right)$. En efecto, si $k\in K$ y $r\in R$, entonces

$$\varphi_{\alpha}(k) r = (k \cdot 1_{R}) r$$

$$= k \cdot (1_{R}r)$$

$$= k \cdot (r1_{R})$$

$$= r \cdot (k1_{R})$$

$$= r\varphi_{\alpha}(k)$$

Por lo que $im(\varphi_{\alpha}) \subseteq C(R)$.

3. Ejercicio 7.

Sea R un anillo. Pruebe que

a) Dada una representación a derecha (M, ρ) , se tiene una acción a derecha $\beta_{\rho}: M \times R \longrightarrow M$, $(m, r) \mapsto mr = (m) \rho(r)$ tal que $(M, \beta_{\rho}) \in Mod_R$

- b) Dado un R-módulo a derecha (M,β) , se tiene un morfismo de anillos $\rho_{\beta}: R \longrightarrow End_{\mathbb{Z}}^{r}(M), (m) \rho_{\beta}(r) = \beta(m,r) = mr$
- c) Se tiene una biyección $\beta: Rep_R \longrightarrow Mod_R$, $(M, \rho) \mapsto \beta_{\rho}$, donde $\beta_{\rho}: M \times R \mapsto M$ está dada por $\beta_{\rho}(m, r) = (m) \rho(r)$; cuya inversa es $\rho: Mod_R \longrightarrow Rep_R$, con $(\beta: M \times R \longrightarrow M) \mapsto (\rho_{\beta}: R \longrightarrow End_{\mathbb{Z}}^r(M))$, dada por $(m) \rho_{\beta}(r) = \beta(m, r)$

Demostración. (a) Dado que M es un grupo abeliano, basta probar que se satisfacen las condiciones de la definición de R-módulo a derecha. Sean $r_1, r_2 \in R$ y $m_1, m_2 \in M$.

Primero,

$$(m_1 + m_2) \cdot r_1 = (m_1 + m_2) \rho(r_1)$$

= $(m_1) \rho(r_1) + (m_2) \rho(r_2)$
= $m_1 \cdot r_1 + m_2 \cdot r_1$

puesto que $\rho(r_1)$ es un morfismo de grupos abelianos.

Por otro lado, como ρ es un morfismo de anillos, podemos decir que

$$m_1 \cdot (r_1 + r_2) = (m_1) \rho (r_1 + r_2)$$

$$= (m_1) [\rho (r_1) + \rho (r_2)]$$

$$= (m_1) \rho (r_1) + (m_1) \rho (r_2)$$

$$= m_1 \cdot r_1 + m_2 \cdot r_2$$

También observemos que

$$m_1 \cdot 1_R = (m_1) \rho (1)$$
$$= (m_1) I d_R$$
$$= m_1$$

Por último, en virtud de que ρ preserva productos, se tiene que

$$m_{1} \cdot (r_{1}r_{2}) = (m_{1}) \rho (r_{1}r_{2})$$

$$= (m_{1}) \rho (r_{1}) \circ \rho (r_{2})$$

$$= ((m_{1}) \rho (r_{1})) \rho (r_{2})$$

$$= (m_{1} \cdot r_{1}) \rho (r_{2})$$

$$= (m \cdot r_{1}) \cdot r_{2}$$

Por tanto, (M, β_{ρ}) es un R-módulo a derecha.

(b) Como en el inciso anterior, bastará con probar que ρ_{β} es un morfismo de anillos. Bajo este contexto, sean $m_1, m_2 \in M$ y $r_1, r_2 \in R$.

Comenzaremos notando que $\rho\left(r_{1}\right)$ es un homomorfismo de anillos. En efecto,

$$(m_1 + m_2) \rho(r_1) = (m_1 + m_2) \cdot r_1$$

= $m_1 \cdot r_1 + m_2 \cdot r_1$
= $(m_1) \rho(r_1) + (m_2) \rho(r_2)$

Por consiguiente, $\rho(r_1) \in End_{\mathbb{Z}}^r(M)$.

Análogamente, ρ_{β} es un homomorfismo de grupos abelianos, puesto que

$$(m_1) \rho_{\beta} (r_1 + r_2) = m_1 \cdot (r_1 + r_2)$$

= $m_1 \cdot r_1 + m_1 \cdot r_2$
= $(m_1) \rho_{\beta} (r_1) + (m_1) \rho_{\beta} (r_2)$

y así $\rho_{\beta}(r_1 + r_2) = \rho_{\beta}(r_1) + \rho_{\beta}(r_2)$. Más aún, ρ_{β} también preserva productos, toda vez que

$$(m_1) \rho_{\beta} (r_1 r_2) = m_1 \cdot (r_1 r_2)$$

$$= (m_1 \cdot r_1) \cdot r_2$$

$$= ((m_1) \rho_{\beta} (r_1)) \rho_{\beta} (r_2)$$

$$= (m_1) [\rho_{\beta} (r_1) \circ \rho_{\beta} (r_2)]$$

Para finalizar, ρ_{β} en efecto es un morfismo de anillos porque, adicionalmente, se satisface que $(m_1) \rho_{\beta} (1) = m_1 \cdot 1_R = m_1$. Ergo, se concluye el resultado.

 $\lfloor (c) \rfloor$ La biyección queda resuelta debido a los 2 incisos anteriores. El primero garantiza que toda representación a derecha tiene estructura de R-módulo a derecha; inversamente, todo R-módulo a derecha induce una acción a derecha con la cuál el módulo puede ser visto como una representación a derecha de R.

4. Ejercicio 10.

Sea K un anillo conmutativo.

- a) Para un anillo R, pruebe que dar una estructura de K-álgebra en R es equivalente a dar una estructura de K-módulo a izquierda en R, vía una acción a izquierda $K \times R \longrightarrow R$, $(k,r) \mapsto k \cdot r$ tal que satisface la propiedad $k \cdot (r_1 r_2) (k \cdot r_1) r_2 = r_1 (k \cdot r_2)$, $\forall k \in K, \forall r_1, r_2 \in R$.
- b) Sean R, S dos K-álgebras, $f: R \longrightarrow S$ un morfismo de anillos. Pruebe que f es un morfismo de K-álgebras si y sólo si f es un morfismo de K-módulos a izquierda, vía la estructura de K-módulo en R y en S dada por el primer inciso.

Demostración. [(a)] Suponga que (R, K, φ) tiene estructura de K-álgebra. Definimos una acción a izquierda de K sobre R como $(k, r) \mapsto \varphi(k) r$. Veremos que, bajo este contexto, R es un K-módulo a izquierda.

Sean $x, y \in R$ y $k, r \in K$. Entonces se cumple que

$$k \cdot (x + y) = \varphi(k)(x + y)$$
$$= \varphi(k)x + \varphi(k)y$$
$$= k \cdot x + k \cdot y$$

Adicionalmente,

$$(k+r) \cdot x = [\varphi(k) + \varphi(r)]x$$
$$= \varphi(k) x + \varphi(r) x$$
$$= k \cdot x + r \cdot x$$

Igualmente, se satisface que

$$1_K \cdot x = \varphi(1_K)$$
$$= 1_R x$$
$$= x$$

Y así mísmo, $im\left(\varphi\right)\subseteq C\left(R\right)$, pues (R,K,φ) es K-álgebra. Inclusive, obtenemos

$$(kr) \cdot x = \varphi(kr) x$$

$$= [\varphi(k) \varphi(r)]x$$

$$= \varphi(k) [\varphi(r) x]$$

$$= k \cdot (r \cdot x)$$

Por último, el hecho de que $im\left(\varphi\right)\subseteq C\left(R\right)$ implica las siguientes dos igualdades

$$k \cdot (xy) = \varphi(k)(xy)$$
$$= (\varphi(k)x)y$$
$$= (k \cdot x)y$$

у

$$k \cdot (xy) = \varphi(k)(xy)$$

$$= (\varphi(k)x)y$$

$$= (x\varphi(k))y$$

$$= x(\varphi(k)y)$$

$$= x(k \cdot y)$$

Por lo que $R \in {}_K Mod.$

Inversamente, en el supuesto de que R sea un K-módulo a izquierda, vía una acción $K \times R \longrightarrow R$, $(k,r) \mapsto k \cdot r$ con la propiedad de que para cualesquiera $k \in K$ y $r_1, r_2 \in R$ se tiene que $k \cdot (r_1 r_2) = (k \cdot r_1) r_2 = r_1 (k \cdot r_2)$, se puede definir una función $\varphi : K \longrightarrow R$ como $\varphi (k) = k \cdot 1_R$. Mostraremos que φ es un homomorfismo de anillos tal que $im(\varphi) \subseteq C(R)$.

Sean $k, r \in K$. Comencemos notando que

$$\begin{split} \varphi\left(k+r\right) &= (k+r) \cdot 1_{R} \\ &= k \cdot 1_{R} + r \cdot 1_{R} \\ &= \varphi\left(k\right) + \varphi\left(r\right) \end{split}$$

Y que, a su vez,

$$\varphi(kr) = (kr) \cdot 1_R$$

$$= k \cdot (r \cdot 1_R)$$

$$= k \cdot \varphi(r)$$

$$= k \cdot (1_R \varphi(r))$$

$$= (k \cdot 1_R) \varphi(r)$$

$$= \varphi(k) \varphi(r)$$

Incluso, en este sentido, se tiene que $\varphi(1_K) = 1_K \cdot 1_R = 1_R$. Lo cual implica que φ es un homomorfismo de anillos. Para terminar, veamos que $im(\varphi) \subseteq C(R)$. Sean $x \in K$, $y \in R$. Por hipótesis,

$$(k \cdot 1_R) r = k \cdot (1_R r)$$

$$= k \cdot r$$

$$= k \cdot (r 1_R)$$

$$= r (k \cdot 1_R)$$

Luego,

$$\varphi(k) r = r\varphi(k)$$

En vista de lo anterior, R adquiere estructura de K-álgebra.

(b) Empecemos suponiendo que f es un morfismo de K-álgebras, con (R, K, φ) y (S, K, ψ) . Sean $k \in K$ y $r \in R$. En virtud de la correspondencia del inciso anterior se tiene que

$$k \cdot r = k \cdot (1_R r)$$
$$= (k \cdot 1_R) r$$
$$= \varphi(k) r$$

Así

$$f(k \cdot r) = f(\varphi(k) r)$$
$$= \psi(k) f(r)$$
$$= k \cdot f(r)$$

Por lo que f es un morfismo de K-módulos a izquierda.

De la misma forma, el converso también es válido. Considere las K-álgebras (R,K,φ) y (S,K,ψ) . Sean $t\in K$ y $x\in R$. Note que

$$\varphi(k) r = (k \cdot 1_R) r$$
$$= k \cdot (1_R r)$$
$$= k \cdot r$$

De esta manera,

$$f(\varphi(k)r) = f(k \cdot r)$$
$$= k \cdot f(r)$$
$$= \psi(k) f(r)$$

De ahí, concluimos que f es un morfismo de K-álgebras.