```
In [26]: # Import core libraries for data handling, modeling, and evaluation
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Import scikit-learn tools for model building and evaluation
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import accuracy_score, classification_report, cor
%matplotlib inline
```

In [27]: # Load the SPECTF dataset directly from UCI ML Repository url = "https://archive.ics.uci.edu/ml/machine-learning-databases/spect columns = ['Diagnosis'] + [f'F{i}' for i in range(1, 45)] data = pd.read_csv(url, header=None, names=columns) # Convert Diagnosis: 0 = Abnormal, 1 = Normal data['Diagnosis'] = data['Diagnosis'].map({0: 0, 1: 1}) # Quick look at class distribution print("Class distribution:\n", data['Diagnosis'].value_counts()) data.head()

Class distribution:

1 40

0 40

Name: Diagnosis, dtype: int64

Out [27]:

	Diagnosis	F1	F2	F3	F4	F5	F6	F7	F8	F9	 F35	F36	F37	F38	F39	F40	F41	F4
0	1	59	52	70	67	73	66	72	61	58	 66	56	62	56	72	62	74	7
1	1	72	62	69	67	78	82	74	65	69	 65	71	63	60	69	73	67	7
2	1	71	62	70	64	67	64	79	65	70	 73	70	66	65	64	55	61	4
3	1	69	71	70	78	61	63	67	65	59	 61	61	66	65	72	73	68	6
4	1	70	66	61	66	61	58	69	69	72	 67	69	70	66	70	64	60	5

5 rows × 45 columns

```
In [29]: # Define hyperparameters for tuning
dt_params = {
    'max_depth': [3, 5, 10],
    'min_samples_split': [2, 5, 10],
    'criterion': ['gini', 'entropy']
}

# Grid search with 5-fold cross-validation
dt_grid = GridSearchCV(DecisionTreeClassifier(random_state=42), dt_paid_grid.fit(X_train, y_train)

# Best estimator and predictions
dt_best = dt_grid.best_estimator_
dt_preds = dt_best.predict(X_test)
```

```
In [30]: # Define hyperparameter grid
gb_params = {
    'n_estimators': [50, 100],
    'learning_rate': [0.05, 0.1],
    'max_depth': [3, 5]
}

# Grid search on Gradient Boosting
gb_grid = GridSearchCV(GradientBoostingClassifier(random_state=42), gt
gb_grid.fit(X_train, y_train)

# Best model and predictions
gb_best = gb_grid.best_estimator_
gb_preds = gb_best.predict(X_test)
```

```
In [32]: # Evaluate Decision Tree
         evaluate("Decision Tree (Tuned)", y_test, dt_preds)
         # Evaluate Gradient Boosting
         evaluate("Gradient Boosting (Tuned)", y_test, gb_preds)
```

Decision Tree (Tuned) Evaluation

Accuracy: 0.625

Classification Report:

	precision	recall	f1-score	support
0 1	0.62 0.64	0.67 0.58	0.64 0.61	12 12
accuracy macro avg weighted avg	0.63 0.63	0.62 0.62	0.62 0.62 0.62	24 24 24

Accuracy: 0.708

Classification Report:

	precision	recall	f1-score	support
0	0.67	0.83	0.74	12
1	0.78	0.58	0.67	12
accuracy			0.71	24
macro avg	0.72	0.71	0.70	24
weighted avg	0.72	0.71	0.70	24


```
# Get prediction probabilities for ROC curve
In [33]:
         dt_probs = dt_best.predict_proba(X_test)[:, 1]
         gb_probs = gb_best.predict_proba(X_test)[:, 1]
         # Compute FPR/TPR for both models
         fpr_dt, tpr_dt, _ = roc_curve(y_test, dt_probs)
         fpr_gb, tpr_gb, _ = roc_curve(y_test, gb_probs)
         # Plotting the ROC curves
         plt.figure(figsize=(8, 6))
         plt.plot(fpr_dt, tpr_dt, label=f"Decision Tree (AUC = {roc_auc_score()}
         plt.plot(fpr_gb, tpr_gb, label=f"Gradient Boosting (AUC = {roc_auc_scc
         plt.plot([0, 1], [0, 1], 'k--')
         plt.xlabel("False Positive Rate")
         plt.ylabel("True Positive Rate")
         plt.title("ROC Curve Comparison")
         plt.legend()
         plt.grid()
         plt.show()
```


Visualize top 10 most important features from Gradient Boosting In [34]: importance = gb_best.feature_importances_ top_features = pd.Series(importance, index=X.columns).sort_values(ascet) top features.plot(kind='barh') plt.title("Top 10 Important Features - Gradient Boosting") plt.xlabel("Feature Importance Score") plt.gca().invert_yaxis() plt.tight_layout() plt.show()


```
In [35]:
         # Create comparison summary
         results = {
             'Model': ['Decision Tree', 'Gradient Boosting'],
             'Accuracy': [accuracy_score(y_test, dt_preds), accuracy_score(y_test)
              'AUC Score': [roc_auc_score(y_test, dt_probs), roc_auc_score(y_test)
         }
         # Display as DataFrame
         df_results = pd.DataFrame(results)
         print(" Final Model Comparison:\n")
         print(df results)
```

Final Model Comparison:

```
Model Accuracy AUC Score
    Decision Tree 0.625000
                              0.625000
Gradient Boosting 0.708333
                              0.732639
```