CHEM103 General Chemistry

Chapter 16: Acid–Base Equilibria

Dr. ($O_6S_4C_4Ar$) Lung Wa CHUNG(钟龙华) (oscarchung@sustech.edu.cn) Department of Chemistry SUSTech

Homeworks 14 & 15

Homework 14

Due date: 5th Dec. (Mon)

Homework 15

Due date: 7th Dec. (Wed)

Review on Chapter 15

Equilibrium constant (*K*), Homogeneous equilibria, Heterogeneous equilibria

$$aA + bB \rightleftharpoons dD + eE$$

$$K_c = \frac{[D]^d[E]^e}{[A]^a[B]^b}$$

Reaction quotient

Le Châtelier's Principle

Outline of Chapter 16

Arrhenius/Brønsted/Lewis acids & bases

Conjugate acids and bases

Amphiprotic, autoionization, ion product constant (K_w)

Acid and base strength (pH), acid dissociation constant $(K_a \text{ or } pK_a)$, base dissociation constant $(K_b \text{ or } pK_b)$, percent ionization

Polyprotic acids, binary acids, oxyacids, zwitterion

Acids

vinegars

(Tartaric &

acetic acids)

Orange

Lemon (Citric acid)

Tomato

Rhubarb (Oxalic acid)

(Carbonic acid)

Acids and Bases

Bases

Toothpaste (NaF)

(NaHCO₃)

LAS (对十二烷基苯磺酸钠)

Acids and Bases

http://www.compoundchem.com/2015/07/09/ph-scale/

Some Definitions

From Chapter 4, we have learned two acid-base theories.

Arrhenius theory:

- An acid is a substance that, when dissolved in water, increases the concentration of proton (H+).
- A base is a substance that, when dissolved in water, increases the concentration of <u>hydroxide</u> ions (OH⁻).

Brønsted-Lowry theory:

- An acid: a <u>proton</u> donor.
- A base: a proton acceptor.

Brønsted-Lowry Acid and Base

- A Brønsted-Lowry acid must have at least one removable (acidic) proton (H+) to donate.
- A Brønsted–Lowry base must have at least one nonbonding pair of electrons to accept a proton.

$$HCl(g) + H_2O(l) \longrightarrow Cl^-(aq) + H_3O^+(aq)$$

ds d es

What Is Different about Water?

 Water can act as a Brønsted–Lowry base and accept a proton (H+) from an acid.

Water can also donate a proton and act as an acid.

$$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$
Base Acid

- This makes water amphiprotic (两性).
- HCO₃⁻ and HSO₃⁻ are also amphiprotic.

Conjugate (共轭) Acids and Bases

- The term conjugate means "joined together as a pair".
- Reactions between acids and bases always yield their conjugate bases and acids.
- The higher stability the conjugate one is, the more equilibrium shifts towards the products.

- The substances between the arrows are conjugate acid—base pairs in water.

Bases

• Bases below the line with H₂O as an acid are strong bases; their conjugate acids are very weak acids in water.

Acids and

Acid and Base Strength

 In every acid—base reaction, equilibrium favors transfer of the proton from the stronger acid to the stronger base to form the weaker conjugate acid and base.

E.g.

$$HCI(aq) + H_2O(I) \rightarrow H_3O^+(aq) + CI^-(aq)$$

 \succ H₂O is a much stronger base than Cl⁻, so the equilibrium lies far to the right (K >> 1).

$$CH_3CO_2H(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + CH_3CO_2^-(aq)$$

Acetate is a stronger base than H_2O , so the equilibrium favors the left side (K < 1).

Autoionization of Water

- Water is amphoteric (酸碱两性的).
- In pure water, a few molecules act as bases and a few act as acids. This is referred to as autoionization.

$$H_2O(l)$$
 + $H_2O(l)$ \Longrightarrow $OH^-(aq)$ + $H_3O^+(aq)$

Acid Base

Hydronium ion

Ion Product Constant

 The equilibrium expression for this autoionization process:

$$H_2O(l)$$
 + $H_2O(l)$ \Longrightarrow $OH^-(aq)$ + $H_3O^+(aq)$
 $K_c = [H_3O^+][OH^-]$

• This special equilibrium constant is referred to as the ion product constant for pure water, K_w .

- At 25 °C, $K_{W} = 1.0 \times 10^{-14}$
- Since in pure water, $[H_3O^+] = [OH^-]$, $[H_3O^+] = (1.0 \times 10^{-14})^{1/2} = 1.0 \times 10^{-7}$

$$pH = -log(1.0 \times 10^{-7})$$

= 7.00 (25 °C)

Acids and Bases

Aqueous Solutions (Acidic, Basic, or Neutral)

- If a solution is **neutral**, $[H^+] = [OH^-]$.
- If a solution is acidic, $[H^+] > [OH^-]$.
- If a solution is basic, [H⁺] < [OH⁻].

Acidic solution $[H^+] > [OH^-]$

 $[H^+][OH^-] = 1.0 \times 10^{-14}$

Neutral solution

 $[H^+] = [OH^-]$ $[H^+][OH^-] = 1.0 \times 10^{-14}$

Basic solution

 $[H^+] < [OH^-]$ $[H^+][OH^-] = 1.0 \times 10^{-14}$

Human blood

Seawater

Lime water

Household ammonia

Household bleach

Borax

 1×10^{-3}

 1×10^{-2}

 1×10^{-1}

 1×10^{-11}

 1×10^{-12}

 1×10^{-13}

- A method of reporting proton concentration.
- $pH = -log[H^+]$
- Neutral pH is 7.00;
- Acidic pH is <7.00; Basic pH is >7.00.

11.0

12.0

13.0

3.0

2.0

1.0

Acids and Bases

© 2015 Pearson Education

Other "p" Scales

• The "p" in pH tells us to take the —log of a quantity (in this case, hydronium ions).

Some other "p" systems are:

```
pOH: -\log[OH^-]

pK_w: -\log K_w

pK_a: -\log K_a

pK_b: -\log K_b
```

Relating pH and pOH

Because

$$[H_3O^+][OH^-] = K_w = 1.0 \times 10^{-14}$$

we can take the —log of the equation:

$$-\log[H_3O^+] + -\log[OH^-] = -\log K_w = 14.00$$

$$pH + pOH = pK_w = 14.00 (298.15 K)$$

pH Values of Pure Water at Various Temperature

H₂O(
$$l$$
) + H₂O(l) $\stackrel{\Delta H>0}{\longleftarrow}$ OH⁻(aq) + H₃O⁺(aq) $\stackrel{\Delta H<0}{\longleftarrow}$ Exothermic

 According to Le Châtelier's Principle, the chemical equilibrium shifts to the right at higher temperature.

$$K_w = [H_3O^+][OH^-] > 1.0 \times 10^{-14}$$
 T > 298 K
In pure water, $[H_3O^+] = [OH^-]$, therefore pH<7.

$$K_W = [H_3O^+][OH^-] < 1.0 \times 10^{-14}$$
 T < 298 K Acids and In pure water, $[H_3O^+] = [OH^-]$, therefore pH>7. Bases

T (°C)	K_{w}	[H ⁺] (M)	рН	Acidity
0	0.114×10^{-14}	3.376 x 10 ⁻⁸	7.47	neutral
10	0.293 x 10 ⁻¹⁴	5.413 x 10 ⁻⁸	7.27	neutral
20	0.681 x 10 ⁻¹⁴	8.252 x 10 ⁻⁸	7.08	neutral
25	1.008 x 10 ⁻¹⁴	1.004 x 10 ⁻⁷	7.00	neutral
30	1.471 x 10 ⁻¹⁴	1.213 x 10 ⁻⁷	6.92	neutral
40	2.916 x 10 ⁻¹⁴	1.708 x 10 ⁻⁷	6.77	neutral
50	5.476 x 10 ⁻¹⁴	2.340 x 10 ⁻⁷	6.63	neutral

How Do We Measure pH?

• Indicators, including litmus paper, are used for less accurate measurements; an indicator is one color in its acid form and another color in its basic form.

Methyl red

Bromthymol blue

Phenolphthalein

Common indicators' structure

Methyl violet

Methyl red (甲基红)

Alizarin yellow R (茜素黄)

Thymol blue (百里酚蓝)

Bromthymol blue

Methyl orange

Phenolphthalein (酚酞)

Acids and Bases

HO OH
$$PK_1 = 1.7$$
 $PK_2 = 8.9$
 $PK_2 = 8.9$
 $PK_3 = 8.9$

• pH meters are used for accurate measurement of pH; electrodes indicate small changes in voltage to detect pH.

Acids and

Bases

Strong Acids

- Chapter 4: seven strong acids are HCl, HBr, HI, HNO₃, H₂SO₄, HClO₃, and HClO₄.
- These are strong electrolytes and exist totally (or essentially) as ions in aqueous solution; e.g.,
 HA + H₂O → H₃O⁺ + A⁻
- So, for the monoprotic strong acids, [H₃O⁺] = [acid] pH = -log([acid])

Strong Bases

- Strong bases are the soluble hydroxides, which are the alkali metal and heavier alkaline earth metal hydroxides (Ca²⁺, Sr²⁺, and Ba²⁺).
- Again, these substances dissociate completely (or essentially) into ions in aqueous solution; e.g.,

$$MOH(aq) \rightarrow M^{+}(aq) + OH^{-}(aq)$$

$$[OH^{-}] = [base]$$

pOH = -log([base])

or

$$M(OH)_2(aq) \rightarrow M^{2+}(aq) + 2 OH^{-}(aq)$$

Acids and Bases

Weak Acids

 $HA(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + A^-(aq)$

• Since it is an equilibrium, there is an related equilibrium constant, acid dissociation constant (K_a).

 $K_a = [H_3O^+][A^-]/[HA]$

Acid

Hydrocyanic (HCN)

Phenol (HOC₆H₅)

Table 16.2 Some Weak Acids in Water at 25 °C

Structural Formula*

 $H-C \equiv N$

Conjugate Base

CN

 $C_6H_5O^-$

 K_{a}

 4.9×10^{-10}

 1.3×10^{-10}

	Chlorous (HClO ₂)	H-O-Cl-O	ClO ₂	1.0×10^{-2}
	Hydrofluoric (HF)	H—F	F^-	6.8×10^{-4}
 The greater 	Nitrous (HNO ₂)	H-O-N=O	NO_2^-	4.5×10^{-4}
the K_a value, the stronger	Benzoic (C ₆ H ₅ COOH)	H-O-C	C ₆ H ₅ COO ⁻	6.3×10^{-5}
he acid.	Acetic (CH ₃ COOH)	O H - - H	CH₃COO¯	1.8×10^{-5}
• pK _a : MeO-H	Hypochlorous (HOCl)	H—O—Cl	OCl ⁻	3.0×10^{-8}
Pria. MCO II	Hydrocyanic (HCN)	H-C=N	CN	40 × 10 ⁻¹

© 2015 Pearson Education

(15.5)

Comparing Strong and Weak Acids

- Strong acids completely dissociate to ions.
- Weak acids only partially dissociate to ions.

partially dissociate

completely dissociate

Calculating K_a from the pH

• The pH of a 0.10 M solution of formic acid, HCOOH, at 25 °C is 2.38. Calculate K_a for formic acid at this temperature.

$$K_a = \frac{[H_3O^+][HCOO^-]}{[HCOOH]}$$

- To calculate K_a , we need **the equilibrium concentrations** of all three things.
- We can find [H₃O⁺], which is the same as [HCOO⁻], from the pH.
- $[H_3O^+] = [HCOO^-] = 10^{-2.38} = 4.2 \times 10^{-3}$

- We can **set up a below table** for equilibrium concentrations. We know initial HCOOH (**0.10** *M*) and ion concentrations (**0** *M*);
- We found equilibrium ion concentrations (4.2×10^{-3} M); so we calculate the change, then the equilibrium HCOOH concentration.

$$K_a = \frac{[4.2 \times 10^{-3}][4.2 \times 10^{-3}]}{[0.10]}$$
$$= 1.8 \times 10^{-4}$$

Acids and

Bases

Calculating Percent Ionization

• Percent ionization =
$$\frac{[H_3O^+]_{eq}}{[HA]_{initial}} \times 100\%$$

$$= \frac{\text{concentration of ionized HA}}{\text{original concentration of HA}} \times 100\%$$

In this previous example,

$$[H_3O^+]_{eq} = 4.2 \times 10^{-3} M$$

 $[HCOOH]_{initial} = 0.10 M$

Percent ionization =
$$\frac{4.2 \times 10^{-3}}{0.10} \times 100\%$$

Acids and Bases

Method to Follow to Calculate pH Using K_a

- 1) Write the *chemical equation* for the *ionization* equilibrium.
- 2) Write the equilibrium constant expression.
- 3) Set up a table for Initial/Change in/Equilibrium Concentration to **determine equilibrium concentrations** as a function of change (x).
- 4) Substitute equilibrium concentrations into the equilibrium constant expression and **solve** for *x*. (Make assumptions if you can!)

Example

• Calculate the pH of a 0.30 M solution of acetic acid, CH₃CO₂H, at 25 °C, in which its K_a is 1.8 × 10⁻⁵.

1)
$$CH_3CO_2H + H_2O \rightleftharpoons H_3O^+ + CH_3CO_2^-$$

2)
$$K_a = [H_3O^+][CH_3CO_2^-]/[CH_3CO_2H]$$

3)

	$CH_3COOH(aq) =$	$\Rightarrow H^{+}(aq)$	+ $CH_3COO^-(aq)$
Initial concentration (<i>M</i>)	0.30	0	0
Change in concentration (<i>M</i>)	-x	+x	+x
Equilibrium concentration (<i>M</i>)	(0.30 - x)	x	x

Bases

4)
$$K_a = [H_3O^+][CH_3CO_2^-]/[CH_3CO_2H]$$

= $(x)(x)/(0.30 - x)$

If we assume that x << 0.30, then 0.30 - x becomes 0.30. The problem becomes easier, since we don't have to use the quadratic formula to solve it.

$$K_a = 1.8 \times 10^{-5} = x^2/0.30$$
,
so $x = 2.3 \times 10^{-3}$

$$x = [H_3O^+],$$

so pH = $-\log(2.3 \times 10^{-3}) = 2.64$ (or 2.6)

Strong vs. Weak Acids - Another Comparison

- Strong Acid: [H⁺]_{eq} = [HA]_{init}
- Weak Acid: [H⁺]_{eq} < [HA]_{init}
- This creates a difference in conductivity and in rates of chemical reactions.

Polyprotic Acids

- Polyprotic acids have more than one acidic proton.
- It is always easier to remove the first proton than any successive proton.
- If the factor in the K_a values for the first and second dissociation has a difference of 3 or greater, the pH generally depends *only* on the first dissociation.

Name	Formula	K_{a1}	K _{a2}	K_{a3}
Ascorbic	$H_2C_6H_6O_6$	8.0×10^{-5}	1.6×10^{-12}	
Carbonic	H_2CO_3	4.3×10^{-7}	5.6×10^{-11}	
Citric	$H_3C_6H_5O_7$	7.4×10^{-4}	1.7×10^{-5}	4.0×10^{-7}
Oxalic	ноос-соон	5.9×10^{-2}	6.4×10^{-5}	
Phosphoric	H_3PO_4	7.5×10^{-3}	6.2×10^{-8}	4.2×10^{-13}
Sulfurous	H_2SO_3	1.7×10^{-2}	6.4×10^{-8}	
Sulfuric	H_2SO_4	Large	1.2×10^{-2}	
Tartaric	$C_2H_2O_2(COOH)_2$	1.0×10^{-3}	4.6×10^{-5}	l)

Weak Bases

$$B(aq) + H_2O(l) \Longrightarrow HB^+(aq) + OH^-(aq)$$

- Ammonia, NH_{3,} is a weak base.
- Like weak acids, weak bases have an equilibrium constant called the base dissociation constant (K_b).

$$K_b = \frac{[HB^+][OH^-]}{[B]}$$

• Equilibrium calculations work the *same* as for acids, using the base dissociation constant instead.

$$NH_3(aq) + H_2O(l) \implies NH_4^+(aq) + OH^-(aq) \quad K_b = \frac{[NH_4^+][OH^-]}{[NH_3]}$$

Bases

Base Dissociation Constants

Table 16.4 Some Weak Bases in Water at 25 °C

	Base	Structural Formula*	Conjugate Acid	K_b
• The greater the K_b value, the stronger the base.	Ammonia (NH ₃)	H— <mark>Ň</mark> —H H	NH ₄ ⁺	1.8×10^{-5}
	Pyridine (C ₅ H ₅ N)	N:	$C_5H_5NH^+$	1.7×10^{-9}
	Hydroxylamine (HONH ₂)	Н — іў—іўН Н	HONH ₃ ⁺	1.1×10^{-8}
	Methylamine (CH ₃ NH ₂)	H—N—CH ₃ H	CH ₃ NH ₃ ⁺	4.4×10^{-4}
	Hydrosulfide ion (HS ⁻)	[H—S:]	H_2S	1.8×10^{-7}
	Carbonate ion (CO ₃ ²⁻)		HCO ₃	1.8×10^{-4}
	Hypochlorite ion (ClO ⁻)	[:ċi— <u>ö:</u>]-	HClO	3.3×10^{-7}

Example

What is the pH of 0.15 M NH₃?

1)
$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$

2)
$$K_b = [NH_4^+][OH^-]/[NH_3] = 1.8 \times 10^{-5}$$

3)

	$NH_3(aq)$ +	$H_2O(l)$ \rightleftharpoons	\implies NH ₄ ⁺ (aq)	+ OH ⁻
Initial concentration (M)	0.15		0	0
Change in concentration (<i>M</i>)	-x		+x	+x
Equilibrium concentration (M)	(0.15 - x)		x	х

Acids and Bases

4)
$$1.8 \times 10^{-5} = x^2/(0.15 - x)$$

If we assume that x << 0.15, $0.15 - x \sim 0.15$. Then:

$$1.8 \times 10^{-5} = x^2/0.15$$

& $x = 1.6 \times 10^{-3}$

Note: x is the molarity of OH⁻, so pOH = $-\log(x)$ = 2.80 & pH = 14.00 - pOH

= 11.20 (or 11.2)

Acids and Bases

Types of Weak Bases

- Two main categories
- 1) Neutral substances with an atom that has a nonbonding pair of electrons that can accept H⁺ (like ammonia (NH₃) and the amines).
- 2) Anions of weak acids: e.g., CO₃²⁻, HS⁻, CIO⁻).

$$CH_2$$
— CH — $NH_2(aq)$ + $HCl(aq)$ \longrightarrow CH_3

Amphetamine

$$CH_2$$
— CH — NH_3 + Cl - (aq)
 CH_3

Amphetamine hydrochloride

Ammonia NH₃

Methylamine CH₃NH₂

Hydroxylamine NH2OH

H₃C H HO" **Codeine**

(analgesic, antidiarrhoeal)

Caffeine

(stimulant)

ŌН

and

Claritin-D

Quinine

(antimalarial, antipyretic:退热药)

Diphenhydramine

Benadryl

Relationship between K_a and K_b

Table 16.5 Some Conjugate Acid-Base Pairs

Acid	K_a	Base	K _b
HNO ₃	(Strong acid)	NO ₃	(Negligible basicity)
HF	6.8×10^{-4}	F^-	1.5×10^{-11}
CH ₃ COOH	1.8×10^{-5}	CH ₃ COO ⁻	5.6×10^{-10}
H_2CO_3	4.3×10^{-7}	HCO ₃	2.3×10^{-8}
NH ₄ ⁺	5.6×10^{-10}	NH_3	1.8×10^{-5}
HCO_3^-	5.6×10^{-11}	CO_3^{2-}	1.8×10^{-4}
OH ⁻	(Negligible acidity)	O^{2-}	(Strong base)

• For a conjugate acid—base pair, K_a and K_b are related in this way:

$$K_a \times K_b = K_w$$

- If you know one of them, you can calculate the other.
- K_a and K_b values are depended on solvent & temperature. Pearson Education, Inc.

and Bases

(Extra info.)

Superacids

J. Org. Chem. **2011**, 391

2,3,4,6-(CF₃)₅-C₆H-CH(CN)₂ 4-NO₂-C₆H₄SO₂NHTos d HNO₃ 4-NO₂-C₆H₄SO₂NHSO₂C₆H₄-4-CI H₂SO₄

C₆(CF₃)₅CH(CN)₂ $(4-NO_2-C_6H_4-SO_2)_2NH$ 3-NO₂-4-CI-C₆H₃SO₂NHSO₂C₆H₄-4-NO₂

(3-NO₂-4-CI-C₆H₃SO₂)₂NH

HBr

Acid

HCI

Picric acid ^c

 $[(C_2F_5)_2PO]_2NH$ 2,4,6-(NO₂)₃-C₆H₂SO₂OH $[C(CN)_2=C(CN)]_2CH_2$ **TfOH**

 $[C_6H_5SO(=NTf)]_2NH$

C₆H₅SO(=NTf)NHTf TfCH(CN)₂

CF₂(CF₂SO₂)₂NH 4-NO₂-C₆H₄SO(=NTf)NHTf

HB(CN)₄

HCIO₄

(FSO₂)₃CH

Tf₂CH(CN)

2,3,4,5-tetracyanocyclopentadiene

Tf₃CH^g

CN-TCNP

-16.4

-15.3

-14.9 — * 1.46 -15.1 - 0.40 *

 $pK_a(DCE)$

-1.7

-2.5

-11.1

-11.3

-11.3

-11.4

-11.4

-11.5

-11.6

-13.0

-13.1

-13.1

-13.3

-13.6 -

-3.7 - 1

0.89

2.16

0.22

0.86

0.19

0.07

-2.4 -2.6 -2.8

-0.8

-1.0

-1.2

-3.7

-5

(Extra info.) Super acid, Magic acid (HSO₃F-SbF₅)

Reference

A Primary Superacids

B Conjugate Brønsted-Lewis Superacids

$$0.0$$
H 0.5
OF
 H_2SO_4
 $H_0 = -12$

$$0.0$$
H 0.5 F

HSO₃F
 $H_0 = -15.1$

 $H_{O} \stackrel{O}{\circ} O H_{O} \stackrel{O}{\circ} CF_3$ $H_{O} \stackrel{O}{\circ} F$ $\begin{bmatrix} H_{F} & H_{F} \\ H_{F} & H_{F} \end{bmatrix}_{n} \stackrel{[H(HSO_3F)]^+[FSO_3(SbF_5)_n]^-}{\text{magic acid}}$ H₂SO₄ HOTf HSO₃F HF HSO₃F⋅SbF₅ (1:1) $H_0 = -12$ $H_0 = -14.1$ $H_0 = -15.1$ $H_0 = -15.1$ $H_0 \approx -22$ to -23

 $[H(HF)_x]^+[F(SbF_5)_n]^$ fluoroantimonic acid HF·SbF₅ (10:1) $H_0 \approx -23$

J. Am. Chem. Soc. 2021, 15490

Acid-Base Properties of Salts

Many ions react with water to create H⁺ or OH⁻. The reaction with water is often called hydrolysis.

$$X^- + H_2O \rightleftharpoons XH + OH^-$$

 $Y^+ + H_2O \rightleftharpoons YOH + H^+$

- To determine whether a salt is an acid or a base, you need to look at the cation and anion separately.
- The cation can be acidic or neutral.
- The anion can be acidic, basic, or neutral.

Anions

- Anions of **strong acids** are **neutral**. For example, Cl⁻ will *not* react with water, so OH⁻ can't be formed.
- Anions of weak acids are conjugate bases, so they create OH⁻ and increase pH in water; e.g.,
 CH₃CO₂⁻ + H₂O

 CH₃CO₂H + OH⁻
- Protonated anions from polyprotic acids can be acids or bases:
- If $K_a > K_b$ the anion will be acidic;
- if $K_b > K_a$, the anion will be basic.

Cations

- Cations which are the conjugate acids of strong bases do not affect pH.
- Polyatomic cations are typically the conjugate acids
 of a weak base and decrease pH; e.g., NH₄+.
- Transition and post-transition metal cations are acidic. (There are no H atoms in these cations!)

Hydrated Cations

- Transition & post-transition metals form hydrated cations.
- The water attached to the metal is more polarized than free water molecules, making these ions acidic.

Greater charge

& smaller size make a cation more acidic

Fe^{2+} 3.2 × 10 ⁻¹⁰ Zn^{2+} 2.5 × 10 ⁻¹⁰ Ni^{2+} 2.5 × 10 ⁻¹¹ Fe^{3+} 6.3 × 10 ⁻³ Cr^{3+} 1.6 × 10 ⁻⁴ Al^{3+} 1.4 × 10 ⁻⁵	Cation	Ka
Ni^{2+} 2.5×10^{-11} Fe^{3+} 6.3×10^{-3} Cr^{3+} 1.6×10^{-4}	Fe ²⁺	3.2×10^{-10}
Fe ³⁺ 6.3×10^{-3} Cr^{3+} 1.6×10^{-4}	Zn^{2+}	2.5×10^{-10}
Cr^{3+}	Ni ²⁺	2.5×10^{-11}
	Fe ³⁺	6.3×10^{-3}
Al^{3+}	Cr ³⁺	1.6×10^{-4}
	Al^{3+}	1.4×10^{-5}

Binary Acids

Increasing acid strength

- Binary acids consist of H and one other element (A).
- Within a group, H-A bond strength is generally the most important factor.
- Within a period, bond polarity (electronegativity on polarity (electronegativity of polarity of electronegativity of polarity (electronegativity of electronegativity of el
- A) is the most key factor to determine acid strength. and Bases

Oxyacids

		Electronegativity	Dissociation
Substance	Ү —ОН	of Y	constant
Hypochlorous acid	Cl—OH	3.0	$K_a = 3.0 \times 10^{-8}$
Hypobromous acid	Br—OH		$K_a = 2.5 \times 10^{-9}$
Hypoiodous acid	I—OH		$K_a = 2.3 \times 10^{-11}$
Water	Н—ОН	2.1	$K_w = 1.0 \times 10^{-14}$
			(5,6)

- Oxyacids consist of H, O, and one other element (Y), which is a nonmetal.
- Generally, as the electronegativity of the nonmetal (Y) increases, the acidity increases for acids with Acids and the same structure.

Oxyacids with Same "Other" Element

- If an element can form more than one oxyacid, the oxyacid with more O atoms is more acidic; e.g., sulfuric acid versus sulfurous acid.
- Or if the oxidation number increases, the acidity increases.

Increasing acid strength

Carboxylic Acids

- Organic acids containing the -COOH group.
- Factors contributing to their acidic behavior:
- Other O attached to C draws electron density from O-H bond, increasing polarity.
- ➤ Its conjugate base (carboxylate anion) has resonance forms to stabilize the anion.

Acids and Bases

Factors that Affect Acid Strength

$$H-A(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + A^-(aq)$$

- 1) H-A bond must be **polarized** with δ^+ on the H atom and δ^- on the A atom.
- 2) Bond strength: Weaker bonds can be broken more easily, making the acid stronger.
- 3) Stability of A⁻: More stable anion means stronger acid.

Acid: H—F pK_a: 3.2

H—CI -7 H—Br -9

H—I

Acids and Bases

Effect of electronegativity

For the same row: more electronegativity -> more acidic

Consider series of C, N, O, F acids

Acid:	CH₄	NH ₃	H ₂ O	H—F
pK _a :	48	38	15.7	3.2

- 1. C-H bond is the least polarized; H-F bond is the most polarized.
 - 2. Anions of these conjugate bases is more stabilized by the higher-electronegative atom.

and

Bases

Effect of hybridization

More 's' character in the orbital → more stable anion

Consider Alkynes, Alkenes, Alkanes

HC≡CH

 $H_2C=CH_2$ H_3C-CH_3

Acid:

pK_a:

25

44

50

Hybrid.

sp

sp²

sp³

% s:

50

33

25

Effect of Inductive Effects

Polarized bonds affect neighboring atoms (highelectronegative atoms), also so-called electronwithdrawing effect.

Acid: H_3CCH_3 H_3C-CH_2-F $H_3C-CH_2-CH_2-F$

The further away from F, the less the inductive effect

Acid	Formula	$K_a(25 ^{\circ}C)$
Acetic	CH ₃ COOH	1.8×10^{-5}
Chloroacetic	CH ₂ ClCOOH	1.4×10^{-3}
Dichloroacetic	CHCl ₂ COOH	3.3×10^{-2}
Trichloroacetic	CCl ₃ COOH	2×10^{-1} Acids and Bases

Effect of Resonance Effect

 K_a of PhO-H = 1.3X10⁻¹⁰

Anion of these conjugate bases can become more stabilized by the resonance structures.

Amphiprotic Behavior of Amino Acids

- Crystalline amino acids have relatively high melting points, which is characteristic of ionic solids.
- Amino acids are far more soluble in water than in and nonpolar solvents.

Lewis Acid/Base Chemistry

- Lewis acids: electron pair acceptors.
- Lewis bases: electron pair donors.
- All Brønsted–Lowry acids and bases are also called Lewis acids and bases.
- There are compounds which do *not* meet the Brønsted–Lowry definition which meet the (more general) Lewis definition.

Lewis Lewis base acid

$$Fe^{3+} + 6[:C \equiv N:]^{-} \longrightarrow [Fe(C \equiv N:)_{6}]^{3-}$$

Acids and Bases

A Brønsted-Lowry acid is

- a. a proton donor.
- b. a proton acceptor.
- c. an electron-pair donor.
- d. an electron-pair acceptor.

A Brønsted-Lowry base is

- a. a proton donor.
- b. a proton acceptor.
- c. an electron-pair donor.
- d. an electron-pair acceptor.

A Lewis acid is

- a. a proton donor.
- b. a proton acceptor.
- c. an electron-pair donor.
- d. an electron-pair acceptor.

A Lewis base is

- a. a proton donor.
- b. a proton acceptor.
- c. an electron-pair donor.
- d. an electron-pair acceptor.

Which of the following is the conjugate base of HPO_4^{2-} ?

- a. H₃PO₄
- b. H₂PO₄¹⁻
- c. PO₄³⁻
- d. HPO₃²⁻

Which of the following is the conjugate acid of SO_4^{2-} ?

- a. H₂SO₄
- b. HSO₄1-
- c. SO_3^{2-}
- d. H₃SO₄+

The stronger the acid, the (X) its conjugate base. Acids and bases react to form their (Y) conjugates.

- a. X = stronger, Y = stronger
- b. X = stronger, Y = weaker
- c. X = weaker, Y = stronger
- d. X = weaker, Y = weaker

For a conjugate acid-base pair, $K_w = K_a _ K_b$.

- a. +
- b. —
- c. X
- d. /

What is the pH of a 0.0200 M aqueous solution of HBr?

- a. 1.00
- b. 1.70
- c. 2.30
- d. 12.30

What is the pH of a 0.0400 M aqueous solution of KOH?

- a. 12.60
- b. 10.30
- c. 4.00
- d. 1.40

Which solution has the higher pH, a 0.001 M solution of NaOH or a 0.001 M solution of Ba(OH)₂?

- A. 0.001 M solution of Ba(OH)₂ has the higher pH.
- B. 0.001 M solution of NaOH has the higher pH.
- C. Both solutions have the same pH as both have the same concentration.

Is it possible for a solution to have a negative pH? If so, would that pH signify a basic or acidic solution?

- A. No, the pH range is 1-14.
- B. No, the definition of pH does not permit it to have a negative value.
- C. Yes, for any solution with a concentration of base greater than 1 *M*.
- D. Yes, for any solution with a concentration of acid greater than 1 *M*.

For the following proton-transfer reaction use Figure 16.3 to predict whether the equilibrium lies to the left ($K_c < 1$) or to the right ($K_c > 1$):

$$HSO_4^-(aq) + CO_3^{2-}(aq) \Longrightarrow SO_4^{2-}(aq) + HCO_3^-(aq)$$

(a)
$$HPO_4^{2-}(aq) + H_2O(l) \Longrightarrow H_2PO_4^{-}(aq) + OH^{-}(aq)$$

(b) $NH_4^{+}(aq) + OH^{-}(aq) \Longrightarrow NH_3(aq) + H_2O(l)$

The solubility of CO_2 in water at 25 °C and 0.1 atm is 0.0037 M. The common practice is to assume that all the dissolved CO_2 is in the form of carbonic acid (H_2CO_3), which is produced in the reaction

$$CO_2(aq) + H_2O(l) \Longrightarrow H_2CO_3(aq)$$
 K_{a1} K_{a2}

What is the pH of a 0.0037 M solution of H_2CO_3 ?

Calculate the percentage of HF molecules ionized in (a) a 0.10 M HF solution, (b) a 0.010 M HF solution.

 $K_a = 6.8 \times 10^{-4}$.

(a) The equilibrium reaction and equilibrium concentrations are as follows:

	HF(aq) =	\Rightarrow H ⁺ (aq)	+ $F^-(aq)$
Initial	0.10 M	0	0
Change	-xM	+xM	+xM
Equilibrium	(0.10-x)M	x M	x M

The equilibrium-constant expression is

$$K_a = \frac{[H^+][F^-]}{[HF]} = \frac{(x)(x)}{0.10 - x} = 6.8 \times 10^{-4}$$

What is the pH of a 0.100 M aqueous solution of NH₃? The K_b of NH₃ is 1.8×10^{-5} .

- a. 1.00
- b. 4.74
- c. 9.36
- d. 11.13

The CH_3^- ion is the conjugate base of CH_4 , and CH_4 shows no evidence of being an acid in water. What happens when CH_3^- is added to water?

- A. Nothing happens when CH₃⁻ is added to water.
- B. CH_3^- loses a proton to form $CH_2^{2^-}$ when added to water.
- C. CH₃⁻ reacts with water to form CH₃OH and H⁺.
- D. CH₃ removes a proton from water to form CH₄ and Bases

Which acid has the larger acid-dissociation constant, HIO₂ or HBrO₃?

- A. HIO₂
- B. HBrO₃

Which of the following correctly lists the acids in order of decreasing strength?

- a. HClO₂ > HClO > HBrO > HIO
- b. HCIO > HBrO > HIO > HCIO₂
- c. HIO > HBrO > HCIO > HCIO₂
- d. $HCIO_2 > HIO > HBrO > HCIO$

Summary of Chapter 16

Arrhenius/Brønsted/Lewis acids & bases

Conjugate acids and bases

Amphiprotic, autoionization, ion product constant (K_w)

Acid and base strength (pH), acid dissociation constant $(K_a \text{ or } pK_a)$, base dissociation constant $(K_b \text{ or } pK_b)$, percent ionization

Polyprotic acids, binary acids, oxyacids, zwitterion

Thank You for Your Attention! Any Questions?