Chapters 5 and 6: Continuous-Time Signal Analysis and Applications: The Fourier Transform

Perform design and analysis of systems and filters in the frequency domain Focused early on continuous-time analysis of periodic signals using the Fourier Series The Fourier Transform is applicable for any continuous-time signal

Advantages of the Laplace Transform over the Fourier Transform

- ✓ They are easier to calculate
- ✓ It is easier to include the effect of initial conditions in solving systems problems
- ✓ They exist for power signals as well as energy signals
- ✓ Insight into the frequency response of systems can be obtained from the complex frequency plane (s-plane)

Advantages of the Fourier Transform over the Laplace Transform

- ✓ They have the useful interpretation as a frequency spectrum
- ✓ They can be computed using fast digital computation techniques such as the FFT
- ✓ The inverse transform is a real integral

Dr. Cheryl B. Schrader 1

Fourier Transform

- The Fourier integral (transform) exists only for energy signals
- Periodic power signals have Fourier transforms that contain impulses at discrete frequencies
- To extend the Fourier transform to other power signals, a convergence factor $e^{-\sigma t}$ must be introduced to make the integral exist
- This changes the interpretation of the transform as a frequency spectrum

Fourier Transform

$$\mathcal{F}[x(t)] = X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

[Analysis: Time-domain to Frequency-domain]

The Fourier Transform is complex with magnitude and phase: $X(\omega) = (X(\omega))e^{(X(\omega))}$ Spectrum

Inverse Fourier Transform

$$\mathcal{F}^{-1}[X(\omega)] = x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

[Synthesis: Frequency- to Time-domain]

he Amplitude

The Phase Spectrum

Example Find the Fourier Transform of an exponential $x(t) = e^{-at}u(t)$

$$\mathcal{F}[x(t)] = X(\omega) = \int_0^\infty x(t)e^{-j\omega t}dt = \int_0^\infty e^{-at}e^{-j\omega t}dt = \int_0^\infty e^{-(a+j\omega)t}dt = \frac{e^{-(a+j\omega)t}}{-(a+j\omega)}\bigg|_0^\infty = \frac{1}{(a+j\omega)}$$

$$\frac{1}{(a+j\omega)} \Longleftrightarrow e^{-at}u(t)$$

Magnitude:
$$|X(\omega)| = \frac{1}{\sqrt{a^2 + \omega^2}}$$

Phase:
$$\angle X(\omega) = e^{-\tan^{-1}\left(\frac{\omega}{a}\right)}$$

How does
$$X(\omega)$$
 relate to $X(s)$?
$$\mathcal{L}[x(t)] = X(s) = \int_0^\infty x(t)e^{-st}dt = \int_0^\infty e^{-at}e^{-st}dt = \int_0^\infty e^{-(a+s)t}dt$$

$$= \frac{e^{-(a+s)t}}{-(a+s)}\Big|_0^\infty = \frac{1}{(a+s)}, \text{ if } Re(s) > -a$$

Therefore, $X(\omega) = X(s)|_{s=j\omega}$ if the ROC of X(s) includes the $j\omega$ -axis. In this case, the Fourier Transform exists.

Useful Functions

Gate Function

rect
$$\left(\frac{x}{\tau}\right) = \begin{cases} 0, & |x| > \tau/2 \\ \frac{1}{2}, & |x| = \tau/2 \\ 1, & |x| < \tau/2 \end{cases}$$

Triangle Function

$$\Delta\left(\frac{x}{\tau}\right) = \begin{cases} 0, & |x| \ge \tau/2\\ 1 - 2\left|\frac{x}{\tau}\right|, & |x| < \tau/2 \end{cases}$$

If width $\tau = 1$ in either the gate or triangle function, then it is called the <u>unit gate function</u> or the unit triangle function

Interpolation Function

$$sinc(x) = \frac{\sin x}{x}$$
 $sinc(x) = 0$, $x = \pm k\pi$
 $sinc(x) = 1$, $x = 0$

Example Fourier Transform of a Rectangular Pulse $x(t) = \text{rect}\left(\frac{t}{\tau}\right)$

$$X(\omega) = \int_{-\infty}^{\infty} \operatorname{rect}\left(\frac{t}{\tau}\right) e^{-j\omega t} dt = \int_{-\tau/2}^{\tau/2} e^{-j\omega t} dt = -\frac{1}{j\omega} \left(e^{-\frac{j\omega\tau}{2}} - e^{\frac{j\omega\tau}{2}}\right) = 2\frac{\sin\left(\frac{\omega\tau}{2}\right)}{\omega} = \tau \frac{\sin\left(\frac{\omega\tau}{2}\right)}{\left(\frac{\omega\tau}{2}\right)} = \tau \operatorname{sinc}\left(\frac{\omega\tau}{2}\right)$$

Fourier Transform Pair

$$\operatorname{rect}\left(\frac{t}{\tau}\right) \Longleftrightarrow \tau \operatorname{sinc}\left(\frac{\omega \tau}{2}\right)$$

What is the bandwidth of the sinc spectrum?

- ➤ The spectrum of a pulse extends from 0 to ∞
- \triangleright However, much of the spectrum is concentrated within the first lobe ($\omega=0$ to $2\pi/\tau$)
- Therefore, a rough estimate of the bandwidth of a rectangular pulse of width τ seconds is $2\pi/\tau$ rad/sec, or $1/\tau$ Hz

Existence of the Fourier Transform (Dirichlet Condition)

Sufficient Condition: x(t) is absolutely integrable, $\int_{-\infty}^{\infty} |x(t)| dt < \infty$

- The area under |x(t)| should be finite
- x(t) is single-valued with finite maxima and minima in any finite time interval
- x(t) is piecewise continuous; that is, it has a finite number of discontinuities in any finite time interval

Observation 1

• The above conditions are not satisfied by many commonly occurring signals, such as $\cos(t)$, $\sin(t)$ and u(t). However, by allowing impulses in the frequency domain, we will define Fourier transforms for these signals also (more on this later...).

Observation 2

• Almost all practically occurring signals have a Fourier Transform!

Example Find the Fourier Transform of the Unit Impulse

$$\delta(t) \Leftrightarrow 1$$

The Fourier Transform of the unit impulse can be calculated using the sampling property of the unit impulse from Chapter 1: $x(t) = \delta(t); \quad X(\omega) = \int_{-\infty}^{\infty} \delta(t) \, e^{-j\omega t} dt = 1; \quad \forall \ \omega$

Therefore, the Fourier Transform of the unit impulse has a constant contribution at all frequencies

Example Find the Inverse Fourier Transform of $\delta(\omega)$

$$\mathcal{F}^{-1}[\delta(\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\omega) e^{j\omega t} d\omega = \frac{1}{2\pi}$$
 (due to the sampling property of the impulse)

Fourier Transform Pairs:

$$\frac{1}{2\pi} \iff \delta(\omega) \text{ or } 1 \iff 2\pi\delta(\omega)$$

Related (Important) Example Find the Inverse Fourier Transform of $X(\omega) = \delta(\omega - \omega_0)$

$$\mathcal{F}^{-1}[\delta(\omega-\omega_0)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\omega-\omega_0) e^{j\omega t} d\omega = \frac{1}{2\pi} e^{j\omega_0 t} \quad \text{(due to sampling property of the impulse)}$$

Fourier Transform Pairs:

$$\frac{1}{2\pi} e^{\pm j\omega_0 t} \Longleftrightarrow \delta(\omega \mp \omega_0) \text{ or } e^{\pm j\omega_0 t} \Longleftrightarrow 2\pi \delta(\omega \mp \omega_0)$$

Example Find the Fourier Transform of $x(t) = \cos(\omega_0 t)$

Using Euler's:
$$\cos(\omega_0 t) = \frac{1}{2} \left(e^{j\omega_0 t} + e^{-j\omega_0 t} \right); \qquad \mathcal{F}[\cos(\omega_0 t)] = \frac{1}{2} \mathcal{F} \left[e^{j\omega_0 t} + e^{-j\omega_0 t} \right]$$

$$\therefore \cos(\omega_0 t) \Longleftrightarrow \pi [\delta(\omega + \omega_0) + \delta(\omega - \omega_0)]$$

- Recall that a periodic signal does not satisfy the absolute integrability requirement
- Therefore, the Fourier integral does not exist and cannot be used directly to find its Fourier Transform
- The Fourier Transform of $A\cos(\omega_0 t)$ can be found by including impulses in the frequency domain (see above important example)

Example Find the Fourier Transform of a periodic signal (sum of many exponentials – Fourier Series)

$$x(t) = \sum_{n=-\infty}^{\infty} D_n e^{jn\omega_0 t}; \quad \omega_0 = 2\pi/T_0$$

Take the Fourier Transform of both sides and use the linearity property of the Fourier Transform

$$X(\omega) = 2\pi \sum_{n=-\infty}^{\infty} D_n \, \delta(\omega - n\omega_0)$$

Example Find the Fourier Transform of a signum function

$$\mathcal{F}[\operatorname{sgn}(t)]$$

$$\operatorname{sgn}(t) = \begin{cases} 1, & t > 0 \\ -1, & t < 0 \end{cases}$$

$$= \lim_{a \to 0} [e^{-at}u(t) - e^{at}u(-t)]$$

Fourier Transform of a signum function
$$\mathcal{F}[\operatorname{sgn}(t)] = \lim_{a \to 0} \left[\mathcal{F}[e^{-at}u(t)] - \mathcal{F}[e^{at}u(-t)] \right]$$

$$\operatorname{sgn}(t) = \begin{cases} 1, & t > 0 \\ -1, & t < 0 \end{cases} = \lim_{a \to 0} \left[\frac{1}{a+j\omega} - \frac{1}{a-j\omega} \right] = \lim_{a \to 0} \left[\frac{-2j\omega}{a^2 + \omega^2} \right] = \frac{2}{j\omega}$$

$$\operatorname{sgn}(t) \Leftrightarrow \frac{2}{j\omega}$$

 $\operatorname{sgn}(t) \Leftrightarrow \frac{2}{i\omega}$

Example Find the Fourier Transform of u(t)

Observe that
$$u(t) = \frac{1}{2}[1 + \text{sgn}(t)]$$

$$\mathcal{F}[u(t)] = \frac{1}{2}\mathcal{F}[1 + \text{sgn}(t)] = \frac{1}{2}\left[2\pi\delta(\omega) + \frac{2}{j\omega}\right] = \pi\delta(\omega) + \frac{1}{j\omega}$$

$$u(t) \Longleftrightarrow \pi \delta(\omega) + \frac{1}{j\omega}$$

<u>Example</u> Find the Fourier Transform of an exponential $e^{-at}u(t) \Leftrightarrow \frac{1}{a+j\omega}$

$$e^{-at}u(t) \Leftrightarrow \frac{1}{a+j\omega}$$

$$\int_0^\infty e^{-at} e^{-j\omega t} dt = \int_0^\infty e^{-(a+j\omega)t} dt = \frac{e^{-(a+j\omega)t}}{-(a+j\omega)} \bigg|_0^\infty = \frac{1}{a+j\omega} = \frac{1}{\sqrt{a^2+\omega^2}} e^{-\tan^{-1}\left(\frac{\omega}{a}\right)}$$

<u>Example</u> Find the Inverse Fourier Transform of $X(\omega) = \text{rect}\left(\frac{\omega}{2\omega_0}\right)$

$$x(t) = \mathcal{F}^{-1}[X(\omega)] = \frac{1}{2\pi} \int_{-\omega_0}^{\omega_0} (1)e^{j\omega t} d\omega = \frac{1}{2\pi(jt)} e^{j\omega t} \Big|_{-\omega_0}^{\omega_0}$$
$$= \frac{1}{2\pi(jt)} \Big(e^{j\omega_0 t} - e^{-j\omega_0 t} \Big) = \frac{\sin(\omega_0 t)}{\pi t}$$
$$= \frac{\omega_0}{\pi} \frac{\sin(\omega_0 t)}{\omega_0 t} = \frac{\omega_0}{\pi} \operatorname{sinc}(\omega_0 t)$$

$$\frac{\omega_0}{\pi} \operatorname{sinc}(\omega_0 t) \iff \operatorname{rect}\left(\frac{\omega}{2\omega_0}\right)$$

- Lowpass Filter: If $X(\omega)$ represents a filter spectrum, it passes all frequencies between 0 and ω_0
- This is known as an Anti-Aliasing Filter, which is very useful in the reconstruction of a sampled signal

Example Find the impulse response of an anti-aliasing filter h(t) that can pass up to 4000 Hz ($ω_0$ =2π(4000)=8000π rad/sec). The desired Fourier spectrum is shown below.

$$h(t) = \mathcal{F}^{-1}[H(\omega)] = \frac{1}{2\pi} \int_{-8000\pi}^{8000\pi} (1)e^{j\omega t} d\omega = \frac{1}{2\pi(jt)} e^{j\omega t} \Big|_{-8000\pi}^{8000\pi}$$
$$= \frac{1}{2\pi(jt)} \left(e^{j8000\pi t} - e^{-j8000\pi t} \right) = \frac{\sin(8000\pi t)}{\pi t}$$
$$= 8000 \frac{\sin(8000\pi t)}{8000\pi t} = 8000 \operatorname{sinc}(8000\pi t)$$

Connection Between the Fourier and Laplace Transforms

• If the ROC of
$$X(s)$$
 includes the $j\omega$ -axis, then
$$\mathcal{F}[x(t)] = X(\omega) = \mathcal{L}[x(t)]|_{s = j\omega} = \int_{-\infty}^{\infty} x(t)e^{-st}dt \bigg|_{s = j\omega} = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

• Recall that the Fourier Transform of u(t) is $\pi\delta(\omega)+\frac{1}{i\omega}$. The Laplace Transform of u(t) is 1/s with ROC of Re(s)>0. This ROC does not include the imaginary axis. Such is the case for x(t) that are constant, exponentially growing, or oscillating with constant amplitude.

Properties of the Fourier Transform

Time Reversal (or Time Reflection)

$$x(-t) \Leftrightarrow X(-\omega) \quad [X^*(\omega), \text{ for real } x(t)]$$

Proof:
$$\mathcal{F}[x(-t)] = \int_{-\infty}^{\infty} x(-t)e^{-j\omega t}dt = -\int_{\infty}^{-\infty} x(\tau)e^{j\omega \tau}d\tau = \int_{-\infty}^{\infty} x(\tau)e^{j\omega \tau}d\tau = X(-\omega)$$

Let $\tau = -t$; $dt = -d\tau$; Limits: $t = \pm \infty \Rightarrow \tau = \mp \infty$

For real
$$x(t)$$
: $\mathcal{F}[x(-t)] = \int_{-\infty}^{\infty} x(\tau)e^{j\omega\tau}d\tau = \left(\int_{-\infty}^{\infty} x(\tau)e^{-j\omega\tau}d\tau = X(-\omega)\right)^* = X^*(\omega)$
 $X(-\omega) = X^*(\omega)$, i.e., $X(\omega) = X^*(-\omega)$ $\Rightarrow |X(\omega)| = |X(-\omega)|$; Magnitude is even $\angle X(\omega) = -\angle X(-\omega)$; Phase is odd

Example Apply the reflection property to find the Fourier Transform of $x(t) = e^{-a|t|}$, a > 0

$$x(t) = e^{-a|t|} = e^{-at}u(t) + e^{at}u(-t) = x_1(t) + x_1(-t)$$

$$X_1(\omega) = \mathcal{F}[x_1(t)] = \mathcal{F}[e^{-at}u(t)] = \frac{1}{(a+j\omega)} \quad \text{(done previously)}$$

$$\mathcal{F}[x_1(-t)] = X_1(-\omega) = \frac{1}{(a-j\omega)} \quad \text{(according to time-reflection property)}$$

$$X(\omega) = X_1(\omega) + X_1(-\omega) = \frac{1}{(a+i\omega)} + \frac{1}{(a-i\omega)} = \frac{a+j\omega+a-j\omega}{a^2+\omega^2} = \frac{2a}{a^2+\omega^2}$$

Dr. Cheryl B. Schrader

Alternate Method Use the Fourier integral to find the Fourier Transform of $e^{-a|t|}$, a>0

$$X(\omega) = \int_{-\infty}^{\infty} e^{-a|t|} e^{-j\omega t} dt = \int_{-\infty}^{0} e^{(a-j\omega)t} dt + \int_{0}^{\infty} e^{-(a+j\omega)t} dt$$
$$= \frac{e^{(a-j\omega)t}}{a-j\omega} \Big|_{-\infty}^{0} + \frac{e^{-(a+j\omega)t}}{-(a+j\omega)} \Big|_{0}^{\infty} = \frac{1}{(a+j\omega)} + \frac{1}{(a-j\omega)} = \frac{a+j\omega+a-j\omega}{a^2+\omega^2} = \frac{2a}{a^2+\omega^2} \iff e^{-a|t|}$$

Duality Property If
$$x(t) \Leftrightarrow X(\omega)$$
, then $\mathcal{F}[X(t)] = 2\pi x(-\omega)$

Proof:
$$2\pi x(t) = \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega \implies 2\pi x(-t) = \int_{-\infty}^{\infty} X(\omega) e^{-j\omega t} d\omega$$

Interchange symbols
$$\omega$$
 and t : $2\pi x(-\omega) = \int_{-\infty}^{\infty} X(t)e^{-j\omega t}dt = \mathcal{F}[X(t)]$

Example We proved earlier that $\left(\operatorname{rect}\left(\frac{t}{\tau}\right)\right) \iff \tau \operatorname{sinc}\left(\frac{\omega\tau}{2}\right)$

Using Duality we can find the Fourier Transform of a sinc function as follows:

$$X(t) = \frac{2\pi x(-\omega)}{\tau \operatorname{sinc}\left(\frac{t\tau}{2}\right)} \iff 2\pi \operatorname{rect}\left(\frac{\omega}{\tau}\right)$$

The Fourier Transform of a time-domain sinc signal cannot be found using the Laplace Transform or the integral definition of the F.T. The duality property provides an indirect way to obtain it.

Frequency-Domain

Linearity Property

$$\operatorname{Proof:} \mathcal{F}[ax(t) + by(t)] = \int_{-\infty}^{\infty} [ax(t) + by(t)]e^{-j\omega t}dt = \int_{-\infty}^{\infty} ax(t) e^{-j\omega t}dt + \int_{-\infty}^{\infty} by(t) e^{-j\omega t}dt$$
$$= a \int_{-\infty}^{\infty} x(t) e^{-j\omega t}dt + b \int_{-\infty}^{\infty} y(t) e^{-j\omega t}dt = aX(\omega) + bY(\omega)$$

$$\mathcal{F}[ax(t) + by(t)] = aX(\omega) + bY(\omega) \Longrightarrow ax(t) + by(t) \Leftrightarrow aX(\omega) + bY(\omega)$$

Scaling Property

Given
$$x(t) \iff X(\omega)$$
 and $a \neq 0$, $x(at) \iff \frac{1}{|a|} X\left(\frac{\omega}{a}\right)$

$$x(at) \iff \frac{1}{|a|} X\left(\frac{\omega}{a}\right)$$

Proof:

$$\mathcal{F}[x(at)] = \int_{-\infty}^{\infty} x(at)e^{-j\omega t}dt \quad \text{assume } a > 0, \text{c.o.v.: } \lambda = at; \ t = \frac{\lambda}{a}; \ dt = (1/a)d\lambda$$

$$= \int_{-\infty}^{\infty} x(\lambda) \ e^{-j\omega\left(\frac{\lambda}{a}\right)} \left(\frac{1}{a}\right) d\lambda = \left(\frac{1}{a}\right) \int_{-\infty}^{\infty} x(\lambda) \ e^{-j\left(\frac{\omega}{a}\right)\lambda} d\lambda = \left(\frac{1}{a}\right) X\left(\frac{\omega}{a}\right)$$

for a < 0, the negative value is offset by the change in the limits of integration, giving

Observations:

$$x(at) \iff \frac{1}{|a|} X\left(\frac{\omega}{a}\right)$$

- |a| > 1: compression in time axis, expansion in frequency axis
- |a| < 1: expansion in time axis, compression in frequency axis
- Extent in time domain is inversely proportional to extent in frequency domain (bandwidth)
 - x(t) is wider \longleftrightarrow spectrum is narrower x(t) is narrower \longleftrightarrow spectrum is wider

Given
$$x(t) \Leftrightarrow X(\omega)$$

Time-Shifting (Delay) Property Given
$$x(t) \Leftrightarrow X(\omega)$$
, $x(t-t_0) \Leftrightarrow e^{-j\omega t_0}X(\omega)$

Proof:

Let
$$t - t_0 = \tau$$

$$\mathcal{F}[x(t-t_0)] = \int_{-\infty}^{\infty} x(t-t_0)e^{-j\omega t}dt = \int_{-\infty}^{\infty} x(\tau) e^{-j\omega(\tau+t_0)}d\tau = e^{-j\omega t_0} \int_{-\infty}^{\infty} x(\tau) e^{-j\omega\tau}d\tau = e^{-j\omega t_0}X(\omega)$$

Similarly,
$$x(t+t_0) \iff e^{j\omega t_0}X(\omega)$$

Observations:

- Delaying a signal by t_0 seconds does not change its amplitude spectrum
- The phase spectrum, however, is changed by $-\omega t_0$

Alternate Method for Finding the Fourier Transform of $\cos(\omega_0 t)$

- Proved earlier that, $\delta(t) \Leftrightarrow 1$
- Using the time-shifting property, $\delta(t-t_0) \Leftrightarrow e^{-j\omega t_0}$ and $\delta(t+t_0) \Leftrightarrow e^{j\omega t_0}$
- Also, $\delta(t+t_0)+\delta(t-t_0) \Leftrightarrow e^{j\omega t_0}+e^{-j\omega t_0}=2\cos(\omega_0 t)$
- Using duality, $2\cos(t_0t) \Leftrightarrow 2\pi[\delta(-\omega+t_0)+\delta(-\omega-t_0)] = 2\pi[\delta(\omega+t_0)+\delta(\omega-t_0)]$

Replacing
$$t_0$$
 by ω_0 , we get the very useful result $\cos(\omega_0 t) \Leftrightarrow \pi[\delta(\omega + \omega_0) + \delta(\omega - \omega_0)]$

Given
$$x(t) \Leftrightarrow X(\omega)$$

Given
$$x(t) \iff X(\omega)$$
, $x(t)e^{-j\omega_0 t} \iff X(\omega + \omega_0)$

Proof:

$$\mathcal{F}[x(t)e^{-j\omega_0 t}] = \int_{-\infty}^{\infty} x(t)e^{-j\omega_0 t}e^{-j\omega t}dt = \int_{-\infty}^{\infty} x(t)e^{-j(\omega+\omega_0)t}dt = X(\omega+\omega_0)$$

Similarly,
$$x(t)e^{j\omega_0t} \Leftrightarrow X(\omega-\omega_0)$$

Example Find the Fourier Transform of $y(t) = x(t) \cos \omega_0 t$

Using Euler's write
$$x(t) \cos \omega_0 t = \frac{1}{2} x(t) \left(e^{j\omega_0 t} + e^{-j\omega_0 t} \right)$$

$$\mathcal{F}[x(t)\cos\omega_0 t] = \frac{1}{2}\mathcal{F}[x(t)e^{j\omega_0 t}] + \frac{1}{2}\mathcal{F}[x(t)e^{-j\omega_0 t}] = \frac{1}{2}X(\omega - \omega_0) + \frac{1}{2}X(\omega + \omega_0)$$

$$x(t)\cos\omega_0 t \Leftrightarrow \frac{1}{2}X(\omega - \omega_0) + \frac{1}{2}X(\omega + \omega_0)$$

Amplitude Modulation:

- $\cos \omega_0 t$ is the carrier and x(t) is the modulating signal (message)
- $x(t) \cos \omega_0 t$ is the amplitude modulated signal

Example – Amplitude Modulation

 $y(t) = x(t) \cos \omega_0 t$, where x(t) is an ideal lowpass signal

Assume $\omega_1 \ll \omega_0$, i.e., the carrier frequency is much larger than the message bandwidth

Why Modulation?

- Modulation changes frequency content of a message from its baseband frequencies to higher frequencies making its transmission over the airwaves possible
- Music ($0 \le f \le 22 \ KHz$) and speech ($100 \le f \le 5 \ KHz$) are relatively low frequency signals requiring an antenna of length $\frac{3 \times 10^8}{4f}$ meters
- If $f = 30 \ KHz \Rightarrow$ length of antenna is 2.5 $km \approx 1.5$ miles \Rightarrow need to increase baseband frequencies

For Amplitude Modulation (AM): $f_c = 1000 \, KHz \Rightarrow \text{length of antenna} \approx 75 \, \text{meters (rooftop)}$

For Frequency Modulation (FM): $f_c = 100 \, MHz \Rightarrow \text{length of antenna} \approx 75 \, \text{cm}$

Convolution Property Fourier Transform of Convolution: $y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau$ Similar to Laplace, convolution in the time-domain corresponds to multiplication in the frequency domain

Time-Convolution: $y(t) = x(t) * h(t) \Leftrightarrow Y(\omega) = X(\omega)H(\omega)$

Proof:

$$Y(\omega) = \int_{-\infty}^{\infty} y(t)e^{-j\omega t}dt = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau\right)e^{-j\omega t}dt = \int_{-\infty}^{\infty} x(\tau)\left(\int_{-\infty}^{\infty} h(t-\tau)e^{-j\omega t}dt\right)d\tau$$

$$= \int_{-\infty}^{\infty} x(\tau)\left(H(\omega)e^{-j\omega\tau}\right)d\tau = H(\omega)\int_{-\infty}^{\infty} x(\tau)e^{-j\omega\tau}d\tau = H(\omega)X(\omega) \qquad h(\lambda)e^{-j\omega(\lambda+\tau)}$$

Frequency-Convolution: $x_1(t)x_2(t) \Leftrightarrow \frac{1}{2\pi}X_1(\omega) * X_2(\omega)$

Example
$$x(t) * \delta(t) = \int_{-\infty}^{\infty} \delta(\tau) x(t-\tau) d\tau = x(t)$$
 [using sampling property of $\delta(t)$]

Example
$$x(t) * \delta(t - t_0) = \int_{-\infty}^{\infty} \delta(\tau - t_0) x(t - \tau) d\tau = x(t - t_0)$$

Example (Amplitude Modulation) $y(t) = x(t) \cos \omega_0 t$

$$Y(\omega) = \frac{1}{2\pi}X(\omega) * (\pi[\delta(\omega + \omega_0) + \delta(\omega - \omega_0)]) = \frac{1}{2}X(\omega + \omega_0) + \frac{1}{2}X(\omega - \omega_0)$$

Example Find the spectrum of $x(t) \cos 10t$ where $x(t) = \text{rect}\left(\frac{t}{4}\right)$ using the convolution property

Dr. Cheryl B. Schrader

Signal Energy

Energy in the Time-Domain:

$$E_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt$$

Energy in the Frequency-Domain:

$$E_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt$$

$$E_{x} = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^{2} d\omega$$

Parseval's Theorem: Conservation of Energy

Energy in the Time-Domain = Energy in the Frequency-Domain

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} x(t)x^*(t)dt = \int_{-\infty}^{\infty} x(t) \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} X^*(\omega) e^{-j\omega t} d\omega \right] dt$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X^*(\omega) \left[\int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \right] d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} X^*(\omega) X(\omega) d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$$

Example Find the energy of the signal $x(t) = e^{-at}u(t)$. Determine the frequency W rad/sec so that the energy contributed by the spectral components of all the frequencies below W is 95% of the signal energy E_x .

$$E_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt = \int_{0}^{\infty} e^{-2at} dt = \frac{1}{2a}$$

The band $\omega=0$ to $\omega=W$ contains 95% of the $=\frac{1}{\pi a}\tan^{-1}\frac{\omega}{a}\Big|_{0}^{\infty}=\frac{1}{2a}$ signal energy; that is,

$$\frac{0.95}{2a} = \frac{1}{\pi} \int_0^W \frac{1}{\omega^2 + a^2} d\omega = \frac{1}{\pi a} \tan^{-1} \frac{\omega}{a} \Big|_0^W = \frac{1}{\pi a} \tan^{-1} \frac{W}{a}$$
 (2.02*a* Hz) contribute 95% of the total signal energy; all the

or
$$\frac{0.95\pi}{2} = \tan^{-1}\frac{W}{a} \implies W = 12.706a \text{ rad/sec}$$

This can be verified by Parseval's Theorem. For this signal, $X(\omega) = \frac{1}{i\omega + a}$ and

$$E_{x} = \frac{1}{\pi} \int_{0}^{\infty} |X(\omega)|^{2} d\omega = \frac{1}{\pi} \int_{0}^{\infty} \frac{1}{\omega^{2} + a^{2}} d\omega$$
$$= \frac{1}{\pi a} \tan^{-1} \frac{\omega}{a} \Big|_{0}^{\infty} = \frac{1}{2a}$$

The spectral components from 0 (DC) to 12.706a rad/sec (2.02a Hz) contribute 95% of the total signal energy; all the remaining spectral components in the band from 12.706a rad/sec to ∞ contribute only 5% of the signal energy

The Essential Bandwidth of a Signal

- The spectra of all practical signals extend to infinity
- However, because the energy of any practical signal is finite, the signal spectrum must approach 0 as $\omega \to \infty$
- Most of the signal energy is contained within a certain band of B Hz, and the energy contributed by the components beyond B Hz is negligible
- We can therefore suppress the signal spectrum beyond $B\ Hz$ with little effect on the signal shape and energy
- The bandwidth B is called the essential bandwidth of the signal
- The criterion for selecting B depends on the error tolerance in a particular application
- In filter design half-power is often used, which is the frequency corresponding to 50% energy

Given
$$x(t) \Leftrightarrow X(\omega)$$

Time-Differentiation Property Given
$$x(t) \Leftrightarrow X(\omega)$$
, $\frac{d^n x(t)}{dt^n} \Leftrightarrow (j\omega)^n X(\omega)$

Proof:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega \longrightarrow \frac{dx(t)}{dt} = \frac{1}{2\pi} \int_{-\infty}^{\infty} j\omega X(\omega) e^{j\omega t} d\omega \longrightarrow \frac{dx(t)}{dt} \iff (j\omega)X(\omega)$$

<u>Example</u> Use the time-differentiation property to find the Fourier transform of the triangle pulse $\Delta \left(\frac{t}{\tau}\right)$

•
$$\frac{d^2x(t)}{dt^2} = \frac{2}{\tau} \left[\delta \left(t + \frac{\tau}{2} \right) - 2\delta(t) + \delta \left(t - \frac{\tau}{2} \right) \right]$$

From the time-differentiation property,

$$\frac{d^2x(t)}{dt^2} \iff (j\omega)^2 X(\omega) = -\omega^2 X(\omega)$$

- From the time-shifting property, $\delta(t-t_0) \Leftrightarrow e^{-j\omega t_0}$
- $\mathcal{F}\left|\frac{d^2x(t)}{dt^2}\right| = -\omega^2X(\omega) = \frac{2}{\tau}\left[e^{j(\omega\tau/2)} 2 + e^{-j(\omega\tau/2)}\right]$ $=\frac{4}{\tau}\left[\cos\left(\frac{\omega\tau}{2}\right)-1\right]=-\frac{8}{\tau}\sin^2\left(\frac{\omega\tau}{4}\right)$
- $X(\omega) = \frac{8}{\omega^2 \tau} \sin^2 \left(\frac{\omega \tau}{4}\right) = \frac{\tau}{2} \left[\frac{\sin\left(\frac{\omega \tau}{4}\right)}{\left(\frac{\omega \tau}{4}\right)}\right]^2 = \frac{\tau}{2} \operatorname{sinc}^2 \left(\frac{\omega \tau}{4}\right)$

Given
$$x(t) \Leftrightarrow X(\omega)$$

Time-Integration Property Given
$$x(t) \Leftrightarrow X(\omega)$$
,
$$\int_{-\infty}^{t} x(\tau) d\tau \Leftrightarrow \frac{1}{j\omega} X(\omega) + \pi X(0) \delta(\omega)$$

Proof:
$$u(t - \tau) = 1, \tau \le t$$
 time-convolution property

$$\int_{-\infty}^{t} x(\tau)d\tau = \int_{-\infty}^{\infty} x(\tau)u(t-\tau)d\tau = x(t) * u(t) \iff X(\omega)\left(\pi\delta(\omega) + \frac{1}{j\omega}\right)$$
$$= \pi X(0)\delta(\omega) + \frac{1}{j\omega}X(\omega)$$

Signal Transmission through LTIC Systems

- A linear system is characterized by its impulse response, $h(t) \Leftrightarrow H(\omega)$
- If x(t) is the input to a linear system, then the output is given by

$$y(t) = x(t) * h(t) \Leftrightarrow Y(\omega) = X(\omega) H(\omega)$$

This is only valid for stable systems!

Amplitude Modulation

Modulation Equation (at the Transmitter)

$$\phi_{AM}(t) = m(t)\cos\omega_c t$$

Demodulation Equation (at the Receiver)

$$\phi_{AM}(t) = m(t)\cos\omega_c t = m(t)\cos^2\omega_c t = \frac{m(t)}{2}[1 + \cos 2\omega_c t] \Leftrightarrow \frac{1}{2}M(\omega) + \frac{1}{4}[M(\omega + 2\omega_c) + M(\omega - 2\omega_c)]$$