Mate 6540

Tarea 2

Problema 1.	Sean (X, \mathcal{T}_X) y (Y, \mathcal{T}_Y) espacios topológicos y sea $f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ una biyección. Demuestre que las siguientes son equivalentes: (a) f es un homeomorfismo. (b) f y f^{-1} son funciones abiertas. (c) f y f^{-1} son funciones cerradas.
Problema 2.	Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. A function $f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ is strongly continuous, if $f(\overline{A}) \subseteq f(A)$ for all $A \subseteq X$. Show the following proposition "f is strongly continuous $\iff f^{-1}(B)$ is closed for all $B \subseteq Y$."
Problema 3.	Sean (X, \mathcal{T}) un espacio topológico y \mathcal{U} la topología producto sobre $X \times X$. Demuestre que (X, \mathcal{T}) es Hausdorff \iff la diagonal $\Delta = \{(x, y) \in X \times X : x = y\}$ es un subconjunto cerrado de $(X \times X, \mathcal{U})$.
Problema 4.	Sean (X, \mathcal{T}_X) y (Y, \mathcal{T}_Y) espacios topológicos. Demuestre que si $f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ es suprayectiva, continua y abierta, entonces $\mathcal{T}_Y = \mathcal{T}_{FIN}$, donde \mathcal{T}_{FIN} es la topología final inducida por f .
Problema 5.	Sea $p:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ una función continua. Demuestre que si existe una función continua $f:(Y,\mathcal{T}_Y)\to (X,\mathcal{T}_X)$ tal que $p\circ f$ es la identidad en Y , entonces p es una aplicación cociente.