Database Management Systems

Relations and Constraints

Relations

- A relation can be thought of as a set of tuples
 - Much like a table
 - Tuples contain attributes
 - Each tuple has an attribute that uniquely identifies it
- We use relations as a mathematical model of a database
 - All operations are performed on relations

Schema

- Schemas come in the format R(A1, A2, A3, ..., An)
- Example:

Student(id, fname, lastname, birthdate)

Tuples

- Does the order of a tuple matter?
- Relations are sets of tuples
 - Any problems with this?

Domain

- Every attribute has a domain associated with it
 - Data type
 - Set of possible values
- What are the domains for:
 - A student ID?
 - First and last names?
 - Phone numbers?

State

■ The state of a relation is some subset of all the possible combinations of domains

Sometimes called a "value" or "population"

- Given the following schema:
 - -R(A1, A2)
 - dom(A1) = (1, 2)
 - dom(A2) = (a, b, c)
- What is the domain of the entire relation?
- How many possible states are there?

Constraints

- Three main types:
 - Implicit
 - Explicit
 - Application based

Schema Integrity

- When using constraints for integrity, we have three types:
 - Key constraint
 - Entity integrity constraints
 - Referential integrity constraints
- Domain constraints are considered separately

Key constraints

- Super Key
 - One or more attribute that guarantees uniqueness for a set of tuples
- Key
 - "minimal" super key

If a tuple has n attributes, what is the maximum number of possible superkeys?

Primary Keys

- From the list of candidate keys, we choose a primary key
 - How should we narrow down the candidates?
 - What will the primary key be used for?

- Entity integrity
 - The primary key attributes of each relation cannot be null

Schemas

- A schema consists of:
 - A set of relations
 - A set of integrity constraints
- Example:

S = {Student, Course, Department}

Database State

- The database state consists of a set of relation states
 - These relation states must satisfy integrity constraints
- Sometimes referred to as a snapshot, or instance
- How do we modify this state?

Referential Integrity

- Involves two relations
 - Primary key → foreign key
- The foreign key MUST exist in the primary key table

- For each of the modification operations (INSERT, UPDATE, DELETE), determine whether it is possible for them to violate:
 - Domain Constraints
 - Key Constraints
 - Referential Integrity
 - Entity integrity
- If it is possible, explain how

Handling Violations

What should we do if a violation occurs?

Constraints in SQL

Domain constraints require triggers:

```
DELIMITER $$
CREATE TRIGGER pos_id BEFORE INSERT ON
Students
FOR EACH ROW BEGIN
  IF NEW.sid < 0 THEN
    SIGNAL SQLSTATE '45000'
    SET MESSAGE TEXT = "sid must be positive";
  END IF;
END$$
DELIMITER;
```

Constraints in SQL

Foreign keys can be created before or after table creation:

```
CREATE TABLE Student (sid int, courseid int, FOREIGN KEY (courseid)
REFERENCES Course(courseid));
```

ALTER TABLE Student
ADD FOREIGN KEY (courseid)
REFERENCES Course(courseid);

- Add foreign keys to your course tracking database based on the design you came up with.
- Hint: If you need to add a column (such as a foreign key column) to a table, you can do so as follows:

ALTER TABLE Student ADD COLUMN courseid int;

 Go through your course tracking database and come up with some domain constraints. Add those constraints using triggers, then test them.