Une fois que le modèle a été choisi, il est entrainé sur le jeu de données entier et testé sur l'ensemble de test (qui n'a jamais été vu). Ces derniers sont représentés dans la figure ci-dessous :

1.6 Apprentissage non supervisé

Les méthodes d'apprentissage non supervisé visent à découvrir la structure (parfois riche) des données.

1.6.1 k-moyennes (en anglais k-means)

- \square Partitionnement Étant donné un ensemble d'entraînement $\mathcal{D}_{\text{train}}$, le but d'un algorithme de partitionnement (en anglais *clustering*) est d'assigner chaque point $\phi(x_i)$ à une partition $z_i \in \{1,...,k\}$.
- $\hfill\Box$ Fonction objectif La fonction objectif d'un des principaux algorithmes de partitionnement, k-moyennes, est donné par :

Loss_{k-means}
$$(x,\mu) = \sum_{i=1}^{n} ||\phi(x_i) - \mu_{z_i}||^2$$

□ Algorithme – Après avoir aléatoirement initialisé les centroïdes de partitions $\mu_1, \mu_2, ..., \mu_k \in \mathbb{R}^n$, l'algorithme k-moyennes répète l'étape suivante jusqu'à convergence :

Printemps 2019