BITS-PILANI, HYDERABAD CAMPUS INSTRUCTION DIVISION FIRST SEMESTER 2016-2017 Course Handout (Part II)

Date: 02/08/16

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. BIO F417

Course Title: Biomolecular Modeling

Instructor in Charge: DEBASHREE BANDYOPADHYAY

1. Course description:

Biomolecular Conformations, Structural genomics and proteomics, protein folding, Forcefield, Simulation, Conformational analysis, ab initio structure prediction, comparative modeling, usage of modeling packages.

2. Scope and objective of the course:

The course is designed to provide students the first hand experience of potential utility of biomolecular modeling especially in structure-function elucidation, and in cellular and structural biology. It describes the functionality, advantages, and limitations of standard computing strategies for the simulation of biomolecules. Provide a working knowledge of freely available software to carry out independent research projects in biomolecular modeling. Explore the possibilities of modeling to complement 3D structure determination, analysis, evaluation and data retrieval in a research or industry based laboratory.

- **3. Text Book:** "Molecular modeling: Principles and Applications" By Andrew R Leach, 2nd Edition, 2001, Pearson Education Lim.
- **4. Reference Book:** (1) "Molecular Modeling and Simulation An Interdisciplinary Guide" By Tamar Schlick, Springer, New York, 2002
- (2) "Principles of protein structure" By Schulz, G.E. and Schirmer, R.H., New York, Springer-Verlag, 1979
- (3) "An Introduction to Computational Biochemistry" By C. Stan Tsai, Wiley-Liss, Inc, 2002.
- (4) "Bioinformatics: genes, proteins and computers" Edited by C. Orengo, D. Jones, J. Thronton, BIOS Scientific Publishers Ltd., UK, 2003.

5. Course Plan:

Lecture No.	Learning Objectives	Topics to be covered	Book (Sec/Chap)
1-2	Introduction	What is modeling? Scope and application of modeling in modern biology	R-1 (1-2)
3-7	Protein structure and conformation	Amino Acid Building Blocks, Rotameric Structures Protein Conformation Framework, Ramachandran Plots, Conformational Hierarchy, Structural motifs	R-1 (3-4)
8-10	Conformation and Variability in DNA structures	Basic Building Blocks, Conformational Flexibility, Canonical DNA Forms, DNA Sequence Effects,	R-1 (5-6)
11	Molecular graphics	Introduction to graphic representation,	R-3 (4)

	1		
		Representation of molecular structure:	
		macromolecules Database of	
		macromolecular structures	
12	Visualization and	Usages of freely available visualization	Class-
	modeling packages	packages like VMD, Rasmol, Pymol,	notes/websites
		SpdbViewer , Chimera, Cn3D	
13-15	Protein structure	First principle methods for predicting	T(10)
	prediction and protein	protein structure, comparative modeling,	R-4 (8-9)
	folding problem	threading , CASP	
16	Comparative	Exposure to MODELLER software and	User guide to
	Modeling:	its usage	MODELLER
	Hands-on session		
17-23	Quantum chemical	Basic quantum mechanics, H-F	T(2-3)
	approaches	approximation, Basis set, application of	
		quantum chemistry in Biological	
		systems	
24-25	Quantum Chemistry:	Exposure to GAMESS software and its	User guide of
	Hands-on session	usage	GAMESS
26-27	Energetics and	Different types of interactions and	T (4)
	Forcefield	formulation of forcefield	
28-32	Molecular mechanics	Basic algorithm of MM and their	T(5)
		utilities , Hand on sessions	
33-38	Molecular dynamics	Basic MD algorithm, Its limitation,	T (6-7)
		treatment of long range forces,	
		conformational analysis from MD	
		simulation, advanced techniques in MD	
		simulations	
39-40	Molecular Dynamics:	Exposure to NAMD software and usage	User guide of
	Hands-on session		NAMD
41-42	Monte Carlo	Basics of Monte Carlo Sampling	T(8)
	Simulation		, ,

T=Text book, R=Reference book

6. Evaluation scheme:

Components	Duration	Date &Time	Weightage	Nature of
			(%)	Component
Test 1	1 hr	8/9 2:30PM-3:30PM	20%	Closed Book
Test 2	1 hr	25/10 2:30PM- 3:30PM	20%	Closed Book
Assignment/Seminar/		To be announced in	25%	Open book
Project		the class		
Comprehensive	3 Hours	6/12 AN	20%	Closed book
examination			15%	Open book

- **7.** Chamber Consultation Hour: To be announced in the class.
- $\pmb{8.}$ Notices: Notices, if any concerning the course will be displayed on the departmental notice board and CMS
- **9.** Make up Policy: Make up will only be given on genuine ground.