ECE 372A Fall 2015 - Lecture 12

Garrett Vanhoy

October 6, 2015

Outline

- 1 ADC Continued
 - Sample and Conversion Cycle
 - Sampling Configurations
 - Circuit Details
- PWM
 - Introduction to PWM
 - Using PWM

ADC

Reference Material

Section 17 in the Family Reference Manual Section 22 in the PIC32MX Data Sheet

SAMP = 0DONE = 0

Remember

DONE is set in hardware, like an interrupt

Remember

- DONE is set in hardware, like an interrupt
- SAMP can be set in hardware.

BSF AD1CON1, SAMP X

ADC1BUF0 _

BCF AD1CON1, SAMP

AVDD(1)

AVDD(1)

AVDD(1)

Outline

- ADC Continued
 - Sample and Conversion Cycle
 - Sampling Configurations
 - Circuit Details
- 2 PWM
 - Introduction to PWM
 - Using PWM

PWM

Reference Material

Section 16 in the PIC32MX Family Reference Manual Section 16 in the PIC32MX Data Sheet

Purpose of PWM

PWM stands for Pulse-Width Modulation

Purpose of PWM

- PWM stands for Pulse-Width Modulation
- With digital outputs, we can only generate 'high' and 'low'.

Purpose of PWM

- PWM stands for Pulse-Width Modulation
- With digital outputs, we can only generate 'high' and 'low'.
- PWM alternates between 'high' and 'low' so fast that the average voltage seen can be anywhere from V_{dd} to ground.

Purpose of PWM

- PWM stands for Pulse-Width Modulation
- With digital outputs, we can only generate 'high' and 'low'.
- PWM alternates between 'high' and 'low' so fast that the average voltage seen can be anywhere from V_{dd} to ground.
- This could be done with just delays, but delays stop the execution of code and this is not practical for many situations.

PWM Duty Cycle

• A PWM waveform is defined by a V_{high} , V_{low} , T_{total} , and a duty cycle.

PWM Duty Cycle

- A PWM waveform is defined by a V_{high} , V_{low} , T_{total} , and a duty cycle.
- ullet The duty cycle is the amount of time the signal is high or $rac{T_{high}}{T_{total}}$

PWM Duty Cycle

- A PWM waveform is defined by a V_{high} , V_{low} , T_{total} , and a duty cycle.
- The duty cycle is the amount of time the signal is high or $rac{T_{high}}{T_{total}}$
- An analog value V_a can be represented with a PWM with a duty cycle of $\frac{V_a}{V_{high}}$

PWM Duty Cycle

- A PWM waveform is defined by a V_{high} , V_{low} , T_{total} , and a duty cycle.
- The duty cycle is the amount of time the signal is high or $rac{T_{high}}{T_{total}}$
- An analog value V_a can be represented with a PWM with a duty cycle of $\frac{V_a}{V_{high}}$
- T_{total} determines the resolution. The smaller the period, the more analog values you can accurately represent.

PWM Example

• What *duty cycle* should be used to emulate 1V with $V_{high} = 5V$ and $V_{low} = 0$?

- What duty cycle should be used to emulate 1V with $V_{high} = 5V$ and $V_{low} = 0$?
- $\frac{1}{5} = 20$ percent

- What *duty cycle* should be used to emulate 1V with $V_{high} = 5V$ and $V_{low} = 0$?
- $\frac{1}{5} = 20$ percent
- If $T_{total}=10 \mu s$, what is T_{high} and T_{low} ?

- What *duty cycle* should be used to emulate 1V with $V_{high} = 5V$ and $V_{low} = 0$?
- $\frac{1}{5} = 20$ percent
- If $T_{total} = 10 \mu s$, what is T_{high} and T_{low} ?
- $T_{high} = .2T_{total}$ or the duty cycle times the total period.

- What *duty cycle* should be used to emulate 1V with $V_{high} = 5V$ and $V_{low} = 0$?
- $\frac{1}{5} = 20$ percent
- If $T_{total} = 10 \mu s$, what is T_{high} and T_{low} ?
- $T_{high} = .2T_{total}$ or the duty cycle times the total period.
- $T_{low} = .8T_{total}$

PWM Usage

- TMR2 or TMR3 can be used for the PWM period.
- If they are being used for PWM, do not use them for other things.

Using PWM

PWM Waveform

PWM Usage

- TMR2 or TMR3 can be used for the PWM period.
- If they are being used for PWM, do not use them for other things.
- The OCxRS register will be some fraction of the PR register.
 This makes the duty cycle.

PWM Usage

- TMR2 or TMR3 can be used for the PWM period.
- If they are being used for PWM, do not use them for other things.
- The OCxRS register will be some fraction of the PR register.
 This makes the duty cycle.
- Duty cycle = $\frac{OC \times RS}{PR \times}$

PWM Registers

PWM Registers

- OCxCON
- OCxR
- OCxRS

