

OBDH 2.0 Documentation

OBDH 2.0 Documentation SpaceLab, Universidade Federal de Santa Catarina, Florianópolis - Brazil

OBDH 2.0 Documentation October, 2020

Project Chief: Eduardo Augusto Bezerra

Authors:

Gabriel Mariano Marcelino André Martins Pio de Mattos Yan Castro Azeredo

Contributing Authors:

Revision Control:

Version	Author	Changes	Date
0.1	Gabriel M. Marcelino	Document creation	10/2019
0.5	Gabriel M. Marcelino	First stable hardware	08/2020

© 2020 by Universidade Federal de Santa Catarina. OBDH 2.0 Documentation. This work is licensed under the Creative Commons Attribution–ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

List of Figures

1.1	3D view of the OBDH 2.0 PCB	1
3.1 3.2 3.3	OBDH 2.0 Block diagram	5 6 6
4.1 4.2 4.3	Top side of the PCB	7 8 8
4.4	Interfaces diagram. need to add jtag, daughterboard connector and update the interfaces/payload	9
4.5	Bottom view of PC-104 and simplified labels	9
4.6	Antenna module conectors	11
4.7	Programmer (P1 and P2) and jumper (P6) connectors	11
4.8	J , ,	12
4.9	Samtec FSI-110-03-G-D-AD connector	12
4.10	Daughterboard connector (P3)	13
4.11	Recommended shape and size of the daughterboard	13
4.12	Illustrative daughterboard integration. Need update	14
4.13	External watchdog timer circuit	16
5.1	NGHam packet structure	26
7.1	Firmware initialization on PuTTy	30

List of Tables

4.1	PC-104 connector pinout. Synchronize nomenclature	10
4.2	Antenna module connectors pinout	10
4.3	Programmer header connector pinout	11
4.4	Programmer picoblade connector pinout	12
4.5	Daughterboard connector pinout	13
4.6	Microcontroller pinout	16
5.1	Firmware tasks	19
5.2	Beacon packet	21
5.3	EDC information packet	22
5.4	EDC samples packet	23
5.5	System telecomamnds	23
5.6	Enter hibernation telecommand	23
5.7	Leave hibernation telecommand	24
5.8	Ping telecommand	24
5.9	Ping telecommand answer	25
5.10	Message broadcast telecommand.	25

Contents

Lis	st of F	igures											V
Lis	st of ┐	ables											vii
No	meno	lature											vii
1	Intro	duction											1
2	Req	uiremen	ts										3
3	Syst 3.1 3.2 3.3	System	rview Diagram Layers ion Status LEDs		 	 	 	 					5 5 5 5 5
4	Hard 4.1 4.2 4.3 4.4 4.5	4.2.1 4.2.2 4.2.3 4.2.4 Microc 4.3.1 Externa	ces				 	 			 		7 8 8 9 10 11 12 14 14 16 17
5	Firm 5.1	Tasks 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9	Startup (boot) Deployment hiber Antenna deployme Watchdog reset Heartbeat Beacon Uplink EPS reading EDC reading	ent			 	 	 	· · · · · · · · · · · · · · · · · · ·	 		19 19 19 19 20 20 20 20 20

			3					20
		5.1.11	TTC writing					20
		5.1.12	Radio periodic reset	 				20
		5.1.13	System reset	 				20
			Read temperature					21
		5.1.15	CSP Server	 				21
	5.2	Teleme	etry	 				21
		5.2.1	Beacon	 				21
		5.2.2	EDC Information	 				21
		5.2.3	EDC Samples	 				21
	5.3	Teleco	mmands	 				22
		5.3.1	Enter hibernation	 				22
		5.3.2	Leave hibernation	 				22
		5.3.3	Activate beacon	 				22
		5.3.4	Deactivate beacon	 				22
		5.3.5	Activate EDC	 				23
		5.3.6	Deactivate EDC	 				24
		5.3.7	Get EDC info	 				24
		5.3.8	Activate Payload X	 				24
		5.3.9	Deactivate Payload X	 				24
		5.3.10						24
		5.3.11	Ping	 				24
		5.3.12	<u> </u>					24
		5.3.13	Request data					24
	5.4	Operat	ting System	 				25
	5.5		vare Abstraction Layer (HAL)					25
	5.6		ystem					25
	5.7		cols					25
		5.7.1	NGHam					25
6	Boar	d Asse	embly					27
	6.1	Develo	opment Model	 				27
	6.2	Flight	Model	 				27
	6.3	Custon	m Configuration	 				27
7	Head	ıa İnstri	ructions					29
•	7.1	•	ing the Board					29
	7.1		lessages					29
	7.2		nterboards Installation					29 29
	1.5	Daugii	ncibodius ilistattattoii	 	 •	•	 •	23
Re	feren	ces						31

CHAPTER 1

Introduction

- Main target: FloripaSat-2
- Improved version of the OBDH from FloripaSat-1
- Open source software (GPLv3 license)
- Open source hardware (GPLv3 license)
- RTOS
- Low power MCU

Figure 1.1: 3D view of the OBDH 2.0 PCB.

CHAPTER 2

Requirements

3.1 Block Diagram

Figure 3.1: OBDH 2.0 Block diagram.

3.2 System Layers

3.3 Operation

3.3.1 Status LEDs

On the development version of the board, there are eight LEDs that indicates some behaviours of the systems. This set of LEDs can be seen on Figure ??.

A description of each of these LEDs are available below:

Figure 3.2: System layers.

Figure 3.3: Available status LEDs.

- D1 System LED: Heartbeat of the system. Blinks at a frequency of 1 Hz when the system is running properly.
- D2 Fault LED: Indicates a critical fault in the system.
- D3 UARTO TX: Blinks when data is being transmitted over the UARTO port.
- D4 UARTO RX: Blinks when data is being received over the UARTO port.
- D5 UART1 TX: Blinks when data is being transmitted over that UART1 port.
- D6 UART1 RX: Blinks when data is being received over the UART1 port.
- D7 Antenna VCC: Indicates that the antenna module board is being power sourced.
- D8 OBDH VCC: Indicates that the OBDH board is being power sourced.

These LEDs are not mounted in the flight version of the module.

CHAPTER 4

Hardware

The OBDH 2.0 architecture focus on low-power operation and low-cost production, maintaining performance and proposing different approaches to increase the overall reliability. Therefore, the board was developed using these criteria and the changes from the original design were necessary to improve bottlenecks and achieve the requirements of further space mission. The Figure ?? presents the module architecture from the hardware perspective, including the main PCB components and interfaces: microcontroller, buffers, transceivers, memory, watchdog and voltage monitor, and connectors. In the following sections, the hardware design, interfaces, and standards are described in detail. The Figures 4.1, 4.2 and 4.3 present 3D rendered images of the top, bottom and side views of the board, respectively.

Figure 4.1: Top side of the PCB.

Figure 4.2: Bottom side of the PCB.

Figure 4.3: Side view of the PCB.

4.1 Interfaces

The Figure 4.4 presents the board interfaces, which consists of communication with other modules, debug access points, and internal peripherals. From the perspective of the microcontroller, there are 6 individual and shared communication buses and the JTAG interface, in the following scheme: A0–SPI (shared with Radio, TTC, and external memory chip); A1–UART (shared with redundant payloads); A2–UART (dedicated for debug); B0–I2C (dedicated for the payload); B1–I2C (dedicated for the EPS); B2–I2C (dedicated for the Antenna module). Currently, "Payload 1" and "Payload 2" are "Payload–X" and "Payload EDC" respectively.

4.2 External Connectors

The external interfaces are connected to the microcontroller using different connector types: EPS, TTC, Radio, and Payloads through PC-104; Antenna module with 6H header and 6P picoblade connectors; JTAG through 14H header and 6P picoblade connectors; and debug access using a dedicated 2H header and shared with the JTAG connectors. The following topics describe these interfaces and present the connectors pinout.

Figure 4.4: Interfaces diagram. need to add jtag, daughterboard connector and update the interfaces/payload

4.2.1 PC-104

The connector referred as PC-104 is a junction of two double row 28H headers (SSW-126-04-G-D). These connectors create a solid 104-pin interconnection across the different satellite modules. The Figure 4.5 shows the PC-104 interface from the bottom side of the PCB, which allows visualize the simplified label scheme in the board. Also, the Table 4.1 provides the connector pinout for the pins that are connected to the module.

Figure 4.5: Bottom view of PC-104 and simplified labels

¹This pinout is simplified since additional interfaces were omitted. Refer to *option sheet* in chapter 6.

Pin [A-B]	H1A	Н1В	H2A	H2B
1-2	_	_	_	_
3-4	_	_	GPIO_4	GPIO_5
5-6	_	_	-	-
7-8	GPIO_0	GPIO_1	-	GPIO_6
9-10	GPIO_2	-	-	_
11-12	GPIO_3	GPIO_7	SPI_0_MOSI	SPI_0_CLK
13-14	_	_	SPI_0_CS_1	SPI_0_MISO
15-16	_	_	-	_
17-18	UART_1_RX	GPIO_8	-	-
19-20	UART_1_TX	GPIO_9	-	_
21-22	-	-	-	_
23-24	-	-	-	_
25-26	-	-	-	_
27-28	-	-	-	_
29-30	GND	GND	GND	GND
31-32	GND	GND	GND	GND
33-34	_	-	-	_
35-36	SPI_0_CLK	-	VCC_3V3_ANT	VCC_3V3_ANT
37-38	SPI_0_MISO	-	-	_
39-40	SPI_0_MOSI	SPI_0_CS_0	-	_
41-42	I2C_0_SDA	-	-	_
43-44	I2C_0_SCL	-	-	_
45-46	VCC_3V3	VCC_3V3	VCC_BAT	VCC_BAT
47-48	-	-	-	-
49-50	-	_	I2C_1_SDA	-
51-52	-	-	I2C_1_SCL	_

Table 4.1: PC-104 connector pinout. Synchronize nomenclature

4.2.2 Antenna Module

The communication with the Antenna module is performed through external connectors, which are presented in the Figure 4.6. Both connectors have the same connections, but the 4.6(a) (6H header) is used for development and the 4.6(b) (6P picoblade) as the connector for the flight model. This interface consists of a dedicated I2C, power supply, and GPIO, which are described in the Table 4.2.

Pin	Row
1	VCC_3V3_ANT
2	VCC_3V3_ANT
3	I2C_SDA
4	I2C_SCL
5	GPI0
6	GND

Table 4.2: Antenna module connectors pinout.

(b) Main interface of the antenna module.

Figure 4.6: Antenna module conectors.

4.2.3 Programmer and Debug

The interface with the microcontroller programmer is performed through external connectors, which are presented in the Figure 4.7. Both connectors have the same JTAG and UART interfaces, but the 14H header is used during development and the 6P picoblade (provide more compact and reliable attachment) as the connector for the flight model, which are described in the Table 4.3 and Table 4.4, respectively. This interface consists of a dedicated debug UART, a JTAG, and an external power supply. The debug UART connection has another access point in a dedicated 2H header (P7), as shown in Figure 4.8. Also, to use this external supply, it is necessary to connect both pins of a 2H header jumper (P6).

Figure 4.7: Programmer (P1 and P2) and jumper (P6) connectors.

Pin [A-B]	Row A	Row B
1-2	TDO_TDI	VCC_3V3
3-4	_	_
5-6	_	_
7-8	TCK	_
9-10	GND	_
11-12	_	UART_TX
13-14	-	UART_RX

Table 4.3: Programmer header connector pinout.

Row
VCC_3V3
TDO_TDI
TCK
UART_TX
UART_RX
GND

Table 4.4: Programmer picoblade connector pinout.

Figure 4.8: Dedicated UART debug connectors (P7).

4.2.4 Daughterboard

The daughterboard interface uses the Samtec FSI-110-D connector, which can be seen in the Figure 4.9. This connector has metal contacts in format of arcs that are flexible and four polymer guide pins (a pair for top and bottom). When the daughterboard is attached, there is some pressure to this metal contacts that bend and create a meaningful pin connection to the daughterboard copper pads². A picture of this connector on the PCB can be seen in Figure 4.10.

Figure 4.9: Samtec FSI-110-03-G-D-AD connector.

The pinout of the daughterboard interface are available in the Table 4.5. There are different power supply lines (OBDH, Antenna, and battery), communication buses (I2C and SPI), GPIO, and ADC interfaces available. Besides the GPIO and ADC pins, the other interfaces are shared with other modules and peripherals.

 $^{^2}$ These daughterboard pads are similar to the ones used as footprint in the OBDH, despite a slightly bigger size.

Figure 4.10: Daughterboard connector (P3).

Pin [A-B]	Row A	Row B
1-2	VCC_3V3	GND
3-4	VCC_3V3_ANT	GND
5-6	VCC_BAT	GND
7-8	GPIO_0	GPIO_1
9–10	GPIO_2	GPIO_3
11-12	SPI_0_CLK	ADC_0
13-14	SPI_0_MISO	ADC_1
15-16	SPI_0_MOSI	ADC_2
17-18	SPI_0_CS_0	I2C_2_SDA
19-20	SPI_0_CS_1	I2C_2_SCL

Table 4.5: Daughterboard connector pinout.

Guidelines

The recommended shape and size of the daughterboard can be seen in the Figure 4.11.

Figure 4.11: Recommended shape and size of the daughterboard.

Figure 4.12: Illustrative daughterboard integration. Need update

4.3 Microcontroller

MSP430F6659.

4.3.1 **Pinout**

Din Codo	Dia Normalian	C: an al
Pin Coae	Pin Number	Signal
P1.0	34	MAIN_RADIO_ENABLE
P1.1	35	MAIN_RADIO_GPI00
P1.2	36	MAIN_RADIO_GPI01
P1.3	37	MAIN_RADIO_GPIO2
P1.4	38	MAIN_RADIO_RESET
P1.5	39	MAIN_RADIO_SPI_CS
P1.6	40	TTC_MCU_SPI_CS
P1.7	41	-
P2.0	17	SPI_CLK
P2.1	18	I2C0_SDA
P2.2	19	I2C0_SCL
P2.3	20	_
P2.4	21	SPI_MOSI
P2.5	22	SPI_MISO
P2.6	23	_
P2.7	24	_

P3.0 P3.1 P3.2 P3.3 P3.4 P3.5 P3.6 P3.7	42 43 44 45 46 47 48 49	I2C0_EN I2C1_EN I2C2_EN I2C0_READY I2C1_READY I2C2_READY PC104_GPI00 PC104_GPI01
P4.0 P4.1 P4.2 P4.3 P4.4 P4.5 P4.6 P4.7	50 51 52 53 54 55 56 57	PC104_GPI02 PC104_GPI03 MEM_HOLD MEM_RESET MEM_SPI_CS - -
P5.0 P5.1 P5.2 P5.3 P5.4 P5.5 P5.6 P5.7	9 10 28 31 32 33 16 88	VREF AGND SYSTEM_FAULT_LED SYSTEM_LED PAYLOAD_0_ENABLE PAYLOAD_1_ENABLE -
P6.0 P6.1 P6.2 P6.3 P6.4 P6.5 P6.6 P6.7	97 98 99 100 1 2 3 4	D_BOARD_ADC0 D_BOARD_ADC1 D_BOARD_ADC2 OBDH_CURRENT_ADC OBDH_VOLTAGE_ADC D_BOARD_SPI_CS0 D_BOARD_SPI_CS1
P7.0 P7.1 P7.2 P7.3 P7.4 P7.5 P7.6 P7.7	- 84 85 5 6 7	- XT2_N XT2_P D_BOARD_GPI00 D_BOARD_GPI01 D_BOARD_GPI02 D_BOARD_GPI03
P8.0 P8.1 P8.2 P8.3 P8.4 P8.5	58 59 60 61 62 65	- UART1_TX UART1_RX - I2C1_SDA

P8.6 P8.7	66 67	I2C1_SCL ANTENNA_GPIO
P9.0	68	-
P9.1	69	_
P9.2	70	UART0_TX
P9.3	71	UART0_RX
P9.4	72	WDI_EXT
P9.5	73	I2C2_SDA
P9.6	74	I2C2_SCL
P9.7	75	MR_WDOG
PJ.0	92	TP21
PJ.1	93	TP22
PJ.2	94	TP23
PJ.3	95	TP24
_	13	XT1IN
-	14	XT1OUT
-	96	JTAG_TDO_TDI
_	91	JTAG_TCK

Table 4.6: Microcontroller pinout.

4.4 External Watchdog

Additionally to the internal watchdog timer of the microcontroller, to ensure a system reset in case of a software freeze, an external watchdog circuit is being used. For that, the TPS3823 IC from Texas Instruments was chosen. This IC is a voltage monitor with a watchdog timer circuit.

This circuit works this way: if the WDI pin remains high or low longer than the timeout period, then reset is triggered. The timer clears when reset is asserted or when WDI sees a rising edge or a falling edge.

The watchdog timer task clears the TPS3823 timer by toggling the WDI pin at every 100 ms. If the WDI pin state stays unmodified for more than 1600 ms, the reset pin is cleared and the microcontroller is reseted.

This circuit can be seen in the Figure 4.13.

Figure 4.13: External watchdog timer circuit.

4.5 Non-Volatile Memory

The non-volatile memory is composed by a NOR flash memory with 1 Gb of capacity (or 128 MB). The used model is the Micron MT25QL01GBBB.

As can be seen in Figure 4.4, a SPI bus is used to communicate with this peripheral.

CHAPTER 5

Firmware

5.1 Tasks

A list of the firmware tasks can be seen in the Table 5.1.

Name	Priority	Initial delay [ms]	Period [ms]	Stack [bytes]
Startup (boot)	Highest	0	Aperiodic	500
Deployment hibernation	Highest	0	Aperiodic	TBD
Antenna deployment	Highest	0	Aperiodic	TBD
Watchdog reset	Lowest	0	100	128
Heartbeat	Lowest	0	500	128
Beacon	Medium	1000	60000	2000
Uplink	Low	1000	10000	500
EPS reading	Medium	5000	60000	TBD
EDC reading	High	5000	1000	TBD
Payload X reading	Medium	5000	5000	TBD
TTC writing	Medium	5000	10000	TBD
Radio periodoc reset	Medium	600000	600000	128
System reset	High	0	36000000	128
Read temperature	Medium	0	60000	128
CSP Server	Lowest	0	500	1024

Table 5.1: Firmware tasks.

All these tasks are better described below.

5.1.1 Startup (boot)

.

5.1.2 Deployment hibernation

.

5.1.3 Antenna deployment

5.1.4 Watchdog reset

This task resets the internal and external watchdog timer at every 100 ms. The internal watchdog has a maximum count time of 500 ms, and the external watchdog a maximum of 1600 ms (see chapter 4 for more information about the watchdog timers).

To prevent the system to not reset during an anomaly on some task (like an execution time longer than planned), this task has lowest possible priority: 0.

5.1.5 Heartbeat

The heartbeat task keeps blinking a LED ("System LED" in Figure ??) at a rate of 1 Hz during the execution of the system. Its purpose is to give a visual feedback of the execution of the scheduler. This is tasks does not have a specific purpose on the flight version of the module (the flight version of the PCB does not have LEDs).

5.1.6 Beacon

.

5.1.7 **Uplink**

.

5.1.8 EPS reading

.

5.1.9 EDC reading

•

5.1.10 Payload X reading

.

5.1.11 TTC writing

.

5.1.12 Radio periodic reset

.

5.1.13 System reset

This task resets the microcontroller by software at every 10 hours. This can be useful to cleanup possible wrong values in variables, repeat the antenna deployment routine (limited to n times), cleanup the RAM memory, etc.

5.1.14 Read temperature

This task reads the internal temperature of the microcontroller of the OBDH at every 60 seconds.

5.1.15 CSP Server

•

5.2 Telemetry

5.2.1 Beacon

The beacon packet is transmitted at every 1 minute and contains a basic telemetry data of the satellite. The content of this packet can be seen in Table 5.2.

• Period: 60 seconds

• Band: UHF

• Condition to operate: Always on

Parameter	Content	Length [bytes]
Packet ID	10h	1
Satellite callsign	"0PY0EGU"	7
μC temperature	Raw μ C temperature	2
μC voltage	Raw μ C voltage	2
μC current	Raw μ C current	2
Last reset cause	Last reset cause ID	1
System time	System time in ticks	4
Radio temperature	Raw radio temperature	4
Last TC RSSI	Raw RSSI value	2???
Last received TC	Last received TC ID	1
Battery 1 voltage	Raw battery 1 voltage	2
Battery 2 voltage	Raw battery 2 voltage	2
Battery current	Raw battery current	2
Battery charge	Raw battery charge	2
Total	-	34

Table 5.2: Beacon packet.

5.2.2 EDC Information

5.2.3 EDC Samples

The EDC samples are XX bytes long and are transmitted in Y packets with 219 bytes each

Parameter	Content	Len. [bytes]
Packet ID	11h	1
Satellite callsign	"0PY0EGU"	7
	PTT Decoder	
Time tag	PTT signal receiving time	4
Error code	Error code	1
Carrier frequency	Carrier frequency	2
Carrier Abs	Carrier amplitude at ADC interface output	2
Message length	User message length in bytes	1
User message	ARGOS-2 PTT-A2 user message	35
	HK Info	
Current time	Current time since J2000 epoch	4
Elapsed time	Elapsed time since last reset	4
Current supply	System current supply in mA	2
Voltage supply	System voltage supply in mV	2
Temperature	EDC board temperature	1
PLL sync bit	RF front end LO	1
ADC RMS	RMS level at front-end output	2
Num of RX PTT	Generated PTT packages since last initialization	1
Max		1
Memory error count		1
	System State	
Current time		4
PTT available	Number of PTT Package available for reading	1
PTT is paused	PTT decoder task status	1
Sampler state	ADC sampler state	1
Total	-	79

Table 5.3: EDC information packet.

5.3 Telecommands

5.3.1 Enter hibernation

5.3.2 Leave hibernation

5.3.3 Activate beacon

.

5.3.4 Deactivate beacon

Parameter	Content	Length [bytes]
Packet ID	12h	1
Satellite callsign	"0PY0EGU"	7
Time tag	Elapsed time since J2000 epoch	4
Packet counter	ADC sample packet number	1
I sample[n]	First ADC I-sample	2
Q sample[n]	First ADC Q-sample	2
		•••
I sample[n+102]	First ADC I-sample	2
Q sample[n+102]	First ADC Q-sample	2
Total	-	219

Table 5.4: EDC samples packet.

Name	Parameters	Access
Enter hibernation	Hibernation period in seconds	Private
Leave hibernation	None	Private
Activate beacon	None	Private
Deactivate beacon	None	Private
Activate downlink	None	Private
Deactivate downlink	None	Private
Activate EDC	None	Private
Deactivate EDC	None	Private
Get EDC info	None	Private
Activate Payload X	Experiment period in seconds	Private
Deactivate Payload X	None	Private
Set system time	Time value (epoch)	Private
Ping	None	Public
Message broadcast	ASCII message	Public
Request data	Data flags	Public

Table 5.5: System telecomamnds.

Parameter	Content	Length [bytes]
Packet ID	20h	1
Ground station callsign	Any callsign (ASCII, filled with "0"s)	7
Hibernation period	Period in minutes (1 to 65535)	2
Key	Telecommand key (ASCII)	10
Total	-	20

Table 5.6: Enter hibernation telecommand.

5.3.5 Activate EDC

Parameter	Content	Length [bytes]
Packet ID	21h	1
Ground station callsign	Any callsign (ASCII, filled with "0"s)	7
Key	Telecommand key (ASCII)	10
Total	-	18

Table 5.7: Leave hibernation telecommand.

5.3.6 Deactivate EDC

.

5.3.7 Get EDC info

This telecommand request information from the EDC payload. When received, the OBDH transmits the housekeeping and state frames of the EDC module (28 bytes). This telecommand does not requires a key.

5.3.8 Activate Payload X

.

5.3.9 Deactivate Payload X

.

5.3.10 Set system time

.

5.3.11 Ping

Parameter	Content	Length [bytes]
Packet ID	22h Any calleign (ASCII, filled with "0"s)	1
Ground Statton CattStyn	Any callsign (ASCII, filled with "0"s)	/
Total	-	8

Table 5.8: Ping telecommand.

5.3.12 Message broadcast

5.3.13 Request data

Parameter	Content	Length [bytes]
Packet ID	12h	1
Satellite callsign	"PY0EGU"	7
Destination callsign	Requester callsign (ASCII, filled with "0"s)	7
Total	-	15

Table 5.9: Ping telecommand answer.

Parameter	Content	Length [bytes]
Packet ID	23h	1
Ground station callsign	Any callsign (ASCII, filled with "0"s)	7
Message	Message to broadcast (ASCII)	up to
Total	-	8

Table 5.10: Message broadcast telecommand.

5.4 Operating System

FreeRTOS 10

5.5 Hardware Abstraction Layer (HAL)

DriverLib

5.6 File System

As file system, the Reliance Edge library is used [1] (version 2.4). Reliance Edge is a failsafe filesystem with an small footprint, targeting critical embedded systems with fewer resources. It works with a broad array of storage media including: eMMC, SD/MMC, NVRAM, USB mass storage and SATA (or PATA) disk.

5.7 Protocols

5.7.1 NGHam

NGHam [2], short for Next Generation Ham Radio, is a set of protocols for packet radio communication. Its usage is similar to the existing AX.25 protocol.

NGHam radio protocol – LA3JPA 2015

Figure 5.1: NGHam packet structure.

CHAPTER 6

Board Assembly

6.1 Development Model

.

6.2 Flight Model

.

6.3 Custom Configuration

•

CHAPTER 7

Usage Instructions

- 7.1 Powering the Board
- 7.2 Log Messages
- 7.3 Daughterboards Installation

Figure 7.1: Firmware initialization on PuTTy.

Bibliography

- [1] Datalight. Reliance edge, 2020. Available at https://www.datalight.com/products/embedded-file-systems/reliance-edge-overview/.
- [2] Jon Petter Skagmo. Ngham protocol, 2014. Available at https://github.com/skagmo/ngham.