

Multilingual Anchoring: Interactive Topic Modeling and Alignment Across Languages

Michelle Yuan 1 Benjamin Van Durme 2 Jordan Boyd-Graber 1

¹University of Maryland ²John Hopkins University

Motivation

- Large text collections often require topic triage quickly in low-resource settings (e.g. natural disaster, political instability)
- Analysts need to examine multilingual documents but are scarce in one or more languages

Modeling Multilingual Topics

Anchor-based Topic Models

- An anchor word is a word that appears with high probability in one topic and low probability in all other topics
- Conditional co-occurrence matrix \bar{Q} has entries such that $\bar{Q}_{i,j} = p(\text{word } 2 = j \mid \text{word } 1 = i)$
- Given anchor words s_1, \ldots, s_K , the algorithm approximates \bar{Q}_i as the convex combination of $\bar{Q}_{s_1}, \ldots \bar{Q}_{s_K}$ and finds coefficients $C_{i,k}$ that estimate $p(\mathsf{topic} = k \mid \mathsf{word} = i)$

$ar{Q}$ matrix	carburetor	concealer	album	liner
carburetor	0.80	0.05	0.05	0.10
concealer	0.13	0.60	0.07	0.20
album	0.05	0.05	0.70	0.20
liner	0.25	0.20	0.15	0.45

 $\bar{Q}_{\text{liner}} pprox C_1 \bar{Q}_{\text{carburetor}} + C_2 \bar{Q}_{\text{concealer}} + C_3 \bar{Q}_{\text{album}}$ (1)

This decomposition (Eq. 1) resembles the topic distribution of `liner' over an <u>automotive</u> topic, a <u>cosmetics</u> topic, and a <u>music</u> topic.

Bridging Languages: How Do You Say Anchor in Chinese?

Monolingual Anchoring

Rows in \bar{Q} corresponding to the anchor words are the vertices of the convex hull formed by \bar{Q} .

To greedily find an anchor word, find a row in \bar{Q} that is farthest away from the current span of anchor words.

The goal is to maximize total span of anchor words so that each row in \bar{Q} lies within this span and can be accurately approximated.

Multilingual Anchoring

The challenge for multilingual topic modeling is to align topics cross-lingually even when words from different languages do not co-occur in the same documents.

Our algorithm first uses a dictionary to link words across languages.

Then, it finds anchor words such that they are linked and can simultaneously expand the span of anchors words for both languages.

MTAnchor: Interactive Topic Modeling

User Interface

User Study

More Information

- Code: https:
- //github.com/forest-snow/mtanchor_demo/
- Author: http://www.cs.umd.edu/~myuan/
- This work was supported in part by the JHU Human Language Technology Center of Excellence (HLTCOE) and Raytheon BBN Technologies, by DARPA award HR0011-15-C-0113.

Comparing Models

Speed and Classification Accuracy

Topic Coherence

Sample Film Topic

0.13 0.00 **0.04** n/a

Conclusions

- Anchoring algorithm can be applied multilingually
- People can provide helpful linguistic and cultural knowledge to improve topic models