Московский Физико-Технический Институт (государственный университет)

Работа 25

Цель работы:

text

В работе используются:

text

1 Выполнение задания

1.1 Ознакомительные шаги

1. Откроем в Micro-Cap файл adm3p.cir, в котором подготовлены схемы лестничных фильтров порядка n=3, реализующих входной адмиттанс.

1.2 Трехполюсные лестничные фильтры

1. Откроем модель adm3p.cir и реализуем лестничные фильтры третьего порядка с параметрами:

$$R_0 = 50, \quad f_0 = 1MHz, \quad Q = 10.$$

Для этого вычислим эталонные значения:

$$L_0 = \frac{R_0}{2\pi f_0}, \quad C_0 = \frac{1}{2\pi f_0 R_0}$$

и установим на схеме номиналы компонентов f_0, Q, R_0, L_0, C_0 .

- 2. Сравним частотный характеристики фильтров с теоретическими, удостоверимся в правильности расчетов.
- 3. Сравним частотные характеристики по напряжению и по мощности. Измерим уровни затухания по мощности на границах полос пропускания, там где затухание по напряжению составляет 0.7. Запишем получившиеся данные в таблицу:

	ФНЧ	ФВЧ	Полосовой	Режекторный
Затухание по мощности	0,5	0,5	0,5	0,5

Исследуем степень деградации характеристик фильтра нижних частот при варьировании сопротивления источника RSL и нагрузки RLL от 25 до 75 с шагом 25.

	RLL		RSL		
	Напряжение	Мощность	Напряжение	Мощность	
25	0,33	0,44	0,66	1,77	
50	0,5	1	0,5	1	
75	0,6	1,43	0,4	0,625	

4. Изучим фазовые характеристики фильтров, измерим значения фазовых сдвигов на нулевой и бесконечной частотах:

ω	ФНЧ	ФВЧ	Полосовой	Режекторный
0	0	$-\pi/2$	$-\pi/2$	0
∞	$-3\pi/2$	-2π	$\pi/2$	-2π

5. Выведем логарифмическую частотную характеристику фильтра нижних частот в диапазоне 1Meg, 100k (логарифмическая шкала) и измерим по ней уровни затухания в децибелах на частотах 0, f_0 , $2f_0$, $10f_0$:

6. Выведем логарифмическую частотную характеристику полосового фильтра в диапазоне 1500k, 500k (линейная шкала) и измерим по ней уровень подавления на частоте f_0 :

$$K(f_0) = -6 dB.$$

Измерим одностороннюю ширину $\triangle f$ полосы пропускания по уровню -3dB и уровень затухания при расстройках на $2 \triangle f$, $10 \triangle f$ от частоты f_0 :

$$\triangle f = 49 k$$

$$K(f_0 - 2 \triangle f) = -25 dB$$
, $K(f_0 + 2 \triangle f) = -20.8 dB$

$$K(f_0 - 10 \triangle f) = -75,7 dB, \quad K(f_0 + 10 \triangle f) = -60,8 dB$$

7. По логарифмической частотной характеристике режекторного фильтра в диапазоне частот 1500k.500k измерим ширины полос по уровням -3dB, -43dB, -63dB:

$K(f_0 \pm \triangle f), dB$	-3	-43	-63
$2 \triangle f$	98k	41k	9k

2 Фильтры низших частот высших порядков

1. Откроем модель batt.cir, в которой реализованы фильтры Баттерворта нижних частот с параметрами $R_0 = 100, f_0 = 1MHz(L_0 = 15.916, C_0 = 1.592n)$ порядков от 3 до 7. Изучим их частотные и переходные характеристики. По логарифмическим графикам в диапазоне 10Meg, 100k измерим затухания на частотах $f_0, 2f_0$ и $10f_0$:

Фильтр Баттерворта	n=3	n=4	n=5	n=6	n=7
$K(f_0), dB$	-3.03	-3.04	-3.04	-3.04	-3.04
$K(2f_0), dB$	-18.15	-24.13	-30.13	-36.15	-42.18
$K(10f_0), dB$	-60.02	-80.03	-100.03	-120.03	-140.03

2. Повторим те же исследования для фильтров Чебышева с неравномерностями 0.5 dB (файл cheb0-5.cir) и 3 dB (файл cheb3-0.cir)