Project 2 – Cell-Based Layout Design

11110CS312000

Introduction of Integrated Circuit Design, NTHU

Outline

- Project 1 Reviewed
- Cell-Based Design
- Standard Cell Setting
- Cell Duplication for Logic Function
- Example
- Project

Outline

- Project 1 Reviewed
- Cell-Based Design
- Standard Cell Setting
- Cell Duplication for Logic Function
- Example
- Project

Project 1 - Reviewed

Top 3 Layout - 1st

Project 1 - Reviewed

Top 3 Layout - 2nd

Project 1 - Reviewed

Top 3 Layout - 3rd

Project 1 - Reviewed Reminds

- 1. Please submit the correct file
- 2. Ruler annotation
- 3. Overwrite the result of DRC/LVS
- 4. FileZilla (Tool for transferring files between server and local storage)
 - Host: sftp://nthucad.cs.nthu.edu.tw

Outline

- Project 1 Reviewed
- Cell-Based Design
- Standard Cell Setting
- Cell Duplication for Logic Function
- Example
- Project

Cell-Based Design

- Based on the idea of hierarchical design.
- Do not care about the internal details at the cell-level design.

Outline

- Project 1 Reviewed
- Cell-Based Design
- Standard Cell Setting
- Cell Duplication for Logic Function
- Example
- Project

Standard Cell Setting

Library Prepared

- SSH Connection
 - \$ ssh -XY icXX (21, 51, 55)
- Go into the working directory layout2.
 - \$ tar zxvf layout2.tar.gz (for the first time)
 - \$ cd layout2
- You can use **Is** command to see all files in the directory.
 - \$ 1s

Files in the directory:

- CELL_LIB (new)
 - INV 2X
 - NAND 2X
 - NOR_2X
- CIC18_Calibre_DRC.drc
- CIC18_Calibre_LVS.lvs
- CIC_Lib
- cds.lib
- display.drf
- skill
- sourceMe

Standard Cell Setting (Cont.)

New Project Library Creation

- Please refer the slide of Project1.
 - Library name: project2
 - Cell name: MUX21, FA, ADDER3

Standard Cell Setting (Cont.)

Set Library Path

Standard Cell Setting (Cont.)

Set Library Path (Cont.)

Outline

- Project 1 Reviewed
- Cell-Based Design
- Standard Cell Setting
- Cell Duplication for Logic Function
- Example
- Project

Instance Creation

NAND_2X NOR_2X INV_2X

Instance Creation (Cont.)

Cell Display

- Display Level
 - Level 0: Only top level
 - Level 10: all levels

Cell Display (Cont.)

Display Level 0

Display Level 10

Virtuoso Layout Hotkeys

	Category	Action	Hotkey
	ZOOM	IN	cntl+Z
V I E W		OUT	shift+Z
	FIT	Fit whole layout to exiting window	f
	VIEW HIERARCHY	MORE DETAIL	shift+F
		LESS DETAIL	$_{ m cntl} + f$
	REDRAW		cntl+ r
E D	STRETCH		S
	MOVE		m
I T	COPY		c
	UNDO		u
	SELECT ALL	Select all objects on the window	_{cntl} +a
	DESELECT ALL	Deselects all selected objects	cntl +d
M I	PROPERTIES	Show properties of selected object	q
	RULER	CREATE	k
S C		DELETE ALL	shift+ K
	HIERARCHY	DESCEND	shift+X
		RETURN	shift+B

Outline

- Project 1 Reviewed
- Cell-Based Design
- Standard Cell Setting
- Cell Duplication for Logic Function
- Example
- Project

Example f = a*b*c*d

Cell Duplication

f = a*b*c*d

Metal Wire Connection

Display Level 0

Display Level 10

f = a*b*c*d

vdd/gnd connection by metal 1

- You cannot just use metal 1 to connect orange segments.
- It will cause unexpected shorts to other metal 1.

f = a*b*c*d

vdd/gnd connection by metal 2

f = a*b*c*d

Labels in standard cells are different from current cell.

P.S. You can display level zero for checking.

Display Level 0

Display Level 10

f = a*b*c*d

Schematic File

- "x" represents the cell
 - x_[name_as_you_like] [Pin 1] [Pin 2] ... [Pin N] [cell_type]
- E.g.

```
.subckt Func a b c d f VDD GND
x_and1_nand
                             abiOut
                                    VDD
                                            GND
                                                   NAND_2X
                      b
              a
x_and1_inv
              abiOut
                     abOut
                                    VDD
                                            GND
                                                   INV 2X
x_and2_nand
                             cdiOut
                                    VDD
                                            GND
                                                   NAND_2X
                     d
              cdiOut
                     cdOut
                                    VDD
                                            GND
                                                   INV 2X
x_and2_inv
x_and3_nand
              abOut
                     cdOut
                                    VDD
                                            GND
                                                   NAND 2X
                             fiOut
x_and3_inv
              fiOut
                                    VDD
                                            GND
                                                   INV 2X
.ends
```

f = a*b*c*d

Schematic File (Cont.)

- Definition of standard cells also needs to be put into schematic file.
 - The standard definition is at layout2/CELL_LIB/[cell_name].
 - E.g. layout2/CELL_LIB/NAND_2X/NAND_2X.src.net

Outline

- Project 1 Reviewed
- Cell-Based Design
- Standard Cell Setting
- Cell Duplication for Logic Function
- Example
- Project

Project Requirements

- Step 1: Design a 2x1 multiplexer (MUX21)
 - Use cell-based design (using NAND/NOR/INV given by TA)
 - Pass DRC and LVS
- Step 2: Design a 1-bit full adder (FA)
 - Use cell-based design (using NAND/NOR/INV given by TA and MUX designed by you)
 - Pass DRC and LVS
- Step 3: Design a 3-bit carry select adder (ADDER3)
 - Draw cell-based layout (only reuse your own MUX21 & FA)
 - Pass DRC and LVS

2x1 Multiplexer

- Cell name: MUX21
- Input
 - in1, in2, ctrl
- Output
 - out
- Function
 - out = (ctrl==0) ? in1 : in2

1-bit Full Adder

- Cell name: FA
- Input
 - a, b, c_in
- Output
 - c_out, sum
- Function
 - $-\{c_out, sum\} = a + b + c_in$

	Inputs		Out	puts
A	В	C-IN	Sum	C - Out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

3-bit Carry Select Adder

- Cell name: ADDER3
- Input
 - A[0:2]: A0, A1, A2
 - -B[0:2]: B0, B1, B2
 - CIN
- Output
 - S[0:2]: S0, S1, S2
 - COUT
- Function
 - $-\{COUT, S[0:2]\} = A[0:2] + B[0:2] + CIN$

Transistor Schematic

- Schematic format
 - Cell and port names should be named as follows.
 - I/O port must be in order.

```
. subckt ADDER3 AO A1 A2 BO B1 B2 CIN SO S1 S2 COUT VDD GND
...
.ends
.subckt FA a b c_in sum c_out VDD GND
...
.ends
.subckt MUX21 in1 in2 ctrl out VDD GND
...
.ends
...
.ends
```

Layout

- Labels should be STRICTLY named as follows.
 - Cell name
 - ADDER3
 - Input
 - A0, A1, A2, B0, B1, B2, CIN, VDD, GND
 - Output
 - S0, S1, S2, COUT
 - No naming constraint to internal signals.
 - You can use only metal layer 1 and 2 (ME1 & ME2).
 - Using rulers to show the width and height of your three layouts.

Report

- Your report should contain the following content, and you can add more as you wish.
 - Your name and student ID
 - NINE screenshots:
 - Layout of MUX21, FA, ADDER3 with rulers (BOTH display level 0 & 10, height & width)
 - DRC summary report of ADDER3
 - The message of passing LVS of ADDER3
 - LVS schematic of ADDER3.src.net (screenshot of the text file)
 - What else did you do to enhance your layout quality?
 - What have you learned from this homework?
 - What problem(s) have you encountered in this homework?

Grading

- Deadline: 2022/12/25 (Sun.) 23:59
- Files to upload:
 - 1. .pdf format report
 - 2. .tar.gz file includes all files in directory layout2
 You can use the following command to compress your directory on a workstation:
 - \$ tar zcvf StudentID_project2.tar.gz layout2/
- Upload 1. and 2. to eeclass.
 - Name the files as "StudentID_report2.pdf" and "StudentID_project2.tar.gz", respectively.

Grading (Cont.)

- Assessment
 - Report: 10%
 - Layout: 20%
 - Layout Area (By Increasing Order): 30%
 (1st ~ 25th: 30 points, 26th ~ 50th: 20 points, 51st ~: 10 points)
 - DRC pass: 20%
 - LVS pass + LVS schematic: 20%
- Early bird bonus: Extra 10 points for submission before 2022/12/18 (Sun.) 23:59
- Penalty for late submission: -20% per day.
- No Ruler (must not be too large or too small): -10 points
- Naming Rule Violation: -5 points

Notice

- File Naming
 - Library name: project2
 - Cell name: MUX21, FA, ADDER3
 - LVS netlist name: [cell_name].src.net (e.g. ADDER3.src.net)
- Plagiarism → 0 point
- Dishonest contents in the report → 0 point