Anotações do livro: "Introdução á Física Nuclear, por K.C. Chung"

Iniciação Científica

Aluno: Amadeus Dal Vesco

Orientador: Alexandre Magno Silva Santos

11 de Setembro de 2024 Florianópolis - SC

Introdução

Estas notas tem como objeto reunir todo o conhecimento adquirido durante o trabalho realizado por min, Amadeus Dal Vesco, e pelo meu orientador, Alexandre Magno Silva Santos. Estará contido aqui todo o processo desenvolvimento por min para entender melhor o assunto que estou estudando, que é Física Nuclear num contexto computacional, se tratando de uma caso partícular, do núcleo do Deutério, o Deuteron. Tal núcleo é composto apenas por um neutron e um próton. Apenas duas partículas estão no problema, pois se tentássemos envolver mais uma partícula nos estudos da interação nuclear, o problema será excessivamente mais difícil. Além de estar utilizando a referência principal que é o [Chu01], temos também a seguinte referência, [Men02], que podemos entender um pouco mais deste problema que estamos trabalhando.

Capítulo 6 - Interação Nucleon-Nucleon

Até agora compreendemos como o átomo é consitituíido e como descobriram a existência dos nucleons, termo utilizado na Física Nuclear, os quais são comumente chamados de próton e neutron.

Apartir de agora queremos compreender como funciona a interação entre os nucleons de um átomo e como é possível existir estabilidade na estrutura atômica destes constituintes, que são cargas de mesma natureza. Para isso, revisitaremos as leis do eletromagnetismo, estudando as interações Coulombianas, as quais descrevem a interação entre partículas carregadas eletricamente.

Pergunta 1: Como descrever a interação entre nucleons dentro de núcleo de um átomo?

Por enquanto, ainda é desconhecido a existência de um conjunto de equações que descrevam completamente as interações nucleares entre os nucleons, e que sejam fechadas matematicamente, como as equações de Maxwell para o Eletromagnetismo.

Como ainda não desconhecemos formas mais gerais de tratar o problema, iremos particulariza-lo ao máximo para que possamos obter alguns resultados no momento.

1ª Aproximação: Supor que a interação entre os constituintes do núcleo possa ser descrito como uma superposição de interações.

Tal aproximação é falha muitas vezes exatamente por conta de um núcleo apresentar muitos corpos, tal que tal tipo de probema não tem solução exata, analítica, quando tratamos de um sistema de m-corpos, onde m>2.

Com tal análise, podemos nos fazer a seguinte pergunta:

Pergunta 2: Com descrever a interação entre dois nucleons?

Para isso, partiremos para descrever a interação deste problema que se trata da interação nuclear fundamental, no momento.

Enunciemos, agora, certas especificações para o sistema que queremos estudar e resolver.

$2^{\underline{a}}$ Aproximação: Sistema de dois nucleons. Isospin total T=0 ou T=1 (iso-singlete e isotripletes, respectivamente)

Com esta segunda aproximação, o nosso sistema de duas partículas/nucleons, que se trata mais especificamente do deuteron, será nossa escolha de estudo, pois se trata do sistema ligado mais simples que conhecemos.

Primeiramente, peguemos alguns dados experimentais acerca deste sistema.

Dados Experimentais (Deuteron):

(...)

Deuteron (Modelo Simples):

O deuteron é um sistema ligado de duas partículas. Para descrever sua dinâmica precisaremos da equação de Schroedinger para o movimento relativo:

$$\left(\frac{d^2}{dr^2} + k^2\right)u_l = 0,\tag{0.1}$$

tal que $u_l(r)$ é a parte radial da função de onda principal, R(r), com a seguinte equação:

$$u_l(r) = rR(r), (0.2)$$

e, temos que k^2 é:

$$k^{2} = \frac{2\mu}{\hbar^{2}} \left[E - V(r) - \frac{l(l+1)\hbar^{2}}{2\mu r^{2}} \right], \tag{0.3}$$

onde, μ representa a expressão para a massa reduzida de um sistema de duas partículas, com a seguinte equação:

$$\mu = \frac{m_p m_n}{m_p + m_n},\tag{0.4}$$

tal que m_p representa a massa do próton e m_n representa a massa do neutron, os constituintes do nosso sistema.

Na expressão (0.3), temos **E** representando a energia do sistema, isto é, a energia do centro de massa do sistema. Para este problema em específico, **E** será $\mathbf{E} = -E_0$, onde E_0 é a energia de ligação do deuteron.

Com a energia \mathbf{E} definida, o problema agora é escrever a equação para o potencial $\mathbf{V}(\mathbf{r})$ entre os nucleons do núcleo. Já conhecemos algumas expressões para $\mathbf{V}(\mathbf{r})$, que dependerão de serem esfericamente simétricos.

A partir disso, utilizaremos os dados empíricos obtidos anteriormente e conhecimentos que temos da física do problema:

- 1. Interação nuclear é atrativa e tem curto alcance, isto é, limitada;
- 2. A interação nuclear tem um caroço repulsivo, isto é, a mínima distância entre os nucleons é o limite dado pelo raio da partícula.

Com isso, podemos representar esquematicamente o problema da seguinte forma:

Figura 0.1: Esquema da interação dos nucleons

A figura 0.1 representa esquematicamente como trataremos o problema da interação do potencial nuclear para o nosso problema do deuteron.

O potencial terá os seguintes valores:

$$V(r) = \begin{cases} \infty, & 0 < r < c \\ -V_0, & c < r < c + b \\ 0, & c + b < r < \infty \end{cases}$$
 (0.5)

onde, (c) é o raio do caroço repulsivo, neste caso definimos o próton como referência, b e V_0 são a largura e a profundidade do poço, respectivamente, tal que tais valores valem quando tomarmos como condições de cortorno para um poço retangular.

Para simplificar um pouco as contas de (0.3), os cálculos admitirão o valor para o momento angular orbital igual a zero (l=0), onde suponhe-se o estado ligado de mais baixa energia para uma onda s. Ficamos, então, com:

$$k^{2} = \frac{2\mu}{\hbar^{2}} [E - V(r)]. \tag{0.6}$$

Substituindo a equação (0.6) em (0.1), ficamos com:

$$\left\{ \frac{d^2}{dr^2} + \frac{2\mu}{\hbar^2} [E - V(r)] \right\} u_0 = 0. \tag{0.7}$$

Com a equação (0.5) que apresenta os possíveis valores para o potencial nuclear de interação dos nucleons, podemos representa-lo graficamente da seguinte forma:

Figura 0.2: Gráfico do potencial de interação

Do gráfico (0.2), podemos tirar algumas informações acerca das condicões de contorno deste problema, que se trata do poço retangular, acerca de possíveis soluções.

- Em r<c, a solução deve ter um comportamento que diverge, isto é, o valor de V(r) será indefinido;
- Em c<r<c+b, a solução deve ter um carater oscilatório, pois apresenta um bom comportamento para este tipo de solução;
- Em c+b<r, o potencial não terá mais efeito por conta da região máxima de alcance de V(r), portanto isto trará uma solução que se anula quando o r cresce.

Tal análise proporciona as seguintes soluções possíveis para u_0 :

$$u_0 \begin{cases} Be^{-\kappa r}, & r < c \\ A\sin k(r-c), & c < r < c+b \\ 0, & c+b < r \end{cases}$$
 (0.8)

tal que,

$$\kappa = \frac{1}{\hbar} \sqrt{2\mu(V_0 - E_0)},\tag{0.9}$$

е

$$k = \frac{1}{\hbar} \sqrt{2\mu E_0}. (0.10)$$

Além disso, temos as constantes de normalização A e B,

$$A = \sqrt{\frac{2\kappa}{(1+b\kappa)}},\tag{0.11}$$

$$B = A\sin kbe^{-\kappa(b+c)},\tag{0.12}$$

e podemos também investigar a relação entre a largura e a profundidade do poço retangular. Efetivamente, temos que a função é contínua em c < r < c+b, e de sua derivada primeira contínua em r=c+b,

$$\cot kb = \frac{-\kappa}{k} \tag{0.13}$$

Da equação (0.13) obtemos uma relação entre V_0 e b, se E_0 for conhecida.

A partir daqui, iremos decobrir a origem das equações acima e como obtê-las.

Primeira coisa que iremos fazer é, desenvolver as equações que descreve a dinâmica do sistema do deuteron, pois nela há todas as informações que precisamos.

1. Equação de Schroedinger para uma partícula independente do tempo:

$$\frac{-\hbar^2}{2m}\nabla^2\Psi(r) + V(r)\Psi(r) = E\Psi(r). \tag{0.14}$$

Utilizaremos então a equação de Schroedinger para obter os resultados que buscamos, aqui está envolvido algumas aproximações particulares, como a própria utilização da equação de Schroedinger, e não da equação de Dirac, pois estamos considerando um potencial nuclear radial sem a presença de certas dependências tensoriais do campo.

Porém, a equação (??) descreve apenas um sistema de uma partícula, precisamos então inserir a informação de duas partículas, além da presença do momento angular do sistema, informação crucial para a dinâmica de sistemas compostos por partículas não puntiformes.

2. Equação de Schroedinger para duas partículas com simetria esférica independente do tempo:

$$\frac{-\hbar^2}{2\mu}\nabla^2\Psi(r) + \left[V(r) + \frac{l(l+1)\hbar^2}{2\mu r^2}\right]\Psi(r) = E\Psi(r), \tag{0.15}$$

Podemos ver que, nas equações (0.14) e (0.15), há a presença do operador Laplaciano ∇^2 , o qual não tem um sistema de coordenadas específico, portanto iremos escrever este operador em coordenadas esféricas, trazendo ao nosso problema,

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}. \tag{0.16}$$

Ajustando os termos de ∇^2 para aparecer apenas dependencia radial com respeito á equação (0.15), ou seja, os termos angulares θ e ϕ da equação (0.16) serão nulos, ficando da seguinte forma,

$$\frac{-\hbar^2}{2\mu} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) \right] \Psi(r) + \left[V(r) + \frac{l(l+1)\hbar^2}{2\mu r^2} \right] \Psi(r) = E\Psi(r). \tag{0.17}$$

Para simplficar a equação acima, podemos abrir os termos com derivadas parciais na coordenada radial, as quais se transformação em derivadas totais, por conta da dependência ser apenas em uma coordenada,

$$\frac{-\hbar^2}{2\mu} \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} \right) \Psi(r) + \left[V(r) + \frac{l(l+1)\hbar^2}{2\mu r^2} \right] \Psi(r) = E\Psi(r). \tag{0.18}$$

Além disso, sem perda de generalidade, podemos simplificar a equação (0.18) para l=0, tal que consideraremos

$$\frac{-\hbar^2}{2\mu} \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} \right) \Psi(r) + V(r)\Psi(r) = E\Psi(r), \tag{0.19}$$

onde $\Psi(r)$ se trata da função de onda, solução da equação (0.19). Iremos agora utilizar algumas contas que foram desenvolvidas em [Men02] para obter mais resultados. Contudo, depois disso pretendemos voltar para a nossa principal referência, que é [Chu01]. Portanto, com a seguinte expressão para $\Psi(r)$,

$$\Psi(r) = \frac{u_l(r)}{r},\tag{0.20}$$

vamos calcular agora as derivadas totais de $\Psi(r)$, as quais estão presentes na equação (0.19). Apenas uma observação, $u_l(r)$ corresponde a solução geral, mas como estamos simplificando l=0, $u_l(r)$ será $u_0(r)$.

$$\frac{d\Psi}{dr} = \frac{d}{dr} \left(\frac{u_0}{r} \right) = \left(\frac{du_0}{dr} r - u_0 \right) / r^2, \tag{0.21}$$

е

$$\frac{d^2\Psi}{dr^2} = \frac{d}{dr} \left[\left(\frac{du_0}{dr} r - u_0 \right) / r^2 \right] = \left(\frac{d^2u_0}{dr^2} r^3 - 2 \frac{du_0}{dr} r^2 + 2u_0 r \right) / r^4. \tag{0.22}$$

Portanto, substituindo a equação (0.22) na equação (0.19) e ajeitando os termos, ficamos com,

$$\frac{-\hbar^2}{2\mu} \frac{d^2 u_0}{dr^2} + V(r)u_0 = Eu_0. \tag{0.23}$$

Queremos agora rearranjar os termos da equação acima para que fique semelhante a equação (0.7), a qual, no início, propomos de resolver,

$$\left[\frac{d^2}{dr^2} + \frac{2\mu}{\hbar^2} (E - V) \right] u_0 = 0. \tag{0.24}$$

Daqui finalmente podemos aplicar os valores possíveis para V(r), os quais estão citados na equação (0.5).

Comecemos com V(r) no intervalo (0 < r < c). Ao colocarmos o valor de V(r) direto na equação (0.24), obteremos uma indeterminação, como podemos ver no gráfico (0.2), então para resolver a equação, a solução u_0 terá que ser nula para que a equação continue sendo válida no intervalo,

$$\left[\frac{d^2}{dr^2} + \frac{2\mu}{\hbar^2} (E - \infty) \right] u_0 = 0 \implies u_0 = 0.$$
 (0.25)

Na próxima região possível para V(r), temos o seguinte valor: V(r) = $-V_0$ em (c < r < c + b). Aqui basta substituir o valor de V(r) direto na equação (0.24), além disso precisaremos do valor de E, onde nesta região de validade para o sistema ligado do deuteron, sua energia corresponde á energia de ligação E = $-E_0$. Com isso, a equação (0.24) fica

$$\[\frac{d^2}{dr^2} + \frac{2\mu}{\hbar^2} (V_0 - E_0) \] u_0 = 0. \tag{0.26}$$

ou, denotando $k^2 = \frac{2\mu}{\hbar^2}(V_0 - E_0)$, ficamos com

$$\left(\frac{d^2}{dr^2} + k^2\right)u_0 = 0. ag{0.27}$$

A equação diferencial acima tem uma forma conhecida, se trata da equação diferencial para um oscilador harmônico, que dependendo do valor de k^2 , podemos ter soluções do tipo,

$$u_0(r) = Ae^{ikr} + Be^{-ikr},$$
 (0.28)

onde A e B são constantes arbitrárias, k é o valor conhecido acima. Aqui iremos especificar ainda mais a solução da equação acima com relação ao valor de (r=c), pois queremos que a solução volte para seu valor naquele intervalo, que é $u_0 = 0$, portanto (0.28) fica

$$u_0(r) = Ae^{ik(r-c)} + Be^{-ik(r-c)}. (0.29)$$

Podemos representar a equação (0.29) de uma outra forma, basta lembrar da fórmula de euler: $e^{i\theta} = \cos \theta + i \sin \theta$, ficando então,

$$u_0 = A\cos k(r - c) + B\sin k(r - c).$$
 (0.30)

Para definir somente um possível valor para u_0 , precisaremos olhar novamente para as condições de contorno do sistema, que se trata de um potencial retangular. Como em (r=c), $u_0 = 0$, ao substituirmos na equação (0.30), apenas o segundo termo irá zerar, definindo assim pra gente a solução que queremos no intervalo (c< r< c+b).

$$u_0 = B\sin k(r - c). \tag{0.31}$$

Por fim, queremos analisar agora o intervalo (c+b < r), onde V(r) = 0. A (0.24) ficará da seguinte forma,

$$\left(\frac{d^2}{dr^2} - \frac{2\mu}{\hbar^2} E_0\right) u_0 = 0. \tag{0.32}$$

Como neste intervalo o potencial vai pra zero, a solução também tenderá para zero na medida que r cresce, ou também ao resolver a equação (0.32), obteremos as seguintes soluções:

$$u_0(r) = Ce^{\kappa r} + De^{-\kappa r}, \tag{0.33}$$

onde C e D são constantes arbitrárias e κ vale

$$\kappa = \sqrt{\frac{2\mu}{\hbar^2 E_0}}. (0.34)$$

Novamente queremos que a solução da (0.32), quando estiver no intervalo (c+b < r), ou seja, quando r crescer a solução vá pra zero no mesmo passo que V(r). Com esta análise, podemos afirmar que a única solução que temos é,

$$u_0(r) = De^{-\kappa r}. (0.35)$$

Finalmente, obtemos as seguintes soluções de acordo com os valores possível para V(r):

$$u_0(r) = \begin{cases} 0, & r < c \\ A\sin k(r - c), & c < r < c + b \\ Be^{-\kappa r}, & c + b < r \end{cases}$$
 (0.36)

já que as constantes A e D são arbitrárias, podemos redefinir $u_0(r) = De^{-\kappa r}$ como $u_0(r) = Be^{-\kappa r}$.

Queremos agora determinar valores para as constantes A e B, para isso utilizaremos as condições de contorno do problema.

Sabemos do nosso problema que, da figura 0.1, a solução que encontramos em

$$u_0(r=c) = u_0(r \to \infty) = 0.$$
 (0.37)

Com isso, podemos avaliar as soluções no intervalo (c < r < c + b), com preferência em (r = c + b)

$$\begin{cases} u_0(r) = A \sin k(r - c), \\ u_0(r) = Be^{-\kappa r}. \end{cases}$$
 (0.38)

quando (r=c), a primeira solução fica,

$$u_0(r=c) = A\sin k(c-c) = A\sin k(0) = 0 \tag{0.39}$$

e a primeira e a segunda solução em (r=c+b) fica,

$$\begin{cases} u_0(r=c+b) = A\sin k[(c+b)-c] = A\sin k(b), \\ u_0(r=c+b) = Be^{-\kappa(c+b)}. \end{cases}$$
 (0.40)

Com estas equações, podemos encontrar o valor da constante B,

$$u_0(r = c + b) = A \sin k(b) = Be^{-\kappa(c+b)} \implies B = A \sin k(b)e^{\kappa(c+b)}.$$
 (0.41)

Agora, para encontrarmos o valor da constante A, precisaremos levar em conta que A e B são constantes de normalização, então elas tem a seguinte propriedade,

$$\int_{-\infty}^{+\infty} u_0^*(r)u_0(r)dr = 1, \ r \ \epsilon \ (-\infty, +\infty).$$
 (0.42)

Portanto, com a equação (??), ficamos com

$$\int_{-\infty}^{+\infty} f(r)dr = \int_{-\infty}^{c} f(r)dr + \int_{c}^{c+b} f(r)dr + \int_{c+b}^{+\infty} f(r)dr = 1, \tag{0.43}$$

onde, apenas chamei o termo da integral $u_0^*(r)u_0(r)$ de f(r) para simplificar a cara da equação de cima.

Podemos agora substituir o valor de $u_0(r)$ nos devidos intervalos, seguindo a relação da função com o intervalo em (0.36).

$$\int_{-\infty}^{c} u_0^*(r)u_0(r)dr = \int_{-\infty}^{c} 0 \ dr = 0, \tag{0.44}$$

primeiro resultado que obtemos é com relação ao intervalo $(-\infty < r < c)$, o qual não está propriadamente definido no nosso problema, e que em $(\theta < r < c)$ a solução tem que ser nula, resultado no valor acima.

$$\int_{c}^{c+b} u_0^*(r)u_0(r)dr = \int_{c}^{c+b} [A\sin k(r-c)]^2 dr = \frac{A^2}{2} \left[b - \frac{\sin 2kb}{2k} \right], \tag{0.45}$$

este segundo resultado foi utilizada a função solução periódica que obtivemos, resultando no valor obtido acima.

E, por fim, temos a última integral a ser feita,

$$\int_{c+b}^{+\infty} u_0^*(r)u_0(r)dr = \int_{c+b}^{+\infty} [e^{-\kappa r}]^2 dr = \frac{B^2}{2\kappa} e^{-2\kappa(c+b)}.$$
 (0.46)

Vamos utilizar o valor da constante B encontrada na equação (0.41) para encontrar o valor de A,

$$\frac{B^2}{2\kappa}e^{-2\kappa(c+b)} = \frac{[A\sin kbe^{\kappa(c+b)}]^2}{2\kappa}e^{-2\kappa(c+b)} = \frac{A^2\sin^2 kb}{2\kappa}$$
(0.47)

Por fim, juntemos as equações (0.45) e (0.47) em (0.43).

$$\frac{A^2}{2} \left[b - \frac{\sin 2kb}{2k} \right] + \frac{A^2 \sin^2 kb}{2\kappa} = 1 \tag{0.48}$$

(0.49)

Bibliografia

[Chu01] K. C. Chung. Introdução à Física Nuclear. EdUERJ, 2001. ISBN: 8575110152.

[Men02] D. P. Menezes. Introdução á Física Nuclear e de Partículas Elementares. Editora da UFSC, 2002.