Môn học: GIẢI TÍCH 1

CHƯƠNG 1: GIỚI HẠN DẪY SỐ

(Học trong giờ Bài tập)

CHƯƠNG 2: GIỚI HẠN VÀ LIÊN TỤC

- 2.1 Giới thiệu các loại hàm; Hàm hợp, hàm ngược, các hàm lượng giác ngược, các hàm hyperbol
- 2.2 Giới hạn hàm số Hàm liên tục
- 2.3 Vô cùng lớn Vô cùng bé

CHƯƠNG 3: ĐẠO HÀM VÀ VI PHÂN

- 3.1 Đạo hàm hàm y=f(x), hàm ngược, hàm cho bởi phương trình tham số
- 3.2 Đạo hàm cấp cao
- 3.3 Vi phân, vi phân cấp cao
- 3.4 Công thức Taylor Maclaurint. Ứng dụng tính giới hạn hàm
- 3.5 Quy tắc L'Hospital BởI HCMUT-CNCP
- 3.6 Ứng dụng đạo hàm để khảo sát hàm y=f(x)
- 3.7 Giới thiệu phần mềm MatLab để giải bài toán giải tích

CHƯƠNG 4: TÍCH PHÂN HÀM 1 BIẾN

- 4.1 Tích phân bất định
- 4.2 Tích phân xác định Công thức Newton-Leibnitz
- 4.3 Tích phân suy rộng: Tích phân với cận vô tận và Tích phân hàm không bị chặn
- 4.4 Ứng dụng của tích phân u TẬP

BỞI HCMUT-CNCP

CHƯƠNG 5: PHƯƠNG TRÌNH VI PHÂN

- 5.1 Phương trình vi phân cấp 1: 5 dạng
- 5.2 Phương trình vi phân cấp 2: Pt giảm cấp được
- và Pt tuyến tính
- 5.3 Hệ Phương trình vi phân tuyến tính

CHƯƠNG 2: GIỚI HẠN VÀ LIÊN TỤC

Hàm số mũ: $y = a^x$

Nếu a=1 thì $a^x = 1, \forall x$, nên ta chỉ tính khi $a \neq 1$

Điều kiện : a>0, a≠1

 $MXD: (-\infty, +\infty),$

(a) $y = a^x$, 0 < a < 1

TÀI LIỆU SƯ Khi O < a < 1

BỞI HCMUT-CNCP

Hàm nghịch biến

$$\lim_{x \to +\infty} a^x = 0, \lim_{x \to -\infty} a^x = +\infty$$

Hàm logarit: y=log_ax , a>0, a ≠1

 $MXD: (0,+\infty), MGT: (-\infty,+\infty)$

a>1

Hàm đồng biến

$$\lim_{x \to 0^+} \log_a x = -\infty$$

$$\lim_{x \to +\infty} \log_a x = +\infty$$

BACHKHOACNCP.COM

0<a<1:

Hàm nghịch biến

$$\lim_{x \to 0^+} \log_a x = +\infty$$

$$\lim_{x \to +\infty} \log_a x = -\infty$$

Tính chất:

$$y = \log_a x \leftrightarrow x = a^y$$
$$\log_a(a^x) = x, \forall x$$
$$a^{\log_a x} = x, \forall x > 0$$

$$\log_{a}(x.y) = \log_{a} x + \log_{a} y$$

$$\log_{a} \frac{x}{y} = \log_{a} x - \log_{a} y$$

$$\log_{a}(x^{r}) = r \log_{a} x, \forall r \in R$$

So sánh một số hàm logarit với a>1 cụ thể

Đặc biệt: khi a=e, ta kí hiệu đơn giản *log_ex=lnx*

và ta có công thức

$$\log_a b = \frac{\ln b}{\ln a}$$

Hàm lũy thừa : y=xª

a=2, 4, 6: MXĐ:
$$(-\infty, +\infty)$$
, MGT: $[0, +\infty)$

a=3, 5: MXĐ:
$$(-\infty, +\infty)$$
, MGT: $(-\infty, +\infty)$

a = -1: MXĐ: R*=R\{0},MGT: R*. Ta còn gọi đây là đường Hyperbol

$$a=1/2$$
: MXĐ [0,+∞), MGT [0,+∞)

<u>Hàm hợp</u>: Cho 2 hàm $g: X \to Y, f: Y \to Z$

Ta gọi hàm hợp của 2 hàm trên là $h = f \circ g$

Được xác định như sau : $h: X \to Z, h(x) = f(g(x))$

Ví dụ: Cho 2 hàm f(x) = 2x + 1, $g(x) = \sqrt{x^2 + 1}$ Tìm $f \circ g$, $g \circ f$ và tính giá trị của chúng tại x = 2

$$f \circ g(x) = f(g(x)) = f(\sqrt{x^2 + 1}) = 2\sqrt{x^2 + 1} + 1$$

$$\Rightarrow f \circ g(2) = 2\sqrt{5} + 1$$

$$g \circ f(x) = g(2x + 1) = \sqrt{(2x + 1)^2 + 1} = \sqrt{4x^2 + 4x + 2}$$

$$\Rightarrow g \circ f(2) = \sqrt{26}$$

<u>Lưu ý</u> : Nói chung 2 hàm $f \circ g, g \circ f$ không bằng nhau

Ví dụ : Cho 2 hàm $f(x) = \sqrt{x}, g(x) = \sqrt[3]{x-1}$ Tìm các hàm và MXĐ của chúng $f \circ g, g \circ f, f \circ f, g \circ g$

$$f \circ g(x) = f(g(x)) = f(\sqrt[3]{x-1}) = \sqrt[6]{x-1}$$
 MXĐ là [1,+ ∞)
$$g \circ f(x) = g(\sqrt{x}) = \sqrt[3]{\sqrt{x}-1}$$
 MXĐ là [0, + ∞)
$$f \circ f(x) = f(f(x)) = f(\sqrt[3]{x-1}) = \sqrt[3]{\sqrt{x}-1}$$
 MXĐ là [0, + ∞)
$$g \circ g(x) = g(g(x)) = g(\sqrt[3]{x-1}) = \sqrt[3]{\sqrt[3]{x-1}-1}$$
 MXĐ là R

Hàm 1-1: Hàm $f: X \rightarrow Y, f(x) = y$

được gọi làm hàm 1-1 nếu $\forall x_1 \neq x_2 : f(x_1) \neq f(x_2)$

Hàm 1-1

Không là hàm 1-1

Hàm y=x³ là hàm 1-1 LIỆU Hàm V=x² không là hàm 1-1

Hàm 1-1 có đồ thị chỉ cắt mọi đường thẳng y = C, với C thuộc MGT của hàm tại duy nhất 1 điểm.

Hàm ngược: Cho hàm 1-1 $f: X \to Y, f(x) = y$ hàm ngược của hàm, đựcc kí hiệu là $y = f^{-1}(x)$, $f^{-1}: Y \to X$ sao cho sao cho sa $f^{-1}(y) = x \Leftrightarrow y = f(x)$

Như vậy : $f(f^{-1}(y)) = y$ và $f^{-1}(f(x)) = x$

TÀI LIỆU SƯU TẬP

Ta có: MXĐ của hàm f -1 là MGT của hàm f và MGT của hàm f -1 là MXĐ của hàm f

Ví dụ: Tìm hàm ngược của hàm $y = x^3 - 1$

Ta sẽ tìm hàm $y = f^{-1}(x)$ bằng cách tính x theo y

$$y = x^3 - 1 \Leftrightarrow x = \sqrt[3]{y + 1}$$

Thay x bởi y, y bởi x, ta được hàm ngược

$$y = f^{-1}(x) = \sqrt[3]{x+1}$$

$$f \circ f^{-1}(x) = f(f^{-1}(x)) = f(\sqrt[3]{x+1}) = (\sqrt[3]{x+1})^3 - 1 = x$$

MXĐ và MGT của cả 2 hàm f và f⁻¹ đều là R

Ví dụ: Hàm y=x² không làm hàm 1-1 trên (-∞,+∞)

Tuy vậy, nếu ta giới hạn bớt MXĐ của hàm là $(0, +\infty)$ thì ta được hàm 1-1 $\begin{cases} y = x^2, \\ x \ge 0 \end{cases}$

Khi đó, ta vẫn có hàm ngược V TẬP

$$y = \sqrt{x}, x \ge 0$$

Với mọi a thuộc MXĐ của hàm y = f(x), đặt b = f(a) thì $a = f^{-1}(b)$ tức là điểm (a,b) thuộc đồ thị hàm f(x) thì điểm (b,a) thuộc đồ thị hàm $f^{-1}(x)$.

Đồ thị của hàm y = f(x) và hàm $y=f^{-1}(x)$ đối xứng nhau qua đường thẳng y = x

Điều kiện để tồn tại hàm ngược

<u>Mệnh đề 1</u>: Hàm $f: X \to Y$ có hàm ngược khi và chỉ khi f là ánh xạ 1-1 từ X vào Y

Mệnh đề 2: Hàm $f: X \rightarrow Y$ có hàm ngược trên khoảng (a,b) nếu f**là đơn điệu tặng** chặt trên (a,b)

$$(\forall x_1, x_2 \in (a,b): x_1 < x_2^{\text{BOTHCMUT-CNCP}} \neq f(x_1) < f(x_2))$$

hoặc f là đơn điệu giảm chặt trên (a,b)

$$(\forall x_1, x_2 \in (a,b) : x_1 < x_2 \to f(x_1) > (x_2))$$

Giới hạn & liên tục – Hàm lượng giác ngược & hàm hyperbol

Hàm ngược của hàm y = sinx : hàm y=arcsinx

Trên đọan
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
 Hàm y = sinx là hàm 1-1

Tồn tại hàm ngược là hàm y=arcsinx

Hàm y=arcsinx có MXĐ là [-1.1]

MGT là
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

BACHKHOACNCP.COM

2.1 Giới hạn & liên tục - Hàm lượng giác ngược

$$y = \arcsin x \Leftrightarrow x = \sin y, y \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

$$\arcsin(\sin x) = x, x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

$$\sin(\arcsin x) = x, x \in \left[-1, 1 \right]$$

$$\arcsin(-1) = -\frac{\pi}{2}, \arcsin(\frac{\sin(\sin(\pi))}{\sqrt{2}}) = -\frac{\pi}{4}$$

$$\arcsin(0) = 0, \arcsin(\frac{\sqrt{3}}{2}) = \frac{\pi}{3}$$

2.1 Giới hạn & liên tục - Hàm lượng giác ngược

Hàm ngược của hàm y = cosx : hàm y=arccosx

Trên đoạn $[0,\pi]$, hàm BOLHEMUT-ENEP $y=\arccos x$, MXĐ là $y=\cos x$ là hàm 1-1, tồn tại [-1,1], MGT là $[0,\pi]$ hàm ngược

 $y = \arccos x \Leftrightarrow x = \cos y$

$$\arccos(0) = \frac{\pi}{2}, \arccos(\frac{1}{\sqrt{2}}) = \frac{\pi}{4}, \arccos(-\frac{1}{2}) = \frac{2\pi}{3}$$

2.1 Giới hạn & liên tục – Hàm lượng giác ngược

Hàm ngược của hàm y = tanx : hàm y=arctanx

Trên khoảng $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ Hảm y=arctanx, MXĐ là R, MGT là $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Hàm y=tanx là hàm 1-1

$$\arctan(-\infty) = -\frac{\pi}{2}, \arctan(1) = \frac{\pi}{4}, \arctan(\sqrt{3}) = \frac{2\pi}{3}, \arctan(-\frac{1}{\sqrt{3}}) = -\frac{\pi}{6}$$

2.1 Giới hạn & liên tục - Hàm lượng giác ngược

Hàm ngược của hàm y = cotx : hàm y=arccotx

Trên khoảng (0,π) hàm là hàm 1-1

Hàm y=arccotx có MXĐ là R, MGT là (0,π)

$$y = \cot x \Leftrightarrow x = \operatorname{arc} \cot y$$

$$arc \cot(0) = 0, arc \cot(\frac{1}{\sqrt{3}}) = \frac{\pi}{3}, arc \cot(-\sqrt{3}) = \frac{5\pi}{6}$$

Định nghĩa (hàm Hyperbolic)

sin hyperbolic
$$\sinh(x) = \frac{e^x - e^{-x}}{\sqrt{c_x} \cdot 2} = \sinh x$$

cos hyperbolic $\cosh(x) = \frac{e^x + e^{-x}}{2} = \cosh x$

tan hyperbolic $\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \tanh x$

cotan hyperbolic
$$\coth(x) = \frac{\cosh(x)}{\sinh(x)} = \coth x$$

Hàm
$$y = \cosh x (\cosh x)$$
 Hàm $y = \sinh x (\sinh x)$

Có các công thức sau (tương tự công thức lượng giác)

1/
$$ch^2x - sh^2x = 1$$

2/ $sh(2x)=2shx.chx$, $ch(2x)=ch^2x + sh^2x$
3/ $ch(x+y)=chx.chy + shx.shy$
4/ $ch(x-y)=chx.chy - shx.shy$
5/ $sh(x+y)=shx.chy + shy.chx$
6/ $sh(x-y)=shx.chy - shy.chx$

Điểm tụ: Cho D là tập số thực. Điểm x_0 được gọi là điểm tụ của tập D nếu trong mọi lân cận $(x_0 - \varepsilon, x_0 + \varepsilon)$ của x_0 đều chứa vô số các phần tử của D

Ví dụ. D = (0,1) mọi điểm thuộc [0,1] đều là điểm tụ

$$D = \left\{ \frac{1}{n}, n \in \mathbb{N} \right\}$$
 Có duy nhất 1 điểm tụ là 0

Giới hạn hàm số (ngôn ngữ $\varepsilon - \delta$):

Cho hàm f(x) và x_0 là 1 điểm tụ của MXĐ D_f của hàm

$$\lim_{x \to x_0} f(x) = a \iff \forall \varepsilon > 0 \ \exists \delta > 0$$

$$\forall x \in D_f, |x - x_0| < \delta \Longrightarrow |f(x) - a| < \varepsilon.$$

<u>Chú ý</u>.

Hàm f(x) có thể không xác định tại x₀

Ví dụ: Tính giới hạn
$$\lim_{x\to 1} \frac{x-1}{x^2-1}$$

Hàm không xác định tại $x_0=1$, giới hạn đã cho có dạng $\frac{0}{0}$

Ta vẽ đường cong để minh họa cho kết quả dễ thấy

$$\lim_{x \to 1} \frac{x-1}{x^2 - 1} = \frac{1}{2}$$

Giới hạn hàm số (ngôn ngữ dãy):

Cho x_0 là điểm tụ của MXĐ D_f của hàm f(x)

$$\lim_{x \to x_0} f(x) = a \iff \forall (x_n) \in D_f, x_n \neq x_0, x_n \xrightarrow{n \to \infty} x_0$$

$$\Rightarrow f(x_n) \xrightarrow{n \to \infty} a$$

Chú ý: Ta thường dùng định nghĩa bằng ngôn ngữ dãy để chứng minh giới hạn hàm không tồn tại bằng cách chỉ ra 2 dãy $(x_n), (x_n) \to x_0$ sao cho 2 dãy tương ứng $f(x_n), f(x_n)$ có 2 giới hạn khác nhau

Ví dụ: Chứng minh rằng giới hạn sau không tồn tại $\lim_{x\to\infty} \sin x$

$$\{x_n\} = \{n\pi\} \Rightarrow f(x_n) = \sin n\pi = 0 \forall n$$

$$\left\{ x_{n}' \right\} = \left\{ \frac{(4n+1)\pi}{2} \right\} \Rightarrow f(x_{n}') = \sin \frac{(4n+1)\pi}{2} = \sin(2n\pi + \frac{\pi}{2}) = 1, \forall n$$

$$\lim_{n \to \infty} f(x_n) = 0, \lim_{n \to \infty} f(x_n') = 1$$

Giới hạn ở vô cực :

$$\lim_{x \to +\infty} f(x) = a \iff \forall \varepsilon > 0 \quad \exists A > 0$$

$$\forall x \in D_f, x > A \implies |f(x) - a| < \varepsilon.$$

$$\lim_{\substack{x \to -\infty \\ \forall x \in D_f, x < B \Rightarrow |f(x) - a| < \varepsilon.}} f(x) = a \Leftrightarrow \forall \varepsilon > 0 \exists B < 0$$

BACHKHOACNCP.COM

Giới hạn ra vô cực:

$$\lim_{x \to x_0} f(x) = +\infty \iff \forall M > 0 \quad \exists \delta > 0$$

$$\forall x \in D_f, |x - x_0| < \delta \Rightarrow f(x) > M^{CNC}$$

TÀI LIỆU SƯU TẬPY

BỞI HCMUT-CNCP

$$\lim_{x \to x_0} f(x) = -\infty \iff \forall M < 0 \ \exists \delta > 0$$

$$\forall x \in D_f, |x - x_0| < \delta \Longrightarrow f(x) < M.$$

BACHKHOACNCP.COM

Tính chất của giới hạn hàm

Cho:
$$\lim_{x \to x_0} f(x) = a$$
, $\lim_{x \to x_0} g(x) = b$

1)
$$\lim_{x \to x_0} (\alpha f) = \alpha a, \quad \alpha \in \mathbb{R}^{\infty}(2) \quad \lim_{x \to x_0} (f + g) = a + b$$

1)
$$\lim_{x \to x_0} (\alpha f) = \alpha a$$
, $\alpha \in \mathbb{R}^{ACN_C}(2)$ $\lim_{x \to x_0} (f + g) = a + b$

3) $\lim_{x \to x_0} (f \cdot g) = a \cdot b$

TAILIEU SU'U TÂP

5) $(\forall x \in V_{\varepsilon}(x_0), f(x) \leq g(x)) \Rightarrow a \leq b$

5)
$$(\forall x \in V_{\varepsilon}(x_0), f(x) \leq g(x)) \Rightarrow a \leq b$$

6)
$$\begin{cases} f(x) \le g(x) \le h(x) \\ \lim_{x \to x_0} f = \lim_{x \to x_0} h = a \end{cases} \Rightarrow \lim_{x \to x_0} g(x) = a \text{ (£Jinh lý kẹp)}$$

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^{x} = e$$

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^{x} = e$$

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^{x} = e$$

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^{x} = e$$

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^{x} = e$$

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^{x} = e$$

$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$$

Giới hạn dạng $u(x)^{v(x)}$:

Giả sử :
$$\begin{cases} \lim_{x \to x_0} u(x) = a > 0 \\ \lim_{x \to x_0} v(x) = b \end{cases}$$
 Ta có :

$$\lim_{x \to x_0} \left(u(x) \right)^{v(x)} = \lim_{x \to x_0} e^{\frac{v(x)\ln(u(x))}{\ln(u(x))}} = e^{\lim_{x \to x_0} v(x)\ln(u(x))}$$
$$= e^{b\ln a} = e^{b}.$$

Vậy:
$$\lim_{x \to x_0} u(x)^{v(x)} = \lim_{x \to x_0 \atop \text{BACHKHOACNCP.COM}} u(x)^{\lim_{x \to x_0} v(x)}$$

Giới hạn cơ bản thường gặp khi x→0

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$7) \quad \lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

2)
$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\tan x}{x} = 1$$

3)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

9)
$$\lim_{x\to 0} (1+\alpha x)^{1/x} = e^{\alpha x}$$

4)
$$\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$$

$$\lim_{x \to 0} \frac{shx}{x} = 1$$

5)
$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha$$

11)
$$\lim_{x \to 0} \frac{chx - 1}{x^2} = \frac{1}{2}$$

$$6) \quad \lim_{x \to 0} \frac{\arctan x}{x} = 1$$

BACHKHOACNCP.COM

Giới hạn cơ bản thường gặp khi x→∞

1)
$$\lim_{x\to +\infty} x^{\alpha} = +\infty$$
, $\alpha > 0$

$$2) \lim_{x \to +\infty} \left(\ln x \right)^{\alpha} = +\infty, \quad \alpha > 0$$

3)
$$\lim_{x \to +\infty} a^x = +\infty, \quad a > 1$$

4)
$$\lim_{x \to +\infty} \left(1 + \frac{\alpha^{0}}{x} \right)^{\frac{1}{x}} = e^{\alpha}$$

5) $\lim_{x\to +\infty} \sin x$ không tồn tại

Các dạng vô định:

- 1) $\frac{0}{0}$
- $3) 0 \cdot \infty$
- 5) 1^{∞}
 - 7) ∞^0

Ví dụ: Tính các giới hạn sau bằng cách áp dụng các giới hạn cơ bản

$$L_{1} = \lim_{x \to 0} \frac{\ln(\cos x)}{\ln(1+x^{2})} \quad \text{(Dang } \frac{0}{0})$$

$$L_{1} = \lim_{x \to 0} \frac{\ln(1+(\cos x - 1))}{\cos x - 1} \frac{x^{2}}{\ln(1+x^{2})} \frac{\cos x - 1}{x^{2}} = 1.1.(-\frac{1}{2}) = -\frac{1}{2}$$

$$L_{2} = \lim_{x \to 1} \frac{\sin\left(e^{x-1} - 1\right)}{\ln x} \underbrace{\frac{\sin\left(e^{t} - 1\right)}{\ln x}}_{\text{both in } t \to 0} \frac{\sin\left(e^{t} - 1\right)}{\ln(1+t)}$$

$$= \lim_{t \to 0} \frac{\sin\left(e^{t} - 1\right)}{e^{t} - 1} \underbrace{\frac{t}{\ln(1+t)}}_{\text{BACHKMOACNCF.COM}} \underbrace{\frac{e^{t} - 1}{\ln(1+t)}}_{\text{BACHKMOACNCF.COM}} = 1$$

Giới hạn 1 phía:

Số a gọi là *giới hạn trái* của y = f(x) tại điểm x_0 , nếu $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in D_f, 0 < x_0 - x < \delta \; \Rightarrow \mid f(x) - a \mid < \varepsilon.$ ký hiệu $\lim_{x \to x_0^-} f(x) = a^{\text{OACN}_{Co}}$

Số a gọi là *giới hạn phải* của
$$y = f(x)$$
 tại điểm x_0 , nếu $\forall \varepsilon > 0 \; \exists \, \delta > 0 \; \forall x \in D_f, 0 < x - x_0 < \delta \Rightarrow \mid f(x) - a \mid < \varepsilon.$ ký hiệu $\lim_{x \to \infty} f(x) = a$

Giới hạn 1 phía:

Định lý:

Hàm số y = f(x) có giới hạn tại x_0 khi và chỉ khi nó có giới hạn trái, giới hạn phải tại x_0 và chúng bằng nhau.

Chú ý:

- 1. Ta có thể dùng đị**nh lý trên để ch**ứng minh không tồn tại giới hạn hàm (Ngoài cách dùng định nghĩa bằng ngôn ngữ dãy).
- 2. Giới hạn một phía thường được dùng trong các trường hợp hàm chứa căn bậc chẵn, chứa trị tuyệt đối, hoặc hàm ghép.

Ví dụ: Chứng minh không tồn tại giới hạn $\lim_{x\to 3} \frac{2x}{x-3}$ bằng cách tìm giới hạn 1 phía

Ta có:
$$\lim_{x\to 3^-} \frac{2x}{x-3} = -\infty$$
 VÌ khi $x\to 3^-$ thì $x-3<0$

$$\lim_{x\to 3^+} \frac{2x}{x-3} = -\infty$$
 Vì khi $x\to 3^+$ thì $x-3>0$

$$\lim_{x\to 3} \frac{2x}{x-3} = -\infty$$
 Vậy: $\exists \lim_{x\to 3} \frac{2x}{x-3}$

vì giới hạn trái, phải tồn tại nhưng không bằng nhau

Ví dụ: Tính giới hạn $\lim_{x\to 1\pm 0} 2^{\frac{1}{x-1}}$

Giới hạn phải:
$$x \to 1^+ \times \Rightarrow x \to 1 \to 0$$
 Tức là
$$\frac{1}{x-1} \to +\infty$$
 Vậy:
$$\lim_{x \to 1+0} 2^{\frac{1}{x-1}} = +\infty$$

Giới hạn trái: $x \rightarrow 1$ - $\Rightarrow x < 1 \Rightarrow x - 1 < 0$ Tức là

$$\frac{1}{x-1} \to -\infty$$
 Vậy: $\lim_{x \to 1-0} 2^{\frac{1}{x-1}} = 0$

Ví dụ : Tìm a để hàm f(x) có giới hạn khi x→0

$$f(x) = \begin{cases} \frac{\sin 2x}{x}, & x > 0 \\ 5x + a, & x \le 0 \end{cases}$$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\sin 2x}{x^{\text{AI}}} = 2 \underbrace{\cos x + \cos x}_{\text{BOTHEMUT-CNCP}}$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (5x + a) = a$$

Để hàm có giới hạn khi $x \rightarrow 0$ ta phải có 2 giới hạn trên bằng nhau tức là : a=2

BACHKHOACNCP.COM

Hàm liên tục: Hàm y=f(x) được gọi là liên tục tại điểm x=a thuộc MXĐ của hàm nếu

$$\lim_{x \to a} f(x) = f(a)$$

Hàm gián đoạn tại x=a nếu nó không liên tục tại đó

Đồ thị của hàm y=f(x) gián đọan tại x=3

Các hàm sơ cấp cơ bản là 5 lớp hàm sau

- 1. Hàm số mũ : y=a^x
- 2. Hàm lũy thừa: y=xa
- 3. Hàm loga: y=log_ax
- 4. Các hàm lượng giác: 4 hàm
- 5. Các hàm lượng giác ngược: 4 hàm

Hàm sơ cấp là các hàm tạo từ các hàm sơ cấp cơ bản với 4 phép toán số học (cộng, trừ, nhân, chia) và phép hợp hàm

Định lý (về sự liên tục của các hàm sơ cấp):

Các hàm sơ cấp liên tục tại mọi điểm xác định của nó

Ví dụ: Khảo sát sự liên tục của hàm $y = \frac{x^2 - x - 2}{x - 2}$

Dễ thấy, y là hàm sơ cấp và không xác định tại x=2 SƯU TẬP nên nó không liên tục tại x=2.

Điểm x=2 gọi là điểm gián đoạn của hàm

Ta có:
$$\lim_{x \to 2} y = \lim_{x \to 2} \frac{x^2 - x - 2}{x - 2}$$

= $\lim_{x \to 2} (x + 1) = 3$

$$g(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2}, & x \neq 2 \\ 3, & x = 2 \end{cases}$$

Đặt:

$$h(x) = \begin{cases} \frac{x^2 - x - 2 \text{Bot Hemut-ence}}{x - 2}, & x \neq 2 \\ 1, & x = 2 \end{cases}$$

Thì hàm g(x) là hàm liên tục với mọi x, hàm h(x) là, hàm gián đọan tại x=2

Liên tục 1 phía: Thay giới hạn trong định nghĩa hàm liên tục bởi 2 giới hạn 1 phía, tương ứng ta có khái niệm liên tục trái, liên tục phải

Định lý: Hàm liên tục tại x=a khi và chỉ khi nó liên tục trái và liên tục phải tại x=a

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Tính chất hàm liên tục: Tổng, tích, thương và hợp các hàm liên tục lại là các hàm liên tục

Ví dụ: Tìm a để hàm
$$f(x) = \begin{cases} x+1, x \le 1 \\ 3-ax^2, x > 1 \end{cases}$$
 liên tục với mọi x

Với x≠1, f(x) là hàm sơ cấp nên nó liên tục.

$$\lim_{x\to 1^{-}} f(x) = \lim_{x\to 1^{-}} (x+1) = 2 = f(1)$$
 Hàm liên tục trái tại 1

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} (3 - ax^{2})^{\frac{1}{2} + \frac{1}{2} + \frac{1}{$$

Hàm liên tục phải tại 1 khi: $3-a=f(1)=2 \Leftrightarrow a=1$

Vậy với a= 1, hàm f(x) liên tục với mọi x

VCB: Hàm số $\alpha(x)$ được gọi là vô cùng bé (VCB) \underline{khi} $\underline{x \to x_0}$ nếu $\lim_{x \to x_0} \alpha(x) = 0$.

Ví dụ:

Hàm $\alpha(x) = 2x^3 + x$ là:

+ VCB khi
$$x \rightarrow 0$$
 VÀ $\lim_{x \rightarrow 0} \alpha(x) = 0$

+ không là VCB khi x
$$\rightarrow$$
1 vì $\lim_{x\rightarrow 1} \alpha(x) = 3$

Tính chất của các VCB

- 1) Tổng hữu hạn của các VCB là một VCB.
- 2) Tích của hai VCB là một VCB.
- 3) Tích của một VCB và một hàm bị chặn là một VCB.

TÀI LIÊU SƯU TẬP

4) Thương của hai VCB có thể không là một VCB.

So sánh các VCB:

Cho $\alpha(x)$ và $\beta(x)$ là hai vô cùng bé khi $x \rightarrow x_0$

Giả sử
$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = k$$

- 1) Nếu k=0, thì $\alpha(x)$ gọi là VCB bậc cao hơn $\beta(x)$, kí hiệu là $\alpha(x)=O(\beta(x))$
- 2) Nếu k hữu hạn, khác không, thì $\alpha(x)$ và $\beta(x)$ là hai VCB cùng cấp.
- 3) Nếu k=1, thì $\alpha(x)$ và $\beta(x)$ là hai VCB tương đương, kí hiệu là : $\alpha(x) \sim \beta(x)$
- 4) Nếu $\alpha(x)$ cùng bậc với $(\beta(x))^m$ thì ta nói bậc của $\alpha(x)$ là m so với $\beta(x)$

BACHKHOACNCP.COM

Ví dụ: So sánh các VCB sau

1. Khi x
$$\to$$
0 : $\alpha(x) = \sin^2 x + x^2$, $\beta(x) = \tan 2x$

2. Khi x
$$\to$$
1 : $\alpha(x) = \ln x, \beta(x) = e^{1-x} - 1$

Ta dùng định nghĩa để so sánh, tức là ta sẽ tính giới hạn của tỉ số 2 VCB cần so sánh

$$1.\lim_{x\to 0} \frac{\alpha(x)}{\beta(x)} = \lim_{x\to 0} \frac{\sin^2 x + x^2}{\tan 2x} = \lim_{x\to 0} \frac{\sin^2 x + x^2}{\tan 2x} = 0$$

Vậy $\alpha(x) = O(\beta(x))$

$$2.\lim_{x\to 1} \frac{\alpha(x)}{\beta(x)} = \lim_{x\to 1} \frac{\ln(1+(x-1))}{x-1} \frac{x-1}{e^{1-x}-1} = -1 \quad \frac{\alpha(x), \ \beta(x) \ la \ 2}{\text{VCB cùng bậc}}$$

Các VCB tương đương thường gặp khi x→0

1)
$$\sin x \sim x$$

6)
$$\arcsin x \sim x$$

2)
$$e^{x} - 1 \sim x$$

7)
$$\arctan x \sim x$$

3)
$$1 - \cos x \sim$$

$$\frac{x^2}{2^{\text{Al LIỆU SƯU TẬP}}} \approx x$$

4)
$$ln(1+x) \sim x$$

9)
$$\sinh x \sim x$$

$$5) (1+x)^{\alpha} - 1 \sim \alpha x$$

10)
$$\cosh x - 1 \sim \frac{x^2}{2}$$

Qui tắc thay VCB tương đương với tích, thương

Cho các VCB tương đương $f_1(x) \sim f_2(x), g_1(x) \sim g_2(x)$

Ta được:

$$f_{1}(x) g_{1}(x) \sim f_{2}(x) g_{2}(x)$$

$$\frac{f_{1}(x)}{g_{1}(x)} \sim \frac{f_{2}(x)}{g_{2}(x)}$$

Qui tắc thay VCB tương đương với tống nhiều VCB Giả sử $a\neq 0$, $b\neq 0$, α , β là các hằng số thực sao cho

$$f_1(x) \sim ax^{\alpha}, f_2(x) \sim bx^{\beta} \text{ với } x \rightarrow 0, f_1(x), f_2(x) \text{ là VCB}$$

$$f_1(x) + f_2(x) \sim \begin{bmatrix} 1.ax^{\alpha}, \text{khi } \alpha \neq \beta(\alpha > \beta) \\ 2.(a+b)x^{\alpha}, \text{khi } \alpha = \beta \& a+b \neq 0 \\ 3.\text{khong thay duoc, khi } \alpha = \beta \& a+b=0 \end{bmatrix}$$

<u>Chú ý:</u> Trường hợp duy nhất KHÔNG ĐƯỢC THAY VCB tương đương là HIỆU 2 VCB CÙNG TƯƠNG ĐƯƠNG VỚI VCB THỨ BA

Ví dụ: So sánh các VCB sau khi x→0:

$$1.\alpha(x) = x, \beta(x) = x \sin \frac{1}{x}$$

$$2.\alpha(x) = 2^{x^2} - \cos x, \beta(x) = \sin x^{\frac{3}{2}} - \arcsin x^2$$

$$\lim_{x \to 0} \frac{\beta(x)}{\alpha(x)} = \lim_{x \to 0} \frac{x \sin \frac{1}{x}}{x} = \lim_{\text{BOTH } x \to 0} \frac{1}{x}$$

Giới hạn không tồn tại tức là 2 VCB này không so sánh được

2. Ta sẽ so sánh bằng cách tính bậc của 2 VCB đó

$$\alpha(x) = 2^{x^2} - \cos x = (e^{x^2 \ln 2} - 1) - (\cos x - 1) \sim x^2 \ln 2 + \frac{1}{2}x^2$$

$$=x^2(\ln 2 + \frac{1}{2})$$

 $= x^{2} (\ln 2 + \frac{1}{2})$ Như vậy, bậc của $\alpha(x)$ là 2 so với x

$$\beta(x) = \sin x^{3/2} - \arcsin x^{2} + x^{2}$$

$$\sim x^{3/2}$$

Bậc của β(x) là 3/2 so với x

Vậy
$$\alpha(x) = O(\beta(x))$$

Ví dụ: Tìm a, b để α(x) tương đương với ax^b khi x \rightarrow 0 1. $\alpha(x) = \sin(\sqrt{1-x}-1)$ 2. $\alpha(x) = \tan x^2 + 2x$

Ta đi tính bậc của các VCB cvc

$$1.\alpha(x) = \sin\left(\sqrt{1-x} - 1\right) \sim \left(\sqrt{1-x} - 1\right) = \frac{-x}{\sqrt{1-x} + 1} \sim \frac{-1}{2}x^{1}$$

$$\Rightarrow a = \text{TAILIÊU SU'U TÂP}$$

$$\Rightarrow a = \text{TAILIÊU SU'U TÂP}$$

$$2.\alpha(x) \sim x^2 + 2x \sim 2x^1$$

$$\Rightarrow a = 2, b = 1$$

Ví dụ: Tính giới hạn
$$L_1 = \lim_{x \to 0} \frac{1 - \cos(2x)}{3x^2 + \ln(1+x)}$$

1. Ta thay VCB tương đương như sau, khi x→0

$$1-\cos 2x \sim \frac{1}{2}(2x)^2 = 2x^2$$

$$\ln(1+x) \sim x$$
(VCB turong đương cơ bản)

$$\Rightarrow 3x^2 + \ln(1+x) \sim 3x^2 + x + x + \infty x + \infty x = 0$$

(Tổng các VCB không cùng bậc tương đương với VCB có bậc thấp nhất)

$$L_1 = \lim_{x \to 0} \frac{2x^2}{x} = 0$$

Ví dụ: Tính giới hạn
$$L_2 = \lim_{x \to 1^+} \frac{\sin 2(x-1)}{e^{x-1} - \cos \sqrt{x-1}}$$

Lưu ý: Vì trong hàm dưới dấu *lim* có $\cos \sqrt{x} - 1$ tức là x≥1 nên ta chỉ tính giới hạn phải

Khi x→1+ thì (x-1) là VCB nên :

$$\sin(2(x-1)) \sim (2(x-1))$$
TÂI LIỆU SƯU TẬP

$$e^{x-1} - \cos\sqrt{x-1} = (e^{x-1} - 1) + (1 - \cos\sqrt{x-1}) \sim (x-1) + \frac{1}{2} (\sqrt{x-1})^2$$

$$=\frac{3}{2}(x-1)$$

$$L_2 = \lim_{x \to 1} \frac{2(x-1)}{3/2(x-1)} = \frac{4}{3}$$

Ví dụ: Tính
$$L_3 = \lim_{x \to 0} \frac{e^{2x} - e^{\sin x}}{\tan 3x}$$

$$L_3 = \lim_{x \to 0} \frac{e^{2x} - e^{\sin x}}{\tan 3x} = \lim_{x \to 0} \frac{(e^{2x} - 1) - (e^{\sin x} - 1)}{\tan 3x}$$

$$L_3 = \lim_{x \to 0} \frac{2x - \sin x}{3x} = \lim_{x \to 0} \frac{2x - \sin x}{3x} = \lim_{x \to 0} \frac{2x - \sin x}{3x} = \frac{1}{3}$$

Ví dụ: Tính
$$L_4 = \lim_{x \to 0} \frac{e^x - e^{\sin x}}{3x}$$

$$L_4 = \lim_{x \to 0} \frac{e^x - e^{\sin x}}{3x} = \lim_{x \to 0} \frac{(e^x - 1) - (e^{\sin x} - 1)}{3x}$$

Đến đây, không thể thay VCB tương đương như trên

được vì:

$$\begin{cases} e^{x} - 1 \sim x \\ e^{\sin x} - 1 \sim \sin x \sim x \end{cases}$$
TÀI LIỆT SỰ SỐ IÂ HIỆU CỦA 2 VCB
CÙNG TƯỚNG ĐƯỚNG
VỚI VCB THỬ 3

Ta sẽ có cách làm khác: hoặc dùng quy tặc L'Hospital hoặc dùng CT Taylor - Maclaurint

VCL: Hàm số A(x) được gọi là vô cùng lớn (VCL) khi $x \to x_0$ nếu $\lim_{x \to x_0} A(x) = \infty$.

Ví dụ:

1.
$$\lim_{x \to \infty} (2x^2 + \sin x) = \infty$$
 Nên A(x)=2x²+sinx là VCL khi x $\to \infty$

$$2.\lim_{x\to 0}\frac{1}{x} = \infty$$

TÀI
$$\Longrightarrow$$
 $A(x) = 1$ A Plà VCL $khi x \rightarrow 0$

So sánh các VCL:

Cho A(x) và B(x) là hai vô cùng lớn khi $x \to x_0$.

Giả sử
$$\lim_{x \to x_0} \frac{A(x)}{B(x)} = k$$
.

- 1) Nếu k = ∞ , thì A(x) gọi là VCL bậc cao hơn B(x),
- 2) Nếu k hữu hạn, khác không, thì A(x) và B(x) là hai VCL cùng cấp.
- 3) Nếu k=1, thì A(x) và B(x) là hai VCL tương đương
- 4) Nếu A(x) cùng bậc với (B(x))^m thì bậc của A(x) là m so với B(x)

Qui tắc ngắt bỏ VCL

$$\lim_{x \to x_0} \frac{\text{Tổng hữu hạn các VCL}}{\text{Tổng hữu hạn các VCL}}$$

$$= \lim_{x \to x_0} \frac{\text{VCL bậc cao nhất của tử}}{\text{VCL bậc cao nhất của mẫu}}$$

Ví dụ: Tính
$$\lim_{x \to \infty} \frac{\sqrt[3]{x^{10} - 2x^5 + 2} - 2x^3 + x^4}{\sqrt{x^5 + 2x^3 - x} + x^2 + 3x^3 - 2x^4}$$

Khi $x \to \infty$ thì cả trên tử số và dưới mẫu số đều là tổng của các vô cùng lớn không cùng bậc

Bậc lớn nhất ở tử số và cả mẫu số đều là 4

Vậy:
$$\lim_{x \to \infty} \frac{\sqrt[3]{x^{10} - 2x^5 + 2 - 2x^3 + x^4}}{\sqrt{x^5 + 2x^3 - x + x^2 + 3x^3 - 2x^4}} = \lim_{x \to \infty} \frac{x^4}{-2x^4} = -\frac{1}{2}$$

Giới hạn & liên tục - Phụ lục

$$L_{1} = \lim_{x \to 0} \frac{\sqrt[5]{32 + x} - 2}{x} = \lim_{x \to 0} \frac{2\left[\left(1 + \frac{x}{32}\right)^{\frac{1}{5}} - 1\right]}{2\left[\left(1 + \frac{x}{32}\right)^{\frac{1}{5}} - 1\right]}$$

$$= \lim_{x \to 0} \frac{2 \cdot \frac{1}{5} \cdot \frac{x}{32}}{x} = \frac{1}{80}$$

$$L_{2} = \lim_{x \to 0} \frac{\cos 3x - \cos 7x^{\text{ot HCMUT-CN}}(\cos 3x - 1) - (\cos 7x - 1)}{x^{2}} = \lim_{x \to 0} \frac{-\frac{1}{2}9x^{2} + \frac{1}{2}49x^{2}}{x^{2}} = 20$$

$$= \lim_{x \to 0} \frac{2}{x^{2}} = 20$$
BACHKHOACNCP.COM

Giới hạn & liên tục - Phụ lục

$$L_{3} = \lim_{x \to \pi/4} \cot 2x \cdot \cot(\pi/4 - x)$$

$$= \lim_{x \to \pi/4} \tan(\pi/2 - 2x) \frac{1}{\tan(\pi/4 - x)} = \lim_{x \to \pi/4} \frac{\pi/2 - 2x}{\pi/4 - x} = 2$$

$$L_{4} = \lim_{x \to 0} \left(1 - \tan^{2} x\right)^{1/\sin^{2}(2x)} e^{2x}$$

$$= \lim_{x \to 0} \left[\left(1 - \tan^{2} x\right)^{1/\tan^{2}x} \right]^{1/\tan^{2}(2x)} = \frac{1}{e}^{\lim_{x \to 0} \frac{x^{2}}{(2x)^{2}}} = \frac{1}{\sqrt[4]{e}}$$