Supplementary Figures

Selcen Ari Alper Yilmaz 17 09 2019

Figure S1: Workflow for simulation of competing endogenous RNA regulations. Graph object in steps 2-6 is saved and updated continuously.

```
# install.packages('devtools')
# devtools::install_github('selcenari/ceRNAnetsim')
library(ceRNAnetsim)
```

minsamp dataset analysis at lack of interaction factors.

```
minsamp <- readRDS("data/minsamp.RDS")</pre>
```

```
priming_graph(minsamp, competing_count = Competing_expression,
    miRNA_count = miRNA_expression) %>% vis_graph(Competing_color = "navajowhite3",
    mirna_color = "ivory4", title = "Minimal dataset in steady-state conditions")
```

Minimal dataset in steady-state condit

Figure S2: Minimal Dataset in Steady-state

```
priming_graph(minsamp, competing_count = Competing_expression,
    miRNA_count = miRNA_expression) %>% update_how("Gene2",
    2) %>% vis_graph(Competing_color = "navajowhite3",
    mirna_color = "ivory4", Upregulation = "red", title = "Gene2 Upregulation without interaction factor.")
```

Gene2 Upregulation without interaction

Figure S3: Gene2 Upregulation on Minimal Dataset

```
priming_graph(minsamp, competing_count = Competing_expression,
    miRNA_count = miRNA_expression) %>% update_how("Gene2",
    2) %>% simulate(cycle = 1) %>% vis_graph(Competing_color = "navajowhite3",
    mirna_color = "ivory4", Upregulation = "red", Downregulation = "blue",
    title = "a)")

priming_graph(minsamp, competing_count = Competing_expression,
    miRNA_count = miRNA_expression) %>% update_how("Gene2",
    2) %>% simulate(2) %>% vis_graph(Competing_color = "navajowhite3",
    mirna_color = "ivory4", Upregulation = "red", Downregulation = "blue",
    title = "b)")
```


Figure S4: Sequential iteration of minsamp data. a) First response of system to Gene2 upregulation (2nd iteration). b) Spreading of perturbation on system (3th iteration)

minsamp dataset analysis with interaction factors.

Minimal dataset with interaction factor

Figure S5: Minimal Dataset with interaction factors in Steady-state

Gene2 Upregulation with interaction fa

Figure S6: When Gene2 is upregulated on Minimal Dataset with interaction factors

Figure S7: Sequential iteration of minsamp data with interaction factors a) First response of system to Gene 2 upregulation (2nd iteration). b) Spreading of perturbation on system (3th iteration)

Common target perturbation in minsamp dataset.

```
priming_graph(minsamp, competing_count = Competing_expression,
   miRNA_count = miRNA_expression, aff_factor = c(energy,
        seed_type), deg_factor = region) %>% vis_graph(Competing_color = "navajowhite3",
   mirna_color = "ivory4", Upregulation = "red", title = "a)")
priming_graph(minsamp, competing_count = Competing_expression,
   miRNA_count = miRNA_expression, aff_factor = c(energy,
        seed_type), deg_factor = region) %>% update_how("Gene4",
   2) %>% vis_graph(Competing_color = "navajowhite3",
   mirna_color = "ivory4", Upregulation = "red", title = "b)")
priming_graph(minsamp, competing_count = Competing_expression,
   miRNA_count = miRNA_expression, aff_factor = c(energy,
        seed type), deg factor = region) %>% update how("Gene4",
   2) %>% simulate(cycle = 1) %>% vis_graph(Competing_color = "navajowhite3",
   mirna_color = "ivory4", Upregulation = "red", title = "c)")
priming_graph(minsamp, competing_count = Competing_expression,
   miRNA_count = miRNA_expression, aff_factor = c(energy,
        seed_type), deg_factor = region) %>% update_how("Gene4",
   2) %>% simulate(cycle = 2) %>% vis_graph(Competing_color = "navajowhite3",
   mirna_color = "ivory4", Upregulation = "red", title = "d)")
```


Figure S8: Perturbation of Gene4 on minsamp data with interaction factors. a) Network at steady-state. b) Upregulation of Gene4. c) Primary response of network to upregulation of Gene4. d) Re-regulation of whole nodes on system (3th iteration)

Determination of iteration for Upregulation of SERPINE2 gene from Breast cancer patient dataset

```
E9GE_mirnagenenormal <- readRDS("data/E9GE_mirnagenenormal.RDS")
head(E9GE_mirnagenenormal)</pre>
```

A tibble: 6 x 7

```
##
     hgnc_symbol miRNA_name mirna_RPM GE_normal Energy seed_type_effect
##
     <chr>
                 <chr>
                                 <dbl>
                                           <dbl>
                                                   <dbl>
                                                                     <dbl>
                               111204.
                                                                      0.05
## 1 CCNG1
                 hsa-let-7~
                                            5245
                                                  -25.1
## 2 DICER1
                               111204.
                                                  -24.4
                                                                      0.43
                 hsa-let-7~
                                            3285
## 3 SESN1
                 hsa-let-7~
                               111204.
                                             1179
                                                  -22.2
                                                                      0.05
## 4 NIPBL
                               111204.
                                                  -22.1
                                                                      0.05
                 hsa-let-7~
                                            4503
## 5 INTS12
                 hsa-let-7~
                               111204.
                                              600
                                                  -21.9
                                                                      0.05
                                             1248 -21.8
                                                                      0.43
## 6 FNIP1
                 hsa-let-7~
                               111204.
## # ... with 1 more variable: region_effect <dbl>
```

```
as.data.frame(E9GE_mirnagenenormal) %>% priming_graph(competing_count = GE_normal,
    miRNA_count = mirna_RPM, aff_factor = c(Energy,
        seed_type_effect), deg_factor = region_effect) %>%
    update_how("SERPINE2", 2.75) %>% simulate(150) %>%
    find_iteration(limit = 1, plot = TRUE)
```

Warning in priming_graph(., competing_count = GE_normal, miRNA_count = mirna_RPM, : First column is ;

Figure S9: Percentage of affected nodes of each iteration for SERPINE2 Gene

```
# limit=0 describes the change that is not taken
# into account.
```