

Quiz Date: Friday, 18 January, 2019

**Textbook Reading:** Section 1.2 (floating-point arithmetic) & 6.1 (Gaussian elimination).

Reminder: solutions will not be posted, but the TAs are expecting you to bring your questions to the tutorials. You bring questions to the Wednesday afternoon office hours.

## 1) Basic Ideas

Know the definitions of the following:

- finite-precision, floating-point representation of real numbers,
- absolute and relative errors,
- row operations,
- augmented matrices.

How do catastrophic losses of relative error occur in finite-precision arithmetic?

## 2) Finite-Precision, Floating-Point Arithmetic

Textbook problems from Section 1.2:

- #1 absolute versus relative error.
- #5 but use the **Matlab floating-point notation**, not the textbook notation! Also, you need only consider rounding it is what Matlab does. These are just for practice, but be sure you understand how carry & digit-loss happens.
- #7 sequential pair-wise arithmetic be sure to properly round the fractions. Note that a+b+c means (a+b)+c.
- #14 illustration of two types of finite approximations.
- #15 part (a) only.
- #23 use fl.m from lecture.
- #28 a theory-lite question.

## 3) Gaussian Elimination Warm-Up

Textbook problem from Section 6.1:

#3 (a) in addition to two-digit rounding arithmetic, use the augmented matrix notation, and make the list of row operations required to achieve upper triangular form. Use the  $E_j$  and  $\rightarrow$  notations, following the example from page 367.

DJM