# Lecture 11 Image Resampling

Multimedia System

Spring 2020

#### Image Resampling



- The purpose is to assign pixel values to the empty pixel s in a new matrix output
- The intensity of a pixel in the output matrix is assigned based on the intensity of its surrounding pixels in the o riginal image
- Methods
  - Nearest neighbor
  - Bilinear interpolation
  - Cubic interpolation

### Bilinear interpolation



$$P'(x,y) = P(1,1) \cdot (1-d) \cdot (1-d') + P(1,2) \cdot d \cdot (1-d') + P(2,1) \cdot d' \cdot (1-d) + P(2,2) \cdot d \cdot d'$$

## Interpolation Result

Original Image



Nearest Neighbor







## Interpolation Result

Original image: 🌆





Nearest-neighbor interpolation



Bilinear interpolation



Bicubic interpolation

#### Composing: Blending

- Problem: Smoothly blend over between images to hide seams
- Rather complicated math
- Instead: Use simple heuristic
  - Every pixel is weighted with the distance to the closest im age boundary to the nth power



$$f(P) = \frac{d_1 f_1(P) + d_2 f_2(P)}{d_1 + d_2}$$

# Blending



# Blending



# Composing: Blending

#### without blending



# Composing: Blending

#### with blending

