NEW MATERIAL MODEL INSTRUCTIONS

tkLayout developers meeting

Stefano MARTINA

stefano.martina@cern.ch

European Organization for Nuclear Research

Old model

- √ Cables material distributed inside modules volumes
- ✓ Possible to model cooling pipe along rods, manifold in the flange and bigger cooling pipe out of the barrel

New model

- √ Cables material in dedicated volumes
- √ More detailed
- ✓ Better routing algorithm
- ✓ More functionalities

Advantages

Correct description for tilted modules

- √ In old model the cables were distributed over the modules
 - Not feasible in case of tilted modules
- √ Now is possible to model this design

New feature

Model for pixel-like materials

√ For instance twisted pair from modules, electrical optical transducer, and optic fibers after it

New feature

Model for pixel-like materials

√ For instance twisted pair from modules, electrical optical transducer, and optic fibers after it

New feature

Model for pixel-like materials

√ For instance twisted pair from modules, electrical optical transducer, and optic fibers after it

Advantages

- √ The new algorithm use the same underlying C++ objects of the old
- ✓ This means that the XML export is working as usual
 - only more detailed than before

Configuration files

- √ config/stdinclude/Materials/ material definition
- √ config/stdinclude/Conversion/ conversions definition
- ✓ Include materials in geometries at layer/disk, rod or module levels, depending of the material type (or before)
- ✓ Include conversions in geometries at layer or disk level (or before)

Material

- - → module

 - → layer also for the disks
- ReferenceSensor only for module material, define the reference sensor for scaling material (if specified), each one must have:
 - → numStripsAcross
 - → numSegments
- → Element define a single material and have the properties:

 - → elementName the name of the element, mandatory
 - → quantity mandatory
 - unit the unit between g/m, mm, g, mandatory
 - → service if the material is locally to the element or exiting from it, false by default
 - scaleOnSensor used only on module materials, if 0 (by default) the element don't scale on sensor, otherwise scale on the specified sensor
 - referenceSensor used only on module materials with scaleOnSensor active, specify the sensor of reference between the list provided before
 - targetVolume used only on module materials, specify the target volume index inside the module (sensor, hybrids, etc..), 0 by default
 - destination if defined specify the second level conversion on wich the element is converted
 - debugInactivate specify if deactivating the element or not for debugging, false by default

Conversion

- \hookrightarrow stationName is the identifier, used also for the destination property, is mandatory
- \hookrightarrow minZ used only for second stations, specify the position
- - \hookrightarrow Input mandatory, only one for Conversion and have
 - Element mandatory, only one for Input, is the element to be converted, have:
 - \hookrightarrow elementName
 - \hookrightarrow quantity
 - \hookrightarrow unit
 - Output mandatory, only one for Conversion and have
 - Element not mandatory, can be more than one, is the result of the conversion, have:
 - ⇔ elementName

 - \hookrightarrow unit
 - → service if false (by default) the material go inside the conversion object (flange or custom for second), if true go out

	Unit=g/m	Unit=mm	Unit=g
Module Service=false	Module	Module	Module
	× moduleLength	\times moduleSurface \times ρ (sensor surface)	×1
	No accumulation	No accumulation	No accumulation
	No conversion	No conversion	No conversion
	Scaling possible	Scaling possible	Scaling possible
Module ring R of N Service=true		Following supports $S_{n+1} \dots S_1 \dots S_N$ × numModules _R × supportSurface ₁ × ρ Accumulation Conversion(1:1 by default, with warning) Scaling possible Deprecated warning	Error
Rod(barrel) Service=false	All supports $S_1 \dots S_l \dots S_N$ \times numModules; \times supportLength; No accumulation No conversion Scaling not possible	All supports $S_1 \dots S_N \dots S_N \times supportSurface_1 \times \rho$ No accumulation No conversion Scaling not possible	All supports S_1 S_1 S_N × numModules ₁ × $\sum_{j=1}^{n} \frac{S_N}{s_j}$ No accumulation No conversion Scaling not possible
Rod(barrel) Service=true	All supports $S_1 \dots S_l \dots S_N$ \times numModules ₁ \times supportLength ₁ No accumulation Conversion Scaling not possible	All supports S ₁ S _N S _N × supportSurface, × ρ No accumulation Conversion Scaling not possible Deprecated warning	Error
Layer/Disk Service=false	All supports $S_1 \dots S_N$ \times supportLength _i No accumulation No conversion Scaling not possible	All supports $S_1 \dots S_N$ \times supportSurface, \times ρ No accumulation No conversion Scaling not possible	All supports S ₃ S _N S _N × support snigth, support length, No accumulation No conversion Scaling not possible
Layer/Disk Service=true	All supports $S_1 \dots S_N$ \times supportLength _i No accumulation Conversion Scaling not possible	All supports S ₁ S _N × supportSurface, × ρ No accumulation Conversion Scaling not possible Deprecated warning	Error

Example

```
geometries/.../TechnicalProposal2014 Types.cfg
Barrel TBPS {
 @includestd ModuleTypes/ptPS
 @includestd Conversions/flange
 Layer 1 {
   triggerWindow 5
   dsDistance 2.6
```

```
config/stdinclude/ModuleTypes/ptPS
...
@includestd Materials/ptPS
@includestd Materials/rodPtPS
```

Example

.../Materials/ptPS

```
Materials module-ptPS {
  type module
  // Default sensor:
  ReferenceSensor 1 {
    numStripsAcross 960
    numSegments 32
  ReferenceSensor 2 {
    numStripsAcross 960
    numSegments 2
  // Sensor
  Component {
    componentName Sensor
    service false
    scaleOnSensor 0
    targetVolume 1
    Element {
      elementName SenSi
      quantity 0.2
      unit mm
```

.../Materials/rodPtPS

```
Materials rodPtPS {
 type rod
 Component {
   componentName Cooling
    service true
    scaleOnSensor O
   Element {
      elementName Steel
      quantity 7.860696517
      unit g/m
    Element {
      elementName CO2
      quantity 1.791044776
      unit g/m
```

Example

.../Conversions/flange

```
Station {
  stationName flange
 type flange
 Conversion {
    Input {
      Element {
        elementName Cu MV
        quantity 10
        unit g/m
    Output {
      Element {
        elementName Cu
        quantity 10
        unit g/m
        service true
      Element {
        elementName Cu
        quantity 0.423
        unit g
        service false
```

.../Conversions/endcap1

```
Station {
  stationName endcap1
  type second
  minZ 1500
  maxZ 1600

Conversion {
```

Supports

Custom supports

```
Support {
  type custom
  customZMin 2300
  customRMin 200
  customLength 600
  customDir vertical
  Component {
    componentName supp
    Element {
      elementName Steel
      quantity 1000000
      unit g
```

Supports

```
Top/bottom supports
Support {
  type top //or bottom
  Component {
Auto supports
Support {
  type auto
  autoPosition 500
```

Component {