House Sale Price Prediction

A. 題目描述

使用回歸模型做房價預測·用 train.csv 跟 valid.csv 訓練模型·房屋交易資料包括 id, price 與 21 種房屋參數·最後將 test.csv 中的每一筆房屋參數·輸入訓練好的模型·預測其房價。

B. 使用方法說明

● 程式環境

我使用 Win 10 作業系統,安裝 Anaconda 5.0.0 的 Python 3.6 版本,接著安裝 Keras、Theano 和 Tensorflow,最後使用 Spyder 進行編譯。

● 使用方法

由於還不太熟悉 Python 的矩陣操作,因此我的預處理是使用 MATLAB,並將處理結果輸出於新的 CSV 檔,供 Spyder 中的程式讀取。操作步驟如下:

MATLAB 的程式碼為 analysis_YW.m

Spyder 的程式碼為 mainLoop.py

C. 程式流程與寫法

程式流程為先進行資料預處理·並拿這些特徵進行訓練房價預估的模型·最後則將欲 test 的特徵導入模型·得到預測結果。

● 預處理

在 MATLAB 中的預處理,我做了以下事情:

- 1. 創造新特徵:屋齡 = year yr_built
- 2. 創造新特徵:是否翻修 = yr renovated ≠ 0 ? 1:0

- 3. 創造新特徵:整合年月日 = ((year-2014)*12+(month-1))*30 + day
- 4. 創造新特徵:房間與廁所的總和 = bedrooms + bathrooms
- 5. 創造新特徵:自家與附近的居住範圍總和 = sqft living + sqft living15
- 6. 創造新特徵:自家與附近的停車範圍總和 = sqft_lot + sqft_lot15
- 7. 修改特徵:未翻修的房屋,該特徵值設成建造年,而非為0
- 8. 修改特徵:計算 train 的平均值與標準差,將 valid 和 test 的特徵值過大或過小於界線值的,均設為界線值。上界 = mean + 4*std、下界 = mean 3*std
- 9. 移除特徵:將 train 中,單坪售價大於 600 者去除,直接不考慮該筆資料
- 10. 移除特徵:由於已整合年月日,故只保留年,去除月和日

最後,得到我的 train data 特徵共有 12407 筆,每筆有 25 個特徵維度。

AX IX	17.27.3AF) train train train (A) (A) 12-107 キー サキカ 23 旧的 (A) (E)				
編號	名稱	內容	編號	名稱	內容
1	year	購買年	14	yr_built	建造年
2	days	日期先後	15	yr_renovated	翻修年
3	bedrooms	房間個數	16	zipcode	郵遞區號
4	bathrooms	廁所個數	17	lat	緯度
5	sqft_living	住家坪數	18	long	經度
6	sqft_lot	佔地坪數	19	sqft_living15	附近
					住家坪數
_	-	I# C #/			附近
7	floors	樓層數	20	sqft_lot15	佔地坪數
8	waterfront	看的到水池	21	age	屋齡
9	view	多少人看過	22	was renovated	是否翻修
					總房間與廁所
10	condition	房屋狀況	23	#of all room	數
11	grade	評分	24	all living	總屋坪數
12	sqft_above	地上坪數	25	all lot	總佔地坪數
13	sqft_basement	地下室坪數			

預處理還有最後一步,我在 Spyder 中進行正歸化,不同於其他同學,我並非直接除上 max(trainData),而是將資料縮放至 [0 0.3]、[0 1]、[0 2] 三種刻度,因為直接除最大值,可能會出現資料集中在後半段,如建造年,可能會是 0.7 – 1 之間,讓資料缺乏分群的特性。

根據我的 25 種特徵與價錢的相關性·我將 bedrooms `bathrooms `sqrt_living `grade `sqrt_above `zipcode `lat `long `sqrt_living15 `age `all room `all living 調整為[0 2] ·將他們視為優先考慮的對象。

105318037 YIWEN

將 year、waterfront、view 縮放為[0 0.3]他們為較差的特徵。

● 訓練 DNN 模型

將所有的資料都處理好後,就能使用 DNN 架構訓練房價預估的模型,我採用以下架構,初始化均為 random_normal、函式均為 relu:

層數	神經元個數	
Input layer	25	
Hidden 1	128	
Hidden 2	256	
Hidden 3	512	
Hidden 4	512	
Hidden 5	512	
Hidden 6	512	
Hidden 7	512	
Hidden 8	448	
Hidden 9	384	
Hidden 10	256	
Hidden 11	128	
Output layer	1	

訓練參數:batch_size = 128、。

我的訓練次數是當 val_loss 小於 60000 就停止,若經過 110 次都沒達到,就重新訓練,簡化的流程如下:

success = 0

while success == 0

while $val_loss > 60000$ and epochs < 110

(訓練模型)

 $if\ val_loss < 60000$

success = 1

訓練結果: epochs = 57 \ loss = 61846 \ val_loss = 59976 \ · 只花 57 次就滿足結果 \ 因為我的步長較大。

D. 結果分析

13 **▼**2 **105318037yiwen** 66324.364...

目前在 kaggle 上的成績為 66324·暫居第 13 名·這幾個禮拜的測試經驗·valid 與 test 的距離相差約為 6000·因此在測試 NN 架構時·觀察 validation 的數值非常重要。要避免 overfitting 的方法是只要 loss 持續下降·同時 val_loss 保持不變或是越來越大·就表示要趕快中止程式。我有先確定這樣的架構有機會達到6 萬以下·才使用無限迴圈的方式尋找那個最佳解。

我嘗試過的類神經網路組合非常多,有個簡單心得就是,神經元的數量盡量不要小於 batch_size,否則看不到效果。另外,我將 25 個特徵依照相關性縮放,效果顯著,不知道其他同學是怎麼處理這個部分。

E. 討論

在這次作業的過程中,我將我的模型預測出來的 valid_Y 和真實值比較,只要是新房子,都能有 1 萬以內的誤差值而已。以下舉幾個相差大於 20 萬的案例:

● 預測較實際貴 20 萬以上

普遍出現在老房子,儘管房間數量、佔地數、評分狀況一切良好,但由於房子老舊,也未整修,事實上就造成價錢較低,但對類神經網絡的架構,這些特徵

都是平等的。如果我單方面把建造年的值縮放較大,如 [0 2],也會為須考量到 房屋的其他條件,沒辦法達到預期的成果。從下圖無法看出年代與價錢的相關 性。

● 預測較實際便宜 20 萬以上

我從一般實際的特徵看不出原因,但發現可能是,他們的經緯度、郵遞區號, 有許多的高單價的房屋,代表屬於好的地段,就算其他條件都普通,也會提高他 的單價。要解決這個問題,或許可以把地段透過新特徵分類,而非單純靠一維度 的數值大小去決定。如右下表。

