Семинар #6: Диски и файловые системы. Практика.

Как сдавать задачи

Для сдачи ДЗ вам нужно создать репозиторий на GitLab (если он ещё не создан) под названием devtools-homework. Структура репозитория должна иметь вид:

```
seminar6_disks_and_filesystems/

-- 01.txt
-- 02.sh
-- ...
```

Для каждой задачи нужно создать 1 файл решения с расширением .sh. Подзадачи внутри каждого из файлов нужно оформлять в следующем формате:

```
# Subtask a
lsblk
# Subtask b
```

Для каждой подзадачи нужно прописать все команды, которые исполняются в ходе выполнения этой подзадачи.

Предварительные замечания

• Важно! Резервное клонирование ВМ.

При выполнении данного задания придётся работать от имени суперпользователя (root), используя команды su и sudo. Выполняя такие команды, можно случайно сломать систему. Поэтому перед выполнением данного задания на всякий случай клонируйте вашу виртуальную машину. В VirtualBox для этого нужно нажать правой кнопкой мыши на виртуальной машине и выбрать "Клонировать".

• Создание диска для виртуальной машины.

Это задание нужно выполнять в виртуальной машине. Для выполнения этого задания вам понадобиться создать новый виртуальный диск. В Virtual Box это можно сделать следующим образом:

- Выключите виртуальную машину, если она включена.
- Выберите вашу виртуальную машину и нажмите настроить.
- Выберите вкладку "Носители".
- Выберите "Контроллер SATA" и нажмите "Создать жёсткий диск".
- В верхней панели выберите "Создать".
- Установите размер жёсткого диска в 3 гибибайта.
- Добавьте новый диск к вашей виртуальной машине (он должен отображаться на вкладке носители).
- Запустите виртуальную машину и выполните lsblk, чтобы посмотреть, что создался новый диск размером 3 ГиБ. Скорей всего он будет иметь имя sdb.

• Проверяйте имя диска

Во всех задачах задания (кроме задачи 2) необходимо будет работать с новыми, специально созданными дисками, а не с диском на котором установлена операционная система. Команды, которые вы будете использовать в этом задании будут изменять или стирать важные структуры на диске. Применение этих команд к диску, на котором установлена операционная система, немедленно приведет к поломке системы.

Скорей всего диск, на котором установлена ОС у вас будет называться sda, а новый пустой диск будет называться sdb, но это необязательно. Более того, имена дисков (хоть это и маловероятно) могут поменяться после перезапуска системы. Поэтому всегда проверяйте к какому диску вы применяете ту или иную команду, используя команду lsblk.

Задача 1. Единицы измерения информации

Произведите конвертацию одних величин в другие с точностью до трёх знаков после запятой.

- 1МБ в байты
- 1МиБ в байты
- 1ГиБ в гигабайты
- 1ГБ в мебибайты

Задача 2. Просмотр информации о дисках и разделах

Некоторые из этих команд требуют прав суперпользователя, используйте sudo, чтобы запустить их.

а. Просмотр информации о дисках и разделах

Просмотрите ваши текущие диски и разделы, используя команду lsblk.

b. Просмотр информации о UUID и файловых системах

Просмотрите уникальные идентификаторы дисков и разделов, а также используемые на этих разделах файловые системы. Используйте команду sudo blkid.

с. Просмотр всех смонтированных файловых систем

Просмотрите все смонтированные на данный момент файловые системы, используя команду findmnt. Команда findmnt показывает не только физические разделы и диски, но и виртуальные (proc, sysfs) и другие.

d. Просмотр таблицы разделов

Просмотрите подробную информацию о разделах parted -1.

е. Просмотрите системный файл /etc/fstab

Файл /etc/fstab хранит в себе файловых системах, которые должны быть автоматически смонтированы при загрузке системы. Для просмотра этого файла используйте команду:

\$ cat /etc/fstab

f. Просмотрите директорию, содержащую файлы устройств

Просмотрите директорию /dev, используя подробный вывод ls -la. Обратите внимание на файлы блочных устройств, например sda (файл устройства – диска), sda1 (файл устройства – раздела диска) и другие подобные файлы.

g. Просмотрите подробную информацию о диске/разделе

Используйте команду file -s на файлах устройств, чтобы посмотреть подробную информацию о соответствующем диске и разделе.

```
$ sudo file -s /dev/sda
$ sudo file -s /dev/sda1
```

h. Просмотр использованного места

Просмотрите использованное место на различных разделах, используя команду df -h.

і. Просмотр общего размера директорий

Используйте команду du, чтобы просмотреть сколько места на диске занимают директории /home и /usr вместе со всеми внутренними файлами. Сравните полученные числа с тем, что выводит ls -l.

Задача 3. Разметка диска, создание файловой системы и монтирование

а. Новый диск

Найдите как в системе называется новый диск, созданный в части "Предварительные замечания". Далее будет предполагаться, что он называется sdb и его файл устройства находится в /dev/sdb.

b. **Новый раздел**

Используйте программу parted, чтобы создать новый раздел на диске sdb. Раздел должен занимать весь диск. Раздел будет иметь имя sdb1, а файл устройства этого раздела будет /dev/sdb1. Посмотрите, что новый раздел создался, используя lsblk.

с. Создаём файловую систему

Создайте файловую систему ext4 на разделе sdb1, используя команду mkfs. Используйте lsblk -f, чтобы посмотреть, что в разделе sdb1 используется файловая система ext4.

d. Монтируем файловую систему

Создайте новую папку /mnt/myfs. Измените владельца этой папки на вашего пользователя, чтобы можно было работать с папкой без использования sudo. Используйте команду mount, чтобы примонтировать файловую систему к директории /mnt/myfs. Используйте команду findmnt, чтобы убедиться, что файловая система была примонтирована.

е. Используем файловую систему

Перейдите в директорию /mnt/myfs и создайте там два файла: a.txt, который будет содержать строку "Alpaca" и b.txt, который будет содержать строку "Bison". Создайте большой пустой файл под названием large, размером 100 Мб, используя команду:

dd if=/dev/zero of=./large bs=1M count=100

Выполните команду df -h, чтобы убедиться что количество занятого места на разделе увеличилось.

f. Перемонтирование в другом месте

Создайте новую директорию /home/shared. Дайте этой папке полные права (rwxrwxrwx), чтобы можно было работать с ней без использования sudo. Размонтируйте файловую систему с раздела sdb1 из папки /mnt/myfs и примонтируйте её к новой директории /home/shared. Зайдите в эту директорию и убедитесь, что все файлы сохранились.

g. Перезагрузка

Перезагрузите виртуальную машину и проверьте файлы в директории /home/shared. Заново примонтируйте файловую систему в папку /home/shared и убедитесь, что все файлы сохранились.

h. Запись в /etc/fstab

Файловая система в /home/shared была примонтирована временно. После перезагрузки системы её придётся монтировать снова. Чтобы указать, что эту систему нужно монтировать автоматически при загрузке системы, нужно добавить новую запись в /etc/fstab. Этот файл нужно редактировать очень осторожно, так как ошибка в этом файле может привести к тому, что система не запустится.

- Укажите файловую систему по UUID раздела, на который она установлена. UUID можно найти, используя команду sudo blkid.
- Для поля options укажите значение defaults.
- \bullet Для полей dump и pass укажите значение 0.

i. Проверьте, что запись в /etc/fstab корректна

Размонтируйте вашу файловую систему и выполните mount -a. Эта команда проверит запись в /etc/fstab на корректность и, если запись корректна, она смонтирует её. Команда не будет работать, если файловая система уже смонтирована.

- \$ sudo umount /home/shared
- \$ sudo mount -a

Перезагрузите виртуальную машину и убедитесь, что файловая система в /home/shared была автоматически примонтирована.

Задача 4. Несколько разделов (Таблица разделов МВК)

Для создания таблицы разделов и удаления/создания разделов в этой задаче используйте программу parted. Размонтируйте файловую систему на sdb и удалите раздел sdb1. Создайте на диске таблицу разделов МВR. Создайте на диске 4 раздела: 3 основных (primary) и 1 расширенный (extended). Внутри расширенного раздела создайте 2 логических (logical) раздела. Затем создайте в этих разделах файловые системы, используя mkfs, в соответствии со следующей таблицей:

раздел	размер	файловая система
sdb1	$1000~\mathrm{MiB}$	xsf
sdb2	$1000~\mathrm{MiB}$	btrfs
sdb3	$100~\mathrm{MiB}$	ext4
sdb4	_	расширенный раздел
sdb5	$100~\mathrm{MiB}$	ext4
sdb6	$800~\mathrm{MiB}$	fat32

- Для btrfs может понадобиться установить пакет btrfs-progs.
- Последний раздел может получиться чуть меньше или больше.
- Проверьте, что созданный диск использует таблицу разделов MBR. Для этого выполните sudo parted -1. В выводе должна присутствовать строка:

```
Disklabel type: msdos
```

• Проверьте, что все разделы были созданы вместе с соответствующими файловыми системами, используя команду lsblk -f.

Задача 5. Несколько разделов (Таблица разделов GPT)

Для создания таблицы разделов и удаления/создания разделов в этой задаче используйте программу parted. Создайте на диске sdb таблицу разделов GPT и 5 разделов. Затем создайте в этих разделах файловые системы, используя mkfs, в соответствии со следующей таблицей:

раздел	размер	файловая система
sdb1	$1000~\mathrm{MiB}$	xsf
sdb2	$1000~\mathrm{MiB}$	btrfs
sdb3	$100~\mathrm{MiB}$	ext4
sdb4	$100~\mathrm{MiB}$	ext4
sdb5	800 MiB	fat32

• Проверьте, что созданный диск использует таблицу разделов GPT. Для этого выполните sudo parted -1. В выводе должна присутствовать строка:

```
Disklabel type: gpt
```

- Проверьте, что все разделы были созданы вместе с соответствующими файловыми системами, используя команду lsblk -f.
- Примонтируйте эти разделы к директориям /mnt/01, /mnt/02, ... /mnt/05.

Задача 6. Свойства файловых систем

(a) **FAT**

- Зайдите в директорию /mnt/05, в которой содержатся файлы ФС FAT32 размером 800 МиБ.
- Создайте в этой директории файл a.txt и директорию alpha.
- Просмотрите права этих файлов. Попробуйте изменить права файлов, используя sudo chmod. Получится ли у вас это сделать и, если нет, то почему?
- Просмотрите владельца и группу владельца файлов. Попробуйте их изменить, используя команды sudo chown и sudo chgrp. Получится ли у вас это сделать и, если нет, то почему?

(b) Переполнение таблицы inod-ов

- Зайдите в директорию /mnt/03, в которой содержатся файлы ФС ext4 размером 100 МиБ.
- Просмотрите и запомните количество свободного места в этой файловой системе, используя df -h.
- Просмотрите и запомните количество свободных inode в этой файловой системе, используя df -i.
- Попытайтесь создать как можно больше пустых файлов на этой файловой системе, например 50000 файлов с именами file00000, file00001 и т. д. Создавайте пустые файлы в этом разделе пока команда не выдаст ошибку "No space left on device".
- Просмотрите количество свободного места в этой файловой системе, используя df -h.
- Просмотрите количество свободных inode в этой файловой системе, используя df -i.
- Используйте du -sh, чтобы найти размер папки /mnt/03 и убедиться, что он меньше 100 МиБ.

Задача 7. Программа dd

а. Файл из нулевых байт

Создайте файл из нулевых байт размером в 10 килобайт, используя программу dd и псевдоустройство /dev/zero. Используйте программу xxd, чтобы просмотреть все байты созданного файла.

b. Файл из случайных байт

Создайте файл из случайных байт размером в 10 килобайт, используя программу dd и псевдоустройство /dev/urandom. Используйте программу xxd, чтобы просмотреть все байты созданного файла.

с. Вывод на экран

Создайте файл a.txt, содержащий фразу Sapere Aude.

- (a) Используйте программу dd, чтобы вывести содержимое этого файла на экран (stdout).
- (b) Используйте dd, чтобы вывести первые 6 символов файла на экран.

d. **Копирование файла**

Используйте программу dd, чтобы скопировать файл a.txt в файл b.txt.

Задача 8. Блоки хранения данных

Дайте определения следующим понятиям, указав для каждого типичные размеры.

- (a) Сектор (sector) в контексте жёстких дисков (HDD).
- (b) Страница (раде) в контексте твердотельных накопителей (SSD).
- (c) Блок (block) в контексте твердотельных накопителей (SSD).
- (d) Блок (block) в контексте файловых систем (например, ext4).
- (e) Кластер (cluster) в контексте файловых систем FAT и NTFS.
- (f) Страница (page) в контексте оперативной и виртуальной памяти.

Задача 9. Задача на ссылки

Задача 10. Разные типы файлов и stat

Задача 11. Какая информация хранится в inode

Задача 12. Расширение раздела