

Calculs sur les matrices

Corrections d'Arnaud Bodin.

1 Opérations sur les matrices

Exercice 1

Effectuer le produit des matrices :

$$\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \times \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 0 \\ 3 & 1 & 4 \end{pmatrix} \times \begin{pmatrix} -1 & -1 & 0 \\ 1 & 4 & -1 \\ 2 & 1 & 2 \end{pmatrix} \quad \begin{pmatrix} a & b & c \\ c & b & a \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & a & c \\ 1 & b & b \\ 1 & c & a \end{pmatrix}$$

Correction ▼ [001040]

Exercice 2

Soit
$$A(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 pour $\theta \in \mathbb{R}$. Calculer $A(\theta) \times A(\theta')$ et $(A(\theta))^n$ pour $n \ge 1$.

Indication \bigvee Correction \bigvee [001061]

Exercice 3

Soient A et $B \in \mathscr{M}_n(\mathbb{R})$ telles que $\forall X \in \mathscr{M}_n(\mathbb{R})$, $\operatorname{tr}(AX) = \operatorname{tr}(BX)$. Montrer que A = B.

[001063]

Exercice 4

Que peut-on dire d'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ qui vérifie $\operatorname{tr}(A^t A) = 0$?

Indication ▼ Correction ▼ [001064]

2 Inverse

Exercice 5

Calculer (s'il existe) l'inverse des matrices :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & -1 \\ -2 & -2 & -1 \end{pmatrix} \qquad \begin{pmatrix} 1 & \bar{\alpha} & \bar{\alpha}^2 \\ \alpha & 1 & \bar{\alpha} \\ \alpha^2 & \alpha & 1 \end{pmatrix} (\alpha \in \mathbb{C}) \qquad \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & \cdots & \cdots & 1 \\ 0 & 1 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \cdots & 0 & 1 & 1 \\ 0 & \cdots & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 0 & 1 & 2 & \cdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & 0 & 1 & 2 \\ 0 & \cdots & & 0 & 1 \end{pmatrix}$$

Correction ▼ [006872]

Exercice 6

Soit
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$$
. Calculer $A^3 - A$. En déduire que A est inversible puis déterminer A^{-1} .

Indication \bigvee Correction \bigvee [001052]

Exercice 7 *M* antisymétrique $\Rightarrow I + M$ est inversible

Soit $M \in \mathscr{M}_n(\mathbb{R})$ antisymétrique.

- 1. Montrer que I + M est inversible (si (I + M)X = 0, calculer ${}^{t}(MX)(MX)$).
- 2. Soit $A = (I M)(I + M)^{-1}$. Montrer que ${}^{t}A = A^{-1}$.

Correction ▼ Indication $lap{}$ [003380]

Exercice 8

$$A=(a_{i,j})\in \mathscr{M}_n(\mathbb{R})$$
 telle que :
$$\forall i=1,\dots,n \qquad |a_{i,i}|>\sum_{j\neq i}\left|a_{i,j}\right|.$$

Montrer que A est inversible.

Indication ▼ Correction ▼ [001069]

Indication pour l'exercice 2 A

Il faut connaître les formules de $cos(\theta + \theta')$ et $sin(\theta + \theta')$.

Indication pour l'exercice 3 ▲

Essayer avec X la matrice élémentaire E_{ij} (des zéros partout sauf le coefficient 1 à la i-ème ligne et la j-ème colonne).

Indication pour l'exercice 4 A

Appliquer la formule du produit pour calculer les coefficients diagonaux de A ^tA

Indication pour l'exercice 6 ▲

Une fois que l'on a calculé A^2 et A^3 on peut en déduire A^{-1} sans calculs.

Indication pour l'exercice 7 ▲

M antisymétrique signifie ${}^{t}M = -M$.

- 1. Si Y est un vecteur alors ${}^t\!YY = \|Y\|^2$ est un réel positif ou nul.
- 2. I M et $(I + M)^{-1}$ commutent.

Indication pour l'exercice 8 ▲

Prendre un vecteur
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 tel que $AX = 0$, considérer le rang i_0 tel $|x_{i_0}| = \max\{|x_i| \mid i = 1, ..., n\}$.

Correction de l'exercice 1 A

Si $C = A \times B$ alors on obtient le coefficient c_{ij} (situé à la *i*-ème ligne et la *j*-ème colonne de C) en effectuant le produit scalaire du *i*-ème vecteur-ligne de A avec le *j*-éme vecteur colonne de B.

On trouve

$$\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \times \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 5 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 0 \\ 3 & 1 & 4 \end{pmatrix} \times \begin{pmatrix} -1 & -1 & 0 \\ 1 & 4 & -1 \\ 2 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 7 & -2 \\ 6 & 5 & 7 \end{pmatrix}$$

$$\begin{pmatrix} a & b & c \\ c & b & a \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & a & c \\ 1 & b & b \\ 1 & c & a \end{pmatrix} = \begin{pmatrix} a+b+c & a^2+b^2+c^2 & 2ac+b^2 \\ a+b+c & 2ac+b^2 & a^2+b^2+c^2 \\ 3 & a+b+c & a+b+c \end{pmatrix}$$

Correction de l'exercice 2 A

$$\begin{split} A(\theta) \times A(\theta') &= \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \times \begin{pmatrix} \cos \theta' & -\sin \theta' \\ \sin \theta' & \cos \theta' \end{pmatrix} \\ &= \begin{pmatrix} \cos \theta \cos \theta' - \sin \theta \sin \theta' & -\cos \theta \sin \theta' - \sin \theta \cos \theta' \\ \sin \theta \cos \theta' + \cos \theta \sin \theta' & -\sin \theta \sin \theta' + \cos \theta \cos \theta' \end{pmatrix} \\ &= \begin{pmatrix} \cos(\theta + \theta') & -\sin(\theta + \theta') \\ \sin(\theta + \theta') & \cos(\theta + \theta') \end{pmatrix} \\ &= A(\theta + \theta') \end{split}$$

Bilan : $A(\theta) \times A(\theta') = A(\theta + \theta')$.

Nous allons montrer par récurrence sur $n \ge 1$ que $(A(\theta))^n = A(n\theta)$.

- C'est bien sûr vrai pour n = 1.
- Fixons $n \ge 1$ et supposons que $(A(\theta))^n = A(n\theta)$ alors

$$\left(A(\theta)\right)^{n+1} = \left(A(\theta)\right)^{n} \times A(\theta) = A(n\theta) \times A(\theta) = A(n\theta + \theta) = A((n+1)\theta)$$

- C'est donc vrai pour tout $n \ge 1$.

Remarques:

- On aurait aussi la formule $A(\theta') \times A(\theta) = A(\theta + \theta') = A(\theta) \times A(\theta')$. Les matrices $A(\theta)$ et $A(\theta')$ commutent.
- En fait il n'est pas plus difficile de montrer que $(A(\theta))^{-1} = A(-\theta)$. On sait aussi que par définition $(A(\theta))^0 = I$. Et on en déduit que pour $n \in \mathbb{Z}$ on a $(A(\theta))^n = A(n\theta)$.
- En terme géométrique $A(\theta)$ est la matrice de la rotation d'angle θ (centrée à l'origine). On vient de montrer que si l'on compose un rotation d'angle θ avec un rotation d'angle θ' alors on obtient une rotation d'angle $\theta + \theta'$.

Correction de l'exercice 3

Notons E_{ij} la matrice élémentaire (des zéros partout sauf le coefficient 1 à la i-ème ligne et la j-ème colonne). Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$. Alors

$$A \times E_{ij} = \begin{pmatrix} 0 & 0 & \cdots & 0 & a_{1i} & 0 & \cdots \\ 0 & 0 & \cdots & 0 & a_{2i} & 0 & \cdots \\ \vdots & & \ddots & & \vdots & & \ddots \\ 0 & 0 & \cdots & 0 & a_{ji} & 0 & \cdots \\ \vdots & & \ddots & & \vdots & & \ddots \\ 0 & 0 & \cdots & 0 & a_{ni} & 0 & \cdots \end{pmatrix}$$

La seule colonne non nulle est la *j*-ème colonne.

La trace est la somme des éléments sur la diagonale. Ici le seul élément non nul de la diagonale est a_{ji} , on en déduit donc

$$\operatorname{tr}(A \times E_{ii}) = a_{ii}$$

(attention à l'inversion des indices).

Maintenant prenons deux matrices A, B telles que $\operatorname{tr}(AX) = \operatorname{tr}(BX)$ pour toute matrice X. Alors pour $X = E_{ij}$ on en déduit $a_{ji} = b_{ji}$. On fait ceci pour toutes les matrices élémentaires E_{ij} avec $1 \le i, j \le n$ ce qui implique A = B.

Correction de l'exercice 4 ▲

Notons $A = (a_{ij})$, notons $B = {}^tA$ si les coefficients sont $B = (b_{ij})$ alors par définition de la transposée on a $b_{ij} = a_{ji}$.

Ensuite notons $C = A \times B$ alors par définition du produit de matrices le coefficients c_{ij} de C s'obtient par la formule :

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Appliquons ceci avec $B = {}^{t}A$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = \sum_{k=1}^{n} a_{ik} a_{jk}.$$

Et pour un coefficient de la diagonale on a i = j donc

$$c_{ii} = \sum_{k=1}^{n} a_{ik}^2.$$

La trace étant la somme des coefficients sur la diagonale on a :

$$\operatorname{tr}(A^{t}A) = \operatorname{tr}(C) = \sum_{i=1}^{n} c_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik}^{2} = \sum_{1 \le i, k \le n} a_{ik}^{2}.$$

Si on change l'indice k en j on obtient

$$\operatorname{tr}(A^{t}A) = \sum_{1 \le i, j \le n} a_{ij}^{2}.$$

Donc cette trace vaut la somme des carrés de tous les coefficients.

Conséquence : si tr $(A^t A) = 0$ alors la somme des carrés $\sum_{1 \le i,j \le n} a_{ij}^2$ est nulle donc chaque carré a_{ij}^2 est nul. Ainsi $a_{ij} = 0$ (pour tout i,j) autrement dit A est la matrice nulle.

Correction de l'exercice 5

1. si le déterminant ad - bc est non nul l'inverse est $\frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

$$2. \ \frac{1}{4} \begin{pmatrix} -4 & 0 & -4 \\ 3 & 1 & 2 \\ 2 & -2 & 0 \end{pmatrix}$$

3. si
$$|\alpha| \neq 1$$
 alors l'inverse est $\frac{1}{1-\alpha\bar{\alpha}} \begin{pmatrix} 1 & -\bar{\alpha} & 0 \\ -\alpha & 1+\alpha\bar{\alpha} & -\bar{\alpha} \\ 0 & -\alpha & 1 \end{pmatrix}$

$$4. \ \frac{1}{3} \begin{pmatrix} -2 & 1 & 1 & 1 \\ 1 & -2 & 1 & 1 \\ 1 & 1 & -2 & 1 \\ 1 & 1 & 1 & -2 \end{pmatrix}$$

Correction de l'exercice 6

On trouve

$$A^{2} = \begin{pmatrix} 3 & -4 & 2 \\ 1 & -1 & -1 \\ 1 & 2 & 0 \end{pmatrix} \qquad \text{et} \qquad A^{3} = \begin{pmatrix} 5 & 0 & 2 \\ 0 & 3 & 1 \\ 1 & -2 & 4 \end{pmatrix}.$$

Un calcul donne $A^3 - A = 4I$. En factorisant par A on obtient $A \times (A^2 - I) = 4I$. Donc $A \times \frac{1}{4}(A^2 - I) = I$, ainsi A est inversible et

$$A^{-1} = \frac{1}{4}(A^2 - I) = \frac{1}{4} \begin{pmatrix} 2 & -4 & 2 \\ 1 & -2 & -1 \\ 1 & 2 & -1 \end{pmatrix}.$$

Correction de l'exercice 7

Avant de commencer la résolution nous allons faire une remarque importante : pour $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ un vecteur

(considéré comme une matrice à une seule colonne) alors nous allons calculer tXX :

$${}^{t}XX = (x_{1}, x_{2}, \dots, x_{n}) \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} = x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}.$$

On note $||X||^2 = {}^t\!XX : ||X||$ est la *norme* ou la *longueur* du vecteur X. De ce calcul on déduit d'une part que ${}^t\!XX \ge 0$. Et aussi que ${}^t\!XX \ge 0$ si et seulement si X est le vecteur nul.

1. Nous allons montrer que I+M est inversible en montrant que si un vecteur X vérifie (I+M)X=0 alors X=0.

Nous allons estimer ${}^t(MX)(MX)$ de deux façons. D'une part c'est un produit de la forme ${}^tYY = \|Y\|^2$ et donc ${}^t(MX)(MX) \ge 0$.

D'autre part:

$${}^{t}(MX)(MX) = {}^{t}(MX)(-X) \quad \operatorname{car} (I+M)X = 0 \operatorname{donc} MX = -X$$

$$= {}^{t}X^{t}M(-X) \quad \operatorname{car} {}^{t}(AB) = {}^{t}B^{t}A$$

$$= {}^{t}X(-M)(-X) \quad \operatorname{car} {}^{t}M = -M$$

$$= {}^{t}XMX$$

$$= {}^{t}X(-X)$$

$$= -{}^{t}XX$$

$$= -\|X\|^{2}$$

Qui est donc négatif.

Seule possibilité $||X||^2 = 0$ donc X = 0 (= le vecteur nul) et donc I + M inversible.

2. (a) Calculons A^{-1} .

$$A^{-1} = ((I-M) \times (I+M)^{-1})^{-1} = ((I+M)^{-1})^{-1} \times (I-M)^{-1} = (I+M) \times (I-M)^{-1}$$

(n'oubliez pas que $(AB)^{-1} = B^{-1}A^{-1}$).

(b) Calculons ^tA.

$${}^{t}A = {}^{t}((I-M) \times (I+M)^{-1})$$

$$= {}^{t}((I+M)^{-1}) \times {}^{t}(I-M) \qquad \operatorname{car}{}^{t}(AB) = {}^{t}B{}^{t}A$$

$$= ({}^{t}(I+M))^{-1} \times {}^{t}(I-M) \qquad \operatorname{car}{}^{t}(A^{-1}) = ({}^{t}A)^{-1}$$

$$= (I+{}^{t}M))^{-1} \times (I-{}^{t}M) \qquad \operatorname{car}{}^{t}(A+B) = {}^{t}A + {}^{t}B$$

$$= (I-M)^{-1} \times (I+M) \qquad \operatorname{car}{}^{t}M = -M$$

(c) Montrons que I + M et $(I - M)^{-1}$ commutent.

Tout d'abord I+M et I-M commutent car $(I+M)(I-M)=I-M^2=(I-M)(I+M)$. Maintenant nous avons le petit résultat suivant :

Lemme. Si AB = BA alors $AB^{-1} = B^{-1}A$.

Pour la preuve on écrit :

$$AB = BA \Rightarrow B^{-1}(AB)B^{-1} = B^{-1}(BA)B^{-1} \Rightarrow B^{-1}A = AB^{-1}.$$

En appliquant ceci à I+M et I-M on trouve $(I+M)\times (I-M)^{-1}=(I-M)^{-1}\times (I+M)$ et donc $A^{-1}={}^t\!A$.

Correction de l'exercice 8 ▲

Soit $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ un vecteur tel que AX = 0. Nous allons montrer qu'alors X est le vecteur nul ce qui entraîne

Par l'absurde supposons $X \neq 0$. Alors, si i_0 est un indice tel que $|x_{i_0}| = \max\{|x_i| \mid i = 1, ..., n\}$, on a $|x_{i_0}| > 0$. Mais alors comme AX = 0 on a pour tout i = 1, ..., n:

$$\sum_{j=1}^{n} a_{i,j} x_j = 0$$

donc

$$|a_{i_0,i_0}x_{i_0}| = \left|-\sum_{j\neq i_0} a_{i_0,j}x_j\right| \le \sum_{j\neq i_0} |a_{i_0,j}|.|x_j| \le |x_{i_0}|\sum_{j\neq i_0} |a_{i_0,j}|$$

et, puisque $|x_{i_0}| > 0$, on obtient $|a_{i_0,i_0}| \le \sum_{j \ne i_0} |a_{i_0,j}|$ contredisant les hypothèses de l'énoncé. Ainsi X = 0. On a donc prouvé « $AX = 0 \Rightarrow X = 0$ » ce qui équivaut à A inversible.