⑩ 日本国特許庁(JP)

①特許出願公開

◎ 公開特許公報(A) 平4-118241

⑤Int. Cl. ⁵

識別配号 庁内整理番号

❸公開 平成4年(1992)4月20日

B 41 J 2/045 2/055 2/16

9012-2C B 41 J 3/04

103 A 103 H

審査請求 未請求 請求項の数 1 (全4頁)

図発明の名称 インクジェットプリンタヘッド用振幅変換アクチュェーター

②特 顧 平2-239258

❷出 願 平2(1990)9月10日

@発明者 宮·澤

久 長野県諏訪市大和3丁目3番5号 セイコーエプソン株式

会社内

⑪出 願 人 セイコーエブソン株式

東京都新宿区西新宿2丁目4番1号

会社

個代 理 人 弁理士 鈴木 喜三郎 外1名

明細舊

1. 発明の名称

インクジェットプリンタヘッド用扱幅変換アクチュェーター

2. 特許請求の範囲

ノズルオリフィスからインクを吐出するインクシェットプリンタへッドに用いるれる 揺動 奈子 クの 揺 を 旅大する ための 揺 を 変換 アクチュエーター であって、 へッドに固定される 基郎 と、 この 板 パネの たぬ 部分 に 形成 され、 前記 振動 素子 と ノズルオリス よの間に あって 振動 累子 に 当接 する 重り 郎とを 有する 事を 特徴とする、 インクジェットブリンタヘッド 用 揺 転 変換 アクチュエーター。

3. 発明の詳細な説明

[産業上の利用分野]

本発明はインクジェット記録数置に係わるもので、 特にインク中に於て振動素子を駆動し、 振幅変換アクチュエーターでその振幅を伝達拡大させ、発生する圧力でノズルオリフィスよりインクを吐

出させて印字を行うインクジェットプリンタへッ ド用の振幅変換アクチュエーターに関する。

[従来の技術]

世来のインクジェットブリンタヘッドは、例えば特別平1-18632B号公報にみられるように、 振動素子の 振動によって直接得られるインクの圧力変動により、 ノズルオリフィスからのインクを吐出するようになっていた。

[発明が解決しようとする課題]

上述した従来のインクジェットブリンタヘッドは、 振動素子の振動によって直接的に 得られるインクの圧力変動によりインクを吐出するのに必要な圧力変動を得るためには、 振動素子の振幅を大きくする必要があった。

このため、 振動素子には大きな電圧を印加しなければならず、 その駆動回路や電気絶縁対策が複雑化するという問題があった。

本発明の目的は、このような従来技術の問題点を解決し、銀動素子の扱幅を伝達拡大する事により、小さな駆動電圧でインク吐出させる事のでき

る インクジェット ブリンタ ヘッド用 振幅 変換 アク チュエーターを 提供することにある。

[課題を解決するための手段]

本発明のインクジェットブリンタヘッド用 揺幅 変換アクテュエーターは、ヘッドに固定される基 部と、この基部と一体的に形成された板バネ部と、 この板パネの先端部分に形成され、 前記振動案子 とノズルオリフィスとの間にあって 振動業子に当 接する重り部とを有する事を特徴とする。

[作用]

エーターの板パネ部1a及び重り部1bの詳細平面図で、それぞれ振動時のインク抵抗を低減する 為の形状の例を示したものである。

(ア)に示したものは、板パネ部1aにスリット 6を設けてインク抵抗の低減を図ったものである。 (イ)に示すものは、板パネ部1aの幅をできる だけ小さくして、インク抵抗の低減を図ったもの である。

(ウ)に示すものは、板バネ部1 a に複数の孔7を開けることにより、インク抵抗の低減を図ったものである。

第3図は第2図に示すする。 クチュエーター1との接触に示すない。 を示すないであり、 を示すないである。 がないである。 を対すものである。 を対するのである。 を対するのである。 を対するのである。 を対するのである。 をはいていていていていていていていていている。 であり、 でないていていていている。 であり、 でないて、 でないで、 でないて、 でない、 でないで、 でない、 でないで、 でないでないで、 でないで、 でないで、 でないで、 でないで、 でないで、 でないで、 でないで、 でないで、 でないで、 でない、 でない、 でない、 でないで、 で 発明によれば、小さな駐動電圧でインクが吐出することになる。

[実施例]

以下本発明のインクジェットプリンタヘッド用 振幅姿換アクチュエーターの構造及び特徴を図面 に従って説明する。

第2図(ア)(イ)(ウ)は振幅変換アクチュ

(ア)と逆Rになっている。

なお第2図に示した板パネ部1aの形状と第3図に示した重り部1bの形状の組合せは自由に選択できる。

第4図(ⅰ)~(ⅱ)及び(Ⅰ)~(□)は第 3 図に示した形状の重り部1 b を作成する製造工 程例を示すもので、電鏡法で示す。電鏡法は等方 的に成長する事を前提に説明する。(i)図にお いて、aは導電部材で、レジスト材bにより選択 的に導電層が露出している。そこでメッキ処理す るとこの折出層ができる。 次に (ii) 図に示すよ うに、前記(i)図に示した析出層cの表面にレ ジスト材dを用いて選択的に導電層(析出層c) を露出させる。そこで再度メッキ処理すると斜線・ 部eの部材が形成できる。その後(iii)図に示す ように、前記(i)図に示した斜線部eを各々劇 雕することにより、第3箇(イ)に示した形状の 重り部1bが得られる。同様に(Ⅰ)図において、 aは導電部材で、レジスト材bにより選択的に導 電圧が露出している。 そこでメッキ処理すると c

特開半4-118241(3)

の析出層ができる。 次いで(II)図に示すように、 前記(II)図に示したレジスト材 b を除去し、 再 度レジスト材 d を用いて選択的に導電層を露出さ せる。 そこで再度メッキ処理すると斜線部 e の部 材が形成できる。 その後(皿)図に示すように、 前記(II)図に示した斜線部 e を各々剝離するこ とにより、 第3 図(ア)に示した形状の重り部 1 bが得られる。

第5図は第1図に示した振幅変換アクチュエーターを用いたインクジェットへッドの一例を示した部分断面図である。振幅変換アクチュエーター1は、その基部1dがヘッドケーシング5に固定され、重り部1bの突起1cが、振動祭子である圧電素子2の端面2aに接している。3はノズルブレートでノズルオリフィス3aを有している。4はインクである。

第5回の构成に於て圧電素子2にパルスが印加されると、立ち上がりパルスで圧電素子2が伸びる圧電素子だとすると、圧電素子2が急峻に伸び、その嶋面2aによって、振幅変換アクチュエータ

で介在するインクを排除する事ができる。

また、振幅変換アクチュエーター 1 がインク中で撮動する為、インクの抵抗が大きいと、 振動の 減衰が生じて、 所定の振幅を得る事に障害となる。 そこで、 第2 図に示したように振幅変換アクチュエーター 1 のインク加圧面(すなわち重り部 1 b)の 表面 取よりも板バネ部 1 a の 表面 取を小さくする事で、 振幅変換アクチュエーターの 提動 減衰を 最小限にとどめ、 安定した振動特性を実現し、 良好な印字品質を 得る事ができる。

[発明の効果]

本発明によれば、振幅変換アクチュエーターに よって振動素子の変位速度を活用し、振動素子の 振幅を伝達拡大することにより、小さな駆動電圧 でインク吐出させることができる。

4. 図面の簡単な説明

第1 図は本発明に係わるインクジェットブリンタヘッド用振幅変換アクチュエーターの一変筋例を示す平面図、第2 図(ア)(イ)(ウ)はそれぞれ変形例を示す部分平面図、第3 図(ア)

これらの運動の中で重り部1 b がノズルブレート3 より復帰し、 圧電素子 2 に接する際に、 圧電素子 2 の境面 2 & との間にインク 4 が介在すると、 良好な接触にとって障害となる。 そこで第3 図に示したように、 重り部 1 b の、 圧電素子 2 の端面 2 & との接触面に、 突起部 1 c を設ける事により、 接触面積を少なくし、 押し付け力を増加させる事

(イ)はそれぞれ変形例を示す部分側断面図、第4図(i)~(ii)及び(1)~(II)は第3図(ア)(イ)に示したものの製造工程図、第5図は本発明に係わる振幅変換アクチュエーターを用いたヘッドの要部断面図である。

- 1 振幅変換アクチュエーター
 - 1 a-板パネ部
 - 1 b 重り部
 - 1 c 突起部
 - 1 d 基部
 - 1 e. 1f-アクチュエーターの位置決め孔
- 2 振動素子
- 3 ノズルプレート
 - 3 & ノズルオリフィス
- 4-インク

以上

出願人 セイコーエプソン株式会社 代理人 弁理士 鈴木暮三郎 他一名

第2日

第5図

