3 Overview of Isabelle/HOL

- **4** Type and function definitions
- **5** Induction Heuristics

6 Simplification

Notation

Implication associates to the right:

$$A \Longrightarrow B \Longrightarrow C$$
 means $A \Longrightarrow (B \Longrightarrow C)$

Similarly for other arrows: \Rightarrow , \longrightarrow

$$A_1 \quad \dots \quad A_n \quad \text{means} \quad A_1 \Longrightarrow \dots \Longrightarrow A_n \Longrightarrow B$$

- 3 Overview of Isabelle/HOL
- 4 Type and function definitions
- **6** Induction Heuristics

6 Simplification

HOL = Higher-Order LogicHOL = Functional Programming + Logic

HOL has

- datatypes
- recursive functions
- logical operators

HOL is a programming language!

Higher-order = functions are values, too!

HOL Formulas:

- For the moment: only term = term, e.g. 1 + 2 = 4
- Later: \land , \lor , \longrightarrow , \forall , ...

3 Overview of Isabelle/HOL Types and terms

Interface
By example: types *bool*, *nat* and *list*Summary

Types

Basic syntax:

Convention:
$$\tau_1 \Rightarrow \tau_2 \Rightarrow \tau_3 \equiv \tau_1 \Rightarrow (\tau_2 \Rightarrow \tau_3)$$

Terms

Terms can be formed as follows:

- Function application: f t is the call of function f with argument t. If f has more arguments: f t_1 t_2 . . . Examples: $sin \pi$, plus x y
- Function abstraction: λx . t is the function with parameter x and result t, i.e. " $x \mapsto t$ ". Example: λx . plus x x

Terms

Basic syntax:

```
t ::= (t)
\mid a \quad \text{constant or variable (identifier)}
\mid t t \quad \text{function application}
\mid \lambda x. \ t \quad \text{function abstraction}
\mid \dots \quad \text{lots of syntactic sugar}
```

Examples:
$$f(g|x)|y$$

 $h(\lambda x. f(g|x))$

Convention:
$$f t_1 t_2 t_3 \equiv ((f t_1) t_2) t_3$$

This language of terms is known as the λ -calculus.

The computation rule of the λ -calculus is the replacement of formal by actual parameters:

$$(\lambda x. t) u = t[u/x]$$

where t[u/x] is "t with u substituted for x".

Example:
$$(\lambda x. \ x + 5) \ 3 = 3 + 5$$

- The step from $(\lambda x. \ t) \ u$ to t[u/x] is called β -reduction.
- Isabelle performs β -reduction automatically.

Terms must be well-typed

(the argument of every function call must be of the right type)

Notation:

 $t:: \tau$ means "t is a well-typed term of type τ ".

$$\frac{t :: \tau_1 \Rightarrow \tau_2 \qquad u :: \tau_1}{t \ u :: \tau_2}$$

Type inference

Isabelle automatically computes the type of each variable in a term. This is called *type inference*.

In the presence of *overloaded* functions (functions with multiple types) this is not always possible.

User can help with *type annotations* inside the term.

Example: f(x::nat)

Currying

Thou shalt Curry your functions

```
• Curried: f :: \tau_1 \Rightarrow \tau_2 \Rightarrow \tau
• Tupled: f' :: \tau_1 \times \tau_2 \Rightarrow \tau
```

Advantage:

```
Currying allows partial application f a_1 where a_1 :: \tau_1
```

Predefined syntactic sugar

- Infix: $+, -, *, \#, @, \dots$
- Mixfix: if _ then _ else _, case _ of, . . .

Prefix binds more strongly than infix:
•
$$f x + y \equiv (f x) + y \not\equiv f (x + y)$$

Enclose if and case in parentheses:

Theory = Isabelle Module

```
Syntax: theory MyTh imports T_1 \dots T_n begin (definitions, theorems, proofs, ...)* end
```

MyTh: name of theory. Must live in file MyTh.thy T_i : names of *imported* theories. Import transitive.

Usually: imports Main

Concrete syntax

In .thy files:

Types, terms and formulas need to be inclosed in "

Except for single identifiers

" normally not shown on slides

3 Overview of Isabelle/HOL

Types and terms

Interface

By example: types *bool*, *nat* and *list* Summary

isabelle jedit

- Based on *jEdit* editor
- Processes Isabelle text automatically when editing .thy files (like modern Java IDEs)

Overview_Demo.thy

3 Overview of Isabelle/HOL

Types and terms
Interface

By example: types bool, nat and list

Summary

Type bool

datatype $bool = True \mid False$

Predefined functions:

$$\land, \lor, \longrightarrow, \dots :: bool \Rightarrow bool \Rightarrow bool$$

A formula is a term of type bool

if-and-only-if: =

Type *nat*

datatype $nat = 0 \mid Suc \ nat$

Values of type nat: 0, Suc 0, Suc(Suc 0), ...

Predefined functions: $+, *, \dots :: nat \Rightarrow nat \Rightarrow nat$

Numbers and arithmetic operations are overloaded: 0,1,2,...: $'a, + :: 'a \Rightarrow 'a \Rightarrow 'a$

You need type annotations: 1 :: nat, x + (y::nat) unless the context is unambiguous: $Suc\ z$

Nat_Demo.thy

An informal proof

Lemma add m 0 = m**Proof** by induction on m.

- Case 0 (the base case): $add \ 0 \ 0 = 0$ holds by definition of add.
- Case $Suc\ m$ (the induction step):

 We assume $add\ m\ 0=m$,
 the induction hypothesis (IH).

 We need to show $add\ (Suc\ m)\ 0=Suc\ m$.

 The proof is as follows: $add\ (Suc\ m)\ 0=Suc\ (add\ m\ 0) \quad \text{by def. of } add$ $=Suc\ m \quad \text{by IH}$

Type 'a list

Lists of elements of type 'a

datatype 'a
$$list = Nil \mid Cons 'a \ ('a \ list)$$

Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), ...

Syntactic sugar:

- [] = Nil: empty list
- $x \# xs = Cons \ x \ xs$: list with first element x ("head") and rest xs ("tail")
- $[x_1, \ldots, x_n] = x_1 \# \ldots x_n \# []$

Structural Induction for lists

To prove that P(xs) for all lists xs, prove

- P([]) and
- for arbitrary but fixed x and xs, P(xs) implies P(x#xs).

$$\frac{P([]) \qquad \bigwedge x \ xs. \ P(xs) \Longrightarrow P(x\#xs)}{P(xs)}$$

List_Demo.thy

An informal proof

Lemma app (app xs ys) zs = app xs (app ys zs)**Proof** by induction on xs.

- Case Nil: app (app Nil ys) zs = app ys zs = app Nil (app ys zs) holds by definition of app.
- Case $Cons\ x\ xs$: We assume $app\ (app\ xs\ ys)\ zs = app\ xs\ (app\ ys\ zs)$ (IH), and we need to show $app\ (app\ (Cons\ x\ xs)\ ys)\ zs = app\ (Cons\ x\ xs)\ (app\ ys\ zs).$

The proof is as follows:

 $app (app (Cons \ x \ xs) \ ys) \ zs$

- $= Cons \ x \ (app \ (app \ xs \ ys) \ zs)$ by definition of app
- $= Cons \ x \ (app \ xs \ (app \ ys \ zs))$ by IH
- $= app \ (Cons \ x \ xs) \ (app \ ys \ zs)$ by definition of app

Large library: HOL/List.thy

Included in Main.

Don't reinvent, reuse!

Predefined: xs @ ys (append), length, and map

3 Overview of Isabelle/HOL

Types and terms
Interface
By example: types *bool*, *nat* and *list*Summary

- datatype defines (possibly) recursive data types.
- **fun** defines (possibly) recursive functions by pattern-matching over datatype constructors.

Proof methods

- *induction* performs structural induction on some variable (if the type of the variable is a datatype).
- auto solves as many subgoals as it can, mainly by simplification (symbolic evaluation):

"=" is used only from left to right!

Proofs

General schema:

```
lemma name: "..."
apply (...)
apply (...)
done
If the lemma is suitable as a simplification rule:
lemma name [simp]: "..."
```

Top down proofs

Command

sorry

"completes" any proof.

Allows top down development:

Assume lemma first, prove it later.

The proof state

```
1. \bigwedge x_1 \dots x_p. A \Longrightarrow B
x_1 \dots x_p fixed local variables A local assumption(s) B actual (sub)goal
```

Multiple assumptions

$$\llbracket A_1; \ldots; A_n \rrbracket \Longrightarrow B$$
 abbreviates $A_1 \Longrightarrow \ldots \Longrightarrow A_n \Longrightarrow B$; $pprox$ "and"

- 3 Overview of Isabelle/HOL
- 4 Type and function definitions
- **6** Induction Heuristics

6 Simplification

4 Type and function definitions
Type definitions
Function definitions

Type synonyms

type_synonym $name = \tau$

Introduces a $\mathit{synonym}\ name$ for type τ

Examples

type_synonym $string = char \ list$ type_synonym $('a,'b)foo = 'a \ list \times 'b \ list$

Type synonyms are expanded after parsing and are not present in internal representation and output

datatype — the general case

$$\begin{array}{lll} \textbf{datatype} \; (\alpha_1, \ldots, \alpha_n) t & = & C_1 \; \tau_{1,1} \ldots \tau_{1,n_1} \\ & | & \ldots \\ & | & C_k \; \tau_{k,1} \ldots \tau_{k,n_k} \end{array}$$

- Types: $C_i :: \tau_{i,1} \Rightarrow \cdots \Rightarrow \tau_{i,n_i} \Rightarrow (\alpha_1, \ldots, \alpha_n)t$
- Distinctness: $C_i \ldots \neq C_j \ldots$ if $i \neq j$
- Injectivity: $(C_i x_1 \dots x_{n_i} = C_i y_1 \dots y_{n_i}) = (x_1 = y_1 \wedge \dots \wedge x_{n_i} = y_{n_i})$

Distinctness and injectivity are applied automatically Induction must be applied explicitly

Case expressions

Datatype values can be taken apart with case:

(case
$$xs$$
 of $[] \Rightarrow \dots | y\#ys \Rightarrow \dots y \dots ys \dots)$

Wildcards:

(case
$$m$$
 of $0 \Rightarrow Suc 0 \mid Suc \bot \Rightarrow 0$)

Nested patterns:

(case
$$xs$$
 of $[0] \Rightarrow 0 \mid [Suc \ n] \Rightarrow n \mid _ \Rightarrow 2$)

Complicated patterns mean complicated proofs!

Need () in context

Tree_Demo.thy

The option type

```
datatype 'a option = None | Some 'a
If 'a has values a_1, a_2, \ldots
then 'a option has values None, Some a_1, Some a_2, ...
Typical application:
fun lookup :: ('a \times 'b) \ list \Rightarrow 'a \Rightarrow 'b \ option \ where
lookup [] x = None []
lookup((a, b) \# ps) x =
 (if a = x then Some b else lookup ps x)
```

4 Type and function definitions
Type definitions
Function definitions

Non-recursive definitions

Example

definition $sq :: nat \Rightarrow nat$ where sq n = n*n

No pattern matching, just $f x_1 \ldots x_n = \ldots$

The danger of nontermination

```
How about f x = f x + 1 ?
```

All functions in HOL must be total

Key features of **fun**

- Pattern-matching over datatype constructors
- Order of equations matters
- Termination must be provable automatically by size measures
- Proves customized induction schema

Example: separation

```
fun sep :: 'a \Rightarrow 'a \ list \Rightarrow 'a \ list where sep \ a \ (x\#y\#zs) = x \# a \# sep \ a \ (y\#zs) \mid sep \ a \ xs = xs
```

Example: Ackermann

```
fun ack :: nat \Rightarrow nat \Rightarrow nat where

ack \ 0 \qquad n \qquad = Suc \ n \mid

ack \ (Suc \ m) \ 0 \qquad = ack \ m \ (Suc \ 0) \mid

ack \ (Suc \ m) \ (Suc \ n) = ack \ m \ (ack \ (Suc \ m) \ n)
```

Terminates because the arguments decrease *lexicographically* with each recursive call:

- $(Suc \ m, \ 0) > (m, Suc \ 0)$
- $(Suc \ m, Suc \ n) > (Suc \ m, \ n)$
- $(Suc \ m, Suc \ n) > (m, _)$

primrec

- A restrictive version of fun
- Means primitive recursive
- Most functions are primitive recursive
- Frequently found in Isabelle theories

The essence of primitive recursion:

$$f(0) = \dots$$
 no recursion $f(Suc\ n) = \dots f(n)\dots$ $g([]) = \dots$ no recursion $g(x\#xs) = \dots g(xs)\dots$

- 3 Overview of Isabelle/HOL
- 4 Type and function definitions
- 6 Induction Heuristics

6 Simplification

Basic induction heuristics

Theorems about recursive functions are proved by induction

 $\begin{array}{c} \text{Induction on argument number } i \text{ of } f \\ \text{if } f \text{ is defined by recursion on argument number } i \end{array}$

A tail recursive reverse

Our initial reverse:

```
fun rev :: 'a \ list \Rightarrow 'a \ list where rev \ [] = [] \mid rev \ (x\#xs) = rev \ xs \ @ \ [x]
```

A tail recursive version:

```
fun itrev :: 'a \ list \Rightarrow 'a \ list \Rightarrow 'a \ list where itrev \ [] \qquad ys = ys \ | itrev \ (x\#xs) \quad ys =
```

lemma itrev xs [] = rev xs

Induction_Demo.thy

Generalisation