# Brachiopod origins – Supplementary material – Phylogenetic analysis

Haijing Sun; Martin Ross Smith; Maoyan Zhu; Han Zeng; Fangchen Zhao 2018-04-10

# Contents

| Bı | rachiopod origins                                          | 5   |
|----|------------------------------------------------------------|-----|
| 1  | The dataset                                                | 7   |
| 2  | Parsimony analysis                                         | 9   |
|    | 2.1 Search parameters                                      |     |
|    | 2.2 Analysis                                               |     |
|    | 2.3 Results                                                | 10  |
| 3  | Character reconstructions                                  | 15  |
|    | 3.1 Sclerites                                              | 16  |
|    | 3.2 Sclerites: Bivalved [2]                                | 17  |
|    | 3.3 Sclerites: Dorsal valve                                | 44  |
|    | 3.4 Sclerites: Ventral valve                               | 58  |
|    | 3.5 Sclerites: Ornament                                    | 86  |
|    | 3.6 Sclerites: Composition                                 | 92  |
|    | 3.7 Gametes                                                | 107 |
|    | 3.8 Gametes: Spermatozoa                                   | 109 |
|    | 3.9 Brephic shell                                          | 116 |
|    | 3.10 Brephic shell: Setal sacs [77]                        | 123 |
|    | 3.11 Setae                                                 | 126 |
|    | 3.12 Pedicle [81]                                          | 128 |
|    | 3.13 Mantle canals                                         | 139 |
|    | 3.14 Lophophore: Tentacle disposition                      | 147 |
|    | 3.15 Lophophore: Median tentacle in early development [97] | 152 |
|    | 3.16 Prominent pharynx [101]                               | 158 |
|    | 3.17 Anus [102]                                            | 159 |
| 4  | Fitch parsimony                                            | 165 |
|    | 4.1 Implied weights                                        | 165 |
|    | 4.2 Equal weights                                          |     |
| 5  | Bayesian analysis                                          | 171 |
| 6  | Taxonomic implications                                     | 175 |

4 CONTENTS

# Brachiopod origins

This document provides a detailed discussion of analyses of the morphological dataset constructed to accompany Sun et al. [2018], and their results.

We first discuss the results presented in the main paper, which employ the algorithm described by Brazeau et al. [2018] for correct handling of inapplicable data in a parsimony setting, and explore how each character is reconstructed on an optimal tree.

For completeness, we also document the results of standard Fitch parsimony analysis, and the results of Bayesian analysis, neither of which treat inapplicable data in a logically consistent fashion.

6 CONTENTS

# Chapter 1

# The dataset

Analysis was performed on a new matrix of 37 early brachiozoan taxa, including hyoliths, tommotiids and mickwitziids, which were coded for 105 morphological characters (60 neomorphic, 45 transformational).

We incorporated *Namacalathus* in the matrix, but preliminiary results did not uphold the homology of potentially brachiozoan-like features. As such, we excluded it from our analysis due to its potentially long branch, which is likely to mislead analysis.

Dailyatia was instead selected as an outgroup as camenellans have been interpreted as the earliest diverging members of the Brachiozoa [Skovsted et al., 2015, Zhao et al., 2017].

Characters are coded following the recommendations of Brazeau et al. [2018]:

- We have employed reductive coding, using a distinct state to mark character inapplicability. Character specifications follow the model of Sereno [2007].
- We have distinguished between neomorphic and transformational characters [sensu Sereno, 2007] by reserving the token 0 to refer to the absence of a neomorphic character. The states of transformational characters are represented by the tokens 1, 2, 3, ...
- We code the absence of neomorphic ontologically dependent characters [sensu Vogt, 2017] as absence, rather than inapplicability.

The complete dataset can be viewed and downloaded at Morphobank (project 2800), where each character is defined and its coding for each taxon discussed.

# Chapter 2

# Parsimony analysis

The phylogenetic dataset contains a high proportion of inapplicable codings (453/3885 = 11.7%) of tokens), which are known to introduce error and bias to phylogenetic reconstruction when the Fitch algorithm is employed [Maddison, 1993, Brazeau et al., 2018]. As such, we employed a new tree-scoring algorithm that correctly handles inapplicable data [Brazeau et al., 2018], implemented in the  $MorphyLib\ C$  library [Brazeau et al., 2017]. We employed the R package  $TreeSearch\ v0.1.2$  [Smith, 2018] to conduct phylogenetic tree search with this algorithm.

# 2.1 Search parameters

Heuristic searches were conducted using the parsimony ratchet [Nixon, 1999] under equal and implied weights [Goloboff, 1997]. The consensus tree presented in the main manuscript represents a strict consensus of all trees that are most parsimonious under one or more of the concavity constants (k) 2, 3, 4.5, 7, 10.5, 16 and 24, an approach that has been shown to produce higher accuracy than equal weights at any given level of precision [Smith, 2017].

# 2.2 Analysis

The R commands used to conduct the analysis are reproduced below. The results can most readily be replicated using the R markdown files used to generate these pages.

#### 2.2.1 Initialize and load data

```
kValues <- c(2, 3, 4.5, 7, 10.5, 16, 24)

# Load file from MorphoBank
my_data <- ReadAsPhyDat(filename)
my_data$Namacalathus <- NULL # Exclude Namacalathus
iw_data <- PrepareDataIW(my_data)</pre>
```

#### 2.2.2 Generate starting tree

Start from a neighbour-joining tree, rooted on the outgroup.

#### 2.2.3 Implied weights analysis

The position of the root does not affect tree score, so keep it fixed (using RootedXXXSwap functions) to avoid unnecessary swaps.

```
for (k in kValues) {
  iw.tree <- IWRatchet(start.tree, iw_data, concavity=k,</pre>
                        ratchHits = 60, searchHits=55,
                        swappers=list(RootedTBRSwap, RootedSPRSwap, RootedNNISwap),
                        verbosity=OL)
  score <- IWScore(iw.tree, iw_data, concavity=k)</pre>
  # Write single best tree
  write.nexus(iw.tree,
              file=paste0("TreeSearch/hy_iw_k", k, "_",
                           signif(score, 5), ".nex", collapse=''))
  suboptFraction = 0.02
  iw.consensus <- IWRatchetConsensus(iw.tree, iw_data, concavity=k,</pre>
                  swappers=list(RootedTBRSwap, RootedNNISwap),
                  searchHits=4,
                  suboptimal=score * suboptFraction,
                  nSearch=150, verbosity=0L)
  write.nexus(iw.consensus,
              file=paste0("TreeSearch/hy_iw_k", k, "_",
                           signif(IWScore(iw.tree, iw_data, concavity=k), 5),
                           ".all.nex", collapse=''))
}
```

#### 2.2.4 Equal weights analysis

#### 2.3 Results

#### 2.3.1 Implied weights results

Wildcard taxa have been excluded from the consensus tree shown above to improve resolution.

2.3. RESULTS



Figure 2.1: Consensus of implied weights analyses at all values of k









2.3. RESULTS 13



#### 2.3.2 Equal weights results



Figure 2.2: Strict consensus of equal weights results

| Chapter | 3 |
|---------|---|
|         | _ |

# Character reconstructions

This page provides definitions for each of the characters in our matrix, and justifies codings in particular taxa where relevant. Citations for all codings can be found by browsing the morphological dataset on MorphoBank (project 2800).

The Inapp R package [Brazeau et al., 2018] was used to map each character onto one of the most parsimonious trees (obtained under implied weighting, k = 4.5):

# 3.1 Sclerites

### [1] Present in adult



0: Absent 1: Present

#### Character 1: Sclerites: Present in adult

0: Absent

1: Present

Neomorphic character.

Plate-like (wider than tall) skeletal elements, whether mineralized or non-mineralized. The definition deliberately excludes setae (which are taller than wide).

# 3.2 Sclerites: Bivalved [2]



0: Scleritomous: without differentiated dorsal and ventral valves
 1: Bivalved: scleritome dominated by prominent dorsal and ventral valve

#### Character 2: Sclerites: Bivalved

0: Scleritomous: without differentiated dorsal and ventral valves

 $1\colon \mbox{Bivalved} \colon \mbox{scleritome dominated by prominent dorsal and ventral valve Neomorphic character.}$ 

Scleritome dominated by prominent differentiated dorsal and ventral valves.

### [3] Accessory sclerites reduced



#### Character 3: Sclerites: Bivalved: Accessory sclerites reduced

0: Accessory sclerites present

1: Accessory sclerites absent: two valves only

Neomorphic character.

Taxa in the bivalved condition may retain sclerites as small additional elements, such as the L-elements of *Paterimitra* [Skovsted et al., 2015].

This character is treated as neomorphic, with accessory sclerites ancestrally present, recognizing the likely origin of brachiozoans (and Lophotrochozoans more generally) from a scleritomous organism.

Coded as inapplicable in taxa that lack multiple skeletal elements.

Paterimitra: L-sclerites [Skovsted et al., 2009].

Haplophrentis carinatus: Coded as ambiguous to recognize the possibility that helens may correspond to L-elements of Paterimitra [Moysiuk et al., 2017].

### [4] Hinge line shape



#### Character 4: Sclerites: Bivalved: Hinge line shape

1: Astrophic

2: Strophic

Transformational character.

Micrina: See Holmer et al. [2008].

Tomteluva perturbata: "Tomteluvid taxa all have a strongly ventribiconvex, astrophic shell with a unisulcate commissure" – Streng et al. [2016], p5.

Kutorgina chengjiangensis: Williams et al. [2000, p. 208] consider the hinge of Kutorgina to be stropic, whereas Bassett et al. [2001] argue for an astropic interpretation – whilst noting that the arrangement is prominently different from other astrophic taxa. We therefore code this taxon as ambiguous.

Longtancunella chengjiangensis: "Longtancunella has an oval to subcircular shell with a very short strophic hinge line" – Zhang et al. [2011a].

| Nisusia sulcata: "The strophic, articulated shells of the Kutorginata rotated on simple hinge mechanisms that are different from those of other rhynchonelliforms" (Williams et al. p. 208).   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Novocrania: Craniides have a strophic posterior valve edge [Williams et al., 2007, table 39 on p. 2853]: Novocrania's "dorsal posterior margin" is "straight" [Williams et al., 2000, p. 171]. |
| ${\it Gasconsia}: \mbox{ The straight posterior margin of } {\it Gasconsia} \mbox{ contributes to an overall resemblance with the Chileids } \mbox{ [Holmer et al., 2014]}.$                   |
| $\it Yuganotheca\ elegans:$ Not evident from fossil material; the possibility of a short strophic hinge line (as in $\it Longtancunella$ ) is difficult to discount.                           |
| Craniops: Astrophic: rounded posterior margin [see fig. 91 in Williams et al., 2000].                                                                                                          |
| $\it Mickwitzia~muralensis:~non-strophic.$                                                                                                                                                     |
| Botsfordia: Coded as dissociated in Williams et al. [1998], appendix 2.                                                                                                                        |

# [5] Apophyses



#### Character 5: Sclerites: Bivalved: Apophyses

0: Absent

1: Present

Neomorphic character.

Many brachiopods, in addition to Micrina and others, bear tooth-like structures or processes that articulate the two primary valves.

Caution must be applied before taxa are coded as "absent", as teeth can be subtle and may be overlooked.

Kutorginata don't have teeth or dental sockets, but their shells are articulated by "two triangular plates formed by dorsal interarea, bearing oblique ridges on the inner sides" [Williams et al., 2000, p. 211]; this simple hinge mechanism is different from other rhynchonelliforms [Williams et al., 2000, p.208], but serves an equivalent purpose and is thus potentially homologous. We thus code kutorginids as present, using a subsequent character to capture difference in tooth morphology.

Tomteluva perturbata: Tomteluvids [...] lack articulation structures such as teeth and sockets [Streng et al.,

2016].

Mummpikia nuda: No articulation structures are evident; instead, the propareas are rotated inwards [Balthasar, 2008]. The definition of Family Obolellidae in Williams et al. [2000] notes that articulation may be lacking or vestigial in the group.

Kutorgina chengjiangensis: "Articulation characterized by two triangular plates formed by dorsal interarea, bearing oblique ridges on the inner sides" – Williams et al. [2000], p. 211.

 $Nisusia\ sulcata$ : Pseudodont articulation: teeth formed by distal lateral extensions from the ventral pseudodeltidium – Holmer et al. [2018a].

Alisina: "Strophic articulation with paired, ventral denticles, composed of secondary shell" – definition of family Trematobolidae in Williams et al. [2000].

Gasconsia: "Articulatory structure comprising ventral cardinal socket and dorsal hinge plate [...] The shape of the shell probably correlates strongly with the unique type of articulation, which consists of a dorsal hinge plate that fits tightly into a cardinal socket in the ventral valve, with a concave homeodeltidium in the center of the ventral interarea" – Williams et al. [2000], p.184, concerning order Trimerellida.

Clupeafumosus socialis: No articulating processes evident or reported by Topper et al. [2013a].

Ussunia: "articulatory structures poorly developed" – Williams et al. [2000], p. 192.

Mickwitzia muralensis: Not reported by or evident in Balthasar [2004].

### [6] Apophyses: Morphology



#### Character 6: Sclerites: Bivalved: Apophyses: Morphology

- 1: Deltidiodont
- 2: Cyrtomatodont
- 3: Pseudodont

Transformational character.

Deltidiodont teeth are simple hinge teeth developed by the distal accretion of secondary shell; Cyrtomatodont teeth are knoblike or hook-shaped hinge teeth developed by differential secretion and resorption of the secondary shell [fig. 322 in Williams et al., 2000].

Kutorginata (here represented by *Kutorgina* and *Nisusia*) don't have teeth (apophyses) or dental sockets, but their shells are articulated by "two triangular plates formed by dorsal interarea, bearing oblique ridges on the inner sides" [Williams et al., 2000, p. 211]; this simple hinge mechanism is different from other rhynchonelliforms [Williams et al. [2000], p.208; table 13 character 30], and is described as a "pseudodont articulation" [Holmer et al., 2018a].

| $\it Micrina$ : The simple knob-like teeth of $\it Micrina$ show no evidence of resprobtion or the hook-like shape that characterises Cyrtomatodont teeth.                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kutorgina chengjiangensis: "Articulation characterized by two triangular plates formed by dorsal interarea, bearing oblique ridges on the inner sides" – Williams et al. [2000], p. 211.                                                                            |
| Nisusia sulcata: The 'teeth' are formed by the distal lateral extensions from the ventral pseudodeltidium fitting into the 'sockets' on the inner side of the dorsal interarea [Holmer et al., 2018a]. [Coded as "deltidiodont teeth absent" in Benedetto [2009].]. |
| $\it Terebratulina$ : Cyrtomatodont – see fig. 322 in Williams $\it et~al.~[2000]$ .                                                                                                                                                                                |
| Antigonambonites planus: Coded as deltidiodont in Benedetto [2009].                                                                                                                                                                                                 |
| Orthis: Coded as deltidiodont (in $Eoorthis$ ) in Benedetto [2009].                                                                                                                                                                                                 |
| Glyptoria: Coded as deltidiodont in Benedetto [2009].                                                                                                                                                                                                               |

### [7] Apophyses: Dental plates



#### Character 7: Sclerites: Bivalved: Apophyses: Dental plates

0: Absent

1: Present

Neomorphic character.

Williams et al. [1997] (p362) write: "Teeth [...] are commonly supported by a pair of variably disposed plates also built up exclusively of secondary shell and known as dental plates (Fig. 323.1, 323.3)."

Dewing [2001] elaborates: "Dental plates are near-vertical, narrow sheets of shell tissue between the anteromedian edge of the teeth and floor of the ventral valve. They are a composite structure, resulting from the growth of teeth over the ridge that bounds the ventral-valve muscle field."

Williams et al. [2000] (p.201) write: "The denticles lack supporting structures in all Obolellida, but in Naukatida they are supported by an arcuate plate below the interarea, the anterise (Fig. 119.3a)".

| The anterise is conceivably homologous with the dental plates, thus the presence of either is coded "present" for this character.                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Coolinia pecten: Coded as present following Dewing [2001], who seems to use the term Strophomenoids to encompass Coolinia, and attests to the presence of dental plates.                                                                                                                       |
| Nisusia sulcata: Coded as absent in Benedetto [2009].                                                                                                                                                                                                                                          |
| Antigonambonites planus: Coded as present (well developed) in Benedetto [2009].                                                                                                                                                                                                                |
| Orthis: Coded as present (short and recessive, in Eoorthis) in Benedetto [2009].                                                                                                                                                                                                               |
| Gasconsia: Coded ambiguous to reflect the possibility that the hinge plate in trimerellids is homologous to the dental plates of other taxa, and has replaced the teeth themselves as the primary articulatory mechanism [see Williams et al., 2000, p. 184, for details of the articulation]. |
| Glyptoria: Coded as absent in Benedetto [2009].                                                                                                                                                                                                                                                |

### [8] Sockets



0: Absent
1: Present
-: Inapplicable

#### Character 8: Sclerites: Bivalved: Sockets

0: Absent

1: Present

Neomorphic character.

Simplified from Bassett et al. [2001] character 16.

This character is independent of apophyses, as several taxa bear sockets without corresponding teeth; the function of these sockets is unknown.

See figs 323ff in Williams et al. [1997].

Tomteluva perturbata: Tomteluvids [...] lack articulation structures such as teeth and sockets [Streng et al., 2016].

Nisusia sulcata: Coded as absent in Benedetto [2009].

Antigonambonites planus: Coded as present in Benedetto [2009].

Alisina: "bearing sockets, bounded by low ridges" – Williams et al. [2000].

Gasconsia: "Articulatory structure comprising ventral cardinal socket and dorsal hinge plate" – Williams et al. [2000], p. 184.

Glyptoria: Coded as absent in Benedetto [2009].

Ussunia: Following table 15 in Williams et al. [2000].

Mickwitzia muralensis: Not reported by or evident in Balthasar [2004].

## [9] Socket ridges



Character 9: Sclerites: Bivalved: Socket ridges

0: Absent1: Present

Neomorphic character.

After Bassett et al. [2001] character 17. May be difficult to distinguish from a brachiophore [see Fig 323 in Williams et al., 1997], so the two structures are not distinguished here.

Tomteluva perturbata: Tomteluvids [...] lack articulation structures such as teeth and sockets [Streng et al., 2016].

Nisusia sulcata: Coded as absent in Benedetto [2009].

Antigonambonites planus: Coded as present in Benedetto [2009].

Alisina: "bearing sockets, bounded by low ridges" – Williams et al. [2000].

Glyptoria: Coded as absent in Benedetto [2009].

# [10] Enclosing filtration chamber



0: No filtration chamber, or open chamber1: Shells close to form enclosed filtration chamber

Character 10: Sclerites: Bivalved: Enclosing filtration chamber

- 0: No filtration chamber, or open chamber
- 1: Shells close to form enclosed filtration chamber

Neomorphic character.

In crown-group brachiopods, the two primary shells close to form an enclosed filtration chamber. Further down the stem, taxa such as *Micrina* do not.

#### [11] Commissure



#### Character 11: Sclerites: Bivalved: Commissure

- 1: Rectimarginate
- 2: Uniplicate
- 3: Sulcate

Transformational character.

The anterior commissure can be rectimarginate (i.e. straight), uniplicate (i.e. median sulcus in ventral valve),

or sulcate (with median sulcus in dorsal valve).

Kutorgina chengjiangensis: Following Appendix 2 in Williams et al. [1998].

Salanygolina: Following Appendix 2 in Williams et al. [1998].

Askepasma toddense: "ventral valve weakly to moderately sulcate" [Topper et al., 2013b]; a similar description is provided by Williams et al. [2000].

Micromitra: Following Appendix 2 in Williams et al. [1998].

Terebratulina: "Anterior commissure rectimarginate to uniplicate" – uniplicate in fig. 1425.1c of Williams et al. [2006].

Glyptoria: Following Appendix 2 in Williams et al. [1998].

#### [12] Muscle scars: Ventral



Character 12: Sclerites: Bivalved: Muscle scars: Ventral

0: Absent

1: Present

Neomorphic character.

After Bassett et al. [2001] character 6.

Micrina: Prominent ventral muscle scars – see e.g. Holmer et al. [2008], fig. 1f.

Alisina: Muscle scars scored based on Alisina comleyensis [Bassett et al., 2001].

Mickwitzia muralensis: Scars absent; instead, cones ornament shell's internal surface.

#### [13] Muscle scars: Ventral: Position



Character 13: Sclerites: Bivalved: Muscle scars: Ventral: Position

- 1: Posterolateral and medial attachments
- 2: Medial attachments only

Transformational character.

Muscles can attach to the ventral valve posterolaterally to, as well as between, the vascula lateralia [Popov, 1992].

Kutorgina chengjiangensis: Following situation in Nisusia; see fig. 18.2 in Bassett et al. [2001].

Salanygolina: Ventral musculature not clearly constrained [Holmer et al., 2009].

Acanthotretella spinosa: "Individual muscle scars cannot be distinguished" – Holmer and Caron [2006].

Lingulellotreta malongensis: See fig. 5 in Holmer et al. [1997].

Askepasma toddense: Restricted to medial field, following the interpretation of the musculature presented by Williams et al. [2000], fig. 81.

Micromitra: Posteriomedial muscle field [Williams et al., 1998, text-fig. 6] treated as equivalent to posterolateral muscles.

Nisusia sulcata: Posterolateral diductors [fig. 18.2 in Bassett et al., 2001].

*Pelagodiscus atlanticus*: Inapplicable as vascular system not directly equivalent to the canonical; see. fig 6b in Balthasar [2009].

Novocrania: Posterior adductor muscles attach posterolaterally to ventral mantle canal [Robinson, 2014].

Alisina: Following reconstruction of Gorjansky & Popov [1986].

Orthis: Not applicable: vascula lateralia not comparable to those of other taxa.

Gasconsia: Musculature described in Hanken & Harper [1985].

Glyptoria: Posterolateral reflected by diductor attachments; see fig. 18.3.2 in Bassett et al. [2001].

Clupeafumosus socialis: Coded following Hadrotreta, as illustrated in Popov [1992].

Craniops: See fig. 89 in Williams et al. [2000].

*Eoobolus*: The 'laterals' of Balthasar [2009, fig. 5] are situated almost upon the *vascula lateralia*; they are interpreted as sitting posterolateral to them.

Siphonobolus priscus: Coded following general siphonotretid condition described by Popov [1992, p. 407].

### [14] Muscle scars: Adjustor



#### Character 14: Sclerites: Bivalved: Muscle scars: Adjustor

0: Absent

1: Present

Neomorphic character.

After Bassett et al. [2001] character 7.

This character is contingent on the presence of a pedicle. Extreme caution must be used in inferring an absent state, as adjustor scars can be extremely difficult to distinguish from the adductor scars.

Askepasma toddense: Following the interpretation of the musculature presented by Williams et al. [2000], fig. 81

Alisina: Muscle scars scored based on Alisina comleyensis [Bassett et al., 2001]. The presence of an adjustor is marked as not presently available, as it is not clear that a scar, if present, could be distinguished from the diminutive muscle scars present.

Gasconsia: No mention of an adjustor muscle in Gasconsia or Trimerellida more generally on pp. 184–185 of Williams et al. [2000], nor in discussion in Williams et al. [2007] (p. 2850). Coded as absent.

Clupeafumosus socialis: Not known in any acrotretid [Williams et al., 2000]; not evident in Clupeafumosus [Topper et al., 2013a].

Mickwitzia muralensis: Scars absent; instead, cones ornament shell's internal surface.

Siphonobolus priscus: Ventral musculature poorly constrained [Williams et al., 2000, Popov et al., 2009].

Botsfordia: Not described in Popov [1992].

#### [15] Muscle scars: Dorsal adductors



Character 15: Sclerites: Bivalved: Muscle scars: Dorsal adductors

- 1: Dispersed
- 2: Radially arranged

3: Quadripartite

Transformational character.

After Bassett et al. [2001] character 8, and Williams et al. [[1996], character 35; 2000, p. 160, character 54]

In the dorsal valve, the anterior and posterior adductor scars of articulated brachiopods form a single (quadripartite) muscle field [Williams et al., 2000, p. 201]

In contrast, the anterior and posterior scars of e.g. trimerellids have prominently separate attachment points, with anterior and posterior muscle fields clearly distinct, and coded as "dispersed".

In e.g. kutorginates, adductor muscles are separated into left and right fields; the same is the case in lingulids, where there are more separate muscle groups and the left and right fields conspire to produce a radial arrangement; both of these configurations are scored as "radially arranged".

Haplophrentis carinatus: Laterally dispersed, based on interpretation of Moysiuk et al. [2017], and consistent with general situation in hyoliths [see Dzik, 1980].

Coolinia pecten: "radially arranged adductor scars" – Bassett and Popov [2017], p1.

Salanygolina: "The dorsal valve of Salanygolina has a radial arrangement of adductor muscle scars and the scars of posteromedially placed internal oblique muscles, which are also characteristic of paterinates and chileates" – Holmer et al. [2009].

Heliomedusa orienta: Distinct anterior and posterior fields [Chen et al., 2007]; coded as "dispersed" by Williams et al. [2000] in table 15.

Askepasma toddense: Separate left and right fields, so radially arranged – following the interpretation of the musculature presented by Williams et al. [2000], fig. 81.

Micromitra: Williams et al. [1998] code as "dispersed", but have a less divided scheme of character states and disagree with other sources in some codings [e.g. Bassett et al., 2001, in Kutorginates]. Williams et al. [2000] do not describe Micromitra musculature and we were unable to find any reliable description of the scars, so we code as "not presently available".

Pelagodiscus atlanticus: Discinids scored as "open, quadripartite" by Williams et al. [1996].

Novocrania: Craniids scored as "open, quadripartite" by Williams et al. [1996].

Terebratulina: Coded as "grouped, quadripartite" by Williams et al. [1996].

Antigonambonites planus: Treatise.

Alisina: Following Williams et al. [2000] table 15 (their character 54).

Gasconsia: Following the coding of Williams et al. [2000], table 15.

Glyptoria: Scored as "dispersed" by Williams  $et\ al.\ [1998]$  ... but then so is Kutorgina, which Bassett  $et\ al.\ [2001]$  score as radial.

Williams et al. [2000] state, for superfamily Protorthida, "dorsal adductor scars probably linear", which fits in the category of "radial" employed herein – so that's what we follow.

Clupeafumosus socialis: Following reconstruction of Hadrotreta by Williams [2000], fig. 51, which exhibits distinct left and right fields.

Ussunia: Following table 15 in Williams et al. [2000].

Mickwitzia muralensis: Scars absent; instead, cones ornament shell's internal surface.

Siphonobolus priscus: Ventral musculature poorly constrained [Williams et al., 2000, Popov et al., 2009].

Botsfordia: Following Williams et al. [1998], appendix 2.

### [16] Muscle scars: Adductors: Position



### Character 16: Sclerites: Bivalved: Muscle scars: Adductors: Position

1: Oblique

2: At high angle

Transformational character.

Position of adductor muscles relative to commissural plane.

After Bassett et al. [2001] character 11.

Coolinia pecten: Not reported by Williams et al. [2000], nor Bassett & Popov [2017], nor explicitly by Dewing [2001].

Askepasma toddense: Following the interpretation of the musculature presented by Williams et al. [2000], fig. 81

 $Pelagodiscus\ atlanticus$ : Musculature considered essentially equivalent to Lingula by Williams et al. [2000], so Lingula coding followed here.

Gasconsia: See discussion under Trimerellida in Williams et al. [2000].

Mickwitzia muralensis: Scars absent; instead, cones ornament shell's internal surface.

*Eoobolus*: "*Eoobolus* should have anterior and posterior adductors and a variety of oblique muscles which were probably arranged in criss-crossing pairs" – Balthasar [2009].

Siphonobolus priscus: Ventral musculature poorly constrained [Williams et al., 2000, Popov et al., 2009].

Botsfordia: Following description of Popov [1992].

# [17] Muscle scars: Dermal muscles



Character 17: Sclerites: Bivalved: Muscle scars: Dermal muscles

0: Absent or weakly developed

1: Strongly developed

Neomorphic character.

Based on character 11 in Zhang et al. [2014].

Well developed dermal muscles present in the body wall of recent lingulates, which are absent in all calcareous-shelled brachiopods. These muscles are responsible for the hydraulic shell-opening mechanism, and possibly present in all organophosphatic-shelled brachiopods, with the possible exception of the paterinates [Williams et al., 2000, p. 32].

Tomteluva perturbata: Though Williams et al. [2000, P.32] state that these muscles are absent in all carbonate-shelled brachiopods, their existence cannot be discounted with certainty in this taxon, which is therefore coded not presently available.

Mummpikia nuda: Though Williams et al. [2000, P.32] state that these muscles are absent in all carbonate-shelled brachiopods, their existence cannot be discounted with certainty in this taxon, which is therefore coded not presently available.

Coolinia pecten: According to the statement of Williams et al. [2000, P.32] that these muscle are absent in all carbonate-shelled brachiopods.

Kutorgina chengjiangensis: According to the statement of Williams et al. [2000, P.32] that these muscle are absent in all carbonate- shelled brachiopods, and the coding for kutorginids in Zhang et al. [2014].

Salanygolina: According to the statement of Williams et al. [2000, P.32] that these muscle are absent in all carbonate- shelled brachiopods.

Askepasma toddense: According to the statement of Williams et al. [2000, P.32] that the presence of these muscles in paterinates is uncertain.

Micromitra: Williams et al. [2000, P.32] are uncertain about the presence of these muscles in the paterinates. Zhang et al. [2014] code absence in Paterinida, but without specifying evidence; we follow their coding here.

Nisusia sulcata: According to the statement of Williams et al. [2000, P.32] that these muscle are absent in all carbonate- shelled brachiopods.

*Pelagodiscus atlanticus*: Musculature considered essentially equivalent to *Lingula* by Williams et al. [2000], so *Lingula* coding followed here.

Novocrania: Following Zhang et al. [2014], and the statement of Williams et al. [2000] that such muscles are absent in all calcite-shelled brachiopods.

Terebratulina: Williams et al. [2000, P.32] state that these muscles are absent in all carbonate-shelled brachiopods.

Antigonambonites planus: According to the statement of Williams et al. [2000, P.32] that these muscle are absent in all carbonate- shelled brachiopods.

Alisina: According to the statement of Williams et al. [2000, P.32] that these muscle are absent in all carbonate- shelled brachiopods.

Orthis: According to the statement of Williams  $et\ al.\ [2000,\ P.32]$  that these muscle are absent in all carbonate-shelled brachiopods.

Gasconsia: According to the statement of Williams et al. [2000, P.32] that these muscle are absent in all carbonate- shelled brachiopods.

Glyptoria: According to the statement of Williams  $et\ al.\ [2000,\ P.32]$  that these muscle are absent in all carbonate- shelled brachiopods.

Clupeafumosus socialis: This character is coded based on the score of Acrotreta in Zhang et al. [2014], and statement in Williams et al. [2000, P.32].

Eoobolus: Not remarked upon by Balthasar [2009].

Siphonobolus priscus: Ventral musculature poorly constrained [Williams et al., 2000, Popov et al., 2009].

Botsfordia: Implicitly taken as present in Popov [1992], though not marked in diagrams – suggesting not strongly developed.

# [18] Muscle scars: Unpaired median (levator ani)



### Character 18: Sclerites: Bivalved: Muscle scars: Unpaired median (levator ani)

0: Absent

1: Present

Neomorphic character.

The levator ani is a diminutive unpaired medial muscle found in certain calcitic brachiopods [Williams et al. [2000]; see fig. 89, character 34 in table 13].

Coolinia pecten: Not reported in Dewing [2001].

Kutorgina chengjiangensis: Following table 13 in Williams et al. [2000].

| Heliomedusa orienta: Poor preservation of minor muscle scars noted by Chen et al. [200 | Ieliomedus a | a orienta: Poo | r preservation | of minor | muscle scars | noted b | y Chen | et al. | [2007] |  |
|----------------------------------------------------------------------------------------|--------------|----------------|----------------|----------|--------------|---------|--------|--------|--------|--|
|----------------------------------------------------------------------------------------|--------------|----------------|----------------|----------|--------------|---------|--------|--------|--------|--|

Nisusia sulcata: Following table 13 in Williams et al. [2000].

*Pelagodiscus atlanticus*: Musculature considered essentially equivalent to *Lingula* by Williams et al. [2000], so *Lingula* coding followed here.

Novocrania: Following table 13 in Williams et al. [2000] (for Novocrania).

Alisina: Following table 13 in Williams et al. [2000].

Gasconsia: Williams et al. [2000] code an unpaired medial muscle scar as present in their table 13, but give no reference for this coding, which perhaps arises from their interpretation of the taxon as a trimerellid. Hanken and Harper [1985, p. 249 and text-fig. 2] explicitly identify a pair of central muscles, so we code a levator ani as absent.

Craniops: See fig. 90 in Williams et al. [2000].

Ussunia: Following table 15 in Williams et al. [2000].

Mickwitzia muralensis: Scars absent; instead, cones ornament shell's internal surface.

Siphonobolus priscus: Ventral musculature poorly constrained [Williams et al., 2000, Popov et al., 2009].

# [19] Muscle scars: Dorsal diductor



### Character 19: Sclerites: Bivalved: Muscle scars: Dorsal diductor

0: Absent

1: Present

Neomorphic character.

After Bassett et al. [2001] character 9.

 $A can thot retella\ spinosa$ : Not observable in  $A can thot retella\ itself$ , so coded as ambiguous – though it is likely based on the anticipated phylogenetic affinities of  $A can thot retella\$ that the muscles are absent.

Askepasma toddense: Not reconstructed in the the interpretation of the musculature presented by Williams et al. [2000], fig. 81, but presence cannot be confidently excluded.

Gasconsia: Internal oblique muscles serve as diductors.

Clupeafumosus socialis: Not reported by Topper et al. [2013a], nor reconstructed in generic acrotretid by Williams et al. [2000].

Siphonobolus priscus: Ventral musculature poorly constrained [Williams et al., 2000, Popov et al., 2009].

# [20] Muscle scars: Dorsal diductor: Position



Character 20: Sclerites: Bivalved: Muscle scars: Dorsal diductor: Position

- 1: Close to commissural plane
- 2: Oblique to commissural plane
- 3: At high angle to commissural plane

Transformational character.

After Bassett et al. [2001] character 10.

Siphonobolus priscus: Ventral musculature poorly constrained [Williams et al., 2000, Popov et al., 2009].

### 3.3 Sclerites: Dorsal valve

# [21] Growth direction



Character 21: Sclerites: Dorsal valve: Growth direction

- 1: Holoperipheral
- 2: Mixoperipheral
- 3: Hemiperipheral

Transformational character.

See Fig. 284 in Williams et al. [1997].

The growth direction dictates the attitude of the cardinal area relative to the hinge, which does not therefore represent an independent character.

Crudely put, if, viewed from a dorsal position, the umbo falls within the outer margin of the shell, growth is holoperipheral; if it falls outside the margin, it is mixoperipheral; if it falls exactly on the margin, it is hemiperipheral.

Micrina: See Holmer et al. [2008].

Paterimitra: S2 and L sclerites are clearly holoperipheral. See Larsson et al. [2014], fig. 2.

Heliomedusa orienta: "holoperipheral growth in dorsal valve" – Williams et al. [2007].

The insinuation from Zhang et al. [2009] is that Chen et al. [2007] misidentify the dorsal valve as the ventral valve.

Clupeafumosus socialis: Appears hemiperipheral in fig. 3 in Topper et al. [2013a], though bordering on holoperipheral, so scored as ambiguous.

Craniops: "both valves with growth holoperipheral" – Williams et al. [2000] p164.

Ussunia: Following description of order in Williams et al. [2000].

# [22] Posterior surface: Differentiated



Character 22: Sclerites: Dorsal valve: Posterior surface: Differentiated

0: Posterior shell not differentiated

1: Posterior shell forms distinct cardinal area or pseudointerarea

Neomorphic character.

In shells that grow by mixoperipheral growth, the triangular area subtended between each apex and the posterior ends of the lateral margins is termed the cardinal area. In shells with holoperipheral growth, a flattened surface on the posterior margin of the valve is termed a pseudointerarea [paraphrasing Williams et al., 1997].

In order for this character to be independent of a shell's growth direction, we do not distinguish between a "cardinal area", "interarea" or "pseudointerarea".

Pedunculotheca diania: Pseudointerarea.

Micrina: = Sellate sclerite duplicature [Holmer et al., 2008].

Paterimitra: Pseudointerarea.

Haplophrentis carinatus: A very short pseudointerarea appears to be present [Moysiuk et al., 2017].

Lingulosacculus: Unclear from fossil material.

Tomteluva perturbata: Cardinal area (interarea) present.

Mummpikia nuda: "Information on the dorsal interarea is inconclusive [...] no obvious interarea is recognisable; whether or not this is the primary state or a taphonomic artefact is difficult to assess" – Balthasar [2008], p. 276.

Coolinia pecten: Cardinal area (interarea) present.

Kutorgina chengjiangensis: Cardinal area (interarea) present.

Salanygolina: Cardinal area (interarea) present.

Lingula: Pseudointerarea present, following Williams et al. [2000], table 6.

Acanthotretella spinosa: Pseudointerarea present, following Siphonotretidae coding in Williams et al. [2000], table 6.

Heliomedusa orienta: Pseudointerea in ventral valve, but not dorsal valve [Williams et al., 2000, 2007].

Longtancunella chengjiangensis: Zhang et al. [2011a] note that "all evidence of a pseudointerarea is lacking", but the two-dimensional preservation style of Chengjiang material makes details of dorsal valve difficult to distinguish, and the possibility of a diminutive pseudointerarea cannot be excluded with total confidence.

Lingulellotreta malongensis: Pseudointerarea present, following Williams et al. [2000], table 6.

Askepasma toddense: Well-defined pseudointerarea [Williams et al., 2000, p153].

Micromitra: "Dorsal pseudointerarea usually well defined, low, anacline to catacline" – Williams et al. [2000].

Nisusia sulcata: Cardinal area (interarea) present – with reference to Holmer et al. [2018a].

Pelagodiscus atlanticus: Absent, following entry for Discinidae in Williams et al. [2000], table 6.

Novocrania: Pseudointerarea.

Terebratulina: Interarea present.

Antigonambonites planus: Cardinal area (interarea) present.

Alisina: Cardinal area (interarea) present.

Orthis: Cardinal area (interarea) present.

Gasconsia: Absent: the dorsal (branchial) pseudointerarea of G. schucherti is "reduced or obsolete"; that of G. worsleyi "short, virtually obsolete" [Hanken and Harper, 1985].

| Glyptoria: Cardinal area (interarea) present.                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clupeafumosus socialis: Pseudointerarea present; figured by Topper et al. [2013a], fig. 3j.                                                                                                                                                                                                                                                  |
| Yuganotheca elegans: A differentiated region is not obvious in fossil material or its reconstruction [Zhang et al., 2014], but the two-dimensional preservation style of Chengjiang material makes details of dorsal valve difficult to distinguish, and the possibility of a diminutive pseudointerarea cannot be excluded with confidence. |
| Craniops: "Only some craniopsids (Lingulapholis, Pseudopholidops [not $Craniops$ ]) have well-developed pseudointerareas." — Williams et al. [2000].                                                                                                                                                                                         |
| Ussunia: Following table 15 in Williams et al. [2000].                                                                                                                                                                                                                                                                                       |
| Mickwitzia muralensis: Shell flat.                                                                                                                                                                                                                                                                                                           |
| Siphonobolus priscus: "Dorsal pseudointerarea weakly anacline, undivided, elevated above the valve floor" – Popov et al. [2009].                                                                                                                                                                                                             |

 $Bots for dia: \ \hbox{``dorsal pseudointerarea vestigial, divided by median groove"} - \hbox{Williams et al. [2000]}.$ 

# [23] Differentiated posterior surface: Morphology



Character 23: Sclerites: Dorsal valve: Differentiated posterior surface: Morphology

0: Curved lateral profile

1: Planar lateral profile

Neomorphic character.

It is possible for a cardinal area or pseudointerarea to be distinct from the anterior part of the shell, yet to remain curved in lateral profile.

Taking an undifferentiated posterior margin as primitive, the primitive condition is curved – flattening of the posterior margin represents an additional modification that can only occur once the posterior margin is differentiated.

Pedunculotheca diania: Difficult to evaluate based on present material, given low nature of valve and compressed preservation.

Heliomedusa orienta: Posterior surface cannot be flat if it is not differentiated.

| Micromitra: Essentially straight; see fig. 3.7 in Ushatinskaya [2016].                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $Pelagodiscus\ atlanticus$ : Posterior surface cannot be flat if it is not differentiated.                                                                                                     |
| Gasconsia: Posterior surface cannot be flat if it is not differentiated.                                                                                                                       |
| Clupeafumosus socialis: Truncated but essentially planar surface; see e.g. p196 of Topper et al. [2013a].                                                                                      |
| Ussunia: Posterior surface cannot be flat if it is not differentiated.                                                                                                                         |
| Mickwitzia muralensis: Posterior surface cannot be flat if it is not differentiated.                                                                                                           |
| Eoobolus: Essentially planar; see Balthasar [2009], fig. 4a.                                                                                                                                   |
| Siphonobolus priscus: The short interarea appears planar (see for example Popov et a. 2009 fig. 6A), but its short length makes it difficult to establish whether slight curvature is present. |

Bots for dia: "Curved pseudointerarea" – Skovsted et al. [2017].

# [24] Posterior surface: Medial groove



0: Absent
1: Present

### Character 24: Sclerites: Dorsal valve: Posterior surface: Medial groove

0: Absent

1: Present

Neomorphic character.

Following character 29 in Williams et al. [2000], table 9 (which relates to pseudointerarea).

Acanthotretella spinosa: The dorsal pseudointerarea is poorly preserved, but appears to have a median groove [Holmer and Caron, 2006].

*Heliomedusa orienta*: "A posteriorly protruding dorsal pseudointerarea with no median groove and no flexure lines" – Chen et al. [2007].

Lingulellotreta malongensis: Dorsal pseudointerarea with wide, concave median groove and short propareas" – Williams et al. [2000].

Clupeafumosus socialis: Present; figured by Topper et al. [2013a], fig. 3j.

Eoobolus: Prominent medial groove [Balthasar, 2009].

Siphonobolus priscus: The dorsal pseudointerarea of S. priscus is undivided [Popov et al., 2009], but in other species it is divided by a "wide, poorly defined median groove" [Williams et al., 2000]. Coded, therefore, as polymorphic.

Botsfordia: "dorsal pseudointerarea vestigial, divided by median groove" – Williams et al. [2000].

# [25] Posterior surface: Notothyrium



Character 25: Sclerites: Dorsal valve: Posterior surface: Notothyrium

0: Absent

1: Present

Neomorphic character.

A notothyrium is an opening in an interarea that accommodates the pedicle, and may be filled with plates.

Longtancunella chengjiangensis: No evidence or report of an opening at the hinge line in fossil material in Zhang et al. [2007c] or Zhang et al. [2011a].

Botsfordia: Following Williams et al. [1998], Appendix 2.

# [26] Posterior surface: Notothyrium: Shape



Character 26: Sclerites: Dorsal valve: Posterior surface: Notothyrium: Shape

- 1: Parallel-sided cleft
- 2: Triangular

Transformational character.

A notothyrium is an opening in an interarea that accommodates the pedicle, and may be filled with plates. A simplification of character 5 in Bassett et al. [2001].

# [27] Posterior surface: Notothyrium: Chilidial plates



Character 27: Sclerites: Dorsal valve: Posterior surface: Notothyrium: Chilidial plates

- 1: Open
- 2: Covered by chilidial plates

Transformational character.

A notothyrium may be open or covered by a chilidium or two chilidial plates.

No included taxa exhibit more than one chilidial plate.

Transformational as it is not self-evident whether the ancestral taxon had an open or closed notothyrium.

# [28] Notothyrial platform



0: Absent 1: Present

### Character 28: Sclerites: Dorsal valve: Notothyrial platform

0: Absent

1: Present

Neomorphic character.

After Bassett et al. [2001] character 12.

The presence or absence of a notothyrial platform, which often serves as an attachment point for the diductors in a similar fashion to the cardinal processes, is independent of the presence of a notothyrium.

Coolinia pecten: Referred to as the "posterior platform" in Dewing [2001].

Kutorgina chengjiangensis: "Dorsal diductor scars impressed on floor of notothyrial cavity": Williams et al. [2000], regarding Kutorginata.

Bassett et al. [2001] score as absent in Table 18.1.

Nisusia sulcata: Bassett et al. [2001] score as absent in Table 18.1.

"Dorsal diductor scars impressed on floor of notothyrial cavity": Williams et al. [2000], regarding Kutorginata.

Alisina: Bassett et al. [2001] score as present in Table 18.1.

Glyptoria: Bassett et al. [2001] score as present in Table 18.1.

Ussunia: "Visceral platforms absent in both valves" – Williams et al. [2000], p. 192.

# [29] Cardinal processes



0: Absent 1: Present

### Character 29: Sclerites: Dorsal valve: Cardinal processes

0: Absent

1: Present

Neomorphic character.

After Bassett et al. [2001] character 13.

Cardinal processes are unlikely to be homologous with the notothyrial platform, even if their function is

similar.

Longtancunella chengjiangensis: Not evident, and ought arguably to be discernable if present given the quality of preservation.

Clupeafumosus socialis: Not reported by Topper et al. [2013a].

# [30] Medial septum



### Character 30: Sclerites: Dorsal valve: Medial septum

0: Absent

1: Present

Neomorphic character.

The dorsal valve of many taxa is exhibits a septum or process (or myophragm) along the medial line. See character 25 in Benedetto [2009].

Lingulosacculus: It is not possible to determine, based on the material presented in Balthasar & Butterfield [2009], whether the anterior projection of the visceral area in the dorsal valve corresponds to a medial septum in the underlying shell.

Mummpikia nuda: See pl. 2 panel 6 in Balthasar [2008].

Kutorgina chengjiangensis: Absent – fig. 129.1f in Williams et al. [2000].

Acanthotretella spinosa: Not described by Holmer & Caron [2006], but an unannotated linear feature corresponds to the position of a median septum. Without detailed study of the specimen, we opt to score this as ambiguous.

Heliomedusa orienta: Reported on 'ventral' valve by Chen et al. [2007]; we consider their 'ventral' valve to be the dorsal valve.

The structure is unambiguously figured [e.g. fig. 5.1 in Chen et al., 2007], contra its coding as absent in Williams et al. [2000] and its lack of mention in Williams et al. [2007] or Zhang et al. [2009].

Lingulellotreta malongensis: Very weakly developed but seemingly present between muscle scars in Lingulellotreta, more prominent in Aboriginella (also Lingulellotretidae) [Williams et al., 2000, fig. 34].

Nisusia sulcata: Fig. 125 in Williams et al. [2000].

Novocrania: Median process evident: Williams et al. [2000] fig. 100.2a, d.

Antigonambonites planus: Weakly developed septum evident in internal cast: Williams et al. [2000], fig. 508.2e.

Orthis: Short medial process ("low median ridge", p. 724) present in dorsal valve; see Fig. 523.3b in Williams et al. [2000].

Glyptoria: Neither evident nor reported in Williams et al. [2000].

Clupeafumosus socialis: Prominent process evident [Topper et al., 2013a].

Ussunia: Following char 42 in table 15 in Williams et al. [2000].

Eoobolus: A "median projection" is present [fig. 4g in Balthasar, 2009].

Siphonobolus priscus: "Dorsal interior [...] bisected by a short median ridge." - Popov et al. [2009].

Botsfordia: "dorsal interior with narrow anterior projection extending to midvalve, bisected by median ridge" – Williams et al. [2000].

### 3.4 Sclerites: Ventral valve

# [31] Relative size



#### Character 31: Sclerites: Ventral valve: Relative size

- 1: Ventral valve markedly larger than dorsal valve (ventribiconvex)
- 2: Equivalve (subequally biconvex)
- 3: Dorsal valve markedly larger than ventral valve (dorsibiconvex)

Transformational character.

In many brachiopods, the valves are closely similar in size; in others, the ventral valve is markedly larger than the dorsal, on account of being more convex. Marginal cases are treated as ambiguous for the relevant states.

Mummpikia nuda: Aside from hinge, valves similar in convexity and size [Balthasar, 2008].

Kutorgina chengjiangensis: Ventral valve larger [see Williams et al., 2000, fig. 125.].

Heliomedusa orienta: Ventral valve larger than the dorsal valve [Zhang et al., 2009, p. 659].

Longtancunella chengjiangensis: The ventral valve is somewhat, but not markedly, larger than the dorsal; as such, this character is coded ambiguous for equivalve/ventral valve larger.

Nisusia sulcata: Ventral valve larger [see Williams et al., 2000, fig. 126.].

Antiqonambonites planus: Broadly equivalve – see Williams et al. [2000] fig. 508.2c.

Gasconsia: Convexiplane [Williams et al., 2000, p. 187].

Yuganotheca elegans: The ventral valve is somewhat, but not markedly, larger than the dorsal; as such, this character is coded ambiguous for equivalve/ventral valve larger.

Craniops: "Shell subequally biconvex" – Williams et al. [2000].

Ussunia: Subequally biconvex [Williams et al., 2000, p. 192].

Eoobolus: "Eoobolus is biconvex", but in his amended diagnosis, Balthasar [2009] described it as "shell inequivalved, dorsibiconvex".

Siphonobolus priscus: Ventribiconvex [Popov et al., 2009].

Botsfordia: After table 8 in Williams et al. [2000].

# [32] Growth direction



### Character 32: Sclerites: Ventral valve: Growth direction

- 1: Holoperipheral
- 2: Mixoperipheral
- 3: Hemiperipheral

Transformational character.

See Fig. 284 in Williams et al. [1997] for depiction of terms.

The growth direction dictates the attitude of the cardinal area relative to the hinge, which does not therefore represent an independent character.

Crudely put, if, viewed from a dorsal position, the umbo falls within the outer margin of the shell, growth is holoperipheral; if it falls outside the margin, it is mixoperipheral; if it falls exactly on the margin, it is hemiperipheral.

Paterimitra: The apical flange notwithstanding, the umbo of the S1 sclerite is posterior of the hinge line and the posterior edge of the lateral plate – see Larsson et al. [2014], fig. 2a, c.

Heliomedusa orienta: Williams et al. [2000, 2007] reconstruct mixoperipheral growth in the ventral valve [though Chen et al. [2007] reconstruct the valves the other way round, i.e. it is the ventral valve that grows holoperipherally, and the dorsal mixoperipherally].

Clupeafumosus socialis: Inferred from Topper et al. [2013a].

Ussunia: Following description of order in Williams et al. [2000].

Siphonobolus priscus: Initially holoperipheral [Popov et al., 2009, p. 159], then on the brink of being mixoperipheral in adulthood, so coded as polymorphic.

# [33] Posterior surface: Differentiated



Character 33: Sclerites: Ventral valve: Posterior surface: Differentiated

- 0: Posterior surface of shell not differentiated
- 1: Posterior surface of shell forms distinct cardinal area or pseudointerarea Neomorphic character.

In shells that grow by mixoperipheral growth, the triangular area subtended between each apex and the posterior ends of the lateral margins is termed the cardinal area. In shells with holoperipheral growth, a flattened surface on the posterior margin of the valve is termed a pseudointerarea [paraphrasing Williams et al., 1997].

In order for this character to be independent of a shell's growth direction, we do not distinguish between a "cardinal area", "interarea" or "pseudointerarea".

Paterimitra: Triangular notch and subapical flange.

Lingulosacculus: The conical valve is interpreted as the ventral valve with an extended pseudointerarea.

Tomteluva perturbata: Interarea present.

Mummpikia nuda: Balthasar [2008] interprets a pseudointerarea as being present – e.g. p273, "Of particular interest is the vault that bridges the most anterior portion of the ventral pseudointerarea and raises it above the visceral platform."; "This pattern is reversed in the ventral valves of  $M.\ nuda$ , where the anterior projection of the pedicle groove is raised above the valve floor whereas the lateral parts of pseudointerarea are not".

Coolinia pecten: Interarea present.

Kutorgina chengjiangensis: Interarea present.

Salanygolina: Interarea present.

Heliomedusa orienta: Zhang et al. [2009] report a moderate to somewhat developed ventral pseudointerarea, confirmed by Williams et al. [2007].

Longtancunella chengjiangensis: Though "all evidence of a pseudointerarea is lacking" – Zhang et al. [2011a] – the region of the shell between the strophic hinge line and the colleplax [fig. 2 in Zhang et al., 2011a] is distinct from the rest of the shell; the ends of the strophic hinge line are marked by prominent nicks in the shell margin. Longtancunella is therefore coded as having a differentiated posterior surface.

Nisusia sulcata: Interarea present.

Terebratulina: Interarea.

Antigonambonites planus: Interarea present.

Alisina: Interarea present.

Orthis: Interarea present.

Gasconsia: The region corresponding to the ventral (pseudo)interarea is described as a "trimerellid ventral cardinal area" by Williams et al. [2000, p.162], who code both an interarea and a pseudointerarea as absent in trimerellids.

Glyptoria: Interarea present.

Clupeafumosus socialis: Described by Topper et al. [2013a].

Ussunia: Following char 17 in table 15 in Williams et al. [2000].

Mickwitzia muralensis: Termed an interarea by Balthasar [2004].

Siphonobolus priscus: "Ventral pseudointerarea, low, undivided, poorly defined" – Williams et al. [2000].

# [34] Posterior margin growth direction



Character 34: Sclerites: Ventral valve: Posterior margin growth direction

- 1: Inward-growing
- 2: Outward-growing

Transformational character.

Balthasar [2008] notes an inward-growing posterior margin of the pseudointerarea as potentially linking Mummpikia with the linguliform brachiopods.

Coded as inapplicable in taxa without a differentiated posterior margin: the posterior margin can only grow inwards if it is differentiated from the anterior margin; else the entire shell would grow in on itself.

Mummpikia nuda: Balthasar [2008] interprets an inward-growing posterior margin of the pseudointerarea – e.g. p273, "Of particular interest is the vault that bridges the most anterior portion of the ventral pseudointerarea and raises it above the visceral platform [...] An inward-growing posterior margin is otherwise known only from the pseudointerareas of linguliform brachiopods".

Lingulellotreta malongensis: Transverse cross section of ventral pseudointerarea concave.

Clupeafumosus socialis: See Topper et al. [2013a].

Eoobolus: See for example Skovsted & Holmer [2005], pl. 3.

Botsfordia: Inward-growing; see Skovsted & Holmer [2005], pl. 4.

# [35] Posterior surface: Planar



Character 35: Sclerites: Ventral valve: Posterior surface: Planar

0: Curved lateral profile

1: Planar lateral profile

Neomorphic character.

It is possible for a cardinal area or pseudointerarea to be distinct from the anterior part of the shell, yet to remain curved in lateral profile.

Taking an undifferentiated posterior margin as primitive, the primitive condition is curved – flattening of the posterior margin represents an additional modification that can only occur once the posterior margin is differentiated.

A flat and triangular interarea links *Mummpikia* with the Obolellidae [Balthasar, 2008] – but all included taxa have triangular interareas, so this is not listed as a separate character.

Acanthotretella spinosa: ventral pseudointerareas are most similar to those found within the Order Siphonotretida.

Longtancunella chengjiangensis: Flattened, reflecting the strophic hinge line.

Lingulellotreta malongensis: Transverse cross section of ventral pseudointerarea concave.

Micromitra: Essentially planar; see fig. 6 in Ushatinskaya [2016].

Clupeafumosus socialis: "Ventral pseudointerarea is gently procline and is flat in lateral profile". — [Topper et al., 2013a].

Eoobolus: Some curvature retained.

Siphonobolus priscus: 'Almost' planar – see Popov et al. [2009, fig. 4]. Coded as ambiguous.

Botsfordia: See Skovsted & Holmer [2005], pl. 3, fig. 14.

# [36] Posterior surface: Extent



### Character 36: Sclerites: Ventral valve: Posterior surface: Extent

1: Low

2: High

Transformational character.

Distinguishes taxa whose ventral valve is essentially flat from those that are essentially conical.

Coolinia pecten: See fig. 485 in Williams et al. [2000].

Kutorgina chengjiangensis: This taxon [see Williams et al., 2000, fig. 129; Popov, 1992, fig. 1] comes close to expressing the deeply conical ventral valve that this character is intended to reflect, though this is not always so pronounced [e.g. Williams et al., 2000, fig. 125]. It is therefore coded as ambiguous.

Salanygolina: Whereas Williams et al. [2000, p. 156] describe the ventral pseudointerarea as high, the shell lacks the deeply conical aspect that this character is intended to capture; we thus code the taxon as ambiguous.

| Nisusia succata: Scored as high in data matrix of Benedetto [2009], and depicted as such in Williams et al. [2000, fig. 125] and Popov [1992, fig. 1]; but not high in all specimens [e.g. Williams et al., 2000, fig. 126] It is therefore coded as polymorphic.  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Antigonambonites planus: Though scored High in data matrix of Benedetto [2009], this taxon [see William et al., 2000, fig. 508] does not express the deeply conical ventral valve that this character is intended to reflect. It is charitably coded as ambiguous. |
| Orthis: Scored 'Low' for Eoorthis by Benedetto [2009]; assumed same in Orthis.                                                                                                                                                                                     |
| Gasconsia: "ventral cardinal interarea low, apsacline, with narrow, poorly defined homeodeltidium" Williams et al. [2000], p. 186.                                                                                                                                 |
| ${\it Clupeafumosus\ socialis:}\ {\it Entire\ valve\ length-see\ schematic\ in\ Williams\ \it et\ \it al.\ [1997],\ fig.\ 286.$                                                                                                                                    |

*Mickwitzia muralensis*: Often not prominently high [Skovsted and Holmer, 2003, Balthasar, 2004], though in some cases [e.g. Butler et al., 2015] the ventral valve approaches the conical shape that this character is intended to capture. Coded as polymorphic.

# [37] Posterior surface: Delthyrium



0: Absent
1: Present

### Character 37: Sclerites: Ventral valve: Posterior surface: Delthyrium

0: Absent

1: Present

Neomorphic character.

A delthyrium is an opening in an interarea or pseudointerarea that accommodates the pedicle, and may be filled with plates.

The homology of the pedicle in the pseudointerarea of obolellids and botsfordiids with the umbonal pedicle foramen of acrotretids was proposed by Popov [1992], and seemingly corroborated by observations of Ushatinskaya & Korovnikov [2016], who note that the propareas of the *Botsfordia* ventral valve sometimes merge to form an elongate teardrop-shaped pedicle foramen.

Micrina: Opening inferred by Holmer et al. [2008].

Acanthotretella spinosa: Origin modelled on Siphonobolus.

Longtancunella chengjiangensis: Unclear: a narrow ridge that may correspond to a pseudodeltidium evident in fig 2a and sketched in fig. 2c is not discussed in the text of Zhang et al. [2011a], so the delthyrial region is coded as ambiguous.

Askepasma toddense: Homeodeltidium absent [Williams et al., 2000, p. 153]; deltidium is open [see Topper et al., 2013b, fig. 4].

*Pelagodiscus atlanticus*: The listrum (pedicle opening) is interpreted as originating via a similar mechanism to that of acrotretids [Popov, 1992], and hence corresponding to a basally sealed delthyrium.

Glyptoria: "Delthyrium and notothyrium open, wide" – Cooper [1976].

Clupeafumosus socialis: Following Popov [1992], the larval delthyrium is sealed in adults by outgrowths of the posterolateral margins of the shell.

Yuganotheca elegans: Details of the hinge region are unclear due to the flattened and overprinted nature of fossil preservation.

Mickwitzia muralensis: A delthyrium is present in young individuals [Balthasar, 2004].

Eoobolus: See for example fig. 5 in Balthasar [2009].

Siphonobolus priscus: Ontogeny presumed to resemble that of acrotretids.

Botsfordia: The homology of the triangular notch or groove in the pseudointerarea with the umbonal pedicle foramen of acrotretids was proposed by Popov [1992], and seemingly corroborated by observations of Ushatinskaya & Korovnikov [2016], who note that the propareas of the Botsfordia ventral valve sometimes merge to form an elongate teardrop-shaped pedicle foramen.

# [38] Posterior surface: Delthyrium: Shape



Character 38: Sclerites: Ventral valve: Posterior surface: Delthyrium: Shape

- 1: Parallel sided
- 2: Triangular
- 3: Round

Transformational character.

A parallel-sided delthyrium links Mummpikia with the Obolellidae [Balthasar, 2008].

Following Popov [1992], the larval delthyrium of acrotretids and allied taxa is understood to be sealed in adults by outgrowths of the posterolateral margins of the shell. The resultant round or teardrop-shaped foramen corresponds the delthyrium.

Askepasma toddense: Prominently triangular [see Topper et al., 2013b, fig. 2].

Clupeafumosus socialis: Following the model of Popov [1992].

Mickwitzia muralensis: An opening is incorporated at the base of the homeodeltidium when the organism

switches from early to late maturity [fig. 10 in Balthasar, 2004]. This opening is conceivably homologous with the pedicle foramen of acrotretid brachiopods and their ilk. To reflect this possible homology, *Mickwitzia* is coded as polymorphic (triangular/round).

### [39] Posterior surface: Delthyrium: Shape: Aspect of rounded opening



Character 39: Sclerites: Ventral valve: Posterior surface: Delthyrium: Shape: Aspect of rounded opening

- 1: Elongate: oval to rhombic
- 2: Essentially circular
- 3: Wider than long

Transformational character.

Chen et al. [2007] propose that an oval to rhombic foramen characterises the discinids [and Heliomedusa, though the foramen in this taxon has since been reinterpreted by Zhang et al. [2009] as an impression of internal tissue].

Lingulellotreta malongensis: Oval [Williams et al., 2000].

Mickwitzia muralensis: Wider than long: see fig. 10 in Balthasar [2004].

# [40] Posterior surface: Delthyrium: Cover



Character 40: Sclerites: Ventral valve: Posterior surface: Delthyrium: Cover

- 1: Open
- 2: Covered, at least in part

Transformational character.

An open delthyrium links Mummpikia with the Obolellidae [Balthasar, 2008].

The delthyrial opening can be covered by one or more deltidial plates, or a pseudodeltitium.

Inapplicable in taxa with a round delthiruym [generated by overgrowth of the delthyrial opening by postero-lateral parts of the shell, per Popov, 1992].

Paterimitra: Covered by subaical flange, in part.

Coolinia pecten: A convex pseudodeltidium completely covers the delthyrium in Coolinia.

Askepasma toddense: Open [Topper et al., 2013b].

Nisusia sulcata: "Covered only apically by a small convex pseudodeltitium" – Holmer et al. [2018a].

Glyptoria: Coded as open by Williams et al. [1998].

Botsfordia: See pl. 3 fig. 15 in Skovsted & Holmer [2005].

## [41] Posterior surface: Delthyrium: Cover: Extent



Character 41: Sclerites: Ventral valve: Posterior surface: Delthyrium: Cover: Extent

- 1: Covered only partially; partially open
- 2: Completely covered

Transformational character.

Micrina: Remains somewhat open.

Nisusia sulcata: A well-defined pseudo-deltidium [...] closes only the apical part of the delthyrium [Rowell and Caruso, 1985].

#### [42] Posterior surface: Delthyrium: Cover: Identity



Character 42: Sclerites: Ventral valve: Posterior surface: Delthyrium: Cover: Identity

- 1: Pseudodeltidium
- 2: Deltidial plate(s)

Transformational character.

This character has the capacity for further resolution (one or more deltidial plates), but this is unlikely to affect the results of the present study.

The pseudodelthyrium is also referred to as a homeodeltidium.

*Micrina*: "Ventral valve convex with apsacline interarea bearing delthyrium, covered by a convex pseudodeltidium" – Holmer et al. [2008].

Lingulellotreta malongensis: The subapical flange of the Paterimitra S1 sclerite has been homologised with the ventral homeodeltidium of Micromitra [Larsson et al., 2014].

Askepasma toddense: No pseudodeltidium [Williams et al., 2000, p. 153].

Alisina: Stated as "concave pseudodeltidium with median plication" – Williams et al. [2000] Coded as "Pseudodeltidium: Covered by concave plate" by Bassett et al. [2001].

Mickwitzia muralensis: Termed a homoedeltidium by Balthasar [2004].

#### [43] Posterior surface: Delthyrium: Pseudodeltidium: Shape



Character 43: Sclerites: Ventral valve: Posterior surface: Delthyrium: Pseudodeltidium: Shape

- 1: Concave
- 2: Convex

Transformational character.

A ridge-like (i.e. convex) pseudodeltitium unites *Salanygolina* with *Coolinia* and other Chileata [Holmer et al., 2009, p. 6].

Micrina: Convex deltoid [Holmer et al., 2008].

Paterimitra: Gently convex [see Williams et al., 2000, fig. 83.1].

Tomteluva perturbata: Convex [Streng et al., 2016].

*Kutorgina chengjiangensis*: Difficult to determine based on material presented in Zhang *et al.* [2007b], or indeed for other species in the genus [e.g. Williams et al., 2000, Skovsted and Holmer, 2005, Holmer et al., 2018b].

Salanygolina: "The presence of [...] a narrow delthyrium covered by a convex pseudodeltidium, places Salanygolinidae outside the Class Paterinata and strongly suggests affinity to the Cambrian Chileida" – Holmer et al. [2009], p. 9.

Micromitra: Gently convex [see Williams et al., 2000, fig. 83.3].

Nisusia sulcata: Convex in Nisusia [see Rowell and Caruso, 1985, fig. 8.4].

Antigonambonites planus: Convex [Williams et al., 2000, fig. 508].

Alisina: "concave pseudodeltidium with median plication" – Williams et al. [2000] Coded as "Pseudodeltidium: Covered by concave plate" by Bassett et al. [2001].

Gasconsia: Gasconsia possesses narrow concave homeodeltidium, but absent pseudodeltidium.

Mickwitzia muralensis: Convex [see Balthasar, 2004, fig. 4B].

## [44] Posterior surface: Delthyrium: Pseudodeltidium: Hinge furrows



#### Character 44: Sclerites: Ventral valve: Posterior surface: Delthyrium: Pseudodeltidium: Hinge furrows

0: Absent

1: Present

Neomorphic character.

After Bassett et al. [2001] character 18, "Hinge furrows on lateral sides of pseudodeltidium".

Pedunculotheca diania: Absent due to inapplicability of neomorphic character.

Micrina: Absent due to inapplicability of neomorphic character.

Paterimitra: Absent due to inapplicability of neomorphic character.

Eccentrotheca: Absent due to inapplicability of neomorphic character.

Haplophrentis carinatus: Absent due to inapplicability of neomorphic character.

Lingulosacculus: Absent due to inapplicability of neomorphic character.

Phoronis: Absent due to inapplicability of neomorphic character.

Mummpikia nuda: Absent due to inapplicability of neomorphic character.

Salanygolina: The presence of this feature is impossible to determine based on the available material.

Dailyatia: Absent due to inapplicability of neomorphic character.

Lingula: Absent due to inapplicability of neomorphic character.

Acanthotretella spinosa: Absent due to inapplicability of neomorphic character.

Heliomedusa orienta: Absent due to inapplicability of neomorphic character.

Lingulellotreta malongensis: Absent due to inapplicability of neomorphic character.

Askepasma toddense: Absent due to inapplicability of neomorphic character.

Micromitra: Absent due to inapplicability of neomorphic character.

Pelagodiscus atlanticus: Absent due to inapplicability of neomorphic character.

Novocrania: Absent due to inapplicability of neomorphic character.

Terebratulina: Absent due to inapplicability of neomorphic character.

Orthis: Absent due to inapplicability of neomorphic character.

Glyptoria: Absent due to inapplicability of neomorphic character.

Clupeafumosus socialis: Absent due to inapplicability of neomorphic character.

## [45] Umbonal perforation



#### Character 45: Sclerites: Ventral valve: Umbonal perforation

- 0: Umbo imperforate (or ventral valve absent)
- 1: Umbonal perforation
- Neomorphic character.

Certain taxa, particularly those with a colleplax, exhibit a perforation at the umbo of the ventral valve. This opening is sometimes associated with a pedicle sheath, which emerges from the umbo of the ventral valve without any indication of a relationship with the hinge.

In contrast, the pedicle of acrotretids and similar brachiopods is situated on the larval hinge line, but is later surrounded by the posterolateral regions of the growing shell to become separated from the hinge line, and encapsulated in a position close to (or with resorption of the brephic shell, at) the umbo [see Popov, 1992, pp. 407–411 and fig. 3 for discussion]. In some cases, an internal pedicle tube attests to this origin – potentially corresponding to the pedicle groove of linguids. As such, the pedicle foramen of acrotretids and allies is not originally situated at the umbo; it is instead understood to represent a basally sealed delthyrium.

*Eccentrotheca*: The sclerites of *Eccentrotheca* form a ring that surrounds the inferred attachment structure; the attachment structure does not emerge from an aperture within an individual sclerite. Thus no feature in *Eccentrotheca* is judged to be potentially homologous with the apical perforation in bivalved brachiopods.

Lingulosacculus: The apical termination of the fossil is unknown.

Tomteluva perturbata: Streng et al. [2016] observe "an internal tubular structure probably representing the ventral end of the canal within the posterior wall of the pedicle tube", but do not consider this tomteluvid dube to be homologous with the pedicle tube of acrotretids and their ilk, stating (p. 274) that it appears to be unique within Brachiopoda.

Dailyatia: The B and C sclerites of Dailyatia bear small umbonal perforations [Skovsted et al., 2015], but these are not considered to be homologous with the ventral valve, so this character is coded as inapplicable – though the possibility that the perforations are equivalent is intriguing.

A1 sclerites typically have a pair of perforations, which are conceivably equivalent to the setal tubes of *Micrina* [Holmer et al., 2011]. The A1 sclerite of D. bacata has a structure that is arguably similar to the 'colleplax' of *Paterimitra*. But the homology of any of these structures to the umbonal aperture of brachiopods is difficult to establish.

Heliomedusa orienta: There is "compelling evidence to demonstrate that the putative pedicle illustrated by Chen et al. [2007, Figs. 4, 6, 7] in fact is the mold of a three-dimensionally preserved visceral cavity." – Zhang et al. [2009].

Clupeafumosus socialis: The presumed pedicle foramen reported by Topper et al. [2013a] is at the ventral valve umbo. No evidence of an internal pedicle tube is present, but we follow Popov [1992] in inferring the encapsulation of the pedicle foramen.

Mickwitzia muralensis: The umbo itself is imperforate [Balthasar, 2004].

Siphonobolus priscus: Prominent subcircular perforation at umbo associated with an internal pedicle tube [Popov et al., 2009], thus presumed to share an origin with the acrotretid pedicle foramen.

#### [46] Umbonal perforation: Shape



#### Character 46: Sclerites: Ventral valve: Umbonal perforation: Shape

- 1: Circular (or subcircular)
- 2: Rhombic to oval

Transformational character.

Coolinia pecten: Bassett and Popov write "a dominant feature of the ventral umbo is a sub-oval perforation about 270 m long and 250 m wide": the width and height of this structure are almost identical, and we score it as (sub) circular.

*Kutorgina chengjiangensis*: The exact size and shape of the apical perforation is obscured by the emerging pedicle.

Salanygolina: Essentially circular [Holmer et al., 2009, fig. 4].

Acanthotretella spinosa: Too small to observe given quality of preservation [Holmer and Caron, 2006].

Heliomedusa orienta: Rhombic to oval – seen as evidence for a discinid affinity [Chen et al., 2007].

Nisusia sulcata: "close to circular" [Holmer et al., 2018a].

Antigonambonites planus: Based on p.92, fig.4B.

Alisina: Seemingly circular [Zhang et al., 2011b].

Clupeafumosus socialis: Taller than wide in some cases, but very nearly circular in others; see Topper et al. [2013a].

## [47] Colleplax, cicatrix or pedicle sheath



Character 47: Sclerites: Ventral valve: Colleplax, cicatrix or pedicle sheath

0: Absent1: Present

Neomorphic character.

In certain taxa, the umbo of the ventral valve bears a colleplax, cicatrix or pedicle sheath; Bassett et~al. [2008] consider these structures as homologous.

Pedunculotheca diania: The flat apical termination of juvenile individuals possibly functioned as colleplax for attachment, but may simply represent the brephic shell; we treat it as ambiguous to reflect this potential homology.

Micrina: Absent in Micrina [Holmer et al., 2011].

Tomteluva perturbata: The internal canal associated with the pedicle is unique to the tomteluvids, and has an uncertain identity [Streng et al., 2016]. It could conceivably correspond to an internalized pedicle sheath or an equivalent structure, so this feature is coded as ambiguous here.

Kutorgina chengjiangensis: The umbonal region of kutorginides "clearly lacks a pedicle sheath" [Holmer et al., 2018b].

Heliomedusa orienta: A cicatrix was reconstructed by Jin and Wang [1992] (figs 6b, 7), but has not been reported by later authors; possibly, as with the 'pedicle foramen' of Chen et al. [2007], this structure represents internal organs rather than a cicatrix proper [Zhang et al., 2009]; as such it has been recorded as ambiguous.

Longtancunella chengjiangensis: A ring-like structure surrounding the pedicle is interpreted as a colleplax [Zhang et al., 2011a], though the authors make no comparison with the pedicle capsule exhibited by extant terebratulids [see Holmer et al., 2018a].

Lingulellotreta malongensis: The pedicle is identified as such (rather than a pedicle sheath) by the internal pedicle tube.

Clupeafumosus socialis: Not reported by Topper et al. [2013a].

Yuganotheca elegans: The median collar or conical tube is conceivably homologous with the pedicle sheath.

Craniops: Paracraniops is "externally similar to Craniops, but lacking cicatrix" – indicating that Craniops bears a cicatrix [Williams et al., 2000]. Also coded as present in their table 15.

Ussunia: Following table 15 in Williams et al. [2000].

Siphonobolus priscus: Coded as present in view of the attachment scar, which has been considered homologous with the "adult colleplax and foramen with attachment pad" in Salanygolina [Popov et al., 2009].

Botsfordia: Following Williams et al. [1998], appendix 2.

# [48] Median septum



0: Absent
1: Present

#### Character 48: Sclerites: Ventral valve: Median septum

0: Absent

1: Present

Neomorphic character.

Chen et al. [2007] observe a median septum in what they interpret as the ventral valve of *Heliomedusa*, and the ventral valve of *Discinisca*, which they propose points to a close relationship.

 $Haplophrentis\ carinatus$ : The carina of  $H.\ carinatus$  is an angular elevation of the ventral valve surface, rather than a septum growing inward on the interior of shell.

Mummpikia nuda: "Some specimens also reveal that the vault had a slight median septum, which is now visible as a notch or a groove dividing the right from the left part" – Balthasar [2008].

Acanthotretella spinosa: Carbonaceous preservation confounds the identification of internal shell structures; it is possible that this feature is present, but not observable in the Burgess Shale material.

Heliomedusa orienta: Reported on 'ventral' valve by Chen et al. [2007]; we consider the 'ventral' valve to be the dorsal valve.

Lingulellotreta malongensis: Medial septum visible in ventral valve in Williams et al. [2000], fig. 34.1c.

Micromitra: Ventral ridge characteristic of Micromitra [Skovsted and Peel, 2010].

 $Pelagodiscus\ atlanticus:$  Described as present in Discinisca by Chen et al. [2007]; assumed present also in Pelagodiscus.

Novocrania: Valve thin and often unmineralized.

Gasconsia: Evident in moulds of ventral valve; see Watkins [2002].

Glyptoria: Neither evident nor reported in Williams et al. [2000].

Clupeafumosus socialis: A short medial ridge (septum) is present in the ventral valve [Topper et al., 2013a].

Ussunia: Following char. 42 in table 15 in Williams et al. [2000].

Eoobolus: Prominent median septum [fig. 4d, e in Balthasar, 2009].

Siphonobolus priscus: Present; see Popov et al. [2009], fig. 5J.

Botsfordia: Following Williams et al. [1998], appendix 2.

#### 3.5 Sclerites: Ornament

# [49] Concentric ornament



#### Character 49: Sclerites: Ornament: Concentric ornament

0: Smooth, or growth lines only

1: Concentric ornament present

Neomorphic character.

After character 11 in Williams et al. [1998].

Eccentrotheca: More or less concentric ridges occur on Eccentrotheca sclerites [Skovsted et al.].

Kutorgina chengjiangensis: Following Appendix 2 in Williams et al. [1998].

Salanygolina: Following Appendix 2 in Williams et al. [1998].

| Heliomedusa orienta: The ornament on shell exterior is described as concentric fila [Chen et al., 2007, P.43], and also scored as it in Williams et al. [2000, pp.160–163].      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Askepasma toddense: Following Appendix 2 in Williams et al. [1998].                                                                                                              |
| Micromitra: Following Appendix 2 in Williams et al. [1998].                                                                                                                      |
| Pelagodiscus atlanticus: Only growth lines evident [Williams et al., 2000].                                                                                                      |
| Novocrania: Irregular ridges externally [Williams et al., 2000].                                                                                                                 |
| Terebratulina: Single ridge evident in Williams et al. [2006] fig. 1425.1a interpreted as interruption of growth rather than inherent feature, so coded as absent (i.e. smooth). |
|                                                                                                                                                                                  |

 ${\it Mickwitzia~muralensis} .$  Symmetric fila.

Botsfordia: Following Williams et al. [1998], Appendix 2.

Glyptoria: Following Appendix 2 in Williams et al. [1998].

Pustules are arranged along concentric growth lines [Skovsted and Holmer, 2005], so are not treated as a distinct ornamentation.

## [50] Concentric ornament: Symmetry



#### Character 50: Sclerites: Ornament: Concentric ornament: Symmetry

0: Symmetric fila

1: Asymmetric fila, with outer faces

Neomorphic character.

After character 11 in Williams et al. [1998].

Micrina: No obvious asymmetry, even if not obviously symmetric either [Holmer et al., 2008]. Coded as ambiguous.

Eccentrotheca: Ornament, such as it is, is asymmetric, with prominent outer faces [Skovsted et al.].

Kutorgina chengjiangensis: Following Appendix 2 in Williams et al. [1998].

Salanygolina: Following Appendix 2 in Williams et al. [1998].

Dailyatia: Clear asymmetry [Skovsted et al., 2015].

Heliomedusa orienta: See fig. 1715 in Williams et al. [2007].

Askepasma toddense: Following Appendix 2 in Williams et al. [1998].

Micromitra: Following Appendix 2 in Williams et al. [1998].

Novocrania: Clear outer faces [Williams et al., 2000, fig. 100.2b].

Alisina: Seemingly asymmetric [Williams et al., 2000, fig. 122.3c; Zhang et al., 2011b, Fig. 1].

Glyptoria: Following Appendix 2 in Williams et al. [1998].

Mickwitzia muralensis: Symmetric fila [Balthasar, 2004].

## [51] Radial ornament



Character 51: Sclerites: Ornament: Radial ornament



## [52] Shell-penetrating spines



#### Character 52: Sclerites: Ornament: Shell-penetrating spines

0: Absent

1: Present

Neomorphic character.

Mineralized or partly mineralized spines are observed in *Heliomedusa* and *Acanthotretella*.

*Heliomedusa orienta*: The 'spines' reported by Chen *et al.* [2007] are pyritized spinelike setae – see pp. 2580-2590 in Williams *et al.* [2007].

Nisusia sulcata: Bears numerous small, hollow spines [Williams et al., 2000].

Glyptoria: Neither evident nor reported in Williams et al. [2000].

# 3.6 Sclerites: Composition

# [53] Mineralogy



#### Character 53: Sclerites: Composition: Mineralogy

- 1: Organic (non-mineralized)
- 2: Phosphatic
- 3: Calcitic
- 4: Aragonitic

Transformational character.

Lingulosacculus: The absence of relief in Lingulosacculus rules out a phosphatic or calcitic composition, but co-occurring (and presumably aragonitic) hyolithids are preserved in the same fashion. Its constitution was thus either organic or aragonitic [Balthasar and Butterfield, 2009].

Mummpikia nuda: Identified as calcareous by preservational criteria, and description "primary calcitic shells of M. nuda" [Balthasar, 2008].

Salanygolina: Original mineralogy unknown, but known to be mineralised and anticipated to be phosphatic [Holmer et al., 2009].

Acanthotretella spinosa: Holmer & Caron [2006] note the absence of brittle breakage, interpreted as indicating the absence of a material mineralized component to the shells. The preservation is strikingly different from that of other Burgess Shale brachiopods, ruling out a primarily calcitic or phosphatic composition. The two-dimensional nature of the preservation also differs from that of co-occurring aragonitic taxa [hyoliths; Holmer and Caron, 2006, p. 273], indicating that any mineralization was minor at best.

Holmer & Caron [2006, p. 286] suggest that it is more likely that a (minor) mineral component was present than that it was not, though without providing an uncontestable rationale. To be as conservative as possible, we therefore code this taxon as ambiguous.

Heliomedusa orienta: "Shell originally organophosphatic, but may generally have been poorly mineralized" – Williams et al. [2007] – cf. ibid, p. 2889, "These strong similarities to discinoids in soft-part anatomy imply that the Heliomedusa shell was chitinous or chitinophosphatic, not calcareous."

Longtancunella chengjiangensis: "The original composition of the shell cannot be determined with certainty", though it was "most probably entirely soft and organic" – Zhang et al. [2011a].

Lingulellotreta malongensis: Coded as phosphatic by Zhang et al. [2014], but with no explanation. Cracks within shells of Chengjiang specimens [e.g. Zhang et al., 2007a, fig. 3] demonstrate that the shells were originally mineralized, but not the identity of the original biomineral. This said, phosphatized material from Kazakhstan [Holmer et al., 1997] is attributed to the same species; presuming this phosphate to be original and the material to be conspecific, L. malongensis is coded as having phosphatic shells.

Novocrania: Ventral valve uncalcified in extant forms or sometimes thin [Williams et al., 2000], but coded as calcitic as calcite-mineralizing pathways are present.

Gasconsia: Confirmed in Trimerella by Balthasar et al. [2011].

Clupeafumosus socialis: Phosphatic – hence the conventional placement within Linguliformea.

Craniops: Shell calcitic.

Mickwitzia muralensis: Calcite and silica deemed diagenetic by Balthasar [2004].

*Eoobolus*: "the original shell of *Eoobolus* contained small calcareous grains that were incorporated into organic-rich layers alongside apatite" [Balthasar, 2007].

## [54] Cuticle or organic matrix



1: GAGs, chitin and collagen

2: Glycoprotein ?: Ambiguous

#### Character 54: Sclerites: Composition: Cuticle or organic matrix

- 1: GAGs, chitin and collagen
- 2: Glycoprotein

Transformational character.

Williams et al. [1996] identify glycoprotein-based organic scaffolds as distinct from those comprising glycosaminoglycans (GAGs), chitin and collagen. This character can only be scored for extant taxa.

*Phoronis*: "The presence of sulphated glycosaminoglycans (GAGs) in the chitinous cuticle of *Phoronis* (Herrmann, 1997, p. 215) would suggest a link with linguliforms, as GAGs are unknown in rhynchonelliform shells (Fig. 1891, 1896)" – Williams et al. [2007], p. 2830.

Lingula: Coded as GAGs, chitin and collagen in lingulids by Williams et al. [1996].

Pelagodiscus atlanticus: Coded as GAGs, chitin and collagen in discinids by Williams et al. [1996].

Novocrania: Coded as glycoprotein for craniids by Williams et al. [1996].

1: Present

Terebratulina: Coded as glycoprotein for terebratulids by Williams et al. [1996].

Siphonobolus priscus: Lenticular chambers in siphonotretid shells interpreted as degraded GAG residue [Williams et al., 2004].

## [55] Incorporation of sedimentary particles



Character 55: Sclerites: Composition: Incorporation of sedimentary particles

0: Absent

1: Present

Neomorphic character.

Phoronids and Yuganotheca aggulutinate particles into their sclerites.

## [56] Periostracum: Flexibility



#### Character 56: Sclerites: Composition: Periostracum: Flexibility

1: Flexible

2: Inflexible

Transformational character.

Following character 9 in Williams  $et\ al.$  [1998]; see their p228–230 for a discussion of how this might be inferred from fossil material.

Kutorgina chengjiangensis: Following Appendix 2 in Williams et al. [1998].

Salanygolina: Coded as uncertain in Appendix 2 in Williams et al. [1998].

Askepasma toddense: Following Appendix 2 in Williams et al. [1998].

Micromitra: Following Appendix 2 in Williams et al. [1998].

Pelagodiscus atlanticus: Flexible [Williams et al., 1998].

Glyptoria: Following Appendix 2 in Williams et al. [1998].

Eoobolus: Coded as flexible in Williams et al. [1998], Appendix 2.

Botsfordia: Coded as flexible in Williams et al. [1998], Appendix 2.

## [57] Microstructure: Layers



Character 57: Sclerites: Composition: Microstructure: Layers

- 1: Single microstructural layer
- 2: Two microstructurally differentiated layers
- 3: Inner and outer laminae enclosing medial void
- 4: Three microstrurally differentiated layers

Transformational character.

Hyolith conchs comprise two mineralized layers of fibrous bundles. Bundles are measure 5–15 m across; their constituent fibres are each 0.1–1.0 m wide. In the inner layer, the fibres are transverse; in the outer

layer, the bundles are inclined towards the umbo, becoming longitudinal on the outermost margin.

Obolellids comprise a single laminated mineralogical layer [Balthasar, 2008]. Shell-penetrating canals are not considered as contributing to the mineralogical microstructure and are coded separately.

Coded as non-additive as there is no clear necessity to pass through the brachiopod-like construction: the three layers could arise by the addition of a void to a single pre-existing layer, for example.

Inapplicable in taxa with a non-mineralized shell.

Micrina: Identical to Mickwitzia and more derived linguliforms [Holmer et al., 2011].

Haplophrentis carinatus: Assumed to be equivalent to the hyoliths described by Kouchinsky [2000].

Clupeafumosus socialis: General acrotretid structure taken from Zhang et al. [2016].

*Mickwitzia muralensis*: "the shell structure of *Mickwitzia* [...] is closely similar to the columnar shell of linguliform acrotretoid brachiopods as well as to the linguloid *Lingulellotreta*, in that it has slender columns in the laminar succession" – Williams et al. [2007].

Eoobolus: "Eoobolus shells exhibit the general characteristics of modern linguliform shells, i.e. they were composed of alternating sets of organic and apatite-rich layers that were separated by thin sheets of recalcitrant organic layers." – Balthasar [2007].

Siphonobolus priscus: "Orthodoxly secreted primary and secondary layers" – Williams et al. [2004].

Botsfordia: "Composed of a thin primary layer and a laminate secondary shell exhibiting baculate shell structure" – Skovsted & Holmer [2005], with reference to Skovsted and Holmer [2003].

## [58] Microstructure: Crystal format



Character 58: Sclerites: Composition: Microstructure: Crystal format

- 1: Laminated
- 2: Fibrous bundles
- 3: Polygonal columns

Transformational character.

Hyolith conchs comprise two mineralized layers of fibrous bundles. Bundles measure 5–15 m across; their constituent fibres are each 0.1–1.0 m wide. In the inner layer, the fibres are transverse; in the outer layer, the bundles are inclined towards the umbo, becoming longitudinal on the outermost margin.

Obolellids comprise a single laminated mineralogical layer [Balthasar, 2008]. Shell-penetrating canals are not considered as contributing to the mineralogical microstructure and are coded separately.

The pervasive (not just superficial) polygonal structures in *Paterimitra* are distinct, and characterize *Askepasma*, *Salanygolina*, *Eccentrotheca* and *Paterimitra* [Larsson et al., 2014]

| The treatise [Williams et al., 2000] identifies cross-bladed laminae as diagnostic of Strophomenata, with the exception of some older groups that contain fibres or laminar laths.        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\label{eq:pedunculotheca diania:} Assumed to be fibrous by analogy with the allothecomorph orthothecid described by Kouchinsky [2000].$                                                  |
| Haplophrentis carinatus: Inferred from other hyolithids [e.g. Moore and Porter, 2018].                                                                                                    |
| $\label{lem:antigonambonites} \textit{Antigonambonites planus} \text{: Shell structure of this taxon is laminated, rather than fibrous as previously considered.}$                        |
| Craniops: "with calcitic or possibly aragonitic inarticulated shells with laminar (tabular) secondary layers" [Williams et al., 2000].                                                    |
| Siphonobolus priscus: Prominent laminations; see Williams et al. [2004].                                                                                                                  |
| Botsfordia: "Composed of a thin primary layer and a laminate secondary shell exhibiting baculate shell structure" – Skoysted & Holmer [2005] with reference to Skoysted and Holmer [2003] |

## [59] Microstructure: Punctae



#### Character 59: Sclerites: Composition: Microstructure: Punctae

0: Absent

1: Present

Neomorphic character.

Punctae are 10-20~ m wide canals created by multicellular extensions of the outer epithelium. They penetrate the full depth of the shell.

Balthasar [2008] writes:

"Vertical shell penetrating structures, such as punctae, pseudopunctae, extropunctae and canals, are common in many groups of brachiopods and are distinguished based on their geometry and size [Williams et al., 1997]. Punctae are 10–20 m wide and represent multicellular extensions of the outer epithelium [Owen and Williams, 1969]. Pseudopunctae and extropunctae are similar in diameter but, instead of canals, are vertical stacks of conical deflections of individual shell layers [Williams and Brunton, 1993]. None of these three types of vertical shell structure, all of which are confined to calcitic-shelled brachiopods, compares with the much

smaller canals (< 1 m in diameter) of *M. nuda*. The only type of vertical structure that fits the size and nature of the canals of the Mural obolellids are the canals of linguliform brachiopods, which range in width from 180 to 740 nm and are occupied by proteinaceous strands in extant taxa [Williams et al., 1992, 1994, 1997]. In contrast to obolellid canals, however, linguliform canals are not known to penetrate the entire shell but terminate in organic-rich layers [Williams et al., 1997]. Based on these considerations it would, therefore, be misleading to call obolellid shells punctate (they are as much "punctate" as acrotretids or other linguliforms); rather their shell structure should be called canaliculate [Williams et al., 1997]."

Haplophrentis carinatus: The tubules within the centre of the bundles of hyolith shells [Kouchinsky, 2000] are c. 10 m wide, making them an order of magnitude larger than the canals that characterize lingulid valves, and a similar scale to punctae. This said, they have only been reported in a putative allathecid, so the presence of equivalent structures in hyolithids has never been demonstrated.

Mummpikia nuda: "Vertical shell penetrating structures, such as punctae, pseudopunctae, extropunctae and canals, are common in many groups of brachiopods and are distinguished based on their geometry and size [Williams et al., 1997]. Punctae are 10-20 m wide and represent multicellular extensions of the outer epithelium [Owen and Williams, 1969]. [...] None of these three types of vertical shell structure, all of which are confined to calcitic-shelled brachiopods, compares with the much smaller canals (< 1 m in diameter) of M. nuda. The only type of vertical structure that fits the size and nature of the canals of the Mural obolellids are the canals of linguliform brachiopods, which range in width from 180 to 740 nm and are occupied by proteinaceous strands in extant taxa [Williams et al., 1992, 1994; Williams et al., 1997]." – Balthasar [2008].

Heliomedusa orienta: 'Identical' to those in Mickwitzia – see Williams et al. [2007].

Terebratulina: Endopunctae are relatively large canals, diameter vary greatly from 5–20 μm.

Craniops: "impunctate".

Mickwitzia muralensis: Coded as present to reflect that the chambers contained setae; following Carlson in Williams et al. [2007], the punctae may or may not be homologous as punctae, but are likely homologous as shell perforations; both these perforations and those of Micrina were associated with setae, even if their equivalence bay be with juvenile vs adult setal structures in modern brachiopods [Balthasar, 2004, p. 397].

Siphonobolus priscus: The 'canals' through the shell have a diameter of c. 20 m [Williams et al., 2004, text-fig. 2a], falling within the definition of punctae used herein.

## [60] Microstructure: Canals



#### Character 60: Sclerites: Composition: Microstructure: Canals

0: Absent

1: Present

Neomorphic character.

A caniculate microstructure occurs in lingulids; canals are narrower  $(<1\,\text{ m})$  than punctae, may branch, and do not fully penetrate the shell, terminating just within the boundaries of a microstructural layer. See Williams et al. [1997], p303ff, and Balthasar [2008], p273, for discussion.

Tubules described in hyoliths by Kouchinsky [2000] measure around 10 m in diameter, making them an order of magnitude wider than lingulid canals.

This said, Balthasar [2008] considers the tubules within the columnar shell microstructure of *Mickwitzia* cf. occidens [1–3 m wide, Skovsted and Holmer, 2003], acrotretides [1 m wide, see Holmer, 1989, Zhang et al. [2016]] and lingulellotretids [100 nm wide, Cusack et al., 1999] as equivalent to lingulid canals.

*Micrina* exhibits both punctae and canals [Harper et al., 2017], challenging Carlson's contention [in Williams et al., 2007] that the structures are potentially homologous as shell perforations.

*Micrina*: Acrotretid laminae bear characteristic columns [e.g. Zhang et al., 2016]; a similar fabric has been reported, and assumed homologous, in *Micrina* [Butler et al., 2012].

A similar columnar shell microstructure also occurs in the closely related Mickwitzia [Balthasar, 2008].

Haplophrentis carinatus: Zhang et al. [2018] have reported um-scale canals, replicated in phosphate, within the shell of the hyolithid *Paramicrocornus*; as shell microstructure is not preserved in *Haplophrentis*, this latter taxon is taken as a model.

Longtancunella chengjiangensis: Preservational resolution not sufficient to evaluate.

Clupeafumosus socialis: Acrotretid laminae bear characteristic columns [e.g. Zhang et al., 2016].

Balthasar [2008] considers these columns as homologous with tubules within the columnar shell microstructure *Mummpikia*, *Mickwitzia* and lingulellotretids.

*Mickwitzia muralensis*: Coded as present to reflect similarity of columnar microstructure remarked on by, among others, Balthasar [2008]; Williams *et al.* [2007]; Skovsted & Holmer [2003].

Siphonobolus priscus: The 'canals' through the shell have a diameter of c. 20 m [Williams et al., 2004, text-fig. 2a], falling within the definition of punctae (rather than canals) used herein.

Botsfordia: Not evident in section presented by Skovsted & Holmer [2003].

## [61] Microstructure: Pseudopunctae



#### Character 61: Sclerites: Composition: Microstructure: Pseudopunctae

0: Absent

1: Present

Neomorphic character.

Pseudopunctae are not punctae, but deflections of shell laminae. They characterise Strophomenata in particular.

Nisusia sulcata: Scored absent in data matrix of Benedetto [2009].

Antigonambonites planus: Scored absent in data matrix of Benedetto [2009].

Orthis: Scored absent (in Eoorthis) in data matrix of Benedetto [2009].

Glyptoria: Scored absent in data matrix of Benedetto [2009].

## [62] Microstructure: External polygonal ornament



Character 62: Sclerites: Composition: Microstructure: External polygonal ornament

0: Absent

1: Present

Neomorphic character.

Regular polygonal compartments, around 10 m in diameter, characterise *Paterimitra*. Walls between compartments have the cross-section of an anvil. An external polygonal structure (possible imprints of epithelial tissue) occurs in *Dailyatia*, but it is a surface pattern, which is different from the polygonal prisms in the body wall of other paterinid-like groups.

Clupeafumosus socialis: The polygonal ornament reported in acrotretids by Zhang et al. [2016] is on the internal surface of the shell.

3.7. *GAMETES* 107

# 3.7 Gametes

## [63] Egg size



#### Character 63: Gametes: Egg size

Small: < 100 um, little yolk</li>
 Large: > 110 um, much yolk
 Transformational character.

Following Carlson [1995], character 7. This character is only possible to code in extant taxa. It is not considered independent of Carlson's character 11, number of gametes released per spawning, as it is possible to produce more small eggs than large eggs – thus this latter character is not reproduced in the present study. The same goes for Carlson's character 12, gamete dispersal mode; brooders will tend to brood large eggs.

*Phoronis*: *Phoronis* has planktotrophic larvae. indicating a small egg size [Ruppert et al., 2004]. Carlson [1995] codes phoronids as polymorphic, as some members of the phylum have eggs of each size.

Lingula: Following coding for class in Carlson [1995] Appendix 1, character 7.

Pelagodiscus atlanticus: Following coding for class in Carlson [1995] Appendix 1, character 7.

Novocrania: Following coding for class in Carlson [1995] Appendix 1, character 7.

Terebratulina: Following coding for class in Carlson [1995] Appendix 1, character 7.

Siphonobolus priscus: "the ventral brephic valve [was] 50 m across, [which] is close to the known lower limit of the brachiopod egg size" – Popov et al. [2009].

## [64] Site of maturation



#### Character 64: Gametes: Site of maturation

0: Body cavity1: Mantle canalsNeomorphic character.

After Carlson [1995], character 9. Only possible to code in extant taxa. Mantle canals is considered the derived state, as it represents a migration from the body cavity, where gametes are produced.

Phoronis: Following coding for class in Carlson [1995] Appendix 1, character 9.

Lingula: Following Hodgson & Reunov [1994].

Pelagodiscus atlanticus: Following Hodgson & Reunov [1994].

Novocrania: Following Hodgson & Reunov [1994].

Terebratulina: Following Hodgson & Reunov [1994].

# 3.8 Gametes: Spermatozoa

## [65] Nucleus: Broad anterior invagination



-- 0: Absent -- 1: Present -- ?: Ambiguous

### Character 65: Gametes: Spermatozoa: Nucleus: Broad anterior invagination

0: Absent1: Present

Neomorphic character.

Following discussion in Hodgson and Reunov [1994].

Phoronis: Nucleus "almost round": Reunov and Klepal [2004].

Pelagodiscus atlanticus: Following Discinisca tenuis, described in Hodgson & Reunov [1994].

Terebratulina: Hodgson and Reunov [1994].

## [66] Acrosome: Shape



Character 66: Gametes: Spermatozoa: Acrosome: Shape

1: Pear-shaped

2: Needle-shaped

3: Disc-shaped

Transformational character.

Phoronis: Needle-shaped [Reunov and Klepal, 2004].

Lingula: Pear-shaped [Fukumoto, 2003].

Pelagodiscus atlanticus: Pear-shaped [Hodgson and Reunov, 1994].

Novocrania: Needle-shaped [Afzelius and Ferraguti, 1978].

Terebratulina: Disc-shaped (in Kraussina) [Hodgson and Reunov, 1994].

## [67] Acrosome: Differentiated internally



1: Acrosome differentiated internally

?: Ambiguous

Character 67: Gametes: Spermatozoa: Acrosome: Differentiated internally

| 0: No internal differentiation 1: Acrosome differentiated internally Neomorphic character.                                                                                                                           |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Hodgson and Reunov [1994] describe the <i>Discinisca</i> acrosome as having "an electron-lucent centre and an electron-dense outer region", and state that this trait is characteristic of inarticulate brachiopods. |  |
| Phoronis: Acrosome-like structure; no internal division or surrounding membrane, with possibility that much of the acrosome is secondarily lost [Reunov and Klepal, 2004].                                           |  |
| Lingula: Clear differentiation of marginal area [Fukumoto, 2003].                                                                                                                                                    |  |
| Pelagodiscus atlanticus: Following Discinisca tenuis, described in Hodgson & Reunov [1994].                                                                                                                          |  |
| Novocrania: "Along the inner and outer margins there are periodically banded layers, and between them there is a less dense layer" – Afzelius and Ferraguti [1978].                                                  |  |
|                                                                                                                                                                                                                      |  |

Terebratulina: Following Hodgson & Reunov [1994].

## [68] Acrosome: Sub-acrosomal space



#### Character 68: Gametes: Spermatozoa: Acrosome: Sub-acrosomal space

0: Absent

1: Present

Neomorphic character.

*Phoronis*: The filament-like acrosome continues backwards as a tube-like structure [Franzen and Ahlfors, 1980, summarized in Jamieson [1991]].

Lingula: Filled with sub-acrosomal substance [Fukumoto, 2003].

Pelagodiscus atlanticus: Subacrosomal material (in Discinisca) but no subacrosomal space [Hodgson and Reunov, 1994].

Novocrania: Prominent [Afzelius and Ferraguti, 1978].

Terebratulina: No subacrosomal material, let alone a subacrosomal space [e.g. Hodgson and Reunov, 1994].

## [69] Mid-piece



0: Single ring-shaped mitochondrion

1: Multiple mitochondria

-- ?: Ambiguous

### Character 69: Gametes: Spermatozoa: Mid-piece

0: Single ring-shaped mitochondrion

1: Multiple mitochondria

Neomorphic character.

Following Hodgson & Reunov [1994].

*Phoronis*: The mitochondria fuse in the middle stage of spermiogenesis to become a pair of mitochondria [Reunov and Klepal, 2004].

Lingula: Following Hodgson & Reunov [1994].

Pelagodiscus atlanticus: Following Discinisca tenuis, described in Hodgson & Reunov [1994].

Novocrania: Four mitochondria [Afzelius and Ferraguti, 1978].

Terebratulina: Following Hodgson & Reunov [1994].

### [70] Centrioles



0: Orthogonal
1: Parallel
2: Ambiguous

### Character 70: Gametes: Spermatozoa: Centrioles

0: Orthogonal1: Parallel

Neomorphic character.

Following Hodgson and Reunov [1994].

*Phoronis*: Only one centriole in spermatzoon [Reunov and Klepal, 2004, p. 7], but centrioles are perpendicularly oriented in spermatogonia (ibid., p. 2).

Lingula: Following Hodgson & Reunov [1994].

Pelagodiscus atlanticus: Following Discinisca tenuis, described in Hodgson & Reunov [1994].

Novocrania: Two orthogonal centrioles [Afzelius and Ferraguti, 1978].

Terebratulina: Following Hodgson & Reunov [1994].

# 3.9 Brephic shell

## [71] Embryonic shell



### Character 71: Brephic shell: Embryonic shell

0: Absent

1: Present

Neomorphic character.

The embryonic shell or protegulum is secreted by the embryo immediately before hatching.

Novocrania: Shell not secreted until after metamorphosis [Popov et al., 2010].

Clupeafumosus socialis: Described by Topper et al. [2013a].

3.9. BREPHIC SHELL 117

## [72] Morphology



#### Character 72: Brephic shell: Morphology

- 1: Flat, disc-like (cf. *Micrina*)
- 2: Three prominent lobes forming a Y (cf. Paterimitra)
- 3: Spherical

Transformational character.

The brephic shell is the shell possessed by the young organism [see Ushatinskaya and Korovnikov, 2016, and references therein for discussion of terminology].

*Micrina* resembles linguliforms [Holmer et al., 2011]: in both, the brephic mitral shell has one pair of setal sacs enclosed by lateral lobes, whereas the brephic ventral shell has two lateral setal tubes.

Paterimitra and Salanygolina have "identical" ventral brephic shells [Holmer et al., 2011], resembling the shape of a ship's propeller.

Haplophrentis is coded following typical hyoliths, which have a spherical brephic shell; Pedunculotheca's, in

| contrast, is seemingly cap-shaped.                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Coolinia pecten: See fig. 3 in Bassett and Popov [2017].                                                                                             |
| Lingula: See fig. 159 in Williams et al. [1997].                                                                                                     |
| Askepasma toddense: Renoid – see fig. 4B3 in Topper et al. [2013b].                                                                                  |
| ${\it Micromitra}: \ {\it Subtriangular-essentially \ round}.$                                                                                       |
| Pelagodiscus atlanticus: See e.g. fig 169 in Williams et al. [1997].                                                                                 |
| Clupeafumosus socialis: The flat larval shell of Clupeafumosus resembles that of Micrina in outline [Topper et al., 2013a; cf. Holmer et al., 2011]. |
| Craniops: The embryonic shell is more or less circular in outline – see Freeman and Lundelius [1999], fig 6A.                                        |
| $\it Mickwitzia~muralensis$ : Trifoliate appearance results from prominent attachment rudiment and bunching of setal sacs [Balthasar, 2009].         |

3.9. BREPHIC SHELL 119

### [73] Embryonic shell extended in larvae



### Character 73: Brephic shell: Embryonic shell extended in larvae

- 1: Not extended; embryonic shell contiguous with adult shell
- 2: Extended into larval shell, separated from adult shell by prominent nick

Transformational character.

Many taxa add to their embryonic shell (the protegulum possessed by the embryo upon hatching) during the larval phase of their life cycle. The shell that exists at metamorphosis, marked by a halo or nick point, is variously termed the "first formed shell", "metamorphic shell" or "larval shell" [Bassett and Popov, 2017].

Clupeafumosus socialis: Described by Topper et al. [2013a].

Craniops: Prominent nick; see Freeman and Lundelius [1999], fig. 6A.

Eoobolus: Nick point indicated by arrows in fig. 1 of Balthasar [2009].

## [74] Surface ornament



#### Character 74: Brephic shell: Surface ornament

- 1: Smooth
- 2: Rounded pits
- 3: Polygonal impressions
- 4: Pustulose

Transformational character.

Pitting of the larval shell characterises acrotretids and their relatives. Pustules occur on Paterinidae. See Character 3 in Williams  $et\ al.\ [2000]$  tables 5–6.

Micrina: Smooth [Holmer et al., 2011].

Paterimitra: Polygonal texture present [Holmer et al., 2011], as in the adult shell.

Salanygolina: Smooth [Holmer et al., 2009].

Lingula: Smooth, following family-level codings of Williams et al. [2000], table 6.

3.9. BREPHIC SHELL 121

Askepasma toddense: Indented with hexagonal pits [Williams et al., 1998, appendix 2].

Micromitra: Pustolose in Paterinidae [Williams et al., 2000, table 6].

Pelagodiscus atlanticus: Smooth, following family-level codings of Williams et al. [2000], table 6.

Eoobolus: Pitted [Williams et al., 2000, table 8].

### [75] Larval attachment structure



#### Character 75: Brephic shell: Larval attachment structure

0: Without evidence of pedicle

1: With evidence of pedicle

Neomorphic character.

Embryonic shells of *Micrina* and certain linguliforms exhibit a transversely folded posterior extension that speaks of the original presence of a pedicle in the embryo.

This is independent of the presence of an adult pedicle, which may arise after metamorphosis.

Clupeafumosus socialis: The larval shell embraces the pedicle foramen, suggesting a larval attachment. See fig. 4 of Topper et al. [2013a].

Mickwitzia muralensis: Note the posterior lobe related to the attachment rudiment in fig. 2 of Balthasar [2009].

Eoobolus: Lobe related to the attachment rudiment [Balthasar, 2009, fig. 2].

Siphonobolus priscus: Interpreted as having planktotrophic (and thus non-attached) larvae [Popov et al.,

### [76] Setulose



1: Setae present

?: Ambiguous

### Character 76: Brephic shell: Setulose

0: No evidence of setae in embryonic shell

1: Setae present

Neomorphic character.

The protegulum of *Micrina* is penetrated with canals that were originally associated with setae, a character that it has in common with linguliforms [Holmer et al., 2011].

Lingulellotreta malongensis: Familial character: larval shell smooth (williams et al., 2000, p.72).

Clupeafumosus socialis: Setal bundles interpreted as present in acrotretids by Ushatinskaya [2016].

Mickwitzia muralensis: Four setal sacs.

Botsfordia: "One specimen shows fine capillae running laterally from the posterior tubercles on the dorsal valve (Pl. 3, fig. 5b). This is possibly the imprints of setae." – Ushatinskaya and Korovnikov [2016].

# 3.10 Brephic shell: Setal sacs [77]



0: Absent
1: Present
2: Ambiguous

Character 77: Brephic shell: Setal sacs



## [78] Number



### Character 78: Brephic shell: Setal sacs: Number

- 1: One pair
- 2: Two pairs
- 3: Three pairs

Transformational character.

Two pairs on e.g. Coolina; one on e.g. Micrina.

Pelagodiscus atlanticus: Three pairs [Carlson, 1995].

Novocrania: Three pairs [Carlson, 1995].

Clupeafumosus socialis: Two pairs identified in acrotretids by Ushatinskaya [2016].

Mickwitzia muralensis: See fig. 2 in Balthasar [2009].

Siphonobolus priscus: Two pairs of setal sacs [Popov et al., 2009].

1: Present

Botsfordia: "larval shell with one to three apical tubercles in ventral valve and two in dorsal valve" [Williams et al., 2000] – if these correspond to setal sacs, then we interpret this as equivalent to one pair.

### 3.11 Setae

## [79] Present in adults



#### Character 79: Setae: Present in adults

0: Absent

1: Present

Neomorphic character.

Although preservation of setae (in adults) is exceptional, their presence can be inferred from shelly material [see Holmer and Caron, 2006].

3.11. SETAE 127

Acanthotretella spinosa: Note that the setae do not obviously emerge from tubes, leading Holmer and Caron to question their homology with the setae of other taxa (Heliomedusa, Mickwitzia).

Both valves of A can thot retella were covered by long spine-like and shell penetrating setae. The setae of A. decaius are usually preserved along anterior and anterolateral margins [Hu et al., 2010].

Novocrania: "Adult craniids are without setae (a feature shared with the thecideides, the shells of which are also cemented)." – Williams et al. [2007].

Clupeafumosus socialis: Setal bundles interpreted as present in acrotretids by Ushatinskaya [2016].

Siphonobolus priscus: Phosphatised setae emerge from hollow spines [Popov et al., 2009].

### [80] Distribution



Character 80: Setae: Distribution

1: Uniform

2: Only present at margins of shell Transformational character.

Setae penetrate the valves of many brachiopods. In certain taxa, they are apparent only at the margins of the valves, in association with the commissure, being reduced or lost over the surface of the shell.

*Eccentrotheca*: Skovsted *et al.* [] assumed the setae may have been present along the margin of the adapical opening, but there is no fossil evidence.

Heliomedusa orienta: Throughout the shell – see Williams et al. [2007] – causing the pustulose appearance remarked upon by Chen et al. [2007].

# 3.12 Pedicle [81]



Character 81: Pedicle

0: Absent

1: Present

Neomorphic character.

The brachiopod pedicle is a fleshy protuberance that emerges from the posterior part of the body wall – as denoted in fossil taxa by its occurrence between the dorsal and ventral valves.

It is important to distinguish the pedicle from the "pedicle sheath", a tubular extension of the umbo that grows by accretion from an isolated portion of the ventral mantle. For discussion see Holmer et al. [2018b] and Bassett and Popov [2017].

Lingulosacculus: The absence of a pedicle is inferred from the absence of an internal pedicle tube, and the absence of a pedicle at the hinge.

Acanthotretella spinosa: The attachment structure of Acanthotretella originates at the margin of the dorsal and ventral valves; although it emerges from the umbo of the ventral valve, the presence of an internal pedicle tube betrays its identity as a pedicle, rather than a pedicle sheath.

The pedicle of *Acanthotretella* emerges from a short extension of the umbo of the ventral valve. This extension is contiguous with the valve and presumably grew by accretion; its position and continuity with the valve suggest its interpretation as a pedicle sheath that is superseded as an attachment structure. On the other hand, its continuity with the internal pedicle tube suggests that is may represent an independent organ.

Heliomedusa orienta: "It seems unlikely that H. orienta possessed a pedicle that attached it to the soft seafloor, like most other Chengjiang brachiopods." ...

"The putative pedicle illustrated by Chen *et al.* [2007, Figs 4, 6, 7] in fact is the mold of a three-dimensionally preserved visceral cavity" – Zhang et al. [2009].

Nisusia sulcata: Has a pedicle, rather than a pedicle sheath as in Kutorgina [Holmer et al., 2018a,b].

Clupeafumosus socialis: A pedicle was presumably present, but only the foramen is preserved.

Craniops: Attached apically by cementation.

*Mickwitzia muralensis*: An attachment structure is inferred based on the presence of an opening [Balthasar, 2004]; this is assumed to have been homologous with the brachiopod pedicle.

Siphonobolus priscus: Presumed present, based on ventral foramen with colleplax.

Botsfordia: Pedicle foramen was not necessarily occupied by a pedicle (though it presumably was).

## [82] Constitution



#### Character 82: Pedicle: Constitution

- 1: Massive or uniform
- 2: Densely stacked tabular discs

Transformational character.

The pedicle of certain chengjiang rhynchonelliforms comprises "densely stacked, three dimensionally preserved, tabular discs" [Holmer et al., 2018a].

This contrasts with the uniform ('massive') pedicles of living taxa.

Terebratulina: Extant rhynconellid pedicles are massive, consisting of a thick outer chitinous cuticle, a pedicle epithelium, and a core composed of collagen fibres and cartilage-like connective tissue [Holmer et al., 2018a].

3.12. PEDICLE [81]

## [83] Biomineralization



Character 83: Pedicle: Biomineralization

1: Absent

2: Present

Transformational character.

The pedicle of strophomenates such as Antigonambonites is biomineralized [Holmer et al., 2018a].

## [84] Bulb



### Character 84: Pedicle: Bulb

0: Absent

1: Present

Neomorphic character.

A bulb is an expanded region of the distal pedicle, often embedded into the sediment to improve anchorage.

Acanthotretella spinosa: Holmer and Caron [2006] interpret the presence of a bulb as tentative; we score it as ambiguous.

3.12. PEDICLE [81]

## [85] Distal rootlets



### Character 85: Pedicle: Distal rootlets

0: Absent

1: Present

Neomorphic character.

Observed in *Pedunculotheca* and *Bethia* [Sutton et al., 2005].

## [86] Tapering



#### Character 86: Pedicle: Tapering

- 1: Uniform thickness
- 2: Tapering

Transformational character.

Holmer et al. [2018b] remark that the tapering aspect of the Nisusia pedicle recalls that of certain Chengjiang taxa (Alisina, Longtancunella) whilst distinguishing it from many other taxa (Eichwaldia, Bethia) in which the pedicle is a constant thickness.

Pedunculotheca diania: The pedicle thickness does not obviously change between the apex of the shell and the holdfast.

Antigonambonites planus: Tapered pedicle sheath with holdfast.

3.12. PEDICLE [81]

## [87] Coelomic region



### Character 87: Pedicle: Coelomic region

1: Absent

2: Present

Transformational character.

Certain brachiopods, such as Acanthotretella, exhibit a coelomic cavity within the pedicle or pedicle sheath.

Treated as transformational as it is not clear that either state is necessarily ancestral.

Nisusia sulcata: A coleomic canal is inferred based on the ease with which the pedicle is deformed [Holmer et al., 2018a], but its presence is not known for certain so is coded ambiguous.

## [88] Surface ornament



#### Character 88: Pedicle: Surface ornament

- 1: Smooth
- 2: Irregular wrinkles
- 3: Regular annulations

Transformational character.

Annulations are regular rings that surround the pedicle, and are distinguished from wrinkles, which are irregular in magnitude and spacing, and may branch or fail to entirely encircle the pedicle.

Kutorgina chengjiangensis: "Pronounced concentric annular discs disposed at intervals of 0.6–1.0 mm".

Acanthotretella spinosa: "The pedicle surface is ornamented with pronounced annulated rings, disposed at intervals of about 0.2 mm".

Longtancunella chengjiangensis: "The preserved pedicle has condensed annulations" – Zhang et al. [2011a]. Lingulellotreta malongensis: Regularly annotated [see fig. 14.9 in Hou et al., 2017].

3.12. PEDICLE [81]

Nisusia sulcata: The "strong annulations" vary significantly in transverse thickness [Holmer et al., 2018a], so it is not clear whether these represent true annulations or wrinkles.

Antigonambonites planus: "The emerging pedicle has a consistent shape in all the available specimens and is strongly annulated and distally tapering" – Holmer et al. [2018a].

Alisina: "It appears that the pedicle lacks a coelomic space and is distinctly annulated, with densely stacked tabular bodies" – Zhang et al. [2011b].

Yuganotheca elegans: Annulations present in median collar.

### [89] Nerve impression



#### Character 89: Pedicle: Nerve impression

0: Absent1: Present

Neomorphic character.

In certain taxa the impression of the pedicle nerve is evident in the shell. See character 28 in Williams *et al.* [1998] appendix 1. Care must be taken not to code an impression as absent when the preservational quality is insufficient to safely infer a genuine absence. Treated as neomorphic as the presence of an innervation is considered a derived state.

Mummpikia nuda: Balthasar [2008, p. 274] identifies a canal as a probable impression of a pedicle nerve.

Kutorgina chengjiangensis: Following Williams et al. [1998], appendix 2.

Salanygolina: Following Williams et al. [1998], appendix 2.

Lingula: Present in many lingulids [Williams et al., 2000], and coded as present in Lingulidae [Williams et al., 2000, table 6].

Lingulellotreta malongensis: Coded as present in Lingulellotretidae [Williams et al., 2000, table 6].

Askepasma toddense: Following Williams et al. [1998], appendix 2.

Micromitra: Following Williams et al. [1998], appendix 2.

Nisusia sulcata: Not reported in Williams et al. [2000].

Pelagodiscus atlanticus: Coded as present in Discinidae [Williams et al., 2000, table 6].

Alisina: Not described by Williams et al. [2000].

Orthis: Not reported in Williams et al. [2000].

Glyptoria: Following Williams et al. [1998], appendix 2.

Clupeafumosus socialis: Coded as absent in Acrotretidae [Williams et al., 2000, table 6].

Siphonobolus priscus: Coded as absent in Siphonotretidae [Williams et al., 2000, table 6].

Botsfordia: Documented by Skovsted et al. [2017].

139

### 3.13 Mantle canals

## [90] Morphology



### Character 90: Mantle canals: Morphology

- 1: Pinnate (=lemniscate)
- 2: Bifurcate
- 3: Baculate
- 4: Saccate

Transformational character.

The morphology of dorsal and ventral canals is identical in all included taxa, so is assumed not to be independent – hence the use of a single character [contra Williams et al., 2000].

For a description of terms see Williams et al. [1997, 2000].

Pinnate = "rapidly branch into a number of subequal, radially disposed canals"

Bifurcate = "vascula lateralia in both valves divide immediately after leaving the body cavity" Baculate = "extend forward without any major dichotomy or bifurcation" [Williams et al., 1997, p. 418] Saccate = "pouchlike sinuses lying wholly posterior to the arcuate vascula media" (ibid., p412).

Lingulosacculus: Baculate vascula media – Balthasar & Butterfield [2009].

Tomteluva perturbata: Preservation not adequate to evaluate [Streng et al., 2016].

Mummpikia nuda: "Poorly resolved" – Balthasar [2008].

Coolinia pecten: Not reported in Treatise [Williams et al., 2000].

Kutorgina chengjiangensis: Following Table 15 in Williams et al. [2000] (for Neocrania).

Salanygolina: Coded uncertain in Appendix 2 in Williams et al. [1998].

Lingula: Following Table 6 in Williams et al. [2000].

Acanthotretella spinosa: Following Table 6, for Siphonotretidae, in Williams et al. [2000].

Heliomedusa orienta: Described as pinnate by Jin & Wang [1992].

Longtancunella chengjiangensis: Reported by Zhang et al. [2007c, 2011T] though the interpretation is tentative.

Lingulellotreta malongensis: Following Table 6 in Williams et al. [2000].

Askepasma toddense: Described as pinnate (at least in ventral valve) by Williams et al. [1998, p. 250].

Micromitra: Described as saccate by Williams et al. [1998].

Nisusia sulcata: Following Table 15 in Williams et al. [2000].

Pelagodiscus atlanticus: Following Table 6, for Discinidae, in Williams et al. [2000].

Novocrania: Following Table 15 in Williams et al. [2000] (for Neocrania).

Terebratulina: "In modern terebratulides, the vascula media are subordinate to the lemniscate or pinnate vascula genitalia" – Williams et al. [1997].

Antigonambonites planus: Not reported in Treatise [Williams et al., 2000].

Alisina: Following Table 15 in Williams et al. [2000].

Orthis: Sacculate (sometimes digitate in dorsal valve) [Williams et al., 2000, p716].

Gasconsia: Williams et al. [2000, table 15] appear to use Palaeotrimerella [as drawn in Williams et al., 1997] as a model for Gasconsia, which pre-supposes a close relationship. We are not aware of any report of mantle canals from Gasconsia itself.

Glyptoria: Following Appendix 2 (char. 21) in Williams et al. [1998].

Clupeafumosus socialis: Following Table 8 (for Acrotreta) in Williams et al. [2000], and the general pinnate condition for acrotretoids stated in Williams et al. [1997], p. 420.

Craniops: Not reported from fossil material.

Eoobolus: Following Williams et al. [1998], appendix 2, and Williams et al. [2000], table 8.

Botsfordia: Following Williams et al. [1998], appendix 2, and Williams et al. [2000], table 8.

## [91] vascula lateralia



Character 91: Mantle canals: vascula lateralia

0: Absent

1: Present

Neomorphic character.

We treat the *vascula lateralia* as equivalent to the *vascula genitalia* of articulated brachiopods, allowing phylogenetic analysis to test their proposed homology.

-: Inapplicable

Williams et al. [1997] write: "The mantle canal system of most of the organophosphate-shelled species consists of a single pair of main trunks in the ventral mantle (vascula lateralia) and two pairs in the dorsal mantle, one pair (vascula lateralia) occupying a similar position to the single pair in the ventral mantle and a second pair projecting from the body cavity near the midline of the valve. This latter pair may be termed the vascula media, but whether they are strictly homologous with the vascula media of articulated brachiopods is a matter of opinion. It is also impossible to assert that the vascula lateralia are the homologues of the vascula myaria or qenitalia of articulated species, although they are likely to be so as they arise in a comparable

position."

"In inarticulated brachiopods, two main mantle canals (vascula lateralia) emerge from the main body cavity through muscular valves and bifurcate distally to produce an increasingly dense array of blindly ending branches near the periphery of the mantle (fig. 71.1–71.2)."

Tomteluva perturbata: Preservation not adequate to evaluate [Streng et al., 2016].

Kutorgina chengjiangensis: Following table 15 in Williams et al. [2000].

Acanthotretella spinosa: Following table 8 (which records presence in Siphonotreta) in Williams et al. [2000].

Heliomedusa orienta: Present: Williams et al. [2000]; Jin & Wang [1992].

Longtancunella chengjiangensis: Presence is possible but requires interpretation that is not unambiguous:

"In the dorsal valve, there can be seen two baculate grooves that arise from the anterior body wall at an antero-lateral position. These two grooves (Figs 4H, 5D) could be taken to represent the *vascula lateralia*" – Zhang et al. [2007c].

Lingulellotreta malongensis: Present [Williams et al., 2000].

Askepasma toddense: "Laurie [1987] has shown that arcuate vascula media were present in the mantles of both valves as were pouchlike vascula genitalia, especially in the ventral valve" – Williams et al. [1997].

Micromitra: "Laurie [1987] has shown that arcuate vascula media were present in the mantles of both valves as were pouchlike vascula genitalia, especially in the ventral valve" – Williams et al. [1997].

Nisusia sulcata: Following table 15 in Williams et al. [2000].

Pelagodiscus atlanticus: Following Lochkothele (Discinidae), Fig. 43.4a in Williams et al. [2000].

Novocrania: Following table 15 in Williams et al. [2000] (for Neocrania), who write that "Holocene craniides have only a single pair of main trunks in both valves, corresponding to the vascula lateralia". Williams et al. [2007] reiterate this position (p. 2875), at least for the ventral valve.

Terebratulina: = vascula qenitalia.

Alisina: Following table 15 in Williams et al. [2000].

 $Orthis: = vascula \ genitalia.$ 

Gasconsia: Williams et al. [2000, table 15] appear to use Palaeotrimerella [as drawn in Williams et al., 1997] as a model for Gasconsia, which pre-supposes a close relationship. We are not aware of any report of mantle canals from Gasconsia itself.

Clupeafumosus socialis: Presence indicated in Table 8 (for Acrotreta) in Williams et al. [2000].

Yuganotheca elegans: Based on the figures and sketches in Zhang et al. [2014] (and supplementary material), the mantle canals are interpreted as lateral, with no clear vascula media present.

Siphonobolus priscus: Noted in Siphonobolus by Williams et al. [2000], with reference to Havlicek [1982].

Botsfordia: Following Popov [1992].

## [92] vascula media



#### Character 92: Mantle canals: vascula media

0: Absent

1: Present (in dorsal valve)

Neomorphic character.

Williams et al. [1997] note that in addition to the vascula lateralia, "Discinisca has two additional mantle canals emanating from the body cavity into the dorsal mantle (vascula media)."

These structures are only evident in the dorsal valve for the included taxa, so only a single character is necessary.

Tomteluva perturbata: Preservation not adequate to evaluate [Streng et al., 2016].

Kutorgina chengjiangensis: Following table 15 in Williams et al. [2000].

Lingula: Following table 6 in Williams et al. [2000].

Acanthotretella spinosa: Following table 6 (for Siphonotretidae) in Williams et al. [2000].

Heliomedusa orienta: Present: Williams et al. [2000] p162, Jin & Wang [1992].

Longtancunella chengjiangensis: Reported by Zhang et al. [2007c] though the interpretation is tentative.

Lingulellotreta malongensis: Following table 6 in Williams et al. [2000].

Askepasma toddense: Following table 6 (for Paterinidae) in Williams et al. [2000].

Micromitra: Reported by Williams et al. [1998].

Nisusia sulcata: Following table 15 in Williams et al. [2000].

Pelagodiscus atlanticus: Following table 6 (for Discinidae) in Williams et al. [2000].

Novocrania: Williams et al. [2000] write "Holocene craniides have only a single pair of main trunks in both valves, corresponding to the vascula lateralia" – an observation reflected in their table 15 (for Neocrania). But in contrast, Williams et al. [2007], p. 2875, identify the dorsal valve's canals as a vascula media in living craniides (though both are lateralia in Ordoviian craniides). This character is therefore coded as ambiguous.

Terebratulina: "In modern terebratulides, the vascula media are subordinate to the lemniscate or pinnate vascula genitalia" – Williams et al. [1997] p417.

Alisina: Following table 15 in Williams et al. [2000].

Orthis: From idealised morphology in Williams et al. [2000].

Gasconsia: Williams et al. [2000, table 15] appear to use Palaeotrimerella [as drawn in Williams et al., 1997] as a model for Gasconsia, which pre-supposes a close relationship. We are not aware of any report of mantle canals from Gasconsia itself.

Glyptoria: Present and divergent [Williams et al., 2000].

Clupeafumosus socialis: Following Hadrotreta schematic in Williams et al. [2000].

Yuganotheca elegans: Based on the figures and sketches in Zhang et al. [2014] (and supplementary material), the mantle canals are interpreted as lateral, with no clear vascula media present.

Eoobolus: Fig. 5 in Balthasar [2009].

Siphonobolus priscus: Noted in Siphonobolus by Williams et al. [2000], with reference to Havlicek [1982].

Botsfordia: Following Popov [1992, fig. 2].

## [93] vascula terminalia



#### Character 93: Mantle canals: vascula terminalia

0: Exclusively marginal (peripheral)

1: Directed peripherally and (intero)medially

Neomorphic character.

Presumed to be connected with setal follicles in life [Williams et al., 1998]. See Williams et al. [2000] for discussion.

Lingulosacculus: Strong indication of medially directed vascula terminalia from vascula lateralia; see fig. 1.A1 in Balthasar and Butterfield [2009].

Kutorgina chengjiangensis: Coded uncertain in appendix 2 in Williams et al. [1998].

Salanygolina: Coded uncertain in Appendix 2 in Williams et al. [1998].

Lingula: Peripheral and medial for all Lingulata [Williams et al., 2000].

Acanthotretella spinosa: Preservation not clear enough to score with certainty [Holmer and Caron, 2006].

Heliomedusa orienta: Inferred from Jin & Wang [1992].

Lingulellotreta malongensis: Not described in Williams et al. [2000].

Askepasma toddense: Peripheral only [Williams et al., 1998, 2000].

Micromitra: Peripheral only [Williams et al., 1998, 2000].

Pelagodiscus atlanticus: Following Lochkothele (Discinidae), Fig. 43.4a in Williams et al. [2000].

Novocrania: Peripheral only [Williams et al., 2000, p.158].

Terebratulina: Following idealised plectolophous terebratulid of Emig [1992].

Alisina: Interomedial vascula terminalia not reported by Williams et al. [2000].

Orthis: See schematics in Williams et al. [2000].

Glyptoria: Following appendix 2 in Williams et al. [1998].

Eoobolus: Following Williams et al. [1998], appendix 2.

Siphonobolus priscus: Not reported in Williams et al. [2000].

Botsfordia: Following Williams et al. [1998], appendix 2.

## 3.14 Lophophore: Tentacle disposition

### [94] Tentacle disposition



1: Single side
2: Both sides
2: Ambiguous

#### Character 94: Lophophore: Tentacle disposition

- 1: Single side
- 2: Both sides

Transformational character.

Tentacles may occur along one or both sides of the axis of the lophophore arm [Carlson, 1995].

 $\label{lingulosacculus:preservation} Lingulos acculus: \ {\it Preservation insufficient to evaluate}.$ 

Phoronis: Following coding for higher group in Carlson [1995], Appendix 1, character 36.

Kutorgina chengjiangensis: Tentacles "cannot be confidently demonstrated in the available specimens." – Zhang et al. [2007b].

 $\label{eq:Alisina:Preservation} Alisina: \ {\it Preservation in adequate}.$ 

| Lingula: Following coding for higher group in Carlson [1995], Appendix 1, character 36.                                            |
|------------------------------------------------------------------------------------------------------------------------------------|
| $A can thot retella\ spinosa$ : Preservation in sufficient to evaluate [Holmer and Caron, 2006].                                   |
| Heliomedusa orienta: "Each lophophoral arm bears a row of long, slender flexible tentacles" – Zhang et al. [2009].                 |
| $Longtan cunella\ chengjiang ensis:$ Inadequately preserved to evaluate.                                                           |
| Lingulellotreta malongensis: "The tentacles are clearly visible, and closely arranged in a single palisade" – Zhang et al. [2004]. |
| Pelagodiscus atlanticus: Following coding for higher group in Carlson [1995], Appendix 1, character 36.                            |
| Novocrania: Following coding for higher group in Carlson [1995], Appendix 1, character 36.                                         |
| Terebratulina: Following coding for higher group in Carlson [1995], Appendix 1, character 36.                                      |

### [95] Rows per side in trocholophe stage



#### Character 95: Lophophore: Tentacle disposition: Rows per side in trocholophe stage

0: Single row

1: Ablabial and adlabial row

Neomorphic character.

After Carlson [1995], character 37. Lophophore tentacles are commonly arranged into an ablabial and adlablial row, with ablabial tentacles sometimes added later in development.

Phoronis: Following coding for higher taxon in Carlson [1995], appendix 1, character 37.

Lingula: Following coding for higher taxon in Carlson [1995], appendix 1, character 37.

Pelagodiscus atlanticus: Following coding for higher taxon in Carlson [1995], appendix 1, character 37.

Novocrania: Following coding for higher taxon in Carlson [1995], appendix 1, character 37. Also states in Williams et al. [2000], p. 158.

Terebratulina: Following coding for higher taxon in Carlson [1995], appendix 1, character 37.

## [96] Rows per side in post-trocholophe stage



Character 96: Lophophore: Tentacle disposition: Rows per side in post-trocholophe stage

0: Single row

1: Adbalial and ablabial row

Neomorphic character.

After Carlson [1995], character 37. Lophophore tentacles are commonly arranged into an ablabial and adlablial row, with ablabial tentacles sometimes added later in development.

Lingulosacculus: Preservation insufficient to evaluate.

Phoronis: Following coding for higher taxon in Carlson [1995], appendix 1, character 37.

| Kutorgina chengjiangensis: Tentacles "cannot be confidently demonstrated in the available specimens." – Zhang et al. [2007b].                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lingula: Following coding for higher taxon in Carlson [1995], appendix 1, character 37.                                                                                                |
| Acanthotretella spinosa: Preservation insufficient to evaluate [Holmer and Caron, 2006].                                                                                               |
| Heliomedusa orienta: "The lophophoral arms bear laterofrontal tentacles with a double row of cilia along their lateral edge, as in extant lingulid brachiopods" – Zhang et al. [2009]. |
| Lingulellotreta malongensis: Single palisade [Zhang et al., 2004].                                                                                                                     |
| Pelagodiscus atlanticus: Following coding for higher taxon in Carlson [1995], appendix 1, character 37.                                                                                |
| Novocrania: Following coding for higher taxon in Carlson [1995], appendix 1, character 37.                                                                                             |
| Terebratulina: Following coding for higher taxon in Carlson [1995], appendix 1, character 37.                                                                                          |
| Yuganotheca elegans: "helical lophophore fringed with a single row of thick, widely spaced, parallel-sided and hollow tentacles" – Zhang et al. [2014].                                |

## 3.15 Lophophore: Median tentacle in early development [97]



#### Character 97: Lophophore: Median tentacle in early development

0: Absent

1: Present

Neomorphic character.

Following character 28 in Carlson [1995]. Certain taxa exhibit a median tentacle early in development that is lost at some point in ontogeny.

Pedunculotheca diania: Lophophore ontogeny presently unknown.

Micrina: Lophophore ontogeny presently unknown.

Paterimitra: Lophophore ontogeny presently unknown.

Eccentrotheca: Lophophore ontogeny presently unknown.

Haplophrentis carinatus: Lophophore ontogeny presently unknown.

Lingulosacculus: Lophophore ontogeny presently unknown.

Tomteluva perturbata: Lophophore ontogeny presently unknown.

 $Mummpikia\ nuda$ : Lophophore ontogeny presently unknown.

Coolinia pecten: Lophophore ontogeny presently unknown.

Kutorgina chengjiangensis: Lophophore ontogeny presently unknown.

Salanygolina: Lophophore ontogeny presently unknown.

Dailyatia: Lophophore ontogeny presently unknown.

Acanthotretella spinosa: Lophophore ontogeny presently unknown.

Heliomedusa orienta: Lophophore ontogeny presently unknown.

Longtancunella chengjiangensis: Lophophore ontogeny presently unknown.

Lingulellotreta malongensis: Lophophore ontogeny presently unknown.

Askepasma toddense: Lophophore ontogeny presently unknown.

Micromitra: Lophophore ontogeny presently unknown.

Nisusia sulcata: Lophophore ontogeny presently unknown.

Antigonambonites planus: Lophophore ontogeny presently unknown.

Alisina: Lophophore ontogeny presently unknown.

Orthis: Lophophore ontogeny presently unknown.

Gasconsia: Lophophore ontogeny presently unknown.

Glyptoria: Lophophore ontogeny presently unknown.

Clupeafumosus socialis: Lophophore ontogeny presently unknown.

Yuganotheca elegans: Lophophore ontogeny presently unknown.

## [98] Forms closed loop



#### Character 98: Lophophore: Forms closed loop

- 1: Diverging laterally
- 2: Closed loop

Transformational character.

Whereas the lophophore of crown-group brachiopods typically forms a closed loop, those of *Haplophrentis* and *Heliomedusa* diverge laterally [Moysiuk et al., 2017].

Lingulosacculus: Two diverging arms of the lophophore are preserved [Balthasar and Butterfield, 2009].

Longtancunella chengjiangensis: Two distinct, diverging arms reconstructed by Zhang et al. [2007c].

Nisusia sulcata: No specimens of Nisusia preserve the lophophore.

## [99] Coiling direction



2: Posteriad
--- ?: Ambiguous

### Character 99: Lophophore: Coiling direction

- 1: Anteriad
- 2: Posteriad

Transformational character.

The lophophore arms of *Heliomedusa* and *Haplophrentis* arch posteriad, rather than anteriad as in lingulids. See Zhang et al. [2009]; Moysiuk et al. [2017].

Phoronis: Coiling in direction of anus (i.e. posteriad).

Acanthotretella spinosa: Arms proceed anteriad before recurving.

Lingulellotreta malongensis: Arms proceed anteriad before recurving.

Pelagodiscus atlanticus: "converging anteriorly and coiling anterior to the body cavity" – Zhang et al. [2009].

## [100] Adjustor muscle



#### Character 100: Lophophore: Adjustor muscle

0: Absent

1: Present

Neomorphic character.

Following character 55 in Carlson [1995]. Not possible to code in most fossil taxa.

Pedunculotheca diania: Preservation not adequate to evaluate presence or absence of this muscle.

Micrina: Preservation not adequate to evaluate presence or absence of this muscle.

Paterimitra: Preservation not adequate to evaluate presence or absence of this muscle.

Eccentrotheca: Preservation not adequate to evaluate presence or absence of this muscle.

Haplophrentis carinatus: Preservation not adequate to evaluate presence or absence of this muscle.

Lingulosacculus: Preservation not adequate to evaluate presence or absence of this muscle.

Phoronis: Following coding for higher taxon in Carlson [1995], appendix 1, character 55.

Tomteluva perturbata: Preservation not adequate to evaluate presence or absence of this muscle.

Mummpikia nuda: Preservation not adequate to evaluate presence or absence of this muscle.

Coolinia pecten: Preservation not adequate to evaluate presence or absence of this muscle.

Kutorgina chengjiangensis: Preservation not adequate to evaluate presence or absence of this muscle.

Salanygolina: Preservation not adequate to evaluate presence or absence of this muscle.

Dailyatia: Preservation not adequate to evaluate presence or absence of this muscle.

Lingula: Following coding for higher taxon in Carlson [1995], appendix 1, character 55.

Acanthotretella spinosa: Preservation not adequate to evaluate presence or absence of this muscle.

Heliomedusa orienta: Preservation not adequate to evaluate presence or absence of this muscle.

Longtancunella chengjiangensis: Preservation not adequate to evaluate presence or absence of this muscle.

Lingulellotreta malongensis: Preservation not adequate to evaluate presence or absence of this muscle.

Askepasma toddense: Preservation not adequate to evaluate presence or absence of this muscle.

Micromitra: Preservation not adequate to evaluate presence or absence of this muscle.

Nisusia sulcata: Preservation not adequate to evaluate presence or absence of this muscle.

Pelagodiscus atlanticus: Following coding for higher taxon in Carlson [1995], appendix 1, character 55.

Novocrania: Following coding for higher taxon in Carlson [1995], appendix 1, character 55.

Terebratulina: Following coding for higher taxon in Carlson [1995], appendix 1, character 55.

Antigonambonites planus: Preservation not adequate to evaluate presence or absence of this muscle.

Alisina: Preservation not adequate to evaluate presence or absence of this muscle.

Orthis: Preservation not adequate to evaluate presence or absence of this muscle.

Gasconsia: Preservation not adequate to evaluate presence or absence of this muscle.

Glyptoria: Preservation not adequate to evaluate presence or absence of this muscle.

Clupeafumosus socialis: Preservation not adequate to evaluate presence or absence of this muscle.

Yuganotheca elegans: Preservation not adequate to evaluate presence or absence of this muscle.

## 3.16 Prominent pharynx [101]



#### Character 101: Prominent pharynx

0: Absent

1: Present

Neomorphic character.

Hyoliths exhibit a prominent protrusible muscular pharynx at the base of the lophophore [Moysiuk et al., 2017]. This is considered as potentially equivalent to the anterior projection of the visceral cavity in *Heliomedusa*, and, by extension, in *Lingulosacculus* and Lingulotreta.

Lingulosacculus: The prominent anterior extension of the visceral area noted by Balthasar & Butterfield [2009] is considered as potentially homologous with that of *Heliomedusa* [Zhang et al., 2009] and, by extension, *Haplophrentis* [Moysiuk et al., 2017].

Heliomedusa orienta: Corresponding to the "neck" of the vase-shaped visceral cavity reported by Zhang et al. [2009].

3.17. ANUS [102]

Lingulellotreta malongensis: An anterior projection of the visceral area is noted by Williams et al. [2000] and considered equivalent to that observed in Lingulosacculus [Balthasar and Butterfield, 2009].

Yuganotheca elegans: Possibly present, following interpretation of mouth [see fig. 2c, d in Zhang et al., 2014].

Eoobolus: Prominent extension of dorsal visceral platform [Balthasar, 2009].

## 3.17 Anus [102]



#### Character 102: Anus

1: Absent: digestive tract is blind sac

2: Present: through-gut Transformational character.

The digestive tract may either constitute a blind sac, or a through gut with anus.

Kutorgina chengjiangensis: Although "the possibility of a blind ending may not be completely eliminated [...] the weight of evidence [...] leads us to reject the possibility of a blind-ending intestine" – Zhang et al. [2007b], p. 1399.

Glyptoria: Scored according to familial level feature.

## [103] Migration



#### Character 103: Anus: Migration

- 0: Not migrated: straight gut with posterior anus
- 1: Migrated: anus has migrated posteriad to create U-shaped gut

Neomorphic character.

"The relative position of the mouth and anus in the larvae of brachiopods and phoronids is similar: posterior anus and anterior mouth" – Williams et al. [2007], p. 2884.

3.17. ANUS [102]

Kutorgina chengjiangensis: "Five specimens have an exceptionally preserved digestive tract, dorsally curved, with a putative dorso-terminal anus located near the proximal end of a pedicle" – Zhang et al. [2007b].

Terebratulina: "In rhynchonelliforms, the gut curves somewhat into a C-shape and the (blind) anus becomes posteroventral in position." – Williams et al. [2007], p. 2884.

### [104] Within ring of tentacles



#### Character 104: Anus: Migration: Within ring of tentacles

- 1: Not within ring of tentacles
- 2: Anterior within ring of feeding tentacles

Transformational character.

A migrated anus may be located laterally or within the lophophore ring (as in entoprocts).

Kutorgina chengjiangensis: "Presumed to terminate in a functional anus located near the proximal end of the pedicle." – Zhang et al. [2007b].

## [105] Position



#### Character 105: Anus: Migration: Position

- 1: Left
- 2: Right
- 3: Dorsally
- 4: Ventrally

Transformational character.

If the anus is not within the ring of tentacles, in which direction is it oriented?.

Haplophrentis carinatus: Opening to the right – see figures 1, 3, and extended data 5 in Moysiuk et al. [2017]. The text states in error that the anus is to the left of the midline.

3.17. ANUS [102]

Lingulosacculus: "This same arrangement occurs in L. nuda, with the looped dark line tracking the same course as the exceptionally preserved guts of Chengjiang lingulellotretids, including the median position of its posterior loop and the sharp right turn as it exits the posterior extension of the ventral valve" [Balthasar and Butterfield, 2009, p.310].

Kutorgina chengjiangensis: "Five specimens have an exceptionally preserved digestive tract, dorsally curved, with a putative dorso-terminal anus located near the proximal end of a pedicle" – Zhang et al. [2007b].

Lingula: "In the lingulids, the [intestine] follows an oblique course anteriorly to open at the anus on the right body wall." – Williams et al. [1997], p. 89.

Longtancunella chengjiangensis: "The intestine extends posteriorly, and then turns right to continue as a tortuous strand, finally terminating at the latero-median position of the anterior body wall" – Zhang et al. [2007c].

Lingulellotreta malongensis: "finally terminating in an anal opening on the right anterior body wall" [Zhang et al., 2007a, p.66].

Terebratulina: "In rhynchonelliforms, the gut curves somewhat into a C-shape and the (blind) anus becomes posteroventral in position." – Williams et al. [2007], p. 2884.

Yuganotheca elegans: The identification of the "very poorly impressed possible anus at the lateral side of the anterior body wall" is not yet confident, so this character is coded as not presently available.

# Chapter 4

# Fitch parsimony

Parsimony search was conducted in TNT v1.5 [Goloboff and Catalano, 2016] using ratchet and tree drifting heuristics [Goloboff, 1999, Nixon, 1999], repeating the search until the optimal score had been hit by 1500 independent searches:

```
xmult:rat10 drift10 hits 1500 level 4 chklevel 5;
```

Searches were conducted under equal weights and results saved to file:

```
piwe-; xmult; Conduct search with equal weighting
tsav *TNT/ew.tre;sav;tsav/ Save results to file;
keep 0; hold 10000; Clear trees from memory
```

Further searches were conducted under extended implied weighting [Goloboff, 1997, 2014], under the concavity constants 2, 3, 4.5, 7, 10.5, 16 and 24:

```
xpiwe=; Enable extended implied weighting
piwe=2; xmult; Conduct analysis at k = 2
tsav *TNT/xpiwe2.tre; sav; tsav/; Save results to file
keep 0; hold 10000; Clear trees from memory
piwe=3; xmult; Conduct analysis at k = 3
tsav *TNT/xpiwe3.tre; sav ;tsav/; Save results to file
```

We acknowledge the Willi Hennig Society for their sponsorship of the TNT software.

## 4.1 Implied weights

The consensus of all implied weights runs is not very well resolved. This lack of resolution is largely a product of a few wildcard taxa, particularly at k = 4.5, which obscures a consistent set of relationships between the remaining taxa:









4.1. IMPLIED WEIGHTS 167



#### 4.1.1 Consensus without k = 4.5

Though there's no clear reason that a single concavity constant should give such different results to values both above and below it, the results with k = 4.5 are so strikingly different that it is instructive to create a consensus tree that excludes this case:



Figure 4.1: TNT implied weights consensus



Figure 4.2: TNT implied weights consensus

## 4.1.2 Consensus of all IW trees, without wildcards

Even with the anomalous results at k = 4.5, the essential relationships between most taxa are recovered under all weighting situations:

## 4.2 Equal weights



Figure 4.3: TNT Equal weights consensus

## Chapter 5

# Bayesian analysis

Bayesian search was conducted in MrBayes v3.2.6 [Ronquist et al., 2012] using the Mk model [Lewis, 2001] with gamma-distributed rate variation across characters:

```
lset coding=variable rates=gamma;
```

Branch length was drawn from a dirichlet prior distribution, which is less informative than an exponential model [Rannala et al., 2012], but requires a prior mean tree length within about two orders of magnitude of the true value [Zhang et al., 2012]. To satisfy this latter criterion, we specified the prior mean tree length to be equal to the length of the most parsimonious tree under equal weights, using a Dirichlet prior with T=1,  $T=1/(equal\ weights\ tree\ length/number\ of\ characters),\ = c=1$ :

```
prset brlenspr = unconstrained: gammadir(1, 0.33, 1, 1);
```

Neomorphic and transformational characters [sensu Sereno, 2007] were allocated to two separate partitions whose proportion of invariant characters and gamma shape parameters were allowed to vary independently:

```
charset Neomorphic = 1\ 2\ 3\ 5\ 7\ 8\ 9\ 10\ 12\ 14\ 17\ 18\ 19\ 22\ 23\ 24\ 25\ 28\ 29\ 30\ 33\ 35\ 37\ 44\ 45\ 47\ 48 49\ 50\ 51\ 52\ 55\ 59\ 60\ 61\ 62\ 64\ 65\ 67\ 68\ 69\ 70\ 71\ 75\ 76\ 77\ 79\ 81\ 84\ 85\ 89\ 91\ 92\ 93\ 95\ 96\ 97\ 100\ 101\ 103;
```

charset Transformational  $= 4\ 6\ 11\ 13\ 15\ 16\ 20\ 21\ 26\ 27\ 31\ 32\ 34\ 36\ 38\ 39\ 40\ 41\ 42\ 43\ 46\ 53\ 54\ 56\ 57\ 58\ 63\ 66\ 72\ 73\ 74\ 78\ 80\ 82\ 83\ 86\ 87\ 88\ 90\ 94\ 98\ 99\ 102\ 104\ 105;$ 

```
partition chartype = 2: Neomorphic, Transformational;
```

```
set partition = chartype;
```

```
unlink shape=(all) pinvar=(all);
```

Neomorphic characters were not assumed to have a symmetrical transition rate – that is, the probability of the absent  $\rightarrow$  present transition was allowed to differ from that of the present  $\rightarrow$  absent transition, being drawn from a uniform prior:

```
prset applyto=(1) symdirihyperpr=fixed(1.0);
```

The rate of variation in neomorphic characters was also allowed to vary from that of transformational characters:

```
prset applyto=(1) ratepr=variable;
```

Dailyatia was selected as an outgroup:

```
outgroup Dailyatia;
```



Figure 5.1: Bayesian analysis, posterior probability > 50%, all taxa

Four MrBayes runs were executed, each sampling eight chains for 5 000 000 generations, with samples taken every 500 generations. The first 10% of samples were discarded as burn-in.

mcmcp ngen=5000000 samplefreq=500 nruns=4 nchains=8 burninfrac=0.1;

A posterior tree topology was derived from the combined posterior sample of all runs.

Convergence was indicated by PSRF = 1.00 and an estimated sample size of > 1000 for each parameter:

It's interesting to note the position of *Gasconsia*, which is widely held to have an affinity with the craniid brachiopods, and is recovered in such a position using the inapplicable-safe parsimony algorithm (but not always when the standard Fitch parsimony algorithm is used).

One possibility is that the failure of Bayesian analysis to recover this group as a clade reflects inappropriate handling of inapplicable data in the Mk model, though it is at present difficult to test this hypothesis.



Figure 5.2: Bayesian analysis, posterior probability > 50%, wildcard taxa pruned

Table 5.1: MrBayes parameter estimates (.pstat file)

| TL.all.         | X7.228989e.000 | X5.303977e.001 | X1.558667e.003 | X3.343322e.003 | X9.999751e.001 |
|-----------------|----------------|----------------|----------------|----------------|----------------|
| alpha_symdir{1} | 0.320          | 0.0316         | 7740           | 7970           | 0.99998        |
| pi_66(0)        | 0.391          | 0.0347         | 7750           | 7860           | 0.99999        |
| pi_66(1)        | 0.289          | 0.0285         | 5800           | 7400           | 0.99995        |
| pi_66(2)        | 0.371          | 0.0408         | 2430           | 3160           | 1.00010        |
| pi_90(0)        | 0.138          | 0.0108         | 5820           | 6270           | 1.00000        |
| pi_90(1)        | 0.294          | 0.0252         | 4290           | 4820           | 1.00000        |
| pi_90(2)        | 0.198          | 0.0150         | 5950           | 6070           | 1.00000        |
| pi_90(3)        | 0.721          | 0.0144         | 524            | 1270           | 1.00000        |

# Chapter 6

# Taxonomic implications

This section briefly places key features of our results in the context of previous phylogenetic hypotheses.

Craniiforms Trimerellids are reconstructed as paraphyletic with respect to Craniiforms.

This is consistent with the affinity commonly drawn between these groups [e.g. Williams et al., 2000], and helps to account for the stratigraphically late (Ordovician) appearance of Craniids in the fossil record. (Aragonite is underrepresented in early Palaeozoic strata due to taphonomic bias.)

The relationship of Craniforms with respect to Linguliforms and Rhynchonelliforms remains uncertain. Shell characters point to a relationship with the Rhynchonelliforms, which is countered by similarities between the spermatozoa of phoronids and terebratulids, which indicate to a craniform + linguliform clade.

It's worth noting that Bayesian analysis (but no parsimony results) place *Gasconsia* as the basalmost member of the Rhynchonellid lineage, upholding suggestions [Holmer et al., 2014] of a chileid rather than trimerellid affinity. On this view, *Gasconsia* is a close analogue for the common ancestor of Rhynchonelliforms + Craniiforms (+Linguliforms?).

Rhynchonelliforms The position of kutorginids within the rhynchonelliform stem lineage has been tricky to resolve [Holmer et al., 2018b]; we resolve them as paraphyletic with respect to Rhynconellata (which encompassess the obolellate *Alisina*), which is broadly in accord to previous proposals [Holmer et al., 2018a]. Chileids form the adelphiotaxon to this clade. *Longtancunella* [Zhang et al., 2011a] nests crownwards of the protorthid *Glyptoria*, but stemward of the obolellid *Alisina*.

Salanygolina has been interpreted as a stem-group rhynchonelliform based on its combination of paterinid and chileate features [Holmer et al., 2009]. Our results position Salanygolina between paterinids and chileids, which directly corroborates this proposed phylogenetic position.

:Basal rhynchonellids are characterized by a circular umbonal perforation in the ventral valve, associated with a colleplax. Partly on this basis, the aberrant taxa Yuganotheca and Tomteluva plot close to Salanygolina, the three often forming a clade – though the reliability of this grouping is perhaps liable to change as additional data comes to light. Nevertheless, an interpretation of Yuganotheca as a stem-group brachiopod [Zhang et al., 2014] is difficult to reconcile with the increasingly well-constrained nature of the early brachiopod body plan.

**Linguliforms** The reconstruction of Linguloformea comprising Linguloidea as sister to Discinoidea is as expected, though it is notable that Acrotretids and Siphonotretids plot more closely to Linguloidea than Discinoidea does.

Lingulellotretids also sit within this lingulid grouping; a position in the phoronid stem lineage [advocated by Balthasar and Butterfield, 2009] is not upheld.

More novel is the reconstruction of the calcitic obolellid *Mummpikia* in the linguliform total group: a rhynchonelliform affinity has been assumed based on its calcitic mineralogy. This said, Balthasar

[2008] has highlighted the similarities between obolellids and linguliform brachiopods, including sub- m vertical canals and the detailed configuration of the posterior shell margin. Our analysis upholds the case for a linguliform affinity for *Mummpikia*; a calcitic shell seemingly arose through an independent change within this taxon As such, *Mummpikia* has no direct bearing on the origin of 'Calciata', save that shell mineralogy is perhaps less static than commonly assumed.

More generally, our results identify Class Obolellata as polyphyletic: *Alisina* (Trematobolidae) plots within Rhynchonellata; *Tomteluva* is harder to place, but tends to group with *Salanygolina* stemwards of the chileids.

**Tommotiids** Tommotiids represent a basal grade, paraphyletic to phoronids and crown-group brachiopods, in line with previous interpretations.

Micrina and Mickwitzia are the most crownwards of the tommotiids, but beyond this, their position is somewhat difficult to pin down; certain analytical configruations reconstruct then as stem-brachiopods; others place them closer to the discinids, the lingulids or the craniiforms. Heliomedusa is commonly associated closely with Mickwitzia, reflecting the similarities emphasized by Holmer and Popov in Williams et al. [2007].

**Hyoliths** Hyoliths are interpreted as stem-group Brachiopods, which refines the broader phylogenetic position proposed by Moysiuk et al. [2017]. This is to say, they sit closer to brachiopods than the phoronids do, but no analysis places them within the Brachiopod crown group.

Hyoliths thus represent derived tommotiids; their precise position varies based on analytical details, but they tend to plot close to *Paterimitra*. They represent an early and potentially independent move to a closed filtration chamber within the Brachiopod lineage.

# Bibliography

- B A Afzelius and M Ferraguti. Fine structure of brachiopod spermatozoa. *Journal of Ultrastructure Research*, 63(3):308–315, 1978. doi: 10.1016/s0022-5320(78)80054-9.
- U. Balthasar. Shell structure, ontogeny, and affinities of the Lower Cambrian bivalved problematic fossil *Mickwitzia muralensis* Walcott, 1913. *Lethaia*, 37(4):381–400, 2004. doi: 10.1080/00241160410002090.
- U. Balthasar. An early Cambrian organophosphatic brachiopod with calcitic granules. *Palaeontology*, 50(6): 1319–1325, 2007. doi: 10.1111/j.1475-4983.2007.00729.x.
- U. Balthasar. *Mummpikia* gen. nov. and the origin of calcitic-shelled brachiopods. *Palaeontology*, 51(2): 263–279, 2008. doi: 10.1111/j.1475-4983.2008.00754.x.
- U. Balthasar. The brachiopod *Eoobolus* from the early Cambrian Mural Formation (Canadian Rocky Mountains). *Paläontologische Zeitschrift*, 83(3):407–417, 2009. doi: 10.1007/s12542-009-0026-4.
- U. Balthasar and N. J. Butterfield. Early Cambrian soft-shelled brachiopods as possible stem-group phoronids. *Acta Palaeontologica Polonica*, 54(2):307–314, 2009. doi: 10.4202/app.2008.0042.
- U. Balthasar, M. Cusack, L. Faryma, P. Chung, L. E. Holmer, J. Jin, I. G. Percival, and L. E. Popov. Relic aragonite from Ordovician-Silurian brachiopods: Implications for the evolution of calcification. *Geology*, 39(10):967–970, 2011. doi: 10.1130/g32269.1.
- M. G. Bassett and L. E. Popov. Earliest ontogeny of the Silurian orthotetide brachiopod *Coolinia* and its significance for interpreting strophomenate phylogeny. *Lethaia*, 50(4):504–510, 2017. doi: 10.1111/let. 12204.
- M. G. Bassett, L. E. Popov, and L. E. Holmer. Functional morphology of articulatory structures and implications for patterns of musculature in Cambrian rhynchonelliform brachiopods. *Brachiopods, Systematics Association Special Volumes*, pages 163–176, 2001. doi: 10.1201/9780203210437.pt3.
- M. G. Bassett, L. E. Popov, and E. Egerquist. Early ontogeny of some Ordovician-Silurian strophomenate brachiopods: Significance for interpreting evolutionary relationships within early Rhynchonelliformea. *Lethaia*, 54:13–20, 2008. doi: 10.1111/let.12204.
- J. L. Benedetto. Chaniella, a new lower Tremadocian (Ordovician) brachiopod from northwestern Argentina and its phylogenetic relationships within basal rhynchonelliforms. Paläontologische Zeitschrift, 83(3):393–405, 2009. doi: 10.1007/s12542-009-0023-7.
- Martin D. Brazeau, Martin R. Smith, and Thomas Guillerme. MorphyLib: a library for phylogenetic analysis of categorical trait data with inapplicability, 2017.
- Martin D. Brazeau, Thomas Guillerme, and Martin R. Smith. An algorithm for morphological phylogenetic analysis with inapplicable data.  $bioR\chi iv$ , 2018. doi: 10.1101/209775. URL https://www.biorxiv.org/content/early/2017/10/26/209775.

A. D. Butler, M. Streng, R. Garwood, T. Lowe, and L. E. Holmer. Constructing Cambrian body-plans: critical evaluation of tommotiid and stem-brachiopod character homologies [Exceptional preservation of *Micrina* setae and 3D MicroCT reconstruction confirm the tommotiid stem-group brachiopod link]. volume 56, page 61, 2012.

- A. D. Butler, M. Streng, L. E. Holmer, and L. E. Babcock. Exceptionally preserved *Mickwitzia* from the Indian Springs Lagerstatte (Cambrian Stage 3), Nevada. *Journal of Paleontology*, 89(6):933–955, 2015. doi: 10.1017/jpa.2016.8.
- S. J. Carlson. Phylogenetic relationships among extant brachiopods. *Cladistics*, 11:131–197, 1995. doi: 10.1016/0748-3007(95)90010-1.
- J.-Y. Chen, D.-Y. Huang, and S.-H. Chuang. Reinterpretation of the Lower Cambrian brachiopod Heliomedusa orienta Sun and Hou, 1987a as a discinid. Journal of Paleontology, 81(1):38–47, 2007. doi: 10.1666/0022-3360(2007)81[38:rotlcb]2.0.co;2.
- G. A. Cooper. Lower Cambrian Brachiopods from the Rift Valley (Israel and Jordan). The Jordan Rift Valley, 50(2):269–289, 1976. doi: 10.1201/9781439834244.ch3.
- M. Cusack, A. Williams, and J. O. Buckman. Chemico-structural evolution of linguloid brachiopod shells. *Palaeontology*, 42(5):799–840, 1999. doi: 10.1111/1475-4983.00098.
- K. Dewing. Hinge modifications and musculature of strophomenoid brachiopods: examples across the Ordovician-Silurian boundary, Anticosti Island, Quebec. Canadian Journal of Earth Sciences, 38:125– 141, 2001. doi: 10.1139/e00-027.
- J. Dzik. Ontogeny of *Bactrotheca* and related hyoliths. *Geologiska Föreningen i Stockholm Förhandlingar*, 102(3):223–233, 1980. doi: 10.1080/11035898009455162.
- C. C. Emig. Functional disposition of the lophophore in living Brachiopoda. *Lethaia*, 25(3):291–302, 1992. doi: 10.1111/j.1502-3931.1992.tb01398.x.
- A. Franzen and K. Ahlfors. Ultrastructure of spermatids and spermatozoa in *Phoronis*, Phylum Phoronida. Zoomorphology, 12(4):585–597, 1980. doi: 10.1007/s004350000030.
- G. Freeman and J. W. Lundelius. Changes in the timing of mantle formation and larval life history traits in linguliform and craniiform brachiopods. *Lethaia*, 32:197–217, 1999. doi: 10.1111/j.1502-3931.1999.tb00539. x.
- M. Fukumoto. The acrosome reaction of the spermatozoa of the inarticulate brachiopod Lingula anatina. 2003.
- Pablo A. Goloboff. Self-weighted optimization: tree searches and character state reconstructions under implied transformation costs. *Cladistics*, 13(3):225–245, 1997. doi: 10.1111/j.1096-0031.1997.tb00317.x.
- Pablo A. Goloboff. Analyzing large data sets in reasonable times: solutions for composite optima. *Cladistics*, 15(4):415–428, dec 1999. ISSN 07483007. doi: 10.1006/clad.1999.0122.
- Pablo A. Goloboff. Extended implied weighting. Cladistics, 30(3):260–272, 2014. doi: 10.1111/cla.12047.
- Pablo A. Goloboff and Santiago A. Catalano. TNT version 1.5, including a full implementation of phylogenetic morphometrics. *Cladistics*, 32(3):221–238, 2016. doi: 10.1111/cla.12160.
- V. Y. Gorjansky and L. E. Popov. On the origin and systematic position of the calcareous-shelled inarticulate brachiopods. *Lethaia*, 19:223–240, 1986. doi: 10.1111/j.1502-3931.1986.tb00737.x.
- N.-M. Hanken and D. A. T. Harper. The taxonomy, shell structure, and palaeoecology of the trimerellid brachiopod *Gasconsia* Northrop. *Journal of Paleontology*, 28(2):243–254, 1985. doi: 10.1666/0022-3360(2002) 076<0185:nrottb>2.0.co;2.

D. A. T. Harper, L. E. Popov, and L. E. Holmer. Brachiopods: origin and early history. *Palaeontology*, 60: 609–631, 2017. doi: 10.1111/pala.12307.

- M. Havlicek. Lingulacea, Paterinacea, and Siphonotretacea (Brachiopoda) in the Lower Ordovician sequence of Bohemia. 25:9–82, pl. 1–16, 1982. doi: 10.4095/192360.
- A. N. Hodgson and A. A. Reunov. Ultrastructure of the spermatozoon and spermatogenesis of the brachiopods Discinisca tenuis (Inarticulata) and Kraussina rubra (Articulata). Invertebrate Reproduction & Development, 25(1):23–31, 1994. doi: 10.1080/07924259.1994.9672365.
- L. E. Holmer. Middle Ordovician phosphatic inarticulate brachiopods from Västergötland and Dalarna, Sweden. Geological Journal, 26, 1989. doi: 10.1002/gj.3350260308.
- L. E. Holmer and J.-B. Caron. A spinose stem group brachiopod with pedicle from the Middle Cambrian Burgess Shale. *Acta Zoologica*, 87:273–290, 2006. doi: 10.1111/j.1463-6395.2006.00241.x.
- L. E. Holmer, L. E. Popov, S. P. Koneva, and J.-Y. Rong. Early Cambrian Lingulellotreta (Lingulata, Brachiopoda) from south Kazakhstan (Malyi Karatau Range) and South China (eastern Yunnan). *Journal of Paleontology*, 71(4):577–584, 1997. doi: 10.1017/s0022336000040063.
- L. E. Holmer, C. B. Skovsted, G. A. Brock, J. L. Valentine, and J. R. Paterson. The Early Cambrian tommotiid *Micrina*, a sessile bivalved stem group brachiopod. *Biology Letters*, 4:724–728, 2008. doi: 10.1098/rsbl.2008.0277.
- L. E. Holmer, S. P. Stolk, C. B. Skovsted, U. Balthasar, and L. E. Popov. The enigmatic early Cambrian *Salanygolina* A stem group of rhynchonelliform chileate brachiopods? *Palaeontology*, 52(1):1–10, 2009. doi: 10.1111/j.1475-4983.2008.00831.x.
- L. E. Holmer, C. B. Skovsted, C. M. Larsson, G. A. Brock, and Z.-F. Zhang. First record of a bivalved larval shell in Early Cambrian tommotiids and its phylogenetic significance. *Palaeontology*, 54(2):235–239, 2011. doi: 10.1111/j.1475-4983.2010.01030.x.
- L. E. Holmer, L. E. Popov, and M. G. Bassett. Ordovician—Silurian Chileida first post-Cambrian records of an enigmatic group of Brachiopoda. *Journal of Paleontology*, 88(3):488–496, 2014. doi: 10.1666/13-104.
- L. E. Holmer, L. E. Popov, M. G. Pour, T. Claybourn, Z.-L. Zhang, G. A. Brock, and Z.-F. Zhang. Evolutionary significance of a middle Cambrian (Series 3) *in situ* occurrence of the pedunculate rhynchonelliform brachiopod *Nisusia sulcata*. *Lethaia*, 2018a. doi: 10.1111/let.12254.
- L. E. Holmer, Z.-F. Zhang, T. P. Topper, L. E. Popov, and T. M. Claybourn. The attachment strategies of Cambrian kutorginate brachiopods: the curious case of two pedicle openings and their phylogenetic significance. *Journal of Paleontology*, 92(1):33–39, 2018b. doi: 10.1017/jpa.2017.76.
- X.-G. Hou, D. J. Siveter, D. J. Siveter, R. J. Aldridge, P.-C. Pei-yun, S. E. Gabbott, and M. A. Purnell. *Brachiopoda*. 2017.
- S.-X. Hu, Z.-F. Zhang, L. E. Holmer, and C. B. Skovsted. Soft-part preservation in a linguliform brachiopod from the lower Cambrian Wulongqing Formation (Guanshan Fauna) of Yunnan, South China. *Acta Palaeontologica Polonica*, 55(3):495–505, 2010. doi: 10.4202/app.2009.1106.
- B. G. M. Jamieson. Fish Evolution and Systematics: Evidence from Spermatozoa: With a Survey of Lophophorate, Echinoderm and Protochordate Sperm and an Account of Gamete Cryopreservation. 1991.
- Y.-G. Jin and H.-Y. Wang. Revision of the Lower Cambrian brachiopod *Heliomedusa* Sun & Hou, 1987. Lethaia, 24:35–49, 1992. doi: 10.1111/j.1502-3931.1992.tb01790.x.
- A. V. Kouchinsky. Skeletal microstructures of hyoliths from the Early Cambrian of Siberia. *Alcheringa: An Australasian Journal of Palaeontology*, 24(2):65–81, 2000. doi: 10.1080/03115510008619525.

C. M. Larsson, C. B. Skovsted, G. A. Brock, U. Balthasar, T. P. Topper, and L. E. Holmer. *Paterimitra pyramidalis* from South Australia: scleritome, shell structure and evolution of a lower Cambrian stem group brachiopod. *Palaeontology*, 57(2):417–446, 2014. doi: 10.1111/pala.12072.

- J. Laurie. The musculature and vascular systems of two species of Cambrian Paterinide (Brachiopoda). *The Cambrian Fossils of Chengjiang, China*, 10:261–265, 1987. doi: 10.1002/9780470999950.ch17.
- Paul O. Lewis. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology, 50(6):913–925, 2001. doi: 10.1080/106351501753462876.
- Wayne P. Maddison. Missing data versus missing characters in phylogenetic analysis. *Systematic Biology*, 42(4):576–581, 1993. doi: 10.1093/sysbio/42.4.576.
- J. L. Moore and S. M. Porter. Plywood-like shell microstructures in hyoliths from the middle Cambrian (Drumian) Gowers Formation, Georgina Basin, Australia. *Palaeontology*, 2018. doi: 10.1111/pala.12352.
- J. Moysiuk, M. R. Smith, and J.-B. Caron. Hyoliths are Palaeozoic lophophorates. *Nature*, 541(7637): 394–397, 2017. doi: 10.1038/nature20804.
- Kevin C. Nixon. The Parsimony Ratchet, a new method for rapid parsimony analysis. *Cladistics*, 15(4): 407–414, 1999. ISSN 0748-3007. doi: 10.1111/j.1096-0031.1999.tb00277.x.
- G. Owen and A. Williams. The caecum of articulate Brachiopoda. *Proceedings of the Royal Society B: Biological Sciences*, 172:187–201, 1969. doi: 10.1098/rspb.1969.0019.
- L. E. Popov. The Cambrian radiation of brachiopods. 1992.
- L. E. Popov, M. G. Bassett, L. E. Holmer, and G. M. Ghobadi Pour. Early ontogeny and soft tissue preservation in siphonotretide brachiopods: new data from the Cambrian-Ordovician of Iran. *Gondwana Research*, 16(1):151–161, 2009. doi: 10.1016/j.gr.2009.01.009.
- L. E. Popov, M. G. Bassett, L. E. Holmer, C. B. Skovsted, and M. A. Zuykov. Earliest ontogeny of Early Palaeozoic Craniiformea: Implications for brachiopod phylogeny. *Lethaia*, 43(3):323–333, 2010. doi: 10.1111/j.1502-3931.2009.00197.x.
- Bruce Rannala, Tian-Qi Zhu, and Zi-Heng Yang. Tail Paradox, Partial Identifiability, and Influential Priors in Bayesian Branch Length Inference. *Molecular Biology and Evolution*, 29(1):325–335, 2012. doi: 10.1093/molbev/msr210.
- A. Reunov and W. Klepal. Ultrastructural study of spermatogenesis in *Phoronopsis harmeri* (Lophophorata, Phoronida). *Helgoland Marine Research*, 58(1):1–10, 2004. doi: 10.1007/s10152-003-0153-3.
- J. Robinson. The muscles, body wall and valve-opening mechanism of extant craniid (inarticulated) brachiopods. Journal of Natural History, 48:1231–1252, 2014. doi: 10.1080/00222933.2013.840941.
- F. Ronquist, M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Hohna, B. Larget, L. Liu, M. A. Suchard, and J. P. Huelsenbeck. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology*, 61(3):539–42, 2012. doi: 10.1093/sysbio/sys029.
- A. J. Rowell and N. E. Caruso. The evolutionary significance of *Nisusia sulcata*, an early articulate brachiopod. *Lethaia*, 59(5):1227–1242, 1985. doi: 10.1111/let.12254.
- E. E. Ruppert, R. S. Fox, and R. D. Barnes. 2004.
- Paul C. Sereno. Logical basis for morphological characters in phylogenetics. *Cladistics*, 23(6):565–587, 2007. doi: 10.1111/j.1096-0031.2007.00161.x.
- C. B. Skovsted and L. E. Holmer. Early Cambrian (Botomian) stem group brachiopod *Mickwitzia* from Northeast Greenland. *Gondwana Research*, 48(1):1–20, 2003. doi: 10.1016/j.gr.2009.02.002.

C. B. Skovsted and L. E. Holmer. Early Cambrian brachiopods from north-east Greenland. *Palaeontology*, 48(2):325–345, 2005. doi: 10.1111/j.1475-4983.2005.00450.x.

- C. B. Skovsted and J. S. Peel. Early Cambrian brachiopods and other shelly fossils from the basal Kinzers Formation of Pennsylvania. *Journal of Paleontology*, 84(4):754–762, 2010. doi: 10.1017/s0022336000058467.
- C. B. Skovsted, G. A. Brock, T. P. Topper, J. R. Paterson, and L. E. Holmer. Scleritome construction, biofacies, biostratigraphy and systematics of the tommotiid <I>Eccentrotheca helenia sp. nov. from the early cambrian of south australia. *Palaeontology*. doi: 10.1111/j.1475-4983.2010.01031.x.
- C. B. Skovsted, L. E. Holmer, C. M. Larsson, A. E. S. Högström, G. A. Brock, T. P. Topper, U. Balthasar, S. P. Stolk, and J. R. Paterson. The scleritome of *Paterimitra*: an Early Cambrian stem group brachiopod from South Australia. *Proceedings of the Royal Society B: Biological Sciences*, 276:1651–1656, 2009. doi: 10.1098/rspb.2008.1655.
- C. B. Skovsted, M. J. Betts, T. P. Topper, and G. A. Brock. The early Cambrian tommotiid genus *Dailyatia* from South Australia. *Journal of Paleontology*, 48(1):1–117, 2015. doi: 10.1017/jpa.2016.5.
- C. B. Skovsted, I. Knight, U. Balthasar, and W. D. Boyce. Depth related brachiopod faunas from the lower Cambrian Forteau Formation of southern Labrador and western Newfoundland, Canada. *Palaeontologia Electronica*, 20.3.54A:1–52, 2017. doi: 10.26879/775.
- Martin R. Smith. Quantifying and visualising divergence between pairs of phylogenetic trees: implications for phylogenetic reconstruction.  $bioR\chi iv$ , 2017. doi: 10.1101/227942.
- Martin R. Smith. TreeSearch: phylogenetic tree search using custom optimality criteria, 2018.
- M. Streng, A. D. Butler, J. S. Peel, R. J. Garwood, and J.-B. Caron. A new family of Cambrian rhynchonel-liformean brachiopods (Order Naukatida) with an aberrant coral-like morphology. *Palaeontology*, 59(2): 269–293, 2016. doi: 10.1111/pala.12226.
- H.-J. Sun, M. R. Smith, M.-Y. Zhu, H. Zeng, and F.-C. Zhao. Hyoliths with pedicles: Origin of the brachiopod body plan. *Evolution & Development*, 16:submitted, 2018. doi: 10.1111/ede.12059.
- M. D. Sutton, D. E. G. Briggs, D. J. Siveter, and D. J. Siveter. Silurian brachiopods with soft-tissue preservation. *Nature*, 436(7053):1013–1015, 2005. doi: 10.1038/nature03846.
- T. P. Topper, D. A. T. Harper, and P. Ahlberg. Reappraisal of the brachiopod Acrotreta socialis von Seebach, 1865: clarifying 150 years of confusion. GFF, 135(2):191–203, 2013a. doi: 10.1080/11035897.2013.811440.
- T. P. Topper, L. E. Holmer, C. B. Skovsted, G. A. Brock, U. Balthasar, C. M. Larsson, P. S. Petterson Stolk, and D. A. T. Harper. The oldest brachiopods from the lower Cambrian of South Australia. *Acta Palaeontologica Polonica*, 58:93–109, 2013b. doi: 10.4202/app.2011.0146.
- G. T. Ushatinskaya. Protegulum and brephic shell of the earliest organophosphatic brachiopods. Paleonto-logical Journal, 50(2):141–152, 2016. doi: 10.1134/s0031030116020088.
- G. T. Ushatinskaya and I. V. Korovnikov. Revision of the superfamily Acrotheloidea (Brachiopoda, class Linguliformea, order Lingulida) from the Lower and Middle Cambrian of the Siberian Platform. *Paleon-tological Journal*, 50(5):450–462, 2016. doi: 10.1134/s0031030116050130.
- Lars Vogt. The logical basis for coding ontologically dependent characters. *Cladistics*, 2017. doi: 10.1111/cla.12209.
- R. Watkins. New record of the trimerellid brachiopod *Gasconsia*, a rare Silurian Lazarus taxon. *Journal of Paleontology*, 76(1):185–186, 2002. doi: 10.1666/0022-3360(2002)076<0185:nrottb>2.0.co;2.
- A. Williams and C. H. C. Brunton. Role of shell structure in the classification of the orthotetidine brachiopods. *Palaeontology*, 36:931–966, 1993. doi: 10.1111/1475-4983.00206.

A. Williams, S. Mackay, and M. Cusack. Structure of the organo-phosphatic shell of the brachiopod *Discina*. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 337:83–104, 1992. doi: 10.1098/rstb.1992.0086.

- A. Williams, M. Cusack, and S. Mackay. Collagenous chitino-phosphatic shell of the brachiopod *Lingula*. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 346:223–266, 1994. doi: 10.1098/rstb.1994.0143.
- A. Williams, S. J. Carlson, C. H. C. Brunton, L. E. Holmer, and L. E. Popov. A supra-ordinal classification of the Brachiopoda. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 351(1344): 1171–1193, 1996. doi: 10.1098/rstb.1996.0101.
- A. Williams, M. A. James, C. C. Emig, S. Mackay, M. C. Rhodes, B. L. Cohen, A. B. Gawthrop, L. S. Peck, G. B. Curry, A. D. Ansell, M. Cusack, D. Walton, C. H. C. Brunton, D. I. Mackinnon, and J. R. Richardson. *Brachiopoda. Revised. Introduction.*, volume 1. 1997.
- A. Williams, L. E. Popov, L. E. Holmer, and M. Cusack. The diversity and phylogeny of the paterinate brachiopods. *Science*, 41:221–262, 1998. doi: 10.1126/science.279.5359.2094.
- A. Williams, S. J. Carlson, C. H. C. Brunton, L. E. Holmer, L. E. Popov, M. Mergl, J. R. Laurie, M. G. Bassett, L. R. M. Cocks, J.-Y. Rong, S. S. Lazarev, R. E. Grant, P. R. Racheboeuf, Y.-G. Jin, B. R. Wardlaw, D. A. T. Harper, and A. D. Wright. *Brachiopoda. Linguliformea, Craniiformea, and Rhynchonelliformea*, volume 2, 2000.
- A. Williams, L. E. Holmer, and M. Cusack. Chemico-structure of the organophosphatic shells of siphonotre-tide brachiopods. *Palaeontology*, 47(5):1313–1337, 2004. doi: 10.1111/j.0031-0239.2004.00404.x.
- A. Williams, C. H. C. Brunton, and S. J. Carlson. Rhynchonelliformea (part). 5:1689–2320, 2006. doi: 10.1036/1097-8542.053100.
- A. Williams, P. R. Racheboeuf, N. M. Savage, D. E. Lee, L. E. Popov, S. J. Carlson, A. Logan, C. Luter, M. Cusack, G. B. Curry, A. D. Wright, D. A. T. Harper, B. L. Cohen, L. R. M. Cocks, D. I. MacKinnon, T. N. Smirnova, P. G. Baker, J. L. Carter, R. Gourvennec, M. O. Mancenido, C. H. C. Brunton, D.-S. Dong-Li, A. J. Boucot, M. G. Bassett, F. Alvarez, L. E. Holmer, M. Mergl, C. C. Emig, M. Rubel, and J.-R. Jia-Yu. Part H, Brachiopoda (Revised). 6:2321–3226, 2007. doi: 10.17161/dt.v0i0.5515.
- Chi Zhang, Bruce Rannala, and Zi-Heng Yang. Robustness of compound Dirichlet priors for Bayesian inference of branch lengths. 61(5):779–84, 2012. doi: 10.1093/sysbio/sys030.
- Z.-F. Zhang, D.-G. Shu, J. Han, and J.-N. Liu. New data on the lophophore anatomy of Early Cambrian linguloids from the Chengjiang Lagerstätte, Southwest China. Carnets de géologie (Notebooks on geology), 4:1-7, 2004. doi: 10.4267/2042/310.
- Z.-F. Zhang, J. Han, X.-L. Zhang, J.-N. Liu, J.-F. Guo, and D.-G. Shu. Note on the gut preserved in the Lower Cambrian *Lingulellotreta* (Lingulata, Brachiopoda) from southern China. *Acta Zoologica*, 88(1): 65–70, 2007a. doi: 10.1111/j.1463-6395.2007.00252.x.
- Z.-F. Zhang, D.-G. Shu, C. C. Emig, X.-L. Zhang, J. Han, J.-N. Liu, Y. Li, and J.-F. Guo. Rhynchonel-liformean brachiopods with soft-tissue preservation from the early Cambrian Chengjiang Lagerstätte of South China. *Palaeontology*, 50:1391–1402, 2007b. doi: 10.1111/j.1475-4983.2007.00725.x.
- Z.-F. Zhang, D.-G. Shu, J. Han, and J.-N. Liu. A gregarious lingulid brachiopod *Longtancunella chengjian-gensis* from the Lower Cambrian, South China. *Lethaia*, 40(1):11–18, 2007c. doi: 10.1111/j.1502-3931. 2006.00002.x.
- Z.-F. Zhang, G.-X. Li, C. C. Emig, J. Han, L. E. Holmer, and D.-G. Shu. Architecture and function of the lophophore in the problematic brachiopod *Heliomedusa orienta* (Early Cambrian, South China). *Geobios*, 42(5):649–661, 2009. doi: 10.1016/j.geobios.2009.04.001.

Z.-F. Zhang, L. E. Holmer, Q. Ou, J. Han, and D.-G. Shu. The exceptionally preserved Early Cambrian stem rhynchonelliform brachiopod *Longtancunella* and its implications. *Lethaia*, 44(4):490–495, 2011a. doi: 10.1111/j.1502-3931.2011.00261.x.

- Z.-F. Zhang, L. E. Holmer, L. E. Popov, and D.-G. Shu. An obolellate brachiopod with soft-part preservation from the Early Cambrian Chengjiang fauna of China. *Journal of Paleontology*, 85(3):460–463, 2011b. doi: 10.1666/10-121.1.
- Z.-F. Zhang, G.-X. Li, L. E. Holmer, G. A. Brock, U. Balthasar, C. B. Skovsted, D.-J. Fu, X.-L. Zhang, H.-Z. Wang, A. D. Butler, Z.-L. Zhang, C.-Q. Cao, J. Han, J.-N. Liu, and D.-G. Shu. An early Cambrian agglutinated tubular lophophorate with brachiopod characters. *Scientific Reports*, 4(4682), 2014. doi: 10.1038/srep05502.
- Z.-L. Zhang, Z.-F. Zhang, and H.-Z. Wang. Epithelial cell moulds preserved in the earliest acrotretid brachiopods from the Cambrian (Series 2) of the Three Gorges area, China. *GFF*, 138(4):455–466, 2016. doi: 10.1080/11035897.2016.1143528.
- Z.-L. Zhang, C. B. Skovsted, and Z.-F. Zhang. A hyolithid without helens preserving the oldest hyolith muscle scars; palaeobiology of *Paramicrocornus* from the Shujingtuo Formation (Cambrian Series 2) of South China. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 489:1–14, 2018. doi: 10.1016/j.palaeo. 2017.07.021.
- Fang-Chen Zhao, Martin R. Smith, Zong-Jun Yin, Han Zeng, Guo-Xiang Li, and Mao-Yan Zhu. Orthrozan-clus elongata n. sp. and the significance of sclerite-covered taxa for early trochozoan evolution. Scientific Reports, 7(1):16232, 2017. doi: 10.1038/s41598-017-16304-6.