Dashboard / My courses / CS23331-DAA-2023-CSE / Greedy Algorithms / 1-G-Coin Problem

Started on	Monday, 19 August 2024, 10:17 AM
State	Finished
Completed on	Monday, 19 August 2024, 11:49 AM
Time taken	1 hour 31 mins
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100 %)

Question **1**Correct

Mark 1.00 out of 1.00

Write a program to take value V and we want to make change for V Rs, and we have infinite supply of each of the denominations i Indian currency, i.e., we have infinite supply of { 1, 2, 5, 10, 20, 50, 100, 500, 1000} valued coins/notes, what is the minimum number coins and/or notes needed to make the change.

Input Format:

Take an integer from stdin.

Output Format:

print the integer which is change of the number.

Example Input:

64

Output:

4

Explanaton:

We need a 50 Rs note and a 10 Rs note and two 2 rupee coins.

```
#include <stdio.h>
2
3
    int main ()
4
 5
         int n,cnt=0;
scanf("%d", &n);
 6
         if (n>=1000) {
 8
9
             cnt+=n/1000;
10
             n=n%1000;
11
12
         if (500<=n && n<1000) {
13
             cnt+=n/500;
14
             n=n\%500;
15
16
         if (100<=n && n<500) {
17
             cnt+=n/100;
18
             n=n%100;
19
         if (50<=n && n<100) {
20
21
             cnt+=n/50;
22
             n=n\%50;
23
         if (20<=n && n<50) {
24
25
             cnt+=n/20;
             n=n\%20;
26
27
         if (10<=n && n<20) {
28
29
             cnt+=n/10;
30
             n=n%10;
31
         if (5<=n && n<10) {
32
33
             cnt+=n/5;
34
             n=n\%5;
35
         if (2 \le n \&\& n \le 5) {
36
37
             cnt+=n/2;
38
             n=n\%2;
39
         if (1<=n && n<2) {
40 •
```

	Input	Expected	Got	
~	49	5	5	~

Correct

Marks for this submission: 1.00/1.00.

◄ Problem 5: Finding Complexity using counter method

Jump to...

2-G-Cookies Proble

<u>Dashboard</u> / <u>My courses</u> / <u>CS23331-DAA-2023-CSE</u> / <u>Greedy Algorithms</u> / <u>2-G-Cookies Problem</u>

Started on	Wednesday, 28 August 2024, 10:08 PM
State	Finished
Completed on	Thursday, 29 August 2024, 11:07 AM
Time taken	12 hours 58 mins
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100 %)

Question 1

Correct

Mark 1.00 out of 1.00

Assume you are an awesome parent and want to give your children some cookies. But, you should give each child at most one coc

Each child i has a greed factor g[i], which is the minimum size of a cookie that the child will be content with; and each cookie j has size s[j]. If s[j] >= g[i], we can assign the cookie j to the child i, and the child i will be content. Your goal is to maximize the number your content children and output the maximum number.

Example 1:

Input:

3

123

2

11

Output:

1

Explanation: You have 3 children and 2 cookies. The greed factors of 3 children are 1, 2, 3.

And even though you have 2 cookies, since their size is both 1, you could only make the child whose greed factor is 1 content.

You need to output 1.

Constraints:

```
1 <= g.length <= 3 * 10^4
0 <= s.length <= 3 * 10^4
1 <= g[i], s[j] <= 2^31 - 1
```

Answer: (penalty regime: 0 %)

Ace editor not ready. Perhaps reload page?

Falling back to raw text area.

```
#include <stdio.h>
int main () {
    int child;
    scanf("%d", &child);
    int g[child];
    for (int i=0; i<child; i++) {
        scanf("%d", &g[i]);
    }
    int cookie;
    scanf("%d", &cookie);
    int s[cookie];
    for (int i=0; i<cookie; i++) {
        scanf("%d", &s[i]);
    }
}</pre>
```

	Input	Expected	Got	
~	2	2	2	~
	1 2			
	3			
	1 2 3			

Correct

Marks for this submission: 1.00/1.00.

◀ 1-G-Coin Problem

Jump to...

3-G-Burger Proble

Dashboard / My courses / CS23331-DAA-2023-CSE / Greedy Algorithms / 3-G-Burger Problem

Started on	Wednesday, 28 August 2024, 9:42 PM
State	Finished
Completed on	Wednesday, 28 August 2024, 10:42 PM
Time taken	1 hour
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100 %)

Question 1

Correct

Mark 1.00 out of 1.00

A person needs to eat burgers. Each burger contains a count of calorie. After eating the burger, the person nee run a distance to burn out his calories.

If he has eaten i burgers with c calories each, then he has to run at least $3^i * c$ kilometers to burn out the calories. For example, if he ate 3

burgers with the count of calorie in the order: [1, 3, 2], the kilometers he needs to run are $(3^0 * 1) + (3^1 * 3 (3^2 * 2) = 1 + 9 + 18 = 28$.

But this is not the minimum, so need to try out other orders of consumption and choose the minimum value. Deter the minimum distance

he needs to run. Note: He can eat burger in any order and use an efficient sorting algorithm. Apply greedy appro to solve the problem.

Input Format

First Line contains the number of burgers

Second line contains calories of each burger which is n space-separate integers

Output Format

Print: Minimum number of kilometers needed to run to burn out the calories

Sample Input

5 10 7

Sample Output

76

For example:

Test	Input	Result
Test Case 1	3	18
	1 3 2	

```
#include<stdio.h>
    #include<math.h>
3
    int main()
4
 5
        int x:
        scanf("%d", &x);
 6
 7
        int a[x];
 8
        for(int i=0; i<=x; i++)
9
         {
10
             scanf("%d", &a[i]);
11
12
        int t;
13
        for(int j=0; j <= x; j++)
14
15
             for(int k=j+1; k<=x-1; k++)
16
                  if(a[j] < a[k])
17
18
19
                      t=a[j];
                      a[j]=a[k];
a[k]=t;
20
21
22
                 }
23
             }
24
25
        int s=0;
        for(int i=0; i< x; i++)
26
27 🔻
```

	Test	Input	Expected	Got	
~	Test Case 1	3 1 3 2	18	18	~
~	Test Case 2	4 7 4 9 6	389	389	~
~	Test Case 3	3 5 10 7	76	76	~

Correct

Marks for this submission: 1.00/1.00.

■ 2-G-Cookies Problem

Jump to...

4-G-Array Sum max proble

<u>Dashboard</u> / <u>My courses</u> / <u>CS23331-DAA-2023-CSE</u> / <u>Greedy Algorithms</u> / <u>4-G-Array Sum max problem</u>

Started on	Wednesday, 28 August 2024, 9:24 PM
State	Finished
Completed on	Thursday, 5 September 2024, 10:20 AM
Time taken	7 days 12 hours
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100 %)

Question 1

Correct

Mark 1.00 out of 1.00

Given an array of N integer, we have to maximize the sum of arr[i] * i, where i is the index of the element (i = 0, 1, 2, ..., N). Write an algorithm based on Greedy technique with a Complexity O(nlogn).

Input Format:

First line specifies the number of elements-n

The next n lines contain the array elements.

Output Format:

Maximum Array Sum to be printed.

Sample Input:

5

25340

Sample output:

40

```
#include <stdio.h>
 2
3
    void mergesort(int arr[], int l, int r, int m)
 4 •
 5
        int n1=m-l+1;
 6
        int n2=r-m;
 7
        int a[n1],b[n2];
 8
 9
        for(int i=0; i<n1; i++)
10
        {
11
             a[i]=arr[l+i];
12
        }
13
14
        for(int i=0; i<n2; i++)
15
        {
16
             b[i]=arr[m+1+i];
17
18
19
        int aptr=0, bptr=0, cptr=1;
20
        while(aptr<n1 && bptr<n2)
21
22
             if(a[aptr]<b[bptr])</pre>
23
24
                 arr[cptr]=a[aptr];
25
                 aptr++;
26
27
             else
28 -
29
                 arr[cptr]=b[bptr];
30
                 bptr++;
31
32
             cptr++;
33
        }
34
35
        while(aptr<n1)
36
37
             arr[cptr]=a[aptr];
38
             cptr++;
39
             aptr++;
40
41
        while(bptr<n2)
42
43
             arr[cptr]=b[bptr];
```

```
cptr++;
45
46
47
48
49
void merge(int arr[], int l, int r)
50 v
51
51
52 v
{
```

	Input	Expected	Got	
~	5	40	40	~
	2			
	5			
	3			
	4			
	0			
~	10	191	191	~
	2			
	2			
	2			
	4			
	4			
	3			
	3			
	5			
	5			
	5			
~	2	45	45	~
	45			
	3			

Correct

Marks for this submission: 1.00/1.00.

◀ 3-G-Burger Problem

Jump to...

5-G-Product of Array elements-Minimi

Dashboard / My courses / CS23331-DAA-2023-CSE / Greedy Algorithms / 5-G-Product of Array elements-Minimum

Started on	Wednesday, 28 August 2024, 9:06 PM
State	Finished
Completed on	Thursday, 29 August 2024, 11:04 AM
Time taken	13 hours 58 mins
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100 %)

Question **1**Correct
Mark 1.00 out of 1.00

Given two arrays array_One[] and array_Two[] of same size N. We need to first rearrange the arrays such that the sum of the prodpairs(1 element from each) is minimum. That is SUM (A[i] * B[i]) for all i is minimum.

For example:

Input	Result
3	28
1	
2	
3	
4	
5	
6	
1	

```
#include <stdio.h>
 2
3 .
    int main() {
4
        int n;
        scanf("%d", &n);
 5
 6
 7
        int arrayOne[n], arrayTwo[n];
 8
        for (int i=0; i< n; i++) {
9
             scanf("%d", &arrayOne[i]);
10
11
        for (int i=0; i< n; i++) {
12
             scanf("%d", &arrayTwo[i]);
13
14
15
        for (int i=0; i< n-1; i++) {
16 🔻
             for (int j=i+1; j<n; j++) {
                 if (arrayOne[j]>arrayOne[i]) {
17
18
                     int temp=arrayOne[j];
                     arrayOne[j]=arrayOne[i];
19
20
                     arrayOne[i]=temp;
21
22
                 if (arrayTwo[j]<arrayTwo[i]) {</pre>
23
                     int temp=arrayTwo[j];
24
                     arrayTwo[j]=arrayTwo[i];
25
                     arrayTwo[i]=temp;
26
                 }
27
             }
28
        }
29
        int minSum=0;
30
31
        for (int i=0; i< n; i++) {
            minSum+=(arrayOne[i]*arrayTwo[i]);
32
33
        printf("%d", minSum);
34
35
        return 0;
36
```

	Input	Expected	Got	
~	3 1 2 3 4 5	28	28	*
*	4 7 5 1 2 1 3 4 1	22	22	~
~	5 20 10 30 10 40 8 9 4 3 10	590	590	~

Correct

Marks for this submission: 1.00/1.00.

◀ 4-G-Array Sum max problem

Jump to...

1-Number of Zeros in a Given Arı