物理

120 分

注 意 事 項

- 1. 試験開始の合図までこの冊子を開かないこと。
- 2. 本問題は18ページ,答案用紙は3ページである。
- 3. 各答案用紙の上の枠内には、受験番号を記入し、下の枠内には、受験番号の 下2桁の数字を忘れずに記入すること。
- 4. 解答はすべて各答案用紙の所定欄に記入すること。
- 5. 各答案用紙の中で導出過程欄のある設問については、答に加えて導出過程を必ず記入すること。必要があれば、図を用いてもよい。
- 6. 問題番号 1 等のあとの(50点)は150点満点中の配点である。
- 7. 問題冊子および答案用紙の冊子は切りはなさないこと。
- 8. 答案用紙に記入する受験番号の数字の字体は、下記の例にならい、明瞭に記入すること。

1 (50点)

図1のように、点 O に一端が固定された長さ ℓ の糸の他端に質量m、電荷 q(>0) をもつ小球を取りつけ、この小球を鉛直面内で運動させる。ここで、鉛 直上向きをz 軸の正の向きに、鉛直面に垂直な向き(紙面表面から裏面の向き)をy 軸の正の向きにとる。また、小球が運動する鉛直面の水平方向にx 軸をとる。糸がたるんでいないとき、糸が点 O を通る鉛直線となす角度を θ とし、図中の矢印の向きを正の向きにとる。 $\theta = \frac{\pi}{3}$ 、 $-\frac{\pi}{3}$ のときの小球の位置をそれぞれ P、Q とする。小球の大きさ、糸の質量と空気抵抗は無視できるものとする。重力加速度の大きさをg とし、以下の間に答えよ。

- (A) 小球を Pから静かにはなしたところ、糸がたるむことなく小球は鉛直面 (zx 平面)内を円軌道に沿って運動し、Qに到達した。
 - (a) 角度 θ の位置における小球の速さ v を求めよ。また、P から Q への運動における小球の速さの最大値 v_0 を求めよ。
- [B] x 軸の正の向きに一様な電場を加えたときの小球の運動について考える。ここで、電場の大きさを E とする。小球を P から静かにはなしたところ、糸がたるむことなく小球は円軌道に沿って運動し、角度 $\theta=-\frac{\pi}{6}$ の位置に到達した後、逆向きに運動し始めた。
 - (b) このとき、加えた電場の大きさ E を求めよ。

- [C] 図2のように、y軸の正の向きに一様な磁場を加えたときの小球の運動に ついて考える。ここで、磁束密度の大きさをBとする。小球をPから静か にはなしたところ、糸がたるむことなく小球は円軌道に沿ってQの向きに 運動し始めた。
 - (c) 小球が Pから Qの向きに運動するとき、角度 θ の位置における小球の速さvは、磁束密度の大きさ Bを変えても変化しない。その理由を簡潔に述べよ。
 - (d) 小球が Pから Qの向きに運動するとき、角度 θ の位置において小球にはたらく向心力を、糸の張力 T と m, g, θ , q, v, B のうち必要な記号を用いて表せ。

糸がたるむことなく小球は円軌道に沿って運動し、Qに到達した後、逆向きに運動し始めた。

- (e) 小球が円軌道に沿って Q から P の向きに運動するとき,角度 θ の位置における張力 T を m, g, ℓ , q, v, B のうち必要な記号を用いて表せ。
- (f) 加えた磁束密度の大きさがある値 B_1 より小さいとき、糸がたるむことなく小球は円軌道に沿って Qから Pまで運動する。一方、磁束密度の大きさが B_1 より大きいとき、ある位置で糸がたるみ、小球は円軌道から離れる。このような状況が生じる磁束密度の大きさ B_1 を m, g, ℓ , q のうち必要な記号を用いて表せ。
- (g) 加えた磁束密度の大きさが $\frac{2}{\sqrt{3}}B_1$ のとき、小球は角度 φ の位置において円軌道から離れた。このとき $\cos \varphi$ の値を求めよ。

(下書き用紙)

(下書き用紙)

(50 点)

2

[A] 図1のように、断面積Sの円筒型容器があり、その左端に金属板(極板)Aが固定されている。容器内には極板 A と平行に置かれた極板 B がある。極板 B により容器内部は空間 1 と空間 2 に分離されており、空間 1 には理想気体が密封されている。空間 2 は栓 1 を介してポンプと、栓 2 を介して容器外部と接続されている。容器外部には一定の圧力 P_0 および一定の温度の気体がある。 2 つの極板には導線が接続されており、容器外部のスイッチと電圧 V_0 の直流電源からなる回路に接続されている。極板 B は極板 A と平行を保ったまま、左右になめらかに移動させることができる。なお、導線は極板 B の動きを妨げない。また、極板の直径は極板 AB 間の距離に比べて十分に大きく、極板 AB は平行板コンデンサーとみなすことができる。極板 AB 間の距離を x とする。容器と極板の間の電荷のやり取りはないとし、導線および極板の電気抵抗は無視することができる。また、空間 1 内の気体の誘電率は ε である。容器内の気体は容器外部と自由に熱をやり取りでき、様々な操作を行ってもその温度は変化しないものとする。

- (a) はじめ、空間 1 と空間 2 内の気体の圧力が P_0 、極板間距離が $x = L_0$ であった。スイッチは開いており、極板 AB には電荷が存在しなかった。極板 B を固定して、栓 2 を閉じ、栓 1 を開けて、ポンプにより空間 2 の圧力を低下させた。栓 1 を閉じた後、極板 B の固定をはずし、気体の温度を一定に保ちながら、極板 B をゆっくりと移動させた。すると、 $x = L_1$ の位置で極板 B にはたらく力がつりあい、その位置に静止した。このときの空間 2 の圧力は P_1 であった。極板間距離 L_1 、および極板 AB からなるコンデンサーの極板 B 移動後の電気容量を ϵ 、 L_0 、 P_0 、 P_1 、S のうち必要な記号を用いて表せ。
- (b) 問(a)の操作の後、栓 2 を開けて空間 2 の圧力を P_0 に戻し、極板 B を $x = L_0$ の位置まで移動させ固定した後、スイッチを閉じて極板 AB からなるコンデンサーを電圧 V_0 で充電した。コンデンサーに蓄えられる電荷と静電エネルギーを ε 、 L_0 、S、 V_0 のうち必要な記号を用いて表せ。
- (c) 間(b)の操作の後,スイッチを開き,極板 Bの固定をはずし,極板 Bをゆっくりと移動させた。すると, $x=L_2$ の位置で極板 Bにはたらく力がつりあい,その位置に静止した。極板 Bの移動による静電エネルギーの変化量と極板 Bにはたらく静電気力を ϵ , L_0 , L_2 ,S, V_0 のうち必要な記号を用いて表せ。ただし,この静電エネルギーの変化量は,極板 Bにはたらく静電気力による仕事と等しく,極板 Bにはたらく静電気力は移動の間一定であるとしてよい。また,極板 A から B への向きを力の正の向きとする。
- (d) 間(C)における L_2 を ϵ , L_0 , P_0 , V_0 のうち必要な記号を用いて表せ。

[B] 図2のように、角周波数 ω の交流電源、抵抗値 R_1 および R_2 の抵抗、電気容量 C_1 のコンデンサー、電気容量を変化させることができる可変コンデンサーおよび検流計からなる回路がある。可変コンデンサーの電気容量をyとする。

(e) スイッチを閉じ、可変コンデンサーの電気容量yをある値 C_2 に調節したところ、検流計に流れる電流が常に0になった。電気容量 C_1 のコンデンサーの右端に対する左端の電位が $V_1\sin \omega t$ のとき、抵抗値 R_1 の抵抗を流れる電流 I_1 および抵抗値 R_2 の抵抗を流れる電流 I_2 を、 R_1 および R_2 を用いずに表せ。ただし、微小時間 Δt の間の $\sin \omega t$ の変化量を示す以下の関係式

$$\frac{\Delta \sin \omega t}{\Delta t} = \omega \cos \omega t$$

を用いてよい。また、図2における矢印の向きを電流の正の向きとする。

(f) 問(e)における電気容量 C_2 を C_1 、 R_1 、 R_2 のうち必要な記号を用いて表せ。

- $\{C\}$ 図 3 のように、図 2 の電気容量 C_1 のコンデンサーを、設問 $\{A\}$ で考えた極板 AB からなるコンデンサーにおきかえた回路を考える。はじめ、空間 1 と空間 2 の圧力が P_0 、極板間距離が $x=L_0$ であった。スイッチは開いており、極板 AB および可変コンデンサーには電荷が存在しなかった。極板 B を固定して、栓 2 を閉じ、栓 1 を開けて、ポンプにより空間 2 の圧力を低下させた。栓 1 を閉じた後、極板 B の固定をはずし、気体の温度を一定に保 B ながら、極板 B をゆっくりと移動させた。すると、ある位置で極板 B にはたらく力がつりあい、その位置に静止した。このときの空間 2 の圧力は B であった。その後、極板 B を動かないように固定し、スイッチを閉じた後、可変コンデンサーの電気容量 B を検流計の値が常に B になるように調整した。このときの B の値は B であった。
 - (8) 圧力 P_2 を ϵ , C_3 , L_0 , P_0 , R_1 , R_2 , Sのうち必要な記号を用いて表せ。

(下書き用紙)

(下 書 き 用 紙)

 $\{A\}$ 図1のように、長さLの弦を、左右の端を固定して、一定の張力Sでたるむことなく張る。この弦を振動させると、定常波が生じて音を発する。弦を伝わる波の速さをvとすると、vは弦の張力Sの平方根 \sqrt{S} に比例することが知られている。弦の近くに、音の振動数を連続的に変化させることのできる音源を置き、音を出す実験を行う。

- (a) 音源の出す音の振動数fを0から連続的に大きくしたところ、ある振動数 f_0 ではじめて音源からの音と弦が共鳴し、音源と同じ振動数の定常波が弦に生じた。 f_0 をvとLを用いて表せ。
- (b) 問(a)に引き続き、音源の出す音の振動数fをf0から連続的に大きくしたところ、今度は振動数f1で弦が共鳴し、音源と同じ振動数の定常波が弦に生じた。f1をvとLを用いて表せ。また、定常波の腹と節の弦の左端からの距離を、弦の両端を除いて全て答えよ。
- (C) 弦に最も波長の長い定常波を生じさせて音を出し、同時に音源から一定の振動数の音を出す実験を、様々な張力で行った。弦の張力が S_0 の時、弦の出す音は音源からの音よりも低く、うなりが単位時間あたり2回生じた。次に、張力を S_0 より大きな S_1 としたところ、弦の出す音は音源からの音よりも高く、うなりは単位時間あたり1回生じた。弦と音源の振動数が一致するときの弦の張力Sを、 S_0 と S_1 のみを用いて表せ。

[B] 設問 [A] では両端を固定された弦に生じる定常波を考えた。ここでは十分に長い弦を伝わる進行波と定常波の関係について考えよう。静止しているときの弦の方向に沿ってx 軸、x 軸と直交する方向にy 軸をとり,図2のように,それぞれ右向きと上向きを正の向きとする。時刻t,水平位置x におけるy 方向の変位が

$$y_1 = A \sin\left\{2\pi f\left(t + \frac{x}{v}\right)\right\} \qquad \cdots \quad \bigcirc$$

で表される波は x 軸を左向きに進行し、y 方向の変位が

$$y_2 = -A\sin\left\{2\pi f\left(t - \frac{x}{v}\right)\right\} \qquad \cdots \bigcirc$$

で表される波はx軸を右向きに進行する(図 2)。ここで、A は波の振幅、f は振動数、v は波の速さで、いずれも正である。

(d) 以下の空欄に入る適切な数式を答えよ。解答欄には答のみを書くこと。 弦に式①と式②で表される波が同時に存在する場合。それらを重ね合わ せた

$$y = y_1 + y_2 = 2 A \sin(\boxed{1}) \cos(\boxed{2})$$
 ... 3

で表される定常波が観察され、x=0 が節となることがわかる。ここで、公式 $\sin(\alpha+\beta)-\sin(\alpha-\beta)=2\cos\alpha\sin\beta$ を使った。各水平位置における定常波の y 方向の運動は、振動数 f の単振動である。定常波の振幅が最大値 2A をとる腹の位置は、k を整数として $x=\begin{bmatrix}3\end{bmatrix}$ で与えられる。また、x=0 に加えて、x=L も節となる状況では、弦の振動数 f と区間の長さ L の間には、 ℓ を自然数として $f=\begin{bmatrix}4\end{bmatrix}$ という関係が成りたつ。このとき、 $0 \le x \le L$ の区間に注目すれば、式③は設問 (A) で考えた両端を固定した弦に生じる定常波に対応する。

[C] 弦を伝わる波の速さvは、弦の張力Sの平方根 \sqrt{S} に比例する。これを弦の簡単なモデルを用いて考えよう。図3のように、弦を、N+1 個の質量mの質点が、質量を無視できるひもでつながった系と考える。弦の両端間の水平距離をLとして、静止しているときの弦の方向に沿ってx 軸をとり、右向きを正の向きとして、弦の左端をx=0、右端をx=Lとする。左端の質点の番号を0、右端の質点の番号をNとして、質点に順に番号n=0、1、2、 \cdots 、Nを与え、n番目の質点の水平位置を x_n 、垂直変位を y_n とする。両端の質点の水平位置と垂直変位は、それぞれ $x_0=0$ 、 $y_0=0$ および $x_N=L$ 、 $y_N=0$ に固定する。隣り合う質点間の垂直変位の差 $|y_{n+1}-y_n|$ は、質点間の水平距離 $|x_{n+1}-x_n|$ に比べて十分に小さく、ひもの長さが変化しても張力Sは常に一定とする。重力や空気抵抗は無視する。

(e) 以下の空欄に入る適切な数式を答えよ。解答欄には答のみを書くこと。 なお, $\begin{bmatrix} 7 \end{bmatrix} \sim \begin{bmatrix} 10 \end{bmatrix}$ の解答は S、f、b、v、n のうち必要な記号を用いて表せ。

まず、質点がひもから受ける力を求めよう。図 4 のように、n 番目の質点 $(n=1, \dots, N-1)$ の右側のひもに注目し、水平方向とひものなす角度を θ とすると、 x_n 、 x_{n+1} 、 y_n 、 y_{n+1} を用いて $\tan \theta = 5$ と表すことができる。仮定より角度 θ は微小なので、 $\cos \theta = 1$ 、 $\sin \theta = \tan \theta = 5$ と近似できる。この近似では、質点が右側のひもから受ける力の水

平成分 S_x は $S_x = S$ となる。同様に、左側のひもから受ける力の水平成分も -S と近似できるので、質点に働く合力の水平成分はつりあい、質点は垂直方向にのみ動くと考えることができる。そこで、質点間の水平距離を一定値 $b = \frac{L}{N}$ として、n 番目の質点の水平位置を $x_n = nb$ と表す。すると、n 番目の質点が右のひもから受ける力の垂直成分 S_y は、 S_x も、 y_n 、 y_{n+1} を用いて $S_y = 6$ となり、左右のひもから質点が受ける合力の垂直成分 は、 $F_n = 7$ × $(y_{n+1} - 2y_n + y_{n-1})$ と表すことができる。

弦を伝わる波の速さをvとし、弦の振動が振動数fの定常波であるとすると、n番目の質点の垂直変位は、設問 $\{B\}$ の式 $\{B\}$ の

$$y_n = 2 A \sin(8) \cos(2)$$
 ... 4

と書くことができる。これは単振動を表すので、 n 番目の質点の加速度は

となる。n-1番目とn+1番目の質点の垂直変位 y_{n-1} 、 y_{n+1} も式④と同様に表し、公式 $\sin(\alpha+\beta)+\sin(\alpha-\beta)=2\sin\alpha\cos\beta$ を使うと、力 F_n は

$$F_n = \boxed{7} \times 2 \left\{ \cos \left(\boxed{10} \right) - 1 \right\} \times y_n \qquad \cdots \text{ } \bigcirc$$

$$-16 - \qquad \qquad \diamondsuit M2(252-30)$$

となる。

式⑤、式⑥をn番目の質点に関する運動方程式 $ma_n = F_n$ に代入し、公式 $\cos \alpha = 1 - 2 \sin^2 \frac{\alpha}{2}$ を用いると、

$$m \times \boxed{9} = \boxed{7} \times 4 \sin^2(\frac{1}{2} \times \boxed{10}) \qquad \cdots \bigcirc$$

が得られる。さらに、定常波の波長が質点間の距離よりも十分に長い場合を考える。このとき、 10 で表される量は小さいので、 |a|が小さいときの近似式 $\sin a = a$ を式⑦に用いると、弦を伝わる波の速さは S, b, m を用いて

$$v = \boxed{11}$$

と近似され、波の速さvは張力Sの平方根 \sqrt{S} に比例することがわかる。

(下 書 き 用 紙)