

Recommender Systems Non-Personalized Collaborative Filtering

Rodrygo Santos rodrygo@dcc.ufmg.br

Recommender systems

 "Recommender systems are software applications that aim to support users in their decision-making while interacting with large information spaces. They recommend items of interest to users based on preferences they have expressed, either explicitly or implicitly."

- ACM Conference on Recommender Systems

Explicit feedback

U F M G

COMPUTER
SCIENCE

- Are ratings reliable and accurate?
 - Are my 8/10 stars equivalent to yours?
- Do user preferences change?
 - Will I still like the item after 10 years?
- What does a rating mean?
 - Will I ultimately consume the rated item?

Feedback model Explicit ••Rate ••Review ••Vote Feedback Feedback

Implicit feedback

- · Abundant data from user actions
 - Views, clicks, reads, buys, etc.
- · Actions typically for some other purpose
 - Not direct expressions of preference
- But actions say a lot!
 - Binary signals (click, skip, play, purchase)
 - Attention signals (reading / listening / watching)
 - Cognitive signals (eye-tracking, brain imaging)

Implicit feedback

UFMG

- What does the action mean?
 - Purchase: they might still hate it
 - Don't click: bad, or didn't see?
- How to factor in cognitive biases?
 - Position, presentation, popularity, etc.

How to leverage user feedback to produce recommendations?

Collaborative filtering (CF)

- · Most prominent recommendation approach
 - Used by large commercial e-commerce sites
 - Applicable in many domains (books, movies, etc.)
- Kev idea
 - Leverage the "wisdom of the crowds"
- · Basic assumption
 - Users' future preferences can be predicted by their past preferences (acquired via feedback)

Stable preferences

U F M G
COMPUTER
SCIENCE

- · Some examples
 - News: I prefer technology, travel
 - Music: I prefer rock, grunge, folk
 - Clothing: I prefer cotton, casual
 - Movies: I prefer sci-fi, thrillers

CF formulation

- Input
- A matrix of user-item ratings
 - Ratings could be either implicit or explicit
 - Items could be pretty much anything
- Output (for a target user)
 - A number indicating the user's predicted preference for an item (prediction)
 - A list of items in decreasing order of predicted preference for the user (top-n recommendation)

CF formulation

UF MG
COMPUTER
SCIENCE

• Predict how much user **u** will like item **i**

			i						
			1	3		2			buys clicks
	1	2	5		4		1		clicks views
Ω	4			3	5		4		rates
u 🤰		2	?		5	4		4	review
2		3	4		5		3		

CF formulation

U F M G
COMPUTER
SCIENCE

• Recommend items that user **u** will like

_								
			1	3		2		
	1	2	5		4		1	
₽.	4			3	5		4	
u 🤱	?	2	?	?	5	4	?	4
2		3	4		5		3	

buys clicks views rates reviews

Associative recommendations

UFMG

- Start simple
 - Percentage of x-buyers who also bought y

$$\hat{r}_{uy} \propto \frac{f(x \wedge y)}{f(x)}$$

- Problem:
 - What if y is extremely popular?

Associative recommendations

UFMG

- Start simple
 - Percentage of x-buyers who also bought y

$$\hat{r}_{uy} \propto \frac{f(x \wedge y)}{f(x)}$$

- Problem:
 - What if **y** is extremely popular?

Associative recommendations

- Take two
 - Does x make y more likely?

$$\hat{r}_{uy} \propto \left[\frac{f(x \wedge y)}{f(x)} / \frac{f(!x \wedge y)}{f(!x)} \right]$$

- Intuitively:
 - Is y more likely with x than without it?

Associative recommendations

- · More generally
 - Does x make y more likely?

$$\hat{r}_{uy} \propto \frac{p(x \cap y)}{p(x)p(y)}$$

- Intuitively:
 - Are x and y more likely to occur together than separately? (aka "lift" in association rule mining)
 - Lift = 1: x and y are independent

Summary

- Recommenders mine what users say and what they do to learn preferences
 - Ratings provide explicit expressions of preference
 - Implicit data benefits from greater volume
- Non-personalized recommenders are a good first approximation of users' preferences
 - May be the only possibility in some cases
- To go beyond, we need more data
 - Personalized recommenders