Линейная Алгебра 1 курс

Теория для экзамена 4 модуля

- 1. Дайте определение линейного функционала.
- 2. Дайте определение сопряженного пространства.
- 3. Выпишите формулу для преобразования координат ковектора при переходе к другому базису.
- 4. Дайте определение взаимных базисов.
- 5. Дайте определение биортогонального базиса.
- 6. Дайте определение сопряженного оператора в произвольном (не обязательно евклидовом) пространстве.
- 7. Сформулируйте определение алгебры над полем. Приведите два примера.
- 8. Сформулируйте определение тензора. Приведите два примера.

Пусть есть поле F и векторное пространство V над этим полем, а так же V^* , сопряженное к Vи числа $p, q \in \mathbb{N} \cup \{0\}$

$$f:\underbrace{V\times,\ldots,\times V}_p\times\underbrace{V^*\times,\ldots,\times V^*}_q\to F$$
 Называется тензором на V типа (p,q) и валентности $p+q$.

9. Дайте определение эллипса как геометрического места точек. Выпишите его каноническое уравнение. Что такое эксцентриситет эллипса? В каких пределах он может меняться?

Эллипсом называют геометрическое место точек, сумма расстояний от которых до двух данных точек, называемых фокусами, постоянна.

Каноническое уравнение: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Эксцентриситет: $\varepsilon = \frac{\sqrt{a^2 - b^2}}{a} = \sqrt{1 - \frac{a^2}{b^2}}, a$ - большая полуось, а b - малая.

Причём $\varepsilon \in [0,1)$

10. Дайте определение гиперболы как геометрического места точек. Выпишите её каноническое уравнение. Что такое эксцентриситет гиперболы? В каких пределах он может меняться?

Гиперболой называют геометрическое место точек, модуль разности расстояний от которых до двух данных точек, называемых фокусами, постоянен.

Каноническое уравнение: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Эксцентриситет:
$$\varepsilon = \sqrt{1 + \frac{a^2}{b^2}}$$

Причём $\varepsilon \in (1, +\infty)$

11. Дайте определение параболы как геометрического места точек. Выпишите её каноническое уравнение.

Параболой называют геометрическое место точек плоскости, равноудаленных от данной точки (фокуса) и от данной прямой (директрисы).

Kаноническое уравнение: $y^2 = 2px$

12. Сформулируйте теорему о классификации кривых второго порядка.

 \forall кривой второго порядка \exists прямоугольная декартова система координат Oxy, в которой уравнение этой кривой имеет один из следующих видов:

1	2	3
эллипс	пустое множество	точка
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a \ge b > 0$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$
4	5	
гипербола	пара пересекающихся прямых	
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, a > 0, b > 0$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$	

13. Дайте определение цилиндрической поверхности.

Рассмотрим кривую γ , лежащую в некоторой плоскости P, и прямую L, не лежащую в P. Цилиндрической поверхностью называют множество всех прямых, параллельных L и пересекающих γ .

14. Дайте определение линейчатой поверхности. Приведите три примера.

Линейчатой называют поверхность, образованную движением прямой линии.

Любой цилиндр является линейчатой поверхностью.

Примеры: эллиптический цилиндр, гиперболический цилиндр, параболический цилиндр.

15. Запишите канонические уравнения эллиптического, гиперболического и параболического цилиндров.

Эллиптический цилиндр: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Гиперболический цилиндр: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Параболический цилиндр: $y^2 = 2px$

16. Запишите канонические уравнения эллипсоида, однополостного гиперболоида, двуполостного гиперболоида.

Эллипсоид: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

Однополостный гиперболоид: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Двуполостный гиперболоид: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$

17. Запишите канонические уравнения эллиптического параболоида, гиперболиче-

Эллиптический параболоид: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$

Гиперболический параболоид: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z$