Supplementary material - Do commonly administered drugs inadvertently modify the progression of spinal cord injury? A systematic review

Table of Contents

Figures	2
Figure S1	2
Figure S2	
Tables	4
Table S1	4
Table S2	8
Table S3	16
Table S4	17
Table S5	20
Table S6	21
Table S7	22

Figures

Figure S1

Publication trends over time. A. General overview of the number of experiments included per year of publication.

B. Details of repartition of species used in animal models over time. C. Details of repartition of sex in animal models over time.

Figure S2

Details of the mixed drug effects reported for drugs studied in at least five experiments. Circle size is proportional to the number of experiments reporting the effect of interest. Circles are colored proportionally to the frequency that the effect of interest represents among all experiments studying the drug of interest.

Tables

Table S1. List of drugs included in analysis. Shaded rows highlight drugs tested in combination.

Drug(s) tested	Number of publications
acetylcysteine	5
acetylsalicylic acid	1
albumin	3
aluminum	1
amiloride	4
amphetamine	2
atorvastatin	9
azithromycin	2
baclofen	1
botulinum toxin	1
bupivacaine	1
buspirone	2
calcitriol	2
carbidopa levodopa	1
carvedilol	2
ceftriaxone	2
ceftriaxone + acetylcysteine	1
celecoxib	1
chlorpromazine	1
citalopram	1
clonidine	1
clopidogrel	1
cyproheptadine	3
dantrolene	4
dapsone	1
darbepoetin	1
dexamethasone	15
dexamethasone + estrogen	1
dexamethasone + melatonin	1
dexmedetomidine	2
diclofenac	1
epinephrine	1
epinephrine + nitroprusside	1
epoetin	4
epoietin	2
escitalopram	2
estradiol	18
estradiol + testosterone	1

estrogen	3
ethanol	2
ethanol + isoflurane	1
ethanol + ketamine + pentobarbital	1
etomidate	1
etomidate + epoietin	1
etomidate + methylprednisolone	1
ezetimibe	1
ezetimibe + simvastatin	1
fenofibrate	1
fentanyl + nitrous oxide	1
fentanyl + nitrous oxide + naloxone	1
fluoxetine	4
fluoxetine + vitamin c	1
folic acid	2
folic acid + nitrous oxide	1
gabapentin	1
glibenclamide	1
glucosamine	1
glutamine	2
heparin	2
hydralazine	1
ibuprofen	4
immune globulin	3
indomethacin	3
ketoprofen	1
levocarnitine	1
levodopa	2
lidocaine	2
liothyronine	1
lithium	8
magnesium	2
magnesium + methylprednisolone	1
magnesium chloride + polyethylene glycol	3
magnesium sulfate	5
magnesium sulfate + polyethylene glycol	2
mannitol	3
melatonin	21
meloxicam	1
metformin	5
methotrexate	3
methylprednisolone	81
methylprednisolone + acetylcysteine	1

methylprednisolone + epoietin	1
methylprednisolone + magnesium chloride + polyethylene glycol	1
methylprednisolone + magnesium sulfate	1
methylprednisolone + melatonin	1
methylprednisolone + methotrexate	1
methylprednisolone + mycophenolate	1
methylprednisolone + pregabalin	1
methylprednisolone + rosuvastatin	1
methylprednisolone sodium succinate	23
methylprednisolone sodium succinate + aminocaproic acid	1
methylprednisolone sodium succinate + dantrolene	1
methylprednisolone sodium succinate + vitamin c	1
mexiletine	2
minocycline	22
minocycline + tacrolimus	1
modafinil	1
montelukast	2
morphine	6
morphine + minocycline	1
morphine sulfate	2
mycophenolate	1
naloxone	24
naltrexone	1
naproxen	2
niacin	1
nicotine	1
nifedipine	1
nitrous oxide	1
omega 3	5
oxandrolone	1
pentobarbital	1
phenytoin	4
pioglitazone	3
plasma	1
platelets	1
polyethylene glycol	10
prednisolone	1
prednisone	1
pregabalin	2
progesterone	3
progesterone + vitamin d	1
propofol	2
selegiline	1

sevoflurane	1
simvastatin	8
sitagliptin	1
tacrolimus	8
tadalafil	1
tamoxifen	8
testosterone	2
theophylline	1
thiopental	1
thiopental + naloxone	1
topiramate	3
tramadol	1
trifluoperazine	1
ubiquinone	1
valproic acid	10
vitamin c	3
vitamin c e	1
vitamin d	2
vitamin e	2
zinc	4

Table S2.Neurological and functional outcomes for animal studies included in the review

Category	Harmonised assessment name	Assessment name as reported in literature
locomotion	BBB	Basso Beatie Brenahan (BBB) locomotor scale
		Basso Beattie and Bresnahan (BBB) rating scale
		Basso Beattie Brenahan (BBB) locomotor scale
		Basso-Beatie-and Bresnahan (BBB) scale
		Basso-Beatie-Bresnahan (BBB) scale
		BBB
		BBB hind limb locomotor rating scale
		BBB Icoomotor score
		BBB locomoter scale
		BBB locomotor rating scale
		BBB locomotor scale
		BBB locomotor scale (canine)
		BBB locomotor scale (modified)
		BBB locomotor scale (mouse version adapted to local protocol)
		BBB locomotor scale (mouse version)
		BBB locomotor score
		BBB Locomotor test
		BBB locomotor test
		BBB method
		BBB rating scale
		BBB scale
		BBB score
		BBB scoring
		BBB scoring scale
		BBB scoring system
		BBB subscores
		BBB subscoring
		BBB test
		modified BBB hindlimb locomotor scale
		modified murine BBB hindlimb locomotor rating scale
		modified murine BBB hindlimb locomotor-rating scale
		modified murine BBB scale
		straight alley BBB
	BMS	Basso mouse scale
		Basso Mouse Scale (BMS)
		Basso Mouse scale (BMS)
		Basso mouse scale (BMS)
		BBB locomotor scale (mouse version adapted to local protocol)
		BMS
		BMS scale

	BMS score
1 11	
beam walk test	beam walk
	beam walk test
	beam walk tests
	Beam walking test
	narrow beam crossing test
	narrow beam test
	narrow beam test
	narrow beam-crossing test
	tapered beam test
	tapered beam walk test
footprint analysis	foot print analysis (fine motor control)
	footprint analysis
	footprint analysis (fine motor control)
	footprint recording
gait analysis	2D hindlimb kinematics during weight-supported treadmill locomotion
	3D kinemtic data
	angulograms (quality and range of motion)
	base of support
	catwalk gait analysis
	CatWalk gait analysis
	Catwalk-automated quantitative gait analysis
	Gait analysis
	gait analysis (DigiGait)
	gait analysis with CatWalk XT 10.6 multivariate system
	gait recording
	hind limb gait
	kinematic analysis with the CatWalk gait analysis system
	kinematic profile
	locomotion analsyis with MotoRater apparatus
	locomotor analysis with MotoRater apparatus
	toe spread index
grid walking test	grid walk test
grid walking test	gridwalk test
	grid walking test
	grid-walking test
	horizontal grid walking
	ability to traverse wire grid
	horizontal grid
	grid footfalls
indian dulanda	grid walking
inclined plane test	angled plane score
	incline plane score (IPS)

incline plane test method

inclined plane

inclined plane assessemnt

inclined plane assessment

inclined plane method

inclined plane method of Rivlin and Tator

inclined plane score

inclined plane score (IPS)

inclined plane task

inclined plane technique

inclined plane test

inclined plane test (modified Rivlin's method)

inclined plane test method

inclined plane tests

inclined plate test

inclined test

rivlin and tator's inclined plane test

Rivlin inclined plane test

ladder walk test 45 degrees ladder walk test

footfalls

horizontal ladder

horizontal ladder crossing test

horizontal ladder task

horizontal ladder test

horizontal ladder test (adapted to local protocol)

horizontal ladder walk test

horizontal ladder walk tests

ladder walk

ladder walk test

ladder walk tests

walk on ladder

locomotor (other) activity box

activity box test (ABT)

activity measures

categorisation of walking ability (paraplegia/poor walker/walker)

clinical grading

clinical motor exam (Drummond and Moore)

Drummond and Moore criteria

Drummond and Moore motor function score

Eugene D Means and Douglas K Anderson's motility score

Forelimb locomotor scale

grading of motor disturbance (Drummond and Moore scale)

gross motor activity (activity box)

10

	hind limb motor function score (MFS)
	motor capacity
	motor deficit index
	motor function
	motor function scale
	motor function scale (Farooque)
	motor performance on rotarod
	neurological function (walking status)
	neurological scores (locomotor status)
	Open field test
	open field test
	porcine thoracic behavior scale
	presence/absence of hindlimb paralysis
	recovery index (mobility)
	rotarod
	rotarod locomotor function test
	spontaneous movement
	unprompted walking motor score
swimming	swimming performance
	swimming test
Tarlov scale	five-point modified Tarlov scale
	hind limb motor function (modified Tarlov)
	hind-limb motor-function according to Tarlov
	modified five-point scale developed by Tarlov
	modified Tarlov method
	modified Tarlov rating system
	modified Tarlov scale
	modified Tarlov scale
	modified Tarlov score
	modified Tarlov scoring system
	modified tarlov's grading scale
	modified Tarlov's motor scale
	motor function (modified Tarlov scale)
	Tarlov motor scale
	Tarlov scale
	Tarlov scoring
	Tarlov scoring system
	Tarlov's scoring system
	Tarlow scale
grip strength	grip strength meter
	grip strength task
reaching or retrieval	directed forepaw reaching (DFR)
	grasping test (food retrieval)

forelimb function

		modified Montoya's staircase test
		Montoya staircase reaching
		staircase test
		vermicelli handling test
	rearing	cylinder rearing test
		cylinder test (forelimb assymetry)
		open field test (rearing)
		paw placement
		rearing
sensory and pain	mechanical reactivity	cutaneus trunchi muscle reflex
		cutaneus trunci muscle (CTM) reflex
		foot withdrawal under mechanical stimuli
		girdle test
		localisation reflex
		mechanical reactivity
		mechanical reactivity (von Frey)
		mechanical sensitivity
		mechanical sensitivity (von Frey filaments)
		proprioception
		proprioceptive placing response
		response to mechanical stimuli
		sensory function (paw withdrawal)
		sensory function (von Frey filaments)
		sensory testing (forelimb withdrawal under mechanical stimulation)
		tactile capacity
		tactile reactivity
		tactile reactivity (girdle test)
		tactile sensory test with Von Frey filaments
		tape sensing and removal test
		touch-evoked agitation
		vocal/sensory score
		vocalization threshold to mechanical pressure
		Von Frey test
		von Frey test
		Von Frey testing
	other reflexes	physiological reflexes
		test of hindlimb reflexes
	pain	gross neurologic examination
		hindpaw pinprick sensory threshold test
		hindpaw pinprick sensory treshold test
		hindpaw withdrawal threshold for mechanical allodynia
		hindpaw withdrawal treshold for mechanical allodynia
		mechanical allodynia

	mechanical allodynia testing
	painful stimulus by pinching of rat tail
	paraplegia status (tail pinch)
	pinprick
	purposeful response to paw pinch
	Rat Grimace Scale
	response to noxious stimulation
	sensitivity to pain
	Von Frey test of mechanical allodynia/hyperalgesia
thermal reactivity	acetone drop test
	Hargreave's test
	hot-water test
	neuropathic pain evaluation [acetone drop test and thermal hyperalgesia]
	nociceptive reactivity (thermal shock threshold tested through tail-flick test)
	nociceptive reactivity (thermal)
	sensory blockade (heat)
	sensory function (hot plate/cold stimulation)
	tail flick test
	tail-flick test
	thermal hyperalgesia
	thermal reacitivity (standard hot-plate test/cold stimulation)
	thermal reactivity
	thermal sensitivity
	Thermal Sensitivity
	thermal sensitivity (tail flick)
toe spread test	toe spread test
	toe-spread test
	toe spread tests
	toe spread
	toe spread reflex
electrophysiology (other)	activity in hemidiaphragm and phrenic nerve ipsilateral to hemisection
	assessment of H-reflex
	compound action potential (CAP) recording
	compound action potentials
	EMG recordings
	frequency dependent depression (FDD) of H-reflex
	H-reflex analysis
	sciatic nerve stimulation
motor evoked potentials	corticomotor evoked potentials
	corticomotor evoked potentials (CMEPs)
	evoked muscle responses (EMR)
	evoked potential test (MEP)
	motor evoked potential

electrophysiology

other

hindfoot bar grab test	hindfoot bar grab test
	hindfoot bar grab tests
micturition	bladder function
	micturition (voiding behaviour)
spinal cord blood flow	spinal cord blood flow
	spinal cord blood flow (SCBF)

Table S3.Neurological and functional outcomes for human studies included in the review

Category	Assessment name reported	Assessment
neurological	neurological (motor and sensory)	marked recovery (combination of improvement in AIS grade and walking function)
		pinprick, light touch, motor function scale
		ASIA motor and sensory scores
		ASIA scale: motor and sensory composites
		ASIA motor score, ASIA sensory score
		motor score; light touch (LT) and pin prick (PP) scores
	neurological (motor)	ASIA motor score
		ASIA Motor score
		ISNCSCI motor score
		strength
		discharge motor score
	neurological (other)	improvement to level of injury (change in segment to more caudal location)
	injury severity	marked recovery (combination of improvement in AIS grade and walking function)
		improvement in ASIA scale
		ASIA impairment score and grade
		ASIA grade
functional	functional (general)	Spinal Cord Independence Measure
		Functional Independence Measure
		London Handicap scale
		Short Form 36 Questionnaire
		FIM discharge score
	functional (mobility)	FIM motor score
	functional (mobility and general)	Walking Index for SCI II (WISCI II), Spinal Cord Independence Measure II (SCIM II)
	functional (mobility and spasticity)	overground walking performance; treadmill walking performance
		spastic reflexes (modified Ashworth scale); walking function
electrophysiology		EMG

Table S4. Variables extracted from studies included for analysis

	Variable extracted	Details
uo	Person in charge	Person in charge of the data extraction
General information	Authors	First author et al
infor	Year	Year of publication
neral	Title	Full title
Ge	DOI or PMID	Unique identifier
	Language	Language of the main text
ion	Included/excluded	Included or excluded
xclus	Reason for exclusion	Primary reason of exclusion
ion/e	Reason for exclusion	Reason of exclusion if primary reason of exclusion is "out of scope"
Inclusion/exclusion	Reason for exclusion (description)	Description of the reason of exclusion
on	Data collection	Prospective or retrospective (human studies only)
Classification	Analysis	Prospective or retrospective (human studies only)
	Species	Species studied among humans, mice, rats, dogs, cats, fish, lampreys, sheep, rabbits, guinea pigs, others
	Species information	Information about subspecies used
	Count, n	Total number of subjects reported
	Count, n control group	Number of subjects in control group (included in analysis)
	Count, n died in control	Number of subjects assigned to control group not included in analysis due to premature death
	group Count, n excluded in control group	Number of subjects assigned to control group not included in analysis for other reasons
	Count, n treatment group	Number of subjects in treatment group (included in analysis)
	Count, n died in treatment group	Number of subjects assigned to treatment group not included in analysis due to premature death
	Count, n excluded in treatment group	Number of subjects assigned to treatment group not included in analysis for other reasons
	Comment on counts	Details on counts, especially when total control + total treament do not add to total n
	Sex (n, ratio, percentage)	Information about sex of subjects as reported in the publication
	Sex	One option among female, male, mixed and not reported
	Sex (%, male)	% male included in the study
	Age [days, months, years]	Information about age of subjects as reported in the publication
	Age (mean)	Mean age (when applicable)
	Age (SD)	SD age (when applicable)
	Age (min)	Minimum age (when age range reported)
	Age (max)	Maximum age (when age range reported)
	Age (units)	Age units used among days, weeks, months and years
	Age (comments)	Comment on age information, one option among not reported, adult, young, for publication not reporting precise age included
tion	Weight [g, kg, pounds]	Information about weight of subjects as reported in the publication
Study population	Weight (mean)	Mean weight (when applicable)
dy pc	Weight (SD)	SD weight (when applicable)
Stu	Weight (min)	Minimum weight (when weight range reported)

	Weight (max)	Maximum weight (when weight range reported)
	Weight (unit)	Weight units among g, kg, pounds
	Weight (comments)	Comment on weight information (e.g., not reported)
	Injury characteristics (level, severity)	Information about injury characteristics included level and severity as reported in the publication
	Injury level	Level of injury (unique level or range for animal studies, number of subject per level or category
	Injury severity	for human studies) Injury severity among moderate, mild, severe, complete, incomplete, paraplegia, tetraplegia, not reported, mixed and moderate-severe
	Injury mechanism	Injury mechanism among contusion, compression, distraction, dislocation, transection, ischemia, trauma and others. Note this classification mainly applies for animal models, injury mechanism reported may differ in human studies
	Injury mechanism (details)	Details on injury mechanisms (e.g., height and weight used in contusion injuries, time before repurfusion in ischmic injuries etc)
	Duration of SCI	Duration of SCI before euthanasia (animals) or duration of SCI before inclusion in study (human)
	Drug(s)	Drug(s) studied in the publication
	Drug name harmonized	Drug name harmonized based on [Bourguignon et al., 2022]
	MP used as main drug?	Yes or no, for publication investigation methylprednisolone and methylprednisolone sodium succinate only (assess if the drug was the main drug of interest or used as positve control)
tion	Dose (absolute dose or	Dose given
òrma	mg/kg) Time (minutes pre-injury,	Timing of start of treatment compared to injury
Drug information	minutes post-injury)	
Dru	Duration of treatment	Duration of treatment
	Timing (e.g., BID, PID)	Frequency of treatment
	Route Route (comment when	Route used for drug administration
	multiple)	Comments on the route used
t.	What was assessed? (e.g., neurological, functional recovery, spasticity, walking function, electrophysiology)	Type of neurological/functional assessment (broad categories)
smen	Name/type of assessement	Neurological/functional assessments as named in the publication
and functional assessment	Name of assessment harmonised	Neurological/functional assessments' names harmonised as described in Table S3
tiona	Details on assessement	Details on assessments as described in the publications
func	Timing of assessement	Time of assessment with respect to the injury
ਚ	Assessment on day 28 (yes/no)	Whether subjects were assessed at day 28 after injury (applies to experiments testing methylprednisolone and methylprednisolone sodium succinate only)
logic	Was observer blinded?	Options among no, yes and not reported
Neurologic	Drug effect on functional assessment	Options qualifying effects among positive, negative, no effect, mixed (assessment), mixed (dosage), mixed (timing), mixed (regime), no stats, mixed (stats/no stats), mixed (assessment) + mixed (timing), not reported, mixed (dosage) + mixed (timing), mixed (dosage) + mixed (assessment), mixed (dosage) + mixed (regime), mixed (assessment) + mixed (regime)
	Drug effect on functional assessment (details)	Details on the effects reported allowing to categorize the effects in the previous column
	What was assessed? (e.g., histological measures, cavitity measures, ect)	Type of histological assessment (broad categories)
ıts	Name/type of assessement	Histology assessments as named in the publication
smer	Timing of assessement	Time of assessment with respect to the injury
asses	Was observer blinded?	Options among no, yes and not reported
Neuroanatomical assessments	Drug effect on neuroanatomical assessment	Options qualifying effects among positive, negative, no effect, mixed (assessment), mixed (dosage), mixed (timing), mixed (timing of assessment), no stats, mixed (stats/no stats), mixed (assessment) + mixed (dosage), not reported, and mixed (assessment) + mixed (timing)
Nenro	Drug effect on neuroanatomical assessment (details)	Details on the effects reported allowing to categorize the effects in the previous column

S	Drugs given to treat infections/pain ect.	Other drugs given to subjects according to the study protocol (e.g., pain relief plan, infection treatment or prophylaxis, anesthesia)
others	Conclusion of study	Conclusions as reported in the publication
and	Limitations	Limitations mentioned in the publication
sions	Remarks/Comments	Personal remark or comments following extractions
Conclus	Combination of drugs tested	Options among no, yes (drug of interest + drug of interest), and yes (drug of interest + drug not of interest)
	Contradictions present in the results	Yes or no, flags contradictions between text and figures presented in a given manuscript

Table S5. Details on the bias classification for animal experiments.

Domain of bias	Classified as "unclear risk of bias"	Classified "high risk of bias"
Dose	No precise dose reported, including "high dose"	Not reported
Species	Subspecies not reported	Not reported
Route	-	Not reported
Level of injury	No precise level or range reported, including "cervical", "mid-thoracic, "thoracic", "lumbar-sacral"	Not reported
Treatment time	-	Not reported
Results	Mixed results due to lack of statistics reported, including "mixed (stats/no stats)", "mixed effects (assessment) + mixed (stats/no stats)", "no stats"	Not reported
Sample size	Sample size reported as range or bounded	Not reported
Sex	Mixed population (male/female) with ratio not reported	Not reported
Blinding	Not reported	No blinding applied
Age	Reported as "adult", "young" with no precise age reported	Not reported

Table S6.Reported sample sizes by species in animal studies. "Other" include Yucatan miniature pigs (n=2) yellow eel Anguilla anguilla L. (n=1) SD: standard deviation; Q1: first quartile; Q3: third quartile

Species	Mean	SD	Median	Q1	Q3
cats	26.53	16.50	24.00	16.50	31.00
dogs	33.43	25.13	26.00	22.00	32.00
guinea pig	21.00	7.55	20.00	17.00	24.50
mice	120.62	83.33	96.00	50.25	176.50
other	31.33	16.17	22.00	22.00	36.00
rabbit	69.36	50.57	47.00	28.50	133.00
rats	61.60	46.71	48.00	32.00	79.50

Table S7. Bias assessment by animal experiment

	Domain of bias												
Experiment	Species	Sample size	Sex	Age	Level of injury	Dose	Treatment time	Route	Results	Blinding	Total bias score		
Pinzon et al. (2008, minocycline)	0	0	0	1	0	0	0	0	0	0	1		
Sharp et al (2013, ibuprofen)	0	0	0	0	0	0	0	0	0	0	0		
Liu et al (2015, omega 3)	0	1	0	1	0	0	0	0	0	0	2		
Bimbova et al (2018, atorvastatin)	0	0	0	1	0	0	0	0	0	1	2		
Liu et al (2017, omega 3)	0	1	0	1	0	0	0	0	0	0	2		
Yang et al (2016, niacin)	0	0	0	1	0	0	0	0	0	0	1		
Jiang et al (2004, methylprednisolone)	0	1	0	1	0	0	0	0	0	0	2		
Halt et al (1992, ethanol + isoflurane)	1	0	2	2	0	0	0	0	0	0	5		
Halt et al (1992, ethanol + ketamine + pentobarbital)	1	0	2	2	0	0	0	0	0	0	5		
Durham-Lee et al (2011, amiloride)	0	0	0	1	0	0	0	0	0	1	2		
Imai et al (2018, amiloride)	0	1	0	0	0	0	0	0	0	1	2		
Krisa et al (2012, amphetamine)	0	0	0	1	0	0	0	0	0	0	1		
Hook et al (2011, morphine)	0	0	0	0	0	0	0	0	0	0	0		
Gao et al (2014, methylprednisolone)	0	0	0	1	0	0	0	0	0	1	2		
Baiyila et al (2018, methylprednisolone)	0	0	2	1	0	0	2	0	0	1	6		
Bilginer et al (2009, methylprednisolone)	0	0	0	1	0	0	0	0	0	1	2		
Bilginer et al (2009, mycophenolate)	0	0	0	1	0	0	0	0	0	1	2		
Bilginer et al (2009, methylprednisolone + mycophenolate)	0	0	0	1	0	0	0	0	0	1	2		
Hong et al (2020, vitamin c)	0	1	0	0	0	0	0	0	0	0	1		
Martins et al (2018, dantrolene)	0	0	0	0	0	0	0	0	0	0	0		
Gao et al (2016, atorvastatin)	0	0	0	0	0	0	0	0	0	1	1		
Déry et al (2009, atorvastatin)	0	0	0	1	0	0	0	0	0	1	2		
Yeng et al (2016, estradiol)	0	0	0	1	0	0	0	0	0	0	1		
Genovese et al (2005, melatonin)	0	0	0	2	0	0	0	2	0	1	5		
Pannu et al (2005, atorvastatin)	0	1	0	2	0	0	0	0	0	0	3		
Nash et al (2002, methylprednisolone)	0	0	2	1	0	0	0	0	0	0	3		
Zhang et al (2015, azithromycin)	0	1	0	0	0	0	0	0	0	0	1		
Faden et al (1981, naloxone)	1	0	0	1	0	0	0	0	0	0	2		
Giulian et al (1990, dexamethasone)	0	1	2	2	1	0	0	0	0	1	7		
Salzman et al (1991, cyproheptadine)	0	0	0	2	0	0	0	0	0	0	2		
Siriphorn et al (2012, estradiol)	0	0	0	1	0	0	0	0	0	0	1		
Mohammadshirazi et al (2019, lithium)	0	0	0	1	0	0	0	0	0	1	2		
Rabchevsky et al (2002, methylprednisolone sodium succinate)	0	0	0	1	0	0	0	0	0	0	1		
Borgens et al (2001, polyethylene glycol)	1	0	2	1	1	0	0	0	0	1	6		
Ditor et al (2007, polyethylene glycol)	0	0	0	2	0	0	0	0	0	0	2		
Ditor et al (2007, magnesium sulfate)	0	0	0	2	0	0	0	0	0	0	2		
Ditor et al (2007, magnesium sulfate + polyethylene glycol)	0	0	0	2	0	0	0	0	0	0	2		
Liu et al (2015, carvedilol)	0	0	0	0	0	0	0	0	0	0	0		

Diaz-Ruiz et al (2011, dapsone)	0	0	0	1	0	0	0	0	0	0	1
Krityakiarana et al (2016, melatonin)	1	0	0	0	0	0	0	0	0	1	2
Vanicky et al (2002, methylprednisolone sodium succinate)	0	0	0	2	0	0	0	0	0	0	2
Behrmann et al (1994, methylprednisolone sodium succinate)	0	0	0	2	0	0	0	0	0	0	2
Sadanaga et al (1989, chlorpromazine)	0	1	0	2	0	0	0	0	0	0	3
Gueye et al (2015, vitamin d)	0	0	0	0	0	0	0	0	0	1	1
Guth et al (1994, indomethacin)	0	0	0	2	0	0	2	0	2	0	6
Nazemi et al (2020, minocycline)	0	0	0	1	0	0	0	0	0	1	2
Lopez et al (2004, bupivacaine)	0	0	0	0	0	0	0	0	0	0	0
Namjoo et al (2018, estradiol) - rats - 10.1007/s11011-018-0220-8	0	0	0	1	0	0	0	0	0	0	1
Çavus et al (2014, methylprednisolone)	0	0	0	0	0	0	0	0	0	0	0
										0	
Çavus et al (2014, acetylcysteine)	0	0	0	0	0	0	0	0	0		0
Çavus et al (2014, methylprednisolone + acetylcysteine)	0	0	0	0	0	0	0	0	0	0	0
Kang et al (2017, estradiol)	0	0	0	0	2	0	0	0	0	1	3
Baltin et al (2021, methylprednisolone sodium succinate)	0	0	0	2	0	0	0	0	0	1	3
Chen et al (2018, methylprednisolone)	0	1	0	1	0	0	0	0	0	1	3
Caliskan et al (2016, etomidate)	0	0	0	1	0	0	0	0	0	0	1
Caliskan et al (2016, epoietin)	0	0	0	1	0	0	0	0	0	0	1
Caliskan et al (2016, etomidate + epoietin)	0	0	0	1	0	0	0	0	0	0	1
Cayli et al (2004, methylprednisolone)	0	0	0	1	0	0	0	0	0	1	2
Cayli et al (2004, melatonin)	0	0	0	1	0	0	0	0	0	1	2
Cayli et al (2004, methylprednisolone + melatonin)	0	0	0	1	0	0	0	0	0	1	2
Cayli et al (2004, ethanol)	0	0	0	1	0	0	0	0	0	1	2
Cetin et al (2006, methylprednisolone)	0	0	2	2	0	0	0	0	0	1	5
Cetin et al (2006, epoietin)	0	0	2	2	0	0	0	0	0	1	5
Cetin et al (2006, methylprednisolone + epoietin)	0	0	2	2	0	0	0	0	0	1	5
Ha et al. (2008, pregabalin)	0	0	0	1	0	0	0	0	0	1	2
Ha et al. (2008, methylprednisolone)	0	0	0	1	0	0	0	0	2	1	4
Ha et al. (2008, minocycline)	0	0	0	1	0	0	0	0	2	1	4
Aslan et al (2009, dexmedetomidine)	0	0	1	2	0	0	0	0	2	0	5
Aslan et al (2009, dantrolene)	0	0	1	2	0	0	2	0	0	0	5
Colón et al (2018, tamoxifen)	0	1	0	0	0	0	0	0	0	0	1
Xu et al (2009, dexamethasone)	0	0	0	1	0	0	0	0	0	1	2
Saganová et al (2009, tacrolimus)	0	0	0	2	0	0	0	0	0	1	3
Fabela-Sánchez et al (2018, albumin)	0	0	0	2	0	0	0	0	0	0	2
Darvishi et al (2014, valproic acid)	0	1	0	2	0	0	0	0	1	1	5
Torres et al (2018, dantrolene)	0	0	0	0	0	0	0	0	0	1	1
Guo et al (2018, metformin)	0	0	0	2	0	0	2	0	0	0	4
Chio et al (2021, immune globulin)	0	0	0	1	0	0	0	0	0	0	1
Kopper et al (2019, azithromycin)	0	0	0	0	0	0	0	0	0	0	0
Afshary et al. (2020, minocycline)	0	0	0	2	0	0	0	0	0	0	2
Zhang et al. (2017, metformin) - rats - 10.1007/s12035-016-9895-1	0	1	0	1	0	0	0	0	0	0	2
Liu et al. (2017, lithium)	0	1	0	0	0	0	0	0	0	1	2
Jin et al. (2021, buspirone)	0	0	0	0	0	0	0	0	0	0	0
Jin et al. (2021, fluoxetine)	0	0	0	0	0	0	0	0	0	0	0
Brandoli et al. (2001, dexamethasone)	0	0	0	2	0	0	0	0	0	0	2

F-1-1 (1004 (1004 (1004))	0	0	2	2	2	0	0	0	0	0	
Faden et al (1984, naloxone)	0	0	0	2 2	0	0	0	0	0	0	6
Hashimoto et al. (1991, naloxone) Winkler et al (1994, naloxone)	0	0	0	2	0	0	0	0	0	1	2
Faden et al (1983, naloxone) - cats	0	0	0	2		0	0	0	0	0	3 2
Faden et al (1983, naloxone) - cats	0	0	0	2	0	0	0	0	1	0	3
Faden et al (1983, naloxone) - rabbit	0	0		2	1	0	0	0	1	0	6
Chen et al. (2020, ezetimibe)			2						0		
Oslau et al (2014, selegiline)	0	0	0	1	0	0	0	0		0	1
		0	0	2	0	0	0	0	0	0	5
Salem et al. (2017, methylprednisolone sodium succinate)	0	0	0	1	0	0	0	0	0	0	1
Salem et al. (2017, vitamin c) Salem et al. (2017, methylprednisolone sodium succinate + vitamin c)	0	0	0	1	0	0	0	0	0	0	1
	0	0	0							0	1
Abdanipour et al. (2012, valproic acid) Triveire et al. (2018, methylaradricalors)	0	0		0	0	0	0	0	0	0	2
Teixeira et al. (2018, methylprednisolone)	0	1	0	1	0 2	0	0	0	0	1	0
Tong et al. (2018, lithium)			0			0	0	0			5 1
Karatas et al. (2015, carvedilol)	0	0	2	2	0	2	2	2	0	1	1
Papa et al. (2016, minocycline)	0	1	2	2	0	0	0	0	0	0	5
Pourheydar et al. (2018, ubiquinone)	0	0	0	2	0	0	0	0	0	1	3
Pourheydar et al. (2018, vitamin c)	0	0	0	2	0	0	0	0	0	1	3
Wang et al. (2017, minocycline)	0	0	0	2	0	0	0	0	0	0	2
Wang et al. (2019, minocycline)	0	0	0	1	0	0	0	0	0	1	2
Khoshsirat et al. (2018, methylprednisolone)	0	0	0	1	0	0	2	2	0	0	5
Fee et al. (2007, progesterone)	0	0	0	0	0	0	0	2	0	0	2
Ritz et al. (2008, estradiol)	0	0	0	1	0	0	0	0	0	0	1
Means et al. (1981, methylprednisolone sodium succinate)	0	0	0	2	0	0	0	0	0	0	2
Holtz et al. (1990, methylprednisolone)	0	0	0	2	0	0	0	0	1	1	4
Korkmaz et al. (2015, montelukast)	0	0	0	2	1	0	0	2	0	0	5
Haghighi et al. (1987, naloxone)	0	0	2	1	0	0	0	0	0	1	4
Arias (1985, naloxone)	0	0	0	2	0	0	0	0	0	1	3
Ross et al. (1993, methylprednisolone)	0	0	0	2	0	0	0	0	0	0	2
Gerber et al. (1980, phenytoin)	0	0	2	2	0	0	0	0	0	0	4
Gerber et al. (1980, dexamethasone)	0	0	2	2	0	0	0	0	0	0	4
Silva et al. (2008, prednisone)	0	0	0	0	0	0	0	0	0	1	1
Pan et al. (2006, tacrolimus)	0	0	0	1	0	0	0	0	0	0	1
Liu et al. (2017, methylprednisolone)	0	0	0	2	0	0	0	0	0	1	3
Liu et al. (2017, methotrexate)	0	0	0	2	0	0	2	0	0	1	5
Liu et al. (2017, methylprednisolone + methotrexate)	0	0	0	2	0	0	0	0	0	1	3
Ahmad et al. (2016, minocycline)	0	0	0	1	0	0	0	0	0	0	1
Ahmad et al. (2016, tacrolimus)	0	0	0	1	0	0	0	0	0	0	1
Ahmad et al. (2016, minocycline + tacrolimus)	0	0	0	1	0	0	0	0	0	0	1
Meng et al. (2011, methylprednisolone)	0	1	2	1	0	0	0	0	1	0	5
Shen et al. (2019, levocarnitine)	0	0	0	0	0	0	0	0	0	1	1
Cristante et al. (2013, fluoxetine)	0	0	0	0	0	0	2	0	1	0	3
Zhou et al. (2016, calcitriol)	0	0	0	1	0	0	0	0	0	0	1
Nantwi et al. (1998, theophylline)	1	0	0	1	0	0	0	0	1	1	4
Genovese et al. (2007, dexamethasone) - mice - 10.1111/j.1600- 079X.2007.00454.x	1	0	2	2	0	0	0	0	0	1	6
Genovese et al. (2007, melatonin)	1	0	2	2	0	0	0	0	0	1	6
		•									

Commence to 1 (2007, domination on a malatania)	1	0	2	2	0	0	0	0	0	1	
Genovese et al. (2007, dexamethasone + melatonin)	1	0	2	2	0	0	0	0	0	1	6
Farsi et al. (2015, methylprednisolone)	1	0	0	1	0	0	0	0	0	0	2
Farsi et al. (2015, magnesium sulfate)	1	0	0	1	0	0	0	0	0	0	2
Farsi et al. (2015, methylprednisolone + magnesium sulfate)	1	0	0	1	0	0	0	0	0	0	2
Yin et al. (2016, methylprednisolone)	0	0	0	1	0	0	0	0	0	0	1
Lu et al. (2016, methylprednisolone)	0	0	0	0	0	0	0	0	0	0	0
Li et al. (2016, methylprednisolone)	0	0	0	1	0	0	0	0	0	0	1
Hou et al. (2015, celecoxib)	0	0	0	0	0	0	2	0	0	1	3
Qinxuan et al. (2020, dexamethasone + estrogen)	0	0	0	0	0	0	0	0	0	0	0
Qinxuan et al. (2020, dexamethasone)	0	0	0	0	0	0	0	0	0	0	0
Letaif et al. (2015, estradiol)	0	0	0	0	0	0	0	0	0	0	0
Hains et al. (2004, phenytoin)	0	0	0	1	0	0	0	0	0	1	2
Mann et al. (2008, epoetin)	0	0	0	2	0	0	0	0	0	0	2
Mann et al. (2008, darbepoetin)	0	0	0	2	0	0	0	0	0	0	2
Liao et al. (2014, methylprednisolone)	0	0	1	1	0	0	0	0	0	1	3
Li et al. (2019, methylprednisolone)	0	0	0	0	0	0	2	2	0	1	5
Wu et al. (2019, methylprednisolone)	0	0	0	1	0	0	2	0	0	0	3
Rong et al. (2018, methotrexate)	0	0	0	0	0	0	2	0	0	1	3
Wong et al. (2012, amphetamine)	0	0	0	0	0	0	0	0	0	0	0
Lima et al. (2020, citalopram)	0	0	0	0	0	0	0	0	0	0	0
Li et al. (2014, methylprednisolone)	0	0	0	1	0	0	0	0	0	0	1
Chen et al. (2014, vitamin c e)	0	0	0	1	0	0	2	0	0	0	3
Akdemir et al. (1993, methylprednisolone)	0	0	0	2	0	0	0	0	0	0	2
Genovese et al. (2008, montelukast)	0	0	0	1	0	0	0	0	0	1	2
Chen et al. (2018, plasma)	0	1	0	0	0	2	0	0	0	0	3
Chen et al. (2018, platelets)	0	1	0	0	0	0	0	0	0	0	1
Kim et al. (2004, methylprednisolone)	0	0	0	1	0	0	0	0	0	0	1
Mbori et al. (2016, methylprednisolone)	0	0	0	0	0	0	0	0	0	0	0
Wiseman et al. (2009, methylprednisolone)	0	0	0	1	0	0	0	0	1	0	2
Wiseman et al. (2009, magnesium)	0	0	0	1	0	0	0	0	0	0	1
Wiseman et al. (2009, magnesium + methylprednisolone)	0	0	0	1	0	0	0	0	1	0	2
Ates et al. (2007, mexiletine)	0	0	0	1	0	0	0	0	1	1	3
Ates et al. (2007, phenytoin)	0	0	0	1	0	0	0	0	1	1	3
Serarslan et al. (2010, methylprednisolone)	0	0	0	2	0	0	0	0	0	1	3
Serarslan et al. (2010, tadalafil)	0	0	0	2	0	0	0	0	0	1	3
Hara et al. (2000, methylprednisolone sodium succinate)	0	0	0	2	0	0	0	0	0	0	2
Zendedel et al. (2018, estradiol)	0	1	0	0	0	0	0	0	0	0	1
Braughler et al. (1987, methylprednisolone sodium succinate)	0	0	2	1	0	0	0	0	0	0	3
Robertson et al. (1986, thiopental)	0	0	2	2	1	0	0	0	0	1	6
Robertson et al. (1986, magnesium sulfate)	0	0	2	2	1	0	0	0	0	1	6
Robertson et al. (1986, lidocaine)	0	0	2	2	1	0	0	0	0	1	6
Robertson et al. (1986, naloxone)	0	0	2	2	1	0	0	0	0	1	6
Robertson et al. (1986, thiopental + naloxone)	0	0	2	2	1	0	0	0	0	1	6
Kobrine et al. (1984, lidocaine)	1	0	2	1	0	0	0	0	1	1	6
Hallenbeck et al. (1983, naloxone)	0	0	2	2	0	0	0	0	0	0	4
Watanabe et al. (2012, minocycline)	0	0	2	2	1	0	0	0	0	0	5
· · · /											

TT- 1 . 1 (2007 1 1 . 1 . 1 .)			^							^	
Yücel et al. (2006, methylprednisolone)	0	0	0	1	0	0	0	0	0	0	1
Gürkan et al. (2020, methylprednisolone)	0	0	0	2	0	0	0	0	1	1	4
Schwartz et al. (2001, phenytoin)	0	0	0	1	0	0	0	0	0	1	2
Tator et al. (1983, liothyronine)	0	0	0	2	0	0	2	0	0	0	4
Young et al. (1982, methylprednisolone sodium succinate)	1	0	2	1	0	0	0	0	1	1	6
Saganova et al. (2008, minocycline)	0	0	0	2	0	0	0	0	0	1	3
Rivlin et al. (1979, epinephrine)	0	0	0	2	0	0	0	0	0	0	2
Rivlin et al. (1979, epinephrine + nitroprusside)	0	0	0	2	0	0	0	0	0	0	2
Zhang et al. (2020, methylprednisolone)	0	0	0	0	0	0	2	0	0	0	2
Zhang et al. (2020, metformin) Genovese et al. (2007, dexamethasone) - mice -	0	0	0	0	0	0	2	0	0	0	2
10.1016/j.neuroscience.2007.06.059	0	0	0	1	0	0	0	0	0	1	2
Wu et al. (2017, sevoflurane)	0	1	0	1	0	0	0	0	0	1	3
Lee et al. (2016, fluoxetine + vitamin c)	0	1	0	1	0	0	0	0	0	0	2
de Figueiredo et al. (2018, tramadol)	0	0	0	0	0	0	2	0	0	0	2
Vasconcelos et al. (2016, magnesium chloride + polyethylene glycol)	0	0	0	0	0	0	0	0	0	0	0
Miranpuri et al. (2017, folic acid)	0	1	0	1	0	0	0	0	0	0	2
Gül et al. (2005, methylprednisolone)	0	0	2	2	0	0	0	0	1	1	6
Gül et al. (2005, melatonin)	0	0	2	2	0	0	0	0	1	1	6
Fu et al. (2007, naproxen)	0	0	0	2	0	0	0	0	0	0	2
Fu et al. (2007, ibuprofen)	0	0	0	2	0	0	0	0	0	0	2
Cheng et al. (2016, estradiol)	0	0	0	2	0	0	2	0	0	0	4
Hu et al. (2012, estradiol)	0	1	0	2	0	0	0	0	0	0	3
Sun et al. (2020, gabapentin)	0	1	1	0	0	0	0	0	0	0	2
McCreedy et al. (2018, diclofenac)	0	1	0	0	0	0	0	0	0	0	1
Tajkey et al. (2015, ceftriaxone)	0	0	0	0	2	0	2	0	0	1	5
Zheng et al. (2011, heparin)	0	0	0	1	0	0	0	0	0	1	2
Nguyen et al. (2012, immune globulin)	0	0	0	2	0	0	0	0	0	0	2
Ueno et al. (2011, minocycline)	0	0	2	0	0	0	0	0	0	0	2
Wang et al. (2009, ibuprofen) - rats	0	0	0	0	0	0	0	0	0	0	0
Wang et al. (2009, naproxen)	0	0	0	0	0	0	0	0	0	0	0
Wang et al. (2009, ibuprofen) - mice	0	0	0	0	0	0	0	0	0	0	0
Ozkunt et al. (2017, methylprednisolone)	0	0	0	1	0	0	0	0	1	0	2
Ozkunt et al. (2017, epoetin)	0	0	0	1	0	0	0	0	1	0	2
Zakeri et al. (2014, lithium)	0	1	0	2	0	0	0	0	0	0	3
Teng et al. (2004, minocycline)	0	1	0	2	0	0	0	0	0	0	3
Wu et al. (2010, methylprednisolone)	0	2	0	0	0	0	0	0	0	0	2
Huang et al. (2009, epoetin)	0	0	0	2	0	0	0	0	0	1	3
Lee et al. (2003, minocycline)	0	1	0	2	0	0	0	0	0	0	3
Lin et al. (2016, estradiol)	0	0	0	1	0	1	0	0	0	0	2
Faden et al. (1981, naloxone)	1	0	2	1	0	0	0	0	0	0	4
Holtz et al. (1991, methylprednisolone)	0	0	0	2	0	0	0	2	0	1	5
Gorio et al. (2007, methylprednisolone sodium succinate)	0	1	2	1	0	0	0	0	0	0	4
Ravikumar et al. (2005, nicotine)	0	0	0	0	0	0	0	0	0	0	0
Know et al. (2009, methylprednisolone)	0	0	0	2	0	0	0	0	0	0	2
Know et al. (2009, polyethylene glycol)	0	0	0	2	0	0	0	0	0	0	2
Know et al. (2009, magnesium sulfate)	0	0	0	2	0	0	0	0	0	0	2

Know et al. (2009, magnesium sulfate + polyethylene glycol)	0	0	0	2	0	0	0	0	0	0	2
Know et al. (2009, magnesium chloride + polyethylene glycol) Know et al. (2009, methylprednisolone + magnesium chloride + polyethylene glycol)	0	0	0	2 2	0	2	0	0	0	0	2
Kachadroka et al. (2010, estradiol)	0	0	0	0	0	0	0	0	0	0	0
Roman et al. (2011, polyethylene glycol)	0	0	0	0	0	0	0	0	1	1	2
Bu et al. (2018, estradiol)	0	0	2	0	0	0	2	0	1	1	6
Fakhri et al. (2020, melatonin)	0	0	0	1	0	0	0	0	0	0	1
Hook et al. (2009, morphine sulfate)	0	0	0	0	0	0	0	0	0	1	1
Garcia-Ovejero et al. (2014, progesterone)	0	0	0	0	0	0	0	0	0	1	1
Erol et al. (2016, methylprednisolone)	0	0	0	2	0	0	0	0	0	1	3
Erol et al. (2016, topiramate)	0	0	0	2	0	0	0	0	0	1	3
Streijger et al. (2016, magnesium chloride + polyethylene glycol)	0	0	0	2	0	0	0	0	0	1	3
Streijger et al. (2016, magnesium sulfate)	0	0	0	2	0	0	0	0	0	1	3
Ji et al. (2005, methylprednisolone)	0	1	0	0	0	0	0	0	0	1	2
Doyle et al. (2004, levodopa)	0	0	2	2	2	0	0	0	1	1	8
Ibarra et al. (2004, methylprednisolone sodium succinate)	0	2	0	0	0	0	0	0	0	0	2
Kuroiwa et al. (2014, amiloride)	0	1	0	0	0	0	0	0	0	0	1
Wells et al. (2003, methylprednisolone)	0	0	0	0	0	0	0	0	0	1	1
Wells et al. (2003, minocycline)	0	0	0	0	0	0	0	0	0	1	1
Guizar-Sahagun et al. (2009, methylprednisolone sodium succinate)	0	0	0	1	0	0	0	0	0	1	2
Guizar-Sahagun et al. (2009, melatonin)	0	0	0	1	0	0	0	0	0	1	2
Lee et al. (2010, minocycline)	0	0	2	2	0	0	0	0	0	0	4
Lee et al. (2010, simvastatin)	0	0	2	2	0	0	0	0	0	0	4
Zeman et al. (2009, oxandrolone)	0	1	0	1	0	0	0	0	0	0	2
Cole et al. (1989, fentanyl + nitrous oxide)	0	0	0	2	0	0	0	0	1	0	3
Cole et al. (1989, fentanyl + nitrous oxide + naloxone)	0	0	0	2	0	0	0	0	1	0	3
Kuchner et al. (2000, dexamethasone)	0	0	0	1	0	0	0	0	0	0	1
Luo et al. (2013, methylprednisolone)	0	0	0	0	0	0	0	0	0	1	1
Thomas et al. (1999, progesterone)	0	0	0	1	0	0	0	0	0	1	2
Stewart et al. (2019, folic acid)	0	0	0	0	0	0	0	0	0	0	0
Stewart et al. (2019, nitrous oxide)	0	0	0	0	0	0	0	0	0	0	0
Stewart et al. (2019, folic acid + nitrous oxide)	0	0	0	0	0	0	0	0	0	0	0
Gok et al. (2007, methylprednisolone)	0	0	0	1	0	0	0	0	0	0	1
Dinc et al. (2013, methylprednisolone)	0	0	0	2	0	0	2	0	1	1	6
Lee et al. (2010, magnesium)	0	0	0	2	0	0	0	0	0	1	3
Sonmez et al. (2013, minocycline)	0	0	0	1	0	0	0	0	0	1	2
Cuzzocrea et al. (2008, estradiol)	0	0	0	1	0	0	0	0	1	1	3
Ren et al. (2017, polyethylene glycol)	1	0	0	2	0	0	0	0	1	1	5
Faden et al. (1984, dexamethasone)	0	0	2	2	0	0	0	2	0	0	6
Faden et al. (1984, methylprednisolone)	0	0	2	2	0	0	0	0	0	0	4
Xu et al. (2019, melatonin)	0	2	2	2	0	0	0	0	1	0	7
Li et al. (2019, melatonin)	0	0	0	0	0	0	0	0	0	0	0
Yang et al. (2020, melatonin)	0	0	0	0	0	0	0	0	0	1	1
Piao et al. (2014, melatonin)	0	0	0	0	0	0	0	0	0	1	1
Zhang et al. (2019, melatonin)	0	0	0	1	0	0	0	0	0	0	1
Shen et al. (2017, melatonin)	0	1	0	1	0	0	2	0	0	0	4

Esposito et al. (2009, melatonin)	1	0	2	2	0	0	0	2	0	1	8
Jing et al. (2019, melatonin)	0	0	0	1	0	0	2	0	0	0	3
Fee et al. (2010, melatonin)	0	1	0	0	0	0	0	0	0	1	2
Jeffrey-Gauthier et al. (2018, buspirone)	0	0	0	2	0	0	0	0	0	1	3
Holtz et al. (1989, naloxone)	0	0	0	2	0	0	0	0	0	1	3
Park et al. (2012, melatonin)	0	0	0	0	0	0	0	0	0	0	0
Ates et al. (2006, methylprednisolone)	0	0	0	0	0	0	0	0	1	0	1
Ates et al. (2006, ethanol)	0	0	0	0	0	0	0	0	1	0	1
Yingli et al. (2014, melatonin)	0	0	0	1	0	0	2	0	0	1	4
Yune et al. (2007, minocycline)	0	0	0	1	0	0	0	0	0	0	1
Yune et al. (2007, methylprednisolone)	0	0	0	1	0	0	0	0	0	0	1
	0	1		1				0	0	0	
Zhang et al. (2017, metformin) - rats - 10.1111/jcmm.13235			0		0	0	0				2
Park et al. (2014, hydralazine)	0	1	0	2	0	0	0	0	0	1	4
Stirling et al. (2004, minocycline)	0	0	2	1	0	0	0	0	0	0	3
Weaver et al. (2005, methylprednisolone)	0	0	0	2	0	0	0	0	0	0	2
Moutaery et al. (2000, aluminum)	0	0	0	1	0	0	0	0	0	0	1
de Mesquita Coutinho et al. (2016, tacrolimus)	0	0	0	1	0	0	0	2	0	1	4
Takami et al. (2002, methylprednisolone)	0	0	0	1	0	0	0	0	0	0	1
Chikawa et al. (2001, methylprednisolone)	0	0	0	0	0	0	0	0	0	0	0
Aceves et al. (2019, morphine)	0	0	0	0	0	0	0	0	0	1	1
Aceves et al. (2019, minocycline)	0	0	0	0	0	0	0	0	0	1	1
Aceves et al. (2019, morphine + minocycline)	0	0	0	0	0	0	0	0	0	1	1
Woller et al. (2014, morphine)	0	0	0	0	0	0	0	0	0	1	1
de la Torre Valdovino et al. (2016, tamoxifen)	1	0	0	1	0	0	0	0	0	1	3
Guo et al. (2015, acetylcysteine)	0	1	0	1	0	0	0	0	1	1	4
Black et al. (1991, naloxone)	0	0	1	2	0	0	0	0	0	0	3
Black et al. (1986, naloxone) - rats - 10.1227/00006123-198612000-00004	0	0	0	0	0	0	0	0	0	0	0
Black et al. (1986, naloxone) - rats - 10.1227/00006123-198612000-00005	0	0	0	2	0	0	0	0	0	0	2
Wang et al. (2020, metformin)	0	0	0	2	0	0	0	0	1	0	3
Lin et al. (2019, methylprednisolone)	0	1	0	0	0	2	0	0	1	0	4
Lin et al. (2019, methylprednisolone sodium succinate)	0	1	0	0	0	2	0	0	1	0	4
Koyanagi, Tator (1997, methylprednisolone)	0	0	0	2	0	0	0	0	0	1	3
Hook et al. (2017, morphine)	0	0	0	0	0	0	0	0	0	1	1
Wu et al. (2016, botulinum toxin)	0	0	0	1	0	0	0	0	1	0	2
Guth et al. (1994, indomethacin)	0	0	0	2	0	0	2	0	0	0	4
Lee et al. (2012, fluoxetine)	0	1	0	1	0	0	0	0	0	0	2
Gao et al. (2020, melatonin)	0	0	0	2	0	0	0	0	0	0	2
Gorio et al. (2005, methylprednisolone sodium succinate)	0	1	2	1	0	0	2	0	0	0	6
Scali et al. (2013, fluoxetine)	0	1	0	0	0	0	0	0	0	1	2
Dixit et al. (2018, clonidine)	0	0	0	1	0	0	0	0	0	1	2
Zhang et al. (2014, methylprednisolone sodium succinate)	0	0	2	2	0	2	2	2	1	1	1 2
Nazli et al. (2015, atorvastatin)	0	0	2	2	1	0	0	0	0	0	5
Li et al. (2014, atorvastatin)	0	0	0	1	0	0	0	0	0	1	2
Bharne et al. (2013, methylprednisolone)	0	0	0	1	0	0	0	0	0	1	2
Cayli et al. (2006, etomidate + methylprednisolone)	0	0	0	1	0	0	0	0	0	0	1
Cong, Chen (2016, dexamethasone)	0	0	0	1	0	0	0	0	0	0	1

T (1/2015 d 1 1 1 1)	0	0	0	1	0	0	0	0	0	1	2
Tan et al. (2015, methylprednisolone)	0	0	0	2	0	0	0	0	0	1	2
Cakir et al. (2003, acetylcysteine)	0	0	2	2	1	0	0	2	0	1	8
Gao et al. (2015, simvastatin)	0	0	0	1	0	0	0	0	0	0	1
Hou et al. (2014, methylprednisolone)	0	0	0	0	0	0	0	0	0	1	1
Wang et al. (2014, methylprednisolone)	0	1	0	0	0	0	0	0	0	0	1
Sozbilen et al. (2018, methylprednisolone)	0	0	0	1	0	0	0	0	0	1	2
Yilmaz et al. (2015, clopidogrel)	0	0	0	2	0	0	0	0	0	0	2
Chen et al. (2015, methylprednisolone)	0	2	0	2	0	0	0	0	0	0	4
Ok et al. (2012, methylprednisolone)	0	0	0	1	0	0	0	0	1	0	2
Kazanci et al. (2017, methylprednisolone + pregabalin)	0	0	2	1	1	0	0	0	0	1	5
Kahveci et al. (2014, methylprednisolone + rosuvastatin)	0	0	0	1	0	0	0	0	0	0	1
Xian-Hui et al. (2016, methylprednisolone)	0	0	0	1	0	1	0	2	0	0	4
Kouhzaei et al. (2013, polyethylene glycol)	0	1	0	1	0	0	0	0	0	1	3
Aceves et al. (2016, morphine)	0	0	0	0	0	0	0	0	0	1	1
Guizar-Sahagun et al. (2005, methylprednisolone sodium succinate)	0	0	0	1	0	0	0	0	0	1	2
De La Torre et al. (1975, mannitol)	0	0	0	2	0	0	0	0	1	1	4
De La Torre et al. (1975, dexamethasone)	0	0	0	2	0	0	0	0	1	1	4
Yates et al. (2014, methylprednisolone)	0	1	0	2	0	0	0	0	0	1	4
Flamm et al. (1982, naloxone)	0	0	2	2	0	0	0	0	1	1	6
Wallace, Tator (1986, naloxone) - rats - 10.1227/00006123-198604000- 00006	0	0	0	2	0	0	0	0	0	1	3
Wallace, Tator (1986, naloxone) - rats - 10.1227/00006123-198610000- 00001	0	0	0	2	0	0	0	0	0	1	3
Cho et al. (2010, glucosamine)	0	0	0	1	1	2	0	0	0	1	5
Zadeh-Ardabili et al. (2017, vitamin e)	0	0	0	0	0	0	2	0	0	1	3
Gok et al. (2009, albumin)	0	0	0	1	0	0	0	0	0	0	1
Gok et al. (2009, immune globulin)	0	0	0	1	0	0	0	0	0	0	1
Khajoueinejad et al. (2019, calcitriol)	0	0	0	0	0	0	0	0	0	0	0
Lim et al. (2013, omega 3)	0	0	0	2	0	0	0	0	0	0	2
Popovich et al. (2012, glibenclamide)	0	1	0	0	0	0	0	0	0	0	1
Pukos, McTigue (2020, tamoxifen)	0	0	0	0	0	0	0	0	0	0	0
Durham-Lee et al. (2012, amiloride)	0	1	0	2	0	0	0	0	0	1	4
Perez-Espejo et al. (1996, methylprednisolone)	0	0	0	2	0	0	0	0	1	0	3
Patel et al. (2017, pioglitazone)	0	0	0	2	0	0	0	0	0	1	3
Nash et al. (2002, methylprednisolone)	0	0	2	1	0	0	0	0	0	1	4
Lankhorst et al. (2000, methylprednisolone)	0	0	0	0	0	0	0	0	0	0	0
Liu et al. (2010, carbidopa levodopa)	0	0	0	1	0	0	2	0	0	1	4
Yang et al. (2020, glutamine)	0	0	0	0	0	0	0	0	0	0	0
Pannu et al. (2007, atorvastatin)	0	0	0	2	0	0	0	0	0	0	2
Mann et al. (2010, atorvastatin)	0	0	0	2	0	0	0	0	0	0	2
Mann et al. (2010, simvastatin)	0	0	0	2	0	0	0	0	0	0	2
King et al. (2006, omega 3) - rats - 10.1523/JNEUROSCI.5539-05.2006 -	0	0	0	1	0	0	0	0	0	1	2
alpha-linolenic acid (AHA) King et al. (2006, omega 3) - rats - 10.1523/JNEUROSCI.5539-05.2006 - docosahexaenoic acid (DHA)	0	0	0	1	2	0	0	0	0	1	4
Fujimoto et al. (2000, melatonin)	0	0	0	2	0	0	0	0	0	0	2
Schiaveto-de-Souza et al. (2013, melatonin)	0	0	0	2	0	0	0	0	0	1	3
Karami et al. (2013, ketoprofen)	0	0	0	2	0	0	0	0	0	1	3
Tan et al. (2020, estrogen)	0	0	0	0	0	0	0	0	0	0	0

W 1 (2015 C.D.	0	0	0	0	0	0	0	0	0	1	1
Wang et al. (2015, propofol)	0	0	0	0	0	0	0	0	0	1	1
Zhang et al. (2020, mannitol)	0	0	0	0	0	0	0	0	0	0	0
Yates et al. (2009, modafinil)	0	0	0	1	0	0	0	0	0	1	2
Iwasa et al. (1989, vitamin e)	0	0	0	2	0	0	0	0	0	1	3
Sengelaub et al. (2018, estradiol)	0	0	0	1	0	0	0	0	0	0	1
Sengelaub et al. (2018, testosterone)	0	0	0	1	0	0	0	0	0	0	1
Sengelaub et al. (2018, estradiol + testosterone)	0	0	0	1	0	0	0	0	0	0	1
Patel et al. (2014, acetylcysteine)	0	0	0	2	0	0	0	0	0	1	3
Osuna-Carrasco et al. (2016, tamoxifen)	0	0	0	1	0	0	0	0	0	1	2
Ren et al. (2019, polyethylene glycol)	0	0	0	2	0	0	0	0	0	1	3
Kaptanoglu et al. (2005, methylprednisolone)	0	0	0	1	0	0	0	0	0	0	1
Kaptanoglu et al. (2005, mexiletine)	0	0	0	1	0	0	0	0	0	0	1
Xing et al (2016, morphine)	0	0	0	1	0	0	0	0	0	0	1
Mu et al (2000, methylprednisolone)	0	0	0	1	0	0	0	0	0	0	1
Kazama et al (2001, pentobarbital)	0	0	2	2	1	0	0	0	0	0	5
Genovese et al (2007, dexamethasone)	0	2	0	1	0	0	0	0	0	1	4
Pan et al (2013, tacrolimus)	0	0	0	1	0	0	0	0	0	0	1
Pereira et al (2009, methylprednisolone sodium succinate)	0	0	0	1	0	0	0	0	0	1	2
Cain et al (2007, albumin)	0	0	0	2	0	0	0	0	0	0	2
Liang et al (2019, simvastatin)	0	0	0	0	0	0	0	0	0	1	1
Liang et al (2019, ezetimibe + simvastatin)	0	0	0	0	0	0	0	0	0	1	1
Gao et al (2016, simvastatin)	0	1	0	1	0	0	0	0	0	0	2
Han et al (2012, simvastatin)	0	0	0	2	0	0	0	0	0	0	2
Han et al (2011, simvastatin)	0	0	0	1	0	0	0	0	0	1	2
Han et al (2020, sitagliptin)	0	1	0	0	0	0	0	0	1	0	2
He et al (2016, propofol)	0	0	0	0	0	0	0	0	0	1	1
Holmberg et al (2008, simvastatin)	0	1	0	1	0	1	2	0	0	1	6
Zhang et al (2018, lithium)	0	0	0	1	0	0	0	0	0	0	1
Tedeshi et al (2016, pregabalin)	0	1	0	0	0	0	0	0	0	1	2
Kim et al (2017, lithium)	0	0	0	0	0	0	0	0	0	0	0
Sanli et al (2012, methylprednisolone sodium succinate)	0	0	0	1	0	0	0	0	0	0	1
Salimi et al (2020, ceftriaxone)	0	0	0	0	0	0	2	0	0	0	2
Salimi et al (2020, acetylcysteine)	0	0	0	0	0	0	2	0	0	0	2
Salimi et al (2020, ceftriaxone + acetylcysteine)	0	0	0	0	0	0	2	0	0	0	2
Ni et al (2018, estrogen)	0	1	0	1	0	0	0	0	0	0	2
Xiao Jianru et al (1998, naloxone)	0	0	0	2	0	0	0	2	0	1	5
Baffour et al (1995, methylprednisolone sodium succinate)	0	0	1	2	0	0	0	0	1	0	4
Qi et al (2017, methylprednisolone)	0	0	0	0	0	0	0	0	0	1	1
Yune et al (2004, estradiol)	0	1	0	1	0	0	0	0	0	0	2
Nacar et al (2014, polyethylene glycol)	0	0	0	2	0	0	0	0	1	0	3
Nacar et al (2014, atorvastatin)	0	0	0	2	0	0	0	0	0	0	2
Baptiste et al (2009, polyethylene glycol)	0	0	0	1	0	0	0	0	0	0	1
Mallei et al (2005, prednisolone)	0	1	0	1	0	0	0	0	0	0	2
Madsen et al (1998, tacrolimus)	0	1	2	2	0	0	0	0	0	0	5
Colón et al (2016, tamoxifen)	0	0	0	1	0	0	0	0	0	0	1
Mosquera et al (2014, estradiol)	0	1	0	1	0	0	0	0	0	0	2

Mosquera et al (2014, tamoxifen)	0	1	0	1	0	0	0	0	0	0	2
Tian et al (2009, tamoxifen)	0	0	0	1	0	0	0	0	0	0	1
Kitchen et al (2020, trifluoperazine)	0	1	0	0	0	0	0	0	0	0	1
Namjoo et al (2018, estradiol) - rats - 10.1002/jcb.27361	0	0	0	1	0	0	0	0	0	1	2
Borgens et al (2002, polyethylene glycol)	1	0	2	1 1	0	0	0	0	0	0	4
	0	0	0	2		0	0	0	0	1	
Hao et al (1991, naltrexone)					0						3
Ruhollah Hosseini et al (2017, dexamethasone)	0	0	0	1	0	0	0	0	0	1	2
Pedram et al (2018, meloxicam)	0	0	0	0	0	0	0	0	0	0	0
Sharma et al (2004, methylprednisolone sodium succinate)	0	0	1	2	1	0	0	2	1	1	8
Sharma et al (2004, dexamethasone)	0	0	1	2	1	0	0	2	1	1	8
Guptarak et al (2014, tamoxifen)	0	0	0	2	0	0	0	0	0	0	2
Kermani et al (2016, acetylsalicylic acid)	0	0	0	1	0	0	0	0	0	0	1
Sayin et al (2013, methylprednisolone sodium succinate)	0	0	0	1	0	0	0	0	0	0	1
Baysefer et al (2003, mannitol)	0	0	0	2	0	0	0	0	0	1	3
Farooque et al (1994, methylprednisolone sodium succinate)	0	0	0	2	0	0	0	0	0	1	3
Golding et al (2006, glutamine)	0	0	0	0	0	0	0	0	0	1	1
Abdanipour et al (2019, lithium)	1	0	0	0	0	0	0	0	0	1	2
Charn et al (2011, minocycline)	0	0	0	2	0	0	0	0	0	0	2
Gul et al (2010, methylprednisolone)	0	0	0	1	0	0	0	0	2	1	4
Gul et al (2010, dexmedetomidine)	0	0	0	1	0	0	0	0	2	1	4
Lang-Lazdunski et al (2001, tacrolimus)	0	0	0	2	1	0	0	0	0	1	4
Rosado et al (2014, methylprednisolone sodium succinate)	0	0	0	0	0	0	0	0	0	0	0
Rosado et al (2014, dantrolene)	0	0	0	0	0	0	0	0	0	0	0
Rosado et al (2014, methylprednisolone sodium succinate + dantrolene)	0	0	0	0	0	0	0	0	0	0	0
Boran et al (2005, methylprednisolone)	0	0	0	2	0	0	0	0	0	0	2
Boran et al (2005, epoetin)	0	0	0	2	0	0	0	0	0	0	2
Hook et al (2007, morphine sulfate)	0	0	0	0	0	0	0	0	0	0	0
Simpson et al (1991, nifedipine)	0	0	2	2	1	0	0	0	0	1	6
Simpson et al (1991, indomethacin)	0	0	2	2	1	0	0	0	0	1	6
He et al (2017, lithium)	0	1	0	1	0	0	0	0	1	1	4
Almad et al (2011, fenofibrate)	0	1	0	1	0	0	0	0	0	0	2
McTigue et al (2007, pioglitazone)	0	0	0	1	0	0	0	0	0	0	1
Ko et al (2006, minocycline)	0	0	2	0	0	0	0	0	0	0	2
Çelik et al (2015, vitamin d)	0	0	2	2	0	0	0	0	1	1	6
Park et al (2007, pioglitazone)	0	1	2	1	0	0	0	0	0	0	4
Afhami et al (2016, estradiol)	0	0	0	1	0	0	0	0	0	1	2
Gezici et al (2017, methotrexate)	0	0	0	1	0	0	0	0	0	0	1
Narin et al (2017, topiramate)	0	0	0	0	0	0	0	0	0	0	0
Gensel et al (2012, topiramate)	0	0	0	0	0	0	0	0	0	1	1
Yoshizaki et al (2019, heparin)	0	0	0	0	0	0	0	0	0	0	0
Arias (1987, naloxone)	0	1	0	2	0	0	0	0	1	1	5
Arias (1987, dexamethasone)	0	1	0	2	0	0	0	0	1	1	5
Naftchi et al (1991, methylprednisolone sodium succinate + aminocaproic acid)	0	0	2	2	0	0	0	0	2	1	7
Romero-Ramírez et al (2020, methylprednisolone)	0	0	0	0	0	0	0	0	1	1	2
Zhang et al (2009, tacrolimus)	0	0	0	2	0	0	0	0	0	1	3
Zhang et al (2014, methylprednisolone)	0	0	2	0	0	0	0	0	0	0	2
0 (1 / 1/	~	_		ľ	-	-	,	_	-	-	_

Rabinowitz et al (2008, methylprednisolone)	0	0	0	1	0	0	0	0	0	1	2
Penas et al (2011, valproic acid)	0	0	0	0	0	0	0	0	1	0	1
Chu et al (2015, valproic acid)	0	0	0	1	0	0	0	0	0	0	1
Lee et al (2012, valproic acid)	0	1	0	1	0	0	0	0	0	0	2
Lu et al (2013, valproic acid)	0	0	0	1	0	0	0	0	0	0	1
Lv et al (2012, valproic acid)	0	1	0	2	0	0	0	0	0	0	3
Lv et al (2011, valproic acid)	0	1	0	2	0	0	0	0	0	0	3
Hao et al (2013, valproic acid)	0	1	0	1	0	0	0	0	0	0	2
Wang et al (2020, valproic acid)	0	0	0	1	0	0	0	0	0	1	2
Li et al (2019, zinc)	0	0	0	1	0	0	0	0	0	1	2
Lin et al (2020, zinc) - mice - 10.1016/j.neulet.2020.135263	0	1	0	0	0	0	2	0	0	0	3
Li et al (2020, zinc)	0	1	0	0	0	0	0	0	0	0	1
Lin et al (2020, zinc) - mice - 10.1111/cns.13460	0	1	0	0	0	0	0	0	0	0	1