PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-045725

(43)Date of publication of application: 16.02.1996

(51)Int.CI.

H01F 1/34 C01G 49/00

CO4B 35/38

(21)Application number: 06-197716

.

(22)Date of filing:

29.07.1994

(71)Applicant : SUMITOMO SPECIAL METALS CO LTD

(72)Inventor: MITSUYOSHI YASUHARU

(54) LOW LOSS OXIDE MATERIAL

(57)Abstract:

PURPOSE: To provide Mn–Zn ferrite base low loss oxide material comprising a composition capable of diminishing defects of conventional Mn–Zn based ferrite for miniaturization and lighening weight of a power supply by changing the drive frequency of a switching power supply to high–frequency (1–5MHz) while increasing the strength by heightening density as well as greatly cutting down the core loss. CONSTITUTION: By adding a specific amount of CaO, SiO2, V2O5, TiO2, SnO2 to the baseic composition comprising 67.1–69.6mol% of Fe2O3, 18.9–26.9mol% of MnO, and remaining ZnO, the characterisitics of the minimum value of the magnetic core loss not exceeding 500KW/m3 meeting the requirements of the frequency 1MHz–5MHz, 60–100° C and the product of frequency and the maximum induction flux density of 75000Hz.T can be obtained.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-45725

(43)公開日 平成8年(1996)2月16日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	F 1			技術表示箇所
H01F 1/34						
C01G 49/00						
C 0 4 B 35/38						
			H01F			В
			C 0 4 B	35/ 38		Z
			審査請求	未請求	請求項の数 1	FD (全 4 頁)
(21)出願番号	特顯平6-197716	(71)出顧人	0001834			
			1	住友特殊	株金属株式会社	
(22)出願日	平成6年(1994)7		大阪府	大阪市中央区北部	兵4丁目7番19号	
			(72)発明者	三吉	表時	
						川2丁目15番17号
					朱金属株式会社 (
			(74)代理人		押田 良久	
			(12)	71-11		

(54) 【発明の名称】 低損失酸化物磁性材料

(57)【要約】

【目的】 スイッチング電源の駆動周波数を高周波化して、電源の小型化、軽量化を図るため、従来のMn-Z n 系フェライトの欠点を除去し、高密度化して強度を向上させるとともに、高周波($1\sim5\,MHz$)における磁心損失を大幅に低減できる組成からなるMn-Z n フェライト系低損失酸化物磁性材料の提供。

【構成】 Fe_2O_3 67.1~69.6mol%、MnO 18.9~26.9mol%、残部がZnOからなる基本組成に、CaO、 SiO_2 、 V_2O_3 、 TiO_2 、 SnO_2 を所定量添加することにより、焼結密度が4.75g/cm³以上であり、周波数 $1MHz\sim5MHz$ 、60℃~100℃、周波数と最大磁束密度との積が75000Hz・Tにおける磁心損失の最小値が500kW/m³以下の特性が得られる。

10

1

【特許請求の範囲】

【請求項1】 Fe₂O₃ 67.1~69.6mol%、MnO 18.9~26.9mol%、残部がZnOからなる基本組成に、CaO 0.03~0.15wt%、SiO₂ 0.005~0.05wt%、V₂O₅ 0.01~0.15wt%、TiO₂ 0.1~2.0wt%、SnO₂ 0.1~2.0wt%を含有することを特徴とする低損失酸化物磁性材料。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、磁気ヘッドやスイッチング電源用のトランス材料等に用いられるMn-Znフェライトの改良に係り、 Fe_2O_3 67.1~69.6mol%、MnO 18.9~26.9mol%、残部がZnOからなる基本組成に、CaO、 SiO_2 、 V_2 O $_5$ 、 TiO_2 、 SnO_2 を所定量添加して、高密度化して強度を向上させるとともに、高周波領域($1\sim5$ MH $_2$)における磁心損失を大幅に低減し、例えばトランス材料の場合、スイッチング電源の駆動周波数を高周波化し、電源の小型化、軽量化を図ることが可能なMn-Z 20nフェライト系低損失酸化物磁性材料に関する。

[0002]

【従来の技術】スイッチング電源は電子機器の小型化に 貢献しているが、電源のより一層の小型軽量化にはスイ ッチング周波数の高周波化が必要である。今日、主スイ ッチ素子としてMOSFETが採用されることにより、 かかる駆動周波数は1MHzを越える高周波化が容易に なってきたが、高周波化を達成するには主トランス材料 となる磁性部品の低損失化が不可欠であり、従来より、 Mn-Zn系フェライトを低損失化して使用してきた。 【0003】すなわち、スイッチング電源用トランスに おいて、電源の駆動周波数が数百kHz程度までは、従 来からFe₂O₃ 52.5~54mol%、ZnO 8 ~12mol%、残部MnOの基本成分にCaO、Si O₂を含有するMn-Zn系フェライトが用いられてき たが、前記Mn-Zn系フェライトは数百kHz帯では 損失が大きいため、電源の小型化、軽量化のための駆動 周波数の高周波化に対応できない問題があった。

[0004]

【発明が解決しようとする課題】 500kHz程度の周 40 波数における磁心損失を低減したMn-Zn系フェライトとして、上記のMn-Zn系フェライトにSi、Ca、V、Ti、Sn の酸化物を添加した材料が提案(特開平5-234737号公報)されているが、磁心損失は500kHzを越えると急激に増大し、MHz帯では損失が大きいため電源の小型化、軽量化を図ることができない問題がある。

【0005】また、1MHz前後での磁心損失を低減したMn-Zn系フェライトとして、Fe₂O₃ 61~67mol%、MnO 3~36mol%、ZnO 30 50

mol%以下の組成にCaO、 SiO_2 を含有し、さらに種々の添加物を含有させた材料が提案(特開平6-120022号公報)されているが、このフェライト材料は焼結密度が低く、コア強度に不安があり、1MHzを

越えると磁心損失が急増するという問題があった。

【0006】この発明は、スイッチング電源の駆動周波数を高周波化して、電源の小型化、軽量化を図るため、従来のMn-2n系フェライトの欠点を除去し、高密度化して強度を向上させるとともに、高周波($1\sim5\,MH$ z)における磁心損失を大幅に低減できる組成からなるMn-2nフェライト系低損失酸化物磁性材料の提供を目的としている。

[0007]

【0008】すなわち、この発明は、 Fe_2O_3 67. $1\sim69$. 6mol%、MnO 18. $9\sim26$. 9mol%、残部がZnOからなる基本組成に、CaO0. $03\sim0$. 15wt%、 SiO_2 0. $005\sim0$. 05wt%、 V_2O_5 0. $01\sim0$. 15wt%、 TiO_2 0. $1\sim2$. 0wt%、 SnO_2 0. $1\sim2$. 0wt% 磁性材料である。

[0009]

【作用】この発明のフェライトにおいて、 Fe_2O_3 は基本成分であり、67.1mol%未満では磁心損失が大きく、また69.6mol%を越えると磁心損失の最小となる温度が高くなり、トランス材料に必要とされる $60\sim100$ での磁心損失が高くなるという問題があり、好ましくないため、 Fe_2O_3 は $67.1\sim69.6mol%$ の含有とする。また、 Fe_2O_3 の好ましい範囲は、 $67.2\sim68.3mol%$ である。

【0010】基本成分であるMnOは、18.9mol%未満では磁心損失の最小となる温度が高くなり、トランス材料に必要とされる60~100℃での磁心損失が高くなるという問題があり、26.9mol%を越えると透磁率が低く、高周波(1~5MHz)における磁心損失が高くなるという問題があり好ましくないため、18.9~26.9mol%の含有とする。また、MnOの好ましい範囲は、20.0~26.0mol%である

3

【0011】ZnOは基本成分であり上記組成の残余を 占めるが、ZnOの好ましい範囲は7.0~13.0m 01%である。

【0012】上記の基本組成に添加する添加物のCaO は、基本組成に対する添加量が 0.03 w t %未満では 磁心損失低下の効果がなく、0.15wt%を越えると 結晶粒が不均一となり磁心損失が増加するので好ましく ないため、O. O3~O. 15wt%の添加とする。ま た、CaOの好ましい添加量は、0.05~0.12w

【0013】同様に添加物のSiO2は、基本組成に対 t%である。 する添加量が0.005wt%未満では磁心損失低下の 効果に乏しく、0.05wt%を越えると結晶粒が異常 成長し、磁心損失が上昇して好ましくないため、0.0 $0.5\sim0$. 0.5 w t %の添加とする。また、 SiO_2 の 好ましい添加量は、0.01~0.03wt%である。 【0014】添加物のV2Osは、基本組成に対する添加 量が0.01wt%未満では磁心損失低下の効果に乏し く、0.15wt%を越えると結晶粒が異常成長し、磁 心損失が上昇して好ましくないため、0.01~0.1 5wt%の添加とする。また、 V_2O_5 の好ましい添加量 は、0.03~0.10wt%である。

【0015】添加物のTiO2は、基本組成に対する添 加量が 0. 1 w t %未満では磁心損失低下の効果に乏し く、2.0wt%を越えると磁心損失が上昇して好まし くないため、 $0.1\sim2.0$ wt%の添加とする。ま た、TiO2の好ましい添加量は、O. 2~1. Owt %である。

【0016】添加物のSnО゚は、基本組成に対する添 加量が 0. 1 w t %未満では添加効果に乏しく、2. 0 * 30

*wt%を越えると損失が上昇して好ましくないため、 $0.~1\sim 2.~0$ w t %の添加とする。また、S n O_2 の 好ましい添加量は、O. 2~1. Owt%である。 【0017】上述の組成からなるこの発明のMn-Zn 系フェライトは、焼結密度が4.75g/cm³以上で あり、周波数 1MHz~5MHz、60℃~100 ℃、周波数と最大磁束密度との積が75000Hェ・T における磁心損失の最小値が500kW/m³以下の特

性が得られる。 [0018] 10 【実施例】

粉砕後の基本組成が表1に示す如く、Fe₂O₃、MnC 実施例1 O3、ZnOからなる原料粉末をボールミル中で湿式混 合後、大気中で860℃に5時間、仮焼した。その後、 前記仮焼原料にCaO(CaOはCaCOsにて添加)

 $0.\ 0.9\,w\,t\,\%,\ S\,i\,O_{2}\quad 0.\ 0.1\,w\,t\,\%,\ V_{2}\,O_{5}$

0.06wt%, TiO2 0.25wt%, SnO2

0. 4wt%添加後、ボールミルで湿式粉砕した。粉 砕した原料にバインダーとしてボリビニルアルコール1 Owt%溶液を10wt%添加造粒後、外径16.8m m、内径8. 4 mm、高さ6 mmに成型し、前記成型体 を酸素分圧を制御した雰囲気中で1130℃に3時間の 焼結を行った。得られた焼結体を周波数3MH z 、最大 磁束密度25mT、測定温度80℃での磁心損失を交流 BHループトレーサーにて測定し、磁心損失の測定後、 密度を表1に表す。

[0019]

【表1】

は、 ² 低加効	果	こ乏	しく、	2. 0:	* 30	ZnO	磁心	損失	密度		
	試料 F		Fe ₂ O ₃	MnO (mol9	' I	(mol%)		/m ³)	(g/cm	8)	
	No	+	mol%)	18.9		14.0	4	80	4.78	4	
	1	╁		22.	_	10.8	1	260	4.8	2	
実	2	+	67.2	20.	_	12.7	T	300	4.8	8	
施	1	4	67.3	24		7.0	T	230	4.8	34	
例	ı	4	68.3	+		3.5	1	400	4.	82	l
1"	-	5	69.6		3.9	9.0	+	490	4.	81	
L	1	6	69.6			8.0	1100		4	4.70	
	1	7	52.7		9.8	15.9	810		14	1.60	1
1	比較例		65.4		8.7	-	_	840	+	4.79	
1			66.8		27.8	5.4	-	710			-
1			70.0		17.8	12.	-			4.82	-
1			72.	0	24.1	3.9	9	110	<u> </u>	8 n	-

%、ZnO 10.8mol%からなる原料を大気中で

Fe2O3 67.2mol%、MnO 22.0mol 50 860℃に5時間仮焼した後、前記仮焼原料に表2に配

5

合量を示す CaO (CaOはCaCO3で添加)、SiO2、V2O5、TiO2及びSnO2を添加後、湿式ボールミルにて粉砕した、前記粉砕粉にバインダーとしてボリビニルアルコール10wt%溶液を10wt%添加し、造粒後、実施例1と同一寸法の成型体を得た後、実*

* 施例1と同一条件にて焼結を行った後、焼結体を実施例 1と同一条件にて磁心損失を測定し、その結果と密度を 表2に示す。

[0021]

【表2】

	- "		1 6 1916					
	敌 料 No.	CaO (wt%)	SiO ₂ (wt%)	V ₂ O ₅ (wt%)	TiO ₂ (wt%)	SnO ₂ (wt%)	磁心损失 (kw/m³)	密度 (g/cm ³)
类	12	0.09	0.01	0.06	0.25	0.40	260	4.82
	18	0.09	0.01	0.06	0.70	0.40	200	4.85
施	14	0.09	0.01	0.06	0.25	1.0	220	4.84
例	15	0.06	0.01	0.12	0.50	0.50	860	4.85
	16	0.09	0.01	_	-	-	690	4.63
	17	0.09	0.01	0.06			670	4.66
此	18	0.09	0.01	0.06	0.25	2.5	2200	4.90
較	19	0.09	0.01	0.08	2.5	0.40	3400	4.91
例	20	0.18	0.01	0.06	0.25	0.40	710	4.71
ניש	21	0.09	0.01	0.18	0.50	0.50	1900	4.92
	22	0.12	0.01		0.50	_	700	4.65
	23	0.12	0.01			0.50	680	4.67

[0022]

【発明の効果】この発明は、実施例に明らかなように、 Fe $_2$ O $_3$ 67.1 \sim 69.6mol%、MnO 18.9 \sim 26.9mol%、残部がZnOからなる基本組成に、CaO、SiO $_2$ 、 V_2 O $_5$ 、TiO $_2$ 、SnO $_2$ を所定量添加することにより、焼結密度が4.75g/

 cm^3 以上であり、周波数 $1MHz\sim5MHz$ 、60 $^{\circ}$ $^{\circ}$ 以下の特性が得られるため、スイッチング電源の駆動周波数を高周波化して、電源の小型化、軽量化を図ることができる。