Aula 20 Análise do Erro na Interpolação Polinomial.

MS211 - Cálculo Numérico

Marcos Eduardo Valle

Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

Introdução

Na aula anterior, vimos o problema de interpolação que consiste em determinar uma função φ tal que

$$\varphi(x_k) = y_k, \quad \forall k = 0, 1, \ldots, n,$$

em que $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$ são dados.

Basicamente, vimos três formas para a interpolação polinomial:

- Forma de Vandermonde que apesar da simplicidade teórica, é computacionalmente caro além de ser numericamente instável.
- 2. Forma de Lagrange que é rica do ponto de vista teórico mas também é computacionalmente cara.
- 3. **Forma de Newton** que, em conjunto com a forma dos parênteses encaixados, é o forma computacionalmente mais barada para determinar o polinômio interpolador.

Definição do Erro de Interpolação

Na aula de hoje, vamos fazer uma análise do erro na interpolação polinomial.

Formalmente, vamos assumir os pontos tabelados $(x_0, y_0), \dots, (x_n, y_n)$ são tais que

$$y_k = f(x_k), \quad \forall k = 0, 1, \ldots, n,$$

em que f é a função que iremos aproximar por um polinômio interpolador p_n de grau menor ou igual à n.

O erro \mathcal{E}_n da interpolação polinomial em $x \in [x_0, x_n]$ é

$$\mathcal{E}_n(x) = |f(x) - p_n(x)|.$$

Teorema 1 (Erro da Interpolação Polinomial)

Considere n+1 pontos $x_0 < x_1 < \ldots < x_n$, com $n \ge 0$. Seja f uma função com derivadas até ordem n+1 contínuas no intervalo $[x_0, x_n]$. Se p_n é o polinômio que interpola f nos pontos x_0, \ldots, x_n , então

$$f(x) - \rho_n(x) = \prod_{k=0}^n (x - x_k) \frac{f^{(n+1)}(\xi)}{(n+1)!}, \quad \forall x \in [x_0, x_n],$$

em que $x_0 \le \xi \le x_n$.

Demonstração do Teorema 1

Primeiramente, vamos definir

$$\pi(x) = \prod_{k=0}^{n} (x - x_k) = (x - x_0)(x - x_1) \dots (x - x_n)$$
$$= x^{n+1} + \beta_n x^n + \dots + \beta_1 x + \beta_0.$$

Vamos mostrar que

$$f(x) - p_n(x) = \pi(x) \frac{f^{(n+1)}(\xi)}{(n+1)!}, \quad \forall x \in [x_0, x_n].$$

Se $x = x_k$, então $\pi(x) = 0$. Portanto, $f(x_k) = p_n(x_k)$, como é de se esperar uma vez que p_n interpola f em x_k .

Se $x \neq x_k$, defina a função auxiliar

$$\mathcal{A}(x) = f(t) - p_n(x) - \frac{f(x) - p_n(x)}{\pi(x)} \pi(t), \quad \forall t \in [x_0, x_n].$$

Note que

$$A(x_0) = 0, A(x_1) = 0, \dots, A(x_n) = 0$$
 e $A(x) = 0$.

Portanto, A possui n + 2 raízes em $[x_0, x_n]$.

Pelo teorema de Rolle (caso particular do teorema do valor médio), \mathcal{A}' possui n+1 raízes em (x_0,x_n) .

Novamente pelo teorema de Rolle, A'' possui n raízes em (x_0, x_n) .

Aplicando repetidas vezes o teorema de Rolle, concluímos que $\mathcal{A}^{(n+1)}$ possui uma raiz $\xi \in (x_0, x_n)$.

Concluindo,

$$A^{(n+1)}(\xi) = f^{(n+1)}(\xi) - \frac{f(x) - p_n(x)}{\pi(x)}(n+1)! = 0.$$

Logo,

$$f(x) - p_n(x) = \pi(x) \frac{f^{(n+1)}(\xi)}{(n+1)!}, \quad \forall x \in [x_0, x_n].$$

Observação

Lembre-se a aproximação de Taylor de f em x_0 é

$$T_n(x) = f(x_0) + f'(x_0)(x - x_0) + \ldots + f^{(n)}(x_0)(x - x_0)^n.$$

Sobretudo, tem-se

$$f(x) - T_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}.$$

Observe que essa aproximação é construída considerando apenas x_0 .

Na interpolação polinomial, a aproximação p_n de f é feita considerando x_0, x_1, \ldots, x_n . Portanto,

$$f(x) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)\dots(x-x_n).$$

Teorema 2 (Majorante do Erro da Interpolação Polinomial)

Considere n+1 pontos $x_0 < x_1 < \ldots < x_n$ e f uma função com derivadas até ordem n+1 contínuas no intervalo $[x_0, x_n]$. Se p_n é o polinômio que interpola f nos pontos x_0, \ldots, x_n , então o erro da interpolação polinomial satisfaz

$$\mathcal{E}_n(x) \leq \frac{M_{n+1}}{(n+1)!} \left| \prod_{k=0}^n (x - x_k) \right|,$$

em que

$$M_{n+1} = \max_{x \in [x_0, x_n]} |f^{(n+1)}(x)|.$$

Demonstração do Teorema 2

Sendo $f^{(n+1)}$ contínua em $[x_0, x_n]$, $|f^{(n+1)}|$ admite um valor máximo M_{n+1} . Consequentemente, pelo Teorema 1

$$\mathcal{E}(x) = \left| \prod_{k=0}^{n} (x - x_k) \frac{f^{(n+1)}(\xi)}{(n+1)!} \right| \le \frac{M_{n+1}}{(n+1)!} \left| \prod_{k=0}^{n} (x - x_k) \right|,$$

pois
$$|f^{(n+1)}(\xi)| \leq M_{n+1}$$
.

Teorema 3 (Majorante do Erro da Interpolação Polinomial)

Considere n + 1 pontos igualmente espaçados

$$x_k = x_0 + kh$$
, $\forall k = 0, 1, \ldots, n$,

e f uma função com derivadas até ordem n+1 contínuas no intervalo $[x_0, x_n]$. Se p_n é o polinômio que interpola f nos pontos x_0, \ldots, x_n , então o erro da interpolação polinomial satisfaz

$$\mathcal{E}_n(x) \leq \frac{M_{n+1}h^{n+1}}{4(n+1)},$$

em que

$$M_{n+1} = \max_{x \in [x_0, x_n]} |f^{(n+1)}(x)|.$$

Suponha que desejamos obter ln(3.7) por interpolação linear conhecendo a seguinte tabela:

Apresente a aproximação para ln(3.7) e uma estimativa para o seu erro.

Suponha que desejamos obter ln(3.7) por interpolação linear conhecendo a seguinte tabela:

Apresente a aproximação para ln(3.7) e uma estimativa para o seu erro.

Resposta: Tomando $x_0 = 3$ e $x_1 = 4$, obtemos

$$p_1(x) = 1.0986 + 0.2877(x - 3).$$

Desse modo, $p_1(3.7) = 1.3000$, enquanto ln(3.7) = 1.3083. O erro da interpolação polinomial é

$$\mathcal{E}_1(x) = |\ln(3.7) - p_1(3.7)| = 0.0083.$$

Pelos Teoremas 2 e 3 encontramos respectivamente

$$\mathcal{E}_1(x) \le 0.0117$$
 e $\mathcal{E}_1(x) \le 0.0139$.

Estimativa para o Erro de Interpolação Polinomial

Se temos apenas uma tabela

Nesse caso, o erro da interpolação polinomial $\mathcal{E}_n(x)$ pode ser estimado aproximando $M_{n+1}/(n+1)!$ pelo maior valor absoluto das diferenças divididas de ordem n+1, ou seja,

$$\mathcal{E}_n(x) pprox \prod_{k=0}^n |x-x_k| \left(egin{matrix} ext{máximo do valor absoluto das} \\ ext{diferenças divididas de ordem } n+1 \end{array}
ight)$$

Considere a tabela

- (a) Aproxime f(0.47) usando um polinômio de grau 2.
- (b) Forneça uma estimativa para o erro de interpolação.

Considere a tabela

- (a) Aproxime f(0.47) usando um polinômio de grau 2.
- (b) Forneça uma estimativa para o erro de interpolação.

Resposta:

(a) Escolhendo $x_0 = 0.4$, $x_1 = 0.52$ e $x_3 = 0.6$, encontramos

$$p_2(x) = 0.27 + (x - 0.4)(0.1667 + (x - 0.52)1.0415).$$

Logo,
$$f(0.47) \approx p_2(0.47) = 0.2780$$
.

(b) O erro de interpolação satisfaz

$$\mathcal{E}_2(0.47) \approx |(0.47 - 0.4)(0.47 - 0.52)(0.47 - 0.6)18.2492|$$

= 8.303×10^{-3} .

A estimativa baseada na diferença divida é fundamentada no teorema:

Teorema 6

$$f[x_0, x_1, \ldots, x_n, x] = \frac{f^{(n+1)}(\xi)}{(n+1)!}, \quad \forall x \in (x_0, x_n) \quad e \quad \xi \in (x_0, x_n).$$

Demonstração do Teorema 6

Seja p_n o único polinômio que interpola f em x_0, x_1, \dots, x_n é

$$p_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + \dots + f[x_0, \dots, x_n](x - x_0) \dots (x - x_{n-1}).$$

Analogamente, a forma de Newton para o polinômio p_{n+1} que interpola f em x_0, \ldots, x_n, x é

$$p_{n+1}(\xi) = f[x_0] + f[x_0, x_1](\xi - x_0) + \dots + f[x_0, \dots, x_n](\xi - x_0) \dots (\xi - x_{n-1}) + \dots + f[x_0, \dots, x_n, x](\xi - x_0) \dots (\xi - x_{n-1})(x - x_n)$$

Observe que

$$p_{n+1}(\xi) = p_n(\xi) + f[x_0, \dots, x_n, x](\xi - x_0) \dots (\xi - x_{n-1})(\xi - x_n)$$

Além disso, como $p_{n+1}(x) = f(x)$, temos

$$f(x) - p_n(\xi) = f[x_0, \dots, x_n, x](x - x_0) \dots (x - x_{n-1})(x - x_n)$$

Do Teorema 1, temos

$$f(x) - p_n(x) = (x - x_0)(x - x_1) \dots (x - x_n) \frac{f^{(n+1)}(\xi)}{(n+1)!},$$

em que $\xi \in (x_0, x_n)$.

Comparando as duas equações, concluímos que

$$f[x_0,\ldots,x_n,x]=\frac{f^{(n+1)}(\xi)}{(n+1)!}.$$

Consideraçõs Finais

Na aula de hoje apresentamos uma fórmula para o erro da interpolação polinomial que depende da derivada $t^{(n+1)}$ da função que estamos aproximando.

Apresentamos também majorantes para o erro de interpolação.

Finalmente, vimos que as diferenças divididas podem ser usadas para estimar o erro quando temos apenas uma tabela de pontos (e não conhecemos a função).