CANS2D モデルパッケージ md_mri

磁気回転不安定

2006. 1. 10.

1 はじめに

このモデルパッケージは、2 次元平面内での磁気回転不安定を解くためのものである。基本的には、Hawley & Balbus (1991) の計算に倣っている。

2 仮定と基礎方程式

流体は非粘性・圧縮性・磁気拡散なし磁気流体とする。計算領域としては、「回転している基準系を局所的に切り出した」ことを想定した 2 次元準デカルト座標(xz 平面)で考える。z 軸が回転軸と平行な方向、y が回転角方向と想定している。 $\partial/\partial y=0$ であるが、速度・磁場とも y 成分も入れた 3 成分を考慮する。この座標系を特徴付けるのは定数 Ω_0 と定数 q_0 とである。解くのは、密度 ρ 、圧力 p、速度 V_x 、 V_y 、 V_z 磁場 B_x 、 B_y 、 B_z についての、遠心力(重力込)と Coriolis 力との効果が入った 2 次元 MHD 方程式

$$\frac{\partial}{\partial t}(\rho) + \frac{\partial}{\partial x}(\rho V_x) + \frac{\partial}{\partial z}(\rho V_z) = 0 \tag{1}$$

$$\frac{\partial}{\partial t}(\rho V_x) + \frac{\partial}{\partial x}\left(\rho V_x^2 + p + \frac{B^2}{8\pi} - \frac{B_r^2}{4\pi}\right) + \frac{\partial}{\partial z}\left(\rho V_x V_z - \frac{B_r B_z}{4\pi}\right) = 2q_0 \Omega_0^2 x \rho + 2\Omega_0 \rho V_y \tag{2}$$

$$\frac{\partial}{\partial t}(\rho V_y) + \frac{\partial}{\partial x}\left(\rho V_x V_y - \frac{B_r B_y}{4\pi}\right) + \frac{\partial}{\partial z}\left(\rho V_z V_y - \frac{B_z B_y}{4\pi}\right) = -2\Omega_0 \rho V_x \tag{3}$$

$$\frac{\partial}{\partial t}(\rho V_z) + \frac{\partial}{\partial x}\left(\rho V_x V_z - \frac{B_r B_z}{4\pi}\right) + \frac{\partial}{\partial z}\left(\rho V_z^2 + p + \frac{B^2}{8\pi} - \frac{B_z^2}{4\pi}\right) = 0 \tag{4}$$

$$\frac{\partial}{\partial t}(B_x) - \frac{\partial}{\partial z}(E_y) = 0 \tag{5}$$

$$\frac{\partial}{\partial t}(B_z) + \frac{\partial}{\partial x}(E_y) = 0 \tag{6}$$

$$\frac{\partial}{\partial t}(B_y) - \frac{\partial}{\partial x}(E_z) + \frac{\partial}{\partial z}(E_x) = 0 \tag{7}$$

$$\frac{\partial}{\partial t} \left(\frac{p}{\gamma - 1} + \frac{1}{2} \rho V^2 + \frac{B^2}{8\pi} \right) + \frac{\partial}{\partial x} \left((\frac{\gamma}{\gamma - 1} p + \frac{1}{2} \rho V^2) V_x + \frac{B_z E_y - B_y E_z}{4\pi} \right)
+ \frac{\partial}{\partial z} \left((\frac{\gamma}{\gamma - 1} p + \frac{1}{2} \rho V^2) V_z + \frac{B_y E_x - B_x E_y}{4\pi} \right)
= 2q_0 \Omega_0^2 x \rho V_x$$
(8)

$$E_x = -V_y B_z + V_z B_y, \quad E_y = -V_z B_x + V_x B_z, \quad E_z = -V_x B_y + V_y B_x$$
 (9)

である。ここで、 γ は比熱比。

3 無次元化

4 パラメータ・初期条件・計算条件・境界条件

計算パラメータは以下の通り(表3参照)。

パラメータ	値	コード中での変数名	設定サブルーチン名
グリッド数 x 方向	68	ix	main
グリッド数 z 方向	68	jx	main
マージン	4	margin	main
終了時刻	21000	tend	main
出力時間間隔	1000	dtout	main
CFL 数	0.4	safety	main
進行時刻下限値	10^{-10}	dtmin	main

表 1: おもな数値計算パラメータ。マージンとは、境界の値を格納するための配列の「そで」部分の幅のこと。進行時刻下限値とは、各計算ステップの Δt の値がこの値を下回ったときに計算を強制終了するための臨界値。

5 参考文献

Hawley, J. F., Balbus, S. A., 1991, ApJ, **376**, 223-233.