	Assumptions & Comments	Hypothesis Test	Confidence Interval
One Mean	 Independent observations Sample from normal distribution Variance unknown Large or small sample 	$t^* = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \sim t_{n-1}$	$\overline{x} \pm t_{n-1;\alpha/2} \frac{s}{\sqrt{n}}$
One Mean	 iid sample Variance unknown Large sample (CLT applies) Approximate results Note: Use of z requires CLT and a couple of other advanced stats theorems. R uses t with large and ugly df. 	$z^* = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \sim N(0, 1) \text{OR}$ $t^* = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \sim t_{n-1}$	$\overline{x} \pm z_{\alpha/2} \frac{s}{\sqrt{n}}$ OR $\overline{x} \pm t_{n-1;\alpha/2} \frac{s}{\sqrt{n}}$
One Proportion	 Independent observations P(S) constant for all trials Large sample; np>5 & n(1-p)>5 	$z^* = \frac{\hat{p} - p_0}{\sqrt{p_0 q_0 / n}} \sim N(0, 1)$	$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
One Variance	 Independent observations Sample from normal distribution Variance unknown Large or small sample 	$\chi^{2*} = \frac{(n-1)s^{2}}{\sigma_{0}^{2}} \sim \chi_{n-1}^{2}$	$\left(\frac{(n-1)s^2}{\chi^2_{n-1;\alpha/2}}, \frac{(n-1)s^2}{\chi^2_{n-1;1-\alpha/2}}\right)$

	Assumptions & Comments	Hypothesis Test	Confidence Interval
Two Means	 Independent observations Sample from two normal distributions Variances unknown and equal Large or small sample 	$t* = \frac{\overline{x}_1 - \overline{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$ $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$	$\overline{x}_1 - \overline{x}_2 \pm t_{n_1 + n_2 - 2; \alpha/2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
Two Means	 iid samples from each population All observations independent Variances both unknown (not assumed equal) Large samples (CLT applies) Approximate results Note: Use of z requires CLT and a couple of other advanced stats theorems. R uses t with large and ugly df. 	$z^* = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{s_1^2/n_1 + s_2^2/n_2}} \sim N(0,1) \text{ OR}$ $t^* = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{s_1^2/n_1 + s_2^2/n_2}} \sim t_{df}$	$\overline{x}_1 - \overline{x}_2 \pm z_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ OR $\overline{x}_1 - \overline{x}_2 \pm t_{df;\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
Two Means (paired)	 Paired observations; positive correlation between x and y Pairs independent of each other Difference between pairs have normal distribution Large or small samples 	$t^* = \frac{\overline{d}}{s_d / \sqrt{n}} \sim t_{n-1}$ $d = x - y$ $n \text{ pairs of observations}$	$\overline{d} \pm t_{n-1;\alpha/2} \frac{s_d}{\sqrt{n}}$
Two Proportions	 Independent observations P(S) constant for all trials within each group Large samples; np>5 & n(1-p)>5 	$z* = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})(\frac{1}{n_1} + \frac{1}{n_2})}}$ $\hat{p} = \frac{n_1\hat{p}_1 + n_2\hat{p}_2}{n_1 + n_2}$	$\hat{p}_1 - \hat{p}_2 \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$
Two Variances	 Independent observations Samples from two normal distribution Variances both unknown Large or small sample 	$F* = \frac{s_1^2}{s_2^2} \sim F_{n_1 - 1, n_2 - 1}$ $s_1^2 > s_2^2$	$\left(\frac{s_1^2}{s_2^2 F_U}, \frac{s_1^2}{s_2^2 F_L}\right)$