Lecture 27: Nov. 2

Last time

• Common Continuous Distributions

Today

• Families of Distributions

Exponential Families A family of pdfs or pmfs with vector parameter θ is called an *exponential family* if it can be expressed as

$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta})exp\left(\sum_{j=1}^{k} w_j(\boldsymbol{\theta})t_j(x)\right), \quad x \in S \subset \mathbb{R}$$

where S is not defined in terms of θ , h(x), $c(\theta) \ge 0$ and the functions are just functions of the parameters specified; i.e. h is free of θ , $c(\theta)$ is free of x, etc...

Examples:

• One-dimensional: Exponential, Poisson

• Two-dimensional: Gaussian

Exponential family parameterizations are unique except for multiplying constant factors.

Example: Gaussian Let $X \sim N(\mu, \sigma^2)$.

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \exp\left(-\frac{x^2}{2\sigma^2} + \frac{\mu x}{\sigma^2}\right)$$

Thus

$$h(x) = \frac{1}{\sqrt{2\pi}} \quad c(\mu, \sigma) = \frac{1}{\sigma} \exp\left(-\frac{\mu^2}{2\sigma^2}\right)$$

$$w_1(\mu, \sigma) = -\frac{1}{2\sigma^2} \quad w_2(\mu, \sigma) = \frac{\mu}{\sigma^2}$$

$$t_1(x) = x^2 \quad t_2(x) = x$$

The parameter space is $(\mu, \sigma^2) \in \mathbb{R} \times (0, \infty)$.

Example: Binomial Let $X \sim Binomial(n, p), \ 0$

$$f(x|p) = \binom{n}{x} p^x (1-p)^{n-x} = \binom{n}{x} (1-p)^n \left[\frac{p}{1-p} \right]^x$$
$$= \binom{n}{x} (1-p)^n \exp\left[\log\left(\frac{p}{1-p}\right)x\right]$$

Thus,

$$h(x) = \binom{n}{x}, \quad x = 0, \dots, n \quad w_1(p) = \log\left(\frac{p}{1-p}\right)$$

 $c(p) = (1-p)^n, 0$

Note that this works when p is considered the parameter, while n is fixed. Also, p cannot be 0 or 1. Otherwise, the range changes.

More examples The following distributions below to Exponential families:

- \bullet Continuous: exponential, Gaussian, gamma, beta, χ^2
- \bullet Discrete: Poisson, geometric, binomial (fixed # trials), negative binomial (fixed # successes)

The following distributions