

Central Heating Plant Modernization Study for the Defense Personnel Support Center

by Martin J. Savoie Russ Price Spiro J. Deligiannis Travis L. McCammon

This report documents a study to determine alternatives for modernizing the central heating plant at the Defense Personnel Support Center (DPSC), Philadelphia, PA. The central heating plant contains five boilers; four are 50 years old and one is 14 years old. The age of this equipment warranted an investigation of alternatives for providing thermal energy to the installation. These alternatives include maintaining the status quo, upgrading the existing system, installing new boilers, cogeneration, and absorption chilling. Heating and cooling loads were analyzed using computer simulations. Based on the simulations and design temperatures, life cycle costs were developed for each alternative.

19950424 046

THE CLUTCH HERRICHED &

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR

USER EVALUATION OF REPORT

REFERENCE: USACERL Technical Report FE-94/25, Central Heating Plant Modernization Study for the Defense Personnel Support Center

Please take a few minutes to answer the questions below, tear out this sheet, and return it to USACERL. As user of this report, your customer comments will provide USACERL with information essential for improving future reports.

1. repo	Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which ort will be used.)
2. prod	How, specifically, is the report being used? (Information source, design data or procedure, management cedure, source of ideas, etc.)
3.	Has the information in this report led to any quantitative savings as far as manhours/contract dollars saved, rating costs avoided, efficiencies achieved, etc.? If so, please elaborate.
—	rating costs avoided, efficiencies achieved, etc If so, prease elacotate.
4.	What is your evaluation of this report in the following areas?
	a. Presentation:
	b. Completeness:
	c. Easy to Understand:
	d. Easy to Implement:
	e. Adequate Reference Material:
	f. Relates to Area of Interest:
	g. Did the report meet your expectations?
	h. Does the report raise unanswered questions?

•	what you think should be changed to make this report and future reports eds, more usable, improve readability, etc.)
5. If you would like to be contacted b discuss the topic, please fill in the follow. Name:	y the personnel who prepared this report to raise specific questions or wing information.
Telephone Number:	
Organization Address:	
6. Please mail the completed form to:	
Denartment of	f the Army

Department of the Army
CONSTRUCTION ENGINEERING RESEARCH LABORATORIES
ATTN: CECER-IMT
P.O. Box 9005
Champaign, IL 61826-9005

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

	n, va 22202-4302, and to the Office of Mariag		TO COVERED		
AGENCY USE ONLY (Leave Blank)	2. REPORT DATE September 1994	3. REPORT TYPE AND DAT Final			
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS		
Central Heating Plant Modernization Study for the Defense Personnel Support Center			MIPR		
,			NAPEN-MM-92001, dated 4 March 1992		
6. AUTHOR(S)					
	iro J. Deligiannis, Travis L. McCa	mmon			
•		İ			
A AFPEANING A SALVEN	(C) AND ADDDESS(FS)		8. PERFORMING ORGANIZATION		
7. PERFORMING ORGANIZATION NAME		CED I.)	REPORT NUMBER		
	ering Research Laboratories (USA	(CERL)			
P.O. Box 9005		J	FE-94/25		
Champaign, IL 61826-9005		J			
			10. SPONSORING / MONITORING		
9. SPONSORING / MONITORING AGENC			10. SPONSORING / MONITORING AGENCY REPORT NUMBER		
Philadelphia District, U.S. Army	Corps of Engineers				
ATTN: CENAP-EN-MM					
100 Penn Sq. East Philadelphia, PA 19107-3390					
-					
11. SUPPLEMENTARY NOTES			1 0		
Copies are available from the Na	ational Technical Information Serv	vice, 5285 Port Royal Roa	a, Springtield, VA 22161.		
12a, DISTRIBUTION / AVAILABILITY STA	TEMENT		12b. DISTRIBUTION CODE		
iza, diotribution / AVAILABILITY STA	* 1 - IVIL-14 I				
Approved for public release; dis	tribution is unlimited.		1		
rapproved for public follows, distribution is diminited.					
40 ADOTDAGT (14			1		
13. ABSTRACT (Maximum 200 words)	. dakamatara sterio de la dela del	niging the control beath	nlant at the Defence Descennel		
I his report documents a study to	o determine alternatives for moder	nt contains five beilers	plant at the Defense refsollier		
Support Center (DPSC), Philade	elphia, PA. The central heating pla uipment warranted an investigation	an comains rive bollers; IC	ing thermal energy to the		
installation These alternatives in	nclude maintaining the status quo,	upgrading the existing sys	stem, installing new boilers.		
cogeneration and absorption obj	illing. Heating and cooling loads v	vere analyzed using complete	uter simulations. Based on the		
simulations and design temperat	tures, life cycle costs were develor	ped for each alternative.			
		8			
			en e		
		<u> </u>	¥		
14. SUBJECT TERMS			15. NUMBER OF PAGES		
Central Heating Plants	steam distribution s	system	230		
Defense Personnel Support Cen	nter cost effectiveness		16. PRICE CODE		
life cycle costs			17(0)		
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFIC OF ABSTRACT	ATION 20. LIMITATION OF ABSTRACT		
OF REPORT Unclassified	Unclassified	Unclassified	SAR		
Unclassified NSN 7540-01-280-5500	Uniciassificu		Standard Form 298 (Rev. 2-89)		
11011 1070 01 200 0000			D		

Foreword

This research was performed for Philadelphia District, U.S. Army Corps of Engineers (CENAP) under Military Interdepartmental Purchase Request (MIPR) No. NAPEN-MM-92001, dated 4 March 1992. The technical monitor was Roger Souser, CENAP-EN-MM.

The work was conducted by the Energy and Utility Systems Division (FE) of the Infrastructure Laboratory (FL), U.S. Army Construction Engineering Research Laboratories (USACERL). The USACERL principal investigator was Martin J. Savoie. Russ Price is a member of Stanley Consultants, Inc., Muscatine, Iowa. Dr. David M. Joncich is Acting Chief, CECER-FE, and Alan Moore is Acting Chief, CECER-FL. The USACERL technical editor was Thomas E. Rice, Information Management Office.

LTC David J. Rehbein is Commander and Acting Director of USACERL, and Dr. Michael J. O'Connor is Technical Director.

Contents

SF 29	98	. 1
Fore	word	2
List	of Tables and Figures	. 5
1	Introduction	. 9
	Background	
	Objective	. 9
	Approach	. 9
2	Existing Steam Supply Systems	11
	Central Heating Plant	
	Steam Distribution System	12
3	Thermal Energy Supply and Consumption	
	Cost of Steam	15
	Central Heating Plant Steam Load	15
	Steam End-Use	16
	Heating Load Versus HDD Model	20
4	Electrical Power Consumption	
	Electrical Costs	
	Purchased Electricity	
	Electricity End-Use	
	Cooling Load Versus CDD Model	32
5	Projected Energy Consumption	40
6	Air Quality Regulations	
	Federal Regulatory Requirements	
	State and Local Regulatory Requirements	
	Summary	47
7	Study Alternatives	
	Status Quo Alternative	
	General Improvements and Upkeep	
	Alternative 1 - Two New Gas/Oil Boilers	
	Alternative 2. Two New Gas/Oil Boilers and Cogeneration	- 50

	Alternative 3 - Two New Gas/Oil Boilers, Cogeneration, and Absorption Chiller	50
	Alternative 4 - Refurbish Existing Plant, Summer Boiler	51
	Alternative 5 - Refurbish Existing Plant, Summer Boiler, Cogeneration	51
	Alternative 6 - Refurbish Existing Plant, Two New Spark Gas Engine	
	Generators, and One New Absorption Chiller	52
	Summary of Alternatives and Recommendations	52
	Storage Cooling System Analysis	52
8	Selected Alternative Description	
	Description of System	
	Description of Operation	64
	Description of Costs	65
	Project Funding Documents	66
9	Conclusions	78
Appe	endix A: Description of Buildings and Their Uses	81
Appe	endix B: SHDP Model and Results	87
Appe	endix C: BLAST Monthly Building Heating Loads	99
Appe	endix D: Chiller Equipment	21
Appe	endix E: BLAST Monthly Building Cooling Loads	25
Appe	endix F: Life Cycle Cost Analyses	35
Appe	endix G: STOFEAS Analysis 1	89
Appe	endix H: Monthly Electric Load Curves for Alternative 2, Option 6	97
Appe	endix I: DD1391 Input and Project Development Brochure Forms	205
Distri	ibution	

List of Tables and Figures

Ta	L	-
124	T 7 I	_

1	Boilers No. 1 and 2 design data	13
2	Boilers No. 3 and 4 design data	13
3	Boiler No. 5 design data	13
4	CHP average monthly steam loads for 1991	22
5	CHP average monthly fuel consumption for 1991	22
6	Hot water heat exchangers	24
7	Building categories and energy consumption equations	25
8	Estimated monthly building heating loads for 1991	25
9	SHDP model assumptions	26
10	Unconstrained distribution results	27
11	Distribution loss estimates for 1991	28
12	Monthly average HDDs for 1991	29
13	Electric rate schedule	34
14	Chillers over 100-ton capacity	36
15	Monthly average CDD	37
16	Normal heating load projections	42
17	FY90 monthly electric consumption data	44
18	Status quo alternative LCC summary	55
19	Initial central heating plant improvements	55

20	Plant upkeep after implementation 5	56
21	Alternative 1 LCC summary	57
22	Alternative 1, Option 1 LCC summary	57
23	Alternative 2, Option 1 LCC summary	58
24	Alternative 2, Option 2 LCC summary	58
25	Alternative 2, Option 3 LCC summary	58
26	Alternative 2, Option 4 LCC summary	59
27	Alternative 2, Option 5 LCC summary	59
28	Alternative 2, Option 6 LCC summary	59
29	Alternative 3, Option 1 LCC summary	60
30	Alternative 3, Option 2 LCC summary	60
31	Alternative 4 LCC summary	61
32	Alternative 5 LCC summary	61
33	Alternative 6 LCC summary	61
34	LCC summary of alternatives/options 6	62
35	Plant upkeep after initial construction	69
36	Estimated annual energy use	73
37	Alternative 2, Option 6 LCC summary	74
38	Estimated annual energy costs	74
igures		
1	Steam distribution system	14
2	Percent boiler water makeup 1	14

3	Total boiler water makeup	14
4	Recorded steam flow for 1991	21
5	Monthly estimated steam flow for 1986-1991	23
6	Recorded and estimated steam flow for 1991	23
7	Estimated building loads and steam supply	26
8	Heat load with losses and steam supply profiles	28
9	Heat loads vs. HDD regressions	29
10	Major electric power charges for FY90	34
11	1991 daily electric consumption	35
12	1991 daily demand peaks	35
13	Half-hour demand profiles	36
14	Workdays with CDD	38
15	Monthly CDD and kW	38
16	Projection of monthly kW	39
17	Projection of monthly kWh	39
18	Tentative facility changes	41
19	Projected load profiles	43
20	Solar Centaur Type H gas turbine	67
21	Orthographic of gas turbine	67
22	Heat recovery steam generator (HRSG)	68
23	CHP boiler room layout	68
24	Winter weekend demand	70

25	Summer weekend demand	70
26	Winter weekday demand	71
27	Summer weekday demand	71
28	Winter load duration curve	72
29	Summer load duration curve	72
30	Monthly steam supply	73
31	Status quo vs. Alternative 2, Option 6 electrical costs	75
32	Status quo vs. Alternative 2, Option 6 fuel costs	75
33	Status quo vs. Alternative 2, Option 6 total energy costs	76
34	Initial project capital investments	77

1 Introduction

Background

This report documents results of a study to investigate alternatives for modernizing the central heating plant (CHP) at the Defense Personnel Support Center (DPSC), Philadelphia, PA. The CHP contains five boilers; four are 50 years old and one is 14 years old. The age of this equipment warranted an investigation of alternatives for providing thermal energy to the installation.

DPSC is responsible for the massive task of purchasing food, clothing, textiles, medicine, and medical equipment for the U.S. military. The organization also services the District of Columbia public school system, Veterans' Administration hospitals, and Federal prisons. A unique feature of the installation is its garment factory, which employs about 1000 workers whose task is to produce special-issue military uniforms and apparel.

DPSC has begun investigating modernization opportunities for its CHP, and because of increasing electrical costs cogeneration has been considered a potential alternative for modernizing the plant. The U.S. Army Corps of Engineers Philadelphia District, which is in charge of the modernization project, requested the U.S. Army Construction Engineering Research Laboratories (USACERL) to perform a study to determine the most viable options available to improve the energy supply situation.

Objective

The objective of this study was to identify the most cost-effective technologies for meeting current and future thermal and electrical energy needs at DPSC.

Approach

Information available from past studies and operations records was analyzed and verified to establish baseline conditions. A visual inspection was made of central heating plant equipment and the steam distribution system to assess baseline operating conditions and problem areas.

The next task analyzed the energy use patterns of DPSC. This analysis included current thermal and electrical energy demand, heating load, and usage patterns. This task also projected future energy use for the facility. A variety of prediction methods were used depending on the specific energy pattern being investigated.

Based on the energy use pattern analysis, potential thermal energy supply options were identified. These options were evaluated in terms of their cost, efficiency, and reliability. The evaluation also considered regionally available and appropriate fuel supplies. Potential electrical energy supply options also were identified based on the energy use pattern analysis. Like the thermal energy supply options, electrical energy will be evaluated according to cost and reliability.

Environmental factors including asbestos removal, demolition material disposal, and air pollution control requirements were evaluated and included in the cost analysis of each alternative.

Based on the findings of the above tasks, life-cycle cost (LCC) analyses were developed for maintaining the status quo, upgrading the existing system, installing new boilers, cogeneration, and absorption chilling. Additional options within these alternatives will be considered to further improve the life cycle costs.

USACERL TR FE-94/25

2 Existing Steam Supply Systems

This section describes the existing central energy plant equipment and steam distribution system.

Central Heating Plant

The DPSC central heating plant, located in Building No. 8, consists of five steam boilers. Boilers 1 to 4 from east to west are Edge Moore Iron Works water tube boilers that were originally designed to burn No. 6 oil. They were installed in 1941-42, each having a current rating of 100,000 lb/hr steam at 180 psi, 435 °F. Boilers No. 1 and 2 were converted in 1944 to burn coal using dump grate technology, but operated on coal for only a few years. They have not operated for at least 25 years, and the coalfeed systems have been disconnected from the boilers. Design data for Boilers 1 and 2 are summarized in Table 1*

Boilers No. 3 and 4 were converted to dual fuel (natural gas and No. 6 oil) and are used for heating all buildings and for process steam during the heating season. Because only one boiler is required to supply the complex, the second boiler is operated on a standby basis. Both boilers were retubed in February 1966 and the superheaters and crossovers were replaced in June 1983. Both units have airheaters and blowdown heat exchangers, but neither have economizers or oxygen trim control. These boilers appear to be in acceptable condition considering that the last retube was 26 years ago and that they were operated alternately most of this time. The fireside inspection showed no tube warping, blistering, pitting, or soot accumulation. The drums also appeared to be in good condition.

Boilers No. 3 and 4 are equipped with an external induced air blower (41,000 CFM) and an external forced air blower (23,600 CFM). Additional boiler support equipment includes four turbine-driven feed water pumps (two are steam-powered rated at 250 GPM each and two are steam-electric powered rated at 200 GPM each) and three electric motor-driven condensate return pumps rated at 50 GPM each. Also, both units have an air heater and a blowdown heat exchanger, but neither has an economizer or oxygen trim. Table 2 summarizes design data for Boilers No. 3 and 4.

^{*}Tables and figures are included at the end of their associated chapters.

12 USACERL TR FE-94/25

Boiler No. 5 is a packaged dual fuel boiler installed in 1977. It has a rating of 30,000 lb/hr at 180 psi, 550 °F. This boiler has an economizer but the oxygen trim control is not operating. Boiler No. 5 typically operates in the summer to provide steam for process loads, which include heat exchangers for domestic hot water and the factory sponging plant. The CHP feedwater pumps also are driven by 180 psi steam. The boiler heating surface is 2,405 sq ft and has a 523 sq ft waterwall. Table 3 summarizes the design data for Boilers No. 5.

Steam Distribution System

The CHP provides steam for heating and process loads to 15 buildings via steam lines that measure about 33,500 linear feet. Figure 1 shows the main distribution system pipes (in bold). Because the lines run primarily through the building ceilings and utility tunnels, the heat losses will be minimal. A visual inspection of those pipes located in the ceilings was limited; however, exposed pipes were well insulated and no leaks were found.

The condensate return system also appears to be in good condition based on a visual inspection and the amount of condensate returned to the CHP. There is a small constant loss of condensate at the fuel oil pump house from steam used to heat the oil. Figures 2 and 3 show the percent boiler makeup water and the total makeup water used, respectively. Over the last 3 years, the percentage of makeup water varied from about 20 percent in the heating season to 45 percent in the summer months. The higher percentage in the summer is caused by a fairly constant condensate loss and the lower amount of steam produced. The amount of makeup used in the summer over the last 3 years was about 2.8 million lbs, and the amount in the winter ranged from 3.5 million lbs to 6 million lbs.

Table 1. Boilers No. 1 and 2 design data.

Manufacturer	Edge Moore
Year Built	1941 (converted 1944)
Туре	Stoker fired (originally oil fired)
Capacity	75,000 lb/hr, 275 psig allowable pressure
Boiler Size	2,100 HS (coal fired)

Table 2. Boilers No. 3 and 4 design data.

Manufacturer	Edge Moore
Year Built	1941
Serial Number	#3 - NB 3337; #4 - NB 3336
Boiler Size	2,100 HS; 1,051 HP
Fuel	No. 6 oil and natural gas
Capacity	100,000 lb/hr, 160-180 psig normal operating, 275 psig allowable pressure
Note:	There are four 4-inch safety valves set at 205, 215, 218, and 220 psig, respectively.

Table 3. Boiler No. 5 design data.

Manufacturer	Cleaver Brooks
Year Built	1976
Serial Number	WL 2633
Model Number	WT-400X-BR-3 and D-60-S
Firing Rate	40,703 MBtu/hr
Fuel	Natural gas at 55 in. w.c.; No. 6 oil at 100 psi
Pressure	260 psig; 30,000 lb/hr; 200 psi operating; 260 psig design
Note:	The feedwater control valve is Bailey Meter Co., Type VBH 11000A, size1-1/2 x 1-1/2.

Figure 1. Steam distribution system.

Figure 2. Percent boiler water makeup.

Figure 3. Total boiler water makeup.

3 Thermal Energy Supply and Consumption

This section describes current thermal energy supply and use. Central heating plant steam output and fuel use were analyzed for trends, and building heating loads and distribution systems losses were modeled. This section also develops correlations between thermal energy use and heating degree days for use in load prediction.

Cost of Steam

An estimate for the cost of steam was developed from three major cost elements: fuel, labor, and other operation and maintenance (O&M) costs. Other O&M costs such as utilities, minor repairs, and water treatment chemicals were estimated from the 1991 Facilities Engineer Annual Work Plan, DPSC Form 2547-1. Annual fuel costs were about \$1,155,600 (natural gas cost is about \$4.95/MBtu), labor costs were about \$240,300, and other O&M costs were about \$206,500. The total cost of producing steam was about \$1,993,400 per year. Dividing this cost by the amount of steam produced (172,703 lbs) gives a cost of \$11.5/K lb steam or \$9.61/MBtu. A good cost for steam is about \$6/MBtu, although \$10/MBtu is not unusual for DOD.

Central Heating Plant Steam Load

CHP personnel collected system data on DA Form 3995, Daily Boiler Plant Operating Log, which contains hourly and shift information on many important operating parameters. This information is summarized on a monthly basis in a record book maintained by the plant foreman. The hourly steam flow readings were the primary source for estimating peak steam usage because of the detail available. Monthly natural gas consumption was also used to provide a cross-check of the steam flow readings.

The baseline year selected for thermal energy consumption was 1991 because it was the most current period with complete and available records. No unusual activities were identified that might skew projections of energy consumption. Figure 4 shows the hourly steam demand for 1991, with the highest demand recorded about 53,000 lb/hr in both December and February. The summer demand averages about

7000 lbs/hr with peaks of about 10,000 lbs/hr. Table 4 shows the total steam flow and average hourly steam flow on a monthly basis for 1991.

The CHP also records the natural gas flow and No. 6 oil flow once during each operating shift; this is summarized in a monthly log book. Table 5 shows the monthly fuel input for 1991. To compare the natural gas input with steam demand, the natural gas readings were converted to lbs/hr steam by applying the following assumptions: natural gas heating value at 1000 Btu/cf, enthalpy of steam at 1197 Btu/lb, and boiler efficiency at 75 percent. Figure 5 represents estimated monthly averages for the last 6 years, showing little change in steam production for those years. The figure also shows a problem with the December 1991 fuel record, which is obviously incorrect, probably because of a natural gas outage and incorrect reading of the gas or fuel oil meters.

Figure 6 compares the recorded steam flow and natural gas estimate for 1991 to provide a comparison of the recorded steam flow and the steam flow estimated from the fuel input. The steam demand estimated from fuel input was slightly lower than the recorded steam flow, except for the month of December, which had a problem with the recorded fuel consumption. This indicates the steam flow recorder is quite close to calibration. The month of December 1991 was replaced with December 1990 for the rest of this analysis.

Steam End-Use

The CHP output is a good indicator of current thermal energy use; however, individual building and process loads must be estimated if substantial facility changes are expected so that they can be removed from the CHP load profile. DPSC has no significant steam process or cooling loads. A potentially large load from a preshrinking (sponging) plant in the factory was discontinued in 1990 with no plans to replace it. There are a few small process steam demands from hot water heaters (listed in Table 6) and from 136 steam presses at the factory.

There are currently no operating steam submeters to measure building heating or process loads. The factory had steam meters, but they have not been used since the preshrinking plant ceased operations. End-user loads had to be estimated using the modeling techniques HEATLOAD and Building Loads Analysis and System Thermodynamics (BLAST). This study used both these techniques to add another level of confidence to the estimations.

HEATLOAD

HEATLOAD, developed by USACERL, provides a simple method of calculating building heat requirements. Other computer programs such as BLAST or DOE2 can provide more accurate analysis, but require much more information to develop a heat load estimate. Experience with HEATLOAD has shown it to be quite accurate for estimating installation-wide building heat requirements for central energy plant alternatives.

HEATLOAD is based on a series of linear regressions developed from heating use measurements at typical facilities on several Army installations. The facility categories and regressions are listed in Table 7. Each building type has a corresponding daily heating energy consumption equation in the form of E_h = a_1 + $(b_1$ x HDD $_d)$, where a_1 and b_1 are regression parameters. The symbol E_h is the daily heating energy consumption (Btu/sq ft/day) and HDD $_d$ is the daily heating degree day. The regression parameter a_1 is a constant that represents energy usage that occurs for zero HDD and reflects nonheating loads such as hot water and cooking. The regression parameter b_1 is the heating load parameter. Building categories and area (sq ft) are obtained from DPSC Master Planning files.

The climatological data required for HEATLOAD, such as the historical average HHD and the design temperature, are obtained from the Army technical manual *Engineering Weather Data* (TM 5-785, 1978) or directly from the U.S. Air Force Environmental Technical Applications Center (ETAC) at Scott Air Force Base, IL. With this information, HEATLOAD will calculate the peak hourly heating load, average monthly loads, maximum monthly loads, and total annual heating load.

BLAST

The BLAST program, also developed by USACERL, is a comprehensive program for predicting energy consumption and energy system performance in buildings. BLAST uses rigorous and detailed algorithms to compute loads, to simulate fan systems, and to simulate heating and chiller systems. Because this study emphasized using a central heating plant and not individual building heating systems, only the load simulation portion of the program was used. The load simulation performs a complete radiative, convective, and conductive heat balance for each zone surface and a heat balance on room air. This heat balance includes transmission load, solar loads, internal heat gains, infiltration loads, and the temperature control strategy used to maintain the space temperature. The BLAST program contains many supporting data libraries, including Schedules, Locations, Design Days, Controls, Materials, Walls, Roofs, Floors, Doors, Windows, Passive Controls, and Weather.

Because this was a conceptual study, the BLAST analysis took advantage of the many defaults available in the BLAST Libraries. Additional site-specific information was gathered over a four-day site visit. The primary site-specific inputs to BLAST were building orientation, interior temperature, number of personnel, lighting, number of computers, number of floors, floor area, window area, and roof area.

Heating Load Estimates

Table 8 shows the total monthly building heat loads estimated by HEATLOAD and BLAST. The individual building loads were estimated based on 1991 heating degree days and summed for each month. These loads are compared graphically in Figure 7 with the CHP output based on 75 percent of fuel consumption and on the recorded steam flow. It is important to note that neither HEATLOAD nor BLAST account for distribution losses. Also, HEATLOAD estimates include domestic hot water use, whereas BLAST does not. Distribution losses are estimated in the following section.

Distribution System Losses

A steam distribution system typically consists of pipes, regulators, valves, traps, and vaults. Steam enters the system at the steam plant, passes through pipes, vaults, and regulators, and is delivered to the buildings. The steam loses heat through pipe walls by conduction. As the steam passes through the pipes, regulators, and valves, steam pressure drops. Condensate formed in the pipes is removed from the system through steam traps and a condensate piping system. The amount of lost energy from the steam distribution system can be substantial.

One way of estimating the distribution losses is to look at the lowest hourly steam flow during the summer months. This technique works only if there are no substantial summer steam loads. Figure 4 shows the lowest steam demand to be about 3000 lbs steam/hr, indicating the distribution losses are about 3000 lbs steam/hr (3.6 MBtu/hr). Determining the lowest summer load by analyzing steam load data is a good method for estimating distribution losses, but is not a rigorous method. To better quantify these losses, this study used a computer model called the Steam Heat Distribution Program (SHDP) to analyze distribution system losses.

SHDP Analysis. SHDP is a pressure-flow thermal efficiency computer program for modeling steam district heating systems. This program has several capabilities, including (1) design and economic evaluation of manhole renovation and modifications or additions to existing distribution systems, and (2) economic evaluation of operating at lower pressures and improved maintenance of steam traps. In this study, SHDP was used primarily to estimate distribution losses.

USACERL TR FE-94/25

In order to use SHDP, the entire DPSC steam distribution system was mapped. As discussed in Chapter 2, Figure 1 shows the distribution map with the general location of buildings on the distribution system.

SHDP is designed to estimate the total heat load to the heating plant with a breakdown of the distribution losses. This requires entering distribution line nodes, line diameters and lengths, CHP supply pressure, and individual building loads. Nodes are locations of pipe size changes, pressure reducing valves, and thermal loads (typically buildings). Pipe diameters and lengths were obtained from blueprints of the DPSC distribution system. As described in the previous section, the thermal loads for each building were estimated using the HEATLOAD program. Table 9 lists the basic assumptions that were made in creating the distribution model for DPSC.

The SHDP model was run using unconstrained pressure throughout the system to determine if adequate pressure is available to each building. The results indicated that the boiler outlet pressure is 180 psi and that Building 30 would experience the lowest pressure in the system at 158 psi. This analysis indicates that the distribution system can easily provide the required pressure at all buildings. It also indicates that absorption chillers could be located anywhere in the distribution system. Table 10 lists the unconstrained pressures and steam flows for each building.

For the design day of 14 °F, SHDP predicts that the total steam to all loads will be 57,667 lbs/hr or 62.3 Mbtu/hr, and the total plant output required will be 59,465 lbs/hr or 71.2 MBtu/hr. The total thermal system losses will be 2.27 MBtu/hr for this design temperature.

The distribution losses estimated by SHDP are shown in Table 11. The building heat loads were set to zero. The distribution loss in the summer is about 2 MBtu/hr, fairly close to the 3.6 MBtu/hr rough estimate by inspection of the hourly steam logs. These losses were added to the HEATLOAD monthly estimates to obtain a total monthly steam demand on the CHP. For BLAST, the distribution losses and an average of 8.5 MBtu/hr for process loads were added to the monthly estimates to obtain a total monthly steam demand on the CHP.

Figure 8 compares the CHP steam load profiles based on 75 percent fuel input and on recorded steam flow and the HEATLOAD and BLAST monthly load profiles. The HEATLOAD profile compares most favorably to the CHP steam load profiles.

Heating Load Versus HDD Model

Heating loads are typically closely related to the outside temperature or heating degree day (HDD). However, a single year is not a good prediction of the steam demand for the 25-year period required for life cycle cost analysis of alternatives, unless it is close to the normal HDD for the region. A correlation developed between steam demand and HDD for 1 year can be used to project the steam demand for the normal HDD.

Linear regressions were performed on the monthly load profiles in Figure 8 and the corresponding monthly HDD. The monthly HDDs for the study period obtained from ETAC are shown in Table 12. The results are shown graphically in Figure 9, and indicate that the HEATLOAD regression provides a better prediction than BLAST; therefore, the HEATLOAD regression will be used to model projected steam requirements for the modernization alternatives.

Figure 4. Recorded steam flow for 1991.

Table 4. CHP average monthly steam loads for 1991.

Month	Total Steam Flow (K lbs)	Average Steam Flow (lbs/hr)	Total Average Steam Flow (MBtu)	Steam Flow (MBtu/hr)
Jan	28,472	38,269	34,081	45.8
Feb	22,834	33,979	27,332	40.5
Mar	22,255	29,913	26,639	35.7
Apr	10,977	15,246	13,139	18.2
May	5,709	7,673	6,834	9.1
Jun	6,149	8,540	7,340	10.2
Jul	5,557	7,469	6,652	8.9
Aug	4,500	6,048	5,387	7.2
Sep	4,468	6,483	5,348	7.7
Oct	8,172	10,984	9,782	13.1
Nov	23,347	32,426	27,946	38.7
Dec	25,499	34,273	30,522	40.9

Table 5. CHP average monthly fuel consumption for 1991.

Month	Total (MBtu)	Average (MBtu/hr)
Jan	38,360	51.6
Feb	30,712	45.7
Mar	29,903	40.2
Apr	14,925	20.7
Мау	7,439	10.0
Jun	7,137	9.9
Jul	6,709	9.0
Aug	7,385	9.9
Sep	6,831	9.2
Oct	11,460	15.4
Nov	27,734	38.5
Dec	13,547	18.2

Figure 5. Monthly estimated steam flow for 1986-1991.

Figure 6. Recorded and estimated steam flow for 1991.

Table 6. Hot water heat exchangers.

Bldg. No.	Tank Dia. (in.)		Water Min. °F	Temp. Max. °F	Steam Temp. Press. PSI	Steam Reading °F	Steam Pipe (in.)	Water Supply
5	42"	10	110°	160°	15#	140°	2"	Bldg. #5 For Emerg. Disp. Bldg. 6
61C	42"	10	110°	145°	15#	145°	3/4"	Supplies 6-2 to Pole 46 6-1 Mail Room 8-1 Boiler Rm Elec. Shop
9 SP Base Bay	36"	9	130°	190°	15#	145°	3/4"	9-A,B,C All Floors
9-1 F	36"	9	130°	190°	20#	145°	3/4"	Rest of Bldg. All Floors
11	31"	6	140°	180°	8#	· 140°	1/2"	All Floors
12	42"	10	130°	190°	45#	135°	1"	All Floors
13	59"	10	110°	150°	15#	130°	1"	All Floors
14	30"	8	130°	190°	45#	158°	3/4"	Everything Kitchen
15	42"	8	120°	170°	15#	145°	1"	All Floors
30	30"	10	130°	190°	20#	145°	1"	Bldg. #30
m _{2C}	30"	6	120°	150°	8#	110°	1"	M-2-C Men's

Table 7. Building categories and energy consumption equations.

The state of the s	
Troop housing barracks	E _h = 130.50 + (10.53 x HDD _d)
Troop housing barracks (after 1966)	$E_h = 81.91 + (7.40 \times HDD_d)$
Troop housing barracks (modular)	$E_h = 295.90 + (10.53 \times HDD_d)$
Dining facilities	$E_h = 241.90 + 0$
Family housing	$E_h = 113.5 + (10.53 \times HDD_d)$
Administration/training	$E_h = 75.71 + (7.02 \times HDD_d)$
Medical/dental	$E_h = 254.40 + (11.41 \times HDD_d)$
Storage	$E_h = 35.70 + (10.53 \times HDD_d)$
Production/maintenance	$E_h = 138.25 + (10.53 \times HDD_d)$
Fieldhouses/gymnasiums	$E_h = 73.69 + (4.39 \times HDD_d)$

Table 8. Estimated monthly building heating loads for 1991.

Month	HEATLOAD (MBtu/hr)	BLAST (MBtu/hr)
Jan	43.9	51.7
Feb	38.1	43.5
Mar	30.7	33
Apr	20.3	18.4
May	10.2	4.2
Jun	8.5	1.8
Jul	8.5	1.8
Aug	8.5	1.8
Sep	10.2	4.2
Oct	16.8	13.5
Nov	29.5	31.3
Dec *	38.5	44

^{*} December 1990

Figure 7. Estimated building loads and steam supply.

Table 9. SHDP model assumptions.

Pipe roughness	0.0025
Pipe environment temperature	65 °F
Load condensate temperature	150 °F
Steam trap leakage rate	0
Fraction of load condensate returned	0.9
Fraction of pipe condensate returned	0.9

Table 10. Unconstrained distribution results.

Building	Pressure (psi)	Steam Flow (lb/hr)
СНР	180	59465
1	178	4533
2	176	3963
3	179	2079
4	179	4246
6	180	5572
8	180	1712
9	178	15862
11	166	138
12	165	2959
13	178	8698
14	179	1827
15	179	565
20	179	2517
22	179	74
26	179	1544
30	158	1678
51	179	94

^{*} All values for design temperature of 14 $^{\rm o}{\rm F}$ or 51 HDD.

Table 11. Distribution loss estimates for 1991.

Month	Losses (MBtu/hr)
Jan	2.3
Feb	2.1
Mar	2
Apr	1.8
May	1.7
Jun	1.6
Jul	1.6
Aug	1.6
Sep	1.7
Oct	1.8
Nov	2
Dec *	2.1

^{*} December 1990

Figure 8. Heat load with losses and steam supply profiles.

Table 12. Monthly average HDDs for 1991.

Month	HDD
Jan	920
Feb	694
Mar	576
Apr	296
May	44
Jun	0
Jul	0
Aug	0
Sep	42
Oct	215
Nov	527
Dec *	701

^{*} December 1990

Figure 9. Heat loads vs. HDD regressions.

4 Electrical Power Consumption

This section describes current electrical energy supply and use. Trends in electrical power supplied by the utility were analyzed and building cooling loads were modeled.

Electrical Costs

DPSC's electrical power is supplied by the Philadelphia Electric Company (PECO), and electricity costs are based on PECO's High-Tension Light and Power (HT) rate schedule. A three-tier energy usage charge and a demand charge make up most of the bill; a small customer charge and various tax and incentive adjustments make up the balance of the bill. The basic rate schedule is shown in Table 13.

The billed demand consists of the maximum 30-minute measured demand in the month computed to the nearest kW but not less than the measured demand, adjusted for the power factor. For October to May the billing demand cannot be less than 40 percent of the maximum demand specified in the contract (7,500 kW), nor less than 80 percent of the highest billing demand in the preceding months of June to September.

Time of use adjustments are used for customers with a measured demand of 2000 kW or greater. A credit is given for energy use during off-peak hours and an additional charge is added for energy use during on-peak hours. The on-peak hours are 8 a.m. to 8 p.m. Monday to Thursday and 8 a.m. to 4 p.m. Friday. All remaining hours, including weekends and holidays, are considered off-peak.

Of these costs, the energy-use charges and the demand charge are the most significant. Figure 10 compares the magnitude of the major electric charges for FY90 with DPSC electric bills. The demand charge accounts for about 25 percent of the annual electric charges, the energy-use charges account for 76 percent, and on-peak use accounts for about 1 percent (not including the tax and energy adjustments). The demand charge for FY90 averaged \$84,000 per month in the summer and \$54,000 per month in the winter, or \$64,240 per month for the year. The average demand cost was \$10.48/kW based on an average peak demand of 6,143 kW. The total cost of electricity was \$2.8 million for 31.7 million kWh or \$0.0895/kWh (\$26.2/MBtu).

The electricity charges remain relatively constant partly because of DPSC's stable load. The winter charges, however, are constant because of the 40 percent and 80 percent minimum peak demand rates discussed previously. This minimum peak rate added another \$38,000 to the winter month bills.

Purchased Electricity

PECO provided DPSC daily and hourly electrical information for 1991. Daily records included on-peak and off-peak consumption and the highest on-peak and off-peak peak demands. Hourly records contained half-hour peak demands for the entire day. Figure 11 is an area graph that shows the off-peak electrical use in dark shade and the on-peak (light shade) added to it. The tall peaks represent the electrical use on workdays, and these peaks occur in the summer months on workdays because of the cooling load. The highest daily use is about 135,000 kWh. The dark peaks between the light peaks represent the highest electrical use on nonworking days, typically Saturday. The nonworking day electrical use also increases in the summer to maintain a minimum level of cooling.

Figure 12 shows the daily on- and off-peak demands for 1991. The on-peak demand follows a similar pattern to the on-peak use (see Figure 11), the winter and summer months being constant. The peak demand is just below 7,500 kW and the off-peak demand follows a similar pattern with the addition of two subset patterns. The pattern directly below the on-peak demand represents the off-peaks just before or after the on-peak hours of 8 a.m. to 8 p.m. The lower pattern of off-peaks is made up of nonworking days. Within this pattern are separate patterns, one for Saturdays and one for Sundays. Sundays typically have a lower peak than Saturdays. The low peaks of the Christmas holidays can be seen in the far right of the graph.

The half-hour demand profiles for the cooling season and the heating season are shown in Figure 13. This figure shows an example profile for (1) a summer workday, (2) a summer weekend, (3) a winter workday, and (4) a winter weekend. The workday profiles for summer and winter are very similar, even showing the same dip at 11 a.m. when personnel turn off lights, computers, and other equipment in the shops and the factory for their lunch break. The figure indicates the cooling load is fairly constant at about 2000 kW between 8 a.m. and 3 p.m. The weekend profiles are also similar because they remain fairly constant throughout the day. Both workday and weekend profiles show an off-peak cooling peak of about 1000 kW.

Electricity End-Use

As discussed in the previous sections, the DPSC electrical usage and demand peaks are fairly constant during the noncooling season, averaging about 2.2 million kWh per month and 5100 kW, respectively. The noncooling loads are primarily from lighting, computers, and factory operations.

The cooling season loads are fueled by approximately 75 chillers with a total chilling capacity of about 4075 tons. A significant portion of this capacity is from a few large chillers, which are listed in Table 14. Appendix B contains a complete list of the chillers. There are also numerous window units.

Like the heating loads, the building cooling loads were modeled using the BLAST program. Currently there is no counterpart to the HEATLOAD model for cooling loads. The BLAST cooling loads, however, were about one-third the load estimated from the PECO records. The BLAST simulations will be reviewed to refine the estimate.

Cooling Load Versus CDD Model

A standard practice for electrical power alternatives studies is to use the electrical consumption and demand pattern of a year with similar cooling degree days (CDD) as the normal CDD. The most recent time period with CDD similar to the normal was FY90. The next closest year was FY85, but being 7 years old it would pose additional problems in determining facility loads. The monthly normal and FY90 CDD, obtained from ETAC, are shown in Table 15.

Another method of projecting loads is to develop a linear model based on a previous year. For DPSC, a model of both peak demands (kW) and consumption (kWh) was required because electric bills are based on daily on-peak kW and monthly kWh. Although cooling peak demands and consumption are affected by many factors, they are highly dependent on CDD. Regression analyses were made between 1991 CDD data and the daily on-peak kW and monthly kWh. These regressions are shown graphically in Figures 14 and 15. The peak kW regression used only workdays and neglected days with daily peak demands below 6,500 kW to factor out the influence on nonworking days. The regression has a correlation coefficient of 0.63, indicating a strong correlation between CDD and daily on-peak demand.

Figure 15 shows the regression between monthly consumption and monthly CDD data. This regression has a correlation coefficient of 0.92, indicating a stronger correlation between CDD and monthly consumption. The points grouped near the origin (zero

CDD) are months that have no cooling load. The monthly noncooling electric load is approximately 2,300,000 kWh.

These two regressions or models were then used to project long-term (normal) energy use patterns. In Figures 16 and 17 the normal projections are compared to the FY90 energy use patterns. Figure 16 indicates that the FY90 data underpredicted the peak kW for the noncooling months, but was quite close for the cooling months. The FY90 data compared favorably with the normal projection of monthly consumption.

The FY90 data was used for the preliminary alternative analysis; however, the regression models will be used for the more detailed conceptual design of the selected alternative.

Table 13. Electric rate schedule.

Customer charge	\$281.48 (Jun-Sep) \$257.20 (Oct-May)		
Demand charge			
Demand Charge	\$12.52 per billed kW demand (Jun-Sep) \$ 7.93 per billed kW demand (Oct-May)		
Energy charge	\$0.0856 per kWh for first 150 kWh per billed kW demand		
	\$0.0582 per kWh for next 150 kWh per billed kW demand not to exceed 7,500,000 kWh		
	\$0.0312 per kWh for all additional kWh		
Time of use adjustments	(Jun-Sep)	(Oct-May)	
Off-Peak Credit	\$0.0021 per kWh	\$0.0021 per kWh	
On-Peak Charge	\$0.0057 per kWh	\$0.0022 per kWh	

Figure 10. Major electric power charges for FY90.

Figure 11. 1991 daily electric consumption.

Figure 12. 1991 daily demand peaks.

Figure 13. Half-hour demand profiles.

Table 14. Chillers over 100-ton capacity.

Bldg	Units	Capacity	Use	Age	Media
6-1-C	2	400 Ton	Entire Bldg	1986	R-11
9-1E&F	1	130 Ton	OTIS & Subs	1990	R-22
9-3E&F	1	140 Ton	Subs & Med	1991	R-22
12-LL	1	550 Ton	Entire Bldg	1990	R-11
12	1	1200 Ton	Factory	1973	R-11
14-R	1	130 Ton	Partial	1961	R-11
15	1	250 Ton	Entire Bldg	1973	R-12

Table 15. Monthly average CDD.

Month	FY90	Normal
Jan	0	0
Feb	0	0
Mar	9	0
Apr	29	0
May	20	59
Jun	226	202
Jul	413	357
Aug	341	319
Sep	152	129
Oct	18	9
Nov	1	0
Dec	0	0
Total	1209	1075

Figure 14. Workdays with CDD.

Figure 15. Monthly CDD and kW.

Figure 16. Projection of monthly kW.

Figure 17. Projection of monthly kWh.

5 Projected Energy Consumption

DPSC has not finalized a master plan projecting building, personnel, or mission changes that might affect the consumption of thermal and electrical energy. There are tentative plans to demolish some of the World War I warehouse buildings (Building 5 was demolished during this study) and add one new facility (Figure 18). The loss of the warehouses would reduce the heating load but would have little effect on the electrical load. There is also a tentative plan to construct a new Operations/ADP building located at the center of the installation. DPSC engineering personnel indicated that this building would replace existing building functions without the addition of personnel. Although the new building might increase electrical consumption because of more computer equipment, the heating load would probably drop because the building would be more energy efficient.

Because of the tentative nature of these changes, energy consumption projections will be based on normal weather data and design temperatures only. The effect will be to somewhat overdesign the heating plant and underpredict electrical consumption. The heating plant will be designed to provide adequate turndown for the tentative reductions in heating load.

Table 16 shows normal HDD, monthly heating load estimates, and design day estimate using the steam log data, 75 percent fuel data, HEATLOAD, and BLAST. The linear model of heating load and HDD developed from the 1991 data was modified using the normal HDD to estimate the average monthly heating loads. Figure 19 compares the projected heating loads, with HEATLOAD providing the best model of heating load. Based on the design HDD of 51, the maximum plant capacity is about 69.4 MBtu/hr (58,000 lbs steam/hr) output.

As discussed previously, FY90 was selected as a comparable year to the normal year for estimating the energy consumption and peak demands. Table 17 shows the monthly consumption data.

Figure 18. Tentative facility changes.

Table 16. Normal heating load projections.

Month	Normal HDD	HEATLOAD MBtu/hr	BLAST MBtu/hr	75% Fuel MBtu/hr	Steam Log MBtu/hr
Jan	1048	51.2	69.4	54	49.8
Feb	893	48.9	66.2	51.4	47.6
Mar	718	38.3	51.4	39.4	37.3
Apr	363	24.9	32.6	24.2	24.2
May	127	15.1	18.9	13.2	14.7
Jun	0	10.1	11.9	7.5	9.9
Jul	0	10.1	11.9	7.5	9.9
Aug	0	10.1	11.9	7.5	9.9
Sep	33	11.6	13.9	9.1	11.2
Oct	273	20.8	26.9	19.7	20.3
Nov	576	33.4	. 44.6	34	32.6
Dec	915	46	62.2	48.1	44.8
Design	51	69.4	87.5	70.2	77.7

Figure 19. Projected load profiles.

Table 17. FY90 monthly electric consumption data.

Month	BILLED Peak kW	ACTUAL Peak kW	Rate 1&2 kW	Rate 3 kW	On-Peak kWh	Off-Peak kWh	Total kWh
Jan	6139	4992	920850	421300	952005	1310995	2263000
Feb	6139	5040	920850	341300	1028583	1154417	2183000
Mar	6139	5160	920850	308300	1035774	1114226	2150000
Apr	6139	5976	920850	557300	1052274	1346726	2399000
May	6366	6366	954900	648200	1154673	1373327	2528000
Jun	7263	7164	1089450	915100	1392300	1701700	3094000
Jul	7333	7248	1099950	1043100	1359837	1883163	3243000
Aug	7144	7032	1067100	1262800	1368810	2028190	3397000
Sep	7186	7110	1077900	1192200	1450011	1897989	3348000
Oct	6426	6426	963900	674200	1170546	1431454	2602000
Nov	6139	6139	920850	508800	1089531	1260969	2350500
Dec	6139	5064	920850	343300	1008516	1176484	2185000

6 Air Quality Regulations

Air quality regulations are the most significant environmental regulations that will affect the analysis of alternatives for this study. The Clean Air Act Amendments of 1990 (CAAA) have placed tighter constraints on emissions from most industrial sources, particularly combustion sources.

Federal Regulatory Requirements

The Philadelphia area has been designated as nonattainment (does not meet current air quality standards) for ozone (O₃), carbon monoxide (CO), and total suspended particulate (TSP) in *New Source Review* (NSR), a publication of the U.S. Environmental Protection Agency. Virtually all of the Philadelphia Consolidated Metropolitan Statistical Area (CMSA), which includes Pennsylvania, New Jersey, and Delaware, is designated a *severe* nonattainment area for O₃. High traffic density areas in the City of Philadelphia and some areas in Trenton and Burlington, NJ, are designated as *moderate* nonattainment for CO. Some census tracts within the City of Philadelphia; Pottstown Borough in Montgomery County, PA; South Coatesville Borough in Chester County, PA; and Camden, NJ, are designated nonattainment for TSP.

The TSP nonattainment designation essentially restricts the fuel selection for DPSC to natural gas because natural gas combustion systems emit very little particulate matter. CO should not be a factor because the nonattainment designation only applies in very limited areas and mobile sources are the major source of CO problems in moderate CO nonattainment areas. Therefore, the $\rm O_3$ nonattainment rules will be the controlling regulations for this study.

The 1990 CAAA's establish emission limits for O_3 precursors in areas designated as severe O_3 nonattainment. The emission limits for O_3 precursors [volatile organic compounds (VOC) and nitrogen oxides (NO_{x})] are set at 25 tons per year (TPY). These limits became effective 15 November 1992. The emission thresholds defining a major modification to an existing major source in a nonattainment area under the previous rules have not been modified by the 1990 CAAA's. However, the 25 TPY major source definition is less than the old major modification definition. A major source is also defined as "any physical change or change in method of operation at an existing non-

46 USACERL TR FE-94/25

major source that constitutes a major stationary source by itself." Therefore, any existing source that increases emissions of VOC or NO_x by 25 TPY is subject to nonattainment NSR.

A source that is subject to nonattainment NSR in a severe O_3 area must install emission control equipment that meets Lowest Achievable Emission Rate (LAER) requirements and obtain offsetting emissions decreases from existing sources at a ratio of 1.3:1. Emissions offsets could also be obtained from reduced operation of the owner's existing boilers at a ratio of 1:1.

The 1990 CAAA's require Reasonably Available Control Technology (RACT) on all facilities (entire facility) that emit 25 TPY or more of VOC or NO_x. This will apply to existing boilers and possibly to the gas turbines or spark gas engines once the program takes effect under the federal operating permit requirements of the 1990 CAAA's.

State and Local Regulatory Requirements

A permit to construct must be obtained from the Philadelphia Air Management Service (AMS), which enforces Federal, State, and local air quality regulations. However, the Federal requirements outlined previously should be the most restrictive regulations that apply to a gas turbine or spark gas engine installation. Pennsylvania state regulations limit SO₂ emissions from any source located in the southeastern Pennsylvania air basin greater than 250 million Btu per hour (MBtu/hr) heat input to 1.0 lb/MBtu, and sources less than 250 MBtu/hr to 0.6 lb/MBtu [Pennsylvania Regulations 123.22(4)(i) and 123.22 (4)(iv)(e)(1)]. No. 2 and lighter fuel oils must contain no more than 0.2 percent sulfur by weight, and No. 4 and heavier fuel oils cannot exceed 0.5 percent sulfur by weight [Pennsylvania Regulation 123.22 (4)(iv)(e)(2)]. Sources with heat inputs greater than 250 MBtu/hr and an average annual capacity greater than 30 percent are required to install, operate, and maintain a continuous emissions monitoring system (CEMS) for NO_x.

Pennsylvania air quality regulations for nonattainment areas are still in effect at this time, although the Federal nonattainment regulations discussed previously are more rigorous and will constitute the basis for design. The Pennsylvania nonattainment regulations are found in Subchapter C of the Pennsylvania air quality regulations. A major source in a nonattainment area is defined in Section 127.63, a major VOC source is defined in Section 127.63(2), and a major CO source is defined in Section 127.63(3). These are sources that emit 50 TPY, 1000 lb/day, or 100 lb/hr of these air pollutants. Section 127.65(1) requires LAER on major sources, Section 127.65(3) requires offsets for major sources, and Section 127.66(a)(1) requires offsets in the ratio of 1.3:1 for VOC and 1.1:1 for CO from major sources.

Summary

Air pollution regulations essentially limit the combustion fuel for DPSC to natural gas. However, because of the severe nonattainment designation for ozone, DPSC will also be limited to an increase in nitrogen oxide emissions of 25 TPY to avoid RACT regulations that would require costly pollution control equipment.

7 Study Alternatives

This section presents a brief summary of the alternatives evaluated during this study. Six alternatives were evaluated with various options, and a status quo option was developed as a baseline for comparison. Life cycle cost (LCC) analyses were performed on all alternatives and status quo using the Life Cycle Cost in Design (LCCID) program.

Status Quo Alternative

The status quo or baseline alternative was developed using the STATUS QUO model developed by USACERL to provide a microcomputer-based technique to establish the existing condition of a CHP. This program was funded by the DOD coal use program. The status quo situation implies the continued operation of the CHP by performing routine maintenance and repair. The STATUS QUO model provides a baseline alternative with which to compare CHP plant alternatives.

The evaluation of the CHP's status quo is determined by a field survey and the completion of an evaluation form for major plant components. Currently, the model is capable of estimating the life expectancy and cost of oil and natural gas-fired equipment for boilers in the 20 to 200 MBtu/hr range that have a maximum plant capacity of 600 MBtu/hr. Coal technology components are under development, while electric generation and thermal distribution components are planned for future development. The current model data input is simple, consisting of equipment size (dimensions, capacity, power requirements, etc.) and year of installation. The STATUS QUO program will display (for each component) equipment cost in 1991 dollars and the year the equipment should be replaced. Costs are based on average industry prices and the replacement year is based on industry experience.

The program also allows the default values to be changed if better information is available. For instance, a good method of establishing water tube boiler life is measuring the steam drum thickness and comparing it to the original thickness and pressure rating. Boiler codes limit allowable pressures that are based on drum thickness. Many other components have methods available to determine their condition and life expectancy; these include vibration analysis, motor testing, ultrasonic listening, thickness testing, oil analysis or ferrography, infrared thermal surveys, eddy current testing, equipment performance tracking, and equipment run time.

The program also contains defaults for labor, maintenance, spare parts, and utility costs. Actual costs should be used to obtain an accurate economic analysis. The STATUS QUO model uses the LCCID program to perform the LCC analysis. The STATUS QUO program produces an LCCID input file containing all the plant components with their replacement year, replacement cost, plant labor, maintenance, spare parts, and utility costs.

Table 18 shows the LCC summary for the status quo alternative. Costs are net present worth (October 1992 basis).

General Improvements and Upkeep

Because of the similarity of many of the alternatives and options, initial equipment improvements and improvements required during the life of the system were combined in Tables 19 and 20, respectively. These tables do not list the new energy conversion equipment that is discussed with each alternative section.

Alternative 1 - Two New Gas/Oil Boilers

Alternative 1 involves removing existing Boilers No. 1, 2, 3, and 4 and installing two packaged gas/oil-fired 50,000 lb/hr boilers with low $\mathrm{NO_x}$ burners, economizers, and $\mathrm{O_2}$ trim. Boilers No. 1 and 2 would be demolished first and the new boilers, which would be operated at 125 psig (saturated), would be installed in their location. Boilers No. 3 and 4 would remain operational until the new boilers are in service. The superheater on Boiler No. 5 would be removed and the burner would be replaced with a low $\mathrm{NO_x}$ burner. Boiler No. 5 also would be operated at 125 psig (saturated). No. 2 fuel oil would be used as a backup fuel in place of No. 6 fuel oil.

Table 21 shows the LCC summary for Alternative 1. Costs are net present worth (October 1992 basis).

To investigate the potential of absorption chilling without cogeneration, a variation of Alternative 1 was analyzed which replaced a 1200-ton centrifugal chiller in Building 13-1 with a 1200-ton single-stage absorption chiller. Table 22 shows the LCC summary for this variation. Absorption chilling appears more cost effective compared to the existing electrically-driven chilling system. However, this option optimistically assumed no increase in capital costs or operations and maintenance (O&M) costs for the absorption system. Absorption chilling will be analyzed in combination with cogeneration to determine possible economic improvements (Alternatives 3 and 6).

Alternative 2 - Two New Gas/Oil Boilers and Cogeneration

Alternative 2 considers six options as follows:

- Option 1. Install one 1.6 megawatt (MW) spark gas engine generator with a 6,000 lb/hr heat recovery steam generator.
- Option 2. Install two 1.6 MW spark gas engine generators with two 6,000 lb/hr heat recovery steam generators.
- Option 3. Install one 1.1 MW gas turbine generator with a 6,000 lb/hr heat recovery steam generator.
- Option 4. Install two 1.1 MW gas turbine generators with two 6,000 lb/hr heat recovery steam generators.
- Option 5. Install three 1.1 MW gas turbine generators with three 6,000 lb/hr heat recovery steam generators.
- Option 6. Install one 3.5 MW gas turbine generator with an 18,000 lb/hr heat recovery steam generator.

All options for Alternative 2 consider the following:

Boilers No. 1 and 2 would be demolished and two packaged gas/oil-fired 50,000 lb/hr boilers with low $\mathrm{NO_x}$ burners, economizers, and $\mathrm{O_2}$ trim would be installed in their place. After these new boilers are in operation, Boilers No. 3 and 4 would be demolished and the new cogeneration unit(s) would be installed in the vacated area. The new boilers would be operated at 125 psig (saturated). The superheater on Boiler No. 5 would be removed and the burner would be replaced with a low $\mathrm{NO_x}$ burner. Boiler No. 5 also would be operated at 125 psig (saturated). The heat recovery steam generator(s) would operate at 125 psig. No. 2 fuel oil would be used as a backup fuel for the boilers instead of No. 6 fuel oil.

Tables 23 through 28 show the LCC summary for the six options under Alternative 2. Costs are net present worth (October 1992 basis).

Alternative 3 - Two New Gas/Oil Boilers, Cogeneration, and Absorption Chiller

Alternative 3 considers the following two options:

- Option 1. Install two 1.6 MW spark gas engine generators with two 6,000 lb/hr heat recovery steam generators.
- Option 2. Install one 3.5 MW gas turbine generator with an 18,000 lb/hr heat recovery steam generator.

All options for Alternative 3 consider the following:

Boilers No. 1 and 2 would be demolished and two packaged gas/oil-fired 50,000 lb/hr boilers with low $\mathrm{NO_x}$ burners, economizers, and $\mathrm{O_2}$ trim would be installed in their place. After these new boilers are in operation, Boilers No. 3 and 4 would be demolished and the new cogeneration unit(s) would be installed in the vacated area. The new boilers would be operated at 125 psig (saturated). The superheater on Boiler No. 5 would be removed and the burner would be replaced with a low $\mathrm{NO_x}$ burner. Boiler No. 5 also would be operated at 125 psig (saturated). The heat recovery steam generator(s) would operate at 125 psig. In addition, a 1200-ton centrifugal chiller in Building 13-1 would be replaced by a 1200-ton single-stage absorption chiller. No. 2 fuel oil would be used as a backup fuel for the boilers instead of No. 6 fuel oil.

Tables 29 and 30 show the LCC summary for the two options under Alternative 3. Costs are net present worth (October 1992 basis).

Alternative 4 - Refurbish Existing Plant, Summer Boiler

Alternative 4 involves removing existing Boilers No. 1 and 2. The superheaters on Boilers No. 3, 4, and 5 would be removed and the burners would be replaced with low NO_x burners. Boilers No. 3, 4, and 5 would be operated at 125 psig (saturated). This alternative will also include installing a 10,000 lb/hr fire tube boiler for summer operation. No. 2 fuel oil would be used as a backup fuel instead of No. 6 fuel oil.

Table 31 shows the LCC summary for Alternative 4. Costs are net present worth (October 1992 basis).

Alternative 5 - Refurbish Existing Plant, Summer Boiler, Cogeneration

Alternative 5 involves removing existing Boilers No. 1 and 2. The superheaters on Boilers No. 3, 4, and 5 would be removed and the burners would be replaced with low NO_x burners. Boilers No. 3, 4, and 5 would be operated at 125 psig (saturated). This alternative would include two 1.6 MW spark gas engine generators with heat recovery steam generators. These generators would operate at 100 psig. In addition, a 10,000 lb/hr fire tube boiler would be installed for summer operation. No. 2 fuel oil would be used as a backup fuel instead of No. 6 fuel oil.

Table 32 shows the LCC summary for Alternative 5. Costs are net present worth (October 1992 basis).

Alternative 6 - Refurbish Existing Plant, Two New Spark Gas Engine Generators, and One New Absorption Chiller

Alternative 6 involves removing existing Boilers No. 1 and 2. The superheaters on Boilers No. 3, 4, and 5 would be removed and the burners would be replaced with low $\mathrm{NO_x}$ burners. Boilers No. 3, 4, and 5 would be operated at 125 psig (saturated). This alternative would include installation of two 1.6 MW spark gas engine generators with heat recovery steam generators. These generators would operate at 100 psig. Also, the 1200-ton centrifugal chiller in Building 13-1 would be replaced with a 1200-ton single-stage absorption chiller. No. 2 fuel oil would be used as a backup fuel instead of No. 6 fuel oil.

Table 33 shows the LCC summary for Alternative 6. Costs are net present worth (October 1992 basis).

Summary of Alternatives and Recommendations

The LCC for the alternatives and options are summarized in Table 34. The difference between Alternative 2, Option 2 and Alternative 5 is adding new boilers (Alternative 2) or keeping the existing boilers (Alternative 5). Based on LCC, it is better to buy new boilers.

Based on LCC, Alternative 2, Option 6 is the best selection. However, Alternative 3, Option 2 is quite close and could be improved with a smaller absorption chiller. A 1200-ton chiller had been assumed that required a boiler to be operated to meet the chiller's energy requirements. A smaller turbine sized at about 550 ton-hr would require only the excess steam from the turbine, which is essentially free energy. If Alternative 2, Option 6 is implemented and a smaller electrically driven chiller is due for replacement, it would be economical to replace it with an absorption unit.

Another improvement would be the use of a storage cooling system (SCS) to further reduce peak electrical demands. The next section describes a preliminary analysis for SCS application.

Storage Cooling System Analysis

Storage cooling systems (SCS) have become an important tool in reducing on-peak electric demand by shifting power to off-peak periods. The need to lower electric demand has arisen because utility companies usually increase electric rates for hours associated with high demand. The effective use of "demand-side management" by U.S.

electric utility companies forestalls the addition of costly new power plants while still meeting an increasing electric demand. Therefore, electric companies have tried to control electric demand by increasing the demand charge.

The Philadelphia Electric Company charges about \$12.50 per kW in the summer and about \$8.00 per kW in the winter. However, the summer peak still affects the winter demand charges because PECO sets the winter peak demand at a minimum of 80 percent of the summer peak; therefore, a reduction of the peak demand in the summer also affects the demand charges in the winter.

A way to shift electrical demand for air-conditioning from on-peak to off-peak hours is a diurnal storage cooling system. Rather than operating a chiller to meet the cooling load as it arises, the chiller is operated either partially or solely during the off-peak period, and the refrigeration produced is stored to meet the next day's on-peak cooling requirements. It can be stored in chilled water, ice, or freezing eutectic salts. A diurnal storage cooling system uses ice as a storage medium.

To assist in evaluating these systems, USACERL has developed a computer model to estimate their economic feasibility. The program, called STOFEAS (storage feasibility), calculates the simple payback and savings-to-investment ratio (SIR) based on system first cost and the expected annual savings in the demand charge. STOFEAS provides a quick, simple, and inexpensive initial assessment of the cost-effectiveness of installing and using an SCS at a particular facility. The model estimates the annual specific savings in demand charges for each kilowatt shifted from on-peak to off-peak hours, based on a number of typical electric demand rate schedules. SCS first-cost models are run for new/replacement, retrofit, and theoretical highest cost applications.

The cost of an SCS, an important factor in determining its economic performance, is expressed in terms of dollars per storage capacity (\$/ton-hour). The cost of an SCS in STOFEAS is the differential cost between a conventional cooling system and an SCS serving the same building. For the new/replacement case the differential cost is due to the storage tanks and their associated installation. In the retrofit case an SCS is added to an existing cooling system to provide cooling during a short period (2 to 4 hours) when the installation is experiencing a peak demand. The purchase of a new condensing unit and storage tanks is required for a retrofit application and for paying for system installation charges. The upper limit case demonstrates the impact of a high system first cost on the economic feasibility of an SCS.

The model provides default economic parameters such as study life, discount rate, factors for economy of scale, demand charge escalation rates, differential SCS operation and maintenance costs, and conversion constant between the electric power input and the mechanical refrigeration output.

Besides these and a number of other factors, the most important parameters in determining the economic feasibility of an SCS are the annual savings in electric demand and system first cost. The economic feasibility of an SCS is measured by the payback period and savings-to-investment ratio.

After STOFEAS has been executed, four reports are produced: (1) a summary of the data entered for the information requested, (2) the economic analysis results for the case of new/replacement, (3) the economic analysis results for the case of retrofit, and (4) the economic analysis results for the case of upper limit. Based on these outputs, the user can determine the feasibility of a prospective SCS.

A STOFEAS model was run to examine the economic feasibility of an SCS at DPSC. The economic analysis results for the three cases indicate that the new/replacement scenario is the best alternative, while the upper limit scenario shows a potential for poor economic feasibility. (More information on STOFEAS is in Appendix G.) Example economics for a 1,050 ton-hr system for each scenario follow.

Scenario	First Costs	Payback	SIR	Savings
New/replacement	\$73,000	4.4	3:5	\$185,000
Retrofit	\$137,000	11	1:9	\$121,000
Upper limit	\$158,000	16.5	0:9	-\$16,000

A more detailed study is needed to determine if SCS is economically feasible. The addition of a small SCS would not adversely affect Alternative 2-6.

Table 18. Status quo alternative LCC summary.

Initial investment costs	0
Energy costs: Electricity	\$43,213
Natural Gas	\$32,364
Total energy costs	\$75,577
Recurring maintenance and repair/custodial costs	\$12,123
Major repair/replacement costs	\$2,656
LCC of all costs/benefits (net present worth)	\$90,355

Table 19. Initial central heating plant improvements.

- * Remove asbestos from area and equipment related to alternative.
- * Remove existing turbine driven boiler feed pumps and feedwater piping; add motor-driven boiler feed pumps and feedwater piping.
- * Remove the coal and ash silos and associated equipment.
- * Remove the below-ground and above-ground fuel oil tanks; add new above-ground and below-ground fuel oil tanks.
- * Remove existing make-up air heater; add make-up air heater.
- * Remove existing air receiver; add air receiver.
- * Remove existing switch gear; add switch gear.
- * Remove existing condensate receiver; add condensate receiver.
- * Remove existing expansion tank; add expansion tank.
- * Remove existing water storage tank; add water tank.
- * Remove existing flash tank; add flash tank.
- ** Remove existing stack and breeching; add new breeching and steel stacks.
- * Alternative #1 #6.
- ** Alternative #1, #2, #3.

Table 20. Plant upkeep after implementation.

	· · ·
**	Boilers No. 3 and 4; add two packaged gas/oil-fired 80,000 lb/hr boilers and related equipment. (2001)
***	Boilers No. 3 and 4; add two packaged gas/oil-fired 50,000 lb/hr boilers and related equipment. (2001)
****	Steel stack and breeching (2001)
•	Fuel oil unloading pump (2004)
•	Fuel oil piping below grade (2006)
*	Air compressor center (2007)
*	Emergency generator (2008)
*	Revalve (2008, 2009, 2010)
*	Water softener system (2009)
•	Heat exchanger (2010)
*	Condensate pump (2011)
•	Simplex pumps (2012)
*	Steel tank (2012)
•	Space heaters for building heat (2016)
*	Boiler No. 5 and related equipment (2017)
e dia	Remove Boiler No. 5. Note Boiler No. 5 would not be replaced. (2017)
***	Remove Boiler No. 5; add one packaged gas/oil-fired 30,000 lb/hr boiler and related equipment. (2017)
•	Transformer (2018)

- Alternative 1 to 6
- ** Alternative 4 and 5
- *** Alternative 6
- **** Alternative 4to 6

Table 21. Alternative 1 LCC summary. (Two new gas/oil boilers)

Initial investment costs	\$3,787
Energy costs:	
Electricity	\$43,213
Natural gas	\$30,341
Total energy costs	\$73,554
Recurring maintenance and repair/custodial costs	\$12,123
Major repair/replacement costs	\$605
LCC of all costs/benefits (net PW)	\$90,069

Table 22. Alternative 1, Option 1 LCC summary. (Two new gas/oil boilers, absorption chiller)

(1 NO NON gadon benere, asserbasis	•	
Initial investment costs	\$3,787	
Energy costs:		
Electricity	\$38,430	
Natural gas	\$32,364	
Total energy costs	\$70,793	
Recurring maintenance and repair/custodial costs	\$12,123	
Major repair/replacement costs	\$605	
Other O&M costs & monetary benefits	0	
Disposal costs/retention value	0	
LCC of all costs/benefits (net PW)	\$87,308	

Table 23. Alternative 2, Option 1 LCC summary. (One 1.6 MW spark gas engine)

Initial investment costs	\$7,129	
Energy costs:		
Electricity	\$23,798	
Natural gas	\$42,523	
Total energy costs	\$66,321	
Recurring M&R/custodial costs	\$12,764	
Major repair/replacement costs	\$605	
LCC of all costs/benefits (net PW)	\$86,820	

Table 24. Alternative 2, Option 2 LCC summary. (Two 1.6 MW spark gas engines)

Initial investment costs	\$10,470,000	
Energy costs:		
Electricity	\$23,798,000	
Natural gas	\$42,523,000	
Total energy costs	\$66,321,000	
Recurring M&R/custodial costs	\$12,764,000	
Major repair/replacement costs	\$605,000	
LCC of all costs/benefits (net PW)	\$90,161,000	

Table 25. Alternative 2, Option 3 LCC summary. (One 1.1 MW gas turbine)

(4		
Initial investment costs	\$5,521,000	
Energy costs:		
Electricity	\$31,013	
Natural gas	\$37,934	
Total energy costs	\$68,948,000	
Recurring M&R/custodial costs	\$12,764,000	
Major repair/replacement costs	\$605,000	
LCC of all costs/benefits (net PW)	\$87,838,000	

Table 26. Alternative 2, Option 4 LCC summary.

(Two 1.1 MW gas turbines)

Initial investment costs	\$7,255,000	
Energy costs:	£10, 202, 000	
Electricity Natural gas	\$19,302,000 \$45,388,000	
Total energy costs	\$64,689,000	
Recurring M&R/custodial costs	\$12,764,000	
Major repair/replacement costs	\$605,000	
LCC of all costs/benefits (net PW)	\$85,313,000	

Table 27. Alternative 2, Option 5 LCC summary.

(Three 1.1 MW gas turbines)

Initial investment costs	\$8,989,000	
Energy costs:		
Electricity	\$10,776,000	
Natural gas	\$52,543,000	
Total energy costs	\$63,319,000	
Recurring M&R/custodial costs	\$12,764,000	
Major repair/replacement costs	\$605,000	
LCC of all costs/benefits (net PW)	\$85,677,000	

Table 28. Alternative 2, Option 6 LCC summary.

(One 3.5 MW gas turbine)

(One die inter gas tarans)		
Initial investment costs	\$6,874,000	
Energy costs:		
Electricity	\$9,746,000	
Natural gas	\$50,630,000	
Total energy costs	\$60,376,000	
Recurring M&R/custodial costs	\$12,764,000	
Major repair/replacement costs	\$605,000	
LCC of all costs/benefits (net PW)	\$80,619,000	

Table 29. Alternative 3, Option 1 LCC summary. (New boilers, absorption chiller, two gas engines)

Initial investment costs	\$11,433,000	
Energy costs:		
Electricity	\$23,390,000	
Natural gas	\$51,234,000	
Total energy costs	\$74,623,000	
Recurring M&R/custodial costs	\$12,764,000	
Major repair/replacement costs	\$605,000	
LCC of all costs/benefits (net PW)	\$99,426,000	

Table 30. Alternative 3, Option 2 LCC summary. (New boilers, absorption chiller, turbine generator)

Initial investment costs	\$7,713,000	
Energy costs:		
Electricity	\$7,111,000	
Natural gas	\$55,999,000	
Total energy costs	\$63,110,000	
Recurring M&R/custodial costs \$12,764,000		
Major repair/replacement costs	\$605,000	
LCC of all costs/benefits (net PW)	\$84,192,000	

Table 31. Alternative 4 LCC summary. (Refurbish existing plant)

Initial investment costs	\$2,369,000	
Energy costs:		
Electricity	\$43,213,000	
Natural gas	\$30,341,000	
Total energy costs	\$73,554,000	
Recurring M&R/custodial costs	\$12,122,000	
Major repair/replacement costs	\$2,605,000	
LCC of all costs/benefits (net PW)	\$90,651,000	

Table 32. Alternative 5 LCC summary. (Refurbish existing plant, summer boiler, cogeneration)

Initial investment costs	\$9,053,000	
Energy costs:		
Electricity	\$23,798,000	
Natural gas	\$42,523,000	
Total energy costs	\$66,321,000	•
Recurring M&R/custodial costs	\$12,764,000	
Major repair/replacement costs	\$2,605,000	
LCC of all costs/benefits (net PW)	\$90,743,000	

Table 33. Alternative 6 LCC summary. (Refurbish existing plant, two engine generators, absorption chiller)

•		_
Initial investment costs	\$9,892,000	
Energy costs:		
Electricity	\$23,390,000	
Natural gas	\$51,234,000	
Total energy costs	\$74,623,000	
Recurring M&R/custodial costs	\$12,764,000	
Major repair/replacement costs	\$2,605,000	
LCC of all costs/benefits (net PW)	\$99,885,000	

Table 34. LCC summary of alternatives/options.

Alternative		Net PW (Oct 1992) of LCC
#2	Option 6 One 3.5 MW Gas Turbine	\$80,619,000
#3	Option 2 One 3.5 MW Gas Turbine Absorption Chiller	\$84,192,000
#2	Option 4 Two 1.1 MW Gas Turbines	\$85,313,000
#2	Option 5 Three 1.1 MW Gas Turbines	\$85,677,000
#2	Option 1 One 1.6 MW Gas Engine	\$86,819,880
#1	Option 1 Absorption Chiller	\$87,308,000
#2	Option 3 One 1.1 MW Gas Turbine	\$87,838,000
#1	New Boilers	\$90,069,150
#2	Option 2 Two 1.6 MW Gas Engines	\$90,161,280
	Status Quo	\$90,355,060
#4	Refurbish Plant	\$90,650,840
#5	Refurbish Plant Two 1.6 MW Gas Engines	\$90,742,870
#3	Option 1 Two 1.6 MW Gas Engines Absorption Chiller	\$99,425,980
#6	Refurbish Plant Two 1.6 MW Gas Engines Absorption Chiller	\$99,884,690

8 Selected Alternative Description

This section provides more details on Alternative 2, Option 6, the selected alternative, which consists primarily of two new natural gas boilers and a 3.5 MW natural gas turbine-generator with an 18,000 lb/hr heat recovery steam generator.

Description of System

This project requires several plant auxiliary upgrades and wornout equipment demolition to implement its major components. The following list summarizes these changes.

- Remove asbestos from area and equipment related to alternative.
- Remove existing turbine-driven boiler feed pumps and feedwater piping; add motor-driven boiler feed pumps.
- · Remove coal and ash silos and associated equipment.
- Remove below-ground and above-ground fuel oil tanks; add new above ground and below-ground fuel oil tanks.
- Remove existing makeup air heater; add makeup air heater.
- Remove existing air receiver; add air receiver.
- Remove existing switch gear; add switch gear.
- Remove existing condensate receiver; add condensate receiver.
- Remove existing expansion tank; add expansion tank.
- Remove existing water storage tank; add water tank.
- Remove existing flash tank; add flash tank.
- Remove existing stack and breeching; add new breeching and steel stacks.

Boilers No. 1 and 2 would be demolished to make room for two new packaged natural gas/No. 2 oil-fired boilers rated at 50,000 lb/hr steam and 125 psig (sized to more efficiently meet steam demands). The failing No. 6 fuel oil system will be replaced by No.2 oil as the backup fuel for the boilers. This will meet air pollution regulations that restrict heavy oil burning. After the new boilers are operational, Boilers No. 3 and 4 would be removed to make room for the cogeneration system.

The cogeneration system suggested is a Solar Turbines Inc. (STI) Centaur Type H single-shaft industrial gas turbine-generator and an STI heat recovery steam generator (HRSG). The actual turbine-generator rating is 3.88 MW but has been derated to 3.5 MW to more accurately reflect expected production capacity at local operating conditions. The HRSG will produce a maximum of 18,000 lb/hr at 125 psig when the turbine-generator is operating at 100 percent capacity.

This type of turbine-generator is the world's second most widely distributed industrial gas turbine, with over 2200 in service. An exposed view of the gas turbine-generator is shown in Figure 20. The systems are highly reliable and easy to transport and install. They are less size and weight per capacity than engine-driven systems and are virtually vibration free, allowing for lighter foundations. Figure 21 shows front and side views of the turbine-generator. The HRSG, shown in Figure 22, is a continuous tube-type economizer. Figure 23 shows a rough layout of the boiler room, which is approximately 180 feet by 80 feet. The new gas turbine-generator and HRSG will be located in the general area where Boilers No. 3 and 4 were located.

In addition to normal equipment maintenance the plant will require replacement of wornout equipment after implementation of the project. These items are shown in Table 35. The year of replacement is estimated based on typical expected component life. Actual replacement times will vary depending on equipment maintenance and operating conditions.

Description of Operation

This project will alter the amount and type of energy used by the installation. The gas turbine-generator will increase the consumption of natural gas while decreasing the amount of electricity purchased. Although energy consumption on a Btu basis will increase, energy costs will drop significantly because natural gas is \$3.4/MBtu compared to electricity at \$26/MBtu. Cogeneration decreases electric costs by reducing both energy consumption and peak demands. The HRSG will also offset boiler fuel requirements.

Figures 24 and 25 show the electric demand for a typical weekend day in the winter and the summer, respectively. These two figures show that the 3.5 MW generating capacity of the turbine-generator will provide essentially all weekend electrical needs for the entire year.

Reducing the peak demand during workdays is a significant part of reducing electric costs. Besides reducing summer costs, the summer peak reduction also reduces winter demand charges because those charges are set at 80 percent of the summer demand.

Figures 26 and 27 show typical peak demands for winter and summer workdays, respectively. During the on-peak hours of 8 a.m. to 8 p.m., 3.5 MW will be removed from the demand peak for summer workdays and about 2 MW for winter workdays.

The same conclusions can be drawn from Figures 28 and 29, which are representative load duration curves for winter and summer months, respectively. Figure 28 shows that the turbine-generator alone will be able to meet DPSC's electricity needs for about 550 hours a month or 73 percent of the time during the heating season. Figure 29 shows the turbine-generator can meet electrical needs for about 150 hours (20 percent) during the cooling season. On an annual basis, the turbine-generator will produce about 75 percent of all the electricity needed and reduce the peak electrical demand by about 50 percent.

DPSC requires about 232 million pounds of steam per year. The HRSG will produce about 109 million pounds per year or 47 percent of the required steam. Figure 30 shows the expected monthly steam output of the boilers and the HRSG. The boilers should not have to operate during the months of June through September.

The estimated annual energy use for natural gas and electricity for both the status quo and the selected alternative are summarized in Table 36. The project uses significantly more natural gas than the status quo because of the gas turbine-generator. The effect of cogenerating is reflected in the much smaller amount of purchased electricity and the lower peak demand for the project.

Description of Costs

The LCC analysis for this project and the status quo were revised to reflect current natural gas prices and the electric rate structure. The natural gas cost dropped from \$4.95/MCF to \$3.41/MCF, which improved the economics of using natural gas for cogeneration. The new net present worth is \$64,868,000 instead of \$80,619,000. Table 37 shows the LCC summary for the selected alternative. Costs are net present worth (October 1992 basis).

Table 38 shows a detailed breakdown of the initial costs associated with this project. The initial investment costs consist mainly of the purchase and installation of the two packaged gas/oil-fired 50,000 lb/hr boilers and the 3.5 MW gas turbine-generator with 18,000 lb/hr HRSG. The major repairs/replacements over the next 25 years were listed in Table 35.

Operation and maintenance costs also will be affected by the addition of the cogeneration equipment. Maintenance labor costs will increase because another

operator/maintenance person will be needed. However, this cost may be offset by cross-training an existing operator to maintain the cogenerating equipment. The general maintenance and supply costs increased about 10 percent over the status quo.

The lower overall energy costs will generate significant savings for DPSC. Figures 31 and 32 show the monthly electric and fuel costs, respectively, for the project versus the status quo. Although fuel costs will rise due to the increase in natural gas consumption by the turbine-generator, the purchased electricity costs will decrease greatly. The total energy costs shown in Figure 33 reflect the monthly energy savings DPSC will achieve. Table 39 summarizes the estimated annual energy costs for the status quo option and the selected alternative. The almost \$700,000 increase in fuel costs for the project is offset by the \$1,800,000 decrease in electrical costs for an estimated annual energy savings of approximately \$1,153,000.

Project Funding Documents

The initial costs for Alternative 2, Option 6 total about \$7.1 million. Unless the project is implemented in phases, it will need to be funded as a Military Construction (MILCON) project. However, because of the substantial savings it may be funded through the Energy Conservation Investment Program (ECIP). The ECIP program funding has been increased substantially over the last few years and there is a shortage of good projects, particularly cogeneration projects.

Draft 1391 information for an ECIP project is contained in Appendix I and is in the form required for the 1391 Processor computer program. The ECIP economic analysis was made using the LCCID program. The economics are quite good, showing a first year savings of \$1,043,012; total net discounted savings of \$13,607,660; discounted SIR of 1:98; and simple payback of 6.59 years.

Appendix I also contains Draft Project Development Brochure checklists (DA Form 5024).

Figure 20. Solar *Centaur* Type H gas turbine.

Figure 21. Orthographic of gas turbine.

Figure 22. Heat recovery steam generator (HRSG).

Figure 23. CHP boiler room layout.

Table 35. Plant upkeep after initial construction.

Equipment To Be Replaced	Year of Replacement
Fuel oil unloading pump	2004
Fuel oil piping below grade	2006
Air compressor center	2007
Emergency generator	2008
Revalve	2008, 2009, 2010
Water softener system	2009
Heat exchanger	2010
Condensate pump	2011
Simplex pumps	2012
Steel tank	2012
Space heaters for building heat	2016
Boiler No. 5 and related equipment	2017
Transformer	2018

Figure 24. Winter weekend demand.

Figure 25. Summer weekend demand.

Figure 26. Winter weekday demand.

Figure 27. Summer weekday demand.

Figure 28. Winter load duration curve.

Figure 29. Summer load duration curve.

Figure 30. Monthly steam supply.

Table 36. Estimated annual energy use.

Table 30. Estimated annual energy use.								
Natural Gas	Status Quo	Alt 2-6						
Boiler, MSCF	290.7	153.9						
Turbine, MSCF		331.1						
Total, MSCF	290.7	484.0						
Electric								
Peak Demand, kW	7.3	3.1						
Purchase, GWh *	31.7	7.2						
Generated, GWh *		26.5						

^{*} GWh = million kWh

Table 37. Alternative 2, Option 6 LCC summary. (One 3.5 MW gas turbine)

Initial investment costs	\$6,874,000
Energy costs:	
Electricity	\$9,746,000
Natural gas	\$34,879,000
Total energy costs	\$44,625,000
Recurring M&R/custodial costs	\$12,764,000
Major repair/replacement costs	\$605,000
LCC of all costs/benefits (net PW)	\$64,868,000

Table 38. Estimated annual energy costs.

	Status Quo	Alt 2-6
Natural Gas		
Boiler	\$991,000	\$525,000
Turbine		\$1,129,000
Total fuel	\$991,000	\$1,654,000
Electric		
Demand charge	\$771,000	\$397,000
Use charge	\$2,024,000	\$582,000
Total electric	\$2,795,000	\$979,000
Total energy cost	\$3,786,000	\$2,633,000

Figure 31. Status quo vs. Alternative 2, Option 6 electrical costs.

Figure 32. Status quo vs. Alternative 2, Option 6 fuel costs.

Figure 33. Status quo vs. Alternative 2, Option 6 total energy costs.

	QUANTI	TY	LABOR & N	MATERIAL
ITEM DESCRIPTION	NO. UNITS	UNIT MEAS.	\$ PER UNIT	TOTAL
(のPTION じ) ALTERNATIVE # 2 - ONE 3500 KW GAS TURBINE				
DEMOLITION				****
BOILERS NO. 1,2,3,&4	4	EA	\$30,000.00	\$120,000
TURBINE DRIVEN BOILER FEED PUMP	4	EA	\$5,000.00	\$20,000 \$100,000
COAL AND ASH SILOS,CONVEYORS AND EQUIPMENT	}	LS		\$100,000
PIPING		LS		\$50,000 \$50,000
ELECTRICAL INSTRUMENT AND CONTROL		LS		
ASBESTOS ABATEMENT		LS		\$500,000
NEW CONSTRUCTION				
REMOVE AND MODIFY BOILER 5 SUPERHEATER		LS		\$50,000
BOILER, 50,000 #/ HR	2	EA	\$490,000.00	\$980,000
ECONOMIZERS	2	EA	\$25,000.00	\$50,000
BOILER FEED PUMPS .15 HP, 81 GPM,404FT.	3	EA	\$12,000.00	\$38,000
STEEL STACK, 24" DIA. 60' HIGH	2	EA	\$10,000.00	\$20,000
PIPING, VALVES, HANGERS, AND INSTALLATION		LS		\$60,000
INSTRUMENTS AND CONTROLS		LS	— I	\$150,000
CONDUIT AND CABLE		LS		\$75,000
MOTOR CONTROL CENTER	ļ	LS	-	\$40,000
MISC. ELECTRICAL AND LIGHTING	·	LS	-	\$50,000
GAS TURBINE, GENERATOR AND INSTALLATION		LS		\$1,800,000
WATER INJECTION	1	EA	\$122,725.00	\$122,725
HEAT RECOVERY STEAM GENERATOR AND INSTALLATION	1	EA	\$300,000.00	\$300,000
AIR HEATER	1	EA	\$5,463.00	\$5,463
AIR RECEIVER	1	EA	\$382.00	\$382
SWITCH GEAR	1	EA	\$75,969.00	\$75,969
CONDENSATE RECEIVER	1	EA	\$35,700.00	\$35,700
EXPANSION TANK	1	EA	\$19,444.00	\$19,444
WATER STORAGE TANK	1.		\$17,595.00	\$17,595
ABOVE GROUND TANK	1	EA	\$156,442.00	\$156,442
BELOW GROUND TANK	1	EA	\$108,375.00	\$108,375
FLASH TANK	1	EA	\$1,706.00	\$1,708
SUBTOTAL				\$4,949,801
UNDEVELOPED DESIGN DETAILS				\$742,470
OVERHEAD	1			\$853,841
PROFIT				\$569,227
TOTAL				\$7,115,339
PROBABLE COST USE				\$7,115,000

Figure 34. Initial project capital investments.

9 Conclusions

This study evaluated six primary alternatives: (1) new boilers, (2) new boilers with absorption chilling, (3) new boilers with cogeneration, (4) refurbish plant, (5) refurbish plant with absorption chiller, and (6) refurbish plant with cogeneration. Various options within these alternatives were also analyzed. A baseline or status quo option was developed, using the Status Quo model, for comparison of the alternatives to the existing situation. Life cycle cost (LCC) analyses were performed using the Life Cycle Cost in Design (LCCID) program.

Air quality regulations are the most significant environmental regulations that affected the analysis of alternatives for this study. The Philadelphia area has been designated as nonattainment for ozone (O_3) , carbon monoxide (CO), and total suspended particulate (TSP). Virtually all of the Philadelphia Consolidated Metropolitan Statistical Area (CMSA), which includes Pennsylvania, New Jersey, and Delaware, is designated a severe nonattainment area for O_3 . Air quality regulations essentially limit the combustion fuel for DPSC to natural gas. However, because of the severe nonattainment designation for ozone, DPSC also will be limited to an increase in nitrogen oxide emissions of 25 TPY to avoid RACT regulations that would require costly pollution control equipment.

Based on LCC, Alternative 2, Option 6 (new natural gas boilers and a natural gas turbine-generator with a heat recovery steam generator) is the best selection. The net present worth of this alternative is \$64,868,000. On an annual basis the turbine-generator will produce about 75 percent of all the electricity needed and reduce the peak electrical demand by about 50 percent. The HRSG will produce about 109 million pounds per year or 47 percent of the required steam. The almost \$700,000 increase in fuel costs for Alternative 2-6 is offset by the \$1,800,000 decrease in electrical costs for an estimated annual energy savings of approximately \$1,153,000.

The initial costs for Alternative 2-6 total about \$7.1 million. Unless the project is implemented in phases, it will need to be funded as a MILCON project. However, because of the substantial savings, it may be funded through ECIP. The ECIP program funding has been increased substantially over the last few years and there is a shortage of good projects, particularly cogeneration projects. The ECIP economic analysis for Alternative 2-6 is quite good, showing a first year savings of \$1,043,012;

total net discounted savings of \$13,607,660; discounted SIR of 1:98; and simple payback of 6.59 years.

Alternative 3, Option 2 was quite close to the best alternative and could be improved with a smaller absorption chiller. A 1200-ton chiller had been assumed that required a boiler to be operated to meet the chiller's energy requirements. A smaller turbine sized at about 550 ton-hr would require only the excess steam from the turbine, which is essentially free energy. If Alternative 2, Option 6 is implemented and a smaller electrically driven chiller is due for replacement, it would be economical to replace it with an absorption unit.

Another improvement may be a storage cooling system (SCS) to further reduce peak electrical demands. A preliminary feasibility analysis was made using the storage feasibility model (STOFEAS). The model shows potential for an SCS; however, a more detailed study is needed to determine if an SCS is economically feasible. The addition of a small SCS would not adversely affect Alternative 2-6.

Appendix A: Description of Buildings and Their Uses

BUILDING #	DESCRIPTION OF SPACE	TYPE OF SPACE	CAC
M-1-A M-1.	Corps of Engineer's Off. Area (FE) Warehouse	Administrative Storage	93166.3000 93164
M-2-C M-2-D	FE Maintenance Shops Warehouse	Maint & Prod Storage	93162 93164
M-3-A M-3-I M-3	Post Exchange Union Office, AFGE Warehouse	Community Facility Administrative Storage	93168 93166 93164
M-4-AA M-4 M-4	Box Shop Driver Training Classroom Warehouse	Maint & Prod Training Storage	93162 93161 93164
M-5-B M-5	Weatherometer Room Warehouse	R, D, T & E Storage	93163 93164
)			,
6-1-A 6-1-A	Ballistics Range Mail & Distribution	R, D, T & E Administrative	93163 93166
ι÷	Records Holding Area	rat	9 T 9
H	Contract Distribution	Administrative	2 7 0
-1-	Warehouse	Storage	0 T 0
÷	OMD Warehouse	- 1	7 7 0
4	OMD Office Area	Administrative Training	316
	raining eral for	Administrative	316
! -¦ ←	notar ror notare	Administrative	316
	US General Accounting Office	Administrative	316
, ,	Medical Lab	в, р, т & Е	316
 	Fritz Car Bac Booms	Д, Т &	316
, ,	Ofc of Safety & Health	Administrative	31(
,	(Under Command)	Administrative	93166
리 - 			,
7	Dispensary	spital &	93165
6-1-E	Machine Shop	7, U, T	316
17	Medical Laboratory	ر ا ا) } }

BUILDING #	DESCRIPTION OF SPACE	TYPE OF SPACE	CAC
6-2-A 6-2-A&B	~~	Administrative Administrative	93166
-2-A&	fice of	Administrative	16
-2-B&C	my Support	Administrative	16
-Z-B,	DCASR	Administrative	16
-2-	DCASMA	Administrative	7
- 1	lant	B	316
1 1	Facilities Engr Shops Facilities Fucr Div Office	Maint & Prod Administrative	316
- 1	Career Inter	4 4	316
1	Training Tower		316
8 - 8 - 5 - 5	Guesthouse Medals Assembly	Community Facility Maint & Prod	93168 93162
8-2	Warehouse (DCASR Storage Area)	Storage	93164
-		Maint & Prod	31
-1-C&	(C)	Storage	316
9-1-臣	1 (Small	Administrative	93166
-1-E/	lecom & Info	Administrative	316
-2-A&B	Directorate of Manufacturing	Maint & Prod	316
-2-B,		strat	316
-2-E&	Directorate of Subsistence	istrat	316
-3-A&	oĘ	Maint & Prod	316
-3-C&	Area	Storage	316
- 3 - E	e of Subsistence	strat	316
-3&4-	e of Medical	ist	316
-4-	Directorate of Manufacturing	& Pro	316
-4-C&	Warehouse Area	Storage	316
-4-	Ofc of Transportation & Traffic Mont	Administrative	316
9-4-E	Directorate of Med Mat'l	Administrative	93166
,	all Ofc)		
11-Garage	CP CP	Administrative	93166
31-1	Security	Administrative	316

BUILDING #	DESCRIPTION OF SPACE	TYPE OF SPACE	CAC
2-LL	Print Shop	ત્રુ	9
2-11-		Maint & Frod Administrative	93162 93166
2-LL	Uministrative Serv	Administrative	9
7 - 7	ffice of Civil	Administrative	91
2-1-	dmin Management	Administrative	9
2-1-		Administrative	91
2-1-	\sim	u	91
2-1-	<u>_</u>	Administrative	97
2-1-	ecords Man	Administrative	91
2-1-	reed	Administrative	91
2-1-D	ase Procurem	Administrative	9
四, 2,	nstal	Administrative	91
2-1-	nall Business Office	Administrative	91
2-1-E	qual	Administrative	10
2 Ro	ublic Affairs Of	Administrative	16
2-1-	ffic	Administrative	9
2-1-	ffice of	Administrative	9
2-1-H	ffice of Command	Administrative	16
2-2-A - H	irectorate of Clothi	Administrative	16
ζ.	S Army Natick R & D Center	Administrative	16
2-2 Rm 20	S Navy C&T Research F	Administrative	16
2-2-	S Coast Guard Liaison Ofc	Administrative	16
2-3	irectorate of Cl	Administrative	16
2-3-D	Air Force C&T	Administrative	16
-3 318	Air Force C&T Off	Administrative	16
2-3-	IIS Marine Corns	Adminiotroption	u
2-R	nthouses	Community Facility	o v
12	Warehouse Area	•	93164
13	4	,	(
	Directorate of Manufacturing	Maint & Production	93162.3000
14	estaur	Community Facility	93410
÷	Credit Union Office Areas	Community Facility Administrative	93168 931 66

CAC	ity 93410 ity 93168 ity 93410 ity 93410	93163	93163	93169	93169	ity 93410 93164	93162	93164 93166 93162 93162 93164	93172	93162	s 93172	ity 93172	
TYPE OF SPACE	Community Facility Community Facility Community Facility Community Facility Storage	В, D, Т & Е	В, D, Т & Е	Other Buildings	Other Buildings	Community Facility Storage	Maint & Prod	Storage Administrative Maint & Prod Maint & Prod Storage Other Buildings	Other Structures	Maint & Prod Other Buildings	Other Structures	Community Facility	
DESCRIPTION OF SPACE	Officer's Open Mess Auditorium Bowling Alley Barber Shop General Storehouse	Clothing & Textile Lab	Nonmetallic Material Facility	Scale House	Pump Station	Recreation Center US Treasury Dept. (US Mint Whse)	FE Maintenance Shop	Warehouse Area Office Area Fort George G. Meade Electnonics Shop (Weapons Maint) Defense Reutilization & Market. Ofc	Flag Pole	Fort George G. Meade Sentry Stations	Flag Pole	Waiting Shelters	
BUILDING #	14	15	16	17	18	20-A 20-B - G	22	26 26-A 26-B 26-B 28-C	29	30 31,32,37,38, 39,40,& 41	34	35,36,842	•

BUILDING #	DESCRIPTION OF SPACE	TYPE OF SPACE	CAC
46	Hazardous Material Storage	Storage	93164
49	Switch House	Other Buildings	93169
50	Gas Metering Station		93169
51	FE Maintenance Shop Asst. Insp. Gen'l for Invest. Motor Equipment Pool	Maint & Prod Administrative Maint & Prod	93162 93166 93162
130&134	Underground Fuel-Oil Storage		93172
135&136	Aboveground Fuel-Oil Storage		93172
137,138&139	Footbridges		93169

Appendix B: SHDP Model and Results

SYSTEM VARIABLES AND EXECUTION CONTROLS

PIPE DESCRIPTION SECTION

NUM NODE NODE (in) (ft) ROUGHNESS (Btu/hr-ft-F) (F) 1 CHP 8PRS 15.0 50.+ 0167E-3 .53 65.0 2 8PRS 8A 5.0 200.+ 0500E-3 .27 65.0 4 8A 2C 4.0 1311.+ 0625E-3 .27 65.0 5 2C 2 3.0 331.+ 0833E-3 .23 65.0 6 8PRS 6C 12.0 20.+ 0208E-3 .46 65.0 8 6C 61 8.0 369.+ 0312E-3 .42 65.0 9 6D1 3PRS 3 3.0 194.+ 0833E-3 .23 65.0 10 3PRS 3 3.0 194.+ 0833E-3 .23 65.0 11 6D1 6D2 8.0 88.+ 0312E-3 .42 65.0 12 6D2 15 22.5 300.+ 0100E-2 .21 65.0 13 6D2 6E 6.0 181.+ 0417E-3 .30 65.0 14 6E 5C 6E 6.0 181.+ 0417E-3 .30 65.0 15 5C 5E 8.0 275.+ 0312E-3 .42 65.0 16 6E 5C 6.0 394.+ 0417E-3 .30 65.0 17 6C 6B 14.0 112.+ 0417E-3 .30 65.0 18 6B ROG 8.0 275.+ 0312E-3 .42 65.0 20 12D 12B 2.0 237.+ 0125E-2 .22 65.0 21 12B 12 2.0 237.+ 0125E-2 .22 65.0 22 12B 12A 2.0 237.+ 0125E-2 .22 65.0 23 12A 11 2.0 144.+ 0125E-2 .22 65.0 24 ROG HART 8.0 150.+ 0312E-3 .42 65.0 25 HART 13A 6.0 56.+ 0125E-3 .42 65.0 26 6AB 6A 10.0 250.+ 0125E-2 .22 65.0 27 6B 6AB 6A 10.0 250.+ 0125E-2 .22 65.0 28 6AB 6A 10.0 250.+ 0125E-2 .22 65.0 29 6A 9D 8.0 200.+ 0125E-3 .44 66.0 30 9D 9C 6.0 294.+ 0417E-3 .30 65.0 31 9C 9W 6.0 250.+ 0312E-3 .44 66.0 31 9C 9W 6.0 250.+ 0125E-3 .44 66.0 31 9C 9W 6.0 250.+ 017E-3 .30 65.0 31 9C 9W 6.0 250.+ 0417E-3 .30 65.0 32 9C 13C 13C 6.0 350.+ 0417E-3 .30 65.0 33 9D 9E 6.0 250.+ 0417E-3 .30 65.0 34 9E 90 6.0 250.+ 0417E-3 .30 65.0 35 9E 30A 4.0 356.+ 0625E-3 .27 65.0 36 00 4PRS 4C 10.0 381.+ 0250E-3 .49 65.0	NCE	FROM	то	STATUS	DIAMETER	LEN	מיינ	RELATIVE	HEAT LOSS COEF	TEMP
1 CHP 8PRS				D171105						
2 8PRS 8A 5.0 200.+ 0. 500E-3 .27 65.0 3 8A 8 8 5.0 20.+ 0. 500E-3 .27 65.0 4 8A 2C 4.0 131.+ 0625E-3 .27 65.0 5 2C 2 3.0 331.+ 0625E-3 .27 65.0 6 8PRS 6C 12.0 238.+ 0208E-3 .46 65.0 6 8 6C 6D1 8.0 369.+ 0312E-3 .42 65.0 9 6D1 3PRS 3 3.0 194.+ 0833E-3 .23 65.0 10 3PRS 3 3.0 194.+ 0833E-3 .23 65.0 11 6D1 6D2 8.0 88.+ 0312E-3 .42 65.0 12 6D2 15 .2.5 300.+ 0100E-2 .21 65.0 13 6D2 6E 6.0 181.+ 0417E-3 .30 65.0 14 6E 5C 6.0 181.+ 0417E-3 .30 65.0 15 5C 5E 8.0 275.+ 0312E-3 .42 65.0 15 5C 5E 8.0 275.+ 0312E-3 .42 65.0 16 5E 5 5 6.0 394.+ 0417E-3 .30 65.0 17 6C 6B 14.0 112.+ 0417E-3 .30 65.0 18 6B 6B ROG 8.0 256.+ 0312E-3 .42 65.0 17 6C 6B 14.0 112.+ 0417E-3 .30 65.0 18 65.0 18 6B ROG 8.0 256.+ 0312E-3 .42 65.0 19 ROG 12D 5.0 219.+ 0500E-3 .27 65.0 19 ROG 12D 5.0 237.+ 0125E-2 .22 65.0 21 12B 12 2.0 20.+ 0125E-2 .22 65.0 22 12B 12A 2.0 237.+ 0125E-2 .22 65.0 25 HART 13A 6.0 56.+ 0417E-3 .30 65.0 31 9C 9W 6.0 294.+ 0417E-3 .30 65.0 31 9C 9W 6.0 296.+ 0417E-3 .30 65										
3 8A 8 5.0 20.+ 0. 500E-3 .27 65.0 4 8A 2C 4.0 131.+ 0. .625E-3 .27 65.0 5 2C 2 3.0 331.+ 0. .625E-3 .23 65.0 6 8PRS 6C 12.0 238.+ 0. .208E-3 .46 65.0 8 6C 6D1 8.0 369.+ 0. .312E-3 .42 65.0 9 6D1 3PRS 3.0 56.+ 0. .833E-3 .23 65.0 10 3PRS 3 3.0 194.+ 0. .833E-3 .23 65.0 11 6D1 6D2 8.0 88.+ 0. .312E-3 .42 65.0 11 6D1 6D2 8.0 88.+ 0. .312E-3 .42 65.0 12 6D2 15 5.0 300.+ 0.										
4 8A 2C 4.0 131.+ 0. .625E-3 .27 65.0 5 2C 2 3.0 331.+ 0. .833E-3 .23 65.0 6 8PRS 6C 12.0 238.+ 0. .208E-3 .46 65.0 7 6C 6 12.0 20.+ 0. .208E-3 .46 65.0 8 6C 6D1 8.0 369.+ 0. .312E-3 .42 65.0 9 6D1 3PRS 3.0 56.+ 0. .833E-3 .23 65.0 10 3PRS 3 3.0 194.+ 0. .833E-3 .23 65.0 11 6D1 6D2 8.0 88.+ 0. .312E-3 .42 65.0 12 6D2 15 2.5 300.+ 0. .100E-2 .21 65.0 12 6D2 15 2.5 300.+ 0. .417E-3 .30 65.0 14 6E 5C 6.0 181.+										
5 2C 2 3.0 331.+ 0. .838E-3 .23 65.0 6 8PRS 6C 12.0 20.+ 0. .208E-3 .46 65.0 8 6C 6D1 8.0 369.+ 0. .312E-3 .42 65.0 10 3PRS 3 3.0 56.+ 0. .833E-3 .23 65.0 10 3PRS 3 3.0 194.+ 0. .833E-3 .23 65.0 11 6D1 6D2 8.0 88.+ 0. .312E-3 .42 65.0 12 6D2 15 2.5 300.+ 0. .100E-2 .21 65.0 13 6D2 6E 6.0 181.+ 0. .417E-3 .30 65.0 14 6E 5C 6.0 181.+ 0. .417E-3 .30 65.0 15 5C 5E 8.0 275.+ 0. <										
6 8 PRS 6C 12.0 238.+ 0. .208E-3 .46 65.0 7 6C 6 12.0 20.+ 0. .208E-3 .46 65.0 8 6C 6D1 8.0 369.+ 0. .312E-3 .42 65.0 9 6D1 3PRS 3.0 156.+ 0. .833E-3 .23 65.0 10 3PRS 3.0 194.+ 0. .833E-3 .23 65.0 11 6D1 6D2 8.0 88.+ 0. .312E-3 .42 65.0 12 6D2 15 2.5 300.+ 0. .100E-2 .21 65.0 13 6D2 6E 6.0 181.+ 0. .417E-3 .30 65.0 14 6E 5C 6.0 181.+ 0. .417E-3 .30 65.0 15 5C 5E 8.0 275.+ 0. .312E-3										
7 6C 6 12.0 20.+ 0. .208E-3 .46 65.0 8 6C 6D1 8.0 369.+ 0. .312E-3 .42 65.0 9 6D1 3PRS 3.0 56.+ 0. .833E-3 .23 65.0 11 6D1 6D2 8.0 88.+ 0. .833E-3 .23 65.0 12 6D2 15 2.5 300.+ 0. .100E-2 .21 65.0 13 6D2 6E 6.0 181.+ 0. .417E-3 .30 65.0 14 6E 5C 6.0 181.+ 0. .417E-3 .30 65.0 15 5C 5E 8.0 275.+ 0. .312E-3 .42 65.0 16 5E 5 6.0 394.+ 0. .417E-3 .30 65.0 17 6C 6B 14.0 112.+ 0. <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
8 6C 6D1 8.0 369.+ 0. .312E-3 .42 65.0 9 6D1 3PRS 3.0 56.+ 0. .833E-3 .23 65.0 10 3PRS 3 3.0 194.+ 0. .833E-3 .23 65.0 11 6D1 6D2 8.0 88.+ 0. .312E-3 .42 65.0 12 6D2 15 2.5 300.+ 0. .100E-2 .21 65.0 13 6D2 6E 6.0 181.+ 0. .417E-3 .30 65.0 14 6E 5C 6.0 181.+ 0. .417E-3 .30 65.0 15 5C 5E 8.0 275.+ 0. .312E-3 .42 65.0 15 5C 5E 8.0 275.+ 0. .179E-3 .48 65.0 17 6C 6B 14.0 112.+ 0.										
9 6D1 3PRS 3										
10 3PRS 3 3.0 194.+ 0833E-3 .23 65.0 11 6D1 6D2 8.0 88.+ 0312E-3 .42 65.0 12 6D2 15 2.5 300.+ 0100E-2 .21 65.0 13 6D2 6E 6.0 181.+ 0417E-3 .30 65.0 14 6E 5C 6.0 181.+ 0417E-3 .30 65.0 15 5C 5E 8.0 275.+ 0312E-3 .42 65.0 16 5E 5 6.0 394.+ 0417E-3 .30 65.0 17 6C 6B 14.0 112.+ 0417E-3 .30 65.0 18 6B ROG 8.0 256.+ 0312E-3 .42 65.0 19 ROG 12D 5.0 219.+ 0500E-3 .27 65.0 219 ROG 12D 5.0 219.+ 0500E-3 .27 65.0 21 12B 12 2.0 237.+ 0125E-2 .22 65.0 22 12B 12A 2.0 237.+ 0125E-2 .22 65.0 23 12A 11 2.0 144.+ 0125E-2 .22 65.0 24 ROG HART 8.0 150.+ 0312E-3 .42 65.0 25 HART 13A 6.0 56.+ 0312E-3 .42 65.0 25 HART 13A 6.0 56.+ 0417E-3 .30 65.0 26 HART 14 6.0 375.+ 0125E-2 .22 65.0 26 HART 14 6.0 375.+ 0125E-2 .22 65.0 29 6A 9D 8.0 200.+ 0312E-3 .49 65.0 31 9C 9W 6.0 294.+ 0250E-3 .49 65.0 31 9C 9W 6.0 294.+ 0417E-3 .30 65.0 31 9C 9W 6.0 294.+ 0417E-3 .30 65.0 31 9C 9W 6.0 20.+ 0312E-3 .42 65.0 31 9C 9W 6.0 20.+ 0312E-3 .42 65.0 31 9C 9W 6.0 20.+ 0417E-3 .30 65.0 32 9C 13C 6.0 350.+ 0417E-3 .30 65.0 33 9D 9E 6.0 250.+ 0417E-3 .30 65.0 35 9E 30A 4.0 356.+ 04										
11 6D1 6D2 8.0 88.+ 0. .312E-3 .42 65.0 12 6D2 15 2.5 300.+ 0. .100E-2 .21 65.0 13 6D2 6E 6.0 181.+ 0. .417E-3 .30 65.0 14 6E 5C 5E 8.0 275.+ 0. .312E-3 .42 65.0 15 5C 5E 8.0 275.+ 0. .312E-3 .42 65.0 16 5E 5 6.0 394.+ 0. .417E-3 .30 65.0 17 6C 6B 14.0 112.+ 0. .179E-3 .48 65.0 18 6B ROG 8.0 256.+ 0. .312E-3 .42 65.0 19 ROG 12D 5.0 219.+ 0. .500E-3 .27 65.0 20 12D 12B 2.0 237.+ 0. .125E-2 .22 65.0 21 12B 12 2.0<										
12 6D2 15 2.5 300.+ 0100E-2 .21 65.0 13 6D2 6E 6.0 181.+ 0417E-3 .30 65.0 14 6E 5C 6.0 181.+ 0417E-3 .30 65.0 15 5C 5E 8.0 275.+ 0312E-3 .42 65.0 16 5E 5 6.0 394.+ 0179E-3 .48 65.0 17 6C 6B 14.0 112.+ 0179E-3 .48 65.0 18 6B ROG 8.0 256.+ 0312E-3 .42 65.0 19 ROG 12D 5.0 219.+ 0500E-3 .27 65.0 20 12D 12B 2.0 237.+ 0125E-2 .22 65.0 21 12B 12 2.0 20.+ 0125E-2 .22 65.0 22 12B 12A 2.0 237.+ 0125E-2 .22 65.0 23 12A 11 2.0 144.+ 0125E-2 .22 65.0 24 ROG HART 8.0 150.+ 0312E-3 .42 65.0 25 HART 13A 6.0 56.+ 0417E-3 .30 65.0 26 HART 14 6.0 375.+ 0417E-3 .30 65.0 27 6B 6AB 12.0 150.+ 0312E-3 .42 65.0 28 6AB 6A 10.0 250.+ 0417E-3 .30 65.0 29 6A 9D 8.0 200.+ 0208E-3 .46 65.0 31 9C 9W 6.0 294.+ 0417E-3 .30 65.0 31 9C 9W 6.0 250.+ 0417E-3 .30 65.0 33 9D 9E 6.0 250.+ 0417E-3 .30 65.0 34 9E 90 6.0 250.+ 0417E-3 .30 65.0 35 9E 30A 4.0 356.+ 0625E-3 .27 65.0 36 30A 30 1.5 275.+ 0167E-2 .16 65.0 37 6AB 1A RR 10.0 62.+ 0250E-3 .49 65.0 38 1A RR 4PRS 6.0 609.+ 0417E-3 .30 65.0 39 RR 4PRS 6.0 609.+ 0417E-3 .30 65.0										
13 6D2 6E 6.0 181.+ 0. .417E-3 .30 65.0 14 6E 5C 6.0 181.+ 0. .417E-3 .30 65.0 15 5C 5E 8.0 275.+ 0. .312E-3 .42 65.0 16 5E 5 6.0 394.+ 0. .417E-3 .30 65.0 17 6C 6B 14.0 112.+ 0. .179E-3 .48 65.0 18 6B ROG 8.0 256.+ 0. .179E-3 .48 65.0 19 ROG 12D 5.0 .219.+ 0. .500E-3 .27 65.0 20 12D 12B 2.0 .237.+ 0. .125E-2 .22 .65.0 21 12B 12 2.0 .237.+ 0. .125E-2 .22 .65.0 21 12B 12A 2.0 .237.+ 0. .125E-2 .22 .65.0 21 12B 12A 2.0		6D2	15							
14 6E 5C 6.0 181.+ 0. .417E-3 .30 65.0 15 5C 5E 8.0 275.+ 0. .312E-3 .42 65.0 16 5E 5 6.0 394.+ 0. .417E-3 .30 65.0 17 6C 6B 14.0 112.+ 0. .179E-3 .48 65.0 18 6B ROG 8.0 256.+ 0. .312E-3 .42 65.0 19 ROG 12D 5.0 219.+ 0. .500E-3 .27 65.0 20 12D 12B 2.0 237.+ 0. .125E-2 .22 65.0 21 12B 12 2.0 237.+ 0. .125E-2 .22 65.0 21 12B 12 2.0 237.+ 0. .125E-2 .22 65.0 22 12B 12A 2.0 237.+ 0. .125E-2 .22 65.0 23 12A 11 2.0 14										
15 5C 5E 8.0 275.+ 0. .312E-3 .42 65.0 16 5E 5 6.0 394.+ 0. .417E-3 .30 65.0 17 6C 6B 14.0 112.+ 0. .179E-3 .48 65.0 18 6B ROG 8.0 256.+ 0. .312E-3 .42 65.0 19 ROG 12D 5.0 219.+ 0. .500E-3 .27 65.0 20 12D 12B 2.0 237.+ 0. .125E-2 .22 65.0 21 12B 12 2.0 20.+ 0. .125E-2 .22 65.0 21 12B 12 2.0 20.+ 0. .125E-2 .22 65.0 23 12A 11 2.0 144.+ 0. .125E-2 .22 65.0 24 ROG HART 8.0 150.+ 0. .312E-3 .42 65.0 25 HART 134 6.0										
16 5E 5 6.0 394.+ 0. .417E-3 .30 65.0 17 6C 6B 14.0 112.+ 0. .179E-3 .48 65.0 18 6B ROG 8.0 256.+ 0. .125E-3 .42 65.0 19 ROG 12D 5.0 219.+ 0. .500E-3 .27 65.0 20 12D 12B 2.0 237.+ 0. .125E-2 .22 65.0 21 12B 12 2.0 20.+ 0. .125E-2 .22 65.0 22 12B 12A 2.0 237.+ 0. .125E-2 .22 65.0 23 12A 11 2.0 237.+ 0. .125E-2 .22 65.0 24 ROG HART 8.0 150.+ 0. .125E-2 .22 65.0 25 HART 13A 6.0 56.+ 0. .417E-3 .30 65.0 25 HART 14 6.0 <	15									
17 6C 6B 14.0 112.+ 0. .179E-3 .48 65.0 18 6B ROG 8.0 256.+ 0. .312E-3 .42 65.0 19 ROG 12D 5.0 219.+ 0. .500E-3 .27 65.0 20 12D 12B 2.0 237.+ 0. .125E-2 .22 65.0 21 12B 12 2.0 20.+ 0. .125E-2 .22 65.0 22 12B 12A 2.0 237.+ 0. .125E-2 .22 65.0 22 12B 12A 2.0 237.+ 0. .125E-2 .22 65.0 23 12A 11 2.0 144.+ 0. .125E-2 .22 65.0 24 ROG HART 8.0 150.+ 0. .127E-3 .30 65.0 25 HART 14 6.0 375.+ 0. .417E-3 .30 65.0 27 6B 6AB 12.0	16						0.			
18 6B ROG 8.0 256.+ 0. .312E-3 .42 65.0 19 ROG 12D 5.0 219.+ 0. .500E-3 .27 65.0 20 12D 12B 2.0 237.+ 0. .125E-2 .22 65.0 21 12B 12 2.0 237.+ 0. .125E-2 .22 65.0 22 12B 12A 2.0 237.+ 0. .125E-2 .22 65.0 23 12A 11 2.0 144.+ 0. .125E-2 .22 65.0 24 ROG HART 8.0 150.+ 0. .312E-3 .42 65.0 25 HART 13A 6.0 56.+ 0. .417E-3 .30 65.0 26 HART 14 6.0 375.+ 0. .417E-3 .30 65.0 27 6B 6AB 12.0 150.+ 0. .250E-3 .44 65.0 28 6AB 6A 10.0				•						
19 ROG 12D 5.0 219.+ 0. .500E-3 .27 65.0 20 12D 12B 2.0 237.+ 0. .125E-2 .22 65.0 21 12B 12 2.0 20.+ 0. .125E-2 .22 65.0 22 12B 12A 2.0 237.+ 0. .125E-2 .22 65.0 23 12A 11 2.0 144.+ 0. .125E-2 .22 65.0 24 ROG HART 8.0 150.+ 0. .312E-3 .42 65.0 25 HART 13A 6.0 56.+ 0. .417E-3 .30 65.0 26 HART 14 6.0 375.+ 0. .417E-3 .30 65.0 27 6B 6AB 12.0 150.+ 0. .208E-3 .46 65.0 28 6AB 6A 10.0 250.+ 0. .250E-3 .49 65.0 29 6A 9D 8.0	18									
20 12D 12B 2.0 237.+ 0. .125E-2 .22 65.0 21 12B 12 2.0 20.+ 0. .125E-2 .22 65.0 22 12B 12A 2.0 237.+ 0. .125E-2 .22 65.0 23 12A 11 2.0 144.+ 0. .125E-2 .22 65.0 24 ROG HART 8.0 150.+ 0. .312E-3 .42 65.0 25 HART 13A 6.0 56.+ 0. .417E-3 .30 65.0 26 HART 14 6.0 375.+ 0. .417E-3 .30 65.0 27 6B 6AB 12.0 150.+ 0. .208E-3 .46 65.0 28 6AB 6A 10.0 250.+ 0. .250E-3 .49 65.0 29 6A 9D 8.0 200.+ 0. .312E-3 .42 65.0 30 9D 9C 6.0										
21 12B 12 2.0 20.+ 0. .125E-2 .22 65.0 22 12B 12A 2.0 237.+ 0. .125E-2 .22 65.0 23 12A 11 2.0 144.+ 0. .125E-2 .22 65.0 24 ROG HART 8.0 150.+ 0. .312E-3 .42 65.0 25 HART 13A 6.0 56.+ 0. .417E-3 .30 65.0 26 HART 14 6.0 375.+ 0. .417E-3 .30 65.0 27 6B 6AB 12.0 150.+ 0. .208E-3 .46 65.0 28 6AB 6A 10.0 250.+ 0. .250E-3 .49 65.0 29 6A 9D 8.0 200.+ 0. .312E-3 .42 65.0 30 9D 9C 6.0 294.+ 0. .417E-3 .30 65.0 32 9C 13C 6.0 <										
22 12B 12A 2.0 237.+ 0. .125E-2 .22 65.0 23 12A 11 2.0 144.+ 0. .125E-2 .22 65.0 24 ROG HART 8.0 150.+ 0. .312E-3 .42 65.0 25 HART 13A 6.0 56.+ 0. .417E-3 .30 65.0 26 HART 14 6.0 375.+ 0. .417E-3 .30 65.0 26 HART 14 6.0 375.+ 0. .417E-3 .30 65.0 26 HART 14 6.0 375.+ 0. .417E-3 .30 65.0 28 6AB 6AB 12.0 150.+ 0. .208E-3 .46 65.0 28 6AB 6A 10.0 250.+ 0. .250E-3 .49 65.0 29 6A 9D 8.0 200.+ 0. .417E-3 .30 65.0 31 9C 9W 6.0				•						
23 12A 11 2.0 144.+ 0. .125E-2 .22 65.0 24 ROG HART 8.0 150.+ 0. .312E-3 .42 65.0 25 HART 13A 6.0 56.+ 0. .417E-3 .30 65.0 26 HART 14 6.0 375.+ 0. .417E-3 .30 65.0 27 6B 6AB 12.0 150.+ 0. .208E-3 .46 65.0 28 6AB 6A 10.0 250.+ 0. .250E-3 .49 65.0 29 6A 9D 8.0 200.+ 0. .312E-3 .42 65.0 30 9D 9C 6.0 294.+ 0. .417E-3 .30 65.0 31 9C 9W 6.0 20.+ 0. .417E-3 .30 65.0 32 9C 13C 6.0 350.+ 0. .417E-3 .30 65.0 33 9D 9E 6.0										
24 ROG HART 8.0 150.+ 0. .312E-3 .42 65.0 25 HART 13A 6.0 56.+ 0. .417E-3 .30 65.0 26 HART 14 6.0 375.+ 0. .417E-3 .30 65.0 27 6B 6AB 12.0 150.+ 0. .208E-3 .46 65.0 28 6AB 6A 10.0 250.+ 0. .250E-3 .49 65.0 29 6A 9D 8.0 200.+ 0. .312E-3 .42 65.0 30 9D 9C 6.0 294.+ 0. .417E-3 .30 65.0 31 9C 9W 6.0 20.+ 0. .417E-3 .30 65.0 32 9C 13C 6.0 350.+ 0. .417E-3 .30 65.0 33 9D 9E 6.0 250.+ 0. .417E-3 .30 65.0 34 9E 9O 6.0 2	23				2.0			.125E-2		
25 HART 13A 6.0 56.+ 0. .417E-3 .30 65.0 26 HART 14 6.0 375.+ 0. .417E-3 .30 65.0 27 6B 6AB 12.0 150.+ 0. .208E-3 .46 65.0 28 6AB 6A 10.0 250.+ 0. .250E-3 .49 65.0 29 6A 9D 8.0 200.+ 0. .312E-3 .42 65.0 30 9D 9C 6.0 294.+ 0. .417E-3 .30 65.0 31 9C 9W 6.0 20.+ 0. .417E-3 .30 65.0 32 9C 13C 6.0 350.+ 0. .417E-3 .30 65.0 33 9D 9E 6.0 250.+ 0. .417E-3 .30 65.0 34 9E 9O 6.0 20.+ 0. .417E-3 .30 65.0 35 9E 30A 4.0 356.	24	ROG	HART				0.			
26 HART 14 6.0 375.+ 0. .417E-3 .30 65.0 27 6B 6AB 12.0 150.+ 0. .208E-3 .46 65.0 28 6AB 6A 10.0 250.+ 0. .250E-3 .49 65.0 29 6A 9D 8.0 200.+ 0. .312E-3 .42 65.0 30 9D 9C 6.0 294.+ 0. .417E-3 .30 65.0 31 9C 9W 6.0 20.+ 0. .417E-3 .30 65.0 32 9C 13C 6.0 350.+ 0. .417E-3 .30 65.0 33 9D 9E 6.0 250.+ 0. .417E-3 .30 65.0 34 9E 9O 6.0 20.+ 0. .417E-3 .30 65.0 35 9E 30A 4.0 356.+ 0. .625E-3 .27 65.0 36 30A 30 1.5 275.+	25	HART	13A		6.0		0.			
27 6B 6AB 12.0 150.+ 0. .208E-3 .46 65.0 28 6AB 6A 10.0 250.+ 0. .250E-3 .49 65.0 29 6A 9D 8.0 200.+ 0. .312E-3 .42 65.0 30 9D 9C 6.0 294.+ 0. .417E-3 .30 65.0 31 9C 9W 6.0 20.+ 0. .417E-3 .30 65.0 32 9C 13C 6.0 350.+ 0. .417E-3 .30 65.0 33 9D 9E 6.0 250.+ 0. .417E-3 .30 65.0 34 9E 9O 6.0 20.+ 0. .417E-3 .30 65.0 35 9E 30A 4.0 356.+ 0. .625E-3 .27 65.0 36 30A 30 1.5 275.+ 0. .167E-2 .16 65.0 37 6AB 1A 8.0 188.+<	26	HART	14							
28 6AB 6A 10.0 250.+ 0. .250E-3 .49 65.0 29 6A 9D 8.0 200.+ 0. .312E-3 .42 65.0 30 9D 9C 6.0 294.+ 0. .417E-3 .30 65.0 31 9C 9W 6.0 20.+ 0. .417E-3 .30 65.0 32 9C 13C 6.0 350.+ 0. .417E-3 .30 65.0 33 9D 9E 6.0 250.+ 0. .417E-3 .30 65.0 34 9E 9O 6.0 20.+ 0. .417E-3 .30 65.0 35 9E 30A 4.0 356.+ 0. .625E-3 .27 65.0 36 30A 30 1.5 275.+ 0. .167E-2 .16 65.0 37 6AB 1A 8.0 188.+ 0. .312E-3 .42 65.0 39 RR 4PRS 6.0 69.+ </td <td>27</td> <td>6B</td> <td>6AB</td> <td></td> <td>12.0</td> <td>150.+</td> <td>0.</td> <td>.208E-3</td> <td></td> <td></td>	27	6B	6AB		12.0	150.+	0.	.208E-3		
29 6A 9D 8.0 200.+ 0. .312E-3 .42 65.0 30 9D 9C 6.0 294.+ 0. .417E-3 .30 65.0 31 9C 9W 6.0 20.+ 0. .417E-3 .30 65.0 32 9C 13C 6.0 350.+ 0. .417E-3 .30 65.0 33 9D 9E 6.0 250.+ 0. .417E-3 .30 65.0 34 9E 9O 6.0 20.+ 0. .417E-3 .30 65.0 35 9E 30A 4.0 356.+ 0. .625E-3 .27 65.0 36 30A 30 1.5 275.+ 0. .167E-2 .16 65.0 37 6AB 1A 8.0 188.+ 0. .312E-3 .42 65.0 38 1A RR 10.0 62.+ 0. .250E-3 .49 65.0 40 4PRS 4C 10.0 381.+ </td <td>28</td> <td>6AB</td> <td>6A</td> <td></td> <td>10.0</td> <td>250.+</td> <td>0.</td> <td>.250E-3</td> <td></td> <td></td>	28	6AB	6A		10.0	250.+	0.	.250E-3		
30 9D 9C 6.0 294.+ 0. .417E-3 .30 65.0 31 9C 9W 6.0 20.+ 0. .417E-3 .30 65.0 32 9C 13C 6.0 350.+ 0. .417E-3 .30 65.0 33 9D 9E 6.0 250.+ 0. .417E-3 .30 65.0 34 9E 9O 6.0 20.+ 0. .417E-3 .30 65.0 35 9E 30A 4.0 356.+ 0. .625E-3 .27 65.0 36 30A 30 1.5 275.+ 0. .167E-2 .16 65.0 37 6AB 1A 8.0 188.+ 0. .312E-3 .42 65.0 38 1A RR 10.0 62.+ 0. .250E-3 .49 65.0 39 RR 4PRS 6.0 69.+ 0. .417E-3 .30 65.0 40 4PRS 4C 10.0 381.+<		6A	9D			200.+	0.			
31 9C 9W 6.0 20.+ 0. .417E-3 .30 65.0 32 9C 13C 6.0 350.+ 0. .417E-3 .30 65.0 33 9D 9E 6.0 250.+ 0. .417E-3 .30 65.0 34 9E 9O 6.0 20.+ 0. .417E-3 .30 65.0 35 9E 30A 4.0 356.+ 0. .625E-3 .27 65.0 36 30A 30 1.5 275.+ 0. .167E-2 .16 65.0 37 6AB 1A 8.0 188.+ 0. .312E-3 .42 65.0 38 1A RR 10.0 62.+ 0. .250E-3 .49 65.0 39 RR 4PRS 6.0 69.+ 0. .417E-3 .30 65.0 40 4PRS 4C 10.0 381.+ 0. .250E-3 .49 65.0		9D	9C		6.0	294.+	0.	.417E-3		
32 9C 13C 6.0 350.+ 0. .417E-3 .30 65.0 33 9D 9E 6.0 250.+ 0. .417E-3 .30 65.0 34 9E 9O 6.0 20.+ 0. .417E-3 .30 65.0 35 9E 30A 4.0 356.+ 0. .625E-3 .27 65.0 36 30A 30 1.5 275.+ 0. .167E-2 .16 65.0 37 6AB 1A 8.0 188.+ 0. .312E-3 .42 65.0 38 1A RR 10.0 62.+ 0. .250E-3 .49 65.0 39 RR 4PRS 6.0 69.+ 0. .417E-3 .30 65.0 40 4PRS 4C 10.0 381.+ 0. .250E-3 .49 65.0		9C	9W		6.0	20.+	0.	.417E-3		
34 9E 9O 6.0 20.+ 0. .417E-3 .30 65.0 35 9E 30A 4.0 356.+ 0. .625E-3 .27 65.0 36 30A 30 1.5 275.+ 0. .167E-2 .16 65.0 37 6AB 1A 8.0 188.+ 0. .312E-3 .42 65.0 38 1A RR 10.0 62.+ 0. .250E-3 .49 65.0 39 RR 4PRS 6.0 69.+ 0. .417E-3 .30 65.0 40 4PRS 4C 10.0 381.+ 0. .250E-3 .49 65.0		9C	13C		6.0	350.+	0.	.417E-3		
34 9E 9O 6.0 20.+ 0. .417E-3 .30 65.0 35 9E 30A 4.0 356.+ 0. .625E-3 .27 65.0 36 30A 30 1.5 275.+ 0. .167E-2 .16 65.0 37 6AB 1A 8.0 188.+ 0. .312E-3 .42 65.0 38 1A RR 10.0 62.+ 0. .250E-3 .49 65.0 39 RR 4PRS 6.0 69.+ 0. .417E-3 .30 65.0 40 4PRS 4C 10.0 381.+ 0. .250E-3 .49 65.0	33	9D	9E		6.0	250.+	0.	.417E-3	.30	65.0
35 9E 30A 4.0 356.+ 0625E-3 .27 65.0 36 30A 30 1.5 275.+ 0167E-2 .16 65.0 37 6AB 1A 8.0 188.+ 0312E-3 .42 65.0 38 1A RR 10.0 62.+ 0250E-3 .49 65.0 39 RR 4PRS 6.0 69.+ 0417E-3 .30 65.0 40 4PRS 4C 10.0 381.+ 0250E-3 .49 65.0	34	9E	90		6.0	20.+	0.	.417E-3		
36 30A 30 1.5 275.+ 0. .167E-2 .16 65.0 37 6AB 1A 8.0 188.+ 0. .312E-3 .42 65.0 38 1A RR 10.0 62.+ 0. .250E-3 .49 65.0 39 RR 4PRS 6.0 69.+ 0. .417E-3 .30 65.0 40 4PRS 4C 10.0 381.+ 0. .250E-3 .49 65.0	35	9E	30A		4.0	356.+	0.	.625E-3		
37 6AB 1A 8.0 188.+ 0. .312E-3 .42 65.0 38 1A RR 10.0 62.+ 0. .250E-3 .49 65.0 39 RR 4PRS 6.0 69.+ 0. .417E-3 .30 65.0 40 4PRS 4C 10.0 381.+ 0. .250E-3 .49 65.0	36	30A	30		1.5	275.+	0.			
38 1A RR 10.0 62.+ 0. .250E-3 .49 65.0 39 RR 4PRS 6.0 69.+ 0. .417E-3 .30 65.0 40 4PRS 4C 10.0 381.+ 0. .250E-3 .49 65.0	37	6AB	1A		8.0	188.+	0.	.312E-3		
39 RR 4PRS 6.0 69.+ 0. .417E-3 .30 65.0 40 4PRS 4C 10.0 381.+ 0. .250E-3 .49 65.0	38	1A	RR		10.0	62.+	0.			
40 4PRS 4C 10.0 381.+ 0250E-3 .49 65.0	39	RR	4 PRS		6.0	69.+	0.			
	40	4 PRS	4C				0.			
	41	4C	4D		9.0	162.+	0.	.278E-3	.42	

(1)

PIPE DESCRIPTION SECTION

NCE	FROM	то	STATUS	DIAMETER	LENG	TH	RELATIVE	HEAT LOSS COEF	TEMP
NUM	NODE	NODE		(in)	(ft)	ROUGHNESS	(Btu/hr-ft-F)	(F)
42	4D	4E		8.0	175.+	0.	.312E-3	.42	65.0
43	4E	4F		7.0	150.+	0.	.357E-3	.30	65.0
44	4F	4G		6.0	162.+	0.	.417E-3	.30	65.0
45	4G	4 H		6.0	188.+	0.	.417E-3	.30	65.0
46	4H	4		4.0	125.+	0.	.625E-3	.27	65.0
47	4G	BASH		4.0	294.+	0.	.625E-3	.27	65.0
48	BASH	22		3.0	150.+	0.	.833E-3	.23	65.0
49	BASH	51		4.0	219.+	0.	.625E-3	.27	65.0
50	1A	1C		10.0	550.+	0.	.250E-3	.49	65.0
51	1C	1D		9.0	150.+	0.	.278E-3	.42	65.0
52	1D	1E		8.0	150.+	0.	.312E-3	.42	65.0
53	1E	1F		7.0	175.+	0.	.357E-3	.30	65.0
54	1F	1F1		6.0	63.+	0.	.417E-3	.30	65.0
55	1F1	1L1		1.5	150.+	0.	.167E-2	.16	65.0
56	1F	1F2		6.0	75.+	0.	.417E-3	.30	65.0
57	1F2	1L2		4.0	450.+	0.	.625E-3	.27	65.0
58	1F2	1F3		3.0	25.+	0.	.833E-3	.23	65.0
59	1F3	1L3		2.5	125.+	0.	.100E-2	.21	65.0
60	RR	2F		10.0	975.+	0.	.250E-3	.49	65.0
61	2F	ALE		10.0	420.+	0.	.250E-3	.49	65.0
62	ALE	ALE1		6.0	175.+	0.	.417E-3	.30	65.0
63	ALE1	20D		5.0	275.+	0.	.500E-3	.27	65.0
64	20D	20W		5.0	288.+	0.	.500E-3	.27	65.0
65	20D	20M		5.0	375.+	0.	.500E-3	.27	65.0
66	ALE1	26C		4.0	312.+	0.	.625E-3	.27	65.0
67	26C	26		4.0	387.+	0.	.625E-3	.27	65.0

REGULATOR AND VALVE DESCRIPTION SECTION

NCE	FROM	TO	STATUS	SIZING	CONFIGURATION	MINIMUM
NUM	NODE	NODE		COEFFICIENT	CONSTANT	PRESSURE DROP

NO REGULATORS OR VALVES IN SYSTEM

TRAP INPUT DATA

NO FAULTY TRAPS

VAULT INPUT DATA

VAULT	NODE	MAIN PIPE	MAIN PIPE	HEAT TRANSFER	ENVIROMENT TEMPERATURE
NUMBER	NAME	DIAMETER	LENGTH	COEFFICIENT	TEMPERATURE
		(in)	(ft)	(Btu/hr-ft-F)	(F)

NODE INPUT DATA

NODE NAME CHP 8 PRS 8 A 8 2 C 2 6 C 6 6 D1	PRESSURE (psig) 180.00 180.00? 5.00? 5.00? 5.00? 180.00? 180.00?	NODE FLOW (1bm/hr) 20000.? 0. -232. 0. -82. 0. -903.	NODE FLOW RETURNED .90 .90 .90 .90 .90 .90 .90	PIPE CONDS RETURNED .90 .90 .90 .90 .90 .90	LOAD CONDS TEMPERATURE 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0
3 PRS 3	5.00? 5.00?	0. -72.	.90 .90	.90 .90	150.0 150.0
6D2	180.00?	0.	.90	.90	150.0
15 6E	180.00? 180.00?	-99. 0.	.90 .90	.90 .90	150.0 150.0
5C	180.00?	0.	.90	.90	150.0
5E	6.50?	0.	.90	.90	150.0
5	6.50?	0.	.90	.90	150.0
6B	180.00?	0.	.90	.90	150.0 150.0
ROG 12D	180.00? 180.00?	0. 0.	.90 .90	.90 .90	150.0
12B	45.00?	0.	.90	.90	150.0
12	45.00?	-517.	.90	.90	150.0
12A	45.00?	0.	.90	.90	150.0
11	45.00?	-24.	.90	.90	150.0
HART	180.00?	0.	.90	.90	150.0
13A	180.00?	-589.	.90	.90	150.0
14	180.00?	-532. 0.	.90	.90 .90	150.0
6AB 6A	180.00? 180.00?	0.	.90 .90	.90	150.0 150.0
9D	180.00?	0.	.90	.90	150.0
9C	180.00?	Ö.	.90	.90	150.0
9W	180.00?	-718.	.90	.90	150.0
13C	180.00?	-589.	.90	.90	150.0
9E	180.00?	0.	.90	.90	150.0
90	180.00?	-690.	.90	.90	150.0
30A	180.00?	0.	.90	.90	150.0
30	180.00?	-227.	.90	.90	150.0
1A	180.00?	0.	.90	.90	150.0
RR	180.00?	0.	.90	.90	150.0
4 PRS 4C	180.00?	0. 0.	.90 .90	.90 .90	150.0 150.0
4C 4D	10.00? 10.00?	0.	.90	.90	150.0
4E	10.00?	0.	.90	.90	150.0
4F	10.00?	Õ.	.90	.90	150.0
4G	10.00?	0.	.90	.90	150.0
4 H	10.00?	0.	.90	.90	150.0
4	10.00?	-265.	.90	.90	150.0
BASH	5.00?	0.	.90	.90	150.0
22	5.00?	-10.	.90	.90	150.0
51	5.00?	-13.	.90	.90	150.0

1C 1D 1E 1F	10.00? 10.00? 10.00? 10.00?	0. 0. 0. 0.	.90 .90 .90	.90 .90 .90	150.0 150.0 150.0 150.0
			131		

NODE INPUT DATA

NODE NAME 1F1 1L1 1F2 1L2 1F3 1L3	PRESSURE (psig) 10.00? 10.00? 10.00? 10.00? 10.00? 10.00?	NODE FLOW (1bm/hr) 0. -94. 0. -94. 0.	NODE FLOW RETURNED .90 .90 .90 .90 .90	PIPE CONDS RETURNED .90 .90 .90 .90 .90	LOAD CONDS TEMPERATURE 150.0 150.0 150.0 150.0 150.0 150.0
2F ALE	10.00? 10.00?	0. 0.	.90 .90	.90	150.0
ALE1	5.00?	0.	.90	.90	150.0
20D	5.00?	0.	.90	.90	150.0
20W	5.00?	-120.	.90	.90	150.0
30M	5.00?	-102.	.90	.90	150.0
26C	5.00?	0.	.90	.90	150.0
26	5.00?	-96.	.90	.90	150.0

NODE CORRESPONDENCE TABLE AND LIST OF ADJACENT NODES

NODE NUMBER	NODE NAME	ADJACE	T NODE	ES (BY 1	NAME)
1	CHP	8PRS			
2	8PRS	8A	6C	CHP	
3	8A	8	2C	8PRS	
4	8	8A			
5	2C	2	8A		
6	2	2C			
7	6C	6	6D1	6B	8PRS
8	6	6C			
9	6D1	3PRS	6D2	6C	
10	3 PRS	3	6D1		
11	3	3 PRS			
12	6D2	15	6E	6D1	
13	15	6D2			
.14	6E	5C	6D2		
15	5C	5E	6E		
16	5E	5 '	5C		
17	5	5E			
18	6B	ROG	6AB	6C	
19	ROG	12D	HART	6B	

92 USACERL TR FE-94/25

20	12D	12B	ROG	
21	12B	12	12A	12D
22	12	12B		
23	12A	11	12B	
24	11	12A		
25	HART	13A	14	ROG
26	13A	HART		
27	14	HART		
28	6AB	6A	1A	6B
29	6A	9 D	6AB	
30	9D	9C	9E	6A
31	9C	9W	13C	9 D
32	9W	9C		

NODE CORRESPONDENCE TABLE AND LIST OF ADJACENT NODES

NODE NUMBER	NODE NAME	ADJACI	ENT NO	DES(BY	NAME)
33	13C	9C			
34	9E	90	30A	9D	
35	90	9E			
36	30A	30	9E		
37	30	30A			
38	1A	RR	1C	6AB	
39	RR	4 PRS	2F	1A	
40	4 PRS	4C	RR		
41	4C	4D	4 PRS		
42	4D	4 E	4C		
43	4E	4 F	4 D		
44	4F	4G	4 E		
45	4G	4 H	BASH	4F	
46	4H	4	4G		
47	4	4 H			
48	BASH	22	51	4G	
49	22	BASH			
50	51	BASH	_		
51	1C	1D	1A		
52	1D	1E	1C		
53	1E	1F	1D		
54	1F	1F1	1F2	1E	
55	1F1	1L1	1F		
56	1L1	1F1			
57	1F2	1L2	1F3	1F	
58	1L2	1F2			
59	1F3	1L3	1F2		
60	1L3	1F3			
61	2F	ALE	RR		
62	ALE	ALE1	2 F		
63	ALE1	20D	26C	ALE	
64	20D	20W	20M	ALE1	
65	20W	20D			
66	20M	20D			
67	26C	26	ALE1		
68	26	26C			

- ***** PROBLEM SUMMARY *****
 - 68 NODES IN THE SYSTEM
 - 67 PIPES IN THE SYSTEM
 - 0 VALVES OR REGULATORS
 - 0 FAULTY TRAPS
 - 0 VAULTS IN THE SYSTEM
 - 0 UNKNOWN PARAMETERS
 - 67 UNKNOWN PRESSURES
 - 1 UNKNOWN FLOWS

07/15/92 15:43:18 HC

SOLUTION COMPLETED IN 14 ITERATIONS SOME NODES MAY NOT BE BALANCED

- *** PROBLEM SUMMARY ***
- 68 NODES IN THE SYSTEM
- 67 PIPES IN THE SYSTEM
- 0 VALVES OR REGULATORS
- 0 FAULTY TRAPS
- 0 VAULTS IN THE SYSTEM
- 0 UNKNOWN PARAMETERS
- 67 UNKNOWN PRESSURES
- 1 UNKNOWN FLOWS

COMPUTED NODE DATA

NODE	PRESSURE	NODE FLOW	CONDS FLOW	FLOW LOSS	CONDS LOSS	TEMP	RESIDUAL
NAME	(psig)	(lbm/hr)	(1bm/hr)	(Btu/hr)	(Btu/hr)	(F)	(lbm/hr)
CHP	180.00	7979.9?	-4.9	.0	174.2	379.6	-35.68
8PRS	180.00?	.0	-35.4	.0	1249.0	379.6	66.47
8A	180.00?	.0	-17.6	.0	623.1	379.6	-17.16
8	180.00?	-231.9	-1.0	2714.4	35.5	379.6	-6.97
2C	180.00?	.0	-20.8	.0	733.1	379.6	33
2	179.99?	-82.3	-14.2	963.3	500.5	379.6	.01
6C	179.99?	.0	-61.0	. 0	2152.6	379.6	-62.32
6	179.99?	-903.2	-1.7	10571.8	60.5	379.6	22.20
6D1	179.99?	.0	-38.1	.0	1346.6	379.6	275.19
3 PRS	179.99?	.0	-10.7	.0	378.0	379.6	-260.88
3	179.99?	-72.0	-8.3	842.7	293.4	379.6	~.05
6D2	179.99?	.0	-28.7	.0	1014.2	379.6	-13.14
15	179.98?	-98.7	-11.7	1155.3	414.2	379.6	.03
6E	179.99?	.0	-20.2	.0	714.0	379.6	7.02
5C	179.99?	.0	-31.6	.0	1116.4	379.6	1172.59
5E	179.99?	.0	-43.5	.0	1536.5		-1181.35
5	179.99?	.0	-22.0	.0	777.1	379.6	5.16
6B	179.99?	.0	-42.9	.0	1514.0	379.6	49.02
ROG	179.99?	.0	-42.8	.0	1509.8	379.6	-2.87
12D	179.98?	.0	-20.7	.0	731.0	379.6	.81
12B	179.51?	. 0	-20.2	.0	713.1	379.4	08
12	179.48?	-516.5	8	6045.6	28.9	379.3	.02
12A	179.51?	.0	-15.6	.0	550.3	379.4	.02
1	179.51?	-24.2	-5.9	283.3	208.0	379.4	.03
HART	179.99?	.0	-35.8	.0	1264.3	379.6	39
13A	179.99?	-589.3	-3.1	6897.7	110.5	379.6	24
14	179.98?	-531.8	-20.9	6224.6	739.6	379.6	.59
6AB	179.99?	.0	-50.4	.0	1778.1	379.6	-23.40
6A	179.99?	.0	-38.5	. 0	1357.6	379.6	4.86
9D	179.98?	.0	-46.0	.0	1625.2	379.6	-4.05
9C	179.97?	.0	-37.1	.0	1309.6	379.6	12.50
9W	179.97?	-717.7	-1.1	8400.6	39.4	379.6	-10.45
13C	179.97?	-589.3	-19.6	6897.7	690.3	379.6	-1.03
9E	179.98?	.0	-33.0	.0	1164.4	379.6	6.39
90	179.98?	-689.7	-1.1	8072.8	39.4	379.6	-5.19
30A	179.97?	.0	-26.1	.0	920.9	379.6	.07
30	179.56?	-227.3	-8.2	2660.5	288.8	379.4	.00
1A	179.99?	.0	-70.5	.0	2490.7	379.6	756.27
RR	179.99?	.0	-98.5	.0	3476.8	379.6	-63.71
4PRS	179.99?	.0	-38.6	.0	1363.5	379.6	1049.99
4C	179.98?	.0	-47.4	.0	1674.7		-1038.79
4 D	179.98?	.0	-26.4	.0	930.6	379.6	-4.13
4E	179.98?	.0	-22.1	.0	779.1	379.6	-2.64
4F	179.98?	.0	-17.4	.0	615.4	379.6	-4.42
4G	179.98?	.0	-34.3	.0	1212.2	379.6	188.43
4 H	179.98?	.0	-16.8	.0	592.7	379.6	2.38 30
4	179.98?	-264.7	-6.3	3098.3	221.9	379.6	
BASH	179.98?	.0	-32.2	.0	1137.5	379.6	-187.43 78
J 5	179.98?	-10.1	-6.4	118.2	226.8	379.6	/8

USACERL TR FE-94/25

COMPUTED PIPE FLOWS AND PARAMETERS

ROM NODE FACTOR	TO NODE	STATUS	FLOW (1bm/hr)	CONDENSATE (1bm/hr)	HEAT LOSS (Btu/hr)	DIAMETER (in)	RE NUMBER	FRIC
CHP	8PRS		8010.6	9.87	8336.1	15.00	1.65E+5	1.71E-
2 8PRS	8A		343.3	20.11	16986.7	5.00	2.13E+4	2.24E-
2 8A	8	•	225.9	2.01	1698.7	5.00	1.40E+4	2.93E-
2 8A	2C		116.9	13.17	11126.3	4.00	9.05E+3	3.29E-
2 2C 2	2		96.5	28.35	23948.0	3.00	9.96E+3	3.24E-
8PRS	6C		7565.4	40.77	34438.8	12.00	1.95E+5	1.71E-
2 6C	6		927.1	3.43	2894.0	12.00	2.39E+4	2.52 E -
2 6C 2	6D1		390.2	57.72	48751.4	8.00	1.51E+4	2.84E-
6D1 2	3 PRS		-169.9	4.80	4051.6	3.00	1.75E+4	2.45E-
3PRS 2	3		80.3	16.62	14035.9	3.00	8.29E+3	3.39E-
6D1 2	6D2		246.8	13.76	11626.3	8.00	9.56E+3	3.19E-
6D2	15		110.5	23.46	19817.5	2.50	1.37E+4	3.04E-
6D2 2	6E		120.8	20.22	17080.9	6.00	6.24E+3	3.59E-
6E 2	5C		93.5	20.22	17080.9	6.00	4.83E+3	3.85E-
5C 2	5E		-1110.7	43.01	36332.4	8.00	4.30E+4	2.12E-
5E 2	5		27.2	44.02	37181.7	6.00	1.40E+3	4.65E-
6C 2	6B		6249.4	20.02	16911.0	14.00	1.38E+5	1.77E-
6B 2	ROG		1825.6	40.04	33822.0	8.00	7.07E+4	2.05E-
ROG 2	12D		604.7	22.02	18600.1	5.00	3.75E+4 2	2.38E-
12D 2	12B		583.2	19.38	16396.0	2.00	9.03E+4 2	2.37E-
12B 2	12		517.3	1.64	1383.2	2.00	8.01E+4 2	2.39E-
12B 2	12A		45.7	19.40	16390.7	2.00	7.08E+3	3.57E-
12A 2	11		30.1	11.79	9958.9	2.00	4.67E+3	3.96E-
ROG 2	HART		1180.9	23.46	19817.5	8.00	4.57E+4 2	2.22E-

	COMPUT	ED PIPE	FLOWS AND	PARAMETERS	CONTINUED			,
ROM NODE	TO NODE	STATUS	FLOW (1bm/hr)	CONDENSATE (lbm/hr)	HEAT LOSS (Btu/hr)	DIAMETER (in)	RE F NUMBER	FRIC
FACTOR HART	13A		592.2	6.26	5284.7	6.00	3.06E+4 2.4	15E-
2 HART	14		553.3	41.90	35388.3	6.00	2.86E+4 2.4	18E-
2 6B	6AB		4332.0	25.70	21705.0	12.00	1.12E+5 1.8	35 E -
2 6AB	6A		2437.7	45.62	38534.1	10.00	7.55E+4 2.0)0E-
2 6A	9D		2394.4	31.28	26423.2	8.00	9.27E+4 1.9	97E-
9D	9C		1365.8	32.84	27744.1	6.00	7.05E+4 2.3	10E-
2 9C	9W		708.4	2.23	1887.3	6.00	3.66E+4 2.3	36E-
2 9C	13C		607.8	39.10	33028.3	6.00	3.14E+4 2.4	43E-
2 9D	9E		986.6	27.93	23592.0	6.00	5.09E+4 2.2	22E-
2 9E	90		685.6	2.23	1887.4	6.00	3.54E+4 2.3	38E-
2 9E	30A		261.6	35.80	30235.3	4.00	2.03E+4 2.	72E-
2 30A	30		235.5	16.37	13836.6	1.50	4.86E+4 2.0	63E-
6AB	1A		1867.3	29.41	24838.0	8.00	7.23E+4 2.0	04E-
2 1A	RR		1295.9	11.31	9556.4	10.00	4.01E+4 2.3	26E-
2 RR	4PRS		547.5	7.71	6511.5	6.00	2.83E+4 2.	49E-
2 4PRS	4C		-541.1	69.53	58725.8	10.00	1.68E+4 2.1	11E-
2 4C	4D		450.2	25.34	21402.9	9.00	1.55E+4 2.	82 E -
2 4D	4E		428.0	27.37	23120.4	8.00	1.66E+4 2.	76E-
2 4E	4F		408.6	16.76	14155.3	7.00	1.81E+4 2.	75E-
2 4F	4G		395.6	18.10	15287.7	6.00	2.04E+4 2.	67E-
2 4G	4H		289.9	21.00	17741.3	6.00	1.50E+4 2.	87E-
2 4H	4		270.7	12.57	10616.5	4.00	2.10E+4 2.	71E-
2 4G	BASH		-117.1	29.56	24970.0	4.00	9.07E+3 2.	65E-
2 BASH 2	22		15.7·	12.85	10852.4	3.00	1.63E+3 5.	12E-

	COMPUT	ED PIPE	FLOWS AND	PARAMETERS	CONTINUED			
ROM NODE	TO NODE	STATUS	FLOW (lbm/hr)	CONDENSATE (1bm/hr)	HEAT LOSS (Btu/hr)	DIAMETER (in)	RE NUMBER	FRIC
FACTOR BASH	51		22.4	22.02	18600.1	4.00	1.74E+3	4.86E-
2 1A	1C		-255.4	100.37	84774.8	10.00	7.91E+3	2.18E-
2 1C	1D		439.8	23.46	19817.5	9.00	1.51E+4	2.83E-
2 1D	1E		382.7	23.46	19817.5	8.00	1.48E+4	2.86E-
2 1E	1F		375.4	19.55	16514.6	7.00	1.66E+4	2.79E-
2 1F 2	1F1		107.9	7.04	5945.2	6.00	5.57E+3	3.69E-
1F1	1L1		98.7	8.94	7549.3	1.50	2.04E+4	2.94E-
2 1F 2	1F2		245.8	8.38	7077.7	6.00	1.27E+4	2.99E-
1F2 2	1L2		116.4	45.25	38219.4	4.00	9.02E+3	3.29E-
1F2 2	1F3		103.0	2.14	1808.7	3.00	1.06E+4	3.19E-
1F3 2	1L3		99.1	9.78	8257.3	2.50	1.23E+4	3.11E-
RR	2 F		713.7	177.92	150282.5	10.00	2.21E+4	2.38E-
2F 2	ALE		535.4	76.64	64737.0	10.00	1.66E+4	2.75E-
ALE 2	ALE1		395.7	19.55	16514.5	6.00	2.04E+4	2.12E-
ALE1	20D		303.8	27.65	23356.2	5.00	1.88E+4	2.74E-
20D 2	20W		133.4	28.96	24460.3	5.00	8.27E+3	3.34E-
20D 2	20M		121.7	37.71	31849.4	5.00	7.54E+3	3.43E-
ALE1	26C		151.5	31.37	26498.7	4.00	1.17E+4	3.09E-
26C 2	26		115.6	38.91	32868.5	4.00	8.95E+3	3.29E-

Appendix C: BLAST Monthly Building Heating Loads

DATE	HEATING LO	HOURS M	IBTU/HR T	HDD	BLDG 1	
JAN	5.677E+09	727	7.81	31.4	33.6	
FEB	4.483E+09	672	6.67	33.1	31.9	
MAR	2.565E+09	639	4.01	43.1	21.9	
APR	1,011E+09	450	2.25	51.4	13.6	
MAY	8.386E+07	83	1.01	62.4	2.6	
JUN	0.000E+00	0	0.00	70.8	0	
JUL	0.000E+00	0	0.00	76.3	0	
AUG	0.000E+00	0	0.00	74.6	0	
SEP	0.000E+00	0	0.00	69.2	0	
OCT	5.160E+08	201	2.57	57	8	
NOV	1.938E+09	504	3.85	45.7	19.3	
DEC	4.173E+09	722	5.78	36.1	28.9	
	2.045E+10	3998	5.11			

DATE	HEATING LO	HOURS	MBTU/HR	TEMP	HDD	BLDG 1
JAN	5.677E+09	727	7.81	31.4	33.6	6.98
FEB	4.483E+09	672	6.67	33.1	31.9	6.63
MAR	2.565E+09	639	4.01	43.1	21.9	4.63
APR	1.011E+09	450	2.25	51.4	13.6	2.96
MAY	8.386E+07	83	1.01	62.4	2.6	0.76
OCT	5.160E+08	201	2.57	57	8	0.24
NOV	1.938E+09	504	3.85	45.7	19.3	0.24
DEC	4.173E+09	722	5.78	36.1	28.9	0.24
						0.24
	Regression Out	put:				1.84
Constant	ł	•	0.236199			4.11
Std Err o	of Y Est		0.620794			6.03
R Square	ed		0.939826			
•	bservations		8			
Degrees	of Freedom		6		BASE	VARIABL
Ū					0.236	0.201
X Coeffic	cient(s)	0.200586				
Std Err o	of Coef.	0.020721				

DATE	HEATING LO	HOURS M	BTU/HR TI	EMP	HDD	BLDG 2
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	2.246E+09 1.772E+09 1.011E+09 3.955E+08 3.105E+07 0.000E+00 0.000E+00 0.000E+00 0.000E+00 2.014E+08 7.630E+08 1.649E+09 8.069E+09	727 672 637 450 79 0 0 0 197 504 722	3.09 2.64 1.59 0.88 0.39 0.00 0.00 0.00 1.02 1.51 2.28	31.4 33.1 43.1 51.4 62.4 70.8 76.3 74.6 69.2 57 45.7 36.1	33.6 31.9 21.9 13.6 2.6 0 0 0 8 19.3 28.9	
DATE	HEATING LO	HOURS M	BTU/HR T	EMP	HDD	
JAN FEB MAR APR MAY OCT NOV DEC	2.246E+09 1.772E+09 1.011E+09 3.955E+08 3.105E+07 2.014E+08 7.630E+08 1.649E+09	727 672 637 450 79 197 504 722	3.09 2.64 1.59 0.88 0.39 1.02 1.51 2.28	31.4 33.1 43.1 51.4 62.4 57 45.7 36.1	33.6 31.9 21.9 13.6 2.6 8 19.3 28.9	2.76 2.62 1.83 1.17 0.30 0.09 0.09 0.09
Regression Ou Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom		0 0	.089402 .249254 .938217 .8 .6		BASE 0.089	0.09 0.72 1.62 2.38 VARIABL 0.079
X Coefficient(s) Std Err of Coef.		0.079414 0.00832				

DATE	HEATING LO	HOURS M	IBTU/HR T	EMP	HDD	BLDG 3
JAN	1.551E+09	727	2.13	31.4	33.6	
FEB	1,224E+09	672	1.82	33.1	31.9	
MAR	6.992E+08	639	1.09	43.1	21.9	
APR	2.748E+08	452	0.61	51.4	13.6	
MAY	2.232E+07	83	0.27	62.4	2.6	
JUN	0.000E+00	0	0.00	70.8	0	
JUL	0.000E+00	0	0.00	76.3	0	
AUG	0.000E+00	0	0.00	74.6	0	
SEP	0.000E+00	0	0.00	69.2	0	
OCT	1.407E+08	201	0.70	57	8	
NOV	5.286E+08	507	1.04	45.7	19.3	
DEC	1.139E+09	722	1.58	36.1	28.9	
	5.580E+09	4003	1.39			
DATE	HEATING LO	HOURS N	IBTU/HR T	FMP	HDD	
DATE	HEATING LO	110011011	1070/11117			
JAN	1.551E+09	727	2.13	31.4	33.6	1.90
FEB	1.224E+09	672	1.82	33.1	31.9	1.81
MAR	6.992E+08	639	1.09	43.1	21.9	1.26
APR	2.748E+08	452	0.61	51.4	13.6	0.81
MAY	2.232E+07	83	0.27	62.4	2.6	0.20
OCT	1.407E+08	201	0.70	57	8	0.06
NOV	5.286E+08	507	1.04	45.7	19.3	0.06
DEC	1.139E+09	722	1.58	36.1	28.9	0.06
						0.06
	Regression Out					0.50
Constant			.057753			1.12
Std Err of Y Est			.171053			1.65
R Squared		0	.939207			
No. of Observations			8		DACE	VADIADI
Degrees of Freedom			6		BASE	VARIABL
					0.058	0.055
X Coefficient(s)		0.054969				

0.005709

Std Err of Coef.

DATE	HEATING LO	HOURS M	IBTU/HR TI	EMP	HDD	BLDG 4
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	5.261E+09 4.153E+09 2.373E+09 9.335E+08 7.572E+07 0.000E+00 0.000E+00 0.000E+00 4.756E+08 1.792E+09 3.864E+09	727 672 639 452 83 0 0 0 201 504 722	7.24 6.18 3.71 2.07 0.91 0.00 0.00 0.00 0.00 2.37 3.56 5.35	31.4 33.1 43.1 51.4 62.4 70.8 76.3 74.6 69.2 57 45.7 36.1	33.6 31.9 21.9 13.6 2.6 0 0 0 8 19.3 28.9	
DATE	HEATING LO	HOURS N	1BTU/HR T	EMP	HDD	
JAN FEB MAR APR MAY OCT NOV DEC	5.261E+09 4.153E+09 2.373E+09 9.335E+08 7.572E+07 4.756E+08 1.792E+09 3.864E+09	727 672 639 452 83 201' 504 722	7.24 6.18 3.71 2.07 0.91 2.37 3.56 5.35	31.4 33.1 43.1 51.4 62.4 57 45.7 36.1	33.6 31.9 21.9 13.6 2.6 8 19.3 28.9	6.46 6.15 4.28 2.73 0.68 0.20 0.20 0.20 0.20
Regression Ou Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom X Coefficient(s) Std Err of Coef.		Ċ	0.196088 0.57628 0.940043 8 6		BASE 0.196	1.69 3.80 5.59 VARIABL 0.187

DATE	HEATING LO	HOURS I	MBTU/HR T	EMP	HDD	BLDG 6 ZONE 1
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	2.265E+06 2.538E+05 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 9.897E+03	111 21 0 0 0 0 0 0 0 0 0 3	0.02 0.01 ERR ERR 0.00 0.00 0.00 ERR ERR 0.00	31.4 33.1 43.1 51.4 62.4 70.8 76.3 74.6 69.2 57 45.7 36.1	33.6 31.9 21.9 13.6 2.6 0 0 0 8 19.3 28.9	201121
DATE	HEATING LO	HOURS N	MBTU/HR TI	EMP	HDD	
JAN FEB DEC	2.265E+06 2.538E+05 9.897E+03	111 21 3	0.02 0.01 0.00	31.4 33.1 36.1	33.6 31.9 28.9	0.02 0.01 -0.02 -0.05 -0.09 -0.10 -0.10 -0.10
Regression Out Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom		· .	0.10003 0.001719 0.979804 3 1		BASE -0.100	-0.07 -0.03 0.00 VARIABL 0.004
X Coefficient(s) Std Err of Coef.		0.003558 0.000511			5.150	0.004

DATE	HEATING	HOURS	HOURS MBTU/HR TEMP			BLDG 6 ZONE3
JAN	3.822E+09	726	5.26	31.4	33.6	201120
FEB	3.003E+09		4.61	33.1	31.9	
MAR	1.663E+09	599	2.78	43.1	21.9	
APR	6.784E+08		1.75	51.4	13.6	
MAY	6.327E+07	84	0.75	62.4	2.6	
JUN	0.000E+00	0	0.00	70.8	0	
JUL	0.000E+00	0	0.00	76.3	0	
AUG	0.000E+00	0	0.00	74.6	0	
SEP	5.144E+05	3	0.17	69.2	0	
OCT	3.082E+08	166	1.86	57	8	
NOV	1.290E+09	464	2.78	45.7	19.3	
DEC	2.824E+09	712	3.97	36.1	28.9	
	1.365E+10	3794	3.60			
DATE	HEATING	HOURS	MBTU/HR	TEMP	HDD	
JAN	3.822E+09	726	5.26	31.4	33.6	0.02
FEB	3.003E+09	652	4.61	33.1	31.9	0.01
MAR	1.663E+09	599	2.78	43.1	21.9	-0.02
APR	6.784E+08	388	1.75	51.4	13.6	-0.05
MAY	6.327E+07	84	0.75	62.4	2.6	-0.09
SEP	5.144E+05	3	0.17	69.2	0	-0.10
OCT	3.082E+08	166	1.86	57	8	-0.10
NOV	1.290E+09	464	2.78	45.7	19.3	-0.10
DEC	2.824E+09	712	3.97	36.1	28.9	-0.10
	Regression	Output:				-0.07
Constant			0.265797			-0.03
Std Err of Y Est			0.353721			0.00
R Squared			0.962902			
No. of Observations			9			
Degrees of Freedom			7		BASE	VARIABL
V 0 = = (5 = 1 = = 1/2)		0.40.4705			0.266	0.135

X Coefficient(s) Std Err of Coef.

0.134735

0.009996

	ZONE 1 WAF	REHOUSE	В	LDG 8	
DATE	HEATING LO	HOURS M	BTU/HR T	EMP	HDD
JAN	6.608E+07	62	1.07	31.4	33.6
FEB	3.616E+07	37	0.98	33.1	31.9
MAR	0.000E+00	0	0.00	43.1	21.9
APR	0.000E+00	0	0.00	51.4	13.6
MAY	0.000E+00	0	0.00	62.4	2.6
JUN	0.000E+00	0	0.00	70.8	0
JUL	0.000E+00	0	0.00	76.3	0
AUG	0.000E+00	0	0.00	74.6	0
SEP	0.000E+00	0	0.00	69.2	0
OCT	0.000E+00	0	0.00	57	8
NOV	0.000E+00	0	0.00	45.7	19.3
DEC	0.000E+00	0	0.00	36.1	28.9
	1.022E+08	99	1.03		

DATE	HEATING LO	HOURS M	IBTU/HR T	EMP	HDD
JAN	6.608E+07	62	1.07	31.4	33.6
FEB	3.616E+07	37	0.98	33.1	31.9

m = 0.05BASE = -0.62

PO 4 7979		ZONE 2		TT-1 4D	BLDG 8	
DATE JAN	HEATIN 8.51E+07	364	MBTU/HR * 0.23	31.4	HDD 33.6	
FEB	4.73E+07	227	0.23	33.1	31.9	
MAR	4.09E+06	51	0.08	43.1	21.9	
APR	0.00E+00	0	0.00	51.4	13.6	
MAY	0.00E+00	0	0.00	62.4	2.6	
JUN	0.00E+00	0	0.00	70.8	0	
JUL	0.00E+00	0	0.00	76.3	0	
AUG	0.00E+00	0	0.00	74.6	0	
SEP	0.00E+00	0	0.00 0.00	69.2 57	0 8	
OCT NOV	0.00E+00 1.08E+06	18	0.06	45.7	19.3	
DEC	2.88E+07	202	0.14	36.1	28.9	
	1.66E+08	862	0.19			
DATE	HEATIN	HOURS	MBTU/HR	TEMP	HDD	
DAIL	TILATIN	1100110	WID? On II V	1 2.7711	1100	
JAN	8.51E+07	364	0.23	31.4	33.6	0.22
FEB	4.73E+07	227	0.21	33.1	31.9	0.20
MAR	4.09E+06	51	0.08	43.1	21.9	0.08
NOV	1.08E+06	18	0.06	45.7	19.3	-0.02
DEC	2.88E+07	202	0.14	36.1	28.9	-0.15 -0.18
						-0.18 -0.18
						-0.18
						-0.18
	Regression	n Output:				-0.08
Constant		п оафа	-0.18059			0.05
Std Err o			0.016512			0.17
R Square			0.964973			
	oservations		5			
Degrees	of Freedom		3		BASE	VARIABL
	•				-0.181	0.012
X Coeffice Std Err o		0.012003 0.00132				

	ZONE 1 WAF	REHOUSE BI	LDG 9		
DATE	HEATING LO	HOURS M	BTU/HR T	EMP	HDD
JAN	6.943E+09	720	9.64	31.4	33.6
FEB	5.407E+09	672	8.05	33.1	31.9
MAR	2.899E+09	606	4.78	43.1	21.9
APR	9.875E+08	392	2.52	51.4	13.6
MAY	2.925E+07	20	1.46	62.4	2.6
JUN	0.000E+00	0	0.00	70.8	0
JUL	0.000E+00	0	0.00	76.3	0
AUG	0.000E+00	0	0.00	74.6	0
SEP	0.000E+00	0	0.00	69.2	0
OCT	4,792E+08	151	3.17	57	8
NOV	2.176E+09	454	4.79	45.7	19.3
DEC	5.024E+09	712	7.06	36.1	28.9
	2.394E+10	3727	6.42		
	2.004LT 10	UILI	Ų, 1 ∠		

DATE	HEATING LO	HOURS	MBTU/HR	TEMP	HDD	
JAN	6.943E+09	720	9.64	31.4	33.6	8.48
FEB	5.407E+09	672	8.05	33.1	31.9	8.07
MAR	2.899E+09	606	4.78	43.1	21.9	5.65
APR	9.875E+08	392	2.52	51.4	13.6	3.64
MAY	2.925E+07	20	1.46	62.4	2.6	0.99
OCT	4.792E+08	151	3.17	57	8	0.36
NOV	2.176E+09	454	4.79	45.7	19.3	0.36
DEC	5.024E+09	712	7.06	36.1	28.9	0.36
						0.36
	Regression Ou	tput:				2.29
Constant			0.359711			5.02
Std Err o	f Y Est		0.86747			7.34
R Square	ed .		0.920631			
No. of Ol	oservations		8			
Degrees	of Freedom		6		BASE	VARIABL
					0.360	0.242
X Coeffic	zient(s)	0.241549				
Std Err o	f Coef.	0.028954				

X Coefficient(s) Std Err of Coef. 0.075016 0.008991

DATE.	_	ONE 2 OF HOURS M		LDG 9 EMP	HDD	
DATE JAN	HEATING 1.824E+09	620	2.94	31.4	33.6	
FEB	1.390E+09	542	2.56	33.1	31.9	
MAR	6.033E+08	392	1.54	43.1	21.9	
APR	1.647E+08	207	0.80	51.4	13.6	
MAY	2.287E+06	6	0.38	62.4	2.6	
JUN	0.000E+00	0	0.00	70.8	0	
JUL	0.000E+00	0	0.00	76.3	0	
AUG	0.000E+00	0	0.00	74.6	0	
SEP	0.000E+00	0	0.00	69.2	0	
OCT	6.791E+07	6 5	1.04	57	8	
NOV	4.377E+08	318	1.38	45.7	19.3	
DEC	1.237E+09	586	2.11	36.1	28.9	
	5.727E+09	2736	2.09			
					LIDD	
DATE	HEATING	HOURS M	IBTU/HR I	FWH	HDD	
JAN -						
UMIN :	1,824E+09	620	2.94	31.4	33.6	2.62
FEB	1.824E+09 1.390E+09	620 542	2.94 2.56	31.4 33.1	33.6 31.9	2.49
		542 392	2.56 1.54	33.1 43.1	31.9 21.9	2.49 1.74
FEB	1.390E+09	542	2.56 1.54 0.80	33.1 43.1 51.4	31.9 21.9 13.6	2.49 1.74 1.12
FEB MAR APR MAY	1.390E+09 6.033E+08 1.647E+08 2.287E+06	542 392 207 6	2.56 1.54 0.80 0.38	33.1 43.1 51.4 62.4	31.9 21.9 13.6 2.6	2.49 1.74 1.12 0.29
FEB MAR APR MAY OCT	1.390E+09 6.033E+08 1.647E+08 2.287E+06 6.791E+07	542 392 207 6 65	2.56 1.54 0.80 0.38 1.04	33.1 43.1 51.4 62.4 57	31.9 21.9 13.6 2.6 8	2.49 1.74 1.12 0.29 0.10
FEB MAR APR MAY OCT NOV	1.390E+09 6.033E+08 1.647E+08 2.287E+06 6.791E+07 4.377E+08	542 392 207 6 65 318	2.56 1.54 0.80 0.38 1.04 1.38	33.1 43.1 51.4 62.4 57 45.7	31.9 21.9 13.6 2.6 8 19.3	2.49 1.74 1.12 0.29 0.10 0.10
FEB MAR APR MAY OCT	1.390E+09 6.033E+08 1.647E+08 2.287E+06 6.791E+07	542 392 207 6 65	2.56 1.54 0.80 0.38 1.04	33.1 43.1 51.4 62.4 57	31.9 21.9 13.6 2.6 8	2.49 1.74 1.12 0.29 0.10 0.10 0.10
FEB MAR APR MAY OCT NOV	1.390E+09 6.033E+08 1.647E+08 2.287E+06 6.791E+07 4.377E+08 1.237E+09	542 392 207 6 65 318 586	2.56 1.54 0.80 0.38 1.04 1.38	33.1 43.1 51.4 62.4 57 45.7	31.9 21.9 13.6 2.6 8 19.3	2.49 1.74 1.12 0.29 0.10 0.10 0.10
FEB MAR APR MAY OCT NOV DEC	1.390E+09 6.033E+08 1.647E+08 2.287E+06 6.791E+07 4.377E+08 1.237E+09	542 392 207 6 65 318 586	2.56 1.54 0.80 0.38 1.04 1.38 2.11	33.1 43.1 51.4 62.4 57 45.7	31.9 21.9 13.6 2.6 8 19.3	2.49 1.74 1.12 0.29 0.10 0.10 0.10 0.10
FEB MAR APR MAY OCT NOV DEC	1.390E+09 6.033E+08 1.647E+08 2.287E+06 6.791E+07 4.377E+08 1.237E+09 Regression	542 392 207 6 65 318 586 Output:	2.56 1.54 0.80 0.38 1.04 1.38 2.11	33.1 43.1 51.4 62.4 57 45.7	31.9 21.9 13.6 2.6 8 19.3	2.49 1.74 1.12 0.29 0.10 0.10 0.10 0.70 1.54
FEB MAR APR MAY OCT NOV DEC Constant Std Err of	1.390E+09 6.033E+08 1.647E+08 2.287E+06 6.791E+07 4.377E+08 1.237E+09 Regression t	542 392 207 6 65 318 586 Output:	2.56 1.54 0.80 0.38 1.04 1.38 2.11	33.1 43.1 51.4 62.4 57 45.7	31.9 21.9 13.6 2.6 8 19.3	2.49 1.74 1.12 0.29 0.10 0.10 0.10 0.10
FEB MAR APR MAY OCT NOV DEC Constant Std Err of R Square	1.390E+09 6.033E+08 1.647E+08 2.287E+06 6.791E+07 4.377E+08 1.237E+09 Regression t	542 392 207 6 65 318 586 Output:	2.56 1.54 0.80 0.38 1.04 1.38 2.11 .095868 .269382	33.1 43.1 51.4 62.4 57 45.7	31.9 21.9 13.6 2.6 8 19.3	2.49 1.74 1.12 0.29 0.10 0.10 0.10 0.70 1.54
FEB MAR APR MAY OCT NOV DEC Constant Std Err of R Square No. of O	1.390E+09 6.033E+08 1.647E+08 2.287E+06 6.791E+07 4.377E+08 1.237E+09 Regression t	542 392 207 6 65 318 586 Output:	2.56 1.54 0.80 0.38 1.04 1.38 2.11	33.1 43.1 51.4 62.4 57 45.7	31.9 21.9 13.6 2.6 8 19.3	2.49 1.74 1.12 0.29 0.10 0.10 0.10 0.70 1.54

110 USACERL TR FE-94/25

DATE	HEATING LO	HOURS MBTU/HR TEMP			HDD	BLDG 11
JAN	8.101E+07	687	0.12	31.4	33.6	
FEB	6.275E+07	610	0.10	33.1	31.9	
MAR	3.419E+07	502	0.07	43.1	21.9	
APR	1.359E+07	296	0.05	51.4	13.6	
MAY	8.816E+05	41	0.02	62.4	2.6	
JUN	0.000E+00	0	0.00	70.8	0	
JUL	0.000E+00	0	0.00	76.3	0	
AUG	0.000E+00	0	0.00	74.6	0	
SEP	0.000E+00	0	0.00	69.2	0	
OCT	6.229E+06	121	0.05	57	8	
NOV	2.799E+07	424	0.07	45.7	19.3	
DEC	6.231E+07	659	0.09	36.1	28.9	
	2.890E+08	3340	0.09			

DATE	HEATING LO	HOURS N	ABTU/HR T	HDD		
JAN	8.101E+07	687	0.12	31.4	33.6	0.11
FEB	6.275E+07	610	0.10	33.1	31.9	0.10
MAR	3.419E+07	502	0.07	43.1	21.9	0.08
APR	1.359E+07	296	0.05	51.4	13.6	0.05
MAY	8.816E+05	41	0.02	62.4	2.6	0.02
OCT	6.229E+06	121	0.05	57	8	0.02
NOV	2.799E+07	424	0.07	45.7	19.3	0.02
DEC	6.231E+07	659	0.09	36.1	28.9	0.02
						0.02
	Regression Out	out:				0.04
Constant		0	.015832			0.07
Std Err o	f Y Est	O	.008243			0.10
R Square	ed	0	.943892			
	oservations		8			
	of Freedom		6		BASE	VARIABL
•					0.016	0.003
V 0 "		0.000704				

X Coefficient(s) 0.002764 Std Err of Coef. 0.000275

DATE	HEATING LO	HOURS M	IBTU/HR TE	EMP I	HDD E	BLDG 12
IANI	2.219E+09	709	3.13	31.4	33.6	
JAN	1.722E+09	634	2.72	33.1	31.9	
FEB	9.280E+08	532	1.74	43.1	21.9	
MAR	3.707E+08	314	1.18	51.4	13.6	
APR	2.976E+07	57	0.52	62.4	2.6	
MAY	0.000E+00	0	0.00	70.8	0	
JUN	0.000E+00	0	0.00	76.3	0	
JUL	0.000E+00	0	0.00	74.6	0	
AUG	2,222E+05	2	0.11	69.2	0	
SEP	1,720E+08	133	1.29	57	8	
OCT		436	1.71	45.7	19.3	•
NOV	7.474E+08 1.662E+09	678	2.45	36.1	28.9	
DEC	1.0020403	0/0	2.10			
	7.851E+09	3495	2.25			
DATE	HEATING LO	HOURS N	MBTU/HR T	EMP	HDD	
		700	0.40	21/	22 6	289
JAN	2,219E+09	709	3.13	31.4	33.6 31.9	2.89 2.76
FEB	1.722E+09	634	2.72	33.1	31.9	2.76
FEB MAR	1.722E+09 9.280E+08	634 532	2.72 1.74	33.1 43.1	31.9 21.9	2.76 1.98
FEB MAR APR	1.722E+09 9.280E+08 3.707E+08	634 532 314	2.72 1.74 1.18	33.1 43.1 51.4	31.9 21.9 13.6	2.76 1.98 1.33
FEB MAR APR MAY	1.722E+09 9.280E+08 3.707E+08 2.976E+07	634 532 314 57	2.72 1.74 1.18 0.52	33.1 43.1 51.4 62.4	31.9 21.9 13.6 2.6	2.76 1.98 1.33 0.47
FEB MAR APR MAY SEP	1.722E+09 9.280E+08 3.707E+08 2.976E+07 2.222E+05	634 532 314 57 2	2.72 1.74 1.18 0.52 0.11	33.1 43.1 51.4 62.4 69.2	31.9 21.9 13.6 2.6 0	2.76 1.98 1.33 0.47 0.26
FEB MAR APR MAY SEP OCT	1.722E+09 9.280E+08 3.707E+08 2.976E+07 2.222E+05 1.720E+08	634 532 314 57 2 133	2.72 1.74 1.18 0.52 0.11 1.29	33.1 43.1 51.4 62.4 69.2 57	31.9 21.9 13.6 2.6 0 8	2.76 1.98 1.33 0.47 0.26 0.26
FEB MAR APR MAY SEP OCT NOV	1.722E+09 9.280E+08 3.707E+08 2.976E+07 2.222E+05 1.720E+08 7.474E+08	634 532 314 57 2 133 436	2.72 1.74 1.18 0.52 0.11 1.29 1.71	33.1 43.1 51.4 62.4 69.2 57 45.7	31.9 21.9 13.6 2.6 0 8 19.3	2.76 1.98 1.33 0.47 0.26 0.26 0.26
FEB MAR APR MAY SEP OCT	1.722E+09 9.280E+08 3.707E+08 2.976E+07 2.222E+05 1.720E+08 7.474E+08 1.662E+09	634 532 314 57 2 133 436 678	2.72 1.74 1.18 0.52 0.11 1.29	33.1 43.1 51.4 62.4 69.2 57	31.9 21.9 13.6 2.6 0 8	2.76 1.98 1.33 0.47 0.26 0.26 0.26
FEB MAR APR MAY SEP OCT NOV DEC	1.722E+09 9.280E+08 3.707E+08 2.976E+07 2.222E+05 1.720E+08 7.474E+08 1.662E+09 Regression Ou	634 532 314 57 2 133 436 678	2.72 1.74 1.18 0.52 0.11 1.29 1.71 2.45	33.1 43.1 51.4 62.4 69.2 57 45.7	31.9 21.9 13.6 2.6 0 8 19.3	2.76 1.98 1.33 0.47 0.26 0.26 0.26 0.26 0.89
FEB MAR APR MAY SEP OCT NOV DEC	1.722E+09 9.280E+08 3.707E+08 2.976E+07 2.222E+05 1.720E+08 7.474E+08 1.662E+09 Regression Out	634 532 314 57 2 133 436 678	2.72 1.74 1.18 0.52 0.11 1.29 1.71 2.45	33.1 43.1 51.4 62.4 69.2 57 45.7	31.9 21.9 13.6 2.6 0 8 19.3	2.76 1.98 1.33 0.47 0.26 0.26 0.26 0.26 0.89 1.77
FEB MAR APR MAY SEP OCT NOV DEC Constan Std Err c	1.722E+09 9.280E+08 3.707E+08 2.976E+07 2.222E+05 1.720E+08 7.474E+08 1.662E+09 Regression Out	634 532 314 57 2 133 436 678	2.72 1.74 1.18 0.52 0.11 1.29 1.71 2.45 0.264806 0.217821	33.1 43.1 51.4 62.4 69.2 57 45.7	31.9 21.9 13.6 2.6 0 8 19.3	2.76 1.98 1.33 0.47 0.26 0.26 0.26 0.26 0.89
FEB MAR APR MAY SEP OCT NOV DEC Constan Std Err o R Squar	1.722E+09 9.280E+08 3.707E+08 2.976E+07 2.222E+05 1.720E+08 7.474E+08 1.662E+09 Regression Out	634 532 314 57 2 133 436 678	2.72 1.74 1.18 0.52 0.11 1.29 1.71 2.45 0.264806 0.217821 0.958325	33.1 43.1 51.4 62.4 69.2 57 45.7	31.9 21.9 13.6 2.6 0 8 19.3	2.76 1.98 1.33 0.47 0.26 0.26 0.26 0.26 0.89 1.77
FEB MAR APR MAY SEP OCT NOV DEC Constan Std Err o R Squar No. of O	1.722E+09 9.280E+08 3.707E+08 2.976E+07 2.222E+05 1.720E+08 7.474E+08 1.662E+09 Regression Out t of Y Est ed	634 532 314 57 2 133 436 678	2.72 1.74 1.18 0.52 0.11 1.29 1.71 2.45 0.264806 0.217821 0.958325	33.1 43.1 51.4 62.4 69.2 57 45.7	31.9 21.9 13.6 2.6 0 8 19.3	2.76 1.98 1.33 0.47 0.26 0.26 0.26 0.26 0.89 1.77
FEB MAR APR MAY SEP OCT NOV DEC Constan Std Err o R Squar No. of O	1.722E+09 9.280E+08 3.707E+08 2.976E+07 2.222E+05 1.720E+08 7.474E+08 1.662E+09 Regression Out	634 532 314 57 2 133 436 678	2.72 1.74 1.18 0.52 0.11 1.29 1.71 2.45 0.264806 0.217821 0.958325	33.1 43.1 51.4 62.4 69.2 57 45.7	31.9 21.9 13.6 2.6 0 8 19.3 28.9	2.76 1.98 1.33 0.47 0.26 0.26 0.26 0.26 0.89 1.77 2.52

X Coefficient(s) 0.078095 Std Err of Coef. 0.006155

DATE	HEATING LO	HOURS	MBTU/HR TI	EMP	HDD	BLDG 13
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	2.050E+09 1.553E+09 7.451E+08 2.446E+08 7.526E+06 0.000E+00 0.000E+00 0.000E+00 1.213E+08 6.139E+08 1.475E+09	620 537 418 242 15 0 0 0 90 358 586	3.31 2.89 1.78 1.01 0.50 0.00 0.00 0.00 1.35 1.71 2.52	31.4 33.1 43.1 51.4 62.4 70.8 76.3 74.6 69.2 57 45.7 36.1	33.6 31.9 21.9 13.6 2.6 0 0 0 8 19.3 28.9	
DATE	HEATING LO	HOURS I	MBTU/HR TI	EMP	HDD	
JAN FEB MAR APR MAY OCT NOV DEC	2.050E+09 1.553E+09 7.451E+08 2.446E+08 7.526E+06 1.213E+08 6.139E+08 1.475E+09	620 537 418 242 15 90 358 586	3.31 2.89 1.78 1.01 0.50 1.35 1.71 2.52	31.4 33.1 43.1 51.4 62.4 57 45.7 36.1	33.6 31.9 21.9 13.6 2.6 8 19.3 28.9	2.99 2.85 2.04 1.37 0.47 0.26 0.26 0.26 0.26
		· (0.260151 0.290664 0.921285 8 6		BASE 0.260	0.91 1.83 2.61 VARIABL 0.081
X Coeffici Std Err of		0.081301 0.009702				

DATE	HEATING LO	HOURS M	IBTU/HR TI	EMP	HDD	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	1.358E+09 1.067E+09 5.915E+08 2.502E+08 2.505E+07 0.000E+00 0.000E+00 4.257E+05 1.119E+08 4.664E+08 1.013E+09	700 621 543 346 80 0 0 4 154 447 669	1.94 1.72 1.09 0.72 0.31 0.00 0.00 0.00 0.11 0.73 1.04 1.51	31.4 33.1 43.1 51.4 62.4 70.8 76.3 74.6 69.2 57 45.7 36.1	33.6 31.9 21.9 13.6 2.6 0 0 0 8 19.3 28.9	
DATE	4.883E+09 HEATING LO	3564 HOURS N	1.37 //BTU/HR T	EMP	HDD	
	f Y Est	·	1.94 1.72 1.09 0.72 0.31 0.11 0.73 1.04 1.51 0.15003 0.113345 0.970915	31.4 33.1 43.1 51.4 62.4 69.2 57 45.7 36.1	33.6 31.9 21.9 13.6 2.6 0 8 19.3 28.9	1.80 1.71 1.22 0.82 0.28 0.15 0.15 0.15 0.54 1.09 1.57
X Coeffic Std Err o	ient(s)	0.048962 0.003203	·		0.150	0.049

0.41

0.59

VARIABL

0.018

BASE

0.060

DATE	HEATING LO	HOURS M	1BTU/HR T	EMP	HDD	BLDG 15
1451	0.7005.00	F44	0.70	01.4	22.0	
JAN	3.720E+08	511	0.73	31.4	33.6	
FEB	3.030E+08	472	0.64	33.1	31.9	
MAR	1.855E+08	442	0.42	43.1	21.9	
APR	8.867E+07	316	0.28	51.4	13.6	
MAY	1.164E+07	100	0.12	62.4	2.6	
JUN	0.000E+00	0	0.00	70.8	0	
JUL	0.000E+00	0	0.00	76.3	0	
AUG	0.000E+00	0	0.00	74.6	0	
SEP	6.145E+05	10	0.06	69.2	0	
OCT	3.654E+07	147	0.25	57	8	
NOV	1.456E+08	373	0.39	45.7	19.3	
DEC	2.949E+08	516	0.57	36.1	28.9	
	1.438E+09	2887	0.50			
	1.4000.703	2.007	0.50			
DATE	HEATING LO	HOURS M	IBTU/HR TI	EMP	HDD	
JAN	3.720E+08	511	0.73	31.4	33.6	0.67
FEB	3.030E+08	472	0.64	33.1	31.9	0.64
MAR	1.855E+08	442	0.42	43.1	21.9	0.46
APR	8.867E+07	316	0.28	51.4	13.6	0.31
MAY	1.164E+07	100	0.12	62.4	2.6	0.11
SEP	6.145E+05	10	0.06	69.2	0	0.06
OCT	3.654E+07	147	0.25	57	8	0.06
NOV	1.456E+08	373	0.39	45.7	19.3	0.06
DEC	2.949E+08	516	0.57	36.1	28.9	0.06

0.059871

0.03378

0.98125

9 7

X Coefficient(s) 0.018271 Std Err of Coef. 0.000955

Regression Output:

Constant

R Squared

Std Err of Y Est

No. of Observations Degrees of Freedom

ZONE 1 WAREHOUSE BLDG 20							
DATE	HEATING LO	HOURS M	BTU/HR TI	EMP	HDD		
JAN	1.436E+09	727	1.98	31.4	33.6		
FEB	1.133E+09	672	1.69	33.1	31.9		
MAR	6.460E+08	637	1.01	43.1	21.9		
APR .	2.527E+08	451	0.56	51.4	13.6		
MAY	1.974E+07	79	0.25	62.4	2.6		
JUN	0.000E+00	0	0.00	70.8	0		
JUL	0.000E+00	0	0.00	76.3	0		
AUG	0.000E+00	0	0.00	74.6	0		
SEP	0.000E+00	0	0.00	69.2	0		
OCT	1.288E+08	196	0.66	57	8		
NOV	4.877E+08	503	0.97	45.7	19.3		
DEC	1.054E+09	721	1.46	36.1	28.9		
	5.158E+09	3986	1.29 ⁻				

DATE	HEATING LO	HOURS N	/BTU/HR TI	EMP	HDD	
JAN	1.436E+09	727	1.98	31.4	33.6	1.76
FEB	1.133E+09	672	1.69	33.1	31.9	1.68
MAR	6.460E+08	637	1.01	43.1	21.9	1.17
APR	2.527E+08	451	0.56	51.4	13.6	0.75
MAY	1.974E+07	79	0.25	62.4	2.6	0.19
OCT	1.288E+08	196	0.66	57	. 8	0.06
NOV	4.877E+08	503	0.97	45.7	19.3	0.06
DEC	1.054E+09	721	1.46	36.1	28.9	0.06
						0.06
	Regression Out	put:				0.46
Constant	· ·	•	0.057428			1.04
Std Err o	f Y Est	(0.160163			1.52
R Square	ed .	().937649			
•	oservations		8			
Degrees	of Freedom		6		BASE	VARIABL
					0.057	0.051
X Coeffic	cient(s)	0.050781				
Std Err o	, , ,	0.005346				

DATE	HEATIN		YM //BTU/HR T	EMD	BLDG 20 HDD
JAN	2.99E+09	744	4.02	31.4	33.6
FEB	2.45E+09	672	3.64	33.1	31.9
MAR	1.70E+09	731	2.33	43.1	21.9
APR	9.72E+08	662	1.47	51.4	13.6
MAY	2.63E+08	380	0.69	62.4	2.6
JUN	1.04E+07	35	0.30	70.8	0
JUL	0.00E+00	0	0.00	76.3	0
AUG	0.00E+00	0	0.00	74.6	0
SEP	4.23E+07	134	0.32	69.2	0
OCT	5.37E+08	508	1.06	57	8
NOV	1.36E+09	680	2.00	45.7	19.3
DEC	2.39E+09	744	3.22	36.1	28.9
	1.27E+10	5290	2.41		

DATE	HEATIN	HOURS M	IBTU/HR T	EMP	HDD	
JAN	2.99E+09	744	4.02	31.4	33.6	
FEB	2.45E+09	672	3.64	33.1	31.9	3.74
MAR	1.70E+09	731	2.33	43.1	21.9	3.56
APR	9.72E+08	662	1.47	51.4	13.6	2.52
MAY	2.63E+08	380	0.69	62.4	2.6	1.66
JUN	1.04E+07	35	0.30	70.8	0	0.51
SEP	4.23E+07	134	0.32	69.2	0	0.24
OCT	5.37E+08	508	1.06	57	8	0.24
NOV	1.36E+09	680	2.00	45.7	19.3	0.24
DEC	2.39E+09	744	3.22	36.1	28.9	0.24
	Regression	Output:			•	1.07
Constan	it	0.	240791			2.25
Std Err	of Y Est	0.	181842			3.25
R Squar	ed	0.	984358			
No. of Observations			10			
Degrees	of Freedom		8		BASE	VARIABL
_					0.241	0.104

X Coefficient(s) Std Err of Coef.

0.104107 0.00464

DATE	HEATING LO	HOURS	MBTU/HR	TEMP	HDD	BLDG 26
JAN	1.922E+09	727	2.64	31.4	33.6	
FEB	1.517E+09	672	2.26	33.1	31.9	
MAR	8.661E+08	638	1.36	43.1	21.9	
APR	3.398E+08	452	0.75	51.4	13.6	
MAY	2.707E+07	82	0.33	62.4	2.6	
JUN	0.000E+00	0	0.00	70.8	0	
JUL	0.000E+00	0	0.00	76.3	0	
AUG	0.000E+00	0	0.00	74.6	0	
SEP	0.000E+00	0	ERR	69.2	0	
OCT	1.733E+08	200	0.87	57	8	
NOV	6.547E+08	505	1.30	45.7	19.3	
DEC	1.412E+09	722	1.96	36.1	28.9	
	6.912E+09	3998	1.73			
DATE	HEATING LO	HOURS	MBTU/HR	TEMP	HDD	
1451	1.000=.00	707	0.04	04.4	22.0	
JAN	1.922E+09	727	2.64	31.4	33.6	2.36
FEB	1.517E+09	672	2.26	33.1	31.9	2.25
MAR APR	8.661E+08	638 452	1.36 0.75	43.1	21.9 13.6	1.56
MAY	3.398E+08 2.707E+07	432 82	0.75	51.4		1.00 0.25
OCT	1.733E+08	200	0.33	62.4 57	2.6 8	0.25
NOV	6.547E+08	505	1.30	45.7	19.3	0.07
DEC	1.412E+09	722	1.96	36.1	28.9	0.07
DEC	1.4126409	122	1.90	30.1	20.9	0.07
	Regression Ou	tput:				0.62
Constant			0.069821			1.39
Std Err of	Y Est		0.211263			2.04
R Square	d		0.939747			
	servations		8			
Degrees of	of Freedom		6		BASE	VARIABL
					0.070	0.068
X Coeffici		0.068214				
Std Err of	Coef.	0.007052				

DATE	HEATING LO	HOURS	MBTU/HR	TEMP	HDD	BLDG 30
JAN	1.602E+09	709	2.26	31.4	33.6	
FEB	1.209E+09	653	1.85	33.1	31.9	
MAR	5.839E+08	537	1.09	43.1	21.9	
APR	1.520E+08	271	0.56	51.4	13.6	
MAY	5.692E+06	17	0.33	62.4	2.6	
JUN	0.000E+00	0	0.00	70.8	0	
JUL	0.000E+00	0	0.00	76.3	0	
AUG	0.000E+00	0	0.00	74.6	0	
SEP	0.000E+00	0	0.00	69.2	0	
OCT	9.781E+07	116	0.84	57	8	
NOV	4.505E+08	415	1.09	45.7	19.3	
DEC	1.101E+09	689	1.60	36.1	28.9	
	5.202E+09	3407	1.53			
DATE	HEATING LO	HOURS	MBTU/HR	TEMP	HDD	
JAN	1.602E+09	709	2.26	31.4	33.6	1.95
FEB	1.209E+09	653	1.85	33.1	31.9	1.85
MAR	5.839E+08	537	1.09	43.1	21.9	1.31
APR	1.520E+08	271	0.56	51.4	13.6	0.85
MAY	5.692E+06	17	0.33	62.4	2.6	0.25
OCT	9.781E+07	116	0.84	57	8	0.11
NOV	4.505E+08	415	1.09	45.7	19.3	0.11
DEC	1.101E+09	689	1.60	36.1	28.9	0.11
						0.11
	Regression Ou	tput:				0.55
Constant	•		0.112228			1.17
Std Err of	Y Est		0.238353			1.69
R Square	d		0.886956			
No. of Ob	servations		8			==:
Degrees of	of Freedom		6		BASE	VARIABL
					0.112	0.055
X Coeffici	ent(s)	0.054586				

Std Err of Coef.

JAN FEB MAR APR MAY JUN JUL AUG SEP	1.060E+09 8.355E+08 4.860E+08 2.047E+08 3.052E+07 3.237E+05	723 672 655 471 148	1.47 1.24 0.74 0.43	31.4 33.1 43.1	33.6 31.9 21.9	
MAR APR MAY JUN JUL AUG SEP	4.860E+08 2.047E+08 3.052E+07	672 655 471 148	1.24 0.74	33.1 43.1	31.9	
APR MAY JUN JUL AUG SEP	4.860E+08 2.047E+08 3.052E+07	655 471 148	0.74	43.1		
MAY JUN JUL AUG SEP	3.052E+07	148	0.43			
JUN JUL AUG SEP				51.4	13.6	
JUL AUG SEP	3.237E+05		0.21	62.4	2.6	
AUG SEP		3	0.00	70.8	0	
SEP	0.000E+00	0	0.00	76.3	0	
	0.000E+00	0	0.00	74.6	0	
	1.599E+06	21	80.0	69.2	0	
OCT	1.165E+08	278	0.42	57	8	
NOV	3.742E+08	530	0.71	45.7	19.3	
DEC	7.764E+08	723	1.07	36.1	28.9	
	3.886E+09	4224	0.92			
DATE	HEATING LO	HOURS M	IRTI IAHR T	EMP	HDD	
						1.30
						1.24
						0.86
MAY	3.052E+07	148	0.21	62.4	2.6	0.55
JUN	3.237E+05	3	0.00	70.8	0	0.13
SEP	1.599E+06	21	0.08	69.2	0	0.03
OCT	1.165E+08	278	0.42	57	8	0.03
NOV	3.742E+08	530	0.71	45.7	19.3	0.03
DEC	7.764E+08	723	1.07	36.1	28.9	0.03
	Regression Out	out:				0.34
		().03454			0.76
		0.	.096674			1.12
R Square		0.	.966859			
	servations		10			
No. of Ob	of Freedom		8		BASE	VARIABL
DATE JAN FEB MAR APR MAY JUN SEP OCT NOV DEC Constant Std Err of	3.742E+08 7.764E+08 3.886E+09 3.886E+09 4.860E+09 8.355E+08 4.860E+08 2.047E+08 3.052E+07 3.237E+05 1.599E+06 1.165E+08 3.742E+08 7.764E+08 Regression Outp	530 723 4224 HOURS M 723 672 655 471 148 3 21 278 530 723 out:	0.71 1.07 0.92 IBTU/HR T 1.47 1.24 0.74 0.43 0.21 0.00 0.08 0.42 0.71 1.07 0.03454 096674 966859 10	45.7 36.1 EMP 31.4 33.1 43.1 51.4 62.4 70.8 69.2 57 45.7	HDD 33.6 31.9 21.9 13.6 2.6 0 0	1.2 0.8 0.5 0.1 0.0 0.0 0.0 0.3 0.7 1.1

0.035

0.038

X Coefficient(s) Std Err of Coef. 0.037684 0.002467

Appendix D: Chiller Equipment

CHILLER EQUIPMENT

BLDG.	UNITS	TONNAGE	LOCATION USE	INSTALLED	REFRIGERANT
M-3 M-3 M-5 M-5C&D	2 EA 1 EA 1 EA 1 EA	3 Ton Chrysler 5 Ton York 5 Ton Dunn-Bush 130 Ton Carrier	P.X. (not in use) P.X. Environ. Rm C&D Bays	1960 1990 1970 1981	R-22 R-22 R-22 *2 R-11 *2
6-1-A 6-1-C 6-1-D 6-1-E 6-2-B 6-2-C	1 EA 2 EA 1 EA 1 EA 1 EA 1 EA	25 Ton Singer 400 Ton Carrier 60 Ton McQuay 3 Ton Dunn&Bush 40 Ton Trane 25 Ton Trane 20 Ton Liebert	Ball. Range Entire Bldg Medical Lab Environ. Rm Dispensary Cmndrs Suite DCASR Comp. Rm	1980 1986 1984 1975 1979 1986 1983	R-22 R-11 *1 R-22 R-22 *3 R-22 R-22 R-22
8-1 8-3	1 EA 1 EA	15 Ton Carrier 25 Ton Carrier	F.E. Office Trng Rooms	1985 1986	R-22 R-22
9-1E&F 9-1-F 9-1-F 9-1-F 9-1-F -2-C 9-2-D 9-3E&F 9-4-E 9-4-F	1 EA 3 EA 4 EA 2 EA 1 EA 1 EA 1 EA 1 EA 1 EA	130 Ton Trane 20 Ton Datec 20 Ton Liebert 25 Ton Liebert 20 Ton Liebert 15 Ton Liebert 25 Ton Bohn 25 Ton Trane 140 Ton Carrier 25 Ton Trane 85 Ton York	OTIS & Subs Computer Room Computer Room Tele Comm Computer Room DSAC-W DSAC-W Subs & Medical Medical Medical	1990 1987 1990 1990 1991 1986 1980 1985 1991	R-22 R-22 R-22 R-22 R-22 R-22 R-22 R-22
11-1	1 EA	5 Ton York	Security	1981	R-22
12-LL 12-LL 12-LL 12-LL 12-LL 12-1-H 12-2-F	1 EA 1 EA 1 EA 1 EA 1 EA 1 EA	550 Ton York 5 Ton York 3 Ton York 15 Ton Carrier 5 Ton Rund 15 Ton Carrier 5 Ton Liebert	Entire Bldg Tele & Eqpt. Rm Tele & Eqpt. Rm Cmnd Cntrl Ctr Photo Lab Command Wing C&T Key Punch	1990 1966 1960 1978 1985 1976 1983	R-11 *1 R-22 *3 R-22 *3 R-22 R-22 R-22 R-22 R-22
13-1 13-1 13-1	1 EA 1 EA 1 EA	10 Ton Carrier 5 Ton Carrier 1200 Ton Trane (1500 HP)	Cmpt Lay Out Rm Computer Room Factory	1984 1989 1973	R-22 R-22 R-11
14-1 14-R	1 EA 1 EA	15 Ton Carrier 130 Ton Trane		1987 1961	R-22 R-11

BLDG.	UNITS	TONNAGE	LOCATION USE	INSTALLED	REFRIGE	RANT
.5 <u>.</u>	1 EA	250 Ton Wstghse	Entire Building	1973	R-12	*1
15	1 EA	40 Ton Carrier	Ex. Cold Chamb.	1971	R-502	*1
15	1 EA	15 Ton Trane	Textile Room	1968	R-12	*1
15	1 EA	15 Ton Carrier	Textile Room	1978	R-12	*1
15, 2	6 EA	Environ. Boxes	Testing Labs	1978	R-12	*1
15	1 EA	7.5 Ton York	Optics Lab	1966	R-12	*1
15	1 EA	5 Ton Carrier	#1 Environ. Lab	1969	R-12	*1
15	1 EA	7.5 Ton Dunn&Bush	#2 Environ. Lab	1973	R-12	* 1
15	1 EA	7.5 Ton Carrier	#3 Environ. Lab	1970	R-12	*1
15	1 EA	5 Ton Trane	Shading Lab	1962	R-22	*1
26-A	1 EA	25 Ton Carrier	Maint. Ft Meade	1984	R-22	
26-A	1 EA	7.5 Ton Carrier	Office	1989	R-22	
26-B	1 EA	5 Ton Rund	Small Arms	1988	R-22	
26-C	1 EA	7.5 Ton Carrier	Salvage	1962	R-22	
26-C	1 EA	3 Ton Carrier	Salvage Offices	1988	R-22	
30-1	1 EA	5 Ton Copeland	Elect. Vault	1962	R-12	*1,3
30-1	1 EA	7.5 Ton Carrier	Garage	1988	R-22	
51	1 EA	20 Ton Trane	M.P./Food Insp.	1989	R-22	

 $[\]star 1$ Title VI of the Clean Air Act Amendments of 1990 requires that production of CFC refrigerants be prohibited by 1999.

² Removed

^{*3} Not in service

Appendix E: BLAST Monthly Building Cooling Loads

DATE	COOLING LO	HOURS N	/BTU/HR T	EMP	CDD	BLDG 06 ZONE 2
JAN	0.000E+00	0	ERR	31.4	-33.6	20112
FEB	0.000E+00	0	ERR	33.1	-31.9	
MAR	2.766E+07	44	0.63	43.1	-21.9	
APR	2.766E+07 4.488E+07	44 78	0.58	51.4	-13.6	
MAY	4.488E+07 2.324E+08	190	1.22	62.4	-13.6	
JUN	2.324E+08 3.749E+08	210	1.79	70.8	5.8	
JUL	4.824E+08	210	2.30	76.3	11.3	
AUG	5.212E+08	230	2.27	74.6	9.6	
SEP	3.017E+08	188	1.60	69.2	4.2	
OCT	1.596E+08	146	1.09	57	-8	
NOV	3.452E+07	64	0.54	45.7	-19.3	
DEC	1.441E+06	5	0.29	36.1	-28.9	
	2.181E+09	1365	1.60			
DATE	COOLING LO	HOURS N	/BTU/HR TI	EMP	CDD	REG
/AN1	0.0005.00	0	ERR	31.4	-33.6	
JAN FEB	0.000E+00 0.000E+00	0	ERR	33.1	-31.9	
MAR	2.766E+07	44	0.63	43.1	-21.9	0.45
APR	4.488E+07	78	0.58	51.4	-13.6	0.87
MAY	2.324E+08	190	1.22	62.4	-2.6	1.42
JUN	3.749E+08	210	1.79	70.8	5.8	1.84
JUL	4.824E+08	210	2.30	76.3	11.3	2.11
AUG	5.212E+08	230	2.27	74.6	9.6	2.03
SEP	3.017E+08	188	1.60	69.2	4.2	1.76
OCT	1.596E+08	146	1.09	57	-8	1.15
NOV	3.452E+07	64	0.54	45.7	-19.3	0.58
DEC	1.441E+06	5	0.29	36.1	-28.9	0.10
	Regression Out					
Constant			.546868			
Std Err of		-	.197005			
R Square		0	.935769			
	servations		10		5405	MADIARI
Degrees of	of Freedom		8		BASE	VARIABL
					1.547	0.050

0.049961 0.004628

X Coefficient(s) Std Err of Coef.

X Coefficient(s) Std Err of Coef.

DATE	COOLING LO	HOURS M	IBTU/HR TI	EMP	CDD	BLDG 08 ZONE 2
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	5.335E+05 2.020E+05 2.859E+07 5.932E+07 1.419E+08 1.797E+08 2.133E+08 2.294E+08 1.571E+08 1.161E+08 4.615E+07 5.962E+06	14 5 98 189 220 210 210 230 190 208 123 31	0.04 0.04 0.29 0.31 0.65 0.86 1.02 1.00 0.83 0.56 0.38 0.19	31.4 33.1 43.1 51.4 62.4 70.8 76.3 74.6 69.2 57 45.7 36.1	-33.6 -31.9 -21.9 -13.6 -2.6 5.8 11.3 9.6 4.2 -8 -19.3 -28.9	ZOINE Z
DATE	COOLING LO	HOURS M	IBTU/HR TI	EMP	CDD	REG
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	5.335E+05 2.020E+05 2.859E+07 5.932E+07 1.419E+08 1.797E+08 2.133E+08 2.294E+08 1.571E+08 1.161E+08 4.615E+07 5.962E+06	14 5 98 189 220 210 210 230 190 208 123 31	0.04 0.04 0.29 0.31 0.65 0.86 1.02 1.00 0.83 0.56 0.38 0.19	31.4 33.1 43.1 51.4 62.4 70.8 76.3 74.6 69.2 57 45.7 36.1	-33.6 -31.9 -21.9 -13.6 -2.6 5.8 11.3 9.6 4.2 -8 -19.3 -28.9	0.03 0.06 0.27 0.45 0.69 0.86 0.98 0.95 0.83 0.57 0.33
		0. 0.	741316 056633 976794 12 10		BASE 0.741	VARIABL 0.021

0.021298 0.001038

DATE	COOLING LO	HOURS N	MBTU/HR TI	EMP	CDD	BLDG 09 ZONE 2
JAN	2.148E+06	7	0.31	31.4	-33.6	
FEB	5.710E+06	10	0.57	33.1	-31.9	
MAR	1.238E+08	80	1.55	43.1	-21.9	
APR	2.547E+08	156	1.63	51.4	-13.6	
MAY	7.764E+08	215	3.61	62.4	-2.6	
JUN	1.082E+09	210	5.15	70.8	5.8	
JUL	1.299E+09	210	6.19	76.3	11.3	
AUG	1.395E+09	230	6.07	74.6	9.6	
SEP	9.182E+08	190	4.83	69.2	4.2	
OCT	6.102E+08	193	3.16	57	-8	
NOV	1.984E+08	109	1.82 0.86	45.7 36.1	-19.3 -28.9	
DEC	1.200E+07	14	0.86	30.1	-20.9	
	6.678E+09	1624	4.11			
DATE	COOLING LO	HOURS N	MBTU/HR TI	EMP	CDD	REG
JAN	2.148E+06	7	0.31	31.4	-33.6	0.04
FEB	5.710E+06	10	0.57	33.1	-31.9	0.26
MAR	1.238E+08	80	1.55	43.1	-21.9	1.54
A PR	2.547E+08	156	1.63	51.4	-13.6	2.61
MAY	7.764E+08	215	3.61	62.4	-2 .6	4.03
JUN	1.082E+09	210	5.15	70.8	5.8	5.11
JUL	1.299E+09	210	6.19	76.3	11.3	5.82
AUG	1.395E+09	230	6.07	74.6	9.6	5.60
SEP	9.182E+08	190	4.83	69.2	4.2 -8	4.90 3.33
OCT	6,102E+08	193 109	3.16 1.82	57 45.7	-6 -19.3	1.88
NOV	1.984E+08 1.200E+07	109	0.86	36.1	-28.9	0.64
DEC	1.200=+07	1~	0.00	30.1	-20.3	0.04
	Regression Out	put:				
Constant	<u>-</u>		1.361224			
Std Err of			.417566			
R Square		C).965842			
•	servations		12		D40=	VADIABL
Degrees of Freedom			10		BASE	VARIABL

0.129

X Coefficient(s) 0.128709 Std Err of Coef. 0.007654

DATE	COOLING LO	HOURS N	/BTU/HR TI	EMP	CDD	BLDG 11
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	1.107E+03 3.994E+04 3.552E+06 6.754E+06 2.116E+07 2.923E+07 3.641E+07 3.891E+07 1.374E+07 3.880E+06 2.539E+05	1 5 64 129 202 210 210 230 187 159 80 13	0.00 0.01 0.06 0.05 0.10 0.14 0.17 0.17 0.13 0.09 0.05 0.02	31.4 33.1 43.1 51.4 62.4 70.8 76.3 74.6 69.2 57 45.7 36.1	-33.6 -31.9 -21.9 -13.6 -2.6 5.8 11.3 9.6 4.2 -8 -19.3 -28.9	
DATE	COOLING LO	HOURS N	/BTU/HR T	EMP	CDD	REG
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	1.107E+03 3.994E+04 3.552E+06 6.754E+06 2.116E+07 2.923E+07 3.641E+07 3.891E+07 2.391E+07 1.374E+07 3.880E+06 2.539E+05	1 5 64 129 202 210 210 230 187 159 80 13	0.00 0.01 0.06 0.05 0.10 0.14 0.17 0.17 0.13 0.09 0.05	31.4 33.1 43.1 51.4 62.4 70.8 76.3 74.6 69.2 57 45.7 36.1	-33.6 -31.9 -21.9 -13.6 -2.6 5.8 11.3 9.6 4.2 -8 -19.3 -28.9	-0.00 0.01 0.04 0.07 0.11 0.14 0.16 0.16 0.14 0.09 0.05
	f Y Est ed oservations of Freedom cient(s)	· (0.121244 0.010291 0.973842 12 10		BASE 0.121	VARIABL 0.004

DATE	COOLING LO	HOURS N	IBTU/HR T	EMP	CDD	BLDG 12
JAN	0.000E+00	0	ERR	31.4	-33.6	
FEB	1.796E+05	2	0.09	33.1	-31.9	
MAR	7.524E+07	52	1.45	43.1	-21.9	
APR	1.324E+08	108	1.23	51.4	-13.6	
MAY	4.742E+08	199	2.38	62.4	-2 .6	
JUN	6.732E+08	210	3.21	70.8	5.8	
JUL	8.314E+08	210	3.96	76.3	11.3	
AUG	8.953E+08	230	3.89	74.6	9.6	
SEP	5.421E+08	189	2.87	69.2	4.2	
OCT	2.996E+08	152	1.97	57	-8	
NOV	8.100E+07	75	1.08	45.7	-19.3	
DEC	4.594E+06	6	0.77	36.1	-28.9	
	4.009E+09	1433	2.80			
DATE JAN	COOLING LO	HOURS M	IBTU/HR TI	EMP	CDD	REG 0.06
FEB	1.796E+05	2	0.09	33.1	-31.9	0.20
	7 5045.07		4 40	40 1	010	4 04

DATE	COOLING LO	HOURS M	1BTU/HR T	EMP	CDD	REG
JAN						0.06
FEB	1.796E+05	2	0.09	33.1	-31.9	0.20
MAR	7.524E+07	52	1.45	43.1	-21.9	1.01
APR	1.324E+08	108	1.23	51.4	-13.6	1.6 8
MAY	4.742E+08	199	2.38	62.4	-2.6	2.57
JUN	6.732E+08	210	3.21	70.8	5.8	3.25
JUL	8.314E+08	210	3.96	76.3	11.3	3.70
AUG	8.953E+08	230	3.89	74.6	9.6	3.5 6
SEP	5.421E+08	189	2.87	69.2	4.2	3.12
OCT	2.996E+08	152	1.97	57	-8	2.13
NOV	8.100E+07	75	1.08	45.7	-19.3	1.22
DEC	4.594E+06	6	0.77	36.1	-28.9	0.44

BASE

2.782

VARIABL

0.081

Regression Output:

Constant	2.782408
Std Err of Y Est	0.306144
R Squared	0.949269
No. of Observations	11
Degrees of Freedom	9

X Coefficient(s) Std Err of Coef. 0.080992 0.006241

X Coefficient(s) Std Err of Coef.

DATE	COOLING LO	HOURS N	/BTU/HR T	EMP	CDD	BLDG 13
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	2.371E+07 3.266E+07 2.550E+08 4.666E+08 9.911E+08 1.227E+09 1.401E+09 1.506E+09 1.010E+09 7.127E+08 2.902E+08 4.400E+07	33 34 128 192 219 210 210 230 190 203 130 44	0.72 0.96 1.99 2.43 4.53 5.84 6.67 6.55 5.32 3.51 2.23 1.00	31.4 33.1 43.1 51.4 62.4 70.8 76.3 74.6 69.2 57 45.7 36.1	-33.6 -31.9 -21.9 -13.6 -2.6 5.8 11.3 9.6 4.2 -8 -19.3 -28.9	
DATE	COOLING LO	HOURS N	/BTU/HR TI	EMP	CDD	REG
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	2.371E+07 3.266E+07 2.550E+08 4.666E+08 9.911E+08 1.227E+09 1.401E+09 1.506E+09 1.010E+09 7.127E+08 2.902E+08 4.400E+07	33 34 128 192 219 210 210 230 190 203 130 44	0.72 0.96 1.99 2.43 4.53 5.84 6.67 6.55 5.32 3.51 2.23 1.00	31.4 33.1 43.1 51.4 62.4 70.8 76.3 74.6 69.2 57 45.7 36.1	-33.6 -31.9 -21.9 -13.6 -2.6 5.8 11.3 9.6 4.2 -8 -19.3 -28.9	0.41 0.64 1.98 3.10 4.57 5.70 6.44 6.21 5.49 3.85 2.33 1.04
	d servations of Freedom	4 0	.921291 .313909 .981966 12 10		BASE 4.921	VARIABL 0.134

0.13427 0.005754

DATE	COOLING LO	HOURS	MBTU/HR	TEMP	CDD	BLDG 14
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	3.598E+05 5.589E+04 4.473E+07 8.081E+07 2.761E+08 3.915E+08 4.846E+08 5.227E+08 3.203E+08 1.850E+08 5.905E+07 3.830E+06	4 1 58 110 198 210 210 230 188 161 86 7	0.09 0.06 0.77 0.73 1.39 1.86 2.31 2.27 1.70 1.15 0.69 0.55	31.4 33.1 43.1 51.4 62.4 70.8 76.3 74.6 69.2 57 45.7 36.1	-33.6 -31.9 -21.9 -13.6 -2.6 5.8 11.3 9.6 4.2 -8 -19.3 -28.9	
DATE	COOLING LO	HOURS	MBTU/HR	TEMP	CDD	REG
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	3.598E+05 5.589E+04 4.473E+07 8.081E+07 2.761E+08 3.915E+08 4.846E+08 5.227E+08 3.203E+08 1.850E+08 5.905E+07 3.830E+06	4 1 58 110 198 210 210 230 188 161 86 7	0.09 0.06 0.77 0.73 1.39 1.86 2.31 2.27 1.70 1.15 0.69 0.55	31.4 33.1 43.1 51.4 62.4 70.8 74.6 69.2 57 45.7 36.1	-33.6 -31.9 -21.9 -13.6 -2.6 5.8 11.3 9.6 4.2 -8 -19.3 -28.9	0.07 0.15 0.61 1.00 1.51 1.90 2.15 2.08 1.82 1.26 0.73 0.29
•	f Y Est ed oservations of Freedom ient(s)	0.046414 0.003047	1.630002 0.166205 0.958694 12 10		BASE 1.630	VARIABL 0.046

DATE	COOLING LO	HOURS	мвти/нп т	EMP	CDD	BLDG 15
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	8.527E+07 9.134E+07 1.883E+08 2.319E+08 3.426E+08 4.087E+08 4.704E+08 4.871E+08 3.503E+08 1.812E+08 1.005E+08 3.224E+09	180 176 238 246 362 554 693 669 491 296 216 193	0.47 0.52 0.79 0.94 0.95 0.74 0.68 0.73 0.71 0.97 0.84 0.52	31.4 33.1 43.1 51.4 62.4 70.8 76.3 74.6 69.2 57 45.7 36.1	-33.6 -31.9 -21.9 -13.6 -2.6 5.8 11.3 9.6 4.2 -8 -19.3 -28.9	
DATE	COOLING LO	HOURS	MBTU/HR TI	EMP	CDD	REG
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	8.527E+07 9.134E+07 1.883E+08 2.319E+08 3.426E+08 4.087E+08 4.704E+08 4.871E+08 3.503E+08 2.865E+08 1.812E+08	180 176 238 246 362 554 693 669 491 296 216 193	0.47 0.52 0.79 0.94 0.95 0.74 0.68 0.73 0.71 0.97 0.84 0.52	31.4 33.1 43.1 51.4 62.4 70.8 76.3 74.6 69.2 57 45.7 36.1	-33.6 -31.9 -21.9 -13.6 -2.6 5.8 11.3 9.6 4.2 -8 -19.3 -28.9	0.64 0.65 0.69 0.73 0.77 0.81 0.83 0.83 0.80 0.75 0.70
		· (0.785233 0.162294 0.177978 12 10		BASE	VARIABL
X Coeffic Std Err of		0.004377 0.002975			0.785	0.004

USACERL TR FE-94/25 135

Appendix F: Life Cycle Cost Analyses

JOB NO.: 10838-07-652

SHEET 1 OF 11

CONCEPTUAL COST ESTIMATE

		QUANT	ΠΥ	LABOR & MATERIAL	
CODE	ITEM DESCRIPTION	NO.	UNIT	\$ PER	
NO.		UNITS	MEAS.	UNIT	TOTAL
		0,,,,,			
	ALTERNATIVE # 1				
	DEMOLITION				
	BOILERS NO. 1,2,3,&4	4	EA	\$30,000.00	\$120,000
	TURBINE DRIVEN BOILER FEED PUMP	4	EA	\$5,000.00	\$20,000
	COAL AND ASH SILOS, CONVEYORS AND EQUIPMENT		LS		\$100,000
	PIPING		LS		\$5,000
	ELECTRICAL INSTRUMENT AND CONTROL		LS		\$50,000
	ASBESTOS ABATEMENT		LS	_	\$500,000
	NEW CONSTRUCTION				
	REMOVE AND MODIFY BOILER 5 SUPERHEATER		LS		\$50,000
	BOILER, 50,000 #/ HR	2	EA	\$490,000.00	\$980,000
	ECONOMIZERS	2	EA	\$25,000.00	\$50,000
	BOILER FEED PUMPS ,15 HP, 81 GPM,404FT.	3	EA	\$12,000.00	\$38,000
	STEEL STACK, 24" DIA. 60" HIGH	2	EA	\$10,000.00	\$20,000
	PIPING, VALVES, HANGERS, AND INSTALLATION		LS		\$60,000
	INSTRUMENTS AND CONTROLS		LS		\$150,00
	CONDUIT AND CABLE		LS		\$75,000
	MOTOR CONTROL CENTER		LS		\$40,000
	MISC. ELECTRICAL AND LIGHTING		LS		\$50,000
	AIR HEATER	1 1	EA	\$5,463.00	\$ 5,463
	AIR RECEIVER	1	EA	\$382.00	\$38
	SWITCH GEAR	1	EA	\$75,969.00	\$75,96
	CONDENSATE RECEIVER	1 1	EA	\$35,700.00	\$35,70
	EXPANSION TANK	1 1	EA	\$19,444.00	\$19,44
	WATER STORAGE TANK	1	EA	\$17,595.00	\$17,59
	ABOVE GROUND TANK	1	EA	\$156,442.00	\$156,44
	BELOW GROUND TANK	1	EA	\$108,375.00	\$108,37
	FLASH TANK	1	EA	\$1,706.00	\$1,70
	SUBTOTAL				\$2,727,076
	UNDEVELOPED DESIGN DETAILS]	1]	\$409,06
	OVERHEAD	j [\$470,42
	PROFIT				\$313,614
	TOTAL				\$3,920,172
l.	PROBABLE COST USE				\$3,920,000

PRICES INCLUDE ESCALATION TO X PRICES ARE AS OF DATE OF THIS ESTIMATE

ESTIMATOR: G.B.BLAZEK
CHECKER: D.R.DRAKE
CONST. MGR.:

12/1/92 12/1/92

DATE

SHEET 2 OF 11

PROJECT: MECHANICAL STUDY LOCATION: CERL-DPSC STUDY JOB NO.: 10838-07-652

CONCEPTUAL COST ESTIMATE

	CONCEPTUAL COST I	QUANT	 	LABOR & MATERIAL	
CODE NO.	ITEM DESCRIPTION	NO. UNITS	UNIT MEAS.	\$ PER UNIT	TOTAL
	ALTERNATIVE # 2 - ONE ENGINE (OPTION 1)				
	DEMOLITION				
	BOILERS NO. 1,2,3,&4	4	EA	\$30,000.00	\$120,000
	TURBINE DRIVEN BOILER FEED PUMP	4	EA	\$5,000.00	\$20,000
	COAL AND ASH SILOS, CONVEYORS AND EQUIPMENT		LS		\$100,000
	PIPING		LS		\$5,000
	ELECTRICAL INSTRUMENT AND CONTROL		LS		\$50,000
	ASBESTOS ABATEMENT		LS		\$500,000
	NEW CONSTRUCTION				
	REMOVE AND MODIFY BOILER 5 SUPERHEATER		LS		\$50,000
	BOILER, 50,000 #/ HR	2	EA	\$490,000.00	\$980,000
	ECONOMIZERS	2	EA	\$25,000.00	\$50,000
	BOILER FEED PUMPS ,15 HP, 81 GPM,404FT.	3	EA	\$12,000.00	\$36,000
	STEEL STACK, 24" DIA. 60' HIGH	2	EA	\$10,000.00	\$20,000
	PIPING, VALVES, HANGERS, AND INSTALLATION		LS		\$60,000
	INSTRUMENTS AND CONTROLS		LS	i	\$150,000
	CONDUIT AND CABLE		LS		\$ 75,000
	MOTOR CONTROL CENTER		LS		\$40,000
	MISC. ELECTRICAL AND LIGHTING		LS		\$50,000
	GAS ENGINES AND INSTALLATION	1	EA		\$1,740,000
ĺ	GENERATOR AND INSTALLATION	1	EA	\$241,500.00	\$241,500
i	AUXILIARIES AND INSTALLATION	1	EA	\$264,500.00	\$264,500
	HEAT RECOVERY STEAM GENERATOR AND INSTALLATION	1	EA	\$160,000.00	\$160,000
	AIR HEATER	1	EA	\$5,463.00	\$5,463
	AIR RECEIVER	1	EA	\$382.00	\$382 \$75.000
	SWITCH GEAR	1	EA	\$75,969.00	\$75,969
-	CONDENSATE RECEIVER	1	EA	\$35,700.00	\$35,700 \$10,444
	EXPANSION TANK	1 1	EA EA	\$19,444.00	\$19,444 \$ 17,595
	WATER STORAGE TANK	'1	EA	\$17,595.00	\$17,595 \$156,442
	ABOVE GROUND TANK	1	EA EA	\$156,442.00 \$108,375.00	\$198,375
	BELOW GROUND TANK	' '	EA	\$1,706.00	\$1,706
	FLASH TANK	'		\$1,700.00	
	SUBTOTAL				\$ 5,1 33 ,076
	UNDEVELOPED DESIGN DETAILS				\$769,961
	OVERHEAD]			\$885,456
	PROFIT '				\$590,304
	TOTAL				\$7,378,797
	PROBABLE COST USE		<u> </u>		\$7,379,000

PRICES INCLUDE ESCALATION TO X PRICES ARE AS OF DATE OF THIS ESTIMATE DATE

ESTIMATOR: G.B.BLAZEK CHECKER: D.R.DRAKE

12/1/92 12/1/92

CONST. MGR.:

SHEET 3 OF 11

PROJECT: MECHANICAL STUDY LOCATION: CERL-DPSC STUDY JOB NO.: 10838-07-652

CONCEPTUAL COST ESTIMATE

00nc	CONCEPTUAL COST E	QUANT	AIE	LABOR & MATERIAL	
CODE NO.		NO. UNITS	UNIT MEAS.	\$ PER UNIT	TOTAL
	ALTERNATIVE # 2 - TWO ENGINE (OFTION 2)				
	DEMOLITION				
1	BOILERS NO. 1,2,3,&4	4	EA	\$30,000.00	\$120,000
	TURBINE DRIVEN BOILER FEED PUMP	4	EA	\$5,000.00	\$20,000
	COAL AND ASH SILOS, CONVEYORS AND EQUIPMENT		LS		\$100,000
	PIPING		LS		\$5,000
	ELECTRICAL INSTRUMENT AND CONTROL		LS		\$50,000
	ASBESTOS ABATEMENT		LS		\$ 500,00 0
	NEW CONSTRUCTION				
	REMOVE AND MODIFY BOILER 5 SUPERHEATER		LS		\$50,000
	BOILER, 50,000 #/ HR	2	EA	\$490,000.00	\$980,000
	ECONOMIZERS	2	EA	\$25,000.00	\$50,000
	BOILER FEED PUMPS ,15 HP, 81 GPM,404FT.	3	EA	\$12,000.00	\$38,000
	STEEL STACK, 24" DIA. 60' HIGH	2	EA	\$10,000.00	\$20,000
	PIPING, VALVES, HANGERS, AND INSTALLATION		LS	-	\$60,000
	INSTRUMENTS AND CONTROLS		LS		\$150,00 0 \$75,000
	CONDUIT AND CABLE		LS		\$75,000 \$40,000
	MOTOR CONTROL CENTER		LS		\$50,000
	MISC. ELECTRICAL AND LIGHTING		LS	_	\$3,480,000
	GAS ENGINES AND INSTALLATION	2	EA	4044 500 00	\$3,480,000 \$483,000
	GENERATOR AND INSTALLATION	2	EA	\$241,500.00	\$529,000
	AUXILIARIES AND INSTALLATION	2	EA	\$264,500.00	\$320,000
	HEAT RECOVERY STEAM GENERATOR AND INSTALLATION	2	EA	\$160,000.00 \$5,463.00	\$5,463
	AIR HEATER	1 1	EA EA	\$3,483.00 \$382.00	\$382
	AIR RECEIVER		EA EA	\$75,969.00	\$75,969
	SWITCH GEAR	1 1	EA EA	\$35,700.00	\$35,700
i	CONDENSATE RECEIVER	1	EA EA	\$19,444.00	\$19,444
	EXPANSION TANK	' '	EA	\$17,595.00	\$17,595
	WATER STORAGE TANK	',	EA	\$158,442.00	\$156,442
	ABOVE GROUND TANK	'1	EA	\$108,375.00	\$108,376
	BELOW GROUND TANK FLASH TANK	1	EA	\$1,706.00	\$1,706
	· ·				\$7,539,076
	SUBTOTAL				\$1,130,861
	UNDEVELOPED DESIGN DETAILS				\$1,300,491
	OVERHEAD PROFIT				\$866,994
	TOTAL				\$10,837,422
	PROBABLE COST USE				\$10,837,000

PRICES INCLUDE ESCALATION TO X PRICES ARE AS OF DATE OF THIS ESTIMATE

ESTIMATOR: G.B.BLAZEK CHECKER: D.R.DRAKE

12/1/92 12/1/92

DATE

CONST. MGR.:

PROJECT: MECHANICAL STUDY LOCATION: CERL-DPSC STUDY JOB NO.: 10838-07-652

SHEET 4 OF 11

CONCEPTUAL COST ESTIMATE

000	ITEM DESCRIPTION	QUANT	ITY	LABOR & MATERIAL	
CODE NO.	ITEM DESCRIPTION	NO. UNITS	UNIT MEAS.	\$ PER UNIT	TOTAL
	(OCTIOか る) ALTERNATIVE # 2 - ONE 1100 KW GAS TURBINE				
	DEMOLITION				
	BOILERS NO. 1,2,3,&4	4	EA	\$30,000.00	\$120,000
	TURBINE DRIVEN BOILER FEED PUMP	4	EA	\$5,000.00	\$20,000
	COAL AND ASH SILOS, CONVEYORS AND EQUIPMENT		LS		\$100,000
	PIPING		LS		\$5,000
	ELECTRICAL INSTRUMENT AND CONTROL ASBESTOS ABATEMENT		LS LS		\$50,000 \$500,000
	NEW CONSTRUCTION				
	***************************************		LS		\$50,000
	REMOVE AND MODIFY BOILER 5 SUPERHEATER	2	EA	\$490,000.00	\$980,000
	BOILER, 50,000 #/ HR	2	EA	\$25,000.00	\$50,000
	ECONOMIZERS POULED EEED BUMBS 15 HB 91 GBM 404ET	3	EA	\$12,000.00	\$36,000
	BOILER FEED PUMPS, 15 HP, 81 GPM,404FT.	2	EA	\$10,000.00	\$20,000
	STEEL STACK, 24" DIA. 60' HIGH PIPING, VALVES, HANGERS, AND INSTALLATION		LS	\$10,000.00	\$60,000
	INSTRUMENTS AND CONTROLS		LS		\$150,000
	CONDUIT AND CABLE		LS		\$ 75,000
	MOTOR CONTROL CENTER		LS		\$40,000
	MISC. ELECTRICAL AND LIGHTING		LS		\$50,000
	GAS TURBINE, GENERATOR AND INSTALLATION		LS		\$1,020,000
	WATER INJECTION	1	EA	\$68,400.00	\$68,400
	HEAT RECOVERY STEAM GENERATOR AND INSTALLATION	1	EA	\$160,000.00	\$160,000
	· AIR HEATER	1	EA	\$ 5,463.00	\$ 5,463
	AIR RECEIVER	1	EA	\$382.00	\$382
	SWITCH GEAR	1	EA	\$75,969.00	\$75,969
ļ	CONDENSATE RECEIVER	1	EA	\$35,700.00	\$35,700
	EXPANSION TANK	1	EA	\$19,444.00	\$ 19,444
	WATER STORAGE TANK	1	EA	\$17,595.00	\$ 17,595
	ABOVE GROUND TANK	1	EA	\$158,442.00	\$156,442
	BELOW GROUND TANK	1	EA	\$108,375.00	\$ 108,375
	FLASH TANK	1	EA	\$1,706.00	\$1,706
	SUBTOTAL				\$3,975,476
	UNDEVELOPED DESIGN DETAILS				\$596,321
	OVERHEAD				\$685,770
	PROFIT '				\$ 457,180
	TOTAL				\$5,714,747
	PROBABLE COST USE				\$5,715,000

PRICES INCLUDE ESCALATION TO X PRICES ARE AS OF DATE OF THIS ESTIMATE DATE

ESTIMATOR: G.B.BLAZEK CHECKER: D.R.DRAKE CONST. MGR.:

12/8/92 12/8/92

PROJECT: MECHANICAL STUDY

LOCATION: CERL-DPSC STUDY JOB NO.: 10838-07-652

SHEET 5 OF 11

CONCEPTUAL COST ESTIMATE

		QUANT	πγ	LABOR &	MATERIAL
CODE NO.	ITEM DESCRIPTION	NO. UNITS	UNIT MEAS.	\$ PER UNIT	TOTAL
	(OPTION 4)	0/1/10	WESTO.	0,0,7	701712
	ALTERNATIVE # 2 - TWO 1100 KW GAS TURBINES				
	DEMOLITION				
	BOILERS NO. 1,2,3,&4	4	EA	\$30,000.00	\$120,000
	TURBINE DRIVEN BOILER FEED PUMP	4	EA	\$5,000.00	\$20,000
	COAL AND ASH SILOS, CONVEYORS AND EQUIPMENT		LS		\$100,000
	PIPING		LS		\$5,000
	ELECTRICAL INSTRUMENT AND CONTROL		LS		\$50,000
	ASBESTOS ABATEMENT		LS	_	\$ 500,0 00
	NEW CONSTRUCTION				
	REMOVE AND MODIFY BOILER 5 SUPERHEATER		LS		\$50,000
	BOILER, 50,000 #/ HR	2	EA	\$490,000.00	\$980,000
	ECONOMIZERS	2	EA	\$25,000.00	\$50,000
	BOILER FEED PUMPS ,15 HP, 81 GPM,404FT.	3	EA	\$12,000.00	\$38,000
	STEEL STACK, 24° DIA. 60' HIGH	2	EA	\$10,000.00	\$20,000
	PIPING, VALVES, HANGERS, AND INSTALLATION		LS		\$60,000
	INSTRUMENTS AND CONTROLS		LS		\$150,0 00
	CONDUIT AND CABLE		LS		\$75,000
	MOTOR CONTROL CENTER		LS		\$40,000
*	MISC. ELECTRICAL AND LIGHTING		LS		\$50,000
	GAS TURBINE, GENERATOR AND INSTALLATION (2 EA)		LS		\$2,040,000
	WATER INJECTION	2	EA	\$68,400.00	\$136,800
	HEAT RECOVERY STEAM GENERATOR AND INSTALLATION	2	EA	\$160,000.00	\$320,000
1	AIR HEATER	1	EA	\$5,463.00	\$5,463
ľ	AIR RECEIVER	1	EA	\$382.00	\$382
	SWITCH GEAR	1	EA	\$75,969.00	\$75,969
	CONDENSATE RECEIVER	1	EA	\$35,700.00	\$35,700
	EXPANSION TANK	1	EA	\$19,444.00	\$19,444
	WATER STORAGE TANK	1	EA	\$17,595.00	\$17,595
	ABOVE GROUND TANK	1	EA	\$156,442.00	\$156,442
	BELOW GROUND TANK	1	EA	\$108,375.00	\$108,375
	FLASH TANK	1	EA	\$1,708.00	\$1,706
]	SUBTOTAL				\$5,223,876
	UNDEVELOPED DESIGN DETAILS	l			\$783,581
	OVERHEAD		•		\$901,119
	PROFIT		İ		\$600,746
	TOTAL				\$7,509,322
	PROBABLE COST USE		l		\$7,509,000

PRICES INCLUDE ESCALATION TO X PRICES ARE AS OF DATE OF THIS ESTIMATE DATE

ESTIMATOR: G.B.BLAZEK CHECKER: D.R.DRAKE

12/8/92 12/8/92

CONST. MGR.:

PROJECT: MECHANICAL STUDY LOCATION: CERL-DPSC STUDY JOB NO.: 10838-07-652

SHEET 6 OF 11

CONCEPTUAL COST ESTIMATE

CODE NO.	TEM DESCRIPTION	QUANTITY		LABOR & MATERIAL	
		NO. UNITS	UNIT MEAS.	\$ PER UNIT	TOTAL
	(OPTION 5) ALTERNATIVE # 2 - THREE 1100 KW GAS TURBINES				
	DEMOLITION BOILERS NO. 1,2,3,84 TURBINE DRIVEN BOILER FEED PUMP COAL AND ASH SILOS,CONVEYORS AND EQUIPMENT PIPING ELECTRICAL INSTRUMENT AND CONTROL ASBESTOS ABATEMENT NEW CONSTRUCTION	4 4	EA EA LS LS LS	\$30,000.00 \$5,000.00 	\$120,000 \$20,000 \$100,000 \$5,000 \$50,000
	REMOVE AND MODIFY BOILER 5 SUPERHEATER BOILER, 50,000 #/ HR ECONOMIZERS BOILER FEED PUMPS, 15 HP, 81 GPM,404FT. STEEL STACK, 24" DIA. 60' HIGH PIPING, VALVES, HANGERS, AND INSTALLATION INSTRUMENTS AND CONTROLS CONDUIT AND CABLE MOTOR CONTROL CENTER MISC. ELECTRICAL AND LIGHTING GAS TURBINE, GENERATOR AND INSTALLATION (3EA) WATER INJECTION HEAT RECOVERY STEAM GENERATOR AND INSTALLATION AIR HEATER AIR RECEIVER SWITCH GEAR CONDENSATE RECEIVER EXPANSION TANK WATER STORAGE TANK ABOVE GROUND TANK BELOW GROUND TANK FLASH TANK SUBTOTAL UNDEVELOPED DESIGN DETAILS OVERHEAD PROFIT TOTAL PROBABLE COST USE	2 2 3 2 	LS EA EA EA LS LS LS EA EA EA EA EA EA EA EA	\$490,000.00 \$25,000.00 \$12,000.00 \$10,000.00 \$10,000.00 \$160,000.00 \$5,463.00 \$382.00 \$75,969.00 \$35,700.00 \$17,595.00 \$17,595.00 \$108,375.00 \$1,706.00	\$50,000 \$980,000 \$50,000 \$36,000 \$20,000 \$60,000 \$150,000 \$40,000 \$50,000 \$3,060,000 \$205,200 \$480,000 \$5,463 \$382 \$75,969 \$35,700 \$19,444 \$17,595 \$156,442 \$108,375 \$1,706 \$6,472,276 \$970,841 \$1,116,468 \$744,312 \$9,303,897

PRICES INCLUDE ESCALATION TO

X PRICES ARE AS OF DATE OF THIS ESTIMATE

DATE

ESTIMATOR: G.B.BLAZEK

12/8/92

CHECKER: D.R.DRAKE

CONST. MGR.:

12/8/92

JOB NO.: 10838-07-652

SHEET 7 OF 11

CONCEPTUAL COST ESTIMATE

		QUANT	QUANTITY		LABOR & MATERIAL	
CODE NO.	TTEM DESCRIPTION	마하스11시				
		NO.	UNIT	\$ PER		
		UNITS	MEAS.	UNIT	TOTAL	
	(OPTION U)					
	ALTERNATIVE # 2 - ONE 3500 KW GAS TURBINE	_				
	DEMOLITION			!		
	BOILERS NO. 1,2,3,&4	4	EA	\$30,000.00	\$120,000	
	TURBINE DRIVEN BOILER FEED PUMP	4	EA	\$5,000.00	\$20,000	
	COAL AND ASH SILOS, CONVEYORS AND EQUIPMENT		LS	. —	\$100,000	
	PIPING		LS		\$5,000	
	ELECTRICAL INSTRUMENT AND CONTROL		LS		\$50,000	
Ì	ASBESTOS ABATEMENT		LS	<u> </u>	\$500,000	
	NEW CONSTRUCTION					
	REMOVE AND MODIFY BOILER 5 SUPERHEATER		LS		\$50,000	
	BOILER, 50,000 #/ HR	2	EA	\$490,000.00	\$980,000	
	ECONOMIZERS	2	EA	\$25,000.00	\$50,000	
	BOILER FEED PUMPS ,15 HP, 81 GPM,404FT.	3	EA	\$12,000.00	\$36,00	
	STEEL STACK, 24" DIA. 60" HIGH	2	EA	\$10,000.00	\$20,00	
	PIPING, VALVES, HANGERS, AND INSTALLATION		LS		\$60,00	
	INSTRUMENTS AND CONTROLS		LS		\$150,000	
	CONDUIT AND CABLE		LS		\$75,00	
	MOTOR CONTROL CENTER		LS		\$40,000	
j	MISC. ELECTRICAL AND LIGHTING	-	LS		\$50,00	
į	GAS TURBINE, GENERATOR AND INSTALLATION		LS	-	\$1,800,000	
	WATER INJECTION	1	EA	\$122,725.00	\$122,72	
ŀ	HEAT RECOVERY STEAM GENERATOR AND INSTALLATION	1	EA	\$300,000.00	\$300,00	
	AIR HEATER	1	EA	\$5,463.00	\$5,46	
	AIR RECEIVER	1	EA	\$382.00	\$38:	
	SWITCH GEAR	1	EA	\$75,969.00	\$75,96	
	CONDENSATE RECEIVER	1	EA	\$35,700.00	\$35,70	
]	EXPANSION TANK	1	EA	\$19,444.00	\$19,444	
	WATER STORAGE TANK	1	EA	\$17,595.00	\$17,595	
i	ABOVE GROUND TANK	1	EA	\$156,442.00	\$156,44	
	BELOW GROUND TANK	1	EA	\$108,375.00	\$108,37	
	FLASH TANK	1	EA	\$1,706.00	\$1,700	
ļ	SUBTOTAL				\$4,949,80	
	UNDEVELOPED DESIGN DETAILS	1	İ	1	\$742,470	
	OVERHEAD	1		İ	\$853,841	
	PROFIT	-			\$569,227	
	TOTAL				\$7,115,339	
	PROBABLE COST USE				\$7,115,000	

PRICES INCLUDE ESCALATION TO X PRICES ARE AS OF DATE OF THIS ESTIMATE

DATE

ESTIMATOR: G.B.BLAZEK
CHECKER: D.R.DRAKE

12/8/92

CONST. MGR.:

12/8/92

JOB NO.: 10838-07-652

SHEET 8 OF 11

CONCEPTUAL COST ESTIMATE

	CONCEPTUAL COST	QUANTITY		LABOR & MATERIAL	
CODE NO.	ITEM DESCRIPTION	NO.	UNIT	\$ PER	
		UNITS	MEAS.	UNIT	TOTAL
	ALTERNATIVE # 3				
	DEMOLITION				
	BOILERS NO. 1,2,3,&4	4	EA	\$30,000.00	\$120,000
1	TURBINE DRIVEN BOILER FEED PUMP	4	EA	\$5,000.00	\$20,000
1	COAL AND ASH SILOS, CONVEYORS AND EQUIPMENT		LS		\$ 100,000
1	PIPING		LS		\$5,000
	ELECTRICAL INSTRUMENT AND CONTROL	-	LS		\$50,000
	ASBESTOS ABATEMENT		LS		\$500,000
	CENTRIFUGAL CHILLER 1200 TON		LS		\$40,000
	NEW CONSTRUCTION				
	REMOVE AND MODIFY BOILER 5 SUPERHEATER		LS		\$50,000
	BOILER, 50,000 #/ HR	2	EA	\$490,000.00	\$980,000
	ECONOMIZERS	2	EA	\$25,000.00	\$50,000
	BOILER FEED PUMPS ,15 HP, 81 GPM,404FT.	3	EA	\$12,000.00	\$36,000
	STEEL STACK, 24" DIA. 60' HIGH	2	EA	\$10,000.00	\$20,000
	PIPING, VALVES, HANGERS, AND INSTALLATION		LS		\$60,000
	INSTRUMENTS AND CONTROLS		LS		\$150,000
	CONDUIT AND CABLE		LS		\$75,000
	MOTOR CONTROL CENTER		LS		\$40,000
	MISC. ELECTRICAL AND LIGHTING	1	LS EA	\$5,463.00	\$50,000 \$5,463
1	AIR HEATER	1	EA	\$3,463,00 \$382.00	\$3,403 \$382
	AIR RECEIVER SWITCH GEAR	1	EA	\$75,969.00	\$75,969
İ	CONDENSATE RECEIVER	1	EA	\$35,700.00	\$ 35,700
	EXPANSION TANK		EA	\$19,444.00	\$19,444
	WATER STORAGE TANK	1	EA	\$17,595.00	\$17,595
	ABOVE GROUND TANK	1	EA	\$158,442.00	\$156,442
	BELOW GROUND TANK	1	EA	\$108,375.00	\$108,375
	FLASH TANK	1	EA	\$1,706.00	\$1,706
	ABSORPTION CHILLER 1200 TON	1	EA	\$458,000.00	\$458,000
	COOLING TOWER	1	EA	\$89,000.00	\$89,000
1	COOLING TOWER PUMP 4800 GPM, 70° TDH, 150 HP	2	EA	\$28,000.00	\$56,000
į .	COOLING TOWER PIPING		LS		\$50,000
	GAS ENGINES AND INSTALLATION	2	EA		\$3,480,000
	GENERATOR AND INSTALLATION	2	EA	\$241,500.00	\$483,000
	AUXILIARIES AND INSTALLATION	2	EA	\$264,500.00	\$529,000 \$320,000
	HEAT RECOVERY STEAM GENERATOR AND INSTALLATION	., 2	EA	\$160,000.00	\$320,000
	SUBTOTAL				\$8,232,076
	UNDEVELOPED DESIGN DETAILS				\$1,234,811
	OVERHEAD				\$1,420,033
	PROFIT				\$946,689
	TOTAL				\$11,833,609
<u> </u>	PROBABLE COST USE				\$11,834,000

PRICES INCLUDE ESCALATION TO X PRICES ARE AS OF DATE OF THIS ESTIMATE

ESTIMATOR: G.B.BLAZEK
CHECKER: D.R.DRAKE

CONST. M 3R.:

12/1/92 12/1/92

DATE

JOB NO.: 10838-07-652

SHEET 9 OF 11

CONCEPTUAL COST ESTIMATE

		QUANTITY		LABOR & MATERIAL	
CODE NO.	ITEM DESCRIPTION	NO. UNITS	UNIT MEAS.	\$ PER UNIT	TOTAL
	ALTERNATIVE # 4			1	
	DEMOLITION BOILERS NO. 1&2 TURBINE DRIVEN BOILER FEED PUMP COAL AND ASH SILOS, CONVEYORS AND EQUIPMENT PIPING ELECTRICAL INSTRUMENT AND CONTROL ASBESTOS ABATEMENT NEW CONSTRUCTION	2 4	EA EA LS LS LS	\$30,000.00 \$5,000.00 ————————————————————————————————	\$60,000 \$20,000 \$100,000 \$5,000 \$50,000 \$350,000
	REMOVE AND MODIFY BOILER 5 SUPERHEATER BOILER, 10,000 #/ HR SUMMER BOILER FEED PUMP 21 GPM, 404' TDH, 5 HP BOILER FEED PUMPS, 15 HP, 81 GPM, 404FT. PIPING, VALVES, HANGERS, AND INSTALLATION INSTRUMENTS AND CONTROLS CONDUIT AND CABLE MOTOR CONTROL CENTER MISC. ELECTRICAL AND LIGHTING AIR HEATER AIR RECEIVER SWITCH GEAR CONDENSATE RECEIVER EXPANSION TANK WATER STORAGE TANK ABOVE GROUND TANK BELOW GROUND TANK FLASH TANK REMOVE & MODIFY BOILER NO.3 SUPERHEATER & BURNER REMOVE & MODIFY BOILER NO.4 SUPERHEATER & BURNER SUBTOTAL UNDEVELOPED DESIGN DETAILS OVERHEAD PROFIT-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LS EA LS LS EA EA EA EA EA EA EA	\$90,000.00 \$9,100.00 \$12,000.00 \$12,000.00 \$5,463.00 \$382.00 \$75,969.00 \$35,700.00 \$17,595.00 \$17,595.00 \$17,60.00 \$135,000.00 \$135,000.00	\$50,000 \$90,000 \$9,100 \$36,000 \$30,000 \$75,000 \$50,000 \$5,463 \$382 \$75,969 \$35,700 \$19,444 \$17,595 \$156,442 \$108,375 \$1,706 \$135,000 \$1,706,176 \$255,926 \$294,315 \$196,210
	TOTAL				\$2,452,628
	PROBABLE COST USE				\$2,453,000

PRICES INCLUDE ESCALATION TO X PRICES ARE AS OF DATE OF THIS ESTIMATE

DATE

ESTIMATOR: G.B.BLAZEK
CHECKER: D.R.DRAKE

12/1/92 12/1/92

CONST. MGR.:

SHEET 10 OF 11

PROJECT: MECHANICAL STUDY LOCATION: CERL-DPSC STUDY

JOB NO.: 10838-07-652

CONCEPTUAL COST ESTIMATE

	CONCEPTUAL COST I	QUANTITY		LABOR & MATERIAL	
CODE NO.	TEM DESCRIPTION	NO. UNITS	UNIT MEAS.	\$ PER UNIT	TOTAL
	ALTERNATIVE # 5				
	DEMOLITION				
	BOILERS NO. 1&2	2	EA	\$30,000.00	\$60,000
l '	TURBINE DRIVEN BOILER FEED PUMP	1 4	EA	\$5,000.00	\$20,000
	COAL AND ASH SILOS, CONVEYORS AND EQUIPMENT		LS		\$100,000
	PIPING		LS		\$5,000
	ELECTRICAL INSTRUMENT AND CONTROL		LS	<u></u>	\$50,000
	ASBESTOS ABATEMENT		LS	-	\$350,000
	NEW CONSTRUCTION				
	REMOVE AND MODIFY BOILER 5 SUPERHEATER		LS		\$50,000
	BOILER, 10,000 #/ HR	1	EA	\$90,000.00	\$90,000
	SUMMER BOILER FEED PUMP 21 GPM, 404' TDH, 5 HP	1	EA	\$9,100.00	\$9,100
	BOILER FEED PUMPS ,15 HP, 81 GPM,404FT.	3	EA	\$12,000.00	\$36,000
	PIPING, VALVES, HANGERS, AND INSTALLATION	\	LS		\$30,000
	INSTRUMENTS AND CONTROLS		LS		\$ 75,000
	CONDUIT AND CABLE		LS		\$50,000
Ī	MOTOR CONTROL CENTER		LS		\$40,000
	MISC. ELECTRICAL AND LIGHTING		LS	45 400 00	\$50,000 \$5,463
	AIR HEATER	1	EA	\$5,463.00 \$382.00	\$3,463 \$382
	AIR RECEIVER	1	EA	\$75,969.00	\$75,969
	SWITCH GEAR	1	EA	\$35,700.00	\$35.700
	CONDENSATE RECEIVER	1	EA EA	\$19,444.00	\$19,444
	EXPANSION TANK	1	EA	\$17,595.00	\$17,595
	WATER STORAGE TANK	1 1	EA	\$156,442.00	\$ 158,442
-	ABOVE GROUND TANK		EA	\$108,375.00	\$108,375
	BELOW GROUND TANK	1	EA	\$1,706.00	\$1,706
	FLASH TANK	;	EA	\$135,000.00	\$ 135,000
	REMOVE & MODIFY BOILER NO.3 SUPERHEATER & BURNER REMOVE & MODIFY BOILER NO.4 SUPERHEATER & BURNER	1	EA	\$135,000.00	\$135,000
i		2	EA		\$3,480,000
	GAS ENGINES AND INSTALLATION	2	EA	\$241,500.00	\$483,000
	GENERATOR AND INSTALLATION	2	EA	\$264,500.00	\$529,000
	AUXILIARIES AND INSTALLATION HEAT RECOVERY STEAM GENERATOR AND INSTALLATION	2	EA	\$160,000.00	\$320,000
					\$6,518,176
1	SUBTOTAL UNDEVELOPED DESIGN DETAILS				\$977,726
					\$1,124,385
	OVERHEAD PROFIT				\$749,590
	TOTAL				\$9,369,878
	PROBABLE COST USE				\$9,370,000

PRICES INCLUDE ESCALATION TO X PRICES ARE AS OF DATE OF THIS ESTIMATE DATE

ESTIMATOR: G.B.BLAZEK CHECKER: D.R.DRAKE 12/1/92 12/1/92

CONST. MGR.:

PROJECT: MECHANICAL STUDY LOCATION: CERL-DPSC STUDY JOB NO.: 10838-07-652

SHEET 11 OF 11

CONCEPTUAL COST ESTIMATE

		QUANT	TTY	LABOR 8	LABOR & MATERIAL	
CODE NO.	TEM DESCRIPTION	NO. UNITS	UNIT MEAS.	\$ PER UNIT	TOTAL	
	ALTERNATIVE # 6					
	DEMOLITION					
	BOILERS NO. 1&2	2	EA	\$30,000.00	\$60,000	
	TURBINE DRIVEN BOILER FEED PUMP	4	EA	\$5,000.00	\$20,000	
	COAL AND ASH SILOS, CONVEYORS AND EQUIPMENT		LS		\$100,000	
	PIPING	-	LS		\$5,000	
	ELECTRICAL INSTRUMENT AND CONTROL	-	LS		\$50,000	
1	ASBESTOS ABATEMENT		LS		\$350,000	
	CENTRIFUGAL CHILLER 1200 TON NEW CONSTRUCTION		LS		\$40,000	
	REMOVE AND MODIFY BOILER 5 SUPERHEATER		LS		\$50,000	
	SUMMER BOILER FEED PUMP 50 GPM, 404' TDH, 10 HP	1	EA	\$10,500.00	\$10,500	
	BOILER FEED PUMPS ,15 HP, 81 GPM,404FT.	3	EA	\$12,000.00	\$38,000	
	PIPING, VALVES, HANGERS, AND INSTALLATION		LS		\$30,000	
-	INSTRUMENTS AND CONTROLS		LS		\$75,000	
ł	CONDUIT AND CABLE		LS	-1	\$50,000	
	MOTOR CONTROL CENTER		LS		\$40,000	
Ī	MISC. ELECTRICAL AND LIGHTING AIR HEATER		LS EA	\$5,463.00	\$50,000	
	AIR RECEIVER	1 1	EA	\$3,463.00	\$5,463 \$382	
	SWITCH GEAR	1	EA	\$75,969.00	\$75,969	
İ	CONDENSATE RECEIVER	1	EA	\$35,700.00	\$35,700	
- 1	EXPANSION TANK	1	EA	\$19,444.00	\$19,444	
ŀ	WATER STORAGE TANK	1	EA	\$17,595.00	\$17,595	
·	ABOVE GROUND TANK	1	EA	\$158,442.00	\$156,442	
	BELOW GROUND TANK	1	EA	\$108,375.00	\$108,375	
	FLASH TANK	1	EA	\$1,706.00	\$1,708	
Ì	ABSORPTION CHILLER 1200 TON	1	EA	\$458,000.00	\$458,000	
	COOLING TOWER	1	EA	\$89,000.00	\$89,000	
[COOLING TOWER PUMP 4800 GPM, 70' TDH, 150 HP	2	EA	\$28,000.00	\$58,000	
	COOLING TOWER PIPING		LS		\$50,000	
	REMOVE & MODIFY BOILER NO.3 SUPERHEATER & BURNER	1	EA	\$135,000.00	\$135,000	
	REMOVE & MODIFY BOILER NO.4 SUPERHEATER & BURNER	1	EA	\$135,000.00	\$135,000	
Ì	GAS ENGINES AND INSTALLATION	2	EA	-	\$3,480,000	
	GENERATOR AND INSTALLATION	2	EA	\$241,500.00	\$483,000	
	AUXILIARIES AND INSTALLATION HEAT RECOVERY STEAM GENERATOR AND INSTALLATION	2 2	EA EA	\$284,500.00 \$160,000.00	\$529,000 \$320,000	
	SUBTOTAL	į			\$7,122,576	
	UNDEVELOPED DESIGN DETAILS	- 1	[\$1,058,386	
	OVERHEAD	1	1		\$1,228,644	
	PROFIT				\$819,096	
	TOTAL				\$10,238,703	
	PROBABLE COST USE				\$10,239,000	

PRICES INCLUDE ESCALATION TO X PRICES ARE AS OF DATE OF THIS ESTIMATE

STANLEY CONSULTANTS

DATE

ESTIMATOR: G.B.BLAZEK
CHECKER: D.R.DRAKE

CONST. MGR.:

12/1/92

12/1/92

LIFE CYCLE COST ANALYSIS

STUDY: DPSC
LCCID 1.065

DATE/TIME: 11-16-92 10:15:06
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. B; TITLE: ALTERNATIVE #1
NAME OF DESIGNER: SCI

BASIC INPUT DATA SUMMARY

CRITERIA REFERENCE:Tri-Service MOA for Econ Anal/LCC (Energy)

DISCOUNT RATE: 4.7%

DATE OF STUDY (DOS)	OCT	92
MIDPOINT OF CONSTRUCTION (MPC)	JUL	93
BENEFICIAL OCCUPANCY DATE (BOD)	JAN	94
ANALYSIS END DATE (AED)	JAN	19

COST / BENEFIT	COST	EQUIVALENT UNIFORM DIFFERENTIAL	TIME(S)
DESCRIPTION	IN DOS \$	ESCALATION RATE	COST INCURRED
	(\$ X 10**0)	(% PER YEAR)	
I INVESTMENT COSTS	7020000		=============
ELECTRICITY	3920000.0	.00	JUL 93
ELECT DEMAND	2839518.0	.66	JUL94-JUL18
NATURAL GAS	1438757.0	.00 3.11	JUL94-JUL18
MAINT LABOR			JUL94-JUL18
MAINT SERV	205977.0	.00	JUL94-JUL18
MAINT SUPPLY	479420.0	.00	JUL94-JUL18
F FAN	178294.0 11875.0	.00	JUL94-JUL18
RELVALVE	1235.0	.00	JAN 17
RELVALVE	1175.0	.00	JAN 09
RELVALVE	3280.0	.00	JAN 08
RELVALVE		.00	JAN 08
RELVALVE	3280.0	.00	JAN 09
RELVALVE	2025.0	.00	JAN 10
RELVALVE	2045.0 2048.0	.00	JAN 10
RELVALVE	2040.0	.00	JAN 10
WTBOILER	725000.0	.00	JAN 10
WTBURNER	57000.0	.00	JAN 17
PUMPSIMPLEX	3000.0	.00	JAN 17
TANKSTEEL		.00	JAN 12
BOILMASTER	500.0	-00	JAN 12
FLAMESAFE	5000.0 10000.0	.00	JAN 07
AIRCOMPCENTR	34800.0	-00	JAN 07
EMERGENCYGEN	174000.0	.00	JAN 07
TRANSPCB	32500.0	.00	JAN 08
CONDPUMP	18750.0	.00	JAN 18
FWPIPINGVAL		.00	JAN 11
HEATER	7800.0 8000.0	.00	JAN 05
OILPIPEBELOW		.00	JAN 16
PUMP	14400.0	.00	JAN 06
	10200.0	.00	JAN 09
UNLOADPUMP	5400.0	.00	JAN 04

LIFE CYCLE COST ANALYSIS STUDY: DPSC
LCCID 1.065 DATE/TIME: 11-16-92 10:15:06
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. B; TITLE: ALTERNATIVE #1
NAME OF DESIGNER: SCI

BASIC INPUT DATA SUMMARY

HEATEXCH SZSOFT	20500.0 363334.0	.00	JAN 10 JAN 09	

OTHER KEY INPUT DATA

LOCATION - PENNSYLVANNIA CENSUS REGION: 1 RATES FOR INDUSTRIAL SECTOR. TABLES FROM OCT 90

ENERGY USAGE: 10**6 BTUS ENERGY TYPE \$/MBTU AMOUNT ELECT 26.21 108337.2 NAT G 4.95 290658.0 ELECT. DEMAND: 10**0 DOLLARS ELECT. DEMAND PROJECTED DATES 0 JAN94-JAN19 LIFE CYCLE COST ANALYSIS STUDY: DPSC
LCCID 1.065 DATE/TIME: 11-16-92 10:15:06
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. B; TITLE: ALTERNATIVE #1
NAME OF DESIGNER: SCI

3787268.

LIFE CYCLE COST TOTALS*

ENERGY COSTS:

ELECTRICITY 43213020.
NATURAL GAS 30341000.

INITIAL INVESTMENT COSTS

TOTAL ENERGY COSTS 73554020.

RECURRING M&R/CUSTODIAL COSTS 12122550.

MAJOR REPAIR/REPLACEMENT COSTS 605310.

OTHER O&M COSTS & MONETARY BENEFITS 0.

DISPOSAL COSTS/RETENTION VALUE 0.

LCC OF ALL COSTS/BENEFITS (NET PW) 90069150.

*NET PW EQUIVALENTS ON OCT92; IN 10**0 DOLLARS; IN CONSTANT OCT92 DOLLARS *ENERGY ESCALATION RATES FROM NIST HANDBOOK 135 SUPPLEMENT DATED OCT 90

LIFE CYCLE COST ANALYSIS

STUDY: DPSC

LCCID 1.065 DATE/TIME: 12-16-92 16:14:25
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA

DESIGN FEATURE: STATQUO

ALT. ID. B; TITLE: ALTERNATIVE #1 A NAME OF DESIGNER: SCI

BASIC INPUT DATA SUMMARY

CRITERIA REFERENCE: Tri-Service MOA for Econ Anal/LCC (Energy)

DISCOUNT RATE: 4.7%

DATE OF STUDY (DOS)	OCT	92
MIDPOINT OF CONSTRUCTION (MPC)	JUL	93
BENEFICIAL OCCUPANCY DATE (BOD)	JAN	94
ANALYSIS END DATE (AED)	JAN	19

1		1	EQUIVALENT	1 1
	OST / BENEFIT	соѕт	UNIFORM	TIME(S)
i		į	DIFFERENTIAL	i ' i
ic	ESCRIPTION	IN DOS \$	ESCALATION	COST INCURRED
i		i	RATE	į į
j		(\$ X 10**3)	(% PER YEAR)	j
=====			=======================================	
INV	ESTMENT COSTS	3920.0	.00	JUL 93
ELE	CTRICITY	2525.2	.66	JUL94-JUL18
ELE	CT DEMAND	.0	.00	JUL94-JUL18
NAT	TURAL GAS	1534.7	3.11	JUL94-JUL18
MAI	NT LABOR	206.0	.00	JUL94-JUL18
MAI	NT SERV	479.4	.00	JUL94-JUL18
MAI	NT SUPPLY	178.3	.00	JUL94-JUL18
F_F	'AN	11.9	.00	JAN 17
REL	VALVE	1.2	.00	JAN 09
REL	VALVE	1.2	.00	JAN 08
REL	VALVE	3.3	.00	JAN 08
REL	VALVE	3.3	.00	JAN 09
REL	VALVE	2.0	.00	JAN 10
REL	VALVE	2.0	.00	JAN 10
REL	VALVE	2.0	.00	JAN 10
REL	VALVE	2.0	.00	JAN 10
WTB	OILER	725.0	.00	JAN 17
WTB	URNER	57.0	.00	JAN 17
PUM	PSIMPLEX	3.0	.00	JAN 12
TAN	KSTEEL	.5	.00	JAN 12
BOI	LMASTER	5.0	.00	JAN 07
	MESAFE	10.0	.00	JAN 07
AIR	COMPCENTR	34.8	.00	JAN 07
EME.	RGENCYGEN	174.0	.00	JAN 08
TRA	NSPCB	32.5	.00	JAN 18
	DPUMP	18.8	.00	JAN 11
	IPINGVAL	7.8	.00	JAN 05
HEA		8.0	.00	JAN 16
	PIPEBELOW	14.4	.00	JAN 06
PUM	- !	10.2	.00	JAN 09
UNL	OADPUMP	5.4	.00	JAN 04

LIFE CYCLE COST ANALYSIS

STUDY: DPSC

LCCID 1.065 DATE/TIME: 12-16-92 16:14:25

PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD

INSTALLATION & LOCATION: DPSC PENNSYLVANNIA

DESIGN FEATURE: STATQUO

ALT. ID. B; TITLE: ALTERNATIVE #1

NAME OF DESIGNER: SCI

BASIC INPUT DATA SUMMARY

HEATEXCH	20.5	.00	JAN 10		
SZSOFT	363.3	.00	JAN 09		

OTHER KEY INPUT DATA

CENSUS REGION: 1 LOCATION - PENNSYLVANNIA RATES FOR INDUSTRIAL SECTOR. TABLES FROM OCT 90

ENERGY USAGE: 10**6 BTUS ELECTRIC DEMAND: 10**3 DOLLARS ENERGY TYPE \$/MBTU AMOUNT ELECT. DEMAND PROJECTED DATES .0 26.21 96345.2 JAN94-JAN19 ELECT 4.95 310035.0 NAT G JAN94-JAN19

LIFE CYCLE COST ANALYSIS

STUDY: DPSC

LCCID 1.065

DATE/TIME: 12-16-92 16:14:25

PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD

INSTALLATION & LOCATION: DPSC PENNSYLVANNIA

DESIGN FEATURE: STATQUO

ALT. ID. B; TITLE: ALTERNATIVE #1 A

NAME OF DESIGNER: SCI

LIFE CYCLE COST TOTALS*

3787. INITIAL INVESTMENT COSTS

ENERGY COSTS:

38430. ELECTRICITY NATURAL GAS 32364.

70793. TOTAL ENERGY COSTS

RECURRING M&R/CUSTODIAL COSTS 12123.

605. MAJOR REPAIR/REPLACEMENT COSTS

0. OTHER O&M COSTS & MONETARY BENEFITS

0. DISPOSAL COSTS/RETENTION VALUE

87308. LCC OF ALL COSTS/BENEFITS (NET PW)

^{*}NET PW EQUIVALENTS ON OCT92; IN 10**3 DOLLARS; IN CONSTANT OCT92 DOLLARS

^{*}ENERGY ESCALATION RATES FROM NIST HANDBOOK 135 SUPPLEMENT DATED OCT 90

LIFE CYCLE COST ANALYSIS

STUDY: DPSC
LCCID 1.065

PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATOUO
ALT. ID. C; TITLE: ALTERNATIVE #2- OPTION \
NAME OF DESIGNER: SCI

ONE 1.6 MW Spark Gas Engine
BASIC INPUT DATA SUMMARY

CRITERIA REFERENCE: Tri-Service MOA for Econ Anal/LCC (Energy)

DISCOUNT RATE: 4.7%

DATE OF STUDY (DOS)	OCT	92
MIDPOINT OF CONSTRUCTION (MPC)	JUL	93
BENEFICIAL OCCUPANCY DATE (BOD)	JAN	94
ANALYSIS END DATE (AED)	JAN	19

I	l	EQUIVALENT	1
COST / BENEFIT	cost	UNIFORM	TIME(S)
COST / BENEFIT		DIFFERENTIAL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
DESCRIPTION	IN DOS \$	ESCALATION	COST INCURRED
DESCRIPTION	111 000 0	RATE	
	(\$ X 10**0)	(% PER YEAR)	
	==========	=======================================	
I INVESTMENT COSTS	7379000.0	.00	JUL 93
ELECTRICITY	1563778.0	.66	JUL94-JÚĽ18
ELECT DEMAND	0.00	.00	JUL94-JUL18
NATURAL GAS	2016412.0	3.11	JUL94-JUL18
MAINT LABOR	230000.0	.00	JUL94-JUL18
MAINT SERV	479420.0	.ŏŏ	JUL94-JUL18
MAINT SUPPLY	200000.0	.00	JUL94-JUL18
F FAN	11875.0	.00	JAN 17
RELVALVE	1235.0	.00	JAN 09
RELVALVE	1175.0	.00	JAN 08
RELVALVE	3280.0	.00	JAN 08
RELVALVE	3280.0	.00	JAN 09
RELVALVE	2025.0	.00	JAN 10
RELVALVE	2045.0	.00	JAN 10
RELVALVE	2048.0	.00	JAN 10
RELVALVE	2040.0	.00	JAN 10
WIBOILER	725000.0	.00	JAN 17
WTBURNER	57000.0	.00	JAN 17
PUMPSIMPLEX	3000.0	.00	JAN 12
TANKSTEEL	500.0	.00	JAN 12
BOILMASTER	5000.0	.00	JAN 07
FLAMESAFE	10000.0	.00	JAN 07
AIRCOMPCENTR	34800.0	.00	JAN 07
EMERGENCYGEN	174000.0	.00	JAN 08
TRANSPCB	32500.0	.00	JAN 18
CONDPUMP	18750.0	.00	JAN 11
FWP1P1NGVAL	7800.0	.00	JAN 05
HEATER	8000.0	.00	JAN 16
OILPIPEBELOW	14400.0	.00	JAN 06
PUMP	10200.0	.00	JAN 09
UNLOADPUMP	5400.0	.00	JAN 04

LIFE CYCLE COST ANALYSIS STUDY: DPSC
LCCID 1.065 DATE/TIME: 11-16-92 10:58:29
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. C; TITLE: ALTERNATIVE #2
NAME OF DESIGNER: SCI

BASIC INPUT DATA SUMMARY

HEATEXCH	20500.0	.00	JAN 10		
SZSOFT	363334.0		JAN 09		
<u> </u>					

OTHER KEY INPUT DATA

LOCATION - PENNSYLVANNIA CENSUS REGION: 1
RATES FOR INDUSTRIAL SECTOR. TABLES FROM OCT 90

ENERGY USAGE: 10**6 BTUS ENERGY TYPE \$/MBTU AMOUNT ELECT 26.21 59663.4 NAT G 4.95 407356.0 ELECT. DEMAND PROJECTED DATES 0 JAN94-JAN19 LIFE CYCLE COST ANALYSIS STUDY: DPSC
LCCID 1.065 DATE/TIME: 11-16-92 10:58:29
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. 10. C; TITLE: ALTERNATIVE #2
NAME OF DESIGNER: SCI

LIFE CYCLE COST TOTALS*

INITIAL INVESTMENT COSTS

7129146.

ENERGY COSTS:

ELECTRICITY NATURAL GAS 23798250. 42522790.

TOTAL ENERGY COSTS

66321030.

RECURRING M&R/CUSTODIAL COSTS

12764400.

MAJOR REPAIR/REPLACEMENT COSTS

605310.

THOUR REPAIR REPERCENCE COSTS

DISPOSAL COSTS/RETENTION VALUE

_

OTHER ORM COSTS & MONETARY BENEFITS

0. 0.

LCC OF ALL COSTS/BENEFITS (NET PW)

86819880.

*NET PW EQUIVALENTS ON OCT92; IN 10**O DOLLARS; IN CONSTANT OCT92 DOLLARS *ENERGY ESCALATION RATES FROM NIST HANDBOOK 135 SUPPLEMENT DATED OCT 90

LIFE CYCLE COST ANALYSIS

LCCID 1.065

DATE/TIME: 11-16-92 10:59:32

PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA

DESIGN FEATURE: STATQUO
ALT. ID. C; TITLE: ALTERNATIVE #2 - OPTION 2.

NAME OF DESIGNER: SCI

TWO 1.6 MW Spork Gas Engine BASIC INPUT DATA SUMMARY

CRITERIA REFERENCE: Tri-Service MOA for Econ Anal/LCC (Energy)

DISCOUNT RATE: 4.7%

DATE OF STUDY (DOS)	OCT 92
MIDPOINT OF CONSTRUCTION (MPC)	JUL 93
BENEFICIAL OCCUPANCY DATE (BOD)	JAN 94
ANALYSIS END DATE (AED)	JAN 19

1	1	EQUIVALENT	ı
COCT / DENEETT	COST	UNIFORM	TIME(S)
COST / BENEFIT	COST	DIFFERENTIAL	'=(0)
			COST INCURRED
DESCRIPTION	IN DOS \$	ESCALATION	COST INCORRED
		RATE	
	(\$ X 10**0)	(% PER YEAR)	i
<u> </u>	========	=======================================	=======================================
I INVESTMENT COSTS	10837500.0	.00	JUL 93
ELECTRICITY	1563778.0	.66	JUL94-JUL18
ELECT DEMAND	.0	.00	JUL94-JUL18
NATURAL GAS	2016412.0	3.11	JUL94-JUL18
MAINT LABOR	230000.0	.00	JUL94-JUL18
MAINT SERV	479420.0	.00	JUL94-JUL18
MAINT SUPPLY	200000.0	.00	JUL94-JUL18
F FAN	11875.0	.00	JAN 17
RELVALVE	1235.0	.00	JAN 09
	1175.0	.00	JAN 08
RELVALVE		:00	JAN 08
RELVALVE	3280.0	.00	JAN 09
RELVALVE	3280.0		
RELVALVE	2025.0	.00	
RELVALVE	2045.0	.00	JAN 10
RELVALVE	2048.0	.00	JAN 10
RELVALVE	2040.0	.00	JAN 10
WTBOILER	725000.0	.00	JAN 17
WYBURNER	57000.0	.00	JAN 17
PUMPSIMPLEX	3000.0	.00	JAN 12
TANKSTEEL	500.0	.00	JAN 12
BOILMASTER	5000.0	.00	JAN 07
FLAMESAFE	10000.0	.00	JAN 07
AIRCOMPCENTR	34800.0	.00	JAN 07
EMERGENCYGEN	174000.0	.00	JAN 08
TRANSPCB	32500.0	.00	JAN 18
CONDPUMP	18750.0	.00	JAN 11
FWPIPINGVAL	7800.0	.00	JAN 05
HEATER	8000.0	.00	JAN 16
OILPIPEBELOW	14400.0	.00	JAN 06
	10200.0	.00	JAN 09
PUMP	5400.0	.00	JAN 04
UNLOADPUMP	1 3400.0	.00	5/20 04

LIFE CYCLE COST ANALYSIS STUDY: DPSC
LCCID 1.065 DATE/TIME: 11-16-92 10:59:32
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. C; TITLE: ALTERNATIVE #2
NAME OF DESIGNER: SCI

BASIC INPUT DATA SUMMARY

HEATEXCH	20500.0	.00	JAN 10	
SZSOFT	363334.0		JAN 09	

OTHER KEY INPUT DATA

LOCATION - PENNSYLVANNIA CENSUS REGION: 1
RATES FOR INDUSTRIAL SECTOR. TABLES FROM OCT 90

ENERGY USAGE: 10**6 BTUS
ENERGY TYPE \$/MBTU AMOUNT
ELECT 26.21 59663.4
NAT G 26.25 407356.0 ELECT. DEMAND: 10**0 DOLLARS
ELECT. DEMAND PROJECTED DATES

JAN94-JAN19
JAN94-JAN19

LIFE CYCLE COST ANALYSIS STUDY: DPSC
LCCID 1.065 DATE/TIME: 11-16-92 10:59:32
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. C; TITLE: ALTERNATIVE #2
NAME OF DESIGNER: SCI

LIFE CYCLE COST TOTALS*

INITIAL INVESTMENT COSTS

10470540.

ENERGY COSTS:

ELECTRICITY NATURAL GAS 23798250. 42522790.

TOTAL ENERGY COSTS

66321030.

RECURRING M&R/CUSTODIAL COSTS

12764400.

MAJOR REPAIR/REPLACEMENT COSTS

DISPOSAL COSTS/RETENTION VALUE

605310.

OTHER O&M COSTS & MONETARY BENEFITS

0. 0.

LCC OF ALL COSTS/BENEFITS (NET PW)

90161280.

^{*}NET PW EQUIVALENTS ON OCT92; IN 10**0 DOLLARS; IN CONSTANT OCT92 DOLLARS *ENERGY ESCALATION RATES FROM NIST HANDBOOK 135 SUPPLEMENT DATED OCT 90

LIFE CYCLE COST ANALYSIS STUDY: PRP
LCCID 1.065 DATE/TIME: 12-07-92 14:29:24
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. I; TITLE: 1 - 1100kW GAS TURBINE
NAME OF DESIGNER: SCI

Aternative No. 2 - OPTION 3
BASIC INPUT DATA SUMMARY

CRITERIA REFERENCE:Tri-Service MOA for Econ Anal/LCC (Energy)

DISCOUNT RATE: 4.7%

DATE OF STUDY (DOS)	OCT	92
MIDPOINT OF CONSTRUCTION (MPC)	JUL	93
BENEFICIAL OCCUPANCY DATE (BOD)	JAN	94
ANALYSIS END DATE (AED)	JAN	19

:		=========		
	COST / BENEFIT	COST	EQUIVALENT UNIFORM DIFFERENTIAL	TIME(S)
	DESCRIPTION	IN DOS \$	ESCALATION RATE	COST INCURRED
		(\$ X 10**3)	(% PER YEAR)	
	INVESTMENT COSTS	5715.0	.00	JUL 93
	ELECTRICITY	2037.9	.66	JUL94-JUL18
	ELECT DEMAND	.0		JUL94-JUL18
	NATURAL GAS	1798.8	.00 3.11	JUL94-JUL18
	MAINT LABOR	230.0	.00	JUL94-JUL18
	MAINT SERV	479.4	.00	JUL94-JUL18
	MAINT SUPPLY	200.0	.00	JUL94-JUL18
	F FAN	11.9	.00	JAN 17
j	RELVALVE	1.2	.00	JAN 09
	RELVALVE	1.2	.00	JAN 08
ì	RELVALVE	3.3	.00	JAN 08
	RELVALVE	3.3	. 00	JAN 09
	RELVALVE	2.0	.00	JAN 10
	RELVALVE	2.0	.00	JAN 10
	RELVALVE	2.0	.00	JAN 10
ı	RELVALVE	2.0	.00	JAN 10
ı	WTBOILER	725.0	.00	JAN 17
1	WTBURNER	57.0	.00	JAN 17
	PUMPSIMPLEX	3.0	.00	JAN 12
	TANKSTEEL	5	-00	JAN 12
	BOILMASTER FLAMESAFE	5.0	.00	JAN 07
i	AIRCOMPCENTR	10.0 34.8	.00	JAN 07
1	EMERGENCYGEN	174.0	.00	JAN 07
١	TRANSPCB	32.5	.00	JAN 08 JAN 18
١	CONDPUMP	18.8	.00	JAN 18 JAN 11
J	FWPIPINGVAL	7.8	.00	JAN 05
1	HEATER	8.0	.00	JAN 16
١	OILPIPEBELOW	14.4	.00	JAN 06
١	PUMP	10.2	:00	JAN 09
1	UNLOADPUMP	5.4	:00	JAN 04
•		1		2.21 04

LIFE CYCLE COST ANALYSIS STUDY: PRP
LCCID 1.065 DATE/TIME: 12-07-92 14:29:24
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. 1; TITLE: 1 - 1100KW GAS TURBINE
NAME OF DESIGNER: SCI

BASIC INPUT DATA SUMMARY

1	HEATEXCH	20.5	.00	JAN 10	
1	SZSOFT	363.3	.00	JAN 09	
ż	<u> </u>				

OTHER KEY INPUT DATA

LOCATION - PENNSYLVANNIA CENSUS REGION: 1
RATES FOR INDUSTRIAL SECTOR. TABLES FROM OCT 90

ENERGY USAGE: 10**6 BTUS ENERGY TYPE \$/MBTU AMOUNT ELECT 26.21 77751.6 NAT G 4.95 363401.0 ELECT. DEMAND: 10**3 DOLLARS ELECT. DEMAND PROJECTED DATES LLECY. DEMAND PROJECTED DATES JAN94-JAN19 LIFE CYCLE COST ANALYSIS

LCCID 1.065

PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. I; TITLE: 1 - 1100KW GAS TURBINE
NAME OF DESIGNER: SCI

LIFE CYCLE COST TOTALS*

INITIAL INVESTMENT COSTS 5521. ENERGY COSTS: ELECTRICITY 31013. NATURAL GAS TOTAL ENERGY COSTS 68948. RECURRING M&R/CUSTODIAL COSTS 12764. MAJOR REPAIR/REPLACEMENT COSTS 605. OTHER O&M COSTS & MONETARY BENEFITS 0. DISPOSAL COSTS/RETENTION VALUE 0. LCC OF ALL COSTS/BENEFITS (NET PW)

87838.

^{*}NET PW EQUIVALENTS ON OCT92; IN 10**3 DOLLARS; IN CONSTANT OCT92 DOLLARS *ENERGY ESCALATION RATES FROM NIST HANDBOOK 135 SUPPLEMENT DAYED OCT 96

LIFE CYCLE COST ANALYSIS

STUDY: PRP
LCCID 1.065

PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. J; TITLE: 2 - 1100KW GAS TURBINES
NAME OF DESIGNER: SCI

ALTERNATIVE 2 - OPTION 4 BASIC INPUT DATA SUMMARY

CRITERIA REFERENCE: Tri-Service MOA for Econ Anal/LCC (Energy)

DISCOUNT RATE: 4.7%

DATE OF STUDY (DOS)	OCT 92
MIDPOINT OF CONSTRUCTION (MPC)	JUL 93
BENEFICIAL OCCUPANCY DATE (BOD)	JAN 94
ANALYSIS END DATE (AED)	JAN 19

	BE22222222222222222222222	=========		
	COST / BENEFIT	cost	EQUIVALENT UNIFORM DIFFERENTIAL	TIME(S)
	DESCRIPTION	IN DOS \$	ESCALATION RATE	COST INCURRED
		(\$ X 10**3)	(% PER YEAR)	
•	INVESTMENT COSTS	7509.0	.00	JUL 93
	ELECTRICITY	1268.3	.66	JUL94-JUL18
	ELECT DEMAND	.0	.00	JUL94-JUL18
	NATURAL GAS	2152.3	3.11	JUL94-JUL18
i	MAINT LABOR	230.0	.00	JUL94-JUL18
	MAINT SERV	479.4	.00	JUL94-JUL18
	MAINT SUPPLY	200.0	.00	JUL94-JUL18
į	F FAN	11.9	.00	JAN 17
	RELVALVE	1.2	.00	JAN 09
	RELVALVE	1.2	.00	JAN 08
	RELVALVE	3.3	.00	JAN 08
	RELVALVE	3.3	.00	JAN 09
	RELVALVE	2.0 2.0	.00	JAN 10
	RELVALVE	2.0	.00	JAN 10
1	RELVALVE	2.0	.00	JAN 10
ı	RELVALVE	2.0	.00	JAN 10
1	WTBOILER	725.0	.00	JAN 17
1	WTBURNER	57.0	.00	JAN 17
1	PUMPSIMPLEX	3.0	.00	JAN 12
1	TANKSTEEL	.5	.00	JAN 12
1	BOILMASTER	5.0	.00	JAN 07
1	FLAMESAFE	10.0	.00	JAN 07
1	AIRCOMPCENTR	34.8	.00	JAN 07
1	EMERGENCYGEN	174.0	.00	JAN 08
ı	TRANSPCB	32.5	.00	JAN 18
1	CONDPUMP	18.8	.00	JAN 11
ı	FWPIPINGVAL	7.8	.00	JAN 05
1	HEATER	8.0	.00	JAN 16
l	OILPIPEBELOW	14.4	.00	JAN 06
1	PUMP	10.2	.00	JAN 09
ı	UNLOADPUMP	5.4	.00	JAN 04

LIFE CYCLE COST ANALYSIS STUDY: PRP
LCCID 1.065 DATE/TIME: 12-07-92 14:29:48
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATOUO
ALT. ID. J; TITLE: 2 - 1100KW GAS TURBINES
NAME OF DESIGNER: SCI

BASIC INPUT DATA SUMMARY

HEATEXCH	20.5	.00	JAN 10		
SZSOFT	363.3		JAN 09		
<u> </u>					

OTHER KEY INPUT DATA

LOCATION - PENNSYLVANNIA CENSUS REGION: 1
RATES FOR INDUSTRIAL SECTOR. TABLES FROM OCT 90

ENERGY USAGE: 10**6 BTUS
ENERGY TYPE \$/MBTU AMOUNT
ELECT 26.21 48390.7
NAT G 4.95 434800.0 ELECT. DEMAND: 10**3 DOLLARS
ELECT. DEMAND PROJECTED DATES
0 JAN94-JAN19
JAN94-JAN19

LIFE CYCLE COST ANALYSIS STUDY: PRP
LCCID 1.065 DATE/TIME: 12-07-92 14:29:48
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. J; TITLE: 2 - 1100KW GAS TURBINES
NAME OF DESIGNER: SCI

LIFE CYCLE COST TOTALS*

INITIAL INVESTMENT COSTS 7255. ENERGY COSTS: ELECTRICITY 19302. NATURAL GAS 45388. TOTAL ENERGY COSTS 64689. RECURRING M&R/CUSTODIAL COSTS 12764. MAJOR REPAIR/REPLACEMENT COSTS 605. OTHER O&M COSTS & MONETARY BENEFITS 0. DISPOSAL COSTS/RETENTION VALUE 0.

LCC OF ALL COSTS/BENEFITS (NET PW)

85313.

^{*}NET PW EQUIVALENTS ON OCT92; IN 10**3 DOLLARS; IN CONSTANT OCT92 DOLLARS *ENERGY ESCALATION RATES FROM NIST HANDBOOK 135 SUPPLEMENT DATED OCT 90

LIFE CYCLE COST ANALYSIS

DATE/TIME: 12-07-92 14:30:13
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD INSTALLATION & LOCATION: DPSC PENNSYLVANNIA DESIGN FEATURE: STATQUO ALT. ID. K; TITLE: 3 - 1100KW GAS TURBINES
NAME OF DESIGNER: SCI

ALTERNATIVE Z - OPTION 5 BASIC INPUT DATA SUMMARY

CRITERIA REFERENCE:Tri-Service MOA for Econ Anal/LCC (Energy)

DISCOUNT RATE: 4.7%

DATE OF STUDY (DOS)	OCT	92
MIDPOINT OF CONSTRUCTION (MPC)	JUL	93
BENEFICIAL OCCUPANCY DATE (BOD)	JAN	94
ANALYSIS END DATE (AED)	JAN	19

		=========		========
	COST / BENEFIT	COST	EQUIVALENT UNIFORM DIFFERENTIAL	TIME(S)
	DESCRIPTION	IN DOS \$	ESCALATION RATE	COST INCURRED
	 	(\$ X 10**3)	(% PER YEAR)	
	INVESTMENT COSTS	9304.0	.00	JUL 93
	ELECTRICITY	708.1	.66	JUL94-JÚĽ18
	ELECT DEMAND	.0	.00	JUL94-JUL18
	NATURAL GAS	2491.5	3.11	JUL94-JUL18
	MAINT LABOR	230.0	.00	JUL94-JUL18
	MAINT SERV	479.4	.00	JUL94-JUL18
	MAINT SUPPLY	200.0	.00	JUL94-JUL18
	F_FAN	11.9	.00	JAN 17
	RELVALVE	1.2	.00	JAN 09
	RELVALVE	1.2	.00	JAN 08
	RELVALVE	3.3	.00	JAN 08
	RELVALVE	3.3	.00	JAN 09
	RELVALVE	2.0	.00	JAN 10
1	RELVALVE	2.0	.00	JAN 10
	RELVALVE	2.0	.00	JAN 10
	RELVALVE	2.0	-00	JAN 10
	WTBOILER	725.0	.00	JAN 17
1	WTBURNER PUMPSIMPLEX	57.0	.00	JAN 17
-	TANKSTEEL	3.0	.00	JAN 12
1	BOILMASTER	5	.00	JAN 12
ı	FLAMESAFE	5.0 10.0	.00	JAN 07
١	AIRCOMPCENTR	34.8	.00 .00	JAN 07
ı	EMERGENCYGEN	174.0	.00	JAN 07
ı	TRANSPOR	32.5	.00	JAN 08
1	CONDPUMP	18.8	.00	JAN 18
ı	FWPIPINGVAL	7.8	:00	JAN 11
I	HEATER	8.0	.00	JAN 05 JAN 16
ł	OILPIPEBELOW	14.4	.00	JAN 06
1	PUMP	10.2	.00	JAN 00 JAN 09
1	UNLOADPUMP	5.4	.00	JAN 09 JAN 04
	•	•	•	

LIFE CYCLE COST ANALYSIS

LCCID 1.065

PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD INSTALLATION & LOCATION: DPSC PENNSYLVANNIA

DESIGN FEATURE: STATQUO

ALT. ID. K; TITLE: 3 - 1100KW GAS TURBINES

NAME OF DESIGNER: SCI

BASIC INPUT DATA SUMMARY

	HEATEXCH SZSOFT	20.5 363.3	.00 .00	JAN 10 JAN 09	
_					

OTHER KEY INPUT DATA

LOCATION - PENNSYLVANNIA CENSUS REGION: 1
RATES FOR INDUSTRIAL SECTOR. TABLES FROM OCT 90

ENERGY USAGE: 10**6 BTUS ENERGY TYPE \$/MBTU AMOUNT ELECT 26.21 27016.2 NAT G 4.95 503343.0 ELECTRIC DEMAND: 10**3 DOLLARS ELECT. DEMAND PROJECTED DATES 0 JAN94-JAN19 JAN94-JAN19 LIFE CYCLE COST ANALYSIS

CCID 1.065

PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD INSTALLATION & LOCATION: DPSC PENNSYLVANNIA

DESIGN FEATURE: STATOUO
ALT. ID. L; TITLE: 3500 KW GAS TURBINE

NAME OF DESIGNER: SCI

ALTERNATIVE Z- OPTION &
BASIC INPUT DATA SUMMARY

CRITERIA REFERENCE:Tri-Service MOA for Econ Anal/LCC (Energy)

DISCOUNT RATE: 4.7%

DATE OF STUDY (DOS)	OCT	92
MIDPOINT OF CONSTRUCTION (MPC)	JUL	93
BENEFICIAL OCCUPANCY DATE (BOD)	JAN	- :
ANALYSIS END DATE (AED)	JAN	19

COST / BENEFIT	cost	EQUIVALENT UNIFORM DIFFERENTIAL	TIME(S)		
DESCRIPTION	IN DOS \$	ESCALATION	COST INCURRED		
	(\$ X 10**3)	RATE (% PER YEAR)			
INVESTMENT COSTS ELECTRICITY ELECT DEMAND NATURAL GAS MAINT LABOR MAINT SERV MAINT SUPPLY F FAN RELVALVE RELVAL	7115.0 640.4 .0 2400.9 230.0 479.4 200.0 11.9 1.2 1.2 3.3 3.3 2.0 2.0 725.0 57.0 3.0 10.0 34.8 174.0 32.5 18.8 7.8	.00 .66 .00 3.11 .00 .00 .00 .00 .00 .00 .00 .00 .00	JUL 93 JUL94-JUL18 JUL94-JUL18 JUL94-JUL18 JUL94-JUL18 JUL94-JUL18 JUL94-JUL18 JAN 17 JAN 08 JAN 08 JAN 09 JAN 10 JAN 10 JAN 10 JAN 10 JAN 10 JAN 17 JAN 17 JAN 17 JAN 17 JAN 17 JAN 17 JAN 17 JAN 17 JAN 17 JAN 17 JAN 12 JAN 17 JAN 12 JAN 17 JAN 12 JAN 17 JAN 18 JAN 18 JAN 18 JAN 18 JAN 15 JAN 15		
OILPIPEBELOW PUMP UNLOADPUMP	14.4 10.2 5.4	.00 .00 .00	JAN 06 JAN 09 JAN 04		

LIFE CYCLE COST ANALYSIS

STUDY: PRP
LCCID 1.065

DATE/TIME: 12-07-92 14:30:13

PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. K; TITLE: 3 - 1100KW GAS TURBINES
NAME OF DESIGNER: SCI

LIFE CYCLE COST TOTALS*

INITIAL INVESTMENT COSTS 8989. **ENERGY COSTS:** ELECTRICITY 10776. NATURAL GAS 52543. TOTAL ENERGY COSTS 63319. RECURRING M&R/CUSTODIAL COSTS 12764. MAJOR REPAIR/REPLACEMENT COSTS 605. OTHER O&M COSTS & MONETARY BENEFITS ٥. DISPOSAL COSTS/RETENTION VALUE 0. LCC OF ALL COSTS/BENEFITS (NET PW) 85677.

^{*}NET PW EQUIVALENTS ON OCT92; IN 10**3 DOLLARS; IN CONSTANT OCT92 DOLLARS *ENERGY ESCALATION RATES FROM NIST HANDBOOK 135 SUPPLEMENT DATED OCT 90

LIFE CYCLE COST ANALYSIS

STUDY: PRP
LCCID 1.065

DATE/TIME: 12-09-92 10:50:56
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. L; TITLE: 3500 KW GAS TURBINE
NAME OF DESIGNER: SCI

BASIC INPUT DATA SUMMARY

HEATEXCH	20.5	.00	JAN 10		
SZSOFT	363.3	.00	JAN 09		

OTHER KEY INPUT DATA

LOCATION - PENNSYLVANNIA CENSUS REGION: 1
RATES FOR INDUSTRIAL SECTOR. TABLES FROM OCT 90

LIFE CYCLE COST ANALYSIS STUDY: PRP
LCCID 1.065 DATE/TIME: 12-09-92 10:50:56
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. L; TITLE: 3500 KW GAS TURBINE
NAME OF DESIGNER: SCI

6874.

80619.

LIFE CYCLE COST TOTALS*

INITIAL INVESTMENT COSTS

LCC OF ALL COSTS/BENEFITS (NET PW)

ENERGY COSTS:

ELECTRICITY 9746.
NATURAL GAS 50630.

TOTAL ENERGY COSTS 60376.

RECURRING M&R/CUSTODIAL COSTS 12764.

MAJOR REPAIR/REPLACEMENT COSTS 605.

OTHER O&M COSTS & MONETARY BENEFITS 0.

DISPOSAL COSTS/RETENTION VALUE 0.

*NET PW EQUIVALENTS ON OCT92; IN 10**3 DOLLARS; IN CONSTANT OCT92 DOLLARS *ENERGY ESCALATION RATES FROM NIST HANDBOOK 135 SUPPLEMENT DATED OCT 96

LIFE CYCLE COST ANALYSIS

LCCID 1.065

DATE/TIME: 11-18-92 14:13:31

PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD INSTALLATION & LOCATION: DPSC PENNSYLVANNIA

DESIGN FEATURE: STATQUO

ALT. 10. D; TITLE: ALTERNATIVE #3 - OPTION |

NAME OF DESIGNER: SCI

BASIC INPUT DATA SUMMARY

CRITERIA REFERENCE:Tri-Service MOA for Econ Anal/LCC (Energy)

DISCOUNT RATE: 4.7%

DATE OF STUDY (DOS)	OCT	92
MIDPOINT OF CONSTRUCTION (MPC)	JUL	93
BENEFICIAL OCCUPANCY DATE (BOD)	JAN	94
ANALYSIS END DATE (AED)	JAN	19

	1	FQUIVALENT	1		
COST / BENEFIT	COST	UNIFORM	TIME(S)		
COST / BENEFITI		DIFFERENTIAL			
DESCRIPTION	IN DOS \$	ESCALATION	COST INCURRED		
DESCRIPTION	14 003 4	RATE	3001 111100111111		
1	(\$ X 10**0)	(% PER YEAR)			
		=======================================	===============		
I INVESTMENT COSTS	11833500.0	.00	JUL 93		
ELECTRICITY	1536936.0	.66	JUL94-JUL18		
ELECT DEMAND	0.0	.00	JUL94-JUL18		
NATURAL GAS	2429480.0	3.11	JUL94-JUL18		
MAINT LABOR	230000.0	1 .00	JUL94-JUL18		
MAINT SERV	479420.0	.00	JUL94-JUL18		
MAINT SUPPLY	200000.0	.00	JUL94-JUL18		
F FAN	11875.0	1 .00	JAN 17		
RELVALVE	1235.0	.00	JAN 09		
RELVALVE	1175.0	.00	JAN 08		
RELVALVE	3280.0	.00	JAN 08		
RELVALVE	3280.0	1 .00	JAN 09		
RELVALVE	2025.0	.00	JAN 10		
RELVALVE	2045.0	.00	JAN 10		
RELVALVE	2048.0	.00	JAN 10		
RELVALVE	2040.0	.00	JAN 10		
WIBOILER	725000.0	.00	JAN 17		
WIBURNER	57000.0	.00	JAN 17		
PUMPSIMPLEX	3000.0	.00	JAN 12		
TANKSTEEL	500.0	.00	JAN 12		
BOILMASTER	5000.0	.00	JAN 07		
FLAMESAFE	10000.0	.00	JAN 07		
AIRCOMPCENTR	34800.0	.00	JAN 07		
EMERGENCYGEN	174000.0	1 .00	JAN 08		
TRANSPOR	32500.0	.00	JAN 18		
CONDPUMP	18750.0	.00	JAN 11		
FWPIPINGVAL	7800.0	l iŏŏ	JAN 05		
HEATER	8000.0	.00	JAN 16		
OILPIPEBELOW	14400.0	.00	JAN 06		
PUMP	10200.0	.00	JAN 09		
	5400.0	.00	JAN 04		
UNLOADPUMP	1 3400.0		1 474 04		

LIFE CYCLE COST ANALYSIS

LCCID 1.065

PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD INSTALLATION & LOCATION: DPSC PENNSYLVANNIA DESIGN FEATURE: STATQUO ALT. ID. D; TITLE: ALTERNATIVE #3 NAME OF DESIGNER: SCI

BASIC INPUT DATA SUMMARY

HEATEXCH	20500.0	.00	JAN 10		
SZSOFT	363334.0		JAN 09		

OTHER KEY INPUT DATA

LOCATION - PENNSYLVANNIA CENSUS REGION: 1
RATES FOR INDUSTRIAL SECTOR. TABLES FROM OCT 90

ENERGY USAGE: 10**6 BTUS ENERGY TYPE \$/MBTU AMOUNT ELECT 26.21 58639.3 NAT G 4.95 490804.0 ELECT. DEMAND: 10**0 DOLLARS ELECT. DEMAND PROJECTED DATES 0 JAN94-JAN19 JAN94-JAN19 LIFE CYCLE COST ANALYSIS

LCCID 1.065

DATE/TIME: 11-18-92 14:13:31

PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD INSTALLATION & LOCATION: DPSC PENNSYLVANNIA DESIGN FEATURE: STATQUO ALT. ID. D; TITLE: ALTERNATIVE #3

NAME OF DESIGNER: SCI

LIFE CYCLE COST TOTALS*

INITIAL INVESTMENT COSTS

11432820.

ENERGY COSTS:

ELECTRICITY NATURAL GAS

23389760. 51233710.

TOTAL ENERGY COSTS

74623460.

RECURRING M&R/CUSTODIAL COSTS

12764400.

MAJOR REPAIR/REPLACEMENT COSTS

605310.

OTHER O&M COSTS & MONETARY BENEFITS

0.

DISPOSAL COSTS/RETENTION VALUE

0.

LCC OF ALL COSTS/BENEFITS (NET PW)

99425980.

^{*}NET PW EQUIVALENTS ON OCT92; IN 10**0 DOLLARS; IN CONSTANT OCT92 DOLLARS *ENERGY ESCALATION RATES FROM NIST HANDBOOK 135 SUPPLEMENT DATED OCT 90

LIFE CYCLE COST ANALYSIS

LCCID 1.065

PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD INSTALLATION & LOCATION: DPSC PENNSYLVANNIA DESIGN FEATURE: STATQUO ALT. ID. L; TITLE: 3500 KW GAS TURBINE NAME OF DESIGNER: SCI

ALTERNATIVE 3 - OPTION 2
BASIC INPUT DATA SUMMARY

CRITERIA REFERENCE:Tri-Service MOA for Econ Anal/LCC (Energy)

DISCOUNT RATE: 4.7%

KEY PROJECT-CALENDAR INFORMATION

DATE OF STUDY (DOS)
MIDPOINT OF CONSTRUCTION (MPC)
BENEFICIAL OCCUPANCY DATE (BCD)
ANALYSIS END DATE (AED)

OCT 92
JUL 93
JAN 94
ANALYSIS END DATE (AED)
JAN 19

	338223333333333333333333333333333333333					
	COST / BENEFIT	COST	EQUIVALENT UNIFORM DIFFERENTIAL	TIME(S)		
	DESCRIPTION	IN DOS \$	ESCALATION RATE	COST INCURRED		
	 	(\$ X 10**3)	(% PER YEAR)	<u></u>		
	INVESTMENT COSTS	7983.8	-00	JUL 93		
	ELECTRICITY	467.3	.66	JUL94-JUL18		
i	ELECT DEMAND		.00	JUL94-JUL18		
	NATURAL GAS	.0 2655.4	3.11	JUL94-JUL18		
	MAINT LABOR	230.0	.00	JUL94-JUL18		
	MAINT SERV	479.4	.00	JUL94-JUL18		
	MAINT SUPPLY	200.0	.00	JUL94-JUL18		
	F_FAN	11.9	.00	JAN 17		
	RELVALVE	1.2	.00	JAN 09		
ı	RELVALVE	1.2	.00	JAN 08		
1	RELVALVE	3.3	.00	JAN 08		
١	RELVALVE	3.3	.00	JAN 09		
1	RELVALVE	2.0	.00	JAN 10		
١	RELVALVE	2.0	.00	JAN 10		
ı	RELVALVE	2.0	.00	JAN 10		
I	WIBOILER	2.0	.00	JAN 10		
ı	WIBURNER	725.0 57.0	.00	JAN 17		
ı	PUMPSIMPLEX	3.0	.00	JAN 17		
İ	TANKSTEEL	3.0	.00	JAN 12		
١	BOILMASTER	5.0	.00	JAN 12		
١	FLAMESAFE	10.0	.00	JAN 07		
ı	AIRCOMPCENTR	34.8	.00	JAN 07 JAN 07		
ı	EMERGENCYGEN	174.0	.00	JAN 07 JAN 08		
1	TRANSPCB	32.5	.00	JAN 18		
l	CONDPUMP	18.8	.00	JAN 11		
l	FWPIPINGVAL	7.8	.00	JAN 05		
ı	HEATER	8.0	.00	JAN 16		
ı	OILPIPEBELOW	14.4	.00	JAN 06		
ı	PUMP	10.2	.00	JAN 09		
١	UNLOADPUMP	5.4	.00	JAN 04		
	·	•	•			

LIFE CYCLE COST ANALYSIS STUDY: PRP
LCCID 1.065 DATE/TIME: 12-09-92 11:08:49
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. L; TITLE: 3500 KW GAS TURBINE
NAME OF DESIGNER: SCI

BASIC INPUT DATA SUMMARY

HEATEXCH	20.5	.00	JAN 10			
SZSOFT	363.3		JAN 09			

OTHER KEY INPUT DATA

LOCATION - PENNSYLVANNIA CENSUS REGION: 1
RATES FOR INDUSTRIAL SECTOR. TABLES FROM OCT 90

ENERGY USAGE: 10**6 BTUS ENERGY TYPE \$/MBTU AMOUNT ELECT 26.21 17828.5 NAT G 4.95 536454.0 ELECT. DEMAND: 10**3 DOLLARS ELECT. DEMAND PROJECTED DATES 0 JAN94-JAN19 JAN94-JAN19 LIFE CYCLE COST ANALYSIS

DATE/TIME: 12-09-92 11:08:49
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. L; TITLE: 3500 KW GAS TURBINE
NAME OF DESIGNER: SCI

LIFE CYCLE COST TOTALS*

INITIAL INVESTMENT COSTS 7713. **ENERGY COSTS:** ELECTRICITY 7111. 55999. NATURAL GAS TOTAL ENERGY COSTS 63110. 12764. RECURRING M&R/CUSTODIAL COSTS MAJOR REPAIR/REPLACEMENT COSTS 605. OTHER OWM COSTS & MONETARY BENEFITS ٥. DISPOSAL COSTS/RETENTION VALUE 0. LCC OF ALL COSTS/BENEFITS (NET PW) 84192.

*NET PW EQUIVALENTS ON OCT92; IN 10**3 DOLLARS; IN CONSTANT OCT92 DOLLARS *ENERGY ESCALATION RATES FROM NIST HANDBOOK 135 SUPPLEMENT DATED OCT 90

LIFE CYCLE COST ANALYSIS STUDY: DPSC
LCCID 1.065 DATE/TIME: 11-18-92 14:16:10
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. E; TITLE: ALTERNATIVE #4
NAME OF DESIGNER: SCI

BASIC INPUT DATA SUMMARY

CRITERIA REFERENCE:Tri-Service MOA for Econ Anal/LCC (Energy)

DISCOUNT RATE: 4.7%

DATE OF STUDY (DOS)	OCT 92
MIDPOINT OF CONSTRUCTION (MPC)	JUL 93
BENEFICIAL OCCUPANCY DATE (BOD)	JAN 94
ANALYSIS END DATE (AED)	JAN 19

:		=========	==============	
	COST / BENEFIT	COST	EQUIVALENT UNIFORM DIFFERENTIAL	TIME(S)
i	DESCRIPTION	IN DOS \$	ESCALATION RATE	COST INCURRED
		(\$ X 10**0)	(% PER YEAR)	
1	I INVESTMENT COSTS	3/53500 0	==========	=======================================
	INVESTMENT COSTS ELECTRICITY	2452500.0	.00	JUL 93
	ELECT DEMAND	2839518.0	.66	JUL94-JUL18
	NATURAL GAS	.0 1438757.0	.00 3. 11	JUL94-JUL18
	MAINT LABOR	205977.0		JUL94-JUL18
i	MAINT SERV	479420.0	.00	JUL94-JUL18
-	MAINT SERV	178294-0	.00	JUL94-JUL18
1	DRUMCTL	10000.0	.00	JUL94-JUL18
- [F FAN	11875.0	.00	JAN 01
	F FAN	44000.0	.00	JAN 17
- 1	I FAN	50000.0	.00	JAN 01
- 1	RELVALVE	1235.0	.00	JAN 01 JAN 09
١	RELVALVE	1175.0	.00	JAN 09 JAN 08
- 1	RELVALVE	3280.0	.00	JAN 08
١	RELVALVE	3280.0	.00	JAN 09
-	RELVALVE	2025.0	.00	JAN 09 JAN 10
-1	RELVALVE	2045.0	.00	JAN 10
١	RELVALVE	2048.0	.00	JAN 10 JAN 10
1	RELVALVE	2040.0	.00	JAN 10
ı	WTBOILER	725000.0	:00	JAN 17
1	WTBOILER	2600000.0	.00	JAN 01
1	WTBURNER	57000.0	.00	JAN 17
ı	WTBURNER	206666.0	.00	JAN 01
ł	PUMPSIMPLEX	3000.0	.00	JAN 12
1	TANKSTEEL	500.0	.00	JAN 12
١	BOILMASTER	10000.0	.00	JAN 01
1	BOILMASTER	5000.0	.00	JAN 07
1	FLAMESAFE	10000.0	.00	JAN 07
1	AIRCOMPCENTR	34800.0	.00	JAN 07
	EMERGENCYGEN	174000.0	.00	JAN 08
-	TRANSPCB	32500.0	.00	JAN 18

LIFE CYCLE COST ANALYSIS STUDY: DPSC
LCCID 1.065 DATE/TIME: 11-18-92 14:16:10
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. E; TITLE: ALTERNATIVE #4
NAME OF DESIGNER: SCI

BASIC INPUT DATA SUMMARY

CONDPUMP FWPIPINGVAL HEATER OILPIPEBELOW PUMP UNLOADPUMP HEATEXCH	18750.0 7800.0 8000.0 14400.0 10200.0 5400.0	.00 .00 .00 .00 .00	JAN 11 JAN 05 JAN 16 JAN 06 JAN 09 JAN 04 JAN 10
HEATEXCH	20500.0	.00	JAN 10
SZSOFT	363334.0		JAN 09

OTHER KEY INPUT DATA

LOCATION - PENNSYLVANNIA CENSUS REGION: 1
RATES FOR INDUSTRIAL SECTOR. TABLES FROM OCT 90

ENERGY USAGE: 10**6 BTUS
ENERGY TYPE \$/MBTU AMOUNT ELECT. DEMAND: 10**0 DOLLARS
ELECT 26.21 108337.2
NAT G 26.25 290658.0 ELECT. DEMAND PROJECTED DATES
JAN94-JAN19
JAN94-JAN19

LIFE CYCLE COST ANALYSIS

LOCID 1.065

DATE/TIME: 11-18-92 14:16:10

PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD INSTALLATION & LOCATION: DPSC PENNSYLVANNIA

DESIGN FEATURE: STATQUO

ALT. ID. E; TITLE: ALTERNATIVE #4

NAME OF DESIGNER: SCI

LIFE CYCLE COST TOTALS*

INITIAL INVESTMENT COSTS

2369458.

ENERGY COSTS:

ELECTRICITY NATURAL GAS

TOTAL ENERGY COSTS 73554020.

RECURRING M&R/CUSTODIAL COSTS 12122550.

MAJOR REPAIR/REPLACEMENT COSTS 2604812.

OTHER O&M COSTS & MONETARY BENEFITS 0.

DISPOSAL COSTS/RETENTION VALUE 0.

LCC OF ALL COSTS/BENEFITS (NET PW) 90650840.

43213020.

30341000.

^{*}NET PW EQUIVALENTS ON OCT92; IN 10**0 DOLLARS; IN CONSTANT OCT92 DOLLARS *ENERGY ESCALATION RATES FROM NIST HANDBOOK 135 SUPPLEMENT DATED OCT 90

LIFE CYCLE COST ANALYSIS STUDY: DPSC
LCCID 1.065 DATE/TIME: 11-18-92 14:18:11
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. F; TITLE: ALTERNATIVE #5
NAME OF DESIGNER: SCI

BASIC INPUT DATA SUMMARY

CRITERIA REFERENCE:Tri-Service MOA for Econ Anal/LCC (Energy)

DISCOUNT RATE: 4.7%

DATE OF STUDY (DOS)	OCT	92
MIDPOINT OF CONSTRUCTION (MPC)	JUL	93
BENEFICIAL OCCUPANCY DATE (BOD)	JAN	94
ANALYSIS END DATE (AED)	JAN	19

	1	!	EQUIVALENT	1			
	COST / BENEFIT	COST	UNIFORM	TIME(S)			
		1000	DIFFERENTIAL				
	DESCRIPTION	IN DOS \$	ESCALATION	COST INCURRED			
			RATE	1			
		(\$ X 10**0)	(% PER YEAR)	1			
:	! !===================================		===========				
	I INVESTMENT COSTS	9369900.0	.00	JUL 93			
	ELECTRICITY	1563778.0	.66	JUL94-JÚL18			
	ELECT DEMAND	.0	1 .00	JUL94-JUL18			
	NATURAL GAS	2016412.0	.00 3.11	JUL94-JUL18			
	MAINT LABOR	230000.0	.00	JUL94-JUL18			
	MAINT SERV	479420.0	.00	JUL94-JUL18			
	MAINT SUPPLY	200000.0	.00	JUL94-JUL18			
	DRUMCTL	10000.0	.00	JAN 01			
	F FAN	11875.0	.00	JAN 17			
	F FAN	44000.0	.00	JAN 01			
i	I FAN	50000.0	.00	JAN 01			
	RELVALVE	1235.0	.00	JAN 09			
i	RELVALVE	1175.0	.00	JAN 08			
	RELVALVE	3280.0	.00	JAN 08			
	RELVALVE	3280.0	.00	JAN 09			
	RELVALVE	2025.0	.00	JAN 10			
	RELVALVE	2045.0	.00	JAN 10			
	RELVALVE	2048.0	.00	JAN 10			
	RELVALVE	2040.0	.00	JAN 10			
1	WTBOILER	725000.0	.00	JAN 17			
	WTBOILER	2600000.0	.00	JAN 01			
	WTBURNER	57000.0	.00	JAN 17			
	WTBURNER	206666.0	.00	JAN 01			
	PUMPSIMPLEX	3000.0	.00	JAN 12			
	TANKSTEEL	500.0	.00	JAN 12			
	BOILMASTER	10000.0	.00	JAN 01			
	BOILMASTER	5000.0	.00	JAN 07			
ı	FLAMESAFE	10000.0	.00	JAN 07			
١	AIRCOMPCENTR	34800.0	.00	JAN 07			
ı	EMERGENCYGEN	174000.0	.00	JAN 08			
1	TRANSPCB	32500.0	.00	JAN 18			
•							

LIFE CYCLE COST ANALYSIS STUDY: DPSC
LCCID 1.065 DATE/TIME: 11-18-92 14:18:11
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. F; TITLE: ALTERNATIVE #5
NAME OF DESIGNER: SCI

BASIC INPUT DATA SUMMARY

CONDPUMP FWPIPINGVAL HEATER OILPIPEBELOW PUMP UNLOADPUMP HEATEXCH S7SOFT	18750.0 7800.0 8000.0 14400.0 10200.0 5400.0 20500.0	.00 .00 .00 .00 .00	JAN 11 JAN 05 JAN 16 JAN 06 JAN 09 JAN 04 JAN 10
SZSOFT	3 63334.0	.00	JAN 09

OTHER KEY INPUT DATA

LOCATION - PENNSYLVANNIA CENSUS REGION: 1
RATES FOR INDUSTRIAL SECTOR. TABLES FROM OCT 90

ENERGY USAGE: 10**6 BTUS
ENERGY TYPE \$/MBTU AMOUNT
ELECT 26.21 59663.4
NAT G 26.25 407356.0 ELECT. DEMAND: 10**0 DOLLARS
ELECT. DEMAND PROJECTED DATES
0 JAN94-JAN19
10**0 DOLLARS
10**6 BTUS
ELECT. DEMAND: 10**0 DOLLARS
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10**6 DATES
10*

LIFE CYCLE COST ANALYSIS STUDY: DPSC LCCID 1.065 DATE/TIME: 11-18-92 14:18:11 PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD INSTALLATION & LOCATION: DPSC PENNSYLVANNIA DESIGN FEATURE: STATQUO ALT. ID. F; TITLE: ALTERNATIVE #5 NAME OF DESIGNER: SCI

LIFE CYCLE COST TOTALS*

INITIAL INVESTMENT COSTS

9052634.

ENERGY COSTS:

ELECTRICITY NATURAL GAS 23798250. 42522790.

TOTAL ENERGY COSTS

66321030.

RECURRING M&R/CUSTODIAL COSTS

12764400.

MAJOR REPAIR/REPLACEMENT COSTS

2604812.

OTHER O&M COSTS & MONETARY BENEFITS

0.

DISPOSAL COSTS/RETENTION VALUE

0.

LCC OF ALL COSTS/BENEFITS (NET PW)

90742870.

^{*}NET PW EQUIVALENTS ON OCT92; IN 10**O DOLLARS; IN CONSTANT OCT92 DOLLARS *ENERGY ESCALATION RATES FROM NIST HANDBOOK 135 SUPPLEMENT DATED OCT 90

LIFE CYCLE COST ANALYSIS

STUDY: BRENT
LCCID 1.065

DATE/TIME: 11-18-92 14:21:47
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. K; TITLE: ALTERNATIVE #6-REVISED
NAME OF DESIGNER: SCI

BASIC INPUT DATA SUMMARY

CRITERIA REFERENCE:Tri-Service MOA for Econ Anal/LCC (Energy)

DISCOUNT RATE: 4.7%

KEY PROJECT-CALENDAR INFORMATION

DATE OF STUDY (DOS)	OCT 92
MIDPOINT OF CONSTRUCTION (MPC)	JUL 93
BENEFICIAL OCCUPANCY DATE (800)	JAN 94
ANALYSIS END DATE (AED)	JAN 19

1	1	EQUIVALENT	1
COST / BENEFIT	COST	UNIFORM	TIME(S)
		DIFFERENTIAL	
DESCRIPTION	IN DOS \$	ESCALATION	COST INCURRED
		RATE	
	(\$ X 10**0)	(% PER YEAR)	
I INVESTMENT COSTS	10238700.0	.00	JUL 93
ELECTRICITY	1536936.0	.66	JUL94-JÚL18
ELECT DEMAND	.0	.00	JUL94-JUL18
NATURAL GAS	2429480.0	3.11	JUL94-JUL18
MAINT LABOR	230000.0	.00	JUL94-JUL18
MAINT SERV	479420.0	.00	JUL94-JUL18
MAINT SUPPLY	200000.0	.00	JUL94-JUL18
DRUMCTL	10000.0	.00	JAN 01
F FAN	11875.0	.00	JAN 17
F FAN	44000.0	.00	JAN 01
I FAN	50000.0	.00	JAN 01
RELVALVE	1235.0	.00	JAN 09
RELVALVE	1175.0	.00	80 MAL
RELVALVE	3280.0	.00	JAN 08
RELVALVE	3280.0	.00	JAN 09
RELVALVE	2025.0	.00	JAN 10
RELVALVE	2045.0	.00	JAN 10
RELVALVE	2048.0	.00	JAN 10
RELVALVE	2040.0	.00	JAN 10
WTBOILER	725000.0	.00	JAN 17
WTBOILER	2600000.0	.00	JAN 01 JAN 17
WTBURNER	57000.0	.00	JAN 01
WTBURNER	206666.0 3000.0	.00	JAN 12
PUMPSIMPLEX	500.0	1 :00	JAN 12
TANKSTEEL BOILMASTER	10000.0	1 .00	JAN 01
BOILMASTER	5000.0	:00	JAN 07
FLAMESAFE	10000.0	.00	JAN 07
AIRCOMPCENTR	34800.0	.00	JAN 07
EMERGENCYGEN	174000.0	.00	JAN 08
TRANSPCB	32500.0	.00	JAN 18
. I IMMOTOD	1 32300.0	. •••	, -, ,- ,

LIFE CYCLE COST ANALYSIS STUDY: BRENT
LCCID 1.065 DATE/TIME: 11-18-92 14:21:47
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. 10. K; TITLE: ALTERNATIVE #6-REVISED
NAME OF DESIGNER: SCI

BASIC INPUT DATA SUMMARY

CONDPUMP FWPIPINGVAL HEATER OILPIPEBELOW PUMP UNLOADPUMP HEATEYOU	18750.0 7800.0 8000.0 14400.0 10200.0 5400.0	.00 .00 .00 .00	JAN 11 JAN 05 JAN 16 JAN 06 JAN 09 JAN 04
UNLOADPUMP	5400.0	.00	JAN 04
HEATEXCH	20500.0	.00	JAN 10
SZSOFT	3 63334.0	.00	JAN 09

OTHER KEY INPUT DATA

LOCATION - PENNSYLVANNIA CENSUS REGION: 1
RATES FOR INDUSTRIAL SECTOR. TABLES FROM OCT 90

ENERGY USAGE: 10**6 BTUS ENERGY TYPE \$/MBTU AMOUNT ELECT 26.21 58639.3 NAT G 26.25 490804.0 ELECT. DEMAND: 10**0 DOLLARS ELECT. DEMAND PROJECTED DATES 0 JAN94-JAN19 JAN94-JAN19 LIFE CYCLE COST ANALYSIS

STUDY: BRENT
LCCID 1.065

DATE/TIME: 11-18-92 14:21:47
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. K; TITLE: ALTERNATIVE #6-REVISED
NAME OF DESIGNER: SCI

LIFE CYCLE COST TOTALS*

INITIAL INVESTMENT COSTS

9892016.

ENERGY COSTS:

ELECTRICITY NATURAL GAS 23389760. 51233710.

TOTAL ENERGY COSTS

74623460.

RECURRING M&R/CUSTODIAL COSTS

12764400.

MAJOR REPAIR/REPLACEMENT COSTS

2604812.

OTHER O&M COSTS & MONETARY BENEFITS

0.

DISPOSAL COSTS/RETENTION VALUE

0.

LCC OF ALL COSTS/BENEFITS (NET PW)

99884690.

^{*}NET PW ÉQUIVALENTS ON OCT92; IN 10**0 DOLLARS; IN CONSTANT OCT92 DOLLARS *ENERGY ESCALATION RATES FROM NIST HANDBOOK 135 SUPPLEMENT DATED OCT 90

LIFE CYCLE COST ANALYSIS STUDY: DPSC
LCCID 1.065 DATE/TIME: 10-23-92 11:34:41
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. A; TITLE: STATUS QUO
NAME OF DESIGNER: SCI

BASIC INPUT DATA SUMMARY

CRITERIA REFERENCE:Tri-Service MOA for Econ Anal/LCC (Energy)

DISCOUNT RATE: 4.7%

KEY PROJECT-CALENDAR INFORMATION

DATE OF STUDY (DOS)	OCT	92
MIDPOINT OF CONSTRUCTION (MPC)	JUL	93
BENEFICIAL OCCUPANCY DATE (BOD)	JAN	94
ANALYSIS END DATE (AED)	JAN	19

******************	=========		
1	1	EQUIVALENT	1
COST / BENEFIT	COST	UNIFORM	TIME(S)
		DIFFERENTIAL	
DESCRIPTION	IN DOS \$	ESCALATION	COST INCURRED
1		RATE	
1	(\$ X 10**0)	(% PER YEAR)	
1	========		
INVESTMENT COSTS	2839518.0	.00	JUL 93
ELECTRICITY ELECT DEMAND		.66 .00	JUL94-JUL18 JUL94-JUL18
NATURAL GAS	.0 1534673.0	3.11	JUL94-JUL18
MAINT LABOR	205977.0	.00	JUL94-JUL18
MAINT SERV	479420.0	.00	JUL94-JUL18
MAINT SUPPLY	178294.0	.00	JUL94-JUL18
BREECHING	20000.0	.00	JAN 01
STACK	20000.0	.00	JAN 01
AIRPHEAT	8570.0	.00	JAN 93
DRUMCTL	10000.0	.00	JAN 01
DRUMCTL	5000.0	.00	JAN 97
F FAN	11875.0	.00	JAN 17
F_FAN	44000.0	.00	JAN 01
I FAN	50000.0	.00	JAN 01
RELVALVE	1235.0	.00	JAN 09
RELVALVE	1175.0	.00	JAN 08
RELVALVE	3280.0	.00	JAN 08
RELVALVE	3280.0	.00	JAN 09
RELVALVE	2025.0	.00	JAN 10
RELVALVE	2045.0	.00	JAN 10
RELVALVE	2048.0	.00	JAN 10
RELVALVE	2040.0	.00	JAN 10
WTBOILER	725000.0	.00	JAN 17
WTBOILER	2600000.0	.00	JAN 01
WTBURNER	57000.0	.00	JAN 17
WTBURNER	206666.0	.00	JAN 01
PUMPSIMPLEX	3000.0	.00	JAN 12
TANKSTEEL	500.0	.00	JAN 12
BOILMASTER	10000.0	.00	JAN 01
BOILMASTER	5000.0	.00	JAN 07

LIFE CYCLE COST ANALYSIS STUDY: DPSC
LCCID 1.065 DATE/TIME: 10-23-92 11:34:41
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATQUO
ALT. ID. A; TITLE: STATUS QUO
NAME OF DESIGNER: SCI

BASIC INPUT DATA SUMMARY

OTHER KEY INPUT DATA

LOCATION - PENNSYLVANNIA CENSUS REGION: 1
RATES FOR INDUSTRIAL SECTOR. TABLES FROM OCT 90

ENERGY USAGE: 10**6 BTUS
ENERGY TYPE \$/MBTU AMOUNT
ELECT 26.21 108337.2
NAT G 4.95 310035.0 ELECTRIC DEMAND: 10**0 DOLLARS
ELECT. DEMAND PROJECTED DATES
JAN94-JAN19
JAN94-JAN19

LIFE CYCLE COST ANALYSIS STUDY: DPSC
LCCID 1.065 DATE/TIME: 10-23-92 11:34:41
PROJECT NO., FY, & TITLE: 1 FY 1993 CENTRAL HEATING PLANT MOD
INSTALLATION & LOCATION: DPSC PENNSYLVANNIA
DESIGN FEATURE: STATUO
ALT. ID. A; TITLE: STATUS QUO
NAME OF DESIGNER: SCI

LIFE CYCLE COST TOTALS*

INITIAL INVESTMENT COSTS

0.

ENERGY COSTS:

ELECTRICITY NATURAL GAS 43213020. 32363710.

TOTAL ENERGY COSTS

75576730.

*

RECURRING M&R/CUSTODIAL COSTS

12122550.

MAJOR REPAIR/REPLACEMENT COSTS

2655780.

OTHER O&M COSTS & MONETARY BENEFITS
DISPOSAL COSTS/RETENTION VALUE

o. o.

LCC OF ALL COSTS/BENEFITS (NET PW)

90355060.

^{*}NET PW EQUIVALENTS ON OCT92; IN 10**O DOLLARS; IN CONSTANT OCT92 DOLLARS *ENERGY ESCALATION RATES FROM NIST HANDBOOK 135 SUPPLEMENT DATED OCT 90

Appendix G: STOFEAS Analysis

Data Input Descriptions

- Array 1. PROJECT DESCRIPTION contains information that identifies the project when the program generates its output.
- Array 2. ECONOMIC PARAMETERS contains the elements "STUDY LIFE" which is needed to calculate the SIR and "INTEREST RATE" which is used to calculate the compensated rate of actual saving.
- Array 3. ELECTRIC UTILITY RATE used to calculate the annual demand charge savings per kW shifted.
- Array 4. WINDOW SIZE contains information for the shifted power percentage and is used to calculate the cost of demand shifting.
- Array 5. ELECTRIC UTILITY DATA contains the elements "PEAK DEMAND" (in kW) and "UTILITY INCENTIVE" (\$/kW)(in 1000 kWh).
- Array 6. SYSTEM FIRST COST the cost of an SCS is one of the critical factors in determining the payback period (PBP).
- Array 7. SCALE OF ECONOMY FOR FIRST COST specifies the costs of installment for the three different types of applications: new/replacement, retrofit, and upper limit.
- Array 8. The data in this array are required by the "SYSTEM OPERATION" and "MAINTENANCE COST" model. The costs for system operation and maintenance can be interpreted as the extra differential cost for a new SCS.
- Array 9. ANNUAL DEMAND CHARGE ESCALATION RATE allows for specification of the projected escalation rate of the demand charge in upcoming years.

Report Column Descriptions

191

- 1. Percentage peak power shifted by the SCS.
- 2. Corresponding shifted power (in kW) by SCS with respect to the percentage given in column 1.
- 3. Required storage capacity (or size) in terms of ton-hours for the specified shifted power in column 2.
- 4. System First Cost in terms of thousands of dollars for the corresponding storage capacity in column 3.
- 5. First Year Savings in terms of thousands of dollars for the corresponding shifted power in column 2.
- 6. Simple payback period based on the nondiscounted interest rate for the corresponding shifted power.
- 7. Discounted payback period based on the specified discounted interest rate (similar to column 6).
- 8. Savings and Investment Ratio (SIR), a valuable economic parameter for the feasibility study.
- 9. Net Savings in thousands of dollars under the specified percentage peak power shifted, the input Electric Demand Charge, and the System First Cost Model.

FEASIBILITY REPORT ON STORAGE COOLING SYSTEMS

***** PROJECT DESCRIPTION *****

PROJECT TITLE: DPSC Modernization

PROJECT LOCATION: Philadelphia, PA

PROJECT YEAR: FY92 PROJECT NUMBER: N/A

CAT CODE: N/A

DESIGNER: M. Savoie

DATE: 12-04-1992

***** INPUT DATA *****

STUDY LIFE: 25yrs DISCOUNT RATE: 5%

**** ELECTRIC UTILITY RATE STRUCTURE *****

--- STRAIGHT DEMAND (TWO DEMAND CHARGES) ---

DEMAND CHARGE (\$/kW) IN SUMMER: 13.00000 DEMAND CHARGE (\$/kW) IN WINTER: 8.00000

***** WINDOW SIZE FOR SHIFTED POWER PERCENTAGE ****

1- 3% 4- 6% 7- 9% 10- 12% 13- 15% 16- 18% 19- 21% 22- 24%

7 hr 8 hr 8 hr 8 hr 8 hr 8 hr

**** ELECTRIC UTILITY DATA ****

YEARLY PEAK DEMAND (kW): 7,500.00

0.00 UTILITY INCENTIVE (\$/kW):

***** SYSTEM FIRST COST MODEL *****

UPPER LIMIT NEW/REPLACEMENT RETROFIT

(\$/ton-hr) (\$/ton-hr) (\$/ton-hr)

> 150 300 80

***** ECONOMY OF SCALE FOR FIRST COST *****

Small(<1000 t-h) Medium Large(>10kt-h)

1

.87 .77

**** SYSTEM O&M COST MODEL ***** PERCENT OF SYSTEM FIRST COST(%)

****	EXPECTED	ANNUAL	DEMAND	CHARGE	ESCALATION	RATE ****
1	4	2	3	4	5	(YEAR)
065	1.36	639	.7049	2549	.9573	(%)
6	,	7	8	9	10	(YEAR)
1.010	1.12	256	1.8555	1.7	.4775	(웅)
11		12	13	14	15	(YEAR)
.7133	.943	36	1.2852	.8083	.9729	(%)
16	5	17	18	19	20	(YEAR)
.0568	.39	64	1.7497	.6103	.6142	(웅)
21		22	23	24	1 25	(YEAR)
.6163	.62	01	.623	.625	.6293	(웅)

**** New/Replacement ****

Shift (%)	Shifted (kW)	Storage Sz(ton-hr)	System 1st Cst(1000\$)	1st yr Svns(1000\$)	Payl Smpl		SIR	Net Svng (1000\$)
1	75	525	42	8	5.0	6.0	3.1	87
2	150	1,050	73	17	4.4	5.0	3.5	185
3	225	1,575	110	25	4.4	5.0	3.5	277
4	300	2,400	167	33	5.0	6.0	3.1	349
5	375	3,000	209	42	5.0	6.0	3.1	436
6	450	3,600	251	50	5.0	6.0	3.1	523
7	525	4,200	292	58	5.0	6.0	3.1	610
8	600	4,800	334	67	5.0	6.0	3.1	697
9	675	5,400	376	75	5.0	6.0	3.1	785
10	750	6,000	418	83	5.0	6.0	3.1	872
11	825	6,600	459	92	5.0	6.0	3.1	959
12	900	7,200	501	100	5.0	6.0	3.1	1,046
13	975	7,800 -	543	108	5.0	6.0	3.1	1,133
14	1,050	8,400	585	117	5.0	6.0	3.1	1,220
15	1,125	9,000	626	125	5.0	6.0	3.1	1,308
16	1,200	9,600	668	133	5.0	6.0	3.1	1,395
17	1,275	10,200	628	142	4.4	6.0	3.5	1,564
18	1,350	10,800	665	150	4.4	6.0	3.5	1,656
19	1,425	11,400	702	158	4.4	6.0	3.5	1,747
20	1,500	12,000	739	167	4.4	6.0	3.5	1,839
21	1,575	12,600	776	175	4.4	6.0	3.5	1,931
22	1,650	13,200	813	183	4.4	6.0	3.5	2,023
23	1,725	13,800	850	191	4.4	6.0	3.5	2,115
24	1,800	14,400	887	200	4.4	6.0	3.5	2,207
25	1,875	15,000	924	208	4.4	6.0	3.5	2,299

^{*} Annual O&M Cost is assumed to be 0% of system cost.

**** Retrofit Case ****

Shift (%)	Shifted (kW)	-	System 1st Cst(1000\$)	1st yr Svns(1000\$)	-	yback l Dsct		Net Svng (1000\$)
1	 75	525	-	 8	9.5	13.0	1.6	50
2	150	1,050	137	17	8.2	11.0	1.9	121
3	225	1,575	206	25	8.2	11.0	1.9	181
4	300	2,400	313	33	9.4	12.0	1.6	203
5	375	3,000	392	42	9.4	12.0	1.6	253
6	450	3,600	470	50	9.4	12.0	1.6	304
7	525	4,200	548	58	9.4	12.0	1.6	354
8	600	4,800	626	67	9.4	12.0	1.6	405
9	675	5,400	705	75	9.4	12.0	1.6	456
10	750	6,000	783	83	9.4	12.0	1.6	506
11	825	6,600	861	92	9.4	12.0	1.6	557
12	900	7,200	940	100	9.4	12.0	1.6	608
13	975	7,800	1,018	108	9.4	12.0	1.6	658
14	1,050	8,400	1,096	117	9.4	12.0	1.6	709
15	1,125	9,000	1,175	125	9.4	12.0	1.6	759
16	1,200	9,600	1,253	133	9.4	12.0	1.6	
17	1,275	10,200	1,178	142	8.3	11.0	1.9	
18	1,350	10,800	1,247	150	8.3	11.0	1.9	
19	1,425	11,400	1,317	158	8.3	11.0	1.9	
20	1,500	12,000	1,386	167	8.3	11.0	1.9	
21	1,575	12,600	1,455	175	8.3	11.0	1.9	
22	1,650	13,200	1,525	183	8.3	11.0	1.9	
23	1,725	13,800	1,594	191	8.3	11.0	1.9	
24	1,800	14,400	1,663	200	8.3	11.0	1.9	
25	1,875	15,000	1,733	208	8.3 	11.0	1.9	1,491

^{*} Annual O&M Cost is assumed to be 0% of system cost.

***** Upper Limit Case *****

Shift (%)	Shifted (kW)	Storage Sz(ton-hr)	System 1st Cst(1000\$)	1st yr Svns(1000\$)	_	back Dsct	SIR	Net Svng (1000\$)
1	75	525	158	8 :	 L8.9	**.*	0.8	-29
2	150	1,050	274		16.5	**.*	0.9	-16
3	225	1,575	411	25	16.5	**.*	0.9	-24
4	300	2,400	626	33	18.8	**.*	0.8	-111
5	375	3,000	783	42	18.8	**.*	0.8	-138
6	450	3,600	940	50	18.8	***	0.8	-166
7	525	4,200	1,096	58	18.8	**.*	0.8	-194
8	600	4,800	1,253	67	18.8	**.*	0.8	-221
9	675	5,400	1,409	75	18.8	**.*	0.8	-249
10	750	6,000	1,566	83	18.8	**.*	0.8	-277
11	825	6,600	1,723	92	18.8	**.*	0.8	-304
12	900	7,200	1,879	100	18.8	**.*	0.8	-332
13	975	7,800	2,036	108	18.8	**.*	0.8	-360
14	1,050	8,400	2,192	117	18.8	**.*	0.8	-387
15	1,125	9,000	2,349	125	18.8	**.*	0.8	-415
16	1,200	9,600	2,506	133	18.8	**.*	0.8	-443
17	1,275	10,200	2,356	142	16.6	**.*	0.9	-164
18	1,350	10,800	2,495	150	16.6	**.*	0.9	-174
19	1,425	11,400	2,633	158	16.6	**.*	0.9	-184
20	1,500	12,000	2,772	167	16.6	**.*	0.9	-193
21	1,575	12,600	2,911		16.6	**.*	0.9	-203
22	1,650	13,200	3,049		16.6	**.*	0.9	-213
23	1,725	13,800	3,188		16.6	**.*	0.9	-222
24	1,800	14,400	3,326		16.6	**.*	0.9	-232
25	1,875	15,000	3,465	208	16.6 	**.*	0.9	-242

^{*} Annual O&M Cost is assumed to be 0% of system cost.

Appendix H: Monthly Electric Load Curves for Alternative 2, Option 6

3500 KW GAS TURBINE JANUARY

DPSC LOAD DURATION CURVE

3500 KW GAS TURBINE FEBRUARY

3500 KW GAS TURBINE MARCH

DPSC LOAD DURATION CURVE

3500 KW GAS TURBINE APRIL

3500 KW GAS TURBINE MAY

DPSC LOAD DURATION CURVE

3500 KW GAS TURBINE JUNE

3500 KW GAS TURBINE JULY

DPSC LOAD DURATION CURVE

3500 KW GAS TURBINE AUGUST

3500 KW GAS TURBINE SEPTEMBER

DPSC LOAD DURATION CURVE

3500 KW GAS TURBINE OCTOBER

3500 KW GAS TURBINE NOVEMBER

DPSC LOAD DURATION CURVE

3500 KW GAS TURBINE DECEMBER

Appendix I: DD 1391 and Project Development Brochure Forms

1391 PROCESSOR DATA INPUT

SECTION NUMBER 1

- 1A PROGRAM TYPE (Enter one of the following: MCA, PBS, NAF, CFF, S6S, BCA, MR, AFH, COMM, AAFES, MED, DLA, SOP, MCON, SES, RB, DS) = MCA
- 1B COMPONENT = DLA
- 1C FISCAL YEAR = 1995
- 1D1 CONSTRUCTION START DATE ASSUMPTION = 04/1995
- 1D2 CONSTRUCTION END DATE ASSUMPTION = 04/1996

 CONSTRUCTION MIDPOINT = 10/1995
- 1E1 INSTALLATION NAME = Defense Personnel Support Center
- 1F LOCATION = Philadelphia
- 1G CATEGORY CODE = 80000
- 1H PROJECT TITLE = ECIP New Boiler & Gas Turbine Cogeneration
- 11 TYPE OF WORK: MULTIPLE CHOICE 2 ENTRIES ALLOWED SEPARATED BY A COMMA (New, Addition, Alteration, Conversion, Modernization, Repair, or Other) = MODERNIZATION
- 1J1 MOBILIZATION/EMERGENCY (Y/N) = N
- 1K TYPE OF CONSTRUCTION (T = Temporary, P = Permanent, S = Semi-Permanent) = P
- 1L PROGRAM ELEMENT
- 1M PERMANENT PROJECT NUMBER
- 1N TEMPORARY PROJECT NUMBER
- 10 PREPARATION DATE = 12/30/1992

ENTER SECTION NUMBER 2

2A1 GENERAL PRIMARY FACILITIES

01.00)811 Steam Boilers MBtu 2 991,500 1,983

02.00)811 Gas Turbine KW 1 3,482,000 3,482

SUBTOTAL FOR BLOCK 2A1 = 5,465

2A2 INFORMATION SYSTEMS PRIMARY FACILITIES

SUBTOTAL FOR BLOCK 2A2
TOTAL PRIMARY FACILITIES COST = 5,465

2B SUPPORT FACILITIES

2B1 ELECTRIC SERVICE

SUBTOTAL FOR BLOCK 2B1

2B2 WATER, SEWER, GAS

SUBTOTAL FOR BLOCK 2B2

2B3 STEAM AND/OR CHILLED WATER DISTRIBUTION

SUBTOTAL FOR BLOCK 2B3

2B4 PAVING, WALKS, CURBS AND GUTTERS

SUBTOTAL FOR BLOCK 2B4

2B5 STORM DRAINAGE

SUBTOTAL FOR BLOCK 2B5

2B6 SITE IMPROVEMENT/DEMOLITION

01.00) Coal Boilers 2 795 397,500

SUBTOTAL FOR BLOCK 2B6 = 795

2B7 INFORMATION SYSTEMS

SUBTOTAL FOR BLOCK 2B7

2B8 OTHER

SUBTOTAL FOR BLOCK 2B8

TOTAL SUPPORTING FACILITIES COST = 795

PERCENT OF SUPPORTING COSTS TO PRIMARY COSTS = .16

ESTIMATED CONTRACT COST = 6,260

2C CONTINGENCY FACTOR = 6.0000

CONTINGENCY AMOUNT = 376 SUBTOTAL = 6,636

2D SIOH PERCENT = 7.0000

SIOH AMOUNT = 464 TOTAL REQUEST = 7,100

- 2F ESTIMATED PROJECT COST (ROUNDED) = 7,100
- 2G INSTALLED EQUIPMENT OTHER APPROPRIATIONS (\$000)

SECTION NUMBER 3

3A DESCRIPTION OF PROPOSED CONSTRUCTION

The recommended alternative is based on the lowest net present worth (NPW) of all life cycle costs (LCC) associated with each of the alternatives examined. The suggested proposal consists of installing two new gas/oil boilers and a natural gas turbine generator with a heat recovery steam generator (HRSG) in the existing central heating plant.

3B REMARKS

The central heating plant (CHP) at the Defense Personnel Support Center (DPSC), Philadelphia, PA, consists of five steam boilers, of which four are 50 years old and one is 14 years old. Boilers 1 to 4 are Edge Moore Iron Works water tube boilers, which were installed in 1941-42. Boilers No. 1 and 2 are coal-fired dump grate spreader stokers, rated at 75,000 lb/hr steam at 180 psi, 435 °F. However, these boilers operated only for a few years and have not operated for at least 25 years. Current air pollution regulations will not allow coal to be burned.

Boiler Nos. 3 and 4 are dual fuel (natural gas and No. 6 oil), rated at 100,000 lb/hr steam at 180 psi, 435 °F. These two boilers are used for heating all buildings, most of the domestic hot water, and process steam at the clothing factory. One boiler is large enough to supply the maximum loads that occur in the winter. The other boiler is operated on a stand-by basis.

Boiler No. 5 is a Cleaver Brooks packaged dual-fuel boiler installed in 1977. It has a rating of 30,000 lb/hr at 180 psi, 550 °F. Boiler No. 5 typically operates in the summer to provide steam for hot water and process loads.

The age of this equipment and high electric costs (\$26/MBtu) warranted an investigation of alternatives for providing thermal and electrical energy to the installation.

3C PROJECT DESCRIPTION

This project will allow DPSC not only to improve fuel efficiency by replacing 50-year-old boilers with high-efficiency, low-polluting boilers, it also will substantially lower total energy costs through cogeneration. Boilers No. 1 and 2 would be demolished to make room for cogeneration equipment. Boilers No. 3 and 4 would be replaced by two packaged gas/oil-fired 50,000 lb/hr boilers (sized to more efficiently meet steam demands). The No. 6 fuel oil system would be replaced by No. 2 oil as the backup fuel for the boilers. This will allow the replacement of the failing No. 6 oil system and meet air pollution regulations that restrict heavy oil burning.

A new natural gas Solar Centaur Type H single-shaft industrial gas turbine with a solar heat recovery steam generator (HRSG) will be installed to generate 3.5 MW of electricity. The actual rating is 3.88 MW but has been derated to more accurately reflect expected production capacity at local operating conditions. This generating equipment will produce about 75 percent of all the electricity needed and reduce the peak electrical demand by about 50 percent. The HRSG will produce a maximum of 18,000 lb/hr at 125 psig when the turbine is operating at 100 percent capacity.

3D REOUIREMENT (Why is it needed now?)

The primary boilers are 50 years old. They are inefficient and maintenance parts are difficult to obtain. This project will reduce energy costs, saving \$1,000,000 per year. DPSC does not have a backup electrical generating system to supply minimum base needs during interruptions from PECO.

3E CURRENT SITUATION (How is the need currently being met?)

The CHP currently provides steam for heating and process loads to 15 buildings via steam lines that measure about 33,500 linear feet. The maximum winter load is about 50,000 lb/hr and the summer demand averages about 7,000 lb/hr with peaks near 10,000 lb/hr. All electricity is supplied by Philadelphia Electric Company (PECO). DPSC electrical usage and demand peaks are fairly constant during the noncooling season, averaging about 2.2 million kWh per month and 5100 kW, respectively. The highest daily use is about 135,000 kWh and the peak demand is just below 7,500 kW, occurring in the cooling season. DPSC does not have a backup electrical generating system to supply minimum base needs during interruptions from PECO.

3F IMPACT IF NOT PROVIDED

DPSC will lose about \$1,000,000 per year. DPSC will not have a backup electrical generating system to supply minimum base needs during interruptions from PECO.

3G ADDITIONAL

This ECIP project was developed through a comprehensive study performed by the U.S. Army Construction Engineering Research Laboratories, Energy & Utilities Division. The study is documented in a technical report titled "Central Heating Plant Modernization Study for the Defense Personnel Support Center." DPSC measures savings from the project by comparing the costs of steam, generated electricity, and purchased electricity to the costs of steam produced by the CHP and electricity purchased from the utility company. This will be done for a minimum of 1 year to document savings. Calculations will be made using a PC spreadsheet program.

3I RELATED PROJECTS

ENTER SECTION NUMBER 11

- 11 ECONOMIC ANALYSIS DATA
- 11A IS PROJECT EXEMPT FROM ECONOMIC ANALYSIS (Y/N)? = N
- 11B RETRIEVE DATA FROM ECONPACK (Y/N) ? = N
- 11C CONSIDERATION OF ALTERNATIVES

1)	New Boilers	10752	N
	2) New Boilers/Absorption Chiller	10752	N
	3) New Boilers/Cogen	10752	N
	4) New Boilers/Cogen/Absorption Chiller	10752	N

5)	Refurbish	Plant	10752	N
6)	Refurbish	Plant/Absorption Chiller	10752	N
7)	Refurbish	Plant/Cogen/Absorption Chiller	10752	N

11D ECONOMIC JUSTIFICATION SUMMARY

To provide an equitable comparison for the proposed ECIP project, a baseline or status quo scenario was developed that accounts for the annual CHP operation and maintenance cost including labor, maintenance, and fuel use, and the annual installation electrical use. Table 1 shows the LCC summary for the status quo. Costs are net present worth (Oct 1992 basis). The life cycle cost was analyzed using the methods required by 10 CFR, Part 436, Subpart A, and the "Energy Prices and Discount Factors for Life-Cycle Cost Analysis 1992," NISTIR 85-3273-6.

Table 1. Status quo cost summary.

Initial Investment Costs	0
Energy Costs:	
Electricity \$43,213,000	
Natural Gas \$32,364,000	
Total Energy Costs	\$75,577,000
Recurring M&R/Custodial Costs	\$12,123,000
Major Repair/Replacement Costs	\$2,656,000
LCC of all Costs/Benefits (Net PW)	\$90,355,000

Similarly, costs were developed for the suggested alternative. Table 2 summarizes these costs. Based on LCC the project will be \$10 million less than maintaining the status quo.

Table 2. ECIP project cost summary.

Initial Investment Costs		\$6,874,000
Energy Costs:		
Electricity	\$9,746,000	
Natural Gas	\$50,630,000	
Total Energy Costs	\$60,376,000	
Recurring M&R/Custodial Costs	S	\$12,764,000
Major Repair/Replacement Cos		\$605,000
T.CC of all Costs/Benefits (N		\$80,619,000

11E ECONOMIC ANALYSIS

```
LIFE CYCLE COST ANALYSIS SUMMARY
                                                          STUDY: DPSC
                                                           LCCID 1.062
     ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)
INSTALLATION & LOCATION: DPSC
                                         REGION NOS. 3 CENSUS: 1
PROJECT NO. & TITLE: 1 CENTRAL HEATING PLANT MOD
FISCAL YEAR 1993 DISCRETE PORTION NAME: ALT 2 OPT 6
ANALYSIS DATE: 01-07-93 ECONOMIC LIFE 25 YEARS PREPARED BY: TLM
1. INVESTMENT
    A. CONSTRUCTION COST
                                                                  $ 6165022.
                                                                      339077.
    B. SIOH
                                                                  $
    C. DESIGN COST
                                                                  $
                                                                      369902.
                                                                           0.
    D. SALVAGE VALUE COST
    E. TOTAL INVESTMENT (1A + 1B + 1C - 1D)
                                                                     6874001.
2. ENERGY SAVINGS (+) / COST (-)
    ANALYSIS DATE ANNUAL SAVINGS, UNIT COST & DISCOUNTED SAVINGS
                                        ANNUAL $
                                                      DISCOUNT
                                                                  DISCOUNTED
              UNIT COST
                          SAVINGS
                                        SAVINGS (3)
                                                      FACTOR (4) SAVINGS (5)
    FUEL
              $/MBTU(1)
                          MBTU/YR(2)
                                                                    33228960.
                            83905.
                                        $ 2199137.
                                                         15.11
    A. ELECT $ 26.21
                                                                            0.
                               0.
    B. DIST $ .00
                                        $
                                                ο.
                                                         21.31
                               0.
                                                                            0.
                                                         25.22
    C. RESID $
                  .00
                                        $
                                                 0.
                                          -596706.
                                                         20.70
                                                                   -12351810.
    D. NAT G $
               3.41
                                                 0.
                                                         15.93
                                                                            0.
    E. COAL $
                 .00
                                0.
                           -91083.
                                        $ 1602431.
                                                                  $ 20877150.
    F. TOTAL

 NON ENERGY SAVINGS (+) / COST (-)

   A. ANNUAL RECURRING (+/-)
                                                                  $ -641450.
       (1) DISCOUNT FACTOR (TABLE A)
                                                         14.53
        (2) DISCOUNTED SAVING/COST (3A X 3A1)
                                                                  $ -9320268.
   B. NON RECURRING SAVINGS (+) / COSTS (-)
                                                            DISCOUNTED
                                                 DISCNT
                              SAVINGS(+)
                                           YR
                                COST(·)
                                           OC
                                                 FACTR
                                                             SAVINGS(+)/
                                                  (3)
                                                             COST(-)(4)
                                   (1)
                                           (2)
                              $2050780.
                                                  1.00
                                                              2050780.
    1. MR/RC
                              $2050780.
                                                              2050780.
    d. TOTAL
   C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)$ -7269488.
   D. PROJECT NON ENERGY QUALIFICATION TEST
       (1) 25% MAX NON ENERGY CALC (2F5 X .33)
                                                       $ 6889459.
            A IF 3D1 IS = OR > 3C GO TO ITEM 4
B IF 3D1 IS < 3C CALC SIR = (2F5-
C IF 3D1B IS = > 1 GO TO ITEM 4
                                       SIR = (2F5+3D1)/1F)_{\underline{}}
             D IF 3D1B IS < 1 PROJECT DOES NOT QUALIFY
4. FIRST YEAR DOLLAR SAVINGS 2F3+3A+(3B1D/(YRS ECONOMIC LIFE))$ 1043012.
                                                                  $ 13607660.
5. TOTAL NET DISCOUNTED SAVINGS (2F5+3C)
                                          (SIR) = (5 / 1F) =
6. DISCOUNTED SAVINGS RATIO
    (IF < 1 PROJECT DOES NOT QUALIFY)
                                                              6.59
7. SIMPLE PAYBACK PERIOD (ESTIMATED)
                                           SPB=1F/4
```

11F NUMBER OF ADDITIONAL OPERATIONAL PERSONNEL = 1

Project Development Brochure Checklists

ATEM	to Beninger	Personal S	Somman I	Decument Attracted
. 11Cm		+	 • •	-
Cost estimates for each primary and supporting facility			 	
Telegrammunications system coordination with USACC and authorization for exceptions	NR.	 	 	
Coordination with state and local governmental requirements (billed vendors, medical facilities,	l I		ì	
construction and operating permits, clearinghouse coordination, etc.)		_	 	
Assignment of simposs			ļ	
Economic energy of alternatives		 P	ļ	
Approval for new starts	HR			
international balance of payments (1807) spendingtion with U.S. European semmand and	1	1	•	
NATO-everage cost estimates and comparables (include rate of exchange used in estimates)	NK.	_	 	
import on historic pieces—on site survey by surnerized archeologist and coordination with stam	1 .	·	ł	
historic preservation efficer and advisory council on historic preservation		↓	 	
Exceptions to ertablished of flor is	NR		<u> </u>	
Physical Security Analysis and Threat Statement propored by Provost Marshal/Physical Security		1	1	
Officer		┷-		
Coordination with other various user staff agencies (G/S-2 intelligence Personnel)	NR		<u> </u>	
Identification of related or support projects (so projects can be coordinated)	NR	_	<u> </u>	
		13	ļ	
	NR			
	Cost estimates for each primary and supporting facility Telecommunications system coordination with USACC and authorization for exceptions Coordination with state and local governmental requirements (blind venders, modical facilities, construction and operating permits, clearinghouse coordination, etc.) Assignment of airspece Economic analysis of airst natives Approval for new state Instructional balance of payments (ISOP) coordination with U.S. European command and NATO-everses cost estimates and comparables (include rate of exchange used in estimates) impact on historic pieces—on site survey by authorized archeologist and coordination with state historic preservation efficer and advisory council on historic preservation Exceptions to established of iteria Physical Security Analysis and Threat Statement prepared by Provest Marshel/Physical Security	Cost estimates for each primary and supporting facility Talecommunications system coordination with USACC and authorization for exceptions Coordination with state and local governmental requirements (blind venders, modical facilities, construction and operating permits, clearinghous coordination, etc.) Assignment of airspects Economic enalysis of afternatives Approval for new states International balance of payments (ISOF) coordination with U.S. European commend and NATO-everses cost estimates and comparables (include rate of auchange used in estimates) Impact on historic pieces—an site survey by sufferized archaologist and coordination with state historic preservation afficer and edvisory council an historic preservation Exceptions to established of iteris Physical Security Analysis and Threat Statement prepared by Provost Merenal/Physical Security Officer Coordination with other verious user staff agencies (G/S-2 intelligence Personnel) NR NR NR NR NR NR NR NR NR N	LTEM Cont onlineres for such primary and supporting facility Talecommunications system coordination with USACC and authorization for exceptions Coordination with state and local governmental requirements (blind vendors, medical facilities, construction and experting permits, clearlinghouse coordination, etc.) Assignment of simpose Economic energy and of atternatives Approval for now starts International balance of payments (ISOP) operatination with U.S. European command and NATO-everses cost estimates and comparables (include rate of authorize used in estimates) Impact on historic places—on site europy by authorized archeologist and coordination with state historic preservation efficer and advisory council on historic preservation Exceptions to established of iter is Physical Security Analysis and Threat Statement prepared by Provost Marshal/Physical Security Officer Coordination with other various user staff agencies (G/S-2 Intelligence Personnel) NR NR NR NR NR NR NR NR NR N	ITEM Cost entimeres for each primary and supporting facility Telecommunications system coordination with UBACC and authorization for enceptions Coordination with risate and local governmental requirements (blind vendors, medical facilities, enceptuation and operating permits, clearinghous coordination, esc.) Assignment of aircpace Economic ensitysis of afternatives Approval for new starts International balance of payments (IBOP) operaination with U.S. European command and NATO-everses cost estimates and comparables (include rate of auchange used in estimates) Impact on historic pieces—on site survey by authorized archeologist and coordination with stars Aircrit preservation efficer and advisory council on historic preservation Exceptions to erabilished of her is Physical Security Analysis and Threat Statement prepared by Provott Marshal/Physical Security Officer Coordination with other various user staff agencies (G/S-2 Intelligence Personnel) Required completion details

REQUIRED OR NOT REQUIRED — Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if from its irrelevant and is not required for this project.

TO BE DETERMINED — Information needed but not currently available.

Enter code for information source.

COMMENT ATTACHED — Significant information summarized or explained and attached.

DOCUMENT ATTACHED - Significant information is in an existing document which is extected *BY WHOM (Check and Insert appropriate letter)

- A DFAE
- 8 Using Service
- C Construction Service
- D Designer
- E'= Dimer (Check Commons Attached er-d explain)

documentation checklist

1 afc

SITE DEVELOPMENT		ind of	• P	ر يَ كِ	ا ا
ITEM].	Net P	T. D.	¥ ک ق	Decument Attached
Consultation with the District Office to determine and evaluate flood plain hazards		K			
	ł			 	-
	1				<u> </u>
	1				
	łl				<u> </u>
Facilities Requirements Sketch	11		0		~
Preparation of					
Site Survey			ں		
- Subsoil Information		NR.			
Approval by Department of Defense Explosive Safety Board (DDESB) for Safety Site Plan		NR.			
Approval of site plan by Provost Marshal/Physical Security (Comparisons with Terrorist Threat Assessment)		NR	,		
Other Site Development Considerations (list and number items)					
	Consultation with the District Office to determine and evaluate flood plain hexards Properation, submission, and/or approval of new — General Site Pian Annotated General Site Pian Sketch Site Pian Facilities Requirements Sketch Properation of Site Survey Subsoil Information Approval by Department of Defense Explosive Safety Board (DDESB) for Safety Site Pian Approval of site pian by Provost Marshal/Physical Security (Comparisons with Terrorist Threat Assessment)	Consultation with the District Office to determine and evaluate flood plain hexards Properation, submission, and/or approval of new — General She Pian Annotated General Site Pian Sketch Site Pian Facilities Requirements Sketch Properation of Site Survey Subsoil information Approval by Department of Defense Explosive Safety Board (DDESB) for Safety Site Pian Approval of site pian by Provost Marshal/Physical Security (Comparisons with Terrorist Threat Assessment)	ITEM Consultation with the District Office to determine and evaluate flood plain hazards Preparation, submission, and/or approval of new — General Site Plan Annotated General Site Plan Sketch Site Plan Facilities Requirements Sketch Preparation of Site Survey Subsoil information Approval by Department of Defense Explosive Safety Board (DDESB) for Safety Site Plan Approval of site plan by Provost Marshal/Physical Security (Comparisons with Terrorist Threat Assessment)	Consultation with the District Office to determine and evaluate flood plain hazards Properation, submission, and/or approval of new — General She Pien Annotated General Site Pien Shetch Site Pien Facilities Requirements Shetch Properation of Site Survey Subsoli Information Approval by Department of Defense Explosive Safety Board (DDESB) for Safety Site Pien Approval of site pien by Provost Marshel/Physical Security (Comparisons with Terrorist Threet Assessment)	Preparation, submission, and/or approval of new — General She Pian Annotated General Site Pian Shertch Site Pian Facilities Requirements Shertch Preparation of Site Survey Subsoil Information Approval by Department of Defense Explosive Safety Board (DDESB) for Safety Site Pian Approval of site pian by Provost Marshal/Physical Security (Comparisons with Terrorist Threat Assessment)

REQUIRED OR NOT REQUIRED — Not relevant or no information to communicate. Enter "R" If item is relevant and is required for this project. Enter "NR" If item is irrelevant and is not required for this project.

TO BE DETERMINED — Information needed but not currently evollable.

Enter code for information source.

COMMENT ATTACHED — Significent information summarized or explained and attached.

DOCUMENT ATTACHED - Significent information is in an existing document which is estached

*BY WHOM (Check and insert apprepriate letter)

- A DFAE
- 8 Using Service
- C Construction Service
- D r exigner
- E Other (Check Comments Attached and explain)

documentation checklist

200

C. ARCHITECTURAL & STRUCTURAL

		,				
	C. ARCHITECTURAL & STRUCTURAL		Regulation Not Required	• P	Comment	Detument
	ITEM			7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$ 4 \$ 5	3 4
C·1	Reconciliation with troop housing programs and requirements	11.	NR	l	<u></u>	
C2	Evaluation of existing facilities (including degree of utilization)		R	5		
C-3	Approval for removal and relocation of existing useable facilities] L	JR			
C4	Evaluation of off-post community facilities		NR	<u> </u>		
C4	Storage and maintenance facilities (including nuclear weapons)	ياا	NR			
CA	Coordination hospitals, medical and dental facilities with Surgeon General	J 1-	NR			
C.7	Coordination of evention facilities with FAA		JR	<u> </u>		
64	Coordination air traffic control and navigational aids with USACC		NR			
C-0	Tabulation of types and numbers of aircraft	· -	NR			
C 10	-		JR			
C11			スペ			
C12			UR.			
C-13						
l	communication centers not co-located with related facilities	_	75			
C-14	Coordination postal facilities with U.S. Postal Service Regional Director	L	UR			
C-15	Laundry and dry cleaning facilities coordination with ASO(I&L)		K_			
C-16	Tenant facilities coordination with installation where sited		JR			l
C-17	Facilities for or exposed to explosions, toxic chemicals, or ammunition—review by DDESB (See also Item 8-4)		取			
C-18	Analysis of deficiencies	N	2			
C-19	Consideration of alternatives		R_	<u>D</u>		
C-20	Determination whether occupants will include physically handicapped or disabled persons	Ц	R	B		
C-21	As-build drawings for alterations or additions	_	R	ᆫᆜ		
<u>c.22</u>	Availability of Standard Design or site adaptable designs	N	R			
C23	Evaluation of facilities with Provost Marshel/Physical Security Officer (Installation Terrorist			1	1	- 1
	Threat Assument)	1	IR			
	Other Architectural and Structural (list and number homa)		2	D		
		Г			1	
		1	ľ	ŀ	1	1
		1	- 1	i		. [
	· · · · · · · · · · · · · · · · · · ·		ı	i		ŀ
	· · · · · · · · · · · · · · · · · · ·	ı	- 1	1	- 1	1
		1	- 1	1		- }
	·		- 1	ŀ	- 1	
- 1	i			- {	[1
		1			- 1	1
- 1			- 1		- 1	
		l		- 1	- 1	1
		1		.	1	- 1
ı				L		

REQUIRED OR NOT REQUIRED - Not relevant or no information to communicate. Enter "R" If Item is relevant and is required for this project. Enter "NR" If from it irrelevant and it not required for this project.

TO BE DETERMINED - Information needed but not currently evaluable. Enter cade for information source.

COMMENT ATTACHED - Significant Information summarized or explained and attached

DOCUMENT ATTACHED - Significant information is in an existing document which is attached.

*BY WHOM (Check and insert appropriate letter)

A - DFAE

B - Using Service

C - Construction Service

E - Ower (Check Comm into Attached and

documentation checklist

3046

D-1 Fuel considerations and cost comparison enalysis D-2 Energy requirements appraised (ERA) D-3 Conformance with DOD Energy Reduction requirements	PENDON RRR	D D		
D-2 Energy requirements appraisal (ERA)	RRR	D D		
No. COD France Baduralen regulaments	尼尼	D		1
Centerments with DOD Energy Reduction requirements			1	
D-3 Conformance with DOD Energy house, and a conformance with DOD Energy house		D		1
D-4 Evaluation of existing and/or proposed utility systems	1			
D-5 Évaluation of systems with Provost Marshal/Physical Security (Installation Terrocits Threat	NR	ł	l	1
Assessment) Other Mechanical and Utility Systems (list and number Items)	R	D		

REQUIRED OR NOT REQUIRED - Net relevent or no information to communicate, Enter "R" If item is relevant and is required for this project. Enter "NR" If item is irrelevent and is not required for this project.

TO BE DETERMINED - Information needed but not currently evallable. Enter code for information source.

COMMENT ATTACHED - Significant Information summarized or explained and attached

DOCUMENT ATTACHED - Significent information is in an existing decument which is assected

8 - Using Service

C - Construction Service

D - Designer

E - Other (Check Comments Attached and explain)

documentation checklist 4466

	E. ENVIRONMENTAL CONSIDERATIONS		2 5	•	ĩ y	1
	ITEM		Required or Not Require	To Be Depended	Comment	Occument Attached
			R	0	-	-
E-1	Environmental impect amountent	1-	JR.			
£ · 2	EIA conclusions require Environmental Impact Statement	-	-22-			
(-)	Determination of health, environmental or related hazards. Assistance to determine existence of any health, environmental or related hazard may be requested from Aberdeen Proving Ground, MD 21010, the Office of the Surgeon General, Ass.: DASG-HCH (Army Environmental Hygiene Agency)	_	R	D		
E4	Air/water pollution permit, coordination with agencies and compliance with standards at Federal, state and local level		R	<u>D</u> .		
E-4	Corrective measures associated with Environmental Impact Statements or sessement—list separately and evaluate.		JR JR			
	Other environmental considerations (list and number items)	'	71			
		Ì	ĺ			
		1				
:		1	}			i
		1	i			
			-			
			f			
			İ			
		1	Ì			
				ı	Ì	
			1	I		
					İ	
			J			
			$\overline{}$	•		

REQUIRED OR NOT REQUIRED — Not relevant or no information to communicate. Enter "R" If here is relevant and is required for this project. Enter "NR" If Isom is irrelevant and is not required for this project.

TO BE DETERMINED - Information needed but not currently evaluable.

Enter code for information source.

COMMENT ATTACHED - Significant Information summarized or explained and exacted.

DOCUMENT ATTACHED - Significant information is in an existing document which is exacted. * BY WHOM (Check and insert appropriate letter)

- A DFA
- B Using Service
- C Construction Service
- D Designer
- E Other (Check Comments Attached and explain)

documentation checklist]

5 OF 6

F	. PHYSICAL SECURITY ENHANCEMENT AGAINST TERRORIST THREAT	Require se Not Require	Te Be Determined	Comment Attached	Occument
	ITEM	E X	0 -	Ç Š V i i š	0 ¥
9-1	Properation of the Physical Security Survey and Threat Analysis propered by Provest Marshal/ Physical Security	JR			
F.3	Preparation, submission, and/or approval of sterplen by Provost Marshal/Physical Security	NR			
13	Evaluation of mission assential project by Prevent Marshal/Physical Security	NR			
74	Tabulation of America to be protected	NR			
7-8	Evaluation of Ingress/egress time by Instruder and security response time	NR			
14	Evaluation of Project by Q/S-2 Intelligence Personnel	NR			
			l		
ļ					
İ					
			F		

REQUIRED OR NOT REQUIRED — Not relevant or no information to communicate. Enter "R" If item is relevant and is required for this project. Enter "NR" If item is irrelevant and is not required for this project.

TO BE DETERMINED — Information needed but not currently evallable.

Enter code for information source.

COMMENT ATTACHED — Significant information summarized or emplained and estached.

DOCUMENT ATTACHED — Significent information is in an existing document which is ereached

*BY WHOM (Check and Insert appropriate letter)

- A DFA
- B Using Service
- C Communication Service
- D Designer
- E Other (Check Comments seched and explain)

documentation checklist

6 OF 6

<u></u>	A. SPECIAL CONSIDERATIONS	Required &	To 8e • Determined	<u>وَ</u> کِ	۽ پ
	ITEM	8 20	T 0	Comment	Decument
41	Factors of risk, restriction or unusual circumstance expected to increase costs beyond applicable area averages	NR			
A-2	Construction phasing requirements	R	D		
 	Functional support equipment (mechanical, electrical, structural, and security) to be built in	R	D		
A4	Equipment in place and justification	RR			
A4	Other equipment and furniture (O&MA, OPA) and costs	R	0		
A4	Special studies and tests (hazards analyses, competibility testing, new technology testing, etc.)	NR	<u> </u>		
A-7	Type of construction (permenent, semporary, semi-permenent)	R	8		
44	Government furnished equipment (quantities, procurement time, evailability and special handling and storage requirements). Funds used for procurement.	R	6		
	Other special considerations (list and number items),	R	۵		

REQUIRED OR NOT REQUIRED — Not relevent or no information to communicate. Enter "R" If item is relevant and it required for this project. Enter "NR" If item is irrelevant and is not required for this project.

TO BE DETERMINED — Information needed but not currently evallable.

Enter code for information source.

COMMENT ATTACHED - Significant information summarized or explained and attached.

DOCUMENT ATTACHED — Significent information is in an existing document which is attached.

*BY WHOM (Chick and insert appropriate letter)

- A DFAE
- 8 Using Service
- C Construction Service
- D Designer
- E Other (Check Comments Attached and spoisin)

technical data checklist

10FI

B. SITE DEVELOPMENT	Not Required to	To Be Determined	Comment	Detument Atterned
ITEM	α ž	T.0	A 10 €	٥٧
8-1 Construction restrictions or guidelines pertaining to (A) site access and preferred construction routes	R	В		
(8) Airfield clearance, explosive storage, working hours, safety, etc.	. NR			
(c) Facilities and/or functions or adjoining areas (structures, materials, impact)	R	Б		
B-2 Real estate actions (acquisition, disposal, lease, right-of-way)	NR			
B-3 Demolition/relocation required (data)				
(A) Special considerations due to explosives/radioactivity/ chemical contamination/asbestos emissions/toxic gases	R	P		
(8) Restrictions on disposal of demolished/relocated material including hazardous waste	R	В		
8-4 Pavement types and requirements (including traffic surveys and MTMC coordination)	UR			
8-5 Landscape considerations (A) Protection of existing vegetation	_ NE			
(8) Stockpile topsoil	MIX	ļ		
Other Site Development (List and number items)	HT.			

REQUIRED OR NOT REQUIRED — Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if Item is irrelevant and is not required for this project.

TO BE DETERMINED - Information needed but not currently available.

Enter code for information source.

COMMENT ATTACHED - Significant information summerized or explained

DOCUMENT ATTACHED - Significant information is in an existing document which is attached.

*BY WHOM (Check and insert appropriate letter)

- A DFAE
- B Using Service
- C Construction Service
- D Designer
- E Other (Check Comments Attached and explain)

technical data checklist

2047

C. ARCHITECTURAL & STRUCTURAL

Vibration-producing equipment requiring isolation Seismic zone and other design load criteria (typhoon, hurricane, earthquake loads, high or low loss potential) Protective shelter evaluation and resistant design criteria (conventional/nuclear blast and radiation, chemical/biological) Unusual foundation requirements (pier, pile, carson, deep foundations, mat, special treatment, permafrost areas, soil bearing) Designation and strength of units to be accommodated		C. ARCHITECTURAL & STRUCTURAL	Required or Not Required	To 8e • Determined	Comment	Occument Atteched
Seismic zone and other design load criteria (typhoon, hurricane, earthquake loads, high or low loss potential) Protective shafter evaluation and resistant design criteria (conventional/nuclear blast and radiation, chemical/biological) Unusual foundation requirements (pier, pile, carsson, deep foundations, mat, special treatment, permafrost areas, soil bearing) Designation and strength of units to be accommodated Requirements and data for special design projects Unusual floor and roof loads (sales, equipment) Security features (arms rooms, vaults, interior secure areas)				FÖ	٥∢_	0 4
Iose potential)	C-1	Vibration-producing equipment requiring isolation	MR			
tion, chemical/biological) Unusual foundation requirements (pier, pile, carson, deep foundations, mat, special treatment, permafrost areas, soil bearing) Be Designation and strength of units to be accommodated Requirements and data for special design projects Unusual floor and roof loads (sales, equipment) Security features (arms rooms, vaults, interior secure areas)	C-3	los potential)	R	D		
permafrost areas, soil bearing) Bound Designation and strength of units to be accommodated	; j	Protective shelter evaluation and resistant design criteria (conventional/nuclear blast and radiation, chemical/biological)	NR			
Designation and strength of units to be accommodated Requirements and data for special design projects Unusual floor and roof loads (sales, equipment) Security features (arms rooms, vaults, interior secure areas) LR	4		HR			
-8 Security features (arms rooms, vaults, interior secure areas)	:4	Designation and strength of units to be accommodated	K	Ω		
-8 Security features (arms rooms, vaults, interior secure areas)	4		R.	B		
Security features (arms rooms, vaults, interior secure areas)	.,	Unusual floor and roof loads (sales, equipment)	NR			
Other Architectural & Structural (List and number items)	+	Security features (arms rooms, vaults, interior secure areas)	NR			

REQUIRED OR NOT REQUIRED - Not relevent or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.

TO BE DETERMINED - Information needed but not currently evailable. Enter code for information source.

COMMENT ATTACHED - Significant information summarized or explained

DOCUMENT ATTACHED - Significant information is in an existing document which is attached.

- * *BY WHOM (Check and insert appropriate letter)
 - A DFAE
 - # Using Service
 - C Construction Service

 - E Other (Check Comments Attached and

D. MECHANICAL, ELECTRICAL, & UTILITY SYSTEMS

!	D. MECHANICAL, ELECTRICAL, & UTILITY SYSTEMS	Required or Not Required	To Be . Determined	Comment	Document
	ITEM		<u> </u>	८ँ₹	o ·
-1	Special mechanical requirements or considerations (elevator, crane, hoist, etc.)	UR	.]		
.2	Special peek usage periods and peak leveling techniques	R	<u> </u>	<u> </u>	}
.3	Maintenance considerations (accessibility of equipment, compatibility with existing equipment)	R	P	<u> </u>	
4	Plumbing—evailability, general system type and characteristics (proposed and/or existing, incl. compressed air and gas)	R	D		
5	Heating-availability, general system type and characteristics (proposed and/or existing)	_12	<u>p</u>		
•	Ventilating, air condition/refrigeration-availability, general system type and characteristics (proposed and/or existing)	R	0		
7	Electrical—availability, general system type and characteristics incl, airfield lighting, communication, etc. (proposed and/or existing)	R	D		
8	Water supply/weste treatment—evailability, general system type and characteristics (proposed and/or existing)	R	D		
•	Energy requirements/fuel conversion (sources, evailability, loads, types of fuel, etc.)	R	D		_
10	Solar energy evaluation	NR			

REQUIRED OR NOT REQUIRED - Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if Item is irrelevent and is not required for this project.

TO BE DETERMINED - Information needed but not currently evallable. Enter code for Information source.

COMMENT ATTACHED - Significant Information summarized or explained and attached.

DOCUMENT ATTACHED - Significant information is in an existing document which is attached.

- *BY WHOM (Check and insert appropriate letter)
 - A DFAE
 - 8 Using Service
 - C Construction Service

 - E Other (Check Comments Attached and explain)

	E. ENVIRONMENTAL CONSIDERATIONS	Required or Not Require.	To Be Determined	Comment	Decument
	ITEM	8 2		Con	Ø ₹
E-1	Waste water treatment, air quality, and solid waste disposal criteria	K	_D_		
	Other Environmental Considerations (List and number items)	HIS			

REQUIRED OR NOT REQUIRED - Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.

TO BE DETERMINED - Information needed but not currently available. Enter code for information source.

COMMENT ATTACHED - Significant Information summarized or explained

DOCUMENT ATTACHED - Significant information is in an existing document which is attached.

*BY WHOM (Check and insert appropriate letter)

- A DFAE
- B Using Service
- C Construction Service
- E Other (Check Comments Attached and

	F. FIRE PROTECTION	Required of Not Required	To Be Determined	Comment	Document Attached
		R	D		
F-1	Special fire protection systems or features Idetection and suppression equipment, nazaros, etc.)				
F.1	Special fire protection systems or features idetection and suppression equipment, hazards, etc.) Other Fire Protection Considerations (List and number stems)	TR.			

REQUIRED OR NOT REQUIRED - Not relevant or no information to communicate. Enter "A" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.

TO BE DETERMINED - Information needed but not currently evailable. Enter code for information source.

COMMENT ATTACHED - Significent information summarized or explained and attached.

DOCUMENT ATTACHED - Significant information is in an existing document which is attached.

* BY WHOM (Check and insert appropriate letter)

- A DFAE
- B Using Service
- C Construction Service
- D Designer
- E Other (Check Comments Attached and
 - explain)

G.	PHYSICAL SECURITY ENHANCEMENT AGAINST TERRORIST THREAT	Required or Not Required	Te Be Desembed	į Į	Document
	ITEM	17.00		Comment	ATT
Ĺ	(I CM		-		
0.1	Site Considerations Related to Physical Security Enhancements	NR.	-	<u> </u>	
0-2.	She Protective Berriers	JR			
(A)	Active	R	D		
(8)	Pamire				
	As a transport of the control of the				
0.3	Architectural and Structural Considerations	NR			
(A)	Protective shelters and secure eress Passiva Dosign features	NK.			
(8)	Lock and key systems	NR			
G	Part due yak akasana				
G-4	Mochanical, Electrical, Utility Systems]			
<u>(A)</u>	Security lighting	R	D		
(8)	IDS	NR			
(c)	Communications	MR			
(a)	EMP Protection	JR			
TET	Personnel Identification Systems	NR			
TFT	Biological and Chemical Protection for Utilities	NR			
G-5	Other Special Security Features (arms rooms, vaults, nuclear storage, etc.)	NR			
				1	
j				I	
		1 1	·	l	•
- 1			İ	- 1	
I				.]	
- 1		1 1	ļ	j	
- 1	·	1 1	1	- 1	
1			- 1	I	
ł		1 1		ł	
	į	1 1	- 1	- 1	
- [1 1	- 1	- 1	
				- 1	
ł		1 1	- 1	ı	
i			ł	- 1	
	1		- 1	- 1	
1		1 1	Į	1	
1		j		1	
1]			
		<u> </u>			
			~ ~		

REQUIRED OR NOT REQUIRED — Not relevant or no information to communicate. Enter "R" if from its relevant and its required for this project. Enter "NR" if Item is irrelevant and its not required for this project.

TO BE DETERMINED — Information needed but not currently evaluable.

Enter code for information source.

COMMENT ATTACHED - Significant information summarized or explained and attached.

DOCUMENT ATTACHED - Significent information is in an existing document which is attached. *BY WHOM (Check and Insert appropriate letter)

- A DFAE
- B Using Service
- C Construction Service
- D -- Designer
- E Other (Check Comments Attached and

technical data checklist

FOF 7

DA FORM 5022-R, Feb 82

USACERL DISTRIBUTION

Chief of Engineers ATTN: CEHEC-IM-LH (2) ATTN: CEHEC-IM-LP (2) ATTN: CECG ATTN: CECC-P ATTN: CECC-R ATTN: CECW ATTN: CECW-O ATTN: CECW-P ATTN: CECW-PR ATTN: CEMP ATTN: CEMP-E ATTN: CEMP-C ATTN: CEMP-M ATTN: CEMP-R ATTN: CERD-C ATTN: CERD-ZA ATTN: CERD-L ATTN: CERD-M ATTN: CERM ATTN: DAEN-ZC ATTN: DAIM-FDP

CECPW 22310-3862 ATTN: CECPW-E ATTN: CECPW-FT ATTN: CECPW-ZC ATTN: DET III 79906

US Army Engr District ATTN: Library (40)

US Army Engr Division ATTN: Library (12)

INSCOM

ATTN: IALOG-I 22060 ATTN: IAV-DPW 22186

USA TACOM 48397-5000 ATTN: AMSTA-XE

Defense Distribution Region East ATTN: DDRE-WI 17070

HQ XVIII Airborne Corps 28307 ATTN: AFZA-DPW-EE

4th Infantry Div (MECH) 80913-5000 ATTN: AFZC-FE

US Army Materiel Command (AMC) Alexandria, VA 22333-0001 ATTN: AMCEN-F Installations: (19)

FORSCOM
Forts Gillem & McPherson 30330
ATTN: FCEN
Installations: (23)

6th Infantry Division (Light) ATTN: APVR-DE 99505 ATTN: APVR-WF-DE 99703

TRADOC Fort Monroe 23651 ATTN: ATBO-G Installations: (20)

Fort Belvoir 22060 ATTN: CETEC-IM-T ATTN: Engr Strategic Studies Ctr ATTN: Water Resources Support Ctr ATTN: Australian Liaison Office

USA Natick RD&E Center 01760 ATTN: STRNC-DT ATTN: DRDNA-F US Army Materials Tech Lab ATTN: SLCMT-DPW 02172

USARPAC 96858 ATTN: DPW ATTN: APEN-A

SHAPE 09705

ATTN: Infrastructure Branch LANDA

Area Engineer, AEDC-Area Office Arnold Air Force Station, TN 37389

HQ USEUCOM 09128 ATTN: ECJ4-LIE

AMMRC 02172 ATTN: DRXMR-AF ATTN: DRXMR-WE

CEWES 39180 ATTN: Library

CECRL 03755 ATTN: Library

USA AMCOM

ATTN: Facilities Engr 21719 ATTN: AMSMC-EH 61299 ATTN: Facilities Engr (3) 85613

USAARMC 40121 ATTN: ATZIC-EHA

Military Traffic Mgmt Command ATTN: MTEA-GB-EHP 07002 ATTN: MT-LOF 20315 ATTN: MTE-SU-FE 28461 ATTN: MTW-IE 94626

Fort Leonard Wood 65473 ATTN: ATSE-DAC-LB (3) ATTN: ATZA-TE-SW ATTN: ATSE-CFLO ATTN: ATSE-DAC-FL

Military Dist of WASH Fort McNair ATTN: ANEN 20319

USA Engr Activity, Capital Area ATTN: Library 22211

US Army ARDEC 07806 ATTN: SMCAR-ISE

Engr Societies Library ATTN: Acquisitions 10017

Defense Nuclear Agency ATTN: NADS 20305

Defense Logistics Agency ATTN: DLA-WI 22304

Walter Reed Army Medical Ctr 20307

National Guard Bureau 20310 ATTN: NGB-ARI

US Military Academy 10996 ATTN: MAEN-A ATTN: Facilities Engineer ATTN: Geography & Envr Engrg Naval Facilities Engr Command
ATTN: Facilities Engr Command (8)
ATTN: Division Offices (11)
ATTN: Public Works Center (8)
ATTN: Naval Constr Battalion Ctr. 93043
ATTN: Naval Facilities Engr Service Center 93043-4328

416th Engineer Command 60623 ATTN: Gibson USAR Ctr

US Army HSC
Fort Sam Houston 78234
ATTN: HSLO-F
Fitzsimons Army Medical Ctr
ATTN: HSHG-DPW 80045

Tyndall AFB 32403 ATTN: HQAFCESA Program Ofc ATTN: Engrg & Srvc Lab

USA TSARCOM 63120 ATTN: STSAS-F

American Public Works Assoc. 64104-1806

US Army Envr Hygiene Agency ATTN: HSHB-ME 21010

US Gov't Printing Office 20401 ATTN: Rec Sec/Deposit Sec (2)

Nat'i Institute of Standards & Tech ATTN: Library 20899

Defense Personnel Support Center ATTN: DPSC-WI (8) ATTN: DPSC-YE

US Army Engr District, Philadelphia ATTN: CENAP-EN-MM (5)

Defense Tech Info Center 22304 ATTN: DTIC-FAB (2)

> 251 2/95