Generative Models

Quick Recap!

Supervised vs Unsupervised Learning

Supervised Learning

Given: (x, y) where x is data, y is label

Goal: Learn a function mapping from x to y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, **Conditional density estimation** i.e P(X | Y)

Unsupervised Learning

Given: x - unlabelled data

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, marginal density estimation i.e. P(x)

Introduction

1-d density estimation

Generative Models: Given training data, generate new samples from same distribution

Training data $\sim p_{data}(x)$, Generated samples $\sim p_{model}(x)$, Want to learn $p_{model}(x)$ similar to $p_{data}(x)$

What can Generative Models do?

What can Generative Models do?

What can Generative Models do?

Some Math Basics

- A Divergence is a metric to measure how much probability distributions p, q differ from each other.
- $KL(p||q) = \int p(x)(\log(p(x)) \log(q(x))) dx$

Minimum value of KL divergence: 0
Maximum value of KL divergence: ∞
KL divergence is 0 iff p = q.

Is KL divergence a symmetric metric?
 What happens to the KL divergence in the following cases?
 p(x) = 0 but q(x) ≠ 0. Nothing much.
 q(x) = 0 but p(x) ≠ 0. It explodes.

Some Math Basics

- $KL(p||q) = \int p(x) \log(p(x)) \int p(x) \log(q(x))$ = -Entropy(p) + CrossEntropy(p, q).
- For many unsupervised learning problems we maximize the log-likelihood of the training data P

```
max LL(real data) = max \sum_{x \in D} log(p_{model}(x))*1/N

\equiv max - CrossEntropy(p_{data}, p_{model})

\equiv min CrossEntropy(p_{data}, p_{model})

\equiv min KL(p_{data} || p_{model})
```

 Therefore given enough samples of real data, if we maximize log-likelihood, we end up minimizing KL(p_{data} || p_{model}).

Some Math Basics

 The Jensen-Shannon Divergence (JSD) is a symmetric version of KL divergence defined as

$$JSD(P || Q) = \frac{1}{2} KL(P || (P+Q)/2) + \frac{1}{2} KL(Q || (P+Q)/2)$$

Properties:

- $0 \le JSD \le log 2$.
- JSD is 0 iff p = q.
- If p and q have disjoint supports, the JSD(P || Q) = log 2

Latent Variable Models

• The Generative model makes a decision on what it is going to generate beforehand with the help of latent variables, eg MNIST digit generation

Maximum likelihood learning (KL Divergence)

66

$$P(X) = \int P(X|z;$$

$$\theta)P(z)dz$$

- P(z) Prior distribution high dimensional standard gaussian
- In VAEs, output distribution is often Gaussian, i.e., $P(X|z; \theta) = N(X|f(z; \theta), \sigma^2 * I)$. That is, it has mean $f(z; \theta)$ and covariance equal to the identity matrix I times some scalar σ
- Integral is Intractable

VAEs

Ideally, we would like to maximize

$$\max_{\theta} L(\theta | \text{Dataset}) \equiv \sum_{x^{(j)}} \log p(\theta | x^{(j)})$$

But we maximize a lower bound for tractability

$$\max_{\theta} L_{V}(\theta|\text{Dataset}) \equiv \sum_{x^{(j)}} -\text{KL}(q_{\theta}(z|x^{(j)})||\mathcal{N}(z|0,I)) + \\ E_{z \sim (q_{\theta}(z|x^{(j)})}[\log p_{\theta}(x^{(j)}|z)] \\ \leq L(\theta|\text{Dataset})$$

11

GANs

- Goodfellow et al. NIPS 2014
- Forget about designing a perceptual loss.
 Let's train a discriminator to differential real and fake image

GANs

GANs Objective

GANs solve a minimax objective

$$\min_{G} \max_{D} E_{x \sim p_X} [\log D(x)] + E_{z \sim p_Z} [\log(1 - D(G(z)))]$$

 p_X : Data distribution, usually represented by samples.

 $p_{G(Z)}$: Model distribution, where

Z is usually modeled as uniform or Gaussian.

Discriminator strategy

Optimal discriminator (non-parametric)

$$D(x) = \frac{p_X(x)}{p_X(x) + p_{G(Z)}(x)}$$

JS Divergence

Under an ideal discriminator, the generator minimizes the Jensen-Shannon divergence between p_{χ} and $p_{G(Z)}$. This also requires that D and G have sufficient capacity and a sufficiently large dataset.

GANs in practice

• Step 1: Fix G and perform a gradient step to

$$\max_{D} E_{x \sim p_X} [\log D(x)] + E_{z \sim p_Z} [\log(1 - D(G(z)))]$$

 Step 2: Fix D and perform a gradient step to (in theory)

$$\min_{G} E_{z \sim p_Z} [\log(1 - D(G(z)))]$$

(in practice)

$$\max_{G} E_{z \sim p_Z} [\log D(G(z))]$$

36

DC-GAN Architecture

Results

DCGANs for LSUN Bedrooms

Results

Vector Space Arithmetic

Woman with Glasses

Wasserstein GAN

M. Arjovsky, S. Chintala, L. Bottou "Wasserstein GAN" 2016 Replace classifier with a critic function

WGAN

GAN: minimize Jensen-Shannon divergence between p_X and $p_{G(Z)}$

$$JS(p_X||p_{G(Z)}) = KL(p_X||\frac{p_X + p_{G(Z)}}{2}) + KL(p_{G(Z)}||\frac{p_X + p_{G(Z)}}{2})$$

WGAN: minimize earth mover distance between p_X and $p_{G(Z)}$

$$EM(p_X, p_{G(Z)}) = \inf_{\gamma \in \prod (p_X, p_{G(Z)})} E_{(x,y) \sim \gamma}[||x - y||]$$

WGAN

WGAN VS GAN

$$JS(p_X||p_{G(Z)}) = KL(p_X||\frac{p_X + p_{G(Z)}}{2}) + KL(p_{G(Z)}||\frac{p_X + p_{G(Z)}}{2})$$

Jesen-Shannon divergence in this example

$$JS(p_X||p_{G(Z)}) = \begin{cases} \log 2 & \text{if } \theta \neq 0, \\ 0 & \text{if } \theta = 0, \end{cases}$$

Example from Arjovsky et al. 2017

Slide credit, Courville 2017

WGAN Vs GAN

$$EM(p_X, p_{G(Z)}) = \inf_{\gamma \in \prod(p_X, p_{G(Z)})} E_{(x,y) \sim \gamma}[||x - y||]$$

Earth Mover distance in this example

$$EM(p_X, p_{G(Z)}) = |\theta|$$

69

Example from Arjovsky et al. 2017

Slide credit, Courville 2017

WGAN Vs GAN

- If we can directly change the density shape parameter, the Earth Mover distance is smoother.
- But we do not directly change the density shape parameter, we change the generation function.

WGAN-GP

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Domoulin, A. Courville "Improved Training of Wasserstein GANs" 2017

$$\min_{G} \max_{D} E_{x \sim p_{X}}[D(x)] - E_{z \sim p_{Z}}[D(G(Z))] + \lambda E_{y \sim p_{Y}}[(||\nabla_{y}D(y)||_{2} - 1)^{2}]$$

$$y = ux + (1 - u)G(z)$$

y = ux + (1 - u)G(z) • *y*: imaginary samples

Optimal critic has unit gradient norm almost everywhere

DCGAN

LSGAN

WGAN (clipping)

WGAN-GP (ours)

Baseline (G: DCGAN, D: DCGAN)

pix2pix

200

Paired Image-to-Image Translation

Cycle GANs

200

Unpaired Image-to-Image Translation with CycleGAN

Cycle GANs

Cycle GANs

Cycle-Consistent Adversarial Networks

Cycle Consistency Loss

X

Cycle Consistency Loss

How do Cycle GANs Work?

Style and Content Separation

Paired Separation

	Content								
Style	Α	В	С	D	Е	?	?	?	
	A	B	C	D	E				
	Α	В	C	D	Е				
	A	\mathcal{B}	C	\mathcal{D}	E				
()	A	В	C	D	E	?	?	?	
	~ ?				?	F	G	Н	
					_				

Separating Style and Content with Bilinear Models

[Tenenbaum and Freeman 2000']

Unpaired Separation

Adversarial Loss: change the Style

$$\begin{split} \mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) = & \mathbb{E}_{y \sim p_{\text{data}}(y)}[\log D_Y(y)] \\ + & \mathbb{E}_{x \sim p_{\text{data}}(x)}[\log(1 - D_Y(G(x))]. \end{split}$$

Cycle Consistency Loss: preserve the con

$$\mathcal{L}_{\text{cyc}}(G, F) = \mathbb{E}_{x \sim p_{\text{data}}(x)}[\|F(G(x)) - x\|_1]$$
$$+ \mathbb{E}_{y \sim p_{\text{data}}(y)}[\|G(F(y)) - y\|_1].$$

Two empirical assumptions:

- content is easy to keep.
- style is easy to change.

Results

Results

THANKS!

Any questions?

You can find us at analyticsclub.iitm@gmail.com