Large numbers for statistics

Sam Cohen University of Oxford

December 5, 2019

Abstract

Lot's of statistical mehtods are based on the law of large numbers so it makes sense to try and understand it a bit better. We will see a proof of the basic law of large numbers and the central limit theorem, and then some applications to hypothesis testing.

1 Introduction

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and L^p the associated L^p spaces. We want to understand the behaviour of \bar{X}_n where $\bar{X}_n = \frac{1}{n} \sum X_i$. As X_i is iid, we can do this by using the law of large numbers, which comes from Chebysheff's inequality.

Theorem 1.1 (Law of Large Numbers). As $n \to \infty$ we have $X_n \to \mu$.

Proof. We seek to prove the weak law of large numbers, for a sequence of square-integrable independent random variables with common mean and common bound on the variance. To do this we use the simple calculations

$$E[\bar{X}_n] = \frac{1}{n} \sum_{i=1}^n E[X_i] = \frac{1}{n} \sum_{i=1}^n \mu = \mu,$$

and $V(\bar{X}_n) = \frac{1}{n^2} \sum V(X_i) \leq \bar{\sigma}^2/n$. This means that we can see

$$P(|\bar{X}_n - \mu| > \epsilon) \le \bar{\sigma}^2/(\epsilon n) \to 0$$

as $n \to \infty$ for each ϵ , is Tchebyshev's inequality.

The use of laws of Large numbers dates back to the work of Jacob Bernoulli, but a key advance is the use of Stirling's formula to approximate the behaviour of the relevant integral by de Moivre, who proved the celebrated central limit theorem.

Lemma 1. If two probability measures \mathbb{P} , \mathbb{Q} supported on \mathbb{R} have the same characteristic function, then they agree. If the characteristic function of one approaches that of the other then the measures must also be converging weakly.

Proof. For each of \mathbb{P} and \mathbb{Q} we can find a cdf F,G. Then the characteristic function is the Fourier transform of the cdf, and the invertibility of the transform shows the result.

Theorem 1.2 (Central limit theorem). $\xi_n = (\bar{X}_n - \mu)/(\sigma\sqrt{n})$. Then ξ_n converges in distribution to N(0,1).

Proof. We compute the characteristic function using the

$$e^x = 1 + x + x^2/2 + x^3/3! + \frac{x^4}{24} + \dots$$

$$(1+t/n)^n \to e^t$$

$$E[e^{it\xi_n}] = (E[e^{itY_i/n}])^n = E[(1+itY_i - t^2Y_i^2 + o(n^{-2})]^n = (1-t^2 + o(n^{-2})^n = \exp(1-t\xi_n^2 + o(n^{-2})))^n = (1-t^2 + o(n^{-2})^n + o(n^{-2}))^n = (1-t^2 + o(n^{-2})^n + o(n^{-2})^n + o(n^{-2}))^n = (1-t^2 + o(n^{-2})^n + o(n^{-2})^n + o(n^{-2})^n + o(n^{-2})^n = (1-t^2 + o(n^{-2})^n + o(n^{-2})^n + o(n^{-2})^n + o(n^{-2})^n = (1-t^2 + o(n^{-2})^n + o$$

Ignoring the $o(n^{-2})$ term, we get the characteristic function of a normal distribution, so by our lemma we have the normal limit. In the above $Y_i = (X_i - \mu)/\sqrt{n}$.

This is closely related to Lévy's characterization of Brownian motion.