FUNDAMENTOS MATEMÁTICOS PARA COMPUTAÇÃO

Indução

SUMÁRIO

- > Primeiro Princípio da Indução
- > Segundo Princípio da Indução

Se posso chegar a um degrau, consigo chegar ao próximo

Passo Indutivo: Se consegue chegar a um degrau qualquer, então consegue passar para o próximo

Provado por indução!!!

Passo básico: Subir primeiro degrau

k+1

Sim!!

Primeiro Princípio da Indução:

Passo básico: P(1) é verdadeiro.

Passo indutivo: $\forall k \in Z_+$, $P(k) \rightarrow P(k+1)$

P(n) verdade $\forall n \in Z_{\downarrow}$

Exemplo: Gerando descendentes

Proposição: Teremos 2ⁿ descendentes na geração n

Hipótese: Duplica de uma geração para a outra.

Exemplo: Gerando descendentes

Hipótese: Duplica de uma geração para a outra.

Tese: Teremos 2ⁿ descendentes na geração n

Passo base:

n=1 P(1)=2=2¹ Duplicou!!

Passo indutivo: $\forall k \in Z+, P(k) \rightarrow P(k+1)$

Hipótese de indução para n=k

P(k)=2^k Suponha verdadeiro para n=k!!!

Vamos provar para n=k+1

P(k+1)=2P(k) Hipótese

P(k+1)=2.2^k Hipótese de indução

 $P(k+1)=2^{k+1}$

```
Exemplo: Prove que 1+3+5+...+(2n-1) = n^2
n=1 - Passo Básico
          1 = 1^2
          1 =1 Ok
n=k - Hipótese de indução
     1+3+5+...+(2k-1) = k^2
Vamos provar para n=k+1
          1+3+5+...+(2k-1)+[2(k+1)-1) = (k+1)^2
```

Exemplo: Prove que $1+3+5+...+(2n-1) = n^2$

$$1+3+5+...+(2k-1)+[2(k+1)-1) = (k+1)^{2}$$

$$k^{2}+[2(k+1)-1) = (k+1)^{2} \text{ Hipótese de indução}$$

$$k^{2}+2k+2-1 = (k+1)^{2}$$

$$k^{2}+2k+1 = (k+1)^{2}$$

$$(k+1)^{2}=(k+1)^{2}$$

Exemplo: Prove que $\forall n \in \mathbb{Z}^+$, 2n > n.

Exemplo: Prove que \forall n \in Z+, 2^{2n} -1 é divisível por 3.

Precisamos provar que 2²ⁿ -1=3a, a inteiro positivo.

n=k - Hipótese de indução

 2^{2k} -1 = 3a, a inteiro positivo

Exemplo: Prove que $\forall n \in \mathbb{Z}^{+}$, 2^{2n} -1 é divisível por 3.

n=1
$$2^{2.1}$$
-1=4-1=3 Ok
n=k - Hipótese de indução
 2^{2k} -1 = 3a, a inteiro positivo
Vamos provar para n=k+1 2^{2k} -1 = 3a
 2^{2k} -1 = 3a+1

$$2^{2(k+1)}$$
 -1 = 2^{2k+2} -1
= 2^{2k} . 2^2 -1=4. 2^{2k} -1=
= $4(3a+1)$ -1=12a+4-1=12a+3
= $3(4a+1)$ =3b
Logo, $2^{2(k+1)}$ -1=3b é divisível por 3!

Exemplo: Prove que $\forall n \in \mathbb{Z}^+$, $n^2 > 3n$ para n > 3.

Hipótese de indução para n=k

$$k^2 > 3k$$

Vamos provar para n=k+1

 $(k+1)^2 = k^2+2k+1>3k+2k+1$ Hipótese de indução

$$(k+1)^2 > 5k+1 > 3k+2k+1 > 3k+3=3(k+1)$$

Logo,
$$(k+1)^2 > 3(k+1)$$

```
Exemplo: Prove que \forall n \in \mathbb{Z}^+, 2n+1 < 3n para n > 1.
n=2 2.2+1=5<3.2=6 Ok
n=k 2k+1 < 3k Hipótese de indução.
n=k+1, vamos provar que 2(k+1)+1<3(k+1)
   2(k+1)+1=2k+3
            =2k+1+2<3k+2
            =2k+1+2<3k+2<3k+3=3(k+1)
Logo, 2(k+1)+1 < 3(k+1)
```

Segundo Princípio da Indução (Indução Forte):

Passo básico: P(1) é verdadeiro.

Passo indutivo: $\forall k \in Z_+$

 $[(P(r) com 1 \le r \le k) \rightarrow P(k+1)]$

P(n) verdade $\forall n \in Z_{\downarrow}$

Demonstrações Informais

Exemplo:

Exemplo:

n=1 esteio, teremos n-1=1-1= 0 seções.

Pelo segundo princípio da indução, temos que:

 Para n=k temos que qualquer quantidade r de esteios com 1≤r≤k atende a propriedade de ter r-1 seções.

Exemplo:

 Suponha uma cerca com k+1 esteio. Se removermos uma seção, teremos duas cercas com r1 e r2 esteios tal que r1+r2=k+1 esteios

Exemplo:

 Por indução forte, temos r1-1 seções e r2-1 seções nestas duas cercas.

Exemplo:

- Assim, r1-1+r2-1=r1+r2-2== k+1-2=k-1 seções.
- Retornando com a seção removida, temos:

k-1+1 = k seções para k+1 esteios!!

Exemplo: Prove que qualquer quantia em selos maior ou igual a 8 centavos pode ser obtida usando-se apenas selos de 3 e 5 centavos.

Dem: Seja n=8, temos 8 = 3 + 5

Suponha que para n=r com 8≤r≤k seja válido

P(r): 3a+5b inteiro e 8≤r≤k Válido!!!

Note que 9 = 3.3 + 5(0) e 10 = 3.(0) + 5.(2)

Suponha n=k+1 centavos e retire 3 centavos.

Teremos n-3=k+1-3=k-2 com 8≤k-2<k.

Logo, k-2=3a+5b pela hipótese de indução

Voltando os 3 centavo, temos:

$$k-2+3 = 3a+5b+3 = 3(a+1)+5b=3a + 5b$$

Os conceitos e exemplos apresentados nesses slides são baseados no conteúdo da seção 2.2 do material-base "Fundamentos Matemáticos para a Ciência da Computação", J.L. Gersting, 7a edição, LTC editora.

FUNDAMENTOS MATEMÁTICOS PARA COMPUTAÇÃO

Indução