Relaciones especie-área

Macroecología

Un patrón robusto y común en ecología

Área pequeña:

Por simple aleatoriedad, áreas más grandes tienden a tener más especies

Área grande:

11 spp

¿Qué forma tiene la relación?

Asintótica: Acumulación más lenta en áreas mayores

Lineal: Acumulación constante

Exponencial: Acumulación se acelera

Ejemplo (avex)

- Reino Unido ~ 230,000 km²
- Surrey ~ 1850 km²
- Eastern Wood ~ 0.16 km²

RU

	Aumento de área (veces)	Aumento de especies (veces)
EW - Surrey	11500	2.5
Surrey - RU	124.3	2

$$S = cA^{z}$$

$$\log S = z \log A + \log c$$

Número de especies sigue relación de potencias (Arrhenius 1921).

(S = No. especies, A = Area, z y c = constantes)

Críticas al modelo de Arrhenius

Gleason 1922, exponencial

$$S = z \log A + \log c$$

- Depende de contexto
- Formulación de Arrhenius (1922) es más común

Valores de z y c

Patrones observados en los valores de los coeficientes

Variación de *c*: niveles locales de riqueza

Variación de z:

- ↓ provincias
- ↑ islas dentro de provincias
- ↑ ↑ islas más aisladas de cada provincia

Rosenzweig 1995

Patrón de anidamiento, hace cuestionables las conclusiones

$$\log_{10} S = 0.11 \log_{10} A + 0.74$$

 $r^2 = 0.997, n = 5$

Estimaciones para islas. Patrón no anidado. Conclusiones más robustas

$$\log_{10} S = 0.66 \log_{10} A + 1.59$$

 $r^2 = 0.71, n = 8, P = 0.008$

$$\log_{10} S = 0.32 \log_{10} A + 1.17$$

 $r^2 = 0.66, n = 61, P \ll 0.001$

¿Por qué áreas más grandes contienen más especies?

La estrategia macroecológica

- 1. Asumir que no hay relación entre área y no. spp.
- 2. Comparar observaciones con expectativas aleatorias

No. spp. Obsrevadas: 3

Esta área contiene más o menos spp. que el resto?

Hipótesis: área contiene una muestra aleatoria de spp

Simulación de muestras aleatorias para comparar

Con base en frecuencia, lo observado es aleatorio?

La relación spp – área es aleatoria?

Simulación de áreas de diferente tamaño para reconstruir expectativa nula

Comparar patrón observado con modelo aleatorio

¿Qué hay de la biología?

La hipótesis de los hábitats: En áreas más grandes habrá una mayor diversidad de hábitats, lo que influye en el número de especies.

Entonces...

- ¿La diversidad de hábitats es mejor predictor de riqueza?
- ¿En qué casos se rompe la relación spp-área?

Cuando el aumento del área no aumenta el

número de hábitats

Evidencia a favor y en contra

 Actividad, llena la siguiente tabla con base en la lectura que se comparte en classroom

Cita (Autor, año)	Fenómeno que explica evidencia	Favorable/Desfavorable

En adelante, la discusión continúa con base en la

teoría de Biogeografía de Islas