Övningsuppgifter 2025-03-07

- 1. Förklara följande nyckelord i VHDL:
 - a) entity
 - b) architecture
 - c) std logic
 - d) process
 - e) signal
- 2. Härled en minimerad logisk ekvation ur sanningstabellen nedan via ett Karnaugh-diagram och realisera grindnätet.

ABCD	Х
0000	1
0001	1
0010	0
0011	0
0100	1
0101	1
0110	0
0111	0
1000	0
1001	0
1010	1
1011	1
1100	0
1101	0
1110	1
1111	1

Sanningstabell 1: Sanningstabell för uppgift 2.

- 3. Realisera en implementering av ADAS-systemet i VHDL. Systemet ska kunna användas bromsa ett fordon i två fall:
 - Föraren bromsar.
 - ADAS-systemet indikerar att ett föremål framför fordonet närmar sig (och ADAS-systemet fungerar som det ska).

Systemet ska bestå utav insignaler driver_break, camera, radar och adas_error samt utsignal vehicle_break:

- driver_break blir ettställd när föraren trycker ned bromspedalen. Bilen ska då omedelbart bromsa.
- camera blir ettställd när ett annat fordon ligger mindre än 100 meter framför bilen.
- radar blir ettställd när ett annat fordon närmar sig bilen.
- adas_error är ettställd när ADAS-systemet inte fungerar som det ska. Om detta sker ska signalerna camera samt radar ignoreras.
- vecicle_break ska ettställas för att bromsa bilen.

Om ni fastnar, kolla gärna denna video tutorial, där jag implementerar en liknande konstruktion: https://youtu.be/gtaaarLyeXQ