Data Structure and Algorithms

Topic:- Graphs

Graph:-

- 1. Definition
- 2. Types of graphs
- 3. Terminology
- 4. Representation
- 5. Uses of graph

What is Graph?

- A graph is a pictorial representation of a set of objects where some pairs of objects are connected by links. The interconnected objects are represented by points termed as **vertices**, and the links that connect the vertices are called **edges**.
- Formally, a graph is a pair of sets (V, E), where V is the set of vertices and E is the set of edges, connecting the pairs of vertices. Take a look at the following graph —
- In the graph,
 V = {a, b, c, d, e}
 E = {ab, ac, bd, cd, de}
- A data structure that consists of a set of nodes (*vertices*) and a set of edges that relate the nodes to each other
- The set of edges describes relationships among the vertices .

Types of Graph

1. Finite Graphs: A graph is said to be finite if it has finite number of vertices and finite number of edges.

- 2. Infinite Graph: A graph is said to be infinite if it has infinite number of vertices as well as infinite number of edges.
- 3. **Trivial Graph:** A graph is said to be trivial if a finite graph contains only one vertex and no edge.

4. **Simple Graph:** A simple graph is a graph which does not contains more than one edge between the pair of vertices. A simple railway tracks connecting different cities is an example of simple graph.

5. Multi Graph: Any graph which contain some parallel edges but doesn't contain any self-loop is called multi graph. For example A Road Map

Parallel Edges: If two vertices are connected with more than one edge than such edges are called parallel edges that is many roots but one destination.

Loop: An edge of a graph which join a vertex to itself is called loop or a self-loop.

6. Null Graph: A graph of order n and size zero that is a graph which contain n number of vertices but do not contain any edge.

- 7. Complete Graph: A simple graph with n vertices is called a complete graph if the degree of each vertex is n-1, that is, one vertex is attach with n-1 edges. A complete graph is also called Full Graph.
- 8. Pseudo Graph: A graph G with a self loop and some multiple edges is called pseudo graph.

9. Regular Graph: A simple graph is said to be regular if all vertices of a graph G are of equal degree. All complete graphs are regular but vice versa is not possible.

10. Bipartite Graph: A graph G = (V, E) is said to be bipartite graph if its vertex set V(G) can be partitioned into two non-empty disjoint subsets. V1(G) and V2(G) in such a way that each edge e of E(G) has its one end in V1(G) and other end in V2(G).

The partition V1 U V2 = V is called Bipartite of G.

Here in the figure:

V1(G)={V5, V4, V3}

 $V2(G)=\{V1, V2\}$

10. Bipartite Graph

11. Labelled Graph

- 11. Labelled Graph: If the vertices and edges of a graph are labelled with name, data or weight then it is called labelled graph. It is also called Weighted Graph.
- 12. Connected or Disconnected Graph: A graph G is said to be connected if for any pair of vertices (Vi, Vj) of a graph G are reachable from one another. Or a graph is said to be connected if there exist atleast one path between each and every pair of vertices in graph G, otherwise it is disconnected. A null graph with n vertices is disconnected graph consisting of n components. Each component consist of one vertex and no edge.

Two Important kinds of graphs

- Directed
- Undirected

- 1. A directed graph, or digraph, is a graph in which the edges are ordered pairs
 - (∨, w) ≠ (w, ∨)
- 2. An **undirected** graph is a graph in which the edges are unordered pairs
 - (v, w) == (w, v)

Directed vs. Undirected Graphs

- Undirected edge has no orientation (no arrow head)
- Directed edge has an orientation (has an arrow head)
- Undirected graph all edges are undirected
- Directed graph all edges are directed

Introduction: Directed

Graphs

- In a directed graph, the edges are arrows.
- Directed graphs show the flow from one node to another and not vise versa.

Introduction: Undirected

- Graphs
 •In a Undirected graph, the edges are lines.
- UnDirected graphs show a relationship between two nodes.

Graph terminology

 Adjacent nodes: two nodes are adjacent if they are connected by an edge

- Path: a sequence of vertices that connect two nodes in a graph
- A simple path is a path in which all vertices, except possibly in the first and last, are different.
- Complete graph: a graph in which every vertex is directly connected to every other vertex

Graph

Terminology

- A cycle is a simple path with the same start and end vertex.
- The degree of vertex i is the no. of edges incident on vertex i.

e.g., degree(2) = 2, degree(5) = 3, degree(3) = 1

Terminolo

Undirected graphs are *connected* if there is a path between any two vertices

Directed graphs are *strongly connected* if there is a path from any one vertex to any other

Directed graphs are *weakly connected* if there is a path between any two vertices, *ignoring direction*

A *complete* graph has an edge between every pair of vertices

Terminolo

gy

- An acyclic path is a path which does not follow a sequence.
- A cyclic path is a path such that
 - There are at least two vertices on the path
 - $w_1 = w_n$ (path starts and ends at same vertex)
 - And also maintains the sequence

Test Your Knowledge

Terminolo

gy

 A directed graph that has no cyclic paths is called a

DAG (a Directed Acyclic Graph).

• An undirected graph that has an edge between every pair of vertices is called a **complete** graph.

Note: A directed graph can also be a complete graph; in that case, there must be an edge from every vertex to every other vertex.

0

Test Your Knowledge

Complete, or "Acomplete" (Not Complete)

Test Your Knowledge

Complete, or "Acomplete" (Not Complete)

Terminolo

gy

- An undirected graph is connected if a path exists from every vertex to every other vertex
- A directed graph is strongly connected if a path exists from every vertex to every other vertex
- A directed graph is **weakly connected** if a path exists from every vertex to every other vertex, disregarding the direction of the edge

Terminolo

gy

• A graph is known as a **weighted graph** if a weight or metric is associated with each edge.

Representation of Graph

Graph Representation

- For graphs to be computationally useful, they have to be conveniently represented in programs
- There are two computer representations of graphs:
 - Adjacency matrix representation
 - Adjacency lists representation

Adjacency Matrix

- A square grid of boolean values
- If the graph contains N vertices, then the grid contains N rows and N columns

• For two vertices numbered I and J, the element at row I and column J is true if there is an edge from I to J, otherwise false

0	false	false	true	false	false	
1	false	false	false	true	false	
2	false	true	false	false	true	
3	false	false	false	false	false	
4	false	false	false	true	false	/
					ノ	

Adjacency Matrix

	1	2	3	4	5
1	0	1	1	1	0
2	1	0	0	1	0
3	1	0	0	1	1
4	1	1	1	0	1
5	0	0	1	1	0

Adjacency Matrix

Directed Multigraphs

A:

$$\begin{pmatrix}
0 & 3 & 0 & 1 \\
0 & 1 & 2 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

L23

Adjacency Lists Representation

- A graph of n nodes is represented by a onedimensional array L of linked lists, where
 - L[i] is the linked list containing all the nodes adjacent from node i.
 - The nodes in the list L[i] are in no particular order

Graphs: Adjacency List

- Adjacency list: for each vertex v ∈ V, store a list of vertices adjacent to v
- Example:
 - $Adj[1] = \{2,3\}$
 - $Adj[2] = {3}$
 - $Adj[3] = \{\}$
 - $Adj[4] = {3}$
- Variation: can also keep
 a list of edges coming *into* vertex

Graphs: Adjacency List

- How much storage is required?
 - The *degree* of a vertex v = # incident edges
 - Directed graphs have in-degree, out-degree
 - For directed graphs, # of items in adjacency lists is Σ out-degree(v) = |E| For undirected graphs, # items in adjacency lists is Σ degree(v) = 2 |E|
- So: Adjacency lists take O(V+E) storage

Implementing Graphs

b)		0	1	2	3	4	5	6	7	8
		Р	Q	R	S	Т	W	X	Υ	Z
0	Р	0	0	1	0	0	1	0	0	0
1	Q	0	0	0	0	0	0	1	0	0
2	R	0	0	0	0	0	0	1	0	0
3	5	0	0	0	0	1	0	0	0	0
4	Т	0	0	0	0	0	1	0	0	0
5	W	0	0	0	1	0	0	0	1	0
6	X	0	0	0	0	0	0	0	0	0
7	Υ	0	0	1	0	0	0	0	0	1
8	Z	0	0	0	0	0	0	0	0	0

Implementing Graphs

(a) A weighted undirected graph and(b) its adjacency list

Uses For Graphs

Uses for

Graphs
•Computer network: The set of vertices V represents the set of computers in the network. There is an edge (u, v) if and only if there is a direct communication link between the computers corresponding to u and v.

Uses for

Graphs

• Two-Player Game Tree: All of the possibilities in a board game like chess can be represented in a graph. Each vertex stands for one possible board position. (For chess, this is a very big graph!)

Social Media (Facebook)

Website

S

Intercity Road Network

Thank you