DEMAND PAGING IN VIRTUAL MEMORY SYSTEMS

- Loading entire executable code or all the pages at once during program execution code has certain disadvantages?
- A better strategy would be to load pages into the physical memory only when they are needed. This technique is called demand paging
- With demand Paging, pages are only loaded when they are demanded during execution.
- Similar to Paging with swapping. We swap in and out the whole process with swapper)
- In demand paging, we swap in and out the pages with Pager

HOW DEMAND PAGING WORKS?

- When the process has been created(ready state), the pager will load some pages for the process in memory depending on some algorithms(frame allocation algorithms)
- When in running state, the CPU will start executing the instructions.
- Since initially only some pages were loaded, two cases are possible for the pages associated with the instruction
 - Note: The page exists in the main memory
- The page doesn't exists in the main memory but exists on the disk. This is also called as page fault.
- In case of page fault, the kernel(pager) needs to bring the page into the main memory from the disk and restart the instruction.
- How does the kernel know about page fault?
- An extra bit called valid/invalid bit/is kept with the page table

The Paging hardware(MMU) while accessing the page table will notice that the invalid bit is set and it will cause a trap to the kernel.

If the valid/invalid bit is set to valid, it means that the page is legal and is in the memory

If the valid/invalid bit is set to invalid, there can be two possibilities

The page is not legal - not in logical address space of process

The page is legal but it is on the disk and not in the main memory

HOW PAGE FAULT IS HANDLED BY THE KERNEL

- The process is first interrupted by the CPU and its registers values are saved to the PCB
- First check if the the page is within the logical address space of the process using an internal table that is kept in PCB
- 🕠 If the page is not valid, the kernel will terminate the process.
- If the page is valid, the kernel will find a free frame from the list of free frames. What happens if no frames are free?
- The kernel will then schedule a disk operation to read the desired page into the allotted frame
- When the disk operation has completed, the kernel modified the page table to indicate that the page is in memory
- The kernel restarts the instruction that was interrupted

