Atendimento 4

Prof. Dr. Caio¹, Prof. Akira²

Considere uma barra longa e fina, com as especificações mostradas na figura abaixo. Considere que a barra está isolada a menos de suas extremidades.

Figura 1: Barra longa e fina.

1. A partir da equação da difusão

$$-\frac{\partial}{\partial x}\left(-k\frac{\partial T}{\partial x}\right) - \frac{\partial}{\partial y}\left(-k\frac{\partial T}{\partial y}\right) - \frac{\partial}{\partial z}\left(-k\frac{\partial T}{\partial z}\right) = \rho c_p \frac{\partial T}{\partial t}$$

Escreva a equação cuja a solução fornece a distribuição de temperatura na barra. (Valor: 1.0)

- 2. Considere que f é uma função infinitamente diferenciável na reta (i.e., $f \in C^{\infty}(\mathbb{R})$) e denote por $f(x_i) = f_i$. Realize a expansão em Série de Taylor de f_{i+1} e f_{i-1} em torno de x_i . Deduza então a primeira diferença progressiva e a segunda diferença central para aproximar numericamente $\frac{df}{dx}$ e $\frac{d^2f}{dx^2}$, respectivamente. (Valor: 3.0)
- 3. Com os resultados dos itens anteriores, deduza a equação algébrica para

10

¹caiofrs@insper.edu.br.

²pauloafe@insper.edu.br.

- encontrar a distribuição de temperatura na barra na discretização mostrada na figura. (Valor: 3.0)
- 4. Dados $k=0.835cm^2/s$, l=10cm, $\Delta x=2cm$ e $\Delta t=0.1s$. Em t=0, a temperatura da barra é zero e as condições de contorno são fixas em todos os instantes considerados. Aplicando o Método das Diferenças Finitas, determine o valor da temperatura do nó 4 no instante 0.2s. (valor: 3.0)

AVISO! Para esta atividade só será aceito arquivos no formato pdf.

15