ACP simple. Exemple avec solution

Exercice

Objectif: Faire une ACP simple sur les données résumées dans un tableau

X_{8,4} croisant 8 individus de même poids avec 4 variables quantitatives homogènes de variances voisines.

Soit
$$X_{n,p} = \begin{bmatrix} 10 & 8 & 6 & 6 \\ 5 & 5 & 3 & 1 \\ 4 & 6 & 0 & 4 \\ 7 & 11 & 5 & 7 \\ 5 & 7 & 7 & 11 \\ 0 & 4 & 4 & 6 \\ 3 & 1 & 5 & 5 \\ 6 & 6 & 10 & 8 \end{bmatrix}$$

- (i) Justifier $\overline{l'application}$ de $\underline{l'ACP}$ simple et déterminer $\underline{l'individu}$ moyen \underline{g}
- (ii) Déduire la matrice centrée X*
- (iii) Déterminer la matrice Variance covariance V et calculer sa trace
- (iv) Soient les vecteurs propres $U_{\alpha}(\alpha = 1, ..., 4)$ de V.

Calculer les valeurs propres λ_1 et λ_2 .

Indication: On vous donne $\lambda_3 = 4$ et $\lambda_4 = 1$

vecteurs propres:
$$U_1 = \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \right\} \leftrightarrow \lambda_1; U_2 = \left\{ \begin{bmatrix} -1\\-1\\1\\1 \end{bmatrix} \right\} \leftrightarrow \lambda_2, U_3 = \left\{ \begin{bmatrix} -1\\1\\-1\\1 \end{bmatrix} \right\} \leftrightarrow \lambda_3 = 4,$$

Quel est le vecteur propre U_4 correspondand à $\lambda_4 = 1$? (v) Comparer $\sum_{i=1}^4 \lambda_i$ avec tr(V). Déterminer l'inertie globale et Compléter le tableau.

Valeurs propres λ_i	λ_1	λ_2	$\lambda_3 = 4$	$\lambda_4 = 1$
Taux d'inertie: $\tau_i(\%)$				
Taux cumulés (%)				

- (vi) Calculer les F_{α} .
- (vii) Faite la représentation sur le plan principal et donner son inertie.
- (viii) A l'aide des relations entre les deux ajustements retrouver les vecteurs Vaet les Ga.
- (ix) Donner la formule de reconstitution.

Solution

Soit
$$X_{n,p} = \begin{bmatrix} 10 & 8 & 6 & 6 \\ 5 & 5 & 3 & 1 \\ 4 & 6 & 0 & 4 \\ 7 & 11 & 5 & 7 \\ 5 & 7 & 7 & 11 \\ 0 & 4 & 4 & 6 \\ 3 & 1 & 5 & 5 \\ 6 & 6 & 10 & 8 \end{bmatrix}$$

Faire une ACP simple(ACP de covariance) sur les données résumées dans X_{8,4} en supposant que les 8 individus sont de même (masse m_i)(poids p_i)

Nuage des individus

Ajustement par un sous espace de \mathbb{R}^4

- (i) Justifier l'application de l'ACP simple et déterminer L'individu moyen g
- Justification de l'application de l'ACP simple: Type de croisement: individus×variables quantitaves et nature des variables: homogènes de variances voisines.

L'individu moyen
$$g = X^T D_{m_i} 1_n$$

$$g = \frac{1}{8} \begin{bmatrix} 10 & 8 & 6 & 6 \\ 5 & 5 & 3 & 1 \\ 4 & 6 & 0 & 4 \\ 7 & 11 & 5 & 7 \\ 5 & 7 & 7 & 11 \\ 0 & 4 & 4 & 6 \\ 3 & 1 & 5 & 5 \\ 6 & 6 & 10 & 8 \end{bmatrix} \begin{bmatrix} 5 \\ 6 \\ 5 \\ 6 \end{bmatrix}$$

(ii) On se ramène à l'origine à l'aide de la matrice centrée

$$X_{8,4}^* = X - 1_n \times G^T = \begin{bmatrix} 10 & 8 & 6 & 6 \\ 5 & 5 & 3 & 1 \\ 4 & 6 & 0 & 4 \\ 7 & 11 & 5 & 7 \\ 5 & 7 & 7 & 11 \\ 0 & 4 & 4 & 6 \\ 3 & 1 & 5 & 5 \\ 6 & 6 & 10 & 8 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 5 \\ 6 \\ 5 \\ 6 \end{bmatrix}^T = \begin{bmatrix} 5 & 2 & 1 & 0 \\ 0 & -1 & -2 & -5 \\ -1 & 0 & -5 & -2 \\ 2 & 5 & 0 & 1 \\ 0 & 1 & 2 & 5 \\ -5 & -2 & -1 & 0 \\ -2 & -5 & 0 & -1 \\ 1 & 0 & 5 & 2 \end{bmatrix}$$

1. (iii) La matrice à diagonaliser est V: Matrice variance covariance

$$V_{p,p} = X^{*T}D_{m}X^{*} = \frac{1}{8}X^{*T}X^{*} = \frac{1}{8}\begin{bmatrix} 5 & 2 & 1 & 0 \\ 0 & -1 & -2 & -5 \\ -1 & 0 & -5 & -2 \\ 2 & 5 & 0 & 1 \\ 0 & 1 & 2 & 5 \\ -5 & -2 & -1 & 0 \\ -2 & -5 & 0 & -1 \\ 1 & 0 & 5 & 2 \end{bmatrix}^{T} \begin{bmatrix} 5 & 2 & 1 & 0 \\ 0 & -1 & -2 & -5 \\ -1 & 0 & -5 & -2 \\ 2 & 5 & 0 & 1 \\ 0 & 1 & 2 & 5 \\ -5 & -2 & -1 & 0 \\ -2 & -5 & 0 & -1 \\ 1 & 0 & 5 & 2 \end{bmatrix} = \begin{bmatrix} \frac{15}{2} & 5 & \frac{5}{2} & 1 \end{bmatrix}$$

$$\frac{1}{8} \begin{bmatrix}
60 & 40 & 20 & 8 \\
40 & 60 & 8 & 20 \\
20 & 8 & 60 & 40 \\
8 & 20 & 40 & 60
\end{bmatrix} = \begin{bmatrix}
\frac{15}{2} & 5 & \frac{5}{2} & 1 \\
5 & \frac{15}{2} & 1 & \frac{5}{2} \\
\frac{5}{2} & 1 & \frac{15}{2} & 5 \\
1 & \frac{5}{2} & 5 & \frac{15}{2}
\end{bmatrix}$$

$$tt(V) = \sum_{i=1}^{4} V_{ii} = \frac{15}{2} + \frac{15}{2} + \frac{15}{2} + \frac{15}{2} = 30$$

(iv)Recherche du spectre(valeurs et vecteurs propres correspondants) de la matrice Variance covariance V Calculer les valeurs propres λ_1 et λ_2 on vous donne $\lambda_3=4$ et $\lambda_4=1$

vecteurs propres:
$$U_1 = \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \right\} \leftrightarrow \lambda_1 = 16, U_2 = \left\{ \begin{bmatrix} -1\\-1\\1\\1 \end{bmatrix} \right\} \leftrightarrow \lambda_2 = 9, U_3$$

$$= \left\{ \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix} \right\} \leftrightarrow \lambda_3 = 4, \text{ et } \lambda_4 = 1$$

calculer le vecteur propre U_4 correspondant à $\lambda_4 = 1$

Le vecteur propre U₄ correspondant à $\lambda_4 = 1$ est solution de VU₄ = U_4

$$\begin{bmatrix} \frac{15}{2} & 5 & \frac{5}{2} & 1 \\ 5 & \frac{15}{2} & 1 & \frac{5}{2} \\ \frac{5}{2} & 1 & \frac{15}{2} & 5 \\ 1 & \frac{5}{2} & 5 & \frac{15}{2} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix} \Leftrightarrow \begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}. U_4 = \left\{ \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} \right\} \leftrightarrow 1$$

$$\begin{bmatrix} \frac{15}{2} & 5 & \frac{5}{2} & 1 \\ 5 & \frac{15}{2} & 1 & \frac{5}{2} \\ \frac{5}{2} & 1 & \frac{15}{2} & 5 \\ 1 & \frac{5}{2} & 5 & \frac{15}{2} \end{bmatrix}$$
 Valeurs propres par ordre décroissant: $\lambda_1 = 16, \lambda_2 = 9, \lambda_3 = 4, \lambda_4 = 1$ sont nées

données

(v)
$$V = \begin{bmatrix} \frac{15}{2} & 5 & \frac{5}{2} & 1 \\ 5 & \frac{15}{2} & 1 & \frac{5}{2} \\ \frac{5}{2} & 1 & \frac{15}{2} & 5 \\ 1 & \frac{5}{2} & 5 & \frac{15}{2} \end{bmatrix} \text{ a pour trace: } 30 = \sum_{i=1}^{4} \lambda_i = 16 + 9 + 4 + 1 = 30$$

a pour trace:
$$30 = \sum_{i=1}^{4} \lambda_i = 16 + 9 + 4 + 1 = 30$$

L'inertie globale=30 d'aprés $tr(VM)=I_G$ dans ce cas $M=I_4$ compléter le tableau:

Valeurs propres λ_i	$\lambda_1 = 16$	$\lambda_2 = 9$	$\lambda_3 = 4$	$\lambda_4 = 1$
Taux d'inertie: $\tau_i = \frac{\lambda_i}{\sum \lambda_i} (\%)$	53	30	14	3
Taux cumulés (%)	53	83	97	100

(vi)Calculer les F_a

Les composantes principales et les facteurs : La α -ème

 $F_{\alpha} = X_{8,4}^* U_{\lambda_{\alpha}}'$ où $U_{\lambda_i}' = \frac{U_{\lambda_i}}{\|U_{\lambda_i}\|}$ le vecteur normalisé de la i-ème valeur propre ordonnée

La première Composante principale:On a
$$U_1 = \frac{U_1}{\|U_1\|} = \frac{1}{2}\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
 d'où $F_1 = \frac{1}{2}\begin{bmatrix} 5&2&1&0\\0&-1&-2&-5\\-1&0&-5&-2\\2&5&0&1\\0&1&2&5\\-5&-2&-1&0\\-2&-5&0&-1\\1&0&5&2 \end{bmatrix}$

$$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ -4 \\ 4 \\ 4 \\ -4 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 2 & 1 & 0 \\ 0 & -1 & -2 & -5 \\ -1 & 0 & -5 & -2 \\ 2 & 5 & 0 & 1 \\ 0 & 1 & 2 & 5 \\ -5 & -2 & -1 & 0 \\ -2 & -5 & 0 & -1 \\ 1 & 0 & 5 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ -3 \\ -3 \\ 3 \\ 3 \\ 3 \end{bmatrix} = , \quad F_5 = \frac{1}{2} \begin{bmatrix} 5 & 2 & 1 & 0 \\ 0 & -1 & -2 & -5 \\ -1 & 0 & -5 & -2 \\ 2 & 5 & 0 & 1 \\ 0 & 1 & 2 & 5 \\ -5 & -2 & -1 & 0 \\ -2 & -5 & 0 & -1 \\ 1 & 0 & 5 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \\ 2 \\ 2 \\ 2 \\ -2 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} -2 \\ -2 \\ 2 \\ 2 \\ -2 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 2 & 1 & 0 \\ 0 & -1 & -2 & -5 \\ -1 & 0 & -5 & -2 \\ 2 & 5 & 0 & 1 \\ 0 & 1 & 2 & 5 \\ -5 & -2 & -1 & 0 \\ -2 & -5 & 0 & -1 \\ 1 & 0 & 5 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}$$

$$The result of the properties of t$$

$$F_{\alpha}'NF_{\alpha}=\frac{1}{8}F'F=\lambda_{\alpha}$$

pour
$$\alpha = 2$$
 par exemple

 $\begin{bmatrix} -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ 3 \\ 3 \\ 3 \end{bmatrix} = 9$

(vii) coord(i,1,2,3,4 axe)=[
$$F_1,F_2,F_3,F_4$$
] =
$$\begin{bmatrix} 4 & -3 & -2 & 1 \\ -4 & -3 & -2 & -1 \\ -4 & -3 & 2 & 1 \\ 4 & -3 & 2 & -1 \\ 4 & 3 & 2 & 1 \\ -4 & 3 & 2 & -1 \\ -4 & 3 & -2 & 1 \\ 4 & 3 & -2 & -1 \end{bmatrix}$$

(viii)Représentation sur le plan principal: Plan engendré par le 1ièr et le 2ièm axe:

$$coord(i,1,2) = \begin{bmatrix} 4 & -3 \\ -4 & -3 \\ -4 & -3 \\ 4 & 3 \\ -4 & 3 \\ -4 & 3 \\ 4 & 3 \end{bmatrix}$$

Représentation sur le plan principal

L'inertie du plan principal vaut 83% $(\frac{\lambda_1 + \lambda_2}{\sum_{i} \lambda_i})$ $(\%) = \frac{16 + 9}{30})$

(viii) On a d'aprés les relation entre les deux ajustements.

$$G_{1} = \sqrt{16} \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix}; G_{2} = \sqrt{9} \frac{1}{2} \begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{3}{2} \\ -\frac{3}{2} \\ \frac{3}{2} \\ \frac{3}{2} \end{bmatrix}; G_{3} = \sqrt{4} \frac{1}{2} \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix};$$

$$G_4 = \sqrt{1} \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$

$$V_{\alpha} = \frac{1}{\sqrt{\lambda_{\alpha}}} F_{\alpha}$$

$$\mathbf{v}_{1} = \frac{1}{4} \begin{bmatrix} 4 \\ -4 \\ -4 \\ 4 \\ -4 \\ -4 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \\ 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} \text{ et ainsi } \mathbf{v}_{2} = \frac{1}{3} \begin{bmatrix} -3 \\ -3 \\ -3 \\ 3 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v}_{3} = \frac{1}{2} \begin{bmatrix} -2 \\ -2 \\ 2 \\ 2 \\ 2 \\ 2 \\ -2 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ -1 \end{bmatrix} \text{ et}$$

$$v_{4} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$$

(ix) Formule de reconstitution:

$$X^* = \sum_{a} \sqrt{\lambda_a} v_a u_a'$$

$$X^* = 2 \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \\ 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}^T + \begin{bmatrix} -1 \\ -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}^T + \begin{bmatrix} -1 \\ -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}^T + \begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}^T + \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}^T + \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \end{bmatrix}^T + \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}^T = \begin{bmatrix} 5 & 2 & 1 & 0 \\ 0 & -1 & -2 & -5 \\ -1 & 0 & -5 & -2 \\ 2 & 5 & 0 & 1 \\ 0 & 1 & 2 & 5 \\ -5 & -2 & -1 & 0 \\ -2 & -5 & 0 & -1 \\ 1 & 0 & 5 & 2 \end{bmatrix}$$

$$C'est identique avec X^* = \begin{bmatrix} 5 & 2 & 1 & 0 \\ 0 & -1 & -2 & -5 \\ -1 & 0 & -5 & -2 \\ 2 & 5 & 0 & 1 \\ 0 & 1 & 2 & 5 \\ -5 & -2 & -1 & 0 \\ -2 & -5 & 0 & -1 \\ 1 & 0 & 5 & 2 \end{bmatrix}$$