# АНАЛИЗ РЕНТАБЕЛЬНОСТИ РЕЙСОВ ИЗ АЭРОПОРТА ВИТЯЗЕВО (г. АНАПА) В ЗИМНИЙ ПЕРИОД

### 1. Структура (main dataset)



## 2. Описание исходных данных (main dataset)

flight\_no - номер рейса

aircraft\_code - код модели воздушного судна (BC)

actual\_departure - фактическая дата/время выелта конкретного рейса

actual arrival - фактическая дата/время прилета конкретного рейса

airport\_name - название аэропорта прилета

city - город, где располагается аэропорт прилета

mainteance\_price - суммарная стоимость наземного обслуживания рейса в аэропортах вылета и прилета, руб

fuel\_price - стоимость затрченого топлива на перелет (рассчитано исходя из длительности полета с учтетом разности во времени прилета и вылета и модели BC), руб

gmt diff - разность часовых поясов в аэропортах прилета и вылета, час

t amount - суммарная выручка за билеты на конкретный рейс, руб

profit - прибыль с конкретного рейса (выручка - затраты на обслуживание и топливо), руб capacity - емкость ВС, место

ticket\_count - количество купленных билетов на конкретный рейс

loadness - процент заполнения мест в ВС, %

# **3.** Дополнительные дан month de total\_prifit avg\_loadness

| 2 | 50694601.8   | 83.6285      |
|---|--------------|--------------|
|   | 56850147.333 | 83.608059701 |
| 1 | 3333         | 4925         |

### ные, которых нет в базе данных

Введена таблица CONSUMPTION, содержащая код ВС и средний часовой полетный расход топлива для данного типа ВС с целью расчета расхода топлива через длительность полета Введена таблица AIRPORT\_DATA, содержащая стоимость наземного обслуживания для расчета расходов на рейс в аэропортах и часовых поясов для корректировки реального времени нахождения ВС в воздухе

Введена однострочная таблица FUEL для выделения из общего запроса стоимости одного литра авиационного топлива

### 4. Сводные таблицы для аналитики

Группировка основного dataset по номеру рейса и аэропорту прилета, с суммированием прибыли показывает – какие рейсы убыточны, а какие слабоприбыльные, средний процент наполнения

| Номер  | Город        |             |             |
|--------|--------------|-------------|-------------|
| рейса  | прибытия     | Прибыль     | Загрузка ВС |
| PG0252 | Moscow       | 77923221.73 | 87.0149     |
| PG0480 | Belgorod     | 31928591.4  | 92.9758     |
| PG0194 | Novokuznetsk | -2307064    | 0           |

Группировка основного датасета по месяцу полетов показывает в какие месяцы можно увеличить количество рейсов, а в какие уменьшить, опять же по прибыли, средний процент наполнения

| Месяц |   | Прибыль     | Загрузка ВС |
|-------|---|-------------|-------------|
|       | 2 | 50694601.80 | 83.6285     |
|       | 1 | 56850147.33 | 83.6080     |

коды основного датасета, и аналитических сводных таблиц представлены в приложении.

### Приложение

total prifit, AVG (loadness) AS avg loadness

```
1. Основной Dataset
WITH consumption AS (SELECT '733' AS aircraft_code, 2600 as h_consumption,
             402 as total seats
             UNION ALL
             SELECT 'SU9' AS aircraft_code, 1800 as h_consumption,
             97 as total_seats),
  airport data AS (SELECT 'SVO' as airport code, 43700 as service price, 3 as gmt
            UNION ALL
            SELECT 'NOZ' as airport_code, 50000 as service_price, 7 as gmt
            UNION ALL
            SELECT 'EGO' as airport code, 32200 as service price, 3 as gmt
            UNION ALL
            SELECT 'AAQ' as airport code, 62000 as service price, 3 as gmt),
flights amounts AS (SELECT flight id, SUM (amount) as f amount
            FROM dst project.ticket flights
            GROUP BY flight id),
       fuel AS (SELECT 49.964 as price),
 bougth tickets AS (SELECT tf0.flight_id,COUNT(tf0.flight_id) ticket_count,ts.total_seats
            FROM dst project.ticket flights tf0
            INNER JOIN dst_project.flights as fl0 ON fl0.flight_id=tf0.flight_id
            INNER JOIN (SELECT aircraft_code, COUNT (aircraft_code) as total_seats
                    FROM dst_project.seats
GROUP BY aircraft_code) AS ts
                 ON ts.aircraft_code=fl0.aircraft_code
            GROUP BY tf0.flight_id,ts.total_seats)
SELECT flight no,fl.aircraft code,actual departure,
     actual_arrival,airport_name,ap.city,
     (asr0.service_price+asr1.service_price) AS mainteance_price,
     ((DATE PART('M',fl.actual arrival-fl.actual departure)*1.0/60+
     DATE PART('H',fl.actual_arrival-fl.actual_departure)-asr1.gmt+asr0.gmt)*
     cs.h_consumption*fuel.price) AS fuel_price,
     COALESCE(fa.f amount,0) AS t amount,(asr1.gmt-asr0.gmt) AS gmt diff,
     (COALESCE(fa.f amount,0)-((DATE PART('M',fl.actual arrival-fl.actual departure)*1.0/60+
     DATE PART('H',fl.actual arrival-fl.actual departure)-asr1.gmt+asr0.gmt)*
     cs.h_consumption*fuel.price)-(asr0.service_price+asr1.service_price)) AS profit,
     COALESCE(bt.total seats,cs.total seats) AS capacity, COALESCE(bt.ticket count,0) AS ticket count,
     COALESCE(ROUND(bt.ticket count*100.0/bt.total seats,2),0) AS loadness
FROM dst project.flights AS fl
     INNER JOIN dst project.aircrafts AS ac ON ac.aircraft code=fl.aircraft code
     INNER JOIN dst_project.airports AS ap ON ap.airport code=fl.arrival airport
     INNER JOIN airport data AS asr0 ON asr0.airport code=fl.departure airport
     INNER JOIN airport data AS asr1 ON asr1.airport code=fl.arrival airport
     INNER JOIN consumption AS cs ON cs.aircraft_code=fl.aircraft_code
     LEFT JOIN bougth_tickets AS bt ON bt.flight_id=fl.flight_id
     LEFT JOIN flights_amounts AS fa ON fa.flight_id=fl.flight_id
     CROSS JOIN fuel
WHERE fl.departure_airport = 'AAQ'
 AND (date trunc('month', fl.scheduled departure) in ('2017-01-01','2017-02-01', '2017-12-01'))
 AND fl.status not in ('Cancelled')
WITH dataset AS (.... запрос из п.1.)
SELECT flight no,city,SUM(profit) AS total prifit,AVG(loadness) AS avg loadness
FROM dataset
GROUP BY flight_no,city
WITH dataset AS (.... запрос из п.1.)
SELECT DATE_PART('month',dataset.actual_departure) as Month_dep, SUM(profit) AS
```

FROM dataset GROUP BY DATE\_PART('month',dataset.actual\_departure)