

(Paper ID: 165)

Framework for Post-Facto Analysis of Wide-area Power System Disturbances and Events

Santosh V. Singh, Ajey Dikshit, A. M. Kulkarni, and Devashish R.*

29.18

11.87

Decreasing

Weak Corr. (0.55)

-0.89

Introduction

- Event triggered devices: e.g. DFR, SoE, etc.
- Continuous sampling devices: e.g. PMU, SCADA, etc.

Fig. 1: Recording Devices in a Power System (adapted from [1]).

PMU: phasor measurement unit

Post-mortem analysis of wide-area power system disturbance \Rightarrow collate diverse data.

Example Dataset: Major Power System Disturbance

Mumbai blackout of 12th October 2020 [2]:

PQM: power quality monitoring

SCADA: supervisory control and data acquisition

Key observations:

- 1. DFRs did not comply **naming conventions**. (IEEE C37.232-2011 (COMNAME) & C37.239-2010 (COMFEDE).
- 2. Not all DFR were time-synchronized.
- 3. **Vertical scalings** differed in DFR. (The scalings are inferred from SCADA and PMU data).

Trombay Unit-5

Common feature in all records

Unsynchronized DR time: (10:46:03.17 hrs)

O 2 time (s)

Common feature in all records

Unsynchronized DR time: (09:32:37.93 hrs)

Common feature in all records

Unsynchronized DR time: (10:46:03.17 hrs)

O 2 time (s)

Common feature in all records

Unsynchronized DR time: in all records

Unsynchronized DR time: (10:01:05.76 hrs)

O time (s) 5 10

Fig. 4: Common feature in the records for alignment.

Fig. 3: A typical generator DFR (Trombay unit-5).

COMNAME: common format for naming time sequence data files; COMFEDE: common format for event data exchange.

UI for Semi-automatic approach

Fig. 5: Framework of the user interface.

Fig. 6: Data loading and derived quantity evaluation UI page.

Fig. 7: Waveform alignment page of the UI.

Outcome of the analysis

Table 1: Feature table for segments 5 and 8 of Fig. 9.

Osc. (oscillation), Neg. Corr. (negative correlation)

.5	Trombay Unit-5	Trombay Unit-7	Salsette 220	kV	Quant	ities	Features	Seg.	Tron
	¦ <mark> 3 </mark>						Trend	5	Inc
1	TY.							8	Fla
).5							Correlation	5	Refe
,.0	1 2		10		Volta	_	(PCC)	8	Refe
0					Magni	Magnitude	$V_{nf}~\%$	5	
0 50 -	1 2 3	4 5 6	7 8	9 10				8	
30		9			$V_{of}~\%$	5			
	1 1 1						. <i>Oj</i> 70	8	
				Salsette current		Trend	5	Dec	
0			•	scaled by 20				8	Increa
0	1 2 3	4 5 6	7 8	9 10			Correlation	5	Refe
					Curr		(PCC)	8	Refe
50	111				Magni	tude	$I_{nf}~\%$	5	
45	4						<i>HJ</i>	8	
		5 8	11	12			$I_{of}~\%$	5	
40 🖳								8	
00	1 2 3	4 5 6	6 7 8 9 10			Trend	5	Dec	
	! !!!	111	Λ					8	Dec
00				Freque	Frequency	Correlation	5	Refe	
				Trombay unit-7	1 3	9	(PCC) RoCoF (Hz/s)	8	Refe
			po	ower scaled by 3				5	-
								8	-
0	1 2 3	4 5 6 time (s)	7 8	9 10	A		Trend	5	Fla
					Acti	ve		8	Increa

- Fig. 9: Segmentation of the time-aligned waveforms
- Post-processing \Rightarrow feature table is **in progress**.

• Summary report generation is presently **in progress**.

Conclusion and Scope

- 1. Key steps in a post-mortem analysis are presented.
- 2. Initial pre-processing steps to derive inferences.
- 3. Free and open-source tools like Qt Designer and Python are used.
- 4. A few rudimentary features are extracted, which can be adapted further as per user requirements.
- 5. We expect that the analysis presented will be of educational value for students and practicing engineers.

Fig. 10: Github link for PPT and UI.

References

- 1] Silverstein, A., and J. Follum, "High-resolution, time-synchronized grid monitoring devices," *PNNL-29770. Richland, WA: Pacific Northwest National Laboratory.* [Available online] at NASPI Archive: https://www.naspi.org/node/819 (2020).
- [2] P. Navalkar, A. M. Kulkarni, Santosh V. Singh, and S. A. Soman, "A proposal for a PMU based adaptive islanding scheme for Mumbai city," 22nd National Power Systems Conference (NPSC), IEEE, 2022.

Connect: santoshvsingh68 [at] gmail.com; anil [at] ee.iitb.ac.in