Linguagens Formais e Autômatos

Aula 03 - Minimização de DFAs

Prof. Dr. Daniel Lucrédio Departamento de Computação / UFSCar Última revisão: ago/2015

Referências bibliográficas

- Introdução à teoria dos autômatos, linguagens e computação / John
 E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman; tradução da 2.ed.
 original de Vandenberg D. de Souza. Rio de Janeiro: Elsevier, 2002
 (Tradução de: Introduction to automata theory, languages, and computation ISBN 85-352-1072-5)
 - Capítulo 4 Seção 4.4

- Existe um procedimento que minimiza um DFA
 - Ou seja, dado um DFA, ele permite encontrar um DFA equivalente que tenha o número mínimo de estados.
- De fato, esse DFA é mínimo:
 - Teorema: Se A é um DFA e M é o DFA construído a partir de A pelo algoritmo descrito a seguir, então M tem tão poucos estados quanto qualquer DFA equivalente a A
 - Em outras palavras, podemos testar a equivalência entre DFAs
 - Minimizando os dois e verificando se são iguais (com exceção, possivelmente, dos nomes dos estados)

- Conceito de estados equivalentes
 - Objetivo: entender quando dois estados distintos p e q podem ser substituídos por um único estado que se comporte como p e q
- Formalmente:
 - Dois estados p e q são equivalentes se:
 - Para todas as cadeias de entrada w, δ[^](p, w) é um estado de aceitação se e somente se δ[^](q, w) é um estado de aceitação

- Menos formalmente:
 - Existe uma cadeia w que leva p à aceitação e w à não-aceitação (ou vice-versa)?
 - Se existir pelo menos uma cadeia assim, os estados são distinguíveis
 - Caso contrário, são equivalentes!

- **Ilustrando:**
 - 0,1, 010, 111 não distingue p e q
 - o 11 distingue p e q
 - r e s são distinguíveis (ε os distingue) 0,1 0,1 0,1

- Difícil encontrar estados equivalentes apenas "olhando" para o DFA
 - Muitas combinações, fácil se perder
- Estratégia sistemática: encontrar todos os pares de estados que sejam distinguíveis
 - Se fizermos o melhor possível
 - Qualquer par de estados que não considerarmos distinguíveis serão equivalentes
- Algoritmo de preenchimento de tabela
 - Descoberta recursiva de pares distinguíveis
 - Cada célula da tabela marca um par distinguível
 - Células em branco marcam pares equivalentes

ABCDEFG

Começamos pelos estados de aceitação/não-aceitação. São obviamente pares distinguíveis pela cadeia vazia

Agora tentamos encontrar outros estados que "chegam" em um par conhecido, dada uma mesma entrada.

A técnica é seguir, para cada par distinguível, as setas pelo lado inverso, com um mesmo rótulo Fica mais fácil se marcar as células já analisadas

- (a) Seguindo as setas que "chegam" em A e C (um par distinguível), mediante entrada 0, temos:
- SetasA_0:{C}, SetasC_0:{D,F}
- Novos pares = SetasA_0 x SetasC_0 = {(C,D), (C,F)}
- Estes pares já estão marcados na tabela, com um x
- Analisando para entrada 1, temos:
- SetasA_1: {}, SetasC_1: {B,C,H}
- Novos pares = SetasA_1 X SetasC_1 = {} (nenhum novo par)
- Uma vez que já analisamos as entradas 0 e 1, a célula (A,C) foi analisada e é marcada

- (b) Continuando para par (B,C):
- SetasB 0:{A}, SetasC 0:{D,F}
- Novos pares = SetasB_0 x SetasC_0 = {(A,D), (A,F)}
- Esses pares ainda não foram marcados, e portanto a tabela precisa ser atualizada
- SetasB_1: {}, SetasC_1: {B,C,H}
- Novos pares = SetasB_1 X SetasC_1 = {} (nenhum novo par)
- Uma vez que já analisamos as entradas 0 e 1, a célula (B,C) foi analisada e é marcada

- (c) Continuando para par (C,D):
- SetasC_0:{D,F}, SetasD_0:{}
- Novos pares = {}
- SetasC_1:{B,C,H}, SetasD_1: {}
- Novos pares = {}
- Nenhum novo par

- (d) Continuando para par (C,E):
- SetasC_0:{D,F}, SetasE_0:{}
- Novos pares = {}
- SetasC_1:{B,C,H}, SetasE_1: {G}
- Novos pares = {(B,G),(C,G),(H,G)}
- Novos pares e a célula (C,E) são marcados

- (e) Continuando para par (C,F):
- SetasC_0:{D,F}, SetasF_0:{}
- Novos pares = {}
- SetasC_1:{B,C,H}, SetasF_1: {A,E}
- Novos pares = $\{(B,A),(B,E),(C,A),(C,E),(H,A),(H,E)\}$
- Novos pares e a célula (C,F) são marcados

- (f) Continuando para par (C,G):
- SetasC_0:{D,F}, SetasG_0:{B,G,H}
- Novos pares = $\{(D,B),(D,G),(D,H),(F,B),(F,G),(F,H)\}$
- SetasC_1:{B,C,H}, SetasG_1: {D,F}
- Novos pares = $\{(B,D),(B,F),(C,D),(C,F),(H,D),(H,F)\}$
- Novos pares e a célula (C,G) são marcados

- (g) Continuando para par (C,H):
- SetasC_0:{D,F}, SetasH_0:{E}
- Novos pares = $\{(D,E),(F,E)\}$
- SetasC_1:{B,C,H}, SetasH_1: {}
- Novos pares = {}
- Novos pares e a célula (C,H) são marcados

- (h) Continuando para par (A,B):
- SetasA_0:{C}, SetasB_0:{A}
- Novos pares = $\{(A,C)\}$
- SetasA_1:{}, SetasB_1: {}
- Novos pares = {}
- Novos pares e a célula (A,B) são marcados

- (h) Continuando para par (A,D):
- SetasA_0:{C}, SetasD_0:{}
- Novos pares = $\{(A,C)\}$
- SetasA_1:{}, SetasD_1: {}
- Novos pares = {}
- Célula (A,D) é marcada

- (h) Continuando para par (A,F):
- SetasA_0:{C}, SetasF_0:{}
- Novos pares = $\{(A,C)\}$
- SetasA_1:{}, SetasF_1: {A,E}
- Novos pares = {}
- Célula (A,F) é marcada

- (h) Continuando para par (A,H):
- SetasA_0:{C}, SetasH_0:{E}
- Novos pares = $\{(C,E)\}$
- SetasA_1:{}, SetasH_1: {}
- Novos pares = {}
- Célula (A,H) é marcada

- (i) Continuando para par (B,D):
- SetasB_0:{A}, SetasD_0:{}
- Novos pares = {}
- SetasB_1:{}, SetasD_1: {}
- Novos pares = {}
- Célula (B,D) é marcada

- (i) Continuando para par (B,E):
- SetasB_0:{A}, SetasE_0:{}
- Novos pares = {}
- SetasB_1:{}, SetasE_1: {G}
- Novos pares = {}
- Célula (B,E) é marcada

- (j) Continuando para par (B,F):
- SetasB_0:{A}, SetasF_0:{}
- Novos pares = {}
- SetasB_1:{}, SetasF_1: {A,E}
- Novos pares = {}
- Célula (B,F) é marcada

(k) Continuando para par (B,G):

- SetasB_0:{A}, SetasG_0:{B,G,H}
- Novos pares = {(A,B),(A,G),(A,H)}
- SetasB_1:{}, SetasG_1: {D,F}
- Novos pares = {}
- Novo par e célula (B,G) são marcados

- (I) Continuando para par (A,G):
- SetasA_0:{C}, SetasG_0:{B,G,H}
- Novos pares = {(C,B),(C,G),(C,H)}
- SetasA_1:{}, SetasG_1: {D,F}
- Novos pares = {}
- Célula (A,G) é marcada

(m) Continuando para par (D,E):

- SetasD_0:{}, SetasE_0:{}
- Novos pares = {}
- SetasD_1:{}, SetasE_1: {G}
- Novos pares = {}
- Células (D,E), (D,G) e (D,H) são marcadas (pois SetasD_0 e SetasD_1 são vazios)

- (n) Continuando para par (E,F):
- SetasE_0:{}, SetasF_0:{}
- Novos pares = {}
- SetasE_1:{G}, SetasF_1: {A,G}
- Novos pares = $\{(A,G)\}$
- Célula (E,F) é marcada

- (o) Continuando para par (E,H):
- SetasE_0:{}, SetasH_0:{E}
- Novos pares = {}
- SetasE_1:{G}, SetasH_1: {}
- Novos pares = {}
- Célula (E,H) é marcada

- (p) Continuando para par (F,G):
- SetasF_0:{}, SetasG_0:{B,G,H}
- Novos pares = {}
- SetasF_1:{A,E}, SetasG_1: {D,F}
- Novos pares = $\{(A,D),(A,F),(E,D),(E,F)\}$
- Célula (F,G) é marcada

- (q) Continuando para par (F,H):
- SetasF_0:{}, SetasH_0:{E}
- Novos pares = {}
- SetasF_1:{A,E}, SetasH_1: {}
- Novos pares = {}
- Célula (F,H) é marcada

- (q) Continuando para par (G,H):
- SetasG_0:{B,G,H}, SetasH_0:{E}
- Novos pares = $\{(B,E),(G,E),(H,E)\}$
- SetasG_1:{D,F}, SetasH_1: {}
- Novos pares = {}
- Novo par e célula (G,H) são marcados

- (r) Continuando para par (G,E):
- SetasG_0:{B,G,H}, SetasE_0:{}
- Novos pares = {}
- SetasG_1:{D,F}, SetasE_1: {G}
- Novos pares = $\{(D,G),(F,G)\}$
- Célula (G,E) é marcada

Resultado:

São pares equivalentes: (A,E),(B,H) e (D,F)

- Algoritmo em duas etapas:
 - a. Eliminar estados inalcançáveis
 - Reduz o trabalho do algoritmo de preenchimento de tabela
 - b. Particionar os estados restantes em blocos de estados equivalentes
 - Primeiro deve-se identificar os pares equivalentes
 - Depois formar os grupos de estados equivalentes

Estados inalcançáveis

Estados alcançáveis devem ter um caminho a partir do estado inicial

Neste exemplo, o estado D é inalcançável

Neste exemplo, são pares equivalentes: (A,E), (B,H) e (D,F)

- Partição: {A,E},{B,H},{D,F},{C},{G}

Importante: deve-se considerar o caráter transitivo da equivalência. Por exemplo, se os pares equivalentes fossem: (A,E), (E,H), (D,F)

- A partição seria: {A,E,H},{D,F},{B},{C},{G}

(Ou seja, A é equivalente a E, E é equivalente a H, portanto A é equivalente a H, e os três formam um único grupo)

Para concluir a minimização, basta definir a nova função de transição

	0	1	
{A,E}	{B,H}	{F}	
{B,H}	{G}	{C}	
{D,F}	{C}	{G}	
{C}	{A}	{C}	
{G}	{G}	{E}	

Para isso, monta-se uma tabela vazia, onde cada estado é um grupo da partição

As transições são definidas como a união das transições no autômato original

	0	1	
{A,E}	{B,H}	{F}	
{B,H}	{G}	{C}	
{D,F}	{C}	{G}	
{C}	{A}	{C}	
{G}	{G}	{E}	

			para
	0	1	{D,F}
{A,E}	{B,H}	{D,F} 1	
{B,H}	{G}	{C}	De {A}
{D,F}	{C}	{G}	para {A,E}
{C}	{A,E}	{C}	(7,2)
{G}	{G}	{A,E} .	De {E}
			para
aloroo			{A,E}

Agora, basta substituir os valores das células por grupos que representam estados válidos (a primeira coluna da tabela)

Nunca haverá conflito, devido ao algoritmo de preenchimento da tabela

De {F}

Estados iniciais e de aceitação são os grupos que contém os estados iniciais e de aceitação do DFA original

Para concluir, renomeie os estados para ficar mais legível

	0	1			0	1
\rightarrow {A,E}	{B,H}	{D,F}		→ Q1	Q2	Q3
{B,H}	{G}	{C}		Q2	Q5	Q4
{D,F}	{C}	{G}		Q3	Q4	Q5
* {C}	{A,E}	{C}		* Q4	Q1	Q4
{G}	{G}	{A,E}		Q5	Q5	Q1

Fim

Aula 03 - Minimização de DFAs