Übungen zur Linearen Algebra I

Wintersemester 2016/17

Universität Heidelberg Mathematisches Institut

Dr. D. Vogel

Blatt 14

Dr. M. Witte Keine Abgabe! Eine Musterlösung wird nächste Woche veröffentlicht.

Aufgabe 1. (Permutationen) Stellen Sie jede der folgenden Permutationen $\sigma \in S_5$ als Produkt von Transpositionen dar. Berechnen Sie das Signum $\operatorname{sgn}(\sigma)$.

(a)
$$\sigma := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 1 & 3 \end{pmatrix}$$
,

(b)
$$\sigma := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 2 & 5 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix}$$
,

(c)
$$\sigma := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 4 & 5 \end{pmatrix}^{-1}$$
.

Aufgabe 2. (Explizite Berechnung einer Determinante) Bestimmen Sie (unter Angabe der Rechenschritte) die Determinante der folgenden Matrix mit Einträgen aus Q:

$$\begin{pmatrix}
1 & 12 & -2 & 7 & -6 \\
0 & 5 & 0 & 0 & 0 \\
2 & -20 & -2 & 12 & 0 \\
4 & 37 & 4 & 19 & 28 \\
3 & 8 & 0 & 21 & -18
\end{pmatrix}$$

Aufgabe 3. (Der Kern eines Gruppenhomomorphismus)

(a) Sei $f\colon G\to H$ ein Homomorphismus von Gruppen. Zeigen Sie, dass

$$\ker f \coloneqq \{g \in G \mid f(g) = 1_H\}$$

eine Untergruppe von G ist und dass für $k \in \ker f$, $g \in G$ auch $gkg^{-1} \in \ker f$ gilt. Dabei bezeichnet 1_H das neutrale Element von H und g^{-1} das Inverse von g. Eine Untergruppe von G mit dieser Zusatzeigenschaft heißt Normalteiler von G. Tipp: Erinnern Sie sich an Aufgabe 4 von Blatt 4.

(b) Zeigen Sie: Für $n \in N$ ist sgn: $S_n \to \{-1,1\}$ ein Gruppenhomomorphismus und

$$A_n := \{ \sigma \in S_n \mid \operatorname{sgn}(\sigma) = 1 \}$$

ein Normalteiler von S_n . (A_n heißt die alternierende Gruppe auf n Ziffern.)

(c) Zeigen Sie: Sei K ein Körper. Für $n \in N$ ist

$$\mathrm{SL}(n,K) \coloneqq \{A \in \mathrm{GL}(n,K) \mid \det A = 1\}$$

ein Normalteiler von $\mathrm{GL}(n,K)$. ($\mathrm{SL}(n,K)$ heißt die spezielle lineare Gruppe vom Rang n)

Aufgabe 4. (Determinanten antisymmetrischer Matrizen) Sei n eine ungerade natürliche Zahl.

- (a) Zeigen Sie: Ist A eine $n \times n$ -Matrix mit Einträgen aus \mathbb{R} und $A^t = -A$, so ist A nicht invertierbar.
- (b) Gibt es eine invertierbare reelle 2×2 -Matrix A mit $A^t = -A$?

Aufgabe 5. (Homogene und scherungsinvariante Abbildungen) Zeigen Sie: Sei K ein Körper, $n \in \mathbb{N}$ und $d: M(n \times n, K) \to K$ eine Abbildung mit folgenden Eigenschaften:

- (a) Scherungsinvarianz: $d(E_{i,j}(\lambda)A) = d(A)$ für $A \in M(n \times n, K)$ und $E_{i,j}(\lambda)$, $1 \le i \ne j \le n$, $\lambda \in K$, eine elementare Scherungsmatrix.
- (b) Homogenität: $d(D_i(\lambda)A) = \lambda d(A)$ für $A \in M(n \times n, K)$ und $D_i(\lambda), 1 \le i \le n, \lambda \in K$, eine elementare Streckungsmatrix (wobei auch der Fall $\lambda = 0$ erlaubt ist).

Dann gibt es ein $c \in K$, so dass $d(A) = c \det(A)$ für alle $A \in M(n \times n, K)$.

Tipp: Reduzieren Sie mit Aufgabe 3 von Blatt 8 auf den Fall, dass A eine Matrix in strenger Zeilenstufenform ist und zeigen Sie dann, dass d(A) = 0, falls A nicht invertierbar ist.