CALCIUM/ROCK CYCLE DQC Group – Michigan State University Duncan Sibley

in or from	Location	Driving force	drives	Process	is	Explanation of process	Help ideas and connections
CaSiO ₃ (calcium silicate)	surface	chemical disequilibrium		dissolution		CaSiO ₃ + CO ₂ (g) + H ₂ O(I) \Leftrightarrow Ca ²⁺ i+ HCO3- ions and SiO2 molecules in solution	Rocks at the surface dissolve to give ions in solution
dissolved load ions Ca 2+	rivers and ocean currents	gravity		transportation		lons carried by currents	lons in solution are invisble.
skeletons of marine organism CaCO3	ocean	biosynthesis		biochemical precipitation		$Ca^{2^+}+HCO_3^-\Leftrightarrow CaCO_3(s)+CO_2(g) + H_2O$	This is an important part of the carbon cycle
skeletons of marine organism CaCO3	sea floor	gravity		deposition		Skeletons composed of calcite (CaCO ₃) accumulate on the seafloor	Huge reefs deposits in warm shallow seas and thin beds on deep ocean floors
limestone CaCO3	surface to subsurface	chemical disequilibrium		cementation /lithification		$Ca^{2+} + HCO_3^- \Leftrightarrow$ $CaCO_3(s) + CO_2(g)$ $+ H_2O$	Calcite precipitates between skeletal fragments binding them together
marble Ca CO3	subsurface	chemcial disequilibrium heat/ pressure		metamorphism		Minerals grow and change structure	Sedimentary rock becomes metamorphic rock
Ca SiO₃ Calcium silicate	subsurface	chemcial disequilibrium heat/ pressure		metamorphic degassing		CaCO ₃ + SiO ₂ ⇔CaSiO ₃ + CO ₂	An important process for returning carbon to the atmosphere
Ca SiO₃ Calcium silicate	subsurface to surface	gravity		uplift		Rocks slowly float to the surface as overburden is eroded	Minerals that form at high temperature and pressure are found at the earth's surface
CaSiO ₃ Calcium silicate	subsurface/ mantle	chemcial disequilibrium heat/ pressure/ water		partial melting		bonds are broken along boundaries of crystals	Under most conditions (P,T, H ₂ O, only some minerals in a rock melt.
Magma Ca-) ions		chemcial disequilibrium heat/ pressure/ water		crystallization		mineral chemically precipitate from the magma	Under most conditions (P,T, H ₂ O, only some minerals preci