

Licence d'Informatique 2ème année Analyse de Données Utilisateur (C5–160412) Contrôle du 14 mai 2019 (2h30)

Carl FRÉLICOT – Dpt Info / Lab MIA

- Autorisés : calculatrice (pas une application sur smartphone), l'aide-mémoire déposé sur l'ENT sans aucune annotation. Tout autre document est interdit
- Utilisez les cadres réservés pour inscrire vos réponses. Vous devez **écrire la formule** utilisée avant de donner le détail du moindre calcul.
- Une réponse non justifiée sera considérée comme fausse.

Nom, prénom :	Note:	/20
---------------	-------	-----

Exercice 1

On a testé deux logiciels (Blue et Yellow) de *Machine Learning* et leur association Green sur 10 apprenants à qui on a demandé de graduer sur une échelle de 0 à 20 leur ressenti en termes d'effet potentiel sur leur compréhension du *Machine Learning*: sans effet (sans), amélioration (amel.) et amélioration significative (amel.+). Les résultats sont donnés dans le tableau ci-contre, ainsi que leurs projections dans le 1er plan discriminant sauf une qui a été effacée.

Des statistiques ont par ailleurs été calculées, et on donne :

Г	component	sans	amel.	amel.+
1	LD-x	-0.0656	0.5379	0.8405
2	LD-y	0.8693	-0.4441	0.2172

1. Combien y a-t-il au plus d'axes discriminants pour ces données ?

	logi	ciel	sans	amel.	amel.+	LD-x	LD-y	
1	Blue		2.0	4.0	10.0	10.425	2.134	4
2	Blue		2.0	16.0	2.0	10.156	-4.933	3
3	Yello	w	11.0	7.0	5.0	7.246	7.539	9
4	Gree	en	16.0	11.0	19.0	20.836	13.149	9
5	Yello	w	19.0	4.0	4.0	4.267	15.608	8
6	Gree	n	3.0	13.0	17.0	21.084	0.527	7
7	Yello	w	12.0	6.0	11.0	11.685	10.15	5
8	Gree	en	10.0	14.0	20.0	23.684	6.819	9
9	Blue		1.0	14.0	2.0	9.146	-4.914	4
10	Blue		7.0	15.0	9.0		1.378	8
		\overline{x}	8.3	10.4	9.9	13.37	4.75	
		s	6.0	4.45	6.49	6.20	6.73	1

2.	Calculez la coordonnée effacée.

3. Pour la note amel.+, on a relevé les statistiques conditionnelles cicontre. Calculez la statistique de Fisher permettant de savoir si elle sépare bien les logiciels.

logiciel	Blue	Yellow	Green
\overline{x}_j	5.75	6.67	18.67
s_j	3.77	3.09	1.25

4.	Faites les calculs permettant de tracer le boxplot de la note amel.+, puis tracez-le (verticalement, a droite).
5.	Quelle erreur de saisie minimale aurait-il fallu faire sur la note 20 (note entière) pour que celle-ci soit en dehors
	de l'épure ?
0	
6.	Afin d'expliquer (ou non) LD-y par amel avec un modèle affine, on a calculé en plus de ce qui figure en page $1 \sum x \times y = 304.6$, $\sum y^2 = 678.2$ et $\sum x^2 = 1280$. Faites les calculs nécessaires et donnez le modèle de prévision
	$\sum x \times y = 304.6$, $\sum y^2 = 678.2$ et $\sum x^2 = 1280$. Faites les calculs nécessaires et donnez le modèle de prévision
7	Calculez la distance ¹ entre amel et amel+.
۱.	Calculez la distance entre amei et amei+.

Exercice 2

Ci-dessous un canvas Orange et quelques sorties où trois valeurs d'évaluation ont été effacées.

Exercice 3

Considérons le tableau de données en dimension 3 de l'Exercice 1, mais limité aux 5 derniers individus (time is money) renommés x, y, z, t et u. Appelons-le T et \overline{T} celui composé des 5 premiers individus.

1. Calculez les distances de Manhattan, puis de Chebychev entre les deux premiers individus de T.

2.	Comme il y a 3 modalités d'utilisation des logiciels, on a exécuté trois itérations des K-means sur T , avec $K=3$
	et la distance euclidienne usuelle. Faites les calculs permettant de compléter les tableaux ci-dessous.

		$d^2(\overline{x}_j, x_i)$	x	y	z	t	u
$\left[\overline{x}_1 = (, ,) \right]$		\overline{x}_1	57.5	158.5	174.5	57.5	27.5
$Y^{(0)} = [1, 2, 3, 1, 2] \rightarrow V^{(1)} = \overline{x}_2 = (9.5, 10.5, 10),$	\rightarrow	\overline{x}_2	97.5	27.5	112.5	148.5	
$\left[\overline{x}_3 = (10, 14, 20)\right]$		\overline{x}_3	59	149		405	131
		$Y^{(1)}$	1	2		1	1

$$\rightarrow V^{(2)} = \begin{bmatrix} \overline{x}_1 = (& , & &), \\ \overline{x}_2 = (12, 6, 11), \\ \overline{x}_3 = (& , & , &) \end{bmatrix} \rightarrow \begin{bmatrix} d^2(\overline{x}_j, x_i) & x & y & z & t \\ \hline \overline{x}_1 & 60.22 & 136.22 & 153.89 & 60.89 \\ \hline \overline{x}_2 & 166 & 149 & 266 \\ \hline \overline{x}_3 & 59 & 149 & 405 \\ \hline Y^{(2)} & 3 & & 1 \\ \hline d^2(\overline{x}_j, x_i) & x & y & z & t \\ \hline \hline x_1 & 60.22 & 136.22 & 153.89 & 60.89 \\ \hline x_2 & 166 & 149 & 266 \\ \hline x_3 & 59 & 149 & 405 \\ \hline Y^{(2)} & 3 & & 1 \\ \hline d^2(\overline{x}_j, x_i) & x & y & z & t \\ \hline \end{array}$$

			$d^2(\overline{x}_j, x_i)$	x	y	z	t	u
	$\bar{x}_1 = (4, 14.5, 5.5),$		\overline{x}_1	135.5	166.5	246.5	21.5	
$\rightarrow V^{(3)} =$		\rightarrow	\overline{x}_2	166	0	149	266	110
	$\overline{x}_3 = (6.5, 13.5, 18.5)$		\overline{x}_3	14.75	142.75	14.75	302.75	92.75
	-		$Y^{(3)}$					

neramon 1

 $\underline{\text{it\'eration 2}}$:

 $\underline{\text{it\'eration }3}$:

12.22

110

131

1

Était-il ju	dicieux d'it	érer dav	antage	?									
En suppos i-dessous	sant \overline{T} con, ainsi que	tenue da la visual	ns un I	Data Ta du table	ble, "d	lessinez distance	' le can	ievas O	range q	ui a pe	rmis d'o	obtenir	la f
age		22	20	18	16		al Clusterin	g 10	8	6	4	2	
mplete	0		20	10	10		12	10					
otations													
umeration													
ing													
None Max depth:	10 0												=
·					-								=
Manual													=
	75,0%	0											
Тор N:	6 0												
Quelle par	r tition r eti ϵ	ndriez-v	ous de o	cette hie	érarchie	?							
) uelle par	$ m rtition\ retie$	ndriez-v	ous de o	cette hie	érarchie	?							
) uelle par	rtition retie	ndriez-v	ous de o	cette hie	źrarchie	?							
Quelle par	rtition retie	endriez-v	ous de o	cette hie	érarchie	?							
Quelle par	rtition retie	ndriez-v	ous de o	cette hie	érarchie	?							
	rtition retie						nt reten	ir de ce	es deux	études	(sur T	et \overline{T}) ?	?
							nt reten	ir de ce	es deux	études	(sur T	$\overline{\mathrm{et}\;\overline{T}\;)\;?$?
							nt reten	ir de ce	es deux	études	(sur T	${ m et}\; \overline{T}\;)\;?$?
							nt reten	ir de ce	es deux	études	(sur T	$\overline{\mathrm{et}\;\overline{T}\;)\;?}$?
							nt reten	ir de ce	es deux	études	(sur T	et \overline{T}) ?	?
							nt reten	ir de ce	es deux	études	(sur T	et \overline{T}) ?	?

Exercice 4

Dans le tableau de données qui suit sont reportés les temps quotidien moyen (en heures) passé par des individus typiques à diverses activités. Une Analyse en Composantes Principales aété réalisée (sorties ci-après).

Les méta-données sont illustratives et servent notamment à coder les individus : FNMu est une Femme Non active Mariée américaine alors que HACe est un Homme Actif Célibataire européen.

Code	PC1	PC2	PC3
FACu	-1.182	1.671	-0.700
FACu	-1.333	1.879	-1.090
FACe	0.253	-1.592	0.069
FNCe	1.216	-1.630	-1.707
FNMu	2.466	3.108	0.054
FNMu	1.290	2.624	0.013
FNMe	3.725	-0.392	0.684
FNMe	2.617	-0.934	1.237
HACu	-2.050	1.441	-0.854
HACe	-0.702	-2.246	-0.073
HACe	-0.533	-2.463	-0.983
FAMu	-2.232	0.670	0.897
HAMu	-2.815	0.124	2.248
HAMe	-0.721	-2.260	0.207

1. Quelle autre(s) méthode(s) que l'ACP aurai(en)t certainement été intéressante(s) à réaliser sur de telles données ?

2. Vous devez:

• commenter (critiquer?) les choix de l'analyste

 donner, quels que soient ces choix, des éléments d'interprétation des trois premières composantes principales à partir de l'analyse des individus et des variables

(...)