JK-DZ08-BxA24S 均衡器通信协议

1. 概述

本协议约束了 JK-DZ08-BxA24S 均衡器单板对外通信的电气接口、数据格式、通信速率等内容。

2. 通信参数

通信接口	CAN
波特率	250Kbps

3. CAN 总线数据数据格式

在通信过程中仅使用 CAN 总线的标准帧,未使用扩展帧,通过 CAN 总线的仲裁场 ID 来约束整个通信帧的内容。

CAN 总线扩展帧仲裁场 ID 共 11Bit。协议中规定高 7 位全部为 0, 低 4 位用来标示设备地址。

仲裁场(ARBITRATION FIELD)			
BIT10:4 BIT3:0			
0	均衡器地址 Address		

4. 通信流程

整个通信采用主从的方式进行,主机为主设备,均衡器为从设备。所有的通信只能是主设备发起,从设备做出响应。在通信过程中定义每帧数据的第一个字节为数据类型指示,所有数据帧均为高字节在前,低字节在后。

下面以设备地址为 0x01 为例, 进行通信说明。

4.1 请求均衡器数据

1) 主机发送数据

A ddn	数非	居场
Addr	1	2-8
0x01	0xFF	-

2) 均衡器应答

Addr		数据场						
Audi	1	2	3	4	5	6	7	8
001	001	温度		总电压 平		平均	可电压	识别
0x01	0x01	(IN	Γ16)(°C)	(UINT1	6)(10mV)	(UINT	16)(mV)	数量
001	0x02	最高	最低单	均衡与	最大	压差	均衡	电流
0x01	UXU2	单体	体	报警	(UINT1	6)(mV)	(UINT1	6)(mA)
001	002	均衡	触发压差	最大均	均衡电流	均衡	单体数	
0x01	0x03	(UIN	T16)(mV)	(UINT	'16)(mA)	开关	量	-
0x01	0x04	单体 编号 N	单体电 (UINT16		单体电压 (UINT16		单体电 (UINT1)	

- 注1. 均衡与报警字节 BITO 表示均衡电池充电;BIT1 表示均衡电池放电;BIT4 表示单体数量设置不正确; BIT5 表示线电阻过大。
- 注2. 识别单体数量是均衡器实际识别串数,单体数量是均衡器设定的工作串数。
- 注3. 单体编号 N 为该帧第一个单体电压的编号。

4.2 设定单体串数

1) 主机发送数据

Addr	数据场				
Addi	1	2	3-8		
0x01	0xF0	单体数量	-		

2) 均衡器应答

Addr	数据场				
Addi	1	2	3-8		
0x01	0xF1	单体数量	-		

注1. 单体数量范围为 2-24, 超出范围均衡器将不识别,同时返回当前均衡器内部的参数。

4.3 设定均衡触发压差

1) 主机发送数据

Addr	数据场				
Addi	1	2	3	4-8	
0x01	0xF2	均衡触发压差	E(UINT16)(mV)	-	

2) 均衡器应答

A ddm	数据场			
Addr	1	2	3	4-8
0x01	0xF3	均衡触发压差	(UINT16)(mV)	-

注1. 均衡触发压差范围为 2-1000mV 超出范围均衡器将不识别,同时返回当前均衡器内部的参数。

4.4 设定最大均衡电流

1) 主机发送数据

Addr	数据场				
Addr	1	2	3	4-8	
0x01	0xF4	最大均衡电流	E(UINT16)(mA)	-	

2) 均衡器应答

A ddm	数据场			
Addr	1	2	3	4-8
0x01	0xF5	最大均衡电流	E(UINT16)(mA)	-

注1. 最大均衡电流范围为 30-1000mA 超出范围均衡器将不识别,同时返回当前均衡器内部的参数。

4.5 设定均衡开关

1) 主机发送数据

Addr	数据场				
Addi	1	2	3-8		
0x01	0xF6	均衡开关	-		

2) 均衡器应答

A ddm	数据场				
Addr	1	2	3-8		
0x01	0xF7	均衡开关	-		

注1. 均衡开关设置范围为 0-1,0 表示关闭均衡;1 表示开启均衡;超出范围均衡器将不识别,同时返回当前均衡器内部的参数。

5. 举例

5.1 请求均衡器数据

序号	帧间隔时间us	名称	ффID	帧类型	帧格式	DLC	数据	帧数量
00000001	623.093.308	发送成功	001	DATA	STANDARD	1	FF	1
00000002	623, 078, 363	接收	001	DATA	STANDARD	8	01 00 15 1E D3 0F 69 14	1
00000003	000.000.262	接收	001	DATA	STANDARD	8	02 13 02 00 00 05 00 00	1
00000004	000.000.229	接收	001	DATA	STANDARD	7	03 03 E8 01 FF 00 14	1
00000005	000.009.116	接收	001	DATA	STANDARD	8	04 00 OF 69 OF 69 OF 67	1
00000006	000, 000, 236	接收	001	DATA	STANDARD	8	04 03 OF 69 OF 68 OF 67	1
00000007	000.000.258	接收	001	DATA	STANDARD	8	04 06 OF 68 OF 68 OF 6C	1
00000008	000.009.609	接收	001	DATA	STANDARD	8	04 09 OF 6A OF 67 OF 68	1
00000009	000, 000, 235	接收	001	DATA	STANDARD	8	04 OC OF 6B OF 69 OF 69	1
00000010	000.000.234	接收	001	DATA	STANDARD	8	04 OF OF 69 OF 6A OF 6B	1
00000011	000.009.632	接收	001	DATA	STANDARD	8	04 12 OF 6A OF 6D 00 00	1
00000012	000.000.260	接收	001	DATA	STANDARD	8	04 15 00 00 00 00 00 00	1

```
主机发送: 帧 ID 01; 数据 0xFF;
```

均衡器应答 ID: 01:

应答数据: 01 00 15 1E D3 0F 69 14; //温度 0x0015 * 1℃ = 21℃

//总电压 0x1ED3 * 10mV = 7891 * 10mV = 78.910V

//平均电压 0x0F69 * 1mV = 3995mV = 3.995V

//识别单体数量 0x14*1 串 = 20 串

应答数据: 02 13 02 00 00 05 00 00; //最高电压单体 0x13 = 第 19 串

//最低电压单体 0x02 = 第 2 串

//均衡与报警 (0x00 & BIT0) = 0 未均衡充电

//均衡与报警 (0x00 & BIT1)=0 未均衡放电

//均衡与报警 (0x00 & BIT4)=0 单体数量设置正确

//均衡与报警 (0x00 & BIT5) = 0 线电阻正常

//最大压差 0x0005 * 1mV = 5mV = 0.005V

//均衡电流 0x0000 * 1mA = 0mA = 0A

应答数据: 03 03 E8 01 FF 00 14; //均衡触发压差 0x03E8 *1mV = 1000mV = 1V

//最大均衡电流 0x01FF * 1mA = 511mA = 0.511A

//均衡开关 0x00 均衡关闭

//设置单体数量 0x14*1 串 = 20 串

应答数据: 04 00 0F 69 0F 69 0F 67: //起始电压编号 0x00 = 0

//单体 0 电压 0x0F69 * 1mV = 3945mV = 3.945V

//单体 1 电压 0x0F69 * 1mV = 3945mV = 3.945V

//单体 2 电压 0x0F67 * 1mV = 3943mV = 3.943V

应答数据: 04 03 0F 69 0F 68 0F 67; //起始电压编号 0x03 = 3

//单体 3 电压 0x0F69 * 1mV = 3945mV = 3.945V

//单体 4 电压 0x0F68 * 1mV = 3944mV = 3.944V

//单体 5 电压 0x0F67 * 1mV = 3943mV = 3.943V

应答数据: 04 06 0F 68 0F 68 0F 6C: //起始电压编号 0x06 = 6

//单体 6 电压 0x0F68 * 1mV = 3944mV = 3.944V

//单体 7 电压 0x0F68 * 1mV = 3944mV = 3.944V

//单体 8 电压 0x0F6C * 1mV = 3948mV = 3.948V

5.2 设定单体数量

序号	帧间隔时间us	名称	ффіл	帧类型	帧格式	DLC	数据	帧数量
00000001	2231, 219, 316	发送成功	001	DATA	STANDARD	2	FO 10	1
00000002	2231, 207, 202	接收	001	DATA	STANDARD	2	F1 10	1
00000003	306, 305, 099	发送成功	001	DATA	STANDARD	2	FO 20	1
00000004	000.000.000	接收	001	DATA	STANDARD	2	F1 10	1

主机发送: 帧 ID 01;

数据 0xF0 0x10; //设定单体数量为 16 串

均衡器应答 ID: 01:

应答数据: F1 10; //单体数量 0x10=16 串, 发送数据与接收数据一致,设置成功

主机发送: 帧 ID 01;

数据 0xF0 0x20; //设定单体数量为 32 串(数据超出范围)

均衡器应答 ID: 01:

应答数据: F1 10; //单体数量 0x10=16 串, 发送数据与接收数据不一致, 设置失败

5.3 设定均衡触发压差

序号	帧间隔时间us	名称	ффіл	帧类型	帧格式	DLC	数据	帧数量
00000001	004. 576. 999	发送成功	001	DATA	STANDARD	3	F2 00 FF	1
00000002	000.000.000	接收	001	DATA	STANDARD	3	F3 00 FF	1
00000003	019, 923, 794	发送成功	001	DATA	STANDARD	3	F2 FF FF	1
00000004	000.000.000	接收	001	DATA	STANDARD	3	F3 00 FF	1

主机发送: 帧 ID 01;

数据 F2 00 FF; //设定触发均衡压差 0x00FF*1mV = 255mV

均衡器应答 ID: 01;

应答数据: F3 00 FF: //触发均衡压差 0x00FF*1mV=255mV; 发送数据与接收数据一致,

设置成功

主机发送: 帧 ID 01;

数据 F2 FF FF; //设定触发均衡压差 0xFFFF * 1mV = 65535mV (数据超出范围)

均衡器应答 ID: 01:

应答数据: F2 00 FF; //触发均衡压差 0x00FF * 1mV = 255mV; 发送数据与接收数据不一致,设置失败

5.4 设定最大均衡电流

序号	帧间隔时间us	名称	ффID	帧类型	帧格式	DLC	数据	帧数量
00000001	011.586.612	发送成功	001	DATA	STANDARD	3	F4 01 FF	1
00000002	011.594.656	接收	001	DATA	STANDARD	3	F5 01 FF	1
00000003	004. 790. 044	发送成功	001	DATA	STANDARD	3	F4 01 00	1
00000004	004.771.754	接收	001	DATA	STANDARD	3	F5 01 FF	1

主机发送: 帧 ID 01:

数据 F4 01 FF; //设定触发最大均衡电流 0x01FF * 1mA = 511mA = 0.511A

均衡器应答 ID: 01;

应答数据: F501FF; //设定触发最大均衡电流 0x01FF*1mA=511mA=0.511A; 发送数据与接收数据一致,设置成功

数据 F4 01 00; //设定触发均衡压差 0x0100 * 1mV = 256mA (数据超出范围)

均衡器应答 ID: 01;

主机发送: 帧 ID 01;

应答数据: F501FF; //设定触发最大均衡电流 0x01FF*1mA=511mA=0.511A; 发送数据与接收数据不一致,设置失败

5.5 设定均衡开关

序号	帧间隔时间us	名称	філ	帧类型	帧格式	DLC	数据	帧数量
00000001	005, 752, 495	发送成功	001	DATA	STANDARD	2	F6 00	1
00000002	005, 743, 479	接收	001	DATA	STANDARD	2	F7 00	1
00000003	016, 869, 377	发送成功	001	DATA	STANDARD	2	F6 01	1
00000004	016, 870, 476	接收	001	DATA	STANDARD	2	F7 01	1
00000005	002, 407, 549	发送成功	001	DATA	STANDARD	2	F6 02	1
00000006	002, 395, 940	接收	001	DATA	STANDARD	2	F7 01	1

主机发送: 帧 ID 01;

数据 F6 00; //0x00 关闭均衡

均衡器应答 ID: 01;

应答数据: F7 00; //0x00 均衡被关闭, 发送数据与接收数据一致, 设置成功

主机发送: 帧 ID 01;

数据 F6 01; //0x00 开启均衡

均衡器应答 ID: 01;

应答数据: F7 01; //0x01 均衡开启, 发送数据与接收数据一致, 设置成功

主机发送: 帧 ID 01;

数据 F4 02; // 数据超出范围

均衡器应答 ID: 01;

应答数据: F7 01; //均衡开启; 发送数据与接收数据不一致, 设置失败