MATHEMATICS SPECIALIST 3CD INTEGRATION BY PARTS

Can you determine

$$\int x \cos x dx$$
 ?

One possible method would be trial and error. Obviously the appropriate result would have the form $x \sin x$

Test this by differentiating with respect to *x* which results in the expression

$$1.\sin x + x \cos x$$

which looks right but has the extra term $\sin x$.

Try $x \sin x + \cos x$

Testing this by differentiating with respect to *x* results in the expression

$$1.\sin x + x \cos x - \sin x$$
 or $x \cos x$ as required.

$$\therefore \int x \cos x dx = x \sin x + \cos x + c$$

1. [3 marks]

Determine $\int x \sin x dx$

Try $x \cos x$: Differentiating gives 1. $\cos x + x$. (- $\sin x$)

Try $-x \cos x + \sin x$: Differentiating gives $(-1) \cdot \cos x - x \cdot (-\sin x) + \cos x$ or $x \sin x$

$$\therefore \int x \sin x \, dx = -x \cos x + \sin x + c \qquad \qquad \checkmark \checkmark \checkmark$$

An alternative method for finding integrals of this type utilises the product rule.

$$\frac{d}{dx}(uv) = v.\frac{du}{dx} + u.\frac{dv}{dx}$$

Integrating with respect to *x* gives

$$\int \frac{d}{dx} (uv) dx = \int v \cdot \frac{du}{dx} dx + \int u \cdot \frac{dv}{dx} dx$$
ie
$$uv = \int v \cdot \frac{du}{dx} dx + \int u \cdot \frac{dv}{dx} dx \text{ or rearranging}$$

$$\int u \cdot \frac{dv}{dx} dx = uv - \int v \cdot \frac{du}{dx} dx.$$

To use integration by parts to determine $\int x \cos x dx$

Let
$$u = x$$
 and $\frac{dv}{dx} = \cos x$
then $\frac{du}{dx} = 1$ and $v = \sin x$ (neglecting the constant term)
Using
$$\int u \cdot \frac{dv}{dx} dx = uv - \int v \cdot \frac{du}{dx} dx$$

$$\int x \cos x \, dx = x \sin x - \int \sin x \cdot 1 dx$$

$$= x \sin x - \int \sin x \, dx$$

 $= x \sin x + \cos x + c$

2. [4 marks]

Show that the result would not change if we used $v = \sin x + k$ in place of

as before.

$$v = \sin x.$$
Let $u = x$ and
$$\frac{dv}{dx} = \cos x$$
then $\frac{du}{dx} = 1$ and
$$v = \sin x + k$$

$$\int x \cos x \, dx = x.(\sin x + k) - \int (\sin x + k).1 dx$$

$$= x \sin x + x.k - (-\cos x + k.x) + c$$

$$= x \sin x + kx + \cos x - kx + c$$

$$= x \sin x + \cos x + c$$

Generally u is the function which produces a simpler result when differentiated while $\frac{dv}{dx}$ is the more complex part which can still be integrated.

Integrate by parts, each of the following.

3. [4, 4, 4, 4, 4, 8 marks]

(a)
$$\int x e^x dx$$

Let $u = x$ and $\frac{dv}{dx} = e^x$
then $\frac{du}{dx} = 1$ and $v = e^x$

$$\int x e^x dx = x \cdot e^x - \int e^x \cdot 1 dx$$

$$= x \cdot e^x - \int e^x dx$$

$$= x \cdot e^x - e^x + c$$

(b)
$$\int 3x \sin x \, dx$$

Let $u = 3x$ and $\frac{dv}{dx} = \sin x$
then $\frac{du}{dx} = 3$ and $v = -\cos x$

$$\int 3x \sin x \, dx = 3x.(-\cos x) - \int (-\cos x).3 \quad \checkmark \checkmark$$

$$= -3x.\cos x + 3 \int \cos x \, dx$$

$$= -3x \cos x + 3 \sin x + c$$

(c)
$$\int x \sqrt{2x-1} dx$$

Let $u = x$ and $\frac{dv}{dx} = \sqrt{2x-1}$
then $\frac{du}{dx} = 1$ and $v = \frac{2.(2x-1)^{\frac{3}{2}}}{3..2}$

$$\int x\sqrt{2x-1}\,dx = x.\frac{2.(2x-1)^{\frac{3}{2}}}{3.2} - \int \frac{2.(2x-1)^{\frac{3}{2}}}{3.2} \checkmark \checkmark$$

$$= \frac{x.(2x-1)^{\frac{3}{2}}}{3} - \int \frac{(2x-1)^{\frac{3}{2}}}{3}\,dx \checkmark$$

$$= \frac{x.(2x-1)^{\frac{3}{2}}}{3} - \frac{(2x-1)^{\frac{5}{2}}}{15} + c \checkmark$$

(d)
$$\int x^3 \ln x \, dx$$

Let
$$u = \ln x$$
 and $\frac{dv}{dx} = x^3$
then $\frac{du}{dx} = \frac{1}{x}$ and $v = \frac{x^4}{4}$

$$\int x^3 \ln x dx = \ln x \cdot \frac{x^4}{4} - \int \frac{x^4}{4} \cdot \frac{1}{x} dx$$

$$= \frac{x^4}{4} \cdot \ln x - \frac{1}{4} \int x^3 dx$$

$$= \frac{x^4}{4} \cdot \ln x - \frac{x^4}{16} + c$$

(e)
$$\int 3x(2x+3)^5 dx$$

Let
$$u = 3x$$
 and $\frac{dv}{dx} = (2x+3)^5$
then $\frac{du}{dx} = 3$ and $v = \frac{(2x+3)^6}{6.2}$

$$\int 3x(2x+3)^5 dx = 3x \cdot \frac{(2x+3)^6}{12} - \int \frac{(2x+3)^6}{12} \cdot 3dx$$

$$= \frac{x \cdot (2x+3)^6}{4} - \frac{1}{4} \int (2x+3)^6 dx$$

$$= \frac{x \cdot (2x+3)^6}{4} - \frac{1}{4} \frac{(2x+3)^7}{7.2} + c$$

$$= \frac{x \cdot (2x+3)^6}{4} - \frac{(2x+3)^7}{56} + c$$

(f)
$$\int e^x \cos x \, dx$$
 using $u = e^x$ and $\frac{dv}{dx} = \cos x$
Let $u = e^x$ and $\frac{dv}{dx} = \cos x$
then $\frac{du}{dx} = e^x$ and $v = \sin x$

$$\int e^{x} \cos x \, dx = e^{x} \cdot \sin x - \int \sin x \cdot e^{x} \, dx$$

$$= e^{x} \cdot \sin x - (e^{x} \cdot (-\cos x) - \int e^{x} \cdot (-\cos x) \, dx)$$

$$= e^{x} \cdot \sin x + e^{x} \cos x - \int e^{x} \cos x \, dx + c$$

$$ie \quad 2 \int e^{x} \cos x \, dx = e^{x} \sin x + e^{x} \cos x + c$$

$$\therefore \int e^{x} \cos x \, dx = \frac{1}{2} (e^{x} \sin x + e^{x} \cos x) + c$$

IMPORTANT RESULTS:

$$\frac{d}{dx}e^{x} = e^{x}$$

$$\int e^{x} dx = e^{x} + c$$

$$\frac{d}{dx} \ln x = \frac{1}{x}$$

$$\int_{-\infty}^{\infty} dx = \ln x + c$$