Экзамен, 5-ый билет.

Романенко Демьян, M3238 22.06.2020

1 Билет

- 1. Ошибки первого и второго рода и их вероятности как критерий качества критерия (теста) проверки гипотез. Подход Неймана-Пирсона.
- Свойства ЭФР в целом. Расстояние Колмогорова, Смирнова. Теоремы Гливенко-Кантелли, Колмогорова, Мизеса - Смирнова. Построение доверительной полосы для функции распределения.
- 3. Пусть простейший процесс имеет вид X(t) = Yt + c, $Y \sim U(a,b)$. Найти корреляционную функцию и нормированную корреляционную функцию этого процесса.

2 Ответы

2.1 Первый вопрос

2.1.1 Ошибки первого и второго рода и их вероятности как критерий качества критерия (теста) проверки гипотез.

Пусть $H_0: \theta \in H_0$ – гипотеза, $H_1: H_0 \subset \Theta, H_1 = \bar{H_0}$ – альтернатива, $\varphi: \mathcal{X} \to \{0,1\}$ – тест.

 $Omu \delta ko i I poda$ называют отклонение основной гипотезы, в то время как она была справедлива.

Вероятность ошибок I рода теста φ называют α такую, что: $\alpha(\varphi, \theta) := P_{\theta}(\mathcal{X}_{n,1}), \ \theta \in \Theta_{H_0}$.

 $Omu \delta \kappa o i II po da$ называют принятие основной гипотезы, в то время как она не была справедлива.

Вероятность ошибок II рода теста φ называют β такую, что: $\beta(\varphi,\theta) := P_{\theta}(\mathcal{X}_{n,0}), \theta \in \Theta_{H_1}$

Уровнем значимости теста называют верхнюю границу вероятности ошибки I рода по всем возможным наблюдаемым значениям неизвестных параметров, отвечающих основной гипотезе: $\alpha(\varphi) := \sup_{\theta \in \Theta_{H_0}} \alpha(\varphi, \theta)$ Мощностью теста называют следующую величину: $\gamma(\varphi, \theta) := 1 - \beta(\varphi, \theta)$

2.1.2 Подход Неймана-Пирсона.

Будем искать лучшую оценку в классе оценок с зафиксированным максимальным значением уровня значимости. Зафиксируем $\alpha \in (0,1)$ (обычно выбирают малое значение, близкое к нулю). Будем считать это значение минимальной допустимой величиной ошибки І рода (допустимый уровень значимости). Рассмотрим множество всех тестов таких, что: $\bar{\Phi}_{\alpha} = \{\varphi = \varphi(x) \mid \alpha(\varphi) \leqslant \alpha\}$. Среди этих тестов выбирается тест с минимальным значением β . В асимптотических задачах ограничения накладываются на предельные значения.

2.2 Второй вопрос

2.2.1 Свойства ЭФР в целом.

Эмпирической функцией распределения $(\Im \Phi P)$ в точке $t \in \mathbb{R}$ называют следующую оценку функции распределения генеральной совокупности: $F_n(t) = \frac{1}{n} \sum_{i=1}^n 1_{(-\infty,t)}$. Иными словами, значение $\Im \Phi P$ в точке t равно отношению числа наблюдений, меньших t, к их общему числу n.

Свойства ЭФР:

- 1. ЭФР кусочно-постоянна;
- 2. Скачки ЭФР имеют вид $\frac{k}{n}$ для некоторого $k \in (1; n)$;

- 3. Область принимаемых значений: [0; 1];
- 4. $F_n(t)$ является состоятельной оценкой: $F_n(t_0) = \bar{\xi}_n : F_n(t_0) \xrightarrow[n=1]{} F_x;$
- 5. $F_n(t)$ является асимптотически нормальной оценкой;
- 6. Частота может служить как оценка функции распределения генеральной совокупности. При фиксированном $t=t_0\colon F_x(t_0)\approx F_n(t_0)=rac{\xi_1+\ldots+\xi_n}{n}=rac{k_n}{n}$ частота.

2.2.2 Расстояние Колмогорова, Смирнова.

Расстояние Колмогорова: $\rho_{\infty}(F_n, F_x) = \sup_{t} |F_n(t) - F_x(t)|$ Расстояние Смирнова: $\rho_2^2(F_n, F_x) = \int_{\mathbb{R}} (F_n(t) - F_x(t))^2 dF_x(t)$.

2.2.3 Теоремы Гливенко-Кантелли, Колмогорова, Мизеса - Смирнова

Теорема Гливенко-Кантелли Пусть \mathcal{F} – множество функций распределения. Тогда $\forall F_x(t) \in \mathcal{F}$ с вероятностью 1 справедливо предельное неравенство: $\rho_{\infty}(F_n, F_x) \xrightarrow[n \to \infty]{} 0$. То же верно для ρ_2 , так как $\rho_2 \leqslant \rho_{\infty}$. $F_n(t)$ – состоятельная оценка $F_x(t)$ в расстояниях Колмогорова и Смирнова.

Теорема Колмогорова Пусть \mathcal{F}_c – множество всех непрерывных функций распределения, $F_x \in \mathcal{F}_c$. Тогда $P_{n,F}(\sqrt{n}\rho_{\infty}(F_n,F_x) < u) \xrightarrow[n \to \infty]{} \mathcal{K}(u) = \begin{cases} 0, \ u = 0, \\ \sum\limits_{j=-\infty}^{+\infty} (-1)^j e^{-2(ju)^2}, \ u > 0. \end{cases}$

Теорема Мизеса - Смирнова $P_{n,F}(\sqrt{n}\rho_2^2(F_n,F_x) < u) \xrightarrow[n \to \infty]{} \mathcal{S}(u)$, где $\mathcal{S}(u)$ есть функция распределения следующей случайной величины: $\mathcal{U} = \sum_{j=1}^{\infty} \frac{\xi_j^2}{j^2\pi^2}, \; \xi_j \sim N(0,1), \; \xi_j$ независимые.

2.2.4 Построение доверительной полосы для функции распределения.

Используя теорему Колмогорова, можно построить доверительную полосу для неизвестной функции распределения. Доверительной полосой γ называют часть плоскости, в которую с надежностью γ попадает функция распределения генеральной совокупности.

Теорема Доверительная полоса задаётся функциями: $F_n^-(t) = \max\left(0, F_n(t) - \frac{u_\gamma}{\sqrt{n}}\right), F_n^+(t) = \min\left(1, F_n(t) + \frac{u_\gamma}{\sqrt{n}}\right),$ где u_γ определяется из условия $\mathcal{K}(u_\gamma) = \gamma$.

Достаточно проверить, что $P_x(F_n^-(t)\leqslant F_x(t)\leqslant F_n^+(t))\xrightarrow[n\to\infty]{}\gamma$:

$$P_x(F_n^-(t) \leqslant F_x(t) \leqslant F_n^+(t)) = P_x\left(F_x(t) - \frac{u_\gamma}{\sqrt{n}} \leqslant F_x(t) \leqslant F_n(t) + \frac{u_\gamma}{\sqrt{n}}\right) = P_x\left(\sqrt{n}|F_x(t) - F_n(t)| \leqslant u_\gamma\right) = P_x\left(\sqrt{n}\sup_{t\in\mathbb{R}}|F_x(t) - F_n(t)| \leqslant u_\gamma\right) \xrightarrow[n\to\infty]{} \mathcal{K}(u_\gamma) = \gamma$$

3 Задача

Формулировка Пусть простейший процесс имеет вид X(t) = Yt + c, $Y \sim U(a,b)$. Найти корреляционную функцию и нормированную корреляционную функцию этого процесса.

2

Решение

- 1. Найдём матожидание процесса: $E_X(t)=E(Yt+c)=tE(y)+c=t\frac{a+b}{2}+c;$
- 2. Найдем вид центрированного сечения: $\tilde{X}(t) = X(t) + E_X(T) = Yt + c t \frac{a+b}{2};$
- 3. Найдём саму корреляционную функцию этого процесса: $K_X(t,t') = E(\tilde{X}(t)*\tilde{X}(t')) = tt'E(Y-\frac{a+b}{2})^2 = tt'D(Y) = tt'\frac{(b-a)^2}{12};$
- 4. Найдём дисперсию сечений: $D_X(t) = D(Yt+c) = t^2D(Y) = t^2\frac{(b-a)^2}{2};$
- 5. Найдём саму нормированную корреляционную функцию этого процесса: $\rho_X(t,t') = \frac{K_X(t,t')}{\sigma_X(t)\sigma_X(t')} = tt' \frac{(b-a)^2}{12} \sqrt{\frac{12}{t^2(b-a)^2}} \sqrt{\frac{12}{t'^2(b-a)^2}} = 1;$

Проверка: из определения X(t) зависимость между сечениями должна быть линейной, какой она и является по результату вычислений.