NI PXI-5441 Specifications

16-Bit 100 MS/s Arbitrary Waveform Generator with Onboard Signal Processing (OSP)

このドキュメントには、日本語ページも含まれています。

This document lists specifications for the NI PXI-5441 arbitrary waveform generator. Unless otherwise noted, the following conditions were used for each specification:

- Analog filter enabled.
- DAC interpolation set to maximum allowed factor for a given sample rate.
- Signals terminated with 50 Ω .
- Direct path set to 1 V_{pk-pk} , Low-Gain Amplifier path set to 2 V_{pk-pk} , and High-Gain Amplifier path set to 12 V_{pk-pk} .
- Sample clock set to 100 mega samples per second (MS/s).

Specifications describe the warranted, traceable product performance over ambient temperature ranges of 0 °C to 55 °C, unless otherwise noted.

Typical values describe useful product performance beyond specifications that are not covered by warranty and do not include guardbands for measurement uncertainty or drift. Typical values may not be verified on all units shipped from the factory. Unless otherwise noted, typical values cover the expected performance of units over ambient temperature ranges of 23 ± 5 °C with a 90% confidence level, based on measurements taken during development or production.

Nominal values (or supplemental information) describe additional information about the product that may be useful, including expected performance that is not covered under Specifications or Typical values. Nominal values are not covered by warranty.

Specifications are subject to change without notice. For the most recent NI 5441 specifications, visit ni.com/manuals. To access all the NI 5441 documentation, navigate to **Start»All Programs»National Instruments» NI-FGEN»Documentation**.

Hot Surface If the NI 5441 has been in use, it may exceed safe handling temperatures and cause burns. Allow the NI 5441 to cool before removing it from the chassis.

Electromagnetic Compatibility Guidelines

This product was tested and complies with the regulatory requirements and limits for electromagnetic compatibility (EMC) as stated in the product specifications. These requirements and limits are designed to provide reasonable protection against harmful interference when the product is operated in its intended operational electromagnetic environment.

This product is intended for use in industrial locations. There is no guarantee that harmful interference will not occur in a particular installation, when the product is connected to a test object, or if the product is used in residential areas. To minimize the potential for the product to cause interference to radio and television reception or to experience unacceptable performance degradation, install and use this product in strict accordance with the instructions in the product documentation.

Furthermore, any changes or modifications to the product not expressly approved by National Instruments could void your authority to operate it under your local regulatory rules.

Caution When operating this product, use shielded cables and accessories.

Contents

CH 0	3
Sample Clock	17
Onboard Clock	20
Phase-Locked Loop (PLL) Reference Clock	20
CLK IN	
TClk Specifications	
PFI 0 and PFI 1	
DIGITAL DATA & CONTROL (DDC)	
Start Trigger	
Markers	
Arbitrary Waveform Generation Mode	
Function Generation Mode	
Onboard Signal Processing	34
Calibration	
Power	43
Software	44
Environment	
NI PXI-5441 Environment	45

Compliance and Certifications	46
Safety	46
Electromagnetic Compatibility	46
CE Compliance	46
Online Product Certification	46
Environmental Management	47
Physical	
Where to Go for Support	

CH 0 (Channel 0 Analog Output, Front Panel Connector)

Specification	Value	Comments
Number of Channels	1	_
Connector	SMB (jack)	_
Output Voltage	Characteristics	
Output Paths	 The software-selectable Main Output path setting provides full-scale voltages from 12.00 V_{pk-pk} to 5.64 mV_{pk-pk} into a 50 Ω load. NI-FGEN uses either the Low-Gain Amplifier or the High-Gain Amplifier when the Main Output path is selected, depending on the Gain attribute. The software-selectable Direct path is optimized for intermediate frequency (IF) applications and provides full-scale voltages from 0.707 to 1.000 V_{pk-pk}. 	_
DAC Resolution	16 bits	_

3

Specification			Comments			
Amplitude and	Offset					
Amplitude		Amplitude (V _{pk-pk})			Amplitude values	
Range	Path	Load	Minimum Value	Maximum Value	assume the full scale of the DAC	
	Direct	50 Ω	0.707	1.00	is utilized. If an amplitude	
		$1~k\Omega$	1.35	1.91	smaller than the	
		Open	1.41	2.00	minimum value is desired, then	
	Low- Gain	50 Ω	0.00564	2.00	waveforms less than full scale	
	Amplifier	1 kΩ	0.0107	3.81	of the DAC can be used.	
		Open	0.0113	4.00	NI-FGEN	
	High- Gain	50 Ω	0.0338	12.0	compensates for user-specified	
	Amplifier	1 kΩ	0.0644	22.9	resistive loads.	
		Open	0.0676	24.0		
Amplitude Resolution	<0.06% (0.004 dB)	of amplitude range		_	
Offset Range			e amplitude range w tude range	rith increments	Not available on the Direct path.	
Maximum Out	put Voltage	e				
Maximum	Path	Load	Maximum Out _l	out Voltage (V _{pk})	The maximum	
Output Voltage	Direct	50 Ω	±0	.500	output voltage of the NI 5441 is	
		1 kΩ	±0	.953	determined by the amplitude	
		Open	±1	.000	range and the	
	Low-	50 Ω	±1	.000	offset range.	
	Gain Amplifier $1 \text{ k}\Omega$ ± 1.905					
		Open	±2			
	High-	50 Ω	±6	.000		
	Gain Amplifier	1 kΩ	±1	1.43		
		Open	±1	2.00		

Specification	Value	Comments
Accuracy		
DC Accuracy	For the Low-Gain or High-Gain Amplifier path:	All paths are calibrated for
	±0.2% of amplitude range ±0.05% of offset ±500 μV (within ±10 °C of self-calibration temperature)	amplitude and gain errors. The
	±0.4% of amplitude range ±0.05% of offset ±1 mV (0 to 55 °C)	Low-Gain and High-Gain
	For the Direct path:	Amplifier paths also are
	Gain accuracy: ±0.2% amplitude range (within ±10 °C of self-calibration temperature) Gain accuracy: ±0.4% amplitude range (0 to 55 °C)	calibrated for offset errors.
	DC error: ±30 mV (0 to 55 °C)	
	Note : For DC accuracy, "amplitude range" is defined as 2× the gain setting. For example, a DC signal with a gain of 8 has an amplitude range of 16 V. If this signal has an offset of 1.5, its DC accuracy is calculated by the following equation:	
	$\pm 0.2\% \times (16 \text{ V}) \pm 0.05\% \times (1.5 \text{ V}) \pm 500 \mu\text{V} = \pm 33.25 \text{mV}$	
AC Amplitude	(+2.0% + 1 mV), (-1.0% – 1 mV)	50 kHz sine
Accuracy	(+0.8% + 0.5 mV), (-0.2% - 0.5 mV), typical	wave.
Output Charac	teristics	
Output Impedance	50 Ω nominal or 75 Ω nominal, software-selectable	_
Load Impedance Compensation	Output amplitude is compensated for user-specified load impedances.	_
Output Coupling	DC	_
Output Enable	Software-selectable. When disabled, CH 0 output is terminated with a 1 W resistor with a value equal to the selected output impedance.	_
Maximum Output Overload	The CH 0 output terminal can be connected to a 50 Ω , ± 12 V (± 8 V for the Direct path) source without sustaining any damage. No damage occurs if the CH 0 output is shorted to ground indefinitely.	_

Specification		Comments					
Output Charac	Output Characteristics (Continued)						
Waveform Summing	similar paths—spec	upports waveform su cifically, the output to erators can be conne	erminals of multiple	_			
Frequency and	Transient Response	2					
Bandwidth	43 MHz			Measured at –3 dB.			
DAC Digital Interpolation Filter		Software-selectable finite impulse response (FIR) filter. Available interpolation factors are 2, 4, or 8.					
Analog Filter	Software-selectable suppression.	Available only on Low-Gain amplifier and High-Gain amplifier Paths.					
Passband		Path		With respect to			
Flatness	Direct	50 kHz.					
	-0.4 to +0.6dB 100 Hz to 40 MHz	-1.0 dB to +0.5 100 Hz to 20 MHz	-1.2 to +0.5 dB 100 Hz to 20 MHz				

Specification		Comments			
Frequency and	Transient Response	(Continued)			
Pulse		Analog filter			
Response	Direct	Low-Gain High-Gain Direct Amplifier Amplifier			
Rise/Fall Time	<5 ns <4.5 ns, typical*	<8 ns <7 ns* <5.5 ns, typical*	<10 ns		
Aberration	<10%, typical	<5%, typical	<5%, typical		

^{*} Specifications apply only to E-revision and later NI PXI-5441 devices (National Instruments part number 191789E-0x).

Figure 1. Normalized Passband Flatness, Direct Path

Figure 2. Pulse Response, Low-Gain Amplifier Path 50 Ω Load

Figure 3. Frequency Response of Direct Path, 100 MS/s, 1x DAC Interpolation

Note Above 50 MHz, the response is the image response.

Specification		Comments					
Suggested Maximum Frequencies for Common Functions							
Function		Path		Disable the			
	Direct	Low-Gain Amplifier	High-Gain Amplifier	Analog filter and the DAC Interpolation			
Sine	43 MHz	43 MHz	43 MHz	filter for square,			
Square	Not recommended*	25 MHz	12.5 MHz	ramp, and triangle. The minimum			
Ramp	Not recommended*	5 MHz	5 MHz	frequency is 0 Hz.			
Triangle	Not recommended*	5 MHz	5 MHz				
* Direct path is	optimized for the freq	uency domain.					
Spectral Chara	acteristics						
Signal to		Path		Amplitude			
Noise and Distortion (SINAD)	Direct	Low-Gain Amplifier	High-Gain Amplifier	-1 decibel full scale (dBFS). Measured from			
1 MHz	64 dB	66 dB	63 dB	DC to 50 MHz. SINAD at low			
10 MHz	61 dB	60 dB	47 dB	amplitudes is			
20 MHz	57 dB	56 dB	42 dB	limited by a -148 dBm/Hz			
30 MHz	60 dB	62 dB	62 dB	noise floor. All values are			
40 MHz	60 dB	62 dB	62 dB	typical.			
43 MHz	58 dB	60 dB	55 dB				

Specification		Comments				
Spectral Characteristics (Continued)						
Spurious-Free Dynamic		Path	Т	Amplitude –1 dBFS.		
Range (SFDR) ¹ with Harmonics	Direct	Low-Gain Amplifier	High-Gain Amplifier	Measured from DC to 50 MHz. Also called		
1 MHz	76 dB	71 dB	58 dB	harmonic distortion.		
10 MHz	68 dB	64 dB	47 dB	SFDR with		
20 MHz	60 dB	57 dB	42 dB	harmonics at low amplitudes is		
30 MHz	73 dB	73 dB	74 dB	limited by a -148 dBm/Hz		
40 MHz	76 dB	73 dB	74 dB	noise floor.		
43 MHz	78 dB	75 dB	59 dB	All values are typical and include aliased harmonics.		
SFDR		Path		Amplitude		
without Harmonics	Direct	Low-Gain Amplifier	High-Gain Amplifier	–1 dBFS.Measured fromDC to 50 MHz.		
1 MHz	87 dB	90 dB	90 dB	SFDR without		
10 MHz	86 dB	88 dB	90 dB	harmonics at low amplitudes is		
20 MHz	79dB	88 dB	88 dB	limited by a -148 dBm/Hz		
30 MHz	72 dB	72 dB	73 dB	noise floor.		
40 MHz	75 dB	72 dB	73 dB	All values are typical and		
43 MHz	77 dB	74 dB	59 dB	include aliased harmonics.		

¹ Dynamic range is defined as the difference between the carrier level and the largest spur.

Specification		Comments					
Spectral Characteristics (Continued)							
0 to 40 °C		Path		Amplitude			
Total Harmonic Distortion (THD)	Direct	Low-Gain Amplifier	High-Gain Amplifier	-1 dBFS. Includes the 2 nd through the 6 th harmonic.			
20 kHz	–77 dBc, typical	–77 dBc, typical	-77 dBc, typical				
1 MHz	-75 dBc, typical	-70 dBc, typical	-62 dBc, typical				
5 MHz	-68 dBc	-68 dBc	-55 dBc				
10 MHz	-65 dBc -66 dBc, typical*	-61 dBc -66 dBc, typical*	-46 dBc				
20 MHz	-55 dBc -61 dBc, typical*	-53 dBc -61 dBc, typical*	-40 dBc				
30 MHz	-50 dBc -57 dBc, typical*	-48 dBc -57 dBc, typical*	-38 dBc				
40 MHz	-47 dBc -54 dBc, typical*	-46 dBc -54 dBc, typical*	-34 dBc				
43 MHz	-46 dBc -53 dBc, typical*	-45 dBc -53 dBc, typical*	-33 dBc				

^{*} Specifications apply only to E-revision and later NI PXI-5441 devices (National Instruments part number 191789E-0x).

Specification		Comments					
Spectral Characteristics (Continued)							
0 to 55 °C		Path		Amplitude			
THD	Direct	Low-Gain Amplifier	High-Gain Amplifier	-1 dBFS. Includes the 2 nd through the 6 th			
20 kHz	-76 dBc, typical	-76 dBc, typical	-76 dBc, typical	harmonic.			
1 MHz	–74 dBc, typical	-69 dBc, typical	-61 dBc, typical				
5 MHz	–67 dBc	–67 dBc	-54 dBc				
10 MHz	-63 dBc	-60 dBc	-45 dBc				
20 MHz	–54 dBc –57 dBc*	−52 dBc −55 dBc*	-39 dBc				
30 MHz	-48 dBc -52 dBc*	-46 dBc -50 dBc*	-36 dBc				
40 MHz	-45 dBc -50 dBc*	–41 dBc –47 dBc*	-32 dBc				
43 MHz	–44 dBc –49 dBc*	–41 dBc –46 dBc*	-31 dBc				

^{*} Specifications apply only to E-revision and later NI PXI-5441 devices (National Instruments part number 191789E-0x).

Specification			Comments						
Spectral Chara	Spectral Characteristics (Continued)								
Average Noise Density			olitude ange	N	Average Voise Densit	у	Average Noise Density at small		
	Path	V _{pk-pk}	dBm	$\frac{\text{nV}}{\sqrt{\text{Hz}}}$	dBm/Hz	dBFS/ Hz	amplitudes is limited by a –148 dBm/Hz		
	Direct	1	4.0	18	-142	-146.0	noise floor.		
	Low Gain	0.06	-20.4	9	-148	-127.6			
	Low Gain	0.1	-16.0	9	-148	-132.0			
	Low Gain	0.4	-4.0	13	-145	-141.0			
	Low Gain	1	4.0	18	-142	-146.0			
	Low Gain	2	10.0	35	-136	-146.0			
	High Gain	4	16.0	71	-130	-146.0			
	High Gain	12	25.6	213	-120	-145.6			

Figure 4. 10 MHz Single-Tone Spectrum, Direct Path, 100 MS/s, DAC Interpolation Factor Set to 4

15

Note The noise floor in Figure 4 is limited by the measurement device. Refer to the *Average Noise Density* specifications for more information about this limit.

Figure 5. 10 MHz Single-Tone Spectrum, Low-Gain Amplifier Path, 100 MS/s, DAC Interpolation Factor Set to 4

Note The noise floor in Figure 5 is limited by the measurement device. Refer to the *Average Noise Density* specifications for more information about this limit.

Figure 6. Direct Path, Two-Tone Spectrum (Typical)

Note The noise floor in Figure 6 is limited by the measurement device. Refer to the *Average Noise Density* specifications for more information about this limit.

Sample Clock

Specification	Value	Comments
Sample Clock Sources	 Internal, Divide-by-N (N≥1) Internal, DDS-based, high-resolution External, CLK IN (SMB front panel connector) External, DDC CLK IN (DIGITAL DATA & CONTROL front panel connector) External, PXI Star trigger (PXI backplane connector) External, PXI_Trig<07> (PXI backplane connector) 	Refer to the Onboard Clock section for more information about internal clock sources.

Specification	Value			Comments	
Sample Rate Rat	nge and Resolution				
Sample Clock Source	Sample Rate Range	-		Sample te Resolution	_
Divide-by-N	23.84 S/s to 100	MS/s		to (100 MS/s)/N 4,194,304)	
High Resolution	10 S/s to 100 M	MS/s		1.06 μHz	
CLK IN	200 kS/s to 105	MS/s		on determined by	
DDC CLK IN	10 S/s to 105 M	MS/s		clock source.	
PXI Star Trigger	10 S/s to 105 M	cycle tolerance 40 to 60%.		_	
PXI_Trig<07>	10 S/s to 20 M				
DAC Effective Sample Rate					
	Sample Rate (MS/s)	Interp	AC olation ctor	Effective Sample Rate	DAC Effective Sample Rate = (DAC
	10 S/s to 105 MS/s	1 (Off)		10 S/s to 105 MS/s	Interpolation factor) × (sample rate)
	12.5 MS/s to 105 MS/s		2	25 MS/s to 210 MS/s	Refer to the Onboard Signal
	10 MS/s to 100 MS/s		4	40 MS/s to 400 MS/s	Processing section for OSP interpolation.
	10 MS/s to 50 MS/s	8 80 MS/s to 400 MS/s			interpolation.
Sample Clock Do	elay Range and Res	solution			
Sample Clock Source	Delay Adjustn Range	nent Delay Adjustment Resolution		_	
Divide-by-N	±1 Sample clock	period <10 ps			
High- Resolution	±1 Sample clock	period Sample clock period/16,384			
External (all)	0 to 7.6 ns	3		<15 ps	

Specification			Va	lue		Comments
System Phase No	System Phase Noise and Jitter (10 MHz Carrier)				1	
Sample Clock Source	System Phase Noise Density (dBc/Hz) Offset			System Output Jitter (Integrated from	Specified at 2× DAC oversampling.	
	100 Hz	1 kHz	10 kHz		Hz to 100 kHz)	
Divide-by-N	-110	-131	-137	<	<1.0 ps rms	
High- Resolution*	-114	-126	-126	<	<4.0 ps rms	
CLK IN	-113	-132	-135	<	<1.1 ps rms	
PXI Star Trigger [†]	-115	-118	-130	<	<3.0 ps rms	
	* High-Resolution specifications increase as the sample rate is decreased. † PXI star trigger specification is valid when the sample clock source is locked to PXI_CLK10.					
External Sample Clock Input Jitter Tolerance	Cycle-cycle jitter ±300 ps Period Jitter ±1 ns			_		
Sample Clock E	xporting					1
Exported Sample Clock Destinations	 PFI<01> (SMB front panel connectors) DDC CLK OUT (DIGITAL DATA & CONTROL front panel connector) PXI_Trig<06> (PXI backplane connector) 			Exported sample clocks can be divided by integer K ($1 \le K \le 4,194,304$).		
Exported Sample Clock Destinations	Maximum Frequency Jitter (Typical) Duty Cycle			_		
PFI<01>	105 MHz PFI 0: 6 ps rms		ps rms	25 to 65%		
			PFI 1: 1	2 ps rms		
DDC CLK OUT	105	MHz	40 ps	s rms	40 to 60%	
PXI_Trig<06>	20 N	ИHz			_	

Note Sample clock purity can significantly affect the performance of an NI PXI-5441. High amounts of jitter or phase noise in the sample clock can create spurs in the signal generator's spectrum that are not present when using a pure sample clock. For example, if

the Clock Mode property is set to Automatic, NI-FGEN often selects High-Resolution clocking to achieve a specific IQ rate. High-Resolution clocking has more jitter than Divide-By-*N* clocking and may create extra spurs in the signal generator output spectrum (refer to Figures 8 through 15 for examples of this phenomenon). To remove extra spurs without using software resampling, you can use a pure external clock. The NI PXI-5650/5651/5652 frequency source, with low jitter and <1 Hz frequency resolution, is an excellent option.

Onboard Clock (Internal VCXO)

Specification	Value	Comments
Clock Source	Internal sample clocks can either be locked to a reference clock using a phase-locked loop or be derived from the onboard VCXO frequency reference.	_
Frequency Accuracy	±25 ppm	_

Phase-Locked Loop (PLL) Reference Clock

Specification	Value	Comments
Reference Clock Sources	PXI_CLK10 (PXI backplane connector) CLK IN (SMB front panel connector)	The PLL reference clock provides the reference frequency for the PLL.
Frequency Accuracy	When using the PLL, the frequency accuracy of the NI 5441 is solely dependent on the frequency accuracy of the PLL reference clock source.	
Lock Time	Typical: 70 ms Maximum: 200 ms	_
Frequency Range	5 to 20 MHz in increments of 1 MHz Default of 10 MHz The PLL reference clock frequency must be accurate to ±50 ppm.	_

Specification	Value	Comments
Duty Cycle Range	40 to 60%	_
Exported PLL Reference Clock Destinations	 PFI<01> (SMB front panel connectors) PXI_Trig<06> (PXI backplane connector) 	_

CLK IN(Sample Clock and Reference Clock Input, Front Panel Connector)

Specification	Value	Comments
Connector	SMB (jack)	_
Direction	Input	_
Destinations	 Sample clock PLL reference clock 	_
Frequency Range	1 to 105 MHz (sample clock destination and sine waves) 200 kHz to 105 MHz (sample clock destination and square waves) 5 to 20 MHz (PLL reference clock destination)	_
Input Voltage Range	Sine wave: 0.65 to 2.8 V $_{pk-pk}$ into 50 Ω $(0$ dBm to +13 dBm) Square wave: 0.2 to 2.8 V $_{pk-pk}$ into 50 Ω	_
Maximum Input Overload	±10 V	_
Input Impedance	50 Ω	_
Input Coupling	AC	

TClk Specifications

National Instruments TClk synchronization method and the NI-TClk instrument driver are used to align the Sample clocks on any number of SMC-based modules in a chassis. For more information about TClk synchronization, refer to the NI-TClk Synchronization Help, which is located within the NI Signal Generators Help.

- Specifications are valid for any number of PXI modules installed in one NI PXI-1042 chassis.
- All parameters set to identical values for each SMC-based module.
- Sample Clock set to 100 MS/s, Divide-by-N, and all filters are disabled.
- For other configurations, including multichassis systems, contact NI Technical Support at ni.com/support.

Note Although you can use NI-TClk to synchronize nonidentical modules, these specifications apply only to synchronizing identical modules.

Specification	Value	Comments
Intermodule SMC S	ynchronization Using NI-TClk for Identical	Modules (Typical)
Skew	500 ps	Caused by clock and analog path delay differences. No manual adjustment performed.
Average Skew After Manual Adjustment	<10 ps	For information about manual adjustment, refer to the Synchronization Repeatability Optimization topic in the NI-TClk Synchronization Help. For additional help with the adjustment process, contact NI Technical Support at ni.com/support.
Sample Clock Delay/Adjustment Resolution	≤10 ps	_

PFI 0 and PFI 1

(Programmable Function Interface, Front Panel Connectors)

Specification	Value	Comments
Connectors	Two SMB (jacks)	_
Direction	Bidirectional	_
Frequency Range	DC to 105 MHz	_
As an Input (Tr	igger)	
Destinations	Start trigger	_
Maximum Input Overload	-2 to +7 V	_
V _{IH}	2.0 V	_
V _{IL}	0.8 V	_
Input Impedance	1 kΩ	_
As an Output (I	Event)	
Sources	1. Sample clock divided by integer K ($1 \le K \le 4,194,304$)	_
	2. Sample clock timebase (100 MHz) divided by integer M ($2 \le M \le 4,194,304$)	
	3. PLL reference clock	
	4. Marker	
	5. Exported start trigger (Out Start trigger)	
Output Impedance	50 Ω	_
Maximum Output Overload	-2 to +7 V	_
V _{OH}	Minimum: 2.9 V (open load), 1.4 V (50 Ω load)	Output drivers are
V _{OL}	Maximum: 0.2 V (open load), 0.2 V (50 Ω load)	+3.3 V TTL compatible.
Rise/Fall Time	≤2.0 ns	Load of 10 pF.

DIGITAL DATA & CONTROL (DDC) Optional Front Panel Connector

Specification		Value		Comments
Connector Type	68-pin VHDCI fen	68-pin VHDCI female receptacle		
Number of Data Output Signals	16			_
Control Signals	1. DDC CLK OUT 2. DDC CLK IN (c 3. PFI 2 (input) 4. PFI 3 (input) 5. PFI 4 (output) 6. PFI 5 (output)			
Ground	23 pins			_
Output Signal C	Output Signal Characteristics (Includes Data Outputs, DDC CLK OUT, and PFI<45>)			
Signal Type	LVDS (Lo	ow-Voltage Different	ial Signal)	_
Signal Characteristics	Minimum	Typical	Maximum	Tested with 100 Ω differential
V _{OH}	_	1.3 V	1.7 V	load. Measured at the
V _{OL}	0.8 V	1.0 V		device front
Differential Output Voltage	0.25 V	_	0.45 V	panel. Load capacitance
Output Common-Mode Voltage	1.125 V	_	1.375 V	<15 pF. Driver and receiver
Differential Pulse Skew (skew within a differential pair)	_	_	0.6 ns	comply with ANSI/TIA/ EIA-644.
Rise/Fall Time	_	0.5 ns	1.6 ns	

Specification	Va	lue	Comments
Output Signal O	Characteristics (Continued)		
Output Skew		Skew between any two output ATA & CONTROL front panel	_
Output Enable/Disable	Controlled through the softward control signals collective terminals go to a high-impeda	ly. When disabled, the output	
Maximum Output Overload	-0.3 to +3.9 V		_
Input Signal Ch	aracteristics (Includes DDC	CLK IN and PFI<23>)	
Signal Type	LVDS (Low-Voltage Differer	tial Signal)	
Input Differential Impedance	100 Ω		_
Maximum Output Overload	-0.3 to +3.9 V		_
Signal Characteristics	Minimum	Maximum	_
Differential Input Voltage	0.1 V	0.5 V	
Input Common Mode Voltage	0.2 V 2.2 V		
DDC CLK OUT			
Clocking Format	Data outputs and markers change on the falling edge of DDC CLK OUT.		_
Frequency Range	Refer to the <i>Sample Clock</i> section for more information.		_
Duty Cycle	40 to 60%		_
Jitter	40 ps rms		

Specification	Value	Comments
DDC CLK IN		
Clocking Format	DDC data output signals change on the rising edge of DDC CLK IN.	_
Frequency Range	10 Hz to 105 MHz	_
Input Duty Cycle Tolerance	40 to 60%	_
Input Jitter Tolerances	300 ps pk-pk of cycle-cycle jitter, and 1 ns rms of period jitter.	_

Start Trigger

Specification	Value	Comments
Sources	1. PFI<01> (SMB front panel connectors)	_
	2. PFI<23> (DIGITAL DATA & CONTROL front panel connector)	
	3. PXI_Trig<07> (backplane connector)	
	4. PXI Star trigger (backplane connector)	
	5. Software (use function call)	
	6. Immediate (does not wait for a trigger). Default.	
Modes	1. Single	_
	2. Continuous	
	3. Stepped	
	4. Burst	
Edge Detection	Rising	_

Specification	Va	lue	Comments
Minimum Pulse Width	25 ns		Refer to the t _{s1} documentation in the NI Signal Generators Help by navigating to NI Signal Generators Help»Devices» NI 5441» Triggering» Trigger Timing.
Delay from	DAC Interpolation Factor	Typical Delay	Refer to the t _{s2}
Start Trigger to CH 0 Analog Output with	Digital interpolation filter disabled.	44 Sample clock periods + 110 ns	documentation in the NI Signal Generators Help
OSP Disabled.	2	58 Sample clock periods + 110 ns	by navigating to NI Signal
	4	64 Sample clock periods + 110 ns	Generators Help»Devices» NI 5441»
	8	65 Sample clock periods + 110 ns	Triggering» Trigger Timing.
Delay from Start Trigger to Digital Data Output with OSP Disabled.	40 Sample clock periods + 110 ns		_
Additional Delay for Function Generator Mode.	Add 33 Sample clock periods. (Applicable to delay from Start trigger to CH0 analog output and delay from Start trigger to digital data output)		_
Additional Delay with OSP Enabled.	Add 70 Sample clock periods for real data processing mode. Add 73 Sample clock periods for complex data processing mode. (Applicable to delay from Start trigger to CH0 analog output and delay from Start trigger to digital data output)		FIR and CIC filters enabled.

Specification	Value	Comments		
Trigger Export	Trigger Exporting			
Exported Trigger Destinations	A signal used as a trigger can be routed out to any destination listed in the <i>Destinations</i> specification in the <i>Markers</i> section.	_		
Exported Trigger Delay	65 ns (typical)	Refer to the t _{s3} documentation in the <i>NI Signal Generators Help</i> by navigating to NI Signal Generators Help»Devices» NI 5441» Triggering» Trigger Timing.		
Exported Trigger Pulse Width	>150 ns	Refer to the t _{s4} documentation in the <i>NI Signal Generators Help</i> by navigating to NI Signal Generators Help»Devices» NI 5441» Triggering» Trigger Timing.		

Markers

Specification		Value		Comments
Destinations	 PFI<01> (SMB front panel connectors) PFI<45> (DIGITAL DATA & CONTROL front panel connector) PXI_Trig<06> (backplane connector) 			_
Quantity	One marker per seg	gment		_
Quantum	-	ust be placed at an int samples for Complex		_
Width	>150 ns			Refer to the t _{m2} documentation in the <i>NI Signal Generators Help</i> by navigating to NI Signal Generators Help» Fundamentals» Waveform Fundamentals» Events» Marker Events.
Skew	Destination	With Respect to Analog Output	With Respect to Digital Data Output	Refer to the t _{m1} documentation in the NI Signal Generators Help
	PFI<01>	±2 Sample Clock Periods	N/A	by navigating to NI Signal
	PFI<45>	N/A	<2 ns	Generators
	PXI_Trig<06>	±2 Sample Clock Periods	N/A	Help» Fundamentals» Waveform Fundamentals» Events» Marker Events.
Jitter	20 ps rms			_

Arbitrary Waveform Generation Mode

Specification		Value		Comments
Memory Usage	The NI 5441 uses the Synchronization and Memory Core (SMC) technology in which waveforms and instructions share onboard memory. Parameters, such as number of segments in sequence list, maximum number of waveforms in memory, and number of samples available for waveform storage, are flexible and user defined.			For more information, refer to the NI-TClk Synchronization Help by navigating to NI Signal Generators Help» Programming» NI-TClk Synchronization Help.
Onboard Memory Size	32 MB option: 33,554,432 bytes	256 MB option: 268,435,456 bytes	512 MB option: 536,870,912 bytes	_
Output Modes	Arbitrary Waveforr	n mode and Arbitrar	y Sequence mode	_
Arbitrary Waveform Mode	In Arbitrary Waveform mode, a single waveform is selected from the set of waveforms stored in onboard memory and generated.			_
Arbitrary Sequence Mode	In Arbitrary Sequence mode, a sequence directs the NI 5441 to generate a set of waveforms in a specific order. Elements of the sequence are referred to as <i>segments</i> . Each segment is associated with a set of instructions. The instructions identify which waveform is selected from the set of waveforms in memory, how many loops (iterations) of the waveform are generated, and at which sample in the waveform a marker output signal is sent.			

Specification		Value		Comments
Minimum Waveform Size	Trigger Mode	Arbitrary Waveform Mode	Arbitrary Sequence Mode	The minimum waveform size
(Samples)	Single	16	16	is sample rate dependent in
	Continuous	16	96 at >50 MS/s	Arbitrary
			32 at ≤50 MS/s	Sequence mode. For complex (IQ)
	Stepped	32	96 at >50 MS/s	data minimum
			32 at ≤50 MS/s	waveform size is halved.
	Burst	16	512 at >50 MS/s	
			256 at ≤50 MS/s	
Loop Count	1 to 16,777,215 Burst trigger: Unlimited			_
Quantum	Waveform size must be an integer multiple of four samples (two samples for complex (IQ) data).			_
Memory Limits				
	32 MB Option	256 MB Option	512 MB Option	All trigger modes
Arbitrary Waveform	16,777,088 samples	134,217,600 samples	268,435,328 samples	except where noted.
Mode, Maximum Waveform Memory	samples	samples	sumples	For complex (IQ) data maximum waveform memory is halved.
Arbitrary Sequence Mode,	16,777,008 samples	134,217,520 samples	268,435,200 samples	Condition: One or two segments in a sequence.
Maximum Waveform Memory				For complex (IQ) data maximum waveform memory is halved.

Specification		Value		Comments		
Memory Limits	Memory Limits (Continued)					
Arbitrary Sequence Mode, Maximum Waveforms	262,000 Burst trigger: 32,000	2,097,000 Burst trigger: 262,000	4,194,000 Burst trigger: 524,000	Condition: One or two segments in a sequence.		
Arbitrary Sequence Mode, Maximum Segments in a Sequence	418,000 Burst trigger: 262,000	3,354,000 Burst trigger: 2,090,000	6,708,000 Burst trigger: 4,180,000	Condition: Waveform memory is <4,000 samples. (<2,000 samples for complex (IQ) data.)		
Waveform Play	Times					
	32 MB	256 MB	512 MB			
Maximum Play Time, Sample Rate = 100 MS/s, OSP Disabled	0.16 seconds	1.34 seconds	2.68 seconds	Single Trigger mode. Play times can be significantly extended by		
Maximum Play Time, IQ Rate = 1 MS/s, Real Mode, OSP Enabled	16 seconds	2 minutes and 14 seconds	4 minutes and 28 seconds	using Continuous, Stepped, or Burst Trigger modes. For Complex (IQ) mode the play		
Maximum Play Time, IQ Rate = 100 kS/s, Real Mode, OSP Enabled	2 minutes and 47 seconds	22 minutes and 22 seconds	44 minutes and 43 seconds	times are halved.		

Function Generation Mode

Specification	Va	lue	Comments
Standard	Waveform	Maximum Frequency	_
Waveforms and Maximum	Sine	43 MHz	1
Frequencies	Square	25 MHz	
	Triangle	5 MHz	
	Ramp Up	5 MHz	
	Ramp Down	5 MHz	
	DC	_	
	Noise (Pseudo-Random)	5 MHz	
	User Defined	43 MHz	
Memory Size	65,536 samples for 1/4 symmetric waveforms (Example: Sine) 16, 384 samples for non-1/4 symmetric waveforms (Example: Ramp)		16-bit samples. User Defined Waveforms must be exactly 16,384 samples.
Frequency Resolution	355 nHz		_
Phase Resolution	0.0055°		_

Onboard Signal Processing

Figure 7. Onboard Signal Processing Block Diagram

Specification	Value	Comments
IQ Rate		
OSP Interpolation Range	12 to 512 (multiples of 2) 512 to 1,024 (multiples of 4) 1,024 to 2,048 (multiples of 8) (OSP Interpolation = FIR Interpolation × CIC Interpolation)	Total NI PXI-5441 Interpolation = OSP Interpolation × DAC Interpolation.
IQ Rate	Sample Rate/OSP Interpolation (Lower IQ Rates are possible by either lowering the sample rate or doing software interpolation)	Example: For a sample rate of 100 MS/s, IQ rate range = 48.8 kS/s to 8.3 MS/s
Data Processing Modes	Real (I path only) Complex (IQ)	_

Specification	Value	Comments		
Pre-Filter Gain	Pre-Filter Gain and Offset			
Pre-Filter Gain and Offset Resolution	18 Bits	_		
Pre-Filter Gain Range	-2.0 to +2.0 (Values < 1 attenuate User Data)	Unitless		
Pre-Filter Offset Range	-1.0 to +1.0	Applied after pre-Filter gain		
Output	Output = (User data × pre-Filter gain) + pre-Filter offset $(-1 \le \text{Output} \le +1)$	Pre-Filter output		
FIR (Finite Imp	oulse Response) Filter			
Filter Length	95 Taps	The FIR filter		
Coefficient Width	17 bits (-1 to +1)	is used to pulse shape the IQ data and to		
Filter Symmetry	Symmetric	compensate for the CIC		
Interpolation Range	2, 4, or 8	filter roll-off.		
Coefficients	Automatically generated by NI-FGEN (refer to <i>FIR Filter Types</i>) or Custom Coefficients provided by the user			

Specification	Value			Comments		
FIR Filter Type	FIR Filter Types					
Filter Type	Parameter	Minimum	Maximum	_		
Custom	_	_	_	Coefficients are provided by the user.		
Flat	Passband	0.1	0.43	Lowpass Filter that minimizes ripple to the following relation: IQ Rate × Passband.		
Gaussian	BT	0.1	0.9	_		
Raised Cosine	Alpha	0.1	0.9			
Root Raised Cosine	Alpha	0.1	0.9			
CIC (Cascaded	Integrator-Comb) F	ilter		·		
Size	6 Stages			The CIC Filter		
Interpolation Range	$6 \le \text{Interpolation} \le 256 \text{ (integers)}$			does the majority of the interpolation in the OSP.		
NCO (Numeric	ally Controlled Oscil	lator)		·		
Frequency Range	1 mHz to $(0.43 \times \text{Sar})$	mple Rate)		_		
Frequency Resolution	Sample Rate / 2 ⁴⁸			Example: 355 nHz with a Sample Rate of 100 MS/s		
I and Q Phase Resolution	0.0055°			_		
Phase Quantization	16 bits			Look-up table address width		
Tuning Speed	1 ms			_		

Specification	Va	Comments				
Modulation Per	formance (Typical)					
Modulation	Measurement Type	FIF	R Interpolat	ion	_	
Configuration		2	4	8		
GSM Physical Layer*	MER (Modulation Error Ratio)	46 dB	47 dB	42 dB	Direct path (4 dBmPeak),	
	EVM (Error Vector Magnitude)	<0.5 % rms	<0.5 % rms	<0.8 % rms	25 MHz carrier	
W-CDMA	MER	46 dB	39 dB	_	Direct path	
Physical Layer [†]	EVM	<7 0.5 % rms	<1.0 % rms	_	(4 dBmPeak), 25 MHz carrier, ACPR Measurement	
	ACPR (Adjacent Channel Power Ratio) (External Sample Clock)	65 dBc	68 dBc	_	BW = 4 MHz and Channel Spacing = 5 MHz	
	ACPR (High-Resolution Sample Clock)	61 dBc	61 dBc	_		
DVB Physical	MER	43 dB	_	_	Direct Path	
Layer [‡]	EVM	<0.6 % rms	_	_	(4 dBmPeak), 25 MHz Carrier, ACPR	
	ACPR (External Sample Clock)	48 dBc	_	_	Measurement BW =	
	ACPR (High-Resolution Sample Clock)	47 dBc	_	_	7.96 MHz and Channel Spacing = 8 MHz	

^{*} OSP Enabled. IQ Rate = 1.083 MS/s, 4 Samples/Symbol. FIR Filter Type = Flat, Passband = 0.4. MSK modulation: Software Pulse Shaping and Phase Accumulation, 270.833 kS/s, Gaussian, BT = 0.3. PN Sequence Order = 14.

 $^{^{\}dagger}$ OSP Enabled. IQ Rate = 3.84 MS/s, 1 Sample/Symbol. FIR Filter Type = Root Raised Cosine, Alpha = 0.22. QPSK. PN Sequence Order = 15.

^{*} OSP Enabled. IQ Rate = 6.92 MS/s, 1 Sample/Symbol. FIR Filter Type = Root Raised Cosine, Alpha = 0.15. 32 QAM Modulation. PN Sequence Order = 15.

Specification		Comments		
Digital Perform	ance			
Maximum NCO Spur	<-90 dBc	Full-Scale Output		
FIR Interpolation	IQ Rate Range (with 100 MS/s Sample Clock Rate)	OSP Out of Band Suppression	OSP Passband Ripple	_
2	195 kS/s to 8.33 MS/s	63 dB	0 to -0.08 dB	FIR Filter Type = Flat. Passband =
4	97.6 kS/s to 4.16 MS/s	74 dB	0 to -0.08 dB	0.4. Ripple Measurement to 0.4 × IQ Rate.
8	48.8 kS/s to 2.08 MS/s	40 dB	0 to -0.8 dB	Stop Band Suppression from 0.6 × IQ Rate.

ni.com

Figure 8. GSM Physical Layer^{1,2} External Sample Clocking = 99.665 MHz

Figure 9. GSM Physical Layer ^{1,2}
Internal (High Resolution) Sample Clocking = 99.665 MHz
Additional artifacts are caused by High Resolution Clock spurs.

OSP Enabled. Direct Path (4 dBm Peak). 25 MHz Carrier. IQ Rate = 1.083 MS/s, 4 Samples/Symbol. FIR Filter Type = Flat, Passband = 0.4. Software MSK modulation: 270.833 kS/s, Gaussian, BT = 0.3, PN Sequence Order = 14.

² For more information on eliminating spurs, refer to the *DAC Effective Sample Rate* in the *Sample Clock* section.

Figure 10. CDMA 2000 Physical Layer^{1,2} External Sample Clocking = 98.304 MHz

Figure 11. CDMA 2000 Physical Layer^{1,2}
Internal (High Resolution) Sample Clocking = 98.304 MHz
Additional artifacts are caused by High Resolution Clock spurs.

NI PXI-5441 Specifications

¹ OSP Enabled. Direct Path (4 dBm Peak). 25 MHz Carrier. IQ Rate = 1.2288 MS/s, 1 Sample/Symbol. FIR Filter Type = Custom Flat Filter with Passband = 0.48. QPSK. PN Sequence Order = 15.

² For more information on eliminating spurs, refer to the *DAC Effective Sample Rate* in the *Sample Clock* section.

Figure 12. W-CDMA Physical Layer^{1,2} External Sample Clocking = 92.16 MHz

Figure 13. W-CDMA Physical Layer^{1,2}
Internal (High Resolution) Sample Clocking = 92.16 MHz
Additional artifacts are caused by High Resolution Clock spurs.

¹ OSP Enabled. Direct Path (4 dBm Peak). 25 MHz Carrier. IQ Rate = 3.84 MS/s, 1 Sample/Symbol. FIR Filter Type = Root Raised Cosine, Alpha = 0.22. QPSK. PN Sequence Order = 15.

² For more information on eliminating spurs, refer to the *DAC Effective Sample Rate* in the *Sample Clock* section.

Figure 14. DVB Physical Layer^{1,2}
External Sample Clocking = 96.88 MHz
Artifacts at 15 and 35 MHz are due to 2x FIR Interpolation aliasing.

Figure 15. DVB Physical Layer^{1,2}
Internal (High Resolution) Sample Clocking = 96.88 MHz
Artifact at 10 MHz is caused by CLK IN feed-through.
Additional artifacts are caused by High Resolution Clock spurs.

_

¹ OSP Enabled. Direct Path (4 dBm Peak). 25 MHz Carrier. IQ Rate = 6.92 MS/s, 1 Sample/Symbol. FIR Filter Type = Root Raised Cosine, Alpha = 0.15. 32 QAM Modulation. PN Sequence Order = 15.

² For more information on eliminating spurs, refer to the *DAC Effective Sample Rate* in the *Sample Clock* section.

Calibration

Specification	Value	Comments
Self-Calibration	An onboard, 24-bit ADC and precision voltage reference are used to calibrate the DC gain and offset. The self-calibration is initiated by the user through the software and takes approximately 75 seconds to complete.	l
External Calibration	The external calibration calibrates the VCXO, voltage reference, output impedance, DC gain, and offset. Appropriate constants are stored in nonvolatile memory.	Also known as factory calibration.
Calibration Interval	Specifications valid within two years of external calibration.	_
Warm-up Time	15 minutes	_

Power

Specification	Typical Operation	Overload Operation	Comments
+3.3 VDC	1.9 A	2.7 A	Typical.
+5 VDC	2.2 A	2.4 A	Overload operation occurs
+12 VDC	0.46 A	0.5 A	when CH 0 is
-12 VDC	0.01 A	0.01 A	shorted to ground.
Total Power	22.9 W	27.0 W	

Software

Specification	Value	Comments
Driver Software	NI-FGEN is an IVI-compliant driver that allows you to configure, control, and calibrate the NI 5441. NI-FGEN provides application programming interfaces for many development environments.	_
Application Software	NI-FGEN provides programming interfaces for the following application development environments: • LabVIEW • LabWindows™/CVI™ • Measurement Studio • Microsoft Visual C++ .NET • Microsoft Visual C/C++ • Microsoft Visual Basic	_
Interactive Control and Configuration Software	The FGEN Soft Front Panel supports interactive control of the NI 5441. The FGEN Soft Front Panel is included on the NI-FGEN driver DVD. Measurement & Automation Explorer (MAX) provides interactive configuration and test tools for the NI 5441. MAX is also included on the NI-FGEN DVD. You can use the NI 5441 with NI SignalExpress.	

Environment

NI PXI-5441 Environment

Note To ensure that the NI PXI-5441 cools effectively, follow the guidelines in the *Maintain Forced-Air Cooling Note to Users* included in the NI 5441 kit. The NI PXI-5441 is intended for indoor use only.

Specification	Value	Comments
Operating	0 to +55 °C in all NI PXI chassis except the following:	_
Temperature	0 to +45 °C when installed in an NI PXI-101x or NI PXI-1000B chassis.	
	Meets IEC 60068-2-1 and IEC 60068-2-2.	
Storage Temperature	−25 to +85 °C. Meets IEC 60068-2-1 and IEC 60068-2-2.	_
Operating Relative Humidity	10 to 90%, noncondensing. Meets IEC 60068-2-56.	_
Storage Relative Humidity	5 to 95%, noncondensing. Meets IEC 60068-2-56.	_
Operating Shock	30 g, half-sine, 11 ms pulse. Meets IEC 60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.	Spectral and jitter specifications could degrade.
Storage Shock	50 g, half-sine, 11 ms pulse. Meets IEC 60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.	_
Operating Vibration	5 to 500 Hz, 0.31 g _{rms} . Meets IEC 60068-2-64.	Spectral and jitter specifications could degrade.
Storage Vibration	5 to 500 Hz, 2.46 g _{rms} . Meets IEC 60068-2-64. Test profile exceeds requirements of MIL-PRF-28800F, Class B.	_
Altitude	2,000 meter maximum (at 25 °C ambient temperature)	_
Pollution Degree	2	_

Compliance and Certifications

Safety

This product meets the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the *Online Product Certification* section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note For EMC declarations and certifications, refer to the *Online Product Certification* section.

CE Compliance (€

This product meets the essential requirements of applicable European Directives as follows:

- 2006/95/EC; Low-Voltage Directive (safety)
- 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

To obtain product certifications and the Declaration of Conformity (DoC) for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *NI and the Environment* Web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all products *must* be sent to a WEEE recycling center. For more information about WEEE recycling centers, National Instruments WEEE initiatives, and compliance with WEEE Directive 2002/96/EC on Waste Electrical and Electronic Equipment, visit ni.com/environment/weee.

电子信息产品污染控制管理办法 (中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。 关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs_china。 (For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Physical

Specification	Va	lue	Comments	
Dimensions	3U, One Slot, PXI/cPCI Mod 21.6 × 2.0 × 13.0 cm (8.5 × 0.8 × 5.1 in.)	_		
Weight	345 g (12.1 oz)		_	
Front Panel Co	nnectors			
Label	Function(s)	Connector Type	_	
CH 0	Analog output	SMB (jack)		
CLK IN	Sample clock input and PLL reference clock input.	SMB (jack)		
PFI 0	Marker output, trigger input, sample clock output, exported trigger output, and PLL reference clock output.	SMB (jack)		
PFI 1	Marker output, trigger input, sample clock output, exported trigger output, and PLL reference clock output.	SMB (jack)		
DIGITAL DATA & CONTROL	Digital data output, trigger input, exported trigger output, markers, external sample clock input, and sample clock output.	68-pin VHDCI female receptacle		
Front Panel LE	D Indicators			
Label	Fun	ction	For more	
ACCESS	The ACCESS LED indicates the interface from the NI 544	information, refer to the NI Signal Generators Help.		
ACTIVE	The ACTIVE LED indicates generation hardware of the N	,		
Included Cable				
	1 (NI part number 763541-01 Plug, RG223/U, Double Shie	_		

Note NI PXI-5441 modules of revision B or later are equipped with a modified PXI Express-compatible backplane connector. This modified connector allows the NI PXI-5441 to be supported by hybrid slots in a PXI Express chassis. To determine the revision of an NI PXI-5441 module, read the label on the underside of the NI PXI-5441. The label will list an assembly number of the format 191789*x*-01, where *x* is the revision.

Where to Go for Support

The National Instruments Web site is your complete resource for technical support. At ni.com/support you have access to everything from troubleshooting and application development self-help resources to email and phone assistance from NI Application Engineers.

A Declaration of Conformity (DoC) is our claim of compliance with the Council of the European Communities using the manufacturer's declaration of conformity. This system affords the user protection for electromagnetic compatibility (EMC) and product safety. You can obtain the DoC for your product by visiting ni.com/certification. If your product supports calibration, you can obtain the calibration certificate for your product at ni.com/calibration.

National Instruments corporate headquarters is located at 11500 North Mopac Expressway, Austin, Texas, 78759-3504. National Instruments also has offices located around the world to help address your support needs. For telephone support in the United States, create your service request at ni.com/support and follow the calling instructions or dial 512 795 8248. For telephone support outside the United States, contact your local branch office:

Australia 1800 300 800, Austria 43 662 457990-0, Belgium 32 (0) 2 757 0020, Brazil 55 11 3262 3599, Canada 800 433 3488, China 86 21 5050 9800, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 358 (0) 9 725 72511, France 01 57 66 24 24, Germany 49 89 7413130, India 91 80 41190000, Israel 972 3 6393737, Italy 39 02 41309277, Japan 0120-527196, Korea 82 02 3451 3400, Lebanon 961 (0) 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793, Netherlands 31 (0) 348 433 466, New Zealand 0800 553 322, Norway 47 (0) 66 90 76 60, Poland 48 22 328 90 10, Portugal 351 210 311 210, Russia 7 495 783 6851, Singapore 1800 226 5886, Slovenia 386 3 425 42 00, South Africa 27 0 11 805 8197, Spain 34 91 640 0085, Sweden 46 (0) 8 587 895 00, Switzerland 41 56 2005151, Taiwan 886 02 2377 2222, Thailand 662 278 6777, Turkey 90 212 279 3031, United Kingdom 44 (0) 1635 523545

CVI, LabVIEW, National Instruments, NI, ni.com, the National Instruments corporate logo, and the Eagle logo are trademarks of National Instruments Corporation. Refer to the *Trademark Information* at ni.com/trademarks for other National Instruments trademarks. The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the United States and other countries. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your software, the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents.

NI PXI-5441 仕様

16 ビット 100 MS/s オンボード信号処理(OSP) 機能付き任意波形 発生器

このドキュメントには、NI PXI-5441 任意波形発生器の仕様が記載されています。特に注記のない限り、各仕様において以下の条件が適用されます。

- アナログフィルタ有効化。
- DAC 補間は使用中のサンプルレートの最大許容値に設定。
- 50 Ωで信号を終端。
- ダイレクトパスを 1 V_{pk-pk} に設定、低ゲインアンプパスを 2 V_{pk-pk} に 設定、高ゲインアンプパスを 12 V_{pk-pk} に設定。
- サンプルクロックは 100 MS/s に設定。

仕様は、特に指定がない限り、0~55 ℃の周囲温度範囲内で使用した場合の、保証済みでトレーサブルな製品性能を記載しています。

標準値は、保証範囲外での使用における有用な製品性能を表しますが、これには測定の不確定性やドリフトに対するガードバンドは含まれていません。標準値は工場から出荷されたすべてのユニットで確認されるとは限りません。特に指定がない限り、標準値は、この製品の開発時または製造時の測定値に基づいて、23 ±5 ℃ (信頼水準 90%) の周囲温度範囲内で使用した場合の、ユニットの予想性能を記載しています。

公称値(または補足情報)は、仕様または標準値に記載されていない予想性能を含む、製品の有用な追加情報を記載しています。公称値は保証範囲外です。

仕様は事前の通知なしに変更されることがあります。最新の NI 5441 の仕様については、ni.com/manuals をご覧ください。NI 5441 のドキュメントにアクセスするには、スタート→すべてのプログラム→ National Instruments → NI-FGEN →ドキュメントを選択します。

ぬ面 NI 5441 が使用されている場合、安全な取扱温度を超え、火傷が起こる場合があります。シャーシから取り外す前に、NI 5441 を十分に冷却してください。

電磁両立性ガイドライン

この製品は、製品仕様書に記載された電磁両立性(EMC)の規制基準および制限に基づいて所定の試験が実施され、これらに適合するものと認定されています。これらの基準および制限は、製品を意図された動作電磁環境で操作する場合に、有害な電磁妨害から保護するために設けられました。

この製品は、工場での使用を意図して設計されています。この製品が試験対象に接続されている場合、または住宅地域で使用されている場合、設置方法によっては有害な電磁妨害が発生する場合があります。製品によるラジオおよびテレビ受信への電磁妨害が起こる可能性、そして許容できない性能低下を最小限に抑えるには、製品ドキュメントの手順に厳密に従って取り付け、使用してください。

また、ナショナルインスツルメンツによって明示的に許可されていない製品への変更および修正は、地域の取締規則下で製品を操作するユーザの権利を無効にする可能性があります。

注意 この

この製品を使用する場合、シールドされたケーブルおよびアクセサリを使用してください。

目次

CH 0	3
サンプルクロック	15
オンボードクロック	18
位相ロックループ(PLL)基準クロック	18
CLK IN	
TCIk 仕様	
PFI 0 および PFI 1	21
DIGITAL DATA & CONTROL (DDC)	22
開始トリガ	24
マーカ	
任意波形生成モード	
関数発生モード	
オンボード信号処理	
キャリプレーション	39
電源	
ソフトウェア	
環境	
NI PXI-5441 の環境	
認可および準拠	42
安全性	
電磁両立性	42
CFマーク準枷	12

オンライン製品認証	42
環境管理	40
物理特性	44
サポート情報	45

CH 0 (チャンネル 0 アナログ出力、フロントパネルコネクタ)

仕様	値	コメント
チャンネル数	1	_
コネクタ	SMB(ジャック)	_
出力電圧特性		
出力パス	1. ソフトウェアで選択可能なメイン出力パス設定は、 $12.00 \text{ V}_{\text{pk-pk}} \sim 5.64 \text{ mV}_{\text{pk-pk}}$ (50Ω 負荷) のフルスケール電圧を提供します。NI-FGEN は、メイン出力パスが選択されると、ゲイン属性によって低ゲインアンプまたは高ゲインアンプを使用します。 2. ソフトウェアで選択可能なダイレクトパスは中間周波数 (IF) アプリケーションに対して最適化され、 $0.707 \sim 1.000 \text{ V}_{\text{pk-pk}}$ のフルスケール電圧を提供します。	_
DAC 分解能	16 ビット	_

仕様	値			コメント		
振幅とオフセッ	٢					
振幅範囲			振幅	(V_{pk-pk})	振幅値は、DAC のフルスケール	
	パス	負荷	最小値	最大値	が利用されてい	
	ダイレ	50 Ω	0.707	1.00	■ ると仮定。最小値 」よりも小さい振	
	クトパ ス	1 kΩ	1.35	1.91	幅を必要とする 場合は、DAC の	
		開回路	1.41	2.00	フルスケールよ りも小さい波形	
	低ゲイ ンアン	50 Ω	0.00564	2.00	を使用可能。 - NI-FGEN は、	
	ププ	1 kΩ	0.0107	3.81	- Ni-OLN は、 - ユーザ指定の負 - 荷抵抗を補正。	
		開回路	0.0113	4.00	 150 M	
	高ゲイ ンアン	50 Ω	0.0338	12.0		
	プアプ	1 kΩ	0.0644	22.9		
		開回路	0.0676	24.0		
振幅分解能	振幅範囲	の 0.06%	(0.004 dB) 未満		_	
オフセット範 囲	振幅範囲 未満。	の ±25% (Dスパン。増分は振 ^に	幅範囲の 0.0014%	ダイレクトパス では利用不可。	
最大出力電圧						
最大出力電圧	パス	負荷	最大出力	電圧(V _{pk})	NI 5441 の最大出 力電圧は、振幅	
	ダイレ	50 Ω	±0	.500	範囲およびオフ	
	クトパ ス	1 kΩ	±0	.953	│ セット範囲によ 」 り決定。	
		開回路	±1	.000		
	低ゲイ	50 Ω	±1	.000		
	ンアン プ	1 kΩ	±1	.905		
	開回路 ±2.000					
	高ゲイ 50 Ω		±6	.000		
	ンアン プ	1 kΩ	±1	1.43		
		開回路	±1	2.00		

仕様	値	コメント
確度		
DC 確度	低ゲインまたは高ゲインアンプパスの場合: ± ((振幅範囲の 0.2%) + (オフセットの 0.05%) + 500 μV) (セルフキャリブレーション温度の ±10 ℃以内) ± 振幅範囲の 0.4%± オフセットの 0.05% ±1 mV (0 ~ 55 ℃) ダイレクトパスの場合: ゲイン確度: ± 振幅範囲の 0.2% (セルフキャリブレーション温度の ±10 ℃以内) ゲイン確度: ± 振幅範囲の 0.4% (0 ~ 55 ℃) DC 誤差: ±30 mV (0 ~ 55 ℃) メモ: DC 確度については、「振幅範囲」はゲイン設定の 2 倍と定義されます。たとえば、ゲインが 8 の DC 信号の場合は、振幅範囲は 16 V となります。この信号のオフセットが 1.5 V である場合、DC 確度は以下の式で求めることができます。 ±0.2%×(16 V)± 0.05%×(1.5 V)± 500 μV = ±33.25 mV	すべおよびプット 誤す、おおいか はイさ 低 がインアフセン がインアンを がインアンを でする がインカー でする がインアンを でする でする でする でする でする でする でする でする でする でする
AC 振幅確度	(+2.0% + 1 mV)、(-1.0% - 1 mV) (+0.8% + 0.5 mV)、(-0.2% - 0.5 mV)、標準	50 kHz 正弦波。
出力特性		
出力インピー ダンス	50 Ω 公称または 75 Ω公称 (ソフトウェアで選択可能)。	_
負荷インピー ダンス補正	出力振幅は、ユーザ指定の負荷インピーダンスに対して補 正されています。	_
出カカプリン グ	DC	_
出力有効	ソフトウェアで選択可能。無効な場合、CH 0 出力は、選択された出力インピーダンスに等しい値を持つ 1 W 抵抗器で終端。	_
最大出力過負 荷	CH 0 出力は、破損せずに 50 Ω、±12 V(ダイレクトパス の場合は ±8 V)ソースに接続可能。CH 0 出力が無限に短 絡接地されている場合は破損しません。	_
波形加算	CH 0 出力は、類似するパス間での波形加算をサポートしています。特に複数の NI 5441 信号発生器の出力端子をまとめて接続できます。	_

仕様		値		コメント		
周波数および過						
帯域幅	43 MHz			-3 dB で測定。		
DAC デジタル 補間フィルタ		R可能な有限インパル 前間係数は、2、4、5	レス応答(FIR)フィ または 8。	10 MS/s s s s s s y o y o y y o y y o y o y o		
アナログフィ ルタ	ソフトウェアで選択	R可能な画像抑制用 [®]	7 次楕円フィルタ。	低ゲインおよび 高ゲインアンプ パスでのみ利用 可能。		
パスバンドフ		パス		50 kHz を基準と		
ラットネス	ダイレクトパス	低ゲインアンプ	高ゲインアンプ	する。		
	-0.4 ~ +0.6 dB 100 Hz ~ 40 MHz					
パルス応答		アナログフィル				
	ダイレクトパス	タおよび DAC 補 間フィルタ無効				
立ち上がり / 立ち下がり時 間	<5 ns <4.5 ns(標準)*	<8 ns <7 ns* <5.5 ns (標準) *	<10 ns	化。		
アベレーショ ン	<10%(標準)	<5%(標準)	<5%(標準)			
* 仕様は、NI PXI-544	* 仕様は、NI PXI-5441 デバイスの E リビジョン以降にのみ適用されます(NI の製品番号は 191789E-0x)。					

NI PXI-5441 仕様 6 ni.com/jp

図1 平均化されたパスバンドフラットネス、ダイレクトパス

図2 パルス応答、低ゲインアンプパス(50Ω負荷)

図3 ダイレクトパスの周波数応答、100 MS/s、1x DAC 補間

メモ 50 MHz 以上の場合、周波数応答はイメージ応答となります。

仕様		値		コメント
一般的な関数に	こおける推奨する最大原	引波数		
機能		パス		方形波、ランプ
	ダイレクトパス	低ゲインアンプ	高ゲインアンプ	】波、三角波では アナログフィル
正弦波	43 MHz	43 MHz	43 MHz	タおよび DAC 補間フィルタを
方形波	推奨しない *	25 MHz	12.5 MHz	無効化。
ランプ波	推奨しない *	5 MHz	5 MHz	最小周波数は
三角波	推奨しない*	5 MHz	5 MHz	O Hz。
*ダイレクトパスは周波数領域に対して最適化されています。				

仕様	値			コメント
スペクトル特性				
SINAD		パス		振幅 -1 デシベ
(Signal to Noise and Distortion)	ダイレクトパス	低ゲインアンプ	高ゲインアンプ	ルフルスケール (dBFS)。DC ~ 50 MHz まで測
1 MHz	64 dB	66 dB	63 dB	一定。低振幅の SINAD は、
10 MHz	61 dB	60 dB	47 dB	-148 dBm/Hz
20 MHz	57 dB	56 dB	42 dB	- ノイズフロアに よって制限され
30 MHz	60 dB	62 dB	62 dB	ます。すべての 値は標準。
40 MHz	60 dB	62 dB	62 dB	
43 MHz	58 dB	60 dB	55 dB	
高調波を含む		パス		振幅 -1 dBFS。
スプリアスフ リーダイナ ミックレンジ (SFDR) ¹	ダイレクトパス	低ゲインアンプ	高ゲインアンプ	DC ~ 50 MHz まで測定。高調 波歪みとも呼ば れる。低振幅の
1 MHz	76 dB	71 dB	58 dB	高調波を含む SFDR は、
10 MHz	68 dB	64 dB	47 dB	-148 dBm/Hz
20 MHz	60 dB	57 dB	42 dB	- ノイズフロアに よって制限され
30 MHz	73 dB	73 dB	74 dB	」る。すべての値 」は標準で、エイ
40 MHz	76 dB	73 dB	74 dB	リアスされた高
43 MHz	78 dB	75 dB	59 dB	調波が含まれる。
高調波なし		パス		振幅-1 dBFS。
SFDR	ダイレクトパス	低ゲインアンプ	高ゲインアンプ	DC ~ 50 MHz まで測定。 低振
1 MHz	87 dB	90 dB	90 dB	幅の高調波なし SFDR は、
10 MHz	86 dB	88 dB	90 dB	-148 dBm/Hz
20 MHz	79 dB	88 dB	88 dB	】ノイズフロアに よって制限され
30 MHz	72 dB	72 dB	73 dB	る。すべての値
40 MHz	75 dB	72 dB	73 dB	は標準で、エイ リアスされた高
43 MHz	77 dB	74 dB	59 dB	調波が含まれる。
¹ ダイナミックレンジは搬送波レベルと最大スプリアスの差として定義されます。				

仕様		コメント					
スペクトル特性	(続き)	(続き)					
0~40℃全		パス		振幅 -1 dBFS。			
高調波歪み (THD)	ダイレクトパス	低ゲインアンプ	高ゲインアンプ	第2高調波から第6高調波を含			
20 kHz	-77 dBc(標準)	-77 dBc (標準)	-77 dBc(標準)	しむ。			
1 MHz	-75 dBc(標準)	-70 dBc(標準)	-62 dBc(標準)				
5 MHz	-68 dBc	-68 dBc	-55 dBc				
10 MHz	-65 dBc -66 dBc (標準)*	-61 dBc -66 dBc (標準)*	-46 dBc				
20 MHz	-55 dBc -61 dBc (標準)*	-53 dBc -61 dBc (標準)*	-40 dBc				
30 MHz	-50 dBc -57 dBc (標準)*	-48 dBc -57 dBc (標準)*	-38 dBc				
40 MHz	-47 dBc -54 dBc (標準)*	-46 dBc -54 dBc (標準)*	-34 dBc				
43 MHz	-46 dBc -53 dBc (標準)*	-45 dBc -53 dBc (標準)*	-33 dBc				
* 仕様は、NI PXI-54	41 デバイスのEリビジョン	以降にのみ適用されます((NIの製品番号は 191789E-0	<i>x</i>).			
0 ~ 55 °C		パス		振幅 -1 dBFS。			
THD	ダイレクトパス	低ゲインアンプ	高ゲインアンプ	第2高調波から 第6高調波を含			
20 kHz	-76 dBc(標準)	-76 dBc(標準)	-76 dBc(標準)	む 。			
1 MHz	-74 dBc(標準)	-69 dBc(標準)	-61 dBc (標準)				
5 MHz	-67 dBc	-67 dBc	-54 dBc				
10 MHz	-63 dBc	-60 dBc	-45 dBc				
20 MHz	-54 dBc -57 dBc*	-52 dBc -55 dBc*	-39 dBc				
30 MHz	-48 dBc -52 dBc*	-46 dBc -50 dBc*	-36 dBc				
40 MHz	-45 dBc -50 dBc*	-41 dBc -47 dBc*	-32 dBc				
43 MHz	-44 dBc -49 dBc*	-41 dB -46 dBc*	-31 dBc				
* 仕様は、NI PXI-54	41 デバイスの E リビジョン	 以降にのみ適用されます ((NIの製品番号は 191789E-0	(x) .			

仕様	値						コメント
スペクトル特性	(続き)						
平均ノイズ密		振幅	範囲	平	均ノイズ密	度	低振幅の平均ノ
度	パス	V_{pk-pk}	dBm	$\frac{\text{nV}}{\sqrt{\text{Hz}}}$	dBm/Hz	dBFS/ Hz	イズ密度は、 −148 dBm/Hz ノイズフロアに
	ダイレク トパス	1	4.0	18	-142	-146.0	よって制限され る。
	低ゲイン	0.06	-20.4	9	-148	-127.6	
	低ゲイン	0.1	-16.0	9	-148	-132.0	
	低ゲイン	0.4	-4.0	13	-145	-141.0	
	低ゲイン	1	4.0	18	-142	-146.0	
	低ゲイン	2	10.0	35	-136	-146.0	
	高ゲイン	4	16.0	71	-130	-146.0	
	高ゲイン	12	25.6	213	-120	-145.6	

図4 10 MHz シングルトーンスペクトル、ダイレクトパス、100 MS/s、 4 に設定された DAC 補間係数

メモ 図 4のノイズフロアは、測定デバイスによって制限されます。この制限に関する 詳細については、「平均ノイズ密度」仕様を参照してください。

図 5 10 MHz シングルトーンスペクトル、低ゲインアンプパス、100 MS/s、 4 に設定された DAC 補間係数

メモ 図 5 のノイズフロアは、測定デバイスによって制限されます。この制限に関する 詳細については、「平均ノイズ密度」仕様を参照してください。

図6 ダイレクトパス、2トーンスペクトル (標準)

メモ 図 6のノイズフロアは、測定デバイスによって制限されます。この制限に関する 詳細については、「平均ノイズ密度」仕様を参照してください。

サンプルクロック

仕様	値	コメント
サンプルクロッ クソース	 内部、Nで除算(N≥1) 内部、DDS ベース、高分解能 外部、CLK IN (SMB フロントパネルコネクタ) 外部、DDC CLK IN (DIGITAL DATA & CONTROL フロントパネルコネクタ) 外部、PXI スタートリガ (PXI バックプレーンコネクタ) 外部、PXI_Trig<07> (PXI バックプレーンコネクタ) 	内部クロック ソースの詳細に ついては、「オン ボードクロック」 のセクションを 参照してくださ い。

仕様	値			コメント	
サンプルレートの	範囲と分解能				
サンプルクロッ クソース	サンプルレート	·範囲	サンフ	プルレート分解能	_
Nで除算	23.84 S/s ~ 100) MS/s		/s) /N (1 ≤ N≤ 4) に設定可能	
高分解能	10 S/s ~ 100 i	MS/s		1.06 µHz	
CLK IN	200 kS/s \sim 105	MS/s		ックソースにより	
DDC CLK IN	10 S/s ~ 105 M	MS/s	–	.る分解能。 ·プルクロックの	
PXI スタートリ ガ	10 S/s ~ 105 f	MS/s		ィーサイクルの許	
PXI_Trig<07>	10 S/s \sim 20 N	/IS/s			
DAC 実効サンプ	ルレート				
	サンプルレート (MS/s)	DAC 裈	甫間係数	実効サンプル レート	DAC 効果的なサンプルレート =
	10 S/s ~ 105 MS/s	1 (0	OFF)	10 S/s ~ 105 MS/s	(DAC補間係数)×(サンプルレート)OSP 補間につい
	12.5 MS/s ~ 105 MS/s	:	2	25 MS/s ~ 210 MS/s	ては、「オンボー ド信号処理」セ
	10 MS/s ~ 100 MS/s	,	4	40 MS/s ~ 400 MS/s	- クションを参照 - してください。 -
	10 MS/s ~ 50 MS/s		8	80 MS/s ~ 400 MS/s	
サンプルクロック	遅延範囲と分解能				
サンプルクロッ クソース	遅延調整範	囲遅延		延調整分解能	
Nで除算	±1 サンプルクロッ	ック周期		<10 ps	
高分解能	±1 サンプルクロッ	ック周期 サンブ		プルクロック周期 / 16,384	
外部 (すべて)	0 ~ 7.6 ns	<u> </u>		<15 ps	

仕様	値					コメント		
システム位相ノイズおよびジッタ(10 MHz 搬送波)								
サンプルクロッ クソース			twk		目ノイズ密度 オフセット シュテム出力		テム出力ジッタ	2× DAC オーバー サンプリングに
	100 Hz	1 kHz	10 kHz		~ 100 kHz を統合)	指定。		
Nで除算	-110	-131	-137	<	<1.0 ps rms			
高分解能 *	-114	-126	-126	<	<4.0 ps rms			
CLK IN	-113	-132	-135	<	<1.1 ps rms			
PXI スタートリ ガ [†]	-115	-118	-130	<	<3.0 ps rms			
* サンプルレートが低・ † PXI スタートリガ仕様				CLK10 にロッ:	クされている場合に有効。			
外部サンプルク ロック入力の ジッタ許容値	サイクル間ジッタ ±300 ps 周期ジッタ ±1 ns			_				
サンプルクロック	のエクスフ	ポート						
エクスポートし たサンプルク ロックの出力先	1. PFI<01> (SMB フロントパネルコネクタ) 2. DDC CLK OUT (DIGITAL DATA & CONTROL フロントパネルコネクタ) 3. PXI_Trig<06> (PXI バックプレーンコネクタ)			エクスポートした サンプルクロック は、整数 <i>K</i> (1 ≤ <i>K</i> ≤ 4,194,304) で 分周可能。				
エクスポートし たサンプルク ロックの出力先	最大周波数 ジッタ(標		(標準)	デューティー サイクル	_			
PFI<01>	105	MHz		ps rms 2 ps rms	25 ~ 65%			
DDC CLK OUT	105	MHz	40 p	s rms	40 ~ 60%]		

メモ

20 MHz

PXI_Trig<0..6>

サンプルクロックの純度が NI PXI-5441 の性能に大きな影響を与える可能性があります。サンプルクロックの大量のジッタまたは位相ノイズにより、信号発生器のスペクトルで、純粋なサンプルクロック使用時には存在しないスプリアスが発生する場合があります。たとえば、クロックモードプロパティが自動に設定されている場合、NI-FGEN は通常、高分解能クロックを選択し、特定の IQ レートを達成します。高分解能クロックでは Nで除算クロックよりも多くのジッタが発生し、信号発生器の出力スペクトルで余分なスプリアスが発生する場合があります (この現象例については、図8~15を参照)。ソフトウェアのリサンプリングを使用せずに余分なスプリアスを除去するには、純粋な外部クロックを使用することができます。低ジッタで<1 Hz 周波数分解能の NI PXI-5650/5651/5652 周波数発生器は、優れた選択肢です。

オンボードクロック (内部 VCXO)

仕様	値	コメント
クロックソー ス	内部サンプルクロックは、位相ロックループを使用して基準クロックにロック、もしくはオンボード VCXO 周波数基準から取得されます。	-
周波数確度	±25 ppm	_

位相ロックループ(PLL)基準クロック

仕様	値	コメント
基準クロック ソース	 PXI_CLK10 (PXI バックプレーンコネクタ) CLK IN (SMB フロントパネルコネクタ) 	PLL 基準クロック は、PLL に対する 基準周波数を提 供します。
周波数確度	PLL を使用する場合、NI 5441 の周波数確度は、PLL 基準 クロックソースの周波数確度のみに基づきます。	_
ロック時間	標準 : 70 ms 最大 : 200 ms	_
周波数範囲	5 ~ 20 MHz(1 MHz 間隔) デフォルトで 10 MHz。 PLL 基準クロック周波数は ±50 ppm の確度である必要が あります。	
デューティー サイクル範囲	40 ~ 60%	_
エクスポート した PLL 基準 クロックの出 力先	 PFI<01> (SMB フロントパネルコネクタ) PXI_Trig<06> (PXI バックプレーンコネクタ) 	_

CLK IN

(サンプルクロックおよび基準クロック入力、フロントパネルコネクタ)

仕様	値	コメント
コネクタ	SMB(ジャック)	_
方向	入力	_
出力先	1. サンプルクロック 2. PLL 基準クロック	_
周波数範囲	1~105 MHz(サンプルクロックの出力先および正弦波)200 kHz~105 MHz(サンプルクロックの出力先および方形波)5~20 MHz(PLL 基準クロックの出力先)	-
入力電圧範囲	正弦波: 0.65 ~ 2.8 V _{pk-pk} (50 Ω 負荷、0 dBm ~ +13 dBm) 方形波: 0.2 ~ 2.8 V _{pk-pk} (50 Ω 負荷)	_
最大入力過負 荷	±10 V	_
入力インピー ダンス	50 Ω	_
入力カプリン グ	AC	_

ナショナルインスツルメンツの TCIk 同期方法および NI-TCIk 計測器ドライバは、シャーシ内の SMC 対応モジュールのサンプルクロックを揃えるために使用されます。TCIk 同期の詳細については、『NI 信号発生器ヘルプ』の中にある『NI-TCIk 同期ヘルプ』を参照してください。

- 仕様は、1台のNIPXI-1042シャーシに取り付けられている任意の数のPXIモジュールに対して有効です。
- 各 SMC 対応モジュールでは、すべてのパラメータが同じ値に設定されています。
- サンプルクロックは 100 MS/s、Nで除算、またすべてのフィルタは 無効に設定されています。
- マルチシャーシシステムを含むその他の構成については、ナショナルインスツルメンツの技術サポート (ni.com/jp/support) までお問い合わせください。

メモ NI-TCIk を使用して異なるモジュールを同期できますが、これらの仕様は同一の モジュールを使用した場合にのみ適用されます。

仕様	値	コメント
NI-TClk を使用したモ	゠ジュール間の SMC 同期(同一モジュールを値	E用、標準)
スキュー	500 ps	クロックおよびアナログパ スでの遅延の差による。手動 による調整は未実施。
手動での調整後の 平均スキュー	<10 ps	手動での調整の詳細については、『NI-TCIk 同期へルプ』の「同期再現性の最適化」トピックを参照してください。調整処理に関するその他の情報については、ナショナルインスツルメンツの技術サポート(ni.com/jp/support)までお問い合わせください。
サンプルクロック 遅延 / 調整分解能	≤10 ps	-

PFI 0 および PFI 1 (PFI (プログラム可能な機能的インタフェース)、フロントパネルコネクタ)

仕様	値	コメント			
コネクタ	2 SMB(ジャック)	_			
方向	双方向	_			
周波数範囲	DC ~ 105 MHz	_			
入力の場合(トリガ)					
出力先	開始トリガ	_			
最大入力過負 荷	−2 ~ +7 V	_			
V _{IH}	2.0 V	_			
V _{IL}	0.8 V	_			
入力インピー ダンス	1 kΩ	_			
出力の場合(イベント)					
ソース	 サンプルクロックは、整数 K (1 ≤ K ≤ 4,194,304) で分周可能。 サンプルクロックタイムベース (100 MHz) は、整数 M (2 ≤ M ≤ 4,194,304) で分周可能。 PLL 基準クロック マーカ エクスポートした開始トリガ (出力開始トリガ) 	_			
出力インピー ダンス	50 Ω	_			
最大出力過負 荷	−2 ~ +7 V	_			
V _{OH}	最小: 2.9 V (開回路)、1.4 V (50 Ω 負荷)	出力ドライバは +3.3 V TTL と互換 性あり。			
V _{OL}	最大: 0.2 V (開回路)、0.2 V (50 Ω 負荷)				
立ち上がり / 立ち下がり時 間	≤2.0 ns	10 pF の負荷。			

DIGITAL DATA & CONTROL (DDC) フロントパネルコネクタ (オプション)

仕様	値			コメント	
コネクタタイプ	68 ピン VHDCI メ	_			
データ出力信 号数	16	_			
制御信号	1. DDC CLK OUT 2. DDC CLK IN (3. PFI 2 (入力) 4. PFI 3 (入力) 5. PFI 4 (出力) 6. PFI 5 (出力)	_			
グランド	23 ピン			_	
出力信号特性(データ出力、DDC CLK OUT、および PFI<45> を含む)					
信号タイプ	LVDS(低電圧差動信号)			_	
信号特性	最小	標準	最大	100 Ω 差動負荷で 試験。 デバイスのフロ ントパネルで測 定。 負荷容量 <15 pF。 ドライバおよび レシーバは ANSI/TIA/EIA-64 4 に適合。	
V _{OH}	_	1.3 V	1.7 V		
V _{OL}	0.8 V	1.0 V	_		
差動出力電圧	0.25 V	_	0.45 V		
出力コモン モード電圧	1.125 V	_	1.375 V		
差動パルスス キュー(差動 ペア内のス キュー)	_	_	0.6 ns		
立ち上がり / 立ち下がり時 間	_	0.5 ns	1.6 ns		
出力スキュー	標準:1 ns、最大 2 ントコネクタの 2 つ	_			

仕様	fi	t	コメント		
出力信号特性(出力信号特性(続き)				
出力有効化 / 無効化	ソフトウェアですべてのデー 一括制御。無効な場合、出力 ^は になります。	_			
最大出力過負 荷	-0.3 ∼ +3.9 V		_		
入力信号特性(I	DDC CLK IN および PFI<23> を	を含む)			
信号タイプ	LVDS(低電圧差動信号)		_		
入力差動イン ピーダンス	100 Ω		_		
最大出力過負 荷	-0.3 ∼ +3.9 V		_		
信号特性	最小	最大	_		
差動入力電圧	0.1 V	0.5 V			
入力コモン モード電圧	0.2 V	2.2 V			
DDC CLK OUT					
クロック形式	データ出力およびマーカは、 エッジで変化します。	DDC CLK OUT の立ち下がり	_		
周波数範囲	詳細については、「サンプルク 照してください。	_			
デューティー サイクル	40 ~ 60%		_		
ジッタ	40 ps rms		_		
DDC CLK IN					
クロック形式	DDC データ出力信号は、DD ジで変化します。	_			
周波数範囲	10 Hz ∼ 105 MHz	_			
入力デュー ティーサイク ルの許容値	40 ~ 60%	_			
入力ジッタ許 容値	サイクル間ジッタの 300 ps p 1 ns rms。	ok-pk、周期ジッタの	_		

仕様			コメント
ソース	 PFI<01> (SMB フロント PFI<23> (DIGITAL DATA ルコネクタ) PXI_Trig<07> (バックプ PXI スタートリガ (バック5. ソフトウェア (関数呼びた 即時 (トリガを待機しない 	_	
モード	 シングル 連続 ステップ バースト 		
エッジ検出	立ち上がり		_
最小パルス幅	25 ns	NI 信号発生器へ ルプ→デバイス→ NI 5441 → トリガ→トリガタ イミングに進み、 『NI 信号発生器へ ルプ』の t _{s1} を参 照してください。	
OSP が無効の	DAC 補間係数	標準遅延	NI信号発生器へ
│ 場合、開始ト │ リガから CH 0 │ アナログ出力	デジタル補間フィルタ無効 化。	44 サンプルクロック周期 + 110 ns	ルプ→デバイス→ NI 5441 → トリガ→トリガタ
の遅延	2	58 サンプルクロック周期 + 110 ns	イミング に進み、 『NI 信号発生器へ ・ルプ』の t _{s2} を参
	4	64 サンプルクロック周期 + 110 ns	N/J』の1 ₈₂ を多 照してください。
	8	65 サンプルクロック周期 + 110 ns	
OSP が無効の 場合、開始ト リガからデジ タルデータ出 力の遅延	40 サンプルクロック周期 + 110 ns		_

仕様	値	コメント
関数発生器 モードの追加 遅延	33 サンプルクロック周期を追加。 (開始トリガから CHO アナログ出力の遅延および開始ト リガからデジタルデータ出力の遅延に適用。)	_
OSP が有効な 場合の追加遅 延	実数データ処理モードに対して 70 サンプルクロック周期を追加 複素数データ処理モードに対して 73 サンプルクロック周期を追加 (開始トリガから CHO アナログ出力の遅延および開始トリガからデジタルデータ出力の遅延に適用。)	FIR および CIC フィルタを有効 化。
トリガのエクスフ	₭ − ト	
エクスポート したトリガの 出力先	トリガとして使用される信号は、「マーカ」セクションの 「出力先」仕様に記載されるすべての出力先に経路設定が 可能です。	_
エクスポート したトリガ遅 延	65 ns(標準)	NI 信号発生器へ ルプ→デバイス→ NI 5441 → トリガ→トリガタ イミングに進み、 『NI 信号発生器へ ルプ』の † _{s3} を参 照してください。
エクスポート したトリガパ ルス幅	>150 ns	NI 信号発生器へ ルプ→デバイス→ NI 5441 → トリガ→トリガタ イミングに進み、 『NI 信号発生器へ ルプ』の † _{s4} を参 照してください。

仕様		値		コメント
出力先	 PFI<01> (SMB フロントパネルコネクタ) PFI<45> (DIGITAL DATA & CONTROL フロントパネルコネクタ) PXI_Trig<06> (バックプレーンコネクタ) 			_
数量	1マーカ/セグメン	/		_
波形量		ンプル(複素数(IQ) 置される必要がありま		_
幅	>150 ns			NI 信号発生器へ ルプ→基本 概念→波形の基 本概念→イベ ント→マーカイ ベントに進み、 『NI 信号発生器へ ルプ』の † _{m2} を参 照してください。
スキュー	出力先	アナログ出力の 場合	デジタルデータ 出力の場合	NI 信号発生器へ ルプ→基本
	PFI<01>	±2 サンプル クロック周期	なし	概念→波形の基 本概念→イベ ント→マーカイ
	PFI<45>	なし	<2 ns	ベント に進み、 『NI 信号発生器へ
	PXI_Trig<06>	±2 サンプル クロック周期	なし	ルプ』の† _{ml} を参 照してください。
ジッタ	20 ps rms			_

任意波形生成モード

仕様		値		コメント
メモリ使用	NI 5441 は、波形と SMC (Synchroniz ジを使用しています メモリ内の最大波形 るサンプル数などの 定義です。	詳細については、 NI 信号発生器へ ルプ→プログラ ミング→ NI-TCIk 同期へルプを参 照してください。		
オンボードメ モリサイズ	32 MB オプショ ン : 33,554,432 バイト	256 MB オプショ ン : 268,435,456 バイト	512 MB オプショ ン : 536,870,912 バイト	_
出力モード	任意波形モードお。	とび任意シーケンスモ	- ード	_
任意波形モー ド		は、単一波形がオンホ ットから選択され、生		_
任意シーケン スモード	任意シーケンスモードでは、シーケンスによって NI 5441 が波形セットを特定の順序で生成します。シーケンスの要素は、セグメントとしても示されます。各セグメントは、一連の命令に関連付けられます。命令は、メモリ内の波形から選択される波形、生成される波形のループ(繰り返し)の数、そしてマーカ出力信号が送信される波形のサンプルを認識します。			_
最小波形サイ ズ(サンプル)	トリガモード	任意波形モード	任意シーケンス モード	最小波形サイズは、任意シーケ
	シングル	16	16	ンスモードでサ ンプルレートに
	連続	16	96(>50 MS/s 時)	依存。
			32 (≤50 MS/s 時)	複素数(IQ) データの場合は、
	ステップ	32	96(>50 MS/s 時)	最小波形サイズ は半分になりま
			32 (≤50 MS/s 時)	す。
	バースト	16	512 (>50 MS/s 時)	
			256 (≤50 MS/s 時)	
ループカウン ト	1 ~ 16,777,215 バーストトリガ時 :	_		
波形量		ナンプル(複素数(IG ある必要があります。	②)データの 2 サン	_

仕様	値			コメント			
メモリ制限	メモリ制限						
	32 MB オプション	256 MB オプション	512 MB オプション	特別な記載がない限りすべての			
任意波形モード、最大波形メモリ	16,777,088 サンプル	134,217,600 サンプル	268,435,328 サンプル	トリガモード。 複素数 (IQ) データの場合は、 最大波形メモリ は半分になります。			
任意シーケン スモード、最 大波形メモリ	16,777,008 サンプル	134,217,520 サンプル	268,435,200 サンプル	条件:シーケンス 内に1または2 つのセグメント がある場合。 複素数(IQ) データの場合は、 最大波形メモリ は半分になりま す。			
任意シーケン スモード、最 大波形	262,000 バーストトリガ: 32,000	2,097,000 パーストトリガ: 262,000	4,194,000 パーストトリガ: 524,000	条件:シーケンス 内に1または2 つのセグメント がある場合。			
任意シーケン スモード、 シーケンス内 の最大セグメ ント	418,000 バーストトリガ: 262,000	3,354,000 バーストトリガ: 2,090,000	6,708,000 バーストトリガ: 4,180,000	条件:波形メモリが <4,000 サンプルの場合。(複素数(IQ)データの場合は <2,000サンプルンプル。)			

仕様		値		コメント
波形再生時間				
	32 MB	256 MB	512 MB	
最大再生時間、 サンプルレー ト = 100 MS/s、 OSP 無効	0.16 秒	1.34 秒	2.68 秒	単一トリガモー ド。 連続、ステップ、 またはバースト
最大再生時間、 IQ レート = 1 MS/s、実数 モード、OSP 有効	16 秒	2分14秒	4分28秒	トリガモードを 使用して、再生 時間を大幅に延 長することが可 能。
最大再生時間、 IQ レート = 100 kS/s、実数 モード、OSP 有効	2分47秒	22 分 22 秒	44 分 43 秒	複素数(IQ) モードでは、再 生時間は半分に なります。

関数発生モード

仕様	fi	İ	コメント
標準波形およ	波形	最大周波数	_
び最大周波数 	正弦波	43 MHz	
	方形波	25 MHz	
	三角波	5 MHz	
	ランプアップ	5 MHz	
	ランプダウン	5 MHz	
	DC	_	
	ノイズ(疑似ランダム)	5 MHz	
	ユーザ定義	43 MHz	
メモリサイズ	1/4 対称波形の場合は 65,536 サンプル(例:正弦波) 1/4 対称波形以外の場合は 16,384 サンプル(例:ランプ波)		16 ビットサンプ ル。ユーザ定義の 波形は必ず 16,384 サンプル である必要があ ります。

仕様	値	コメント
周波数分解能	355 nHz	_
位相分解能	0.0055°	_

オンボード信号処理

図7 オンボード信号処理ブロック図

仕様	値	コメント
IQ レート		
OSP 補間範囲	12 ~ 512(2 の倍数)、512 ~ 1,024(4 の倍数)、 1,024 ~ 2,048(8 の倍数) (OSP 補間 = FIR 補間 x CIC 補間)	NI PXI-5441 補間の合計 = OSP 補間× DAC 補間
1Q V-F	サンプルレート /OSP 補間(サンプルレートを下げるまたは ソフトウェア補間を行うことで、IQ レートを下げることが可 能。)	例:サンプル レートが 100 MS/s の場 合の IQ レート レンジ = 48.8 kS/s ~ 8.3 MS/s
データ処理 モード	1. 実数 (I パスのみ) 2. 複素数 (IQ)	_

仕様	値	コメント			
プレフィルタゲー	プレフィルタゲインおよびオフセット				
プレフィルタ ゲインおよび オフセット分 解能	18 ビット				
プレフィルタ ゲインレンジ	−2.0 ~ +2.0 (値 < 1 ユーザデータを減衰)	単位なし			
プレフィルタ オフセット範 囲	-1.0 ~ +1.0	プレフィルタ ゲイン後に適 用。			
出力	出力 = (ユーザデータ x プレフィルタゲイン)+ プレフィルタ オフセット(−1 ≤ 出力 ≤ +1)	プレフィルタ 出力			
有限インパルス	む答(FIR)フィルタ				
フィルタ長	95 タップ	FIR フィルタ			
係数幅	17 ビット (-1 ~+1)	は、IQ データ をパルス成形			
フィルタの対 称性	対称	し、CIC フィ ルタのロール オフを補正す			
補間範囲	2、4、8	るのに使用さ			
係数	NI-FGEN(「FIR フィルタタイプ」を参照)またはユーザに提供されるカスタム係数により自動的に生成。	れます。			

仕様		値		コメント	
FIR フィルタタイプ					
フィルタタイ プ	パラメータ	最小	最大	_	
カスタム	_	_	_	係数がユーザ により提供さ れます。	
平坦	パスバンド	0.1	0.43	ローパスフィ ルタが IQ レー ト×パスバン ドまでリプル を最小化。	
ガウス	ВТ	0.1	0.9	_	
二乗余弦	アルファ	0.1	0.9		
平方根二乗余 弦	アルファ	0.1	0.9		
CIC (カスケー	ド積分くし型)フィル	タ			
サイズ	6ステージ			CIC フィルタ	
補間範囲	6≤補間≤256(整数	は OSP でほと んどの補間を 行います。			
NCO(数値制御	 発振器)				
周波数範囲	1 mHz(0.43×サン	/プルレート)		_	
周波数分解能	サンプルレート /24	例: 355 nHz (100 MS/s の サンプルレー ト)			
および Q 位 相分解能	0.0055°	_			
位相量子化	16 ビット	ルックアップ テーブルのア ドレス幅			
調整速度	1 ms			_	

仕様	値			コメント	
変調性能(標準)					
変調構成	測定タイプ	FIR 補間		_	
		2	4	8	
GSM 物理層 *	MER(変調誤差比)	46 dB	47 dB	42 dB	ダイレクトパ ス(4 dBm ピーク)、 25 MHz 搬送 波
	EVM(エラーベクタマグニ チュード)	<0.5% rms	<0.5% rms	<0.8% rms	
W-CDMA 物	MER	46 dB	39 dB	_	ダイレクトパ ス(4 dBm ピーク)、 25 MHz 搬送 波、ACPR 測 定 BW = 4 MHz、チャ ンネル間隔 = 5 MHz
理層†	EVM	<7 0.5% rms	<1.0% rms	ı	
	ACPR(隣接チャンネル漏洩 電力比)(外部サンプルク ロック)	65 dBc	68 dBc	_	
	ACPR(高分解能サンプルク ロック)	61 dBc	61 dBc	_	
DVB 物理層‡	MER	43 dB	_	_	ダイレクトパ ス(4 dBm ピーク)、 25 MHz 搬送 波、ACPR 測 定 BW =
	EVM	<0.6% rms	_	Ī	
	ACPR(外部サンプルクロック)	48 dBc	_	_	
	ACPR(高分解能サンプルク ロック)	47 dBc	_	_	7.90 MINZ、 チャンネル間 隔 = 8 MHz

^{*}OSP 有効。IQ レート = 1.083 MS/s、4 サンプル / シンボル。FIR フィルタタイプ = 平坦、パスバンド = 0.4。MSK 変調 : ソフトウェアパルス成形および位相蓄積、270.833 kS/s、ガウス、BT = 0.3。PN シーケンス次数 = 14。

[†] OSP 有効。IQ レート = 3.84 MS/s、1 サンプル / シンボル。FIR フィルタタイプ = 平方根二乗余弦、アルファ = 0.22。QPSK。PN シーケンス次数 = 15。

[‡] OSP 有効。IQ レート = 6.92 MS/s、1 サンプル / シンボル。FIR フィルタタイプ = 平方根二乗余弦、アルファ = 0.15。32QAM 変調。PN シーケンス次数 = 15。

仕様	値		コメント	
デジタル特性				
最大 NCO ス プリアス	<-90 dBc			フルスケール出 カ
FIR 補間	IQ レート範囲 (100 MS/s サン プルクロック レート)	OSP 帯域外 減衰量	OSP パスバンド リプル	_
2	195 kS/s ~ 8.33 MS/s	63 dB	0 ~ -0.08 dB	FIR フィルタタイ プ=フラット。パ
4	97.6 kS/s ~ 4.16 MS/s	74 dB	0 ~ -0.08 dB	スバンド = 0.4。 0.4 × IQ レートま でのリプル測定。
8	48.8 kS/s ~ 2.08 MS/s	40 dB	0 ~ −0.8 dB	0.6×IQ レートか らのストップバ ンド減衰量。

図 8 GSM 物理層^{1、2} 外部サンプルクロック = 99.665 MHz

図9 GSM 物理層^{1、2} 内部(高分解能)サンプルクロック = 99.665 MHz。 図の中のアーチファクトは、高分解能クロックのスプリアスが原因。

 $^{^1}$ OSP 有効化。ダイレクトパス(4 dBm ピーク)。25 MHz 搬送波。IQ レート = 1.083 MS/s、4 サンプル / シンボル。FIR フィルタタイプ = 平坦、パスバンド = 0.4。ソフトウェア MSK 変調:270.833 kS/s、ガウス、BT = 0.3。PN シーケンス次数 = 14。

²スプリアス除去の詳細については、「サンプルクロック」セクションの「DAC 実**効サンプルレート**」を参照してください。

図 10 CDMA 2000 物理層^{1、2} 外部サンプルクロック = 98.304 MHz

図11 CDMA 2000 物理層^{1,2} 内部(高分解能)サンプルクロック = 98.304 MHz。 図の中のアーチファクトは、高分解能クロックのスプリアスが原因。

NI PXI-5441 仕様 36 ni.com/jp

¹ OSP 有効化。ダイレクトパス (4 dBm ピーク)。25 MHz 搬送波。IQ レート = 1.2288 MS/s、1 サンプル / シンボル。FIR フィルタ タイプ = カスタムフラットフィルタ(パスバンド = 0.48)。QPSK。PN シーケンス次数 = 15。

²スプリアス除去の詳細については、「サンプルクロック」セクションの「DAC 実効サンプルレート」を参照してください。

図 12 W-CDMA 物理層^{1、2} 外部サンプルクロック = 92.16 MHz

図 13 W-CDMA 物理層 ^{1, 2} 内部(高分解能)サンプルクロック = 92.16 MHz。 図の中のアーチファクトは、高分解能クロックのスプリアスが原因。

¹ OSP 有効化。ダイレクトパス (4 dBm ピーク)。25 MHz 搬送波。IQ レート = 3.84 MS/s、1 サンプル / シンボル。FIR フィルタタイプ = 平方根二乗余弦、アルファ = 0.22。QPSK。PN シーケンス次数 = 15。

 $^{^2}$ スプリアス除去の詳細については、「サンプルクロック」セクションの「DAC **実効サンプルレート**」を参照してください。

図 14 DVB 物理層^{1、2} 外部サンプルクロック = 96.88 MHz。 15 および 35 MHz のアーチファクトは、2× FIR 補間のエイリアスが原因。

図 15 DVB 物理層 ^{1, 2} 内部(高分解能)サンプルクロック = 96.88 MHz。 10 MHz のアーチファクトは、CLK IN フィードスルーが原因。 図の中のアーチファクトは、高分解能クロックのスプリアスが原因。

NI PXI-5441 仕様 38 ni.com/jp

¹ OSP 有効化。ダイレクトパス (4 dBm ピーク)。25 MHz 搬送波。IQ レート = 6.92 MS/s、1 サンプル / シンボル。FIR フィルタタイプ = 平方根二乗余弦、アルファ = 0.15。32QAM 変調。PN シーケンス次数 = 15。

²スプリアス除去の詳細については、「サンプルクロック」セクションの「DAC 実効サンプルレート」を参照してください。

<u>キャリブレーション</u>

仕様	値	コメント
セルフキャリ ブレーション	オンボードでは、24 ビット ADC および精度電圧基準を用いて DC ゲインおよびオフセットを校正します。セルフキャリブレーションは、ソフトウェアを利用してユーザが開始し、完了までに約75秒かかります。	_
外部キャリブ レーション	外部キャリブレーションは、VCXO、電圧基準、出力イン ピーダンス、DC ゲイン、およびオフセットを校正します。 適切な定数は、不揮発性メモリに保管されます。	工場出荷時の キャリブレー ションと同様。
キャリブレー ション間隔	仕様は外部キャリブレーションから 2 年間有効です。	_
ウォームアッ プ時間	15 分	_

電源

仕様	標準動作	過負荷動作	コメント
+3.3 VDC	1.9 A	2.7 A	標準。CH 0 が短
+5 VDC	2.2 A	2.4 A	絡接地されてい る場合に、過負
+12 VDC	0.46 A	0.5 A	荷動作が発生。
-12 VDC	0.01 A	0.01 A	
合計電力	22.9 W	27.0 W	

ソフトウェア

仕様	値	コメント
ドライバソフ トウェア	NI-FGEN は、IVI 準拠ドライバで NI 5441 の構成、制御、 および校正を可能にします。 NI-FGEN は、多数の開発環境 アプリケーションプログラミングインタフェースを提供し ます。	-
アプリケー ションソフト ウェア	NI-FGEN は、以下のアプリケーション開発環境のプログラミングインタフェースを提供します。 LabVIEW LabWindows™/CVI™ Measurement Studio Microsoft Visual C++ .NET Microsoft Visual Basic	
対話式の制御 および構成ソ フトウェア	FGEN ソフトフロントパネルは、NI 5441 の対話的制御をサポートしています。FGEN ソフトフロントパネルはNI-FGEN ドライバ DVD に含まれています。 Measurement & Automation Explorer (MAX) でNI 5441 を対話式に構成、そしてテストすることができます。MAX も NI-FGEN DVD に含まれています。 NI 5441 は、NI SignalExpress と併用可能です。	_

NI PXI-5441 の環境

メモ NI PXI-5441 を効果的に冷却するには、NI 5441 キットに含まれる『強制空冷の 維持について』のガイドラインに従ってください。NI PXI-5441 は、室内使用を 意図して設計されています。

仕様	値	コメント
動作温度	0 ~ +55 ℃(以下を除くすべての NI PXI シャーシ) 0 ~ +45 ℃(NI PXI-101 x または NI PXI-1000B シャーシに 取り付けた場合)。 IEC 60068-2-1、IEC 60068-2-2 に準拠。	_
保管温度	-25~+85℃。IEC 60068-2-1、IEC 60068-2-2 に準拠。	_
動作時の相対 湿度	10 ~ 90%、結露なきこと。IEC 60068-2-56 に準拠。	_
保管時の相対 湿度	5 ~ 95%、結露なきこと。IEC 60068-2-56 に準拠。	_
動作時衝擊	30 g、半正弦波、11 ms パルス。IEC 60068-2-27 に準拠。 MIL-PRF-28800F に準拠してテストプロファイルを確立。	スペクトルおよ びジッタ仕様が 低下する場合が あります。
保管時衝撃	50 g、半正弦波、11 ms パルス。IEC 60068-2-27 に準拠。 MIL-PRF-28800F に準拠してテストプロファイルを確立。	_
動作振動	5 ~ 500 Hz、0.31 g _{rms} 。IEC 60068-2-64 に準拠。	スペクトルおよ びジッタ仕様が 低下する場合が あります。
保管振動	$5\sim 500~{ m Hz}$ 、 $2.46~{ m g}_{ m rms}$ 。IEC 60068 - 2 - $64~{ m c}$ 準拠。テストプロファイルは、MIL-PRF- 28800 F、Class B の要件を上回る。	_
高度	最大 2,000 m(周囲温度 25 ℃時)	_
汚染度	2	_

安全性

この製品は、計測、制御、実験に使用される電気装置に関する以下の規格および安全性の必要条件を満たします。

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

メモ リーおよびその他の安全保証

UL およびその他の安全保証については、製品ラベルまたは「オンライン製品認証」セクションを参照してください。

電磁両立性

この製品は、計測、制御、実験に使用される電気装置に関する以下の EMC 規格の必要条件を満たします。

- EN 61326-1 (IEC 61326-1): Class A エミッション、基本イミュニティ
- EN 55011 (CISPR 11): Group 1、Class A エミッション
- AS/NZS CISPR 11: Group 1、Class A エミッション
- FCC 47 CFR Part 15B: Class A エミッション
- ICES-001: Class A エミッション

メモ EMC 宣言および認証については、「オンライン製品認証」セクションを参照してください。

CEマーク準拠((

この製品は、該当する EC 理事会指令による基本的要件に適合しています。

- 2006/95/EC、低電圧指令(安全性)
- 2004/108/EC、電磁両立性指令(EMC)

オンライン製品認証

この製品の製品認証および適合宣言 (DOC) を入手するには、ni.com/certification にアクセスして型番または製品ラインで検索し、保証の欄の該当するリンクをクリックしてください。

環境管理

ナショナルインスツルメンツは、環境に優しい製品の設計および製造に努めています。NI は、製品から特定の有害物質を除外することが、環境および NI のお客様にとって有益であると考えています。

環境の詳細な情報については、ni.com/environment(英語)の NI and the Environment(英語)を参照してください。このページには、ナショナルインスツルメンツが準拠する環境規制および指令、およびこのドキュメントに含まれていないその他の環境に関する情報が記載されています。

廃電気電子機器(WEEE)

Z

欧州のお客様へ 製品寿命を過ぎたすべての製品は、必ず WEEE リサイクルセンターへ送付してください。WEEE リサイクルセンターおよびナショナルインスツルメンツの WEEE への取り組み、および廃電気電子機器の WEEE 指令 2002/96/EC 準拠については、ni.com/environment/weee(英語)を参照してください。

电子信息产品污染控制管理办法 (中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。 关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs_china。 (For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

仕様	4		コメント
外形寸法	3U、1 スロット、PXI/cPCI モジュール 21.6×2.0×13.0 cm (8.5×0.8×5.1 in.)		-
重量	345 g (12.1 oz)		
フロントパネル:	コネクタ		
ラベル	機能	コネクタタイプ	_
CH 0	アナログ出力	SMB(ジャック)	
CLK IN	サンプルクロック入力およ び PLL 基準クロック入力。	SMB(ジャック)	
PFI 0	マーカ出力、トリガ入力、サ ンプルクロック出力、エクス ポートしたトリガ出力、およ び PLL 基準クロック出力。	SMB(ジャック)	
PFI 1	マーカ出力、トリガ入力、サ ンプルクロック出力、エクス ポートしたトリガ出力、およ び PLL 基準クロック出力。	SMB(ジャック)	
DIGITAL DATA & CONTROL	デジタルデータ出力、トリガ入力、エクスポートしたトリガ出力、マーカ、外部サンプルクロック入力、およびサンプルクロック出力。	68 ピン VHDCI メスコネク タ	
フロントパネル	LED インジケータ		
ラベル	機能		詳細については、
ACCESS	ACCESS LED は、PCI バス、および NI 5441 からコント ローラまでのインタフェースのステータスを示します。		『NI 信号発生器へ ルプ』を参照し てください。
ACTIVE	ACTIVE LED は、NI 5441 の7 のステータスを示します。		
同梱のケーブル			
	1 本(NI 製品番号 763541-01 プラグ、RG223/U、ダブルシ	_	

メモ

リビジョン B 以降の NI PXI-5441 モジュールには、改良された PXI Express 対応 バックプレーンコネクタが装備されています。この改良したコネクタにより、 NI PXI-5441 は PXI Express シャーシ内のハイブリッドスロットに対応します。 NI PXI-5441 モジュールのリビジョンについては、 NI PXI-5441 の下側にあるラベルを参照してください。 ラベルには 191789x01 という形式のアセンブリ番号が記載されており、 x がリビジョンになります。

サポート情報

技術サポートリソースの一覧は、ナショナルインスツルメンツのウェブサイトでご覧いただけます。ni.com/jp/supportでは、トラブルシューティングやアプリケーション開発のセルフヘルプリソースから、ナショナルインスツルメンツのアプリケーションエンジニアのEメール/電話の連絡先まで、あらゆるリソースを参照することができます。

適合宣言(Doc)とは、その会社の自己適合宣言を用いた、さまざまな欧州閣僚理事会指令への適合の宣言のことです。この制度により、電磁両立性(EMC)に対するユーザ保護や製品の安全性に関する情報が提供されます。ご使用の製品の適合宣言は、ni.com/certification(英語)から入手できます。ご使用の製品でキャリブレーションがサポートされている場合、ni.com/calibration からその製品の Calibration Certificate(英語)を入手してご利用になることもできます。

ナショナルインスツルメンツでは、米国本社(11500 North Mopac Expressway, Austin, Texas, 78759-3504)および各国の現地オフィスにてお客様にサポート対応しています。日本国内でのサポートについては、ni.com/jp/supportでサポートリクエストを作成するか、0120-527196(フリーダイヤル)または03-5472-2970(大代表)までお電話ください。日本国外でのサポートについては、各国の営業所にご連絡ください。

イスラエル 972 3 6393737. イタリア 39 02 41309277. インド 91 80 41190000, 英国 44 (0) 1635 523545, オーストラリア 1800 300 800, オーストリア 43 662 457990-0, オランダ 31 (0) 348 433 466, カナダ 800 433 3488, 韓国 82 02 3451 3400. シンガポール 1800 226 5886. スイス 41 56 2005151, スウェーデン 46 (0) 8 587 895 00, スペイン 34 91 640 0085, スロベニア 386 3 425 42 00, タイ 662 278 6777, 台湾 886 02 2377 2222, チェコ 420 224 235 774, 中国 86 21 5050 9800, デンマーク 45 45 76 26 00, ドイツ 49 89 7413130. トルコ 90 212 279 3031. ニュージーランド 0800 553 322, ノルウェー 47 (0) 66 90 76 60, フィンランド 358 (0) 9 725 72511, フランス 01 57 66 24 24, ブラジル 55 11 3262 3599, ベルギー 32 (0) 2 757 0020, ポーランド 48 22 328 90 10. ポルトガル 351 210 311 210. マレーシア 1800 887710, 南アフリカ 27 0 11 805 8197, メキシコ 01 800 010 0793, レバノン 961 (0) 1 33 28 28, ロシア 74957836851

CVI, LabVIEW、National Instruments、NI、ni.com、National Instruments のコーボレートロゴ及びイーグルロゴは、National Instruments Corporation の商標です。その他の National Instruments の商標については、ni.com/trademarks に掲載されている Tirademark Information」をご覧下さい。The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the United States and other countries.本文書中に記載されてその他の製品名および企業名は、それぞれの企業の商標または商号です。National Instruments の製品/技術を保護する特許については、ソフトウェアで参照できる特許情報(ヘルプ・物計情報)、メディアに含まれている patents. ktt ファイル、または「Notional Instruments Patent Notice」(ni.com/patents)のうち、該当するリソースから参照してください。