KNN error rate explanation

The **error rate in K-Nearest Neighbour (KNN)** refers to how often the classifier makes a wrong prediction compared to the true class labels.

Formula for Error Rate

Error Rate =
$$\frac{\text{Number of Incorrect Predictions}}{\text{Total Predictions}}$$

Accuracy is just the complement:

Factors Affecting KNN Error Rate

1. Value of *k*:

- Small k (like k = 1): very sensitive to noise \rightarrow high variance, low bias.
- Large k: smoother decision boundary but may misclassify minority classes → higher bias, lower variance.

2. Distance Metric:

 Euclidean, Manhattan, Minkowski, cosine similarity, etc. Choice affects classification.

3. Feature Scaling:

 If features are not scaled (normalization/standardization), distance can be misleading → higher error.

4. Data Quality:

Noisy, imbalanced, or irrelevant features increase error.

Example

Suppose we test KNN on 20 samples:

- Correct predictions = 16
- Wrong predictions = 4

Error Rate =
$$\frac{4}{20}$$
 = 0.20 (20%)

Accuracy =
$$1 - 0.20 = 0.80$$
 (80%)

Great — here's a clear, **step-by-step numerical KNN example** (K = 3) with all distance arithmetic shown digit-by-digit and final error rate.

Dataset

Training points (label):

- $T_1 = (1, 1) A$
- $T_2 = (2, 1) A$
- $T_3 = (1, 2) A$
- $T_4 = (4, 4) B$
- $T_5 = (5, 4) B$
- $T_6 = (4, 5) B$

Test points (true label):

- 1. $X_1 = (1.5, 1.5)$ true A
- 2. $X_2 = (3, 3)$ true B
- 3. $X_3 = (4.2, 4.1)$ true B

We use **Euclidean distance** and k = 3. Decision rule: majority vote among the 3 nearest neighbors.

Distance formula

For two points $P = (x_p, y_p)$ and $Q = (x_q, y_q)$:

$$d(P,Q) = \sqrt{(x_p - x_q)^2 + (y_p - y_q)^2}$$

Test point 1: $X_1 = (1.5, 1.5)$

Distances to training points:

- 1. To $T_1 = (1, 1)$:
- *X*-diff: $1.5 1 = 0.5 \rightarrow \text{square}$: $0.5^2 = 0.25$
- y-diff: $1.5 1 = 0.5 \rightarrow \text{square}$: $0.5^2 = 0.25$
- sum: 0.25 + 0.25 = 0.5
- distance: $\sqrt{0.5} \approx 0.70710678$
- 2. To $T_2 = (2, 1)$:
- *x*-diff: $1.5 2 = -0.5 \rightarrow \text{square: } (-0.5)^2 = 0.25$
- *y*-diff: $1.5 1 = 0.5 \rightarrow \text{square}$: 0.25
- sum: 0.25 + 0.25 = 0.5
- distance: $\sqrt{0.5} \approx 0.70710678$
- 3. To $T_3 = (1, 2)$:
- x-diff: $1.5 1 = 0.5 \rightarrow \text{square: } 0.25$
- *y*-diff: $1.5 2 = -0.5 \rightarrow \text{square}$: 0.25
- sum: 0.25 + 0.25 = 0.5
- distance: $\sqrt{0.5} \approx 0.70710678$
- **4.** To any B point (example $T_4 = (4, 4)$):
- x-diff: $1.5 4 = -2.5 \rightarrow \text{square: } 6.25$
- V-diff: $1.5 4 = -2.5 \rightarrow \text{square: } 6.25$
- sum: 6.25 + 6.25 = 12.5
- distance: $\sqrt{12.5} \approx 3.53553391$

Sorted nearest 3 distances: three A points at ≈ 0.7071 .

→ Nearest 3 are all class A → prediction: A.

True label: A → **correct**.

Test point 2: $X_2 = (3, 3)$

Distances to training points (showing those that matter):

- **1.** To $T_4 = (4, 4)$:
- x-diff: $3 4 = -1 \rightarrow \text{square: } 1$
- *y*-diff: $3 4 = -1 \rightarrow \text{square: } 1$

- sum: 1 + 1 = 2
- distance: $\sqrt{2} \approx 1.41421356$
- 2. To $T_2 = (2, 1)$:
- *x*-diff: $3 2 = 1 \rightarrow \text{square: } 1$
- y-diff: $3 1 = 2 \rightarrow \text{square: } 4$
- sum: 1 + 4 = 5
- distance: $\sqrt{5} \approx 2.23606798$
- 3. To $T_3 = (1, 2)$:
- x-diff: $3 1 = 2 \rightarrow \text{square: } 4$
- y-diff: $3 2 = 1 \rightarrow \text{square: } 1$
- sum: 4 + 1 = 5
- distance: $\sqrt{5} \approx 2.23606798$
- 4. To $T_5 = (5, 4)$:
- x-diff: $3 5 = -2 \rightarrow \text{square: } 4$
- *y*-diff: $3 4 = -1 \rightarrow \text{square: } 1$
- sum: 4 + 1 = 5
- distance: $\sqrt{5} \approx 2.23606798$
- **5.** To $T_1 = (1, 1)$:
- x-diff: $3 1 = 2 \rightarrow \text{square: } 4$
- V-diff: $3 1 = 2 \rightarrow \text{square: } 4$
- sum: 4 + 4 = 8
- distance: $\sqrt{8} \approx 2.82842712$

Sorted by distance (small \rightarrow large):

- 1. $T_4 = (4, 4)$ B at ≈ 1.4142
- 2. $T_2 = (2, 1) A$ at ≈ 2.2361
- 3. $T_3 = (1, 2) A$ at ≈ 2.2361

(others at same \sim 2.2361 but above are enough for k=3)

Nearest 3 labels: B, A, A \rightarrow majority is **A** (2 votes vs 1).

→ Predicted A. True label: B → incorrect.

(Note: several training points tie at distance $\sqrt{5} \approx 2.2361$. We used the three smallest distances — any tie-breaking rule that picks two A neighbors and one B neighbor yields the same majority A here.)

Test point 3: $X_3 = (4.2, 4.1)$

Distances:

1. To $T_4 = (4, 4)$:

• x-diff: $4.2 - 4 = 0.2 \rightarrow \text{square: } 0.04$

• y-diff: $4.1 - 4 = 0.1 \rightarrow \text{square}$: 0.01

• sum: 0.04 + 0.01 = 0.05

• distance: $\sqrt{0.05} \approx 0.22360680$

2. To $T_5 = (5, 4)$:

• x-diff: $4.2 - 5 = -0.8 \rightarrow \text{square: } 0.64$

• y-diff: $4.1 - 4 = 0.1 \rightarrow \text{square}$: 0.01

• sum: 0.64 + 0.01 = 0.65

• distance: $\sqrt{0.65} \approx 0.80622577$

3. To $T_6 = (4, 5)$:

• x-diff: $4.2 - 4 = 0.2 \rightarrow \text{square}$: 0.04

• y-diff: $4.1 - 5 = -0.9 \rightarrow \text{square}$: 0.81

• sum: 0.04 + 0.81 = 0.85

• distance: $\sqrt{0.85} \approx 0.92195445$

Other training points are much farther (> 3.8), so nearest three are T_4 , T_5 , T_6 — all class **B**.

→ **Predicted B**. True label: B → **correct**.

Summary of predictions

Test point	True label	Predicted	Correct?
$X_1 = (1.5, 1.5)$	А	А	V
$X_2 = (3,3)$	В	А	×
$X_3 = (4.2, 4.1)$	В	В	V

Correct = 2/3

Incorrect = 1/3

Error rate

Error rate =
$$\frac{\text{Number of incorrect predictions}}{\text{Total predictions}} = \frac{1}{3} \approx 0.3333 = 33.33\%$$

Notes & tips

- Here k = 3 produced one misclassification at X_2 . Trying other k values can change the result:
 - k = 1 for X_2 would predict B (nearest neighbor T_4), so X_2 would be correct with k = 1.
 - Larger k could include more A points and push votes toward A shows the bias-variance tradeoff.
- Always scale features if they have different units; otherwise distance is dominated by large-range features.
- For ties in votes, common tie-breakers: pick label of the closest neighbor among tied classes, or pick at random, or use weighted voting (weights = 1/distance).

separate KNN classification and KNN regression in terms of how the error rate (or error metric) is calculated.

1. KNN Classification

In classification, KNN assigns a class label (A, B, etc.).

We evaluate using **misclassification rate** (error rate).

Error Rate =
$$\frac{\text{Number of Misclassified Samples}}{\text{Total Samples}}$$

Example:

Total test points = 50

Wrong predictions = 8

Error Rate =
$$\frac{8}{50}$$
 = 0.16 (16%)

Other metrics often used in classification:

- Accuracy = 1 Error Rate
- Precision, Recall, F1-score (if classes are imbalanced).

2. KNN Regression

In regression, KNN predicts a **numeric value** (average of neighbors).

Here, "error rate" doesn't apply directly because outputs are continuous.

Instead, we use error metrics:

1. Mean Squared Error (MSE):

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

2. Root Mean Squared Error (RMSE):

$$RMSE = \sqrt{MSE}$$

3. Mean Absolute Error (MAE):

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Example:

True values: [5, 7, 10]

Predicted: [6, 8, 9]

- Errors: [-1, -1, 1]
- MAE = (1 + 1 + 1)/3 = 1
- MSE = $(1^2 + 1^2 + 1^2)/3 = 1$
- RMSE = $\sqrt{1} = 1$
- Summary
- KNN Classification → Error Rate = Misclassification Rate.

• KNN Regression → Error measured using MAE, MSE, or RMSE (not % error rate).

Nice — here's a compact, step-by-step explanation of **precision**, **recall**, **and F1-score** with a clear numeric example and notes about averaging for multi-class problems.

Definitions (binary classification)

Let positive = class we care about (e.g., "spam").

- **TP** (**True Positive**): predicted positive, actually positive.
- **FP (False Positive)**: predicted positive, actually negative.
- **FN (False Negative)**: predicted negative, actually positive.
- **TN (True Negative)**: predicted negative, actually negative.

Formulas

• Precision = $\frac{TP}{TP + FP}$

(Of the items predicted positive, how many were correct?)

• Recall (a.k.a. Sensitivity) = $\frac{TP}{TP + FN}$

(Of the actual positive items, how many did we catch?)

• **F1-score** = harmonic mean of precision and recall:

$$F1 = \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

Numeric example (digit-by-digit)

Suppose on 100 test items we have:

- TP = 40
- FP = 10
- FN = 5

TN = 45

Precision:

Precision =
$$\frac{TP}{TP + FP} = \frac{40}{40 + 10} = \frac{40}{50} = 0.8 = 80\%$$

Recall:

Recall =
$$\frac{TP}{TP + FN} = \frac{40}{40 + 5} = \frac{40}{45} \approx 0.8888889 \approx 88.89\%$$

F1:

$$F1 = \frac{2 \times 0.8 \times 0.8888889}{0.8 + 0.88888889} = \frac{1.4222222}{1.6888889} \approx 0.84126984 \approx 84.13\%$$

Relationship with error rate / accuracy

Accuracy =
$$\frac{TP + TN}{TP + FP + FN + TN} = \frac{40 + 45}{100} = 0.85 = 85\%$$

• Error rate = 1 - Accuracy = 15%

Precision/recall give class-specific performance which accuracy and error rate can hide (important when classes are imbalanced).

Multi-class averaging

If more than two classes, compute per-class Precision/Recall/F1 treating that class as "positive" and then average:

- Macro-average: average of per-class scores (treats all classes equally).
- Micro-average: total TP/FP/FN summed over classes, then compute metrics (weights by support / sample count).
- Weighted macro: macro average weighted by class support.

Tips

- Use **precision** if false positives are costly (e.g., spam filter that blocks real emails).
- Use **recall** if false negatives are costly (e.g., disease screening).
- Use **F1** when you want a single number balancing precision and recall.

Want me to:

- compute these for a confusion matrix you have (paste numbers), or
- give a tiny Python snippet that prints precision/recall/F1 for your results?

Got it ____ you want to see precision, recall, F1 (and error rate/accuracy) calculated directly from a dataset rather than just formulas.

Let's do a **small toy dataset** with true labels and predicted labels.

Example Dataset

True labels (y):

Predicted labels (\mathcal{P}):

Step 1. Build Confusion Matrix

True \ Pred	Α	В	С
Α	2	1	0
В	0	1	1
С	1	1	2

Step 2. Compute Per-class Metrics

- Class A
- TP = 2 (A → A)
- $FP = 0+1 = 1 (C \rightarrow A)$
- FN = 1 (A → B)
- Precision = 2/(2 + 1) = 0.667
- Recall = 2/(2 + 1) = 0.667
- F1 = 0.667

Class B

- TP = 1 (B → B)
- FP = 1 (A \rightarrow B) + 1 (C \rightarrow B) = 2
- FN = 1 (B → C)
- Precision = 1/(1+2) = 0.333
- Recall = 1/(1+1) = 0.5
- F1 = 0.4

Class C

- TP = 2 (C → C)
- $FP = 0+1 = 1 (B \rightarrow C)$
- $FN = 1 (C \rightarrow A) + 1 (C \rightarrow B) = 2$
- Precision = 2/(2 + 1) = 0.667
- Recall = 2/(2 + 2) = 0.5
- F1 = 0.571

Step 3. Average Metrics

- Macro-average Precision = (0.667 + 0.333 + 0.667)/3 = 0.556
- Macro-average Recall = (0.667 + 0.5 + 0.5)/3 = 0.556
- Macro-average F1 = $(0.667 + 0.4 + 0.571)/3 \approx 0.546$

Step 4. Accuracy & Error Rate

Total correct predictions = 2 + 1 + 2 = 5

Total = 9

Accuracy =
$$5/9 \approx 55.6\%$$

Error Rate =
$$1 - 0.556 = 44.4\%$$

This shows how **precision**, **recall**, **F1**, **accuracy**, **error rate** are computed directly from a dataset's predictions.