Numerical Analysis

Homework 12. RLC Circuit.

102061125 Kuan-Chun Chen

1. Objective

The RLC circuit is shown below.

Figure 1. RLC circuit

Using these equations to solve v_1 , v_2 and i_L :

$$\frac{v_1-V}{R}+i_L=0,$$

$$\frac{dv_2}{dt} = \frac{i_L}{C},$$

$$\frac{di_L}{dt} = \frac{v_1 - v_2}{L}.$$

And assuming

- (1) V(t) = 1 for all t,
- $(2) \ \ \text{at} \ \ t=0, v_1(0)=1, v_2(0)=0, \text{and} \ \ i_L(0)=0,$
- (3) $R = 1 \Omega$, L = 1 Henry, and C = 1 Farad.

2. Approach

2.1. Forward Euler Method

$$x(t+h) = x(t) + h \cdot f(t)$$

So the problem will become

$$\begin{split} i_L(t+h) &= i_L(t) + h \cdot \frac{v_1(t) - v_2(t)}{L}, \\ v_1(t+h) &= -i_L(t+h) \cdot R + V, \\ v_2(t+h) &= v_2(t) + h \cdot \frac{i_L(t)}{C}. \end{split}$$

2.2. Backward Euler Method

$$x(t+h) = x(t) + h \cdot f(t+h, x(t+h))$$

So the problem will become

$$\begin{split} i_L(t+h) &= i_L(t) + h \cdot \frac{v_1(t+h) - v_2(t+h)}{L}, \\ v_1(t+h) &= -i_L(t+h) \cdot R + V, \\ v_2(t+h) &= v_2(t) + h \cdot \frac{i_L(t+h)}{C}. \end{split}$$

2.3. Trapezoidal Method

$$x(t+h) = x(t) + h \cdot \frac{f(t+h,x(t+h)) + f(t,x(t))}{2}$$

So the problem will become

$$\begin{split} i_L(t+h) &= i_L(t) + h \cdot \frac{[v_1(t+h) - v_2(t+h)] + [v_1(t) - v_2(t)]}{2L}, \\ v_1(t+h) &= -i_L(t+h) \cdot R + V, \\ v_2(t+h) &= v_2(t) + h \cdot \frac{i_L(t+h) + i_L(t)}{2C}. \end{split}$$

2.4. Algorithm

Algorithm. Methods for solving ODEs with a given initial value.

3. Results

3.1. Plot

Table 1.

3.2. Maximum and minimum

		h=0.1			h=0.01		
	Forward Euler						
	$\mathbf{v_1}$	\mathbf{v}_2	$\mathbf{i_L}$	$\mathbf{v_1}$	\mathbf{v}_2	$\mathbf{i_L}$	
max	1.1139	1.19627	0.581654	1.09125	1.16602	0.549617	
min	0.418346	0	-0.11391	0.450383	0	-0.09125	
Backward Euler							
	$\mathbf{v_1}$	\mathbf{v}_2	$\mathbf{i}_{\mathtt{L}}$	$\mathbf{v_1}$	\mathbf{v}_2	i_L	
max	1.07026	1.13651	0.515275	1.08694	1.16011	0.543012	
min	0.484725	0.009009	-0.07026	0.456988	9.9e-05	-0.08694	
	Trapezoidal						
	$\mathbf{v_1}$	\mathbf{v}_2	i_L	$\mathbf{v_1}$	\mathbf{v}_2	i _L	
max	1.08936	1.16346	0.546816	1.08907	1.16304	0.546298	
min	0.453184	0.004751	-0.08936	0.453702	4.98e-05	-0.08907	

Table 2.

4. Observations

4.1. Different in method (same in h, variable)

Table 3.

4.2. Different in h (same in method, variable)

• Forward Euler

Table 4.

Backward Euler

Table 5.

• Trapezoidal

Table 6.

4.3. Conclusion

Amplitude

For h=0.1 and 0.01, from Table 2 and Table 3 we can obviously see the amplitude in damped oscillation region:

Forward Euler > Trapezoidal > Backward Euler

■ Forward Euler

From Table 2 and Table 4, the amplitude in damped oscillation region is smaller when h is smaller.

■ Backward Euler

From Table 2 and Table 5, the amplitude in damped oscillation region is larger when h is smaller.

■ Trapezoidal

From Table 2 and Table 6, the amplitude in damped oscillation region is smaller when h is smaller.