Universidad Americana de Puebla campus Teziutlán

Termodinámica

Ingeniero Aldo de Jesús Peralta

Alumna: Silvia Hernández Márquez

Ejercicios Propuestos de Energía Cinética, Potencial y Mecánica

El balón de la figura tiene na masa de 0,200 kg.	1100
encuentra a una altura del campo de 3m con una velo	r.dad
de 30m/s. à Cuál es su energia cinética en ese ins	tota ?
ar to energía potencial gravitatoria ? a r ou energi	ia
mecanica? Et = 1 m · 02	John m
00100	
m=0.200 Eg(05) 5 Ed = 1 (0.200) (30)2	1
h = 3m 2	
V = 30 % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Ep+m·g.	
Ep = (0-200)	(n)(3)
Em = Ep + Eq Ep = 67	100 100 100
Em = 90+6	
Em \$ 965	9914
1 0 0 0 0	cotol
Calcula la erergía potencial que posee un libro de s	200 gr de
mosa que está colocado sobre una mesa de 80 cm	de altura.
00+05 P=m.g.h	80 1 93
m=500gr = 0.5 kg (880 = 1)	
h = 80 cm = 0.8 mol pla Ep = (0.5) (9.81) (0.8	3)
(890 - £p = 3.9245	
149-1000gr 98 08	
159 600	
x - 500 gr	
X=0.5kg 11 m d 8 = H	
1m - 100cm	
X - 80 cm	
X = 0.8 m.	
N-0m-	

En una curva peligrosa, con Kimite de velacidad a 40 km/h, 11/10/2022 circula un coche a 3 6 km/h. Otro, de la mioma masa, 2000kg no respeta la senal y marcha a 72 km/h. d' Qué energía cinética posee ada uro? b) dQué consecuencias deduces de los resultados? N = 40 + 11.11.11/30 =11 (2000) (20) 10 Em (1000m) (1ht 3000m) = 11.111m/s 400000 36 km (1000m) (-1hr - 10 m/s Los consecuencias que puede 7 2 km (1000m (1hr) = 20 m/s products to que provoque un 650kg que va a 90 m/h El conductor de un coche de Frena y reduce ou velocidad a 50 km/n. Calcula: b) La energía cinética final. a) La energía cinética inicial Datos m = 650Kg Edi - 1 (650)(25)2 VI - 90 m/n = 25 m/s VF = 50 km/h = 13.888 m/s Ect = 203125T 90 th (1000m) (36000mg) = 25 m/s ECF = 12 (650)(13.888) 50 km (1600m) (36000eg) = 13-888m/5 Ect = 62684 .8768 T

11/10/2022 Una maceta se cae de un balcón a una velocidad de 9.81m/s adquiriendo una energía cinética de 324 j a Cuál es su masa? 0005 V - 9-81m/6 Ec = 3245 m= ?