

WHAT IS CLAIMED IS:

1. An electronic device comprising a semiconductor chip which is fixed to the mounting face of a wiring board through adhesive and in which external terminals are electrically connected with electrode pads of said wiring board through bump electrodes,
5 wherein recesses are formed in said electrode pads and in said recesses said electrode pads and said
10 bump electrodes are connected.
2. An electronic device according to claim 1,
 wherein said electrode pads are formed over the surface of a soft layer, and
15 wherein said recesses are formed by elastic deformation of said electrode pads and said soft layer.
3. An electronic device according to claim 2,
20 wherein said soft layer is formed over the surface of a rigid board.
4. An electronic device according to claim 2,
 wherein said soft layer is made of a material
25 having a smaller coefficient of thermal expansion than

00000000000000000000000000000000

that of said adhesive.

5. An electronic device according to claim 1,
wherein said bump electrodes are fixed to the
external terminals of said semiconductor chip and
pressed to the electrode pads of said wiring board.

10 6. An electronic device according to claim 1,
wherein said bump electrodes are constructed to
have a stud bump structure.

15 7. An electronic device according to claim 1,
wherein said adhesive is made of an anisotropic
conductive resin film.

8. A data processor comprising an electronic device
according to any of the claims 1 to 7 and assembled
therein.

20 9. A process for mounting a semiconductor device
comprising a semiconductor chip which is fixed to the
mounting face of a wiring board through adhesive and
in which external terminals are electrically connected
with electrode pads of said wiring board through bump
electrodes, comprising:
25

P
A
T
E
N
T
E
R
Y

the step of preparing a wiring board having electrode pads over a rigid board through a soft layer, and a semiconductor chip having bump electrodes formed over external terminals;

- 5 the step of arranging said semiconductor chip over the mounting face of said wiring board through adhesive and the bump electrodes of said semiconductor chip over the electrode pads of said wiring board; and
- 10 the step of forming recesses in said electrode pads by depressing the bump electrodes of said semiconductor chip thereby to cure said adhesive in this state.

15. A process for manufacturing a semiconductor device, comprising:
- a) the step of preparing a semiconductor chip having a plurality of semiconductor elements and a plurality of bonding pads over a major face, and bump electrodes over the individual surfaces of said bonding pads;
- 20 b) the step of preparing a wiring board having a plurality of first wirings, and a mounting board including an insulating film having a lower modulus of elasticity than that of said wiring board and a plurality of second wirings formed over said
- 25 insulating layer;

- 0000000000000000
- c) the step of mounting said semiconductor chip over
said mounting board in such a way that said bump
electrodes are arranged over the second wirings of
said mounting board; and
- 5 d) the step of joining the major face of said
semiconductor chip to said mounting board through
adhesive interposed therebetween.

11. An electronic device manufacturing process
10 according to claim 10,
wherein said bump electrodes are gold bumps.

12. An electronic device manufacturing process
according to claim 10,
15 wherein said wiring board is made by impregnating
glass fibers with resin, and
wherein said insulating layer is made of resin.

13. An electronic device manufacturing process
20 according to claim 10,
wherein said adhesive contains conductive
particles in an insulating resin, and
wherein said bump electrodes and said second
wirings are electrically connected through said
25 conductive particles.