ESTRUCTURA DE COMPUTADORES

Ejercicio clase: Operaciones básicas cache

1) En un sistema basado en MIPS R2000, se asume una cache con tamaño de bloque igual a 64 bytes: calcúlese el Número de Bloque y el Desplazamiento dentro del bloque que correspondería a la dirección de memoria 0x800C02F0. Los valores deben expresarse en hexadecimal.

Número de Bloque MP Desplazamiento

Dir.MP 0x200300B 0x30

2) Se dispone de una cache cuyos parámetros básicos que definen su geometría son {32KB,8,32B}. Calcúlese el número total de bloques y el número total de conjuntos de la cache. Indíquese también el tamaño en bits de los campos <Etiqueta>, <Conjunto> y <Desplazamiento>, asumiendo un espacio de direccionamiento del procesador de 1GB (2³0 Bytes)

Num_Total_Lineas_MC	1024			
Num_Total_Conjuntos_MC	128			

Tamaño en bits:

Etiqueta	Conjunto	Desplazamiento
18	7	G

3) Suponiendo una cache de 32KB para la que el tamaño de los campos «Etiqueta», «Conjunto» y «Desplazamiento» es el que se muestra a continuación, indíquese el número de vías, el tamaño de bloque y el número total de bloques de memoria que se mapean a un mismo conjunto de la cache

Etiqueta	Conjunto	Desplazamiento
18 bits	8 bits	6 bits

Tamaño_Bloque	64 Bytes
Num_vías	2
Número total de bloques en memoria principal	64M bloques
Número de bloques de MP que al ser almacenados en la cache lo harían sobre un mismo conjunto de la cache	256K bloques

4) En el mismo supuesto anterior, indíquese el conjunto de MC al que se mapeará el bloque al que pertenece la dirección de memoria 0x10B0F042. Indíquese también el valor de la Etiqueta de dicho bloque. Los valores deben expresarse en hexadecimal.

Num_bloque_MP

Etiqueta	Conjunto		
0×042 <i>C</i> 3	0×C1		

5) En la cache que se muestra a continuación, formada por un total de 4 conjuntos, se observa que el bloque X se halla almacenado en el Conjunto 2 y tiene una Etiqueta asociado de 0xF083. Indíquese de qué Número de Bloque se trata.

Conjunto	MC	Etiqueta
0		
1		
2	Bloque X	0×F083
3		

Número de Bloque X:	0x3 <i>C</i> 20E
---------------------	------------------

6) En la cache anterior, sabiendo que el tamaño de bloque es de 16 bytes, indíquese el rango de direcciones de memoria principal que comprendería el bloque X.

Rango de direccionamiento	Dir. Inicial: 0×3C20E0
del Bloque X:	Dir. Final: 0x3C20EF

7) Lo mismo que en la cuestión 6, pero suponiendo que el tamaño de bloque es 64 bytes.

Rango de	Dir. Inicial: 0×F08380
direccionamiento	
del Bloque X:	Dir. Final: 0xF083BF

0x 8 0 0 C 0 2 F 0

	Número de Bloque					Desp	lazamiento		
0x	8	0	0	С	0	2	F	0	
	1000	0000	0000	1100	0000	0010	1111	0000	

0x 1 0 B 0 F 0 4 2

