MID-SEMESTER EXAMINATION, FEBRUARY 2024

Course Code: COECC12/CAECC12/ CDECC12

Course Title: DATA COMMUNICATION

Time: 1:30 Hours

Max. Marks: 15

	Attempt all Questions. Missing data/information (if any), may be suitably assumed and mentioned in the ar Question	Marks	CO	1
Q.No.	 (a) Given the periodic signal x(t) = t², 0 < t < 1. Determine the exponential Fourier series. (b) Plot the magnitude spectrum of the above signal. 	2+1	COI	1
2	Find the Fourier Transform of the signal s(t)	2+1	CO	1
	(b) Find the Fourier Transform of x(t)=S(2t+2)	2+	1	01
3/	 (a) Given the signal x(t) = 10cos(2000πt)cos(8000πt). What is the minimum sampling rate. (b) What is Aliasing effect and how can it be minimized? 			CC
4	 (a) Derive the expression for SNR (dB) of a uniform quantizer if the inpusion of signal is sinusoidal in nature. (b) Consider the functions φ₁ (t) = e^{- t} and φ₂(t) = 1 - Ae^{-2 t}. Determine the constant A such that φ₁(t) and φ₂(t) are orthogonal over the time interval (-∞, ∞). 		+1	
5/	Given a (6, 3) linear block code with the following parity check matrix \mathbf{H} $\mathbf{H} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$ $\mathbf{G}_{\mathbf{P}}(\mathbf{T}) [\mathbf{P}]$		2+1	C
	(1) Find G (2) Find the codeword for the data bit (01.)			

END-SEMESTER EXAMINATION, APRIL 2024

Course Code: COECC12/CAECC12/ CDECC12

Course Title: DATA COMMUNICATION

Time: 3:00 Hours Max. Marks: 40

Missing data/information (if any), may be suitably assumed and mentioned in the answer. Note: **Ouestion** Marks CO Q.No. Attempt any TWO parts 1 4 COL (a) Explain in detail Instantaneous sampling. Find the Nyquist sampling rate for the $m(t) = 3 sinc(50\pi t) sinc(100\pi t)$. (b) Using the Gram-Schmidt orthogonalization procedure, find a set of orthonormal basis functions to represent the four signals s1(t), s2(t), s3(t) and CO1 4 s4(t) shown in Fig. 1 52(t) $\uparrow s_1(t)$ 1 1 2T/3 0 T/3 54(t) ↑53(t) 1 1 0 T/3 COL 4 Consider a numerical example involving digital modulation techniques, specifically Binary Phase Shift Keying (BPSK). Suppose we have a binary input signal m(t)consisting of a sequence of bits: $m(t)=\{0,1,0,1,1,0,1,0\}$. Represent the modulated signal and sketch it. Also draw the modulator and demodulator of BPSK. Attempt any TWO parts COl 4 2 Explain the ISO-OSI model and briefly state the role of each layer. (b) Discuss the different types of transmission media along with their CO24 properties, advantages, disadvantages and applications. CO₂ (c) The received CRC code bits are [110011100110]. The generator polynomial 4 is $g(x) = x^4 + x^3 + 1$. Find whether the received code word is correct or not.

3	Attempt any TWO parts		
	Stop-and-Wait ARQ protocol. Determine the minimum frame length to achieve	4	CO4
	format, what is the maximum window size for the Selective Repeat ARQ	4	CO4
	(c) Explain in detail Token Ring and Token Bus. Also differentiate between the	4	CO3
4	Attempt any TWO parts (a) Suppose that the ALOHA protocol is used to share a 56 kbps satellite channel. Suppose that frames are 1000 bits long. Find the maximum throughput of the system in frames/second.	4	CO3
	(b) Consider the network in Figure. Use the Dijkstra algorithm to find the set of shortest paths from node 4 to other nodes.	4	CO3
	2 3 4 3 2 4 5		
	Explain the p-persistent method by using suitable algorithm/flow diagram.	4	CO4
(a	Attempt any TWO parts a) A railway ticket counter is modeled as an M/M/1 queuing system with an average of 1 new customer arriving every 2 minutes. It is desired to have less than 3 customers line up 99 percent of the time. What should be the service atter for each customer?	4	CO5
Ja	What do you understand by pure birth and death processes? Explain	4	CO5
	Compare the infinite and finite length queuing model with mathematical nalysis.	4	CO5