기말고사

학번_____ 이름____

2015-12-15

1.(30점) 세 개의 벡터 $\vec{u}, \vec{v}, \vec{w}$ 가 다음과 같이 주어져 있다.

$$\vec{u} = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}, \vec{v} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}, \vec{w} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix},$$

 $a_1\vec{u} + a_2\vec{v} + a_3\vec{w} = \vec{b}$ 를 만족하는 a_1, a_2, a_3 를 구하라.

(a)
$$\vec{b} = \begin{bmatrix} 5 \\ 9 \\ 5 \end{bmatrix}$$

	$\lceil 2 \rceil$
(b) $\vec{b}=$	0
	6_

(c)
$$\vec{b} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

2.(20점) 다음 벡터들 $\overrightarrow{x_1}$, $\overrightarrow{x_2}$, $\overrightarrow{x_3}$, $\overrightarrow{x_4}$ 에 대하여 물음에 답하라.

$$\overrightarrow{x_1} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \overrightarrow{x_2} = \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}, \overrightarrow{x_3} = \begin{bmatrix} -13 \\ -1 \\ 2 \end{bmatrix}, \overrightarrow{x_4} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

(a) $\overrightarrow{x_1}$ $\overrightarrow{x_2}$ $\overrightarrow{x_2}$	는 선형종속임을 증명하라	또하 이것득 사이의	선형과계를 구하라
(a) λ_1 λ_2 λ_3		- 노인 이것은 시이니	근용단계를 포하다.

ΓαΊ
$\mid a \mid$

3.(10점) 다음 행렬
$$A = \begin{bmatrix} 1 & 2 & 1 & 5 \\ 2 & 5 & 1 & 14 \\ 4 & 9 & 3 & 24 \end{bmatrix}$$
가 $PAQ = \begin{bmatrix} I_r & O \\ O & O \end{bmatrix}$ 로 나타나는 P 와 Q 가

$$P = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & -1 & 1 \end{bmatrix}, Q = \begin{bmatrix} 1 & -2 & -3 & 3 \\ 0 & 1 & 1 & -4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
임을 보이고, $A_{p \times q} = K_{p \times r} L_{r \times q}$ 의 형태로 나타내

라.

단,
$$P^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & 1 & 1 \end{bmatrix}$$
, $Q^{-1} = \begin{bmatrix} 1 & 2 & 1 & 5 \\ 0 & 1 & -1 & 4 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ 임을 이용하라.

4.(10점) 행렬 $A=$	$\begin{bmatrix} 0 \\ 5 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 4 \end{bmatrix}$	의 고유값고	바 고유벡터	를 계산하고	고 대각회	화하시오.				
5.(10점) 행렬 $A=$ 시오.	$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$	2 1 3	3 3 5	U 분해가 $oldsymbol{L}$	$x = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$	0 -3 3	$\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}, U =$	$= \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	2 1 0	3 1 로 계산됨을 1	보이

6.(10점) 행렬 $A=$	$\begin{bmatrix} 4 \\ 2 \\ 2 \end{bmatrix}$	2 2 0	$\begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix}$	의 일반화역행렬을 최대계수 정방 부분행렬을 이용하여 계산하라.
7.(10점) 행렬 $A=$	$\begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix}$	0 4 2	<u>-</u>	·2 2 를 삼각행렬의 곱으로 나타내시오. 4