The Yoneda Lemma A brief introduction to category theory

Simon Xiang

University of Texas at Austin

December 2, 2021

Categories

Definition

A **category** C consists of the following data:

- A set of objects Ob(C),
- A set of morphisms $\operatorname{Hom}(A,B)$ for any two objects $A,B\in\operatorname{Ob}(\mathcal{C})$,

such that for any two morphisms $f: A \to B, g: B \to C$ there exists a morphism $g \circ f: A \to C$. This data is subject to the following rules:

- Composition satisfies associativity,
- There exists an identity morphism $\mathrm{id}_A \colon A \to A$ for any object $A \in \mathcal{C}$ satisfying $f \circ \mathrm{id}_A = \mathrm{id}_B \circ f$ for any $A \overset{f}{\to} B$.

Examples

Example

Some typical examples of categories:

- Sets
- Groups
- Finite dimensional vector spaces
- Topological spaces

Example

Categories with one object can be viewed as monoids, and if every morphism is invertible then they become groups.

Functors

Definition

A (covariant) **functor** $K \colon \mathcal{C} \to \mathcal{D}$ between two categories \mathcal{C}, \mathcal{D} associates to each object of \mathcal{C} an object of \mathcal{D} , and to each morphism $[A \xrightarrow{f} B] \in \mathcal{C}$ a morphism $[K(A) \xrightarrow{Kf} K(B)] \in \mathcal{D}$. Furthermore, $K(\mathrm{id}_A) = \mathrm{id}_{K(A)}$ and $K(A \xrightarrow{f} B \xrightarrow{g} C) = [K(A) \xrightarrow{Kf} K(B) \xrightarrow{Kg} K(C)]$ for $A, B, C \in \mathcal{C}$.

Example

Some examples of covariant functors:

- ullet The functor $\operatorname{\mathsf{Grp}} \to \operatorname{\mathsf{Set}}$ assigning groups to their base set
- Set \rightarrow Grp where $A \in$ Set gets sent to the free group on A is a functor
- π₁: Top_{*} → Grp is a functor because the induced homomorphism preserves composition and identities

Covariant or contravariant?

Definition

The **opposite category** \mathcal{C}^{op} of a category \mathcal{C} is the same as \mathcal{C} except the direction of the arrows is reversed (every $[A \xrightarrow{f} B] \in \mathcal{C}$ corresponds to a $[B \xrightarrow{f^{\text{op}}} A] \in \mathcal{C}^{\text{op}}$).

Definition

A **contravariant functor** is a covariant functor $K: \mathcal{C}^{\mathrm{op}} \to \mathcal{D}$. We could also say a contravariant functor is a covariant functor which switches the direction of the arrows on composition, or $K(A \xrightarrow{f} B \xrightarrow{g} G) = [K(G) \xrightarrow{Kg} K(B) \xrightarrow{Kf} K(A)]$

$$K(A \xrightarrow{f} B \xrightarrow{g} C) = [K(C) \xrightarrow{Kg} K(B) \xrightarrow{Kf} K(A)].$$

Example

The dual space functor $\operatorname{Vect}_k^{\operatorname{op}} \to \operatorname{Vect}_k$ sending $V \mapsto V^* = \operatorname{Hom}(V, k)$, $[V_1 \xrightarrow{T} V_2] \mapsto ([V_2 \to k] \mapsto [V_1 \xrightarrow{T} V_2 \to k])$ is contravariant.

Natural transformations

Definition

Let $F,G:\mathcal{C}\to\mathcal{D}$ be functors. A **natural transformation** $\alpha\colon F\to G$ associates to any object $A\in\mathcal{C}$ a morphism $F(A)\stackrel{\alpha_A}{\longrightarrow} G(A)$ in \mathcal{D} , satisfying the naturality diagram below for any $f\colon A\to B$.

$$F(A) \xrightarrow{Ff} F(B)$$

$$\downarrow^{\alpha_A} \qquad \downarrow^{\alpha_B}$$

$$G(A) \xrightarrow{Gf} G(B)$$

Some examples

Example (The Yoneda functor)

For a category \mathcal{C} with $A, X, Y \in \mathcal{C}$, $\mathsf{Hom}(-, A) \colon \mathcal{C} \to \mathsf{Set}$ defined by $X \mapsto \mathsf{Hom}(X, A), [X \xrightarrow{f} Y] \mapsto ([Y \to A] \mapsto [X \xrightarrow{f} Y \to A])$ is a contravariant functor.

Example (Natural transformations)

• Consider the double dual functor $(-)^{**}$: $\text{Vect}_k \to \text{Vect}_k$, $V \to V^{**} = \text{Hom}(\text{Hom}(V,k),k)$. Let $[V \xrightarrow{f} k] \in V^*, v \in V$, then $\text{eval}: (-)^{**} \to \text{id}_{\text{Vect}_k}$ is a natural transformation to the identity functor where $\text{eval}_V: v \mapsto [f \mapsto f(v)]$.

$$V \xrightarrow{T} W$$

$$\downarrow \operatorname{eval}_{V} \qquad \qquad \downarrow \operatorname{eval}_{W}$$

$$V^{**} \xrightarrow{T^{**}} W^{**}$$

The Yoneda lemma

Lemma (Yoneda lemma)

If $K : \mathcal{C}^{\mathrm{op}} \to \mathsf{Set}$ is a contravariant functor and $R \in \mathcal{C}$, then there is a bijection of sets $\mathsf{Nat}(\mathsf{Hom}(-,R),K) \simeq K(R)$.

Proof of the Yoneda lemma.

Let $\alpha \colon \operatorname{Hom}(-,R) \to K$ be a natural transformation. Then $\alpha_R \colon \operatorname{Hom}(R,R) \to K(R)$, particularly $\alpha_R(\operatorname{id}_R) \in K(R)$. Naturality tells us that for $D \xrightarrow{f} R$ the following diagram commutes

$$\mathsf{Hom}(R,R) \xrightarrow{\alpha_R} \mathcal{K}(R)$$

$$\downarrow^{f^*} \qquad \qquad \downarrow^{\mathcal{K}f}$$

$$\mathsf{Hom}(D,R) \xrightarrow{\alpha_D} \mathcal{K}(D)$$

or in other words, $Kf(\alpha_R(id_R)) = \alpha_D(f)$.

Proof of the Yoneda lemma (continued).

For $A \in \mathcal{C}$, let β_A : Hom $(A, R) \to \mathcal{K}(A)$ send $[A \xrightarrow{g} R] \mapsto \mathcal{K}g(b)$. Checking naturality, let $A, B \in \mathcal{C}, A \xrightarrow{f} B$.

$$\text{Hom}(A, r) \xrightarrow{\beta_A} K(A)$$

$$\uparrow_{f^*} \qquad \uparrow_{Kf}$$

$$\text{Hom}(B, r) \xrightarrow{\beta_B} K(B)$$

Let $B \xrightarrow{h} r \in \text{Hom}(B, r)$, then

$$f^*h = [A \xrightarrow{f} B \xrightarrow{h} R] = [A \xrightarrow{h \circ f} R] \in \text{Hom}(A, R).$$

So
$$\beta_A(h \circ f) = K(h \circ f)(b) = (Kf \circ Kg)(b)$$
 by contravariance.
Now $\beta_B(h) = Kh(b)$, so $Kf(\beta_B(h)) = Kf(Kh(b)) = (Kf \circ Kh)(b)$.
Therefore $\beta_A(f^*(h)) = Kf(\beta_B(h))$.

Proof of the Yoneda lemma (continued).

Let $b \in K(r)$, and $\beta \colon \text{Hom}(-,r) \to K$, $\beta_A \colon A \xrightarrow{g} r \mapsto Kg(b)$. Then $\beta_r(\mathrm{id}_r) = K(\mathrm{id}_r)(b) = \mathrm{id}_{\mathsf{Set}}(b) = b$. Let $\alpha \colon \mathsf{Hom}(-,r) \to K$ be a natural transformation, and consider $\alpha_r(\mathrm{id}_r) \in K(r)$. Then associate to this the natural transformation $\beta_A: A \xrightarrow{g} r \mapsto Kg(\alpha_r(\mathrm{id}_r)).$

$$\operatorname{Hom}(r,r) \xrightarrow{\alpha_r} K(r)$$

$$\downarrow^{g^*} \qquad \qquad \downarrow^{Kg}$$

$$\operatorname{Hom}(A,r) \xrightarrow{\alpha_A} K(A)$$

In the naturality diagram for α , note that $\beta_A(g) = (Kg \circ \alpha_r)(id_r)$ is the result of following the red path. Also note that following the blue path gives $\alpha_A(g^*(\mathrm{id}_r)) = \alpha_A(g)$, so $\beta_A(g) = \alpha_A(g)$. Then $\beta = \alpha$, and we are done. \boxtimes