rupy: 1 isy:
rupy: 1
rupy: 1
1
isy:
isy:
Wilston
alak
alak za pop

Cel ćwiczenia

Celem ćwiczenia jest zapoznanie się z właściwościami oraz pomiar charakterystyki tłumienia wtrąceniowego przeciwzakłóceniowych filtrów sieciowych.

Aparatura pomiarowa

- Urządzenie pomiarowe RFT SMV 11 Veb Messelektronik Berlin 0,01...30MHz 220V 50/400Hz (OWR-T6-23).
- 2. Filtr Schaffner 110/250VAC 50/60Hz (FN2070B-6-06).
- 3. Filtr WE-CLFS 250VAC 50/60Hz (810911006).
- 4. Filtr Strorschuss Dr. Typ III (36483570).
- 5. Filtr (duży metalowy).
- 6. Przejście BNC/BNC.
- 7. Adapter BNC/kabelki.

Przebieg ćwiczenia

Pomiar metodą klasyczną

Zdecydowaliśmy się na pomiary:

- Kontrolny samym przejściem BNC-BNC
- Filtrem 1 (zdjęcie, cegła)
- Filtrem 2 (zdjęcie, mały)

Wybraliśmy te urządzenia głównie ze względu na ich skrajnie różny rozmiar oraz dlatego, że jedno z nich wymagało dodatkowego adaptera, a drugie nie. Postanowiliśmy zaobserwować różnice w pomiarach przy tych warunkach. Po ustawieniu kalibracji i przygotowania stanowiska mogliśmy przystąpić do pomiarów.

Pierwszy został wykonany jedynie przejściem BNC-BNC, bez filtra. Miał on na celu określenia tłumienia występującego w samych kablach. Oczekiwany sygnał o napięciu 100dBμV przy częstotliwości bazowej 100kHz po przejściu przez kabel spadło do 98.8dBμV. Oznacza to, że 98.8dBμV powinno być naszym punktem odniesienia w metodzie klasycznej.

Z tą wiedzą mogliśmy przystąpić do serii pomiarów z filtrami. Zaczęliśmy od powrotu do częstotliwości bliskiej 100kHz (konkretnie 99.8kHz), ponownego sprawdzenia kalibracji. Zmierzone napięcie wynosiło 83.1dBμV – już na minimalnej częstotliwości filtr tłumił sygnał. Naszym zadaniem było ostrożne zwiększanie częstotliwości aż różnica pomiędzy napięciami wynosiła 3dB – udało nam się osiągnąć 80.2dBμV dla częstotliwości 103.8kHz. Procedura była wykonywana iteracyjnie do osiągnięcia 20 pomiarów.

i	f [kHz]	tłumienie 1 (cegla) [dB(mu)V]
1	99,8	83,1
2	103,8	80,2
3	107,5	77,1
4	111,9	74,1
5	118,5	71,0
6	125,2	68,0
7	134,6	65,0
8	143,5	62,0
9	153,9	59,0
10	167,7	56,0
11	180,2	53,0
12	197,8	50,0
13	212,5	47,0
14	229,2	44,0
15	249,9	41,1
16	269,3	38,0
17	294,9	35,0
18	316,8	32,0
19	344,4	29,0
20	393,9	26,0

Tabela 1: Spadek amplitudy napięcia dla rosnącej częstotliwości przy wykorzystaniu filtra 1

Wykres 1: Zależność amplitudy napięcia od częstotliwości przy wykorzystaniu filtra 1 (w skali liniowej)

Wykres 2: Zależność amplitudy napięcia od częstotliwości przy wykorzystaniu filtra 1 (w skali logarytmicznej)

Tłumienie występowało po już niewielkich różnicach w częstotliwości, zatem w tym wypadku bardziej czytelna jest skala liniowa.

Niepewność pomiarowa wynosi:

Tłumienie wtrąceniowe filtra wynosi:

Bardzo podobna seria pomiarów została wykonana dla drugiego filtra. Po ponownym ustawieniu częstotliwości na bliską 100kHz (100.2kHz) zostało zmierzone napięcie – 80.8dBμV, po czym częstotliwość była zwiększa na do osiągnięcia różnicy 3dB – kolejno 196.2kHz i 78.0dBμV. Ponownie, zadanie było wykonywane rekurencyjnie.

Niestety, okazało się, że elementy naszej aparatury pomiarowej były uszkodzone – najprawdopodobniej albo filtr albo adaptery, które wykorzystywał. Zostało to zgłoszone na zajęciach. Przy pomiarach 12-14 wyniki były niedokładne, ponieważ wskazówka miernika nieprecyzyjnie i nieprzewidywalnie oscylowała wokół oczekiwanej wartości, a sam miernik po przesunięciu filtra zaczął wskazywać wartości o około 4dB mniejsze.

Ze względu na niewiarygodność późniejszych wyników, eksperyment został przerwany, a urządzenia zostały później zweryfikowane wektorowym analizatorem sieci.

i	f [kHz]	tłumienie 2 (maly) [dB(mu)V]
1	100,2	80,8
2	196,2	78,0
3	387,7	75,0
4	567,1	71,9
5	772,2	69,0
6	1042,8	66,0
7	1305,7	63,0
8	1678,6	60,0
9	1961,5	56,9
10	2331,0	53,8
11	2751,5	50,9
12	3103,5	48,0
13	3634,9	45,0
14	4787,9	42,1

Tabela 2: Spadek amplitudy napięcia dla rosnącej częstotliwości przy wykorzystaniu filtra 2

Wykres 3: Zależność amplitudy napięcia od częstotliwości przy wykorzystaniu filtra 2 (w skali liniowej)

Wykres 4: Zależność amplitudy napięcia od częstotliwości przy wykorzystaniu filtra 2 (w skali logarytmicznej)

W tej serii pomiarów skala logarytmiczna jest bardziej czytelna i prawdopodobnie byłoby to jeszcze bardziej

widoczne po wykonaniu wszystkich 20 planowanych pomiarów.

Niepewność pomiarowa wynosi:

Tłumienie wtrąceniowe filtra wynosi:

TODO: Wyznaczyć tłumienie wtrąceniowe filtra, wyznaczyć niepewności pomiarowe (do policzenia, pokaż

obliczenia, zaaplikuj do wykresu)

Pomiar metoda uproszczona

Pomiar metodą uproszczoną został pominięty zgodnie z poleceniem prowadzącego, lecz dawałby on podobne

wyniki, ponieważ generator sygnałów dawał wyniki bliskie oczekiwanym.

Pomiar wektorowym analizatorem sieci

Zgodnie z instrukcjami, po uruchomieniu VectorVu-PC, ograniczeniu zakresu pomiaru oraz zmianie skali na

logarytmiczną można było zmierzyć nowy punkt odniesienia – pomiar dla samego przejścia BNC-BNC. Po

wykonaniu tego kroku i kalibracji można było wykonać pomiar amplitudy napięcia dla różnych poziomów

częstotliwości przy użyciu filtrów z poprzedniego pomiaru. Wyniki zostały zaobserwowane przez nas oraz

zapisane w postaci pliku .s2p.

[wyniki pomiaru 1]

[porównanie z naszym pomiarem]

[wyniki pomiaru 2]

[porównanie z naszym pomiarem]

TODO: to co wyżej

Wnioski, obserwacje i analiza

TODO: wnioski – niech każdy z nas napisze osobno a potem przedyskutujemy

str. 6