PCT/JP2004/014300

19,10,2004

REC'D 1 1 NOV 2004

WIPO

PCT

PA 1209714

# THIR UNITED STATES OF ANDREIGA

TO MILTO WHOM THUSE: PRESENTS SHAM COMES

UNITED STATES DEPARTMENT OF COMMERCE

**United States Patent and Trademark Office** 

September 30, 2004

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE UNDER 35 USC 111.

APPLICATION NUMBER: 60/507,124

FILING DATE: October 01, 2003

# PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

By Authority of the

COMMISSIONER OF PATENTS AND TRADEMARKS

E. BORNETT

**Certifying Officer** 

MODIFIED PTO/SB/16 (06-03)

# PROVISIONAL APPLICATION FOR PATENT COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53(c).

|                                                                              | INVENTOR(S)                                                                                                                                                    |                            |                                       |  |  |  |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------|--|--|--|
| Charles (Cara I 119 ct 2                                                     | Residence (City and either State or Foreign Country)                                                                                                           |                            |                                       |  |  |  |
| Given Name (first and middle [if any])                                       | <del> </del>                                                                                                                                                   |                            |                                       |  |  |  |
| Takeshi IWASAKI                                                              | ·                                                                                                                                                              | Ome,                       | JAPAN                                 |  |  |  |
| Soichi OIKAWA                                                                |                                                                                                                                                                | Ome,                       | JAPAN                                 |  |  |  |
| Futoshi NAKAMURA                                                             |                                                                                                                                                                | Ome,                       | JAPAN                                 |  |  |  |
| Tomoyuki MAEDA                                                               |                                                                                                                                                                | Ome,                       | JAPAN                                 |  |  |  |
| Additional inventors are being name                                          | d on the <u>1</u> separately numbered sheet(s) o                                                                                                               | ittached hereto            |                                       |  |  |  |
|                                                                              | TITLE OF THE INVENTION (500 chara                                                                                                                              |                            |                                       |  |  |  |
| PERPENDICULAR MAGNETIC R                                                     | ECORDING MEDIUM AND MAGNETIC RE                                                                                                                                | CORDING AND REPRODUC       | ING APPARATUS                         |  |  |  |
| Direct all correspondence to                                                 | CORRESPONDENCE ADDRES  the address for SUGHRUE MION, PLLC filed  WASHINGTON OFFICE  23373  CUSTOMER NUMBER                                                     |                            | 2515 U.S. PT<br>60/507124<br>10/01/03 |  |  |  |
| ENCLOSED APPLICATION PARTS (check all that apply)                            |                                                                                                                                                                |                            |                                       |  |  |  |
| Specification (Japanese  Language)  Number of Page.                          | s 16 🔲 CD(s), Num                                                                                                                                              | ber                        |                                       |  |  |  |
| ☑ Drawing(s) Number of Sheet                                                 | o 7 D Other (specia                                                                                                                                            | fy)                        |                                       |  |  |  |
| ☐ Application Data Sheet. See 37 CF                                          | R 1.76                                                                                                                                                         | •                          |                                       |  |  |  |
| METHOD OF PAYMENT OF FILING FEES FOR THIS PROVISIONAL APPLICATION FOR PATENT |                                                                                                                                                                |                            |                                       |  |  |  |
| ☐ Applicant claims small entity statu                                        | s. See 37 CFR 1.27.                                                                                                                                            |                            |                                       |  |  |  |
| authorized to charge all required fo<br>No. 19-4880. Please also credit ar   | d to cover the Provisional filing fees. The USP ses, except for the Issue Fee and the Publication by overpayments to said Deposit Account.                     | Fee, to Deposit Account    | FILING FEE<br>AMOUNT (\$)             |  |  |  |
| The USPTO is directed and author                                             | to charge the Provisional filing fees to our Depo-<br>ized to charge all required fees, except for the Iss<br>380. Please also credit any overpayments to said | ue Fee and the Publication | \$160.00                              |  |  |  |
| ☑ No.                                                                        | ne United States Government or under a contract                                                                                                                | - •                        | States Government.                    |  |  |  |
| Respectfully submitted,                                                      | <del></del>                                                                                                                                                    |                            |                                       |  |  |  |
| SIGNATURE Shellon I                                                          | Landsman                                                                                                                                                       | DATE October 1, 2003       |                                       |  |  |  |
| TYPED or PRINTED NAME Sheldon I. Landsman REGISTRATION NO. 25,430            |                                                                                                                                                                |                            |                                       |  |  |  |
| TELEPHONE NO. (202) 293-7060                                                 | DOCKET NO. P77750                                                                                                                                              |                            |                                       |  |  |  |

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

MODIFIED PTO/SB/16 (06-03) P77750

# PROVISIONAL APPLICATION FOR PATENT COVER SHEET Additional Page

|                                       | Docket Number          | P777                                                    | 50    |  |
|---------------------------------------|------------------------|---------------------------------------------------------|-------|--|
|                                       | inventor(s)            |                                                         |       |  |
| Given Name (first and middle if any]) | Family Name or Surname | Residence<br>(City and either State or Foreign Country) |       |  |
| Hiroshi SAKAI                         |                        | Ichihara,                                               | JAPAN |  |
| Akira SAKAWAKI                        |                        | Ichihara,                                               | JAPAN |  |
| Kenji SHIMIZU                         |                        | Ichihara,                                               | JAPAN |  |

### 【書類名】明細書

【発明の名称】垂直磁気記録媒体、及び磁気記録再生装置 【技術分野】

本発明は、磁気記録技術を用いたハードディスク装置等に用いられる磁気記録媒体、及 びそれを用いた磁気記録再生装置に用いて好適な技術に関する。

#### [背景技術]

従来技術として、面内磁気記録方式を用いた磁気記録媒体はよく知られている。一方、 磁気記録媒体に対する将来的な高密度化の要求に対応するために、面内磁気記録方式に代 わる方式として、垂直磁気記録方式が注目されつつある。垂直磁気記録媒体は、主に、略 垂直方向に磁化された強磁性の磁気記録層と、磁気記録層を垂直方向に配向させるための 下地層と、磁気記録層の表面を保護する保護膜とから構成されている。更に、この他に、 磁気記録層への記録に用いられる磁気ヘッドが発生する磁束を集中させる役割を担う軟磁 性材料からなる軟磁性裏打ち層を設ける場合もある。

面内磁気記録媒体と同様に、垂直磁気記録媒体に対しても、髙記録密度化が求められて いる。磁気記録媒体の髙記録密度化を達成するためには、低ノイズ化とともに高い熱揺ら ぎ耐性を両立させることが必要不可欠である。すわなち、熱揺らぎ耐性を高めるために結 晶磁気異方性Kuを増大させながら、低ノイズ化を目的とした磁気記録層の結晶粒子径の 微細化、および磁性粒子間の磁気的相互作用の低減を達成しなければならない。

低ノイズ化とともに高い熱揺らぎ耐性を両立させるために、従来から様々な磁性層およ び下地層の組成、構造、材質等が提案されてきた。特に近年、結晶粒子を、非磁性の酸化 物や窒化物などの粒界相で包囲したグラニュラ磁性層を用いた磁気記録媒体が提案されて いる。(例えば、特許文献1、2参照)

従来用いられてきたC r 偏析型のC o C r 系金属磁性膜では、高温で製膜することによ り、Crが粒界に析出し、磁性粒子間の磁気的相互作用を低減させている。しかしながら 、Crは、Coと一部固溶するため、磁性粒子内からCrを充分に析出させて、Crのみ の粒界相を形成することは困難であった。一方、グラニュラ磁性層の場合は、Соと非固 溶の非磁性化合物を粒界相として用いるため、従来のCrに比べて偏析し易く、比較的容 易に磁性粒子の孤立化が促進できる利点がある。

#### [0005]

【特許文献1】特公平07-311929号公報 【特許文献2】特開2002-15417号公報

#### 【発明の開示】

【発明が解決しようとする課題】

しかしながら、非磁性化合物を添加したグラニュラ膜の場合、化合物の一部が分解する ことで磁性粒子にまで拡散して、磁気記録層の結晶配向性や磁気特性の劣化がしばしば発 生する。そのため、非磁性化合物の添加量は、少量に抑えられるのが一般的である。一方 で、今後の磁気記録媒体の髙密度化に対応するためには、さらなる磁気記録層の結晶粒子 径の微細化や粒子間磁気的相互作用の低減などが必要であり、そのためには、結晶配向性 や磁気特性を劣化させずに非磁性化合物の添加量を増やす必要があった。

本発明は、上記の事情に鑑みてなされたもので、以下の目的を達成しようとするもので ある。

本発明の第1の目的は、磁気記録層の結晶粒界相を2種類以上の酸化物で形成すること で、安定な結晶粒界相を提供し、磁性粒子間の相互作用を低減することで低ノイズ化を実 現し、より高密度記録が可能な垂直磁気記録媒体を得ることにある。

また、本発明の第2の目的は、磁気記録層に安定な結晶粒界相を提供し、磁性粒子間の相互作用を低減することで低ノイズ化を実現し、より高密度記録が可能な磁気記録再生装置を得ることにある。

【課題を解決するための手段】

[8000]

本発明は以下の手段を提供する。ずなわち、

(1) 非磁性基板上に、少なくとも非磁性下地層と磁性層と保護膜とが順次積層されてなる垂直磁気記録媒体であって、

前記磁性層は、強磁性の結晶粒と非磁性の結晶粒界相とからなり、

該結晶粒界相が2種類以上の酸化物からなることを特徴とする垂直磁気記録媒体。

- (2) 前配結晶粒界相を形成する酸化物が、
- Y, W, Mg, Al, Zr, Hf, Ti, Ce, Si, Cr, NiおよびTaから選ばれる2種類以上の酸化物を含むことを特徴とする前項1記載の垂直磁気記録媒体。
  - (3) 前配結晶粒界相を形成する酸化物が、
- Y, W, Mg, Al, ZrおよびHfからなるA群から選ばれる少なくとも一つの酸化物と、
- Ti, Ce, Si, Cr, NiおよびTaからなるB群から選ばれる少なくとも一つの酸化物とから構成されることを特徴とする前項2記載の垂直磁気記録媒体。
  - (4) 前記A群から選ばれる酸化物が、

YおよびWから選ばれる酸化物から構成されることを特徴とする前項3記載の垂直磁気 記録媒体。

- (5) 前記B群から選ばれる酸化物が、
- Si, CrおよびTaから選ばれる酸化物から構成されることを特徴とする前項3ないし4に記載の垂直磁気記録媒体。
- (6) 前記結晶粒界相を形成する酸化物のうち、

A群から選ばれる酸化物の含有量(モル百分率)が、B群より選ばれる酸化物の含有量 (モル百分率)より少ないことを特徴とする前項3ないし5に配載の垂直磁気記録媒体。

(7) 前記結晶粒界相を形成する酸化物のうち、

B群から選ばれる酸化物の酸素濃度が、化学量論比から算出される濃度比より少ないことを特徴とする前項3ないし6に記載の垂直磁気記録媒体。

- (8) 結晶粒界相における全ての被酸化元素に対する酸素の濃度比が、全ての酸化物の化学量論比の和から算出される濃度比より少ないことを特徴とする前項1ないし7に記載の垂直磁気記録媒体。
- (9) 前記結晶粒界相を形成する酸化物が、

併せて0.1ないし30mol%磁性層中に含有されることを特徴とする前項1ないし8に記載の垂直磁気記録媒体。

(10) 前記結晶粒界相を形成する酸化物が、

- 併せて1ないし20mo1%磁性層中に含有されることを特徴とする前項1ないし9に - 記載の垂直磁気記録媒体。

- (1\_1) 前記磁性層に含まれる結晶粒子が、CoPt合金を主成分とすることを特徴とする前項1ないし10に記載の垂直磁気記録媒体。
- (12) 前記非磁性下地層が、Ruを主成分とすることを特徴とする前項1から11のいずれか-1-項に記載の垂直磁気記録媒体。
- (13) 前記非磁性基板と非磁性下地層の間に、少なくとも一層の軟磁性層を有することを特徴とする前項1から12のいずれか1項に配載の垂直磁気記録媒体。
- (14) 前項1ないし13のいずれか1項に記載の垂直磁気記録媒体と、 該垂直磁気 記録媒体を支持および回転駆動する機構と、

該垂直磁気記録媒体に対して情報の記録を行うための素子及び記録された情報の再生を 行うための素子を有する磁気ヘッドと、

該磁気ヘッドを該垂直磁気記録媒体に対して移動自在に支持したキャリッジアッセンブ

.. リと、を具備することを特徴とする磁気記録再生装置。

前記記録再生ヘッドは、単磁極記録ヘッドである前項14に記載の磁気記録再 (15)生装置。

本発明は、第1に、非磁性基板と、該非磁性基板上に形成された少なくとも1層の非磁 性下地層と、該非磁性下地層上に形成され、結晶粒子及び該結晶粒子を分離する結晶粒界 相を有する磁性層(垂直磁気記録層)を有する垂直磁気記録媒体であって、前記結晶粒界 相に2種類以上の酸化物を含むことを特徴とする垂直磁気記録媒体を提供する。・

本発明は、第2に、上記垂直磁気記録媒体と、該垂直磁気記録媒体を支持および回転駆 動する機構と、該垂直磁気記録媒体に対して情報の記録を行うための素子及び記録された 情報の再生を行うための素子を有する磁気ヘッドと、該磁気ヘッドを該垂直磁気記録媒体 に対して移動自在に支持したキャリッジアッセンブリとを具備することを特徴とする磁気 記録再生装置を提供する。

本発明の垂直磁気記録媒体は、非磁性基板、該非磁性基板上に順に形成された非磁性下 地層、及び磁性層を有する。この磁性層は、結晶粒子及び該結晶粒子を分離する結晶粒界 相とを含み、この結晶粒界相は、2種類以上の酸化物を含有する。本発明の磁気記録再生 装置は、上述の垂直磁気記録媒体を適用した装置であって、この垂直磁気記録媒体と、記 録再生ヘッドとを含む。

本発明の垂直磁気記録媒体は、その磁性層(垂直磁気記録層)が、多数の結晶粒子と、 それを分離する結晶粒界相を含む。本発明では、結晶粒界相として、2種類以上の酸化物

一般に、化合物の標的物質からスパッタリング法などの蒸着法により基板上に薄膜を作 を使用している。 製する際、標的物質は原子状態となって基板上に飛来し、その後、再結合を経て化合物を 形成する。この時、磁性層における結晶粒界相を形成する物質として1種類の酸化物を用 いた場合、製膜中に一部が酸素として気化、あるいは膜中で原子単位に分解してしまい、 化合物中に酸素欠損が発生しやすくなる。この時、分解した元素が拡散することで、結晶 粒子中に取り込まれ、結晶配向性の乱れや結晶磁気異方性エネルギーの低下をもたらす。

一方、磁性層における結晶粒界相を形成する物質として、2種類以上の酸化物を用いる と、たとえ気化等で酸素欠損が発生しても、酸化物同士で酸素を補うような働きを持たせ ることによって、結晶粒界相から結晶粒子への拡散を起こりにくくすることができる。ま た、2種類以上の酸化物で粒界相を形成した場合には、1種類で形成する場合に比べ、強 固で安定な粒界相を形成することが可能となる。これにより、結晶粒界相を1種類の酸化 物で形成する場合に比べて、2種類以上の酸化物で形成する方が、酸化物の組成量を少な くすることが可能となる。

また、2種類以上の酸化物として、酸化物生成標準自由エネルギー (ΔG°) の異なる 酸化物を用いることで、 $\Delta G \circ$ の大きい酸化物から $\Delta G \circ$ の小さい酸化物への還元作用が、 発生する。この際、△G○の大きい酸化物に幾らかの酸素欠損が生じるが、還元反応によ って発生するエネルギーによって、磁性層内に再拡散が起こり、粒子内から粒界への酸化 物の偏析が促進される。

#### 【発明の効果】

本発明によれば、磁性層(垂直磁気記録層)の結晶粒界相を2種類以上の酸化物で形成 することで、磁性層において充分な結晶粒界相ができると同時に、結晶粒界相物質の磁性 粒子内への拡散が起こりにくくなり、磁性層の結晶配向性および磁気的特性を良好とする ことができるとともに、磁性層の磁性粒子を微細化できるため、安定な結晶粒界相を提供 し、磁性粒子間の相互作用を低減することで低ノイズ化を実現し、より高密度記録が可能 な垂直磁気記録媒体を得ることができるという効果を奏することができる。

# 【発明を実施するための最良の形態】

#### [0014]

以下、本発明に係るの第1実施形態を、図面に基づいて説明する。

図1は、本実施形態における垂直垂直磁気記録媒体の一例を表す断面図であり、図にお いて、符号10は垂直磁気記録媒体である。

本実施形態における垂直磁気記録媒体10は、図1に示すように、非磁性基板1上に、 非磁性下地層 2、磁性層(垂直磁気配録層) 3、および保護膜 4 が順に積層された構造を 有する。

非磁性基板1として、ガラス基板、A1系の合金基板あるいは表面が酸化したSi単結 晶基板、セラミックス、及びプラスチック等を使用することができる。さらに、それら非 磁性基板表面にNiP合金などのメッキが施されている場合でも、同様の効果が期待され るため適応することができる。

また、非磁性基板1と磁性層3との間に、非磁性下地層2を含む少なくとも1層の下地 層を設けることができる。非磁性下地層2を含む下地層としては、例えばRu,RuCr ,Hf,CoCrPtおよびCoCrPtBを使用することができる。

本実施形態に用いられる非磁性下地層2の好ましい厚さは、1ないし50nm、さらに 好ましくは1ないし30mmである。1mm未満であると、非磁性下地層2の結晶性が悪 く、よって磁性層(垂直磁性記録層) 3 の結晶性も悪くなり、ノイズが大きくなる傾向が あり、50nmを超えると、垂直磁性記録層3の磁性粒子が大きくなりノイズが増大する 傾向がある。

上記非磁性下地層2の結晶性をさらに改善するために、非磁性基板1と上記非磁性下地 層2の間に、さらにもう一層の図示しない下地層(シード層)を使用することができる。 シード層としては、例えばTi, TiCr, Hf, Pt, Pd, NiFe, NiFeMo , NiFeCr, NiAl、NiTaおよびNiNbを使用することができる。

磁性層(垂直磁気記録層) 3は、2種類以上の酸化物より形成される結晶粒界相と、C oPtを主成分とする磁性結晶粒子から形成される。また、磁性層3は、異なった組成の 磁性層を2層以上積層させることもできる。

磁性層3の結晶粒子を構成する物質として、CoPt系合金、CoCr系合金、CoC rPt系合金、CoCrPtB系合金、及びCoCrPtTa系合金等を使用することが できる。 これらの合金は、結晶配向性が良い、磁気異方性が大きい、熱ゆらぎ耐性に優 れているという利点を有する。

磁性層3の結晶粒界相を構成する物質として、Y, W, Mg, Al, Zr, Hf, Ti Ce, Si, Cr, NiおよびTaから選ばれる2種類以上の酸化物を含むことが好ま しい。このとき、酸化物生成標準自由エネルギー(ΔGO)の差から酸化物間に酸化還元 反応が起こり、その発生したエネルギーによって拡散が促進され、粒界相が成長して、磁 **性粒子(紡晶粒子)間の磁気的相互作用を低減することができる。** 

さらに好ましくは、磁性層3の結晶粒界相を構成する物質が、Y,W,Mg,Al,Z r, およびHfからなるA群から選ばれる少なくとも一つの酸化物と、Ti, Ce, Si . Сг, Ni およびTaからなるB群から選ばれる少なくとも一つの酸化物とから構成さ れることができ、これらの組み合わせの酸化物を用いることにより、酸化物生成標準自由 エネルギー( $\Delta G \circ$ )の差が大きくなり、酸化物間に酸化還元反応が起こりやすくなり、 その発生したエネルギーによって拡散が促進され、結晶粒界相がさらに成長して、磁性粒 子(結晶)間の磁気的相互作用を低減することができる。

[0022]

さらに、磁性層 3 の結晶粒界相を構成する物質が、A群より Y およびW から選ばれる少なくとも一つの酸化物と、B群より S i,C r およびT a から選ばれる少なくとも一つの酸化物とから構成されることがより好ましい。Y やW は  $\Delta$  G O が小さくて還元作用が強く、酸化還元反応が起こった際に発生するエネルギーが大きいことが期待される。一方、S i,C r およびT a は仮に分解によって磁性粒子内に入っても、その磁気特性を乱しにくいという特徴を持っている。

[0023]

また、上述の酸化還元反応によって、B群の酸化物はA群の酸化物に酸素を奪われるために、B群の酸化物に酸素欠乏が生じることとなる。結果として、B群の酸化物は化学量論比から算出される濃度比より少なくなっている。

また、これらの酸化還元反応は、磁性層3の粒界相構成時に、結晶粒界相を構成する酸化物にいくらかの酸素欠損を生じていたほうが反応が促進されやすい。すなわち、結晶粒界相における全ての被酸化元素に対する酸素濃度比が、それら全ての酸化物の化学量論比の和から算出される濃度比より少なくなっているほうが、酸化還元反応は促進され、拡散のエネルギーを得ることができる。

ここで、化合物の化学量論比とは、スパッタリング等の蒸着法に用いられる標的物質を構成する化合物の組成比を指している。また、酸素ガス雰囲気中で被酸化元素を飛ばして酸化物を形成する反応性スパッタリング法等を用いる場合には、その元素の化学的に最も安定な組成比のことを指している。

[0024]

また、磁性層3における結晶粒界相を形成する酸化物の含有量(モル百分率)として、 上記A群から選ばれる酸化物の含有量(モル百分率)がB郡から選ばれる酸化物の含有量 (モル百分率)より少ないことが好ましい。A群の酸化物が多すぎると、B群の酸化物が 還元されすぎて、B群の物質が磁性粒子内に拡散して結晶性が悪化する。

また、磁性層3中における結晶粒界相を形成する酸化物の含有量が、0.1ないし30mol%であることが好ましく、より好ましくは、1ないし20mol%であることができる。磁性層3中における結晶粒界相を形成する酸化物の含有量が0.1mol%未満であると、結晶粒界相の形成が不十分で磁性層3の磁気的相互作用が強くなる傾向があり、30mol%を超えると、結晶粒界相物質の一部が結晶粒子内に拡散し、磁性層(垂直磁気記録層)3の結晶配向性を低下させる傾向がある。結晶粒界相を形成する物質(酸化物)が0.1から30mol%の範囲内であると、充分な結晶粒界相ができると同時に、結晶粒界相物質の磁性粒子(結晶)内への拡散が起こりにくくなり、磁性層3の結晶配向性および磁気的特性を良好とすることができる。

[0025]

さらに、本実施形態においては、得られた垂直磁気記録媒体10表面、例えば磁気記録 層である磁性層3表面、あるいは保護層4表面の上に、例えばディップ法等によりパーフ ルオロポリエーテル等の潤滑剤を塗布し、図示しない潤滑層を形成することができる。

[0026]

磁性層(垂直磁気記録層) 3 上には、少なくとも1 層の保護層4 を設けることができる。保護層4 としては、例えばC. ダイアモンドライクカーボン(DLC)、S i N x . S i O x 、 およびC H x が挙げられる。

[0027]

本実施形態における垂直磁気記録媒体10を製造する際に、各層を積層する際の製造方法としてはスパッタリング法等の蒸剤法が適応でき、特に、スパッタリング法として、コンポジットターゲットを用いた単元のスパッタリング法を用いることができる。また、それぞれの物質のターゲットを用いた、多元同時スパッタリング法を用いることもできる。

[0028]

本実施形態における垂直磁気記録媒体10は、上記のような構成としたため、磁性層( 垂直磁気記録層)3の結晶粒界相を2種類以上の酸化物で形成することで、磁性層3にお いて充分な結晶粒界相ができると同時に、結晶粒界相物質の磁性粒子内への拡散が起こり にくくなり、磁性層3の結晶配向性および磁気的特性を良好とすることができる。このた め、安定な結晶粒界相を提供し、磁性粒子間の相互作用を低減することで低ノイズ化を実 現し、より高密度記録が可能な垂直磁気記録媒体を得ることができる。

[0029]

. .

٠,

以下、本発明に係るの第2実施形態を、図面に基づいて説明する。

図2は、本実施形態における垂直垂直磁気記録媒体20の一例を表す断面図である。

本実施形態において、上述の第1実施形態と異なるのは、図2に示すように、非磁性基板1と非磁性下地層2との間に、軟磁性層5が形成されている点であり、それ以外の相当する構成要素には同一の符号を付してその説明を省略する。

[0030]

本実施形態における垂直垂直磁気記録媒体20のように、高透磁率な軟磁性層5を設けることにより、軟磁性層5上に磁性層(垂直磁気記録層)3を有するいわゆる垂直二層媒体が構成される。この垂直二層媒体において、軟磁性層5は、垂直磁磁気記録層3を磁化するための磁気ヘッド、例えば単磁極ヘッドからの記録磁界を、水平方向に通して、磁気ヘッド側へ還流させるという磁気ヘッドの機能の一部を担っており、磁界を記録する磁性層(垂直磁気記録層)3に急峻で充分な垂直磁界を印加させ、記録再生効率を向上させる役目を果たし得る。

軟磁性層 5 における軟磁性材料としては、飽和磁束密度が高く、軟磁気特性が良好なCoZrNb、CoTaZr、FeCoB、FeCoN、FeTaC、FeTaN、FeNi、及びFeAlSiなどが用いられる。

[0031]

以下、本発明に係るの第3実施形態を、図面に基づいて説明する。

図3は、本実施形態における垂直垂直磁気記録媒体30の一例を表す断面図である。

本実施形態において、上述の第2実施形態と異なるのは、図3に示すように、非磁性基板1と軟磁性層5との間に、バイアス付与層6が形成されている点であり、それ以外の相当する構成要素には同一の符号を付してその説明を省略する。

100321

本実施形態における垂直垂直磁気記録媒体30では、図3に示すように、軟磁性層5と非磁性基板1との間に、例えば面内硬磁性膜及び反強磁性層等のパイアス付与層6を設けることができる。軟磁性層5は磁区を形成しやすく、この磁区からスパイク状のノイズが発生することから、パイアス付与層6の半径方向の一方向に磁界を印加することにより、その上に形成された軟磁性層5にバイアス磁界をかけて磁壁の発生を防ぐことができる。パイアス付与層6を積層構造として異方性を細かく分散して大きな磁区を形成しにくくすることもできる。

パイアス付与層 6 材料としては、CoCrPt、CoCrPtB、CoCrPtTa、CoCrPtC、CoCrPtCuB、CoCrRuB、CoCrPtWC、CoCrPtWB、CoCrPtTaNd、CoSm、CoPt、CoPtO、CoCrPtO、CoPt-SiO2、及びCoCrPtO-SiO2が挙げられる。

[0033]

図4に、本発明の磁気記録再生装置の一例を一部分解した斜視図を示す。

図4に示されるように、本発明の垂直磁気記録装置は、上面の開口した矩形箱状の筐体61と、複数のねじにより筐体61にねじ止めされる筐体の上端開口を閉塞する図示しないトップカバーを有している。

[0034]

筐体61内には、上述した実施形態の垂直磁気記録媒体10を用いた磁気記録媒体62、この磁気記録媒体62を支持及び回転させる駆動手段としてのスピンドルモータ63、磁気記録媒体62に対して磁気信号の記録及び再生を行う磁気ヘッド64、磁気ヘッド64を先端に搭載したサスペンションを有し且つ磁気ヘッド64を磁気記録媒体62に対して移動自在に支持するヘッドアクチュエータ65を回転自在

に支持する回転軸66、回転軸66を介してヘッドアクチュエータ65を回転及び位置決めするボイスコイルモータ67、ヘッドアンプ回路68が収納されている。

このように、垂直磁気記録装置60の磁気記録媒体62に、本発明の各実施形態に係る垂直磁気記録媒体10を用いることができる。

本実施形態の垂直磁気記録再生装置によれば、上記の垂直磁気記録媒体10を用いることで、垂直磁気記録層3に安定な結晶粒界相を提供し、磁性粒子間の相互作用を低減することで低ノイズ化を実現し、より高密度記録が可能な磁気記録再生装置を得ることができる。

#### 【実施例】

. ... .

[0035]

以下、実施例を示し、本発明を具体的に説明する。

#### <実施例1>

2. 5インチ磁気ディスク用のガラス基板からなる非磁性基板を用意した。

1×10-5Paの真空度の真空チャンバー内に非磁性基板を設置し、基板温度を250℃まで加熱して、ガス圧0.6PaのAr雰囲気中でDCマグネトロンスパッタリングを行った。

まず、非磁性基板をターゲットに対向するように配置し、DC500Wをターゲットに放電し、裏打ち非磁性層として、Cr層を厚さ40nm形成した。その上に厚さ25nmになるようにパイアス付与層として、CoCrPt強磁性層を製膜した。得られたCoCrPt強磁性層上に、厚さ200nmのCoZrNb軟磁性層を形成した。

[0036]

その後、 $1\times10^{-5}$  Paの真空度の真空チャンパー内において、基板温度を室温まで低下させた。Co2rNb 軟磁性層上に、非磁性シード層として、NiTa9ーゲットを用いて、DC500 Wで放電し、厚さ10nmになるように製膜してNiTa 層を形成した。次に、非磁性シード層上に、非磁性下地層として、Ru9ーゲットを用いて、DC500 Wで放電し、厚さ20nmになるように製膜してRu 層を形成した。次に、Ru 層上に、(Co-16at%Pt-10at%Cr)-3mol%Y2O3-5mol%SiO2のコンポジットターゲットを用意し、<math>Ru 下地膜上に、CoPtCr-Y2O3-SiO2垂直磁気記録層を<math>12nm 製膜した。

最後に、C保護層を7nmの厚さで製膜した。

このように真空容器内で連続して製膜した基板を大気中に取り出した後、ディップ法によりパーフルオロポリエーテル系潤滑膜を1.5 nmの厚さに形成し、垂直磁気記録媒体を得た。 ・

[0037]

図5に、得られた垂直磁気記録媒体の構成を表す概略断面図を示す。

図示するように、この垂直磁気記録媒体40は、非磁性基板1上に、Cr非磁性膜18、CoCrPt強磁性層16、CoZrNb軟磁性層15、NiTaシード層19、Ru下地層12、CoPtCr-Y2O3-SiO2垂直磁気記録層(垂直磁性層)13、C保護層14、及び図示しない潤滑層を順次積層した構造を有する。

[0038]

まず、得られた垂直磁気記録媒体 40の垂直磁気記録層13に対して透過型分析電子顕微鏡 (TEM) 測定を行い、垂直磁気記録層13中の磁性粒子の粒径分布を調べた。その結果、4ないし6nmの粒径分布を持った微細なCo磁性粒子と1nm程度の厚さを持った結晶粒界相を観測することができた。

また、透過型分析電子顕微鏡を用いたエネルギー分散型X線分光装置(TEM-EDX)を用いて、垂直磁気記録層13に対して局所的な元素濃度分布を調べたところ、Coを主成分としたCo系磁性結晶粒子と、各Co系磁性結晶粒子の周りにYやSi、Ozを主、成分とした結晶粒界相が存在する構造を確認することができた。

[0039]

得られた垂直磁気記録媒体40について、電磁石を備えた着磁装置を用いて、円板上基

板の半径方向外向きに1185A/m(15000 Oe)の磁界を印加し、パイアス付 与層16である強磁性層の面内半径方向への磁化を行った。

着磁された垂直磁気配録媒体40について、米国GUZIK社製リードライトアナライ ザ1632及びスピンスタンドS1701MPを用いて、記録再生特性の評価を行った。 記録再生ヘッドは、記録部に単磁極、再生素子に磁気抵抗効果を利用した、記録トラック 幅 $0.25\mu m$ 、再生トラック幅 $0.15\mu m$ のヘッドを用いた。また、測定はディスク の回転数は4200 r pmで、中心より半径位置22.2 mmと一定の位置で行った。

その結果、媒体のSNRm(再生信号出力S : 線記録密度119kFCIの出力、N m: 716kFCIでのrms値(root mean square))が23.8 d Bという良好な媒体を得ることができた。

[0041]

比較例の垂直磁気記録媒体として、(Co-16at%Pt-10at%Cr)-8m <比較例1> o 1%SiO2のコンポジットターゲットを用い、垂直磁気記録層としてCoPtCrー SiO2層を12nmの厚さで形成した以外は、上記の実施例1の垂直磁気記録媒体40 と同様にして垂直磁気配録媒体を得た。

得られた比較例1の垂直磁気記録媒体は、垂直磁気記録層が異なること以外は、図5に 示す垂直磁気記録媒体と同様の層構成を有する。

また、比較例1として得られた垂直磁気記録媒体の垂直磁気記録層に対してTEM測定 を行い、この垂直磁気記録層中の磁性粒子の粒径分布を調べた。その結果、7ないし10 nmの粒径分布を持つことが分かった。

実施例1と同様に比較例1の垂直磁気記録媒体における記録再生特性の評価を行ったと ころ、SNRmが18.5dBであった。

粒界形成相として、1種類の酸化物を用いた比較例1の従来の媒体よりも、2種類の酸 化物を用いた実施例1の本発明の媒体の方が、良い特性を示すことが分かった。

[0043]

実施例2の垂直磁気記録層として、Co-16at%Pt-10at%Crと、下記表 <実施例2> 1に示すような様々な元素の酸化物の組み合わせからなるCoPtCr-4mol%A-4mol%Bコンポジットターゲット (ここで、Aは、Y2O3, WO3, MgO, Al 203, ZrO2, HfO2から選択された少なくとも一種以上、Bは、TiO2, Ce O2, SiO2, Cr2O3, NiO, Ta2O5から選択された少なくとも一種以上) を用意した。CoPtCr-3mol%Y2O3-5mol%SiO2のコンポジットタ ーゲットの代わりに、これらの様々な酸化物コンポジットターゲットを使用する以外は、 実施例1と同様にして、垂直磁気記録媒体を作成した。

得られた垂直磁気記録媒体は、垂直磁気記録層が異なること以外は、図5に示す垂直磁 気記録媒体と同様の層構成を有する。

得られた垂直磁気記録媒体に対して、実施例1と同様にして記録再生特性評価を行った 。その結果を表しに示す。

[0045]

#### 【表1】

|                                |    |                   |    |            | _           | _ |
|--------------------------------|----|-------------------|----|------------|-------------|---|
| A群                             | ا  | B群                |    | VRr<br>dB) | 1           |   |
| Y203                           | Ti | 02                | 2  | 2. 5       | 5           |   |
| Y203                           | С  | eO2               |    | 2. (       |             |   |
| Y2O3                           | S  | i0 <sub>2</sub>   | 2  | 3.         | 7           | 1 |
| Y203                           | C  | r203              | 2  | 23.        | 5           | ļ |
| Y203                           | N  | liO               | 12 | 22.        | 6           |   |
| Y203                           | 7  | a205              | 1: | 23.        | 6           |   |
| WO <sub>3</sub>                | 7  | i02               |    | 22.        | 1           |   |
| WO <sub>3</sub>                | To | CeO <sub>2</sub>  |    | 22.        |             |   |
| WO <sub>3</sub>                | T  | SiO <sub>2</sub>  |    | 23.        | 3           |   |
| WO <sub>3</sub>                | T  | Cr203             |    | 23.        | 5           |   |
| WO <sub>3</sub>                |    | NiO               |    | 22.        | 8           |   |
| wo <sub>3</sub>                |    | Ta205             |    | 23         | 2           |   |
| MgO                            |    | TiO <sub>2</sub>  |    | 21         | . 4         | 1 |
| MgO                            |    | CeO <sub>2</sub>  |    | 21         | . 9         |   |
| MgO                            |    | SiO <sub>2</sub>  |    | 22         | . 6         | 1 |
| MgO                            |    | Cr <sub>2</sub> O | 3  | 22         | . 7         | _ |
| MgO                            |    | NiO               |    |            | . 8         | ᅱ |
| MgO                            |    | Ta <sub>2</sub> O | 5  | 22         | 2. <u>3</u> |   |
| 比較例<br>の媒体<br>SiO <sub>2</sub> |    | _                 |    | 18         | 3. 5        | ; |
| 3.02                           |    |                   |    | <u> </u>   |             |   |

|          |                                |                  |                                |          |            | ٦ ·      |  |
|----------|--------------------------------|------------------|--------------------------------|----------|------------|----------|--|
| /        | <b>A群</b>                      | B群               |                                | _        | VRm<br>IB) |          |  |
| 1        | Al <sub>2</sub> O <sub>3</sub> | Ti               | 02                             | 2        | 21. 6      |          |  |
| ┕        | Al <sub>2</sub> O <sub>3</sub> |                  | eO2                            | 2        | 21. 3      |          |  |
| L        | Al <sub>2</sub> O <sub>3</sub> | SiO <sub>2</sub> |                                | 1        | 22. 2      |          |  |
| L        | Al203                          | C                | r203                           |          | 22, 1      |          |  |
| <u>_</u> | Al203                          | 1                | liO                            |          | 21. 9      |          |  |
| t        | Al203                          | 7                | a205                           |          | 22. 8      | 3        |  |
| Ì        | ZrO <sub>2</sub>               | ٦                | 10 <sub>2</sub>                |          | 21.        | <u>B</u> |  |
| I        | ZrO2                           | 1                | CeO2                           |          | 22.        | <u> </u> |  |
|          | ZrO <sub>2</sub>               | T                | SiO <sub>2</sub>               |          | 22.        | 5        |  |
| 1        | ZrO <sub>2</sub>               | Cr203            |                                |          | 22. 2      |          |  |
|          | ZrO <sub>2</sub>               | T                | NiO                            |          | 21.        | 1        |  |
|          | ZrO2                           |                  | Ta <sub>2</sub> O <sub>5</sub> | <u> </u> | 22:        | 1        |  |
|          | HfO <sub>2</sub>               |                  | TiO <sub>2</sub>               |          | 21.        | В        |  |
| ١        | HfO <sub>2</sub>               |                  | CeO2                           |          | 21.        | 3        |  |
| 1        | HfO <sub>2</sub>               |                  | SiO <sub>2</sub>               |          | 22.        | 6        |  |
| 1        | HfO <sub>2</sub>               |                  | Cr <sub>2</sub> O              | 3        | 22         |          |  |
| 1        | HfO <sub>2</sub>               |                  | NiO                            |          | 21         |          |  |
| 1        | HfO <sub>2</sub>               |                  | Ta <sub>2</sub> O              | 5        | 22         | . 2      |  |
|          | 比較例<br>の媒体<br>SiO <sub>2</sub> |                  | -                              |          | 18         | 5. 5     |  |
| ل        | <u> </u>                       |                  |                                |          |            |          |  |

表1の結果から、A群としてY, W, Mg, Al, ZrおよびHfより選ばれた少なく とも一つの酸化物と、B群としてTi, Ce, Si, Cr, NiおよびTaより選ばれた 少なくとも一つの酸化物を用いたことにより、比較例1の従来の媒体よりも、良い特性を 示すことが分かった。

## [0047]

実施例3の垂直磁気記録層として、下記表2に示すような様々な組成比からなるCoP <実施例3> tCr-x mol%A-y mol%Bコンポジットターゲット (ここで、Aは、Y2

 $O_3$ 、 $WO_3$ から選択された少なくとも一種以上、Bは、 $SiO_2$ 、 $Cr_2O_3$ ,  $Ta_2O_5$ から選択された少なくとも一種以上)を用意し、 $CoPtCr-3mol%Y_2O_3-5mol%SiO_2$ のコンポジットターゲットの代わりに、これらの様々な組成比の酸化物コンポジットターゲットを使用した以外は実施例1と同様にして、垂直磁気記録媒体を作成した。

得られた垂直磁気記録媒体は、垂直磁気記録層が異なること以外は、図 5 に示す垂直磁 気記録媒体と同様の層構成を有する。

#### [0048]

得られた実施例3の垂直磁気記録媒体に対して、実施例1と同様にして記録再生特性評価を行った。

図6ないし図11に、CoPtCr-x mol%A-y mol%B(A=Y2O3, WO3, B=SiO2, Cr2O3, Ta2O5)垂直磁気記録層に関する粒界相形成物質の含有量とSNRmとの関係を表すグラフ図を示す。

#### [0049]

図6ないし図8において、曲線101、111、121は、粒界相形成物質がA=WO3かつ $B=SiO_2$ ,  $Cr_2O_3$ ,  $Ta_2O_5$ であり、かつ組成量x=y=2/2 (0  $\leq z \leq 40mo1$ %) のときのグラフ図を各々表している。

また、図6ないし図8において、曲線102、112、122は、粒界相形成物質がW03のみであるとき、すなわち組成量x=2, y=0 ( $0\le 2\le 40$  mol%) のときのグラフ図を表している。

さらに、図6ないし図8において、曲線103、113、123は、粒界相形成物質が $SiO_2$ ,  $Cr_2O_3$ あるいは、 $Ta_2O_5$ のみであるとき、すなわち組成量x=0, y=z ( $0 \le z \le 40$  mol%) のときのグラフ図を各々表している。

#### [0050]

これらを比較すると分かるように、図6ないし図8に示す曲線102,112、122や曲線103、113、123のように1種類の酸化物を用いるより、図6ないし図8に示す曲線101、111、121のように2種類の酸化物を用いた方が、SNRmが良好であることが分かった。

#### [0051]

同様に、図9ないし図11において、曲線201、211、221は、粒界相形成物質  $MA=Y_2O_3$ かつB=SiO<sub>2</sub>、Cr<sub>2</sub>O<sub>3</sub>、Ta<sub>2</sub>O<sub>5</sub>であり、かつ組成量x=y=2/2(0 $\le$ 2 $\le$ 40mol%) のときのグラフ図を各々表している。

また、図9ないし図11において、曲線202、212、222は、粒界相形成物質が $Y_2O_3$ のみであるとき、すなわち組成量x=z, y=0( $0 \le z \le 40$  mol%)のときのグラフ図を表している。

さらに、図9ないし図11において、曲線203、213、223は、粒界相形成物質がSiO<sub>2</sub>、Cr<sub>2</sub>O<sub>3</sub>あるいは、Ta<sub>2</sub>O<sub>5</sub>のみであるとき、すなわち組成量x=0、y=z (0 $\le z \le 40$  mo 1%) のときのグラフ図を各々表している。

#### [0052]

これらを比較すると分かるように、図9ないし図11に示す曲線202, 212、22 2や曲線203、213、223のように1種類の酸化物を用いるより、図9ないし図1 1に示す曲線201、211、221のように2種類の酸化物を用いた方が、SNRmが 良好であることが分かった。

また、図6ないし図11から、粒界相形成物質の含有量が併せて0.1ないし30mo 1%でより良い特性を示すことが分かった。また、粒界相形成物質の含有量が1ないし2 0mo-1%の場合において、さらに良い特性を示すことが分かった。

#### [0-053]

#### <実施例4>

実施例4の垂直磁気記録層として、表2に示すような様々な組成比からなるCoPtCr-xmol%A-ymol%Bコンポジットターゲット( $A=Y_2O_3$ , WO3, B

=SiO2, Cr2O3, Ta2O5) を用意し、CoPtCr-3mol%Y2O3-5mol%SiO2のコンポジットターゲットの代わりに、これらの様々な酸化物コンポ シットターゲットを使用した以外は実施例1と同様にして、垂直磁気記録媒体を作成した

得られた垂直磁気記録媒体は、垂直磁気記録層が異なること以外は、図5に示す垂直磁 気記録媒体と同様の層構成を有する。

. [0054] まず、実施例4の得られた垂直磁気記録媒体に対して、TEM-EDXを用いて、局所 的な元素濃度分布を調べたところ、Coを主成分としたCo系磁性結晶粒子と、各Co系 磁性結晶粒子の周りにY、W、Si、Cr、TaおよびO2を主成分とした結晶粒界相が 存在する構造を確認することができた。

さらに、実施例4の得られた磁気記録媒体に対して、X線光電子分光測定を行い、酸化 物のピーク、および被酸化物質(単体)のピークを調べた。

その結果、Y, W, Si, Cr, Taは、主にY2O3, WO3, SiO2, Cr2O 3, Ta2O5の化学量論比で存在することがわかった。一方で、B群(Si, Cr, お よびTa)のピークを調べると、A群(Y、W等)に比べて、酸化物のピーク積分強度が 弱く、被酸化物質(単体)のピーク積分強度が強いことが分かった。これは、B群の酸化 物の一部がA群の酸化物によって、還元されていることを示している。以上より、結晶粒 界相の酸素濃度は、酸化物の化学量論比より算出される濃度比より減少していることがわ

また、実施例4の得られた垂直磁気記録媒体に対して、実施例1と同様にして記録再生 かった。 特性評価を行った。その結果を表2に示す。

[0056]

【表2】

| 表 2 | ; ]                           |          |          |                                |             |      |    |         |
|-----|-------------------------------|----------|----------|--------------------------------|-------------|------|----|---------|
|     | <b>A群</b>                     | mol%     | В        | 详                              | m           | ا%اد | 12 | NRm(dB) |
| _   | WO3                           | 3        | Si       | 02                             |             | 7    |    | 23. 1   |
|     | WO <sub>3</sub>               | 5        | Si       | 02                             |             | 5    |    | 21. 3   |
| - I | wo <sub>3</sub>               | 7        | Si       | 02                             |             | 3    |    | 20. 1   |
| _   | WO <sub>3</sub>               | 3        | C        | r <sub>2</sub> 03              |             | 7    |    | 22. 9   |
| - 1 | wo <sub>3</sub>               | 5        | C        | r203                           |             | 5    |    | 22. 2   |
| ł   | WO3                           | 7        | C        | r203                           |             | 3    |    | 19. 5   |
| ł   | wo <sub>3</sub>               | 3        | T        | a205                           | T           | 7    |    | 23. 3   |
|     | WO <sub>3</sub>               | 5        | ┿        | a <sub>2</sub> O <sub>5</sub>  | <del></del> | 5    |    | 22. 5   |
|     | WO3                           | 1 7      |          | a <sub>2</sub> O <sub>5</sub>  |             | 3    |    | 20. 4   |
|     | Y <sub>2</sub> O <sub>3</sub> |          | +        | SiO <sub>2</sub>               | 1           | 7    | T  | 23. 3   |
|     | Y203                          |          |          | SiO2                           | 1           | 5    | 5  | 22. 8   |
|     | Y203                          |          |          | SiO <sub>2</sub>               | +           | 3    | 3  | 19. 6   |
|     |                               |          |          | Cr <sub>2</sub> O <sub>3</sub> |             | -    | 亣  | 22. 8   |
|     | Y20                           | <u></u>  |          | Cr <sub>2</sub> O <sub>3</sub> |             |      | 5  | 21. 3   |
|     | Y20;                          | <u> </u> |          | Cr <sub>2</sub> O;             |             |      | 3  | 19. 7   |
|     | Y20                           | <u> </u> | _        |                                | _           |      | 7  | 23. 3   |
|     | Y20                           |          | 3        | Ta <sub>2</sub> O              |             |      | 5  | 21. 9   |
|     | Y20                           | <u> </u> | 5        | Ta <sub>2</sub> O              |             |      | 3  | 20. 0   |
|     | Y20                           | 3        | 7        | Ta <sub>2</sub> O              | _           |      | -+ |         |
|     |                               | -        | _        | SiO <sub>2</sub>               |             |      | 0  | 18. 2   |
|     |                               | -        | <u>-</u> | Cr <sub>2</sub> O              |             |      | 0  | 16. 1   |
|     |                               | -        | _        | Ta <sub>2</sub> C              | )5          |      | 10 | 16. 9   |
|     | wo                            | 3        | 10       |                                |             |      |    | 17. 5   |
|     | Y20                           |          | 10       | •                              |             |      | _  | 16. 5   |
|     | 1                             |          |          |                                |             |      |    |         |

表2の結果から分かるように、酸化物を様々な組成比で用いると、A群の酸化物の量より、B群の酸化物の量が多い方が、良い特性を示すことが分かった。また、A群、B群の組み合わせで結晶粒界を形成した場合、特にA群に比べてB群の酸化物に酸素濃度の減少が見られることがわかった。

[0058]

<実施例5>

実施例5の垂直磁気記録層として、表3に示すような様々な粒界相構成物質からなるCoPtCr-a mol%A-b mol%B-c mol%C-d mol%D-e mol%Eコンポジットターゲット(A=Y2O3, WO3, MgO, Al2O3, ZrO2, HfO2, B=SiO2, C=Cr2O3, D=Ta2O5, E=CeO2、かつ、a=b=c=2mol%, d=0, 2mol%, e=0, 2mol%) を用意し、CoPtCr-3mol%Y2O3-5mol%SiO2のコンポジットターゲットの代わりに、これらの様々な酸化物コンポジットターゲットを使用した以外は実施例1と同様にして、垂直磁気記録媒体を作成した。

[0059]

#### <比較例2>

:

次に、比較のために、比較例2の垂直磁気配録媒体として、(Co-16at%Pt-10at%Cr) -xmol%SiO2(x=6,8,10mol%) のコンポジットターゲットを用い、垂直磁気配録層としてCoPtCr-SiO2層を12nmの厚さで形成した以外は、実施例1の垂直磁気記録媒体と同様にして垂直磁気記録媒体を得た。 【0060】

実施例5の垂直磁気記録媒体、および、比較例2の垂直磁気記録媒体は、垂直磁気記録 層が異なること以外は、図5に示す垂直磁気記録媒体と同様の層構成を有する。

以上得られた実施例5の垂直磁気記録媒体、および、比較例2の垂直磁気記録媒体に対して、実施例1と同様にして記録再生特性評価を行った。その結果を表3に示す。

[0061]

【表3】

| A                             | В                | c                              | ·D                             | E        | SNRm<br>(dB) |
|-------------------------------|------------------|--------------------------------|--------------------------------|----------|--------------|
|                               |                  |                                |                                |          | 21.8         |
|                               | SiO <sub>2</sub> | Cr203                          |                                |          | 21.9         |
| NO3                           | SiO <sub>2</sub> | Cr <sub>2</sub> O <sub>3</sub> | <u> </u>                       |          | 21.7         |
| MgO                           | SiO <sub>2</sub> | Cr203                          |                                |          | <u> </u>     |
| Al203                         | SiO <sub>2</sub> | Cr203                          |                                | ļ        | 21.4         |
| ZrO <sub>2</sub>              | SiO <sub>2</sub> | Cr203                          |                                |          | 21.3         |
| HfO <sub>2</sub>              | SiO <sub>2</sub> | Cr203                          | -                              |          | 21.8         |
| Y <sub>2</sub> O <sub>3</sub> | SiO <sub>2</sub> | Cr203                          | Ta205                          |          | 21.7         |
| WO3                           | SiO <sub>2</sub> | Cr203                          | Ta205                          | _        | 21.8         |
| MgO                           | SiO <sub>2</sub> |                                | Ta <sub>2</sub> O <sub>5</sub> |          | 20. 5        |
| Al203                         | SiO <sub>2</sub> |                                | Ta205                          | <u> </u> | 20. 9        |
| ZrO <sub>2</sub>              | SiO <sub>2</sub> |                                |                                | 5 -      | 20. 1        |
|                               | SiO <sub>2</sub> |                                |                                | 5 -      | 21. 1        |
| HfO <sub>2</sub>              | SiO2             |                                |                                |          | 2 21.6       |
| Y <sub>2</sub> O <sub>3</sub> | SiO              |                                |                                |          | 2 21.5       |
| WO3                           | SiO              |                                |                                |          |              |
| MgO                           | 1                |                                |                                | <u> </u> |              |
| Al203                         | SiO              |                                |                                | <u> </u> |              |
| ZrO <sub>2</sub>              | SiO              |                                | <u> </u>                       | <u> </u> |              |
| HfO <sub>2</sub>              | SiO              | 2 Cr20                         | 3 1820                         | 5 000    | 17. 9        |
| 6mol%SiO2                     |                  |                                |                                |          | 18. 5        |
| 8mol%SiO2                     |                  |                                |                                |          |              |
| 10mol%SiO                     | 2 -              | _                              |                                |          | 18. 2        |

表3の結果から分かるように、粒界形成相として、1種類のみの酸化物を用いる場合に 比べ、3種類以上の酸化物を用いた方が良い特性を示すことが分かった。

## [0-0-63]

実施例6の垂直磁気記録媒体として、Cr非磁性層、CoCrPt強磁性層、及びCo 〈実施例6〉 ZrNb軟磁性層を製膜しない以外は、実施例1と同様にして、垂直磁気記録媒体を作製 した。

図12に、本発明の垂直磁気記録媒体のさらに他の例の構成を表す断面図を示す。

図12に示するように、実施例6の垂直磁気記録媒体50は、非磁性基板1上に、Ni Taシード層29、Ru下地層22、CoPtCr-Y2O3-SiO2垂直磁気記録層 23、C保護層24、及び図示しない潤滑膜を順次積層した構成を有する。

実施例6で得られた垂直磁気記録媒体に対して、実施例1と同様にしてTEM測定を行 った。その結果、垂直磁気記録層は5~7nmの粒径分布を持つことが分かった。

この垂直磁気記録媒体について、磁気抵抗効果を用いた記録トラック幅 0. 25 μm、 再生トラック幅0. 15μmのリング型ヘッドを用いて、記録再生特性の評価を行ったと ころ、SNRmが21.5dBであった。

[0065]

比較例3における垂直磁性層として、CoPtCr-SiO2のターゲットを用いて、 <比較例3> CoPtCr-SiO2垂直磁性層を厚さ12nmの厚さで形成した以外は、実施例5と 同様にして従来の垂直磁気記録媒体を得た。

得られた垂直磁気記録媒体は、垂直磁性層が異なる以外は、図12と同様の層構成を有

得られた垂直磁気記録媒体に対して、実施例6と同様にしてTEM測定を行った。その 結果、垂直磁気記録層は9~12nmの粒径分布を持つことが分かった。

この垂直磁気記録媒体について、磁気抵抗効果を用いた記録トラック幅 0. 2 5 μm、 再生トラック幅 0. 15 μmのリング型ヘッドを用いて、記録再生特性の評価を行ったと ころ、SNRmが16.8dBであった。

# 【産業上の利用可能性】

本発明の活用例として、本発明の垂直磁気記録媒体は、磁気トラック幅 0. 25 μm、 0. 15 μm程度で、再生信号出力、線記録密度が良好な磁気記録装置として適用するこ とができる。

# 【図面の簡単な説明】

[0067]

- 【図1】本発明に係る垂直磁気記録媒体の第1実施形態を示す断面図である。
- 【図2】本発明に係る垂直磁気記録媒体の第2実施形態を示す断面図である。
- 【図3】本発明に係る垂直磁気記録媒体の第3実施形態を示す断面図である。
- 【図4】本発明に係る垂直磁気記録装置の一例を一部分解した斜視図である。
- 【図5】本発明の実施例に係る垂直磁気記録媒体を示す断面図である。
- 【図6】CoPtCr-x mo.1% WO3-y mo1% SiO2垂直磁気配録層 に関する粒界相形成物質の含有量とSNRmとの関係を表すグラフである。
- 【図7】CoPtCr-x mol% WOs-y mol% Cr2O3垂直磁気記録 層に関する粒界相形成物質の含有量とSNRmとの関係を表すグラフである。
- [図8] CoPtCr-x mo 1% WO3-y mol% Ta2O5垂直磁気記録 層に関する粒界相形成物質の含有量とSNRmとの関係を表すグラフである。
- [図9] CoPtCr-x mo1% Y2O3-y mo1% SiO2垂直磁気配録 層に関する粒界相形成物質の含有量とSNRmとの関係を表すグラフである。
- [図10] CoPtCr-x mol% Y2O3-y mol% Cr2O3垂直磁気 記録層に関する粒界相形成物質の含有量とSNRmとの関係を表すグラフである。
- 【図11】CoPtCr-x mol% Y2O3-y mol% Ta2O5垂直磁気 記録層に関する粒界相形成物質の含有量とSNRmとの関係を表すグラフである。
- 【図12】本発明の実施例に係る垂直磁気記録媒体を示す断面図である。

#### 【符号の説明】

1…非磁性基板、2、12…非磁性下地層、19、29…シード層、3、13…垂直磁性 層(垂直磁気記録層)、5、15…軟磁性層、6、16…パイアス付与層、18…裏打ち 非磁性層、4、14…保護層、10、20、30、40、50…垂直磁気記録媒体、60 ・・・垂直磁気記録装置、61・・・筐体、62…磁気記録媒体、63…スピンドルモー

# 2003-333480

タ、64・・・磁気ヘッド、65・・・ヘッドアクチュエータ、66・・・回転軸、67 …ポイスコイルモータ、68…ヘッドアンプ回路 Takeshi IWASAKI, et al. P77750
PERPENDICULAR MAGNETIC RECORDING
MEDIUM AND MAGNETIC RECORDING AND
REPRODUCING APPARATUS
Filing Date: October 1, 2003
Sheldon I. Landsman 202-293-7060

I of 7

[図1]



2003-333480

[図2]



Takeshi IWASAKI, et al. P77750
PERPENDICULAR MAGNETIC RECORDING
MEDIUM AND MAGNETIC RECORDING AND
REPRODUCING APPARATUS
Filing Date: October 1, 2003
Sheldon L Landsman 202-293-7060
2 of 7

2003-333480

[図3]







Takeshi IWASAKI, et al. P77750
PERPENDICULAR MAGNETIC RECORDING
MEDIUM AND MAGNETIC RECORDING AND
REPRODUCING APPARATUS
Filing Date: October 1, 2003
Sheldon I. Landsman 202-293-7060
3 of 7

2003-333480



Takeshi iWASAKI, et al. P77750
PERPENDICULAR MAGNETIC RECORDING
MEDIUM AND MAGNETIC RECORDING AND
REPRODUCING APPARATUS
Filing Date: October 1, 2003
Sheldon I. Landsman 202-293-7060
4 of 7

2003-333480





# Takeshi IWASAKI, et al. P77750 PERPENDICULAR MAGNETIC RECORDING MEDIUM AND MAGNETIC RECORDING AND REPRODUCING APPARATUS Filing Date: October 1, 2003 Sheldon I. Landsman 202-293-7060 5 of 7

2003-333480





## [図9]



Takeshi iWASAKI, et al. P77750
PERPENDICULAR MAGNETIC RECORDING
MEDIUM AND MAGNETIC RECORDING AND
REPRODUCING APPARATUS
Filing Date: October 1, 2003
Sheldon I. Landsman 202-293-7060
6 of 7

2003-333480





## 【図11】





# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| BLACK BORDERS                                           |
|---------------------------------------------------------|
| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES                 |
| ☐ FADED TEXT OR DRAWING                                 |
| ☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING                  |
| ☐ SKEWED/SLANTED IMAGES                                 |
| ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS                  |
| ☐ GRAY SCALE DOCUMENTS                                  |
| otal Lines or marks on original document                |
| ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY |
| ☐ OTHER:                                                |

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.