Consider
$$g(x) = x \log(x/p) - (1-x) \log(\frac{1-x}{1-p})$$

KL divergence betnoch two Bernalli

What can I say about
$$g(X)$$
? $y = \varphi^*(p)$
CLT: $\nabla N'(X-p) \xrightarrow{d} N(0, P(i-p))$

$$\frac{\text{Notice'.}}{g'(x)} = \log(\frac{x}{1-x}) - \log(\frac{p}{1-p})$$

However,
$$g''(x) = \overline{\chi(1-x)}$$

and $g''(p) \neq 0$ for 0

Can use SO A-welhood:

$$N(g(x) - g(p)) \stackrel{d}{\rightarrow} \frac{\Psi^2 g''(p)}{2} \chi''(1)$$

$$p(1-p) = \frac{1}{2}$$

$$N(g(x)-g(p)) \stackrel{d}{\rightarrow} \frac{1}{z}\chi^{2}(1)$$

$$g(x) \approx g(\theta) + g'(0)(x-\theta) + \frac{1}{2}g''(0)(x-\theta)^2$$

$$g(x) \approx g(0) + \frac{1}{2}g''(0)(x-0)^2$$

1.
$$\ell$$
. $g(x) - g(0) \approx \frac{1}{2}g''(0)(x-0)^{2}$
 $\Rightarrow N(g(x) - g(0)) \approx \frac{1}{2}g''(0)[NN(x-0)]^{2}$
 $\Rightarrow N(g(Y_{N}) - g(0)) \approx \frac{1}{2}g''(0)[NN(Y_{N} - 0)]^{2}$
 $\Rightarrow N(g(Y_{N}) - g(0)) \approx \frac{1}{2}g''(0)[NN(Y_{N} - 0)]^{2}$
 $\Rightarrow \frac{1}{2}g''(0)(\Psi N(0,1))^{2}$

Back to estimation

Finite Samples, considered:

1) bias

For large samples (asymptotially) we also want ests that

(1) are asymptotially unliased

(consistency)

(2) are asymptotally low variance

The crew: MLEs are consistont tech. conds, works for exp. foms

If ôme is the MIE for of then

ÔMLE - O.

Defu: Asympotially Normal We say $\hat{\Theta}$ is asympt. normal w/ We say O is asymptonic mean T(O)(1) asymptotic mean T(O)(2) asymptotic various V(O)if $TN'(\hat{O} - T(O)) \stackrel{d}{\rightarrow} N(O, V(O))$ Notation: $\hat{O} \sim AN(T(O), V(O)/N)$

Defn: Asymptotic Pelative Efficiency (ARE)

If T_N and W_N are ests for T(0)and $T_N \sim AN(T(0), 6^2)$ $W_N \sim AN(T(0), 6^2)$ then the ARE of W_N w.r.t. T_N is $ARE(W_N, T_N) = \frac{67}{6^2}$

notes Page

notes Page

What abot
$$e^{-\overline{X}}$$
? Use A - method.
 $g(x) = e^{-x}$, $g'(x) = -e^{-x}$
 $g'(x) = -e^{-x} \neq 0$
So use FO Δ -method.
 $g(\overline{X}) \sim AN(g(X), [g'(X)]^2 /N)$
 $e^{-\overline{X}} \sim AN(e^{-\lambda}, e^{-2\lambda} /N)$
 $e^{-\overline{X}} \sim AN(e^{-\lambda}, e^{-2\lambda} /N)$
 $P = P(Y_n = 1)$
 $P = P(Y_n = 0) = e^{-\lambda}$
 $P \sim Born(e^{-\lambda})$

CLT: Y~AN(e-, e-, (1-e-))

Which do we prefer?

$$ARE(\overline{Y}, e^{-\overline{X}}) = \frac{asympt. \forall are^{-\overline{X}}}{asympt. \forall ar. \overline{Y}}$$

$$= \frac{e^{-2\lambda}}{\lambda} + \frac{e^{2\lambda}}{e^{\lambda}(1-e^{-\lambda})}$$

$$= \frac{\lambda}{e^{\lambda}-1}$$

notes Page 8

So we prefer
$$e^{-X}$$
.

So we prefer e^{-X} .

Defin: Asymptotic Efficiency

We say $\hat{\theta}$ is asymp. efficient for

 $T(\theta)$ if

 $\hat{\theta} \sim AN(T(\theta), B(\theta))$
 $CPLB$
 $B(\theta) = (\frac{T}{2\theta})^2 I_N(\theta)$

Ep,
$$e^{-\overline{X}} \sim AN(e^{-\lambda}/e^{-2\lambda}/N)$$

What's the CRUB?
 $I(\lambda) = -E\left[\frac{\partial^2}{\partial x^2} losf_{\lambda}(x)\right]$

$$\Rightarrow f(x) = \lambda^{x}e^{-\lambda}x!$$

$$\Rightarrow \log f_{\lambda}(x) = x (og(\lambda) - \lambda - |og(x!))$$

$$\Rightarrow \frac{\partial}{\partial x}[\cdots] = \frac{\lambda^{x}}{\lambda^{x}} - |og(x!)|$$

$$\Rightarrow \frac{\partial^{2}}{\partial x}[\cdots] = -\frac{\lambda^{x}}{\lambda^{x}}$$

$$\Rightarrow I(x) = -E[\quad] = -E[\quad x^{2}] = \frac{1}{\lambda^{2}}E^{-\lambda}$$

$$= \frac{\lambda^{x}}{\lambda^{x}} = \frac{\lambda^{x}}{\lambda^{x}}$$

$$= \frac{\lambda^{x}}{\lambda^{x}} = \frac{\lambda^{x}}{$$

Theorem: MLEs are asymptotically efficient

(*) (1) likelihood diffable

(2) I(0) 7 0

(みなって、)

$$\hat{\theta}_{MLE} \sim AN(T(\theta), (\frac{\partial T}{\partial \theta})^2/I_{N}(\theta))$$

EXAM2 075-8 595-9 lectre 7- now

Hypothesis testing

A hypothesis is a statement about parameters:

Ho: Θ ∈ Co v. Ho: Θ ∈ Co

null hypothesis

alt. hypothesis

call ()= (), U ()a

Constraint: O. n. O. = \$.