Time varying systematic risk evidence from a dynamic copula model of CDS spreads (Oh & Patton 2018) Présentation

BACHIR, Ahmed; OTHMANE, Ayman

18 mai 2024

Table of Contents

- Article
 - Contexte
 - Objectif
 - Modèles
 - Données et résultats
 - Résultats
- 2 Réplication
 - Données
 - Modèle
- Ouverture et Critique

Sommaire

- Article
 - Contexte
 - Objectif
 - Modèles
 - Données et résultats
 - Résultats
- 2 Réplication
 - Données
 - Modèle
- Ouverture et Critique

Définition

Le risque systémique peut être largement défini comme le risque de détresse dans un grand nombre d'entreprises ou d'institutions. Il représente un événement extrême dans deux directions :

- Une perte importante (la réalisation d'une épaisse queue de distribution des rendements)
- ② A travers une grande proportion des entreprises.
 - Il existe plusieurs méthodes pour étudier le risque et la dépendance pour de petites collections d'actifs. (Patton (2012))
 - Ex : Les modèles bivariés (Une entreprise et un marché), La "CoVaR" (Adrian and Brunnermeier (2009))
 - Pb: l'information clé peut se perdre dans l'aggrégation en un marché

Le marché des CDS

Le marché des CDS s'est considérablement développé dans les années 2000, passant de 600 milliards USD de notionnel en 2001 à 25 900 milliards USD fin de 2011(ISDA).

Toutefois, il y a peu la littérature économétrique en 2013.

Spreads de CDS

Les spread de CDS sont étroitement liées à la solvabilité d'une entreprise et à la perception qu'en a le marché. Leur traitement permet donc d'approximer le risque systemique.

Les auteurs montre que le risque systémique s'est stabilisé à des niveaux supérieur post 2008

Les Copule - Le Théorème de Sklar

Toute distribution jointe multivariée peut être exprimée en termes de fonctions de distribution marginale univariée et d'une Copule qui décrit la structure de dépendance entre les variables.

$$H(x_1, x_2, ..., x_n) = C(F_1(x_1), F_2(x_2), ..., F_n(x_n))$$

Avec:

- C la Copule
- F_i est la fonction de distribution marginale de la i-ème variable.
- H fonction de distribution jointe multivariée de n dimension

De plus, si les marges F_i sont continues, alors la copule C est unique.

Objectif de l'article

Objectif

Cet article vise à de fournir des modèles pouvant être utilisés pour gérer de grandes collections de variables, ce qui le rend particulièrement efficace dans l'estimation d'une plus grande variété de mesures de risque systémique.

L'article propose 2 contributions :

- Un model pour capturer la dépendance variant dans le temps en dimensions élevées.
- Une étude détaillée de 100 spreads quotidienne de CDS sur des entreprises américaines.

Modèle

Théorème de Sklar étantu

$$Y_t|\mathcal{F}_{t-1}\sim F_t=C_t(F_1,\cdots F_{Nt})$$

De nouveaux modèles pour la copule conditionnelle variant dans le temps, C_t , qui peuvent être utilisés pour lier des modèles des distributions marginales conditionnelles (par exemple, les modèles ARMA-GARCH) afin de former une distribution jointe conditionnelle dynamique.

Objectifs

Saisir la dynamique de dépendance entre un nombre relativement important de variable. Spécification de la dimension $N \ge 50$

Modèle de Copule dynamic à haute dimension

$$\begin{array}{rcl} \mathbf{Y}_t & \equiv & [Y_{1t},...,Y_{Nt}]' \\ \\ \text{where} & Y_{it} & = & \mu_{it}(\phi_{i,0}) + \sigma_{it}(\phi_{i,0})\eta_{it}, \quad i=1,2,...,N \\ \\ & \eta_{it}|\mathcal{F}_{t-1} & \sim & F_{it}(\phi_{i,0}) \end{array}$$

Forme

Processus permettant la variation dans le temps des distribution marginales conditionnelles avec

- ullet μ_{it} la moyenne conditionnelle
- σ_{it} l'écart-type conditionnel
- $F_{it}(\phi_{i,0})$ la distribution paramétrique (0,1)
- ullet γ le paramètre de la copule

$$\mathcal{U}_t | \mathcal{F}_{t-1} \sim \mathcal{C}_t(\gamma_0)$$

Modèle de copules factorielle

Reduction de dimension

Les application à haute dimension nécessite une réduction de cette dernière Une methode courante et la structure factorielle. Les auteurs en propose une dans Oh and Patton(2012)

$$X_{it} = \lambda_{it} (\gamma_{\lambda}) Z_t + \varepsilon_{it}, i = 1, 2, ..., N$$

where $Z_t \sim F_{zt} (\gamma_z), \varepsilon_{it} \sim iid F_{\varepsilon t} (\gamma_{\varepsilon}), Z \perp \!\!\! \perp \!\!\! \varepsilon_i \; \forall \; i$

Et nous permet d'obtenir la copule conditionnelle

$$\mathbf{X}_{t} \sim \mathbf{F}_{xt} = \mathbf{C}_{t} \left(G_{1t} \left(\gamma \right), ..., G_{Nt} \left(\gamma \right); \gamma \right)$$

La dynamique "GAS"

Objectif

Le General Autoregressive Score permet de modélisé la dynamique des paramètre de de manière econome en calcule. Une particularité partagé par les modèles autorégressive Cette approche modélise les paramètres de la copule en fonction des paramètres retardés et du score de la vraisemblance de la copule :

$$U_t \mid F_{t-1} \sim C(\kappa_t)$$

οù

$$\begin{aligned} \delta_t &= \omega + B\delta_{t-1} + As_{t-1} \\ avecs_{t-1} &= S_{t-1}\nabla_t \\ \nabla_{t-1} &= \frac{\partial \log c(u_{t-1}; \delta_{t-1})}{\partial \delta_{t-1}} \end{aligned}$$

Un avantage clé de cette approche est que la "variable de forçage" dans le modèle pour κ_{t+1} est fournie directement par le choix du modèle de copule.

2023-2024

Copules factorielle avec la Dynamiques GAS

Nous utilisons le modèle GAS pour capturer la dépendance variant dans le temps en laissant les charges sur le facteur commun changer au fil du temps.

Similaire au modèle DCC d'Engle, nous imposons que α et β soient communs à toutes les entreprises, et nous permettons uniquement aux paramètres "d'interception" de différer.

Nous imposons également que les paramètres de forme $(\nu_z, \nu_\epsilon, \lambda)$ soient constants :

$$\begin{split} X_{it} &= \lambda_{it} Z_t + \epsilon_{it}, \quad i = 1, 2, \dots, 100 \\ Z_t &\sim \mathsf{Skew-}t(\nu_z, \psi), \quad \epsilon_{it} \sim \mathsf{i.i.d.} \ t(\nu_\epsilon), \quad Z \perp \epsilon_i \ \forall i \\ \log \lambda_{it} &= \omega_i + \beta \log \lambda_{i,t-1} + \alpha \frac{\partial \log c(u_t; \lambda_t; \nu_z; \psi)}{\partial \lambda_{it}} \end{split}$$

Parcimonie / Flexibilité et copules factorielles

copules factorielles avec la dynamiques GAS :

$$\begin{split} X_{it} &= \lambda_{g(i),t} Z_t + \epsilon_{it}, \quad i = 1, 2, \dots, 100 \\ Z_t &\sim \mathsf{Skew-}t(\nu_z, \psi), \quad \epsilon_{it} \sim \mathsf{i.i.d.} \ t(\nu_\epsilon), \quad Z \perp \epsilon_i \ \forall i \\ \log \lambda_{g,t} &= \omega_g + \beta \log \lambda_{g,t-1} + \alpha \frac{\partial \log c(u_{t-1} \mid \lambda_{t-1}, \nu_z, \psi, \nu_\epsilon)}{\partial \lambda_g} \\ g &= 1, 2, \dots, \mathcal{G} \end{split}$$

- Modèle d'équidépendance : G = 1
- **1** Modèle de bloc d'équidépendance : G = 5 (selon les groupes industriels)
- **1** Modèle entièrement flexible : G = 100

Données

Les données utilisées sont des séries temporelle de spres de CDS des composante de l'indice CDX NA IG Serie 17, composé des CDS 5 ans 125 entreprise d'amérique du nord.

Elles couvrent la période Jan 2006 à Avr 2012, soit 1644 jour

Suite au traitement de la données les auteurs garde 100 entreprise.

De plus il vont définir les log-différences de ces spread.

On voit ci-dessous l'évolution des moyennes et quantile cross-sectionnal.

Données

Données

Statistiques

Les spread de CDS ont :

- Une fort autocorrélation, médian à 0.996 Les log-différence ont :
- Un Skew positif pour 89 CDS avec une moyenne à 1.087.
- Un kurtosis élevé, 25.5 en moyenne et sup. à 3 pour toute la séries

Statistiques

Table 2: Summary statistics for daily CDS spreads and log-differences of daily CDS spreads

	Mean	5%	25%	Median	75%	95%
Panel	l A: Cross-sec	tional dist	ribution of	CDS sprea	ds	
Mean	96.953	37.212	53.561	74.957	123.785	200.346
Std dev	69.950	17.344	27.245	47.508	84.336	180.618
1 st -order autocorrel	0.996	0.992	0.995	0.997	0.998	0.998
Skewness	1.203	0.095	0.695	1.280	1.587	2.488
Kurtosis	5.113	2.198	2.943	4.937	6.477	9.486
5%	23.883	9.021	11.741	18.926	29.851	60.538
25%	42.274	20.373	25.212	35.314	47.473	104.704
Median	85.310	35.098	50.105	69.399	113.762	166.208
75%	122.061	46.250	65.862	93.622	154.729	251.112
95%	245.497	72.514	102.554	168.500	313.585	631.924
99%	338.676	80.414	122.885	231.295	435.224	827.098

Statistiques

Panel B: Cross-sectional distribution of log-differences of CDS spreads

Mean	5.589	-1.634	2.559	5.529	8.521	13.817
Std dev	378.892	308.636	347.627	373.460	400.385	476.533
1st-order autocorrel	0.161	0.030	0.121	0.164	0.217	0.267
Skewness	1.087	-0.285	0.354	0.758	1.488	3.629
Kurtosis	25.531	7.717	10.286	14.557	25.911	74.843
5%	-514.574	-622.282	-551.334	-509.554	-474.027	-415.651
25%	-144.195	-172.319	-155.635	-145.415	-134.820	-111.993
Median	-2.324	-9.045	-3.644	-0.726	0.000	0.000
75%	132.127	95.168	120.514	131.019	144.363	174.645
95%	570.510	457.775	537.093	568.331	612.769	684.984

Modèle de moyenne et variance conditionnelles

Modèle de moyenne conditionnelle - AR(5) augmenté

$$Y_{it} = \phi_{0i} + \sum_{j=1}^{5} \phi_{ji} Y_{i,t-j} + \phi_{mi} Y_{m,t-1} + e_{it}$$

Modèle de variance Conditionnelle - GJR GARCH

$$V_{t-1}[e_{it}] \equiv \sigma_{it}^2 = \omega_i + \beta_i \sigma_{i,t-1}^2 + \alpha_i e_{i,t-1}^2 + \delta_i e_{i,t-1}^2 \mathbf{1} \{e_{i,t-1} > 0\}$$
$$+\alpha_{im} e_{m,t-1}^2 + \delta_{im} e_{m,t-1}^2 \mathbf{1} \{e_{m,t-1} > 0\}$$

Distribution marginal des résidues

$$\eta_{it} \equiv \frac{e_{it}}{\sigma_{it}} \sim iid \ Skew \ t \left(\nu_i, \psi_i \right)$$

Résultats

Table 3: Marginal distribution parameter estimates

	Mean	5%	25%	Median	75%	95%	
0	3.029	-3.760	0.247	3.116	5.861	10.165	
51	0.005	-0.179	-0.062	0.010	0.082	0.153	
2	0.025	-0.039	-0.001	0.025	0.050	0.084	
3	-0.002	-0.058	-0.028	-0.004	0.021	0.064	
54	0.006	-0.046	-0.014	0.006	0.033	0.054	
5	0.004	-0.055	-0.022	0.005	0.027	0.060	
m	0.387	0.163	0.303	0.372	0.480	0.638	
/1000	5.631	1.401	3.111	5.041	7.260	13.381	
3	0.741	0.595	0.699	0.746	0.794	0.845	
r.	0.114	0.052	0.087	0.106	0.141	0.181	
	0.022	0.000	0.000	0.000	0.042	0.086	
^L m	0.223	0.037	0.137	0.206	0.297	0.494	
m	0.072	0.000	0.000	0.059	0.114	0.233	
	3.620	2.877	3.293	3.571	3.921	4.496	
,	0.043	-0.003	0.024	0.042	0.062	0.089	
					# of re	ejections	
B test fo	r standar	dized res	siduals		9		
B test fo	r squared	standar	dized res	siduals	2		
S test fo	r skew t	dist of st	d. residu	ials		11	

Sommaire

- Article
 - Contexte
 - Objectif
 - Modèles
 - Données et résultats
 - Résultats
- 2 Réplication
 - Données
 - Modèle
- Ouverture et Critique

Nous avons récupéré, les composante de l'indice CDX NA IG Series 17 Après traitement des données et données manquantes, nous avons eu 55 entreprises pour 1524 observations A l'istar de l'article :

- Une fort autocorrélation, médian à 0.9901 Les log-différence ont :
- Un Skew positif pour 33 CDS avec une moyenne à 0.19.
- Un kurtosis élevé, 71.54 en moyenne et sup. à 3 pour toute la séries
- Autocorrélation significative dans 52 series

	Statistic CDS Spread										
	Mean	Q.5%	Q.10%	Q.25	Median	Q.75%	Q.90%	Q.95%			
Mean	89.623	35.506	39.480	48.060	71.357	123.135	146.487	170.074			
Stdv	63.420	15.648	18.791	22.961	35.958	81.793	113.144	137.708			
1st order Autocorr	0.990	0.952	0.978	0.994	0.996	0.998	0.998	0.998			
Skew	1.172	0.030	0.287	0.675	1.266	1.612	2.019	2.437			
Kurt	2.281	-0.833	-0.329	0.404	1.903	3.774	5.611	6.860			
Q.5%	22.785	9.581	9.912	11.838	20.143	30.478	37.905	43.795			
Q.10%	26.261	11.333	12.183	14.250	24.002	33.640	40.321	50.399			
Q.25	39.454	19.667	21.422	25.118	34.856	46.598	59.809	78.859			
Median	79.304	34.419	36.376	45.320	64.877	106.546	136.712	158.183			
Q.75%	110.621	43.283	49.230	60.776	78.910	155.209	183.947	205.123			
Q.90%	166.844	57.250	63.358	74.915	113.510	227.380	287.688	295.254			
Q.95%	224.267	65.498	80.043	89.931	145.186	283.283	388.513	518.704			

Statistic log-diff CDS Spread

	Mean	Q.5%	Q.10%	Q.25	Median	Q.75%	Q.90%	Q.95%	
Mean	0.00053	-0.00011	2.54E-05	0.00025	0.000526	0.000815	0.000988	0.001221	
Stdv	0.06135	0.032935	0.034042	0.038553	0.044216	0.072238	0.116948	0.137849	
1st order Autocorr	-0.07022	-0.41002	-0.37968	-0.28182	-0.03822	0.115116	0.190155	0.244289	
Skew	0.190787	-0.9833	-0.61154	-0.1761	0.147843	0.637609	1.012978	1.424723	
Kurt	71.54748	13.23529	13.73471	16.60847	29.73246	111.054	160.5663	237.6652	
Q.5%	-0.05123	-0.06966	-0.06411	-0.05343	-0.04692	-0.04339	-0.04127	-0.03984	
Q.10%	-0.03062	-0.03688	-0.03546	-0.0327	-0.0301	-0.02806	-0.0263	-0.02595	
Q.25	-0.01148	-0.01361	-0.0132	-0.01245	-0.01137	-0.01064	-0.01001	-0.00946	
Median	-5.3E-05	-0.00028	-0.00017	-9.1E-05	0	0	0	0	
Q.75%	0.010728	0.008713	0.008943	0.00993	0.010294	0.011473	0.013353	0.013933	
Q.90%	0.032535	0.026389	0.027143	0.029582	0.031536	0.035283	0.03783	0.040731	
0.95%	0.057073	0.044923	0.045855	0.04898	0.052065	0.059259	0.071899	0.07697	

Modèle de Moyenne conditionnelle

$$Y_{it} = \phi_{0i} + \sum_{j=1}^{5} \phi_{ji} Y_{i,t-j} + \phi_{mi} Y_{m,t-1} + e_{it}$$

Statistic AR(5) augmenté												
	Mean	Stdv	order Autoc	Skew	Kurt	Q.5%	Q.10%	Q.25	Median	Q.75%	Q.90%	Q.95%
Phi_lag1	7.7E-05	5.3E-04	2.9E-02	-7.8E-01	2.2E+00	-7.4E-04	-4.7E-04	-2.2E-04	4.4E-05	4.9E-04	6.6E-04	7.2E-04
Phi_lag2	-1.7E-01	2.1E-01	-1.3E-01	-5.0E-01	-8.2E-01	-5.2E-01	-4.8E-01	-3.5E-01	-1.2E-01	6.3E-03	5.3E-02	1.1E-01
Phi_lag3	-5.7E-02	1.4E-01	-7.2E-02	-1.0E+00	1.4E-01	-3.4E-01	-2.6E-01	-1.5E-01	-1.8E-04	4.4E-02	6.7E-02	9.2E-02
Phi_lag4	-1.7E-02	9.8E-02	-2.3E-03	-1.3E+00	1.2E+00	-2.4E-01	-1.8E-01	-3.8E-02	1.7E-02	4.3E-02	6.2E-02	8.0E-02
Phi_lag5	-1.4E-02	7.5E-02	7.0E-02	-1.3E+00	7.3E-01	-1.8E-01	-1.4E-01	-3.2E-02	1.1E-02	3.8E-02	5.5E-02	6.1E-02
Phi_lag6	-3.3E-03	5.5E-02	-1.4E-01	-5.0E-02	4.6E-01	-9.8E-02	-7.4E-02	-3.1E-02	-3.9E-03	3.0E-02	6.4E-02	8.8E-02
Phi_lag7	1.0E+00	4.6E-01	4.1E-01	2.4E+00	6.6E+00	6.2E-01	6.9E-01	8.1E-01	8.8E-01	1.0E+00	1.4E+00	1.9E+00

Sommaire

- Article
 - Contexte
 - Objectif
 - Modèles
 - Données et résultats
 - Résultats
- 2 Réplication
 - Données
 - Modèle
- Ouverture et Critique

Ouverture et Critique

Critiques :

- Methodologie globale et architecture abstraite
- Données propriétaires très difficiles à obtenir
- Temps de calcule et méthode d'optimisation couteuses

Ouverture :

- Application en pricing de risque crédit en Banque
- Réplication sur Matières Premières