(19) **日本国特許厅(JP)**

(12)特許公報(82)

(11)特許番号

特許第3706825号 (P3706825)

(45) 発行日 平成17年10月19日(2005.10.19)

(24) 登録日 平成17年8月5日 (2005.8.5)

(51) Int.Cl. ⁷ HO 1 B 1/12 BO 5 D 5/12 CO 8 J 7/04	FI HO1B BO5D CO8J	1/12 5/12 7/04 C	Z B CERD		
CO9D 5/24	C081		EZ		
CO9D 201/00	CO9D	5/24			
,			請求項の数 20	(全 30 頁)	最終頁に続く
(21) 出願番号 (22) 出願日 (65) 公開番号 (43) 公開日 審査請求日	特願2001-316936 (P2001-316936) 平成13年10月15日 (2001.10.15) 特開2003-123532 (P2003-123532A) 平成15年4月25日 (2003.4.25) 平成15年9月10日 (2003.9.10)	(72) 発明者 (72) 発明者 (72) 発明者	で 000006035 の00006035 で 東京 京 神 三 前神 三 京 神 三 前神 三 前神 三 所 神 三 所 神 三 神 三 神 三 神 三 神 三 神 三 神 三	有一丁目6番4 有鶴見区大黒町 株式会社化成品 有鶴見区大黒町 株式会社化成品	10番1号開発研究所内10番1号開発研究所内
				最	終頁に続く

(54) 【発明の名称】導電性組成物、導電体及びその形成方法

(57)【特許請求の範囲】

【請求項1】

インドール誘導体三量体 (A)、溶媒 (B)及び架橋剤 (C)を含むことを特徴とする導電性組成物。

【請求項2】

架橋剤(C)が一般式(1)で示されるシランカップリング剤(D)、

【化1】

(1)

(上記式中、 R^{48} 、 R^{49} 、 R^{50} は各々独立に、水素、炭素数 $1\sim6$ の直鎖または分岐のアルキル基、炭素数 $1\sim6$ の直鎖または分岐のアルコキシ基、アミノ基、アセチル基

、フェニル基、ハロゲン基よりなる群から選ばれた基である。 X は 【化2】

$$-\left(CH_{2}\right)_{n}$$
 $\pm E_{k}$ $\left(CH_{2}\right)_{n}$ $\left(CH_{2}\right)_{n}$

を示し、n及び1は1~6までの数である。Yは水酸基、チオール基、アミノ基、エポキシ基及びエポキシシクロヘキシル基よりなる群から選ばれた基である。)である請求項1 記載の導電性組成物。

【請求項3】

導電性組成物がコロイダルシリカ (E) を含むことを特徴とする請求項1または2に記載の導電性組成物。

【請求項4】

コロイダルシリカ(E)の粒子径が $1 nm \sim 300 nm$ である請求項 $1 \sim 3$ のいずれか1項に記載の導電性組成物。

【請求項5】

導電性組成物が塩基性化合物 (F) を含むことを特徴とする請求項 1 ~ 4 のいずれか 1項 に記載の導電性組成物。

【請求項6】

導電性組成物が高分子化合物 (G) を含むことを特徴とする請求項 1 ~ 5 のいずれか 1 項 に記載の導電性組成物。

【請求項7】

導電性組成物が界面活性剤(H)を含むことを特徴とする請求項1~6のいずれか1項に記載の導電性組成物。

【請求項8】

導電性組成物が無機塩(I)を含むことを特徴とする請求項1~7のいずれか1項に記載の導電性組成物。

【請求項9】

インドール誘導体三量体(A)が、

10

20

【化3】

(2)

(上記式中、 $R^1 \sim R^{-1}^2$ は、水素、炭素数 $1 \sim 24$ の直鎖または分岐のアルキル基、炭素数 $1 \sim 24$ の直鎖または分岐のアルコキシ基、炭素数 $2 \sim 24$ の直鎖または分岐のアルル基、アルデヒド基、カルボン酸基、炭素数 $2 \sim 24$ の直鎖または分岐のカルボン酸エステル基、アルボン酸基、炭素数 $1 \sim 24$ の直鎖または分岐のスルホン酸エステル基、シアノ基、水酸基、二トロ基、アミノ基、アミド基及びハロゲン基よりなる群からそれぞれ独立に選ばれた置換基である。また、 X^{a-1} は、塩素イオン、臭素イオン、ヨウ素イオン、フッ素イオン、硝酸イオン、硫酸イオン、硫酸水素イオン、リン酸イオン、ほうフッ化イオン、過塩素酸イオン、チオシアン酸イオン、酢酸イオン、プロピオン酸イオン、メタンスルホン酸イオン、チオシアン酸イオン、トリフルオロ酢酸イオン、及びトリフルオロメタンスルホン酸イオンよりなる $1 \sim 3$ の整数であり、mはドープ率であり、その値は $0 \sim 0$. 5 である。)である請求項 $1 \sim 8$ のいずれか 1 項に記載の導電性組成物。

【請求項10】

インドール誘導体三量体(A)が、

20

【化4】

$$R^{23}$$
 R^{22}
 R^{21}
 R^{13}
 R^{13}
 R^{14}
 R^{15}
 R^{16}
 R^{16}
 R^{18}
 R^{19}
 R^{20}
 R^{19}
 R

(3)

上記式中、 $R^{13} \sim R^{24}$ は、水素、炭素数 $1 \sim 24$ の直鎖または分岐のアルキル基、炭素数 $1 \sim 24$ の直鎖または分岐のアルコキシ基、炭素数 $2 \sim 24$ の直鎖または分岐のアルコキシ基、炭素数 $2 \sim 24$ の直鎖または分岐のカルボン酸エステル基、アルデヒド基、カルボキシル基、炭素数 $2 \sim 24$ の直鎖または分岐のカルボン酸エステル基、スルホン酸基、炭素数 $1 \sim 24$ の直鎖または分岐のスルホン酸エステル基、シアノ基、水酸基、ニトロ基、アミノ基、アミド基及びハロゲン基よりなる群からそれぞれ独立して選ばれた置換基で示され、 $R^{13} \sim R^{24}$ のうち少なくとも 1 つがシアノ基、トロ基、アミド基またはハロゲン基から選ばれた基である。また X^{3} は、塩素イオン、臭素イオン、ヨウ素イオン、フッ素イオン、硝酸イオン、硫酸イオン、硫酸水素イオン、リン酸イオン、ほうフッ化イオン、過塩素酸イオン、チオシアン酸イオン、酢酸イオン、プロピオン酸イオン、メタンスルホン酸イオン、1 カロ酢酸イオン、及びトリフルオロメタンスルホン酸イオンよりなる $1 \sim 3$ の整数であり、mはドープ率であり、その値は $1 \sim 3$ のである。)である請求項 $1 \sim 3$ のいずれか 1 項に記載の導電性組成物。

【請求項11】

インドール誘導体三量体(A)が、

20

【化5】

$$R^{35}$$
 R^{34}
 R^{39}
 R

(4)

(上記式中、 R^2 5 \sim R^3 6 は、水素、炭素数 1 \sim 2 4 の直鎖または分岐のアルキル基、炭素数 1 \sim 2 4 の直鎖または分岐のアルコキシ基、炭素数 2 \sim 2 4 の直鎖または分岐のアルガシル基、アルデヒド基、カルボキシル基、炭素数 2 \sim 2 4 の直鎖または分岐のカルボン酸エステル基、スルホン酸基、炭素数 1 \sim 2 4 の直鎖または分岐のスルホン酸エステル基、シアノ基、水酸基、二トロ基、アミノ基、アミド基及びハロゲン基よりなる群からそれぞれ独立して選ばれた置換基で示され、 R^2 5 \sim R^3 6 のうち少なくとも 1 つがスルホン酸基またはカルボキシル基である。また X^{a-1} は、塩素イオン、臭素イオン、ヨウ素イオン、フッ素イオン、硝酸イオン、硫酸イオン、硫酸水素イオン、リン酸イオン、ほうフッ化イオン、過塩素酸イオン、チオシアン酸イオン、酢酸イオン、プロピオン酸イオン、メタンスルホン酸イオン、P- トルエンスルホン酸イオン、トリフルオロ酢酸イオン、及びトリフルオロメタンスルホン酸イオンよりなる 1 \sim 3 の整数であり、mはドープ率であり、その値は 0 \sim 0 . 5 である。)である請求項 1 \sim 1 0 のいずれか 1 項に記載の導電性組成物。

【請求項12】

インドール誘導体三量体(A)が

【化6】

10

(5)

(上記式中、 $R^{37} \sim R^{40}$ は、水素、炭素数 $1 \sim 24$ の直鎖または分岐のアルキル基、炭素数 $1 \sim 24$ の直鎖または分岐のアルコキシ基、炭素数 $2 \sim 24$ の直鎖または分岐のアシル基、アルデヒド基、カルボキシル基、炭素数 $2 \sim 24$ の直鎖または分岐のカルボン酸エステル基、スルホン酸基、炭素数 $1 \sim 24$ の直鎖または分岐のスルホン酸エステル基、シアノ基、水酸基、ニトロ基、アミノ基、アミド基及びハロゲン基よりなる群からそれぞれ独立して選ばれた置換基である。)で示される少なくとも一種のインドール誘導体を、少なくとも一種の酸化剤と少なくとも一種の溶媒を含む反応混合物中において反応させることにより得られたインドール誘導体三量体であることを特徴とする請求項 $1 \sim 11$ のいずれか1項に記載の導電性組成物。

20

【請求項13】

インドール誘導体三量体 (A) が積層構造であることを特徴とする請求項1~12のいずれか1項に記載の導電性組成物。

【請求項14】

請求項1~13のいずれか1項に記載の導電性組成物より形成される透明導電性膜を有することを特徴とする導電体。

【請求項15】

30

透明導電性膜に酸がドーパントとして付加していることを特徴とする請求項14記載の導電体。

【請求項16】

透明導電性膜が、温度 2.5 °C、相対湿度 1.5 %での表面抵抗値が1.0 5 ~ 1.0 1 2 Ω であることを特徴とする請求項1.4 または1.5 項に記載の導電体。

【請求項17】

透明導電性膜が、温度 40℃の溶媒中に1時間浸漬した後の表面抵抗値の変化率 (SR1 (40℃の溶媒中に1時間浸漬した後の表面抵抗値) / SR0 (浸漬前の表面抵抗値) が10以内であることを特徴とする請求項14~16の何れか1項に記載の導電体。

【請求項18】

40

基材の少なくとも一つの面上に、請求項1~13のいずれか1項に記載の導電性組成物を 塗布し透明導電性膜を形成した後に、常温で放置あるいは加熱処理を行うことを特徴とす る導電体の形成方法。

【請求項19】

透明導電性膜を形成した後に、酸によるドーピング処理を行い、次いで常温で放置あるいは加熱処理を行うことを特徴とする請求項18記載の導電体の形成方法。

【請求項20】

加熱処理を常温から250℃の温度範囲で行うことを特徴とする請求項18または19記載の導電体の形成方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明はインドール誘導体三量体を含有する導電性組成物、該導電性組成物から形成された導電体及びその形成方法に関するものである。本発明の導電性組成物は、塗布、スプレー、キャスト、ディップ等の簡便な手法を用いることにより各種帯電防止剤、コンデンサー、電池、EMIシールド、化学センサー、表示素子、非線形材料、防食剤、接着剤、繊維、帯電防止塗料、防食塗料、電着塗料、メッキプライマー、静電塗装用導電性プライマー、電気防食、電池の蓄電能力向上などの用途に適用可能である。また本発明の導電体は、半導体、電器電子部品などの工業用包装材料、オーバーヘッドプロジェクタ用フィルム、スライドフィルムなどの電子写真記録材料等の帯電防止フィルム、オーディオテープ、スライドフィルムなどの電子写真記録材料等の帯電防止フィルム、オーディオテープ、ビデオテープ、コンピュータ用テープ、フロッピィディスクなどの磁気記録用テープの帯電防止、更に透明タッチパネル、エレクトロルミネッセンスディスプレイ、液晶ディスプレイなどの入力及び表示デバイス表面の帯電防止や透明電極、有機エレクトロルミネッセンス素子を形成する発光材料、バッファ材料、電子輸送材料、正孔輸送材料及び蛍光材料として利用される。

[00002]

【従来の技術】

従来、導電性組成物の導電成分としては金属系粉末、カーボン粉末、ITOなどの無機系 導電剤、界面活性剤などの有機系導電剤、及びポリアニリン、スルホン化ポリアニリンな どの導電性ポリマーが知られている。

[0003]

これらの中でカーボン粉末や金属粉末と高分子化合物からなる導電性組成物から形成した 導電膜は、塗膜の耐久性に優れるが導電成分の添加量が 10 質量部~ 30 質量部程度必要 となり透明性に欠けるという欠点がある。また、透明性を発現させるため、導電成分の添加量を低減すると十分な導電性能は得られない欠点がある。一方アニオン系、カチオン系、非イオン系、両性などの半透明な界面活性剤などをプラスチックフィルム中に練り込んだり、プラスチックフィルム表面にコーティングすることにより、親水性とイオン性を与えてフィルム表面に導電性を付与したものが知られている。しかし、この方法で得られる 導電膜はイオン導電性のため、その導電性が大気中の湿度の影響を受け易く、低湿度の条件では単位面積当たりの表面抵抗値が 10^9 Q以下の導電性を安定的に得ることができないという欠点がある。

[0004]

導電成分としてITO (インジウム―スズ酸化物)を蒸着して得られる導電体は、透明性及び導電性に優れていることが知られている。しかし、その薄膜を形成させるために真空蒸着装置が必要のため導電膜の作成が煩雑であり、またその装置は高価である。しかも材料として用いられるITOも高価であるため、得られる導電体も高価になってしまうという欠点がある。

[0005]

ポリアニリンなどをドープした導電性ポリマーは良く知られているが、ほとんど全ての溶剤に不溶であり成形、加工が難しいという欠点がある。また、アニリンを電解酸化重合する方法[特開昭60-235831号公報、J. Polymer Sci., Polymer Chem. Ed., 26, 1531 (1988)]は電極上にポリアニリンのフィルムを形成することが可能であるが、単離操作が煩雑になること及び大量合成が困難であるという欠点がある。一方、アニリンの化学酸化重合によって得られた脱ドープ状態のポリアニリンと酸解離定数 p K a が 4.8以下であるプロトン酸のアンモニウム塩からなる導電性組成物(特開平3-285983号公報)が報告されているが、脱ドープ状態のポリアニリンは N ーメチルー 2 ーピロリドン等の溶解力の極めて強い特殊な溶媒にのみ可溶であるため、塗工基材に影響を与えるなどの欠点があり汎用ワニスとして適するとは言い難い。更に該組成物から得られる塗膜は、導電性ポリマー独特の緑~青色の着色を有しており、基材の色調及び上塗のコーティング材料の色調に影響を与えるため適用用途が制限

10

20

30

40

されるなどの課題がある。

[0006]

導電性ポリマーの溶解性に対する課題を解決するためポリアニリンにスルホン酸基などの酸性基を有する導電性ポリマー(スルホン化ポリアニリン)を用いた導電性組成物が提案されている(特許第03051308号公報、特開平8-143662号公報)。この組成物は溶媒として水が使用可能であり、湿度依存性がなく高い導電性を発現し、成膜性、成形性、透明性に優れた導電体を形成することが報告されている。しかし、該組成物から得られる塗膜の色調についても、スルホン化ポリアニリンによって黄色に着色しており、基材の色調及び上塗のコーティング材料の色調に影響を与えるため適用用途が制限されるなどの課題がある。

[0007]

一方、[Synthetic Metals, 80 (1996) 309頁]では、インドールを原料として電解反応により導電性を有する無置換のインドール三量体を合成する方法が報告されている。しかし本報告では、単に電極上に無置換インドール三量体を形成させただけであり溶媒に溶解した導電性組成物として使用した例はなく、また電極反応であるため、基材の形状や材質が限定されてしまうという欠点も有する。

[0008]

また、インドール誘導体であるインドールー5ーカルボニトリル、インドールー5ーカルボン酸をアセトニトリル中において電解酸化重合する方法[Phys.Chem.Chem.Phys.,2,1241-1248(2000)]により電極上にインドール誘導体三量体を形成することが報告されているが、これも電解反応であるため基材の形状や材質が限定されてしまうという欠点を有する。

[0009]

【発明が解決しようとする課題】

本発明は、上記の従来技術の諸々の問題を解決するためになされたものであり、湿度依存性がなく高い導電性を発現し、成膜性、成形性、無色透明性、耐溶剤性、耐水性、硬度、耐侯性に優れた導電性組成物、及び該組成物を利用して湿度依存性がなく高い導電性を発現し、表面抵抗のばらつきが小さく、成膜性、成形性、無色透明性、耐溶剤性、耐水性、硬度、耐侯性に優れた導電性膜を形成させて得られる導電体及びその形成方法を提供することにある。

[0010]

【課題を解決するための手段】

本発明者らは、これらの課題を解決するため鋭意研究をした結果、インドール誘導体の三量体と架橋剤を含む組成物がこの目的に適することを見出して、本発明に到達した。すなわち、本発明の第1は、インドール誘導体三量体(A)、溶媒(B)及び架橋剤(C)を含むことを特徴とする導電性組成物である。この導電性組成物はコロイダルシリカ(D)、塩基性化合物(F)、高分子化合物(G)、界面活性剤(H)、及び/または無機塩(I)を更に含むことで性能の向上がはかれる。また、架橋剤(C)がシランカップリング剤(D)であるときにより耐水性が向上し、インドール誘導体三量体が層構造であると高性能を示す。

[0011]

また、本発明の第 2 は、該導電性組成物より形成される透明導電性膜を有することを特徴とする導電体である。この透明性導電性膜に酸がドーパントとして付加していることで更に性能の向上がはかれる。

[0012]

本発明の第3は、基材の少なくとも一つの面上に、該導電性組成物を塗布し透明導電性膜を形成した後に、常温で放置あるいは加熱処理を行うことを特徴とする導電体の形成方法である。

[0013]

【発明の実施の形態】

10

20

30

以下、本発明の導電性組成物及び該導電性組成物より形成した導電体ならびにその形成方法について詳細に説明する。

[0014]

本発明の導電性組成物及び導電体を構成するインドール誘導体三量体 (A) としては、 【化7】

(2)

(上記式中、 $R^1 \sim R^{1\ 2}$ は、水素、炭素数 $1 \sim 24$ の直鎖または分岐のアルキル基、炭素数 $1 \sim 24$ の直鎖または分岐のアルコキシ基、炭素数 $2 \sim 24$ の直鎖または分岐のアルル基、炭素数 $1 \sim 24$ の直鎖または分岐のカルボン酸エステル基、アルデヒド基、カルボキシル基、炭素数 $1 \sim 24$ の直鎖または分岐のスルホン酸エステル基、スルホン酸基、炭素数 $1 \sim 24$ の直鎖または分岐のスルホン酸エステル基、シアノ基、水酸基、ニトロ基、アミノ基、アミド基及びハロゲン基よりなる群からそれぞれ独立して選ばれた置換基である。また、 X^{a-1} は、塩素イオン、臭素イオン、ヨウ素イオン、フッ素イオン、硝酸イオン、硫酸イオン、硫酸水素イオン、リン酸イオン、ほうフッ化イオン、過塩素酸イオン、チオシアン酸イオン、酢酸イオン、プロピオン酸イオン、メタンスルホン酸イオン、 $1 \sim 100$ の性がある。といるであり、水の性が大力であり、 $1 \sim 100$ の性があり、 $1 \sim 100$ のはなり、 $1 \sim 100$ のはなりがあり、 $1 \sim 100$ のはなり、 $1 \sim 1000$ のはなり、 $1 \sim 10$

[0015]

好ましくは、

【化8】

40

$$R^{23}$$
 R^{22}
 R^{23}
 R^{22}
 R^{24}
 R^{24}
 R^{24}
 R^{24}
 R^{25}
 R^{18}
 R^{13}
 R^{13}
 R^{14}
 R^{15}
 R^{16}
 R^{16}
 R^{16}
 R^{18}
 R^{10}

(3)

(上記式中、R¹³~R²⁴は、水素、炭素数1~24の直鎖または分岐のアルキル基、炭素数1~24の直鎖または分岐のアルコキシ基、炭素数2~24の直鎖または分岐のアルボン酸、大型・ルボキシル基、炭素数2~24の直鎖または分岐のカルボン酸エステル基、スルホン酸基、炭素数1~24の直鎖または分岐のスルホン酸エステル基、スルホン酸基、炭素数1~24の直鎖または分岐のスルホン酸エステル基、アミノ基、アミド基及びハロゲン基よりなる群からそれぞれ独立して選ばれた置換基で示され、R¹³~R²⁴のうち少なくとも1つがシアノ基、たりに表示といるである。また X³は、塩素イオン、二十の基、アミド基またはハロゲン基から選ばれた基である。また X³は、塩素イオン、臭素イオン、カウ素イオン、が、サイオン、硫酸イオン、硫酸水素イオン、カン酸イオン、ほうフッ化イオン、過塩素酸イオン、チオシアン酸イオン、酢酸イオン、プロピオン酸イオン、メタンスルホン酸イオン、チオシアン酸イオン、酢酸イオン、カロピオン酸イオン、及びトリフルオロメタンスルホン酸イオンよりなる1~3の整数であり、mはドープ率であり、その値は0~0.5である。)で示されるインドール誘導体三量体及び、

[0016]

【化9】

20

$$R^{35}$$
 R^{34}
 R^{39}
 R^{29}
 R^{30}
 R^{31}
 R^{25}
 R^{25}
 R^{27}
 R^{28}
 R^{28}
 R^{29}
 R^{30}
 R^{31}
 R^{32}
 R^{32}
 R^{31}
 R^{32}
 R^{32}

(4)

(上記式中、 R^2 ⁵ $\sim R^3$ ⁶ は、水素、炭素数 $1 \sim 2$ 4の直鎖または分岐のアルキル基、炭素数 $1 \sim 2$ 4の直鎖または分岐のアルコキシ基、炭素数 $2 \sim 2$ 4の直鎖または分岐のアルコキシ基、炭素数 $2 \sim 2$ 4の直鎖または分岐のカルボン酸エステル基、アルデヒド基、カルボキシル基、炭素数 $2 \sim 2$ 4の直鎖または分岐のカルボン酸エステル基、スルホン酸基、炭素数 $1 \sim 2$ 4の直鎖または分岐のスルホン酸エステル基、シアノ基、水酸基、二トロ基、アミノ基、アミド基及びハロゲン基よりなる群からそれぞれ独立して選ばれた置換基で示され、 R^2 ⁵ $\sim R^3$ ⁶ のうち少なくとも 1 つがスルホン酸基またはカルボキシル基である。また X^{a-1} は、塩素イオン、臭素イオン、ヨウ素イオン、フッ素イオン、硝酸イオン、硫酸イオン、硫酸水素イオン、プロピオン酸イオン、ほうフッ化イオン、過塩素酸イオン、チオシアン酸イオン、酢酸イオン、プロピオン酸イオン、メタンスルホン酸イオン、チオシアン酸イオン、酢酸イオン、プロピオン酸イオン、及びトリフルオロメタンスルホン酸イオンよりなる $1 \sim 3$ の整数であり、mはドープ率であり、その値は $0 \sim 0$. 5 である。)で示されるインドール誘導体三量体などが挙げられる。

[0017]

これらのインドール誘導体三量体のうち、カルボキシル基置換インドール三量体類、スルホン酸基置換インドール三量体類、シアノ基置換インドール三量体類、ニトロ基置換インドール三量体類、アミド基置換インドール三量体類、ハロゲン基置換インドール三量体類などが実用上好ましく、カルボキシル基置換インドール三量体類、スルホン酸基置換インドール三量体類などの酸性基を有する三量体は、水溶性であるため溶媒として水を使用できるため、人体及び環境への安全性の面からも特に好ましく用いることができる。

[0018]

本発明で用いられるインドール誘導体三量体(A)は、化学的合成及び電気化学的合成などの各種合成法によって得られるインドール誘導体三量体(A)を用いることができる。

[0019]

本発明では、特に、下記一般式 (5)

【化10】

20

30

20

30

(5)

(上記式中、 $R^{37} \sim R^{40}$ は、水素、炭素数 $1 \sim 24$ の直鎖または分岐のアルキル基、炭素数 $1 \sim 24$ の直鎖または分岐のアルコキシ基、炭素数 $2 \sim 24$ の直鎖または分岐のアシル基、アルデヒド基、カルボキシル基、炭素数 $2 \sim 24$ の直鎖または分岐のカルボン酸エステル基、スルホン酸基、炭素数 $1 \sim 24$ の直鎖または分岐のスルホン酸エステル基、シアノ基、水酸基、ニトロ基、アミノ基、アミド基及びハロゲン基よりなる群からそれぞれ独立して選ばれた置換基である。)で示される少なくとも一種のインドール誘導体を、少なくとも一種の酸化剤と少なくとも一種の溶媒を含む反応混合物中において反応させることにより得られるインドール誘導体三量体(A)が好ましく用いられる。

[0020]

前記のインドール誘導体三量体(A)の合成法で用いられる一般式(4)で示されるイン ドール誘導体は、具体的には、4ーメチルインドール、5ーメチルインドール、6ーメチ ルインドール、7ーメチルインドール、4ーエチルインドール、5ーエチルインドール、 6ーエチルインドール、7ーエチルインドール、4ーn-プロピルインドール、5-n-プロピルインドール、6-n-プロピルインドール、7-n-プロピルインドール、4isoープロピルインドール、5ーisoープロピルインドール、6ーisoープロピル インドール、7ーisoープロピルインドール、4ーnーブチルインドール、5ーnーブ チルインドール、6 — n ーブチルインドール、7 — n ープチルインドール、4 — s e c ー ブチルインドール、5-sec-ブチルインドール、<math>6-sec-ブチルインドール、7ーsecーブチルインドール、4ーtーブチルインドール、5ーtーブチルインドール、 6-t-ブチルインドール、7-t-ブチルインドールなどのアルキル基置換インドール 類、4一メトキシインドール、5一メトキシインドール、6一メトキシインドール、7一 メトキシインドール、4 - エトキシインドール、5 - エトキシインドール、6 - エトキシ インドール、7ーエトキシインドール、4ーnープロポキシインドール、5ーnープロポ キシインドール、6-n-プロポキシインドール、7-n-プロポキシインドール、4isoープロポキシインドール、5ーisoープロポキシインドール、6一isoープロ ポキシインドール、7 — i s o ープロポキシインドール、4 — n ーブトキシインドール、 5-n-プトキシインドール、6-n-プトキシインドール、7-n-プトキシインドー ル、4-sec-プトキシインドール、<math>5-sec-プトキシインドール、<math>6-sec-ブトキシインドール、7-sec-ブトキシインドール、4-t-ブトキシインドール、 5-t-ブトキシインドール、6-t-ブトキシインドール、7-t-ブトキシインドー ルなどのアルコキシ基置換インドール類、4一アセチルインドール、5一アセチルインド ール、6一アセチルインドール、7一アセチルインドールなどのアシル基置換インドール 類、インドールー4ーカルバルデヒド、インドールー5ーカルバルデヒド、インドールー 6 一カルバルデヒド、インドールー 7 一カルバルデヒドなどのアルデヒド基置換インドー ル類、インドールー4ーカルボン酸、インドールー5-カルボン酸、インドールー6-カ ルボン酸、インドールー7一カルボン酸などのカルボキシル基置換インドール類、インド

ールー4-カルボン酸メチル、インドールー5-カルボン酸メチル、インドールー6-カ

40

20

30

40

50

ルボン酸メチル、インドールー7一カルボン酸メチルなどのカルボン酸エステル基置換イ ンドール類、インドールー4一スルホン酸、インドールー5一スルホン酸、インドールー 6 一スルホン酸、インドールー 7 一スルホン酸などのスルホン酸基置換インドール類、イ ンドールー4ースルホン酸メチル、インドールー5-スルホン酸メチル、インドールー6 一スルホン酸メチル、インドール―7―スルホン酸メチルなどのスルホン酸エステル基置 換インドール類、インドールー4ーカルボニトリル、インドールー5ーカルボニトリル、 インドールー6ーカルボニトリル、インドールー7ーカルボニトリルなどのシアノ基置換 インドール類、4-ヒドロキシインドール、5-ヒドロキシインドール、6-ヒドロキシ インドール、7ーヒドロキシインドールなどのヒドロキシ基置換インドール類、4一二ト ロインドール、5-ニトロインドール、6-ニトロインドール、7-ニトロインドールな どのニトロ基置換インドール類、4一アミノインドール、5一アミノインドール、6一ア ミノインドール、7一アミノインドールなどのアミノ基置換インドール類、4一カルバモ イルインドール、5一カルバモイルインドール、6一カルバモイルインドール、7一カル バモイルインドールなどのアミド基置換インドール類、4一フルオロインドール、5一フ ルオロインドール、6一フルオロインドール、7一フルオロインドール、4一クロロイン ドール、5 - クロロインドール、6 - クロロインドール、7 - クロロインドール、4 - ブ ロモインドール、5ープロモインドール、6ープロモインドール、7ープロモインドール 、4一ヨードインドール、5一ヨードインドール、6一ヨードインドール、7一ヨードイ ンドールなどのハロゲン基置換インドール類などを挙げることができる。

[0021]

このなかでカルボキシル基置換インドール類、スルホン酸基置換インドール類、シアノ基置換インドール類、ニトロ基置換インドール類、アミド基置換インドール類、ハロゲン基置換インドール類などが実用上好ましく、カルボキシル基置換インドール類、スルホン酸基置換インドール類が特に好ましい。

[0022]

前記のインドール誘導体三量体(A)の合成法で用いる酸化剤は、特に限定されないが、例えば塩化第二鉄6水和物、無水塩化第二鉄、硝酸第二鉄9水和物、硫酸第二鉄n水和物、硫酸第二鉄大工工力 2 水和物、過塩素酸第二鉄n水和物、テトラフルオロホウ酸第二鍋、硝酸第二鍋、硫酸第二鍋、テトラフルオロホウ酸第二鍋、テトラフルオロホウ酸ニトロソニウム、過酸化水素、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム、過沃素酸カリウムなどを挙げることができる。このなかで塩化第二鉄6水和物、無水塩化第二鉄、塩化第二鍋、テトラフルオロホウ酸第二鍋、過硫酸アンモニウムが実用上好ましく、その中でも塩化第二鉄6水和物、無水塩化第二鉄が最も実用上好ましい。なお、これらの酸化剤はそれぞれ単独で用いても、また2種以上を任意の割合で併用して用いてもよい。

[0023]

前記のインドール誘導体三量体(A)の合成法で用いるインドール誘導体と、酸化剤とのモル比は、インドール誘導体:酸化剤= $1:0.5\sim100$ 、好ましくは $1:1\sim50$ で用いられる。ここで、酸化剤の割合が低いと反応性が低下して原料が残存し、逆にその割合があまり高いと生成した三量体を過酸化して、生成物の劣化を引き起こすことがある。【0024】

前記のインドール誘導体三量体(A)の合成法で用いる溶媒は、水、有機溶媒が使用できる。有機溶媒は特に限定されないが、メタノール、エタノール、イソプロパノール、アセトン、アセトニトリル、プロピオニトリル、テトラヒドロフラン、1、4ージオキサン、メチルイソブチルケトン、メチルエチルケトン、γーブチルラクトン、プロピレンカーボネート、スルホラン、ニトロメタン、N、Nージメチルホルムアミド、Nーメチルアセトアミド、ジメチルスルホキシド、ジメチルスルホン、Nーメチルピロリドン、ベンゼン、トルエン、キシレン、塩化メチレン、クロロホルム、ジクロロエタンなどが用いられる。なお、これらの溶媒はそれぞれ単独で用いても、また2種以上を任意の割合で混合して用いてもよい。これら溶媒のなかでは、アセトン、アセトニトリル、1、4ージオキサン、

y ーブチルラクトン、N, Nージメチルホルムアミドなどが好ましく、とくにアセトニトリルが実用上もっとも好ましい。

[0025]

また、前記のインドール誘導体三量体(A)の合成法では水と有機溶媒を共存させて反応させることが特に好ましい。前記インドール誘導体と、水との使用モル比は、インドール誘導体:水=1:100~1000:1で用いられる。ただし、酸化剤が結晶水を持っている場合は、その結晶水量も水として計量する。ここで、水の割合が低いと反応が暴走して三量体を過酸化して構造劣化すると同時に、三量体に対してドーパントとなる \mathbf{X}^{a} が効率良くドープできない場合があり、導電率が低下することがある。逆にその割合が高すぎると酸化反応の進行を妨げて反応収率が低下することがある。

[0026]

前記のインドール誘導体三量体(A)の合成法では、反応時のインドール誘導体の濃度は、溶媒に対して0.01質量%以上、好ましくは0.1~50質量%、より好ましくは1~30質量%の範囲である。

[0027]

本発明で用いられる一般式(2)~(4)で示されるインドール誘導体三量体(A)中の X^a はドーパントであり、重合中の酸化剤等に由来するプロトン酸の陰イオンである。具体的には、塩素イオン、臭素イオン、ヨウ素イオン、フッ素イオン、硝酸イオン、硫酸イオン、硫酸水素イオン、リン酸イオン、ほうフッ化イオン、過塩素酸イオン、チオシアン酸イオン、酢酸イオン、プロピオン酸イオン、p-hルエンスルホン酸イオン、トリフルオロメタンスルホン酸イオン等の1~3 価の陰イオンであり、好ましくは塩素イオン、硫酸イオン、ホウフッ化イオンなどの1~2 価の陰イオンである。最も好ましいのは塩素イオンなどの1 価の陰イオンである。例えば、酸化剤として無水塩化第二鉄を選んで重合を行った場合、インドール誘導体三量体中のドーパント X^a は塩素イオンとなり、トリフルオロ酢酸第二銅を用いて重合を行った場合は、ドーパント X^a はトリフルオロ酢酸イオンとなる。

[0028]

前記のインドール誘導体三量体(A)の合成法で得られるインドール誘導体三量体(A)は、酸化剤として過酸化水素やオゾンを用いる場合以外はドープ型のインドール誘導体三量体(A)であり、その繰り返し単位に対するドーパント X a - のモル比(ドープ率)mは 0.0 1 ~ 0.5 である。酸化剤として過酸化水素またはオゾンを用いると m = 0 となる。

[0029]

インドール誘導体三量体(A)は、溶媒(B)への溶解性をより向上する目的で脱ドープ処理をしたものを用いることができる。脱ドープの処理方法としては特に限定されるものではないが、例えば従来から各種導電性ポリマー、電荷移動錯体の脱ドープ工程として公知の方法が用いられる。すなわちアンモニア水、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ性溶液中にインドール誘導体三量体(A)を懸濁させてドーパント X a - を除去する方法、または還元処理により脱ドープ型のインドール誘導体三量体(すなわち、ドープ率m=0)を得る方法が挙げられる。

[0030]

脱ドープ型のインドール誘導体三量体は、再度任意種類、任意の量のドープ剤による処理により任意のドーパントを任意のドープ率だけ有するドープ型のインドール誘導体三量体に容易に変換することができる。例えば、塩素イオン以外の対イオンを有する酸化剤で重合したドープ型インドール誘導体三量体を、水酸化ナトリウム溶液で脱ドープして脱ドープ型のインドール誘導体三量体とした後、それを塩酸水溶液に再ケン濁させることで、塩素ドープ型インドール誘導体三量体へと誘導することも可能である。このようにして得られた任意のドーパントによりドープされたインドール誘導体三量体を用いて、本発明の導電性組成物等を調製することもできる。

10

20

30

20

30

40

50

[0031]

インドール誘導体三量体 (A) は、積層構造を有することにより、より導電性能が優れる場合がある。特に、層間隔 $0.1\sim0.6$ n mである積層構造を有していることが好ましい。このような超微細積層構造をもつ化合物は、剛性、強度、耐熱性などの物性が良好である。ただし、層間隔が 0.1 n m以上で積層構造がより安定となる傾向にあり、また 0.6 n m以下で三量体相互間での電子ホッピング伝導がより容易になり、導電性が向上する傾向がある。

[0032]

本発明の導電性組成物を構成する溶媒(B)としてはインドール誘導体三量体(A)、架橋剤(C)、シランカップリング剤(D)、コロイダルシリカ(E)、塩基性化合物(F)、高分子化合物(G)、界面活性剤(H)、無機塩(I)を溶解或いは分散するものであれば特に限定されず、水や有機溶媒が用いられる。有機溶剤としては、メタノール、エタノール、プロパノール、イソプロパノールなどのアルコール類、アセトン、メチルイソプチルケトン、などのケトン類、イソプロピルエーテル、メチルー t ーブチルエーテルなどのエーテル類、メチルセロソルブ、エチルセロソルブなどのセロソルブ類、メチルプロピレングリコール、エチルプロピレングリコールなどのプロピレングリコール類、ジメチルホルムアミド、ジメチルアセトアミドなどのアミド類、Nーメチルピロリドン、Nーエチルピロリドンなどのピロリドン類などが好ましく用いられる。特にインドール誘導体三量体への溶解性の点で水、メタノール、イソプロパノール、アセトン、ジメチルホルムアミド、ジメチルアセトアミド、Nーメチルピロリドンがより好ましい。なお、これらの溶媒はそれぞれ単独で用いても、また任意の割合で混合して用いてもよい。

[0033]

インドール誘導体三量体 (A) の使用割合は、溶媒 (B) 100質量部に対して0.01 ~20質量部、好ましくは0.1~10質量部である。インドール誘導体三量体 (A) の割合が20質量部以下では溶解性がよく導電性がより向上する。

[0034]

本発明の導電性組成物は、必須構成成分である架橋剤(C)を加えることにより該導電性組成物から形成される導電体の耐溶剤性及び耐水性が付与される。

[0035]

必須構成成分である架橋剤(C)は、特に限定されないが、架橋剤自身が分子間で架橋反応して三次元網状構造を形成するか、または、インドール誘導体三量体(A)、高分子化合物(G)などの他の成分と反応して架橋結合を形成するものが使用される。特にインドール誘導体三量体(A)及び高分子化合物(G)のどちらか一方または両方と架橋するものが、耐溶剤性、耐水性の観点からより好ましい。

[0036]

本発明の架橋剤(C)としては、反応して架橋結合を形成することが可能な、例えばアクリル基、ビニル基、エポキシ基、イソシアネート基、オキサゾリン基、シラノール基、酸クロリド基、カルボキシル基、アミノ基、水酸基、メルカプト基等の反応性基を分子内に2個以上有する化合物、または水等の溶媒中において通常の条件下では保護されて反応しないが、加熱、pH調整などの処理により、イソシアネート基などの上記反応性基に再生する基を分子内に2個以上有する化合物である。このような化合物としては、多官能ビニル化合物、多官能アクリル化合物、多官能エポキシ化合物、多官能イソシアネート化合物、多官能オキサゾリン化合物、多官能カルボン酸化合物、多官能アミン化合物、多官能ドロキシ化合物、多官能メルカプト化合物、シランカップリング剤(D)等が挙げられる

[0037]

多官能エポキシ化合物としては、ビスフェノールAを出発原料としたビスフェノールA系エポキシ樹脂、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ゲリセロールポリグリシジルエーテル、トリグリシジルトリス(2~ヒドロ

[0038]

上記多官能エポキシ化合物は、共存するインドール誘導体三量体(A)および/または高分子化合物(G)と反応する以外に、他の活性水素を有する化合物を添加して反応させることも可能である。そのような化合物としては、例えば、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリオキシプロピレンポリアミン、トリエチレングリコールジアミン、テトラエチレングリコールジアミンなどの脂肪族ポリアミン、キシリレンジアミン、スピロアセタールジアミン、イソホロンジアミン、ビス(3ーメチルー4ーアミノシクロヘキシル)メタンなどの環状ポリアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホンなどの芳香族ポリアミン、ポリアミンとジカルボンメタン、ジアミノジフェニルスルホンなどの芳香族ポリアミン、ポリアミンとジカルボン酸との縮合により合成される分子内に活性アミノ基を多数有するポリアミノアミド、アミンアダクト硬化剤、マンニッヒ型硬化剤等の変性アミンなどがあげられる。

[0039]

多官能イソシアネート化合物としては、分子中にイソシアネート基を二つ以上、好ましくは3または4個含有するものを使用することができる。具体的には、2,4ートリレンジイソシアネート(2,4ーTDI)、2,6ートリレンジイソシアネート(2,6ーTDI)、ジフェニルメタンー4,4'ージイソシアネート(MDI)、水素化MDI、1,5ーナフタレンジイソシアネート、キシリレンジイソシアネート(XDI)、水素化XDI、メタキシリレンジイソシアネート(MXDI)、3,3'ージメチルー4,4'ージフェニリレンジイソシアネート(TODI)等の芳香族系のイソシアネート化合物や、イソホロンジイソシアネート(IPDI)、トリメチルへキサメチレンジイソシアネート(TMDI)、ヘキサメチレンジイソシアネート(HDI)等の脂肪族系のイソシアネート化合物、およびこれらのアダクト体、ビウレット体、イソシアヌレート体などが好ましく使用される。多官能イソシアネート化合物の分子量は、一般に500~1000程度が好ましい。

[0040]

例えば、熱反応型水溶性ウレタン樹脂であるエラストロン(商品名、第一工業製薬(株))として入手できる。これは、末端イソシアネート基がブロック剤により保護されて、水中においても安定に取り扱えるように工夫した反応性ウレタン樹脂である。エラストロンのブロック剤にはカルバモイルスルホネート基(-NHCOSO3-)なる強力な親水性基を有する化合物が使用されている。エラストロンは一定の熱処理されると、ブロック剤が解離し、活性イソシアネート基が再生される特徴を有する。具体的には、100℃以下で予備乾燥し、120−170℃の数分の熱処理により、エラストロンはそれ自身単独で再生したイソシアネート基により、分子間で自己架橋反応して3次元の網目構造をもったポリウレタン被膜を形成する。また他の活性水素含有化合物と混合して熱処理を行うと、それらの化合物を架橋により改質することができる

[0041]

多官能ビニル化合物としては、例えば、ポリブタジエン、イソプレン等が挙げられる。

[0042]

10

20

30

多官能アクリル化合物としては、具体的には、ビスフェノール F E O 変性 (4 モル) ジ M-210)、イソシアヌル酸 E O 変性 ジアクリレート (M-215)、トリプロピレン グリコールジアクリレート (M-220)、ポリプロピレングリコールジアクリレート (n は約7、PPG#400、M-225)、ペンタエリスリトールジアクリレートモノス テアレート (M-233)、ポリエチレングリコールジアクリレート (n は約4、PPG #200、M-240)、ポリエチレングリコールジアクリレート (n は約9、PPG# 400、M-245)、ポリエチレングリコールジアクリレート (nは約13~14、P PG#600、M-260)、ポリプロピレングリコールジアクリレート(nは約12、 M - 270)、ペンタエリスリトールトリアクリレート(M - 305)、トリメチロール プロパントリアクリレート(M-309)、トリメチロールプロパンPO変性(3モル) トリアクリレート (M-310)、イソシアヌル酸 E O 変性トリアクリレート (M-31 5)、トリメチロールプロパンPO変性(6モル)トリアクリレート(M-320)、ト リメチロールプロパンEO変性(3モル)トリアクリレート(M-350)、トリメチロ ールプロパンEO変性(6モル)トリアクリレート(M-360)、ジペンタエリスリト ールペンタおよびヘキサアクリレート (M-400)、ジトリメチロールプロパンテトラ アクリレート (M-408)、ペンタエリスリトールテトラアクリレート (M-450)、ウレタンアクリレート(M-1100)、ポリエステルアクリレート(M-7000シ リーズ、M-8000シリーズ、M-7100、M-8060)が挙げられる。

[0043]

多官能オキサゾリン化合物としては、例えば、エポクロス(商品名、日本触媒(株)製) 等が挙げられる。

[0044]

多官能カルボン酸化合物としては、例えば、無水トリメリット酸、無水ピロメリット酸、 トリメシン酸等が挙げられる。

[0045]

多官能アミン化合物としては、例えば、バーサミン、バーサミド(商品名、ヘンケルジャパン(株)製)のようなポリアミンまたはポリアミドアミン化合物、ジエチレントリアミン、トリエチレンテトラミン等が挙げられる。

[0046]

多官能ヒドロキシ化合物としては、例えば、ポリビニルアルコール、ポリエーテルポリオール、ポリエステルポリオール、アクリルポリオール、ポリカーボネートジオール、トリメチロールエタン、トリメチロールプロパン、グリセリン、ペンタエリスリトール等が挙げられる。

[0047]

多官能メルカプト化合物としては、例えば、トリビニルシクロヘキサン変性トリメチレン ジオール等が挙げられる。

[0048]

シランカップリング剤(D)としては、一般式(1) で示されるシランカップリング剤(D)、

【化11】

20

30

(1)

(上記式中、R 4 8、R 4 9、R 5 0 は各々独立に、水素、炭素数 $1\sim6$ の直鎖または分岐のアルキル基、炭素数 $1\sim6$ の直鎖または分岐のアルコキシ基、アミノ基、アセチル基、フェニル基、ハロゲン基よりなる群から選ばれた基である。 Xは 【化 12】

20

$$\frac{-\left(CH_{2}\right)_{n}}{s}$$
 または $\frac{-\left(CH_{2}\right)_{n}}{s}$

を示し、n及び1は1~6までの数である。Yは水酸基、チオール基、アミノ基、エポキシ基及びエポキシシクロヘキシル基よりなる群から選ばれた基である。)が用いられる。 【0049】

30

本発明の構成成分であるシランカップリング剤(D)は、前記一般式(1)で示される水酸基、チオール基、アミノ基、エポキシ基またはエポキシシクロヘキシル基を持つものが用いられる。具体的にはエポキシ基を持つものとしてはy-グリシジルオキシプロピルトリメトキシシラン、y-グリシジルオキシプロピルメチルジメトキシシラン、y-グリシジルオキシプロピルトリエトキシシラン等、アミノ基を持つものとしてはy-アミノプロポキシプロピルトリエトキシシラン等、チオール基を持つものとしてはy-メルカプトプロピルトリメトキシシラン等、チオール基を持つものとしてはy-メルカプトプロピルトリメトキシシラン、y-ビドロキシエトカリメトキシシラン、y-ビドロキシプロピルトリメトキシシラン等、エポキシンクロヘキシル)エチルトリメトキシシラン等が挙げられる。

40

[0050]

本発明の架橋剤(C)は、導電層形成時に使用する溶媒(B)に溶け、安定ならば如何なるものも使用可能である。中でも多官能エポキシ化合物、多官能イソシアネート化合物、多官能ヒドロキシ化合物、シランカップリング剤(D)が好ましく、特に水に可溶で安定な水系多官能エポキシ化合物、水系多官能イソシアネート化合物、水系多官能ヒドロキシ化合物、水系シランカップリング剤が好ましい。

[0051]

20

40

50

また、上記の多官能反応性基含有化合物中に、モノビニル化合物、モノアクリル化合物、モノエポキシ化合物、モノイソシアネート化合物、モノオキサゾリン化合物、モノカルボン酸化合物、モノアミン化合物、モノヒドロキシ化合物、モノメルカプト化合物等を含んでもよい。

[0052]

インドール誘導体三量体(A)および/または高分子化合物(G)を自己架橋させ、より架橋を強固にすることもできる。そのためにはこれらの化合物(A)及び(G)が架橋性反応基を有することが必要であり、このような架橋性反応基としては、例えば、アクリル基、ビニル基、エポキシ基、イソシアネート基、オキサゾリン基、シラノール基、酸クロリド基、カルボキシル基、アミノ基、水酸基、メルカプト基等が挙げられる。

[0053]

本発明の導電性組成物から得られる導電体は、用途によっては使用時に水や有機溶剤にて洗浄する場合があるが、架橋剤(C)により硬化することにより、耐水性や耐溶剤性の付与により制電性の低下を防止できるだけでなく、透明導電性膜に対する水や溶剤の振り切り性が良くなるという効果がある。また、架橋硬化により透明導電性膜は水や溶剤の吸水量が少なく膨潤していないため、乾燥時間を短縮できる。また、ゴミの付着が少ない、水洗時の傷つきが少ないといった効果もある。

[0054]

しかし、架橋硬化が強すぎると、加工等で導電体を伸張した場合、導電層が伸びに追従できず、伸張部分での制電性の低下が起こるため、150%伸張した時に表面抵抗値が10倍より大きくならないように、架橋硬化させることが好ましい。

[0055]

また、前記成分(C)と成分(B)の使用割合は、成分(B)100質量部に対して成分(C)が0.001~20質量部であり、好ましくは0.01~15質量部である。成分(C)0.001質量部未満では耐水性及び/または耐溶剤性の向上幅が比較的小さく、一方、20質量部を越えると溶解性、平坦性、透明性、及び導電性が悪化することがある

[0056]

また、前記成分(D)と成分(B)の使用割合は、成分(B)100質量部に対して成分(D)が0.001~20質量部であり、好ましくは0.01~15質量部である。成分(D)0.001質量部未満では耐水性及び/または耐溶剤性の向上幅が比較的小さく、一方、20質量部を越えると溶解性、平坦性、透明性、及び導電性が悪化することがある

[0057]

本発明の導電性組成物は、更にコロイダルシリカ (E) を加えると導電性組成物から得られる導電体の表面硬度及び耐侯性は著しく向上する。

[0058]

本発明に用いられるコロイダルシリカ(E)は、特に限定されないが、水、有機溶剤または水及び有機溶剤の混合溶媒に分散されているものが好ましく用いられる。有機溶剤としては、特に限定されないが例えば、メタノール、エタノール、イソプロピルアルコール、プロピルアルコール、ブタノール、ペンタノール等のアルコール類、アセトン、メチルエチルケトン、エチルイソブチルケトン、メチルイソブチルケトン等のケトン類、エチレングリコール、エチレングリコールメチルエーテル、エチレングリコールモノーnープロピルエーテル等のエチレングリコール類、プロピレングリコール、プロピレングリコールメチルエーテル、プロピレングリコールブチルエーテル、プロピレングリコールブチルエーテル、プロピレングリコールブチルエーテル、プロピレングリコールプロピルエーテル、プロピレングリコールが好ましく用いられる。

[0059]

また、コロイダルシリカ(E)の粒子径としては、lnm~300nmのものが用いられ、好ましくはlnm~150nm、更に好ましくはlnm~50nmの範囲のものが用い

られる。ここで粒子径が大きすぎると硬度が不足し、またコロイダルシリカ自体の溶液安 定性も低下してしまう。

[0060]

また、前記成分(E)と成分(B)の使用割合は、成分(B)100質量部に対して成分(E)が0.001~100質量部が好ましく、より好ましくは0.01~50質量部である。成分(E)0.001質量部以上で耐水性、耐侯性及び硬度の向上幅が大きく、一方、100質量部を越えると溶解性、平坦性、透明性、及び導電性が悪化することがある

[0061]

本発明の導電性組成物を構成する塩基性化合物(F)は、導電性組成物中に添加することによりインドール誘導体三量体(A)を脱ドープし、溶媒(B)への溶解性をより向上させる効果がある。またカルボキシル基置換インドール三量体類、スルホン酸基置換インドール三量体類の場合、スルホン酸基及びカルボキシル基と塩を形成することにより水への溶解性が特段に向上する。塩基性化合物(F)としては、特に限定されるものではないが、例えばアミン類やアンモニウム塩類などが好ましく用いられる。

[0062]

塩基性化合物(F)として用いられるアミン類の構造式を下式に示す。

【化13】

20

30

(6)

式中、R 4 1 \sim R 4 3 は各々互いに独立に水素、炭素数 1 \sim 4 (C $_1$ \sim C $_4$)のアルキル基、C H $_2$ O H、C H $_2$ C H $_2$ O H、C O N H $_2$ またはN H $_2$ を表す。

[0063]

本発明の塩基性化合物 (F) として用いられるアンモニウム塩類の構造式を下式に示す。 【化14】

40

(7)

式中、R⁴⁴~R⁴⁷ は各々互いに独立に水素、炭素数1~4 (C₁~C₄) のアルキル

20

30

40

50

基、 CH_2 OH、 CH_2 CH_2 OH、 $CONH_2$ または NH_2 を表し; X^- は OH^- 、 1 / 2 · SO_4 2 - 、 NO_3 $^-$ 、 1 / 2 CO_3 2 $^-$ 、 H CO_3 $^-$ 、 1 / 2 · (COO) $_2$ 2 、 またはR 'COO [式中、R 'は炭素数 1 ~ 3 (C_1 ~ C_3) のアルキル基である] を表す。

[0064]

[0065]

塩基性化合物 (F) の使用割合は、溶媒 (B) 100質量部に対して0.1~10質量部が好ましく、より好ましくは0.1~5質量部である。塩基性化合物 (G) の割合が10質量部以下の時、溶解性と導電性が共に優れるなど好ましい。

[0066]

本発明の前記導電性組成物及び導電体を構成する高分子化合物(G)は、溶媒(B)に溶解するもの、或いはエマルションを形成するものであれば特に限定されるものではない。例えばポリビニルアルコール、ポリビニルホルマール、ポリビニルブチラールなどのポリビニルアルコール類、ポリアクリルアマイド、ポリ(Nーtーブチルアクリルアマイド)、ポリアクリルアマイドメチルプロパンスルホン酸などのポリアクリルアマイド類、ポリビニルピロリドン類、アルキド樹脂、メラミン樹脂、尿素樹脂、フェノール樹脂、エポキシ樹脂、ポリブタジエン樹脂、アクリル樹脂、ウレタン樹脂、ビニルエステル樹脂、ユリア樹脂、ポリイミド樹脂、マレイン酸樹脂、ポリカーボネート樹脂、酢酸ビニル樹脂、塩素化ポリプロピレン樹脂、アクリル/スチレン共重合樹脂、酢酸ビニル/アクリル共重合樹脂、ポリエステル樹脂、スチレン/マレイン酸共重合樹脂、フッ素樹脂及びこれらの共重合体などが用いられる。またこれらの高分子化合物(G)は2種以上を任意の割合で混合したものであってもよい。

[0067]

これら高分子化合物 (G) の中でも水溶性高分子化合物または水系でエマルジョンを形成する高分子化合物が好ましく用いられ、特に好ましくはアニオン基を有する高分子化合物が用いられる。また、その中でも、水系アクリル樹脂、水系ポリエステル樹脂、水系ウレタン樹脂および水系塩素化ポリオレフィン樹脂のうちの1種または2種以上を混合して使用することが好ましい。

[0068]

高分子化合物(G)の使用割合は溶媒(B)100質量部に対して0.1~400質量部が好ましく、より好ましくは0.5~300質量部である。0.1質量部以上では成膜性、成形性、強度がより向上し、一方400質量部以下の時、インドール誘導体三量体(A)の溶解性の低下が少なく、高い導電性が維持される。

[0069]

本発明の導電性組成物は、インドール誘導体三量体(A)、溶媒(B)、シランカップリング剤(D)等の架橋剤(C)、コロイダルシリカ(E)、塩基性化合物(F)及び高分子化合物(G)の成分のみでも性能の良い膜を形成することが可能であるが、界面活性剤(H)を加えると更に平坦性、塗布性及び導電性などが向上する。本発明の導電性組成物及び導電体の成分である界面活性剤(H)は、アルキルスルホン酸、アルキルベンゼンスルホン酸、アルキルカルボン酸、アルキルナフタレンスルホン酸、 $\alpha-$ オレフィンスルホン酸、ジアルキルカルボン酸、 $\alpha-$ スルホン化脂肪酸、N-メチル-N-オレイルタウリン、石油スルホン酸、アルキル硫酸、硫酸化油脂、ポリオキシエチレンアルキルエーテル硫酸、ポリオキシエチレンスチレン化フェニルエーテル硫酸、アルキルフェニルエーテルオキシエチレンアルキルフェニルエーテル

30

40

50

リン酸、ナフタレンスルホン酸ホルムアルデヒド縮合物及びこれらの塩などのアニオン系 界面活性剤、第一~第三脂肪アミン、四級アンモニウム、テトラアルキルアンモニウム、 トリアルキルベンジルアンモニウムアルキルピリジニウム、2-アルキル-1-アルキル -1-ヒドロキシエチルイミダゾリニウム、N, N-ジアルキルモルホリニウム、ポリエ チレンポリアミン脂肪酸アミド、ポリエチレンポリアミン脂肪酸アミドの尿素縮合物、ポ リエチレンポリアミン脂肪酸アミドの尿素縮合物の第四級アンモニウム及びこれらの塩な どのカチオン系界面活性剤、N,N-ジメチル-N-アルキル-N-カルボキシメチルア ンモニウムベタイン、N,N,N-トリアルキル-N-スルホアルキレンアンモニウムベ タイン、N, N-ジアルキル-N, N-ビスポリオキシエチレンアンモニウム硫酸エステ ルベタイン、2-アルキル-1-カルボキシメチル-1-ヒドロキシエチルイミダゾリニ ウムベタインなどのベタイン類、N,N-ジアルキルアミノアルキレンカルボン酸塩など のアミノカルボン酸類などの両性界面活性剤、ポリオキシエチレンアルキルエーテル、ポ リオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリスチリルフェニル エーテル、ポリオキシエチレンーポリオキシプロピレングリコール、ポリオキシエチレン ーポリオキシプロピレンアルキルエーテル、多価アルコール脂肪酸部分エステル、ポリオ キシエチレン多価アルコール脂肪酸部分エステル、ポリオキシエチレン脂肪酸エステル、 ポリグリセリン脂肪酸エステル、ポリオキシエチレン化ヒマシ油、脂肪酸ジエタノールア ミド、ポリオキシエチレンアルキルアミン、トリエタノールアミン脂肪酸部分エステル、 トリアルキルアミンオキサイドなどの非イオン系界面活性剤及びフルオロアルキルカルボ ン酸、パーフルオロアルキルカルボン酸、パーフルオロアルキルベンゼンスルホン酸、パ ーフルオロアルキルポリオキシエチレンエタノールなどのフッ素系界面活性剤が用いられ る。ここで、アルキル基は炭素数1~24が好ましく、炭素数3~18がより好ましい。 なお、界面活性剤は二種以上用いても何らさしつかえない。

[0070]

界面活性剤 (H) の使用割合は、溶媒 (B) 100質量部に対して0.1~10質量部が好ましく、より好ましくは0.1~5質量部である。

[0071]

本発明の導電性組成物は、更に無機塩(I)を加えると溶媒(B)に対するインドール誘導体三量体(A)の溶解度が向上する。無機塩(I)は特に限定されないがアルカリ金属塩、アルカリ土類金属塩などが好ましく用いられる。例えば塩化リチウム、臭化リチウム、ヨウ化リチウム、水酸化リチウム、炭酸リチウム、硝酸リチウム、しゅう酸リチウム、りん酸リチウム、硫酸リチウムが好ましく用いられる。なお、無機塩は二種以上用いても何らさしつかえない。

[0072]

無機塩(I)の使用割合は、溶媒(B) 1 0 0 重量部に対して 0 1 ~ 5 重量部が好ましく、より好ましくは 0 1 ~ 3 重量部である。

[0073]

また、本発明の導電性組成物には、その導電性を更に向上させるために導電性物質を含有させることができる。導電性物質としては、導電性カーボンブラック、黒鉛等の炭素系物質、酸化錫、酸化亜鉛等の金属酸化物、銀、ニッケル、銅等の金属が挙げられる

[0074]

さらに本発明に用いられる導電性組成物には、必要に応じて、保存安定剤、接着助剤、染料、顔料などを添加することができる。

[0075]

本発明による導電性組成物はインドール誘導体三量体(A)、溶媒(B)及びシランカップリング剤(D)等の架橋剤(C)、更に必要によりコロイダルシリカ(E)、塩基性化合物(F)、高分子化合物(G)、界面活性剤(H)及び/または無機塩(I)を室温下でまたは加熱攪拌して完全に溶解するか、または混和して調製する。また、本発明の導電体は、前記のようにして調製した導電性組成物を基材に塗布することにより形成することが可能である。

20

30

40

50

[0076]

本発明の導電体は、このままでも優れた導電性を有するものであるが、基材の少なくとも 一つの面上に、導電性組成物を塗布し透明導電性膜を形成した後に、酸によりドーピング 処理を行い、次いで常温で放置あるいは加熱処理をすることにより、さらに導電性を向上 させることができる。

[0077]

酸によるドーピング処理方法については特に限定されるものではなく公知の方法を用いることが出来るが、例えば酸性溶液中に導電体を浸漬させるなどの処理をすることによりドーピング処理を行うことができる。酸性溶液は、具体的には、塩酸、硫酸、硝酸などの無機酸や、pートルエンスルホン酸、カンファスルホン酸、安息香酸及びこれらの骨格を有する誘導体などの有機酸や、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリ(2ーアクリルアミドー2ーメチルプロパン)スルホン酸、ポリビニル硫酸及びこれらの骨格を有する誘導体などの高分子酸を含む水溶液、あるいは、水一有機溶媒の混合溶液である。なお、これらの無機酸、有機酸、高分子酸はそれぞれ単独で用いても、また2種以上を任意の割合で混合して用いてもよい。

[0078]

本発明の導電体の形成方法としては、一般の塗料に用いられる方法によって導電性組成物を基材の表面に加工することが出来る。例えばグラビアコーター、ロールコーター、カーテンフローコーター、スピンコーター、バーコーター、リバースコーター、キスコーター、ファンテンコーター、ロッドコーター、エアドクターコーター、ナイフコーター、ブレードコーター、キャストコーティング、スクリーンコーティングなどの塗布法、スプレーコーティングなどの噴霧法、ディップなどの浸漬法などが用いられる。

[0079]

本発明の導電性組成物によって形成される透明導電性膜は、膜厚 $0.01\sim1000\mu$ m に成膜が可能であるが、膜厚が大きいと透明導電性膜の透明性が低下する傾向があるので、通常はなるべく薄いことが好ましく、好ましくは $0.01\sim500\mu$ mの範囲、より好ましくは $0.02\sim100\mu$ mの範囲とするのがよい。また、上記の厚さの透明導電性膜を得るためには、導電性組成物の粘度を1000cp以下、好ましくは $1\sim500c$ pの範囲とし、固形分量 $0.1\sim80$ 重量%の範囲とすることが好ましい。

[0080]

本発明の透明導電性膜を有する導電体は、低湿度条件(例えば温度 25 \mathbb{C} 、相対湿度 15 %)での表面抵抗値が 10^5 \sim 10^{12} Ω であることが好ましく、更に 10^5 \sim 10^1 Ω Ω の性能を有することがより好ましい。

[1 2 1 3

また、本発明の透明導電性膜を有する導電体は、用途によっては優れた耐水性及び/または耐溶剤性を有することが必要である。そのためには水または溶剤への浸漬による導電性などの性能低下がないよう耐水性及び/または耐溶剤性の付与が必要である。耐水性及び耐溶剤性としては温度 浸漬前の表面抵抗値(SR0)に対して40 C の溶媒中に 1 時間浸漬した後の表面抵抗値(SR1)の変化率(SR1/SR0)が 10 以内であることが好ましく、更に変化率が 5 以内であることがより好ましい。

[0082]

導電性組成物を塗工する基材としては、高分子化合物、木材、紙材、セラミックス及びそのフィルムまたはガラス板、発砲体、多孔質体、エラストマーなどが用いられる。例えば高分子化合物及びフィルムとしては、ポリエチレン、ポリ塩化ビニル、ポリプロピレン、ポリスチレン、ポリエステル、ABS樹脂、AS樹脂、メタクリル樹脂、ポリブタジエン、ポリカーボネート、ポリアリレート、ポリフッ化ビニリデン、ポリアミド、ポリイミド、ポリアラミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリエーテルニトリル、ポリアミドイミド、ポリエーテルサルフォン、ポリサルフォン、ポリエーテルイミド、ポリブチレンテレフタレート及びそのフィルムなどがある。これらの高分子フィルムは、少なくともその一つの面に透明導電性高分子膜を

形成させるため、該高分子膜の密着性を向上させる目的で上記フィルム表面をコロナ表面処理またはプラズマ処理することが好ましい。また、基材に透明導電性膜を形成した後、加熱することにより塩基性化合物 (F) の残分が減り導電性が向上し250℃以下、好ましくは40~200℃の範囲で加熱処理することにより性能の向上した導電体が形成される。

[0083]

【実施例】

以下実施例により本発明を更に具体的に説明する

[0084]

なお、インドール誘導体三量体合成例において、元素分析測定は、サーモクエスト社製 E A 1 1 1 0 で測定した。導電率測定は、三菱化学製ロレスター計 M C P - T 3 5 0 (4端子法:電極間距離 1 m m)で測定した。さらに、 X 線回折解析 (X R D)は、理学電機株式会社製 R I N T - 1 1 0 0 (管球: C u K α X 線)で測定した。

[0085]

合成例 1

インドールー5ーカルボン酸三量体の合成

200 m l の三ツロフラスコにアセトニトリル 10 m l を入れ、インドールー5ーカルボン酸 1. 42 g を溶解した。一方、酸化剤溶液の調製はアセトニトリル 40 m l に対して、無水塩化第二鉄 16. 2 g、水 5. 4 g を溶解して 10 分間攪拌した。次に、インドールー5ーカルボン酸水溶液に 30 分間かけて、調製した酸化剤溶液を滴下した後、60 $^{\circ}$ で 10 時間攪拌した。反応溶液は若干の発熱を伴いながら薄黄色から淡緑色に変化し、その p H は 1 以下であった。反応終了後、桐山漏斗で吸引濾過し、アセトニトリル次いでメタノールで洗浄し、乾燥して、淡緑色の 6, 11 $^{\circ}$ $^{$

[0086]

合成例2

インドールー5ースルホン酸三量体の合成

[0087]

合成例3

インドールー5ーカルボニトリル三量体の合成

合成例 1 においてインドールー 5 ーカルボン酸の代わりにインドールー 5 ーカルボニトリルを使用する以外は合成例 1 と同様な方法で重合を行った。緑色の 6 , 1 1 ージヒドロー 5 H ージインドロ [2 , 3 ~ a : 2 ' , 3 ' - c] カルバゾールー 2 , 9 , 1 4 - トリカルボニトリル、(インドールー 5 - カルボニトリル三量体) 1 . 2 2 g(収率 8 6 %)を得た。得られた三量体を錠剤成型器で加圧成型させて直径 1 0 m m 、厚さ 1 m m の形状に切り出して四端子法にて導電率を測定したところ、 0 . 5 0 S / c m であった。元素分析の結果は(C g . 0 の H 4 . 0 3 N 1 . 9 7 C 1 の . 1 の) 3 であった。また、 X 線回折結晶解析の結果、層間隔は 0 . 4 4 n m であった。

10

20

30

[0088]

合成例 4

脱ドープ状態のインドールー5ーカルボニトリル三量体の合成

合成例 7 にて合成したインドールー 5 ーカルボニトリル三量体 1. 00gを、1 Mアンモニア水中で分散させ、1時間攪拌した。攪拌後、桐山漏斗で吸引濾過し、水、次いでメタノールで洗浄し、乾燥して、黒色の脱ドープ状態のインドールー 5 ーカルボニトリル三量体 0.95gを得た。得られた三量体を錠剤成型器で加圧成型させて直径 $10\,\mathrm{mm}$ 、厚さ $1\,\mathrm{mm}$ の形状に切り出して四端子法にて導電率を測定したところ、 0. 04 S / c m以下であった。元素分析の結果は($C_{9.00}$ H $_{4.02}$ N $_{2.02}$) $_3$ であった。

[0089]

10

合成例 5

脱ドープ状態のポリアニリンの合成

アニリン100mmolを25℃で1mol/L 硫酸水溶液に攪拌溶解し、ペルオキソニ硫酸アンモニウム100mmolの水溶液を滴下した。滴下終了後、25℃で12時間更に攪拌した後に反応生成物を濾別洗浄後乾燥し、重合体粉末8gを得た。得られた三量体を錠剤成型器で加圧成型させて直径10mm、厚さ1mmの形状に切り出して四端子法にて導電率を測定したところ、1.0S/cm以下であった。この重合体を25℃で1時間で1mol/Lアンモニア水中で分散攪拌した後に濾別洗浄後乾燥し、脱ドープ状態の重合体粉末5gを得た。

[0090]

20

合成例 6

ポリ (2- λ - λ

2-アミノアニソールー4-スルホン酸100mmolを25℃で4mol/Lのアンモニア水溶液に攪拌溶解し、ペルオキソ二硫酸アンモニウム100mmolの水溶液を滴下した。滴下終了後、25℃で12時間更に攪拌した後に反応生成物を濾別洗浄後乾燥し、重合体粉末15gを得た。得られた三量体を錠剤成型器で加圧成型させて直径10mm、厚さ1mmの形状に切り出して四端子法にて導電率を測定したところ、0.11S/cm以下であった。

[0091]

30

実施例1(導電性組成物1)

[0092]

実施例2(導電性組成物2)

40

インドールー5ーカルボン酸三量体5質量部、 γ ーグリシジルオキシプロピルトリメトキシシラン0.5質量部、アンモニア1質量部を水100質量部に室温で攪拌溶解し導電性組成物を調整した。このようにして得られた溶液をガラス基板上にスピンコート法により塗布し、80 $^{\circ}$ ×5分で乾燥させた。膜厚3.5 $^{\mu}$ mの表面の平滑な表面抵抗値4.8×10 $^{\circ}$ $^{\circ}$ $^{\circ}$ 0の無色透明フィルムが得られた。

[0093]

実施例3(導電性組成物3)

インドール-5-カルボン酸三量体3質量部、アクリルエマルション「ダイヤナールMX-1708」(三菱レイヨン社製)20質量部、y-グリシジルオキシプロピルトリメトキシシラン0.5質量部、アンモニア1.0質量部を水100質量部に室温で攪拌溶解し

導電性組成物を調整した。このようにして得られた溶液をガラス基板上にスピンコート法により塗布し、 100×5 分で乾燥させた。膜厚 3.0μ mの表面の平滑な表面抵抗値 $4.2 \times 10^7 \Omega$ の無色透明フィルムが得られた。

[0094]

実施例4(導電性組成物4)

インドールー5ーカルボン酸三量体5質量部、y-グリシジルオキシプロピルトリメトキシシラン0.5質量部、コロイダルシリカ(粒子径:<math>20nm)5質量部、アンモニア1質量部を水100質量部に室温で攪拌溶解し導電性組成物を調整した。このようにして得られた溶液をガラス基板上にスピンコート法により塗布し、 $25\% \times 5$ 分で乾燥させた。膜厚 3.5μ mの表面の平滑な表面抵抗值 $6.8\times 10^6\Omega$ の無色透明フィルムが得られた。

[0095]

実施例5(導電性組成物5)

インドールー5ーカルボン酸三量体 3 質量部、アクリルエマルション「ダイヤナール M X ー 1 7 0 8 」(三菱レイヨン社製) 2 0 質量部、y ーグリシジルオキシプロピルトリメトキシシラン 0. 5 質量部、コロイダルシリカ(粒子径: 2 0 n m) 5 質量部、アンモニア 1. 0 質量部を水 1 0 0 質量部に室温で攪拌溶解し導電性組成物を調整した。このようにして得られた溶液をガラス基板上にスピンコート法により塗布し、 5 0 $^{\circ}$ $^{$

[0096]

実施例6 (導電性組成物6)

[0097]

実施例7(導電性組成物7)

[0098]

実施例8 (導電性組成物8)

[0099]

実施例9 (導電性組成物9)

インドールー5ーカルボン酸三量体 0.5質量部、γーグリシジルオキシプロピルトリメトキシシラン 0.5質量部、アンモニア1質量部、水溶性ポリエステル樹脂「アラスター300」(荒川化学工業社製)3質量部を水100質量部に室温で攪拌溶解し導電性組成物を調整した。このようにして得られた溶液をガラス基板上にスピンコート法により塗布

10

20

30

40

し、40 $\mathbb{C} \times 5$ 分で乾燥させた。膜厚 0 . 5 μ m の表面の平滑な表面抵抗値 2 . 8×10 8 Ω の無色透明フィルムが得られた。

[0100]

実施例10(導電性組成物10)

インドールー5ースルホン酸三量体3質量部、y-グリシジルオキシプロピルトリメトキシシラン0.5質量部、水溶性ポリエステル樹脂「アラスター300」(荒川化学工業社製)3質量部、ドデシルベンゼンスルホン酸0.5質量部を水<math>100質量部に室温で攪拌溶解し導電性組成物を調整した。このようにして得られた溶液をガラス基板上にスピンコート法により塗布し、 $80\% \times 5$ 分で乾燥させた。膜厚3.0 μ mの表面の平滑な表面抵抗値3. 3×10^7 Ω の無色透明フィルムが得られた。

[0101]

実施例11(導電性組成物11)

インドールー5ーカルボニトリル三量体1質量部、ポリビニルアルコール0.5質量部、ポリエステル樹脂(東洋紡バイロン290)0.5質量部、アンモニア0.7質量部をアセトン100質量部に室温で攪拌溶解し導電性組成物を調整した。このようにして得られた溶液をガラス基板上にディップ法により塗布し、150 $\mathbb{C} \times 5$ 分で乾燥させた。膜厚1.0 μ mの表面の平滑な表面抵抗値3.9 \times 10 7 Ω の無色透明フィルムが得られた。

[0102]

実施例12(導電性組成物12)

脱ドープ状態のインドールー5ーカルボニトリル三量体8質量部、ポリビニルアルコール 0.5質量部、をジメチルホルムアミド 100質量部に室温で攪拌溶解し導電性組成物を 調整した。このようにして得られた溶液をガラス基板上にスピンコート法により塗布し、 150 で乾燥させた。このガラス基板を 1 M硫酸水溶液中に 5 分間浸漬した後、 150 $\mathbb{C} \times 5$ 分にて乾燥させた。膜厚 2.0 μ mの表面の平滑な表面抵抗値 3.1×10^6 Ω の 無色透明フィルムが得られた。

[0103]

比較例1 (導電性組成物13)

[0104]

比較例2 (導電性組成物 1 4)

インドールー5ーカルボン酸三量体3質量部、アクリルエマルション「ダイヤナールMXー1708」(三菱レイヨン社製)20質量部、アンモニア1.0質量部を水100質量部に室温で攪拌溶解し導電性組成物を調整した。このようにして得られた溶液をガラス基板上にスピンコート法により塗布し、100℃で乾燥させた。膜厚3.0 μ mの表面の平滑な表面抵抗値1.4×10 7 Qの無色透明フィルムが得られた。

[0105]

比較例3(導電性組成物15)

脱ドープ状態のポリアニリン 1 質量部、アクリルエマルション「ダイヤナールMX-1708」(三菱レイヨン社製) 2 0 質量部、パーフルオロドデシルカルボン酸 1 質量部を N ーメチルー 2 ーピロリドン 1 0 0 質量部に室温で攪拌溶解し導電性組成物を調整した。このようにして得られた溶液をガラス基板上にスピンコート法により塗布し、 150 ℃で乾燥させた。このガラス基板を 1 M 硫酸水溶液に 10 分浸漬させ 100 ℃で乾燥させ、膜厚 1.0 μ m の表面の平滑な表面抵抗値 3.0×10^9 Ω の濃青色フィルムが得られた。

[0106]

比較例4(導電性組成物16)

カーボンブラック 1 質量部、アクリルエマルション「ダイヤナール M X - 1 7 0 8 」 (三 菱レイヨン社製) 2 0 質量部、ポリスチレンスルホン酸ナトリウム 1 質量部を水 1 0 0 質

10

30

20

50

量部に室温で攪拌溶解し導電性組成物を調整した。このようにして得られた溶液をガラス基板上にスピンコート法により塗布し、80℃で乾燥させた。膜厚1.0 μ mの表面の平滑な表面抵抗値3. 0×10^{-1} 2 Ω の黒色フィルムが得られた。

[0107]

比較例5(導電性組成物17)

ポリスチレンスルホン酸ナトリウム 1 質量部、アクリルエマルション「ダイヤナール MX - 1708」(三菱レイヨン社製) 2 0 質量部を水 100 質量部に室温で攪拌溶解し導電性組成物を調整した。このようにして得られた溶液をガラス基板上にスピンコート法により塗布し、 80 で乾燥させた。膜厚 0 . 7μ m の表面の平滑な表面抵抗値 5 . 0×10 1^{-2} Ω のフィルムが得られた。

[0108]

比較例6 (導電性組成物 1 8)

ポリ(2-スルホー5-メトキシー1, 4-イミノフェニレン)(スルホン化ポリアニリン) 1 質量部、アンモニア 1 質量部、水溶性ポリエステル樹脂「アラスター300」(荒川化学工業社製) 3 質量部、塩化リチウム 1 質量部を水 100 質量部に室温で攪拌溶解し導電性組成物を調整した。このようにして得られた溶液をガラス基板上にスピンコート法により塗布し、80°で乾燥させた。膜厚 10 μ mの表面の平滑な表面抵抗値 75 × 10 π 0 の黄色透明フィルムが得られた。

[0109]

評価方法

実施例 $1 \sim 12$ 及び比較例 $1 \sim 6$ にて作成した導電体について、下記項目の評価を実施した。結果を表1に示す。

• 表面抵抗值

25℃、15% R H の条件下で表面抵抗値の測定には2端子法(電極間距離:20 m m)を用いた。

• 耐水性評価

実施例13~24

実施例1~12にて得られた導電体について、表面抵抗値(SRO)を測定した。この導電体を40℃の溶媒中に1時間浸漬し、外観観察、表面抵抗値(SR1)を測定し、R1/R0を算出した。

比較例7~12

比較例1~6にて得られた導電体について、表面抵抗値(SRO)を測定した。この導電体を40℃の溶媒中に1時間浸漬し、外観観察、表面抵抗値(SR1)を測定し、R1/R0を算出した。

• 塗面外観

40℃、溶媒中に1時間浸漬後、外観を目視により塗膜の状態を観察した。

ご浸漬前と変化なし(光沢、透明性あり)

× :成分が溶出

• 硬度

得られた導電体について鉛筆引っかき試験(JIS K5400に準拠)を実施した。

[0110]

【表1】

10

20

30

		, .					
<u> </u>	導電	表面抵抗値:	表面抵抗值:	浸渍溶媒	耐水性	外観	硬度
	性組	SR0	SR1		SR1/SR0		
	成物	(Ω)	(Ω)			Ī	
実施例13	1	6. 9×10 ⁸	7. 5×10 ⁸	DMF	1. 1	0	нв
実施例14	2	4.8×10 ⁶	5. 0×10 ⁶	NH3aq	1. 0	0	Н
実施例15	3	4. 2×10 ⁷	5. 6×10 ⁷	NH3aq	1. 3	0	Н
実施例16	4	6.8×10 ⁶	7. 0×10 ⁶	NH ₃ aq	1. 0	0	5 H
実施例17	5	5. 9×10 ⁷	6. 1×10 ⁷	NH ₃ aq	1. 0	0	5 H
実施例18	6	3. 7×10 ⁷	3. 9×10 ⁷	NH ₃ aq	1. 1	0	нв
実施例19	7	3. 9×10 ⁶	7. 3×10 ⁶	NH ₃ aq	1. 9	0	нв
実施例20	8	6. 3×10 ⁷	6.8×10 ⁷	NH ₃ aq	1. 1	0	Н
実施例21	9	2. 8×10 ⁸	3.8×10 ⁸	NH ₃ aq	1. 4	0	Н
実施例22	10	3. 3×10 ⁷	5. 0×10 ⁷	NH ₃ aq	1. 5	0	Н
実施例23	1 1	3. 9×10 ⁷	8. 2×10 ⁷	アセトン	2. 1	0	нв
実施例24	1 2	3. 1×10 ⁶	9. 2×10 ⁶	DMF	3. 0	0	нв
比較例7	1	2. 2×10 ⁶	> 1 0 1 3	NH ₃ aq	> 1 0 7	×	В
比較例8	2	1. 4×10 ⁷	> 1 0 1 3	NH ₃ aq	> 1 0 6	×	В
比較例 9	3	3. 0×10 ⁹	5.0×10 ¹²	DMF	>103	0	В
比較例10	4	3. 0×10 ¹²	>1 0 1 3	NH ₃ a q	>10	×	В
比較例11	5	5. 0×10 ¹²	>1013	NH ₃ aq	>10	×	В
比較例12	6	7. 5×10 ⁷	> 1 0 1 3	NH ₃ aq	>106	×	В

DMF:ジメチルホルムアミド

NH₃aq:0.1N アンモニア水

[0111]

【発明の効果】

1. 本発明による導電性組成物は、該組成物を適当な基材に塗布、スプレー、キャスト、ディップ及び加熱処理のみで湿度依存性がなく高い導電性を発現し成膜性、成形性、無色透明性、耐溶剤性、耐水性、硬度、耐侯性に優れた導電性薄膜を得ることができる。

2. 本発明においては、インドール誘導体三量体を成膜性、成形性、無色透明性、耐溶剤性、耐水性、硬度、耐侯性に優れた透明導電性高分子膜を、適当な基材に塗布、スプレー、キャスト、ディップなどの加工により形成後、常温で放置あるいは加熱処理のみで湿度依存性がなく高い導電性を発現し、表面抵抗のばらつきが小さい導電体を得ることができる。

10

20

30

フロントページの続き

(51) Int.C1. ⁷	FI
C O 9 J 9/02	C O 9 D 201/00
CO9J 201/00	C O 9 J 9/02
H O 1 B 1/20	C O 9 J 201/00
HO1B 5/14	H O 1 B 1/20 A
H O 1 B 13/00	HO1B 5/14 A
// C08L 101:00	HO1B 13/00 503B
	C O 8 L 101:00

(56)参考文献 国際公開第02/032903 (WO, A1) 特開2003-100143 (JP, A)

(58)調査した分野(Int.Cl.⁷, DB名)

H01B 1/12
B05D 5/12
C08J 7/04 CER
C08J 7/04 CEZ
C09D 5/24
C09D201/00
C09J 9/02
C09J201/00
H01B 1/20
H01B 5/14
H01B 13/00 503

CO8L101:00