ECONOMIC LOAD DISPATCH

Objectives

- ☐ Develop a generalized program for solving economic load dispatch problem with the following conditions:
 - Transmission line losses are neglected
 - Generator limits are not considered

Simulation Tool

☐ Scripting languages like Python, Octave, MATLAB

Mathematical Model

- \Box Solve P_{Gi} using the following equations:
 - Co-ordination equation:

•
$$\frac{\partial C_i}{\partial P_{Gi}} = \lambda$$

- Constraints:
 - $\sum_{i=1}^{N} P_{Gi} = P_D$
 - All loads should be served

Inputs

Cost function matrix of the generation system of the form:

$$C = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ - & - & - \\ a_N & b_N & c_N \end{bmatrix}$$

- Where cost of each generator is of the form: $C_i = a_i + b_i P_{Gi} + c_i P_{Gi}^2$
- *N* is the total number of generators
- \Box Total demand P_D

Flow chart

Calculation of λ and P_{Gi}

$$\Box \quad \frac{\partial C_i}{\partial P_{Gi}} = \lambda \quad where \ C_i = a_i + b_i P_{Gi} + c_i P_{Gi}^2$$

$$\frac{\partial c_i}{\partial P_{Gi}} = b_i + 2c_i P_{Gi} = \lambda$$

$$P_{Gi} = \frac{\lambda - b_i}{2c_i}$$

$$P_{Gi} = \frac{\lambda - b_i}{2c_i}$$

$$\Box$$
 But $\sum P_{Gi} = P_D$

$$P_D = \sum \frac{\lambda - b_i}{2c_i} = \lambda \sum \frac{1}{2c_i} - \sum \frac{b_i}{2c_i}$$

$$\lambda = \frac{P_D + \sum \frac{b_i}{2c_i}}{\sum \frac{1}{2c_i}}$$

Sample inputs and outputs

☐ Inputs:

•
$$P_D = 100$$

Outputs:

- $\lambda = 32.8378$
- $P_G = [39.1892 \quad 9.4595 \quad 51.3514]$