PSTAT 126

Regression Analysis

Laura Baracaldo & Rodrigo Targino

Lecture 12 & 13 Categorical Predictors

Categorical Predictors

We have studied multiple regression models with quantitative predictors only, but what if we want to include predictors that are qualitative in nature, such as: *eye color, treatment, location* or *type of business*?

Factors: Factor Variables allow the inclusion of qualitative predictors in the mean function of a multiple linear regression model. The different categories of a factor variable are called *levels*.

Examples of *Two-Level Factors* are: Sex (Male/Female), Treatment (Treated/Untreated), Health status (Sick/Healthy) etc; whereas *Multiple-Level Factors* include: Eye color (green/black/brown/blue), party affiliation (Democrat/Republican/Independent), product quality (bad, medium, good), among others

Example - Categorical predictors

High-School Data Set: Data was collected as a subset of 200 students from the "High School and Beyond" study conducted by the National Education Longitudinal Studies (NELS) program of the National Center for Education Statistics (NCES).

```
##
       id gender
                         race ses schtvp
                                                 prog read write math science socst
## 1
       70
            male
                        white low public
                                                         57
                                                               52
                                                                    41
                                                                             47
                                                                                   57
                                              general
## 2
      121 female
                        white middle public vocation
                                                         68
                                                               59
                                                                    53
                                                                             63
                                                                                   61
## 3
       86
            male
                                 high public general
                                                         44
                                                               33
                                                                    54
                                                                             58
                                                                                   31
                        white
## 4
      141
            male
                        white
                                 high public vocation
                                                         63
                                                               44
                                                                    47
                                                                             53
                                                                                   56
## 5
      172
           male
                        white middle public academic
                                                         47
                                                               52
                                                                    57
                                                                            53
                                                                                   61
## 6
      113
           male
                        white middle public academic
                                                         44
                                                               52
                                                                    51
                                                                             63
                                                                                   61
## 7
       50
            male african-amer middle public general
                                                         50
                                                               59
                                                                    42
                                                                             53
                                                                                   61
            male
                     hispanic middle public academic
                                                         34
                                                               46
                                                                    45
                                                                                   36
## 8
       11
                                                                             39
## 9
       84
            male
                        white middle public general
                                                         63
                                                               57
                                                                    54
                                                                             58
                                                                                   51
                                                         57
## 10
       48
            male african-amer middle public academic
                                                               55
                                                                    52
                                                                             50
                                                                                   51
```

data(hsb); head(hsb, 10)

Example - Categorical predictors

- Gender: Female/Male
- Race: African-American/Asian/Hispanic/White
- Socioeconomic class: High/Low/Middle
- School type(schtyp): Private/Public
- High school program: Academic/General/Vocation

```
summary(hsb[,-1])
       gender
                            race
                                         ses
                                                     schtvp
                                                                                    read
                                                                      prog
    female:109
                 african-amer: 20
                                     high:58
                                                 private: 32
                                                               academic:105
                                                                               Min.
                                                                                      .28.00
                                                 public :168
                                                               general: 45
   male : 91
                 asian
                             : 11
                                     low
                                           :47
                                                                               1st Qu.:44.00
                                                                               Median :50.00
##
                 hispanic
                            . 24
                                     middle:95
                                                                vocation: 50
                 white
                             .145
                                                                                      .52.23
                                                                               Mean
                                                                               3rd Qu.:60.00
##
                                                                               Max.
                                                                                      :76.00
        write
                         math
                                        science
                                                         socst.
           :31.00
                                            :26.00
                                                            :26.00
                    Min.
                            :33.00
                                     Min.
                                                     Min.
    1st Qu.:45.75
                   1st Qu.:45.00
                                     1st Qu.:44.00
                                                     1st Qu.:46.00
                   Median :52.00
    Median :54.00
                                     Median :53.00
                                                     Median :52.00
   Mean
           .52.77
                            .52.65
                                            .51.85
                                                            .52.41
                    Mean
                                     Mean
                                                     Mean
   3rd Qu.:60.00
                    3rd Qu.:59.00
                                     3rd Qu.:58.00
                                                     3rd Qu.:61.00
    Max
           .67.00
                    Max
                           .75.00
                                     Max
                                            .74 00
                                                            .71.00
                                                     Max
```

Two-Level Factors

We aim to incorporate qualitative predictors within the MLR framework, so that we can extend estimation, inferential and diagnostics techniques more easily. In order to include factors in the model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ we need to codify the categorical variables by using dummy variables.

For a **Two-Level Factor** with levels A and B, we define dummy variables for individual ith as:

$$z_i = \begin{cases} 1 & \text{if } ith \in \mathsf{Level} \; \mathsf{A} \\ 0 & \text{if } ith \notin \mathsf{Level} \; \mathsf{A} \end{cases}$$

So that the model at the individual level is written as:

$$y_i = \beta_0 + \beta_A z_i + \epsilon_i = \begin{cases} \beta_0 + \beta_A + \epsilon_i & \text{if } ith \in \text{Level A} \\ \beta_0 + \epsilon_i & \text{if } ith \notin \text{Level A} \end{cases}$$

High School Data Example

Suppose we want to study the response y: Science Score as a function of School Type (private/public). We define the dummy variable with respect to Level public:

$$z_i = \begin{cases} 1 & \text{if } ith \in \mathsf{Public} \\ 0 & \text{if } ith \notin \mathsf{Public} \end{cases}$$

Thus the Linear model is:

$$y_i = \beta_0 + \beta_{public} z_i + \epsilon_i$$

PSTAT 126

The interpretation of β_{public} : Average difference in science scores for students in private schools with respect science scores in public schools:

$$\beta_{public} = \bar{y}_{public} - \bar{y}_{private}.$$

Private Schools vs Public Schools

Research question: Is there a statistically significant difference in the average science scores of public and private schools?

```
par(mar = c(2, 2, 0.8, 0.5)); plot(science~schtyp, hsb)
```


Private Schools vs Public Schools

```
lmod <- lm(science-schtyp, hsb) # R automatically recognizes schtyp as a factor
summary(lmod)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 53.312500 1.750993 30.4470164 1.257740e-76
## schtyppublic -1.741071 1.910490 -0.9113221 3.632338e-01
#R creates dummy var associated to b_public
lmod2 <- lm(science-as.factor(schtyp), hsb)
summary(lmod2)$coefficients</pre>
```

Estimate Std. Error t value Pr(>|t|)

53.312500 1.750993 30.4470164 1.257740e-76

(Intercept)

##

Private Schools vs Public Schools

What if we want to construct a dummy variable with respect to the level private?, i.e:

$$z_i = \begin{cases} 1 & \text{if } ith \in \mathsf{Private} \\ 0 & \text{if } ith \notin \mathsf{Private} \end{cases}$$

Thus the Linear model is:

$$y_i = \beta_0 + \beta_{private} z_i + \epsilon_i$$

```
\begin{split} \beta_{private} &= \bar{y}_{private} - \bar{y}_{public} \\ \text{private'- ifelse(hsb\$schtyp=="private", 1, 0)} \\ \text{lmod3 <- lm(science-private, hsb) ;summary(lmod3)\$coefficients} \end{split}
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 51.571429 0.7641958 67.4845733 1.317579e-138
## private 1.741071 1.9104895 0.9113221 3.632338e-01
```

Factors and Quantitative predictors

Suppose we want to include a quantitative variable x and a two-level factor z in the model. There are two possibilities:

Separate regression lines for each level with the same slope:

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 z_i + \epsilon_i = \begin{cases} \beta_0 + \beta_2 + \beta_1 x_i + \epsilon_i & ith \in \mathsf{A} \\ \beta_0 + \beta_1 x_i + \epsilon_i & ith \notin \mathsf{A} \end{cases}$$

Separate regression lines for each level with different slopes:

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 z_i + \beta_3 x_i z_i + \epsilon_i = \begin{cases} (\beta_0 + \beta_2) + (\beta_1 + \beta_3) x_i + \epsilon_i & ith \in \mathbf{A} \\ \beta_0 + \beta_1 x_i + \epsilon_i & ith \notin \mathbf{A} \end{cases}$$

High School Example

Separate regression lines with common slope and different intercepts.

```
lmod4 <- lm(science~math+schtyp, hsb) ;summary(lmod4)$coefficients

## Estimate Std. Error t value Pr(>|t|)
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.83230818 3.49241733 4.81967262 2.867077e-06
## math 0.66630487 0.05871397 11.34831838 2.714636e-23
## schtyppublic -0.07134314 1.49665267 -0.04766847 9.620288e-01
```

② Separate regression lines with different slopes and different intercepts.
lmod5 <- lm(science~math+schtyp + math:schtyp , hsb) ;summary(lmod5)\$coefficients</pre>

```
## (Intercept) 21.00194195 8.6726120 2.4216397 0.0163611963
## math 0.59014718 0.1564221 3.7727875 0.0002137695
## schtyppublic -4.89629406 9.3042936 -0.5262403 0.5993162301
## math:schtyppublic 0.08870108 0.1688129 0.5254403 0.5998710777
```

High School Example

```
par(mar = c(2, 2, 0.8, 0.5), mfrow=c(1,2)); colors<- c("orange", "darkgreen")
plot(science=math, hsb, pch=as.numeric(schtyp), col=colors[hsb$schtyp])
abline(lmod4$coefficients[1], lmod4$coefficients[2],col="orange" )
abline(lmod4$coefficients[1] + lmod4$coefficients[3],lmod4$coefficients[2], col="darkgreen" , lty=2, lwd=2)
plot(science=math, hsb, pch=as.numeric(schtyp), col=colors[hsb$schtyp])
abline(lmod5$coefficients[1],lmod5$coefficients[2],col="orange" )
abline(lmod5$coefficients[1] + lmod5$coefficients[2],col="orange" )
+lmod5$coefficients[4], col="darkgreen" , lty=2, lwd=2)
legend(min(hsb$math),max(hsb$science),legend=c( "Private", "Public"),col=c("orange", "darkgreen"), lty=1:2, cex</pre>
```


Junior School Project Example

Data set: Junior School Project collected from primary (U.S. term is elementary) schools in inner London. y: English Score, x: Math Score, z: Girl=1/Boy=0.

Separate regression lines with common slope and different intercepts.

```
{\tt lmod6 \ \ \ } {\tt lm(english~math+gender, jsp) \ ; summary(lmod6)$ coefficients}
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8612033 5.9239913 0.1453755 8.845630e-01
## math 1.6328342 0.2007725 8.1327583 4.612838e-14
## gendergirl 11.9531480 3.0095840 3.9716944 1.000162e-04
```

Separate regression lines with different slopes and different intercepts.

```
lmod7 <- lm(english~math+gender+math:gender, jsp) ;summary(lmod7)$coefficients</pre>
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7.2523204 8.4378332 -0.8595003 3.911146e-01
## math 1.9309689 0.2984735 6.4694817 7.681545e-10
## gendergirl 26.5340946 11.2288999 2.3630182 1.910586e-02
## math:gendergirl -0.5426657 0.4026852 -1.3476176 1.793371e-01
```

High School Example

```
par(mar = c(2, 2, 0.8, 0.5), mfrow=c(1,2))
plot(english-math, jsp, pch=as.numeric(gender), col= colors[jsp$gender])
abline(lmod6$coefficients[1],lmod6$coefficients[2], col="orange" )
abline(lmod6$coefficients[1] + lmod6$coefficients[3],lmod6$coefficients[2], col="darkgreen" , lty=2, lwd=2)
plot(english-math, jsp, pch=as.numeric(gender), col= colors[jsp$gender])
abline(lmod7$coefficients[1],lmod7$coefficients[2], col="orange" )
abline(lmod7$coefficients[1] + lmod7$coefficients[2], col="orange" )
abline(lmod7$coefficients[4], col="darkgreen" , lty=2, lwd=2)
legend(min(jsp$math),max(jsp$english),legend=c("Boys", "Girls"),col=c("orange", "darkgreen"), lty=1:2, cex=0.8)
```


Factors With More Than Two Levels

Suppose we have a factor with m levels, then we create m-1 dummy variables z_2, \ldots, z_m for subjects $1, \ldots, n$ where:

$$z_{ij} = \begin{cases} 1 & \text{if } ith \in \mathsf{Level} \ j \\ 0 & \text{if } ith \notin \mathsf{Level} \ j \end{cases}$$

So that level 1 is the reference level. Why do we create m-1 and not m dummy variables? Answer: To make $\boldsymbol{X}^T\boldsymbol{X}$ non-singular. Note that if we created m dummy variables, the design matrix \boldsymbol{X} would have m linearly independent columns out of m+1 columns $\Rightarrow \boldsymbol{X}^T\boldsymbol{X}$ would not be invertible.

HS Example: Multiple-Level Factor

y: Science Score; *Factor*: Socioeconomic class (ses), *Levels*: High, low, middle.

```
attach(hsb)
contrasts(ses) # To identify reference level in R
```

$$z_{2i} = \begin{cases} 1 & \text{if } ith \in \mathsf{Low} \\ 0 & \text{if } ith \notin \mathsf{Low} \end{cases} \qquad z_{3i} = \begin{cases} 1 & \text{if } ith \in \mathsf{Middle} \\ 0 & \text{if } ith \notin \mathsf{Middle} \end{cases}$$

$$y_i = \beta_0 + \beta_L z_{2i} + \beta_M z_{3i} + \epsilon_i = \begin{cases} \beta_0 + \beta_L + \epsilon_i & ith \in \mathsf{Low} \\ \beta_0 + \beta_M + \epsilon_i & ith \in \mathsf{Middle} \\ \beta_0 + \epsilon_i & ith \in \mathsf{High} \end{cases}$$

HS Example: Multiple-Level Factor

```
par(mar = c(3, 2, 0.1, 2))
plot(science~ses, hsb, col="lightblue")
```



```
lmod <- lm(science ~ ses, hsb)
summary(lmod)$coefficients</pre>
```

We start by a model that considers three separate regression lines with different intercepts and different slopes:

$$\begin{split} y_i &= \beta_0 + \beta_1 x + \beta_2 z_{2i} + \beta_3 z_{3i} + \beta_4 x z_{2i} + \beta_5 x z_{3i} + \epsilon_i \\ &= \begin{cases} (\beta_0 + \beta_2) + (\beta_1 + \beta_4) x + \epsilon_i & ith \in \mathsf{Low} \\ (\beta_0 + \beta_3) + (\beta_1 + \beta_5) x + \epsilon_i & ith \in \mathsf{Middle} \\ \beta_0 + \beta_1 x + \epsilon_i & ith \in \mathsf{High} \end{cases} \end{split}$$

```
lmod2 <- lm(science ~ ses+math+math:ses, hsb)
summary(lmod2)$coefficients</pre>
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.93452219 6.5917409 2.1139366 3.579831e-02
## seslow -4.37035144 9.1284650 -0.4787608 6.326479e-01
## sesmiddle 10.93573010 7.9533586 1.3749826 1.707227e-01
## math 0.73904166 0.1159916 6.3715080 1.330549e-09
## seslow:math 0.03658966 0.1715758 0.2132566 8.313508e-01
## sesmiddle:math -0.22506463 0.1431631 -1.5720855 1.175602e-01
```

If we remove the interaction between *math* and *ses* we introduce the model that considers three separate regression lines with different intercepts but common slope:

```
lmod3 <- lm(science ~ ses+math, hsb)
summary(lmod3)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.9108292 3.52782538 5.6439384 5.763019e-08
## seslow -3.3162096 1.55995346 -2.1258388 3.476833e-02
```

0.6326494 0.06020199 10.5087801 8.975825e-21

sesmiddle -1.2365268 1.29733049 -0.9531317 3.416973e-01

math

ANOVA: Analysis of Variance

We can run a sequential ANOVA in order to decide on which predictors we should include in the model. Starting from a null model, we add the factor variable, then the quantitative variable and finally we add the interaction between them:

```
anova(lmod2)
```

ANOVA tests the factor, not just the individual levels against the reference level.