

Predicting Flight Delays through Machine Learning Classifiers at Scale Phase IV Update

W261 Fall 2022 Section 5 Group 4: Nathan Chiu, Dominic Lim, Raul Merino, Javier Rondon

Airlines should implement machine learning at scale to better predict flight delays for resource allocation / customer service purposes.

Problem		are delayed by more than costing tens of billions of dollars		Feature Engineering			
		dollars	Modeling	Model Pipelines			
Data		ner, weather station, and rom government agencies	Steps	Hyperparameter Tuning			
Strategy		nodel selection for F2		Run Experiments & Gap Analysis			
37	perrormance	e and minimal run time					
	BASELINE	Logistic Regression for Simplicity		Lift in F2 Score driving			
Models	DECISION TREES	Efficiency and Performance at Scale	Project Outcomes	more confidence in airlines' business decisions			
	RANDOM FORESTS	RANDOM FORESTS Collected Decision Trees		Faster runtimes enabling			
	GRADIENT BOOSTED TREES	Accelerating Learning Rate		timelier insights on flight delays			
	ENSEMBLE	Combining Model Predictions					

We created new features to boost the predictive power of our models

Feature Name	Description
Previous Flight Delay	Airlines have a finite number of aircrafts, so each aircraft has a route that it follows every day, going from airport to airport often involving back to back scheduled flights. An earlier delay may affect subsequent flights for the same aircraft
Pagerank Features	PageRank describes an airport's importance and influence, which can describe how delays are spread throughout a network of airports.
Delay States	The delay state represents the network's delay patterns at a point in time
Weather Features	The categorical features indicate the presence of weather related to flight delays such as thunderstorms, snow, fog and ice
Average Airport Delay	We created a feature for the percentage of flights that are delayed in a given time window
Airport Capacity	The ratio of actual flights that depart over scheduled flights out of an airport

We conducted an exploratory data analysis of the newly engineered features, focusing on understanding the features' distribution, scale, and range of values

Previous Delay

 After an initial analysis, we saw that this had a relatively high correlation (> 0.3) with the current's flight delay

Delay State

Airport PageRank

- PageRank shows that the most important airports are ATL and DFW and changes in rank across time
- In the delay state cluster with the most delays stem from flights that involve DFW, ORD and LAX

We focused on generalizing functions involved in the pipeline to make it easier to adjust parameters and run a multitude of experiments

Feature Selection

Hyperparameter Tuning

Model Selection

We began by running decision tree models with different categories of features:

- Weather Features
- Airport Capacity (QRN)
- Airport PageRank
- Clustered Delay States
- Previous Flight Feature (based on Tail Number)
- Other Flight Features (Airline Carrier, Seasonality)

Once features were selected, we experimented with combinations of parameters against cross validation data

- Decision Trees / MLP: VectorAssembler, MinMaxScaler
- Decision Tree Loss Function: Gini Impurity

Once we selected the best hyperparameters, we compared the primary metrics like F2 score, precision, and recall across all models:

 Used average F2 score to fit the full train dataset and evaluate the full test dataset New Model

We also wanted to implement novel approaches including the use of ensemble methods whereby all four models (hyper-parameterized Decision Tree, Random Forest, Gradient Boosted Tree, and Multilayer Perceptron) "vote" on the final prediction

Voting Mechanism

Vote by Majority: The majority prediction of DELAY or NO DELAY

One Positive Voting: If one model suggests delay, predict DELAY

One Negative Voting: If one model suggests no-delay, predict NO DELAY

Experimental Results We compared primary metrics of success like F2 across hyper-parameterized models and the Ensemble models performed the best

Feature Importance

Best Model: Ensemble Confusion Matrix

- The F2, Precision and Recall score range from 54.7%, 41.1%, 61.2% to 55.8%, 36.6% and 64.3%
- **67%** of the delayed flights are correctly classified

Model	Layers	Max Bins	Max Depth	Max Iterations	Number of Trees	Train F2	Train ROC AUC	Train Precision	n Train Recall Te	st F2	Test ROC AUC	Test Precision	Test Recall
MLP	[44, 44, 2]	-	-	100	le.	0.64	1 0.74	0.716	0.619	0.519	0.755	0.388	0.589
Decision Tree	-	350	10	=	i-	0.61	7 0.76	5 0.760	0.589	0.540	0.764	0.411	0.586
Gradient Boosted Tree	-	100	10	6	la-	0.63	0 0.77	2 0.756	0.605	0.546	0.771	0.405	0.599
Random Forest	-	50	10	-	100	0.64	2 0.76	5 0.737	0.622	0.547	0.765	0.384	0.612
Ensemble	-	:=	-	-	1-		-	-		0.558	-	0.366	0.643

Conclusion

Airlines should implement machine learning at scale to better predict flight delays for resource allocation / customer service purposes.

Problem		are delayed by more than costing tens of billions of dollars		Feature Engineering			
		dollars	Modeling Steps	Model Pipelines			
Data		ner, weather station, and from government agencies		Hyperparameter Tuning			
Strategy		semble Model for F2 e and minimal run time		Run Experiments & Gap Analysis			
	ponomiano						
	BASELINE	Logistic Regression for Simplicity		F2 Score of .558, nearly 5x			
	DECISION TREES	Efficiency and Performance at Scale	Project Outcomes	the baseline			
Models	RANDOM FORESTS	Collected Decision Trees		Fast runtime of two minutes			
	GRADIENT BOOSTED TREES	Accelerating Learning Rate					
	ENSEMBLE	Combining Model Predictions					

Appendix

Results & Discussion

• The ensemble model followed by the random forest performed the best on the test dataset with F2 scores of .558 and .547 respectively