Test Boîte Blanche

Module Probabilités

Méthode De Rectangles Gauches

Chemins Possibles:

C1 = {1,2} C2 = {1,3,4} C3 = {1,3,5,6} C4 = {1,3,5,7,8,10} C5 = {1,3,5,7,8,9,8,10}

Chemins/Condit ions	sigma	n	t	k
C1	<= 0			
C2	>0	<= 0		
C3	>0	>0	<= 0	
C4	>0	>0	>0	0
C5	>0	>0	>0	[0,n-1]

Description:

une erreur.

Dans ce test, on a cinq chemins possibles qui correspondent des conditions sur sigma, n (nombre de sous intervalle), t (borne supérieur de l'intégrale) et k (variable de la boucle). Pour le premier chemin, sigma est négatif, donc le programme renvoie une erreur. Pour le deuxième chemin, sigma est positif mais n est négatif, donc le programme renvoie

Pour le troisième chemin, sigma et n sont positifs, mais t est négatif, donc le programme renvoie une erreur.

Pour les deux derniers chemins, sigma, n et t sont positifs, mais on vérifie si la variable k appartient à l'intervalle [0,n-1] pour rentrer ou pas dans la boucle, ensuite on retourne le résultat arrondie à 5 décimales près.

Méthode De rectangles droites

Chemins Possibles:

Chemins/Condit ions	sigma	n	t	k
C1	<= 0			
C2	>0	<= 0		
C3	>0	>0	<= 0	
C4	>0	>0	>0	1
C5	>0	>0	>0	[1,n]

Description:

Dans ce test, on a cinq chemins possibles qui correspondent des conditions sur sigma, n (nombre de sous intervalle), t (borne supérieur de l'intégrale) et k (variable de la boucle). Pour le premier chemin, sigma est négatif, donc le programme renvoie une erreur. Pour le deuxième chemin, sigma est positif mais n est négatif, donc le programme renvoie une erreur.

Pour le troisième chemin, sigma et n sont positifs, mais t est négatif, donc le programme renvoie une erreur.

Pour les deux derniers chemins, sigma, n et t sont positifs, mais on vérifie si la variable k appartient à l'intervalle [1,n] pour rentrer ou pas dans la boucle, ensuite on retourne le résultat arrondie à 5 décimales près.

Méthode De rectangles Médians

Chemins Possibles:

Chemins/Condit ions	sigma	n	t	k
C1	<= 0			
C2	>0	<= 0		
C3	>0	>0	<= 0	
C4	>0	>0	>0	0
C5	>0	>0	>0	[0,n-1]

Description:

Dans ce test, on a cinq chemins possibles qui correspondent des conditions sur sigma, n (nombre de sous intervalle), t (borne supérieur de l'intégrale) et k (variable de la boucle). Pour le premier chemin, sigma est négatif, donc le programme renvoie une erreur. Pour le deuxième chemin, sigma est positif mais n est négatif, donc le programme renvoie une erreur.

Pour le troisième chemin, sigma et n sont positifs, mais t est négatif, donc le programme renvoie une erreur.

Pour les deux derniers chemins, sigma, n et t sont positifs, mais on vérifie si la variable k appartient à l'intervalle [0,n-1] pour rentrer ou pas dans la boucle, ensuite on retourne le résultat arrondie à 5 décimales près.

Méthode Des trapèzes

Chemins Possibles:

Chemins/Condit ions	sigma	n	t	k
C1	<= 0			
C2	>0	<= 0		
C3	>0	>0	<= 0	
C4	>0	>0	>0	1
C5	>0	>0	>0	[1,n-1]

Description:

Dans ce test, on a cinq chemins possibles qui correspondent des conditions sur sigma, n (nombre de sous intervalle), t (borne supérieur de l'intégrale) et k (variable de la boucle). Pour le premier chemin, sigma est négatif, donc le programme renvoie une erreur. Pour le deuxième chemin, sigma est positif mais n est négatif, donc le programme renvoie une erreur.

Pour le troisième chemin, sigma et n sont positifs, mais t est négatif, donc le programme renvoie une erreur.

Pour les deux derniers chemins, sigma, n et t sont positifs, mais on vérifie si la variable k appartient à l'intervalle [1,n-1] pour rentrer ou pas dans la boucle, ensuite on retourne le résultat arrondie à 5 décimales près.

Méthode De Simpson

Chemins Possibles:

$$C1 = \{1,2\}$$

$$C2 = \{1,3,4\}$$

$$C3 = \{1,3,5,6\}$$

$$C4 = \{1, 3, 5, 7, 8, 10\}$$

$$C5 = \{1,3,5,7,8,9,8,10\}$$

Chemins/Condit ions	sigma	n	t	k
C1	<= 0			
C2	>0	<= 0		
C3	>0	>0	<= 0	
C4	>0	>0	>0	1
C5	>0	>0	>0	[0,n-1]

Description:

Dans ce test, on a cinq chemins possibles qui correspondent des conditions sur sigma, n (nombre de sous intervalle), t (borne supérieur de l'intégrale) et k (variable de la boucle). Pour le premier chemin, sigma est négatif, donc le programme renvoie une erreur. Pour le deuxième chemin, sigma est positif mais n est négatif, donc le programme renvoie une erreur.

Pour le troisième chemin, sigma et n sont positifs, mais t est négatif, donc le programme renvoie une erreur.

Pour les deux derniers chemins, sigma, n et t sont positifs, mais on vérifie si la variable k appartient à l'intervalle [0,n-1] pour rentrer ou pas dans la boucle, ensuite on retourne le résultat arrondie à 5 décimales près.

Bilan:

On remarque que dans toutes les méthodes d'intégration on a les mêmes chemins, vu que tous les programmes calculent des intégrales afin de donner la probabilité d'une variable. Donc on a les mêmes conditions sur les paramètres de calcul, que les intervalles d'appartenance de k qui changent et le nombre de lignes d'instruction. On déduit alors, qu'il y a des redondances de code, on aurait pu, pour mieux respecter les principes de génie logicielle, mieux fragmenter le code pour éviter les répétitions.