ALGEBRAIC MONOIDS

1. The unit group of an algebraic monoid

We start by proving result on generic finiteness.

Theorem 1.1. Let $f: X \to Y$ be a dominant morphism of finite type between irreducible schemes. Suppose that η is a generic point and assume that the generic fiber $f^{-1}(\eta)$ is finite. Then there exists an open and nonempty subset V of Y such that the restriction $f^{-1}(V) \to V$ of V is finite.

For the proof we need the following local version of the theorem.

Lemma 1.1.1. Let A be a ring such that Spec A is irreducible and let B be an A-algebra of finite type. Suppose that a unique minimal prime ideal $\mathfrak p$ of A is nilpotent and $k(\mathfrak p) \otimes_A B$ is finite over $k(\mathfrak p)$, where $k(\mathfrak p)$ denotes the residue field of $\mathfrak p$ in A. Then there exists nonzero s in A such that B_s is a finite A_s -module.

Proof of the lemma. Let $b_1,...,b_n$ be generators of B as an A-algebra. Then

$$\overline{b_i} = b_i \operatorname{mod} \mathfrak{p} B$$

for $1 \le i \le n$ are generators of $B/\mathfrak{p}B$ as an A/\mathfrak{p} algebra. Since $k(\mathfrak{p}) \otimes_A B$ is finite over $k(\mathfrak{p})$ for each i there exists positive integer m_i and a polynomial

$$f_i(x) = s_{m_i} x^{m_i} + s_{m_i-1} x^{m_i-1} + \dots + s_0 \in (A/\mathfrak{p})[x]$$

such that $s_{m_i} \neq 0$ and $f_i(\overline{b_i}) = 0$. Let $s \in A$ be an element such that

$$\overline{s} = s \mod \mathfrak{p} = s_{m_1} \cdot s_{m_2} \cdot \dots \cdot s_{m_n}$$

Clearly s is nonzero and $B_s/(\mathfrak{p}B)_s = (B/\mathfrak{p}B)_s$ is a finite A_s -algebra. Hence there exists a finite A_s -submodule M of B_s such that

$$B_S = M + (\mathfrak{p}B)_S = M + \mathfrak{p}B_S$$

Since $\mathfrak p$ is nilpotent, there exists $N \in \mathbb N$ such that $\mathfrak p^N = 0$. Thus

$$B_S = M + \mathfrak{p}B_S = M + \mathfrak{p}M + \mathfrak{p}^2B_S = \dots = M + \mathfrak{p}M + \dots + \mathfrak{p}^{N-1}M + \mathfrak{p}^NB_S = M + \mathfrak{p}M + \dots + \mathfrak{p}^{N-1}M$$
 is a finite A_S -module. \Box

Proof of the theorem. Pick an open, nonempty, affine neighborhood W of η . Since f is of finite type, we derive that

$$f^{-1}(W) = \bigcup_{i=1}^n U_i$$

where each U_i is nonempty open affine subscheme of X and moreover, the morphism $U_i \to V$ induced by f is of finite type. According to Lemma 1.1.1 for each i there exists an open, affine and nonempty subscheme $W_i \subseteq W$ such that the morphism $f^{-1}(W_i) \cap U_i \to W_i$ induced by f is finite. Thus replacing W by the intersection of $W_1, ..., W_n$ we may assume that each $U_i \to W$ is finite. Consider

$$F = f^{-1}(W) \setminus \left(\bigcap_{i=1}^{n} U_i\right)$$

Then F is a closed subset of $f^{-1}(W)$ and it does not contain the generic point ξ of X. Since each restriction $U_i \to W$ of f is finite, we derive that $f(U_i \cap F)$ is closed in W for every $1 \le i \le n$ and does not contain $\eta = f(\xi)$ (f is dominant). Thus f(F) is a closed subset of W and $\eta \notin f(F)$.

Hence $V = W \setminus f(F)$ is an open neighborhood of η and $f^{-1}(V) \subseteq \bigcap_{i=1}^n U_i$. Thus the restriction $f^{-1}(V) \to V$ of f is finite.

Theorem 1.2. Let M be a geometrically integral algebraic monoid k-scheme. Suppose that G is a group of units of M and $i: G \hookrightarrow M$ is the canonical monomorphism. Then i is an open immersion.

Proof. Assume that k is algebraically closed. Denote by $\mu : \mathbf{M} \times_k \mathbf{M} \to \mathbf{M}$ and $e : \operatorname{Spec} k \to \mathbf{M}$ the multiplication and the unit, respectively. Since \mathbf{M} is integral and of finite type over k, we derive that $\mathbf{M} \times_k \mathbf{M}$ is integral and

$$\dim (\mathbf{M} \times_k \mathbf{M}) = 2 \cdot \dim (\mathbf{M})$$

Moreover, μ is surjective (which can be checked on k-functors of points). Pick any irreducible component Z of $\mu^{-1}(e)$. By [Görtz and Wedhorn, 2010, Lemma 14.109] we deduce

$$\dim(Z) \ge \dim(\mu^{-1}(\eta))$$

where η is the generic point of **M**. Since

$$\dim(\mu^{-1}(\eta)) = \dim(\mathbf{M} \times_k \mathbf{M}) - \dim(\mathbf{M}) = 2 \cdot \dim(\mathbf{M}) - \dim(\mathbf{M}) = \dim(\mathbf{M})$$

we deduce that $\dim(Z) \ge \dim(\mathbf{M})$. Moreover, we have $\mathbf{G} \cong \mu^{-1}(e)$ as k-schemes and this isomorphism is given by the restriction $\pi: \mu^{-1}(e) \to \mathbf{G}$ to $\mu^{-1}(e)$ of the projection $\mathrm{pr}: \mathbf{M} \times_k \mathbf{M} \to \mathbf{M}$ on the first factor (this can be checked on k-functors of points). Hence \mathbf{G} is of finite type over k as it is isomorphic with a closed subscheme of $\mathbf{M} \times_k \mathbf{M}$ and each irreducible component Z of \mathbf{G} is of dimension at least $\dim(\mathbf{M})$. Now we fix an irreducible component Z of \mathbf{G} and consider it as a closed subscheme of \mathbf{G} with reduced structure. Then the morphism $i_{|Z}: Z \to \mathbf{M}$ is a monomorphism of finite type and $\dim(Z) \ge \dim(\mathbf{M})$. Hence $i_{|Z}$ is dominant. Since i is a monomorphism, this implies that \mathbf{G} has only one irreducible component and $i: \mathbf{G} \to \mathbf{M}$ is dominant. By Theorem 1.1 there exists an open and nonempty subset V of \mathbf{M} such that the morphism $i^{-1}(V) \to V$ induced by i is finite. Finite monomorphisms are closed immersions and dominant, closed immersions with integral scheme as a codomain are isomorphisms. Thus $i^{-1}(V) \to V$ is an isomorphism. Now pick a k-point g of \mathbf{G} . Since \mathbf{G} is a group k-scheme, we derive that $g \cdot (-): \mathbf{M} \to \mathbf{M}$ is an automorphism of the k-scheme \mathbf{M} . This implies that $i^{-1}(g \cdot V) \to g \cdot V$ is an isomorphism. This holds for every k-point of \mathbf{G} and

$$i(\mathbf{G})\subseteq\bigcup_{g\in\mathbf{G}(k)}g\cdot V$$

where G(k) is the set of k-points of G. Therefore, i is an open immersion.

If k is not algebraically closed, then we pick an algebraically closed extension K of k and consider $1_{\text{Spec }K} \times_k i$. This is an open immersion according to the case considered above. By faithfuly flat descent i is an open immersion.

The more general result for algebraically closed fields is [Brion, 2014, Theorem 1].

Corollary 1.3. Let M be a geometrically integral, algebraic monoid over k. Then the inclusion $G \hookrightarrow M$ of the group of units is schematically dense open immersion.

Let us also note the following theorem.

Theorem 1.4 ([Demazure and Gabriel, 1970, Chapitre 2, &2, Corollaire 3.6]). Let **M** be an affine, algebraic monoid k-scheme. Suppose that **G** is a group of units of **M**. Then the following results holds.

(1) There exists a finite dimensional vector space V over k and a closed immersion

$$\mathbf{M} \hookrightarrow \operatorname{Spec} \operatorname{Sym}(V \otimes_k V^{\vee}) = \mathbf{L}(V)$$

of algebraic monoids.

(2) There exists a regular function f on \mathbf{M} such that canonical morphism $\mathbf{G} \to \mathbf{M}$ is the inclusion of open subscheme of \mathbf{M} on which f is nonzero.

The converse is also true.

Theorem 1.5 ([Brion, 2014, Theorem 2]). Let M be a geometrically integral algebraic monoid over a field k and let G be an group of units of M. If G is affine, then M is affine.

Definition 1.6. Let **M** be a geometrically integral algebraic monoid over *k* and let **G** be its group of units. If **G** is (linearly) reductive, then **M** is called *a* (*linearly*) reductive monoid over *k*.

By definition every reductive group is affine. Hence using Theorem 1.5 we deduce the following result.

Corollary 1.7. *Let* **M** *be a reductive monoid over k. Then* **M** *is affine.*

2. TORIC MONOIDS

Definition 2.1. Let T be a torus over k and let \overline{T} be a geometrically integral, algebraic monoid having T as the group of units. Then \overline{T} is a toric monoid over k.

Corollary 2.2. *Let* \overline{T} *be a toric monoid over k. Then* \overline{T} *is a linearly reductive monoid over k.*

Proof. This follows from [Monygham, 2020, Corollary 10.4]

Theorem 2.3. Let \overline{T} be a toric monoid over k with group of units T and let K be an algebraically closed extension of k. Suppose that N is a dimension of T.

(1) The group of characters of T_K is isomorphic to \mathbb{Z}^N and there exists an abstract submonoid S of \mathbb{Z}^N such that the open immersion

$$T_K = \operatorname{Spec}\left(\bigoplus_{m \in \mathbb{Z}^N} K \cdot \chi^m\right) \hookrightarrow \operatorname{Spec}\left(\bigoplus_{m \in S} K \cdot \chi^m\right) = \overline{T}_K$$

is induced by the inclusion $S \hookrightarrow \mathbb{Z}^N$.

(2) Let $\{V_{\lambda}\}_{{\lambda} \in \mathbf{Irr}(T)}$ be a set of irreducible representation of T such that V_{λ} is in isomorphism class λ . For every λ there exists a finite subset A_{λ} of \mathbb{Z}^N such that

$$K \otimes_k V_\lambda = \bigoplus_{m \in A_\lambda} K \cdot \chi^m$$

If λ *is in* $Irr(\overline{T})$ *, then* A_{λ} *is a subset of* S*. Moreover, we have*

$$\mathbb{Z}^N = \coprod_{\lambda \in \mathbf{Irr}(T)} A_{\lambda}$$

and $A_{\lambda_0} = \{0\}$, where λ_0 is the class of the trivial representation of T.

(3) If \overline{T} has a zero, then there exists a homomorphism $f: \mathbb{Z}^N \to \mathbb{Z}$ of abelian groups such that $f_{|S \setminus \{0\}} > 0$. In particular, f induces a closed immersion

$$\operatorname{Spec} K \times_k \mathbb{G}_m = \operatorname{Spec} K[\mathbb{Z}] \hookrightarrow \operatorname{Spec} \left(\bigoplus_{m \in \mathbb{Z}^N} K \cdot \chi^m \right) = T_K$$

of group K-schemes that extends to a zero preserving closed immersion $\mathbb{A}^1_K \to \overline{T}_K$ of monoid K-schemes.

Proof. Since *T* is a torus, we derive that

$$T_K = \operatorname{Spec} K \times_k \underbrace{\mathbb{G}_m \times_k \mathbb{G}_m \times_k ... \times_k \mathbb{G}_m}_{N \text{ times}} = \operatorname{Spec} \left(\bigoplus_{m \in \mathbb{Z}^N} K \cdot \chi^m \right)$$

and hence

$$\overline{T}_K = \operatorname{Spec}\left(\bigoplus_{s \in S} K \cdot \chi^s\right)$$

for some abstract submonoid S of \mathbb{Z}^N . Moreover, the open immersion $T_K \hookrightarrow \overline{T}_K$ is induced by the inclusion $S \hookrightarrow \mathbb{Z}^N$. This proves (1).

We have identification

$$k[T] = \bigoplus_{\lambda \in \mathbf{Irr}(T)} V_{\lambda}^{n_{\lambda}}$$

of *T*-representations, where $n_{\lambda} \in \mathbb{N} \setminus \{0\}$ for each λ . Thus

$$\bigoplus_{m \in \mathbb{Z}^N} K \cdot \chi^m = K \otimes_k k[T] = \bigoplus_{\lambda \in \mathbf{Irr}(T)} (K \otimes_k V_{\lambda})^{n_{\lambda}}$$

This implies that n_{λ} = 1 for every λ and moreover, we derive that

$$K \otimes_k V_\lambda = \bigoplus_{m \in A_\lambda} K \cdot \chi^m$$

for some finite set $A_{\lambda} \subseteq \mathbb{Z}^N$. We also have $A_{\lambda_0} = \{0\}$ and $A_{\lambda} \subseteq S \setminus \{0\}$ for $\lambda \in \mathbf{Irr}(\overline{T})$. This proves (2).

Since \overline{T} admits a zero, we derive that

$$\mathfrak{m} = \bigoplus_{m \in S \smallsetminus \{0\}} K \cdot \chi^s \subseteq \bigoplus_{m \in \mathbb{Z}^N} K \cdot \chi^m$$

is an ideal. This implies that $S \setminus \{0\}$ is closed under addition. In particular, there exists a homomorphism of abelian groups $f : \mathbb{Z}^N \to \mathbb{Z}$ such that $f_{|S \setminus \{0\}} > 0$. This implies (3).

3. Kempf monoids

In this section we introduce important class of a monoid k-schemes, which contains all reductive monoids over k. We recall classical result concerning quotients with respect to actions of linearly reductive groups on affine algebraic schemes over k.

Theorem 3.1. [[Bialynicki-Birula et al., 2013, Theorem 5.4 and discussion below its statement]] Let X be an affine k-scheme of finite type equipped with an action of a linearly reductive algebraic group G. Consider the morphism $\pi: X \to Y$ of affine k-schemes induced by the inclusion $\Gamma(X, \mathcal{O}_X)^G \hookrightarrow \Gamma(X, \mathcal{O}_X)$. Then the following assertions hold.

- **(1)** Y is of finite type over k.
- (2) If Z_1 and Z_2 are disjoint, **G**-stable and closed subschemes of X, then $\pi(Z_1)$ and $\pi(Z_2)$ are disjoint.
- (3) π is surjective.
- **(4)** If we consider Y as a k-scheme with trivial **G**-action, then π is **G**-equivariant morphism.
- **(5)** If $p: X \to W$ is a **G**-equivariant morphism and W is a k-scheme with trivial **G**-action, then p uniquely factors through π .

Now we are ready to prove the following result.

Theorem 3.2. Let M be a reductive algebraic monoid over k and let G be a group of units of M. Assume that M admits a zero o. Then there exists a central torus T in G such that $o \in cl(T)$.

Proof. By assumption **G** is a reductive group. According to [Milne, 2017, Corollary 17.62 and Notation 12.29] its centre $Z(\mathbf{G})$ is an algebraic group of multiplicative type and the largest subtorus T of $Z(\mathbf{G})$ is the solvable radical $R(\mathbf{G})$ of **G**. In particular, the quotient group \mathbf{G}/T has trivial solvable radical and hence it is a semisimple algebraic group. Now T is linearly reductive [Monygham, 2020, Corollary 10.4]. Thus by Theorem 3.1 we obtain a quotient $\pi: \mathbf{M} \twoheadrightarrow \mathbf{Q}$ of \mathbf{M} by the action of T. Note also that T is central in \mathbf{M} as it is central in \mathbf{G} . Next the fact that T is

central in M, the fact that M is geometrically integral and Theorem 3.1 imply that Q is a geometrically integral, affine and algebraic monoid k-scheme with zero. Moreover, π is a surjective morphism of algebraic monoids over k. According to Theorem 1.2 we derive that the group of units Q^* is the open subscheme of Q. From the fact that $G \hookrightarrow M$ is dominant we derive that the restriction $\pi_{|G}: G \to Q$ is dominant. Thus π induces a dominant morphism of geometrically integral algebraic groups $G \to Q^*$. Next [Monygham, 2020, Theorem 5.3] implies that $\pi(G) = Q^*$. Theorem 1.4 implies that there exists a closed immersion of monoids $i: \mathbb{Q} \to L(V)$ for some finite dimensional vector k-space V. Thus $i \cdot \pi_{\mathbf{G}}$ composed with the determinant $\det : \mathbf{L}(V) \to \mathbb{G}_m$ is a character of **G** that factors through the quotient morphism $\mathbf{G} \twoheadrightarrow \mathbf{G}/T$, but \mathbf{G}/T is a semisimple algebraic group and hence it has only trivial characters. Therefore, the character of G constructed above is trivial. Hence $i(\mathbf{Q}^*) = i \cdot \pi(\mathbf{G})$ is contained in the algebraic subgroup SL(V) of L(V). Next *i* induces a morphism of algebraic groups $Q^* \to SL(V)$ and by [Monygham, 2020, Theorem 5.3] we infer that $i(\mathbf{Q}^*)$ is closed in SL(V). Since SL(V) is closed in L(V), we derive that $i(\mathbf{Q}^*)$ is closed in L(V) and hence it is also closed in Q. On the other hand we proved that is open in Q. Q is (geometrically) integral and hence it is connected. Thus $Q^* = Q$ which means that **Q** is a group k-scheme. Moreover, **Q** is a monoid k-scheme with zero. Thus is only possible if **Q** is Spec k. Therefore, the categorical quotient $\pi : \mathbf{M} \to \mathbf{Q}$ consists of a single k-rational point. Thus by (2) Theorem 3.1 the closure of every orbit of T in M contains the zero o. In particular, $o \in cl(T)$.

This theorem motivates the following definition.

Definition 3.3. Let M be a geometrically integral, affine algebraic monoid over k. Assume that M admits a zero o and let G is a group of units of M. Suppose that there exists a central subtorus T of G such that its closure contains o. Then we say that M is a Kempf monoid over k.

Let us note for the future reference the following reformulation of Theorem 3.2.

Corollary 3.4. Let **M** be a reductive monoid over k. Then **M** is a Kempf monoid.

Now we give an example of a Kempf monoid which is not reductive.

Example 3.5 (Kempf monoid with nonreductive group of units). Let n be a positive integer. Consider the algebraic group \mathbf{B}_n of invertible upper triangular $n \times n$ matrices. Let $\overline{\mathbf{B}}_n$ be the closure of \mathbf{B}_n in the algebraic monoid of all $n \times n$ matrices \mathbf{M}_n . Then $\overline{\mathbf{B}}_n$ is an affine, geometrically integral algebraic monoid over k with zero (it contains zero matrix). Actually $\overline{\mathbf{B}}_n$ (or better to say its k-functor of points) consists of all upper triangular $n \times n$ matrices. The group of units of $\overline{\mathbf{B}}_n$ is \mathbf{B}_n and hence it is solvable. Moreover, the center of \mathbf{B}_n contains the one-dimensional split torus \mathbf{G}_m consisting of scalar matrices. The closure of this torus in $\overline{\mathbf{B}}_n$ contains zero matrix and hence $\overline{\mathbf{B}}_n$ is the Kempf monoid.

Let us discuss some properties of Kempf monoids. We first note the following.

Proposition 3.6. Let \mathbf{M} be a Kempf monoid over k and let T be a central torus of \mathbf{M} such that T contains \mathbf{o} . Then the closure \overline{T} of T in \mathbf{M} with reduced subscheme structure is a closed toric submonoid k-scheme of \mathbf{M} containing zero.

Proof. The multiplication μ on \mathbf{M} induces a morphism $\mu_{|\overline{T}\times_k \overline{T}}:\overline{T}\times_k \overline{T}\to \mathbf{M}$. Since scheme-theoretic image of $\mu(T\times_k T)$ is contained in \overline{T} and $T\times_k T$ is open and schematically dense in $\overline{T}\times_k \overline{T}$, we deduce that $\mu_{|\overline{T}\times_k \overline{T}}$ factors through closed subscheme \overline{T} . Thus μ restricts to a multiplication $\nu:\overline{T}\times_k \overline{T}\to \overline{T}$ and hence $\overline{T}\to \mathbf{M}$ is closed immersion of monoid k-schemes. Clearly \overline{T} is geometrically integral as a scheme-theoretic closure of a geometrically integral scheme T. The fact that the zero \mathbf{o} of \mathbf{M} is contained in \overline{T} follows by definition.

Corollary 3.7. Let **M** be a Kempf monoid over k. Fix an algebraically closed field K over k. Then there exists a closed immersion

$$i: \mathbb{A}^1_K \to \operatorname{Spec} K \times_k \mathbf{M}$$

of monoid K-schemes sending the zero of \mathbb{A}^1_K to the zero of $\mathbb{M}_K = \operatorname{Spec} K \times_k \mathbb{M}$.

Proof. This follows from Proposition 3.6 and (3) Theorem 2.3.

Theorem 3.8. Let M be a Kempf monoid over k with group G of units and let $j: Z \hookrightarrow M$ be a locally closed G-stable subscheme of M. Then the following are equivalent.

- (i) For every $n \in \mathbb{N}$ the n-th infinitesimal neighborhood \mathbf{M}_n of \mathbf{o} in \mathbf{M} is contained in Z.
- (ii) i is an isomorphism.

We first consider the following special case.

Lemma 3.8.1. Let U be an open G-stable subscheme of M. If o is a point of U, then U = M.

Proof of the lemma. Fix $i : \mathbb{A}^1_K \to \operatorname{Spec} K \times_k \mathbf{M}$ as in Corollary 3.7. Denote

Spec
$$K \times_k \mathbf{M}$$
, Spec $K \times_k \mathbf{G}$, Spec $K \times_k U$

by \mathbf{M}_K , \mathbf{G}_K , U_K , respectively. Note that $i(\mathbf{G}_{m,K}) \subseteq \mathbf{G}_K$. Fix a field L over K and a morphism $j: \operatorname{Spec} L \hookrightarrow \mathbf{M}_K$. Next consider the composition

$$\mathbb{A}_{L}^{1} = \mathbb{A}_{K}^{1} \times_{K} \operatorname{Spec} L \xrightarrow{i \times_{K} j} \mathbf{M}_{K} \times_{k} \mathbf{M}_{K} \xrightarrow{\mu_{K}} \mathbf{M}_{K}$$

where the second morphism $\mu_K : \mathbf{M}_K \times_k \mathbf{M}_K \to \mathbf{M}_K$ is the multiplication. Clearly f is $\mathbb{G}_{m,L}$ -equivariant. Hence $f^{-1}(U_K)$ is an open $\mathbb{G}_{m,L}$ -stable subscheme of \mathbb{A}^1_L . It contains the zero of \mathbb{A}^1_L because $\mathbf{o}_K \in U_K$ by assumption. Since the only open $\mathbb{G}_{m,L}$ -stable subscheme of \mathbb{A}^1_L containing the zero is \mathbb{A}^1_L , we derive that $f^{-1}(U_K) = \mathbb{A}^1_L$. Thus the image of j is in U_K . Hence $U_K = \mathbf{M}_K$ because $j : \operatorname{Spec} L \to \mathbf{M}_K$ and L are arbitrary. By faithfuly flat descent, we derive that $U = \mathbf{M}$. \square

Proof of the theorem. Assume that (i) holds. Since **o** is a point in Z, we have a surjective morphism $j^{\#}: \mathcal{O}_{\mathbf{M},\mathbf{o}} \twoheadrightarrow \mathcal{O}_{Z,\mathbf{o}}$ of local rings. Both schemes Z, \mathbf{M} are noetherian and hence we have a commutative square

where vertical morphisms are injective. Since $\mathbf{M}_n \subseteq Z$ for every $n \in \mathbb{N}$, we derive that $\widehat{j}^{\#}$ is an isomorphism. Hence $j^{\#}$ is injective and thus it is an isomorphism. This implies that there exists an open neighborhood V of \mathbf{o} in \mathbf{M} such that $V \subseteq Z$. Let $\mathbf{G} \cdot V$ be the open subscheme of \mathbf{M} defined as the image of $\mathbf{G} \times_k V$ under the left action $\mathbf{G} \times_k \mathbf{M} \to \mathbf{M}$. This is \mathbf{G} -stable open subscheme of \mathbf{M} . From the fact that j is \mathbf{G} -equivariant, we deduce that $\mathbf{G} \cdot V \subseteq Z$. By Lemma 3.8.1 we infer that $\mathbf{G} \cdot V = \mathbf{M}$ because $\mathbf{o} \in V \subseteq \mathbf{G} \cdot V$. This shows that $Z = \mathbf{M}$. Thus we have $(\mathbf{i}) \Rightarrow (\mathbf{i})$. The implication $(\mathbf{i}) \Rightarrow (\mathbf{i})$ is obvious.

REFERENCES

[Bialynicki-Birula et al., 2013] Bialynicki-Birula, A., Carrell, J., and McGovern, W. M. (2013). *Algebraic quotients. Torus actions and cohomology. The adjoint representation and the adjoint action*, volume 131. Springer Science & Business Media.

[Brion, 2014] Brion, M. (2014). On algebraic semigroups and monoids. In *Algebraic monoids, group embeddings, and algebraic combinatorics*, pages 1–54. Springer.

[Demazure and Gabriel, 1970] Demazure, M. and Gabriel, P. (1970). Groupes algébriques. Tome I. Géométrie algébrique généralités. Groupes commutatifs. North-Holland.

[Görtz and Wedhorn, 2010] Görtz, U. and Wedhorn, T. (2010). Algebraic Geometry: Part I: Schemes. With Examples and Exercises. Advanced Lectures in Mathematics.

[Milne, 2017] Milne, J. S. (2017). Algebraic groups: The theory of group schemes of finite type over a field, volume 170. Cambridge University Press.

[Monygham, 2020] Monygham (2020). Group schemes over field. github repository: "Monygham/Pedo-mellon-a-minno".