Using HCA to Identify a Transcription Factor Family that Regulates the Intrinsic Ability of Neurons to Extend Axons

Murray Blackmore,
Vance Lemmon, Darcie Moore,
Jeff Goldberg & John Bixby
Miami Project to Cure Paralysis
University of Miami Miller School of Medicine

Why can't axons in the central nervous system (CNS) regenerate?

Inadequate Cell Body Response

Poor growth environment (Nogo, MAG, Omgp, Ephrins, etc.)

Young neurons regenerate better than old

E9 E15

retinal ganglion cell

Research Strategy

- 1) Identify differentially expressed genes
- 2) Unbiased, phenotypic screening in neurons

-Older neurons might upregulate inhibitory genes, or downregulate stimulatory genes

Identifying a list of genes...

- CST regeneration ability is lost between P3 and P16
- Microarray analysis of CST neurons at E18 and at P14 (Arlotta, P. et al., Neuron 45: 207, 2005)
- picked 237 genes that decreased and 834 genes that increased (total 1071)

Where do we get all those cDNAs?

Open Biosystems Library

6,200 human genes 9,800 mouse genes About 160 96-well plates

743 clones; 445 genes

Workflow of screen

Semi-automated data analysis

> 100,000 cells per experiment

- -Group data
- -Identify transfected cells
- -Identify artifacts

Data normalization

Data normalization

Data normalization

Primary screen of developmentally changing genes identifies candidates that alter neurite growth

Developmentally increasing genes inhibit neurite growth

Developmentally decreasing genes augment neurite growth

Doublecortin increases axon length in postnatal cortical neurons

Developmentally decreasing genes augment neurite growth

Multiple KLFs regulate axon growth

Transgenic knockdown of one growth-inhibitory KLF enhances axon regeneration *in vivo*

What are the relevant KLF target genes?

 Overexpress inhibitory, stimulatory, or neutral KLFs in primary CNS neurons

Microarray analysis

 Screen transcriptional targets in neurite outgrowth assays

Gene Therapy for Rats

Overexpress growth promoting genes

Knock down growth-suppressive genes

Overexpress/knockdown in combination

A 2A peptide strategy to overexpress multiple proteins

MCHONY ZAFERD

Doublecortin-2A-EGFP

A concatenated shRNA strategy to knock down multiple proteins

Lentiviral vectors allow transduction and tracing of corticospinal axons

Summary

- Screened >400 developmentally regulated genes in postnatal cortical neurons
- Identified 4 growth suppressors and 4 growth enhancers
- KLF transcription factors are top "hits"
- Developing tools to test genes in vivo in spinal cord injury

Acknowledgements

Acknowledgements

Vance Lemmon John Bixby

Willie Buchser

Robin Smith

Lynn Usher

Dinara Strikis

Andrea Johnstone

Tatiana Slepak

Yan Shi

Yuan Yuan Jia

Omar Gutierrez-Arenas

Guerline Lambert

Anthony Oliva

Jeff Goldberg (BPEI Miami)

Darcie Moore

Ying Hu

National Institutes of Health (NINDS, NICHD)

The Buoniconti Fund

Craig Neilsen Foundation

Ralph Wilson Foundation

Wallace Coulter Foundation

Walter G. Ross Foundation

DOD