CS150 Homework 2

due Monday, October 25th 5:00 PM

Problem 1.

a) Compute the e-closure of each state.

 $ECLOSE(p) = \{p, q, r\}$

 $ECLOSE(q) = \{q\}$

 $ECLOSE(r) = \{r\}$

b) Give all the strings of length three or less accepted by the automaton.

All possible strings of length 3 or less from alphabet $\{a,b,c\}$ are accepted by this automaton, including ϵ **EXCEPT** bba, bbb, bbc!

c) Convert the automaton to a DFA.

DFA			
	a	b	c
$\rightarrow *\{p, q, r\}$	{p, q, r}	{q,r}	$\{p,q,r\}$
$\begin{array}{c} \rightarrow *\{p, q, r\} \\ *\{q, r\} \end{array}$	$\mid \{p, q, r\}$	{r}	$\{p, q, r\}$
*{r}	$ \phi $	ϕ	ϕ
ϕ	$ \phi $	ϕ	ϕ

Problem 2. Write regular expressions for the following languages:

a) The set of strings of 0's and 1's whose 10th symbol from the right is a 0.

ANS: $(0+1)*0(0+1)^9$

b) The set of strings of 0's and 1's with at most one pair of consecutive 0's.

ANS: $(1+01)^*(00+0+\epsilon)(1+10)^*$

Problem 3.

DFA		
	0	1
$\rightarrow *a$	b	С
b	a	d
c	d	a
*d	c	b

Make a new initial state "s" that epsilon transitions to state "a". State "a" is no longer the initial state

Make a new final state "f" that has epsilon transitions going to it from states "a" and "d". States a and d are no longer final states.

1) Eliminate state b

- a to d (01)
- a to a (00)
- d to a (10)
- d to d (11)

2) Eliminate state c

- a to d (10)
- a to a (11)
- d to a (01)
- d to d (00)

3) Eliminate state d

- a to a (from b and c eliminations) (00) + (11)
- a to a (from d elimination) -(01+10)(00+11)*(10+01)
- a to f (from d elimination) $(01 + 10)(00 + 11)^*$

4) Eliminate state a

s to f -
$$((00) + (11) + (01 + 10)(00 + 11)*(10 + 01))* + (01 + 10)(00 + 11)*$$

Regex (simply s to f)—

$$((00) + (11) + (01 + 10)(00 + 11)*(10 + 01))* + (01 + 10)(00 + 11)*$$

Problem 4.

- c) The set of prefixes of strings in L
- d) The union of the set of prefixes of strings in L (part c) and the set of suffixes of strings in L (part b)

Problem 5.

e) (R+S)T = RT + ST. Replace R, S, and T with $\{a\}$, $\{b\}$, and $\{c\}$ respectively, + with \cup , and \cdot with x $(\{a\}\cup\{b\})x\{c\} = \{a\}x\{c\} \cup \{b\}x\{c\}$ LHS: $(\{a\}\cup\{b\})x\{c\} = \{ac, bc\}$ LHS: $\{a, b\}x\{c\} = \{ac, bc\}$ RHS: $\{ac\} \cup \{bc\}$

Both LHS and RHS are equal, the identity (R+S)T = RT + ST holds. Q.E.D.

g) $(\epsilon+R)^* = R^*$. Replace ϵ with $\{\epsilon\}$ and R with $\{a\}$, + with \cup $(\{\epsilon\}\cup\{a\})^* = \{a\}^*$ LHS: $\{\epsilon, a\}^*$

This is simply the set of all strings of the empty string (ϵ) and a's, which is simply the set of all strings of a's. Because no matter how many ϵ are concatenated to a's, the string remains a string of a's.

The set of all strings of a's is : LHS: $\{a\}^*$

RHS: {a}*

Both LHS and RHS are equal, the identity $(e+R)^* = R^*$ holds. Q.E.D.