# **CS3543**

# **Computer Networks - II**

# **Assignment - I**

# Implementing "Better RDT over UDP" than TCP

## **Team Members:**

CS19BTECH11048 - GOKUL

ES19BTECH11003 - HEMANTH

CS19BTECH11020 - SHARANYA

CS19BTECH11003 - SARAT

CS19BTECH11009 - NAVEEN

## Task -1

## **Network diagram:**



IPv4 Subnet: 10.0.0.0/24

Linux Bridge: bri0

#### **Network diagram for PC 1**

We performed 10 attempts of FTP using TCP protocol to transmit data (the given 100 MB file) from the one Ubuntu server VM (client) to another Ubuntu server VM (server) on two different computers and we report the overall throughput, and time taken to complete to transfer 100 MB data of each attempt in the below table for all 3 computers. We used the tc command to configure traffic control in Ubuntu. We performed 10 attempts under 2 situations - No delay, no packet loss, 100 mbps link and 50 ms delay, 5% packet loss, 100 mbps link. The time, throughput we recorded are as follows:

#### 1) Without delay and loss:

#### PC 1:

```
sarat2@sarat2:~$ sudo to qdisc add dev enp1s0 root netem rate 100Mbit
sarat2@sarat2:~$ ftp 10.0.0.253
Connected to 10.0.0.253.
220 (vsFTPd 3.0.3)
Name (10.0.0.253:sarat2): ftpuser_s
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> put CS3543_100MB
local: CS3543_100MB remote: CS3543_100MB
200 PORT command successful. Consider using PASV.
150 Ok to send data.
226 Transfer complete.
104857600 bytes sent in 8.55 secs (11.6916 MB/s)
ftp> put CS3543_100MB
local: CS3543_100MB remote: CS3543_100MB
200 PORT command successful. Consider using PASV.
150 Ok to send data.
226 Transfer complete.
104857600 bytes sent in 8.50 secs (11.7692 MB/s)
ftp> put CS3543_100MB
local: CS3543_100MB remote: CS3543_100MB
200 PORT command successful. Consider using PASV.
150 Ok to send data.
226 Transfer complete.
104857600 bytes sent in 8.56 secs (11.6796 MB/s)
ftp> put CS3543_100MB
local: CS3543_100MB remote: CS3543_100MB
200 PORT command successful. Consider using PASV.
150 Ok to send data.
226 Transfer complete.
104857600 bytes sent in 8.56 secs (11.6774 MB/s)
ftp> put CS3543_100MB
local: CS3543_100MB remote: CS3543_100MB
200 PORT command successful. Consider using PASV.
150 Ok to send data.
226 Transfer complete.
104857600 bytes sent in 8.53 secs (11.7171 MB/s)
ftp> _
```

```
hemanth2@server2-h:~$ sudo to qdisc add dev enp1s0 root netem rate 100mbit
hemanth2@server2–h:~$ ftp 10.0.0.253
Connected to 10.0.0.253.
220 (vsFTPd 3.0.3)
Name (10.0.0.253:hemanth2): ftpuser
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
200 PORT command successful. Consider using PASV.
150 Here comes the directory listing.
-rw-rw-r-- 1 1000
                         1000
                                 104857600 Feb 16 11:07 data
226 Directory send OK.
ftp> get data
local: data remote: data
200 PORT command successful. Consider using PASV.
150 Opening BINARY mode data connection for data (104857600 bytes).
226 Transfer complete.
104857600 bytes received in 8.80 secs (11.3666 MB/s)
ftp> get data
local: data remote: data
200 PORT command successful. Consider using PASV.
150 Opening BINARY mode data connection for data (104857600 bytes).
226 Transfer complete.
104857600 bytes received in 8.78 secs (11.3844 MB/s)
ftp> get data
local: data remote: data
200 PORT command successful. Consider using PASV.
150 Opening BINARY mode data connection for data (104857600 bytes).
226 Transfer complete.
104857600 bytes received in 8.80 secs (11.3680 MB/s)
ftp> get data
local: data remote: data
200 PORT command successful. Consider using PASV.
150 Opening BINARY mode data connection for data (104857600 bytes).
226 Transfer complete.
104857600 bytes received in 8.81 secs (11.3488 MB/s)
ftp> get data
local: data remote: data
200 PORT command successful. Consider using PASV.
150 Opening BINARY mode data connection for data (104857600 bytes).
226 Transfer complete.
104857600 bytes received in 8.77 secs (11.4087 MB/s)
ftp> _
```

| Attempt | Time taken(secs) |      | Overall Throughput(MB/s) |         |
|---------|------------------|------|--------------------------|---------|
|         | PC 1             | PC 2 | PC 1                     | PC 2    |
| 1       | 8.55             | 8.80 | 11.695                   | 11.3666 |
| 2       | 8.5              | 8.78 | 11.764                   | 11.3844 |
| 3       | 8.56             | 8.80 | 11.682                   | 11.3680 |
| 4       | 8.56             | 8.81 | 11.682                   | 11.3488 |
| 5       | 8.53             | 8.87 | 11.723                   | 11.4087 |
| 6       | 8.59             | 8.82 | 11.641                   | 11.4023 |
| 7       | 8.52             | 8.79 | 11.737                   | 11.3542 |
| 8       | 8.57             | 8.80 | 11.668                   | 11.3342 |
| 9       | 8.56             | 8.81 | 11.682                   | 11.4102 |
| 10      | 8.51             | 8.87 | 11.750                   | 11.3622 |

Average Time taken for PC 1: 8.545 s

Average Throughput for PC 1: 11.7024 MB/s

Average Time taken for PC 2: 8.815 s

Average Throughput for PC 2: 11.374 MB/s

## **Throughput** = Total Data Transferred/Total time taken

We can see that both PC's have almost the same Time taken and throughput. This is because we are using the exact same protocol in both. The small variations are due to randomness in TCP protocol.

#### 2) With 50ms delay and 5% packet loss:

#### PC 1:

```
sarat2@sarat2:~$ sudo to qdisc add dev enp1s0 root netem delay 50ms loss 5% rate 100Mbit sarat2@sarat2:~$ ftp 10.0.0.253
Connected to 10.0.0.253.
220 (vsFTPd 3.0.3)
Name (10.0.0.253:sarat2): ftpuser_s
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> put CS3543_100MB
local: CS3543_100MB remote: CS3543_100MB
200 PORT command successful. Consider using PASV.
150 Ok to send data.
226 Transfer complete.
104857600 bytes sent in 1292.95 secs (79.1990 kB/s)
ftp> put CS3543_100MB
local: CS3543_100MB remote: CS3543_100MB
200 PORT command successful. Consider using PASV.
150 Ok to send data.
226 Transfer complete.
104857600 bytes sent in 1309.72 secs (78.1846 kB/s)
ftp> put CS3543_100MB
local: CS3543_100MB remote: CS3543_100MB
200 PORT command successful. Consider using PASV.
150 Ok to send data.
226 Transfer complete.
104857600 bytes sent in 1324.03 secs (77.3397 kB/s)
ftp> put CS3543_100MB
local: CS3543_100MB remote: CS3543_100MB
200 PORT command successful. Consider using PASV.
150 Ok to send data.
226 Transfer complete.
104857600 bytes sent in 1365.52 secs (74.9898 kB/s)
ftp> put CS3543_100MB
local: CS3543_100MB remote: CS3543_100MB
200 PORT command successful. Consider using PASV.
150 Ok to send data.
226 Transfer complete.
104857600 bytes sent in 1294.77 secs (79.0876 kB/s)
ftp> _
```

```
hemanth2@server2–h:~$ sudo tc qdisc add dev enp1s0 root netem delay 50ms loss 5% rate 100mbit
[sudo] password for hemanth2:
hemanth2@server2-h:~$ ftp 10.0.0.253
Connected to 10.0.0.253.
220 (vsFTPd 3.0.3)
Name (10.0.0.253:hemanth2): ftpuser
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> put CS3543_100MB
local: CS3543_100MB remote: CS3543_100MB
200 PORT command successful. Consider using PASV.
150 Ok to send data.
226 Transfer complete.
104857600 bytes sent in 1294.49 secs (79.1047 kB/s) ftp> put CS3543_100MB
local: CS3543_100MB remote: CS3543_100MB
200 PORT command successful. Consider using PASV.
150 Ok to send data.
226 Transfer complete.
104857600 bytes sent in 1322.60 secs (77.4230 kB/s)
ftp> put CS3543_100MB
local: CS3543_100MB remote: CS3543_100MB
200 PORT command successful. Consider using PASV.
150 Ok to send data.
226 Transfer complete.
104857600 bytes sent in 1333.55 secs (76.7876 kB/s)
ftp> put CS3543_100MB
local: CS3543_100MB remote: CS3543_100MB
200 PORT command successful. Consider using PASV.
150 Ok to send data.
226 Transfer complete.
104857600 bytes sent in 1299.46 secs (78.8021 kB/s)
 ftp> put CS3543_100MB
 local: CS3543_100MB remote: CS3543_100MB
 200 PORT command successful. Consider using PASV.
 150 Ok to send data.
 226 Transfer complete.
 104857600 bytes sent in 1293.68 secs (79.1541 kB/s)
 ftp> _
```

| Attempt | Time taken(secs) |         | Overall Throughput(KB/s) |         |  |
|---------|------------------|---------|--------------------------|---------|--|
|         | PC1              | PC 2    | PC 1                     | PC 2    |  |
| 1       | 1292.95          | 1294.49 | 77.342                   | 77.2505 |  |
| 2       | 1309.72          | 1322.60 | 76.352                   | 75.6086 |  |
| 3       | 1324.03          | 1333.55 | 75.526                   | 74.9878 |  |
| 4       | 1365.52          | 1299.46 | 73.232                   | 76.9551 |  |
| 5       | 1294.77          | 1293.68 | 77.233                   | 77.2988 |  |
| 6       | 1333.66          | 1296.57 | 74.981                   | 77.1265 |  |
| 7       | 1327.52          | 1328.77 | 75.328                   | 75.2575 |  |
| 8       | 1297.56          | 1333.66 | 77.067                   | 74.9816 |  |
| 9       | 1294.36          | 1298.63 | 77.258                   | 77.0042 |  |
| 10      | 1366.72          | 1296.58 | 73.167                   | 77.1259 |  |

Average Time taken for PC 1: 1320.681 s Average Throughput for PC 1: 75.7486 KB/s

Average Time taken for PC 2: 1309.799 s Average Throughput for PC 2: 76.359 KB/s

We can see that both PC's have almost the same Time taken and throughput. This is because we are using the exact same protocol in both, same delay/packet loss for the bridge in both the systems. The small variations are due to randomness in TCP protocol.

We can also see that as delay/packet loss increases, the time taken for a file to be transferred in FTP increases a lot. And, as time taken increases, the throughput decreases due to the packet loss and delay.

## Task 2:

"Our udp-ftp" supports the following RDT features:

- 1) Packet loss detection
- 2) Acknowledgment
- 3) Packet corruption detection (using Checksum)
- 4) Packet retransmission
- 5) Flow control

## Reliable data transfer over UDP:

#### Implementation Details:

- We have made use of multiple threads to handle different operations in server and client codes
- In the client we have used 2 threads, one to handle the data transmission(to the receiver) and another thread to handle the acknowledgement that has been sent by the server.
- On the server we have only one main thread which handles sending acknowledgement and receiving packets.
- We have used BOOL LIST (of size = total no.of packets) to maintain the
  acknowledgement status that the server sends to the client. We update the list
  after receiving acknowledgement of the packet ld from the server.

We have implemented a reliable data transfer (RDT) protocol using UDP that provides features like packet loss detection, packet corruption detection, acknowledgement, packet retransmission, checksum, congestion and flow control.

Packet Loss Detection: Our-UDP-FTP provides packet loss detection.
 When a packet is sent by a thread from the client side, the thread waits for acknowledgement from the server side. If it doesn't receive acknowledgement

- from the server side within a fixed time, the thread will resend the packet assuming that the packet has been lost and didn't arrive at the server.
- Packet Corruption Detection: Server computes checksum for received data
  and sends acknowledgement only if the checksum matches with the
  checksum bits of the received data. So If the packet is corrupted the client
  doesn't receive acknowledgement and it retransmits the packet.
- CheckSum: At the client side, we will calculate the checksum for the data.
   We appended checksum bits at the client side while sending the packet to the server.
- Acknowledgement: On receiving a packet, the thread on the server side sends its acknowledgement by transmitting the packet ID and the ack list is updated on the client side.
- Packet Retransmission: On receiving the acknowledgement from the server, the client thread updates the ack list and retransmits the packets which did not receive acknowledgement.
- Flow Control: 1st packet sent by the thread contains the total no.of packets
  that the client wants to send to the server. After receiving this packet, the
  server dynamically allocates the memory for the buffer of size total no.of
  packets. As the server has a buffer of the required size, Flow control has been
  addressed.

## Pictorial representation of thread working in client and server side

Main thread receives the ack and notifies the worker thread Worker thread sends packets to server



Main thread of server receives the packet and sends the ack to client

 It stores data of every packet in the buffer until all the packets are received. And finally, it writes the data to the output file

## **Application header:**

| packet_id checksum |
|--------------------|
|--------------------|

| 0-4 bytes     | Packet ID |  |
|---------------|-----------|--|
| 5-36 bytes    | Checksum  |  |
| 37-8192 bytes | Payload   |  |

# Flow Charts illustration of client and server process

#### **CLIENT:**



#### **SERVER:**



## 1) Without Delay and Loss:

- First, we will set the link speed to 100Mbps in both server and client using the "tc" command.
- \$ sudo tc qdisc add dev eth0 root netem rate 100Mbit
- First we run the client.py in the client (python3 client.py). Then we run the server.py file in the server (python3 server.py).

```
CS3543_100MB
Receiving File: CS3543_100MB
File Downloaded
No. of packets received: 12859
No. of bytes received: 104857600
Time Taken: 10.890411616001074 s
Throughput: 9402.77 kB/s
sarat@sarat:~/CN2_A1/final$ python3 server.py
Enter IP address of server: 10.0.0.253
Server starting in 10.0.0.253...
CS3543_100MB
Receiving File: CS3543_100MB
File Downloaded
No. of packets received: 12859
No. of bytes received: 104857600
Time Taken: 10.579079796003498 s
Throughput: 9679.48 kB/s
sarat@sarat:~/CN2_A1/final$ python3 server.py
Enter IP address of server: 10.0.0.253
Server starting in 10.0.0.253...
CS3543_100MB
Receiving File: CS3543_100MB
File Downloaded
No. of packets received: 12859
No. of bytes received: 104857600
Time Taken: 10.6335315489996 s
Throughput: 9629.91 kB/s
sarat@sarat:~/CN2_A1/final$ python3 server.py
Enter IP address of server: 10.0.0.253
Server starting in 10.0.0.253...
CS3543_100MB
Receiving File: CS3543_100MB
File Downloaded
No. of packets received: 12859
No. of bytes received: 104857600
Time Taken: 10.591628972000763 s
Throughput: 9668.01 kB/s
sarat@sarat:~/CN2_A1/final$ python3 server.py
Enter IP address of server: 10.0.0.253
Server starting in 10.0.0.253...
CS3543_100MB
Receiving File: CS3543_100MB
File Downloaded
No. of packets received: 12859
No. of bytes received: 104857600
Time Taken: 10.596187612001813 s
Throughput: 9663.85 kB/s
sarat@sarat:~/CN2_A1/final$ _
```

| Attempt | Time taken(sec) | Throughput (KB/s) |
|---------|-----------------|-------------------|
| 1       | 10.890          | 9402.77           |
| 2       | 10.579          | 9679.48           |
| 3       | 10.633          | 9629.91           |
| 4       | 10.591          | 9668.01           |
| 5       | 10.596          | 9663.85           |
| 6       | 10.596          | 9437.52           |
| 7       | 10.582          | 9450.00           |
| 8       | 10.634          | 9403.79           |
| 9       | 10.597          | 9436.63           |
| 10      | 10.590          | 9442.87           |

The average time taken = 10.628 s

The average throughput = 9521.48 KB/s

## Wireshark

We installed wireshark in the host OS Ubuntu, and monitored the bridge we created (that connects the virtual machines)

| ). | Time              | Source     | Destination | Protocol | Length Info                |
|----|-------------------|------------|-------------|----------|----------------------------|
| _  | 362 12 041317962  | 10 0 0 251 | 10 0 0 253  | IIDD     | 834 58335 → 9999 Len=8192  |
|    | 267 12 042011004  | 10.0.0.251 | 10.0.0.255  | IIDD     | 44 0000 - 50225 Lon-2      |
|    | 307 12.042011004  | 10.0.0.253 | 40.0.0.251  | UDP      | 44 5555 → 50555 Len-2      |
|    | 309 12.042087273  | 10.0.0.251 | 10.0.0.253  | UDP      | 834 58335 → 9999 Len=8192  |
|    | 375 12.042847803  | 10.0.0.253 | 10.0.0.251  | UDP      | 44 9999 → 58335 Len=2      |
|    | 376 12.042861505  | 10.0.0.251 | 10.0.0.253  | UDP      | 834 58335 → 9999 Len=8192  |
|    | 382 12.043629524  | 10.0.0.251 | 10.0.0.253  | UDP      | 834 58335 → 9999 Len=8192  |
|    | 383 12.043675520  | 10.0.0.253 | 10.0.0.251  | UDP      | 44 9999 → 58335 Len=2      |
|    | 389 12 044412553  | 10 0 0 251 | 10 0 0 253  | IIDD     | 834 58335 - 9999 Len-8192  |
|    | 200 12.044412550  | 10.0.0.251 | 10.0.0.255  | UDD      | 44 0000 - 50005 Len-0102   |
|    | 390 12.0444933330 | 10.0.0.253 | 10.0.0.251  | UDP      | 44 5555 → 50555 Len-Z      |
|    | 396 12.045194578  | 10.0.0.251 | 10.0.0.253  | UDP      | 834 58335 → 9999 Len=8192  |
|    | 397 12.045317068  | 10.0.0.253 | 10.0.0.251  | UDP      | 44 9999 → 58335 Len=2      |
|    | 403 12.045984885  | 10.0.0.251 | 10.0.0.253  | UDP      | 834 58335 → 9999 Len=8192  |
|    | 404 12.046139946  | 10.0.0.253 | 10.0.0.251  | UDP      | 44 9999 → 58335 Len=2      |
|    | 410 12.046744462  | 10.0.0.251 | 10.0.0.253  | UDP      | 834 58335 → 9999 Len=8192  |
|    | 412 12 047001512  | 10 0 0 253 | 10 0 0 251  | IIDP     | 44 9999 → 58335 Len=2      |
|    | 417 12 047510064  | 10.0.0.255 | 10.0.0.251  | IIDD     | 924 59225 . 0000 Lon=9102  |
|    | 417 12.047519004  | 10.0.0.251 | 10.0.0.233  | UDP      | 034 30333 → 9999 Lell-0192 |
|    | 419 12.04/853930  | 10.0.0.253 | 10.0.0.251  | UDP      | 44 9999 → 58335 Len=2      |
|    | 424 12.048293767  | 10.0.0.251 | 10.0.0.253  | UDP      | 834 58335 → 9999 Len=8192  |
|    | 427 12.048699762  | 10.0.0.253 | 10.0.0.251  | UDP      | 44 9999 → 58335 Len=2      |
|    | 431 12.049068014  | 10.0.0.251 | 10.0.0.253  | UDP      | 834 58335 → 9999 Len=8192  |
|    | 435 12 049535480  | 10 0 0 253 | 10 0 0 251  | LIDP     | 44 9999 → 58335 Len=2      |
|    | 138 12 010812806  | 10 0 0 251 | 10 0 0 253  | IIDD     | 834 58335 - 0000 Lon-8102  |
|    | 440 40 050067754  | 10.0.0.251 | 10.0.0.255  | UDD      | 44 0000 = 5555 Len=0152    |
|    | 442 12.050307754  | 10.0.0.253 | 10.0.0.251  | UDP      | 44 9999 → 58335 Len=Z      |
|    | 445 12.050616424  | 10.0.0.251 | 10.0.0.253  | UDP      | 834 58335 → 9999 Len=8192  |
|    | 450 12.051219454  | 10.0.0.253 | 10.0.0.251  | UDP      | 44 9999 → 58335 Len=2      |
|    | 452 12.051391115  | 10.0.0.251 | 10.0.0.253  | UDP      | 834 58335 → 9999 Len=8192  |
|    | 458 12.052096721  | 10.0.0.253 | 10.0.0.251  | UDP      | 44 9999 → 58335 Len=2      |
|    | 459 12 052167944  | 10 0 0 251 | 10 0 0 253  | IIDP     | 834 58335 → 9999 Len=8192  |
|    | 465 12 052054107  | 10.0.0.251 | 10.0.0.252  | IIDD     | 924 59225 . 0000 Lon=9102  |
|    | 400 12.002904197  | 10.0.0.251 | 10.0.0.255  | UDP      | 44 0000 F0005 Len-0        |
|    | 400 12.053100408  | 10.0.0.253 | 10.0.0.251  | UDP      | 44 9999 → 58335 Len=Z      |
|    | 4/2 12.053/33546  | 10.0.0.251 | 10.0.0.253  | UDP      | 834 58335 → 9999 Len=8192  |
|    | 474 12.053994140  | 10.0.0.253 | 10.0.0.251  | UDP      | 44 9999 → 58335 Len=2      |
|    | 479 12.054525713  | 10.0.0.251 | 10.0.0.253  | UDP      | 834 58335 → 9999 Len=8192  |
|    | 482 12.054893310  | 10.0.0.253 | 10.0.0.251  | UDP      | 44 9999 → 58335 Len=2      |
|    | 486 12 055278624  | 10 0 0 251 | 10 0 0 253  | IIDP     | 834 58335 - 9999 Len=8192  |
|    | 400 12 055770024  | 10.0.0.252 | 10.0.0.250  | IIDD     | 44 0000 - 50225 Lon=2      |
|    | 400 40 056054664  | 10.0.0.255 | 40.0.0.251  | UDF      | 024 E022E 0000 Lon-0402    |
|    | 493 12.056051664  | 10.0.0.251 | 10.0.0.253  | UDP      | 834 58335 → 9999 Len=8192  |
|    | 498 12.056682592  | 10.0.0.253 | 10.0.0.251  | UDP      | 44 9999 → 58335 Len=2      |
|    | 500 12.056843026  | 10.0.0.251 | 10.0.0.253  | UDP      | 834 58335 → 9999 Len=8192  |
|    | 505 12.057589341  | 10.0.0.253 | 10.0.0.251  | UDP      | 44 9999 → 58335 Len=2      |
|    | 507 12.057661510  | 10.0.0.251 | 10.0.0.253  | UDP      | Lengtr   Info              |
|    | 513 12 058434213  | 10.0.0.251 | 10.0.0.253  | LIDD     | 834 58335 → 9999 Len=8192  |
|    | 514 12 05050F417  | 10 0 0 252 | 10 0 0 251  | LIDD     | 44 0000 - 50225 Lon-2      |
|    | E20 42 050343417  | 10.0.0.233 | 10.0.0.201  | UDP      | 994 E000E 0000 Len-0400    |
|    | 520 12.059219089  | 10.0.0.251 | 10.0.0.253  | UDP      | 834 38335 → 9999 Len=8192  |
|    | 521 12.059340672  | 10.0.0.253 | 10.0.0.251  | UDP      | 44 9999 → 58335 Len=2      |
|    | 527 12.060016329  | 10.0.0.251 | 10.0.0.253  | UDP      | 834 58335 → 9999 Len=8192  |
|    | 528 12.060166312  | 10.0.0.253 | 10.0.0.251  | UDP      | 44 9999 → 58335 Len=2      |
|    | 534 12.060776217  | 10.0.0.251 | 10.0.0.253  | UDP      | 834 58335 → 9999 Len=8192  |
|    | 537 12 061172860  | 10 0 0 253 | 10 0 0 251  | IIDD     | 44 9999 → 58335 Len=2      |
|    | 5/1 12 061562222  | 10 0 0 251 | 10.0.0.251  | LIDD     | 024 50225 0000 Lon=0102    |
|    | 545 40 000477054  | 40.0.0.251 | 10.0.0.253  | UDP      | 44 0000 F000E Len-0        |
|    | 545 12.0621//054  | 10.0.0.253 | 10.0.0.251  | UDP      | 44 9999 → 58335 Len=2      |
|    | 548 12.062384032  | 10.0.0.251 | 10.0.0.253  | UDP      | 834 58335 → 9999 Len=8192  |
|    | 553 12.063052571  | 10.0.0.253 | 10.0.0.251  | UDP      | 44 9999 → 58335 Len=2      |
|    | 555 12.063161530  | 10.0.0.251 | 10.0.0.253  | UDP      | 834 58335 → 9999 Len=8192  |
|    | 561 12 063051856  | 10 0 0 253 | 10 0 0 251  | IIDD     | 44 9999 → 58335 Len=2      |
|    | E62 42 0620E2EE0  | 10.0.0.255 | 10.0.0.251  | UDP      | 024 E022E 0000 Lon=0102    |
|    | 502 12.003953558  | 10.0.0.251 | 10.0.0.253  | UDP      | 034 50335 → 9999 Len=8192  |
|    | 568 12.064730638  | 10.0.0.251 | 10.0.0.253  | UDP      | 834 58335 → 9999 Len=8192  |
|    |                   |            |             |          |                            |
|    | 569 12.064888627  | 10.0.0.253 | 10.0.0.251  | UDP      | 44 9999 → 58335 Len=2      |

## **Justification:**

We can see that the time taken for file transfer is almost the same for TCP and UDP in case of no delay and no packet loss.

We can also see that there is only little difference between the time shown in the server and in wireshark, Hence it is consistent.

```
sarat@sarat:~/CN2_A1/final$ diff CS3543_100MB output
sarat@sarat:~/CN2_A1/final$ _
```

> We use diff command to verify if the file is correctly transferred or not. No output implies file has transferred correctly

## 2) With 50ms delay and 5% packet loss:

- First, we will change the rule in both client and server and add a 50 ms delay and 5% packet loss to the interfaces using the "tc" command.
- \$ sudo tc qdisc change dev eth0 root netem delay 50ms loss 5%
- Now, we first run the client.py in the client (python3 client.py).
   Then we run the server.py file in the server (python3 server.py)

```
sarat@sarat:"/CN2_Al/final$ sudo to qdisc add dev empisO root netem delay 50ms loss 5% rate 100Mbit sarat@sarat:"/CN2_Al/final$ python3 server.py
Enter IP address of server: 10.0.0.253
Server starting in 10.0.0.253...
CSS543_100MB
Receiving File: CSS543_100MB
File bounloaded
No. of packets received: 12859
No. of bytes received: 12859
No. of bytes received: 12859
Throughput: 254_16 kB/s
sarat@sarat:"/CN2_Al/final$ python3 server.py
Enter IP address of server: 10.0.0.253
Server starting in 10.0.0.253...
CSS543_100MB
Receiving File: CSS543_100MB
File bounloaded
No. of packets received: 12859
No. of bytes received: 12859
No. of bytes received: 12859
Throughput: 255_78 kB/s
sarat@sarat:"/CN2_Al/final$ python3 server.py
Enter IP address of server: 10.0.0.253
Server starting in 10.0.0.253...
CSS3543_100MB
Receiving File: CSS543_100MB
File bounloaded
No. of packets received: 12859
No. of bytes received: 12859
No. of bytes received: 12859
No. of packets received: 10.4857600
Time Taken: 400_4862646299557 s
Throughput: 254_18 kB/s
sarat@sarat:"/CN2_Al/final$ python3 server.py
Enter IP address of server: 10.0.0.253...
CSS543_100MB
Receiving File: CSS543_100MB
File bounloaded
No. of packets received: 12859
No. of bytes received: 12859
No. of bytes received: 12859
No. of packets received: 12859
No. of bytes received: 12859
No. of packets received: 12859
No. of bytes received: 12859
No. of packets received: 12859
No. of packets received: 12859
No. of packets received: 12859
No. of bytes received: 12859
No. of packets received: 12859
No. of bytes received:
```

The above image shows the transferring of file - CS3543\_100MB

| Attempt | Time taken(sec) | Throughput (KB/s) |
|---------|-----------------|-------------------|
| 1       | 402.88          | 248.212           |
| 2       | 400.41          | 249.744           |
| 3       | 402.94          | 248.175           |
| 4       | 402.95          | 248.169           |
| 5       | 403.30          | 247.954           |
| 6       | 401.92          | 248.805           |
| 7       | 400.52          | 249.675           |
| 8       | 402.69          | 248.329           |
| 9       | 403.57          | 247.788           |
| 10      | 402.28          | 248.583           |

The average time taken = 402.34 s The average throughput = 248.54 KB/s

We can clearly see that our R-UDP application is performing better than the TCP when there is a delay and packet loss in the link. The increase in the time taken in case of delay and packet loss for our reliable UDP application is not as high as that of TCP. And therefore the throughput in case of our reliable UDP application is much better than that of TCP.

| No.  | Time                           | Source     | Destination              | Protocol   | Length Info                |
|------|--------------------------------|------------|--------------------------|------------|----------------------------|
|      | 402.128385299                  |            | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.129458406                  |            | 10.0.0.253               | UDP        | 834 60860 → 9999 Len=8192  |
|      | 402.130221928                  |            | 10.0.0.253               | UDP        | 834 60860 → 9999 Len=8192  |
|      |                                |            |                          | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.130919501                  |            | 10.0.0.253               | UDP        |                            |
|      | 402.132512503                  |            | 10.0.0.253               |            | 834 60860 → 9999 Len=8192  |
|      | 402.133734721                  |            | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.136333663                  |            | 10.0.0.253               | UDP        | 834 60860 → 9999 Len=8192  |
|      | 402.136910552                  |            | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.137674991                  |            | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.138440056                  |            | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.138961846                  |            | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.139848242                  |            | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.140951310                  |            | 10.0.0.253               | UDP        | 834 60860 → 9999 Len=8192  |
| 2935 | 402.141257643                  |            | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
| 2935 | 402.143023980                  | 10.0.0.251 | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
| 2935 | 402.143974134                  | 10.0.0.251 | 10.0.0.253               | UDP        | 834 60860 → 9999 Len=8192  |
| 2935 | 402.144670363                  | 10.0.0.251 | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
| 2935 | 402.145836264                  | 10.0.0.251 | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
| 2935 | 402.147028055                  | 10.0.0.251 | 10.0.0.253               | UDP        | 834 60860 → 9999 Len=8192  |
| 2935 | 402.147483203                  | 10.0.0.251 | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.148125857                  |            | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
| 2935 | 402.149018246                  | 10.0.0.251 | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
| 2935 | 402.149999195                  | 10.0.0.251 | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.151548824                  |            | 10.0.0.253               | UDP        | 834 60860 → 9999 Len=8192  |
| 2935 | 402.151893880                  | 10.0.0.251 | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.153089159                  |            | 10.0.0.253               | UDP        | 834 60860 → 9999 Len=8192  |
|      | 402.153735457                  |            | 10.0.0.253               | UDP        | 834 60860 → 9999 Len=8192  |
|      | 402.155402590                  |            | 10.0.0.253               | UDP        | 834 60860 → 9999 Len=8192  |
|      | 402.156164181                  |            | 10.0.0.253               | UDP        | 834 60860 → 9999 Len=8192  |
|      | 402.156376452                  |            | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.157258382                  |            | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.158460148                  |            | 10.0.0.253               | UDP        | 834 60860 → 9999 Len=8192  |
|      | 402.158802807                  |            | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.159437335                  |            | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.160755681                  |            | 10.0.0.253               | UDP        | 834 60860 → 9999 Len=8192  |
|      | 402.161081391                  |            | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.161969991                  |            | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.163376402                  |            | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.164018050                  |            | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.164785268                  |            | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
|      |                                |            |                          | UDP        | 834 60860 → 9999 Len=8192  |
|      | 402.166094635<br>402.166820768 |            | 10.0.0.253<br>10.0.0.253 | UDP        | 834 60860 → 9999 Len=8192  |
|      |                                |            |                          |            |                            |
|      | 402.167598560                  |            | 10.0.0.253               | UDP<br>UDP | 834 60860 → 9999 Len=8192  |
|      | 402.167806761                  |            | 10.0.0.253               |            | 1514 60860 → 9999 Len=8192 |
|      | 402.168700421                  |            | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.169477316                  |            | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.170364933                  |            | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.172657839                  |            | 10.0.0.253               | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.173728865                  |            | 10.0.0.253               | UDP        | 834 60860 → 9999 Len=8192  |
|      | 402.173939700                  |            |                          | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.174825676                  |            |                          | UDP        | 1514 60860 → 9999 Len=8192 |
|      | 402.175836320                  |            |                          | UDP        | 1514 60860 → 9999 Len=8192 |
| 2935 | 402.176781115                  | 10.0.0.251 | 10.0.0.253               | UDP        | 834 60860 → 9999 Len=8192  |

## **Justification:**

```
sarat@sarat:~/CN2_A1/final$ diff CS3543_100MB output
sarat@sarat:~/CN2_A1/final$ _
```

- We use diff command to verify if the file is correctly transferred or not.
   No output implies file has transferred correctly
- We can also see that the values in wireshark are almost the same as the values we got in the server.
- We can see that our Reliable UDP application is 3.4 times faster than TCP in this case.

 This is because, in a somewhat reliable network (like the bridge we used), UDP is faster than TCP, because of lower packet overheads, and lower number of packets.

No delay, No packet-loss, 100 Mbit Link



50ms delay, 5% packet-loss, 100 Mbit Link



#### Summary:

- We are submitting the files server.py, client.py along with this report.
- Run server.py on a computer and give the server IP as the IP address, when asked for it.
- Run client.py on another computer and give the server IP as the IP address of the server, when asked for it.
- Enter the file name of the file you want to send from client to server, and press Enter.
- After the transfer is done, you will be prompted with a message saying
  the transfer is done on the client side. On the server side, the time taken
  for the transfer is displayed along with a message saying the transfer is
  completed.

#### **Future Improvements:**

- We can optimize our code, to give even higher throughput.
- One of the ideas is to use multiple threads to send packets instead of the single one we have used now.
- We can come up with a better interface to our application.
- Instead of single transfer and closing the session, we can try to keep the server running forever, and a client can connect and send data at any time.