

APPENDIX A
"CLEAN" VERSION OF EACH PARAGRAPH/SECTION/CLAIM
37 C.F.R. § 1.121(b)(ii) AND (c)(i)

SPECIFICATION:

Replacement for the paragraph beginning at page 7, line 28:

To further reduce the size of the emitter, the emitter may be mounted on a "THz window". The window material could be for example polyethylene, polythene, high-resistivity silicon, Z-quartz or TPX (poly-4-methylpentene-1), it must be at least substantially transparent to the irradiating beam. The window would preferably be thin, for example, between 50 and 300 microns. This is to ensure that the THz beam diameter is still smaller than the shortest wavelength component when the THz beam reaches the sample. The size of the window is large enough to allow all of the reflected beams to be collected with negligible loss. As the emitter is provided on the window which is substantially transparent to THz, the THz can pass through the mount for the emitter.

CLAIMS (with indication of amended or new):

(New) 44. A method of imaging a sample, the method comprising the steps of :

- (a) irradiating the sample to be imaged with an irradiating beam of pulsed electro magnetic radiation with a plurality of frequencies in the range from 25 GHz to 100 THz,

- (b) detecting both the radiation transmitted through the sample and the radiation reflected by the sample;

- (c) generating an image of the sample from the radiation detected in step (b).

(New) 45. The method of claim 44, wherein step (c) comprises the step of calculating the time of flight of a pulse transmitted through the sample; calculating the time of flight of a pulse