КОНСПЕКТ ЗАНЯТИЯ № 1 ПЕРВОЙ НЕДЕЛИ КУРСА «БАЗЫ ДАННЫХ»

1. ВВЕДЕНИЕ В ТЕОРИЮ БАЗ ДАННЫХ 1.1. ОСНОВНЫЕ ПОНЯТИЯ

Исторически сложились два основных направления использования вычислительной техники, первое из которых связано с проведением сложных преобразований над относительно небольшими объемами данных с простой структурой. Здесь компьютеры позволили быстрее проводить расчеты по вычислительно сложным алгоритмам. Подобные задачи дали толчок к созданию первых ЭВМ, их актуальность не снижается и сейчас.

Другое направление связано с созданием информационных систем (ИС). В них необходимо не только обрабатывать, но и хранить большие объемы данных со сложной внутренней структурой, обеспечивать быстрый поиск нужной информации. Создание подобных систем стало возможным после появления надежных, емких и быстродействующих устройств энергонезависимой памяти: в первую очередь речь идет о накопителях на жестких магнитных дисках. Классическим примером подобного систем типа являются системы резервирования железнодорожных и авиационных билетов. Последовательность операций, при каждом заказе, относительно выполняемых проста, корректного функционирования всей системы необходимо хранить и постоянно актуализировать большие объемы данных, выполнять в них поиск и т. п.

Автоматизированная информационная система — это функционирующий на основе ЭВМ комплекс, обеспечивающий сбор, хранение, актуализацию и обработку информации в целях поддержки какого-либо вида деятельности, т. е. автоматизированная ИС разрабатывается для определенной предметной области.

Предметная область — часть реального мира, подлежащая изучению с целью организации управления и, в конечном счете, автоматизации. Создавая ИС, мы, в некотором смысле, создаем информационную модель, позволяющую описать значимые характеристики реальных объектов и их взаимосвязи.

По типу хранимой и обрабатываемой информации выделяют два больших класса автоматизированных информационных систем: документальные и фактографические.

Документальные системы служат для работы с текстами на естественном языке — статьями, научными отчетами, текстами законодательных актов и т. д. Наиболее распространенным видом документальных систем являются информационно-поисковые системы, предназначенные для накопления и поиска документов на естественном языке. Их иногда еще называют полнотекстовыми базами данных.

Документы, хранящиеся в подобных системах, составляют поисковый массив документов системы. Для каждого документа формируется поисковый образ — некое формальное описание документа в терминах языка системы, которое отражает его содержание. Например, поисковый образ может быть сформирован указанием набора ключевых слов. Запрос пользователя представляется в виде поискового образа запроса, который сопоставляется с поисковыми образами хранимых документов. Отобранные в результате документы называются релевантными запросу.

Фактографические системы составляют другой большой класс автоматизированных информационных систем. Они оперируют фактическими данными, представленными в виде специальным образом организованных совокупностей записей. Именно им и посвящена основная часть данного курса, так как именно в фактографических системах в полной мере используются методы и инструменты теории баз данных.

Иногда в дополнение к выделенным двум классам вводят понятие *лексикографических* баз данных и информационных систем, относя к ним различного рода словари и классификаторы.

База данных (БД) – именованная совокупность данных, отражающая состояние объектов и их отношений в заданной предметной области.

Базу данных можно рассматривать как электронную картотеку, хранилище для некоторого набора занесенных в компьютер данных. Операции над базой данных:

- добавить новые данные в БД;
- изменить существующие данные;
- удалить данные из БД;
- найти данные в БД;

- и т. д.

Базы данных организуются на основе различных моделей данных. Пример фрагмента БД реляционного типа представлен в табл. 1.1. Данные в этом случае организуются в виде реляционных таблиц, строки таблиц называют записями, а столбцы – полями или атрибутами.

Таблица 1.1. Фрагмент реляционной БД

StudID	FIO	Group
123	Иванов И.И.	382
124	Петров П.П.	382

Принципиально важной особенностью БД является то, что они содержат дополнительную служебную информацию о своей структуре, иначе говоря, являются «самодокументируемыми».

1.2. КОМПОНЕНТЫ СИСТЕМЫ БАЗ ДАННЫХ

Рассмотрим упрощенную схему системы баз данных (рис. 1.1). Она включает следующие основные компоненты: данные, аппаратное обеспечение, программное обеспечение, пользователи.

Рис. 1.1. Обобщенная схема системы баз данных

Данные

Базы данных состоят из некоторого набора постоянных данных. Выделяют также транзитные данные, такие как промежуточные результаты, входные и выходные данные. *Входные данные* – информация,

передаваемая системе (например, вводимая с клавиатуры). Такая информация может стать причиной изменений постоянных данных (она может стать частью постоянных данных), но не является частью БД как таковой. Выходные данные — сообщения и результаты, выдаваемые системой. Они, как правило, берутся из постоянных данных, но их нельзя рассматривать как часть БД.

Например, пусть в систему каждые 10 минут поступают данные о температуре воздуха, в базе сохраняется среднее значение за час, а запрос выводит среднесуточную температуру. В этом случае хранимые значения могут отличаться и от входных, и от выходных.

Кроме данных, описывающих предметную область, в БД обычно содержатся данные, описывающие элементы и структуры самой базы. Подобные описания относятся к разряду метаинформации, «информации об информации». Централизованное хранилище метаинформации называется словарем данных или репозиторием. Именно наличие репозитория позволяет говорить свойстве «самодокументированности» БД. В современных СУБД реляционного типа такое хранилище реализуется в виде системного каталога – набора служебных таблиц, куда заносится информация о структуре объектов (баз данных, таблиц, представлений и т.д.), пользователях, разрешениях и т.п.

По виду отношения «пользователь – данные» можно выделить два типа систем баз данных.

- 1. *Однопользовательская система* (англ. single-user system) это система, в которой в одно и тоже время к базе данных может получить доступ только один пользователь.
- 2. Многопользовательская система (англ. multi-user system) это система, в которой к базе данных могут получить доступ одновременно несколько пользователей. При этом для конечного пользователя необходимо обеспечить такие условия, чтобы результат его работы не зависел от того, работает он с данными в однопользовательском режиме или совместно с другими.

Данные в БД должны быть интегрированными и общими.

Когда говорят про интегрированные данные, подразумевают, что к данным, собранным из разных источников, предоставляется единый способ доступа. Например, система позволяет получить данные с кафедр университета об успеваемости студентов, из библиотеки — об

использовании студентами литературы, и совместно их использовать для решения какой-то задачи.

Общие данные подразумевают возможность использования отдельных наборов данных из общей БД разными группами пользователей для решения своих специфических задач. Например, менеджер интернетмагазина может работать с данными о конкретном заказе, а руководитель – с итоговыми данными, характеризующими деятельность магазина за определенный период.

Эти два свойства представляют собой наиболее важное преимущество использования систем БД корпоративного уровня, а «интеграция» является преимуществом при использовании настольных (персональных) систем БД.

Аппаратное обеспечение

В наиболее общем виде можно выделить две группы устройств, принципиально важных для систем баз данных. Во-первых, это устройства хранения данных. Во-вторых, устройства обработки данных. Для небольших систем и обработка, и хранение могут производиться на одном и том же компьютере. Крупная система баз данных может использовать различные типы систем хранения и множество серверов для обработки данных. Здесь возникает целый класс новых задач, связанных с разработкой и эксплуатацией распределенных систем.

Программное обеспечение

Между физической базой данных и пользователями системы располагается уровень программного обеспечения, основной компонент которого – *система управления базами данных* (англ. database management system).

Система управления базами данных — совокупность языковых и программных средств, предназначенная для создания, ведения и совместного использования БД многими пользователями. Основная функция СУБД — предоставление пользователю БД возможности работать с ней, не вникая в детали на уровне аппаратного обеспечения.

Кроме СУБД система БД, как правило, включает еще ряд программных компонент — утилиты, генераторы отчетов, пользовательское прикладное программное обеспечение (ПО) и т. д.

Пользователи

Пользователей системы БД можно разделить на три класса.

Прикладные программисты отвечают за написание прикладных программ, использующих базу данных. Разрабатываемые ими программы, обращаются с запросами к СУБД и получают результаты запросов. Выделяют программы пакетной обработки и оперативные приложения, функция которых — поддержка работы конечного пользователя, имеющего интерактивный доступ к системе.

Конечные пользователи работают с системой БД непосредственно с рабочей станции или терминала. Они могут воспользоваться разработанным для них прикладным ПО или встроенными средствами СУБД (графическими или с интерфейсом командной строки). Нужно понимать, что система БД создается для поддержания деятельности конечных пользователей.

Администраторы данных и администраторы баз данных. Администратор данных — человек, который несет ответственность за данные предприятия. Он принимает решения, какие данные необходимо вносить в БД, кому и к каким данным можно иметь доступ, и т. д. Иногда таких специалистов называют аналитиками. Администратор базы данных — технический специалист, который отвечает за реализацию решений администратора данных. На этапе разработки системы он занимается созданием баз данных, на этапе эксплуатации — настройкой, обслуживаем, резервным копированием и другими подобными задачами.

1.3. ЭТАПЫ РАЗВИТИЯ СУБД И ВЕДУЩИЕ ПРОИЗВОДИТЕЛИ

До появления СУБД, вопросы хранения данных разработчики каждой программы решали самостоятельно, используя при ЭТОМ функции операционной системы (ОС) или даже напрямую обращаясь устройствам ввода-вывода. Но ОС предоставляет функции по работе с файлами, а вопросы организации хранения записей внутри файла, поиска данных, проверки ограничений для записи, средствами ОС не решить. Кроме того, при одновременном доступе нескольких пользователей к одним и тем же данным необходимы дополнительные механизмы, позволяющие централизованно управлять этим процессом. Эти и ряд других причин привели к созданию отдельного класса программного обеспечения – СУБД.

Первый этап развития СУБД связан с «большими» ЭВМ (мейнфреймами). Первая коммерческая СУБД называлась IMS (от англ. Information Management System, система управления информацией) и была выпущена корпорацией IBM в 1968 году для платформы IBM System/360. Этот этап характеризуется централизованных хранением данных. СУБД должны были обеспечивать коллективный доступ к БД, а сами они работали на «больших» машинах под управлением сложных и достаточно развитых ОС.

Ha были первом этапе исследователями получены очень существенные результаты в области теории баз данных. В частности, это создание иерархической, сетевой и реляционной моделей данных. Реляционную модель предложил работавший в IBM математик Эдгар Франк Кодд (Edgar Frank Codd, 1923–2003; в 1981 получил премию Тьюринга). В 1970 году он опубликовал статью «A Relational Model of Data for Large Shared Data Banks», в которой описал основные идеи реляционного подхода. В дальнейшей работе над моделью принял участие и Кристофер Дейт (Christopher J. Date), автор классического учебника «Введение в системы баз данных». Реляционные СУБД на сегодняшний день являются наиболее распространенными.

Следующий этап развития СУБД связан с появлением персональных компьютеров. Их широкое распространение, ограниченные вычислительные возможности и, в среднем, более низкий (по сравнению с большими ЭВM) уровень подготовки пользователей, привели возникновению целого класса настольных СУБД. Изначально это были, в основном, однопользовательские системы, с достаточно ограниченными возможностями, простым пользовательским интерфейсом НО невысокими требованиями к аппаратуре. Многие из них не выдержали конкуренции и сейчас не поддерживаются. Оставшиеся в процессе развития стали приобретать черты многопользовательских СУБД, такие как механизмы совместного использования и защиты данных. В качестве примера популярных сейчас настольных СУБД можно назвать Microsoft Access и OpenOffice Base.

Параллельно существенные изменения происходили и с СУБД корпоративного уровня. Они были связаны с распространением

компьютерных сетей, в результате чего доминирующей стала клиент-серверная технология, в том числе с поддержкой распределенной обработки данных.

Большое влияние на СУБД оказало и развитие сети Интернет. При динамическом формировании web-страниц в большинстве случаев задействуются СУБД и обслуживаемые ими базы данных. Это привело к появлению ряда СУБД, чья популярность, в первую очередь, связана с их использованием при создании web-приложений. Наиболее яркий пример – реляционная СУБД MySQL.

С другой стороны, выяснилось, что реляционные СУБД и используемый для работы с ними язык запросов SQL подходят далеко не для всех задач. Появилась и активно развивается идеология NoSQL (англ. Not only SQL, не только SQL), объединяющая ряд подходов и проектов, связанных с созданием нереляционных БД.

Несколько слов об основных «игроках» на рыке баз данных. Наиболее именитый производитель серверных СУБД — это корпорация Oracle, выпустившая в 1979 году первую коммерческую реляционную СУБД Oracle v2, и с тех пор являющаяся ключевым производителем в области серверов баз данных.

Существенное место на рынке занимает корпорация IBM, выпускающая реляционную СУБД DB2 и иерархическую СУБД IMS. Приобретя в 2001 году подразделение корпорации Informix, IBM добавила в свою линейку продуктов одноименную СУБД.

Заметное место занимает корпорация Microsoft с ее серверным продуктом MS SQL Server и настольной СУБД Access, входящей в пакет Microsoft Office. Несмотря на то, что MS SQL Server выпускается только для ОС семейства Windows, популярность данной платформы, поддержка в средствах разработки Microsoft и широкие возможности самой СУБД, привели к её широкому распространению.

Основанная в 1984 году компания Sybase может быть также названа одним из пионеров в области разработки реляционных СУБД. В конце 1980-х — начале 1990-х Sybase вела разработку SQL Server в альянсе с Microsoft, но в дальнейшем продукты стали независимыми. На сегодняшний день в линейке продуктов Sybase есть реляционный сервер баз данных Adaptive Server Enterprise, встраиваемая реляционная СУБД SQL Anywhere и нереляционная СУБД с «поколоночным» хранением

данных Sybase IQ, предназначенная для задач аналитической обработки данных и построения хранилищ данных. В 2010 году Sybase была приобретена компанией SAP AG, ведущим поставщиком программных решений для управления бизнесом.

Среди приверженцев свободно распространяемого программного приобрела СУБД обеспечения широкую популярность MySQL, изначально разрабатывавшаяся созданной в Швеции компанией MySQL АВ. В настоящее время у MySQL лидирующие позиции в качестве СУБД, используемой в области web-разработки. В 2008 году компания MySQL AB была приобретена Sun Microsystems, а в 2010 году уже саму Sun приобрела Oracle. Сейчас выпускаются как коммерческие, так и бесплатно распространяемая версия MySQL (MySQL Community Edition). Кроме разрабатываемые сообществом свободно того, существуют распространяемые ответвления MySQL, например, это MariaDB.

Также необходимо отметить, что у многих коммерческих разработчиков есть бесплатно распространяемые версии СУБД, такие как Oracle Database Express Edition, IBM DB2 Express-C, Microsoft SQL Server Express Edition.

Если говорить о СУБД, основанных на объектной модели данных, то наиболее известным на сегодняшний день проектом в этой области является система Caché, разрабатываемая компанией InterSystems. Особенность данной СУБД заключается в том, что она реализует объектное представление данных, сохраняя в то же время возможность доступа к данным средствами языка SQL, как к реляционной БД.

Для формирования курса все материалы были взяты в использование с образовательной платформы «Открытое образование». Платформа создана Ассоциацией "Национальная платформа открытого образования", учрежденной ведущими университетами - МГУ, СПбПУ, СПбГУ, НИТУ «МИСиС», НИУ «ВШЭ», МФТИ, УрФУ и ИТМО. В частности, в данном портале проходимый курс именуется «Управление данными».