

Session Outline

- Review
 - Problem formulation concepts
- Example: Formulation to Programming
 - Antennas

Session Goals

- 1. Work through one more problem formulation example
- 2. Create a general program to solve the problem

Process for Constructing a QUBO

- 1. Write out the objective and constraints in your problem domain
- 2. Define the binary variables
- 3. Write out objective in QUBO form
- 4. Write out constraints in QUBO form
- 5. Combine objectives and constraints
- 6. Solve and interpret results
- 7. Tune your QUBO to get better results

Given: A set of viable locations,

Determine where to build antennas so that coverage is maximized and there is no interference.

Nodes

Viable locations for antennas

Edges

Indicate interference between signals from two antennas

Given: A set of viable locations,

Determine where to build antennas so that coverage is maximized and there is no interference

A Maximum Independent Set

Find the maximum set of nodes such that there are no edges in the maximum set.

Given: A set of viable locations,

Determine where to build antennas so that coverage is maximized and there is no interference

Objective

Maximize the number of antenna locations selected

Constraints

No interference between antennas

Given: A set of viable locations,

Determine where to build antennas so that coverage is maximized and there is no interference

2. Define binary variables

$$x_i = \begin{cases} 1 & if \ node \ i \ is \ in \ our \ subset \\ 0 & if \ node \ i \ is \ not \ in \ our \ subset \end{cases}$$

Binary variables for this problem: x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , x_7

Given: A set of viable locations,

Determine where to build antennas so that coverage is maximized and there is no interference

2. Define binary variables

$$x_i = \begin{cases} 1 & if \ node \ i \ is \ in \ our \ subset \\ 0 & if \ node \ i \ is \ not \ in \ our \ subset \end{cases}$$

Binary variables for this problem: x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , x_7

Given: A set of viable locations,

Determine where to build antennas so that coverage is maximized and there is no interference

3. Write out the objective in QUBO form

Maximize the number of antenna locations selected

$$max \sum_{i} x$$

Given: A set of viable locations,

Determine where to build antennas so that coverage is maximized and there is no interference

3. Write out the objective in QUBO form

Maximize the number of antenna locations selected

$$-\sum_{i}x_{i}$$

Trick:
Turn a maximization function into a minimization function by negating it

Given: A set of viable locations,

Determine where to build antennas so that coverage is maximized and there is no interference

4. Write out the constraints in QUBO form

No interference between antennas (no edges in the subset)

x_i	x_j	Edge?
0	0	Υ
0	1	Ν
1	0	N
1	1	Υ

Given: A set of viable locations,

Determine where to build antennas so that coverage is maximized and there is no interference

4. Write out the constraints in QUBO form

No interference between antennas (no edges in the subset)

x_i	x_{j}	Edge?	Penalty
0	0	Υ	0
0	1	N	0
1	0	N	0
1	1	Υ	1

Given: A set of viable locations,

Determine where to build antennas so that coverage is maximized and there is no interference

4. Write out the constraints in QUBO form

No interference between antennas (no edges in the subset)

x_i	x_{j}	Edge?	Penalty
0	0	Υ	0
0	1	N	0
1	0	N	0
1	1	Υ	1

Solve system of equations: $ax_i + bx_j + cx_ix_j + d$

Given: A set of viable locations,

Determine where to build antennas so that coverage is maximized and there is no interference

No interference between antennas (no edges in the subset)

x_i	x_{j}	Edge?	Penalty
0	0	Υ	0
0	1	Ν	0
1	0	N	0
1	1	Υ	1

Solve system of equations: $ax_i + bx_j + cx_ix_j + d$

$$0+0+0+d=0 \rightarrow d=0$$

 $0+b+0+d=0 \rightarrow b=0$
 $a+0+0+d=0 \rightarrow a=0$
 $a+b+c+d=1 \rightarrow c=1$

Given: A set of viable locations,

Determine where to build antennas so that coverage is maximized and there is no interference

4. Write out the constraints in QUBO form

No interference between antennas (no edges in the subset)

x_i	x_{j}	Edge?	Penalty
0	0	Υ	0
0	1	N	0
1	0	N	0
1	1	Υ	1

Solve system of equations: $ax_i + bx_i + cx_ix_i + d$

$$0+0+0+d=0 \rightarrow d=0$$

 $0+b+0+d=0 \rightarrow b=0$
 $a+0+0+d=0 \rightarrow a=0$
 $a+b+c+d=1 \rightarrow c=1$

Penalty Model: $x_i x_j$

Given: A set of viable locations,

Determine where to build antennas so that coverage is maximized and there is no interference

4. Write out the constraints in QUBO form

No interference between antennas (no edges in the subset)

x_i	x_{j}	Edge?	Penalty
0	0	Υ	0
0	1	N	0
1	0	N	0
1	1	Y	1

To get an equation for the constraint, sum up over all edges:

$$\sum_{(i,j)in\ E} x_i x_j$$

Given: A set of viable locations,

Determine where to build antennas so that coverage is maximized and there is no interference

5. Combine the objective and constraints

$$E_{QUBO} = \min(objective) + \gamma(constraints)$$

$$E_{QUBO} = -\sum_{i} x_{i} + \gamma \sum_{(i,j) \in E} x_{i} x_{j}$$

 $E = \{(1,2), (1,3), (2,3), (3,4), (3,5), (4,5), (4,6), (5,6), (6,7)\}$

Given: A set of viable locations,

Determine where to build antennas so that coverage is maximized and there is no interference

6. Solve and interpret the results

Objective

$$-\sum_{i}x_{i}$$

Create a BQM object
bqm = dimod.BQM('BINARY')

Add linear biases
bqm.add_variables_from({node: -1 for node in G.nodes})

Constraint

$$\gamma \sum_{(i,j)\in E} x_i x_j$$

Add quadratic biases
bqm.add_interactions_from({(u,v): gamma for u,v in G.edges})

6. Solve and interpret the results

```
# Import networkx for graph tools
import networkx as nx

# Import matplotlib.pyplot to draw graphs on screen
import matplotlib
matplotlib.use("agg")
import matplotlib.pyplot as plt

# Import the Ocean tools we're going to use
import dimod
from dwave.system import DWaveSampler, EmbeddingComposite
import dwave.inspector as inspector
```

```
sampler = EmbeddingComposite(DWaveSampler())
# 2. Define problem
gamma = 2
# Create empty graph
G = nx.Graph()
# Add edges to graph - this also adds the nodes
G.add_edges_from([(1, 2), (1, 3), (2, 3), (3, 4), (3, 5), (4, 5), (4, 6), (5, 6), (6, 7)])
# Create a BQM object
bqm = dimod.BQM('BINARY')
# Add linear biases
bqm.add_variables_from({node: -1 for node in G.nodes})
# Add quadratic biases
bqm.add_interactions_from({(u,v): gamma for u,v in G.edges})
# 3. Submit problem and parameters to the solver
sampleset = sampler.sample(bqm, num_reads=50)
# 4. Evaluate the solution
sample = next(iter(sampleset))
subset = [node for node in sample if sample[node] > 0]
print(sampleset)
print('Maximum independent set size found is', len(subset))
visualize results(subset)
```


6. Solve and interpret the results

```
sampler = EmbeddingComposite(DWaveSampler())
gamma = 2
# Create empty graph
G = nx.Graph()
# Add edges to graph - this also adds the nodes
G.add_edges_from([(1, 2), (1, 3), (2, 3), (3, 4), (3, 5), (4, 5), (4, 6), (5, 6), (6, 7)])
bqm = dimod.BQM('BINARY')
# Add linear biases
bqm.add_variables_from({node: -1 for node in G.nodes})
# Add quadratic biases
bqm.add_interactions_from({(u,v): gamma for u,v in G.edges})
# 3. Submit problem and parameters to the solver
sampleset = sampler.sample(bqm, num_reads=50)
# 4. Evaluate the solution
sample = next(iter(sampleset))
subset = [node for node in sample if sample[node] > 0]
print(sampleset)
print('Maximum independent set size found is', len(subset))
visualize_results(subset)
```


	1	2	3	4	5	6	7	energy	num_oc.	chain
0	0	1	0	0	1	0	1	-3.0	18	0.0
1	1	0	0	0	1	0	1	-3.0	18	0.0
2	1	0	0	1	0	0	1	-3.0	6	0.0
3	0	1	0	1	0	0	1	-3.0	8	0.0

Session Outline

- Formulated the maximum independent set problem
- Learned about the Lagrange parameter (gamma)
- Saw a general way to program a problem in Ocean
- Ran a fully formulated and implemented problem

Session Goals

- 1. Work through one more problem formulation example
- 2. Create a general program to solve the problem

Resources

Reading/Reference Material

- Learn more about the QPU https://docs.dwavesys.com/docs/latest/c_gs_1.html
- Ocean documentation
 - DWaveSampler https://docs.ocean.dwavesys.com/en/latest/docs_system/reference/samplers.html#dwavesampler
 - EmbeddingComposite <u>https://docs.ocean.dwavesys.com/en/latest/docs_system/ref</u> <u>erence/composites.html#embeddingcomposite</u>
 - ExactSolver
 https://docs.ocean.dwavesys.com/en/latest/docs_dimod/ref
 erence/sampler_composites/samplers.html#exact-solver
 - SimulatedAnnealingSampler https://docs.ocean.dwavesys.com/en/latest/docs_neal/reference/sampler.html
- Customer applications
 https://www.dwavesys.com/learn/featured-applications/

Practice and Exercises

- Collection of code examples
 https://cloud.dwavesys.com/leap/examples
- Jupyter notebook exercise
 - Example

 https://github.com/dwave training/cdl_2021_jupyter/blob/master/part02_Solversl.ipynb
 - Exercise

 https://github.com/dwave training/cdl_2021_jupyter/blob/master/part02_Solversl_practice
 e1.ipynb

