Volume estimation via integrating on a curve fitted point cloud

HiPEDS 2018 Cohort: G. Bisbas, L. Castiglione, D. Grumberg, S. Karolčík, L. Keeble, D. Kulon, B. Kwan, C. McMeel, R. Miles, J. Ortiz, N. Perez-Nieves, V. Pham Ngoc, J. Vandebon, D. Vink

Imperial College London add logos

October 26, 2018

Overall structure

HiPEDS Group workflow

- Cohort meetings on a regular basis
- Identify our goals and split into subgroups
- Integrate our progress
- Redefine goals

Point cloud integration team overall checkpoints

- Capture images
- Extract point cloud
- Fit a curve
- Find the volume inside

More details in the next slides...

The problem and the goal

Figure: Royal vans

- ullet Problem: Packaging in vans is not optimal o lots of empty space
- Goal: Fast estimation of available volume to ensure optimal packaging

The hardware

- •
- •

Extracting the point cloud

- •
- •
- 0

Denoising the point cloud

The ICP algorithm

Curve fitting with Linear Interpolation

Integration

$$\iiint_V f(x, y, z) \, dx \, dy \, dz \tag{1}$$

Results

References

Acknowledgements

This project was proposed and supported by Royal Mail, EPSRC and Imperial College London. A special thanks to Jeremy Bradley and Ben Glocker for their support and advice throughout.