

FR2805817

Publication Title:

Pharmaceutical compositions containing new or known 3-amino-azetidine derivatives having cannabinoid CB1 receptor antagonist activity, useful e.g. for treating central nervous system, respiratory or gastrointestinal disorders

Abstract:

Abstract of FR2805817

Pharmaceutical compositions containing 1-(di(hetero)aryl)methyl)-3-(substituted amino)-azetidine derivatives (I) are new. Pharmaceutical compositions contain azetidine derivatives of formula (I), or their optical isomers or mineral or organic acid addition salts, as active agents. R1 = NR4R5, N(R4)COR5 or N(R4)S2R6; R2, R3 = phenyl, naphthyl or indenyl (all optionally substituted (os) by one or more of halo, alkyl, alkoxy, CHO, OH, CF3, OCF3, -CO-alk, CN, COOH, COO-alkyl, CONR7R8, CONHNR9R10, alkylsulfanyl, alkylsulfinyl, alkylsulfonyl, alkylsulfanylalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, hydroxyalkyl or -alkyl-NR9R10), benzofuryl, benzothiazolyl, benzothienyl, benzoxazolyl, chromanyl, 2,3-dihydrobenzofuryl, 2,3-dihydrobenzothienyl, pyrimidinyl, furyl, imidazolyl, isochromanyl, isoquinolyl, pyrrolyl, pyridyl, quinolyl, 1,2,3,4-tetrahydroisoquinolyl, thiazolyl or thienyl (all os by one or more of halo, alkyl, alkoxy, OH, CF3, OCF3, CN, COOH, COO-alk, CONR7R8, CONHNR9R10, alkylsulfanyl, alkylsulfinyl, alkylsulfonyl, alkylsulfanylalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, hydroxyalkyl or -alkyl-NR9R10); R4 = -C(R11)(R12)-Het, Het, -C(R11)(R12)-Ar, Ar, cycloalkyl or norbornyl; R5 = H, hydroxyalkyl, -alk-COO-alkyl, -alk-CONR7R8, -alk-NR7R8, alkoxy, Ar, Het, CH2Ar, CH2Ar or alkyl (os by one or more halo); R6 = as R5 but not H; R7, R8 = H or alkyl; or NR7R8 = 3-10 membered saturated mono- or bicyclic heterocycle, optionally containing another O, S or N heteroatom and os by one or more alkyl; R9, R10 = H, alkyl, COO-alk, cycloalkyl, alkylcycloalkyl, -alk-O-alk or hydroxyalkyl; or NR9R10 = 3-10 membered saturated mono- or bicyclic heterocycle, optionally containing another O, S or N heteroatom and os by one or more of alkyl, -CO-alk, -COO-alk, -CONH-alk, -CSNH-alk, oxo, hydroxyalkyl, -alk-O-alk or CONH2; R11 = H, hydroxyalkyl, -alk-COO-alkyl, -alk-CONR7R8, -alk-NR7R8, alkoxyalkyl, Ar, Het, CH2Ar, CH2Ar or alkyl (os by one or more halo); R12 = as R11 but not H; or CR11R12 = 3-10 membered saturated mono- or bicyclic ring system, optionally containing an O, S or N heteroatom and os by one or more alkyl; Ar = phenyl, naphthyl or indenyl (all os by one or more of halo, alkyl, alkoxy, -CO-alk, CN, COOH, COO-alk, CONR7R8, CONHNR7R8, al 1133 kylsulfanyl, alkylsulfinyl, alkylsulfonyl, -alk-NR7R8, NR7R8, alkylthioalkyl, CHO, OH, hydroxyalkyl, Het, -O-alk-NH-cycloalkyl, OCF3, CF3, -NHCO-alk, SO2NH2, NHCOMe, NHCOO-alk, Het or OCH2O (linked to two adjacent C)); Het = 3-10 membered saturated or unsaturated mono- or bicyclic heterocycle, containing one or more O, S or N heteroatom(s) and os by one or more alkyl, alkoxy, halo, alkoxycarbonyl, oxo or OH (N-containing heterocycles optionally being in N-oxide form); alk = alkyl or alkylene; Alkyl or alkylene moieties have 1-6C and cycloalkyl moieties have 3-10C. Independent claims are also included for: (1) (I) (including optical isomers and salts) as new compounds, with the exception of (I; R1 =

(19) RÉPUBLIQUE FRANÇAISE
INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE
PARIS

(11) Nº de publication :
(à n'utiliser que pour les commandes de reproduction)

2 805 817

(21) Nº d'enregistrement national : 00 02776

(51) Int Cl⁷ : C 07 D 401/12, C 07 D 205/04, A 61 K 31/397, 31/506, 31/425, 31/433, A 61 P 9/00, 37/00, 5/00, 11/00, 1/00, 15/08 // (C 07 D 401/12, 205:04, 213:16) (C 07 D 401/12, 205:04, 215:12) (C 07 D 401/12, 205:04, 285:12) (C 07 D 401/12, 205:04, 277:26) (C 07 D 401/12, 205:04, 239:04)

(12)

DEMANDE DE BREVET D'INVENTION

A1

(22) Date de dépôt : 03.03.00.

(30) Priorité :

(71) Demandeur(s) : AVENTIS PHARMA S.A. Société anonyme — FR.

(43) Date de mise à la disposition du public de la demande : 07.09.01 Bulletin 01/36.

(72) Inventeur(s) : ACHARD DANIEL, BOUCHARD HERVE, BOUQUEREL JEAN, FILOCHE BRUNO, GRISONI SERGE, HITTINGER AUGUSTIN et MYERS MICHAEL R.

(56) Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule

(73) Titulaire(s) :

(60) Références à d'autres documents nationaux apparentés :

(74) Mandataire(s) :

(54) COMPOSITIONS PHARMACEUTIQUES CONTENANT DES DERIVES D'AZETIDINE, LES NOUVEAUX DERIVES D'AZETIDINE ET LEUR PREPARATION.

(57) La présente invention concerne des compositions pharmaceutiques contenant comme principe actif au moins un composé de formule:

dans laquelle R₁ représente un radical -N (R₄) R₅, -N (R₄) -CO-R₅, -N (R₄) -SO₂R₆ ou un de ses sels pharmaceutiquement acceptables, les nouveaux dérivés de formule (I),

FR 2 805 817 - A1

**COMPOSITIONS PHARMACEUTIQUES CONTENANT DES DERIVES
D'AZETIDINE, LES NOUVEAUX DERIVES D'AZETIDINE
ET LEUR PREPARATION**

La présente invention concerne des compositions pharmaceutiques
5 contenant comme principe actif au moins un composé de formule :

ou un de ses sels pharmaceutiquement acceptables, les nouveaux dérivés de formule (I), leurs sels pharmaceutiquement acceptables et leur préparation.

10 Le composé de formule (I) pour lequel R₂ et R₃ représentent des radicaux phényle, R₁ représente un radical -N(R₄)SO₂R₆, R₄ représente un radical phényle et R₆ représente un radical méthyle est décrit comme intermédiaire de synthèse dans le brevet WO99/01451. Les autres composés et leurs sels pharmaceutiquement acceptables sont nouveaux et en tant que tels font
15 partie de l'invention.

Dans la formule (I)

R₁ représente un radical -N(R₄)R₅, -N(R₄)-CO-R₅, -N(R₄)-SO₂R₆,

R₂ et R₃, identiques ou différents, représentent soit un aromatique choisi parmi phényle, naphtyle et indényle, ces aromatiques étant non substitués ou
20 substitués par un ou plusieurs halogène, alkyle, alcoxy, formyle, hydroxy, trifluorométhyle, trifluorométhoxy, -CO-alk, cyano, -COOH, COOalk, -CONR₈R₉, -CO-NH-NR₉R₁₀, alkylsulfanyle, alkylsulfinyle, alkylsulfonyle,

alkylsulfanylalkyle, alkylsulfinylalkyle, alkylsulfonylalkyle, hydroxyalkyle ou -alk-NR₉R₈; soit un hétéroaromatique choisi parmi les cycles benzofuryle, benzothiazolyle, benzothiényle, benzoxazolyle, chromannyle, 2,3-dihydrobenzofuryle, 2,3-dihydrobenzothiényle, furyle, imidazolyle,
 5 isochromannyle, isoquinolyle, pyrrolyle, pyridyle, pyrimidyle, quinolyle, 1,2,3,4-tétrahydroisoquinolyle, thiazolyle et thiényle, ces hétéroaromatiques pouvant être non substitués ou substitués par un halogène, alkyle, alcoxy, hydroxy, trifluorométhyle, trifluorométhoxy, cyano, -COOH, COOalk,
 10 -CO-NH-NR₉R₁₀, -CONR₉R₈, -alk-NR₉R₁₀, alkylsulfanyle, alkylsulfinyle, alkylsulfonyle, alkylsulfanylalkyle, alkylsulfinylalkyle, alkylsulfonylalkyle ou hydroxyalkyle ,

R₄ représente un radical -C(R₁₁)(R₁₂)-Het, -Het, -(CR₁₁)(R₁₂)-Ar, Ar, cycloalkyle ou norbornyle,

R₅ représente un atome d'hydrogène ou un radical hydroxyalkyle, -alk-COOalk, -alk-CONR₉R₈, -alk-NR₉R₈, alcoxy, Ar, Het, -CH₂Ar, -CH₂Het ou alkyle éventuellement substitué par un ou plusieurs halogène,
 15

R₆ représente un radical hydroxyalkyle, -alk-COOalk, -alk-CONR₉R₈, -alk-NR₉R₈, alcoxy, Ar, Het, -CH₂Ar, -CH₂Het ou alkyle éventuellement substitué par 1 ou plusieurs halogène,

20 R₇ et R₈, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R₇ et R₈ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plus de 25 plusieurs alkyle,

R₉ et R₁₀, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle, -COOalk, cycloalkyle, alkylcycloalkyle, -alk-O-alk,

hydroxyalkyle ou bien R₉ et R₁₀ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ou insaturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle, -COalk, -COOalk, -CO-NHalk, -CS-NHalk, oxo, hydroxyalkyle, -alk-O-alk ou -CO-NH₂,

R₁₁ représente un atome d'hydrogène ou un radical hydroxyalkyle, -alk-COOalk, -alk-CONR₇R₈, -alk-NR₇R₈, alcoxyalkyle, Ar, Het, -CH₂Ar, -CH₂Het ou alkyle éventuellement substitué par un ou plusieurs halogène,

10 R₁₂ représente un atome d'hydrogène ou un radical hydroxyalkyle, -alk-COOalk, -alk-CONR₇R₈, -alk-NR₇R₈, alcoxyalkyle ou alkyle éventuellement substitué par un ou plusieurs halogène,

ou bien R₁₁ et R₁₂ forment ensemble avec l'atome de carbone auquel ils sont rattachés un cycle mono ou bicyclique saturé ayant 3 à 10 chaînons, 15 contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,

Ar représente un radical phényle, naphtyle ou indényle, ces différents radicaux étant éventuellement substitués par un ou plusieurs halogène, alkyle, alcoxy, -CO-alk, cyano, -COOH, -COOalk, -CONR₁₃R₁₄, 20 -CO-NH-NR₁₅R₁₆, alkylsulfanyle, alkylsulfinyle, alkylsulfonyle, -alk-NR₁₅R₁₆, -NR₁₅R₁₆, alkylthioalkyle, formyle, CF₃, OCF₃, Het, -O-alk-NH-cycloalkyle, SO₂NH₂, hydroxy, hydroxyalkyle, -NHCOalk, NHCOOalk ou sur 2 atomes de carbone adjacents par dioxyméthylène,

Het représente un hétérocycle mono ou bicyclique insaturé ou saturé, ayant 25 3 à 10 chaînons et contenant un ou plusieurs hétéroatomes choisi parmi oxygène, soufre et azote éventuellement substitué par un ou plusieurs alkyle,

alcoxy, halogène, alcoxycarbonyle, oxo, hydroxy, les hétérocycles azotés étant éventuellement sous leur forme N-oxydée,

- R₁₃ et R₁₄, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R₁₃ et R₁₄ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,
- R₁₅ et R₁₆, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R₁₅ et R₁₆ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,
- 15 alk représente un radical alkyle ou alkylène.

Dans les définitions précédentes et celles qui suivent, sauf mention contraire, les radicaux et portions alkyle et alkylène et les radicaux et portions alcoxy sont en chaîne droite ou ramifiée et contiennent 1 à 6 atomes de carbone et les radicaux cycloalkyle contiennent 3 à 10 atomes de carbone.

- 20 Parmi les radicaux alkyle on peut citer les radicaux méthyle, éthyle, n-propyle, isopropyle, n-butyle, sec-butyle, iso-butyle, tert-butyle, pentyle, hexyle. Parmi les radicaux alcoxy on peut citer les radicaux méthoxy, éthoxy, n-propoxy, iso-propoxy, n-butoxy, iso-butoxy, sec-butoxy, tert-butoxy, pentyloxy.
- 25 Parmi les radicaux cycloalkyle, on peut citer les radicaux cyclopropyle, cyclobutyle, cyclopentyle, cyclohexyle.

Le terme halogène comprend chlore, fluor, brome et iodé.

- Parmi les hétérocycles représentés par Het, on peut citer les hétérocycles suivants : benzimidazole, benzoxazole, benzothiazole, benzothiophène, cinnoline, thiophène, quinazoline, quinoxaline, quinoline, pyrazole, pyrrole, 5 pyridine, imidazole, indole, isoquinoline, pyrimidine, thiazole, thiadiazole, pipéridine, pipérazine, triazole, furane, tétrahydroisoquinoline, tétrahydroquinoline, ces hétérocycles étant éventuellement substitués par un ou plusieurs alkyle, alcoxy, halogène, alcoxycarbonyle, oxo, hydroxy, OCF₃ ou CF₃,
- 10 Les composés de formule (I) peuvent se présenter sous forme d'enantiomères et de diastéréoisomères. Ces isomères et leurs mélanges font également partie de l'invention.

De façon préférentielle, les composés de formule (I) sont ceux pour lesquels

R₁ représente un radical -N(R₄)R₅, -N(R₄)-SO₂R₆,

- 15 R₂ représente soit un phényle non substitué ou substitué par un ou plusieurs halogène, alkyle, alcoxy, trifluorométhyle, trifluorométhoxy, -CO-alk, cyano, -CONR₇R₈, hydroxyalkyle ou -alk-NR₉R₁₀; soit un hétéroaromatique choisi parmi les cycles pyridyle, pyrimidyle, thiazolyle et thiényle, ces hétéroaromatiques pouvant être non substitués ou substitués par un 20 halogène, alkyle, alcoxy, hydroxy, trifluorométhyle, trifluorométhoxy, -CONR₇R₈, -alk-NR₉R₁₀, alkylsulfanyle, alkylsulfinyle, alkylsulfonyle ou hydroxyalkyle ,

- R₃ représente soit un phényle non substitué ou substitué par un ou plusieurs halogène, alkyle, alcoxy, trifluorométhyle, trifluorométhoxy, -CO-alk, cyano, 25 -CONR₇R₈, hydroxyalkyle ou -alk-NR₉R₁₀; soit un hétéroaromatique choisi parmi les cycles pyridyle, pyrimidyle, thiazolyle et thiényle, ces hétéroaromatiques pouvant être non substitués ou substitués par un

halogène, alkyle, alcoxy, hydroxy, trifluorométhyle, trifluorométhoxy, -CONR₇R₈, -alk-NR₉R₁₀, alkylsulfanyle, alkylsulfinyle, alkylsulfonyle ou hydroxyalkyle ,

5 R₄ représente un radical -C(R₁₁)(R₁₂)-Het, -Het, -C(R₁₁)(R₁₂)-Ar, Ar ou norbornyle,

R₅ représente un atome d'hydrogène ou un radical hydroxyalkyle, -alk-COOalk, -alk-CONR₇R₈, -alk-NR₇R₈, alcoxy, -CH₂Ar, -CH₂Het ou alkyle,

R₆ représente un radical hydroxyalkyle, -alk-COOalk, -alk-CONR₇R₈, -alk-NR₇R₈, alcoxy, -CH₂Ar, -CH₂Het ou alkyle,

10 R₇ et R₈, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R₇ et R₈ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,

15 R₉ et R₁₀, identiques ou différents représentent un atome d'hydrogène ou un radical alkyle, cycloalkyle, alkylcycloalkyle, -alk-O-alk ou hydroxyalkyle ou bien R₉ et R₁₀ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ou insaturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle, -COOalk, -COOalk, -CO-NHalk, oxo, hydroxyalkyle ou -CO-NH₂,

20 R₁₁ représente un atome d'hydrogène ou un radical hydroxyalkyle, -alk-COOalk, -alk-CONR₇R₈, -alk-NR₇R₈, alcoxyalkyle, Ar, Het, -CH₂Ar, -CH₂Het ou alkyle éventuellement substitué par un ou plusieurs halogène,

R₁₂ représente un atome d'hydrogène ou un radical hydroxyalkyle, -alk-COOalk, -alk-CONR₇R₈, -alk-NR₇R₈, alcoxyalkyle ou alkyle éventuellement substitué par un ou plusieurs halogène,

ou bien R₁₁ et R₁₂ forment ensemble avec l'atome de carbone auquel ils sont
5 rattachés un cycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,

Ar représente un radical phényle ou naphtyle, ces différents radicaux étant éventuellement substitués par un ou plusieurs halogène, alkyle, alcoxy,
10 -CO-alk, cyano, -CONR₁₃R₁₄, alkylsulfonyle, -alk-NR₁₅R₁₆, -NR₁₅R₁₆, CF₃, OCF₃, SO₂NH₂, hydroxy, hydroxyalkyle ou sur 2 atomes de carbone adjacents par dioxyméthylène,

Het représente un hétérocycle mono ou bicyclique insaturé ou saturé, ayant 3 à 10 chaînons et contenant un ou plusieurs hétéroatomes choisi parmi
15 oxygène, soufre et azote éventuellement substitué par un ou plusieurs alkyle, alcoxy, halogène, oxo, hydroxy, les hétérocycles azotés étant éventuellement sous leur forme N-oxydée et, plus particulièrement, Het représente un hétérocycle choisi parmi benzimidazole, benzoxazole, benzothiazole, benzothiophène, thiophène, quinazoline, quinoxaline, quinoline, pyrrole,
20 pyridine, imidazole, indole, isoquinoline, pyrimidine, thiazole, thiadiazole, furane, tétrahydroisoquinoline et tétrahydroquinoline, ces hétérocycles étant éventuellement substitués par un ou plusieurs alkyle, alcoxy, halogène, alcoxycarbonyle, oxo, hydroxy, OCF₃ ou CF₃.

R₁₃ et R₁₄, identiques ou différents, représentent un atome d'hydrogène ou un
25 radical alkyle ou bien R₁₃ et R₁₄ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi

oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,

R₁₅ et R₁₆, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R₁₅ et R₁₆ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,

Encore plus préférentiellement, les composés de formule (I) sont choisis parmi les composés suivants :

R₁ représente un radical -N(R₄)-SO₂R₆,

R₂ représente soit un phényle non substitué ou substitué par un ou plusieurs halogène, alkyle, alcoxy, trifluorométhyle, trifluorométhoxy, cyano, -CONR₇R₈, hydroxyalkyle ou -alk-NR₇R₈; soit un hétéroaromatique choisi parmi les cycles pyridyle, pyrimidyle, thiazolyle et thiényle, ces hétéroaromatiques pouvant être non substitués ou substitués par un halogène, alkyle, alcoxy, hydroxy, trifluorométhyle, trifluorométhoxy, -CONR₇R₈ ou hydroxyalkyle ,

R₃ représente soit un phényle non substitué ou substitué par un ou plusieurs halogène, alkyle, alcoxy, trifluorométhyle, trifluorométhoxy, cyano, -CONR₇R₈, hydroxyalkyle ou -alk-NR₇R₈; soit un hétéroaromatique choisi parmi les cycles pyridyle, pyrimidyle, thiazolyle et thiényle, ces hétéroaromatiques pouvant être non substitués ou substitués par un halogène, alkyle, alcoxy, hydroxy, trifluorométhyle, trifluorométhoxy, -CONR₇R₈ ou hydroxyalkyle ,

R₄ représente -Het ou Ar,

R₆ représente un radical hydroxyalkyle ou alkyle,

R₁ et R₆, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R₁ et R₆ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,

Ar représente un radical phényle ou naphtyle, ces différents radicaux étant éventuellement substitués par un ou plusieurs halogène, alkyle, alcoxy, -CO-alk, cyano, -CONR₁₃R₁₄, -alk-NR₁₅R₁₆, -NR₁₅R₁₆, CF₃, OCF₃, SO₂NH₂, hydroxy ou hydroxyalkyle,

Het représente un hétérocycle mono ou bicyclique insaturé ou saturé, ayant 3 à 10 chaînons et contenant un ou plusieurs hétéroatomes choisi parmi oxygène, soufre et azote éventuellement substitué par un ou plusieurs alkyle, alcoxy, halogène, oxo, hydroxy et plus particulièrement, Het représente un hétérocycle choisi parmi benzimidazole, benzoxazole, benzothiazole, benzothiophène, thiophène, quinazoline, quinoxaline, quinoline, pyrrole, pyridine, imidazole, indole, isoquinoline, thiazole, thiadiazole, furane, tétrahydroisoquinoline et tétrahydroquinoline, ces hétérocycles étant éventuellement substitués par un ou plusieurs alkyle, alcoxy, halogène, alcoxycarbonyle, oxo, hydroxy, OCF₃ ou CF₃,

R₁₃ et R₁₄, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R₁₃ et R₁₄ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,

R₁₅ et R₁₆, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R₁₅ et R₁₆ forment ensemble avec l'atome d'azote

auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chainons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle.

- 5 Parmi les composés préférés, on peut citer les composés suivants :

N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(6-chloropyrid-2-yl)-méthyl-sulfonamide,

N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(6-éthylpyrid-2-yl)-méthyl-sulfonamide,

- 10 N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-quinol-6-yl-méthyl-sulfonamide,

N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-quinol-5-yl-méthyl-sulfonamide,

- 15 N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-isoquinol-5-yl-méthyl-sulfonamide,

N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-pyrid-3-yl-méthyl-sulfonamide,

N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(1-oxyde-pyrid-3-yl)-méthylsulfonamide,

- 20 N-(1R,2S,4S)-bicyclo[2,2,1]hept-2-yl-N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-méthylsulfonamide,

N-(1R,2R,4S)-bicyclo[2,2,1]hept-2-yl-N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-méthylsulfonamide,

N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(3,5-difluorophényl)-

- méthylsulfonamide,
- N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-N-(thiazol-2-yl)-méthyl sulfonamide,
- N-{1-[bis-(4-chlorophényl)-méthyl]-azétidin-3-yl}-N-(3-méthoxyphényl)-
5 méthylsulfonamide,
- N-{1-[bis-(4-chlorophényl)-méthyl]-azétidin-3-yl}-N-(3-hydroxyphényl)-
méthylsulfonamide,
- N-{1-[bis-(4-chlorophényl)-méthyl]-azétidin-3-yl}-N-(3-hydroxyméthyl-phényl)-
méthylsulfonamide,
- 10 N-{1-[bis-(4-chlorophényl)-méthyl]-azétidin-3-yl}-N-(méthylsulfonyl)-3-aminobenzoate d'éthyle,
- N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-N-(1-isobutyl-pipérid-4-yl)-
méthylsulfonamide,
- N-benzyl-N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}amine,
- 15 N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}-N-(3,5-difluorobenzyl)amine,
- N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}-N-(3,5-difluorobenzyl)méthylsulfonamide,
- N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}-N-(pyrid-3-yl-méthyl)-
méthylsulfonamide,
- 20 N-{1-[bis-(4-fluoro-phényl)-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-
méthylsulfonamide,
- (RS)-N-{1-[(4-chlorophényl)-pyrid-3-yl-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-
méthylsulfonamide,

- (R)-N-{1-[(4-chlorophényl)-pyrid-3-yl-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide,
- (S)-N-{1-[(4-chlorophényl)-pyrid-3-yl-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide,
- 5 (RS)-N-{1-[(4-chlorophényl)-pyrid-4-yl-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide,
- (R)-N-{1-[(4-chlorophényl)-pyrid-4-yl-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide,
- 10 (S)-N-{1-[(4-chlorophényl)-pyrid-4-yl-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide,
- (RS)-N-{1-[(4-chlorophényl)-pyrimid-5-yl-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide,
- (R)-N-{1-[(4-chlorophényl)-pyrimid-5-yl-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide,
- 15 (S)-N-{1-[(4-chlorophényl)-pyrimid-5-yl-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide,
- N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-N-(3,5-difluorophényl)-benzylsulfonamide,
- leurs isomères optiques et leurs sels pharmaceutiquement acceptables.
- 20 Les composés de formule (I) pour lesquels R₁ représente un radical -N(R₄)R₅ dans lequel R₅ est un atome d'hydrogène, -N(R₄)-CO-R₅, -N(R₄)-SO₂R₆, R₄ est un radical -C(R₁₁)(R₁₂)-Ar ou -C(R₁₁)(R₁₂)-Het et R₁₂ est un atome d'hydrogène peuvent être préparés selon le schéma réactionnel suivant :

Dans ces formules R₂, R₃, R₆ et R₁₁, ont les mêmes significations que dans la formule (I), Rb représente radical Ar ou Het, Ar et Het ayant les mêmes significations que dans la formule (I) et Hal représente un atome d'halogène et de préférence chlore ou brome.

L'étape a s'effectue généralement au sein d'un solvant inerte tel que le tétrahydrofurane, le dioxane, un solvant chloré (dichlorométhane, chloroforme par exemple), à une température comprise entre 15 et 30°C, en présence d'une base telle qu'une trialkylamine (triéthylamine,

dipropyléthylamine par exemple) ou au sein de la pyridine, à une température entre 0 et 30°C

L'étape b s'effectue de préférence au sein du méthanol, en autoclave, à une température comprise entre 50 et 70°C.

- 5 L'étape c s'effectue généralement au sein d'un solvant inerte tel qu'un solvant chloré (dichlorométhane par exemple), en présence de triacétoxyborohydruro de sodium et d'acide acétique, à une température voisine de 20°C

Les étapes d et e s'effectuent généralement au sein d'un solvant inerte tel que le tétrahydrofurane, le dioxane, un solvant chloré (dichlorométhane, chloroforme par exemple), en présence d'une amine telle qu'une trialkylamine (triéthylamine par exemple), à une température comprise entre 5°C et 20°C.

Les dérivés Rb-COR₁, sont commercialisés ou peuvent être obtenus selon les méthodes décrites par exemple par R.C. LAROCK, Comprehensive Organic Transformations, VCH editor.

- 15 Les dérivés Hal-SO₂R₆ sont commercialisés ou peuvent être obtenus par halogénéation des acides sulfoniques correspondants, notamment in situ en présence de chlorosulfonylisocyanate et d'alcool, au sein d'un solvant halogéné (dichlorométhane, chloroforme par exemple).

20 Les dérivés Hal-COR₅ sont commercialisés ou peuvent être préparés par halogénéation des acides carboxyliques correspondants, notamment in situ en présence de chlorure de thionyle au sein d'un solvant halogéné (dichlorométhane, chloroforme par exemple).

- 25 Les azétidinols 1 peuvent être obtenus par application ou adaptation des méthodes décrites par KATRITZKY A.R et coll., J. Heterocycl. Chem., 271 (1994) ou DAVE P.R., J. Org. Chem., 61, 5453 (1996) et dans les exemples. On opère généralement selon le schéma réactionnel suivant :

dans ces formules R_2 et R_3 ont les mêmes significations que dans la formule (I) et Hal représente un atome de chlore ou de brome.

Dans l'étape A, on opère de préférence au sein d'un solvant inerte tel qu'un alcool aliphatique 1-4C (éthanol, méthanol par exemple), éventuellement en présence d'un hydroxyde de métal alcalin, à la température d'ébullition du milieu réactionnel.

Dans l'étape B, la réduction s'effectue généralement, au moyen d'hydrure de lithium et d'aluminium, au sein du tétrahydrofurane à la température d'ébullition du milieu réactionnel.

Dans l'étape C, on opère de préférence au sein d'un solvant inerte tel qu'un alcool aliphatique 1-4C (éthanol, méthanol par exemple), en présence d'hydrogénocarbonate de sodium, à une température comprise entre 20°C et la température d'ébullition du milieu réactionnel.

Dans l'étape D, on opère selon la méthode décrite par GRISAR M. et coll. dans J. Med. Chem., 885 (1973). On forme le magnésien du dérivé bromé puis on fait réagir le nitrile, au sein d'un éther tel que l'éther éthylique, à une température comprise entre 0°C et la température d'ébullition du milieu réactionnel. Après hydrolyse avec un alcool, l'imine intermédiaire est réduite *in situ* par du borohydrure de sodium à une température comprise entre 0°C et la température d'ébullition du milieu réactionnel.

Les dérivés $R_2\text{-CO-}R_3$ sont commercialisés ou peuvent être obtenus par application ou adaptation des méthodes décrites par KUNDER N.G. et coll. J. Chem. Soc. Perkin Trans 1, 2815 (1997); MORENO-MARRAS M., Eur. J. Med. Chem., 23 (5) 477 (1988); SKINNER et coll., J. Med. Chem., 14 (6) 546 (1971); HURN N.K., Tet. Lett., 36 (52) 9453 (1995); MEDICI A. et coll., Tet. Lett., 24 (28) 2901 (1983); RIECKE R.D. et coll., J. Org. Chem., 62 (20) 6921 (1997); KNABE J. et coll., Arch. Pharm., 306 (9) 648 (1973); CONSONNI R. et coll., J. Chem. Soc. Perkin Trans 1, 1809 (1996); FR-96-2481 et JP-94-261393.

Les dérivés $R_3\text{Br}$ sont commercialisés ou peuvent être obtenus par application ou adaptation des méthodes décrites par BRANDSMA L. et coll., Synth. Comm., 20 (11) 1697 et 3153 (1990); LEMAIRE M. et coll., Synth. Comm., 24 (1) 95 (1994); GODA H. et coll., Synthesis, 9 849 (1992); BAEUERLE P. et coll., J. Chem. Soc. Perkin Trans 2, 489 (1993).

Les dérivés $R_2\text{CN}$ sont commercialisés ou peuvent être obtenus par application ou adaptation des méthodes décrites par BOUYSSOU P. et coll., J. Het. Chem., 29 (4) 895 (1992); SUZUKI N. et coll., J. Chem. Soc. Chem. Comm., 1523 (1984); MARBURG S. et coll., J. Het. Chem., 17 1333 (1980); PERCEC V. et coll., J. Org. Chem., 60 (21) 6895 (1995).

Les composés de formule (I) pour lesquels R_i représente un radical $\text{-N}(R_4)R_5$ peuvent être préparés selon le schéma réactionnel suivant :

Dans ces formules R₂, R₃, R₄ et R₅ ont les mêmes significations que dans la formule (I).

Cette réaction s'effectue généralement au sein d'un solvant inerte tel qu'un solvant chloré (dichlorométhane par exemple), en présence de triacétoxyborohydrure de sodium et d'acide acétique, à une température voisine de 20°C.

Les composés HN(R₄)R₅ sont commercialisés ou peuvent être préparés selon les méthodes classiques connues de l'homme de l'art ou par application ou 10 adaptation des méthodes décrites par Park K.K. et coll., J. Org. Chem., 60 (19) 6202 (1995); Kalir A. Et coll., J. Med. Chem., 12 (3) 473 (1969); Sarges R., J. Org. Chem., 40 (9) 1216 (1975); Zaugg H.E., J. Org. Chem., 33 (5) 2167 (1968); Med. Chem., 10, 128 (1967); J. Am. Chem. Soc., 2244 (1955); Chem. Ber., 106, 2890 (1973); Chem. Pharm. Bull., 16 (10) 1953 (1968); Bull. 15 Soc. Chim. Fr., 835 (1962).

Les azétidinones 2 peuvent être obtenus par oxydation des azétidinoles correspondants, de préférence au sein de diméthylsulfoxyde, au moyen du complexe trioxyde de soufre-pyridine, à une température voisine de 20°C ou au moyen de diméthylsulfoxyde, en présence de chlorure d'oxalyle et de 20 triéthylamine, à une température comprise entre -70°C et -50°C.

Les composés de formule (I) pour lesquels R₁ représente un radical -N(R₄)COR₅ ou -N(R₄)SO₂R₆ peuvent être préparés selon le schéma réactionnel suivant :

Dans ces formules, R₂, R₃, R₄, R₅ et R₆ ont les mêmes significations que dans la formule (I) et Hal représente un atome d'halogène et de préférence chlore.

Les étapes a et b s'effectuent généralement au sein d'un solvant inert tel que le tétrahydrofurane, le dioxane, un solvant chloré (dichlorométhane, chloroforme par exemple), en présence d'une amine telle qu'une trialkylamine (triéthylamine par exemple), à une température comprise entre 5°C et 20°C.

Les composés de formule (I) pour lesquels R₁ représente un radical -N(R₄)-SO₂-R₆ pour lequel R₄ est un radical Het ou Ar peuvent être préparés selon le schéma réactionnel suivant :

Dans ces formules R₂, R₃ et R₆ ont les mêmes significations que dans la formule (I), Rd représente un radical Ar ou Het (Het et Ar ayant les mêmes significations que dans la formule (I)) et Ms représente un radical méthylsulfonyloxy.

L'étape a s'effectue généralement au sein d'un solvant inerte tel que le tétrahydrofurane, en présence de triphénylphosphine et de diéthylazodicarboxylate, à une température comprise entre 0°C et la température d'ébullition du milieu réactionnel.

- 10 L'étape b s'effectue généralement au sein d'un solvant inerte tel que le tétrahydrofurane, le dioxane, un solvant chloré (dichlorométhane, chloroforme par exemple), à une température comprise entre 15°C et 30°C, en présence d'une base telle qu'une trialkylamine (triéthylamine, dipropyléthylamine par exemple) ou au sein de la pyridine, à une température entre 0°C et 30°C.
- 15 L'étape c s'effectue de préférence, au sein d'un solvant inerte tel que le dioxane, en présence de CsCO₃, au reflux du mélange réactionnel.

Les dérivés pour lesquels Rd représente un hétérocycle azoté N-oxydé peuvent être réduits composé non oxydé selon la méthode décrite par SANGHANEL E. Et coll., Synthesis 1375 (1996).

5 Les dérivés $Rd-NH-SO_2R_6$ peuvent être obtenus selon le schéma réactionnel suivant :

Dans ces formules Hal représente un atome d'halogène et Rd représente un radical Het ou Ar. La réaction s'effectue au sein d'un solvant inerte tel que le tétrahydrofurane, le dioxane, un solvant chloré (dichlorométhane, 10 chloroforme par exemple), à une température comprise entre 15°C et 30°C, en présence d'une base telle qu'une trialkylamine (triéthylamine, dipropyléthylamine par exemple) ou au sein de la pyridine, à une température comprise entre 0°C et 30°C.

15 Les dérivés pour lesquels Rd représente un hétérocycle azoté N-oxydé peuvent être obtenus selon la méthode décrite par RHIE R., Heterocycles, 41 (2) 323 (1995).

Les composés de formule (I) peuvent également être préparés selon le schéma réactionnel suivant :

Dans ces formules R_1 , R_2 et R_3 ont les mêmes significations que dans la formule (I) et Ph représente un phényle.

L'étape a s'effectue généralement au sein d'un alcool tel que le méthanol, en 5 présence de borohydrure de sodium, à une température voisine de 20°C.

Dans l'étape b, on prépare le magnésien du dérivé bromé et le fait réagir, au sein d'un solvant inert tel que l'éther éthylique ou le tétrahydrofurane, à une température comprise entre 0°C et la température d'ébullition du milieu réactionnel.

10 L'étape c s'effectue au moyen d'un agent d'halogénéation tel que l'acide bromhydrique, le bromure de thionyle, le chlorure de thionyle, un mélange de triphénylphosphine et de tétrabromure ou tétrachlorure de carbone, au sein de l'acide acétique ou un solvant inert tel que le dichlorométhane, le

chloroforme, le tétrachlorure de carbone ou le toluène, à une température comprise entre 0°C et la température d'ébullition du milieu réactionnel.

L'étape d s'effectue au moyen d'hydrogène, en présence de charbon palladié, au sein d'un alcool tel que le méthanol, à une température voisine de 20°C.

L'étape e s'effectue au sein d'un solvant inerte tel que l'acétonitrile, en présence d'un carbonate de métal alcalin (carbonate de potassium par exemple) et d'iodure de potassium, à une température comprise entre 20°C et la température d'ébullition du milieu réactionnel.

10 Les dérivés R₃Br et les dérivés R₂-CHO sont commercialisés ou peuvent être obtenus selon les méthodes décrites par exemple par R.C. LAROCK, Comprehensive Organic Transformations, VCH editor.

Les composés de formule (I) pour lesquels R₁ représente un radical -N(R₄)-SO₂-R₆ pour lequel R₄ est un radical pipérid-4-yle éventuellement substitué sur l'azote par un radical alkyle peuvent également être préparés selon le schéma réactionnel suivant :

Dans ces formules R₂, R₃ et R₆ ont les mêmes significations que dans la formule (I), alk représente un radical alkyle et Re représente un radical tert-butylcarbonyloxy.

- 5 L'étape a s'effectue au sein d'un solvant inerte tel qu'un solvant chloré (dichlorométhane par exemple), en présence d'un hydrure tel que le triacétoxyborohydrure de sodium et d'acide acétique, à une température comprise entre 0°C et la température d'ébullition du milieu réactionnel.

- 10 L'étape b s'effectue généralement au sein d'un solvant inerte tel que le tétrahydrofurane, le dioxane, un solvant chloré (dichlorométhane, chloroforme par exemple), en présence d'une amine telle qu'une trialkylamine (triéthylamine par exemple), à une température comprise entre 5°C et 20°C.

L'étape c s'effectue au moyen d'acide chlorhydrique, au sein du dioxane, à une température comprise entre 0°C et la température d'ébullition du milieu réactionnel.

L'étape d s'effectue par tou moyen connu de l'homme de l'art pour alkyler une
5 amine sans toucher au reste de la molécule. On peut par exemple utiliser un halogènure d'alkyle, en présence d'une base organique telle que la triéthylamine, un hydroxyde de métal alcalin (soude, potasse par exemple), éventuellement en présence de bromure de tétrabutylammonium, au sein d'un solvant inerte tel que le diméthylsulfoxyde, le diméthylformamide ou la
10 pyridine, à une température comprise entre 20 et 50°C.

Les composés de formule (I) pour lesquels R₁ représente un radical -N(R₄)-SO₂-R₆ pour lequel R₄ est un radical phényle substitué par un radical pyrrolid-1-yle peuvent également être préparés par action de pyrrolidine sur un composé de formule (I) correspondant pour lequel R₁ représente un
15 radical -N(R₄)SO₂R₆ pour lequel R₄ est un radical phényle substitué par un atome d'halogène.

Cette réaction s'effectue de préférence, au sein du diméthylsulfoxyde, à une température comprise entre 50 et 95°C.

Il est entendu pour l'homme du métier que, pour la mise en oeuvre des
20 procédés selon l'invention décrits précédemment, il peut être nécessaire d'introduire des groupes protecteurs des fonctions amino, hydroxy et carboxy afin d'éviter des réactions secondaires. Ces groupes sont ceux qui permettent d'être éliminés sans toucher au reste de la molécule. Comme exemples de groupes protecteurs de la fonction amino on peut citer les
25 carbamates de tert-butyle ou de méthyle qui peuvent être régénérées au moyen d'iodotriméthylsilane ou d'allyle au moyen de catalyseurs du palladium. Comme exemples de groupes protecteurs de la fonction hydroxy, on peut citer les triéthylsilyle, tert-butyldiméthylsilyle qui peuvent être régé-

nérés au moyen de fluorure de tétrabutylammonium ou bien les acétals dissymétriques (méthoxyméthyle, tétrahydropyranyle par exemple) avec régénération au moyen d'acide chlorhydrique. Comme groupes protecteurs des fonctions carboxy, on peut citer les esters (allyle, benzyle par exemple),
5 les oxazoles et les 2-alkyl-1,3-oxazolines. D'autres groupes protecteurs utilisables sont décrits par GREENE T.W. et coll., *Protecting Groups in Organic Synthesis*, second edition, 1991, Jonh Wiley & Sons.

Les composés de formule (I) peuvent être purifiés par les méthodes connues habituelles, par exemple par cristallisation, chromatographie ou extraction.

10 Les énantiomères des composés de formule (I) peuvent être obtenus par dédoublement des racémiques par exemple par chromatographie sur colonne chirale selon PIRCKLE W.H. et coll., *asymmetric synthesis*, vol. 1, Academic Press (1983) ou par formation de sels ou par synthèse à partir des précurseurs chiraux. Les diastéréoisomères peuvent être préparés selon les
15 méthodes classiques connues (cristallisation, chromatographie ou à partir des précurseurs chiraux).

Les composés de formule (I) peuvent être éventuellement transformés en sels d'addition avec un acide minéral ou organique par action d'un tel acide au sein d'un solvant organique tel qu'un alcool, une cétone, un éther ou un
20 solvant chloré. Ces sels font également partie de l'invention.

Comme exemples de sels pharmaceutiquement acceptables, peuvent être cités les sels suivants : benzènesulfonate, bromhydrate, chlorhydrate, citrate, éthanesulfonate, fumarate, gluconate, iodate, iséthionate, maléate, méthanesulfonate, méthylène-bis-b-oxynaphtoate, nitrate, oxalate, pamoate, phosphate, salicylate, succinate, sulfate, tartrate, théophyllinacétate et p-toluènesulfonate.

Les composés de formule (I) présentent des propriétés pharmacologiques intéressantes. Ces composés possèdent une forte affinité pour les récepteurs cannabinoïdes et particulièrement ceux de type CB1. Ce sont des antagonistes du récepteur CB1 et sont donc utiles dans le traitement et la prévention des désordres touchant au système nerveux central, au système immunitaire, au système cardio-vasculaire ou endocrinien, au système respiratoire, à l'appareil gastrointestinal et aux désordres de la reproduction (Hollister, Pharm. Rev.; 38, 1986, 1-20, Reny et Sinha, Prog. Drug Res., 36, 71-114 (1991), Consroe et Sandyk, in Marijuana/Cannabinoids, Neurobiology and Neurophysiology, 459, Murphy L. and Barthe A. Eds, CRC Press, 1992).

C'est ainsi que ces composés peuvent être utilisés pour le traitement ou la prévention des psychoses y compris la schizophrénie, des troubles anxieux, de la dépression, de l'épilepsie, de la neurodégénération, des désordres cérébelleux et spinocérébelleux, des désordres cognitifs, du trauma crânien, des attaques de panique, des neuropathies périphériques, des glaucomes, de la migraine, de la maladie de Parkinson, de la maladie d'Alzheimer, de la chorée de Huntington, du syndrome de Raynaud, des tremblements, du désordre compulso-obsessionnel, de la démence sénile, des désordres thymiques, du syndrome de Tourette, de la dyskinésie tardive, des désordres bipolaires, des cancers, des désordres du mouvement induit par les médicaments, des dystonies, des chocs endotoxémiques, des chocs hémorragiques, de l'hypotension, de l'insomnie, des maladies immunologiques, de la sclérose en plaques, des vomissements, de l'asthme, des troubles de l'appétit (boulimie, anorexie), de l'obésité, des troubles de la mémoire, dans le sevrage aux traitements chroniques et abus d'alcool ou de médicaments (opioïdes, barbituriques, cannabis, cocaïne, amphétamine, phencyclidine, hallucinogènes, benzodiazépines par exemple), comme analgésiques ou potentialisateurs de l'activité analgésique des médicaments narcotiques et non narcotiques. Ils peuvent également être utilisés pour le traitement ou la prévention du transit intestinal.

L'affinité des composés de formule (I) pour les récepteurs du cannabis a été déterminée selon la méthode décrite par KUSTER J.E., STEVENSON J.I., WARD S.J., D'AMBRA T.E., HAYCOCK D.A. dans J. Pharmacol. Exp. Ther., 264 1352-1363 (1993).

- 5 Dans ce test, la Cl_{50} des composés de formule (I) est inférieure ou égale à 1000 nM.

Leur activité antagoniste a été montrée au moyen du modèle d'hypothermie induite par un agoniste des récepteurs du cannabis (CP-55940) chez la souris, selon la méthode décrite par Pertwee R.G. dans
10 Marijuana, Harvey D.J. eds, 84 Oxford IRL Press, 263-277 (1985).

Dans ce test, la DE_{50} des composés de formule (I) est inférieure ou égale à 50 mg/kg.

Les composés de formule (I) présentent une toxicité faible. Leur DL_{50} est supérieure à 40 mg/kg par voie sous cutanée chez la souris.

- 15 Les exemples suivants illustrent l'invention.

Exemple 1

Le N-[1-[bis-(4-chlorophényl)méthyl]-azétidin-3-yl]-N-(6-chloropyrid-2-yl)-méthylsulfonamide peut être préparé en opérant de la façon suivante : A une solution de 1,54 g de 1-[bis-(4-chlorophényl)méthyl]azétidin-3-ol et de 1,22 g
20 de N-(6-chloropyrid-2-yl)méthylsulfonamide, dans 120 cm³ de tétrahydrofurane anhydre, on ajoute sous argon 2,4 cm³ d'azodicarboxylate de diéthyle et 1,44 g de triphénylphosphine. Après 20 heures d'agitation à 20°C, le mélange réactionnel est concentré à sec sous pression réduite (2,7 kPa). Le résidu est chromatographié sur une colonne de gel de silice
25 (granulométrie 0,040-0,063 mm, hauteur 30 cm, diamètre 4,5 cm), en éluant sous une pression de 0,5 bar d'argon avec un mélange de cyclohexane et

d'acéate d'éthyle (80/20 en volumes) et en recueillant des fractions de 60 cm³. Les fractions 6 à 9 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 1,75 g de N-[1-[bis-(4-chlorophényl)méthyl]-azétidin-3-yl]-N-(6-chloropyrid-2-yl)-méthylsulfonamide, sous la forme d'une
5 meringue blanche [Spectre de R.M.N ¹H (300 MHz, CDCl₃, δ en ppm) : de 2,85 à 3,00 (mt : 2H); 2,91 (s : 3H); 3,57 (t dédoublé, J = 7 et 2 Hz : 2H); 4,25 (s : 1H); 4,64 (mt : 1H); de 7,20 à 7,35 (mt : 9H); 7,36 (dd, J = 8 et 1 Hz : 1H); 7,71 (t, J = 8 Hz : 1H)].

Le 1-[bis(4-chlorophényl)méthyl]azétidin-3-ol peut être préparé selon le
10 mode opératoire décrit par KATRITZKY A.R. et coll., J. Heterocycl. Chem., 271 (1994), en partant de 35,5 g de chlorhydrate de [bis(4-chlorophényl)méthyl]amine et 11,0 cm³ d'épichlorhydrine. On isole 9,0 g de 1-[bis(4-chlorophényl)méthyl]azétidin-3-ol.

Le chlorhydrate de [bis(4-chlorophényl)méthyl]amine peut être préparé selon
15 la méthode décrite par GRISAR M. et coll., J. Med. Chem., 885 (1973).

Le N-(6-chloropyrid-2-yl)méthylsulfonamide peut être préparé en opérant de la façon suivante : A une solution refroidie à +5°C de 2-amino-6-chloropyridine dans 12,5 cm³ de pyridine, on coule goutte à goutte en 1 heure 7,8 cm³ de chlorure de méthylsulfonyle. Après retour à température ordinaire
20 et 20 heures d'agitation, le mélange réactionnel noir est additionné de 140 cm³ d'eau et extrait par 200 cm³ de dichlorométhane. La phase organique est décantée, séchée sur sulfate de magnésium, filtrée et concentrée à sec sous pression réduite (2,7 kPa). Le résidu huileux obtenu est chromatographié sur une colonne de gel de silice (granulométrie 0,063-0,200 mm, hauteur 30 cm, diamètre 4 cm), en éluant sous une pression de 0,5 bar d'argon avec un mélange de cyclohexane et d'acéate d'éthyle (70/30 en volumes) et en recueillant des fractions de 60 cm³. Les fractions 5 à 11 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 17g de N-(6-chloropyrid-2-yl)méthylsulfonamide, sous la forme d'une huile jaune.
25

Exemple 2

Le N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(6-éthylpyrid-2-yl)-méthylsulfonamide peut être préparé en opérant comme il est décrit dans l'exemple 1, à partir de 0,61 g de 1-[bis-(4-chlorophényl)méthyl]azétidin-3-ol,
5 de 0,40 g de N-(6-éthylpyrid-2-yl)méthylsulfonamide, de 50 cm³ de tétrahydrofurane anhydre, de 0,96 cm³ d'azodicarboxylate de diéthyle et de 0,577 g de triphénylphosphine. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,040-0,063 mm, hauteur 20 cm, diamètre 2 cm), en éluant sous une pression de 0,5 bar d'argon avec un
10 mélange de cyclohexane et d'acétate d'éthyle (70/30 en volumes) et en recueillant des fractions de 30 cm³. Les fractions 6 à 9 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,3 g d'une huile que l'on triture dans un mélange de 5 cm³ d'oxyde de diéthyle et 5 cm³ d'oxyde de diisopropyle. La suspension est filtrée, le solide essoré puis séché
15 sous pression réduite (2,7 kPa). On obtient 0,11 g de N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(6-éthylpyrid-2-yl)-méthylsulfonamide, sous la forme d'un solide blanc [Spectre de R.M.N. ¹H (300 MHz, CDCl₃, δ en ppm) : 1,26 (t, J = 7,5 Hz : 3H); 2,76 (q, J = 7,5 Hz : 2H); de 2,85 à 2,95 (mt : 2H); 2,90 (s : 3H); 3,53 (t dédoublé, J = 7 et 2 Hz : 2H); 4,22 (s : 1H); 4,69
20 (mt : 1H); 7,07 (d, J = 7,5 Hz : 1H); de 7,15 à 7,30 (mt : 9H); 7,64 (t, J = 7,5 Hz : 1H)].

Le N-(6-éthylpyrid-2-yl)méthylsulfonamide peut être préparé en opérant de la façon suivante : A une solution refroidie à +5°C de 2,50 g de 2-amino-6-éthylpyridine dans 2,50 cm³ de pyridine on coule goutte à goutte 1,56 cm³ de chlorure de méthylsulfonyle. Après 20 heures d'agitation à 20°C, le mélange réactionnel est additionné de 8 cm³ d'eau et filtré. Le filtrat est concentré à sec à 50°C sous pression réduite (2,7 kPa). Le résidu est chromatographié sur une colonne de gel de silice (granulométrie 0,040-0,063 mm, hauteur 30 cm, diamètre 4 cm), en éluant sous une pression de 0,5 bar d'argon avec

1,5 litres de dichlorométhane puis avec un mélange de dichlorométhane et de méthanol (98/2 en volumes) et en recueillant des fractions de 60 cm³. Les fractions 8 à 12 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 2,8 g de N-(6-éthylpyrid-2-yl)méthylsulfonamide, sous la
5 forme d'une huile jaune.

Exemple 3

Le N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-quinol-6-yl-méthylsulfonamide peut être préparé en opérant de la façon suivante : A une solution de 0,50 g de N-quinol-6-yl-méthylsulfonamide dans 50 cm³ de
10 tétrahydrofurane anhydre, on ajoute sous argon 0,70 g de 1-[bis-(4-chlorophényl)méthyl]azétidin-3-ol, 0,597 g de triphénylphosphine puis coule 0,40 cm³ d'azodicarboxylate de diéthyle. Après 20 heures d'agitation à 20°C, le mélange réactionnel est chauffé à la température du reflux pendant 4 heures puis additionné de 2,98 g de triphénylphosphine et de 2,0 cm³
15 d'azodicarboxylate de diéthyle. Après 48 heures d'agitation à 20°C, le mélange est concentré à sec sous pression réduite (2,7 kPa). Le résidu est repris par 30 cm³ d'oxyde de diéthyle, la suspension obtenue est filtrée, le filtrat concentré à sec. Une fraction du résidu obtenu (0,90 g) est purifiée sur une colonne Bond Elut de résine SCX acide sulfonique échangeuse de cations, (granulométrie 0,054 mm, hauteur 4 cm, diamètre 3 cm), en éluant d'abord avec du méthanol puis avec une solution d'ammoniac 2M dans le méthanol pour éluer le produit attendu, en recueillant des fractions de 5 cm³.
20 Les fractions 16 à 19 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,33 g d'une huile que l'on agite dans 10 cm³ d'oxyde de diisopropyle. La suspension résultante est filtrée. Le filtrat, filtré à nouveau, donne après 15 minutes, un solide que l'on sèche à 50°C sous pression réduite (2,7 kPa). On obtient 83 mg de N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-quinol-6-yl-méthylsulfonamide, sous la
25 forme d'un solide blanc [Spectre de R.M.N. ¹H (300 MHz, CDCl₃, δ en ppm) :

2,87 (s : 3H); 2,89 (mt : 2H); 3,55 (t dédoublé, J = 7 et 1 Hz : 2H); 4,18 (s : 1H); 4,69 (mt : 1H); de 7,15 à 7,30 (mt : 8H); 7,47 (dd, J = 8,5 et 4 Hz : 1H); 7,58 (dd, J = 9 et 2,5 Hz : 1H); 7,73 (d, J = 2,5 Hz : 1H); 8,10 à 8,20 (mt : 2H); 8,97 (dd, J = 4 et 1,5 Hz : 1H)]

- 5 Le N-quinol-6-yl-méthylsulfonamide peut être préparé en opérant de la façon suivante : A une solution refroidie à +3°C de 1,98 g de 6-aminoquinoléine dans 1,75 cm³ de pyridine on coule goutte à goutte en 1 heure 1,1 cm³ de chlorure de méthylsulfonyle. Après 20 heures d'agitation à 20°C, le mélange réactionnel est additionné de 10 cm³ d'eau et de 50 cm³ de dichlorométhane,
- 10 puis filtré. Le filtrat est décanté, la phase organique est séchée sur sulfate de magnésium, puis filtrée et concentrée à sec sous pression réduite (2,7 kPa). On obtient 1,15 g de N-quinol-6-yl-méthylsulfonamide, sous la forme d'un solide jaune crème.

Exemple 4

- 15 Le N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-quinol-5-yl-méthylsulfonamide peut être préparé en opérant de la façon suivante : A une solution de 0,50 g de N-(quinol-5-yl)méthylsulfonamide dans 70 cm³ de tétrahydrofurane anhydre, on ajoute sous argon 0,70 g de 1-[bis-(4-chlorophényl)méthyl]azétidin-3-ol, 0,597 g de triphénylphosphine puis coule 0,40 cm³ d'azodicarboxylate de diéthyle et 0,45 g de 1,2-bis-(diphénylphosphine)éthane. Après 20 heures d'agitation à 20°C, le mélange réactionnel est concentré à sec sous pression réduite (2,7 kPa). Le résidu est repris par 70 cm³ d'acétate d'éthyle, la solution résultante est lavée par 30 cm³ de saumure, séchée sur sulfate de magnésium, filtrée puis concentrée à sec à 50°C sous pression réduite (2,7 kPa). L'huile violette obtenue est purifiée par chromatographie sur une colonne de gel de silice (granulométrie 0,063-0,200 mm, hauteur 35 cm, diamètre 3,9 cm), en éluant sous une pression de 0,5 bar d'argon avec un mélange de cyclohexane et d'acétate d'éthyle (40/60 puis 30/70 et 20/80 en volumes) et en recueillant des

fractions de 50 cm³. Les fractions 6 à 12 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le résidu est repris par 15 cm³ de méthanol, la suspension blanche résultante est filtrée, le solide essoré, puis séché à 50°C sous pression réduite (2,7 kPa). On obtient 0,35 g de N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-quinol-5-yl-méthylsulfonamide, sous la forme d'un solide blanc [Spectre de R.M.N ¹H (300 MHz, CDCl₃, δ en ppm) : 2,60 (t, J = 7 Hz : 1H); 2,84 (t, J = 7 Hz : 1H); 2,99 (s : 3H); 3,36 (t dédoublé, J = 7 et 2,5 Hz : 1H); 3,56 (t dédoublé, J = 7 et 2,5 Hz : 1H); 4,01 (s : 1H); 4,85 (mt : 1H); de 7,10 à 7,25 (mt : 8H); 7,40 (dd, J = 7,5 et 1 Hz : 1H); 7,54 (dd, J = 8,5 et 4 Hz : 1H); 7,74 (dd, J = 8 et 7,5 Hz : 1H); 8,20 (d large, J = 8 Hz : 1H); 8,54 (d large, J = 9 Hz : 1H); 8,99 (dd, J = 4 et 1,5 Hz : 1H)].

Le N-(quinol-5-yl)méthylsulfonamide peut être préparé en opérant comme il est décrit dans l'exemple 3, à partir de 2,0 g de 5-aminoquinoléine, 3,0 cm³ de pyridine, 1,1 cm³ de chlorure de méthylsulfonyle. On obtient 2,47 g de N-(quinol-5-yl)méthylsulfonamide, sous la forme d'un solide jaune brun.

Exemple 5

Le N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-isoquinol-5-yl-méthylsulfonamide peut être préparé en opérant comme il est décrit dans l'exemple 4, à partir de 0,497 g de N-(isoquinol-5-yl)méthylsulfonamide, 20 70 cm³ de tétrahydrofurane anhydre, 0,712 g de 1-[bis-(4-chlorophényl)méthyl]azétidin-3-ol, 0,597 g de triphénylphosphine, de 0,40 cm³ d'azodicarboxylate de diéthyle et de 0,45 g de 1,2-bis-(diphénylphosphine)éthane. L'huile brune brute obtenue est purifiée par chromatographie sur une colonne de gel de silice (granulométrie 0,063-0,200 mm, hauteur 38 cm, diamètre 3 cm), en éluant avec un mélange de cyclohexane et d'acétate d'éthyle (30/70 en volumes) et en recueillant des fractions de 40 cm³. Les fractions 8 à 23 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le résidu est agité dans 15 cm³ d'oxyde de diéthyle, la suspension est filtrée et l'insoluble est chromatographié sur une

colonne de résine SCX (hauteur 4 cm, diamètre 3 cm), en lavant d'abord avec un mélange de méthanol et de dichlorométhane (50/50 en volumes) puis en éluant avec une solution d'ammoniac 2M dans le méthanol et en recueillant des fractions de 20 cm³. Les fractions 1 à 6 sont réunies et l'insoluble blanc qui apparaît est filtré, le solide est essoré, puis séché à 50°C sous pression réduite (2,7 kPa). On obtient 0,169 g de N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-isoquinol-5-yl-méthylsulfonamide, sous la forme d'un solide blanc [Spectre de R.M.N. ¹H (300 MHz, CDCl₃, δ en ppm) : 2,64 (t, J = 7 Hz : 1H); 2,81 (t, J = 7 Hz : 1H); 2,98 (s : 3H); 3,36 (t dédoublé, J = 7 et 2 Hz : 1H); 3,55 (t dédoublé, J = 7 et 2 Hz : 1H); 4,02 (s : 1H); 4,86 (mt : 1H); de 7,10 à 7,25 (mt : 8H); 7,60 (dd, J = 8 et 1 Hz : 1H); 7,66 (t, J = 8 Hz : 1H); 7,93 (d large, J = 6 Hz : 1H); 8,06 (d large, J = 8 Hz : 1H); 8,66 (d, J = 6 Hz : 1H); 9,32 (s large : 1H)].

Le N-(isoquinol-5-yl)méthylsulfonamide peut être préparé en opérant comme il est décrit dans l'exemple 4, à partir de 2,0 g de 5-aminoisoquinoléine, 3,0 cm³ de pyridine et de 1,1 cm³ de chlorure de méthylsulfonyle. On obtient 2,3 g de N-(isoquinol-5-yl)méthylsulfonamide, sous la forme d'un solide beige.

Exemple 6

Le N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-pyrid-3-yl-méthylsulfonamide peut être préparé en opérant de la façon suivante : A une solution de 0,144 g de N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(1-oxyde-pyrid-3-yl)-méthylsulfonamide dans 5 cm³ de chloroforme, on coule 0,042 cm³ de trichlorure de phosphore, puis chauffe le mélange à la température du reflux. Après 1 heure et 30 minutes d'agitation, le mélange réactionnel est laissé revenir à température ordinaire, puis est additionné de 5 cm³ d'acide chlorhydrique 0,1N, puis agité et décanté. La phase organique est diluée avec 20 cm³ de chloroforme, séchée sur sulfate de magnésium, filtrée, puis concentrée à sec sous pression réduite (2,7 kPa). Le résidu est

chromatographié sur une colonne de gel de silice (granulométrie 0,063-0,200 mm, hauteur 9 cm, diamètre 1,8 cm), en éluant sous une pression de 0,1 bar d'argon avec un mélange de dichlorométhane et de méthanol (95/5 en volumes) et en recueillant des fractions de 15 cm³. Les fractions 2 à 4 sont
réunies et concentrées à sec sous pression réduite (2,7 kPa). Le résidu est
agité avec 15 cm³ d'oxyde de diéthyle, la suspension est filtrée, le solide
essoré puis séché sous pression réduite (2,7 kPa). On obtient 35 mg de N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-pyrid-3-yl-méthylsulfonamide,
sous la forme d'un solide crème [Spectre de R.M.N. ¹H (300 MHz, CDCl₃, δ
en ppm) : de 2,80 à 2,95 (mt : 2H); 2,87 (s : 3H); 3,51 (t dédoublé, J = 7 et
1,5 Hz : 2H); 4,18 (s : 1H); 4,65 (mt : 1H); de 7,15 à 7,35 (mt : 8H); 7,37 (dd
large, J = 8 et 5 Hz : 1H); 7,64 (d démultiplié, J = 8 Hz : 1H); 8,52 (d large, J
= 2 Hz : 1H); 8,61 (d large, J = 5 Hz : 1H)].

Exemple 7

Le N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(1-oxyde-pyrid-3-yl)-méthylsulfonamide peut être préparé en opérant de la façon suivante : A une solution de 0,265 g de 1-[bis-(4-chlorophényl)méthyl]azétidin-3-ol et de 0,162 g de N-(1-oxyde-pyrid-3-yl)méthylsulfonamide, dans 25 cm³ de tétrahydrofurane anhydre, on ajoute sous argon 0,16 cm³ d'azodicarboxylate de diéthyle et 0,226 g de triphénylphosphine. Après 20 heures d'agitation à 20°C, puis 24 heures à la température du reflux, le mélange réactionnel est concentré à sec sous pression réduite (2,7 kPa). Le résidu est chromatographié sur une colonne de gel de silice (granulométrie 0,063-0,2 mm, hauteur 20 cm, diamètre 1,5 cm), en éluant sous une pression de 0,5 bar d'argon avec un mélange de dichlorométhane et de méthanol (98/2 en volumes) et en recueillant des fractions de 40 cm³. Les fractions 26 à 64 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). le résidu est agité dans 10 cm³ d'oxyde de diéthyle, la suspension est filtrée, l'insoluble est essoré, puis séché sous pression réduite (2,7 kPa). On obtient

0,10 g de N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(1-oxyde-pyridin-3-yl)-méthylsulfonamide, sous la forme d'un solide blanc [Spectre de R.M.N.
¹H (400 MHz, (CD₃)₂SO d6, δ en ppm) : 2,78 (t, J = 7 Hz : 2H); 3,06 (s : 3H);
3,37 (t, J = 7 Hz : 2H); 4,45 (s : 1H); 4,71 (mt : 1H); de 7,30 à 7,50 (mt : 10H);
5 8,21 (d large, J = 6,5 Hz : 1H); 8,27 (s large : 1H)].

Le N-(1-oxyde-pyrid-3-yl)méthylsulfonamide peut être préparé en opérant de la façon suivante : A une solution de 1,81 g de N-pyrid-3-yl-méthylsulfonamide dans 71 cm³ de N,N-diméthylformamide et 3 cm³ de méthanol, on ajoute par fractions 7,1 g d'acide 3-chloroperoxybenzoïque à 10 50-55% puis 0,56 cm³ d'acide fluorhydrique à 40%. Après 1 heure d'agitation à 20°C, le mélange réactionnel est versé dans 500 g de glace, agité, puis filtré. Le filtrat est concentré à sec à 60°C sous pression déduite (2,7 kPa). Le résidu est repris par 50 cm³ d'un mélange de dichlorométhane et de méthanol (98/2 en volumes) puis filtré. Le filtrat est chromatographié sur une colonne 15 de gel de silice (granulométrie 0,063-0,2 mm, hauteur 27 cm, diamètre 4 cm), en éluant sous une pression de 0,5 bar d'argon avec un mélange de dichlorométhane et de méthanol (98/2, 97/3 puis 50/50 en volumes) et en recueillant des fractions de 60 cm³. La fraction 62 est concentrée à sec sous pression réduite (2,7 kPa). On obtient 0,96 g de N-(1-oxyde-pyrid-3-20 yl)méthylsulfonamide, sous la forme d'un solide jaunâtre.

Le N-pyrid-3-yl-méthylsulfonamide peut être préparé en opérant comme il est décrit dans l'exemple 1, à partir de 2 g de 3-aminopyridine, 5 cm³ de pyridine et de 1,8 cm³ de chlorure de méthylsulfonyle. Le produit brut obtenu est agité dans 40 cm³ d'oxyde de diéthyle, la suspension est filtrée puis le solide est 25 essoré et séché sous pression réduite (2,7 kPa). On obtient 2,47 g de N-pyrid-3-yl-méthylsulfonamide, sous la forme d'un solide rosâtre.

Exemple 8

Le N-{1-[bis-(4-chlorophényl)-méthyl]azétidin-3-yl}-N-cyclohexyl-méthylsulfonamide peut être préparé en opérant de la façon suivante : A une solution de 1,8 g de N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-N-cyclohexylamine, de 0,7 cm³ de triéthylamine et de 20 mg de 4-diméthylaminopyridine dans 25 cm³ de dichlorométhane, on ajoute sous agitation 0,4 cm³ de chlorure de méthylsulfonyle. Après 48 heures d'agitation à 20°C, on ajoute au mélange réactionnel 20 cm³ de dichlorométhane, 20 cm³ d'eau et on agite et décante. La phase organique est séchée sur sulfate de magnésium et concentrée à 50°C sous pression réduite (2,7 kPa). Le résidu huileux brun est chromatographié sur une colonne de gel de silice (granulométrie 0,063-0,2 mm, hauteur 20 cm, diamètre 2,0 cm), en éluant sous une pression de 0,1 bar d'argon avec un mélange de dichlorométhane et de méthanol (96/4 en volumes) et en recueillant des fractions de 10 cm³. Les fractions 2 à 4 et 5 à 10 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le résidu est chromatographié sur une colonne de gel de silice (granulométrie 0,063-0,2 mm, hauteur 30 cm, diamètre 1,5 cm), en éluant sous une pression de 0,1 bar d'argon avec un mélange de cyclohexane et d'acétate d'éthyle (70/30 en volumes) et en recueillant des fractions de 5 cm³. Les fractions 7 à 10 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,10 g de N-{1-[bis-(4-chlorophényl)-méthyl]azétidin-3-yl}-N-cyclohexyl-méthylsulfonamide, sous la forme d'une meringue crème [Spectre de R.M.N. ¹H (300 MHz, CDCl₃, δ en ppm) : de 0,80 à 1,90 (mt : 10H); 2,82 (s : 3H); 3,36 (t large, J = 7,5 Hz : 2H); 3,46 (t large, J = 7,5 Hz : 2H); 3,59 (mt : 1H); 4,08 (mt : 1H); 4,42 (s : 1H); de 7,20 à 7,40 (mt : 8H)].

La N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-N-cyclohexylamine peut être préparée en opérant de la façon suivante : A une solution de 1,5 g de 1-[bis-(4-chlorophényl)méthyl]azétidin-3-one dans 25 cm³ de dichloro-1,2-éthane, on ajoute 0,5 g de cyclohexylamine, 1 g de triacétoxyborohydrure de sodium et 0,3 cm³ d'acide acétique à 100%. Après 20 heures d'agitation à

20°C, on ajoute au mélange réactionnel en agitant 20 cm³ de dichlorométhane et 10 cm³ d'eau puis neutralise jusqu'à pH 7 à 8 avec une solution aqueuse d'hydroxyde de sodium 1N. Le mélange est décanté, la phase organique est séchée sur sulfate de magnésium et concentrée à sec à 5 50°C sous pression réduite (2,7 kPa). On obtient 1,8 g de N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-cyclohexylamine, sous la forme d'une pâte crème qui sera utilisée telle quelle à l'étape suivante.

La 1-[bis(4-chlorophényl)méthyl]azétidin-3-one peut être préparée selon le mode opératoire suivant : à une solution de 5,0 cm³ de chlorure d'oxalyle dans 73 cm³ de dichlorométhane refroidie à -78°C, on additionne une solution de 8,1 cm³ de diméthylsulfoxyde dans 17,6 cm³ de dichlorométhane. Après 0,5 heure à -78°C, on coule une solution de 16,0 g de 1-[bis(4-chlorophényl)méthyl]azétidin-3-ol dissous dans 50 cm³ de dichlorométhane. Après 5 heures à -78°C, 26,6 cm³ de triéthylamine sont ajoutés goutte à goutte et on laisse le mélange réactionnel revenir à température ambiante. Après 16 heures, le mélange réactionnel est lavé par 4 fois 200 cm³ d'eau puis par 200 cm³ d'une solution saturée de chlorure de sodium, séché sur sulfate de magnésium, filtré et concentré à sec sous pression réduite (2,7 kPa). Le résidu obtenu est chromatographié sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 9,2 cm, hauteur 21 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (40/60 en volumes) comme éluants et en recueillant des fractions de 200 cm³. Les fractions 15 à 25 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 8,9 g de 1-[bis(4-chlorophén-10 ny)-méthyl]azétidin-3-one sous forme de cristaux jaunes pâle fondants à 111°C.

Exemple 9

Le N-[1-[bis-(4-chlorophényl)-méthyl]azétidin-3-yl]-N-cyclopropyl-méthylsulfonamide peut être préparé en opérant comme il est décrit dans

l'exemple 8, à partir de 1,6 g de N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-cyclopropylamine, de 25 cm³ de dichlorométhane, de 0,7 cm³ de triéthylamine, de 20 mg de 4-diméthylaminopyridine et de 0,4 cm³ de chlorure de méthylsulfonyle, en agitant le mélange pendant 20 heures à 20°C. Le
5 produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,063-0,2 mm, hauteur 30 cm, diamètre 2,0 cm), en éluant sous une pression de 0,1 bar d'argon avec un mélange de dichlorométhane et de méthanol (97/3 en volumes) et en recueillant des fractions de 10 cm³. Les fractions 6 à 9 et 10 à 20 sont réunies et concentrées à sec sous
10 pression réduite (2,7 kPa). Le résidu obtenu est chromatographié sur une colonne de gel de silice (granulométrie 0,063-0,2 mm, hauteur 30 cm, diamètre 2,0 cm), en éluant sous une pression de 0,1 bar d'argon avec un mélange de cyclohexane et d'acétate d'éthyle (70/30 en volumes) et en recueillant des fractions de 10 cm³. Les fractions 6 à 11 sont réunies et
15 concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,14 g de N-[1-[bis-(4-chlorophényl)-méthyl]azétidin-3-yl]-N-cyclopropyl-méthylsulfonamide, sous la forme d'une meringue crème [Spectre de R.M.N
¹H (300 MHz, CDCl₃, δ en ppm) : 0,79 (mt : 2H); 0,95 (mt : 2H); 2,11 (mt : 1H);
2,84 (s : 3H); 3,17 (t large, J = 7 Hz : 2H); 3,50 (mt : 2H); 4,18 (mt : 1H); 4,29
20 (s : 1H); de 7,20 à 7,40 (mt : 8H)].

La N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-cyclopropylamine peut être préparée en opérant comme il est décrit dans l'exemple 8, à partir de 1,5 g de 1-[bis-(4-chlorophényl)méthyl]azétidin-3-one, de 25 cm³ de dichloro-1,2-éthane, de 0,37 cm³ de cyclopropylamine, de 1 g de triacétoxyborohydrure de sodium et de 0,3 cm³ d'acide acétique à 100%. On obtient, 1,6 g de N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-cyclopropylamine, sous la forme d'une huile brune qui sera utilisée telle quelle à l'étape suivante.

Exemple 10

Le N-(1R,2S,4S)-bicyclo[2,2,1]hept-2-yl-N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-méthylsulfonamide, peut être préparé en opérant comme il est décrit dans l'exemple 8, à partir de 2,0 g de N-(1R,2S,4S)-bicyclo[2,2,1]hept-2-yl-N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]amine, de 25 cm³ de dichlorométhane, de 0,7 cm³ de triéthylamine, de 20 mg de 4-diméthylaminopyridine et de 0,4 cm³ de chlorure de méthylsulfonyle, en agitant pendant 20 heures. Le résidu huileux brun est chromatographié sur une colonne de gel de silice (granulométrie 0,063-0,2 mm, hauteur 30 cm, diamètre 2,0 cm), en éluant sous une pression de 0,1 bar d'argon avec un mélange de dichlorométhane et de méthanol (97/3 en volumes) et en recueillant des fractions de 10 cm³. Les fractions 6 à 18 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le résidu est chromatographié sur une colonne de gel de silice (granulométrie 0,063-0,2 mm, hauteur 30 cm, diamètre 2,0 cm), en éluant sous une pression de 0,1 bar d'argon avec un mélange de cyclohexane et d'acétate d'éthyle (70/30 en volumes) et en recueillant des fractions de 10 cm³. Les fractions 8 à 14 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,70 g de N-(1R,2S,4S)-bicyclo[2,2,1]hept-2-yl-N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-méthylsulfonamide, sous la forme d'une meringue crème [Spectre de R.M.N. ¹H (300 MHz, CDCl₃, δ en ppm) : de 1,20 à 1,75 (mt : 7H); 1,84 (t large, J = 12,5 Hz : 1H); 2,29 (mt : 1H); 2,35 (mt : 1H); 2,82 (s : 3H); de 3,35 à 3,55 (mt : 3H); 3,66 (mt : 1H); de 3,90 à 4,05 (mt : 2H); 4,51 (s : 1H); de 7,20 à 7,45 (mt : 8H)].

La N-(1R,2S,4S)-bicyclo[2,2,1]hept-2-yl-N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]amine peut être préparée en opérant comme il est décrit dans l'exemple 8, à partir de 1,5 g de 1-[bis-(4-chlorophényl)méthyl]azétidin-3-one, de 25 cm³ de dichloro-1,2-éthane, de 1,5 g de (1R,2S,4S)-bicyclo[2,2,1]heptyl-2-amine, de 1 g de triacétoxyborohydrure de sodium et de 0,3 cm³ d'acide acétique à 100%. On obtient 2 g de N-(1R,2S,4S)-bicyclo[2,2,1]hept-2-yl-N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]amine,

sous la forme d'une huile brune qui sera utilisée telle quelle à l'étape suivante.

Exemple 11

Le N-(1R,2R,4S)-bicyclo[2,2,1]hept-2-yl-N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-méthylsulfonamide, peut être préparé en opérant comme il est décrit dans l'exemple 8, à partir de 1,8 g de N-(1R,2R,4S)-bicyclo[2,2,1]hept-2-yl-N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}amine, de 25 cm³ de dichlorométhane, de 0,7 cm³ de triéthylamine, de 20 mg de 4-diméthylaminopyridine et de 0,4 cm³ de chlorure de méthylsulfonyle, en agitant pendant 20 heures. Le résidu huileux brun est chromatographié sur une colonne de gel de silice (granulométrie 0,063-0,2 mm, hauteur 30 cm, diamètre 2,0 cm), en éluant sous une pression de 0,1 bar d'argon avec un mélange de cyclohexane et d'acétate d'éthyle (60/40 en volumes) et en recueillant des fractions de 10 cm³. Les fractions 3 à 12 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le résidu est chromatographié sur une colonne de gel de silice (granulométrie 0,063-0,2 mm, hauteur 30 cm, diamètre 2,0 cm), en éluant sous une pression de 0,1 bar d'argon avec un mélange de cyclohexane et d'acétate d'éthyle (70/30 en volumes) et en recueillant des fractions de 10 cm³. Les fractions 4 à 10 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,10 g de N-(1R,2R,4S)-bicyclo[2,2,1]hept-2-yl-N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-méthylsulfonamide, sous la forme d'une meringue jaune [Spectre de R.M.N. ¹H (300 MHz, CDCl₃, δ en ppm) : de 1,00 à 1,85 (mt : 8H); 2,14 (mt : 1H); 2,33 (mt : 1H); 2,82 (s : 3H); de 3,40 à 3,60 (mt : 4H); 3,71 (dd large, J = 8 et 6 Hz : 1H); 4,10 (mt : 1H); 4,47 (s : 1H); de 7,20 à 7,40 (mt : 8H)].

La N-(1R,2R,4S)-bicyclo[2,2,1]hept-2-yl-N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}amine peut être préparée en opérant comme il est décrit dans l'exemple 8, à partir de 1,5 g de 1-[bis-(4-

chlorophényl)méthyl]azétidin-3-one, de 25 cm³ de dichloro-1,2-éthane, de 0,6 g de (1R,2R,4S)-bicyclo[2,2,1]heptyl-2-amine, de 1,0 g de triacétoxyborohydrure de sodium et de 0,3 cm³ d'acide acétique à 100%. On obtient 1,8 g de N-(1R,2R,4S)-bicyclo[2,2,1]hept-2-yl-N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]amine, sous la forme d'une pâte crème qui sera utilisée telle quelle à l'étape suivante.

Exemple 12

Le N-[(1-benzhydryl)azétidin-3-yl]-N-phényl-méthylsulfonamide peut être préparé en opérant de la façon suivante : A une solution de 2 g de 1-benzhydryl 3-anilino azétidine, dans 40 cm³ de dichlorométhane, on coule 0,7 cm³ de chlorure de méthylsulfonyle puis ajoute 1,34 cm³ de triéthylamine. Après 4 heures et 15 minutes d'agitation à 20°C, le mélange réactionnel est lavé par 2 fois 20 cm³ d'eau, la phase organique est séchée sur sulfate de magnésium, puis concentrée à sec à 50°C sous pression réduite (2,7 kPa). L'huile marron obtenue est chromatographiée sur une colonne de gel de silice (granulométrie 0,063-0,2 mm, hauteur 26 cm, diamètre 3,6 cm), en éluant sous une pression de 0,5 bar d'argon avec un mélange de cyclohexane et d'acétate d'éthyle (70/30 en volumes) et en recueillant des fractions de 50 cm³. Les fractions 10 à 15 sont réunies et concentrées à sec sous pression réduite (2,7 kPa), le résidu est trituré dans de l'oxyde de diéthyle, la suspension est filtrée, le solide essoré, puis séché sous pression réduite (2,7 kPa). On obtient 35 mg de N-[(1-benzhydryl)azétidin-3-yl]-N-phényl-méthylsulfonamide, sous la forme d'un solide blanc [Spectre de R.M.N. ¹H (300 MHz, (CD₃)₂SO d6 avec ajout de quelques gouttes de CD₃COOD d4, δ en ppm) : 2,72 (mt : 2H); 2,92 (s : 3H); 3,36 (mt : 2H); 4,32 (s : 1H); 4,73 (mt : 1H); de 7,10 à 7,45 (mt : 15H)].

La 1-benzhydryl 3-anilino azétidine peut être préparée en opérant comme il est décrit dans l'exemple 8, à partir de 5 g de 1-benzhydryl azétidin-3-one, de 1,92 cm³ d'aniline, de 74 cm³ de dichloro-1,2-éthane, de 6,3 g de

triacétoxyborohydure de sodium et de 1,2 cm³ d'acide acétique à 100%. On obtient 8,81 g de 1-benzhydryl 3-anilino azétidine, sous la forme d'une gomme marron qui sera utilisée telle quelle à l'étape suivante.

Exemple 13

- 5 Le N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(3,5-difluorophényl)-méthylsulfonamide peut être préparé en opérant de la façon suivante : A un mélange de 1,23 g de méthylsulfonate de 1-[bis(4-chlorophényl)méthyl]azétidin-3-yle et de 0,66 g de N-(3,5-difluorophényl)méthylsulfonamide, dans 25 cm³ de dioxane, on ajoute 1,0 g de carbonate de césum. Après 5 heures d'agitation à la température du reflux puis 20 heures à 20°C, le mélange réactionnel est additionné de 50 cm³ d'oxyde de diéthyle et de 30 cm³ de saumure, puis est agité et décanté. La phase organique est séchée sur sulfate de magnésium, filtrée puis concentrée à sec à 50°C sous pression réduite (2,7 kPa). L'huile orange obtenue est chromatographiée sur une colonne de gel de silice (granulométrie 0,040-0,063 mm, hauteur 25 cm, diamètre 2,0 cm), en éluant sous une pression de 0,5 bar d'argon avec un mélange de cyclohexane et d'acétate d'éthyle (65/35 en volumes) et en recueillant des fractions de 10 cm³. Les fractions 6 à 10 sont réunies et concentrées à sec sous pression réduite (2,7 Kpa). Le résidu est chromatographié sur une colonne de gel de silice (granulométrie 0,040-0,063 mm, hauteur 15 cm, diamètre 1,0 cm), en éluant sous une pression de 0,5 bar d'argon avec un mélange de cyclohexane et d'acétate d'éthyle (65/35 en volumes) et en recueillant des fractions de 5 cm³. La fraction 7 est concentrée à sec sous pression réduite (2,7 kPa). On obtient 0,11 g de N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(3,5-difluorophényl)-méthylsulfonamide, sous la forme d'une poudre blanche [Spectre de R.M.N ¹H (300 MHz, CDCl₃, δ en ppm) : 2,82 (s : 3H); 2,85 (mt : 2H); 3,52 (t dédoublé, J = 7 et 2 Hz : 2H); 4,22 (s : 1H); 4,47 (mt : 1H); de 6,75 à 6,90 (mt : 3H); de 7,20 à 7,35 (mt : 8H)].

Méthode 2

A une solution de 1,41 g de 1-[bis-(4-chlorophényl)méthyl]azétidin-3-ol et de 0,95 g de N-(3,5-difluorophényl)méthylsulfonamide dans 100 cm³ de tétrahydrofurane anhydre, on ajoute sous argon 0,78 cm³ 5 d'azodicarboxylate de diéthyle et 1,31 g de triphénylphosphine. Après 16 heures d'agitation à 20°C, 300 cm³ d'acétate d'éthyle sont additionnés, le mélange réactionnel est lavé 2 fois avec 100 cm³ d'eau, séché sur sulfate de magnésium et concentré à sec sous pression réduite (2,7 kPa). Le résidu est chromatographié sur une colonne de gel de silice (granulométrie 0,20-0,063 10 mm, hauteur 50 cm, diamètre 4 cm), en éluant sous une pression de 0,6 bar d'argon avec un mélange de cyclohexane et d'acétate d'éthyle (75/25 en volumes) et en recueillant des fractions de 125 cm³. Les fractions 6 à 12 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 1,8 g d'un solide qui est dissous à chaud dans un mélange acétate 15 d'éthyle/diisopropyle éther (15/2 en volume), refroidi, dilué avec 100 cm³ de pentane pour amorcer la cristallisation. Après filtration et séchage, on obtient 1,0g de N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide sous la forme de cristaux blancs fondants à 154°C.

Le N-(3,5-difluorophényl)méthylsulfonamide, peut être préparé en opérant de 20 la façon suivante : A une solution de 3,5 g de 3,5-difluoroaniline dans 75 cm³ de dichlorométhane, on ajoute lentement 2,0 cm³ de chlorure de méthylsulfonyle, 3,8 cm³ de triéthylamine et 20 mg de 4-diméthylaminopyridine. Après 20 heures d'agitation à 20°C, le mélange réactionnel, additionné de 20 cm³ de dichlorométhane et de 20 cm³ d'eau, est 25 agité puis décanté. La phase organique est séchée sur sulfate de magnésium, filtrée, puis concentrée à sec sous pression réduite (2,7 kPa). Le résidu est chromatographié sur une colonne de gel de silice (granulométrie 0,063-0,200 mm, hauteur 20 cm, diamètre 2,0 cm), en éluant sous une pression de 0,1 bar d'argon avec du dichlorométhane et en recueillant des

fractions de 25 cm³. Les fractions 14 à 20 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,66 g de N-(3,5-difluorophényl)méthylsulfonamide, sous la forme d'une poudre blanche.

- Le méthylsulfonate de 1-[bis(4-chlorophényl)méthyl]azétidin-3-yle peut être préparé en opérant de la façon suivante : A une solution de 12 g de 1-[bis-(4-chlorophényl)méthyl]azétidin-3-ol dans 200 cm³ de dichlorométhane, on ajoute sous argon en 10 minutes 3,5 cm³ de chlorure de méthylsulfonyle, puis refroidit à +5°C et coule en 10 minutes 3,8 cm³ de pyridine. Après 30 minutes d'agitation à +5°C puis 20 heures à 20°C, le mélange réactionnel est dilué avec 100 cm³ d'eau et 100 cm³ de dichlorométhane. Le mélange, d'abord filtré est décanté. La phase organique est lavée avec de l'eau, puis séchée sur sulfate de magnésium, filtrée et concentrée à sec sous pression réduite (2,7 kPa). L'huile obtenue est chromatographiée sur une colonne de gel de silice (granulométrie 0,063-0,200 mm, hauteur 40 cm, diamètre 3,0 cm), en éluant sous une pression de 0,5 bar d'argon avec un mélange de cyclohexane et d'acétate d'éthyle (70/30 en volumes) et en recueillant des fractions de 100 cm³. Les fractions 4 à 15 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 6,8 g de méthylsulfonate de 1-[bis(4-chlorophényl)méthyl]azétidin-3-yle, sous la forme d'une huile jaune.
- Le 1-[bis(4-chlorophényl)méthyl]azétidin-3-ol peut être préparé selon le mode opératoire décrit par KATRITZKY A.R. et coll., J. Heterocycl. Chem., 271 (1994), en partant de 35,5 g de chlorhydrate de [bis(4-chlorophényl)méthyl]amine et 11,0 cm³ d'épichlorhydrine. On isole 9,0 g de 1-[bis(4-chlorophényl)méthyl]azétidin-3-ol.
- Le chlorhydrate de [bis(4-chlorophényl)méthyl]amine peut être préparé selon la méthode décrite par GRISAR M. et coll., J. Med. Chem., 885 (1973).

Exemple 14

La N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(4,6-diméthylpyrimid-2-yl)-méthylsulfonamide peut être préparée en opérant comme il est décrit dans l'exemple 13 (méthode 2), à partir de 0,20 g de N-(4,6-diméthylpyrimid-2-yl)-méthylsulfonamide et 0,308 g de 1-[bis-(4-chlorophényl)méthyl]azétidin-3-ol.

5 Après chromatographie sur une colonne de gel de silice (granulométrie 0,06-0,04 mm, hauteur 50 cm, diamètre 2 cm), en éluant sous une pression de 0,6 bar d'argon avec du dichlorométhane puis un mélange de dichlorométhane + 1% de méthanol puis un mélange de dichlorométhane + 2% de méthanol et en recueillant des fractions de 200 cm³, les fractions 4 à 7 sont réunies et

10 concentrées à sec sous pression réduite (2,7 kPa). Après cristallisation dans l'éther diisopropylique, filtration et séchage, on obtient 0,20 g de N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(4,6-diméthylpyrimid-2-yl)-

15 méthylsulfonamide sous la forme d'un solide blanc [Spectre de R.M.N. ¹H (300 MHz, CDCl₃, δ en ppm) : 2,39 (s : 6H); 2,89 (t large, J = 7,5 Hz : 2H); 3,51 (s : 3H); 3,77 (mt : 2H); 4,27 (s : 1H); 4,77 (mt : 1H); 6,73 (s : 1H); de 7,20 à 7,35 (mt : 8H)].

La N-(4,6-diméthylpyrimid-2-yl)-méthylsulfonamide peut être préparée en opérant de la façon suivante : à un mélange de 1,23 g de 2-amino-4,6-diméthylpyrimidine, 0,77 cm³ de chlorure de méthylsulfonyle et 50 mg de 4-diméthylaminopyridine dissous dans 50 cm³ de dichlorométhane, on ajoute 1,4 cm³ de triéthylamine à 0°C. Après 16 heures à température ambiante, le milieu réactionnel est lavé par 2 fois 100 cm³ d'eau, séché sur sulfate de magnésium, filtré puis évaporé à sec sous pression réduite (2,7 kPa). On obtient 1,0 g d'une poudre jaune qui est traitée avec 15 cm³ de soude à 10% à 100°C pendant 1 heure. Après refroidissement, le mélange réactionnel est extrait avec 2 fois 50 cm³ de dichlorométhane. La phase aqueuse est acidifiée à pH = 1 avec 5 cm³ d'acide chlorhydrique 10N et extraite avec 2 fois 50 cm³ de dichlorométhane. Les phases organiques obtenues sont réunies, lavées avec 50 cm³ d'eau, séchées sur sulfate de magnésium,

filtrées et concentrées. On obtient 0,20 g de N-(4,6-diméthylpyrimid-2-yl)-méthylsulfonamide sous la forme d'une poudre jaune.

Exemple 15

La N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(1,3,4-thiadiazol-2-yl)-méthylsulfonamide peut être préparée en opérant comme il est décrit dans l'exemple 13 (méthode 2), à partir de 0,10 g de N-(1,3,4-thiadiazol-2-yl)-méthylsulfonamide et 0,215 g de 1-[bis-(4-chlorophényl)méthyl]azétidin-3-ol. Après chromatographie sur une colonne de gel de silice (granulométrie 0,06-0,04 mm, hauteur 25 cm, diamètre 1 cm), en éluant sous une pression de 0,8 bar d'argon avec un mélange acétate d'éthyle/cyclohexane 20/80 puis 40/60 en volume et en recueillant des fractions de 60 cm³, les fractions 26 à 31 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Après cristallisation dans l'éther diisopropylique, filtration et séchage, on obtient 40 mg de N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(1,3,4-thiadiazol-2-yl)-méthylsulfonamide sous la forme d'un solide blanc [Spectre de R.M.N. ¹H (300 MHz, CDCl₃, δ en ppm) : 3,01 (s : 3H); 3,09 (t dédoublé, J = 7 et 1,5 Hz : 2H); 3,70 (t dédoublé, J = 7 et 1,5 Hz : 2H); 4,28 (s : 1H); 4,76 (mt : 1H); de 7,20 à 7,35 (mt : 8H); 9,01 (s : 1H)].

La N-(1,3,4-thiadiazol-2-yl)-méthylsulfonamide peut être préparée en opérant de la façon suivante : à un mélange de 2,02 g de 2-amino-1,3,4-thiadiazole dans 10 cm³ de pyridine, on ajoute 1,5 cm³ de chlorure de méthylsulfonyle. Après 2 heures à température ambiante, 60 cm³ d'eau sont additionnés, le milieu réactionnel est filtré. La phase aqueuse recueillie est acidifiée à pH = 2 avec de l'acide chlorhydrique 1N, extraite avec 2 fois 50 cm³ d'acétate d'éthyle, la phase organique lavée par 2 fois 50 cm³ d'eau, séché sur sulfate de magnésium, filtré puis évaporé à sec sous pression réduite (2,7 kPa). On obtient 0,1 g d'une poudre jaune.

Exemple 16

- La N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(thiazol-2-yl)-méthylsulfonamide peut être préparée en opérant comme il est décrit dans l'exemple 15, à partir de 0,50 g de N-(thiazol-2-yl)-méthylsulfonamide et 0,5 g de 1-[bis-(4-chlorophényl)méthyl]azétidin-3-ol. Après chromatographie sur une colonne de gel de silice (granulométrie 0,06-0,04 mm, hauteur 60 cm, diamètre 2 cm), en éluant sous une pression de 0,9 bar d'argon avec un mélange acétate d'éthyle/cyclohexane 20/80 puis 40/60 en volume et en recueillant des fractions de 30 cm³, les fractions 9 à 12 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Après cristallisation dans l'éther diisopropylique, filtration et séchage, on obtient 0,21 g de N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(thiazol-2-yl)-méthylsulfonamide sous la forme d'un solide blanc [Spectre de R.M.N. ¹H (300 MHz, CDCl₃, δ en ppm) : de 2,95 à 3,10 (mt : 2H); 3,00 (s : 3H); 3,59 (mt : 2H); 4,22 (s large : 1H); 4,69 (mt : 1H); de 7,20 à 7,35 (mt : 9H); 7,60 (mt : 1H)].
- La N-(thiazol-2-yl)-méthylsulfonamide peut être préparée en opérant de la façon suivante : à un mélange de 1,0 g de 2-aminothiazole dans 5 cm³ de pyridine, on ajoute 1,15 g de chlorure de méthylsulfonyle. Après 2 heures à température ambiante, 20 cm³ d'eau sont additionnés, le milieu réactionnel est filtré et le solide recueilli (0,35 g). La phase aqueuse recueillie est acidifiée à pH = 2 avec de l'acide chlorhydrique 1N, extraite avec 2 fois 40 cm³ d'acétate d'éthyle, la phase organique lavée par 2 fois 30 cm³ d'eau, séché sur sulfate de magnésium, filtré puis évaporé à sec sous pression réduite (2,7 kPa). On obtient 0,15 g d'un solide blanc aux caractéristiques spectrales voisines du solide filtré correspondant à un mélange N-(thiazol-2-yl)-méthylsulfonamide et N-(thiazol-2-yl)-di(méthylsulfonyl)imide que l'on utilise tel quel pour l'étape suivante.

Exemple 17

La N-[1-[bis-(4-chlorophényl)-méthyl]-azétidin-3-yl]-N-(3-hydroxyphényl)-méthylsulfonamide peut être préparée en opérant de la façon suivante : à un

mélange de 0,5 g de N-[1-[bis-(4-chlorophényl)-méthyl]-azétidin-3-yl]-N-(3-méthoxyphényle)méthylsulfonamide dans 20 cm³ de dichlorométhane, on ajoute goutte à goutte à 2°C 7,63 cm³ d'une solution 1M de tribromure de bore. Après 20 heures à température ambiante, le milieu réactionnel est versé sur de la glace et extrait avec 60 cm³ de dichlorométhane. La phase organique lavée par 3 fois 80 cm³ d'eau puis 2 fois par 80 cm³ d'une solution aqueuse saturée de chlorure de sodium, séché sur sulfate de magnésium, filtré puis évaporé à sec sous pression réduite (2,7 kPa). On obtient 0,33 g d'une meringue blanche qui est reprise dans de l'acetonitrile, filtrée et séchée pour obtenir 0,20 g d'un solide blanc [Spectre de R.M.N. ¹H (300 MHz, CDCl₃, δ en ppm) : 2,81 (s : 3H); 2,86 (t large, J = 7,5 Hz : 2H); 3,50 (t large, J = 7,5 Hz : 2H); 4,20 (s : 1H); 4,53 (mt : 1H); 5,36 (mf : 1H); de 6,70 à 6,85 (mt : 3H); de 7,15 à 7,35 (mt : 9H)].

Exemple 18

La N-[1-[bis-(4-chlorophényl)-méthyl]-azétidin-3-yl]-N-(3-méthoxyphényle)méthylsulfonamide peut être préparée en opérant comme il est décrit dans l'exemple 15, à partir de 1,58 g de N-(3-méthoxyphényle)méthylsulfonamide et 2,0 g de 1-[bis-(4-chlorophényl)méthyl]azétidin-3-ol. Après chromatographie sur une colonne de gel de silice (granulométrie 0,06-0,04 mm, hauteur 24 cm, diamètre 7,8 cm), en éluant sous une pression de 0,7 bar d'argon avec un mélange acétate d'éthyle/cyclohexane 50/50 puis 40/60 en volume et en recueillant des fractions de 100 cm³, les fractions 7 à 10 sont réunies et concentrées à sec sous pression réduite (2,7 kPa) (2,05 g). Après cristallisation dans l'éther diisopropylique, filtration et séchage, on obtient 0,21 g de N-[1-[bis-(4-chlorophényl)-méthyl]-azétidin-3-yl]-N-(3-méthoxyphényle)méthylsulfonamide.

La N-(3-méthoxyphényle)méthylsulfonamide peut être préparée en opérant de la façon suivante : à un mélange de 5,0 g de 3-méthoxyaniline dans 150 cm³ de pyridine, on ajoute à 3°C, 3,14 cm³ de chlorure de méthylsulfonyle. Après

20 heures à température ambiante, 200 cm³ d'eau et 400 cm³ d'acétate d'éthyle sont additionnés et le milieu réactionnel décanté. La phase organique est lavée par 3 fois 400 cm³ d'eau et 400 cm³ d'une solution saturée de chlorure de sodium, séchée sur sulfate de magnésium, filtré puis 5 évaporé à sec sous pression réduite (2,7 kPa). Après chromatographie sur une colonne de gel de silice (granulométrie 0,06-0,04 mm, hauteur 23 cm, diamètre 7,8 cm), en éluant sous une pression de 0,7 bar d'argon avec un mélange acétate d'éthyle/cyclohexane 25/75 en volume et en recueillant des fractions de 100 cm³, les fractions 24 à 36 sont réunies et concentrées à sec 10 sous pression réduite (2,7 kPa), on obtient 6,21 g de N-(3-méthoxyphényl)méthylsulfonamide sous forme d'une huile orange.

Exemple 19

La N-[1-[bis-(4-chlorophényl)-méthyl]-azétidin-3-yl]-N-(3-hydroxyméthyl-phényl)-méthylsulfonamide peut être préparée en opérant de la façon suivante : à un mélange de 0,5 g de N-[1-[bis-(4-chlorophényl)-méthyl]-azétidin-3-yl]-N-(méthylsulfonyl)-3-aminobenzoate d'éthyle dans 20 cm³ de toluène, on ajoute goutte à goutte à -50°C, 1,46 cm³ d'une solution toluénique à 20% d'hydrure de diisopropyl-aluminium. Après 1,5 heure à 0°C et 1,5 heure à 10°C, le milieu réactionnel est refroidi à 0°C et 20 cm³ d'eau 20 sont additionnés lentement. Après filtration du précipité et extraction avec de l'acétate d'éthyle, la phase organique lavée par 2 fois 80 cm³ d'eau puis 80 cm³ d'une solution aqueuse saturée de chlorure de sodium, séché sur sulfate de magnésium, filtré puis évaporé à sec sous pression réduite (2,7 kPa). On obtient 0,46 g d'une huile qui est chromatographiée sur une colonne de gel 25 de silice (granulométrie 0,06-0,04 mm, hauteur 16 cm, diamètre 4 cm), en éluant sous une pression de 0,7 bar d'argon avec un mélange acétate d'éthyle/cyclohexane 40/60 en volume et en recueillant des fractions de 20 cm³, les fractions 72 à 76 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,20 g de N-[1-[bis-(4-chlorophényl)-méthyl]-

azétidin-3-yl}-N-(3-hydroxyméthyl-phényle)-méthylsulfonamide sous la forme d'un solide blanc [Spectre de R.M.N. ^1H (300 MHz, CDCl_3 , δ en ppm) : 1,80 (mt : 1H); 2,83 (s : 3H); 2,87 (mt : 2H); 3,52 (mt : 2H); 4,21 (s large : 1H); 4,60 (mt : 1H); 4,74 (d large, $J = 4$ Hz : 2H); de 7,10 à 7,45 (mt : 12H)].

5 **Exemple 20**

Le N-[1-[bis-(4-chlorophényle)-méthyl]-azétidin-3-yl]-N-(méthylsulfonyl)-3-aminobenzoate d'éthyle peut être préparée en opérant comme il est décrit dans l'exemple 15, à partir de 1,58 g de N-(méthylsulfonyl)-3-aminobenzoate d'éthyle et 2,0 g de 1-[bis-(4-chlorophényle)méthyl]azétidin-3-ol. Après 10 chromatographie sur une colonne de gel de silice (granulométrie 0,06-0,04 mm, hauteur 24 cm, diamètre 7,8 cm), en éluant sous une pression de 0,7 bar d'argon avec un mélange acétate d'éthyle/cyclohexane 50/50 puis 40/60 en volume et en recueillant des fractions de 100 cm^3 , les fractions 7 à 15 sont réunies et concentrées à sec sous pression réduite (2,7 kPa) pour obtenir 2,0 g d'une huile jaune.

Le N-(méthylsulfonyl)-3-aminobenzoate d'éthyle peut être préparé en opérant de la façon suivante : à un mélange de 5,0 g de 3-aminobenzoate d'éthyle dans 150 cm^3 de pyridine, on ajoute à 3°C, 2,35 cm^3 de chlorure de méthylsulfonyle. Après 20 heures à température ambiante, 200 cm^3 d'eau et 20 400 cm^3 d'acétate d'éthyle sont additionnés et le milieu réactionnel décanté. La phase organique est lavée par 3 fois 400 cm^3 d'eau et 400 cm^3 d'une solution saturée de chlorure de sodium, séchée sur sulfate de magnésium, filtré puis évaporé à sec sous pression réduite (2,7 kPa). Après 25 chromatographie sur une colonne de gel de silice (granulométrie 0,06-0,04 mm, hauteur 25 cm, diamètre 7,8 cm), en éluant sous une pression de 0,7 bar d'argon avec un mélange acétate d'éthyle/cyclohexane 25/75 en volume et en recueillant des fractions de 100 cm^3 , les fractions 27 à 36 sont réunies et concentrées à sec sous pression réduite (2,7 kPa), on obtient

5,24 g de N-(méthylsulfonyl)-3-aminobenzoate d'éthyle sous forme d'une huile orange.

Exemple 21

Le N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(1-isobutyl-pipérid-4-yl)-méthylsulfonamide peut être préparé en opérant de la façon suivante : A une solution de 0,47 g de N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(pipérid-4-yl)-méthylsulfonamide dans 20 cm³ de dichlorométhane, on ajoute 0,11 cm³ d'isobutyraldéhyde, 0,057cm³ d'acide acétique à 100% et 320 mg de triacétoxyborohydrure de sodium. Après 20 heures d'agitation à 20°C, le mélange réactionnel est additionné de 50 cm³ d'une solution aqueuse saturée d'hydrogénocarbonate de sodium et décanté. La phase organique est séchée sur sulfate de magnésium, filtrée et concentrée à sec sous pression réduite (2,7 kPa). Le résidu est purifié par chromatographie sur une colonne de gel de silice (granulométrie 0,063-0,200 mm, hauteur 20 cm, diamètre 2 cm), en éluant sous une pression de 0,5 bar d'argon avec un mélange de cyclohexane et d'acéate d'éthyle (40/60 en volumes) et en recueillant des fractions de 30 cm³. Les fractions 3 à 15 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,22 g de N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(1-isobutyl-pipérid-4-yl)-méthylsulfonamide, sous la forme d'une meringue blanche [Spectre de R.M.N.¹H (300 MHz, CDCl₃, δ en ppm) : 0,87 (d, J = 7 Hz : 6H); de 1,60 à 1,90 (mt : 5H); 1,93 (t large, J = 11,5 Hz : 2H); 2,03 (d, J = 7,5 Hz : 2H); 2,84 (s : 3H); 2,89 (d large, J = 11,5 Hz : 2H); 3,38 (t large, J = 7 Hz : 2H); 3,47 (t large, J = 7 Hz : 2H); 3,62 (mt : 1H); 4,08 (mt : 1H); 4,43 (s : 1H); de 7,20 à 7,40 (mt : 8H)].

Le N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(pipérid-4-yl)-méthylsulfonamide peut être préparé en opérant de la façon suivante : A une solution de 19 g de N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(1-tert-butoxycarbonyl pipérid-4-yl)-méthylsulfonamide dans 100 cm³ de dioxane,

on coule lentement 50 cm³ d'une solution d'acide chlorhydrique 6N dans le dioxane. Après 20 heures d'agitation à 20°C, le mélange réactionnel est concentré à 50°C sous pression réduite (2,7 kPa). Le résidu, est repris par 200 cm³ d'acétate d'éthyle et par 200 cm³ d'eau. La phase aqueuse est
5 alcalinisée avec une solution aqueuse d'hydroxyde de sodium 4N puis extraite par 200 cm³ d'acétate d'éthyle. Cette phase organique est séchée sur sulfate de magnésium, filtrée, puis concentrée à sec sous pression réduite (2,7 kPa). On obtient 15,5 g de N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(pipéridin-4-yl)-méthylsulfonamide, sous
10 la forme d'une meringue crème.

Le N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(1-tert-butoxycarbonylpipérid-4-yl)-méthylsulfonamide, peut être préparé en opérant de la façon suivante : A une solution de 14,7 g de 4-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylamino]-(1-tert-butoxycarbonyl)-pipéridine
15 dans 250 cm³ de dichlorométhane, on ajoute lentement 4,60 cm³ de chlorure de méthylsulfonyle puis 4,60 cm³ de triéthylamine et 100 mg de 4-diméthylaminopyridine. Après 20 heures d'agitation à 20°C, le mélange réactionnel est additionné de 200 cm³ d'une solution aqueuse saturée d'hydrogénocarbonate de sodium puis agité pendant 30 minutes et décanté.
20 La phase organique est séchée sur sulfate de magnésium, filtrée, puis concentrée à sec sous pression réduite (2,7 kPa). La meringue obtenue reprise par 250 cm³ de dichlorométhane, est à nouveau additionnée lentement de 4,60 cm³ de chlorure de méthylsulfonyle puis de 4,60 cm³ de triéthylamine et de 100 mg de 4-diméthylaminopyridine. Après 20 heures
25 d'agitation à 20°C, le mélange est additionné de 200 cm³ d'une solution aqueuse saturée d'hydrogénocarbonate de sodium puis agité pendant 30 minutes et décanté. La phase organique est séchée sur sulfate de magnésium, filtrée, puis concentrée à sec sous pression réduite (2,7 kPa). Le résidu est purifié par chromatographie sur une colonne de gel de silice
30 (granulométrie 0,063-0,200 mm, hauteur 35 cm, diamètre 5 cm), en éluant

sous une pression de 0,5 bar d'argon avec un mélange de cyclohexane et d'acétate d'éthyle (70/30 en volumes) et en recueillant des fractions de 250 cm³. Les fractions 4 à 18 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 19 g de N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(1-tert-butoxycarbonylpipérid-4-yl)-méthylsulfonylamide sous la forme d'une meringue crème, qui sera utilisée telle quelle à l'étape suivante.

La 4-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylamino)-(1-tert-butoxycarbonyl)-pipéridine peut être préparée en opérant de la façon suivante : A une solution de 9,22 g de 1-[bis(4-chlorophényl)méthyl]azétidin-3-ylamine, dans 300 cm³ de dichlorométhane, on ajoute 6,58 g 1-tert-butoxycarbonyl-pipéridin-4-one. Au mélange, refroidi à +5°C on ajoute en deux portions 9,54 g de triacétoxyborohydrure de sodium, puis coule 1,72 cm³ d'acide acétique à 100%. Après 20 heures d'agitation à 20°C, le mélange réactionnel est additionné lentement de 500 cm³ d'une solution aqueuse saturée d'hydrogénocarbonate de sodium, puis bien agité et décanté. La phase organique est séchée sur sulfate de magnésium, filtrée et concentrée à sec à 50°C sous pression réduite (2,7 kPa). On obtient 15 g de 4-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylamino)-(1-tert-butoxycarbonyl)-pipéridine sous la forme d'une meringue crème qui sera utilisée telle quelle à l'étape suivante.

Exemple 22

N-benzyl-N-[1-[bis(4-chlorophényl)méthyl]azétidin-3-yl]amine : A une solution de 369 mg de 1-[bis(4-chlorophényl)méthyl]azétidin-3-ylamine dans 15 cm³ de dichlorométhane on ajoute, à température ambiante sous atmosphère d'argon, 0,134 cm³ de benzaldéhyde. Le mélange est refroidi vers 0°C, avant d'y ajouter progressivement 382 mg de triacétoxyborohydrure de sodium, puis 70 mm³ d'acide acétique. Après 16 heures d'agitation à température ambiante le mélange est versé sur 50 cm³ d'une solution aqueuse saturée

d'hydrogénocarbonate de sodium, puis extrait par deux fois 25 cm³ de dichlorométhane. Les phases organiques réunies sont séchées sur sulfate de magnésium, filtrées et concentrées à sec sous pression réduite (2,7 kPa). Le résidu obtenu est purifié par chromatographie-flash sur gel de silice [éluant : dichlorométhane/méthanol (95/5 en volumes)]. On obtient 0,29 g de N-benzyl-N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}amine sous forme d'une huile incolore [Spectre de R.M.N. ¹H (300 MHz, CDCl₃, δ en ppm) : 2,71 (t large, J = 7 Hz : 2H); 3,42 (mt : 2H); 3,49 (mt : 1H); 3,70 (s : 2H); 4,25 (s : 1H); de 7,20 à 7,40 (mt : 13H)].

La 1-[bis(4-chlorophényl)méthyl]azétidin-3-yl-amine peut être obtenue de la manière suivante : A 27 g de méthylsulfonate de 1-[bis(4-chlorophényl)méthyl]azétidin-3-yle contenus dans un autoclave préalablement refroidi vers -60°C on ajoute 400 cm³ d'un mélange de méthanol et d'ammoniac liquide (50/50 en volumes). Le milieu réactionnel est ensuite agité à 60°C pendant 24 heures, puis abandonné à l'air libre pour permettre l'évaporation de l'ammoniac et enfin concentré sous pression réduite (2,7 kPa). Le résidu est repris par 500 cm³ d'une solution aqueuse 0,37N d'hydroxyde de sodium et extrait par quatre fois 500 cm³ d'éther éthylique. Les phases organiques réunies sont lavées successivement avec deux fois 100 cm³ d'eau distillée et 100 cm³ d'une solution saturée de chlorure de sodium, séchées sur du sulfate de magnésium, filtrées et concentrées sous pression réduite (2,7 kPa). Le résidu obtenu est purifié par chromatographie-flash sur gel de silice [éluant : dichlorométhane/méthanol (95/5 en volumes)]. On obtient 14,2 g de 1-[bis(4-chlorophényl)méthyl]azétidin-3-yl-amine sous forme d'une huile, qui concrétise en un solide de couleur crème.

Exemple 23

N-benzyl-N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl)méthylsulfonamide : A une solution de 120 mg de N-benzyl-N-{1-[bis(4-

chlorophényl)méthyl]azétidin-3-yl}amine dans 5 cm³ de dichlorométhane on ajoute, à température ambiante sous atmosphère d'argon, 104 mm³ de triéthylamine. Le mélange est refroidi vers 0°C, avant d'y ajouter 46,4 mm³ de chlorure de méthylsulfonyle, puis il est agité à température ambiante pendant 5 16 heures. Le mélange réactionnel est dilué avec 20 cm³ de dichlorométhane, puis est lavé avec deux fois 15 cm³ d'eau distillée. La phase organique est séchée sur sulfate de magnésium, filtrée et concentrée à sec sous pression réduite (2,7 kPa), fournissant une laque que l'on fait cristalliser par trituration dans le méthanol. On obtient ainsi 42 mg de N- 10 benzyl-N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl)méthylsulfonamide, sous forme d'une poudre crème fondant à 171°C.

Exemple 24

La N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}-N-(3,5-difluorobenzyl)amine peut être préparée comme dans l'exemple 22 mais en utilisant 188 mg de 15 3,5-difluorobenzaldéhyde et 369 mg de 1-[bis(4-chlorophényl)méthyl]azétidin-3-yl-amine et de 382 mg de triacétoxyborohydrure de sodium, sans purification par chromatographie-flash. On obtient 0,48 g de N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}-N-(3,5-difluorobenzyl)amine sous forme 20 d'une huile incolore [Spectre de R.M.N. ¹H (300 MHz, CDCl₃, δ en ppm) : 2,73 (mt : 2H); de 3,40 à 3,55 (mt : 3H); 3,70 (s : 2H); 4,26 (s : 1H); 6,69 (tt, J = 9 et 2 Hz : 1H); 6,83 (mt : 2H); de 7,20 à 7,35 (mt : 8H)].

Exemple 25

N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}-N-(3,5-difluorobenzyl)méthylsulfonamide

25 A une solution de 433 mg de N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}-N-(3,5-difluorobenzyl)amine dans 30 cm³ de dichlorométhane on ajoute, à température ambiante sous atmosphère d'argon, 347 mm³ de triéthylamine.

Le mélange est refroidi vers 0°C, avant d'y ajouter une solution de 46,4 mm³ de chlorure de méthylsulfonyle dans 5 cm³ de dichlorométhane, puis il est agité à température ambiante pendant 1 heure. Le mélange réactionnel est dilué avec 20 cm³ de dichlorométhane, puis est lavé avec deux fois 20 cm³ d'eau distillée. La phase organique est séchée sur sulfate de magnésium, filtrée et concentrée à sec sous pression réduite (2,7 kPa). Le résidu est introduit en solution dans le méthanol sur une cartouche Bond Elut® SCX (10 g), en éluant successivement par du méthanol et par une solution 1M d'ammoniac dans le méthanol. Les fractions ammoniacales sont jointes et concentrées à sec sous pression réduite (2,7 kPa). On obtient ainsi 0,44 g de N-[1-[bis(4-chlorophényl)méthyl]azétidin-3-yl]-N-(3,5-difluorobenzyl)méthylsulfonamide sous la forme d'une meringue de couleur crème [Spectre de R.M.N. ¹H (300 MHz, CDCl₃, δ en ppm) : 2,81 (s : 3H); 3,02 (t large, J = 7,5 Hz : 2H); 3,38 (t large, J = 7,5 Hz : 2H); 4,23 (s : 1H); 4,40 (mt : 1H); 4,54 (s : 2H); 6,75 (tt, J = 9 et 2 Hz : 1H); 6,95 (mt : 2H); 7,25 (mt : 8H)].

Exemple 26

N-[1-[bis(4-chlorophényl)méthyl]azétidin-3-yl]-N-(3,5-difluorobenzyl)acétamide

A une solution de 2 g de N-[1-[bis(4-chlorophényl)méthyl]azétidin-3-yl]-N-(3,5-difluorobenzyl)amine dans 75 cm³ de dichlorométhane on ajoute, à température ambiante sous atmosphère d'argon, 1,6 cm³ de triéthylamine. Le mélange est refroidi vers 0°C avant d'y ajouter goutte à goutte 0,66 cm³ de chlorure d'acétyle, puis il est agité à température ambiante pendant 16 heures. Le mélange réactionnel est dilué avec 50 cm³ de dichlorométhane, puis est lavé avec deux fois 20 cm³ d'eau distillée. La phase organique est séchée sur sulfate de magnésium, filtrée et concentrée à sec sous pression réduite (2,7 kPa). Le résidu obtenu est purifié par chromatographie-flash sur gel de silice [éluant : dichlorométhane/méthanol (98/2 en volumes)]. On

obtient 1,2 g de N-[1-[bis(4-chlorophényl)méthyl]azétidin-3-yl]-N-(3,5-difluorobenzyl)acétamide sous forme d'une huile incolore [Spectre de R.M.N. ^1H (300 MHz, CDCl_3 , δ en ppm). On observe un mélange de rotamères. * 2,06 et 2,14 (2s : 3H en totalité); 2,97 (mt : 2H); 3,43 (mt : 2H); 4,20 et 4,25 5 (2s : 1H en totalité); 4,54 et de 4,75 à 4,80 (mt : 1H en totalité); 4,68 et 4,78 (2s larges : 2H en totalité); 6,70 (mt : 3H); 7,24 (s large : 8H)].

Exemple 27

N-[1-[bis(4-chlorophényl)méthyl]azétidin-3-yl]-N-(pyrid-4-yl-méthyl)-méthylsulfonamide

- 10 A une solution de 398 mg de N-[1-[bis(4-chlorophényl)méthyl]azétidin-3-yl]-N-(pyrid-4-ylméthyl)amine dans 8 cm^3 de dichlorométhane on ajoute, à température ambiante sous atmosphère d'argon, 346 mm^3 de triéthylamine. Le mélange est refroidi vers 0°C, avant d'y ajouter 155 mm^3 de chlorure de méthylsulfonyle, puis il est agité à température ambiante pendant 3 heures.
- 15 Le mélange réactionnel est dilué avec 35 cm^3 de dichlorométhane, puis est lavé avec deux fois 20 cm^3 d'eau distillée. La phase organique est séchée sur sulfate de magnésium, filtrée et concentrée à sec sous pression réduite (2,7 kPa). Le résidu obtenu est purifié par chromatographie-flash sur gel de silice [éluant : dichlorométhane/méthanol (97/3 en volumes)]. On obtient 288 mg
- 20 de N-[1-[bis(4-chlorophényl)méthyl]azétidin-3-yl]-N-(pyrid-4-yl-méthyl)-méthylsulfonamide sous la forme d'une meringue de couleur crème [Spectre de R.M.N. ^1H (300 MHz, CDCl_3 , δ en ppm) : 2,83 (s : 3H); 3,02 (t large, $J = 7,5 \text{ Hz}$: 2H); 3,40 (t large, $J = 7,5 \text{ Hz}$: 2H); 4,23 (s : 1H); 4,43 (mt : 1H); 4,57 (s : 2H); de 7,20 à 7,35 (mt : 8H); 7,32 (d large, $J = 5,5 \text{ Hz}$: 2H); 8,60 (d large, $J = 5,5 \text{ Hz}$: 2H)].
- 25

Exemple 28

La N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}-N-(pyrid-4-yl-méthyl)amine peut être préparée de la manière suivante : A une solution de 369 mg de 1-[bis(4-chlorophényl)méthyl]azétidin-3-ylamine dans 15 cm³ de dichlorométhane on ajoute, à température ambiante sous atmosphère d'argon, 0,126 cm³ de pyrid-4-yl-carboxaldéhyde. Le mélange est refroidi vers 0°C, avant d'y ajouter progressivement 382 mg de triacétoxyborohydrure de sodium, puis 70 mm³ d'acide acétique. Après 72 heures d'agitation à température ambiante le mélange est versé sur 100 cm³ d'une solution aqueuse saturée d'hydrogénocarbonate de sodium, puis extrait par deux fois 100 cm³ de dichlorométhane. Les phases organiques réunies sont lavées avec 50 cm³ d'eau distillée, séchées sur sulfate de magnésium, filtrées et concentrées à sec sous pression réduite (2,7 kPa). Le résidu est introduit en solution dans 5 cm³ de méthanol sur une cartouche Bond Elut® SCX (10 g), en éluant successivement par 50 cm³ de méthanol et par 60 cm³ d'une solution 1M d'ammoniac dans le méthanol. Les fractions ammoniacales sont jointes et concentrées à sec sous pression réduite (2,7 kPa). On obtient ainsi 15 0,48 g de N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}-N-(pyrid-4-yl-méthyl)amine sous la forme d'une huile incolore.

Exemple 29

20 N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}-N-(pyrid-3-yl-méthyl)-méthylsulfonamide

En opérant selon le mode opératoire de l'exemple 43 mais à partir de 380 mg de N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}-N-(pyrid-3-yl-méthyl)amine, on obtient 319 mg de N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}-N-(pyrid-3-yl-méthyl)-méthylsulfonamide sous forme d'une meringue de couleur crème [Spectre de R.M.N. ¹H (300 MHz, CDCl₃, δ en ppm) : 2,80 (s : 3H); 3,02 (t dédoublé, J = 7 et 1,5 Hz : 2H); 3,38 (t dédoublé, J = 7 et 1,5 Hz : 2H); 4,22 (s : 1H); 4,35 (mt : 1H); 4,56 (s : 2H); 7,23 (s large : 8H); 7,31 (dd, J = 8 et 5

Hz : 1H); 7,80 (d large, J = 8 Hz : 1H); 8,57 (dd, J = 5 et 1,5 Hz : 1H); 8,63 (d large, J = 1,5 Hz : 1H)].

Exemple 30

La N-[1-[bis(4-chlorophényl)méthyl]azétidin-3-yl]-N-(pyrid-3-yl-méthyl)amine peut être préparée comme dans l'exemple 28 mais à partir de 0,124 cm³ de pyrid-3-yl-carboxaldéhyde, 0,36 g de 1-[bis(4-chlorophényl)méthyl]azétidin-3-yl-amine et de 0,38 g de triacétoxyborohydrure de sodium. On obtient ainsi 0,44 g de N-[1-[bis(4-chlorophényl)méthyl]azétidin-3-yl]-N-(pyrid-3-yl-méthyl)amine sous la forme d'une huile incolore.

10 Exemple 31

N-[1-[bis(4-chlorophényl)méthyl]azétidin-3-yl]-N-(1,1-dioxo-1H-1λ⁶-benzo[d]isothiazol-3-yl)-amine

A 386 mg de méthylsulfonate de 1-[bis(4-chlorophényl)méthyl]azétidin-3-yle en solution dans 10 cm³ de diméthylformamide on ajoute 182 mg de 1,1-dioxyde de 1,2-benzisothiazol-3-amine et 326 mg de carbonate de césum. Le milieu réactionnel est ensuite agité à 100°C pendant 9 heures, puis concentrée sous pression réduite (2,7 kPa). Le résidu est lavé quatre fois avec 5 cm³ d'eau distillée bouillante, désagrégé par agitation dans 5 cm³ d'eau distillée à température ambiante, puis recueilli par filtration et purifié par chromatographie-flash sur gel de silice [éluant : dichlorométhane/méthanol (98/2 en volumes)]. On obtient 53 mg de N-[1-[bis(4-chlorophényl)méthyl]azétidin-3-yl]-N-(1,1-dioxo-1H-1λ⁶-benzo[d]isothiazol-3-yl)-amine sous forme d'un produit pâteux [[Spectre de R.M.N. ¹H (300 MHz, CDCl₃, δ en ppm) : 3,17 (mt : 2H); 3,61 (t large, J = 7,5 Hz : 2H); 4,37 (s : 1H); 4,75 (mt : 1H); de 6,30 à 6,40 (mf : 1H); de 7,20 à 7,35 (mt : 8H); 7,62 (d large, J = 7,5 Hz : 1H); 7,69 (t large, J = 7,5 Hz : 1H); 7,76 (t large, J = 7,5 Hz : 1H); 7,93 (d large, J = 7,5 Hz : 1H)].

Le 1,1-dioxyde de 1,2-benzisothiazol-3-amine peut être préparé selon la méthode décrite par Stoss, P. et coll., Chem. Ber. (1975), 108(12), 3855-63.

Exemple 32

Le N-{1-[bis-(4-chlorophényl)méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-N'-ter-butyloxycarbonylsulfamide peut être préparé de la manière suivante : A une solution de 0,095 cm³ d'alcool terbutylique dans 2 cm³ de dichlorométhane anhydre, est ajoutés 0,048 cm³ de chlorosulfonylisocyanate, après 2 minutes d'agitation sont ajoutés successivement, 0,21 g de {1-[bis-(4-chlorophényl)méthyl]-azétidin-3-yl}-(3,5-difluorophényl)-amine dans 1,25 cm³ de dichlorométhane anhydre, puis 0,084 cm³ de triéthylamine. Après 1 heure d'agitation à une température voisine de 20°C, est ajouté sous vive agitation 2 cm³ d'une solution saturée de bicarbonate de sodium. Le milieu réactionnel est décanté, séché sur sulfate de magnésium, filtré puis concentré à sec sous pression réduite (2,7 kPa). Le résidu obtenu est chromatographié sur une cartouche Varian (6 cm³) garnie avec 3 g de silice fine (0,040-0,063 mm), conditionnée puis éluée avec un mélange éther de pétrole-acétate d'éthyle à l'aide d'une pompe Duramat en recueillant des fractions de 2 cm³. Les fractions 6 à 17 sont réunies et concentrées à sec sous pression réduite (2,7 kPa) à 40°C pendant 2 heures. On obtient ainsi 61 mg de N-{1-[bis-(4-chlorophényl)méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-N'-ter-butyloxycarbonylsulfamide sous forme de meringue blanche [Spectre de R.M.N ¹H (400 MHz, CDCl₃, δ en ppm) : 1,47 (s : 9H); 2,77 (t large, J = 8 Hz : 2H); 3,52 (mt : 2H); 4,19 (s : 1H); 5,06 (mt : 1H); de 6,75 à 6,90 (mt : 3H); de 7,15 à 7,35 (mt : 8H)].

25 **Exemple 33**

Le (RS)-N-{1-[(4-chlorophényl)-pyridin-3-yl-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide peut être obtenu de la façon suivante :

A un mélange de 0,2 g de 3-[bromo-(4-chlorophényl)-méthyl]-pyridine et de 0,22 g de chlorhydrate de N-azétidin-3-yl-N-(3,5-difluorophényl)-méthylsulfonamide dans 10 cm³ d'acétonitrile on ajoute 0,2 g de carbonate de potassium et 23 mg de iodure de potassium puis on chauffe le mélange à 5 reflux pendant 3 heures. Après avoir rajouté 0,2 g de carbonate de potassium on chauffe au reflux pendant 15 heures supplémentaires. Après refroidissement à 21°C, on élimine les matières insolubles par filtration puis on concentre à sec à 40°C sous 2,7 kPa. On obtient 170 mg d'une laque incolore que l'on purifie par chromatographie sur cartouche de silice 10 (référence SIL-020-005, FlashPack, Jones Chromatography Limited, New Road, Hengoed, Mid Glamorgan, CF82 8AU, Royaume Uni) en éluant avec un mélange de cyclohexane : d'acétate d'éthyle 1 :1 (6 cm³/min, fractions de 5 cm³). Les fractions de Rf=5/57 (cyclohexane:acétate d'éthyle 1:1, plaque de silice, Merck référence 1.05719, Merck KGaA, 64271 Darmstadt, 15 Allemagne) sont réunies et concentrées sous 2,7 kPa à 40°C pour conduire à 100 mg de (RS)-N-{1-[(4-chlorophényl)-pyridin-3-yl-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide fondant à 110°C [Spectre de R.M.N. ¹H (300 MHz, (CD₃)₂SO d6, δ en ppm) : 2,77 (mt : 2H); 2,98 (s : 3H); 3,38 (mt : 2H); 4,50 (s : 1H); 4,70 (mt : 1H); 7,11 (mt : 2H); de 7,20 à 7,40 (mt : 2H); 20 7,34 (d, J = 8 Hz : 2H); 7,41 (d, J = 8 Hz : 2H); 7,72 (d large, J = 8 Hz : 1H); 8,40 (dd, J = 5 et 1,5 Hz : 1H); 8,58 (d, J = 1,5 Hz : 1H)].

Le chlorhydrate de N-azétidin-3-yl-N-(3,5-difluorophényl)-méthylsulfonamide est obtenu de la façon suivante : Dans un hydrogénéateur de 500 cm³, une solution de 1 g de N-(1-benzhydryl-azétidin-3-yl)-N-(3,5-difluorophényl)-méthylsulfonamide dans un mélange de 2,5 cm³ d'acide chlorhydrique 1M et 25 de 0,41 cm³ d'acide acétique est hydrogénée en présence de 0,161 g d'hydroxyde de palladium sous 30 bars d'hydrogène pendant 4 heures. Le catalyseur est éliminé par filtration sur un lit de célite puis le filtrat est concentré à sec à 40°C sous 2,7 kPa pour donner 630 mg de N-azétidin-3-yl-N-(3,5-difluorophényl)-méthylsulfonamide, fondant à 216°C.

- Le N-(1-benzhydryl-azétidin-3-yl)-N-(3,5-difluorophényl)-méthylsulfonamide peut être obtenu en opérant comme dans l'exemple 13 (méthode 2) de la façon suivante : A une solution de 2 g de 1-benzhydryl-azétidin-3-ol dans 100 cm³ de tétrahydrofurane on ajoute successivement 0,86 g de N-(3,5-difluorophényl) méthylsulfonamide, 3,28g de triphényl phosphine puis 2 ml de diéthyl azodicarboxylate. On observe une augmentation de la température qui passe de 22°C à 29°C, ainsi que la formation d'un précipité dès la fin de l'addition du diéthyl azodicarboxylate. Après 20h à 22°C, on élimine le précipité par filtration puis on concentre le filtrat à sec à 40°C sous 2,7 kPa.
- 10 Le résidu est trituré avec 5 cm³ de méthanol pendant 20 minutes à 21°C fournissant 1,07g de N-(1-benzhydryl-azétidin-3-yl)-N-(3,5-difluorophényl)-méthylsulfonamide sous forme d'un solide amorphe blanc.

Le 1-benzhydryl-azétidin-3-ol peut être préparé selon le mode opératoire décrit par KATRITZKY A.R. et coll., J. Heterocycl. Chem., 271 (1994).

- 15 Le 3-[bromo-(4-chlorophényl)-méthyl]-pyridine est obtenu de la façon suivante : A 1,5g de (4-Chlorophényl)-pyridin-3-yl-methanol on ajoute 3,5 cm³ d'une solution d'acide bromhydrique à 48% dans l'acide acétique et 1 cm³ de bromure d'acétyle. Le mélange de couleur ambrée ainsi obtenu est chauffé au reflux pendant 4 heures puis refroidi à 20°C, concentré à sec à 40°C sous 20 2,7 kPa conduisant à 1,53g de 3-[bromo-(4-chlorophényl)-méthyl]-pyridine (Rf=75/90, 254nm, Plaques de Silice, référence 1.05719, Merck KGaA, 64271 Darmstadt, Allemagne).

- 25 Le (4-chlorophényl)-pyridin-3-yl-methanol est obtenu de la façon suivante : A une solution de 3 g de pyridine-3-carboxaldéhyde dans le tétrahydrofurane à 5°C, on ajoute 20 cm³ d'une solution molaire de bromure de 4-chlorophényl magnésium dans l'éther éthylique. Après réchauffement à 20°C, on laisse réagir pendant 15 heures sous agitation. On ajoute alors 20 cm³ d'une solution saturée de chlorure d'ammonium puis 20 cm³ d'acétate d'éthyle. Le mélange est décanté et les phases organiques sont extraites avec 20 cm³

d'acétate d'éthyle supplémentaires. Les extraits organiques sont réunis, séchés sur sulfate de magnésium puis concentrés à sec à 40°C sous 2,7 kPa. Le résidu obtenu est chromatographié sur silice (Amicon, 20-45 µm, 500 g silice, colonne de diamètre 5 cm) en éluant avec un mélange de cyclohexane : acétate d'éthyle de 80 : 20 à 50 : 50 sous une pression d'argon de 0.4 bars. Les fractions contenant le composé de Rf=13/53 (Plaques de Silice Merck, référence 1.05719, Merck KGaA, 64271 Darmstadt, Allemagne) sont réunies et évaporées à sec à 40°C sous 2,7 kPa pour donner 2,53 g de 4-Chlorophényl)-pyridin-3-yl-méthanol.

10 Exemple 34

Le N-[1-[bis-(4-fluoro-phényl)-méthyl]-azétidin-3-yl]-N-(3,5-difluorophényl)-méthylsulfonamide est obtenu de la façon suivante : A un mélange de 0,2 g de chlorure de 4,4'-difluorobenzhydryle et de 0,26 g de chlorhydrate de N-azétidin-3-yl-N-(3,5-difluorophényl)- dans 10 cm³ d'acetonitrile on ajoute 0,36 g de carbonate de potassium et 27 mg de iodure de potassium puis on chauffe le mélange à reflux pendant 3 heures. Après refroidissement à 21°C, on élimine les matières insolubles par filtration puis on concentre à sec à 40°C sous 2,7 kPa. On tritue le résidu avec 30 cm³ d'acétate d'éthyle puis on élimine le solide par filtration. On concentre le filtrat à sec à 40°C sous 2,7 kPa et on obtient 90 mg de solide jaune pâle que l'on purifie par chromatographie sur cartouche BondElut SCX contenant 2 g de silice greffée (référence 1225-6019, Varian Associates, Inc. 24201 Frampton Avenue, Harbor City, CA90710, USA) en éluant avec une solution à 2M d'ammoniaque méthanolique . Les fractions de Rf=16/82 (cyclohexane :acétate d'éthyle 7 :3, plaque de silice, référence 1.05719, Merck KGaA, 64271 Darmstadt, Allemagne) sont réunies et concentrées sous 2,7 kPa à 40°C pour conduire à 243 mg de N-[1-[bis-(4-fluoro-phényl)-méthyl]-azétidin-3-yl]-N-(3,5-difluorophényl)-méthylsulfonamide fondant à 98°C [Spectre de R.M.N. ¹H (300 MHz, (CD₃)₂SO d6, δ en ppm) : 2,74 (t

large, J = 7 Hz : 2H); 3,00 (s : 3H); 3,37 (t large, J = 7 Hz : 2H); 4,43 (s : 1H); 4,69 (mt : 1H); de 7,05 à 7,20 (mt : 6H); 7,28 (tt, J = 9 et 2,5 Hz : 1H); 7,40 (mt : 4H)].

Exemple 35

5 Le (RS)-N-{1-[(4-chlorophényl)-pyridin-4-yl-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide peut être obtenu de la manière suivante : Un mélange d'environ 100 mg de (4-pyridyl)-(4-chlorophényl)-chlorométhane, 143 mg de chlorhydrate de N-azétidin-3-yl-N-(3,5-difluorophényl)-méthylsulfonamide (préparé selon l'exemple 70), 17 mg d'iodure de potassium et 200 mg de carbonate de potassium dans 5 cm³ d'acétonitrile, est agité environ 18 heures à une température voisine de 20°C. Le mélange réactionnel est ensuite porté au reflux pendant 3 heures, additionné de 17 mg d'iodure de potassium et laissé au reflux pour 2 heures supplémentaires. Après refroidissement jusqu'à une température voisine de 15 20°C, le milieu réactionnel est filtré sur verre fritté. Le solide est rincé avec de l'acétonitrile, puis 2 fois 3 cm³ d'acétate d'éthyle. Les filtrats sont concentrés à sec sous pression réduite. On obtient 230 mg d'une pâte jaune pâle que l'on purifie par chromatographie préparative sur couche mince de silice [4 plaques préparatives Merck Kieselgel 60F254; 20x20 cm; épaisseur 0,5 mm], 20 en éluant par un mélange méthanol-dichlorométhane (5-95 en volumes). Après élution de la zone correspondant au produit recherché, filtration sur verre fritté, puis évaporation des solvants sous pression réduite à une température voisine de 40°C, on obtient 12 mg de (RS)-N-{1-[(4-chlorophényl)-pyridin-4-yl-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide [Spectre de R.M.N. ¹H (300 MHz, CDCl₃, δ en ppm) : 2,82 (s : 3H); 2,96 (mf : 2H); de 3,50 à 3,80 (mt : 2H); 4,33 (mf : 1H); 4,54 (mt : 1H); 6,82 (mt : 3H); de 7,20 à 7,45 (mt : 6H); 8,53 (d large, J = 5,5 Hz : 2H)].

Le (4-pyridyl)-(4-chlorophényl)-chlorométhane peut être préparé de la manière suivante : A une suspension de 100 mg de (4-pyridyl)-(4-

chlorophényl)-méthanol dans 2 cm³ de toluène, refroidie à une température voisine de 0°C, on ajoute 0,0598 cm³ de chlorure de thionyle. Après 2 heures à une température voisine de 0°C et 1 heure à une température voisine de 20°C, le milieu réactionnel est concentré sous pression réduite. On obtient 5 environ 100 mg de (4-pyridyl)-(4-chlorophényl)-chlorométhane sous forme d'un solide blanc.

Le (4-pyridyl)-(4-chlorophényl)-méthanol peut être préparé de la manière suivante : A une solution de 2 g de 4-(4-chlorobensoyle)-pyridine dans 160 cm³ d'éthanol, sont ajoutés, à une température voisine de 20°C, 348 mg 10 de tétrahydroborure de sodium. Après 2 heures d'agitation à une température voisine de 20°C, on ajoute 90 mg de tétrahydroborure de sodium. Après environ 1,5 heures à la même température, on dilue le milieu réactionnel avec 200 cm³ de dichlorométhane et 200 cm³ d'eau. Le pH de la phase aqueuse est ajusté à environ une valeur de 5 par ajout d'environ 13 cm³ 15 d'une solution aqueuse d'acide chlorhydrique 1N. Après décantation, la phase aqueuse est extraite avec 3 fois 100 cm³ de dichlorométhane. Les phases organiques sont rassemblées, séchées sur sulfate de magnésium, filtrées et concentrées sous pression réduite. On obtient ainsi 2 g de (4-pyridyl)-(4-chlorophényl)-méthanol sous forme d'une poudre blanche.

20 Exemple 36

A une solution de 330 mg de {1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}(3,5-difluorobenzyl)amine dans 25 cm³ de tétrahydrofurane on ajoute, à température ambiante sous atmosphère d'argon, 24,4 mg d'une dispersion d'hydrure de sodium à 75% dans l'huile minérale. Le mélange est agité à 25 température ambiante pendant 1 heure avant d'y ajouter 59 mm³ de chloroformiate de méthyle, puis l'agitation est maintenue 18 heures dans les mêmes conditions. Le mélange réactionnel est additionné de 0,3 cm³ d'eau distillée et le tétrahydrofurane est chassé au rotavapor. Le résidu obtenu est extrait au dichlorométhane, la phase organique est séchée sur sulfate de

magnésium, filtrée et concentrée à sec sous pression réduite (2,7 kPa). Le résidu obtenu est purifié par chromatographie-flash sur gel de silice [éluant : dichlorométhane/méthanol (97,5/2,5 en volumes)]. On obtient 328 mg de {1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}-(3,5 difluorobenzyl)carbamate de méthyle sous forme d'une huile incolore [Spectre de R.M.N. ^1H (300 MHz, CDCl_3 , δ en ppm) : 2,97 (mt : 2H); 3,39 (mt : 2H); 3,71 (s : 3H); 4,24 (s large : 1H); 4,45 (mf : 1H); 4,57 (s : 2H); de 6,65 à 6,80 (mt : 3H); de 7,15 à 7,30 (mt : 8H)].

Les médicaments selon l'invention sont constitués par au moins un composé de formule (I) ou un isomère ou un sel d'un tel composé, à l'état pur ou sous forme d'une composition dans laquelle il est associé à tout autre produit pharmaceutiquement compatible, pouvant être inerte ou physiologiquement actif. Les médicaments selon l'invention peuvent être employés par voie orale, parentérale, rectale ou topique.

Comme compositions solides pour administration orale, peuvent être utilisés des comprimés, des pilules, des poudres (capsules de gélatine, cachets) ou des granulés.+ Dans ces compositions, le principe actif selon l'invention est mélangé à un ou plusieurs diluants inertes, tels que amidon, cellulose, saccharose, lactose ou silice , sous courant d'argon. Ces compositions peuvent également comprendre des substances autres que les diluants, par exemple un ou plusieurs lubrifiants tels que le stéarate de magnésium ou le talc, un colorant, un enrobage (dragées) ou un vernis.

Comme compositions liquides pour administration orale, on peut utiliser des solutions, des suspensions, des émulsions, des sirops et élixirs pharmaceutiquement acceptables contenant des diluants inertes tels que l'eau, l'éthanol, le glycérol, les huiles végétales ou l'huile de paraffine. Ces compositions peuvent comprendre des substances autres que les diluants, par exemple des produits mouillants, édulcorants, épaisseurs, aromatisants ou stabilisants.

Les compositions stériles pour administration parentérale, peuvent être de préférence des solutions aqueuses ou non aqueuses, des suspensions ou des émulsions. Comme solvant ou véhicule, on peut employer l'eau, le propylèneglycol, un polyéthylèneglycol, des huiles végétales, en particulier
5 l'huile d'olive, des esters organiques injectables, par exemple l'oléate d'éthyle ou d'autres solvants organiques convenables. Ces compositions peuvent également contenir des adjuvants, en particulier des agents mouillants, isotonisants, émulsifiants, dispersants et stabilisants. La stérilisation peut se faire de plusieurs façons, par exemple par filtration aseptisante, en
10 incorporant à la composition des agents stérilisants, par irradiation ou par chauffage. Elles peuvent également être préparées sous forme de compositions solides stériles qui peuvent être dissoutes au moment de l'emploi dans de l'eau stérile ou tout autre milieu stérile injectable.

Les compositions pour administration rectale sont les suppositoires ou les
15 capsules rectales qui contiennent, outre le produit actif, des excipients tels que le beurre de cacao, des glycérides semi-synthétiques ou des polyéthylèneglycols.

Les compositions pour administration topique peuvent être par exemple des crèmes, lotions, collyres, collutoires, gouttes nasales ou aérosols.
20 En thérapeutique humaine, les composés selon l'invention sont particulièrement utiles pour le traitement et/ou la prévention des psychoses y compris la schizophrénie, des troubles anxieux, de la dépression, de l'épilepsie, de la neurodégénération, des désordres cérébelleux et spinocérébelleux, des désordres cognitifs, du trauma crânien, des attaques
25 de panique, des neuropathies périphériques, des glaucomes, de la migraine, de la maladie de Parkinson, de la maladie d'Alzheimer, de la chorée de Huntington, du syndrome de Raynaud, des tremblements, du désordre compulso-obsessionnel, de la démence sénile, des désordres thymiques, du syndrome de Tourette, de la dyskinésie tardive, des désordres bipolaires, des

cancers, des désordres du mouvement induit par les médicaments, des dystonies, des chocs endotoxémiques, des chocs hémorragiques, de l'hypotension, de l'insomnie, des maladies immunologiques, de la sclérose en plaques, des vomissements, de l'asthme, des troubles de l'appétit (boulimie, 5 anorexie), de l'obésité, des troubles de la mémoire, des troubles du transit intestinal, dans le sevrage aux traitements chroniques et abus d'alcool ou de médicaments (opioïdes, barbituriques, cannabis, cocaïne, amphétamine, phencyclidine, hallucinogènes, benzodiazépines par exemple), comme analgésiques ou potentialisateurs de l'activité analgésique des médicaments 10 narcotiques et non narcotiques, .

Les doses dépendent de l'effet recherché, de la durée du traitement et de la voie d'administration utilisée; elles sont généralement comprises entre 5 mg et 1000 mg par jour par voie orale pour un adulte avec des doses unitaires allant de 1 mg à 250 mg de substance active.

- 15 D'une façon générale, le médecin déterminera la posologie appropriée en fonction de l'âge, du poids et de tous les autres facteurs propres au sujet à traiter.

Les exemples suivants illustrent des compositions selon l'invention :

EXAMPLE A

- 20 On prépare, selon la technique habituelle, des gélules dosées à 50 mg de produit actif ayant la composition suivante :

- Composé de formule (I).....	50 mg
- Cellulose.....	18 mg
- Lactose.....	55 mg
25 - Silice colloïdale.....	1 mg
- Carboxyméthylamidon sodique.....	10 mg
- Talc.....	10 mg

- Stéarate de magnésium..... 1 mg

EXEMPLE B

On prépare selon la technique habituelle des comprimés dosés à 50 mg de produit actif ayant la composition suivante :

5	- Composé de formule (I).....	50 mg
	- Lactose.....	104 mg
	- Cellulose.....	40 mg
	- Polyvidone.....	10 mg
	- Carboxyméthylamidon sodique.....	22 mg
10	- Talc.....	10 mg
	- Stéarate de magnésium.....	2 mg
	- Silice colloïdale.....	2 mg
	- Mélange d'hydroxyméthylcellulose, glycérine, oxyde de titane (72-3,5-24,5) q.s.p.	1 comprimé pelliculé terminé à 245 mg

15 EXEMPLE C

On prépare une solution injectable contenant 10 mg de produit actif ayant la composition suivante :

20	- Composé de formule (I).....	10 mg
	- Acide benzoïque.....	80 mg
	- Alcool benzylique.....	0,06 ml
	- Benzoate de sodium.....	80 mg
	- Ethanol à 95 %.....	0,4 ml
	- Hydroxyde de sodium.....	24 mg
	- Propylène glycol.....	1,6 ml
25	- Eau.....	q.s.p. 4 ml

REVENDICATIONS

1 – Composition pharmaceutique contenant en tant que principe actif au moins un composé de formule :

5 dans laquelle

R₁ représente un radical -N(R₄)R₅, -N(R₄)-CO-R₅, -N(R₄)-SO₂R₆,

R₂ et R₃, identiques ou différents, représentent soit un aromatique choisi parmi phényle, naphtyle et indényle, ces aromatiques étant non substitués ou substitués par un ou plusieurs halogène, alkyle, alcoxy, formyle, hydroxy, trifluorométhyle, trifluorométhoxy, -CO-alk, cyano, -COOH, COOalk, -CONR₇R₈, -CO-NH-NR₉R₁₀, alkylsulfanyle, alkylsulfinyle, alkylsulfonyle, alkylsulfanylalkyle, alkylsulfinylalkyle, alkylsulfonylalkyle, hydroxyalkyle ou -alk-NR₉R₁₀; soit un hétéroaromatique choisi parmi les cycles benzofuryle, benzothiazolyle, benzothiényle, benzoxazolyle, chromannyle, 2,3-dihydrobenzofuryle, 2,3-dihydrobenzothiényle, furyle, imidazolyle, isochromannyle, isoquinolyle, pyrrolyle, pyridyle, pyrimidyle, quinolyle, 1,2,3,4-tétrahydroisoquinolyle, thiazolyle et thiényle, ces hétéroaromatiques pouvant être non substitués ou substitués par un halogène, alkyle, alcoxy, hydroxy, trifluorométhyle, trifluorométhoxy, cyano, -COOH, COOalk, -CO-NH-NR₉R₁₀, -CONR₇R₈, -alk-NR₉R₁₀, alkylsulfanyle, alkylsulfinyle, alkylsulfonyle, alkylsulfanylalkyle, alkylsulfinylalkyle, alkylsulfonylalkyle ou hydroxyalkyle,

R₄ représente un radical -C(R₁₁)(R₁₂)-Het, -Het, -C(R₁₁)(R₁₂)-Ar, Ar, cycloalkyle ou norbornyle,

R₅ représente un atome d'hydrogène ou un radical hydroxyalkyle, -alk-COOalk, -alk-CONR₇R₈, -alk-NR₇R₈, alcoxy, Ar, Het, -CH₂Ar, -CH₂Het ou 5 alkyle éventuellement substitué par un ou plusieurs halogène,

R₆ représente un radical hydroxyalkyle, -alk-COOalk, -alk-CONR₇R₈, -alk-NR₇R₈, alcoxy, Ar, Het, -CH₂Ar, -CH₂Het ou alkyle éventuellement substitué par 1 ou plusieurs halogène,

R₇ et R₈, identiques ou différents, représentent un atome d'hydrogène ou un 10 radical alkyle ou bien R₇ et R₈ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,

R₉ et R₁₀, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle, -COOalk, cycloalkyle, alkylcycloalkyle, -alk-O-alk, hydroxyalkyle ou bien R₉ et R₁₀ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ou insaturé ayant 3 à 10 chaînons, contenant éventuellement un autre 20 hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle, -COOalk, -CO-NHalk, -CS-NHalk, oxo, hydroxyalkyle, -alk-O-alk ou -CO-NH₂,

R₁₁ représente un atome d'hydrogène ou un radical hydroxyalkyle, -alk-COOalk, -alk-CONR₇R₈, -alk-NR₇R₈, alcoxyalkyle, Ar, Het, -CH₂Ar, 25 -CH₂Het ou alkyle éventuellement substitué par un ou plusieurs halogène,

R_{12} représente un atome d'hydrogène ou un radical hydroxyalkyle, -alk-COOalk, -alk-CONR₇R₈, -alk-NR₇R₈, alcoxyalkyle ou alkyle éventuellement substitué par un ou plusieurs halogène,

ou bien R_{11} et R_{12} forment ensemble avec l'atome de carbone auquel ils sont
5 rattachés un cycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,

Ar représente un radical phényle, naphtyle ou indényle, ces différents radicaux étant éventuellement substitués par un ou plusieurs halogène,
10 alkyle, alcoxy, -CO-alk, cyano, -COOH, -COOalk, -CONR₁₃R₁₄, -CO-NH-NR₁₅R₁₆, alkylsulfanyle, alkylsulfinyle, alkylsulfonyle, -alk-NR₁₅R₁₆, -NR₁₅R₁₆, alkylthioalkyle, formyle, CF₃, OCF₃, Het, -O-alk-NH-cycloalkyle, SO₂NH₂, hydroxy, hydroxyalkyle, -NHCOalk, NHCOOalk ou sur 2 atomes de carbone adjacents par dioxyméthylène,

15 Het représente un hétérocycle mono ou bicyclique insaturé ou saturé, ayant 3 à 10 chaînons et contenant un ou plusieurs hétéroatomes choisi parmi oxygène, soufre et azote éventuellement substitué par un ou plusieurs alkyle, alcoxy, halogène, alcoxycarbonyle, oxo, hydroxy, les hétérocycles azotés étant éventuellement sous leur forme N-oxydée,

20 R_{13} et R_{14} , identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R_{13} et R_{14} forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou
25 plusieurs alkyle,

R_{15} et R_{16} , identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R_{15} et R_{16} forment ensemble avec l'atome d'azote

auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,

5 alk représente un radical alkyle ou alkylène,

les radicaux et portions alkyle et alkylène et les radicaux et portions alcoxy sont en chaîne droite ou ramifiée et contiennent 1 à 6 atomes de carbone et les radicaux cycloalkyle contiennent 3 à 10 atomes de carbone,

10 les isomères optiques de ces composés et leurs sels avec un acide minéral ou organique pharmaceutiquement acceptables.

2 – Composition pharmaceutique selon la revendication 1 pour laquelle dans la formule (I) Het est choisi parmi benzimidazole, benzoxazole, benzothiazole, benzothiophène, cinnoline, thiophène, quinazoline, quinoxaline, quinoline, pyrazole, pyrrole, pyridine, imidazole, indole, 15 isoquinoline, pyrimidine, thiazole, thiadiazole, pipéridine, pipérazine, triazole, furane, tétrahydroisoquinoline, tétrahydroquinoline, ces hétérocycles étant éventuellement substitués par un ou plusieurs alkyle, alcoxy, halogène, alcoxycarbonyle, oxo, hydroxy, OCF₃ ou CF₃.

3 – Composition pharmaceutique selon la revendication 1 pour laquelle dans 20 le composé de formule (I)

R₁ représente un radical -N(R₄)R₅, -N(R₄)-SO₂R₆,

R₂ représente soit un phényle non substitué ou substitué par un ou plusieurs halogène, alkyle, alcoxy, trifluorométhyle, trifluorométhoxy, -CO-alk, cyano, -CONR₇R₈, hydroxyalkyle ou -alk-NR₇R₈; soit un hétéroaromatique choisi 25 parmi les cycles pyridyle, pyrimidyle, thiazolyde et thiényle, ces hétéroaromatiques pouvant être non substitués ou substitués par un

halogène, alkyle, alcoxy, hydroxy, trifluorométhyle, trifluorométhoxy, -CONR₇R₈, -alk-NR₉R₁₀, alkylsulfanyle, alkylsulfinyle, alkylsulfonyle ou hydroxyalkyle ,

R₃ représente soit un phényle non substitué ou substitué par un ou plusieurs halogène, alkyle, alcoxy, trifluorométhyle, trifluorométhoxy, -CO-alk, cyano, -CONR₇R₈, hydroxyalkyle ou -alk-NR₉R₈; soit un hétéroaromatique choisi parmi les cycles pyridyle, pyrimidyle, thiazolyle et thiényle, ces hétéroaromatiques pouvant être non substitués ou substitués par un halogène, alkyle, alcoxy, hydroxy, trifluorométhyle, trifluorométhoxy, -CONR₇R₈, -alk-NR₉R₁₀, alkylsulfanyle, alkylsulfinyle, alkylsulfonyle ou hydroxyalkyle ,

R₄ représente un radical -C(R₁₁)(R₁₂)-Het, -Het, -C(R₁₁)(R₁₂)-Ar, Ar ou norbornyle,

R₅ représente un atome d'hydrogène ou un radical hydroxyalkyle, -alk-COOalk, -alk-CONR₇R₈, -alk-NR₉R₈, alcoxy, -CH₂Ar, -CH₂Het ou alkyle,

R₆ représente un radical hydroxyalkyle, -alk-COOalk, -alk-CONR₇R₈, -alk-NR₉R₈, alcoxy, -CH₂Ar, -CH₂Het ou alkyle,

R₇ et R₈, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R₇ et R₈ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,

R₉ et R₁₀, identiques ou différents représentent un atome d'hydrogène ou un radical alkyle, cycloalkyle, alkylcycloalkyle, -alk-O-alk ou hydroxyalkyle ou bien R₉ et R₁₀ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ou insaturé ayant 3 à 10

chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle, -COOalk, -COOalk, -CO-NHalk, oxo, hydroxyalkyle ou -CO-NH₂,

5 R₁₁ représente un atome d'hydrogène ou un radical hydroxyalkyle, -alk-COOalk, -alk-CONR₇R₈, -alk-NR₇R₈, alcoxyalkyle, Ar, Het, -CH₂Ar, -CH₂Het ou alkyle éventuellement substitué par un ou plusieurs halogène,

10 R₁₂ représente un atome d'hydrogène ou un radical hydroxyalkyle, -alk-COOalk, -alk-CONR₇R₈, -alk-NR₇R₈, alcoxyalkyle ou alkyle éventuellement substitué par un ou plusieurs halogène,

ou bien R₁₁ et R₁₂ forment ensemble avec l'atome de carbone auquel ils sont rattachés un cycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,

15 Ar représente un radical phényle ou naphtyle, ces différents radicaux étant éventuellement substitués par un ou plusieurs halogène, alkyle, alcoxy, -CO-alk, cyano, -CONR₁₃R₁₄, alkylsulfonyle, -alk-NR₁₅R₁₆, -NR₁₅R₁₆, CF₃, OCF₃, SO₂NH₂, hydroxy, hydroxyalkyle ou sur 2 atomes de carbone adjacents par dioxyméthylène,

20 Het représente un hétérocycle choisi parmi benzimidazole, benzoxazole, benzothiazole, benzothiophène, thiophène, quinazoline, quinoxaline, quinoline, pyrrole, pyridine, imidazole, indole, isoquinoline, pyrimidine, thiazole, thiadiazole, furane, tétrahydroisoquinoline et tétrahydroquinoline, ces hétérocycles étant éventuellement substitués par un ou plusieurs alkyle, 25 alcoxy, halogène, alcoxycarbonyle, oxo, hydroxy, OCF₃ ou CF₃,

R₁₃ et R₁₄, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R₁₃ et R₁₄ forment ensemble avec l'atome d'azote

auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,

- 5 R_{15} et R_{16} , identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R_{15} et R_{16} forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou 10 plusieurs alkyle,

les isomères optiques de ces composés et leurs sels avec un acide minéral ou organique pharmaceutiquement acceptables.

4 - Composition pharmaceutique selon la revendication 1 pour laquelle dans le composé de formule (I)

- 15 R_1 représente un radical $-N(R_4)-SO_2R_6$,

R_2 représente soit un phényle non substitué ou substitué par un ou plusieurs halogène, alkyle, alcoxy, trifluorométhyle, trifluorométhoxy, cyano, $-CONR_7R_8$, hydroxyalkyle ou $-alk-NR_7R_8$; soit un hétéroaromatique choisi parmi les cycles pyridyle, pyrimidyle, thiazolyle et thiényle, ces hétéroaromatiques pouvant 20 être non substitués ou substitués par un halogène, alkyle, alcoxy, hydroxy, trifluorométhyle, trifluorométhoxy, $-CONR_7R_8$ ou hydroxyalkyle ,

R_3 représente soit un phényle non substitué ou substitué par un ou plusieurs halogène, alkyle, alcoxy, trifluorométhyle, trifluorométhoxy, cyano, $-CONR_7R_8$, hydroxyalkyle ou $-alk-NR_7R_8$; soit un hétéroaromatique choisi parmi les cycles 25 pyridyle, pyrimidyle, thiazolyle et thiényle, ces hétéroaromatiques pouvant être non substitués ou substitués par un halogène, alkyle, alcoxy, hydroxy, trifluorométhyle, trifluorométhoxy, $-CONR_7R_8$ ou hydroxyalkyle ,

R₄ représente -Het ou Ar,

R₆ représente un radical hydroxyalkyle ou alkyle,

R₇ et R₈, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R₇ et R₈ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,

Ar représente un radical phényle ou naphtyle, ces différents radicaux étant éventuellement substitués par un ou plusieurs halogène, alkyle, alcoxy, -CO-alk, cyano, -CONR₁₃R₁₄, -alk-NR₁₅R₁₆, -NR₁₅R₁₆, CF₃, OCF₃, SO₂NH₂, hydroxy ou hydroxyalkyle,

Het représente un hétérocycle choisi parmi benzimidazole, benzoxazole, benzothiazole, benzothiophène, thiophène, quinazoline, quinoxaline, quinoline, pyrrole, pyridine, imidazole, indole, isoquinoline, thiazole, thiadiazole, furane, tétrahydroisoquinoline et tétrahydroquinoline, ces hétérocycles étant éventuellement substitués par un ou plusieurs alkyle, alcoxy, halogène, alcoxycarbonyle, oxo, hydroxy, OCF₃ ou CF₃,

R₁₃ et R₁₄, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R₁₃ et R₁₄ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,

R₁₅ et R₁₆, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R₁₅ et R₁₆ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à

10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,

- les isomères optiques de ces composés et leurs sels avec un acide minéral
5 ou organique pharmaceutiquement acceptables.

5 – Composition selon la revendication 1 pour laquelle le composé de formule (I) est choisi parmi les composés suivants :

- N-{1-[bis-(4-chlorophényl)méthyl]-azétidin-3-yl}-N-(6-chloropyrid-2-yl)-méthyl-sulfonamide,
- 10 N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-N-(6-éthylpyrid-2-yl)-méthyl-sulfonamide,
- N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-N-quinol-6-yl-méthyl-sulfonamide,
- 15 N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-N-quinol-5-yl-méthyl-sulfonamide,
- N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-N-isoquinol-5-yl-méthyl-sulfonamide,
- N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-N-pyrid-3-yl-méthyl-sulfonamide,
- 20 N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-N-(1-oxyde-pyrid-3-yl)-méthylsulfonamide,
- N-(1R,2S,4S)-bicyclo[2,2,1]hept-2-yl-N-{1-[bis-(4-chlorophényl)méthyl]}azétidin-3-yl}-méthylsulfonamide,

- N-(1R,2R,4S)-bicyclo[2,2,1]hept-2-yl-N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-méthylsulfonamide,
- N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide,
- 5 N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-N-(thiazol-2-yl)-méthylsulfonamide,
- N-{1-[bis-(4-chlorophényl)-méthyl]-azétidin-3-yl}-N-(3-méthoxyphényl)-méthylsulfonamide,
- N-{1-[bis-(4-chlorophényl)-méthyl]-azétidin-3-yl}-N-(3-hydroxyphényl)-
10 méthylsulfonamide,
- N-{1-[bis-(4-chlorophényl)-méthyl]-azétidin-3-yl}-N-(3-hydroxyméthyl-phényl)-méthylsulfonamide,
- N-{1-[bis-(4-chlorophényl)-méthyl]-azétidin-3-yl}-N-(méthylsulfonyl)-3-aminobenzoate d'éthyle,
- 15 N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-N-(1-isobutyl-pipérid-4-yl)-méthylsulfonamide,
- N-benzyl-N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}amine,
- N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}-N-(3,5-difluorobenzyl)amine,
- N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}-N-(3,5-difluorobenzyl)méthylsulfonamide,
- 20 N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}-N-(pyrid-3-yl-méthyl)-méthylsulfonamide,
- N-{1-[bis-(4-fluoro-phényl)-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-

- méthylsulfonamide,
- (RS)-N-{1-[(4-chlorophényl)-pyrid-3-yl-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide,
- (R)-N-{1-[(4-chlorophényl)-pyrid-3-yl-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide,
- 5 (S)-N-{1-[(4-chlorophényl)-pyrid-3-yl-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide,
- (RS)-N-{1-[(4-chlorophényl)-pyrid-4-yl-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide,
- 10 (R)-N-{1-[(4-chlorophényl)-pyrid-4-yl-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide,
- (S)-N-{1-[(4-chlorophényl)-pyrid-4-yl-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide,
- 15 (RS)-N-{1-[(4-chlorophényl)-pyrimid-5-yl-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide,
- (R)-N-{1-[(4-chlorophényl)-pyrimid-5-yl-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide,
- (S)-N-{1-[(4-chlorophényl)-pyrimid-5-yl-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide,
- 20 N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-N-(3,5-difluorophényl)-benzylsulfonamide,
leurs isomères optiques et leurs sels avec un acide minéral ou organique pharmaceutiquement acceptables.

6 – Composé de formule :

dans laquelle

R_4 représente un radical $-N(R_4)R_5$, $-N(R_4)-CO-R_5$, $-N(R_4)-SO_2R_6$,

- R_2 et R_3 , identiques ou différents, représentent soit un aromatique choisi
5 parmi phényle, naphtyle et indényle, ces aromatiques étant non substitués ou
substitués par un ou plusieurs halogène, alkyle, alcoxy, formyle, hydroxy,
trifluorométhyle, trifluorométhoxy, $-CO-alk$, cyano, $-COOH$, $COOalk$,
 $-CONR_7R_8$, $-CO-NH-NR_9R_{10}$, alkylsulfanyle, alkylsulfinyle, alkylsulfonyle,
alkylsulfanylalkyle, alkylsulfinylalkyle, alkylsulfonylalkyle, hydroxyalkyle ou
10 $-alk-NR_9R_{10}$; soit un hétéroaromatique choisi parmi les cycles benzofuryle,
benzothiazolyle, benzothiényle, benzoxazolyle, chromannyle, 2,3-dihydrobenzofuryle,
2,3-dihydrobenzothiényle, furyle, imidazolyle, isochromannyle, isoquinolyle, pyrrolyle, pyridyle, pyrimidyle, quinolyle,
1,2,3,4-tétrahydroisoquinolyle, thiazolyle et thiényle, ces hétéroaromatiques
15 pouvant être non substitués ou substitués par un halogène, alkyle, alcoxy,
hydroxy, trifluorométhyle, trifluorométhoxy, cyano, $-COOH$, $COOalk$,
 $-CO-NH-NR_9R_{10}$, $-CONR_7R_8$, $-alk-NR_9R_{10}$, alkylsulfanyle, alkylsulfinyle,
alkylsulfonyle, alkylsulfanylalkyle, alkylsulfinylalkyle, alkylsulfonylalkyle ou
hydroxyalkyle ,
- 20 R_4 représente un radical $-C(R_{11})(R_{12})-Het$, $-Het$, $-C(R_{11})(R_{12})-Ar$, Ar , cycloalkyle
ou norbornyle,

R₅ représente un atome d'hydrogène ou un radical hydroxyalkyle, -alk-COOalk, -alk-CONR₇R₈, -alk-NR₇R₈, alcoxy, Ar, Het, -CH₂Ar, -CH₂Het ou alkyle éventuellement substitué par un ou plusieurs halogène,

R₆ représente un radical hydroxyalkyle, -alk-COOalk, -alk-CONR₇R₈,
5 -alk-NR₇R₈, alcoxy, Ar, Het, -CH₂Ar, -CH₂Het ou alkyle éventuellement substitué par 1 ou plusieurs halogène,

R₇ et R₈, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R₇ et R₈ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10
10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,

R₉ et R₁₀, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle, -COOalk, cycloalkyle, alkylcycloalkyle, -alk-O-alk,
15 hydroxyalkyle ou bien R₉ et R₁₀ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ou insaturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle, -COOalk, -CO-NHalk,
20 -CS-NHalk, oxo, hydroxyalkyle, -alk-O-alk ou -CO-NH₂,

R₁₁ représente un atome d'hydrogène ou un radical hydroxyalkyle, -alk-COOalk, -alk-CONR₇R₈, -alk-NR₇R₈, alcoxyalkyle, Ar, Het, -CH₂Ar, -CH₂Het ou alkyle éventuellement substitué par un ou plusieurs halogène,

R₁₂ représente un atome d'hydrogène ou un radical hydroxyalkyle,
25 -alk-COOalk, -alk-CONR₇R₈, -alk-NR₇R₈, alcoxyalkyle ou alkyle éventuellement substitué par un ou plusieurs halogène,

ou bien R_{11} et R_{12} forment ensemble avec l'atome de carbone auquel ils sont rattachés un cycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,

- 5 Ar représente un radical phényle, naphtyle ou indényle, ces différents radicaux étant éventuellement substitués par un ou plusieurs halogène, alkyle, alcoxy, -CO-alk, cyano, -COOH, -COOalk, -CONR₁₃R₁₄, -CO-NH-NR₁₅R₁₆, alkylsulfanyle, alkylsulfinyle, alkylsulfonyle, -alk-NR₁₅R₁₆, -NR₁₅R₁₆, alkylthioalkyle, formyle, CF₃, OCF₃, Het, -O-alk-NH-cycloalkyle, 10 SO₂NH₂, hydroxy, hydroxyalkyle, -NHCOalk, NHCOOalk ou sur 2 atomes de carbone adjacents par dioxyméthylène,

Het représente un hétérocycle mono ou bicyclique insaturé ou saturé, ayant 3 à 10 chaînons et contenant un ou plusieurs hétéroatomes choisi parmi oxygène, soufre et azote éventuellement substitué par un ou plusieurs alkyle, 15 alcoxy, halogène, alcoxycarbonyle, oxo, hydroxy, les hétérocycles azotés étant éventuellement sous leur forme N-oxydée,

R_{13} et R_{14} , identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R_{13} et R_{14} forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 20 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,

R_{15} et R_{16} , identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R_{15} et R_{16} forment ensemble avec l'atome d'azote 25 auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,

alk représente un radical alkyle ou alkylène,

les radicaux et portions alkyle et alkylène et les radicaux et portions alcoxy sont en chaîne droite ou ramifiée et contiennent 1 à 6 atomes de carbone et les radicaux cycloalkyle contiennent 3 à 10 atomes de carbone,

- 5 les isomères optiques de ces composés et leurs sels avec un acide minéral ou organique pharmaceutiquement acceptables

à l'exception du composé pour lequel R₂ et R₃ représentent des radicaux phényle, R₁ représente un radical -N(R₄)SO₂R₆ pour lequel R₄ représente un radical phényle et R₆ représente un radical méthyle.

- 10 7 – Composé de formule (I) selon la revendication 6 pour lequel Het est choisi parmi benzimidazole, benzoxazole, benzothiazole, benzothiophène, cinnoline, thiophène, quinazoline, quinoxaline, quinoline, pyrazole, pyrrole, pyridine, imidazole, indole, isoquinoline, pyrimidine, thiazole, thiadiazole, pipéridine, pipérazine, triazole, furane, tétrahydroisoquinoline, 15 tétrahydroquinoline, ces hétérocycles étant éventuellement substitués par un ou plusieurs alkyle, alcoxy, halogène, alcoxycarbonyle, oxo, hydroxy, OCF₃ ou CF₃.

8 – Composé de formule (I) selon la revendication 6 pour lequel

R₁ représente un radical -N(R₄)R₅, -N(R₄)-SO₂R₆,

- 20 R₂ représente soit un phényle non substitué ou substitué par un ou plusieurs halogène, alkyle, alcoxy, trifluorométhyle, trifluorométhoxy, -CO-alk, cyano, -CONR₇R₈, hydroxyalkyle ou -alk-NR₇R₈; soit un hétéroaromatique choisi parmi les cycles pyridyle, pyrimidyle, thiazolyle et thiényle, ces hétéroaromatiques pouvant être non substitués ou substitués par un 25 halogène, alkyle, alcoxy, hydroxy, trifluorométhyle, trifluorométhoxy,

-CONR₇R₈, -alk-NR₉R₁₀, alkylsulfanyle, alkylsulfinyle, alkylsulfonyle ou hydroxyalkyle ,

R₃ représente soit un phényle non substitué ou substitué par un ou plusieurs halogène, alkyle, alcoxy, trifluorométhyle, trifluorométhoxy, -CO-alk, cyano,
5 -CONR₇R₈, hydroxyalkyle ou -alk-NR₉R₁₀; soit un hétéroaromatique choisi parmi les cycles pyridyle, pyrimidyle, thiazolyde et thiényle, ces hétéroaromatiques pouvant être non substitués ou substitués par un halogène, alkyle, alcoxy, hydroxy, trifluorométhyle, trifluorométhoxy, -CONR₇R₈, -alk-NR₉R₁₀, alkylsulfanyle, alkylsulfinyle, alkylsulfonyle ou hydroxyalkyle ,
10

R₄ représente un radical -C(R₁₁)(R₁₂)-Het, -Het, -C(R₁₁)(R₁₂)-Ar, Ar ou norbornyle,

R₅ représente un atome d'hydrogène ou un radical hydroxyalkyle, -alk-COOalk, -alk-CONR₇R₈, -alk-NR₉R₁₀, alcoxy, -CH₂Ar, -CH₂Het ou alkyle,
15 R₆ représente un radical hydroxyalkyle, -alk-COOalk, -alk-CONR₇R₈, -alk-NR₉R₁₀, alcoxy, -CH₂Ar, -CH₂Het ou alkyle,

R₇ et R₈, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R₇ et R₈ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,
20

R₉ et R₁₀, identiques ou différents représentent un atome d'hydrogène ou un radical alkyle, cycloalkyle, alkylcycloalkyle, -alk-O-alk ou hydroxyalkyle ou bien R₉ et R₁₀ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ou insaturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi
25

oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle, -COOalk, -COOalk, -CO-NHalk, oxo, hydroxyalkyle ou -CO-NH₂,

R₁₁ représente un atome d'hydrogène ou un radical hydroxyalkyle,
5 -alk-COOalk, -alk-CONR₈R₈, -alk-NR₈R₈, alcoxyalkyle, Ar, Het, -CH₂Ar,
-CH₂Het ou alkyle éventuellement substitué par un ou plusieurs halogène,

R₁₂ représente un atome d'hydrogène ou un radical hydroxyalkyle,
-alk-COOalk, -alk-CONR₈R₈, -alk-NR₈R₈, alcoxyalkyle ou alkyle
éventuellement substitué par un ou plusieurs halogène,
10 ou bien R₁₁ et R₁₂ forment ensemble avec l'atome de carbone auquel ils sont
rattachés un cycle mono ou bicyclique saturé ayant 3 à 10 chaînons,
contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre
et azote et étant éventuellement substitué par un ou plusieurs alkyle,

Ar représente un radical phényle ou naphtyle, ces différents radicaux étant
15 éventuellement substitués par un ou plusieurs halogène, alkyle, alcoxy,
-CO-alk, cyano, -CONR₁₃R₁₄, alkylsulfonyle, -alk-NR₁₅R₁₆, -NR₁₅R₁₆, CF₃, OCF₃,
SO₂NH₂, hydroxy, hydroxyalkyle ou sur 2 atomes de carbone adjacents par
dioxyméthylène,

Het représente un hétérocycle choisi parmi benzimidazole, benzoxazole,
20 benzothiazole, benzothiophène, thiophène, quinazoline, quinoxaline,
quinoline, pyrrole, pyridine, imidazole, indole, isoquinoline, pyrimidine,
thiazole, thiadiazole, furane, tétrahydroisoquinoline et tétrahydroquinoline,
ces hétérocycles étant éventuellement substitués par un ou plusieurs alkyle,
alcoxy, halogène, alcoxycarbonyle, oxo, hydroxy, OCF₃ ou CF₃,

25 R₁₃ et R₁₄, identiques ou différents, représentent un atome d'hydrogène ou un
radical alkyle ou bien R₁₃ et R₁₄ forment ensemble avec l'atome d'azote
auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à

10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,

- R₁₅ et R₁₆, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R₁₅ et R₁₆ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,
- 10 les isomères optiques de ces composés et leurs sels avec un acide minéral ou organique pharmaceutiquement acceptables,

à l'exception du composé pour lequel R₂ et R₃ représentent des radicaux phényle, R₄ représente un radical -N(R₄)SO₂R₈ pour lequel R₄ représente un radical phényle et R₆ représente un radical méthyle.

- 15 9 – Composé de formule (I) selon la revendication 6 dans laquelle

R₁ représente un radical -N(R₄)-SO₂R₈,

- R₂ représente soit un phényle non substitué ou substitué par un ou plusieurs halogène, alkyle, alcoxy, trifluorométhyle, trifluorométhoxy, cyano, -CONR₂R₈, hydroxyalkyle ou -alk-NR₂R₈; soit un hétéroaromatique choisi parmi les cycles 20 pyridyle, pyrimidyle, thiazolyle et thiényle, ces hétéroaromatiques pouvant être non substitués ou substitués par un halogène, alkyle, alcoxy, hydroxy, trifluorométhyle, trifluorométhoxy, -CONR₂R₈ ou hydroxyalkyle ,

- R₃ représente soit un phényle non substitué ou substitué par un ou plusieurs halogène, alkyle, alcoxy, trifluorométhyle, trifluorométhoxy, cyano, -CONR₂R₈, 25 hydroxyalkyle ou -alk-NR₂R₈; soit un hétéroaromatique choisi parmi les cycles pyridyle, pyrimidyle, thiazolyle et thiényle, ces hétéroaromatiques pouvant

être non substitués ou substitués par un halogène, alkyle, alcoxy, hydroxy, trifluorométhyle, trifluorométhoxy, -CONR₇R₈ ou hydroxyalkyle ,

R₄ représente -Het ou Ar,

R₆ représente un radical hydroxyalkyle ou alkyle,

- 5 R₇ et R₈, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R₇ et R₈ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou
- 10 plusieurs alkyle,

Ar représente un radical phényle ou naphtyle, ces différents radicaux étant éventuellement substitués par un ou plusieurs halogène, alkyle, alcoxy, -CO-alk, cyano, -CONR₁₃R₁₄, -alk-NR₁₅R₁₆, -NR₁₅R₁₆, CF₃, OCF₃, SO₂NH₂, hydroxy ou hydroxyalkyle,

- 15 Het représente un hétérocycle choisi parmi benzimidazole, benzoxazole, benzothiazole, benzothiophène, thiophène, quinazoline, quinoxaline, quinoline, pyrrole, pyridine, imidazole, indole, isoquinoline, thiazole, thiadiazole, furane, tétrahydroisoquinoline et tétrahydroquinoline, ces hétérocycles étant éventuellement substitués par un ou plusieurs alkyle,
- 20 alcoxy, halogène, alcoxycarbonyle, oxo, hydroxy, OCF₃ ou CF₃,

- R₁₃ et R₁₄, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R₁₃ et R₁₄ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,

R₁₅ et R₁₆, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R₁₅ et R₁₆ forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi 5 oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs alkyle,

les isomères optiques de ces composés et leurs sels avec un acide minéral ou organique pharmaceutiquement acceptables,

à l'exception du composé pour lequel R₂ et R₃ représentent des radicaux 10 phényle, R₁ représente un radical -N(R₄)SO₂R₆ pour lequel R₄ représente un radical phényle et R₆ représente un radical méthyle.

10 - Composé de formule (I) selon la revendication 6 choisi parmi les composés suivants :

N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(6-chloropyrid-2-yl)-méthyl-15 sulfonamide,

N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-(6-éthylpyrid-2-yl)-méthyl-sulfonamide,

N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-quinol-6-yl-méthyl-sulfonamide,

20 N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-quinol-5-yl-méthyl-sulfonamide,

N-[1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl]-N-isoquinol-5-yl-méthyl-sulfonamide,

N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-N-pyrid-3-yl-méthyl-sulfonamide,

N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-N-(1-oxyde-pyrid-3-yl)-méthylsulfonamide,

5 N-(1R,2S,4S)-bicyclo[2,2,1]hept-2-yl-N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-méthylsulfonamide,

N-(1R,2R,4S)-bicyclo[2,2,1]hept-2-yl-N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-méthylsulfonamide,

10 N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide,

N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-N-(thiazol-2-yl)-méthylsulfonamide,

N-{1-[bis-(4-chlorophényl)-méthyl]-azétidin-3-yl}-N-(3-méthoxyphényl)-méthylsulfonamide,

15 N-{1-[bis-(4-chlorophényl)-méthyl]-azétidin-3-yl}-N-(3-hydroxyphényl)-méthylsulfonamide,

N-{1-[bis-(4-chlorophényl)-méthyl]-azétidin-3-yl}-N-(3-hydroxyméthyl-phényl)-méthylsulfonamide,

20 N-{1-[bis-(4-chlorophényl)-méthyl]-azétidin-3-yl}-N-(méthylsulfonyl)-3-aminobenzoate d'éthyle,

N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-N-(1-isobutyl-pipérid-4-yl)-méthylsulfonamide,

N-benzyl-N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}amine,

- N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}-N-(3,5-difluorobenzyl)amine,
N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}-N-(3,5-difluorobenzyl)méthylsulfonamide,
N-{1-[bis(4-chlorophényl)méthyl]azétidin-3-yl}-N-(pyrid-3-yl-méthyl)-
5 méthylsulfonamide,
N-{1-[bis-(4-fluoro-phényl)-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-
méthylsulfonamide,
(RS)-N-{1-[(4-chlorophényl)-pyrid-3-yl-méthyl]-azétidin-3-yl}-N-(3,5-
difluorophényl)-méthylsulfonamide,
10 (R)-N-{1-[(4-chlorophényl)-pyrid-3-yl-méthyl]-azétidin-3-yl}-N-(3,5-
difluorophényl)-méthylsulfonamide,
(S)-N-{1-[(4-chlorophényl)-pyrid-3-yl-méthyl]-azétidin-3-yl}-N-(3,5-
difluorophényl)-méthylsulfonamide,
15 (RS)-N-{1-[(4-chlorophényl)-pyrid-4-yl-méthyl]-azétidin-3-yl}-N-(3,5-
difluorophényl)-méthylsulfonamide,
(R)-N-{1-[(4-chlorophényl)-pyrid-4-yl-méthyl]-azétidin-3-yl}-N-(3,5-
difluorophényl)-méthylsulfonamide,
(S)-N-{1-[(4-chlorophényl)-pyrid-4-yl-méthyl]-azétidin-3-yl}-N-(3,5-
difluorophényl)-méthylsulfonamide,
20 (RS)-N-{1-[(4-chlorophényl)-pyrimid-5-yl-méthyl]-azétidin-3-yl}-N-(3,5-
difluorophényl)-méthylsulfonamide,
(R)-N-{1-[(4-chlorophényl)-pyrimid-5-yl-méthyl]-azétidin-3-yl}-N-(3,5-
difluorophényl)-méthylsulfonamide,

(S)-N-{1-[(4-chlorophényl)-pyrimid-5-yl-méthyl]-azétidin-3-yl}-N-(3,5-difluorophényl)-méthylsulfonamide,

N-{1-[bis-(4-chlorophényl)méthyl]azétidin-3-yl}-N-(3,5-difluorophényl)-benzylsulfonamide,

- 5 leurs isomères optiques et leurs sels avec un acide minéral ou organique pharmaceutiquement acceptables.

- 11 - Procédé de préparation des composés de formule (I) selon la revendication 6 pour lesquels R_i représente un radical -N(R₄)R₅ dans lequel R₅ est un atome d'hydrogène, R₄ est un radical -CR₁₁R₁₂-Ar ou -CR₁₁R₁₂-Het et
10 R₁₂ est un atome d'hydrogène caractérisé en ce que l'on fait réagir un dérivé Rb-COR₁₁ pour lequel R₁₁ a les mêmes significations que dans la revendication 5 avec un dérivé de formule :

- 15 Rb représente radical Ar ou Het, R₂, R₃, R₁₁, Ar et Het ont les mêmes significations que dans la revendication 6, isole le produit et le transforme éventuellement en sel pharmaceutiquement acceptable.

- 12 - Procédé de préparation des composés de formule (I) selon la revendication 6 pour lesquels R_i représente un radical -N(R₄)-CO-R₅ dans lequel R₄ est un radical -C(R₁₁)(R₁₂)-Het ou -C(R₁₁)(R₁₂)-Ar et R₁₂ est un atome 20 d'hydrogène caractérisé en ce que l'on fait réagir un dérivé Hal-COR₅ avec un dérivé de formule :

Hal représente un atome d'halogène Rb représente un radical Ar ou Het et R₂, R₃, R₅, R₁₁, Ar et Het ont les mêmes significations que dans la revendication 6, isole le produit et le transforme éventuellement en sel pharmaceutiquement acceptable.

13 - Procédé de préparation des composés de formule (I) selon la revendication 6 pour lesquels R_i représente un radical -N(R₄)-SO₂R₆ dans lequel R₄ est un radical -C(R₁₁)(R₁₂)-Ar ou -C(R₁₁)(R₁₂)-Het et R₁₂ est un atome d'hydrogène caractérisé en ce que l'on fait réagir un dérivé Hal-SO₂R₆, avec un dérivé de formule :

R₂, R₃, R₁₁, R₅ ont les mêmes significations que dans la revendication 6, Hal représente un atome d'halogène et Rb représente un radical Ar et Het, isole le produit et le transforme éventuellement en sel pharmaceutiquement acceptable.

14 - Procédé de préparation des composés de formule (I) selon la revendication 6 pour lesquels R_i représente un radical -N(R₄)R₅ caractérisé en ce que l'on fait réagir un dérivé R₅(R₄)NH avec un dérivé de formule :

R_2 , R_3 , R_4 , R_5 ont les mêmes significations que dans la revendication 6, isole le produit et le transforme éventuellement en sel pharmaceutiquement acceptable.

- 5 15 – Procédé de préparation des composés de formule (I) selon la revendication 6 pour lesquels R_1 représente un radical $-\text{N}(\text{R}_4)\text{SO}_2\text{R}_6$ caractérisé en ce que l'on fait réagir un dérivé $\text{Hal}-\text{SO}_2\text{R}_6$ sur un dérivé de formule :

- 10 R_2 , R_3 , R_4 et R_6 ont les mêmes significations que dans la revendication 6 et Hal représente un atome d'halogène, isole le produit et le transforme éventuellement en sel pharmaceutiquement acceptable.

- 16 - Procédé de préparation des composés de formule (I) selon la revendication 6 pour lesquels R_1 représente un radical $-\text{N}(\text{R}_4)\text{COR}_5$ caractérisé en ce que l'on fait réagir un dérivé Hal-COR_6 avec un dérivé de formule :

R_2 , R_3 , R_4 et R_5 ont les mêmes significations que dans la revendication 6 et Hal représente un atome d'halogène, isole le produit et le transforme éventuellement en sel pharmaceutiquement acceptable.

- 5 17 – Procédé de préparation des composés de formule (I) selon la revendication 6 pour lesquels R_1 représente un radical $-N(R_4)-SO_2-R_6$, R_4 est un radical Het ou Ar caractérisé en ce que l'on fait réagir un dérivé $Rd-NH-SO_2-R_6$ avec un dérivé de formule :

- 10 Rd représente un radical Ar ou Het, R_2 , R_3 et R_6 ont les mêmes significations que dans la revendication 6 et Ms représente un radical méthylsulfonyloxy, isole le produit et le transforme éventuellement en sel pharmaceutiquement acceptable.

- 15 18 – Procédé de préparation des composés de formule (I) selon la revendication 6 caractérisé en ce que l'on fait réagir un dérivé $R_2-CHBr-R_3$ avec un dérivé de formule :

R_1 , R_2 et R_3 ont les mêmes significations que dans la revendication 6, isole le produit et le transforme éventuellement en sel pharmaceutiquement acceptable.

- 5 19 – Procédé de préparation des composés de formule (I) selon la revendication 6 pour lesquels R_1 représente un radical $-N(R_4)-SO_2-R_6$ pour lequel R_4 est un radical pipérid-4-yle substitué sur l'azote par un radical alkyle caractérisé en ce que l'on alkyle un composé de formule (I) correspondant pour lequel R_1 représente un radical $-N(R_4)-SO_2-R_6$ pour lequel R_4 est un radical pipérid-4-yle, isole le produit et le transforme éventuellement en sel pharmaceutiquement acceptable.
- 10 20 – Procédé de préparation des composés de formule (I) selon la revendication 6 pour lesquels R_1 représente un radical $-N(R_4)-SO_2-R_6$ pour lequel R_4 est un radical phényle substitué par un radical pyrrolid-1-yle caractérisé en ce que l'on fait réagir la pyrrolidine sur un composé de formule (I) correspondant pour lequel R_1 représente un radical $-N(R_4)SO_2R_6$ pour lequel R_4 est un radical phényle substitué par un atome d'halogène, isole le produit et le transforme éventuellement en sel pharmaceutiquement acceptable.

2805817

N° d'enregistrement
nationalFA 584322
FR 0002776
**RAPPORT DE RECHERCHE
PRÉLIMINAIRE**
établi sur la base des dernières revendications
déposées avant le commencement de la recherche

DOCUMENTS CONSIDÉRÉS COMME PERTINENTS		Revendication(s) concernée(s)	Classement attribué à l'invention par l'INPI
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes		
A	EP 0 406 112 A (ESTEVE LABOR DR) 2 janvier 1991 (1991-01-02) * revendications * ---	1-20	C07D401/12 C07D205/04 A61K31/397 A61K31/506
A	US 4 242 261 A (CALE ALBERT D JR) 30 décembre 1980 (1980-12-30) * le document en entier * ---	1-20	A61K31/425 A61K31/433 A61P9/00 A61P37/00
A	WO 97 01556 A (NOVONORDISK AS ;OLESEN PREBEN H (DK); HANSEN JAN BONDO (DK)) 16 janvier 1997 (1997-01-16) * revendications * ---	1-20	A61P5/00 A61P11/00 A61P1/00 A61P15/08 C07D401/12 C07D213/16
D,A	WO 99 01451 A (MIDDLETON DONALD STUART ;ALKER DAVID (GB); PFIZER LTD (GB); MAW GR) 14 janvier 1999 (1999-01-14) * page 45 - page 46 * -----	6-20	DOMAINES TECHNIQUES RECHERCHÉS (Int.Cl.7)
			C07D A61K A61P
1		Date d'achèvement de la recherche	Examinateur
		10 novembre 2000	Chouly, J
CATÉGORIE DES DOCUMENTS CITÉS		T : théorie ou principe à la base de l'invention E : document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a été publié qu'à cette date de dépôt ou qu'à une date postérieure. D : cité dans la demande L : cité pour d'autres raisons & : membre de la même famille, document correspondant	
X : particulièrement pertinent à lui seul Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie A : antécédent technologique O : divulgation non écrite P : document intercalaire			