

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

701	Title "2-for-1 offer";	
702	# include <2-for-1.h>	
703	Void main (void) {	
704		Define PromotionSpace;
705	Client * pClient = Client :: Create(); // initialise the client attributes	
706	pClient → Publish(); // will eventually discover relevant promotion	
707	Promotion * pPromotion = Promotion :: Create(); // initialise the promotion attributes	
708	pPromotion → Publish(); // will eventually discover relevant client	
}		

Figure 7

Figure 8

9/17

$$901 \curvearrowright S_n = S_1 \cup S_2 \cup \dots \cup S_n$$

$$902 \curvearrowright P_m = P_1 \cup P_2 \cup \dots \cup P_m$$

$$903 \curvearrowright C_{1,1} = S_1 \cup P_1$$

$$C_{1,2} = S_1 \cup P_2$$

$$904 \curvearrowright C_{1,m} = S_1 \cup P_m$$

$$905 \curvearrowright C_{n,m} = S_n \cup P_m$$

$$906 \curvearrowright R = C(P) \times C(S)$$

$$907 \curvearrowright R = \frac{C(S) \times C(P)}{(n \times m)}$$

$$908 \curvearrowright C_{n,n} = S_n \cup P_n$$

Figure 9

Figure 10

11/17

Figure 11

Figure 12

Figure 13

Figure 14

15/17

Figure 15

16/17

Figure 16

Figure 17