Package 'dREG'

July 29, 2015

Version 1.0.5	
Date 2015-07-29	
Title Detection of Regulatory DNA using GRO-seq Data (dREG).	
Author Charles G. Danko <dankoc@gmail.com></dankoc@gmail.com>	
Maintainer Charles G. Danko <dankoc@gmail.com></dankoc@gmail.com>	
Depends R (>= 2.14), bigWig (>= $0.2-9$), e1071, rphast, parallel	
LinkingTo	
Suggests	
Description This package is an analysis pipeline for the analysis of GRO-seq data.	
License GPL version 3 or newer	
Collate read_genomic_data.R get_informative_positions.R train_svm.R eval_svm.R get_test_set.R roc.calc.R zzz.R	
biocViews Sequencing, Analysis	
LazyLoad yes	
R topics documented:	
combine.roc	2
eval_reg_svm	3
genomic_data_model	4
get_informative_positions	:
get_test_set	(
logreg.roc.calc	•
read_genomic_data	10
<i>-</i>	1
roc.calc	
	13
Index	15

2 combine.roc

combine.roc

Combines ROC plots

Description

Combines ROC plots, interpolating and weighting by nTP.

Usage

```
combine.roc(list.roc,
      weight = rep(1, NROW(list.roc)),
      interp.corners = FALSE,
      use.max = FALSE,
      nvals = 100)
```

Arguments

list.roc List including multiple ROC data frame Weight vector for each ROC dataframe weight interp.corners Logical value indicating if the header(1,1) and tail values(0,0) are interpolated to each ROC data frame. Logical value indicating if maximum value of muliple ROCs at same point are use.max

used as TPF values.

Integer value indicating interval number for ROC plot. nvals

Value

A data frame with 2 columns is returned

False Positive Rate FPR True Positive Rate TPR

References

Danko, C. G., Hyland, S. L., Core, L. J., Martins, A. L., Waters, C. T., Lee, H. W., ... & Siepel, A. (2015). Identification of active transcriptional regulatory elements from GRO-seq data. Nature methods, 12(5), 433-438.

See Also

```
roc.calc, logreg.roc.calc, roc.auc, roc.plot
```

Examples

```
list.roc<-list();</pre>
true <- c(rep(1, 100), rep(0, 100));
scores <- c( rnorm(100, 1, 1 ), rnorm(100, 0, 1 ) );
list.roc[[1]] <- logreg.roc.calc( true, scores );</pre>
```

eval_reg_svm 3

```
true <- c(rep(1, 120), rep(0, 110));
scores <- c( rnorm(120, 1, 0.8 ), rnorm(110, 0, 1.2 ) );
list.roc[[2]] <- logreg.roc.calc( true, scores );

r <- combine.roc(list.roc);
roc.plot(r)</pre>
```

eval_reg_svm

Evaluates a set of genomic coordinates for regulatory potential using P/GRO-seq data

Description

Evaluates a set of genomic coordinates for regulatory potential using P/GRO-seq data

Usage

Arguments

Genomic data model return by genomic_data_model.		
A pre-trained SVM model from the e1071 package returned by ${\tt regulatory_svm}$.		
Data frame with 2 columns indicating the universe of positions to test and evaluate(chrom,chromCenter). It can be returned by get_informative_positions.		
String value indicating file path to bigWig file representing the plus strand.		
bw_minus_path		
String value indicating file path to bigWig file representing the minus strand		
Number of positions to evaluate at once (more might be faster, but takes more memory).		
The number of cpu cores in parallel computing		
Logical value indicating the process detail is outputted.		

Value

Returns the value of the SVM for each genomic coordinate specified.

References

Danko, C. G., Hyland, S. L., Core, L. J., Martins, A. L., Waters, C. T., Lee, H. W., ... & Siepel, A. (2015). Identification of active transcriptional regulatory elements from GRO-seq data. Nature methods, 12(5), 433-438.

4 genomic_data_model

See Also

```
get_informative_positions, get_test_set, read_genomic_data, regulatory_svm
```

Examples

```
## The following codes cannot run without the bigWig files

# ps_plus_path <- "bigwig.plus.bw"

# ps_minus_path <- "bigwig.minus.bw"

## Now scan all positions in the genome ...

# positions <- get_informative_positions(ps_plus_path, ps_minus_path,

# depth= 0, step=50, use_ANDOR=TRUE, use_OR=FALSE);

# pred_val<- eval_reg_svm( gdm, asvm, inf_positions, ps_plus_path, ps_minus_path, batch_s

# write.table( data.frame(inf_positions, pred_val), file="eval.tab",

# row.names=FALSE, col.names=FALSE, quote=FALSE, sep="\t")</pre>
```

genomic_data_model Creates a genome data model.

Description

Creates a genome data model.

Usage

```
genomic_data_model(window_sizes, half_nWindows)
```

Arguments

```
window_sizes
half_nWindows
```

Value

A s4 object is returned with

```
\begin{tabular}{lll} $n\_zooms & Number indicating zoom ratio. \\ & window\_sizes & Vector indicating window sizes. \\ & half\_nWindows & \\ \end{tabular}
```

Vector indicating number of half windows.

References

Danko, C. G., Hyland, S. L., Core, L. J., Martins, A. L., Waters, C. T., Lee, H. W., ... & Siepel, A. (2015). Identification of active transcriptional regulatory elements from GRO-seq data. Nature methods, 12(5), 433-438.

See Also

```
read_genomic_data, regulatory_svm, eval_reg_svm
```

Examples

```
gdm <- genomic_data_model( c(10,20,30), c(10, 10, 10) )</pre>
```

```
get_informative_positions
```

Gets center positions that pass a minimum depth filter

Description

Returns a data frame with center positions that pass a minimum depth filter

Usage

```
get_informative_positions(bw_path,
    bw_minus_path = NULL,
    depth = 0,
    window = 400,
    step = 50,
    use_OR = TRUE,
    use_ANDOR = TRUE,
    debug = TRUE)
```

Arguments

bw_path	String indicating file path to bigwig file representing the plus strand.	
bw_minus_path		
	String indicating file path to bigwig file representing the minus strand, If specified, takes the windows that pass the step in both bigWig files.(intersection)	
depth	Integer value indicating minimum number of reads to return.	
window	Integer value indicating window distance between to search for #depth reads [bp].	
step	Integer value indicating step distance for window list.	
use_OR	Logical value indicating if the center positions in minus bigwig file are merged into the results. If false, the intersection operation will be performed to the center positions of plus bigwig and from minus bigwig.	
use_ANDOR	Logical value indicating if the center positions will be merged from the two results. a) Intersection operation with the conditions: window interval=1000 depth>=0. b) Union operation with with the conditions: window interval=100 depth>=2.	
debug	Logical value indication the process detail is outputted.	

6 get_test_set

Details

The use_ANDOR and use_OR parameter are applied to two Bigwig files as following logical:

```
if(use_ANDOR) {
    v1 <- get_window_Or (window=1000, depth=0);
    v2 <- get_window_and (window=100, depth=2);
    vals <- c(v1,v2);
}
else {
    if(use_OR) {
       vals <- get_window_Or( window=window, depth=depth);
    }
    else {
       vals <- get_window_and( window=window, depth=depth);
    }
}</pre>
```

Value

A BED-style data frame will be returned with 3 columns

chrom Chromosome information
chromStart Start position
chromEnds End position

References

Danko, C. G., Hyland, S. L., Core, L. J., Martins, A. L., Waters, C. T., Lee, H. W., ... & Siepel, A. (2015). Identification of active transcriptional regulatory elements from GRO-seq data. Nature methods, 12(5), 433-438.

See Also

```
get_test_set, read_genomic_data, regulatory_svm, eval_reg_svm
```

get_test_set Returns a genome loci of positive set and negative set for SVM training purpose.

Description

Returns a genome loci of positive set and negative set for SVM training purpose

get_test_set 7

Usage

Arguments

Bed-style data frame indicating the universe of positions to test and evaluate positions (chrom,chromCenter). Bed-style data frame containing positive positions (chrom,chromStart,chromEnd). positive Number of training examples n_samp Bed-style data frame containing inverse negative set of positions (chrom, chromStart, chromEnd). allow enrich_negative_near_pos Fraction of training examples chosen to be nearby (<=5kb) a positive example [0,1].extra_enrich_bed Bed-style data frame indicating extra bed file to enrich near. extra_enrich_frac Fraction of final positions sampled in the negative set which are in the bed file. Unused if extra_enrich_bed is NULL.

Details

avoid_dist

(1). The parameter of positions can be obtained by get_informative_positions.

Integer value indicating how long extend avoiding genomic loci.

Value

Returns a data frame including double number of the _train set(2*n_samp), each sample includes 4 items.

```
chrom
chromStart
chromEnd
status     1 for positive and 0 for negative.
```

References

Danko, C. G., Hyland, S. L., Core, L. J., Martins, A. L., Waters, C. T., Lee, H. W., ... & Siepel, A. (2015). Identification of active transcriptional regulatory elements from GRO-seq data. Nature methods, 12(5), 433-438.

See Also

```
get_informative_positions, read_genomic_data, regulatory_svm, eval_reg_svm
```

8 logreg.roc.calc

logreg.roc.calc

Calculates the TPR and FPR for a ROC plot.

Description

Calculates the TPR and FPR for a ROC plot from the status and score vector.

Usage

```
logreg.roc.calc(true, scores)
```

Arguments

true Vector indicating the two status, 1 and 0.

scores Vector indicating the scores for each status calculated by the predict function.

Details

The function of roc.calc calculates a ROC matrix for the genomic loci, whereas the function of logreg.roc.calc calculates for a status vector.

Value

A data frame with 3 columns is returned, which is same as roc.calc.

FPR False Positive Rate.

TPR True Positive Rate.

threshold Threshold based on the score parameter.

References

Danko, C. G., Hyland, S. L., Core, L. J., Martins, A. L., Waters, C. T., Lee, H. W., ... & Siepel, A. (2015). Identification of active transcriptional regulatory elements from GRO-seq data. Nature methods, 12(5), 433-438.

See Also

```
roc.calc, combine.roc, roc.auc, roc.plot
```

Examples

```
true <- c(rep(1, 100), rep(0, 100));
scores <- c( rnorm(100, 1, 1 ), rnorm(100, 0, 1 ) );
roc_mat <- logreg.roc.calc( true, scores );
AUC<- roc.auc(roc_mat);
roc.plot(roc_mat, main=AUC );</pre>
```

read_genomic_data 9

read_genomic_data Gets read data from the specified genomic position.

Description

Gets read data from the specified genomic position.

Usage

Arguments

bed bed-style data frame of genomic regions.(at least 3 columns including chrom,

start, end).

file_bigwig_plus

String value indicating file path to bigwig file representing GRO-seq/ PRO-seq

reads on the plus strand.

file_bigwig_minus

String value indicating file path to bigwig file representing GRO-seq/PRO-seq

reads on the minus strand.

as_matrix Logical type, if true, returns a matrix object, otherwise returns a list() object,

where each element in the list is the zoom data.

scale.method String value indicating the normalize method of read counts. Two options are

available, "logistic" or "linear", default value is logistic. See details

Details

Data normalize method:

```
(1): Logistic function: F(x) = 1/(1+exp(-a*(x-b)))
```

(2): Linear function: $F(x) = x / tootal_reads$

Value

A matrix of normalized read count, the columns are windows list specified by gdm object.

References

Danko, C. G., Hyland, S. L., Core, L. J., Martins, A. L., Waters, C. T., Lee, H. W., ... & Siepel, A. (2015). Identification of active transcriptional regulatory elements from GRO-seq data. Nature methods, 12(5), 433-438.

10 regulatory_svm

See Also

```
get_informative_positions, get_test_set, regulatory_svm, eval_reg_svm
```

Examples

```
file_bigwig_plus <- "";
file_bigwig_minus <- "";
gdm <- new genomic_data_model(20, 10);
#mat <- read_genomic_data(gdm, bed, file_bigwig_plus, file_bigwig_minus);
#summary(mat);</pre>
```

regulatory_svm

Trains a SVM to recognize a certain pattern of regulatory positions

Description

Trains a SVM to recognize a certain pattern of regulatory positions.

Usage

```
regulatory_svm(gdm,
    bw_plus_path,
    bw_minus_path,
    positions, positive,
    allow = NULL,
    n_train = 25000,
    n_eval = 1000,
    pdf_path = "roc_plot.pdf",
    plot_raw_data = TRUE,
    extra_enrich_bed = NULL,
    extra_enrich_frac = 0.1,
    enrich_negative_near_pos = 0.15,
    svm_type = "SVR", ...,
    debug = TRUE)
```

Arguments

gdm	Genomic data model return by genomic_data_model.		
bw_plus_path	String indicating file path to bigWig file representing the plus strand.		
bw_minus_path			
	String indicating file path to bigWig file representing the minus strand.		
positions	Data frame with two columns(chrom,chromCenter), indicating the universe of positions to test and evaluate. It can be generated by get_informative_positions.		
positive	Bed-style data frame containing positive positions(chrom,chromStart,chromEnd).		
allow	$Bed-style\ data\ frame\ containing\ positions\ to\ avoid\ in\ the\ negative\ set (chrom, chromStart, chromEnd).$		
n_train	Number of training examples.		
n_eval	Number of examples on which to test performance.		

roc.auc 11

If TRUE (default), and if a PDF file is specified, plots the raw data used to train the model.

extra_enrich_bed

Bed-style data frame indicating extra bed file to enrich near. Used by get_test_set.

extra_enrich_frac

Fraction of final positions sampled in the negative set which are in the bed file.

Unused if extra_enrich_bed is NULL. Used by get_test_set.

enrich_negative_near_pos

Fraction of training examples chosen to be nearby (<=5kb) a positive example [0,1].

Two options, "SVR" for support vecctor regression (epsilon-regression). "P_SVM"

String value indicating a PDF file. Set to NULL if no PDF should be printed.

for probabilistic SVM (C-classification).

The parameters for plot function

debug Logical value indication the process detail is outputted.

Value

A sym model trained by \sym function in e1071 package.

References

pdf path

svm_type

Danko, C. G., Hyland, S. L., Core, L. J., Martins, A. L., Waters, C. T., Lee, H. W., ... & Siepel, A. (2015). Identification of active transcriptional regulatory elements from GRO-seq data. Nature methods, 12(5), 433-438.

See Also

```
get_informative_positions,get_test_set,read_genomic_data,eval_reg_svm
```

roc.auc

Computes the AUC of a ROC plot.

Description

Computes the AUC of a ROC plot.

Usage

roc.auc(ROC)

Arguments

ROC

A matrix with 3 columns (FPR, TPR and threshold) calculated by logreg.roc.calc.

Details

The parameter of ROC is a matrix or data frame including 3 columns, FPR(False Positive Rate), TPR(True Positive Rate) and threshold.

12 roc.calc

Value

AUC value is returned.

References

Danko, C. G., Hyland, S. L., Core, L. J., Martins, A. L., Waters, C. T., Lee, H. W., ... & Siepel, A. (2015). Identification of active transcriptional regulatory elements from GRO-seq data. Nature methods, 12(5), 433-438.

See Also

```
roc.calc, logreg.roc.calc, combine.roc, roc.plot
```

Examples

```
roc_mat <- data.frame( FPR=c(0, 0.25, 0.5, 0.75, 1),
TPR=c(0, 0.5, 0.8, 0.95, 1),
threshold=c(1, 1, 1, 1, 1) );
AUC<- roc.auc( roc_mat );
roc.plot( roc_mat, main=AUC );</pre>
```

roc.calc

Calculates the TPR and FPR for a ROC plot.

Description

Calculates the TPR and FPR for a ROC plot.

Usage

```
roc.calc(true,
    possible,
    scores,
    filterPossible = TRUE,
    n_points = 100)
```

Arguments

true Bed-style data frame, a set of 'true' genomic intervals (e.g. ChIP-seq peaks).

Bed-style data frame, A set of 'possible' genomic intervals (e.g. DNAse-1 peaks).

Scores Vector indicating the scores for each possibe genomic interval in parameter of possible.

filterPossible Vector indicating indexes which be removed.

n_points Integer indicating how many points for the ROC plot.

roc.plot

Value

A data frame with 3 columns is returned

FPR False Positive Rate
TPR True Positive Rate

threshold Threshold based on the score parameter.

References

Danko, C. G., Hyland, S. L., Core, L. J., Martins, A. L., Waters, C. T., Lee, H. W., ... & Siepel, A. (2015). Identification of active transcriptional regulatory elements from GRO-seq data. Nature methods, 12(5), 433-438.

See Also

```
logreg.roc.calc, combine.roc, roc.auc, roc.plot
```

roc.plot

Draws a ROC figure.

Description

Draws a ROC figure.

Usage

```
roc.plot(ROC, ...)
```

Arguments

ROC Matrix or data frame with 3 columns, FPR, TPR and threshold.

... The parameters for plot function

Value

None

References

Danko, C. G., Hyland, S. L., Core, L. J., Martins, A. L., Waters, C. T., Lee, H. W., ... & Siepel, A. (2015). Identification of active transcriptional regulatory elements from GRO-seq data. Nature methods, 12(5), 433-438.

See Also

```
roc.calc, logreg.roc.calc, combine.roc, roc.auc
```

14 roc.plot

Examples

```
true <- c(rep(1, 100), rep(0, 100));
scores <- c( rnorm(100, 1, 1 ), rnorm(100, 0, 1 ) );
roc_mat <- logreg.roc.calc( true, scores );
AUC<- roc.auc(roc_mat);
roc.plot(roc_mat, main=AUC );</pre>
```

Index

```
*Topic function
    eval_reg_svm, 3
    genomic_data_model,4
    get_informative_positions, 5
    get\_test\_set, 6
    read_genomic_data,9
    regulatory_svm, 10
*Topic plot
    combine.roc, 2
    logreg.roc.calc, 8
   roc.auc, 11
    roc.calc, 12
    roc.plot, 13
combine.roc, 2, 8, 12, 13
eval_reg_svm, 3, 5-7, 10, 11
genomic_data_model, 3, 4, 9, 10
get_informative_positions, 3, 4, 5,
        7, 10, 11
get_test_set, 4, 6, 6, 10, 11
logreg.roc.calc, 2, 8, 8, 11-13
read_genomic_data, 4-7, 9, 11
regulatory_svm, 3-7, 10, 10
roc.auc, 2, 8, 11, 13
roc.calc, 2, 8, 12, 12, 13
roc.plot, 2, 8, 12, 13, 13
```