Parsing

Part III

Top Down Parsing

- Find a left-most derivation
- Find (build) a parse tree
- Start building from the root and work down...
- As we search for a derivation
 - Must make choices:
 - Which rule to use
 - Where to use it
- May run into problems!!

Top-Down Parsing

- Recursive-Descent Parsing
 - Backtracking is needed (If a choice of a production rule does not work, we backtrack to try other alternatives.)
 - It is a general parsing technique, but not widely used.
 - Not efficient
- Predictive Parsing
 - no backtracking
 - efficient
 - needs a special form of grammars (LL(1) grammars).
 - Recursive Predictive Parsing is a special form of Recursive Descent parsing without backtracking.
 - Non-Recursive (Table Driven) Predictive Parser is also known as LL(1) parser.

S

1.
$$S \rightarrow Aa$$

3.
$$A \rightarrow aaB$$

5.
$$B \rightarrow bbb$$

6.
$$C \rightarrow aaD$$

- 2. → Ce
 3. A → aaB
 4. → aaba
- 5. $B \rightarrow bbb$

- 1. $S \rightarrow Aa$
- 2. → Ce
- 3. A \rightarrow aaF
- 4. → aaba
- 5. $B \rightarrow bbb$
- 6. **C** → **aa**D
- 7. $\mathbf{D} \rightarrow \mathbf{bbd}$

- 1. $S \rightarrow Aa$
- 2. → Ce
- 3. $A \rightarrow aaB$
- 4. → aaba
- 5. $B \rightarrow bbb$
- C → aaD
- 7. $D \rightarrow bbd$

- 1. $S \rightarrow Aa$
- 2. → Ce
- 3. A \rightarrow aaB
- 4. → aaba
- 5. $B \rightarrow bbb$
- 6. $C \rightarrow aaD$
- 7. $D \rightarrow bbd$

- 1. $S \rightarrow Aa$
- 2. → Ce
- 3. $A \rightarrow aaB$
- 4. → aaba
- 5. $B \rightarrow bbb$
- C → aaD
- 7. $D \rightarrow bbd$

- 5. $\frac{B}{C} \rightarrow bbb$ 6. $\frac{C}{C} \rightarrow aaD$

- 1. $S \rightarrow Aa$
- 2. → Ce
- 3. A \rightarrow aaB
- 4. → aaba
- 5. $B \rightarrow bbb$
- 6. $C \rightarrow aaD$
- 7. $D \rightarrow bbd$


```
    S → Aa
    → Ce
    A → aaB
    → aaba
    B → bbb
    C → aaD
    D → bbd
```

We need an ability to back up in the input!!!

- 1. $S \rightarrow Aa$
- 2. → Ce
- 3. $A \rightarrow aaB$
- 4. → aaba
- 5. $B \rightarrow bbb$
- 6. $C \rightarrow aaD$
- 7. $D \rightarrow bbd$

S → Aa
 Ce
 A → aaB
 → aaba
 B → bbb
 C → aaD


```
1. S \rightarrow Aa
```

2. → Ce

3. $A \rightarrow aaB$

4. → aaba

5. $B \rightarrow bbb$

6. $C \rightarrow aaD$

7. $D \rightarrow bbd$

s

- S → Aa
 Ce
 A → aaB
 → aaba
- 5. $B \rightarrow bbb$
- 7. $D \rightarrow bbd$


```
    S → Aa
    → Ce
    A → aaB
    → aaba
    B → bbb
    C → aaD
    D → bbd
```



```
    S → Aa
    → Ce
    A → aaB
    → aaba
    B → bbb
    C → aaD
    D → bbd
```


- 1. $S \rightarrow Aa$
- 2. \rightarrow Ce
- 3. $A \rightarrow aaB$
- 4. → aaba
- B → bbb
- C → aaD
- 7. $D \rightarrow bbd$

- 1. $S \rightarrow Aa$
- 2. → Ce
- 3. $A \rightarrow aaB$
- 4. → aaba
- 5. $\mathbf{B} \rightarrow \mathbf{bbb}$
- 6. $C \rightarrow aaD$
- 7. $D \rightarrow bbd$

Successfully parsed!!

Recursive-Descent Parsing Algorithm

- A recursive-descent parsing program consists of a set of procedures – one for each non-terminal
- Execution begins with the procedure for the start symbol
 - Announces success if the procedure body scans the entire input

```
void A(){
   for (j=1 to t){ /* assume there is t number of A-productions */
        Choose a A-production, A_1 \rightarrow X_1 X_2 \dots X_k;
        for (i=1 \text{ to } k)
                 if (X_i) is a non-terminal
                         call procedure X_i();
                 else if (X_i) equals the current input symbol a)
                         advance the input to the next symbol;
                 else backtrack in input and reset the pointer
```

Predictive Parser

When re-writing a non-terminal in a derivation step, a predictive parser can uniquely choose a production rule by just looking the current symbol in the input string.

Predictive Parser (example)

```
stmt → if ..... |
while ..... |
begin ..... |
for .....
```

- When we are trying to write the non-terminal stmt, if the current token is if we have to choose first production rule.
- When we are trying to write the non-terminal stmt, we can uniquely choose the production rule by just looking the current token.
- We eliminate the left recursion in the grammar, and left factor it.
 But it may not be suitable for predictive parsing (not LL(1) grammar).

Recursive Predictive Parsing

Each non-terminal corresponds to a procedure.

```
Ex: A → aBb (This is only the production rule for A)
proc A {

match the current token with a, and move to the next token;
call 'B';
match the current token with b, and move to the next token;
```

Recursive Predictive Parsing (cont.)

```
A \rightarrow aBb \mid bAB
proc A {
   case of the current token {
        'a': - match the current token with a, and move to the next token;
             - call 'B';
             - match the current token with b, and move to the next token;
        'b': - match the current token with b, and move to the next token;
             - call 'A';
             - call 'B';
```

Recursive Predictive Parsing (cont.)

When to apply ε-productions.

$$A \rightarrow aA \mid bB \mid \epsilon$$

- If all other productions fail, we should apply an ϵ -production. For example, if the current token is not a or b, we may apply the ϵ -production.
- Most correct choice: We should apply an ε-production for a non-terminal A when the current token is in the follow set of A (which terminals can follow A in the sentential forms).

Recursive Predictive Parsing (Example)

```
A \rightarrow aBe \mid cBd \mid C
B \rightarrow bB \mid \epsilon
C \rightarrow f
                                                          proc C {
proc A {
    case of the current token {
       a: - match the current token with a.
             and move to the next token;
                                                          proc B {
           - call B;
           - match the current token with e,
             and move to the next token;
       c: - match the current token with c,
                                                                      - call B
             and move to the next token;
           - call B;
           - match the current token with d.
             and move to the next token;
       f: - call C
```

First Function

Let α be a string of symbols (terminals and nonterminals)

Define:

FIRST (α) = The set of terminals that could occur first in any string derivable from α = { $\alpha \mid \alpha \Rightarrow * aw$, plus ϵ if $\alpha \Rightarrow * \epsilon$ }

Example:
$$E' \rightarrow T E'$$

$$E' \rightarrow + T E' \mid \epsilon$$

$$T \rightarrow F T'$$

$$T' \rightarrow * F T' \mid \epsilon$$

$$F \rightarrow (E) \mid \underline{id}$$

$$FOLLOW(E) = \{ \}, \$ \}$$

$$FOLLOW(T) = \{ +, \}, \$$$

```
FIRST(F) = \{ (, id) \}
FIRST(T') = \{ *, \epsilon \}
FIRST(T) = \{ (, id) \}
FIRST(E') = \{ +, \epsilon \}
FIRST(E) = \{ (, id) \}
```

Computing the First Function

For all symbols X in the grammar...

```
if X is a terminal then
    FIRST(X) = \{X\}
if X \rightarrow \epsilon is a rule then
    add & to FIRST(X)
\underline{if} X \rightarrow Y_1 Y_2 Y_3 \dots Y_K is a rule then
    \underline{if} \ a \in FIRST(\underline{Y}_1) \ \underline{then}
        add a to FIRST(X)
    \underline{if} \ \epsilon \in FIRST(Y_1) \ \underline{and} \ a \in FIRST(Y_2) \ \underline{then}
        add a to FIRST(X)
    \underline{\text{if}} \ \epsilon \in \text{FIRST}(\underline{Y}_1) \ \underline{\text{and}} \ \epsilon \in \text{FIRST}(\underline{Y}_2) \ \underline{\text{and}} \ a \in \text{FIRST}(\underline{Y}_3) \ \underline{\text{then}}
        add a to FIRST(X)
    \underline{if} \ \epsilon \in FIRST(Y_i) for all Y_i then
        add & to FIRST(X)
```

Repeat until nothing more can be added to any sets.

To Compute the FIRST(X1X2X3...XN)

```
Result = \{\}
Add everything in FIRST(X_1), except \varepsilon, to result
if \varepsilon \in FIRST(X_{+}) then
   Add everything in FIRST(X2), except &, to result
   if \varepsilon \in FIRST(X_2) then
      Add everything in FIRST (X_3), except \varepsilon, to result
      if E ∈ FIRST(X₂) then
         Add everything in FIRST(X_4), except \varepsilon, to result
            if \varepsilon \in FIRST(X_{N-1}) then
               Add everything in FIRST (X_N), except \varepsilon, to result
               \underline{\text{if}} \ \epsilon \in \text{FIRST}(X_N) \ \underline{\text{then}}
                  // Then X_1 \Rightarrow^* \epsilon, X_2 \Rightarrow^* \epsilon, X_3 \Rightarrow^* \epsilon, ... X_N \Rightarrow^* \epsilon
                  Add to result
               endIf
            endIf
      endIf
   endIf
endIf
```

First - Example

- $P \rightarrow i | c | n T S$
- $Q \rightarrow P \mid aS \mid bScST$
- $R \rightarrow b \mid \epsilon$
- $S \rightarrow c | R n | \epsilon$
- $T \rightarrow RSq$

- FIRST(P) = $\{i,c,n\}$
- FIRST(Q) = $\{i,c,n,a,b\}$
- FIRST(R) = $\{b, \epsilon\}$
- FIRST(S) = $\{c,b,n,\epsilon\}$
- FIRST(T) = $\{b,c,n,q\}$

First - Example

- $S \rightarrow aSe | STS$
- $T \rightarrow RSe|Q$
- $R \rightarrow rSr | \epsilon$
- $Q \rightarrow ST \mid \varepsilon$

- FIRST(S) = {a}
- FIRST(R) = $\{r, \epsilon\}$
- FIRST(T) = $\{r, a, \epsilon\}$
- FIRST(Q) = $\{a, \epsilon\}$

FOLLOW Sets

- FOLLOW(A) is the set of terminals (including end marker of input - \$) that may follow non-terminal A in some sentential form.
- FOLLOW(A) = {c | S \Rightarrow ⁺ ...Ac...} \cup {\$} if S \Rightarrow ⁺ ...A
- For example, consider $L \Rightarrow^+ (())(L)L$ Both ')' and end of file can follow L
- NOTE: ε is *never* in FOLLOW sets

Computing FOLLOW(A)

- If A is start symbol, put \$ in FOLLOW(A)
- 2. Productions of the form B $\rightarrow \alpha$ A β , Add FIRST(β) { ϵ } to FOLLOW(A)

INTUITION: Suppose B
$$\rightarrow$$
 AX and FIRST(X) = {c}
S \Rightarrow + α B β \Rightarrow α A X β \Rightarrow + α A c δ β
= FIRST(X)

3. Productions of the form B $\rightarrow \alpha$ A or B $\rightarrow \alpha$ A β where $\beta \Rightarrow^* \epsilon$ Add FOLLOW(B) to FOLLOW(A)

INTUITION:

- Suppose B \rightarrow Y A S \Rightarrow ⁺ α B β \Rightarrow α Y A β

- Suppose B \rightarrow A X and X \Rightarrow * λ S \Rightarrow * α B β \Rightarrow α A X β \Rightarrow * α A β

Example

- $S \rightarrow a S e \mid B$
- $B \rightarrow b B C f | C$
- $C \rightarrow c C g | d | \epsilon$
- FIRST(C) = $\{c,d,\epsilon\}$
- FIRST(B) = $\{b,c,d,\epsilon\}$
- FIRST(S) = $\{a,b,c,d,\epsilon\}$

- FOLLOW(C) =
- FOLLOW(B) =

Assume the first non-terminal is the start symbol

- $S \rightarrow a \underline{Se} \mid B$
- $B \rightarrow b B C f | C$
- $C \rightarrow c \underline{C} \underline{g} | d | \epsilon$
- FIRST(C) = $\{c,d,\epsilon\}$
- FIRST(B) = $\{b,c,d,\epsilon\}$
- FIRST(S) = $\{a,b,c,d,\epsilon\}$

- $FOLLOW(C) = \{f,g\}$
- $FOLLOW(B) = \{c,d,f\}$
- FOLLOW(S) = {\$,e}

- $S \rightarrow a S e \mid \underline{B}$
- $B \rightarrow b B C f | C$
- $C \rightarrow c C g | d | \epsilon$
- FIRST(C) = {c,d, ε }
- FIRST(B) = $\{b,c,d,\epsilon\}$
- FIRST(S) = $\{a,b,c,d,\epsilon\}$

- FOLLOW(C) = $\{f,g\} \cup FOLLOW(B)$ = $\{c,d,e,f,g,\$\}$
- FOLLOW(B) = $\{c,d,f\} \cup FOLLOW(S)$ = $\{c,d,e,f,\$\}$
- FOLLOW(S) = $\{\$, e\}$

Using rule #3

- $S \rightarrow (A) \mid \varepsilon$
- $A \rightarrow TE$
- $E \rightarrow \& TE \mid \varepsilon$
- $T \rightarrow (A) |a|b|c$
- FIRST(T) = {(,a,b,c}
- FIRST(E) = $\{\&, \varepsilon\}$
- $FIRST(A) = \{(,a,b,c\}\}$
- FIRST(S) = $\{(, \varepsilon)\}$

- FOLLOW(S) =
- FOLLOW(A) =
- FOLLOW(E) =
- FOLLOW(T) =

- $S \rightarrow (A) \mid \varepsilon$
- $A \rightarrow TE$
- $E \rightarrow \& TE \mid \varepsilon$
- $T \rightarrow (A) |a|b|c$
- FIRST(T) = $\{(,a,b,c)\}$
- FIRST(E) = $\{\&, \varepsilon\}$
- $FIRST(A) = \{(,a,b,c\}\}$
- FIRST(S) = $\{(, \varepsilon)\}$

- FOLLOW(S) = {\$}
- FOLLOW(A) = {) }
- FOLLOW(E) =

$$FOLLOW(A) = \{ \}$$

FOLLOW(T) =

FIRST(E)
$$\cup$$
 FOLLOW(A) \cup FOLLOW(E) = {&,)}

Will never backtrack!

Requirement:

For every rule:

$$A \rightarrow \alpha_1 \mid \alpha_2 \mid \alpha_3 \mid \ldots \mid \alpha_N$$

We must be able to choose the correct alternative by looking only at the next symbol

May peek ahead to the next symbol (token).

Example |

$$A \rightarrow aB$$

 $\rightarrow cD$
 $\rightarrow E$

Assuming $a,c \notin FIRST(E)$

Example |

```
Stmt → <u>if</u> Expr...

→ <u>for</u> LValue ...

→ <u>while</u> Expr...

→ <u>return</u> Expr...

→ <u>ID</u> ...
```

LL(1) Grammars

- Can do predictive parsing
- Can select the right rule
- Looking at only the next 1 input symbol
 - First L: Left to Right Scanning
 - Second L: Leftmost derivation
 - 1 : one input symbol look-ahead for predictive decision

LL(k) Grammars

- Can do predictive parsing
- Can select the right rule
- Looking at only the next k input symbols

Techniques to modify the grammar:

- Left Factoring
- Removal of Left Recursion

LL(k) Language

Can be described with an LL(k) grammar

Table Driven Predictive Parsing

Assume that the grammar is LL(1)

i.e., Backtracking will never be needed

Always know which righthand side to choose (with one look-ahead)

- No Left Recursion
- · Grammar is Left-Factored.

Step 1: From grammar, construct table.

Step 2: Use table to parse strings.

Table Driven Predictive Parsing

Table Driven Predictive Parsing

Predictive Parsing Algorithm

```
Set input ptr to first symbol; Place $ after last input symbol
Push S
Push S
<u>repeat</u>
  X = stack top
  a = current input symbol
  if X is a terminal or X = $ then
     if X == a then
       Pop stack
       Advance input ptr
     else
       Error
     endIf
  elseIf Table[X,a] contains a rule then // call it X \rightarrow Y_1 Y_2 \dots Y_K
     Pop stack
     Push Y<sub>K</sub>
     . . .
     Push Y<sub>2</sub>
     Push Y<sub>1</sub>
     Print ("X \rightarrow Y<sub>1</sub> Y<sub>2</sub> ... Y<sub>K</sub>")
  else // Table[X,a] is blank
                                                   X
                                                                             \mathbf{Y}_{K}
     Syntax Error
                                                   A
  endIf
until X == $
```

Input: (id*id)+id Output:

Example

	<u>id</u>	+	*	()	\$
E	E→TE'			E→TE'		
E'		E' →+ TE'			Ε'→ε	Ε'→ε
T	T→FT'			T→FT'		
T'		T'→ε	T'→*FT'		T'→ε	T'→ε
F	F→ <u>id</u>			F →(E)		

 \mathbf{F}

F→<u>id</u>

```
Example
Input:
    (id*id)+id
Output:
                                                             id
                                                                     id
                                                                                  id
                                                    Add $ to end of input
                                 Е
                                                    Push $
                                                    Push E
                                                  *
                          <u>id</u>
                        E→TE'
                                                           E→TE'
                   E
                  \mathbf{E}'
                                  E' \rightarrow +TE'
                                                                        Ε'→ε
                                                                                    Ε'→ε
                   T
                        T→FT'
                                                           T→FT'
                  T'
                                              T' \rightarrow *FT'
                                    T'→ε
                                                                        T'→ε
                                                                                    T'→ε
```

 $F \rightarrow (E)$

```
Input:
(id*id)+id
Output:
```

Example


```
Example
Input:
    (id*id)+id
Output:
    E
          → T E'
                                                             id
                                                                     id
                                                                                   id $
                                                     Look at Table [E, '(']
                                                     Use rule E→TE'
                                  т
                                                     Pop E
                                 E'
                                                     Push E'
                                                     Push T
                                                  *Print E→ŢE'
                                                                                       $
                          <u>id</u>
                        E→TE'
                                                            E→TE'
                   Ε
                  \mathbf{E}'
                                   E' \rightarrow +TE'
                                                                         Ε'→ε
                                                                                     E'→ε
                        T→FT'
                                                            T→FT'
                   T'
                                               T' \rightarrow *FT'
                                     T'→ε
                                                                         T'→ε
                                                                                     T'→ε
                         F→<u>id</u>
                   F
                                                            F \rightarrow (E)
```

```
Example
Input:
      (id*id)+id
Output:
     \mathbf{E}
               → T E'
                                                                                                       <u>id</u> )
                                                                                          id
                                                                                                                     + <u>id</u> $
                                                                                            Table [ T, '(' ] = T \rightarrow FT'
                                                                                            Pop T
                                                 \mathbf{E}'
                                                                                            Push T'
                                                                                            Push F
                                                                                            Print T→FT'
                                                                           \star
                                       id
                                   E→TE'
                                                                                        E→TE'
                            E
                                                   E' \rightarrow +TE'
                                                                                                           Ε′→ε
                           \mathbf{E}'
                                                                                                                             E' \rightarrow \epsilon
                                   T→FT'
                                                                                        T \rightarrow FT'
                                                                     T' \rightarrow *FT'
                                                                                                           T' \rightarrow \epsilon
                           T'
                                                      T' \rightarrow \epsilon
                                                                                                                             T' \rightarrow \epsilon
                            \mathbf{F}
                                     F→<u>id</u>
                                                                                         F→(E)
```


 \mathbf{E}'

T'

 \mathbf{F}

T→FT'

F→<u>id</u>

Ε'→ε

 $T' \rightarrow \epsilon$

 $T \rightarrow FT'$

 $\mathbf{F} \rightarrow (\mathbf{E})$

Ε'→ε

 $T' \rightarrow \epsilon$

E'→+TE'

 $T' \rightarrow \epsilon$

 $T' \rightarrow *FT'$

 \mathbf{F}

F→<u>id</u>

 $F \rightarrow (E)$

_	<u>id</u>	+	*	()	\$
E	E→TE'			E→TE'		
E'		E' →+ TE'			Ε'→ε	Ε'→ε
T	T→FT'			T→FT'		
T'		Τ'→ε	T'→*FT'		Τ'→ε	T'→ε
F	F→ <u>id</u>			F →(E)		

F

F→<u>id</u>

 $F \rightarrow (E)$

Reconstructing the Parse Tree

Input: (id*id)+id Output: E → T E'

$\begin{array}{ccc} \underline{Output:} & & \\ E & \rightarrow T & E' \\ T & \rightarrow F & T' \end{array}$

$\begin{array}{ccc} \underline{Output:} & \\ E & \rightarrow T E' \\ T & \rightarrow F T' \\ F & \rightarrow (E) \end{array}$

Reconstructing the Parse Tree

Reconstructing the Parse Tree

```
Input:
                                           Leftmost Derivation:
     (id*id)+id
                                           \mathbf{E}
Output:
                                          T E'
    E
           \rightarrow T E'
                                          F T'E'
        → F T'
                                           (E) T'E'
    \mathbf{F} \rightarrow (\mathbf{E})
                                           (TE') T'E'
    \mathbf{E} \rightarrow \mathbf{T} \mathbf{E}'
                                           (F T'E') T'E'
    T \rightarrow F T'
                                           (id T'E') T'E'
    F → <u>id</u>
                                           (id*FT'E')T'E'
    T"
        \rightarrow * F T'
                                           ( <u>id</u> * <u>id</u> T'E') T'E'
           → id
                                           ( <u>id</u> * <u>id</u> E') T'E'
    T'
         → ε
                                           ( <u>id</u> * <u>id</u> ) T'E'
    \mathbb{R}^{n}
                                           ( <u>id</u> * <u>id</u> ) E'
    T'
                                           ( <u>id</u> * <u>id</u> ) + TE'
    \mathbf{E}^{*}
         \rightarrow + T E'
                                           ( <u>id</u> * <u>id</u> ) + F T' E'
    T \rightarrow F T'
                                           ( <u>id</u> * <u>id</u> ) + id T'E'
    \mathbf{F}
          → id
                                           ( <u>id</u> * <u>id</u> ) + <u>id</u> E'
    T'
           → ε
                                           ( id * id ) + id
    \mathbb{E}^{t}
             → g
```

Transition Diagram for Predictive Parsers

- Useful for visualizing predictive parsers.
- To construct Transition Diagram from a grammar
 - Eliminate left recursion
 - Left factor the grammar
 - Then for each nonterminal A
 - Create an initial and final state
 - For each production $A \rightarrow X_1 X_2 ... X_k$, create a path from the initial to the final state, with edges labeled $X_1, X_2, ..., X_k$. If $A \rightarrow \epsilon$, the path is an edge labeled ϵ .

Transition Diagram for Predictive Parsers

- Predictive parser begins in the start state for the start symbol
- Suppose at any time it is in state s with an edge
 - labeled by a terminal a to state t

- If the next input is a the parser advances in input and moves to state t
- If the edge from s to t is labeled by ε, then the parser moves immediately to state t without advancing the input
- labeled by a nonterminal A

- Parser goes to the start state for A
- If it ever reaches the final state of A it will immediately go back to state t

Transition Diagram for Predictive Parsers

$$E \rightarrow TE'$$
 $E' \rightarrow +TE' \mid \varepsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \varepsilon$
 $F \rightarrow (E) \mid id$

Simplification of Transition Diagrams

TDs can be simplified by substituting one in another

Simplification of Transition Diagrams

- Complete set of TDs
- A C implementation of this simplified version of the parser runs 20-25% faster than the original version

