Inefficiency of Equilibria

- Prisoner's dilemma
 - ☐ Equilibrium outcome are bad for both the players
- We want to quantify how bad is an equilibrium solution than a centralized/coordinated/dictatorial solution

Inefficiency of Equilibria

- Prisoner's dilemma
 - □ Equilibrium outcome are bad for both the players
- We want to quantify how bad is an equilibrium solution than a centralized/coordinated/dictatorial solution
- Objective
 - □ What is the quantity we want to maximize/minimize?
 - □ What is the meaning of optimal solution?
- Notion of equilibria (Nash (pure, mixed), correlated, ...)

Inefficiency of Equilibria

- Prisoner's dilemma
 - ☐ Equilibrium outcome are bad for both the players
- We want to quantify how bad is an equilibrium solution than a centralized/coordinated/dictatorial solution
- Objective
 - □ What is the quantity we want to maximize/minimize?
 - □ What is the meaning of optimal solution?
 - Notion of equilibria (Nash (pure, mixed), correlated, ...)

Choice of objective function and choice of equilibrium concept

How to measure the quality of solution?

Utilitarian: maximum social welfare (total utility/payoff)

How to measure the quality of solution?

Utilitarian: maximum social welfare (total utility/payoff)

■ Egalitarian: maximizes the minimum payoff (max min)

Why we want to measure inefficiency of equilibria?

The answer to this may help

- We may take some measure to improve it
- If it is not too bad, then we may not bother for the selfish behavior because it is expensive and sometimes impossible to change it

Why we want to measure inefficiency of equilibria?

The answer to this may help

- We may take some measure to improve it
- If it is not too bad, then we may not bother for the selfish behavior because it is expensive and sometimes impossible to change it
- How to quantify the selfish behavior (equilibrium)?
 - □ When there are multiple equilibria, which one to choose?

■ PoA is defined as the ratio between the value of optimal solution and the value of the worst equilibrium solution

■ PoA is defined as the ratio between the value of optimal solution and the value of the worst equilibrium solution

$$PoA = \frac{\text{value of optimal solution}}{\text{value of worst equilibrium}} \ge 1 \text{ (payoff/utility)}$$

■ PoA is defined as the ratio between the value of optimal solution and the value of the worst equilibrium solution

$$PoA = \frac{\text{value of optimal solution}}{\text{value of worst equilibrium}} \ge 1 \text{ (payoff/utility)}$$

$$PoA = \frac{worst \underline{equilibrium cost}}{optimal cost} \ge 1$$
 (cost)

Leep it always greater than or equal to 1.

■ PoA is defined as the ratio between the value of optimal solution and the value of the worst equilibrium solution

$$PoA = \frac{\text{value of optimal solution}}{\text{value of worst equilibrium}} \ge 1 \text{ (payoff/utility)}$$

PoA =
$$\frac{\text{worst equilibrium cost}}{\text{optimal cost}} \gtrsim 1$$
 (cost)

If PoA is close to 1, then?

Price of Stability (PoS) $P_{o}S = \frac{1}{12} = \frac{1}{12}$

■ PoS is defined as the ratio between the value of optimal solution and the value of the best equilibrium solution

$$PoS = \frac{\text{value of optimal solution}}{\text{value of best equilibrium}} \ge 1 \text{ (payoff/utility)}$$

$$PoS = \frac{\text{best equilibrium cost}}{\text{optimal cost}} \ge 1 \qquad \text{(cost)}$$

- PoS quantifies the necessary degradation of solution quality due to imposition of the game theoretic constraint of stability
- $1 \le PoS \le PoA$

Selfish Routing

■ Applications: road traffic, communication networks, etc.

Selfish Routing

- Applications: road traffic, communication networks, etc.
- Recall Braess' paradox
- Atomic setting each player is not negligible

Atomic setting
$$A$$
 each player is not negligible

Non-atomic setting (each individual has negligible size)

Po $A = Po S = \frac{2}{1 I} = \frac{4}{3}$

s each,

Pigou's Example (1920)

Non-atomic setting. (total / unit A simple selfish routing network

 \square Two paths from s to t with delay (cost) of 1 and x

quilibrium Solution: All choose "X" => X=(.

Optimal Solution: Min{X2+(1-x)} $\Rightarrow x = \frac{1}{2}$ half choose "1" half choose "x".

Pigou's Example (1920)

- A simple selfish routing network
 - What happens when the paths have affine cost function ax + b where

 $a, b \ge 0$ and r units of flow need to go from s to t

$$P_0A = P_0S = \frac{ar^2 + br}{\frac{3}{4}ar^2 + br} \le \frac{4}{3}$$

Equilibrium sol: axtb < artb => all choose "axtb"

optimal sol: min $\{(ar+b)(1-x) + x(ax+b)\}$.

= $\times = \frac{1}{2}$ = half "arth" half "axtb".

PoA of General Network

- Let G = (V, E) be network and we have affine cost function on edges, i.e., $c_e(x) = a_e x + b_e$
- $cuges, 1.\underline{c., c_{\varrho}(x) u_{\varrho}x + u_{\varrho}}$

\(\sigma \) = total flow / or \(\sigma \) in former

Cost of equilibrium: $C(f) = \sum_{e \in E} (a_e f_e + b_e) f_e$.

Cost of optimal: C(f*).

PoA of General Network

- Let G = (V, E) be network and we have affine cost function on edges, i.e., $c_e(x) = a_e x + b_e$
- Let $f = \{f_e\}_{e \in E}$ be an equilibrium flow
- Let C(f) be the cost of f
- C(f) = ?

PoA of General Network

- Let G = (V, E) be network and we have affine cost function on edges, i.e., $c_e(x) = a_e x + b_e$
- Let $f = \{f_e\}_{e \in E}$ be an equilibrium flow
- Let C(f) be the cost of f
- C(f) = ?
- Let $f^* = \{f_e^*\}_{e \in E}$ be an optimal solution

■ PoA = ?
$$\frac{\mathcal{C}(f)}{\mathcal{C}(f^*)} \leq \frac{\mathcal{C}}{3}$$

Equilibrium: f = {fe}eeE total cost of each path.

- Dif there are positive amount of flow both on P, and P_2 , then $C_{P_1}(f) = C_{P_2}(f)$. Otherwise one would switch from its path to the path with the lowest cost until they are same.
- 2) if positive flow on P_1 , zero flow on P_2 . then $Cp_1(f) \leq Cp_2(f)$. Otherwise one would choose P_2 instead of P_1 .

$$P_0A = \frac{C(f)}{C(f^*)}$$

Prove PoA < \frac{4}{3}

Proof: Set Equilibrium flow $f = \{fe\}_{e \in E}$ Let $X = \{Xe\}_{e \in E}$ be an arbitrary flow.

$$C(x) = \sum_{e \in E} (aefe+be) \times e$$

$$= \sum (aefe \times e + be \times e).$$

$$fe \times e - \times e \leq \frac{1}{4} f e$$

$$\leq \sum (ae \times e + be \times e) + \sum \frac{ae}{4} f e$$

$$\leq C(x) + \frac{1}{4} C(f)$$

In equilibrium, the flow only lies on smallest cost paths, hence $C^{f}(X)$ $= C^{f}(f)$ Still only lies on Smallest cost paths $> C^{f}(f)$ some flow lie on other paths.

 $C^f(x) \ge C^f(f) \forall x.$

=>
$$C(f^*) + \frac{1}{4}C(f) > C^{f}(f^*) > C^{f}(f) = c(f)$$

$$\Longrightarrow C(f^*) \geqslant \frac{3}{4}C(f)$$

$$\Rightarrow P_{oA} \leq \frac{4}{3}$$

- Few number of players, so the size is not negligible
- Example: Two players want to send 1 unit of flow from s to t in the Pigou-like network

Equilibrium
$$\{(0, 2)\}$$
 $\{(1, 1), 3\}$

$$PoA = \frac{\text{worst equilibrium}}{\text{optimel}} = \frac{4}{3}$$

$$PoS = \frac{\text{best equilibrium}}{\text{optimal}} = 1$$

- Few number of players, so the size is not negligible
- Example: Two players want to send 1 unit of flow from s to t in the Pigou-like network
- Equilibrium?

(1). player can be different.
(2). can have multiple equilibriums

Difference with non-atomic setting?

- Few number of players, so the size is not negligible
- Example: Two players want to send 1 unit of flow from *s* to *t* in the Pigou-like network
- Equilibrium?

■ General problem: k players, each player i wants to send 1 unit of flow from $s_{(i)}$ to $t_{(i)}$ on a single path in a network \overline{G}

Ifferent players have different

Starts and terminals.

PoA

■ PoA can be larger than 4/3

