# Modelowanie chorób wenerycznych

### Nela Tomaszewicz

## Listopad 2019

## 1 Wprowadzenie

Choroby weneryczne są specyficznym przypadkiem chorób zakaźnych. Po pierwsze, ograniczają się do osób aktywnych seksualnie, a nie do całej populacji. Po drugie, objawy takich chorób ukazują się najczęściej w późnym stadium rozwoju infekcji. Po trzecie, choroby te nie prowadzą do nabycia odporności.

## 2 Klasyczny model epidemiologiczny

#### 2.1 Założenia

W modelu zakładamy, że:

- Rozważana populacja jest jednostajnie przemieszana.
- Rozważamy tylko kontakty heteroseksualne.
- Populacja składa się z dwóch grup: samców i samic, a infekcja przechodzi z jednego członka jednej grupy na członka drugiej grupy.
- Infekcja jest typu krzyżowego, gdzie każda z grup jest nosicielem choroby dla drugiej grupy.
- Zakładamy jednostajne mieszanie między podgrupami pewnej populacji.
- Liczba mężczyzn i kobiet nie zmienia się.

### 2.2 Model krzyżowy SI

#### 2.2.1 Grupy w populacji

W populacji mamy dwie grupy: podatnych (S) i zainfekowanych (I) w przypadku mężczyzn i  $S_1$  oraz  $I_1$  w przypadku kobiet.

### 2.3 Model

Krzyżowy model SI można zwizualizować w następujący sposób:



Rysunek 1: Krzyżowy model SI

Na pokazanym rysunku  $S^*$  oraz  $I^*$  oznaczają podatne i zainfekowane grupy kobiet. W modelu tym zakłada się, że osoby, które przeszły daną chorobę nie nabywają na nią odporności. Zakładamy, że liczba obu płci w danej populacji jest stała, zatem możemy zapisać następującą zależność dla stałych N i  $N_1$  oznaczających odpowiednio liczbę mężczyzn i kobiet:

$$S(t) + I(t) = N$$
  
 $S_1(t) + I_1(t) = N_1$ 

Zakładamy, że spadek liczebności podatnych mężczyzn jest proporcjonalny zarówno do ich liczebności jak i liczebności zainfekowanych kobiet. W podobny sposób zmienia się liczebność grupy kobiet. Biorąc pod uwagę te założenia oraz własność omawianego modelu mówiącą o tym, że osobnik po wyzdrowieniu trafia z powrotem do grupy podatnych, otrzymujemy następujący układ równań:

$$\frac{dS}{dt} = -rSI_1 + aI$$

$$\frac{dI}{dt} = rSI_1 - aI$$

$$\frac{dS_1}{dt} = -r_1S_1I + a_1I_1$$

$$\frac{dI_1}{dt} = r_1S_1I - a_1I_1$$

Stałe a oraz  $a_1$  mówią o tempie wyzdrowień, natomiast stałe r i  $r_1$  o tempie zakażeń poprzez kontakt z osobą zainfekowaną dla obydwu rozważanych grup. Rozwój choroby badany jest przy warunkach początkowych  $S(0)=S_0$ ,  $I(0)=I_0$ ,  $S_1(0)=S_10$ ,  $I_1(0)=I_10$ . Uwzględniamy także warunek o stałych liczebnościach grup kobiet i mężczyzn.

W prezentacji rozwiązań liczby  $S, I, S_1, I_1$  traktujemy jako stosunek liczby osób podatnych i zainfekowanych w grupie kobiet i mężczyzn do liczebności całej grupy danej płci. Przyjmujemy, że proporcje dla każdej grupy sa takie same.

Wykresy rozwiązań dla tego układu równań i różnych stałych następujący:

1.  $r=2.8, a=0.14, r_1=1.4, a_1=0.14$ , czyli mężczyźni dwa razy szybciej zarażają się chorobami wenerycznymi, np. poprzez większą liczbę kontaktów seksualnych.

# Model Krzyzowy SI



Po pewnym czasie liczba osób zainfekowanych dla obydwu grup przewyższa liczbę osób podatnych na infekcję. Liczba ta dla obydwu grup stabilizuje się. W przypadku grupy kobiet zmiana następuje później a populacja osób podatnych jest większa. Ponieważ u mężczyzn tempo zakażenia jest większe, zatem również poziom liczby osobników zainfekowanych jest wyższy.

2.  $r=2.8, a=0.4, r_1=1.4, a_1=0.14$ , czyli mężczyźni dwa razy szybciej zarażają się chorobami wenerycznymi, ale także dwa razy szybciej wracają do zdrowia.

# Model Krzyzowy SI



W tym przypadku, tempo wyzdrowień mężczyzn sprawia, że stała zarażeń nie ma aż takiego wpływu na populację. Liczba mężczyzn zainfekowanych jest mniejsza niż liczba zainfekowanych kobiet, a także liczba osób podatnych staje się większa dla pierwszej grupy.

Układ możemy zredukować do dwóch równań opisujących dynamikę zmiennych S i  $S_1$  lub I i  $I_1$  podstawiając zależność N=I+S lub  $N_1=I_1+S_1$ . Otrzymujemy wtedy:

$$\frac{dI}{dt} = rI_1(N-I) - aI$$

$$\frac{dI_1}{dt} = r_1 I(N_1 - I_1) - a_1 I_1$$

Dzięki temu możemy prze<br/>analizować portrety fazowe w przestrzeni fazowej  $(I, I_1)$ .



Rysunek 2: Dla pierwszego zbioru stałych oraz  $N=N_1=50\,$ 



Rysunek 3: Dla pierwszego zbioru stałych oraz  $N=1000,\,N_1=100$ oraz dłuższego czasu



Rysunek 4: Dla pierwszego zbioru stałych oraz  $N=N_1=100$ i krótszego czasu



Rysunek 5: Dla pierwszego zbioru stałych oraz N=N1=50,ale dla  $-50 \leq I, I_1 \leq 50$ 

Stany stacjonarne układu wyznaczamy jako  $I=I_1=0$  a także:

$$I_s = \frac{NN_1 - \rho\rho_1}{\rho + N_1}$$
 
$$I_{1s} = \frac{NN_1 - \rho\rho_1}{\rho_1 + N}$$
 
$$\rho = \frac{a}{r}$$
 
$$\rho_1 = \frac{a_1}{r_1}$$

Z wyprowadzonych wzorów wynika, że dodatni stan stacjonarny odpowiadający poziomowi zainfekowanych populacji istnieje tylko wtedy, gdy  $\frac{NN_1}{\rho\rho_1}>1$ . Możemy zatem podejrzewać, że stan zerowy jest niestabilny, co faktycznie widać na rysunku 5 oraz linearyzując układ wokół punktu  $I=0=I_1$  i wyliczając wartości własne:

$$\begin{vmatrix} -a - \lambda & rN \\ r_1 N_1 & -a_1 - \lambda \end{vmatrix} = 0$$

$$\Rightarrow 2\lambda = -(a + a_1) \pm \left( (a + a_1)^2 + 4aa_1 \left( \frac{NN_1}{\rho \rho_1} - 1 \right) \right)^{\frac{1}{2}}$$

Zatem jeśli zachodzi nierówność  $\frac{NN_1}{\rho\rho_1}>1$  to  $\lambda_1<0<\lambda_2$  i punkt zerowy jest siodłem w przestrzeni fazowej  $(I,I_1)$ . Jeśli ta nierówność nie zachodzi, to obie wartości własne będą ujemne i stan będzie stabilny. W takim wypadku nie będzie istniał stan stacjonarny dodatni.

Natomiast jeśli  $(I_s,I_{1s})$  istnieje, to znaczy, że jego współrzędne są dodatnie, co daje następujące równanie i wartości własne po zlinearyzowaniu wokół tego stanu:

$$\begin{vmatrix} -a - rI_{1s} - \lambda & rN - rI \\ r_1N_1 - r_1I_1 & -a_1 - r_1I_{1s} - \lambda \end{vmatrix} = 0$$

$$\Rightarrow \lambda^2 + \lambda(a + a_1 + rI_{1s} + r_1I_s) + (a_1rI_{1s} + rr_1(I_1N + IN_1) + aa_1 - rr_1NN_1) = 0$$

Pierwiastki tego równania kwadratowego mają części rzeczywiste ujemne, czyli dodatni stan stacjonarny jest stabilny. Można zobaczyć to, na przykład, na rysunku 2.

#### 2.3.1 Podsumowanie

Reasumując, warunek progowy istnienia niezerowego stanu stacjonarnego osobników zainfekowanych ma postać  $\frac{NN_1}{\rho\rho_1}>1$ . Można interpretować tę zależność w następujący sposób: jeśli każdy mężczyzna jest podatny, to  $\frac{rN}{a}$ opisuje średnią liczbę mężczyzn kontaktujących się z zainfekowaną kobietąw czasie trwania jej choroby. Dla kobiet mamy interpretację analogiczną ze zmienionymi parametrami  $\frac{r_1N_1}{a_1}$ . Wspomniane wartości średnie odzwierciedlają maksymalne współczynniki kontaktu dla mężczyzn i kobiet.

## 2.4 Model krzyżowy SIR

Innym sposobem prostego opisu zachorowań na infekcje przenoszone drogą płciową jest model krzyżowy SIR, wyglądający bardzo podobnie do modelu SI, ale z jedną dodatkową grupą ozdrowiałych. W omawianym raporcie, uogólniamy jednak model SIR do modelu SI.

## 3 Inne modele

Oczywiście, model SI oddaje bardzo uproszczony wycinek rzeczywistości, nie uwzględniając wielu skomplikowanych czynników mających wpływ na chorobę, a co za tym idzie na populację. W przypadku chorób wenerycznych, bardzo duże znaczenie ma rozwój choroby leczonej, nieleczonej, a także aktywność seksualna badanych osobników, sprawiająca, że mogą być one bardziej podatne na zachorowania. Do zamodelowania przebiegu choroby z uwzględnieniem takich czynników mogą służyć modele wielogrupowe, gdzie wydzielamy odpowiednie mniejsze grupy z większych. W przypadku chorób wenerycznych, można by podzielić kobiety i mężczyzn, przykładowo, względem aktywności seksualnej. Takie modele są już dużo bardziej skomplikowane, ale dające dużo lepsze rezultaty.