

Dashboard > Courses > School Of Engineering & Applied Sciences > B.Tech. > B.Tech. Cohort 2020-2024 > Semester-II Cohort 2020-24 > EMAT102L-Even2021 > 17 July - 23 July > End-Term Examination

Started on Tuesday, 20 July 2021, 9:02 AM

State Finished

Completed on Tuesday, 20 July 2021, 12:01 PM

Time taken 2 hours 58 mins

Grade 15.50 out of 38.00 (41%)

Question 1

Incorrect

Mark 0.00 out of 2.00

Let $R:|x-0|\leq 1, |y-0|\leq 1$ be a rectangle. Consider the IVP

 $rac{dy}{dx}=f(x,y),y(0)=0,$ where $f(x,y)=y^{2/9}.$ Which of the following statements is/are correct?

Select one or more:

- This IVP has no solution. X
- f(x,y) does not satisfy the Lipschitz condition on R with respect to y.
- This IVP has a solution in some neighborhood of 0, which may not be unique.

√

None of the above statements is correct.

Your answer is incorrect.

The correct answers are: f(x,y) does not satisfy the Lipschitz condition on R with respect to y.

, This IVP has a solution in some neighborhood of $\mathbf{0}$, which may not be unique.

Correct

2.00

Mark 2.00 out of

Consider the following differential equation:

$$(rac{d^2y}{dx^2})^{1/2} = x^2 rac{d^3y}{dx^3}.$$

Let O and D denote the order and degree respectively of this differential equation. Identify the correct statement(s):

Select one or more:

- lacksquare O-D=1 and the equation is linear.
- oxdots O+D=5 and the equation is linear.
- ${\color{red} {\Bbb V}} O+D=5$ and the equation is non-linear.

4

 ${\color{red} {\Bbb V}} O-D=1$ and the equation is non-linear.

√

Your answer is correct.

The correct answers are: O-D=1 and the equation is non-linear.

, O+D=5 and the equation is non-linear.

Question $\bf 3$

Incorrect

Mark -0.67 out of 2.00

Let $y_1(x)$ and $y_2(x)$ be two solutions of

$$(1-x^2)rac{d^2y}{dx^2} - 2xrac{dy}{dx} + (\sec x)y = 0 ext{ on } (-1,1)$$

with Wronskian W(x) . If $y_1(0)=1$, $\ y_1'(0)=0$ and $W(rac{1}{2})=rac{1}{3}$, then $y_2'(0)$ equals:

Select one:

- $\frac{4}{3}$.
- $\frac{3}{4}$.

- $\frac{1}{4}$.
- O 1.

Your answer is incorrect.

The correct answer is: $\frac{1}{4}$.

Correct

2.00

Mark 2.00 out of

Consider the IVP $rac{dy}{dx}=e^y, y(0)=1.$

The iterate $y_2(x)$ obtained by using Picard's method of successive approximations on this IVP is given by $a+\int_0^x e^{(b+ct)}dt$, where a,b,c are some specific constants such that a+b+c equals:

Select one or more:

- \square 1 + e.
- **6.**
- ___3
- \bigcirc 2 + e

Your answer is correct.

The correct answer is: 2+e.

Question **5**

Incorrect

Mark 0.00 out of 3.00

Let V be a vector space of dimension n and W_1,\cdots,W_m be subspaces of V. If $\epsilon=dim(W_1)+\cdots+dim(W_m)-(m-1)n\geq 1,$ then

Select one or more:

 ${\color{red} \hspace{-0.05cm} igwedge}$ there exists a non-zero $x\in V$ such that $x\in W_i$ for each $i=1,\cdots,m.$

- $oxed{\Box} dim(W_1 \cap \cdots \cap W_m) \geq \epsilon.$
- $oxed{ \ } dim(W_1+\cdots+W_m)=\sum_{i=1}^m dim(W_i).$
- $igwedge dim(W_1\cap\cdots\cap W_m)<\epsilon.$

Your answer is incorrect.

The correct answers are: $dim(W_1\cap\cdots\cap W_m)\geq \epsilon$.

, there exists a non-zero $x \in V$ such that $x \in W_i$ for each $i = 1, \cdots, m.$

Incorrect

2.00

Mark 0.00 out of

Consider the following differential equation: $(2y^2+3x)dx+2xydy=0.$

Identify the correct statement(s):

Select one or more:

- The differential equation is not exact and the general solution is $ax^2y+bx^3y^2=C$, where C is an arbitrary constant and a,b are some specific constants that satisfy the relation a+b=8.
- The differential equation is not exact and 5x is an integrating factor.
- The differential equation is not exact and the general solution is $x^ay-xy+y^b=C$, where C is an arbitrary constant and a,b are some specific constants that satisfy the relation a+b=4.

lacksquare The differential equation is not exact and x is an integrating factor.

Your answer is incorrect.

The correct answers are: The differential equation is not exact and x is an integrating factor.

, The differential equation is not exact and 5x is an integrating factor.

Correct

Mark 2.00 out of

2.00

Which of the following is/are correct statement(s) about the solution of the IVP:

$$rac{d^3y}{dx^3} - 6rac{d^2y}{dx^2} + 11rac{dy}{dx} - 6y = 0,$$
 where $y(0) = 0, y'(0) = 1, y''(0) = 1.$

Select one or more:

- $\qquad y''(x) o 0 ext{ as } x o \infty.$
- $extbf{ extbf{ iny e}} e^{-3x}y'(x)
 ightarrow -3 ext{ as } x
 ightarrow \infty.$

- $\qquad y''(x)+2e^x<0$ for all real x.
- extstyle ext

Your answer is correct.

The correct answers are: It is also a solution of $\,rac{d^2y}{dx^2}-4rac{dy}{dx}+3y=-3e^{2x}.$

,
$$e^{-3x}y'(x)
ightarrow -3$$
 as $x
ightarrow \infty$.

Incorrect

Mark 0.00 out of 2.00

Let $T:C^3 o C^3$ be linear such that T((1,0,0))=(2,0,i), T((0,1,0))=(0,3,3), T((0,0,1))=(i,1,0), where C is the set of complex numbers. Then

Select one or more:

- $oxed{\Box} \quad dim(range(T) + null(T)) = 2.$
- $extbf{ extbf{ iny range}}(T)\cap null(T)=\{0\}.$
 - ****
- $ext{ } ext{ } ext$
- $lacksquare range(T) + null(T)
 eq C^3.$

Your answer is incorrect.

The correct answers are: $range(T) \cap null(T) = \{0\}.$, $null(T) \subset range(T).$

Correct

Mark 2.00 out of 2.00

Consider the differential equation $\frac{d^2y}{dx^2}-2\frac{dy}{dx}+y=e^x\sin x$. Suppose that a particular integral of this differential equation by the method of variation of parameters is given by $a(\sin bx)e^{cx}$. Then identify the correct statement(s):

Select one or more:

- (a+b)c = 1.
- a+b=0.

- $a^2 + b^2 = 1.$
- otag a+b+c=1.

Your answer is correct.

The correct answers are: a+b+c=1.

,
$$a + b = 0$$
.

Question 10

Incorrect

Mark -0.67 out of 2.00

The solution of $y''+a_1y'+a_2y=0$, where a_1 and a_2 are constants, approaches to zero as $x\to\infty$, then

Select one:

- $a_1 < 0, a_2 < 0.$
- $\quad \quad 0,a_1<0,a_2>0.$
- $a_1 > 0, a_2 > 0.$

Your answer is incorrect.

The correct answer is: $a_1 > 0, a_2 > 0$.

Correct

Mark 2.00 out of

2.00

Let $R:|x-0|\leq rac{\pi}{2},|y-0|\leq 5$ be a rectangle. Consider the IVP: $rac{dy}{dx}=y\cos 2x,y(0)=0.$

Which of the following statements is/are correct about this IVP?

Select one or more:

 $ilde{oxed}$ This IVP has a unique solution on the interval $|x| \leq rac{1}{2}$.

√

- This IVP has no solution.
- igwedge This IVP has a unique solution on the interval $|x| \leq 1$.

Your answer is correct.

The correct answers are: This IVP has a unique solution on the interval $|x| \leq \frac{1}{2}$.

, This IVP has a unique solution on the interval $|x| \leq 1$.

Correct

Mark 2.00 out of

2.00

Which of the following is/are correct statement(s) about the solution of the IVP

$$4rac{d^3y}{dx^3}+rac{dy}{dx}+5y=0,$$
 where $y(0)=2,y'(0)=1,y''(0)=-1.$

Select one or more:

- y(t)
 ightarrow 0 as $t
 ightarrow \infty$.
- $extstyle y(\pi/2)>0.$
- $y(t) o\infty$ as $t o\infty$.

 $extstyle y'(\pi/2) < 0.$

Your answer is correct.

The correct answers are: $y(t) \to \infty$ as $t \to \infty$.

,
$$y(\pi/2)>0$$
.

,
$$y'(\pi/2) < 0$$
.

Question 13

Incorrect

Mark 0.00 out of 2.00

Which of the following is/are correct statement(s) about the solution of the IVP

$$rac{d^3y}{dx^3} - 2rac{d^2y}{dx^2} + 4rac{dy}{dx} - 8y = 0,$$
 where $y(0) = 1, y'(0) = 0, y''(0) = 1.$

Select one or more:

It is also a solution of $rac{d^2y}{dx^2}-4y=-3\cos 2x$.

- It is also a solution of $rac{d^2y}{dx^2}-4y=2\sin 2x$.
- $|y''(x)-2y'(x)|\leq 10$ for all real x.
- $y''(x) \to 0$ as $x \to \infty$.

Your answer is incorrect.

The correct answer is: $|y''(x) - 2y'(x)| \le 10$ for all real x.

Correct

Mark 2.00 out of

2.00

If the two roots of a cubic auxiliary equation with real coefficients are

0 and 3+i, then what is the corresponding homogeneous differential equation?

Select one:

$$igcup rac{d^3y}{dx^3} - 6rac{d^2y}{dx^2} + 10rac{dy}{dx} = 0.$$

$$\bigcirc \quad rac{d^3y}{dx^3}-(3+i)rac{dy}{dx}=0.$$

$$\odot \quad rac{d^3y}{dx^3}+6rac{d^2y}{dx^2}+10rac{dy}{dx}=0.$$

Your answer is correct.

The correct answer is: $rac{d^3y}{dx^3}-6rac{d^2y}{dx^2}+10rac{dy}{dx}=0.$

Partially correct

Mark 1.50 out of 3.00

Let V be a finite dimensional vector space and let T be a linear map on V such that $dim(null(T^2))=dim(null(T))$. Then

Select one or more:

extstyle ext

√

- $oxed{ \qquad } range(T)\cap null(T)
 eq \{0\}.$
- $lacksquare null(T^2)=null(T).$
- $lacksquare range(T)
 eq range(T^2).$

Your answer is partially correct.

You have correctly selected 1.

The correct answers are: $range(T) \cap null(T) = \{0\}.$

, $null(T^2) = null(T)$.

Complete

Not graded

The function F(t) such that $\left.L\{F(t)\}
ight.=rac{12((s+1)^2-16)}{\left.((s+1)^2+4
ight)^3}$,

is given by

Select one:

$$\bigcirc \quad F(t) = te^{-t}\sin 2t.$$

Bonus marks due to a typo in the question.

Your answer is correct.

Bonus marks due to a typo in the question.

The correct answer is: $F(t)=t^2e^{-t}\sin 2t$.

Incorrect

Mark 0.00 out of 2.00

If y_1 and y_2 are two linearly independent solutions of

 $e^xrac{d^2y}{dx^2}-rac{dy}{dx}+x^2y=0$ on $(0,\infty)$ and if $W(y_1,y_2)(1)=2,$ then what is the value of $W(y_1,y_2)(2)$?

Select one or more:

- $oxed{e}^{e-e^{-2}}.$
- $oxed{e}^{e^{-2}}.$
- \square 2 $e^{e^{-1}-e^{-2}}$.
- $extstyle 2e^{e^2-e}.$

Your answer is incorrect.

The correct answer is: $2e^{e^{-1}-e^{-2}}$.

Correct

Mark 2.00 out of

2.00

By Laplace transform the particular solution of the following IVP

$$X'(t) = egin{bmatrix} 7 & -4 \ 2 & 3 \end{bmatrix} X(t)$$
 where

$$X \left[egin{array}{c} 0 \ 0 \end{array}
ight] = \left[egin{array}{c} 2 \ -1 \end{array}
ight],$$
 is given by

$$*Here X(t) = \left[\begin{matrix} x(t) \\ y(t) \end{matrix} \right]$$

Select one:

$$x(t) = e^{5t}(2\cos 2t + 4\sin 2t), y(t) = e^{5t}(-\cos 2t + 3\sin 2t), \checkmark$$

$$x(t) = e^{-5t}(2\cos 2t + 4\sin 2t), y(t) = e^{-5t}(-\cos 2t + 3\sin 2t),$$

$$x(t) = e^{-5t}(2\cos 2t + 4\sin 2t), y(t) = e^{5t}(-\cos 2t + 3\sin 2t),$$

$$x(t) = e^{5t}(2\cos 2t + 4\sin 2t), y(t) = e^{-5t}(-\cos 2t + 3\sin 2t),$$

Your answer is correct.

The correct answer is: $x(t)=e^{5t}(2\cos 2t+4\sin 2t),$ $y(t)=e^{5t}(-\cos 2t+3\sin 2t),$

Incorrect

Mark -0.67 out of 2.00

Consider the vector space $V=\{f|f:\{0,1\}\to R\}$ over R under the usual addition and scalar multiplication of functions. Then

Select one:

- igcup V is finite dimensional and dim(V)=4.
- igcup V is finite dimensional and dim(V)=3.
- lacksquare V is infinite-dimensional.

igcup V is finite dimensional and dim(V)=2.

Your answer is incorrect.

The correct answer is: V is finite dimensional and dim(V)=2.

