Standard Code Library

SDU-TCS

Shandong University

October 22, 2025

Contents

一切的开始	4
数据结构	4
ST 表	4
线段树	5
树上动态直径	
扫描线	
Seg beats	
M状数组	
DSU	
Splay	
1 1	
LCT	
珂朵莉树	
李超树	
动态维护凸壳	
线段树合并	17
图论	18
树链剖分	_
I.CA	
ECA	
dfn 求 LCA	
树哈希	
虚树	
最小环	
差分约束....................................	
最大流	
最小费用最大流	22
二分图最大匹配	23
KM(二分图最大权匹配)	23
一般图最大匹配	25
缩点 SCC	27
割点与桥	27
边双缩点	
圆方树	
广义圆方树	
2-SAT	
环计数	
州内奴・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2)
字符串	30
manacher	30
SA	30
PAM	32
SAM	
ACAM	
KMP	
KMP 自动机	
Z函数	
LCP	
Hash	39
数学	39
数论	•
扩展欧几里得(线性同余方程,斐蜀定理)	
费马小定理(逆元)....................................	
货与小定理(逆几)	
汉 [[] [] [] [] [] [] [] [] [] []	40

CRT	(中国剩余定理	里).			 	 	 	 	 	 	 	 	 	. 40
卢卡斯	斯定理				 	 	 	 	 	 	 	 	 	. 40
原根					 	 	 	 	 	 	 	 	 	. 40
离散	付数(BSGS)				 	 	 	 	 	 	 	 	 	. 41
威尔迪	孙定理				 	 	 	 	 	 	 	 	 	. 41
数论分	分块				 	 	 	 	 	 	 	 	 	. 41
	函数													
线性的														
	函数													
	五妖 定理及扩展 .													
	克雷卷积													
	5. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													
	ラ州 及 供 ・ ・ ・ ・													
4人1立人 杜教(1														
12.00														
_	_25													
	则试与因式分解													
	化简技巧													
	原理													
	原理													
	式定理													
多重!	集的排列数 多	多重组合	合数 .		 	 	 	 	 	 	 	 	 	. 50
多重集	集的组合数1				 	 	 	 	 	 	 	 	 	. 50
多重集	集的组合数 2				 	 	 	 	 	 	 	 	 	. 51
圆排列	列				 	 	 	 	 	 	 	 	 	. 51
错排					 	 	 	 	 	 	 	 	 	. 52
Catal	lan 数				 	 	 	 	 	 	 	 	 	. 52
Stirli	ng数				 	 	 	 	 	 	 	 	 	. 52
	前缀和													
	式反演													
	ペクロ 休反演													
	イベス													
	ス頃 反演(min-m													
线性代数.														
	······ 肖元 ····													
同別(线性)														
->41-11-1														
	er 序列													
	引理													
	对定理													
	`定理													
博弈				• •	 • •	 	 	 	 • •	 	 	 	 	. 56
多项式														57
シ グス	盾值													_
	□匝 · · · · · ∟升幂和下降幂													
多项式操作														
	FFT													
	巻积													
	织													
	卷积													
	exp													
OGF					 	 	 	 	 	 	 	 	 	. 59
_														
集合幂级数	t				 	 	 	 	 	 	 	 	 	. 60
FFT														61

多项式	式全家桶				 	•				•								•					•		•	•						•	. 62
计算几何																																	69
二维计	+ 算几何				 																												. 69
Ž																																	. 77
	最小圆覆盖 .																																
																																	. 79
/(10/	(11) 11/2 3	• •	• •	• •	 • •	•	• •	•	• •	•	• •	•	•	• •	•	• •	•	•	• •	•	• •	•	•	• •	•	•	• •	•	•	•	•	•	. ,,
杂项																																	91
大质数	效和原根				 																												. 91
约瑟夫	上问题				 																												. 92
辛普森	柒积分				 																												. 92
unor	dered_map				 																												. 93
	<u>.</u> 算																																
	8 输出																																
済机 4	 上成质数																																
	t																																
	g																																
	5 · · · · · · · · · · · · · · · · · · ·																																
pbds																																	
1	 gnu_pbds																																
	gnu_pbds gnu_pbds																																
	gnu_pbus hash 表	-																															
	rope																																
	Ł																																
	me																																
,	on 基础操作																																
注意事	퇃项				 																												. 103

一切的开始

template<class T,</pre>

数据结构

ST 表

1

```
class Cmp = std::less<T>>
    struct RMO {
        const Cmp cmp = Cmp();
        static constexpr unsigned B = 64;
        using u64 = unsigned long long;
        int n;
        std::vector<std::vector<T>> a;
        std::vector<T> pre, suf, ini;
        std::vector<u64> stk;
10
        RMQ() {}
11
        RMQ(const std::vector<T> &v) {
12
            init(v);
13
14
        void init(const std::vector<T> &v) {
15
            n = v.size();
16
17
            pre = suf = ini = v;
            stk.resize(n);
18
19
            if (!n) {
                 return;
20
21
            }
            const int M = (n - 1) / B + 1;
22
            const int lg = std::__lg(M);
23
            a.assign(lg + 1, std::vector<T>(M));
24
            for (int i = 0; i < M; i++) {</pre>
25
                 a[0][i] = v[i * B];
                 for (int j = 1; j < B && i * B + j < n; j++) {
27
                     a[0][i] = std::min(a[0][i], v[i * B + j], cmp);
29
30
            for (int i = 1; i < n; i++) {</pre>
31
                 if (i % B) {
32
                     pre[i] = std::min(pre[i], pre[i - 1], cmp);
                 }
34
35
            for (int i = n - 2; i >= 0; i--) {
36
                 if (i % B != B - 1) {
37
                     suf[i] = std::min(suf[i], suf[i + 1], cmp);
38
                 }
39
40
            for (int j = 0; j < lg; j++) {
41
42
                 for (int i = 0; i + (2 << j) <= M; i++) {
43
                     a[j + 1][i] = std::min(a[j][i], a[j][i + (1 << j)], cmp);
                 }
44
45
            for (int i = 0; i < M; i++) {</pre>
46
                 const int l = i * B;
47
                 const int r = std::min(1U * n, l + B);
48
49
                 u64 s = 0;
50
                 for (int j = l; j < r; j++) {</pre>
                     while (s && cmp(v[j], v[std::__lg(s) + l])) {
51
                         s ^= 1ULL << std::__lg(s);
52
53
                     s = 1ULL << (j - l);
54
55
                     stk[j] = s;
                 }
56
            }
58
        T operator()(int l, int r) {
59
60
            if (l / B != (r - 1) / B) {
                T ans = std::min(suf[l], pre[r - 1], cmp);
61
                l = l / B + 1;
                 r = r / B;
63
                 if (l < r) {
64
```

```
int k = std::__lg(r - l);
65
66
                     ans = std::min({ans, a[k][l], a[k][r - (1 << k)]}, cmp);
                 }
67
                 return ans;
68
             } else {
                 int x = B * (l / B);
70
71
                 return ini[__builtin_ctzll(stk[r - 1] >> (l - x)) + l];
            }
72
73
        }
74
    };
75
    线段树
    struct SegTree {
        int l, r;
2
        SegTree *ls, *rs;
3
4
        int sum;
        int mx;
        int mn;
        int plus = 0;
8
        SegTree (const int L, const int R) : l(L), r(R) {
            plus = 0; mx = mn = 0;
             if (L == R) {
10
11
                 /*Initial*/
                 // sum = 1;
12
13
                 ls = rs = nullptr;
            } else {
14
                 int M = (L + R) >> 1;
15
                 ls = new SegTree (L, M);
16
                 rs = new SegTree (M + 1, R);
17
18
                 pushup();
            }
19
21
        void pushup() {
            sum = ls->sum + rs->sum;
22
23
             mn = min(ls->mn,rs->mn);
            mx = max(ls->mx,rs->mx);
24
25
        void make_tag(long long w) {
26
27
             sum += (r - l + 1) * w;
             mn += w;
28
            mx += w;
29
            plus += w;
31
        void pushdown() {
32
            if (plus == 0) return;
33
            ls->make_tag(plus);
34
35
             rs->make_tag(plus);
             plus = 0;
36
37
        void upd(const int L, const int R, const int w) {
38
             if ((L > r) || (l > R)) return;
39
            if ((L <= l) && (r <= R)) {
40
                 make_tag(w);
41
42
             } else {
                 pushdown();
43
                 ls->upd(L, R, w);
44
45
                 rs->upd(L, R, w);
                 pushup();
46
47
             }
48
        void upd(const int x,const int w) {
             if((x > r) \mid \mid (l > x)) return;
50
            if(l == x && r == x) {
51
52
                 sum = w;
            } else {
53
                 ls->upd(x,w);
54
                 rs->upd(x,w);
55
                 pushup();
56
            }
57
```

```
58
59
        int qry(const int L,const int R) {
            if ((L > r) || (l > R)) return 0;
60
            if ((L <= 1) && (r <= R)) {
61
                 return sum;
            } else {
63
64
                 pushdown();
                 return ls->qry(L, R) + rs->qry(L, R);
65
            }
66
67
        bool check(int w) {
68
            if(mn < w - 1 || mx > w)return false;
69
            return true;
70
71
        int findR(int L,int R,int w) {
72
            if ((L > r) \mid | (l > R)) return -1;
73
74
            if ((L <= l) && (r <= R)) {</pre>
                 if(check(w)) return -1;
75
                 if(l == r) {
                    return l;
77
78
                 }
            }
79
80
            pushdown();
            int res = ls->findR(L,R,w);
            if(res == -1) {
82
83
                 res = rs->findR(L,R,w);
84
            return res;
85
   };
87
    树上动态直径
    #include<bits/stdc++.h>
   using namespace std;
   using ll = long long;
    using pii = pair<int,int>;
    const int maxn = 2e5 + 7;
    int n,q;
   ll w;
    vector<pair<int,ll>> e[maxn];
12
    ll c[maxn];
13
14
    void add(int x,ll y) {
        for(;x <= n;x += (x & (-x))) c[x] += y;
15
16
    void change(int l,int r,ll x) { // [l,r]
17
        add(l,x);add(r + 1,-x);
18
19
    ll ask(int x) {
20
21
        ll ans = 0;
        for(;x > 0;x -= (x & (-x))) ans += c[x];
22
23
        return ans;
   }
24
25
    int dfn[maxn],mi[22][maxn],id[maxn],siz[maxn],cnt;
26
    int get(int x, int y) {return dfn[x] < dfn[y] ? x : y;}
27
28
    void dfs(int x, int fa) {
        mi[0][dfn[x] = ++cnt] = fa;
29
        id[cnt] = x; siz[x] = 1;
        for(auto [v,w] : e[x]) {
31
            if(v == fa) continue;
32
33
            dfs(v,x);
            change(dfn[v],dfn[v] + siz[v] - 1,w);
34
            siz[x] += siz[v];
35
36
37
   int lca(int u, int v) {
```

```
if(u == v) return u;
39
40
         if((u = dfn[u]) > (v = dfn[v])) swap(u, v);
         int d = __lg(v - u++);
41
         return get(mi[d][u], mi[d][v - (1 << d) + 1]);</pre>
42
    ll dis(pii a) {
44
         auto [u,v] = a;
45
         return ask(dfn[u]) + ask(dfn[v]) - 2 * ask(dfn[lca(u,v)]);
46
    }
47
    pii tr[maxn << 2];</pre>
49
50
    pii merge(pii &a,pii &b) {
         \label{eq:pii} p[6] = \{a,b,\{a.first,b.first\},\{a.first,b.second\},\{a.second,b.first\},\{a.second,b.second\}\};
51
         vector<ll> d(6);
52
         for(int i = 0;i < 6;i ++) d[i] = dis(p[i]);</pre>
53
         return p[max_element(d.begin(),d.end()) - d.begin()];
54
55
     void build(int x,int l,int r) {
56
         if(l == r) {
57
             tr[x] = {id[l],id[l]};
58
59
             return ;
60
         int mid = l + r >> 1;
61
         build(x << 1,1,mid);</pre>
         build(x << 1 | 1,mid + 1,r);
63
         tr[x] = merge(tr[x << 1], tr[x << 1 | 1]);
64
65
     void update(int x,int L,int R,int l,int r) {
66
67
         if(L == 1 && r == R) return ;
         int mid = L + R >> 1;
68
         if(r <= mid) update(x << 1,L,mid,l,r);</pre>
69
         else if(l > mid) update(x << 1 | 1,mid + 1,R,l,r);
70
         else update(x << 1,L,mid,l,mid),update(x << 1 | 1,mid + 1,R,mid + 1,r);
71
         tr[x] = merge(tr[x << 1], tr[x << 1 | 1]);
    }
73
74
     int main() {
75
         ios::sync_with_stdio(false);
76
77
         cin.tie(0);
         cin >> n >> q >> w;
78
79
         vector<tuple<int,int,int>> edges;
         for(int i = 0;i < n - 1;i ++) {</pre>
80
             int x,y;ll z;
81
82
             cin >> x >> y >> z;
             e[x].push_back({y,z});
83
84
             e[y].push_back({x,z});
             edges.emplace_back(x,y,z);
85
         dfs(1, 0);
87
88
         for(int i = 1; i <= __lg(n); i++)</pre>
           for(int j = 1; j + (1 << i) - 1 <= n; j++)</pre>
89
             mi[i][j] = get(mi[i - 1][j], mi[i - 1][j + (1 << i - 1)]);
90
         ll lastans = 0;
         build(1,1,n);
92
93
         for(int i = 0;i < q;i ++) {</pre>
94
             int x;ll y;
             cin >> x >> y;
95
             x = (x + lastans) % (n - 1);
97
             y = (y + lastans) \% w;
             auto [son,fa,ww] = edges[x];
98
99
             if(dfn[son] < dfn[fa]) swap(son,fa);</pre>
             change(dfn[son],dfn[son] + siz[son] - 1,y - ww);
100
             update(1,1,n,dfn[son],dfn[son] + siz[son] - 1);
             lastans = dis(tr[1]);
102
103
             cout << lastans << "\n";</pre>
             ww = y;
104
             edges[x] = {son,fa,ww};
105
         }
106
    }
107
```

扫描线

```
//二维数点
    struct Segment{
2
        int l,r,h,add;
        bool operator <(const Segment a)const{</pre>
             return h < a.h;</pre>
    };
    struct SegTree {
        int l, r;
        SegTree *ls, *rs;
10
        int mn,len;
11
12
        int plus;
        SegTree (const int L, const int R) : l(L), r(R) {
13
             plus = 0;len = 0;
14
15
             if (L == R) {
                 ls = rs = nullptr;
16
17
             } else {
                 int M = (L + R) >> 1;
18
                 ls = new SegTree (L, M);
                 rs = new SegTree (M + 1, R);
20
                 pushup();
21
             }
22
        }
23
         void pushup() {
24
             if(plus) len = r - l + 1;
25
             else if(l == r)len = 0;
26
             else len = ls->len + rs->len;
27
28
         void make_tag(int w) {
29
             plus += w;
30
31
32
        void pushdown() {
             if (plus == 0) return;
33
34
             ls->make_tag(plus);
             rs->make_tag(plus);
35
36
             plus = 0;
37
         void update(const int L, const int R, const int w) {
38
             if ((L > r) || (l > R)) {
39
40
                 return;
41
             if ((L <= l) && (r <= R)) {</pre>
42
                 make_tag(w);
43
44
                 pushup();
                 return ;
45
46
             } else {
                 ls->update(L, R, w);
47
                 rs->update(L, R, w);
49
                 pushup();
50
             }
51
    };
52
    //矩形面积并
    #include<bits/stdc++.h>
54
55
    using namespace std;
56
    typedef long long ll;
57
    const double eps = 1e-8;
    const int maxn = 2e5 + 7;
59
    std::vector<int> x;
    struct Segment{
61
         int l,r,h,add;
62
        bool operator <(const Segment a)const{</pre>
63
             return h < a.h;</pre>
64
66
    };
    struct SegTree {
67
68
        int l, r;
        SegTree *ls, *rs;
69
```

```
int mn,len;
70
71
         int plus;
         SegTree (const int L, const int R) : l(L), r(R) {
72
             plus = 0;len = 0;
73
              if (L == R) {
74
                  ls = rs = nullptr;
75
             } else {
76
                  int M = (L + R) >> 1;
77
                  ls = new SegTree (L, M);
78
79
                  rs = new SegTree (M + 1, R);
                  pushup();
80
81
             }
82
         }
         void pushup() {
83
84
             if(plus) len = x[r] - x[l - 1];
             else if(l == r)len = 0;
85
86
             else len = ls->len + rs->len;
87
88
         void make_tag(int w) {
             plus += w;
89
90
91
         void pushdown() {
92
             if (plus == 0) return;
             ls->make_tag(plus);
93
             rs->make_tag(plus);
94
95
             plus = 0;
96
         void update(const int L, const int R, const int w) {
97
98
             if ((L >= x[r]) || (x[l - 1] >= R)) {
                  return;
99
100
             if ((L <= x[l - 1]) && (x[r] <= R)) {
101
                  make_tag(w);
102
103
                  pushup();
                  return ;
104
             } else {
105
                  //pushdown();
106
                  ls->update(L, R, w);
107
108
                  rs->update(L, R, w);
                  pushup();
109
110
             }
         }
111
    };
112
113
     int main(){
         ios::sync_with_stdio(false);
114
115
         cin.tie(0);
116
117
         vector<Segment> s;
118
         int n;
         cin >> n;
119
         for(int i = 0;i < n;i ++){</pre>
120
             int xa,ya,xb,yb;
121
             cin >> xa >> ya >> xb >> yb;
122
             x.push_back(xa);
123
             x.push_back(xb);
124
125
             s.push_back({xa,xb,ya,1});
             s.push_back({xa,xb,yb,-1});
126
127
128
         sort(s.begin(),s.end());
         sort(x.begin(),x.end());
129
130
         x.erase(unique(x.begin(),x.end()),x.end());
         int N = x.size();
131
132
         SegTree Seg(1,N - 1);
         ll ans = 0;
133
134
         if(s.size()){
             Seg.update(s[0].l,s[0].r,s[0].add);
135
              for(int i = 1;i < s.size();i ++){</pre>
136
                  ans += 1ll * Seg.len * (s[i].h - s[i - 1].h);
137
                  Seg.update(s[i].l,s[i].r,s[i].add);
138
139
             }
         }
140
```

```
141 cout << ans << "\n";
142 return 0;
143 }
```

Seg beats

本质上是维护了两棵线段树, A 树维护区间内最大值产生的贡献, B 树维护剩下树的贡献。注意 A 树某节点的孩子不一定全部能贡献到该节点,因为孩子的最大值不一定是父亲的最大值。所以要注意下传标记时, A 树的孩子下传的可能是 B 的标记。

beats 的部分是,每次让序列里每个数对另一个数 V 取 min,则直接暴力递归到 inRange 且 B 的最大值小于 V 的那些节点上,转化成对 A 那个节点的区间加法(加上 $V-val_A$)即可。这么做的均摊复杂度是 $O(\log n)$ 。

做区间历史最大值的方法是,维护两个标记 x, y, x 是真正的加标记,y 是 x 在上次下传结束并清零后的历史最大值。下传时注意先下传 y 再下传 x。实现历史最值是平凡的,不需要 beats。beats 解决的仅是取 min 的操作。

下面五个操作分别是: 区间加, 区间对 k 取 min, 区间求和, 区间最大值, 区间历史最大值。

```
#include <array>
   #include <iostream>
   #include <algorithm>
   typedef long long int ll;
   const int maxn = 500005;
   ll a[maxn];
10
    const ll inf = 0x3f3f3f3f3f3f3f3f3f1l;
11
12
   struct Node {
13
     Node *ls, *rs;
14
      int l, r, maxCnt;
15
      ll v, add, maxAdd, sum, maxV, maxHistory;
17
      Node(const int L, const int R) :
18
          ls(nullptr), rs(nullptr), l(L), r(R), maxCnt(0),
19
          v(0), add(0), maxAdd(0), sum(0), maxV(-inf), maxHistory(-inf) {}
20
21
      inline bool inRange(const int L, const int R) {
22
23
       return L <= l && r <= R;
24
      inline bool outRange(const int L, const int R) {
25
26
       return l > R || L > r;
27
28
      void addVal(const ll t, int len) {
29
        add += t;
        sum += len * t;
31
        maxV += t;
32
33
34
      void makeAdd(const ll t, int len) {
        addVal(t, len);
36
37
        maxHistory = std::max(maxHistory, maxV);
        maxAdd = std::max(maxAdd, add);
38
     }
39
   };
40
41
   void pushup(Node *x, Node *y) {
42
43
     y->maxV = std::max(y->ls->maxV, y->rs->maxV);
     y->sum = y->ls->sum + y->rs->sum;
44
45
      y->maxHistory = std::max({y->maxHistory, y->ls->maxHistory, y->rs->maxHistory});
      if (x->ls->maxV != x->rs->maxV) {
46
47
       bool flag = x->ls->maxV < x->rs->maxV;
       if (flag) std::swap(x->ls, x->rs);
48
       x->maxV = x->ls->maxV;
       x->maxCnt = x->ls->maxCnt;
       y \rightarrow maxV = std::max(y \rightarrow maxV, x \rightarrow rs \rightarrow maxV);
51
52
       y->sum += x->rs->sum;
        x->sum = x->ls->sum;
```

```
if (flag) std::swap(x->ls, x->rs);
54
55
      } else {
        x->maxCnt = x->ls->maxCnt + x->rs->maxCnt:
56
57
        x->sum = x->ls->sum + x->rs->sum;
58
         x->maxV = x->ls->maxV;
59
      x-\maxHistory = std::max({x-}ls->maxHistory, x->rs->maxHistory, y->maxHistory});
60
    }
61
62
    void New(Node *&u1, Node *&u2, int L, int R) {
63
      u1 = new Node(L, R);
64
65
      u2 = new Node(L, R);
      if (L == R) {
66
        u1->v = u1->sum = u1->maxV = u1->maxHistory = a[L];
67
68
        u1->maxCnt = 1;
69
      } else {
        int M = (L + R) >> 1;
         New(u1->ls, u2->ls, L, M);
71
        New(u1->rs, u2->rs, M + 1, R);
72
73
        pushup(u1, u2);
74
      }
    }
75
76
    void pushdown(Node *x, Node *y) {
      ll val = std::max(x->ls->maxV, x->rs->maxV);
78
79
       std::array<Node*, 2> aim({y, x});
      Node *curl = aim[x->ls->maxV == val], *curr = aim[x->rs->maxV == val];
80
      x->ls->maxAdd = std::max(x->ls->maxAdd, x->ls->add + curl->maxAdd);
81
      x->ls->maxHistory = std::max(x->ls->maxHistory, x->ls->maxV + curl->maxAdd);
      x->ls->addVal(curl->add, x->ls->maxCnt);
83
      x->rs->maxAdd = std::max(x->rs->maxAdd, x->rs->add + curr->maxAdd);
84
      x->rs->maxHistory = std::max(x->rs->maxHistory, x->rs->maxV + curr->maxAdd);
85
      x->rs->addVal(curr->add, x->rs->maxCnt);
86
87
      y->ls->maxAdd = std::max(y->ls->maxAdd, y->ls->add + y->maxAdd);
      y->rs->maxAdd = std::max(y->rs->maxAdd, y->rs->add + y->maxAdd);
88
      y->ls->addVal(y->add, x->ls->r - x->ls->l + 1 - x->ls->maxCnt);
      y->rs->addVal(y->add, x->rs->r - x->rs->l + 1 - x->rs->maxCnt);
90
      x->add = y->add = x->maxAdd = y->maxAdd = 0;
91
92
    }
93
94
    void addV(Node *x, Node *y, int L, int R, ll k) {
      if (x->inRange(L, R)) {
95
        x->makeAdd(k, x->maxCnt);
96
        y->makeAdd(k, x->r - x->l + 1 - x->maxCnt);
97
      } else if (!x->outRange(L, R)) {
98
99
        pushdown(x, y);
         addV(x\rightarrow ls, y\rightarrow ls, L, R, k);
100
         addV(x\rightarrow rs, y\rightarrow rs, L, R, k);
102
        pushup(x, y);
      }
103
    }
104
105
    std::array<ll, 3> qry(Node *x, Node *y, const int L, const int R) {
      if (x-)inRange(L, R)) return \{x-)sum +y-)sum +(x-)1 +1) =x-)maxCnt, x-)maxV, x-)maxVistory\};
107
       else if (x->outRange(L, R)) return {0, -inf, -inf};
108
109
         pushdown(x, y);
110
         auto A = qry(x->ls, y->ls, L, R), B = qry(x->rs, y->rs, L, R);
111
112
         return {A[0] + B[0], std::max(A[1], B[1]), std::max(A[2], B[2])};
113
114
    }
115
    void minV(Node *x, Node *y, const int L, const int R, int k) {
116
      if (x->maxV <= k) return;</pre>
117
118
       if (x->inRange(L, R) && y->maxV < k) {</pre>
        ll delta = k - x->maxV;
119
        x->makeAdd(delta, x->maxCnt);
120
121
      } else if (!x->outRange(L, R)) {
        pushdown(x, y);
122
         minV(x->ls, y->ls, L, R, k);
123
        minV(x->rs, y->rs, L, R, k);
124
```

```
pushup(x, y);
125
126
    }
127
128
129
     int main() {
       std::ios::sync_with_stdio(false);
130
       std::cin.tie(nullptr);
131
132
       int n, m;
       std::cin >> n >> m;
133
134
       for (int i = 1; i <= n; ++i) std::cin >> a[i];
       Node *rot1, *rot2;
135
136
       New(rot1, rot2, 1, n);
137
       for (int op, l, r; m; --m) {
         std::cin >> op >> l >> r;
138
139
         if (op == 1) {
           std::cin >> op;
140
141
           addV(rot1, rot2, l, r, op);
         } else if (op == 2) {
142
           std::cin >> op;
143
           minV(rot1, rot2, l, r, op);
144
         } else {
145
           std::cout << qry(rot1, rot2, l, r)[op - 3] << '\n';
146
147
      }
148
    }
149
     树状数组
     template <typename T>
 2
     struct Fenwick {
         int n;
 3
         std::vector<T> a;
         Fenwick(int n) : n(n), a(n) {}
 5
         void add(int x, T v) {
             for (int i = x + 1; i <= n; i += i & -i) {
                 a[i - 1] += v;
 8
         }
10
11
         T sum(int x) {
             T ans = 0;
12
13
             for (int i = x; i > 0; i -= i & -i) {
14
                 ans += a[i - 1];
             }
15
             return ans;
17
         T rangeSum(int l, int r) {
18
19
             return sum(r) - sum(l);
20
         int kth(T k) {
             int x = 0;
22
             // 先从高位开始取, 如果当前这一位可以取, 那么就考虑下一位是取 1 还是 0
23
             // 到最后找到的就是最大的那个 pos 并且对应的 <=x 的
24
             for (int i = 1 << std::__lg(n); i; i /= 2) {</pre>
25
                 if (x + i \le n \&\& k \ge a[x + i - 1]) {
                     x += i;
27
28
                      k = a[x - 1];
                 }
29
31
             return x;
         }//树状数组上倍增本质上是通过倍增来快速找出对应的区间
32
    };
    DSU
    struct DSU {
         std::vector<int> f, siz;
 2
         DSU(\textbf{int} \ n) \ : \ f(n), \ siz(n, \ 1) \ \{ \ std::iota(f.begin(), \ f.end(), \ \theta); \ \}
         int leader(int x) {
             while (x != f[x]) x = f[x] = f[f[x]];
             return x;
```

```
8
        bool same(int x, int y) { return leader(x) == leader(y); }
        bool merge(int x, int y) {
            x = leader(x);
10
            y = leader(y);
11
            if (x == y) return false;
12
            siz[x] += siz[y];
13
            f[y] = x;
14
            return true;
15
        int size(int x) { return siz[leader(x)]; }
17
18
    };
    Splay
1
    struct Node {
      int v, sz, sm;
2
      Node *ch[2], *fa;
      Node(const int V, Node *const f) : v(V), sz(1), sm(1), fa(f) {
        ch[0] = ch[1] = nullptr;
      inline int GetRela(const int x) { return (v == x) ? -1 : (x > v); }
10
      void pushup() { sm = (ch[0] ? ch[0] -> sm : 0) + (ch[1] ? ch[1] -> sm : 0) + sz; }
11
12
      inline void rotate(const int x) {
13
        auto nrt = ch[x];
14
        ch[x] = nrt->ch[x ^ 1];
15
        nrt->ch[x ^ 1] = this;
16
17
        if (ch[x]) ch[x]->fa = this;
        nrt->fa = fa; fa = nrt;
18
        if (nrt->fa) nrt->fa->ch[nrt->fa->GetRela(nrt->v)] = nrt;
20
        pushup(); nrt->pushup();
21
22
      void splay(const Node *p) {
23
24
        while (fa != p) {
          auto pa = fa->fa;
25
26
          if (pa == p) {
            fa->rotate(fa->GetRela(v));
27
          } else {
28
            int k1 = fa->GetRela(v), k2 = pa->GetRela(fa->v);
            if (k1 == k2) {
30
              pa->rotate(k1);
31
32
              fa->rotate(k1);
            } else {
33
34
              fa->rotate(k1);
              fa->rotate(k2);
35
36
37
          }
        }
38
39
      }
    };
40
    LCT
    struct Node {
      int v, s;
2
      bool tag;
3
      Node *ch[2], *fa;
      inline void maketag() {
        tag = !tag;
        std::swap(ch[0], ch[1]);
      inline void pushup() {
10
11
        s = v;
        for (auto u : ch) if (u != nullptr) {
12
```

```
s \wedge = u -> s;
13
14
        }
15
      inline void pushdown() {
16
17
        if (tag) {
           for (auto u : ch) if (u != nullptr) {
18
            u->maketag();
19
20
           tag = false;
21
        }
22
      }
23
24
      inline int Getson() { return fa->ch[1] == this; }
25
26
      inline bool IsRoot() { return (fa == nullptr) || (fa->ch[Getson()] != this); }
27
28
29
      void rotate(const int x) {
        auto nt = ch[x];
30
31
        ch[x] = nt->ch[x ^ 1];
        nt->ch[x ^ 1] = this;
32
        if (ch[x]) ch[x]->fa = this;
33
34
        nt->fa = fa;
        if (!IsRoot()) { fa->ch[Getson()] = nt; }
35
        fa = nt;
        pushup(); nt->pushup();
37
38
39
      void splay() {
40
41
        static Node* stk[maxn];
        int top = 0;
42
        stk[++top] = this;
43
        for (auto u = this; u\rightarrow IsRoot(); stk[++top] = u = u\rightarrow fa);
44
        while (top) stk[top--]->pushdown();
45
        while (!IsRoot()) {
           if (fa->IsRoot()) {
47
             fa->rotate(Getson());
48
           } else {
49
             auto pa = fa->fa;
50
51
             int l1 = Getson(), l2 = fa->Getson();
             if (l1 == l2) {
52
53
               pa->rotate(l2);
               fa->rotate(l1);
54
             } else {
55
56
               fa->rotate(l1);
               fa->rotate(l2);
57
58
           }
59
      }
61
62
    };
63
    Node *node[maxn], Mem[maxn];
64
    void Cut(const int x, const int y);
    void Link(const int x, const int y);
66
67
    void Query(const int x, const int y);
68
    void Update(const int x, const int y);
    void access(Node *u) {
      for (Node *v = nullptr; u; u = (v = u) \rightarrow fa) {
71
        u->splay();
72
73
        u \rightarrow ch[1] = v; u \rightarrow pushup();
74
      }
75
    }
76
77
    void makeroot(Node *const u) {
78
      access(u):
79
      u->splay();
80
      u->maketag();
81
    void Query(const int x, const int y) {
```

```
auto u = node[x], v = node[y];
84
85
      makeroot(u);
86
      access(v);
      v->splay();
87
      qw(v->s, '\n');
89
90
    void Link(const int x, const int y) {
91
      auto u = node[x], v = node[y];
92
      makeroot(u);
      access(v); v->splay();
94
95
      if (u->IsRoot() == false) return;
      u->fa = v;
96
97
98
    void Cut(const int x, const int y) {
99
      auto u = node[x], v = node[y];
      makeroot(u); access(v); u->splay();
101
102
      if ((u->ch[1] != v) || (v->ch[0] != nullptr)) return;
      u->ch[1] = v->fa = nullptr;
103
      u->pushup();
104
105
106
    // w[x] \rightarrow y
    void Update(const int x, const int y) {
108
      auto u = node[x];
109
110
      u->splay();
     u->s ^= u->v;
111
112
     u->s \wedge = (u->v = a[x] = y);
    }
113
    珂朵莉树
    auto getPos(int pos) {
2
      return --s.upper_bound({pos + 1, 0, 0});
3
    void split(int pos) {
5
      auto it = getPos(pos);
      auto [l, r, v] = *it;
      s.erase(it);
      if (pos > l) s.insert({l, pos - 1, v});
      s.insert({pos, r, v});
10
11
12
    void add(int l, int r, int v) {
13
14
      split(l); split(r + 1);
      for (auto x = getPos(l), y = getPos(r + 1); x != y; ++x) {
15
        x->v+=v;
      }
17
18
19
    void upd(int l, int r, int v) {
20
21
      split(l); split(r + 1);
      s.erase(getPos(l), getPos(r + 1));
22
23
      s.insert({l, r, v});
24
    getPos(pos): 找到 pos 所在的迭代器 split(pos): 把 pos 所在的迭代器区间 [l, r] 分成 [l, pos - 1] 和 [pos, r] 两个
    李超树
    插入线段 kx + b 求某点最值
    constexpr long long INF = 1'000'000'000'000'000'000;
    constexpr int C = 100'000;
    struct Line {
        ll k,b;
        Line(ll k,ll b,int id) : k(k), b(b), id(id) {}
```

```
8
    long long f(const Line &line, int x) {
        return 1LL * line.k * x + line.b;
10
    Line get(Line a, Line c, int x) {
        ll b = f(a,x), d = f(c,x);
12
        return b == d ? (a.id < c.id ? a : c) : b > d ? a : c;
13
14
    struct Node {
15
        Node *lc, *rc;
16
        Line line;
17
        Node(const Line &line) : lc(nullptr), rc(nullptr), line(line) {}
18
19
    };
    void modify(Node *&p, int l, int r, Line line) {
20
        if (p == nullptr) {
21
            p = new Node(Line(0, -1e18, 0));
22
23
        if(l == r) {
24
             if(f(p -> line,l) <= f(line,l)) p -> line = line;
25
26
             return ;
27
        int m = (l + r) / 2;
28
29
        if (f(p -> line, m) < f(line, m)) swap(p -> line, line);
        if (f(p -> line, l) < f(line, l)) modify(p -> lc, l, m, line);
        else if(f(p \rightarrow line, r) < f(line, r)) modify(p \rightarrow rc, m + 1, r, line);
31
32
    Node *merge(Node *p, Node *q, int l, int r) {
33
        if (p == nullptr)
34
35
            return q;
        if (q == nullptr)
36
            return p;
37
        int m = (l + r) / 2;
38
        p -> lc = merge(p -> lc, q -> lc, l, m);
39
40
        p \rightarrow rc = merge(p \rightarrow rc, q \rightarrow rc, m, r);
        modify(p, l, r, q -> line);
41
        return p;
42
    }
43
    Line query(Node *p, int l, int r, int x) {
44
45
        if (p == nullptr)
            return Line(0,-1e18,0);
46
47
        if(l == r) return p -> line;
        int m = (l + r) / 2;
48
        if (x <= m) return get(query(p -> lc, l, m, x),p -> line,x);
49
50
        return get(query(p -> rc, m + 1, r, x),p -> line,x);
51
    动态维护凸壳
    * Author: Simon Lindholm
2
     * Date: 2017-04-20
     * License: CCO
     * Source: own work
     \star Description: Container where you can add lines of the form kx+m, and query maximum values at points x.
     * Useful for dynamic programming.
     * Time: O(\log N)
     * Status: tested
10
11
    struct Line {
12
      mutable ll k, m, p;
13
      bool operator<(const Line &o) const { return k < o.k; }</pre>
14
      bool operator<(ll x) const { return p < x; }</pre>
16
17
18
    struct LineContainer: multiset<Line, less<>>> {
      const ll inf = LLONG_MAX;
19
      ll val_offset = 0;
20
      void offset(ll x) {
21
        val_offset += x;//整体加
22
      }
23
```

```
ll div(ll a, ll b) {
24
25
        return a / b - ((a^b) < 0 && a%b);
26
27
      bool isect(iterator x, iterator y) {
28
        if (y == end()) {
          x->p = inf;
29
          return 0;
30
31
        if (x->k == y->k) {
32
33
          x->p = (x->m > y->m)? inf: -inf;
        } else {
34
35
          x->p = div(y->m - x->m, x->k - y->k);
        }
36
        return x->p >= y->p;
37
38
      }
      void add(ll k, ll m) {
39
40
        auto z = insert({k, m - val_offset, 0}), y = z++, x = y;//这里加减看情况
        while (isect(y, z)) z = erase(z);
41
42
        if (x \vdash begin() \&\& isect(--x, y)) isect(x, y = erase(y));
        while ((y = x) != begin() \&\& (--x)->p >= y->p) isect(x, erase(y));
43
44
45
      ll query(ll x) {
        assert(!empty());
46
47
        auto l = *lower_bound(x);
        return l.k * x + l.m + val_offset;
48
49
      }
50
    };
51
    LineContainer* merge(LineContainer *S, LineContainer *T) {
      if (S->size() > T->size())
53
        swap(S, T);
54
      for (auto l: *S) {
55
56
        T->add(l.k, l.m + S->val_offset);
57
      }
      return T;
58
    线段树合并
    struct Info{
1
2
        int mx = 0, id = 0;
3
        Info() {}
        Info(int mx,int id) :mx(mx),id(id) {}
    Info operator+(const Info a,const Info b) {
        if(a.mx > b.mx) return a;
        if(b.mx > a.mx) return b;
        if(a.id < b.id) return a;</pre>
10
        else return b;
    }
11
    struct Node {
12
        int l, r;
13
        Node *ls, *rs;
14
15
        Info t;
        Node(int l,int r) : l(l),r(r),ls(nullptr),rs(nullptr){}
16
17
    };
18
    void push_up(Node *&p) {
19
20
        if(p->ls == nullptr) {
            p->t = p->rs->t;return ;
21
22
        if(p->rs == nullptr) {
23
            p->t = p->ls->t;return ;
25
        p->t = p->ls->t + p->rs->t;
26
27
    void upd(Node *&p,int l,int r,int x,int w) {
28
        if(p == nullptr) {
29
            p = new Node(l,r);
30
31
        if(l == r) {
32
```

```
p->t.mx += w;
33
34
             p->t.id = x;
35
             return ;
36
        }
        int mid = l + r >> 1;
37
        if(x <= mid) upd(p->ls,l,mid,x,w);
38
39
        else upd(p->rs,mid + 1,r,x,w);
        push_up(p);
40
    }
41
42
    Node* merge(Node *p,Node *q,int l,int r) {
43
44
        if(p == nullptr) return q;
        if(q == nullptr) return p;
45
        if(l == r) {
46
            p->t.mx += q->t.mx;
47
             return p;
48
49
        int mid = l + r >> 1;
50
        p->ls = merge(p->ls,q->ls,l,mid);
        p->rs = merge(p->rs,q->rs,mid + 1,r);
52
53
        push_up(p);
54
        return p;
55
    }
```

图论

树链剖分

```
// 重链剖分
2
    void dfs1(int x) {
       son[x] = -1;
       siz[x] = 1;
       for (auto v:e[x])
         if (!dep[v]) {
           dep[v] = dep[x] + 1;
8
            fa[v] = x;
           dfs1(v);
           siz[x] += siz[v];
10
           if (son[x] == -1 \mid \mid siz[v] > siz[son[x]]) son[x] = v;
11
12
13
14
    void dfs2(int x, int t) {
15
16
       top[x] = t;
       dfn[x] = ++ cnt;
17
18
       rnk[cnt] = x;
       if (son[x] == -1) return;
19
       dfs2(son[x], t);
21
       for (auto v:e[x])
         if (v != son[x] && v != fa[x]) dfs2(v, v);
22
23
    int lca(int u, int v) {
24
25
       while (top[u] != top[v]) {
         \textbf{if} \ (\mathsf{dep}[\mathsf{top}[\mathsf{u}]] \ > \ \mathsf{dep}[\mathsf{top}[\mathsf{v}]])
26
27
           u = fa[top[u]];
28
         else
           v = fa[top[v]];
29
       }
      return dep[u] > dep[v] ? v : u;
31
32
    LCA
```

倍增求 LCA

```
void dfs(int x){
for(int j = 1; j <= 19; j ++){
    f[x][j] = f[f[x][j - 1]][j - 1];
}</pre>
```

```
for(auto v:e[x]){
6
             if(v == f[x][0])continue;
             f[v][0] = x;
             dep[v] = dep[x] + 1;
             dfs(v);
         }
10
11
    int lca(int u,int v){
12
         if(dep[u] < dep[v])swap(u,v);</pre>
13
14
         for(int i = 0;i <= 19;i ++){
             if((dep[u] - dep[v]) & (1 << i))u = f[u][i];</pre>
15
16
         if(u == v)return u;
17
         for(int j = 19; j >= 0; j--){
18
             if(f[u][j] != f[v][j]){
19
                  u = f[u][j];
20
                  v = f[v][j];
21
             }
22
23
         return f[u][0];
24
25
    int kth(int x,int k){
26
         for(int i = 0;i <= 19;i ++){
27
             if(k \& (1 << i))x = f[x][i];
28
         }
29
         return x;
30
    }
31
    dfn 求 LCA
    \textbf{int} \ \ \textbf{get(int} \ \ x, \ \ \textbf{int} \ \ \textbf{y}) \ \ \{\textbf{return} \ \ \textbf{dfn[x]} \ \ < \ \textbf{dfn[y]} \ \ ? \ \ x \ : \ y;\}
    void dfs(int id, int f) {
      mi[0][dfn[id] = ++dn] = f;
      for(int it : e[id]) if(it != f) dfs(it, id);
4
    int lca(int u, int v) {
      if(u == v) return u;
      if((u = dfn[u]) > (v = dfn[v])) swap(u, v);
      int d = __lg(v - u++);
      return get(mi[d][u], mi[d][v - (1 << d) + 1]);</pre>
    }
11
12
    dfs(R, ⊕);
    for(int i = 1; i <= __lg(n); i++)</pre>
13
      for(int j = 1; j + (1 << i) - 1 <= n; j++)
14
         mi[i][j] = get(mi[i - 1][j], mi[i - 1][j + (1 << i - 1)]);
15
    树哈希
    typedef unsigned long long ull;
1
    struct TreeHash{
2
         std::vector<int> hs:
         TreeHash(int n){
             hs.resize(n,0);
         }
         mt19937_64 rnd(chrono::steady_clock::now().time_since_epoch().count());
         ull bas = rnd();
         ull H(ull x){
10
             return x*x*x*19890535+19260817;
11
12
         ull F(ull x){
             return H(x & ((1ll << 32) - 1)) + H(x >> 32);
13
         int flag,n;
15
16
         void dfs(int u,int fa){
17
             hs[u] = bas;
             for(auto v:e[u]){
18
                  if(v == fa) continue;
                  dfs(v,u);
20
                  hs[u] += F(hs[v]);
21
             }
22
```

```
}
   };
    虚树
    void build_virtual_tree(vector<int> &h) {
      vector<int> a;
2
      sort(h.begin(), h.end(),[&](int &a,int &b){
         return dfn[a] < dfn[b];</pre>
      }); // 把关键点按照 dfn 序排序
      for (int i = 0; i < h.size(); ++i) {</pre>
       a.push_back(h[i]);
       if(i + 1 != h.size())a.push_back(lca(h[i], h[i + 1])); // 插入 lca
      sort(a.begin(), a.end(), [&](int &a,int &b){
11
         return dfn[a] < dfn[b];</pre>
      }); // 把所有虚树上的点按照 dfn 序排序
12
13
      a.erase(unique(a.begin(),a.end());
      for (int i = 0; i < a.size() - 1; ++i) {</pre>
14
       int lc = lca(a[i], a[i + 1]);
       add(lc, a[i + 1]); // 连边, 如有边权 就是 distance(lc,a[i+1])
16
17
   }
18
    最小环
   //floyd 找最小环
    //dijkstra 暴力删边跑最短路-
   int floyd(const int &n) {
      for (int i = 1; i <= n; ++i)</pre>
       for (int j = 1; j <= n; ++j)
         dis[i][j] = f[i][j]; // 初始化最短路矩阵
      int ans = inf;
      for (int k = 1; k \le n; ++k) {
       for (int i = 1; i < k; ++i)</pre>
         for (int j = 1; j < i; ++j)
10
           ans = std::min(ans, dis[i][j] + f[i][k] + f[k][j]); // 更新答案
11
12
       for (int i = 1; i <= n; ++i)
         for (int j = 1; j <= n; ++j)</pre>
13
            dis[i][j] = std::min(dis[i][j], dis[i][k] + dis[k][j]); // 正常的 floyd 更新最短路矩阵
15
      return ans;
   }
17
    差分约束
   x_i + C \ge x_j,最短路->最大解;最长路->最小解;判负环或正环即可
   bool spfa(){
       queue<int> q;
        vector<int> vis(n + 1),cnt(n + 1),dis(n + 1,1e9);
       dis[1] = 0;
       cnt[1] = 1;
        q.push(1);
        while(!q.empty()){
           int u = q.front();
            q.pop();
10
            vis[u] = 0;
11
            if(cnt[u] >= n)return 1;
            for(auto v:e[u]){
12
                if(dis[v] > dis[u] + len[p]){
13
                    dis[v] = dis[u] + len[p];
14
15
                    if(vis[v] == 0){
                        vis[v] = 1;
16
17
                        q.push(v);
                        cnt[v] ++;
                    }
19
20
                }
           }
21
```

```
22
23
        return 0;
    }
24
    最大流
    struct Flow {
1
        static constexpr int INF = 1e9;
        int n;
        struct Edge {
             int to, cap;
5
             Edge(int to, int cap) : to(to), cap(cap) {}
        };
        vector<Edge> e;
        vector<vector<int>> g;
10
        vector<int> cur, h;
        Flow(int n) : n(n), g(n) {}
11
12
        void init(int n) {
             for (int i = 0; i < n; i++) g[i].clear();</pre>
13
14
             e.clear();
15
16
        bool bfs(int s, int t) {
17
            h.assign(n, −1);
             queue<int> que;
18
19
            h[s] = 0;
            que.push(s);
20
21
             while (!que.empty()) {
                int u = que.front();
22
                 que.pop();
23
24
                 for (int i : g[u]) {
                     int v = e[i].to;
25
26
                     int c = e[i].cap;
                     if (c > 0 && h[v] == -1) {
27
                          h[v] = h[u] + 1;
28
29
                          if (v == t)
                              return true;
30
31
                          que.push(v);
                     }
32
33
                 }
34
35
             return false;
36
        int dfs(int u, int t, int f) {
37
             if (u == t)
                 return f;
39
             int r = f;
40
             for (int &i = cur[u]; i < int(g[u].size()); ++i) {</pre>
41
                 int j = g[u][i];
42
43
                 int v = e[j].to;
                 int c = e[j].cap;
44
                 if (c > 0 \&\& h[v] == h[u] + 1) {
45
                     int a = dfs(v, t, std::min(r, c));
46
                     e[j].cap -= a;
47
48
                     e[j ^ 1].cap += a;
                     r -= a;
49
                     if (r == 0)
                          return f;
51
                 }
52
            }
53
54
             return f - r;
55
56
        void addEdge(int u, int v, int c) {
             g[u].push_back(e.size());
             e.push_back({v, c});
58
            g[v].push_back(e.size());
59
60
             e.push_back({u, 0});
61
        int maxFlow(int s, int t) {
62
             int ans = 0;
63
             while (bfs(s, t)) {
64
65
                 cur.assign(n, 0);
```

```
ans += dfs(s, t, INF);
67
68
            return ans;
69
        }
   };
    最小费用最大流
    using i64 = long long;
    struct MCFGraph {
2
3
        struct Edge {
             int v, c, f;
4
            Edge(int v, int c, int f) : v(v), c(c), f(f) {}
        };
        const int n;
        std::vector<Edge> e;
        std::vector<std::vector<int>> g;
10
        std::vector<i64> h, dis;
        std::vector<int> pre;
11
12
        bool dijkstra(int s, int t) {
            dis.assign(n, std::numeric_limits<i64>::max());
13
14
            pre.assign(n, -1);
            priority_queue<pair<i64, int>>, vector<pair<i64, int>>, greater<pair<i64, int>>> que;
15
            dis[s] = 0;
16
17
            que.emplace(0, s);
            while (!que.empty()) {
18
                i64 d = que.top().first;
19
                int u = que.top().second;
20
                que.pop();
21
22
                if (dis[u] < d) continue;</pre>
                for (int i : g[u]) {
23
                     int v = e[i].v;
24
                     int c = e[i].c;
25
                     int f = e[i].f;
27
                     if (c > 0 \&\& dis[v] > d + h[u] - h[v] + f) {
                         dis[v] = d + h[u] - h[v] + f;
28
29
                         pre[v] = i;
                         que.emplace(dis[v], v);
30
31
                     }
                }
32
33
            return dis[t] != std::numeric_limits<i64>::max();
34
35
        MCFGraph(int n) : n(n), g(n) {}
        void addEdge(int u, int v, int c, int f) {
37
            if (f < 0) {
38
39
                g[u].push_back(e.size());
                e.emplace_back(v, 0, f);
40
41
                g[v].push_back(e.size());
                e.emplace_back(u, c, -f);
42
43
            } else {
44
                g[u].push_back(e.size());
                e.emplace_back(v, c, f);
45
46
                 g[v].push_back(e.size());
                e.emplace_back(u, 0, -f);
47
48
            }
        }
49
        std::pair<int, i64> flow(int s, int t) {
            int flow = 0;
51
            i64 cost = 0;
52
            h.assign(n, 0);
            while (dijkstra(s, t)) {
54
                 for (int i = 0; i < n; ++i) h[i] += dis[i];</pre>
                int aug = std::numeric_limits<int>::max();
56
57
                 for (int i = t; i != s; i = e[pre[i] ^ 1].v) aug = std::min(aug, e[pre[i]].c);
58
                for (int i = t; i != s; i = e[pre[i] ^ 1].v) {
                     e[pre[i]].c -= aug;
59
                     e[pre[i] ^ 1].c += aug;
61
                 flow += aug;
62
                cost += i64(aug) * h[t];
63
```

```
65
            return std::make_pair(flow, cost);
66
   };
67
   const int N = 5e3 + 5, M = 5e4 + 5;
   struct flow {
      int cnt = 1, hd[N], nxt[M << 1], to[M << 1], limit[M << 1], cst[M << 1];</pre>
      void add(int u, int v, int w, int c) {
        nxt[++cnt] = hd[u], hd[u] = cnt, to[cnt] = v, limit[cnt] = w, cst[cnt] = c;
        nxt[++cnt] = hd[v], hd[v] = cnt, to[cnt] = u, limit[cnt] = 0, cst[cnt] = -c;
      int fr[N], fl[N], in[N], dis[N];
8
      pair<int, int> mincost(int s, int t) {
        int flow = 0, cost = 0;
10
        while(1) {
11
12
         queue<int> q;
         memset(dis, 0x3f, sizeof(dis));
13
14
         memset(in, 0, sizeof(in));
          fl[s] = 1e9, dis[s] = 0, q.push(s);
15
          while(!q.empty()) {
           int t = q.front();
17
18
            q.pop(), in[t] = 0;
            for(int i = hd[t]; i; i = nxt[i]) {
19
              int it = to[i], d = dis[t] + cst[i];
20
21
              if(limit[i] && d < dis[it]) {
                fl[it] = min(limit[i], fl[t]), fr[it] = i, dis[it] = d;
22
                if(!in[it]) in[it] = 1, q.push(it);
23
             }
24
           }
25
          if(dis[t] > 1e9) return make_pair(flow, cost);
27
28
          flow += fl[t], cost += dis[t] * fl[t];
          for(int u = t; u != s; u = to[fr[u] ^ 1]) limit[fr[u]] -= fl[t], limit[fr[u] ^ 1] += fl[t];
29
30
        }
31
     }
   } g;
32
    二分图最大匹配
    auto dfs = [\&] (auto \&\&dfs, int u, int tag) -> bool {
        if (vistime[u] == tag) return false;
2
        vistime[u] = tag;
        for (auto v : e[u]) if (!mtch[v] || dfs(dfs, mtch[v], tag)) {
         mtch[v] = u;
         return true;
        return false;
    };
    KM(二分图最大权匹配)
1
   template <typename T>
2
   struct hungarian { // km
      int n;
      vector<int> matchx; // 左集合对应的匹配点
      vector<int> matchy; // 右集合对应的匹配点
      vector<int> pre;
                           // 连接右集合的左点
                          // 拜访数组 左
     vector<bool> visx;
     vector<bool> visy;
                         // 拜访数组 右
      vector<T> lx;
     vector<T> ly;
10
      vector<vector<T> > g;
11
      vector<T> slack;
12
13
      T inf;
14
      T res;
     queue<int> q;
15
      int org_n;
      int org_m;
17
18
```

```
hungarian(int _n, int _m) {
19
        org_n = _n;
org_m = _m;
20
21
        n = max(n, m);
22
        inf = numeric_limits<T>::max();
        res = 0:
24
        g = vector<vector<T> >(n, vector<T>(n));
25
        matchx = vector<int>(n, -1);
26
        matchy = vector<int>(n, -1);
27
28
        pre = vector<int>(n);
        visx = vector<bool>(n);
29
        visy = vector<bool>(n);
        lx = vector<T>(n, -inf);
31
        ly = vector<T>(n);
32
       slack = vector<T>(n);
33
34
35
      void addEdge(int u, int v, int w) {
36
37
        g[u][v] = max(w, 0); // 负值还不如不匹配 因此设为 0 不影响
38
39
      bool check(int v) {
40
        visy[v] = true;
41
42
        if (matchy[v] != -1) {
          q.push(matchy[v]);
43
44
          visx[matchy[v]] = true; // in S
45
          return false;
46
        // 找到新的未匹配点 更新匹配点 pre 数组记录着"非匹配边"上与之相连的点
47
        while (v != −1) {
48
          matchy[v] = pre[v];
49
          swap(v, matchx[pre[v]]);
50
51
        }
52
        return true;
53
54
      void bfs(int i) {
55
56
        while (!q.empty()) {
57
          q.pop();
58
59
        q.push(i);
        visx[i] = true;
60
        while (true) {
61
62
          while (!q.empty()) {
            int u = q.front();
63
64
            q.pop();
            for (int v = 0; v < n; v^{++}) {
65
              if (!visy[v]) {
                T delta = lx[u] + ly[v] - g[u][v];
67
68
                if (slack[v] >= delta) {
69
                  pre[v] = u;
                  if (delta) {
70
                    slack[v] = delta;
                  } else if (check(v)) { // delta=0 代表有机会加入相等子图 找增广路
72
73
                                           // 找到就 return 重建交错树
74
                    return;
                  }
75
                }
77
              }
            }
78
79
80
          // 没有增广路 修改顶标
81
          T a = inf;
          for (int j = 0; j < n; j++) {
82
83
            if (!visy[j]) {
84
              a = min(a, slack[j]);
85
            }
86
          for (int j = 0; j < n; j++) {
87
88
            if (visx[j]) { // S
              lx[j] -= a;
89
```

```
91
             if (visy[j]) { // T
92
               ly[j] += a;
             } else { // T'
93
                slack[j] -= a;
             }
95
96
           for (int j = 0; j < n; j++) {
97
             if (!visy[j] && slack[j] == 0 && check(j)) {
98
99
               return;
             }
100
101
           }
         }
102
       }
103
104
       void solve() {
105
         // 初始顶标
         for (int i = 0; i < n; i++) {</pre>
107
108
           for (int j = 0; j < n; j++) {
             lx[i] = max(lx[i], g[i][j]);
109
           }
110
111
112
         for (int i = 0; i < n; i++) {</pre>
113
           fill(slack.begin(), slack.end(), inf);
114
           fill(visx.begin(), visx.end(), false);
115
           fill(visy.begin(), visy.end(), false);
116
           bfs(i);
117
118
         }
119
         // custom
120
         for (int i = 0; i < n; i++) {
121
           if (g[i][matchx[i]] > 0) {
122
123
             res += g[i][matchx[i]];
           } else {
124
             matchx[i] = -1;
125
126
127
         cout << res << "\n";
128
         for (int i = 0; i < org_n; i++) {</pre>
129
130
           cout << matchx[i] + 1 << " ";</pre>
131
         cout << "\n";
132
133
       }
    };
134
     一般图最大匹配
    #include <bits/stdc++.h>
     struct Graph {
 2
         int n;
 3
 4
         std::vector<std::vector<int>> e;
         Graph(int n) : n(n), e(n + 1) {}
 5
         void addEdge(int u, int v) {
             e[u].push_back(v);
             e[v].push_back(u);
         }
         std::vector<int> findMatching() {
10
11
             std::vector\langle int \rangle match(n + 1, -1), vis(n + 1), link(n + 1), f(n + 1), dep(n + 1);
             // disjoint set union
12
13
             auto find = [&](int u) {
                  while (f[u] != u)
14
                      u = f[u] = f[f[u]];
16
                  return u;
             };
17
18
             auto lca = [&](int u, int v) {
                  u = find(u);
19
                  v = find(v);
20
                  while (u != v) {
21
                      if (dep[u] < dep[v])</pre>
22
23
                           std::swap(u, v);
```

```
u = find(link[match[u]]);
24
25
                 }
26
                 return u;
27
            };
            std::queue<int> q;
            auto blossom = [&](int u, int v, int p) {
29
                 while (find(u) != p) {
30
                     link[u] = v;
31
                     v = match[u];
32
                     if (vis[v] == 0) {
33
                         vis[v] = 1;
34
35
                         q.push(v);
36
                     }
                     f[u] = f[v] = p;
37
                     u = link[v];
38
                 }
39
40
            };
            // find an augmenting path starting from u and augment (if exist)
41
42
            auto augment = [&](int u) {
                 while (!q.empty())
43
                     q.pop();
44
                 std::iota(f.begin(), f.end(), 0);
45
                 // vis = 0 corresponds to inner vertices, vis = 1 corresponds to outer vertices
46
47
                 std::fill(vis.begin(), vis.end(), -1);
48
49
                 q.push(u);
50
                 vis[u] = 1;
                 dep[u] = 0;
51
52
                 while (!q.empty()){
53
                     int u = q.front();
54
55
                     q.pop();
56
                     for (auto v : e[u]) {
57
                          if (vis[v] == −1) {
                              vis[v] = 0;
58
59
                              link[v] = u;
                              dep[v] = dep[u] + 1;
60
                              // found an augmenting path
61
62
                              if (match[v] == -1) {
                                  for (int x = v, y = u, temp; y != -1; x = temp, y = x == -1 ? -1 : link[x]){
63
64
                                       temp = match[y];
                                      match[x] = y;
65
                                      match[y] = x;
66
67
                                  }
                                  return;
68
69
                              vis[match[v]] = 1;
70
71
                              dep[match[v]] = dep[u] + 2;
                              q.push(match[v]);
72
73
                          } else if (vis[v] == 1 && find(v) != find(u)) {
74
                              // found a blossom
75
                              int p = lca(u, v);
                              blossom(u, v, p);
77
                              blossom(v, u, p);
78
                         }
79
                     }
80
                 }
81
82
83
            };
            // find a maximal matching greedily (decrease constant)
84
85
            auto greedy = [&]() {
                 for (int u = 1; u <= n; ++u) {</pre>
                     if (match[u] != -1)
87
88
                          continue;
                     for (auto v : e[u]) {
89
                          if (match[v] == -1) {
                              match[u] = v;
91
                              match[v] = u;
92
93
                              break;
                          }
94
```

```
}
95
96
             };
97
             greedy();
98
             for (int u = 1; u <= n; ++u)</pre>
                  if (match[u] == -1)
100
101
                      augment(u);
102
             return match;
103
104
         }
    };
105
106
     int main() {
         std::ios::sync_with_stdio(false);
107
         std::cin.tie(nullptr);
108
109
         int n, m;
         std::cin >> n >> m;
110
111
         Graph g(n);
         for (int i = 0; i < m; ++i) {</pre>
112
113
             int u, v;
             std::cin >> u >> v;
114
             g.addEdge(u, v);
115
116
         auto match = g.findMatching();
117
         int ans = 0;
118
         for (int u = 1; u <= n; ++u)</pre>
119
              if (match[u] != -1)
120
121
                  ++ans;
         std::cout << ans / 2 << "\n";
122
123
         for (int u = 1; u <= n; ++u)</pre>
             if(match[u] != -1)std::cout << match[u] << " ";</pre>
124
             else std::cout << 0 << " ";
125
         return 0;
126
    }
127
     缩点 SCC
    void dfs(const int u) {
       low[u] = dfn[u] = ++cnt;
 2
       ins[stk[++top] = u] = true;
       for (auto v : e[u]) if (dfn[v] == 0) {
         dfs(v);
         low[u] = std::min(low[u], low[v]);
       } else if (ins[v]) {
         low[u] = std::min(low[u], dfn[v]);
       if (low[u] == dfn[u]) {
10
         ++scnt; int v;
11
         do {
12
           ins[v = stk[top--]] = false;
13
           w[bel[v] = scnt] += a[v];
14
         } while (u != v);
15
16
       }
    }
17
     割点与桥
     //割点
    void tarjan(int u, int fa){
         dfn[u] = low[u] = ++cnt; int du = 0;
         for(for v:e[x]){
             if(v == fa) continue;
             if(!dfn[v]){ ++du;
                  tarjan(v, u); low[u] = min(low[u], low[v]);
                  if(low[v] >= dfn[u] && fa) vis[u] = 1;
             else low[u] = min(low[u], dfn[v]);
10
11
         if(!fa && du > 1) vis[u] = 1;
12
    }
    //桥
14
```

```
void tarjan(int u, int fa) {
15
16
      f[u] = fa;
      low[u] = dfn[u] = ++cnt;
17
      for (auto v:e[u]) {
18
        if (!dfn[v]) {
          tarjan(v, u);
20
21
          low[u] = min(low[u], low[v]);
          if (low[v] > dfn[u]) {
22
            isbridge[v] = true;
23
24
            ++cnt_bridge;
          }
25
26
        } else if (dfn[v] < dfn[u] && v != fa) {</pre>
27
          low[u] = min(low[u], dfn[v]);
28
29
      }
   }
30
    边双缩点
    void form(int x){
        std::vector<int> tmp;
2
3
        int now = 0;
        do{
            now = s[top --];
            tmp.push_back(now);
        }while(now != x);
        ans.push_back(tmp);
8
    void tarjan(int x,int now){
10
11
        dfn[x] = low[x] = ++cnt;
        s[++ top] = x;
12
13
        for(auto [v,_]:e[x]){
            if(_ == now)continue;
14
            if(!dfn[v]){
16
                 tarjan(v,_);
                 low[x] = min(low[x],low[v]);
17
                 if(low[v] > dfn[x]){
18
                     form(v);
19
20
21
22
            }else low[x] = min(low[x],dfn[v]);
23
24
25
    for(int i = 1;i <= n;i ++){</pre>
        if(dfn[i] == 0){
26
27
            tarjan(i,0);
28
            form(i);
        }
29
   }
   cout << ans.size() << "\n";</pre>
31
    for(auto A:ans){
32
        cout << A.size() << " ";
33
        for(auto x:A){
34
            cout << x << " ";
35
        }cout << "\n";</pre>
36
37
   }
    圆方树
    void dfs(int u) {
        static int cnt = 0;
        dfn[u] = low[u] = ++cnt;
        for (auto [v,w]:e[u]) {
            if (v == fa[u]) continue;
            if (!dfn[v]) {
                 fa[v] = u; fr[v] = w;
                 dfs(v); low[u] = min(low[u], low[v]);
            else low[u] = min(low[u], dfn[v]);
            if (low[v] > dfn[u]) add(u, v, w); // 圆 - 圆
11
```

广义圆方树

跟普通圆方树没有太大的区别,大概就是对于每个点双新建一个方点,然后将点双中的所有点向方点连边 需要注意的是我的写法中,两个点一条边也视为一个点双

性质

- 1. 树上的每一条边都连接了一个圆点和一个方点
- 2. 每个点双有唯一的方点
- 3. 一条从圆点到圆点的树上简单路径代表原图的中的一堆路径,其中圆点是必须经过的,而方点 (指的是与方点相连的点双)是可以随便走的,也可以理解成原图中两点简单路径的并

```
void dfs(int x) {
        stk.push_back(x);
2
        dfn[x] = low[x] = cur++;
        for (auto y : adj[x]) {
5
            if (dfn[y] == -1) {
                 dfs(y);
                 low[x] = std::min(low[x], low[y]);
                 if (low[y] == dfn[x]) {
                     int v;
10
11
                     do {
                         v = stk.back();
12
                         stk.pop_back();
                         edges.emplace_back(n + cnt, v);
14
                     } while (v != y);
15
                     edges.emplace_back(x, n + cnt);
16
                     cnt++;
17
                 }
18
            } else {
19
20
                 low[x] = std::min(low[x], dfn[y]);
21
        }
22
23
   }
```

2-SAT

输出方案时可以通过变量在图中的拓扑序确定该变量的取值。如果变量 x 的拓扑序在 $\neg x$ 之后,那么取 x 值为真。应用到 Tarjan 算法的缩点,即 x 所在 SCC 编号在 $\neg x$ 之前时,取 x 为真。因为 Tarjan 算法求强连通分量时使用了栈,所以 Tarjan 求得的 SCC 编号相当于反拓扑序。

环计数

```
//三元环
      for (int u, v; m; --m) {
        u = A[m]; v = B[m];
        if (d[u] > d[v]) {
          std::swap(u, v);
        } else if ((d[u] == d[v]) \&\& (u > v)) {
          std::swap(u, v);
        e[u].push_back(v);
10
      for (int u = 1; u <= n; ++u) {</pre>
11
        for (auto v : e[u]) vis[v] = u;
12
        for (auto v : e[u]) {
          for (auto w : e[v]) if (vis[w] == u) {
14
            ++ans;
15
16
```

```
}
17
18
     // 四元环
19
      auto cmp = [&](int &a,int &b){
20
          if(d[a] != d[b])return d[a] > d[b];
          else return a < b;</pre>
22
23
      for(int u = 1;u <= n;++ u) {</pre>
24
           for(auto v: G[u])//G 为原图
25
               for(auto w: e[v])
                  if(cmp(u,w)) (ans += vis[w] ++)%=MOD;
27
28
           for(auto v: G[u])
               for(auto w: e[v])
29
                  if(cmp(u,w)) vis[w] = 0;
30
31
      }
```

字符串

manacher

```
struct Manacher {
        int n, l, f[maxn * 2], Len;
        char s[maxn * 2];
        void init(char *c) {
            l = strlen(c + 1); s[0] = '~';
            for (int i = 1, j = 2; i <= l; ++i, j += 2)
                s[j] = c[i], s[j - 1] = '#';
            n = 2 * l + 1; s[n] = '#'; s[n + 1] = '\0';
10
        void manacher() {
11
12
            int p = 0, mr = 0;
            for (int i = 1; i <= n; ++i) f[i] = 0;</pre>
13
            for (int i = 1; i <= n; ++i) {
                 if (i < mr) f[i] = min(f[2 * p - i], mr - i);</pre>
15
16
                 while (s[i + f[i]] == s[i - f[i]]) ++f[i]; --f[i];
                 if (f[i] + i > mr) mr = i + f[i], p = i;
17
                 Len = max(Len, f[i]);
18
            }
19
        }
20
21
        void solve() {
22
            for (int i = 1; i <= n; ++i) {</pre>
23
24
                 // [1, 1]
                 int L = i - f[i] + 1 >> 1, R = i + f[i] - 1 >> 1;
25
                 if (!f[i]) continue;
27
                 // [1, 2 * l + 1]
                 L = i - f[i], R = i + f[i];
29
            }
30
31
   } M;
```

SA

 sa_i 表示排名为 i 的后缀。

 rnk_i 表示 [i, n] 这个后缀的排名(在 SA 里的下标)。

height $_i$ 是 sa_i 和 sa_{i-1} 的 LCP 长度。换句话说,向求排名为 i 的后缀和排名为 i-1 的后缀的 LCP 直接就是 height $_i$; 求 [i,n] 这个后缀和它在 sa 里前一个串的 LCP 就是 height $_{rnk}$.

```
const int maxn = 2e6 + 7;
const int SIGMA_SIZE = 128;
struct SuffixArray{
   int sa[maxn], S[maxn], rnk[maxn], tax[maxn], tp[maxn], height[maxn];
   int h[22][maxn];
   int m = SIGMA_SIZE;
   void SA(string s) {
```

```
int n = s.size();
8
9
            s = '#' + s;
            int m = SIGMA_SIZE;
10
           memset(tax,0,sizeof tax);
11
            auto RadixSort = [&]() {
                for (int i = 0; i <= m; ++i) tax[i] = 0;</pre>
13
                for (int i = 1; i <= n; ++i) ++tax[rnk[i]];</pre>
14
                for (int i = 1; i <= m; ++i) tax[i] += tax[i - 1];</pre>
15
                for (int i = n; i; --i) sa[tax[rnk[tp[i]]]--] = tp[i];
16
17
            for (int i = 1; i <= n; ++i) {</pre>
18
19
                S[i] = s[i] - '0';
                tp[i] = i;
20
                rnk[i] = S[i];
21
22
            RadixSort();
23
24
            for (int len = 1, p = 0; p != n; m = p, len <<= 1) {
                p = 0;
25
26
                for (int i = n - len + 1; i <= n; ++i) tp[++p] = i;</pre>
                for (int i = 1; i <= n; ++i) if (sa[i] > len) tp[++p] = sa[i] - len;
27
                RadixSort();
28
29
                std::swap(rnk, tp);
                p = 0;
30
                for (int i = 1; i <= n; ++i)</pre>
                  32
33
           for (int i = 1, p = 0; i <= n; ++i) {
34
                int pre = sa[rnk[i] - 1];
35
                if (p) --p;
                while (S[pre + p] == S[i + p]) ++p;
37
                h[0][rnk[i]] = height[rnk[i]] = p;
38
39
            for (int i = 1; i <= 20; ++i) {
40
                memset(h[i], 0x3f, n * 4 + 4);
                for (int j = 1; j + (1 << i - 1) <= n; ++j)
42
                    h[i][j] = min(h[i - 1][j], h[i - 1][j + (1 << i - 1)]);
43
           }
44
45
        int Q(int l, int r) {
46
            if (l > r) swap(l, r);
47
48
            ++1;
            int k = __lg(r - l + 1);
49
            return min(h[k][l], h[k][r - (1 << k) + 1]);</pre>
50
51
       }
        int lcp(int i, int j) {
52
53
            if (i == j) return n - i + 1;
           return Q(rnk[i], rnk[j]);
54
       }
   }sa;
```

PAM

转移边表示的是在原回文串的两边各加一个字符,得到长度加 2 的新回文串; fail 指针则指向该回文串的最长回文后缀。和其他自动机有所不同,它有两个根节点,分别代表长度为偶数的串和长度为奇数的串。它们的长度分别为 0 和 -1(注意不是 1,为了添加 2 的长度可以得到长为 1 的回文串),以下分别称为奇根和偶根。值得注意的是,偶根的 fail 指针指向的是奇根,而奇根的 fail 并不需在意,它的儿子中总会有长为 1 的回文串,因而不可能会失配。

```
struct PAM {
        static constexpr int ALPHABET_SIZE = 28;
        struct Node {
            int len; // 当前节点最长回文长度
            int fail;// 该回文串的最长回文后缀
            int scnt; // 当前节点表示的回文后缀的本质不同回文串个数
            int pcnt; // 当前节点回文串在字符串中出现次数,每个点代表一个不同的回文串
            std::array<int, ALPHABET_SIZE> next; // 转移边
            Node() \; : \; len\{\}, \; fail\{\}, \; scnt\{\}, \; next\{\}, \; pcnt\{\} \; \{\}
10
        };
        std::vector<Node> t;
11
        int last;
12
        std::string s;
        PAM() {
14
15
            init();
        }
16
        void init() {
17
            t.assign(2, Node());
18
            t[1].len = -1;
19
20
            last = 0;
            t[0].fail = 1;
21
            s = "$";
22
23
        int newNode() {
24
25
            t.emplace_back();
            return t.size() - 1;
26
27
        int get_fail(int x) {
28
```

```
int pos = s.size() - 1;
29
30
            while(s[pos - t[x].len - 1] != s[pos]) x = t[x].fail;
            return x;
31
        }
32
        void add(char c, char offset = 'a') {
            s += c;
34
            int let = c - offset;
35
            int x = get_fail(last);
36
            if (!t[x].next[let]) {
37
                 int now = newNode();
                 t[now].len = t[x].len + 2;
39
                 t[now].fail = t[get_fail(t[x].fail)].next[let];
                 t[x].next[let] = now;
41
                 t[now].scnt = t[t[now].fail].scnt + 1;
42
            }
43
            last = t[x].next[let];
44
45
            t[last].pcnt ++;
46
47
    };
    int main() {
48
        ios::sync_with_stdio(false);
49
50
        cin.tie(0);
        string s;
51
        cin >> s;
        PAM pam;
53
        pam.init();
for(int i = 0;i < s.size();i ++) {</pre>
54
55
            pam.add(s[i]);
56
            int ans = pam.t[pam.last].scnt;
            cout << ans << " ";
58
59
            if(i + 1 != s.size()) {
                s[i + 1] = (s[i + 1] - 97 + ans) \% 26 + 97;
60
61
        }
   }
63
```

SAM

fa为 parent 树上的父亲, nxt 为自动机上的指向。

```
struct SAM {
        static constexpr int ALPHABET_SIZE = 26,rt = 1;
2
        struct Node {
3
            int len,fa,siz;
            std::array<int, ALPHABET_SIZE> nxt;
            Node() : len{}, fa{}, siz{}, nxt{} {}
        };
        std::vector<Node> t;
        SAM() {
            init();
10
11
        void init() {
12
            t.assign(2, Node());
13
        int newNode() {
15
16
            t.emplace_back();
            return t.size() - 1;
17
18
        int getfa(int x){
19
            return t[x].fa;
20
21
        int getlen(int x){
22
23
            return t[x].len;//表示该状态能够接受的最长的字符串长度。
24
        int size(){
25
26
            return t.size();
27
28
        int extend(int p, int ch) {
            int np = newNode();
29
            t[np].len = t[p].len + 1;t[np].siz = 1;
30
            while(p && !t[p].nxt[ch])t[p].nxt[ch] = np,p = t[p].fa;
31
            if(!p){t[np].fa = rt;return np;}
32
```

```
int q = t[p].nxt[ch];
33
            if(t[q].len == t[p].len + 1){
34
35
                t[np].fa = q;
            }else {
36
                 int nq = newNode();t[nq].len = t[p].len + 1;t[nq].fa = t[q].fa;
37
                 for(int i = 0;i < 26;i ++)t[nq].nxt[i] = t[q].nxt[i];</pre>
38
                 while(p && t[p].nxt[ch] == q)t[p].nxt[ch] = nq,p = t[p].fa;
39
40
                 t[np].fa = t[q].fa = nq;
            }
41
42
            return np;
43
44
        int extend_(int p, int ch) {//广义
45
            if(t[p].nxt[ch]){
                 int q = t[p].nxt[ch];
46
47
                 if(t[q].len == t[p].len + 1)return q;
                 int nq = newNode();t[nq].len = t[p].len + 1;t[nq].fa = t[q].fa;
48
49
                 for(int i = 0;i < 26;i ++)t[nq].nxt[i] = t[q].nxt[i];</pre>
                 while(p && t[p].nxt[ch] == q)t[p].nxt[ch] = nq,p = t[p].fa;
50
                 t[q].fa = nq;return nq;
            }
52
            int np = newNode();
53
            t[np].len = t[p].len + 1;
            while(p && !t[p].nxt[ch])t[p].nxt[ch] = np,p = t[p].fa;
55
            if(!p){t[np].fa = rt;return np;}
57
            int q = t[p].nxt[ch];
58
            if(t[q].len == t[p].len + 1){
59
                 t[np].fa = q;
            }else {
60
                 int nq = newNode();t[nq].len = t[p].len + 1;t[nq].fa = t[q].fa;
                 for(int i = 0;i < 26;i ++)t[nq].nxt[i] = t[q].nxt[i];</pre>
62
                 while(p && t[p].nxt[ch] == q)t[p].nxt[ch] = nq,p = t[p].fa;
63
64
                 t[np].fa = t[q].fa = nq;
            }
65
            return np;
67
        void build(vector<vector<int>> &e){
68
69
            e.resize(t.size());
            for(int i = 2;i < t.size();i ++){</pre>
70
71
                 e[t[i].fa].push_back(i);
72
73
        }
   };
74
    int main(){
75
76
        string s;
        cin >> s;
77
78
        int n = s.size();
        SAM sam;
79
        vector<int> pos(n + 1);
81
        pos[0] = 1;
        for(int i = 0;i < n;i ++){</pre>
82
83
            pos[i + 1] = sam.extend(pos[i],s[i] - 'a');
84
        std::vector<std::vector<int>> e;
        sam.build(e);
86
87
        long long ans = 0;
        auto dfs = [&](auto&& self,int x)->void{
88
            for(auto v:e[x]){
89
                 self(self,v);
91
                 sam.t[x].siz += sam.t[v].siz;
92
93
            if(sam.t[x].siz != 1){
                ans = max(ans,1ll * sam.t[x].siz * sam.t[x].len);
94
96
        }:
97
        dfs(dfs,1);
        cout << ans << "\n";
98
   }
```

1. 本质不同的子串个数

这个显然就是所有状态所对应的 endpos 集合的大小的和也等价于每个节点的 len 减去 parent 树上的父亲的 len

2. 求两个串的最长公共子串

```
int p = 1,len = 0,ans = 0;
      std::vector<int> l(m),L(m);
      for(int i = 0; i < m; i ++){</pre>
          int ch = s[i] - 'a';
          if(sam.t[p].nxt[ch]){
             p = sam.t[p].nxt[ch];len ++;
          }else {
              while(p && sam.t[p].nxt[ch] == 0){
                  p = sam.t[p].fa;
10
11
              if(!p)p = 1,len = 0;
              else len = sam.t[p].len + 1,p = sam.t[p].nxt[ch];
12
          }//其中 p 为前缀最长能匹配到的后缀所在的节点
13
          l[i] = len;
          L[i] = i - len + 1;
15
16
3. 广义 SAM
      int main(){
          SAM sam;
2
          int n;
          cin >> n:
          std::vector<std::vector<int>>> pos(n);
          for(int i = 0;i < n;i ++){</pre>
              string s;
              cin >> s;
              pos[i].resize(s.size() + 1);
              pos[i][0] = 1;
11
              for(int j = 0; j < s.size(); j ++){</pre>
                  pos[i][j + 1] = sam.extend_(pos[i][j],s[j] - 'a');
12
13
14
          ll ans = 0;
          for(int i = 2;i < sam.t.size();i ++){</pre>
16
              ans += sam.getlen(i) - sam.getlen(sam.getfa(i));
17
18
          cout << ans << "\n";
19
          cout << sam.t.size() - 1 << "\n";</pre>
      }
```

parent 树上每个节点维护了一个区间,若 p 是 q 的父节点则有 $\max p = \min q - 1$ 每个节点的 endpos 集合为该节点 parent 树上的子树 $\sin z$ 大小

反串的 SAM 的 parent 树是原串的后缀树

ACAM

AC 自动机的失配指针指向所有模式串的前缀中匹配当前状态的最长后缀。

fail 树上 u 和 v 的 lca 为 u 和 v 的最长公共 border。

```
const int maxn = 2e5 + 7;
   #define ch s[i] - 'a'
   struct AC_automaton {
        int nxt[26], cnt, fail;
   } T[maxn];
   int tot = 1, rt = 1, id[maxn];
    void insert(string &s, int k) {
        int now = rt, l = s.size();
        for (int i = 0; i < l; ++i) {</pre>
            if (!T[now].nxt[ch]) T[now].nxt[ch] = ++tot;
10
            now = T[now].nxt[ch];
        } id[k] = now;
12
   }
13
    void init_fail() { // Trie 图
14
        queue<int> q;
15
        for (int i = 0; i < 26; ++i) {</pre>
            int &u = T[rt].nxt[i];
17
```

```
if (!u) { u = rt; continue; }
18
19
             T[u].fail = rt; q.push(u);
20
        while (!q.empty()) {
21
22
             int u = q.front(); q.pop();
             for (int i = 0; i < 26; ++i) {
23
24
                 int &v = T[u].nxt[i];
                 if (!v) { v = T[T[u].fail].nxt[i]; continue; }
25
                 T[v].fail = T[T[u].fail].nxt[i]; q.push(v);
26
             }
27
        }
28
29
30
    int siz[maxn];
    int main() {
31
        ios::sync_with_stdio(false);
32
        cin.tie(0);
33
34
        int n;
        cin >> n;
35
36
        for(int i = 0;i < n;i ++) {</pre>
37
             string t;
             cin >> t;
38
39
             insert(t,i);
40
41
        init_fail();
        string s;
42
43
        cin >> s;
        for(int u = rt,i = 0;i < s.size();i ++) {</pre>
44
            u = T[u].nxt[ch];
45
46
             ++ siz[u];
47
        vector<vector<int>> e(tot + 1);
48
        for(int i = 2;i <= tot;i ++) e[T[i].fail].push_back(i);</pre>
49
50
        auto dfs = [&](auto self,int x) -> void {
51
             for(auto v : e[x]) {
                 self(self,v);
52
53
                 siz[x] += siz[v];
            }
54
55
        dfs(dfs,1);
56
        for(int i = 0;i < n;i ++) cout << siz[id[i]] << "\n";</pre>
57
58
    }
    KMP
    struct KMP{
1
        string s2;// add '#'
2
        std::vector<int> nxt;
        int m;
        KMP(string y) :s2(y){
            m = s2.size() - 1;
             nxt.resize(m + 1,0);
             for(int i = 2,p = 0;i <= m;i ++){</pre>
                 while(p && s2[i] != s2[p + 1])p = nxt[p];
10
                 if(s2[i] == s2[p + 1])p ++;
                 nxt[i] = p;
11
12
             }
13
        void match(string s1){
14
15
             int n = s1.size() - 1;
             for(int i = 1,p = 0;i <= n;i ++){</pre>
16
17
                 while(p && s1[i] != s2[p + 1])p = nxt[p];
                 if(s1[i] == s2[p + 1]){
18
                     p ++;
                     if(p == m){
20
                          //cout<<i - m + 1<<endl;
21
22
                          p = nxt[p];
                     }
23
                 }
24
            }
25
26
        std::vector<int> find_border(){
27
```

```
std::vector<int> v:
28
29
            for(int i = nxt[m];i;i = nxt[i])v.push_back(i);
30
            return v;
       }// 找该串所有的周期
31
        std::vector<int> calc_prefixes(){
            std::vector<int> cnt(m + 1,1);
33
            for(int i = m;i >= 1;i --)cnt[nxt[i]] += cnt[i];
34
35
            return cnt:
        }// 每个前缀出现次数
36
37
   };
    KMP 自动机
    for(int i = 1, fail = 0; i <= n; i ++) {</pre>
        fail = nxt[fail][s[i]]; // 注意这一行不能和下一行互换
        nxt[i - 1][s[i]] = i;
3
4
        for(int j = 0; j < m; j ++)</pre>
            nxt[i][j] = nxt[fail][j];
   }
   Ζ函数
    对于一个长度为n字符串s,定义函数z[i]表示和s[i,n-1](即以s[i]开头的后缀)的最长公共前缀(LCP)的长度,特别地,z[0]=0。
   std::vector<int> getZ(const std::string &s) {
      int n = s.size();
2
      std::vector<int> Z(n);
      Z[0] = n;
      for (int i = 1, l = 0, r = 0; i < n; ++i) {
        if (i <= r && Z[i - l] < r - i + 1) {</pre>
         Z[i] = Z[i - l];
        } else {
         Z[i] = std::max(0, r - i + 1);
          while (i + Z[i] < n && s[Z[i]] == s[i + Z[i]]) ++Z[i];</pre>
11
        if (i + Z[i] - 1 > r) r = i + Z[l = i] - 1;
12
13
      }
14
      return Z;
   }
16
   std::vector<int> match(const std::string &s, const std::string &t) {
17
18
      auto Z = getZ(t);
      int n = s.size(), m = t.size();
19
      std::vector<int> ret(n);
      while (ret[0] < n && ret[0] < m && s[ret[0]] == t[ret[0]]) ++ret[0];</pre>
21
22
      for (int l = 0, r = ret[0] - 1, i = 1; i < n; ++i) {</pre>
        if (i <= r && Z[i - l] < r - i + 1) {</pre>
23
24
         ret[i] = Z[i - l];
25
        } else {
          ret[i] = std::max(0, r - i + 1);
26
27
          while (i + ret[i] < n && s[i + ret[i]] == t[ret[i]]) ++ret[i];</pre>
28
        if (i + ret[i] - 1 > r) r = i + ret[l = i] - 1;
29
      }
30
      return ret;
31
32
   }
   LCP
   for(int i = n;i >= 1;i --) {
1
        for(int j = n;j >= 1;j --) {
2
            if(s[i] == s[j]) {
                f[i][j] = f[i + 1][j + 1] + 1;// i-n 和 j-n 的 lcp
            }
        }
   }
```

Hash

```
struct Hash {
1
2
        string s;
        using ull = unsigned long long;
        ull P1 = 998255347;
        ull P2 = 1018253347;
        ull base = 131;
        vector<ull> hs1,hs2;
        vector<ull> ps1,ps2;
        Hash(string s): s(s) {
            int n = s.size();
            hs1.resize(n);
11
            hs2.resize(n);
12
13
            ps1.resize(n);
            ps2.resize(n);
14
            ps1[0] = ps2[0] = 1;
            hs1[0] = hs2[0] = (s[0] - 'a' + 1);
16
            for(int i = 1;i < n;i ++) {</pre>
17
                hs1[i] = hs1[i - 1] * base % P1 + (s[i] - 'a' + 1);
18
                hs2[i] = hs2[i - 1] * base % P2 + (s[i] - 'a' + 1);
                ps1[i] = (ps1[i - 1] * base) % P1;
20
                ps2[i] = (ps2[i - 1] * base) % P2;
21
22
            }
23
        pair<ull,ull> query(int l,int r) {
24
            ull res1 = (hs1[r] - (l == 0 ? 0 : hs1[l - 1]) * ps1[r - l + 1] % P1 + P1) % P1;
25
            ull res2 = (hs2[r] - (l == 0 ? 0 : hs2[l - 1]) * ps2[r - l + 1] % P2 + P2) % P2;
26
27
            return {res1,res2};
        } // [l,r]
28
   };
```

数学

数论

```
扩展欧几里得(线性同余方程, 斐蜀定理)
```

```
扩展欧几里得: gcd(a,b) = gcd(b,a\%b), ax + by = bx + (a - \lfloor \frac{a}{b} \rfloor)y
    斐蜀定理: ax + by = c 若有解,则有 (a,b)|c
    线性同余方程: ax \equiv c \pmod{b} \Rightarrow ax + by = c
    ll exgcd(ll a,ll b,ll &x,ll &y){
        if(b == 0){
            x = 1, y = 0; return a;
        ll d = exgcd(b,a % b,x,y);
        ll tmp = x;
        x = y;
        y = tmp - (a / b) * y;
        return d;
10
   }
11
    void solve(){
        ll a,b,c;
12
13
        cin >> a >> b >> c;
14
        ll x0,y0;
        ll d = exgcd(a,b,x0,y0);
15
16
        if(c % d){
17
            cout << -1 << "\n";
18
            return ;
19
20
        ll p = a / d, q = b / d;
        ll x = ((c / d) \% q * x0 \% q + q) \% q;
21
22
        if(x == 0)x = q;
        ll y = (c - a * x) / b;
23
24
        if(y <= 0){
            y = ((c / d) \% p * y0 \% p + p) \% p;
25
            cout << (x == 0 ? q : x) << " " << (y == 0 ? p : y) << "\n";
26
```

```
return ;
27
28
29
        ll ans_x_mn = x;
        ll ans_y_mx = y;
        y = ((c / d) \% p * y0 \% p + p) \% p;
        if(y == 0)y = p;
32
        x = (c - b * y) / a;
33
        ll ans_x_mx = x;
34
         ll ans_y_mn = y;
35
         ll sum = min((ans_x_mx - ans_x_mn) / q,(ans_y_mx - ans_y_mn) / p);
         cout << sum + 1 << " " << ans_x_mn << " " << ans_y_mn << " " " << ans_x_mx << " " " << ans_y_mx << "\n";
37
         // 正整数解总数
    }
39
    费马小定理 (逆元)
    若 p 为素数,gcd(a, p) = 1,则 a^{p-1} \equiv 1 \pmod{p}
    线性求逆元
    inv[0] = inv[1] = 1;
    for(int i = 2 ;i <= n ;i++) inv[i] = (p - p/i) * inv[p % i] % p;</pre>
    CRT (中国剩余定理)
    若 a_1, a_2, \ldots, a_n 两两互质:
    令 M=\prod_1^n a_i, m_i'=\frac{M}{a_i}, t_i \times m_i'\equiv 1 (\text{mod }a_i) 则有 x=\sum_{i=1}^n b_i \times m_i' \times t_i (此解为唯一解)
    若 a_1, a_2, \ldots, a_n 两两不互质:
    合并两个方程组 x = a_1 p + b_1 = a_2 q + b_2
    则可将方程依次两两合并为 x \equiv a_1 p + b_1 \pmod{\operatorname{lcm}(a_1, a_2)},其中先求解 p,再带入求 x。
    ll r1 = B[1], m1 = A[1],r2,m2;
    for(int i = 1;i < n ;i ++) {</pre>
         r2 = B[i + 1], m2 = A[i + 1];
         ll a = m1, b = m2, c = r2 - r1;
         ll d = exgcd(a,b,x,y);
         if(c % d) {
             cout<<0;return 0;
        ll p = a / d,q = b / d;
         x = ((x * c / d) + q) % q;
        ll mod = lcm(m2,m1);
11
        ll x0 = (m1 * x + r1) \% mod;
        r1 = x0 < 0 ? x0 + mod : x0;
14
        m1 = mod;
    cout << r1 % m1 << "\n";
    卢卡斯定理
    C_n^m = C_{n \bmod p}^{m \bmod p} \cdot C_{\lfloor n/p \rfloor}^{\lfloor m/p \rfloor},其中 p 为质数。
```

原根

满足同余式 $a^n\equiv 1\pmod m$ 的最小正整数 n 存在,这个 n 称作 a 模 m 的阶,记作 $\delta_m(a),\ a,a^2,\cdots,a^{\delta_m(a)}$ 模 m 两两不同余。设 $m\in \mathbf{N}^*,\ g\in \mathbf{Z}.$ 若 $(g,m)=1,\$ 且 $\delta_m(g)=\varphi(m),\$ 则称 g 为模 m 的原根。

即 g 满足 $\delta_m(g) = |\mathbf{Z}_m^*| = \varphi(m)$. 当 m 是质数时,我们有 $g^i \mod m$, 0 < i < m 的结果互不相同。

原根判定定理:

设 $m \geq 3$, (g, m) = 1, 则 g 是模 m 的原根的充要条件是,对于 $\varphi(m)$ 的每个素因数 p, 都有 $g^{\frac{\varphi(m)}{p}} \not\equiv 1 \pmod{m}$ 。 若一个数 m 有原根,则它原根的个数为 $\varphi(\varphi(m))$,每一个原根都形如 g^k 的形式,要求满足 $\gcd(k, \varphi(n)) = 1$ 。

原根存在定理:

一个数 m 存在原根当且仅当 $m=2,4,p^{\alpha},2p^{\alpha}$,其中 p 为奇素数, $\alpha \in \mathbf{N}^*$ 。

离散对数 (BSGS)

```
a^x=b\pmod m 此处只解决 m 为质数,将 x 分解为 i\times t-p,则有 a^{i\times t}=b\times a^p\pmod m t =\sqrt[2]{m} 时均摊复杂度最小 0< p< t 枚举 p 计算出每一个 a^p 的值存入 hash 表 再枚举 i,算出 a^{i\times t} 的值在 hash 表中查找
```

```
ll bsgs(ll a,ll b,ll p){
        map <ll,ll> hsh ;hsh.clear();
        ll t = sqrt(p) + 1,j;
        b %= p;
        for(int i = 0 ; i < t ;i++){</pre>
            ll tmp = b * qp(a,i,p) % p;
            hsh[tmp] = i;
        a = qp(a,t,p);
        if(a == 0){
            if(b == 0)return 1;
11
            else return −1;
12
13
        for(int i = 0 ;i <= t ;i++){</pre>
14
            ll tmp = qp(a,i,p);
            if(hsh.find(tmp) == hsh.end())j = -1;
16
            else j = hsh[tmp];
17
            if(i * t - j >=0 && j >= 0)return i*t-j;
18
19
        return -1;
   }
21
```

威尔逊定理

对于素数 $p \neq (p-1)! \equiv -1 \pmod{p}$.

数论分块

```
ll up(ll x,ll y){
2
        return (x + y - 1) / y;
3
    ll calc_up(ll x){
        ll l = 1,r;ll ans = 1e18;
        while(l <= x){</pre>
            ll m = up(x,l);
            if(m == 1)r = x;else r = (x - 1) / (m - 1);
            l = r + 1;
        }
10
        return ans;
12
    ll calc_down(ll x){
13
        ll l = 1,r;ll ans = 1;
14
        while(l <= x){</pre>
15
            r = x / (x / 1);
            l = r + 1;
17
18
```

积性函数

数论函数: 在所有正整数上的函数被称为算术函数(数论函数)

加性函数: 如果数论函数 f 对于任意两个互素的正整数 p,q 均有 f(pq) = f(p) + f(q), 称为加性函数

积性函数:如果数论函数 f 对于任意两个互素的正整数 p,q 均有 f(pq)=f(p)f(q),称为积性函数

完全积性函数: 在积性函数的基础上, p,q 对于任意正整数均成立, 称为完全积性函数

若 f(x) 和 g(x) 均为积性函数,不难证明下列函数均为积性函数:

$$h(x)=f(x^p), h(x)=f^p(x), h(x)=\sum_{d|x}f(d), h(x)=f(x)g(x)$$

常见积性函数:

- 单位函数: $\varepsilon(n) = [n = 1]$ 。(完全积性)
- 恒等函数: $id_k(n) = n^k$, $id_1(n)$ 通常简记作 id(n)。(完全积性)
- 常数函数: 1(n) = 1。(完全积性)
- 除数函数: $\sigma_k(n)=\sum_{d|n}d^k$ 。 $\sigma_0(n)$ 通常简记作 d(n) 或 $\tau(n)$, $\sigma_1(n)$ 通常简记作 $\sigma(n)$ 。
- 欧拉函数: $\varphi(n) = \sum_{i=1}^{n} [\gcd(i, n) = 1]$
- 莫比乌斯函数: $\mu(n) = \begin{cases} 1 & n=1 \\ 0 & \exists d>1, d^2 \mid n, \text{ 其中 } \omega(n) \text{ 表示 } n \text{ 的本质不同质因子个数,它是一个加性函数。} \\ (-1)^{\omega(n)} & \text{otherwise} \end{cases}$

线性筛

一般情况下可通过线性筛快速筛出积性函数

```
void init(const int n){
        mu[1] = 1;phi[1] = 1;
        for(int i = 2;i <= n;i ++){</pre>
            if(!vis[i]){
                p[++ tot] = i;
                mu[i] = -1;phi[i] = i - 1;
            for(int j = 1; j \le tot && i * p[j] \le n; j ++){
                vis[i * p[j]] = 1;
                 if(i % p[j] == 0){
                     phi[i * p[j]] = phi[i] * p[j];
                     mu[i * p[j]] = 0;
                     break;
13
                mu[i * p[j]] = -mu[i];
15
                phi[i * p[j]] = phi[i] * phi[p[j]];
            }
17
        }
18
   }
```

欧拉函数

欧拉函数(Euler's totient function),即 $\varphi(n)$,表示的是小于等于 n 和 n 互质的数的个数。 $\varphi(n) = \sum_{i=1}^n [\gcd(i,n) = 1]$

由唯一分解定理,设
$$n=\prod_{i=1}^s p_i^{k_i}$$
,其中 p_i 是质数,有 $\varphi(n)=n \times \prod_{i=1}^s \frac{p_i-1}{p_i}$ 。

如果 (a,b)=1 , $\varphi(a*b)=\varphi(a)*\varphi(b)$ 如果 a 或 b 为质数 $\varphi(a*b)=\varphi(a)*\varphi(b)$ 如果 $(a,b)\neq 1$, $\varphi(a*b)=\varphi(a)*b$

欧拉定理及扩展

如果 $(a,m), a^{\varphi(m)} \equiv 1 \pmod{m}$ 当 $b \geq \varphi(p)$ 时 $a^b \equiv a^{b \bmod{\varphi(p)} + \varphi(p)} \pmod{p}$ 当 $b < \varphi(p)$ 时 $a^b \equiv a^b \pmod{p}$

狄利克雷卷积

对于两个数论函数 f(x) 和 g(x),则它们的狄利克雷卷积得到的结果 h(x) 定义为: $h(x) = \sum_{d|x} f(d)g\left(\frac{x}{d}\right) = \sum_{ab=x} f(a)g(b)$ 上式可以简记为: h=f*g

狄利克雷卷积满足交换律,结合律,分配律

单位函数 ε 是 Dirichlet 卷积运算中的单位元,即对于任何数论函数 f,都有 $f * \varepsilon = f$

对于任何一个满足 $f(x) \neq 0$ 的数论函数,如果有另一个数论函数 g(x) 满足 $f*g=\varepsilon$,则称 g(x) 是 f(x) 的逆元。由 **等式的性质**可知,逆元是唯一的

常见数论卷积

 $\phi * 1 = id$

 $\mu * 1 = \varepsilon$

 $\mu * id = \phi$

两个积性函数的 Dirichlet 卷积也是积性函数

积性函数的逆元也是积性函数,且 $f(1) \neq 0$

莫比乌斯反演

莫比乌斯函数

$$\mu(n) = egin{cases} 1 & n=1 \ 0 & n$$
含有平方因子 $(-1)^k & k$ 为 n 的本质不同质因子

 $\mu * 1 = \varepsilon$

形式一

$$f(n) = \sum_{d|n} g(d) \Rightarrow g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d})$$

形式二:

$$f(n) = \sum_{n|d} g(d) \Rightarrow g(n) = \sum_{n|d} \mu(\frac{d}{n}) f(d)$$

上两式的证明可通过等价替换和交换求和号来推导

此外我们也可以通过狄利克雷卷积来理解

$$f = g * 1, g = f * \mu$$

实际应用中我们常使用 $\varepsilon(\gcd) = \sum_{d \mid \gcd} \mu(d)$,即 $\mu*1 = \varepsilon$

同时也是形式 $1 + f = \varepsilon$ 的情况

欧拉反演

$$\varphi * 1 = id$$

展开形式同莫比乌斯反演,本质上是莫比乌斯反演的进一步推导,卷积式也可用 $\mu*1=\varepsilon$ 推出实际应用中常使用 $\gcd=\sum_{d\mid\gcd}\varphi(d)$

杜教筛

```
对于数论函数 f, 要计算 S(n) = \sum_{i=1}^{n} f(i)
    找到一个数论函数 g,有 \sum_{i=1}^n (f*g)(i) = \sum_{i=1}^n g(i) S(\lfloor \frac{n}{i} \rfloor)
    得到 g(1)S(n) = S(n) = \sum_{i=1}^{n} (f * g)(i) - \sum_{i=2}^{n} g(i)S(\lfloor \frac{n}{i} \rfloor)
    const int maxn = 3e6 + 7;
    int mu[maxn],p[maxn],vis[maxn],tot;
    int sum_mu[maxn];
    int phi[maxn];
    ll sum_phi[maxn];
    map <ll,ll> mp_mu,mp_phi;
    void init(const int n){
        mu[1] = 1; phi[1] = 1;
        for(int i = 2;i <= n;i ++){</pre>
             if(!vis[i]){
10
                  p[++ tot] = i;
                  mu[i] = -1; phi[i] = i - 1;
12
13
             for(int j = 1; j <= tot && i * p[j] <= n; j ++){</pre>
14
                 vis[i * p[j]] = 1;
15
                  if(i % p[j] == 0){
                      phi[i * p[j]] = phi[i] * p[j];
17
18
                      mu[i * p[j]] = 0;
                      break;
                  mu[i * p[j]] = -mu[i];
                  phi[i * p[j]] = phi[i] * phi[p[j]];
22
        }
24
         for(int i = 1;i < n;i ++)sum_mu[i] = sum_mu[i - 1] + mu[i],sum_phi[i] = sum_phi[i - 1] + phi[i];</pre>
25
    ll calc_mu(ll x){
27
28
        if(x < maxn)return sum_mu[x];</pre>
        if(mp_mu[x]) return mp_mu[x];
29
        ll l = 2,r; ll ans = 1;
30
        while(l <= x){</pre>
31
             r = x / (x / 1);
32
             ans -= 1ll * (r - l + 1) * calc_mu(x / l);
33
             l = r + 1;
34
36
        return mp_mu[x] = ans;
37
38
    ll calc_phi(ll x){
        if(x < maxn)return sum_phi[x];</pre>
39
        if(mp_phi[x]) return mp_phi[x];
        ll l = 2,r; ll ans = 1 ll * x * (x + 1) >> 1;
41
42
        while(l <= x){</pre>
            r = x / (x / 1);
43
             ans -= 1ll * (r - l + 1) * calc_phi(x / l);
44
             l = r + 1;
        }
46
         return mp_phi[x] = ans;
```

由于符合数论反演实际意义的函数不多所以大部分数论反演题目基本上都是对上述两种反演的卷积式的应用,变形之后进行求和号交换,换元等数学手段处理等到可以快速求解的算式

Min_25

第一步

目标: 求 $g(n) = \sum_{p \le n} f(p)$ 。

不妨设 f(p) 是完全积性函数,如果不是可以尝试拆成若干项完全积性函数,分别求然后相加。

首先要线性筛求出 \sqrt{n} 以内的质数。

g(n) 很难直接求解,考虑用 DP 计算。设 $g(n,j)=\sum_{i=1}^n f(i)[i$ 是质数或其最小质因子 $>p_j]$,其中 p_j 表示第 j 个质数,那么我们要的就是 g(n,k),k为最小的满足 $p_k\geq \sqrt{n}$ 。考虑从 j-1 变到 j ,那么最小质因子为 p_j 的合数会被筛掉,那么它们的贡献要减去。则有转移

$$g(n,j) = g(n,j-1) - f(p_j) \left(g\left(\left\lfloor \frac{n}{p_j} \right\rfloor, j-1 \right) - g(p_{j-1}, j-1) \right)$$

系数 $f(p_j)$ 表示由于 f(p) 是完全积性函数,所以可以把它从后面提出来。 $g\left(\left\lfloor\frac{n}{p_j}\right\rfloor,j-1\right)$ 表示考虑所有 p_j 的倍数,它们除以 p_j 之后,最小质因子 $> p_{j-1}$ 的合数**以及所有质数**的贡献,应当减去。但是,这些**质数**中可能有 $\leq p_{j-1}$ 的,它们在之前就被筛掉过了,所以要加回来,也就是 $g(p_{j-1},j-1)$ 。

由于有公式 $\lfloor \frac{\lfloor \frac{c}{b} \rfloor}{c} \rfloor = \lfloor \frac{a}{bc} \rfloor$,因此容易发现上述式子只会用到形如 $\lfloor \frac{n}{x} \rfloor, x \leq n$ 的点处的 DP 值,即第一项的状态数是 $O(\sqrt{n})$ (实际实现的时候注意状态数是 $2\sqrt{n}$)。我们预处理出这 $O(\sqrt{n})$ 个数,把他们离散化,顺带求出 g(x,0),然后 DP 即可。

第二步

目标: 求 $S(n) = \sum_{i \leq n} f(i)$ 。 与第一步类似,设 $S(n,j) = \sum_{i=1}^n f(i)[i$ 的最小质因子 $> p_j]$ 。 但此处 f 不需要再拆分成单项式,直接是原函数即可(因为不需要依赖于**完全积性**,只需要**积性**即可)(但要能快速计算 $f(p^k)$ 的值)。

考虑把贡献拆成质数的和合数的,合数枚举最小质因子以及次数,于是有转移:

$$S(n,j) = g(n) - g(p_j) + \sum_{j < k, p_k \leq \sqrt{n}, 1 \leq e, p_k^e \leq n} f(p_k^e) \left(S\left(\left\lfloor \frac{n}{p_k^e} \right\rfloor, k \right) + [e \neq 1] \right)$$

最后一项 $[e \neq 1]$ 的意思是,对于 e=1 的情况,S 没有计算 1 贡献,刚好,因为此时 $p_k \times 1$ 是质数,其贡献在之前计算过;对于 e>1 的情况, $p_k^e \times 1$ 是合数,贡献算漏了,要补上。直接暴力递归计算(并且不需要记忆化)。

```
#include<bits/stdc++.h>
   using namespace std;
   using ll = long long;
   const int mo = 1e9 + 7;
   std::vector<int> minp, primes;
   void sieve(int n) {
       minp.assign(n + 1, 0);
        primes.clear();
        for (int i = 2; i <= n; i++) {
            if (minp[i] == 0) {
11
                minp[i] = i;
                primes.push_back(i);
14
            for (auto p : primes) {
                if (i * p > n) break;
                minp[i * p] = p;
                if (p == minp[i]) {
18
19
                    break:
                }
            }
21
23
    int qp(int a,int b) {
        int ans = 1,base = a;
25
        while(b != 0) {
26
            if(b & 1) ans = 1ll * ans * base % mo;
            base = 1ll * base * base % mo;
28
            b >>= 1;
31
        return ans;
    int main() {
33
        ios::sync_with_stdio(false);
        cin.tie(0);
35
       ll n;
       cin >> n:
37
       ll s = sqrt(n);
38
        sieve(s);
```

```
vector<ll> v;
40
41
        for(ll l = 1,r;l \le n;l = r + 1) {
            v.push_back(n / l);
42
43
            r = n / (n / 1);
44
        int inv2 = qp(2,mo - 2);
45
        int inv6 = qp(6,mo - 2);
46
        auto calc1 = [&](ll x) ->ll {
47
            x %= mo;
48
49
            return (x * (x + 1) % mo) * inv2 % mo;
        }:
50
51
        auto calc2 = [\&](ll x) \rightarrow ll {
52
           x %= mo;
            return (x * (x + 1) % mo * (2 * x + 1) % mo) * inv6 % mo;
53
54
        };
        vector<ll> f1(v.size() + 1),f2(v.size() + 1);
55
        auto getid = [&](ll x) -> ll {
            if(x <= s) return v.size() - x;</pre>
57
            else return n / x - 1;
        };
59
        for(int i = 0;i < v.size();i ++) {</pre>
60
61
            ll x = v[i];
            x %= mo;
62
            f1[i] = (calc1(x) + mo - 1) \% mo; // \sum_2^n i^k = \sum_1^n i^k - 1
            f2[i] = (calc2(x) + mo - 1) \% mo;
64
65
        ll ps1 = 0, ps2 = 0;
66
        for(auto p : primes) {
67
            for(int i = 0;i < v.size();i ++) {</pre>
                 if(1ll * p * p > v[i]) break;
69
                 f1[i] -= 1ll * p * (f1[getid(v[i] / p)] - ps1 + mo) % mo;
70
                 f1[i] += mo;f1[i] %= mo;
71
                 f2[i] = 111 * p * p % mo * (f2[getid(v[i] / p)] - ps2 + mo) % mo;
72
73
                 f2[i] += mo; f2[i] %= mo;
            }
74
            ps1 += p;ps1 %= mo;
75
            ps2 += 1ll * p * p % mo;ps2 %= mo;
76
77
78
        auto F = [](ll x) -> ll { // targeted function
            x %= mo:
79
80
            return (x * x % mo - x + mo) % mo;
        };
81
        auto S = [&](auto self,ll x,int y) -> ll {
82
83
            int p = y == 0 ? 0 : primes[y - 1];
            if(p >= x) return 0ll;
84
85
            ll \ res = (f2[getid(x)] - f2[getid(p)] - (f1[getid(x)] - f1[getid(p)]) + mo + mo) \% mo;
            for(int i = y;i < primes.size() && primes[i] <= x / primes[i];i ++) {</pre>
86
                 ll w = primes[i];
                 for(int j = 1;w <= x;j ++,w = w * primes[i]) {</pre>
88
89
                     res = (res + F(w) * (self(self,x / w,i + 1) % mo + (j != 1)) % mo) % mo;
90
            }
91
            return res;
        };
93
94
        cout << (S(S,n,0) + 1) \% mo << "\n";
   }
95
    素数测试与因式分解(Miller-Rabin & Pollard-Rho)
    i64 mul(i64 a, i64 b, i64 m) {
1
2
        return static_cast<__int128>(a) * b % m;
3
    i64 power(i64 a, i64 b, i64 m) {
        i64 res = 1 % m;
        for (; b; b >>= 1, a = mul(a, a, m))
            if (b & 1)
                res = mul(res, a, m);
9
        return res;
   bool isprime(i64 n) {
11
        if (n < 2)
```

```
return false;
13
14
         static constexpr int A[] = {2, 3, 5, 7, 11, 13, 17, 19, 23};
         int s = __builtin_ctzll(n - 1);
15
         i64 d = (n - 1) >> s;
16
17
         for (auto a : A) {
             if (a == n)
18
19
                  return true;
             i64 x = power(a, d, n);
20
             if (x == 1 | | x == n - 1)
21
22
                  continue;
             bool ok = false;
23
             for (int i = 0; i < s - 1; ++i) {
24
                  x = mul(x, x, n);
25
                  if (x == n - 1) {
26
                      ok = true;
27
                      break;
28
29
                  }
30
31
             if (!ok)
                  return false;
32
33
         }
34
         return true;
35
    }
    std::vector<i64> factorize(i64 n) {
         std::vector<i64> p;
37
38
         std::function<void(i64)> f = [&](i64 n) {
             if (n <= 10000) {
39
                  for (int i = 2; i * i <= n; ++i)</pre>
40
41
                      for (; n % i == 0; n /= i)
                          p.push_back(i);
42
                  if (n > 1)
43
                      p.push_back(n);
44
45
                  return;
46
             if (isprime(n)) {
47
48
                  p.push_back(n);
                  return:
49
50
             \textbf{auto} \ g \ = \ [\&] \ (\texttt{i64} \ x) \ \{
51
                  return (mul(x, x, n) + 1) \% n;
52
53
             };
             i64 x0 = 2;
54
             while (true) {
55
56
                  i64 x = x0;
                  i64 y = x0;
57
58
                  i64 d = 1;
                  i64 power = 1, lam = 0;
59
                  i64 v = 1;
                  while (d == 1) {
61
62
                      y = g(y);
63
                      ++lam;
                      v = mul(v, std::abs(x - y), n);
64
                      if (lam % 127 == 0) {
                          d = std::gcd(v, n);
66
67
                           v = 1;
68
                      if (power == lam) {
69
70
                           x = y;
                           power *= 2;
71
72
                           lam = 0;
73
                          d = std::gcd(v, n);
74
                           v = 1;
75
                      }
76
                  if (d != n) {
77
                      f(d);
78
79
                      f(n / d);
80
                      return;
81
                  }
82
                  ++x0;
             }
83
```

```
85
        std::sort(p.begin(), p.end());
        return p;
```

公式

一些数论公式

- 当 $x \ge \phi(p)$ 时有 $a^x \equiv a^{x \bmod \phi(p) + \phi(p)} \pmod p$
- $\mu^2(n) = \sum_{d^2|n} \mu(d)$
- $\sum_{d|n} \varphi(d) = n$
- $\sum_{d|n}^{-1} 2^{\omega(d)} = \sigma_0(n^2)$,其中 ω 是不同素因子个数
- $\bullet \ \textstyle \sum_{d|n} \mu^2(d) = 2^{\omega(d)}$

一些数论函数求和的例子

- $\begin{array}{l} \bullet \ \, \sum_{i=1}^n i[gcd(i,n)=1] = \frac{n\varphi(n)+[n=1]}{2} \\ \bullet \ \, \sum_{i=1}^n \sum_{j=1}^m [gcd(i,j)=x] = \sum_d \mu(d) \lfloor \frac{n}{dx} \rfloor \lfloor \frac{m}{dx} \rfloor \\ \bullet \ \, \sum_{i=1}^n \sum_{j=1}^m gcd(i,j) = \sum_{i=1}^n \sum_{j=1}^m \sum_{d|gcd(i,j)} \varphi(d) = \sum_d \varphi(d) \lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor \end{array}$
- $S(n) = \sum_{i=1}^n \mu(i) = 1 \sum_{i=1}^n \sum_{d \mid i, d < i} \mu(d) \stackrel{t = \frac{i}{d}}{=} 1 \sum_{t=2}^n S(\lfloor \frac{n}{t} \rfloor) -$ 利用 $[n = 1] = \sum_{d \mid n} \mu(d)$
- $S(n) = \sum_{i=1}^n \varphi(i) = \sum_{i=1}^n i \sum_{i=1}^n \sum_{d|i,d < i} \varphi(i) \stackrel{t=\frac{i}{d}}{=} \frac{i(i+1)}{2} \sum_{t=2}^n S(\frac{n}{t}) -$ 利用 $n = \sum_{d|n} \varphi(d)$
- $\begin{array}{l} \bullet \; \sum_{i=1}^n \mu^2(i) = \sum_{i=1}^n \sum_{d^2 \mid n} \mu(d) = \sum_{d=1}^{\lfloor \sqrt{n} \rfloor} \mu(d) \lfloor \frac{n}{d^2} \rfloor \\ \bullet \; \sum_{i=1}^n \sum_{j=1}^n gcd^2(i,j) = \sum_{d} d^2 \sum_{t} \mu(t) \lfloor \frac{n}{dt} \rfloor^2 \end{array}$

- $\begin{array}{l} \stackrel{x=dt}{=} \sum_{x} \left\lfloor \frac{n}{x} \right\rfloor^{2} \sum_{d|x} d^{2} \mu(\frac{x}{d}) \\ \bullet \sum_{i=1}^{n} \varphi(i) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} [i \perp j] 1 = \frac{1}{2} \sum_{i=1}^{n} \mu(i) \cdot \left\lfloor \frac{n}{i} \right\rfloor^{2} 1 \end{array}$

斐波那契数列性质

- $$\begin{split} \bullet & \ F_{a+b} = F_{a-1} \cdot F_b + F_a \cdot F_{b+1} \\ \bullet & \ F_1 + F_3 + \dots + F_{2n-1} = F_{2n}, F_2 + F_4 + \dots + F_{2n} = F_{2n+1} 1 \\ \bullet & \ \sum_{i=1}^n F_i = F_{n+2} 1 \\ \bullet & \ \sum_{i=1}^n F_i^2 = F_n \cdot F_{n+1} \\ \bullet & \ F_n^2 = (-1)^{n-1} + F_{n-1} \cdot F_{n+1} \\ \end{split}$$

- $gcd(F_a, F_b) = F_{gcd(a,b)}$ 模 n 周期(皮萨诺周期)
- - $-\pi(p^k) = p^{k-1}\pi(p)$
 - $-\pi(nm) = lcm(\pi(n), \pi(m)), \forall n \perp m$
 - $-\pi(2) = 3, \pi(5) = 20$
 - $\forall p \equiv \pm 1 \pmod{10}, \pi(p)|p-1$
 - $\forall p \equiv \pm 2 \pmod{5}, \pi(p)|2p+2$

组合数学

组合化简技巧

$$\binom{n}{m} = \binom{n}{n-m} \tag{1}$$

相当于将选出的集合对全集取补集,故数值不变。(对称性)

$$\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1} \tag{2}$$

由定义导出的递推式。

$$\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1} \tag{3}$$

组合数的递推式(杨辉三角的公式表达)。我们可以利用这个式子,在 $O(n^2)$ 的复杂度下推导组合数。

$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = \sum_{i=0}^{n} \binom{n}{i} = 2^n \tag{4}$$

这是二项式定理的特殊情况。取a=b=1就得到上式。

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} = [n=0] \tag{5}$$

二项式定理的另一种特殊情况,可取 a=1,b=-1。式子的特殊情况是取 n=0 时答案为 1。

$$\sum_{i=0}^{m} \binom{n}{i} \binom{m}{m-i} = \binom{m+n}{m} \quad (n \ge m) \tag{6}$$

拆组合数的式子, 在处理某些数据结构题时会用到。

$$\sum_{i=0}^{n} \binom{n}{i}^2 = \binom{2n}{n} \tag{7}$$

这是(6)的特殊情况,取n=m即可。

$$\sum_{i=0}^{n} i \binom{n}{i} = n2^{n-1} \tag{8}$$

带权和的一个式子,通过对(3)对应的多项式函数求导可以得证。

$$\sum_{i=0}^{n} i^2 \binom{n}{i} = n(n+1)2^{n-2} \tag{9}$$

与上式类似, 可以通过对多项式函数求导证明。

$$\sum_{l=0}^{n} \binom{l}{k} = \binom{n+1}{k+1} \tag{10}$$

通过组合分析一一考虑 $S=\{a_1,a_2,\cdots,a_{n+1}\}$ 的 k+1 子集数可以得证,在恒等式证明中比较常用。

$$\binom{n}{r}\binom{r}{k} = \binom{n}{k}\binom{n-k}{r-k} \tag{11}$$

通过定义可以证明。

$$\sum_{i=0}^{n} \binom{n-i}{i} = F_{n+1} \tag{12}$$

其中 F 是斐波那契数列。

鸽巢原理

把 n+1 个物品放进 n 个盒子, 至少有一个盒子包含两个或更多的物品

加强形式:

令 $q_1,q_2\dots q_n$ 为正整数,如果将 $q_1+q_2+\dots+q_n-n+1$ 个物品放入 n 个盒子,那么,或者第 1 个盒子至少含有 q_1 个物品,或者第 2 个盒子至少含有 q_2 个物品,…,或者第 n 个盒子至少含有 q_n 个物品。

容斥原理

$$\bigcup_{i=1}^n S_i = \sum_{m=1}^n (-1)^{m-1} \sum_{a_i < a_{i+1}} \bigcap_{i=1}^m S_{a_i}$$

二项式定理

$$(1+x)^n = \sum_{r=0}^n C_n^r x^r$$

多重集的排列数 | 多重组合数

请大家一定要区分 多重组合数与 多重集的组合数! 两者是完全不同的概念!

多重集是指包含重复元素的广义集合。设 $S=\{n_1\cdot a_1,n_2\cdot a_2,\cdots,n_k\cdot a_k\}$ 表示由 $n_1\uparrow a_1,\ n_2\uparrow a_2,\ ...,\ n_k\uparrow a_k$ 组成的多重集, S 的全排列个数为

$$\frac{n!}{\prod_{i=1}^{k} n_i!} = \frac{n!}{n_1! n_2! \cdots n_k!}$$

相当于把相同元素的排列数除掉了。具体地,你可以认为你有 k 种不一样的球,每种球的个数分别是 n_1,n_2,\cdots,n_k ,且 $n=n_1+n_2+\ldots+n_k$ 。这 n 个球的全排列数就是 **多重集的排列数**。多重集的排列数常被称作 **多重组合数**。我们可以用多重组合数的符号表示上式:

$$\binom{n}{n_1,n_2,\cdots,n_k} = \frac{n!}{\prod_{i=1}^k n_i!}$$

可以看出, $\binom{n}{m}$ 等价于 $\binom{n}{m,n-m}$,只不过后者较为繁琐,因而不采用。

多重集的组合数 1

设 $S=\{n_1\cdot a_1,n_2\cdot a_2,\cdots,n_k\cdot a_k\}$ 表示由 n_1 个 a_1 , n_2 个 a_2 , …, n_k 个 a_k 组成的多重集。那么对于整数 $r(r< n_i, \forall i\in [1,k])$,从 S 中选择 r 个元素组成一个多重集的方案数就是 **多重集的组合数**。这个问题等价于 $x_1+x_2+\cdots+x_k=r$ 的非负整数解的数目,可以用插板法解决,答案为

$$\binom{r+k-1}{k-1}$$

多重集的组合数 2

考虑这个问题: 设 $S = \{n_1 \cdot a_1, n_2 \cdot a_2, \cdots, n_k \cdot a_k, \}$ 表示由 $n_1 \uparrow a_1, n_2 \uparrow a_2, \ldots, n_k \uparrow a_k$ 组成的多重集。那么对于正整数 r,从 S 中选择 r 个元素组成一个多重集的方案数。

这样就限制了每种元素的取的个数。同样的,我们可以把这个问题转化为带限制的线性方程求解:

$$\forall i \in [1, k], \ x_i \le n_i, \ \sum_{i=1}^k x_i = r$$

于是很自然地想到了容斥原理。容斥的模型如下:

1. 全集: $\sum_{i=1}^{k} x_i = r$ 的非负整数解。

2. 属性: $x_i \leq n_i$

于是设满足属性 i 的集合是 S_i , $\overline{S_i}$ 表示不满足属性 i 的集合,即满足 $x_i \geq n_i + 1$ 的集合(转化为上面插板法的问题三)。那么答案即为

$$\left|\bigcap_{i=1}^k S_i\right| = |U| - \left|\bigcup_{i=1}^k \overline{S_i}\right|$$

根据容斥原理,有:

$$\left|\bigcup_{i=1}^{k} \overline{S_i}\right| = \sum_{i} \left|\overline{S_i}\right| - \sum_{i,j} \left|\overline{S_i} \cap \overline{S_j}\right| + \sum_{i,j,k} \left|\overline{S_i} \cap \overline{S_j} \cap \overline{S_k}\right| - \cdots$$
 (1)

$$+ (-1)^{k-1} \left| \bigcap_{i=1}^{k} \overline{S_i} \right| \tag{2}$$

$$= \sum_{i} \binom{k+r-n_{i}-2}{k-1} - \sum_{i,j} \binom{k+r-n_{i}-n_{j}-3}{k-1} + \sum_{i,j,k} \binom{k+r-n_{i}-n_{j}-n_{k}-4}{k-1} - \cdots$$
 (3)

$$+ (-1)^{k-1} \binom{k+r-\sum_{i=1}^{k} n_i - k - 1}{k-1}$$

$$\tag{4}$$

拿全集 $|U|=inom{k+r-1}{k-1}$ 减去上式,得到多重集的组合数

$$Ans = \sum_{p=0}^{k} (-1)^p \sum_{A} \binom{k+r-1-\sum_{A} n_{A_i} - p}{k-1}$$

其中 A 是充当枚举子集的作用,满足 $|A|=p, A_i < A_{i+1}$ 。

圆排列

n 个人全部来围成一圈,所有的排列数记为 \mathbf{Q}_n^n 。考虑其中已经排好的一圈,从不同位置断开,又变成不同的队列。所以有

$$\mathbf{Q}_n^n \times n = \mathbf{A}_n^n \Longrightarrow \mathbf{Q}_n = \frac{\mathbf{A}_n^n}{n} = (n-1)!$$

由此可知部分圆排列的公式:

$$Q_n^r = \frac{A_n^r}{r} = \frac{n!}{r \times (n-r)!}$$

错排

$$D_n = (n-1)(D_{n-1} + D_{n-2})$$

$$D_n = nD_{n-1} + (-1)^n$$

Catalan 数

$$C_{2n}^n - C_{2n}^{n-1} = \frac{C_{2n}^n}{n+1}$$

Stirling 数

第一类斯特林数 (感觉 useless)

把n个不同元素分配到k个圆排列里,圆不能为空

$$s_{n,k} = s_{n-1,k-1} + (n-1) \times s_{n-1,k}$$

第二类斯特林数

将 n 个物体划分成 k 个非空的没有区别的集合的方法数,等同于把 n 个不同的小球放入 m 个相同的盒子中(且盒子不能为空)的方案数。递推公式为

 $s_{i,j} = s_{i-1,j} \times j + s_{i-1,j-1}$ $(s_{i,j}$ 表示前 i 个小球放到前 j 个盒子里的方案数)

我们可以这样理解:对于一个 $s_{i,j}$,你接下来要再放一个小球,你可以放到前 j 个盒子里,方案数为 $j \times s_{i-1,j-1}$,也可以放到下一个盒子里,方案数为 $s_{i,j+1}$ 。

此外这个部分还有一种做法。考虑容斥: 枚举多少个盒子空了, 然后剩下的部分就是第三种情况了。然后就可以得到下面这个式子:

$$S_{n,m} = \frac{1}{m!} \sum_{i=0}^{m} (-1)^{i} {m \choose i} (m-i)^{n}$$

高维前缀和

对于所有的 $i, 0 \le i \le 2^n - 1$,求解 $\sum_{j \subset i} a_j$

去除原有二维前缀和的容斥求法,对每一维采用类似一维前缀和的方式依次累加进行计算,每次提高一个维度不断累加。实际上就等价于 f_i 加上 $f_{i \oplus (2^j)}$,类似 or 运算

```
for(int j = 0; j < n; j++)
for(int i = 0; i < 1 << n; i++)
if(i >> j & 1) f[i] += f[i ^ (1 << j)];</pre>
```

对超集求和,也为高维后缀和,类似 and 运算

```
for(int j = 0; j < n; j++)
    for(int i = 0; i < 1 << n; i++)
        if(!(i >> j & 1)) f[i] += f[i ^ (1 << j)];</pre>
```

二项式反演

三种形式

$$f(n) = \sum_{k=0}^{n} (-1)^k \binom{n}{k} g(k) \Longleftrightarrow g(n) = \sum_{k=0}^{n} (-1)^k \binom{n}{k} f(k)$$

至多和恰好的转换

$$f(n) = \sum_{k=0}^{n} \binom{n}{k} g(k) \Longleftrightarrow g(n) = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} f(k)$$

至少和恰好的转换

$$f(n) = \sum_{k=n}^{\infty} \binom{k}{n} g(k) \Longleftrightarrow g(n) = \sum_{k=n}^{\infty} (-1)^{k-n} \binom{k}{n} f(k)$$

斯特林反演

$$f(n) = \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} g(k) \Longleftrightarrow g(n) = \sum_{k=0}^n (-1)^{n-k} \begin{bmatrix} n \\ k \end{bmatrix} f(k)$$

$$f(n) = \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} g(k) \Longleftrightarrow g(n) = \sum_{k=0}^n (-1)^{n-k} \begin{bmatrix} n \\ k \end{bmatrix} f(k)$$

子集反演

$$f(S) = \sum_{T \subseteq S} g(T) \Longrightarrow g(S) = \sum_{T \subseteq S} (-1)^{|S| - |T|} f(T)$$

最值反演(min-max 容斥)

$$\max S = \sum_{T\subseteq S} (-1)^{|T|-1} \min T$$

$$\min S = \sum_{T \subset S} (-1)^{|T|-1} \max T$$

拓展

$$k^{th} \max S = \sum_{T \subset S} (-1)^{|T|-k} \binom{|T-1|}{k-1} \min T$$

反之同理

此外上述两种 min-max 容斥在期望上仍然成立

线性代数

高斯消元

```
typedef long long ll;
    const int mo = 1e9 + 7;
    using i64 = long long;
    template<typename T>
    struct Gauss{
        int n,m;// n 行 m 列
        std::vector<std::vector<T>> a;
        Gauss(int n,int m,const vector<vector<T>> &a):n(n),m(m),a(a){}
        vector<double> gauss(){
             std::vector<double> sol;
11
             int r = 0;
12
             for(int i = 0;i < m;i ++){</pre>
13
                 if(n < m \&\& i >= n) break;
14
15
                 int mx = i;//最大数的行号
                 for(int j = i + 1; j < n; j ++)</pre>
16
                      if(fabs(a[mx][i]) < fabs(a[j][i])) mx = j;</pre>
17
                 if(fabs(a[mx][i]) < eps) continue;</pre>
18
                 if(mx != i) swap(a[mx],a[i]);
                 double t = a[i][i];
20
                 for(int j = i;j < m + 1;j ++){</pre>
21
                      a[i][j] /= t;
23
                 for(int j = i + 1; j < n; j ++){</pre>
                     t = a[j][i];
25
                      for(int k = i; k < m + 1; k ++){
26
                          a[j][k] = a[i][k] * t;
27
28
                 r ++;
```

```
31
32
             for(int i = m;i < n;i ++){</pre>
                 if(fabs(a[i][m]) > eps)return sol;// 无解
33
34
             if(r < m) return sol;// 无穷解
             sol.resize(m);
36
             sol[m - 1] = a[m - 1][m];
37
             for(int i = n - 2;i >= 0;i --){
38
                 sol[i] = a[i][m];
39
                  for(int j = i + 1; j < m; j ++){</pre>
                      sol[i] -= a[i][j] * sol[j];
41
42
             }
43
             return sol;
44
45
         int gauss_det(){
46
47
             assert(n == m);
             int det = 1;
48
             for(int i = 0;i < n;i ++){</pre>
                 for(int j = i + 1; j < n; j ++){</pre>
50
                      while(a[j][i] != 0){
51
                          int k = a[i][i] / a[j][i];
52
                           for(int h = i;h < n;h ++){</pre>
53
                               a[i][h] -= a[j][h] * k;
55
                               std::swap(a[i][h],a[j][h]);
56
57
                          det = -det;
                      }
58
                 }
60
             for(int i = 0;i < n;i ++) det *= a[i][i];</pre>
61
62
             return det;
        }
63
        T gauss_det_mod(int st = 0){
65
             T det = T(1);
66
             for(int i = st;i < n;i ++){</pre>
67
                 det *= a[i][i];
//cerr << i << " " << a[i][i].a << " " << a[i][i].b << "\n";</pre>
68
                 T tmp = T(1) / a[i][i];
70
71
                 for(int j = i;j < n;j ++) a[i][j] *= tmp;</pre>
                 for(int j = i + 1; j < n; j ++){</pre>
72
                      tmp = a[j][i];
73
74
                      for(int k = i;k < n;k ++) a[j][k] = a[j][k] - tmp * a[i][k];</pre>
                 }
75
76
             }
77
             return det;
78
    };
    线性基
    struct LinearBasis {
1
2
         static const int n = 60;
         bool 0; ll a[n + 1]; int cnt;
3
        void clear() { 0 = 0; cnt = 0; for (int i = 0; i <= n; ++i) a[i] = 0; }</pre>
         void insert(ll v) {
             for (int i = n; ~i; --i) {
                 if (!(v >> i & 1)) continue;
                 if (!a[i]) { a[i] = v; break; }
                 v ^= a[i];
             } 0 |= !v;
11
12
         void work() {
13
             for (int i = 0; i <= n; cnt += a[i++] > 0)
14
                 for (int j = 0; j < i; ++j)
15
                      if (a[i] >> j & 1) a[i] ^= a[j];
16
17
         ll get_max(ll v = 0) {
18
             for (int i = n; ~i; --i) v = max(v, v ^ a[i]);
```

```
return v:
20
21
        ll get_min() {
22
            if (0) return 0;
23
            for (int i = 0; i <= n; ++i)
                 if (a[i]) return a[i];
25
26
        ll get_min(ll v) {
27
            for (int i = n; ~i; --i) v = min(v, v ^ a[i]);
28
            return v;
30
        ll get_kth(ll k) {
31
            ll ans = 0; k -= 0;
32
            for (int i = 0; i <= n; ++i) {</pre>
33
                if (!a[i]) continue;
34
                 if (k & 1) ans ^= a[i];
35
                k >>= 1;
37
            if (k > 0) return -1;
            else return ans;
39
40
        bool check(ll v) {
41
            for (int i = n; ~i; --i) {
42
                 if (!(v >> i & 1)) continue;
                if (!a[i]) return 0;
44
45
                v ^= a[i];
46
            } return 1;
        }
47
    };
```

Prüfer 序列

Prüfer 是这样建立的:每次选择一个编号最小的叶结点并删掉它,然后在序列中记录下它连接到的那个结点。重复 n-2 次后就只剩下两个结点。

- 重要性质: prufer 序列与无根树一一对应。
- 度数为 d_i 的节点会在 prufer 序列中出现 $d_i 1$ 次。
- 一个 ${\bf n}$ 个节点的完全图的生成树个数为 n^{n-2} 。
- 对于给定度数为 $d_{1...n}$ 的一棵无根树共有 $\frac{(n-2)!}{\prod (d_i-1)!}$ 种情况。
- ullet n 个点 m 条边的带标号无向图有 k 个连通块。我们希望添加 k-1 条边使得整个图连通。方案数为 $n^{k-2}\prod_{i=1}^k s_{i^\circ}$

LGV 引理

LGV 引理仅适用于 有向无环图。

定义

 $\omega(P)$ 表示 P 这条路径上所有边的边权之积。(路径计数时,可以将边权都设为 1)(事实上,边权可以为生成函数) e(u,v) 表示 u 到 v 的 **每一条**路径 P 的 $\omega(P)$ 之和,即 $e(u,v)=\sum\limits_{P:u\to v}\omega(P)$ 。

起点集合 A, 是有向无环图点集的一个子集, 大小为 n。

终点集合 B, 也是有向无环图点集的一个子集, 大小也为 n。

一组 $A\to B$ 的不相交路径 $S\colon S_i$ 是一条从 A_i 到 $B_{\sigma(S)_i}$ 的路径($\sigma(S)$ 是一个排列),对于任何 $i\neq j$, S_i 和 S_j 没有公共顶点。 $N(\sigma)$ 表示排列 σ 的逆序对个数。

引理

$$M = \begin{bmatrix} e(A_1, B_1) & e(A_1, B_2) & \cdots & e(A_1, B_n) \\ e(A_2, B_1) & e(A_2, B_2) & \cdots & e(A_2, B_n) \\ \vdots & \vdots & \ddots & \vdots \\ e(A_n, B_1) & e(A_n, B_2) & \cdots & e(A_n, B_n) \end{bmatrix}$$

$$\det(M) = \sum_{S:A \to B} (-1)^{N(\sigma(S))} \prod_{i=1}^n \omega(S_i)$$

其中 $\sum_{S:A o B}$ 表示满足上文要求的 A o B 的每一组不相交路径 S。

矩阵树定理

定理 1 (矩阵树定理, 无向图行列式形式) 对于任意的 i, 都有

$$t(G) = \det L(G) \begin{pmatrix} 1,2,\cdots,i-1,i+1,\cdots,n \\ 1,2,\cdots,i-1,i+1,\cdots,n \end{pmatrix}$$

其中记号 $L(G)^{(1,2,\cdots,i-1,i+1,\cdots,n)}_{(1,2,\cdots,i-1,i+1,\cdots,n)}$ 表示矩阵 L(G) 的第 $1,\cdots,i-1,i+1,\cdots,n$ 行与第 $1,\cdots,i-1,i+1,\cdots,n$ 列构成的子矩阵。也就是说,无向图的 Laplace 矩阵具有这样的性质,它的所有 n-1 阶主子式都相等。

定理 2(矩阵树定理,无向图特征值形式)设 $\lambda_1,\lambda_2,\cdots,\lambda_{n-1}$ 为 L(G) 的 n-1 个非零特征值,那么有

$$t(G) = \frac{1}{n} \lambda_1 \lambda_2 \cdots \lambda_{n-1}$$

定理 3(矩阵树定理,有向图根向形式)对于任意的 k,都有

$$t^{root}(G,k) = \det L^{out}(G) \begin{pmatrix} 1,2,\cdots,k-1,k+1,\cdots,n \\ 1,2,\cdots,k-1,k+1,\cdots,n \end{pmatrix}$$

因此如果要统计一张图所有的根向树形图,只要枚举所有的根 k 并对 $t^{root}(G,k)$ 求和即可。

定理 4 (矩阵树定理,有向图叶向形式)对于任意的 k,都有

$$t^{leaf}(G,k) = \det L^{in}(G) \begin{pmatrix} 1, 2, \cdots, k-1, k+1, \cdots, n \\ 1, 2, \cdots, k-1, k+1, \cdots, n \end{pmatrix}$$

因此如果要统计一张图所有的叶向树形图,只要枚举所有的根 k 并对 $t^{leaf}(G,k)$ 求和即可。

BEST 定理

定理 5 (BEST 定理) 设 G 是有向欧拉图,那么 G 的不同欧拉回路总数 ec(G) 是

$$ec(G) = t^{root}(G,k) \prod_{v \in V} (\deg(v) - 1)!$$

注意、对欧拉图 G 的任意两个节点 k, k'、都有 $t^{root}(G, k) = t^{root}(G, k')$ 、且欧拉图 G 的所有节点的入度和出度相等。

博弈

Nim 游戏:每轮从若干堆石子中的一堆取走若干颗。先手必胜条件为石子数量异或和非零。

阶梯 Nim 游戏:可以选择阶梯上某一堆中的若干颗向下推动一级,直到全部推下去。先手必胜条件是奇数阶梯的异或和非零(对于偶数阶梯的操作可以模仿)。

Anti-SG: 无法操作者胜。先手必胜的条件是:

- SG 不为 0 且某个单一游戏的 SG 大于 1。
- SG 为 0 且没有单一游戏的 SG 大于 1。

Every-SG: 对所有单一游戏都要操作。先手必胜的条件是单一游戏中的最大 step 为奇数。

- 对于终止状态 step 为 0
- 对于 SG 为 0 的状态, step 是最大后继 step +1
- 对于 SG 非 0 的状态, step 是最小后继 step +1

树上删边: 叶子 SG 为 0, 非叶子结点为所有子结点的 SG 值加 1 后的异或和。

多项式

拉格朗日插值

$$f(x) = \sum_{i=1}^n y_i \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}$$

```
vector<int> lagrange(const vector<int> &x,const vector<int> y){
        assert(x.size() == y.size());
        int n = x.size();
        std::vector<int> a(n);
        for(int i = 0;i < n;i ++){</pre>
            int A = 1;
             for(int j = 0; j < n; j ++){
                 if(i == j)continue;
                 assert(x[i] - x[j]);
                 A = 111 * A * (x[i] - x[j] + mo) % mo;
11
            a[i] = 111 * y[i] * qp(A,mo - 2) % mo;
12
13
        std::vector<int> b(n + 1),c(n),f(n);
14
        b[0] = 1;
        for(int i = 0;i < n;i ++){</pre>
16
             for(int j = i + 1;j >= 1;j --){
17
                 b[j] = (111 * b[j] * (mo - x[i]) % mo + b[j - 1]) % mo;
19
            b[0] = 111 * b[0] * (mo - x[i]) % mo;
21
        for(int i = 0;i < n;i ++){</pre>
22
            int inv = qp(mo - x[i], mo - 2);
23
            if(!inv){
24
                 for(int j = 0; j < n; j ++)c[j] = b[j + 1];
            }else {
26
                 c[0] = 111 * b[0] * inv % mo;
27
                 for(int j = 1; j < n; j ++){</pre>
28
                     c[j] = 111 * (b[j] - c[j - 1] + mo) * inv % mo;
29
31
            for(int j = 0 ; j < n; j ++){
32
                f[j] = (f[j] + 1ll * a[i] * c[j] % mo) % mo;
33
34
35
        return f;
36
37
   }
```

横坐标连续

$$f(x) = \sum_{i=1}^{n+1} y_i \cdot \frac{\prod\limits_{j=1}^{n+1} (x-j)}{(x-i) \cdot (-1)^{n+1-i} \cdot (i-1)! \cdot (n+1-i)!}$$

普通幂与上升幂和下降幂

记上升阶乘幂 $x^{\overline{n}} = \prod_{k=0}^{n-1} (x+k)$ 。

则可以利用下面的恒等式将上升幂转化为普通幂:

$$x^{\overline{n}} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} x^k$$

如果将普通幂转化为上升幂,则有下面的恒等式:

$$x^n = \sum_k \begin{Bmatrix} n \\ k \end{Bmatrix} (-1)^{n-k} x^{\overline{k}}$$

记下降阶乘幂 $x^{\underline{n}} = \frac{x!}{(x-n)!} = \prod_{k=0}^{n-1} (x-k) = n! \binom{x}{n}$ 。

则可以利用下面的恒等式将普通幂转化为下降幂:

$$x^n = \sum_{k} \begin{Bmatrix} n \\ k \end{Bmatrix} x^{\underline{k}}$$

如果将下降幂转化为普通幂,则有下面的恒等式:

$$x^{\underline{n}} = \sum_k \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^k$$

多项式操作技巧

分治 FFT

 $\prod_{i=1}^n f_i(x)$,分治两两合并即可,要求每个多项式次数较低 $f_i = \sum_{j=1}^i f_{i-j} g_j, \ \text{先求出左边} \ f_i$ 再将其与 g_i 相乘算出对右边 f_i 的贡献。 上式也可化为 $f(x) = (1-g(x))^{-1}$

循环卷积

将其中一个序列复制一遍, 再做卷积

差卷积

 $h_d = \sum f_i g_{i+d}$ 将其中一个序列翻转,就转化成了加法卷积

乘法卷积

 $h_k = \sum_{i \times j = k} f_i g_j$

对下标取离散对数, 转成加法卷积

ln 转 exp

对于形如 $\prod (1+x^{a_i})$ 这种形式的,对其取 \ln 将乘法转为加法,然后再 \exp 回去。

FWT

or, and, xor 卷积

```
void FWT_or(vector<Z> a,int N,int opt){ // N = 2^n
        for(int len = 2,M = 1;len <= N;M = len,len <<= 1){</pre>
             for(int L = 0,R = len - 1; R <= N;L += len,R += len){</pre>
                 for(int k = L; k < L + M; k ++){
                     if(opt == 1)a[k + M] += a[k];
                     else a[k + M] -= a[k];
            }
   }
    void FWT_and(vector<Z> a,int N,int opt){
        for(int len = 2,M = 1;len <= N;M = len,len <<= 1){</pre>
13
             for(int L = 0,R = len - 1; R <= N;L += len,R += len){</pre>
14
                 for(int k = L;k < L + M;k ++){
15
                     if(opt == 1)a[k] += a[k + M];
16
                     else a[k] -= a[k + M];
                 }
18
            }
20
21
    void FWT_xor(vector<Z> a,int N,int opt){
22
23
        for(int len = 2,M = 1;len <= N;M = len,len <<= 1){</pre>
            for(int L = 0,R = len - 1; R <= N;L += len,R += len){</pre>
24
                 for(int k = L; k < L + M; k ++){
25
                     Z x = a[k], y = a[k + M];
                     a[k] = x + y; a[k + M] = x - y;
27
                     if(opt == -1)a[k] = a[k] * inv2,a[k + M] = a[k + M] * inv2;
        }// ifwt 等于 fwt 后除 N
```

OGF

基本运算考虑两个序列 a,b 的普通生成函数, 分别为 F(x),G(x)。那么有

$$F(x)\pm G(x)=\sum_n(a_n\pm b_n)x^n$$

因此 $F(x) \pm G(x)$ 是序列 $\langle a_n \pm b_n \rangle$ 的普通生成函数。考虑乘法运算,也就是卷积:

$$F(x)G(x) = \sum_n x^n \sum_{i=0}^n a_i b_{n-i}$$

因此 F(x)G(x) 是序列 $\langle \sum_{i=0}^n a_i b_{n-i} \rangle$ 的普通生成函数。

常见互化手段求导, 二项式定理展开

$$\langle 1,p,p^2,p^3,p^4,\cdots
angle$$
 的生成函数 $F(x)=\sum_{n\geq 0}p^nx^n=rac{1}{1-px}$

$$\langle 1^{\underline{k}}, 2^{\underline{k}}, 3^{\underline{k}}, 4^{\underline{k}}, \cdots \rangle$$
 的生成函数 $F(x) = \sum_{n \geq 0} (n+1)^{\underline{k}} x^n = rac{k!}{(1-x)^{k+1}}$

$$F(x) = \sum_{n>0} {m \choose n} x^n = (1+x)^m$$

$$F(x) = \sum_{n \geq 0} \binom{m+n}{n} x^n = \frac{1}{(1-x)^{m+1}}$$

斐波那契数列生成函数 $F(x) = \frac{x}{1-x-x^2} = \sum_{n \geq 0} (1-2^{n+1}+(n+1)\cdot 2^{n+1})x^n$

五边形数

$$\prod_{i \geq 1} (1-x^i) = \sum_{k=-\infty}^{\infty} (-1)^k x^{\frac{k(3k-1)}{2}}$$

EGF

在 OGF 的基础上考虑有序,形式上基本和泰勒展开等价

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

常用公式

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n}$$

基本运算

指数生成函数的加减法与普通生成函数是相同的,也就是对应项系数相加。

考虑指数生成函数的乘法运算。对于两个序列 a,b,设它们的指数生成函数分别为 $\hat{F}(x),\hat{G}(x)$,那么

$$\begin{split} \hat{F}(x)\hat{G}(x) &= \sum_{i \geq 0} a_i \frac{x^i}{i!} \sum_{j \geq 0} b_j \frac{x^j}{j!} \\ &= \sum_{n \geq 0} x^n \sum_{i=0}^n a_i b_{n-i} \frac{1}{i!(n-i)!} \\ &= \sum_{n \geq 0} \frac{x^n}{n!} \sum_{i=0}^n \binom{n}{i} a_i b_{n-i} \end{split}$$

因此 $\hat{F}(x)\hat{G}(x)$ 是序列

$$\left\langle \sum_{i=0}^{n} \binom{n}{i} a_i b_{n-i} \right\rangle$$

的指数生成函数。

多项式 exp 组合意义: 将 n 个互异元素分到若干**非空的无序集合**中,大小为 i 的集合内有 f_i 种方案,记最后的总方案数为 g_n 。则两者的 EGF 满足 $G(x)=e^{F(x)}$ 。

集合幂级数

计算 $\prod (1+x^{a_i})$ 这里为或卷积。

由于点值一定为 $1^x 2^{n-x}$ 的形式,所以可以通过一次 fwt 解出 x,然后再将点值序列 ifwt 回去解出答案。

计算 $\prod (x^U + x^{a_i})$ 这里为与卷积。

点值同样为 $1^x 2^{n-x}$ 的形式

计算 \prod (1 + $a_i x^i$) 这里为异或卷积。

等价于对每个x 求 $\prod (1+(-1)^{x\oplus i}a_i)$,分治求解,最后再 ifwt 回去。 a_i 为定值则可套用上面的方式。

```
for(int len = i << 1,j = 0;j < N;j += len)</pre>
8
                 for(int k = 0; k < i; k ++){
                     int a0 = A[j + k],a1 = A[j + k + i];
10
                     int b0 = B[j + k],b1 = B[j + k + i];
11
                     A[j + k] = 111 * a0 * a1 % mo;
                     B[j + k] = 111 * b0 * b1 % mo;
13
                     A[j + k + i] = 111 * a0 * b1 % mo;
14
                     B[j + k + i] = 111 * a1 * b0 % mo;
15
16
        for(int i = 0;i < N;i ++)a[i] = A[i];</pre>
17
    }
18
    FFT
    constexpr double PI = std::atan2(0, -1);
    std::vector<int> rev;
    std::vector<std::complex<double>> roots {0, 1};
    void dft(std::vector<std::complex<double>> &a) {
        int n = a.size();
        if (int(rev.size()) != n) {
             int k = __builtin_ctz(n) - 1;
7
             rev.resize(n);
8
             for (int i = 0; i < n; ++i)</pre>
                 rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
10
11
        for (int i = 0; i < n; ++i)</pre>
12
             if (rev[i] < i)
13
                 swap(a[i], a[rev[i]]);
14
        if (int(roots.size()) < n) {</pre>
15
             int k = __builtin_ctz(roots.size());
16
             roots.resize(n);
17
             while ((1 << k) < n)  {
18
                 std::complex<double> e = {cos(PI / (1 << k)), sin(PI / (1 << k))};
19
                 for (int i = 1 \ll (k - 1); i < (1 \ll k); ++i) {
21
                     roots[2 * i] = roots[i];
                     roots[2 * i + 1] = roots[i] * e;
22
23
                 }
                 ++k;
24
            }
25
26
27
        for (int k = 1; k < n; k *= 2) {
             for (int i = 0; i < n; i += 2 * k) {
28
                 for (int j = 0; j < k; ++j) {
29
                     auto u = a[i + j], v = a[i + j + k] * roots[k + j];
                     a[i + j] = u + v;
31
                     a[i + j + k] = u - v;
32
                 }
33
            }
34
35
    }
36
    void idft(std::vector<std::complex<double>> &a) {
37
38
        int n = a.size();
        reverse(a.begin() + 1, a.end());
39
40
        dft(a);
        for (int i = 0; i < n; ++i)</pre>
41
42
             a[i] /= n;
    }
43
    std::vector<ll> operator*(std::vector<ll> a, std::vector<ll> b) {
44
45
        int sz = 1, tot = a.size() + b.size() - 1;
        while (sz < tot)</pre>
46
47
             sz *= 2;
        std::vector<std::complex<double>> ca(sz), cb(sz);
48
        //copy(a.begin(), a.end(), ca.begin());
        //copy(b.begin(), b.end(), cb.begin());
50
        for(int i = 0;i < sz;i ++){</pre>
51
52
             if(i < a.size())ca[i].real(a[i]);</pre>
             if(i < b.size())ca[i].imag(b[i]);</pre>
53
54
        dft(ca);
55
56
        //dft(cb);
        for (int i = 0; i < sz; ++i)</pre>
57
```

```
ca[i] *= ca[i];
58
59
        idft(ca);
60
        a.resize(tot);
        for (int i = 0; i < tot; ++i)</pre>
61
62
            a[i] = std::floor(ca[i].imag() / 2 + 0.5);
        return a:
63
   }
64
65
    多项式全家桶
   using namespace std;
1
   using i64 = long long;
    constexpr int P = 998244353;
    int norm(int x) {
        if (x < 0) x += P;
        if (x >= P) x -= P;
        return x;
   }
8
    template<class T>
    T qp(T a, int b) {
10
11
        T res = 1;
        for (; b; b /= 2, a *= a) {
12
            if (b % 2) {
13
14
                 res *= a;
            }
15
16
        return res;
17
   }
18
19
    struct Z{
        int x;
20
21
        Z(): x{} {}
        Z(int x) : x\{norm(x)\} \{\}
22
        Z(i64 x) : x{norm(int(x % P))} {}
24
        friend std::istream &operator>>(std::istream &is,Z &a) {
            i64 v;
25
26
            is >> v:
            a = Z(v);
27
28
            return is;
29
30
        friend std::ostream &operator<<(std::ostream &os, const Z &a) {</pre>
31
            return os << a.x;</pre>
32
        Z inv() const {
            return qp(Z(x),P-2);
34
35
36
   };
   bool operator==(const Z a,const Z b) { return a.x == b.x; }
37
   bool operator!=(const Z a,const Z b) { return a.x != b.x; }
    Z operator+(const Z a, const Z b) { return norm(a.x + b.x); }
39
    Z operator-(const Z a, const Z b) { return norm(a.x + P - b.x); }
   Z operator-(const Z x) { return x.x ? P - x.x : 0; }
41
   Z operator*(const Z a, const Z b) { return i64(a.x) * b.x % P; }
   Z operator/(const Z a, const Z b) { return a * b.inv(); }
    Z \& operator += (Z \& a, const Z b) \{ return a = a + b; \}
44
    Z &operator-=(Z &a, const Z b) { return a = a - b; }
    Z &operator*=(Z &a, const Z b) { return a = a * b; }
46
    Z &operator/=(Z &a, const Z b) { return a = a / b; }
47
48
    std::vector<int> rev;
49
    std::vector<Z> roots{0, 1};
    void dft(std::vector<Z> &a) {
51
        int n = a.size();
        if (int(rev.size()) != n) {
53
            int k = __builtin_ctz(n) - 1;
54
55
            rev.resize(n);
            for (int i = 0; i < n; i++) {</pre>
56
                 rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
58
59
        for (int i = 0; i < n; i++) if (rev[i] < i) swap(a[i], a[rev[i]]);</pre>
```

```
if (int(roots.size()) < n) {</pre>
61
62
              int k = __builtin_ctz(roots.size());
63
             roots.resize(n);
             while ((1 << k) < n) {
64
                  Z = qp(Z(3), (P - 1) >> (k + 1));
65
                  for (int i = 1 \iff (k - 1); i \iff (1 \iff k); i++) {
66
67
                      roots[2 * i] = roots[i];
                      roots[2 * i + 1] = roots[i] * e;
68
                  }
69
70
                  k++;
             }
71
72
         for (int k = 1; k < n; k *= 2) {
73
             for (int i = 0; i < n; i += 2 * k) {
74
                  for (int j = 0; j < k; j++) {
75
                      Z u = a[i + j];
76
77
                      Z v = a[i + j + k] * roots[k + j];
                      a[i + j] = u + v;
78
79
                      a[i + j + k] = u - v;
                  }
80
81
             }
         }
82
    }
83
    void idft(std::vector<Z> &a) {
         int n = a.size();
85
86
         std::reverse(a.begin() + 1, a.end());
87
         dft(a);
         Z inv = (1 - P) / n;
88
         for (int i = 0; i < n; i++) {</pre>
             a[i] *= inv;
90
91
    }
92
    struct Poly {
93
94
         std::vector<Z> a;
         Poly() {}
95
         Poly(const std::vector<Z> &a) : a(a) {}
96
         Poly(const std::initializer_list<Z> &a) : a(a) {}
97
98
         int size() const {
99
             return a.size();
         }
100
101
         void resize(int n) {
102
             a.resize(n);
103
104
         Z operator[](int idx) const {
             if (idx < size()) {</pre>
105
                  return a[idx];
             } else {
107
108
                  return 0;
             }
109
110
         Z &operator[](int idx) {
111
             return a[idx];
112
113
         Poly mulxk(int k) const {
114
             auto b = a;
115
116
             b.insert(b.begin(), k, 0);
             return Poly(b);
117
118
119
         Poly modxk(int k) const {
             k = std::min(k, size());
120
             return Poly(std::vector<Z>(a.begin(), a.begin() + k));
121
122
123
         Poly divxk(int k) const {
             if (size() <= k) {
124
125
                  return Poly();
             }
126
127
             return Poly(std::vector<Z>(a.begin() + k, a.end()));
128
         friend Poly operator+(const Poly &a, const Poly &b) {
129
             std::vector<Z> res(std::max(a.size(), b.size()));
             for (int i = 0; i < int(res.size()); i++) {</pre>
131
```

```
res[i] = a[i] + b[i];
132
133
             return Poly(res);
134
         }
135
         friend Poly operator-(const Poly &a, const Poly &b) {
              std::vector<Z> res(std::max(a.size(), b.size()));
137
              for (int i = 0; i < int(res.size()); i++) {</pre>
138
                  res[i] = a[i] - b[i];
139
140
141
              return Poly(res);
142
143
         friend Poly operator*(Poly a, Poly b) {
             if (a.size() == 0 || b.size() == 0) {
144
                  return Poly();
145
146
              int sz = 1, tot = a.size() + b.size() - 1;
147
148
              while (sz < tot) {</pre>
                  sz *= 2;
149
150
             a.a.resize(sz);
151
             b.a.resize(sz);
152
153
              dft(a.a);
              dft(b.a):
154
              for (int i = 0; i < sz; ++i) {</pre>
155
                  a.a[i] = a[i] * b[i];
156
157
158
             idft(a.a);
              a.resize(tot);
159
160
              return a;
161
         friend Poly operator*(Z a, Poly b) {
162
              for (int i = 0; i < int(b.size()); i++) {</pre>
163
                  b[i] *= a;
164
165
              }
              return b:
166
167
         friend Poly operator*(Poly a, Z b) {
168
              for (int i = 0; i < int(a.size()); i++) {</pre>
169
170
                  a[i] *= b;
171
172
              return a;
173
         Poly &operator+=(Poly b) {
174
175
              return (*this) = (*this) + b;
176
177
         Poly &operator-=(Poly b) {
              return (*this) = (*this) - b;
178
179
         Poly &operator*=(Poly b) {
180
             return (*this) = (*this) * b;
181
182
         Poly deriv() const {
183
              if (a.empty()) {
                  return Poly();
185
186
             std::vector<Z> res(size() - 1);
187
              for (int i = 0; i < size() - 1; ++i) {</pre>
188
                  res[i] = (i + 1) * a[i + 1];
189
190
              return Poly(res);
191
         }//求导
192
         Poly integr() const {
193
194
              std::vector<Z> res(size() + 1);
              for (int i = 0; i < size(); ++i) {</pre>
195
196
                  res[i + 1] = a[i] / (i + 1);
197
198
              return Poly(res);
         }//积分
199
         Poly inv(int m) const {
200
201
              Poly x{a[0].inv()};
              int k = 1;
202
```

```
while (k < m) {</pre>
203
                  k \star = 2;
204
                  x = (x * (Poly{2} - modxk(k) * x)).modxk(k);
205
206
              return x.modxk(m);
207
         }//求逆
208
         Poly log(int m) const {
209
              return (deriv() * inv(m)).integr().modxk(m);
210
211
212
         Poly exp(int m) const {
             Poly x{1};
213
              int k = 1;
214
              while (k < m) {
215
                  k *= 2;
216
                  x = (x * (Poly{1} - x.log(k) + modxk(k))).modxk(k);
217
218
219
              return x.modxk(m);
220
221
         Poly pow(int k, int m) const {
              int i = 0;
222
              while (i < size() && a[i] == 0) {</pre>
223
224
                  i++;
225
              if (i == size() || 1LL * i * k >= m) {
226
                  return Poly(std::vector<Z>(m));
227
228
229
              Z v = a[i];
              auto f = divxk(i) * v.inv();
230
              return (f.log(m - i * k) * k).exp(m - i * k).mulxk(i * k) * qp(v, k);
                Poly res = {1};
232
                 Poly base = *this;
233
    //
                 while(k){
     //
234
    //
                     if(k \& 1) res = res * base;
235
    //
                     if(res.size() > m)res.modxk(m);
    //
                     base = base * base;
237
    //
                     if(base.size() > m)base.modxk(m);
238
    //
                     k >>= 1:
239
    //
240
241
     //
                 return res;
242
243
         Poly sqrt(int m) const {
244
             Poly x{1};
              int k = 1;
245
246
              while (k < m) {
                  k \star = 2;
247
248
                  x = (x + (modxk(k) * x.inv(k)).modxk(k)) * ((P + 1) / 2);
              }
249
250
              return x.modxk(m);
251
         Poly mulT(Poly b) const {
252
              if (b.size() == 0) {
253
                  return Poly();
254
255
              int n = b.size();
256
              std::reverse(b.a.begin(), b.a.end());
257
258
             return ((*this) * b).divxk(n - 1);
259
260
         std::vector<Z> eval(std::vector<Z> x) const {
261
              if (size() == 0) {
                  return std::vector<Z>(x.size(), 0);
262
263
              const int n = std::max(int(x.size()), size());
264
              std::vector<Poly> q(4 * n);
265
             std::vector<Z> ans(x.size());
266
267
              std::function<void(int, int, int)> build = [&](int p, int l, int r) {
268
                  if (r - l == 1) {
269
270
                       q[p] = Poly{1, -x[l]};
                  } else {
271
272
                       int m = (l + r) / 2;
                       build(2 \star p, l, m);
273
```

```
build(2 * p + 1, m, r);
274
275
                      q[p] = q[2 * p] * q[2 * p + 1];
276
             };
277
278
             build(1, 0, n);
             std::function<void(int, int, int, const Poly &)> work = [&](int p, int l, int r, const Poly &num) {
279
                  if (r - l == 1) {
280
                      if (l < int(ans.size())) {</pre>
281
                           ans[l] = num[0];
282
283
                      }
                  } else {
284
285
                      int m = (l + r) / 2;
                      work(2 \ * \ p, \ l, \ m, \ num.mulT(q[2 \ * \ p \ + \ 1]).modxk(m \ - \ l));
286
                      work(2 * p + 1, m, r, num.mulT(q[2 * p]).modxk(r - m));
287
288
                  }
289
             }:
290
             work(1, 0, n, mulT(q[1].inv(n)));
             return ans;
291
         }//多点求值
292
    };
293
    Poly S2_row;// 第二类斯特林数行
294
295
     void S2_row_init(int n) {
         vector\langle Z \rangle f(n + 1), g(n + 1);
296
         for (int i = 0; i <= n; i ++) {</pre>
297
             f[i] = qp(Z(i), n) * inv[i];
298
             g[i] = Z(i \& 1 ? -1 : 1) * inc[i];
299
300
         S2_{row} = Poly(f) * Poly(g);
301
302
    Poly S2_col;// 第二类斯特林数列
303
     void S2_col_init(int n, int k) {
304
305
         n ++;
         vector<Z> f(n);
306
307
         for (int i = 1; i < n; i ++) {</pre>
             f[i] = inv[i];
308
309
         auto ans = Poly(f).pow(k, n);
310
         S2_col.resize(n + 1);
311
312
         for (int i = 0; i < n; i ++) {
             S2_col[i] = ans[i] * fc[i] * inv[k];
313
314
    }
315
    Poly Bell;
316
317
    void Bell_init(int n) {
         vector<Z> f(n + 1);
318
319
         for (int i = 1; i <= n; i ++) {
             f[i] = inv[i];
320
321
         auto ans = Poly(f).exp(n + 1);
322
         Bell.resize(n + 1);
323
324
         for (int i = 0; i <= n; i ++) {
             Bell[i] = ans[i] * fc[i];
325
    }
327
    const int mod = 998244353, gen = 3;
1
2
     int add(int x, int y) {
3
         return x + y \ge mod ? x + y - mod : x + y;
4
5
     int sub(int x, int y) {
6
         return x - y \ge 0 ? x - y : x - y + mod;
8
     int power(int x, int y) {
10
         int res = 1;
         for (; y; y >>= 1, x = 1ll * x * x % mod) {
11
12
             if (y & 1) { res = 1ll * res * x % mod; }
         }
13
14
         return res;
15
    }
16
17
    namespace Combin {
```

```
vector<int> inv, fac, invf;
18
19
        void getCombin(int n) {
20
             if (inv.empty()) { inv = fac = invf = vector<int> (2, 1); }
21
             int m = inv.size(); n++;
             if (m < n) {
23
                 inv.resize(n); fac.resize(n); invf.resize(n);
24
                 for (int i = m; i < n; i++) {</pre>
25
                     inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
26
27
                      fac[i] = 1ll * fac[i - 1] * i % mod;
                     invf[i] = 1ll * invf[i - 1] * inv[i] % mod;
28
29
                 }
            }
30
31
        inline int binom(int n, int m) {
32
             if (n < m | | m < 0) { return 0; }
33
34
             getCombin(n);
             return 1ll * fac[n] * invf[m] % mod * invf[n - m] % mod;
35
36
    }
37
38
    using namespace Combin;
40
    namespace Polynom {
41
        vector<int> rev, rt;
42
43
        void getRevRoot(int n) {
44
             int m = __lg(n);
45
             rev.resize(n);
             for (int i = 1; i < n; i++) {</pre>
47
                 rev[i] = rev[i >> 1] >> 1 | (i & 1) << m - 1;
48
49
             static int len = 1;
50
             if (len < n) {
                 rt.resize(n);
52
                 for (; len < n; len *= 2) {</pre>
53
                     int uni = power(gen, (mod - 1) / (len * 2));
54
                     rt[len] = 1;
55
                     for (int i = 1; i < len; i++) {</pre>
                          rt[i + len] = 1ll * rt[i + len - 1] * uni % mod;
57
58
                 }
59
60
61
        void ntt(vector<int> &f, int n) {
62
63
             f.resize(n);
             for (int i = 0; i < n; i++) {</pre>
64
                 if (i < rev[i]) { swap(f[i], f[rev[i]]); }</pre>
66
             for (int len = 1; len < n; len *= 2) {</pre>
67
                 for (int i = 0; i < n; i += len * 2) {</pre>
68
                     for (int j = 0; j < len; j++) {</pre>
69
                          int x = f[i + j], y = 1ll * f[i + j + len] * rt[j + len] % mod;
                          f[i + j] = add(x, y); f[i + j + len] = sub(x, y);
71
72
                     }
                 }
73
            }
74
        vector<int> operator *(vector<int> f, vector<int> g) {
76
             int n = 1, m = f.size() + g.size(); m--;
77
             while (n < m) \{ n *= 2; \}
78
             int invn = power(n, mod - 2);
79
             getRevRoot(n); ntt(f, n); ntt(g, n);
             for (int i = 0; i < n; i++) { f[i] = 1ll * f[i] * g[i] % mod; }</pre>
81
82
             reverse(f.begin() + 1, f.end()); ntt(f, n); f.resize(m);
            for (int i = 0; i < m; i++) { f[i] = 1ll * f[i] * invn % mod; }</pre>
83
84
             return f;
85
        }
86
87
        vector<int> polyInv(vector<int> f, int n) {
            if (n == 1) { return vector<int>(1, power(f[0], mod - 2)); }
88
```

```
f.resize(n);
89
             vector<int> g = polyInv(f, n / 2), h(n);
90
91
             g.resize(n);
             for (int i = 0; i < n / 2; i++) { h[i] = g[i]; }
92
             int invn = power(n, mod - 2);
             getRevRoot(n); ntt(f, n); ntt(g, n);
94
             for (int i = 0; i < n; i++) { f[i] = 1ll * f[i] * g[i] % mod; }</pre>
95
             reverse(f.begin() + 1, f.end()); ntt(f, n);
96
             for (int i = 1; i < n / 2; i++) { f[i] = 0; }
97
             for (int i = n / 2; i < n; i++) { f[i] = 1ll * f[i] * invn % mod; }</pre>
             f[0] = 1; ntt(f, n);
99
100
             for (int i = 0; i < n; i++) { f[i] = 1ll * f[i] * g[i] % mod; }</pre>
101
             reverse(f.begin() + 1, f.end()); ntt(f, n);
             for (int i = n / 2; i < n; i++) { h[i] = sub(0, 1ll * f[i] * invn % mod); }</pre>
102
103
             return h;
104
105
         vector<int> operator ~(vector<int> f) { // qiuni
             if (f.empty()) { return f; }
106
107
             int n = 1, m = f.size();
             while (n < m) { n *= 2; }
108
             f = polyInv(f, n); f.resize(m);
109
             return f:
111
         vector<int> polyDeri(vector<int> f) { // qiudao
112
             if (f.empty()) { return f; }
113
             int m = f.size();
114
             for (int i = 1; i < m; i++) { f[i - 1] = 1ll * f[i] * i % mod; }</pre>
115
             f.pop back();
116
             return f;
118
         vector<int> polyInte(vector<int> f) { // jifen
119
120
             f.push_back(0);
             int m = f.size();
121
122
             getCombin(m);
             for (int i = m - 1; i >= 1; i--) { f[i] = 1ll * f[i - 1] * inv[i] % mod; }
123
             f[0] = 0;
124
             return f:
125
126
127
         vector<int> polyLn(vector<int> f) {
128
129
             if (f.empty()) { return f; }
             int m = f.size();
130
             f = (~f) * polyDeri(f);
131
132
             f.resize(m); f = polyInte(f); f.pop_back();
             return f;
133
134
         vector<int> polyExp(vector<int> f, int n) {
135
             if (n == 1) { return vector<int> (1, 1); }
136
137
             f.resize(n);
             vector<int> g = polyExp(f, n / 2), h(n), g0;
138
             g.resize(n); g0 = polyLn(g);
             for (int i = 0; i < n / 2; i++) { h[i] = g[i]; }
140
             for (int i = 0; i < n; i++) { f[i] = sub(g0[i], f[i]); }</pre>
141
             int invn = power(n, mod - 2);
142
             getRevRoot(n); ntt(f, n); ntt(g, n);
143
             for (int i = 0; i < n; i++) { f[i] = 1ll * f[i] * g[i] % mod; }</pre>
144
             reverse(f.begin() + 1, f.end()); ntt(f, n);
145
             for (int i = n / 2; i < n; i++) { h[i] = sub(0, 1ll * f[i] * invn % mod); }</pre>
147
             return h:
148
149
         vector<int> polyExp(vector<int> f) {
             if (f.empty()) { return f; }
150
             int n = 1, m = f.size();
             while (n < m) { n *= 2; }
152
153
             f = polyExp(f, n); f.resize(m);
154
             return f:
155
         vector<int> polyPow(vector<int> f,int k) {
156
             auto g = polyLn(f);
157
             for(int i = 0;i < g.size();i ++) {</pre>
158
               g[i] = 111 * g[i] * k % mod;
159
```

```
160 }
161 g = polyExp(g);
162 return g;
163 }
164 }
```

计算几何

tips:

直线上两点整点坐标范围在 $[-10^6,10^6]$,直线交点范围在 $[-10^{18},10^{18}]$

Pick 定理: 给定顶点均为整点的简单多边形,其面积 A 和内部格点数目 i、边上格点数目 b 的关系为 $A=i+\frac{b}{2}-1$ 曼哈顿转切比雪夫: (x,y) 变为 $(\frac{x+y}{2},\frac{x-y}{2})$

二维计算几何

```
#include <bits/stdc++.h>
   using namespace std;
   using ll = long long;
   using i128 = __int128;
   constexpr double eps = 1e-7;
   constexpr double PI = acos(-1);
   constexpr double inf = 1e9;
   struct Point { double x, y; };
                                       // 点
                                       // 向量
   using Vec = Point;
   struct Line { Point P; Vec v; };
                                       // 直线 (点向式), 射线时为 A->B
                                       // 线段(存两个端点)
   struct Seg { Point A, B; };
11
   struct Circle { Point 0; double r; }; // 圆(存圆心和半径)
12
   using Points = std::vector<Point>;
13
   using ConvexHull = std::vector<Point>;
14
                                                // 原点
   const Point 0 = \{0, 0\};
15
   16
17
   bool eq(double a, double b) { return abs(a - b) < eps; } // ==</pre>
18
   bool gt(double a, double b) { return a - b > eps; }
19
   bool lt(double a, double b) { return a - b < -eps; }</pre>
   bool ge(double a, double b) { return a - b > -eps; }
21
   bool le(double a, double b) { return a - b < eps; }</pre>
   Vec operator + (const Vec &a,const Vec &b){return (Vec){a.x + b.x,a.y + b.y};}
23
   Vec operator - (const Vec &a,const Vec &b){return (Vec){a.x - b.x,a.y - b.y};}
24
   Vec operator * (const Vec &a,const double &b){return (Vec){b * a.x,b * a.y};}
25
   Vec operator * (const double &a,const Vec &b){return (Vec){a * b.x,a * b.y};}
26
27
   Vec operator / (const Vec &a,const double &b){return (Vec){a.x / b,a.y / b};}
   double operator * (const Point &a,const Point &b){return a.x * b.x + a.y * b.y;}// dot // 点乘
28
   double operator ^ (const Point &a,const Point &b){return a.x * b.y - a.y * b.x;}// cross // 叉乘
   30
   double len(const Vec &a){return sqrt(a * a);}
31
32
   ll cross(Point a,Point b){return (ll)a.x * (ll)b.y - (ll)a.y * (ll)b.x;}
33
   ll dot(Point a,Point b){return (ll)a.x * (ll)b.x + (ll)a.y * (ll)b.y;}
35
   double angle(const Vec &a,const Vec &b){return acos(a * b / len(a)/len(b));}
36
37
   double Polar_angle(Vec &v){return atan2(v.y,v.x);}
38
39
   int sgn(double x){
40
       if(abs(x) < eps)
41
42
          return 0:
43
       if(x < 0)
44
           return -1;
       return 1:
45
   }
47
   Vec r90a(Vec v) { return {-v.y, v.x}; } // 逆时针旋转 90 度的向量
48
   Vec r90c(Vec v) { return {v.y, -v.x}; } // 顺时针旋转 90 度的向量
49
50
   // 两向量的夹角余弦
51
```

```
// DEPENDS len, V*V
52
53
    double cos_t(Vec u, Vec v) { return u * v / len(u) / len(v); }
54
    // 归一化向量(与原向量方向相同的单位向量)
55
    // DEPENDS len
    Vec norm(Vec v) { return {v.x / len(v), v.y / len(v)}; }
57
    // 与原向量平行且横坐标大于等于 0 的单位向量
59
    // DEPENDS d*V, len
    Vec pnorm(Vec v) { return (v.x < 0 ? -1 : 1) / len(v) * v; }
62
    // 线段的方向向量
    // DEPENDS V-V
64
    // NOTE 直线的方向向量直接访问属性 v
    Vec dvec(Seg l) { return l.B - l.A; }
67
    Line line(Point A, Point B) { return {A, B - A}; }
    // 斜截式直线
    Line line(double k, double b) { return \{\{0, b\}, \{1, k\}\}; }
71
72
    // 点斜式直线
    Line line(Point P, double k) { return {P, {1, k}}; }
74
    // 线段所在直线
76
77
    // DEPENDS V-V
    Line line(Seg l) { return {l.A, l.B - l.A}; }
78
    // 给定直线的横坐标求纵坐标
    // NOTE 请确保直线不与 y 轴平行
81
    double at_x(Line l, double x) { return l.P.y + (x - l.P.x) * l.v.y / l.v.x; }
82
83
    // 给定直线的纵坐标求横坐标
84
    // NOTE 请确保直线不与 x 轴平行
    double at_y(Line l, double y) { return l.P.x - (y + l.P.y) * l.v.x / l.v.y; }
86
    // 点到直线的垂足
88
    // DEPENDS V-V, V*V, d*V
    Point pedal(Point P, Line l) { return l.P - (l.P - P) * l.v / (l.v * l.v) * l.v; }
91
92
    // 过某点作直线的垂线
    // DEPENDS r90c
93
    Line perp(Line l, Point P) { return {P, r90c(l.v)}; }
95
96
97
    // DEPENDS V+V, len, norm
    Line bisec(Point P, Vec u, Vec v) { return \{P, norm(u) + norm(v)\}; \}
98
100
101
    // 线段的方向向量
102
    // DEPENDS V-V
103
    // NOTE 直线的方向向量直接访问属性 v
    //Vec dvec(Seg l) { return l.B - l.A; }
105
106
    // 线段中点
107
    Point midp(Seg l) { return {(l.A.x + l.B.x) / 2, (l.A.y + l.B.y) / 2}; }
108
    // 线段中垂线
110
    // DEPENDS r90c, V-V, midp
111
    Line perp(Seg l) { return {midp(l), r90c(l.B - l.A)}; }
112
113
    // 向量是否互相垂直
    // DEPENDS eq, V*V
115
116
    bool verti(Vec u, Vec v) { return eq(u * v, 0); }
117
    // 向量是否互相平行
118
    // DEPENDS eq, V^V
119
    bool paral(Vec u, Vec v) { return eq(u ^ v, 0); }
120
121
    // 向量是否与 x 轴平行
122
```

```
// DEPENDS ea
123
    bool paral_x(Vec v) { return eq(v.y, 0); }
124
125
    // 向量是否与 y 轴平行
126
    // DEPENDS eq
127
    bool paral_y(Vec v) { return eq(v.x, 0); }
128
129
    // 点是否在直线上
130
    // DEPENDS eq
131
    bool on(Point P, Line l) { return eq((P.x - l.P.x) * l.v.y, (P.y - l.P.y) * l.v.x); }
132
133
134
    // 点是否在射线上
135
    // DEPENDS eq
136
    bool on_ray(Point P, Line l) { return on(P,l) && ((P - l.P) * l.v) >= 0; }
137
138
139
    // 点是否在线段上
    // DEPENDS eq, len, V-V
140
141
    bool on(Point P, Seg l) { return eq(len(P - l.A) + len(P - l.B), len(l.A - l.B)); }
142
    // 两个点是否重合
143
    // DEPENDS eq
144
    bool operator==(Point A, Point B) { return eq(A.x, B.x) && eq(A.y, B.y); }
145
    // 两条直线是否重合
147
    // DEPENDS eq, on(L)
148
    bool operator==(Line a, Line b) { return on(a.P, b) && on(a.P + a.v, b); }
149
150
    // 两条线段是否重合
    // DEPENDS eg, P==P
152
    bool operator==(Seg a, Seg b) { return (a.A == b.A && a.B == b.B) || (a.A == b.B && a.B == b.A); }
153
154
    // 以横坐标为第一关键词、纵坐标为第二关键词比较两个点
155
156
    // DEPENDS eq, lt
     //bool \ operator < (Point \ A, \ Point \ B) \ \{ \ return \ lt(A.x, \ B.x) \ | \ | \ (eq(A.x, \ B.x) \ \&\& \ lt(A.y, \ B.y)); \ \} 
157
158
    // 直线与圆是否相切
159
    // DEPENDS eq, V^V, len
160
    bool tangency(Line l, Circle C) { return eq(abs((C.0 \land l.v) - (l.P \land l.v)), C.r * len(l.v)); }
161
162
163
    // 圆与圆是否相切
    // DEPENDS eq, V-V, len
164
    bool tangency(Circle C1, Circle C2) { return eq(len(C1.0 - C2.0), C1.r + C2.r); }
165
166
    // 两点间的距离
167
    // DEPENDS len, V-V
168
    double dis(Point A, Point B) { return len(A - B); }
169
    // 点到直线的距离
171
    // DEPENDS V^V. len
172
    double dis(Point P, Line l) { return abs((P ^ l.v) - (l.P ^ l.v)) / len(l.v); }
173
174
    // 点到线段的距离
175
    double dis(Point P,Seg l) {
176
177
         if(((P - l.A) * (l.B - l.A)) < 0 \mid | ((P - l.B) * (l.A - l.B)) < 0){
             return min(dis(P,l.A),dis(P,l.B));
178
        }else {
179
            Line ll = line(l);
180
181
            return dis(P,ll);
182
183
    }
    // 平行直线间的距离
184
    // DEPENDS d*V, V^V, len, pnorm
    // NOTE 请确保两直线是平行的
186
187
    double dis(Line a, Line b) { return abs((a.P ^ pnorm(a.v)) - (b.P ^ pnorm(b.v))); }
188
189
    // 平移
190
    // DEPENDS V+V
191
    Line operator+(Line l, Vec v) { return {l.P + v, l.v}; }
    Seg operator+(Seg l, Vec v) { return {l.A + v, l.B + v}; }
193
```

```
194
195
    // 旋转 逆时针
196
    // DEPENDS V+V, V-V
197
    Point rotate(Point P, double rad) { return {cos(rad) * P.x - sin(rad) * P.y, sin(rad) * P.x + cos(rad) * P.y}; }
                                                                                                               // DEPENDS ^1
    Point rotate(Point P, double rad, Point C) { return C + rotate(P - C, rad); }
199
    Line rotate(Line l, double rad, Point C = 0) { return {rotate(l.P, rad, C), rotate(l.v, rad)}; } // DEPENDS ^1, ^2
200
    Seg rotate(Seg l, double rad, Point C = 0) { return {rotate(l.A, rad, C), rotate(l.B, rad, C)}; } // DEPENDS ^1, ^2
201
202
    // 直线与直线交点
203
    // DEPENDS eq, d*V, V*V, V+V, V^{\wedge}V
204
205
    Points inter(Line a, Line b){
         double c = a.v ^ b.v;
206
         if (eq(c, 0)) {return {};}
207
         Vec v = 1 / c * Vec{a.P ^ (a.P + a.v), b.P ^ (b.P + b.v)};
208
         return {{v * Vec{-b.v.x, a.v.x}, v * Vec{-b.v.y, a.v.y}}};
209
210
    }
211
    // 线段与线段是否相交
212
213
    int cross_seg(Seg A,Seg B){
         Point a = A.A, b = A.B, c = B.A, d = B.B;
214
         ll c1 = (b - a) \land (c - a), c2 = (b - a) \land (d - a);
215
         ll d1 = (d - c) \wedge (a - c), d2 = (d - c) \wedge (b - c);
216
         if(sgn(c1) * sgn(c2) < 0 \&\& sgn(d1) * sgn(d2) < 0) {
217
             return 1;// 严格交
218
219
         if(c1 == 0 \&\& sgn((a - c) * (b - c)) <= 0) return 0;
220
         if(c2 == 0 && sgn((a - d) * (b - d)) <= 0) return 0;
221
         if(d1 == 0 && sgn((c - a) * (d - a)) <= 0) return 0;
         if(d2 == 0 && sgn((c - b) * (d - b)) <= 0) return 0; // 端点交
223
         return -1;
224
    }
225
226
    // 直线与线段相交 => 直线与直线相交 + 点是否在线段上
227
    // bool cross_line_seg(Line A, Seg B) {
228
            Line BB = \{B.A, B.B\};
229
    //
    //
            Points tmp = inter(A,BB);
230
            if(tmp.size() == 0)return false;
    //
231
232
    //
            return on(tmp[0],B);
233
234
    bool cross_line_seg(Line A, Seg B){
         if(abs(A.v ^ (B.A - B.B)) < eps)return false;// 平行</pre>
235
         Vec v1 = B.A - A.P, v2 = B.B - A.P;
236
237
         if((v2 ^ v1) < 0){
             swap(v1,v2);
238
         }else if(abs(v2 ^ v1) < eps){
239
             if((v1 * v2) <= 0)return true;</pre>
240
             else return false;
241
         }// 保证 v2 在 v1 下面
242
         int d1 = sgn(A.v ^ v1);
243
         int d2 = sgn(A.v \wedge v2);
244
         if(d1 * d2 <= 0)return true;</pre>
245
         return false;
246
    }
247
248
    // 射线与射线交
249
    // bool cross_ray_ray(Line A,Line B){
250
    //
            Points tmp = inter(A,B);
    //
252
            if(tmp.size() == 0)return false;//注意重合
            int d1 = sgn((tmp[0] - A.P) * A.v);
253
    //
            int d2 = sgn((tmp[0] - B.P) * B.v);
254
    //
    //
            return d1 >= 0 && d2 >= 0;
255
256
257
258
    int cross_ray_ray(Line A,Line B) {
         if(fabs(A.v ^ B.v) < eps) {</pre>
259
            if(fabs((A.P - B.P) ^ A.v) < eps) {
260
                if(sgn(A.v * (B.P - A.P)) < 0 \&\& sgn(B.v * (A.P - B.P)) < 0) return -1;
261
                else return 0:
262
            }else return −1;
         }
264
```

```
Vec v = B.P - A.P;
265
         double c1 = v ^ A.v;
266
         double c2 = v ^ B.v;
267
         double c = A.v ^ B.v;
268
         if(sgn(c1) * sgn(c) >= 0 && sgn(c2) * sgn(c) >= 0) return 1; // 交
         return -1:
270
271
    // 射线与线段交
272
    // bool cross_ray_seg(Line A, Seg B){
273
274
    //
           Line BB = \{B.A, B.B\};
            Points tmp = inter(A,BB);
    //
275
276
    //
            if(tmp.size() == 0)return false;//注意重合
            int d = sgn((tmp[0] - A.P) * A.v);
277
    //
            return on(tmp[0],B) && d >= 0;
    //
278
279
    // }
    bool cross_ray_seg(Line A,Seg B){
280
         if(abs(A.v ^ (B.A - B.B)) < eps)return false;// 平行
         Vec v1 = B.A - A.P, v2 = B.B - A.P;
282
283
         if((v2 ^ v1) < 0){
284
             swap(v1,v2);
         }else if(abs(v2 ^ v1) < eps){
285
             if((v1 * v2) <= 0)return true;</pre>
286
             else return false;
287
         }// 保证 v2 在 v1 下面
         int d1 = sgn(A.v ^ v1);
289
         int d2 = sgn(A.v \wedge v2);
290
         if(d1 >= 0 && d2 <= 0)return true;</pre>
291
         return false;
292
293
294
    // 射线与直线交
295
    // bool cross_ray_line(Line A, Line B) { // A 为射线
296
    //
           Points tmp = inter(A,B);
297
    //
            if(tmp.size() == 0)return false;
    //
            int d = sgn((tmp[0] - A.P) * A.v);
299
            return d >= 0;
300
    //
    1/ }
301
    int cross_ray_line(Line A,Line B) {
302
303
         Line B1 = B;
         Line B2 = \{B.P, 0 - B.v\};
304
305
         int p1 = cross_ray_ray(A,B1);
         int p2 = cross_ray_ray(A,B2);
306
         if(p1 == 0 || p2 == 0) return 0; // 重合
307
308
         else if(p1 == 1 || p2 == 1) return 1; // 交
         return -1;// 不交
309
    }
310
    // 直线与圆交点
311
    // DEPENDS eq, gt, V+V, V-V, V*V, d*V, len, pedal
    std::vector<Point> inter(Line l, Circle C){
313
         Point P = pedal(C.O, l);
314
         double h = len(P - C.0);
315
         if (gt(h, C.r)) return {};
316
         if (eq(h, C.r)) return {P};
317
         double d = sqrt(C.r * C.r - h * h);
318
         Vec vec = d / len(l.v) * l.v;
319
         return {P + vec, P - vec};
320
    }
321
    // 圆与圆的交点
323
    // DEPENDS eq, gt, V+V, V-V, d*V, len, r90c
324
325
    std::vector<Point> inter(Circle C1, Circle C2){
         Vec v1 = C2.0 - C1.0, v2 = r90c(v1);
326
327
         double d = len(v1);
         if (gt(d, C1.r + C2.r) || gt(abs(C1.r - C2.r), d)) return {};
328
329
         if (eq(d, C1.r + C2.r) || eq(d, abs(C1.r - C2.r))) return {C1.0 + C1.r / d * v1};
         double a = ((C1.r * C1.r - C2.r * C2.r) / d + d) / 2;
330
         double h = sqrt(C1.r * C1.r - a * a);
331
332
         Vec av = a / len(v1) * v1, hv = h / len(v2) * v2;
         return {C1.0 + av + hv, C1.0 + av - hv};
333
    }
334
335
```

```
336
337
    // 三角形的重心
338
    Point barycenter(Point A, Point B, Point C){
339
340
         return \{(A.x + B.x + C.x) / 3, (A.y + B.y + C.y) / 3\};
341
342
    // 三角形的外心
343
    // DEPENDS r90c, V*V, d*V, V-V, V+V
344
    // NOTE 给定圆上三点求圆,要先判断是否三点共线
345
    Point circumcenter(Point A, Point B, Point C){
346
347
         double a = A * A, b = B * B, c = C * C;
         double d = 2 * (A.x * (B.y - C.y) + B.x * (C.y - A.y) + C.x * (A.y - B.y));
348
         return 1 / d * r90c(a * (B - C) + b * (C - A) + c * (A - B));
349
    }
350
351
352
    // 三角形的内心
    // DEPENDS len, d*V, V-V, V+V
353
354
    Point incenter(Point A, Point B, Point C){
         double a = len(B - C), b = len(A - C), c = len(A - B);
355
         double d = a + b + c;
356
         return 1 / d * (a * A + b * B + c * C);
357
    }
358
359
    // 三角形的垂心
360
    // DEPENDS V*V, d*V, V-V, V^V, r90c
361
    Point orthocenter(Point A, Point B, Point C){
362
         double n = B * (A - C), m = A * (B - C);
363
         double d = (B - C) \wedge (A - C);
364
         return 1 / d * r90c(n * (C - B) - m * (C - A));
365
366
    int Point_in_Circumcircle(Point A,Point B,Point C,Point P) {
367
         if(((B - A) \land (C - A)) > 0) swap(B,C);
368
369
         vector<vector<ll>>> f(4);
         f[0].push_back(A.x);f[0].push_back(A.y);f[0].push_back(A * A);f[0].push_back(1);
370
         f[1].push\_back(B.x); f[1].push\_back(B.y); f[1].push\_back(B * B); f[1].push\_back(1);
371
         f[2].push\_back(C.x); f[2].push\_back(C.y); f[2].push\_back(C \ \ \ C); f[2].push\_back(1);
372
         f[3].push_back(P.x);f[3].push_back(P.y);f[3].push_back(P * P);f[3].push_back(1);
373
374
         vector<int> a(4);
         iota(a.begin(),a.end(),0);
375
376
         i128 tot = 0;
377
         do {
             i128 sum = 1;
378
             int op = 1;
379
             for(int i = 0;i < 4;i ++) {
380
                 sum *= f[i][a[i]];
381
382
             for(int i = 0;i < 4;i ++) {
383
                 for(int j = 0; j < i; j ++) {</pre>
384
                      if(a[i] < a[j]) op = -op;
385
             }
387
             tot += sum * op;
388
             op = -op;
389
         }while(next_permutation(a.begin(),a.end()));
390
391
         if(tot == 0)return 0; // on
         else if(tot > 0) return 1; // out
392
         else return -1;// in
393
394
    }
395
    // Graham 扫描法
396
397
    // DEPENDS eq, lt, cross, V-V, P<P
398
399
400
    // double theta(Point p) { return p == 0 ? -1 / 0. : atan2(p.y, p.x); } // 求极角
    // void psort(Points &ps, Point c = 0) { // 极角排序
401
    //
            sort(ps.begin(), ps.end(), [&](auto a, auto b) {
402
403
    //
                 return lt(theta(a - c), theta(b - c));
    //
            });
404
405
    1/ }
406
```

```
//极角排序
407
408
     int qua(const Point &P) {
      if(P.x == 0 && P.y == 0) return 0;
409
       if(P.x >= 0 && P.y >= 0) return 1;
410
411
      if(P.x < 0&& P.y >= 0) return 2;
      if(P.x < 0 && P.y < 0) return 3;
412
       if(P.x >= 0 && P.y < 0) return 4;
413
      exit(-1):
414
    }
415
    void psort(Points &ps, Point c = 0) { // 极角排序
416
         sort(ps.begin(), ps.end(), [&](auto p1, auto p2) {
417
418
             return qua(p1 - c) < qua(p2 - c) \mid | qua(p1 - c) == qua(p2 - c) && ((p1 - c) ^(p2 - c)) > 0;
419
    }
420
421
    bool check(Point p, Point q, Point r) { // 检查三个点组成的两个向量的旋转方向是否为逆时针
422
423
         return lt(0, (q - p) ^ (r - q));
424
    ConvexHull Andrew(Points &ps) {
425
426
         if(ps.size() == 1){
             return ps;
427
428
         sort(ps.begin(), ps.end());
429
         std::vector<int> I{0}, used(ps.size());
430
         for (int i = 1; i < ps.size(); i++){</pre>
431
             //std::cout << ps[i].x << " " <<ps[i].y <<"\n";
432
             while (I.size() > 1 && !check(ps[I[I.size() - 2]], ps[I.back()], ps[i]))
433
                 used[I.back()] = 0, I.pop_back();
434
             used[i] = 1, I.push_back(i);
435
        }// 下凸壳
436
         int tmp = I.size();
437
         for (int i = ps.size() - 2; i >= 0; i--){
438
             if (used[i])
439
                 continue;
             while (I.size() > tmp && !check(ps[I[I.size() - 2]], ps[I.back()], ps[i]))
441
                 used[I.back()] = 0, I.pop_back();
442
             used[i] = 1, I.push_back(i);
443
         }// 上凸壳 特别注意上凸壳最后一段如果是垂直 x 轴的,则不会完全记录进上凸壳内
444
445
         Points H;
         for (int i = 0; i < I.size() - 1; i++)</pre>
446
447
             H.push_back(ps[I[i]]);
         return H;
448
    }//逆时针
449
450
    ConvexHull chull(Points &ps){
         psort(ps, *min_element(ps.begin(), ps.end())); // 以最左下角的点为极角排序
451
452
         Points H{ps[0]};
         for (int i = 1; i < ps.size(); i++){</pre>
453
454
             while (H.size() > 1 && !check(H[H.size() - 2], H.back(), ps[i]))
455
                 H.pop_back();
             H.push_back(ps[i]);
456
457
         return H;
458
459
    ConvexHull operator+(const ConvexHull &A,const ConvexHull B){
460
         int n = A.size();
461
         int m = B.size();
462
         std::vector<Point> v1(n),v2(m);
463
         for(int i = 0;i < n;i ++){</pre>
464
465
             v1[i] = A[(i + 1) \% n] - A[i];
466
         for(int i = 0;i < m;i ++){</pre>
467
             v2[i] = B[(i + 1) \% m] - B[i];
468
469
        ConvexHull C:
470
471
         C.push_back(A[0] + B[0]);
         int p1 = 0, p2 = 0;
472
473
         while(p1 < n && p2 < m){
             C.push_back(C.back() + ((v1[p1] \land v2[p2]) >= 0 ? v1[p1 ++] : v2[p2 ++]));
474
         }// 对上凸壳做闵可夫斯基和时将 >= 改为 <= 并且合并凸包时不需要排序
475
         while(p1 < n)C.push_back(C.back() + v1[p1 ++]);</pre>
        while(p2 < m)C.push_back(C.back() + v2[p2 ++]);</pre>
477
```

```
C = Andrew(C);
478
479
         return C;
    }// 要求凸包起点必须为左下
480
481
482
     void test(Points a,Point b){
         int n = a.size();
483
         int r = 0;
484
         for(int l = 0;l < n;l ++){</pre>
485
             auto nxt = [\&](int x){
486
487
                  return (x + 1) % n;
488
             }:
489
             while(nxt(r) != l && check(a[l],a[nxt(r)],b)){
                 // b 为轴点
490
                  r = nxt(r);
491
492
                  if(l == r)break;
493
494
         }//极角排序 转半平面
495
496
    }
497
     // 半平面交
498
499
     int sgn(Point a) {
         return a.y > 0 || (a.y == 0 && a.x > 0) ? 1 : -1;
500
    bool pointOnLineLeft(Point p, Line l) {
502
         return (l.v ^ (p - l.P)) > eps;
503
504
    Point lineIntersection(Line l1, Line l2) {
505
506
         return l1.P + l1.v * ((l2.v ^ (l1.P - l2.P)) / (l2.v ^ (0 - l1.v)));
    }
507
    std::vector<Point> hp(std::vector<Line> lines) {
508
         std::sort(lines.begin(), lines.end(), [&](auto l1, auto l2) {
509
             auto d1 = l1.v;
510
511
             auto d2 = 12.v;
512
             if (sgn(d1) != sgn(d2)) {
513
                  return sgn(d1) == 1;
514
515
516
             return (d1 ^ d2) > 0;
517
518
         });
         std::deque<Line> ls;
519
         std::deque<Point> ps;
520
521
         for (auto l : lines) {
              if (ls.empty()) {
522
523
                  ls.push_back(l);
                  continue;
524
525
             while (!ps.empty() && !pointOnLineLeft(ps.back(), l)) {
526
                  ps.pop_back();ls.pop_back();
527
528
529
             while (!ps.empty() && !pointOnLineLeft(ps[0], l)) {
530
                  ps.pop_front();ls.pop_front();
531
532
             if (abs(cross(l.v, ls.back().v)) < eps) {</pre>
533
534
                  if ((l.v * ls.back().v) > eps) {
535
                      //continue;
536
                      if (!pointOnLineLeft(ls.back().P, l)) {
537
538
                           assert(ls.size() == 1);
                           ls[0] = l;
539
540
                      }
                      continue;
541
542
543
                  return {};
544
545
             auto now = inter(ls.back(),l);
             ps.push_back(now[0]);
546
547
              // ps.push_back(lineIntersection(ls.back(), l));
             ls.push_back(l);
548
```

```
}
549
550
         while (!ps.empty() && !pointOnLineLeft(ps.back(), ls[0])) {
551
552
             ps.pop_back();ls.pop_back();
553
         if (ls.size() <= 2) {
554
             return {};
555
556
         auto now = inter(ls[0],ls.back());
557
558
         ps.push_back(now[0]);
         // ps.push_back(lineIntersection(ls[0], ls.back()));
559
         return std::vector(ps.begin(), ps.end());
    }//逆时针平面,使用时,可以给最外面套个值域的正方形框,来减少精度错误
561
562
    double get_longest(vector<Point> A) { // 求凸包直径
563
       int j = 2,n = A.size();
564
565
       double mx = 0;
       if(n == 1) return 0;
566
567
       if (n < 3) {
        mx = dis(A[0], A[1]);
568
         return mx;
569
570
      auto sqr = [&](Point A,Point B,Point C) {
571
        return abs((B - A) ^ (C - B));
572
573
      };
574
       for(int i = 0;i < A.size();i ++) {</pre>
         while (sqr(A[i], A[(i + 1) % n], A[j]) <=</pre>
575
                sqr(A[i], A[(i + 1) % n], A[(j + 1) % n]))
576
577
           j = (j + 1) \% n;
         mx = max(mx, max(dis(A[(i + 1) % n], A[j]), dis(A[i], A[j])));
578
579
580
      return mx;
    }
581
582
    bool check_v_in_AB(Vec v,Vec A,Vec B) {// 判断向量 v 在向量 A 和 B 之间
583
         if(sgn(A ^ B) < 0)swap(A,B);
584
         return sgn(A ^ v) >= 0 && sgn(v ^ B) >= 0;
585
586
587
    bool Point_in_Triangle(Point x,Point A,Point B,Point C) {
         if(check_v_in_AB(x - A,B - A,C - A) && check_v_in_AB(x - B,A - B,C - B) && check_v_in_AB(x - C,A - C,B - C)) {
588
589
             return true;
         }return false;
590
591
592
    bool Point_in_ConvexHull(Point A,ConvexHull &a) {
         int n = a.size();
593
594
         if(n < 3) exit(-1);
         int l = 2,r = n - 1;
595
596
         int x = -1;
         while(l <= r) {</pre>
597
             int mid = l + r >> 1;
598
599
             if(check_v_in_AB(A - a[0],a[1] - a[0],a[mid] - a[0])) {
                 r = mid - 1;
600
                 x = mid;
             }else l = mid + 1;
602
603
         if(x == -1) return false;
604
         return Point_in_Triangle(A,a[0],a[x - 1],a[x]);
605
606
    }
    动态凸包
    struct Item {
         P p;
2
         mutable P vec;
         int q = 0;
    bool operator<(const Item &a, const Item &b) {</pre>
         if (!b.q) {
             return a.p.x < b.p.x;</pre>
         }
```

```
return dot(a.vec, b.p) > 0;
11
12
    }
13
    struct Hull {
14
15
        std::set<Item> s;
        i128 dx = 0;
16
17
        i128 dy = 0;
    };
18
19
    void print(const Hull &h) {
20
        for (auto it : h.s) {
21
             std::cerr << "(" << i64(it.p.x + h.dx) << ", " << i64(it.p.y + h.dy) << ") ";
22
23
        std::cerr << "\n";
24
    }
25
26
27
    constexpr i64 inf = 2E18;
28
    void insert(Hull &h, P p) {
29
        p.x -= h.dx;
30
        p.y -= h.dy;
31
        h.s.insert({p});
32
        auto it = h.s.lower_bound({p});
33
        if (it != h.s.end() && it->p.x == p.x) {
             if (it->p.y > p.y) {
35
36
                 return;
37
             it = h.s.erase(it);
38
39
        if (it != h.s.begin() && it != h.s.end()
40
             && cross(p - std::prev(it)->p, it->p - p) >= 0) {
41
            return;
42
43
        }
44
        it = h.s.insert({p}).first;
        auto r = std::next(it);
45
46
        if (r != h.s.end()) {
            while (cross(r->p - p, r->vec) >= 0) {
47
                 r = h.s.erase(r);
48
49
            it->vec = r->p - p;
50
51
        } else {
             it->vec = P(0, -inf);
52
53
54
        if (it != h.s.begin()) {
55
56
             auto l = std::prev(it);
            while (l != h.s.begin()) {
57
                 auto a = std::prev(l);
                 if (cross(a->vec, p - l->p) < 0) {
59
60
                     break;
61
                 h.s.erase(l);
62
                 l = a;
64
65
             l->vec = p - l->p;
66
    }
67
    i64 query(const Hull &h, i64 x) {
69
        if (h.s.empty()) {
70
            return OLL;
71
72
        }
73
        auto it = h.s.lower_bound(\{P(x, 1), P\{\}, 1\});
        assert(it != h.s.end());
74
75
        auto p = it->p;
        p.x += h.dx;
76
        p.y += h.dy;
78
        return p.x * x + p.y;
    }
79
```

```
最小圆覆盖
    int n:
    double r;
2
    struct point {
      double x, y;
    } p[100005], o;
    double sqr(double x) { return x * x; }
    double dis(point a, point b) { return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y)); }
11
    bool cmp(double a, double b) { return fabs(a - b) < 1e-8; }</pre>
12
13
    point geto(point a, point b, point c) {
14
15
      double a1, a2, b1, b2, c1, c2;
      point ans;
16
      a1 = 2 * (b.x - a.x), b1 = 2 * (b.y - a.y),
      c1 = sqr(b.x) - sqr(a.x) + sqr(b.y) - sqr(a.y);
18
      a2 = 2 * (c.x - a.x), b2 = 2 * (c.y - a.y),
20
      c2 = sqr(c.x) - sqr(a.x) + sqr(c.y) - sqr(a.y);
      if (cmp(a1, 0)) {
21
22
       ans.y = c1 / b1;
       ans.x = (c2 - ans.y * b2) / a2;
23
      } else if (cmp(b1, \theta)) {
24
25
        ans.x = c1 / a1;
26
        ans.y = (c2 - ans.x * a2) / b2;
27
      } else {
       ans.x = (c2 * b1 - c1 * b2) / (a2 * b1 - a1 * b2);
28
        ans.y = (c2 * a1 - c1 * a2) / (b2 * a1 - b1 * a2);
30
      }
31
      return ans;
32
    }
33
34
    int main() {
      scanf("%d", &n);
35
      for (int i = 1; i <= n; i++) scanf("%lf%lf", &p[i].x, &p[i].y);</pre>
36
      for (int i = 1; i <= n; i++) swap(p[rand() % n + 1], p[rand() % n + 1]);</pre>
37
      o = p[1];
38
      for (int i = 1; i <= n; i++) {</pre>
39
        if (dis(o, p[i]) < r || cmp(dis(o, p[i]), r)) continue;</pre>
40
        o.x = (p[i].x + p[1].x) / 2;
41
        o.y = (p[i].y + p[1].y) / 2;
42
        r = dis(p[i], p[1]) / 2;
43
44
        for (int j = 2; j < i; j++) {
          if (dis(o, p[j]) < r || cmp(dis(o, p[j]), r)) continue;</pre>
45
          o.x = (p[i].x + p[j].x) / 2;
46
          o.y = (p[i].y + p[j].y) / 2;
47
          r = dis(p[i], p[j]) / 2;
49
          for (int k = 1; k < j; k++) {
            if (dis(o, p[k]) < r || cmp(dis(o, p[k]), r)) continue;</pre>
50
51
            o = geto(p[i], p[j], p[k]);
            r = dis(o, p[i]);
52
53
        }
54
55
      printf("%.10lf\n%.10lf %.10lf", r, o.x, o.y);
56
      return 0:
57
    其他人的板子
    #include <bits/stdc++.h>
    using namespace std;
    // using point_t=long long;
    using point_t=long double; //全局数据类型
    constexpr point_t eps=1e-8;
```

constexpr point_t INF=numeric_limits<point_t>::max();

```
constexpr long double PI=3.1415926535897932384l;
10
    // 点与向量
11
   template<typename T> struct point
12
13
14
        T \times, y;
15
        bool operator==(const point &a) const {return (abs(x-a.x)<=eps && abs(y-a.y)<=eps);}</pre>
16
        bool operator<(const point &a) const {if (abs(x-a.x)<=eps) return y<a.y-eps; return x<a.x-eps;}</pre>
17
        bool operator>(const point &a) const {return !(*this<a || *this==a);}</pre>
18
        point operator+(const point &a) const {return {x+a.x,y+a.y};}
19
20
        point operator-(const point &a) const {return {x-a.x,y-a.y};}
21
        point operator-() const {return {-x,-y};}
        point operator*(const T k) const {return {k*x,k*y};}
22
23
        point operator/(const T k) const {return \{x/k,y/k\};}
        T operator*(const point &a) const {return x*a.x+y*a.y;} // 点积
24
25
        T operator^(const point &a) const {return x*a.y-y*a.x;} // 叉积, 注意优先级
        int toleft(const point &a) const {const auto t=(*this)^a; return (t>eps)-(t<-eps);} // to-left 测试</pre>
26
27
        T len2() const {return (*this)*(*this);} // 向量长度的平方
        T dis2(const point &a) const {return (a-(*this)).len2();} // 两点距离的平方
28
29
        // 涉及浮点数
        long double len() const {return sqrtl(len2());} // 向量长度
31
        long double dis(const point &a) const {return sqrtl(dis2(a));} // 两点距离
32
        long double ang(const point &a) const {return acosl(max(-1.0l,min(1.0l,((*this)*a)/(len()*a.len()))));} // 向量夹
33
34
        point rot(const long double rad) const {return {x*cos(rad)-y*sin(rad),x*sin(rad)+y*cos(rad)};} // 逆时针旋转(给定角
        → 度)
        point rot(const long double cosr,const long double sinr) const {return {x*cosr-y*sinr,x*sinr+y*cosr};} // 逆时针
        □ 旋转(给定角度的正弦与余弦)
   };
36
37
   using Point=point<point_t>;
38
39
    // 极角排序
40
41
    struct argcmp
42
43
        bool operator()(const Point &a,const Point &b) const
44
            const auto quad=[](const Point &a)
45
46
                if (a.y<-eps) return 1;</pre>
47
                if (a.y>eps) return 4;
48
49
                if (a.x<-eps) return 5;</pre>
                if (a.x>eps) return 3;
50
                return 2;
51
            };
52
53
            const int qa=quad(a),qb=quad(b);
            if (qa!=qb) return qa<qb;</pre>
54
            const auto t=a^b;
55
            // if (abs(t)<=eps) return a*a<b*b-eps; // 不同长度的向量需要分开
56
            return t>eps;
57
   };
59
60
    // 直线
61
    template<typename T> struct line
62
63
64
        point<T> p,v; // p 为直线上一点, v 为方向向量
65
66
        bool operator==(const line &a) const {return v.toleft(a.v)==0 && v.toleft(p-a.p)==0;}
        int toleft(const point<T> &a) const {return v.toleft(a-p);} // to-left 测试
67
        bool operator<(const line &a) const // 半平面交算法定义的排序
68
69
70
            if (abs(v^a.v)<=eps && v*a.v>=-eps) return toleft(a.p)==-1;
            return argcmp()(v,a.v);
71
        }
72
73
        // 涉及浮点数
74
        point<T> inter(const line &a) const {return p+v*((a.v^(p-a.p))/(v^a.v));} // 直线交点
75
        long double dis(const point<T> &a) const {return abs(v^(a-p))/v.len();} // 点到直线距离
76
```

```
point<T> proj(const point<T> &a) const {return p+v*((v*(a-p))/(v*v));} // 点在直线上的投影
77
78
    };
79
    using Line=line<point_t>;
80
81
82
    template<typename T> struct segment
83
84
    {
        point<T> a,b;
85
86
        bool operator<(const segment &s) const {return make_pair(a,b)<make_pair(s.a,s.b);}</pre>
87
88
        // 判定性函数建议在整数域使用
89
90
        // 判断点是否在线段上
91
        // -1 点在线段端点 | 0 点不在线段上 | 1 点严格在线段上
92
93
        int is_on(const point<T> &p) const
94
95
            if (p==a || p==b) return −1;
            return (p-a).toleft(p-b)==0 && (p-a)*(p-b)<-eps;
96
        }
97
98
        // 判断线段直线是否相交
99
        // -1 直线经过线段端点 | 0 线段和直线不相交 | 1 线段和直线严格相交
        int is_inter(const line<T> &l) const
101
102
            if (l.toleft(a)==0 || l.toleft(b)==0) return -1;
103
            return l.toleft(a)!=l.toleft(b);
104
        }
105
106
        // 判断两线段是否相交
107
        // -1 在某一线段端点处相交 | 0 两线段不相交 | 1 两线段严格相交
108
        int is_inter(const segment<T> &s) const
109
110
            if (is_on(s.a) || is_on(s.b) || s.is_on(a) || s.is_on(b)) return -1;
111
            const line<T> l{a,b-a},ls{s.a,s.b-s.a};
112
            return l.toleft(s.a)*l.toleft(s.b)==-1 && ls.toleft(a)*ls.toleft(b)==-1;
113
114
115
        // 点到线段距离
116
117
        long double dis(const point<T> &p) const
118
            if ((p-a)*(b-a)<-eps \mid \mid (p-b)*(a-b)<-eps) return min(p.dis(a),p.dis(b));
119
120
            const line<T> l{a,b-a};
            return l.dis(p);
121
122
123
124
        // 两线段间距离
        long double dis(const segment<T> &s) const
125
126
127
            if (is_inter(s)) return 0;
            return min({dis(s.a),dis(s.b),s.dis(a),s.dis(b)});
128
129
130
    };
131
132
    using Segment=segment<point_t>;
133
    // 多边形
134
    template<typename T> struct polygon
135
136
        vector<point<T>> p; // 以逆时针顺序存储
137
138
        size_t nxt(const size_t i) const {return i==p.size()-1?0:i+1;}
139
        size_t pre(const size_t i) const {return i==0?p.size()-1:i-1;}
140
141
        // 回转数
142
        // 返回值第一项表示点是否在多边形边上
143
        // 对于狭义多边形, 回转数为 0 表示点在多边形外, 否则点在多边形内
144
        pair<bool,int> winding(const point<T> &a) const
145
            int cnt=0:
147
```

```
for (size_t i=0;i<p.size();i++)</pre>
148
149
                  const point<T> u=p[i],v=p[nxt(i)];
150
                  if (abs((a-u)^{(a-v)}) \le eps \&\& (a-u)*(a-v) \le eps) return {true,0};
151
                 if (abs(u.y-v.y)<=eps) continue;</pre>
152
                 const Line uv={u,v-u};
153
                  if (u.y<v.y-eps && uv.toleft(a)<=0) continue;</pre>
154
                 if (u.y>v.y+eps && uv.toleft(a)>=0) continue;
155
                  if (u.y<a.y-eps && v.y>=a.y-eps) cnt++;
156
157
                 if (u.y>=a.y-eps && v.y<a.y-eps) cnt--;</pre>
158
159
             return {false,cnt};
         }
160
161
         // 多边形面积的两倍
162
         // 可用于判断点的存储顺序是顺时针或逆时针
163
164
         T area() const
165
             T sum=0;
166
             for (size_t i=0;i<p.size();i++) sum+=p[i]^p[nxt(i)];</pre>
167
             return sum;
168
         }
169
170
         // 多边形的周长
171
         long double circ() const
172
173
174
             long double sum=0;
             for (size_t i=0;i<p.size();i++) sum+=p[i].dis(p[nxt(i)]);</pre>
175
             return sum;
176
177
    };
178
179
    using Polygon=polygon<point_t>;
180
181
    //凸多边形
182
    template<typename T> struct convex: polygon<T>
183
184
    {
         // 闵可夫斯基和
185
186
         convex operator+(const convex &c) const
187
188
             const auto &p=this->p;
             vector<Segment> e1(p.size()),e2(c.p.size()),edge(p.size()+c.p.size());
189
             vector<point<T>> res; res.reserve(p.size()+c.p.size());
190
191
             const auto cmp=[](const Segment &u,const Segment &v) {return argcmp()(u.b-u.a,v.b-v.a);};
             for (size_t i=0;i<p.size();i++) e1[i]={p[i],p[this->nxt(i)]};
192
             for (size_t i=0;i<c.p.size();i++) e2[i]={c.p[i],c.p[c.nxt(i)]};</pre>
193
             rotate(e1.begin(),min_element(e1.begin(),e1.end(),cmp),e1.end());
194
195
             rotate(e2.begin(),min_element(e2.begin(),e2.end(),cmp),e2.end());
196
             merge(e1.begin(),e1.end(),e2.begin(),e2.end(),edge.begin(),cmp);
             const auto check=[](const vector<point<T>> &res,const point<T> &u)
197
198
                  const auto back1=res.back(),back2=*prev(res.end(),2);
199
                  return (back1-back2).toleft(u-back1)==0 && (back1-back2)*(u-back1)>=-eps;
             };
201
             auto u=e1[0].a+e2[0].a;
202
203
             for (const auto &v:edge)
             {
204
                 while (res.size()>1 && check(res,u)) res.pop_back();
205
                 res.push_back(u);
206
                 u=u+v.b-v.a;
207
208
             if (res.size()>1 && check(res,res[0])) res.pop_back();
209
             return {res};
210
         }
211
212
         // 旋转卡壳
213
         // 例: 凸多边形的直径的平方
214
215
         T rotcaliper() const
216
             const auto &p=this->p;
217
             if (p.size()==1) return 0;
218
```

```
if (p.size()==2) return p[0].dis2(p[1]);
219
             const auto area=[](const point<T> &u,const point<T> &v,const point<T> &w){return (w-u)^(w-v);};
220
221
             T ans=0:
             for (size_t i=0,j=1;i<p.size();i++)</pre>
222
223
                 const auto nxti=this->nxt(i);
224
                 ans=max({ans,p[j].dis2(p[i]),p[j].dis2(p[nxti])});
225
                 while (area(p[this->nxt(j)],p[i],p[nxti])>=area(p[j],p[i],p[nxti]))
226
227
                     j=this->nxt(j);
228
                     ans=max({ans,p[j].dis2(p[i]),p[j].dis2(p[nxti])});
229
230
             }
231
             return ans;
232
233
        }
234
235
        // 判断点是否在凸多边形内
        // 复杂度 O(logn)
236
237
        // -1 点在多边形边上 | 0 点在多边形外 | 1 点在多边形内
        int is_in(const point<T> &a) const
238
239
             const auto &p=this->p;
             if (p.size()==1) return a==p[0]?-1:0:
241
             if (p.size()==2) return segment<T>{p[0],p[1]}.is_on(a)?-1:0;
242
             if (a==p[0]) return -1;
243
             if ((p[1]-p[0]).toleft(a-p[0])=-1 \mid | (p.back()-p[0]).toleft(a-p[0])==1) return 0;
244
             const auto cmp=[&](const point<T> &u,const point<T> &v){return (u-p[0]).toleft(v-p[0])==1;};
245
            const size_t i=lower_bound(p.begin()+1,p.end(),a,cmp)-p.begin();
246
             if (i==1) return segment<T>{p[0],p[i]}.is_on(a)?-1:0;
             if (i==p.size()-1 && segment<T>\{p[0],p[i]\}.is\_on(a)) return -1;
248
             if (segment<T>{p[i-1],p[i]}.is_on(a)) return -1;
249
250
             return (p[i]-p[i-1]).toleft(a-p[i-1])>0;
        }
251
252
        // 凸多边形关于某一方向的极点
253
        // 复杂度 O(logn)
254
        // 参考资料: https://codeforces.com/blog/entry/48868
255
        template<typename F> size_t extreme(const F &dir) const
256
257
             const auto &p=this->p:
258
259
             const auto check=[&](const size_t i){return dir(p[i]).toleft(p[this->nxt(i)]-p[i])>=0;};
             const auto dir0=dir(p[0]); const auto check0=check(0);
             if (!check0 && check(p.size()-1)) return 0;
261
             const auto cmp=[&](const point<T> &v)
262
263
             {
                 const size_t vi=&v-p.data();
                 if (vi==0) return 1;
265
                 const auto checkv=check(vi);
266
                 const auto t=dir0.toleft(v-p[0]);
267
                 if (vi==1 && checkv==check0 && t==0) return 1;
268
                 return checkv^(checkv==check0 && t<=0);</pre>
             };
270
             return partition_point(p.begin(),p.end(),cmp)-p.begin();
272
273
        // 过凸多边形外一点求凸多边形的切线, 返回切点下标
274
        // 复杂度 O(logn)
275
        // 必须保证点在多边形外
277
        pair<size_t, size_t> tangent(const point<T> &a) const
278
279
             const size_t i=extreme([&](const point<T> &u){return u-a;});
             const size_t j=extreme([&](const point<T> &u){return a-u;});
280
             return {i,j};
282
283
        // 求平行于给定直线的凸多边形的切线, 返回切点下标
284
        // 复杂度 O(logn)
285
        pair<size_t, size_t> tangent(const line<T> &a) const
286
287
             const size_t i=extreme([&](...){return a.v;});
288
             const size_t j=extreme([&](...){return -a.v;});
289
```

```
return {i,j};
290
         }
291
    };
292
293
294
    using Convex=convex<point_t>;
295
296
    struct Circle
297
298
    {
299
         Point c;
         long double r;
300
301
         bool operator==(const Circle &a) const {return c==a.c && abs(r-a.r)<=eps;}</pre>
302
         long double circ() const {return 2*PI*r;} // 周长
303
304
         long double area() const {return PI*r*r;} // 面积
305
         // 点与圆的关系
         // -1 圆上 | 0 圆外 | 1 圆内
307
         int is_in(const Point &p) const {const long double d=p.dis(c); return abs(d-r)<=eps?-1:d<r-eps;}</pre>
308
309
         // 直线与圆关系
310
         // 0 相离 | 1 相切 | 2 相交
311
         int relation(const Line &l) const
312
313
             const long double d=l.dis(c);
314
             if (d>r+eps) return 0;
315
316
             if (abs(d-r)<=eps) return 1;</pre>
             return 2;
317
         }
318
319
         // 圆与圆关系
320
         // -1 相同 | 0 相离 | 1 外切 | 2 相交 | 3 内切 | 4 内含
321
         int relation(const Circle &a) const
322
323
             if (*this==a) return -1;
324
             const long double d=c.dis(a.c);
325
             if (d>r+a.r+eps) return 0;
326
             if (abs(d-r-a.r)<=eps) return 1;</pre>
327
328
             if (abs(d-abs(r-a.r))<=eps) return 3;</pre>
             if (d<abs(r-a.r)-eps) return 4;</pre>
329
330
             return 2;
         }
331
332
         // 直线与圆的交点
333
         vector<Point> inter(const Line &l) const
334
335
             const long double d=l.dis(c);
336
337
             const Point p=l.proj(c);
             const int t=relation(l);
338
             if (t==0) return vector<Point>();
339
             if (t==1) return vector<Point>{p};
             const long double k=sqrt(r*r-d*d);
341
             return vector<Point>{p-(l.v/l.v.len())*k,p+(l.v/l.v.len())*k};
342
         }
343
344
         // 圆与圆交点
345
         vector<Point> inter(const Circle &a) const
346
347
348
             const long double d=c.dis(a.c);
             const int t=relation(a);
349
             if (t==-1 || t==0 || t==4) return vector<Point>();
350
             Point e=a.c-c; e=e/e.len()*r;
351
352
             if (t==1 || t==3)
353
             {
354
                  if (r*r+d*d-a.r*a.r>=-eps) return vector<Point>{c+e};
355
                  return vector<Point>{c-e}:
356
             const long double costh=(r*r+d*d-a.r*a.r)/(2*r*d),sinth=sqrt(1-costh*costh);
357
             return vector<Point>{c+e.rot(costh,-sinth),c+e.rot(costh,sinth)};
358
359
         }
360
```

```
// 圆与圆交面积
361
         long double inter_area(const Circle &a) const
362
363
             const long double d=c.dis(a.c);
364
             const int t=relation(a);
             if (t==-1) return area();
366
             if (t<2) return 0;</pre>
367
             if (t>2) return min(area(),a.area());
368
             const long double costh1=(r*r+d*d-a.r*a.r)/(2*r*d), costh2=(a.r*a.r+d*d-r*r)/(2*a.r*d);
369
370
             const long double sinth1=sqrt(1-costh1*costh1),sinth2=sqrt(1-costh2*costh2);
             const long double th1=acos(costh1),th2=acos(costh2);
371
372
             return r*r*(th1-costh1*sinth1)+a.r*a.r*(th2-costh2*sinth2);
373
         }
374
         // 过圆外一点圆的切线
375
         vector<Line> tangent(const Point &a) const
376
377
             const int t=is_in(a);
378
379
             if (t==1) return vector<Line>();
             if (t==-1)
380
             {
381
                 const Point v=\{-(a-c).y,(a-c).x\};
382
                 return vector<Line>{{a,v}};
383
385
             Point e=a-c; e=e/e.len()*r;
             const long double costh=r/c.dis(a),sinth=sqrt(1-costh*costh);
386
387
             const Point t1=c+e.rot(costh,-sinth),t2=c+e.rot(costh,sinth);
             return vector<Line>{{a,t1-a},{a,t2-a}};
388
         }
389
390
         // 两圆的公切线
391
         vector<Line> tangent(const Circle &a) const
392
393
394
             const int t=relation(a);
             vector<Line> lines:
395
             if (t==-1 || t==4) return lines;
396
             if (t==1 || t==3)
397
398
             {
                 const Point p=inter(a)[0],v={-(a.c-c).y,(a.c-c).x};
399
                 lines.push_back({p,v});
400
             }
             const long double d=c.dis(a.c);
402
             const Point e=(a.c-c)/(a.c-c).len();
403
404
             if (t<=2)
405
             {
                 const long double costh=(r-a.r)/d,sinth=sqrt(1-costh*costh);
                 const Point d1=e.rot(costh,-sinth),d2=e.rot(costh,sinth);
407
408
                 const Point u1=c+d1*r,u2=c+d2*r,v1=a.c+d1*a.r,v2=a.c+d2*a.r;
                 lines.push_back({u1,v1-u1}); lines.push_back({u2,v2-u2});
409
410
             if (t==0)
411
412
             {
                 const long double costh=(r+a.r)/d,sinth=sqrt(1-costh*costh);
413
                 const Point d1=e.rot(costh,-sinth),d2=e.rot(costh,sinth);
414
                 const Point u1=c+d1*r,u2=c+d2*r,v1=a.c-d1*a.r,v2=a.c-d2*a.r;
415
416
                 lines.push_back({u1,v1-u1}); lines.push_back({u2,v2-u2});
417
             return lines;
418
419
         }
420
421
         // 圆的反演
         tuple<int,Circle,Line> inverse(const Line &l) const
422
423
             const Circle null_c={{0.0,0.0},0.0};
424
425
             const Line null_l={{0.0,0.0},{0.0,0.0}};
             if (l.toleft(c)==0) return {2,null_c,l};
426
             const Point v=l.toleft(c)==1?Point{l.v.y,-l.v.x}:Point{-l.v.y,l.v.x};
427
428
             const long double d=r*r/l.dis(c);
             const Point p=c+v/v.len()*d:
429
             return {1,{(c+p)/2,d/2},null_l};
         }
431
```

```
tuple<int, Circle, Line> inverse(const Circle &a) const
433
434
             const Circle null_c={{0.0,0.0},0.0};
435
             const Line null_l={{0.0,0.0},{0.0,0.0}};
436
             const Point v=a.c-c:
437
             if (a.is_in(c)==-1)
438
439
             {
                 const long double d=r*r/(a.r+a.r);
440
441
                 const Point p=c+v/v.len()*d;
                 return {2,null_c,{p,{-v.y,v.x}}};
442
443
444
             if (c==a.c) return {1,{c,r*r/a.r},null_l};
             const long double d1=r*r/(c.dis(a.c)-a.r),d2=r*r/(c.dis(a.c)+a.r);
445
446
             const Point p=c+v/v.len()*d1,q=c+v/v.len()*d2;
             return {1,{(p+q)/2,p.dis(q)/2},null_l};
447
448
    };
449
450
    // 圆与多边形面积交
451
    long double area_inter(const Circle &circ,const Polygon &poly)
452
453
         const auto cal=[](const Circle &circ,const Point &a,const Point &b)
454
455
             if ((a-circ.c).toleft(b-circ.c)==0) return 0.01;
456
             const auto ina=circ.is_in(a),inb=circ.is_in(b);
457
458
             const Line ab={a,b-a};
             if (ina && inb) return ((a-circ.c)^(b-circ.c))/2;
459
             if (ina && !inb)
460
461
             {
                 const auto t=circ.inter(ab);
462
                 const Point p=t.size()==1?t[0]:t[1];
463
                 const long double ans=((a-circ.c)^(p-circ.c))/2;
464
465
                 const long double th=(p-circ.c).ang(b-circ.c);
                 const long double d=circ.r*circ.r*th/2;
466
                 if ((a-circ.c).toleft(b-circ.c)==1) return ans+d;
467
                 return ans-d:
468
469
470
             if (!ina && inb)
471
             {
                 const Point p=circ.inter(ab)[0];
                 const long double ans=((p-circ.c)^(b-circ.c))/2;
473
                 const long double th=(a-circ.c).ang(p-circ.c);
474
475
                 const long double d=circ.r*circ.r*th/2;
                 if ((a-circ.c).toleft(b-circ.c)==1) return ans+d;
476
477
                 return ans-d;
478
479
             const auto p=circ.inter(ab);
             if (p.size()==2 && Segment{a,b}.dis(circ.c)<=circ.r+eps)</pre>
480
             {
481
                 const long double ans=((p[0]-circ.c)^(p[1]-circ.c))/2;
482
                 const long double th1=(a-circ.c).ang(p[0]-circ.c),th2=(b-circ.c).ang(p[1]-circ.c);
483
                 const long double d1=circ.r*circ.r*th1/2,d2=circ.r*circ.r*th2/2;
                 if ((a-circ.c).toleft(b-circ.c)==1) return ans+d1+d2;
485
                 return ans-d1-d2;
486
487
             const long double th=(a-circ.c).ang(b-circ.c);
488
489
             if ((a-circ.c).toleft(b-circ.c)==1) return circ.r*circ.r*th/2;
490
             return -circ.r*circ.r*th/2:
         };
491
492
         long double ans=0;
493
         for (size_t i=0;i<poly.p.size();i++)</pre>
494
495
496
             const Point a=poly.p[i],b=poly.p[poly.nxt(i)];
             ans+=cal(circ,a,b);
497
498
499
         return ans;
    }
500
    // 点集的凸包
502
```

432

```
// Andrew 算法, 复杂度 O(nlogn)
503
     Convex convexhull(vector<Point> p)
504
505
         vector<Point> st;
506
507
         if (p.empty()) return Convex{st};
         sort(p.begin(),p.end());
508
         const auto check=[](const vector<Point> &st,const Point &u)
509
510
             const auto back1=st.back(),back2=*prev(st.end(),2);
511
512
             return (back1-back2).toleft(u-back1)<=0;</pre>
         }:
513
514
         for (const Point &u:p)
515
         {
             while (st.size()>1 && check(st,u)) st.pop_back();
516
517
             st.push_back(u);
518
519
         size_t k=st.size();
         p.pop_back(); reverse(p.begin(),p.end());
520
521
         for (const Point &u:p)
522
         {
             while (st.size()>k && check(st,u)) st.pop_back();
523
             st.push_back(u);
524
         }
525
         st.pop_back();
526
         return Convex{st};
527
    }
528
529
    // 半平面交
530
    // 排序增量法, 复杂度 O(nlogn)
    // 输入与返回值都是用直线表示的半平面集合
532
     vector<Line> halfinter(vector<Line> l, const point_t lim=1e9)
533
534
         const auto check=[](const Line &a,const Line &b,const Line &c){return a.toleft(b.inter(c))<0;};</pre>
535
536
         // 无精度误差的方法, 但注意取值范围会扩大到三次方
         /*const auto check=[](const Line &a,const Line &b,const Line &c)
537
538
             const Point p=a.v*(b.v^c.v), q=b.p*(b.v^c.v)+b.v*(c.v^(b.p-c.p))-a.p*(b.v^c.v);
539
             return p.toleft(q)<0;</pre>
540
541
         7:*/
         l.push_back(\{\{-\lim, 0\}, \{0, -1\}\}\); l.push_back(\{\{0, -\lim\}, \{1, 0\}\}\);
542
543
         l.push_back(\{\{lim, 0\}, \{0,1\}\}\}); l.push_back(\{\{0, lim\}, \{-1, 0\}\}\});
         sort(l.begin(),l.end());
544
         deque<Line> q;
545
546
         for (size_t i=0;i<l.size();i++)</pre>
547
             if (i>0 && l[i-1].v.toleft(l[i].v)==0 && l[i-1].v*l[i].v>eps) continue;
548
             \label{eq:while} \textbf{while} \ (\texttt{q.size()}>1 \ \&\& \ \mathsf{check(l[i],q.back(),q[q.size()-2]))} \ \ \texttt{q.pop\_back()};
549
550
             while (q.size()>1 && check(l[i],q[0],q[1])) q.pop_front();
             if (!q.empty() && q.back().v.toleft(l[i].v)<=0) return vector<Line>();
551
             q.push_back(l[i]);
552
553
         while (q.size()>1 && check(q[0],q.back(),q[q.size()-2])) q.pop_back();
554
         while (q.size()>1 && check(q.back(),q[0],q[1])) q.pop_front();
555
         return vector<Line>(q.begin(),q.end());
556
    }
557
558
    // 点集形成的最小最大三角形
559
    // 极角序扫描线, 复杂度 O(n^2logn)
560
561
    // 最大三角形问题可以使用凸包与旋转卡壳做到 O(n^2)
    pair<point_t, point_t> minmax_triangle(const vector<Point> &vec)
562
563
         if (vec.size()<=2) return {0,0};
564
         vector<pair<int,int>> evt;
565
         evt.reserve(vec.size()*vec.size());
566
567
         point_t maxans=0,minans=INF;
568
         for (size t i=0:i<vec.size():i++)</pre>
569
570
             for (size_t j=0;j<vec.size();j++)</pre>
571
                  if (i==j) continue;
572
                  if (vec[i]==vec[j]) minans=0;
573
```

```
else evt.push_back({i,j});
574
575
         }
576
         sort(evt.begin(),evt.end(),[&](const pair<int,int> &u,const pair<int,int> &v)
577
578
             const Point du=vec[u.second]-vec[u.first],dv=vec[v.second]-vec[v.first];
579
             return argcmp()({du.y,-du.x},{dv.y,-dv.x});
580
         3):
581
         vector<size_t> vx(vec.size()),pos(vec.size());
582
583
         for (size_t i=0;i<vec.size();i++) vx[i]=i;</pre>
         sort(vx.begin(),vx.end(),[&](int x,int y){return vec[x]<vec[y];});</pre>
584
585
         for (size_t i=0;i<vx.size();i++) pos[vx[i]]=i;</pre>
586
         for (auto [u,v]:evt)
587
588
             const size_t i=pos[u],j=pos[v];
             const size_t l=min(i,j),r=max(i,j);
589
             const Point vecu=vec[u],vecv=vec[v];
             if (l>0) minans=min(minans,abs((vec[vx[l-1]]-vecu)^(vec[vx[l-1]]-vecv)));
591
             if (r<vx.size()-1) minans=min(minans,abs((vec[vx[r+1]]-vecu)^(vec[vx[r+1]]-vecv)));</pre>
592
593
             max-
              ans=max({maxans,abs((vec[vx[0]]-vecu)^(vec[vx[0]]-vecv)),abs((vec[vx.back()]-vecu)^(vec[vx.back()]-vecv))});
             if (i<j) swap(vx[i],vx[j]),pos[u]=j,pos[v]=i;</pre>
         }
595
         return {minans,maxans};
    }
597
598
    // 平面最近点对
599
    // 扫描线, 复杂度 O(nlogn)
600
    point_t closest_pair(vector<Point> points)
601
602
    {
         sort(points.begin(),points.end());
603
         const auto cmpy=[](const Point &a,const Point &b){if (abs(a.y-b.y)<=eps) return a.x<b.x-eps; return</pre>
604

    a.y<b.y-eps;};
</pre>
605
         multiset<Point,decltype(cmpy)> s{cmpy};
         point_t ans=INF;
606
         for (size_t i=0,l=0;i<points.size();i++)</pre>
607
608
             const point_t sqans=sqrtl(ans)+1; // 整数情况
609
             // const point_t sqans=sqrtl(ans)+1; // 浮点数情况
610
             while (l<i && points[i].x-points[l].x>=sqans) s.erase(s.find(points[l++]));
611
612
             for (auto it=s.lower_bound(Point{-INF,points[i].y-sqans});it!=s.end()&&it->y-points[i].y<=sqans;it++)</pre>
613
             {
                  ans=min(ans,points[i].dis2(*it));
614
615
             }
             s.insert(points[i]);
616
617
618
         return ans;
    }
619
620
    // 判断多条线段是否有交点
621
     // 扫描线, 复杂度 O(nlogn)
622
    bool segs_inter(const vector<Segment> &segs)
623
624
         if (segs.empty()) return false;
625
         using seq_t=tuple<point_t, int, Segment>;
626
627
         const auto seqcmp=[](const seq_t &u, const seq_t &v)
628
         {
             const auto [u0,u1,u2]=u;
629
630
             const auto [v0,v1,v2]=v;
             if (abs(u0-v0)<=eps) return make_pair(u1,u2)<make_pair(v1,v2);</pre>
631
632
             return u0<v0-eps;
         };
633
         vector<seq_t> seq;
634
         for (auto seg:segs)
635
636
637
             if (seg.a.x>seg.b.x+eps) swap(seg.a,seg.b);
             seq.push_back({seg.a.x,0,seg});
638
             seq.push_back({seg.b.x,1,seg});
639
640
         sort(seq.begin(),seq.end(),seqcmp);
         point_t x_now;
642
```

```
auto cmp=[&](const Segment &u, const Segment &v)
643
644
             if (abs(u.a.x-u.b.x)<=eps || abs(v.a.x-v.b.x)<=eps) return u.a.y<v.a.y-eps;</pre>
645
             return
646
              + ((x_now-u.a.x)*(u.b.y-u.a.y)+u.a.y*(u.b.x-u.a.x))*(v.b.x-v.a.x)<((x_now-v.a.x)*(v.b.y-v.a.y)+v.a.y*(v.b.x-v.a.x))*(u.b.x-v.a.x)
         };
647
         multiset<Segment,decltype(cmp)> s{cmp};
648
         for (const auto [x,o,seg]:seq)
649
650
651
             x_now=x;
             const auto it=s.lower_bound(seg);
652
653
             if (o==0)
654
             {
                  if (it!=s.end() && seg.is_inter(*it)) return true;
655
656
                  if (it!=s.begin() && seg.is_inter(*prev(it))) return true;
                  s.insert(seg);
657
658
             else
659
660
             {
                  if (next(it)!=s.end() && it!=s.begin() && (*prev(it)).is_inter(*next(it))) return true;
661
                  s.erase(it);
662
663
         }
664
         return false;
    }
666
667
    // 多边形面积并
668
    // 轮廓积分, 复杂度 O(n^2logn), n 为边数
669
    // ans[i] 表示被至少覆盖了 i+1 次的区域的面积
    vector<long double> area_union(const vector<Polygon> &polys)
671
672
    {
673
         const size_t siz=polys.size();
         vector<vector<pair<Point,Point>>> segs(siz);
674
675
         const auto check=[](const Point &u,const Segment &e){return !((u<e.a && u<e.b) || (u>e.a && u>e.b));};
676
         auto cut_edge=[&](const Segment &e,const size_t i)
677
678
         {
             const Line le{e.a,e.b-e.a};
679
             vector<pair<Point,int>> evt;
680
             evt.push_back({e.a,0}); evt.push_back({e.b,0});
681
682
             for (size_t j=0;j<polys.size();j++)</pre>
683
                  if (i==j) continue;
684
685
                  const auto &pj=polys[j];
                  for (size_t k=0;k<pj.p.size();k++)</pre>
686
687
                      const Segment s={pj.p[k],pj.p[pj.nxt(k)]};
688
                      if (le.toleft(s.a)==0 && le.toleft(s.b)==0)
689
690
                      {
                           evt.push_back({s.a,0});
691
                           evt.push_back({s.b,0});
692
                      }
693
                      else if (s.is_inter(le))
695
                      {
                           const Line ls{s.a,s.b-s.a};
696
697
                           const Point u=le.inter(ls);
                          if (le.toleft(s.a)<0 && le.toleft(s.b)>=0) evt.push_back({u,-1});
698
                           else if (le.toleft(s.a)>=0 && le.toleft(s.b)<0) evt.push_back({u,1});</pre>
699
700
                      }
                  }
701
702
             sort(evt.begin(),evt.end());
703
             if (e.a>e.b) reverse(evt.begin(),evt.end());
704
             int sum=0:
705
706
             for (size_t i=0;i<evt.size();i++)</pre>
707
             {
                  sum+=evt[i].second;
708
                  const Point u=evt[i].first,v=evt[i+1].first;
709
                  if (!(u==v) \&\& check(u,e) \&\& check(v,e)) segs[sum].push_back(\{u,v\});
710
                  if (v==e.b) break;
             }
712
```

```
};
713
714
          for (size_t i=0;i<polys.size();i++)</pre>
715
716
717
              const auto &pi=polys[i];
              for (size_t k=0;k<pi.p.size();k++)</pre>
718
719
              {
                   const Segment ei={pi.p[k],pi.p[pi.nxt(k)]};
720
                   cut_edge(ei,i);
721
              }
722
         }
723
724
          vector<long double> ans(siz);
725
          for (size_t i=0;i<siz;i++)</pre>
726
727
              long double sum=0;
              sort(segs[i].begin(),segs[i].end());
728
              int cnt=0;
729
              for (size_t j=0;j<segs[i].size();j++)</pre>
730
731
                   if (j>0 && segs[i][j]==segs[i][j-1]) segs[i+(++cnt)].push_back(segs[i][j]);
732
                   else cnt=0,sum+=segs[i][j].first^segs[i][j].second;
733
734
              ans[i]=sum/2:
735
736
          return ans;
737
    }
738
739
     // 圆面积并
740
    // 轮廓积分, 复杂度 O(n^2logn)
     // ans[i] 表示被至少覆盖了 i+1 次的区域的面积
742
     vector<long double> area_union(const vector<Circle> &circs)
743
744
          const size_t siz=circs.size();
745
746
          using arc_t=tuple<Point,long double,long double,long double>;
          vector<vector<arc_t>> arcs(siz);
747
          const auto eq=[](const arc_t &u,const arc_t &v)
748
749
              const auto [u1,u2,u3,u4]=u;
750
751
              const auto [v1,v2,v3,v4]=v;
              return u1==v1 && abs(u2-v2)<=eps && abs(u3-v3)<=eps && abs(u4-v4)<=eps;
752
753
754
          auto cut_circ=[&](const Circle &ci,const size_t i)
755
756
              vector<pair<long double,int>> evt;
757
758
              evt.push_back({-PI,0}); evt.push_back({PI,0});
              int init=0:
759
760
              for (size_t j=0;j<circs.size();j++)</pre>
761
              {
                   if (i==j) continue;
762
                   const Circle &cj=circs[j];
763
                   if (ci.r<cj.r-eps && ci.relation(cj)>=3) init++;
764
                   const auto inters=ci.inter(cj);
765
                    \textbf{if} \ (\texttt{inters.size}() = = 1) \ \texttt{evt.push\_back}(\{\texttt{atan2l}((\texttt{inters}[\emptyset] - \texttt{ci.c}).y, (\texttt{inters}[\emptyset] - \texttt{ci.c}).x), \emptyset\}); \\
766
                   if (inters.size()==2)
767
768
                       const Point dl=inters[0]-ci.c,dr=inters[1]-ci.c;
769
                       long double argl=atan2l(dl.y,dl.x),argr=atan2l(dr.y,dr.x);
770
                       if (abs(argl+PI)<=eps) argl=PI;</pre>
771
                       if (abs(argr+PI)<=eps) argr=PI;</pre>
772
773
                       if (argl>argr+eps)
774
                       {
775
                            evt.push_back({argl,1}); evt.push_back({PI,-1});
                            evt.push_back({-PI,1}); evt.push_back({argr,-1});
776
777
                       }
                       else
778
779
780
                            evt.push_back({argl,1});
                            evt.push_back({argr,-1});
781
                       }
782
                   }
783
```

```
784
785
             sort(evt.begin(),evt.end());
             int sum=init;
786
              for (size_t i=0;i<evt.size();i++)</pre>
787
788
                  sum+=evt[i].second;
789
                  if (abs(evt[i].first-evt[i+1].first)>eps) arcs[sum].push_back({ci.c,ci.r,evt[i].first,evt[i+1].first});
790
                  if (abs(evt[i+1].first-PI)<=eps) break;</pre>
791
792
793
         };
794
795
         const auto oint=[](const arc_t &arc)
796
              const auto [cc,cr,l,r]=arc;
797
              if (abs(r-l-PI-PI)<=eps) return 2.0l*PI*cr*cr;</pre>
798
              return cr*cr*(r-l)+cc.x*cr*(sin(r)-sin(l))-cc.y*cr*(cos(r)-cos(l));
799
801
         for (size_t i=0;i<circs.size();i++)</pre>
802
803
         {
              const auto &ci=circs[i];
804
805
              cut_circ(ci,i);
         }
806
         vector<long double> ans(siz);
         for (size_t i=0;i<siz;i++)</pre>
808
809
              long double sum=0;
810
              sort(arcs[i].begin(),arcs[i].end());
811
812
              int cnt=0;
              for (size_t j=0;j<arcs[i].size();j++)</pre>
813
              {
814
                  if (j>0 && eq(arcs[i][j],arcs[i][j-1])) arcs[i+(++cnt)].push_back(arcs[i][j]);
815
                  else cnt=0,sum+=oint(arcs[i][j]);
816
817
              }
              ans[i]=sum/2;
818
819
         return ans;
820
    }
821
```

杂项

大质数和原根

```
p = r \times 2^k + 1
prime
                            k
                        r
                                 g
                            1
3
                        1
                                 2
5
                             2
                                 2
                        1
17
                        1
                             4
                                 3
97
                        3
                             5
                                 5
                        3
                                 5
193
                             6
257
                        1
                             8
                                 3
7681
                        15
                            9
                                 17
12289
                        3
                             12
                                 11
40961
                        5
                             13
                                 3
                                 3
65537
                        1
                             16
786433
                        3
                             18
                                 10
                            19
                                 3
5767169
                        11
7340033
                        7
                             20
                                 3
23068673
                        11
                            21
                                 3
104857601
                        25
                            22
                                 3
                        5
                             25
                                 3
167772161
469762049
                        7
                            26
                                 3
1004535809
                        479 21
                                 3
```

```
2013265921
                  15 27
                          31
                  17 27
                          3
2281701377
                          5
3221225473
                  3
                      30
                  35 31
                          3
75161927681
                          7
77309411329
                  9
                      33
206158430209
                  3
                      36
                          22
2061584302081
                  15 37 7
2748779069441
                  5
                      39
                          3
                  3
                     41 5
6597069766657
39582418599937
                  9 42
                          5
79164837199873
                  9 43
                          5
                  15 44
263882790666241
                          7
                  35 45
1231453023109121
                          3
1337006139375617
                  19 46
                          3
                  27 47
3799912185593857
                          5
4222124650659841
                  15 48
                          19
                  7 50 6
7881299347898369
31525197391593473
                  7 52 3
180143985094819841 5 55
                          6
                          5
1945555039024054273 27 56
4179340454199820289 29 57 3
```

约瑟夫问题

```
//约瑟夫问题
   int josephus(int n, int k) {
     int res = 0;
     for (int i = 1; i <= n; ++i) res = (res + k) % i;</pre>
4
     return res;
5
   int josephus(int n, int k) {
     if (n == 1) return 0;
     if (k == 1) return n - 1;
     if (k > n) return (josephus(n - 1, k) + k) % n; // 线性算法
     int res = josephus(n - n / k, k);
11
     res -= n % k;
12
     if (res < 0)
13
      res += n; // mod n
14
15
      res += res / (k - 1); // 还原位置
16
17
     return res;
18
   }
    辛普森积分
   const int N = 1000 * 1000;
```

double h = (b - a) / N;**double** s = f(a) + f(b); for (int i = 1; i <= N - 1; ++i) {</pre> **double** x = a + h * i; s += f(x) * ((i & 1) ? 4 : 2);8 s *= h / 3; 10 return s; 12 } 13 14 15 double simpson(double l, double r) { 16 double mid = (l + r) / 2; 17 return (r - l) * (f(l) + 4 * f(mid) + f(r)) / 6; // 辛普森公式 18 19 }

double simpson_integration(double a, double b) {

```
double asr(double l, double r, double eps, double ans, int step) {
      double mid = (l + r) / 2;
22
     double fl = simpson(l, mid), fr = simpson(mid, r);
23
     if (abs(fl + fr - ans) <= 15 * eps && step < 0)
24
25
       return fl + fr + (fl + fr - ans) / 15; // 足够相似的话就直接返回
     return asr(l, mid, eps / 2, fl, step - 1) +
26
            asr(mid, r, eps / 2, fr, step - 1); // 否则分割成两段递归求解
27
   }
28
29
   double calc(double l, double r, double eps) {
     return asr(l, r, eps, simpson(l, r), 12);
31
32
    unordered_map
    struct custom_hash {
1
       static uint64_t splitmix64(uint64_t x) {
2
           // http://xorshift.di.unimi.it/splitmix64.c
           x += 0x9e3779b97f4a7c15;
           x = (x \wedge (x >> 30)) * 0xbf58476d1ce4e5b9;
           x = (x \land (x >> 27)) * 0x94d049bb133111eb;
           return x ^ (x >> 31);
       }
        size_t operator()(uint64_t x) const {
           static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
11
           return splitmix64(x + FIXED_RANDOM);
12
       }
13
   };
14
   // pair
   // 分别计算出内置类型的 Hash Value 然后对它们进行 Combine 得到一个哈希值
16
   // 一般直接采用移位加异或(XOR)得到哈希值
18
   struct HashFunc
19
20
        template<typename T, typename U>
        size_t operator()(const std::pair<T, U>& p) const {
21
        return std::hash<T>()(p.first) ^ std::hash<U>()(p.second);
22
23
   };
24
25
26
   // 键值比较,哈希碰撞的比较定义,需要直到两个自定义对象是否相等
27
    struct EqualKey {
        template<typename T, typename U>
28
        bool operator ()(const std::pair<T, U>& p1, const std::pair<T, U>& p2) const {
       return p1.first == p2.first && p1.second == p2.second;
30
31
   };
32
```

位运算

21

- 1. int __builtin_ffs(int x): 返回 x 的二进制末尾最后一个 1 的位置,位置的编号从 1 开始(最低位编号为 1)。当 x 为 0时返回 0。
- 2. int __builtin_clz(unsigned int x): 返回 x 的二进制的前导 0 的个数。当 x 为 0 时,结果未定义。
- 3. int __builtin_ctz(unsigned int x): 返回 x 的二进制末尾连续 0 的个数。当 x 为 0 时,结果未定义。
- 4. int __builtin_clrsb(int x): 当 x 的符号位为 0 时返回 0 的二进制的前导 0 的个数减一,否则返回 x 的二进制的前导 1的个数减一。
- 5. int __builtin_popcount(unsigned int x): 返回 x 的二进制中 1 的个数。
- 6. int __builtin_parity(unsigned int x): 判断 x 的二进制中的个数的奇偶性。

模2的次幂

```
int modPowerOfTwo(int x, int mod) { return x & (mod - 1); }
2 的次幂判断
bool isPowerOfTwo(int n) { return n > 0 && (n & (n - 1)) == 0; }
```

子集枚举

```
for (int s = i; s; s = (s - 1) % i)

int128 输出

using i128 = __int128;

std::ostream &operator<<(std::ostream &os, i128 n) {
    std::string s;
    while (n) {
        s += '0' + n % 10;
        n /= 10;
    }
    std::reverse(s.begin(), s.end());
    return os << s;
}
</pre>
```

for (int i = 0; i < (1 << n);i ++)

随机生成质数

```
bool isprime(int n) {
        if (n <= 1) {
2
            return false;
3
        for (int i = 2; i * i <= n; i++) {</pre>
5
            if (n % i == 0) {
                return false;
        }
        return true;
10
11
   }
12
13
    int findPrime(int n) {
        while (!isprime(n)) {
14
15
            n++:
        return n:
17
18
   std::mt19937 rng(std::chrono::steady_clock::now().time_since_epoch().count());
19
   const int P = findPrime(rng() % 900000000 + 100000000);
```

bitset

构造函数

- bitset(): 每一位都是 false。
- bitset(unsigned long val): 设为 val 的二进制形式。
- bitset(const string& str): 设为 01 串 str。

运算符

- operator []: 访问其特定的一位。
- operator ==/!=: 比较两个 bitset 内容是否完全一样。
- operator &/&=/|/| =/^/^=/~: 进行按位与/或/异或/取反操作。**bitset 只能与 bitset 进行位运算**,若要和整型进行位运算,要先将整型转换为 bitset。
- operator <>/<<=/>>>=: 进行二进制左移/右移。
- operator <>: 流运算符,这意味着你可以通过 cin/cout 进行输入输出。

成员函数

- count(): 返回 true 的数量。
- size(): 返回 bitset 的大小。
- test(pos): 它和 vector 中的 at() 的作用是一样的,和[] 运算符的区别就是越界检查。
- any(): 若存在某一位是 true 则返回 true, 否则返回 false。

- none(): 若所有位都是 false 则返回 true, 否则返回 false。
- all():C++11, 若所有位都是 true 则返回 true, 否则返回 false。
- 1. set(): 将整个 bitset 设置成 true。
 - 2. set(pos, val = true): 将某一位设置成 true/false。
- 1. reset(): 将整个 bitset 设置成 false。
 - 2. reset(pos): 将某一位设置成 false。相当于 set(pos, false)。
- 1. flip(): 翻转每一位。 $0 \leftrightarrow 1$,相当于异或一个全是 1 的 bitset
 - 2. flip(pos): 翻转某一位。
- to_string():返回转换成的字符串表达。
- to_ulong(): 返回转换成的 unsigned long 表达 (long 在 NT 及 32 位 POSIX 系统下与 int 一样, 在 64 位 POSIX 下与 long long 一样)。
- to_ullong():C++11, 返回转换成的 unsigned long long 表达。

一些文档中没有的成员函数:

- _Find_first(): 返回 bitset 第一个 true 的下标,若没有 true 则返回 bitset 的大小。
- _Find_next(pos): 返回 pos 后面 (下标严格大于 pos 的位置) 第一个 true 的下标, 若 pos 后面没有 true 则返回 bitset 的大小。

手写 bitset

```
#include<vector>
    using ull = unsigned long long;
    struct Bit {
        ull mi[65];
        // ull bit[15626];
        std::vector<ull> bit; int len;
        Bit() {
             len = 10;
            bit.resize(len);
             for(int i = 0; i <= 63; i ++) mi[i] = (1ull << i);</pre>
11
        Bit(int len) : len(len){
            bit.resize(len);
13
             for(int i = 0;i <= 63;i ++) mi[i] = (1ull << i);</pre>
14
15
        void reset() {bit.assign(len,0);}
16
17
        void set1(int x) { bit[x>>6] |= mi[x&63];}
        void set0(int x) { bit[x>>6] &= ~mi[x&63];}
18
19
        void flip(int x) { bit[x>>6] ^= mi[x&63];}
        bool operator [](int x) {
20
21
             return (bit[x>>6] >> (x&63)) & 1;
22
        int count() {
23
24
             for(int i = 0;i < len;i ++)s += __builtin_popcountll(bit[i]);</pre>
25
             return s;
26
27
        Bit operator ~ (void) const {
28
             Bit res;
29
             for (int i = 0;i < len; i++) res.bit[i] = ~bit[i];</pre>
30
             return res;
31
        }
32
33
34
        Bit operator & (const Bit &b) const {
             Bit res:
35
             for (int i = 0;i < len; i++) res.bit[i] = bit[i] & b.bit[i];</pre>
            return res;
37
38
39
        Bit operator | (const Bit &b) const {
40
            Bit res;
             for (int i = 0;i < len; i++) res.bit[i] = bit[i] | b.bit[i];</pre>
42
             return res;
```

```
}
44
45
        Bit operator ^ (const Bit &b) const {
46
47
             Bit res;
             for (int i = 0;i < len; i++) res.bit[i] = bit[i] ^ b.bit[i];</pre>
             return res;
49
50
51
        void operator &= (const Bit &b) {
52
53
             for (int i = 0;i < len; i++) bit[i] &= b.bit[i];</pre>
        }
54
55
        void operator |= (const Bit &b) {
56
             for (int i = 0;i < len; i++) bit[i] |= b.bit[i];</pre>
57
58
59
        void operator ^= (const Bit &b) {
             for (int i = 0;i < len; i++) bit[i] ^= b.bit[i];</pre>
61
63
        Bit operator << (const int t) const {</pre>
64
             Bit res; int high = t >> 6, low = t & 63;
65
             ull last = 0;
66
             for (int i = 0; i + high < len; i++) {</pre>
                 res.bit[i + high] = (last | (bit[i] << low));</pre>
68
                 if (low) last = (bit[i] >> (64 - low));
69
70
             return res;
71
        }
73
        Bit operator >> (const int t) const {
74
             Bit res; int high = t >> 6, low = t & 63;
75
             ull last = 0;
76
             for (int i = len - 1;i >= high; i--) {
                 res.bit[i - high] = last | (bit[i] >> low);
78
                 if (low) last = bit[i] << (64 - low);</pre>
79
             }
80
             return res;
81
        }
82
83
84
        void operator <<= (const int t) {</pre>
             int high = t >> 6, low = t & 63;
85
             for (int i = len - high - 1; ~i; i--) {
86
87
                 bit[i + high] = (bit[i] << low);</pre>
                 if (low && i) bit[i + high] |= bit[i - 1] >> (64 - low);
88
89
             for (int i = 0;i < high; i++) bit[i] = 0;</pre>
        }
   };
```

string

转 char 数组

string 有两个成员函数能够将自己转换为 char 指针——data()/c_str()(它们几乎是一样的,但最好使用 c_str(),因为 c_str()保证末尾有空字符,而 data()则不保证)

寻找某字符(串)第一次出现的位置

find(str,pos) 函数可以用来查找字符串中一个字符/字符串在 pos(含)之后第一次出现的位置(若不传参给 pos 则默认为 0)。如果没有出现,则返回 string::npos(被定义为 -1,但类型仍为 size_t/unsigned long)。

截取子串

substr(pos, len) 函数的参数返回从 pos 位置开始截取最多 len 个字符组成的字符串(如果从 pos 开始的后缀长度不足 len 则截取这个后缀)。

插入/删除字符(串)

insert(index,count,ch) 和 insert(index,str) 是比较常见的插入函数。它们分别表示在 index 处连续插入 count 次字符串 ch 和插入字符串 str。

erase(index,count) 函数将字符串 index 位置开始(含)的 count 个字符删除(若不传参给 count 则表示删去 count 位置及以后的所有字符)。

替换字符(串)

replace(pos,count,str) 和 replace(first,last,str) 是比较常见的替换函数。它们分别表示将从 pos 位置开始 count 个字符的子串替换为 str 以及将以 first 开始(含)、last 结束(不含)的子串替换为 str, 其中 first 和 last 均为迭代器。

STL

- sort: 排序。sort(v.begin(), v.end(), cmp) 或 sort(a + begin, a + end, cmp), 其中 end 是排序的数组 最后一个元素的后一位, cmp 为自定义的比较函数。
- stable_sort: 稳定排序, 用法同 sort()。
- nth_element: 按指定范围进行分类,即找出序列中第 n 大的元素,使其左边均为小于它的数,右边均为大于它的数。 nth_element(v.begin(), v.begin() + mid, v.end(), cmp)或 nth_element(a + begin, a + begin + mid, a + end, cmp)。
- binary_search: 二分查找。binary_search(v.begin(), v.end(), value), 其中 value 为需要查找的值。
- merge: 将两个(已排序的)序列 **有序合并**到第三个序列的 **插入迭代器**上。merge(v1.begin(), v1.end(), v2.begin(), v2.end(), back_inserter(v3))。
- inplace_merge: 将两个(已按小于运算符排序的): [first,middle), [middle,last) 范围 **原地合并为一个有序序** 列。inplace_merge(v.begin(), v.begin() + middle, v.end())。
- lower_bound: 在一个有序序列中进行二分查找,返回指向第一个 大于等于 x 的元素的位置的迭代器。如果不存在这样的元素,则返回尾迭代器。lower_bound(v.begin(),v.end(),x)。
- upper_bound: 在一个有序序列中进行二分查找,返回指向第一个 大于 x 的元素的位置的迭代器。如果不存在这样的元素,则返回尾迭代器。upper_bound(v.begin(),v.end(),x)。
- next_permutation: 将当前排列更改为 **全排列中的下一个排列**。如果当前排列已经是 **全排列中的最后一个排列**(元素完全 从大到小排列),函数返回 false 并将排列更改为 **全排列中的第一个排列**(元素完全从小到大排列);否则,函数返回 true。 next_permutation(v.begin(), v.end())或 next_permutation(v + begin, v + end)。
- partial_sum: 求前缀和。设源容器为x,目标容器为y,则令 $y[i]=x[0]+x[1]+\cdots+x[i]$ 。partial_sum(src.begin(), src.end(), back_inserter(dst))。

数值函数

- cbrt(x) 开三次根号函数。
- asin(x) 输入范围 [-1.0,1.0],输入不在范围内返回 NAN,返回范围 $[-\pi/2,\pi/2]$ 。
- acos(x) 输入范围 [-1.0,1.0],输入不在范围内返回 NAN,返回范围 $[0,\pi]$ 。
- atan(x) 返回范围 $[-\pi/2, \pi/2]$ 。
- atan2(y,x) 计算 y/x 的弧(反)正切,以实参正负号确定正确的象限。
- tgamma(x) 计算 $\Gamma(x)=\int_0^\infty t^{x-1}e^{-t}dt,$ 输入范围 $(0,\infty)_\circ$
- modf(x,&y) 将浮点数拆分成整数和小数,整数存储到 y,小数为返回值。
- beta(x,y) 计算 $\int_0^1 t^{x-1} (1-t)^{y-1} dt$ 等价于 $\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$.

pbds

__gnu_pbds :: tree

- n #include <ext/pb_ds/assoc_container.hpp> // 因为 tree 定义在这里 所以需要包含这个头文件
- #include <ext/pb_ds/tree_policy.hpp>
- using namespace __gnu_pbds;

模板形参

- Key: 储存的元素类型,如果想要存储多个相同的 Key 元素,则需要使用类似于 std::pair 和 struct 的方法,并配合使用 lower_bound 和 upper_bound 成员函数进行查找
- Mapped: 映射规则(Mapped-Policy)类型,如果要指示关联容器是 **集合**,类似于存储元素在 std::set 中,此处填入 null_type,低版本 g++ 此处为 null_mapped_type;如果要指示关联容器是 **带值的集合**,类似于存储元素在 std::map 中,此处填入类似于 std::map<Key,Value>的 Value 类型
- Cmp_Fn: 关键字比较函子, 例如 std::less<Key>
- Tag: 选择使用何种底层数据结构类型,默认是 rb_tree_tag。__gnu_pbds 提供不同的三种平衡树,分别是:
 - rb_tree_tag: 红黑树,一般使用这个,后两者的性能一般不如红黑树
 - splay_tree_tag: splay 树
 - ov_tree_tag: 有序向量树,只是一个由 vector 实现的有序结构,类似于排序的 vector 来实现平衡树,性能取决于数据想不想卡你
- Node_Update: 用于更新节点的策略,默认使用 null_node_update,若要使用 order_of_key 和 find_by_order 方 法,需要使用 tree_order_statistics_node_update
- Allocator: 空间分配器类型

构造方式

成员函数

- insert(x): 向树中插入一个元素 x, 返回 std::pair<point_iterator, bool>。
- erase(x): 从树中删除一个元素/迭代器 x, 返回一个 bool 表明是否删除成功。
- order_of_key(x): 返回 x 以 Cmp_Fn 比较的排名。
- find_by_order(x):返回 Cmp_Fn 比较的排名所对应元素的迭代器。
- lower_bound(x): 以 Cmp_Fn 比较做 lower_bound, 返回迭代器。
- upper_bound(x): 以 Cmp_Fn 比较做 upper_bound, 返回迭代器。
- join(x):将x树并入当前树,前提是两棵树的类型一样,x树被删除。
- split(x,b): 以 Cmp_Fn 比较, 小于等于 x 的属于当前树, 其余的属于 b 树。
- empty(): 返回是否为空。
- size(): 返回大小。

示例

```
// Common Header Simple over C++11
   #include <bits/stdc++.h>
   using namespace std;
   typedef long long ll;
   typedef unsigned long long ull;
   typedef long double ld;
   typedef pair<int, int> pii;
   #define pb push_back
   #define mp make_pair
   #include <ext/pb_ds/assoc_container.hpp>
   #include <ext/pb_ds/tree_policy.hpp>
11
    __gnu_pbds ::tree<pair<int, int>, __gnu_pbds::null_type, less<pair<int, int> >,
12
13
                      __gnu_pbds::rb_tree_tag,
                      __gnu_pbds::tree_order_statistics_node_update>
14
        trr;
15
16
17
    int main() {
18
     int cnt = 0;
      trr.insert(mp(1, cnt++));
19
      trr.insert(mp(5, cnt++));
20
```

```
trr.insert(mp(4, cnt++));
21
22
     trr.insert(mp(3, cnt++));
23
     trr.insert(mp(2, cnt++));
     // 树上元素 {{1,0},{2,4},{3,3},{4,2},{5,1}}
24
     auto it = trr.lower_bound(mp(2, 0));
     trr.erase(it);
26
     // 树上元素 {{1,0},{3,3},{4,2},{5,1}}
27
     auto it2 = trr.find_by_order(1);
28
     cout << (*it2).first << endl;</pre>
29
     // 输出排名 0 1 2 3 中的排名 1 的元素的 first:1
     int pos = trr.order_of_key(*it2);
31
32
     cout << pos << endl;</pre>
     // 输出排名
33
     decltype(trr) newtr;
34
35
     trr.split(*it2, newtr);
     for (auto i = newtr.begin(); i != newtr.end(); ++i) {
36
37
      cout << (*i).first << ' ';
38
     cout << endl;</pre>
     // {4,2},{5,1} 被放入新树
40
     trr.join(newtr);
41
     for (auto i = trr.begin(); i != trr.end(); ++i) {
       cout << (*i).first << ' ';
43
     cout << endl;</pre>
45
     cout << newtr.size() << endl;</pre>
46
     // 将 newtr 树并入 trr 树, newtr 树被删除。
47
     return 0;
48
   __gnu_pbds :: priority_queue
   #include <ext/pb_ds/priority_queue.hpp>
   using namespace gnu pbds;
   __gnu_pbds ::priority_queue<T, Compare, Tag, Allocator>
```

模板形参

- T: 储存的元素类型
- Compare: 提供严格的弱序比较类型
- Tag: 是 __gnu_pbds 提供的不同的五种堆,Tag 参数默认是 pairing_heap_tag 五种分别是:
 - pairing_heap_tag: 配对堆官方文档认为在非原生元素(如自定义结构体/std :: string/pair)中,配对堆表现 最好
 - binary_heap_tag: 二叉堆官方文档认为在原生元素中二叉堆表现最好, 不过我测试的表现并没有那么好
 - binomial_heap_tag: 二项堆二项堆在合并操作的表现要优于二叉堆, 但是其取堆顶元素操作的复杂度比二叉堆高
 - rc_binomial_heap_tag: 冗余计数二项堆
 - thin_heap_tag: 除了合并的复杂度都和 Fibonacci 堆一样的一个 tag
- Allocator:空间配置器,由于OI中很少出现,故这里不做讲解

构造方式

要注明命名空间因为和 std 的类名称重复。

```
__gnu_pbds ::priority_queue<int> __gnu_pbds::priority_queue<int, greater<int> > __gnu_pbds ::priority_queue<int, greater<int>, pairing_heap_tag> __gnu_pbds ::priority_queue<int>::point_iterator id; // 点类型迭代器 // 在 modify 和 push 的时候都会返回一个 point_iterator, 下文会详细的讲使用方法id = q.push(1);
```

成员函数

- push(): 向堆中压入一个元素, 返回该元素位置的迭代器。
- pop(): 将堆顶元素弹出。
- top(): 返回堆顶元素。
- size() 返回元素个数。

- empty()返回是否非空。
- modify(point_iterator, const key): 把迭代器位置的 key 修改为传入的 key, 并对底层储存结构进行排序。
- erase(point_iterator): 把迭代器位置的键值从堆中擦除。
- join(__gnu_pbds :: priority_queue &other): 把 other 合并到 *this 并把 other 清空。

使用的 tag 决定了每个操作的时间复杂度:pairing_heap_tag : - push: O(1) - pop: 最坏 $\Theta(n)$ 均摊 $\Theta(\log(n))$ - modify: 最坏 $\Theta(n)$ 均摊 $\Theta(\log(n))$ - erase: 最坏 $\Theta(n)$ 均摊 $\Theta(\log(n))$ - join: O(1)

示例

#include <algorithm>

```
#include <cstdio>
   #include <ext/pb_ds/priority_queue.hpp>
   #include <iostream>
   using namespace __gnu_pbds;
   // 由于面向 OIer, 本文以常用堆 : pairing_heap_tag 作为范例
   // 为了更好的阅读体验, 定义宏如下:
   #define pair_heap __gnu_pbds ::priority_queue<int>
pair_heap q1; // 大根堆, 配对堆
   pair heap q2;
   pair_heap ::point_iterator id; // 一个迭代器
12
   int main() {
13
14
    id = q1.push(1);
     // 堆中元素 : [1];
15
    for (int i = 2; i <= 5; i++) q1.push(i);
    // 堆中元素 : [1, 2, 3, 4, 5];
17
18
     std ::cout << q1.top() << std ::endl;
     // 输出结果 : 5;
19
     q1.pop();
20
     // 堆中元素 : [1, 2, 3, 4];
     id = q1.push(10);
22
     // 堆中元素 : [1, 2, 3, 4, 10];
23
     q1.modify(id, 1);
24
    // 堆中元素 : [1, 1, 2, 3, 4];
25
    std ::cout << q1.top() << std ::endl;
26
     // 输出结果 : 4;
27
     q1.pop();
     // 堆中元素 : [1, 1, 2, 3];
29
     id = q1.push(7);
31
     // 堆中元素 : [1, 1, 2, 3, 7];
     q1.erase(id);
32
33
     // 堆中元素 : [1, 1, 2, 3];
    q2.push(1), q2.push(3), q2.push(5);
34
     // q1 中元素 : [1, 1, 2, 3], q2 中元素 : [1, 3, 5];
36
     q2.join(q1);
     // q1 中无元素, q2 中元素 : [1, 1, 1, 2, 3, 3, 5];
37
   }
38
   hash 表
   #include <ext/pb_ds/assoc_container.hpp>
   using namespace __gnu_pbds;
   const int RANDOM = chrono::high_resolution_clock::now().time_since_epoch().count();
   struct chash {
       int operator()(int x) const { return x ^ RANDOM; }
   typedef gp_hash_table<int, int, chash> hash_t;
   rope
   #include <ext/rope>
   using namespace __gnu_cxx;
   1) 运算符: rope 支持 operator += , -= , + , - , <, ==
   2) 输入输出:可以用 << 运算符由输入输出流读入或输出。
```

3) 长度/大小: 调用 length(), size() 都可以

4) 插入/添加等:

```
push_back(x): 在末尾添加 x insert(pos,x): 在 pos 插入 x, 自然支持整个 char 数组的一次插入 erase(pos,x): 从 pos 开始删除 x 个 copy(pos,len,x): 从 pos 开始到 pos+len 为止用 x 代替 replace(pos,x): 从 pos 开始换成 x substr(pos,x): 提取 pos 开始 x 个 at(x)/[x]: 访问第 x 个元素
```

对拍

火车头

```
#pragma GCC optimize(3)
   #pragma GCC target("avx")
   #pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")
   #pragma GCC optimize("unroll-loops")
   #pragma GCC optimize("Ofast")
   #pragma GCC optimize("inline")
   #pragma GCC optimize("-fgcse")
   #pragma GCC optimize("-fgcse-lm")
   #pragma GCC optimize("-fipa-sra")
   #pragma GCC optimize("-ftree-pre")
   #pragma GCC optimize("-ftree-vrp")
11
   #pragma GCC optimize("-fpeephole2")
12
   #pragma GCC optimize("-ffast-math")
13
   #pragma GCC optimize("-fsched-spec")
14
   #pragma GCC optimize("-falign-jumps")
   #pragma GCC optimize("-falign-loops")
16
    #pragma GCC optimize("-falign-labels")
17
   #pragma GCC optimize("-fdevirtualize")
18
   #pragma GCC optimize("-fcaller-saves")
19
   #pragma GCC optimize("-fcrossjumping")
   #pragma GCC optimize("-fthread-jumps")
21
    #pragma GCC optimize("-funroll-loops")
22
   #pragma GCC optimize("-fwhole-program")
23
   #pragma GCC optimize("-freorder-blocks")
24
   #pragma GCC optimize("-fschedule-insns")
25
   #pragma GCC optimize("inline-functions")
26
    #pragma GCC optimize("-ftree-tail-merge")
   #pragma GCC optimize("-fschedule-insns2")
28
   #pragma GCC optimize("-fstrict-aliasing")
   #pragma GCC optimize("-fstrict-overflow")
30
   #pragma GCC optimize("-falign-functions")
31
   #pragma GCC optimize("-fcse-skip-blocks")
32
   #pragma GCC optimize("-fcse-follow-jumps")
33
   #pragma GCC optimize("-fsched-interblock")
   #pragma GCC optimize("-fpartial-inlining")
35
   #pragma GCC optimize("no-stack-protector",
   #pragma GCC optimize("-freorder-functions")
37
   #pragma GCC optimize("-findirect-inlining")
```

```
#pragma GCC optimize("-fhoist-adjacent-loads")
   #pragma GCC optimize("-frerun-cse-after-loop")
   #pragma GCC optimize("inline-small-functions")
   #pragma GCC optimize("-finline-small-functions")
   #pragma GCC optimize("-ftree-switch-conversion")
   #pragma GCC optimize("-foptimize-sibling-calls")
44
   #pragma GCC optimize("-fexpensive-optimizations")
   #pragma GCC optimize("-funsafe-loop-optimizations")
   #pragma GCC optimize("inline-functions-called-once")
   #pragma GCC optimize("-fdelete-null-pointer-checks")
   #pragma GCC optimize(2)
   Sublime
       "shell_cmd": "g++ -Wall -std=c++2a \"${file}\" -o \"${file_base_name}\" && start cmd /c \"\"${file_path},
   }
    {
       "shell_cmd": "g++ -Wall -std=c++2a \"${file}\" -o \"${file_base_name}\" && gnome-terminal -
    - \"./${file_base_name}\"; read -p 'Press any key to continue... ' -n1 -s",
   }
   Python 基础操作
   n, m = map(int, input().split())
   a = []
   for i in range(n):
       a.append(limap(int, input().split()))
   arr = list(map(int, input().split())) # 接收 n 个整数的数组,以空格隔开
   line = sys.stdin.readline().strip()
   arr = line.split()
   result = [1, 2, 3, 4, 5]
   print(*result, sep = "\n")
   p = [i for i in range(100)]
   d = {i: j for i, j in enumerate(range(100))}
   arr = list(range(100))
14
   \# arr = [0, 1, 2, 3, 4,..., 98, 99]
   nums = \{1, 2, 3, 4, 5\}
   if 2 in nums:
   arr = [[1,2,3], [3,1,2], [2,3,1]]
   new_arr = sorted(arr, key = lambda x: x[1], reverse = True)
   arr.sort(key = lambda x: x[1], reverse = True)
   from functools import total_ordering
25
   @total_ordering
   class Point:
       def __init__(self, x, y):
           self.x = x
           self.y = y
       def __eq__(self, other):
           return self.x == other.x and self.y == other.y
       def __lt__(self, other):
           # 按 x 坐标比较, x 相同按 y 比较
           if self.x == other.x:
               return self.y < other.y</pre>
           return self.x < other.x</pre>
       def __repr__(self):
           return f"({self.x}, {self.y})"
   # 自动获得 >, >=, <= 等方法
```

40

41

10

11

12

16

17 18

19 20

21

23 24

26

28

29 30

31

33

34

35 36

37

38 39 40

42

43

points = [Point(1, 2), Point(3, 1), Point(1, 1)]

```
print(sorted(points)) # [(1, 1), (1, 2), (3, 1)]
45
46
47
   import math
   gcd = math.gcd(4, math.gcd(6, 10)) # 间接求三个数字的最大公约数
48
   lcm = 6*10 // math.gcd(6, 10) # 间接求最小公倍数
50
   from collections import Counter
51
   a = "aaabbbccc"
52
b = "abcdef"
   result = Counter(a) - Counter(b)
   print(result) # Counter({'a': 2, 'b': 2, 'c': 2})
55
   from collections import deque
57
   q = deque() # 队列中保存的是数组的下标
58
59
   for i in range(n):
       while q and arr[q[-1]] > arr[i]: q.pop() # 如果新的数字比队尾数字小,则队尾数字出队
60
61
       q.append(i) # 新的数字入列
       if i >= k - 1: # 当窗口滑动到 k 时才开始输出
62
           while q and q[0] <= i - k: q.popleft() # 如果队首划出窗口,则队首数字出队
           print(arr[q[0]], end=" ") # 打印队首
64
65
   from heapq import *
   arr = [2, 5, 1, 3, 9, 8]
67
   heapify(arr) # 将列表进行堆排列
   print(arr[0]) # 输出 1
   heappush(arr, 0) # 数字 0 入堆, 自动更新到堆顶
70
   print(arr[0]) # 输出 0
   from fractions import Fraction
   f = Fraction(6, 8)
74
   print(f)
75
                             # 分子: 3
   print(f.numerator)
   print(f.denominator)
                            # 分母: 4
```

卡常

vector 的调用空间和运算的效率并不低,主要是多次的加入元素过程效率很低。

减少申请空间的次数,例如不要循环内开 vector。

```
1 // vector f(n,vector<int>(m,0));
2 f.assign(n, std::vector(m, 0));
```

数组访问尽量连续

被卡常时,不要爆交,先多想想剪枝

注意事项

- 相信所有题都是可做的。
- 认真读题, 模拟完样例再写程序。
- 热身赛,测试机器速度,重点测 $O(n \log n)$, $O(n \log^2 n)$, $O(n^3)$, $O(n^2 \log n)$ 。
- 感觉不可做的,有较高多项式复杂度暴力的题,思考:分治、贪心、dp、线段树。
- 感觉不可做的,只有指数级复杂度暴力的最优化题,思考: 贪心、dp、流和割、暴搜加优化。
- 感觉不可做的,只有指数级暴力的数数题,思考: dp、行列式、暴搜加优化、拉格朗日插值、**容斥**、造自动机。
- 构造、交互题, 考虑: 增量法、分治、暴搜策略。
- dp 优化: 凸优化(wqs, 闵可夫斯基和, 李超树)、斜率优化, 决策单调性、交换状态和值域、减少状态(包含常数上的)。
- 感觉不可做的题, 考虑各个元素/集合之间有什么关系。
- 对于复杂度比较顶的做法,一定要充分沟通后再上机
- int(v.size()) 切记不能 ull 减 int

- __builtin_popcount和 __builtin_popcountll
- sqrt和 sqrtl, sqrtl返回 long double
- 几何题注意是不是可能返回 nan
- 不能 x * 1ll 而是 1ll * x
- 比较长的题,写一部分测一部分不要最后一块测
- 任何 n 较大的,可以快速算单项的东西考虑分段打表。
- 签到题不会做, 先确认题面, 题面无误看看是不是想难了或者暴力很有道理。
- 沟通题意前切记确认题面,对着题面和队友讲题意。
- 榜上有简单题做不出来的时候,切记转换一下思路或立即拉另一个人过来重新想(先不要交流思路)。
- 做题前手玩下样例,尤其是后期题。