

1/5" UXGA CMOS Image Sensor GC2235

模组设计指南 V1.0

2013-01-31 GalaxyCore Inc.

	目录	AL
1.	71 H 37	. 3
	1.1 DVP 接口	3
	1.2 MIPI 接口	4
- 11	1.2.1 Single lane	
CB	1.2.2 Double lane	
2.	74.1 92.74	
	2.1 外围电路设计说明	
3.	GC2235 CSP 封装说明	. 6
	3.1 GC2235 CSP 封装(单位: μm)	6
	3.2 CSP 封装点阵表	6
	3.3 CSP 封装管脚说明	6
	3.4 PCB 焊盘设计说明	8
	3.5 CSP 封装尺寸图(单位: µm)	8
G	3.5 CSP 封装尺寸图(单位: μm) 3.6 CSP 封装说明	9

1. 外围电路

1.1 DVP 接口

注: 如果平台接口能接 10bit 数据的,请将 10bit 数据全部接出。 如果平台接口是接 8bit 数据的,请引出 D<9>~D<2>。

图 1-2 MIPI 接口(single lane)外围电路图

图 1-3 MIPI 接口(double lane)外围电路图

GC2235 Design Guide 4/9

2. 设计说明

2.1 外围电路设计说明

- ◆ GC2235芯片有三路电源供电: AVDD28、DVDD18(MVDD)、IOVDD AVDD28为2.8V供电电源,2.7~3.0V; DVDD18(MVDD)为数字电路供电电源,1.7~1.9V; IOVDD为I/O电源,1.7~3.0V;
- ◆ 靠近电源处,加如图示C1、C2、C3、C4滤波电容,容值为0.1µF;
- ◆ 如果平台接口能接10bit数据的,请将10bit数据全部接出;如果平台接口是接8bit数据的,请引出D<9>~D<2>。
- ◆ DVDD18(MVDD)外接电压必须为1.7~1.9V,如模组接口DVDD供电为1.5V或 1.2V时,需跟方案公司确认IOVDD是否为1.8V,如果是可以将DVDD18(MVDD) 跟IOVDD接到一起,以保证电压满足芯片工作要求。
- ◆ 如果客户端MIPI接口支持两条lane,建议将芯片的两条lane都引出来;
- ◆ 电容摆放应尽量靠近电源Pin脚:
- ◆ 所有电容均不可省去,否则会影响图像质量;
- ◆ 所有的GND线,需要在内部接到一起之后,再做铺铜,否则会影响信号质量;
- ◆ 电源线、GND走线宽度至少加粗至0.2mm以上;
- ◆ 芯片有RESET pin,需要引出控制;
- ◆ FPC/PCB布线时尽量让SBDA/SBCL线远离高速的信号线(如PCLK/D0~D2)
- ◆ SBCL/SBDA pin 外部需要4.7k~10kΩ的上拉电阻;
- MCP、MCN需要尽量平行走线,等长;尽量少打或不打过孔;且要远离高频信号线(如MCLK),最好是能用地线保护起来,且差分线对走线的背面也尽量是地线走线,并铺地铜作为参考层。差分线对的匹配阻抗要求为100Ω±10%。
- ◆ MDP、MDN需要尽量平行走线,等长;尽量少打或不打过孔;且要远离高频信号线(如MCLK),最好是能用地线保护起来,且走线的背面也尽量是地线走线,并铺地铜作为参考层。差分线对的匹配阻抗要求为100Ω±10%。

GC2235 Design Guide

3. GC2235 CSP 封装说明

3.1 GC2235 CSP 封装(单位: μm)

图 3-1 CSP 焊盘 Top View(Bumps Down)

3.2 CSP 封装点阵表

	1	2	3	4	5	6	7
A	DVDD18/MVDD	INCLK	PCLK	VSYNC	SBDA	RESET	AVDD28
В	MDP<0>	MDN<0>	HSYNC	IOVDD	SBCL	PWDN	AGND
С	MCN	MCP	DGND	D<4>	TXLOW	AVDD28	AGND
D	MDN<1>	MDP<1>	DGND	D<2>	D<6>	D<8>	AGND
E	IOVDD	D<0>	D<1>	D<3>	D<5>	D<7>	D<9>

3.3 CSP 封装管脚说明

Pin	Name	Pin Type	Function
A 4	DVDD18/MVDD	Power	数字(MIPI)电路供电电源: 1.7~1.9V,通过0.1μF 或1μF
A1			的电容接地
A2	INCLK	Input	系统时钟输入
A3	PCLK	Output	PIXEL 时钟输出
A4	VSYNC	Output	VSYNC 输出信号

GC2235 Design Guide 6/9

A5	SBDA	I/O	串行通讯口数据线		
		,	芯片复位控制,将所有寄存器复位为初始值		
A6	RESET	Input	0: 芯片复位		
			1: 正常工作		
A7	AVDD28	Power	模拟电路电源: 2.7~3.0V,通过0.1µF 或1µF 的电容接地		
B1	MDP<0>	Output	MIPI data<0> (+)		
B2	MDN<0>	Output	MIPI data<0> (-)		
В3	HSYNC	Output	HSYNC 输出信号		
В4	IOVDD	Power	I/O 供电电源: 1.7~3.0V, 通过 0.1µF 或 1µF 的电容接地		
В5	SBCL	Input	串行通讯口时钟线		
		NOK	芯片休眠模式控制:		
В6	PWDN	Input	0: 正常工作		
		0,	1: 休眠模式		
В7	AGND	Ground	模拟地		
C1	MCN	Output	MIPI clock (-)		
C2	МСР	Output	MIPI clock (+)		
C3	DGND	Ground	数字地		
C4	D<4>	Output	Raw RGB 图像数据输出端口 bit[4]		
C5	TXLOW	Power	内部电源,通过 0.1μF 或 1μF 的电容接地		
C6	AVDD28	Power	模拟电路电源: 2.7~3.0V,通过0.1μF 或1μF 的电容接地		
C7	AGND	Ground	模拟地		
D1	MDN<1>	Output	MIPI data<1> (-)		
D2	MDP<1>	Output	MIPI data<1> (+)		
D3	DGND	Ground	数字地		
D4	D<2>	Output	Raw RGB 图像数据输出端口 bit[2]		
D5	D<6>	Output	Raw RGB 图像数据输出端口 bit[6]		
D6	D<8>	Output	Raw RGB 图像数据输出端口 bit[8]		
D7	AGND	Ground	模拟地		
E1	IOVDD	Power	I/O 供电电源: 1.7~3.0V, 通过 0.1µF 或 1µF 的电容接地		
E2	D<0>	Output	Raw RGB 图像数据输出端口 bit[0]		
E3	D<1>	Output	Raw RGB 图像数据输出端口 bit[1]		
E4	D<3>	Output	Raw RGB 图像数据输出端口 bit[3]		
E5	D<5>	Output	Raw RGB 图像数据输出端口 bit[5]		
E6	D<7>	Output	Raw RGB 图像数据输出端口 bit[7]		
E7	D<9>	Output	Raw RGB 图像数据输出端口 bit[9]		

3.4 PCB 焊盘设计说明

图 3-2 PCB 焊盘设计说明示意图(Top View)

注: Sensor 封装锡球大小为 260µm。

3.5 CSP 封装尺寸图 (单位: μm)

图 3-3 CSP 封装尺寸图

GC2235 Design Guide 8/9

3.6 CSP 封装说明

	Symbol	Nominal	Min.	Max.
Parameter			μm	
Package Body Dimension X	Α	4130	4105	4155
Package Body Dimension Y	В	3022	2997	3047
Package Height	O	760	700	820
Ball Height	C1	130	100	160
Package Body Thickness	C2	630	585	675
Thickness of Glass surface to wafer	C3	445	425	465
Ball Diameter	D	260	230	290
Total Pin Count	N	35		
Pins Count X axis	N1	7		
Pins Count Y axis	N2	5		
Pins Pitch X axis	J1	550		
Pins Pitch Y axis	J2	550		
Edge to Pin Center Distance along X	S1	415	385	445
Edge to Pin Center Distance along Y	S2	411	381	441
		FI	EN	