Remote Rendering for XR

By-Gizem Dal, Dayu Li, Tushar Purang

Source: HoloLens 2 Azure Remote Rendering in-action

Project Overview

Review: Progress in Milestone 2

- Improve optixPathTracer sample
- Stream ray tracer frames via network

Overview: Milestone 3

Progress in project

- Texture mapping from MTL file
- Scene file parser with file I/O
- Camera synchronization.
- Hololens head movement synchronization with raytracer camera

Researches and Studies

- Mesh loading & Texture mapping in Optix.
- Hololens gesture & spatial mapping APIs.
- Physically Based Rendering: From Theory to Implementation online textbook
- Image-Based Bidirectional Scene Reprojection

- Texture Mapping based on obj & mtl parser.
 - Generate optix texture objects.

Crytek Sponza Mesh

- Scene file (.txt format) parser
 - Camera
 - Geometry
 - Material

Crytek Sponza & Dragon Mesh

Adding Spatial Mapping to the ray tracer.

- Control the ray tracer camera with external data.
 - File I/O
 - A denoiser of camera changes

- Synchronization of headset orientation with camera orientation in raytracer
- Streaming frames from raytracer to Hololens 2

(Rendering FOV and Recording FOV are different for hololens)

Tasks planned for final submission

- Modify the ray tracer result with hand interaction and gestures
- Optimize streaming frame rate
- Finish late stage reprojection
- Fetch spatial map OBJ from Unity and update it in ray tracer periodically

Image-space bidirectional scene reprojection (SIGGRAPH Asia 2011)

Source: Azure
Remote Rendering +
MRTK Demo
Hololens 2

Schedule

Milestone 1 - Nov 18th:

- Basic Desktop app (Control Panel) + Hololens app
- + GPU networking + basic realtime raytracer

Milestone 2 - Nov 30th:

- (Still in progress) Hybrid Rendering (Scene + UI)
- Real time ray tracing

+ Material parser + Texture mapping

Milestone 3 - Dec 7th:

- (Still in Progress) Optimizing streaming frame rate
- (Still in Progress) Late Stage Reprojection for Hololens
- Real time ray tracing in XR

Final - Dec 13:

- Bug fixings and optimizations
- Performance analysis

Resources

- About Azure Remote Rendering
 https://docs.microsoft.com/en-us/azure/remote-rendering/overview/about
- 2. CPU-GPU Algorithms for Triangular Surface Mesh Simplification https://imr.sandia.gov/papers/imr21/Shontz.pdf
- 3. A Positional Timewarp Accelerator for Mobile Virtual Reality Devices
 https://escholarship.org/content/qt96r870gs/qt96r870gs noSplash 4abbeba6bd4266514b1d56cbdd9dc5d7.pdf
- 4. Differential Irradiance Caching for Fast High-Quality Light Transport Between Virtual and Real Worlds https://publik.tuwien.ac.at/files/PubDat_220665.pdf
- 5. Dynamic Diffuse Global Illumination with Ray-Traced Irradiance Fields http://icgt.org/published/0008/02/01/paper-lowres.pdf
- 6. High-Quality Real-Time Global Illumination in Augmented Reality https://www.ims.tuwien.ac.at/projects/rayengine
- Nvidia Optix SDK
 https://developer.nvidia.com/optix
- 8. A Streaming-Based Solution for Remote Visualization of 3D Graphics on Mobile Devices

 https://www.researchgate.net/publication/3411346 A Streaming-Based Solution for Remote Visualization of 3D Graphics on Mobile Devices