

Question 2: For root finding – Textbook (9th edition) – Problem Set 2.2 (Page 64). Problems 12 b) and d) are to do as homework.

12. For each of the following equations, use the given interval or determine an interval [a, b] on which fixed-point iteration will converge. Estimate the number of iterations necessary to obtain approximations accurate to within 10^{-5} , and perform the calculations.

b.
$$x^3 - 2x - 5 = 0$$
 use [2,3]

Solution:

$$g_1(x) = \frac{x^3 - 5}{2}$$
 or $g_2(x) = \sqrt[3]{2x + 5}$

g(x)	$g_1(x) = \frac{x^3 - 5}{2}$	$g_2(x) = \sqrt[3]{2x+5}$
g'(x)	$g_1'(x) = \frac{3x^2}{2}$	$g_2'(x) = \frac{2}{3(2x+5)^{\frac{2}{3}}}$
$\max(k)$	13.5 (not acceptable)	0.15408028319

$$n > \frac{ln(10^{-5}) - ln(max(p_0 - a, b - p_0))}{ln(k)}$$

$$n > \frac{ln(10^{-5}) - ln(1)}{ln(0.15408028319)}$$

$$n > 6.1557$$

 \therefore we expect n > 6, however; the desired tolerance is met with exactly 6 iterations.

++		·	+	
n	xn_1	$xn = g(xn_1)$	abs(xn - xn_1)	
++			 	
1	2	2.080083823051904	0.08008382305190409	
2 2.	080083823051904	2.092350677797578	0.012266854745674127	
3 2.	092350677797578	2.0942169960125234	0.0018663182149452062	
4 2.	0942169960125234	2.0945006521946543	0.00028365618213088695	
5 2.	0945006521946543	2.0945437575328114	4.310533815710116e-05	
6 2.	0945437575328114	2.0945503078082703	6.550275458927501e-06	
++		·	+	
2.0945503078082703				

d.
$$x - \cos(x) = 0$$
 using [0,1]

Solution:

$$g_1(x) = \cos(x)$$
 or $g_2(x) = \cos^{-1}(x)$

g(x)	$g_1(x) = \cos(x)$	$g_2(x) = \cos^{-1}(x)$
g'(x)	$g_1'(x) = -\sin(x)$	$g_2'(x) = \frac{1}{\sqrt{1 - x^2}}$
		∞ (not acceptable)

$$n > \frac{ln(10^{-5}) - ln(max(p_0 - a, b - p_0))}{ln(k)}$$

$$n > \frac{ln(10^{-5}) - ln(1)}{ln(0.84147098481)}$$

$$n > 66.70148078$$

: we expect n > 66, however; the tolerance is met with exactly 30 iterations.

n	xn_1	xn = g(xn_1)	abs(xn - xn_1)	
1 1	0	1.0	1.0	
1 2	1.0	0.5403023058681398	0.45969769413186023	
i - i	0.5403023058681398	0.8575532158463934	0.31725090997825367	
4	0.8575532158463934	0.6542897904977791	0.2032634253486143	
i 5 i	0.6542897904977791	0.7934803587425656	0.13919056824478648	
i 6 i	0.7934803587425656	0.7013687736227565	0.0921115851198091	
j 7 j	0.7013687736227565	0.7639596829006542	0.06259090927789768	
8	0.7639596829006542	0.7221024250267077	0.04185725787394645	
9	0.7221024250267077	0.7504177617637605	0.028315336737052776	
10	0.7504177617637605	0.7314040424225098	0.019013719341250734	
11	0.7314040424225098	0.7442373549005569	0.012833312478047088	
12	0.7442373549005569	0.7356047404363474	0.008632614464209487	
13	0.7356047404363474	0.7414250866101092	0.0058203461737618145	
14	0.7414250866101092	0.7375068905132428	0.003918196096866389	
15	0.7375068905132428	0.7401473355678757	0.0026404450546329006	
16	0.7401473355678757	0.7383692041223232	0.0017781314455525	
17	0.7383692041223232	0.7395672022122561	0.0011979980899329279	
18	0.7395672022122561	0.7387603198742113	0.0008068823380448231	
19	0.7387603198742113	0.7393038923969059	0.0005435725226945465	
20	0.7393038923969059	0.7389377567153445	0.0003661356815614081	
21	0.7389377567153445	0.7391843997714936	0.00024664305614918725	
22	0.7391843997714936	0.7390182624274122	0.00016613734408144065	
23	0.7390182624274122	0.7391301765296711	0.00011191410225885878	
24	0.7391301765296711	0.7390547907469174	7.538578275367858e-05	
25	0.7390547907469174	0.7391055719265363	5.078117961887507e-05	
26	0.7391055719265363	0.7390713652989449	3.420662759134885e-05	
27	0.7390713652989449	0.7390944073790913	2.3042080146362665e-05	
28	0.7390944073790913	0.739078885994992	1.552138409921522e-05	
29	0.739078885994992	0.7390893414033927	1.0455408400611432e-05	
30	0.7390893414033927	0.7390822985224024	7.0428809902933764e-06	
0.7390822985224024				

Tools used in creating this document:

- Texmaker 5.0.4
- Google Colab with python 3.7.13 [GCC 7.5.0]

©All questions in this file has been adapted from the sheet provided by the course instructor, I have only reorganized the sheet and attempted to answer it. Please do not share without the permission of the owner.

Ahmad.Aboelnaga@ejust.edu.eg ID:120200033, CSE01