Jorge Pais **Professor Adjunto**

Área Departamental de Engenharia de Electrónica e Telecomunicações e de Computadores Instituto Superior de Engenharia de Lisboa

Practical trajectory 2

Considering $d_{bw}=9,5cm$, $v_{robot}=30$, $v_{min}=15$, $v_{max}=80$, f>1 and $radius_t=56,93$ cm for two curves. First of all, calculate the smaller velocity v_2 , after that, truncates v_2 and calculate the pratical radius with zero error and it must be lesser than the theoretical radius.

1. Theoretical values,

$$f=v_1/v_2= (radius_t+(dbw/2))/(radius_t - (dbw/2)) =61,75/52,25=1,18, v_2=2*v_{robot}-v_1 => v_2=2/(f+1)*v_{robot}=27,52$$

2. Practical values,

$$v_2=27$$
, $v_1=2*v_{robot}-v_1=33$, $f=v_1/v_2=33/27=1,222$,

 $radius_{D} = (dbw/2) * ((f+1)/(f-1)) = 47,5$

=arccos(radius_D/(d₁₂/2)).

3. Calculate d_{straight},

4. Calculate angle

d_{straight}=d₁₂*sen()

=arcsen(x_{C_2}/d_{12})-

- . The pratical trajectory is,
 - curveLeft(radius_p,), straight(dstraight), curveRight(radius_D, - _f).

5. For the example,

6. The practical trajectory is,