$ au_1^{\#2}$	0	0	0	$-\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	0	$\frac{6k^2(2r_3+r_5)+t_1}{(1+2k^2)^2(2r_3+r_5)t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{1}{\sqrt{2} \; (k^2 + 2 k^4) (2 r_3 + r_5)}$	$\frac{6k^2(2r_3+r_5)+t_1}{2(k+2k^3)^2(2r_3+r_5)t_1}$	0	$-\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (2 r_3 + r_5)}$	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#_2}$		$\frac{-2k^2(2r_3+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha^{eta}$	$t_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{#2} + \alpha$

Source constraints					
SO(3) irreps	#				
$\tau_{0^{+}}^{\#2} == 0$	1				
$\tau_{0^{+}}^{\#1} == 0$	1				
$\tau_{1}^{\#2\alpha} + 2 \bar{i} k \sigma_{1}^{\#2\alpha} == 0$	3				
$\tau_{1^{-}}^{\#1\alpha} == 0$	3				
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3				
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5				
Total #:	16				

 $-rac{1}{3}t_1\;\omega_i^{\;lpha_i}\;\omega_{\kappalpha}^{\;\;\kappa}$ $-t_1\;\omega_i^{\;\;\kappa\lambda}\;\omega_{\kappa\lambda}^{\;\;\;}+f^{lphaeta}\;\tau_{lphaeta}+\omega^{lphaeta\chi}\;\sigma_{lphaeta\chi}$ $-2\,r_3\,\partial_i\omega^{\kappa\lambda}_{\;\;\;\kappa}\,\partial^i\omega_{\lambda}^{\;\;lpha}$ $-2\,r_3\,\partial_i\omega_{\kappa\lambda}^{\;\;\kappa\lambda}$

-agrangian density

$\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{2}{t_1}$	
$\tau_2^{\#1}_+\alpha\beta$	$-\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_{2}^{\#1}{}_{\alpha\beta}$		$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_{2}^{\#1} + \alpha \beta$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$	

$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 - t_1}$
$\tau_0^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	0	0	0	0
$\sigma_{0}^{\#1}$	$\frac{1}{6 k^2 r_3}$	0	0	0
	$\sigma_{0}^{\#1}$ †	$\tau_0^{\#1}$ †	$\tau_{0}^{\#2} +$	$\sigma_{0}^{\#1}\dagger$

 $\omega_{2}^{\#1}_{+}$ $\beta_{2}^{\#1}_{+}$ $\alpha_{2}^{\#1}_{-}$ $\alpha_{\beta\chi}$

0

 $\frac{i\,kt_1}{\sqrt{2}}$

 $f_2^{#1} + \alpha \beta$

<u>t</u>1

 $\omega_2^{\#1} +^{lphaeta}$

<u>1</u>7

0

$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 \cdot t_1}$	
$\tau_0^{\#2}$	0	0	0	0	
$\tau_0^{\#1}$	0	0	0	0	
$\sigma_{0}^{\#1}$	$\frac{1}{6 k^2 r_3}$	0	0	0	
	$\sigma_{0}^{\#1}$ \dagger	$\tau_0^{\#1} \uparrow$	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1} \dagger$	

 $2r_3\partial_\alpha\omega_\lambda^{\ \alpha}\partial^\lambda\omega^{\theta\kappa}_{\ \ \kappa}+r_5\partial_\alpha\omega_\lambda^{\ \alpha}_{\ \ \beta}\partial^\lambda\omega^{\theta\kappa}_{\ \ \kappa}+2r_3\partial_\theta\omega_\lambda^{\ \alpha}_{\ \ \alpha}\partial^\lambda\omega^{\theta\kappa}_{\ \ \kappa}-r_5\partial_\theta\omega_\lambda^{\ \alpha}_{\ \alpha}\partial^\lambda\omega^{\theta\kappa}_{\ \ \alpha}$

 $\frac{1}{2}t_1\partial_{\kappa}f^{\lambda}_{\theta}\partial^{\kappa}f_{\lambda}^{\theta} - \frac{1}{3}t_1\partial^{\alpha}f^{\lambda}_{\alpha}\partial^{\kappa}f_{\lambda\kappa} + \frac{1}{3}r_2\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta} + \frac{2}{3}r_2\partial_{\kappa}\omega^{\theta\alpha\beta}\partial^{\kappa}\omega_{\alpha\beta\theta} - \frac{2}{3}r_2\partial_{\kappa}\omega_{\alpha\beta\theta} - \frac{2}{3}r_2\partial_{\kappa}\omega_{\alpha\beta\theta} - \frac{2}{3}r_2\partial_{\kappa}\omega_{\alpha\beta} - 4r_3\partial_{\kappa}\omega_{\alpha\beta} - 4r_3\partial_{\kappa}\omega_{\alpha\beta}$

 $\tfrac{1}{3}t_1\;\omega_{,\alpha}^{\alpha}\;\partial^\kappa f'_{-\frac{1}{3}}t_1\;\omega_{,\lambda}^{\lambda}\;\partial^\kappa f'_{+\frac{1}{2}}t_1\;\partial^\alpha f^\lambda_{}\;\partial^\kappa f_{\lambda\alpha}+\tfrac{1}{2}t_1\;\partial_\kappa f_{}^{\lambda}\partial^\kappa f_{}^{\beta}+$

 $t_1 \; \omega_{\kappa\lambda}^{\;\;\lambda} \; \partial^\kappa f'_{\;\;\prime} + \tfrac{2}{3} \, t_1 \, \partial^\alpha f_{\;\;\kappa\alpha} \, \partial^\kappa f'_{\;\;\prime} - \tfrac{1}{3} \, t_1 \, \partial_\kappa f^\lambda_{\;\;\lambda} \, \partial^\kappa f'_{\;\;\prime} + 2 \, t_1 \; \omega_{\,\,\kappa\theta} \; \partial^\kappa f^{\,\prime\theta} -$

$f_{1}^{\#2}$	0	0	0	<i>آلاد</i> ا	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$f_{1^{ ext{-}}}^{\#1}{}_{lpha}$	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	1 <u>7</u> 3
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$k^2 (2 r_3 + r_5) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$
$f_{1}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta} \ f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1}^{\#1} + \alpha^{\beta} k^{2} (2 r_{3} + r_{5}) - \frac{t_{1}}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0
	$\omega_{1}^{\#1} + ^{\alpha\beta}$	$\omega_{1}^{\#2} + \alpha^{\beta}$	$f_1^{#1} + \alpha^{\beta}$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$

 $\omega_{0^{\text{-}}}^{\#1}$

0

0

 $6k^2r_3$

0

0

0

 $f_{0}^{\#1}$ †

0

0

0

0

0

0

 $f_{1}^{\#1} \dagger^{\alpha}$

0

0

0

0

0

0

 $f_0^{\#2} \uparrow$

 $2k^2t_1$

 $-\frac{1}{3}\vec{l}\sqrt{2}$

0

0

 $\frac{1}{2}t_1\partial^{\alpha}f_{\theta k}\partial^{\kappa}f_{\alpha}^{\ \theta} - \frac{1}{2}t_1\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\ \theta} - \frac{1}{2}t_1\partial^{\alpha}f^{\lambda}_{\ \kappa}\partial^{\kappa}f_{\alpha\lambda} + \frac{1}{3}t_1\ \omega_{\kappa\alpha}^{\ \alpha}\partial^{\kappa}f'_{\ \gamma} +$

 $r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} {}_{\theta} \partial_{\kappa} \omega^{\kappa \lambda \theta} + 4 r_3 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + 2 r_5 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta}.$

 $2r_3\partial_\theta\omega_\lambda^{\ \alpha}\partial_\kappa\omega^{\theta\kappa\lambda}+r_5\partial_\theta\omega_\lambda^{\ \alpha}\partial_\kappa\omega^{\theta\kappa\lambda}-2r_3\partial_\alpha\omega_\lambda^{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta}-$

 $\frac{2}{3}r_{2}\partial_{\theta}\omega_{\alpha\beta}^{} \partial_{\kappa}\omega^{\theta\alpha\beta} + 2r_{3}\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta}\partial_{\kappa}\omega^{\theta\kappa\lambda} - r_{5}\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta}\partial_{\kappa}\omega^{\theta\kappa\lambda}.$

 $r_5\,\partial_i\omega^{\kappa\lambda}_{\kappa}\,\partial^i\omega_{\alpha}^{\alpha} + \tfrac{2}{3}\,r_2\,\partial^\beta\omega^{\theta\alpha}_{\kappa}\partial_\theta\omega_{\alpha\beta}^{\kappa} - \tfrac{1}{3}\,r_2\,\partial_\theta\omega_{\alpha\beta}^{\kappa}\partial_\kappa\omega^{\alpha\beta\theta}.$