Zadanie: ROB Robocik

XII obóz informatyczny, grupa początkująca, dzień 4. Dostępna pamięć: 32 MB.

21.01.2016

Mały robocik jest ustawiony na kwadratowej planszy podzielonej na n^2 pól. Robocikowi została zaprogramowana sekwencja ruchów, którą będzie cały czas powtarzał. Dozwolone są tylko 4 ruchy: góra (G), dół (D), lewo (L), prawo (P).

Chcielibyśmy znać minimalną liczbę ruchów, które należy dołożyć do sekwencji ruchów (w dowolne miejsca), tak aby robocik nigdy nie wyszedł poza planszę.

Wejście

Pierwszy wiersz wejścia zawiera cztery liczby całkowite n,m,x,y ($2 \le n \le 10^9,1 \le x,y \le n,1 \le m \le 10^6$), oznaczające odpowiednio wielkość planszy, liczbę ruchów w zaprogramowanej sekwencji oraz współrzędne położenia robocika. Robocik stoi w kolumnie x (licząc od lewej strony) oraz w wierszu y (licząc od dołu).

Kolejny wiersz zawiera sekwencję ruchów w postaci słowa złożonego z m znaków: G, D, L, P.

Wyjście

Pierwszy i jedyny wiersz wyjścia powinien zawierać jedną liczbę całkowitą, równą minimalnej liczbie ruchów, które należy dołożyć do sekwencji ruchów, tak aby robocik nigdy nie wyszedł poza planszę.

Przykład

Dla danych wejściowych: 3 2 3 2 LD

poprawnym wynikiem jest:

2

Wyjaśnienie do przykładu: Mając sekwencję ruchów LD, po wykonaniu 4 ruchów, czyli LDLD robocik wyjdzie poza planszę. Jeśli dodamy dwa ruchy, otrzymując sekwencję GLDP, robocik nigdy nie wyjdzie poza planszę.

1/1 Robocik