Recent suggestion from Harry Lipkin

- ▶ Treat $f_2(1270)$ and $a_2(1320)$ as a single resonance
- ▶ SU(3): Transition matrix elements are equal
 - ► Relative phase = 0
 - Coefficients should be equal
 - ▶ BR should be equal
 - ▶ What about SU(3) breaking (strangeness suppression) ?

Recent suggestion from Harry Lipkin

- $f = |\alpha_2 BW(f_2/a_2) + \alpha_3 BW(f_2')|^2$
- $ightharpoonup \alpha_2$, α_3 free parameters

- ▶ Releasing relative phase gives value consistent with zero $(\delta_2 = 0.31 \pm 0.37)$ and $\chi^2 = 97.6/94 = 1.04$ (Backup 2)
- ▶ Releasing coherence factor gives (unphysical) $\beta = 1.5 \pm 1.2$ (Backup 3)
- \triangleright β should be < 1 if incoherent diagrams present

Achim's request

- ▶ Fit-IVa with $\delta_1 = \delta_2 = 0$ (in line with SU(3)) and
- \triangleright β_{12} , β_{13} , β_{23} free (to allow incoherent diagrams)

- ▶ Although relative a2/f2 is a bit ambiguous, f2' is stable
- ▶ Effectively similiar to degenerate a2/f2 model

Backup 1: Interference of two amplitudes

Backup 2. Degenerate f2/a2 (Lipkin)

- ► Release relative phase
- $f = |\alpha_2 e^{i\delta_2} BW(f_2/a_2) + \alpha_3 BW(f_2')|^2$

Backup 3. Degenerate f2/a2 (Lipkin)

 Release coherence factor (to take into account possible incoherent diagrams)

- ▶ Gives unphysical value (> 1). Error is large however.
- ▶ Expected to be < 1 if incoherent diagrams are at work
- Does this mean that we deal with coherent process?

Backup 4: Achim's request

• $f_2(1270)$ is hardly visible in unzoomed plot because of larger width

