INTRO TO DATA VISUALIZATIONS

Goals for

- Understand what makes a visualization effective through the study of core principles
- Critically evaluate a visual representation of data by looking at various examples in media (newspapers, television and so on)
- Gain hands-on experience with visualization tools /libraries
- Incorporate visualization principles to build an interactive visualization of your own data

What is Data Visualization?

Visual representation of data

• For the purpose of exploration, discovery, and insight

Why is Data Visualization important?

Data Visualization is an important part of EDA.

JOHN W. TUKEY*

We often forget how science and engineering function. Ideas come from previous exploration more often than from lightning strokes. Important questions can demand the most careful planning for confirmatory analysis. Broad general inquiries are also important. Finding the question is often more important than finding the answer. Exploratory data analysis is an attitude, a flexibility, and a reliance on display, NOT a bundle of techniques, and should be so taught. Confirmatory data analysis, by contrast, is easier to teach and easier to computerize. We need to teach both; to think about science and engineering more broadly; to be prepared to randomize and avoid multiplicity.

Why is Data Visualization important?

- Baby Name Wizard
 - http://www.babynamewizard.com/voyager
- Origin of Species Edits
 - http://benfry.com/traces/
- Netflix Queues
 - http://www.nytimes.com/interactive/2010/01/10/nyregion/20100110-netflix-map.html?ref=nyregion
- Unemployment Visualization (NYTimes)
 - http://www.nytimes.com/interactive/2009/11/06/business/economy/unemployment-lines.html
- r/dataisbeautiful subreddit

Why is visualization important?

- Vision is the most powerful communication channel humans posses.
 - For instance, We can detect information faster than our eye can move ...
 - 1) Preattentive features can be detected faster than eye movement (200 msec).

2) Humans are not very good at detecting patterns from numbers.

	1980	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
																				-
	602	604	COF	570	550	502	E1 E	500	F11	400	400	470	402	400	504	407	510	510	500	522
Less than 15 years old 15 to 19 years old	607 451	624 462	605 457	578 449	553 444	523 418	515 403	502 379	511 370	492 364	488 353	479 347	493 350	498 346	504 341	497 337	512 339	519 341	529 339	537 337
20 to 24 years old	310	328	328	327	327	318	328	330	333	334	326	317	314	307	301	297	296	298	296	293
25 to 29 years old	213	219	219	216	218	213	224	224	228	230	227	224	228	226	224	221	220	219	215	211
30 to 34 years old	213	203	201	197	194	189	196	192	192	189	183	179	178	176	174	171	169	171	169	167
35 to 39 years old	317	280	277	265	254	244	249	241	239	234	226	219	215	208	203	200	195	195	190	186
40 years old and over	461	409	381	374	361	350	354	339	338	329	320	309	301	291	290	283	276	276	278	268

Which group has the highest/lowest rates? When? Which group has an increasing/decreasing temporal trend? Which group has a faster/slower rate of change?

Why is visualization important?

- Vision is the most powerful communication channel humans posses.
 - For instance, We can detect information faster than our eye can move ...
 - 1) Preattentive features can be detected faster than eye movement (200 msec).

2) Humans are not very good at detecting patterns from numbers.

3) Summary statistics can hide important information

Anscombe's Quartet

Property	Value
Mean of x in each case	9 (exact)
Variance of x in each case	11 (exact)
Mean of y in each case	7.50 (to 2 decimal places)
Variance of y in each case	4.122 or 4.127 (to 3 decimal places)
Correlation between x and y in each case	0.816 (to 3 decimal places)
Linear regression line in each case	y=3.00+0.500x (to 2 and 3 decimal places, respectively)

Principles for good data visualizations

1. Balance the design

- A balanced design is one with the visual elements like shape, color, negative space and texture equally distributed across the plot.
- There are three different types of balances in design:
- Symmetrical Each side of the visual is the same as the other.
- Asymmetrical Both sides are different but still have a similar visual weight.
- Radial Elements are placed around a central object which acts as an anchor.

Principles for good data visualizations

Emphasize the key areas

 The user's attention should be drawn to the right data points by carefully choosing the size, colors, contrast and negative space.

Principles for good data visualizations

Check out this book on the UCR library (available online)

Problems with building visualizations

There's simply too much data.

Too many dimensions/features.

Too many options and possible views.

High-Dimensional Data Visualization

10s, 100s, 1000s, ...

DI	D2	D3	 	 	 	 	 Dk

- Set of visual features very limited
- Resolution very limited
- Ability to make sense of it very limited!

Example: Scatter Plot Matrix

4 dimensions

20 dimensions

100 dimensions

Taken from: Jing Yang's Interactive Hierarchical Dimension Ordering, Spacing and Filtering for Exploration of High Dimensional Datasets.

Quality Metrics-Driven Visualization

How can we measure the interestingness of a projection?

Does it correlate with human perception?

Automatic Ranking of Class Separation

Many features

- When we have more than three to four quantitative variables, all-against-all scatter plot matrices quickly become unwieldy.
- Dimension reduction relies on the key insight that most high-dimensional datasets consist of multiple correlated variables that convey overlapping information.
- Such datasets can be reduced to a smaller number of key dimensions without loss of much critical information.

DIMENSIONALITY REDUCTION

Curse of Dimensionality

- The curse of dimensionality refers to various phenomena that arise when analyzing and visualizing data in high-dimensional spaces.
- Dimensionality Reduction
 - It reduces the time and storage space required for our Machine Learning algorithms
 - Removal of multi-collinear features improves the performance of the machine learning model.
 - It becomes easier to visualize the data when reduced to very low dimensions such as 2D or 3D.

Dimensionality Reduction

- The main idea: reduce the dimensionality of the space.
- Project the d-dimensional points in a k-dimensional space so that:
 - k << d
 - distances are preserved as well as possible
- Solve the problem in low dimensions

Data Compression

Data Compression

Reduce data from 3D to 2D

Data Visualization

$$x \in \mathbb{R}^{50}$$

	X ₁ GDP (trillions	X ₂ Per capita GDP (thousands of		X ₄	X ₅ Poverty Index (Gini as	X ₅ Mean household income (thousands of	
Country	of US\$)	intl. \$)	Index	expectancy	percentage)	US\$)	
Canada	1.577	39.17	0.908	80.7	32.6	67.293	
China	5.878	7.54	0.687	73	46.9	10.22	
India	1.632	3.41	0.547	64.7	36.8	0.735	
Russia	1.48	19.84	0.755	65.5	39.9	0.72	
Singapore	0.223	56.69	0.866	80	42.5	67.1	
USA	14.527	46.86	0.91	78.3	40.8	84.3	
				•••			

[resources from en.wikipedia.org]

Data Visualization

 $Z^{(i)} \in \mathbb{R}^2$

Country	Z ₁	\mathbf{Z}_2
Canada	1.6	1.2
China	1.7	0.3
India	1.6	0.2
Russia	1.4	0.5
Singapore	0.5	1.7
USA	2	1.5
•••	•••	•••

Reduce features from 50 to 2.

The vectors Z_1 and Z_2 summarize the features in some way

Method for Dimensionality Reduction

- Principle Component Analysis (PCA)
 - One of the most popular methods

 What are we trying to do? We want to reduce the dimensions from 2D to
 1D

- We want to find a line on to which to project the data
 - Distance between point x_i and the projected line is minimized...
 sum of squares is minimized.
 - This is called projection error

 What are we trying to do? We want to reduce the dimensions from 2D to 1D

- Consider this new projection, the points have to move a huge distance to get projected onto this line.
- Hence, the previous projection is better because it minimizes the error.

Reduce from 2-dimension to 1-dimension:

Find a direction a vector onto which to project the data so as to minimize the projection error. $u^{(1)} \in \mathbb{R}^n$

Reduce from n-dimension to k-dimension: Find vectors $u^{(1)}, u^{(2)}, \dots, u^{(k)}$ onto which to project the data, so as to minimize the projection error.

$$x^{(i)} \in \mathbb{R}^2$$
 $z^{(i)} \in \mathbb{R}$

Principal Component Analysis

- So what are principal components then?
 - Underlying structure in the data.
 - They are the directions where there is the most variance, the directions where the data is most spread out.
- All principal components (PCs) start at the origin of the ordinate axes.
- First PC is direction of maximum variance from origin
- Subsequent PCs are orthogonal to 1st PC and describe maximum residual variance

Step 1 - Data Preprocessing

Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)}$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$

Replace each $x_j^{(i)}$ with $x_j - \mu_j$

Then divide each term $(x_j - \mu_j)$ by the standard deviation σ (or you can also divide by X_{max} - X_{min})

Step 2 – Apply PCA

Reduce data from n-dimensions to k-dimensions

Compute "covariance matrix":

nxn

measure of how much two random variables change together

Compute "eigenvectors" of matrix

- Use SVD Single Value Decomposition
- Eigenvector is a direction
- Every eigenvector has a eigenvalue, which is the variance in the data in that direction.
- The eigenvector with the highest eigenvalue is therefore the principal component.

Step 2 – Apply PCA (Cont.)

How to compute the eigenvector?

Apply SVD (Single Value Decomposition) on covariance

matrix to get [U,S,V] matrices. If we want to reduce the dimensions from n to k
$$U = \begin{bmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

If we want to reduce the dimensions from n to k

Then we simply take the k vectors $u^1,\,u^2,\,\ldots,\,u^k$

$$x \in \mathbb{R}^n \to z \in \mathbb{R}^k$$

$$z = \begin{bmatrix} | & | & | & | \\ u^{(1)} & u^{(2)} & \dots & u^{(k)} \end{bmatrix}^T$$

Choose 'k' Number of principle components

Average squared projection error:

Total variation in the data:

Typically, choose k to be smallest value so that

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01$$
 (1%)

"99% of variance is retained"

PCA Example (Spark / python)

See pca_example.py under <SPARKPATH>/examples/src/main/python/ml

```
data = [(Vectors.sparse(5, [(1, 1.0), (3, 7.0)]),), \]
         (Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.0]),), \
         (Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0]),)]
df = spark.createDataFrame(data, [ "features" ])
pca = PCA(k=3, inputCol= "features", outputCol= "pcaFeatures")
model = pca.fit(df)
result = model.transform(df).select( "pcaFeatures" )
result.show(truncate=False)
```

A dataframe is a dataset (think about a matrix) that is organized into "named" columns.

WAIT!!! What about preprocessing the data by feature scaling and mean normalization!!!

PCA Example (Spark / python)

See standard_scaler_example.py under
 <SPARKPATH>/examples/src/main/python/mlib/standard_scaler_example.py

```
data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") dataFrame = sqlContext.createDataFrame(data)
```

```
scaler = StandardScaler(inputCol="features", outputCol="scaledFeatures", withStd=True, withMean=False)
```

Compute summary statistics by fitting the StandardScaler scalerModel = scaler.fit(dataFrame)

Normalize each feature to have unit standard deviation. scaledData = scalerModel.transform(dataFrame) You can specify which to apply, or apply both

Choose 'k' Number of principle components

Algorithm: Try PCA with k = 1

Compute
$$U_{reduce}, z^{(1)}, z^{(2)}, \ldots, z^{(m)}, x^{(1)}_{approx}, \ldots, x^{(m)}_{approx}$$

Avg squared projectio n error

Total variation in the data

Check if

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01?$$

[U,S,V] = svd(Sigma)

$$S = \begin{bmatrix} s_{11} & 0 & 0 & 0 \\ 0 & s_{22} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & s_m \end{bmatrix}$$
 K =2

For a given k,

$$\frac{\sum_{i=1}^{k} S_{ii}}{1 - \frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{k} S_{ii}}} \le 0.01$$

Choose k' Number of principle components

$$[U,S,V] = svd(Sigma)$$

Pick smallest value of k for which

$$\frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{m} S_{ii}} \ge 0.99$$

(99% of variance retained)

Supervised Learning Speedup

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

Extract inputs:

Unlabeled dataset:
$$x^{(1)}, x^{(2)}, \ldots, x^{(m)} \in \mathbb{R}^{10000}$$

$$\downarrow PCA$$
 $z^{(1)}, z^{(2)}, \dots, z^{(m)} \in \mathbb{R}^{1000}$

New training set:

$$(z^{(1)}, y^{(1)}), (z^{(2)}, y^{(2)}), \dots, (z^{(m)}, y^{(m)})$$

Note: Mapping $x^{(i)} \to z^{(i)}$ should be defined by running PCA only on the training set. This mapping can be applied as well to the examples $x_{cv}^{(i)}$ and $x_{test}^{(i)}$ in the cross validation and test sets.

Application of PCA

- Compression
 - Reduce memory/disk needed to store data
 - Speed up learning algorithm
- Visualization

When to use PCA?

Design of ML system:

- Get training set $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$
- Run PCA to reduce $x^{(i)}$ in dimension to get $z^{(i)}$
- Train classifier $\{(z^{(1)}, y^{(1)}), \dots, (z^{(m)}, y^{(m)})\}$
- Test on test set: Map $x_{test}^{(i)}$ to $z_{test}^{(i)}$. Run $h_{\theta}(z)$ on $\{(z_{test}^{(1)},y_{test}^{(1)}),\dots,(z_{test}^{(m)},y_{test}^{(m)})\}$

How about doing the whole thing without using PCA?

Before implementing PCA, first try running whatever you want to do with the original/raw data $x^{(i)}$. Only if that doesn't do what you want, then implement PCA and consider using $z^{(i)}$

A 2D Numerical Example

- Subtract the mean from each of the data dimensions.
- All the x values have x subtracted and y values have y subtracted from them. This produces a data set whose mean is zero.
- Subtracting the mean makes variance and covariance calculation easier by simplifying their equations.
- The variance and co-variance values are not affected by the mean value.

DATA:		ZERO	ZERO MEAN DATA:	
X	<u>y</u>	X	У	
2.5	2.4	.69	.49	
0.5	0.7	-1.31	-1.21	
2.2 1.9	2.9 2.2	.39	.99	
3.1	3.0	.09	.29	
2.3	2.7	1.29	1.09	
2.0	2.7			
_	1.6	.49	.79	
1		.19	31	
<i>,</i> –	1.1	81	81	
1.5	1.6	31	31	
1.1	0.9	71	-1.01	

Figure 3.1: PCA example data, original data on the left, data with the means subtracted on the right, and a plot of the data

Calculate the covariance matrix

```
    cov = .616555556 .615444444
    .615444444 .716555556
```

 since the non-diagonal elements in this covariance matrix are positive, we should expect that both the x and y variable increase together.

Calculate the eigenvectors and eigenvalues of the covariance matrix

eigenvalues = (.0490833989) 1.28402771

eigenvectors = -.735178656 -.677873399 .677873399 -.735178656

- eigenvectors are plotted as diagonal dotted lines on the plot.
- Note they are perpendicular to each other.
- Note one of the eigenvectors goes through the middle of the points, like drawing a line of best fit.
- The second eigenvector gives us the other, less important, pattern in the data, that all the points follow the main line, but are off to the side of the main line by some amount.

Figure 3.2: A plot of the normalised data (mean subtracted) with the eigenvectors of the covariance matrix overlayed on top.

- Reduce dimensionality and form feature vector
 - the eigenvector with the highest eigenvalue is the principle component of the data set.
- In our example, the eigenvector with the larges eigenvalue was the one that pointed down the middle of the data.
- Once eigenvectors are found from the covariance matrix, the next step is to order them by eigenvalue, highest to lowest. This gives you the components in order of significance.

- Now, if you like, you can decide to ignore the components of lesser significance.
- You do lose some information, but if the eigenvalues are small, you don't lose much
 - n dimensions in your data
 - calculate n eigenvectors and eigenvalues
 - choose only the first p eigenvectors
 - final data set has only p dimensions.

- Feature Vector
 - FeatureVector = (eig1 eig2 eig3 ... eign)
 - We can either form a feature vector with both of the eigenvectors:

```
      -.677873399
      -.735178656

      -.735178656
      .677873399
```

 or, we can choose to leave out the smaller, less significant component and only have a single column:

- .677873399 - .735178656

- Deriving the new data
 - FinalData = RowFeatureVector x RowZeroMeanData
 - RowFeatureVector is the matrix with the eigenvectors in the columns transposed so that the eigenvectors are now in the rows, with the most significant eigenvector at the top
 - RowZeroMeanData is the mean-adjusted data transposed, ie. the data items are in each column, with each row holding a separate dimension.

FinalData transpose: dimensions along columns

X	У	
827970186	175115307	
1.77758033	.142857227	
992197494	.384374989	
274210416	.130417207	
-1.67580142	209498461	
912949103	.175282444	
.0991094375	349824698	
1.14457216	.0464172582	
.438046137	.0177646297	
1.22382056	162675287	

Figure 3.3: The table of data by applying the PCA analysis using both eigenvectors, and a plot of the new data points.