Denmark_M_1900_homo_post.csv_run_17_20250525_214128

May 25, 2025

/Users/navehr/Dropbox/naveh/weizmann/uri alon/aging/code_3

Loading file from: /Users/navehr/Dropbox/naveh/weizmann/uri alon/aging/code_3/baysian02/posterior_csvs_baysian01/HUMANS/Denmark_M_1900_homo_post.csv

Reading Humans_M

1 # 1. Density coner plot

A sample is 1 parameter set scanned. For the corner plot below, the quantiles (represented by the solid lines) are 0.16,0.5,0.84 of the samples. Dots represent individual samples (outside the line surrounding 0.84 of the samples) The parameter search is performed in the transformed space of x_c/η , β/η , x_c^2/ϵ , x_c but we also show the regular parameters (25,)

2 2. Heat map corner plot of raw samples

This plot shows all the raw sample points and their lnprobability

3 3. Posterior distributions of parameters

1d marginalizations of posterior distributions. we use a grid of size nbins=100-150

2D marginalizations of posterior distributions

2D Marginalized Posterior

Rescaling the samples TIME by 365

4 4. Table of results

mode is the marginalized mode, max_likwlihood is the sample with highest likelihood mode_overall is the 4D posterior mode

	mean		std	mode	\
xc/eta	9.077	[0.0719,		10.13	`
beta/eta	134.792		, 0.282]	122.6	
xc^2/epsilon	1.168	[0.0148,		1.399	
XC	13.031		, 0.789]	30.148	
ExtH	7.127	[0.0271	, 0.027]	7.129	
eta	1.48		, 0.214]	2.439	
beta	194.873	[34.191,	29.087]	206.263	
epsilon	157.583	[56.275,	41.467]	175.449	
sqrt(xc/eta)	3.013	[0.00683, 0	0.00682]	3.183	
s= eta^0.5*xc^1.5/epsilon	0.385	[0.00631,	0.00621]	0.405	
beta*xc/epsilon	17.23	[0.038,	0.0379]	16.992	
eta*xc/epsilon	0.127	[0.00107, 0	0.00106]	0.126	
Fx=beta^2/eta*xc	2068.33	[15.521,	15.405]	1205.825	
<pre>Dx =beta*epsilon/eta*xc^2</pre>	112.953	[0.756	, 0.751]	85.13	
Pk=beta*k/epsilon	0.643	[0.0329,	0.0313]	0.281	
Fk=beta^2/eta*k	54352.652	[2644.576, 25]	521.872]	54185.143	
<pre>Dk =beta*epsilon/eta*k^2</pre>	83744.962	[9516.463, 8	545.396]	86715.224	
Fk^2/Dk=beta^3/eta*epsilon	35389.256	[92.688,	92.446]	10937.148	
beta^2/epsilon	249.786		, 4.572]	97.104	
k/beta	0.00259	[0.000346, 0		0.00242	
k/epsilon	0.00323	[0.000862, 0		0.00285	
best fit_MedianLifetime	67.75		0.51	67.75	
best fit_MaxLifetime	110.0		0	110.0	
data_MedianLifetime	70.0		0.51	70.0	
data_MaxLifetime	104.0		0	104.0	
	ŋ	ercentile_16		percentile	50 \
xc/eta	-	.857, 10.41]	Г	9.857, 10.99	
beta/eta		71, 123.434]		1.771, 125.	
xc^2/epsilon	[1.357, 1.441] [1.357, 1.441]				
XC		107, 31.226]	[2	7.132, 31.2	
ExtH		7.118, 7.14]		[7.118, 7.10	
eta		.335, 2.781]		[2.139, 4.70	
beta	[197.8	46, 215.038]	[197	.846, 215.0	38]
epsilon	[162.1	89, 189.792]	[162	.189, 189.79	92]
sqrt(xc/eta)	[.	3.14, 3.226]		[3.14, 3.3	16]
s= eta^0.5*xc^1.5/epsilon	[0	.399, 0.412]		[0.386, 0.4	12]
beta*xc/epsilon	[16.	873, 17.111]	[1	6.873, 17.3	53]
eta*xc/epsilon	[0	.126, 0.127]		[0.126, 0.15	28]
Fx=beta^2/eta*xc	[1160.23	2, 1253.209]	[1160.	232, 1353.6	37]
<pre>Dx =beta*epsilon/eta*xc^2</pre>	[82.	175, 88.192]	[82.175, 94.	65]
Pk=beta*k/epsilon	[0	.269, 0.292]		[0.269, 0.29	92]
Fk=beta^2/eta*k	[52052.589	, 56405.066]	[52052.5	89, 61121.4	83]
Dk =beta*epsilon/eta*k^2	[80343.929	, 93591.766]	[80343.9	29, 93591.7	66]
Fk^2/Dk=beta^3/eta*epsilon	[10487.954	, 11405.581]	[10487.9	54, 12403.49	93]
beta^2/epsilon	[93.6	43, 100.692]	[93	.643, 108.2	72]

k/beta	[0.00232, 0.00253]	[0.00232, 0.00253]
k/epsilon	[0.00263, 0.00308]	[0.00263, 0.00308]
best fit_MedianLifetime	[67.26, 68.26]	[67.26, 68.26]
best fit_MaxLifetime	[110.0, 110.0]	[110.0, 110.0]
data_MedianLifetime	[69.5, 70.51]	[69.5, 70.51]
data_MaxLifetime	[104.0, 104.0]	[104.0, 104.0]
	<u>-</u>	<pre>max_likelihood \</pre>
xc/eta	[9.333, 11.611]	9.234
beta/eta	[116.915, 126.828]	
xc^2/epsilon	[1.279, 1.53]	
xc	[11.676, 103.114]	
ExtH	[6.768, 7.346]	
eta	[1.96, 13.433]	
beta	[182.029, 233.724]	
epsilon	[101.215, 5148.695]	
sqrt(xc/eta)	[3.055, 3.408]	3.039
s= eta^0.5*xc^1.5/epsilon	[0.374, 0.426]	
beta*xc/epsilon	[15.51, 17.353]	
eta*xc/epsilon	[0.125, 0.129]	0.127
Fx=beta^2/eta*xc	[730.589, 1462.112]	1991.874
<pre>Dx =beta*epsilon/eta*xc^2</pre>	[71.344, 117.001]	115.879
Pk=beta*k/epsilon	[0.0772, 0.408]	0.641
Fk=beta^2/eta*k	[37751.936, 259392.769]	53378.965
Dk =beta*epsilon/eta*k^2	[80343.929, 109024.026]	83218.566
Fk^2/Dk=beta^3/eta*epsilon	[8154.756, 18865.879]	34238.921
beta^2/epsilon	[70.047, 167.356]	252.459
k/beta	[0.000519, 0.00298]	0.00254
k/epsilon	[8.29e-05, 0.00494]	0.00326
best fit_MedianLifetime	[67.26, 68.26]	67.75
best fit_MaxLifetime	[110.0, 110.0]	110.0
data_MedianLifetime	[69.5, 70.51]	70.0
data_MaxLifetime	[104.0, 104.0]	104.0
	mode_overall	
xc/eta	9.234	
beta/eta	135.622	
xc^2/epsilon	1.17	
xc	13.399	
ExtH	7.131	
eta	1.451	
beta	196.794	
epsilon	153.402	
sqrt(xc/eta)	3.039	
s= eta^0.5*xc^1.5/epsilon	0.385	
beta*xc/epsilon	17.189	
eta*xc/epsilon	0.127	

1991.874
115.879
0.641
53378.965
83218.566
34238.921
252.459
0.00254
0.00326
NaN
NaN
NaN
NaN

5 5. Fits of simulations to data

best params is the sample with highest likelihood. mode trans is the 4D posterior mode in the transformed space of $x_c/\eta,\,\beta/\eta,\,x_c^2/\epsilon,\,x_c$

Text(0, 0.5, 'Hazard')

Text(0, 0.5, 'Prob density')

