Abstract Harmonic Analysis

Conner Griffin

University of Memphis

March 25, 2022

• A topological group is a group G with a topology on G so that the group operations are continuous. Specifically, $(x,y) \to xy$ is continuous from $G \times G$ to G and $x \to x^{-1}$ is continuous from $G \to G$.

- A topological group is a group G with a topology on G so that the group operations are continuous. Specifically, $(x, y) \to xy$ is continuous from $G \times G$ to G and $x \to x^{-1}$ is continuous from $G \to G$.
- The topology of G is invariant under translation and inversion meaning that if U is open then so is xU, Ux, and $U^{-1} = \{x^{-1} : x \in U\}$.

- A topological group is a group G with a topology on G so that the group operations are continuous. Specifically, $(x, y) \to xy$ is continuous from $G \times G$ to G and $x \to x^{-1}$ is continuous from $G \to G$.
- The topology of G is invariant under translation and inversion meaning that if U is open then so is xU, Ux, and $U^{-1} = \{x^{-1} : x \in U\}$.
- If H is a subgroup of G then so is \overline{H} .

- A topological group is a group G with a topology on G so that the group operations are continuous. Specifically, $(x, y) \to xy$ is continuous from $G \times G$ to G and $x \to x^{-1}$ is continuous from $G \to G$.
- The topology of G is invariant under translation and inversion meaning that if U is open then so is xU, Ux, and $U^{-1} = \{x^{-1} : x \in U\}$.
- If H is a subgroup of G then so is \overline{H} .
- A topological space, X, is locally compact if every point $x \in X$ has a neighborhood, U, so that $x \in U \subset K$ for some compact K.

- A topological group is a group G with a topology on G so that the group operations are continuous. Specifically, $(x, y) \to xy$ is continuous from $G \times G$ to G and $x \to x^{-1}$ is continuous from $G \to G$.
- The topology of G is invariant under translation and inversion meaning that if U is open then so is xU, Ux, and $U^{-1} = \{x^{-1} : x \in U\}$.
- If H is a subgroup of G then so is \overline{H} .
- A topological space, X, is locally compact if every point $x \in X$ has a neighborhood, U, so that $x \in U \subset K$ for some compact K.
- If H is a subgroup of topological group $G, q: G \to G/H$ the canonical quotient map. U in G/H is open if and only if $q^{-1}(U)$ open in G.
- If a topological group, G, is T_1 then G is Hausdorff. If G is not T_1 then $\overline{\{1\}}$ is a normal subgroup of G and $G/\overline{\{1\}}$ is Hausdorff.

Haar Measure

Definition

Let G be a locally compact group. A left (respectively right) Haar measure on G is a Borel measure, m, with the following properties:

- $\bullet \ m\left(gB\right)=m\left(B\right)$ (respectively $m\left(Bg\right)=m\left(B\right))$ for all Borel sets, B, and all $g\in G$
- **3** m(U) > 0 for all open $U \subseteq G$.

Haar Measure

Definition

Let G be a locally compact group. A left (respectively right) Haar measure on G is a Borel measure, m, with the following properties:

- $\bullet \ m\left(gB\right)=m\left(B\right)$ (respectively $m\left(Bg\right)=m\left(B\right))$ for all Borel sets, B, and all $g\in G$
- **3** m(U) > 0 for all open $U \subseteq G$.
- ullet If G is a locally compact topological group then there is a left and right Haar measure each of which is unique up to a scalar multiple.

Haar Measure

Definition

Let G be a locally compact group. A left (respectively right) Haar measure on G is a Borel measure, m, with the following properties:

- m(gB) = m(B) (respectively m(Bg) = m(B)) for all Borel sets, B, and all $g \in G$
- m(U) > 0 for all open $U \subseteq G$.
- If G is a locally compact topological group then there is a left and right Haar measure each of which is unique up to a scalar multiple.
- For a discrete group, Haar measure is simply counting measure.

Unitary Representation

Definition

Let G be a locally compact group. A unitary representation of G is a homomorphism, π , from G into the group $U(\mathcal{H}_{\pi})$ of unitary operators on some Hilbert space \mathcal{H}_{π} .

Unitary Representation

Definition

Let G be a locally compact group. A unitary representation of G is a homomorphism, π , from G into the group $U(\mathcal{H}_{\pi})$ of unitary operators on some Hilbert space \mathcal{H}_{π} .

• The weak and strong operator topologies are equivalent on $U(\mathcal{H}_{\pi})$.

Unitary Representation

Definition

Let G be a locally compact group. A unitary representation of G is a homomorphism, π , from G into the group $U(\mathcal{H}_{\pi})$ of unitary operators on some Hilbert space \mathcal{H}_{π} .

• The weak and strong operator topologies are equivalent on $U(\mathcal{H}_{\pi})$. **Proof:** Let $\{T_{\alpha}\}$ is a net in $U(\mathcal{H}_{\pi})$ which converges weakly to T. For any $u \in \mathcal{H}_{\pi}$,

$$\|(T_{\alpha} - T)u\|^{2} = \|T_{\alpha}u\|^{2} + \|Tu\|^{2} - 2\operatorname{Re}\langle T_{\alpha}u, Tu\rangle$$
$$= 2\|u\|^{2} - 2\operatorname{Re}\langle T_{\alpha}u, Tu\rangle$$

This converges to $2\|u\|^2 + 2\|Tu\|^2$ with α . Then $2\|u\|^2 + 2\|Tu\|^2$ converges to zero with u.

Unitary Representations

If \mathcal{M} is a closed subset of \mathcal{H}_{π} such that $\pi(x) \mathcal{M} \subset \mathcal{M}$ for all $x \in G$, then we say that \mathcal{M} is invariant. We say that π is irreducible if it's only invariant subspaces are $\{0\}$ and \mathcal{H}_{π} .

Unitary Representations

If \mathcal{M} is a closed subset of \mathcal{H}_{π} such that $\pi(x) \mathcal{M} \subset \mathcal{M}$ for all $x \in G$, then we say that \mathcal{M} is invariant. We say that π is irreducible if it's only invariant subspaces are $\{0\}$ and \mathcal{H}_{π} .

Proposition

If G is Abelian, then every irreducible representation of G is one-dimensional.

Unitary Representations

If \mathcal{M} is a closed subset of \mathcal{H}_{π} such that $\pi(x) \mathcal{M} \subset \mathcal{M}$ for all $x \in G$, then we say that \mathcal{M} is invariant. We say that π is irreducible if it's only invariant subspaces are $\{0\}$ and \mathcal{H}_{π} .

Proposition

If G is Abelian, then every irreducible representation of G is one-dimensional.

Gelfand-Raikov

If G is any locally compact group, the irreducible unitary representations of G separate points on G. That is, if x and y are distinct points of G, there is an irreducible representation π such that $\pi\left(x\right)\neq\pi\left(y\right)$.

Gelfand-Raikov guarantees that we have an irreducible unitary representations of G other than the trivial one $(\pi(x) = I)$

By the previous proposition, when π is irreducible, \mathcal{H}_{π} may be taken to be \mathbb{C} . Then $\pi\left(x\right)\left(z\right)$ is a unitary operator on \mathbb{C} . That is, it has to be multiplication by an element of the unit circle. So we have $\pi\left(x\right)\left(z\right)=\xi\left(x\right)z$ where ξ is a continuous homomorphism from G into the torus, \mathbb{T} .

By the previous proposition, when π is irreducible, \mathcal{H}_{π} may be taken to be \mathbb{C} . Then $\pi\left(x\right)\left(z\right)$ is a unitary operator on \mathbb{C} . That is, it has to be multiplication by an element of the unit circle. So we have $\pi\left(x\right)\left(z\right)=\xi\left(x\right)z$ where ξ is a continuous homomorphism from G into the torus, \mathbb{T} . Such homomorphisms are called the unitary characters of G.

By the previous proposition, when π is irreducible, \mathcal{H}_{π} may be taken to be \mathbb{C} . Then $\pi\left(x\right)\left(z\right)$ is a unitary operator on \mathbb{C} . That is, it has to be multiplication by an element of the unit circle. So we have $\pi\left(x\right)\left(z\right)=\xi\left(x\right)z$ where ξ is a continuous homomorphism from G into the torus, \mathbb{T} . Such homomorphisms are called the unitary characters of G.

Definition

The dual group of a topological group, G, is the set of all unitary characters of G. It is denoted \widehat{G} .

By the previous proposition, when π is irreducible, \mathcal{H}_{π} may be taken to be \mathbb{C} . Then $\pi\left(x\right)\left(z\right)$ is a unitary operator on \mathbb{C} . That is, it has to be multiplication by an element of the unit circle. So we have $\pi\left(x\right)\left(z\right)=\xi\left(x\right)z$ where ξ is a continuous homomorphism from G into the torus, \mathbb{T} . Such homomorphisms are called the unitary characters of G.

Definition

The dual group of a topological group, G, is the set of all unitary characters of G. It is denoted \widehat{G} .

The dual group plays an important role in defining the Fourier transform. As such, to reflect the typical Fourier transform, we use the following notation:

$$\langle x, \xi \rangle = \xi(x)$$
.

Examples

- $\widehat{\mathbb{R}} \cong \mathbb{R}$ with the following familiar definition, $\langle x, \xi \rangle = e^{2\pi i \xi x}$.
- $\widehat{\mathbb{T}} \cong \mathbb{Z}$ with $\langle \alpha, n \rangle = \alpha^n$.
- $\widehat{\mathbb{Z}} \cong \mathbb{T}$ with $\langle n, \alpha \rangle = \alpha^n$.
- $\widehat{\mathbb{Z}/k\mathbb{Z}} \cong \mathbb{Z}/k\mathbb{Z}$ with $\langle m, n \rangle = e^{2\pi i m n/k}$.

Example: The p-adic numbers

\mathbb{Q}_p

Let p be a prime and r a rational number. Then there is an $m \in \mathbb{Z}$ with $r = p^m q$, where q is a rational number whose numerator and denominator are not divisible by p. This representation of r is unique. The p-adic norm of r is defined as $|r|_p = p^{-m}$. The field of p-adic numbers is the completion (in terms of Cauchy sequences) of \mathbb{Q} with the metric induced by the p-adic norm. We denote it \mathbb{Q}_p

• If $m \in \mathbb{Z}$ and $c_j \in \{0, 1, \dots, p-1\}$ for $j \geq m$, then $\sum_{m=0}^{\infty} c_j p^j$ converges in \mathbb{Q}_p . Additionally, every p-adic number can be represented by such a series.

We want to compute $\widehat{\mathbb{Q}}_p$. Let ξ_1 be a character of \mathbb{Q}_p . Then define

$$\langle \sum_{-\infty}^{\infty} c_j p^j, \xi_1 \rangle = \exp\left(2\pi i \sum_{-\infty}^{-1} c_j p^j\right)$$

It is easily checked that ξ_1 is a unitary character whose kernel is \mathbb{Z}_p . Define ξ_y by $\langle x, \xi_y \rangle = \langle xy, \xi_1 \rangle$. Then the map $y \to \xi_y$ is an isomorphism from \mathbb{Q}_p to $\widehat{\mathbb{Q}}_p$.

The Fourier Transform

We first associate to $\xi \in \widehat{G}$ the functional

$$f \to \overline{\xi}(f) = \int \overline{\langle x, \xi \rangle} f(x) dx.$$

The Fourier Transform

We first associate to $\xi \in \widehat{G}$ the functional

$$f \to \overline{\xi}(f) = \int \overline{\langle x, \xi \rangle} f(x) dx.$$

This gives us the Fourier transform, $\mathcal{F}: L_1(G) \to C\left(\widehat{G}\right)$, defined by

$$\mathcal{F}f(\xi) = \widehat{f}(\xi) = \int \overline{\langle x, \xi \rangle} f(x) dx.$$

The Fourier Transform

We first associate to $\xi \in \widehat{G}$ the functional

$$f \to \overline{\xi}(f) = \int \overline{\langle x, \xi \rangle} f(x) dx.$$

This gives us the Fourier transform, $\mathcal{F}: L_1(G) \to C(\widehat{G})$, defined by

$$\mathcal{F}f(\xi) = \widehat{f}(\xi) = \int \overline{\langle x, \xi \rangle} f(x) dx.$$

Hausdorff-Young Inequality:

Suppose
$$1 \le p \le 2$$
 and $\frac{1}{p} + \frac{1}{q} = 1$. If $f \in L_p(G)$ and $\widehat{f} \in L_q(\widehat{G})$ then $\|\widehat{f}\|_q \le \|f\|_p$

The essence of Pontryagin duality is this, the elements of G are also unitary characters on \widehat{G} . That is all topological groups are reflexive.

The essence of Pontryagin duality is this, the elements of G are also unitary characters on \widehat{G} . That is all topological groups are reflexive. In precise symbols, for each x in G, $\Phi(x)$, defined by $\langle \xi, \Phi(x) \rangle = \langle x, \xi \rangle$, is a unitary character of \widehat{G} .

The essence of Pontryagin duality is this, the elements of G are also unitary characters on \widehat{G} . That is all topological groups are reflexive. In precise symbols, for each x in G, $\Phi(x)$, defined by $\langle \xi, \Phi(x) \rangle = \langle x, \xi \rangle$, is a unitary character of \widehat{G} .

Pontryagin Duality

The map $\Phi: G \to \widehat{\widehat{G}}$ defined as above is an isomorphism of topological groups.

The essence of Pontryagin duality is this, the elements of G are also unitary characters on \widehat{G} . That is all topological groups are reflexive. In precise symbols, for each x in G, $\Phi(x)$, defined by $\langle \xi, \Phi(x) \rangle = \langle x, \xi \rangle$, is a unitary character of \widehat{G} .

Pontryagin Duality

The map $\Phi: G \to \widehat{\widehat{G}}$ defined as above is an isomorphism of topological groups.

The Fourier Inversion Theorem

If
$$f \in L_1(G)$$
 and $\widehat{f} \in L_1(\widehat{G})$ then $f(x) = (\widehat{f})(x^{-1})$ for almost every x ; that is,

$$f(x) = \int \langle x, \xi \rangle \widehat{f}(\xi) d\xi$$
 for a.e. x .

If f is continuous, then this holds for every x.