EMBEDDED VISION DESIGN 3

MACHINE LEARNING & DEEP LEARNING

JEROEN VEEN

CONTENTS

- Introduction
- Organization
- Why machine learning?
- Machine learning approaches
- Learning pipeline

DEFINING AI, DL & ML

- Strong AI vs Applied AI
- Cognitive replication
- Rational process

Machine learning

- Performs predictive analysis
- Just fancy math & pattern matching

APPLICATIONS

https://padlet.com/jeroen_veen/zul8z8tbvhqpvb8t

MACHINE LEARNING APPLIED TO VISION

Classical image processing

APPLES AND ORANGES

https://www.youtube.com/watch?v=cKxRvEZd3Mw&feature=youtu.
 be

ORGANIZATION OF THE WORKSHOP (VT)

- Theory with integrated quizzes.
- Hands-on with 2 mini-projects
- Final mark:80% ML + DL report,20% quiz results
- Schedule on Gitlab

ORGANIZATION OF THE WORKSHOP (DT)

- Theory with integrated quizzes.
- Hands-on with mini-project
- Final mark:80% ML report,20% quiz results
- Live demo or short clip, showing your deployed model
- Schedule on Gitlab

QUIZ

- Individual, multiple choice questions
- Online: http://www.socrative.com room 1PTGB6PY
- Open book quiz, so books and slides can be consulted
- HAN student number, so NOT your name, nickname or anything else.
- Quiz starts exactly at class hour and takes 10 minutes.
- Be on time and have your equipment prepared.
- During the quiz: no entering or leaving the classroom, and silence

QUIZ EXAMPLE

https://b.socrative.com/

Room code: 1PTGB6PY

EVD3 ASSIGNMENTS

- A project team will consist of 3 students.
- Portfolio building using template
- Deliver intermediate results via HandIn
- Templates and schedule on Gitlab

MACHINE LEARNING APPROACHES

Source: Géron, ISBN: 9781492032632

HAN_UNIVERSITY
OF APPLIED SCIENCES

UNSUPERVISED AND SEMI-SUPERVISED LEARNING

Source: Géron, ISBN: 9781492032632

BATCH VS ONLINE LEARNING

Source: Géron, ISBN: 9781492032632

INSTANCE-BASED VERSUS MODEL-BASED LEARNING

Source: Géron, ISBN: 9781492032632

ML PITFALLS

- Massive amounts of training data is needed
- Labelling is tedious and error prone
- No relationship exists between input and output
- Solution is not transparent
- Solution fails to generalize
- Bias

WORKFLOW

Deep Learning and Machine Learning in the Design Engineering Workflow

WORK FLOW

Source: Audacity

HAN_UNIVERSITY
OF APPLIED SCIENCES

AUTOMATE MACHINE LEARNING WORKFLOW

A Standard Machine Learning Pipeline + holdout validation Preparation (Images, Text., etc.) Predictions Predictions

Source: Western Digital

MACHINE LEARNING VS DEEP LEARNING

Machine Learning

Deep Learning

Feature extraction + Classification

Source: Basler, Artificial Intelligence in Image Processing

ETHICS

- Self-adjustment can go horribly wrong
- Think of 'sampling bias', 'exclusion bias' and 'prejudice bias'
- Context matters
- Transparency is becoming important General Data Protection Regulation (GDPR)

Uber drivers to launch legal bid to uncover app's algorithm

Union wants ride-sharing firm to increase transparency and disclose how data is used

It is vital that developers take responsibility!

OVERCOMING THE HYPE

- DL is not mature tech, lots of issues, constantly changing
- Not the only way of analysis and not the best
- E.g. self-driving cars combine with expert system
- You need sufficient and reliable data

	TECHNIQUE	DESCRIPTION
Anomaly Detection	Dynamic z-scores	Standard distribution measures are calculated for a given data set and uses a dynamic z-score threshold to detect anomalies
Leading/Lagging Indicators	Cross correlation	Measures with shared time series dimensions are analyzed to identify the time shift with the greatest correlation
Trend Lines	Regression analysis	Best fit line for time series data is estimated, and picks out the positive and negative trends that stand out the most
Data Segmentation	K-means clustering	Data points are recursively separated into logical groupings based on a set of local means

COMING UP - DATA

Pls read theory before next class

features

labels

- Sampling noise, do you have sufficient data?
- Sampling bias, is your data representative?
- Data mismatch, is your data reliable?

