FISIKA

1

Kompus Merdeko INDONESIA JAYA

Momentum Linier

(Dinamika 4)

Mokhammad Nurkholis Abdillah, S.T., M.Eng

Learning Objective

Mampu memahami dan menjelaskan konsep momentum dan impuls

Mampu memahami dan menjelaskan sistem pusat massa

Mampu memahami dan menjelaskan konsep tumbukan

Course Material

Impuls dan Momentum

Sistem Pusat Massa

Tumbukan

Impuls dan Momentum

Membahas konsep dasar impuls dan Momentum

Pendahuluan

Analisis Gerak Benda:

Kinematika

Dinamika

Usaha dan Energi

01 Impuls

Definisi Impuls

Impuls

Perkalian antara gaya raya-rata yang bekerja pada bola akibat pemukul dengan selang waktu tertentu.

$$\vec{I} = \vec{F} \Delta t$$

Keterangan:

- \vec{I} = vektor Impuls (*N*. *m*)
- \vec{F} = vektor Gaya (N)
- $\Delta t = selisih waktu t_f t_i(s)$
- $t_i = waktu \ awal \ (s)$
- $t_f = waktu \ akhir \ (s)$

Impuls Secara Umum ditulis

$$\vec{I} = \int_{t_i}^{t_f} \vec{F} \, dt$$

Impuls Secara Grafis:

Impuls adalah luas daerah yang diapit kurva gaya dengan sumbu mendatar

Momentum Linear

Momentum Linear adalah Perkalian antara massa partikel dengan kecepatannya

$$\vec{p} = m\vec{v}$$

Keterangan:

- \vec{p} = vektor mementum linear (kg.m/s)
- \vec{v} = vektor Kecepatan (m/s)
- $m = massa\ benda\ (kg)$

Dalam koordinat 3D dapat dituliskan:

$$\vec{p} = p_x \hat{\imath} + p_y \hat{\jmath} + p_z \hat{k} = m v_x \hat{\imath} + m v_y \hat{\jmath} + m v_z \hat{k}$$

Momentum Linear dan Hukum II Newton

Untuk massa partikel konstan:

$$\sum_{i} \vec{F} = m\vec{a}$$

$$\sum \vec{F} = m \frac{d\vec{v}}{dt}$$

$$\sum \vec{F} = \frac{d(m\vec{v})}{dt}$$

Maka

$$\sum \vec{F} = \frac{d\vec{p}}{dt}$$

Toerema Impuls-Momentum

Tinjau Hukum II Newton:

$$ec{F} = m ec{a}$$
 dengan $ec{a} = rac{\Delta ec{v}}{\Delta t} = rac{ec{v}_f - ec{v}_i}{\Delta t}$ $ec{F} \Delta t = m (ec{v}_f - ec{v}_i)$ $ec{F} \Delta t = m ec{v}_f - m ec{v}_i$

Diketahui bahwa impuls $\vec{l} = \vec{F} \Delta t$ dan momentum $\vec{p} = m\vec{v}$

Maka, teorema Impuls-Momentum $\vec{I} = \vec{p}_f - \vec{p}_i$

"Impuls sama dengan perubahan momentum"

Kekekalan Momentum Linear

Sistem yang ditinjau terdiri dari dua benda yaitu m_1 dan m_2

- \square Gaya \overrightarrow{F}_{12} dan \overrightarrow{F}_{21} adalah pasangan gaya aksi-reaksi
- ☐ Gaya yang berasal dari dalam sistem disebut Gaya Internal
- \square Maka, \overrightarrow{F}_{12} dan \overrightarrow{F}_{21} adalah **Gaya Internal**
- ☐ Gaya berasal dari luar sistem disebut Gaya Eksternal

Pada **kasus terisolasi** (**tidak ada gaya eksternal** yang bekerja pada sistem)

$$\sum_{i} \vec{F}_{ext} = 0 \Rightarrow \frac{\Delta \vec{p}}{\Delta t} = 0 \Rightarrow \Delta \vec{p} = 0 \Rightarrow \vec{p}_f - \vec{p}_i = 0 \qquad \vec{p}_f = \vec{p}_i$$

Hukum kekekalan momentum linear:

Momentum sistem pada keadaan awal sama dengan momentum sistem pada keadaan akhir.

Kekekalan Momentum Pada Ledakan

Hukum kekekalan momentum linier dapat diterapkan

Sistem Pusat Massa

Membahas konsep dasar sistem pusat massa

Sistem Partikel

Tantangan dalam analisis gerak benda

- ☐ Gerak benda rumit
- ☐ Bentuk dan ukuran benda diperhitungkan
- Objek terdiri dari banyak partikel

Untuk menganalisis gerak benda yang bentuknya unik ada satu titik acuan pada benda yang dapat digunakan untuk analisis gerak, yaitu pusat massa benda.

X Rusat massa

Konsep Pusat Massa (Center of Mass)

- Massa dari sistem terkonsentrasi
- ☐ Semua Gaya Eksternal dikenakan

Konsep Pusat Massa Sistem Benda Diskrit di R²

Posisi pusat massa dari sistem 4 partikel $\vec{r}_{pm} = x_{pm}\hat{i} + y_{pm}\hat{j}$

$$\vec{r}_{pm} = x_{pm}\hat{\imath} + y_{pm}\hat{\jmath}$$

$$x_{pm} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 + m_4 x_4 + \dots + m_n x_n}{m_1 + m_2 + m_3 + m_4 + \dots + m_n}$$

$$=\frac{1}{m}\sum_{i=1}^n m_i x_i$$

$$y_{pm} = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3 + m_4 y_4 + \dots + m_n y_n}{m_1 + m_2 + m_3 + m_4 + \dots + m_n}$$

$$=\frac{1}{m}\sum_{i=1}^{n}m_{i}y_{i}$$

Konsep Pusat Massa

Sistem Benda Diskrit di R³

Posisi pusat massa dari sistem $\vec{r}_{pm} = x_{pm}\hat{i} + y_{pm}\hat{j} + z_{pm}\hat{k}$

$$\vec{r}_{pm} = x_{pm}\hat{\imath} + y_{pm}\hat{\jmath} + z_{pm}\hat{\jmath}$$

$$x_{pm} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 + m_4 x_4 + \dots + m_n x_n}{m_1 + m_2 + m_3 + m_4 + \dots + m_n} = \frac{1}{m} \sum_{i=1}^{n} m_i x_i$$

$$y_{pm} = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3 + m_4 y_4 + \dots + m_n y_n}{m_1 + m_2 + m_3 + m_4 + \dots + m_n} = \frac{1}{m} \sum_{i=1}^{n} m_i y_i$$

$$Z_{pm} = \frac{m_1 z_1 + m_2 z_2 + m_3 z_3 + m_4 z_4 + \dots + m_n z_n}{m_1 + m_2 + m_3 + m_4 + \dots + m_n} = \frac{1}{m} \sum_{i=1}^{n} m_i z_i$$

Konsep Pusat Massa Sistem Benda Kontinyu

Sistem Benda Kontinyu:

Suatu benda kontinyu dapat dipandang sebagai kumpulan partikel. Partikel tersebut ditinjau sebagai elemen massa dm.

$$\vec{r}_{pm} = \frac{1}{M} \int \vec{r} dm$$

Rapat massa per satuan panjang

$$\lambda = \frac{dm}{dx}$$

$$\vec{r}_{pm} = x_{pm}\hat{\imath}$$

$$x_{pm} = \frac{\int \lambda x dx}{\int \lambda dx}$$

Rapat massa per satuan luas

$$\sigma = \frac{dm}{dA}$$

$$\vec{r}_{pm} = x_{pm}\hat{\imath} + y_{pm}\hat{\jmath}$$

$$x_{pm} = \frac{\int \sigma x dA}{\int \sigma dA}$$
 $y_{pm} = \frac{\int \sigma y dA}{\int \sigma dA}$

Rapat massa per satuan volume

$$\rho = \frac{dm}{dV}$$

$$\vec{r}_{pm} = x_{pm}\hat{\imath} + y_{pm}\hat{\jmath} + z_{pm}\hat{k}$$

$$x_{pm} = \frac{\int \sigma x dA}{\int \sigma dA} \qquad y_{pm} = \frac{\int \sigma y dA}{\int \sigma dA} \qquad x_{pm} = \frac{\int \rho x dV}{\int \rho dV} \quad y_{pm} = \frac{\int \rho y dV}{\int \rho dV} \quad z_{pm} = \frac{\int \rho z dV}{\int \rho dV}$$

20

Sistem Partikel dan Hukum II Newton

Pusat massa bergerak seperti sebuah partikel, berlaku Hukum II Newton:

$$\sum \vec{F} = M\vec{a}_{pm}$$

Keterangan:

- $\sum \vec{F}$ = total gaya eksternal pada sistem (*N*)
- \vec{F} = vektor Gaya (N)
- \vec{a}_{nm} = percepatan dari titik pusat massa sistem (m/s^2)

Tumbukan

Membahas konsep dasar tumbukan

#Fisika1

01 Tumbukan

Keterangan

- \vec{v}_i = Kecepatan sebelum tumbukan
- $\vec{v}_f =$ Kecepatan setelah tumbukan

Momentum dan Energi Kinetik Pada Tumbukan

Momentum linier sistem kekal $\vec{p}_{1i} + \vec{p}_{2i} = \vec{p}_{1f} + \vec{p}_{2f}$

Energi kinetik total sistem kekal $K_{1i} + K_{2i} = K_{1f} + K_{2f}$

Momentum linier sistem kekal $ec{p}_{1i} + ec{p}_{2i} = ec{p}_{1f} + ec{p}_{2f}$

Energi kinetik total sistem kekal $K_{1i} + K_{2i} = K_{1f} + K_{2f} + K_{loss}$

K_{loss} Maksimum pada saat kondisi akhir kedua benda menempel.

Tumbukan Non-Elastik (1D)

Dalam berbagai kasus tumbukan, total energi kinetik tidak kekal

$$K_{total\ akhir} < K_{total\ awal}$$

$$\frac{1}{2}m_1v_{1f}^2 + \frac{1}{2}m_2v_{2f}^2 < \frac{1}{2}m_1v_{1i}^2 + \frac{1}{2}m_2v_{2i}^2$$

$$\frac{1}{2}m_1v_{1f}^2 + \frac{1}{2}m_2v_{2f}^2 + K_{loss} = \frac{1}{2}m_1v_{1i}^2 + \frac{1}{2}m_2v_{2i}^2$$

Momentum sistem tetap kekal

$$m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i} = m_1 \vec{v}_{1f} + m_2 \vec{v}_{2f}$$

- ☐ Energi kinetik tidak kekal, tapi energi total kekal.

Tumbukan Non-Elastik Sama Sekali (1D)

Kasus khusus:

- ☐ Kedua benda menempel dan bergerak bersama setelah tumbukan
- ☐ Dikenal sebagai "Tumbukan tak elastic sama sekali"

Hukum kekekalan momentum:

$$m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i} = m_1 \vec{v}_{1f} + m_2 \vec{v}_{2f}$$

Kecepatan akhir kedua benda sama:

$$\begin{split} \vec{v}_{1f} &= \vec{v}_{2f} = \vec{v}_f \\ m_1 \vec{v}_{1i} &+ m_2 \vec{v}_{2i} = m_1 \vec{v}_{1f} + m_2 \vec{v}_{2f} \end{split}$$

$$v_f = \frac{m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i}}{m_1 + m_2}$$

Tumbukan Elastik (1D)

Jika K_{loss} sangat kecil, anggap K_{loss} = 0, maka "kekekalan momentum dan energi kinetik" berlaku:

$$m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i} = m_1 \vec{v}_{1f} + m_2 \vec{v}_{2f}$$

$$\frac{1}{2}m_1v_{1i}^2 + \frac{1}{2}m_2v_{2i}^2 = \frac{1}{2}m_1v_{1f}^2 + \frac{1}{2}m_2v_{2f}^2$$

■ Kasus tumbukan elastik umumnya memiliki dua variable yang tidak diketahui, maka selesaikan kedua persamaan secara simultan

- Momentum merupakan besaran vektor, maka:
 - Arah perlu diperhatikan
 - Pastikan menggunakan tanda (+ dan -) yang tepat

Tumbukan dalam 2D

Kondisi sebelum tumbukan

Kondisi Setelah Tumbukan

Tumbukan Non-Elastik pada 2D

☐ Hukum kekekalan momentum:

$$m_1\vec{v}_{1i}+m_2\vec{v}_{2i}=m_1\vec{v}_{1f}+m_2\vec{v}_{2f}$$
 Total momentum sistem pada tiap arah (sumbu) kekal

lacksquare Pada sumbu x: $m_1ec{v}_{1ix}+m_2ec{v}_{2ix}=m_1ec{v}_{1fx}+m_2ec{v}_{2fx}$

$$m_1 \vec{v}_1 \cos \alpha + m_2 \vec{v}_2 \cos \beta = m_1 \vec{v}_1 \cos \theta + m_2 \vec{v}_2 \cos \varphi$$

 $oldsymbol{\Box}$ Pada sumbu y: $m_1ec{v}_{1iy}+m_2ec{v}_{2iy}=m_1ec{v}_{1fy}+m_2ec{v}_{2fy}$

$$m_1\vec{v}_1\sin\alpha + m_2\vec{v}_2\sin\beta = m_1\vec{v}_1\sin\theta + m_2\vec{v}_2\sin\varphi$$

Tumbukan Elastik pada 2D

☐ Hukum kekekalan momentum:

$$m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i} = m_1 \vec{v}_{1f} + m_2 \vec{v}_{2f}$$

$$\frac{1}{2} m_1 v_{1i}^2 + \frac{1}{2} m_2 v_{2i}^2 = \frac{1}{2} m_1 v_{1f}^2 + \frac{1}{2} m_2 v_{2f}^2$$

☐ Pada sumbu x:

$$m_1 \vec{v}_{1ix} + m_2 \vec{v}_{2ix} = m_1 \vec{v}_{1fx} + m_2 \vec{v}_{2fx}$$

$$m_1 \vec{v}_1 \cos \alpha + m_2 \vec{v}_2 \cos \beta = m_1 \vec{v}_1 \cos \theta + m_2 \vec{v}_2 \cos \varphi$$

$$\frac{1}{2}m_1v_1^2\cos\alpha + \frac{1}{2}m_2v_2^2\cos\beta = \frac{1}{2}m_1v_1^2\cos\theta + \frac{1}{2}m_2v_2^2\cos\varphi$$

☐ Pada sumbu y:

$$m_1 \vec{v}_{1iy} + m_2 \vec{v}_{2iy} = m_1 \vec{v}_{1fy} + m_2 \vec{v}_{2fy}$$

$$m_1 \vec{v}_1 \sin \alpha + m_2 \vec{v}_2 \sin \beta = m_1 \vec{v}_1 \sin \theta + m_2 \vec{v}_2 \sin \varphi$$

$$\Box \frac{1}{2}m_1v_{1iy}^2 + \frac{1}{2}m_2v_{2iy}^2 = \frac{1}{2}m_1v_{1fy}^2 + \frac{1}{2}m_2v_{2fy}^2$$

$$\frac{1}{2}m_1v_1^2\sin\alpha + \frac{1}{2}m_2v_2^2\sin\beta = \frac{1}{2}m_1v_1^2\sin\theta + \frac{1}{2}m_2v_2^2\sin\phi$$

Latihan di kelas

- 1) Sebuah truk berbobot 6750 kg bergerak dengan kecepatan $\vec{v} = (4.5\hat{\imath} 2\hat{\jmath}) \, m/s$. Berapakah momentum rata-rata mobil tersebut?
- 2) Sebuah balon udara bermassa 175 gram bergerak naik dengan kecepatan $1.5 \ m/s$. Hitung momentumnya!
- 3) Sebuah tronton bermassa 1.2 ton bergerak ke arah kiri dengan kecepatan $10 \ m/s$. Hitung momentumnya!

28

Latihan di kelas

- 4) Sebuah kereta mainan A bermassa 0.8 kg bergerak ke kanan dengan kecepatan $2.5 \ m/s$ menumbuk kereta mainan B bermassa 1.2 kg yang bergerak dari arah berlawanan dengan kecepatan $5.5 \ m/s$. Setelah bertumbukan keduanya menempel dan bergerak bersama. Hitung besar dan arah kecepatan kedua kereta setelah tumbukan!
- 5) Sebuah bola kasti (m=0.13~kg) memiliki kecepatan awal $\vec{v}_0=-38\hat{\iota}~m/s$ Ketika mendekat ke tongkat pemukul. Setelah itu terjadi kontak antara keduannya memberikan sebuah gaya kepada bola sehingga bola berubah kecepatannya menjadi $\vec{v}_f=(62\hat{\iota}+50\hat{\jmath})~m/s$.
 - a) Hitung momentum awal dan akhir bola!
 - b) Hitung impuls yang diberikan pemukul kepada bola?
 - c) Asumsikan kontak antara pemukul dan bola terjadi dalam waktu $1.6 \times 10^{-3} s$. Hitung gaya rata-rata pemukul terhadap bola!

