# Python을 활용한 데이터 분석 강의

Text Mining



#### Text Data

- Ocuments (문서)
  - articles, books, novels
  - 메일, 웹페이지, 블로그, 트위터
  - 태그, 코멘트
- Collection of documents
  - 메세지
  - 소셜네트워크 데이터
  - publications



#### Text Data

- WHY text?
  - Understanding
    - 문서의 핵심을 파악하기 위해
  - Grouping
    - 전체를 조망하기 위해 cluster를 만들거나 분류를 하기 위해
  - Comparing
    - document collection을 비교하거나 collection이 어떻게 시간이 따라 변화 해 왔는지 파악하기 위해
  - Correlation
    - 텍스트에 나타나는 패턴을 다른 데이터와 비교하기 위해



## Text Preprocessing

Tokenization (토큰화)

Stemming (어간 추출)

lemmatization (표제어 추출)



## Bag of Words(BoW)

- 단어들의 순서를 고려하지 않고 빈도에만 집중하는텍스트 데이터의 수치화 표현 방법
- 문서 내에서 특정 단어가 N번 등장했다면, 이 가방에는 그 특정 단어가 N
   개 있는 것
- BoW를 만드는 과정
  - 각 단어에 고유한 인덱스(index)를 부여
  - 각 인덱스의 위치에 토큰의 등장 횟수를 기록한 벡터(vector)를 만듦



### Term-Document Matrix(TDM)

- 서로 다른 문서들의 BoW를 결합한 표현 방법
- 다수의 문서에서 등장하는 각 단어들의 빈도를 행렬로 표현한 것

문서1: 먹고 싶은 사과

문서2 : 먹고 싶은 바나나

문서3: 길고 노란 바나나 바나나

문서4: 저는 과일이 좋아요

|     | 과일이 | 길고 | 노란 | 먹고 | 바나나 | 사과 | 싶은 | 저는 | 좋아요 |
|-----|-----|----|----|----|-----|----|----|----|-----|
| 문서1 | 0   | 0  | 0  | 1  | 0   | 1  | 1  | 0  | 0   |
| 문서2 | 0   | 0  | 0  | 1  | 1   | 0  | 1  | 0  | 0   |
| 문서3 | 0   | 1  | 1  | 0  | 2   | 0  | 0  | 0  | 0   |
| 문서4 | 1   | 0  | 0  | 0  | 0   | 0  | 0  | 1  | 1   |



### Term-Document Matrix(TDM)

● TDM을 만들었을 때, stopwords인 "the"는 어떤 문서든 자주 등장

● 문서1, 문서2, 문서3에서 동일하게 "the"가 빈도수가 높다고 해서 이 문서들이 유사한 문서라고 판단해서는 안된다!

● TDM에 stopwords 중요한 단어에 대해서 가중치를 줄 수 있는 방법?



#### (Term Frequency-Inverse Document Frequency)

- 단어의 빈도와 역 문서 빈도(문서의 빈도에 특정 식을 취함)를 사용하여
   TDM 내의 각 단어들마다 중요한 정도를 가중치로 주는 방법
- TDM을 만든 후에, TF-IDF 가중치를 준다
  - 문서의 유사도를 구하기
  - 검색 시스템에서 검색 결과의 중요도 정하기
  - 문서 내에서 특정 단어의 중요도를 구하기



#### (Term Frequency-Inverse Document Frequency)

- TF-IDF는 TF와 IDF를 곱한 값을 의미
- 문서를 d, 단어를 t, 문서의 총 개수를 n로 두고
  - tf(d,t): 특정 문서 d에서의 특정 단어 t의 등장 횟수
  - df(t): 특정 단어 t가 등장한 문서의 수
  - idf(t) : df(t)에 반비례하는 수  $\operatorname{idf}(d,t) = \log \frac{n}{1+\operatorname{df}(t)}$

cf) idf를 df의 역수로 사용할 경우, n이 커질 수록 idf의 값은 기하급수적으로 커지게 된다. 이 때문에 log를 사용. log 분모에 1을 더해주는 이유는 특정 단어가 전체 문서에서 한번도 등장하지 않을 경우에 분모가 0이 되는 상황을 방지하기 위함이다.



#### (Term Frequency-Inverse Document Frequency)

|     | 과일이 | 길고 | 노란 | 먹고 | 바나나 | 사과 | 싶은 | 저는 | 좋아요 |
|-----|-----|----|----|----|-----|----|----|----|-----|
| 문서1 | 0   | 0  | 0  | 1  | 0   | 1  | 1  | 0  | 0   |
| 문서2 | 0   | 0  | 0  | 1  | 1   | 0  | 1  | 0  | 0   |
| 문서3 | 0   | 1  | 1  | 0  | 2   | 0  | 0  | 0  | 0   |
| 문서4 | 1   | 0  | 0  | 0  | 0   | 0  | 0  | 1  | 1   |

| 단어  | IDF(역 문서 빈도)           |
|-----|------------------------|
| 과일이 | In(4/(1+1)) = 0.693147 |
| 길고  | In(4/(1+1)) = 0.693147 |
| 노란  | In(4/(1+1)) = 0.693147 |
| 먹고  | In(4/(2+1)) = 0.287682 |
| 바나나 | In(4/(2+1)) = 0.287682 |
| 사과  | In(4/(1+1)) = 0.693147 |
| 싶은  | In(4/(2+1)) = 0.287682 |
| 저는  | In(4/(1+1)) = 0.693147 |
| 좋아요 | In(4/(1+1)) = 0.693147 |



#### (Term Frequency-Inverse Document Frequency)

|     | 과일이      | 길고       | 노란       | 먹고       | 바나나      | 사과       | 싶은       | 저는       | 좋아요      |
|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 문서1 | 0        | 0        | 0        | 0.287682 | 0        | 0.693147 | 0.287682 | 0        | 0        |
| 문서2 | 0        | 0        | 0        | 0.693147 | 0.287682 | 0        | 0.287682 | 0        | 0        |
| 문서3 | 0        | 0.693147 | 0.693147 | 0        | 0.575364 | 0        | 0        | 0        | 0        |
| 문서4 | 0.693147 | 0        | 0        | 0        | 0        | 0        | 0        | 0.693147 | 0.693147 |



## Topic Modeling

토픽 모델(Topic model)이라는 문서들의 추상적인 주제를 발견하기 위한
 통계적 모델 중 하나

- 텍스트 본문의 숨겨진 의미구조를 발견하기 위해 사용되는 텍스트 마이닝 기법
  - ex. 뉴스 기사를 토픽 별로 clustering



## LDA(Latent Dirichlet Allocation)

● 어떤 토픽 또는 주제들이 존재하는지 분류하기 위해 사용되는 토픽 모델

| <b>V1</b>  | <b>V2</b>  | <b>V3</b> <sup>‡</sup> | V4 <sup>‡</sup> | V5 <sup>‡</sup> | <b>V6</b>      | <b>V7</b> ÷ | V8 <sup>‡</sup> | V9 <sup>‡</sup> | <b>V10</b> <sup>‡</sup> | <b>V11</b> <sup>‡</sup> | V12 <sup>‡</sup> |
|------------|------------|------------------------|-----------------|-----------------|----------------|-------------|-----------------|-----------------|-------------------------|-------------------------|------------------|
| will       | movie      | movie                  | movie           | hope            | acting         | like        | freeman         | movie           | movie                   | movie                   | movie            |
| movie      | top        | will                   | don             | can             | great          | iti         | morgan          | end             | movies                  | good                    | can              |
| film       | imdb       | can                    | will            | life            | story          | fantastic   | robbins         | film            | like                    | best                    | say              |
| one        | film       | life                   | know            | will            | film           | shawshank   | tim             | story           | prison                  | ever                    | film             |
| shawshank  | time       | film                   | just            | movie           | movie          | redemption  | best            | time            | one                     | thing                   | just             |
| movies     | one        | time                   | film            | never           | amazing        | people      | performance     | every           | film                    | hope                    | much             |
| redemption | list       | feel                   | see             | andy            | cinematography | soul        | great           | ending          | don                     | one                     | said             |
| films      | shawshank  | watch                  | people          | man             | direction      | movies      | role            | watch           | films                   | watch                   | words            |
| ever       | movies     | one                    | like            | one             | actors         | many        | performances    | even            | great                   | can                     | anything         |
| time       | best       | every                  | can             | prison          | score          | ones        | actor           | just            | good                    | film                    | really           |
| best       | redemption | hope                   | really          | give            | music          | movie       | film            | scene           | even                    | great                   | good             |
| many       | number     | make                   | watch           | free            | perfect        | touch       | actors          | well            | just                    | really                  | everything       |
| can        | deserves   | see                    | review          | world           | beautiful      | simple      | one             | will            | much                    | see                     | great            |
| people     | rated      | like                   | say             | always          | script         | film        | movie           | plot            | many                    | things                  | nothing          |
| years      | godfather  | just                   | much            | live            | directing      | music       | cast            | beginning       | better                  | watched                 | think            |
| come       | films      | end                    | want            | thing           | good           | looks       | acting          | start           | think                   | awesome                 | describe         |
| see        | rating     | makes                  | reviews         | freedom         | excellent      | lot         | good            | get             | feel                    | maybe                   | else             |
| classic    | see        | heart                  | write           | matter          | cast           | parts       | character       | way             | escape                  | just                    | like             |
| favorite   | think      | get                    | good            | get             | everything     | hope        | ever            | never           | see                     | never                   | already          |
| seen       | people     | movies                 | one             | even            | well           | funny       | gives           | long            | drama                   | say                     | something        |



## LDA(Latent Dirichlet Allocation)

● 어떤 토픽 또는 주제들이 존재하는지 분류하기 위해 사용되는 토픽 모델

```
Topic: 0
Words: 0.031*"world" + 0.024*"cup" + 0.020*"take" + 0.017*"australia" + 0.014*"inquiry" + 0.014*"fear" + 0.013*"natio
nal" + 0.012*"industry" + 0.010*"injury" + 0.009*"woe"
Topic: 1
Words: 0.016*"indigenous" + 0.013*"doctor" + 0.012*"china" + 0.012*"case" + 0.011*"bomb" + 0.010*"safety" + 0.010*"nu
clear" + 0.010*"warning" + 0.010*"tourism" + 0.010*"u"
Topic: 2
Words: 0.018*"high" + 0.014*"hit" + 0.014*"three" + 0.013*"move" + 0.012*"australian" + 0.011*"japan" + 0.011*"ban" +
0.010*"warns" + 0.010*"big" + 0.010*"israeli"
Topic: 3
Words: 0.023*"new" + 0.019*"strike" + 0.014*"deal" + 0.013*"port" + 0.013*"win" + 0.012*"sydney" + 0.012*"tour" + 0.0
11*"title" + 0.010*"black" + 0.010*"solomon"
Topic: 4
Words: 0.034*"police" + 0.026*"u" + 0.020*"iraq" + 0.019*"crash" + 0.015*"probe" + 0.015*"bali" + 0.013*"man" + 0.012
*"car" + 0.010*"missing" + 0.010*"coast"
Topic: 5
Words: 0.020*"killed" + 0.017*"u" + 0.014*"aussie" + 0.014*"kill" + 0.013*"one" + 0.012*"attack" + 0.012*"two" + 0.01
2*"soldier" + 0.011*"return" + 0.010*"team"
Topic: 6
Words: 0.031*"govt" + 0.015*"vic" + 0.014*"help" + 0.014*"report" + 0.013*"urged" + 0.013*"bush" + 0.013*"sheep" + 0.
013*"worker" + 0.012*"appeal" + 0.012*"offer"
Topic: 7
Words: 0.036*"court" + 0.033*"man" + 0.030*"face" + 0.019*"charge" + 0.016*"new" + 0.015*"hospital" + 0.014*"put" +
0.014*"charged" + 0.013*"murder" + 0.012*"open"
Words: 0.030*"council" + 0.021*"plan" + 0.018*"nsw" + 0.017*"seek" + 0.015*"govt" + 0.014*"mp" + 0.009*"wa" + 0.009
*"rate" + 0.009*"funding" + 0.009*"concern"
Words: 0.022*"boost" + 0.018*"reject" + 0.017*"test" + 0.016*"water" + 0.016*"england" + 0.016*"claim" + 0.015*"powe
r" + 0.015*"back" + 0.014*"cut" + 0.012*"final"
```



#### Word2Vector

- ◎ 고양이 + 애교 = 강아지
- ◎ 한국 서울 + 도쿄 = 일본
- ◎ 박찬호 야구 + 축구 = 호나우두

| 한국-서울+도쿄                            |
|-------------------------------------|
| QUERY<br>+한국/Noun +도쿄/Noun -서울/Noun |
| RESULT                              |
| 일본/Noun                             |
|                                     |



### Word2Vector





## CBOW(Continuous Bag of Words)

cf) embedding : 텍스트를 구성하는 하나의 단어를 수치화하는 방법의 일종

- ◎ 여러 개의 단어를 나열한 뒤 이와 관련된 단어를 추정
  - => 문자에서 나오는 n개의 단어 열로부터 다음 단어를 예측

- ex) the quick brown fox jumped over the lazy dog
  - > the, quick, brown을 주면 fox를 예측해야



## CBOW(Continuous Bag of Words)



```
center word context words
 I like playing football with my friends
I like playing football with my friends
I like playing football with my friends
   like playing football with my friends
I like playing football with my friends
I like playing football with my friends
I like playing football with my friends
```



## Skip-Gram

- 특정한 단어로부터 문맥이 될 수 있는 단어를 예측
- 입력 단어 주변의 k개 단어를 문맥으로 보고 예측 모형을 만드는데 이 k값을 window size라고 함

ex) the quick brown fox jumped over the lazy dog (k=1)

quick > the, brown

brown > quick, fox



# Skip-Gram



