RANGKAIAN ELEKTRONIKA II

Penguat Operasional

Mifta Nur Farid, S.T., M.T. miftanurfarid@lecturer.itk.ac.id

Teknik Elektro Institut Teknologi Kalimantan Balikpapan, Indonesia

Maret 3, 2021

Sub-CPMK

Mahasiswa mampu menganalisis rangkaian penguat operasional (C4, P3, A3)

Bahan Kajian

- 1. Konsep dasar penguat operasional;
- 2. Inverting amplifier;
- 3. Noninverting amplifier;
- 4. The Summing Amplifier;
- 5. Voltage Follower.

Gambar. 1: Blok diagram sebuah op amp

 V_2 o $A_{VOL}(v_1 - v_2)$ (b)

Summary Table 16-1 Typical Op-Amp Characteristics				
Quantity	Symbol	Ideal	LM741C	LF157A
Open-loop voltage gain	A _{VOL}	Infinite	100,000	200,000
Unity-gain frequency	$f_{ m unity}$	Infinite	1 MHz	20 MHz
Input resistance	R _{in}	Infinite	2 M Ω	10 12 Ω
Output resistance	R _{out}	Zero	75 Ω	100 Ω
Input bias current	I _{in(bias)}	Zero	80 nA	30 pA
Input offset current	I _{in(off)}	Zero	20 nA	3 рА
Input offset voltage	$V_{\text{in(off)}}$	Zero	2 mV	1 mV
Common-mode rejection ratio	CMRR	Infinite	90 dB	100 dB

Gambar. 3: Perbandingan karakteristik op amp ideal dan op amp standar

Op Amp 741

- Monolitic amp μ A709 tahun 1965 oleh Fairchild Semiconductor
- lacktriangle μ A709 memiliki kekurangan ightarrow dibuatlah μ A741
- Banyak manufaktur yang membuat μ A741:
 - □ ON Semiconductor: MC1741
 - □ Texas Instruments: LM741
 - □ Analog Devices: AD741.
- Istilah umumnya op amp 741

Standar Industri

- Beberapa versi: 741, 741A, 741C, 741E, dan 741N
- Bergantung pada karakteristiknya (voltage gain, temp. range, noise level, dll)
- 741C ($C = Commercial\ grade$) \rightarrow sedikit lebih murah dan paling banyak digunakan
- $A_{VOL} = 100000$, $z_{in} = 2 \text{ M}\Omega$, $z_{o}ut = 75 \Omega$

Standar Industri

Gambar. 4: Op amp 741 pinouts (a) dual-in-line, (b) ceramic flatpak, (c) metal can

Gambar. 5: Rangkaian ekivalen dari op amp 741

- Input diff amp
- Final Stage
- Active Loading
- Frequency Compensation $C_{in(M)} = (A_v + 1)C_c$

Gambar. 6: Bode plot A_{VOL} 741C ideal

Bias & Offset

Gambar. 7: Penggunaan compensation dan nulling 741C

- Tidak ada input signal \rightarrow input bias dan offset \rightarrow error output
- Error output berkurang ← base resistor yang sama → hanya menghilangkan arus bias tapi tidak arus offset dan tegangan offset
- Solusi: menggunakan rangkaian nulling di datasheet

 f_{unity}

MHz

Gambar. 8: Grafik (a) Common-Mode Rejection Ratio (CMRR), (b) Maximum Peak-to-Peak Output (MPP), dan (c) Open-Loop Voltage Gain A_{VOL} dari 741C

Slew Rate

Gambar. 9: (a) Respon ideal dan aktual terhadap tegangan step input, (b) ilustrasi definisi slew rate, (c) $S_R = 0.5 \text{ V}/\mu\text{s}$

• Persamaan slew rate, S_R

$$S_R = \frac{\Delta v_{out}}{\Delta t} \tag{1}$$

Exponential wave meningkat 0.5 V selama 1 mikrodetik pertama:

$$S_R = \frac{\Delta v_{out}}{\Delta t}$$

$$= \frac{0.5 \text{ V}}{1 \mu \text{s}}$$

$$= 0.5 \text{ V}/\mu \text{s}$$

Gambar. 10: (a) Initial slope dari gelombang sinus, (b) distorsi terjadi jika initial slope melebihi slew rate

Slew Rate

- lacktriangle Sinyal dan frekuensinya sangat kecil ightarrow slew rate bukan masalah
- lacktriangle Sinyal dan frekuensinya sangat besar ightarrow slew rate akan mendistorsi sinyal ouput

$$S_S = 2\pi f V_p$$

• S_s : initial slope dari gelombang sinus, f: frekuensi, V_p : nilai peak

$$S_S \leq S_R$$
 $2\pi f V_p \leq S_R$
 $f \leq \frac{S_R}{2\pi V_p}$

$$f_{max} = \frac{S_R}{2\pi V_p} \tag{2}$$

Slew Rate

f_{max}: power bandwidth atau large-signal bandwidth

•
$$S_R = 0.5 \text{ V}/\mu\text{s} \to 741\text{C}$$

•
$$S_R = 50 \text{ V}/\mu\text{s} \rightarrow \text{LM318}$$

Gambar. 11: Grafik power bandwidth vs. peak voltage

■ Pertanyaan:

Berapa tegangan inverting input yang dibutuhkan untuk men-drive op amp 741C hingga saturasi negatif?

Jawaban:

- □ Berdasarkan Gambar 8 (b), MPP = 27 V untuk $R_L = kΩ$
- \square Sehingga tegangan output negatif saturasinya = 13.5 V
- □ Karena $A_{VOL} = 100000$, maka tegangan input yang dibutuhkan:

$$v_2 = \frac{v_{out}}{A_{VOL}}$$

$$= \frac{13.5 \text{ V}}{100000} = 135 \text{ } \mu\text{V}$$

Latihan Soal 2.1

■ Pertanyaan:

□ Berapa tegangan inverting input yang dibutuhkan untuk men-drive op amp 741C hingga saturasi negatif jika $A_{VOL} = 200000$?

- Pertanyaan:
 - □ Berapa common-mode rejection ratio (CMRR) dari 741C ketika frekuensi input-nya adalah 100 kHz?
- Jawaban:
 - $\ ^{\square}$ Berdasarkan Gambar 8 (a), CMRR $_{dB}\approx 40~dB$

$$\mathsf{CMRR} = 10^{(\mathsf{CMRR}_{\mathsf{dB}}/20)} = 10^{(40~\mathsf{dB}/20)} = 100$$

Latihan Soal 2.2

■ Pertanyaan:

□ Berapa common-mode rejection ratio (CMRR) dari 741C ketika frekuensi input-nya adalah 10 kHz?

Pertanyaan:

□ Berapa open-loop voltage gain dari 741C jika frekuensi input-nya adalah 1 kHz ? 10 kHz ? 100 kHz ?

■ Jawaban:

□ Berdasarkan Gambar 8 (c), voltage gain-nya adalah 1000 untuk 1 kHz, 100 untuk 10 kHz, dan 10 untuk 100 kHz.

Pertanyaan:

 \Box Tegangan input ke op amp adalah tegangan fungsi step. Output-nya adalah sebuah waveform eksponensial yang berubah ke 0.25 V dalam 0.1 μ s. Berapa slew rate dari op amp tersebut?

Jawaban:

□ Berdasarkan Persamaan 1

$$S_R = \frac{\Delta v_{out}}{\Delta t} = \frac{0.25 \text{ V}}{0.1 \mu \text{s}} = 2.5 \text{ V}/\mu \text{s}$$

Latihan Soal 2.4

Pertanyaan:

 \Box Tegangan input ke op amp adalah tegangan fungsi step. Output-nya adalah sebuah waveform eksponensial yang berubah ke 0.8 V dalam 0.2 μ s. Berapa slew rate dari op amp tersebut?

- Pertanyaan:
 - \Box Op amp LF411A dengan slew rate 15 V/ $\mu s.$ Berapa power bandwidth dari tegangan peak output 10 V ?
- Jawaban:
 - □ Berdasarkan Persamaan 2

$$f_{max} = \frac{S_R}{2\pi V_p} = \frac{15 \text{ V}/\mu\text{s}}{2\pi (10 \text{ V})} = 239 \text{ kHz}$$

Latihan Soal 2.5

Pertanyaan:

 $\ ^\square$ Op amp LF411A dengan slew rate 15 V/ $\mu s.$ Berapa power bandwidth dari tegangan peak output 200 mV ?

■ Pertanyaan:

- □ Berapa power bandwidth dari:
 - $S_R = 0.5 \text{ V}/\mu\text{s dan } V_p = 8 \text{ V}$
 - $S_R = 5 \text{ V}/\mu\text{s} \text{ dan } V_p = 8 \text{ V}$
 - lacksquare $S_R=50~{
 m V}/\mu{
 m s}~{
 m dan}~V_{
 ho}=8~{
 m V}$

■ Jawaban:

- □ Berdasarkan Gambar 11
 - $f_{max} = 10 \text{ kHz}$
 - $f_{max} = 100 \text{ kHz}$
 - $f_{max} = 1 \text{ MHz}$

Latihan Soal 2.6

- Pertanyaan:
 - □ Berapa power bandwidth dari:
 - \blacksquare $S_R = 0.5 \text{ V}/\mu\text{s dan } V_p = 1 \text{ V}$
 - $S_R = 5 \text{ V}/\mu\text{s dan } V_p = 1 \text{ V}$
 - $S_R = 50 \text{ V}/\mu\text{s dan } V_p = 1 \text{ V}$

Pengantar Inverting Amplifier

- Inverting amplifier: rangkaian op amp paling dasar
- Menggunakan negative feedback untuk menstabilkan keseluruhan voltage gain
- Keseluruhan voltage gain perlu distabilkan karena A_{VOL} sangat besar dan tidak stabil
- 741C memiliki A_{VOL} minimum sebesar 20000 dan A_{VOL} maksimum lebih dari 200000

Gambar. 12: Inverting amplifier

Virtual Ground

Gambar. 13: Konsep virtual ground

- Analisis inverting amplifier lebih mudah
- Berdasarkan op amp ideal:

$$\square R_{in} = \infty \to i_2 = 0$$

$$\quad \Box \ \, A_{VOL} = \infty \rightarrow \textit{v}_2 = 0 \rightarrow$$

• Karena $i_2 = 0$ maka $i_{R_f} = i_{in}$

Voltage Gain & Impedansi Input

Gambar. 14: Inverting amplifier memiliki arus yang sama yang melewati kedua resistor

- Tegangan input: $v_{in} = i_{in}R_1$
- Tegangan output: $v_{out} = -i_{in}R_f$
- Penguatan tegangan closed-loop:

$$A_{v(CL)} = \frac{-R_f}{R_1} \tag{3}$$

Impedansi input:

$$z_{in(CL)} = R_1 \tag{4}$$

Bandwidth

Gambar. 15: Voltage gain yang lebih kecil menghasilkan bandwidth yang lebih besar

Closed-loop bandwidth:

$$f_{2(CL)} = \frac{f_{unity}}{A_{v(CL)}} \tag{5}$$

Gain-band-width product (GBW):

$$f_{unity} = A_{v(CL)} f_{2(CL)} \tag{6}$$

Bias dan Offset

■ Total error tegangan output:

$$V_{error} \cong \pm A_{\nu(CL)}(\pm V_{1err} \pm V_{2err} \pm V_{3err}) \tag{7}$$

■ Error tegangan input:

$$V_{1err} = (R_{B1} - R_{(B2)})I_{in(bias)}$$
 (8)

$$V_{2err} = (R_{B1} + R_{(B2)}) \frac{I_{in(off)}}{2}$$
 (9)

$$V_{3err} = V_{in(off)} \tag{10}$$

Resistor Thevenin

$$R_{B2} = R_1 \parallel R_f \tag{11}$$

■ Pertanyaan:

- □ Berapa penguatan tegangan closed-loop dan bandwidth closed-loop nya?
- □ Berapa tegangan output di 1 kHz? dan di 1 MHz?

Jawaban:

□ Penguatan tegangan closed-loop:

$$A_{v(CL)} = \frac{-R_f}{R_1} = \frac{-75 \text{ k}\Omega}{1.5 \text{ k}\Omega} = -50$$

□ Bandwidth closed-loop:

$$f_{2(CL)} = \frac{f_{unity}}{A_{v(CL)}} = \frac{1 \text{ MHz}}{50} = 20 \text{ kHz}$$

□ Ideal bode-plot dari $A_{v(CL)}$

lawahan:

□ Tegangan output di 1 kHz:

$$v_{out} = (A_{v(CL)})(v_{in}) = (-50)(10 \text{ mVp-p})$$

= -500 mVp-p

 Tegangan output di 1 MHz. Karena 1 MHz adalah unity-gain frekuensinya, maka

$$v_{out} = -10 \text{ mVp-p}$$

□ Tanda negatif menunjukkan phase-shift 180° antara input dan output

Latihan Soal 2.7

■ Pertanyaan:

- $\ \square$ Berapa tegangan output di 100 kHz ?
- □ Hint: Gunakan persamaan

$$A_{
u}=rac{A_{
u(mid)}}{\sqrt{1+(f/f_2)^2}}$$

■ Pertanyaan:

□ Berapa tegangan output ketika $v_{in} = 0$?

Jawaban:

 Berdasarkan Tabel di Gambar 3, didapatkan:

$$I_{\text{in(bias)}} = 80 \text{ nA}$$

$$I_{in(off)} = 20 \text{ nA}$$

$$V_{\rm in(off)} = 2 \text{ mV}$$

□ Berdasarkan Persamaan 11:

$$R_{B2} = R_1 \parallel R_f = 1.5 \text{ k}\Omega \parallel 75 \text{ k}\Omega$$

= 1.47 k Ω

Jawaban:

□ Error tegangan input:

$$egin{aligned} V_{1err} &= (R_{B1} - R_{B2}) I_{in(bias)} \ &= (-1.47 \text{ k}\Omega)(80 \text{ nA}) \ &= -0.118 \text{ mV} \ V_{2err} &= (R_{B1} + R_{B2}) rac{I_{in(off)}}{2} \ &= (1.47 \text{ k}\Omega)(10 \text{ nA}) \ &= 0.0147 \text{ mV} \ V_{3err} &= V_{in(off)} = 2 \text{ mV} \end{aligned}$$

Jawaban:

□ Penguatan tegangan closed-loop:

$$A_{v(CL)} = \frac{-R_f}{R_1} = \frac{-75 \text{ k}\Omega}{1.5 \text{ k}\Omega} = -50$$

Error tegangan output:

$$egin{aligned} V_{\it error} &= \pm 50 (\,V_{1\it err} + V_{2\it err} + V_{2\it err}) \ &= \pm 50 (0.118 \mbox{mV} + 0.0147 \mbox{mV} + 2 \mbox{mV}) \ &= \pm 107 \mbox{ mV} \end{aligned}$$

Latihan Soal 2.8

■ Pertanyaan:

□ Jika op amp yang digunakan adalah LF157A, berapa tegangan output ketika $v_{in} = 0$?

■ Pertanyaan:

□ Diketahui:

$$I_{in(bias)} = 500$$
 nA,
 $I_{in(off)} = 200$ nA, dan
 $V_{in(off)} = 6$ mV

□ Berapa tegangan output jika $v_{in} = 0$?

Jawaban:

□ Error tegangan input:

$$egin{align*} V_{1err} &= (R_{B1} - R_{B2}) I_{in(bias)} \ &= (-1.47 \; \mathrm{k}\Omega) (500 \; \mathrm{nA}) \ &= -0.735 \; \mathrm{mV} \ V_{2err} &= (R_{B1} + R_{B2}) rac{I_{in(off)}}{2} \ &= (1.47 \; \mathrm{k}\Omega) (100 \; \mathrm{nA}) \ &= 0.147 \; \mathrm{mV} \ V_{3err} &= V_{in(off)} = 6 \; \mathrm{mV} \ \end{array}$$

Jawaban:

□ Penguatan tegangan closed-loop:

$$A_{v(CL)} = \frac{-R_f}{R_1} = \frac{-75 \text{ k}\Omega}{1.5 \text{ k}\Omega} = -50$$

□ Error tegangan output:

$$egin{aligned} V_{error} &= \pm 50 ig(V_{1err} + V_{2err} + V_{2err} ig) \ &= \pm 50 ig(0.735 \mathrm{mV} + 0.147 \mathrm{mV} + 6 \mathrm{mV} ig) \ &= \pm 344 \ \mathrm{mV} \end{aligned}$$

Gambar. 16: (a) Rangkaian op amp 741C dan (b) Rangkaian op amp 741C dengan penambahan compensating resistor dan potensiometer

- Salah satu rangkaian op amp dasar
- Menggunakan negative feedback untuk menstabilkan overall voltage gain
- Negative feedback juga meningkatkan impedansi input dan menurunkan impedansi output

Rangkaian Dasar

Gambar. 17: Non-inverting amplifier

Virtual Short

- Virtual short digunakan untuk menganalisis noninverting amplifier
- Virtual short berdasarkan 2 sifat dari op amp ideal

1.
$$R_{in} = \infty \rightarrow i_1 = i_2 = 0$$

2.
$$A_{VOL} = \infty \rightarrow v_1 - v_2 = 0$$

Gambar. 18: Virtual short

Voltage Gain

Gambar. 19: Tegangan input ada di R_1 dan arus yang sama mengalir di R_1

- Tegangan input: $v_{in} = i_1 R_1$
- Tegangan output: $v_{out} = i_1(R_f + R_1)$
- Penguatan tegangan closed-loop:

$$A_{v(CL)} = \frac{v_{out}}{v_{in}} = \frac{i_1(R_f + R_1)}{i_1R_1} = \frac{R_f + R_1}{R_1}$$

maka

$$A_{v(CL)} = \frac{R_f}{R_1} + 1 \tag{12}$$

- Karena impedansi input open-loop sudah sangat besar (2 M Ω untuk 741C), maka impedansi input closed-loop lebih besar lagi.
- Efek negative feedback terhadap bandwidth sama seperti di inverting amplifier

$$f_{2(CL)} = \frac{f_{unity}}{A_{v(CL)}}$$

Efek bias dan offset juga sama seperti di inverting amplifier

Gambar. 20: Error tegangan output dapat mereduksi MPP

■ Pertanyaan:

- □ Berapa penguatan tegangan closed-loop dan bandwidth?
- □ Berapa tegangan output di 250 kHz?

lawahan:

□ Penguatan tegangan closed-loop:

$$A_{v(CL)} = rac{R_f}{R_1} + 1 = rac{3.9 \text{ k}\Omega}{100 \text{ k}\Omega} + 1 = 40$$

□ Bandwidth:

$$f_{2(CL)} = \frac{f_{unity}}{A_{v(CL)}} = \frac{1 \text{ MHz}}{40} = 25 \text{ kHz}$$

Tegangan output di 250 kHz

$$v_{out} = A_{c(CL)}v_{in} = 4(50 \text{ mVp-p})$$

= 200 mVp-p

Latihan Soal 2.10

■ Pertanyaan:

□ Jika $R_f = 4.9$ kΩ, tentukan $A_{v(CL)}$ dan v_{out} di 200 kHz.

■ Pertanyaan:

□ Jika $I_{in(bias)} = 500$ nA, $I_{in(off)} = 200$ nA, dan $V_{in(off)} = 6$ mV, berapa error tegangan output?

Jawaban:

□ Resistor Thevenin:

$$R_{B2}=R_1\parallel R_f=3.9~{
m k}\Omega\parallel 100~\Omega$$
 $R_{B2}\approx 100~\Omega$

□ Error tegangan input

$$egin{aligned} V_{1err} &= (R_{B1} - R_{B2}) I_{in(bias)} \ &= (-100 \ \Omega) (500 \ \mathrm{nA}) = -0.05 \ \mathrm{mV} \ V_{2err} &= (R_{B1} + R_{B2}) I_{in(bias)} \ &= (100 \ \Omega) (100 \ \mathrm{nA}) = 0.01 \ \mathrm{mV} \ V_{3err} &= V_{in(off)} = 6 \ \mathrm{mV} \end{aligned}$$

Jawaban:

□ Error tegangan output

$$egin{aligned} V_{\it error} &= \pm A_{\it V(CL)} (\pm V_{\it 1err} \pm V_{\it 2err} \pm V_{\it 3err}) \ &= \pm 40 (0.05 \ {\rm mV} + 0.01 \ {\rm mV} + 6 \ {\rm mV}) \ &= \pm 242 \ {\rm mV} \end{aligned}$$

- Aplikasi dari op amp sangat luas sekali dan beraneka ragam
- Tidak mungkin menjelaskannya secara komprehensif
- Sementara kita fokus pada 2 rangkaian dulu.

The Summing Amplifier

Gambar. 21: Rangkaian umming amplifier

 Menggabungkan 2 atau lebih sinyal analog menjadi satu output

- Menguatkan setiap sinyal input
- Penguatan setiap channel atau input

$$A_{v1(CL)} = \frac{-R_f}{R_1}; \quad A_{v2(CL)} = \frac{-R_f}{R_2}$$

Tegangan output

$$v_{out} = A_{v1(CL)}v_1 + A_{v2(CL)}v_2$$
 (13)

Resistor Thevenin:

$$R_{B2} = R_1 \parallel R_2 \parallel R_f \parallel \cdots \parallel R_n \quad (14)$$

The Summing Amplifier

Gambar. 22: Rangkaian summing amplifier dengan resistor yang sama

■ Tegangan output

$$v_{out} = -(v_1 + v_2 + \cdots + v_n)$$

The Summing Amplifier

Gambar. 23: Rangkaian mixer

- Menggabungkan sinyal audio
- Menurunkan LEVEL 1 ightarrow sinyal v_1 semakin nyaring di output
- Menurunkan LEVEL 2 → sinyal v₂ semakin nyaring di output
- $\hbox{\bf Meningkatkan GAIN} \to \hbox{kedua sinyal} \\ \hbox{semakin nyaring}$

Voltage Follower

■ Penguatan tegangan closed-loop:

$$A_{\nu(CL)} = 1 \tag{15}$$

Bandwidth closed-loop:

$$f_{2(CL)} = f_{unity} \tag{16}$$

Gambar. 24: Rangkaian voltage follower

- Pertanyaan:
 - □ Berapa tegangan output ac?
- Jawaban:
 - □ Penguatan tegangan tiap channel:

$$A_{v1(CL)} = \frac{-R_f}{R_1} = \frac{-100 \text{ k}\Omega}{20 \text{ k}\Omega} = -5$$

$$A_{v2(CL)} = \frac{-R_f}{R_2} = \frac{-100 \text{ k}\Omega}{10 \text{ k}\Omega} = -10$$

$$A_{v3(CL)} = \frac{-R_f}{R_3} = \frac{-100 \text{ k}\Omega}{50 \text{ k}\Omega} = -2$$

Jawaban:

□ Tegangan output:

$$v_{out} = A_{v1(CL)}v_1 + A_{v2(CL)}v_2 + A_{v3(CL)}v_3$$

□ Jika diperlukan untuk mengkompensasi bias input dengan menambahkan *R_B* yang sama ke noninverting input

$$R_{B2} = R_1 \parallel R_2 \parallel R_3 \parallel R_f$$

= 20 k $\Omega \parallel$ 10 k $\Omega \parallel$ 50 k $\Omega \parallel$ 100 k Ω
= 5.56 k Ω

Latihan Soal 2.12

Pertanyaan:

 Jika tegangan input peak-to-peak diganti dengan tegangan positif dc, berapakah tegangan output dc-nya?

Pertanyaan:

Berapa tegangan output dan bandwidth?

Jawaban:

Penguatan tegangan closed-loopnya adalah unity, sehingga:

$$v_{out} = A_{v(CL)}v_{in} = 1(10 \text{ mV}_{p-p})$$

Bandwidthnya adalah:

$$f_{2(CL)} = f_{unity} = 1 \text{ MHz}$$

Latihan Soal 2.13

■ Pertanyaan:

 Berapa tegangan output dan bandwidth jika op amp yang digunakan adalah LF157A?

Pertanyaan:

 $\hfill \Box$ Jika rangkaian voltage follower di samping dibuat dengan Multisim, tegangan output di 1 Ω adalah 9.99 mV. Tentukan berapa impedansi output closed-loop?

Jawaban:

□ Tegangan output:

$$v_{out} = 9.99 \text{ mV}$$

□ Arus di beban adalah:

$$i_{out} = rac{9.99 \; ext{mV}}{1 \; \Omega} = 9.99 \; ext{mA}$$

□ Impedansi output closed-loop

$$z_{out(CL)} = \frac{0.01 \text{ mV}}{9.99 \text{ mA}} = 0.001 \Omega$$

Latihan Soal 2.14

Pertanyaan:

 $\hfill \Box$ Jika rangkaian voltage follower di samping dibuat dengan Multisim, tegangan output di 1 Ω adalah 9.95 mV. Tentukan berapa impedansi output closed-loop?

Ringkasan

Ringkasan

$$A_v = \frac{R_f}{R_1} + 1$$

Voltage follower

Linear IC

• Op amp : $\frac{1}{3}$ bagian dari IC

■ Linear IC : op amp, audio amplifier, video amplifier, voltage regulator

Number	V _{in} max, mV	I _{in(bias)} max, nA	I _{in(off)} max, nA	I _{out} max, mA	f _{unity} typ, MHz	S _R typ, V/μs	A _{VOL} typ, dB	CMRR min, dB	PSRR min, dB	Drift typ, μV/°C	Description of Op Amps
LF353	10	0.2	0.1	10	4	13	88	70	-76	10	Dual BIFET
LF356	5	0.2	0.05	20	5	12	94	85	-85	5	BIFET, wideband
LF411A	0.5	200	100	20	4	15	88	80	-80	10	Low offset BIFET
LM301A	7.5	250	50	10	1+	0.5+	108	70	-70	30	External compensation
LM318	10	500	200	10	15	70	86	70	-65	-	High speed, high slew rate
LM324	4	10	2	5	0.1	0.05	94	80	-90	10	Low-power quad
LM348	6	500	200	25	1	0.5	100	70	-70	-	Quad 741
LM675	10	2 μΑ*	500	3 A'	5.5	8	90	70	-70	25	High-power, 25 W out
LM741C	6	500	200	25	1	0.5	100	70	-70	-	Original classic
LM747C	6	500	200	25	1	0.5	100	70	-70	-	Dual 741
LM833	5	1 mA*	200	10	15	7	90	80	-80	2	Low noise
LM1458	6	500	200	20	1	0.5	104	70	-77	-	Dual
LM3876	15	1 μΑ*	0.2 μΑ*	6 A'	8	11	120	80	-85	(-)	Audio power amp, 56W
LM7171	1	10 μA*	4 μA°	100	200	4100	80	85	-85	35	Very high-speed amp
OP-07A	0.025	2	1	10	0.6	0.17	110	110	-100	0.6	Precision
OP-42E	0.75	0.2	0.04	25	10	58	114	88	-86	10	High-speed BIFET
TL072	10	0.2	0.05	10	3	13	88	70	-70	10	Low-noise BIFET dual
TL074	10	0.2	0.05	10	3	13	88	70	-70	10	Low-noise BIFET quad
TL082	3	0.2	0.01	10	3	13	94	80	-80	10	Low-noise BIFET dual
TL084	3	0.2	0.01	10	3	13	94	80	-80	10	Low-noise BIFET quad

*For the LM675, LM833, LM3876 and LM7171, this value is commonly expressed in microamperes.

*For the LM675 and LM3876, this value is commonly expressed in autoress.

■ Persamaan PSRR:

$$PSRR = \frac{\Delta V_{in(off)}}{\Delta V_S} \tag{17}$$

- PSRR dari LF353 = -76 dB \rightarrow PSRR = $10^{(} 76/20) = 0.000158 = 158 <math>\mu$ V/V
- \blacksquare Setiap perubahan pada tegangan supply sebesar 1 V akan menyebabkan perubahan tegangan offset input sebesar 158 $\mu {\rm V}$

Drift

- Koefisien temperatur dari tegangan offset input
- Seberapa banyak tegangan offset input akan meningkat karena temperatur
- Drift dari LF353 = 10 μ V/°C \rightarrow tegangan offset input akan meningkat sebesar 10 μ V untuk setiap kenaikan 1 °C
- \blacksquare Jika temperatur internal dari op amp meningkat sebesar 50 °C maka tegangan offset input dari LF353 meningkat sebesar 500 μ V

Audio Amplifiers

- Preamps = audio amplifier dengan daya output < 50 mW
- Front-end audio system
- Mengurangi low noise dari optical sensors, magnetic tape heads, microphones, dll
- Contoh:
 - $\hfill\Box$ LM833: low-noise dual preamp, $A_{\nu}=110$ dB, 27-V power bandwidth 120 kHz, input berupa diff amp

Audio Amplifiers

- Medium-level audio amplifiers = output power 50 mW 500 mW
- Near output end
- Portable electonic devices: cell phones, CD player
- Contoh:
 - □ LM4818 audio power amplifier: output power 350 mW

Audio Amplifiers

- Output power > 500 mW
- High-fidelity amplifier, intercoms, AM-FM radio
- Contoh:
 - $\ \square$ LM380: $A_{\nu}=$ 34 dB, bandwidth 100 kHz, output power 2 W
 - $\ ^{\square}$ LM4756: $\textit{A}_{\textit{v}}=$ 30 dB, output power 7 W/channel

Video Amplifiers

- Wideband amplifier
- Flat response (constant decibel voltage gain)
- Very broad range of frequencies
- Applications in which the range of input frequencies is very large: analog oscilloscopes, video cameras, copiers and scanners, and HDTV amplifiers
- Contoh:
 - \Box LM7171: very high-speed amplifier, wide unity-gain bandwidth of 200 MHz, slew rate of 4100 V/ μ S
 - NE592: voltage gain 52 dB, cutoff frequency 40 MHz, voltage gains and bandwidths dapat diatur dengan menghubungkan external resistors yang berbeda sehingga menjadi 90 MHz
 - MC1553: gain 52 dB, bandwidth 20 MHz, adjusted by changing external components
 - □ LM733: up to 20-dB gain, bandwidth of 120 MHz (adjusted by changing external components)

Voltage Regulator

- Rectifier \rightarrow dc voltage + ripple \rightarrow voltage regulator
- DC voltage ∝ line voltage
- lacktriangle Perubahan 10% dari line voltage \propto perubahan 10% DC voltage \leftarrow ini terlalu besar
- LM340 series \rightarrow menahan perubahan 0.01%, positive/negative output, adjustable output voltage, and short-circuit protection.

TERIMA KASIH