КОМП'ЮТЕРНА ОБРОБКА ЗОБРАЖЕНЬ

Digital Image Processing - DIP

2019 / 2020 навчальний рік

- **МОДУЛЬ 3.** Стиснення зображень 3.1. Загальні відомості зберігання зображень. Урахування особливостей зору.
- 3.2. Алгоритми стиснення без витрат.
- 3.3. Стиснення з витратами.

Алгоритм групового кодування (RLE - Run Length Encoding)

Ланцюжок однакових байтів

↓

Лічільник повторень: RGB

Перший варіант алгоритму - РСХ

Ознака лічильника - одиниці в двох верхніх бітах зчитаного байта:

Другий варіант алгоритму (TIFF, TGA)

Лічільник повторень: RGB

Лічільник (8 біт) 0 XXXXXXX

Пропуск

Лічільник (8 біт) 1 XXXXXXX

RGB

Характеристики алгоритму RLE:

Коефіцієнти компресії:

	Кращий	середній	гірший	
1 варіант	32 ,	2,	0,5.	
2 варіант	: 64,	3,	128/129.	

Клас зображень: Зображення з невеликою кількістю кольорів (ділова і наукова графіка).

Симетричність: Близько 1.

Алгоритм LZW (розробники Lempel, Ziv i Welch).

Стиснення здійснюється за рахунок однакових ланцюжків байт.

LZW універсальний - саме його варіанти використовуються в звичайних архіваторах.

LZW реалізований в форматах GIF і TIFF.

Характеристики алгоритму LZW:

Коефіцієнти компресії:

```
        Кращий середній гірший

        1000
        57
        4
```

Симетричність: Майже симетричний, за умови оптимальної реалізації

Класичний алгоритм, відомий з 60-х років XX століття.

Зіставляє символам вхідного потоку, які зустрічаються більшу кількість разів, ланцюжок біт меншої довжини, і навпаки.

Для збору статистики вимагає двох проходів по зображенню.

Визначення. Нехай заданий алфавіт A

$$\mathbf{A} = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$$

що складається з кінцевого числа n різних символів. Алфавіту відповідає множина ваг W

$$W = \{w_1, w_2, ..., w_n\}$$

цілих позитивних чисел – визначених як кількість w_i символів α_i в деякому тексті (зображенні).

Код Хаффмана $C = \{c_1, c_2, ..., c_n\}$, де c_i - код символу α_i , ϵ такий що:

- c_i не є префіксом для c_j при $c_i \neq c_j$,
- сума $\sum_{i \in [1,n]} w_i * |c_i|$ мінімальна, де $|c_i|$ довжина L коду c_i .

Алгоритм побудови кодуючої схеми

Крок 0. Розрахунок ваг (ймовірностей) w_i появи букв вхідного алфавіту α_i у вхідному потоці.

Крок 1. Впорядкування всіх букв вхідного алфавіту в порядку убування ваг (ймовірностей) $\boldsymbol{w_i}$.

Алгоритм побудови кодуючої схеми

Крок 2. Об'єднуються два символи $lpha_{(r-1)}$ і $lpha_{(r)}$ з найменшими вагами $w_{(r-1)}$ і $w_{(r)}$ в псевдосимвол $\alpha^r\{lpha_{(r-1)},lpha_{(r-1)}\}$ з вагою $(w_{(r-1)}+w_{(r)})$!! Дописується: $\mathbf{0}$ в початок коду $\mathbf{c}_{(r-1)} = \mathbf{0} + \mathbf{c}_{(r-1)}$ 1 в початок коду $\mathbf{c}_{(r)} = "1" + \mathbf{c}_{(r)}$

Алгоритм побудови кодуючої схеми

Крок 3. Видалення зі списку впорядкованих символів $\alpha_{(r-1)}$ і $\alpha_{(r)}$, та занесення туди псевдосимвола $\alpha^r\{\alpha_{(r-1)},\alpha_{(r-1)}\}$

Кроки 2, 3 повторюються до тих пір, поки в списку не залишиться один псевдосимвол (з вагою = 1).

Алгоритм побудови кодуючої схеми (приклад)

Нехай є 6 букв в алфавіті:

з вагами:

$$a_1 \rightarrow w_1 = 0.4$$
; $a_2 \rightarrow w_2 = 0.25$;
 $a_3 \rightarrow w_3 = 0.15$; $a_4 \rightarrow w_4 = 0.1$;
 $a_5 \rightarrow w_5 = 0.06$; $a_6 \rightarrow w_6 = 0.04$;

Тоді процес побудови схеми можна уявити так:

Алгоритм побудови кодуючої схеми (приклад)

Сортуємо символи на кожному кроці

Символи	Ваги символів					
a_1	0,40	0,40	0,40	0,40	0,60 0	1,00
a ₂	0,25	0,25	0,25	0,35	0,45 ¹	
a3	0,15		0,20 0	0,20		
a ₄	0,10	0,10	0,15			
a ₅	0,06	0,10 1				
a_6	0,04 1					

Будуємо кодове бінарне дерево

Алгоритм побудови кодуючої схеми (приклад)

Для побудови кодуючих слів треба пройти по стрілках від початкових символів до кінця отриманого бінарного дерева:

a1 - 0, a2 - 10

a3 - 110, a4 - 1111

a5 - 11101

a6 - 11100

При стисненні зображень в якості букв вхідного алфавіту використовуються кольори нестиснутого зображення

Приклад. Зображення 100х100, 8біт / ріх

Загальний обсяг 80000 біт колірної інформації.

У зображенні:

5000 синіх точок (w1=0.5)

2400 червоних точок (w2=0.24)

1500 жовтих точок (w3=0.15)

1100 зелених точок (w4=0.11)

Кодування:

Символи	Bai	ги симво			
col ₁	0,5	0,50	0,5 0	Синій	0
col ₂		0,26]0	•	Червоний	11
col ₃	0,150/	0,24 1		Жовтий	100
col ₄	0,111			Зелений	101

Обсяг колірної інформації:

Характеристики класичного алгоритму Хаффмана:

Коефіцієнти компресії:

кращий - 8,

середній - 1,5,

гірший - 1

Симетричність: 2

Алгоритм Хаффмана - єдиний з усіх не збільшує розміру вихідних даних в гіршому випадку (якщо не брати до уваги необхідність зберігати таблицю перекодування разом з файлом).

Практично не застосовується до зображень в чистому вигляді.

Зазвичай використовується як один з етапів компресії в більш складних схемах.

Алгоритм CCITT Group 3

При стисненні чорно-білих зображень (один біт на піксель) використовується модифікація алгоритму, яка називається ССІТТ Group 3 (Consultative Committee International Telegraph and Telephone - третя група по стандартизації Міжнародного Консультаційного Комітету з телеграфного й телефонного зв'язку).

Коефіцієнти компресії: в кращому випадку - до 213, в середньому - 2, в гіршому випадку збільшує файл в 5 разів.

Симетричність: Близька до 1.

Клас зображень: чорно-білі зображення, із значно переважним білим (тексти).

Рекомендована ЛІТЕРАТУРА

- Вовк С.М., Гнатушенко В.В., Бондаренко М.В. Методи обробки зображень та комп'ютерний зір: навчальний посібник. Д.: Ліра, 2016 148 с.
- **Красильников Н.Н.** Цифровая обработка 2D- и 3D-изображений: учеб.пособие.- СПб.: БХВ-Петербург, 2011.- 608 с.: ил.
- Гонсалес Р.С., Вудс Р.Э. Цифровая обработка изображений. М.: Техносфера, 2005. -1070 с.
- Визильтер Ю.В., Желтов С.Ю. и др. Обработка и анализ зображений в задачах машинного зрения.-М.: Физматкнига, 2010.-672 с.

Рекомендована ЛІТЕРАТУРА

- Ватолин Д., Ратушняк А., Смирнов М., Юкин В. Методы сжатия данных. Устройство архиваторов, сжатие изображений и видео. М.: ДИАЛОГ-МИФИ, 2002. 384 с.
- **Творошенко І.С.** Конспект лекцій з дисципліни «Цифрова обробка зображень» / І.С.Творошенко : І.С. Творошенко ; Харків. нац. ун-т міськ. госп-ва ім. О. М. Бекетова. Харків : ХНУМГ ім. О. М. Бекетова, 2017. 75 с.
- Методи компьютерной обработки изображений: Учебное пособие для ВУЗов/ Под ред.: Сойфер В.А.. 2-е изд., испр. М.: Физматлит, 2003. 780 с.
- Фисенко В.Т., Фисенко Т.Ю. Компьютерная обработка и распознавание изображений: учеб. пособие. СПб: СПбГУ ИТМО, 2008. 192 с.

Додаткова ЛІТЕРАТУРА

- **Грузман И.С.**, Киричук В.С. Цифровая обработка зображений в информационных системах. Новосибирск: Изд-во НГУ, 2002. 352 с.: ил.
- Solomon C., Breckon T. Fundamentals of Digital Image Processing. Willey-Blackwell, 2011 344 p.
- Павлидис Т. Алгоритмы машинной графики и обработки изображений: Пер. с англ. М.: Радио и связь, 1986. 400 с.
- **Яншин В. В.**, Калинин Г. А. Обработка изображений на языке Си для IBM РС: Алгоритмы и программы. М.: Мир, 1994. 240 с.

Інформаційні ресурси

- Компьютерная обработка изображений. Конспект лекций. http://aco.ifmo.ru/el_books/image_processing/
- Цифрова обробка зображень [Електронний ресурс]: методичні рекомендації до виконання лабораторних робіт / НТУУ «КПІ»; уклад.: В. С. Лазебний, П. В. Попович. Електронні текстові дані (1 файл: 1,41 Мбайт). Київ: НТУУ «КПІ», 2016. 73 с. https://ela.kpi.ua/handle/123456789/21035
- https://www.youtube.com/watch?v=CZ99Q0DQq3Y
- https://www.youtube.com/watch?v=FKTLW8GAdu4

The END Modulo 3.2