Лабораторная работа №3

Тактирование. Питание. Энергопотребление

Задание на ЛРЗ

В соответствии с вариантом написать программу, которая по нажатию одной кнопки переключает заданные тактовые частоты и напряжение питания, второй — входит и выходит в заданный режим пониженного энергопотребления

НЕЛЬЗЯ ИСПОЛЬЗОВАТЬ:

Высокоуровневые библиотеки Заголовочные файлы, кроме <msp430.h>

Плата MSP-EXP430F5529

Алгоритм сдачи ЛРЗ

- 1. Продемонстрировать работу программы
- 2. Измерить частоты MCLK с помощью осциллографа в каждом из режимов работы (одновременно с пунктом 1)
- 3. Измерить ток потребления микроконтроллера в каждом из режимов работы
- 4. Измерить ток потребления платы в каждом из режимов работы
- 5. Измерить напряжение питания V_{CC} в каждом из режимов
- 6. Показать расчеты частоты

Демонстрация работы программы. Кнопки

•S1 – изменение тактовой частоты (F1/F2)

•S2 – вход/выход в режим низкого энергопотребления (ACTIVE/LPM)

Демонстрация работы программы. Индикация

- •LED1 активный режим
- LED3 режим низкого энергопотребления
- LED4 высокое напряжение питания
- LED5 низкое напряжение питания
- · LED8 выход таймера

Демонстрация работы программы. Режимы работы

- 4 режима работы программы:
- 1. F1 + ACTIVE
- 2. F1 + LPM
- 3. F2 + ACTTIVE
- 4. F2 + LPM

Демонстрация работы программы. Изменение напряжения

- Индикация на соответствующих LED
- •Демонстрация содержимого регистра PMMCTL0 (биты PMMCOREV)

Варианты реализации изменения напряжения:

- Одной частоте соответствует высокое напряжение, другой низкое
- Переключение напряжения для каждой частоты (повторное нажатие на S1)

Аргументировать выбранный вариант реализации и соответствие частоты и напряжения!!!

Демонстрация работы программы. Таймер

- •Тактовая частота, указанная в задании, должна быть заведена на таймер (любой, удобный для использования)
- •При невозможности выбора заданной частоты в качестве источника тактирования таймера, выбрать другой источник (например, ACLK или SMCLK), который необходимо сконфигурировать аналогичным образом
- Частота должна быть пропорционально поделена так, чтобы изменение частоты было видно наглядно (деление частоты производится средствами таймера)
- •Для мигания светодиодом можно использовать выход таймера (но не обязательно)

Особенности реализации ЛРЗ

- •Использовать принципы программирования устройств с низким энергопотреблением
- •Напряжение и тактовая частота должны быть согласованы
- •Переключение режимов питания должно осуществляться пошагово

Принципы программирования устройств с низким энергопотреблением

Максимально длительное время нахождения в режимах пониженного энергопотребления

Использование прерываний для управления ходом выполнения программ и «пробуждения» контроллера

Включение периферии только по мере необходимости

Использование вместо программно реализуемых функций встроенные периферийные модули с низким энергопотреблением

Использование вычисляемых переходов и быстрых табличных вычислений вместо опроса флагов и длительных программных вычислений

Избегать частых вызовов подпрограмм, чтобы снизить накладные расходы

Использовать однотактные регистры ЦПУ в длинных процедурах Отключать неиспользуемые сегменты памяти

Повысить уровень питания

- изменить верхний уровень монитора и супервизора
- изменить нижний уровень монитора (1)
- дождаться поднятия напряжения до нижнего уровня монитора
- изменить уровень питания (2)
- дождаться поднятия напряжения до нижнего уровня монитора (3)
- изменить нижний уровень супервизора(4)

Понизить уровень питания

- изменить нижний уровень монитора и супервизора(5)
- изменить уровень питания (6)
- (*)изменить верхний уровень монитора и супервизора

Согласование питания и тактовой частоты

Регистр состояния SR

15		9	8	7							0
	Reserved		٧	SCG1	SCG0	OSC OFF	CPU OFF	GIE	N	z	С

	Сигналы				Биты SR				
Режим	V _{CORE}	CPU/MC LK	FLL	ACLK	SCG1	SCG0	OSCOFF	CPUOFF	
LPM0	On	Off	Off	On	0	0	0	1	
LPM1	On	Off	Off	On	0	1	0	1	
LPM2	On	Off	Off	On	1	0	0	1	
LPM3	On	Off	Off	On	1	1	0	1	
LPM4	On	Off	Off	On	1	1	1	1	

LPM 4.5 = отключить регулятор напряжения (PMMREGOFF = 1) + LPM4

Функции для работы с регистром SR

Установка битов маски

Сброс битов маски

bis_SR_register

bic_SR_register

bis_SR_register_on_exit ___bic_SR_register_on_exit

Используется только в обработчиках прерываний. Изменение значений осуществляется ПОСЛЕ возврата из обработчика прерываний.

Источники тактирования

ХТ1 - 32кГц ("часовой" кварцевый генератор)

ХТ2 - 4-32 МГц

REFOCLK - 32кГЦ

VLOCLK - 9,4кГц

DCO - программируемый генератор

Блок автоподстройки частоты (FLL)

FLLREFCLK:

XT1CLK = 32768Γ Ц
REFOCLK = 32768Γ Ц
XT2CLK = $4 \dots 32 M$ ГЦ

Установка DCOCLK

DCOCLK = FLLREFCLK / FLLREFDIV · (FLLN + 1) · FLLD

UCSCTL2: FLLN и FLLD

UCSCTL3: FLLREFCLK(SELREF) и FLLREFDIV

He забыть выбрать диапазон DCORSEL в регистре UCSCTL1

Пример

Установить DCOCLK = 327 кГц

```
FLLREFCLK = 32768 ГЦ UCSCTL3 = SELREF__XT1CLK;

FLLREFDIV = 1 UCSCTL3 |= FLLREFDIV__1;

FLLD = 2 UCSCTL2 = FLLD__2;

FLLN = 4 UCSCTL2 |= FLLN2;
```

 $32768/1\cdot(4+1)\cdot 2 = 327$ кГц

Измерение частоты MCLK с помощью осциллографа

- Если в задании указана тактовая частота не MCLK, то тогда MCLK необходимо сконфигурировать так же, как и указанную в задании
- •Порт 7.7 сконфигурировать для работы с периферией, направление выход
- •Подключить осциллограф к выводу 7.7 разъема J5 и вывода GND разъема J4 либо J5
- •Допускается небольшое отклонение частоты (в пределах нескольких кГц) от заданного значения

Измерение тока потребления микроконтроллера и платы

Отключить напряжение питания платы Разомкнуть перемычку Јб (в случае тока контроллера) или Ј7 (в случае тока платы) Подключить мультиметр к освободившимся контактам

Включить напряжение питания платы

Пояснить полученные значения токов

Измерение напряжения

Подключить мультиметр к выводам Vcc и GND разъема

Ј4 либо Ј5

Пояснить полученное значение напряжения

Вопросы на защите

- 1. Принципы программирования устройств с низким энергопотреблением (и их использование в коде ЛР3)
- 2. Тактирование (внутренние генераторы и кварцевые резонаторы и условия их работы, работа управляемого цифрового генератора и блока автоподстройки частоты, синхросигналы и их назначение)
- 3. Режимы пониженного энергопотребления (характеристика режимов, условия входа/выхода)
- 4. Управление питанием (режимы, работа супервизора и монитора, алгоритм изменения напряжения)
- 5. Действия после подачи питания, сигналы сброса устройства и условия их генерации
- 6. Механизм измерения токов и напряжений, аргументация полученных значений

Обязательные вопросы

- 1. Что такое супервизор и монитор питания? Их назначение и отличие.
- 2. Какие есть режимы пониженного энергопотребления?
- 3. Характеристика LPM0 и LPM4 (что отключается и по каким сигналам можно выйти из LPM)
- 4. Какие есть внутренние тактовые генераторы? Их частоты
- 5. Какие есть тактовые частоты? что они тактируют.
- 6. Принцип работы блока автоподстройки частоты (FLL)

Вопросы?