Computer Vision Homework #4

TA: Syahrul Munir

Email: t111999406@ntut.org.tw

Robot Vision Lab (Room 1421)

Homework Assignment

- 2023/10/03 Homework 1 assigned, due 10/17
- 2023/11/07 Homework 2 assigned, due 11/21
- 2023/11/28 Homework 3 assigned, due 12/12
- 2023/12/19 Homework 4 assigned, due 01/02

Homework 4

Active Contour

There are three functions that you need to implement.

- 1. Set initial points (Q1)
- 2. Find the contour (Q2)
- 3. Save the result videos (Q3)

There are totally 3 test images.

For each test image, you will get 1 result image and 1 result video.

Note:

You are allowed to use library to draw points/lines and to generate the videos

img1.jpg

img2.jpg

img3.jpg

Example

vid_img1.avi

Find The Contour

- 1. Read image
- 2. Convert RGB image to Grayscale
- 3. Do Gaussian Blur
- Calculate the edge strength of image using Sobel operator
- 5. Generate *NUM_POINTS* points near the object
- 6. For i = 0 to MAX_ITERATION:
 - a. points = ACTIVE_CONTOUR()
 - b. Stop the loop if points are not changing
 - c. Draw the new points on image
 - d. Save current result
- 7. Save result video

ACTIVE_CONTOUR()

- 1. For each points:
 - a. Set a search region
 - b. For each pixel in search region:
 - a) Calculate $E_{cont} \cdot E_{curv} \cdot E_{img}$
 - b) $E_{total} = \alpha E_{cont} + \beta E_{curv} + \gamma E_{img}$
 - c) If $E_{total} < E_{min}$:
 - ① Update E_{min}
 - ② Update point position
- 2. Return points

 $E_{cont} = \|p_i - p_{i-1}\|^2$

 $|E_{image} = -||\nabla I||$

 $E_{curv} = ||p_{i-1} - 2p_i + p_{i+1}||^2$

$$||p_i - p_{i-1}|| = \sqrt{(x_i - x_{i-1})^2 + (y_i - y_{i-1})^2}$$

$$||p_{i-1} - 2p_i - p_{i+1}|| = \sqrt{(x_{i-1} - 2x_i + x_{i+1})^2 + (y_{i-1} - 2y_i + y_{i+1})^2}$$

 $||\Delta I|| = image gradient in that pixel$

Rules in using OpenCV or other Lib

□Allow use Opency for C/C++

Read, load, save, show: cvLoadImage, cvShowImage ...

Define size of image: cvSize, cvGetSize

Define image: Mat

■Not Allow use

Cannot use the function of OpenCV Lib to do the main part of homework, only allowed to use if I said it/agree with it.

Not limited to the OpenCV library only

Example:

- ✓ cvtColor(image, gray, CV_RGB2GRAY); // convert RGB to Gray
- ✓ cv2.filter2D //directly use convolution
- ✓ np.Convolve2D //directly use convolution

Grading

- Program (80%)
 - Set initial points (15%)
 - > Find the contour (35%)
 - > Save result videos (20%)
 - Coding Style (10%)
 - > How many points and where to put for the initial step
 - > How you built the function for find the contour
 - > How you save the videos
- Report (20%)
 - Please explain your code for each part of question.
 - > Please paste 3 output images in your report.
 - Please submit 3 videos images.

Folder Structure

Python

```
111999406 hw4/
   test_img/
     - img1.jpg
     - img2.jpg
     - img3.jpg
   result_img/
     - result img1.jpg
     - result img2.jpg
     - result_ img3.jpg
      · vid_img1.avi
     - vid img2.avi
      vid img3.avi
    111999406 hw4.py
   111999406_hw4.pdf
   Readme.txt
```

C/C++

```
111999406 hw4/
   project hw4/
      test_img/
         img1.jpg
         img2.jpg
        - img3.jpg
      result_img/
        - result_ img1.jpg
        - result_ img2.jpg
         result_img3.jpg
         - vid img1.avi
        - vid img2.avi
       — vid img3.avi
      include/
      — func.h
      func.cpp
      main.cpp
    111999406 hw4.pdf
   Readme.txt
```

Write your report in **English** (**PDF**)

Explaining how your main function working and shown the results on your report.

Homework #4

- Please compress your files (program and report)
 - StudentID_hw4(for example: 111999406_hw4.zip)
 - Make sure the size of .zip file is no more than 50MB
- Please submit to iStudy, in Homework 4 Assignment.
- Deadline: 2024/01/02 23:59:59
- For each hour late, 10% of the total score will be deducted.
- Don't share your code with other students. Do it by yourself.

Thanks for your attention