Theory of Algorithms Homework 3

Evan Dreher

September 2022

1 Problem 1

Find the Big Oh bounds of the following recursions using substitution.

(a)
$$T(n) = T(n-2) + 1$$

Guess: cn
 $T(n) \le cn$
 $T(n-2) \le cn - 2c$
 $T(n) = T(n-2) + 1$
 $\le cn - 2c + 1$
 $-2c + 1 = 0$
 $c = \frac{1}{2}$
 $cn - 2c + 1 = \frac{1}{2}n - \frac{1}{2}2 + 1$
 $= \frac{1}{2}n$
 $= cn$

$$T(n) = O(n)$$

(b)
$$T(n) = T(n-2) + n$$

Guess: $cn^2 + bn$
 $T(n) \le cn^2 + bn$
 $T(n-2) \le cn^2 - 4cn + 4c + bn - 2b$
 $T(n) = T(n-2) + n$
 $\le cn^2 - 4cn + 4c + bn - 2b + n$
 $= cn^2 + (1+b-4c)n - 2b + 4c$
 $1+b-4c = b$
 $4c = 1$
 $c = \frac{1}{4}$
 $-2b+1 = 0$

$$\begin{split} 2b &= 1 \\ b &= \frac{1}{2} \\ cn^2 - 4cn + 4c + bn - 2b + n &= \frac{1}{4}n^2 - 4\frac{1}{4}n + 4\frac{1}{4} + \frac{1}{2}n - 2\frac{1}{2} + n \\ &= \frac{1}{4}n^2 - n + 1 + \frac{1}{2}n - 1 + n \\ &= \frac{1}{4}n^2 + \frac{1}{2}n \\ &= cn^2 + bn \end{split}$$

$$T(n) = O(n^2)$$

(c)
$$T(n) = T(\frac{n}{2}) + 1$$

Guess: $c \lg(n)$
 $T(n) \le c \lg(n)$
 $T(\frac{n}{2}) \le c \lg(n) - c$
 $T(n) = T(\frac{n}{2}) + 1$
 $= c \lg(n) - c + 1$
 $c = 1$
 $c \lg(n) - c + 1$
 $= 1 \times \lg(n)$
 $= c \lg(n)$

$$T(n) = O(lg(n))$$

(d)
$$T(n) = T(\frac{n}{2}) + n + 3$$

Guess: $cn + b \lg(n)$
 $T(n) \le cn + b \lg(n)$
 $T(\frac{n}{2}) \le \frac{c}{2}n + b \lg(n) - b$
 $T(n) = T(\frac{n}{2}) + n + 3$
 $= \frac{c}{2}n + b \lg(n) - b + n + 3$
 $\frac{c}{2} + 1 = c$
 $c + 2 = 2c$
 $c = 2$
 $-b + 3 = 0$
 $b = 3$
 $\frac{c}{2}n + b \lg(n) - b + n + 3 = \frac{2}{2}n + 3 \lg(n) - 3 + n + 3$
 $= cn + b \lg(n)$

$$T(n) = O(n)$$

(e)
$$T(n) = 8T(\frac{n}{2}) + n^2$$

Guess: $n^3 + bn^2$
 $T(n) \le n^3 + bn^2$
 $T(\frac{n}{2}) \le \frac{1}{8}n^3 + \frac{b}{4}n^2$
 $T(n) = 8T(\frac{n}{2}) + n^2$
 $= 8(\frac{1}{8}n^3 + \frac{b}{4}n^2) + n^2$
 $= n^3 + 2bn^2 + n^2$
 $2b + 1 = b$
 $b + 1 = 0$
 $b = -1$
 $n^3 + 2bn^2 + n^2 = n^3 - 2n^2 + n^2$
 $= n^3 - n^2$
 $= n^3 + bn^2$

$$T(n) = O(n^3)$$

(f)
$$T(n) = 5T(\frac{n}{4}) + n$$

Guess: $n^{\log_4(5)} + bn$
 $T(n) \le n^{\log_4(5)} + \frac{b}{4}n$
 $T(\frac{n}{4}) \le (\frac{n}{4})^{\log_4(5)} + \frac{b}{4}n$
 $T(n) = 5T(\frac{n^{\log_4(5)}}{4^{\log_4(5)}} + \frac{b}{4}n) + n$
 $= 5(\frac{n^{\log_4(5)}}{5} + \frac{b}{4}n) + n$
 $= n^{\log_4(5)} + \frac{5}{4}bn + n$
 $\frac{5}{4}b + 1 = b$
 $5b + 4 = 4b$
 $b = -4$
 $n^{\log_4(5)} + \frac{5}{4}bn + n = n^{\log_4(5)} + -\frac{5}{4}4n + n$
 $= n^{\log_4(5)} - 4n$
 $= n^{\log_4(5)} + bn$

$$T(n) = O(n^{\log_4(5)})$$

(g)
$$T(n) = T(\frac{n}{2}) + lg(n)$$

Guess: $c lg^2(n) + b lg(n)$
 $T(n) \le c lg^2(n) + b lg(n)$
 $T(\frac{n}{2}) \le c lg^2(n) - 2c lg(n) + c + b lg(n) - b$

$$\begin{split} T(n) &= T(\frac{n}{2}) + lg(n) \\ &= c \, lg^2(n) - 2c \, lg(n) + c + b \, lg(n) - b + lg(n) \\ &= c \, lg^2(n) + (1 - 2c + b) \, lg(n) + c - b \\ c &= b \\ 1 - 2c + b &= b \\ 1 &= 2c \\ b &= c = \frac{1}{2} \\ c \, lg^2(n) + (1 - 2c + b) \, lg(n) + c - b = \frac{1}{2} \, lg^2(n) + (1 - 2\frac{1}{2} + \frac{1}{2}) \, lg(n) + \frac{1}{2} - \frac{1}{2} \\ &= \frac{1}{2} \, lg^2(n) + (1 - 1 + \frac{1}{2}) \, lg(n) \\ &= \frac{1}{2} \, lg^2(n) + \frac{1}{2} \, lg(n) \\ &= c \, lg^2(n) + b \, lg(n) \end{split}$$

$$T(n) = O(lg^2(n))$$

2 Problem 2

Find the Θ bounds for the following recursions using the master method (if possible).

(a)
$$T(n) = 4T(\frac{n}{2}) + n$$

 $a = 4$
 $b = 2$
 $n^{\log_2(4)} = n^2$
 $f(n) = n = n^{2-1} = O(n^{2-\epsilon}) \text{ for } \epsilon = 1$
 \therefore by MM case 1, $T(n) = \Theta(n^2)$

(b)
$$T(n) = 4T(\frac{n}{2}) + n^2$$

 $a = 4$
 $b = 2$
 $n^{\log_2(4)} = n^2$
 $f(n) = n^2 = \Theta(n^2)$
 \therefore by MM case 2, $T(n) = \Theta(n^2 \lg(n))$

(c)
$$T(n) = 3T(n-1) + n$$

Not solvable by master method since it doesn't fit the form $a T(\frac{n}{b}) + f(n)$

(d)
$$T(n) = T(\frac{n}{3}) + n$$

$$a = 1$$

$$b = 3$$

$$n^{\log_3(1)} = n^0 = 1$$

$$\begin{split} &f(n) = n = \Omega(n^{0+\epsilon}) \text{ for } \epsilon = 1.\\ &\text{WTS } a \ f(\frac{n}{b}) \leq c \ f(n) \text{ for some } 0 < c < 1\\ &a \ f(\frac{n}{b}) = \frac{n}{3} \leq cn\\ &\frac{1}{3} \leq c\\ &\text{for } \frac{1}{3} \leq c < 1, \ a \ f(\frac{n}{b}) \leq c \ f(n)\\ &\therefore \text{ by MM case } 3, \ T(n) = \Omega(n) \end{split}$$

(e)
$$T(n)=T(\frac{n}{4})+n\ lg(n)$$

$$a=1$$

$$b=3$$

$$n^{\log_3(1)}=n^0=1$$
 Unsolvable since $n^{0+\epsilon}\neq n\ lg(n)$ for any $\epsilon>0$

(f) $T(n)=T(\frac{n}{2})+T(\frac{n}{3})+n^2$ Not solvable by master method since it doesn't fit the form $a\ T(\frac{n}{b})+f(n)$

(g)
$$T(n) = 4T(\frac{n}{4}) + n + 2$$

 $a = 4$
 $b = 4$
 $n^{\log_4(4)} = n^1$
 $f(n) = n + 2 = \Theta(n^1)$
 \therefore by MM case 2, $T(n) = \Theta n \lg(n)$

(h)
$$T(n)=4T(\frac{n}{2})+n^2\ lg(n)$$

$$a=4$$

$$b=2$$

$$n^{\log_2(4)}=n^2$$
 Unsolvable since $n^{0+\epsilon}\neq n^2\ lg(n)$ for any $\epsilon>0$