P1 (4 ptos.)		P2 (4 ptos.)	P3 (2 pt	os.)	TOTAL	
Nombre y Apellidos:		UCIONES	Grupo □ 110	□ 111	Col:	Fila:
Nombre y Apenidos.	001	COLONEO	□ 112	□ 116		

Problema 1.- Dada la siguiente tabla de verdad se pide:

a) Represente la función F1 utilizando un multiplexor 4-1 y el mínimo número de puertas lógicas necesarias. Utilice como variables de control A y B, siendo A la de mayor peso.

b) Represente la función F1 con un decodificador 4-16 con salidas activas en bajo y el número mínimo número de puertas lógicas necesarias y con el mínimo número de entradas. En el código de entrada la variable A será la de mayor peso.

Dos posibles soluciones:

Α	В	С	D	F1	F2
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	0	1
0	1	0	0	1	0
0	1	0	1	1	0
0	1	1	0	1	0
0	1	1	1	0	0
1	0	0	0	1	0
1	0	0	1	0	1
1	0	1	0	0	0
1	0	1	1	1	0
1	1	0	0	1	0
1	1	0	1	1	0
1	1	1	0	1	1
1	1	1	1	1	0

c) Represente la función F2 utilizando un multiplexor 8-1 y el mínimo número de puertas lógicas necesarias. Utilice como variable de control más significativa B, C y D, siendo B la de menor peso.

d) Represente la función F2 utilizando un decodificador 2-4 y un multiplexor 4-1. El código de entrada del decodificador será A y B, siendo A la de mayor peso y las variables de control del multiplexor serán C y D siendo C la de más significativa.

Problema 2.- Se pretende diseñar un sistema de control de un proceso industrial, que consta de cuatro entradas y cinco salidas. Las entradas son dos señales de error, E_1 y E_2 y un bus de dos bits indicando el código del error que se ha producido, C_1C_0 . Las salidas, conectadas a los siguiente actuadores, son tres luces, una verde (V), una naranja (N) y otra roja (R) y dos motores, M_1 y M_2 . Todos los actuadores son activos a nivel alto.

El funcionamiento del controlador es el siguiente:

- 1. Si no se activa ninguna señal de error, es decir, ambas valen cero, sólo se enciende la luz verde.
- 2. Si se activa sólo E₁, entonces se lee el código de error, con el siguiente resultado:

Código	Acción
00	Sólo encender la luz naranja
01	Activar el motor 1 y encender la luz naranja
10	Activar el motor 2 y encender la luz naranja
11	Activar ambos motores y la luz roja

3. Si se activa sólo E2, entonces se lee el código de error, con el siguiente resultado:

Código	Acción
00	Activar ambos motores y la luz roja
01	Activar el motor 2 y encender la luz naranja
10	Activar el motor 1 y encender la luz naranja
11	Sólo encender la luz naranja

4. Nunca se pueden activar ambas señales de error a la vez.

Se pide, justificando la respuesta:

- a) Completar la tabla de verdad adjunta
- b) Obtener la expresión canónica, como suma de productos, de la función N.
- c) Obtener la expresión canónica, como producto de sumas, de la función M₁.
- d) Obtener la función M₂ en su forma minimizada, como suma de productos, y representar su circuito con puertas lógicas.
- e) Obtener la función M₁ en su forma minimizada, como producto de sumas, y representar su circuito con puertas lógicas.
- f) Añadir una señal de habilitación (enable) a cada circuito diseñado en los puntos d) y e), de forma que cuando esta señal esté a 0 la salida sea 0 y cuando esté a 1, la salida sea la que corresponda según el funcionamiento descrito.

a)

E2	E1	C1	C0	٧	N	R	M1	M2
0	0	0	0	1	0	0	0	0
0	0	0	1	1	0	0	0	0
0	0	1	0	1	0	0	0	0
0	0	1	1	1	0	0	0	0
0	1	0	0	0	1	0	0	0
0	1	0	1	0	1	0	1	0
0	1	1	0	0	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	0	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	0	0	1	0	1	0
1	0	1	1	0	1	0	0	0
1	1	0	0	X	X	X	X	X
1	1	0	1	X	X	X	X	X
1	1	1	0	X	X	X	X	X
1	1	1	1	X	X	X	X	X

- b) $N=\sum m$ (4,5,6,9,10,11) También es correcto el desarrollo con las variables E_2 , E_1 , C_1 y C_0
- c) M= π M (0,1,2,3,4,6,9,11) También es correcto el desarrollo con las variables E_2 , E_1 , C_1 y C_0

Problema 3. Se ha diseñado un circuito combinacional que realiza la multiplicación de dos números, A y B, codificados cada uno de ellos con tres bits en binario, es decir, $A_2A_1A_0$ y $B_2B_1B_0$. La salida es, por un lado, un bus que contiene el resultado de la multiplicación, M, y un bit de control, P/I, que indica si el resultado es un número par o impar, se pone a 0 si el resultado es impar y a 1 si el resultado es par.

Se pide:

- a) Indicar de forma razonada el número de bits que debe tener el bus que contiene el resultado de la multiplicación.
- b) Implementar la función P/I, en función de las variables de entrada, utilizando el menor número de puertas posible.
- a) Dado que los números de entrada son de 3 bits en binario, el mayor valor que pueden tomar cada uno de ellos es 111₂=7₁₀. Por lo tanto el mayor valor a la salida, que requerirá el máximo número de bits, será el resultado de multiplicar 111₂ x 111₂ = 110001₂ = 49₁₀
 Por lo tanto, el número de bits necesario en la salida es de **6 bits**.
- b) La determinación de si un número codificado en binario es par o impar viene dada por el bit menos significativo. Si acaba en 0 es par y si acaba en 1 es impar. Teniendo esto en cuenta y los requisitos del enunciado, se forma la tabla siguiente:

A_0	B_0	P/I	
0	0	1	Par x par = par
0	1	1	Par x impar = par
1	0	1	Impar x par = par
1	1	0	Impar x impar = impar

Por lo tanto, P/I= A₀ NAND B₀