La composizione relativistica delle velocità

Alessio Bandiera

1 Problema di partenza

Consideriamo un punto materiale all'interno di un sistema di riferimento inerziale S, che sia in movimento con velocità u. Ora consideriamo un secondo sistema di riferimento inerziale S', in movimento con velocità v rispetto ad S, ed in modo tale che v sia parallela agli assi sovrapposti x ed x', che S ed S' siano paralleli ed equiversi, e che all'istante t = t' = 0 s, S ed S' si sovrappongano; rispetto ad S', il punto materiale in S si muove con velocità u'. È possibile trovare una legge che sia in grado di mettere in relazione le due velocità u ed u'?

2 Soluzione trovata da Galileo

La soluzione è stata data per la prima volta da Galileo Galilei, intorno agli inizi del 1600, il quale era riuscito a formulare delle trasformazioni che permettessero di mettere in relazione le 4 dimensioni (3 spaziali e quella temporale), di due sistemi di riferimento inerziali, nella condizione in cui uno dei due fosse in moto relativamente rispetto all'altro.

$$\begin{cases} x' = x - vt \\ y' = y \\ z' = z \\ t' = t \end{cases}$$

$$(1)$$

Tali trasformazioni prendono il nome di "Trasformazioni di Galileo", dalle quali è possibile ricavare la legge che mette in relazione le due velocità del punto materiale, u e u', rispetto ad S e S':

$$u' = u - v \tag{2}$$

Figura 1: Ritratto di Galileo Galilei

3 La relatività ristretta

Nel 1905, tre secoli dopo Galileo, Albert Einstein sviluppò la teoria che rivoluzionò per sempre la fisica: la teoria della relatività. Einstein mise in discussione una grandezza fisica che nessuno, prima di lui, aveva mai pensato di analizzare da un punto di vista più relativo: il tempo. Infatti, all'interno della teoria della relatività (in particolare quella ristretta), Einstein spiega che il tempo non è una grandezza assoluta, e ciò deriva dai due postulati sui quali si fonda la sua teoria:

- Le leggi della meccanica, dell'elettromagnetismo e dell'ottica sono le stesse in tutti i sistemi di riferimento inerziali
- La luce si propaga nel vuoto a velocità costante c, indipendentemente dallo stato di moto della sorgente o dell'osservatore

4 Il nuovo problema

In quanto la luce, secondo la teoria della relatività, viaggia alla stessa velocità in tutti i sistemi di riferimento inerziali, le trasformazioni che Galileo aveva dedotto tre secoli prima non si dimostravano più valide per velocità prossime a quelle della luce: questo, in quanto le trasformazioni galileiane non ammettono invarianti, in disaccordo con la teoria della relatività, che prevede c come invariante in ogni sistema di riferimento.

$$c = 299.792 \text{ km/s}$$
 (3)

Infatti, ad esempio, prendendo valori come $u=\frac{2}{3}c$ e $v=-\frac{2}{3}c$, (ovvero, il sistema di riferimento S' si muoverebbe in verso opposto rispetto al sistema S) allora, applicando la legge derivata dalle trasformazioni di Galileo, otterremmo

$$u' = u - v = \frac{2}{3}c - (-\frac{2}{3}c) = \frac{4}{3}c \tag{4}$$

Ma questo valore non può essere ritenuto valido, in quanto nessuna velocità può superare quella della luce; dunque, risulta ovvio che le trasformazioni di Galileo debbano essere necessariamente modificate.

Figura 2: Albert Einstein

5 Le trasformazioni di Lorentz

Grazie ai contributi dati, inizialmente da Larmor nel 1887, successivamente da Poincarè nel 1905, alla relatività ristretta, vennero definite le cosiddette "Trasformazioni~di~Lorentz". Tale nome venne scelto da Larmor stesso, in quanto queste trasformazioni sono caratterizzate dalla presenza del cosiddetto "fattore~di~Lorentz", indicato con la lettera greca γ , ed è pari a

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}\tag{5}$$

Le trasformazioni di Lorentz sono trasformazioni lineari di coordinate che permettono di descrivere come variano le misure del tempo e dello spazio, tra due sistemi di riferimento inerziali, riuscendo a tenere conto dell'invarianza della velocità della luce:

$$\begin{cases} x' = \gamma \ (x - vt) \\ y' = y \\ z' = z \\ t' = \gamma \left(t - \frac{v}{c^2} x \right) \end{cases}$$
 (6)

6 La composizione relativistica delle velocità

Mediante le trasformazioni di Lorentz, è possibile risolvere il problema che caratterizzava le trasformazioni galileiane, e trovare una formula che possa esprimere la relazione tra u e u', e che tenga in considerazione l'invarianza della velocità della luce:

$$u' = \frac{u - v}{1 - \frac{uv}{c^2}} \qquad u = \frac{u' + v}{1 + \frac{u'v}{c^2}} \tag{7}$$

6.1 Dimostrazione della formula

A partire dall'uguaglianza

$$\frac{\Delta x'}{\Delta t'} = \frac{x_2' - x_1'}{t_2' - t_1'} \tag{8}$$

riscriviamo il secondo membro mediante le trasformazioni di Lorentz

$$\begin{cases} x' = \gamma \ (x - vt) \\ t' = \gamma \left(t - \frac{v}{c^2} x \right) \Rightarrow \frac{\Delta x'}{\Delta t'} = \frac{\gamma (x_2 - vt_2) - \gamma (x_1 - vt_1)}{\gamma (t_2 - \frac{v}{c^2} x_2) - \gamma (t_1 - \frac{v}{c^2} x_1)} \end{cases} \tag{9}$$

e, successivamente, semplificando γ e sciogliendo le parentesi, otterremo

$$u' = \frac{\Delta x'}{\Delta t'} = \frac{x_2 - vt_2 - x_1 + vt_1}{t_2 - \frac{v}{c^2}x_2 - t_1 + \frac{v}{c^2}x_1} = \frac{(x_2 - x_1) - v(t_2 - t_1)}{(t_2 - t_1) - \frac{v}{c^2}(x_2 - x_1)}$$
(10)

ma sapendo che x = ut, e quindi $\Delta x = u\Delta t$, allora

$$u' = \frac{u(t_2 - t_1) - v(t_2 - t_1)}{(t_2 - t_1) - \frac{uv}{c^2}(t_2 - t_1)}$$
(11)

ed infine

$$u' = \frac{(t_2 - t_1)(u - v)}{(t_2 - t_1)(1 - \frac{uv}{c^2})} = \frac{u - v}{1 - \frac{uv}{c^2}}$$
(12)

6.2 Invarianza di c

È possibile dimostrare che tale formula tiene conto dell'invarianza della velocità della luce, semplicemente ponendo u = c, e svolgendo i calcoli, si otterrà

$$u' = \frac{c - v}{1 - \frac{cv}{c^2}} = \frac{c - v}{1 - \frac{v}{c}} = \frac{c - v}{\frac{c - v}{c}} = \frac{c - v}{c - v}c = c$$
(13)

e dunque, per u = c, u' sarà pari a c indipendentemente dalla velocità v.

6.3 Velocità molto piccole rispetto a c

Le trasformazioni di Galileo erano state ritenute valide fino alla teoria della relatività, poiché è possibile dimostrare che per valori di u e di v di molto inferiori rispetto a c, le trasformazioni di Lorentz possono essere approssimate a quelle di Galileo. Infatti, le trasformazioni di Galileo risultano essere un caso particolare delle trasformazioni di Lorentz, in quanto ponendo u << c e v << c, allora $\frac{uv}{c^2} \approx 0$, e dunque

$$u' \approx \frac{u - v}{1 - 0} \approx u - v \tag{14}$$

ovvero, approssimativamente la formula (2).

7 Analisi matematica della composizione relativistica delle velocità

Per comodità, studieremo la funzione della composizione relativistica delle velocità, nella forma

$$u = \frac{u' + v}{1 + \frac{u'v}{c^2}} \tag{15}$$

Inoltre, a partire da questa sezione in poi, la funzione verrà analizzata da un punto di vista puramente matematico, in quanto è bene ricordare che -c < u' < c, ma diremo che il dominio della funzione coincide con l'asse reale privato del punto in cui il denominatore si annulla, per semplicità di intenti (la condizione -c < v < c verrà comunque tenuta in considerazione).

7.1 Funzione omografica

La cosiddetta funzione omografica, è una funzione del tipo

$$y = \frac{ax+b}{cx+d} \quad (c \neq 0) \tag{16}$$

Ad esempio, il grafico di $y=\frac{1}{x}$, un caso di funzione omografica molto semplice, è il seguente:

La funzione u(u') risulta dunque essere proprio una funzione omografica, ed in particolare

$$a = 1$$
 $b = v$ $c = \frac{v}{c^2}$ $d = 1$ (17)

7.2 Studio della funzione

Partiamo dal classificare la funzione: essa è una funzione algebrica razionale fratta di II grado, e non è definita per tutto l'asse reale, infatti il dominio è

$$D_u: \forall u' \mid 1 + \frac{u'v}{c^2} \neq 0$$
 (18)

e dunque

$$D_u: \forall u' \mid u' \neq -\frac{c^2}{v} \tag{19}$$

Le intersezioni della curva con gli assi possono essere calcolate risolvendo due semplici sistemi:

$$\begin{cases} u' = 0 \\ u = \frac{0+v}{1+0} \end{cases} \begin{cases} u = 0 \\ 0 = \frac{u'+v}{1+\frac{u'v}{c^2}} \Rightarrow \begin{cases} u' = 0 \\ u = v \end{cases} \begin{cases} u = 0 \\ u' = -v \end{cases}$$
 (20)

e dunque i punti di intersezione con gli assi sono

$$(0; v) \quad (-v; 0)$$
 (21)

Successivamente, andiamo a studiare gli intervalli di u' per i quali la funzione risulta essere positiva, negativa e nulla. Per far questo, basterà imporre u > 0, e dunque

$$\frac{u'+v}{1+\frac{u'v}{c^2}} > 0 (22)$$

Studiando il segno della funzione, otterremo che il numeratore è maggiore per

$$u' + v > 0 \Rightarrow u' > -v \tag{23}$$

mentre il denominatore dipende dal segno di v:

$$v > 0: 1 + \frac{u'v}{c^2} > 0 \implies u'v > -c^2 \implies u' > -\frac{c^2}{v}$$

 $v < 0: 1 + \frac{u'v}{c^2} > 0 \implies u'v > -c^2 \implies u' < -\frac{c^2}{v}$

facendo attenzione ad invertire il segno della disequazione nell'ultimo passaggio, poiché stiamo dividendo per v < 0. Quindi, complessivamente, lo studio della funzione mostra che

$$\begin{array}{lll} u>0: \ u'<-\frac{c^2}{v}\vee u'>-v & u>0: \ -v< u'<-\frac{c^2}{v} \\ v>0: \ u=0: \ u'=-v & v<0: \ u=0: \ u'=-v \\ u<0: \ -\frac{c^2}{v}< u'<-v & u<0: \ u'<-v\vee u'>-\frac{c^2}{v} \end{array}$$

in quanto, se v < 0, allora $-v < -\frac{c^2}{v}$ (poiché v deve essere minore di c).

Per quanto detto nel paragrafo 7, bisogna comunque tenere a mente che, da un punto di vista fisico, la disequazione $u'v > -c^2$ è sempre verificata, poichè u' e v saranno sempre maggiori di -c, e dunque il primo membro, anche nel caso in cui u' e v fossero discordi, non sarà mai pari o inferiore $a-c^2$.

Procedendo con lo studio della funzione, andiamo alla ricerca di eventuali limiti verticali, facendo tendere la variabile indipendente al valore che non fa parte del dominio della funzione (19), quindi calcolando

$$\lim_{u' \to -\frac{c^2}{v}} \frac{u' + v}{1 + \frac{u'v}{c^2}} \tag{24}$$

che è pari a

$$\frac{-\frac{c^2}{v} + v}{1 - \frac{c^2 v}{v v^2}} = \frac{-c^2 + v^2}{1 - 1} = \frac{v^2 - c^2}{0}$$
 (25)

Il numeratore di tale frazione è sempre negativo, in quanto $v < c \implies v^2 < c^2 \implies v^2 - c^2 < 0$, dunque

$$\lim_{u' \to -\frac{c^2}{v}^-} u = +\infty$$

$$\lim_{u' \to -\frac{c^2}{v}^+} u = -\infty$$

quindi $u' = -\frac{c^2}{v}$ risulta essere un asintoto verticale. Invece, per quanto riguarda gli eventuali asintoti orizzontali, calcoliamo

$$\lim_{u'\to\pm\infty} \frac{u'+v}{1+\frac{u'v}{c^2}} \tag{26}$$

e per calcolarlo, è necessario mettere in evidenza u' sia al numeratore che al denominatore, e dunque possiamo riscrivere il limite come

$$\lim_{u'\to\pm\infty} \frac{u'(1+\frac{v}{u'})}{u'(\frac{1}{v'}+\frac{v}{c^2})} \tag{27}$$

e semplificando u', possiamo snellire ulteriormente il limite, in quanto se

$$u' \to \pm \infty \implies \frac{\frac{v}{u'} \to 0}{\frac{1}{u'} \to 0} \tag{28}$$

dunque

$$\frac{(1+0)}{(0+\frac{v}{c^2})} = \frac{1}{\frac{v}{c^2}} = \frac{c^2}{v} \tag{29}$$

quindi $u = \frac{c^2}{v}$ risulta essere un asintoto orizzontale. In seguito, andremo a calcolare la derivata prima della funzione, per cercare eventuali punti di non derivabilità, e punti di minimo e/o di massimo. La derivata prima di u è possibile calcolarla ricordando che

$$\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$
(30)

e quindi, la derivata di u(u') sarà

$$\frac{d}{du'}u = \frac{\left(1 + \frac{u'v}{c^2}\right) - \left(u' + v\right)\frac{v}{c^2}}{\left(1 + \frac{u'v}{c^2}\right)^2} = \frac{1 + \frac{u'v}{c^2} - \frac{u'v}{c^2} - \frac{v^2}{c^2}}{\left(1 + \frac{u'v}{c^2}\right)^2} = \frac{1 - \frac{v^2}{c^2}}{\left(1 + \frac{u'v}{c^2}\right)^2}$$
(31)

o, alternativamente, poiché $\beta = \frac{v}{c}$, possiamo riscrivere la derivata come

$$\frac{d}{du'}u = \frac{1 - \beta^2}{\left(1 + \frac{u'v}{c^2}\right)^2} \tag{32}$$

Ora, proseguiamo studiando il segno della derivata prima, e dunque

$$1 - \beta^2 > 0 \implies \beta^2 < 1 \implies -1 < \beta < 1$$
 (33)

e poiché $\beta = \frac{v}{c}$, allora

$$-1 < \frac{v}{c} < 1 \implies -c < v < c \tag{34}$$

e ciò è sempre vero per il secondo assioma della relatività ristretta (paragrafo 3); di conseguenza, il numeratore è sempre positivo. Invece, per quanto riguarda il denominatore, ponendolo maggiore di 0, otterremo

$$\left(1 + \frac{u'v}{c^2}\right)^2 > 0
\tag{35}$$

ed essendo un quadrato, è verificato per

$$\forall u' \mid 1 + \frac{u'v}{c^2} \neq 0 \tag{36}$$

ovvero

$$\forall u' \mid u' \neq -\frac{c^2}{v} \tag{37}$$

Tale punto non costituisce un punto di non derivabilità in quanto il dominio della funzione è (19), e dunque il punto $u' = -\frac{c^2}{v}$ non fa parte del dominio di u. Di conseguenza, il denominatore è anch'esso sempre positivo, dunque complessivamente la funzione è sempre positiva, quindi si troverà nel I e nel II quadrante, e presenta un asintoto verticale che coincide con l'asintoto verticale della funzione di partenza.

Dunque, tracciando il grafico della derivata prima, otterremo il seguente (nel grafico riportato sono stati utilizzati valori di c e di v non realistici, in quanto sono stati posti c=3 e v=2, ma esclusivamente per ragioni di comodità nella rappresentazione del grafico, infatti l'andamento di questo risulta lo stesso con i valori reali, in quanto è soltanto raffiqurato in scala di un fattore pari a circa 10^8):

L'ultimo elemento che bisogna analizzare per completare lo studio della funzione è la derivata seconda. Ma prima di calcolarla, riscriviamo la derivata prima utilizzando la formula (5) che definisce il fattore di Lorentz:

$$\frac{d}{du'}u = \frac{1 - \beta^2}{\left(1 + \frac{u'v}{c^2}\right)^2} \Rightarrow \frac{d}{du'}u = \frac{1}{\gamma^2 \left(1 + \frac{u'v}{c^2}\right)^2} = \frac{1}{\left[\gamma \left(1 + \frac{u'v}{c^2}\right)\right]^2}$$

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}} \Rightarrow \gamma^{-2} = 1 - \beta^2 \Rightarrow \frac{d}{du'}u = \frac{1}{\gamma^2 \left(1 + \frac{u'v}{c^2}\right)^2} = \frac{1}{\left[\gamma \left(1 + \frac{u'v}{c^2}\right)\right]^2}$$
(38)

Utilizzando la formula (30), possiamo calcolare la derivata seconda della funzione in esame, ottenendo

$$\frac{d^2}{du'^2}u = \frac{-2\left[\gamma\left(1 + \frac{u'v}{c^2}\right)\right]\gamma\frac{v}{c^2}}{\left[\gamma\left(1 + \frac{u'v}{c^2}\right)\right]^4} = \frac{-2v}{c^2\gamma^2\left(1 + \frac{u'v}{c^2}\right)^3}$$
(39)

Studiandone il segno, poniamo la funzione maggiore di 0

$$\frac{-2v}{c^2\gamma^2\left(1+\frac{u'v}{c^2}\right)^3} > 0\tag{40}$$

e partendo dal denominatore, osserviamo che la disequazione

$$c^2 \gamma^2 \left(1 + \frac{u'v}{c^2} \right)^3 > 0 \tag{41}$$

presenta il termine $c^2\gamma^2$, il quale è sempre positivo, mentre il termine $\left(1+\frac{u'v}{c^2}\right)^3$ necessita di essere analizzato più approfonditamente. Infatti, essendo un termine che vede v come parametro, e potendo quest'ultimo assumere valore negativo, per poter procedere con il calcolo è necessario tenere in considerazione il suo segno. Infatti se v>0, allora il numeratore -2v sarà complessivamente negativo, e di conseguenza per essere positiva la frazione, il denominatore deve assumere segno negativo, e dunque

$$\left(1 + \frac{u'v}{c^2}\right)^3 < 0 \implies 1 + \frac{u'v}{c^2} < 0 \implies \frac{u'v}{c^2} < -1 \implies u' < -\frac{c^2}{v} \tag{42}$$

e in particolare, nell'ultimo passaggio non è necessario invertire il segno della disequazione in quanto v è positivo in ipotesi. Differentemente, se poniamo v < 0, allora il numeratore sarà complessivamente positivo, e dunque per assumere segno positivo la frazione, il denominatore dovrà essere necessariamente positivo, quindi

$$\left(1 + \frac{u'v}{c^2}\right)^3 > 0 \implies 1 + \frac{u'v}{c^2} > 0 \implies \frac{u'v}{c^2} > -1 \implies u' < -\frac{c^2}{v} \tag{43}$$

e, nell'ultimo passaggio, bisogna fare attenzione ad invertire il segno della disequazione, in quanto v < 0 in ipotesi. Abbiamo dunque trovato un risultato molto interessante: il segno della disequazione non dipende dalla velocita v del secondo sistema di riferimento, coerentemente con quanto calcolato nella formula (25). Infatti, in entrambi i casi, la funzione avrà la concavità verso l'alto per $u' < -\frac{c^2}{v}$, mentre avrà la concavità verso il basso per $u' > -\frac{c^2}{v}$.

8 Grafico della funzione

Disponendo ora di tutti gli elementi necessari, possiamo finalmente tracciare il grafico di u(u'):

(nel grafico rappresentato valgono le stesse considerazioni che sono state utilizzate per tracciare il grafico della formula (32))

Tale grafico è stato rappresentato per un valore di v positivo, poiché quando v < 0, il valore $-\frac{c^2}{v}$ sarà positivo e non più negativo, ed in maniera analoga, $\frac{c^2}{v}$ sarà negativo; di conseguenza, gli asintoti invertiranno il loro segno, mentre la concavità, per quanto mostrato precedentemente, non cambierà. Di seguito è riportato un grafico con v < 0, più precisamente il valore opposto al grafico precedente (valgono le stesse considerazioni del grafico precedente):

9 Postfazione

Questo elaborato, assieme alla presentazione visiva, è il risultato di numerose ore di lavoro, ed è stato realizzato utilizzando: Manim, per la parte delle animazioni dell'elaborato; LaTeX, per la realizzazione di questo PDF; Visual Studio Code, piattaforma sulla quale è stato scritto tutto il codice dell'elaborato; Python, il linguaggio con cui è scritto Manim; Desmos, per la realizzazione di grafici dinamici; Sony Vegas Pro, con il quale sono state rielaborate le animazioni prodotte tramite Manim per adattarle ai tempi della presentazione; PowerPoint, contenente le varie animazioni della presentazione; infine, Word, utilizzato per scrivere la bozza iniziale del contenuto da trattare.

L'elaborato è interamente *open source*, ed è disponibile su **GitHub** al seguente link, all'interno del quale è possibile trovare tutto il codice ed il materiale utilizzato per realizzarlo:

https://github.com/ph04/relativistic-addition

Si ringrazia la commissione per l'attenzione.

Indice

1	Problema di partenza	1
2	Soluzione trovata da Galileo	1
3	La relatività ristretta	1
4	Il nuovo problema	2
5	Le trasformazioni di Lorentz	2
6	La composizione relativistica delle velocità 6.1 Dimostrazione della formula	3 3 3
7	r	4 4
8	Grafico della funzione	8
9	Postfazione	9