Prof. Dr. Leandro Alves Neves

Pós-graduação em Ciência da Computação

Processamento de Imagens Digitais

Aula 09

^E Sumário

- Segmentação de Imagens
 - Fundamentos
- Detecção por Descontinuidades
 - Segmentação de Pontos e Retas
 - Bordas (Operadores de Gradiente)
 - Roberts, Prewitt, Sobel, Kirsch, Robinson, Frei-Chen e Método de Canny
- Limiarização
 - limiar global, múltiplos limiares e Limiar local
- Detecção por Similaridades
 - Crescimento de regiões
 - Divisão de regiões
 - Divisão e fusão de regiões

- Processo que visa particionar o conjunto de dados de entrada
 - Objetivo: obter conteúdo semântico relevante
 - Justificativa: facilitar a interpretação dos dados contidos em imagens digitais
 - Metodologias:
 - Técnicas utilizam-se das propriedades geométricas e topológicas dos objetos

PDI

- Processo de Segmentação
 - Tarefa difícil
 - Dependente da extração de características dos objetos
 - Problemas adicionais em imagens ruidosas
 - Explora propriedades dos níveis de cinza
 - Técnicas baseadas em Descontinuidades:
 - Consideram alterações abruptas nos níveis de cinza
 - Bordas
 - Técnicas baseadas em Similaridades:
 - Agrupam pontos da imagem com valores similares (regiões)

- Detecção de Descontinuidades
 - Tipos básicos de descontinuidades: pontos, segmentos de retas, junções e bordas
 - Processo adotado: Convolução

$$w = \begin{bmatrix} w_1 & w_2 & w_3 \\ w_4 & w_5 & w_6 \\ w_7 & w_8 & w_9 \end{bmatrix}$$

Figura: Máscara de 3×3 pixels.

A resposta R da máscara posicionada sobre um ponto da imagem é dada por:

$$R = w_1 z_1 + w_2 z_2 + ... + w_9 z_9 = \sum_{i=1}^{9} w_i z_i$$

z_i: nível de cinza associado com o coeficiente w_i

PDI

Segmentação de Imagens

Detecção de Pontos

- Uso da máscara
 Diferenças ponderadas entre:
 -1 8 -1
 -1 -1 -1
 - Valores do Ponto central e de seus vizinhos

- \neg **Ponto detectado** na região central **se** |R| > T
 - Té um limiar não-negativo
 - R é o resultado obtido da convolução
- Região homogênea (Máscara é nula, R=0):
 - Pixels pertencentes à região possuem a mesma intensidade

- Detecção de Retas
 - Resultado obtido a partir da aplicação de máscaras
 - Imagem com intensidade de fundo constante ⇒ máscara indica reta detectada

$$h_1 = \begin{bmatrix} -1 & -1 & -1 \\ 2 & 2 & 2 \\ -1 & -1 & -1 \end{bmatrix} \quad h_2 = \begin{bmatrix} -1 & -1 & 2 \\ -1 & 2 & -1 \\ 2 & -1 & -1 \end{bmatrix} \quad h_3 = \begin{bmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -1 & 2 & -1 \end{bmatrix} \quad h_4 = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$
Retas \Longrightarrow horizontais 45° verticais 135°

Tipos de Segmentação

Bordas

 Roberts, Prewitt, Sobel, Kirsch, Robinson, Frei-Chen, Laplaciano, Laplaciano do Gaussiano, e Método de Canny

Limiarização

Limiar local, limiar global, múltiplos limiares

Regiões

- Crescimento de regiões
- Divisão de regiões
- Divisão e união de regiões ou divisão e fusão de regiões (Split-merge)
- Outros

PDI

- Detecção de Bordas
 - Borda
 - Limite ou fronteira entre duas regiões ⇒ propriedades relativamente distintas de nível de cinza
 - Princípio:
 - As regiões de fundo são consideradas homogêneas
 - Transição entre duas regiões
 - Descontinuidade de níveis de cinza
 - Uso de um operador local diferencial

Uso de derivadas

- Lembrando que:
 - Derivada parcial de primeira ordem pode ser indicada como: Official de primeira ordem pode ser indicada como ordem pode
 - Dado um ponto em f, obter a diferença em relação ao próximo ponto
- Na forma discreta, temos que $\frac{\partial f}{\partial x} = f(x+1, y) f(x, y)$.

- Derivada parcial de **segunda ordem**: $\frac{\partial^2 f}{\partial x^2}$
 - Diferença do próximo somada a diferença do anterior
- Na forma discreta, temos que:

$$\frac{\partial^2 f}{\partial x^2} = f(x+1, y) - f(x, y) + f(x-1, y) - f(x, y).$$

Logo, $\frac{\partial^2 f}{\partial x^2} = f(x+1, y) - 2f(x, y) + f(x-1, y)$.

Detecção de Bordas

Etapas de um operador local diferencial

(e) derivada segunda do perfil de níveis de cinza

Negativo:

Transição claro/escuro

Positivo:

Transição escuro/claro

Detecção de qualquer ponto de borda:

- Derivada Primeira: Magnitude do ponto
- Derivada Segunda: Operador Laplaciano

Operadores de Gradiente

PDI

- Detecção de bordas: operador local diferencial
 - Identificar mudanças locais significativas
 - Aplicar Derivadas
- Imagem depende de duas coordenadas espaciais
 - Logo, Bordas podem ser expressas por derivadas parciais.
- **Gradiente** (∇f): operador comumente utilizado
 - Vetor cuja direção indica regiões em que os níveis de cinza sofreram maior variação (Bordas)

■ Gradiente na forma matricial:
$$\nabla f = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

□ Exemplo de interpretação: variação rápida de f (x, y) em uma direção e lenta na outra direção pode indicar a presença de borda.

Magnitude do vetor gradiente (∇f)

$$\nabla f = \text{mag}(\nabla f) = \sqrt{G_x^2 + G_y^2} = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

- Indica a maior taxa de variação de f(x, y) por unidade de distância na direção de ∇f
- Magnitude do gradiente (exemplo): aproximada pelo uso dos valores absolutos:
 - $\nabla f \approx |G_x| + |G_y|$
 - ou, valor máximo entre os gradientes: $\nabla f \approx \max(|G_{y}|, |G_{y}|)$

PDI

Segmentação de Imagens

- **Magnitude** do vetor gradiente (∇f)
 - Mudança em intensidade detectada pela diferença entre os valores de pixels adjacentes
 - Bordas Verticais: Diferença horizontal entre os pontos

Bordas Horizontais: Diferença vertical entre os pontos

Dada uma região de imagem (3x3)

f(x-1,y-1)	f(x, y-1)	f(x+1,y-1)
f(x-1,y)	f(x,y)	f(x+1,y)
f(x-1,y+1)	f(x, y+1)	f(x+1,y+1)

Figura : Região da imagem formada por 3×3 pixels.

 Aproximações para obter a magnitude do gradiente no ponto f(x,y)

$$\nabla f = \text{mag}(\nabla f) = \sqrt{G_x^2 + G_y^2} = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Dada uma região de imagem (3x3)

f(x-1,y-1)	f(x, y-1)	f(x+1,y-1)
f(x-1,y)	f(x,y)	$\rightarrow f(x+1,y)$
f(x-1,y+1)	f(x, y+1)	f(x+1,y+1)

Primeira Derivada

Figura : Região da imagem formada por 3×3 pixels.

Aproximações, calcular as diferenças nas direções x
 e y:

$$\nabla f = \sqrt{[f(x,y) - f(x+1,y)]^2 + [f(x,y) - f(x,y+1)]^2}$$

Dada uma região de imagem (3x3)

f(x-1,y-1)	f(x, y-1)	f(x+1,y-1)
f(x-1,y)	f(x,y)	f(x+1,y)
f(x-1,y+1)	f(x,y+1)	f(x+1,y+1)

Figura : Região da imagem formada por 3×3 pixels.

 Aproximações, calcular as diferenças cruzadas nas direções x e y:

$$\nabla f = \sqrt{[f(x,y) - f(x+1,y+1)]^2 + [f(x,y+1) - f(x+1,y)]^2}$$

Dada uma região de imagem (3x3)

f(x-1,y-1)	f(x, y-1)	f(x+1,y-1)
f(x-1,y)	f(x,y)	f(x+1,y)
f(x-1,y+1)	f(x,y+1)	f(x+1,y+1)

Figura : Região da imagem formada por 3×3 pixels.

Aproximações, calcular os valores absolutos:

$$\nabla f \approx |f(x, y) - f(x+1, y+1)| + |f(x, y+1) - f(x+1, y)|.$$

Dada uma região de imagem (3x3)

f(x-1,y-1)	f(x, y-1)	f(x+1,y-1)
f(x-1,y)	f(x,y)	f(x+1,y)
f(x-1,y+1)		f(x+1,y+1)

Figura : Região da imagem formada por 3×3 pixels.

Magnitude do gradiente: pode ser aproximada pelo uso das diferenças cruzadas (Vizinhança 2x2):

■
$$\nabla f \approx |G_x| + |G_y|$$
, Gradiente de Roberts ou Operadores de Roberts $\nabla f \approx |f(x,y) - f(x+1,y+1)| + |f(x,y+1) - f(x+1,y)|$.

- Operador de Roberts (vizinhança 2x2)
 - Calcula-se o gradiente das diferenças cruzadas e soma os resultados
 - As máscaras são:

Magnitude do gradiente: Outras aproximações

Operador de Prewitt (vizinhança 3x3)

- Diferença entre a primeira e terceira colunas (≈ derivada direção x)
- □ Diferença entre a terceira e primeira linhas (≈ derivada direção y)

$$\nabla f \approx |G_x| + |G_y|,$$

$$\nabla f \approx [f(x+1, y-1) + f(x+1, y) + f(x+1, y+1)] -$$

$$[f(x-1, y-1) + f(x-1, y) + f(x-1, y+1)]$$

$$[f(x-1, y+1) + f(x, y+1) + f(x+1, y+1)]$$

$$[f(x-1, y-1) + f(x, y-1) + f(x+1, y-1)]$$

f(x-1,y-1)	f(x, y-1)	f(x+1,y-1)	R
f(x-1,y)	f(x, y)	f(x+1,y)	
f(x-1,y+1)	f(x, y+1)	f(x+1,y+1)	

Figura : Região da imagem formada por 3×3 pixels.

$$G_{x} = egin{array}{c|cccc} -1 & 0 & 1 \ -1 & 0 & 1 \ \hline -1 & 0 & 1 \ \end{array}$$

Operador de Sobel (vizinhança 3x3)

Diferença de valores ponderados, pesos maiores para realçar vizinhança 4 (Baseado em Prewitt):

$$\nabla f \approx |G_x| + |G_y|,$$

$$\nabla f \approx \left[f(x+1, y-1) + 2f(x+1, y) + f(x+1, y+1) \right] -$$

$$[f(x-1, y-1)+2f(x-1, y)+f(x-1, y+1)]+f(x-1, y-1)$$

$$[f(x-1, y+1) + 2f(x, y+1) + f(x+1, y+1)] - f(x-1, y+1)$$

$$[f(x-1, y-1) + 2f(x, y-1) + f(x+1, y-1)]$$

$$\begin{array}{c|cccc} f(x-1,y-1) & f(x,y-1) & f(x+1,y-1) \\ \hline f(x-1,y) & f(x,y) & f(x+1,y) \\ \hline f(x-1,y+1) & f(x,y+1) & f(x+1,y+1) \\ \hline \end{array}$$

Figura : Região da imagem formada por 3×3 pixels.

$$G_{x} = egin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$G_y = egin{array}{c|cccc} -1 & -2 & -1 \\ \hline 0 & 0 & 0 \\ \hline 1 & 2 & 1 \\ \hline \end{array}$$

Exemplos

(a) imagem original

(b) Roberts

(c) Prewitt

(d) Sobel

- Operador de Kirsch (1971): Utiliza-se dos princípios de Sobel e Prewitt:
 - Oito máscaras de convolução orientadas em 45º.

5	-3	-3		-3	-3	-3	-3	-3	-3		-3	-3	-3
5	0	-3		5	0	-3	-3	0	-3		-3	0	5
5	-3	-3		5	5	-3	5	5	5		-3	5	5
			-							-			
-3	-3	5		-3	5	5	5	5	5		5	5	-3
-3	0	5		-3	0	5	-3	0	-3		5	0	-3
-3	-3	5		-3	-3	-3	-3	-3	-3		-3	-3	-3

- Para cada pixel da imagem:
 - Aplicar cada máscara manter o valor máximo
 - Logo, o cálculo da magnitude do gradiente não determina valores separados para G_x e G_v (Sobel e Prewitt)

O gradiente de cada pixel é obtido pela maior resposta do conjunto de oito máscaras

 Operador de Robinson (1977): Utiliza-se dos princípios de Kirsch, também com oito máscaras

1 0 -1	0 -1 -2	-1 -2 -1	-2 -1 0
2 0 -2	1 0 -1	0 0 0	-1 0 1
1 0 -1	2 1 0	1 2 1	0 1 2
-1 0 1	0 1 2	1 2 1	2 1 0
-2 0 2	-1 0 1	0 0 0	1 0 -1
-1 0 1	-2 -1 0	-1 -2 -1	0 -1 -2

- Para cada pixel da imagem:
 - Aplicar cada máscara manter o valor máximo

O gradiente de cada pixel é obtido pela maior resposta do conjunto de oito máscaras

Operador de Frei-Chen (1977):

	1	$\sqrt{2}$	1		1	0	-1		0	-1	$\sqrt{2}$	
$M_1 =$	0	0	0	$M_2 =$	$\sqrt{2}$	0	$-\sqrt{2}$	$M_3 =$	1	0	-1	
	-1	$-\sqrt{2}$	-1		1	0	-1		$-\sqrt{2}$	1	0	
	$\sqrt{2}$	-1	0		0	1	0		-1	0	1	
$M_4 =$	-1	0	1	$M_5 =$	-1	0	-1	$M_6 =$	0	0	0	
	0	1	$-\sqrt{2}$		0	1	0		1	0	-1	
	1	-2	1		-2	1	-2		1	1	1	
$M_7 =$	-2	4	-2	<i>M</i> ₈ =	1	4	1	$M_9 =$	1	1	1	
	1	-2	1		-2	1	-2		1	1	1	

- M₁ a M₄: detectar bordas
- M₅ a M₈: detectar retas
- M₉: média dos pixels na região de 3 × 3 pixels

Detecção de Bordas: Operadores locais diferenciais

(a) imagem original

(b) Roberts

(c) Prewitt

(d) Sobel

(f) Frei-Chen

PDI

- Detecção de Bordas: Operador de Canny
- Reconhecido como um método completo
 - Princípios
 - Ruídos não devem gerar bordas
 - Bordas detectadas: mais próximas das bordas reais
 - Cada borda real deve ser representada por um único ponto

- Detecção de Bordas: Operador de Canny
- Algoritmo pode ser descrito em cinco fases:
 - 1. Filtragem Gaussiana
 - Objetivo é a redução de ruídos
 - 2. Detecção da intensidade de gradientes
 - Detectar a magnitude e a direção das bordas
 - Aplicar operados de Sobel ou Prewitt, por exemplo

- Detecção de Bordas: Operador de Canny
- Algoritmo pode ser descrito em cinco fases:
 - 3. Supressão de pixels não máximos: **Afinamento das bordas**
 - Comparações de pixels da borda com seus vizinhos para identificar a magnitude do gradiente
 - Exemplo: bordas verticais
 - Pixel da borda é preservado se sua magnitude for maior do que as magnitudes dos vizinhos da esquerda e da direita

- Detecção de Bordas: Operador de Canny
- Algoritmo pode ser descrito em cinco fases:
 - 4. Duplo limiar (ponto crítico)
 - Definição de limiares com base em uma estimativa da relação sinalruído
 - Pixel da borda é comparado com dois limiares, L₁ e L₂ (L₁ < L₂)
 - □ Borda fraca (pixel rejeitado): pixel menor que L₁
 - Borda forte (pixel aceito): pixel maior que L₂
 - Reavaliar: Aplicar etapa cinco (rastreamento)

PDI

- Detecção de Bordas: Operador de Canny
- Algoritmo pode ser descrito em cinco fases:
 - Rastreamento de bordas
 - Pixel de borda no intervalo: L₁ < pixel < L₂

- Pixel aceito se o mesmo define um percurso
- Um pixel conectado a um pixel de borda é considerado como pertencente à borda se a magnitude de seu gradiente estiver acima de L₁

Detecção de Bordas: Operador de Canny

Exemplo

(a) imagem original

(c)
$$\sigma = 1.0$$

(b) $\sigma = 0.5$

(d) $\sigma = 2.0$

Limiarização

- Classificação dos pixels de uma imagem de acordo com a especificação de um ou mais limitares
- □ Dado o histograma de uma imagem f(x,y)

- Extrair os objetos do fundo
 - Seleção de um limiar T que separe os dois grupos, fornecendo g (x,y)

$$g(x,y) = \begin{cases} 0, & \text{se } f(x,y) \le T \\ 1, & \text{se } f(x,y) > T \end{cases}$$

Limiarização (Caso mais geral)

$$g(x,y) = \begin{cases} l_1, & \text{se } f(x,y) \le T_1 \\ l_2, & \text{se } T_1 < f(x,y) \le T_2 \\ l_3, & \text{se } f(x,y) > T_2 \end{cases}$$

- Extrair os objetos do fundo
 - Seleção de limiares para separar os grupos de interesse

- Limiarização: Ilustração
 - Selecionar um valor T apropriado é uma tarefa difícil

(a) imagem original

(b)
$$T = 108$$

(c)
$$T = 179$$

(d)
$$T = 213$$

PDI

Segmentação de Imagens

Tipos de Limiarização

Global:

- Um único valor de limiar para segmentar toda a imagem
 - Em geral, não é adequada
 - Imagens podem conter variações nos níveis de cinza dos objetos e do fundo

Local:

- Valores de limiares podem variar sobre a imagem
- Visa considerar as características locais

Limiarização Global

Dado um histograma bimodal

Desafio:

- Encontrar regiões de máximos (picos)
- Selecionar região de vale (entre picos)

PDI

Segmentação de Imagens

- Limiarização Global Ótima: Otsu (1979)
 - □ Princípio (Variância ⇒ é uma medida de contraste)
 - maximizar a variância entre as classes (grupos)
 - minimizar a variância interna das classes (grupos)
 - Premissas, as intensidades de pixels
 - De uma mesma classe devem ser similares
 - De classes diferentes devem ser diferentes
 - Cálculos realizados a partir do histograma de uma imagem

Objetivo: encontrar um valor de limiar *k* que divida uma imagem em dois grupos de pixels

Limiarização Global Ótima: Otsu (1979)

- □ Dado um limiar k: 0 ≤ k ≤ L-1
 - L (profundidade): indica os níveis de cinza: 0, 1, 2, 3..., L-1
 - □ Exemplo: L = 8
- Separar duas classes
 - C1: pixels entre [0,k]
 - C2: pixels entre [k+1,L-1]

□ Porcentagens de pixels na classe C2: $P_2 = \sum_{i=k+1}^{L-1} p(i) = 1 - P_1$

Limiarização Global Ótima: Otsu (1979)

- □ Dado um limiar k: $0 \le k \le L-1$, calcular:
 - Média das intensidades (m₁) dos pixels
 que pertencem a classe C1, pixels [0,k]

$$\square m_1 = \sum_{i=0}^k ip(i)/P_1$$

Média das intensidades (m₂) dos pixels
 que pertencem a classe C2, pixels [0,k]

$$m_2 = \sum_{i=k+1}^{L-1} ip(i)/P_2$$

• Média total da imagem (m_t): $m_t = P_1 m_1 + P_2 m_2$

- Limiarização Global Ótima: Otsu (1979)
 - Dado um limiar k:
 - 0 ≤ k ≤ L-1
 - Calcular a Variância (entre as classes):
 - $\sigma^2 = P_1(m_1 m_t)^2 + P_2(m_2 m_t)^2$

Quanto maior a distância entre m_1 e m_2 , maior será o valor da variância entre classes

O resultado depende do valor k (Limiar sob análise)

Avaliar a expressão para todo inteiro k

Selecionar o valor de k que maximiza a expressão

Limiarização Global Ótima: Otsu (1979)

Resumo

- Calcular o histograma normalizado da imagem de entrada
 - □ pi, i=1,2,3,...L-1
- 2. Calcular P1([0,k]) e P2([k+1,L-1]), k = 0,1,2...L-1
- 3. Calcular médias das intensidades m_1 e m_2 , k =0,1,2,...L-1
- 4. Calcular média geral m, das intensidades para a imagem
- 5. Calcular a variância entre classes σ^2 , k = 0,1,2,...L-1
- 6. Obter o limiar Otsu **k** e avaliar a qualidade
- Repetir etapas de 2 a 6

Bom desempenho em imagens com maior variância de intensidade

Desvantagem: método assume que o histograma da imagem seja bimodal

Limiarização Global Ótima: Otsu (1979)

```
import matplotlib.pyplot as plt
                                                   plt.axis('off')
                                                   plt.subplot(133)
from skimage import data
                                                   plt.plot (bins cente
from skimage import filters
                                                   r, hist, lw=2)
from skimage import exposure
                                                   plt.axvline(val,
camera = data.camera()
                                                   color='k', ls='--')
val = filters.threshold otsu(camera)
                                                   plt.tight layout()
hist, bins center = exposure.histogram(camera)
                                                   plt.show()
plt.figure(figsize=(9, 4))
plt.subplot(131)
plt.imshow(camera, cmap='gray', interpolation='nearest')
plt.axis('off')
plt.subplot(132)
plt.imshow(camera < val, cmap='gray', interpolation='nearest')</pre>
```

Código python disponível em (Acesso 04/2023): http://scipy-lectures.org/packages/scikit-image/auto_examples/plot_threshold.html

Limiarização Global Ótima: Otsu (1979)

Limiarização Global Ótima: Multi-Otsu (2001)

https://scikit-image.org/docs/dev/auto_examples/segmentation/plot_multiotsu.html

PDI

Segmentação de Imagens

- Limiarização Global Ótima: Otsu (1979)
 - Outros enfoques:

Pun (1980)

Kapur et al. (1985)

Maximização da entropia da imagem

Limiarização Local

Analisar as intensidades dos pixels em uma região da imagem para

determinar limiares locais

Medidas estatísticas simples para calcular um limiar local:

- \Box $T = m\acute{e}dia_{v}(p)$
- $T = mediana_{s}(p)$
- $\Box T = \frac{\min_{v}(p) + \max_{v}(p)}{2},$
 - média dos valores mínimo e máximo
 - v é uma vizinhança local ao ponto p

Ponto crítico: tamanho da janela

Limiarização Local

□ Método de Bernsen (1986):
$$T = \frac{\min_{v}(p) + \max_{v}(p)}{2}$$

- □ Método de Niblack (1986): $T = \mu_v(p) + k\sigma_v(p)$
 - Limiar em um pixel (x, y) é baseado na média local (μ) e no desvio padrão (σ) de uma vizinhança v de tamanho n x n
 - k: valor é ajustado conforme o tipo de imagem
 - Ajuda na supressão de ruído e preservação de detalhes

Sauvola e Pietaksinen (2000)
$$\Rightarrow T = \mu_{\nu}(p) \left[1 + k \left(\frac{\sigma_{\nu}(p)}{R} - 1 \right) \right]$$

- Baseado no método de Niblack
- Sugerem k=0.5 e R=128

- Limiarização:
 - Exemplos

Imagem original

(a) global (T = 179)

(c) Niblack (n = 9, k = 0.01)

(b) Bernsen (n = 9)

(d) Sauvola e Pietaksinen (n = 9, k = 0.5, R = 128)

Figure 4. (a) Endomyocardial biopsy classified as 2R used to illustrate visual differences obtained with different segmentation methods; (b) cell nuclei segmented using proposed method and (c) using Otsu's method [7].

- Técnicas baseadas em Similaridades:
 - Agrupam pontos da imagem com valores similares, regiões
 - Segmentação de regiões
 - Detectam regiões diretamente nas imagens
 - Pontos com propriedades similares são agrupados para formar uma região.
 - Propriedades similares
 - Intensidade de cinza, cor, informação semântica ou textura

Segmentação de regiões

- Seja R a região definida pela própria imagem de entrada
 - Particionar R em n regiões R₁, R₂, ..., R_n, tal que:
- (a) $\bigcup_{i=1}^{n} R_i = R$
- (b) R_i é uma função conexa, $i = 1, 2, \dots, n$
- (c) $R_i \cap R_j = \emptyset$ para todo $i \in j, i \neq j$
- (d) $P(R_i) = VERDADEIRO$ para i = 1, 2, ..., n
- (e) $P(R_i \cup R_j) = \mathsf{FALSO}$ para $i \neq j$ e R_i adjacente a R_j

- a) Cada pixel deve pertencer a uma região da imagem
- b) Pixels de R devem satisfazer critérios de conectividade
- c) As regiões devem ser disjuntas
- d) Pixels segmentados de R devem atender ao mesmo critério de similaridade (intensidade, ex.)
- e) Regiões adjacentes R_i e R_j são diferentes em relação ao predicado
- P(R_i): predicado lógico (métrica/medida para analisar a similaridade e agrupar pixels) sobre os pontos do conjunto R_i
- Ø: conjunto vazio

- Segmentação de regiões
 - A partir dos critérios indicados, os principais tipos são:
 - Crescimento de regiões
 - Divisão de regiões
 - Divisão e fusão de regiões

- Segmentação por crescimento de regiões
 - Conjunto inicial de pixels, denominados sementes
 - Definidos de maneira aleatória, determinística ou indicados pelo usuário
 - Agregar pixels com propriedades similares em regiões

Figura: Exemplo de crescimento de regiões. (a) imagem original; (b) segmentação utilizando uma diferença absoluta menor que 4 entre os níveis de cinza; (c) segmentação utilizando uma diferença absoluta menor que 8.

- Segmentação por crescimento de regiões
 - Considerando os pontos sementes com coordenadas (1, 1) e (5, 1)
 - Resultado é uma segmentação com no máximo duas regiões (R₁ e R₂)
 - O predicado P é aplicado para agregar um pixel
 - Verificar se a diferença absoluta entre os níveis de cinza é menor que um limiar T

$$P(R) = \begin{cases} VERDADEIRO, & \text{se } |f(x,y) - f(r,s)| \le T \\ FALSO, & \text{caso contrário} \end{cases}$$

Critério: vizinhança-8

Segmentação por divisão de regiões

Entrada: Imagem completa

Definir critério de divisão

Divisão iterativa em sub-regiões

Parada quando falhar o critério de divisão

- Segmentação por divisão de regiões
 - Problemas: partição final eventualmente pode conter regiões adjacentes apresentando propriedades similares

Segmentação por divisão e fusão de regiões

Considere uma imagem segmentada em seis regiões

grafo de adjacência de regiões

- A relação de adjacência entre as regiões pode ser representada por um grafo de adjacência
- As regiões são representadas por um conjunto de nós $V = \{V_1, V_2, ..., V_m\}$, tal que a região R_i na imagem e suas propriedades são associadas ao nó V_i
- Uma aresta E_{ij} entre os nós V_i e V_j representa a adjacência entre as regiões R_i e R_i
- Duas regiões R_i e R_j são adjacentes se existir um pixel na região R_i que seja adjacente a um pixel na região R_i por meio de vizinhança-4 ou vizinhança-8.

Segmentação por divisão e fusão de regiões

Método útil para segmentação de imagens complexas

Algoritmo Divisão e união de regiões

- 1: Dividir em sub-regiões distintas qualquer região R_i em que $P(R_i) = FALSO$.
- 2: Unir quaisquer regiões adjacentes R_i e R_j tal que $P(R_i \cup R_j) = VERDADEIRO$.
- 3: Parar quando nenhuma divisão ou nenhuma fusão for mais possível.
- Processo Recursivo

PDI

Segmentação de Imagens

- Exemplo: Simple Linear Iterative Clustering (SLIC)
- Usa K-means
- Usa o conceito de superpixel e um espaço 5D (R,G,B,x,y)
- Requer (número de aglomerados e parâmetro de compacidade para definir a semelhança e refinamento das regiões, além de outros parâmetros)

Acesso em 04/2023: https://scikit-

image.org/docs/dev/api/skimage.segmentation.html#skimage.segmentation.slic

Exemplo: Simple Linear Iterative Clustering (SLIC)

```
# Importing required boundaries
from skimage.segmentation import slic, mark_boundaries
from skimage.data import retina

# Setting the plot figure as 15, 15
plt.figure(figsize=(15, 15))

# Sample Image of scikit-image package
retina = retina()
```

Exemplo: Simple Linear Iterative Clustering (SLIC)

```
Applying SLIC segmentation
# for the edges to be drawn over
retina segments = slic(retina,
                          n segments=20,
                          compactness=1)
plt.subplot(1, 2, 1)
# Plotting the original image
plt.imshow(retina)
# Detecting boundaries for labels
plt.subplot(1, 2, 2)
# Plotting the ouput of marked boundaries
 function i.e. the image with segmented boundaries
plt.imshow(mark boundaries(retina, retina segments))
```


n_segments=20 e compactness=1)

Exemplo: Simple Linear Iterative Clustering (SLIC)

Exercícios

- 1. Exercícios listados na página 200 do livro Análise de Imagens Digitais: Princípios, Algoritmos e Aplicações (Hélio Pedrini), tópico 5.5 Problemas. Total de 15 exercícios.
- 2. Dada a imagem à direita, desenvolva um método capaz de segmentar as regiões "circulares" em azul/violeta. Descreva cada etapa utilizada para caracterizar o método. Em seguida, considere algumas regiões de controle e calcule as taxas de acerto e erro do método. O programa deve fornecer como saída uma imagem com as regiões circulares segmentadas e as taxas obtidas.

Referências

 Pedrini, H., Schwartz, W. R. Análise de Imagens Digitais: Princípios Algoritmos e Aplicações. São Paulo: Thomson Learning, 2008. Hélo Pedriti
Willam Robors Schwartz

Análise de Imagens
Digitais

Principlor, Algoritums
e Aglicurées

Leitura: Capítulo 5

2. González, R. C., Woods, R. E. Processamento de Imagens Digitais. São Paulo: Edgard Blücher Itda, 2000.

Leitura: Capítulo 10, tópicos 10.1 a 10.4

Backes, A. R., Sá Junior, J. J. De M. Introdução à Visão Computacional Usando MatLab. Rio de Janeiro: Alta Books, 2016.

Leitura: Capítulo 7, tópicos 7.1 e 7.2