Communication Systems (ECE4572) Fall 2013

Homework 8

Assigned Nov. 15, due Nov. 21.

Objectives/Preparation: Study the principle of matched filtering. Understand the relationship between bit SNR and bit error rate.

Problem 1. The received signal in a PSK or QAM system is given by

$$v(t) = \sum_{n} d(n)g(t - nT) + w(t) \tag{1}$$

where d(n) are the data symbols, g(t) is the basic pulse (rectangular in time, with amplitude A and duration T), and $w_c(t)$ is additive white Gaussian noise (AWGN). The noise is zero-mean, with independent real and imaginary parts, each of p.s.d. N_0 . The receiver employs a filter matched to the pulse g(t), and samples the filter output at times nT. Show that the resulting samples are given by

$$y(nT) = d(n)E_q + z(nT) \tag{2}$$

or shortly,

$$y[n] = d(n)E_q + z[n] \tag{3}$$

where E_g is the energy of the pulse g(t) and z[n] = z(nT) is the sequence of noise samples. Determine the statistical properties of the noise sequence: (i) determine the power $\sigma_z^2 = E\{|z^2[n]|\}$; (ii) specify the p.d.f. of a single sample z[n], and (iii) determine the auto-correlation $R_z[m] = E\{z[n+m]z^*[n]\}$. Make a conclusion as to whether the noise samples z[n] are independent. Hint: For part (iii), begin by expressing the p.s.d. $S_z(f)$ of the noise z(t) at the output of the matched filter in terms of the p.s.d. $S_w(f)$ of the input noise w(t); find $R_z(\tau)$ as the inverse Fourier transform of $S_z(f)$, and finally find $R_z[m]$ as $R_z(mT)$.

Problem 2. Consider a BPSK communication system operating over an AWGN channel. Determine the bit error rate (BER), i.e. the probability of bit error P_e as a function of the bit SNR E_b/N_0 . Use Matlab to plot P_e vs. E_b/N_0 . Specifically, show P_e on the logarithmic scale vs. E_b/N_0 in dB.

- (i) If E_b/N_0 is 4 dB, what is the resulting P_e ?
- (ii) If E_b/N_0 is 8 dB, what is the resulting P_e ?
- (iii) If E_b/N_0 is 10 dB, what is the resulting P_e ?
- (iv) If it is required that the BER be kept below 10^{-5} what does the bit SNR have to satisfy?
- (v) If $N_0 = 4 \cdot 10^{-21}$ W/Hz, and the link attenuation is 144 dB, what energy per bit $E_{b,tx}$ should be used at the transmitter so as to satisfy the requirement (iv)?
- (vi) What is the corresponding transmit power if the system uses rectangular pulses and the bit rate is 1 Mbps?
- (vii) If the transmit power is limited to 1 W, what is the maximum bit rate that can be supported while keeping the BER below 10^{-5} ?

Report: Your typed report should contain a cover page with your name, and a few paragraphs of text (including any figures and equations) describing your solution to each problem.