

R

Свежие комментарии

- Валерий к записи AVR Урок 34.
 Дисплей TFT 240×320 8bit. Часть 5
- Narod Stream к записи STM Урок 88. SD. SPI. FATFS. Часть 3
- Anh к записи STM Урок 88. SD. SPI. FATFS. Часть 3
- Narod Stream к записи STM Урок 29. HAL. DAC. Triangle. DMA
- Narod Stream к записи STM Урок
 29. HAL. DAC. Triangle. DMA

Форум. Последние ответы

- П imperror в Программирование МК STM32
 - 1 час, 59 мин. назад
- П мінаі в Программирование МК STM32
 - 1 день, 3 час. назад
- П imperror в Программирование МК STM32
 - 6 дн., 6 час. назад
- П Rocket в Программирование МК STM32
 - 1 неделя, 2 дн. назад
- Narod Stream в Программирование МК STM32
 - 1 неделя, 2 дн. назад

Архивы

- Ноябрь 2017
- Октябрь 2017
- Сентябрь 2017
- Август 2017
- Июль 2017
- Июнь 2017
- Май 2017
- Апрель 2017Март 2017
- Mapt 2017
- Февраль 2017
- Январь 2017
- Декабрь 2016
- Ноябрь 2016

Главная > Программирование STM32 > STM Урок 45. Подключаем гироскоп LSM6DS0. Часть 2

STM Урок 45. Подключаем гироскоп LSM6DS0. Часть 2

Stream Опубликовано в Программирование STM32 — Нет комментариев

Программирование

Заходи к нам! Уникальный про языке С!

mcu-c.ru Адрес и телефон

Нужно программир-е контроллеров?

Комплексное обучение. Доступные цены. Минимальные сроки. Большой опыт! О компании Услуги Продукция Преимущества festo.com Адрес и телефон

Урок 45

Часть 2

Подключаем гироскоп LSM6DS0

В предыдущей части нашего урока мы написали все макросы, которые внесли удобства в чтение и написание кода, написали функцию инициализации и проверили её на практике.

Добавим ещё одну функцию Gyro_GetXYZ, предназначенную для опроса осей гироскопа. Сделаем её полностью на основе подобной для акселерометра (Accel_GetXYZ), скопировав в функцию также и весь код. Исправим код, используя в опросе регистры, предназначенные именно для чтения осей гироскопа

```
void Gyro_GetXYZ(int16_t* pData)
{
    uint8_t buffer[6];
    uint8_t i=0;
    buffer[0]=Accel_IO_Read(0xD6,L
SM6DS0_ACC_GYRO_OUT_X_L_G);
```


Заходите на канал Narod Stream

```
buffer[1]=Accel_IO_Read(0xD6,L
SM6DS0\_ACC\_GYRO\_OUT\_X\_H\_G);
       buffer[2]=Accel_IO_Read(0xD6,L
SM6DS0_ACC_GYRO_OUT_Y_L_G);
      buffer[3]=Accel IO Read(0xD6,L
SM6DS0 ACC GYRO OUT Y H G);
       buffer[4]=Accel_IO_Read(0xD6,L
SM6DS0_ACC_GYRO_OUT_Z_L_G);
       buffer[5]=Accel IO Read(0xD6,L
SM6DS0 ACC GYRO OUT Z H G);
       for(i=0;i<3;i++)
           pData[i] = ((int16 t)
((uint16 t)buffer[2*i+1] << 8) + buffer[2*i]);
  }
  Функцию Accel_ReadAcc также для
         переименуем в более
порядка
универсальную - AccelGyro_Read. То же
самое проделаем и с прототипом данной
функции
  void AccelGyro_Read(void)
  {
       int16_t buffer[3] = \{0\};
  Исправим в ней строку
       int16_t xval, yval, zval;
       Gyro_GetXYZ(buffer);
  Раскомментируем
                      строки
отвечающие за вывод считанной с осей
информации в текстовый вид, а в
графический закомментируем
       sprintf(str1,"X:%06d Y:%06d
Z:%06drn", xval, yval, zval);
       HAL_UART_Transmit_DMA(&hu
art2, (uint8_t*)str1,strlen(str1));
       buf2[0]=0x11;
  //
  //
       buf2[1]=0x55;
  //
       buf2[2]=(uint8_t)(xval>>8);
  //
       buf2[3]=(uint8_t)xval;
  //
       buf2[4]=(uint8_t)(yval>>8);
  //
        buf2[5]=(uint8_t)yval;
  //
        buf2[6]=(uint8_t)(zval>>8);
  //
        buf2[7]=(uint8_t)zval;
```

Рубрики

- Программирование AVR (131)
- Программирование РІС (2)
- Программирование STM32 (196)
- Тесты устройств и аксессуаров (1)

	7
Э1 ДЕНЬ	108 025 12 124
оп дней	26 364 3 823
24 4ACA	4 350 969
сегодня	3 714 813
ны чинип	168 29

50D вспышка с... носки платье купи... 2 284,73 руб.

ЖК-дисплє экран tft купи 630,21 г

Соберем код, прошьем контроллер и посмотрим: при вращении платы против часовой стрелки относительно вертикальной оси должен загораться

 $HAL_UART_Transmit_DMA(\&h$

Здесь тоже немного исправим код

В бесконечном цикле в функции main() раскомментируем и исправим

/* USER CODE BEGIN 3 */
AccelGyro Read();

if(zval>500)

//

uart2,buf2,8);

вызов функции

зелёный светодиод. Затем проверим данные в мониторе порта Arduino. Должен быть вот такой резултьтат.

```
X:001578 Y:008086 Z:-03865
X:000845 Y:008222 Z:-02895
X:-00323 Y:006354 Z:-01348
X:-00657 Y:-01131 Z:000323
X:-02944 Y:-10370 Z:003685
X:-07702 Y:-19699 Z:007720
X:-06648 Y:-24588 Z:009093
X:-03149 Y:-20381 Z:007676
X:-02230 Y:-14940 Z:006014
X:-02794 Y:-09631 Z:002280
X:-03097 Y:-07377 Z:-00142
X:-02752 Y:-06021 Z:000001
X:000189 Y:-01310 Z:-01925
X:009143 Y:012933 Z:-08242
X:010688 Y:020423 Z:-09788
X:007864 Y:021607 Z:-09634
X:003084 Y:009322 Z:-04361
X:002698 Y:000793 Z:-01602
X:-00537 Y:000170 Z:-00741
X:001125 Y:-02924 Z:001704
```

Попробуем немного скорректировать показания, т.к. если не крутить плату, то показания несколько будут отличаться от

```
xval=buffer[0]-103;
yval=buffer[1]-47;
zval=buffer[2]-41;
```

У меня получились такие цифры, у Вас, возможно будут другие. Пока другого способа калибровки датчика я не нашел.

Соберем проект и еще раз посмотрим

Теперь наоборот, раскомментируем код для визуализации, а для текстового вывода закомментируем.

```
zval=buffer[2];
        sprintf(str1,"X:%06d Y:%06d
Z:%06drn", xval, yval, zval);
        HAL_UART_Transmit_DMA(&h
uart2, (uint8_t*)str1,strlen(str1));
       buf2[0]=0x11;
       buf2[1]=0x55;
       buf2[2]=(uint8_t)(xval>>8);
       buf2[3]=(uint8_t)xval;
       buf2[4]=(uint8_t)(yval>>8);
       buf2[5]=(uint8_t)yval;
       buf2[6]=(uint8_t)(zval>>8);
       buf2[7]=(uint8_t)zval;
       HAL_UART_Transmit_DMA(&hu
art2,buf2,8);
```

Соберем код и прошьем контроллер. Запустим сначала программу NS Port Monitor. Покрутим плату. Результат должен быть таким (нажмите на картинку для увеличения изображения):

Теперь запустим ещё одну программу, NS Port Visual. Также покрутим плату. Яндекс.Директ

магазине в Минске. алрес магазина каталог компонентов каталог приборов

наборы и модули

ru-chipdip.by

Завтра будут заморозки? Смотрите прогноз погоды на ноябрь. vandex.by

Результат должен быть таким:

Предыдущая часть
Программирование МК STM32
Следующий урок

Исходный код

Техническая документация на датчик

Техническая документация на плату расширения Программа Hyper Terminal Программа NS Port Monitor Программа NS Port Visual

Отладочную плату можно приобрести здесь Nucleo STM32F401RE

Оценочную плату можно приобрести здесь STM32 X-NUCLEO-IKS01A1

Смотреть ВИДЕОУРОК

- Post Views: 27
- « AVR УРОК 39. Акселерометр LSM6DS3.

Часть 4

STM Урок 22. HAL. I2C. I2C to LCD2004 →

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены * **Комментарий** Наверх