Seminar 1 Probabilities

- 1. Let A be a continuous r.v. with distribution $\mathcal{U}[0,6]$
 - a. Draw the PDF of A
 - b. Compute the probability that A > 1
 - c. Compute the probability that $A \in (0,2)$
 - d. Draw the CDF function and write its mathematical expression
 - e. What is the distribution of B = A 2?
 - f. What is the distribution of C = 3 * A?
- 2. Let A be a r.v. with distribution \mathcal{N} ($\mu = 1, \sigma^2 = 20$).
 - a. Compute the probability that $A \in [2, 4]$
 - b. What is the distribution of B = A 2?
 - c. What is the maximum value of $w_A(x)$ and for what x is it reached?
 - d. (**) What is the distribution of C = 3 * A?
- 3. Knowing that the IQ score follows a distribution \mathcal{N} ($\mu = 100, \sigma = 15$), find:
 - a. The probability that a random person has IQ score > 130
 - b. If the total population is 8 billion, how many people have IQ smaller than 75
 - c. (**) What is the minimum IQ needed in order to be among the top 2%?
- 4. Let A be a **discrete** random variable with possible values $\{0, 1, 2, \dots 10\}$, all values having equal probability.
 - a. Draw the distribution (PMF) of A
 - b. Find the probability that $A \in [3,7]$
 - c. What is the probability that A is an odd number?
- 5. Compute the probability that three r.v. X, Y and Z i.i.d. $\mathcal{N}(-1,1)$ are all positive simultaneously

- 6. Compute the probability that at least one of three r.v. X, Y and Z i.i.d. $\mathcal{N}(-1, 1)$ is positive.
- 7. Compute the average value, the average squared value, and the variance for a continuous random variable with the uniform distribution $\mathcal{U}[2, 10]$.