Application of Classification Models

Dataset Link

https://archive.ics.uci.edu/ml/machine-learning-databases/adult/ (https://archive.ics.uci.edu/ml/machine-learning-databases/adult/)

Problem 1: Prediction task is to determine whether a person makes over 50K a year.

Problem 2: Which factors are important

Problem 3: Which algorithms are best for this dataset

Solution

Importing the required libraries...

In [237]:

```
import numpy as np
import pandas as pd
import xgboost as xgb
import matplotlib.pyplot as plt
import seaborn as sns
from xgboost.sklearn import XGBClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier

from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import SelectFromModel
from sklearn.model_selection import train_test_split
from xgboost import plot_tree , plot_importance
from sklearn.metrics import accuracy_score , classification_report , confusion_matrix , pre
```

Reading Dataset...

```
In [239]:
```

```
# Loading Dataset
df_AdultData_trainSet = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databas
df_AdultData_testSet = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-database
```

Data Preprocessing Steps

```
In [240]:
```

```
print(df_AdultData_trainSet.shape, df_AdultData_testSet.shape)
(32561, 15) (16281, 15)
```

In [241]:

df_AdultData_trainSet.head()

Out[241]:

	0	1	2	3	4	5	6	7	8	9	10	11
0	39	State- gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in- family	White	Male	2174	0
1	50	Self- emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Male	0	0
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	White	Male	0	0
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black	Female	0	0
4												•

In [242]:

df_AdultData_testSet.head()

Out[242]:

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	25	Private	226802	11th	7	Never- married	Machine- op-inspct	Own- child	Black	Male	0	0	40
1	38	Private	89814	HS- grad	9	Married- civ- spouse	Farming- fishing	Husband	White	Male	0	0	50
2	28	Local- gov	336951	Assoc- acdm	12	Married- civ- spouse	Protective- serv	Husband	White	Male	0	0	40
3	44	Private	160323	Some- college	10	Married- civ- spouse	Machine- op-inspct	Husband	Black	Male	7688	0	40
4	18	?	103497	Some- college	10	Never- married	?	Own- child	White	Female	0	0	30
4													•

In [243]:

10

11

12

13

16281 non-null int64

16281 non-null int64

16281 non-null int64

dtypes: int64(6), object(9)

memory usage: 1.9+ MB

16281 non-null object 16281 non-null object

```
# checking whether null values exist or not in training set
df_AdultData_trainSet.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):
      32561 non-null int64
1
      32561 non-null object
      32561 non-null int64
2
3
      32561 non-null object
4
     32561 non-null int64
     32561 non-null object
5
6
     32561 non-null object
     32561 non-null object
7
     32561 non-null object
8
9
      32561 non-null object
     32561 non-null int64
10
11
     32561 non-null int64
     32561 non-null int64
12
      32561 non-null object
13
      32561 non-null object
14
dtypes: int64(6), object(9)
memory usage: 3.7+ MB
In [244]:
# checking whether null values exist or not in test set
df_AdultData_testSet.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16281 entries, 0 to 16280
Data columns (total 15 columns):
0
      16281 non-null int64
1
      16281 non-null object
2
     16281 non-null int64
3
     16281 non-null object
4
     16281 non-null int64
5
      16281 non-null object
      16281 non-null object
6
7
     16281 non-null object
     16281 non-null object
8
     16281 non-null object
9
```

we can see that there is no null values present in the given datasets but we have values in form of '?'. we need to address them and need to add column headings as well.

```
In [245]:
# Adding column names...
'hours_per_week','native_country', 'wage_class']
df_AdultData_trainSet.columns = col_labels
df_AdultData_testSet.columns = col_labels
In [246]:
df_AdultData_trainSet.head(1)
Out[246]:
                fnlwgt education education_num
       workclass
                                            marital_status occupation
                                                                  relationship
                                                             Adm-
0
    39
                77516
                       Bachelors
        State-gov
                                         13
                                             Never-married
                                                                  Not-in-family
                                                            clerical
In [247]:
df_AdultData_testSet.head(1)
Out[247]:
                 fnlwgt education education_num
       workclass
                                             marital_status
                                                        occupation
                                                                   relationship
                                                           Machine-
0
    25
          Private 226802
                            11th
                                             Never-married
                                                                     Own-child
                                                           op-inspct
In [248]:
# trimming white spaces across the datasets
df_AdultData_trainSet=df_AdultData_trainSet.apply(lambda x: x.str.strip() if x.dtype == "ot
df_AdultData_testSet=df_AdultData_testSet.apply(lambda x: x.str.strip() if x.dtype == "obje")
In [249]:
```

df_AdultData_trainSet=df_AdultData_trainSet.drop_duplicates(keep='first')

df_AdultData_testSet=df_AdultData_testSet.drop_duplicates(keep='first')

check duplicates and remove the same

if(df_AdultData_trainSet.duplicated().any()):

if(df_AdultData_testSet.duplicated().any()):

```
In [250]:
```

```
# finding unique values present in each categorical features
for col in df_AdultData_trainSet.columns:
    if df_AdultData_trainSet[col].dtypes == 'object':
        unique cat = len(df AdultData trainSet[col].unique())
        cat_names = df_AdultData_trainSet[col].unique()
        print("{col} has {unique_cat} unique categories - {cat_names}"
              .format(col=col,unique_cat=unique_cat, cat_names= cat_names))
workclass has 9 unique categories - ['State-gov' 'Self-emp-not-inc' 'Privat
e' 'Federal-gov' 'Local-gov' '?'
 'Self-emp-inc' 'Without-pay' 'Never-worked']
education has 16 unique categories - ['Bachelors' 'HS-grad' '11th' 'Masters'
'9th' 'Some-college' 'Assoc-acdm'
 'Assoc-voc' '7th-8th' 'Doctorate' 'Prof-school' '5th-6th' '10th'
 '1st-4th' 'Preschool' '12th']
marital_status has 7 unique categories - ['Never-married' 'Married-civ-spous
e' 'Divorced' 'Married-spouse-absent'
 'Separated' 'Married-AF-spouse' 'Widowed']
occupation has 15 unique categories - ['Adm-clerical' 'Exec-managerial' 'Han
dlers-cleaners' 'Prof-specialty'
 'Other-service' 'Sales' 'Craft-repair' 'Transport-moving'
 'Farming-fishing' 'Machine-op-inspct' 'Tech-support' '?'
 'Protective-serv' 'Armed-Forces' 'Priv-house-serv']
relationship has 6 unique categories - ['Not-in-family' 'Husband' 'Wife' 'Ow
n-child' 'Unmarried' 'Other-relative']
race has 5 unique categories - ['White' 'Black' 'Asian-Pac-Islander' 'Amer-I
ndian-Eskimo' 'Other']
sex has 2 unique categories - ['Male' 'Female']
native_country has 42 unique categories - ['United-States' 'Cuba' 'Jamaica'
'India' '?' 'Mexico' 'South'
 'Puerto-Rico' 'Honduras' 'England' 'Canada' 'Germany' 'Iran'
 'Philippines' 'Italy' 'Poland' 'Columbia' 'Cambodia' 'Thailand' 'Ecuador'
 'Laos' 'Taiwan' 'Haiti' 'Portugal' 'Dominican-Republic' 'El-Salvador'
 'France' 'Guatemala' 'China' 'Japan' 'Yugoslavia' 'Peru'
 'Outlying-US(Guam-USVI-etc)' 'Scotland' 'Trinadad&Tobago' 'Greece'
 'Nicaragua' 'Vietnam' 'Hong' 'Ireland' 'Hungary' 'Holand-Netherlands']
wage_class has 2 unique categories - ['<=50K' '>50K']
In [251]:
# Replacing '?' with 'unknown'
df AdultData trainSet = df AdultData trainSet.replace('?', 'unknown')
df AdultData testSet = df AdultData testSet.replace('?', 'unknown')
In [252]:
```

```
# Removing .symbol; in the test set for wage class column
df_AdultData_testSet['wage_class']=df_AdultData_testSet['wage_class'].replace({'<=50K.': '<</pre>
```

In [253]:

```
df_AdultData_testSet.tail()
```

Out[253]:

gt	education	education_num	marital_status	occupation	relationship	race	sex	capital_(
19	Bachelors	13	Divorced	Prof- specialty	Not-in-family	White	Female	
03	HS-grad	9	Widowed	unknown	Other- relative	Black	Male	
83	Bachelors	13	Married-civ- spouse	Prof- specialty	Husband	White	Male	
91	Bachelors	13	Divorced	Adm- clerical	Own-child	Asian- Pac- Islander	Male	5
48	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	
4								>

Exploring Data - Analysis

In [254]:

```
df_AdultData_trainSet.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 32537 entries, 0 to 32560
Data columns (total 15 columns):
                  32537 non-null int64
age
workclass
                  32537 non-null object
fnlwgt
                  32537 non-null int64
education
                  32537 non-null object
                  32537 non-null int64
education num
marital_status
                  32537 non-null object
occupation
                  32537 non-null object
                  32537 non-null object
relationship
race
                  32537 non-null object
                  32537 non-null object
                  32537 non-null int64
capital_gain
capital_loss
                  32537 non-null int64
hours_per_week
                  32537 non-null int64
native_country
                  32537 non-null object
wage_class
                  32537 non-null object
dtypes: int64(6), object(9)
memory usage: 4.0+ MB
```

In [255]:

df_AdultData_testSet.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 16276 entries, 0 to 16280 Data columns (total 15 columns): 16276 non-null int64 workclass 16276 non-null object fnlwgt 16276 non-null int64 education 16276 non-null object education_num 16276 non-null int64 marital_status 16276 non-null object 16276 non-null object occupation relationship 16276 non-null object 16276 non-null object race 16276 non-null object sex capital_gain 16276 non-null int64 capital_loss 16276 non-null int64 hours_per_week 16276 non-null int64 16276 non-null object native_country wage_class 16276 non-null object dtypes: int64(6), object(9) memory usage: 2.0+ MB

In [256]:

df_AdultData_trainSet.describe()

Out[256]:

	age	fnlwgt	education_num	capital_gain	capital_loss	hours_per_wee
count	32537.000000	3.253700e+04	32537.000000	32537.000000	32537.000000	32537.00000
mean	38.585549	1.897808e+05	10.081815	1078.443741	87.368227	40.44032
std	13.637984	1.055565e+05	2.571633	7387.957424	403.101833	12.34688
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.00000
25%	28.000000	1.178270e+05	9.000000	0.000000	0.000000	40.00000
50%	37.000000	1.783560e+05	10.000000	0.000000	0.000000	40.00000
75%	48.000000	2.369930e+05	12.000000	0.000000	0.000000	45.00000
max	90.000000	1.484705e+06	16.000000	99999.000000	4356.000000	99.00000
4						•

```
In [257]:
values_dict= {'<=50K':0, '>50K':1} # mapping string string values with numericalclass value
colname='wage_class'
if df_AdultData_trainSet[colname].dtype==np.object:
    df_AdultData_trainSet[colname]=df_AdultData_trainSet[colname].map(values_dict)
else:
    df_AdultData_trainSet
if df_AdultData_testSet[colname].dtype==np.object:
    df_AdultData_testSet[colname]=df_AdultData_testSet[colname].map(values_dict)
else:
    df_AdultData_testSet
print("Unique values of wage_class after replacing")
df_AdultData_trainSet['wage_class'].unique()
Unique values of wage_class after replacing
Out[257]:
array([0, 1], dtype=int64)
In [258]:
df_AdultData_testSet['wage_class'].unique()
Out[258]:
array([0, 1], dtype=int64)
In [259]:
# One Hot Encoding
object_cols = df_AdultData_trainSet.dtypes[df_AdultData_trainSet.dtypes == 'object'].index
object_cols
Out[259]:
Index(['workclass', 'education', 'marital_status', 'occupation',
       'relationship', 'race', 'sex', 'native_country'],
      dtype='object')
In [260]:
# One Hot Encoding
object_cols_test = df_AdultData_testSet.dtypes[df_AdultData_testSet.dtypes == 'object'].ind
object_cols_test
```

Out[260]:

dtype='object')

```
In [261]:
# Training Set
if any(x in object_cols for x in df_AdultData_trainSet.columns): # list comprehension for d
        for cols in object_cols:
            df_AdultData_trainSet = df_AdultData_trainSet.join(pd.get_dummies(df_AdultData_
        df_AdultData_trainSet=df_AdultData_trainSet.drop(object_cols, axis=1)
# Test set
if any(x in object_cols_test for x in df_AdultData_testSet.columns): # list comprehension f
        for cols in object_cols_test:
            df AdultData_testSet = df_AdultData_testSet.join(pd.get_dummies(df_AdultData_te
        df_AdultData_testSet=df_AdultData_testSet.drop(object_cols_test, axis=1)
In [265]:
df_AdultData_trainSet.head(1)
Out[265]:
                                                                            workcla
   age fnlwgt education_num capital_gain capital_loss hours_per_week wage_class
    39
        77516
                                  2174
                                                0
                                                                         0
                         13
                                                              40
1 rows × 101 columns
In [266]:
df_AdultData_testSet.head(1)
Out[266]:
                                                                             workc
        fnlwgt education_num capital_gain capital_loss hours_per_week wage_class
    25
        226802
                                                              40
                                                                          0
1 rows × 100 columns
```

Seperating the target variable from rest of the dataset.

In [309]:

```
dep_feature=[x for x in df_AdultData_trainSet.columns.tolist() if x== 'wage_class' ]
indep_feature=[x for x in df_AdultData_trainSet.columns.tolist() if x!= 'wage_class' ]
df_target= df_AdultData_trainSet[dep_feature]
df_feature=df_AdultData_trainSet[indep_feature]
```

```
In [310]:
df_target.shape, df_feature.shape
Out[310]:
((32537, 1), (32537, 100))
In [311]:
df_target.tail(1)
Out[311]:
       wage_class
32560
In [312]:
df_feature.tail(1)
Out[312]:
                                                                         workclass_Fede
            fnlwgt education_num capital_gain capital_loss hours_per_week
       age
32560
        52
            287927
                                       15024
1 rows × 100 columns
```

Feature Selection and Modeling -XGBoost

In [326]:

Out[326]:

In [327]:

```
# From XGBoost model , Select important features
xgb_model.feature_importances_
```

Out[327]:

```
array([1.86756238e-01, 3.56493920e-01, 5.72616756e-02, 7.67754298e-03,
      9.02111363e-03, 9.84644890e-02, 4.86244401e-03, 7.16570718e-03,
      0.0000000e+00, 2.02175304e-02, 5.88611653e-03, 8.63723643e-03,
      3.90275102e-03, 0.00000000e+00, 1.91938574e-03, 1.59948820e-03,
      1.02367240e-03, 6.39795253e-05, 6.39795253e-05, 7.67754333e-04,
      2.55918101e-04, 4.60652588e-03, 5.43825980e-03, 1.14523349e-02,
      0.00000000e+00, 1.26679465e-02, 4.54254635e-03, 0.00000000e+00,
      2.11132434e-03, 7.10172765e-03, 1.91938583e-04, 9.46896989e-03,
      1.15163147e-03, 7.35764578e-03, 8.31733865e-04, 1.03007033e-02,
      0.0000000e+00, 1.51631478e-02, 1.31797828e-02, 3.07101733e-03,
      3.26295593e-03, 6.90978905e-03, 4.54254635e-03, 0.00000000e+00,
      1.14523349e-02, 3.58285359e-03, 1.33717209e-02, 4.35060775e-03,
      6.71785045e-03, 1.27959056e-02, 7.74152251e-03, 5.11836202e-04,
      1.79142680e-03, 4.79846448e-03, 7.67754333e-04, 2.87907873e-03,
      6.58989139e-03, 6.39795253e-05, 1.35636600e-02, 0.00000000e+00,
      1.91938583e-04, 2.55918101e-04, 1.27959051e-04, 5.11836202e-04,
      6.39795253e-05, 0.00000000e+00, 0.00000000e+00, 2.55918101e-04,
      6.39795253e-05, 5.11836202e-04, 0.00000000e+00, 0.00000000e+00,
      0.00000000e+00, 0.00000000e+00, 0.0000000e+00, 0.00000000e+00,
      0.00000000e+00, 1.91938583e-04, 1.91938583e-04, 0.00000000e+00,
      2.55918101e-04, 1.27959051e-04, 1.27959051e-04, 0.00000000e+00,
      1.47152913e-03, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
      5.75815735e-04, 1.27959051e-04, 0.00000000e+00, 1.91938583e-04,
      0.00000000e+00, 1.27959051e-04, 0.00000000e+00, 0.00000000e+00,
      0.00000000e+00, 8.18937924e-03, 6.39795253e-05, 0.000000000e+00],
      dtype=float32)
```

In [328]:

df_feature_importances = pd.DataFrame({'feature':df_feature.columns,'importance':np.round(x
df_feature_importances = df_feature_importances.sort_values('importance',ascending=False)
df_feature_importances.head(25)

Out[328]:

	feature	importance
1	fnlwgt	0.3565
0	age	0.1868
5	hours_per_week	0.0985
2	education_num	0.0573
9	workclass_Private	0.0202
37	occupation_Craft-repair	0.0152
58	sex_Female	0.0136
46	occupation_Sales	0.0134
38	occupation_Exec-managerial	0.0132
49	relationship_Husband	0.0128
25	education_HS-grad	0.0127
23	education_Bachelors	0.0115
44	occupation_Prof-specialty	0.0115
35	occupation_Adm-clerical	0.0103
31	marital_status_Married-civ-spouse	0.0095
4	capital_loss	0.0090
11	workclass_Self-emp-not-inc	0.0086
97	native_country_United-States	0.0082
50	relationship_Not-in-family	0.0077
3	capital_gain	0.0077
33	marital_status_Never-married	0.0074
7	workclass_Local-gov	0.0072
29	marital_status_Divorced	0.0071
41	occupation_Machine-op-inspct	0.0069
48	occupation_Transport-moving	0.0067

In [329]:

df_important_features=df_feature_importances[df_feature_importances.importance>=0.01]
df_important_features

Out[329]:

	feature	importance
1	fnlwgt	0.3565
0	age	0.1868
5	hours_per_week	0.0985
2	education_num	0.0573
9	workclass_Private	0.0202
37	occupation_Craft-repair	0.0152
58	sex_Female	0.0136
46	occupation_Sales	0.0134
38	occupation_Exec-managerial	0.0132
49	relationship_Husband	0.0128
25	education_HS-grad	0.0127
23	education_Bachelors	0.0115
44	occupation_Prof-specialty	0.0115
35	occupation_Adm-clerical	0.0103

In [330]:

sns.barplot(x=df_important_features.importance , y=df_important_features.feature)
plt.figure(figsize=(15,10))

Out[330]:

<Figure size 1080x720 with 0 Axes>

<Figure size 1080x720 with 0 Axes>

```
In [331]:
```

```
important cols = df important features.feature.values
print(" Important features(columns) returned by model")
important_cols
Important features(columns) returned by model
```

```
Out[331]:
```

```
array(['fnlwgt', 'age', 'hours_per_week', 'education_num',
       'workclass_Private', 'occupation_Craft-repair', 'sex_Female',
       'occupation_Sales', 'occupation_Exec-managerial'
       'relationship_Husband', 'education_HS-grad', 'education_Bachelors',
       'occupation_Prof-specialty', 'occupation_Adm-clerical'],
      dtype=object)
```

Re-fitting the Model with important features

```
In [332]:
```

```
XGB model clf= XGBClassifier(**params)
xgb_model =XGB_model_clf.fit(X=df_feature[important_cols], y=np.ravel(df_target))
xgb_model
```

Out[332]:

```
XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
       colsample_bytree=1, gamma=0.9, learning_rate=1.0, max_delta_step=0,
       max_depth=7, min_child_weight=1, missing=None, n_estimators=400,
       n_jobs=-1, nthread=None, objective='binary:logistic',
       random_state=42, reg_alpha=0, reg_lambda=1, scale_pos_weight=1,
       seed=None, silent=True, subsample=0.6)
```

Model Evaluation on Test Dataset

In [333]:

```
dep feature=[x for x in df AdultData testSet.columns.tolist() if x== 'wage class' ]
indep_feature=[x for x in df_AdultData_testSet.columns.tolist() if x!= 'wage_class' ]
df_target_test= df_AdultData_testSet[dep_feature]
df_feature_test=df_AdultData_testSet[indep_feature]
y_pred=xgb_model.predict(df_feature_test[important_cols])
y_pred_proba=xgb_model.predict_proba(df_feature_test[important_cols])
```

C:\Users\mkarthikeyan\AppData\Local\Continuum\anaconda3\lib\site-packages\sk learn\preprocessing\label.py:151: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty. if diff:

```
In [334]:
print("Predicted target variable (first 5 values):",y_pred[0:5])
print("Predicted target variable probabilities (first 5 values):\n",y_pred_prob[0:5])

Predicted target variable (first 5 values): [0 1 1 1 0]
Predicted target variable probabilities (first 5 values):
  [[1.0618925e-02 9.8938107e-01]
  [9.9997932e-01 2.0655802e-05]
  [9.9920726e-01 7.9273549e-04]
  [9.9999803e-01 1.9444028e-06]
```

Model Evaluation Metrics

[6.8748909e-01 3.1251091e-01]]

```
    Confusion_matrix , Classification report , accuracy score, f-1 score , recall score, precision score ,
    roc_auc curve, auc , precision_recall_curve
```

In [335]:

```
actual_target_variable= df_target_test
predicted_target_variable=y_pred

# confusion matrix
confusion_matrix(y_true=actual_target_variable , y_pred=predicted_target_variable)
```

Out[335]:

```
array([[10738, 1692],
[ 1914, 1932]], dtype=int64)
```

In [336]:

```
# Classification report
classification_report(y_true=actual_target_variable , y_pred=predicted_target_variable , ta
```

Out[336]:

```
recall f1-score
              precision
                                                               <=50K
                                              support\n\n
0.85
         0.86
                   0.86
                             12430\n
                                           >50K
                                                      0.53
                                                                0.50
                                                                          0.
52
        3846\n\ / total
                                  0.77
                                            0.78
                                                      0.78
                                                               16276\n'
```

In [338]:

acc_score= accuracy_score(y_true=actual_target_variable , y_pred=predicted_target_variable)
prec_score=precision_score(y_true=actual_target_variable , y_pred=predicted_target_variable
recl_score= recall_score(y_true=actual_target_variable, y_pred=predicted_target_variable)
f1score= f1_score(y_true= actual_target_variable, y_pred=predicted_target_variable)

In [325]:

```
print("Model Accuracy score (on Test set) :", acc_score )
print("Model Precision score (on Test set) :", prec_score )
print("Model Recall score (on Test set) :", recl_score)
print("Model F-1 score (on Test set) :", f1score)
```

```
Model Accuracy score (on Test set): 0.7861882526419267
Model Precision score (on Test set): 0.5513180033651149
Model Recall score (on Test set): 0.5111804472178887
Model F-1 score (on Test set): 0.5304910955207771
```

Problem 1:

Prediction task is to determine whether a person makes over 50K a year.

Solution:

Yes, we can predict whether a person makes over 50k a year or not using XGBoost Classifier with important features and the accuracy is around 78.5 %

Problem 2:

Which factors are important

Solution:

Following are some of the important features observed by the Model:

In [339]:

```
important_cols = df_important_features.feature.values
print(" Important features(columns) returned by model")
important_cols
```

Important features(columns) returned by model

Out[339]:

Problem 3:

Which algorithms are best for this dataset

Solution:

In [341]:

In [343]:

```
# Fit the Models into classifiers
for clf in zip(model_names, model_classifiers):
    clf[1].fit(df_feature_test, df_target_test)
```

C:\Users\mkarthikeyan\AppData\Local\Continuum\anaconda3\lib\site-packages\ip ykernel_launcher.py:3: DataConversionWarning: A column-vector y was passed w hen a 1d array was expected. Please change the shape of y to (n_samples,), f or example using ravel().

This is separate from the ipykernel package so we can avoid doing imports until

C:\Users\mkarthikeyan\AppData\Local\Continuum\anaconda3\lib\site-packages\sk learn\preprocessing\label.py:95: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_sa mples,), for example using ravel().

y = column_or_1d(y, warn=True)

C:\Users\mkarthikeyan\AppData\Local\Continuum\anaconda3\lib\site-packages\sk learn\preprocessing\label.py:128: DataConversionWarning: A column-vector y w as passed when a 1d array was expected. Please change the shape of y to (n_s amples,), for example using ravel().

y = column_or_1d(y, warn=True)

C:\Users\mkarthikeyan\AppData\Local\Continuum\anaconda3\lib\site-packages\sk learn\utils\validation.py:578: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samp les,), for example using ravel().

y = column_or_1d(y, warn=True)

In [350]:

In [352]:

```
classification_models.loc['accuracy_score','logistic_regression'] = accuracy_score(y_true=
classification_models.loc['precision_score','logistic_regression'] = precision_score(y_true
classification_models.loc['recall_score','logistic_regression'] = recall_score(y_true= df_t
classification_models.loc['f1-score','logistic_regression'] = f1_score(y_true= df_target_te
classification_models.loc['accuracy_score','decision_tree'] = accuracy_score(y_true= df_tar
classification_models.loc['precision_score','decision_tree'] = precision_score(y_true= df_t
classification_models.loc['recall_score','decision_tree'] = recall_score(y_true= df_target_
classification_models.loc['f1-score','decision_tree'] = f1_score(y_true= df_target_test, y_
classification_models.loc['accuracy_score','random_forest'] = accuracy_score(y_true= df_tar
classification_models.loc['precision_score','random_forest'] = precision_score(y_true= df_t
classification_models.loc['recall_score', 'random_forest'] = recall_score(y_true= df_target]
classification_models.loc['f1-score','random_forest'] = f1_score(y_true= df_target_test, y_
classification_models.loc['accuracy_score','xgboost'] = accuracy_score(y_true= df_target_te
classification_models.loc['precision_score','xgboost'] = precision_score(y_true= df_target_
classification_models.loc['recall_score','xgboost'] = recall_score(y_true= df_target_test ,
classification_models.loc['f1-score','xgboost'] = f1_score(y_true= df_target_test, y_pred=
```

C:\Users\mkarthikeyan\AppData\Local\Continuum\anaconda3\lib\site-packages\sk learn\preprocessing\label.py:151: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.

if diff:

C:\Users\mkarthikeyan\AppData\Local\Continuum\anaconda3\lib\site-packages\sk learn\preprocessing\label.py:151: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.

if diff:

C:\Users\mkarthikeyan\AppData\Local\Continuum\anaconda3\lib\site-packages\sk learn\preprocessing\label.py:151: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.

if diff:

C:\Users\mkarthikeyan\AppData\Local\Continuum\anaconda3\lib\site-packages\sk learn\preprocessing\label.py:151: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.

if diff:

In [353]:

```
print("Results of the classification models:")
classification_models
```

Results of the classification models:

Out[353]:

	logistic_regression	decision_tree	random_forest	xgboost
accuracy_score	0.798538	0.854264	0.999877	0.999078
precision_score	0.709225	0.785217	1	0.999218
recall_score	0.24987	0.527561	0.99948	0.99688
f1-score	0.369544	0.631104	0.99974	0.998048

Looks like, Random Forest, XG Boost algorithms works best for the given dataset