人,	这是	C	和大多数其他编程语言的要求。	
----	----	---	----------------	--

指令	源	目的	描述	
vcvttss2si	X/M_{32}	R_{32}	用截断的方法把单精度数转换成整数	
vcvttsd2si	X/M_{64}	R_{32}	用截断的方法把双精度数转换成整数	
vcvttss2siq	X/M_{32}	R_{64}	用截断的方法把单精度数转换成四字整数	
vcvttsd2siq	X/M_{64}	R_{64}	用截断的方法把双精度数转换成四字整数	

图 3-47 双操作数浮点转换指令。这些操作将浮点数转换成整数(X: XMM 寄存器(例如%xmm3); R₃₂: 32 位通用寄存器(例如%eax); R₈₄: 64 位通用寄存器(例如%rax); M₃₂: 32 位内存范围; M₈₄: 64 位内存范围)

指令	源 1	源 2 X	目的	描述 把整数转换成单精度数
vcvtsi2ss	M_{32}/R_{32}			
vcvtsi2sd	M_{32}/R_{32}	X	X	把整数转换成双精度数
vcvtsi2ssq	M_{64}/R_{64}	X	X	把四字整数转换成单精度数
vcvtsi2sdq	M_{64}/R_{64}	X	X	把四字整数转换成双精度数

图 3-48 三操作数浮点转换指令。这些操作将第一个源的数据类型转换成目的的数据类型。第二个源值 对结果的低位字节没有影响(X: XMM 寄存器(例如%xmm3); M_{32} : 32 位内存范围; M_{64} : 64 位 内存范围)

图 3-48 中的指令把整数转换成浮点数。它们使用的是不太常见的三操作数格式,有两个源和一个目的。第一个操作数读自于内存或一个通用目的寄存器。这里可以忽略第二个操作数,因为它的值只会影响结果的高位字节。而我们的目标必须是 XMM 寄存器。在最常见的使用场景中,第二个源和目的操作数都是一样的,就像下面这条指令:

vcvtsi2sdq %rax, %xmm1, %xmm1

这条指令从寄存器%rax读出一个长整数,把它转换成数据类型 double,并把结果存放进XMM 寄存器%xmm1 的低字节中。

最后,要在两种不同的浮点格式之间转换,GCC 的当前版本生成的代码需要单独说明。假设%xmm0 的低位 4 字节保存着一个单精度值,很容易就想到用下面这条指令

vcvtss2sd %xmm0, %xmm0, %xmm0

把它转换成一个双精度值,并将结果存储在寄存器 %xmm0 的低 8 字节。不过我们发现 GCC 生成的代码如下

Conversion from single to double precision

- 1 vunpcklps %xmm0, %xmm0, %xmm0 Replicate first vector element
- 2 vcvtps2pd %xmm0, %xmm0 Convert two vector elements to double

vunpcklps 指令通常用来交叉放置来自两个 XMM 寄存器的值,把它们存储到第三个寄存器中。也就是说,如果一个源寄存器的内容为字 $[s_3, s_2, s_1, s_0]$,另一个源寄存器为字 $[d_3, d_2, d_1, d_0]$,那么目的寄存器的值会是 $[s_1, d_1, s_0, d_0]$ 。在上面的代码中,我们看到三个操作数使用同一个寄存器,所以如果原始寄存器的值为 $[x_3, x_2, x_1, x_0]$,那么该指令会将寄存器的值更新为值 $[x_1, x_1, x_0, x_0]$ 。vcvtps2pd 指令把源 XMM 寄存器中的两个低位单精度值扩展成目的 XMM 寄存器中的两个双精度值。对前面 vunpcklps指令的结果应用这条指令会得到值 $[dx_0, dx_0]$,这里 dx_0 是将 x 转换成双精度后的结果。