Wissenschaftl. Textverarbeitung mit LATEX WS 2015/16 - 10. Vorlesung

Alexander Richter

Institut für Mathematische Optimierung

25. Januar 2016

Rückblick

In der letzten Woche wurde u.a. behandelt:

- ▶ beamer II
- ightharpoonup TikZ II
- ► spezielle Overlay-Effekte

Tagesprogramm

- Nachträge zu TiKZ, beamer
 - Graph-Bibliothek
- 2 Erstellen von Plots
 - Plots in TikZ
 - Plots mit pgfplots
- Weitere nützliche Klassen
- 4 Musterlösungen
- 5 Schluss
- Organisation

remember picture und overlay

- Option remember picture einer tikzpicture Umgebung: sorgt dafür, dass Knotennamen und Positionen auch in anderen Bildern zu Verfügung stehen.
- ► Option overlay für (Teil-)Pfade sorgt dafür, dass diese Teile nicht die Bounding-Box vergrößern

Tagesprogramm

- 1 Nachträge zu TiKZ, beamer
 - Graph-Bibliothek
- 2 Erstellen von Plots
 - Plots in TikZ
 - Plots mit pgfplots
- Weitere nützliche Klassen
- 4 Musterlösungen
- 5 Schluss
- Organisation

Benutzung

```
\usetikzlibrary{graphs}
und dann ...
\usetikzlibrary{graphs.standard}
....
mit lualatex
\usetikzlibrary{graphdrawing.force}
\usetikzlibrary{graphdrawing.layered}
...
```

Beispiele


```
\graph { a -> {b, c} -> d };
\graph [nodes={draw, circle}, clockwise,
radius=.5cm, empty nodes, n=5] {
    subgraph I_n [name=inner] --[complete bipartite]
    subgraph I_n [name=outer] };
\graph [nodes={draw, circle}, clockwise,
radius=.75cm, empty nodes, n=8] {
    subgraph C_n [name=inner] <->[shorten <=1pt, shorten >=1pt]
    subgraph C_n [name=outer] };
    Benötigt wird hier: \usetikzlibrary{graphs.standard}
```

Was es kann

- ▶ kompakte Syntax, um Graphen händisch zu erzeugen
- Syntax vermischt die Philosophien von DOT (graphviz) und TikZ
- für Graphen bis ≈ 100 Knoten

Wie geht's?

- ▶ Intern wird alles über nodes und edges realisiert
- alles könnte auch manuell realisiert werden
- ► Positionen werden grob angegeben
- Ziel: Nutze Graph-Drawing-Algorithmen (nur lualatex)

Los geht's

Konzept Node Chains

```
\tikz [every node/.style = draw]
\graph { foo -> bar -> blub };
```

Knotenoptionen

in eckigen Klammern, nach Knotenspezifikation


```
\graph {
a -> b[draw,red] -> c;
d -> e -> f[draw, circle];
g -> f; };
```

Kantenoptionen

in eckigen Klammern, nach Kantenspezifikation

```
a \longrightarrow b \longrightarrow cd \longrightarrow e \longrightarrow f
```

```
\graph {
a -> [red] b -> c;
d -> e -> [ultra thick] f;
g -> f; };
```

Los geht's

Konzept Node Chains: Knotenname = Knoteninhalt

```
\graph {
a -> b -> c;
d -> e -> f;
g -> f; };
\draw[thick,red] (b)edge(e);
```

Los geht's

Konzept Node Chains: Label gleich Inhalt

Mathemodus?

$$X_1 \xrightarrow{\times_2} X_3, X_4$$

- ▶ mit as= Option
- ▶ oder mit /-Syntax

```
\graph {
x1/$x_1$ -> x2 [as=$x_2$, red] -> x34/{$x_3,x_4$};
x1 -> [bend left] x34;
};
```

Gruppierungen

mit klassischen Scopes { }

```
\graph {
    a -> {
        b -> c,
        d -> e
        }
        -> f
};
```

Bäume

```
root
              child 2
child 1
                                          child 3
           grand child 1 grand child 2 grand child 3
\graph [grow down,
branch right=2.5cm] {
 root -> {
    child 1,
    child 2 -> {
      grand child 1,
      grand child 2
      },
    child 3 -> {
      grand child 3
    }}}:
```

Gruppierungen und Kantenoptionen?

```
\graph {
      a \rightarrow ["$x^2$",red] {
        b \rightarrow c
        d -> e
     } ->["$y^2$"red] f
};
Benötigt \usetikzlibrary{quotes,babel}
```

Gruppierungen und Kantenoptionen?

- ► Kantenoptionen können auch bei Endknoten spezfiziert werden
- >: eingehende Kanten der Gruppe
- <: ausgehende Kanten der Gruppe</p>

```
\graph {
    a -> {
       b[>"$x^2$"] -> c[<"$y^2$"red],
       d -> e
    } -> f
```

Benötigt \usetikzlibrary{quotes,babel}

Nodesets

$$\mathsf{A} \longrightarrow \mathsf{B} \longrightarrow \mathsf{C}$$

► Knoten können wie üblich referenziert werden

```
\node (a) at (0,0) {A};
\node (b) at (1,0) {B};
\node (c) at (2,0) {C};
\graph { (a) -> (b) -> (c) };
```

Nodesets

oder mit Nodesets

Standard Graphen

Benötigt wird hier: \usetikzlibrary{graphs.standard}

Color Classes

- wir können logische Klassen vergeben
- Connector-Syntax: Verbinde automatisch Knoten bestimmter Klassen (untereinander)

a

```
\stackrel{\mathsf{c}}{=} \stackrel{\mathsf{q}}{=}
```

e

```
\tikz \graph [color class=red] { % rote Klasse eingefuehrt
[cycle=red] % aus roten Knoten wird Zykel
b [red], { [red] c ->[bend right] d }, e };
```

Notiz: die Farbbedeutung "red"wird überlagert!

Colorklassen


```
\tikz \graph [color class=red, color class=green,
math nodes, clockwise, n=5] {
  [complete bipartite={red}{green}]
  { [red]
  r_1, r_2 },
  { [green] g_1, g_2, g_3 }
};
```

Connector ohne Colorclasses


```
\tikz [x=8mm, y=6mm, circle]
\graph [nodes={fill=blue!70}, empty nodes, n=8] {
subgraph I_n [name=A] --[butterfly={level=4}]
subgraph I_n [name=B] --[butterfly={level=2}]
subgraph I_n [name=C] --[butterfly]
subgraph I_n [name=D] -- subgraph I_n [name=E]};
```

Etwas genauer: Platzierung der Knoten

- ► \usetikzlibrary{graphs}: online Platzierungsstrategien (keine Information über zukünftige Teilgraphen)
- \usetikzlibrary{graphdrawing}: offline Platzierungsstrategien Nachdem Graph spezifiziert wurde: finde beste Knotenpositionen (Dokument muss lualatex interpretiert werden)
- bisher und in dieser VL: nur online!

Manuelle Platzierung

 $\begin{matrix} c \\ \\ a \longrightarrow b \end{matrix}$

```
\tikz \graph [no placement]
  a[at={(0:0)}]
    -> b[at={(1,0)}]
    -> c[yshift=1cm];
};
\tikz \graph [no placement]
a[x=0,y=0]
  -> b[x=1,y=0]
  -> c[x=0,y=1];
};
```

```
a b c \rightarrow d \rightarrow e \rightarrow f \rightarrow g \rightarrow h \rightarrow i k \rightarrow l
```

```
\tikz
\graph [grow right=7mm ]
{ a,
   b,
   c -> d -> {
      e -> f -> g,
      h -> i
      } -> j,
      k -> 1 };
```

```
a
b
```

```
\tikz
\graph [grow right=7mm
, ... zeige koordinaten ...]
{ a,
   b,
   c -> d -> {
      e -> f -> g,
      h -> i
      } -> j,
      k -> 1 };
```

- branch <left,right,up,down>=: wie neue Chaingroups angelegt werden
- ▶ grow <left,right,up,down>=: wie Chaingroups wachsen

```
\tikz
\graph [branch right=7mm
          ,grow down=9mm]
{ a,
  b,
  c -> d -> {
     e \rightarrow f \rightarrow g,
     h -> i
     } -> j,
     k \rightarrow 1 };
```

- ▶ branch <left,right,up,down> sep=
- Knotengröße wird berücksichtigt, Abstand spezifiziert


```
\graph [grow down sep, branch left sep] {
start -- { an even longer text -- {short, very long text}
-- more text, long -- longer, some text -- a -- b
} -- end };
```

Einladung zum Weiterlesen!

Dieser Foliensatz ist sehr nah am pgfmanual 3.0.1a!

Dort:

- viel mehr Optionen
- viel mehr Möglichkeiten
 - kompakt zu spezifizieren
 - ▶ Stiele ect. differenziert anzupassen

Tagesprogramm

- 1 Nachträge zu TiKZ, beamer
 - Graph-Bibliothek
- Erstellen von Plots
 - Plots in TikZ
 - Plots mit pgfplots
- Weitere nützliche Klassen
- 4 Musterlösungen
- 5 Schluss
- 6 Organisation

Plots und LaTeX

- ► Viele Programme ermöglichen Visualisierung (Matlab, R, Mathematika, Excel, gnuplot, ...)
- Standardverfahren: pdf-Export und Import mit \includegraphics
- ► Probleme: Schriftart und -größe, Legenden, oft Export im Rasterformat (versteckt)

Alternative:

- ► Erstellen eines Plots in Latex (TikZ, pgfplots, gnuplot-Anbindung)
- ► Ermöglicht einheitlichen Stil, gute Qualität

Nachteile: wie üblich . . .

Tagesprogramm

- Nachträge zu TiKZ, beamerGraph-Bibliothek
- 2 Erstellen von Plots
 - Plots in TikZ
 - Plots mit pgfplots
- Weitere nützliche Klassen
- 4 Musterlösungen
- Schluss
- 6 Organisation

Plots direkt in TikZ

- ▶ Plot aus einzelnen Koordinaten (im TEX-Code)
- ▶ Plot Koordinaten einer externen Datei
- ► Plot einfacher Funktionen (evaluiert durch TFX)
- ▶ Plot von Funktionen (evaluiert durch gnuplot)

Die Plot-Pfadoperation

▶ plot coordinates { }


```
\draw (0,0) node{Origin} plot coordinates {(0,0) (1,2) (2,1) (3,-1) (4,0)} node{X-Max};
```

Die Plot-Pfadoperation

node{X-Max};

```
plot[Optionen] coordinates { }
Ori<del>gin</del>
                      X-Max
\draw (0,0) node{Origin} plot[const plot] coordinates
     \{(0,0)\ (1,2)\ (2,1)\ (3,-1)\ (4,0)\}
```

Die Plot-Pfadoperation

```
\draw[fill=blue!60!black] (0,0) node{Origin}
    plot[ybar] coordinates
    {(0,0) (1,2) (2,1) (3,-1) (4,0)}
    node{X-Max};
```

Populäre Plot-Optionen

- ▶ mark= <*,+,x> oder \usetikzlibrary{plotmarks}
- smooth und weitere Optionen
- ► const plot und jump mark
- ▶ ycomb und xcomb (zusammen mit color=, line width=)
- ybar und xbar (Rechteckformen)

Plot aus Raw-Datei

- ► TikZ unterstützt einfaches Dateiformat (nur engl.):
 - eine Zeile je Datenpunkt, Kommentarzeilen mit # oder %
 - ► Zahlen getrennt mit Leerzeichen
 - ▶ nur ersten beiden Zahlen werden berücksichtigt
- entspricht dem Datenformat von gnuplot

Inhalt von vl11-plots-bsp.txt:

```
#x y type
0.00000 0.00000 i
0.52632 0.50235 i
1.05263 0.86873 i
1.57895 0.99997 i
. . .
8.94737 0.45948 i
9.47368 -0.04889 i
10.00000 -0.54402 i
Die ,i' werden ignoriert.
```

Plot aus Raw-Datei: Bsp.


```
\tikz \draw[mark=x,smooth] plot file{vl11-plots-bsp.txt};
```

Plot von Funktionen

- ► Es werden stets (intern) Datenpunkte berechnet (default: 25)
- Funktionenausdruck spezifiziert diese Datenpunkte explizit mit Variable \x:

Bsp.:

► Ausdrücke mit Klammern (...) benötigen zusätzlich {...}

```
\text{tikz[scale=0.1] } \text{draw plot } (\x ,{(\x)*(\x)}); Optionen:
```

- domain=xmin:xmax
- ▶ variable=\t
- samples=<number> oder samples at={ ...}

Anbindung von gnuplot

- wird extern von TEX aufgerufen
- es muss also gnuplot installiert sein!
- pdflatex -shell-escape (Linux)
 (? oder pdflatex -enable-write18 Windows ?)
- veränderte Syntax, insbesondere eindeutige id= Option!


```
\tikz[domain=0:4,scale=0.5]{
\draw[color=blue]plot[id=sin]
function{sin(x)}node[right] {$f(x) = \sin x$};
\draw[color=orange] plot[id=exp] function{0.05*exp(x)}
node[right] {$f(x) = \frac{1}{20} \mathrm e^x$};}
```

Tagesprogramm

- Nachträge zu TiKZ, beamerGraph-Bibliothek
- 2 Erstellen von Plots
 - Plots in TikZ
 - Plots mit pgfplots
- Weitere nützliche Klassen
- 4 Musterlösungen
- 5 Schluss
- 6 Organisation

Paket: pgfplots.sty

- ► \usepackage{pgfplots} basiert auf TikZ
- viele, viele typische Plotfunktionen (vgl. matlab)
- ▶ benötigt kein externes Programm
- ► Syntax sehr ähnlich zu TikZ-internen Plots
- axis-Umgebung im tikzpicture, darin: \addplot...


```
\tikz[scale=0.5]{
\begin{axis}[
title=Sinus,
xlabel={$x$},
ylabel={$y$}]
\addplot[blue]
table {vl11-plots-bsp.txt};
\end{axis}}
```

pgfplots für Funktionen

► Syntax: bessere Zahlendarstellung, Operatoren (z.B. ^) und weniger { . . . }-Paare


```
\tikz[scale=0.5]{\begin{axis}
% density of Normal distribution:
\addplot[red,
domain=-3e-3:3e-3,
samples=201]
{exp(-x^2 / (2e-3^2)) / (1e-3 * sqrt(2*pi))};
\end{axis}}
```

pgfplots spezielle Koordinaten

- axis cs: und axis description cs:
- clip= Option (default: true)


```
\tikz[scale=0.5]{
\begin{loglogaxis}[clip=false]
\addplot[
domain=1:10,
samples=201]
\{(\exp(x))^2\};
\draw[thick, color=blue]
(axis cs: 1,100) -- (axis cs: 8,10e+7);
\draw[thick, color=orange]
(axis description cs: 0,1)--
(axis description cs: 1.2,0);
\end{loglogaxis}}
```

Anpassungsmöglichkeiten

- ► Tiks (Achsenbeschriftung, Abstände, Tik-Label, ...)
- ▶ viele Plotarten (2D-Kurven, 3D, Flächen, ybar, ...)
- verschiedene Achsenumgebungen
- Grids, Grid-Linien
- ► Legenden, Farben
- ► Manual: ~ 500 Seiten

Tagesprogramm

- Nachträge zu TiKZ, beamer
 - Graph-Bibliothek
- 2 Erstellen von Plots
 - Plots in TikZ
 - Plots mit pgfplots
- Weitere nützliche Klassen
- 4 Musterlösungen
- 5 Schluss
- Organisation

Klasse tikzposter.sty

Beispiel-Poster

tikzposter.sty

```
\documentclass[25pt, a0paper, portrait, margin=0mm
, innermargin=15mm, blockverticalspace=15mm
, colspace=15mm, subcolspace=8mm]{tikzposter}
```

Handhabung ähnlich zu beamer

```
\title{Title} \institute{Inst} \author{Auth}
\titlegraphic{Logo}
\usetheme{Basic}
\begin{document}
\maketitle
\block{BlocktitleA}{Blocktext}
\begin{columns}
 \setminus column\{0.3\}
    \block{BlocktitleB}{Blocktext}
  \setminus column\{0.7\}
     \block{BlocktitleC}{Blocktext}
     \note{Notetext}
\end{columns} \end{document}
```

Minimales Beispiel

Wie ist es umgesetzt

- Das gesamte Poster ist in einer tikzpicture Umgebung
- ▶ Blöcke, ect. sind TikZ-Knoten (dynamische Größe) mit eigener Absatzumgebung.
- ▶ großes Papierformat, große Schriften, hohe Auflösung
- relativ neues Paket (bugs ?)

Konsequenzen:

- Problem: Wiederverwendung von Tikzbildern:
 - jetzt: Schrift zu groß
 - absolute Längenangaben
 - ▶ Manche Attribute werden von umgebenem Knoten geerbt Ausweg(?): Saveboxen und Scaleboxen
- außerhalb von Blöcken: Text führt zu Fehlern
- außerhalb von Blöcken: eigene Pfade möglich:
 \draw (0.4 \textheight, 0.4\textwidth) rectangle
 ++(0.1 \textheight, 0.1\textwidth);

Paket calc.sty

- ► \usepackagecalc
- Neudefinition der Kommandos
 - ▶ \setlength
 - ▶ \addtolength
 - ▶ \setcounter
 - ▶ \addtocounter
- erlaubt einfache arithmetische Ausdrücke

```
\setlength{\foo}{\textwidth-2\fboxsep-2\fboxrule}
```

- ▶ Pakete, die z.B. \setlength benutzen "erben" das
 - z.B. die Breitenangabe bei \begin{minipage}

Paket siunitx

- ► \usepackage{siunitx}
 - ▶ viele Optionen
- Angabe von Größen mit Einheiten

 $SI{120}{\tilde{per}\over per}$

ergibt: $120 \,\mathrm{km} \,\mathrm{h}^{-1} \,\mathrm{num} \{9999999\} \,\mathrm{ergibt} \,9\,999\,999$

viele weitere

- chemische Formeln
- Sudokus
- bessere include Optionen
- ► automatische Paketreihenfolge
- zusätzliche Symbole
- bessere Brüche

. . . .

Tagesprogramm

- 1 Nachträge zu TiKZ, beamer
 - Graph-Bibliothek
- 2 Erstellen von Plots
 - Plots in TikZ
 - Plots mit pgfplots
- Weitere nützliche Klassen
- 4 Musterlösungen
- 5 Schluss
- Organisation

Musterlösungen

- ▶ 10. HA 13 Stimmen
- ▶ 9. HA 12 Stimmen
- ▶ 8. 7. 5. Ha: 9,8,7 Stimmen

Tagesprogramm

- 1 Nachträge zu TiKZ, beamer
 - Graph-Bibliothek
- 2 Erstellen von Plots
 - Plots in TikZ
 - Plots mit pgfplots
- Weitere nützliche Klassen
- 4 Musterlösungen
- Schluss
- Organisation

Es gibt eine Vielzahl von Programmen, mit denen man sich das Arbeiten mit LATEX vereinfachen kann. Manche davon haben sie eventuell bereits in den letzten Wochen kennengelernt.

Besonders beliebt sind

- ► TEX-Editoren (von recht einfach bis sehr umfangreich) bzw. TEX-Umgebungen für allgemeine Editoren (z.B. Vim, Emacs)
- ► Editoren für BibT_EX-Dateien (z.B. JabRef)
- ► Grafikprogramme mit LATEX-Unterstützung (z.b. xfig), generell Vektorgrafiken vorziehen
- ► Konverter, z.B. LaTeX2html, Word2LaTex, Excel2LaTeX

Es gibt eine Vielzahl von Programmen, mit denen man sich das Arbeiten mit LATEX vereinfachen kann. Manche davon haben sie eventuell bereits in den letzten Wochen kennengelernt.

Besonders beliebt sind

- ► TEX-Editoren (von recht einfach bis sehr umfangreich) bzw.

 TEX-Umgebungen für allgemeine Editoren (z.B. Vim, Emacs)
- ► Editoren für BibT_EX-Dateien (z.B. JabRef)
- ► Grafikprogramme mit LATEX-Unterstützung (z.b. xfig), generell Vektorgrafiken vorziehen
- ► Konverter, z.B. LaTeX2html, Word2LaTex, Excel2LaTeX

Es gibt eine Vielzahl von Programmen, mit denen man sich das Arbeiten mit LATEX vereinfachen kann. Manche davon haben sie eventuell bereits in den letzten Wochen kennengelernt.

Besonders beliebt sind

- ► TEX-Editoren (von recht einfach bis sehr umfangreich) bzw. TEX-Umgebungen für allgemeine Editoren (z.B. Vim, Emacs)
- ► Editoren für BibTEX-Dateien (z.B. JabRef)
- ► Grafikprogramme mit LATEX-Unterstützung (z.b. xfig), generell Vektorgrafiken vorziehen

► Konverter, z.B. LaTeX2html, Word2LaTex, Excel2LaTeX

Es gibt eine Vielzahl von Programmen, mit denen man sich das Arbeiten mit LATEX vereinfachen kann. Manche davon haben sie eventuell bereits in den letzten Wochen kennengelernt.

Besonders beliebt sind

- ► TEX-Editoren (von recht einfach bis sehr umfangreich) bzw.

 TEX-Umgebungen für allgemeine Editoren (z.B. Vim, Emacs)
- ► Editoren für BibTEX-Dateien (z.B. JabRef)
- ► Grafikprogramme mit LATEX-Unterstützung (z.b. xfig), generell Vektorgrafiken vorziehen

► Konverter, z.B. LaTeX2html, Word2LaTex, Excel2LaTeX

Es gibt eine Vielzahl von Programmen, mit denen man sich das Arbeiten mit LATEX vereinfachen kann. Manche davon haben sie eventuell bereits in den letzten Wochen kennengelernt.

Besonders beliebt sind

- ► TEX-Editoren (von recht einfach bis sehr umfangreich) bzw.

 TEX-Umgebungen für allgemeine Editoren (z.B. Vim, Emacs)
- ► Editoren für BibTEX-Dateien (z.B. JabRef)
- ► Grafikprogramme mit LATEX-Unterstützung (z.b. xfig), generell Vektorgrafiken vorziehen
- Konverter, z.B. LaTeX2html, Word2LaTex, Excel2LaTeX

Zum Weiterlesen

Im Internet sei auf folgende Quellen für weitere generelle Recherchen verwiesen:

- ▶ Deutschsprachige Anwendervereinigung TeX e.V.: http://www.dante.de
- ► Comprehensive TeX Archive Network: http://www.ctan.org
- Recht umfangreiche Linksammlung zu verschiedenen LaTeX-Themen:

http://www.siart.de/typografie/latextipps.xhtml

Neben vielen anderen Druckwerken sind im Deutschsprachigen die LaTeX-Bücher (inzwischen 3 Bände) von Helmut Kopka als umfangreicheres Kompendium sehr zu empfehlen.

Schlusswort

Dieser Kurs stellt eine Einführung in LATEX dar. Er vermittelt die grundlegenden Fertigkeiten, um eine (Abschluss-) Arbeit und Präsentationen zu verfassen. Darüber hinaus wird es immer wieder notwendig sein, zu bestimmten Fragestellungen die vorgestellten Websites zu befragen.

Weitergehende Informationen zur Typographie erhalten Sie auf folgenden Seiten:

- ► Eine Einführung in typographische Grundregeln http://www2.informatik.hu-berlin.de/sv/lehre/typographie.pdf
- ▶ Beachten Sie auch bitte die LATEX-Tabus (nicht mehr zu verwendende LATEX-Befehle), das LATEX-Sündenregister: http://www.ctan.org/tex-archive/info/12tabu/german/

Schlusswort

Vielen Dank für Ihre Aufmerksamkeit! Und jetzt zur Organisation ...

Tagesprogramm

- Nachträge zu TiKZ, beamer
 - Graph-Bibliothek
- 2 Erstellen von Plots
 - Plots in TikZ
 - Plots mit pgfplots
- Weitere nützliche Klassen
- 4 Musterlösungen
- 5 Schluss
- **6** Organisation

Vorlesung, Hausaufgaben und betr. Rechnerzeiten

Mit dem Ende der Vorlesung ist diese Veranstaltung abgeschlossen.

Ab nächster Woche (1.2.++) werden keine weiteren

- Vorlesungen abgehalten,
- Hausaufgaben gestellt,
- betreuten Rechnerzeiten angeboten.

Je nach Bedarf werden aber noch Latex-Sprechstunden angeboten.

- Zur Zeit der VL am 1.2.2015 sowie 8.2.2015
- ► Hier können Sie Anregungen zu Ihren eigenen Arbeiten erhalten, Fragen stellen
- ► Falls gewünscht, tragen Sie sich in die Umfrage im StudIP ein

Weitere Ankündigungen (Fertigstellungstermin der Scheine zu dieser Veranstaltung, ...) erhalten Sie in den nächsten Wochen via (studip-Verteiler-) email.

⇒ Rufen Sie Ihr TU-Mailkonto am besten mindestens einmal pro Woche ab.

Vorlesung, Hausaufgaben und betr. Rechnerzeiten

Mit dem Ende der Vorlesung ist diese Veranstaltung abgeschlossen.

Ab nächster Woche (1.2.++) werden keine weiteren

- Vorlesungen abgehalten,
- Hausaufgaben gestellt,
- betreuten Rechnerzeiten angeboten.

Je nach Bedarf werden aber noch Latex-Sprechstunden angeboten.

- ► Zur Zeit der VL am 1.2.2015 sowie 8.2.2015
- ► Hier können Sie Anregungen zu Ihren eigenen Arbeiten erhalten, Fragen stellen
- ► Falls gewünscht, tragen Sie sich in die Umfrage im StudIP ein

Weitere Ankündigungen (Fertigstellungstermin der Scheine zu dieser Veranstaltung, ...) erhalten Sie in den nächsten Wochen via (studip-Verteiler-) email.

 \Rightarrow Rufen Sie Ihr TU-Mailkonto am besten mindestens einmal pro Woche ab.

Vorlesung, Hausaufgaben und betr. Rechnerzeiten

Mit dem Ende der Vorlesung ist diese Veranstaltung abgeschlossen.

Ab nächster Woche (1.2.++) werden keine weiteren

- Vorlesungen abgehalten,
- Hausaufgaben gestellt,
- betreuten Rechnerzeiten angeboten.

Je nach Bedarf werden aber noch Latex-Sprechstunden angeboten.

- Zur Zeit der VL am 1.2.2015 sowie 8.2.2015
- ► Hier können Sie Anregungen zu Ihren eigenen Arbeiten erhalten, Fragen stellen
- ► Falls gewünscht, tragen Sie sich in die Umfrage im StudIP ein

Weitere Ankündigungen (Fertigstellungstermin der Scheine zu dieser Veranstaltung, ...) erhalten Sie in den nächsten Wochen via (studip-Verteiler-) email.

 \Rightarrow Rufen Sie Ihr TU-Mailkonto am besten mindestens einmal pro Woche ab.

Alexander Richter

70

- Sämtliche Scheine werden schriftlich ausgestellt (voraussichtlich Anfang März).
- ▶ Die Veranstaltung hat einen Umfang von 2 SWS bzw. 3 Credit Points.

Die Hausaufgabenleistung gilt als bestanden, wenn folgende Kriterien erfüllt sind

- ▶ bei mindestens 10 Hausaufgaben jeweils mindestens ein Punkt erreicht wurde
- ▶ bei mindestens 8 Hausaufgaben jeweils mindestens die Hälfte der Punktzahl des Aufgabenblatts sowie
- eine Gesamtpunktzahl von mindestens 50% der erreichbaren Maximalpunktzahl aller Aufgabenblätter erreicht wurden.

Wer diese Kriterien erfüllt hat, erhält einen benoteten Schein

- Sämtliche Scheine werden schriftlich ausgestellt (voraussichtlich Anfang März).
- ▶ Die Veranstaltung hat einen Umfang von 2 SWS bzw. 3 Credit Points.

Die Hausaufgabenleistung gilt als bestanden, wenn folgende Kriterien erfüllt sind

- bei mindestens 10 Hausaufgaben jeweils mindestens ein Punkt erreicht wurde
- bei mindestens 8 Hausaufgaben jeweils mindestens die Hälfte der Punktzahl des Aufgabenblatts sowie
- eine Gesamtpunktzahl von mindestens 50% der erreichbaren Maximalpunktzahl aller Aufgabenblätter erreicht wurden.

Wer diese Kriterien erfüllt hat, erhält einen benoteten Schein

- Sämtliche Scheine werden schriftlich ausgestellt (voraussichtlich Anfang März).
- ▶ Die Veranstaltung hat einen Umfang von 2 SWS bzw. 3 Credit Points.

Die Hausaufgabenleistung gilt als bestanden, wenn folgende Kriterien erfüllt sind

- bei mindestens 10 Hausaufgaben jeweils mindestens ein Punkt erreicht wurde
- ▶ bei mindestens 8 Hausaufgaben jeweils mindestens die Hälfte der Punktzahl des Aufgabenblatts sowie
- eine Gesamtpunktzahl von mindestens 50% der erreichbaren Maximalpunktzahl aller Aufgabenblätter erreicht wurden.

Wer diese Kriterien erfüllt hat, erhält einen benoteten Schein

- Sämtliche Scheine werden schriftlich ausgestellt (voraussichtlich Anfang März).
- ▶ Die Veranstaltung hat einen Umfang von 2 SWS bzw. 3 Credit Points.

Die Hausaufgabenleistung gilt als bestanden, wenn folgende Kriterien erfüllt sind

- bei mindestens 10 Hausaufgaben jeweils mindestens ein Punkt erreicht wurde
- ▶ bei mindestens 8 Hausaufgaben jeweils mindestens die Hälfte der Punktzahl des Aufgabenblatts sowie
- eine Gesamtpunktzahl von mindestens 50% der erreichbaren Maximalpunktzahl aller Aufgabenblätter erreicht wurden.

Wer diese Kriterien erfüllt hat, erhält einen benoteten Schein.

Ende

Viel Erfolg!

- bei möglichen anstehenden Prüfungen zu anderen Lehrveranstaltungen
- bei der möglichen Erstellung einer Abschlussarbeit
- ► (mit Hilfe von LATEX?)

Vielen Dank für Ihre Aufmerksamkeit ...

Ende

Viel Erfolg!

- bei möglichen anstehenden Prüfungen zu anderen Lehrveranstaltungen
- bei der möglichen Erstellung einer Abschlussarbeit
- ► (mit Hilfe von LATEX?)

Vielen Dank für Ihre Aufmerksamkeit ...