Analisi Fattoriale - Applicazioni Analisi Esplorativa

Aldo Solari

1 Dati Esami

2 Stock-Price Data

Outline

1 Dati Esami

2 Stock-Price Data

Dati Esami

- Voto agli esami
- n = 202 studenti maschi
- p = 6

Variabili:

- Gaelic (non-math)
- English (non-math)
- History (non-math)
- Arithmetic (math)
- Algebra (math)
- Geometry (math)

Dati Esami: Correlazione

	Gaelic	English	History	Arithmetic	Algebra	Geometry
$\mathbf{R} =$	1.0	.439	.410	.288	.329	.248
		1.0	.351	.354	.320	.329
			1.0	.164	.190	.181
				1.0	.595	.470
					1.0	.464
						1.0

Assunzioni

Se assumiamo che f e u hanno distribuzione congiunta Gaussiana con

$$f_{k\times 1} \sim \mathcal{N}_k(\underset{k\times 1}{0},\underset{k\times k}{I}), \quad u_{p\times 1} \sim \mathcal{N}_p(\underset{p\times 1}{0},\underset{p\times p}{\Psi})$$

allora x segue una distribuzione Gaussiana

$$\underset{p\times 1}{x} = \mu + \Lambda f + u \sim N_p(\underset{p\times 1}{\mu},\underset{p\times p}{\Lambda\Lambda'} + \underset{p\times p}{\Psi})$$

Si noti che abbiamo rilassato l'assunzione $\mathbb{E}(x)=0$, che equivale a $\mu=0$

Funzione di log-verosimiglianza

$$\ell(X; \mu, \Sigma) = -\frac{1}{2} n \log |2\pi\Sigma| - \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu) \Sigma^{-1} (x_i - \mu)'$$
$$= -\frac{1}{2} n \log |2\pi\Sigma| - \frac{1}{2} n \operatorname{tr}(\Sigma^{-1}S) - \frac{1}{2} n (\bar{x} - \mu) \Sigma^{-1} (\bar{x} - \mu)'$$

Sostituendo $\hat{\mu} = \bar{x}$

$$\ell(X; \hat{\mu}, \Sigma) = -\frac{n}{2} \left\{ \log |2\pi\Sigma| + \operatorname{tr}(\Sigma^{-1}S) \right\}$$

e per $\Sigma = \Lambda \Lambda' + \Psi$ otteniamo

$$\ell(X; \hat{\mu}, \Lambda, \Psi) = -\frac{n}{2} \Big\{ \log |2\pi(\Lambda\Lambda' + \Psi)| + \text{tr}[(\Lambda\Lambda' + \Psi)^{-1}S] \Big\}$$

Stima di massima verosimiglianza

Massimizzare

$$\ell(X; \hat{\mu}, \Lambda, \Psi) = -\frac{n}{2} \Big\{ \log |2\pi(\Lambda\Lambda' + \Psi)| + \text{tr}[(\Lambda\Lambda' + \Psi)^{-1}S] \Big\}$$

rispetto a Ψ e Λ

Stima iterativa

- f 1 Per Ψ fissato, massimizza numericamente per Λ
- 2 Per Λ fissato, massimizza numericamente per Ψ

Commenti:

- Implementata nella funzione R factanal()
- Si possono ottenere casi di Heywood

Dati Esami: FA con k=2 e stima di MV

Table 9.5					
		nated loadings	Communalities		
Variable	F_1	F_2	h_i^2		
1. Gaelic	.553	.429	.490		
2. English	.568	.288	.406		
3. History	.392	.450	.356		
4. Arithmetic	.740	273	.623		
5. Algebra	.724	211	.569		
6. Geometry	.595	132	.372		

- \bullet Stima di MV: $\hat{h}_1^2=\hat{\lambda}_{11}^2+\hat{\lambda}_{12}^2=(0.553)^2+(0.429)^2\approx 0.490$
- Primo fattore: intelligenza generale
- Secondo fattore: abilità matematica vs abilità verbale

Rotazione dei pesi fattoriali

• Per la rotazione dei pesi fattoriali Λ , dobbiamo cercare una matrice ortogonale A (A'A=AA'=I) tale per cui i pesi fattoriali ruotati Λ * = Λ A sono più facilmente interpretabili

•
$$A_{2\times 2} = \begin{bmatrix} \cos\phi & \sin\phi \\ -\sin\phi & \cos\phi \end{bmatrix}$$
 rotazione oraria per $k=2$

- Questo non cambia la soluzione del modello, solo la sua descrizione
- Situazione desiderata per i fini interpretativi:
 - i pesi fattoriali sono tutti grandi e positivi o prossimi a 0 (con pochi valori intermedi)
 - ogni variabile osservabile è legata in modo pesante al più ad un solo fattore
- ullet Per k>2 il metodo *varimax* identifica la rotazione massimizzando un'opportuna funzione dei pesi fattoriali ruotati che misura la variabilità dei pesi

Dati Esami: rotazione dei pesi fattoriali

Figure 9.1 Factor rotation for test scores.

Table 9.6					
Variable	Estimated rotated factor loadings F_1^* F_2^*		Communalities $\hat{h}_i^{*2} = \hat{h}_i^2$		
1. Gaelic 2. English 3. History 4. Arithmetic 5. Algebra 6. Geometry	.369 .433 .211 .789 .752 .604	.594 .467 .558 .001 .054 .083	.490 .406 .356 .623 .568 .372		

• Primo fattore: abilità matematica

• Secondo fattore: abilità verbale

Verifica d'ipotesi sul numero di fattori

- Un vantaggio della stima di massima verosimiglianza e che permette un test di ipotesi sul numero di fattori
- Ipotesi nulla H_0 : il modello fattoriale con k fattori è corretto

$$\Sigma = \Lambda \Lambda \Lambda' + \Psi$$

- Ipotesi alternativa H_1 : Σ è una matrice definitiva positiva diversa da quella specificata sotto l'ipotesi nulla
- Rifiuto l'ipotesi nulla con un p-value $\leq 5\%$
- Test sequenziali: parto da k=1, se rifiuto proseguo con $k=2,3,\ldots$ fino a quando fallisco di rifiutare l'ipotesi

Test rapporto di verosimiglianza

- Siano $\hat{\Lambda}$ e $\hat{\Psi}$ le stime di massima verosimiglianza per il k specificato dall'ipotesi nulla
- La statistica test rapporto di verosimiglianza è data da

$$T = -2\log\left(\frac{\text{MV sotto } H_0}{\text{MV}}\right) = n\log\left(\frac{|\hat{\Lambda}\hat{\Lambda}' + \hat{\Psi}|}{|S|}\right)$$

e sotto H_0 segue asintoticamente una distribuzione

$$\chi^2_{\frac{1}{2}[(p-k)^2-p-k]}$$

- Il p-value del test si calcola come $\Pr(\chi^2_{\frac{1}{2}[(p-k)^2-p-k]}>t)$ dove t è il valore osservato della statistica test
- L'approssimazione χ^2 può essere migliorata utilizzando la statistica test con la correzione di Bartlett:

$$T_{Bartlett} = \left[(n-1) - (2p + 4k + 5)/6 \right] \log \left(\frac{|\tilde{\Lambda}\tilde{\Lambda}' + \tilde{\Psi}|}{|S|} \right)$$

Distribuzione di f|x

Se assumiamo che f e u hanno distribuzione congiunta Gaussiana con

$$f_{k \times 1} \sim \mathcal{N}_k(\underset{k \times 1}{0}, \underset{k \times k}{I}), \quad u_{p \times 1} \sim \mathcal{N}_p(\underset{p \times 1}{0}, \underset{p \times p}{\Psi})$$

allora la loro combinazione lineare x ha distribuzione gaussiana

$$\underset{p \times 1}{x} = \Lambda f + u \sim N_p(\underset{p \times 1}{0}, \underset{p \times p}{\Lambda \Lambda'} + \underset{p \times p}{\Psi})$$

e la distribuzione di f condizionata ad x è anch'essa Gaussiana:

$$\int_{k \times 1} |x|_{p \times 1} \sim \mathcal{N}_k(\Lambda'(\Lambda \Lambda' + \Psi)^{-1}x, I - \Lambda'(\Lambda \Lambda' + \Psi)^{-1}\Lambda)$$

Punteggi fattoriali

- I punteggi fattoriali $\hat{f} = (\hat{f}_1, \dots, \hat{f}_k)'$ sono le "stime" delle variabili non osservabili $f = (f_1, \dots, f_k)'$
- Nel **metodo di Thompson** i punteggi fattoriali corrispondono alla (stima della) media di f|x:

$$\widehat{\mathbb{E}(f|x)} = \hat{\Lambda}'(\hat{\Lambda}\hat{\Lambda}' + \hat{\Psi})^{-1}x$$

In pratica si preferisce utilizzare S^{-1} (o R^{-1}) al posto di $(\hat{\Lambda}\hat{\Lambda}'+\hat{\Psi})^{-1}$

• Per l'i-sima osservazione x_i (centrata):

$$\hat{f}_i = \hat{\Lambda}' S^{-1} x_i$$

• Per l'i-sima osservazione standardizzata z_i

$$\hat{f}_i = \hat{\Lambda}' R^{-1} z_i$$

Punteggi fattoriali

 Nel metodo di Bartlett i punteggi fattoriali sono calcolati come soluzione al problema di minimizzazione

$$\hat{f} = \arg\min_{f} (x - \hat{\Lambda}f)'\hat{\Psi}^{-1}(x - \hat{\Lambda}f)$$

dove $\hat{\Lambda}$ e $\hat{\Psi}$ sono le stime di MV (che soddisfano il Vincolo 1)

• Per l'i-sima osservazione x_i (centrata):

$$\hat{f}_i = (\hat{\Lambda}' \hat{\Psi}^{-1} \hat{\Lambda})^{-1} \hat{\Lambda}' \hat{\Psi}^{-1} x_i$$

ullet Per l'i-sima osservazione standardizzata z_i

$$\hat{f}_i = (\hat{\Lambda}'\hat{\Psi}^{-1}\hat{\Lambda})^{-1}\hat{\Lambda}'\hat{\Psi}^{-1}z_i$$

Outline

1 Dati Esami

2 Stock-Price Data

Table 8.4 Stock-Price Data (Weekly Rate Of Return)					
Week	J P Morgan	Citibank	Wells Fargo	Royal Dutch Shell	Exxon Mobil
1 2 3	0.01303 0.00849 -0.01792	-0.00784 0.01669 -0.00864	-0.00319 -0.00621 0.01004	-0.04477 0.01196 0	0.00522 0.01349 -0.00614
4 5 6	0.02156 0.01082 0.01017	-0.00349 0.00372 -0.01220	0.01744 -0.01013 -0.00838	-0.02859 0.02919 0.01371	-0.00695 0.04098 0.00299
7 8	0.01113 0.04848	$0.02800 \\ -0.00515$	0.00807 0.01825	0.03054 0.00633	0.00323 0.00768
9 10 :	-0.03449 -0.00466 :	-0.01380 0.02099 :	-0.00805 -0.00608 :	-0.02990 -0.02039 :	−0.01081 −0.01267 ⋮
94 95 96	0.03732 0.02380 0.02568	0.03593 0.00311 0.05253	0.02528 -0.00688 0.04070	0.05819 0.01225 -0.03166	0.01697 0.02817 -0.01885
97 98 99	-0.00606 0.02174 0.00337	0.00863 0.02296 -0.01531	0.00584 0.02920 -0.02382	0.04456 0.00844 -0.00167	0.03059 0.03193 -0.01723
100 101 102	0.00336 0.01701 0.01039	0.00290 0.00951 -0.00266	-0.00305 0.01820 0.00443	-0.00122 -0.01618 -0.00248	-0.00970 -0.00756 -0.01645
103	-0.01279	-0.01437	-0.01874	-0.00498	-0.01637

Stock-Price Data

- Rendimento (settimanale) di cinque titoli
- Gen 04 Dic 05
- n = 103
- p = 5

Variabili:

- JP Morgan (bank)
- Citibank (bank)
- Wells Fargo (bank)
- Royal Dutch Shell (oil)
- Exxon-Mobil (oil)

Stock-Price Data: correlazione

$$\bar{\mathbf{x}}' = [.0011, .0007, .0016, .0040, .0040]$$

$$\mathbf{R} = \begin{bmatrix} 1.000 & .632 & .511 & .115 & .155 \\ .632 & 1.000 & .574 & .322 & .213 \\ .511 & .574 & 1.000 & .183 & .146 \\ .115 & .322 & .183 & 1.000 & .683 \\ .155 & .213 & .146 & .683 & 1.000 \end{bmatrix}$$

Stock-Price Data: stima di MV

Table 9.8					
Variable	Maximum likelihood estimates of factor loadings F_1 F_2		Rotated estimated factor loadings F_1^* F_2^*		Specific variances $\hat{\psi}_i^2 = 1 - \hat{h}_i^2$
J P Morgan Citibank Wells Fargo Royal Dutch Shell ExxonMobil	.115 .322 .182 1.000 .683	.755 .788 .652 000 .032	.763 .821 .669 .118 .113	.024 .227 .104 (.993 .675	.42 .27 .54 .00 .53
Cumulative proportion of total sample variance explained	.323	.647	.346	.647	

- Primo fattore (ruotato): bank
- Secondo fattore (ruotato): oil
- Proporzione di varianza spiegata dal j-mo fattore $=\frac{\sum_{i=1}^p\hat{\lambda}_{ij}^2}{p}$

Stock-Price Data: residui

Massima Verosimiglianza

$$\mathbf{R} - \hat{\mathbf{L}}\hat{\mathbf{L}}' - \hat{\mathbf{\Psi}} = \begin{bmatrix} 0 & .001 & -.002 & .000 & .052 \\ .001 & 0 & .002 & .000 & -.033 \\ -.002 & .002 & 0 & .000 & .001 \\ .000 & .000 & .000 & 0 & .000 \\ .052 & -.033 & .001 & .000 & 0 \end{bmatrix}$$

Stock-Price Data: test di k=2

Ipotesi nulla

$$H_0: \Sigma = \Lambda \Lambda' + \Psi \quad (k=2)$$

Statistica test

$$n \ln \frac{|\hat{\Lambda}\hat{\Lambda}' + \hat{\Psi}_z|}{|R|} = n \ln \frac{0.17898}{0.17519} = n \ln 1.0216$$

p-value

$$\mathbb{P}(\chi_1^2 > n \ln(1.0216)) \approx 0.138 > 5\%$$

(p-value = 0.15 utilizzando la correzione di Bartlett)

Stock-Price Data: punteggi fattoriali

Decomposizione di R

$$\hat{\mathbf{L}}_{\mathbf{z}}^{*} = \begin{bmatrix} .763 & .024 \\ .821 & .227 \\ .669 & .104 \\ .118 & .993 \\ .113 & .675 \end{bmatrix} \text{ and } \hat{\boldsymbol{\Psi}}_{\mathbf{z}} = \begin{bmatrix} .42 & 0 & 0 & 0 & 0 \\ 0 & .27 & 0 & 0 & 0 \\ 0 & 0 & .54 & 0 & 0 \\ 0 & 0 & 0 & .00 & 0 \\ 0 & 0 & 0 & 0 & .53 \end{bmatrix}$$

Una osservazione

$$\mathbf{z}' = [.50, -1.40, -.20, -.70, 1.40]$$

Metodo di Bartlett

$$\hat{\mathbf{f}} = (\hat{\mathbf{L}}_{\mathbf{z}}^{*}, \hat{\mathbf{\Psi}}_{\mathbf{z}}^{-1} \hat{\mathbf{L}}_{\mathbf{z}}^{*})^{-1} \hat{\mathbf{L}}_{\mathbf{z}}^{*}, \hat{\mathbf{\Psi}}_{\mathbf{z}}^{-1} \mathbf{z} = \begin{bmatrix} -.61 \\ -.61 \end{bmatrix}$$

Metodo di Thompson

$$\hat{\mathbf{f}} = \hat{\mathbf{L}}_{\mathbf{z}}^{*} \mathbf{R}^{-1} \mathbf{z} = \begin{bmatrix} .331 & .526 & .221 & -.137 & .011 \\ -.040 & -.063 & -.026 & 1.023 & -.001 \end{bmatrix} \begin{bmatrix} .50 \\ -1.40 \\ -.20 \\ -.70 \\ 1.40 \end{bmatrix} = \begin{bmatrix} .50 \\ -.64 \end{bmatrix}$$

Stock-Price Data: punteggi fattoriali

Figure 9.4 Factor scores using (9-58) for factors 1 and 2 of the stock-price data (maximum likelihood estimates of the factor loadings).

