

Agenda

- Part I Password Creation
 - Intro: what are Passwords? Hashes?
 - Weak passwords (guessability, recon, default Pws)
 - Attacks against passwords (brute force, dictionary attacks)
 - DEMO: PW cracking (Online vs. Offline, Rainbow Tables)
 - Solutions (salt, passphrases, PW policies)
- Part II Password Usage
 - Passwords on the Wire
 - DEMO: password sniffing with WiFi Pineapple (http, ssl-strip)
 - Worst Password Management techniques
- Part III Password Storage

RADICALLU

- Intro to PW Storage (text files, DBs, memory, Linux)
- Password caching, pros vs. cons
- DEMO: retrieving passwords from memory w/ Volatility
- Solutions (PW vaults, encryption in DBs/filesystems)

Part I - Password Creation

What is a Password?

- A secret word/string of characters used to authenticate a user into a system
- Authentication trilogy
 - What you have
 - Who you are
 - What you know

Hash Functions

- Cryptographic one-way functions, that convert a string into fixed number of character.
- Example algorithms: NT Hash, LM Hash, MD4, MD5, SHA1, SHA2, SHA256, SHA512

Hashing Vs Encryption

	Hashing	Encryption
Definition	Hashing involves the conversion of plaintext into a hash or digest. A digest cannot be reversed into the original message.	Encryption is the process of converting plain text into cipher by using an algorithm. The encrypted message can only be read by knowing the encryption key.
Protection of	Integrity	Confidentiality
Unlocking	No key can be used for unlocking	Requires key for unlocking

Courtesy:http://www.differencebetween.info/difference-between-hashing-and-encryption

Worst Passwords of 2015

- Top 15: 123456, password, 12345678, qwerty, 12345, 123456789, football, 1234, 1234567, baseball, welcome, 1234567890, abc123, 111111
- All 11,000,000 passwords of Ashley Madison were hacked

What makes passwords weak?

- Guessability
 - Predictability and low entropy
- Relevance
 - Studying corporate literature, website sales materials and competitors, build custom word list

Default Passwords

RADICALLY O'DEN SECURIU

Courtesy:http://www.howtogeek.com/131338/how-to-access-your-router-if-you-forget-the-password/

Attacks Against Passwords

Dictionary Attack

 Systematically entering every word in a dictionary(wordlist) as a password

Brute force attack

 Decoding encrypted/hashed data through exhaustive effort (using brute force) rather than employing intellectual strategies.

Types of Password Cracking

Online

- Trying different passwords interactively
- Usually slow and noisy
- You might be allowed only a few guesses

Offline

- Processing password files/hashes locally
- Limited by computing speed

Rainbow Tables

Rainbow Tables

- A rainbow table is a list of pre-computed hashes
- The hash to test gets compare against the other pre-computed hashes
- Space/time tradeoff

DEMO TIME!!!

- Estimator
- Generator
- Offline cracking
- Rainbow tables

Solutions: Salt

- Random data used as additional input to a oneway hash function.
- Salt can defend against dictionary attacks or precomputed rainbow table attacks

Example: Password Salt

Courte sy: http://sladigital forensics.blog spot.in/2013/12/salted-hash-future-for-passwords.html

Passphrases vs Passwords

- Passwords usually 10-12 letters / numbers / symbols
- Passphrase is long sentence which contains spaces. Can also contain symbols.
- Passphrases have more entropy

xkcd on Passphrases <3

THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Password Policy

Enforce password requirements

Change < 90 days

12+ characters All character types

Prohibit re-use

Pattern checks?

Support

Crack your own passwords

Awareness of phishing and re-use

Courtesy: https://www.rsaconference.com/writable/presentations/file_upload/pdac-w05_the_state_of_modern_password_cracking_final.ppt.pdf

Part II - Password Usage

Password Pitfalls

- Writing them down on sticky notes
- Maintain a text file with user credentials
- Using same credentials at multiple places*
- *Specially the insecure ones ... (leaks)

Data on the Wire

- Password sniffing
 - Sniffing with tcpdump, tshark, Wireshark
 i.e. HSRP passwords in Cisco routers, VoIP passwords
 - MITM using sslsniff/sslstrip/bettercap

DEMO TIME!!!

- Password Sniffing with the WiFi Pineapple!
 - HTTP
 - ssl-strip

Stuff That Can Help

- Different passwords everywhere
 - Twitter, Facebook, Google
 - Government logins
 - Banks
- Protect your access with additional controls. i.e.
 2FA

Part III - Password Storage

Where Do Passwords Live?

- In plain-text files
 - htpasswd,
 /etc/ppp/chap-secrets,
 browser/application
 cache file
- In databases
 - Mysql, MS-SQL, sqlite
- In memory
 - Temporary storage

Where Do Passwords Live?

- Windows
 - SAM database, Active Directory
- Linux
 - /etc/shadow, OpenLDAP
- Application Servers
 - Files and DBs

Saving Passwords on the HD

- Password Hardcoding
 - Software (and filesystems)
 sometimes contain cleartext
 passwords, which are used
 for inbound authentication or
 outbound communication
 - This is useful for users / sysadmins.. and for attackers!

Saving Passwords in Caches

- Browser/application caches are handy!
 - Login credentials stored locally for later use.
 - Web browsers, applications, etc...
 - Password recovery tools/malware can recover and decrypt stored passwords

Chrome Password Decryptor

Retrieving Password from Memory

- Passwords are sometimes stored cleartext in memory
 - Attacker compromises a desktop or server + dumps the RAM memory
 - Plain-text or hashed passwords can be extracted from the memory dump
 - i.e. Process Memory Dumper,
 Volatility, Mimikatz

DEMO TIME!!!

- Retrieving passwords from memory
 - Volatility
 - Dumplt

Solution: Password Vaults

Solution: Password Vaults

Solution: Encrypt Data at Rest

Questions?

