

PROJETS ESE

Robot chat

École Nationale Supérieur de l'Électronique et de ses Applications

Laurent Fiack
Bureau D212 – laurent.fiack@ensea.fr

Objectifs

- Concevoir un système embarqué de A à Z (du PCB jusqu'au Firmware)
 - Électronique, microcontrôleur, capteurs (conditionnement), actionneurs (drivers), HMI
 - Firmware, drivers, temps-réel
 - Code de haut niveau, stratégie, comportement...
- Projet réparti sur plusieurs modules
 - Système à Microcontrôleurs → PCB
 - $lue{}$ Noyaux temps-réel ightarrow Écriture des drivers logiciels
 - Initiation à la robotique \rightarrow Comportement/Stratégie
- Projets prétexte pour étudier différents aspects des systèmes embarqués
 - Concevoir un robot mobile qui joue à "chat" avec d'autres robots.

Projet challenge robot-chat

- Plusieurs robots évoluent sur une table
 - La table n'a pas de bordure : les robots peuvent tomber
- Un robot est le "chat"
 - II doit attraper un autre robot
- Le robot attrapé devient le nouveau "chat"
- Et ainsi de suite

Sous-objectifs: Robot chat

- Projet modulaire.
- Objectif simple pour inclure tout le monde.
- Niveau 0 :
 - Le robot se déplace,
 - Il ne tombe pas de la table.
- Niveau 1 :
 - Il détecte et se dirige vers un objet,
 - Ou s'en éloigne s'il n'est pas le chat.
- Niveau 2 :
 - Il change de comportement (proie/prédateur) après un contact,
 - Il fonctionne avec plusieurs robots sur la table.
- Niveau 3:
 - Il n'est pas affecté par les obstacles hors de la table,
 - Il est donc capable de se localiser.

Challenge et sous-objectifs

- Soyez clair sur vos objectifs!
- Pour aller plus loin : Objectifs secondaires, quêtes annexes et challenges
 - Recharge de batterie (avec un câble)
 - Station de recharge
 - Robot qui consomme le moins
 - Robot qui coûte le moins cher
 - Robot le plus rapide
 - Fusion de données (IMU, odométrie...)
 - ¥/|...

Déroulement

- Jusqu'à la toussaint
 - Électronique et mécanique
 - TP de Microcontrôleurs
- ▼ Vacances toussaint : Samedi 26 octobre au Dimanche 3 novembre
- Entre la toussaint et noel
 - Bibliothèques logicielles
 - Drivers
 - Organisation du code
 - TP de Noyaux temps-réel
 - Stratégie et comportements
 - TP d'Introduction à la robotique
- Vacances noel : Samedi 21 décembre au Dimanche 5 janvier
- Après noel
 - Dernière séance : stratégie et comportements
 - TP d'Introduction à la robotique
 - Challenge le vendredi 10 janvier
- Fin du semestre : Samedi 11 janvier
- Début des PFE : Lundi 13 janvier

Attention

- Découper le projet
- Faire un planning!
- Deux semaines de délai (ou plus!) pour les commandes
- Prendre en compte le temps de soudure, assemblage, tests
- Commandes au plus tard mi-octobre (ça arrive vite!)

Deadlines

- 10 séances de Systèmes à microprocesseurs
 - Séance 1 : Schéma architectural / BOM
 - 2 Séance 2 et 3 : Schéma électronique annoté
 - 3 Séance 4 : Corrections Schéma / BOM Finale
 - 4 Séance 5 : Placement
 - 5 Séance 6 : Placement corrigé
 - 6 Séance 7 et 8 : Routage
 - 7 Séance 9 et 10 : Corrections Routage, export...
- + 4h de TD dédié

Évaluation

- lacksquare Systèmes à microcontrôleurs : Évaluation des rendus + 1 rapport technique
 - À la toussaint
 - 4 crédits sur 5 dans le module
- \blacksquare Noyau temps-réel : Revue de code (git) + $\frac{1}{1}$ rapport + soutenance avant noel
 - Dernière séance de Noyau Temps-réel
 - 4 crédits sur 5 dans le module
- Introduction à la robotique : Démo + Challenges en fin de semestre
 - Dernière séance d'Introduction à la robotique
 - 1 crédit sur 5 dans le module Systèmes électroniques avancés

