Klausur "Graphische Datenverarbeitung" WS 2008 Prof. Regina Pohle, Hochschule Niederrhein

Name: Punkte:

von 100 Punkten

Matrikelnummer:

Note:

Bildverarbeitung

Allgemeine Grundlagen

1. Welche Pixel gehören zu dem jeweils gleichen zusammenhängenden Gebiet, wie die mit x gekennzeichneten Pixel, wenn 4er Nachbarschaft zugrunde gelegt wird! (2 Punkte)

Ausgangsbild

4er Nachbarschaft

Bildaufnahme

2.	Bei der Abtastung eines Bildes findet ein Rasterungs- und ein Quantisierungsschritt statt.
	Welcher wirkt sich stärker auf die Kontrastauflösung des Bildes aus? (1 Punkt)

3. Ihr Freund zeigt Ihnen ein Urlaubsbild und fragt Sie, wieso die Störung (siehe Pfeil) entstanden ist und ob sie durch den Einsatz von Bildverarbeitungsalgorithmen beseitigt werden kann? Was würden Sie ihrem Freund für spätere Aufnahmen raten? (3 Punkte)

_	
Fo	ourier-Transformation
4.	Welche statistische Größe kann im Ursprung des Fourierspektrums abgelesen werden? Verändert sich diese Größe bei der Anwendung eines Binomialfilters auf das Originalbild? Begründen Sie ihre Antwort! (3 Punkte)
5.	Erklären Sie, warum das Löschen der Phaseninformation vor der Rücktransformation die Bildinformation nach der Rücktransformation unkenntlich macht? (2 Punkte)

Bi	ldrestauration
6.	Was versteht man unter der Point Spread Function? Wie kann sie bestimmt werden? (4 Punkte)
7.	Das Bild ist mit einer periodischen Störung überlagert. Wie kann die Störung beseitigt werden? (4 Punkte)

Grauwertmodifikation

8. Gegeben ist folgendes Bild mit einem Grauwertbereich von 0-7, für das Sie das Histogramm berechnen sollen! (5 Punkte)

2	2	2	3	2	3	2	2
2	3	3	5	4	5	3	2
2	2	4	4	3	2	2	3
2	2	5	4	3	2	2	2
3	2	4	5	4	2	3	2
2	2	3	4	3	2	2	2
2	2	3	3	4	5	4	3
2	2	2	3	3	3	3	2

9. Wie kann der globale Kontrast dieses Bildes erhöht werden? (1 Punkt)

10. Erklären Sie mit Worten, wie die Faltung eines Bildes mit einem lokalen Bildverarbeitungsoperator (z.B. einer Mittelwertfilter-Maske) funktioniert! (4 Punkte
1. Gegeben ist folgende Bildmatrix:
20 25 30
5 45 20
5 15 15
Wenden Sie auf den markierten Pixel einen Medianfilter an! Ist die Anwendung eines Rangordnungsfilters eine Faltung (Begründung)? (2 Punkte)
2. Wie lässt sich die Stärke und Lage von Kanten im Bild berechnen? (1 Punkt)

- 13. Vergleichen Sie die folgenden Filter bei der Anwendung auf ein Bild (6 Punkte):
 - Verrauschtheit des Bildes

Filter	erhöht sich	bleibt gleich	verringert sich
Mittelwert			
Median			
Sobelfilter			

• Art des Filters

Filter	Tiefpass	Hochpass	Bandpass
Binomialfilter			
Laplacefilter			
LOG- Filter (Laplace of Gaussian)			

Segmentierung

14. In Mikroskopbildern soll der Bacillus Cereus mit Bildverarbeitungsmethoden detektiert und gezählt werden. Unten ist ein beispielhaftes Grauwertbild gezeigt, welches drei Bacillus Cereus enthält. Die anderen dunklen Partikel sind Störungen, welche die Zählung nicht beeinflussen sollten. Auf welchen charakteristischen Eigenschaften des Bazillus im Kamerabild wollen Sie Ihre Erkennung aufbauen? Erläutern Sie, wie Sie schrittweise vorgehen würden! (5 Punkte)

Quelle: de.wikipedia.org

15. Das helle Bildobjekt soll mit dem Region Growing Algorithmus segmentiert werden. Als Homogenitätskriterium dient der Gradient $|f(x,y) - f(x\pm 1,y\pm 1)| < 1$. Führen Sie am linken Bild manuell die Segmentierung mit den angegebenen Grauwerten durch. Kennzeichnen Sie die aggregierten Pixel ausgehend vom Saatpunkt (grau) im Bild. Verwenden Sie eine 8-ter Nachbarschaft. Welche Bildoperation würden Sie vor Anwendung des Segmentierungsalgorithmus anwenden, um ein besseres Ergebnis zu erhalten? Begründen Sie Ihre Entscheidung! (3 Punkte)

1	0	1	3	1	3	1	0
1	3	3	5	4	5	3	0
1	0	4	4	3	1	1	3
0	1	5	4	3	1	1	0
3	1	4	5	4	1	3	1
0	1	3	4	3	1	1	1
0	1	3	3	4	5	4	3
0	0	1	3	3	3	3	0

Morphologische Operationen

16. Geben Sie für das untenstehende Bild das Ergebnis nach der Erosion bzw. nach der Dilatation an? (4 Punkte)

Dilatation Erosion

Computergraphik

OpenGL-Grundlagen

17. OpenGL arbeitet nach dem Prinzip des Zustandsautomaten. Was verstehen Sie darunter? (2 Punkte)
18. Wann muss unbedingt Double-Buffering in der Computergraphik eingesetzt werden? Was ist der Unterschied im Vergleich zum Single-Buffering? (2 Punkte)
Graphische Grundalgorithmen
19. Welche Einschränkung gilt beim Bresenham-Algorithmus für Linien? Welche Möglichkeiten gibt es, diese zu umgehen? (2 Punkte)

Antialiasin	
	n Sie, wie Antialiasing für Linien umgesetzt werden kann! (3 Punkte)
Control of the Contro	
r unaigorith	men
	men tioniert der Scanlinien-Algorithmus zum Füllen von Pixelmengen? (6 Pur
Füllalgorith 22. Wie funk	

Transformation und Projektion

- 23. Wie groß ist der euklidischen Abstand der Punkte A(2, 4, 2) und B(4, 8, 4) in einem 2D-Koordinatensystem? Die Koordinaten sind in homogenen Koordinaten angegeben. (1 Punkt)
- 24. Welche Transformationen müssen zusammengesetzt werden, um die Überführung des Rechtecks in das gestrichelte Rechteck zu erreichen? (Es müssen *keine* Matrizen angeben werden!) (4 Punkte)

25. Skizzieren Sie die Sichtkörper für die Parallelprojektion und für die perspektivische Projektion! (2 Punkte)

Modellierung

26. Welche Vorteile (mindestens 2) bietet die Modellierung mit parametrischen kubischen Kurven gegenüber der Modellierung mit Polygonnetzen? (2 Punkte)

1.	
	5, , , , , , , , , , , , , , , , , , ,
	glMatrixMode(GL_PROJECTION);
	<pre>glLoadIdentity();</pre>
4.	glOrtho(-60,80,-60,100,-70,100);
	<pre>glMatrixMode(GL_MODELVIEW);</pre>
	<pre>glLoadIdentity(); clCloam(CL COLOR DUFFER DIFF);</pre>
	<pre>glClear(GL_COLOR_BUFFER_BIT); glColor3f(0.0, 0.0, 1.0);</pre>
	glRotatef(-45.0,1.0,1.0,0.0);
	glutWireCube (40.0);
	<pre>glushMatrix();</pre>
	glTranslatef(40.0,40.0,40.0);
	glColor3f(1.0, 0.0, 0.0);
	<pre>glutWireCube (40.0);</pre>
	<pre>glPopMatrix();</pre>
16.	glRotatef(-45.0,1.0,1.0,0.0);
17.	glColor3f(0.0, 1.0, 0.0);
18.	<pre>glutWireCube (40.0);</pre>
19.	glFlush();
:	
•	
:	

	tungsmodelle
	wird durch den ambienten Term beim Phongschen Beleuchtungsmodell approxin warum sollte dieser nicht zu groß sein? (2 Punkte)
 31. Bei v	welcher Blickrichtung ist der spekulare Anteil einer Lichtquelle am größten?
(1 Pı	
(1 Pı	
(1 Pı	
	unkt)
Shading	-Verfahren
Shading 32. Wori	unkt)
Shading 32. Wori	-Verfahren n besteht der Unterschied zwischen Phong und Gouraud-Shading? Welche Vor- u
Shading 32. Wori	-Verfahren n besteht der Unterschied zwischen Phong und Gouraud-Shading? Welche Vor- u
Shading 32. Wori	-Verfahren n besteht der Unterschied zwischen Phong und Gouraud-Shading? Welche Vor- u
Shading 32. Wori	-Verfahren n besteht der Unterschied zwischen Phong und Gouraud-Shading? Welche Vor- u
Shading 32. Wori	-Verfahren n besteht der Unterschied zwischen Phong und Gouraud-Shading? Welche Vor- u
Shading 32. Wori	-Verfahren n besteht der Unterschied zwischen Phong und Gouraud-Shading? Welche Vor- u
Shading 32. Wori	-Verfahren n besteht der Unterschied zwischen Phong und Gouraud-Shading? Welche Vor- u
Shading 32. Wori Nach	-Verfahren n besteht der Unterschied zwischen Phong und Gouraud-Shading? Welche Vor- u
Shading 32. Wori Nach	r-Verfahren In besteht der Unterschied zwischen Phong und Gouraud-Shading? Welche Voruteile ergeben sich daraus? (4 Punkte)
Shading 32. Wori Nach	-Verfahren n besteht der Unterschied zwischen Phong und Gouraud-Shading? Welche Vor- uteile ergeben sich daraus? (4 Punkte) Mapping