Body Type Prediction

Okcupid Project Report

Team 21

Harshal Vaza Garima Sharma Azin Vahanian Yichen Yao

Table of Contents

1.Executive S	Summay	
	lea	
	Acquization	
III.	Description Visualization	
5. Data Cleai	ng	18
	S	

1. Executive summary

The past decade has shown a rise in popularity for online dating platforms, and now there are many different applications that match a variety of diverse lifestyles. Each platform has their own algorithm for making matches and connections; therefore, there is a lot of competition between sites. Although there are differences in each platform, the online dating scene usually follows a similar format. At signup, users are asked a series of questions such as age, location, level of education, income, hobbies, etc. in order to find compatible and similar individuals. Users are able to parse through matched profiles one at a time and choose whether or not they are interested in that person. Once both users match, they have the ability to send a direct message to the other person and begin connecting with them. After the connection is made, the application serves as the primary means of communicating until the users have a few conversations and decide to move further. In theory, this is a seamless process that allows people to meet and connect with a variety of people with ease and efficiency; however, one of the main problems with online dating is the possibility that a user is interacting with a fraudulent person. This can take form as someone that has put false information about themselves in their profile or even as users that are complete imposters. This issue has proved to be one of the main deterrents to the online dating scene and serves to be the topic that we hope to improve.

2. Explain the business idea, why it's important, and the data source

Due to the pandemic, people are unable mingle at social gatherings and meet new people.

As a result, people are becoming lonelier and more isolated; therefore, the demand for

companionship has been on the rise. In the past eight months, there has been an increased amount

of signups and user traffic on these online dating platforms. Since there are many alternatives and

substitutes available for consumers, it is important for companies to have their users keep coming

back. Therefore, we are proposing this topic because it now a priority to capture this influx of

users by improving the quality of the connections and interactions on the applications. If a user

has a good experience with a specific dating platform, they are likely to spread their positive

experience to their friends, online audience, or as a review which will prompt more potential users

to use the platform. Finding data that can be helpful in answering these questions will allow us to

depict and propose novel ways to improve the customer experience in online dating. Ensuring that

the user has an enjoyable experience throughout the whole process will be imperative to the

success of the online dating platform. By collecting, analyzing, and interpreting the data from the

user experience, we hope to propose a solution that can allow users to connect with peace of mind.

The data source was Kaggle and the dataset we acquired was comprised of 59,946 people and their

okcupid profiles. We included variables that would give good insights into the habits and

personality of the user. Looking into the dataset through machine learning would provide a good

way to improve the online dating platform itself.

3. Data summary, description, visualization.

Data Source: Kaggle

Organization: Okcupid

The data has 59946 rows and 31 columns.

The data has demographic information of customers like age, sex, location, job income and habits information such as drinks, drugs and smoke, also there is text data that where customers give brief information about them.

Here is the brief description of the columns:

Except the age, income and height, all the columns are categorical variables with overlapping values hence needs to be grouped into appropriate categories.

Tools used:

Python: Data processing and modeling.

Tableau: Visualization.

Column	Description
age	age of the customer
status	status of the customer
sex	sex of the customer
orientation	orientation of the customer
body_type	body type of the customer
diet	diet of the customer
drinks	customer drinking information
drugs	information if the customer consumes drugs
education	education of the customer
ethnicity	ethnicity of the customer
height	height of the customer
income	income of the customer
job	job of the customer
last_online	last online date and time of the customer

location	location of the customer	
offspring	offspring of the customer	
pets	pets of the customer	
religion	religion of the customer	
sign	sign of the customer	
smokes	information if the customer smokes	
speaks	language of the customer	
essay0	introduction of the customer	
essay1	introduction of the customer	
essay2	introduction of the customer	
essay3	introduction of the customer	
essay4	introduction of the customer	
essay5	introduction of the customer	
essay6	introduction of the customer	
essay7	introduction of the customer	
essay8	introduction of the customer	
essay9	introduction of the customer	

Count and percentage of missing values in the data:

column	obs	Percent
offspring	35561	59.30%
diet	24395	40.70%
religion	20226	33.70%
pets	19921	33.20%
essay8	19225	32.10%
drugs	14080	23.50%
essay6	13771	23.00%
essay9	12603	21.00%
essay7	12451	20.80%
essay3	11476	19.10%
sign	11056	18.40%
essay5	10850	18.10%
essay4	10537	17.60%
essay2	9638	16.10%
job	8198	13.70%
essay1	7572	12.60%
education	6628	11.10%
ethnicity	5680	9.50%
smokes	5512	9.20%
essay0	5488	9.20%
body_type	5296	8.80%
drinks	2985	5.00%
speaks	50	0.10%
height	3	0.00%

orientation	0	0.00%
status	0	0.00%
sex	0	0.00%
income	0	0.00%
last_online	0	0.00%
location	0	0.00%
age	0	0.00%

Distribution of class variable without preprocessing:

body_type	obs
thin	4711
skinny	1777
a little extra	2629
average	14652
curvy	3924
full figured	1009
rather not say	198
used up	355
overweight	444
athletic	11819
fit	12711
jacked	421

4 Analysis, Benchmark accuracy without pre-processing data.

Predicting **Body Type** using habits and demographic data

Decision Tree

- \circ Best accuracy = 0.29
- \circ Best Depth = 5

Random Forest

 \circ Accuracy = 0.23

K Nearest Neighbor

- o Best Accuracy = 0.27
- o Best Neighbor Amt. = 35

Data processing and cleaning: all the categorical columns having similar values have been grouped into one category. All the numerical variables remain as is except the income column where the -1 which stands for missing values has been treated to remove those values

Status before: single and available values are grouped into single category.

Status	Obs
single	55697
available	1865
seeing someone	2064
married	310
unknown	10

Status after:

Status	Obs
single	57562
seeing someone	2064

married	310
unknown	10

 $\mathbf{Sex}:$ no categorization of the values in this column

Sex	Obs
m	35829
f	24117

Categorization used for **Body Type**:

body_type	obs	new category
thin	4711	thin
skinny	1777	thin
a little extra	2629	overweight
average	14652	overweight
curvy	3924	overweight
full figured	1009	overweight

rather not say	198	overweight
used up	355	overweight
overweight	444	overweight
athletic	11819	fit
fit	12711	fit
jacked	421	fit

Body type after:

Body Type	Obs
fit	24951
overweight	23211
thin	6488

Categorization used for **Diet**:

diet	obs	new category
strictly other	452	anything
other	331	anything
mostly other	1007	anything
strictly anything	5113	anything
mostly anything	16585	anything
anything	6183	anything
strictly halal	18	kosher/halal
mostly halal	48	kosher/halal
halal	11	kosher/halal

strictly kosher	18	kosher/halal
mostly kosher	86	kosher/halal
kosher	11	kosher/halal
vegan	136	vegan
strictly vegan	228	vegan
mostly vegan	338	vegan
vegetarian	667	vegeterian
strictly vegetarian	875	vegeterian
mostly vegetarian	3444	vegeterian

Diet after:

Diet	Obs
anything	29671
vegetarian	4986
vegan	702
kosher/halal	192

Categorization used for **Drinks**:

drinks	obs	new category
socially	41780	yes
often	5164	yes
very often	471	yes
desperately	322	yes
not at all	3267	no
rarely	5957	no

Drinks after:

Drinks	Obs
yes	47737
no	9224

Categorization used for **Drugs**:

Drugs	obs	new category
never	37724	no
sometimes	7732	yes
often	410	yes

Drugs after:

Drugs	Obs
no	37724
yes	8142

Categorization used for **Education**:

education	obs	new category
college/university	801	graduated
graduated from	23959	graduated
college/university		
graduated from high school	1428	graduated
graduated from law school	1122	graduated
graduated from masters program	8961	graduated
graduated from med school	446	graduated
graduated from ph.d program	1272	graduated
graduated from space camp	657	graduated
graduated from two-year college	1531	graduated

high school	96	graduated
law school	19	graduated
masters program	136	graduated
	11	1
med school	11	graduated
ph.d program	26	graduated
space camp	58	graduated
space camp	30	graduated
two-year college	222	graduated
dropped out of	995	dropped out
		FF 2 2 2 2
college/university		
dropped out of high school	102	dropped out
Annua Annua (C) 1 1	10	4
dropped out of law school	18	dropped out
dropped out of masters program	140	dropped out
dropped out of med school	12	dropped out
dropped out of fried school	12	aropped out
dropped out of ph.d program	127	dropped out
dropped out of space camp	523	dropped out
dropped out of two-year college	191	dropped out
working on college/university	5712	studying
1. 1.1 1	07	
working on high school	87	studying
working on law school	269	studying
working on masters program	1683	etudvina
working on masters program	1003	studying
working on med school	212	studying
working on ph.d program	983	studying
working on pind program		Studying
working on space camp	445	studying
working on two-year college	1074	studying
		, ,

Education after:

Education	Obs
graduated	40745
studying	10465
dropped out	2108

Ethnicity: Ethnicity column was split with space as separator and the first part of the string was used to get the ethnicity value. Similar values are grouped into one category.

ethnicity	obs	new category
black	2,008	black
black,	1,063	black
indian	1,077	indian
indian,	119	indian
other	1,706	other
middle	811	other
pacific	717	other
native	709	other
hispanic	4,379	hispanic
asian	6,134	asian
asian,	2,071	asian
white,	641	white

white	32,831	white

Ethnicity after:pet

Ethnicity	Obs
white	33472
asian	8205
hispanic	4379
other	3943
black	3071
indian	1196

Categorization used for **Job**:

obs	new category
2373	Business Management
4391	Business Management
1364	Business Management
2266	Business Management
366	Business Management
1021	Business Management
4709	Technology
4848	Technology
2250	Entertainment
4439	Entertainment
4882	Unemployed
250	Unemployed
273	Unemployed
	2373 4391 1364 2266 366 1021 4709 4848 2250 4439 4882 250

education / academia	3513	Education
medicine / health	3680	Medical
law / legal services	1381	law
other	7589	other
rather not say	436	other
political / government	708	govt
clerical / administrative	805	govt
military	204	govt

Job after:

Job	Obs
business management/development	11781
technology	9557
other	8025
entertainment	6689
unemployed	5405
healthcare	3680
education	3513
government	1717
law	1381

Categorization for **Smokes**:

smokes	obs	new category
no	43896	no
sometimes	3787	yes
when drinking	3040	yes
yes	2231	yes
trying to quit	1480	yes

Smokes after:

Smokes	Obs
no	43896
yes	10538

Data cleaning:

The raw data was subset to consider only the columns that we are going to use for the model which are: age, sex, height, income, status, body_type, diet, drinks, drugs, education, ethnicity, job, smokes. The data used for model has 52318 rows and 13 columns

 Removed the null values from the class variable body_type. Distribution of the class variable:

body_type	obs
overweight	22381
thin	6193
fit	23744

- Removed the null values from the drinks column which has less than 5% missing values
- Treated all the categorical variables with the most occuring value
- Treated the -1 values in the income column with median values by each job type
- Removed the pets and offspring columns since they had missing values more than 30%
- Rest of the columns were removed because of less relevancy to the class variable and no variance in the values

Modeling:

- Converted the class variable using label encoder
- Converted all the categorical variables into binary
- Split the data into training and test using 80-20 split

Decision Tree: ran the decision tree in python in loop for depth from 1 to 20 to get the depth with the best accuracy. The accuracy is 55% with max depth of 7.

Random forest classifier: ran the random forest classifier in python with the 1000 as estimators which gave the accuracy of 50%.

K nearest neighbors: ran the KNN in loop to get the neighbors with highest accuracy from 1 to 100. The nearest neighbors were 88 and with the maximum accuracy of 54%.

Decision tree had the best accuracy hence ran the tree keeping the max depth parameter as 7 on the training data. Ran the confusion matrix on the test data and below is the classification report. The precision and recall for the **Thin** category are the lowest due to uneven distribution of the observations.

Classification	on report -			
	precision	recall	f1-score	support
0	0.58	0.64	0.61	4832
1	0.52	0.60	0.56	4428
2	0.33	0.01	0.01	1204
avg / total	0.52	0.55	0.52	10464

Decision tree was run in Weka using J48 classifier with the 10 fold cross validation which gave the accuracy of 54%. Below are the results:

```
Number of Leaves :
                                  2146
Size of the tree :
Time taken to build model: 6.72 seconds
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances
                                                    28375
                                                                                 54.2356 %
Incorrectly Classified Instances 23943
                                                                               45.7644 %
                                             0.1879
Kappa statistic
Mean absolute error
Root mean squared error
Relative absolute error
Root relative squared error
Mean absolute error
                                                          0.4508
                                                    93.0982 %
101.0584 %
Total Number of Instances
                                                    52318
=== Detailed Accuracy By Class ===
                     TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 0.546 0.350 0.538 0.546 0.542 0.196 0.608 0.512 overwed 0.022 0.018 0.144 0.022 0.038 0.011 0.570 0.145 thin 0.674 0.443 0.559 0.674 0.611 0.232 0.634 0.544 fit 0.542 0.353 0.501 0.542 0.514 0.190 0.615 0.483
                                                                                                                                        overweight
Weighted Avg.
 === Confusion Matrix ===
                      c <-- classified as
  12223 426 9732 | a = overweight
3137 137 2919 | b = thin
7343 386 16015 | c = fit
```

Takeaways

Factors for improvement of accuracy:

- The data used for analysis was similar to a survey data because there is no way to validate if the customers entered the correct information
- The categorical variables if grouped differently might increase the accuracy
- The availability of the columns such as weight, BMI might increase the accuracy.
- The missing value treatment if done differently might lead to an increase in the accuracy.

(b) Interpret and analyze your results to help business managers understand the implications and actions that follow from the analysis.

From this analysis, we take away a few key points:

The number of missing values must be reduced in order to improve accuracy.

• The more data we lose, the worse it will be for the matching algorithms that this online dating platform relies on. To improve the algorithm would be to improve the bottom line. Therefore, it is important to acquire these precious missing data points.

The number of categorical choices must be increased in order to improve accuracy

 This will allow for more data points that are accurately grouped and categorized. Allowing for better matching of the detailed variables that users value.

Business implications

To improve the matching algorithm is to improve the bottom line. In order to improve the connections of the users, there must be a machine learning algorithm that can learn how to match users efficiently and with an exponential increase in learning. In order for this to happen, there must be more data to analyze. This is not only referring to the number of rows/instances, but also the column/attributes of the

person. This will therefore give better insights of the tangible connection points for the users. This means that users will like going on dates, and those users will make a true connection. Improving the customer satisfaction would lead to a positive review or a user recommending okcupid to another friend, stimulating more customers to join this online dating platform.

(c) Other recommendations.

Finding data that can be helpful in answering these questions will allow us to depict and propose novel ways to improve the customer experience in online dating. Ensuring that the user has an enjoyable experience throughout the whole process will be imperative to the success of the online dating platform. By collecting, analyzing, and interpreting the data from the user experience, we hope that can allow users to connect with peace of mind.