Приведение отношений в 5 НФ

Кокорин Илья, М3439

13 января 2020 г.

1 Songs

1.1 Функциональные зависимости

- 1. song_id \rightarrow name
- 2. song id \rightarrow text
- 3. song id \rightarrow duration
- 4. song id \rightarrow album id
- 5. song id \rightarrow artist id

1.2 Ключи

Заметим, что $\{song_id\}$ является ключом, и этот ключ единственный (так как все атрибуты определяются song id, любой другой надключ не будет минимальным по включению, поэтому не будет ключом)

1.3 Нормальные формы

1.3.1 1 HΦ

Отношение уже находится в $1~\mathrm{H}\Phi$, так как в отношении нет повторияющихся групп, все атрибуты атомарны, а у отношения есть ключ

1.3.2 2 HΦ

Отношение уже находится в 2 ${\rm H}\Phi,$ так как не имеет составных ключей.

1.3.3 3 HΦ

Отношение уже находится в 3 НФ, так как не имеет никаких ФЗ, кроме зависимости всех атрибутов от ключа.

1.3.4 НФБК

Отношение находится в 3 HФ и не имеет перекрывающихся ключей \Rightarrow находится в НФБК

$1.3.5 \quad 4 \text{ H}\Phi$

По теореме Дейта-Фейгина, отношение находится в ${\rm H}\Phi{\rm E}{\rm K}$ и существует простой ключ \Rightarrow находится в ${\rm 4~H}\Phi$

1.3.6 5 H Φ

По теореме Дейта-Фейгина, отношение находится в 3 ${\rm H}\Phi$ и все ключи простые \Rightarrow находится в 5 ${\rm H}\Phi$

2 Albums

2.1 Функциональные зависимости

- 1. album id \rightarrow name
- 2. album id \rightarrow artist id
- 3. album id \rightarrow song id
- 4. album id \rightarrow release date

2.2 Ключи

Заметим, что $\{album_id\}$ является ключом, и этот ключ единственный (так как все атрибуты определяются album id, любой другой надключ не будет минимальным по включению, поэтому не будет ключом)

2.3 Нормальные формы

2.3.1 $1 \text{ H}\Phi$

Отношение уже находится в $1~\mathrm{H}\Phi$, так как в отношении нет повторияющихся групп, все атрибуты атомарны, а у отношения есть ключ

2.3.2 2 HΦ

Отношение уже находится в $2 \ H\Phi$, так как не имеет составных ключей.

2.3.3 3 HΦ

Отношение уже находится в 3 НФ, так как не имеет никаких ФЗ, кроме зависимости всех атрибутов от ключа.

2.3.4 НФБК

Отношение находится в $3~{\rm H}\Phi$ и не имеет перекрывающихся ключей \Rightarrow находится в ${\rm H}\Phi$ БК

$2.3.5 \quad 4 \text{ H}\Phi$

По теореме Дейта-Фейгина, отношение находится в $H\Phi EK$ и существует простой ключ \Rightarrow находится в $4H\Phi$

2.3.6 5 HΦ

По теореме Дейта-Фейгина, отношение находится в $3~{\rm H}\Phi$ и все ключи простые \Rightarrow находится в $5~{\rm H}\Phi$

3 AlbumCovers

3.1 Функциональные зависимости

- 1. album id, sequence $number \rightarrow cover_path$
- 2. $cover\ path \rightarrow album\ id, sequence\ number$

3.2 Ключи

Заметим, что $\{album_id, sequence_number\}$ является ключом. Также ключом является $\{cover_path\}$ Других ключей быть не может, так как добавлять cover_path к чему-то бесполезно, тк тогда ключ уже не будет минимален по включению, а минимизировать $\{album\ id, sequence\ number\}$ также нельзя.

3.3 Нормальные формы

3.3.1 1 НФ

Отношение уже находится в $1 \ H\Phi$, так как в отношении нет повторияющихся групп, все атрибуты атомарны, а у отношения есть ключ

3.3.2 2 НФ

Отношение уже находится в $2~\mathrm{H}\Phi$, так как нет функционалиных зависимостей атрибутов от части составного ключа.

3.3.3 3 НФ

Отношение уже находится в 3 H Φ , так как не имеет никаких $\Phi 3$, кроме зависимости всех остальных атрибутов от ключа, следовательно, не имеет транзитивных зависимостей

3.3.4 НФБК

Отношение находится в $3~\mathrm{H}\Phi$ и не имеет перекрывающихся ключей \Rightarrow находится в $\mathrm{H}\Phi\mathrm{E}\mathrm{K}$

$3.3.5 4 H\Phi$

Не существует нетривиальных МЗ, не являющихся ФЗ

3.3.6 5 H Φ

Единственный вариант декомпозиции на > 2 отношения это (album_id, cover_path), (cover_path, sequence_number), (album_id, sequence_number). Это корректный вриант декомпозиции, тк у нас есть кольцевое ограничение: если у альбома A есть обложка с номером N, если файл P принадлежит альбому A и если файл P находится под номером N, то файл P является N-ной обложкой альбома A. В этой декомпозиции каждое X_i надключ, следовательно, отношение находится в 5 НФ.

4 Artists

4.1 Функциональные зависимости

1. artist id \rightarrow name

4.2 Ключи

Заметим, что $\{artist_id\}$ является ключом, и этот ключ единственный (так как все атрибуты определяются artist id, любой другой надключ не будет минимальным по включению, поэтому не будет ключом)

4.3 Нормальные формы

4.3.1 1 HΦ

Отношение уже находится в $1 \text{ H}\Phi$, так как в отношении нет повторияющихся групп, все атрибуты атомарны, а у отношения есть ключ

4.3.2 2 HΦ

Отношение уже находится в 2 НФ, так как не имеет составных ключей.

4.3.3 3 HΦ

Отношение уже находится в $3~\mathrm{H}\Phi$, так как не имеет никаких $\Phi 3$, кроме зависимости всех атрибутов от ключа.

4.3.4 НФБК

Отношение находится в $3~\mathrm{H}\Phi$ и не имеет перекрывающихся ключей \Rightarrow находится в $\mathrm{H}\Phi\mathrm{BK}$

4.3.5 $4 \text{ H}\Phi$

По теореме Дейта-Фейгина, отношение находится в ${\rm H}\Phi{\rm E}{\rm K}$ и существует простой ключ \Rightarrow находится в ${\rm H}\Phi$

$4.3.6 5 H\Phi$

По теореме Дейта-Фейгина, отношение находится в 3 ${\rm H}\Phi$ и все ключи простые \Rightarrow находится в 5 ${\rm H}\Phi$

5 ArtistPhotos

5.1 Функциональные зависимости

- 1. $artist_id$, $sequence_number \rightarrow photo_path$
- 2. $photo_path \rightarrow artist_id, sequence_number$

5.2 Ключи

Заметим, что $\{artist_id, sequence_number\}$ является ключом. Также ключом является $\{photo_path\}$ Других ключей быть не может, так как добавлять photo_path к чему-то бесполезно, тк тогда ключ уже не будет минимален по включению, а минимизировать $\{artist\ id, sequence\ number\}$ также нельзя.

5.3 Нормальные формы

5.3.1 1 HΦ

Отношение уже находится в $1~\mathrm{H}\Phi$, так как в отношении нет повторияющихся групп, все атрибуты атомарны, а у отношения есть ключ

5.3.2 2 HΦ

Отношение уже находится в $2~{\rm H}\Phi$, так как нет функционалиных зависимостей атрибутов от части составного ключа.

5.3.3 3 HФ

Отношение уже находится в 3 H Φ , так как не имеет никаких $\Phi 3$, кроме зависимости всех остальных атрибутов от ключа, следовательно, не имеет транзитивных зависимостей

5.3.4 НФБК

Отношение находится в $3~{\rm H}\Phi$ и не имеет перекрывающихся ключей \Rightarrow находится в ${\rm H}\Phi$ БК

$5.3.5 \quad 4 \text{ H}\Phi$

Не существует нетривиальных МЗ, не являющихся ФЗ

5.3.6 5 H Φ

Единственный вариант декомпозиции на > 2 отношения это (artist_id, photo_path), (photo_path, sequence_number), (artist_id, sequence_number). Это корректный вриант декомпозиции, тк у нас есть кольцевое ограничение: если у артиста A есть фото с номером N, если файл P принадлежит артисту A и если файл P находится под номером N, то файл P является N-ным фото артистаы A. В этой декомпозиции каждое X_i надключ, следовательно, отношение находится в 5 НФ.

6 AlbumAuthors

6.1 Φ3

ФЗ нет

6.2 Ключи

album id, artist id

6.3 Нормальные формы

6.3.1 1 HΦ

Отношение уже находится в $1 \ H\Phi$, так как в отношении нет повторияющихся групп, все атрибуты атомарны, а у отношения есть ключ

$6.3.2 2 H\Phi$

Отношение уже находится в 2 НФ, так как нет функционалиных зависимостей.

6.3.3 3 HΦ

Отношение уже находится в $3 \text{ H}\Phi$, так как не имеет никаких $\Phi 3$.

6.3.4 НФБК

Отношение находится в $3~\mathrm{H}\Phi$ и не имеет перекрывающихся ключей \Rightarrow находится в $\mathrm{H}\Phi\mathrm{BK}$

$6.3.5 \quad 4 \text{ H}\Phi$

Не имеет никаких M3, кроме тривиальных \Rightarrow находится в 4 НФ

$6.3.6 5 H\Phi$

Имеет всего 2 атрибута \Rightarrow декомпозиция на > 2 отношения невозможна. Декомпозировать на 2 отношения не имеет смысла, так как отношения находится в 4 НФ, а она лучшая с точки зрения разбиения на 2 отношения.

7 SongInAlbums

$7.1 \quad \Phi 3$

- 1. $song id, album id \rightarrow position$
- 2. $song\ id, position \rightarrow album\ id$

7.2 Ключи

Ключами являются $\{song_id, album_id\}$ и $\{song_id, position\}$. Других ключей размера 2 быть не может, так как $song_id, position \not\rightarrow album_id$. Ключа размера 1 быть не может, так как никакой атрибут не определяет остальные два. Ключ размера три может существовать только один, он является надключом двух ключей размера 2 (не минимален по включению).

7.3 Нормальные формы

7.3.1 1 H Φ

Отношение уже находится в $1~\mathrm{H}\Phi$, так как в отношении нет повторияющихся групп, все атрибуты атомарны, а у отношения есть ключ

$7.3.2 2 H\Phi$

Отношение уже находится в 2 НФ, так нет функциональных зависимостей от части составного ключа.

7.3.3 $3 \text{ H}\Phi$

Отношение уже находится в $3 \, \mathrm{H}\Phi$, так как каждый ключ непосредственно определяет единственный атрибут, не входящий в него \Rightarrow нет транзитивной зависимости от ключа.

7.3.4 НФБК

Существует две нетривиальных ФЗ, в каждой из них левая часть является надключом.

$7.3.5 4 H\Phi$

Существует нетривиальная МЗ, не являющаяся Φ З $album_id \rightarrow song_id|position$, при этом $album_id$ не является надключом.

Декомпозируем на два отношения: ($\underline{album_id}, \underline{song_id}$) и ($\underline{album_id}, \underline{position}$). Каждая из них находится в 4 НФ, так как не имеет нетривиальных M3, не являющихся $\overline{\Phi}3$, а $\overline{\Phi}3$ в них всего одна (ключевой атрибут определяет единственный неключевой)

$7.3.6 5 H\Phi$

Оба отношения содержат по два атрибута, нет нетривиальных МЗС, значит, отношения находятся в 5 НФ.

7.4 Заключение

Не будет декомпозировать до $4~\mathrm{H}\Phi$, так как в таком случае мы не будем знать, на какой позиции в альбоме какая песня стоит, следовательно, не сможем проиграть альбом в правильном порядке. Оставим в $\mathrm{H}\Phi\mathrm{Б}\mathrm{K}.$

8 SongAuthors

8.1 Φ3

ФЗ нет

8.2 Ключи

song id, artist id

8.3 Нормальные формы

8.3.1 1 HΦ

Отношение уже находится в $1 \ H\Phi$, так как в отношении нет повторияющихся групп, все атрибуты атомарны, а у отношения есть ключ

8.3.2 2 HΦ

Отношение уже находится в 2 НФ, так как нет функционалиных зависимостей.

8.3.3 3 HΦ

Отношение уже находится в 3 HФ, так как не имеет никаких Φ 3.

8.3.4 НФБК

Отношение находится в $3~\mathrm{H}\Phi$ и не имеет перекрывающихся ключей \Rightarrow находится в $\mathrm{H}\Phi\mathrm{E}\mathrm{K}$

8.3.5 4 H Φ

Не имеет никаких M3, кроме тривиальных \Rightarrow находится в 4 НФ

8.3.6 5 H Φ

Имеет всего 2 атрибута \Rightarrow декомпозиция на > 2 отношения невозможна. Декомпозировать на 2 отношения не имеет смысла, так как отношения находится в 4 НФ, а она лучшая с точки зрения разбиения на 2 отношения.

9 Users

9.1 Φ3

- 1. $user id \rightarrow login$
- $2.\ user_id \rightarrow pass_hash_with_salt$
- 3. $login \rightarrow user id$
- $4.\ login \rightarrow pass_hash_with_salt$

9.2 Ключи

 $\{user_id\}$ и $\{login\}$ являются ключами. Других ключей нет, так как все надключи размера 2 и 3 не минимальны по включению, а pass_hash_with_salt не может являться ключом, так как не определяет ни одного атрибута.

9.3 Нормальные формы

9.3.1 1 НФ

Отношение уже находится в $1~\mathrm{H}\Phi$, так как в отношении нет повторияющихся групп, все атрибуты атомарны, а у отношения есть ключ

9.3.2 2 HΦ

Отношение уже находится в 2 ${\rm H}\Phi$, так как все ключи простые \to не может быть $\Phi 3$ от части составного ключа.

9.3.3 З НФ

Отношение уже находится в 3 НФ, так как неключевые атрибуты зависят только от ключа.

9.3.4 НФБК

Отношение находится в $3~\mathrm{H}\Phi$ и не имеет перекрывающихся ключей \Rightarrow находится в $\mathrm{H}\Phi\mathrm{E}\mathrm{K}$

$9.3.5 \quad 4 \text{ H}\Phi$

По теореме Дейта-Фейинга, отношение находится в $H\Phi EK$ и существует простой ключ \Rightarrow находится в $4H\Phi$

$9.3.6 5 H\Phi$

По теореме Дейта-Фейинга, отношение находится в $3~{\rm H}\Phi$ и все ключи простые \Rightarrow находится в $5~{\rm H}\Phi$

10 UserAvatars

10.1 Φ 3

1. $user id, sequence number \rightarrow avatar$

10.2 Ключи

Заметим, что $\{artist_id, sequence_number\}$ является ключом. Также ключом является $\{photo_path\}$ Других ключей быть не может, так как добавлять photo_path к чему-то бесполезно, тк тогда ключ уже не будет минимален по включению, а минимизировать $\{artist_id, sequence_number\}$ также нельзя.

10.3 Нормальные формы

10.3.1 1 HΦ

Отношение уже находится в $1~\mathrm{H}\Phi$, так как в отношении нет повторияющихся групп, все атрибуты атомарны, а у отношения есть ключ

10.3.2 2 HΦ

Отношение уже находится в $2~\mathrm{H}\Phi$, так как нет функционалиных зависимостей атрибутов от части составного ключа.

10.3.3 3 HΦ

Отношение уже находится в 3 H Φ , так как не имеет никаких $\Phi 3$, кроме зависимости всех остальных атрибутов от ключа, следовательно, не имеет транзитивных зависимостей

10.3.4 НФБК

Отношение находится в $3~{\rm H}\Phi$ и не имеет перекрывающихся ключей \Rightarrow находится в ${\rm H}\Phi$ БК

10.3.5 4 H Φ

Не существует нетривиальных МЗ, не являющихся ФЗ

10.3.6 5 H Φ

Единственный вариант декомпозиции на > 2 отношения это (artist_id, photo_path), (photo_path, sequence_number), (artist_id, sequence_number). Это корректный вриант декомпозиции, тк у нас есть кольцевое ограничение: если у артиста A есть фото с номером N, если файл P принадлежит артисту A и если файл P находится под номером N, то файл P является N-ным фото артиста A. В этой декомпозиции каждое X_i надключ, следовательно, отношение находится в 5 НФ.

11 AlbumRatings

11.1 Функциональные зависимости

1. $album id, user id \rightarrow rating$

11.2 Ключи

Ключом является $\{album_id, user_id\}$. Других ключей нет, так как эти два атрибута ничем функционально не определяются, но в совокупности определяют единственный оставшийся атрибут.

11.3 Нормальные формы

11.3.1 1 HΦ

Отношение уже находится в $1~\mathrm{H}\Phi$, так как в отношении нет повторяющихся групп, все атрибуты атомарны, а у отношения есть ключ

11.3.2 2 HΦ

Отношение уже находится в $2 \ H\Phi$, так как не имеет $\Phi 3$ от части составного ключа.

11.3.3 3 HΦ

Отношение уже находится в 3 НФ, так как не имеет никаких ФЗ, кроме зависимости всех атрибутов от ключа.

11.3.4 НФБК

Отношение находится в $3~\mathrm{H}\Phi$ и не имеет перекрывающихся ключей \Rightarrow находится в $\mathrm{H}\Phi\mathrm{BK}$

11.3.5 4 HΦ

Отношение находится в 4 НФ, так как не имеет нетривиальных МЗ, не являющихся ФЗ

11.3.6 5 НФ

Найдём все нетривиальные зависимости соединений.

Попытаемся разрезать только на 3 части, так как на 2 бесполезно, так как лучшая Н Φ в смысле разрезания на 2 части - 4 Н Φ , а на 4 части не хватит атрибутов.

Очевидно, что имеет смысл включать в проекции только по два атрибута (три не имеет смысла, так как тогда получится тривиальная зависимость соединения).

Так как операция соединения ассоциатитивна и коммутативна, у нас есть только один вариант разбиения на 3 проекции:

- 1. album id, user id
- $2. \ album_id, rating$
- 3. user id, rating

Очевидно, что их соединение не даст исходное отношение.

Представим такое отношение $R: album_id, user_id, rating$:

album_id:	$user_id,$	rating
1	1	4
1	2	5
2	1	5
2	2	4

Тогда $\pi_{album\ id,user\ id}(R) =$

album_id:	$user_id$
1	1
1	2
2	1
2	2

Тогда $\pi_{album_id,rating}(R) =$

album_id	rating
1	4
1	5
2	5
2	4

Тогда $\pi_{user\ id,rating}(R) =$

 $\pi_{album\ id,user\ id}(R) \bowtie \pi_{album\ id,rating}(R) =$

album_id:	$user_id,$	rating
1	1	4
1	2	4
1	1	5
1	2	5
2	1	4
2	1	5
2	2	4
2	2	5

 $(\pi_{album\ id,user\ id}(R) \bowtie \pi_{album\ id,rating}(R)) \bowtie \pi_{user\ id,rating}(R) =$

GroupId:	CourseId,	LecturerId
1	1	4
1	2	4
1	1	5
1	2	5
2	1	4
2	1	5
2	2	4
2	2	5

То есть $(\pi_{album_id,user_id}(R) \bowtie \pi_{album_id,rating}(R)) \bowtie \pi_{user_id,rating}(R) \neq R$, так как в отношении появились лишние строки. То есть не сущесвует нетривиальных зависимостей соединений для отношения. Значит, отношение находится в 5 НФ.

12 SongRatings

12.1 Функциональные зависимости

1. $song id, user id \rightarrow rating$

12.2 Ключи

Ключом является $\{album_id, user_id\}$. Других ключей нет, так как эти два атрибута ничем функционально не определяются, но в совокупности определяют единственный оставшийся атрибут.

12.3 Нормальные формы

12.3.1 1 HΦ

Отношение уже находится в $1~\mathrm{H}\Phi$, так как в отношении нет повторяющихся групп, все атрибуты атомарны, а у отношения есть ключ

12.3.2 $2 H\Phi$

Отношение уже находится в $2 \text{ H}\Phi$, так как не имеет $\Phi 3$ от части составного ключа.

12.3.3 3 HΦ

Отношение уже находится в $3~{\rm H}\Phi$, так как не имеет никаких $\Phi 3$, кроме зависимости всех атрибутов от ключа.

12.3.4 НФБК

Отношение находится в $3~\mathrm{H}\Phi$ и не имеет перекрывающихся ключей \Rightarrow находится в $\mathrm{H}\Phi\mathrm{BK}$

12.3.5 4 H Φ

Отношение находится в 4 ${\rm H}\Phi$, так как не имеет нетривиальных ${\rm M}{\rm 3}$, не являющихся ${\rm \Phi}{\rm 3}$

12.3.6 5 H Φ

 \mathbf{c}

13 Playlists

13.1 Функциональные зависимости

- 1. playlist_id \rightarrow name
- 2. playlist $id \rightarrow owner id$

13.2 Ключи

Заметим, что $\{playlist_id\}$ является ключом, и этот ключ единственный (так как все атрибуты определяются playlist_id, любой другой надключ не будет минимальным по включению, поэтому не будет ключом)

13.3 Нормальные формы

13.3.1 1 HΦ

Отношение уже находится в $1 \text{ H}\Phi$, так как в отношении нет повторияющихся групп, все атрибуты атомарны, а у отношения есть ключ

13.3.2 2 HΦ

Отношение уже находится в $2 \ H\Phi$, так как не имеет составных ключей.

13.3.3 3 НФ

Отношение уже находится в 3 Н Φ , так как не имеет никаких $\Phi 3$, кроме зависимости всех атрибутов от ключа.

13.3.4 НФБК

Отношение находится в $3~\mathrm{H}\Phi$ и не имеет перекрывающихся ключей \Rightarrow находится в $\mathrm{H}\Phi\mathrm{BK}$

13.3.5 $4 \text{ H}\Phi$

По теореме Дейта-Фейгина, отношение находится в ${\rm H}\Phi{\rm E}{\rm K}$ и существует простой ключ \Rightarrow находится в ${\rm H}\Phi$

13.3.6 5 НФ

По теореме Дейта-Фейгина, отношение находится в 3 НФ и все ключи простые \Rightarrow находится в 5 НФ

14 SongInPlaylists

14.1 Функциональные зависимости

1. $playlist\ id, position \rightarrow song\ id$

14.2 Ключи

Ключом является $\{playlist_id, position\}$. Других ключей нет, так как эти атрибуты ни от чего функционально не зависят.

14.3 Нормальные формы

14.3.1 1 HΦ

Отношение уже находится в $1 \ H\Phi$, так как в отношении нет повторияющихся групп, все атрибуты атомарны, а у отношения есть ключ

14.3.2 2 HΦ

Отношение уже находится в 2 ${\rm H}\Phi,$ так как ни один неключевой атрибут не зависит от части составного ключа.

14.3.3 3 HΦ

Отношение уже находится в 3 НФ, так как не имеет никаких ФЗ, кроме зависимости всех атрибутов от ключа.

14.3.4 НФБК

Отношение находится в $3~\mathrm{H}\Phi$ и не имеет перекрывающихся ключей \Rightarrow находится в $\mathrm{H}\Phi\mathrm{E}\mathrm{K}$

14.3.5 4 HΦ

Нет нетривиальных МЗ, не являющихся ФЗ

14.3.6 5 H Φ

Найдём все нетривиальные зависимости соединений.

Попытаемся разрезать только на 3 части, так как на 2 бесполезно, так как лучшая $H\Phi$ в смысле разрезания на 2 части - 4 $H\Phi$, а на 4 части не хватит атрибутов.

Очевидно, что имеет смысл включать в проекции только по два атрибута (три не имеет смысла, так как тогда получится тривиальная зависимость соединения).

Так как операция соединения ассоциатитивна и коммутативна, у нас есть только один вариант разбиения на 3 проекции:

- 1. playlist id, position
- $2. position, song_id$
- 3. song id, playlist id

Очевидно, что их соединение не даст исходное отношение.

Представим такое отношение $R: playlist\ id, position, song\ id:$

playlist_id:	position,	$song_id$
1	1	1
1	2	2
2	1	2
2	2	1

Тогда $\pi_{playlist\ id,position}(R) =$

playlist_id: position
$$\begin{array}{ccc}
1 & 1 \\
1 & 2 \\
2 & 1 \\
2 & 2
\end{array}$$

Тогда $\pi_{position,song-id}(R) =$

position	$song_id$
1	1
2	2
1	2
2	1

Тогда $\pi_{song-id,playlist-id}(R) =$

$song_id$	playlist_id
1	1
1	2
2	2
2	1

 $\pi_{playlist_id,position}(R)\bowtie\pi_{position,song_id}(R) =$

playlist id:	position,	song id
1	1	1
1	1	2
1	2	1
1	2	2
2	1	2
2	1	2
2	2	1
2	2	2

 $(\pi_{playlist_id,position}(R)\bowtie\pi_{position,song_id}(R))\bowtie\pi_{song_id,playlist_id}(R) =$

playlist_id:	position,	$song_id$
1	1	1
1	1	2
1	2	1
1	2	2
2	1	2
2	1	2
2	2	1
2	2	2

То есть $(\pi_{playlist_id,position}(R) \bowtie \pi_{position,song_id}(R)) \bowtie \pi_{song_id,playlist_id}(R) \neq R$, так как в отношении появились лишние строки. То есть не сущесвует нетривиальных зависимостей соединений для отношения. Значит, отношение находится в $5~\mathrm{H}\Phi$.