

12 March 2020 scheduler • EN

# Problem 3 - Scheduler (scheduler)

You helped evaluate the final rankings. You helped choose the servers to rent. We're now almost ready to go.

As someone once didn't one say: "With great computing power comes great responsibility".

All the available servers are not useful if we can't find a way to efficiently schedule the tasks to be performed.

Unfortunately, we noticed all the N rented servers are different from the others. In particular, each server takes P[i] unit of time to power on and, once the startup is complete, manages to complete a task every S[i] unit of time (for simplicity we assume all the tasks can be completed in the same amount of time for a server).

However, you will not be able to use all N servers simultaneously (as they will also be used for other jobs). Therefore, given M tasks you could choose a maximum of K servers to help you.

Please help the Reply Code Masters once again to find the minimum time required to execute all the tasks.

### Input data

The first line of the input file contains an integer T, the number of test cases to solve, followed by T testcases, numbered from 1 to T.

In each test case, the first line contains the three integers N, K and M: the number of available servers, the maximum number of servers to use and the number of tasks.

The following N lines contain two integers:  $P_{in}[i]$ ,  $S_{in}[i]$ , the time for the server to power-on, and the speed it completes a task in.

## Output data

The output file must contain T lines. For each test case in the input file, the output file must contain a line with the words:

#### Case #t: c

where t is the test case number (from 1 to  $\mathbf{T}$ ) and c is the minimum time to execute all the tasks.

#### **Constraints**

- $1 \le T \le 20$ .
- $1 \le N \le 100\,000$ .
- $1 \leq \mathbf{K} < \mathbf{N}$ .
- $1 \le \mathbf{M} \le 10000000000$ .
- $1 \le \mathbf{P[i]} \le 100\,000$  for each  $i = 0 \dots N 1$ .
- 1 < S[i] < 100000 for each i = 0...N 1.

scheduler Page 1 of 2

## **Scoring**

```
• input 1: T = 1, N \le 5, M \le 5, P[i] and S[i] \le 5.
```

• input 2: 
$$T = 5$$
,  $N \le 100$ ,  $M \le 10$ ,  $P[i]$  and  $S[i] \le 10$ .

- input  $3: T = 10, N \le 1000, M \le 1000, P[i] \text{ and } S[i] \le 100.$
- input 4: T = 15,  $N \le 10\,000$ ,  $M \le 1\,000\,000$ , P[i] and  $S[i] \le 1\,000$ .
- input  $\mathbf{5}$ :  $\mathbf{T} = 20$ ,  $\mathbf{N} \le 100\,000$ ,  $\mathbf{M} \le 1\,000\,000\,000$ ,  $\mathbf{P[i]}$  and  $\mathbf{S[i]} \le 100\,000$ .

### **Examples**

| input                            | output      |
|----------------------------------|-------------|
| 1<br>3 2 10<br>1 3<br>2 2<br>3 2 | Case #1: 13 |

## **Explanation**

We can use the second and the third server to execute 5 tasks each.

The second server takes  $startup + 5 \times speed = 2 + 5 \times 2 = 12$ .

The third server takes  $startup + 5 \times speed = 3 + 5 \times 2 = 13$ .

The total time is thus max(12, 13) = 13 unit of time.

This solution is optimal as there is no way to complete 10 tasks in less than 13 unit of time.

scheduler Page 2 of 2