Elementary Number Theory: Homework3

刘泓尊 2018011446 计84

2020年4月15日

- 1. 良序公理 (The Well-Ordering Property): 每个非空的正整数集合都有最小元。正整数集合是良序的,所有整数的集合不是良序的,因为其可能没有最小元。
- 2. 证明 $\sqrt{2}$ 是无理数:

假设 $\sqrt{2}$ 是有理数,则存在正整数 a 和 b 使得 $\sqrt{2} = a/b$. 所以 $S = \{k\sqrt{2} \mid k, k\sqrt{2} \in \mathbb{Z}^+\}$ 是非空的正整数集合 (因为至少有 $a = b\sqrt{2} \in S$.)

由良序公理,S 有最小元,记为 $s = t\sqrt{2}$. 进而 $s\sqrt{2} - s = s\sqrt{2} - t\sqrt{2} = (s - t)\sqrt{2}$ 因为 $s\sqrt{2} = 2t$ 和 $t\sqrt{2}$ 都是整数,所以 $(s - t)\sqrt{2}$ 是整数,又 $s\sqrt{2} - s > 0$,所以 $(s - t)\sqrt{2} \in S$,而 $s(\sqrt{2} - 1) < s$,与 s 是最小元矛盾! 所以 $\sqrt{2}$ 是无理数。

3. 证明: $a \in \mathbb{Z}, b \in \mathbb{Z}^+, \exists !q, r \in \mathbb{Z}, s.t.$ $a = bq + r, (0 \le r \le b - 1)$

构造集合 $S = \{a - bk \mid a, k \in \mathbb{Z}, b \in \mathbb{Z}^+, a - bk \ge 0\}$, 显然 S 非空,(取 $k = \lfloor \frac{a}{b} \rfloor$ 即可) 存在性: 由良序公理,S 中有最小元,设为 r = a - bq > 0。

假设 $r \ge b$, 则 $0 \le r - b = a - bq - b = a - (q+1)b < r$, 而 $r - b \in S$, 所以与 r 是最小元矛盾! 所以 0 < r < b - 1.

唯一性: 假设 $\exists q_1, r_1, q_2, r_2$ 使得 $a = bq_1 + r_1, a = bq_2 + r_2$, 且 $0 \le r_1, r_2 \le b - 1$. 有 $a - a = b(q_1 - q_2) + (r_1 - r_2) = 0$, 即 $(r_2 - r_1) = b(q_1 - q_2)$, 必有 $b \mid (r_2 - r_1)$, 而 $-b < r_2 - r_1 < b$, 矛盾!

所以 q, r 唯一。所以 $\exists ! q, r \in \mathbb{Z}, s.t.$ $a = bq + r, (0 \le r \le b - 1).$

4. 证明数学归纳法

往证: 若集合 A 满足: $1 \in A, n \in A$, 那么有 $n+1 \in A$, 则 A 一定是所有正整数的集合。设 A 是包含 1 的集合,并且如果它包含整数 n, 则一定包含整数 n+1. 假定 A 不是所有正整数的集合,则存在正整数 $x \notin A$.

设 S 为不包含在 A 中的正整数集合。由良序性质,S 存在最小元 k, 由于 1 不在 S 中, 所以 k > 2.

因为 k-1 < k,所以 $k-1 \in A$,根据假设, $k \in A$,即 $k \notin S$. 矛盾! 所以 A 是所有正整数的集合。

5. 证明: 每个大于 1 的整数都有素因子.

反证法: 假设存在整数 > 1 且没有素因子,这些数组成非空集合 S.

由良序公理, S 有最小元, 设为 m, 因为 $m \mid m$ 且 m 没有素因子, 所以 m 不是素数 (如果 m 是素数, 那么 m 就有了"素"因子 m, 不满足定义。所以 m 可以表示为 m = ab, 0 < a < m, 0 < b < m. 由 a < n 可知 a 有素数因子,而 a 的素因子也是 m 的素因子,从而 n 有素因子。矛盾! 结论成立。

6. 每个大于 1 的正整数都可以**唯一地**表示成非负素数的乘积,在乘积中的素因子按照非降 序排列

反证法,假设存在大于 1 的正整数无法表示成非负素数的乘积,它们组成非空集合 S 由良序公理, S 中有最小元 n, 若 n 为素数,则 n=n 是素数乘积,所以 n 是合数. 设 $n=ab, a, b \in \mathbb{Z}^+, 1 < a \leq b < n$. 那么 $a, b \notin S$. 所以 a, b 可以写成非负素数乘积。进而 n 也可以写成非负素数乘积。矛盾!

所以每个大于1的正整数都可以表示成非负素数的乘积

下证此表示法唯一:

假设存在两种表示: $n = p_1 p_2 \cdots p_s = q_1 q_2 \cdots q_t$, 且素因子非降序排列。

约去等式两侧相同的素因子得到: $n = p_{i_1}p_{i_2}\cdots p_{i_u} = q_{j_1}q_{j_2}\cdots q_{j_v}, u,v \ge 1$.

那么有 p_{i_1} 整除左侧,不能整除右侧,矛盾! (由题 11 保证)

所以表示是唯一的。

7. 证明: 若 n 是合数,则 n 一定有一个不超过 \sqrt{n} 的素因子。

设 n = ab, 不妨设 $0 < a \le b < n$, 那么 $a^2 \le ab = n$, 得到 $a \le \sqrt{n}$. 否则若 $b \ge a > \sqrt{n}$, $ab > \sqrt{n} \cdot \sqrt{n} = n$.

因为每个大于 1 的正整数都有素因子,所以 a 至少有一个素因子 $p \le a$, 进而 p 也是 n 的因子, $p \le \sqrt{n}$.

8. 证明: 两个不全为 0 的整数 a,b 的最大公因子是 a,b 线性组合中最小的正整数。

设集合 $S = \{ma + nb \mid m, n \in \mathbb{Z}, ma + nb > 0\}$, 因为 (a, -a, b, -b) 中至少有一个属于 S, 所以 S 非空)。由良序公理, $d = ma + nb, m, n \in \mathbb{Z}$. 不妨设 $a \neq 0$, 往证 $d \mid a$

设 $a = dq + r, 0 \le r < d, r = a - dq = a - (ma + nb)q = (1 - qm)a - qnb.$ 若 r > 0, 则 $r \neq a, b$ 的线性组合,且 r < d,矛盾! 所以 r = 0.

所以 $a = dq, d \mid a$. 同理 $d \mid b, d \not\in a, b$ 的公因子, 且是 a, b 线性组合中最小的正整数 $\forall e \in \mathbb{Z}^+, e \mid a, e \mid b, f \mid e \mid ma + nb = d$, 所以 $e \leq d$. 所以 $d \not\in a$ 是最大公因子。

9. $a,b \in \mathbb{Z}^+$, a,b 线性组合的集合与 (a,b) 倍数构成的集合等价

设 d = (a, b), 我们证明每个 a, b 的线性组合是 d 的倍数。

注意到 $d \mid a, d \mid b$, 所以 $d \mid ma + nb$, 所以每个 a, b 的线性组合是 d 的倍数。

现在证明每个 d 的倍数是 a,b 的线性组合:

存在整数 r,s 使得 (a,b) = ra + sb, 进而 kd = k(a,b) = (kr)a + (ks)b. 所以每个 d 的倍数是 a,b 的线性组合。

综上所述, $a,b \in \mathbb{Z}^+$, a,b 线性组合的集合与 (a,b) 倍数构成的集合等价。

10. 两个不全为 0 的整数 a,b,d=(a,b) 当且仅当: (1). $d\mid a,d\mid b$ (2). 若 c 是整数且 $c\mid a,c\mid b,$ 则 $c\mid d.$

必要性: 已知 d = (a, b), 则 $d \mid a, d \mid b$. 存在 $m, n \in \mathbb{Z}$ 使得 d = ma + nb, 若 $c \mid a, c \mid b$, 则 $c \mid ma + nb = d$.

充分性: 对于 a,b 的任一公因子 c 有 c | d, 那么 c \leq d. 而 d 是 a,b 的公因子,即 d 是最大公因子,d = (a,b)

11. $a_1, a_2, \dots, a_n \in \mathbb{Z}^+$, p 是素数,若 $p \mid a_1 a_2 \dots a_n$,则存在 $a_i, i \in [1, n]$,使得 $p \mid a_i$. 使用数学归纳法: n = 1 的情况是平凡的,假设对 n 成立。考虑 n + 1 个整数 $a_1 a_2 \dots a_{n+1}$,它能被 p 整除。或者有 $(a_1 a_2 \dots a_n, p) = 1$ 或者有 $(a_1 a_2 \dots a_n, p) = p$. 如果 $(a_1 a_2 \dots a_n, p) = p$

- 1,则 $p \mid a_{n+1}$. 另一方面,如果 $(a_1 a_2 \cdots a_n, p) = p$,即 $p \mid a_1 a_2 \cdots a_n$,由归纳假设 $p \mid a_i, i \in [1, n]$. 所以对 n+1 命题成立。
- 12. 设 $a,b \in \mathbb{Z}, d = (a,b)$,方程 ax + by = c 有整数解的充要条件是 $d \mid c$. 若 $x = x_0, y = y_0$ 是一组特解,则通解是 $x = x_0 + (b/d)n, y = y_0 (a/d)n, n \in \mathbb{Z}$.

必要性: 假设方程有整数解 (x,y), 因为 $d \mid a,d \mid b$, 则 $d \mid ax + by = c$.

充分性: 假设 $d \mid c = ax + by$. 因为存在 a, b 的线性组合 as + bt = d 且 $d \mid c$, 所以有整数 e 使得 de = c, 即 c = (as + bt)e = a(se) + b(te), 所以有整数解 $x_0 = se, y_0 = te$. 下面证明 $d \mid c$ 时有无穷多解:

往证: $x = x_0 + (b/d)n, y = y_0 - (a/d)n, \forall n \in \mathbb{Z}$ 是方程的解

因为 $ax + by = ax_0 + by_0 + a(b/d)n - b(a/d)n = ax_0 + by_0 = c$ 所以有无穷多解。 下面证明只能为上述形式的解:

假设 x, y 满足 ax + by = c, 因为 $ax_0 + by_0 = c$, 有 $(ax + by) - (ax_0 + by_0) = a(x - x_0) + b(y - y_0) = 0$, 因此 $a(x - x_0) = b(y_0 - y)$, 进而 $(a/d)(x - x_0) = (b/d)(y - y_0)$. 因为 (a/d, b/d) = 1, 所以 $(a/d) \mid (y_0 - y)$, 所以存在整数 n 使得 $(a/d)n = (y_0 - y)$, 即 $y = y_0 - (a/d)n$. 带入原方程得到 $x = x_0 + (b/d)n$

- 13. $a,b,c \in \mathbb{Z}$, 则 (a+bc,b) = (a,b)一方面,设 d = (a+bc,b),所以 $d \mid a+bc-bc = a,d \mid b$,所以 $d \mid (a,b)$. 另一方面,存在 m,n 使得 d = m(a+bc) + nb = ma + (cm+n)b,所以 $d \in a,b$ 的线性组合,设 e = (a,b) 有 $e \mid a,e \mid b$ 所以 $e = (a,b) \mid d$ 所以 d = (a,b),即 (a+bc,b) = (a,b)
- 14. $a, b \in \mathbb{Z}, m \in \mathbb{Z}^+, a \equiv b \mod m$ 当且仅当存在整数 k 使得 a = b + km 必要性: 因为 $a \equiv b \mod m$, 所以 $m \mid (a b)$, 即 $\exists k \in \mathbb{Z}, a b = km, a = b + km$. 充分性: a b = km, 所以 $m \mid (a b)$, 所以 $a \equiv b \mod m$.
- 16. $a, b, c \in \mathbb{Z}, m \in \mathbb{Z}^+, a \equiv b \mod m, c \equiv d \mod m$ \mathbb{M} : $a + c \equiv b + d \mod m, a c \equiv b d \mod m, ac \equiv bd \mod m$
 - (1). (a+c)-(b+d)=(a-b)+(c-d), 因为 $m\mid a-b, m\mid c-d$ 所以 $m\mid (a+c)-(b+d)$, 即 $a+c\equiv b+d\mod m$
 - (2). (a-c)-(b-d)=(a-b)-(c-d), 因为 $m\mid a-b, m\mid c-d$ 所以 $m\mid (a-c)-(b-d)$, 即 $a-c\equiv b-d\mod m$
 - (3). ac bd = ac bc + bc bd = (a b)c + b(c d), 因为 $m \mid a b, m \mid c d$ 所以 $m \mid (a b)c + b(c d) = ac bd$, 即 $ac \equiv bd \mod m$
- 17. 若 $a_j \equiv b_j \mod m, j = 1, 2, \dots, n, m$ 是正整数, $a_j, b_j \in \mathbb{Z}$,则 (1). $\sum_{j=1}^n a_j \equiv \sum_{j=1}^n \mod m$,(2). $\prod_{j=1}^n a_j \equiv \prod_{j=1}^n \mod m$ 同上一题,数学归纳法可证.

- 18. 若 $a \equiv b \mod m, c \equiv d \mod n, a, b, c, d \in \mathbb{Z}, m, n \in \mathbb{Z}^+$ 下列结论是否成立?
 - (1). $a \pm c \equiv b \pm d \mod (m, n), ac \equiv bd \mod (m, n)$
 - (2). $a \pm c \equiv b \pm d \mod [m, n], ac \equiv bd \mod [m, n]$
 - (1). $m \mid a b, n \mid c d$. 设 d = (m, n) 则 $d \mid m, d \mid n$, 进而 $d \mid a b, d \mid c d$, 又 $a \pm c \equiv b \pm d = (a b) \pm (c d)$, 所以 $d \mid (a b) \pm (c d) = a \pm c \equiv b \pm d$, 即 $a \pm c \equiv b \pm d$ mod (m, n).

ac - bd = (a - b)c + (c - d)b, 同理可得 $d \mid ac - bd$, 即 $ac \equiv bd \mod (m, n)$

- (2). 不成立。取 a = 5, b = 3, m = 2, c = 7, d = 4, n = 3。则 [m, n] = 6,进而 (a+c)-(b+d)=5, ac-bd=23, (a-c)-(b-d)=-1,它们都不能被 [m, n]=6 整除。
- 19. $r_1, r_2, \cdots r_m$ 是模 m 的完全剩余系,且正整数 a 使得 (a, m) = 1,则对任意整数 b, $ar_1 + b, ar_1 + b, \cdots ar_m + b$ 是模 m 的完全剩余系

原命题等价于: $ar_i + b$ 任意两数模 m 不同余。

假设存在 $(ar_i + b) \equiv (ar_j + b) \mod m, i \nmid j,$ 则 $m \mid (ar_i + b) - (ar_j + b) = a(r_i - r_j).$

因为 (a, m) = 1,所以 $m \mid (r_i - r_j)$,即 $r_i \equiv r_j \mod m$. 矛盾!

所以,对任意整数 b, $ar_1 + b$, $ar_1 + b$, $\cdots ar_m + b$ 是模 m 的完全剩余系。

20. $m_1, m_2, \cdots m_k$ 两两互素, $M = m_1 m_2 \cdots m_k$ 且 $M_j = M/m_j, j = 1, 2, \cdots, k$. 证明当 a_1, a_2, \cdots, a_k 分别取遍 m_1, m_2, \cdots, m_k 的完全剩余系时, $M_1 a_1 + M_2 a_2 + \cdots + M_k a_k$ 取 遍 M 的完全剩余系

 a_i 有 m_i 中取法,则 $\sum_{i=1}^k M_i a_i$ 有 $\prod_{i=1}^k m_i$ 种取法。即 M 种;

只需证: M 种取法中任意两种模 M 不同余.

假设有 $\sum_{i=1}^k M_i a_{i_1} \equiv \sum_{i=1}^k M_i a_{i_2} \mod M, a_{i_1} \neq a_{i_2}, \forall i=1,2,\cdots,k$

那么, $M \mid \sum_{i=1}^k M_i(a_{i_1} - a_{i_2})$, 进而 $m_1 \mid \sum_{i=1}^k M_i(a_{i_1} - a_{i_2})$.

因为 m_i 两两互素,所以 $m_i \nmid M_i, m_i \mid M_j (j \neq i)$,进而 $m_i \mid M_i (a_{i_1} - a_{i_2})$,进而 $m_i \mid (a_{i_1} - a_{i_2})$,所以 $a_{i_1} \equiv a_{i_2} \mod m_i$. 矛盾!

所以 $M_1a_1 + M_2a_2 + \cdots + M_ka_k$ 取遍 M 的完全剩余系。

21. $a \equiv b \mod m_i, i = 1, 2, \dots, k, a, b \in \mathbb{Z}, m_i \in \mathbb{Z}^+, \mathbb{R} \angle a \equiv b \mod [m_1, m_2, \dots m_k].$

引理: $[a,b] \mid c$ 当且仅当 $a \mid c$ 且 $b \mid c$

必要性: 因为 $[a,b] \mid c,a \mid [a,b]$, 所以 $a \mid c$ 。同理 $b \mid c$

充分性: 对 a,b,c 做最小素分解, $a=p_1^{r_1}p_2^{r_2}\cdots p_k^{r_k}, b=p_1^{s_1}p_2^{s_2}\cdots p_k^{s_k}, c=p_1^{c_1}p_2^{c_2}\cdots p_k^{c_k}$. 若 $a\mid c\perp b\mid c$, 则 $r_i\leq c_i,s_i\leq c_i$, 进而 $\max(r_i,s_i)\leq c_i$,

所以 $[a,b] = p_1^{\max(s_1,r_1)} p_2^{\max(s_2,r_2)} \cdots p_k^{\max(s_k,r_k)} \mid c$,即 $[a,b] \mid c$

因为 $a \equiv b \mod m_i, i = 1, 2, \dots, k$, 所以 $m_i \mid (a - b), i = 1, 2, \dots, k$

由上述引理,得到 $[m_1, m_2, \cdots m_k] \mid (a-b)$

所以 $a \equiv b \mod [m_1, m_2, \cdots m_k]$.

22. $a,b,m\in\mathbb{Z},m\in\mathbb{Z}^+,(a,m)=d$ 。若 $d\nmid b$,则 $ax\equiv b\mod m$ 无解;若 $d\mid b$,则 $ax\equiv b\mod m$ 恰有 d 个模 m 不同余的解

线性同余方程 $ax \equiv b \mod m$ 等价于二元线性丢番图方程 ax - my = b, x 是原方程的解当且仅当 $\exists y \in \mathbb{Z}$ 使得 ax - my = b.

由 12 题可知: $d \nmid b$ 时,ax - my = b 无整数解。

 $d \mid b$ 时,有无穷多解,通解为 $x = x_0 + (m/d)n, y = y_0 + (a/d)n$, 即原方程有无穷多解 x 满足 $x = x_0 + (m/d)n$ 的形式。

下证模 m 互不同余的解有 d 个:

考虑 $x_1 = x_0 + (m/d)n_1, x_2 = x_0 + (m/d)n_2$ 使得 $x_1 \equiv x_2 \mod m$ 即 $x_0 + (m/d)n_1 \equiv x_0 + (m/d)n_2 \mod m$. 进而 $(m/d)n_1 \equiv (m/d)n_2 \mod m$, 又 (m, m/d) = m/d 所以由 15 题得: $n_1 \equiv n_2 \mod m/(m/d) = d$.

进而原方程的解由 $x_0+(m/d)n$ 给出,其中 n 取遍 d 的一个完全剩余系,如 $n=0,1,\cdots d-1$.

所以原方程有 d 个模 m 不同余的解。

23. 证明同余方程 $x^2 \equiv 1 \mod 2^k$ 在 k > 2 时恰有 4 个不同余的解,它们是 $x = \pm 1$ 或 $x = \pm (1 + 2^{k-1}) \mod 2^k$; 在 k = 1 时仅有一个解; k = 2 是有两个不同余的解

k>2 时, $x^2-1\equiv (x+1)(x-1)\equiv 0 \mod 2^k$,所以 $2^k\mid (x+1)(x-1)$. 注意到 (x+1)-(x-1)=2,即两者的线性组合中有 2,所以 $(x+1,x-1)\leq 2$,所以或者有 $2^{k-1}\mid x+1,2\mid x-1$,或者有 $2^{k-1}\mid x-1,2\mid x+1$ 。

所以或者有 $x = t2^{k-1} + 1$ 或者有 $x = t2^{k-1} - 1$, $t \in \mathbb{Z}$

所以 x 模 2^k 的解只有 4 个,即 $x = \pm 1$ 或 $x = \pm (1 + 2^{k-1}) \mod 2^k$ 。

k=1 时,只有一个解 $x \equiv 1 \mod 2$

k=2 时,有两个解 $x\equiv \pm 1 \mod 2^2$

类似地可以证明, $x^2 \equiv 1 \mod p^k$, p 为奇数时, 可以得到 2 个解 $x \equiv \pm 1 \mod p^k$

24. 中国剩余定理 (Chinese Remainder Theorem):

设 m_1, m_2, \cdots, m_r 是两两互素的正整数, 同余方程组:

 $x \equiv a_1 \mod m_1$

 $x \equiv a_2 \mod m_2$

. .

 $x \equiv a_r \mod m_r$

有模 $M = m_1 m_2 \cdots m_r$ 的唯一解

存在性: 构造同余方程组的一个联立解,令 $M_i = M/m_i$, 因为 m_1, m_2, \dots, m_r 是两两 互素的正整数, 所以 $(M_i, m_i) = 1$.

设 $M_k y_k \equiv 1 \mod m_k$, 即 M_k 模 m_k 的逆是 y_k . 构造和

$$x = a_1 M_1 y_1 + a_2 M_2 y_2 + \dots + a_r M_r y_r$$

往证 x 为上述 r 个同余方程的联立解:

因为 $j \neq k$ 时, $m_j \mid M_k$,所以 $x \equiv a_k M_k y_k \mod m_k$. 又 $a_k M_k y_k \equiv a_k \mod m$,所以 $x \equiv a_k \mod m_k$.

唯一性: 即任意两个解模 M 同余:

假设 x_1, x_2 均为方程组的联立解。则由 $x_1 \equiv x_2 \mod m_k, \forall k$. 由 21 题, $x_1 \equiv x_2 \mod M = [m_1, m_2, \cdots, m_r] = m_1 m_2 \cdots m_r$. 因此,任意两个解模 M 同余。

25. 求同余方程 $2x^3 + 7x - 4 \equiv 0 \mod 100$.

因为 $100 = 2^25^2$, 所以同余方程变换为:

$$2x^3 + 7x - 4 \equiv 0 \mod 4$$

$$2x^3 + 7x - 4 \equiv 0 \mod 25$$

因为 $2x^3+7x-4\equiv 0 \mod 4$,所以 x 一定为偶数。对 x=0,1,2,3 一一验证得到 $x\equiv 0 \mod 4$ 是解。

为了求解 $2x^3+7x-4\equiv 0 \mod 25$ 的解,我们观察 $2x^3+7x-4\equiv 0 \mod 5$ 的解为 $x\equiv 1 \mod 5$ (显然,前者的解也是后者的解,后者的解不一定是前者的解,我们将对后者的解加以约束,来求得前者的解). 所以 x=1+5t,带入原方程: $2(1+5t)^3+7(1+5t)-4\equiv 0 \mod 25$,化简得到 $65t+5\equiv 15t+5\equiv 0 \mod 5$,消去因子 (5,5)=5 得到 $3t+1\equiv 0 \mod 5$,所以解为 $t\equiv 3 \mod 5$.

这说明模 25 的解是 $x \equiv 1 + 5t \equiv 1 + 5 * 3 \equiv 16 \mod 25$, 进而我们得到线性同余方程:

$$x \equiv 0 \mod 4$$

$$x \equiv 16 \mod 25$$

使用中国剩余定理得到解为: $x \equiv 16 \mod 100$