Álgebra Relacional

Pablo Turjanski

1er. Cuatrimestre - 2025

AR - Marco General

- Álgebra Relacional. Lenguaje formal utilizado en el modelo relacional
- Permite a usuarios especificar consultas sobre instancias de relaciones
- El resultado de una consulta es una nueva relación

AR - Marco General

- Álgebra Relacional. Lenguaje formal utilizado en el modelo relacional
- Permite a usuarios especificar consultas sobre instancias de relaciones
- El resultado de una consulta es una nueva relación
- Importancia.
 - Provee fundamento formal a las operaciones asociadas al modelo relacional
 - 2 Base para implementar y optimizar queries en RDBMS
 - 3 Principales operaciones y funciones del los módulos internos de la mayoría de los sistemas relacionales están basados en operaciones del AR
- Técnica. Procedural (a diferencia del Cálculo Relacional que es de tipo declarativo)

AR - Marco General

- Álgebra Relacional. Lenguaje formal utilizado en el modelo relacional
- Permite a usuarios especificar consultas sobre instancias de relaciones
- El resultado de una consulta es una nueva relación
- Importancia.
 - Provee fundamento formal a las operaciones asociadas al modelo relacional
 - Base para implementar y optimizar queries en RDBMS
 - 3 Principales operaciones y funciones del los módulos internos de la mayoría de los sistemas relacionales están basados en operaciones del AR
- Técnica. Procedural (a diferencia del Cálculo Relacional que es de tipo declarativo)
- Operadores. Unarios y Binarios

- Función. Selecciona un subconjunto de tuplas de una relación que satisface cierta condición
- Notación. $\sigma_{< condición de selección>}(R)$
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

- Función. Selecciona un subconjunto de tuplas de una relación que satisface cierta condición
- Notación. $\sigma_{< condición de selección>}(R)$
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\sigma_{Sexo=F}(EMPLEADO)$

- Función. Selecciona un subconjunto de tuplas de una relación que satisface cierta condición
- Notación. $\sigma_{< condición de selección>}(R)$
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

σ_{Sexo=F}(EMPLEADO)

DNI	Nombre	Sexo	Salario
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

- Función. Selecciona un subconjunto de tuplas de una relación que satisface cierta condición
- Notación. $\sigma_{< condición de selección>}(R)$
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

σ_{Sexo=F}(EMPLEADO)

DNI	Nombre	Sexo	Salario
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

σ_{Sexo=F} AND Salario > \$15.000 (EMPLEADO)

- Función. Selecciona un subconjunto de tuplas de una relación que satisface cierta condición
- Notación. $\sigma_{< condición de selección>}(R)$
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\sigma_{Sexo=F}(EMPLEADO)$

DNI	Nombre	Sexo	Salario
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\sigma_{Sexo=F}$ AND Salario > \$15,000 (EMPLEADO)

DNI	Nombre	Sexo	Salario
33456234	Laura	F	\$25.000,00

- Función. Selecciona un subconjunto de tuplas de una relación que satisface cierta condición
- Notación. $\sigma_{< condición de selección>}(R)$
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

σ_{Sexo=F}(EMPLEADO)

DNI	Nombre	Sexo	Salario
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\sigma_{Sexo=F \text{ AND } Salario} > 15.000 (EMPLEADO)$

DNI	Nombre	Sexo	Salario
33456234	Laura	F	\$25.000,00

• Genera una partición horizontal de la relación

- Operador Unario. Se aplica a una sola relación
- Grado.

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\sigma_c(R)) = Grado(R)$

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\sigma_c(R)) = Grado(R)$
- # tuplas.

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\sigma_c(R)) = Grado(R)$
- # tuplas. $|\sigma_c(R)| \leq |R|$

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\sigma_c(R)) = Grado(R)$
- # tuplas. $|\sigma_c(R)| \leq |R|$
- La fracción de tuplas seleccionadas se denomina selectividad de la condición
- Conmutatividad.

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\sigma_c(R)) = Grado(R)$
- # tuplas. $|\sigma_c(R)| \leq |R|$
- La fracción de tuplas seleccionadas se denomina selectividad de la condición
- Conmutatividad. $\sigma_{c_1}(\sigma_{c_2}(R)) = \sigma_{c_2}(\sigma_{c_1}(R))$

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\sigma_c(R)) = Grado(R)$
- # tuplas. $|\sigma_c(R)| \leq |R|$
- La fracción de tuplas seleccionadas se denomina selectividad de la condición
- Conmutatividad. $\sigma_{c_1}(\sigma_{c_2}(R)) = \sigma_{c_2}(\sigma_{c_1}(R))$
- Cascada de SELECTs. $\sigma_{c_1}(\sigma_{c_2}(...\sigma_{c_n}(R))) = \sigma_{c_1 \text{ AND } c_2 \text{ AND } ... \text{ AND } c_n}(R)$

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\sigma_c(R)) = Grado(R)$
- # tuplas. $|\sigma_c(R)| \leq |R|$
- La fracción de tuplas seleccionadas se denomina selectividad de la condición
- Conmutatividad. $\sigma_{c_1}(\sigma_{c_2}(R)) = \sigma_{c_2}(\sigma_{c_1}(R))$
- Cascada de SELECTs. $\sigma_{c_1}(\sigma_{c_2}(...\sigma_{c_n}(R))) = \sigma_{c_1 \text{ AND } c_2 \text{ AND } ... \text{ AND } c_n}(R)$
- SQL. Se especifica típicamente en la cláusula WHERE
- **Ejemplo.** $\sigma_{Sexo=F \text{ AND } Salario>\$15.000}(EMPLEADO)$ se puede corresponder con:

SELECT *
FROM EMPLEADO
WHERE Sexo=F AND Salario>\$15.000;

- Función. Selecciona un subconjunto de columnas de una relación
- Notación. $\pi_{< lista de atributos>}(R)$
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

- Función. Selecciona un subconjunto de columnas de una relación
- Notación. $\pi_{< lista de atributos>}(R)$
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

π_{DNI, Salario} (EMPLEADO)

- Función. Selecciona un subconjunto de columnas de una relación
- Notación. $\pi_{< lista de atributos>}(R)$
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

π_{DNI, Salario} (EMPLEADO)

DNI	Salario
20222333	\$20.000,00
33456234	\$25.000,00
45432345	\$10.000,00

- Función. Selecciona un subconjunto de columnas de una relación
- Notación. $\pi_{< lista de atributos>}(R)$
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

π_{DNI, Salario} (EMPLEADO)

DNI	Salario		
20222333	\$20.000,00		
33456234	\$25.000,00		
45432345	\$10.000,00		

• Genera una partición vertical de la relación

- Operador Unario. Se aplica a una sola relación
- Grado.

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\pi_{< lista\ de\ atributos>}(R)) = |< lista\ de\ atributos>|$

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\pi_{< lista\ de\ atributos>}(R)) = |< lista\ de\ atributos>|$
- # tuplas.

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\pi_{< lista\ de\ atributos>}(R)) = |< lista\ de\ atributos>|$
- # tuplas. $|\pi_{< lista\ de\ atributos>}(R)| \le |R|$. Remueve tuplas duplicadas de la relación resultante

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\pi_{< lista\ de\ atributos>}(R)) = |< lista\ de\ atributos>|$
- # tuplas. $|\pi_{< lista\ de\ atributos>}(R)| \le |R|$. Remueve tuplas duplicadas de la relación resultante
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\pi_{< lista\ de\ atributos>}(R)) = |< lista\ de\ atributos>|$
- # tuplas. $|\pi_{< lista\ de\ atributos>}(R)| \le |R|$. Remueve tuplas duplicadas de la relación resultante
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\pi_{Sexo}(EMPLEADO)$

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\pi_{< lista\ de\ atributos>}(R)) = |< lista\ de\ atributos>|$
- # tuplas. $|\pi_{< lista\ de\ atributos>}(R)| \leq |R|$. Remueve tuplas duplicadas de la relación resultante
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• π_{Sexo}(EMPLEADO)

Sexo
М
F

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\pi_{< lista\ de\ atributos>}(R)) = |< lista\ de\ atributos>|$
- # tuplas. $|\pi_{< lista\ de\ atributos>}(R)| \le |R|$. Remueve tuplas duplicadas de la relación resultante
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• π_{Sexo}(EMPLEADO)

Conservación # tuplas.

- Operador Unario. Se aplica a una sola relación
- Grado. $Grado(\pi_{< lista\ de\ atributos>}(R)) = |< lista\ de\ atributos>|$
- # tuplas. $|\pi_{< lista\ de\ atributos>}(R)| \le |R|$. Remueve tuplas duplicadas de la relación resultante
- Ejemplo.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\pi_{Sexo}(EMPLEADO)$

• Conservación # tuplas. En $\pi_{< lista\ de\ atributos>}(R)$, si $< lista\ de\ atributos>$ es súper clave de R entonces $|\pi_{< lista\ de\ atributos>}(R)|=|R|$

Conmutatividad.

• Conmutatividad. $\pi_{lista_1}(\pi_{lista_2}(R)) = \pi_{lista_1}(R)$. $lista_1 \subseteq lista_2$, de lo contrario lado izq. de la expresión es incorrecto. Conmutatividad no aplica a PROJECT

- Conmutatividad. $\pi_{lista_1}(\pi_{lista_2}(R)) = \pi_{lista_1}(R)$. $lista_1 \subseteq lista_2$, de lo contrario lado izq. de la expresión es incorrecto. Conmutatividad no aplica a PROJECT
- Ejemplo Conmutatividad.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

- Conmutatividad. $\pi_{lista_1}(\pi_{lista_2}(R)) = \pi_{lista_1}(R)$. $lista_1 \subseteq lista_2$, de lo contrario lado izq. de la expresión es incorrecto. Conmutatividad no aplica a PROJECT
- Ejemplo Conmutatividad.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\pi_{Sexo}(\pi_{Nombre,Sexo}(EMPLEADO))$

- Conmutatividad. $\pi_{lista_1}(\pi_{lista_2}(R)) = \pi_{lista_1}(R)$. $lista_1 \subseteq lista_2$, de lo contrario lado izq. de la expresión es incorrecto. Conmutatividad no aplica a PROJECT Ε
- Ejemplo Conmutatividad.

MPLEADO	
---------	--

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\pi_{Sexo}(\pi_{Nombre,Sexo}(EMPLEADO))$

Nombre	Sexo	
Diego	М	
Laura	F	
Marina	F	

- Conmutatividad. $\pi_{lista_1}(\pi_{lista_2}(R)) = \pi_{lista_1}(R)$. $lista_1 \subseteq lista_2$, de lo contrario lado izq. de la expresión es incorrecto. Conmutatividad no aplica a PROJECT
- Ejemplo Conmutatividad.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\pi_{Sexo}(\pi_{Nombre,Sexo}(EMPLEADO))$

Nombre	Sexo
Diego	М
Laura	F
Marina	F

Sexo
М
F

- Conmutatividad. $\pi_{lista_1}(\pi_{lista_2}(R)) = \pi_{lista_1}(R)$. $lista_1 \subseteq lista_2$, de lo contrario lado izq. de la expresión es incorrecto. Conmutatividad no aplica a PROJECT
- Ejemplo Conmutatividad.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\pi_{Sexo}(\pi_{Nombre,Sexo}(EMPLEADO))$

Nombre	Sexo
Diego	М
Laura	F
Marina	F

Sexo M F

• $\pi_{Nombre,Sexo}(\pi_{Sexo}(EMPLEADO))$

- Conmutatividad. $\pi_{lista_1}(\pi_{lista_2}(R)) = \pi_{lista_1}(R)$. $lista_1 \subseteq lista_2$, de lo contrario lado izq. de la expresión es incorrecto. Conmutatividad no aplica a PROJECT
- Ejemplo Conmutatividad.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\pi_{Sexo}(\pi_{Nombre,Sexo}(EMPLEADO))$

Nombre	Sexo
Diego	М
Laura	F
Marina	F

• $\pi_{Nombre, Sexo}(\pi_{Sexo}(EMPLEADO))$ ¡NO ES POSIBLE!

- Conmutatividad. $\pi_{lista_1}(\pi_{lista_2}(R)) = \pi_{lista_1}(R)$. $lista_1 \subseteq lista_2$, de lo contrario lado izq. de la expresión es incorrecto. Conmutatividad no aplica a PROJECT
- Ejemplo Conmutatividad.

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\pi_{Sexo}(\pi_{Nombre,Sexo}(EMPLEADO))$

Nombre	Sexo
Diego	М
Laura	F
Marina	F

- $\pi_{Nombre,Sexo}(\pi_{Sexo}(EMPLEADO))$ ¡NO ES POSIBLE!
- SQL. Se especifica típicamente en la cláusula SELECT DISTINCT
- **Ejemplo.** $\pi_{Sexo,Salario}(EMPLEADO)$ se puede corresponder con:

SELECT DISTINCT Sexo, Salario FROM EMPLEADO

AR - RENAME

- Función. Asigna nombre a atributos / relación resultado
- Muy útil para asignar nombre a resultados intermedios
- Notación. $\rho_{S(B_1,B_2,...,B_n)}(R)$ ó $\rho_{S}(R)$ ó $\rho_{(B_1,B_2,...,B_n)}(R)$
- **Ejemplo 1.** Relaciones

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

AR - RENAME

- Función. Asigna nombre a atributos / relación resultado
- Muy útil para asignar nombre a resultados intermedios
- Notación. $\rho_{S(B_1,B_2,...,B_n)}(R)$ ó $\rho_S(R)$ ó $\rho_{(B_1,B_2,...,B_n)}(R)$
- Ejemplo 1. Relaciones

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $\pi_{Nombre, Sexo}(\sigma_{Salario \geq \$15.000}(EMPLEADO))$

AR - RENAME

- Función. Asigna nombre a atributos / relación resultado
- Muy útil para asignar nombre a resultados intermedios
- Notación. $\rho_{S(B_1,B_2,...,B_n)}(R)$ ó $\rho_S(R)$ ó $\rho_{(B_1,B_2,...,B_n)}(R)$
- **Ejemplo 1**. Relaciones

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

- $\pi_{Nombre, Sexo}(\sigma_{Salario \geq \$15.000}(EMPLEADO))$
 - **1** $SALARIO_MAYOR \leftarrow \sigma_{Salario} > \$15.000 (EMPLEADO)$
 - 2 RESULT $\leftarrow \pi_{Nombre, Sexo}(SAL\overline{A}RIO_MAYOR)$

SALARIO_MAYOR

RESULT

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00

Nombre Sexo			
Diego	М		
Laura	F		

Ejemplo 2. Atributos

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

Ejemplo 2. Atributos

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $EMP(id, Ingreso) \leftarrow \pi_{DNI,Salario}(EMPLEADO)$

Ejemplo 2. Atributos

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $EMP(id, Ingreso) \leftarrow \pi_{DNI,Salario}(EMPLEADO)$ EMP

id	Ingreso
20222333	\$20.000,00
33456234	\$25.000,00
45432345	\$10.000,00

Ejemplo 2. Atributos

EMPLEADO

DNI	Nombre	Sexo	Salario
20222333	Diego	М	\$20.000,00
33456234	Laura	F	\$25.000,00
45432345	Marina	F	\$10.000,00

• $EMP(id, Ingreso) \leftarrow \pi_{DNI,Salario}(EMPLEADO)$ EMP

id	Ingreso
20222333	\$20.000,00
33456234	\$25.000,00
45432345	\$10.000,00

- SQL. Se especifica típicamente en la cláusula AS
- Ejemplo.

SELECT EMP.DNI **AS** id, EMP.Salario **AS** Ingreso **FROM** EMPLEADO **AS** EMP

AR - Ejercicio 1

VUELO

Número	Origen	Destino	Salida
345	MAD	CDG	12:30
321	MAD	ORY	19:05
165	LHR	CDG	09:55
903	CDG	LHR	14:40
447	CDG	LHR	17:00

AEROPUERTO

Código	Nombre	Ciudad
MAD	Barajas	Madrid
LGW	Gatwick	Londres
LHR	Heathrow	Londres
ORY	Orly	París
CDG	Charles de Gaulle	París

PASAJERO

ĺ	DNI	Nombre
ſ	123	María
	456	Pedro
	789	Isabel
Ī		

RESERVA

DI	W	Nro_Vuelo	Fecha	Precio
78	9	165	07-01-11	210
12	3	345	20-12-10	170
78	9	321	15-12-10	250
45	6	345	03-11-10	190

- Retornar Código y Nombre de los aeropuertos de Londres
- 2 ¿Qué retorna $Cities(City) \leftarrow \pi_{Ciudad}(\sigma_{Código=ORY\ OR\ Código=CDG}(AEROPUERTO))$
- 3 Obtener los números de vuelo que van desde CDG hacia LHR
- 4 Obtener los números de vuelo que van desde CDG hacia LHR o viceversa
- 5 Devolver las fechas de reservas cuyos precios son mayores a \$200

- Función. Equivalente a operaciones matemáticas sobre conjuntos
- Notación. $R \cup S$, $R \cap S$, R S
- Duplicados. La relación resultante no contiene duplicados

- Función. Equivalente a operaciones matemáticas sobre conjuntos
- Notación. $R \cup S$, $R \cap S$, R S
- Duplicados. La relación resultante no contiene duplicados
- Unión Compatible. Se dice que dos relaciones $R(A_1, A_2, ..., A_n)$ y $S(B_1, B_2, ..., B_n)$ son unión compatibles (o compatibles por tipos) si:
 - Ambas tienen grado n
 - $(\forall i, 1 \leq i \leq n) \ tipo(A_i) = tipo(B_i)$

- Función. Equivalente a operaciones matemáticas sobre conjuntos
- Notación. $R \cup S$, $R \cap S$, R S
- Duplicados. La relación resultante no contiene duplicados
- Unión Compatible. Se dice que dos relaciones $R(A_1, A_2, ..., A_n)$ y $S(B_1, B_2, ..., B_n)$ son unión compatibles (o compatibles por tipos) si:
 - Ambas tienen grado n
 - $(\forall i, 1 \leq i \leq n) \ tipo(A_i) = tipo(B_i)$
- UNION. R ∪ S. Relación que incluye todas las tuplas que están en R, S o en ambas relaciones a la vez. Duplicados son eliminados
- INTERSECTION. $R \cap S$. Relación que incluye todas las tuplas que están a la vez en R y S
- SET DIFFERENCE (o MINUS). R-S. Relación que incluye todas las tuplas que están en R, pero no incluye a aquellas que aparecen en S

- Función. Equivalente a operaciones matemáticas sobre conjuntos
- Notación. $R \cup S$, $R \cap S$, R S
- Duplicados. La relación resultante no contiene duplicados
- Unión Compatible. Se dice que dos relaciones $R(A_1, A_2, ..., A_n)$ y $S(B_1, B_2, ..., B_n)$ son unión compatibles (o compatibles por tipos) si:
 - Ambas tienen grado n
 - $(\forall i, 1 \leq i \leq n) \ tipo(A_i) = tipo(B_i)$
- UNION. R ∪ S. Relación que incluye todas las tuplas que están en R, S o en ambas relaciones a la vez. Duplicados son eliminados
- INTERSECTION. $R \cap S$. Relación que incluye todas las tuplas que están a la vez en R y S
- SET DIFFERENCE (o MINUS). R-S. Relación que incluye todas las tuplas que están en R, pero no incluye a aquellas que aparecen en S
- Convención. Relación resultante conserva los nombres de atributo de la primer relación.

Ejemplo 1. UNION

ALUMNOS_BDs

id	Nombre
1	Diego
2	Laura
3	Marina

ALUMNOS_TLENG

id	Nombre
2	Laura
4	Alejandro

Ejemplo 1. UNION

ALUMNOS_BDs

id	Nombre
1	Diego
2	Laura
3	Marina

ALUMNOS_TLENG

id	Nombre
2	Laura
4	Alejandro

■ RESULT_1 ← ALUMNOS_BD ∪ ALUMNOS_TLENG

Ejemplo 1. UNION

ALUMNOS_BDs

id	Nombre
1	Diego
2	Laura
3	Marina

ALUMNOS_TLENG

id	Nombre
2	Laura
4	Alejandro

■ RESULT_1 ← ALUMNOS_BD ∪ ALUMNOS_TLENG

RESULT_1

INESULT_I	
id	Nombre
1	Diego
2	Laura
3	Marina
4	Alejandro

Ejemplo 2. INTERSECTION

ALUMNOS_BDs

id	Nombre
1	Diego
2	Laura
3	Marina

ALUMNOS_TLENG

id	Nombre
2	Laura
4	Alejandro

Ejemplo 2. INTERSECTION

ALUMNOS_BDs

id	Nombre
1	Diego
2	Laura
3	Marina

ALUMNOS_TLENG

id	Nombre
2	Laura
4	Alejandro

■ RESULT_2 ← ALUMNOS_BD ∩ ALUMNOS_TLENG

Ejemplo 2. INTERSECTION

ALUMNOS_BDs

id	Nombre
1	Diego
2	Laura
3	Marina

ALUMNOS TLENG

id	Nombre	
2	Laura	
4	Alejandro	

RESULT_2 ← ALUMNOS_BD ∩ ALUMNOS_TLENG

RESULT 2

INESCET_2		
id Nombre		
2	Laura	

Ejemplo 3. SET DIFFERENCE

ALUMNOS_BDs

id	Nombre	
1	Diego	
2	Laura	
3	Marina	

ALUMNOS TLENG

id	Nombre	
2	Laura	
4	Alejandro	

Ejemplo 3. SET DIFFERENCE

ALUMNOS_BDs

id	Nombre	
1	Diego	
2	Laura	
3	Marina	

ALUMNOS_TLENG

id	Nombre	
2	Laura	
4	Alejandro	

● RESULT_3 ← ALUMNOS_BD - ALUMNOS_TLENG

Ejemplo 3. SET DIFFERENCE

ALUMNOS_BDs

id	Nombre	
1	Diego	
2	Laura	
3	Marina	

ALUMNOS_TLENG

id	Nombre	
2	Laura	
4	Alejandro	

■ RESULT_3 ← ALUMNOS_BD – ALUMNOS_TLENG

RESULT_3

	0 0 0
id	Nombre
1	Diego
3	Marina

Conmutatividad.

- Conmutatividad.
 - $R \cup S = S \cup R$
 - $R \cap S = S \cap R$
 - En general, $R S \neq S R$

- Conmutatividad.
 - $R \cup S = S \cup R$
 - $R \cap S = S \cap R$
 - En general, $R S \neq S R$
- Asociatividad.

- Conmutatividad.
 - $R \cup S = S \cup R$
 - $R \cap S = S \cap R$
 - En general, $R S \neq S R$
- Asociatividad.
 - $R \cup (S \cup T) = (R \cup S) \cup T$
 - $R \cap (S \cap T) = (R \cap S) \cap T$

- Conmutatividad.
 - $R \cup S = S \cup R$
 - $R \cap S = S \cap R$
 - En general, $R S \neq S R$
- Asociatividad.
 - $R \cup (S \cup T) = (R \cup S) \cup T$
 - $R \cap (S \cap T) = (R \cap S) \cap T$
- Equivalencia. $R \cap S =$

- Conmutatividad.
 - $R \cup S = S \cup R$
 - $R \cap S = S \cap R$
 - En general, $R S \neq S R$
- Asociatividad.
 - $R \cup (S \cup T) = (R \cup S) \cup T$
 - $R \cap (S \cap T) = (R \cap S) \cap T$
- **Equivalencia.** $R \cap S = ((R \cup S) (R S)) (S R)$

- Conmutatividad.
 - $R \cup S = S \cup R$
 - $R \cap S = S \cap R$
 - En general, $R S \neq S R$
- Asociatividad.
 - $R \cup (S \cup T) = (R \cup S) \cup T$
 - $R \cap (S \cap T) = (R \cap S) \cap T$
- **Equivalencia.** $R \cap S = ((R \cup S) (R S)) (S R)$
- SQL 1. Operaciones en SQL UNION, INTERSECT, EXCEPT funcionan como en AR
- SQL 2. Operaciones en SQL UNION ALL, INTERSECT ALL, EXCEPT ALL no eliminan duplicados

AR - Ejercicio 2

VUELO

Origen Destino Salida Número MAD CDG 345 12:30 321 MAD ORY 19:05 165 LHR CDG 09:55 903 CDG LHR 14:40 447 LHR 17:00

AEROPUERTO

Código	Nombre	Ciudad
MAD	Barajas	Madrid
LGW	Gatwick	Londres
LHR	Heathrow	Londres
ORY	Orly	París
CDG	Charles de Gaulle	París

PASAJERO

DNI	Nombre
123	María
456	Pedro
789	Isabel

RESERVA

DNI	Nro_Vuelo	Fecha	Precio
789	165	07-01-11	210
123	345	20-12-10	170
789	321	15-12-10	250
456	345	03-11-10	190

- lacktriangledown Devolver los número de vuelo que tienen reservas generadas (utilizar \cap)
- 2 Devolver los número de vuelo que aún no tienen reservas
- 3 Retornar los códigos de aeropuerto de los que parten o arriban los vuelos

AR - CARTESIAN PRODUCT

- Función. Produce una nueva relación que combina cada tupla de una relación con cada una de las tuplas de la otra relación
- Notación. RXS
- Ejemplo. PERSONA

Nombre	Nacionalidad		
Diego	AR		
Laura	BR		
Marina	AR		

NACIONALIDADES

IDN	Detalle		
AR	Argentina		
BR	Brasilera		
CH	Chilena		

AR - CARTESIAN PRODUCT

- Función. Produce una nueva relación que combina cada tupla de una relación con cada una de las tuplas de la otra relación
- Notación. RXS
- Ejemplo. PERSONA

Nombre	Nacionalidad		
Diego	AR		
Laura	BR		
Marina	AR		

■ RESULT ← PERSONA X NACIONALIDADES

NACIONALIDADES

IDN	Detalle
AR	Argentina
BR	Brasilera
CH	Chilena

AR - CARTESIAN PRODUCT

- Función. Produce una nueva relación que combina cada tupla de una relación con cada una de las tuplas de la otra relación
- Notación. RXS

Ejemplo. PERSONA

Nombre	Nacionalidad		
Diego	AR		
Laura	BR		
Marina	AR		

NACIONALIDADES

IDN	Detalle		
AR	Argentina		
BR	Brasilera		
СН	Chilena		

■ RESULT ← PERSONA X NACIONALIDADES

RESULT

RESOLI				
Nombre	Nacionalidad	IDN	Detalle	
Diego	AR	AR	Argentina	
Diego	AR	BR	Brasilera	
Diego	AR	CH	Chilena	
Laura	BR	AR	Argentina	
Laura	BR	BR	Brasilera	
Laura	BR	CH	Chilena	
Marina	AR	AR	Argentina	
Marina	AR	BR	Brasilera	
Marina	AR	CH	Chilena	

• Unión compatible. Las relaciones no tienen que ser unión compatibles

- Unión compatible. Las relaciones no tienen que ser unión compatibles
- Grado.

- Unión compatible. Las relaciones no tienen que ser unión compatibles
- Grado. Si T = R X S entonces grado(T) = grado(R) + grado(S)

- Unión compatible. Las relaciones no tienen que ser unión compatibles
- Grado. Si T = R X S entonces grado(T) = grado(R) + grado(S)
- SQL. CROSS JOIN

AR - JOIN

- Función. Permite combinar pares de tuplas relacionadas entre dos relaciones
- Notación. R ⋈_{<condición>} S
- Ejemplo.
 PERSONA

Marina

Nombre Nacionalidad Diego AR Laura BR

AR

NACIONALIDADES

IDN	Detalle	
AR	Argentina	
BR	Brasilera	
CH	Chilena	

AR - JOIN

- Función. Permite combinar pares de tuplas relacionadas entre dos relaciones
- Notación. R ⋈_{<condición>} S
- Ejemplo.

PERSONA

Nombre	Nacionalidad	
Diego	AR	
Laura	BR	
Marina	AR	

NACIONALIDADES

IDN	Detalle	
AR	Argentina	
BR	Brasilera	
СН	Chilena	

RESULT ← PERSONA ⋈_{Nacionalidad=IDN} NACIONALIDADES

AR - JOIN

- Función. Permite combinar pares de tuplas relacionadas entre dos relaciones
- Notación. R ⋈_{< condición>} S
- Ejemplo.

PERSONA

Nombre	Nacionalidad		
Diego	AR		
Laura	BR		
Marina	AR		

NACIONALIDADES

IDN	Detalle	
AR	Argentina	
BR	Brasilera	
CH	Chilena	

RESULT ← PERSONA ⋈_{Nacionalidad=IDN} NACIONALIDADES

RESULT

ĺ	Nombre	Nacionalidad	IDN	Detalle
	Diego	AR	AR	Argentina
	Laura	BR	BR	Brasilera
ĺ	Marina	AR	AR	Argentina

- CARTESIAN PRODUCT vs JOIN.
 - CARTESIAN PRODUCT aparecen todas las combinaciones de tuplas
 - JOIN aparecen sólo combinaciones de tuplas que satisfacen condición

- CARTESIAN PRODUCT vs JOIN.
 - CARTESIAN PRODUCT aparecen todas las combinaciones de tuplas
 - JOIN aparecen sólo combinaciones de tuplas que satisfacen condición
- Condición 1. En general, formato de condición de JOIN entre R y S:
 condición > AND < condición > AND...AND < condición >
- Condición 2. Forma de < condición > es $A_i \theta B_j$, siendo A_i atributo de R y B_j atributo de S
- Condición 3. $dom(A_i) = dom(B_i)$
- Condición 4. $\theta \in \{=, <, \leq, >, \geq, \neq\}$

- CARTESIAN PRODUCT vs JOIN.
 - CARTESIAN PRODUCT aparecen todas las combinaciones de tuplas
 - JOIN aparecen sólo combinaciones de tuplas que satisfacen condición
- Condición 1. En general, formato de condición de JOIN entre R y S:
 < condición > AND < condición > AND...AND < condición >
- Condición 2. Forma de < condición > es $A_i \theta B_j$, siendo A_i atributo de R y B_j atributo de S
- Condición 3. $dom(A_i) = dom(B_i)$
- Condición 4. $\theta \in \{=, <, \le, >, \ge, \ne\}$
- NULL. Tuplas cuyos atributos de JOIN son NULL o cuya condición es falsa no aparecen en el resultado

• EQUIJOIN. JOIN donde sólo se utiliza la operación = en la < condición >.

- EQUIJOIN. JOIN donde sólo se utiliza la operación = en la < condición >.
- Duplicación de campos. Al utililzar la igualdad, se generan campos duplicados.
- Ejemplo.
 PERSONA

Nombre	Nacionalidad		
Diego	AR		
Laura	BR		
Marina	AR		

NACIONALIDADES

IDN	Detalle	
AR	Argentina	
BR	Brasilera	
CH	Chilena	

- ullet EQUIJOIN. JOIN donde sólo se utiliza la operación = en la < condición >.
- Duplicación de campos. Al utililzar la igualdad, se generan campos duplicados.
- Ejemplo.
 PERSONA

Nombre Nacionalidad Diego AR Laura BR Marina AR

NACIONALIDADES

IDN	Detalle	
AR	Argentina	
BR	Brasilera	
СН	Chilena	

RESULT ← PERSONA ⋈_{Nacionalidad=IDN} NACIONALIDADES

- ullet EQUIJOIN. JOIN donde sólo se utiliza la operación = en la < condición >.
- Duplicación de campos. Al utililzar la igualdad, se generan campos duplicados.
- Ejemplo.

 PERSONA

Nambra Nasia

	Nombre	Nacionalidad	
Diego		AR	
	Laura	BR	
	Marina	AR	

NACIONALIDADES

IDN	Detalle	
AR	Argentina	
BR	Brasilera	
СН	Chilena	

• RESULT \leftarrow PERSONA $\bowtie_{Nacionalidad=IDN}$ NACIONALIDADES

RESULT

Nombre	Nacionalidad	IDN	Detalle
Diego	AR	AR	Argentina
Laura	BR	BR	Brasilera
Marina	AR	AR	Argentina

- ullet EQUIJOIN. JOIN donde sólo se utiliza la operación = en la < condición >.
- Duplicación de campos. Al utililzar la igualdad, se generan campos duplicados.
- Ejemplo.PERSONA

Marina

Nombre Nacionalidad Diego AR Laura BR

NACIONALIDADES

IDN	Detalle	
AR	Argentina	
BR	Brasilera	
СН	Chilena	

• RESULT ← PERSONA ⋈_{Nacionalidad=IDN} NACIONALIDADES

AR

RESULT

	Nombre	Nacionalidad	IDN	Detalle
	Diego	AR	AR	Argentina
ĺ	Laura	BR	BR	Brasilera
ĺ	Marina	AR	AR	Argentina

- NATURAL JOIN. Realiza el JOIN entre campos de mismo nombre y deja sólo uno de los campos duplicados
- Notación. $R \bowtie S$ (también en la bibliografía R * S)
- Requerimiento. Requiere que atributos de JOIN tengan el mismo nombre. De no ser el caso, se debe hacer un RENAME previo

Ejemplo NATURAL JOIN.

PERSONA

Nombre	Nacionalidad	
Diego	AR	
Laura	BR	
Marina	AR	

NACIONALIDADES

	-	
IDN Detalle		
AR	Argentina	
BR	Brasilera	
CH	Chilena	

Ejemplo NATURAL JOIN.

PERSONA

Nombre	Nacionalidad	
Diego	AR	
Laura	BR	
Marina	AR	

NACIONALIDADES

IDN	Detalle
AR	Argentina
BR	Brasilera
CH	Chilena

- NACIONALIDADES_TEMP(Nacionalidad, Detalle) $\leftarrow \pi_{IDN, Detalle}$ (NACIONALIDADES)
- RESULT ← PERSONA ⋈ NACIONALIDADES_TEMP

Ejemplo NATURAL JOIN.

PERSONA

Nombre	Nacionalidad	
Diego	AR	
Laura	BR	
Marina	AR	

NACIONALIDADES

IDN	Detalle	
AR	Argentina	
BR	Brasilera	
CH	Chilena	

- NACIONALIDADES_TEMP(Nacionalidad, Detalle) $\leftarrow \pi_{IDN, Detalle}$ (NACIONALIDADES)
- RESULT ← PERSONA ⋈ NACIONALIDADES_TEMP

RESULT

Nombre	Nacionalidad	Detalle
Diego	AR	Argentina
Laura	BR	Brasilera
Marina	AR	Argentina

Ejemplo NATURAL JOIN.

PERSONA

Nombre	Nacionalidad	
Diego	AR	
Laura	BR	
Marina	AR	

NACIONALIDADES

IDN	Detalle	
AR	Argentina	
BR	Brasilera	
СН	Chilena	

- lacktriangle NACIONALIDADES_TEMP(Nacionalidad, Detalle) $\leftarrow \pi_{IDN,Detalle}$ (NACIONALIDADES)
- RESULT ← PERSONA ⋈ NACIONALIDADES_TEMP

RESULT

Nombre	Nacionalidad	Detalle
Diego	AR	Argentina
Laura	BR	Brasilera
Marina	AR	Argentina

- Tamaño resultado JOIN(S,R). Puede ir de 0 a S*R registros
- Selectividad de JOIN. Es una tasa y corresponde a: $\frac{|resultado\ JOIN(S,R)|}{|S|*|R|}$

- SQL. Se Puede realizar de múltiples maneras.
- Ejemplo.

 $NACIONALIDADES_TEMP(Nacionalidad,Detalle) \leftarrow \pi_{IDN,Detalle}(NACIONALIDADES)$ $RESULT \leftarrow PERSONA \bowtie NACIONALIDADES_TEMP$ se puede corresponder con:

SELECT Persona.Nombre, Persona.Nacionalidad, NACIONALIDADES.Detalle FROM PERSONA, NACIONALIDADES WHERE PERSONA.Nacionalidad=NACIONALIDADES.IDN;

- INNER JOIN. JOIN donde tuplas que no cumplen condición de JOIN son eliminadas del resultado (Ej. NULL en atributo de JOIN)
- OUTER JOIN. JOIN en el cual se incorpora adicionalmente al resultado las tuplas de R, S, o ambas relaciones, que no cumplen la condición de JOIN

- INNER JOIN. JOIN donde tuplas que no cumplen condición de JOIN son eliminadas del resultado (Ej. NULL en atributo de JOIN)
- OUTER JOIN. JOIN en el cual se incorpora adicionalmente al resultado las tuplas de R, S, o ambas relaciones, que no cumplen la condición de JOIN
- LEFT OUTER JOIN. R ⋈ S. Conserva todas las tuplas de R. Si no se encuentra ninguna tupla de S que cumpla con condición de JOIN, entonces los atributos de S en el resultado se completan en NULL

Ejemplo.

PERSONA

Nombre	Nacionalidad
Diego	BR
Laura	NULL
Marina	AR
Santiago	UY

NACIONALIDADES

IDN	Detalle
AR	Argentina
BR	Brasilera
CH	Chilena

Ejemplo.

PERSONA

Nombre	bre Nacionalidad	
Diego	BR	
Laura	NULL	
Marina	AR	
Santiago	UY	

● RESULT←PERSONA ⋈ _{Nacionalidad=IDN} NACIONALIDADES

NACIONALIDADES

Detalle	
Argentina	
Brasilera	
Chilena	

Ejemplo.

PERSONA

Nombre	Nacionalidad
Diego	BR
Laura	NULL
Marina	AR
Santiago	UY

NACIONALIDADES

IDN	Detalle	
AR	Argentina	
BR	Brasilera	
CH	Chilena	

lacktriangledown RESULT \leftarrow PERSONA \bowtie Nacionalidad=IDN NACIONALIDADES

RESULT

Nombre	Nacionalidad	IDN	Detalle
Diego	BR	BR	Brasilera
Marina	AR	AR	Argentina

Ejemplo.

PERSONA

Nacionalidad	
BR	
NULL	
AR	
UY	

NACIONALIDADES

IDN	Detalle	
AR	Argentina	
BR	Brasilera	
CH	Chilena	

lacktriangledown RESULT \leftarrow PERSONA \bowtie Nacionalidad=IDN NACIONALIDADES

RESULT

Nombre	Nacionalidad	IDN	Detalle
Diego	BR	BR	Brasilera
Marina	AR	AR	Argentina

RESULT ← PERSONA
 Nacionalidad=IDN NACIONALIDADES

Ejemplo.

PERSONA

Nombre	Nacionalidad
Diego	BR
Laura	NULL
Marina	AR
Santiago	UY

NACIONALIDADES

IDN	Detalle
AR	Argentina
BR	Brasilera
CH	Chilena

lacktriangledown RESULT \leftarrow PERSONA \bowtie Nacionalidad=IDN NACIONALIDADES

RESULT

Nombre	Nacionalidad	IDN	Detalle
Diego	BR	BR	Brasilera
Marina	AR	AR	Argentina

■ RESULT ← PERSONA

Nacionalidad=IDN NACIONALIDADES

RESULT

Nombre	Nacionalidad	IDN	Detalle
Diego	BR	BR	Brasilera
Laura	NULL	NULL	NULL
Marina	AR	AR	Argentina
Santiago	UY	NULL	NULL

AR - OUTER JOIN (Cont.)

- RIGHT OUTER JOIN. R ⋈ S. Conserva todas las tuplas de S. Si no se encuentra ninguna tupla de R que cumpla con condición de JOIN, entonces los atributos de R en el resultado se completan en NULL
- FULL OUTER JOIN. R ⋈ S. Conserva todas las tuplas de R y S. Si no se encuentra ninguna tupla de R o S que cumpla con condición de JOIN, entonces sus atributos en el resultado se completan en NULL
- SQL. Las tres operaciones de OUTER JOIN son parte del estándar SQL2

AR - Ejercicio 3

VUELO

Origen Destino Salida Número MAD CDG 345 12:30 321 MAD ORY 19:05 165 LHR 09:55 CDG LHR 903 14:40 447 LHR 17:00

AFROPUFRTO

Nombre

Baraias

Gatwick

Orlv

Heathrow

Charles de Gaulle

Código

MAD

LGW

LHR

ORY

CDG

Ciudad	DNI
Madrid	123
Londres	456
Londres	789
París	
París	

PASA IFRO Non

Nombre	
María	L
Pedro	-
Isabel	H
	_

RESERVA

DNI	Nro_Vuelo	Fecha	Precio
789	165	07-01-11	210
123	345	20-12-10	170
789	321	15-12-10	250
456	345	03-11-10	190

- 10 Devolver el nombre de la ciudad de partida del vuelo número 165
- Retornar el nombre de las personas que realizaron reservas a un valor menor a \$200

Obtener Nombre, Fecha y Destino del Viaje de todos los pasajeros que vuelan desde Madrid

- ullet Función. Retorna los valores de R que se encuentran emparejados con TODOS los valores de S
- Notación. $R \div S$. Requiere que atributos de $S \subset$ atributos de R. Resultado contiene atributos de R menos atributos de S

Ejemplo. ALUMNOS

/ LOWINGS		
Nombre	Materia	
Diego	BD	
Diego	PLP	
Laura	BD	
Laura	PLP	
Laura	TLENG	
Marina	BD	
Marina	TLENG	
Santiago	BD	
Santiago	PLP	
Santiago	TLENG	
	•	

MATERIAS_1

Materia
BD

MATERIAS_2

_
Materia
BD
TLENG

MATERIAS_3

Materia
BD
PLP
TLENG

Ejemplo. ALUMNOS

71201111100		
Nombre	Materia	
Diego	BD	
Diego	PLP	
Laura	BD	
Laura	PLP	
Laura	TLENG	
Marina	BD	
Marina	TLENG	
Santiago	BD	
Santiago	PLP	
Santiago	TLENG	

ALUMNOS ÷ MATERIAS_1

MATERIAS_1

Materia
BD

MATERIAS_2

_
Materia
BD
TLENG

MATERIAS_3

Materia
BD
PLP
TLENG

Ejemplo. ALUMNOS

Nombre	Materia			
Diego	BD			
Diego	PLP			
Laura	BD			
Laura	PLP			
Laura	TLENG			
Marina	BD			
Marina	TLENG			
Santiago	BD			
Santiago	PLP			
Santiago	TLENG			

ALUMNOS - MATERIAS 1

Nombre			
Diego			
Laura			
Marina			
Santiago			

MATERIAS 1

Materia
iviateria
BD

MATERIAS_2

Materia
BD
TLENG

MATERIAS_3

Materia
BD
PLP
TLENG

Ejemplo. ALUMNOS

/\LOWINGS			
Nombre	Materia		
Diego	BD		
Diego	PLP		
Laura	BD		
Laura	PLP		
Laura	TLENG		
Marina	BD		
Marina	TLENG		
Santiago	BD		
Santiago	PLP		
Santiago	TLENG		

MATERIAS_1

.,	٠	٠	_	11/	10
	١	Л	at	eri	ia
	E	31	D		

MATERIAS_2

Materia
BD
TLENG

MATERIAS_3

Materia	
BD	
PLP	
TLENG	

ALUMNOS ÷ MATERIAS_1

ALUMNOS : MATERIAS _2

Nombre
Diego
Laura
Marina
Santiago

Ejemplo. ALUMNOS

Nombre	Materia			
Diego	BD			
Diego	PLP			
Laura	BD			
Laura	PLP			
Laura	TLENG			
Marina	BD			
Marina	TLENG			
Santiago	BD			
Santiago	PLP			
Santiago	TLENG			

MATERIAS_1

Ν	//ATERIAS
	Materia
	BD

MATERIAS_2

• • • •	٠.		٠.,	
	М	at	eri	a
Г	BI	D		
Г	TI	LE	N	G

MATERIAS_3

Materia
BD
PLP
TLENG

ALUMNOS - MATERIAS 1

Nombre
Diego
Laura
Marina
Santiago

ALUMNOS ÷ MATERIAS _2

Nombre
Laura
Marina
Santiago

Ejemplo. **ALUMNOS**

BD PLP BD
RD
PLP
TLENG
BD
TLENG
BD
PLP
TLENG

/IATERIAS
Materia
BD

MATERIAS 2

• • • •	٠.		٠.,	
	М	at	eri	a
	BI	D		
	TI	LE	N	Ĵ
_				

MATERIAS_3

l	Materia
	BD
ĺ	PLP
	TLENG

ALUMNOS: MATERIAS 1

Nombre
Diego
Laura
Marina
Santiago

ALUMNOS : MATERIAS _2

ALUMNOS : MATERIAS_3

Ejemplo. ALUMNOS

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Nombre	Materia	
Diego	BD	
Diego	PLP	
Laura	BD	
Laura	PLP	
Laura	TLENG	
Marina	BD	
Marina	TLENG	
Santiago	BD	
Santiago	PLP	
Santiago	TLENG	

MATERIAS_1

//A I	LINIAS
M	ateria
BE)

MATERIAS_2

1	••	٠.		٠.,	•••
I		M	lat	eri	a
ĺ		В	D		
ĺ		Т	LE	N	Ĵ

MATERIAS_3

Materia
BD
PLP
TLENG

ALUMNOS - MATERIAS 1

Nombre
Diego
Laura
Marina
Santiago

ALUMNOS÷MATERIAS_2

•	NOS . WATE
	Nombre
	Laura
	Marina
	Santiago

ALUMNOS : MATERIAS_3

Nombre	
Laura	
Santiago	

• Operación compuesta. Se puede expresar como secuencia de otras operaciones $(\pi, X, -)$

• Operación compuesta. Se puede expresar como secuencia de otras operaciones $(\pi, X, -)$

En ejemplo anterior (ALUMNOS÷MATERIAS_3):

- $TEMP_1 \leftarrow \pi_{Nombre}(ALUMNOS)$
- $TEMP_2 \leftarrow \pi_{Nombre}((TEMP_1 X MATERIAS_3) ALUMNOS)$
- $RESULT \leftarrow TEMP_1 TEMP_2$

TFMP 1

Nombre
Diego
Laura
Marina

Santiago

TEMP_2

Nombre
Diego
Marina

RESULT

Nombre
Laura
Santiago

• Operación compuesta. Se puede expresar como secuencia de otras operaciones $(\pi, X, -)$

En ejemplo anterior (ALUMNOS÷MATERIAS_3):

- $TEMP_1 \leftarrow \pi_{Nombre}(ALUMNOS)$
- $TEMP_2 \leftarrow \pi_{Nombre}((TEMP_1 X MATERIAS_3) ALUMNOS)$
- $RESULT \leftarrow TEMP_1 TEMP_2$

TFMP 1

Nombre
Diego
Laura
Marina
Santiago

TEMP_2

Nombre
Diego
Marina

RESULT

Nombre
Laura
Santiago

SQL. No suele implementar DIVISION

AR - Bibliografía

 Capítulo 6 (hasta 6.5 inclusive) Elmasri/Navathe - Fundamentos de Sistemas de Bases de Datos, 5th Ed., Pearson, 2007.

