Approximation algorithms

Map for today

- By the end of today you will be able to:
 - Define what is an approximation algorithm
 - Explain how to get a 2 approximation for vertex cover
 - Explain how to get a 2 approximation for metric TSP
 - Understand why, in general, no approximation is possible for general TSP
 - See the new problem Set-Cover

Approximation Algorithms

- Motivation:
 - Solving NP-hard problems exactly is very costly
 - What if we can do with non-exact solutions?
- Approximation algorithms:
 - An algorithm returning a near-optimal solution.

Vertex-cover problem

- Vertex cover: given an undirected graph G=(V,E), then a subset $V' \subseteq V$ such that if $(u,v) \in E$, then $u \in V'$ or $v \in V'$ (or both).
- Size of a vertex cover: the number of vertices in it.
- Vertex-cover problem: find a vertex-cover of minimum size.
- For small k we have a good solution (Why?).
 What if k is large?

Obvious algorithms?

Can you come up with non exact but fast algorithms for Vertex-Cover?

APPROXIMATION RATIO

For a problem with input of length n:

- C* the cost of optimal solution
- C the cost obtained by an approximation algorithm
- $max(C/C^*, C^*/C) \le \rho(n)$, where $\rho(n)$ is a function
- If $\rho(n)=1$, then the algorithm is **optimal**
- The larger $\rho(n)$, the worse the algorithm

In other words

• ρ (n) implies that for any input of size n, the solution the algorithm outputs C is within factor ρ (n) of outcome of optimal solution C*, i.e

1
$$\leq$$
 Max (C/C*, C*/C) \leq ρ (n)

Minimization
problem

Maximization
problem

return C

Algorithm 1: APPROX-VERTEX-COVER(G)

```
1 C \leftarrow \emptyset

2 while E \neq \emptyset

pick any \{u,v\} \in E

C \leftarrow C \cup \{u,v\}

delete all eges incident to either u or v
```


Vertex cover of 8 vertices

What is the optimal?

■ We have 8, can we do better?

That was easy!

Like most approximation algorithms, the algorithm is straightforward, the argument for the bound is the interesting point

2-approximate vertex-cover

- Theorem 35.1 (page 1026).
 - APPROXIMATE-VERTEX-COVER is a polynomial time 2-approximation algorithm
- We first note:
 - It runs in polynomial time
 - The returned C is a vertex-cover.

C is a vertex cover

- Given a graph G=(V,E) a matching M in G is a set of pairwise non-adjacent edges.
 - Meaning: No two edges share a common vertex
- The algorithms finds a maximal matching
 - Maximal = can not be extended, not maximum!
 - If the

APPROXIMATE-VERTEX-COVER is a polynomial time 2-approximation algorithm = For every instance of Vertex Cover, the result of the algorithm is not more than twice as much as the optimal

2 approx. follow up

Let A be the set of edges picked in a single iteration and C* be the optimal vertex-cover.

- C* must include at least one end of each edge in A, and no two edges in A are covered by the same vertex in C*, so | C* | ≥ | A |.
- Moreover, |C|=2|A|, so $|C| \le 2|C^*|$

- Consider a complete bipartite graph of n black nodes on one side and n red nodes on the other side, denoted K_{n,n}
- In this case the returned algorithm will always return 2n
- The optimal is n

Remember TSP

Traveling Salesman Problem (TSP).

- Input: a **complete**, undirected graph G = (V, E), with edge weights (costs) $w : E \rightarrow R+$, |V| = n.
- Output: a tour (cycle that visits all n vertices exactly once each, and returning to starting vertex) of minimum cost.

Approximating TSP

- In the plane "triangle inequality" holds.
- Triangle inequality: cutting out an intermediate stop never increases the cost.
- Formally: for any three vertices u,v,w in G: cost(u,w) ≤ cost(u,v)+cost(v,w)

- If the graph satisfies the triangle inequality, then TSP can be approximated efficiently within a factor 2.
- Otherwise, the general problem of approximating TSP without triangle inequality is NP-hard.

Recall: Minimum spanning tree (MST)

Given a weighted connected undirected graph G, a spanning tree of G is subgraph of G that is a tree that connects all the vertices

MST is the smallest weighted spanning tree.

Prim finds the MST runs in $O(|V|^2)$

- 1 Compute a weighted MST of G.
- 2 Root MST arbitrarily and traverse in pre-order: v_1, v_2, \ldots, v_n .
- **3** Output tour: $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n \rightarrow v_1$.

- We have a simple algorithm
- Prove that the result is not more than twice the optimum

For the problem instance I of TSP let: 1. **A(I)**- the tour length returned by Approx-TSP-Tour 2.**OPT(I)** – the optimal tour length and 3.**MST(I)** -the weight of the MST produced

- Claim: For every instance I, A(I) ≤ 2 OPT(I)
- Proof:
 - We first note that MST(I) ≤ OPT(I)
 - Since An optimal tour minus one edge is a spanning tree, and we have the minimal in our hand (as seen 2 lectures ago)

A(I)- the tour length returned by Approx-TSP-Tour **OPT(I)** – the optimal tour length **MST(I)** -the weight of the MST produced

- Proof(part 2):
 - Let σ be a full walk along the MST in pre-order (that is, we revisit vertices as we backtrack through them).
 - The cost(σ) = 2 × MST(I).

Approx-TSP-Tour is a 2 approximation

- Proof(part 3):
 - lacktriangle A's result is at most the full walk $oldsymbol{\sigma}$, so by the triangle inequality:

$$A(I) \le cost(\sigma) \le 2 \times MST(I) \le 2 \times OPT(I)$$

- $cost(\sigma) = 2 \cdot cost(MST)$.
- Finally, by triangle inequality, shortcutting previously visited vertices does not increase the cost. Hence we have $cost(\sigma) \le 2 \cdot cost(MST) \le OPT$.

Illustrative example:

- $A(I) \leq cost(\sigma) = 2 \times MST(I)$
- The edge e_{89} is taken in A(I) $e_{89} \le e_{83} + e_{31} + e_{19}$ by triangle inequality

All together now

- Claim: For every instance I, A(I) ≤ 2 × MST(I)
- Proof:
 - $MST(I) \leq OPT(I)$
 - Since An optimal tour minus one edge is a spanning tree
 - Let σ be a full walk along the MST in pre-order (that is, we revisit vertices as we backtrack through them).
 - The cost(σ) $\leq 2 \times MST(I)$.
 - lacktriangle A's result is a subsequence of the full walk σ , so by the triangle inequality:

$$A(I) \le cost(\sigma) = 2 \times MST(I) \le 2 \times OPT(I)$$

Input: an undirected (not necessarily complete) graph G = (V, E).

Output: YES if G has a Hamiltonian cycle, NO otherwise

NP complete problem

General TSP is NP-hard to approximate

- Theorem: For any constant k, it is NP-hard to approximate TSP to a factor of k.
- Plan (Our old friend reduction):
 - Assume A is a k-approximation algorithm for TSP.
 - Use A to solve Hamiltonian cycle in polynomial time
 - \blacksquare P = NP.

- HC gets G = (V, E) as input HC
- Modify G to G' = (V', E') with weight function w by:
 - All edges of G have weight 1 in G'
 - All other edges in the complete graph G' get a weight L >k*n, Say L=2k

The reduction (cont.)

Now run the following algorithm:

Algorithm 2: HC-Reduction(G)

- 1 Construct G' as described above.
- **2** if A(G') returns a 'small' cost tour $(\leq kn)$ then
- 3 return YES
- 4 if A(G') returns a 'large' cost tour $(\geq L)$ then
- 5 return NO

Why does the reduction works?

Algorithm 2: HC-Reduction(G)

- 1 Construct G' as described above.
- **2** if A(G') returns a 'small' cost tour $(\leq kn)$ then
- 3 return YES
- 4 if A(G') returns a 'large' cost tour $(\geq L)$ then
- 5 return NO

Answer

- The weight of any edge e ∈ (G'\G) is twice the weight of all edges in G
- \blacksquare Opt(I) \leq A(I)×k
- If A(I)<= n×k, no edge in G'\G can participate, and that tour is a euclidian tour in G
 - If A(I)>n×k (L) even Opt(I) has to contain an edge from G'\G
 - That means that G did not

have a Hamiltonian cycle

In other words

- The algorithm is k-approximation
 - Therefore: $1 \le A(I)/Opt(I) \le k$
- If the answer was yes $A(I) \le k*n -> Opt(I) \le n$
 - Since it is a tour of edges of at least n edges of weight 1 Opt(I)
 - The tour never went through one of the "big" edges -> there is a Hamiltonian path in the original graph

In other words ...

- The algorithm is k-approximation
 - Therefore: $1 \le A(I)/Opt(I) \le k$
- If the answer is no A(I) > k*n -> Opt(I) > n
 - The tour went at least through one "big" edge, which is larger than the sum of all edges in the original graph ->

It was not possible to construct a Hamiltonian path in the original graph

- Definition: Given a finite set X and subsets of X, find the minimum number of these subsets whose union is X.
- Many applications (can you think of any?)
- Generalises vertex-cover, hence NP-complete (Why? A vertex can be seen as the set of edges which it covers.)
- Approx. algorithm (greedy): select at each step a set which covers as many still uncovered elements as possible.

Figure 35.3 An instance (X, \mathcal{F}) of the set-covering problem, where X consists of the 12 black points and $\mathcal{F} = \{S_1, S_2, S_3, S_4, S_5, S_6\}$. A minimum-size set cover is $\mathcal{C} = \{S_3, S_4, S_5\}$. The greedy algorithm produces a cover of size 4 by selecting the sets S_1, S_4, S_5 , and S_3 in order.

GREEDY-SET-COVER (X, \mathcal{F})

```
1 U \leftarrow X

2 C \leftarrow \emptyset

3 while U \neq \emptyset

4 do select an S \in \mathcal{F} that maximizes |S \cap U|

5 U \leftarrow U - S

6 C \leftarrow C \cup \{S\}

7 return C
```


■ In next class ...