

Electronica 5 Problema #1

Emma Alejandra Perez Diaz 202000443

Problema #1

A continuación, encontrará un listado de 10 problemas que se deben de resolver en ensamblador, no se asuste no debe entregar todos, es obligatorio entregar 2 (DOS) de estos problemas, y para que todos tengan el mismo grado de dificultad debe apegarse a elegirlos por un listado que a continuación se le da:

- Carné terminado en o y 5: problemas 1 y 10
- Carné terminado en 1 y 6: problemas 2 y 9
- Carné terminado en 2 y 7: problemas 3 y 8
- Carné terminado en 3 y 8: problemas 4 y 7
- Carné terminado en 4 y 9: problemas 5 y 6

La fecha para la entrega del segundo examen es el martes 31/octubre/23 en el horario de clase asignado. Recuerde incluir manual de usuario de cada uno de los programas, tiene un valor de 5 puntos netos, sin esto no se les recibirá el examen. Se deberá utilizar el simulador Kiel µversion.

4. Determine el volumen de un cono, cubo y esfera, según lo escoja el usuario. Debe de preguntar determinar primero, el volumen que se desea averiguar, y luego ingresar los valores para realizar el cálculo.

Sacaremos el Volumen de un Cubo como demostracion

Para sacar el volumen de un cubo en este código primero se comenta la parte de esfera y cono y se deja solo la parte de cubo en la línea 30 se puede ir variando el lado a como el usuario desee en este caso sacaremos el volumen de un cubo de 8.9 cada lado, también en la línea 21 se elige la figura a la que se le quiere sacar el volumen en este caso es la del cubo entonces se le coloca 2 de esta forma:

27

30

32

33

```
Start
      ; Registro de menu, para seleccionar cono(1), cubo(2) o esfera(3)
      LDR RO. =2 :----
      ; Ingreso de datos de cono (altura, radio)
24 ;
     VLDR.F32 S1, =3.5 ; radio -----
     VLDR.F32 S2, =9.8 ; altura -----
26 :
     VLDR.F32 S3, = 0.3333333333 ;1/3 NO MOVER
      VLDR.F32 S4, = 3.141592654 ; PI NO MOVER
      ; Ingreso de datos de cubo (lado)
      VLDR.F32 S1, = 8.9 ; lado -----
      ; Ingreso de datos de esfera (radio)
     VLDR.F32 S1, = 12.5 ;Valor de radio ------
      VLDR.F32 S3, = 1.3333333333 ;4/3 NO MOVER
      VLDR.F32 S4, = 3.141592654; PI NO MOVER
      ; Ordenar los registros de forma descendente
      BL selection
```


Se procede a correr el programa haciendo los siguientes pasos:

1.Primero darle clic a dada uno de estos símbolos subrayados, para ver si hay errores en el programa en la parte de abajo saldrá que no tiene errores.

2. Segundo darle clic a la lupita roja subrayada en color lila

Al apachar la lupita roja saldra esto

¡No entrar en pánico!

Pasar a a la parte izquierda (panel de registros) bajar y entrar a la parte de FPU, alli apareceran todos los registros utilizados

Siguiente

Entrar a la parte de flotante y apareceran todos los registros utilizados en el codigo

Darle clic a esta parte subrayada para correr cada parte del codigo:

Darle clic a esta parte subrayada para parar el código y obtener el resultado

Resultado a mano

Ahora bien, si calculamos el volumen del cubo en una calculadora nos quedaría:

$$V = . Lado * Lado * Lado$$

$$V = 8.9 * 8.9 * 8.9$$

$$R/V = 704.949$$

De esta forma se puede observar que nuestro programa funciona correctamente.

Sacaremos el Volumen de una esfera como demostración

Para sacar el volumen de una esfera en este código primero se comenta la parte de cubo y cono y se deja solo la parte de la esfera, en la línea 33 se puede ir variando el radio a como el usuario desee en este caso sacaremos el volumen de una esfera de 12.5 de radio, también en la línea 21 se elige la figura a la que se le quiere sacar el volumen en este caso es la de la esfera entonces se le coloca 3 de esta forma:


```
19 Start
20
      ; Registro de menu, para seleccionar cono(1), cubo(2) o esfera(3)
      LDR RO. =3 :-----
21
      ; Ingreso de datos de cono (altura, radio)
24 ; VLDR.F32 S1, =3.5 ; radio -----
  ; VLDR.F32 S2, =9.8 ; altura ------
26 :
      VLDR.F32 S3, = 0.333333333 ;1/3 NO MOVER
      VLDR.F32 S4. = 3.141592654 ; PI NO MOVER
28
29
      ; Ingreso de datos de cubo (lado)
      VLDR.F32 S1, = 9.8 ; lado -----
31
32
      ; Ingreso de datos de esfera (radio)
33
       VLDR.F32 S1, = 12.5 ; Valor de radio ------
34
       VLDR.F32 S3, = 1.3333333333 ;4/3 NO MOVER
35
       VLDR.F32 S4, = 3.141592654 ; PI NO MOVER
36
37
      ; Ordenar los registros de forma descendente
      BL selection
39
```


Se procede a correr el programa haciendo los siguientes pasos:

1.Primero darle clic a dada uno de estos símbolos subrayados, para ver si hay errores en el programa en la parte de abajo saldrá que no tiene errores.

2. Segundo darle clic a la lupita roja subrayada en color lila

Pasar a a la parte izquierda (panel de registros) bajar y entrar a la parte de FPU, alli apareceran todos los registros utilizados

Siguiente

Entrar a la parte de flotante y apareceran todos los registros utilizados en el codigo

 $\int \left(\frac{x}{y}\right)$ Resultado

Darle clic a esta parte subrayada para correr cada parte del codigo:

Darle clic a esta parte subrayada para parar el código y obtener el resultado

Resultado a mano

Ahora bien, si calculamos el volumen una esfera en una calculadora nos quedaría:

$$V = \frac{4}{3} * \pi * r^3$$

$$V = \frac{4}{3} * \pi * 12.5^3$$

$$R/V = 8181.23$$

De esta forma se puede observar que nuestro programa funciona correctamente.

Sacaremos el Volumen de un cono como demostracion

Para sacar el volumen de un cono en este código primero se comenta la parte de cubo y esfera y se deja solo la parte del cono, en la línea 24 y 25 se puede ir variando el radio y la altura a como el usuario desee en este caso sacaremos el volumen de un cono de 3.5 radio y 9.8 de altura, también en la línea 21 se elige la figura a la que se le quiere sacar el volumen en este caso es un cono entonces se le coloca 3 de esta forma:

```
в других положениях выполняе с водим прямые. Точки их пересечения с водим прямые.
```

```
14
15
      AREA codigo, CODE, READONLY, ALIGN=2
16
      THUMB
17
      EXPORT Start
18
   Start
      ; Registro de menu, para seleccionar cono(1), cubo(2) o esfera(3)
20
      LDR RO, =1 ;-----
21
22
23
      ; Ingreso de datos de cono (altura, radio)
      VLDR.F32 S1, =3.5 ; radio -----
24
      VLDR.F32 S2, =9.8; altura -----
25
      VLDR.F32 S3. = 0.3333333333 :1/3 NO MOVER
26
27
      VLDR.F32 S4, = 3.141592654 ; PI NO MOVER
28
29
      ; Ingreso de datos de cubo (lado)
      VLDR.F32 S1, = 9.8 ; lado -----
30
      : Ingreso de datos de esfera (radio)
     VLDR.F32 S1, = 12.5 ;Valor de radio ------
33
```


Se procede a correr el programa haciendo los siguientes pasos:

1.Primero darle clic a dada uno de estos símbolos subrayados, para ver si hay errores en el programa en la parte de abajo saldrá que no tiene errores.

2. Segundo darle clic a la lupita roja subrayada en color lila

Pasar a la parte izquierda (panel de registros) bajar y entrar a la parte de FPU, alli apareceran todos los registros utilizados

Siguiente

Entrar a la parte de flotante y apareceran todos los registros utilizados en el codigo

Darle clic a esta parte subrayada para correr cada parte del codigo:

Darle clic a esta parte subrayada para parar el código y obtener el resultado

Resultado

El resultado es 125.716 el resultado siempre se mostrará en el registro S7

Resultado a mano

Ahora bien, si calculamos el volumen del cono en una calculadora nos quedaría:

$$V = \frac{\pi * r^2 * h}{3}$$

$$V = \frac{\pi * 3.5^2 * 9.8}{3}$$

$$R/V = 125.716$$

De esta forma se puede observar que nuestro programa funciona correctamente.