Problem 29. Suppose $(x_n)_{n=1}^{\infty}$ converges. Let $k \in \mathbb{N}$. The new sequence $(x_{n+k})_{n=1}^{\infty}$ also converges, and to the same limit.

Proof. Let $\epsilon > 0$. Since the sequence $(x_n)_{n=1}^{\infty}$ converges to L, there exists $N \in \mathbb{N}$ such that for all n > N, $|x_n - L| < \epsilon$. Now choose M = N for our shifted sequence. Then for all n > M, we have n + k > N(since $k \ge 1$), so $|x_{n+k} - L| < \epsilon$. Therefore (x_{n+k}) converges to L.

Problem 30. Give an example of each of the following, or state that such a request is impossible. In the latter case, identify specific theorem(s) that justify your statement.

(a) sequences (x_n) and (y_n) , which both diverge, where the sum $(x_n + y_n)$ converges We take the alternating harmonic series $\sum_{k=1}^{\infty} \frac{(-1)^{n+1}}{n}$ which famously converges to $\ln(2)$ and define x_n as the sequence of positive terms and y_n as the sequence of negative terms.

$$x_n = \begin{cases} \frac{1}{n} & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases} \qquad y_n = \begin{cases} \frac{-1}{n} & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases}$$

These two sequence of partial sums converge when combined and each diverge when split this way.

- (b) a convergent sequence (x_n) , and a divergent sequence (y_n) , where (x_n+y_n) converges
- (c) a convergent sequence (b_n) , with $b_n \neq 0$ for all n, such that $(1/b_n)$ diverges
- (d) sequences (x_n) and (y_n) , where (x_ny_n) and (x_n) converge but (y_n) does not

Problem 31. *If* $a \ge 0$ *and* $b \ge 0$ *then* $\sqrt{ab} \le \frac{1}{2} (a + b)$.

$$\square$$

Problem 32. Consider the real sequence generated by setting $x_1 = 2$ and then

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right).$$

(a) The sequence (x_n) is bounded below by $\sqrt{2}$.

 \square

(b) $\lim_{n\to\infty} x_n = \sqrt{2}$.

 \square

Problem 33. The sequence $\sqrt{2}$, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2+\sqrt{2}}}$, ... converges to X.

Proof.

Problem 34. For each series, find an explicit formula for the partial sums, and determine if the series converges.

(a) $\sum_{n=1}^{\infty} \frac{1}{2^n}$ (b) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ (c) $\sum_{n=1}^{\infty} \log\left(\frac{n+1}{n}\right)$ Problem 35.

(a) Suppose $0 \le a_n \le b_n$. If $\sum_{n=1}^{\infty} a_n$ diverges then $\sum_{n=1}^{\infty} b_n$ diverges.

Proof.