Introduction to Probability:

Probability terms: - 1. Experiement or Random Experiement

2. Outcome

3. Sample Space

4. Event

5. Probability Rules

(Insection, Union, Complement)

1. Experiement | Randon Experiement:

Defined as uncertain situations having multiple outcomes

eg:- 1. Tossing a com H,T 2. Rolling a dice 1, 2, 3, 4, 5, 6 3. Whether it mill rain tomorrow? You No 4. Whether India will was or lose? Yes No Outcome: - Result of an exponement.

eg: - 1. Toss a coin: - ti

exp outcome.

2. Roll a dice: - Tille y outcome

Sample Space: - Collection of all possible outsome of an experiement cg:- 1. Tossing a coin:- H, T $SS(Tc) = \{H, T\} \int h(s) = \lambda$ Sample Space. 2. Tossing 2 cons Simultaneously: - HH, HT, TH, TT SS (TC2) = { HH, HT, TH, TTG $\frac{n(ss) = 4}{n(s) = 4}$

2. Rolling a dice:- $SS(RD) = \{1, 2, 3, 4, 5, 6\}$ h(s) = 6

3. Rolling 2 dice Simultaneously: -n(s) = 36SS (20) = S(1,1), (1,2), (1,3), (1,4), (1,5), (1,6)(2,1),(2,2),(2,3),(2,4),(2,5),(2,6), $(\rightarrow(3)$ (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)

4. Event: - Subset of a Sample Space.

eg: - (1) A coin is torsed & head turns up.

exp

S(TC) = SH, T)

H

Frent

5. WC match both Ind & Aw.

SS = { India wm, Aus win, Tie, Rain Stopped Ply}

eg: -1. Tussing a com & head turns up. S(70) = 2 + 1, 7 N(s) = 2

Event A: - $\frac{\text{Head}}{\text{S}} = \frac{\text{Head}}{\text{S}} + \frac{\text{Head}}{\text{S}} + \frac{\text{Head}}{\text{S}} = \frac{\text{Head}}{\text{S}} + \frac{\text{Head}}{\text{S}} + \frac{\text{Head}}{\text{S}} = \frac{\text{Head}}{\text{S}} + \frac{\text{Head}}{\text{S}} +$

eg2:- We roll a dice. $S() = \{1, 2, 3, 4, 5, 6\}$ h(s) = 6Event A :- Even nos. turns y^2 .

Event A := Even nos. turns y^3 . S(A) = $\{2,4,6\}$ n(s(A)) = 3.

Event B: - Only prome nos. turn up. S(B): - $\{2,3,5\}$ lis neither prim

 $S(B):-\{2,3,5\}$ lis neither prime = hor composite. 1 = 2411 = 3 = 341 Exp: - Tossing 2 coms $S(T2) = \{(H, H), (H, T), (T, H), (T, T)\}$ N(S) = 4 $Event A : - Attend 1 head turning up
<math display="block">S(m) = \{(H, H), (H, T), (T, H)\}$ $\frac{n(S)}{N} = \frac{3}{N} + \frac{3}{N} = \frac{3}{N} + \frac{3}{N} = \frac{1}{N} + \frac{3}{N} = \frac{1$

New Section 1 Page 9

eg: - Roll 2 dice <u>SS:</u>-

	1	2	3	4	5	6
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

Event: A: - The sum of two dice turns up as 10 $S(A) := \{ (5,5), (6,4), (4,4) \} = h(s(A)) = 5$ Probability: - no. of elements in Sample Space of an

total sample space

 $0 \le P(A) \le 1$

26 December 2023 20:14

ey:-1 Exp: Rolling a dice of Tussing a com Simutaneously

 $S = \{(H, I), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), (T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)\}$

Event A:- Only Head turning up $S(M) = \{(H, I), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6)\}$ $n(s(A)) = \{(H, I), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6)\}$

$$1^{2}(A) = \frac{n(S(A))}{n(S)} = \frac{6}{12} = \frac{1}{2}$$

P(A) = 6

Event B:=Get only even nos. on the dice $S(B) = \{(H,2), (H,4), (H,6), (T,2), (T,4), (T,6)\}$ $S(B) = \{(H,2), (H,4), (H,6), (T,2), (T,4), (T,6)\}$

P(B) = 6

$P(B) = \frac{6}{12}$

rg: - Rulling à dice simultaneauly \(\) (1,2) (1,5) (1,6)(1,4)(2,2) (2,3) (2,4)(2,5)(2,6)(3,2)(3,3)(3,4)(3,5)(3,6)4 (4,1) (4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,5)(5,6)

Event A! - Getting on even no. When you add both hor. I divide by 2. $S(A) = \begin{cases} (13), (2,2), (2,6), (3,1), (3,5), (4,4), (5,3) \\ (6,2), (6,6) \end{cases}$

h(s (A))- 9 $P(A) = \frac{9}{36}$

20:41-20:45

Probability Ruler: -1. Complement: $-\left[P(\bar{A}) = 1 - P(A)\right]$

eg:- Polladice:- {1,2,3,4,5,6} => n(s) =6

Event A: - Get all no. divisible by 3 $S(A) = \{5, 6\}$ h(s(A)) = 2 $P(A) = \frac{2}{\sqrt{2}}$

Event B: - Get all nos. not divisible by 3. $S(3) = \{1, 2, 4, 5\}$ $n(\beta) = \varphi$ P(R)- 4

 $P(3) = P(\bar{A})$

 $P(n) = \frac{2}{6} \qquad P(\bar{A})$

 $P(\bar{A}) = 1 - P(A)$