Assignment Project Exam Help

https://textofforrammig

Weet de Silva, r. desilva@unsv.edu.au

Course Admin: Anahita Namvar, cs3121@cse.unsw.edu.au

School of Computer Science and Engineering UNSW Sydney

Term 2, 2022

Assignment Project Exam Help

1. Example Problems https://tutorcs.com

2. Linear Programming

WeChat: cstutorcs

3. Puzzle

Problem Pro

- its price per gram p_i;
- the number of calories c; per gram, and
- for each of 13 vitamins V_1, \dots, V_{13} , the content $v_{i,j}$ in milligrams of vitamin V_i in one gram of food source f_i .

Task: find a combination of quantities of food sources such that:

- the to a number of calcies the total to a recommended daily value of 2000 calories;
- for each $1 \le j \le 13$, the total intake of vitamin V_j is at least the recommended daily intake of w_j milligrams, and
- the price of all food per day is as low as possible.

Suppose we take x_i grams of each food source F_i for $1 \le i \le n$. A step the total number of calories must satisfy

https://tutores?com

For each $1 \le j \le 13$, the total amount of vitamin V_j in all foot rules satisfalt. CSTULOTCS

$$\sum_{i=1}^n x_i v_{i,j} \ge w_j.$$

■ Implicitly, all the quantities must be non-negative numbers, i.e. $x_i \ge 0$ for all $1 \le i \le n$.

Assignment Project Exam Help

• Our goal is to minimise the objective function, which is the that $y = \sum x_i p_i$.

• Mt techatint CS tutbjetic Senction are linear.

Assignment Project Exam Help

Problem

Instance: you are a politician and you want to ensure an election victor by tracking certain plante Ctoth Cectone. You can promise to build:

- bridges, each costing 3 billion;
- rWanfits hat tost as touth orcs
- Olympic swimming pools, each costing 1 billion.

Assignment Project Exam Help

You were told by your, wise advisers that

- attbos you truttofice Sociol Mity votes, 7% of suburban votes and 9% of rural votes;
- each rural airport you promise brings you no city votes, 2% of structure votes and 15% of rural total CS
- each Olympic swimming pool promised brings you 12% of city votes, 3% of suburban votes and no rural votes.

Assignment Project Exam Help

Problem (continued)

In order to Syon have the Company of the city, suburban and rural votes.

Task: decide now many bridges, airports and pools to promise in order to guarantee an election win at minimum cost to the budget.

Assignment blogs jecit bexamof Help airports x_a and the number of swimming pools x_p .

We now see that the problem amounts to minimising the dictive see that the following constraints are satisfied:

$$\begin{array}{c} \begin{array}{c} 0.05x_b \\ 0.05x_b \\ 0.09x_b \\ \end{array} + \begin{array}{c} 0.12x_p \geq 0.51 \\ 0.09x_b \\ \end{array} \begin{array}{c} (\text{city votes}) \\ 0.09x_b \\ \end{array} \begin{array}{c} 0.05x_b \\ 0.05x_b \\ \end{array} \begin{array}{c} (\text{city votes}) \\ 0.09x_b \\ \end{array} \begin{array}{c} (\text{city votes}) \\ 0.09x_b \\ \end{array} \begin{array}{c} (\text{city votes}) \\ (\text{city vot$$

Assignment Projectif Exam. Help

- you can eat 1.56 grams of chocolate, but proposite type 1.56 by 1.50 b
- The second example is an example of an Integer Linear Regeranting problem, which requires all the solutions to be integer. CSTUTOTCS
- Such problems are MUCH harder to solve than the "plain" Linear Programming problems whose solutions can be real numbers.

Solving Linear Programming problems

Assign won't see algorithms which solve Literoblems in the lens of these problems to the further.

- There is solynortial time in Solynortial tim
- It ractice we typically use the SIMPLEX algorithm instead; its worst case time complexity is exponential, but it is very efficient in the 'average' case.
- There is no known polynomial time algorithm for Integer Linear Programming!

Assignment Project Exam Help

1. Example Problems

https://tutorcs.com

2. Linear Programming

WeChat: cstutorcs

3. Puzzle

Assignment, Project, Exame Help

https://tutorcs.com

and the constraints are of the form

$$x_j \geq 0$$
 $(1 \leq j \leq n)$.

Assignment Project Exam Help

- get a more compact representation of linear programs, we use vectors and matrices.
- het x represent/2 (column) vector, com $\mathbf{x} = \langle x_1 \dots x_n \rangle^T.$
- Define a partial ordering on the vectors in \mathbb{R}^n by $\mathbf{x} \leq \mathbf{y}$ if and only if the corresponding inequalities hold coordinate-wise, i.e., if and only if $x_j \leq y_j$ for all $1 \leq j \leq n$.

Assignment Project Exam Help

$$\mathbf{c} = \langle c_1 \dots c_n \rangle^T \in \mathbb{R}^n,$$
 the coefficients in the constraints of an exponential constraints of the constraints of the

$$A = (a_{ij})$$
and the light Charles State of the Charles State of the

$$\mathbf{b} = \langle b_1 \dots b_m \rangle^T \in \mathbb{R}^m.$$

Assignment Project Exam Help Then the standard form can be formulated simply as:

- \blacksquare maximize $\mathbf{c}^T \mathbf{x}$
- Subject to the following two (matrix vector) constraints:

 $Ax \leq b$

WeChat: cstutorcs
Thus, a Linear Programming optimisation problem can be specified

Thus, a Linear Programming optimisation problem can be specified as a triplet $(A, \mathbf{b}, \mathbf{c})$, which is the form accepted by most standard LP solvers.

Translating other constraints to Standard Form

Assignment Project Exam Help

- The Standard Form doesn't immediately appear to handle the full generality of LP problems. https://tutorcs.com
- LP problems could have:
 - equality constraints
 - Wung onstrained trariables (i.e. totentially negative values
 - absolute value constraints

Equality constraints

Assignment Project Exam Help $\sum_{a_{ij}x_i=b_j.}^{\text{An LP problem may include equality constraints of the form} \sum_{a_{ij}x_i=b_j.}^{\text{Note of the problem may include equality constraints of the form}$

https://tutorcs.com Each of can be replaced by two inequalities:

$$\sum_{i=1}^n a_{ij}x_i \leq b_j.$$

Thus, we can assume that all constraints are inequalities.

Unconstrained variables

Assimonative. In general, a "natura formulation" of a problem as a Linear of the control of the

- Hyreton the Standard Form does imposer this constraint.
- This poses no problem, because each occurrence of an unconstrained variable x_i can be replaced by the expression $X_i X_i^*$

where x'_j, x^*_j are new variables satisfying the inequality constraints

$$x_j'\geq 0,\ x_j^*\geq 0.$$

Absolute value constraints

For a vector

Assignment Project Exam Help

$$|\mathbf{x}| = \langle |x_1|, \ldots, |x_n| \rangle^T.$$

https://tutorcs.com
Some problems are naturally translated into constraints of the

 Some problems are naturally translated into constraints of the form

WeChat: cstutorcs

This also poses no problem because we can replace such constraints with two linear constraints:

$$A\mathbf{x} \leq \mathbf{b}$$
 and $-A\mathbf{x} \leq \mathbf{b}$,

because $|x| \le y$ if and only if $x \le y$ and $-x \le y$.

Summary of Standard Form

Assignment Project Exam Help

https://tutorcs.com

and

WeChat: cstutorcs

Any vector \mathbf{x} which satisfies the two constraints is called a *feasible solution*, regardless of what the corresponding objective value $\mathbf{c}^T \mathbf{x}$ might be.

A saing remple tent to be following better interesting problem

```
https://tutorcs.com

subject to

WeChat+x_2+3x_3 \le 30 (2)

4x_1+x_2+2x_3 \le 36 (4)
```

 $x_1, x_2, x_3 > 0$

(5)

Assignment Project Exam Help $z(x_1, x_2, x_3) = 3x_1 + x_2 + 2x_3$

be, without violating the constraints?
We can achieve a crude bound by Cdoing inequalities (2) and (3), to obtain

$$3x_1 + 3x_2 + 8x_3 \le 54.$$

Since Wardles and instrument to the legative, we are assured that

$$3x_1 + x_2 + 2x_3 \le 3x_1 + 3x_2 + 8x_3 \le 54$$
,

i.e. the objective does not exceed 54. Can we do better?

Assi ginarountion of the describes $x_1, y_2, y_2 \ge 0$ to be used to $x_1, y_2, y_3 \ge 0$ to be used to $x_1, y_2, y_3 \ge 0$ to be used to $x_1, y_2, y_3 \ge 0$ to be used to $x_1, y_2, y_3 \ge 0$ to be used to $x_1, y_2, y_3 \ge 0$ to be used to $x_1, y_2, y_3 \ge 0$ to be used to $x_1, y_2, y_3 \ge 0$ to be used to $x_1, y_2, y_3 \ge 0$ to be used to $x_1, y_2, y_3 \ge 0$ to be used to $x_1, y_2, y_3 \ge 0$ to be used to $x_1, y_2, y_3 \ge 0$ to be used to $x_1, y_2, y_3 \ge 0$ to $x_2, y_3 \ge 0$ to $x_1, y_2, y_3 \ge 0$ to $x_2, y_3 \ge 0$ to $x_1, y_2, y_3 \ge 0$ to $x_2, y_3 \ge 0$ to $x_1, y_2, y_3 \ge 0$ to $x_1, y_2, y_3 \ge 0$ to $x_1, y_2, y_3 \ge 0$ to $x_2, y_3 \ge 0$ to $x_1, y_2, y_3 \ge 0$ to $x_1, y_2, y_3 \ge 0$ to $x_2, y_3 \ge 0$ to $x_1, y_2, y_3 \ge 0$ to $x_2, y_3 \ge 0$ to $x_1, y_2, y_3 \ge 0$ to $x_1, y_2, y_3 \ge 0$ to $x_2, y_3 \ge 0$ to $x_1, y_2, y_3 \ge 0$ to $x_1, y_2, y_3 \ge 0$ to $x_1, y_2, y_3 \ge 0$ to $x_2, y_3 \ge 0$ to $x_1, y_2, y_3 \ge 0$ to $x_2, y_3 \ge 0$ to $x_1, y_2, y_3 \ge 0$ to $x_2, y_3 \ge 0$ to $x_1, y_2, y_3 \ge 0$ to $x_2, y_3 \ge 0$ to $x_1, y_2, y_3 \ge 0$ to $x_2, y_3 \ge 0$ to $x_1, y_2, y_3 \ge 0$ to $x_2, y_3 \ge 0$ to $x_1, y_2, y_3 \ge 0$ to $x_2, y_3 \ge 0$ to $x_1, y_2, y_3 \ge 0$ to $x_2, y_3 \ge 0$ to $x_3, y_3 \ge 0$ to $x_1, y_2, y_3 \ge 0$ to $x_2, y_3 \ge 0$ to $x_3, y_3 \ge 0$ to $x_1, y_2, y_3 \ge 0$ to $x_2, y_3 \ge 0$ to $x_3, y_3 \ge 0$ to $x_1, y_2, y_3 \ge 0$ to $x_2, y_3 \ge 0$ to $x_3, y_3 \ge$

$$y_1(x_1 + x_2 + 3x_3) \le 30y_1 \tag{6}$$

Then, summing up all these inequalities and factoring, we get

$$+ x_2(y_1 + 2y_2 + y_3)$$

 $+ x_3(3y_1 + 5y_2 + 2y_3)$
 $< 30y_1 + 24y_2 + 36y_3$.

If we compare this with our objective (1) we see that if we choose

Assignment Project Exam Help

then

Combining this with (6) - (8) we get

$$30y_1 + 24y_2 + 36y_3 \ge 3x_1 + x_2 + 2x_3 = z(x_1, x_2, x_3).$$

Assissint montro in the projective $z(x_1, x_2, x_3)$ in the original problem P, we have to find

 y_1, y_2, y_3 which solve problem P^* :

subject to:

WeChat
$$_{2y}^{y_1+2y_2+4y_3} \ge 3$$
 (10)

$$3y_1 + 5y_2 + 2y_3 \ge 2 \tag{12}$$

$$y_1, y_2, y_3 \ge 0 \tag{13}$$

Assignment Project Exam Help

https:
$$\frac{z^{*}(y_{1})}{tut} = \frac{30}{5}x_{1} + x_{2} + 2x_{3} + 36x_{3}$$

= $z(x_{1}, x_{2}, x_{3})$

will be wind cstutores

The new problem P^* is called the *dual problem* of P.

Let us now repeat the whole procedure in order to find the dual of A special which will be denoted by the constant of the content of the cont

Summy the up no tactom structors

$$y_1(z_1 + z_2 + 3z_3) + y_2(2z_1 + 2z_2 + 5z_3) + y_3(4z_1 + z_2 + 2z_3) \ge 3z_1 + z_2 + 2z_3$$

(14)

If we choose multipliers z_1, z_2, z_3 so that

Assignment Projects Exam Help

 $\underset{\text{we will have}}{\text{https:}}//\underset{tutorcs.com}{\overset{4z_1+z_2+2z_3\leq 36}{\text{com}}}$

WeChat.
$$(z_1 + z_2 + 3z_3)$$

 $+ y_3(4z_1 + z_2 + 2z_3)$
 $\leq 30y_1 + 24y_2 + 36y_3$

Combining this with (14) we get

$$3z_1 + z_2 + 2z_3 \le 30y_1 + 24y_2 + 36y_3.$$

Assignment he double just crogram (x_1) and x_2 the maximising the objective $3z_1 + z_2 + 2z_3$ subject to the constraints

https://turtorc3 $\frac{1}{2} \frac{1}{2} \frac{1$

 $4z_1 + z_2 + 2z_3 \le 36$

WeChat: cstatorcs

This is exactly our starting program P, with only the variable names changed! Thus, the double dual program $(P^*)^*$ is just P itself.

Assignment Project Exam Help

- It appeared at first that looking for the multipliers y_1, y_2, y_3 did not help much, because it only reduced a maximisation problem.
- It is useful at this point to remember how we proved that the Ford-Fullersch algorithm produces a maximal flow, by showing that it terminates only when we reach the capacity of a minimal cut.

Primal and dual linear programs

In general, the *primal* Linear Program P and its *dual* P^* are:

Assignment Project Exam Help

https://tutifics.bcom
$$i \leq m$$

and $x_1,\ldots,x_n\geq 0$;

subject to
$$\sum_{i=1}^m a_{ij}y_i \ge c_j \qquad (1 \le j \le n)$$

and $y_1, \ldots, y_m \ge 0$.

Primal and dual linear programs

Assignment Project Exam Help

$$\begin{array}{c} \textbf{https:} & \textbf{maximize} & z(\mathbf{x}) = \mathbf{c}^T \mathbf{x}, \\ \textbf{https:} & \textbf{subjection COAR} \leq \mathbf{b} \\ & \textbf{and} & \mathbf{x} \geq 0; \\ \textbf{WeChier to CSTUTORS} \geq \mathbf{c} \\ & \textbf{and} & \mathbf{y} \geq 0. \end{array}$$

Assignment Phihotsecte Exams Help and x > 0 is called a feasible solution, regardless of what the

and $\mathbf{x} \geq 0$ is called a *feasible solution*, regardless of what the corresponding objective value $\mathbf{c}^T \mathbf{x}$ might be.

Theorem UDS://tutorcs.com

If $\mathbf{x} = \langle x_1 \dots x_n \rangle$ is any feasible solution for P and $\mathbf{y} = \langle y_1 \dots y_m \rangle$ is any feasible solution for P^* , then:

We Chat: cstutorcs
$$z(\mathbf{x}) = \sum_{j=1}^{n} c_j x_j \leq \sum_{i=1}^{n} b_i y_i = z^*(\mathbf{y})$$

A Sport Project Exam Help Since and y are feasible solutions for P and P* respectively, we

can use the constraint inequalities, first from P^* and then from P to obtain

to obtain tps://tutorcs.com
$$z(\mathbf{x}) = \sum_{j=1}^{n} c_j x_j \le \sum_{j=1}^{n} \left(\sum_{i=1}^{n} a_{ij} y_i\right) x_j$$

WeChat:
$$(\underbrace{\sum_{j=1}^{c} a_{ij} x_j}_{j}) y_i \leq \sum_{i=1}^{c} b_i y_i$$

$$=z^*(\mathbf{y}).$$

A Significant of the objective of P^* is an upper bound for the set of all values of (the objective of P for) all feasible solutions of P, and every feasible solution of P is a lower bound for the set of feasible solutions for P^* .

Solutions for P
WeChat: cstutorcs

Solutions for P*

Solution to P^* , this common value must be the maximal feasible value of the objective of P and the minimal feasible value of the objective of P^* . Solutions for P

Solutions for P*

Assignment Project Exam Help If we use a search procedure to find an optimal solution for P

- If we use a search procedure to find an optimal solution for P we know when to stop: when such a value is also a feasible solution for P*/./tutorcs.com
 This is why the most commonly used LP solving method, the
- This is why the most commonly used LP solving method, the SIMPLEX method, produces an optimal solution for P: because it stops at a value of the primal objective which is a value of the livel objective.
- See the supplemental notes for the details and an example of how the SIMPLEX algorithm runs.

Assignment Project Exam Help

1. Example Problems

https://tutorcs.com

2. Linear Programming

WeChat: cstutorcs

3. Puzzle

Assignment Project Exam Help

There are five sisters in a house.

- https://tutorcs.com
- Jennifer is playing chess.
- Catherine is cooking.
- Wie Chat: cstutorcs

What is Helen, the fifth sister, doing?

That's All, Folks!!