CS 5003: Parameterized Algorithms

Lectures 8-9

Krithika Ramaswamy

IIT Palakkad

Feedback Vertex Set

FVS - set of vertices that has at least one vertex of every directed cycle

Directed graph (digraph)

Feedback Vertex Set

Lemma: A digraph is a DAG iff it has a topological ordering

Topological ordering

Feedback Vertex Set in Tournaments

Instance: A tournament T and an integer k

Question: Does there exist a feedback vertex set

of T of size at most k?

Lemma: Acyclic tournaments have unique topological ordering

Lemma: A tournament is acyclic iff it has no triangle

Lemma: A tournament is acyclic iff it has no triangle

Lemma: A tournament is acyclic iff it has no triangle

Branching Algorithm?

What are the recursive subproblems?

0*(3k) algorithm

Theorem: FVST is FPT with respect to the solution size as parameter

Suppose we have a (k+1)-size solution S

- * We want <= k size solution R
- * Suppose we know $S \cap R$
 - * If we don't know $S \cap R$, guess!
 - * 2k+1 choices

PAG (unique topo ordering)

(k+1)-size solution S

k+1-r vertices

r vertices

DAG with unique topological ordering

To find a set of <= r-1 vertices here

r-size solution

DAG (unique topo ordering)

PAG (unique topo ordering)

To find a set of <= r-1 vertices here

r-size solution

PAG (unique topo ordering)

PAG (unique topo ordering)

Find a disjoint (r-1) size solution

Pisjoint Compression

Add v into solution and reduce parameter by 1

Disjoint Compression

Any triangle has two vertices from Y

Pisjoint Compression

Consider solution PAG's topological order

Pisjoint Compression

Consider solution PAG's topological order

Pisjoint Compression

Consider solution PAG's topological order

Pisjoint Compression

Consider solution PAG's topological order

Find longest common subsequence

(k+1)-size solution S

- * We want <= k size solution R
- * Suppose we know $S \cap R$
 - * We don't know $S \cap R$, guess! (2^{k+1} choices)
 - * Solve Disjoint Compression
 - * Longest Common Subsequence (in polynomial time)

0*(2k) algorithm

How to get a (k+1)-size solution S?

Tournament T

Consider any k+3 vertices of T

k+1 solution

k+1 solution for subtournament on k+3 vertices

Compress in $0*(2^k)$ time

k+1 solution for subtournament on k+4 vertices

Iteratively Compress