

PID-Niveauregelung

LA1 - V. Jahrgang

Letzte Überarbeitung: September 2024

AUTOR: DI GERALD SCHNUR

DATEI: NIVEAUREGELUNG_2024.DOC

LERNZIELE

Nach dieser Laborübung soll der Teilnehmer

- theoretische Hintergründe zur Realisierung einer digitalen PID-Regelung verstehen können
- eine digitale PID-Regelung aufbauen und in Betrieb nehmen können
- eine Parametrierung der PID-Parameter zwecks Regleroptimierung durchführen können

1 VERWENDETE GERÄTE

☐ Rechner, SPS, Modellanlage

2 THEORETISCHE GRUNDLAGEN

2.1 ANLAGENAUFBAU UND TECHNOLOGIESCHEMA

DI Gerald Schnur Datei: Niveauregelung_2024.doc September 2024

2.2 THEORETISCHE HINTERGRUNDINFORMATIONEN

Allgemeines Blockschema einer Regelung:

Merke:

W = Sollwert, Führunpspröke

x = Istwert, RepelprsRe

r = Rückführ pro Re

e = Repel différent, Repel cobweichung

y = Stellpione

Z= Störpröle

Bei uns: x = Niveau h [cm]

y= Spannung zur Pumpe 0 – 10 Volt

PID - Reglergleichung:

Seite 5 **Temperaturmessung**

Digitale PID – Reglergleichung:

P-Replev modhemotisil:

Ly des perode attvell einpelesche e(t)

I-Replev mothemuhisch:

$$y_r = \frac{1}{T_n} \cdot \int_{(t)} e_{(t)} \cdot dt$$

I-Regler digital:

Wir neissen Se. dt bilden des heist die Floche neuter der $e_{(t)}$ - Kurre zur t-Adeso.

Wir summieron néherrupsweise einfod olle

$$\int_{(t)} e_{(t)} \cdot dt = \Delta T \cdot \underbrace{\mathcal{E}}_{i} e_{i} = \Delta T \cdot (e_{0} + \dots e_{h-1} + e_{h})$$

$$\Rightarrow$$
 $y_{I} = \frac{\Delta T}{Tn} \cdot Ze_{i}$

D-Regler:

D-Repler mothematisch:

D-Repler dipital:

$$y_D = T_r \cdot \frac{(e_n - e_{n-1})}{\Delta T}$$

Daraus folgt für dipitulen PiD-Repler:

Verwende im Programm für die darin vorkommenden Größen folgende Variablen:

3 AUFGABENSTELLUNG

1. Realisiere auf Basis obiger Informationen eine grundsätzlich funktionieende PID Niveauregelung mit der vorhandenen B&R-SPS.

Für Informationen zur zum Prozessmodell (IO's) verwende die Datei

Prozesmodell_IO_Einbinung.pdf

und für Informationen zur SPS (Programmbeispiele) die Datei

Getting_Started_B&R_SPS_Würfel.pdf

2. Optimiere die Regelung hinsichtlich der drei Regelparameter KPr, Tn und TV

DI Gerald Schnur Datei: Niveauregelung_2024.doc September 2024