2.3 实验内容与测试

题目: 设有一个长直接地金属矩形槽,边长如图 2.7 所示。其中, $\alpha = 2m$,其侧壁与底面电位均是 0,顶盖的电位为 100V,求槽内的电位分布。

图 2.7 矩形接地金属槽

具体要求:

- (1) 利用 MATLAB 编写一个计算机程序;
- (2) 求相邻两次迭代值指定的最大允许误差小于10-5时的迭代收解:
- (3) 采用步距 h = 0.01m 的正方形网格予以分割,然后应用有限差分法求电位 φ 的数值解;也可以根据场的对称性,以半场域为计算对象,用有限差分法求电位 φ 的数值解;
- (4) 取n个不同的 α 值,求电位 φ 的数值解,确定出加速收敛因子(松弛因子) α_0 ,分析加速收敛因子的作用,从迭代收敛时的迭代次数和最终数值解这两方向总结自己的看法;
- (5) 用计算机描绘等位线的分布。

2.4 实验结果与数据分析

- (1) 实验目的;
- (2) 实验步骤;
- (3) 分析加速因子的作用;
- ① 迭代次数分析:
 - 简单迭代收敛次数: <u>2456</u>;
 - 高斯赛德尔迭代法收敛次数: k = 13430;
 - 最佳加速收敛因子为: $\alpha_{opt} = 1.950$, 迭代次数 k = 40.

	1	2	3	4	5	6	7	8	9
α	1.90	1.91	192	1.93	1.94	1.95	1.96	1.97	1.98
k	94)	Sto	7,50	64)	537	409	436	600	808

表 2-1 不同收敛因子 α 值时的迭代次数 k 值表

分析: 內m=2-1/元十分 得出 Ont=1.9503,并能在实验中验证, 《超磁的 Ont, 进行决数越小。

② 最终数值解分析:

分别取 α =1.2, α =1.8时的9次数值解,进行比较。

表 2-2 α 取值对应下的数值解比较

	第 n	第n次							
	-4000 次	-3500 次	-3000 次	-2500 次	-2000 次	-1500 次	-1000 次	-500 次	(20列
	(20列	(20 列	(20列	(20 列	(20列	(20列	(20 列	(20列	38 行)
	38 行)								
α =1.2	9.8342	9.8864	9.9192	9.9399	9.9529	9.9611	9.9662	9.9695	9.9715
	第 <i>n</i>	第 n	第 <i>n</i>	第 n	第 <i>n</i>	第 <i>n</i>	第 <i>n</i>	第 <i>n</i>	第 n 次
	-1600 次	-1400 次	-1200 次	-1000 次	-800 次	-600 次	-400 次	-200 次	(20列
	(20列	(20 列	(20列	(20 列	(20列	(20 列	(20 列	(20 列	38 行)
	38 行)								
α=1.8	4.9671	8.2439	9.3980	9.7850	9.9129	9.9548	7.968K	9.9729	9.9743

表 2-3 α 取最佳值 α_{opt} 时与附件值的数值解比较

	第 n	第 n	第 n	第 n	第 n	第 n	第 n	第 n	第 n 次
	-300次	-280次	-540次	-500次	-460次	-段0次	- 黎 0次	- 40 次	(20列
	(20 列 38 行)	(20 列 38 行)	(20 列 38 行)	(20 列 38 行)	(20 列 38 行)	(20 列 38 行)	(20 列 38 行)	(20 列 38 行)	38 行)
α=	20 14 2								
$lpha_{opt}$ -0.1	9.9684	9.9702	9.9715	9.9724	9.9731	9.9136	9.9740	9.9743	9.9745
$lpha=lpha_{ ext{op}t}$	1.4439	6.785)	8-7711	95856	9.9209	9.9630	9.9719	9.9744	9.9749
$lpha= lpha_{opt} +0.1$	-7.3743 et301	1.7645 et301	-2.1057 e+303	-2.843) e+303	1.4625 e+304	2.081b et305	7.1231 e+30b	NaN	NaN

比较得出的结论:

(4) 描绘等位线分布图(在图中嵌入学号+姓名)

(5) 利用解析法求解, 画出电位分布图, 并与上述数值法比较

(6) 心得体会

代码的一些缺陷:给出的简单进代码实际上是高期零价值法;解析法漏了一个路易。最后的对22时发散的结果比较有迷惑性;

松驰因于的值对监论效率确实有很大影响,实际使用的不规则形状的电位计算中:找到合适的松驰因于是难点,也是重点。