Introducere în teoria fasciculelor

Seminar 4 Luni, 10.03.2014.

- 1. (Imagine directă) Fie X, Y spații topologice, $\varphi : X \to Y$ o aplicație continuă și \mathcal{F}, \mathcal{G} fascicule de bază X. Detaliați construcția morfismului de fascicule $\varphi_* : \varphi_* \mathcal{F} \to \varphi_* \mathcal{G}$.
- 2. (Exemplu imagine directă și imagine reciprocă) Fie $\varphi: S^1 \to S^1$, $\varphi(z) = z^2$. Determinați imaginea directă $\varphi_* \underline{\mathbb{Z}}_{S^1}$ și imaginea inversă $\varphi^* \underline{\mathbb{Z}}_{S^1}$ pentru fasciculul constant de fibră \mathbb{Z} . Ce se poate spune despre fasciculele $\varphi_* \varphi^* \underline{\mathbb{Z}}_{S^1}$ și $\varphi^* \varphi_* \underline{\mathbb{Z}}_{S^1}$? Puteți generaliza acest rezultat?
- 3. (Legătura dintre imagine reciprocă și restricție) Fie X un spațiu topologic, $U \subset X$ deschisă, $i_U : U \hookrightarrow X$ aplicația de incluziune și fie \mathcal{F} un fascicul pe X. Demonstrați că există un izomorfism natural $\mathcal{F}|_U \simeq i_U^* \mathcal{F}$ între restricția lui \mathcal{F} la U și imaginea reciprocă a lui \mathcal{F} prin aplicația de incluziune i_U .
- 4. (Izomorfismele naturale pentru fasciculul $\mathcal{H}om$ depind de categoria considerată) Fie X un spațiu topologic și fie \mathcal{F} un fascicul pe X. Demonstrați:
 - a) Dacă $\mathcal F$ este un fascicul de mulțimi pe X, atunci $\mathcal{H}\!\mathit{om}(\underline{\{p\}}_X,\mathcal F)\simeq \mathcal F.$
- b) Dacă \mathcal{F} este un fascicul de grupuri abeliene pe X, atunci $\mathcal{H}om_{Ab_X}(\underline{\mathbb{Z}}_X,\mathcal{F}) \simeq \mathcal{F}$ (ca fascicule de grupuri abeliene).
 - c) Dacă \mathcal{F} este un \mathscr{O}_X -Modul, atunci $\mathscr{H}om_{Mod_{\mathscr{O}_X}}(\mathscr{O}_X,\mathcal{F}) \simeq \mathcal{F}$ (ca \mathscr{O}_X -module).
- 5. (Fasciculul Hom și trecerea la fibre) Fie X un spațiu topologic, \mathcal{F}, \mathcal{G} fascicule pe X și $x \in X$ fixat.
- a) Prefasciculul $\mathcal{H}om(\mathcal{F},\mathcal{G})$ este fascicul dacă \mathcal{F} sau \mathcal{G} sunt doar prefascicule? (Indicație: se poate aplica proprietatea de universalitate a fasciculului asociat unui prefascicul?).
 - b) Explicați cum este construită aplicația naturală $\mathcal{H}om(\mathcal{F},\mathcal{G})_x \to \operatorname{Hom}(\mathcal{F}_x,\mathcal{G}_x)$.
 - c) Dați un exemplu în care aplicația de la b) nu este bijectivă.