

Math Methods for Political Science

Lecture 2: Systems of Linear Equations

The basics

Definition 1 (Linear equation and system of linear equations)

For $n \in \mathbb{N}_+$, a **linear equation** in the variables x_1, \dots, x_n is an equation that can be written as

$$a_1x_1+\cdots+a_nx_n=b$$
,

where $a_1, \dots, a_n, b \in \mathbb{R}$.

A system of linear equations (or linear system) is a collection of one or more linear equations in the same variables x_1, \dots, x_n .

Example 1 (System of linear equations)

$$x_1$$
 $-2x_2 = -1$
 $-x_1$ $+3x_2 = 3$

Solutions to linear systems

Definition 2 (Solutions to system of linear equations)

 (s_1, \dots, s_n) is a **solution** of a linear system in $n \in \mathbb{N}_+$ variables if it makes every equation in the system true when s_1, \dots, s_n are substituted for x_1, \dots, x_n respectively.

Example 2 (Solutions to system of linear equations)

$$x_1$$
 $-2x_2 = -1$
 $-x_1$ $+3x_2 = 3$

If $s_1 = 3$ and $s_2 = 2$, then

$$3 -2 \times 2 = -1$$

 $-3 +3 \times 2 = 3$

Solution set and equivalent systems

Definition 3 (Solution set and equivalent systems)

- The solution set of a linear system is the set of its solutions.
- Linear systems are **equivalent** if their solution sets are.

Example 3 (Solution set of 2d systems)

$$x_1$$
 $-2x_2 = -1$
 $-x_1$ $+3x_2 = 3$

$$x_1/2$$
 $-x_2 = -1/2$
 $-x_1/2$ $+3/2x_2 = 3/2$

Cardinality of the solution set

Lemma 1 (Cardinality of the solution set)

Let *S* be the solution set of a linear system, then $|S| \in \{0, 1, \infty\}$.

Definition 4 (Consistent linear system)

A system is **consistent** if its solution set S is s.t. $|S| \in \{1, \infty\}$.

Example 4 (Solution set of 2d systems cont'd)

$$x_1$$
 $-2x_2 = -1$
 $-x_1$ $+3x_2 = 3$

$$-x_1 +2x_2 = 3$$

$$4 \uparrow x_2$$

 $x_1 -2x_2 = -1$

$$-x_1 \quad +2x_2=1$$

Matrix

Definition 5 (Matrix)

For $n, d \in \mathbb{N}_+$, a $d \times n$ matrix is a rectangular array with d rows and n columns of numbers called entries (or elements).

Example 5 (Matrix)

$$\begin{bmatrix} 1 & 6 & 8 & 3 \\ 4 & 1000 & 3.14 & 9 \\ 2 & 5 & 0 & 0 \end{bmatrix}$$

For $n, d \in \mathbb{N}_+$ and A a $d \times n$ matrix, we write

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,n} \\ A_{2,1} & A_{2,2} & \cdots & A_{1,n} \\ \vdots & \vdots & \vdots & \vdots \\ A_{d,1} & A_{d,2} & \cdots & A_{d,n} \end{bmatrix}$$

Matrix notation for linear system

Definition 6 (Augmented matrix)

Consider the following linear system

$$a_{1,1}x_1 + \cdots + a_{1,n}x_n = b_1$$

 $\vdots + \vdots + \vdots = \vdots$
 $a_{d,1}x_1 + \cdots + a_{d,n}x_n = b_d$

Then its **augmented matrix** is the $d \times (n+1)$ matrix A s.t.

$$A = \begin{bmatrix} a_{1,1} & \cdots & a_{1,n} & b_1 \\ \vdots & \vdots & \vdots & \vdots \\ a_{d,1} & \cdots & a_{d,n} & b_n \end{bmatrix}$$

Example 6 (Augmented matrix)

$$x_1$$
 $-2x_2 = -1$ \Rightarrow the augmented matrix is $\begin{bmatrix} 1 & -2 & -1 \\ -1 & 3 & 3 \end{bmatrix}$

Elementary row operations

Definition 7 (The three elementary row operations)

- **Replacement:** add to one row a multiple of another row.
- Interchange: interchange two rows.
- **Scaling:** multiply all entries in a row by a nonzero constant.

Example 7 (Row operations)

$$\begin{bmatrix} 1 & -2 & -1 \\ -1 & 3 & 3 \end{bmatrix} \Longrightarrow \begin{cases} \text{Replacement:} \begin{bmatrix} 1 & -2 & -1 \\ 0 & 1 & 2 \end{bmatrix} \\ \text{Interchange:} \begin{bmatrix} -1 & 3 & 3 \\ 1 & -2 & -1 \end{bmatrix} \\ \text{Scaling:} \begin{bmatrix} 1 & -2 & -1 \\ -2 & 6 & 6 \end{bmatrix}$$

Row equivalence

Definition 8 (Row equivalence)

Matrices A and B are **row equivalent** (r.e.) if there is a sequence of elementary row operations that transforms A into B.

Lemma 2 (Solution sets of r.e. augmented matrices)

Let S_1 and S_2 be the solution sets of linear systems with augmented matrices A_1 and A_2 , then $S_1 = S_2 \Leftrightarrow A_1$ and A_2 are r.e.

Example 8 (Solution sets and augmented matrices)

$$\begin{bmatrix} 1 & -2 & -1 \\ -1 & 3 & 3 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 & -2 & -1 \\ 0 & 1 & 2 \end{bmatrix} \Longrightarrow x_2 = 2, x_1 = 3$$

Echelon and reduced echelon forms

Definition 9 (Row echelon and reduced echelon forms)

A matrix is in row echelon form (REF) if

- nonzero rows are above any row of all zeros,
- the **leading entry** (the row's first non-zero element) is in a column to the right of the leading entry of the row above it.

A matrix is in row reduced echelon form (RREF) if it is in REF

- its nonzero leading entries are equal to 1,
- each leading 1 is the only nonzero entry in its column.

Example 9 (Row echelon and reduced echelon forms)

REF:
$$\begin{bmatrix} 1 & -2 & -1 \\ 0 & 3 & 3 \\ 0 & 0 & 0 \end{bmatrix}, RREF: \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

Pivots and row reduction algorithm

Definition 10 (Pivot position and pivot column)

A **pivot position** is a position of a leading 1 in a matrix in RREF, and a **pivot column** is a column containing a pivot position.

Definition 11 (The row reduction algorithm)

- 1. Start with the leftmost nonzero column.
- 2. Select a nonzero entry in this column as pivot. If necessary, interchange rows to move this entry at the top.
- 3. Use row operations to create zeros in all positions below.
- 4. Ignore the row with the pivot, apply 1-3 to the remaining submatrix, repeat until there are no more nonzero rows.
- 5. Beginning with the rightmost pivot and working upward, create zeros above each pivot. If a pivot is not 1, use scaling.

Pivots and row reduction algorithm

Example 10 (Row reduction algorithm, steps 1-4)

$$\begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{bmatrix} \Longrightarrow \begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$$
$$\Longrightarrow \begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$$
$$\Longrightarrow \begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

Pivots and row reduction algorithm

Example 11 (Row reduction algorithm, step 5)

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} \Longrightarrow \begin{bmatrix} 3 & -9 & 12 & -9 & 0 & -9 \\ 0 & 2 & -4 & 4 & 0 & -14 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$
$$\Longrightarrow \begin{bmatrix} 3 & -9 & 12 & -9 & 0 & -9 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$
$$\Longrightarrow \begin{bmatrix} 3 & 0 & -6 & 9 & 0 & -72 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$
$$\Longrightarrow \begin{bmatrix} 1 & 0 & -2 & 3 & 0 & -24 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

Solutions to linear systems

Theorem 1 (Existence and uniqueness of the RREF)

For each matrix A, there exists a unique RREF U that is r.e. to A.

Let A be a linear system's augmented matrix and U its RREF.

Definition 12 (Basic and free variable)

- Basic variables correspond to *U*'s pivot columns.
- **Free variables** are the other variables.

Theorem 2 (Existence and uniqueness of a system's solution)

It is consistent ⇔ an REF of A has no row of the form

$$\begin{bmatrix} 0 & \cdots & 0 & b \end{bmatrix}$$
, $b \neq 0$.

If the system is consistent, then it has a unique solution when there are no free variables and infinitely many solutions otherwise.

Solutions to linear systems cont'd

Definition 13 (Using row reduction to solve a linear system)

- 1. Write the augmented matrix.
- 2. Compute the echelon form to decide if the system is consistent.
 - If there is no solution, stop.
 - Otherwise, go to next step.
- 3. Obtain the RREF.
- 4. Write the system corresponding to the RREF.
- Rewrite each nonzero equation with its basic variable expressed in terms of its free variables.

Solutions to linear systems cont'd

Example 11 (Using row reduction to solve a linear system)

$$3x_2 -6x_3 +6x_4 +4x_5 = -5$$

$$3x_1 -7x_2 +8x_3 -5x_4 +8x_5 = 9$$

$$3x_1 -9x_2 +12x_3 -9x_4 +6x_5 = 15$$

$$\begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{bmatrix} \Longrightarrow \begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

⇒ consistent and with free variables

$$\begin{bmatrix} 1 & 0 & -2 & 3 & 0 & -24 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} \implies \begin{matrix} x_1 & = & -24 & +2x_3 & -3x_4 \\ \Rightarrow x_2 & = & -7 & +2x_3 & -2x_4 \\ x_5 & = & 4 \end{matrix}$$

Vectors in \mathbb{R}^n

Definition 14 (\mathbb{R}^n)

For $n \in \mathbb{N}_+$, \mathbb{R}^n is the set of $n \times 1$ matrices with real entries and its elements are called **vectors**.

We denote

- vectors in bold (e.g. $\mathbf{u} \in \mathbb{R}^n$),
- lacksquare their entries in light and dropping the column (e.g., $u_i \equiv \mathbf{u}_{i,1}$)

Definition 15 (Vector equality, sum and scalar multiple)

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and $r \in \mathbb{R}$, then

- $\mathbf{u} = \mathbf{v} \iff u_i = v_i \ \forall i \ (\text{vector equality}).$
- $\mathbf{z} = \mathbf{u} + \mathbf{v} \iff \mathbf{z} \in \mathbb{R}^n \& z_i = u_i + v_i \ \forall i \ (\text{vector sum}).$
- $\mathbf{z} = r\mathbf{u} \iff \mathbf{z} \in \mathbb{R}^n \& z_i = ru_i \ \forall i \ (scalar multiple).$

Vectors in \mathbb{R}^n cont'd

Example 12 (Vector sum and scalar multiple)

Let
$$\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$, and $r = 5$, then

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$$
 and $r\mathbf{u} = 5 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 10 \end{bmatrix}$

Lemma 3 (Properties of vector sums and scalar multiples)

With **0** the zero vector, $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and $c, d \in \mathbb{R}$, we have

1.
$$u + v = v + u$$

2.
$$(u + v) + w = u + (v + w)$$

3.
$$u + 0 = 0 + u = u$$

4.
$$u + (-u) = (-u) + u = 0$$

5.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{v} + c\mathbf{u}$$

$$6. (c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

7.
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

8.
$$1u = u$$

Linear combinations and spans

Definition 16 (Linear combinations)

Given $\mathbf{v}_1, \dots, \mathbf{v}_p \in \mathbb{R}^n$ and $c_1, \dots, c_p \in \mathbb{R}$, $\mathbf{y} = \sum_{i=1}^p c_i \mathbf{v}_i$ is called a **linear combination** of $\mathbf{v}_1, \dots, \mathbf{v}_p$ with **weights** c_1, \dots, c_p .

Definition 17 (Spanned subsets of \mathbb{R}^n)

The subset of \mathbb{R}^n spanned (or generated) by $\mathbf{v}_1, \dots, \mathbf{v}_p \in \mathbb{R}^n$ Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is the set of linear combinations of $\mathbf{v}_1, \dots, \mathbf{v}_p$.

Example 13 (Spanned subsets of \mathbb{R}^3)

The matrix vector product

Definition 18 (The matrix vector product)

Let A be a $m \times n$ matrix with columns $\mathbf{a}_1, \dots, \mathbf{a}_n$ and $\mathbf{x} \in \mathbb{R}^n$. $A\mathbf{x} \in \mathbb{R}^m$ is the linear combination of the columns of A with the corresponding entries of \mathbf{x} as weights, namely $A\mathbf{x} = \sum_{i=1}^n x_i \mathbf{a}_i$.

Example 14 (The matrix vector product for m = n = 2)

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, then $A\mathbf{x} = 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 2 \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \end{bmatrix}$

Theorem 3 (Properties of the matrix vector product)

Let A be a $m \times n$ matrix, $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and $c \in \mathbb{R}$, then

1.
$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$$

2.
$$A(c\mathbf{u}) = c(A\mathbf{u})$$
.

The matrix equation Ax = b

Let A be a $m \times n$ matrix with columns $\mathbf{a}_1, \dots, \mathbf{a}_n$ and $\mathbf{x} \in \mathbb{R}^n$.

Theorem 4 (The matrix equation)

Let $\mathbf{b} \in \mathbb{R}^m$, then $A\mathbf{x} = \mathbf{b}$ has the same solution set as the linear system with augmented matrix $\begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n & \mathbf{b} \end{bmatrix}$.

Note that $A\mathbf{x} = \mathbf{b}$ has a solution $\iff \mathbf{b} \in \operatorname{Span} \{\mathbf{a}_1, \dots, \mathbf{a}_n\}$.

Theorem 5 (Solutions of the matrix equation)

The following statements are equivalent:

- 1. For each $\mathbf{b} \in \mathbb{R}^m$, then $A\mathbf{x} = \mathbf{b}$ has (at least) one solution.
- 2. Each $\mathbf{b} \in \mathbb{R}^m$ is a linear combination of the columns of A.
- 3. $Span\{a_1, \dots, a_n\} = \mathbb{R}^m$.
- 4. A has a pivot position in every row.