Limit Techniques we have learnt in class:
1) Factorization, 2) Rationalization
Both techniques address the problem
(im $P(x)$ where $x \to a p(x) = 0$ and $x \to a q(x)$ lim $q(x) = 0$.
$\lim_{\chi \to a} q(x) = 0.$
We refer to this as the on indeterminate form.
K Greneral flow to evaluate limits of the form him p(x) where p and q
ave continuous at a:
1) Check if lim q(x) =0. If it is, then evaluate by plugging x = a into fraction to
get limit.
2) If lim q(x)=0, then check if lim p(x)=0.
If it is, then we have a "0" indeterminate
form. If p, q are polynomials, factor (x-a) from p and q, then evaluate limit.
usually $n=1$, but can be $n=2$ if double root.

If p or a contains sums or differences
of square roots (eg. Jx - Jz), then multiply
· · · · · · · · · · · · · · · · · · ·
numerator and denominator by its conjugate
pair (eg. Ix + 52). Simplify, then cancel
Common terms and evaluate.

f lim p(x) =0, then we have one of

(a) $\lim_{x\to a} \frac{P(x)}{q(x)} = \infty$ (sign of $\frac{P(x)}{q(x)}$ is >0 these cases:

(b) $\lim_{x\to a} \frac{P(x)}{q(x)} = -\infty$ (sign of $\frac{P(x)}{q(x)}$ is <0

(c) $\lim_{x\to a^{-}} \frac{p(x)}{q(x)}$ $\lim_{x\to a^{+}} \frac{p(x)}{q(x)}$

one of them is $-\infty$, the other $+\infty$

or vice Versa.

In either (a), (b) or (c), (b) a q(x) does not exist.

It we don't usually see (3) but occasionally i't might come up.