

Adc

Operate as **switch in triode** for $V_{DS} < V_{GS} - V_{th}$ (V_{ov}) Operate as **amplifier in saturation** for $V_{DS} > V_{GS} - V_{th}$ (V_{ov})

Intrinsic Gain

What can we do with these small signal parameters?

They allow us to see the transistor as linearized black box

Small Signal Model

Let's look inside the black box:

Also called AC model because it is valid for small variations (AC) around the DC operating point

100699

四部分 GDSB

Example of an amplifier:

Small Signal Model

Example of an amplifier:

Let's derive the small signal model for this amplifier:

Small Signal Model

A better amplifier:

Let's derive the small signal model for this amplifier:

$$\frac{v_{out}}{v_{in}} = -g_m r_{out}$$

Current source loading gives intrinsic gain.

Small Signal Model

What about the capacitances?

$$\frac{v_{out}}{v_{in}} = -g_m r_{out} \frac{1 - sC_{gd}/g_m}{1 + s(C_{gd} + C_{ds})r_{out}}$$

经过一个极点会下降 20dB

Ads 是幅度频谱的纵坐标

What about the bulk?

$$V_{bs} \rightarrow V_{th} \rightarrow I_{ds}$$

→ Can be modelled as transconductance g_{mb}

lds 与(Vgs-Vth)有关 注意 Vbs 是正是负,还是 0