- 初分布 μ ; 转移概率 $(p_{ij})_{i,j \in S}$. $P(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n) = \mu_{i_0} p_{i_0 i_1} \dots p_{i_{n-1} i_n}.$
- 不变分布: $\sum_{i} \pi_{i} p_{ij} = \pi_{j}, \forall j$. 细致平衡: $\pi_{i} p_{ij} = \pi_{j} p_{ji}, \forall i, j$.
- 常返: $P_i(\exists n \ge 1 \ \text{使得} X_n = i) = 1.$ $P_i(\Box i) = 1.$ $P_i(\exists n \ \text{使得} X_n = j) = 1, \forall i, j.$
- 击中概率: 方程, 边界条件, 求解.
- 常返 $\Leftrightarrow G_{ii} = \sum_{n=1}^{\infty} p_{ii}^{(n)} = \infty.$ $\mathbb{Z}^1, \mathbb{Z}^2$ 常返, $\mathbb{Z}^d, d \geqslant 3$ 非常返.

常返: $P_i(\sigma_i < \infty) = 1$, 其中 $\sigma_i := \inf\{n \ge 1 : X_n = i\}$.

- 正常返(定义3.4, 定理3.7): $E_i\sigma_i < \infty$. 正常返是一个互通类的性质. 互通类常返⇔不变分布存在, $\pi_i = \frac{1}{E_i\sigma_i}$. \mathbb{Z}^1 , \mathbb{Z}^2 常返, 但不是正常返.
- 遍历定理(定理3.14): 互通、正常返、 $\sum_i \pi_i |f(i)| < \infty$, 则

$$P\left(\lim_{n\to\infty}\frac{1}{n}\sum_{m=0}^{n-1}f(X_m)=\sum_i\pi_if(i)\right)=1.$$

时间平均=空间平均.

- 周期d (定义3.6, 定理3.9)(定义3.6, 定理3.9): $d := \{n : n \geq 1, p_{ii}^n > 0\}$ 的最大公约数. 常返类中状态具有相同周期.
- 非周期: d = 1. $\Rightarrow \forall i, j, \exists N_{ij} \ \notin \exists p_{ij}^{(n)} > 0, \ \forall n \geq N_{ij}$. 反例: $1 \rightleftharpoons 2$. $\pi_1 = \pi_2 = \frac{1}{2}$, $\sqsubseteq p_{11}^{(2n)} = 1, \ p_{12}^{(2n)} = 0$.
- 强遍历定理: 互通、正常返、非周期,则 $\lim_{n\to\infty} p_{ij}^{(n)} = \pi_j$, (即, $P_i(X_n = j) \to \pi_j$).
- 周期情形: $\mathbf{P}_{\varepsilon} = \varepsilon \mathbf{I} + (1 \varepsilon) \mathbf{P}$ (非周期化), $\pi \mathbf{P}_{\varepsilon} = \varepsilon \pi + (1 - \varepsilon) \pi \mathbf{P} = \pi$ (非周期化后不变分布不改变).

马氏链蒙特卡洛算法(Markov Chain Monte Carlo, MCMC).

- 目标: 模拟一个分布 π 或 $X \sim \pi$.
- 思想: 构造以π 为不变分布的马氏链转移矩阵P.
- 输入初值 $X_0 = i_0$, 迭代产生 $X_1 = i_1, \dots, X_n = i_n$.
- 模拟 π : $\pi_i \approx \frac{n_i}{n}$, $\forall i$ (遍历定理). 模拟X: $X = i_n$ (强遍历定理).
- 例: 超立方体H_N = {0,1}^N 上的均匀分布.
 P: 图上的随机游动.

$$\mathbf{P}_{\varepsilon} = \varepsilon \mathbf{I} + (1 - \varepsilon) \mathbf{P}.$$

§5.2 独立增量过程

1. 泊松过程(Poisson process, 定义2.3, 定理2.1)

 $X_t = (0,t]$ 放射出的粒子数.

- 平稳增量: $X_{t+s} X_s \sim \mathcal{P}(\lambda t) (= \lim_n B(nt, \frac{\lambda}{n})).$
- 独立增量: $X_{t_1}, X_{t_2} X_{t_1}, \cdots, X_{t_n} X_{t_{n-1}}$ 相互独立, $\forall t_1 < t_2 < \cdots < t_n$.

状态空间S 上的连续时间马氏链:

- 每个状态i: 参数为 q_i 的闹钟, "色子" p_{ij} , $j \neq i$.
- 每条有向边 \overrightarrow{ij} : 参数为 $q_{ij} = q_i p_{ij}$ 的闹钟.
- 泊松的分解(第七次课, 习题一、38), 指数的最小值(第八次课, 例4.8)
- 转移速率矩阵**Q**: $(q_{ij})_{i,j\in S}$, 其中 $q_{ii} = -q_i$.
- 转移概率矩阵 $\mathbf{P}(t)$: $p_{ij}(t) = q_{ij}t + o(t), t \to 0, j \neq i$. $|\mathbf{S}| < \infty$ 时, $\mathbf{P}(t) = e^{t\mathbf{Q}}$.
 - 一般情形, Chapman-Kolmogorov前进后退方程:

$$\frac{1}{dt}d\mathbf{P}(t) = \mathbf{Q}\mathbf{P}(t) = \mathbf{P}(t)\mathbf{Q}.$$

例如: Poisson 过程

- $S = \{0, 1, 2, \cdots\}$
- 每个状态i: 参数为 λ 的闹钟: $Y_1, Y_2, \cdots, i.i.d. \sim \text{Exp}(\lambda)$. $p_{n,n+1} = 1, n \geq 0$.
- 转移速率矩阵**Q**: $(q_{ij})_{i,j\in S}$, 其中 $q_{i(i+1)} = \lambda, q_{ii} = -\lambda$.

- 互通、常返、正常返($\sigma_i = \inf\{t > Y_1 : X_t = i\}$).
- 不变分布: $\pi \mathbf{P}(t) = \pi$, $\forall t$, $即 \pi \mathbf{Q} = 0$.
- 可逆分布: $\pi_i p_{ij}(t) = \pi_j p_{ji}(t)$, 即 $\pi_i q_{ij} = \pi_j q_{ji}$.
- 遍历定理: 假设互通、正常返、 $\sum_i \pi_i |f(i)| < \infty$.

$$\mathcal{P}\left(\lim_{T\to\infty}\frac{1}{T}\int_0^T f(X_t)dt = \sum_i \pi_i f(i)\right) = 1.$$

强遍历定理:

$$\lim_{t\to\infty} p_{ij}(t) = \pi_j.$$

2. 布朗运动(Brownian motion, 定义2.4., 定理2.5)

离散逼近:

- δ : 微观单位时间. ε : 微观单位步长. 宏观时间 $t = n\delta$ 后的位移 $B_t = \varepsilon S_n$.

布朗运动定义:

- 平稳增量: $B_{s+t} B_s \sim N(0,t)$.
- 独立增量.
- B_t 关于t 连续.

布朗运动的性质:

• B_t 关于t 不可导. $B_{t+\Delta t} - B_t = O(\sqrt{\Delta t})$.

