PROBABILITÉS CONDITIONNELLES E02C

EXERCICE N°1 Avec la définition

(Calculatrice non nécessaire mais autorisée)

Dans un univers Ω , on considère deux événements A et B.

1) On donne P(A)=0.2 , P(B)=0.4 et $P(A\cap B)=0.1$. Déterminer $P_A(B)$ et $P_B(A)$.

•
$$P_A(B) = \frac{P(A \cap B)}{P(A)} = \frac{0.1}{0.2} = 0.5$$
 ; $P_A(B) = 0.5$
• $P_B(A) = \frac{P(A \cap B)}{P(B)} = \frac{0.1}{0.4} = 0.25$; $P_B(A) = 0.25$

2) On donne $P_A(B)=0.6$, P(B)=0.25 et $P(A\cap B)=0.15$. Déterminer P(A) et $P_B(A)$.

• On a:

$$P_{A}(B) = \frac{P(A \cap B)}{P(A)}$$

$$0,6 = \frac{0,15}{P(A)}$$
D'où:

$$P(A) = \frac{0,15}{0,6} = 0,25$$
Ainsi:
$$P(A) = 0,25$$

 $P_B(A) = \frac{P(A \cap B)}{P(B)} = \frac{0.15}{0.25} = 0.6 ;$ $P_B(A) = 0.6$

3) On donne $P_B(A)=0.6$, P(B)=0.15 et P(A)=0.45 . Déterminer $P(A\cap B)$ et $P_A(B)$.

• On a:

$$P_{B}(A) = \frac{P(A \cap B)}{P(B)}$$

$$0.6 = \frac{P(A \cap B)}{0.15}$$
D'où:

 $P_A(B) = \frac{P(A \cap B)}{P(A)} = \frac{0.09}{0.45} = 0.2 ;$ $P_A(B) = 0.2$

0,15
D'où:

$$P(A \cap B) = 0,15 \times 0,6 = 0,09$$

Ainsi: $P(A \cap B) = 0,09$