Lecture 6: Time Diversification

Mark Hendricks

Autumn 2022

FINM 36700: Portfolio Management

Notation

notation	description	
r_t	,	return rate, $(t-1 \ {\sf to} \ t)$
$r_{t,t+h}$	$\left(\prod_{\tau=1}^h R_{t+\tau}\right)-1$	cumulative return rate, from t to $t+h$
\mathtt{r}_t	$\log (1+r_t)$	\log return from $t-1$ to t
$\mathtt{r}_{t,t+h}$	$\log\left(1+r_{t,t+h}\right)$	log cumulative return from t to $t + h$.

 Hendricks,
 Autumn 2022
 FINM 36700: Lecture 6
 2/16

Cumulative return risk and autocorrelation

Log cumulative returns are simply a portfolio of single-period returns.

▶ Define μ and σ^2 as

$$\mathbb{E}\left[\mathbf{r}_{t,t+1}\right] = \mu, \quad \text{var}\left[\mathbf{r}_{t,t+1}\right] = \sigma^2$$

► For the *h*-period log return,

$$\mathbb{E}\left[\mathbf{r}_{t,t+h}\right] = h\mu$$

$$\operatorname{var}\left[\mathbf{r}_{t,t+h}\right] = \sum_{i=1}^{h} \sum_{i=1}^{h} \operatorname{cov}\left[\mathbf{r}_{t+i}, \mathbf{r}_{t+j}\right]$$

 Hendricks,
 Autumn 2022
 FINM 36700: Lecture 6
 3/16

Autocorrelation models

As seen in the previous slide,

▶ The variance of cumulative returns, $r_{t,t+h}$, depends critically on the auto-covariance of the return series, denoted as

$$cov[r_t, r_{t+i}], or \sigma_{t,t+i}$$

- ▶ Specifying a form for the autocorrelations, corr $[r_t, r_{t+i}]$, is equivalent.
- A model of autocorrelations uniquely specifies a linear time series model.

AR(1) models

Autoregressive (AR) models are among the most popular in time-series statistics.

Consider the AR(1) model,

$$cov[\mathbf{r}_t, \mathbf{r}_{t+i}] = \rho^i \sigma^2$$
$$corr[\mathbf{r}_t, \mathbf{r}_{t+i}] = \rho^i$$

With AR models, covariances are easy to scale over time.

Diversification and cumulative returns

Mean returns scale linearly in horizon h,

$$\mathbb{E}\left[\mathtt{r}_{t,t+h}\right]=h\mu$$

But scaling of variance depends on correlation,

- ▶ $\rho = 1$. Std.Dev. is linear in cumulation: std $[r_{t,t+h}] = h\sigma$
- ho = 0. Variance is linear in cumulation: $var[r_{t,t+h}] = h\sigma^2$
- ▶ $\rho = -1$. The return is riskless: $var[r_{t,t+h}] = 0$

 Hendricks,
 Autumn 2022
 FINM 36700: Lecture 6
 6/16

Example: Riskless bond

At time t=0, consider a bond with riskless payout at t=10. The yield of the bond at t=0 is 5%.

- ▶ The 10-year cumulative return, $\mathbf{r}_{0,10}$ is riskless, and equals $5\% \times 10$.
- At any intermediate time, (t, such that 0 < t < 10,) the bond price is uncertain.
- ▶ Thus, the intermediate returns, $r_{0,t}$ and $r_{t,10}$ are uncertain.
- However, $r_{0,10} = r_{0,t} + r_{t,10}$.
- ▶ So if $\mathbf{r}_{0,t}$ is unexpectedly high, then $\mathbf{r}_{t,10}$ must be relatively low, such that the riskless return $\mathbf{r}_{0,10}$ ends up at $5\% \times 10$.

 Hendricks,
 Autumn 2022
 FINM 36700: Lecture 6
 7/1

Figure: A ten-year risk-free bond has a 10-year return with perfect mean reversion. Source: Cochrane (2011).

Negative serial correlation in bonds

Thus, riskless bonds should have negatively autocorrelated returns:

$$\operatorname{corr}(\mathbf{r}_t, \mathbf{r}_{t+1}) < 0$$

And if the bond matures at T, then for any 0 < h < T - t,

$$\operatorname{corr}\left(\mathtt{r}_{t,t+h},\mathtt{r}_{t+h,T}\right)=-1$$

Default-free bonds are safer in the long-run, with $var[r_{t,T}] = 0$.

 Hendricks,
 Autumn 2022
 FINM 36700: Lecture 6
 9/16

Cumulative Sharpe ratios in AR(1) model

Consider again the cumulative return, $r_{t,t+h}$.

$$ightharpoonup$$
 For $ho=1$,

$$SR(r_{t,t+h}) = SR(r_t)$$

lacksquare For |
ho|<1 ,

$$SR(r_{t,t+h}) > SR(r_t)$$

ightharpoonup For ho=0 ,

$$SR(\mathbf{r}_{t,t+h}) = \sqrt{h} SR(\mathbf{r}_t)$$

Mean annualized returns

The annualized mean (log) return on the h-period investment,

$$\mathbf{r}_{t,t+h}$$
 is

$$\frac{\mathbf{r}_{t,t+h}}{h} = \frac{\sum_{i=1}^{h} \mathbf{r}_{t+i}}{h}$$

This is just the usual sample estimate of the mean of one-period returns, \bar{r} , based on a sample-size of h!

For any
$$ho$$
, For $ho=0$,
$$\mathbb{E}\left[\vec{r} \right] = \mu \qquad \qquad \text{var}\left[\vec{r} \right] = \frac{\sigma^2}{h}$$

- ▶ So as the investment horizons gets large, the mean annualized return, \bar{r} , converges to the true annual mean return, μ .
- Even if $\rho \neq 0$ we can still conclude that $\bar{r} \rightarrow \mu$. (Law of large numbers still holds.)

Time diversification

Time-diversification refers to this idea that mean annualized return becomes riskless for large investment horizons.

- ► True, as horizon increases the variance of the annualized return goes to zero.
- ▶ However, the variance of the cumulative return, $\mathbf{r}_{t,t+h}$ is still growing.

So-called time diversification depends on the risk one is measuring.

Evidence: Are equity returns serially correlated?

Table: Auto-regression estimates for market returns, risk-free rate, and excess market returns. Regression estimates of $y_{t+1} = a + \rho y_t + \epsilon_{t+1}$

	Monthly				Annual		
$y = \dots$	r ^m	r^f	$\widetilde{r}^{\scriptscriptstyle m}$	r ^m	r^{f}	$\tilde{r}^{\scriptscriptstyle m}$	
$\hat{ ho}$	0.11	0.89	0.12	0.01	0.92	0.02	
$t(\hat{ ho})$ R^2	2.02	30.38	2.05	0.09	13.31	0.15	
R^2	0.01	0.80	0.01	0.00	0.83	0.00	

Source: CRSP value-weighted equity markets, 1927-2010. CRSP 3-month U.S. treasury bill. GMM standard errors.

Serial correlation of equities

- ► The table shows that empirically the serial correlation of excess equity returns is small.
- ► Not surprisingly, the serial correlation of the risk-free rate is very high.
- ▶ The serial correlation is much smaller for annual returns.

Does estimating the autocorrelation of longer-horizon returns tell a different story?

Evidence: Cumulative equity returns

Table: Std.dev., Sharpe-ratios, and serial correlation, of excess cumulative returns.

	Horizon h (years)							
			5					
$\sigma\left(\tilde{r}_{t,t+h}^{m}\right)/\sqrt{h}$	0.21	0.24	0.28	0.26	0.32			
SR/\sqrt{h}	0.36	0.36	0.32	0.34	0.30			
$\hat{ ho}$	0.01	-0.29	-0.30	0.40	0.06			

- $\tilde{r}_{t,t+h}^{m}$ denotes the *h*-year excess return of the CRSP U.S. equity index over the 90-day t-bill.
- $\hat{
 ho}$ is the serial correlation of long-horizon excess returns estimated by regressing $\tilde{r}_{t,t+h}^m$ on $\tilde{r}_{t-h,t}^m$.

Long-run uncertainty

- ▶ The results in the table above show that normalized by \sqrt{h} , the Sharpe ratios remain almost constant across return horizon, or slightly decrease.
- ► This would be consistent with market equity excess returns having small serial correlation.
- Unfortunately, the basic estimates in the previous table are not statistically conclusive.
- Not surprising, since there are not a lot of long-horizon data points available.

