Universidade Federal De Campina Grande Departamento De Engenharia Elétrica Laboratório De Arquitetura De Sistemas Digitais – LASD

Prof. Rafael B. C. Lima

Aluno:	
Matrícula:	Data:

Sprint 9 – Programação em Assembly – Processador MIPS

Descrição geral do problema: Agora que o hardware do seu processador MIPS já está pronto, você pode programa-lo, em assembly, como qualquer outro microcontrolador. Escreva códigos, em assembly, para resolver os problemas propostos e em seguida rode-os no seu próprio processador MIPS.

Requisitos mínimos:

Abra o projeto da Sprint8 e edite-o para incluir as funcionalidades dessa sprint. **Obs: "File > Open Project"** e NÃO "File > Open".

- 1. Assumindo que o hardware do seu processador já está pronto, alimente-o com um clock de <mark>1KHz</mark>. Como a CPU é de ciclo único, isso significa que cada instrução levará <mark>1ms</mark> para ser executada.
- 2. Implemente uma rotina de delay de 1 segundo
 - Escreva um trecho de código, em assembly, que não execute nada importante durante 1 segundo;
 - Conecte o pino menos significativo da saída paralela no LEDR[0];
 - Para testar sua rotina de delay, escreva um código em assembly que faça esse LED piscar a uma frequência de 0,5Hz.
- 3. Assumindo que as chaves SW[7:0] estão conectadas na entrada paralela do seu processador, modifique o programa do item 2 para que:
 - O LED pisque a 0,5Hz quando SW[0] for um;
 - O LED apague quando SW[0] for zero.

Relembrando o conjunto de instruções suportadas pela CPU

Instrução	Descrição	Algoritmo
ADD \$X, \$Y, \$Z	Adicionar	\$X = \$Y + \$Z
SUB \$X, \$Y, \$Z	Subtrair	\$X = \$Y - \$Z
AND \$X, \$Y, \$Z	AND Bit a bit	\$X = \$Y & \$Z
OR \$X, \$Y, \$Z	OR Bit a bit	\$X = \$Y \$Z
SLT \$X, \$Y, \$Z	Menor que	\$X = 1 se \$Y < \$Z e 0 c.c.
LW \$X, i(\$Y)	Carregar da memória	\$X <= Cont. do end. (\$Y+ i)
SW \$X, i(\$Y)	Armazenar na memória	End. (\$Y+ i) <= \$X
BEQ \$X, \$Y, i	Desviar se igual	Se \$X == \$Y, PC = PC + 1 + i
ADDi \$X, \$Y, i	Adicionar Imediato	\$X = \$Y + i
Ji	Desvio incondicional	PC = i

Tabela 1 – Conjunto de instruções MIPS suportadas pela CPU do LASD

Desafio (Valendo +0,2 na média geral)

 Assumindo que a saída paralela está diretamente conectada no display HEXO (sem decodificador), escreva um código em assembly que mostre, no display, um contador regressivo de 9 a zero, mudando de dígito a cada 1 segundo.