级数习题作业解答 3(黄永忠提供)

1.3.1. 幂级数 $\sum a_n(x+3)^n$ 在在 x=-5 处发散, x=0 处收敛, 这可能吗? 若该幂级数在 x=-1 处条件收敛, 求其收敛区间.

答: 不可能, 因为幂级数 $\sum a_n(x+3)^n$ 在 x=-5 处发散即 $\sum a_nx^n$ 在 x=-2 处发散, 因此对于任何 x 满足 |x|>2 都有级数 $\sum a_nx^n$ 发散. 又因为幂级数 $\sum a_n(x+3)^n$ 在 x=0 处收敛, 即 $\sum a_nx^n$ 在 x=3 处收敛, 因此对于任何 x 满足 |x|<3 都有级数 $\sum a_nx^n$ 收敛. 这与前面结论矛盾, 因此幂级数 $\sum a_n(x+3)^n$ 在在 x=-5 处发散, x=0 处收敛是不可能的.

若该幂级数在 x = -1 处条件收敛即 $\sum a_n x^n$ 在 x = 2 处条件收敛, x = 2 是 $\sum a_n x^n$ 的收敛端点 (因为收敛区间内的点是绝对收敛点), 因此所求的收敛区间为 (-5,-1).

1.3.2. 求下列幂级数的收敛半径与收敛域:

$$(2) \sum \frac{n^2}{n!} x^n; \quad (4) \sum \frac{1}{2^n} x^{n^2}; \quad (6) \sum \frac{3^n + (-2)^n}{n} (2x+1)^n; \quad (8) \sum n! \left(\frac{x^2}{n}\right)^n.$$

解 (2) 由于
$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{(n+1)^2}{(n+1)!} \frac{n!}{n^2} = \frac{1}{n+1} (\frac{n+1}{n})^2 \to 0 (n \to \infty),$$

所以幂级数的收敛半径 $R = \infty$, 收敛域为 $(-\infty, +\infty)$.

(4) 对于幂级数
$$\sum \left| \frac{x^{n^2}}{2^n} \right|$$
, 由于

$$\lim_{n \to \infty} \sqrt[n]{\left| \frac{x^{n^2}}{2^n} \right|} = \lim_{n \to \infty} \frac{|x^n|}{2} = \begin{cases} 0 & |x| < 1\\ 1/2, & |x| = 1,\\ +\infty & |x| > 1 \end{cases}$$

因此,幂级数的收敛半径 R=1. 因为 |x|=1 时原级数为 $\sum \frac{1}{2^n}$, 收敛, 所以该幂级数的收敛域为 [-1,1].

(6) 设
$$u_n = \frac{3^n + (-2)^n}{n}$$
, 由于 $\lim_{n \to \infty} \sqrt[n]{|u_n|} = 3$, 故收敛半径 $R = \frac{1}{3}$. 当 $2x + 1 = -\frac{1}{3}$, 即 $x = -\frac{2}{3}$ 时,幂级数为级数 $\sum \frac{3^n + (-2)^n}{n} \frac{1}{3^n} (-1)^n = \sum \left(\frac{(-1)^n}{n} + \frac{1}{n} \cdot (\frac{2}{3})^n\right)$,是收敛的;当 $2x + 1 = \frac{1}{3}$,即 $x = -\frac{1}{3}$ 时,幂级数为级数 $\sum \frac{3^n + (-2)^n}{n} \frac{1}{3^n} = \sum \left(\frac{1}{n} + \frac{(-1)^n}{n} \cdot (\frac{2}{3})^n\right)$,是发散的. 因此该幂级数的收敛域为 $\left[-\frac{2}{3}, -\frac{1}{3}\right)$.

(8) 由于 $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}\left(\frac{n}{n+1}\right)^n=\frac{1}{e}$, 所以幂级数的收敛半径满足 $R^2=e$, 即 $R=\sqrt{e}$. 又因为当 $x=\pm\sqrt{e}$ 时幂级数为级数 $\sum n!\left(\frac{e}{n}\right)^n$, 通项不以 0 为极限, 级数发散. 故幂级数的收敛域为 $(-\sqrt{e},\sqrt{e})$.

1.3.3. 求下列函数的 Maclaurin 展开式:

(2)
$$\sin^3 x$$
; (6) $(1+x)e^{-x}$; (7) $\frac{x}{1+x-2x^2}$; (8) $\ln(x+\sqrt{1+x^2})$; (10) $\int_0^x \cos t^2 dt$.

解 (2) 由于
$$\sin x = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2n-1}}{(2n-1)!}, x \in (-\infty, \infty),$$
 所以

$$\sin^3 x = \frac{1}{4} (3\sin x - \sin 3x)$$

$$= \frac{3}{4} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2n-1}}{(2n-1)!} - \frac{1}{4} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} (3x)^{2n-1}}{(2n-1)!}$$

$$= \frac{1}{4} \sum_{n=2}^{\infty} \frac{(-1)^n (3^{2n-1} - 3)}{(2n-1)!} x^{2n-1}, \quad x \in (-\infty, \infty).$$

(6) 由于
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
,所以 $e^{-x} = \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!}$. 故

$$(1+x)e^{-x} = \sum_{n=0}^{\infty} \frac{(-1)^n x^n (1+x)}{n!} = 1 + \sum_{n=1 \text{ or } 2}^{\infty} (-1)^{n-1} \left[\frac{1}{(n-1)!} - \frac{1}{n!} \right] x^n, \quad |x| < \infty.$$

(7) 由于
$$\frac{x}{1+x-2x^2} = \frac{1}{3} \left(\frac{1}{1-x} - \frac{1}{1+2x} \right)$$
 且 $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, |x| < 1, \frac{1}{1+2x} = \sum_{n=0}^{\infty} x^n, |x| < 1$

$$\sum_{n=0}^{\infty} (-1)^n (2x)^n, |x| < \frac{1}{2}, \text{ fill } \frac{x}{1+x-2x^2} = \sum_{n=0}^{\infty} \frac{1-(-2)^n}{3} x^n, |x| < \frac{1}{2}.$$

(8) 由于
$$\frac{1}{\sqrt{1+t^2}} = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{(2n-1)!!}{(2n)!!} t^{2n}, \ t \in [-1,1],$$
 所以

$$\ln(x+\sqrt{1+x^2}) = \int_0^x \frac{1}{\sqrt{1+t^2}} dt$$

$$= \int_0^x \left[1 + \sum_{n=1}^\infty (-1)^n \frac{(2n-1)!!}{(2n)!!} t^{2n} \right] dt$$

$$= x + \sum_{n=1}^\infty (-1)^n \frac{(2n-1)!!}{(2n)!!(2n+1)} x^{2n+1}, \quad x \in [-1,1].$$

(10) 由于
$$\cos t^2 = \sum_{n=0}^{\infty} \frac{(-1)^n (t^2)^{2n}}{(2n)!} = \sum_{n=0}^{\infty} \frac{(-1)^n t^{4n}}{(2n)!}, t \in (-\infty, \infty),$$
所以

$$\int_0^x \cos t^2 dt = \int_0^x \sum_{n=0}^\infty \frac{(-1)^n t^{4n}}{(2n)!} dt = \sum_{n=0}^\infty \frac{(-1)^n x^{4n+1}}{(2n)! (4n+1)}, \qquad x \in (-\infty, \infty).$$

1.3.6. 求下列幂级数的和函数:

(2)
$$\sum_{n=1}^{\infty} (-1)^n n^2 x^n$$
; (4) $\sum_{n=1}^{\infty} (2n+1)x^n$; (6) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n}}{(2n-1)3^{2n-1}}$.

解 (2) 由例 1.3.14 后的说明可知 $\sum_{n=1}^{\infty} n^2 x^n = \frac{x(1+x)}{(1-x)^3}$, |x| < 1, 故 $\sum_{n=1}^{\infty} (-1)^n n^2 x^n = \frac{x(x-1)}{(1+x)^3}$, |x| < 1.

(4)
$$S(x) = 2\sum_{n=1}^{\infty} nx^n + \sum_{n=1}^{\infty} x^n = \frac{2x}{(1-x)^2} + \frac{x}{1-x} = \frac{x(3-x)}{(1-x)^2}, |x| < 1.$$

另解: 令
$$S(x) = \sum_{n=1}^{\infty} (2n+1)x^n$$
. 由于 $\sum_{n=1}^{\infty} (2n+1)x^n = \sum_{n=1}^{\infty} 2(n+1)x^n - \sum_{n=1}^{\infty} x^n$,

可设
$$g(x) = \sum_{n=1}^{\infty} 2(n+1)x^n, h(x) = \sum_{n=1}^{\infty} x^n$$
, 则将 $g(x)$ 积分可得 $\int_0^x g(x)dx =$

$$2\sum_{n=1}^{\infty}x^{n+1}=\frac{2x^2}{1-x},$$
 所以 $g(x)=\frac{2x(2-x)}{(1-x)^2}.$ 而 $h(x)=\sum_{n=1}^{\infty}x^n=\frac{x}{1-x},$ 故 $S(x)=\frac{x}{1-x}$

$$\sum_{n=1}^{\infty} (2n+1)x^n = \frac{x(3-x)}{(1-x)^2}.$$

(6)
$$\Leftrightarrow S(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n}}{(2n-1)3^{2n-1}} = x \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)3^{2n-1}} = xg(x), \text{ M } xg'(x) = xg(x)$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{3^{2n-1}} = \frac{x}{3} \sum_{n=1}^{\infty} \left(-\frac{x^2}{9} \right)^{n-1} = \frac{x}{3} \frac{1}{1 + \frac{x^2}{9}} = \frac{3x}{9 + x^2}. \text{ MU } g'(x) = \frac{3}{9 + x^2},$$

于是
$$g(x) = \int_0^x g'(x)dx + g(0) = \arctan\frac{x}{3}$$
. 故 $S(x) = x \arctan\frac{x}{3}$, $|x| \le 3$.

1.3.7. 设在 (-R,R) 内有 $f(x) = \sum_{n=0}^{\infty} a_n x^n$. 证明: 若 f 为奇函数, 则 $a_{2n} = 0$; 若 f 为偶函数, 则 $a_{2n+1} = 0$, 其中 $n \in \mathbb{N}$.

证 由于
$$f(x) = \sum_{n=0}^{\infty} a_n x^n, x \in (-R, R)$$
,所以 $f(-x) = \sum_{n=0}^{\infty} (-1)^n a_n x^n$. 当 f 为 奇函数时,应有 $a_n + (-1)^n a_n = 0 (n = 1, 2, 3...)$. 而当且仅当 $n = 2k - 1 (k = 1, 2, 3...)$

 $1,2,\ldots$) 时, 才满足 $1+(-1)^n=0$, 故必有 $a_{2n}=0$. 当 f 为偶函数时, 应有 $a_n-(-1)^na_n=0$ $(n=1,2,3\ldots)$. 而当且仅当 $n=2k(k=1,2,\ldots)$ 时, 才满足 $1-(-1)^n=0$, 故必有 $a_{2n+1}=0$.

1.3.8. 利用幂级数求下列数项级数的和: (2) $\sum_{n=0}^{\infty} (-1)^n (n^2 - n + 1) 2^{-n}$.

解 (2) 设
$$S(x) = \sum_{n=0}^{\infty} (-1)^n (n^2 - n + 1) x^n$$
, 则有 $S(x) = \sum_{n=0}^{\infty} (-1)^n n^2 x^n - \sum_{n=0}^{\infty} (-1)^n n x^n + \sum_{n=0}^{\infty} (-1)^n x^n = \frac{x(x-1)}{(1+x)^3} - \frac{x}{(1+x)^2} + \frac{1}{1+x} = \frac{x^2+1}{(1+x)^3}$. 当 $x = \frac{1}{2}$ 时,该幂级数 即为数项级数 $\sum_{n=0}^{\infty} (-1)^n (n^2 - n + 1) 2^{-n}$,故 $\sum_{n=0}^{\infty} (-1)^n (n^2 - n + 1) 2^{-n} = \frac{10}{27}$.

(1) 证明
$$f(x)$$
 在 $(-1/3, 1/3)$ 内连续; (2) 计算 $\int_0^{1/8} f(x) dx$.

解 (1) 因为 $\lim_{n\to\infty} \sqrt[n]{n^{3n-1}} = 3$, 所以其收敛半径为 $\frac{1}{3}$. 因此级数在 (-1/3,1/3) 内闭一致收敛, 故 f(x) 在 (-1/3,1/3) 内连续。

(2) 由于此幂级数在 $[0,\frac{1}{8}]$ 上一致收敛, 所以

$$\int_0^{1/8} f(x) dx = \sum_{n=1}^{\infty} \int_0^{\frac{1}{8}} nx^{n-1} 3^{n-1} dx = \frac{1}{5}.$$

1.3.13. 设 $C(\alpha)$ 为 $(1+x)^{\alpha}$ 在 x=0 处的幂级数展开式中 x^{2010} 的系数, 求

$$I = \int_0^1 C(-y-1) \left(\frac{1}{y+1} + \frac{1}{y+2} + \frac{1}{y+3} + \dots + \frac{1}{y+2010} \right) dy.$$

解 因为

$$C(-y-1) = \frac{(-y-1)(-y-2)\cdots(-y-2010)}{2010!} = \frac{(y+1)(y+2)\cdots(y+2010)}{2010!},$$

所以被积函数等于 $\frac{d}{dy} \left(\frac{(y+1)(y+2)\cdots(y+2010)}{2010!} \right)$. 于是,

$$I = \frac{(y+1)(y+2)\cdots(y+2010)}{2010!}\Big|_0^1 = 2011 - 1 = 2010.$$

- 1.3.17. 证明: (1) 若级数 $\sum_{n=0}^{\infty} a_n$ 收敛, 则 $f(x) = \sum_{n=0}^{\infty} a_n x^n$ 在 [0,1] 上一致收敛; (2) 若级数 $\sum_{n=0}^{\infty} a_n$ 收敛于 S, 则 $\lim_{x\to 1^-} \sum_{n=0}^{\infty} a_n x^n = S$.
- 证 (1) 因为 $|x^n| \le 1$ $(x \in [0,1])$ 且对每个 $x \in [0,1]$, $\{x^n\}$ 关于 n 单调, 所以由 Abel 一致收敛判别法知 $\sum_{n=0}^{\infty} a_n x^n$ 在 [0,1] 上一致收敛.
 - (2) 由连续性定理即得结论.
- 1.3.19. 设 $\sum a_n$ 为级数, S_n 为其部分和, 且极限 $\lim_{n\to\infty}\frac{a_n}{a_{n+1}}$ 存在. 若 $S_n\to +\infty$, $a_n/S_n\to 0$ $(n\to\infty)$, 求级数 $\sum a_nx^n$ 的收敛半径. (提示: 利用 Stolz 公式.)
- 解 因为 $S_n \to \infty$, 且极限 $\lim_{n \to \infty} \frac{a_n}{a_{n+1}}$ 存在, 所以由 Stolz 公式可得 $\lim_{n \to \infty} \frac{a_n}{S_n} = \lim_{n \to \infty} \frac{a_n a_{n-1}}{S_n S_{n-1}} = \lim_{n \to \infty} (1 \frac{a_{n-1}}{a_n}) = 0.$ 故 $\lim_{n \to \infty} \frac{a_{n-1}}{a_n} = 1$, 级数 $\sum a_n x^n$ 的收敛半径为 1.