Lecture 10

Image Alignment and Homography

Multimedia System

Spring 2020

Image alignment

A look into the past

Leningrad during the blockade

http://komen-dant.livejournal.com/345684.html

Images from Mars

Microsoft Office Lens

Smartphone app for image alignment

Vehicle around view

Image alignment

- Two families of approaches:
 - Direct (pixel-based) alignment
 - Search for alignment where most pixels agree
 - Feature-based alignment
 - Search for alignment where extracted features agree
 - Can be verified using pixel-based alignment

Alignment as fitting

Example: Fitting a line model to points in 2D space

 Alignment: fitting a model to a transformation betwe en pairs of features (matches) in two images

Find transformation *T* that minimizes

$$\sum_{i}$$
 residual $(T(x_i), x_i')$

2D transformation models

Similarity

 (translation,
 scale, rotation)

Affine

Projective (homography)

Let's start with affine transformations

- Simple fitting procedure (linear least squares)
- Approximates viewpoint changes for roughly planar objects and roughly orthographic cameras

Can be used to initialize fitting for more complex

models

Fitting an affine transformation

 Assume we know the correspondences, how do we get the transformation?

$$\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$

$$\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} \qquad \begin{bmatrix} x_i & y_i & 0 & 0 & 1 & 0 \\ 0 & 0 & x_i & y_i & 0 & 1 \\ & & \cdots & & \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ t_1 \end{bmatrix} = \begin{bmatrix} \cdots \\ x_i' \\ y_i' \\ \cdots \end{bmatrix}$$

Fitting an affine transformation

$$\begin{bmatrix} x_{i} & y_{i} & 0 & 0 & 1 & 0 \\ 0 & 0 & x_{i} & y_{i} & 0 & 1 \end{bmatrix} \begin{bmatrix} m_{1} \\ m_{2} \\ m_{3} \\ m_{4} \\ t_{1} \\ t_{2} \end{bmatrix} = \begin{bmatrix} \cdots \\ x'_{i} \\ y'_{i} \\ \cdots \end{bmatrix}$$

- Linear system with six unknowns
- Each match gives us two linearly independent equations: need at least three to solve for the tr ansformation parameters

Fitting a plane projective transformation

 Homography: plane projective transformation (transformation taking a quad to another arbitrary quad)

Homography

The transformation between two views of a planar surface

The transformation between images from two cameras that share the same center

Application: Panorama stitching

Source: Hartley & Zisserman

Fitting a homography

Recall: homogeneous coordinates

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Converting *to* homogeneous image coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)$$

Converting *from* homogeneous image coordinates

Fitting a homography

Recall: homogeneous coordinates

$$(x,y) \Rightarrow \left[egin{array}{c} x \ y \ 1 \end{array}
ight]$$

Converting to homogeneous image coordinates

Converting from homogeneous image coordinates

• Equation for homography:

$$\lambda \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Fitting a homography

• Equation for homography:

$$\lambda \begin{bmatrix} x_i' \\ y_i' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} \qquad \mathbf{x}_i' \times \mathbf{H} \mathbf{x}_i = 0$$

$$\lambda \mathbf{x}_i' = \mathbf{H} \mathbf{x}_i$$
$$\mathbf{x}_i' \times \mathbf{H} \mathbf{x}_i = 0$$

$$\begin{bmatrix} x_i' \\ y_i' \\ 1 \end{bmatrix} \times \begin{bmatrix} \mathbf{h}_1^T \mathbf{x}_i \\ \mathbf{h}_2^T \mathbf{x}_i \\ \mathbf{h}_3^T \mathbf{x}_i \end{bmatrix} = \begin{bmatrix} y_i' \mathbf{h}_3^T \mathbf{x}_i - \mathbf{h}_2^T \mathbf{x}_i \\ \mathbf{h}_1^T \mathbf{x}_i - x_i' \mathbf{h}_3^T \mathbf{x}_i \\ x_i' \mathbf{h}_2^T \mathbf{x}_i - y_i' \mathbf{h}_1^T \mathbf{x}_i \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{0}^T & -\mathbf{x}_i^T & y_i' \mathbf{x}_i^T \\ \mathbf{x}_i^T & \mathbf{0}^T & -x_i' \mathbf{x}_i^T \\ -y_i' \mathbf{x}_i^T & x_i' \mathbf{x}_i^T & \mathbf{0}^T \end{bmatrix} \begin{pmatrix} \mathbf{h}_1 \\ \mathbf{h}_2 \\ \mathbf{h}_3 \end{pmatrix} = 0$$

3 equations, only 2 linearly independent

Direct linear transform

$$\begin{bmatrix} \mathbf{0}^T & \mathbf{x}_1^T & -y_1' \, \mathbf{x}_1^T \\ \mathbf{x}_1^T & \mathbf{0}^T & -x_1' \, \mathbf{x}_1^T \\ \cdots & \cdots & \cdots \\ \mathbf{0}^T & \mathbf{x}_n^T & -y_n' \, \mathbf{x}_n^T \\ \mathbf{x}_n^T & \mathbf{0}^T & -x_n' \, \mathbf{x}_n^T \end{bmatrix} = \mathbf{0} \qquad \mathbf{A} \, \mathbf{h} = \mathbf{0}$$

- H has 8 degrees of freedom (9 parameters, but scale is arbitrary)
- One match gives us two linearly independent equations
- Four matches needed for a minimal solution (null space of 8x9 matrix)
- More than four: homogeneous least squares

Application to ADAS

Lane Detection & Tracking

- Lane detection draw boundaries of a lane in a single frame
- Lane tracking uses temporal coherence to track boundaries in a video sequence

Lane Detection

Lane Tracking

Bird-eye view

- A technology that assists drivers to park more easily by better understanding the vehicle's surroundings through a virtual bird's-eye view from above the vehicle.
- Same names: surround view, around view

Bird-eye view

- Transforming n-different views to a common bird-eye view.
 - From n-different views of the ground plane
 - A common view: bird-eye view of the ground plane

AVM의 컴퓨터비전 이론

- 지상 평면위의 직선은 카메라 영상 에서도 항상 직선 (렌즈왜곡이 없 다고 가정)
- 지상 평면위의 사각형은 카메라 영 상에서도 항상 사각형 (모양은 변 형)
- 지상의 2차원 평면과 카메라의 2 차원 영상 사이의 관계는 2차원 호 모그래피 변환 (Homography)
 - H =

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$$

지상평면과 카메라 사이의 2D변환을 알고 있다면, 모든 카메라에서
 AVM 가상 카메라로 2차원 변환관계를 구할 수 있음

Bird-eye view

2D 컴퓨터비전의 한계

▶ 지상으로부터 높이가 있는 물체의 3차원 정보 획득 불가능

