TUTORIAL 3: Logic Gates Overview

		1.	For a 2-input NOR gate functioning as a negative-AND gate, output X is HIGH if both
			inputs A and B are HIGH. A- A- A-
			FALSE $B=1$ $\overline{AB}=0$ (LOW) TRUE/FALSE
		2.	A two-input XNOR gate will produce a HIGH output when both inputs are equal.
A			TRUE $X = A \cup B$ $A = 0$, $B = 0$ $A = 1$, $B = 1$ $= AB + \overline{AB} X = 0 + 1 = 1 \text{ (HIGH)} X = 1 + 0 = 1 \text{ (HIGH)} TRUE / FALSE$
inverted	٠	3.	
AB	N D		gate. TRUE NOR GATC, X= A+B = A+B (De Morgan's)
1 0	0		with inverter, $X = \overline{A} + \overline{B}$ = AND Gate TRUE/FALSE
0 0	0	4.	A 2-input NAND gate and a 2-input NOR gate produces the same output when both inputs are HIGH.
AND	•		IKUE ABX ABX
AB	X	-	0 TRUE / FALSE
0 0	0	5.	The gate produces a HIGH output when all inputs are LOW.
0 1	0		(a) NOR (b) X
1 0	V		(L)NAND
1 1			
			c. XOR 0 0 0
			d. AND 0 0 0
		6.	A 2-input logic gate X produces a HIGH output when input A is LOW and input B is
			ringri. Which of the following is NOT logic gate X?
			a. OR O I I
			(b) NOR () (L() W)
			c. NAND ()
			d. XOR
		7.	Complete the following questions:
			 Draw the logic symbol of an XOR gate.
			 Give appropriate labels to the inputs and output.
			iii) Write its truth table.
			i) XOR $\frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0}$
			$A \longrightarrow X \longrightarrow $

8. Write the Boolean expressions of output P and Q.

9. Complete the timing diagram based on the given input for the following logic diagram.

- 11. Given an AND gate with 3 inputs, what should the input values be to get an output of 1 (HIGH)? All inputs are 1(HIGH)
- 12. Given an OR gate with 3 inputs, what should the input values be to get an output of 1 (HIGH)?

At least one input is 1 (HIGH)

13. Fill in the table below, follow the example given.

Gate	Input			Output	
	A	В	С		
AND	1	0	1	X=1+0+1=0	
OR	0	1	0	X=0+1+0= (
AND	1	1	1	X= + + =	
OR	0	0	0	X = A + B + C = 0 + 0 + 0 = 0	
NOR	1	1	1	X=(+1+1=0	
AND	1	0	0	X= +0+0=0	

- 14. Given the input waveform(s) below, show the appropriate output waveform, X, with a timing diagram.
 - i) **XNOR**
 - ii) **XOR**
 - **NAND** iii)

- 15. Identify the following devices according to logic function:
 - 74LS04 Hex Inverter. i)
 - ii)
 - 74ALS10 Triple 3-input NAND Gate.
 74HC00 Quad 2-input NAND Gate. iii)
- 16. Given the logic gates below, write the logic expression for it.

$$r = \chi + \chi + \chi$$

$$\mathbf{x} = \mathbf{x} = \mathbf{x}$$