Universidad Autónoma de Madrid

Álgebra Lineal

Examen del 18 de octubre de 2019

Apellidos, Nombre:

- **1.** Sea $f: V \to W$ una aplicación lineal entre espacios vectoriales sobre K de dimensiones n y m respectivamente. Sean $v_1, \dots, v_k \in V$ vectores linealmente independientes (luego distintos dos a dos).
- a) (1 punto). Explica por qué tiene que ser $k \leq n$.
- b) (1 punto). Si $f(v_1), \dots, f(v_k) \in W$ también son linealmente independientes ¿es entonces cierto que f ha de ser necesariamente inyectiva? ¿Y si k = n? Razona la respuesta.
- 2. Consideremos la aplicación lineal $F: \mathbb{M}_{2\times 2}(\mathbb{R}) \to \mathbb{R}^4$ definida por

$$F\left(\begin{array}{cc} x & y \\ z & t \end{array}\right) = \left(z \, , \, -x-y+4t \, , \, x+y+3z-4t \, , \, x+y+2z-4t \, \right).$$

a) (1,5 puntos). Halla la matriz A de F respecto de la base

$$\mathcal{B}_1 = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\} \text{ de } \mathbb{M}_{2 \times 2}(\mathbb{R})$$

y la base

$$\mathcal{B}_2 = \{ (1,0,0,0), (1,1,0,0), (0,0,1,1), (0,0,1,0) \} \text{ de } \mathbb{R}^4.$$

- b) (2 puntos). Utiliza A para hallar una base de $\ker F$ y una base de $\operatorname{Im} F$.
- c) (0,5 puntos). Calcula las coordenadas lineales en la base \mathcal{B}_2 del vector $F\begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix}$.
- **3.** Consideremos en \mathbb{R}^4 los subespacios vectoriales $W_1 = \langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \rangle$ y $W_2 = \langle \mathbf{v}_4, \mathbf{v}_5 \rangle$, con

$$\mathbf{v}_1 = (1, 0, 0, 2), \ \mathbf{v}_2 = (-1, 4, 2, -4), \ \mathbf{v}_3 = (1, -2, -1, 3), \ \mathbf{v}_4 = (3, -2, -3, 1), \ \mathbf{v}_5 = (1, -6, -5, -1).$$

- a) (2 puntos). Para cada uno de los siguientes espacios determina la dimensión y, si es no nula, halla una base: W_1 , W_2 , $W_1 + W_2$ y $W_1 \cap W_2$. Comprueba que se verifica la fórmula de Grassmann.
- b) (2 puntos). Mismas cuestiones cambiando \mathbf{v}_5 por $\mathbf{v}_5' = (1, -6, -5, 0)$.