1. Sea el sistema lineal $oldsymbol{A} oldsymbol{x} = oldsymbol{b}$ con

$$A = \begin{pmatrix} 4 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 4 \end{pmatrix}$$
 y $b = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

Si se aplica el **método de máximo descenso** (o **método del gradiente**) con un vector inicial $\boldsymbol{x}^{(0)} = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}^{\mathrm{t}}$, entonces, la dirección de descenso $\boldsymbol{p}^{(0)}$ a utilizar en la primera iteración es:

(a)
$$\boldsymbol{p}^{(0)} = \begin{pmatrix} 0 & 3 & -1 \end{pmatrix}^{\mathrm{t}}$$
;

(b)
$$p^{(0)} = \begin{pmatrix} 0 & -3 & 1 \end{pmatrix}^{t}$$
;

(c)
$$p^{(0)} = \begin{pmatrix} 0 & -3 & -1 \end{pmatrix}^{t}$$
;

(d) ninguna de las anteriores.

2. Se aplica el método de Gauss con pivoteo parcial a una matriz ${\bf A}$ de $n \times n$. Si la matriz que se obtiene en la etapa k-ésima es

$$\mathbf{A}^{(k)} = \begin{pmatrix} a_{11}^{(k)} & \cdots & a_{1,k-1}^{(k)} & a_{1k}^{(k)} & \cdots & a_{1n}^{(k)} \\ 0 & \ddots & \vdots & \vdots & & \vdots \\ & \ddots & a_{k-1,k-1}^{(k)} & a_{k-1,k}^{(k)} & \cdots & a_{k-1,n}^{(k)} \\ \vdots & & 0 & a_{kk}^{(k)} & \cdots & a_{kn}^{(k)} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & \cdots & 0 & a_{nk}^{(k)} & \cdots & a_{nn}^{(k)} \end{pmatrix},$$

indique cuál es el pivote a utilizar en la siguiente etapa:

- (a) $\max \left\{ a_{ik}^{(k)} : 1 \le i \le n \right\};$
- (b) $\max \left\{ a_{ik}^{(k)} : k \le i \le n \right\};$
- (c) $a_{kk}^{(k)}$;
- (d) ninguno de las anteriores.

3. Considere el sistema lineal $m{A}x=m{b}$, con $m{A}$ una matriz no singular. Sean $m{L}$, $m{U}$ y $m{P}$ las matrices que entrega el comando MATLAB

$$[L,U,P] = lu(A);$$

Indique cuál de las siguientes sentencias Matlab devuelve la solución $m{x}$ del sistema:

(a)
$$x = U \setminus (L \setminus b)$$
;

(b)
$$x = U \setminus (L \setminus (P*b));$$

(c)
$$x = U \setminus (P*(L \setminus b));$$

(d)
$$x = P*(U\setminus(L\setminus b));$$

4. Sea $\epsilon>0$. Considere la matriz ${m A}=\begin{pmatrix} 1 & \epsilon \\ 0 & 1 \end{pmatrix}$ y su inversa

$$oldsymbol{A}^{-1} = egin{pmatrix} 1 & -\epsilon \ 0 & 1 \end{pmatrix}$$
 . Entonces:

- (a) $\operatorname{cond}_{\infty}(\boldsymbol{A}) = (1 \epsilon^2);$
- (b) $\operatorname{cond}_{\infty}(\mathbf{A}) = (1 + \epsilon);$
- (c) $\operatorname{cond}_{\infty}(\mathbf{A}) = (1 + \epsilon)^2$;
- (d) ninguna de las anteriores.

5. Se aplica el método de Gauss con pivoteo parcial a la matriz

$$m{A} = egin{pmatrix} 7 & 8 & 0 \ 4 & 5 & 6 \ 1 & 2 & 0 \end{pmatrix}$$

a fin de obtener una factorización $oldsymbol{L} oldsymbol{U}$. En la primera etapa se obtiene

$$\mathbf{A}^{(1)} = \begin{pmatrix} 7 & 8 & 0 \\ 0 & \frac{3}{7} & 6 \\ 0 & \frac{6}{7} & 0 \end{pmatrix}.$$

Los elementos en la diagonal de $oldsymbol{U}$ al final del proceso son:

(a)
$$u_{11} = 7$$
, $u_{22} = 3/7$ y $u_{33} = -12$;

(b)
$$u_{11} = 7$$
, $u_{22} = 6/7$ y $u_{33} = 6$;

(c)
$$u_{11} = 7$$
, $u_{22} = 6/7$ y $u_{33} = 3$;

(d) ninguna de las anteriores.

6. Se quiere resolver el siguiente sistema de ecuaciones lineales:

$$\begin{pmatrix} 4 & -1 & 0 & -1 \\ -1 & 4 & -1 & 0 \\ 0 & -1 & 4 & -1 \\ -1 & 0 & -1 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 3 \\ 0.5 \end{pmatrix}.$$

Considere la siguiente iteración:

$$\begin{pmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \\ x_3^{(k+1)} \\ x_4^{(k+1)} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1^{(k)} \\ x_2^{(k)} \\ x_3^{(k)} \\ x_4^{(k)} \end{pmatrix} + \begin{pmatrix} -1 \\ 0 \\ 3 \\ 0.5 \end{pmatrix}.$$

Indique si se trata de un paso de iteración de alguno de los siguientes métodos:

(a) Jacobi;

(b) Gauss-Seidel;

(c) Gradiente Conjugado;

(d) ninguno de las anteriores.

7. Se resuelve un sistema Ax = b con una matriz tal que $||A||_2 = 10$ y $||A^{-1}||_2 = 10$. Si el segundo miembro \widetilde{b} presenta un error relativo (calculado en norma 2) de 1% con respecto al vector b, indique cuál de las siguientes afirmaciones es más precisa:

El error relativo (calculado en norma 2) de la solución \widetilde{x} con respecto a la solución x es:

- (a) menor o igual a un 1%;
- (b) menor o igual a un 10%;
- (c) menor o igual a un 100%;
- (d) ninguna de las anteriores.

8. Se desea resolver el sistema de ecuaciones

$$\begin{pmatrix} 4 & 1 & 0 & 0 \\ 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ 0 & 0 & 1 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0.25 \\ 1.75 \\ 0.50 \\ 1.50 \end{pmatrix}.$$

Indique cuál de las siguientes afirmaciones es correcta:

- (a) el sistema puede resolverse por el método de Jacobi, pero no por el algoritmo de Thomas;
- (b) el sistema no puede resolverse por el método de Jacobi, pero sí por el algoritmo de Thomas;
- (c) el sistema no puede resolverse ni por el método de Jacobi ni por el algoritmo de Thomas;
- (d) ninguna de las anteriores.

9. Considere el siguiente programa MATLAB:

```
A = [ 3 0 1 ; 0 0 0 ; 1 0 3];
b = [ 5 ; 2 ; -1];
x = A \ b;
```

Indique cuál de las siguientes afirmaciones es correcta:

- (a) el programa entrega $oldsymbol{x} \in \mathbb{R}^3$ tal que $oldsymbol{A} oldsymbol{x} = oldsymbol{b}$;
- (b) el programa entrega $oldsymbol{x} \in \mathbb{R}^3$ tal que $\|oldsymbol{b} oldsymbol{A} oldsymbol{x}\|_2$ es muy pequeño;
- (c) el programa no entrega una solución del sistema;
- (d) ninguna de las anteriores.

10. Indique cuáles son los factores m L y m U que se obtienen si se aplica el método de $\it Gauss$ con pivoteo parcial a la matriz $m A=egin{pmatrix}1&2\\2&6\end{pmatrix}$:

(a)
$$m{L} = \left(\begin{array}{cc} 1 & 0 \\ 0.5 & 1 \end{array} \right)$$
, $m{U} = \left(\begin{array}{cc} 2 & 6 \\ 0 & -1 \end{array} \right)$;

(b)
$$oldsymbol{L} = \left(egin{array}{cc} 1 & 0 \\ 2 & 1 \end{array}
ight)$$
, $oldsymbol{U} = \left(egin{array}{cc} 1 & 2 \\ 0 & 2 \end{array}
ight)$;

(c)
$$\boldsymbol{L} = \begin{pmatrix} 1 & 0 \\ 0.5 & 1 \end{pmatrix}$$
, $\boldsymbol{U} = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$;

(d) ninguno de los anteriores.

11. Se aplica el método de *Jacobi* al siguiente sistema de ecuaciones lineales:

$$\begin{pmatrix}
100 & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & 100
\end{pmatrix}
\begin{pmatrix}
x_1 \\
\vdots \\
x_{11}
\end{pmatrix} =
\begin{pmatrix}
b_1 \\
\vdots \\
b_{11}
\end{pmatrix}.$$

Indique cuál de las siguientes afirmaciones es falsa:

- (a) el método converge porque la matriz es de diagonal dominante;
- (b) el método converge porque la norma infinito de la matriz de iteración es $\frac{1}{10}$;
- (c) si $e^{(k)}$ denota el error en el paso k-ésimo, entonces $\|e^{(k+1)}\|_\infty \le rac{1}{10} \|e^{(k)}\|_\infty;$
- (d) ninguna de las anteriores.