The right-handed sneutrino as thermal dark matter in U(1) extensions of the MSSM

G. Bélanger*, J. Da Silva* and A. Pukhov[†], in preparation

*Laboratoire d'Annecy-le-Vieux de Physique Théorique, France †Skobeltsyn Institute of Nuclear Physics, Moscow State University, Russia

Context

• Dark matter :

CMB, rotation curves, Bullet cluster, ...

⇒ more interesting candidates : WIMPs

• Supersymmetry :

Hierarchy problem, unification of the couplings, ...

⇒ new particles interacting weakly with standard particles

⇒ Dark matter candidates in supersymmetric models

Candidates

Assuming R-parity:

- 2 WIMPs candidates in the MSSM : good (χ_1^0) and bad $(\tilde{\nu}_L)$, because of direct detection constraints)
- Dirac RH neutrino \Rightarrow Can $\tilde{\nu}_R$ be good candidate when it couples to new vector, scalar field, adding a new abelian gauge group?

The UMSSM

- Symmetry group : $SU(3)_c \times SU(2)_L \times U(1)_Y \times U'(1)$ Coupling constants associated : g_3 , g_2 , g' and $g'_1 = g_1 = \sqrt{\frac{5}{3}}g'$
- Breaking of E_6 group $\Rightarrow U'(1)$ is a combination of U_{χ} and U_{ψ} with charge associated:

$$Q' = \cos \theta_{E_6} Q_{\chi} + \sin \theta_{E_6} Q_{\psi}, \qquad \theta_{E_6} \in [-\pi/2, \pi/2]$$

Higgs sector

- New chiral supermultiplet $S \Rightarrow$ new v.e.v. $\Rightarrow \mu$ problem resolved as in the NMSSM : $\mu = \frac{\lambda v_s}{\sqrt{2}}$
- 1 CP odd Higgs A^0 , 5 CP even Higgs: H^{\pm} , h_1 , h_2 and h_3
- ullet Singlet-like Higgs mass near Z_2 mass
- With radiative corrections + pure UMSSM terms \Rightarrow good increase of m_{h_1}

Gauge sector

- New vector supermultiplet \Rightarrow new gauge boson : B'
- Physical abelian gauge bosons : Z_1 and Z_2 , stem from $Z^0 = -\sin\theta_W B + \cos\theta_W W^3$ and Z' = B':

$$Z_1 = Z^0 \cos \alpha_Z + Z' \sin \alpha_Z$$
$$Z_2 = -Z^0 \sin \alpha_Z + Z' \cos \alpha_Z$$

• $M_{Z_1}^2 \neq M_{Z_0}^2 = \frac{g'^2 + g_2^2}{4} v^2$ and $M_W = \cos \theta_W M_{Z_0} \Rightarrow \text{small } \alpha_Z$

Gauginos sector

• 6 neutralinos in the basis $(\widetilde{B}, \widetilde{W}^3, \widetilde{H}_d^0, \widetilde{H}_u^0, \widetilde{S}, \widetilde{B'}), \chi_1^0$ DM in UMSSM studied in arXiv:0811.2204v2 [hep-ph] (J. Kalinowski et al.)

Sparticles sector

• Addition of UMSSM terms in the squared mass matrix : $\Delta_f = \frac{1}{2}g_1'^2 Q_f' (Q_{H_d}' v_d^2 + Q_{H_u}' v_u^2 + Q_S' v_s^2)$

Interactions

Parameter space regions with $\Omega_{WIMP}h^2\approx 0.1\Rightarrow$ need to increase the annihilation cross section : • WIMP mass near $m_{h_1}/2$:

 $ilde{
u}_R$,

 $\tilde{\nu}_R$ q $\tilde{\nu}_R$ \bar{Z}_2 \bar{q}

- \bullet WIMP mass near $m_{h_i}/2,\,h_i$ singlet-like Higgs :
- Coannihilation processes (mainly \widetilde{S} and $\widetilde{B'}$)

Example for $U(1)_{\psi}$ model $(\theta_{E_6} = \pi/2)$

- ullet Relevant parameters : $M_{\tilde{\nu}_R},\,\mu,\,A_{\lambda},\,M_{Z_2},\,\alpha_Z$
- Example with soft terms at 1 TeV, $M_1=1$ TeV, $M_2=2M_1$, $M_{Z_2}=1.1$ TeV, $\mu=1$ TeV and $\alpha_Z=10^{-3}$ rad : $m_{h_1}=119.2$ GeV :

Example of relic density and direct detection cross section profiles

Global scan

Constraints:

- Relic density at 3σ with $\Omega_{WIMP}h^2 = 0.1123 \pm 0.0035$
- \bullet Higgs mass limit for doublet-like Higgs : $m_{h_1} \geq 114.4~{\rm GeV}$
- LEP constraints on sparticles masses implemented in the micrOMEGAs code
- Spin independent direct detection cross section (The XENON100 Collaboration, arXiv:1104.2549v1 [astro-ph.CO])

Preliminary results

- Interesting WIMP mass from 50 GeV to TeV-scale
- Besides the interactions shown, constraints respected for annihilation into W pairs through Higgs exchange arround $M_{\tilde{\nu}_R}$ = Some hundreds of GeV ($\theta_{E_6} < 0$)

Conclusion

- RH sneutrino is a viable dark matter candidate
- This model can be tested with other experimental results: indirect detection, flavour physics, ...