PyTorch로 딥러닝 제대로 배우기 - 중급편 -

Part6-2. 컴퓨터 비전 이론: 합성곱 신경망(CNN)

강사: 김 동 희

II. 합성곱 신경망(CNN)

1. CNN (Convolutional Neural Network)

□ 개요

- 컴퓨터 비전에서 활용하는 가장 기초 모델 또는 방법론
- 대뇌의 시각 피질 연구에서 시작됨
- CNN은 간단하게는 classification, Object detection, Segmentation 등 이미지에 활용 될 뿐만 아니라
- 음성 인식이나 자연어 처리에서도 활용가능

CNN Architecture

☐ LeNet-5 (1998)

- Pattern을 자동으로 학습하고, 사람의 손이 최소한으로 반영되는 모델을 만들고자 등장
- Convolutional Neural Network의 시초
- 뉴런을 활성화 시키는 <u>합성곱(Convolution)</u> 계층과
 불필요한 정보를 버리는 <u>Subsampling(추후, pooling)</u> 계층으로 구성

LeNet-5 Architecture

☐ Convolution layer

- 지역 수용체(local receptive)에서 정보를 추출
- 가중치를 공유(shared weights)하거나 복제(weight replication)함
- Kernel: Set of connection weights
- Feature map: Set of outputs of the units
- Stride: Controls the cross-correlation

		0	0	1,	1,0	1 _{×1}	
4		0	1	1 _{×0}	1 _{×1}	0,0	
		1	1	1,	0,0	0 _{×1}	
		0	1	1	0	0	
		0	0	1	1	0	
Convolved Feature			e	nag	lr		
	ide	Stride					

- ☐ Subsampling layer Average pool, Max pool
 - 시간이 흐르고, 흔히 알려져 있는 pooling layer로 명명
 - Feature 맵에서 특정 부위에서 정확한 정보를 얻는 것이 불필요함
 - 각각의 인스턴스의 특징이 위치가 다를 수 있기 때문에 특정 위치에 대한 정보를 갖고 있는 것이 잠재적으로 위험함
 - 또한, computation cost를 줄이기 위해서도 Grid를 줄일 필요성이 있음
 - 초기 LeNet-5에서는 평균(average)하여 정보를 축소
 - Pooling 계층에서는 가중치 없음

4	3	1	5			3	1	7	2	
1	3	1	Ω	2.8	4.5	5	1	0	9	Max Pooled
4	5	4	2	5.3		8	2	4	9	Kernel/Filter - Stride 2
4	5	4	3	5.5	5.0	4	3	1	1	
6	5	9	4							

[그림] Average Pool

[그림] Max Pool

6

☐ Subsampling layer - Global Pool

- Kernel filter에서 pooling 하는 것이 아닌, Channel side에서 수행
- 즉, 각 feature map layer에서 하나의 정보만 추출
- 가장 정보 손실이 많고, 파괴적이지만 출력층에는 유용
- 오버피팅을 줄이는 효과가 있고, 전체 모델의 파라미터를 줄여주는 역할 수행

[그림] Global pool

7

☐ Fully connected layer

- CNN은 크게 Feature learning을 수행하는 합성곱-풀링층과 Classification 을 수행하는 Fully connected 계층으로 구성
- Feature learning이 완료된 정보를 flatten하고 이를 **완전 연결**하여 최종 분류(또는 task)를 진행

Ω

3. CNN 응용

□ 커널(kernel) 또는 필터(Filter)

- 데이터 관측 범위를 의미
- 크기를 자유롭게 설정 가능
- 데이터 형태에 따라 모양을 선정하는 것이 유리
- 필터 크기가 크면, 관측 범위가 넓음 (범용 특징)
- 필터 크기가 작으면, 관측 범위가 좁음 (세부 특징)
- 필터 크기에 따라 학습 파라미터 수가 변함

[그림] 커널 크기에 따른 모델 응용

3. CNN 응용

☐ Padding

- 원본 데이터 주변에 학습에 영향을 미치지 않는 값을 추가하는 방법
- 일반적으로 Grid를 유지하기 위해 사용

02	00	0,	0	0	0	0
0,	2_{0}	2_0	3	3	3	0
00	0,	1,	3	0	3	0
0	2	3	0	1	3	0
0	3	3	2	1	2	0 ¦
0	3	3	0	2	3	0
0	0	0	0	0	0	0

1	6	5
7	10	9
7	10	8

[그림] Padding example

[그림] Grid 유지 예시

감사합니다.