Chapter 18: Table-Driven Methods

- A table driven method is a scheme that allows you to look up information in a table rather than using logic statements (if and case) to figure it out
- Virtually anything you can select with a logic statement can be selected with tables instead

General Considerations in Using Table-Driven Methods

- Used in appropriate circumstance, table driven code is
 - Simpler than complicated logic
 - Easier to modify
 - More efficient

Two Issues in Using Table-Driven Methods

- First, need to address how to loop up entries in the table
 - Direct access
 - Indexed access
 - Stair-step access
- Second, you need address what you should store in the table
 - O Some cases, the result of a table lookup is data
 - Other cases, the lookup is an action

Direct Access Tables

- Like directly accessing the value
 - o Either by index? Or idk, kinda vague

Days in Month Example

- Suppose need to determine number of days per month
 - Need if branch for each month
- OR store each month number of days in a table then use the months number to access the days
 - o I already do this all the time lel

Fudging Lookup Keys

- In the examples above, could use the data to key into the table directly
- You always want to be able to key into a table directly
 - o But sometimes data is in weird ranges to need to fudge
- How to fudge
 - Duplicate data in the table to accommodate ranges
 - Transform the key to make it work directly
 - Min(key, bound), max(key, bound)
 - Isolate the transformation into its own routine

Indexed Access Tables

- Sometimes a simple mathematical transformation isn't enough to jump from "age" to a table key
- In using indexes
 - Use primary data to lookup a key in an index table
 - Then use the value from the index table to look up the main data youre interested in
- Advantages
 - First, if each of the entries in the main lookup table is large, it takes a lot less space to create an index array with wasted space than a main lookup table with lots of wasted space
 - Second, even if you don't save space in an index, sometimes its cheaper to manipulate entries in an index than a main table
 - Finally, much easier to maintain than data embedded in code

Stair-Stepped Access Tables

- Isnt as direct as an index structure, but doesn't waste as much space
- General idea is entries in a table are valid for ranges of data, instead of distinct points
 - A
 - o **B**
 - o C
 - 0 [
 - o **F**
- To use
 - Put the upper end of each range into a table
 - Write a loop to check the score against the upper end of each range
- Works well with irregular data on irregular intervals
- Flexible and modifiable
- Things to note
 - Watch the endpoints and make sure you've covered the case at the top end of the stairstep range
 - Be careful about mistaking < for <=
 - Consider using binary search instead of sequential search
 - Consider using indexed access instead of stair step
 - The searching in stair-step can add up
 - o Put the stair-step into its own routine