Monte Carlo Control with Epsilon-Greedy Policy

Input:

- ullet Environment with states S and actions A
- \bullet Number of episodes N
- Discount factor γ
- Exploration parameter ϵ

Initialization:

- ullet Initialize action-value function Q(s,a) arbitrarily for all s and a
- Initialize N(s, a) = 0 for all s and a

Algorithm:

- 1. For each episode $i = 1, 2, \dots, N$ do:
 - Generate an episode using policy derived from Q (e.g., epsilon-greedy)
 - $G \leftarrow 0$
 - For each step t = T 1, T 2, ..., 0 do:
 - $-G \leftarrow \gamma G + R_{t+1}$ // Incrementally calculate return
 - If S_t, A_t not in episode history from time step 0 to t-1 then:
 - * $N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$
 - * $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G Q(S_t, A_t))$ // Update action-value function

Output: Optimal policy π derived from Q