선형 모델

Linear Model

파이썬 라이브러리를 이용한 머신러닝

휴먼프밍 발표

목차 INDEX

데이터 설명

Breast Cancer

00

Wave

환자	암 크기	암일 확 률	
INDEX	Feature(X)	Label(Y)	
1	0.25	0.21	
2	0.70	0.99	
3	0.67	0.78	

0.53

환자	암크기 표	E면모양 경	장기와 거리	암일 확률
INDE X	Feature1 (X1)	Feature2 (X2)	Feature3 (X3)	Label(Y)
1	0.25	0.53	0.65	0.21
2	0.70	0.77	0.02	0.99
3	0.67	0.11	0.31	0.78
4	0.35	0.52	0.23	0.53

Make 환자 암 크기 표면모양 암 여부

0.35

INDE X	Feature1 (X1)	Feature2 (X2)	Label(Y)
1	0.25	0.53	0
2	0.70	0.77	1
3	0.67	0.11	1
4	0.35	0.52	1

환자 암크기 표면모양 장기와 거리 암 여부

INDE X	Feature1 (X1)	Feature2 (X2)	Feature3 (X3)	Label(Y)
1	0.25	0.53	0.65	0
2	0.70	0.77	0.02	1
3	0.67	0.11	0.31	1
4	0.35	0.52	0.23	1

$$\hat{y} = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b$$

$$h_{ heta}(x) = heta_0 x_0 + heta_1 x_1 + \ldots + heta_n x_n$$

OLS = Ordinary Least Square 잔차 제곱 평균 합이 최소가 되게 하라

$$J(heta_0, heta_1) = rac{1}{2m} \sum_{i=1}^m \left(\hat{y}^{(i)} - y^{(i)}
ight)^2 = rac{1}{2m} \sum_{i=1}^m \left(h_ heta(x^{(i)}) - y^{(i)}
ight)^2$$

Figure 2-11. Predictions of a linear model on the wave dataset

피쳐가 1개인 데이터!

$$\hat{y} = w[0] * x[0] + b$$

In[25]:

mglearn.plots.plot_linear_regression_wave()

Out[25]:

w[0]: 0.393906 b: -0.031804

Figure 2-11. Predictions of a linear model on the wave dataset

In[26]:

```
from sklearn.linear_model import LinearRegression
X, y = mglearn.datasets.make_wave(n_samples=60)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
lr = LinearRegression().fit(X_train, y_train)
```

The "slope" parameters (w), also called weights or coefficients, are stored in the coef_ attribute, while the offset or intercept (b) is stored in the intercept_ attribute:

In[27]:

In[28]:

```
print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))
print("Test set score: {:.2f}".format(lr.score(X_test, y_test)))
```

Out[28]:

Training set score: 0.67 Test set score: 0.66

Q. 위와 같은 정확도는 다음 중 어떤 fit이 된 걸까요?

Underfitted

Good Fit/Robust

Overfitted

피쳐가 2개인 데이터!

$$Y = W[0]*X\{0\}+W[1]*X[1]+b$$

피쳐가 여러 개인 데이터??

그래프 상에 표현 불가!!!

$$h_{ heta}(x) = \left[egin{array}{cccc} heta_0 & heta_1 & \dots & heta_n \end{array}
ight] \left[egin{array}{c} x_0 \ x_1 \ dots \ x_n \end{array}
ight] = heta^T x$$

In[29]:

```
X, y = mglearn.datasets.load_extended_boston()

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
lr = LinearRegression().fit(X_train, y_train)
```

In[30]:

```
print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))
print("Test set score: {:.2
```

Out[30]:

Training set score: 0.95 Test set score: 0.61

Q. 위와 같은 정확도는 다음 중 어떤 fit이 된 걸까요?

Underfitted

Good Fit/Robust

Overfitted

리지 회귀(Ridge regression)

03

W 값을 parameter로 이용하고 싶다.....!!!!!!!!!!!

왜?? 투머치 피쳐 = 피쳐를 없애고 싶다 = 한 피쳐가 결과 Y에 미치는 영향이 작았으면 좋겠다 = overfit를 방지하고 싶다 등등 다 같은 말

In[31]:

```
from sklearn.linear_model import Ridge
```

```
ridge = Ridge().fit(X_train, y_train)
print("Training set score: {:.2f}".format(ridge.score(X_train, y_train))
print("Test set score: {:.2f}".format(ridge.score(X_test, y_test)))
```

Out[31]:

Training set score: 0.89

Test set score: 0.75

Overfitted

Out[30]:

Training set score: 0.95

Test set score: 0.61

리지 회귀(Ridge regression)

03

알파를 크게!

업데이트 되는 세타(w) 값이 0에 가까워짐 세타(w)가 사라짐 EX) n차 다항함수가 n-1차 다항함수가 됨 → Overifit 방지 In[32]:

```
ridge10 = Ridge(alpha=10).fit(X_train, y_train)
print("Training set score: {:.2f}".format(ridge10.score(X_train, y_train)))
print("Test set score: {:.2f}".format(ridge10.score(X_test, y_test)))
```

Out[32]:

Training set score: 0.79 Test set score: 0.64

Out[30]:

Training set score: 0.95 Test set score: 0.61

In[33]:

업데이트 되는 세타(W) 값이 원래 값이 랑 같음 선형회귀랑 다를바가 없음 →overfit 가능성 생김

알파를 작게...

```
ridge01 = Ridge(alpha=0.1).fit(X_train, y_train)
print("Training set score: {:.2f}".format(ridge01.score(X_train, y_train)))
print("Test set score: {:.2f}".format(ridge01.score(X_test, y_test)))
```

Out[33]:

Training set score: 0.93 Test set score: 0.77

In[34]:

```
plt.plot(ridge10.coef_, '^', label="Ridge alpha=10")
plt.plot(ridge01.coef_, 'v', label="Ridge alpha=0.1")

plt.plot(lr.coef_, 'o', label="LinearRegress
plt.xlabel("Coefficient index")
plt.ylabel("Coefficient magnitude")
plt.hlines(0, 0, len(lr.coef_))
plt.ylim(-25, 25)
plt.legend()
```

plt.plot(ridge.coef_, 's', label="Ridge alpha=1")

리지 회귀(Ridge regression)

03

Training score 값은 ridge나 linear나 비슷하지만 데이터가 적을 땐 ridge가 훨 이득. 500 넘어가면 둘 다 괜찮다.

linear의 predict이 점점 줄어든다? overfit이 일어나기 어려워진다.

In[35]:

mglearn.plots.plot_ridge_n_samples()

Figure 2-13. Learning curves for ridge regression and linear regression on the Boston Housing dataset

리지 회귀랑 원리는 똑같다. 다만 선택적으로 W를 버릴 수 있다. 예컨대, 알파를 엄청 크게해서 아얘 W가 0이 되어 없어지게 해버리기! 한 피쳐의 영향력을 없애버리기 = 자동으로 의미있는 피쳐만 남기는 선택 기계

In[36]:

```
from sklearn.linear_model import Lasso

lasso = Lasso().fit(X_train, y_train)
print("Training set score: {:.2f}".format(lasso.score(X_train, y_train)))
print("Test set score: {:.2f}".format(lasso.score(X_test, y_test)))
print("Number of features used: {}".format(np.sum(lasso.coef_ != 0)))
```

Out[36]:

```
Training set score: 0.29
Test set score: 0.21
Number of features used: 4
```

In[37]:

```
# we increase the default setting of "max_ite
# otherwise the model would warn us that we s
lasso001 = Lasso(alpha=0.01, max_iter=100000)
print("Training set score: {:.2f}".format(las
print("Test set score: {:.2f}".format(lasso00)
print("Number of features used: {}".format(np)
```

Out[37]:

Training set score: 0.90 Test set score: 0.77

Number of features used: 33

Out[36]:

Training set score: 0.29

Test set score: 0.21

Number of features used: 4

l P P

Out[

Figure 2-14. Comparing coefficient magnitudes for lasso regression with different values of alpha and ridge regression

$$\hat{y} = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b > 0$$

선형회귀의 선,면 대신에 decision boundary=영역 따먹기 로 바뀌었을 뿐...

$$rac{\partial}{\partial heta_j} J(heta) = rac{1}{m} \sum_{i=1}^m \left(h_ heta(x^{(i)}) - y^{(i)}
ight) x_j^{(i)}$$

환자 암 크기 표면모양 암 여부

INDE X	Feature1 (X1)	Feature2 (X2)	Label(Y)
1	0.25	0.53	0
2	0.70	0.77	1
3	0.67	0.11	1
4	0.35	0.52	1

$$h_{ heta}(x) = rac{1}{1 + \exp(- heta^T x)}$$

분류를 위한 선형 모델

05

피쳐가 2개인 make 함수

In[40]:

```
from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC
```


model 객체, train 데이터, 평면 칠하기, 입실론, 축, 투명도

이 모델도 리지, 라쏘처럼 W를 parameter로 이용하고 싶어!

- → C 값을 변화시킴
- → C는 알파와 반비례

In[41]:

mglearn.plots.plot_linear_svc_regularization()

Figure 2-16. Decision boundaries of a linear SVM on the forge dataset for different values of C

분류를 위한 선형 모델

05

피쳐가 여러 개 일 때! → breast cancer data

In[42]:

Out[42]:

Training set score: 0.953 Test set score: 0.958

In[43]:

```
logreg100 = LogisticRegression(C=100).fit(X_train, y_train)
print("Training set score: {:.3f}".format(logreg100.score(X_train, y_train)))
print("Test set score: {:.3f}".format(logreg100.score(X_test, y_test)))
```

Out[43]:

Training set score: 0.972
Test set score: 0.965

C = 100 W가 커짐 Train 정확도가 높지만 Overfit 가능성 생김

In[44]:

```
logreg001 = LogisticRegression(C=0.01).fit(X_train, y_train)
print("Training set score: {:.3f}".format(logreg001.score(X_train, y_train)))
print("Test set score: {:.3f}".format(logreg001.score(X_test, y_test)))
```

Out[44]:

Training set score: 0.934
Test set score: 0.930

C = 0.01 W가 0에 가까워짐 몇몇 피쳐가 사라짐

Overfit 방지

피쳐가 여러 개 일 때! → breast cancer data

Figure 2-18. Coefficients learned by logistic regression with L1 penalty on the Breast Cancer dataset for different values of C

분류 결과가 여러 개일 때... 나 아니면 나머지 라고 생각해서 binary class랑 똑같이 분류

Figure 2-20. Decision boundaries learned by the three one-vs.-rest classifiers

Figure 2-21. Multiclass decision boundaries derived from the three one-vs.-rest classifiers

- 회귀에서 a와 분류에서 C가 중요하다.
- → 알파가 크고 C가 작으면 없어지는 피쳐가 생기는,
- 간단한 모델=일반화가 쉬운 모델=overfit 방지 모델
- → 알파가 작고 C가 크면 피쳐가 대부분 살아있는,
- 복잡한 모델=굉장히 제한적인 모델=overfit 가능성 존재 모델
- 근데 a,C는 보통 로그 함수를 따르기 때문에 어느정도 답이 정해져 있다.
- → 그래서 regularization을 알고리즘의 선택이 중요하다.
- 몇몇 특이한 피쳐가 중요하면(해석가능성이 크면) L1(라쏘)를 쓰고, 아니면 L2(리지)를 쓰고(디폴트값).
- → 선형 모델의 장점은 빠른 학습과 빠른 예측. 대신 단점은 데이터가 많아야한다.
- 또 장점은 왜 저렇게 예측되었는지 이해하기 쉽다.
- 따라서, 주로 샘플이 많고 피쳐는 적을 때 사용한다.

감사합니다