Madhur Jaripatke

Roll No. 48

TE A Computer

RMDSSOE, Warje, Pune

2. Data Wrangling, II

Create an "Academic performance" dataset of students and perform the following operations using Python. transformation should be one of the following reasons: to change the scale for better

- 1. Scan all variables for missing values and inconsistencies. If there are missing values and/or inconsistencies, use any of the suitable techniques to deal with them.
- 2. Scan all numeric variables for outliers. If there are outliers, use any of the suitable techniques to deal with them.
- 3. Apply data transformations on at least one of the variables. The purpose of this

understanding of the variable, to convert a non-linear relation into a linear one, or to decrease the skewness and convert the distribution into a normal distribution. Reason and document your approach properly.

```
import pandas as pd
import numpy as np
from sklearn import preprocessing
```

Create Dataset

```
In [2]: dic = {
    "Name":["abc","lmn","stu","xyz","efg","klm","rst","uvw",np.nan,"def"],
    "Maths":[96,88,np.nan,73,44,88,72,84,93,92],
    "Reading":[77,200,88,np.nan,np.nan,91,78,np.nan,84,93],
    "Writing":[86,np.nan,170,87,69,91,np.nan,88,92,83],
    "Placement":[88,76,91,84,96,84,80,78,np.nan,93],
    "Gender":["Male","Female",np.nan,"Female","Female","Male","Female","Male","
    "Joining Date":[2018,2019,2022,2018,2017,2023,2016,2020,2020,2019]
}
```

Create DataFrame & Exploring Dataset

```
In [3]: df = pd.DataFrame(dic)
df
```

Out[3]:		Name	Maths	Reading	Writing	Placement	Gender	Joining Date
	0	abc	96.0	77.0	86.0	88.0	Male	2018
	1	lmn	88.0	200.0	NaN	76.0	Female	2019
	2	stu	NaN	88.0	170.0	91.0	NaN	2022
	3	xyz	73.0	NaN	87.0	84.0	Female	2018
	4	efg	44.0	NaN	69.0	96.0	Female	2017
	5	klm	88.0	91.0	91.0	84.0	Male	2023
	6	rst	72.0	78.0	NaN	80.0	Female	2016
	7	uvw	84.0	NaN	88.0	78.0	Male	2020
	8	NaN	93.0	84.0	92.0	NaN	Male	2020
	9	def	92.0	93.0	83.0	93.0	Male	2019

In [4]: df.isnull()

Out[4]:

	Name	Maths	Reading	Writing	Placement	Gender	Joining Date
0	False	False	False	False	False	False	False
1	False	False	False	True	False	False	False
2	False	True	False	False	False	True	False
3	False	False	True	False	False	False	False
4	False	False	True	False	False	False	False
5	False	False	False	False	False	False	False
6	False	False	False	True	False	False	False
7	False	False	True	False	False	False	False
8	True	False	False	False	True	False	False
9	False	False	False	False	False	False	False

In [5]: df.notnull()

Out[5]:		Name	Maths	Reading	Writing	Placement	Gender	Joining Date
	0	True	True	True	True	True	True	True
	1	True	True	True	False	True	True	True
	2	True	False	True	True	True	False	True
	3	True	True	False	True	True	True	True
	4	True	True	False	True	True	True	True
	5	True	True	True	True	True	True	True
	6	True	True	True	False	True	True	True
	7	True	True	False	True	True	True	True
	8	False	True	True	True	False	True	True
	9	True	True	True	True	True	True	True

Handling Missing Values

```
In [6]: df['Maths'] = df['Maths'].fillna(df['Maths'].mean())
df
```

Out[6]:		Name	Maths	Reading	Writing	Placement	Gender	Joining Date
	0	abc	96.000000	77.0	86.0	88.0	Male	2018
	1	lmn	88.000000	200.0	NaN	76.0	Female	2019
	2	stu	81.111111	88.0	170.0	91.0	NaN	2022
	3	xyz	73.000000	NaN	87.0	84.0	Female	2018
	4	efg	44.000000	NaN	69.0	96.0	Female	2017
	5	klm	88.000000	91.0	91.0	84.0	Male	2023
	6	rst	72.000000	78.0	NaN	80.0	Female	2016
	7	uvw	84.000000	NaN	88.0	78.0	Male	2020
	8	NaN	93.000000	84.0	92.0	NaN	Male	2020
	9	def	92.000000	93.0	83.0	93.0	Male	2019

```
In [7]: df['Writing'] = df['Writing'].fillna(df['Writing'].median())
    df
```

Out[7]: Name Maths Reading Writing Placement Gender Joining Date abc 96.000000 2018 0 77.0 86.0 0.88 Male 2019 1 lmn 88.000000 200.0 87.5 76.0 Female stu 81.111111 91.0 2022 2 88.0 170.0 NaN 3 xyz 73.000000 NaN 87.0 84.0 Female 2018 2017 4 efg 44.000000 NaN 69.0 96.0 Female 5 klm 88.000000 91.0 91.0 84.0 Male 2023 2016 6 rst 72.000000 78.0 87.5 0.08 Female 7 uvw 84.000000 NaN 0.88 78.0 Male 2020 2020 8 NaN 93.000000 84.0 92.0 NaN Male 9 def 92.000000 93.0 83.0 93.0 Male 2019

In [8]: df['Placement'] = df['Placement'].fillna(df['Placement'].mode())
df

Out[8]:		Name	Maths	Reading	Writing	Placement	Gender	Joining Date
	0	abc	96.000000	77.0	86.0	88.0	Male	2018
	1	lmn	88.000000	200.0	87.5	76.0	Female	2019
	2	stu	81.111111	88.0	170.0	91.0	NaN	2022
	3	xyz	73.000000	NaN	87.0	84.0	Female	2018
	4	efg	44.000000	NaN	69.0	96.0	Female	2017
	5	klm	88.000000	91.0	91.0	84.0	Male	2023
	6	rst	72.000000	78.0	87.5	80.0	Female	2016
	7	uvw	84.000000	NaN	88.0	78.0	Male	2020
	8	NaN	93.000000	84.0	92.0	NaN	Male	2020
	9	def	92.000000	93.0	83.0	93.0	Male	2019

In [9]: df['Writing'] = df['Writing'].fillna(df['Writing'].max())
df

Out[9]:		Name	Maths	Reading	Writing	Placement	Gender	Joining Date
	0	abc	96.000000	77.0	86.0	88.0	Male	2018
	1	lmn	88.000000	200.0	87.5	76.0	Female	2019
	2	stu	81.111111	88.0	170.0	91.0	NaN	2022
	3	xyz	73.000000	NaN	87.0	84.0	Female	2018
	4	efg	44.000000	NaN	69.0	96.0	Female	2017
	5	klm	88.000000	91.0	91.0	84.0	Male	2023
	6	rst	72.000000	78.0	87.5	80.0	Female	2016
	7	uvw	84.000000	NaN	88.0	78.0	Male	2020
	8	NaN	93.000000	84.0	92.0	NaN	Male	2020
	9	def	92.000000	93.0	83.0	93.0	Male	2019

In [10]: df = pd.DataFrame(dic)
df

Out[10]:

2018
2019
2022
2018
2017
2023
2016
2020
2020
2019

Drop Missing Values

In [11]: df.dropna(how='all')

Out[11]:		Name	Maths	Reading	Writing	Placement	Gender	Joining Date
	0	abc	96.0	77.0	86.0	88.0	Male	2018
	1	lmn	88.0	200.0	NaN	76.0	Female	2019
	2	stu	NaN	88.0	170.0	91.0	NaN	2022
	3	xyz	73.0	NaN	87.0	84.0	Female	2018
	4	efg	44.0	NaN	69.0	96.0	Female	2017
	5	klm	88.0	91.0	91.0	84.0	Male	2023
	6	rst	72.0	78.0	NaN	80.0	Female	2016
	7	uvw	84.0	NaN	88.0	78.0	Male	2020
	8	NaN	93.0	84.0	92.0	NaN	Male	2020
	9	def	92.0	93.0	83.0	93.0	Male	2019
In [12]:	d†	•dropna	(how='a	ny')				
Out[12]:		Name	Maths	Reading	Writing	Placement	Gender	Joining Date
	0	abc	96.0	77.0	86.0	88.0	Male	2018
	5	klm	88.0	91.0	91.0	84.0	Male	2023
	9	def	92.0	93.0	83.0	93.0	Male	2019
In [13]:	df							
Out[13]:		Name	Maths	Poading	Writing	Placement	Gondor	Joining Date
-~-[].	_							
	0	abc	96.0	77.0	86.0	88.0	Male	2018
	1	lmn	000	200.0	NIANI	76.0	Eamala	2010
	1	lmn stu	88.0 NaN	200.0	NaN 170.0	76.0 91.0	Female NaN	2019

	Name	Maths	Reading	Writing	Placement	Gender	Joining Date
0	abc	96.0	77.0	86.0	88.0	Male	2018
1	lmn	88.0	200.0	NaN	76.0	Female	2019
2	stu	NaN	88.0	170.0	91.0	NaN	2022
3	xyz	73.0	NaN	87.0	84.0	Female	2018
4	efg	44.0	NaN	69.0	96.0	Female	2017
5	klm	88.0	91.0	91.0	84.0	Male	2023
6	rst	72.0	78.0	NaN	80.0	Female	2016
7	uvw	84.0	NaN	88.0	78.0	Male	2020
8	NaN	93.0	84.0	92.0	NaN	Male	2020
9	def	92.0	93.0	83.0	93.0	Male	2019

In [14]: df.dropna(axis=0, how='any')

Out[14]: Name Maths Reading Writing Placement Gender Joining Date 0 abc 96.0 77.0 86.0 0.88 Male 2018 84.0 2023 5 klm 88.0 91.0 91.0 Male 9 def 92.0 93.0 83.0 93.0 2019 Male

In [15]: df.dropna(axis=0, how='all')

\cap	+-	Г1		٦.
υu	L	1 1	. ⊃	١.

	Name	Maths	Reading	Writing	Placement	Gender	Joining Date
0	abc	96.0	77.0	86.0	88.0	Male	2018
1	lmn	88.0	200.0	NaN	76.0	Female	2019
2	stu	NaN	88.0	170.0	91.0	NaN	2022
3	xyz	73.0	NaN	87.0	84.0	Female	2018
4	efg	44.0	NaN	69.0	96.0	Female	2017
5	klm	88.0	91.0	91.0	84.0	Male	2023
6	rst	72.0	78.0	NaN	80.0	Female	2016
7	uvw	84.0	NaN	88.0	78.0	Male	2020
8	NaN	93.0	84.0	92.0	NaN	Male	2020
9	def	92.0	93.0	83.0	93.0	Male	2019

In [16]: **df**

Out[16]:

	Name	Maths	Reading	Writing	Placement	Gender	Joining Date
0	abc	96.0	77.0	86.0	88.0	Male	2018
1	lmn	88.0	200.0	NaN	76.0	Female	2019
2	stu	NaN	88.0	170.0	91.0	NaN	2022
3	xyz	73.0	NaN	87.0	84.0	Female	2018
4	efg	44.0	NaN	69.0	96.0	Female	2017
5	klm	88.0	91.0	91.0	84.0	Male	2023
6	rst	72.0	78.0	NaN	80.0	Female	2016
7	uvw	84.0	NaN	88.0	78.0	Male	2020
8	NaN	93.0	84.0	92.0	NaN	Male	2020
9	def	92.0	93.0	83.0	93.0	Male	2019

Out[17]:		Joining Date
	0	2018
	1	2019
	2	2022
	3	2018
	4	2017
	5	2023
	6	2016
	7	2020
	8	2020
	9	2019

In [18]: df.replace(to_replace=np.nan, value=60)

_			
()	11	[18]	
\cup	u L	10	

	Name	Maths	Reading	Writing	Placement	Gender	Joining Date
0	abc	96.0	77.0	86.0	88.0	Male	2018
1	lmn	88.0	200.0	60.0	76.0	Female	2019
2	stu	60.0	88.0	170.0	91.0	60	2022
3	xyz	73.0	60.0	87.0	84.0	Female	2018
4	efg	44.0	60.0	69.0	96.0	Female	2017
5	klm	88.0	91.0	91.0	84.0	Male	2023
6	rst	72.0	78.0	60.0	80.0	Female	2016
7	uvw	84.0	60.0	88.0	78.0	Male	2020
8	60	93.0	84.0	92.0	60.0	Male	2020
9	def	92.0	93.0	83.0	93.0	Male	2019

```
In [19]: dic = {
    "Name":["abc","lmn","stu","xyz","efg","klm","rst","uvw",np.nan,"def"],
    "Maths":[96,88,np.nan,73,44,88,72,84,93,92],
    "Reading":[77,200,88,np.nan,np.nan,91,78,np.nan,84,93],
    "Writing":[86,np.nan,170,87,69,91,np.nan,88,92,83],
    "Placement":[88,76,91,84,96,84,80,78,np.nan,93],
    "Gender":["Male","Female",np.nan,"Female","Female","Male","Female", "Male",
    "Joining Date":[2018,2019,2022,2018,2017,2023,2016,2020,2020,2019],
    "Region":["Pune","Mumbai","Delhi",np.nan,"Surat","Solapur","Bengaluru","Kolk
}
```

```
In [20]: df = pd.DataFrame(dic)
df
```

Out[20]:		Name	Maths	Reading	Writing	Placement	Gender	Joining Date	Region
	0	abc	96.0	77.0	86.0	88.0	Male	2018	Pune
	1	lmn	88.0	200.0	NaN	76.0	Female	2019	Mumbai
	2	stu	NaN	88.0	170.0	91.0	NaN	2022	Delhi
	3	xyz	73.0	NaN	87.0	84.0	Female	2018	NaN
	4	efg	44.0	NaN	69.0	96.0	Female	2017	Surat
	5	klm	88.0	91.0	91.0	84.0	Male	2023	Solapur
	6	rst	72.0	78.0	NaN	80.0	Female	2016	Bengaluru
	7	uvw	84.0	NaN	88.0	78.0	Male	2020	Kolkata
	8	NaN	93.0	84.0	92.0	NaN	Male	2020	NaN
	9	def	92.0	93.0	83.0	93.0	Male	2019	Pune
In [21]: Out[21]:	<pre>Pune Mumbai Delhi Goa Surat Solapur Bengaluru Kolkata Goa Pune</pre>			lace(to_r		o.nan,value	='Goa')		
In [22]:		l = ['M .boxplo		'Writing'	,'Placemo	ent']			

Out[22]: <Axes: >

In [23]: **df**

0 1	$\Gamma \cap \cap \Gamma$	
	エフスコ	
out	1 4 7 1	

	Name	Maths	Reading	Writing	Placement	Gender	Joining Date	Region
0	abc	96.0	77.0	86.0	88.0	Male	2018	Pune
1	lmn	88.0	200.0	NaN	76.0	Female	2019	Mumbai
2	stu	NaN	88.0	170.0	91.0	NaN	2022	Delhi
3	xyz	73.0	NaN	87.0	84.0	Female	2018	NaN
4	efg	44.0	NaN	69.0	96.0	Female	2017	Surat
5	klm	88.0	91.0	91.0	84.0	Male	2023	Solapur
6	rst	72.0	78.0	NaN	80.0	Female	2016	Bengaluru
7	uvw	84.0	NaN	88.0	78.0	Male	2020	Kolkata
8	NaN	93.0	84.0	92.0	NaN	Male	2020	NaN
9	def	92.0	93.0	83.0	93.0	Male	2019	Pune

In [24]: df.dropna(inplace=True)
 df

-			F /	_	л	٦.	
	ш	т))	4		4
$\overline{}$	ч	_	1 4	_	_	-	4

]:		Name	Maths	Reading	Writing	Placement	Gender	Joining Date	Region
	0	abc	96.0	77.0	86.0	88.0	Male	2018	Pune
	5	klm	88.0	91.0	91.0	84.0	Male	2023	Solapur
	9	def	92.0	93.0	83.0	93.0	Male	2019	Pune

```
In [25]: col1 = ['Maths', 'Writing', 'Placement']
          df.boxplot(col1)
Out[25]: <Axes: >
In [26]:
Out[26]:
             Name
                    Maths
                            Reading Writing Placement Gender Joining Date
                                                                                 Region
          0
               abc
                       96.0
                                77.0
                                         86.0
                                                     88.0
                                                             Male
                                                                          2018
                                                                                   Pune
          5
               klm
                       88.0
                                91.0
                                         91.0
                                                     84.0
                                                             Male
                                                                          2023
                                                                                Solapur
          9
                def
                      92.0
                                93.0
                                         83.0
                                                     93.0
                                                             Male
                                                                          2019
                                                                                   Pune
```

Outliers Detection

```
In [27]: rscore = df['Writing']
         q1 = np.percentile(rscore, 25)
         q3 = np.percentile(rscore, 75)
         print(q1, q3)
        84.5 88.5
In [28]: iqr = q3 - q1
         print(iqr)
        4.0
In [29]: lower_bound = q1 - 1.5*iqr
         upper_bound = q3 + 1.5*iqr
         print(lower_bound, upper_bound)
        78.5 94.5
In [30]:
         r_outlier = []
         for i in rscore:
             if i < lower_bound or i > upper_bound:
                  r outlier.append(i)
                 print(r_outlier)
In [31]: median = np.median(rscore)
         median
Out[31]: 86.0
In [32]: |df['Writing'] = np.where(df['Writing'] > upper_bound, median, df['Writing'])
         df['Writing']
Out[32]: 0
               86.0
               91.0
               83.0
          Name: Writing, dtype: float64
In [33]: x = df.drop(axis=1, columns=['Region', 'Gender', 'Joining Date'])
         Х
```

Out[33]:		Name	Maths	Reading	Writing	Placement
	0	abc	96.0	77.0	86.0	88.0
	5	klm	88.0	91.0	91.0	84.0
	9	def	92.0	93.0	83.0	93.0

Normalization & Standardization

```
In [34]: min_max_scaler = preprocessing.MinMaxScaler()
   df[['Maths', 'Reading', 'Writing', 'Placement']] = min_max_scaler.fit_transform(
   df
```

Out[34]:		Name	Maths	Reading	Writing	Placement	Gender	Joining Date	Region
	0	abc	1.0	0.000	0.375	0.444444	Male	2018	Pune
	5	klm	0.0	0.875	1.000	0.000000	Male	2023	Solapur
	9	def	0.5	1.000	0.000	1.000000	Male	2019	Pune