Abstract Algebra by Pinter, Chapter 29

Amir Taaki

Abstract

Chapter 29 on Degress of Field Extensions

${\bf Contents}$

1	A. Examples of Finite Extensions	2
	1.1 Q1	2
	1.2 Q2	2
	1.3 Q3	2
	1.4 Q4	2
	1.5 Q5	3
	1.6 Q6	3
	1.7 Q7	3
		0
2	B. Further Examples of Finite Extensions	3
	2.1 Q1	3
	2.2 Q2	4
	2.3 Q3	4
	2.4 Q4	4
	·	
3	C. Finite Extensions of Finite Fields	4
	3.1 Q1	4
	3.2 $\stackrel{\circ}{\mathrm{Q}2}$	5
	3.3 Q3	5
	3.4 Q4	5
	3.5 $\overset{\circ}{\mathrm{Q5}}$	5
4	D. Degrees of Extensions	5
	4.1 Q1	5
	4.2 Q2	6
	4.3 Q3	6
	4.4 Q4	6
	4.4.1 a	6
	4.4.2 b	6
	4.5 Q5	6
	4.6 Q6	6
5	E. Short Questions Relating to Degrees of Extensions	7
	5.1 Q1	7
	5.2 Q2	7
	5.3 Q3	7
	5.4 Q4	7
	5.5 Q5	7
	5.6 Q6	7
c		-
6	F. Further Properties of Degrees of Extensions	7
	6.1 Q1	7
	6.2 Q2	7
	6.3 Q3	7
	6.4 Q4	8
	6.5 Q5	8

7	G. Fields of Algebraic Elements: Algebraic Numbers											8																		
	7.1	Q1																									 			8
	7.2	Q2																									 			8
	7.3	Q3																									 			8
	7.4	Q4																									 			8
	7.5	Q_5																									 			8

1 A. Examples of Finite Extensions

1.1 Q1

 $x^2 + 2$ has root $i\sqrt{s}$

$$\begin{aligned} & [\mathbb{Q}(i\sqrt{2}):\mathbb{Q}] = 2 \\ & \mathbb{Q}(i\sqrt{2}) = \{a + bi\sqrt{2}\} \end{aligned}$$

1.2 Q2

$$x = 2 + 3i$$
$$(x - 2)^2 = -9$$
$$x^2 - 4x + 13 = 0$$
$$\{a, bi\}$$

1.3 Q3

$$a = \sqrt{1 + \sqrt[3]{2}}$$

$$a^2 + 1 = \sqrt[3]{2}$$

$$a^2 + 1 \in \mathbb{Q}(a) \implies \sqrt[3]{2} \in \mathbb{Q}(a)$$

$$x = \sqrt[3]{2}$$

$$\therefore x^3 - 2 = 0$$

$$[\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}] = 3$$

Basis for $\mathbb{Q}(\sqrt[3]{2})$ is $\{1, 2^{\frac{1}{3}}, 2^{\frac{1}{3}}\}$

$$\begin{split} a^2 + (1 - \sqrt[3]{2}) &= 0 \\ \sqrt[3]{2} \in \mathbb{Q}(a) \implies \mathbb{Q}(a) &= \mathbb{Q}(a, \sqrt[3]{2}) \\ [\mathbb{Q}(a) : \mathbb{Q}(\sqrt[3]{2})] &= 2 \end{split}$$

Basis for $\mathbb{Q}(a)$ over $\mathbb{Q}(\sqrt[3]{2})$ is $\{1,a\}$. Thus basis for $\mathbb{Q}(a)$ over \mathbb{Q} is the products:

$$\{1, 2^{1/3}, 2^{2/3}, a, 2^{1/3}a, 2^{2/3}a\}$$

1.4 Q4

$$\begin{split} a &= \sqrt{2} + \sqrt[3]{4} \\ (a - \sqrt[3]{4})^2 &= 2 \\ a^2 - 2\sqrt[3]{4} + 4^{2/3} - 2 &= 0 \\ a^2 &= 2 + 2 \cdot 4^{1/3} - 4^{2/3} \\ a^2 &\in \mathbb{Q}(\sqrt{2} + \sqrt[3]{4}) \implies 4^{1/3} \in \mathbb{Q}(\sqrt{2} + \sqrt[3]{4}) \\ x &= \sqrt[3]{4} \\ \therefore x^3 - 4 &= 0 \\ [\mathbb{Q}(4^{\frac{1}{3}}) : \mathbb{Q}] &= 3 \end{split}$$

Basis is $\{1, 4^{\frac{1}{3}}, 4^{\frac{2}{3}}\}$. From earlier $a^2 = 2 + 2 \cdot 4^{\frac{1}{3}} - 4^{\frac{2}{3}}$ so $[\mathbb{Q}(\sqrt{2} + \sqrt[3]{4}) : \mathbb{Q}(4^{\frac{1}{3}})] = 2$.

Note that $4^{\frac{1}{3}} \notin \mathbb{Q}(2^{\frac{1}{2}})$, otherwise $4^{1/3} = a + b2^{\frac{1}{2}}$ which is impossible, since squaring both sides would lead to a contradiction. So $\mathbb{Q}(2^{\frac{1}{2}}) = \mathbb{Q}(2^{\frac{1}{2}}, 4^{\frac{1}{3}})$

Basis for $\mathbb{Q}(2^{\frac{1}{2}} + 4^{\frac{1}{3}})$

$$\{1,4^{\frac{1}{3}},4^{\frac{2}{3}},2^{\frac{1}{2}},4^{\frac{1}{3}}2^{\frac{1}{2}},4^{\frac{2}{3}}2^{\frac{1}{2}}\}$$

1.5 Q5

$$x^2 - 5 = 0 \implies [\mathbb{Q}(\sqrt{5}) : \mathbb{Q}] = 2$$

Let $\sqrt{7} \in \mathbb{Q}(\sqrt{5})$, then

$$\sqrt{7} = a + b\sqrt{5} : a, b \in \mathbb{Q}$$

Squaring both sides we have

$$7 = a^2 + 2ab\sqrt{5} + 5b^2$$

This is a contradiction since re-arranging terms would mean $\sqrt{5} \in \mathbb{Q}$ and hence a rational number for $a, b \neq 0$. If b = 0, then $\sqrt{7} = a$ which is rational and if a = 0 then $\sqrt{7} = b\sqrt{5}$ or $\sqrt{7} \cdot \sqrt{5} = 5b$, again a contradiction.

$$\implies \sqrt{7} \notin \mathbb{Q}(\sqrt{5})$$

$$x^2 - 7 = 0 \implies [\mathbb{Q}(\sqrt{7}) : \mathbb{Q}] = 2$$

$$\implies \mathbb{Q}(\sqrt{5}, \sqrt{7}) = \{a + b\sqrt{5} + c\sqrt{7} + d\sqrt{35} : a, b, c, d \in \mathbb{Q}\}$$

1.6 Q6

$$\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) = \{a\sqrt{2} + b\sqrt{3} + c\sqrt{5} + d\sqrt{6} + e\sqrt{10} + f\sqrt{15} : a, b, c, d, e, f \in \mathbb{Q}\}$$

1.7 Q7

 π is algebraic meands it is the root of some polynomial in the field. Of degree 3 means the polynomial has degree 3 which is also the degree of the field.

Suppose $\pi \in \mathbb{Q}(\pi^3)$, then

$$\pi = a + b\pi^3$$

but this is impossible since π is transcendental over \mathbb{Q} and $\pi \neq \pi^3$.

This π is algebraic over $\mathbb{Q}(\pi^3)$ with

$$x^3 - \pi^3 = 0$$

$$\mathbb{Q}(\pi) = \mathbb{Q}(\pi^3, \pi)$$
$$x^3 - \pi^3 \in \mathbb{Q}(\pi^3)[x]$$

2 B. Further Examples of Finite Extensions

2.1 Q1

$$\sqrt{a} + \sqrt{b} \in F$$

$$a + 2\sqrt{a}\sqrt{b} + b \in F$$

$$\operatorname{char} F \neq 2 \implies 2\sqrt{a}\sqrt{b} \neq 0$$

$$\implies 2\sqrt{a}\sqrt{b} \in F \implies \sqrt{a}\sqrt{b} \in F$$

$$\sqrt{ab}(\sqrt{a} + \sqrt{b}) = a\sqrt{b} + b\sqrt{a} \in F$$
$$b(\sqrt{a} + \sqrt{b}) = b\sqrt{b} + b\sqrt{a} \in F$$

$$(a\sqrt{b} + b\sqrt{a}) - (b\sqrt{b} + b\sqrt{b}) = (a - b)\sqrt{b} \in F$$
$$\implies \sqrt{b} \in F$$

Likewise for \sqrt{a} .

$$\sqrt{a} + \sqrt{b} \in F(\sqrt{a}, \sqrt{b})$$
$$\sqrt{a}, \sqrt{b} \in F(\sqrt{a} + \sqrt{b})$$
$$\implies F(\sqrt{a}, \sqrt{b}) = F(\sqrt{a} + \sqrt{b})$$

2.2 Q2

$$F(\sqrt{a}) = \{x + y\sqrt{a} : x, y \in F\}$$
$$\sqrt{b} \in F(\sqrt{a})$$
$$\sqrt{b} = x + y\sqrt{a}$$
$$b = x^2 + 2xy\sqrt{a} + y^2a$$

which implies \sqrt{a} is rational, a contradiction.

$$\begin{split} \sqrt{b} \not\in F(\sqrt{a}) \\ \Longrightarrow & [F(\sqrt{a},\sqrt{b}):F] = [F(\sqrt{a},\sqrt{b}):F(\sqrt{a})][F(\sqrt{a}):F] \\ & = [F(\sqrt{b}):F][F(\sqrt{a}:F] \\ & = 4 \end{split}$$

2.3 Q3

Use sage.

2.4 Q4

$$a + b = 7$$

$$a = 7 - b$$

$$(a - b)^{2} = (7 - 2b)^{2} = 9$$

$$7 - 2b = \pm 3$$

$$2b = 10, 4$$

$$b = 5, 2$$

$$a = 2, 5$$

$$\mathbb{Q}(\sqrt{2}, \sqrt{5})$$

$$\{1, \sqrt{2}, \sqrt{5}\}$$

3 C. Finite Extensions of Finite Fields

3.1 Q1

$$a(x) = p(x)q(x) + r(x)$$

where r(x) = 0 or $\deg r(x) < \deg b(x)$

$$\forall a(x) \in F[x], a(x) = p(x)q(x) + r(x)$$

 $\implies \langle p(x) \rangle + a(x) = \langle p(x) \rangle + r(x)$

$$\deg r(x) < n \text{ and } F[x]/\langle p(x) \rangle \cong F(c)$$

3.2 Q2

 $p(x) = x^2 + x + 1$ is irreducible because p(0) = 1 and p(1) = 1.

Quotient field formed by p(x) consists of all 1 degree polynomials of the form $a_0 + a_1 x$, where $a_i \in \mathbb{Z}_2$.

There is a c st p(c) = 0, and

$$\mathbb{Z}_2(c) \cong \mathbb{Z}_2[x]/\langle p(x) \rangle$$

$$p(c) = c^2 + c + 1 = 0$$

$$\implies c^2 = c + 1$$

+	0	1	\mathbf{c}	c + 1
0	0	1	c	c + 1
1	1	0	c + 1	$^{\mathrm{c}}$
$^{\mathrm{c}}$	c	c + 1	0	1
c + 1	c + 1	\mathbf{c}	1	0

×	0	1	\mathbf{c}	c + 1
0	0	0	0	0
1	0	1	\mathbf{c}	c + 1
\mathbf{c}	0	\mathbf{c}	c + 1	1
c + 1	c + 1	\mathbf{c}	1	\mathbf{c}

3.3 Q3

$$p(x) = x^3 + x^2 + 1$$

 $p(0)=1, p(1)=1 \implies p(x)$ is irreducible and has no roots in \mathbb{Z}_2 . deg $p(x)=3 \implies B=\{1,x,x^2\}$ Let there be a c such that p(c)=, then $\mathbb{Z}_2(c)\cong \mathbb{Z}_2[x]/\langle p(x)\rangle$.

3.4 Q4

a is algebraic over F of degree n

$$\implies F(a) = \{a_0 + \dots + a_{n-1}x^{n-1} : a_i \in F\}$$

There are q possible values for a_0,a_1,\dots,a_{n-1} each and so $|\{(a_0,\dots,a_{n-1}):a_i\in F\}|=q^n$

$$\implies |F(a)| = q^n$$

3.5 Q5

Let $p(x) = x^2 - k$ where $k \in \mathbb{Z}_p$ then if p(x) is reducible then $c^2 = k$.

From 23H, let $h: \mathbb{Z}_p^* \to \mathbb{Z}_p^*$ be defined by $h(\overline{a}) = \overline{a}^2$, then the range of h has (p-1)/2 and so is non-injective and non-surjective.

This means there exists $k \in \mathbb{Z}_p$, such that there is no $c \in \mathbb{Z}_p : c^2 = k$, and so $p(x) = x^2 - k$ has no roots in \mathbb{Z}_p .

4 D. Degrees of Extensions

4.1 Q1

K forms an extension field over F with basis of dimension $1 \iff K = F$.

4.2 Q2

 $L\subset K\implies \dim L<\dim K.$

Dimensions cannot be the same or that would imply they are the same.

So L divides the order of K.

$$[K:F] = [K:L][L:F]$$

But [K:F] is prime so L cannot exist.

4.3 Q3

$$a \in K - F \implies [F(a) : F] \le [K : F]$$

But there are subfields of K except F since the extension order is prime so K = F(a).

4.4 Q4

4.4.1 a

$$F(a,b) = (F(a))(b)$$

$$[F(a,b):F] = [F(a,b):F(a)][F(a):F]$$

= $[F(a,b):F(a)] \cdot m$

However [F(b): F] = n so [F(a,b): F] = [F(a,b): F(b)][F(b): F] = n Thus [F(a,b)] = mx = ny and $gcd(m,n) = 1 \implies [F(a,b): F] = mn$.

4.4.2 b

$$K \subseteq F(a), F(b) : K = F(a) \cap F(b)$$
$$[F(a) : F] = [F(a) : K][K : F]$$
$$[F(b) : F] = [F(b) : K][K : F]$$

$$\frac{m}{n} = \frac{[F(a):K]}{[F(b):K]}$$

Since gcd(m, n) = 1, m and n share no divisors, and so they cannot be reduced.

But [F(a):F]=m and [F(b):F]=n so this means [F(a):K]=m, [F(b):K]=n and since [F(a):F]=m, so K=F.

4.5 Q5

The extension is finite and algebraic, so any $a \in F(a)$ forms a subfield of F(a).

But F(a) has no subfields so $F(a^n) = F(a)$.

4.6 Q6

$$p(a) = 0 \implies L = F(a) \subseteq K$$

 $\implies \deg p(x) = [L : F]$

But,

$$[K:F] = [K:L][L:F]$$
$$= [K:L] \cdot \deg p(x)$$
$$\deg p(x)|[K:F]$$

5 E. Short Questions Relating to Degrees of Extensions

5.1 Q1

$$\frac{1}{a} \in F(a)$$
 and $a \in F(\frac{1}{a}) \implies F(a) = F(\frac{1}{a})$

p(x) is the minimum polynomial for a, then substitute a + c or ac and the degree of the polynomial doesn't change.

5.2 Q2

$$p(x) = x - a, \deg p(x) = 1$$

5.3 Q3

If $c \in \mathbb{Q}$, then $\deg p(x) = 1$, thus

$$\deg p(x) > 1 \implies c \notin \mathbb{Q}$$

5.4 Q4

$$\begin{split} b(c) &= x^2 - \frac{m}{n} = 0 \\ p \mid m, p^2 \nmid m \implies b(x) \text{ is irreducible} \\ &\implies \sqrt{m/n} \notin \mathbb{Q} \end{split}$$

5.5 Q5

$$b(x) = x^q - \frac{m}{n}$$

and Eisenstein's criteria still holds.

5.6 Q6

F(a) is a finite extension of F, and F(a,b) is a finite extension of F(a).

 $(r \cdot s)(x) = r(x)s(x), (r \cdot s)(a) = 0$ and $(r \cdot s)(b) = 0$, so F(a,b) is a finite extension of F since the degree of $r \cdot s$ is finite.

6 F. Further Properties of Degrees of Extensions

6.1 Q1

K is a finite extension of F, so all elements of K are also algebraic over F. So all algebraic extensions of K are also finite algebraic extensions of F.

$$[K(a):F] = [K(a):K][K:F]$$

$6.2 \quad Q2$

$$[K(a):F] = [K(b):F(b)][F(b):F]$$
$$\implies [F(b):F] \mid [K(b):F]$$

6.3 Q3

$$p(x) = a_0 + \dots + a_{n-1}x^{n-1}, a_i \in F$$

p(b) = 0 over F. Let minimum polynomial of K be q(x) then

$$p(x) = s(x)q(x) + r(x)$$

therefore minimum polynomial for b over K is r(x) and $\deg r(x) \leq \deg p(x)$

$$\implies [K(b):K] \leq [F(b):F]$$

6.4 Q4

$$[K(b):K] \leq [F(b):F]$$

$$[K(b):F] = [K(b):K][K:F]$$

$$[K(b):F] = [K(b):F(b)][F(b):F]$$

$$\Longrightarrow [K(b):K][K:F] = [K(b):F(b)][F(b):F]$$
 But
$$[K(b):K] \leq [F(b):F]$$

$$\Longrightarrow [K:F] \geq [K(b):F(b)]$$

6.5 Q5

The degree of the minimum polynomial does not divide the degree of p(x), so when applying polynomial long division there will be a remainder left over, which p(x) itself. So p(x) is not divided by q(x).

7 G. Fields of Algebraic Elements: Algebraic Numbers

7.1 Q1

F(a,b) is algebraic extension, and $a+b, a-b, ab, a/b \in F(a,b)$

7.2 Q2

Every element of the set forms a closed field over F, so the set is a subfield of K which contains F.

7.3 Q3

All the coefficients belong to \mathbb{A} which are algebraic over \mathbb{Q} and hence form a finite extension of \mathbb{Q} .

7.4 Q4

 $\mathbb{Q}_1(c) \text{ is a finite extension of } \mathbb{Q}_1 \text{ and } \mathbb{Q}_1 \text{ is a finite extension of } \mathbb{Q} \implies \mathbb{Q}_1(c) \text{ is a finite extension of } \mathbb{Q}.$

$7.5 Q_5$

c is the root of a finite polynomial whose coefficients are in finite extensions of \mathbb{Q} , and so c forms a finite extension over $\mathbb{Q} \implies c \in \mathbb{A}$.