

1/38

$$-\mathsf{E} - \bigcirc \mathsf{A} - \bigcirc \mathsf{CO_2Na} - \mathsf{E} - \bigcirc \mathsf{O} - \mathsf{OMe}$$

ELECTRON-RICH ARYLCHALCOGENO GROUPS WITH DIFFERENT SOLUBILITY CHARACTERISTICS.

FIG. 1A

CORE GROUPS WITH DIFFERENT ATTACHMENT CHARACTERISTICS.

FIG. 1B

FIG. 2

FIG. 3

4/38

ArE-12,
$$X = Y = H$$
ArE-18, $X = H$, $Y = O(CH_2)_3EAr$
ArE-27, $Y = O(CH_2)_3EAr$
ArE-3

CH₃C

CH₂C

CH₂C

CH₂C

CH₂C

CH₂C

CH₃C

CH₃C

CH₃C

CH₂C

CH

FIG. 4

FIG. 5

FIG. 6

7/38

FIG. 7

FIG. 8

$$R_{2}E + HOOH$$

$$R = Se, Te$$

$$X = CI, Br, I, SR', SeR'$$

$$R = Se = OH$$

$$R =$$

FIG. 9

FIG. 10

FIG. 11

13/38

FIG. 13

15/38

FIG. 15

17/38

FIG. 17

FIG. 18

FIG. 20

FIG. 21A

FIG. 21B

FIG. 21C

FIG. 21D

FIG. 21E

FIG. 21F

FIG. 22A

FIG. 22B

24/38

DISTRIBUTION OF ENTEROMORPHA ZOOSPORES AFTER EXPOSURE TO A SURFACE PRESSURE OF 56 KPa

FIG. 23

PERCENTAGE REMOVAL OF ENTEROMORPHA ZOOSPORES AFTER EXPOSURE TO A SURFACE PRESSURE OF 56 KPa

FIG. 24A

FIG. 24B

FIG. 25

FIG. 26

FIG. 27

FIG. 28

28/38

% REMOVAL OF ENTEROMORPHA SPORES FROM DENDRIMER COATINGS AFTER SURFACE PRESSURE OF 77 kPa

FIG. 29

FIG. 30

29/38

ENTEROMORPHA BIOMASS REMAINING ON DENDRIMER COATINGS AFTER SHEAR STRESS OF 55 Pa

FIG. 31

FIG. 32

FIG. 33

FIG. 34

31/38

DENSITY OF ENTEROMORPHA SPORES REMAINING AFTER PRESSURE OF 83 kPa UNDER WATER JET

FIG. 35

PERCENT REMOVAL OF ENTEROMORPHA SPORES FROM SOL-GELS AFTER PRESSURE OF 83 kPa UNDER WATER JET

FIG. 36

32/38

DENSITY OF ENTEROMORPHA SPORES REMAINING AFTER SHEAR STRESS OF 55 Pa

FIG. 37

PERCENT REMOVAL OF ENTEROMORPHA SPORES FROM SOL-GELS AFTER SHEAR STRESS OF 55 Pa

FIG. 38

33/38

FIG. 39

ENTEROMORPHA BIOMASS REMAINING ON SOL-GEL COATINGS AFTER SPORELINGS EXPOSED TO 55 PA SHEAR STRESS

FIG. 40

34/38

FIG. 41

35/38

SETTLEMENT OF ULVA ZOOSPORES ON SOLGELS CONTAINING CATALYSTS

FIG. 42

DENSITY OF *ULVA* SPORES REMAINING AFTER EXPOSURE TO A WATER JET SURFACE PRESSURE OF 64 kPa

FIG. 43

36/38

REMOVAL OF ULVA SPORES FROM SOLGELS CONTAINING CATALYSTS

FIG. 44

GROWTH OF ULVA SPORELINGS ON SOLGELS CONTAINING CATALYSTS

FIG. 45

FIG. 46

38/38

FIG. 47

PERCENTAGE REMOVAL OF ULVA SPORELINGS FROM SOLGELS CONTAINING CATALYSTS AFTER EXPOSURE TO SHEAR STRESS OF 53 Pa

FIG. 48

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER: ___

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.