Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Under Review, ICCV'21

Presenter: Sungwon Hwang

June 21, 2021

Ze Liu^{†*} Yutong Lin^{†*} Yue Cao^{*} Han Hu^{*‡} Yixuan Wei[†] Zheng Zhang Stephen Lin Baining Guo Microsoft Research Asia

{v-zeliu1, v-yutlin, yuecao, hanhu, v-yixwe, zhez, stevelin, bainguo}@microsoft.com

Introduction

Advents of different non-global self-attention for Vision

Global Attention

• ViT (Vision Transformer)

• DETR (Detection Transformer)

• (Spatially) Local Attention

• Swin (Sliding window) Transformer

• (HaloNet) Scaling Local Self-Attention

Introduction

Two main differences in two modalities: Vision vs. NLP

• Scale of unit information of interest

NLP	Vision
Tokens are all of a fixed scale	Locality are of variable scale

• Quadratic Size increment of image vs. Linear size increment of passages

Passage 1

Food has always been considered one of the most salient markers of cultural traditions. When I was a small child, food was the only thing that helped identify my family as Filipino American. We ate pansit lug-lug (a noodle dish) and my father put patis (salty fish sauce) on everything. However, even this connection lessened as I grew older. As my parents became more acculturated, we ate less typically Filipino food. When I was twelve, my mother took cooking classes and learned to make French and Italian dishes. When I was in high school, we ate chicken marsala and shrimp fra diablo more often than Filipino dishes like pansit lug-lug.

Key contribution of this paper

Shifting (Not Sliding) windows

Local Self-Attention in Shifting Windows

- Windowed Multi-head Self Attention (W-MSA) & Shifted Windowed Multi-head Self Attention (SW-MSA)
 - · Local expansion of receptive field
 - Computational Complexity: $O\left((M^2)^2C \cdot \frac{w}{M} \cdot \frac{h}{M}\right) = O(M^2whC)$
 - Relative Position Bias added to every self-attention instead of positional embeddings
 - Connection across windows (Increment of receptive field)

$$\operatorname{Attention}(Q,K,V) = \operatorname{SoftMax}(QK^T/\sqrt{d} + B)V,$$

Local Self-Attention in Shifting Windows

- Windowed Multi-head Self Attention (W-MSA) & Shifted Windowed Multi-head Self Attention (SW-MSA)
 - · Local expansion of receptive field
 - Computational Complexity: $O\left((M^2)^2C \cdot \frac{w}{M} \cdot \frac{h}{M}\right) = O(M^2whC)$
 - For sub-windows, Padding noticeably increases computational complexity

Local Self-Attention in Shifting Windows

- Windowed Multi-head Self Attention (W-MSA) & Shifted Windowed Multi-head Self Attention (SW-MSA)
 - · Local expansion of receptive field
 - Computational Complexity: $O\left((M^2)^2C \cdot \frac{w}{M} \cdot \frac{h}{M}\right) = O(M^2whC)$
 - For sub-windows, Padding noticeably increases computational complexity

(b) Two Successive Swin Transformer Blocks

Overall Architecture

- Overall Architecture
 - Patch Merging (down-sampling): 2x2 => 1d-concat => 4C to 2C mlp
 - Number of patches per window (M) fixed to 7 for all stage

Ablation Study

Ablation study

- Different types of injection of positional information
 - w/o app: no application of embedding in the first scaled-dot product term

	Imag	geNet		OCO	ADE20k
	top-1	top-5	APbox	AP ^{mask}	mIoU
w/o shifting	80.2	95.1	47.7	41.5	43.3
shifted windows	81.3	95.6	50.5	43.7	46.1
no pos.	80.1	94.9	49.2	42.6	43.8
abs. pos.	80.5	95.2	49.0	42.4	43.2
abs.+rel. pos.	81.3	95.6	50.2	43.4	44.0
rel. pos. w/o app.	79.3	94.7	48.2	41.9	44.1
rel. pos.	81.3	95.6	50.5	43.7	46.1

Performing well on LOCALIZATION TASKS

Classification

• ViT is claimed to work well when PRETRAINED WITH LARGER Dataset...?

(a) Regular ImageNet-1K trained models										
method	image size	#param.	FLOPs	throughput (image / s)	_					
RegNetY-4G [47]	224 ²	21M	4.0G	1156.7	80.0					
RegNetY-8G [47]	224 ²	39M	8.0G	591.6	81.7					
RegNetY-16G [47]	224 ²	84M	16.0G	334.7	82.9					
EffNet-B3 [57]	300^{2}	12M	1.8G	732.1	81.6					
EffNet-B4 [57]	380^{2}	19M	4.2G	349.4	82.9					
EffNet-B5 [57]	456 ²	30M	9.9G	169.1	83.6					
EffNet-B6 [57]	528 ²	43M	19.0G	96.9	84.0					
EffNet-B7 [57]	600^{2}	66M	37.0G	55.1	84.3					
ViT-B/16 [19]	384^{2}	86M	55.4G	85.9	77.9					
ViT-L/16 [19]	384 ²	307M	190.7G	27.3	76.5					
DeiT-S [60]	224 ²	22M	4.6G	940.4	79.8					
DeiT-B [60]	224 ²	86M	17.5G	292.3	81.8					
DeiT-B [60]	384 ²	86M	55.4G	85.9	83.1					
Swin-T	224 ²	29M	4.5G	755.2	81.3					
Swin-S	224^{2}	50M	8.7G	436.9	83.0					
Swin-B	224 ²	88M	15.4G	278.1	83.3					
Swin-B	384 ²	88M	47.0G	84.7	84.2					

1	ViT-G/14	90.45%	1843M	~
2	ViT-MoE-15B (Every-2)	90.35%	14700M	~

(b) Im	(b) ImageNet-22K pre-trained models										
method	image size #param.		FLOPs	throughput (image / s)							
R-101x3 [37]	384 ²	388M	204.6G		84.4						
R-152x4 [37]	480^{2}	937M	840.5G	-	85.4						
ViT-B/16 [19]	384 ²	86M	55.4G	85.9	84.0						
ViT-L/16 [19]	384^{2}	307M	190.7G	27.3	85.2						
Swin-B	224 ²	88M	15.4G	278.1	85.2						
Swin-B	384^{2}	88M	47.0G	84.7	86.0						
Swin-L	384^{2}	197M	103.9G	42.1	86.4						

Table 1. Comparison of different backbones on ImageNet-1K classification. Throughput is measured using the GitHub repository of [65] and a V100 GPU, following [60].

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Performing well on LOCALIZATION TASKS

• Object Detection

P. (2)	(a) Various frameworks												
Method	Backbone	AP ^{box}	AP ₅₀	AP ₇₅ box	#param.	FLOPs	FPS						
Cascade	R-50	46.3	64.3	50.5	82M	739G	18.0						
Mask R-CNN	Swin-T	50.5	69.3	54.9	86M	745G	15.3						
ATCC	R-50	43.5	61.9	47.0	32M	205G	28.3						
ATSS	Swin-T	47.2	66.5	51.3	36M	215G	22.3						
RepPointsV2	R-50	46.5	64.6	50.3	42M	274G	13.6						
Reprofits v 2	Swin-T	50.0	68.5	54.2	45M	283G	12.0						
Sparse	R-50	44.5	63.4	48.2	106M	166G	21.0						
R-CNN	Swin-T	47.9	67.3	52.3	110M	172G	18.4						

(b) Various backbones w. Cascade Mask R-CNN

		-				AP ₇₅ ^{mask}			
DeiT-S [†]				1					
						43.4			
Swin-T	50.5	69.3	54.9	43.7	66.6	47.1	86M	745G	15.3
X101-32									
Swin-S	51.8	70.4	56.3	44.7	67.9	48.5	107M	838G	12.0
X101-64	48.3	66.4	52.3	41.7	64.0	45.1	140M	972G	10.4
Swin-B	51.9	70.9	56.5	45.0	68.4	48.7	145M	982G	11.6

(c) System-level Comparison

Method		i-val AP ^{mask}		-dev AP ^{mask}	#param.	FLOPs
RepPointsV2* [11]	-	-	52.1	-	-	-
GCNet* [6]	51.8	44.7	52.3	45.4	-	1041G
RelationNet++* [12]	-	-	52.7	-	-	-
SpineNet-190 [20]	52.6	-	52.8	-	164M	1885G
ResNeSt-200* [75]	52.5	-	53.3	47.1	-	-
EfficientDet-D7 [58]	54.4	-	55.1	-	77M	410G
DetectoRS* [45]	-	_	55.7	48.5	-	-
YOLOv4 P7* [3]	-	-	55.8	_	-	-
Copy-paste [25]	55.9	47.2	56.0	47.4	185M	1440G
X101-64 (HTC++)	52.3	46.0	-	-	155M	1033G
Swin-B (HTC++)	56.4	49.1	J-1	-	160M	1043G
Swin-L (HTC++)	57.1	49.5	57.7	50.2	284M	1470G
Swin-L (HTC++)*	58.0	50.4	58.7	51.1	284M	(=)

Performing well on LOCALIZATION TASKS

• Semantic Segmentation

ADE	20K	val	test	#	EL ODe	EDC
Method	Backbone	mIoU	score	#param.	FLOPS	FPS
DANet [22]	ResNet-101	45.2	-	69M	1119G	15.2
DLab.v3+ [10]	ResNet-101	44.1	-	63M	1021G	16.0
ACNet [23]	ResNet-101	45.9	38.5	_		
DNL [68]	ResNet-101	46.0	56.2	69M	1249G	14.8
OCRNet [70]	ResNet-101	45.3	56.0	56M	923G	19.3
UperNet [66]	ResNet-101	44.9	-	86M	1029G	20.1
OCRNet [70]	HRNet-w48	45.7	-	71M	664G	12.5
DLab.v3+ [10]	ResNeSt-101	46.9	55.1	66M	1051G	11.9
DLab.v3+ [10]	ResNeSt-200	48.4	-	88M	1381G	8.1
SETR [78]	T-Large [‡]	50.3	61.7	308M	-	-
UperNet	DeiT-S [†]	44.0	-	52M	1099G	16.2
UperNet	Swin-T	46.1	-	60M	945G	18.5
UperNet	Swin-S	49.3	-	81M	1038G	15.2
UperNet	Swin-B [‡]	51.6	-	121M	1841G	8.7
UperNet	Swin-L [‡]	53.5	62.8	234M	3230G	6.2

Table 3. Results of semantic segmentation on the ADE20K val and test set. † indicates additional deconvolution layers are used to produce hierarchical feature maps. ‡ indicates that the model is pre-trained on ImageNet-22K.

Overall Architecture

- SWIN: Strong in Localization specifically
 - ViT-based models outperform Swin in image classification
 - Swin outperforms in localization tasks such as detection & segmentation.

Swin Transformer

```
Ranked #2 Object Detection on COCO test-dev State of the Art Instance Segmentation on COCO test-dev Object Detection on COCO minival State of the Art Instance Segmentation on COCO minival State of the Art Semantic Segmentation on ADE20K Ranked #2 Semantic Segmentation on ADE20K val
```

Thoughts: Why it works well?

Efficient Diffusion of Receptive Field when using Local Self-attention

- Comparison with HaloNet #1: Receptive Field
 - Halonet: Gate to communication to other blocks (windows for Swin) is determined by h, but it's too small
 - Swin: Each quarter of patches in the previous window attend to new neighbors whose size is equivalent to 3 times the quarter.
- Comparison with HaloNet #2: Pixel-wise vs. patch-wise
 - HaloNet: Pixel-wise local self-attention
 - Swin: Patch-wise local self-attention

HaloNet Model	b	h	r_v	r_b	Total Layers	l_3	s	d_f	Params (M)	EfficientNet Params (M)	EfficientNet Image Size (M)
HO	8	3	1.0	0.5	50	7	256	_	5.5	B0: 5.3	224
H1	8	3	1.0	1.0	59	10	256	-	8.1	B1: 7.8	240
H2	8	3	1.0	1.25	62	11	256	_	9.4	B2: 9.2	260
H3	10	3	1.0	1.5	65	12	320	1024	12.3	B3: 12	300
H4	12	2	1.0	3	65	12	384	1280	19.1	B4: 19	380
H5	14	2	2.5	2	98	23	448	1536	30.7	B5: 30	456
H6	8	4	3	2.75	101	24	512	1536	43.4	B6: 43	528
H7	10	3	4	3.5	107	26	600	2048	67	B7: 66	600