

Art of Problem Solving 2015 TSTST

Team Selection Test for the Selection Team of IMO 2016 (2 days)

_	Day 1
1	Let a_1, a_2, \ldots, a_n be a sequence of real numbers, and let m be a fixed positive integer less than n . We say an index k with $1 \le k \le n$ is good if there exists some ℓ with $1 \le \ell \le m$ such that $a_k + a_{k+1} + \ldots + a_{k+\ell-1} \ge 0$, where the indices are taken modulo n . Let T be the set of all good indices. Prove that $\sum_{k \in T} a_k \ge 0$.
	Proposed by Mark Sellke
2	Let ABC be a scalene triangle. Let K_a , L_a and M_a be the respective intersections with BC of the internal angle bisector, external angle bisector, and the median from A. The circumcircle of AK_aL_a intersects AM_a a second time at point X_a different from A. Define X_b and X_c analogously. Prove that the circumcenter of $X_aX_bX_c$ lies on the Euler line of ABC. (The Euler line of ABC is the line passing through the circumcenter, centroid, and orthocenter of ABC.)
	Proposed by Ivan Borsenco
3	Let P be the set of all primes, and let M be a non-empty subset of P . Suppose that for any non-empty subset $p_1, p_2,, p_k$ of M , all prime factors of $p_1p_2p_k+1$ are also in M . Prove that $M=P$.
	Proposed by Alex Zhai
_	Day 2
4	Let x, y , and z be real numbers (not necessarily positive) such that $x^4 + y^4 + z^4 + xyz = 4$. Show that $x \le 2$ and $\sqrt{2-x} \ge \frac{y+z}{2}$.
	Proposed by Alyazeed Basyoni
5	Let $\varphi(n)$ denote the number of positive integers less than n that are relatively prime to n . Prove that there exists a positive integer m for which the equation $\varphi(n) = m$ has at least 2015 solutions in n .
	Proposed by Iurie Boreico

Contributors: v_Enhance, raxu

Art of Problem Solving 2015 TSTST

6

A Nim-style game is defined as follows. Two positive integers k and n are specified, along with a finite set S of k-tuples of integers (not necessarily positive). At the start of the game, the k-tuple (n,0,0,...,0) is written on the blackboard. A legal move consists of erasing the tuple $(a_1,a_2,...,a_k)$ which is written on the blackboard and replacing it with $(a_1+b_1,a_2+b_2,...,a_k+b_k)$, where $(b_1,b_2,...,b_k)$ is an element of the set S. Two players take turns making legal moves, and the first to write a negative integer loses. In the event that neither player is ever forced to write a negative integer, the game is a draw.

Prove that there is a choice of k and S with the following property: the first player has a winning strategy if n is a power of 2, and otherwise the second player has a winning strategy.

Proposed by Linus Hamilton

www.artofproblemsolving.com/community/c102039

Contributors: v_Enhance, raxu