## PGR 210 - Natural Language Processing Part

Kristiania University College

By Huamin Ren

Huamin.ren@kristiania.no



#### Outline of week 45

- 1. GloVe
- 2. Similary metric
- 3. K-means clustering



# 1. GloVe



#### 1.1

- Word2vec was a breakthrough, but it relies on a neural network model that must be trained using backpropagation.
- GloVec is applying direct optimization of the global vectors of word co-occurrences (co-occurrences across the entire corpus)

https://nlp.stanford.edu/pubs/glove.pdf?fileGuid=WyYwxqq8kWjKdWgd



# 1.2 Conceptual model for the GloVe model's implementation





#### 1.3

Considering the Word-Context (WC) matrix, Word-Feature (WF)
matrix, and Feature-Context (FC) matrix, we try to factorize

#### WC = WF FC

- Typically initialize WF and FC with some random weights and attempt to multiply them to get WC' (an approximation of WC) and measure how close it is to WC.
- Do this multiple times using *Stochastic Gradient Descent* (SGD) to minimize the error.



- WF (*Word-Feature*): word embeddings for each word, where *F* can be present to a specific number of dimensions.
- Similarity between Word2Vec and: build a vector space where the position of each word is influenced by its neighboring words based on their context and semantics.
- Difference in the two models: Word2Vec starts with local individual examples of word co-occurrence pairs; GloVe starts with global aggregated co-occurrence statistics across all words in the corpus.



# 2. Similarity metric



## 2.1 Similarity scores

- Similarity scores (and distances) tell on how similar or how far apart two documents are based on the similarity (or distance) of the vectors you used to represent them
- Some familiar distances:
  - Euclidean or Cartesian distance, or root mean square error (RMSE): 2-norm or L2, MSE,
  - Squared Euclidean distance, sum of squares distance (SSD): L2
  - Cosine or angular or projected distance: normalized dot product
  - Minkowski distance: p-norm or Lp
  - Fractional distance, fractional norm: p-norm or Lp for 0 < p < 1
  - City block, Manhattan, or taxicab distance; sum of absolute distance (SAD)

Høyskolen

- V1, V2
- Sim(V1, V1) = 1, 1 m documents, v1, v2, v1m
- Distance(V1, V1) = 0
- Sim(V1, V2) = 0.49
- Sim(V1, V3) = 0.111
- Sim(V1, V4) = 0.47
- Threshold=0.48



#### Pairwise distances available in sklearn

'cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan', 'braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'



#### 2.2 Distance

- Distance measures are often computed from similarity measures (scores) and vice versa such that distances are inversely proportional to similarity scores.
- For distances and similarity scores that range between 0 and 1, like probabilities, it's more common to use a formula like this:

```
similarity = 1. - distance
```

distance = 1. - similarity



$$hd(u,v) = \sum_{i=1}^{n} (u_i \neq v_i)$$

$$norm\_hd(u,v) = \frac{\sum_{i=1}^{n} (u_i \neq v_i)}{n}$$

U=[1 1 1 0 0] v=[0 0 0 1 1 ] What is hd? What is norm\_hd?



### 2.3 Use similarity on?

- Lexical similarity: This involves observing the contents of the text documents with regards to its syntax, structure, and content and measuring their similarity based on these parameters.
- **Semantic similarity:** This involves determining the semantics, meaning, and context of the documents and then determining how close they are to each other.



- Term similarity: Similarity between individual tokens or words
- Document similarity: Similarity between entire text documents



# 3. K-means Clustering



- The k-means clustering algorithm is a centroid-based clustering model that tries to cluster data into groups or clusters of equal variance.
- Disadvantage of this algorithm is that the number of clusters (k) needs to be specified in advance.
- Advantage: perhaps the most popular clustering algorithm, due to its ease of use as well as it being scalable with large amounts of data.



#### Mathematical definition

- A dataset X with N data points or samples, the task is to group them into K clusters, where K is a user-specified parameter.
- The k-means clustering algorithm will segregate the  $\bf N$  data points into  $\bf K$  disjoint separate clusters,  $C_k$ , and each of these clusters can be described by the means of the cluster samples.

Kristiania

• These means become the cluster centroids  $\mu_k$  such that these centroids are not bound by the condition that they have to be actual data points from the **N** samples in **X**.

## K-means procedure

#### Steps:

- 1. Choose initial **k** centroids  $\mu k$  by taking **k** random samples from the dataset **X**.
- 2. Update clusters by assigning each data point or sample to its nearest centroid point.
- 3. Recalculate and update clusters based on the new cluster data points for each cluster obtained from Step 2. Mathematically this can be represented as follows:

1. k=5 U1(x2)....u5(x1)

2. For each data xi: Compute distances, Find the closest cluster Assign xi to u5

3. recalculate:

u1:=(x2) U2 =(x3)

$$C_k = \{x_n : ||x_n - \mu_k|| \le all \, ||x_n - \mu_l||\}$$

$$\min \sum_{i=1}^{K} \sum_{x_n \in C_i} ||x_n - \mu_i||^2$$

