

Module 11: IPv4 Addressing

Introduction to Networks v7.0 (ITN)

11.1 IPv4 Address Structure

Network and Host Portions

- An IPv4 address is a 32-bit hierarchical address that is made up of a network portion and a host portion.
- When determining the network portion versus the host portion, you must look at the 32-bit stream.
- A subnet mask is used to determine the network and host portions.

The Subnet Mask

- To identify the network and host portions of an IPv4 address, the subnet mask is compared to the IPv4 address bit for bit, from left to right.
- The actual process used to identify the network and host portions is called ANDing.

The Prefix Length

- A prefix length is a less cumbersome method used to identify a subnet mask address.
- The prefix length is the number of bits set to 1 in the subnet mask.
- It is written in "slash notation" therefore, count the number of bits in the subnet mask and prepend it with a slash.

Subnet Mask	32-bit Address	Prefix Length
255.0.0.0	11111111.00000000.00000000.00000000	/8
255.255.0.0	11111111.111111111.00000000.00000000	/16
255.255.255.0	11111111.111111111.111111111.00000000	/24
255.255.255.128	11111111.111111111.111111111.10000000	/25
255.255.255.192	11111111.111111111.11111111.11000000	/26
255.255.255.224	11111111.11111111.11111111.11100000	/27
255.255.255.240	11111111.111111111.111111111.11110000	/28
255.255.255.248	11111111.111111111.111111111111000	/29
255.255.255.252	11111111.111111111.111111111.11111100	/30

IPv4 Address Structure

Determining the Network: Logical AND

- A logical AND Boolean operation is used in determining the network address.
- Logical AND is the comparison of two bits where only a 1 AND 1 produces a 1 and any other combination results in a 0.
- 1 AND 1 = 1, 0 AND 1 = 0, 1 AND 0 = 0, 0 AND 0 = 0
- 1 = True and 0 = False
- To identify the network address, the host IPv4 address is logically ANDed, bit by bit, with the subnet mask to identify the network address.

IPv4 Address Structure Video - Network, Host and Broadcast Addresses

This video will cover the following:

- Network address
- Broadcast Address
- First usable host
- Last usable host

Network, Host, and Broadcast Addresses

- Within each network are three types of IP addresses:
- Network address
- Host addresses
- Broadcast address

	Network Portion	Host Portion	Host Bits
Subnet mask 255.255.255. 0 or /24	255 255 255 11111111 11111111 11111111	0	
Network address 192.168.10.0 or /24	192 168 10 11000000 10100000 00001010	0	All 0s
First address 192.168.10 .1 or /24	192 168 10 11000000 10100000 00001010	1 00000001	All 0s and a 1
Last address 192.168.10.254 or /24	192 168 10 11000000 10100000 00001010	254 11111110	All 1s and a 0
Broadcast address 192.168.10 .255 or /24	192 168 10 11000000 10100000 00001010	255 11111111	All 1s

11.2 IPv4 Unicast, Broadcast, and Multicast

IPv4 Unicast, Broadcast, and Multicast Unicast

- Unicast transmission is sending a packet to one destination IP address.
- For example, the PC at 172.16.4.1 sends a unicast packet to the printer at 172.16.4.253.

IPv4 Unicast, Broadcast, and Multicast Broadcast

- Broadcast transmission is sending a packet to all other destination IP addresses.
- For example, the PC at 172.16.4.1 sends a broadcast packet to all IPv4 hosts.

IPv4 Unicast, Broadcast, and Multicast Multicast

- Multicast transmission is sending a packet to a multicast address group.
- For example, the PC at 172.16.4.1 sends a multicast packet to the multicast group address 224.10.10.5.

11.3 Types of IPv4 Addresses

Types of IPv4 Addresses Public and Private IPv4 Addresses

- As defined in in RFC 1918, public IPv4 addresses are globally routed between internet service provider (ISP) routers.
- Private addresses are common blocks of addresses used by most organizations to assign IPv4 addresses to internal hosts.
- Private IPv4 addresses are not unique and can be used internally within any network.

Network Address and Prefix	RFC 1918 Private Address Range
10.0.0.0/8	10.0.0.0 - 10.255.255.255
172.16.0.0/12	172.16.0.0 - 172.31.255.255
192.168.0.0/16	192.168.0.0 - 192.168.255.255

However, private addresses are not globally routable.

Types of IPv4 Addresses Routing to the Internet

- Network Address Translation (NAT) translates private IPv4 addresses to public IPv4 addresses.
- NAT is typically enabled on the edge router connecting to the internet.
- It translates the internal private address to a public global IP address.

Types of IPv4 Addresses Special Use IPv4 Addresses

Loopback addresses

- 127.0.0.0 /8 (127.0.0.1 to 127.255.255.254)
- Commonly identified as only 127.0.0.1
- Used on a host to test if TCP/IP is operational.

C:\Users\NetAcad> ping 127.0.0.1
Pinging 127.0.0.1 with 32 bytes of data:
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128

Link-Local addresses

- 169.254.0.0 /16 (169.254.0.1 to 169.254.255.254)
- Commonly known as the Automatic Private IP Addressing (APIPA) addresses or selfassigned addresses.
- Used by Windows DHCP clients to self-configure when no DHCP servers are available.

Types of IPv4 Addresses Legacy Classful Addressing

RFC 790 (1981) allocated IPv4 addresses in classes

- Class A (0.0.0.0/8 to 127.0.0.0/8)
- Class B (128.0.0.0 /16 191.255.0.0 /16)
- Class C (192.0.0.0 /24 223.255.255.0 /24)
- Class D (224.0.0.0 to 239.0.0.0)
- Class E (240.0.0.0 255.0.0.0)
- Classful addressing wasted many IPv4 addresses.

Classful address allocation was replaced with classless addressing which ignores the rules of classes (A, B, C).

Types of IPv4 Addresses Assignment of IP Addresses

- The Internet Assigned Numbers Authority (IANA) manages and allocates blocks of IPv4 and IPv6 addresses to five Regional Internet Registries (RIRs).
- RIRs are responsible for allocating IP addresses to ISPs who provide IPv4 address blocks to smaller ISPs and organizations.

11.4 Network Segmentation

Network Segmentation

Broadcast Domains and Segmentation

- Many protocols use broadcasts or multicasts (e.g., ARP use broadcasts to locate other devices, hosts send DHCP discover broadcasts to locate a DHCP server.)
- Switches propagate broadcasts out all interfaces except the interface on which it was received.

- The only device that stops broadcasts is a router.
- Routers do not propagate broadcasts.
- Each router interface connects to a broadcast domain and broadcasts are only propagated within that specific broadcast domain.

Network Segmentation

Problems with Large Broadcast Domains

- A problem with a large broadcast domain is that these hosts can generate excessive broadcasts and negatively affect the network.
- The solution is to reduce the size of the network to create smaller broadcast domains in a process called subnetting.
- Dividing the network address 172.16.0.0 /16 into two subnets of 200 users each: 172.16.0.0 /24 and 172.16.1.0 /24.
- Broadcasts are only propagated within the smaller broadcast domains.

Network Segmentation

Reasons for Segmenting Networks

- Subnetting reduces overall network traffic and improves network performance.
- It can be used to implement security policies between subnets.
- Subnetting reduces the number of devices affected by abnormal broadcast traffic.
- Subnets are used for a variety of reasons including by:

11.5 Subnet an IPv4 Network

Subnet an IPv4 Network Subnet on an Octet Boundary

- Networks are most easily subnetted at the octet boundary of /8, /16, and /24.
- Notice that using longer prefix lengths decreases the number of hosts per subnet.

Prefix Length	Subnet Mask	Subnet Mask in Binary (n = network, h = host)	# of hosts
/8	255 .0.0.0	nnnnnnn .hhhhhhhh.hhhhhhh.hhhhhhhh 1111111 .00000000.0000000.00000000	16,777,214
/16	255.255 .0.0	nnnnnnn.nnnnnnn.hhhhhhhh.hhhhhhh 1111111.1111111.00000000.0000000	65,534
/24	255.255.255 .0	nnnnnnn.nnnnnnn.nnnnnnn.hhhhhhh 1111111.11111111.1111111.0000000	254

Subnet an IPv4 Network Subnet on an Octet Boundary (Cont.)

• In the first table 10.0.0.0/8 is subnetted using /16 and in the second table, a /24 mask.

Subnet Address (256 Possible Subnets)	Host Range (65,534 possible hosts per subnet)	Broadcast
10.0.0.0/16	10.0 .0.1 - 10.0 .255.254	10.0.255.255
10.1.0.0/16	10.1 .0.1 - 10.1 .255.254	10.1 .255.255
10.2 .0.0/ 16	10.2 .0.1 - 10.2 .255.254	10.2 .255.255
10.3.0.0/16	10.3 .0.1 - 10.3 .255.254	10.3 .255.255
10.4 .0.0/ 16	10.4 .0.1 - 10.4 .255.254	10.4 .255.255
10.5 .0.0/ 16	10.5 .0.1 - 10.5 .255.254	10.5 .255.255
10.6.0.0/16	10.6 .0.1 - 10.6 .255.254	10.6 .255.255
10.7.0.0/16	10.7 .0.1 - 10.7 .255.254	10.7 .255.255
10.255 .0.0/ 16	10.255 .0.1 - 10.255 .255.254	10.255 .255.255

Subnet Address (65,536 Possible Subnets)	Host Range (254 possible hosts per subnet)	Broadcast
10.0.0.0/24	10.0.0 .1 - 10.0 .0.254	10.0.0 .255
10.0.1.0/24	10.0.1 .1 - 10.0.1 .254	10.0.1 .255
10.0.2.0/24	10.0.2 .1 - 10.0.2 .254	10.0.2 .255
10.0.255.0/24	10.0.255 .1 - 10.0.255 .254	10.0.255 .255
10.1.0.0/24	10.1.0 .1 - 10.1.0 .254	10.1.0 .255
10.1.1.0/24	10.1.1 .1 - 10.1.1 .254	10.1.1 .255
10.1.2.0/24	10.1.2 .1 - 10.1.2 .254	10.1.2 .255
10.100.0.0/24	10.100.0 .1 - 10.100.0 .254	10.100.0 .255
10.255.255.0/24	10.255.255 .1 - 10.2255.255 .254	10.255.255 .255

Subnet an IPv4 Network Subnet within an Octet Boundary

Refer to the table to see six ways to subnet a /24 network.

Prefix Length	Subnet Mask	Subnet Mask in Binary (n = network, h = host)	# of subnets	# of hosts
/25	255.255.255.128	nnnnnnn.nnnnnnnn.nnnnnnn. n hhhhhh 11111111.11111111.11111111. 1 0000000	2	126
/26	255.255.255.192	nnnnnnn.nnnnnnn.nnnnnnn. nn hhhhh 11111111.11111111.11111111. 11 000000	4	62
/27	255.255.255.224	nnnnnnn.nnnnnnnn.nnnnnnn. nnn hhhhh 11111111.11111111.11111111. 111 00000	8	30
/28	255.255.255.240	nnnnnnn.nnnnnnnn.nnnnnnn. nnn hhhh 11111111.11111111.1111111111. 1111 0000	16	14
/29	255.255.255.248	nnnnnnn.nnnnnnnn.nnnnnnn. nnnn hhh 11111111.11111111.111111111. 11111 000	32	6
/30	255.255.255.252	nnnnnnn.nnnnnnn.nnnnnnn. nnnnn hh 11111111.11111111.11111111. 111111 00	64	2

Subnet an IPv4 Network Video – The Subnet Mask

This video will demonstrate the process of subnetting.

Subnet an IPv4 Network Video – Subnet with the Magic Number

This video will demonstrate subnetting with the magic number.

Subnet an IPv4 Network Packet Tracer – Subnet an IPv4 Network

In this Packet Tracer, you will do the following:

- Design an IPv4 Network Subnetting Scheme
- Configure the Devices
- Test and Troubleshoot the Network

11.6 Subnet a Slash 16 and a Slash 8 Prefix

Subnet a Slash 16 and a Slash 8 Prefix Create Subnets with a Slash 16 prefix

 The table highlights all the possible scenarios for subnetting a /16 prefix.

Prefix Length	Subnet Mask	Network Address (n = network, h = host)	# of subnets	# of hosts
/17	255.255. 128 .0	nnnnnnn.nnnnnnnn. n hhhhhhh.hhhhhhh 11111111.11111111. 1 0000000.00000000	2	32766
/18	255.255. 192 .0	nnnnnnn.nnnnnnn. nn hhhhhh.hhhhhhh 11111111.11111111. 11 000000.00000000	4	16382
/19	255.255. 224 .0	nnnnnnn.nnnnnnn. nnn hhhhh.hhhhhhh 11111111.11111111. 111 00000.00000000	8	8190
/20	255.255. 240 .0	nnnnnnn.nnnnnnn. nnnn hhhh.hhhhhh 11111111.11111111. 1111 0000.00000000	16	4094
/21	255.255. 248 .0	nnnnnnn.nnnnnnn. nnnnn hhh.hhhhhh 11111111.11111111. 11111 000.00000000	32	2046
/22	255.255. 252 .0	nnnnnnn.nnnnnnn. nnnnnn hh.hhhhhh 11111111.11111111. 111111 00.00000000	64	1022
/23	255.255. 254 .0	nnnnnnn.nnnnnnnn. nnnnnn h.hhhhhhh 11111111.11111111. 1111111 0.00000000	128	510
/24	255.255. 255.0	nnnnnnn.nnnnnnnn.nnnnnnn.hhhhhhh 11111111.11111111.1 1111111 .00000000	256	254
/25	255.255. 255.128	nnnnnnn.nnnnnnnn.nnnnnnn.nhhhhhh 11111111.11111111.11111111.10000000	512	126
/26	255.255. 255.192	nnnnnnn.nnnnnnn.nnnnnnn.nnhhhhhh 11111111.11111111.11111111.11000000	1024	62
/27	255.255. 255.224	nnnnnnn.nnnnnnnn.nnnnnnn.nnnhhhhh 11111111.11111111.11111111.11100000	2048	30
/28	255.255 .255.240	nnnnnnn.nnnnnnn. nnnnnnn.nnnn hhhh 11111111.111111111.1 11111111.1111 0000	4096	14
/29	255.255. 255.248	nnnnnnn.nnnnnnnn.nnnnnnn.nnnnnnhhh 11111111.111111111.11111111.11111000	8192	6
/30	255.255. 255.252	nnnnnnn.nnnnnnnn.nnnnnnn.nnnnnnh 11111111.111111111.11111111.11111100	16384	2

Subnet a Slash 16 and a Slash 8 Prefix Create 100 Subnets with a Slash 16 prefix

Consider a large enterprise that requires at least 100 subnets and has chosen the private address 172.16.0.0/16 as its internal network address.

- The figure displays the number of subnets that can be created when borrowing bits from the third octet and the fourth octet.
- Notice there are now up to 14 host bits that can be borrowed (i.e., last two bits cannot be borrowed).

To satisfy the requirement of 100 subnets for the enterprise, 7 bits (i.e., 2^7 = 128 subnets) would need to be borrowed (for a total of 128 subnets).

Subnet a Slash 16 and a Slash 8 Prefix Create 1000 Subnets with a Slash 8 prefix

Consider a small ISP that requires 1000 subnets for its clients using network address 10.0.0.0/8 which means there are 8 bits in the network portion and 24 host bits available to borrow toward subnetting.

- The figure displays the number of subnets that can be created when borrowing bits from the second and third.
- Notice there are now up to 22 host bits that can be borrowed (i.e., last two bits cannot be borrowed).

To satisfy the requirement of 1000 subnets for the enterprise, 10 bits (i.e., 2¹⁰=1024 subnets) would need to be borrowed (for a total of 128 subnets)

Subnet a Slash 16 and a Slash 8 Prefix Video – Subnet Across Multiple Octets

This video will demonstrate creating subnets across multiple octets.

11.7 Subnet to Meet Requirements

Subnet to Meet Requirements Subnet Private versus Public IPv4 Address Space

Enterprise networks will have an:

- Intranet A company's internal network typically using private IPv4 addresses.
- DMZ A companies internet facing servers.
 Devices in the DMZ use public IPv4 addresses.
- A company could use the 10.0.0.0/8 and subnet on the /16 or /24 network boundary.
- The DMZ devices would have to be configured with public IP addresses.

Subnet to Meet Requirements Minimize Unused Host IPv4 Addresses and Maximize Subnets

There are two considerations when planning subnets:

- The number of host addresses required for each network
- The number of individual subnets needed

Prefix Length	Subnet Mask	Subnet Mask in Binary (n = network, h = host)	# of subnets	# of hosts
/25	255.255.255.128	nnnnnnn.nnnnnnnn.nnnnnnn. n hhhhhhh 11111111.11111111.11111111. 1 0000000	2	126
/26	255.255.255.192	nnnnnnn.nnnnnnnn.nnnnnnn. nn hhhhhh 11111111.11111111.11111111. 11 000000	4	62
/27	255.255.255.224	nnnnnnn.nnnnnnnn.nnnnnnn. nnn hhhhh 11111111.11111111.11111111. 111 00000	8	30
/28	255.255.255.240	nnnnnnn.nnnnnnnn.nnnnnnn. nnn hhhh 11111111.11111111.11111111. 1111 0000	16	14
/29	255.255.255.248	nnnnnnn.nnnnnnnn.nnnnnnn.nnnnhhh 11111111.111111111.11111111.11111000	32	6
/30	255.255.255.252	nnnnnnn.nnnnnnnn.nnnnnnn. nnnnnn hh 11111111.111111111.11111111. 111111 00	64	2

Subnet to Meet Requirements Example: Efficient IPv4 Subnetting

- In this example, corporate headquarters has been allocated a public network address of 172.16.0.0/22 (10 host bits) by its ISP providing 1,022 host addresses.
- There are five sites and therefore five internet connections which means the organization requires 10 subnets with the largest subnet requires 40 addresses.
- It allocated 10 subnets with a /26 (i.e., 255.255.255.192) subnet mask.

Subnet to Meet Requirements Packet Tracer – Subnetting Scenario

In this Packet Tracer, you will do the following:

- Design an IP Addressing Scheme
- Assign IP Addresses to Network Devices and Verify Connectivity

11.8 VLSM

VLSM Video – VLSM Basics

This video will explain VLSM basics.

VLSM Video – VLSM Example

This video will demonstrate creating subnets specific to the needs of the network.

IPv4 Address Conservation

Given the topology, 7 subnets are required (i.e, four LANs and three WAN links) and the largest number of host is in Building D with 28 hosts.

 A /27 mask would provide 8 subnets of 30 host IP addresses and therefore support this topology.

IPv4 Address Conservation (Cont.)

However, the point-to-point WAN links only require two addresses and therefore waste 28 addresses each for a total of 84 unused addresses.

Host portion $2^5 - 2 = 30$ host IP addresses per subnet 30 - 2 = 28 Each WAN subnet wastes 28 addresses $28 \times 3 = 84$

84 addresses are unused

- Applying a traditional subnetting scheme to this scenario is not very efficient and is wasteful.
- VLSM was developed to avoid wasting addresses by enabling us to subnet a subnet.

VLSM VLSM

- The left side displays the traditional subnetting scheme (i.e., the same subnet mask) while the right side illustrates how VLSM can be used to subnet a subnet and divided the last subnet into eight /30 subnets.
- When using VLSM, always begin by satisfying the host requirements of the largest subnet and continue subnetting until the host requirements of the smallest subnet are satisfied

The resulting topology with VLSM applied.

VLSM VLSM Topology Address Assignment

 Using VLSM subnets, the LAN and inter-router networks can be addressed without unnecessary waste as shown in the logical topology diagram.

11.9 Structured Design

Structured Design IPv4 Network Address Planning

IP network planning is crucial to develop a scalable solution to an enterprise network.

 To develop an IPv4 network wide addressing scheme, you need to know how many subnets are needed, how many hosts a particular subnet requires, what devices are part of the subnet, which parts of your network use private addresses, and which use public, and many other determining factors.

Examine the needs of an organization's network usage and how the subnets will be structured.

- Perform a network requirement study by looking at the entire network to determining how each area will be segmented.
- Determine how many subnets are needed and how many hosts per subnet.
- Determine DHCP address pools and Layer 2 VLAN pools.

Structured Design Device Address Assignment

Within a network, there are different types of devices that require addresses:

- **End user clients** Most use DHCP to reduce errors and burden on network support staff. IPv6 clients can obtain address information using DHCPv6 or SLAAC.
- Servers and peripherals These should have a predictable static IP address.
- Servers that are accessible from the internet Servers must have a public IPv4 address, most often accessed using NAT.
- Intermediary devices Devices are assigned addresses for network management, monitoring, and security.
- Gateway Routers and firewall devices are gateway for the hosts in that network.

When developing an IP addressing scheme, it is generally recommended that you have a set pattern of how addresses are allocated to each type of device.

Structured Design Packet Tracer – VLSM Design and Implementation Practice

In this Packet Tracer, you will do the following:

- Examine the Network Requirements
- Design the VLSM Addressing Scheme
- Assign IP Addresses to Devices and Verify Connectivity

Structured Design

Packet Tracer – Design and Implement a VLSM Addressing Scheme

In this Packet Tracer, you will do the following:

- Design a VLSM IP addressing scheme given requirements
- Configure addressing on network devices and hosts
- Verify IP connectivity
- Troubleshoot connectivity issues as required.

