参赛密码

(由组委会填写)









# 第十二届"中关村青联杯"全国研究生 数学建模竞赛

题 目 面向节能的列车调度优化决策研究

摘 要:

随着低碳环保、节能减排日益受到关注,轨道交通系统中针对减少列车牵引能耗的 列车运行优化控制近年来成为轨道交通领域的重要研究方向。本文针对面向节能的列车 调度优化决策问题进行了深入研究。

对于问题1-1,以站间时间、距离、速度限制等为约束条件,建立了单列车单区间节能运行优化模型。按"牵引-巡航-惰行-制动"的模式寻找单列车单区间节能运行轨迹,以一定时间步长进行数值计算,通过始末两端速度、位移边界条件等,计算不同离散时间节点的速度、位移和加速度,搜索出能耗最小的一组运行参数。通过该组运行参数,绘制出该区间的速度位移曲线,得到最小消耗能量 $E_{\min}=36675.823$ kJ。

对于问题1-2,同样,以耗能最小为优化目标,建立了单列车双区间节能运行优化模型。当固定一个区间的运行时间,则单列车双区间节能优化问题转化为单列车单区间节能优化问题。因此针对单列车双区间节能运行优化问题,实质上是增加了双区间在运行时间上的寻优。提出了变时搜索的优化策略,得到了单列车双区间的节能运行轨迹,其最小消耗能量 $E_{lmin}$ =67753.4858kJ。

对于问题2-1,首先给出了单列车多区间的最优节能运行方案,在所有列车在轨道 线路上运行模式一致时,以可利用的再生能量最大为目标,以列车发车时间间隔为决策 变量,建立多列车节能运行优化模型。采用联合迭代的算法为模型设定相同的单列车全 区间运行轨迹,然后采用区间重合法,以5辆车为一组进行循环发车的思路对优化目标 进行计算。得到前5辆车对应的发车间隔 H'={h<sub>1</sub>,h<sub>2</sub>,h<sub>3</sub>,h<sub>4</sub>,h<sub>5</sub>}={645,660,645,660,615}。

对于问题2-2,考虑早晚高峰期,首先,将列车运行分成五个时间段,并依据不同时间段发车时间间隔的约束条件,分配不同时间段的发车数,然后,将整天的列车运行转化为五个多列车运行问题,采用优化的发车间隔,利用联合迭代算法,调节时间区间

内对应发车数量的集合,以再生能源最大化为目标,获得不同阶段的多列车运行策略。。

对于问题3-1,为了解决如何安全、尽快、耗能小的恢复正常运行的问题,建立了考虑延误的列车运行控制模型。选择某特定环境,对特定延误进行两种不同的控制方案进行比较,从而实现优化控制。

对于问题3-2,根据统计数据,提出切实可行的优化调整策略。一方面是建立一个能够准确量化后车延误时间的模型,另一方面对具有随机性延误时间的列车运行控制策略进行了分析。

最后,论文还对给出了模型的优缺点及进一步改进的方向。

关键词: 列车节能运行,多约束条件,定值搜索优化算法,联合迭代算法,制动能量再生

# 目 录

| 1.问题重述                   | 4  |
|--------------------------|----|
| 2.基本假设与符号说明              | 5  |
| 2.1 基本假设                 | 5  |
| 2.2 符号说明                 | 5  |
| 3.问题分析                   | 6  |
| 4.单列车节能运行建模与求解           |    |
| 4.1 单列车两站间运行建模与求解        | 7  |
| 4.1.1 建模准备               |    |
| 4.1.2 模型建立               | 8  |
| 4.1.3 模型求解               | 9  |
| 4.2 单列车两站间运行结果及分析        | 10 |
| 4.3 三站间运行能耗建模与求解         | 13 |
| 4.3.1 建模准备               | 13 |
| 4.3.2 模型建立               | 13 |
| 4.3.3 模型求解               | 14 |
| 4.4 单列车三站间运行结果及分析        | 14 |
| 5.多列车节能运行建模与求解           | 18 |
| 5.1 多列车节能运行优化建模          | 18 |
| 5.2 多列车节能运行优化模型求解        | 19 |
| 5.2.1 单车运行轨迹优化           | 19 |
| 5.2.2 实时速度监测             | 21 |
| 5.2.3 多列车运行策略优化          | 22 |
| 5.3 考虑早晚高峰期多列车节能运行优化建模   | 24 |
| 5.4 考虑早晚高峰期多列车节能运行优化模型求解 | 25 |
| 6.考虑延误的列车节能运行控制建模与求解     | 28 |
| 6.1 基于延误的列车节能运行控制模型      | 28 |
| 6.2 延误时间为随机变量时的多列车节能调整策略 | 30 |
| 7.模型评价                   | 30 |
| 参考文献:                    | 32 |
| 附录                       | 33 |

### 1.问题重述

随着低碳环保、节能减排日益受到关注,对能源合理使用、分配和回收成为各个行业关注的重点。铁路各部门中,运输部门的能耗占到铁路能耗的 80%以上。机车牵引能耗占到铁路能耗的 60%~70%,是铁路能耗的主要部分,降低机车牵引能耗对于降低铁路能耗具有举足轻重的作用。列车运行可分为牵引模式、巡航模式、惰行模式和制动模式,根据路况、列车性能、行驶时间可灵活选择各种运行模式进行组合。各种运行模式所对应的能源消耗不同,因此在满足安全、准时、舒适等相关约束条件的情况下,应尽可能减少列车的能量消耗,增加能量的回收利用。

本文旨在研究以下问题:

问题一: 单列车数学建模并计算速度距离曲线

- (1) 列车在行驶过程中主要受到牵引力、基本阻力、附加阻力、重力、制动力和支持力的共同作用。根据对列车动力学模型的分析,结合列车限制速度、轨道坡度和轨道曲率等约束条件,对单列列车在 110s 内由  $A_6$  站运行到  $A_7$  站最小能量消耗问题展开研究,建立适当的数学模型计算速度距离曲线,得到列车各阶段运行模式的详细报告及相应的最小能量消耗值。
- (2) 在前阶段计算模型的基础上,分析单列列车在 220s 内从  $A_6$  站到  $A_8$  站的运行情况,其中  $A_7$  站停靠时间为 45s,建立新的模型分析列车从  $A_6$  站运行到  $A_8$  站能耗最省的速度距离曲线,并得到各阶段运行模式的详细报告。

问题二: 多列车运行优化计算建模

- (1)分析共 100 列列车从  $A_1$  站依次运行到  $A_{14}$  站的多列车调度情况,各列列车的发车间隔时间为  $H=\{h_1,\dots,h_{99}\}$ ,各个站点的停靠时间为  $D_{min}\sim D_{max}$ ,第一列列车发车时间和最后一列列车发车时间间隔 63900s,每列列车从 A1 站到 A14 站的运行时间均为 2086s。前后相邻两列列车追踪运行时,跟踪列车速度不能超过限制速度 $V_{limit}$ ,以防止跟踪列车缺乏制动停车时间而发生追尾事故。所有列车处于同一供电区段,某列列车制动回收的能量可用于轨道上正处于牵引或巡航耗能的列车,建立优化模型求解使所有列车运行总能耗最低的最佳间隔时间 H。
- (2)分析 24h 内共 240 列列车依次从 A<sub>1</sub>站依次运行到 A<sub>14</sub>站的多列车调度情况,在出行高峰时间,其中早高峰为 7200 秒至 12600 秒,晚高峰为 43200 至 50400 秒,相邻列车间的发车间隔不大于 2.5min 且不小于 2min,其余非高峰时段发车间隔不小于 5min,制定列车的运行图和相应的速度距离曲线。

问题三: 列车延误发车后优化控制

- (1)在前阶段的模型基础上,分析某列列车延误一定时间后,通过建立控制模型 在确保安全的情况下,尽快使所有后续列车恢复正点运行,同时使能耗最小,并得到相 应的列车运行曲线。
- (2) 若延误时间的时长由已知固定值变为随机变量,并服从一定的概率分布,允许列车在各站到、发时间与原时间相比提前不超过 10 秒,根据问题二中的统计数据,如何调整控制方案使能耗最小。

# 2.基本假设与符号说明

### 2.1 基本假设

- 1.多列车运行时,后续列车在各个站点间均按照第一辆列车的最优运行轨迹运行;
- 2.列车驾驶人员能够按照制定的控制方法准确的操作列车,忽略列车驾驶员的误操作;
- 3.不考虑洪涝、雪灾、雾霾等极端天气情况以及轨道故障、紧急停车等列车运行过程中意外制动的情况;
- 4.假设所有列车处于同一供电区段,再生制动的能量可被同一供电区段的其它任一 列车使用;
  - 5.列车停靠站时其中心点正对地标处。

### 2.2 符号说明

|                              | 66 E 3V au      |
|------------------------------|-----------------|
| 符号                           | 符号说明            |
| $E_q$                        | 牵引阶段列车能耗        |
| $E_{\scriptscriptstyle x}$   | 巡航阶段列车能耗        |
| $E_z$                        | 列车制动时产生的能量      |
| $E_{used}$                   | 列车制动过程中被利用的再生能量 |
| F                            | 列车牵引力           |
| $v_q$                        | 牵引阶段结束时刻速度      |
| $v_x$                        | 巡航阶段结束时刻速度      |
| $v_z$                        | 制动阶段开始时刻速度      |
| $v_d$                        | 惰性阶段结束时刻速度      |
| B                            | 列车运行的制动力        |
| $\mu_{\scriptscriptstyle q}$ | 牵引加速度系数         |
| $\mu_{\scriptscriptstyle z}$ | 制动加速度系数         |
| $v_a$                        | 轨道最大限制速度        |
| $v_b$                        | 列车自身限制速度        |
| $t_q$                        | 牵引段运行时间         |
| $t_{\chi}$                   | 巡航段运行时间         |
| $t_d$                        | 惰行段运行时间         |
| $t_{\mathcal{Z}}$            | 制动段运行时间         |
| i                            | 线路坡度            |
| R                            | 曲率半径            |
| M                            | 列车质量            |
| $D_{ m min}$                 | 单列列车在 A; 站停站的时间 |
| $D_{ m max}$                 | 多列列车在各个车站最小停靠时间 |
| $H_{ m min}$                 | 多列列车在各个车站最大停靠时间 |
| $H_{ m max}$                 | 两列列车发车最小间隔时间    |
| $V_{ m limit}$               | 轨道限制速度          |
| $V_{real}$                   | 列车实时速度          |

### 3.问题分析

对于问题1-1,以站间时间、距离、速度限制等为约束条件,建立了单列车单区间节能运行优化模型。按"牵引-巡航-惰行-制动"的模式寻找单列车单区间节能运行轨迹,以一定时间步长进行数值计算,通过始末两端速度、位移边界条件等,计算不同离散时间节点的速度、位移和加速度,搜索出能耗最小的一组运行参数。通过该组运行参数,绘制出该区间的速度位移曲线,得到最小消耗能量 $E_{\min}$ =36675.823kJ。

对于问题1-2,同样,以耗能最小为优化目标,建立了单列车双区间节能运行优化模型。当固定一个区间的运行时间,则单列车双区间节能优化问题转化为单列车单区间节能优化问题。因此针对单列车双区间节能运行优化问题,实质上是增加了双区间在运行时间上的寻优。提出了变时搜索的优化策略,得到了单列车双区间的节能运行轨迹,其最小消耗能量 $E_{lmin}$ =67753.4858kJ。

对于问题2-1,首先给出了单列车多区间的最优节能运行方案,在所有列车在轨道线路上运行模式一致时,以可利用的再生能量最大为目标,以列车发车时间间隔为决策变量,建立多列车节能运行优化模型。采用联合迭代的算法为模型设定相同的单列车全区间运行轨迹,然后采用区间重合法,以5辆车为一组进行循环发车的思路对优化目标进行计算。得到前5辆车对应的发车间隔 H'={h<sub>1</sub>,h<sub>2</sub>,h<sub>3</sub>,h<sub>4</sub>,h<sub>5</sub>}={645,660,645,660,615}。

对于问题2-2,考虑早晚高峰期,首先,将列车运行分成五个时间段,并依据不同时间段发车时间间隔的约束条件,分配不同时间段的发车数,然后,将整天的列车运行转化为五个多列车运行问题,采用优化的发车间隔,利用联合迭代算法,调节时间区间内对应发车数量的集合,以再生能源最大化为目标,获得不同阶段的多列车运行策略。。

对于问题3-1,为了解决如何安全、尽快、耗能小的恢复正常运行的问题,建立了考虑延误的列车运行控制模型。选择某特定环境,对特定延误进行两种不同的控制方案进行比较,从而实现优化控制。

对于问题3-2,根据统计数据,提出切实可行的优化调整策略。一方面是建立一个能够准确量化后车延误时间的模型,另一方面对具有随机性延误时间的列车运行控制策略进行了分析。

### 4.单列车节能运行建模与求解

### 4.1 单列车两站间运行建模与求解

### 4.1.1 建模准备

### 1、列车运行模式

对列车受力情况进行分析,判断列车能耗与运行模式的关系,列车运行分为四种模式:牵引模式、巡航模式、惰行模式和制动模式。列车处于牵引模式时,列车消耗能量加速运行;处于巡航模式时,列车消耗能量匀速运行;处于惰行模式时,列车随路况在重力与阻力合成作用下运行,不消耗能量也不产生能量;处于制动模式时,列车减速运行,若为再生制动则可产生能量。

通过运动模式可初步判断列车在一定路况上的最节能运行模式,距离较短时列车一般采用"牵引-惰行-制动"的策略运行。如果站间距离较长,列车通常会采用牵引到接近限制速度后,交替使用惰行、巡航、牵引三种工况,直至接近下一车站采用制动进站停车。

### 2、列车受力分析

对列车受力情况进行简化,视为一个单质点模型,如图 4.1:



图 4.1 列车单质点模型受力分析

由已知条件,牵引力为

$$F(v) = \begin{cases} 203 \cdot \mu_q(t) & 0 \le v \le 51 \cdot \frac{1}{2} \\ \mu_q(t) \cdot (-0.0020332v^3 + 0.4928v^2 - 42.13v + 1343) & 51 \cdot \frac{4}{2}v \le \frac{1}{2} \end{cases}$$
(4.1)

阻力为

$$W(v) = (A + Bv_a + Cv_a^2 + i + C/R) \cdot g \cdot M / 1000$$
 (4.2)

制动力为

$$B(v) = \begin{cases} 166\mu_z(t) & 0 \le v \le 77\\ \mu_z(t) \cdot (0.1343v^2 - 25.07v + 1300) & 77 \le v \le 8 \end{cases}$$
 (4.3)

由图 4.1 可知,列车前进方向上受到牵引力F、总阻力W 和制动力B 的共同作用,列车的能量消耗只存在于牵引阶段和巡航阶段的牵引力做功。

### 3、对 A。站到 A,站进行路况分析

根据坡度、曲率半径和限速,对 $A_6$ 站到 $A_7$ 站的路况进行分析,见图 4.2。



图 4.2 A。站与A,站间路况分析

图 4.2 中,两站间不存在转弯路段,路段限速分为两段,速度限制分别为 55km/h 和 80km/h, 在车站间距离较短时采用四阶段运行模式作为初始运行模式。

### 4.1.2 模型建立

### 1、目标函数

以最小能量消耗作为目标函数,由牵引阶段能耗和巡航阶段能耗组成。设牵引阶段运行距离为 $S_a$ ,牵引阶段能量消耗为

$$E_q = \int_0^{S_q} F(v) ds \tag{4.4}$$

设巡航阶段运行距离为 $S_x$ , 匀速运行速度为 $v_a$ , 巡航阶段能量消耗为

$$E_{x} = \int_{0}^{S_{x}} W(v_{q}) ds \tag{4.5}$$

则目标函数为

Min 
$$E = E_q + E_x = \int_0^{S_q} F(v)dS + \int_0^{S_x} W(v_q)dS$$
 (4.6)

### 2、约束条件

1) 距离约束: 四阶段运行总距离应等于两站间的距离:

$$S_1 = S_a + S_x + S_d + S_z = 1354 \tag{4.7}$$

2)速度约束:牵引结束时刻速度 $v_q$ 为列车整个运行过程中的最大速度,应小于道路最大限制速度 $v_a$ 和自身限速 $v_b$ ,且应大于列车全程匀速运动的速度值,即 1354/110=12.3 m/s;制动阶段起始速度 $v_z$ 小于巡航阶段速度 $v_x$ ;初始速度与末速度匀为零。可得速度约束为

$$\begin{cases} v_q \le \min\{v_a, v_b\} \\ 44 \le v_q \le 80 \\ v_0 = v_t = 0 \\ 0 \le v_z \le v_x \end{cases}$$

$$(4.8)$$

3) 加速度约束:

$$\begin{cases}
-1 \le a_q \le 1 \\
-1 \le a_z \le 1
\end{cases}$$
(4.9)

4) 时间约束:

$$t = t_a + t_x + t_d + t_z = 110 (4.10)$$

综上所述,单车从 46 站到 47 站间运行模型为

Min 
$$E = \int_{0}^{S_q} F(v) dS + \int_{0}^{S_x} W(v_q) dS$$
 (4.11)  

$$\begin{cases} S = S_q + S_x + S_d + S_z = 1354 \\ t = t_q + t_x + t_d + t_z = 110 \end{cases}$$

$$0 < \mu_q \le 1$$

$$0 < \mu_z \le 1$$

$$-1 \le a_q \le 1$$

$$-1 \le a_z \le 1$$

$$44 < v_q \le 80$$

$$0 \le v_z \le v_x$$

### 4.1.3 模型求解

以一定时间步长进行数值计算,通过始末两端速度、位移边界条件等可不断由两端向中间夹逼计算不同离散时间节点的速度、位移和加速度,进而搜索使能耗最小的一组最优运行参数。模型求解的基本思路:

#### (1) 确定迭代参数

设定影响总能耗的关键迭代参数,包括牵引加速度系数  $\mu_q$ 、制动加速度系数  $\mu_z$ 、牵引结束时刻速度  $\nu_a$ 、制动开始时刻速度  $\nu_z$ 。选定一组  $\mu_a$ 、 $\mu_z$ 、 $\nu_a$ 、 $\nu_z$ 进行初始迭代。

#### (2) 确定时间步长

根据运行总时间、最大限速可初步预估最大时间步长为 0~5s 之间,其中 5s 由总路程/最大运行限速得到。考虑先采用 1s 作为时间步长进行初判,再采用 0.1s 时间步长进行调优。

(3) 由牵引结束时刻速度 $v_q$ 确定牵引段时间及位移参数

在时间步长、牵引加速度系数  $\mu_q$  一定的情况下,可得到牵引段的加速度  $a_q$ ,通过数值积分迭代确定牵引段位移  $S_a$ 。

$$\begin{cases} v_{q} = \int_{0}^{t_{1}} a_{q}(t)dt \\ S_{q} = \int_{0}^{t_{1}} v(t)dt = \int_{0}^{t_{1}} [\int_{0}^{t} a_{q}(\tau)d\tau]dt \end{cases}$$
(4.12)

(4) 由制动开始时刻速度 $v_1$ 确定制动段时间 $t_4$ 及制动位移 $S_2$ 

在时间步长、制动加速度系数 $\mu_z$ 一定的情况下,可得到牵引段的加速度 $a_z$ ,通过数值积分迭代,确定牵引段时间 $t_a$ 以及牵引段位移 $S_z$ 。

$$\begin{cases} v_z = \int_0^{t_4} a_z(t)dt \\ S_z = \int_0^{t_4} v(t)dt = \int_0^{t_4} \left[ \int_0^t a_z(\tau)d\tau \right] dt \end{cases}$$
(4.13)

(5) 由牵引段位移  $S_a$  以及制动段时间  $S_z$  确定惰行段时间  $t_3$  及位移  $S_a$ 

情行段列车受到的合力包括基本阻力  $f_a$  以及附加阻力  $f_a$  ,  $f_b$  是关于速度的函数,  $f_a$  是关于路标 s 的函数。由于不确定惰行段的起始位置,故不能获知其初始的加速度  $a_a(t)$  。但在假定惰行段路程一定的情况下,必然可确定每一时刻的路标,可将 s 看作一系列常数,故计算时可通过将惰行阶段看作是由制动阶段开始点到巡航段结束点的加速过程的逆过程。

$$\begin{cases} v_{d} = \int_{0}^{t_{3}} a_{d}(t)dt \\ S_{z} = \int_{0}^{t_{4}} v(t)dt = \int_{0}^{t_{3}} \left[ \int_{0}^{t} a_{d}(\tau)d\tau \right]dt \end{cases}$$
(4.14)

(6) 根据巡航段距离以及速度约束条件,确定巡航段运行时间 $t_3$ 及位移参数 $S_x$ 由于巡航段做匀速运动,因此根据巡航段的运行速度 $v_x$ 即可求得其运行时间 $t_3$ 

$$\begin{cases}
S_x = S - S_q - S_z - S \\
t_3 = \frac{S_x}{v_x}
\end{cases}$$
(4.15)

(7) 由运行得到的参数计算优化性能指标

在获得列车在各段运行情况的基础上,得到其能耗指标,其中巡航段列所受阻力与牵引力相等,因此可用阻力代替牵引力计算能耗

$$\begin{cases}
E_q = \int_0^{t_1} F(v(t)) \cdot v(t) dt \\
E_x = \int_0^{S_x} W(v_q) ds
\end{cases}$$
(4.16)

(8) 在约束条件下对  $\mu_q$  、  $\mu_z$  、  $\nu_q$  和  $\nu_z$  进行搜索寻优,比较每组参数下的能耗值,取最小值作为最优。

整个运行过程的实时速度、加速度、位置信息均已明确,形成了一个先确定约束段两端,再向中间逆向求解的夹逼计算方法,比较不同参数组合下的能耗值,最终得到在同等求解条件及约束条件下的较优能耗值及相应运行参数。

#### 4.2 单列车两站间运行结果及分析

经 Matlab 编程计算,程序见附件 1-1,得到最小消耗能量 $E_{\min}$ =35967.1453kJ, $v_q$ =60km/h, $v_z$ =39 km/h,列车运行时间为 110s,运行距离为 1340.9m,初始牵引加速度为  $0.9m/s^2$ ,初始制动加速度为  $1m/s^2$ 。

速度距离曲线结果如图 4.3:



图 4.3 两站间速度距离曲线

### 速度时间曲线:



图 4.4 两站间速度时间曲线

由图 4.3 和图 4.4 可知,列车运行分为四个阶段, $0\sim t_1$ 阶段为牵引阶段, $t_1\sim t_2$ 阶段为巡航阶段, $t_2\sim t_3$ 阶段为惰行阶段, $t_3\sim t_4$ 阶段为制动阶段。从红色限速折线可以看出,列车在整个运行过程中始终满足速度限速约束,且最大时速为 60km/h。

加速度与时间的关系如图 4.5:



图 4.5 加速度曲线

从图 4.4 可知,整个运行过程中,牵引加速度和制动加速度幅值均在 1m/s² 以内,满足约束限制。牵引阶段列车速度逐渐增大,但加速度受最大牵引力的限制,逐渐减小;巡航阶段牵引力主要用于克服阻力,使列车匀速运动,加速度为零;惰行阶段停止牵引,列车逐渐减速,由于阻力与速度呈正比,因此阻力逐渐减小,则加速度幅值也随之减小;制动阶段,由于制动力的影响加速度负增长,直至运行速度为零。由于制动过程采用的是固定制动加速度系数的制动方式,因此,尽管到达终点时刻的速度为零,但此时的最大制动力不变,在下一时刻,能够通过置零加速度系数使加速度达到零。

能耗与时间、距离的关系 4.6、图 4.7:



图 4.6 能耗随时间累积曲线



图 4.7 能耗随距离累积曲线

能耗产生过程只存在于牵引阶段和巡航阶段,故后两个阶段列车能耗不再增加。由结果图可知列车运行速度始终处于限速以内,时间、距离、加速度均满足约束限制。

### 4.3 三站间运行能耗建模与求解

### 4.3.1 建模准备

列车从 $A_6$ 站出发经过 $A_7$ 站后到达 $A_8$ 站,中间停靠 45s,总运行时间为 220s。可将运行分为两个子运行过程:  $A_6$ 站到 $A_7$ 站、 $A_7$ 站到 $A_8$ 站。分析第二个子运行过程的线路约束可知,其最大限速与第一子运行过程相同,且站间路程曲率均为 0,结合两个子运行过程各自的约束,分两个子问题分别循环搜索求解,最后综合搜索总运行时间为 220s 的能耗最优解。

### 4.3.2 模型建立

#### 1、目标函数

目标函数为列车整个运行过程中的最小能耗,为两子运行过程能耗之和:

$$Min \quad E_{1} = \sum_{i=1}^{2} (E_{qi} + E_{xi}) = \sum_{i=1}^{2} \left[ \int_{0}^{S_{qi}} F(v) ds + \int_{0}^{S_{xi}} W(v_{qi}) \right] ds$$
 (4.17)

#### 2、约束条件

1) 距离约束,各个子运行过程四阶段运行距离应等于两站间的距离:

$$\begin{cases}
S_1 = S_{q1} + S_{x1} + S_{d1} + S_{z1} = 1354 \\
S_2 = S_{q2} + S_{x2} + S_{d2} + S_{z2} = 1280
\end{cases}$$
(4.18)

2) 速度约束, 两站之间运行速度存在限速, 且两个子运行过程速度约束相同

$$\begin{cases} 4 & 4 \le v_{qi} \le 80 \\ 0 \le v_{zi} \le v_{xi} \\ v_{qi} \le \text{min}\{v_a, v_b\} \\ i = 1, 2 \end{cases}$$

$$(4.19)$$

3) 加速度约束

$$\begin{cases}
0 \le a_{qi} \le 1 \\
0 \le a_{zi} \le 1 \\
i = 1, 2
\end{cases}$$
(4.20)

4) 时间约束

$$t' = \sum_{i=1}^{2} (t_{qi} + t_{xi} + t_{di} + t_{zi}) = 220$$
 (4.21)

综上所述,单车从 A。站到 A。站间运行模型为

Min 
$$E_1 = \sum_{i=1}^{2} \left[ \int_{0}^{S_{qi}} F(v) ds + \int_{0}^{S_{xi}} W(v_{qi}) \right] ds$$
 (4.22)  

$$\begin{cases}
S_1 = S_1 + S_2 + S_3 + S_4 = 1354 \\
S_2 = S_{q2} + S_{x2} + S_{d2} + S_{z2} = 1280
\end{cases}$$

$$t' = \sum_{i=1}^{2} (t_{1i} + t_{2i} + t_{3i} + t_{4i}) = 220$$

$$0 < \mu_{qi} \le 1$$

$$0 < \mu_{zi} \le 1$$

$$-1 \le a_q \le 1$$

$$-1 \le a_z \le 1$$

$$44 < v_{qi} \le 80$$

$$0 \le v_{zi} \le v_{xi}$$

$$i = 1, 2$$

#### 4.3.3 模型求解

模型求解过程与两站间运行问题类似,时间步长为两个子运行时间之和,将运行时间作为总约束循环选优求解总能耗。

### 4.4 单列车三站间运行结果及分析

最终迭代得到最小消耗能量 $E_{\text{lmin}}$ =67336.0kJ,运行总时间为220s,停车45s,运行总距离为2602.8m,Matlab程序见附件1-2。

第一子运行过程  $A_6$  站到  $A_7$  站牵引阶段结束速度  $v_{q1}$  =55km/h,制动开始速度  $v_{z1}$  =35km/h,运行时间为111s,实际运行距离为1338.9357m, $A_6$  站到  $A_7$  站规定运行距离1354m;第二子运行过程  $A_7$  站到  $A_8$  站牵引阶段结束速度  $v_{q2}$  =62km/h,制动开始速度  $v_{z2}$  =4km/h,运行时间为109s,实际运行距离为1263.928m, $A_7$  站到  $A_8$  站规定运行距离1280m。采用循环迭代搜索法,得到速度距离曲线如图4.8;



图4.8 三站运行速度距离曲线

## 同时可得



图4.9 三站运行速度时间曲线

由图4.8和图4.9可知,列车运行分为四个阶段,从红色限速折线可以看出,列车在整个运行过程中始终满足速度限速约束,且最大时速为60km/h。



图4.10 三站运行加速度曲线

从图4.10可知,整个运行过程中,牵引加速度和制动加速度均在 $0\sim 1m/s^2$ 内,满足约束限制。列车加速度是一个逐渐减小的过程,在牵引阶段逐渐减小;巡航阶段加速度为零;惰行阶段列车逐渐减速,由于阻力与速度呈正比,因此阻力逐渐减小,则加速度也随之减小;制动阶段,由于制动力的影响加速度负增长直至停车。



图4.11 三站运行能耗时间曲线



图4.12 三站运行能耗距离曲线

三站间能耗呈阶梯状,为两个子运行过程的能耗累加,能耗产生过程只存在于牵引阶段和巡航阶段,故后两个阶段列车能耗不再增加。由结果图可知列车运行速度始终处于限速以内,时间、距离、加速度均满足约束限制。

# 5.多列车节能运行建模与求解

### 5.1 多列车节能运行优化建模

根据已知条件分析:

- 1)  $D_i$  表示在每一站停留的时间,  $D_{\min} = 30s$  ,  $D_{\max} = 45s$  ;
- 2)  $h_i$  表示第i辆列车和第i+1辆列车的发车间隔, $H_{min} = 120s$ , $H_{max} = 660s$ ;
- 3) T<sub>0</sub> 表示第一列列车发车时间和最后一列列车的发车时间之间间隔;
- 4)T表示从 $A_1$ 站到 $A_{14}$ 站的总运行时间(包括停站时间);
- 5) S 表示从  $A_1$  站到  $A_{14}$  站的总距离。
- 6)  $V_{real}$ 表示实时速度, $V_{limit}$ 表示限制速度, $V_{lime}$ 表示线路限速,L表示后车与前车的距离, $B_a$ 表示最大减速度。
- 7) L=100, 其中L表示列车总数。

其中L表示列车数量,N表示对于列车i的重合区间, $\Delta E_{used(i)}^{j}$ 表示第i辆列车第j段制动区间(与加速段重合部分)产生的可利用的再生能量。

### 1、目标函数

$$E_{used} = \max \sum_{i=1}^{L} \sum_{j=1}^{N} \Delta E_{used(i)}^{j}$$
 (5.1)

#### 2、约束条件

$$\begin{cases} D_{\min} < D_{i} < D_{\max} \\ H_{\min} < h_{i} < H_{\max} \\ T_{0} = 63900s \\ T = 2086s \\ S = 22728m \\ V_{real} < V_{\text{limit}} = \min{(V_{\text{line}}, \sqrt{2LB_{e}})} \\ L = 100 \end{cases}$$

多列车节能运行模型结构框图如图4.1所示,多列车节能运行模型包括实时速度检测模块,运行轨迹优化模块和再生能量计算模块三部分。其中实时速度监测模块获取保证安全情况下的最小时间间隔 $T_{safe}$ ,运行轨迹优化模块获取单列车最节能运行轨迹,再生能量计算模块计算制动再生生成的能量,从而构建多列车节能运行模型。

对于多参数  $H=\{h_1,h_2...h_{99}\}$  的估计是一个复杂的非线性问题,用搜索寻优的方式对于计算量是一个巨大的挑战。根据第1个和第3个限制条件很容易计算得到,在  $A_1$  站点到  $A_1$ 4 站点运行路程上最多可以存在5辆列车同时运行。因此,该模型对100辆列车进行分组,每5辆列车作为一组,对每一组中的5辆列车的发车时间  $H_1=\{h_1,h_2,h_3,h_4\}$  进行优化,计算5辆列车的再生能量,而  $h_5$  作为补足量以保证第一列列车发车时间和最后一列列车的发车时间之间间隔符合要求。剩余组列车的发车间隔按照第一组前5辆列车的发车时间进行循环,从而计算100辆列车运行过程中的再生能量。



图5.1 多列车节能运行优化模型结构框图

### 5.2 多列车节能运行优化模型求解

### 5.2.1 单车运行轨迹优化

### 1、求解思路与步骤

运行轨迹优化模块用于获取模型中列车采用的最优节能运行轨迹,由于从 $A_1$ 站点到 $A_{14}$ 站点包含 13 段运行路线,如果用每段运行路线的运行时间作为搜索参数进行全局寻优,其计算复杂度大,计算时间长。本模块采用部分寻优和整体联合迭代的算法搜寻较优解。

本模块首先对13段运行路线进行分区段,并对区段进行标号,如图4.2所示。



其中  $B_1=\{A_1,A_2,A_3\}$  ,  $B_2=\{A_3,A_4,A_5,A_6\}$  ,  $B_3=\{A_6,A_7,A_8\}$  ,  $B_4=\{A_8,A_9,A_{10},A_{11}\}$  ,  $B_5=\{A_{11},A_{12},A_{13},A_{14}\}$  。

然后将三站间节能运行模型推广到四站间节能运行模型,分别对 $B_1$ , $B_2$ , $B_3$ , $B_4$ , $B_5$ 按定时的约束条件进行求解运行轨迹。每个区段内运行时间 $Tg_i$ 由下式可得:

$$Tg_{i} = \frac{T_{total} - T_{wait}}{S_{total}} \times S_{Bi}$$
 (5.2)

其中 $T_{total}$ 为 2086s, $T_{wait}$ 为 A2 站点到 A13 站点停车的总时间 $T_{wait}=12D_{min}$ , $S_{total}$ 为 A1 站点到 A14 站点的总路程, $S_{Bi}$ 为对应区段的区段路程。

根据上节提出的站间节能运行模型可以求解出在粗略定时下,相对较优的各区段运行轨迹。该运行轨迹作为局部寻优的较优解。

最后,采用整体联合迭代算法,对较优解进行全局寻优。联合迭代算法的流程图如图 4.3 所示。

- 1) 确定最大迭代次数 N;
- 2) 计算区段{B1,B2,B3,B4,B5}时间增加  $\Delta T_{\alpha}$ 后各区段的运行轨迹,从而计算出各区段的能耗减少量  $\Delta E_{m}$ ;

- 3) 计算区段{B1,B2,B3,B4,B5}时间减少 $\Delta T_{\alpha}$ 后各区段的运行轨迹,从而计算出各区段的能耗增加量 $\Delta E_{\alpha}$ ;
- 4) 比较区段{B1,B2,B3,B4,B5}的能耗增减量  $\Delta E_m$  和  $\Delta E_a$ ,确定能耗减少量  $\Delta E_m$  最大的区段 Bi 和能耗增加量  $\Delta E_a$  最大的区段 Bj。
- 5) 对 Bi 和 Bj 段进行区段运行时间修定。具体修定方法为: Bi 区段运行时间 $Tg_i$ 增加  $\Delta T_a$ ,Bj 区段运行时间 $Tg_i$ 减少  $\Delta T$ 。
  - 6)继续进行迭代,直到迭代次数达到最大迭代次数 N。
- 7) 迭代结束后,最后依据每个区段内运行时间 $T_{g_i}$ 计算运行轨迹。得到单列车最节能全程运行轨迹。

### 2、求解结果

总能耗随迭代次数变化如图5.3所示:



图5.3 总能耗随迭代次数变化图

由图可知:随着迭代次数的增加,运行轨迹的总能耗不断减少,说明迭代能够优化运行轨迹,在迭代次数为10次时,总能耗不再发生变化,说明运行运行轨迹已经得到优化。

单列车节能运行轨迹速度距离曲线如图5.4所示:



图5.4 全程位移速度曲线图

由图可知:单列车最节能运行轨迹为上图蓝色曲线,全路段限制速度与位移的关系曲线为上图红色曲线,能够满足定距离和限制速度的约束条件。该运行轨迹能够遵从限速条件保证运行安全,同时保证能耗最少,全程能耗量为6.39×10<sup>5</sup> kJ。

单列车最节能运行轨迹速度时间曲线如图5.5所示。

由图可知:蓝色曲线表示单列车最节能轨迹时间速度曲线,能够做到在定时条件下完成从A1站点到A14站点的全程运行。其中每个站点停留时间设置为 $D_{coll}$ 。

附件程序见附件 2-1。



图5.5 全程时间速度曲线图

### 3. 误差分析

在限制条件中T=2086s,而实际运行时间为 $T_{real}=2065s$ ,定时计算存在1%的时间误差。在限制条件中S=22728m,而实际运行距离为 $S_{real}=22537m$ ,计算过程存在0.8%的距离误差。其中误差的主要来源是步长。在计算条件充裕的情况下,可以降低步长以满足精度计算的需求。

### 5.2.2 实时速度监测

### 1. 求解思路

多列车追踪运行时,前后列车之间的最小安全间隔时间  $T_{\text{safe}}$  是保证追踪列车运行安全的必要条件。追踪列车最小间隔时间  $T_{\text{safe}}$  是指在列车追踪运行时,能够保证安全的最小发车间隔时间。追踪列车以最小间隔时间  $T_{\text{safe}}$  发车,可以保证跟踪列车速度不能超过限制速度  $V_{\text{limit}}$  ,以免后车无法及时制动停车,发生追尾事故。实时速度监测模块对于多列车追踪运行具有重要意义,对于控制系统运行方案的设计具有引导作用。其限制速度表示为:

$$V_{limit} = \min(V_{line}, \sqrt{2LB_e})$$
 (5.3)

其中, $V_{line}$ 是列车当前位置的线路限速,L是当前时刻前后车之间的距离, $B_e$ 是列车制动的最大减速度。

实时监测模块在多列车节能运行优化模型的最前端,用于确定追踪列车的最小时间间隔 $T_{safe}$ ,追踪列车的最小时间间隔是该优化模型的基础,保证多列车运行安全。实时监测的具体流程如下所述:

1)设定起始时间间隔 $T_0$ ,步长为 $\Delta T_{\beta}$ 。

- 2) 前车按照单列车最节能全程运行轨迹开始运行。
- 3) 后车设定时间间隔 To 同样按照单列车最节能全程运行轨迹开始运行。
- 4)按照离散化时间间隔点 $\Delta T$ ,在 $n\Delta T$ 时刻计算后车实时速度。
- 5) 与此同时计算前车与后车的距离间隔  $L = S_{T_0 + n\Delta T} S_{n\Delta T}$ 。
- 6) 判断是否 $V_{real} < V_{limit}$ ,如果否,则跳出循环,以时间间隔 $T_0 + \Delta T_\beta$ 重新开始运行该流程。
- 7) 如果全程的实时速度满足  $V_{real} < V_{limit}$ ,则认定该时间间隔为追踪列车的最小时间间隔  $T_{cofa}$ 。

### 2. 求解结果

根据实时速度监测模块的模型计算出 $T_{safe}$ =220s,给出某站点之间实时速度监测示意图,如图5.6所示。



图5.4 某站点之间实时速度监测示意图

其中红色曲线表示限制速度,蓝色曲线表示实际速度,根据上图可知,实际运行的速度可以符合限制条件中限制速度的要求。要保证多列车安全运行,时间间隔限制条件设定为 $T_{vole} < h_i < H_{max}$ 。附件程序见Q2-1。

### 5.2.3 多列车运行策略优化

#### 1. 求解思路

随着制动技术的进步,再生制动技术已经广泛应用于城市轨道交通。这一技术对于轨道交通的节能运行有着重大的意义。轨道交通列车在制动过程将动能转化为电能,从而减少以此同时从变电站获得的能量。即再生能量仅为所处供电区段内其他列车加速使用,如果该时刻无列车加速则意味着再生能量被浪费。

多列车节能运行过程中都采用单列车最节能运行轨迹,因此所有列车运行轨迹相同。多列车运行轨迹对比示例图如图 5.5 所示,其中红色线段表示加速段,蓝色段表示制动段, $h_i$ 表示第 i 辆列车和第 i+1 辆发车间隔。由图 5.5 可知,当在 $t_i$ 和  $\tau_i$ 段时表示再生能量被利用。为了准确计算再生能量,本节提出了区间重合算法。



图 5.5 运行轨迹对比示例图

在计算再生能量之前需要对运行轨迹获得的数据信息作特定处理:单列车最节能全程运行轨迹过程中记录向量数据:所有向量长度为全路程运行轨迹的时间长度,向量 $\varphi_{accerlate}$ 用于在时间点上记录加速段的路径,加速段上的时间点用 1 表示,其余段用 0 表示;向量 $\varphi_{brake}$ 与 $\varphi_{accerlate}$ 相似,用于在时间点上记录制动段的路径,制动段上的时间点用 1 表示,其余段用 0 表示;向量 $\varphi_{vec}$ 记录各个时间点速度;向量 $\varphi_{road}$ 记录各个时间点路况信息。

区间重合算法的核心思想即为通过比较第 i 辆列车的向量  $\varphi_{brake}$  和第 i+1 辆列车推移  $h_i$ 之后的向量  $\varphi_{accertate}$  的区间重叠部分。即两个向量都为 1 的时间长度即为  $t_{overlap}$  ; 在第 i+1 辆列车的向量  $\varphi_{brake}$  中求该重叠部分所在的制动过程的时间  $t_{brake}$  。根据向量  $\varphi_{vec}$  和向量  $\varphi_{road}$  可以计算  $E_f$  , $E_{mech}$  。 其中  $E_{mech} = E_M + E_G$  ,表示在制动过程中机械能转化为动能和势能。根据公式  $E_{used} = (E_{mech} - E_f) \times 95\% \times \frac{t_{overlap}}{t_{brake}}$  ,可以求出再生能量  $\tau_j$  ;同理可得,第 i+1 辆列车处于制动段,第 i 辆列车处于加速段,产生的再生能量  $t_i$  。

但在多列车节能运行模型中,根据已知条件,会在 A1 站点到 A14 站点同时出现多辆列车的情况(不考虑早晚高峰的情况下,最多会出现 5 辆列车的情况)。同样可以计算多辆列车的区间重叠部分,用第 i 辆列车的向量  $\varphi_{brake}$  与其他辆列车推移发车间隔时间之后的  $\varphi_{accerlate}$  进行比较,若有至少一辆列车的  $\varphi_{accerlate}$  与第 i 辆列车的  $\varphi_{brake}$  重叠,则取最大重叠长度,其再生能量标记为可用,再生能量的计算的方法与上述方法类似,在此就不再赘述。之后再依次计算其他辆列车的再生能量,并且进行累加。

#### 2. 求解结果

通过该模型可以根据不同组输入的 $H=\{h_1,h_2...h_{99}\}$ 计算出目标函数 $E_{used}$ ,前 6 辆列车的发车时间为 $H'=\{h_1,h_2,h_3,h_4,h_5\}$ ,剩余组列车按照第一组前 5 辆列车的发车间隔进行循环发车,表 5.1 为不同发车间隔再生能量数据表,为了方便起见,只显示 $H'=\{h_1,h_2,h_3,h_4,h_5\}$ 。

| 表 5.1 | 发车间隔对应再生能量数据表 |
|-------|---------------|
|-------|---------------|

|       |                            | * - * * * * * * * * * * * * * * * * * * | ************************************** |                            |       |                |
|-------|----------------------------|-----------------------------------------|----------------------------------------|----------------------------|-------|----------------|
|       | $h_{\scriptscriptstyle 1}$ | $h_2$                                   | $h_3$                                  | $h_{\scriptscriptstyle 4}$ | $h_5$ | $E_{\it used}$ |
| 数据 1  | 645                        | 660                                     | 645                                    | 660                        | 615   | 196115.4       |
| 数据 2  | 645                        | 645                                     | 645                                    | 645                        | 645   | 162644.1       |
| 数据 3  | 645                        | 645                                     | 659                                    | 645                        | 631   | 193101.9       |
| 数据 4  | 632                        | 645                                     | 659                                    | 645                        | 658   | 169629.9       |
| 数据 5  | 632                        | 645                                     | 659                                    | 653                        | 637   | 138647         |
| 数据 6  | 632                        | 645                                     | 649                                    | 653                        | 641   | 173417.1       |
| 数据 7  | 632                        | 645                                     | 654                                    | 653                        | 636   | 171839.4       |
| 数据 8  | 632                        | 645                                     | 654                                    | 636                        | 654   | 130042.8       |
| 数据 9  | 632                        | 647                                     | 654                                    | 643                        | 654   | 80883.59       |
| 数据 10 | 632                        | 647                                     | 646                                    | 644                        | 641   | 139126.3       |
| 数据 11 | 632                        | 644                                     | 646                                    | 646                        | 641   | 151406.2       |
| 数据 12 | 643                        | 644                                     | 647                                    | 646                        | 641   | 161208.5       |
| 数据 13 | 642                        | 648                                     | 647                                    | 646                        | 641   | 181379.4       |
| 数据 14 | 650                        | 648                                     | 647                                    | 640                        | 641   | 112172.7       |
| 数据 15 | 650                        | 648                                     | 653                                    | 637                        | 641   | 108744.8       |
|       |                            | •                                       | ·                                      | •                          | •     |                |

根据上述表格数据可知:组 1 对应的  $H'=\{h_1,h_2,h_3,h_4,h_5\}$ ,其目标函数  $E_{used}$  为最大,使得全程总能耗最小,为最优的时间间隔  $H=\{h_1,h_2...h_{99}\}$ ,其时间间隔的数据是基于前车制动时后车发车的特殊情况下。为了确认最优解,选择大量的数据进行寻优工作,经过反复寻优,确认该组数据可以作为较优解。

附件程序见附件 2-1

### 5.3 考虑早晚高峰期多列车节能运行优化建模

该模型建立在多列车节能运行优化模型的基础上,不同之处在于,该模型更为宏观地考虑在不同时间节点之间采用不同的时间间隔运行方案。不同时间节点示意图如图 5.6 所示。简单地把凌晨记作 $M_1$ ,该区段内发车总数为 $L_1$ ,早高峰记作 $M_2$ ,该区段内发车总数为 $L_2$ ,自天时间记作 $M_3$ ,该区段内发车总数为 $L_3$ ,晚高峰记作 $M_4$ ,该区段内发车总数为 $L_4$ ,夜晚记作 $M_5$ ,该区段内发车总数为 $L_5$ 。 $L=\{L_1,L_2,L_3,L_4,L_5\}$ 的限定条件可以根据 $120s \leq h_{early},h_{lat} \leq 150s$ , $300s \leq h_{other} \leq 660s$  时间限定条件推导出,其中 $h_{early},h_{lat}$ 分别代表早、晚高峰的发车间隔, $h_{other}$ 代表其他时间段的发车间隔。



图 5.6 不同时间节点示意图

#### 1、目标函数

$$E_{used} = \max \sum_{i=1}^{5} \sum_{l=1}^{L_i} \sum_{i=1}^{N} \Delta E_{used(l)}^{j}(i)$$

### 2、约束条件

$$\begin{cases} 10 \le L_1 \le 24 \\ 36 \le L_2 \le 45 \\ 46 \le L_3 \le 102 \end{cases}$$

$$5.t.\begin{cases} 48 \le L_4 \le 60 \\ 20 \le L_5 \le 45 \\ L_1 + L_2 + L_3 + L_4 + L_5 = 240 \end{cases}$$

一旦确定某时间区段内出发的列车总数  $L_i$ ,则可以把每一时间区段当做问题 2-1 中多列车节能运行优化模型来进行解析,可以求出该时间区间内再生能量值,通过对每一个时间区段进行求解,则可以求出目标函数  $E_{used}$ 。因此,基于早晚高峰列车节能运行优化模型可以简化为对 L 的合理优化。即通过合理安排  $L=\{L_1,L_2,L_3,L_4,L_5\}$ ,来使目标函数  $E_{used}$  最大化,从而实现较节能的基于早晚高峰的多列车运行方案。

### 5.4 考虑早晚高峰期多列车节能运行优化模型求解

#### 1、求解思路

模型建立的整体思路是采用联合迭代算法,对初始值进行全局寻优。联合迭代算法的流程如下所述:

Step1: 确定最大迭代次数 N 并且对区段  $\{M_1, M_2, M_3, M_4, M_5\}$  对应的  $L = \{L_1, L_2, L_3, L_4, L_5\}$  进行初始化;

Step2: 根据  $L = \{L_1, L_2, L_3, L_4, L_5\}$ , 计算区段  $\{M_1, M_2, M_3, M_4, M_5\}$ , 从而计算出各区段的再生能量总和  $E'_{used} = \{E_{used1}, E_{used2}, E_{used3}, E_{used4}, E_{used5}\}$ 。

Step3:  $L = \{L_1, L_2, L_3, L_4, L_5\}$  分别增加  $\Delta L$ , 计算区段  $M = \{M_1, M_2, M_3, M_4, M_5\}$  对应的再生能量  $E_{used}^{inc} = \{E_{used1}^{inc}, E_{used2}^{inc}, E_{used3}^{inc}, E_{used4}^{inc}, E_{used5}^{inc}\}$ , 计算  $E_{used}^{inc} - E_{used}'$ , 选择其中最大的再生能量对应的区段  $M_i$ ;

Step4:  $L = \{L_1, L_2, L_3, L_4, L_5\}$  分别减少  $\Delta L$ , 计算区段  $\mathbf{M} = \{M_1, M_2, M_3, M_4, M_5\}$  对应的再生能量  $\mathbf{E}^{dec}_{used} = \{\mathbf{E}^{dec}_{used1}, \mathbf{E}^{dec}_{used2}, \mathbf{E}^{dec}_{used3}, \mathbf{E}^{dec}_{used4}, \mathbf{E}^{dec}_{used5}\}$ , 计算  $E'_{used}$  -  $\mathbf{E}^{dec}_{used}$  选择其中最大的再生能量对应的区段  $M_i$ ;

Step4: 对 $M_i$ 和 $M_j$ 区段进行 $L=\{L_1,L_2,L_3,L_4,L_5\}$ 修定。具体修定方法为:  $M_i$ 区段列车数量增加 $\Delta L$ , $M_i$ 区段列车减少增加 $\Delta L$ 。

Step5: 返回 Step2 继续进行迭代,直到迭代次数达到最大迭代次数 N。

联合迭代过程中如果出现 $L=\{L_1,L_2,L_3,L_4,L_5\}$ 超出限定值,则跳出迭代。迭代结束后, $L=\{L_1,L_2,L_3,L_4,L_5\}$ 为最佳的节能运行方案。

#### 2、求解结果与分析

通过该模型可以根据较优  $L=\{L_1,L_2,L_3,L_4,L_5\}$  计算出目标函数  $E_{used}$  ,根据较优  $L=\{L_1,L_2,L_3,L_4,L_5\}$  ,可以根据上文提到的多列车节能运行优化模型计算各时间区间的发车间隔。表 5.2 为不同时间区段列车数再生能量对应数据表,为了更清楚地表现,表格中显示其他 L 对应的数据作对照。表 5.3 为对应时间区段发车间隔循环表,以 A1 站

点到 A14 站点全路程内最多列车数作为周期,对发车间隔进行循环,循环周期为  $T_{\max} = \{8,15,5,15,5\}$  。

表 5.2 不同时间区段列车数量对应再生能量数据表

|       | $L_1$ | $L_2$ | $L_3$ | $L_4$ | $L_5$ | L   | $E_{used}$  |
|-------|-------|-------|-------|-------|-------|-----|-------------|
| 数据 1  | 21    | 37    | 90    | 54    | 38    | 240 | 16966306.16 |
| 数据 2  | 21    | 41    | 86    | 54    | 38    | 240 | 16053531.6  |
| 数据 3  | 21    | 37    | 90    | 54    | 38    | 240 | 15856942.25 |
| 数据 4  | 11    | 44    | 86    | 59    | 40    | 240 | 15416473.56 |
| 数据 5  | 24    | 37    | 90    | 51    | 38    | 240 | 15142276.79 |
| 数据 6  | 12    | 44    | 86    | 59    | 39    | 240 | 14217450.54 |
| 数据 7  | 19    | 42    | 90    | 51    | 38    | 240 | 12731517.5  |
| 数据 8  | 19    | 42    | 86    | 51    | 42    | 240 | 12731517.5  |
| 数据 9  | 22    | 42    | 86    | 51    | 39    | 240 | 12731517.5  |
| 数据 10 | 17    | 42    | 86    | 56    | 39    | 240 | 12731517.5  |
| 数据 11 | 19    | 42    | 90    | 51    | 38    | 240 | 12413649.93 |
| 数据 12 | 16    | 44    | 86    | 59    | 35    | 240 | 12392809.12 |
| 数据 13 | 14    | 42    | 86    | 59    | 39    | 240 | 12381090.03 |
| 数据 14 | 14    | 44    | 84    | 59    | 39    | 240 | 11716770.39 |

表 5.3 对应时间区段发车间隔循环表格

|                            | $M_1$ | $M_2$ | $M_3$ | $M_4$ | $M_{5}$ |
|----------------------------|-------|-------|-------|-------|---------|
| $h_1$                      | 337   | 131   | 345   | 135   | 359     |
| $h_2$                      | 340   | 146   | 340   | 144   | 341     |
| $h_3$                      | 342   | 131   | 352   | 128   | 352     |
| $h_{\scriptscriptstyle 4}$ | 346   | 146   | 361   | 119   | 362     |
| $h_5$                      | 342   | 121   | 377   | 133   | 362     |
| $h_6$                      | 348   | 125   |       | 133   |         |
| $h_7$                      | 342   | 136   |       | 148   |         |
| $h_8$                      | 339   | 131   |       | 118   |         |
| $h_9$                      |       | 128   |       | 119   |         |
| $h_{10}$                   |       | 119   |       | 117   |         |
| $h_{\!11}$                 |       | 140   |       | 133   |         |
| $h_{12}$                   |       | 141   |       | 151   |         |
| $h_{13}$                   |       | 129   |       | 148   |         |
| $h_{14}$                   |       | 131   |       | 134   |         |
| $h_{15}$                   | ••    | 120   |       | 135   | ••      |

根据上述表格数据可知:组 1 对应的最优  $L=\{L_1,L_2,L_3,L_4,L_5\}$ ,其目标函数  $E_{used}$  为  $1.69\times 10^7 kJ$ ,再生能量值最大,从而使得总能耗最小, $L=\{21,37,90,54,38\}$  确认为基于早晚高峰多列车较佳节能运行方案。表中选择大量的数据进行对比,以确认该组数据可以作为较优解。其中..表示继续循环。

附件程序见附件 2-2。

### 6.考虑延误的列车节能运行控制建模与求解

### 6.1 基于延误的列车节能运行控制模型

### 1、建模准备

当 $DT_i^j$ 在运行过程中出现的时刻( $DT_i^j$ 表示第 i 辆列车,在第 j 站出现延误,其中  $DT_i^j = 10s$ ),可能会引起后续的列车同时延迟的连锁反应。为了解决延误带来的一系列 问题,对延误的列车提出了安全,快速,耗能最小的恢复正常运行的要求。为了满足上 述要求,需要减少延误列车到达下一站或者下两站的运行时间。

如果利用要求最快速的恢复正常运行,则要求到达下一站的运行时间为 $T_{j,j+1} - DT_i^j$ ( $T_{j,j+1}$ 为从 j 站点到 j+1 站点正常运行的时间);如果要求尽快且耗能最小,则要求到达下一站的运行时间为 $T_{j,j+1} - \Delta A_j$ ,到达下两站的运行时间为 $T_{j+1,j+2} - \Delta A_{j+1}$ ,其中 $DT_i^j = \Delta A_j + \Delta A_{j+1}$ ;如果速度不受限,仅要求耗能最小,则接下来站点与站点之间的运行时间,调整为, $\{T_{j,j+1}, T_{j+1,j+2}...T_{13,14}\} - \{\Delta A_j, \Delta A_{j+1}...\Delta A_{13}\}$ ,其中 $DT_i^j = \Delta A_j + \Delta A_{j+1} + ... + \Delta A_{13}$ 。

基于延误的列车节能运行控制模型的一般情况下的目标函数:

$$E_{add} = \min \sum_{i=1}^{L} \sum_{k=1}^{Ki} \Delta E_i^{j,k}$$
 (6.1)

其中, $\Delta E_i^{j,k}$  表示在第 i 辆列车,在第 j 站出现延误,并且通过增加运行时间补偿延误时间的方法,导致能耗的增加量, $\Delta E_i^{j,k} = f(\Delta A_k)$ ,函数  $f(\mathbf{x})$  为第 2 节中计算能耗的模型,其中 L 为引起延误的列车数量,列车 i 在 K 个站点之后恢复正常运行。

### 2、建模与求解

#### 模型 1:

设定一种场景进行建模求解,假定第 i 辆列车在 A3 站点发生了延误,则在此特定情况下的目标函数为:

$$E_{add} = \min\left(\Delta E_i^{3,1} + \Delta E_i^{3,2}\right)$$

$$s.t.\begin{cases} DT_{i+1}^2 = 10s \\ K = 2 \\ L = 1 \end{cases}$$
(6.2)

采用搜索寻优的方法,以 A3 站点到 A4 站点与 A4 站点到 A5 站点运行时间的减少量  $\{\Delta A_3, \Delta A_4\}$  作为为搜索量,  $E_{add} = \min\left(\Delta E_i^{3,1} + \Delta E_i^{3,2}\right)$  为目标函数,则最优搜索量  $\{\Delta A_3, \Delta A_4\} = \{7,3\}$ ,其  $E_{add} = 7 \times 10^3 \, kJ$ 。恢复延误路线与正常运行路线对比图如图 6.1 所示。



图 6.1 恢复延误路线与正常运行路线对比图

图中用 K=1时恢复路线作对比,其目标函数  $E_{add}=1.5\times10^4kJ$ ,可以看出, K=1时恢复策略虽然速度最优,但是耗能较大,因此针对尽快及耗能较小的要求,采用 K=2时恢复策略最优。

### 模型 2:

同样设定第 i 辆列车在 A3 站点发生了延误,设定其后仅有第 i+1 辆列车受延误影响, $DT_{i+1}^2=3s$ ,则在此特定情况下的目标函数为:

$$E_{add} = \min\left(\Delta E_{i}^{3,1} + \Delta E_{i}^{3,2} + \Delta E_{i+1}^{2,1}\right)$$

$$DT_{i+1}^{2} = 3s$$

$$DT_{i}^{3} = 10s$$

$$K_{i} = 2$$

$$K_{i+1} = 1$$

$$L = 2$$
(6.3)

模型 2 与模型 1 相比,多了后车受延误的限定条件,在模型 1 的基础上,以  $K_{i+1}$  = 1 的恢复策略恢复正常运行,其目标函数  $E_{add}$  =  $1.68 \times 10^4 kJ$  ,恢复延误路线与正常运行路线对比图如图 6.2 所示:



图 6.2 恢复延误路线与正常运行路线对比图

蓝色虚线为后车正常运行路线,红色虚线为后车恢复延迟路线。受延迟影响的后车能耗增多 $\Delta E_{\rm int}^{2,1}=1.8\times 10^3 kJ$ 。附件程序见附件 3-1。

### 6.2 延误时间为随机变量时的多列车节能调整策略

### 6.2.1 延误时间对后续车辆的影响分析

设第 i+1 辆车与第 i 辆车的原始发车时间间隔为 $h_i$ ,第 i 辆车在车站  $A_j$  延误  $DT_j^i$  后,两车时间间隔减少至  $h_i$  '= $h_i$  -  $DT_j^i$ ,若在此间隔  $h_i$  ',两车在后面的车站运行过程中的最短距离为  $\Delta d_i$ ,两车安全距离为  $\Delta D_i$ 。则当  $\Delta d_i \geq \Delta D_i$ 时,第 i 辆车延误  $DT_j^i$  对后续的第 i+1 辆车无影响,若  $\Delta d_i < \Delta D_i$ ,则后续的第 i+1 辆车必然要延误,若两车距离最近时的第 i+1 辆车速度为  $v_{i+1}$ ,则第 i+1 辆车应该在车站  $A_{j-1}$  延时  $DT_{j-1}^{i+1} = \frac{\Delta D_i - \Delta d_i}{v_{i+1}}$ 。

由  $\Delta d_i = \Delta D_i$ ,可确定影响第 i+1 辆车是否延时的第 i 辆车延时时间临界点  $\tilde{D}T^i_j$ ,若第 i+1 辆车延时时间  $DT^{i+1}_{j-1} > \tilde{D}T^i_j$ ,则第 i+1 辆车与需要延时,否则不延时…由此可得出第 i 辆车在车站  $A_i$  延时  $\tilde{D}T^i_i$  对后续有影响的车辆数。

#### 6.2.2 调整策略

当 $DT_{j}^{i}$ 为随机变量时,由于允许列车在各站的发车时间与原时间对比可提前10秒,因此,当普通延时时( $0 < DT_{j}^{i} < 10s$ )发生时,只需让该车在下一路段直接赶上即可;当发生严重延误时(概率为10%),可将后续车辆的延时时间均在使用上述方法的基础上减去10秒,即 $\overline{DT}_{j-1}^{i+1} = DT_{j-1}^{i+1} - 10, \overline{DT}_{j-2}^{i+2} = DT_{j-2}^{i+2} - 10, \cdots$ ,再据此调整控制方案。

# 7.模型评价

本文针对列车调度问题进行了优化,采用强约束条件(时间、速度、加速度、能量以及距离等限制)下的循环搜索算法,首先通过简化列车运行需要优化的参数,在已有参数的基础上,从物理意义上精确推导其它的运行参数,极大提高了运行速度及精度。 其次,基于物理情景及目标耦合迭代寻优思想,先确定单列车运行模式,减少列车之间的耦合参数,简化对于多列车的耦合优化问题。最后,对整个求解的过程进行模块化,从概念上以及代码的实现上,提出了模块化的框架,方便模型的求解及扩充。但本文模型未考虑列车变运动模式下的运行情况,优化算法存在一定的片面性。

对于单列车的节能运行建模,采用搜索寻优思想,构建了列车节能优化模型,同时考虑了多站之间的耦合限制因素;对于多列车的节能运行建模,建立了不同发车间隔、不同运行时间下的多列车耦合运动模式,同时给出了同等条件下的相对最优解。但是当列车运行情况发生变化时,尤其是发生突发事件时,未对模型进行全面考虑。受运算速度的限制,仿真步长较大,计算误差较大,可考虑采用变步长的算法进行数值计算。同时,在寻优算法的选择上,可以选择更为智能、自适应性更强的算法,如遗传算法、神

# 经网络等。

列车的调度优化问题是解决铁路能耗的关键问题,本文的研究能够对列车的实际调度具有一定的指导作用,但是需考虑更为全面的运行模型,以更好地适用真实轨道交通的运行状况。

# 参考文献:

- [1] P. Howllet, An Optimal Strategy for the Control of A Train, Journal of the Australian Mathematical Society. Series B. Applied Mathematics, Volume 31, Issue 04, April 1990, pp. 454-471.
- [2] 丁勇,毛保华,刘海东,张鑫,王铁城,列车节能运行模拟系统的研究,北京交通大学学报,第28卷第2期,第76-81页
- [3] 金炜东,靳蕃,李崇维,胡飞,苟先太,列车优化操纵速度模式曲线生成的智能计算研究,铁道学报,第20卷,第5期,第47-52页.
- [4] 王峰,刘海东,丁勇,陈善亮,毛保华,列车节能运行的算法及实施技术研究,北方交通大学学报,第26卷,第5期,第13-18页.

# 附录

# A6-A7 运行数据

| HU-H →  |          | <b>帝                                    </b> | 21. 84 Jun | )1. Æ DE | ``. <i>\</i> | 사 소소 나 | 11. 熔大   | 11. 海大   |
|---------|----------|----------------------------------------------|------------|----------|--------------|--------|----------|----------|
| 时 刻     | 实际速      | 实际速                                          | 计算加        | 计算距      | 计算公          | 当前坡    | 计算牵      | 计算牵      |
| (hh:mm: | 度(cm/s)  | 度                                            | 速 度        | 离(m)     | 里标(m)        | 度(‰)   | 引力(N)    | 引功率      |
| ss)     |          | (km/h)                                       | $(m/s^2)$  |          |              |        |          | (Kw)     |
| 0:00:00 | 0        | 0                                            | 0          | 0        | 0            | 0      | 182700   | 0        |
| 0:00:01 | 92.04189 | 3.313508                                     | 0.920418   | 0.920418 | 0.920418     | 0      | 182700   | 168.1605 |
|         | 052      | 059                                          | 905        | 905      | 905          |        |          | 34       |
| 0:00:02 | 183.8623 | 6.619044                                     | 0.918204   | 2.759042 | 2.759042     | 0      | 182700   | 335.9165 |
|         | 6        | 959                                          | 695        | 505      | 505          |        |          | 317      |
| 0:00:03 | 275.4231 | 9.915235                                     | 0.915608   | 5.513274 | 5.513274     | 0      | 182700   | 503.1981 |
|         | 955      | 038                                          | 355        | 46       | 46           |        |          | 782      |
| 0:00:04 | 366.6865 | 13.20071                                     | 0.912634   | 9.180140 | 9.180140     | 0      | 182700   | 669.9364 |
|         | 964      | 747                                          | 009        | 423      | 423          |        |          | 115      |
| 0:00:05 | 457.6152 | 16.47414                                     | 0.909286   | 13.75629 | 13.75629     | 0      | 182700   | 836.0630 |
|         | 358      | 849                                          | 394        | 278      | 278          |        |          | 357      |
| 0:00:06 | 548.1723 | 19.73420                                     | 0.905570   | 19.23801 | 19.23801     | 0      | 182700   | 1001.510 |
|         | 21       | 356                                          | 852        | 599      | 599          |        |          | 83       |
| 0:00:07 | 638.3216 | 22.97957                                     | 0.901493   | 25.62123 | 25.62123     | 0      | 182700   | 1166.213 |
|         | 518      | 946                                          | 308        | 251      | 251          |        |          | 658      |
| 0:00:08 | 728.0276 | 26.20899                                     | 0.897060   | 32.90150 | 32.90150     | 0      | 182700   | 1330.106 |
|         | 768      | 637                                          | 25         | 928      | 928          |        |          | 566      |
| 0:00:09 | 817.2555 | 29.42119                                     | 0.892278   | 41.07406 | 41.07406     | 0      | 182700   | 1493.125 |
|         | 477      | 972                                          | 709        | 475      | 475          |        |          | 886      |
| 0:00:10 | 905.9711 | 32.61496                                     | 0.887156   | 50.13377 | 50.13377     | 0      | 182700   | 1655.209 |
|         | 708      | 215                                          | 231        | 646      | 646          |        |          | 329      |
| 0:00:11 | 994.1412 | 35.78908                                     | 0.881700   | 60.07518 | 60.07518     | 0      | 182700   | 1816.296 |
|         | 565      | 524                                          | 858        | 903      | 903          |        |          | 076      |
| 0:00:12 | 1081.733 | 38.94240                                     | 0.875921   | 70.89252 | 70.89252     | 0      | 182700   | 1976.326 |
|         | 366      | 119                                          | 097        | 269      | 269          |        |          | 86       |
| 0:00:13 | 1168.715 | 42.07377                                     | 0.869825   | 82.57968 | 82.57968     | 0      | 182700   | 2135.244 |
|         | 956      | 441                                          | 895        | 225      | 225          |        |          | 051      |
| 0:00:14 | 1255.058 | 45.18210                                     | 0.863424   | 95.13026 | 95.13026     | 0      | 182700   | 2292.991 |
|         | 417      | 3                                            | 607        | 641      | 641          |        |          | 727      |
| 0:00:15 | 1340.731 | 48.26632                                     | 0.856726   | 108.5375 | 108.5375     | 0      | 182700   | 2449.515 |
|         | 113      | 008                                          | 969        | 775      | 775          |        |          | 744      |
| 0:00:16 | 1425.705 | 51.32539                                     | 0.849743   | 122.7946 | 122.7946     | 0      | 182700   | 2604.763 |
|         | 42       | 512                                          | 066        | 317      | 317          |        |          | 802      |
| 0:00:17 | 1509.953 | 54.35833                                     | 0.842483   | 137.8941 | 137.8941     | 0      | 164379.5 | 2482.054 |
|         | 75       | 5                                            | 3          | 692      | 692          |        | 303      | 882      |
| 0:00:18 | 1584.020 | 57.02473                                     | 0.740666   | 153.7343 | 153.7343     | 0      | 149618.4 | 2369.986 |
|         | 383      | 38                                           | 332        | 731      | 731          |        | 549      | 824      |
| 0:00:19 | 1649.801 | 59.39284                                     | 0.657809   | 170.2323 | 170.2323     | 0      | 138072.9 | 2277.929 |
|         | 304      | 693                                          | 203        | 861      | 861          |        | 415      | 189      |
| 0:00:20 | 1649.801 | 59.39284                                     | 0          | 186.7303 | 186.7303     | 0      | 23038.44 | 380.0885 |
|         | 304      | 693                                          |            | 992      | 992          |        | 648      | 904      |
| 0:00:21 | 1649.801 | 59.39284                                     | 0          | 203.2284 | 203.2284     | 0      | 23038.44 | 380.0885 |
|         | 304      | 693                                          |            | 122      | 122          |        | 648      | 904      |
| 0:00:22 | 1649.801 | 59.39284                                     | 0          | 219.7264 | 219.7264     | 0      | 23038.44 | 380.0885 |
|         | 304      | 693                                          |            | 252      | 252          |        | 648      | 904      |
| 0:00:23 | 1649.801 | 59.39284                                     | 0          | 236.2244 | 236.2244     | 0      | 23038.44 | 380.0885 |
|         | 304      | 693                                          |            | 383      | 383          |        | 648      | 904      |
| 0:00:24 | 1649.801 | 59.39284                                     | 0          | 252.7224 | 252.7224     | 0      | 23038.44 | 380.0885 |
|         | 304      | 693                                          |            | 513      | 513          |        | 648      | 904      |
| 0:00:25 | 1649.801 | 59.39284                                     | 0          | 269.2204 | 269.2204     | 0      | 23038.44 | 380.0885 |
| L       | ĺ        | ĺ                                            | ĺ          | ĺ        | ĺ            | ĺ      | ĺ        |          |

|         | 304      | 693      |          | 643      | 643      |      | 648      | 904      |
|---------|----------|----------|----------|----------|----------|------|----------|----------|
| 0:00:26 | 1649.801 | 59.39284 | 0        | 285.7184 | 285.7184 | 0    | 23038.44 | 380.0885 |
| 0.00.20 | 304      | 693      |          | 774      | 774      |      | 648      | 904      |
| 0:00:27 | 1649.801 | 59.39284 | 0        | 302.2164 | 302.2164 | 0    | 23038.44 | 380.0885 |
| 0.00.27 | 304      | 693      | U        | 904      | 904      | 0    | 648      | 904      |
| 0:00:28 | 1649.801 | 59.39284 | 0        | 318.7145 | 318.7145 | 0    | 23038.44 | 380.0885 |
| 0.00.28 | 304      | 693      | U        | 034      | 034      | 0    | 648      | 904      |
| 0.00.20 |          | 59.39284 | 0        |          |          | 1.0  | 1        |          |
| 0:00:29 | 1649.801 |          | 0        | 335.2125 | 335.2125 | 1.8  | 23041.87 | 380.1451 |
| 0.00.20 | 304      | 693      |          | 165      | 165      | 1.0  | 385      | 351      |
| 0:00:30 | 1649.801 | 59.39284 | 0        | 351.7105 | 351.7105 | 1.8  | 23041.87 | 380.1451 |
|         | 304      | 693      |          | 295      | 295      |      | 385      | 351      |
| 0:00:31 | 1649.801 | 59.39284 | 0        | 368.2085 | 368.2085 | 1.8  | 23041.87 | 380.1451 |
|         | 304      | 693      |          | 426      | 426      |      | 385      | 351      |
| 0:00:32 | 1649.801 | 59.39284 | 0        | 384.7065 | 384.7065 | 1.8  | 23041.87 | 380.1451 |
|         | 304      | 693      |          | 556      | 556      |      | 385      | 351      |
| 0:00:33 | 1649.801 | 59.39284 | 0        | 401.2045 | 401.2045 | 1.8  | 23041.87 | 380.1451 |
|         | 304      | 693      |          | 686      | 686      |      | 385      | 351      |
| 0:00:34 | 1649.801 | 59.39284 | 0        | 417.7025 | 417.7025 | 1.8  | 23041.87 | 380.1451 |
|         | 304      | 693      |          | 817      | 817      |      | 385      | 351      |
| 0:00:34 | 1649.801 | 59.39284 | 0        | 417.7025 | 417.7025 | 1.8  | 0        | 0        |
|         | 304      | 693      |          | 817      | 817      |      |          |          |
| 0:00:35 | 1646.072 | 59.25860 | -0.03729 | 434.2005 | 434.2005 | 1.8  | 0        | 0        |
|         | 292      | 252      | 0115     | 947      | 947      |      |          |          |
| 0:00:36 | 1634.363 | 58.83707 | -0.11708 | 450.6613 | 450.6613 | 1.8  | 0        | 0        |
| 0.00.50 | 309      | 911      | 9835     | 176      | 176      | 1.0  |          |          |
| 0:00:37 | 1622.766 | 58.41959 | -0.11596 | 467.0049 | 467.0049 | 1.8  | 0        | 0        |
| 0.00.57 | 463      | 265      | 8461     | 507      | 507      | 1.0  |          |          |
| 0:00:38 | 1611.280 | 58.00608 | -0.11486 | 483.2326 | 483.2326 | 1.8  | 0        | 0        |
| 0.00.38 | 077      | 278      | 3854     | 153      | 153      | 1.6  | U        | 0        |
| 0:00:39 | 1599.902 | 57.59649 | -0.11377 | 499.3454 | 499.3454 | 1.8  | 0        | 0        |
| 0.00.39 | 509      | 032      | 5682     | 161      | 161      | 1.6  | U        | 0        |
| 0.00.40 |          | 57.19075 | -0.11270 |          | 515.3444 | 1.0  | 0        | 0        |
| 0:00:40 | 1588.632 | 729      |          | 515.3444 |          | 1.8  | 0        | U        |
| 0.00.41 | 147      |          | 3621     | 412      | 412      | 1.0  | 0        | 0        |
| 0:00:41 | 1577.467 | 56.78882 | -0.11164 | 531.2307 | 531.2307 | 1.8  | 0        | 0        |
| 0.00.40 | 411      | 68       | 7356     | 627      | 627      | 1.0  |          | 0        |
| 0:00:42 | 1566.406 | 56.39064 | -0.11060 | 547.0054 | 547.0054 | 1.8  | 0        | 0        |
|         | 753      | 312      | 658      | 368      | 368      |      |          |          |
| 0:00:43 | 1555.448 | 55.99615 | -0.10958 | 562.6695 | 562.6695 | 1.8  | 0        | 0        |
|         | 654      | 155      | 0991     | 043      | 043      |      |          |          |
| 0:00:44 | 1544.591 | 55.60529 | -0.10857 | 578.2239 | 578.2239 | 1.8  | 0        | 0        |
|         | 624      | 848      | 0298     | 908      | 908      |      |          |          |
| 0:00:45 | 1533.834 | 55.21803 | -0.10757 | 593.6699 | 593.6699 | 1.8  | 0        | 0        |
|         | 203      | 131      | 4213     | 071      | 071      |      |          |          |
| 0:00:46 | 1523.174 | 54.83429 | -0.10659 | 609.0082 | 609.0082 | 1.8  | 0        | 0        |
|         | 957      | 846      | 2459     | 491      | 491      |      |          |          |
| 0:00:47 | 1512.612 | 54.45404 | -0.10562 | 624.2399 | 624.2399 | 1.8  | 0        | 0        |
|         | 481      | 932      | 4761     | 987      | 987      |      |          |          |
| 0:00:48 | 1502.145 | 54.07723 | -0.10467 | 639.3661 | 639.3661 | 1.8  | 0        | 0        |
|         | 396      | 424      | 0855     | 235      | 235      |      |          |          |
| 0:00:49 | 1491.772 | 53.70380 | -0.10373 | 654.3875 | 654.3875 | 1.8  | 0        | 0        |
|         | 348      | 451      | 048      | 775      | 775      |      |          | 1        |
| 0:00:50 | 1481.492 | 53.33371 | -0.10280 | 669.3053 | 669.3053 | 1.8  | 0        | 0        |
|         | 009      | 234      | 3382     | 009      | 009      |      |          |          |
| 0:00:51 | 1471.308 | 52.96709 | -0.10183 | 684.1202 | 684.1202 | -3.5 | 0        | 0        |
| 3.00.01 | 226      | 613      | 7835     | 21       | 21       |      |          |          |
| 0:00:52 | 1461.214 | 52.60372 | -0.10093 | 698.8333 | 698.8333 | -3.5 | 0        | 0        |
| 0.00.32 | 1701.214 | 32.00312 | -0.10033 | 070.0333 | 070.0333 | -3.3 | 1 0      |          |

| 0.00.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | 525      | 29       | 7007     | 033      | 033      |      |     |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----------|----------|----------|----------|------|-----|-----|
| Corolist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0:00:53 | 1451.209 | 52.24354 | -0.10004 | 713.4454 | 713.4454 | -3.5 | 0   | 0   |
| 0.00:55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |          |          |          |          |          |      |     |     |
| 0.00:55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0:00:54 | 1441.292 | 51.88652 | -0.09917 | 727.9575 | 727.9575 | -3.5 | 0   | 0   |
| 0.00:56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |          |          | 2748     |          |          |      |     |     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0:00:55 | 1431.461 | 51.53261 | -0.09830 | 742.3704 | 742.3704 | -3.5 | 0   | 0   |
| 808   91   6838   838   838   838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |          |          |          |          |          |      |     |     |
| R08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0:00:56 | 1421.715 | 51.18176 | -0.09745 | 756.6850 | 756.6850 | -3.5 | 0   | 0   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |          |          |          |          |          |      |     |     |
| 162   982   6467   419   419   419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0:00:57 |          |          |          |          |          | -3.5 | 0   | 0   |
| 0:00:58         1402.475         50.48911         -0.09578         785.0227         785.0227         -3.5         0         0           0:00:59         1392.978         50.14722         -0.0946         799.0475         -3.5         0         0           0:01:00         1383.562         49.80823         -0.09416         812.9773         812.9773         -3.5         0         0           0:01:01         1374.225         49.47211         -0.09368         826.8129         826.8129         -3.5         0         0           0:01:02         1364.967         49.13881         -0.09258         840.5551         840.5551         -3.5         0         0           0:01:03         1355.786         48.80831         -0.09180         854.2048         854.2048         -3.5         0         0           0:01:04         1346.682         48.48055         -0.09180         854.2048         854.2048         -3.5         0         0           0:01:05         137.653         48.4815551         -0.0928         881.2295         881.2295         -3.5         0         0           0:01:05         1346.682         48.48055         -0.09180         851.295         881.295         -3.5         0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> |         |          |          |          |          |          |      |     |     |
| 0.00:59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0:00:58 |          | 50.48911 |          |          |          | -3.5 | 0   | 0   |
| 0:00:59         1392.978         50.14722         -0.09496         799.0475         799.0475         -3.5         0         0           0:01:00         1383.562         49.80823         -0.09416         812.9773         -3.5         0         0           0:01:01         1374.225         49.80823         -0.09336         826.8129         826.8129         -3.5         0         0           0:01:02         1364.967         49.13881         -0.09258         840.5551         840.5551         -3.5         0         0           0:01:03         1355.786         48.80831         -0.09180         854.2048         834.2048         -3.5         0         0           0:01:04         1346.682         48.48055         -0.09104         867.7627         -3.5         0         0           0:01:05         1337.653         48.15551         -0.09104         867.7627         -3.5         0         0           0:01:06         1328.698         48.15551         -0.08954         894.6060         894.6060         -3.5         0         0           0:01:07         1319.817         47.51344         -0.08808         907.8930         907.8930         -3.5         0         0                                                                                                                     |         |          |          |          |          |          |      |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0:00:59 |          |          |          |          |          | -3.5 | 0   | 0   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00.00 |          |          |          |          |          |      |     |     |
| 0:01:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0:01:00 |          |          |          |          |          | -3.5 | 0   | 0   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01.00 |          |          |          |          |          | 3.5  |     |     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01.01 |          |          |          |          |          | -3.5 | 0   | 0   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01.01 |          |          |          |          |          | 3.3  | · · | · · |
| 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01.02 |          |          |          |          |          | -3.5 | 0   | 0   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01.02 |          |          |          |          |          | -3.3 |     | U   |
| 0:01:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01.03 |          |          |          |          |          | 3.5  | 0   | 0   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01.03 |          |          |          |          |          | -3.3 | 0   | U   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01.04 |          |          |          |          |          | 2.5  | 0   | 0   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0:01:04 |          |          |          |          |          | -3.3 | U   | U   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01.05 |          |          |          |          |          | 2.5  | 0   | 0   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0:01:03 |          |          |          |          |          | -3.3 | U   | U   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01.06 |          |          |          |          |          | 2.5  | 0   | 0   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0:01:06 |          |          |          |          |          | -3.5 | 0   | U   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01.07 |          |          |          |          |          | 2.5  |     | 0   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0:01:07 |          |          |          |          |          | -3.5 | 0   | 0   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01.00 |          |          |          |          |          | 2.7  |     |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0:01:08 |          |          |          |          |          | -3.5 | 0   | 0   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01.00 |          |          |          |          |          | 2.5  |     |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0:01:09 |          |          |          |          |          | -3.5 | 0   | 0   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |          |          |          |          |          |      |     |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0:01:10 |          |          |          |          |          | -3.5 | 0   | 0   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |          |          |          |          |          |      |     |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0:01:11 |          |          |          |          |          | -3.5 | 0   | 0   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |          |          |          |          |          |      |     |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0:01:12 |          |          |          |          |          | -3.5 | 0   | 0   |
| 631         472         6625         603         603         0.01:14         1259.630         45.34668         -0.08392         998.4552         998.4552         -3.5         0         0           0:01:15         1251.303         45.04693         -0.08326         1011.051         1011.051         -3.5         0         0           0:01:16         1243.042         44.74954         -0.08260         1023.564         1023.564         -3.5         0         0           0:01:17         1234.846         44.45447         -0.08196         1035.995         1035.995         -3.5         0         0           0:01:18         1226.714         44.16170         -0.08132         1048.343         1048.343         -3.5         0         0           0:02         695         502         52         52         52         -3.5         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |          |          |          |          |          |      |     |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0:01:13 |          |          |          |          |          | -3.5 | 0   | 0   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |          |          |          |          |          |      |     |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0:01:14 |          |          |          |          |          | -3.5 | 0   | 0   |
| 764         551         3069         587         587         0.01:16         1243.042         44.74954         -0.08260         1023.564         1023.564         -3.5         0         0           876         352         8887         625         625         625         625         0         0           0:01:17         1234.846         44.45447         -0.08196         1035.995         1035.995         -3.5         0         0           584         703         2916         054         054         054         0         0           0:01:18         1226.714         44.16170         -0.08132         1048.343         1048.343         -3.5         0         0           082         695         502         52         52         52         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |          |          |          |          |      |     |     |
| 0:01:16         1243.042         44.74954         -0.08260         1023.564         1023.564         -3.5         0         0           876         352         8887         625         625         625         0         0           0:01:17         1234.846         44.45447         -0.08196         1035.995         1035.995         -3.5         0         0           584         703         2916         054         054         054         0         0           0:01:18         1226.714         44.16170         -0.08132         1048.343         1048.343         -3.5         0         0           082         695         502         52         52         52         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0:01:15 |          |          |          |          |          | -3.5 | 0   | 0   |
| 876     352     8887     625     625       0:01:17     1234.846     44.45447     -0.08196     1035.995     1035.995     -3.5     0     0       584     703     2916     054     054     054     0     0       0:01:18     1226.714     44.16170     -0.08132     1048.343     1048.343     -3.5     0     0       082     695     502     52     52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 764      | 551      | 3069     |          | 587      |      |     |     |
| 0:01:17     1234.846     44.45447     -0.08196     1035.995     1035.995     -3.5     0     0       584     703     2916     054     054     054       0:01:18     1226.714     44.16170     -0.08132     1048.343     1048.343     -3.5     0       082     695     502     52     52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0:01:16 |          |          |          |          |          | -3.5 | 0   | 0   |
| 584     703     2916     054     054       0:01:18     1226.714     44.16170     -0.08132     1048.343     1048.343     -3.5     0     0       082     695     502     52     52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |          |          |          |          |      |     |     |
| 0:01:18     1226.714     44.16170     -0.08132     1048.343     1048.343     -3.5     0     0       082     695     502     52     52     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0:01:17 |          |          |          |          |          | -3.5 | 0   | 0   |
| 082 695 502 52 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |          |          |          |          |          |      |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0:01:18 | 1226.714 | 44.16170 | -0.08132 | 1048.343 | 1048.343 | -3.5 | 0   | 0   |
| , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 082      | 695      | 502      | 52       | 52       |      |     |     |
| 0:01:19   1218.644   43.87120   -0.08069   1060.610   1060.610   -3.5   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0:01:19 | 1218.644 | 43.87120 | -0.08069 | 1060.610 | 1060.610 | -3.5 | 0   | 0   |
| 575 472 5066 66 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 575      | 472      | 5066     | 66       | 66       |      |     |     |
| 0:01:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0:01:20 | 1210.637 | 43.58294 | -0.08007 | 1072.797 | 1072.797 | -3.5 | 0   | 0   |

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ı   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| 071         855         2097         456         456         456         0.01:24         1179.215         42.45174         -0.07765         1120.748         1120.748         -3.5         0         0           076         275         9946         267         267         267         0.01:25         1171.507         42.17427         -0.07707         1132.540         1132.540         -3.5         0         0           577         277         4993         418         418         418         418 |     |
| 0:01:24         1179.215         42.45174         -0.07765         1120.748         1120.748         -3.5         0         0           0:01:25         1171.507         42.17427         -0.07707         1132.540         1132.540         -3.5         0         0           577         277         4993         418         418         -3.5         0         0                                                                                                                                          |     |
| 076         275         9946         267         267           0:01:25         1171.507         42.17427         -0.07707         1132.540         1132.540         -3.5         0         0           577         277         4993         418         418         418         0         0                                                                                                                                                                                                                    |     |
| 0:01:25   1171.507   42.17427   -0.07707   1132.540   1132.540   -3.5   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   |
| 577 277 4993 418 418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ł   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 0:01:26   1163.857   41.89888   -0.07649   1144.255   1144.255   -3.5   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                  | Į   |
| 865 314 7121 493 493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 0:01:27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Į.  |
| 243 875 6218 072 072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 0:01:28   1148.729   41.35424   -0.07536   1167.456   1167.456   -3.5   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                  | )   |
| 026 493 2173 724 724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 0:01:29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1   |
| 538 737 4877 015 015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 0:01:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1   |
| 116 216 4224 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 0:01:31   1126.452   40.55227   -0.07371   1201.694   1201.694   -3.5   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                  | l . |
| 105 577 0109 731 731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 0:01:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | İ   |
| 862 502 2429 252 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 0:01:33   1111.870   40.02734   -0.07264   1224.150   1224.150   -3.5   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1   |
| 753 712 1085 601 601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 0:01:34   1104.659   39.76772   -0.07211   1235.269   1235.269   -3.5   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 155     959     5978     308     308       0:01:35     1097.499     39.50998     -0.07159     1246.315     1246.315     -3.5     0     0                                                                                                                                                                                                                                                                                                                                                                       |     |
| 0:01:35   1097.499   39.50998   -0.07159   1246.315   1246.315   -3.5   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| 0:01:36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 0.01.30   1090.391   39.23407   -0.07108   1237.290   1237.290   -3.3                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| 0:01:37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 333   7121   805   805   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 0:01:37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 829 985 5042 805 805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 0:01:38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 66 438 7631 663 663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| 0:01:39   882.9400   31.78584   -0.82607   1288.337   1288.337   -3.5   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 244 088 0416 134 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 0:01:40 800.8304 28.82989 -0.82109 1297.166 1297.166 -3.5 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )   |
| 622   664   5622   534   534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| 0:01:41 719.1848 25.89065 -0.81645 1305.174 1305.174 -3.5 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,   |
| 84 583 5782 839 839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| 0:01:42   637.9704   22.96693   -0.81214   1312.366   1312.366   -3.5   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1   |
| 84 742 4 688 688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 0:01:43 557.1516 20.05746 -0.80818 1318.746 1318.746 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·   |
| 777 04 8063 393 393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| 0:01:44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·   |
| 042 095 3735 909 909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 0:01:45   396.5853   14.27707   -0.80114   1329.084   1329.084   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   |
| 044 096 9997 912 912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 0:01:46   316.7761   11.40393   -0.79809   1333.050   1333.050   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| 021 967 2024 765 765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 0:01:47   237.2425   8.540732   -0.79533   1336.218   1336.218   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                     | )   |

|         | 556      | 003      | 5464     | 526      | 526      |   |   |   |
|---------|----------|----------|----------|----------|----------|---|---|---|
| 0:01:48 | 157.9549 | 5.686376 | -0.79287 | 1338.590 | 1338.590 | 0 | 0 | 0 |
|         | 125      | 851      | 6431     | 952      | 952      |   |   |   |
| 0:01:49 | 78.88376 | 2.839815 | -0.79071 | 1340.170 | 1340.170 | 0 | 0 | 0 |
|         | 377      | 496      | 1488     | 501      | 501      |   |   |   |
| 0:01:50 | 0        | 0        | -0.78883 | 1340.959 | 1340.959 | 0 | 0 | 0 |
|         |          |          | 7638     | 339      | 339      |   |   |   |

## A6-A8 运行数据

| 时 刻     | 实际速             | 实际速             | 计算加             | 计算距             | 计 算 公           | 当 前 坡 | 计算牵      | 计算牵             |
|---------|-----------------|-----------------|-----------------|-----------------|-----------------|-------|----------|-----------------|
| (hh:mm: | 度(cm/s)         | 度               | 速度              | 离(m)            | 里标(m)           | 度(‰)  | 引力(N)    | 引功率             |
| ss)     |                 | (km/h)          | $(m/s^2)$       |                 |                 |       |          | (Kw)            |
| 0:00:00 | 0               | 0               | 0               | 0               | 0               | 0     | 182700   | 0               |
| 0:00:01 | 92.04189        | 3.313508        | 0.920418        | 0.920418        | 0.920418        | 0     | 182700   | 168.1605        |
|         | 052             | 059             | 905             | 905             | 905             |       |          | 34              |
| 0:00:02 | 183.8623        | 6.619044        | 0.918204        | 2.759042        | 2.759042        | 0     | 182700   | 335.9165        |
|         | 6               | 959             | 695             | 505             | 505             |       |          | 317             |
| 0:00:03 | 275.4231        | 9.915235        | 0.915608        | 5.513274        | 5.513274        | 0     | 182700   | 503.1981        |
|         | 955             | 038             | 355             | 46              | 46              | _     |          | 782             |
| 0:00:04 | 366.6865        | 13.20071        | 0.912634        | 9.180140        | 9.180140        | 0     | 182700   | 669.9364        |
| 0.00.07 | 964             | 747             | 009             | 423             | 423             | 0     | 102700   | 115             |
| 0:00:05 | 457.6152        | 16.47414        | 0.909286        | 13.75629        | 13.75629        | 0     | 182700   | 836.0630        |
| 0:00:06 | 358<br>548.1723 | 849<br>19.73420 | 394<br>0.905570 | 278<br>19.23801 | 278<br>19.23801 | 0     | 182700   | 357<br>1001.510 |
| 0:00:06 | 21              | 19.73420<br>356 | 852             | 19.23801<br>599 | 19.23801<br>599 | U     | 182700   | 83              |
| 0:00:07 | 638.3216        | 22.97957        | 0.901493        | 25.62123        | 25.62123        | 0     | 182700   | 1166.213        |
| 0.00.07 | 518             | 946             | 308             | 25.02123        | 25.02123        | U     | 102700   | 658             |
| 0:00:08 | 728.0276        | 26.20899        | 0.897060        | 32.90150        | 32.90150        | 0     | 182700   | 1330.106        |
| 0.00.00 | 768             | 637             | 25              | 928             | 928             |       | 102700   | 566             |
| 0:00:09 | 817.2555        | 29.42119        | 0.892278        | 41.07406        | 41.07406        | 0     | 182700   | 1493.125        |
|         | 477             | 972             | 709             | 475             | 475             |       |          | 886             |
| 0:00:10 | 905.9711        | 32.61496        | 0.887156        | 50.13377        | 50.13377        | 0     | 182700   | 1655.209        |
|         | 708             | 215             | 231             | 646             | 646             |       |          | 329             |
| 0:00:11 | 994.1412        | 35.78908        | 0.881700        | 60.07518        | 60.07518        | 0     | 182700   | 1816.296        |
|         | 565             | 524             | 858             | 903             | 903             |       |          | 076             |
| 0:00:12 | 1081.733        | 38.94240        | 0.875921        | 70.89252        | 70.89252        | 0     | 182700   | 1976.326        |
| 0.00.10 | 366             | 119             | 097             | 269             | 269             |       | 10000    | 86              |
| 0:00:13 | 1168.715        | 42.07377        | 0.869825        | 82.57968        | 82.57968        | 0     | 182700   | 2135.244        |
| 0.00.14 | 956             | 441             | 895             | 225             | 225             | 0     | 102700   | 051             |
| 0:00:14 | 1255.058<br>417 | 45.18210<br>3   | 0.863424<br>607 | 95.13026<br>641 | 95.13026<br>641 | 0     | 182700   | 2292.991<br>727 |
| 0:00:15 | 1340.731        | 48.26632        | 0.856726        | 108.5375        | 108.5375        | 0     | 182700   | 2449.515        |
| 0.00.13 | 113             | 008             | 969             | 775             | 775             | U     | 102700   | 744             |
| 0:00:16 | 1425.705        | 51.32539        | 0.849743        | 122.7946        | 122.7946        | 0     | 182700   | 2604.763        |
| 0.00.10 | 42              | 51.32337        | 0.617713        | 317             | 317             |       | 102700   | 802             |
| 0:00:17 | 1509.953        | 54.35833        | 0.842483        | 137.8941        | 137.8941        | 0     | 164379.5 |                 |
|         | 75              | 5               | 3               | 692             | 692             |       | 303      | 882             |
| 0:00:18 | 1509.953        | 54.35833        | 0               | 152.9937        | 152.9937        | 0     | 20471.76 | 309.1141        |
|         | 75              | 5               |                 | 067             | 067             |       | 525      | 87              |
| 0:00:19 | 1509.953        | 54.35833        | 0               | 168.0932        | 168.0932        | 0     | 20471.76 | 309.1141        |
|         | 75              | 5               |                 | 442             | 442             |       | 525      | 87              |
| 0:00:20 | 1509.953        | 54.35833        | 0               | 183.1927        | 183.1927        | 0     | 20471.76 | 309.1141        |
|         | 75              | 5               | _               | 818             | 818             | _     | 525      | 87              |
| 0:00:21 | 1509.953        | 54.35833        | 0               | 198.2923        | 198.2923        | 0     | 20471.76 | 309.1141        |
|         | 75              | 5               |                 | 193             | 193             |       | 525      | 87              |

| 0:00:22 | 1509.953 | 54.35833 | 0        | 213.3918 | 213.3918 | 0   | 20471.76 | 309.1141 |
|---------|----------|----------|----------|----------|----------|-----|----------|----------|
|         | 75       | 5        |          | 568      | 568      |     | 525      | 87       |
| 0:00:23 | 1509.953 | 54.35833 | 0        | 228.4913 | 228.4913 | 0   | 20471.76 | 309.1141 |
|         | 75       | 5        |          | 943      | 943      |     | 525      | 87       |
| 0:00:24 | 1509.953 | 54.35833 | 0        | 243.5909 | 243.5909 | 0   | 20471.76 | 309.1141 |
|         | 75       | 5        |          | 318      | 318      |     | 525      | 87       |
| 0:00:25 | 1509.953 | 54.35833 | 0        | 258.6904 | 258.6904 | 3   | 20477.47 | 309.2004 |
|         | 75       | 5        |          | 693      | 693      |     | 752      | 397      |
| 0:00:26 | 1509.953 | 54.35833 | 0        | 273.7900 | 273.7900 | 3   | 20477.47 | 309.2004 |
|         | 75       | 5        |          | 068      | 068      |     | 752      | 397      |
| 0:00:27 | 1509.953 | 54.35833 | 0        | 288.8895 | 288.8895 | 3   | 20477.47 | 309.2004 |
|         | 75       | 5        |          | 443      | 443      |     | 752      | 397      |
| 0:00:28 | 1509.953 | 54.35833 | 0        | 303.9890 | 303.9890 | 3   | 20477.47 | 309.2004 |
|         | 75       | 5        |          | 818      | 818      |     | 752      | 397      |
| 0:00:29 | 1509.953 | 54.35833 | 0        | 319.0886 | 319.0886 | 3   | 20477.47 | 309.2004 |
|         | 75       | 5        |          | 193      | 193      |     | 752      | 397      |
| 0:00:30 | 1509.953 | 54.35833 | 0        | 334.1881 | 334.1881 | 3   | 20477.47 | 309.2004 |
|         | 75       | 5        |          | 568      | 568      |     | 752      | 397      |
| 0:00:31 | 1509.953 | 54.35833 | 0        | 349.2876 | 349.2876 | 3   | 20477.47 | 309.2004 |
|         | 75       | 5        |          | 943      | 943      |     | 752      | 397      |
| 0:00:32 | 1509.953 | 54.35833 | 0        | 364.3872 | 364.3872 | 3   | 20477.47 | 309.2004 |
|         | 75       | 5        |          | 318      | 318      |     | 752      | 397      |
| 0:00:33 | 1509.953 | 54.35833 | 0        | 379.4867 | 379.4867 | 3   | 20477.47 | 309.2004 |
|         | 75       | 5        |          | 693      | 693      |     | 752      | 397      |
| 0:00:34 | 1509.953 | 54.35833 | 0        | 394.5863 | 394.5863 | 3   | 20477.47 | 309.2004 |
|         | 75       | 5        |          | 068      | 068      |     | 752      | 397      |
| 0:00:35 | 1509.953 | 54.35833 | 0        | 409.6858 | 409.6858 | 3   | 20477.47 | 309.2004 |
|         | 75       | 5        |          | 443      | 443      |     | 752      | 397      |
| 0:00:36 | 1509.953 | 54.35833 | 0        | 424.7853 | 424.7853 | 3   | 20477.47 | 309.2004 |
|         | 75       | 5        |          | 818      | 818      |     | 752      | 397      |
| 0:00:37 | 1509.953 | 54.35833 | 0        | 439.8849 | 439.8849 | 3   | 20477.47 | 309.2004 |
|         | 75       | 5        |          | 193      | 193      |     | 752      | 397      |
| 0:00:38 | 1509.953 | 54.35833 | 0        | 454.9844 | 454.9844 | 3   | 20477.47 | 309.2004 |
|         | 75       | 5        |          | 568      | 568      |     | 752      | 397      |
| 0:00:39 | 1509.953 | 54.35833 | 0        | 470.0839 | 470.0839 | 3   | 20477.47 | 309.2004 |
|         | 75       | 5        |          | 943      | 943      |     | 752      | 397      |
| 0:00:39 | 1509.953 | 54.35833 | 0        | 470.0839 | 470.0839 | 1.8 | 0        | 0        |
|         | 75       | 5        |          | 943      | 943      |     |          |          |
| 0:00:40 | 1504.950 | 54.17822 | -0.05003 | 485.1835 | 485.1835 | 1.8 | 0        | 0        |
|         | 598      | 154      | 1518     | 318      | 318      |     |          |          |
| 0:00:41 | 1494.552 | 53.80388 | -0.10398 | 500.2330 | 500.2330 | 1.8 | 0        | 0        |
|         | 396      | 626      | 2022     | 377      | 377      |     |          |          |
| 0:00:42 | 1484.247 | 53.43290 | -0.10305 | 515.1785 | 515.1785 | 1.8 | 0        | 0        |
|         | 258      | 129      | 1379     | 617      | 617      |     |          |          |
| 0:00:43 | 1474.033 | 53.06521 | -0.10213 | 530.0210 | 530.0210 | 1.8 | 0        | 0        |
|         | 875      | 949      | 3832     | 343      | 343      |     |          |          |
| 0:00:44 | 1463.910 | 52.70079 | -0.10122 | 544.7613 | 544.7613 | 1.8 | 0        | 0        |
|         | 961      | 46       | 9137     | 73       | 73       |     |          |          |
| 0:00:45 | 1453.877 | 52.33958 | -0.10033 | 559.4004 | 559.4004 | 1.8 | 0        | 0        |
|         | 255      | 12       | 7056     | 826      | 826      |     |          |          |
| 0:00:46 | 1443.931 | 51.98153 | -0.09945 | 573.9392 | 573.9392 | 1.8 | 0        | 0        |
|         | 52       | 471      | 7357     | 552      | 552      |     |          |          |
| 0:00:47 | 1434.072 | 51.62661 | -0.09858 | 588.3785 | 588.3785 | 1.8 | 0        | 0        |
|         | 538      | 138      | 9813     | 704      | 704      |     |          |          |
| 0:00:48 | 1424.299 | 51.27476 | -0.09773 | 602.7192 | 602.7192 | 1.8 | 0        | 0        |
|         | 118      | 826      | 4201     | 958      | 958      |     |          |          |

| 0:00:49 | 1414.610        | 50.92596        | -0.09689         | 616.9622        | 616.9622        | 1.8  | 0 | 0 |
|---------|-----------------|-----------------|------------------|-----------------|-----------------|------|---|---|
|         | 088             | 316             | 0305             | 87              | 87              |      | 1 |   |
| 0:00:50 | 1405.004<br>297 | 50.58015<br>468 | -0.09605<br>7912 | 631.1083<br>878 | 631.1083<br>878 | 1.8  | 0 | 0 |
| 0:00:51 | 1395.480        | 50.23730        | -0.09523         | 645.1584        | 645.1584        | 1.8  | 0 | 0 |
|         | 615             | 214             | 6816             | 308             | 308             |      |   |   |
| 0:00:52 | 1386.037        | 49.89736        | -0.09442         | 659.1132        | 659.1132        | 1.8  | 0 | 0 |
|         | 934             | 561             | 6814             | 37              | 37              |      |   |   |
| 0:00:53 | 1376.680<br>313 | 49.56049<br>127 | -0.09357<br>6205 | 672.9736<br>163 | 672.9736<br>163 | -3.5 | 0 | 0 |
| 0:00:54 | 1367.401        | 49.22645        |                  | 686.7404        | 686.7404        | -3.5 | 0 | 0 |
| 0:00:34 | 49              | 364             | -0.09278<br>8231 | 194             | 194             | -3.3 | 0 | U |
| 0:00:55 | 1358.200        | 48.89521        | -0.09201         | 700.4144        | 700.4144        | -3.5 | 0 | 0 |
| 0.00.55 | 414             | 49              | 0762             | 343             | 343             | 3.3  |   |   |
| 0:00:56 | 1349.076        | 48.56673        | -0.09124         | 713.9964        | 713.9964        | -3.5 | 0 | 0 |
|         | 053             | 79              | 3612             | 385             | 385             |      |   |   |
| 0:00:57 | 1340.027        | 48.24098        | -0.09048         | 727.4871        | 727.4871        | -3.5 | 0 | 0 |
|         | 393             | 613             | 6601             | 99              | 99              |      |   |   |
| 0:00:58 | 1331.053        | 47.91792        | -0.08973         | 740.8874        | 740.8874        | -3.5 | 0 | 0 |
|         | 437             | 375             | 9552             | 729             | 729             |      |   |   |
| 0:00:59 | 1322.153        | 47.59751        | -0.08900         | 754.1980        | 754.1980        | -3.5 | 0 | 0 |
|         | 208             | 55              | 2291             | 073             | 073             |      |   |   |
| 0:01:00 | 1313.325        | 47.27972        | -0.08827         | 767.4195        | 767.4195        | -3.5 | 0 | 0 |
| 0.01.01 | 744             | 677             | 4649             | 394             | 394             | 2.5  |   |   |
| 0:01:01 | 1304.570        | 46.96452        | -0.08755         | 780.5527        | 780.5527        | -3.5 | 0 | 0 |
| 0.01.02 | 097             | 351             | 646              | 968             | 968             | -3.5 | 0 | 0 |
| 0:01:02 | 1295.885<br>341 | 46.65187<br>228 | -0.08684<br>7563 | 793.5984<br>978 | 793.5984<br>978 | -3.5 | 0 | 0 |
| 0:01:03 | 1287.270        | 46.34174        | -0.08614         | 806.5573        | 806.5573        | -3.5 | 0 | 0 |
| 0.01.03 | 562             | 022             | 7797             | 512             | 512             | -3.3 |   | O |
| 0:01:04 | 1278.724        | 46.03409        | -0.08545         | 819.4300        | 819.4300        | -3.5 | 0 | 0 |
| 0.01.0. | 861             | 498             | 7008             | 568             | 568             | 0.0  |   |   |
| 0:01:05 | 1270.247        | 45.72890        | -0.08477         | 832.2173        | 832.2173        | -3.5 | 0 | 0 |
|         | 356             | 483             | 5044             | 054             | 054             |      |   |   |
| 0:01:06 | 1261.837        | 45.42613        | -0.08410         | 844.9197        | 844.9197        | -3.5 | 0 | 0 |
|         | 181             | 85              | 1756             | 79              | 79              |      |   |   |
| 0:01:07 | 1253.493        | 45.12576        | -0.08343         | 857.5381        | 857.5381        | -3.5 | 0 | 0 |
|         | 481             | 531             | 6998             | 508             | 508             |      |   |   |
| 0:01:08 | 1245.215        | 44.82775        | -0.08278         | 870.0730        | 870.0730        | -3.5 | 0 | 0 |
|         | 418             | 505             | 0627             | 856             | 856             |      |   |   |
| 0:01:09 | 1237.002        | 44.53207        | -0.08213         | 882.5252        | 882.5252        | -3.5 | 0 | 0 |
| 2 24 42 | 168             | 804             | 2504             | 398             | 398             |      |   |   |
| 0:01:10 | 1228.852        | 44.23870        | -0.08149         | 894.8952        | 894.8952        | -3.5 | 0 | 0 |
| 0.01.11 | 919             | 507             | 2491             | 615             | 615             | 2.5  |   |   |
| 0:01:11 | 1220.766        | 43.94760        | -0.08086         | 907.1837        | 907.1837        | -3.5 | 0 | 0 |
| 0.01.10 | 873             | 743             | 0455             | 906             | 906             | -3.5 | 0 | 0 |
| 0:01:12 | 1212.743<br>247 | 43.65875<br>687 | -0.08023         | 919.3914        | 919.3914        | -3.5 | 0 | U |
| 0:01:13 | 1204.781        | 43.37212        | 6265<br>-0.07961 | 594<br>931.5188 | 594<br>931.5188 | -3.5 | 0 | 0 |
| 0.01.13 | 267             | 563             | 9791             | 931.3188        | 931.3188        | -5.5 |   |   |
| 0:01:14 | 1196.880        | 43.08768        | -0.07901         | 943.5667        | 943.5667        | -3.5 | 0 | 0 |
| 0.01.17 | 177             | 635             | 0909             | 045             | 045             | 3.3  |   |   |
| 0:01:15 | 1189.039        | 42.80541        | -0.07840         | 955.5355        | 955.5355        | -3.5 | 0 | 0 |
| 3.01.10 | 227             | 218             | 9493             | 063             | 063             |      |   |   |
| 0:01:16 | 1181.257        | 42.52527        | -0.07781         | 967.4258        | 967.4258        | -3.5 | 0 | 0 |
| 0.01.10 |                 |                 |                  |                 |                 |      |   |   |

| 0:01:17 | 1173.534 | 42.24725 | -0.07722 | 979.2384 | 979.2384 | -3.5 | 0 | 0 |
|---------|----------|----------|----------|----------|----------|------|---|---|
|         | 826      | 374      | 8584     | 754      | 754      |      |   |   |
| 0:01:18 | 1165.869 | 41.97131 | -0.07664 | 990.9738 | 990.9738 | -3.5 | 0 | 0 |
|         | 941      | 786      | 8856     | 237      | 237      |      |   |   |
| 0:01:19 | 1158.262 | 41.69744 | -0.07607 | 1002.632 | 1002.632 | -3.5 | 0 | 0 |
|         | 328      | 381      | 6126     | 523      | 523      |      |   |   |
| 0:01:20 | 1150.711 | 41.42560 | -0.07551 | 1014.215 | 1014.215 | -3.5 | 0 | 0 |
|         | 3        | 679      | 0283     | 146      | 146      |      |   |   |
| 0:01:21 | 1143.216 | 41.15578 | -0.07495 | 1025.722 | 1025.722 | -3.5 | 0 | 0 |
|         | 178      | 241      | 1218     | 259      | 259      |      |   |   |
| 0:01:22 | 1135.776 | 40.88794 | -0.07439 | 1037.154 | 1037.154 | -3.5 | 0 | 0 |
|         | 296      | 664      | 8822     | 421      | 421      |      |   |   |
| 0:01:23 | 1128.390 | 40.62207 | -0.07385 | 1048.512 | 1048.512 | -3.5 | 0 | 0 |
|         | 996      | 587      | 2993     | 184      | 184      |      |   |   |
| 0:01:24 | 1121.059 | 40.35814 | -0.07331 | 1059.796 | 1059.796 | -3.5 | 0 | 0 |
|         | 634      | 682      | 3626     | 094      | 094      |      |   |   |
| 0:01:25 | 1113.781 | 40.09613 | -0.07278 | 1071.006 | 1071.006 | -3.5 | 0 | 0 |
|         | 572      | 659      | 062      | 69       | 69       |      |   |   |
| 0:01:26 | 1106.556 | 39.83602 | -0.07225 | 1082.144 | 1082.144 | -3.5 | 0 | 0 |
|         | 184      | 263      | 3877     | 506      | 506      |      |   |   |
| 0:01:27 | 1099.382 | 39.57778 | -0.07173 | 1093.210 | 1093.210 | -3.5 | 0 | 0 |
|         | 854      | 275      | 33       | 068      | 068      |      |   |   |
| 0:01:28 | 1092.260 | 39.32139 | -0.07121 | 1104.203 | 1104.203 | -3.5 | 0 | 0 |
|         | 975      | 509      | 8793     | 896      | 896      |      |   |   |
| 0:01:29 | 1085.189 | 39.06683 | -0.07071 | 1115.126 | 1115.126 | -3.5 | 0 | 0 |
|         | 948      | 814      | 0263     | 506      | 506      |      |   |   |
| 0:01:30 | 1078.169 | 38.81409 | -0.07020 | 1125.978 | 1125.978 | -3.5 | 0 | 0 |
|         | 187      | 072      | 7619     | 406      | 406      |      |   |   |
| 0:01:31 | 1071.198 | 38.56313 | -0.06971 | 1136.760 | 1136.760 | -3.5 | 0 | 0 |
|         | 11       | 195      | 077      | 098      | 098      |      |   |   |
| 0:01:32 | 1064.276 | 38.31394 | -0.06921 | 1147.472 | 1147.472 | -3.5 | 0 | 0 |
|         | 147      | 128      | 9629     | 079      | 079      |      |   |   |
| 0:01:33 | 1057.402 | 38.06649 | -0.06873 | 1158.114 | 1158.114 | -3.5 | 0 | 0 |
|         | 736      | 849      | 4109     | 84       | 84       |      |   |   |
| 0:01:34 | 1050.577 | 37.82078 | -0.06825 | 1168.688 | 1168.688 | -3.5 | 0 | 0 |
|         | 323      | 364      | 4125     | 867      | 867      |      |   |   |
| 0:01:35 | 1043.799 | 37.57677 | -0.06777 | 1179.194 | 1179.194 | -3.5 | 0 | 0 |
|         | 364      | 71       | 9595     | 641      | 641      |      |   |   |
| 0:01:36 | 1037.068 | 37.33445 | -0.06731 | 1189.632 | 1189.632 | -3.5 | 0 | 0 |
|         | 32       | 953      | 0435     | 634      | 634      |      |   |   |
| 0:01:37 | 1030.383 | 37.09381 | -0.06684 | 1200.003 | 1200.003 | -3.5 | 0 | 0 |
|         | 664      | 189      | 6568     | 318      | 318      |      |   |   |
| 0:01:38 | 1023.744 | 36.85481 | -0.06638 | 1210.307 | 1210.307 | -3.5 | 0 | 0 |
|         | 872      | 54       | 7913     | 154      | 154      |      |   |   |
| 0:01:39 | 1017.151 | 36.61745 | -0.06593 | 1220.544 | 1220.544 | -3.5 | 0 | 0 |
|         | 433      | 159      | 4393     | 603      | 603      |      |   |   |
| 0:01:40 | 1010.602 | 36.38170 | -0.06548 | 1230.716 | 1230.716 | -3.5 | 0 | 0 |
|         | 84       | 222      | 5934     | 117      | 117      |      |   |   |
| 0:01:41 | 1004.098 | 36.14754 | -0.06504 | 1240.822 | 1240.822 | -3.5 | 0 | 0 |
|         | 594      | 937      | 246      | 146      | 146      |      |   |   |
| 0:01:42 | 997.6382 | 35.91497 | -0.06460 | 1250.863 | 1250.863 | -3.5 | 0 | 0 |
|         | 038      | 534      | 3898     | 132      | 132      |      |   |   |
| 0:01:43 | 991.2211 | 35.68396 | -0.06417 | 1260.839 | 1260.839 | -3.5 | 0 | 0 |
|         | 861      | 27       | 0177     | 514      | 514      |      |   |   |
| 0:01:44 | 984.8470 | 35.45449 | -0.06374 | 1270.751 | 1270.751 | -3.5 | 0 | 0 |
|         | 635      | 428      | 1227     | 725      | 725      |      |   |   |

| 0:01:45 | 978.5153        | 35.22655        | -0.06331         | 1280.600               | 1280.600               | -3.5 | 0 | 0 |
|---------|-----------------|-----------------|------------------|------------------------|------------------------|------|---|---|
|         | 657             | 317             | 6977             | 196                    | 196                    |      |   |   |
| 0:01:46 | 972.2222<br>222 | 35              | -0.06293<br>1435 | 1290.385<br>35         | 1290.385<br>35         | 0    | 0 | 0 |
| 0:01:46 | 888.0700<br>325 | 31.97052<br>117 | -0.84152<br>1897 | 1290.385<br>35         | 1290.385<br>35         | 0    | 0 | 0 |
| 0:01:47 | 797.4366<br>572 | 28.70771<br>966 | -0.90633<br>3753 | 1299.266<br>05         | 1299.266<br>05         | -3.5 | 0 | 0 |
| 0:01:48 | 707.3122        | 25.46324        | -0.90124         | 1307.240               | 1307.240               | -3.5 | 0 | 0 |
| 0:01:49 | 923<br>617.6538 | 252<br>22.23553 | 3649<br>-0.89658 | 417<br>1314.313        | 417<br>1314.313        | 0    | 0 | 0 |
|         | 824             | 977             | 4099             | 54                     | 54                     | 0    |   |   |
| 0:01:50 | 528.4259<br>712 | 19.02333<br>496 | -0.89227<br>9112 | 1320.490<br>078        | 1320.490<br>078        | 0    | 0 | 0 |
| 0:01:51 | 439.5903<br>623 | 15.82525<br>304 | -0.88835<br>609  | 1325.774<br>338        | 1325.774<br>338        | 0    | 0 | 0 |
| 0:01:52 | 351.1094<br>82  | 12.63994<br>135 | -0.88480<br>8803 | 1330.170<br>242        | 1330.170<br>242        | 0    | 0 | 0 |
| 0:01:53 | 262.9463<br>148 | 9.466067<br>334 | -0.88163<br>1671 | 1333.681<br>337        | 1333.681<br>337        | 0    | 0 | 0 |
| 0:01:54 | 175.0643<br>406 | 6.302316        | -0.87881<br>9742 | 1336.310               | 1336.310               | 0    | 0 | 0 |
| 0:01:55 | 87.42747<br>308 | 3.147389<br>031 | -0.87636<br>8676 | 1338.061<br>443        | 1338.061<br>443        | 0    | 0 | 0 |
| 0:01:56 | 0               | 0               | -0.87427         | 1338.935               | 1338.935               | 0    | 0 | 0 |
| 0:01:57 | 0               | 0               | 4731<br>0        | 718<br>1338.935        | 718<br>1338.935        | 3    | 0 | 0 |
| 0:01:58 | 0               | 0               | 0                | 718<br>1338.935        | 718<br>1338.935        | 3    | 0 | 0 |
| 0:01:59 | 0               | 0               | 0                | 718<br>1338.935        | 718<br>1338.935        | 3    | 0 | 0 |
| 0:02:00 | 0               | 0               | 0                | 718<br>1338.935        | 718<br>1338.935        | 3    | 0 | 0 |
| 0.02.01 | 0               | 0               | 0                | 718                    | 718                    | 3    |   | 0 |
| 0:02:01 | 0               | 0               | 0                | 1338.935<br>718        | 1338.935<br>718        | 3    | 0 | 0 |
| 0:02:02 | 0               | 0               | 0                | 1338.935<br>718        | 1338.935<br>718        | 3    | 0 | 0 |
| 0:02:03 | 0               | 0               | 0                | 1338.935<br>718        | 1338.935<br>718        | 3    | 0 | 0 |
| 0:02:04 | 0               | 0               | 0                | 1338.935<br>718        | 1338.935<br>718        | 3    | 0 | 0 |
| 0:02:05 | 0               | 0               | 0                | 1338.935<br>718        | 1338.935<br>718        | 3    | 0 | 0 |
| 0:02:06 | 0               | 0               | 0                | 1338.935<br>718        | 1338.935<br>718        | 3    | 0 | 0 |
| 0:02:07 | 0               | 0               | 0                | 1338.935               | 1338.935               | 3    | 0 | 0 |
| 0:02:08 | 0               | 0               | 0                | 718<br>1338.935        | 718<br>1338.935        | 3    | 0 | 0 |
| 0:02:09 | 0               | 0               | 0                | 718<br>1338.935        | 718<br>1338.935        | 3    | 0 | 0 |
| 0:02:10 | 0               | 0               | 0                | 718<br>1338.935        | 718<br>1338.935        | 3    | 0 | 0 |
| 0:02:11 | 0               | 0               | 0                | 718<br>1338.935<br>718 | 718<br>1338.935<br>718 | 3    | 0 | 0 |

| 0:02:12 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
|---------|-----------------|-----------------|-----------------|-----------------|-----------------|---|--------|-----------------|
| 0:02:13 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:14 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:15 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:16 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:17 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:18 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:19 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:20 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:21 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:22 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:23 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:24 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:25 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:26 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:27 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:28 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:29 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:30 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:31 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:32 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:33 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:34 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:35 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:36 | 0               | 0               | 0               | 1338.935<br>718 | 1338.935<br>718 | 3 | 0      | 0               |
| 0:02:37 | 92.04189<br>052 | 3.313508<br>059 | 0.920418<br>905 | 0.920418<br>905 | 1339.856<br>137 | 0 | 182700 | 168.1605<br>34  |
| 0:02:38 | 183.8623<br>6   | 6.619044<br>959 | 0.918204<br>695 | 2.759042<br>505 | 1341.694<br>76  | 0 | 182700 | 335.9165<br>317 |
| 0:02:39 | 275.4231<br>955 | 9.915235<br>038 | 0.915608<br>355 | 5.513274<br>46  | 1344.448<br>992 | 0 | 182700 | 503.1981<br>782 |

| 0:02:40 | 366.6865       | 13.20071      | 0.912634      | 9.180140        | 1348.115        | 0   | 182700          | 669.9364        |
|---------|----------------|---------------|---------------|-----------------|-----------------|-----|-----------------|-----------------|
|         | 964            | 747           | 009           | 423             | 858             |     |                 | 115             |
| 0:02:41 | 457.6152       | 16.47414      | 0.909286      | 13.75629        | 1352.692        | 0   | 182700          | 836.0630        |
|         | 358            | 849           | 394           | 278             | 011             |     |                 | 357             |
| 0:02:42 | 548.1723       | 19.73420      | 0.905570      | 19.23801        | 1358.173        | 0   | 182700          | 1001.510        |
|         | 21             | 356           | 852           | 599             | 734             |     |                 | 83              |
| 0:02:43 | 638.3216       | 22.97957      | 0.901493      | 25.62123        | 1364.556        | 0   | 182700          | 1166.213        |
|         | 518            | 946           | 308           | 251             | 95              |     |                 | 658             |
| 0:02:44 | 728.0276       | 26.20899      | 0.897060      | 32.90150        | 1371.837        | 0   | 182700          | 1330.106        |
|         | 768            | 637           | 25            | 928             | 227             |     |                 | 566             |
| 0:02:45 | 817.2555       | 29.42119      | 0.892278      | 41.07406        | 1380.009        | 0   | 182700          | 1493.125        |
|         | 477            | 972           | 709           | 475             | 783             |     |                 | 886             |
| 0:02:46 | 905.9711       | 32.61496      | 0.887156      | 50.13377        | 1389.069        | 0   | 182700          | 1655.209        |
|         | 708            | 215           | 231           | 646             | 494             |     |                 | 329             |
| 0:02:47 | 994.1412       | 35.78908      | 0.881700      | 60.07518        | 1399.010        | 0   | 182700          | 1816.296        |
|         | 565            | 524           | 858           | 903             | 907             | _   |                 | 076             |
| 0:02:48 | 1081.733       | 38.94240      | 0.875921      | 70.89252        | 1409.828        | 0   | 182700          | 1976.326        |
| 0.05.40 | 366            | 119           | 097           | 269             | 241             |     |                 | 86              |
| 0:02:49 | 1168.715       | 42.07377      | 0.869825      | 82.57968        | 1421.515        | 0   | 182700          | 2135.244        |
| 0.00.70 | 956            | 441           | 895           | 225             | 4               |     | 100500          | 051             |
| 0:02:50 | 1255.058       | 45.18210      | 0.863424      | 95.13026        | 1434.065        | 0   | 182700          | 2292.991        |
| 0.00.51 | 417            | 3             | 607           | 641             | 984             | 0   | 100700          | 727             |
| 0:02:51 | 1340.731       | 48.26632      | 0.856726      | 108.5375        | 1447.473        | 0   | 182700          | 2449.515        |
| 0.00.50 | 113            | 008           | 969           | 775             | 295             | 0   | 100700          | 744             |
| 0:02:52 | 1425.705       | 51.32539      | 0.849743      | 122.7946        | 1461.730        | 0   | 182700          | 2604.763        |
| 0.02.52 | 42             | 512           | 066           | 317             | 35              | 0   | 164270.5        | 802             |
| 0:02:53 | 1509.953       | 54.35833      | 0.842483      | 137.8941        | 1476.829        | 0   | 164379.5        | 2482.054        |
| 0:02:54 | 75<br>1584.020 | 5<br>57.02473 | 3<br>0.740666 | 692<br>153.7343 | 887<br>1492.670 | 0   | 303<br>149618.4 | 882             |
| 0:02:34 | 383            | 37.02473      | 332           | 731             | 091             | U   | 549             | 2369.986<br>824 |
| 0:02:55 | 1649.801       | 59.39284      | 0.657809      | 170.2323        | 1509.168        | 0   | 138072.9        | 2277.929        |
| 0.02.33 | 304            | 693           | 203           | 861             | 104             | U   | 415             | 189             |
| 0:02:56 | 1709.007       | 61.52426      | 0.592061      | 187.3224        | 1526.258        | 0   | 128814.0        | 2201.441        |
| 0.02.30 | 405            | 659           | 0.572001      | 602             | 178             | 0   | 298             | 309             |
| 0:02:57 | 1762.861       | 63.46302      | 0.538543      | 204.9510        | 1543.886        | 0   | 121231.0        | 2137.136        |
| 0.02.57 | 8              | 481           | 951           | 782             | 796             | o o | 666             | 163             |
| 0:02:58 | 1762.861       | 63.46302      | 0             | 222.5796        | 1561.515        | 0   | 25240.99        | 444.9639        |
| ****    | 8              | 481           |               | 962             | 414             |     | 772             | 068             |
| 0:02:58 | 1762.861       | 63.46302      | 0             | 222.5796        | 1561.515        | 0   | 0               | 0               |
|         | 8              | 481           |               | 962             | 414             |     |                 |                 |
| 0:02:59 | 1755.564       | 63.20033      | -0.07296      | 240.2083        | 1579.144        | 3   | 0               | 0               |
|         | 8              | 282           | 9998          | 142             | 032             |     |                 |                 |
| 0:03:00 | 1742.776       | 62.73995      | -0.12788      | 257.7639        | 1596.699        | 3   | 0               | 0               |
|         | 465            | 273           | 3357          | 622             | 68              |     |                 |                 |
| 0:03:01 | 1730.116       | 62.28420      | -0.12659      | 275.1917        | 1614.127        | 3   | 0               | 0               |
|         | 812            | 524           | 6526          | 268             | 445             |     |                 |                 |
| 0:03:02 | 1717.583       | 61.83301      | -0.12532      | 292.4928        | 1631.428        | 3   | 0               | 0               |
|         | 831            | 79            | 9816          | 95              | 613             |     |                 |                 |
| 0:03:03 | 1705.175       | 61.38631      | -0.12408      | 309.6687        | 1648.604        | 3   | 0               | 0               |
|         | 549            | 977           | 2813          | 333             | 451             |     |                 |                 |
| 0:03:04 | 1692.890       | 60.94404      | -0.12285      | 326.7204        | 1665.656        | 3   | 0               | 0               |
|         | 038            | 138           | 511           | 887             | 207             |     |                 |                 |
| 0:03:05 | 1680.725       | 60.50611      | -0.12164      | 343.6493        | 1682.585        | 3   | 0               | 0               |
|         | 407            | 465           | 6313          | 891             | 107             |     |                 |                 |
| 0:03:06 | 1668.679       | 60.07247      | -0.12045      | 360.4566        | 1699.392        | 3   | 0               | 0               |
|         | 803            | 292           | 6037          | 432             | 361             |     |                 | 1               |

| 0:03:07 | 1656.751 | 59.64305 | -0.11928 | 377.1434 | 1716.079 | 3  | 0        | 0 |
|---------|----------|----------|----------|----------|----------|----|----------|---|
|         | 413      | 085      | 3906     | 412      | 159      |    |          |   |
| 0:03:08 | 1644.938 | 59.21778 | -0.11812 | 393.7109 | 1732.646 | 3  | 0        | 0 |
|         | 457      | 446      | 9555     | 554      | 673      |    |          |   |
| 0:03:09 | 1633.239 | 58.79661 | -0.11699 | 410.1603 | 1749.096 | 3  | 0        | 0 |
|         | 194      | 1        | 2627     | 399      | 058      |    |          |   |
| 0:03:10 | 1621.651 | 58.37946 | -0.11587 | 426.4927 | 1765.428 | 3  | 0        | 0 |
|         | 917      | 902      | 2774     | 319      | 45       |    |          |   |
| 0:03:11 | 1610.174 | 57.96629 | -0.11476 | 442.7092 | 1781.644 | 3  | 0        | 0 |
|         | 951      | 825      | 9657     | 51       | 969      |    |          |   |
| 0:03:12 | 1598.806 | 57.55703 | -0.11368 | 458.8110 | 1797.746 | 3  | 0        | 0 |
|         | 657      | 964      | 2946     | 006      | 718      |    |          |   |
| 0:03:13 | 1587.545 | 57.15163 | -0.11261 | 474.7990 | 1813.734 | 3  | 0        | 0 |
|         | 425      | 53       | 2318     | 671      | 785      |    |          |   |
| 0:03:14 | 1576.389 | 56.75002 | -0.11155 | 490.6745 | 1829.610 | 3  | 0        | 0 |
|         | 679      | 845      | 7458     | 214      | 239      |    |          |   |
| 0:03:15 | 1565.337 | 56.35216 | -0.11051 | 506.4384 | 1845.374 | 3  | 0        | 0 |
|         | 873      | 344      | 8059     | 182      | 136      |    |          |   |
| 0:03:16 | 1554.388 | 55.95798 | -0.10949 | 522.0917 | 1861.027 | 3  | 0        | 0 |
|         | 491      | 569      | 3821     | 969      | 515      |    |          |   |
| 0:03:17 | 1543.540 | 55.56744 | -0.10848 | 537.6356 | 1876.571 | 3  | 0        | 0 |
|         | 046      | 166      | 4452     | 818      | 4        |    |          |   |
| 0:03:18 | 1532.791 | 55.18047 | -0.10748 | 553.0710 | 1892.006 | 3  | 0        | 0 |
|         | 079      | 885      | 9668     | 823      | 8        |    |          |   |
| 0:03:19 | 1522.140 | 54.79704 | -0.10650 | 568.3989 | 1907.334 | 3  | 0        | 0 |
|         | 16       | 578      | 9188     | 931      | 711      |    |          |   |
| 0:03:20 | 1511.585 | 54.41709 | -0.10554 | 583.6203 | 1922.556 | 3  | 0        | 0 |
|         | 886      | 191      | 2741     | 947      | 113      |    |          |   |
| 0:03:21 | 1501.126 | 54.04056 | -0.10459 | 598.7362 | 1937.671 | 3  | 0        | 0 |
|         | 88       | 769      | 0062     | 535      | 971      |    |          |   |
| 0:03:22 | 1490.761 | 53.66742 | -0.10365 | 613.7475 | 1952.683 | 3  | 0        | 0 |
|         | 791      | 448      | 0891     | 223      | 24       |    |          |   |
| 0:03:23 | 1480.494 | 53.29778 | -0.10267 | 628.6551 | 1967.590 | -2 | 0        | 0 |
|         | 15       | 939      | 6412     | 402      | 858      |    |          |   |
| 0:03:24 | 1470.317 | 52.93143 | -0.10176 | 643.4600 | 1982.395 | -2 | 0        | 0 |
|         | 757      | 924      | 3933     | 817      | 8        |    |          |   |
| 0:03:25 | 1460.231 | 52.56832 | -0.10086 | 658.1632 | 1997.098 | -2 | 0        | 0 |
|         | 335      | 808      | 4211     | 593      | 977      |    |          |   |
| 0:03:26 | 1450.233 | 52.20841 | -0.09997 | 672.7655 | 2011.701 | -2 | 0        | 0 |
|         | 634      | 084      | 7012     | 727      | 291      |    |          |   |
| 0:03:27 | 1440.323 | 51.85164 | -0.09910 | 687.2679 | 2026.203 | -2 | 0        | 0 |
|         | 424      | 326      | 2104     | 09       | 627      |    |          |   |
| 0:03:28 | 1430.499 | 51.49798 | -0.09823 | 701.6711 | 2040.606 | -2 | 0        | 0 |
|         | 498      | 191      | 9263     | 432      | 861      |    |          |   |
| 0:03:29 | 1420.760 | 51.14738 | -0.09738 | 715.9761 | 2054.911 | -2 | 0        | 0 |
|         | 671      | 414      | 8269     | 382      | 856      |    |          |   |
| 0:03:30 | 1411.105 | 50.79980 | -0.09654 | 730.1837 | 2069.119 | -2 | 0        | 0 |
|         | 78       | 808      | 8907     | 449      | 463      |    |          |   |
| 0:03:31 | 1401.533 | 50.45521 | -0.09572 | 744.2948 | 2083.230 | -2 | 0        | 0 |
|         | 683      | 26       | 0967     | 027      | 521      |    |          |   |
| 0:03:32 | 1392.043 | 50.11355 | -0.09490 | 758.3101 | 2097.245 | -2 | 0        | 0 |
|         | 259      | 732      | 4242     | 396      | 857      |    |          |   |
| 0:03:33 | 1382.633 | 49.77480 | -0.09409 | 772.2305 | 2111.166 | -2 | 0        | 0 |
|         | 406      | 26       | 8534     | 722      | 29       |    |          |   |
| 0:03:34 | 1373.303 | 49.43890 | -0.09330 | 786.0569 | 2124.992 | -2 | 0        | 0 |
|         | 041      | 948      | 3644     | 062      | 624      |    | <u> </u> |   |

| 0:03:35 | 1364.051        | 49.10583       | -0.09251         | 799.7899        | 2138.725        | -2 | 0 | 0 |
|---------|-----------------|----------------|------------------|-----------------|-----------------|----|---|---|
|         | 103             | 971            | 9381             | 366             | 654             |    |   |   |
| 0:03:36 | 1354.876<br>547 | 48.77555<br>57 | -0.09174<br>5558 | 813.4304<br>477 | 2152.366<br>166 | -2 | 0 | 0 |
| 0.02.27 | 1345.778        | 48.44802       | -0.09098         | 826.9792        | 2165.914        | -2 | 0 | 0 |
| 0:03:37 | 348             | 054            | 1991             | 131             | 931             | -2 | 0 | U |
| 0:03:38 | 1336.755        | 48.12319       | -0.09022         | 840.4369        | 2179.372        | -2 | 0 | 0 |
| 0.03.36 | 498             | 794            | 8499             | 966             | 714             | -2 | 0 | U |
| 0:03:39 | 1327.807        | 47.80105       | -0.08948         | 853.8045        | 2192.740        | -2 | 0 | 0 |
| 0.03.39 | 007             | 227            | 4908             | 516             | 269             | -2 | U | U |
| 0:03:40 | 1318.931        | 47.48154       | -0.08875         | 867.0826        | 2206.018        | -2 | 0 | 0 |
| 0.03.40 | 903             | 85             | 1046             | 217             | 34              | -2 | U | U |
| 0:03:41 | 1310.129        | 47.16465       | -0.08802         | 880.2719        | 2219.207        | -2 | 0 | 0 |
| 0.03.41 | 228             | 222            | 6744             | 407             | 659             | -2 |   | U |
| 0:03:42 | 1301.398        | 46.85032       | -0.08731         | 893.3732        | 2232.308        | -2 | 0 | 0 |
| 0.03.72 | 045             | 96             | 1838             | 33              | 951             | -2 |   | O |
| 0:03:43 | 1292.737        | 46.53854       | -0.08660         | 906.3872        | 2245.322        | -2 | 0 | 0 |
| 0.05.75 | 428             | 74             | 6167             | 134             | 931             | -2 |   | O |
| 0:03:44 | 1284.146        | 46.22927       | -0.08590         | 919.3145        | 2258.250        | -2 | 0 | 0 |
| 0.03.44 | 47              | 294            | 9574             | 877             | 306             | -2 |   | U |
| 0:03:45 | 1275.624        | 45.92247       | -0.08522         | 932.1560        | 2271.091        | -2 | 0 | 0 |
| 0.03.43 | 28              | 409            | 1903             | 524             | 77              | -2 |   | O |
| 0:03:46 | 1267.169        | 45.61811       | -0.08454         | 944.9122        | 2283.848        | -2 | 0 | 0 |
| 0.03.40 | 98              | 927            | 3004             | 952             | 013             | _  |   | J |
| 0:03:47 | 1258.782        | 45.31617       | -0.08387         | 957.5839        | 2296.519        | -2 | 0 | 0 |
| 0.03.47 | 707             | 744            | 273              | 95              | 713             | _  |   | J |
| 0:03:48 | 1250.461        | 45.01661       | -0.08321         | 970.1718        | 2309.107        | -2 | 0 | 0 |
| 0.03.40 | 613             | 808            | 0.00321          | 221             | 54              | _  |   | J |
| 0:03:49 | 1242.205        | 44.71941       | -0.08255         | 982.6764        | 2321.612        | -2 | 0 | 0 |
| 0.02.19 | 865             | 116            | 7478             | 382             | 156             |    |   |   |
| 0:03:50 | 1234.014        | 44.42452       | -0.08191         | 995.0984        | 2334.034        | -2 | 0 | 0 |
|         | 643             | 716            | 2221             | 969             | 215             |    |   |   |
| 0:03:51 | 1225.887        | 44.13193       | -0.08127         | 1007.438        | 2346.374        | -2 | 0 | 0 |
|         | 141             | 707            | 5026             | 643             | 361             |    |   |   |
| 0:03:52 | 1217.822        | 43.84161       | -0.08064         | 1019.697        | 2358.633        | -2 | 0 | 0 |
|         | 564             | 232            | 5763             | 515             | 233             |    |   |   |
| 0:03:53 | 1209.820        | 43.55352       | -0.08002         | 1031.875        | 2370.811        | -2 | 0 | 0 |
|         | 135             | 485            | 4299             | 74              | 458             |    |   |   |
| 0:03:54 | 1201.879        | 43.26764       | -0.07941         | 1043.973        | 2382.909        | -2 | 0 | 0 |
|         | 084             | 702            | 0507             | 942             | 66              |    |   |   |
| 0:03:55 | 1193.998        | 42.98395       | -0.07880         | 1055.992        | 2394.928        | -2 | 0 | 0 |
|         | 658             | 167            | 4263             | 733             | 45              |    |   |   |
| 0:03:56 | 1186.178        | 42.70241       | -0.07820         | 1067.932        | 2406.868        | -2 | 0 | 0 |
|         | 113             | 208            | 5444             | 719             | 437             |    |   |   |
| 0:03:57 | 1178.416        | 42.42300       | -0.07761         | 1079.794        | 2418.730        | -2 | 0 | 0 |
|         | 72              | 193            | 3929             | 5               | 218             |    |   |   |
| 0:03:58 | 1170.713        | 42.14569       | -0.07702         | 1091.578        | 2430.514        | -2 | 0 | 0 |
|         | 76              | 537            | 9601             | 667             | 385             |    |   |   |
| 0:03:59 | 1163.068        | 41.87046       | -0.07645         | 1103.285        | 2442.221        | -2 | 0 | 0 |
|         | 526             | 692            | 2346             | 805             | 523             |    |   |   |
| 0:04:00 | 1155.480        | 41.59729       | -0.07588         | 1114.916        | 2453.852        | -2 | 0 | 0 |
|         | 321             | 154            | 2049             | 49              | 208             |    |   |   |
| 0:04:01 | 1147.948        | 41.32614       | -0.07531         | 1126.471        | 2465.407        | -2 | 0 | 0 |
|         | 461             | 458            | 8601             | 294             | 011             |    |   |   |
| 0:04:02 | 1140.472        | 41.05700       | -0.07476         | 1137.950        | 2476.886        | -2 | 0 | 0 |
|         | 271             | 177            | 1893             | 778             | 496             |    |   |   |

| 0:04:03  | 1133.051 | 40.78983 | -0.07421 | 1149.355 | 2488.291 | -2 | 0 | 0 |
|----------|----------|----------|----------|----------|----------|----|---|---|
| 0.04.03  | 09       | 922      | 1818     | 501      | 219      | -2 | 0 | U |
| 0.04.04  | 1125.684 | 40.52463 |          | 1160.686 |          | -2 | 0 | 0 |
| 0:04:04  |          |          | -0.07366 |          | 2499.621 | -2 | 0 | U |
| 0.04.05  | 262      | 344      | 8272     | 012      | 73       | 2  | 0 | 0 |
| 0:04:05  | 1118.371 | 40.26136 | -0.07313 | 1171.942 | 2510.878 | -2 | 0 | 0 |
| 0.04.05  | 147      | 13       | 1152     | 854      | 572      |    |   | 0 |
| 0:04:06  | 1111.111 | 40       | -0.07260 | 1183.126 | 2522.062 | -2 | 0 | 0 |
|          | 111      |          | 036      | 566      | 284      |    |   |   |
| 0:04:06  | 1111.111 | 40       | 0        | 1183.126 | 2522.062 | 0  | 0 | 0 |
|          | 111      |          |          | 566      | 284      |    |   |   |
| 0:04:07  | 1026.955 | 36.97040 | -0.84155 | 1194.237 | 2533.173 | 0  | 0 | 0 |
|          | 731      | 633      | 3798     | 677      | 395      |    |   |   |
| 0:04:08  | 943.3979 | 33.96232 | -0.83557 | 1204.507 | 2543.442 | 0  | 0 | 0 |
|          | 687      | 687      | 7627     | 234      | 952      |    |   |   |
| 0:04:09  | 860.4014 | 30.97445 | -0.82996 | 1213.941 | 2552.876 | 0  | 0 | 0 |
|          | 171      | 102      | 5515     | 214      | 932      |    |   |   |
| 0:04:10  | 777.9305 | 28.00550 | -0.82470 | 1222.545 | 2561.480 | 0  | 0 | 0 |
|          | 822      | 096      | 8349     | 228      | 946      |    |   |   |
| 0:04:11  | 695.9508 | 25.05422 | -0.81979 | 1230.324 | 2569.260 | 0  | 0 | 0 |
| 0.01     | 153      | 935      | 7669     | 534      | 252      |    |   |   |
| 0:04:12  | 614.4282 | 22.11941 | -0.81522 | 1237.284 | 2576.219 | 0  | 0 | 0 |
| 0.01.12  | 516      | 706      | 5637     | 042      | 76       |    |   |   |
| 0:04:13  | 533.3297 | 19.19987 | -0.81098 | 1243.428 | 2582.364 | 0  | 0 | 0 |
| 0.04.13  | 504      | 102      | 5012     | 325      | 042      |    |   | O |
| 0:04:14  | 452.6228 | 16.29442 | -0.80706 | 1248.761 | 2587.697 | 0  | 0 | 0 |
| 0.04.14  | 383      | 218      | 9122     | 622      | 34       |    |   | O |
| 0:04:15  | 372.2756 | 13.40192 | -0.80347 | 1253.287 | 2592.223 | 0  | 0 | 0 |
| 0.04.13  | 539      | 354      | 1844     | 85       | 568      |    |   | U |
| 0:04:16  | 292.2568 | 10.52124 | -0.80018 | 1257.010 | 2595.946 | 0  | 0 | 0 |
| 0.04.10  | 955      | 824      | 7583     | 607      | 325      | U  | 0 | 0 |
| 0:04:17  | 212.5357 | 7.651287 | -0.79721 | 1259.933 | 2598.868 | 0  | 0 | 0 |
| 0:04:17  |          |          |          |          |          | 0  | 0 | U |
| 0.04.10  | 702      | 729      | 1253     | 176      | 894      | 0  |   | 0 |
| 0:04:18  | 133.0819 | 4.790950 | -0.79453 | 1262.058 | 2600.994 | 0  | 0 | 0 |
| 0.04.40  | 445      | 003      | 8257     | 534      | 252      |    |   | 0 |
| 0:04:19  | 53.86549 | 1.939157 | -0.79216 | 1263.389 | 2602.325 | 0  | 0 | 0 |
| 2.24.22  | 671      | 881      | 4478     | 353      | 071      |    |   |   |
| 0:04:20  | 0        | 0        | -0.53865 | 1263.928 | 2602.863 | 0  | 0 | 0 |
|          |          |          | 4967     | 008      | 726      |    |   |   |
| 0:04:21  | 292.2568 | 10.52124 | -0.80018 | 1257.010 | 2595.946 | 0  | 0 | 0 |
|          | 955      | 824      | 7583     | 607      | 325      |    |   |   |
| 0:04:22  | 212.5357 | 7.651287 | -0.79721 | 1259.933 | 2598.868 | 0  | 0 | 0 |
|          | 702      | 729      | 1253     | 176      | 894      |    |   |   |
| 0:04:23  | 133.0819 | 4.790950 | -0.79453 | 1262.058 | 2600.994 | 0  | 0 | 0 |
|          | 445      | 003      | 8257     | 534      | 252      |    |   |   |
| 0:04:24  | 53.86549 | 1.939157 | -0.79216 | 1263.389 | 2602.325 | 0  | 0 | 0 |
|          | 671      | 881      | 4478     | 353      | 071      |    |   |   |
| 0:04:25  | 0        | 0        | -0.53865 | 1263.928 | 2602.863 | 0  | 0 | 0 |
|          |          |          | 4967     | 008      | 726      |    |   |   |
| <u> </u> | 1        | ı        | 1        | 1        | ,        | 1  | I | I |

## 主要程序代码

```
注: 只列出了每一小问的主函数,相关 m 子函数请查看附件文件
第一题第一问主程序:
function Q1_1()% μÚÒ»ÌâμÚÒ»ÎÊ
tic;
clc;close all;
global T;
si=13594;
se=12240;
L=si-se;
v0=0;
vmax=80;
ws=inf;
 Vm=v0;
 Vn=0;
T=1;
S1=0;S2=0;S3=0;S4=0;VData=[];U1=0;U2=0;
C=1e-3*3600;\% m/s \times ^a \gg \hat{I}km/h \mu \ddot{A} \ddot{I}\mu \hat{E} \acute{v}
tt=[];wtt=[];
for u1=0.9:0.1:0.9
                       for u2=0.9:0.1:0.9
                                            for vm=45:vmax
[sData1,tData1,vData1,aData1,WData1,VData1,pData1,fData1,kData1,exitflag1]=getAccst(v0,vm,u1,si);% Ȗµ
 ÃÇ£Òý¶ÎµÄ λÒÆ/ʱ¼ ä/ËÙ¶ÈÊý¾Ý
                                                                  W1=max(WData1);
                                                                  if(exitflag1<0)
                                                                                        continue;
                                                                   end
                                                                   if(exitflag1==0)
                                                                                        vm=vData1(length(vData1));
                                                                  end
                                                                  for vn=20:vm
[sData4,tData4,vData4,aData4,Ef,vlData4,kData4,exitflag4]=getReducest_1(vn,u2,se); % ȖµÃÖÆ ¶¬¶µÄ ĎÆ
/ʱ¼ä/ËÙ¶Èʾ¥Ý
                                                                                        if(exitflag4<0)
                                                                                                             continue;
[sData3,tData3,vData3,aData3,vlData3,kData3,exitflag3]=getBaseDrag_2(max(vData1),vn,se+max(sData4));
                                                                                                                  if(exitflag3<0)
                                                                                                             continue;
                                                                                        end
t2 = (L-max(sData1) - max(sData3) - max(sData4)) * C/max(vData1); \% \\ \times \tilde{n}\mu\tilde{A}\tilde{N} \\ \times^{29} / 2 \\ \$\hat{l}\mu\ddot{A} \\ \hat{l}\times\tilde{O} \times / \hat{E} \\ \pm^{1/4} \\ \ddot{a}'\ddot{E}\tilde{U} \\ \$\hat{E}\hat{E} \\ \times^{3}/4 \\ \Upsilon
                                                                                                             if(t2<0)
                                                                                                                              continue;
                                                                                                             t=max(tData1)+t2+max(tData3)+max(tData4);
                                                                                                             s2=t2*max(vData1)/C;
                                                                                                             vData2=max(vData1)*ones(1,floor(t2/T));
                                                                                                             aData2=zeros(1,floor(t2/T)-1);
                                                                                                             tData2=T:T:t2;
                                                                                                             sData2=max(vData1)*tData2/C;
[WData2,vlData2,pData2,fData2,kData2,exitflag2] = getConstW(vData2,si-max(sData1)); \% \ \ \text{``n\'E'} \ \tilde{\mathbb{N}}^{\ 29}\!\!/_{2} \P \hat{\mathbb{E}} \ \hat{\mathbb{U}} \times \ddot{\mathbb{U}} \ \hat{\mathbb{U}} \times \ddot{\mathbb{U}} \times \hat{\mathbb{U}} ```

```
if(exitflag2<0)
                                                                                    continue;
                                                                    end
                                                                                    W2=max(WData2);
                                                                                    W=W1+W2;
                                                                                    if(t <= 111)
                                                                                                     tt=[tt,t];
                                                                                                     wtt=[wtt,W];
                                                                                                     if(ws>W)
                                                                                                                     ws=W:
                                                                                                                     Vm=vm
                                                                                                                     Vn=vn
                                                                                                                     S1=max(sData1);
                                                                                                                     S2=s2;
                                                                                                                     S3=max(sData3);
                                                                                                                     S4=max(sData4);
                                                                                                                     U1=u1;
                                                                                                                     U2=u2;
                                                                                                                     VData=[vData1,vData2,vData3,vData4];
                                                                                                                     VLData=[VlData1,vlData2,vlData3,vlData4];
                                                                                                                     aData=[aData1,aData2,-aData3,-aData4];
                                                                                                                     pData=[pData1,pData2,zeros(1,length(tData3)),zeros(1,length(tData4))];
                                                                                                                     fData=[fData1,fData2,zeros(1,length(tData3)),zeros(1,length(tData4))];
                                                                                                                     kData=[kData1,kData2,kData3,kData4];
                                                                                                                     if(isempty(tData2))
tData=[tData1,tData2,tData3+max(tData1),tData4+max(tData1)+max(tData3)];
sData=[sData1,sData2,sData3+max(sData1),sData4+max(sData1)+max(sData3)];
                                                                                                                     else
tData = [tData1, tData2 + max(tData1), tData3 + max(tData1) + max(tData2), tData4 + max(tData1) + max(tData2) + 
tData3)];
sData = [sData1, sData2 + max(sData1), sData3 + max(sData1) + max(sData2), sData4 + max(sData1) + max(sData2) + 
ax(sData3)];
                                                                                                                     end
wData=[WData1,max(WData1)+WData2(2:length(WData2)),ones(1,length(sData3))*(max(WData1)+max(WD
ata2)),ones(1,length(sData4))*(max(WData1)+max(WData2))];
                                                                                                     end
                                                                                    end
                                                   end
                                 end
                  end
end
if(isempty(VData))
                  \operatorname{disp}(['^3\hat{A}\hat{u}\times \hat{a}\hat{O}^{\dagger}\hat{C}\hat{o}']);
else
disp([' \times \mathbf{D}; \ddot{\mathbf{I}} \dot{\mathbf{u}} \ddot{\mathbf{A}} \ddot{\mathbf{U}} \dot{\mathbf{A}}; \hat{\mathbf{I}}^{\mathbf{a}}, num2str(ws), 'kJ']);
 disp(['vm=',num2str(Vm),',vn=',num2str(Vn),',s1=',num2str(S1),',s2=',num2str(S2),',s3=',num2str(S3),',s4=',num
2str(S4),',u1=',num2str(U1),',u2=',num2str(U2)]);
disp(['A'/_2 ^3\mu \tilde{O}^3/_4 \hat{E}\mu^1/_4 \hat{E}\hat{O}\ddot{E}DD\hat{E}\pm ^1/_4 \ddot{a},num2str(max(tData)),'s']);
 disp(['A'/2 \frac{3}{4}\tilde{O} \frac{3}{4}\hat{E} \mu^{1/4}\hat{E}\hat{O} \stackrel{.}{E}DD \frac{3}{4} \frac{1}{4}\hat{A} \stackrel{.}{e}, num2str(max(sData)), 'm']);
 figure
plot(tData, VData);grid on;xlabel('ʱ4 ä's'),ylabel('ËÙ ¶Ē/km/h');hold on;plot(tData, VLData, 'r');hold off;
plot(sData, VData);grid on;xlabel('¾ À A & m'),ylabel('ËÙ ¶E/km/h');hold on;plot(sData, VLData, 'r');hold off;
```

```
figure
plot(0:T:(length(aData)-1)*T,aData);grid on;xlabel('ʱ4/4 ä/s'),ylabel('1/4ÓËÙ ¶È/m/s^2');
plot(tData,wData);grid on;xlabel('ʱ4/4 ä/s'),ylabel('ÄÜ 'Ä/kJ');
figure
bar(wData);grid on;xlabel('ʱ¼ ä/s'),ylabel('ÄÜ Ä/kJ');
figure
plot(sData,wData);grid on;xlabel('¾ àÀ ë'm'),ylabel('ÄÜ 'Ä/kJ');
figure
[a,b]=sort(tt);
plot(a,wtt(b));grid on;xlabel('ÔËĐĐʱ¼ ä/s'),ylabel('ÄÜ °Ä/kJ');
len=length(tData);
adata=[0,diff(VData)/(3.6*T)];
for i=1:len
     m=floor(tData(i)/60);
     s=mod(tData(i),60);
     if(s<10)
           tsData\{i\}=['00:0',num2str(m),':0',num2str(s)];
     else
          tsData\{i\}=['00:0',num2str(m),':',num2str(s)];
     end
end
str=['A8:A',num2str(7+len)];
xlswrite('µÚÒ» lâµÚÒ» lÊÊ äÈ ëÊ ý¾ÝÄ £°å xlsx',tsData',2,str);
writeData=[zeros(len,5),VData'*1e2/3.6,VData',adata',sData',sData',zeros(len,3),kData',zeros(len,1),1e3*fData',p
Data',zeros(len,1)];
str=[B8:S',num2str(7+len)];
xlswrite('μÚÒ» lâμÚÒ» lêÊ äÈ ëÊ β¾ÝÄ £°å xlsx', writeData,2,str);
disp(['3]D \circ \hat{O} \stackrel{.}{E}D \rightarrow \hat{D} \stackrel{.}{E} \stackrel{+}{=} 1/4 \stackrel{.}{a}, num 2 str(toc), 's']);
第一题第二问主程序:
function Q1_2()% \muÚÒ»Ìâ\muÚ \$bÎÊ
tic;
clc;close all;clear;
global T;
si=13594;
se=12240;
s0=10960;
v0=0;
vmax=80;
ws=inf;
T=1:
C=1e-3*3600;\% m/s \times ^a \gg \hat{I}^k m/h \mu \ddot{A} \ddot{I} \mu \hat{E} \acute{v}
% ¾ ½¼Æ ËãÁ½ ¶ÎÔÚ×î′óËÙ ¶ÈÔËĐĐ ÏÂμÄ×Đ ÔËĐĐʱ¼ ä
wt=inf:
for t1=96:5:127
S1 = 0; S2 = 0; S3 = 0; S4 = 0; VData = []; U1 = 0; U2 = 0; Vm = v0; Vn = 0;
 L=si-se;
for u1=0.9:0.1:1
     for u2=0.9:0.1:1
%
              for vm=60:60
                  for vm=55:55
[sData1,tData1,vData1,aData1,WData1,VIData1,pData1,fData1,kData1,exitflag1]=getAccst(v0,vm,u1,si);% Ȗµ
ÃÇ£Òý¶ÎµÄ λÒÆ/ʱ¼ ä/ËÙ¶ÈÊý¾Ý
                W1=max(WData1);
                if(exitflag1<0)
```

```
continue;
                                 end
                                 for vn=35:35
[sData4,tData4,vData4,aData4,Ef,vlData4,kData4,exitflag4]=getReducest_1(vn,u2,se); % ȖµÃÖÆ ¶¬¶µÄ ĎÆ
/ʱ¼ ä/ËÙ ¶ÈÊ 🕉 4Ý
                                           if(exitflag4<0)
                                                      continue;
                                            end
                                            % ȖÈ ¡C£Ò ý¶Îµ½ÖÆ ¶¬¶ÎÖ®¼ äµÄ ¿;öĐŠϢ
[sData3,tData3,vData3,aData3,vIData3,kData3,exitflag3]=getBaseDrag_2(max(vData1),vn,se+max(sData4));
                                                         if(exitflag3<0)
                                                      continue;
                                            end
t2=(L-max(sData1)-max(sData3)-max(sData4))*C/max(vData1); % ȖµÃÑ 29/2 ¶ĴµÄ λÒÆ/ʱ¼ ä/ËÙ ¶Èʾ4Ý
                                                      if(t2<0)
                                                              continue:
                                                      end
                                                      t=max(tData1)+t2+max(tData3)+max(tData4);
                                                      s2=t2*max(vData1)/C;
                                                      vData2=max(vData1)*ones(1,floor(t2/T));
                                                      aData2=zeros(1,floor(t2/T)-1);
                                                      tData2=T:T:t2;
                                                      sData2=max(vData1)*tData2/C;
[WData2,vlData2,pData2,fData2,kData2,exitflag2]=getConstW(vData2,se-max(sData1));% ȖÈ jÑ ²½ ¶ÎÈù×öµÄ
                                                      if(exitflag2<0)
                                                      continue;
                                            end
                                                      W2=max(WData2);
                                                      W=W1+W2;
                                                      dt=abs(t-t1);
                                                      if(dt \le 1)
                                                                 if(ws>W)
                                                                            ws=W:
                                                                            Vm=vm
                                                                            Vn=vn
                                                                            S1=max(sData1);
                                                                            S2=s2;
                                                                            S3=max(sData3);
                                                                            S4=max(sData4);
                                                                            U1=u1;
                                                                            U2=u2;
                                                                            VData=[vData1,vData2,vData3,vData4];
                                                                            vlData_1=[VlData1,vlData2,vlData3,vlData4];
                                                                            aData=[aData1,aData2,-aData3,-aData4];
                                                                            pData_1=[pData1,pData2,zeros(1,length(tData3)),zeros(1,length(tData4))];
                                                                            fData_1=[fData1,fData2,zeros(1,length(tData3)),zeros(1,length(tData4))];
                                                                            kData 1=[kData1,kData2,kData3,kData4];
wData_1 = [WData1, max(WData1) + WData2(2:length(WData2)), ones(1, length(sData3)) * (max(WData1) + max(WData1) 
Data2)),ones(1,length(sData4))*(max(WData1)+max(WData2))];
                                                                            if(isempty(tData2))
```

tData=[tData1,tData2,tData3+max(tData1),tData4+max(tData1)+max(tData3)];

```
sData=[sData1,sData2,sData3+max(sData1),sData4+max(sData1)+max(sData3)];
                                                                                                                    else
tData = [tData1, tData2 + max(tData1), tData3 + max(tData1) + max(tData2), tData4 + max(tData1) + max(tData2) + 
tData3)];
 sData=[sData1,sData2+max(sData1),sData3+max(sData1)+max(sData2),sData4+max(sData1)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(sData2)+max(s
 ax(sData3)];
                                                                                                                    end
                                                                                                    end
                                                                                   end
                                                                   %end
                                                  end
                                 end
                 end
 end
    %¹¼ÆËã°óÁ½ ÖÕ¾μÄÔËĐĐ¹¦Ä
    S21=0;S22=0;S23=0;S24=0;VData2=[];U21=0;U22=0;Vm2=0;Vn2=0;ws2=inf;
    L2=se-s0:
    for u1=0.9:0.1:0.9
                 for u2=0.9:0.1:0.9
 %
                                             for vm=60:60
                                                  for vm=64:64
[sData1,tData1,vData1,aData1,wData1,vlData1,pData1,fData1,kData1,exitflag1]=getAccst(v0,vm,u1,se);% Ȗµ
 ÃÇ£Ò ý¶ÎµÄ λÒÆ/ʱ¼ ä′ËÙ ¶ÈÊý¾Ý
                                                   W1=max(WData1);
                                                  if(exitflag1<0)
                                                                   continue;
                                                  end
 %
                                                             for vn=37:37
                                                                  for vn=40:40
[sData4,tData4,vData4,aData4,Ef4,vlData4,kData4,exitflag4]=getReducest(vn,u2,s0); % ȖµÃÖÆ ¶¬¶îµÄ ĵ»ÒÆ/
 ʱ¼äËÙ¶ÈʾÝ
                                                                  if(exitflag4<0)
                                                                                   continue;
                                                                   end
                                                                   % ȖÈ ¡Ç£Ò ý¶Îµ½ÖÆ ¶¯¶ÎÖ®¼ äµÄ ·¿öĐŠϢ
[sData3,tData3,vData3,aData3,vlData3,kData3,exitflag3]=getBaseDrag_2(max(vData1),vn,s0+max(sData4));
                                                                  if(exitflag3<0)
                                                                                   continue;
                                                                   end
t2=(L2-max(sData1)-max(sData3)-max(sData4))*C/max(vData1); % ȖµÃÑ 29/2 ¶ÎµÄ λÒÆ/ʱ¼ ä/ËÙ ¶ÈÊŷ¾Ý
                                                                                   if(t2<0)
                                                                                               continue;
                                                                                   t=max(tData1)+t2+max(tData3)+max(tData4);
                                                                                   s2=t2*max(vData1)/C;
                                                                                   vData2=max(vData1)*ones(1,floor(t2/T));
                                                                                   aData2=zeros(1,floor(t2/T)-1);
                                                                                   tData2=T:T:t2;
                                                                                   sData2=max(vData1)*tData2/C;
[WData2,vlData2,pData2,fData2,kData2,exitflag2]=getConstW(vData2,se-max(sData1));% ȖÈ Ñ 2½¶ÎÈù×öµÄ
                                                                                   if(exitflag2<0)
                                                                                                    continue;
```

```
end
                                                                                          W2=max(WData2);
                                                                                          W=W1+W2;
                                                                                          t2=220-t1;
                                                                                          dt=abs(t-t2);
                                                                                          if(dt \le 1)
                                                                                                            if(ws2>W)
                                                                                                                              ws2=W;
                                                                                                                              Vm2=vm
                                                                                                                              Vn2=vn
                                                                                                                              S21=max(sData1);
                                                                                                                              S22=s2;
                                                                                                                              S23=max(sData3);
                                                                                                                              S24=max(sData4);
                                                                                                                              U21=u1;
                                                                                                                              U22=u2;
                                                                                                                              VData 2=[vData1,vData2,vData3,vData4];
                                                                                                                              vlData 2=[vlData1,vlData2,vlData3,vlData4];
                                                                                                                              aData 2=[aData1,aData2,-aData3,-aData4];
wData_2=[WData1,max(WData1)+WData2(2:length(WData2)),ones(1,length(sData3))*(max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+m
Data2)),ones(1,length(sData4))*(max(WData1)+max(WData2))];
                                                                                                                              pData_2=[pData1,pData2,zeros(1,length(tData3)),zeros(1,length(tData4))];
                                                                                                                              fData_2=[fData1,fData2,zeros(1,length(tData3)),zeros(1,length(tData4))];
                                                                                                                              kData_2=[kData1,kData2,kData3,kData4];
                                                                                                                              if(isempty(tData2))
tData_2=[tData1,tData2,tData3+max(tData1),tData4+max(tData1)+max(tData3)];
sData_2=[sData1,sData2,sData3+max(sData1),sData4+max(sData1)+max(sData3)];
                                                                                                                              else
tData_2 = [tData_1, tData_2 + \max(tData_1), tData_3 + \max(tData_1) + \max(tData_2), tData_4 + \max(tData_1) + \max(tData_2) + \max(tData
x(tData3);
sData_2=[sData1,sData2+max(sData1),sData3+max(sData1)+max(sData2),sData4+max(sData1)+max(sData2)+
max(sData3)];
                                                                                                                              end
                                                                                                                     end
                                                                                          end
                                                                    % end
                                                       end
                                    end
                   end
     end
                    w=ws+ws2;
                   if(wt>w)% ȖÈ ¡Á½Õ¾×ỚÅ ÄÄÜ μÄ×Đ Ö μ
                                    wt=w:
                                    T1=t1:
                                    T2=220-t1;
                                    TData1=tData:
                                    TData2=tData 2;
                                    SData1=sData;
                                    SData2=sData_2;
                                    TData=[tData,max(tData)+(T:T:40),tData_2+max(tData)+40];
                                    SData=[sData,max(sData)*ones(1,40/T),sData_2+max(sData)];
                                    NSData=[sData,max(sData)*ones(1,40/T),sData_2];
                                     VDatas=[VData,zeros(1,40/T),VData_2];
                                     VLDatas=[vlData 1,zeros(1,40/T),vlData 2];
```

```
aDatas=[aData,zeros(1,40/T),aData 2];
                                                  wData=[wData 1,max(wData 1)*ones(1,40/T),wData 2+max(wData 1)];
                                                 kData=[kData_1,max(kData_1)*ones(1,40/T),kData_2];
                                                 fData=[fData_1,zeros(1,40/T),fData_2];
                                                 pData=[pData_1,zeros(1,40/T),pData_2];
                                                  VM1=Vm;
                                                  VM2=Vm2;
                                                  VN1=Vn;
                                                  VN2=Vn2;
                                                 UU1=U1:
                                                 UU2=U2;
                                                 UU21=U21;
                                                 UU22=U22;
                         end
end
% ÏÔʾĐŠϢ
disp([' \times \mathbf{D} ; \ddot{\mathbf{I}}\hat{\mathbf{u}} \ddot{\mathbf{A}} \ddot{\mathbf{U}} \dot{\mathbf{A}}; \hat{\mathbf{I}}^{\mathbf{a}}, num2str(wt), 'kJ']);
disp(['vm=',num2str(VM1),',vn=',num2str(VN1),',u1=',num2str(UU1),',u2=',num2str(UU2)]);
 disp(['Q ^\acute{a}!_2 ^)\mu \tilde{O} ^3 ke @ \tilde{O} \tilde{E}DD \hat{E} \pm 4 \ddot{a}, num 2 str(max(T1)), 's', ', Q ^\acute{a}!_2 ^3\mu \tilde{O} ^3 k\hat{E} \mu !_4 \hat{E} \tilde{O} \tilde{E}DD \hat{E} \pm 4 \ddot{a}, num 2 str(max(TData)) + (Max + 1) + (Ma
  1)),'s']);
 disp(['C^{\hat{A}}]_{2})\tilde{\mu}\tilde{O}_{2}^{3} + \mathbb{E}^{\hat{A}}\tilde{O}_{2}^{3} + \mathbb{
disp(['vm=',num2str(VM2),',vn=',num2str(VN2),',u1=',num2str(UU21),',u2=',num2str(UU22)]);
 disp(['\circ\acute{A}\frac{1}{2}\frac{3}{\mu}\tilde{O}\frac{3}{4}\frac{1}{8}\P^\circ\tilde{E}\tilde{D}\tilde{D}\hat{E}\pm\frac{1}{4}\frac{1}{8},num2str(max(T2)),'s',',°\acute{A}\frac{1}{2}\frac{3}{\mu}\tilde{O}\frac{3}{4}\hat{E}\frac{1}{\mu}\frac{1}{4}\hat{E}\tilde{O}\ddot{E}\tilde{D}\tilde{D}\hat{E}\pm\frac{1}{4}\frac{1}{8},num2str(max(TData2))
 disp(['\circ\acute{A}\frac{1}{2}\Im\tilde{O}^{3}4] + \P^{\circ}\tilde{C} = \Phi^{3}4 \Rightarrow \tilde{C}, num2 + \tilde
%ȾÖÆ Í⁄4ÐÎ
figure
plot(TData, VDatas); grid on; xlabel('ʱ4 ä's'), ylabel('ʱ0 ¶E/km/h'); hold on; plot(TData, VLDatas, 'r'); hold off;
plot(SData, VDatas); grid on; xlabel('¾ àÀ ĕ'm'), ylabel('ËÙ ¶È/km/h'); hold on; plot(SData, VLDatas, 'r'); hold off;
figure
plot(0:T:(length(aDatas)-1)*T,aDatas);grid on;xlabel('ʱ4/4 ä/s'),ylabel('1/4 Ó ËÙ ¶E/m/s^2');
figure
plot(SData, wData); grid on; xlabel('¾ àÀ ë/m'), ylabel('ËÙ ¶È/km/h');
figure
plot(TData,wData);grid on;xlabel('ʱ¼ ä/s'),ylabel('ËÙ ¶Ē/km/h');
%½«Êý¾Ý°′,ñʽĐ ½øxls ÎÄμμ
len=length(TData);
adata=[0,diff(VDatas)/(3.6*T)];
 for i=1:len
                         m=floor(TData(i)/60);
                         s=mod(TData(i),60);
                         if(s<10)
                                                  tsData\{i\}=['00:0',num2str(m),':0',num2str(s)];
                         else
                                                 tsData\{i\}=['00:0',num2str(m),':',num2str(s)];
                         end
str=['A8:A',num2str(7+len)];
xlswrite('\mu\acute{U}\grave{O})*\grave{l}\grave{a}\mu\acute{U}*\P\flat\hat{l}\grave{E}\grave{E}*\grave{a}\grave{E}*\grave{E}^{2}\!\!/\!\!4\acute{Y}\ddot{A}\\ \pounds°\mathring{a}.xlsx',tsData',2,str);
 writeData=[zeros(len,5),VDatas'*1e2/3.6,VDatas',adata',NSData',zeros(len,3),kData',zeros(len,1),1e3*fD
ata',pData',zeros(len,1)];
str=[B8:S',num2str(7+len)];
xlswrite('µÚÒ» lâµÚ ¶þ ÎÊÊ äÈ ëÊ ý¾Ý Ä £°å.xlsx',writeData,2,str);
disp(['3]DôÔËĐĐʱ¼ ä,num2str(toc),'s']);
```

```
第二题第一问
function h=Q2_1()% \dot{w}3/4ÝÁÐ \dot{y}4ÔÚ \dot{+}¶ÎµÄÔËÐĐʱ¼ 䣬È ·¶Ä1/2Á¾ \dot{y}4°È «ÔËÐĐʱ¼ ä
global T;
E=0;
tic;
sis=[22903 21569
                       20283
                                 18197
                                           15932
                                                     13594
                                                               12240
                                                                         10960
                                                                                   9422
                                                                                             8429
                                                                                                       6447
4081
          2806];
ses=[21569 20283
                        18197
                                  15932
                                            13594
                                                                10960
                                                                         9422
                                                                                    8429
                                                                                                        4081
                                                      12240
                                                                                              6447
2806
          175];
v0=0;close all;
vmax=80;g=9.8;
T=5:
C=1e-3*3600;\% m/s \times a \gg \hat{I} m/h \mu \ddot{A} \ddot{\mu} \hat{E} \acute{y}
ds=sis-ses:
Vm=zeros(1,length(ds));
Vn=zeros(1,length(ds));
U1=zeros(1,length(ds));
U2=zeros(1,length(ds));
eGenerate=zeros(1,length(ds));
wdata=zeros(1,length(ds));
td=zeros(1,length(ds));
swdata=[];%<sup>1</sup>/<sub>4</sub>ÇÂ<sup>1</sup>/<sub>4</sub>ÓÅ»<sup>-</sup>µÄ <sup>1</sup>/<sub>6</sub>ıä»<sup>-</sup>Çé;ö
m=194.295;
TData=[];
VDatas=[];
SDatas=[];
WDatas=[];
 tDatas=[];
tMin=inf;
VM=load('Vm.mat');
VN=load('Vn.mat');
VM=VM.Vm;
VN=VN.Vn;
UU1=load('UU1.mat');
UU2=load('UU2.mat');
tRun=load('×ĎÅÔËĐĐʱ¼ ämat');
tRun=tRun.tmean;
UU1=UU1.U1;
UU2=UU2.U2;
st=0;
VLdata=[];
for ti=1:length(ds)
        ws=inf;
               for u1=UU1(ti):UU1(ti)
               for u2=UU2(ti):UU2(ti)
                  for vm=VM(ti):VM(ti)
[sData1,tData1,vData1,aData1,WData1,vlData1,pData1,fData1,kData1,exitflag1]=getAccst(v0,vm,u1,sis(ti));% »
ñμÃÇ£Òý¶ÎμÄ Î»ÒÆ/ʱ¼ä/ËÙ¶ÈÊý¾Ý
                       W1=max(WData1);
                       if(exitflag1<0)
                             continue:
                        end
                          for vn=VN(ti):VN(ti)
[sData4,tData4,vData4,aData4,Ef,vlData4,kData4,exitflag4]=getReducest_1(vn,u2,ses(ti)); % ȖµÃÖÆ ¶¬¶ÎµÄ λ
ÒÆ/ʱ¼ ä/ËÙ ¶ÈÊý¾Ý
                             if(exitflag4<0)
                                  continue;
                             end
```

```
[sData3,tData3,vData3,aData3,vlData3,kData3,exitflag3]=getBaseDrag_2(max(vData1),vn,ses(ti)+max(sData4))
                                                              if(exitflag3<0)
                                                                        continue;
                                                              L=sis(ti)-ses(ti);
t2 = (L-max(sData1)-max(sData3)-max(sData4)) *C/max(vData1); \% \\ \times \tilde{n}\mu\tilde{A}\tilde{N} \\ \times^{2q} / 2 \hat{\mu}\mu\ddot{A} \\ \hat{b}\tilde{O}E/\hat{E} \\ \pm^{1}/4 \\ \ddot{a}'\ddot{E}\tilde{U} \\ \hat{\Psi}\tilde{E}\hat{E} \\ \sqrt[q]{4}\tilde{Y}
                                                              if(t2<0)
                                                                         continue;
                                                              end
                                                             t=max(tData1)+t2+max(tData3)+max(tData4);
                                                              s2=t2*max(vData1)/C;
                                                              vData2=max(vData1)*ones(1,floor(t2/T));
                                                              aData2=zeros(1,floor(t2/T)-1);
                                                              tData2=T:T:t2;
                                                              sData2=max(vData1)*tData2/C;
[WData2,vlData2,pData2,fData2,kData2,exitflag2]=getConstW(vData2,sis(ti)-max(sData1));% ȖÈ Ñ 24/2 ¶ÎËù×ö
μÄ ¹¦
                                                              if(exitflag2<0)
                                                                         continue;
                                                              end
                                                              W2=max(WData2);
                                                              W=W1+W2;
                                                              ddt=abs(t-tRun(ti));
                                                              if(ddt \le T)
                                                                         if(ws>W)
                                                                                   ti
                                                                                    ws=W;
                                                                                    U1(ti)=u1;
                                                                                    U2(ti)=u2;
                                                                                    Vm(ti)=vm;
                                                                                    Vn(ti)=vn;
                                                                                    S1=max(sData1);
                                                                                    S2=s2;
                                                                                    S3=max(sData3);
                                                                                    S4=max(sData4);
WData{ti}=[WData1,max(WData1)+WData2(2:length(WData2)),ones(1,length(sData3))*(max(WData1)+max(
WData2)),ones(1,length(sData4))*(max(WData1)+max(WData2))];
                                                                                    VData{ti}=[vData1,vData2,vData3,vData4];
                                                                                    vld{ti}=[vlData1,vlData2,vlData3,vlData4];
%
                                                                                           VLdata=[VLdata,vld];
                                                                                    aData{ti}=[aData1,aData2,-aData3,-aData4];
                                                                                    if(isempty(tData2))
                                                                                              tmax=max(tData4)+max(tData1)+max(tData3);
tData{ti}=[tData1,tData2,tData3+max(tData1),tData4+max(tData1)+max(tData3)];
sData{ti}=[sData1,sData2,sData3+max(sData1),sData4+max(sData1)+max(sData3)];
                                                                                    else
                                                                                              tmax=max(tData4)+max(tData1)+max(tData3)+max(tData2);
tData\{ti\} = [tData1, tData2 + max(tData1), tData3 + max(tData1) + max(tData2), tData4 + max(tData1) + max(tData2) + max(tData2
max(tData3)];
sData\{ti\}=[sData1,sData2+max(sData1),sData3+max(sData1)+max(sData2),sData4+max(sData1)+max(sData2)\}
```

```
+max(sData3)];
                                       end
                                       if(ti>1)
                                            sData{ti}=sData{ti}+max(sData{ti-1});
                                            WData\{ti\}=WData\{ti\}+max(WData\{ti-1\});
                                       end
                                       wdata(ti)=ws;
                                       st=st+tmax;
                                        td(ti)=tmax;
                                       % ±£ æ à ¶ÎμÄÖÆ ¶¯Ê±¼ ä¶Î⁄2Úμã⁄ÔÙÉúÄÜÁ ÒÔ¼ °¹ βÄʱ¼ ä
                                       if(ti>1)
                                            tData{ti}=tData{ti}+max(tData{ti-1});
                                            tDrag\{ti\}=[tmax-max(tData4)+st,tmax+st];
                                            tLoss{ti}=[min(tData1)+st,max(tData1)+max(tData2)+st];
                                       else
                                            tDrag{ti}=[tmax-max(tData4),tmax];
                                            tLoss\{ti\}=[min(tData1),max(tData1)+max(tData2)];
                                       end
                                       [vl,r,k] = getRoadCon(ses(ti) + max(sData4)); \% \ \text{ȖÈ jÖ} \& \P^- \P \hat{l} \mu \ddot{A} \& \hat{A} \ \P \grave{E} 
Emesh=0.5*m*min(vData3)^2/3.6^2-m*g*max(sData4)*sin(pi*k/180);%¼Æ Ε̈́ãÖÆ ¶¬¶ÂÐ ¾νάĐ μÄÜ μļ δĐ
;Á¿£¬×¢Òâ·û°Å
                                       eGenerate(ti)=(Emesh-Ef)*0.95;
                                  end
                             end
                        end
                   end
              end
         end
         if(ti==length(ds))
              WDatas=[WDatas,WData{ti}];
              SDatas=[SDatas,sData{ti}];
              VDatas=[VDatas,VData{ti}];
%
                 tDatas=[tDatas,tData{ti}];
               VLdata=[VLdata,vld{ti}];
              d=tData\{ti\}+35*(ti-1);
              tDatas=[tDatas,d];
         else
              SDatas=[SDatas,sData{ti},max(sData{ti})*ones(1,35/T-1)];
              WDatas=[WDatas, WData{ti}, max(WData{ti})*ones(1,35/T-1)];
              VDatas=[VDatas, VData{ti}, zeros(1,35/T-1)];
              VLdata=[VLdata,vld{ti},zeros(1,35/T-1)];
              a=T:T:30;
              b=max(tData\{ti\}+35*(ti-1))*ones(1,30/T);
              c=a+b;
              d=tData\{ti\}+35*(ti-1);
              tDatas=[tDatas,d,c];
         end
end
 disp(['3]D) \hat{O} \hat{E}DD \hat{E} \pm \frac{1}{4} \vec{a}, num2str(toc), [s']);
 disp(['×ÜÄÜ 'A',num2str(sum(wdata)),'kJ']);
figure
plot(tDatas)
   figure
```

```
plot(SDatas, VDatas); grid on; xlabel('Î×ÒÆ/m'), ylabel('ËÙ ¶È/km/h'); hold on; plot(SDatas, VLdata, 'r'); grid on; xlabel('Î×ÒÆ/m'), ylabel('ËÙ ¶È/km/h'); hold off;
```

```
figure
 plot(tDatas,SDatas);grid on;xlabel('ʱ¼ ä/s'),ylabel('Î×ÒÆ/m');
 figure
 plot(tDatas, VDatas); grid on; xlabel('ʱ4/4 ä/s'), ylabel('ËÙ ¶È/km/h');
 figure
 plot(SDatas, WDatas); grid on; xlabel('ÎNÔÆ/m'), ylabel('INÄ/kJ');
 plot(tDatas, WDatas); grid on; xlabel('ʱ¼ ä/s'), ylabel('¹!Ä/kJ');
 sd=SDatas;% æ ¢°óÁ¾³μμÄ Î»ÒÆ/ËÙ ¶ÈÊý¾Ý
 vd=VDatas;
% ±£ œÁĐ ¾ ¹ 'Ä ¶Ĵ£¬ÖÆ ¶¬¶Ĵʱ¼ äμ ãÒÔ¼ °¶ÔÓ μÄÔÙÉúÄÜÁ;
saveData{1}=tDrag;
saveData{2}=tLoss;
saveData{3}=eGenerate;
saveData{4}=td;
save('ÔÙÉúÄÜÁ; mat', 'saveData');
L0=150;% ³uÉ í³¤¶È
N=50;
for tInter=250:5:6000
     failure=0;
     bias=tInter/T;
     newVLdata=[];
          for ii=bias+1:N+bias
          L=abs(sd(ii)-sd(ii-bias))-L0;\% \times \phi \hat{O} \hat{a} \hat{O} ^{4}/4 \hat{O} \hat{E} \hat{A} \hat{D} ^{3}\mu \hat{a} \hat{E}
          if(L<0)
               failure=1;
               break;
          end
          VL=sqrt(2*L);\% \times ^a \gg \hat{l}km/h*3.6
          vl=VLdata(ii-bias);
          VL=min([vl,VL]);
          if(vd(ii-bias)>VL)
               failure=1;
               break;
          end
          newVLdata=[newVLdata,VL];
     end
     if(failure==0)
          tMin=tInter;
          figure
 plot(tDatas(1:N),newVLdata,'r');grid on;xlabel('ʱ¼ ä),ylabel('ËÙ ¶E/km/h');hold
on;plot(tDatas(1:N),vd(1:N));hold off;legend(' ÏÞËÙ','Êμ¼ÊËÙ ¶È');
          break;
     end
end
%¼ÆËãÔÙÉúÄÜÁ¿
H=[];Es=[];
h = [605]
           660
                   660
                           660
                                  640];
E=GetE(0,h,5);
Es=[Es,E];
H=[H;h];
h = [645]
           660
                   645
                           660
                                  615];
E=GetE(0,h,5);
Es=[Es,E];
```

```
H=[H;h];
h = [645]
          645
                 645
                       645
                              645];
E=GetE(0,h,5);
Es=[Es,E];
H=[H;h];
h0 = [645]
          645
                  645
                        645
                               645];
% Ëæ »ú ²úÉ ú ·¢ ³μ¹⁄4 ä .ôÊ ý³⁄4 Ý
for i=1:18
   a=ceil(rand(1,2)*5);
   t=ceil(rand()*15);
   h(a(1))=h0(a(1))+t;
   h(a(2))=h0(a(2))-t;
   E=GetE(0,h,5);
   Es=[Es,E];
   H=[H;h];
end
H=[H,Es'];
第二题第二问主程序
function Q2_2()
global T;
clc;
tic;
sis=[22903 21569
                     20283
                               18197
                                        15932
                                                 13594
                                                          12240
                                                                   10960
                                                                            9422
                                                                                     8429
                                                                                              6447
4081
         2806];
ses=[21569 20283
                      18197
                               15932
                                        13594
                                                 12240
                                                          10960
                                                                   9422
                                                                             8429
                                                                                      6447
                                                                                               4081
2806
         175];
v0=0;close all;
vmax=80;g=9.8;
T=5;
C=1e-3*3600;\% m/s \times a \gg \hat{I} m/h \mu \ddot{A} \ddot{\mu} \hat{E} \acute{y}
ds=sis-ses;
Vm=zeros(1,length(ds));
Vn=zeros(1,length(ds));
U1=zeros(1,length(ds));
U2=zeros(1,length(ds));
eGenerate=zeros(1,length(ds));
wdata=zeros(1,length(ds));
td=zeros(1,length(ds));
swdata=[];%½Ç¼ÓÅ»¯μÄ⅓ı仯Çé¿ö
m=194.295;
TData=[];
VDatas=[];
SDatas=[];
WDatas=[];
 tDatas=[];
tMin=inf;
VM=load('Vm.mat');
VN=load('Vn.mat');
VM=VM.Vm;
VN=VN.Vn;
UU1=load('UU1.mat');
UU2=load('UU2.mat');
tRun=load('×ĎÅÔËĐĐʱ¼ ämat');
tRun=tRun.tmean;
UU1=UU1.U1;
UU2=UU2.U2;
st=0;
```

```
VLdata=[];
for ti=1:length(ds)
                    ws=inf;
                                   for u1=UU1(ti):UU1(ti)
                                  for u2=UU2(ti):UU2(ti)
                                          for vm=VM(ti):VM(ti)
[sData1,tData1,vData1,aData1,WData1,vlData1,pData1,fData1,kData1,exitflag1]=getAccst(v0,vm,u1,sis(ti));% »
 ñμÃÇ£Ò ý¶ÎμÄ Î»ÒÆ/ʱ¼ ä/ËÙ¶ÈÊý¾Ý
                                                      W1=max(WData1);
                                                      if(exitflag1<0)
                                                                 continue:
                                                      end
                                                           for vn=VN(ti):VN(ti)
[sData4,tData4,vData4,aData4,Ef,vlData4,kData4,exitflag4]=getReducest(vn,u2,ses(ti)); % \tilde{n}\mu\tilde{A}\ddot{O}E\P^-\Pi\hat{\mu}\ddot{A}\hat{D}\dot{A}
Æ/ʱ¼ä/ËÙ¶ÈÊý¾Ý
                                                                 if(exitflag4<0)
                                                                            continue:
                                                                 end
[sData3, vData3, vDa
                                                                 if(exitflag3<0)</pre>
                                                                             continue;
                                                                 end
                                                                 L=sis(ti)-ses(ti);
if(t2<0)
                                                                             continue;
                                                                 t=max(tData1)+t2+max(tData3)+max(tData4);
                                                                 s2=t2*max(vData1)/C;
                                                                 vData2=max(vData1)*ones(1,floor(t2/T));
                                                                 aData2=zeros(1,floor(t2/T)-1);
                                                                 tData2=T:T:t2;
                                                                 sData2=max(vData1)*tData2/C;
μŦ
                                                                 if(exitflag2<0)
                                                                             continue;
                                                                 end
                                                                 W2=max(WData2);
                                                                 W=W1+W2;
                                                                 ddt=abs(t-tRun(ti));
                                                                 if(ddt \le T)
                                                                             if(ws>W)
                                                                                        ws=W;
                                                                                        U1(ti)=u1;
                                                                                        U2(ti)=u2;
                                                                                         Vm(ti)=vm;
                                                                                         Vn(ti)=vn;
                                                                                        S1=max(sData1);
                                                                                        S2=s2;
                                                                                        S3=max(sData3);
                                                                                        S4=max(sData4);
```

```
WData{ti}=[WData1,max(WData1)+WData2(2:length(WData2)),ones(1,length(sData3))*(max(WData1)+max(
WData2)),ones(1,length(sData4))*(max(WData1)+max(WData2))];
                                                                                                                                 VData{ti}=[vData1,vData2,vData3,vData4];
                                                                                                                                vld{ti}=[vlData1,vlData2,vlData3,vlData4];
%
                                                                                                                                           VLdata=[VLdata,vld];
                                                                                                                                 aData{ti}=[aData1,aData2,-aData3,-aData4];
                                                                                                                                if(isempty(tData2))
                                                                                                                                                tmax=max(tData4)+max(tData1)+max(tData3);
tData{ti}=[tData1,tData2,tData3+max(tData1),tData4+max(tData1)+max(tData3)];
sData{ti}=[sData1,sData2,sData3+max(sData1),sData4+max(sData1)+max(sData3)];
                                                                                                                                else
                                                                                                                                                tmax=max(tData4)+max(tData1)+max(tData3)+max(tData2);
tData\{ti\} = [tData1, tData2 + max(tData1), tData3 + max(tData1) + max(tData2), tData4 + max(tData1) + max(tData2) + max(tData2
max(tData3)];
sData\{ti\}=[sData1,sData2+max(sData1),sData3+max(sData1)+max(sData2),sData4+max(sData1)+max(sData2)\}
+max(sData3)];
                                                                                                                                end
                                                                                                                                if(ti>1)
                                                                                                                                                sData{ti}=sData{ti}+max(sData{ti-1});
                                                                                                                                                 WData{ti}=WData{ti}+max(WData{ti-1});
                                                                                                                                end
                                                                                                                                wdata(ti)=ws;
                                                                                                                                st=st+tmax;
                                                                                                                                   td(ti)=tmax;
                                                                                                                                 % ±£ æ à ¶ÎμÄÖÆ ¶¯Ê±¼ ä¶Î⁄2Úμã/ÔÙÉúÄÜÁ ÒÔ¼ °¹ ¦Äʱ¼ ä
                                                                                                                                 if(ti>1)
                                                                                                                                                tData{ti}=tData{ti}+max(tData{ti-1});
                                                                                                                                                tDrag\{ti\}=[tmax-max(tData4)+st,tmax+st];
                                                                                                                                                tLoss\{ti\}=[min(tData1)+st,max(tData1)+max(tData2)+st];
                                                                                                                                else
                                                                                                                                                tDrag{ti}=[tmax-max(tData4),tmax];
                                                                                                                                                tLoss\{ti\}=[min(tData1),max(tData1)+max(tData2)];
                                                                                                                                [vl,r,k] = getRoadCon(ses(ti) + max(sData4)); \% \  \  \, \\ "\~D\& \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \  \  \, \| \
Emesh=0.5*m*min(vData3)^2/3.6^2-m*g*max(sData4)*sin(pi*k/180);% ¼Æ ΕάΌÆ ¶¯¶ĨÁĐ ¾ νῶĐ μÄÜ μļ δĐ
  :Á¿£¬×¢Òâ·û°Å
                                                                                                                                eGenerate(ti)=(Emesh-Ef)*0.95;
                                                                                                               end
                                                                                              end
                                                                             end
                                                             \quad \text{end} \quad
                                             end
                             end
                             if(ti==length(ds))
                                             WDatas=[WDatas,WData{ti}];
                                             SDatas=[SDatas,sData{ti}];
                                              VDatas=[VDatas, VData{ti}];
%
                                                        tDatas=[tDatas,tData{ti}];
                                                  VLdata=[VLdata,vld{ti}];
                                             d=tData{ti}+35*(ti-1);
                                             tDatas=[tDatas,d];
```

```
else
            SDatas=[SDatas,sData{ti},max(sData{ti})*ones(1,35/T-1)];
            WDatas=[WDatas,WData{ti},max(WData{ti})*ones(1,35/T-1)];
            VDatas=[VDatas, VData{ti}, zeros(1,35/T-1)];
            VLdata=[VLdata,vld{ti},zeros(1,35/T-1)];
            a=T:T:30;
            b=max(tData\{ti\}+35*(ti-1))*ones(1,30/T);
            c=a+b;
            d=tData\{ti\}+35*(ti-1);
            tDatas=[tDatas,d,c];
       end
end
%¼ÆËãÔÙÉúÄÜÁ¿£¬ÖÎå¶Î⁄2øĐĐ¼ÆËã
nn=[8,15,5,15,5];
h{1}=342*ones(1,21);
h{2}=131*ones(1,41);
h{3}=355*ones(1,86);
h{4}=133*ones(1,54);
h{5}=355*ones(1,38);
E=[];
for i=1:5
    ht=0;
    for j=1:i-1
        ht=ht+sum(h\{j\});
    e=GetE(0,h\{i\},nn(i));
    E=[E,e];
end
WE=240*sum(wdata)-sum(E);%¼Æ ËãÊμ¼Ê Ϊû Ä ¹¦Ä
% ¾ÉuËæ»uʱ¼ä¶ÎµÄÔÙÉuÄÜÁ;
cNum=[21,41,86,54,38];
tNum=[7200 5400 30600 7200 13500];
 hn=round(tNum./cNum);
 wdatas=[sum(E)];LN=cNum;
for ii=1:18
   a=ceil(rand(1,2)*5);
   n=ceil(rand()*5);
   cNum(a(1))=cNum(a(1))+n;
   cNum(a(2))=cNum(a(2))-n;
   hn=round(tNum./(cNum));
   for cn=1:length(cNum)
      h\{cn\}=hn(cn)*ones(1,cNum(cn));
   end
   E=0;
    for i=1:length(cNum)
     ht=0;
      for j=1:i-1
             ht=ht+sum(h\{j\});
      end
     e=GetE(0,h\{i\},nn(i));
     E=E+e;
   wdatas=[wdatas,E];
   LN=[LN;cNum];
end
LN=[LN,wdatas'];
```

```
disp(['3]D) \hat{O} \hat{E}DD \hat{E} \pm \frac{1}{4} \vec{a}, num2str(toc), [s']);
 disp(['ÔÙÉúÄÜÁ;',num2str(sum(E)),'kJ']);
 disp(['\hat{E}\mu^{l}\!\!/\!\!4\hat{E}\ddot{A}\ddot{U}\,'\!\!\ddot{A}',num2str(WE),'kJ']);
第三题第一问主要程序
function Q3 1()
clc;close all;
NUM=3;%\ddot{O} ¶\tilde{N}\acute{O} \dot{U} ¾\pm \grave{a}Å^{1}4 \tilde{O}34 \dot{I}"Å
SNUM=4;
h = [645]
            660
                     645
                              660
                                      615];% ·¢³µ¹/4 ä ô
global T;
E=0;
tic;
sis=[22903 21569
                           20283
                                       18197
                                                  15932
                                                              13594
                                                                         12240
                                                                                     10960
                                                                                                9422
                                                                                                            8429
                                                                                                                       6447
4081
           2806];
                                                                                                 8429
                                                                                                                        4081
ses=[21569 20283
                           18197
                                       15932
                                                  13594
                                                              12240
                                                                          10960
                                                                                     9422
                                                                                                            6447
2806
           175];
v0=0;close all;
vmax=80;g=9.8;
T=1;
C=1e-3*3600;% m/s \times a»» Îtkm/h \muÄ \ddot{l}\muÊ\acute{v}
ds=sis-ses;
Vm=zeros(1,length(ds));
Vn=zeros(1,length(ds));
U1=zeros(1,length(ds));
U2=zeros(1,length(ds));
eGenerate=zeros(1,length(ds));
wdata=zeros(1,length(ds));
td=zeros(1,length(ds));
swdata=[];%<sup>1</sup>/<sub>4</sub>ÇÂ<sup>1</sup>/<sub>4</sub>ÓÅ»<sup>-</sup>µÄ <sup>1</sup>/ıä»<sup>-</sup>Çé;ö
m=194.295;
TData=[];
VDatas=[];
SDatas=[];
WDatas=[];
tDatas=[];
tMin=inf;
VM=load('Vm.mat');
VN=load('Vn.mat');
VM=VM.Vm;
VN=VN.Vn;
UU1=load('UU1.mat');
UU2=load('UU2.mat');
tRun=load('×ÔÅÔËĐĐʱ¼ ämat');
tRun=tRun.tmean;
UU1=UU1.U1;
UU2=UU2.U2;
st=0;SMAX1=0;
VLdata=[];
WT=inf;
U1=zeros(1,2);U2=zeros(1,2);S1=zeros(1,2);S2=zeros(1,2);S3=zeros(1,2);S4=zeros(1,2);
 %<sup>1</sup>/<sub>4</sub>Æ Ëã<sup>3</sup>õÊ<sup>1</sup>/<sub>4</sub><sup>1</sup>/<sub>2</sub>á<sup>1</sup>û
 vvm=[72,64];
 vvn=[35,38];
 for ti=0:1
            ws=inf;
           for u1=0.9:0.1:0.9
                 for u2=0.9:0.1:1
                       for vm=vvm(ti+1):vvm(ti+1)
```

```
UM));%ȖµÃÇ£Ò ý¶ÎµÄ λÒÆ/ʱ¼ ä/ËÙ¶Èʾ4Ý
                                                                                                                                              W1=max(WData1);
                                                                                                                                              if(exitflag1<0)
                                                                                                                                                                          continue;
                                                                                                                                              end
                                                                                                                                              for vn=vvn(ti+1):vvn(ti+1)
  [sData4,tData4,vData4,aData4,Ef,vlData4,kData4,exitflag4]=getReducest(vn,u2,ses(ti+SNUM)); % ȖµÃÖÆ ¶¬¶
     εÄ Î»ÒÆ/ʱ¼ ä/ËÙ ¶ÈÊý¾Ý
                                                                                                                                                                          if(exitflag4<0)
                                                                                                                                                                                                     continue;
                                                                                                                                                                          end
 [sData3,tData3,vData3,vData3,vData3,vData3,kData3,exitflag3]=getBaseDrag_2(max(vData1),vn,ses(ti+SNUM)+max(
  sData4));
                                                                                                                                                                          if(exitflag3<0)
                                                                                                                                                                                                     continue:
                                                                                                                                                                          L=sis(ti+SNUM)-ses(ti+SNUM);
t2 \hspace{-0.2cm}=\hspace{-0.2cm} (sData1) - max(sData3) - max(sData4)) * C/max(vData1); \% \\ \times \tilde{n}\mu\tilde{A}\tilde{N} \\ \times^{2q}\hspace{-0.2cm}/2 \\ \P\hat{L}\mu\ddot{A} \\ \hat{L}\rangle \tilde{O} \times \tilde{E} \\ + \tilde{L}/4 \\ \ddot{a}'\ddot{E} \tilde{U} \\ \P \hat{E} \hat{E} \\ \times^{2q}\hspace{-0.2cm}/4 \\ \tilde{A}' \times \tilde{E} \\
                                                                                                                                                                          if(t2<0)
                                                                                                                                                                                                     continue;
                                                                                                                                                                          end
                                                                                                                                                                          t=max(tData1)+t2+max(tData3)+max(tData4);
                                                                                                                                                                          s2=t2*max(vData1)/C;
                                                                                                                                                                          vData2=max(vData1)*ones(1,floor(t2/T));
                                                                                                                                                                          aData2=zeros(1,floor(t2/T)-1);
                                                                                                                                                                          tData2=T:T:t2;
                                                                                                                                                                          sData2=max(vData1)*tData2/C;
 [WData2,vlData2,pData2,fData2,kData2,exitflag2] = getConstW(vData2,sis(ti+SNUM)-max(sData1)); \% \ \ "\~n\`E" \ \ "\~n" \ \ "~n" \ \ \ "~n" 
  ½¶ÎËù×öµÄ ¹¦
                                                                                                                                                                          if(exitflag2<0)
                                                                                                                                                                                                     continue;
                                                                                                                                                                          end
                                                                                                                                                                          W2=max(WData2);
                                                                                                                                                                          W = W1 + W2:
                                                                                                                                                                          ddt=abs(t-tRun(ti+SNUM));
                                                                                                                                                                          if(ddt \le T)
                                                                                                                                                                                                     if(ws>W)
                                                                                                                                                                                                                                  U1(ti+1)=u1;
                                                                                                                                                                                                                                  U2(ti+1)=u2;
                                                                                                                                                                                                                                   Vm(ti+1)=vm;
                                                                                                                                                                                                                                   Vn(ti+1)=vn;
                                                                                                                                                                                                                                   ws=W;
                                                                                                                                                                                                                                  S1(ti+1)=max(sData1);
                                                                                                                                                                                                                                  S2(ti+1)=s2;
                                                                                                                                                                                                                                  S3(ti+1)=max(sData3);
                                                                                                                                                                                                                                  S4(ti+1)=max(sData4);
 WData\{ti+1\} = [WData1, max(WData1) + WData2(2:length(WData2)), ones(1, length(sData3)) * (max(WData1) + max(WData1) + (max(WData1) + (max(W
  x(WData2)),ones(1,length(sData4))*(max(WData1)+max(WData2))];
                                                                                                                                                                                                                                  VData{ti+1}=[vData1,vData2,vData3,vData4];
                                                                                                                                                                                                                                  vld{ti+1}=[vlData1,vlData2,vlData3,vlData4];
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               VLdata=[VLdata,vld];
                                                                                                                                                                                                                                  aData\{ti+1\}=[aData1,aData2,-aData3,-aData4];
```

```
if(isempty(tData2))
                                                                                                tmax=max(tData4)+max(tData1)+max(tData3);
tData\{ti+1\}=[tData1,tData2,tData3+max(tData1),tData4+max(tData1)+max(tData3)];
sData\{ti+1\}=[sData1,sData2,sData3+max(sData1),sData4+max(sData1)+max(sData3)];
                                                                                                tmax=max(tData4)+max(tData1)+max(tData3)+max(tData2);
tData\{ti+1\} = [tData1, tData2 + max(tData1), tData3 + max(tData1) + max(tData2), tData4 + max(tData1) + max(tData2)\}
+max(tData3)];
sData\{ti+1\} = [sData1, sData2 + max(sData1), sData3 + max(sData1) + max(sData2), sData4 + max(sData1) + max(sDat
a2)+max(sData3)];
                                                                                     end
                                                                                     if(ti>0)
                                                                                                sData\{ti+1\}=sData\{ti+1\}+max(sData\{ti+1-1\});
                                                                                                WData\{ti+1\}=WData\{ti+1\}+max(WData\{ti+1-1\});
                                                                                     end
                                                                                     wdata(ti+1)=ws;
                                                                                     st=st+tmax;
                                                                                     \% \pm \pounds \acute{a} \tilde{A} \P \hat{l} \mu \ddot{A} \ddot{O} \dot{E} \P^- \hat{E} \pm \frac{1}{4} \ddot{a} \P \hat{l} 2 \acute{U} \mu \tilde{a}' \hat{O} \grave{U} \acute{E} \acute{u} \ddot{A} \ddot{U} \acute{A} \grave{O} \hat{O}^{1} 4 \circ 1 \overset{\circ}{|} \ddot{A} \hat{E} \pm \frac{1}{4} \ddot{a}
                                                                                     if(ti>0)
                                                                                                tData\{ti+1\}=tData\{ti+1\}+max(tData\{ti+1-1\});
                                                                                                tDrag\{ti+1\}=[tmax-max(tData4)+st,tmax+st];
                                                                                                tLoss\{ti+1\}=[min(tData1)+st,max(tData1)+max(tData2)+st];
                                                                                     else
                                                                                                tDrag\{ti+1\}=[tmax-max(tData4),tmax];
                                                                                                tLoss\{ti+1\}=[min(tData1),max(tData1)+max(tData2)];
[vl,r,k]=getRoadCon(ses(ti+SNUM)+max(sData4));% ȖÈ ÖÆ ¶¬¶ÎµÄÆ Â ¶È
Emesh=0.5*m*min(vData3)^2/3.6^2-m*g*max(sData4)*sin(pi*k/180);% ¼Æ Ε̃ ἄΘÆ ¶¯¶ĨÁĐ ¾ »ứĐ μÄÜ μļ δĐ
 ;Á¿£¬×¢Òâ·û°Å
                                                                                     eGenerate(ti+1)=(Emesh-Ef)*0.95;
                                                                           end
                                                                end
                                                     end
                                           end
                                end
                     end
           end
           w=sum(wdata);
           if(WT>w)
                     WT=w;
                     vdata1=[VData{1},VData{2}];
                      sdata1=[sData\{1\},sData\{2\}];
                     tdata1=[tData{1},tData{2}];
                      wdata1=[WData{1},WData{2}];
disp(['vm=',num2str(Vm(1)),',vn=',num2str(Vn(1)),',s1=',num2str(S1(1)),',s2=',num2str(S2(1)),',s3=',num2str(S3
(1)), ', s4=', num2str(S4(1)), ',u1=', num2str(U1(1)), ',u2=', num2str(U2(1))]);
disp(['vm=',num2str(Vm(2)),',vn=',num2str(Vn(2)),',s1=',num2str(S1(2)),',s2=',num2str(S2(2)),',s3=',num2str(S3
(2), ', s4=', num2str(S4(2)), ', u1=', num2str(U1(2)), ', u2=', num2str(U2(2))]);
disp(['3]D) \hat{O} \hat{E}DD \hat{E} \pm \frac{1}{4} \vec{a}, num2 str(toc), [s']);
disp([\tilde{O} \circ \tilde{V} \to \hat{E}) = \hat{E} \times \tilde{A}', num2str(WT), kJ']);
```

```
%14ÆËãÓÅ»<sup>-1</sup>⁄2á¹û
 vvm=[79,69];
 vvn=[38,38];
WT=inf
for dt=7:1:7
    dt
    tic;
    tti=[-dt -10+dt];
    for ti=0:1
         ws=inf;
         for u1=0.9:0.1:0.9
             for u2=1:0.1:1
                  % for vm=vvm(ti+1):vvm(ti+1)
                        for vm=45:vmax
[sData1,tData1,vData1,aData1,WData1,vIData1,pData1,fData1,kData1,exitflag1]=getAccst(v0,vm,u1,sis(ti+SN
UM));%ȖµÃÇ£Ò ý¶ÎµÄ λÒÆ/ʱ¼ ä/ËÙ ¶ÈÊ ý¾Ý
                       W1=max(WData1);
                       if(exitflag1<0)
                           continue;
                       end
                        for vn=20:vm
%
                          for vn=vvn(ti+1):vvn(ti+1)
[sData4,tData4,vData4,aData4,Ef,vlData4,kData4,exitflag4]=getReducest(vn,u2,ses(ti+SNUM)); % ȖµÃÖÆ ¶¬¶
εÄ Î»ÒÆ/ʱ¼ ä/ËÙ ¶ÈÊý¾Ý
                           if(exitflag4<0)
                                continue;
                           end
[sData3,tData3,vData3,vData3,vData3,vData3,vData3,exitflag3]=getBaseDrag 2(max(vData1),vn,ses(ti+SNUM)+max(
sData4));
                           if(exitflag3<0)
                                continue;
                           end
                           L=sis(ti+SNUM)-ses(ti+SNUM);
t2=(L-max(sData1)-max(sData3)-max(sData4))*C/max(vData1); % ȖµÃÑ 29/2 ¶ĴµÄ λÒÆ/ʱ¼ ä/ ËÙ ¶ÈÊ ¾4Ý
                           if(t2<0)
                                continue:
                           t=max(tData1)+t2+max(tData3)+max(tData4);
                           s2=t2*max(vData1)/C;
                           vData2=max(vData1)*ones(1,floor(t2/T));
                           aData2=zeros(1,floor(t2/T)-1);
                           tData2=T:T:t2;
                           sData2=max(vData1)*tData2/C;
[WData2,vlData2,pData2,fData2,kData2,exitflag2]=getConstW(vData2,sis(ti+SNUM)-max(sData1));% ȖÈ ¡Ñ 2°
½¶ÎËù×öµÄ ¹¦
                           if(exitflag2<0)
                                continue;
                           end
                           W2=max(WData2);
                           W=W1+W2;
                           ddt=abs(t-tRun(ti+SNUM)-tti(ti+1));
                           if(ddt \le T)
                                if(ws>W)
                                     ws=W;
                                    U1(ti+1)=u1;
```

```
U2(ti+1)=u2;
                                                                                                                                                                      Vm(ti+1)=vm;
                                                                                                                                                                      Vn(ti+1)=vn;
                                                                                                                                                                      ws=W;
                                                                                                                                                                      S1(ti+1)=max(sData1);
                                                                                                                                                                      S2(ti+1)=s2;
                                                                                                                                                                      S3(ti+1)=max(sData3);
                                                                                                                                                                      S4(ti+1)=max(sData4);
WData\{ti+1\} = [WData1, max(WData1) + WData2(2:length(WData2)), ones(1, length(sData3)) * (max(WData1) + max(WData1)) * (max(
x(WData2)),ones(1,length(sData4))*(max(WData1)+max(WData2))];
                                                                                                                                                                      VData{ti+1}=[vData1,vData2,vData3,vData4];
                                                                                                                                                                      vld{ti+1}=[vlData1,vlData2,vlData3,vlData4];
                                                                                                                                                                                                                                                                                                                                                    VLdata=[VLdata,vld];
                                                                                                                                                                      aData\{ti+1\}=[aData1,aData2,-aData3,-aData4];
                                                                                                                                                                      if(isempty(tData2))
                                                                                                                                                                                          tmax=max(tData4)+max(tData1)+max(tData3);
tData\{ti+1\}=[tData1,tData2,tData3+max(tData1),tData4+max(tData1)+max(tData3)];
sData{ti+1}=[sData1,sData2,sData3+max(sData1),sData4+max(sData1)+max(sData3)];
                                                                                                                                                                      else
                                                                                                                                                                                           tmax=max(tData4)+max(tData1)+max(tData3)+max(tData2);
tData\{ti+1\} = [tData1, tData2 + max(tData1), tData3 + max(tData1) + max(tData2), tData4 + max(tData1) + max(tData2), tData4 + max(
+max(tData3)];
sData\{ti+1\}=[sData1,sData2+max(sData1),sData3+max(sData1)+max(sData2),sData4+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)
a2)+max(sData3)];
                                                                                                                                                                      end
                                                                                                                                                                      if(ti>0)
                                                                                                                                                                                          sData\{ti+1\}=sData\{ti+1\}+max(sData\{ti+1-1\});
                                                                                                                                                                                           WData\{ti+1\}=WData\{ti+1\}+max(WData\{ti+1-1\});
                                                                                                                                                                      end
                                                                                                                                                                      wdata(ti+1)=ws;
                                                                                                                                                                      st=st+tmax;
                                                                                                                                                                      % \pm£ ′æ à ¶ÎµÄÖÆ ¶¯Ê±¼ ä¶Î⁄2Ú µã′ÔÙÉúÄÜÁ ÒÔ¼ °¹ ¦Äʱ¼ ä
                                                                                                                                                                      if(ti>0)
                                                                                                                                                                                          tData\{ti+1\}=tData\{ti+1\}+max(tData\{ti+1-1\});
                                                                                                                                                                                          tDrag\{ti+1\}=[tmax-max(tData4)+st,tmax+st];
                                                                                                                                                                                           tLoss\{ti+1\}=[min(tData1)+st,max(tData1)+max(tData2)+st];
                                                                                                                                                                                          tDrag\{ti+1\}=[tmax-max(tData4),tmax];
                                                                                                                                                                                          tLoss\{ti+1\}=[min(tData1),max(tData1)+max(tData2)];
                                                                                                                                                                      end
[vl,r,k]=getRoadCon(ses(ti+SNUM)+max(sData4));% ȖÈ ÖÆ ¶¬¶ÎµÄÆ Â ¶È
 Emesh=0.5*m*min(vData3)^2/3.6^2-m*g*max(sData4)*sin(pi*k/180);%¼Æ ËãÖÆ ¶¬¶ÁÐ ¾ »úÐ μÄÜ μļ ỡĐ
   ;Á¿£¬×¢Òâ·û°Å
                                                                                                                                                                      eGenerate(ti+1)=(Emesh-Ef)*0.95;
                                                                                                                                                 end
                                                                                                                            end
                                                                                                       end
                                                                                   end
                                                              end
                                          end
                      end
```

```
w=sum(wdata);
                   if(WT>w)
                                    WT=w;
                                    TT=tti;
                                    vdata2=[VData{1},VData{2}];
                                    sdata2=[sData{1},sData{2}];
                                    SMAX1=max(sData{1});
                                    tdata2=[tData{1},tData{2}];
                                     wdata2=[WData{1},WData{2}];
disp(['vm=',num2str(Vm(1)),',vn=',num2str(Vn(1)),',s1=',num2str(S1(1)),',s2=',num2str(S2(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(
(1)),',s4=',num2str(S4(1)),',u1=',num2str(U1(1)),',u2=',num2str(U2(1))]);
disp(['vm=',num2str(Vm(2)),',vn=',num2str(Vn(2)),',s1=',num2str(S1(2)),',s2=',num2str(S2(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(
(2)),',s4=',num2str(S4(2)),',u1=',num2str(U1(2)),',u2=',num2str(U2(2))]);
                   disp(['\mu \hat{\mathbf{Y}} \hat{\mathbf{T}}^3] \hat{\mathbf{D}} \hat{\mathbf{O}} \hat{\mathbf{E}} \hat{\mathbf{D}} \hat{\mathbf{D}} \hat{\mathbf{E}} \pm 1/4 \hat{\mathbf{a}}, \text{num2str(toc),'s']});
disp(['\ddot{E} \ll \tilde{N} \circ \hat{E} + D \cdot D \cdot \hat{E})^{1} \ddot{A}', num 2 str(WT), 'kJ']);
disp(['3DôÖËĐĐʱ¼ ä,num2str(toc),'s']);
% ¼Æ Ëãµ¥¶ÎÓÅ » ¬½ á ¹û
WT=inf
for dt=10:1:10
                   dt
                   tic;
                   tti=[-dt -10+dt];
                   for ti=0:1
                                    ws=inf:
                                    for u1=0.9:0.1:0.9
                                                       for u2=0.9:0.1:1
                                                                         % for vm = vvm(ti+1):vvm(ti+1)
                                                                                               for vm=45:vmax
[sData1,tData1,vData1,aData1,WData1,vData1,pData1,fData1,kData1,exitflag1]=getAccst(v0,vm,u1,sis(ti+SN
UM));% ȖµÃÇ£Ò ý¶ÎµÄ λÒÆ/ʱ¼ ä/ËÙ¶Èʾ4Ý
                                                                                           W1=max(WData1);
                                                                                           if(exitflag1<0)
                                                                                                              continue;
                                                                                           end
                                                                                               for vn=20:vm
%
                                                                                                       for vn=vvn(ti+1):vvn(ti+1)
[sData4,tData4,vData4,aData4,Ef,vlData4,kData4,exitflag4]=getReducest(vn,u2,ses(ti+SNUM)); % ȖµÃÖÆ ¶¬¶
  εÄ Î»ÒÆ/ʱ¼ ä/ËÙ ¶ÈÊý¾Ý
                                                                                                              if(exitflag4<0)
                                                                                                                               continue:
                                                                                                              end
[sData3,tData3,vData3,vData3,vData3,kData3,exitflag3]=getBaseDrag_2(max(vData1),vn,ses(ti+SNUM)+max(
sData4));
                                                                                                              if(exitflag3<0)
                                                                                                                               continue;
                                                                                                              L=sis(ti+SNUM)-ses(ti+SNUM);
```

```
t2 = (L-max(sData1)-max(sData3)-max(sData4)) *C/max(vData1); \% \\ \times \tilde{n}\mu\tilde{A}\tilde{N} \\ \times^{2q} / 2 \hat{\mu}\mu\ddot{A} \\ \hat{b}\tilde{O}E/\hat{E} \\ \pm^{1}/4 \\ \ddot{a}'\ddot{E}\tilde{U} \\ \hat{\Psi}\tilde{E}\hat{E} \\ \sqrt[q]{4}\tilde{Y}
                                                                                                 if(t2<0)
                                                                                                                continue:
                                                                                                 end
                                                                                                 t=max(tData1)+t2+max(tData3)+max(tData4);
                                                                                                 s2=t2*max(vData1)/C;
                                                                                                 vData2=max(vData1)*ones(1,floor(t2/T));
                                                                                                 aData2=zeros(1,floor(t2/T)-1);
                                                                                                 tData2=T:T:t2;
                                                                                                 sData2=max(vData1)*tData2/C;
[WData2,vlData2,pData2,fData2,kData2,exitflag2]=getConstW(vData2,sis(ti+SNUM)-max(sData1));% ȖÈ Ñ 2°
 ½¶ÎËù×öµÄ ¹¦
                                                                                                 if(exitflag2<0)
                                                                                                                continue:
                                                                                                 end
                                                                                                 W2=max(WData2);
                                                                                                 W = W1 + W2:
                                                                                                 ddt=abs(t-tRun(ti+SNUM)-tti(ti+1));
                                                                                                 if(ddt \le T)
                                                                                                                if(ws>W)
                                                                                                                                ws=W;
                                                                                                                                U1(ti+1)=u1;
                                                                                                                                U2(ti+1)=u2;
                                                                                                                                 Vm(ti+1)=vm;
                                                                                                                                 Vn(ti+1)=vn;
                                                                                                                                 ws=W;
                                                                                                                                S1(ti+1)=max(sData1);
                                                                                                                                S2(ti+1)=s2;
                                                                                                                                S3(ti+1)=max(sData3);
                                                                                                                                S4(ti+1)=max(sData4);
WData\{ti+1\} = [WData1, max(WData1) + WData2(2:length(WData2)), ones(1, length(sData3)) * (max(WData1) + max(WData1) + (max(WData1) + (max(W
x(WData2)),ones(1,length(sData4))*(max(WData1)+max(WData2))];
                                                                                                                                VData{ti+1}=[vData1,vData2,vData3,vData4];
                                                                                                                                vld{ti+1}=[vlData1,vlData2,vlData3,vlData4];
                                                                                                                                                                                                                                                                       VLdata=[VLdata,vld];
                                                                                                                                aData\{ti+1\}=[aData1,aData2,-aData3,-aData4];
                                                                                                                                if(isempty(tData2))
                                                                                                                                                tmax=max(tData4)+max(tData1)+max(tData3);
tData\{ti+1\}=[tData1,tData2,tData3+max(tData1),tData4+max(tData1)+max(tData3)];
sData\{ti+1\}=[sData1,sData2,sData3+max(sData1),sData4+max(sData1)+max(sData3)];
                                                                                                                                else
                                                                                                                                                tmax=max(tData4)+max(tData1)+max(tData3)+max(tData2);
tData\{ti+1\}=[tData1,tData2+max(tData1),tData3+max(tData1)+max(tData2),tData4+max(tData1)+max(tData2)\}
 +max(tData3)];
sData\{ti+1\} = [sData1, sData2 + max(sData1), sData3 + max(sData1) + max(sData2), sData4 + max(sData1) + max(sDat
 a2)+max(sData3)];
                                                                                                                                end
                                                                                                                                if(ti>0)
                                                                                                                                                sData\{ti+1\}=sData\{ti+1\}+max(sData\{ti+1-1\});
                                                                                                                                                 WData\{ti+1\}=WData\{ti+1\}+max(WData\{ti+1-1\});
                                                                                                                                end
```

```
wdata(ti+1)=ws;
                                                                                         st=st+tmax;
                                                                                         \% \pm \pounds \acute{a} \tilde{A} \P \hat{l} \mu \ddot{A} \ddot{O} \dot{E} \P^- \hat{E} \pm \frac{1}{4} \ddot{a} \P \hat{l} 2 \acute{U} \mu \tilde{a}' \hat{O} \grave{U} \acute{E} \acute{u} \ddot{A} \ddot{U} \acute{A} \grave{O} \hat{O}^{1} 4 \circ 1 \overset{\circ}{|} \ddot{A} \hat{E} \pm \frac{1}{4} \ddot{a}
                                                                                         if(ti>0)
                                                                                                    tData\{ti+1\}=tData\{ti+1\}+max(tData\{ti+1-1\});
                                                                                                    tDrag\{ti+1\}=[tmax-max(tData4)+st,tmax+st];
                                                                                                    tLoss\{ti+1\}=[min(tData1)+st,max(tData1)+max(tData2)+st];
                                                                                         else
                                                                                                     tDrag\{ti+1\}=[tmax-max(tData4),tmax];
                                                                                                    tLoss\{ti+1\}=[min(tData1),max(tData1)+max(tData2)];
                                                                                         end
[vl,r,k]=getRoadCon(ses(ti+SNUM)+max(sData4));% ȖÈ ÖÆ ¶¬¶îµÄÆ Â ¶È
Emesh=0.5*m*min(vData3)^2/3.6^2-m*g*max(sData4)*sin(pi*k/180);%¼Æ Ε̈́ãÖÆ ¶¬¶ÂÐ ¾νΦμÄÜμļõĐ
  ;Á¿£¬×¢Òâ·û°Å
                                                                                         eGenerate(ti+1)=(Emesh-Ef)*0.95;
                                                                              end
                                                                   end
                                                        end
                                             end
                                  end
                      end
           end
            w=sum(wdata);
            if(WT>w)
                      WT=w;
                      vdata3=[VData{1},VData{2}];
                      sdata3=[sData{1},sData{2}];
                      SMAX1=max(sData{1}):
                      tdata3=[tData{1},tData{2}];
                       wdata3=[WData{1},WData{2}];
disp(['vm=',num2str(Vm(1)),',vn=',num2str(Vn(1)),',s1=',num2str(S1(1)),',s2=',num2str(S2(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(
(1)),',s4=',num2str(S4(1)),',u1=',num2str(U1(1)),',u2=',num2str(U2(1))]);
disp(['vm=',num2str(Vm(2)),',vn=',num2str(Vn(2)),',s1=',num2str(S1(2)),',s2=',num2str(S2(2)),',s3=',num2str(S3
(2), s4=', num2str(S4(2)), u1=', num2str(U1(2)), u2=', num2str(U2(2)));
            disp(['\mu Y \hat{T}^3]D \hat{O} \hat{E}DD \hat{E} \pm 4 \hat{a}, num2str(toc), 's']);
disp(['\mu \Psi \hat{N} \hat{O} \hat{E} \pm D \hat{D} \hat{E})^1 \hat{A}', num 2 str(WT), kJ']);
tRun(SNUM:SNUM+1)=tRun(SNUM:SNUM+1)+TT;
figure
plot(sdata1,vdata1);grid on;xlabel('¾ àÀ ë/m'),ylabel('ËÙ ¶E/km/h');hold on;plot(sdata2,vdata2,'r');grid
on;xlabel('¾ àÀ ë/m'),ylabel('ËÙ ¶È/km/h');plot(sdata3,vdata3,'v');grid
on;xlabel('¾ àÀ ë/m'),ylabel('ËÙ ¶È/km/h');hold off;
legend('\tilde{O} ý 3£DĐÊ »Â ·\tilde{I}B', '\tilde{E} «¶\hat{L}»Ö \tilde{N}Oʱ', '\mu¥¶\hat{L}»Ö \tilde{N}Oʱ');
% plot(sDatas, VDatas); grid on; xlabel('¾ àÀ ë/m'), ylabel('ËÙ ¶È/km/h');
save('ÔËĐĐʱ¼ ämat','tRun');
disp(['^3D) \hat{O} \hat{E}DD \hat{E} \pm 4 \hat{a}, num2str(toc), 's']);
disp(['×ÜÄÜ 'A',num2str(sum(wdata)),'kJ']);
```