Sistemas Recomendadores IIC-3633

Deep Learning en Sistemas Recomendadores Parte 1

Esta clase

- 1. Modelos de Lenguaje
- 2. Deep Learning para recomendación (Modelos de Lenguaje)

Recomendación de contenido de texto hasta ahora...

$$TF(t,d) = rac{number\ of\ times\ t\ appears\ in\ d}{total\ number\ of\ terms\ in\ d}$$
 $IDF(t) = lograc{N}{1+df}$ $TF-IDF(t,d) = TF(t,d)*IDF(t)$

¿Qué ventajas / desventajas tiene TF-IDF?

Ventajas

- Se adapta al corpus porque se basa en frecuencia de términos
- No necesita entrenar un modelo

Desventajas

- Tiene muy alta dimensionalidad por vector y muy "sparsed"
- No aprende información semántica del texto
- No entiende palabras que aparecen en distintos contextos

Modelos de lenguaje

WORD2VEC

RNN

BERT

MODELOS GENERATIVOS

Formulación de modelo de lenguaje

 Un modelo de lenguaje permite calcular la probabilidad de una palabra (o n-grama) dada una serie de "eventos" (palabras o n-gramas) observados:

$$P(w_{1:n}) = P(w_1)P(w_2|w_1)P(w_3|w_{1:2})...P(w_n|w_{1:n-1})$$

$$= \prod_{k=1}^{n} P(w_k|w_{1:k-1})$$

Vectorización de texto

Idea clave: Palabras en contextos similares tendrán una representación similar.

Vectorización de texto

 $x = "I love to eat" \rightarrow CONTEXTO h(w)$

y = "pizzas" → SIGUIENTE PALABRA

Tarea: predecir la palabra siguiente <u>más probable de ocurrir</u> dado un contexto.

Vectorización de texto

x ="I love to eat" \rightarrow CONTEXTO h(w) y =? \rightarrow SIGUIENTE PALABRA

Otras técnicas de Word Vectors

Otras técnicas para vectorizar palabras (word embeddings):

- GloVe
- FastText

```
DOC = "El bus rojo"
```

```
EI = [0.45, 0.66, 0.12 ..... N=300]
bus = [0.23, 0.34, 0.55 .... N = 300]
rojo = [0.46, 0.76 ..... N = 300]
```

Limitaciones:

- Tenemos vectores por cada palabra pero necesitamos agregarlas para representar un texto.
- No sabe lidiar con palabras que están fuera del vocabulario.
- No escala a **nuevos idiomas** (esp., africano, frances).

Red Neuronal Recurrente (RNN)

TASK: Predecir la palabra siguiente con mayor probabilidad

BERT

Generate Contexualized Embeddings ENCODER ENCODER ENCODER 3 512 [CLS] Prince Mayuko BERT

The output of each encoder layer along each token's path can be used as a feature representing that token.

But which one should we use?

BERT tokenizer

BERT trae incorporado un tokenizer que:

 Divide palabras en dos partes de manera que la segunda se pueda utilizar de nuevo.

- Agregar tokens especiales [CLS] que representa un texto completo y [SEP] para denotar separación si tiene más de una oración.
- 2. Convertir cada token al índice en el vocabulario.

¿Cómo funciona cada encoder?

¿Cómo funciona cada encoder?

Concepto de auto-atención (self attention)

fultiplying x1 by the WQ weight matrix produces q1, the "query" vector associated with that word. We end up creating a "query", a "key", and a "value" projection of each word in the input sentence.

Cada palabra se compara con otras palabras de una oración.

Objetivo. Aprender relaciones entre palabras. Para obtener vectores **Q**, **K** y **V**

Se tiene que aprender una matriz de pesos para cada una:

Wq Wk Wv X

WQ

C

X

WK

K

X

W۷

1

Cálculo del vector Z con matrices para paralelizar operaciones.

The self-attention calculation in matrix form

Repite el mismo proceso para múltiples cabezales (heads), el N heads es un meta-parámetro

With multi-headed attention, we maintain separate Q/K/V weight matrices for each head resulting in different Q/K/V matrices. As we did before, we multiply X by the WQ/WK/WV matrices to produce Q/K/V matrices.

Calculating attention separately in eight different attention heads

ATTENTION HEAD #0 ATTENTION HEAD #1

...

ATTENTION HEAD #7

 Z_0

ZI

 \mathbb{Z}_7

Esto se repite dependiendo de cuantos encoders

tenga el modelo....

Vectorización de texto: BERT (Transformer)

Limitaciones de BERT:

- Complejidad computacional para entrenar en nuevo corpus.
 Se limita largo de los textos a 512 tokens.

Alternativas:

- XLNET
- RoBERTA
- Distill-BERT

- GPT-2

Modelos generativos

Modelos generativos de lenguaje

. .

117M Parameters

345M Parameters 762M Parameters 1,542M Parameters

Transformer

Model Dimensionality: 1024

Model Dimensionality: 1280

Model Dimensionality: 1600

El desempeño de modelos de lenguaje depende mucho de la cantidad de parámetros a entrenar.

Supera a todos los modelos anteriores en tareas de:

- Text Summarization
- Question Answering
- Language understanding

entre otros

3. Ejemplos de approach de recomendación basada en contenido

Embedding-based News Recommendation for Millions of Users

Shumpei Okura Yahoo Japan Corporation Tokyo, Japan sokura@yahoo-corp.jp

Shingo Ono Yahoo Japan Corporation Tokyo, Japan shiono@yahoo-corp.jp Yukihiro Tagami Yahoo Japan Corporation Tokyo, Japan yutagami@yahoo-corp.jp

Akira Tajima Yahoo Japan Corporation Tokyo, Japan atajima@yahoo-corp.jp

Pasos

Distributed Representations of Articles

- Este paso implica generar una representación de los artículos para capturar sus características y rasgos.

Generación de User Representations

- Utiliza una Red Neuronal Recurrente (RNN) para este paso.
- Las secuencias de entrada para la RNN serán los historiales de navegación de los usuarios.
- El objetivo es crear una representación de los usuarios basada en su interacción con los artículos.

Matching y Listing de Artículos

- Realiza operaciones de matching y listing de artículos y usuarios basadas en operaciones de producto interno (inner-product operations).
- El objetivo es proporcionar a los usuarios artículos relevantes basados en sus preferencias e interacciones representadas.

Solving the Sparsity Problem in Recommendations via Cross-Domain Item Embedding Based on Co-Clustering

Yaqing Wang¹, Chunyan Feng^{1,2}, Caili Guo^{1,2}, Yunfei Chu^{1,2} and Jenq-Neng Hwang³
¹Beijing Key Laboratory of Network System Architecture and Convergence,
School of Information and Communication Engineering,

Beijing University of Posts and Telecommunications, Beijing, China

²Beijing Laboratory of Advanced Information Networks, Beijing, China ³Department of Electrical Engineering, University of Washington, Seattle, USA {wangyq,cyfeng,guocaili,yfchu}@bupt.edu.cn,hwang@uw.edu Si un usuario escucha canciones de películas y luego pasa a ver películas relacionadas, hay una correlación entre los dominios de música y películas.

 Proponen utilizar información de diferentes dominios para aprender más sobre los intereses del usuario y generar mejores recomendaciones.

 El método identifica relaciones a nivel de clúster entre ítems de diferentes dominios, lo que ayuda a filtrar el ruido y a descubrir patrones útiles.

Figure 1: Illustration of the CDIE-C framework.

Gracias!