Lecture 11 23 Aug 2023

What can be an Antigen?

- Ags can be:
 - Foreign substances like
 microrganisms & its products, toxins etc.

Body's own proteins, expressed in an inappropriate manner like tumor cells, autoantigens, transfused blood or the cells of transplanted organs.

Properties of Antigen

- 2 properties of antigen:
 - Immunogenicity Induction of immune response
 - Immunological reactivity Specific reaction with Abs or with T cells.
- * Based on these 2 attributes, functional classification of Ags has been made.

Recognition of an Antigen

• Bacteria or viruses are not Ags by themselves but they contain Ags both on their surface and inside the cell.

- Ags are recognized by
 - B cells and their surface Igs (sIgM)
 - Abs recognize the tertiary structure of a protein (i.e. the way it folds)
 - the T cell receptor on T cells.
 - The T cells require the protein to be ingested, degraded and presented on the surface of a special cell called Antigen Presenting Cell (APC). The processed Ags are presented along with MHC/ HLA molecules by APCs

Classification of Antigens

- Based on
 - Immunogenicity (functional classification)
 - Origin of Ag
 - Source of Ag
 - Biological classification

1. Functional classification of antigen (immunogenicity)

- Complete Ag Able to induce Ab formation. Hence called as IMMUNOGENS.
 - Produce a specific & observable reaction with the Abs so produced.
- Haptens / Incomplete Ag Substances which can not induce Ab formation by themselves but can react specifically with Abs.
- Hapten + Carrier → Complete antigen (Immunogen)

2. Classification on origin of antigens

- Ags can be classified on the basis of their origin:
 - Exogenous Ags from outside
 - enter the body by inhalation, ingestion or injection.
 - these are taken by the APCs and degraded into small peptides.

 APCs then present them to helper T cells by using MHC type II molecules (Fig A).
 - Endogenous Ags generated within the cell as a
 - result of normal cell metabolism, or
 - because of viral or intracellular pathogenic infection.
 - The fragments are presented along with MHC type I molecules to cytotoxic T cells (Fig B).

3. Classification of antigen based on its source

- Xenoantigen foreign Ag, from different species e.g. bacteria, viruses
- Alloantigen different individual from same species e.g. blood group Ag
- Autoantigen same individual e.g. lens protein, tumor cells
- Heterophile antigen Common/ related Ags shared by different species
 e.g. M protein of *Streptococcus* spp. bears common antigen determinant with basement membrane of kidney

Lecture 12 24 Aug 2023

T cell independent (TI) Ags

- Directly stimulate Ab production by B cells, <u>WITHOUT</u> the participation of T cells.
- Structurally simple, being composed of a limited no. of repeating epitopes. e.g. Pneumococcal capsular polysaccharide, bacterial LPS, flagellar protein
- Immune response is dose dependent.
- Too little non immunogenic
- Too much tolerance
- Do not produce immunological memory.
- Do not require processing by APCs.
- Remain in the body for long periods

Epitope or Antigenic determinant

- Smallest unit of antigenicity.
- Small area/ part on the Ag which combines with its complementary site either on the specific Ab or T cell receptor.

Features of Epitopes

- Made up of 4 or 5 amino acid or monosaccharide residues.
- An Ag may have one or many epitopes on the same molecule.
- This helps body to have a better response against the Ag as many
 T & B cells can be activated to a single target.

Interaction between epitopes of different shapes & Ag combining site on the Ab

Types of antigenic determinants

Neoantigenic determinant (created by proteolysis) Determinant absent Site of limited proteolysis New determinant Determinant near site of proteolysis

Lecture 13 28 Aug 2023

Determinants of Antigenicity

• Properties which make a substance antigenic:

- Size
- Nature of Ag
- Foreignness
- Susceptibility to tissue enzymes.
- Exposure to the Ag.

Determinants of antigenicity...

1. Size

- Large molecules are highly antigenic.
- Low mol.wt. (<5000 Da) substances are weakly antigenic or non antigenic.
 - ✓ Can be made antigenic by conjugation to a carrier (protein or other biomacromolecule) in order to stimulate an immune response on immunisation of a host animal

2. Nature of the Ag

- Macromolecular proteins are the most potent immunogens.
- Polysaccharides, glycoproteins, synthetic polypeptides, lipids and nucleic acids are less immunogenic
- Antigenicity can be enhanced by conjugating to a protein.

Determinants of antigenicity...

3. Foreignness

- Ags which are 'foreign' to the individual induce an immune response.
- Antigenicity is related to the degree of foreignness Ags from other individuals of the same species are less antigenic than those from other species.

4. Susceptibility to tissue enzymes

- Substances which are rapidly metabolised & are susceptible to the action of tissue enzymes behave as more potent Ags.
- Ags are degraded into fragments of appropriate size containing the epitope.
- Degradation is brought about by phagocytosis & the intracellular enzymes.

Determinants of antigenicity...

5. Exposure to the Ag

- Dose of the immunogen: optimum dose
- Lower or higher than the optimum can induce tolerance (inability to induce an immune response)
- Route of administration
- Immune response can be increased by mixing the Ag with a powerful adjuvant.

Adjuvants:

- Substances which are added to or emulsified with an Ag so as to enhance the Ab production.
- They can be Inorganic salts : Alum; Organic: like BCG
 - Bacterial products: *Bordetella pertussis* (with Diphtheria, Tetanus toxoids)

Mechanism of adjuvants

- Ag persistence is prolonged
- Improves the Ag process and presentation ability of macrophages
- Non-specifically stimulate proliferation of lymphocytes
- Local inflammation is increased

TABLE 3-3	Postulated mode of action of some commonly used adjuvants				
		POSTULATED MODE OF ACTION			
Adjuvant		Prolongs antigen persistence	Enhances co-stimulatory signal	Induces granuloma formation	Stimulates lymphocytes nonspecifically
Freund's incomplete adjuvant		+	+	+	_
Freund's complete adjuvant		+	++	++	_
Aluminum potassium sulfate (alum)		+	?	+	_
Mycobacterium tuberculosis		_	;	+	_
Bordetella pertussis		_	;	_	+
Bacterial lipopolysaccharide (LPS)		_	+	_	+
Synthetic polynucleotides (poly IC/poly AU)		_	>	_	+

Common adjuvants:

Freund's adjuvant is a solution of antigen emulsified in mineral oil and used as an immunopotentiator (booster). Two types:

-Incomplete Freund's adjuvant

-Complete Freund's adjuvant

- The Freund's complete adjuvant is composed of inactivated and dried mycobacteria (usually *M. tuberculosis*), whereas
- The incomplete form lacks the mycobacterial components (hence just the water in oil emulsion).
- It is named after Jules T. Freund.

Superantigens

Definition: Polyclonal T cell response Examples *Staphylcoccal* enterotoxins and Toxic shock toxin

Superantigens mechanism

(~.000001% of all T cells)

~2% of all T cells)

Activation of peptide X specific T cell clones only: protective immunity

B

Superantigen binding to Class II MHC and TCR Vβ3

Polyclonal activation of Vβ3+ T cells: cytokine storm and deletion of T cells

*SEB: Staphylococcus enterotoxin B