Exercice 1

Soit E un \mathbb{R} -espace vectoriel de dimension n et f un endomorphisme de E. Pour tout réel a, on note $E_a(f) = \{x \in A\}$ $E \mid f(x) = a \cdot x \}$

1) Vérifier que pour tout réel $a, E_a(f)$ est un sous-espace vectoriel de E.

On dit qu'un réel a est une valeur propre de f si et seulement si il existe un vecteur x non nul de E tel que f(x) = ax.

- 2) Montrer que a est une valeur propre de f si et seulement si $E_a(f) \neq \{0\}$.
- 3) Montrer que si λ et μ sont deux réels distincts, alors $E_{\lambda}(f)$ et $E_{\mu}(f)$ sont en somme directe.
- 4) Montrer que si $\lambda_1, ..., \lambda_r$ sont r valeurs propres distinctes, alors $E_{\lambda_1}(f), ..., E_{\lambda_r}(f)$ sont en somme directe.
- 5) Montrer que si f admet n valeurs propres distinctes, alors il existe une base \mathcal{B} de E telle que la matrice $\mathrm{Mat}_{\mathcal{B}}(f)$ est diagonale.

Exercice 2

Voir correction —

- 1) Montrer que les valeurs propres d'une matrice triangulaire supérieure sont sur sa diagonale.
- 2) Donner un exemple de matrice carrée d'ordre 2 dont aucune des valeurs diagonale n'est valeur propre.

Exercice 3 -

- Voir correction —

- 1) Montrer que pour toute matrice $M \in \mathcal{M}_n(\mathbb{R})$, M est inversible si et seulement si tM est inversible.
- 2) Soit A un matrice carrée d'ordre n et $\lambda \in \mathbb{R}$ une valeur propre de A. Montrer que λ est valeur propre de tA .

Exercice 4 -

— Voir correction —

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 2 \end{pmatrix}$$

Montrer que f n'est pas diagonalisable.

Exercice 5

——— Voir correction –

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$C = \begin{pmatrix} 2 & 1 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & -4 \end{pmatrix}$$

Justifier que f est diagonalisable, puis déterminer une base de diagonalisation.

Exercice 6

Voir correction -

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} -1 & 0 & 0 \\ 1 & 3 & 1 \\ 2 & 8 & 1 \end{pmatrix}$$

- 1) Montrer que $X^2 4X 5$ est un polynôme annulateur de A.
- 2) Montrer que $(u + \mathrm{Id}) \circ (u 5\mathrm{Id}) = (u 5\mathrm{Id}) \circ (u + \mathrm{Id}) = 0_{\mathcal{L}(\mathbb{R}^3)}$
- 3) En déduire que $\operatorname{Im}(u+\operatorname{Id})\subset\operatorname{Ker}(u-5\operatorname{Id})$ et que $\operatorname{Im}(u-5\operatorname{Id})\subset\operatorname{Ker}(u+\operatorname{Id})$.
- 4) En étudiant le rang de $u + \mathrm{Id}$ et $u 5\mathrm{Id}$, montrer que $\dim(\mathrm{Ker}(u + \mathrm{Id}) \oplus \mathrm{Ker}(u 5\mathrm{Id}) \geq 3$.
- 5) En déduire que u est diagonalisable.

- Exercice 7 — Voir correction —

On considère l'application linéaire $\varphi: \mathbb{R}^4 \to \mathbb{R}^4$ définie par

$$\varphi(x_1, x_2, x_3, x_4) = (x_1 + x_3, x_2 + x_4, x_1 + x_3, x_2 + x_4)$$

- 1) Déterminer la matrice représentative de φ dans la base canonique de \mathbb{R}^4 .
- 2) Montrer que 0 et 2 sont valeurs propres de φ .
- 3) Montrer que φ est diagonalisable en précisant la dimension de ses sous-espaces propres.

Exercice 8 — Voir correction —

On considère l'application :

$$u: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X]$$

 $P(X) \longmapsto XP'(X) + P(X+1)$

- 1) Vérifier que u est bien un endomorphisme de $\mathbb{R}_n[X]$.
- 2) Déterminer la matrice représentative de u dans la base canonique de $\mathbb{R}_n[X]$
- 3) En déduire que u est diagonalisable.

Exercice 9 — Voir correction —

Soit A un matrice carrée de taille n à coefficients réels. On suppose que A est de rang 1 et que $\operatorname{tr}(A) \neq 0$.

- 1) Justifier qu'il existe deux matrices X et Y dans $\mathcal{M}_{1,n}(\mathbb{R})$ telles que $A = {}^t XY$.
- 2) En déduire que $A^2 = tr(A)A$.
- 3) En déduire qu'il existe un réel c non nul tel que X(X-c) est un polynôme annulateur de A.
- 4) On pose F = Ker(A) et G = Ker(A cI). Montrer que F et G sont supplémentaires dans $\mathcal{M}_{n,1}(\mathbb{R})$ et en déduire que A est diagonalisable.

- Exercice 10 - Voir correction -

Soit E un \mathbb{R} -espace vectoriel de dimension finie n et soit $f \in \mathcal{L}(E)$.

- 1) Soit $k \geq 1$. Démontrer que $\operatorname{Ker}(f^k) \subset \operatorname{Ker}(f^{k+1})$ et $\operatorname{Im}(f^{k+1}) \subset \operatorname{Im}(f^k)$.
- 2) a) Démontrer que si $\operatorname{Ker}(f^p) = \operatorname{Ker}(f^{p+1})$ alors $\operatorname{Ker}(f^{p+1}) = \operatorname{Ker}(f^{p+2})$.
 - b) Démontrer qu'il existe $p \in \mathbb{N}$ tel que :
 - Si k < p, alors $Ker(f^p) \neq Ker(f^{k+1})$
 - Si $k \ge p$, alors $Ker(f^k) = Ker(f^{k+1})$.
 - c) Démontrer que $p \leq n$.
- 3) Démontrer que si k < p, alors $\text{Im}(f^k) \neq \text{Im}(f^{k+1})$ et si $k \geq p$, alors $\text{Im}(f^k) = \text{Im}(f^{k+1})$.
- 4) Démontrer que $Ker(f^p)$ et $Im(f^p)$ sont supplémentaires.
- 5) Démontrer qu'il existe deux sous-espaces vectoriels F et G de E tels que F et G sont supplémentaires dans E, $f_{|F}$ est nilpotent et $f_{|G}$ induit un automorphisme de G.
- 6) Pour tout $k \ge 1$ on note $d_k = \dim(\operatorname{Im}(f^k))$. Montrer que la suite $(d_k d_{k+1})$ est décroissante.

Correction des exercice

Correction de l'exercice 1 :

1) Soit $a \in \mathbb{R}$. On a $f(0) = 0_E = a \cdot 0_E$ donc $0_E \in E_a(f)$. Ainsi $E_a(f)$ est non vide. Soient x et y dans $E_a(f)$ et soit λ un réel.

$$f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$$
par linéarité de f
$$= \lambda a \cdot x + \mu a \cdot y \qquad \text{car } x, y \in E_a(f)$$
$$= a \cdot (\lambda \cdot x + \mu y)$$

donc $\lambda \cdot x + \mu y \in E_a(f)$. On a donc montré que $E_a(f)$ est un sous-espace vectoriel de E.

2) On a simplement:

$$a$$
 est valeur propre de $f \iff \text{Il existe } x \in E \setminus \{0\}, \ f(x) = ax$
$$\iff E_a(f) \neq \{0\}$$

3) Soit $x \in E_{\lambda}(f) \cap E_{\mu}(f)$. On a :

$$f(x) = \lambda x$$
 et $f(x) = \mu x$

donc $\lambda x = \mu x$ donc $(\lambda - \mu)x = 0$ et comme $\lambda \neq \mu$ on en déduit x = 0. Ainsi $E_{\lambda}(f) \cap E_{\mu}(f) = \{0_E\}$ donc $E_{\lambda}(f) + E_{\mu}(f) = E_{\lambda}(f) \oplus E_{\mu}(f)$.

4) On raisonne par récurrence sur r, on a déjà montré le cas r=2. Supposons que le résultat est vrai jusqu'à r-1 et supposons que $\lambda_1, ..., \lambda_r$ sont r valeurs propres distinctes de f, et soit $(x_1, ..., x_r) \in E_{\lambda_1}(f) \times \cdots \times E_{\lambda_r}(f)$ tel que :

$$x_1 + \dots + x_r = 0 \tag{1}$$

Alors par linéarité de f:

$$f(x_1) + \cdots + f(x_r) = f(x_1 + \cdots + x_r) = f(0) = 0$$

donc

$$\lambda_1 x_1 + \dots + \lambda_r x_r = 0 \tag{2}$$

En faisant $(2) - \lambda_r(1)$ on obtient :

$$\underbrace{(\lambda_1 - \lambda_r)x_1}_{\in E_{\lambda_1}} + \underbrace{(\lambda_2 - \lambda_r)x_2}_{\in E_{\lambda_2}} + \dots + \underbrace{(\lambda_{r-1} - \lambda_r)x_{r-1}}_{\in E_{\lambda_{r-1}}} = 0$$

et par hypothèse de récurrence $E_{\lambda_1}(f),...,E_{\lambda_{r-1}}(f)$ sont en somme directe donc :

$$(\lambda_1 - \lambda_r)x_1 = \dots = (\lambda_{r-1} - \lambda_r)x_r = 0$$

et comme $\lambda_i - \lambda_r \neq 0$ pour tout $i \in \{1, ..., r-1\}$ on a finalement :

$$x_1 = x_2 = \dots = x_{r-1} = 0$$

d'où immédiatement $x_r = 0$ grâce à (1). On a donc montré que $E_{\lambda_1}(f), ..., E_{\lambda_r(f)}$ sont en somme directe, donc par récurrence le résultat est vrai quel que soit le nombre de valeurs propres.

5) Si f admet n valeurs propres distinctes $\lambda_1, \ldots, \lambda_n$ alors:

$$\dim(E_{\lambda_1}(f) \oplus \cdots \oplus E_{\lambda_n}(f)) = \dim(E_{\lambda_1}) + \cdots + \dim(E_{\lambda_n})$$

Or si λ est une valeur propre $E_{\lambda}(f) \neq \{0\}$ donc dim $(E_{\lambda}(f)) \geq 1$ d'où :

$$\dim(E_{\lambda_1}(f) \oplus \cdots \oplus E_{\lambda_n}(f)) \geq n$$

et comme $E_{\lambda_1}(f) \oplus \cdots \oplus E_{\lambda_n}(f) \subset E$ on en déduit que $\dim(E_{\lambda_1}(f) \oplus \cdots \oplus E_{\lambda_n}(f)) = n$ et que $E_{\lambda_1}(f) \oplus \cdots \oplus E_{\lambda_n}(f) = E$ (et que toutes les inégalités sont des égalités dans ce raisonnement donc pour tout $k \in \{1, ..., n\}$, $\dim(E_{\lambda_k}) = 1$). En prenant une base \mathcal{B} formé d'un vecteur non nul de chacun des sous espace propre on a bien :

$$\mathbf{M}_{\mathcal{B}}(f) = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & \cdots & \lambda_n \end{pmatrix}$$

Correction de l'exercice 2:

1) Soit
$$T = \begin{pmatrix} a_1 & * & \cdots & * \\ 0 & a_2 & & \vdots \\ \vdots & & \ddots & \\ \vdots & & & a_{n-1} & * \\ 0 & \cdots & \cdots & * & a_n \end{pmatrix}$$
 une matrice triangulaire supérieure.

Pour tout réel λ , λ est valeur propre de T si et seulement si $T-\lambda I_n$ n'est pas inversible. Or,

$$T - \lambda I_n = \begin{pmatrix} a_1 - \lambda & * & \cdots & \cdots & * \\ 0 & a_2 - \lambda & & \vdots \\ \vdots & & \ddots & & \\ \vdots & & & a_{n-1} - \lambda & * \\ 0 & \cdots & \cdots & * & a_n - \lambda \end{pmatrix}$$

est encore une matrice triangulaire supérieure. Elle est non inversible si et seulement si l'un de ses coefficients diagonaux est nul, si et seulement si λ est l'une des valeurs diagonales. Ainsi les valeurs propres de T sont exactement ses coefficients diagonaux.

2) Prenons la matrice $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. La matrice $A - \lambda I_2 = \begin{pmatrix} -\lambda & -1 \\ 1 & -\lambda \end{pmatrix}$ a son déterminant qui vaut $\det(A - \lambda I_2) = \lambda^2 + 1$. Il ne s'annule pour aucune valeur de λ donc $A - \lambda I_2$ est toujours inversible donc A n'admet aucune valeur propre.

Correction de l'exercice 3 :

- 1) M est inversible si et seulement si il existe une matrice carrée N de même taille telle que MN = I, on a alors ${}^t(MN) = {}^tI = I$ donc ${}^tN^tM = I$, ainsi tM est inversible et tN est l'inverse de tM .
- 2) D'après la question précédente, A est inversible si et seulement si ^tA est inversible. Par contraposée on a donc : A n'est pas inversible si et seulement si ^tA n'est pas inversible. Supposons que λ est valeur propre de A, alors A – λI n'est pas inversible, donc d'après la question précédente ^t(A – λ_I) n'est pas inversible donc (^tA – λI) n'est pas inversible. On en conclut que λ est une valeur propre de ^tA.

Correction de l'exercice 4 : A est triangulaire supérieure et on lit que 2 est la seule valeur propre de A donc de f. Si f était diagonalisable, il existerait une base \mathcal{B} dans laquelle $\mathbf{M}_{\mathcal{B}}(f) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = 2I$ et une matrice inversible P telle que

 $A = P^{-1}2IP = 2P^{-1}P = 2I$. Or $A \neq 2I$ donc f n'est pas diagonalisable.

Correction de l'exercice 5 : Par lecture d'une matrice triangulaire supérieure, f admet 2, 0 et -4 comme valeurs propres. f a trois valeurs propres distinctes et $\dim(\mathbb{R}^3) = 3$ donc f est diagonalisable (voir dernière question de l'exercice 1) et chaque sous espace propre est de dimension 1.

On cherche une base de $\operatorname{Ker}(C-2I)$, $\operatorname{Ker}(C)$ et $\operatorname{Ker}(C+4I)$ pour obtenir une base de diagonalisation. Soit $X=\begin{pmatrix} x\\y\\z \end{pmatrix}\in \mathcal{M}_{3,1}(\mathbb{R})$.

$$X \in \text{Ker}(C - 2I) \iff \begin{pmatrix} 0 & 1 & -3 \\ 0 & -2 & 1 \\ 0 & 0 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$

$$\iff \begin{cases} y - 3z & = 0 \\ -2y + z & = 0 \\ -6z & = 0 \end{cases}$$

donc (1,0,0) est vecteur propre de f associé à la valeur propre 2 et $E_2(f) = \text{Vect}((1,0,0))$.

$$X \in \text{Ker}(C) \iff 2x + y - 3z$$
 =0
 $z =$ 0
 $-4z =$ 0

$$\iff y = -2x \quad \text{et} \quad z = 0$$

donc (1, -2, 0) est un vecteur propre de f associé à la valeur propre 0 et $E_0(f) = \text{Vect}((1, -2, 0))$.

$$X \in \text{Ker}(C+4I) \iff \begin{cases} 6x+y-3z &= 0\\ 4y+z &= 0\\ 0 &= 0 \end{cases}$$

$$\iff \begin{cases} 6x = -13y\\ z &= -4y \end{cases}$$

donc (13, -6, 24) est un vecteur propre de f associé à la valeur propre -4 et $E_{-4}(f) = \text{Vect}((13, -6, 24))$. Finalement ((1, 0, 0), (1, -2, 0), (13, -6, 24)) est une base de diagonalisation de f.

Correction de l'exercice 6 :

1)
$$A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 4 & 17 & 4 \\ 8 & 32 & 9 \end{pmatrix}$$
 donc :

$$A^{2} - 4A - 5I = \begin{pmatrix} 1 & 0 & 0 \\ 4 & 17 & 4 \\ 8 & 32 & 9 \end{pmatrix} + \begin{pmatrix} 4 & 0 & 0 \\ -4 & -12 & -4 \\ -8 & -32 & -4 \end{pmatrix} + \begin{pmatrix} -5 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & -5 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

donc $X^2 - 4X - 5$ est bien un polynôme annulateur de A.

2) $X^2 - 4X - 5 = (X + 1)(X - 5)$ donc (A + I)(A - 5I) = 0 donc $(u + Id) \circ (u - 5Id) = 0$ _{$\mathcal{L}(\mathbb{R}^3)$}. De plus, (u + Id) et (u - 5Id) commutent (P(u)) et Q(u) commutent si P et u sont des polynômes) donc on a bien :

$$(u + \operatorname{Id}) \circ (u - 5\operatorname{Id}) = (u - 5\operatorname{Id}) \circ (u + \operatorname{Id}) = 0_{\mathcal{L}(\mathbb{R}^3)}$$

- 3) Pour tout $x \in \mathbb{R}^3$ $(u 5\operatorname{Id})((u + \operatorname{Id})(x)) = 0$ donc $\operatorname{Im}(u + \operatorname{Id}) \subset \operatorname{Ker}(u 5\operatorname{Id})$ et de même $\operatorname{Im}(u 5\operatorname{Id}) \subset \operatorname{Ker}(u + \operatorname{Id})$.
- 4) Dans la base canonique, la matrice représentative de $u + \operatorname{Id}$ est $A + I = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 4 & 1 \\ 2 & 8 & 2 \end{pmatrix}$. $\operatorname{rg}(A + I) = 1$ donc $\operatorname{rg}(u + \operatorname{Id}) = 1$.

La matrice représentative de $u-5\mathrm{Id}$ est $A-5I=\begin{pmatrix} -6 & 0 & 0\\ 1 & -2 & 1\\ 2 & 8 & -4 \end{pmatrix}$.

$$\operatorname{rg}\begin{pmatrix} -6 & 0 & 0 \\ 1 & -2 & 1 \\ 2 & 8 & -4 \end{pmatrix} = \operatorname{rg}\begin{pmatrix} -6 & 0 & 0 \\ 6 & -12 & 6 \\ 6 & 24 & -12 \end{pmatrix}$$
$$= \operatorname{rg}\begin{pmatrix} -6 & 0 & 0 \\ 0 & -12 & 6 \\ 0 & 24 & -12 \end{pmatrix}$$
$$= \operatorname{rg}\begin{pmatrix} -6 & 0 & 0 \\ 0 & -12 & 6 \\ 0 & 0 & 0 \end{pmatrix}$$

donc $\operatorname{rg}(u-5\operatorname{Id})=2$. On en déduit d'après les inclusions de la question précédente que $\dim(\operatorname{Ker}(u-5\operatorname{Id}))\geq 1$ et $\dim(\operatorname{Ker}(u+\operatorname{Id}))\geq 2$. Ainsi :

$$\dim(\operatorname{Ker}(u+\operatorname{Id}) \oplus \operatorname{Ker}(u-5\operatorname{Id})) = \dim(\operatorname{Ker}(u+\operatorname{Id})) + \dim(\operatorname{Ker}(u-5\operatorname{Id})) \geq 1 + 2 \geq 3$$

5) Comme $\operatorname{Ker}(u+\operatorname{Id}) \oplus \operatorname{Ker}(u-5\operatorname{Id}) \subset \mathbb{R}^3$ on a finalement $\dim(\operatorname{Ker}(u+\operatorname{Id}) \oplus \operatorname{Ker}(u-5\operatorname{Id})) = 3$ d'où $\mathbb{R}^3 = \operatorname{Ker}(u+\operatorname{Id}) \oplus \operatorname{Ker}(u-5\operatorname{Id})$ par inclusion et égalité des dimensions. Ainsi u est diagonalisable et ses valeurs propres sont -1 et 5.

Correction de l'exercice 7:

1) La matrice représentative de φ dans la base canonique de \mathbb{R}^4 est

$$M = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

- 2) La somme des lignes vaut toujours 1 donc (1,1,1,1) est vecteur propre et $\varphi(1,1,1,1)=(2,2,2,2)$ donc 2 est la valeur propre associée.
 - De plus, M est clairement de rang 2 donc elle n'est pas inversible, donc $Ker(M) \neq \{0\}$ donc 0 est valeur propre.
- 3) Comme $\operatorname{rg}(M) = 2$ on a $\dim(\operatorname{Ker}(M)) = 4 2 = 2$ d'après le théorème du rang. ((-1,0,1,0),(0,-1,0,1)) est une base de $\operatorname{Ker}(\varphi)$.

On a déjà un vecteur propre associé à la valeur propre 2, cherchons en un autre indépendant : (1,0,1,0) convient donc $\dim(\operatorname{Ker}(\varphi-2\operatorname{Id})) \geq 2$. Comme la somme des dimensions des sous espaces propres est supérieure ou égale à 4 on en conclut que φ est diagonalisable et que ((-1,0,1,0),(0,-1,0,1),(1,1,1,1),(1,0,1,0)) est une base de diagonalisation. Dans cette base la matrice représentative de φ est :

Correction de l'exercice 8 :

1) Pour tout $(P,Q) \in (\mathbb{R}_n[X])^2$ et tout $(\lambda,\mu) \in \mathbb{R}^2$ on a

$$u(\lambda P + \mu Q)(X) = X(\lambda P + \mu Q)'(X) + (\lambda P + \mu Q)(X + 1)$$

$$= X\lambda P'(X) + X\mu Q'(X) + \lambda P(X + 1) + \mu Q(X + 1)$$

$$= \lambda (XP'(X) + P(X + 1)) + \mu (XQ'(X) + Q(X + 1))$$

$$= \lambda u(P)(X) + \mu u(Q)(X)$$

donc $u(\lambda P + \mu Q) = \lambda u(P) + \mu u(Q)$, u est bien linéaire.

De plus, pour tout $P \in \mathbb{R}_n[X]$, $\deg(XP'(X)) = \deg(X) + \deg(P'(X)) = 1 + n - 1 = n$ et $\deg(P(X+1)) = \deg(P(X)) \le n$ donc $\deg(XP'(X) + P(X)) \le \max(\deg(XP'(X)), \deg(P(X))) \le n$ donc $XP'(X) + P(X+1) \in \mathbb{R}_n[X]$. On a bien pour tout $P \in \mathbb{R}_n[X]$, $u(P) \in \mathbb{R}_n[X]$. Ainsi u est bien un endomorphisme de $\mathbb{R}_n[X]$.

2) La base canonique de $\mathbb{R}_n[X]$ est $\mathcal{B}_0 = (1, X, X^2, ..., X^n)$. Pour tout $k \in \{0, 1, ..., n\}$ on a :

$$u(X^k) = kXX^{k-1} + (X+1)^k = kX^k + X^k + \sum_{i=0}^{k-1} \binom{k}{i} X^i = (k+1)X^k + \sum_{i=0}^{k-1} \binom{k}{i} X^i$$

donc la matrice de u dans la base canonique a l'allure suivante :

$$\mathbf{M}_{\mathcal{B}_0}(u) = \begin{pmatrix} 1 & * & * & \cdots & * \\ 0 & 2 & * & \cdots & * \\ \vdots & & \ddots & & \vdots \\ 0 & \cdots & & n & * \\ 0 & \cdots & & 0 & n+1 \end{pmatrix}$$

3) $\mathbf{M}_{\mathcal{B}_0}(u)$ est une matrice triangulaire supérieure d'ordre n+1 qui admet n+1 valeurs propres distinctes, donc u est diagonalisable.

Correction de l'exercice 9 :

1) Question classique déjà vu dans le TD 1 : comme A est de rang 1 on a $\dim(\operatorname{Im}(A)) = 1$ donc il existe un vecteur

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} in \mathcal{M}_{n,1}(\mathbb{R}) \text{ non nul tel que Im}(A) = \text{Vect } (Y). \text{ Si on note } C_1, ..., C_n \text{ les colonnes de } A, \text{ on sait que } \forall i \in [1, n],$$

$$C_i \in \text{Im}(A) = \text{Vect}(Y)$$
 donc il existe des réels $x_1, ..., x_n$ tels que $C_i = x_i \cdot Y$. En posant $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ on a bien $A = {}^t XY$.

- 2) On a donc $A^2 = {}^t X Y^t X Y = {}^t X (Y^t X) Y$. Or $Y^t X = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \operatorname{tr}(A)$, donc $A^2 = {}^t X \operatorname{tr}(A) Y = \operatorname{tr}(A) {}^t X Y = \operatorname{tr}(A) A$.
- 3) Il suffit de poser c = tr(A), c est non nul par hypohtèse et d'après la question précédente :

$$A^2 = cA$$

donc $A^2 - cA = 0$ d'où A(A - c) = 0.

4) Montrons que $F \cap G = \{0\}$. Si $Z \in F \cap G$, alors AZ = 0 et AZ = cZ donc cZ = 0 donc Z = 0 car $c \neq 0$. On a donc bien $F \cap G = \{0\}$.

Montrons que $\mathcal{M}_{n,1}(\mathbb{R}) = F + G$. Soit $Z \in \mathcal{M}_{n,1}(\mathbb{R})$. Raisonnons par analyse-synthèse et supposons qu'il existe $Z_F \in F$ et $Z_G \in G$ tels que $Z = Z_F + Z_G$ (1).

Comme $Z_F \in F$ on a $AZ_F = 0$ et comme $Z_G \in G$ on a $AZ_G = cZ_G$, donc $AZ = AZ_F + AZ_G = cZ_G$ (2). On en déduit en faisant une combinaison linéaire de (1) et (2) que :

$$cZ - AZ = cZ_F + cZ_G - cZ_G = cZ_F$$

et enfin comme $c \neq 0$ on a $Z_F = Z - \frac{1}{c}AZ$ et $Z_G = \frac{1}{c}AZ$.

Réciproquement, si on pose $Z_F = Z - \frac{1}{c}AZ$ et $Z_G = \frac{1}{c}AZ$ alors :

$$AZ_F = AZ - \frac{1}{c}A^2Z = AZ - \frac{1}{c}cAZ = AZ - AZ = 0$$

donc $Z_F \in F = \text{Ker}(A)$, et

$$AZ_G = \frac{1}{c}A^2Z = \frac{1}{c}cAZ = c\left(\frac{1}{c}AZ\right) = cZ_G$$

donc $Z_G \in G = \text{Ker}(A - cI)$. Enfin, on a bien :

$$Z_F + Z_G = Z - \frac{1}{c}AZ + \frac{1}{c}AZ = Z$$

On a donc bien $\mathcal{M}_{n,1}(\mathbb{R}) = F + G$.

On a donc montré que $\mathcal{M}_{n,1}(\mathbb{R}) = F \oplus G$. De plus comme $\operatorname{rg}(A) = 1$ on a $\dim(F) = \dim(\operatorname{Ker}(A)) = n - 1$ d'après le théorème du rang, donc $\dim(G) = 1$.

En concaténant une base de F et une base de G on obtient donc une base \mathcal{B} de E dans laquelle la matrice représentative de l'endomorphisme f associé à A est diagonale :

$$\mathcal{M}_{\mathcal{B}}(f) = \begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 \\ 0 & 0 & \cdots & \cdots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & & & 0 & 0 \\ 0 & & & 0 & c \end{pmatrix}$$

Correction de l'exercice 10:

1) Pour tout $x \in \text{Ker}(f^k)$ on a $f^k(x) = 0$ donc $f^{k+1}(x) = f(f^k(x)) = f(0) = 0$ par linéarité. Ainsi $x \in \text{Ker}(f^{k+1})$, on a donc montré que $\text{Ker}(f^k) \subset \text{Ker}(f^{k+1})$.

Pour tout $y \in \text{Im}(f^{k+1})$ il existe $x \in E$ tel que $y = f^{k+1}(x)$ donc $y = f^k(f(x))$ donc $y \in \text{Im}(f^k)$. On a donc montré que $\text{Im}(f^{k+1}) \subset \text{Im}(f^k)$.

2) a) Supposons que $Ker(f^p) = Ker(f^{p+1})$.

On a déjà $\operatorname{Ker}(f^{p+1}) \subset \operatorname{Ker}(f^{p+2})$ d'après le résultat précédent. Montrons que $\operatorname{Ker}(f^{p+2}) \subset \operatorname{Ker}(f^{p+1})$: Soit $x \in \operatorname{Ker}(f^{p+2})$, alors $0 = f^{p+2}(x) = f^{p+1}(f(x))$ donc $f(x) \in \operatorname{Ker}(f^{p+1})$. Or $\operatorname{Ker}(f^{p+1}) = \operatorname{Ker}(f^p)$ donc $f(x) \in \operatorname{Ker}(f^p)$ autrement dit $f^p(f(x)) = 0$ d'où $f^{p+1}(x) = 0$ c'est à dire $x \in \operatorname{Ker}(f^{p+1})$. On a montré que $\operatorname{Ker}(f^{p+2}) \subset \operatorname{Ker}(f^{p+1})$ donc finalement $\operatorname{Ker}(f^{p+1}) = \operatorname{Ker}(f^{p+2})$.

b) Posons $A = \min\{k \in \mathbb{N}^*, \operatorname{Ker}(f^k) = \operatorname{Ker}(f^{k+1})\}.$

Montrons que A est non vide : si on avait $Ker(f^k) \subseteq Ker(f^{k+1})$ pour tout entier k, alors la suite $(\dim(Ker(f^k)))_{k\in\mathbb{N}}$ serait strictement croissante. Or E est de dimension finie n donc cette suite est à valeurs dans [0, n], contradiction donc A est non vide.

A est une partie non vide de \mathbb{N} , elle admet donc un plus petit élément. En posant $p = \min\{k \in \mathbb{N}^*, \operatorname{Ker}(f^k) = \operatorname{Ker}(f^{k+1})\}$, p répond à la question posée.

c) La suite $(\dim(\text{Ker}(f^k)))_{k\in\mathbb{N}}$ est strictement croissante du rang 0 au rang p et à valeurs dans [0,n] donc $p\leq n$ (principe des tiroirs).

3) Si k < p on a $\text{Ker}(f^k) \neq \text{Ker}(f^{k+1})$ donc $\dim(\text{Ker}(f^k)) < \dim(\text{Ker}(f^{k+1})$ par inclusion stricte. D'après le théorème du rang :

$$\dim(\operatorname{Im}(f^{k+1})) = n - \dim(\operatorname{Ker}(f^{k+1}))$$

$$< n - \dim(\operatorname{Ker}(f^k))$$

$$< \dim(\operatorname{Im}(f^k))$$
 d'après le théorème du rang

donc $\operatorname{Im}(f^k) \neq \operatorname{Im}(f^{k+1})$ par inclusion et dimension différentes.

Si $k \ge p$, alors $\operatorname{Ker}(f^k) = \operatorname{Ker}(f^{k+1})$ (par récurrence immédiate à partir de la question 2)a)) donc en appliquant le théorème du rang comme avant on arrive à $\dim(\operatorname{Im}(f^{k+1})) = \dim(\operatorname{Im}(f^k))$ donc $\operatorname{Im}(f^k) = \operatorname{Im}(f^{k+1})$ par inclusion et égalité des dimensions.

4) Montrons que $\operatorname{Ker}(f^p)$ et $\operatorname{Im}(f^p)$ sont en somme directe : soit $y \in \operatorname{Ker}(f^p) \cap \operatorname{Im}(f^p)$. Il existe $x \in E$ tel que $y = f^p(x)$. Ainsi $f(y) = f^{p+1}(x)$ mais comme $\operatorname{Im}(f^{p+1}) = \operatorname{Im}(f^p)$, il existe $x' \in E$ tel que $f(y) = f^p(x')$.

5)

