EECS 4020 Algorithms

HW6

I. Minimum Spanning Tree

Q1

- Let G be a connected edge-weighted graph
- Bottleneck spanning tree of G is a spanning tree whose max weight edge has weight minimized

Is an MST always a bottleneck spanning tree?

Is a bottleneck spanning tree always an MST?

Q1

The above implies that :

Bottleneck spanning tree can be found by using any MST algorithm, but it may be found by some faster way

Can we find it in linear time?

Key Observation:

If edges with weight < w can connect the graph

Edges with weight ≥ w are not needed;

Else, edges with weight ≤ w are all needed

Algorithm:

- 1. Find the median weight w
- 2. Check if edges with weight < w connect the graph
 - If so, remove edges with weight ≥ w;
 - Else, pick all edges with weight ≤ w;
 Contract each component into a node
- 3. Goto Step 1 if G has more than 1 node

Running time:

- 1. Finding median takes O(|E|) time
- 2. Contracting components takes O(|E|) time
- 3. After Step 1 and Step 2, |E| drops by half (that's why we chose w as median weight)
- Running time = |E| + |E|/2 + |E|/4 + ... = O(|E|)

Q2

- Let G be a connected node-weighted graph
- Each node v has non-negative weight w(v)
- Target: Find a spanning tree T of G such that

$$\sum_{v \in T} w(v) \times \deg_T(v)$$

is minimized

Q2 [Example: Weight of a spanning tree]

= 1 * 1 + 2 * 2 + 3 * 2 + 5 * 2 + 2 * 1 = 23

How to solve the problem?

Key Observation:

The cost of including an edge (u, v) is equal to w(u) + w(v)

The key observation allows us to transform G
into an edge-weighted graph, with

weight(edge(u, v)) =
$$w(u) + w(v)$$

so that the MST will be the desired solution

 \rightarrow Running time = O(|E| + |V| log |V|)

II. Single-Source Shortest Path

Q1

Let G be a DAG and s be a source vertex

How to count # paths from s to any vertex?

Key Idea: Topological Sort, then DP

- 1. Topological sort on G
- 2. For each vertex \mathbf{v} : set #paths(\mathbf{v}) = 0
- 3. For source s: set #paths(u) = 1
- 4. Process vertices v in topological-sort order:
 For every in-neighbor u of v
 Increase #paths(v) by #paths(u) [relax]

Q2

- Let G = (V, E) be an edge-weighted graph
- Edge weight are integers from { 1, 2, ..., W }

How to solve SSSP in O(W|V| + |E|) time?

Key Idea:

All shortest distances are within { 1, 2, ..., W | V | }

- Let us solve a more general problem
- Suppose we know that all shortest distances are integers, and each does not exceed a value X

How to solve SSSP in O(X + |E|) time?

- Maintain X + 1 lists L_0 , L_1 , L_2 , ..., L_X
 - -- L_k keeps vertices with a known path of distance k from source (Initially, put source s to L_0)
- Process lists one by one :
 - -- For each unvisited vertex v in L_k:

Set v as visited and dist(v) = k;

Relax all neighbors and put them to corresponding list

	S	Α	В	С	D
dist	0				

	S	Α	В	C	D
dist	0				

	S	Α	В	С	D
dist	0		1		

	S	Α	В	C	D
dist	0		1	2	

	S	Α	В	С	D
dist	0	3	1	2	

	S	Α	В	С	D
dist	0	3	1	2	

	S	Α	В	С	D
dist	0	3	1	2	

	S	Α	В	C	D
dist	0	3	1	2	4

Correctness: By induction

 All vertex with shortest distance at most k will be computed correctly

Running Time:

• Each edge is considered O(1) time, and there are O(X) lists \rightarrow O(X + |E|) time

Q2 [variation]

- Let G = (V, E) be an edge-weighted graph
- Edge weight are integers from { 1, 2, ..., W }

How to solve SSSP in O(| E | log W) time?

Key Idea: Use a balanced BST to maintain non-empty lists

Q2 [variation]

- When we are processing L_k , only lists up to L_{k+W} can be non-empty (i.e., at most W lists)
 - → Relax an edge takes O(log W) time to find and update the corresponding list
- After processing the whole list L_k, we can find the next non-empty list in O(log W) time

Q2 [variation]

Running time:

- O(|E|) relax
 → O(|E| log W) time
- O(|E|) lists can be non-empty →
 O(|E| log W) time to find next non-empty list

Total time : O(| E | log W)

Q3

- Let G = (V, E) be an edge-weighted graph
- Suppose G has no negative-weight cycle

If every shortest path from source s takes at most m edges (but m is not known) can we run Bellman-Ford faster?

• Simple idea:

Run Bellman-Ford until no update in a certain round of RelaxAll

```
\rightarrow # rounds \leq m + 1 (why?)
```

 \rightarrow Total time: O(m | E|)