数字逻辑基础实验

一实验整体框架

实验目的

- > 掌握数字系统的特点
- > 掌握数字系统的设计方法: 模块化、层次化
- > 掌握组合逻辑的设计流程与设计思想
- > 掌握同步时序电路的设计流程与设计思想
- > 掌握系统集成联调的方法

数字系统的设计流程

1、数字系统的需求分析

外部整体输入、输出分析,包括数据、 控制信号与状态

3、构建数据通路

> 从数据流动的角度,连接各功能部件

5、系统集成联调

从控制流角度,连接控制单元(4)和各执行部件构成的数据通路(3)

2、功能部件设计(分模块设计)

> 得到内部的控制信号、状态

4、构建控制单元

- > 绘制系统状态图
- > 构建状态转换电路
- 构建输出函数电路(生成所需要的内部、外部控制信号,产生状态输出)
- > 构建控制单元

实验终极目标

构建小型数字系统——运动码表

□ 运动码表初步功能需求分析

运动码表的外部特性 ➤ 输入: 4个按钮; 输出: 4个7段数码管运动码表的功能

➤ Start: 计时器归0,重新开始计时

> Stop: 停止计时,显示当前计时数据

> Store: 尝试更新系统记录的计时数据(满足条件: 当前计时数据 < 系统记录)

➤ Reset: 复位,使得计时器 = 00.00, 系统记录 = 99.99

□ 运动码表功能部件分析

#	功能部件	控制信号	输入	输出	
1	时间计数器TM	TM-En,TM-Rst	CLK	时间计数输出16位	同步时序 电路设计
2	16位寄存器SD	SD-En	CLK, Din(16位)	Q(16位)	也叫权们
3	数码管显示DP		Din(16位)	DisplayInfo(32位)	组合逻辑
4	比较器				电路设计
5	2路选择器	Sel			

实验任务分解

组合逻辑电路设计

同步时序逻辑设计

数字系统综合设计

- □ 运动码表数据通路建设
- □ 运动码表控制单元设计
- □ 系统集成联调

实验报告要求——运动码表设计

- 1、撰写实验报告。报告按照数字系统设计的流程进行组织编写;需将多个分解实验的分析和设计思路与过程清晰描述,并相应贴出测试截图。
- 2、实验完成后,将最终的"Logisim.circ"文件以"学号_数逻.circ"命名另存。
- 3、在福大课程中心平台中,本门课程的"作业"中,相应提交实验报告与电路文件。

数字逻辑基础实验 (1)

——组合逻辑电路设计

一、组合逻辑设计

实验目标

- > 理解组合逻辑设计的基本流程
- > 掌握组合逻辑电路的设计思想—— 模块分层与迭代设计
- > 熟练运用Logisim构建运动码表功能部件

根据需求分析出逻辑表达式

实验任务 1位的2路选择、4位无符号比较器为基础任务

- > 2路选择器设计
- ▶ 16位无符号比较器设计
- > 码表数码管显示驱动设计

MUX 数码管显示DP 2路选择器 比较器 数码管显示驱动

已封装外观

(一): 2路选择器 (16位) 设计

2路选择器(16位)的外部特性

➤ 输入: 16位的输入 X, Y; 选择控制信号 Sel

➤ 输出: 16位输出Out

➤ 功能: out = (Sel==0)? X:Y 当Sel为0,选择X作为输出;否则,选择Y输出

约束条件: 只能运用线路库、逻辑门组件,输入输出库自行构建

Tip: 模块化设计

设计思路: 先构建1位2路选择器, 再并发为16位

1. 构建2路选择器(1位)

- ➤ 输入: 1位输入X, Y; 选择控制信号Sel ➤ 输出: 1位Out
- ➤ 功能: out = (Sel==0)?X:Y

X0

封装外观

(1) 封装编辑

(2) 子电路编辑: 不要增删改引脚,运用的输入输出引脚的隧道标签信号构建电路。

子电路编辑可选方法:

- (1) 手动绘制;
- (2) 利用真值表或逻辑表达

式自动生成电路

提示: ctrl+d复制选择组件; 隧道标签在线路组件库中

2路选择器(1位)的子电路编辑图例 方案不唯一

2、复制产生16个2路选择器(1位),连接形成1个2路选择器(16位)。

子电路编辑图例

方案不唯一

手动绘制时, 练习标签隧道 的使用,改善 电路图的美观 性与可读性

3、2路选择器(16位)的自动测试

待测试的自行设计的

用于对比的

16位的2路选择器

标准2路选择器

测试电路

(二): 16位无符号比较器

无符号比较器的外部特性

➤ 输入: 16位的输入 X, Y;

▶ 输出:大于(1位),等于(1位),小于(1位)

> 功能: 无符号比较两个输入,输出结果。

约束条件: 只能运用线路库、逻辑门组件, 输入输出库自行构建

Tip: 模块化设计

设计思路: 先构建4位的无符号比较器, 进而再扩展为16位

1. 构造4位无符号比较器

Great Equal Less

▶ 功能: 无符号比较(当X>Y时, Great = 1)

(2) 子电路编辑:

分析真值表,形成各个输出的逻辑表达式,进而自动生成电路

			输	λ		输出				
X3 Y	3	X2	Y2	X1 Y1		X0 Y0		Great	Equal	Less
>		X			X	>	<	1	0	0
=		>	•)	X	>	<	1	0	0
=		=			>	>	(1	0	0
=		=		-	=	>	>	1	0	0
=		=	:	=	=	=	=	0	1	0
<		X			X	>	(0	0	1
=		<)	X	>	<	0	0	1
=		=		•	<			0	0	1
=		=	:	:	=	<	<	0	0	1

ightharpoonup Equal = (X3 \odot Y3)&(X2 \odot Y2)&(X1 \odot Y1)& X0 \odot Y0

提示:在Logisim中填入逻辑表达式时,异或为xor,

同或可以看做异或的取反

➤ Great \ Less?

4位无符号比较器的子电路编辑图例

2、复制产生4个4位的比较器,再级连接形成1个16位的比较器

- (1) X、Y中每4位对应1个4位比较器
 - > 用已有隧道标签进行连接
- (2) 分析4个4位比较器的输出与最终

输出的逻辑关系, 生成级联电路

(3) 整理电路, 戳工具初步测试电路

3、16位比较器的自动测试

Ctrl+K自动测试

地址为ff时,用 例全部测试完毕; 可根据错误记录 进一步调试

16位数无符号比较器自动测试

(三): 码表数码管的驱动

码表显示驱动的外部特性

- ➤ 输入: 16位的BCD码(4位的10进制数);
- ▶ 输出: 4个7段数码管的控制信号(共32位)
 - □ S4T , S4B , S3T , S3B □ S2T , S2B , S1T , S1B

设计思路:

▶ 利用新手实验已经构建的1 个7段数码管驱动,并发形 成4个7段数码管的驱动

码表数码管驱动的测试

- 1、自行新建一个"码表显示驱动测试"文件
- 2、在文件中建立起如右图所示的测试电路。
- 添加码表显示驱动、常量、7段数码管、分线器等组件
- > 定义输入、输出的标签隧道
- > 完成连接

数字逻辑基础实验 (2)

——同步时序逻辑设计

同步时序逻辑电路概述

电路特征

- > 由组合逻辑和存储单元构成
- > 电路存在反馈
- > 公共时钟进行同步

一般设计流程

- > 构建状态图
- > 构建状态转换逻辑
- > 构建输出函数的逻辑
- > 实现电路

∥状态转换逻辑设计

- 填写EXCEL真值表
- 根据功能需求填写状态转换表
- 自动生成状态转换电路逻辑表达式 (触发器输入函数)

S3	S2	S1	S0	In1	In2	In3	In4	In5	In6	In7	In8	最小项表达式	N3	N2	N1	NO
~S3&	~S2&	~S1&		In1&								SSÊ SSÊ SIÊ SOÊTNIÊTNSÊTNSÊ TN4ÊTNSÊ ÎNS				m m m mounded band te-
~S3&	~S2&	~S1&	S0&	In1&		In3&	~In4&					~S3&~S2&~S1&S0&In1&In3&~In4	"536"536"5165061+163+36"2+4+			"53&"52&"51&50&In1&In3&"In44
							·									
												逻辑表达式->>>	FIR FIR FIRSTRE-INCAR I-4			

輸出函数组合逻辑设计

- 填写EXCEL真值表
- 根据功能需求填写输出函数真值表
- 自动生成输出函数逻辑表达式

S 3	S2	S1	S0	In1	In2	In3	In4	In5	In6	In7	In8	最小项表达式	Out1	Out2	Out3	Out4	Out5
~S3&	~S2&	~S1&	~S0&	In1&		~In3&						~S3&~S2&~S1&~S0&In1&~In3	`836`886`816`906In16`In3+				
~S3&	~S2&	~S1&	S0&		In2&							~S3&~S2&~S1&S0&In2					~S3&~S2&~S1&S0&I±2+
~S3&	~S2&	~S1&				In3&						~S3&~S2&~S1&S0&In3				~53%~52%~51%50%In3+	
~S3&	~S2&	~S1&	S0&							In7&		~S3&~S2&~S1&S0&In7					
~S3&		S1&	~S0&		In2&						In8&	~S3&~S2&S1&~S0&In2&In8		~S3&~S2&S1&~S0&In2&InB+	~83&~82&S1&~80&In2&In8+		
~S3&	~S2&	S1&	~S0&									~S3&~S2&S1&~S0					
											j	逻辑表达式->>>	"536"528"518"5061n18"1n3	"83&"\$2&81&"80&In2&In8	"832"82281&"80&In2&In8	~S3&~S2&~S1&S0&In3	~S3&~S2&~S1&S0&In2

二、同步时序逻辑电路设计

实验目标

- > 理解同步时序逻辑设计的基本流程
- > 掌握状态转换逻辑、输出函数组合逻辑的设计方法
- > 熟练运用Logisim构建运动码表中的时序逻辑部件

生成状态转换电路、输出函数的逻辑表达式

实验任务

- ▶ 16位寄存器(16位并行加载寄存器)
- ➤ 4位正向时间计数器(4位BCD计数器)
- > 码表计数器

已封装外观

基础任务

(一): 16位并行加载寄存器

16位并行加载寄存器的外部特性

➤ 输入: 16位的输入 Din, 使能信号En;

➤ 输出: 16位输出Q

▶ 功能: Din → Q

16位并行加载寄存器,输入Din 16位:输出Q 16位:En:使能端:

思考: 16个1位触 发器并发 or 4个 4位触发器并发?

设计思路: 先构建4位寄存器, 再并发为16位寄存器

1. 构建 4位并行加载寄存器

➤ 输入: Din (4位); 使能信号En

➤ 输出: Q(4位)

Q

X X X X

4位寄存器

Din 0 0 0 0

封装外观

En

CLK

▶ 功能: Din → Q

(1) 封装编辑

(2) 子电路编辑: 不要增删改引脚,运用的输入输出引脚的隧道标签信号构建电路。

使用D触发器为元件; 器为元件; 属性选择包含使能端

4位并行加载寄存器,输入Din 4位;输出Q 4位; En:使能端;

2、复制产生4个4位寄存器,再并联接形成1个16位并行加载寄存器

子电路编辑图例 方案不唯一

手动绘制时, 练习标签隧道 的使用,改善 电路图的美观 性与可读性

3、整理电路,运用 戳工具简单测试

(二): 4位BCD计数器

4位BCD计数器的外部特性

➤ 输入: 时钟信号CLK, 使能信号En, 异步复位Rst;

➤ 输出: 4位输出Q, 进位输出信号Cout

▶ 功能:

Q从9->0时,产生进位信号Cout

请勿增删改引脚,请在下方利用上方输入输出引脚的隧道标签信号构建电路,ctrl+d复制选择组件

"状态转换"子电路设计

- □ 每个D触发器的输出就是1个状态位;
- □ 4个D触发器对应4个的状态位
- □ 设计重点——状态转换逻辑
 - 1、填写"状态转换表"
 - 2、检查"触发器输入函数自动 生成"的逻辑表达式
 - 3、打开logisim中"BCD计数器 状态转换(自动生成)"文件, 利用电路分析自动生成

状态转换表

下一状态 (次态)

Ş				-	ייערהני	(X)	ucv)					刊八	2					1 1	(2)	(水池)			
			S3	S2	S1	S0	现态 10进制	In	1	In2	In	3 In4	In5	I	n6	In7	In8		て态 进制	N3	N2	N1	NO
			0	0	0	0	0												1	0	0	0	1
			0	0	0	1	1												2	0	0	1	0
			0	0	1	0	2												3	0	0	1	1
			0	0	1	1	3												4	0	1	0	0
1	D	0		١,	^	^ (A	,	,	IZ.	—		4			N I				^	4		4
ì	В	C	D	E 1	F) T		TE	J	K	T 0	│ □ ■ ↓ 元五		. [N	O		P			Ç	
+	S2	S1	S0	In1	1nz	2 11	ı3 In4	tno	Ino	1n/	In8	最小项	衣丛八	ı		N3	N2		N	I		N	J
C	`S2&	~S1&	~S0&									~S3&~S2&~	S1&~S0								~s	3&~S2&^	′S1&~SC
	Š2&	~S1&	S0&									~S3&~S2&~	S1&S0						~S3&~S2&	~S1&S0	+		
	Š2&	S1&	~S0&									~S2&S1&~S0						·	~S2&S1&~S0		0+ ~S2&S1&~		&~S0
	`S2&	S1&	S0&									~S2&S1&S0					~S2&S1&S						
1	S2&	~S1&	~S0&			1						S2&~S1&~S0			\$2&~\$1&~\$0+							&~S1	&~S0
1	S2&	~S1&	S0&			_						S2&~S1&S0		_			S2&~S1&S				_		21
+	S2&	S1&	~S0&			+						S2&S1&~S0		\dashv	\$2&\$1&^\$0 \$2&\$1&\$0+		S0+ S	S2&S18	k⁻S0	+ S2	&S18	k 'S0	
1	S2&	S1&	S0&			+						S2&S1&S0	10°C0	\dashv							700	~~	~~~~
	S2& S2&	~S1& ~S1&	~S0& S0&			+						S3&~S2&~S S3&~S2&~S		\dashv	S3& S2	&~S1&~S0+		+			238	: S2&	S1&~S(
+	52@	510	50&			+						530 520 5	1020	\dashv									
+														\dashv									
†														\dashv									
1														T									
Ť														寸									
1																							
						\perp								_									
1																							
1						1								_									
	状态的	換表	触发器	輸入回	 数白:	 动牛点	え 輸出函数	效直值	麦 【 输	出函数的	动牛质	(+)							4				
ľ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Jose	, and all	. mar		,	ربع بعدروا		100	X			L HH	2.3	. , _				1				

当前状态(现态

S3

~S3&

"输出函数"子电路设计

- □ 输入: 4位现态S3-S0
- □ 输出: Cout (进位输出)
- □ 何种情况下Cout=1?

- 1、写出真值表 or Cout的逻辑表达式
- 2、打开logisim中"BCD计数器输出函数 (自动生成)"文件,利用电路分析功能自动生成电路

整体连接,并利用戳工具初步测试

- □ Rst有效时,应产生什么效果?
- □ Cout如何更新?

(三): 码表计数器(16位输出)

码表计数器的外部特性

➤ 输入: 时钟信号CLK, 使能信号En, 异步复位Rst;

➤ 输出: 16位输出Q

▶ 结构:包含4个BCD码计数器

▶ 功能: 低位计数器从9到0时,相邻高位计数器加1

码表计数器,16位输出,包括4个BCD计数器,分别对应10秒、1秒、1/10秒、1/100秒。低位计数到9时,相邻高位在时钟到来时加1。 En:使能端;Rst:异步复位;

设计思路:利用4个的4位BCD计数器级联而成

争 每个4位BCD计数 器的使能端En、 复位端Rst、输 出端Q, 与整个 码表计数器的引 脚如何连接?

低1级的数码管如何驱动高一级的数码管计数?

码表计数器的自动测试

➤ 打开自动测试文件,按下Crtl+K 自动开始测试

> 也可以根据需要单步时钟调试

▶ 注意观察低位向高位的进位是否 有错

数字逻辑基础实验 (3)

——小型数字系统运动码表

三、数字系统综合设计

数字系统的设计流程

1、数字系统的需求分析

外部整体输入、输出分析,包括数据、 控制信号与状态

3、构建数据通路

> 从数据流动的角度,连接各功能部件

5、系统集成联调

从控制流角度,连接控制单元(4)和各执行部件构成的数据通路(3)

2、功能部件设计(分模块设计)

> 得到内部的控制信号、状态

4、构建控制单元

- > 绘制系统状态图
- > 构建状态转换电路
- 构建输出函数电路(生成所需要的内部、外部控制信号,产生状态输出)
- > 构建控制单元

构建小型数字系统——运动码表

1、运动码表初步功能需求分析

运动码表的外部特性

▶ 输入: 4个按钮; 输出: 4个7段数码管

运动码表的功能

➤ Start: 计时器归0,重新开始计时

➤ Stop: 停止计时,显示当前计时数据

> Store: 尝试更新系统记录的计时数据(满足条件: 当前计时数据 < 系统记录)

➤ Reset: 复位,使得计时器 = 00.00, 系统记录 = 99.99

2、运动码表功能部件分析

#	功能部件	控制信号	输入	输出	
1	时间计数器TM	TM-En,TM-Rst	CLK	时间计数输出16位	同步时序 电路设计
2	16位寄存器SD	SD-En	CLK, Din(16位)	Q(16位)	
3	数码管显示DP		Din(16位)	DisplayInfo(32位)	组合逻辑
4	比较器				电路设计
5	2路选择器	Sel			

运动码表的电路编辑界面

- ➤ Start: 计时器归0,重新开 始计时
- ➤ Stop: 停止计时,显示当前 计时数据
- Store: 尝试更新系统记录的计时数据(满足条件: 当前计时数据 < 系统记录)
- ➤ Reset: 复位,使得计时器 = 00.00,系统记录 = 99.99

3、运动码表数据通路构建

1、完成各功能部件输入来源表

#	功能部件	数据输入	来源	备注				
1	时间计数器TM							
2	16位寄存器SD	CLK, Din(16位)	99.99 或 当前记录	增加2路选择器 SD-Sel				
3	数码管显示DP	Din(16位)	TM.Q 或 SD.Q	增加2路选择器 DP-Sel				
4	比较器		当前计时 & SD.Q	NewRecord				

2、按数据流动过程连接数据通路

Tip: 有多个输入来源时,需增加多路选择器

4、运动码表控制单元构建(重点!!)

外部的控制输入信号

> Start \ Stop \ Store \ Reset

内部的状态反馈信号

NewRecord

定义控制单元的输出信号 > SD-SEL、SD-EN、TM-EN、TM-Rest、 DP-SEL

封装外观

电路编辑界面

🜓 Logisim 2.15.0.2.exe: 码表控制器状态转换(自动生成) of Logisim 文件 编辑 工程 电路仿真 窗口 帮助 **♦ ♦ A □ 0 ▷ D ▷** + + 1 1 1 1 1 1 1 1 start 4位并行加载寄存器 0 16位并行加载寄存器 ☐ 4位BCD计数器 stop BCD计数器状态转换(自动生成) 0 ☐ BCD计数器输出函数(自动生成) □ 码表计数器 store ☐ 码表计数器自动测试 0 □ 码表显示驱动 ↑ ★运动码表 N2 码表控制器 reset 码表控制器状态转换(自动生成) □ 码表控制器输出函数(自动生成) N1 □ 码表显示驱动测试 NewRecord ▶ 🕋 线路(Wiring) 0 ▶ 🕋 逻辑门(Gates) N0 工具: BCD计数器状态转换(自动生成) S2 朝向 右 (东) 0 标签 标签位置 上(北) 标签字体 Dialog 标准 12 S1 标签颜色 #000000 0 BCD计数器状态转换(自动生... 电路名称 共享标签(显示在封装上) 状态转换 共享标签朝向 上(北) S0 共享标签字体 SansSerif 粗体 12 0 标签颜色 #000000

"码表控制状态转换"的设计

设计思路与方法

条件

画出状态图 (现态 -----> 次态)

> 运动码表状态定义(可自行设计、方案不唯一)

状态	状态编码 S2 S1 S0	主要功能
初始(000)		TM.Q = 00.00, SD.Q = 99.99
从0计数		TM从0开始计数
停止		显示TM.Q
存储		当产生NewRecord时,TM.Q>SD.Q

> 状态转移的输入条件

外部输入控制信号: Start、Stop、Store、Reset

内部反馈的状态信号: NewRecord

(2) 填写状态转换表

Tip: 借助Excel表格,不需要的输入条件不用填写

(下图仅为部分状态转移内容)

	当前	前状	态(现	心态)		輸入信号							下一状态 (次态)					
S3	S2	S1	S0	现态 10进制	NewRecord	start	stop	store	reset	In6 In7 In8			次态 10进制	N3	N2	N1	N0	
0	0	0	0	0		0	0	0	0				0	0	0	0	0	
0	0	0	0	0		1	0	0	0				1	0	0	0	1	
0	0	0	0	0		0	0	0	1				0	0	0	0	0	

注意: 所有可能出现的转移条件均要考虑。不要遗漏保持当前状态不变的情况

- (3) 生成状态转换逻辑表达式,进而利用Logisim电路分析功能,完成"码表控制状态转换"子电路
 - > 利用戳工具简单测试所有的状态转换情况,必要时通过真值表微调电路

(4) 填写输出函数真值表

> 输入

控制器现态: \$2 \$1 \$0

> 输出

送往数据通路的控制信号:

SD-SEL、SD-EN、TM-EN、

TM-Rest DP-SEL

》参照已完成的数据通路图, 确定每个状态需要产生的 输出控制信号

数据通路图举例

简易真值表举例

现态	数据通路变化	需要产生的内部控制 信号
初始 (000)	停止计数、TM.Q = 00.00, SD.Q = 99.99 显示TM.Q(默认选择)	~TM-EN、TM-Rest SD-SEL、SD-EN ~DP-SEL
计数		
停止		
存储		

▶ 自行改建出供码表设计使用的EXCEL,填写真值表

	当前状态(现态)							输入	詩号								
S3	S2	S1	S0	现态 10进制	NewRecord	start	stop	store	reset	In6	In7	In8	SDSe1	SDEN	DPSEL	TMSe1	TMReset
0	0	0	0	0									1	1			1

(图中仅为部分真值表内容)

(5) 生成输出函数逻辑表达式,进而利用Logisim电路分析功能,"码表控制输出函数"子电路

> 利用戳工具简单测试所有整体情况

(6) 完成"码表控制器"的内部逻辑的连接。

5、运动码表系统集成与联调

连接控制单元与数据通路

- 对照功能部件分析表、部件 输入来源表,完成控制单元 与数据通路各个部件的引脚 连接
- 可适当添加与调整基本部件、门电路、线路等

运动码表功能测试

- > 适当添加探针,便于观察
- > 发现错误后,再调试、修改各个部分

实验报告要求——运动码表设计

- 1、撰写实验报告。报告按照数字系统设计的流程进行组织编写;需将多个分解实验的分析、设计思路与过程清晰描述(包括真值表、状态定义、状态转移、输出函数等),并相应贴出测试截图。
- 2、实验完成后,将最终的"Logisim.circ"文件以"学号_数字码表.circ"命名另存。
- 3、在福大课程中心平台中,本门课程的"作业"中,相应提交实验报告与电路文件。