CS 2305: Discrete Mathematics for Computing I

Lecture 04

- KP Bhat

Key Logical Equivalences 1

Identity Laws:

$$p \wedge T \equiv p$$
,

$$p \vee F \equiv p$$

Domination Laws:

$$p \vee T \equiv T$$
,

$$p \wedge F \equiv F$$

Idempotent laws:

$$p \lor p \equiv p$$
,

$$p \wedge p \equiv p$$

Double Negation Law:

$$\neg(\neg p) \equiv p$$

Negation Laws:

$$p \lor \neg p \equiv T$$
, $p \land \neg p \equiv F$

$$p \land \neg p \equiv F$$

Key Logical Equivalences 2

Commutative Laws: $p \lor q \equiv q \lor p$, $p \land q \equiv q \land p$

Associative Laws:
$$(p \land q) \land r \equiv p \land (q \land r)$$

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

Distributive Laws: $(p \lor (q \land r)) \equiv (p \lor q) \land (p \lor r)$

$$(p \land (q \lor r)) \equiv (p \land q) \lor (p \land r)$$

Absorption Laws: $p \lor (p \land q) \equiv p \ p \land (p \lor q) \equiv p$

More Logical Equivalences

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

$$p \lor q \equiv \neg p \to q$$

$$p \land q \equiv \neg (p \to \neg q)$$

$$\neg (p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

TABLE 8 Logical Equivalences Involving Biconditional Statements.

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Limitations of Truth Table Approach to Establish Logical Equivalences

- To prove the equivalence of two compound propositions in n variables, using a truth table, requires a truth table with 2ⁿ rows
 - Infeasible beyond a handful of variables
 - for each additional propositional variable added, number of rows in the truth table doubles
 - An alternate approach is needed

2 ¹	2
2 ²	4
	·
2 ³	8
24	16
2 ⁵	32
2 ¹⁰	1,024
2 ¹⁵	32,768
2 ²⁰	1,048,576
2 ²⁵	33,554,432
2 ³⁰	1,073,741,824
2 ³⁵	34,359,738,368
2 ⁴⁰	1,099,511,627,776
2 ⁴⁵	35,184,372,088,832
2 ⁵⁰	1,125,899,906,842,620

When there are 1000 variables, checking every one of the 2^{1000} possible combinations ... cannot be done by a computer in even trillions of years.

Alternate Approach to Establish Logical Equivalences

- Simplify logical expressions using some well known results ("logical identities")
- More practical, since it can handle an arbitrarily large number of inputs
- Show that $\neg(p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent

1.
$$\neg(p \lor (\neg p \land q)) \equiv \neg p \land \neg(\neg p \land q)$$

 $\equiv \neg p \land (\neg(\neg p) \lor \neg q)$
3. $\equiv \neg p \land (p \lor \neg q)$
4. $\equiv (\neg p \land p) \lor (\neg p \land \neg q)$
5. $\equiv \mathbf{F} \lor (\neg p \land \neg q)$
6. $\equiv (\neg p \land \neg q) \lor \mathbf{F}$
7. $\equiv \neg p \land \neg q$

1. Second De Morgan's Law

$$\rightarrow$$
 $\neg(p \lor q) \equiv \neg p \land \neg q$

- First De Morgan's Law
 ¬(p ∧ q) ≡ ¬p ∨ ¬q
- Double Negation Law
 ¬(¬p) ≡ p
- 4. Second Distributive Lawp ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
- 5. $(\neg p \land p) \equiv \mathbf{F}$
- 6. Commutative Law for Disjunctionp ∨ q ≡ q ∨ p
- 7. Identity Law for Contradiction

Important Logical Equivalences ("Logical Identities")

TABLE 6 Logical Equivalences.		
Equivalence	Nam e	
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws	
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws	
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws	
$\neg(\neg p) \equiv p$	Double negation law	
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws	
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws	
$\begin{aligned} p \lor (q \land r) &\equiv (p \lor q) \land (p \lor r) \\ p \land (q \lor r) &\equiv (p \land q) \lor (p \land r) \end{aligned}$	Distributive laws	
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws	
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws	
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws	

Note: The Equivalence column of this chart by itself (i.e. without the Name column) will be provided to the students in the mid-term exam

Propositional Satisfiability

- A compound proposition is <u>satisfiable</u> if there is an assignment of truth values to its variables that make it true. When no such assignments exist, the compound proposition is <u>unsatisfiable</u>
 - At least one row in the truth table has output value of T
- A compound proposition is unsatisfiable if and only if its negation is a tautology.

Questions on Propositional Satisfiability

Example: Determine the satisfiability of the following compound propositions:

$$(p \vee \neg q) \wedge (q \vee \neg r) \wedge (r \vee \neg p)$$

Solution: Satisfiable. Assign **T** to *p*, *q*, and *r*.

$$(p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$$

Solution: Satisfiable. Assign **T** to p and F to q.

$$(x \lor y) \land (x \lor \neg y) \land \neg x$$

Solution: Not satisfiable. Check each possible assignment of truth values to the propositional variables and none will make the proposition true.

Applications of Satisfiability

- Many real world problems can be modeled in terms of propositional satisfiability
 - robotics, software testing, artificial intelligence planning, computer-aided design, machine vision, integrated circuit design, scheduling, computer networking, genetics etc.
- Foundational concept in theoretical computer science and advanced algorithms
- Lot of research has been done on developing reasonably efficient methods for solving satisfiability problems
 - Progressively eliminate potential solutions, given the constraints of the problem
 - Analogous to striking out entire sets of rows from an exhaustive truth table

Arguments

- An argument is a sequence of statements (premises) that end with a conclusion
- A <u>valid</u> argument is a conclusion that follows from the truth of the premises of the argument
 - an argument is valid if and only if it is impossible for all the premises to be true and the conclusion to be false
 - But no claim that if the conclusion is true then the premises are true as well
- An argument which is not valid is called a <u>fallacy</u>

Test for Argument Validity (1)

```
P1: If John eats peanuts, he falls sick
P2: John did not eat peanuts
∴ John did not fall sick ] ¬q
Does ((p \rightarrow q) \land \neg p) \rightarrow \neg q?
```

Premise true but conclusion false: a fallacy

Test for Argument Validity (2)

P1: If John eats peanuts, he falls sick p→q
P2: John did not fall sick ¬q

∴ John did not eat peanuts ¬p

Does
$$((p \rightarrow q) \land \neg q) \rightarrow \neg p$$
?

Modus Tollens

Conclusion true when premise true: valid argument

Argument Forms

Is there anything in common between these two arguments?

Although the two arguments are different, they have the same **argument form**

- same symbolic representation
- Belong to the same "family" of arguments

Argument vs Argument Form

Argument

- sequence of propositions
- valid if the truth of all its premises implies that the conclusion is true
- a specific instance of an argument form

Argument Form

- sequence of compound propositions involving propositional variables
- valid if no matter which particular propositions are substituted for the propositional variables in its premises, the conclusion is true if the premises are all true
- represents an entire family of arguments

Establishing Validity of Argument Forms

- Brute force approach
 - truth table
 - Major issue
 - Number of rows in the truth table increases exponentially with the number of propositional variables
- Rules of inference based approach
 - first establish the validity of some relatively simple argument forms ("rules of inference")
 - use rules of inference as building blocks to validate more complicated valid argument forms