City name challenge

The challenge

Are there more cities with UK names on the east coast of the US or on the west coast of the US? Dataset: http://download.maxmind.com/download/worldcities/worldcitiespop.txt.gz

Importing data

First we import the data from the file 'worldcitiespop.txt' into a dataframe:

```
complete <- read.csv("worldcitiespop.txt", stringsAsFactors = FALSE)</pre>
```

Then we extract and save the relevant subsets, US cities and UK cities:

```
complete_us=complete[complete$Country=="us",]
save(complete_us,file="data_us.Rda")
complete_uk=complete[complete$Country=="gb",]
save(complete_uk,file="data_uk.Rda")
```

After saving, the data can be quickly loaded:

```
load("data_us.Rda")
load("data_uk.Rda")
```

Cleaning data

Before cleaning, we create a backup copy of the data that will be modified:

```
complete_us_orig=complete_us
```

Some city names contain "bad" non-UTF-8 format. Check how many:

```
## Records with non UTF-8 city name format:
## in US
                                      AccentCity Region Population Latitude
##
           Country
                             City
## 2912712
                us
                        it\xfc`au
                                       It\xfc`au
                                                                 NA -14.34778
## 2921665
                us pi\xf1on hills Pi\xf1on Hills
                                                      CA
                                                                 NA 34.43333
           Longitude
## 2912712 -170.7664
## 2921665 -117.6458
## in UK
                             AccentCity Region
                                                    Population Latitude
## [1] Country
                  City
## [7] Longitude
## <0 rows> (or 0-length row.names)
```

There are few values; we just convert to NA:

```
complete_us$City=iconv(complete_us$City,from="",to="UTF-8")
```

Potentially we may want to filter data by population, but only < 3% of initial data would be left:

```
 nrow (\texttt{complete\_us[!is.na}(\texttt{complete\_us\$Population}) \ \& \ \texttt{complete\_us\$Population} > 0,]) / nrow (\texttt{complete\_us\_orig})
```

```
## [1] 0.02940369
```

For the moment we avoid population filtering:

```
cat("Percentage of initial data used: ", 100*nrow(complete_us)/nrow(complete_us_orig),"\n")
```

```
## Percentage of initial data used: 100
```

Elaborating data

First thing is to establish an UK name identity; there are many possible approaches. An easy approach is just to get the list of UK city names from the dataset,

```
uk_names=unique(complete_uk$City)
```

and identify US city names exactly matching elements in this list:

```
us_cities_uk=complete_us[tolower(complete_us$City) %in% tolower(uk_names),]
```

A second method relies on using pattern matching, but it is much slower with the full dataset (~ 40 min on my laptop).

Results for east and west coasts

US states on the coasts according to Wikpedia definition (east coast set includes some states without shoreline, west coast set excludes Alaska):

```
east_us=c("FL","GA","SC","NC","VA","MD","DE","NJ","NY","CT","RI","MA","NH","ME","PA","DC","VT","WV");
west_us=c("CA","OR","WA");
```

Select cities in coast states:

```
west_us_cities=complete_us[tolower(complete_us$Region) %in% tolower(west_us),];
east_us_cities=complete_us[tolower(complete_us$Region) %in% tolower(east_us),];
```

Select cities with UK names in coast states:

```
west_us_cities_uk=us_cities_uk[tolower(us_cities_uk$Region) %in% tolower(west_us),];
east_us_cities_uk=us_cities_uk[tolower(us_cities_uk$Region) %in% tolower(east_us),];
```

Print results:

```
##
## Total number of cities in US: 141989
## Total number of cities with UK name in US: 9535
## Percentage of UK names in US: 0.06715309
##
## Total number of cities in west coast: 9115
## Total number of cities with UK name in west coast: 553
## Percentage of UK names in west coast: 0.06066923
##
## Total number of cities in east coast: 59887
## Total number of cities with UK name in east coast: 3610
## Percentage of UK names in east coast: 0.06028019
```

Plotting spatial data: cities with UK name

Results for each state in US

We now perform an analysis at level of single state in US. First we get a list of the "continental" states in US:

```
us_states=unique(complete_us$Region)
us_states_extra=c("AS","GU","MP","PR","VI","UM","FM","MH","PW","HI")
us_states_50=us_states[!(us_states_%in% us_states_extra)] # excluding Hawaii
```

Then we generate a dataframe containing number of cities, number of cities with UK name, and percentage for each state:

```
dfStates <- all_states(complete_us,us_cities_uk,us_states_50)
head(dfStates)</pre>
```

```
##
     code_state nrCities nrCitiesUK fractionUK
## 1
            AL
                    4258
                                270 0.06341005
## 2
            AK
                     677
                                 23 0.03397341
## 3
            ΑZ
                    1926
                                 60 0.03115265
## 4
            AR
                    3158
                                238 0.07536415
## 5
             CA
                    5436
                                243 0.04470199
## 6
             CO
                    1494
                                115 0.07697456
```

We can make a histogram:

```
hist(dfStates$fractionUK,
    main="Histogram: % of cities with UK name in a state",
    xlab="Percentage",
    col="blue")
```

Histogram: % of cities with UK name in a state

and give an estimate of the statistics for the states on the coasts:

```
mean_east <- mean(dfStates$fractionUK[dfStates$code_state %in% east_us])
sd_east <- sd(dfStates$fractionUK[dfStates$code_state %in% east_us])
mean_west <- mean(dfStates$fractionUK[dfStates$code_state %in% west_us])</pre>
```

```
##
## Percentage of cities with UK name, state by state:
## East coast mean and sd: 0.07369821 0.02731128
## West coast mean: 0.07113871
```

Bar plot of states reordered according percentage of UK city names:

```
ggplot(dfStates, aes(x = reorder(code_state, fractionUK), y = fractionUK))+
  geom_bar(colour="black", fill="blue", width=0.5, position = position_dodge(width = 3), stat = "identi
  ylab("% UK city names") + xlab("state code") +
  coord_flip() +
  guides(fill=FALSE)
```


Many states in the southern parth of US have the lowest percentage; this could reflect the importance of Spaniard colonization in those states.

Appendix

Function "all_states", to generate the dataframe for each US state: