

Introduction to Convolutional Neural Network

Valentina Pedoia, PhD

Musculoskeletal Quantitative Imaging Research Group Dept. of Radiology and Biomedical Imaging UCSF

Agenda

- General concepts on Neural Networks
 - Definitions, Architecture types, Backpropagation, Activation Functions
- Multilayer ... Deep is better
- Handcraft Feature vs Feature Learning
- Convolutional Neural Networks
 - Main Architectural Elements :
 - Convolutional
 - ReLu
 - Pooling
 - Fully Connected Layer

Neural Network

- A Neural Network is an information processing paradigm that <u>is</u> <u>inspired by the biological nervous systems</u>, such as the human brain's information processing mechanism.
- The key element of this paradigm is the structure of the information processing system. It is composed of a large number of <u>highly interconnected processing elements</u> (neurons) working in unison to solve specific problems.
- NNs, "like people", <u>learn by example</u>.
- A NN is configured for a specific application, such as pattern recognition or data classification, <u>through a learning process</u>.
- Learning in biological systems involves
 <u>adjustments to the synaptic connections</u> that
 exist between the neurons. <u>This is true of NNs</u>
 as well.

Figure 2 The anatomy of a neural network.

Types of Neural Network Architecture

Feed-forward networks

Feed-forward NNs allow **signals to travel one way only**; from input to **output.**

There is no feedback (loops) i.e. the output of any layer does not affect that same layer.

Feedback networks

Feedback networks can have signals traveling in both directions by introducing loops in the network.

Feedback networks are dynamic; their 'state' is changing continuously until they reach an equilibrium point.

They remain at the equilibrium point until the input changes and a new equilibrium needs to be found.

Feedback architectures are also referred to as interactive or recurrent

Learning Algorithm

Backpropagation:

Randomly initialize the parameters

Calculate total error at the top

Then calculate contributions to error, at each step going backwards

The most simple neural network: Threshold Logic Unit

$$1 \quad \text{if } \sum_{i=1}^{n} x_i w_i \ge \theta$$

$$0 \quad \text{if } \sum_{i=1}^{n} x_i w_i < \theta$$

z =

Training

$$\Delta w_i = c(t-z) x_i$$

- Where *w_i* is the weight from input *i* to perceptron node,
- c is the learning rate (the user decide this parameter),
- t_i is the target for the current instance,
- z is the current output, and
- x_i is i^{th} input
- Least perturbation principle
 - Only change weights if there is an error
 - small c rather than changing weights sufficient to make current pattern correct
- Iteratively apply a pattern from the training set and apply the perceptron rule
- Each iteration through the training set is an epoch
- Continue training until total training set error ceases to improve
- Perceptron Convergence Theorem: Guaranteed to find a solution in finite time if a solution exists

1. Initialize the weights and the threshold

$$1 \quad \text{if } \sum_{i=1}^{n} x_i w_i \ge \theta$$

$$0 \quad \text{if } \sum_{i=1}^{n} x_i w_i < \theta$$

1. Initialize the weights and the threshold

1 if
$$\sum_{i=1}^{n} x_i w_i \ge \theta$$

0 if $\sum_{i=1}^{n} x_i w_i < \theta$

1. Initialize the weights and the threshold

1 if
$$\sum_{i=1}^{n} x_i w_i \ge \theta$$

0 if $\sum_{i=1}^{n} x_i w_i < \theta$

$$\Delta w_i = c(t-z) x_i$$
 $\Delta w_1 = 0.3*(0-1)*0.4 = -0.12$
 $\Delta w_2 = 0.3*(0-1)*0.3 = -0.09$

$$\Delta w_i = c(t-z) x_i$$

$$\Delta w_1 = 0.3*(0-1)*0.4 = -0.12$$

 $\Delta w_2 = 0.3*(0-1)*0.3 = -0.09$

$$\Delta w_i = c(t-z) x_i$$

$$\Delta w_1 = 0.3*(0-1)*0.4 = -0.12$$

 $\Delta w_2 = 0.3*(0-1)*0.3 = -0.09$

$$\Delta w_i = c(t-z) x_i$$

$$\Delta w_1 = 0.3*(0-1)*0.4 = -0.12$$

 $\Delta w_2 = 0.3*(0-1)*0.3 = -0.09$

$$\Delta w_i = c(t-z) x_i$$

$$\Delta w_1 = 0.3*(0-1)*0.4 = -0.12$$

 $\Delta w_2 = 0.3*(0-1)*0.3 = -0.09$

Which pattern did we learn?

$$\Delta w_i = c(t-z) x_i$$

$$\Delta w_1 = 0.3*(0-1)*0.4 = -0.12$$

 $\Delta w_2 = 0.3*(0-1)*0.3 = -0.09$

$$\begin{array}{c|cccc} x_1 & x_2 & t \\ \hline .9 & .2 & 1 \\ \hline .3 & .3 & 0 \\ \hline \text{Test Set} \end{array}$$

Which pattern did we learn?

$$\Delta w_i = c(t-z) x_i$$

$$\Delta w_1 = 0.3*(0-1)*0.4 = -0.12$$

 $\Delta w_2 = 0.3*(0-1)*0.3 = -0.09$

Add complexity: input channels

$$\Delta w_i = c(t-z) x_i$$

$$\Delta w_1 = 0.3*(0-1)*0.4 = -0.12$$

 $\Delta w_2 = 0.3*(0-1)*0.3 = -0.09$

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer NN	

Multilayer Neural Network ... Why deep is better ...

Structure	Types of Decision Regions	Exclusive-OR Problem	Classes with Meshed regions	Most General Region Shapes
Single-Layer	Half Plane Bounded By Hyper plane	A B B A	B	
Two-Layer	Convex Open Or Closed Regions	A B A	B	
Three-Layer	Arbitrary (Complexity Limited by No. of Nodes)	B A	B	

Data coming from pixel in a image are not IID

...in computer vision/medical imaging

Classification

Maybe is not even 1 image but a stack of images or volumes ...

...in computer vision/medical imaging

Classification

Feature Engineering

Moments: Average, std, entropy, kurtosis

Domain Transformation: FT, Wavelet, Spherical

Harmonics

Filtering: Gabor Filters Fun Filters

Scale invariant feature transform **SIFT**

...in computer vision/medical imaging

Feature Learning

Classification

...in computer vision/medical imaging

...in computer vision/medical imaging

Convolutional Layers

- The core layer of CNNs
- The convolutional layer consists of a set of filters.
 - Each filter covers a spatially small portion of the input data.
- Each filter is convolved across the dimensions of the input data, producing a multidimensional feature map.
 - As we convolve the filter, we are computing the dot product between the parameters of the filter and the input.
- the network will learn filters that activate when they see some specific type of feature at some spatial position in the input.

Convolutional Layer

Conv Hyperparameters

Kernel Size: controls how much **contextual information** is used to build feature mas

<u>Depth</u>: Depth corresponds to the **number of filters** we use for the convolution operation.

<u>Stride</u>: Stride is the number of pixels by which we slide our filter matrix over the input matrix. When the stride is 1 then we move the filters one pixel at a time. When the stride is 2, then the filters jump 2 pixels at a time as we slide them around. Having a larger stride will produce smaller feature maps.

Zero-padding: Sometimes, it is convenient to pad the input matrix with zeros around the border, so that we can apply the filter to bordering elements of our input image matrix. A nice feature of zero padding is that it allows us to control the size of the feature maps.

Adding zero-padding is also called *wide convolution*, and not using zero-padding would be a *narrow convolution*.

Rectified Linear Unit

An additional operation called ReLU has been used after every Convolution operation ReLU stands for **Re**ctified **L**inear **U**nit and is a non-linear operation

Output = Max(zero, Input)

Rectified Linear Unit

ReLU is an element wise operation (applied per pixel)

The purpose of ReLU is to **introduce non-linearity** in our ConvNet, since most of the real-world data we would want our ConvNet to learn would be non-linear (Convolution is a linear operation – element wise matrix multiplication and addition, so we account for non-linearity by introducing a non-linear function like ReLU).

Pooling/Downsampling

- Spatial Pooling (also called subsampling or downsampling)
 reduces the dimensionality of each feature map but retains the most important information.
- Spatial Pooling can be of different types: Max, Average, Sum etc.
- Can be learned
- It is not strictly necessary
- Hyperparameters:
 - Type, Filer Size, Stride

Pooling/Downsampling

- Pooling makes the input representations (feature dimension) smaller and more manageable.
- Reduces the number of parameters and computations in the network, therefore, controlling overfitting
- Makes the network invariant to small transformations, distortions and translations in the input image (a small distortion in input will not change the output of Pooling – since we take the maximum / average value in a local neighborhood).

...in computer vision/medical imaging

Several convolutional layers are used to build a **Deep** CNN with different hyper parameters

...in computer vision/medical imaging

Several convolutional layers are used to build a **Deep** CNN with different hyper parameters

Feature Learning

...in computer vision/medical imaging

Several convolutional layers are used to build a **Deep** CNN with different hyper parameters

Fully Connected Layer

Feature Learning

Classifier

The Fully Connected layer is a traditional <u>Multi</u>
<u>Layer Perceptron</u> that uses a <u>Softmax</u> activation function in the output layer

LeNet

AlexNet

V-net

Generative adversarial network (GAN)

2D-3D, Deep and Machine learning hybrid pipeline

