Real Analysis

Problem Set 7 (Solutions)

August 22, 2021

In short, we will denote $X^c := \mathbb{R} \setminus X$.

- 1. Let $U \subseteq \mathbb{R}$ be nonempty and open. Show that $\exists r \in \mathbb{Q}, s \in \mathbb{R} \setminus \mathbb{Q}$ such that $r, s \in U$. Pick $x \in U \neq \emptyset$. $\exists \varepsilon > 0$ such that $\mathscr{B}_{\varepsilon}(x) \subseteq U$. We know $\exists r \in \mathbb{Q} \cap \mathscr{B}_{\varepsilon}(x), s \in (\mathbb{R} \setminus \mathbb{Q}) \cap \mathscr{B}_{\varepsilon}(x)$.
- 2. Let $U \subseteq \mathbb{R}$ be clopen (i.e., both open and closed). Show that U is either \emptyset or \mathbb{R} .

Let $V = \mathbb{R} \setminus U$. U closed $\Longrightarrow V$ open. Further $U \cup V = \mathbb{R}, U \cap V = \emptyset$. Suppose U is neither \emptyset , nor \mathbb{R} . Pick $x \in U, y \in V$. WLOG, assume that x < y. Define $A \coloneqq \{t \in \mathbb{R} : [x, t] \subseteq U\}$. Clearly $x \in A \Longrightarrow A \neq \emptyset$. Further, $t \in A \Longrightarrow t \leq y$. This means $s \coloneqq \sup A \in \mathbb{R}$. Clearly, $s \in U$ or $s \in V$. Now, if $s \in U$ then $\exists r > 0$ such that $\mathscr{B}_r(s) \subseteq U$ whence $s + \frac{r}{2} \in U \Longrightarrow s$ is not an upper bound of U. Similarly, if $s \in V$ then $\exists r > 0$ such that $\mathscr{B}_r(s) \subseteq V \Longrightarrow (s - \frac{r}{2}, s) \cap U \cap V \neq \emptyset$.

3. Prove that every closed set in \mathbb{R} is the intersection of a countable collection of open sets.

Let $F \subseteq \mathbb{R}$ be closed. Then $U_n \coloneqq \bigcup_{x \in F} \mathscr{B}_{\frac{1}{n}}(x)$ is open $\forall n$. Now define $U \coloneqq \bigcap_{n \in \mathbb{N}} U_n$. Clearly, $F \subseteq U$. Let $a \in U$. This just means that \exists a sequence (x_n) in F such that $a \in \mathscr{B}_{\frac{1}{n}}(x_n) \forall n \in \mathbb{N}$. Hence $x_n \in \mathscr{B}_{\frac{1}{n}}(a) \forall n$. In other words, $\lim_{n \to \infty} a_n = a$. Now $F = \overline{F} \implies a \in F$.

4. Let $U, V \subseteq \mathbb{R}$. Show that $(U \cap V)^{\sigma} = U^{\sigma} \cap V^{\sigma}$, $(U \cup V)^{\sigma} \supseteq U^{\sigma} \cup V^{\sigma}$ and $(U \cup V)' = U' \cup V'$.

 $U \cap V \subseteq U \implies (U \cap V)^o \subseteq U^o$. Similarly $(U \cap V)^o \subseteq V^o$. $\therefore (U \cap V)^o \subseteq U^o \cap V^o$. Next note that $U^o \cap V^o$ is open. But $U^o \subseteq U, V^o \subseteq V \implies U^o \cap V^o \cap U \cap V \implies U^o \cap V^o \subseteq (U \cap V)^o$.

Again, $U^{o} \cup V^{o}$ is open and $U^{o} \subseteq U, V^{o} \subseteq V \implies U^{o} \cup V^{o} \cap U \cup V \implies U^{o} \cup V^{o} \subseteq (U \cup V)^{o}$.

Let $x \in U$. $\exists (x_n) \in U^{\mathbb{N}}$ such that $x_n \neq x \forall x$, $\lim x_n = x$. Then $(x_n) \in (U \cup V)^{\mathbb{N}}$ whence $x \in (U \cup V)'$. This just means $U' \subseteq (U \cup V)'$. Similarly $V' \subseteq (U \cup V)'$. So $U' \cup V' \subseteq (U \cup V)'$.

Now say $x \in (U \cup V)'$. $\exists X = (x_n) \in (U \cup V)^{\mathbb{N}}$ such that $x_n \neq x \forall n, \lim x_n = x$. Now, infinitely many terms of X lie in either U or V (say, U). The subsequence obtained by deleting the terms of X not in U converges to x, and none of its terms equals x. Hence, $x \in U' \cup V'$. We thus have $(U \cup V)' \subseteq U' \cup V'$.

5. Show that S' is closed for any $S \subseteq \mathbb{R}$.

Let $x \in (S')'$. Let $\varepsilon > 0$ be arbitrary. Then $\exists y \in \mathcal{B}_{\frac{\varepsilon}{2}}(x) \cap S' \setminus \{x\}$. Again, $\exists z \in \mathcal{B}_{\frac{\varepsilon}{2}}(y) \cap S \setminus \{x, y\}$. Which means $0 < |z - x| \le |z - y| + |y - x| < \varepsilon$. That is $\mathcal{B}_{\varepsilon}(x) \cap S \setminus \{x\} \neq \emptyset$. This means $x \in S'$, i.e., $(S')' \subseteq S'$.

- 6. Let $S \subseteq \mathbb{R}$ be a bounded set containing infinitely many points.
 - (a) Show that there must be reals $a, b \in \mathbb{R}$ such that $S \subseteq [a, b]$.

- (b) Show that we can find an increasing sequence (a_n) and a decreasing sequence (b_n) such that
 - $a \le a_1 \le b_1 \le b$

•
$$b_n - a_n = \frac{b-a}{2^n} \forall n$$

- $[a_n, b_n] \cap S$ is an infinite set $\forall n$.
- (c) Show that $\sup a_n = \inf b_n$. Call this l.
- (d) Conclude that S has a limit point. (**Hint:** I will be a limit point of S).

Choose $a=\inf S-1\in\mathbb{R}, b=\sup S+1\in\mathbb{R}$ so that $S\subseteq (a,b)\subseteq [a,b].$ Let $a_0\coloneqq a,b_0\coloneqq b.$ Look at $m_0\coloneqq \frac{a_0+b_0}{2}.$ S is infinite, so either $S\cap [a_0,m_0]$ or $S\cap [m_0,b_0]$ is infinite. In the former case, take $a_1\coloneqq a_0,b_1\coloneqq m_0$, otherwise take $a_1\coloneqq m_0,b_1\coloneqq b_0.$ Again, either $S\cap [a_1,m_1]$ or $S\cap [m_1,b_1]$ is infinite, where $m_1\coloneqq \frac{a_1+b_1}{2}.$ Pick a_2,b_2 accordingly. Continue this way, to get sequences $(a_n),(b_n).$ By induction, it is clear that $(a_n)\uparrow$ and $(b_n)\downarrow.$ By construction, we say $b_n-a_n=\frac{b-a}{2^n}$ and $S\cap [a_n,b_n]$ is infinite $\forall n.$ Now, each of these two sequences is clearly bounded (and monotone), thus convergent. In fact, $\lim a_n=\sup a_n,\lim b_n=\inf b_n.$ Further, $\lim (b_n-a_n)=\lim \frac{b-a}{2^n}=0\Longrightarrow \sup a_n=\lim a_n=\lim b_n=\inf b_n.$ Let $l:=\lim a_n.$ Note that $l\in S\cap (a_n,b_n)\forall n.$ Further $S\cap (a_n,b_n)$ is infinite, whence $S\cap (a_n,b_n)\smallsetminus \{l\}$ is also infinite. Now, just pick $x_n\in S\cap (a_n,b_n)\smallsetminus \{l\}$ so that $|x_n-l|\le |b_n-a_n|=\frac{b-a}{2^n}.$ This means (x_n) is a sequence in $S\smallsetminus \{l\}$ such that $\lim x_n=l.$

- 7. Let $S \subseteq [a, b]$ be a set with no limit point.
 - (a) Let $x \in [a, b]$. Show that \exists an open set $U_x \subseteq \mathbb{R}$ such that $x \in U_x$ and $U_x \cap S \subseteq \{x\}$.
 - (b) Conclude that S is finite. (Hint: Compactness of closed intervals).

 $x \in I := [a, b] \implies x \notin S'$. \exists an open ball $\mathscr{B} \subseteq \mathbb{R}$ around x such that $\mathscr{B} \cap S$ is finite, whence $\mathscr{B}_{r_x}(x) \cap S \subseteq \{x\}$ for some $r_x > 0$. Let $U_x := \mathscr{B}_{r_x}(x)$. Now, $\mathscr{U} := \{U_x\}_{x \in I}$ is an open cover for [a, b]. Pick a finite subcover $\{U_{x_i}\}_{i=1}^n$. Then, $S = S \cap [a, b] \subseteq S \cap \left(\bigcup_{i=1}^n U_{x_i}\right) \subseteq \bigcup_{i=1}^n \{S \cap U_{x_i}\} \subseteq \bigcup_{i=1}^n \{x_i\}$. So S is finite.

- 8. Let $S \subseteq [a, b]$ be an infinite set.
 - (a) Prove that there is a sequence in [a, b], all of whose terms are in S with no repeated terms.
 - (b) Show that the above sequence has a limit point $l \in [a, b]$.
 - (c) Conclude that S has a limit point. (Hint: l will be a limit point of S).

We can define a sequence $X=(x_n)$ inductively. Take $x_1\in S$ arbitrarily. Whenever we have picked up distinct $x_1,\cdots,x_n\in S$, we know $F_n\coloneqq S\smallsetminus\{x_1,\cdots,x_n\}$ is infinite, so take any $x_{n+1}\in F_n$. By construction, $x_i\neq x_j$ whenever $i\neq j$. By Bolzano-Weierstraß theorem, there is a convergent subsequence $\left(x_{n_k}\right)_{k\in\mathbb{N}}$. Let $l\coloneqq\lim_{k\to\infty}x_{n_k}\in[a,b]$. Now, for any $\varepsilon>0, \exists K\in\mathbb{N}$ such that $|l-x_k|<\varepsilon\forall k\geq K$ whence $\{x_{n_k}:k\geq K\}\subseteq \mathscr{B}_\varepsilon(l)\cap S$. Uniqueness of all terms of X guarantees that $\mathscr{B}_\varepsilon(l)\cap S$ is inifinite.

9. $S \subseteq \mathbb{R}$ is a bounded infinite set. Let $T \coloneqq \{x \in \mathbb{R} : \text{there are infinitely many points in } S \text{ more than } x\}$.

2

- (a) Show that $T \neq \emptyset$ and T is bounded above. Let $s := \sup T$. Clearly $s \in \mathbb{R}$.
- (b) Let $a \in \mathbb{R} \setminus T$. Show that a is an upper bound of T.
- (c) Show that s is a limit point of S.

 $\exists u < v \in \mathbb{R}$ such that $S \subseteq [u, v]$. Clearly $u \in T$ so $T \neq \emptyset$. Also, $x \in T \implies \exists y \in S$ such that y > x. This means v + 1 is an upper bound of T. Now $s = \sup T \in \mathbb{R}$. Suppose a is not an upper bound of T. So $\exists x \in T \cap (a, \infty)$. By definition, $S \cap (x, \infty)$ is infinite $\implies S \cap (a, \infty) (\supseteq S \cap (x, \infty))$ is infinite $\implies a \in T$. We thus have $(-\infty, s) \subseteq T$. Let r > 0. Then $s - r \in T$. By definition, $S \cap (s - r, \infty)$ is infinite. Further, $s + \frac{r}{2} > s \implies s + \frac{r}{2} \in T^c \implies S \cap (s + \frac{r}{2}, \infty)$ is finite $\implies S \cap \mathcal{B}_r(s)$ is infinite. By definition, $s \in S'$.

- 10. Let $\mathfrak{C}_1, \mathfrak{C}_2, \cdots$ be a decreasing (under containment) sequence of compact sets of \mathbb{R} . Suppose $\bigcap_{n \in \mathbb{N}} \mathfrak{C}_n = \emptyset$.
 - (a) Show that $\mathcal{U} := \{ \mathbb{R} \setminus \mathfrak{C}_n : n \in \mathbb{N} \}$ is an open cover of \mathfrak{C}_1 .
 - (b) Show that $\exists K \in \mathbb{N}$ such that $k \geq K \implies \mathfrak{C}_k = \emptyset$.

 $\bigcup_{n} \mathfrak{C}_{n}^{c} = \left(\bigcap_{n} \mathfrak{C}_{n}\right)^{c} = \mathbb{R} \supseteq \mathfrak{C}_{1}. : \mathfrak{C}_{1} \text{ is compact, there is a finite subcover } \left\{\mathfrak{C}_{n}^{c}\right\}_{n \in A} \text{ where } A \subseteq \mathbb{N} \text{ is finite.}$ $\text{Let } K \in A \text{ be largest. So } \mathfrak{C}_{1} \subseteq \bigcup_{n \in A} \mathfrak{C}_{n}^{c} = \left(\bigcap_{n \in A} \mathfrak{C}_{n}\right)^{c} = \mathfrak{C}_{K}^{c} \implies \mathfrak{C}_{K} = \mathfrak{C}_{1} \cap \mathfrak{C}_{K} = \emptyset \implies \mathfrak{C}_{k} = \emptyset \forall k \geq K.$

11. For a bounded set $S \subseteq \mathbb{R}$ define diam $S := \sup_{x,y \in S} |x-y|$. Let $\mathfrak{C}_1,\mathfrak{C}_2,\cdots$ be a decreasing sequence of nonempty compact sets of \mathbb{R} such that $\lim_{n \to 0} (\operatorname{diam} \mathfrak{C}_n) = 0$. Show that $\bigcap_{n \to \infty} \mathfrak{C}_n$ is a singleton.

By the contrapositive of problem 10, conclude that $\mathfrak{C} := \bigcap_{n \in \mathbb{N}} \mathfrak{C}_n \neq \emptyset$. Let $x, y \in \mathfrak{C}$. So $x, y \in \mathfrak{C}_n \forall n$. $\forall r > 0, \exists n \in \mathbb{N}$ such that diam $\mathfrak{C}_n < r$ whence |x - y| < r. $\therefore |x - y| = 0$ so that x = y, i.e., $\mathfrak{C} = \{x\}$.

12. Let $\mathfrak{C}_1, \mathfrak{C}_2, \cdots$ be a sequence of closed subsets of compact $\mathfrak{C} \subseteq \mathbb{R}$ such that $\bigcap_{i \in A} \mathfrak{C}_i \neq \emptyset$ for any finite $A \subseteq \mathbb{N}$. Show $\bigcap_{n \in \mathbb{N}} \mathfrak{C}_n \neq \emptyset$. (**Hint:** Use a similar construction as in problem 10).

Let $\mathfrak{F}_i := \mathfrak{C}_i^c$. Each \mathfrak{F}_i is open. Suppose $\bigcap_{n \in \mathbb{N}} \mathfrak{C}_n = \emptyset$. Then $\bigcup_{n \in \mathbb{N}} \mathfrak{F}_n \supseteq \mathfrak{C}$. Let $\{\mathfrak{F}_i : i \in A\}$ be a finite subcover of \mathfrak{C} , for some finite $A \subseteq \mathbb{N}$. Then $\mathfrak{C} \subseteq \bigcup_{i \in A} \mathfrak{F}_i \implies \bigcap_{i \in A} \mathfrak{C}_i = \emptyset$. This contradicts our hypothesis.

13. For $S \subseteq \mathbb{R}$, show that $\mathbb{R} \setminus (\overline{S}) = (\mathbb{R} \setminus S)^{o}$.

We want to show $(\overline{S})^c = (S^c)^o$. Let $x \in (S^c)^o$. $\exists r > 0$ such that $\mathscr{B}_r(x) \subseteq S^c$. Assume $\exists (x_n) \in S^{\mathbb{N}}$ such that $\lim x_n = x$ (i.e., assume $x \in \overline{S}$). $\exists N \in \mathbb{N}$ such that $x_N \in \mathscr{B}_{\frac{r}{2}}(x) \subseteq S^c \implies x_N \notin S$, a contradiction. So, $x \in (\overline{S})^c$. Hence $(S^c)^o \subseteq (\overline{S})^c$. But $S \subseteq \overline{S} \implies (\overline{S})^c \subseteq S^c \implies (\overline{S})^c \subseteq (S^c)^o$. Conclude $(\overline{S})^c = (S^c)^o$.

14. (Something from sequences and series) Let (a_n) be a sequence of real numbers converging to a. Define a sequence (b_n) by $b_n \coloneqq \frac{\sum_{i=1}^n i \cdot a_i}{n(n+1)}$. Prove that $\lim_{n \to \infty} b_n = \frac{a}{2}$.

We equivalently $c_n \coloneqq \frac{\sum_{i=1}^n i \cdot a_i}{n(n+1)/2} = \frac{\sum_{i=1}^n i \cdot a_i}{\sum_{i=1}^n i} \xrightarrow{n \to \infty} a$. Fix $\varepsilon > 0$. Let N be such that $|a_i - a| < \frac{\varepsilon}{2} \forall i \ge N$. For large n, $|c_n - a| = \frac{\sum_{i=1}^n i \cdot |a_i - a|}{\sum_{i=1}^n i} = \frac{\sum_{i=1}^N i \cdot |a_i - a| + \sum_{i=N+1}^n i \cdot |a_i - a|}{n(n+1)/2} < \frac{\sum_{i=1}^N i \cdot |a_i - a|}{n(n+1)/2} + \frac{\varepsilon}{2}$. We can always choose M(>N) for which $\frac{\sum_{i=1}^N i \cdot |a_i - a|}{n(n+1)/2} < \frac{\varepsilon}{2} \forall n \ge M$. This proves that $|c_n - a| < \varepsilon \forall n \ge M$.