-	
4.4	$\alpha = 1 \times del(A_{31})$ constantly - $4 \times del(A_{32}) + 2 \times del(A_{33})$ - $2 \times del(A_{34}) - 3 \times del(A_{35})$
	(B= 3x det (B3,) - 12 x det (B32) + (x det (B33)) - (x det (B34) - 9x det (B35-)
	$A = \begin{bmatrix} 24 & -13 & 7 & 9 & 5 \\ 11 & 16 & -37 & 99 & 64 \\ 1 & 4 & 2 & 2 & -3 \\ 31 & -42 & 7-8 & 55 & -3 \\ 62 & 47 & 29 & -14 & -8 \end{bmatrix}$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	as we can see from B, the third now of A times 3 is the third now. By way row scalar property, we can $\alpha = 3\beta$.
4-6	(a) Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then $\det(A) = ad - bc$.
	Since a, b, c, d ave integers, ad-bc is also on integer as integers are closed under addition and multiplication.

