J/ψ Analysis

October 7, 2021

Post-JENNIFER J/ψ October 7, 2021 1/12

The Data - I

- The MC Data scattered across 10 data files (datapsiskim-61-*.root).
- NOTE: The following plots are directly taken from TBrowser.

• y axis: entries/0.0116 x axis: mass (in GeV)

The Data - II

Total Entries

Counted from the previously shown 6+4 images:

334876

The Chained Data - I

- Used TChain class to analyse a single .root file.
- The "Chained" histogram for the mass is (Total entries: 334876 chained successfully):

 \exists a sharp peak at 3.0 - 3.1 GeV - as expected.

The Chained Data - II

Specifically depicted the histograms for mass and energy because they were used in defining the cuts for selecting the candidates.

The Analysis - I: Making the cuts

- CUT 1 (on Mass):
 - From Page 4: peak of the signal lies within

```
\mathsf{mass} \in [2.9, 3.2]
```

```
Code snippet:
  for (int i = 0; i < jentry; i++)
  {
   if (mas < 2.9 && mas > 3.2) continue;
   Nj -> Fill(mas);
  }
}
```

- where
 - \star jentry: an int variable that gets the entries from the leaf iloop
 - Nj: an Ntuple that stores the signal(data) points from the cuts thus made
 - * mas: the leaf that stores the mass entries

6/12

The Analysis - II: Making the cuts

- CUT 2 (on Energy):
 - ▶ From Page 5: peak of the signal lies within

```
\mathsf{energy} \in [3.2, 4.0]
```

Code snippet:
 for (int i = 0; i < jentry; i++)
 {
 if (ene < 3.2 && ene > 4) continue;
 if (mas > 2.9 && mas < 3.2)
 Nj -> Fill(mas);
 }

where ene: the leaf that stores the energy entries

The Analysis - III: The data after the cuts

x axis: entries/0.003y axis: mass (in GeV)

8/12

The Analysis - IV: ROOFIT

- Seeds for the Fit:
 - ▶ Invariant mass \in [2.9, 3.2]
 - ► Signal type assumed: Gaussian
 - ★ Mean of the signal peak, mean = 3.0
 - ★ Width of the peak, width = 0.1
 - Background type assumed: 3rd order Chebyshev Polynomials
 - ► Signal to noise ratio, fsig= 0.5
 - ▶ Binning : 75 bins
- RooFit's results:

Variable	Value	Error/Tolerance
fsig	9.92460e-02	1.13378e-02
mean	3.09523e+00	1.01232e-03
width	9.29170e-03	1.05897e-03

The Analysis - V: The Final Plot

Figure: Model's PDF

Figure: Plotted data points with error bars

Post-JENNIFER J/ψ October 7, 2021 10/12

The Analaysis - VI: The Final Plot

The Comparison

From the PDG database (natural units):

$$\emph{m}^{\mathsf{PDG}}\emph{}_{J/\psi} = 3.0969 \pm 0.006 \; \mathsf{GeV}$$
 $\sigma^{\mathsf{PDG}}\emph{}_{J/\psi} = 92.9 \pm 2.8 \; \mathsf{keV}$

 From the fit (natural units)(rounded off to the same number of significant digits as in the PDG database):

$$m^{
m fit}{}_{J/\psi}=3.0952\pm0.001~{
m GeV}$$
 $\sigma^{
m fit}{}_{J/\psi}=92.9\pm1.1~{
m keV}$

< ロト < 個 ト < 重 ト < 重 ト 三 重 ・ の Q ()