Rank-65744 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_2^3 + X_3^3 + X_0^2 X_3 + X_0 X_1^2 + X_0 X_1 X_2 = 0$$

(1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(8)$ is 1229493390

General information

Number of lines	3
Number of points	57
Number of singular points	0
Number of Eckardt points	0
Number of double points	3
Number of single points	21
Number of points off lines	33
Number of Hesse planes	0
Number of axes	0
Type of points on lines	93
Type of lines on points	$2^3, 1^{21}, 0^{33}$

Singular Points

The surface has 0 singular points:

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{4673} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{4673} = \mathbf{Pl}(0,0,0,1,0,1)_{769}$$

$$\ell_1 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{138} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{138} = \mathbf{Pl}(0,0,1,1,1,1)_{1322}$$

$$\ell_2 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{666} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{666} = \mathbf{Pl}(1, 0, 1, 1, 1, 1)_{1323}$$

Rank of lines: (4673, 138, 666)

Rank of points on Klein quadric: (769, 1322, 1323)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 3 Double points: The double points on the surface are:

$$P_{138} = (0,0,1,1) = \ell_0 \cap \ell_1$$

$$P_{146} = (0,1,1,1) = \ell_0 \cap \ell_2$$

$P_5 = (1, 1, 0, 0) = \ell_1 \cap \ell_2$

Single Points

The surface has 21 single points: The single points on the surface are:

$0: P_1 = (0, 1, 0, 0)$ lies on line ℓ_0
1: $P_4 = (1, 1, 1, 1)$ lies on line ℓ_1
$2: P_{139} = (1,0,1,1)$ lies on line ℓ_2
$3: P_{153} = (0, 2, 1, 1)$ lies on line ℓ_0
4: $P_{155} = (2, 2, 1, 1)$ lies on line ℓ_1
$5: P_{156} = (3, 2, 1, 1)$ lies on line ℓ_2
6: $P_{161} = (0, 3, 1, 1)$ lies on line ℓ_0
7: $P_{163} = (2, 3, 1, 1)$ lies on line ℓ_2
8: $P_{164} = (3, 3, 1, 1)$ lies on line ℓ_1
9: $P_{169} = (0, 4, 1, 1)$ lies on line ℓ_0
10: $P_{173} = (4, 4, 1, 1)$ lies on line ℓ_1

11: $P_{174} = (5, 4, 1, 1)$ lies on line ℓ_2 12: $P_{177} = (0, 5, 1, 1)$ lies on line ℓ_0 13: $P_{181} = (4, 5, 1, 1)$ lies on line ℓ_1 14: $P_{182} = (5, 5, 1, 1)$ lies on line ℓ_1 15: $P_{185} = (0, 6, 1, 1)$ lies on line ℓ_1 16: $P_{191} = (6, 6, 1, 1)$ lies on line ℓ_1 17: $P_{192} = (7, 6, 1, 1)$ lies on line ℓ_2 18: $P_{193} = (0, 7, 1, 1)$ lies on line ℓ_0 19: $P_{199} = (6, 7, 1, 1)$ lies on line ℓ_2

20: $P_{200} = (7,7,1,1)$ lies on line ℓ_1

The single points on the surface are:

Points on surface but on no line

The surface has 33 points not on any line: The points on the surface but not on lines are:

$$\begin{array}{lll} 0: \ P_{12} = (1,0,1,0) & 8: \ P_{133} = (3,7,0,1) \\ 1: \ P_{20} = (1,1,1,0) & 9: \ P_{207} = (6,0,2,1) \\ 2: \ P_{76} = (2,0,0,1) & 10: \ P_{223} = (6,2,2,1) \\ 3: \ P_{78} = (4,0,0,1) & 11: \ P_{237} = (4,4,2,1) \\ 4: \ P_{81} = (7,0,0,1) & 12: \ P_{244} = (3,5,2,1) \\ 5: \ P_{83} = (1,1,0,1) & 13: \ P_{253} = (4,6,2,1) \\ 6: \ P_{95} = (5,2,0,1) & 14: \ P_{260} = (3,7,2,1) \\ 7: \ P_{112} = (6,4,0,1) & 15: \ P_{301} = (4,4,3,1) \end{array}$$

```
16: P_{325} = (4,7,3,1)
                                                                  25: P_{475} = (2, 2, 6, 1)
17: P_{332} = (3, 0, 4, 1)
                                                                  26: P_{491} = (2, 4, 6, 1)
18: P_{350} = (5, 2, 4, 1)
                                                                  27: P_{526} = (5, 0, 7, 1)
19: P_{360} = (7, 3, 4, 1)
                                                                  28: P_{539} = (2, 2, 7, 1)
20: P_{364} = (3, 4, 4, 1)
                                                                  29: P_{551} = (6, 3, 7, 1)
21: P_{382} = (5, 6, 4, 1)
                                                                  30: P_{559} = (6, 4, 7, 1)
22: P_{392} = (7,7,4,1)
                                                                  31: P_{563} = (2, 5, 7, 1)
23: P_{416} = (7, 2, 5, 1)
                                                                  32: P_{582} = (5,7,7,1)
24: P_{456} = (7, 7, 5, 1)
```

Line Intersection Graph

	Iٽ	1	
0	0	1	1
1	1	0	1
2	1	1	0

Neighbor sets in the line intersection graph:

Line 0 intersects

Li	ne ℓ_1	ℓ_2
in poi	nt P_{138}	P_{146}

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_{138}	P_5

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_{146}	P_5

The surface has 57 points:

The points on the surface are:

$0: P_1 = (0, 1, 0, 0)$	$20: P_{164} = (3,3,1,1)$	$40: P_{325} = (4,7,3,1)$
$1: P_4 = (1, 1, 1, 1)$	$21: P_{169} = (0, 4, 1, 1)$	$41: P_{332} = (3,0,4,1)$
$2: P_5 = (1, 1, 0, 0)$	$22: P_{173} = (4, 4, 1, 1)$	$42: P_{350} = (5, 2, 4, 1)$
$3: P_{12} = (1,0,1,0)$	$23: P_{174} = (5, 4, 1, 1)$	$43: P_{360} = (7, 3, 4, 1)$
$4: P_{20} = (1, 1, 1, 0)$	$24: P_{177} = (0, 5, 1, 1)$	$44: P_{364} = (3, 4, 4, 1)$
$5: P_{76} = (2,0,0,1)$	$25: P_{181} = (4, 5, 1, 1)$	$45: P_{382} = (5, 6, 4, 1)$
$6: P_{78} = (4, 0, 0, 1)$	$26: P_{182} = (5, 5, 1, 1)$	$46: P_{392} = (7,7,4,1)$
$7: P_{81} = (7,0,0,1)$	$27: P_{185} = (0, 6, 1, 1)$	$47: P_{416} = (7, 2, 5, 1)$
$8: P_{83} = (1, 1, 0, 1)$	$28: P_{191} = (6, 6, 1, 1)$	$48: P_{456} = (7, 7, 5, 1)$
$9: P_{95} = (5, 2, 0, 1)$	$29: P_{192} = (7, 6, 1, 1)$	$49: P_{475} = (2, 2, 6, 1)$
$10: P_{112} = (6, 4, 0, 1)$	$30: P_{193} = (0,7,1,1)$	$50: P_{491} = (2, 4, 6, 1)$
$11: P_{133} = (3, 7, 0, 1)$	$31: P_{199} = (6,7,1,1)$	$51: P_{526} = (5, 0, 7, 1)$
$12: P_{138} = (0, 0, 1, 1)$	$32: P_{200} = (7, 7, 1, 1)$	$52: P_{539} = (2, 2, 7, 1)$
$13: P_{139} = (1,0,1,1)$	$33: P_{207} = (6,0,2,1)$	$53: P_{551} = (6, 3, 7, 1)$
$14: P_{146} = (0, 1, 1, 1)$	$34: P_{223} = (6, 2, 2, 1)$	$54: P_{559} = (6, 4, 7, 1)$
$15: P_{153} = (0, 2, 1, 1)$	$35: P_{237} = (4, 4, 2, 1)$	$55: P_{563} = (2, 5, 7, 1)$
$16: P_{155} = (2, 2, 1, 1)$	$36: P_{244} = (3, 5, 2, 1)$	$56: P_{582} = (5, 7, 7, 1)$
$17: P_{156} = (3, 2, 1, 1)$	$37: P_{253} = (4, 6, 2, 1)$	002 (, , , ,)
$18: P_{161} = (0, 3, 1, 1)$	$38: P_{260} = (3,7,2,1)$	
$19: P_{163} = (2, 3, 1, 1)$	$39: P_{301} = (4, 4, 3, 1)$	
10 1 103 (2,0,1,1)	00 : 1 301 (1, 1, 0, 1)	