

WIRESHARK

Res. Asst. Melek ŞENTÜRK

The device is using a wireless connection.

Traffic inside the computer (localhost, 127.0.0.1)

If there are multiple Ethernet cards, a VPN connection, or a virtual network adapter

Interfaces that can be used to capture network traffic are listed. The desired network interface can be selected by double-clicking.

UDP(USER DATAGRAM PROTOCOL)

UDP (User Datagram Protocol) is a connectionless and unreliable transport layer protocol.

UDP is used in applications that require fast and low-latency data transmission. However, since it lacks error control and packet sequencing mechanisms, packet loss or ordering errors may occur.

UDP(USER DATAGRAM PROTOCOL)

udp									
No.	Time	Source	Destination	Protocol L	ength.	Info			
Г	4 1.012650	23.58.222.27	10.25.130.93	UDP	1278	443 → 52715 Len=1236			
	5 1.279426	193.140.13.75	10.25.130.93	UDP	63	443 → 50878 Len=21			
	6 2.680494	2.19.193.42	10.25.130.93	UDP	1292	443 → 54571 Len=1250			
	10 5.999318	2.19.193.42	10.25.130.93	UDP	137	443 → 54571 Len=95			
	11 6.436455	23.58.222.27	10.25.130.93	UDP	146	443 → 51478 Len=104			
L	12 6.992422	23.58.222.27	10.25.130.93	UDP	146	443 → 52715 Len=104			
	13 7.668131	193.140.13.75	10.25.130.93	UDP	144	443 → 50878 Len=102			

```
Wireshark · Paket 4 · Wi-Fi
```

- > Frame 4: 1278 bytes on wire (10224 bits), 1278 bytes captured (10224 bits) on interface \Device\NPF_{937ABBDD-A154-45C0-8C41-4162E533F585}, id 0
- > Ethernet II, Src: HuaweiTechno_7f:f7:b5 (ac:75:1d:7f:f7:b5), Dst: Intel_09:6d:11 (d0:ab:d5:09:6d:11)
- > Internet Protocol Version 4, Src: 23.58.222.27, Dst: 10.25.130.93
- > User Datagram Protocol, Src Port: 443, Dst Port: 52715
- Data (1236 bytes)

Data [...]: 49d1f312eb1cbbee2127721bebf2004a926c9191b0a5d25421b14c3e58e76d49c7d73ced1c4642fc845d1b870ffa4e2e8b34b15d3c8931c7cf94f6256bec51e3e096

[Length: 1236]

UDP USAGE AREAS

DNS (Domain Name System): It performs fast queries to resolve the IP addresses of websites.

SSDP (Simple Service Discovery Protocol): It sends UDP broadcasts to discover network devices.

DHCP (Dynamic Host Configuration Protocol): It uses UDP to automatically assign IP addresses to devices.

DNS(DOMAIN NAME SYSTEM)

dns	dns && frame contains "udemy"										
No.	Time	Source	Destination	Protocol	gth Info						
→ 25	57 16.709494	192.168.1.101	192.168.1.1	DNS	69 Standard query 0x959	d A udemy.com					
25	58 16.709730	192.168.1.101	192.168.1.1	DNS	69 Standard query 0xfa7	1 HTTPS udemy.com					
25	59 16.716843	192.168.1.101	192.168.1.1	DNS	69 Standard query 0x15f	9 A udemy.com					
25	60 16.717042	192.168.1.101	192.168.1.1	DNS	69 Standard query 0x629	3 HTTPS udemy.com					
_ 25	61 16.721099	192.168.1.1	192.168.1.101	DNS	101 Standard query respo	nse 0x959d A udemy.com A 104.16.142.237 A 104.16.143					
25	62 16.721099	192.168.1.1	192.168.1.101	DNS	101 Standard query respo	nse 0x15f9 A udemv.com A 104.16.142.237 A 104.16.143					

When we enter "udemy.com" in the browser, the computer tries to learn the IP address via "192.168.1.1".

SSDP (SIMPLE SERVICE DISCOVERY PROTOCOL

SS	ssdp										
No.		Time	Source	Destination	Protocol	Length		Info			
Г	292	58.810979	192.168.1.1	239.255.255.250	SSDP	:	174	M-SEARCH * HTTP/1.1			
	293	59.067901	192.168.1.1	239.255.255.250	SSDP		174	M-SEARCH * HTTP/1.1			
	294	59.327628	192.168.1.1	239.255.255.250	SSDP	:	175	M-SEARCH * HTTP/1.1			
	295	59.580310	192.168.1.1	239.255.255.250	SSDP		175	M-SEARCH * HTTP/1.1			

SSDP is a discovery protocol that operates within the UPnP (Universal Plug and Play) framework and enables devices to find each other.

If there are UPnP-supported devices on the network, they will respond and advertise their services.

DHCP (DYNAMIC HOST CONFIGURATION PROTOCOL)


```
C:\Users\Melek>ipconfig /renew
Windows IP Configuration
No operation can be performed on Ethernet whi
No operation can be performed on Yerel Ağ Bağ
No operation can be performed on Yerel Ağ Bağ
No operation can be performed on Yerel Ağ Bağ
```

It is a protocol that automatically assigns IP addresses, gateway, DNS servers, and other network configurations to devices on the network.

QUIC (QUICK UDP INTERNET CONNECTIONS)

udp &8	udp && quic									
No.	Time	Source	Destination	Protocol	Length	Info				
6339	23.083580	212.156.180.14	192.168.1.101	QUIC	1292	Protected	Payload	(KP0)		
6340	23.083580	212.156.180.14	192.168.1.101	QUIC	1292	Protected	Payload	(KP0)		
6341	23.083580	212.156.180.14	192.168.1.101	QUIC	1292	Protected	Payload	(KP0)		
6342	23.083580	212.156.180.14	192.168.1.101	QUIC	1292	Protected	Payload	(KP0)		
6343	23.083705	192.168.1.101	212.156.180.14	QUIC	75	Protected	Payload	(KP0)	DCID=ea3224b4e9e1cacb	

The Destination Connection ID used on the target side of the connection (server side)

QUIC is a connection protocol that operates over UDP and is used especially by Google, YouTube, Chrome, and HTTP/3-based web services.

TCP(TRANSMISSON CONTROL PROTOCOL)

TCP is a connection-oriented protocol used to ensure communication security and data integrity.

A connection is established before communication begins between two devices (3-way handshake). After data is transmitted, the connection is closed in a controlled manner (4-way handshake).

Data is sent in order, and it is ensured that it reaches completely. Error checking and retransmission of lost packets are provided. The data rate is adjusted according to the receiver, so the sender does not overwhelm the receiver.

TCP(TRANSMISSON CONTROL PROTOCOL)

```
192.168.1.101
                                                           66 51142 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK PERM
                     217.20.58.100
                                          TCP
                                                           66 80 → 51142 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1412 SACK_PERM WS=8
217.20.58.100
                     192.168.1.101
                                          TCP
                                                           54 51142 → 80 [ACK] Seq=1 Ack=1 Win=131072 Len=0
192.168.1.101
                     217.20.58.100
                                          TCP
                                                          336 GET /msdownload/update/v3/static/trustedr/en/pinrulesstl.cab?c32940e903be1acb HTTP/1.1
192.168.1.101
                     217.20.58.100
                                          HTTP
217.20.58.100
                     192.168.1.101
                                                           54 80 → 51142 [ACK] Seq=1 Ack=283 Win=66776 Len=0
                                          TCP
217.20.58.100
                     192.168.1.101
                                          HTTP
                                                          400 HTTP/1.1 304 Not Modified
192.168.1.101
                     217.20.58.100
                                                           54 51142 → 80 [ACK] Seq=283 Ack=347 Win=130816 Len=0
                                          TCP
```

A TCP connection is established between the client and the server. The client sends an HTTP GET request to the server. The server responds with a 304 Not Modified (the cached version is available). Communication is completed with TCP ACK packets.

TLS (TRANSPORT LAYER SECURİTY)

No.	Time	Source	Destination	Protocol Length		Info
_ 1	0.000000	104.16.102.112	10.25.130.93	TLSv1.2	92	Application Data
1	0.001199	10.25.130.93	104.16.102.112	TLSv1.2	96	Application Data

- > Frame 1: 92 bytes on wire (736 bits), 92 bytes captured (736 bits) on interface \Device\NF
- > Ethernet II, Src: HuaweiTechno_7f:f7:b5 (ac:75:1d:7f:f7:b5), Dst: Intel_09:6d:11 (d0:ab:d9
- > Internet Protocol Version 4, Src: 104.16.102.112, Dst: 10.25.130.93
- > Transmission Control Protocol, Src Port: 443, Dst Port: 52368, Seq: 1, Ack: 1, Len: 38
- ▼ Transport Layer Security
 - ▼ TLSv1.2 Record Layer: Application Data Protocol: Hypertext Transfer Protocol

Content Type: Application Data (23)

Version: TLS 1.2 (0x0303)

Length: 33

Encrypted Application Data: d9890bdb9b0a10402d2b8f011cef3bbdfc2e1ed777d9dd4c4619fb4a

[Application Data Protocol: Hypertext Transfer Protocol]

ICMP PROTOKOLU

ICMP (Internet Control Message Protocol) is a network protocol that allows network devices (routers, computers, etc.) to exchange information about network connections.

ICMP is not used for data transmission; instead, it is used to report network errors and check the status of the network. It notifies whether packets have reached their destination.

ping command: Sends an ICMP Echo Request message to the target computer and measures the response time.

tracert (Windows) / traceroute (Linux): Detects the routers (hops) the packet passes through.

PING TRAFFIC WITH WIRESHARK

icmp											
	Time	Source	Destination	Protocol Length	Info						
51	5.979836	192.168.1.101	172.217.17.110	ICMP	74 Echo	(ping)	request	id=0x0001,	seq=296/10241,	ttl=128	(reply in 53)
53	6.003961	172.217.17.110	192.168.1.101	ICMP	74 Echo	(ping)	reply	id=0x0001,	seq=296/10241,	ttl=56	(request in 51)
56	6.988251	192.168.1.101	172.217.17.110	ICMP	74 Echo	(ping)	request	id=0x0001,	seq=297/10497,	ttl=128	(reply in 57)
57	7.012065	172.217.17.110	192.1 Komut İstemi					× 01,	seq=297/10497,	ttl=56	(request in 56)
64	8.012268	192.168.1.101	172 1	1			_		seq=298/10753,	ttl=128	(reply in 65)
65	8.035842	172.217.17.110	192.C:\Users\Melek>	ping googie.com				^ 01,	seq=298/10753,	ttl=56	(request in 64)
66	9.024822	192.168.1.101	172. Pinging google.	com [172 217 17	1101 wit	h 32 hv	tes of da	01,	seq=299/11009,	ttl=128	(reply in 67)
67	9.048942	172.217.17.110	192. Reply from 172.	217.17.110: bvte	s=32 time	n 32 by e=24ms	TTL=56	01,	seq=299/11009,	ttl=56	(request in 66)
			Reply from 172.	217.17.110: byte	s=32 time	e=24ms	TTL=56				
			Reply from 172.	217.17.110: byte	s=32 tim	e=23ms	TTL=56				
			Reply from 172.	217.17.110: byte	s=32 time	e=24ms	TTL=56				
				5 472 247 47	440						
				for 172.217.17.		-+ a	/0º/ lass)				
				nt = 4, Received nd trip times in	-			,			
				3ms, Maximum = 2							
			FITTIMUM – Z	Jiii - Z	mis, rive	- ugc	231113				

PING TRAFFIC WITH WIRESHARK

■ Wireshark · Paket 51 · Wi-Fi

[Length: 32]

```
▼ Internet Control Message Protocol

     Type: 8 (Echo (ping) request)
     Code: 0
     Checksum: 0x4c33 [correct]
     [Checksum Status: Good]
     Identifier (BE): 1 (0x0001)
     Identifier (LE): 256 (0x0100)
     Sequence Number (BE): 296 (0x0128)
     Sequence Number (LE): 10241 (0x2801)
     [Response frame: 53]
  Data (32 bytes)
        Data: 6162636465666768696a6b6c6d6e6f7071727374757677616263646566676869
```

Paket içeriği

Paket içeriğinin ASCII kodu

PING TRAFFIC WITH WIRESHARK

IP FILTER

ip.addr == 192.168.1.101 and icmp										
No.	Time	Source	Destination	Protocol						
	51 5.979836	192.168.1.101	172.217.17.110	ICMP						
	53 6.003961	172.217.17.110	192.168.1.101	ICMP						
	56 6.988251	192.168.1.101	172.217.17.110	ICMP						
	57 7.012065	172.217.17.110	192.168.1.101	ICMP						
	64 8.012268	192.168.1.101	172.217.17.110	ICMP						
	65 8.035842	172.217.17.110	192.168.1.101	ICMP						
	66 9.024822	192.168.1.101	172.217.17.110	ICMP						
	67 9.048942	172.217.17.110	192.168.1.101	ICMP						
l										

HTTP-HTTPS

HTTP

Hypertext Transfer Protocol

HTTP (Hypertext Transfer Protocol) is a protocol used for data transmission on the web.

Web pages, images, videos, and other content on the internet are transmitted over HTTP.

HTTP is based on a request-response model that facilitates data exchange between the client (usually a web browser) and the server (the server hosting the website).

HTTPS

Hypertext Transfer Protocol Secure

It is the secure version of the HTTP protocol.

It ensures the encrypted transmission of data on the internet, protecting users' privacy and security.

HTTPS is used on websites where personal information (passwords, credit card details, etc.) needs to be transmitted and makes the communication between the user and the server secure.

HTTP REQUEST

We are making an HTTP request from the browser.

HTTP

Wireshark · Paket 7595 · Wi-Fi Destination Address: 34.223.124.45 [Stream index: 69] Transmission Control Protocol, Src Port: 50307, Dst Port: 80, Seq: 1, Ack: 1, Len: 448 ➤ Hypertext Transfer Protocol > GET / HTTP/1.1\r\n Host: neverssl.com\r\n Connection: keep-alive\r\n Upgrade-Insecure-Requests: 1\r\n User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/133.0.0.0 Safari/53 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/si Accept-Encoding: gzip, deflate\r\n Accept-Language: $tr-TR, tr; q=0.9, en-US; q=0.8, en; q=0.7 \r\n$ $\r\rangle$ [Response in frame: 7602] [Full request URI: http://neverssl.com/]

