max matching - Blossom's algorithm

Finding max matching \rightarrow start with $m = \emptyset$ \rightarrow Find any path P in (G, m) \rightarrow If P == [J], relian m, as max matchy \rightarrow else $m = m \oplus P$

Finding augmenting path in (G,M) U = un matched verblescoredorbus

for each $u \in U$ coredorbus

coredorbus

for each $u \in U$ coredorbus

coredorbus

for each $u \in U$ for each $u \in U$ coredorbus

for each $u \in U$ coredorbus

for each $u \in U$ coredorbus

for each $u \in U$ for each $u \in U$ coredorbus

for each $u \in U$ for each $u \in U$ coredorbus

for each $u \in U$ for each $u \in U$ coredorbus

for each $u \in U$ for each u

mark each edge in E \ m as we explosed, each edge in m as explosed.

Queue = V = vertice to be explored = U

I is not empty: while v = V. psp () for every wexplosed cage $\sqrt{-\omega}$ ω¢ F we F (so w matched vertex) ← mexpers, s= € m * label w odd * label 2 even * add y-w, w-x to bree (1) (and hence + F) w, x E F also now mark parent (x) = w parent (w)= V add a to V.

n lakes

odd

1

No thing

Do

mark v-w as explored.

more details

contraction

vertex b

if you contract B,

o = will le matched

