lab/exercicios_cap3

Felipe Albuquerque 18 de junho de 2019

	,	•		
$\mathbf{E}\mathbf{xer}$	c_1	c_1	O	S

1.

A hipótese nula indica que o orçamento para Televisão, Jornais e Rádio não impactam as vendas. Em notação: $H_0^1: \beta_1 = 0, H_0^2: \beta_2 = 0, H_0^3: \beta_3 = 0$. Para $TV(\beta_1)$ e Rádio (β_2) , podemos rejeitar a hipótese nula. Para jornais (β_3) , não podemos.

2.

O KNN (K-nearest-neighbors) é um método de classificação de dados categóricos. Nele, se identifica os valores mais próximos de x_0 e depois estima a probabilidade de x_0 ser daquela categoria. O modelo de regressão KNN, da mesma forma, identifica os valores mais próximos de x_0 , e depois estima $f(x_0)$ como a média das respostas (na training data) entre esses "vizinhos".

3.

A função fica Y = 50 + 20gpa + 0.07iq + 35gender + 0.01gpa * iq - 10gpa * gender

 \mathbf{a}

b

```
iq = 110
gpa = 4
gender = 1

Y = 50 + 20*gpa + 0.07*iq + 35*gender + 0.01*110*4 - 10*gpa*gender
Y
```

[1] 137.1

c

Falso. O parâmetro da interação só mede a intensidade da interação. Para verificar se há um efeito significativo da interação, devemoz conduzir um teste de hipótese e olhar o p-valor.

4

 \mathbf{a}

A primeira vista, esperamos que a regressão linear tenha um RSS menor, já que a relação entre X e Y é linear.

b

 \mathbf{c}

Aqui acontece o oposto. A regressão polinomial é mais flexível que a linear. Como a relação entre X e Y é não-linear, esperamos portanto um menor RSS com a polinomial.

 \mathbf{d}

5

$$\hat{y_i} = x_i \hat{\beta}$$

e:

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i'=1}^{n} x_{i'}^2}$$

Então:

$$\hat{y_i} = x_i \frac{\sum_{i=1}^n x_i y_i}{\sum_{i'=1}^n x_{i'}^2}$$

logo:

$$\hat{y_i} = \sum_{i=1}^{n} \left(\frac{x_i y_i * x_i}{\sum_{i'=1}^{n} x_{i'}^2} \right)$$

$$\hat{y_i} = \sum_{i=1}^{n} \left(\frac{x_i * x_i}{\sum_{i'=1}^{n} x_{i'}^2} y_i \right)$$

$$a_{i'} = \frac{x_i * x_i}{\sum_{i'=1}^n x_{i'}^2}$$

6

7

```
8
```

```
\mathbf{a}
```

```
auto = Auto
lm1 = lm(mpg \sim horsepower, data = auto)
summary(lm1)
##
## Call:
## lm(formula = mpg ~ horsepower, data = auto)
##
## Residuals:
##
        Min
                  1Q Median
                                     3Q
                                             Max
## -13.5710 -3.2592 -0.3435 2.7630 16.9240
##
## Coefficients:
##
                Estimate Std. Error t value
                                                         Pr(>|t|)
## (Intercept) 39.935861 0.717499 55.66 <0.00000000000000002 ***
## horsepower -0.157845 0.006446 -24.49 <0.00000000000000000 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.906 on 390 degrees of freedom
## Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049
## F-statistic: 599.7 on 1 and 390 DF, p-value: < 0.00000000000000022
i Há uma associação clara entre horse
power e mpg.  
ii o p valor é menor que 2e^{-16}, o que indica uma associação forte.
iii associação negativa, já que o coeficiente é de -0.157.
iiii Para horsepower - 98, valor de mpg =
hpr98 <- data.frame(horsepower=98)
predict(lm1, hpr98)
## 24.46708
Intervalo de confiança:
predict(lm1, hpr98, interval = "confidence")
          fit
                   lwr
## 1 24.46708 23.97308 24.96108
b
  ggplot(aes(x = horsepower, y = mpg)) + geom_point() +
 geom_smooth(method = "lm") +
 theme_hc()
```


par(mfrow=c(2,2))
plot(lm1)

Há uma não-linearidade dos resíduos.

9

 \mathbf{a}

```
auto %>%
  dplyr::select(-name) %>%
  GGally::ggpairs()
```


b

```
## mpg
                1.0000000 -0.7776175
                                      -0.8051269 -0.7784268 -0.8322442
## cylinders
                         1.0000000
                                       -0.7776175
                          0.9508233
## displacement -0.8051269
                                       1.0000000
                                                 0.8972570
                                                            0.9329944
## horsepower
               -0.7784268 0.8429834
                                       0.8972570
                                                 1.0000000
                                                            0.8645377
## weight
               -0.8322442 0.8975273
                                       0.9329944 0.8645377
                                                            1.0000000
## acceleration 0.4233285 -0.5046834
                                      -0.5438005 -0.6891955 -0.4168392
## year
                0.5805410 -0.3456474
                                      -0.3698552 -0.4163615 -0.3091199
                0.5652088 -0.5689316
                                      -0.6145351 -0.4551715 -0.5850054
## origin
##
               acceleration
                                          origin
                                 year
                  0.4233285 0.5805410 0.5652088
## mpg
## cylinders
                 -0.5046834 -0.3456474 -0.5689316
## displacement
                 -0.5438005 -0.3698552 -0.6145351
## horsepower
                 -0.6891955 -0.4163615 -0.4551715
## weight
                 -0.4168392 -0.3091199 -0.5850054
## acceleration
                1.0000000 0.2903161 0.2127458
## year
                 0.2903161 1.0000000 0.1815277
## origin
                 0.2127458 0.1815277 1.0000000
```

```
\mathbf{c}
```

plot(lm2)

```
lm2 \leftarrow lm(mpg \sim . -name, data = auto)
summary(lm2)
##
## Call:
## lm(formula = mpg ~ . - name, data = auto)
##
## Residuals:
##
      Min
              1Q Median
                             3Q
                                   Max
## -9.5903 -2.1565 -0.1169 1.8690 13.0604
##
## Coefficients:
##
                Estimate Std. Error t value
                                                     Pr(>|t|)
## (Intercept) -17.218435 4.644294 -3.707
                                                      0.00024 ***
## cylinders
             -0.493376 0.323282 -1.526
                                                      0.12780
## displacement 0.019896 0.007515
                                   2.647
                                                      0.00844 **
## horsepower
               -0.016951 0.013787 -1.230
                                                      0.21963
## weight
               ## acceleration 0.080576 0.098845
                                   0.815
                                                      0.41548
                ## year
## origin
                1.426141 0.278136
                                   5.127
                                                  0.000000467 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared: 0.8215, Adjusted R-squared: 0.8182
## F-statistic: 252.4 on 7 and 384 DF, p-value: < 0.00000000000000022
i Existe
ii displacement (0.019896); weight (-0.006474); year (0.750773) e origin (1.426141)
iii versões mais recentes de carros conseguem consumir menos combustível
\mathbf{d}
par(mfrow=c(2,2))
```


Os erros estão mais lineares, o que aponta para uma homocedasticidade desejada.

 \mathbf{e}


```
lm3 <- lm(mpg ~ horsepower + year + horsepower*year, data = auto)</pre>
summary(lm3)
##
## Call:
## lm(formula = mpg ~ horsepower + year + horsepower * year, data = auto)
##
## Residuals:
##
        Min
                   1Q
                         Median
                                       3Q
                                                Max
   -12.3492 -2.4509
                        -0.4557
                                   2.4056
##
                                           14.4437
##
## Coefficients:
##
                        Estimate Std. Error t value
                                                                    Pr(>|t|)
## (Intercept)
                                    12.117256 -10.449 <0.0000000000000000 ***
                     -126.608853
## horsepower
                                     0.115374
                                                 1.045674
  year
##
                        2.191976
                                     0.161350 13.585 < 0.0000000000000000 ***
##
  horsepower:year
                       -0.015959
                                     0.001562 -10.217 < 0.0000000000000000 ***
                    0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 3.901 on 388 degrees of freedom
## Multiple R-squared: 0.7522, Adjusted R-squared: 0.7503
## F-statistic: 392.5 on 3 and 388 DF, p-value: < 0.00000000000000022
par(mfrow=c(2,2))
plot(lm3)
                                                 Standardized residuals
                Residuals vs Fitted
                                                                     Normal Q-Q
     15
                      O334
Residuals
     0
     -15
          5
              10
                  15
                       20
                            25
                                30
                                     35
                                          40
                                                           -3
                                                                 -2
                                                                                     2
                                                                                           3
                                                                  Theoretical Quantiles
                     Fitted values
Standardized residuals
                                                 Standardized residuals
                  Scale-Location
                                                               Residuals vs Leverage
     2.0
     0.
                                                                               O
                                                                    ook's distance
     0.0
                                                       4
          5
                  15
                       20
                            25
                                30
                                     35
                                          40
                                                          0.00
                                                                    0.02
                                                                               0.04
                                                                                         0.06
              10
                     Fitted values
                                                                       Leverage
```

```
\mathbf{f}
```

```
lm4 <- lm(mpg ~ weight, data = auto)</pre>
summary(lm4)
##
   Call:
   lm(formula = mpg ~ weight, data = auto)
##
## Residuals:
##
         Min
                    1Q
                          Median
                                         3Q
                                                  Max
   -11.9736 -2.7556
                        -0.3358
                                    2.1379
                                             16.5194
##
##
   Coefficients:
##
                  Estimate Std. Error t value
                                                               Pr(>|t|)
                               0.798673
                                           57.87 < 0.0000000000000000 ***
## (Intercept) 46.216524
                 -0.007647
                               0.000258 -29.64 < 0.0000000000000000 ***
## weight
## ---
## Signif. codes:
                     0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.333 on 390 degrees of freedom
## Multiple R-squared: 0.6926, Adjusted R-squared: 0.6918
## F-statistic: 878.8 on 1 and 390 DF, p-value: < 0.00000000000000022
par(mfrow = c(2,2))
plot(lm4)
                                                    Standardized residuals
                 Residuals vs Fitted
                                                                        Normal Q-Q
      15
Residuals
                                                         က
      0
                                                         0
     -15
                                                         က
              10
                          20
                                25
                                      30
                                                                               0
                                                                                         2
                                                                                               3
                     15
                                                              -3
                      Fitted values
                                                                     Theoretical Quantiles
(Standardized residuals)
                                                    Standardized residuals
                   Scale-Location
                                                                  Residuals vs Leverage
     2.0
                                                                     0
     1.0
                                                                             distance
     0.0
              10
                          20
                                25
                                      30
                                                            0.000
                                                                     0.005
                                                                             0.010
                                                                                      0.015
                     15
                      Fitted values
                                                                           Leverage
lm5 <- lm(mpg ~ log(weight), data = auto)</pre>
summary(lm5)
```

```
##
## Call:
   lm(formula = mpg ~ log(weight), data = auto)
##
## Residuals:
         Min
                                         3Q
##
                    1Q
                          Median
                                                  Max
   -12.4315 -2.6752 -0.2888
                                     1.9429
                                             16.0136
##
##
## Coefficients:
##
                 Estimate Std. Error t value
                                                              Pr(>|t|)
##
   (Intercept) 209.9433
                                6.0002
                                          34.99 < 0.0000000000000000 ***
                                0.7534 -31.10 <0.0000000000000000 ***
   log(weight) -23.4317
##
##
                       '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 4.189 on 390 degrees of freedom
## Multiple R-squared: 0.7127, Adjusted R-squared: 0.7119
## F-statistic: 967.3 on 1 and 390 DF, p-value: < 0.00000000000000022
par(mfrow = c(2,2))
plot(lm5)
                                                    Standardized residuals
                 Residuals vs Fitted
                                                                        Normal Q-Q
     15
Residuals
                                                         \alpha
      0
     -15
           10
                 15
                       20
                             25
                                   30
                                         35
                                                              -3
                                                                                          2
                                                                                               3
                                                                     -2
                      Fitted values
                                                                     Theoretical Quantiles
/Standardized residuals
                                                    Standardized residuals
                   Scale-Location
                                                                   Residuals vs Leverage
     2.0
                                                         \alpha
     1.0
                                                         ς,
     0.0
           10
                 15
                       20
                             25
                                   30
                                         35
                                                             0.000
                                                                      0.004
                                                                                0.008
                                                                                         0.012
                      Fitted values
                                                                           Leverage
```

Normalizando a variável weight, os erros ficam praticamente lineares. # $10\,$

```
rm(list=ls())
data = Carseats
```

```
\mathbf{a}
```

```
lm1 <- lm(Sales ~ Population + Urban + US, data = data)</pre>
summary(lm1)
##
## Call:
## lm(formula = Sales ~ Population + Urban + US, data = data)
##
## Residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
## -7.3323 -1.9844 -0.0824 1.8783 8.4053
##
## Coefficients:
                 Estimate Std. Error t value
                                                           Pr(>|t|)
##
## (Intercept) 6.7262086 0.4009409 16.776 < 0.000000000000000002 ***
## Population
               0.0007415 0.0009499
                                        0.781
                                                            0.435475
## UrbanYes
               -0.1341034 0.3063701 -0.438
                                                            0.661830
## USYes
                1.0360741 0.2921241
                                        3.547
                                                           0.000437 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
\#\# Residual standard error: 2.787 on 396 degrees of freedom
## Multiple R-squared: 0.03342,
                                     Adjusted R-squared:
## F-statistic: 4.563 on 3 and 396 DF, p-value: 0.003713
b
O aumento de uma unidade da população aumenta em 0.07 as unidades vendidas (0.0007);
Em áreas urbanas, as vendas são menores em 22 mil unidades (-0.0219)
As vendas aumentam em até 1000 unidades em locais dentro dos Estados Unidos (1.0360)
\mathbf{c}
               Sales = 6.7626 + 0.0007(Population) - 0.1341(Urban) + 1.0360(US)
## d
Pode-se rejeitar a hipótese nula para USYes.
\mathbf{e}
lm2 <- lm(Sales ~ US, data = data)</pre>
summary(lm2)
##
## Call:
## lm(formula = Sales ~ US, data = data)
##
## Residuals:
      Min
              1Q Median
                             3Q
                                   Max
## -7.497 -1.929 -0.105 1.836 8.403
##
## Coefficients:
```

```
Estimate Std. Error t value
                                                        Pr(>|t|)
                            0.2335 29.21 < 0.0000000000000000 ***
## (Intercept)
                 6.8230
                 1.0439
                                                        0.000372 ***
## USYes
                             0.2908
                                    3.59
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.783 on 398 degrees of freedom
## Multiple R-squared: 0.03136,
                                  Adjusted R-squared: 0.02893
## F-statistic: 12.89 on 1 and 398 DF, p-value: 0.0003723
\mathbf{f}
O segundo modelo e o primeiro contam um X^2 muito pequeno, de apenas 0.02. O RSE do segundo modelo é
um pouco menor.
\mathbf{g}
confint(lm2)
                   2.5 % 97.5 %
## (Intercept) 6.3638993 7.282157
## USYes
               0.4721887 1.615553
\mathbf{h}
outlierTest(lm1)
## No Studentized residuals with Bonferroni p < 0.05
## Largest |rstudent|:
      rstudent unadjusted p-value Bonferroni p
## 377 3.05528
                         0.0024011
                                         0.96043
11
rm(list=ls())
set.seed(1)
x <- rnorm(100)
y <- 2*x + rnorm(100)
a
lm1 < - lm(y ~ x - 1)
summary(lm1)
##
## Call:
## lm(formula = y \sim x - 1)
##
## Residuals:
       Min
                1Q Median
                                 3Q
                                        Max
```

-1.9154 -0.6472 -0.1771 0.5056 2.3109

```
##
## Coefficients:
   Estimate Std. Error t value
## x 1.9939 0.1065 18.73 <0.000000000000000 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9586 on 99 degrees of freedom
## Multiple R-squared: 0.7798, Adjusted R-squared: 0.7776
## F-statistic: 350.7 on 1 and 99 DF, p-value: < 0.0000000000000022
b
lm2 < -lm(x - y - 1)
summary(lm2)
##
## Call:
## lm(formula = x ~ y - 1)
## Residuals:
##
       Min
                1Q Median
                               3Q
                                        Max
## -0.8699 -0.2368 0.1030 0.2858 0.8938
##
## Coefficients:
## Estimate Std. Error t value
                                             Pr(>|t|)
## y 0.39111 0.02089 18.73 <0.000000000000000 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4246 on 99 degrees of freedom
## Multiple R-squared: 0.7798, Adjusted R-squared: 0.7776
## F-statistic: 350.7 on 1 and 99 DF, p-value: < 0.00000000000000022
\mathbf{c}
Pelo visto, obtemos os mesmo valores para a estatística-t, e consequentemente, para o p-valor. Em outras
palavras, y = 1.99x + \epsilon é igual a x = 0.39y + \epsilon.
\mathbf{d}
\mathbf{e}
\mathbf{f}
lm3 < - lm(y ~ x)
summary(lm3)
## Call:
## lm(formula = y ~ x)
##
## Residuals:
##
       Min 1Q Median
                                       Max
```

```
## -1.8768 -0.6138 -0.1395 0.5394 2.3462
##
## Coefficients:
##
              Estimate Std. Error t value
                                                    Pr(>|t|)
## (Intercept) -0.03769
                          0.09699 -0.389
                                                       0.698
              1.99894
                          0.10773 18.556 < 0.0000000000000000 ***
## x
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9628 on 98 degrees of freedom
## Multiple R-squared: 0.7784, Adjusted R-squared: 0.7762
## F-statistic: 344.3 on 1 and 98 DF, p-value: < 0.00000000000000022
##
## Call:
## lm(formula = x ~ y)
## Residuals:
       Min
                1Q Median
## -0.90848 -0.28101 0.06274 0.24570 0.85736
##
## Coefficients:
              Estimate Std. Error t value
                                                    Pr(>|t|)
## (Intercept) 0.03880
                          0.04266 0.91
                                                       0.365
                                  18.56 < 0.0000000000000000 ***
## y
               0.38942
                          0.02099
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4249 on 98 degrees of freedom
## Multiple R-squared: 0.7784, Adjusted R-squared: 0.7762
## F-statistic: 344.3 on 1 and 98 DF, p-value: < 0.00000000000000022
De novo, ambas estatísticas-t se assemelham.
```

12

a

Se $\hat{\beta} = \frac{\sum_i x_i y_i}{\sum_j x_j^2}$ e $\hat{\beta'} = \frac{\sum_i x_i y_i}{\sum_j y_j^2}$, então os coeficientes são iguais se:

$$\sum_{j} x_j^2 = \sum_{j} y_j^2$$

b

 \mathbf{c}

13

 \mathbf{a}

Table 1:

	$Dependent\ variable:$			
	У	X		
	(1)	(2)		
x	2.000*** (0.0001)			
у		0.500*** (0.00004)		
Constant	0.018 (0.017)	-0.009 (0.009)		
Observations	200	200		
\mathbb{R}^2	1.000	1.000		
Adjusted R ²	1.000	1.000		
Residual Std. Error $(df = 198)$	0.121	0.060		
F Statistic (df = 1 ; 198)	182,633,689.000***	182,633,689.000***		

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 2:

	$Dependent\ variable:$	
	у	X
	(1)	(2)
x	0.006	
	(0.032)	
у		0.006
		(0.031)
Constant	0.992***	0.992***
	(0.032)	(0.032)
Observations	1,000	1,000
\mathbb{R}^2	0.00004	0.00004
Adjusted R^2	-0.001	-0.001
Residual Std. Error $(df = 998)$	0.104	0.104
F Statistic (df = 1 ; 998)	0.041	0.041
Mata	*n <0 1. **n	<0.05. *** ~ <

Note:

*p<0.1; **p<0.05; ***p<0.01

```
set.seed(1)
x <- rnorm(1000, 0, 1)
\mathbf{b}
eps <- rnorm(1000, 0, 0.25)
\mathbf{c}
y < -1 + 0.5*x + eps # eps=epsilon=e
length(y)
## [1] 1000
\mathbf{d}
data = as.data.frame(cbind(x, y))
data %>%
ggplot(aes(x = x, y = y)) + geom_point() + theme_hc()
    1 -
  -3 -
                      -<u>'</u>2
                                                                         2
                                                     Χ
```

Parece haver uma correlação positiva e linear entre as variáveis

```
\mathbf{e}
```

```
lm1 <- lm(y ~ x)
summary(lm1)</pre>
```

```
##
## Call:
## lm(formula = y \sim x)
##
## Residuals:
##
       \mathtt{Min}
                1Q Median
                                 3Q
                                         Max
## -0.81211 -0.16799 -0.00344 0.18885 0.91108
##
## Coefficients:
                                                   Pr(>|t|)
##
               Estimate Std. Error t value
                         0.008226 -122.05 < 0.0000000000000000 ***
## (Intercept) -1.004047
              ## x
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2601 on 998 degrees of freedom
## Multiple R-squared: 0.7995, Adjusted R-squared: 0.7993
## F-statistic: 3979 on 1 and 998 DF, p-value: < 0.00000000000000022
Os parâmetros se assemelham.
f
data %>%
 ggplot(aes(x = x, y = y)) + geom_point() +
 geom_smooth(method = "lm") + geom_abline(aes(intercept = -1, slope = 0.5), col = "red") +
theme hc()
  -2 -
                  -2
                                      Ö
                                          Х
```

```
\mathbf{g}
```

```
lm2 <- lm(y ~ x + I(x^2))
summary(lm2)
##
## Call:
## lm(formula = y \sim x + I(x^2))
##
## Residuals:
##
      Min
                1Q
                   Median
                                3Q
                                       Max
## -0.82236 -0.16995 -0.00384 0.18910 0.90073
##
## Coefficients:
##
             Estimate Std. Error t value
                                                  Pr(>|t|)
63.069 < 0.0000000000000000 ***
## x
              0.501814
                        0.007957
## I(x^2)
              0.004768
                       0.005440
                                   0.877
                                                     0.381
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2602 on 997 degrees of freedom
## Multiple R-squared: 0.7996, Adjusted R-squared: 0.7992
## F-statistic: 1989 on 2 and 997 DF, p-value: < 0.00000000000000022
Não. Pelo contrário.
h
eps2 \leftarrow rnorm(1000, 0, 0.1)
y2 < -1 + 0.5*x + eps2
lm3 < - lm(y2 ~ x)
summary(lm3)
##
## Call:
## lm(formula = y2 ~ x)
##
## Residuals:
               1Q Median
## -0.35818 -0.06414 -0.00179 0.06866 0.28105
## Coefficients:
              Estimate Std. Error t value
                                                 Pr(>|t|)
0.003150 160.3 < 0.0000000000000000 ***
## x
             0.504919
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.103 on 998 degrees of freedom
## Multiple R-squared: 0.9626, Adjusted R-squared: 0.9626
## F-statistic: 2.569e+04 on 1 and 998 DF, p-value: < 0.0000000000000000022
data %>%
 ggplot(aes(x = x, y = y2)) + geom_point() +
```

```
geom_smooth(method = "lm") + geom_abline(aes(intercept = -1, slope = 0.5), col = "red") +
  theme_hc()
    1-
λ2
                                          0
                                              Χ
i
eps3 <- rnorm(1000, sd=3) # orig sd was 0.5
y3 < -1 + 0.5*x + eps3
lm4 \leftarrow lm(y3 \sim x)
summary(lm4)
##
## Call:
## lm(formula = y3 \sim x)
##
## Residuals:
##
       Min
                1Q Median
                                ЗQ
                                       Max
## -9.6046 -2.0975 -0.0328 2.1509 9.1657
##
## Coefficients:
                                                       Pr(>|t|)
##
               Estimate Std. Error t value
## (Intercept) -0.94901
                           0.09856 -9.628 < 0.000000000000000 ***
                0.57067
                           0.09528
                                   5.989
                                                  0.00000000294 ***
## x
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.117 on 998 degrees of freedom
## Multiple R-squared: 0.0347, Adjusted R-squared: 0.03373
```

O intervalo de confiança aumenta. O R² diminui consideravelmente, devido a grande variabilidade dos dados.

Χ

0

2

```
j
confint(lm1)
##
                     2.5 %
                               97.5 %
## (Intercept) -1.0201895 -0.9879040
                0.4860032 0.5172131
## x
confint(lm3)
##
                     2.5 %
                               97.5 %
## (Intercept) -1.0048061 -0.9920175
                 0.4987378 0.5111003
confint(lm4)
                     2.5 %
                               97.5 %
## (Intercept) -1.1424261 -0.7555941
                0.3836967 0.7576412
## x
Quanto menor a variância, menor o intervalo de confiança.
```

_- # 14

```
\mathbf{a}
```

```
rm(list=ls())
set.seed(1)
x1 = runif(100)
x2 = 0.5*x1 + rnorm(100)/10
x3 = 2 + 2*x1 + 0.3*x2 + rnorm(100)
\beta_0 = 2, \, \beta_1 = 2, \, \beta_2 = 0.3
\mathbf{b}
data = as.data.frame(cbind(x1, x2))
cor(x1, x2)
## [1] 0.8351212
data %>%
ggplot(aes(x = x1, y = x2)) + geom_point() + theme_hc()
   0.6 -
   0.4 -
X
   0.2 -
   0.0 -
                                                                         0.75
        0.00
                              0.25
                                                   0.50
                                                                                               1.00
                                                    x1
\mathbf{c}
lm1 < - lm(x3 ~ x1 + x2)
summary(lm1)
##
## Call:
## lm(formula = x3 \sim x1 + x2)
##
```

```
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -2.8311 -0.7273 -0.0537 0.6338 2.3359
##
## Coefficients:
               Estimate Std. Error t value
                                                      Pr(>|t|)
##
## (Intercept)
                 2.1305
                            0.2319
                                     9.188 0.0000000000000761 ***
                                     1.996
## x1
                 1.4396
                            0.7212
                                                        0.0487 *
## x2
                 1.0097
                            1.1337
                                     0.891
                                                        0.3754
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.056 on 97 degrees of freedom
## Multiple R-squared: 0.2088, Adjusted R-squared: 0.1925
## F-statistic: 12.8 on 2 and 97 DF, p-value: 0.00001164
```

Coeficiente $\beta_1=1.43$ e Coefiencie $\beta_2=1.0097$. A hipótese nula pode ser rejeitada a 5% no primeiro caso, mas não no segundo.

\mathbf{d}

```
lm2 < -lm(x3 - x1)
```

 \mathbf{e}

Table 3:

	Dependent variable:		
		x3	
	(1)	(2)	
x1	1.976*** (0.396)		
x2		2.900*** (0.633)	
Constant	2.112*** (0.231)	2.390*** (0.195)	
Observations	100	100	
\mathbb{R}^2	0.202	0.176	
Adjusted R^2	0.194	0.168	
Residual Std. Error $(df = 98)$	1.055	1.072	
F Statistic ($df = 1; 98$)	24.862***	20.980***	
Note:	*p<0.1; **p<0.05; ***p<0.05		

Nos dois casos daria para rejeitar a hipótese nula

\mathbf{f}

Não. Isso acontece apenas pela multicolinearidade entre as variáveis x1 e x2.

```
\mathbf{g}
```

```
x1=c(x1,0.1)
x2=c(x2,0.8)
y=c(x3,6)

lm4 <- lm(y ~ x1 + x2)
lm5 <- lm(y ~ x1)
lm6 <- lm(y ~ x2)

par(mfrow=c(2,2))
plot(lm4)</pre>
```


par(mfrow=c(2,2))
plot(lm5)

15

```
rm(list=ls())
boston = Boston
attach(boston)
```

 \mathbf{a}

Table 4:

		table 4.				
	Dependent variable:					
			crim			
	(1)	(2)	(3)	(4)	(5)	
zn	-0.074^{***} (0.016)					
indus		0.510*** (0.051)				
chas			-1.893 (1.506)			
nox				31.249*** (2.999)		
rm					-2.684^{***} (0.532)	
Constant	4.454*** (0.417)	-2.064^{***} (0.667)	3.744*** (0.396)	-13.720^{***} (1.699)	20.482*** (3.364)	
Observations P ²	506	506	506	506	506	
R^2 Adjusted R^2	$0.040 \\ 0.038$	$0.165 \\ 0.164$	$0.003 \\ 0.001$	$0.177 \\ 0.176$	$0.048 \\ 0.046$	
Residual Std. Error $(df = 504)$	8.435	7.866	8.597	7.810	8.401	
F Statistic (df = 1; 504)	21.103***	99.817***	1.579	108.555***	25.450***	
Note:			*1	o<0.1; **p<0.05	5; ***p<0.01	

Isoladamente, todas as variáveis são significativas, menos ${\bf chas}$

\mathbf{b}

##

```
lm1 \leftarrow lm(crim \sim ., data = boston)
summary(lm1)
##
## Call:
## lm(formula = crim ~ ., data = boston)
##
## Residuals:
     Min 1Q Median 3Q Max
```

Table 5:

	Table (J.				
	Dependent variable:					
		Cl	rim			
	(1)	(2)	(3)	(4)		
age	0.108*** (0.013)					
dis		-1.551^{***} (0.168)				
rad			0.618*** (0.034)			
tax				0.030*** (0.002)		
Constant	-3.778^{***} (0.944)	9.499*** (0.730)	-2.287^{***} (0.443)	-8.528^{***} (0.816)		
Observations	506	506	506	506		
\mathbb{R}^2	0.124	0.144	0.391	0.340		
Adjusted R^2	0.123	0.142	0.390	0.338		
Residual Std. Error $(df = 504)$	8.057	7.965	6.718	6.997		
F Statistic (df = $1;504$)	71.619***	84.888***	323.935***	259.190***		

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 6:

		•				
	Dependent variable:					
		cri	im			
	(1)	(2)	(3)	(4)		
ptratio	1.152*** (0.169)					
black		-0.036^{***} (0.004)				
lstat			0.549^{***} (0.048)			
medv				-0.363^{***} (0.038)		
Constant	$-17.647^{***} (3.147)$	16.554*** (1.426)	-3.331^{***} (0.694)	11.797*** (0.934)		
Observations	506	506	506	506		
\mathbb{R}^2	0.084	0.148	0.208	0.151		
Adjusted R ²	0.082	0.147	0.206	0.149		
Residual Std. Error ($df = 504$)	8.240	7.946	7.664	7.934		
F Statistic (df = $1;504$)	46.259***	87.740***	132.035***	89.486***		

Note:

*p<0.1; **p<0.05; ***p<0.01

```
## -9.924 -2.120 -0.353 1.019 75.051
##
## Coefficients:
                                                Pr(>|t|)
##
               Estimate Std. Error t value
## (Intercept) 17.033228 7.234903 2.354
                                                0.018949 *
              0.044855
                        0.018734 2.394
                                                0.017025 *
## zn
## indus
             -0.063855 0.083407 -0.766
                                                0.444294
## chas
                         1.180147 -0.635
                                                0.525867
             -0.749134
## nox
             -10.313535 5.275536 -1.955
                                                0.051152 .
## rm
              0.430131 0.612830 0.702
                                                0.483089
## age
              0.001452 0.017925 0.081
                                                0.935488
## dis
             -0.987176
                         0.281817 -3.503
                                                0.000502 ***
                        0.088049 6.680 0.0000000000646 ***
## rad
              0.588209
              -0.003780
                        0.005156 -0.733
                                                0.463793
## tax
## ptratio
             -0.271081
                          0.186450 -1.454
                                                0.146611
## black
              -0.007538
                          0.003673 -2.052
                                                0.040702 *
## 1stat
              0.126211
                          0.075725 1.667
                                                0.096208 .
## medv
              -0.198887
                          0.060516 -3.287
                                                0.001087 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.439 on 492 degrees of freedom
## Multiple R-squared: 0.454, Adjusted R-squared: 0.4396
## F-statistic: 31.47 on 13 and 492 DF, p-value: < 0.00000000000000022
```

Podemos rejeitar a hipótese nula a 5% para **zn, dis, rad, black, medv

 \mathbf{c}

 \mathbf{d}