

ELEMENTS DE LOGIQUE COMBINATOIRE

- 1. Codage des nombres entiers
- 2. Algèbre de BOOLE
- 3. Composants électroniques
- 4. Fonctions complexes

1. Codage des nombres entiers

Ecriture polynomiale
Codage Binaire
Codage Hexadécimal
Codage BCD
Codage des nombres signés

Ecriture polynomiale

Base 10: - 10 symboles: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

- Expression polynomiale associée à un nombre codé sur n digits :

$$N_{10} = \sum_{i=0}^{n-1} S(i) \times 10^{i}$$
 avec $S(i) \in \{0,1,2,...,9\}$

Base B: - B symboles (digits): $S_0, S_1, ..., S_{B-1}$

- Expression polynomiale associée à un nombre codé sur n digits :

$$N_B = \sum_{i=0}^{n-1} S(i) \times B^i \quad \text{ avec } \quad S(i) \in \left\{S_0, S_1, ..., S_{B-1}\right\}$$

Codage Binaire

Base 2: - 2 symboles (bits): 0 et 1

- Expression polynomiale associée à un nombre codé sur n bits :

$$N_2 = \sum_{i=0}^{n-1} S_i \times 2^i$$
 avec $S_i \in \{0,1\}$

Intérêt: Utilisation du comportement électronique du transistor (tout ou rien)

S = Source G = Grille D= Drain

Codage Binaire

décimal	b ₃	b ₂	b ₁	b ₀
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

Codage binaire sur 4 bits :

$$N_2 = S_3 2^3 + S_2 2^2 + S_1 2^1 + S_0 2^0$$

$$MSB$$
LSB

Convertir en binaire (38)₁₀

Codage Binaire

décimal	puissances de 2	binaire
0	0	0000 0000 0000
1	20	0000 0000 0001
2	21	0000 0000 0010
4	22	0000 0000 0100
8	23	0000 0000 1000
16	24	0000 0001 0000
32	2 ⁵	0000 0010 0000
64	2 ⁶	0000 0100 0000
128	27	0000 1000 0000
256	28	0001 0000 0000
512	2 ⁹	0010 0000 0000
1024	2 ¹⁰ = 1 k	0100 0000 0000
2048	2 ¹¹ = 2 k	1000 0000 0000

Codage Hexadécimal

Base 16: - 16 symboles: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

- Expression polynomiale associée à un nombre codé sur n digits :

$$N_{16} = \sum_{i=0}^{n-1} S_i \times 16^i$$
 avec $S_i \in \{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}$

décimal	puissances de 16	hexadécimal
0		00000 _H
1	16 ⁰	00001 _H
16	16 ¹	00010 _H
256	16 ²	00100 _H
4096	$16^3 = 2^{12} = 4 \text{ k}$	01000 _H
65636	$16^4 = 2^{16} = 64 \text{ k}$	10000 _H

$$N_{16} = N_H (= $N)$$

Convertir en décimal (2D3)_H

Codage Hexadécimal

décimal	binaire	hexadécimal
0	0000 0000	00 _H
1	0000 0001	01 _H
2	0000 0010	02 _H
4	0000 0100	04 _H
8	0000 1000	08 _H
16	0001 0000	10 _H
32	0010 0000	20 _H
64	0100 0000	40 _H
128	1000 0000	80 _H

Intérêt: représentation plus compacte que le Binaire

Convertir en hexadécimal $(100110)_2$

Codage BCD (Binary Coded Decimal)

Binary Coded Decimal = Décimal Codé en Binaire

Principe : Chaque chiffre d'un nombre décimal est considéré séparément

puis codé en binaire.

Codage en Gray

Principe: Pour passer d'une valeur à la suivante, on ne change qu'un

seul bit.

décimal	g ₂	g ₁	g ₀
0	0	0	0
1	0	0	1
2	0	1	1
3	0	1	0
4	1	1	0
5	1	1	1
6	1	0	1
7	1	0	0

15 1001 1110 1011 0010 1101 0011 12 1100 01004 0111 5 10,111 8 1000

Code Gray sur 3 bits

3IRC 18-19

Conversion Décimal vers Binaire

Méthode:

Divisions et multiplications successives.

Exemple: $(34,625)_{10} \rightarrow (100010,101)_2$

Partie entière

$34 \div 2$	= 17	reste C
17 ÷ 2	8 =	reste 1
8 ÷ 2	= 4	reste C
4 ÷ 2	= 2	reste C
2 ÷ 2	= 1	reste C
1 ÷ 2	=0	reste 1

Partie fractionnaire

0,625	x 2	= 1,25
0,25	x 2	= 0.5
0,5	x 2	=1

Code ASCII

Le code ASCII est un code alphanumérique. Il associe à chaque caractère (alphabétique ou numérique) un code exprimé par un nombre représenté en binaire ou en hexadécimal.

Le 8^{ième} bit peut servir à définir les caractères spécifiques à une langue (é, è, ...).

	ASCII 7	Hex
Α	100 0001	\$41
В	100 0010	\$42
С	100 0011	\$43
	• • •	
Ζ	101 1010	\$5A
0	011 0000	\$30
1	011 0001	\$31
	• • •	
9	011 1001	\$39
blanc	010 0000	\$20
\$	010 0100	\$24
,	010 1100	\$2C

8 bits permettent de couvrir l'intervalle [-127,+127]


```
4 bits permettent de couvrir l'intervalle [ - ,+ ]
16 bits permettent de couvrir l'intervalle [- ,+ ]
```

Codage des nombres signés

Codage en Complément à 1 : Un nombre X positif compris entre 0 et (2ⁿ-1) est représenté sur (n+1) bits par son code binaire naturel et un MSB égale à 0 :

$$X > 0 \rightarrow (X)_{C1} = X_2 \tag{S = 0}$$

Un nombre X négatif de valeur absolue comprise entre 0 et (2ⁿ-1) est représenté sur (n+1) bits par :

$$X < 0 \rightarrow (X)_{C1} = (2^{n+1}-1)_2 - |x|_2$$
 (S = 1)

$$n = 3$$

Pour obtenir le code complément à 1 d'un nombre négatif, il suffit d'inverser bit à bit le code de sa valeur absolue.

Codage des nombres signés

Codage en Complément à 2 :

Un nombre positif compris entre 0 et (2ⁿ-1) est représenté (n+1) bits par son code binaire naturel et un MSB égale à 0 :

$$X > 0 \rightarrow (X)_{C2} = X_2 \tag{S = 0}$$

Un nombre X négatif de valeur absolue comprise entre 0 et (2ⁿ-1) est représenté sur (n+1) bits par :

$$X < 0 \rightarrow (X)_{C2} = (2^{n+1})_2 - |x|_2$$
 (S = 1)

$$n = 3$$

Pour obtenir le code complément à 2 d'un nombre négatif, il suffit d'ajouter 1 au code complément à 1 de ce nombre : C2 (pour x<0) = C1 (pour x<0) + 1

Codage binaire des nombres fractionnaires C

décimal		binaire
0	0	0,0000 0000
0,5	2-1	0,1000 0000
0,25	2-2	0,0100 0000
0,125	2-3	0,0010 0000
0,0625	2-4	0,0001 0000
0,03125	2 -5	0,0000 1000

Codage binaire sur 4 bits:

$$N_2 = S_{-1}2^{-1} + S_{-2}2^{-2} + S_{-3}2^{-3} + S_{-4}2^{-4}$$

Convertir en binaire : $(0,75)_{10}$

$$(N)_{B(i,j)} = \underbrace{S(i-1).B^{i-1} + S(i-2).B^{i-2} + \dots + S(1).B^{1} + S(0).B^{0}}_{+} + \underbrace{S(-1).B^{-1} + \dots + S(-m).B^{-m}}_{+}$$

Partie entière

Partie fractionnaire

Exemple:
$$N_2 = (0001101,0110)_{2(7,4)} = (13,375)_{10}$$

Exemples : nombres à virgule fixe (mots de 3 bits)

	k=3	k=2	k=1	k=0
	m=0	m=1	m=2	m=3
000	0	0	0	0
001	1	0,5	0,25	0,125
010	2	1	0,5	0,25
011	3	1,5	0,75	0,375
100	4	2	1	0,5
101	5	2,5	1,25	0,625
110	6	3	1,5	0,75
111	7	3,5	1,75	0,875

Codage des nombres à virgule flottante

Principe:

Le codage utilisé est basé sur la notation scientifique des nombres :

Le nombre est dit à virgule flottante car il possède de nombreuses représentations qui dépendent de la position de la virgule :

$$0,3141592.10^{1} = 3,141592.10^{0} = 31,41592.10^{-1} = 314,1592.10^{-2} ... !$$

Forme normalisée (un unique digit non nul à la gauche de la virgule du nombre)

2. Algèbre de BOOLE

Définitions

Fonctions logiques combinatoires élémentaires Fonctions logiques combinatoires remarquables Expressions algébriques d'une fonction logique Simplification d'une fonction logique

Définitions

Fonction logique

E_i et S_i : variables logiques

L'algèbre de BOOLE permet d'écrire les expressions des fonctions logiques à partir des variables logiques.

Définitions

Variable logique:

Une variable logique ne peut prendre que deux valeurs '0' ou '1' qui s'excluent mutuellement.

L'ensemble {0;1} est le domaine de définition des variables logiques.

$$x = 0 <=> x \ne 1$$

$$x = 1 <=> x \neq 0$$

Fonction logique:

Une fonction logique de n variables logiques, $F(x_1, x_2, ..., x_n)$ est une fonction qui ne prend que deux valeurs '0' ou '1'.

Cette valeur est obtenue par combinaison des valeurs des variables.

	•			
X	F1(x)	F2(x)	F3(x)	F4(x)
0	0	0	1	1
1	0	1	0	1

Fonctions constantes ...

Fonction identité OUI Fonction négation (INVERSION)

NON

INVERSION: opérateur NON (NOT)

$$X \rightarrow X$$

SOMME LOGIQUE: opérateur OU (OR) (noté '+')

$$(x,y) \rightarrow x + y$$

PRODUIT LOGIQUE: opérateur ET (AND) (noté '.')

$$(x,y) \rightarrow x.y$$

Propriétés

Involution : x = x

Idempotence : X.X = X x + x = x

Commutativité : x.y = y.x x + y = y + x

Associativité : (x.y).z = x.(y.z) = x.y.z (x + y) + z = x + (y + z) = x + y + z

Complémentarité : x.x = 0 x + x = 1

Eléments neutres : x.1 = x x + 0 = x

Eléments absorbants : x.0 = 0 x + 1 = 1

Distributivité : x.(y+z) = x.y + x.z x + (y.z) = (x + y).(x + z)

Démontrer les propriétés ci-dessous :

Absorbtion : x + (x.y) = x x.(x + y) = x

Simplification: (x + y).y = x.y (x.y) + y = x + y

Consensus : $(x \cdot y) + (x \cdot z) + (y \cdot z) = (x \cdot y) + (x \cdot z)$

Fonctions logiques combinatoires remarquables

NON ET (NAND):

$$(x,y) \rightarrow \overline{x \cdot y}$$

NON OU (NOR):

$$(x,y) \rightarrow \overline{x+y}$$

Opérateurs complets

OU EXCLUSIF (XOR):

$$(x,y) \rightarrow x \oplus y$$

Fonctions logiques combinatoires remarquables

Propriétés

NON ET / NON OU

Commutativité

Pas d'associativité!

OU EXCLUSIF

Commutativité

Associativité

Elément neutre '0'

Fonctions logiques combinatoires remarquables

Théorème de DE MORGAN

$$\overline{x.y.z....} = \overline{x} + \overline{y} + \overline{z}....$$

$$\leftrightarrow \boxed{x + y + z + \dots = x.y.z.\dots}$$

$$F(x,y,z,\cdot,+) = F(x,y,z,+,\cdot)$$

Développer l'expression :

$$(a \cdot c) + b \cdot c$$

Fonctions logiques combinatoires remarquables

NON ET : opérateur complet

NON:
$$X = X \cdot X$$

ET:
$$x \cdot y = (\overline{x \cdot y}) \cdot (\overline{x \cdot y})$$

OU:
$$x + y = (\overline{x \cdot x}) \cdot (\overline{y \cdot y})$$

Démontrer que NOR est un opérateur complet

Expressions algébriques d'une fonction logique

Applications du OU EXCLUSIF

x	у	F(x,y)
0	0	0
0	1	1
1	0	1
1	1	0

Inverseur programmable : $y = 1 \rightarrow x \oplus y = x$

Test d'égalité : $y = x \rightarrow x \oplus y = 0$

Expressions algébriques d'une fonction logique

а	b	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

$$F_1(a,b,c) = (\overline{a} \cdot \overline{b} \cdot c) + (\overline{a} \cdot b \cdot c) + (\overline{a} \cdot \overline{b} \cdot \overline{c}) + (\overline{a} \cdot \overline{b} \cdot c) + (\overline{a} \cdot b \cdot c)$$

$$F_2(a,b,c) = (a+b+c)\cdot(a+\overline{b}+\overline{c})\cdot(\overline{a}+\overline{b}+c)$$

Expressions algébriques d'une fonction logique

Donner les expressions algébriques de x⊕y :

 $1^{\text{ère}}$ forme : F_1 = $2^{\text{ème}}$ forme : F_2 =

Simplification d'une fonction logique

Tableau de KARNAUGH à 2 entrées :

F(a,b)

x\y	0	1
0		
1		

Tableau de KARNAUGH à 4 entrées :

F(a,b,c,d)

ab\cd	00	01	11	10
00				
01				
11		0	0	
10		1001-	→1011	

Une seule variable change d'état en passant d'une case à l'autre!

Simplification d'une fonction logique

$$F(a,b,c,d) = \overline{a \cdot b \cdot c \cdot d} + \overline{a \cdot b \cdot c \cdot d}$$

ab\cd	00	01	11	10
00				
01				
11				
10				

- Dresser un tableau de Karnaugh pour les variables suivant l'ordre du code Gray.
- 2. Remplir le tableau exprimant la fonction (placer les 1).
- Procéder aux regroupements des termes adjacents (en puissance de 2).
- 4. Exprimer chacun des termes.

Simplification d'une fonction logique

$$F(a,b,c,d) = \overline{a \cdot b \cdot c \cdot d} + \overline{a \cdot b \cdot c \cdot d}$$

ab\cd	00	01	11	10
00	\ <u></u>	1		
01		1		
11			1	1
10			1	1

$$F(a,b,c,d) = a \cdot c + a \cdot \overline{b} \cdot c + a \cdot \overline{c} \cdot d + a \cdot \overline{b} \cdot d$$

Familles logiques
Alimentation
Caractéristiques d'entrée / sortie
Exemple de documentation technique
Logique 3 états

Réalisation d'une fonction logique

Familles logiques

Les familles : LS, F, 4000, HC, HCT, AC, ACT, LV, ...

74LS00

74HC00

etc ...

	TTL	CMOS
Vitesse de fonctionnement	+	_
Immunité au bruit	-	+
Sortance	-	+
Intégration	_	+
Consommation	-	+

+ : avantage - : inconvénient

Alimentation

Alimentation

Type NAND

LS: 0.4 mA

F: 4 mA

4000B : 1 μ A

 $HC/AC:1\mu A$

LV : 20 μA

N : nombre de portes par boîtier

Etat logique Niveau logique	Potentiel en entrée	Potentiel en sortie		
H ou 1	V _{IH}	V _{OH}		
L ou 0	V _{IL}	V _{OL}		

Etat logique Niveau logique	Courant en entrée	Courant en sortie
H ou 1	I _{IH}	I _{OH}
L ou 0	I _{IL}	I _{OL}

Temps de propagation

La logique utilise 2 états électroniques d'un transistors : bloqué et saturé Un transistor ne passe pas instantanément d'un état à un autre. Dans un circuit la somme des temps de passage est regroupée sous le terme temps de propagation

Exemple de documentation technique

DM74LS00 Quad 2-Input NAND Gate

NAND en technologie TTL

General Description

This device contains four independent gates each of which performs the logic NAND function.

Ordering Code:

Order Number	Package Number	Package Description
DM74LS00M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
DM74LS00SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74LS00N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Function Table

Inp	uts	Output
Α	В	Y
L	L	н
L	н	н
н	L	н
н	н	L

Source Texas Instrument

Exemple de documentation technique

Absolute Maximum Ratings(Note 1)

Supply Voltage 7V
Input Voltage 7V
Operating Free Air Temperature Range 0°C to +70°C
Storage Temperature Range -65°C to +150°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{cc}	Supply Voltage	4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			8.0	V
loh	HIGH Level Output Current			-0.4	mA
lor	LOW Level Output Current			8	mA
TA	Free Air Operating Temperature	0		70	7

Source Texas Instrument

Exemple de documentation technique (3)

OLE SUPÉRIEURE : CHIMIE PHYSIQUE ÉLECTRONIQUE

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	V _{CC} = Min, I _I = -18 mA	55 63		-1.5	V
VOH	HIGH Level Output Voltage	V _{CC} = Min, l _{OH} = Max, V _{IL} = Max	2.7	3.4		V
VaL	LOW Level Output Voltage	V _{CC} = Min, l _{OL} = Max, V _{IH} = Min		0.35	0.5	v
	RE 5550	I _{OL} = 4 mA, V _{CC} = Min		0.25	0.4	
l _l	Input Current @ Max Input Voltage	V _{CC} = Max, V _I = 7V			0.1	mΑ
liH .	HIGH Level Input Current	$V_{OC} = Max$, $V_1 = 2.7V$			20	μΑ
I _{IL}	LOW Level Input Current	V _{CC} = Max, V _I = 0.4V	55 63		-0.36	mA
los	Short Circuit Output Current	V _{CC} = Max (Note 3)	-20		-100	mA
Госи	Supply Current with Outputs HIGH	V _{CC} = Max		0.8	1.6	mA
loca.	Supply Current with Outputs LOW	V _{CC} = Max		2.4	4.4	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

at V_{CC} = 5V and T_A = 25°C

		Ī	$R_L = 2 k\Omega$					
Symbol	Parameter			C ₂ 15 pr		C _L = 50 pF		
		_	Min	Max	Min	Max		
^t PLH	Propagation Delay Time LOW-to-HIGH Level Output		3	10	4	15	ns	
^t PHL	Propagation Delay Time HIGH-to-LOW Level Output		3	10	4	15	200	

Source Texas Instrument

Niveau Haut (H) ou Bas (L)

Haute impédance (Z)

Ligne de données bidirectionnelle

Ligne de données bidirectionnelle

Ligne de données bidirectionnelle

Ligne de bus de données

E₁ et E₂ ne doivent <u>pas</u> être <u>actifs en même temps</u> :

$$E_1 = \overline{E_2}$$

4. Fonctions complexes

Décodeur Multiplexeur Additionneur binaire

Décodeur

Les entrées E_i permettent de 'décoder' les M sorties : en fonction de la combinaison des entrées, une seule des M sorties est activée.

Entrées : E₀, E₁

Sorties : S₀, S₁, S₂, S₃

Sortie S_i active : $S_i = 1$

Sortie S_i non active : $S_j = 0$

 Dresser la table de vérité des valeurs des sorties S_j du décodeur en fonction des valeurs des entrées E_i.

- 2. Donner les expressions des fonctions associées aux sorties en utilisant les fonctions logiques élémentaires.
- 3. Donner le schéma de réalisation électronique.

EPE ÉCOLE SUPERIEURE DE CHIMIE PHYSIOUE ÉLECTRONIQUE DE LYON

Décodeur

Les entrées E_0 et E_1 permettent de « décoder » 4 sorties. En fonction de la combinaison des entrées, une seule des 4 sorties est active à la fois.

Décodeur

Décodeur type 138

- 1. 3 entrées (A, B, C) 1 sortie activée parmi 8 (Y0, Y1, ..., Y7)
 - entrées codées en Binaire
 - sortie active Yj = 0
- 2. 3 signaux d'autorisation d'utilisation du boîtier (G1, $\overline{G}2A$, $\overline{G}2B$)

Décodeur

Décodeur type 138

Utilisation du boîtier autorisée pour :

$$EN = G1 \cdot \overline{G2A} \cdot \overline{G2B} = H$$

'LS138, SN54138, SN74S138A FUNCTION TABLE

	13	#PUT	s	_						-	_	
ENA	BLE	s	FLFC	Τ			_ `	ידטכ	-01	-		
GI	Ğ2°	C	В	A	YO	Υ1	YZ	Y3	Y4	Y5	Y6	٧7
×	н	х	x	×	H	Н	н	н	Н	Н	Н	н
L	x	×	×	×	н	Н	н	н	н	н	н	н
н	L	L	L	L	(L)	H	н	н	н	н	н	н
н	L	L	L	н	н	L	Н	н	н	н	н	н
н	L	L	н	L	н	H	L	Н	н	н	н	н
H	L	t.	н	н	н	н	H	(L)	Н	н	н	н
н	L	н	L	L	н	н	н	H	(L)	Н	Н	н
н	L	Н	L	н	н	Н	н	н	Н	L	Н	н
н	Ł	н	H	L	н	н	н	н	н	Н	(L)	Н
H	L	н	н	н	н	н	н	н	н	н	Н	L

*G2 = G2A + G28 H = high level, L = low level, X = irrelevant

Source Texas Instrument

ECOLE SUPÉRIEURE DE CHIMIE PHYSIQUE ÉLECTRONIQUE DE LYON

Décodeur

Décodeur type 138

Décodeur

Adressage de la mémoire d'un micro-processeur

$$A_n = 0 \text{ à } A_{n-1} = 0$$
 $CS_0 \text{ actif}$

Les 2 informations E_0 à E_n sont 'multiplexées' (dans le temps) sur une même sortie Z en fonction des valeurs des 'entrées de sélection'.

Entrées : E₀, E₁

Sortie: Z

Signal de sélection S

3. Donner le schéma de réalisation électronique.

Les 2 informations I_0 et I_1 sont « multiplexées » (dans le temps) sur une même ligne Z.

S est le signal de sélection de l'information. Ce signal doit également être disponible à l'arrivée pour démultiplexer.

Multiplexeur type 151

- 1. 8 entrées (D0, D1, ..., D7) 2 sorties Y et Y
- 2. 3 signaux de sélection d'une des entrées (A, B, C)
- 3. 1 signal d'autorisation d'utilisation du boîtier \overline{G}

Multiplexeur type 151

'151A, 'LS151, 'S151

Utilisation du boîtier autorisée pour :

$$EN = \overline{G} = L$$

'151A, 'LS151, 'S151 FUNCTION TABLE

		OUT	PUTS		
S	SELECT		STROBE		, Ar
C	8	A	Ğ	. *	w
х	×	×	Н	L	н
L	L	L	L	DO	$\overline{00}$
L	L	н	L	DI	D1
L	н	L	L	D2	02
L	H	н	L	D3	D 3
н	£	L	L	D4	<u>D4</u>
н	L	Н	L L	D5	D5
Н	н	L	L	06	$\overline{D6}$
н	н	н	L	D7	D7

Source Texas Instrument

Multiplexeur type 151

Source Texas Instrument

Additionneur binaire

					_
	R_n	$R_{n-1}\cdots$	R_{i-1}	$\cdots R_0$	
		$A_n \cdots$	Ai	\cdots A_1 \cdots B_1	$\cdots A_0$
$\langle + \rangle$		$B_n \cdots$	B _i	B₁	$\cdots B_0$
	R_n	$S_n \cdots$	Si	\cdots s_1	\cdots S ₀

Additionneur binaire

R_{i-1}	Ai	B _i	R _i	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S_i = A_i \oplus B_i \oplus R_{i-1}$$

$$R_{i} = A_{i} \cdot B_{i} + R_{i-1} \cdot (A_{i} \oplus B_{i})$$

Additionneur binaire

Réalisation d'une fonction logique

Objectif:

Assembler des circuits électroniques pour réaliser des fonctions logiques.

Réalisation d'une fonction logique

Transcodage Binaire Gray sur 4 bits

Binaire : B_3 , B_2 , B_1 , B_0 Gray : G_3 , G_2 , G_1 , G_0

- Dresser la table de vérité des valeurs des sorties G_j du transcodeur en fonctions des valeurs de ses entrées B_i
- 2. Donner les expressions des fonctions associées aux sorties en utilisant les fonctions logiques élémentaires

Simplification d'une fonction logique

$$F(a,b,c,d) = \overline{a \cdot b \cdot c \cdot d} + \overline{a \cdot b \cdot c \cdot d}$$

ab\cd	00	01	11	10
00	1	1		
01		1		
11			1	1
10		1	1	1

- Dresser un tableau de Karnaugh pour les variables suivant l'ordre du code Gray,
- 2. Remplir le tableau exprimant la fonction (placer les 1),
- Procéder aux regroupements des termes adjacents (en puissance de 2),
- 4. Exprimer chacun des termes.

Simplification d'une fonction logique

$$F(a,b,c,d) = \overline{a \cdot b \cdot c \cdot d} + \overline{a \cdot b \cdot c \cdot d}$$

ab\cd	00	01	11	10
00	1	1		
01		1		
11			1	1
10			F	1

- Dresser un tableau de Karnaugh pour les variables suivant l'ordre du code Gray,
- 2. Remplir le tableau exprimant la fonction (placer les 1),
- 3. Procéder aux regroupements des termes adjacents (en puissance de 2),
- 4. Exprimer chacun des termes.

Développement d'une fonction à l'aide de NAND

Principe:

A l'aide du théorème de De Morgan toute fonction logique peut s'écrire à partir de fonctions NAND.

Somme de produits + 2 complémentations

$$a \cdot b \cdot c + a \cdot b \cdot d + e = a \cdot b \cdot c + a \cdot b \cdot d + e = a \cdot b \cdot c \cdot a \cdot b \cdot d \cdot e$$

Réalisation d'une commande d'afficheur

Le segment e est " allumé " pour : 0, 2, 6, 8

- Dresser la table de vérité de la fonction associée au segment " e "
- Donner l'expression de la fonction associée à " e " en utilisant les fonctions logiques élémentaires
- Donner le schéma de réalisation électronique

Construire un A.L.U

- Une UAL existe dans le cœur de tous les microprocesseurs.
- Elle permet de réaliser différents types d'opérations arithmétiques (+, -, *, :) ou logiques (And, Or,) plus ou moins complexes.
- L'organisation, la structure et la complexité des UAL (structures RISC, CISC, ...), les opérations réalisées (Opérations MAC, barrel shifter, Sinus,...), l'optimisation des temps de calculs (Mips, ...) permettent de différencier les processeurs (microcontrôleur basique, Pentium, ARM, ...)

Construire un A.L.U

- Explication du fonctionnement de l'ALU 8 bits:
- rôle du XOR,... 🛚
- Quelles combinaisons faut –il mettre sur les entrées F4,F3,F2,F1,F0
- pour réaliser: les fonctions logiques:
- PAANDBPAXORB
- PANAND B PANOR B
- 2 /A OR B •
- les fonctions arithmétiques:
- ? A + B ? A + B +1 ? A B ? B A ?
- Quelle est la fonction réalisée par l'UAL si F4,F3,F2,F1,F0 = 01011?

•