Applying Crossing Reduction Strategies to Layered Compound Graphs

Michael Forster forster@fmi.uni-passau.de

University of Passau, Germany

Overview

- Layered Compound Graphs
 - Definition
 - Drawing Conventions
- Simple Layout Algorithms
- Advanced Crossing Reduction
 - Arising Problems
 - Our solutions
- Summary

1. Layered Compound Graphs

Example, Drawing Conventions, Definition

Example / Drawing Conventions

- Base nodes
- Compound nodes
 - Contain base nodes
 - Or other compound nodes
 - Inclusion hierarchy is a tree
 - Node intersection is forbidden.
- 4 6 7 1 8 2 3 5

- Edges
 - Connect base nodes
 - Or compound nodes
 - Or each other

yesterday: "cross edges"

- Layers
 - Horizontal lines for the base nodes
 - Bends are only allowed on layers

Global Layers vs. Local Layers

- Global Layers
 - Single set of layers for all nodes
 - Compound nodes can span multiple layers

- More compact layout
- Algorithm by Sander, 1996

- Local Layers
 - One set of layers per compound node
 - Compound Nodes are not allowed to span layers

- Fewer layers
- Algorithm by Sugiyama / Misue, 1991

Definitions

- Compound graph: G = (V, E, H)
 - Nodes: V
 - Adjacency edges: E ⊆ V□V
 - Hierarchy edges: H ⊆ V□V
 - Hierarchy tree: T = (V, H)
 - Base nodes: B = leaves(T)
 - Compound nodes: C = V \ B
 - Base graph: G|_B

- Layer assignment: L: B → □
- Clustered graph: G = (V, E, H) [Yesterday]
 - Adjacency edges: E ⊆ B□B
- Layered clustered graph: G = (V, E, H, L)
 - analogous

2. Simple Algorithms

... and why they are not optimal

- Start with base graph
- For each compound node

- Start with base graph
- For each compound node
 - Layout contents

- Start with base graph
- For each compound node
 - Layout contents
 - Hide contents

- Start with base graph
- For each compound node
 - Layout contents
 - Hide contents

- Start with base graph
- For each compound node
 - Layout contents
 - Hide contents

- Start with base graph
- For each compound node
 - Layout contents
 - Hide contents

- Start with base graph
- For each compound node
 - Layout contents
 - Hide contents

- Start with base graph
- For each compound node
 - Layout contents
 - Hide contents

- Start with base graph
- For each compound node
 - Layout contents
 - Hide contents

- Start with base graph
- For each compound node
 - Layout contents
 - Hide contents

- Start with base graph
- For each compound node
 - Layout contents
 - Hide contents

- Start with base graph
- For each compound node
 - Layout contents
 - Hide contents

- Start with base graph
- For each compound node
 - Layout contents
 - Hide contents

- Start with base graph
- For each compound node
 - Layout contents
 - Hide contents

- Start with base graph
- For each compound node
 - Layout contents
 - Hide contents
- Finished

- Start with hierarchy root
- For each compound node

- Start with hierarchy root
- For each compound node
 - Layout contents

- Start with hierarchy root
- For each compound node
 - Layout contents

- Start with hierarchy root
- For each compound node
 - Layout contents

- Start with hierarchy root
- For each compound node
 - Layout contents

- Start with hierarchy root
- For each compound node
 - Layout contents

- Start with hierarchy root
- For each compound node
 - Layout contents

- Start with hierarchy root
- For each compound node
 - Layout contents

- Start with hierarchy root
- For each compound node
 - Layout contents

- Start with hierarchy root
- For each compound node
 - Layout contents

- Start with hierarchy root
- For each compound node
 - Layout contents

- Start with hierarchy root
- For each compound node
 - Layout contents
- Finished
- Remarks
 - Height of Compound Nodes must be known for layering
 - → Preprocessing
 - Width can be computed afterwards

Unnecessary Crossings

Unnecessary Crossings

Bottom Up

Top Down

Bottom Up

Top Down

- Remarks
 - Trying to respect connectivity of border nodes helps, but is not optimal
 - Crossings appear even when using optimal crossing reduction strategy in each step
 - Revise application of crossing reduction strategy
- That is, what this talk is about!

3. Advanced Crossing Reduction

Sander's Approach and Our Improvements

Layout Algorithm

- Overview
 - Convert compound graph to clustered graph
 - Use Sugiyama algorithm for base graph
 - Additionally respect compound nodes at each step
- Crossing Reduction
 - Start with layered clustered graph
 - Insert dummy nodes for long span edges
 - Permute base node orders respecting compound nodes

Respecting the compound nodes

- Single Layer Restriction:
 - Children of a compound node must be placed next to each other with no other nodes between them
 - Forbidden:

- Multiple Layer Restriction
 - The relative position of compound nodes must be the same on all layers
 - Forbidden:

Sander's Approach

- Apply conventional DAG crossing reduction method
 - Ignore compound nodes
 - Violations of the restrictions may occur
- Resolve violations afterwards:

Sander's Approach: Evaluation

- Obviously not optimal
 - Only intermediate node order is considered
 - Adjacency edges are ignored in second step
- Unnecessary Crossings:

Sander's Approach: Evaluation

- Obviously not optimal
 - Only intermediate node order is considered
 - Adjacency edges are ignored in second step
- Unnecessary Crossings:

Our Crossing Reduction Method

- Basically use Sander's algorithm
- But: respect compound nodes right from the start
- Outline of the rest of the talk
 - Respect the single layer restriction
 - Extend this to also respect the multiple layer restriction

- What base node orders σ are allowed?
- Lemma 1: Equivalent:
 - \blacksquare σ is allowed
 - The layer hierarchy tree T has no crossings
 - There exists a child order of T such that σ can be obtained by a pre-/postorder traversal
- Consequence: optimize hierarchy tree child order

- When do adjacency edges cross?
- Lemma 2: Equivalent:
 - Two adjacency edges (u, u'), (v, v') cross
 - Corresponding children of lowest common ancestor of u and v have different relative order than u' and v'
- Consequence: Assign each crossing to the lowest common ancestor

- What are good hierarchy tree child orders?
- Lemma 3: The number of crossings is the sum of the crossings associated to each compound node.
- Theorem: Equivalent:
 - An order of the base nodes has a minimal number of crossings
 - The corresponding hierarchy tree as a minimal number of crossings associated with each compound node
- Consequence: Number of crossings can be minimized for each compound node independently

- Construct crossing reduction graph
 - "Pull up" adjacency edges

- Construct crossing reduction graph
 - "Pull up" adjacency edges

- Construct crossing reduction graph
 - "Pull up" adjacency edges

- Construct crossing reduction graph
 - "Pull up" adjacency edges

- Construct crossing reduction graph
 - "Pull up" adjacency edges

- Construct crossing reduction graph
 - "Pull up" adjacency edges
 - Use weights for multiple edges (if appropriate)
- Apply any conventional 1-sided 2-layer crossing reduction method
- Repeat for all compound nodes
- Remarks
 - Order of application does not matter
 - Result is optimal if 2-layer crossing reduction method is optimal
 - Crossing reduction graphs can be computed in a preprocessing step.

Multiple Layer Restriction

Constraint method

Heavy Edge method

- Evaluation
 - Guarantees compliance
 - Depends on a 2-layer crossing reduction strategy, that supports constraints

- Evaluation
 - Cannot guarantee compliance
 - Works with any (weighted) crossing reduction strategy
 - Has side effects (experimental results needed)

Summary

Past and Future Work

Summary

- New crossing reduction method for layered compound graphs
 - Does not introduce unnecessary crossings
 - Optimal if used with optimal 2-layer crossing reduction strategy
- Implementation in progress
 - Constraint crossing reduction strategy by Schreiber, 2001
 - Preliminary results are promising
 - Too early to present numbers
- Future plans
 - Finish implementation
 - Apply directly to compound graphs ?
 - Improve Methods for respecting multiple layer restriction ?