2.3 Analyse du code MATLAB avec légende :

RTL-SDR Spectrum Sweep || Range = 86MHz to 109MHz || Bin Width = 10.9375kHz || Number of Bins = 2304 || Number of Retunes = 18

xxiii. Variables associées à la légende

- freq_vect : vecteur de fréquence correspondant à la plage 86 MHz à 109 MHz
- fft_masterreshape : spectre moyen affiché (moyenne des FFT sur les retunes)
- fft_smooth : spectre en temps réel (FFT d'un balayage unique)
- bin_width = 10.9375 kHz → dépend de la taille de la FFT et fréquence d'échantillonnage
- nb_bins = 2304 → nombre de points dans chaque FFT
- nb_retunes = 18 → nombre de balayages successifs

xxiv. Unité et nature de fft_masterreshape

- Nature : densité spectrale de puissance (moyenne FFT²)
- Unité: dBm (conversion par 10*log10(...))
- Interprétation : niveau moyen de puissance reçu par bande de 10.9375 kHz

xxv. Valeur de l'impédance utilisée

- Impédance : 50 ohms (standard RF)
- Définie dans le code : i = 50

xxvi. Ligne de calcul d'amplitudes en dBm et erreur

- Ligne: y_data_dbm = 10*log10((fft_masterreshape.^2)/50);
- Grandeur : Puissance en dBm
- Formule correcte: y_data_dbm = 10*log10((fft_masterreshape.^2)/50)+30;

Le problème dans la première formule est que l'on veut avoir une valeur en dBm mais l'auteur n'a pas mis le + 30, c'est donc cela que l'on a rajouté.

xxvii. Implémentation corrigée dans le script

Voici le spectre final corrigé avec la correction appliqué sur le script Matlab.

xxviii. Tracé avec légende en français et unités

Les 2 courbes:

```
plot(h_spectrum.axes1,freq_axis,y_data_dbm,'Color',h_spectrum.line_I
xlabel(h_spectrum.axes1,'Frequency (MHz)');
ylabel(h_spectrum.axes1,'Power Ratio (dBm) [relative to 50 \Omega ]

plot(h_spectrum.axes2,freq_axis,y_data,'Color',h_spectrum.line_orang
xlabel(h_spectrum.axes2,'Frequency (MHz)');
ylabel(h_spectrum.axes2,'Relative Power (Watts)');
```

En français:

```
plot(h_spectrum.axes1, freq_axis, y_data_dbm, 'Color', h_spectrum.l:
xlabel(h_spectrum.axes1, 'Fréquence (MHz)');
ylabel(h_spectrum.axes1, 'Puissance relative (dBm) [par rapport à ur
legend(h_spectrum.axes1, 'Spectre en dBm', 'Location', 'northeast')]

plot(h_spectrum.axes2, freq_axis, y_data, 'Color', h_spectrum.line_c
xlabel(h_spectrum.axes2, 'Fréquence (MHz)');
ylabel(h_spectrum.axes2, 'Puissance relative (Watts)');
legend(h_spectrum.axes2, 'Spectre en Watts', 'Location', 'northeast
```

xxix. Fréquence d'échantillonnage

• Fréquence d'échantillonnage : 2.8 MHz (rtlsdr_fs = 2.8e6)

xxx. Découpage graphique des bandes utiles

• Bande FM radio : de 87,5 MHz à 108 MHz (standard ANFR)

- En observant les pics au-dessus du bruit :
 - o ~88.2 MHz → M Radio
 - o ~92.6 MHz → Radio Phénix
 - o ~94.9 MHz → RCF Calvados-Manche
 - ~95.7 MHz → France Musique
 - o ~100.3 MHz → Tendance Ouest
 - o ~101.4 MHz → NRJ Caen
 - o ~102.8 MHz → France Bleu Normandie

Nom-Prénom	ZEGGAI Naël	YOUSSEF SALEM Sultan	STANCIU Ugo	YAKUB- ABDULLAH Zidan	BROGGI Jean
Recherches, théorie. Rédaction, sérieux, comportement	Α	А	А	A	Α