

Medidas Descritivas

Apontamentos sobre as medidas descritivas: média, moda, mediana, quartis, variância, desvio padrão, coeficiente de variação e assimetria

Page

- As medidas descritivas podem ser 3:
 - Medidas de posição ou localização
 - Medidas de variabilidade
 - Medidas de assimetria

Propriedades:

- Objetividade de modo a que 2 observadores distintos cheguem à mesma conclusão
- Depender de todas as observações de modo a refletir a informação contida no conjunto de todas as observações
- Ter um significado concreto de modo a facilitar a interpretação
- Eficiência computacional e algébrica otimização e velocidade dos cálculos e simplicidade dos mesmos
- Insensibilidade às variações das amostras de modo a que as medidas sejam robustas e estáveis

Medidas de Posição ou Localização Central

- As medidas de posição ou localização central são 3:
 - Média
 - Moda
 - Mediana

MÉDIA ARITMÉTICA (ou Média)

• Média - é obtida dividindo a soma de todos os valores numéricos observados pelo número total de observações.

$$\overline{x} = rac{1}{n} \sum_{i=1}^n x_i$$

 Nem sempre é possível considerar todas as observações para o cálculo da média, uma vez que as observações já podem ser dadas sob a forma de tabela de frequência, assim:

$$\overline{x} = rac{1}{n} \sum_{i=1}^c n_i x_i$$

Considere a tabela seguinte que representa a idade de 10 alunos de um grupo de teatro

Calcula a média dos alunos

Os socorristas de uma praia estão classificados em 5 categorias de vencimento (em euros) consoante o nº de horas. Conforme mostra a tabela seguinte.

Calcula a média de vencimentos

MEDIANA

• Mediana - é o valor que particiona os dados previamente dispostos por ordem crescrente ou decrescente, em 2 grupos em que metade dos valores (50%) são iguais ou inferiores à mediana e a outra metade são iguais ou superiores à mediana

$$egin{aligned} ilde{x} = egin{cases} x_{(rac{n}{2}) + x_{(rac{x}{2}+1)}}, \ se \ n \ cute{e} \ par \ x_{(rac{n+1}{2})}, \ se \ n \ cute{e} \ impar \end{cases}$$

Quando a distribuição é apresentada em dados agrupados em classes, indica-se a classe mediana

$$\left [ilde{x} = l + rac{rac{n}{2} - N_a}{n_i} \, {\sf x} \, amp \, onde \, l = limite \, inferior \, da \, classe \, mediana \,
ight]$$

amp = amplitude da classe mediana; $n = n^{\circ}$ de elementos ;ni = frequência absoluta da classe mediana; Na = frequência absoluta acumulada da classe anterior à classe mediana

Exemplo 3:

Considere-se a tabela com a altura de 5 pessoas definida em cm e ordenada por ordem crescente:

х1
x2
х3
x4
х5
125
134
145
153
167

Neste caso:

A mediana é o valor central, o nº de observações é ímpar pelo que x3, é o valor central, logo:

$$\tilde{x}=x_3=145$$

Exemplo 5:

Considere a seguinte tabela:

Exemplo 4:

Considere-se agora a tabela com a altura de 6 pessoas definidas em cm e ordenada por ordem crescente

х1	x2
х3	х4
х5	х6
125	134
145	153
167	171

Neste caso:

Como o nº de observações é par, não existe um valor central, assim o cálculo da mediana é dado pela média aritmética dos valores centrais, ou seja:

$$\tilde{x}=\frac{x_3+x_4}{2}=149$$

Classes
ni
Ni
[0, 5[
6
6
[5, 10[
5
11
[10, 15[
7
18
[15, 20[
4
22
[20, 25[
2
24
[25, 30[
4
28
Total (Σ)
28

Aplicar a fórmula:

$$ilde{x} = l + rac{rac{n}{2} - N_a}{n_i} imes amp$$

$$ilde{x} = 10 + rac{rac{28}{2} - 11}{7}$$
 x $5~pprox 12, 1$

MODA

- É o elemento que num conjunto de dados ocorre com maior frequência
- Moda (dados não classificados e dados classificados discretos) é o valor que ocorre com maior frequência num conjunto de observações
- Classe Modal (dados classificados quantitativos contínuos) numa distribuição de frequência, com intervalos de classe de igual amplitude, a classe é a classe com maior frequência
- Quando existe um único valor ou classe modal, a distribuição diz-se unimodal
- Se existem várias modas a distribuição diz-se plurimodal
- Caso n
- Para calcular a moda quando se tem uma classe modal recorre-se à formula de King:

$$oxed{moda = l + rac{n_p}{n_a + n_p} imes amp}$$

I = limite inferior da classe modal; np = frequência absoluta da classe posterior; na = frequência absoluta da classe anterior; amp = amplitude da classe

Exemplo 6:

Considere a seguinte tabela:

Classes
ni
Ni
[0, 5[
6
6
[5, 10[
5
11
[10, 15[
7
18
[15, 20[
4
22
[20, 25[
2
24
[25, 30[
4
28
Total (Σ)
28

A classe modal é com maior frequência [10, 15] - Classe Modal

Aplicar a fórmula:

$$moda = l + rac{n_p}{n_a + n_p} imes amp$$

$$moda = 10 + rac{4}{5+4} imes 5 pprox 12, 2$$

Exercício 4:

Considere a seguinte tabela:

4. Identificar os seguintes elementos da tabela:

4.1 Frequência simples absoluta, da quinta classe

Resposta: 24

4.2 Frequência absoluta acumulada, da penúltima classe

Resposta: 87

4.3 Limite inferior da sexta classe

Resposta: 3,00

4.4 Limite superior da quarta classe

Resposta: 2,95

4.8 Média

Resposta:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{c} n_i x_i$$

$$=\frac{270,1}{90}=3,001$$

4.9 Mediana

Resposta:

$$ilde{x} = l + rac{rac{n}{2} - N_a}{n_i} imes amp$$

$$= 2,9895$$

4.10 Moda

Classes	
	ni
[2,75; 2,80[
	2
[2,80; 2,85[
	3
[2,85; 2,90[
	10
[2,90; 2,95[
	11
[2,95; 3,00[
	24
[3,00; 3,05[
	14
[3,05; 3,10[
ontro Mó	g dia Madiana a

4.5 Amplitude das classes

Resposta: 0,05

4.6 Amplitude total Resposta: 0,5

4.7 Ponto médio da terceira classe

Resposta: 2,875

Resposta:

$$moda = l +$$

$$\frac{n_p}{n_a + n_p} \times amp$$

$$= 2,978$$

Comparação entre Média, Mediana e Moda

- As distribuições atfrequências podem ser simétricas ou não, em relação ao eixo
 - A posição relativa da média, mediana e moda dá informação sobre a forma da curva da distribuição

Distribuições simétricas (média = mediana = moda)

[315: 3.20] Distribuições enviesadas à direita (moda < mediana < média)

Distribuições enviesadas à esquerda (moda > mediana > média)

Medidas de posição não central

- São pontos que dividem a distribuição em frações de quantidades de dados idênticas. São divididas em:
 - Quartis assim como a mediana divide a distribuição em 2 partes idênticas estes dividem a distribuição em 4 partes idênticas:

- Decis dividem a distribuição em 10 partes idênticas
- Percentis (ou centis) dividem a distribuição em 100 partes idênticas
- Numa distribuição há outras medidas designadas por quartis que dividem o conjunto de dados em quatros partes (contendo em cada uma delas, 25% dos dados)
 - O 1º Quartil representa-se por Q1
 - O 2º Quartil representa-se por Q2 ou Mediana
 - O 3º Quartil representa-se por Q3

Exemplo 1:

Exemplo 2:

- Assim para dados discretos agrupados ou não:
 - Para poder determinar os fractis, é necessário calcular primeiro as suas posições absolutas na distribuição, ou as respetivas classes

$$oxed{P_{Q_i}=rac{i(n+1)}{K}=u,d \qquad i=1,2,3}$$

 ${\rm K} \rightarrow {\rm 4}$ para quartis, 10 para decis, 100 para percentis

Se a posição do quartil i é inteira, então:

$$K_i=x(P_{k_i})$$

- Se a posição do quartil i é decimal, então é decomposto em
 - Parte inteira (u)
 - Parte decimal (d)

$$K_i = x(u) + 0, d \times \left[x(u+1) - x(u) \right]$$

Exemplo 3:

Considere os seguintes dados e calcule os quartis

Variável
Frequência (ni)
Frequência acumulada (Ni)
0
2
2
1
6
8
2
9
17
3
13
30
4
5
35
Total
35

1º Quartil:

$$PQ_1 = rac{n+1}{4} = rac{35+1}{4} = 9; \ Ni = 9 \Rightarrow Q_1 = 2$$

2º Quartil

$$PQ_2=2$$
 x $rac{n+1}{4}=4$ x $rac{35+1}{4}=18;\ Ni=18\Rightarrow Q_2=3$

3º Quartil:

$$PQ_3 = 3 \times \frac{n+1}{4} = 3 \times \frac{35+1}{4} = 27; \ Q_3 = 3$$

Representação gráfica do resultado do Exemplo 3:

- Assim para dados discretos agrupados em classes:
 - Para determinar os fractis, é necessário calcular primeiro as suas posições absolutas na distribuição, ou as respetivas classes

$$P_{Q_i} = rac{i imes n}{K}$$

K → 4 para quartis, 10 para decis, 100 para percentis

$$Q_j = l_i + rac{j imesrac{n}{k} - N_a}{n_i} imes amp$$

Exemplo 4:

Considere os seguintes dados:

Variável
Frequência (ni)
Frequência acumulada (Ni)
[54; 58[
9
9
[58; 62[
11
20
[62; 66[
8
28
[66; 70[
5
33
Total
33

Calcula os quartis

$$P_{Q_1}=rac{n}{4}=rac{33}{4}= \ Q_1=54+ \ rac{1 imes rac{33}{4}-0}{9} imes 4=57.67$$
 $P_{Q_2}=2 imes rac{n}{4}=2 imes rac{33}{4}= \ Q_2=58+ \ rac{2 imes rac{33}{4}-9}{11} imes 4=60,73$
 $P_{Q_3}=3 imes rac{n}{4}=3 imes rac{33}{4}= \ Q_3=62+ \ 24,75; \ Q_3\Rightarrow 3^a classe$
 $Q_1=54+ \ rac{1 imes rac{33}{4}-0}{9} imes 4=57.67$

Exercício 1:

Fez-se um inquérito a um grupo de jovens sobre as idas ao cinema no último mês e os resultados estão sintetizados no seguinte gráfico:

1.1 Calcula os quartis

$$P_{Q_1}=rac{n}{4}=rac{77}{4}=19,25;\;\;Q_1=1$$

$$P_{Q_2}=2$$
 x $rac{n}{4}=2$ x $rac{77}{4}=38,5;~~Q_2=2$

$$P_{Q_3}=3$$
 x $rac{n}{4}=3$ x $rac{77}{4}=57,75;\;\;Q_3=3$

Exercício 3:

De um pomar de macieiras jovens selecionaram-se macieiras e contou-se o n° de maçãs de cada uma Os dados obtidos foram as seguintes:

Determine:

3.1 P30

5, 5, 5, 6, 6, 7, 8, 8, 9, 9, 9, 12, 13, 13, 15

$$P_{30} = rac{30(15+1)}{100} = 4,8; \quad x(4)+0, 8[x(5)-x(4)] = 6+0, 8(6-6) =$$

6,
$$logo P_{30} = 6$$

3.2 P50

$$P_{50} = rac{50(15+1)}{100} = 8; \quad x(8) = 8, \quad logoP_{50} = 8$$

3.3 P80

$$P_{80} = rac{80(15+1)}{100} = 12,8; \quad x(12)+0, 8[x(13)-x(12)] = 12+0, 8(1) =$$

$$12,8, logoP_{80} = 12,8$$

Exercício 4:

Considere os resultados de um teste de Estatística, assim agrupados:

4.1 Calcula:

a) os quartis

$$egin{aligned} P_{Q_1} &= rac{1 imes 50}{4} = 12,5; \quad Q_1 = 65 + \ rac{1 imes rac{50}{4} - 11}{12} imes 5 = 65,625 \end{aligned}$$

$$egin{aligned} P_{Q_2} &= rac{2 imes 50}{4} = 25; \quad Q_2 = 70 + \ rac{2 imes rac{50}{4} - 23}{15} imes 5 = 70,66(6) \end{aligned}$$

Classes
ni
[55; 60[
3
[60; 65 [
8
[65; 70[
12
[70; 75[
15
[75; 80[
6

$$egin{aligned} P_{Q_3} &= rac{3 imes 50}{4} = 37,5; \quad Q_3 = 75 + \ rac{3 imes rac{50}{4} - 23}{15} imes 5 = 74,83(3) \end{aligned}$$

b) 8º decil

$$P_{D_8} = rac{8 imes 50}{100} = 40, \quad logo \ D_8 \in [75, 80[$$

c) 23°centil

$$P_{C_{23}} = rac{23 imes 50}{100} = 11, 5, \quad logo \, C_{23} \in [65, 70[$$

Medidas de variabilidade

[80; 85]

Estas medidas servem para medir a variabilidade (dispersão) num conjunto de dados. E são:

4 [85; 90]

- Amplitude total: é a diferença entre o valor máximo e o valor mínimo do conjunto de observações
 - Depende apenas das observações extremas

 Total
 - Depende do nº de observações: quanto maior for o nº de observações maior tende a ser a amplitude total
- Amplitude Inter-Quartis: é a diferença entre o 3° quartil e o 1° quartil (Q3-Q1)

$$ig|Amplitude_{inter-quartil} = Q_3 - Q_1$$

50% dos elementos do meio da amostra, estão contidos num intervalo com esta amplitude.

Esta medida é não negativa e será tanto maior for a variabilidade nos dados.

Exemplo 3:

Variável
Frequência (ni)
0
2
1
6
2
9
3
13
4
5
Total
35

Amplitude total = 4 - 0 = 4

1º Quartil: Q1 = 2

3º Quartil: Q3 = 3

Amplitude inter-quartil = Q3 - Q4 = 3 - 2 = 1

Desvio Absoluto Médio

- É a média aritmética dos valores absolutos dos desvios de cada um dos dados em relação à média
- Em dados simples tem-se:

$$\delta_{\overline{x}} = rac{1}{n} \sum_{i=1}^n |x_i - \overline{x}|$$

• Em dados organizados em tabelas de frequência tem-se:

$$oxed{\delta_{\overline{x}} = rac{1}{n} \sum_{i=1}^{k} |x_i - \overline{x}| imes n_i}$$

Variância

- Obtém-se somando os quadrados dos desvios das observações da amostra, relativamente à sua média, e dividindo pelo nº de observações da amostra
- Em dados simples tem-se:

$$S^2 = rac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$

• Em dados organizados em tabelas de frequência tem-se:

$$S^2 = rac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2 imes n_i$$

Desvio Padrão:

- É a raiz quadrada da variância. Dá informação sobre a variabilidade dos dados em relação à média
- Em dados simples tem-se:

$$s = \sqrt{rac{1}{n}\sum_{i=1}^n (x_i - \overline{x})^2}$$

• Em dados organizados em tabelas de frequência tem-se:

$$s = \sqrt{rac{1}{n}\sum_{i=1}^n (x_i - \overline{x})^2 imes n_i}$$

Exercício 7:

O número de golos marcados por uma equipa nas primeiras 20 jornadas do campeonato foi registado na tabela seguinte

Nº de golos	0	1	2	3	4
5					
Nº de jogos	2	5	4	5	3
1					

хi	ni
xini	(xi - ni)^2 x ni
0	2
0	10.125
1	5
5	7.8125
2	4
8	0.25
3	5
15	2.8425
4	3
12	9.1825
5	1
5	7.5625
Total	20
45	37.75

$$\overline{x} = \sum_{i=1}^n (x_i n_i) = 2,25$$
 $S^2 = \frac{\sum_{i=1}^n (x_i - n_i) \times n_i}{n} = \frac{37,75}{20} = 1.8875$ $s = 1.3739$

Coeficiente de Variação de Pearson

 O coeficiente de variação de Pearson, é dado pela relação, em termos percentuais, entre o desvio padrão e a média de distribuição

$$C_{VP} = rac{S}{\overline{x}} imes 100$$

Exemplo 1:

Observe-se a tabela seguinte. Qual das 2 variáveis: altura ou peso apresenta menor variabilidade, sabendo valores da média e do desvio padrão?

	Média	Desvio-padrão
Altura	175 cm	5 cm
Peso	68 Kg	2 Kg

Calcule-se o coeficiente de variação de Pearson, para cada uma das variáveis:

$$C_{VP} altura = rac{s}{\overline{x}} \times 100 = 2,86\%$$

$$C_{VP}peso = \frac{s}{\overline{x}} \times 100 = 2,94\%$$

Conclusão: Neste caso, a altura apresenta menor dispersão que o peso

Medidas de assimetria

 Uma distribuição possui assimetria positiva quando existe uma concentração de valores na zona de valores mais reduzidos da amostra

Assimetria positiva Quass sinetria Assimetria positiva Confuse da Confuse da

 Também se pode medir o grau de assimetria de uma distribuição comparam-se as 3 medidas de tendência central: média, moda e mediana

Assim:

- Sendo a distribuição simétrica, a média e a moda coincidem
- Sendo a distribuição assimétrica:
 - à esquerda ou negativa, a média é menor que a moda
 - à direita ou positiva, a média é maior que a moda

• Pode medir-se o grau de assimetria de uma distribuição recorrendo aos coeficientes de assimetria de Pearson:

Medidas de Achatamento (Kurtosis)

- Esta é uma medida que descreve o grau de achatamento ou afunilamento da curva da distribuição. O seu valor diz-nos se a curva tende a ser muito afunilada/pontiaguda (e.g., com um pico), com uma elevada proporção dos dados aglomerados junto do centro, ou achatada, com os dados espalhando-se ao longo de uma grande amplitude da variável.
- Coeficiente percentil de Kurtosis (Kp):

$$K_p = rac{Q_3 - Q_1}{2(P_{90} - P_{10})}$$

Distribuições Bidimensionais