A Review on Multi-Label Learning Algorithms

Min-Ling Zhang and Zhi-Hua Zhou

IEEE Transactions On Knowledge And Data Engineering

January 21, 2018

Overview

- Introduction
 - Multi-label learning
 - Algorithm Strategies
 - Evaluation Metrics
- Multi-label Learning Algorithms
 - Categorization
 - Problem Transformation Methods
 - Alogrithm Adaptation Methods
- Related Learning Methods
- Conclusion
 - Online resources
 - Related Work
 - Additional Bibliography
- The end

Introduction

Learning \rightarrow build a model from data, to accomplish a task

- Supervised: we have both data and labels
- Applied to classification in this study

Supervised classification:

- ullet Given input data X and labels Y, learn the function $f:X \to Y$
- ullet $f(x_i,y_i)=r$ where $r\in\mathbb{R}$ is the confidence that y_i characterizes x_i
- Assume that x_i belongs to y_i if $r \geq t(x_i)$
- \checkmark $t(\cdot)$ can be a predetermined constant function or learned from X

Single-label learning

• Dataset $\{(x_i, y_i)\}, i = 1, \dots, N, x \in X, y \in Y = \{y_1, \dots, y_q\}$

Multi-label learning

• Multi-label dataset: Multiple labels per instance. $\{(x_i, y_i)\}_{i=1}^{N}$ $x_i \in Y$ $y_i \in \mathbb{P}(Y)$

4 D > 4 B > 4 B > 4 B > 3 P 9 Q P

Learning \rightarrow build a model from data, to accomplish a task

- Supervised: we have both data and labels
- Applied to classification in this study

Supervised classification:

- ullet Given input data X and labels Y, learn the function $f:X\to Y$
- ullet $f(x_i,y_i)=r$ where $r\in\mathbb{R}$ is the confidence that y_i characterizes x_i
- Assume that x_i belongs to y_i if $r \ge t(x_i)$
 - $\checkmark~t(\cdot)$ can be a predetermined constant function or learned from X

Single-label learning

• Dataset $\{(x_i, y_i)\}, i = 1, \dots, N, x \in X, y \in Y = \{y_1, \dots, y_q\}$

Multi-label learning

• Multi-label dataset: Multiple labels per instance. $\{(x, y_i)\}_{i=1}^{N}$ $X \in X$ $y_i \in \mathbb{P}(Y)$

4 D > 4 B > 4 B > 4 B > 9 Q P

Learning \rightarrow build a model from data, to accomplish a task

- Supervised: we have both data and labels
- Applied to classification in this study

Supervised classification:

- ullet Given input data X and labels Y, learn the function $f:X\to Y$
- $f(x_i,y_i)=r$ where $r\in\mathbb{R}$ is the confidence that y_i characterizes x_i
- Assume that x_i belongs to y_i if $r \ge t(x_i)$
 - \checkmark $t(\cdot)$ can be a predetermined constant function or learned from X

Single-label learning

• Dataset $\{(x_i, y_i)\}, i = 1, \dots, N, x \in X, y \in Y = \{y_1, \dots, y_q\}$

Multi-label learning

Multi-label dataset: Multiple labels per instance.
 {(x_i, y_i)} i = 1
 N x ∈ X y ∈ P(Y)

4D > 4B > 4B > 4B > B 990

Learning \rightarrow build a model from data, to accomplish a task

- Supervised: we have both data and labels
- Applied to classification in this study

Supervised classification:

- ullet Given input data X and labels Y, learn the function $f:X\to Y$
- $f(x_i,y_i)=r$ where $r\in\mathbb{R}$ is the confidence that y_i characterizes x_i
- Assume that x_i belongs to y_i if $r \ge t(x_i)$
 - \checkmark $t(\cdot)$ can be a predetermined constant function or learned from X

Single-label learning

• Dataset $\{(x_i, y_i)\}, i = 1, \dots, N, x \in X, y \in Y = \{y_1, \dots, y_q\}$

Multi-label learning

• Multi-label dataset: Multiple labels per instance. $\{(x_i, y_i)\}, i = 1, ..., N, x \in X, y \in \mathbb{P}(Y)$

Learning \rightarrow build a model from data, to accomplish a task

- Supervised: we have both data and labels
- Applied to classification in this study

Supervised classification:

- Given input data X and labels Y, learn the function $f: X \to Y$
- $f(x_i,y_i)=r$ where $r\in\mathbb{R}$ is the confidence that y_i characterizes x_i
- Assume that x_i belongs to y_i if $r \ge t(x_i)$
 - $\checkmark~t(\cdot)$ can be a predetermined constant function or learned from X

Single-label learning

• Dataset $\{(x_i, y_i)\}, i = 1, \dots, N, x \in X, y \in Y = \{y_1, \dots, y_q\}$

Multi-label learning

• Multi-label dataset: Multiple labels per instance. $\{(x_i, y_i)\}, i = 1, ..., N, x \in X, y \in \mathbb{P}(Y)$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● ◆9.00

Learning \rightarrow build a model from data, to accomplish a task

- Supervised: we have both data and labels
- Applied to classification in this study

Supervised classification:

- ullet Given input data X and labels Y, learn the function $f:X \to Y$
- $f(x_i,y_i)=r$ where $r\in\mathbb{R}$ is the confidence that y_i characterizes x_i
- Assume that x_i belongs to y_i if $r \ge t(x_i)$
 - \checkmark $t(\cdot)$ can be a predetermined constant function or learned from X

Single-label learning

• Dataset $\{(x_i, y_i)\}, i = 1, \dots, N, x \in X, y \in Y = \{y_1, \dots, y_q\}$

Multi-label learning

• Multi-label dataset: Multiple labels per instance. $\{(x_i, y_i)\}, i = 1, ..., N, x \in X, y \in \mathbb{P}(Y)$

4 D > 4 A > 4 B > 4 B > B = 900

Learning \rightarrow build a model from data, to accomplish a task

- Supervised: we have both data and labels
- Applied to classification in this study

Supervised classification:

- ullet Given input data X and labels Y, learn the function $f:X\to Y$
- $f(x_i,y_i)=r$ where $r\in\mathbb{R}$ is the confidence that y_i characterizes x_i
- Assume that x_i belongs to y_i if $r \geq t(x_i)$
 - \checkmark $t(\cdot)$ can be a predetermined constant function or learned from X

Single-label learning

• Dataset $\{(x_i, y_i)\}, i = 1, \dots, N, x \in X, y \in Y = \{y_1, \dots, y_q\}$

Multi-label learning

• Multi-label dataset: Multiple labels per instance. $\{(x_i, y_i)\}, i = 1, \dots, N, x \in X, y \in \mathbb{P}(Y)$

4 D > 4 A > 4 E > 4 E > 9 Q P

Learning \rightarrow build a model from data, to accomplish a task

- Supervised: we have both data and labels
- Applied to classification in this study

Supervised classification:

- ullet Given input data X and labels Y, learn the function $f:X\to Y$
- ullet $f(x_i,y_i)=r$ where $r\in\mathbb{R}$ is the confidence that y_i characterizes x_i
- Assume that x_i belongs to y_i if $r \geq t(x_i)$
 - $\checkmark\ t(\cdot)$ can be a predetermined constant function or learned from X

Single-label learning

• Dataset $\{(x_i, y_i)\}, i = 1, \dots, N, x \in X, y \in Y = \{y_1, \dots, y_q\}$

Multi-label learning

• Multi-label dataset: Multiple labels per instance. $\{(x_i, y_i)\}, i = 1, ..., N, x \in X, y \in \mathbb{P}(Y)$

4 D > 4 A > 4 B > 4 B > B 90 0

Learning \rightarrow build a model from data, to accomplish a task

- Supervised: we have both data and labels
- Applied to classification in this study

Supervised classification:

- Given input data X and labels Y, learn the function $f: X \to Y$
- ullet $f(x_i,y_i)=r$ where $r\in\mathbb{R}$ is the confidence that y_i characterizes x_i
- Assume that x_i belongs to y_i if $r \geq t(x_i)$
 - $\checkmark\ t(\cdot)$ can be a predetermined constant function or learned from X

Single-label learning

• Dataset $\{(x_i, y_i)\}, i = 1, \dots, N, x \in X, y \in Y = \{y_1, \dots, y_q\}$

Multi-label learning

Multi-label dataset: Multiple labels per instance.
 {(x_i, y_i)} i = 1
 N x ∈ X y ∈ P(Y)

4 D > 4 A > 4 E > 4 E > 9 Q P

Learning \rightarrow build a model from data, to accomplish a task

- Supervised: we have both data and labels
- Applied to classification in this study

Supervised classification:

- ullet Given input data X and labels Y, learn the function $f:X\to Y$
- $f(x_i,y_i)=r$ where $r\in\mathbb{R}$ is the confidence that y_i characterizes x_i
- Assume that x_i belongs to y_i if $r \geq t(x_i)$
 - $\checkmark \ \ t(\cdot)$ can be a predetermined constant function or learned from X

Single-label learning

- Dataset $\{(x_i, y_i)\}, i = 1, \dots, N, x \in X, y \in Y = \{y_1, \dots, y_q\}$
- Multi-label learning
 - Multi-label dataset: Multiple labels per instance.
 {(x; u_i)} i = 1
 N x ∈ X u ∈ P(Y)

4 D > 4 A > 4 B > 4 B > B 900

Learning \rightarrow build a model from data, to accomplish a task

- Supervised: we have both data and labels
- Applied to classification in this study

Supervised classification:

- ullet Given input data X and labels Y, learn the function $f:X \to Y$
- $f(x_i,y_i)=r$ where $r\in\mathbb{R}$ is the confidence that y_i characterizes x_i
- Assume that x_i belongs to y_i if $r \geq t(x_i)$
 - $\checkmark \ \ t(\cdot)$ can be a predetermined constant function or learned from X

Single-label learning

• Dataset $\{(x_i, y_i)\}, i = 1, \dots, N, x \in X, y \in Y = \{y_1, \dots, y_q\}$

Multi-label learning

• Multi-label dataset: Multiple labels per instance. $\{(x_i, y_i)\}, i = 1, ..., N, x \in X, y \in \mathbb{P}(Y)$

4 D > 4 A > 4 E > 4 E > 9 Q P

Learning \rightarrow build a model from data, to accomplish a task

- Supervised: we have both data and labels
- Applied to classification in this study

Supervised classification:

- ullet Given input data X and labels Y, learn the function $f:X\to Y$
- $f(x_i,y_i)=r$ where $r\in\mathbb{R}$ is the confidence that y_i characterizes x_i
- Assume that x_i belongs to y_i if $r \geq t(x_i)$
 - $\checkmark\ t(\cdot)$ can be a predetermined constant function or learned from X

Single-label learning

• Dataset $\{(x_i, y_i)\}, i = 1, \dots, N, x \in X, y \in Y = \{y_1, \dots, y_q\}$

Multi-label learning

• Multi-label dataset: Multiple labels per instance. $\{(x_i, y_i)\}, i = 1, ..., N, x \in X, y \in \mathbb{P}(Y)$

◆ロト ◆問ト ◆意ト ◆意ト · 意 · 幻久(*)

Learning \rightarrow build a model from data, to accomplish a task

- Supervised: we have both data and labels
- Applied to classification in this study

Supervised classification:

- ullet Given input data X and labels Y, learn the function f:X o Y
- ullet $f(x_i,y_i)=r$ where $r\in\mathbb{R}$ is the confidence that y_i characterizes x_i
- Assume that x_i belongs to y_i if $r \geq t(x_i)$
 - $\checkmark \ \ t(\cdot)$ can be a predetermined constant function or learned from X

Single-label learning

• Dataset $\{(x_i, y_i)\}, i = 1, \dots, N, x \in X, y \in Y = \{y_1, \dots, y_q\}$

Multi-label learning

• Multi-label dataset: Multiple labels per instance. $\{(x_i, y_i)\}, i = 1, ..., N, x \in X, y \in \mathbb{P}(Y)$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q C ・

Label search space $\mathbb{S}_{\mathbb{Y}}$ grows exponentially as a function of |Y|=q $\mathbb{S}_{\mathbb{Y}}$ e.g. for $q=20, |\mathbb{S}_{\mathbb{Y}}|=2^{|\mathbb{P}(\mathbb{Y})|}=2^{20}\geq 10^6$

- First-order strategies
 - Ignore label correlations
 - Often transform M-L problem to multiple, single-label problems and combine the per-label results
 - Simple, scalable, suboptimal
- ② Second-order strategies
 - Consider pairwise label relations
 - \circ Good trade-off between generalization performance and scalability
 - Lacking in some real-world application:
- 4 Higher-order strategies
 - Capture more complicated label interdependencies
 - Strong modeling capabilities that can capture complex relationships
 - Comp

Label search space $\mathbb{S}_{\mathbb{Y}}$ grows exponentially as a function of |Y|=q

$$\triangleright$$
 e.g. for $q = 20, |\mathbb{S}_{\mathbb{Y}}| = 2^{|\mathbb{P}(\mathbb{Y})|} = 2^{20} \ge 10^6$

- First-order strategies
 - Ignore label correlations
 - Often transform M-L problem to multiple, single-label problems and combine the per-label results
 - Simple, scalable, suboptimal
- ② Second-order strategies
 - Consider pairwise label relations
 - Good trade-off between generalization performance and scalability
 - Lacking in some real-world applications
- 4 Higher-order strategies
 - Capture more complicated label interdependencies
 - Strong modeling capabilities that can capture complex relationships
 - Computationally demanding, less scalable

Label search space $\mathbb{S}_{\mathbb{Y}}$ grows exponentially as a function of |Y|=q \triangleright e.g. for $q=20, |\mathbb{S}_{\mathbb{Y}}|=2^{|\mathbb{P}(\mathbb{Y})|}=2^{20}>10^6$

- First-order strategies
 - Ignore label correlations
 - Often transform M-L problem to multiple, single-label problems and combine the per-label results
 - Simple, scalable, suboptimal
- Second-order strategies
 - Consider pairwise label relations
 - Good trade-off between generalization performance and scalability
 - Lacking in some real-world applications
- Higher-order strategies
 - Capture more complicated label interdependencies
 - Strong modeling capabilities that can capture complex relationships
 - Computationally demanding, less scalable

Label search space $\mathbb{S}_{\mathbb{Y}}$ grows exponentially as a function of |Y|=q \triangleright e.g. for $q=20, |\mathbb{S}_{\mathbb{Y}}|=2^{|\mathbb{P}(\mathbb{Y})|}=2^{20}\geq 10^6$

- First-order strategies
 - Ignore label correlations
 - Often transform M-L problem to multiple, single-label problems and combine the per-label results
 - Simple, scalable, suboptimal
- ② Second-order strategies
 - Consider pairwise label relations
 - Good trade-off between generalization performance and scalability
 - Lacking in some real-world applications
- 4 Higher-order strategies
 - Capture more complicated label interdependencies
 - Strong modeling capabilities that can capture complex relationships
 Computationally demanding less scalable

Label search space $\mathbb{S}_{\mathbb{Y}}$ grows exponentially as a function of |Y|=q \triangleright e.g. for $q=20, |\mathbb{S}_{\mathbb{Y}}|=2^{|\mathbb{P}(\mathbb{Y})|}=2^{20}>10^6$

- First-order strategies
 - Ignore label correlations
 - Often transform M-L problem to multiple, single-label problems and combine the per-label results
 - o Simple, scalable, suboptimal
- Second-order strategies
 - Consider pairwise label relations
 - Good trade-off between generalization performance and scalability
 - Lacking in some real-world applications
- 4 Higher-order strategies
 - Capture more complicated label interdependencies
 - Strong modeling capabilities that can capture complex relationships
 Computationally demanding, less scalable

Label search space $\mathbb{S}_{\mathbb{Y}}$ grows exponentially as a function of |Y|=q \triangleright e.g. for $q=20, |\mathbb{S}_{\mathbb{Y}}|=2^{|\mathbb{P}(\mathbb{Y})|}=2^{20}>10^6$

- First-order strategies
 - Ignore label correlations
 - Often transform M-L problem to multiple, single-label problems and combine the per-label results
 - o Simple, scalable, suboptimal
- Second-order strategies
 - Consider pairwise label relations
 - Good trade-off between generalization performance and scalability
 - Lacking in some real-world applications
- 4 Higher-order strategies
 - Capture more complicated label interdependencies
 - Strong modeling capabilities that can capture complex relationships
 Computationally demanding, less scalable

Label search space $\mathbb{S}_{\mathbb{Y}}$ grows exponentially as a function of |Y|=q \triangleright e.g. for $q = 20, |\mathbb{S}_{\mathbb{Y}}| = 2^{|\mathbb{P}(\mathbb{Y})|} = 2^{20} > 10^6$

- First-order strategies
 - Ignore label correlations
 - Often transform M-L problem to multiple, single-label problems and combine the per-label results
- Second-order strategies
- 4 Higher-order strategies

Label search space $\mathbb{S}_{\mathbb{Y}}$ grows exponentially as a function of |Y|=q \triangleright e.g. for $q=20, |\mathbb{S}_{\mathbb{Y}}|=2^{|\mathbb{P}(\mathbb{Y})|}=2^{20}>10^6$

- First-order strategies
 - o Ignore label correlations
 - Often transform M-L problem to multiple, single-label problems and combine the per-label results
 - o Simple, scalable, suboptimal
- ② Second-order strategies
- Consider pairwise label relations
 - Good trade-off between generalization performance and scalability

 Lacking in some real world applications.
- Lacking in some real-world applications
- 4 Higher-order strategies
 - Capture more complicated label interdependencies
 - Strong modeling capabilities that can capture complex relationships
 Camputationally demanding less scalable

Label search space $\mathbb{S}_{\mathbb{Y}}$ grows exponentially as a function of |Y|=q \triangleright e.g. for $q=20, |\mathbb{S}_{\mathbb{Y}}|=2^{|\mathbb{P}(\mathbb{Y})|}=2^{20}>10^6$

- First-order strategies
 - o Ignore label correlations
 - Often transform M-L problem to multiple, single-label problems and combine the per-label results
 - o Simple, scalable, suboptimal
- Second-order strategies
 - Consider pairwise label relations
 - Good trade-off between generalization performance and scalability
 - Lacking in some real-world applications
- Higher-order strategies
 - Capture more complicated label interdependencies
 - Strong modeling capabilities that can capture complex relationships
 Computationally demanding, less scalable

Label search space $\mathbb{S}_{\mathbb{Y}}$ grows exponentially as a function of |Y|=q \triangleright e.g. for $q=20, |\mathbb{S}_{\mathbb{Y}}|=2^{|\mathbb{P}(\mathbb{Y})|}=2^{20}>10^6$

- First-order strategies
 - o Ignore label correlations
 - Often transform M-L problem to multiple, single-label problems and combine the per-label results
 - o Simple, scalable, suboptimal
- Second-order strategies
 - o Consider pairwise label relations
 - Good trade-off between generalization performance and scalability
 - Lacking in some real-world applications
- Higher-order strategies
 - Capture more complicated label interdependencies
 - Strong modeling capabilities that can capture complex relationships
 Computationally demanding less scalable

Label search space $\mathbb{S}_{\mathbb{Y}}$ grows exponentially as a function of |Y|=q \triangleright e.g. for $q=20, |\mathbb{S}_{\mathbb{Y}}|=2^{|\mathbb{P}(\mathbb{Y})|}=2^{20}>10^6$

- First-order strategies
 - o Ignore label correlations
 - Often transform M-L problem to multiple, single-label problems and combine the per-label results
 - o Simple, scalable, suboptimal
- Second-order strategies
 - o Consider pairwise label relations
 - o Good trade-off between generalization performance and scalability
 - Lacking in some real-world application
- 3 Higher-order strategies
 - Capture more complicated label interdependencies
 - Strong modeling capabilities that can capture complex relationships
 Computationally demanding less scalable

Label search space $\mathbb{S}_{\mathbb{Y}}$ grows exponentially as a function of |Y|=q \triangleright e.g. for $q=20, |\mathbb{S}_{\mathbb{Y}}|=2^{|\mathbb{P}(\mathbb{Y})|}=2^{20}>10^6$

- First-order strategies
 - o Ignore label correlations
 - Often transform M-L problem to multiple, single-label problems and combine the per-label results
 - o Simple, scalable, suboptimal
- ② Second-order strategies
 - o Consider pairwise label relations
 - $\circ\,$ Good trade-off between generalization performance and scalability
 - Lacking in some real-world applications
- Higher-order strategies
 - Capture more complicated label interdependencies
 - Computationally demanding, less scalable

Label search space $\mathbb{S}_{\mathbb{Y}}$ grows exponentially as a function of |Y|=q \triangleright e.g. for $q=20, |\mathbb{S}_{\mathbb{Y}}|=2^{|\mathbb{P}(\mathbb{Y})|}=2^{20}>10^6$

- First-order strategies
 - o Ignore label correlations
 - Often transform M-L problem to multiple, single-label problems and combine the per-label results
 - o Simple, scalable, suboptimal
- ② Second-order strategies
 - Consider pairwise label relations
 - Good trade-off between generalization performance and scalability
 - Lacking in some real-world applications
- 4 Higher-order strategies
 - Capture more complicated label interdependencies
 - Strong modeling capabilities that can capture complex relationships
 - Computationally demanding, less scalable

Label search space $\mathbb{S}_{\mathbb{Y}}$ grows exponentially as a function of |Y|=q \triangleright e.g. for $q=20, |\mathbb{S}_{\mathbb{Y}}|=2^{|\mathbb{P}(\mathbb{Y})|}=2^{20}>10^6$

- First-order strategies
 - Ignore label correlations
 - Often transform M-L problem to multiple, single-label problems and combine the per-label results
 - o Simple, scalable, suboptimal
- ② Second-order strategies
 - Consider pairwise label relations
 - Good trade-off between generalization performance and scalability
 - Lacking in some real-world applications
- 4 Higher-order strategies
 - o Capture more complicated label interdependencies
 - Strong modeling capabilities that can capture complex relationships
 - Computationally demanding less scalable

Label search space $\mathbb{S}_{\mathbb{Y}}$ grows exponentially as a function of |Y|=q \triangleright e.g. for $q=20, |\mathbb{S}_{\mathbb{Y}}|=2^{|\mathbb{P}(\mathbb{Y})|}=2^{20}>10^6$

- First-order strategies
 - Ignore label correlations
 - Often transform M-L problem to multiple, single-label problems and combine the per-label results
 - o Simple, scalable, suboptimal
- ② Second-order strategies
 - Consider pairwise label relations
 - Good trade-off between generalization performance and scalability
 - Lacking in some real-world applications
- Higher-order strategies
 - Capture more complicated label interdependencies
 - Strong modeling capabilities that can capture complex relationships
 - Computationally demanding, less scalable

Label search space $\mathbb{S}_{\mathbb{Y}}$ grows exponentially as a function of |Y|=q \triangleright e.g. for $q=20, |\mathbb{S}_{\mathbb{Y}}|=2^{|\mathbb{P}(\mathbb{Y})|}=2^{20}>10^6$

- First-order strategies
 - o Ignore label correlations
 - Often transform M-L problem to multiple, single-label problems and combine the per-label results
 - o Simple, scalable, suboptimal
- ② Second-order strategies
 - Consider pairwise label relations
 - Good trade-off between generalization performance and scalability
 - Lacking in some real-world applications
- Higher-order strategies
 - o Capture more complicated label interdependencies
 - Strong modeling capabilities that can capture complex relationships
 - Strong modeling capabilities that can capture complex relationships
 Computationally demanding, less scalable

Extension of single-label metrics to the M-L case.

Grouped into two categories and perspectives:

- Example-based: Evaluates multi-labeled performance on each example, extrapolate to whole dataset
 - Classification perspective:
 - Subset Accuracy, Hamming Loss
 Precision, Recall, F² -measure
 - Ranking perspective: one-error, coverage, ranking loss, average precision
- Label-based: Evaluates performance on each label separately, extrapolate to whole label set
 - Classification perspective: Macro/Micro averaging techniques for single-label example-based, classification-perspective measures
 - Ranking perspective: Macro/Micro averaging for AUC
- * Ideally, classifiers should be trained to optimize multiple metrics

Extension of single-label metrics to the M-L case.

Grouped into two categories and perspectives:

- Example-based: Evaluates multi-labeled performance on each example, extrapolate to whole dataset
 - Classification perspective:
 - Subset Accuracy, Hamming Loss
 Precision Recall E² measure
 - Ranking perspective: one-error, coverage, ranking loss, average precision
- Label-based: Evaluates performance on each label separately, extrapolate to whole label set
 - Classification perspective: Macro/Micro averaging techniques for single-label example-based, classification-perspective measures
 - Ranking perspective: Macro/Micro averaging for AUC
- * Ideally, classifiers should be trained to optimize multiple metrics

Extension of single-label metrics to the M-L case. Grouped into two categories and perspectives:

- Example-based: Evaluates multi-labeled performance on each example, extrapolate to whole dataset
 - Classification perspective:
 - Subset Accuracy, Hamming Loss
 Precision, Recall, F^{\beta} -measure
 - Ranking perspective: one-error, coverage, ranking loss, average precision
- Label-based: Evaluates performance on each label separately, extrapolate to whole label set
 - Classification perspective: Macro/Micro averaging techniques for single-label example-based, classification-perspective measures
 - Ranking perspective: Macro/Micro averaging for AUC
- * Ideally, classifiers should be trained to optimize multiple metrics

Extension of single-label metrics to the M-L case.

Grouped into two categories and perspectives:

- Example-based: Evaluates multi-labeled performance on each example, extrapolate to whole dataset
 - Classification perspective:
 - Subset Accuracy, Hamming Loss
 - Precision, Recall, F^{β} -measure
 - Ranking perspective: one-error, coverage, ranking loss, average precision
- Label-based: Evaluates performance on each label separately, extrapolate to whole label set
 - Classification perspective: Macro/Micro averaging techniques for single-label example-based, classification-perspective measures
 - Ranking perspective: Macro/Micro averaging for AUC
- * Ideally, classifiers should be trained to optimize multiple metrics

Extension of single-label metrics to the M-L case.

- Example-based: Evaluates multi-labeled performance on each example, extrapolate to whole dataset
 - Classification perspective:
 - Subset Accuracy, Hamming Loss
 - Precision, Recall, F^{β} -measure
 - Ranking perspective: one-error, coverage, ranking loss, average precision
- Label-based: Evaluates performance on each label separately, extrapolate to whole label set
 - Classification perspective: Macro/Micro averaging techniques for single-label example-based, classification-perspective measures
 - Ranking perspective: Macro/Micro averaging for AUC
- * Ideally, classifiers should be trained to optimize multiple metrics

Extension of single-label metrics to the M-L case.

- Example-based: Evaluates multi-labeled performance on each example, extrapolate to whole dataset
 - Classification perspective:
 - Subset Accuracy, Hamming Loss
 - Precision, Recall, F^{β} -measure
 - Ranking perspective: one-error, coverage, ranking loss, average precision
- Label-based: Evaluates performance on each label separately, extrapolate to whole label set
 - Classification perspective: Macro/Micro averaging techniques for single-label example-based, classification-perspective measures
 - Ranking perspective: Macro/Micro averaging for AUC
- * Ideally, classifiers should be trained to optimize multiple metrics

Extension of single-label metrics to the M-L case.

- Example-based: Evaluates multi-labeled performance on each example, extrapolate to whole dataset
 - Classification perspective:
 - Subset Accuracy, Hamming Loss
 - Precision, Recall, F^{β} -measure
 - Ranking perspective: one-error, coverage, ranking loss, average precision
- Label-based: Evaluates performance on each label separately, extrapolate to whole label set
 - Classification perspective: Macro/Micro averaging techniques for single-label example-based, classification-perspective measures
 Ranking perspective: Macro/Micro averaging for AUC
- * Ideally, classifiers should be trained to optimize multiple metrics

Extension of single-label metrics to the M-L case.

- Example-based: Evaluates multi-labeled performance on each example, extrapolate to whole dataset
 - Classification perspective:
 - Subset Accuracy, Hamming Loss
 - Precision, Recall, F^{β} -measure
 - Ranking perspective: one-error, coverage, ranking loss, average precision
- Label-based: Evaluates performance on each label separately, extrapolate to whole label set
 - Classification perspective: Macro/Micro averaging techniques for single-label example-based, classification-perspective measures
 - Ranking perspective: Macro/Micro averaging for AUC
- * Ideally, classifiers should be trained to optimize multiple metrics

Extension of single-label metrics to the M-L case.

- Example-based: Evaluates multi-labeled performance on each example, extrapolate to whole dataset
 - Classification perspective:
 - Subset Accuracy, Hamming Loss
 - Precision, Recall, F^{β} -measure
 - Ranking perspective: one-error, coverage, ranking loss, average precision
- Label-based: Evaluates performance on each label separately, extrapolate to whole label set
 - Classification perspective: Macro/Micro averaging techniques for single-label example-based, classification-perspective measures
 - Ranking perspective: Macro/Micro averaging for AUC
- * Ideally, classifiers should be trained to optimize multiple metrics

Extension of single-label metrics to the M-L case.

- Example-based: Evaluates multi-labeled performance on each example, extrapolate to whole dataset
 - Classification perspective:
 - Subset Accuracy, Hamming Loss
 - Precision, Recall, F^{β} -measure
 - Ranking perspective: one-error, coverage, ranking loss, average precision
- Label-based: Evaluates performance on each label separately, extrapolate to whole label set
 - Classification perspective: Macro/Micro averaging techniques for single-label example-based, classification-perspective measures
 - o Ranking perspective: Macro/Micro averaging for AUC
- * Ideally, classifiers should be trained to optimize multiple metrics

Extension of single-label metrics to the M-L case.

- Example-based: Evaluates multi-labeled performance on each example, extrapolate to whole dataset
 - Classification perspective:
 - Subset Accuracy, Hamming Loss
 - Precision, Recall, F^{β} -measure
 - Ranking perspective: one-error, coverage, ranking loss, average precision
- Label-based: Evaluates performance on each label separately, extrapolate to whole label set
 - Classification perspective: Macro/Micro averaging techniques for single-label example-based, classification-perspective measures
 - Ranking perspective: Macro/Micro averaging for AUC
- * Ideally, classifiers should be trained to optimize multiple metrics

Multi-label Learning Algorithms

Group algorithms in two categories

- Problem Transformation Methods:
 - Transform the learning problem into other, managable (often single-label) learning problems
 - "Fit data to algorithm" philosophy
- Algorithm Adaptation Methods:
 - Adapt popular learning techniques to deal with multi-label data directly
 - "Fit algorithm to data" philosophy

- √ Has broad, noteworthy or unique characteristics
- √ Has important impact, leading to a number follow-up related methods
- √ Is influential and highly-cited in multi-label learning

Group algorithms in two categories:

- Problem Transformation Methods:
 - Transform the learning problem into other, managable (ofter single label) learning problems
 - o "Fit data to algorithm" philosophy
- Algorithm Adaptation Methods:
 - Adapt popular learning techniques to deal with multi-label data directly
 - "Fit algorithm to data" philosophy

- √ Has broad, noteworthy or unique characteristics
- √ Has important impact, leading to a number follow-up related methods
- ✓ Is influential and highly-cited in multi-label learning

Group algorithms in two categories:

- Problem Transformation Methods:
- Algorithm Adaptation Methods:

Group algorithms in two categories:

- Problem Transformation Methods:
 - Transform the learning problem into other, managable (often single-label) learning problems
 - "Fit data to algorithm" philosophy
- Algorithm Adaptation Methods:
 - Adapt popular learning techniques to deal with multi-label data directly
 "Fit algorithm to data" philosophy

- √ Has broad, noteworthy or unique characteristics
- √ Has important impact, leading to a number follow-up related methods
- √ Is influential and highly-cited in multi-label learning

Group algorithms in two categories:

- Problem Transformation Methods:
 - Transform the learning problem into other, managable (often single-label) learning problems
 - o "Fit data to algorithm" philosophy
- Algorithm Adaptation Methods:
 - Adapt popular learning techniques to deal with multi-label data directly
 "Fit algorithm to data" philosophy

- √ Has broad, noteworthy or unique characteristics
- √ Has important impact, leading to a number follow-up related methods
- √ Is influential and highly-cited in multi-label learning.

Group algorithms in two categories:

- Problem Transformation Methods:
 - Transform the learning problem into other, managable (often single-label) learning problems
 - o "Fit data to algorithm" philosophy
- Algorithm Adaptation Methods:
 - Adapt popular learning techniques to deal with multi-label data directly
 - "Fit algorithm to data" philosophy

- √ Has broad, noteworthy or unique characteristics
- √ Has important impact, leading to a number follow-up related methods
- \checkmark Is influential and highly-cited in multi-label learning

Group algorithms in two categories:

- Problem Transformation Methods:
 - Transform the learning problem into other, managable (often single-label) learning problems
 - o "Fit data to algorithm" philosophy
- Algorithm Adaptation Methods:
 - Adapt popular learning techniques to deal with multi-label data directly
 - "Fit algorithm to data" philosophy

- √ Has broad, noteworthy or unique characteristics
- √ Has important impact, leading to a number follow-up related methods
- \checkmark Is influential and highly-cited in multi-label learning

Group algorithms in two categories:

- Problem Transformation Methods:
 - Transform the learning problem into other, managable (often single-label) learning problems
 - o "Fit data to algorithm" philosophy
- Algorithm Adaptation Methods:
 - o Adapt popular learning techniques to deal with multi-label data directly
 - "Fit algorithm to data" philosophy

- √ Has broad, noteworthy or unique characteristics
- √ Has important impact, leading to a number follow-up related methods
- √ Is influential and highly-cited in multi-label learning

Group algorithms in two categories:

- Problem Transformation Methods:
 - Transform the learning problem into other, managable (often single-label) learning problems
 - o "Fit data to algorithm" philosophy
- Algorithm Adaptation Methods:
 - o Adapt popular learning techniques to deal with multi-label data directly
 - "Fit algorithm to data" philosophy

- √ Has broad, noteworthy or unique characteristics
- √ Has important impact, leading to a number follow-up related methods
 - √ Is influential and highly-cited in multi-label learning

Group algorithms in two categories:

- Problem Transformation Methods:
 - Transform the learning problem into other, managable (often single-label) learning problems
 - o "Fit data to algorithm" philosophy
- Algorithm Adaptation Methods:
 - o Adapt popular learning techniques to deal with multi-label data directly
 - "Fit algorithm to data" philosophy

- √ Has broad, noteworthy or unique characteristics
- √ Has important impact, leading to a number follow-up related methods
- √ Is influential and highly-cited in multi-label learning

Group algorithms in two categories:

- Problem Transformation Methods:
 - Transform the learning problem into other, managable (often single-label) learning problems
 - o "Fit data to algorithm" philosophy
- Algorithm Adaptation Methods:
 - o Adapt popular learning techniques to deal with multi-label data directly
 - "Fit algorithm to data" philosophy

- √ Has broad, noteworthy or unique characteristics
- \checkmark Has important impact, leading to a number follow-up related methods
- √ Is influential and highly-cited in multi-label learning

Group algorithms in two categories:

- Problem Transformation Methods:
 - Transform the learning problem into other, managable (often single-label) learning problems
 - o "Fit data to algorithm" philosophy
- Algorithm Adaptation Methods:
 - o Adapt popular learning techniques to deal with multi-label data directly
 - o "Fit algorithm to data" philosophy

- √ Has broad, noteworthy or unique characteristics
- \checkmark Has important impact, leading to a number follow-up related methods
- √ Is influential and highly-cited in multi-label learning.

Problem Transformation Methods

Multi-label Learning Algorithms: Problem Transformation Methods

- Decompose multi-label problem to |Y|=q independent binary classification problems
- Construct q binary (one-vs-all) training sets (one for each y_i)
- Independently train each classifier $h_i(x)$ on its respective dataset
- ullet Predict labels of an unseen x by evaluating each classifier $h_i(x)$
- ullet Assign label y_i according to $r=h_i(x)$ and the thresholding setting

- ullet Simple, one-vs-rest scheme o easily parallelizable
- Sensitive to class-imbalanced data¹
- Ignores label correlations (first-order method)

- \bullet Decompose multi-label problem to |Y|=q independent binary classification problems
- Construct q binary (one-vs-all) training sets (one for each y_i)
- Independently train each classifier $h_i(x)$ on its respective dataset
- ullet Predict labels of an unseen x by evaluating each classifier $h_i(x)$
- ullet Assign label y_i according to $r=h_i(x)$ and the thresholding setting

- ullet Simple, one-vs-rest scheme o easily parallelizable
- Sensitive to class-imbalanced data¹
- Ignores label correlations (first-order method)

- \bullet Decompose multi-label problem to |Y|=q independent binary classification problems
- Construct q binary (one-vs-all) training sets (one for each y_i)
- Independently train each classifier $h_i(x)$ on its respective dataset
- Predict labels of an unseen x by evaluating each classifier $h_i(x)$
- ullet Assign label y_i according to $r=h_i(x)$ and the thresholding setting

- ullet Simple, one-vs-rest scheme o easily parallelizable
- Sensitive to class-imbalanced data¹
- Ignores label correlations (first-order method)

- \bullet Decompose multi-label problem to |Y|=q independent binary classification problems
- Construct q binary (one-vs-all) training sets (one for each y_i)
- Independently train each classifier $h_i(x)$ on its respective dataset
- Predict labels of an unseen x by evaluating each classifier $h_i(x)$
- ullet Assign label y_i according to $r=h_i(x)$ and the thresholding setting

Pros & cons

- ullet Simple, one-vs-rest scheme o easily parallelizable
- Sensitive to class-imbalanced data¹
- Ignores label correlations (first-order method)

- \bullet Decompose multi-label problem to |Y|=q independent binary classification problems
- Construct q binary (one-vs-all) training sets (one for each y_i)
- Independently train each classifier $h_i(x)$ on its respective dataset
- Predict labels of an unseen x by evaluating each classifier $h_i(x)$
- ullet Assign label y_i according to $r=h_i(x)$ and the thresholding setting

Pros & cons

- ullet Simple, one-vs-rest scheme o easily parallelizable
- Sensitive to class-imbalanced data¹
- Ignores label correlations (first-order method)

- \bullet Decompose multi-label problem to |Y|=q independent binary classification problems
- Construct q binary (one-vs-all) training sets (one for each y_i)
- Independently train each classifier $h_i(x)$ on its respective dataset
- Predict labels of an unseen x by evaluating each classifier $h_i(x)$
- ullet Assign label y_i according to $r=h_i(x)$ and the thresholding setting

Pros & cons

- ullet Simple, one-vs-rest scheme o easily parallelizable
- Sensitive to class-imbalanced data¹
- Ignores label correlations (first-order method)

- \bullet Decompose multi-label problem to |Y|=q independent binary classification problems
- Construct q binary (one-vs-all) training sets (one for each y_i)
- Independently train each classifier $h_i(x)$ on its respective dataset
- Predict labels of an unseen x by evaluating each classifier $h_i(x)$
- ullet Assign label y_i according to $r=h_i(x)$ and the thresholding setting

- ullet Simple, one-vs-rest scheme o easily parallelizable
- Sensitive to class-imbalanced data¹
- Ignores label correlations (first-order method)

- \bullet Decompose multi-label problem to |Y|=q independent binary classification problems
- Construct q binary (one-vs-all) training sets (one for each y_i)
- Independently train each classifier $h_i(x)$ on its respective dataset
- Predict labels of an unseen x by evaluating each classifier $h_i(x)$
- ullet Assign label y_i according to $r=h_i(x)$ and the thresholding setting

- ullet Simple, one-vs-rest scheme o easily parallelizable
- Sensitive to class-imbalanced data¹
- Ignores label correlations (first-order method)

- \bullet Decompose multi-label problem to |Y|=q independent binary classification problems
- Construct q binary (one-vs-all) training sets (one for each y_i)
- Independently train each classifier $h_i(x)$ on its respective dataset
- Predict labels of an unseen x by evaluating each classifier $h_i(x)$
- ullet Assign label y_i according to $r=h_i(x)$ and the thresholding setting

- ullet Simple, one-vs-rest scheme o easily parallelizable
- Sensitive to class-imbalanced data¹
- Ignores label correlations (first-order method)

- Decompose multi-label problem to |Y|=q independent binary classification problems
- Construct q binary (one-vs-all) training sets (one for each y_i)
- Independently train each classifier $h_i(x)$ on its respective dataset
- Predict labels of an unseen x by evaluating each classifier $h_i(x)$
- ullet Assign label y_i according to $r=h_i(x)$ and the thresholding setting

- ullet Simple, one-vs-rest scheme o easily parallelizable
- Sensitive to class-imbalanced data¹
- Ignores label correlations (first-order method)

¹Very different number of pos. and neg. examples for a class ♠ → ◆ ≥ → ◆ ≥ → ◆ ○

- ullet Reorder the label Y set using a permutation function f_p
- Transform into a chain of binary classification problems
- Enrich representations at step j by concatenating each x_i with the confidence of preceding $1,\ldots,j-1$ -th classifiers
- Predict relevant labels for unknown instances by iteratively traversing the classifier chain

- High-order method: exploitation of label correlations to a degree, but in a random manner
- Highly sensitive to f_p . Running multiple chain executions in an ensemble attempt to overcome this dependency.
- Iterative operation prevents parallel implementation

- \bullet Reorder the label Y set using a permutation function f_p
- Transform into a chain of binary classification problems
- Enrich representations at step j by concatenating each x_i with the confidence of preceding $1, \ldots, j-1$ -th classifiers
- Predict relevant labels for unknown instances by iteratively traversing the classifier chain

- High-order method: exploitation of label correlations to a degree, but in a random manner
- Highly sensitive to f_p . Running multiple chain executions in an ensemble attempt to overcome this dependency.
- Iterative operation prevents parallel implementation

- \bullet Reorder the label Y set using a permutation function f_p
- Transform into a *chain* of binary classification problems
- Enrich representations at step j by concatenating each x_i with the confidence of preceding $1, \ldots, j-1$ -th classifiers
- Predict relevant labels for unknown instances by iteratively traversing the classifier chain

- High-order method: exploitation of label correlations to a degree, but in a random manner
- Highly sensitive to f_p . Running multiple chain executions in an ensemble attempt to overcome this dependency.
- Iterative operation prevents parallel implementation

- \bullet Reorder the label Y set using a permutation function f_p
- Transform into a *chain* of binary classification problems
- Enrich representations at step j by concatenating each x_i with the confidence of preceding $1, \ldots, j-1$ -th classifiers
- Predict relevant labels for unknown instances by iteratively traversing the classifier chain

- High-order method: exploitation of label correlations to a degree, but in a random manner
- Highly sensitive to f_p . Running multiple chain executions in an ensemble attempt to overcome this dependency.
- Iterative operation prevents parallel implementation

- ullet Reorder the label Y set using a permutation function f_p
- Transform into a chain of binary classification problems
- Enrich representations at step j by concatenating each x_i with the confidence of preceding $1, \ldots, j-1$ -th classifiers
- Predict relevant labels for unknown instances by iteratively traversing the classifier chain

- High-order method: exploitation of label correlations to a degree, but in a random manner
- Highly sensitive to f_p . Running multiple chain executions in an ensemble attempt to overcome this dependency.
- Iterative operation prevents parallel implementation

- ullet Reorder the label Y set using a permutation function f_p
- Transform into a chain of binary classification problems
- Enrich representations at step j by concatenating each x_i with the confidence of preceding $1, \ldots, j-1$ -th classifiers
- Predict relevant labels for unknown instances by iteratively traversing the classifier chain

- High-order method: exploitation of label correlations to a degree, but in a random manner
- Highly sensitive to f_p . Running multiple chain executions in an ensemble attempt to overcome this dependency.
- Iterative operation prevents parallel implementation

- ullet Reorder the label Y set using a permutation function f_p
- Transform into a chain of binary classification problems
- Enrich representations at step j by concatenating each x_i with the confidence of preceding $1, \ldots, j-1$ -th classifiers
- Predict relevant labels for unknown instances by iteratively traversing the classifier chain

- High-order method: exploitation of label correlations to a degree, but in a random manner
- Highly sensitive to f_p . Running multiple chain executions in an ensemble attempt to overcome this dependency.
- Iterative operation prevents parallel implementation

- ullet Reorder the label Y set using a permutation function f_p
- Transform into a chain of binary classification problems
- Enrich representations at step j by concatenating each x_i with the confidence of preceding $1, \ldots, j-1$ -th classifiers
- Predict relevant labels for unknown instances by iteratively traversing the classifier chain

- High-order method: exploitation of label correlations to a degree, but in a random manner
- Highly sensitive to f_p . Running multiple chain executions in an ensemble attempt to overcome this dependency.
- Iterative operation prevents parallel implementation

- ullet Reorder the label Y set using a permutation function f_p
- Transform into a chain of binary classification problems
- Enrich representations at step j by concatenating each x_i with the confidence of preceding $1, \ldots, j-1$ -th classifiers
- Predict relevant labels for unknown instances by iteratively traversing the classifier chain

- High-order method: exploitation of label correlations to a degree, but in a random manner
- Highly sensitive to f_p . Running multiple chain executions in an ensemble attempt to overcome this dependency.
- Iterative operation prevents parallel implementation

- Transform into a label pairwise comparison ranking problem
- For q labels, generate q(q-1)/2 binary classifiers by pairwise comparison and use a binary algorithm $h_{ik}(x)$
- Construct training sets $D_{jk}: \{x_i, Y_i | y_j \in Y_i \oplus y_k \in Y_i\}$. System votes for each example and if $h_{jk}(x) > 0$, x_i is associated with y_j , otherwise with y_k
- ullet For an unknown instance, all classifiers' votes are aggregated and resulting labels are ranked according to the total confidence r
- \bullet A virtual label y_v is learned as a threshold, serving as the artificial splitting point between relevant and irrelevant labels

- Second-order approach algorithm. One-vs-one scheme.
- Pairwise comparison smooths out the class-imbalance problem
- \bullet Number of classifiers is quadratic to |Y| (compared to linear for BR)
- Pruning method

Transform into a label pairwise comparison ranking problem

- For q labels, generate q(q-1)/2 binary classifiers by pairwise comparison and use a binary algorithm $h_{jk}(x)$
- Construct training sets $D_{jk}: \{x_i, Y_i | y_j \in Y_i \oplus y_k \in Y_i\}$. System votes for each example and if $h_{jk}(x) > 0$, x_i is associated with y_j , otherwise with y_k
- ullet For an unknown instance, all classifiers' votes are aggregated and resulting labels are ranked according to the total confidence r
- \bullet A virtual label y_v is learned as a threshold, serving as the artificial splitting point between relevant and irrelevant labels

- Second-order approach algorithm. One-vs-one scheme.
- Pairwise comparison smooths out the class-imbalance problem
- \bullet Number of classifiers is quadratic to |Y| (compared to linear for BR)

- Transform into a label pairwise comparison ranking problem
- For q labels, generate q(q-1)/2 binary classifiers by pairwise comparison and use a binary algorithm $h_{ik}(x)$
- Construct training sets $D_{jk}: \{x_i, Y_i | y_j \in Y_i \oplus y_k \in Y_i\}$. System votes for each example and if $h_{jk}(x) > 0$, x_i is associated with y_j , otherwise with y_k
- ullet For an unknown instance, all classifiers' votes are aggregated and resulting labels are ranked according to the total confidence r
- ullet A virtual label y_v is learned as a threshold, serving as the artificial splitting point between relevant and irrelevant labels

- Second-order approach algorithm. One-vs-one scheme.
- Pairwise comparison smooths out the class-imbalance problem
- ullet Number of classifiers is quadratic to |Y| (compared to linear for BR)

- Transform into a label pairwise comparison ranking problem
- For q labels, generate q(q-1)/2 binary classifiers by pairwise comparison and use a binary algorithm $h_{ik}(x)$
- Construct training sets $D_{jk}: \{x_i, Y_i | y_j \in Y_i \oplus y_k \in Y_i\}$. System votes for each example and if $h_{jk}(x) > 0$, x_i is associated with y_j , otherwise with y_k
- ullet For an unknown instance, all classifiers' votes are aggregated and resulting labels are ranked according to the total confidence r
- ullet A virtual label y_v is learned as a threshold, serving as the artificial splitting point between relevant and irrelevant labels

- Second-order approach algorithm. One-vs-one scheme.
- Pairwise comparison smooths out the class-imbalance problem
- ullet Number of classifiers is quadratic to |Y| (compared to linear for BR)

- Transform into a label pairwise comparison ranking problem
- For q labels, generate q(q-1)/2 binary classifiers by pairwise comparison and use a binary algorithm $h_{jk}(x)$
- Construct training sets $D_{jk}: \{x_i, Y_i | y_j \in Y_i \oplus y_k \in Y_i\}$. System votes for each example and if $h_{jk}(x) > 0$, x_i is associated with y_j , otherwise with y_k
- \bullet For an unknown instance, all classifiers' votes are aggregated and resulting labels are ranked according to the total confidence r
- ullet A virtual label y_v is learned as a threshold, serving as the artificial splitting point between relevant and irrelevant labels

- Second-order approach algorithm. One-vs-one scheme.
- Pairwise comparison smooths out the class-imbalance problem
- ullet Number of classifiers is quadratic to |Y| (compared to linear for BR)

- Transform into a label pairwise comparison ranking problem
- For q labels, generate q(q-1)/2 binary classifiers by pairwise comparison and use a binary algorithm $h_{jk}(x)$
- Construct training sets $D_{jk}: \{x_i, Y_i | y_j \in Y_i \oplus y_k \in Y_i\}$. System votes for each example and if $h_{jk}(x) > 0$, x_i is associated with y_j , otherwise with y_k
- \bullet For an unknown instance, all classifiers' votes are aggregated and resulting labels are ranked according to the total confidence r
- ullet A virtual label y_v is learned as a threshold, serving as the artificial splitting point between relevant and irrelevant labels

- Second-order approach algorithm. One-vs-one scheme.
- Pairwise comparison smooths out the class-imbalance problem
- ullet Number of classifiers is quadratic to |Y| (compared to linear for BR)

- Transform into a label pairwise comparison ranking problem
- For q labels, generate q(q-1)/2 binary classifiers by pairwise comparison and use a binary algorithm $h_{ik}(x)$
- Construct training sets $D_{jk}: \{x_i, Y_i | y_j \in Y_i \oplus y_k \in Y_i\}$. System votes for each example and if $h_{jk}(x) > 0$, x_i is associated with y_j , otherwise with y_k
- \bullet For an unknown instance, all classifiers' votes are aggregated and resulting labels are ranked according to the total confidence r
- ullet A virtual label y_v is learned as a threshold, serving as the artificial splitting point between relevant and irrelevant labels

- Second-order approach algorithm. One-vs-one scheme.
- Pairwise comparison smooths out the class-imbalance problem
- ullet Number of classifiers is quadratic to |Y| (compared to linear for BR)

- Transform into a label pairwise comparison ranking problem
- For q labels, generate q(q-1)/2 binary classifiers by pairwise comparison and use a binary algorithm $h_{jk}(x)$
- Construct training sets $D_{jk}: \{x_i, Y_i | y_j \in Y_i \oplus y_k \in Y_i\}$. System votes for each example and if $h_{jk}(x) > 0$, x_i is associated with y_j , otherwise with y_k
- \bullet For an unknown instance, all classifiers' votes are aggregated and resulting labels are ranked according to the total confidence r
- ullet A virtual label y_v is learned as a threshold, serving as the artificial splitting point between relevant and irrelevant labels

- Second-order approach algorithm. One-vs-one scheme.
- Pairwise comparison smooths out the class-imbalance problem
- Number of classifiers is quadratic to |Y| (compared to linear for BR)

- Transform into a label pairwise comparison ranking problem
- For q labels, generate q(q-1)/2 binary classifiers by pairwise comparison and use a binary algorithm $h_{jk}(x)$
- Construct training sets $D_{jk}: \{x_i, Y_i | y_j \in Y_i \oplus y_k \in Y_i\}$. System votes for each example and if $h_{jk}(x) > 0$, x_i is associated with y_j , otherwise with y_k
- \bullet For an unknown instance, all classifiers' votes are aggregated and resulting labels are ranked according to the total confidence r
- ullet A virtual label y_v is learned as a threshold, serving as the artificial splitting point between relevant and irrelevant labels

- Second-order approach algorithm. One-vs-one scheme.
- Pairwise comparison smooths out the class-imbalance problem
- Number of classifiers is quadratic to |Y| (compared to linear for BR)

- Transform into a label pairwise comparison ranking problem
- For q labels, generate q(q-1)/2 binary classifiers by pairwise comparison and use a binary algorithm $h_{jk}(x)$
- Construct training sets $D_{jk}: \{x_i, Y_i | y_j \in Y_i \oplus y_k \in Y_i\}$. System votes for each example and if $h_{jk}(x) > 0$, x_i is associated with y_j , otherwise with y_k
- \bullet For an unknown instance, all classifiers' votes are aggregated and resulting labels are ranked according to the total confidence r
- \bullet A virtual label y_v is learned as a threshold, serving as the artificial splitting point between relevant and irrelevant labels

Pros & cons:

- Second-order approach algorithm. One-vs-one scheme.
- Pairwise comparison smooths out the class-imbalance problem
- ullet Number of classifiers is quadratic to |Y| (compared to linear for BR)

○ Pruning methods to reduce the search space コトイクトイミト イミト ミークへで

- Transform into a label pairwise comparison ranking problem
- For q labels, generate q(q-1)/2 binary classifiers by pairwise comparison and use a binary algorithm $h_{ik}(x)$
- Construct training sets $D_{jk}: \{x_i, Y_i | y_j \in Y_i \oplus y_k \in Y_i\}$. System votes for each example and if $h_{jk}(x) > 0$, x_i is associated with y_j , otherwise with y_k
- \bullet For an unknown instance, all classifiers' votes are aggregated and resulting labels are ranked according to the total confidence r
- \bullet A virtual label y_v is learned as a threshold, serving as the artificial splitting point between relevant and irrelevant labels

- Second-order approach algorithm. One-vs-one scheme.
- Pairwise comparison smooths out the class-imbalance problem
- ullet Number of classifiers is quadratic to |Y| (compared to linear for BR)
 - Pruning methods to reduce the search space

- Decompose to an ensemble of multi-class classification problems
- Each component targets a random subset of $\mathbb{P}(Y)$ (that also appears in X), classified with Label Powerset (LP) techniques:
 - \circ Transform to single-label data by treating each distinct labelset as a new class \to multi to single label problem
 - Each example is reassigned with the new mapped class and classified through regular single-label classification
 - o M-L classify x with y_i when the votes received for y_i from the ensemble exceed half the max possible it can get

- High-order approach algorithm
- Data-sensitive: Cannot generalize to labelsets not in the training set, too few examples for some labelsets
- Large Y implies high training complexity.
- Improve by invoking an ensemble on random k-sized labelsets

- Decompose to an ensemble of multi-class classification problems
- Each component targets a random subset of $\mathbb{P}(Y)$ (that also appears in X), classified with Label Powerset (LP) techniques:
 - Transform to single-label data by treating each distinct labelset as a new class → multi to single label problem
 - Each example is reassigned with the new mapped class and classified through regular single-label classification
 - M-L classify x with y_i when the votes received for y_i from the ensemble exceed half the max possible it can get

- High-order approach algorithm
- Data-sensitive: Cannot generalize to labelsets not in the training set, too few examples for some labelsets
- Large Y implies high training complexity.
- Improve by invoking an ensemble on random k-sized labelsets

- Decompose to an ensemble of multi-class classification problems
- Each component targets a random subset of $\mathbb{P}(Y)$ (that also appears in X), classified with Label Powerset (LP) techniques:
 - Transform to single-label data by treating each distinct labelset as a new class → multi to single label problem
 - Each example is reassigned with the new mapped class and classified through regular single-label classification
 - \circ M-L classify x with y_i when the votes received for y_i from the ensemble exceed half the max possible it can get

- High-order approach algorithm
- Data-sensitive: Cannot generalize to labelsets not in the training set, too few examples for some labelsets
- Large Y implies high training complexity.
- Improve by invoking an ensemble on random k-sized labelsets

- Decompose to an ensemble of multi-class classification problems
- Each component targets a random subset of $\mathbb{P}(Y)$ (that also appears in X), classified with Label Powerset (LP) techniques:
 - \circ Transform to single-label data by treating each distinct labelset as a new class \to multi to single label problem
 - Each example is reassigned with the new mapped class and classified through regular single-label classification
 - \circ M-L classify x with y_i when the votes received for y_i from the ensemble exceed half the max possible it can get

Pros & cons

- High-order approach algorithm
- Data-sensitive: Cannot generalize to labelsets not in the training set, too few examples for some labelsets
- Large Y implies high training complexity.
- Improve by invoking an ensemble on random k-sized labelsets

14 / 28

- Decompose to an ensemble of multi-class classification problems
- Each component targets a random subset of $\mathbb{P}(Y)$ (that also appears in X), classified with Label Powerset (LP) techniques:
 - \circ Transform to single-label data by treating each distinct labelset as a new class \to multi to single label problem
 - Each example is reassigned with the new mapped class and classified through regular single-label classification
 - \circ M-L classify x with y_i when the votes received for y_i from the ensemble exceed half the max possible it can get

Pros & cons

- High-order approach algorithm
- Data-sensitive: Cannot generalize to labelsets not in the training set, too few examples for some labelsets
- Large Y implies high training complexity.
- Improve by invoking an ensemble on random k-sized labelsets

14 / 28

- Decompose to an ensemble of multi-class classification problems
- Each component targets a random subset of $\mathbb{P}(Y)$ (that also appears in X), classified with Label Powerset (LP) techniques:
 - \circ Transform to single-label data by treating each distinct labelset as a new class \to multi to single label problem
 - Each example is reassigned with the new mapped class and classified through regular single-label classification
 - \circ M-L classify x with y_i when the votes received for y_i from the ensemble exceed half the max possible it can get

- High-order approach algorithm
- Data-sensitive: Cannot generalize to labelsets not in the training set, too few examples for some labelsets
- Large Y implies high training complexity.
- Improve by invoking an ensemble on random k-sized labelsets

- Decompose to an ensemble of multi-class classification problems
- Each component targets a random subset of $\mathbb{P}(Y)$ (that also appears in X), classified with Label Powerset (LP) techniques:
 - \circ Transform to single-label data by treating each distinct labelset as a new class \to multi to single label problem
 - Each example is reassigned with the new mapped class and classified through regular single-label classification
 - \circ M-L classify x with y_i when the votes received for y_i from the ensemble exceed half the max possible it can get

- High-order approach algorithm
- Data-sensitive: Cannot generalize to labelsets not in the training set, too few examples for some labelsets
- Large Y implies high training complexity.
- Improve by invoking an ensemble on random k-sized labelsets

- Decompose to an ensemble of multi-class classification problems
- Each component targets a random subset of $\mathbb{P}(Y)$ (that also appears in X), classified with Label Powerset (LP) techniques:
 - \circ Transform to single-label data by treating each distinct labelset as a new class \to multi to single label problem
 - Each example is reassigned with the new mapped class and classified through regular single-label classification
 - \circ M-L classify x with y_i when the votes received for y_i from the ensemble exceed half the max possible it can get

- High-order approach algorithm
- Data-sensitive: Cannot generalize to labelsets not in the training set, too few examples for some labelsets
- Large Y implies high training complexity.
- Improve by invoking an ensemble on random k-sized labelsets

- Decompose to an ensemble of multi-class classification problems
- Each component targets a random subset of $\mathbb{P}(Y)$ (that also appears in X), classified with Label Powerset (LP) techniques:
 - \circ Transform to single-label data by treating each distinct labelset as a new class \to multi to single label problem
 - Each example is reassigned with the new mapped class and classified through regular single-label classification
 - \circ M-L classify x with y_i when the votes received for y_i from the ensemble exceed half the max possible it can get

- High-order approach algorithm
- Data-sensitive: Cannot generalize to labelsets not in the training set, too few examples for some labelsets
- Large Y implies high training complexity.
- Improve by invoking an ensemble on random k-sized labelsets

- Decompose to an ensemble of multi-class classification problems
- Each component targets a random subset of $\mathbb{P}(Y)$ (that also appears in X), classified with Label Powerset (LP) techniques:
 - \circ Transform to single-label data by treating each distinct labelset as a new class \to multi to single label problem
 - Each example is reassigned with the new mapped class and classified through regular single-label classification
 - \circ M-L classify x with y_i when the votes received for y_i from the ensemble exceed half the max possible it can get

Pros & cons:

- High-order approach algorithm
- Data-sensitive: Cannot generalize to labelsets not in the training set, too few examples for some labelsets
- ullet Large Y implies high training complexity.
- Improve by invoking an ensemble on random k-sized labelsets

14 / 28

- Decompose to an ensemble of multi-class classification problems
- Each component targets a random subset of $\mathbb{P}(Y)$ (that also appears in X), classified with Label Powerset (LP) techniques:
 - \circ Transform to single-label data by treating each distinct labelset as a new class \to multi to single label problem
 - Each example is reassigned with the new mapped class and classified through regular single-label classification
 - \circ M-L classify x with y_i when the votes received for y_i from the ensemble exceed half the max possible it can get

- High-order approach algorithm
- Data-sensitive: Cannot generalize to labelsets not in the training set, too few examples for some labelsets
- Large Y implies high training complexity.
- Improve by invoking an ensemble on random k-sized labelsets

Algorithm Adaptation Methods

Multi-label Learning Algorithms: Alogrithm Adaptation Methods

- Consider events $H_j \equiv (y_j \in Y_i), \ C_j \equiv (\sum_{x_k \in N(x_i)} [\delta(y_j \in Y_k)])$
- Compares the MAP probabilities: $P(K|C_j), K \in \{H_j, \neg H_j\}$ to decide if to include y_j in the prediction. Compute with the Bayes' theorem.
- \bullet Single-label priors P(K) computed by smoothed frequency counting in the training data
- Likelihoods $P(C_i|K)$ are computed as a function of:
 - $\circ \;\; \kappa_j(r)$, the number of examples labelled y_j with r neighbours labelled y_j
 - \circ $\kappa_j(r)$, the number of examples not labelled y_j with r neighbours labelled y_j

- First-order approach, Bayesian reasoning
- Decision boundary can be modified on-line via new instances
- M-L class imbalance can be overcome by calculating the priors
- Extensions proposed for label correlation exploitations

- Consider events $H_j \equiv (y_j \in Y_i)$, $C_j \equiv (\sum_{x_k \in N(x_i)} [\delta(y_j \in Y_k)])$
- Compares the MAP probabilities: $P(K|C_j), K \in \{H_j, \neg H_j\}$ to decide if to include y_j in the prediction. Compute with the Bayes' theorem.
- \bullet Single-label priors P(K) computed by smoothed frequency counting in the training data
- Likelihoods $P(C_j|K)$ are computed as a function of:
 - $\circ \; \kappa_j(r)$, the number of examples labelled y_j with r neighbours labelled y
 - $\circ \kappa_j(r)$, the number of examples not labelled y_j with r neighbours labelled u_i

Pros & cons

- First-order approach, Bayesian reasoning
- Decision boundary can be modified on-line via new instances
- M-L class imbalance can be overcome by calculating the priors
- Extensions proposed for label correlation exploitations

17 / 28

- Consider events $H_j \equiv (y_j \in Y_i), \ C_j \equiv (\sum_{x_k \in N(x_i)} [\delta(y_j \in Y_k)])$
- Compares the MAP probabilities: $P(K|C_j), K \in \{H_j, \neg H_j\}$ to decide if to include y_j in the prediction. Compute with the Bayes' theorem.
- \bullet Single-label priors P(K) computed by smoothed frequency counting in the training data
- Likelihoods $P(C_j|K)$ are computed as a function of:
 - \circ $\kappa_j(r)$, the number of examples labelled y_j with r neighbours \circ $\kappa_j(r)$, the number of examples not labelled y_j with r neighbours labelled y_j

- First-order approach, Bayesian reasoning
- Decision boundary can be modified on-line via new instances
- M-L class imbalance can be overcome by calculating the priors
- Extensions proposed for label correlation exploitations

- Consider events $H_j \equiv (y_j \in Y_i)$, $C_j \equiv (\sum_{x_k \in N(x_i)} [\delta(y_j \in Y_k)])$
- Compares the MAP probabilities: $P(K|C_j), K \in \{H_j, \neg H_j\}$ to decide if to include y_j in the prediction. Compute with the Bayes' theorem.
- \bullet Single-label priors P(K) computed by smoothed frequency counting in the training data
- Likelihoods $P(C_j|K)$ are computed as a function of: • $\kappa_j(r)$, the number of examples labelled y_j with r neighbours labelled y_j • $\kappa_j(r)$, the number of examples not labelled y_j with r neighbours labelled y_j

- First-order approach, Bayesian reasoning
- Decision boundary can be modified on-line via new instances
- M-L class imbalance can be overcome by calculating the priors
- Extensions proposed for label correlation exploitations

- Consider events $H_j \equiv (y_j \in Y_i)$, $C_j \equiv (\sum_{x_k \in N(x_i)} [\delta(y_j \in Y_k)])$
- Compares the MAP probabilities: $P(K|C_j), K \in \{H_j, \neg H_j\}$ to decide if to include y_j in the prediction. Compute with the Bayes' theorem.
- \bullet Single-label priors P(K) computed by smoothed frequency counting in the training data
- Likelihoods $P(C_i|K)$ are computed as a function of:
 - $\circ \; \kappa_j(r)$, the number of examples labelled y_j with r neighbours labelled y
 - $\circ \ \widetilde{\kappa_j}(r)$, the number of examples not labelled y_j with r neighbours labelled y_j

- First-order approach, Bayesian reasoning
- Decision boundary can be modified on-line via new instances
- M-L class imbalance can be overcome by calculating the priors
- Extensions proposed for label correlation exploitations

- Consider events $H_j \equiv (y_j \in Y_i)$, $C_j \equiv (\sum_{x_k \in N(x_i)} [\delta(y_j \in Y_k)])$
- Compares the MAP probabilities: $P(K|C_j), K \in \{H_j, \neg H_j\}$ to decide if to include y_j in the prediction. Compute with the Bayes' theorem.
- \bullet Single-label priors P(K) computed by smoothed frequency counting in the training data
- Likelihoods $P(C_i|K)$ are computed as a function of:
 - $\circ \ \kappa_j(r)$, the number of examples labelled y_j with r neighbours labelled y_j
 - \circ $\kappa_j(r)$, the number of examples not labelled y_j with r neighbours labelled y_j

- First-order approach, Bayesian reasoning
- Decision boundary can be modified on-line via new instances
- M-L class imbalance can be overcome by calculating the priors
- Extensions proposed for label correlation exploitations

- Consider events $H_j \equiv (y_j \in Y_i)$, $C_j \equiv (\sum_{x_k \in N(x_i)} [\delta(y_j \in Y_k)])$
- Compares the MAP probabilities: $P(K|C_j), K \in \{H_j, \neg H_j\}$ to decide if to include y_j in the prediction. Compute with the Bayes' theorem.
- \bullet Single-label priors P(K) computed by smoothed frequency counting in the training data
- Likelihoods $P(C_j|K)$ are computed as a function of:
 - $\circ \ \kappa_j(r)$, the number of examples labelled y_j with r neighbours labelled y_j
 - $\circ \ \stackrel{\sim}{\kappa_j}(r),$ the number of examples not labelled y_j with r neighbours labelled y_j

- First-order approach, Bayesian reasoning
- Decision boundary can be modified on-line via new instances
- M-L class imbalance can be overcome by calculating the priors
- Extensions proposed for label correlation exploitations

- Consider events $H_j \equiv (y_j \in Y_i)$, $C_j \equiv (\sum_{x_k \in N(x_i)} [\delta(y_j \in Y_k)])$
- Compares the MAP probabilities: $P(K|C_j), K \in \{H_j, \neg H_j\}$ to decide if to include y_j in the prediction. Compute with the Bayes' theorem.
- \bullet Single-label priors P(K) computed by smoothed frequency counting in the training data
- Likelihoods $P(C_j|K)$ are computed as a function of:
 - $\circ \ \kappa_j(r)$, the number of examples labelled y_j with r neighbours labelled y_j
 - $\circ \ \stackrel{\sim}{\kappa_j}(r),$ the number of examples not labelled y_j with r neighbours labelled y_j

- First-order approach, Bayesian reasoning
- Decision boundary can be modified on-line via new instances
- M-L class imbalance can be overcome by calculating the priors
- Extensions proposed for label correlation exploitations

- Consider events $H_j \equiv (y_j \in Y_i)$, $C_j \equiv (\sum_{x_k \in N(x_i)} [\delta(y_j \in Y_k)])$
- Compares the MAP probabilities: $P(K|C_j), K \in \{H_j, \neg H_j\}$ to decide if to include y_j in the prediction. Compute with the Bayes' theorem.
- \bullet Single-label priors P(K) computed by smoothed frequency counting in the training data
- Likelihoods $P(C_i|K)$ are computed as a function of:
 - $\circ \ \kappa_j(r)$, the number of examples labelled y_j with r neighbours labelled y_j
 - $\circ \ \stackrel{\sim}{\kappa_j}(r),$ the number of examples not labelled y_j with r neighbours labelled y_j

- First-order approach, Bayesian reasoning
- Decision boundary can be modified on-line via new instances
- M-L class imbalance can be overcome by calculating the priors
- Extensions proposed for label correlation exploitations

- Consider events $H_j \equiv (y_j \in Y_i), C_j \equiv (\sum_{x_k \in N(x_i)} [\delta(y_j \in Y_k)])$
- Compares the MAP probabilities: $P(K|C_i), K \in \{H_i, \neg H_i\}$ to decide if to include y_i in the prediction. Compute with the Bayes' theorem.
- Single-label priors P(K) computed by smoothed frequency counting in the training data
- Likelihoods $P(C_i|K)$ are computed as a function of:
 - $\circ \kappa_i(r)$, the number of examples labelled y_i with r neighbours labelled y_i
 - $\circ \overset{\sim}{\kappa_i}(r)$, the number of examples not labelled y_i with r neighbours labelled y_i

Pros & cons:

- First-order approach, Bayesian reasoning
- Decision boundary can be modified on-line via new instances
- M-L class imbalance can be overcome by calculating the priors
- Extensions proposed for label correlation exploitations

17 / 28

- Consider events $H_j \equiv (y_j \in Y_i), \ C_j \equiv (\sum_{x_k \in N(x_i)} [\delta(y_j \in Y_k)])$
- Compares the MAP probabilities: $P(K|C_j), K \in \{H_j, \neg H_j\}$ to decide if to include y_j in the prediction. Compute with the Bayes' theorem.
- \bullet Single-label priors P(K) computed by smoothed frequency counting in the training data
- Likelihoods $P(C_i|K)$ are computed as a function of:
 - $\circ \ \kappa_j(r)$, the number of examples labelled y_j with r neighbours labelled y_j
 - $\circ \ \stackrel{\sim}{\kappa_j}(r)$, the number of examples not labelled y_j with r neighbours labelled y_j

- First-order approach, Bayesian reasoning
- Decision boundary can be modified on-line via new instances
- M-L class imbalance can be overcome by calculating the priors
- Extensions proposed for label correlation exploitations

- Consider events $H_j \equiv (y_j \in Y_i)$, $C_j \equiv (\sum_{x_k \in N(x_i)} [\delta(y_j \in Y_k)])$
- Compares the MAP probabilities: $P(K|C_j), K \in \{H_j, \neg H_j\}$ to decide if to include y_j in the prediction. Compute with the Bayes' theorem.
- \bullet Single-label priors P(K) computed by smoothed frequency counting in the training data
- Likelihoods $P(C_i|K)$ are computed as a function of:
 - $\circ \ \kappa_j(r)$, the number of examples labelled y_j with r neighbours labelled y_j
 - $\circ \ \stackrel{\sim}{\kappa_j}(r),$ the number of examples not labelled y_j with r neighbours labelled y_j

Pros & cons:

- First-order approach, Bayesian reasoning
- Decision boundary can be modified on-line via new instances
- M-L class imbalance can be overcome by calculating the priors
- Extensions proposed for label correlation exploitations

↓ 를 ▶ ↓ 를 ▶ ☐ ♥ ♀ ○

- Multi-label entropy is used to build a decision tree recursively
- Split node at the l-th feature of x such that the information gain criterion is maximized. Node partitions data according to $x_l = \theta$:
- Recurse on subtrees until a stopping criterion is met (e.g. child size)
- Single-label entropy is computed by considering labelsets as new classes
- Assumes independence among labels to ensure low computational cost
- Unseen instances are assigned the label of the majority of members of the leaf they arrive

Pros & cons

- First-order algorithm, highly efficient
- Assumes label independence

10148143131 3 900

- Multi-label entropy is used to build a decision tree recursively
- Split node at the *l*-th feature of *x* such that the information gain criterion is maximized. Node partitions data according to *x_l* = θ:
 T → {T⁻, T⁺}, where *x_{il}* < θ, *x_{il}* ∈ T⁻ and *x_{il}* > θ, *x_{il}* ∈ T⁺
- Recurse on subtrees until a stopping criterion is met (e.g. child size)
- Single-label entropy is computed by considering labelsets as new classes
- Assumes independence among labels to ensure low computational cost
- Unseen instances are assigned the label of the majority of members of the leaf they arrive

- First-order algorithm, highly efficient
- Assumes label independence
- Pruning and ensemble strategies proposed

- Multi-label entropy is used to build a decision tree recursively
- Split node at the l-th feature of x such that the information gain criterion is maximized. Node partitions data according to $x_l = \theta$: $T \to \{T^-, T^+\}$, where $x_{il} \le \theta, x_i \in T^-$ and $x_{il} > \theta, x_i \in T^+$
- Recurse on subtrees until a stopping criterion is met (e.g. child size)
- Single-label entropy is computed by considering labelsets as new classes
- Assumes independence among labels to ensure low computational cost
- Unseen instances are assigned the label of the majority of members of the leaf they arrive

- First-order algorithm, highly efficient
- Assumes label independence
- Pruning and ensemble strategies proposed

- Multi-label entropy is used to build a decision tree recursively
- Split node at the l-th feature of x such that the information gain criterion is maximized. Node partitions data according to $x_l = \theta$: $T \to \{T^-, T^+\}$, where $x_{il} \le \theta, x_i \in T^-$ and $x_{il} > \theta, x_i \in T^+$
- Recurse on subtrees until a stopping criterion is met (e.g. child size)
- Single-label entropy is computed by considering labelsets as new classes
- Assumes independence among labels to ensure low computational cost
- Unseen instances are assigned the label of the majority of members of the leaf they arrive

- First-order algorithm, highly efficient
- Assumes label independence
- Pruning and ensemble strategies proposed

- Multi-label entropy is used to build a decision tree recursively
- Split node at the l-th feature of x such that the information gain criterion is maximized. Node partitions data according to $x_l = \theta$: $T \to \{T^-, T^+\}$, where $x_{il} \le \theta, x_i \in T^-$ and $x_{il} > \theta, x_i \in T^+$
- Recurse on subtrees until a stopping criterion is met (e.g. child size)
- Single-label entropy is computed by considering labelsets as new classes
- Assumes independence among labels to ensure low computational cost
- Unseen instances are assigned the label of the majority of members of the leaf they arrive

- First-order algorithm, highly efficient
- Assumes label independence
- Pruning and ensemble strategies proposed

- Multi-label entropy is used to build a decision tree recursively
- Split node at the l-th feature of x such that the information gain criterion is maximized. Node partitions data according to $x_l = \theta$: $T \to \{T^-, T^+\}$, where $x_{il} \le \theta, x_i \in T^-$ and $x_{il} > \theta, x_i \in T^+$
- Recurse on subtrees until a stopping criterion is met (e.g. child size)
- Single-label entropy is computed by considering labelsets as new classes
- Assumes independence among labels to ensure low computational cost
- Unseen instances are assigned the label of the majority of members of the leaf they arrive

- First-order algorithm, highly efficient
- Assumes label independence
- Pruning and ensemble strategies proposed

- Multi-label entropy is used to build a decision tree recursively
- Split node at the l-th feature of x such that the information gain criterion is maximized. Node partitions data according to $x_l = \theta$: $T \to \{T^-, T^+\}$, where $x_{il} \le \theta, x_i \in T^-$ and $x_{il} > \theta, x_i \in T^+$
- Recurse on subtrees until a stopping criterion is met (e.g. child size)
- Single-label entropy is computed by considering labelsets as new classes
- Assumes independence among labels to ensure low computational cost
- Unseen instances are assigned the label of the majority of members of the leaf they arrive

- First-order algorithm, highly efficient
- Assumes label independence
- Pruning and ensemble strategies proposed

- Multi-label entropy is used to build a decision tree recursively
- Split node at the l-th feature of x such that the information gain criterion is maximized. Node partitions data according to $x_l = \theta$: $T \to \{T^-, T^+\}$, where $x_{il} \le \theta, x_i \in T^-$ and $x_{il} > \theta, x_i \in T^+$
- Recurse on subtrees until a stopping criterion is met (e.g. child size)
- Single-label entropy is computed by considering labelsets as new classes
- Assumes independence among labels to ensure low computational cost
- Unseen instances are assigned the label of the majority of members of the leaf they arrive

- First-order algorithm, highly efficient
- Assumes label independence
- Pruning and ensemble strategies proposed

- Multi-label entropy is used to build a decision tree recursively
- Split node at the l-th feature of x such that the information gain criterion is maximized. Node partitions data according to $x_l = \theta$: $T \to \{T^-, T^+\}$, where $x_{il} \le \theta, x_i \in T^-$ and $x_{il} > \theta, x_i \in T^+$
- Recurse on subtrees until a stopping criterion is met (e.g. child size)
- Single-label entropy is computed by considering labelsets as new classes
- Assumes independence among labels to ensure low computational cost
- Unseen instances are assigned the label of the majority of members of the leaf they arrive

- First-order algorithm, highly efficient
- Assumes label independence
- Pruning and ensemble strategies proposed

- Multi-label entropy is used to build a decision tree recursively
- Split node at the l-th feature of x such that the information gain criterion is maximized. Node partitions data according to $x_l = \theta$: $T \to \{T^-, T^+\}$, where $x_{il} \le \theta, x_i \in T^-$ and $x_{il} > \theta, x_i \in T^+$
- Recurse on subtrees until a stopping criterion is met (e.g. child size)
- Single-label entropy is computed by considering labelsets as new classes
- Assumes independence among labels to ensure low computational cost
- Unseen instances are assigned the label of the majority of members of the leaf they arrive

- First-order algorithm, highly efficient
- Assumes label independence
- Pruning and ensemble strategies proposed

- Multi-label entropy is used to build a decision tree recursively
- Split node at the l-th feature of x such that the information gain criterion is maximized. Node partitions data according to $x_l = \theta$: $T \to \{T^-, T^+\}$, where $x_{il} \le \theta, x_i \in T^-$ and $x_{il} > \theta, x_i \in T^+$
- Recurse on subtrees until a stopping criterion is met (e.g. child size)
- Single-label entropy is computed by considering labelsets as new classes
- Assumes independence among labels to ensure low computational cost
- Unseen instances are assigned the label of the majority of members of the leaf they arrive

Pros & cons:

- First-order algorithm, highly efficient
- Assumes label independence
- Pruning and ensemble strategies proposed

4D > 4B > 4E > 4E > E 999

- q linear classifiers $h_i(x)$, optimized with the empirical ranking loss
- Combine classifiers to discriminate label pairs. Label pair (i, k)
- Consider signed distance of x_i from the boundary of every
- The M-L margin is the minimum distance of x_i from every $Y_i \times Y_i$
- SVM → minimize loss and maximize margin.
- Non-linearity achievable through feature mapping and the kernel trick

- Second-order approach, maximum margin strategy
- Optimization is a convex QP problem, solved by any QP solver
- Kernel SVM, kernel selection can be done with MKL techniques
- Adaptable learning by selecting an appropriate loss function.

- q linear classifiers $h_i(x)$, optimized with the empirical ranking loss
- Combine classifiers to discriminate label pairs. Label pair (j,k) decision hyperplane is: $h_{jk} = g(h_j, h_k) = \langle w_j w_k, x_i \rangle + b_j b_k = 0$
- Consider signed distance of x_i from the boundary of every relevant-nonrelevant label pair $(y_i, y_k) \in Y_i \times \bar{Y}_i$.
- ullet The M-L margin is the minimum distance of x_i from every $Y_i imes ar{Y}_i$
- SVM \rightarrow minimize loss and maximize margin.
- Ranks labels according to the singed distance
- Non-linearity achievable through feature mapping and the kernel trick

- Second-order approach, maximum margin strategy
- Optimization is a convex QP problem, solved by any QP solver
- Kernel SVM, kernel selection can be done with MKL techniques
- Adaptable learning by selecting an appropriate loss function.

- q linear classifiers $h_i(x)$, optimized with the empirical ranking loss
- Combine classifiers to discriminate label pairs. Label pair (j, k)decision hyperplane is: $h_{jk} = g(h_j, h_k) = \langle w_j - w_k, x_i \rangle + b_j - b_k = 0$
- Consider signed distance of x_i from the boundary of every
- The M-L margin is the minimum distance of x_i from every $Y_i \times Y_i$
- SVM → minimize loss and maximize margin.
- Non-linearity achievable through feature mapping and the kernel trick

- Second-order approach, maximum margin strategy
- Optimization is a convex QP problem, solved by any QP solver
- Kernel SVM, kernel selection can be done with MKL techniques
- Adaptable learning by selecting an appropriate loss function.

- q linear classifiers $h_i(x)$, optimized with the empirical ranking loss
- Combine classifiers to discriminate label pairs. Label pair (j,k) decision hyperplane is: $h_{jk} = g(h_j,h_k) = \langle w_j w_k, x_i \rangle + b_j b_k = 0$
- Consider signed distance of x_i from the boundary of every relevant-nonrelevant label pair $(y_j, y_k) \in Y_i \times \bar{Y}_i$.
- The M-L margin is the minimum distance of x_i from every $Y_i \times \bar{Y}_i$
- SVM \rightarrow minimize loss and maximize margin.
- Ranks labels according to the singed distance
- Non-linearity achievable through feature mapping and the kernel trick

- Second-order approach, maximum margin strategy
- Optimization is a convex QP problem, solved by any QP solver
- Kernel SVM, kernel selection can be done with MKL techniques
- Adaptable learning by selecting an appropriate loss function

- ullet q linear classifiers $h_i(x)$, optimized with the empirical ranking loss
- Combine classifiers to discriminate label pairs. Label pair (j,k) decision hyperplane is: $h_{jk} = g(h_j,h_k) = \langle w_j w_k, x_i \rangle + b_j b_k = 0$
- Consider signed distance of x_i from the boundary of every relevant-nonrelevant label pair $(y_j, y_k) \in Y_i \times \bar{Y}_i$.
- ullet The M-L margin is the minimum distance of x_i from every $Y_i imes ar{Y}_i$
- SVM \rightarrow minimize loss and maximize margin.
- Ranks labels according to the singed distance
- Non-linearity achievable through feature mapping and the kernel trick

- Second-order approach, maximum margin strategy
- Optimization is a convex QP problem, solved by any QP solver
- Kernel SVM, kernel selection can be done with MKL techniques
- Adaptable learning by selecting an appropriate loss function

- ullet q linear classifiers $h_i(x)$, optimized with the empirical ranking loss
- Combine classifiers to discriminate label pairs. Label pair (j,k) decision hyperplane is: $h_{jk} = g(h_j,h_k) = \langle w_j w_k, x_i \rangle + b_j b_k = 0$
- Consider signed distance of x_i from the boundary of every relevant-nonrelevant label pair $(y_j, y_k) \in Y_i \times \bar{Y}_i$.
- ullet The M-L margin is the minimum distance of x_i from every $Y_i imes ar{Y}_i$
- SVM → minimize loss and maximize margin.
- Ranks labels according to the singed distance
- Non-linearity achievable through feature mapping and the kernel trick

- Second-order approach, maximum margin strategy
- Optimization is a convex QP problem, solved by any QP solver
- Kernel SVM, kernel selection can be done with MKL techniques
- Adaptable learning by selecting an appropriate loss function.

- q linear classifiers $h_i(x)$, optimized with the empirical ranking loss
- Combine classifiers to discriminate label pairs. Label pair (j,k) decision hyperplane is: $h_{jk} = g(h_j,h_k) = \langle w_j w_k, x_i \rangle + b_j b_k = 0$
- Consider signed distance of x_i from the boundary of every relevant-nonrelevant label pair $(y_j, y_k) \in Y_i \times \bar{Y}_i$.
- ullet The M-L margin is the minimum distance of x_i from every $Y_i imes ar{Y}_i$
- SVM \rightarrow minimize loss and maximize margin.
- Ranks labels according to the singed distance
- Non-linearity achievable through feature mapping and the kernel trick

- Second-order approach, maximum margin strategy
- Optimization is a convex QP problem, solved by any QP solver
- Kernel SVM, kernel selection can be done with MKL techniques
- Adaptable learning by selecting an appropriate loss function.

- q linear classifiers $h_i(x)$, optimized with the empirical ranking loss
- Combine classifiers to discriminate label pairs. Label pair (j,k) decision hyperplane is: $h_{jk} = g(h_j,h_k) = \langle w_j w_k, x_i \rangle + b_j b_k = 0$
- Consider signed distance of x_i from the boundary of every relevant-nonrelevant label pair $(y_j, y_k) \in Y_i \times \bar{Y}_i$.
- ullet The M-L margin is the minimum distance of x_i from every $Y_i imes ar{Y}_i$
- SVM \rightarrow minimize loss and maximize margin.
- · Ranks labels according to the singed distance
- Non-linearity achievable through feature mapping and the kernel trick

- Second-order approach, maximum margin strategy
- Optimization is a convex QP problem, solved by any QP solver
- Kernel SVM, kernel selection can be done with MKL techniques
- Adaptable learning by selecting an appropriate loss function

- q linear classifiers $h_i(x)$, optimized with the empirical ranking loss
- Combine classifiers to discriminate label pairs. Label pair (j,k) decision hyperplane is: $h_{jk} = g(h_j,h_k) = \langle w_j w_k, x_i \rangle + b_j b_k = 0$
- Consider signed distance of x_i from the boundary of every relevant-nonrelevant label pair $(y_j, y_k) \in Y_i \times \bar{Y}_i$.
- ullet The M-L margin is the minimum distance of x_i from every $Y_i imes ar{Y}_i$
- SVM \rightarrow minimize loss and maximize margin.
- · Ranks labels according to the singed distance
- Non-linearity achievable through feature mapping and the kernel trick

- Second-order approach, maximum margin strategy
- Optimization is a convex QP problem, solved by any QP solver
- Kernel SVM, kernel selection can be done with MKL techniques
- Adaptable learning by selecting an appropriate loss function.

- q linear classifiers $h_i(x)$, optimized with the empirical ranking loss
- Combine classifiers to discriminate label pairs. Label pair (j,k) decision hyperplane is: $h_{jk} = g(h_j,h_k) = \langle w_j w_k, x_i \rangle + b_j b_k = 0$
- Consider signed distance of x_i from the boundary of every relevant-nonrelevant label pair $(y_j, y_k) \in Y_i \times \bar{Y}_i$.
- ullet The M-L margin is the minimum distance of x_i from every $Y_i imes ar{Y}_i$
- SVM → minimize loss and maximize margin.
- · Ranks labels according to the singed distance
- Non-linearity achievable through feature mapping and the kernel trick

- Second-order approach, maximum margin strategy
- Optimization is a convex QP problem, solved by any QP solver
- Kernel SVM, kernel selection can be done with MKL techniques
- Adaptable learning by selecting an appropriate loss function

- q linear classifiers $h_i(x)$, optimized with the empirical ranking loss
- Combine classifiers to discriminate label pairs. Label pair (j,k) decision hyperplane is: $h_{jk} = g(h_j,h_k) = \langle w_j w_k, x_i \rangle + b_j b_k = 0$
- Consider signed distance of x_i from the boundary of every relevant-nonrelevant label pair $(y_j, y_k) \in Y_i \times \bar{Y}_i$.
- ullet The M-L margin is the minimum distance of x_i from every $Y_i imes ar{Y}_i$
- SVM \rightarrow minimize loss and maximize margin.
- · Ranks labels according to the singed distance
- Non-linearity achievable through feature mapping and the kernel trick

- Second-order approach, maximum margin strategy
- Optimization is a convex QP problem, solved by any QP solver
- Kernel SVM, kernel selection can be done with MKL techniques
- Adaptable learning by selecting an appropriate loss function.

- q linear classifiers $h_i(x)$, optimized with the empirical ranking loss
- Combine classifiers to discriminate label pairs. Label pair (j,k) decision hyperplane is: $h_{jk} = g(h_j,h_k) = \langle w_j w_k,x_i \rangle + b_j b_k = 0$
- Consider signed distance of x_i from the boundary of every relevant-nonrelevant label pair $(y_j, y_k) \in Y_i \times \bar{Y}_i$.
- ullet The M-L margin is the minimum distance of x_i from every $Y_i imes ar{Y}_i$
- SVM \rightarrow minimize loss and maximize margin.
- · Ranks labels according to the singed distance
- Non-linearity achievable through feature mapping and the kernel trick

- Second-order approach, maximum margin strategy
- Optimization is a convex QP problem, solved by any QP solver
- Kernel SVM, kernel selection can be done with MKL techniques
- Adaptable learning by selecting an appropriate loss function.

- q linear classifiers $h_i(x)$, optimized with the empirical ranking loss
- Combine classifiers to discriminate label pairs. Label pair (j,k) decision hyperplane is: $h_{jk} = g(h_j,h_k) = \langle w_j w_k, x_i \rangle + b_j b_k = 0$
- Consider signed distance of x_i from the boundary of every relevant-nonrelevant label pair $(y_i, y_k) \in Y_i \times \bar{Y}_i$.
- ullet The M-L margin is the minimum distance of x_i from every $Y_i imes ar{Y}_i$
- SVM → minimize loss and maximize margin.
- · Ranks labels according to the singed distance
- Non-linearity achievable through feature mapping and the kernel trick

Pros & cons:

- Second-order approach, maximum margin strategy
- Optimization is a convex QP problem, solved by any QP solver
- Kernel SVM, kernel selection can be done with MKL techniques
- Adaptable learning by selecting an appropriate loss function

4 E ▶ 4 E ▶ E ♥ Q (>

- Compute conditional p(y|x) with the maximum entropy criterion:
- Unseen instances labelled with $Y = \operatorname{argmax}_{y} p(y|x)$

- Second-order approach. All label pairs considered, not just
- ullet Convex constraint optimization problem o solvable by any CP solver
- Intractable argmax operation for a large label space without pruning.
- Extensible: Different forms of constraints yield various CML_variants,

- A Conditional Random Field model for M-L classification
- Compute conditional p(y|x) with the maximum entropy criterion:
- Unseen instances labelled with $Y = \operatorname{argmax}_{y} p(y|x)$

- Second-order approach. All label pairs considered, not just
- ullet Convex constraint optimization problem o solvable by any CP solver
- Intractable argmax operation for a large label space without pruning.
- Extensible: Different forms of constraints yield various CML_variants,

- A Conditional Random Field model for M-L classification
- Encodes y as binary random vectors $y = \{-1, 1\}^q$. Learn joint probability distribution p(x, y)
- Compute conditional p(y|x) with the maximum entropy criterion:
- Unseen instances labelled with $Y = \operatorname{argmax}_{y} p(y|x)$

- Second-order approach. All label pairs considered, not just
- ullet Convex constraint optimization problem o solvable by any CP solver
- Intractable argmax operation for a large label space without pruning.
- Extensible: Different forms of constraints yield various CML_variants,

- A Conditional Random Field model for M-L classification
- Encodes y as binary random vectors $y = \{-1, 1\}^q$. Learn joint probability distribution p(x, y)
- Compute conditional p(y|x) with the maximum entropy criterion:
 - Maximize $H_n(x,y)$ subject to K constraints $\mathbb{E}[f_k(x,y)] = F_k$
 - $f_k(\cdot)$ directly model label correlations the F_k values are learned from
 - Solve with Lagrange multipliers, assuming gaussian priors
 - Optimal solution is in the form of a Gibbs probability distribution
- Unseen instances labelled with $Y = \operatorname{argmax}_{y} p(y|x)$

- Second-order approach. All label pairs considered, not just
- Convex constraint optimization problem → solvable by any CP solver
- Intractable argmax operation for a large label space without pruning.
- Extensible: Different forms of constraints yield various CML_variants,

- A Conditional Random Field model for M-L classification
- Encodes y as binary random vectors $y = \{-1, 1\}^q$. Learn joint probability distribution p(x, y)
- Compute conditional p(y|x) with the maximum entropy criterion:
 - Maximize $H_p(x,y)$ subject to K constraints $\mathbb{E}[f_k(x,y)] = F_k$
 - $f_k(\cdot)$ directly model label correlations the F_k values are learned from
 - Solve with Lagrange multipliers, assuming gaussian priors
 - Optimal solution is in the form of a Gibbs probability distribution
- Unseen instances labelled with $Y = \operatorname{argmax}_{y} p(y|x)$

- Second-order approach. All label pairs considered, not just
- Convex constraint optimization problem → solvable by any CP solver
- Intractable argmax operation for a large label space without pruning.
- Extensible: Different forms of constraints yield various CML_variants,

- A Conditional Random Field model for M-L classification
- Encodes y as binary random vectors $\mathbf{y} = \{-1, 1\}^q$. Learn joint probability distribution $p(x, \mathbf{y})$
- ullet Compute conditional $p(oldsymbol{y}|x)$ with the maximum entropy criterion:
 - Maximize $H_p(x,y)$ subject to K constraints $\mathbb{E}[f_k(x,y)] = F_k$
 - \bullet $f_k(\cdot)$ directly model label correlations the F_k values are learned from the training data
 - Solve with Lagrange multipliers, assuming gaussian priors
 - Optimal solution is in the form of a Gibbs probability distribution
- Unseen instances labelled with $Y = \operatorname{argmax}_y p(y|x)$

- Second-order approach. All label pairs considered, not just relevant-irrelevant ones.
- ullet Convex constraint optimization problem o solvable by any CP solver
- Intractable argmax operation for a large label space without pruning.
- Extensible: Different forms of constraints yield yarious CML variants

- A Conditional Random Field model for M-L classification
- Encodes y as binary random vectors $\mathbf{y} = \{-1, 1\}^q$. Learn joint probability distribution $p(x, \mathbf{y})$
- ullet Compute conditional $p(oldsymbol{y}|x)$ with the maximum entropy criterion:
 - Maximize $H_p(x,y)$ subject to K constraints $\mathbb{E}[f_k(x, \boldsymbol{y})] = F_k$
 - \bullet $f_k(\cdot)$ directly model label correlations the F_k values are learned from the training data
 - Solve with Lagrange multipliers, assuming gaussian priors
 - Optimal solution is in the form of a Gibbs probability distribution
- Unseen instances labelled with $Y = \operatorname{argmax}_y p(y|x)$

- Second-order approach. All label pairs considered, not just relevant-irrelevant ones.
- ullet Convex constraint optimization problem o solvable by any CP solver
- Intractable argmax operation for a large label space without pruning.
- Extensible: Different forms of constraints yield yarious CML variants

- A Conditional Random Field model for M-L classification
- Encodes y as binary random vectors $\mathbf{y} = \{-1, 1\}^q$. Learn joint probability distribution $p(x, \mathbf{y})$
- \bullet Compute conditional $p(\boldsymbol{y}|\boldsymbol{x})$ with the maximum entropy criterion:
 - Maximize $H_p(x,y)$ subject to K constraints $\mathbb{E}[f_k(x,{\boldsymbol y})]=F_k$
 - \bullet $f_k(\cdot)$ directly model label correlations the F_k values are learned from the training data
 - Solve with Lagrange multipliers, assuming gaussian priors
 - Optimal solution is in the form of a Gibbs probability distribution
- Unseen instances labelled with $Y = \operatorname{argmax}_y p(y|x)$

- Second-order approach. All label pairs considered, not just relevant-irrelevant ones.
- ullet Convex constraint optimization problem o solvable by any CP solver
- Intractable argmax operation for a large label space without pruning.
- Extensible: Different forms of constraints yield yarious CML variants

- A Conditional Random Field model for M-L classification
- Encodes y as binary random vectors $\mathbf{y} = \{-1, 1\}^q$. Learn joint probability distribution $p(x, \mathbf{y})$
- \bullet Compute conditional $p(\boldsymbol{y}|\boldsymbol{x})$ with the maximum entropy criterion:
 - Maximize $H_p(x,y)$ subject to K constraints $\mathbb{E}[f_k(x,{\boldsymbol y})]=F_k$
 - \bullet $f_k(\cdot)$ directly model label correlations the F_k values are learned from the training data
 - Solve with Lagrange multipliers, assuming gaussian priors
 - Optimal solution is in the form of a Gibbs probability distribution
- Unseen instances labelled with $Y = \operatorname{argmax}_y p(y|x)$

- Second-order approach. All label pairs considered, not just relevant-irrelevant ones.
- ullet Convex constraint optimization problem o solvable by any CP solver
- Intractable argmax operation for a large label space without pruning.
- Extensible: Different forms of constraints yield yarious CML variants

- A Conditional Random Field model for M-L classification
- Encodes y as binary random vectors $\mathbf{y} = \{-1, 1\}^q$. Learn joint probability distribution $p(x, \mathbf{y})$
- ullet Compute conditional $p(oldsymbol{y}|x)$ with the maximum entropy criterion:
 - Maximize $H_p(x,y)$ subject to K constraints $\mathbb{E}[f_k(x,y)] = F_k$
 - \bullet $f_k(\cdot)$ directly model label correlations the F_k values are learned from the training data
 - Solve with Lagrange multipliers, assuming gaussian priors
 - Optimal solution is in the form of a Gibbs probability distribution
- ullet Unseen instances labelled with $Y = \operatorname{argmax}_y \, p(y|x)$

- Second-order approach. All label pairs considered, not just relevant-irrelevant ones.
- ullet Convex constraint optimization problem o solvable by any CP solver
- Intractable argmax operation for a large label space without pruning.
- Extensible: Different forms of constraints yield yarious CML variants

- A Conditional Random Field model for M-L classification
- Encodes y as binary random vectors $\mathbf{y} = \{-1, 1\}^q$. Learn joint probability distribution $p(x, \mathbf{y})$
- ullet Compute conditional $p(oldsymbol{y}|x)$ with the maximum entropy criterion:
 - Maximize $H_p(x,y)$ subject to K constraints $\mathbb{E}[f_k(x,y)] = F_k$
 - \bullet $f_k(\cdot)$ directly model label correlations the F_k values are learned from the training data
 - Solve with Lagrange multipliers, assuming gaussian priors
 - Optimal solution is in the form of a Gibbs probability distribution
- ullet Unseen instances labelled with $Y = \operatorname{argmax}_y \, p(y|x)$

- Second-order approach. All label pairs considered, not just relevant-irrelevant ones.
- ullet Convex constraint optimization problem o solvable by any CP solver
- Intractable argmax operation for a large label space without pruning.
- Extensible: Different forms of constraints yield yarious CML variants

- A Conditional Random Field model for M-L classification
- Encodes y as binary random vectors $\mathbf{y} = \{-1,1\}^q$. Learn joint probability distribution $p(x,\mathbf{y})$
- ullet Compute conditional $p(oldsymbol{y}|x)$ with the maximum entropy criterion:
 - Maximize $H_p(x,y)$ subject to K constraints $\mathbb{E}[f_k(x,y)] = F_k$
 - \bullet $f_k(\cdot)$ directly model label correlations the F_k values are learned from the training data
 - Solve with Lagrange multipliers, assuming gaussian priors
 - Optimal solution is in the form of a Gibbs probability distribution
- ullet Unseen instances labelled with $Y = \operatorname{argmax}_y \, p(y|x)$

- Second-order approach. All label pairs considered, not just relevant-irrelevant ones.
- ullet Convex constraint optimization problem o solvable by any CP solver
- Intractable argmax operation for a large label space without pruning.
- Extensible: Different forms of constraints yield yarious CML variants

- A Conditional Random Field model for M-L classification
- Encodes y as binary random vectors $\mathbf{y} = \{-1, 1\}^q$. Learn joint probability distribution $p(x, \mathbf{y})$
- ullet Compute conditional $p(oldsymbol{y}|x)$ with the maximum entropy criterion:
 - Maximize $H_p(x,y)$ subject to K constraints $\mathbb{E}[f_k(x,{\boldsymbol y})]=F_k$
 - \bullet $f_k(\cdot)$ directly model label correlations the F_k values are learned from the training data
 - Solve with Lagrange multipliers, assuming gaussian priors
 - Optimal solution is in the form of a Gibbs probability distribution
- ullet Unseen instances labelled with $Y = \operatorname{argmax}_y \, p(y|x)$

- Second-order approach. All label pairs considered, not just relevant-irrelevant ones.
- \bullet Convex constraint optimization problem \to solvable by any CP solver
- Intractable argmax operation for a large label space without pruning.
- Extensible: Different forms of constraints yield various CML variants

- A Conditional Random Field model for M-L classification
- Encodes y as binary random vectors $\mathbf{y} = \{-1,1\}^q$. Learn joint probability distribution $p(x,\mathbf{y})$
- \bullet Compute conditional $p(\boldsymbol{y}|\boldsymbol{x})$ with the maximum entropy criterion:
 - Maximize $H_p(x,y)$ subject to K constraints $\mathbb{E}[f_k(x,{\boldsymbol y})]=F_k$
 - \bullet $f_k(\cdot)$ directly model label correlations the F_k values are learned from the training data
 - Solve with Lagrange multipliers, assuming gaussian priors
 - Optimal solution is in the form of a Gibbs probability distribution
- ullet Unseen instances labelled with $Y = \operatorname{argmax}_y \, p(y|x)$

- Second-order approach. All label pairs considered, not just relevant-irrelevant ones.
- ullet Convex constraint optimization problem o solvable by any CP solver
- Intractable argmax operation for a large label space without pruning.
- Extensible: Different forms of constraints yield yarious CML_variants

- A Conditional Random Field model for M-L classification
- Encodes y as binary random vectors $\mathbf{y} = \{-1,1\}^q$. Learn joint probability distribution $p(x,\mathbf{y})$
- ullet Compute conditional $p(oldsymbol{y}|x)$ with the maximum entropy criterion:
 - Maximize $H_p(x,y)$ subject to K constraints $\mathbb{E}[f_k(x,y)] = F_k$
 - \bullet $f_k(\cdot)$ directly model label correlations the F_k values are learned from the training data
 - Solve with Lagrange multipliers, assuming gaussian priors
 - Optimal solution is in the form of a Gibbs probability distribution
- $\bullet \ \ \text{Unseen instances labelled with} \ Y = \operatorname{argmax}_y \ p(y|x)$

- Second-order approach. All label pairs considered, not just relevant-irrelevant ones.
- ullet Convex constraint optimization problem o solvable by any CP solver
- Intractable argmax operation for a large label space without pruning.
- Extensible: Different forms of constraints yield various CML variants

Multi-label Learning Algorithms: Summary

		Order of	Complexity	Tested	
Algorithm	Basic Idea	Correlations	[Train/Test]	Domains	Optimized Metric
Binary	Fit multi-label data to		$O(q \cdot F_B(m, d))/$		classification
Relevance [5]	q binary classifiers	first-order	$\mathcal{O}(q \cdot \mathcal{F}_{\mathcal{B}}'(d))$	image	(hamming loss)
Classifier	Fit multi-label data to a		$O(q \cdot F_B(m, d + q))/$	image, video	classification
Chains [72]	chain of binary classifiers	high-order	$\mathcal{O}(q \cdot \mathcal{F}_{\mathcal{B}}'(d+q))$	text, biology	(hamming loss)
Calibrated Label	Fit multi-label data to		$O(q^2 \cdot F_B(m, d))/$	image, text	Ranking
Ranking [30]	$\frac{q(q+1)}{2}$ binary classifiers	second-order	$O(q^2 \cdot F_B'(d))$	biology	(ranking loss)
Random	Fit multi-label data to		$O(n \cdot F_M(m, d, 2^k))/$	image, text	classification
k-Labelsets [94]	n multi-class classifiers	high-order	$\mathcal{O}(n \cdot \mathcal{F}'_{\mathcal{M}}(d, 2^k))$	biology	(subset accuracy)
	Fit k-nearest neighbor		$\mathcal{O}(m^2d + qmk)/$	image, text	classification
ML-kNN [108]	to multi-label data	first-order	$\mathcal{O}(md + qk)$	biology	(hamming loss)
	Fit decision tree				classification
ML-DT [16]	to multi-label data	first-order	$\mathcal{O}(mdq)/\mathcal{O}(mq)$	biology	(hamming loss)
	Fit kernel learning		$\mathcal{O}(\mathcal{F}_{\mathrm{QP}}(dq + mq^2, mq^2)$		Ranking
Rank-SVM [27]	to multi-label data	second-order	$+q^2(q+m))/\mathcal{O}(dq)$	biology	(ranking loss)
	Fit conditional random		$\mathcal{O}(\mathcal{F}_{\mathrm{UNC}}(dq + q^2, m))/$		classification
CML [33]	field to multi-label data	second-order	$\mathcal{O}((dq+q^2)\cdot 2^q)$	text	(subset accuracy)

Figure: Summary of Representative Multi-Label Learning Algorithms

- Multi-instance learning
 - \circ Instead of labeled instances, get binary-labeled *bags of instance*.
 - Assign positive label to bag if at least one member is positive
 - \circ Models complex semantics of x_i in input space, rather than its outpu
- Ordinal classification
 - Assume label relevance is not binary, but soft
 - Produce a vector of ordinal graded membership
 - Transform M-L problem to a set of ordinal set of problems
- Multi-task learning
 - Multiple tasks trained in parallel, sharing information
 - Knowledge from related tasks used as an inductive bias to improve generalization
 - Shared or different feature space, small task workload
- Data streams classification
 - Real-world objects are generated online and processed in real-time
 - Concept drift problem

Multi-instance learning

- Instead of labeled instances, get binary-labeled bags of instances
- Assign positive label to bag if at least one member is positive
- \circ Models complex semantics of x_i in input space, rather than its output

Ordinal classification

- Assume label relevance is not binary, but soft
- Produce a vector of ordinal graded membership
- Transform M-L problem to a set of ordinal set of problems

Multi-task learning

- Multiple tasks trained in parallel, sharing information
- Knowledge from related tasks used as an inductive bias to improve generalization
- Shared or different feature space, small task workload

Data streams classification

- Real-world objects are generated online and processed in real-time
- Concept drift problem

- Multi-instance learning
 - o Instead of labeled instances, get binary-labeled bags of instances
 - Assign positive label to bag if at least one member is positive
 - \circ Models complex semantics of x_i in input space, rather than its output
- Ordinal classification
 - Assume label relevance is not binary, but soft
 - Produce a vector of ordinal graded membership
 - Transform M-L problem to a set of ordinal set of problems
- Multi-task learning
 - Multiple tasks trained in parallel, sharing information
 - Knowledge from related tasks used as an inductive bias to improve generalization
 - Shared or different feature space, small task workload
- Data streams classification
 - Real-world objects are generated online and processed in real-time
 - Concept drift problem

- Multi-instance learning
 - o Instead of labeled instances, get binary-labeled bags of instances
 - Assign positive label to bag if at least one member is positive
 - \circ Models complex semantics of x_i in input space, rather than its outpu
- Ordinal classification
 - Assume label relevance is not binary, but soft
 - Produce a vector of ordinal graded membership
 - Transform M-L problem to a set of ordinal set of problems
- Multi-task learning
 - Multiple tasks trained in parallel, sharing information
 - Knowledge from related tasks used as an inductive bias to improve generalization
 - Shared or different feature space, small task workload
- Data streams classification
 - Real-world objects are generated online and processed in real-time
 - Concept drift problem

- Multi-instance learning
 - o Instead of labeled instances, get binary-labeled bags of instances
 - o Assign positive label to bag if at least one member is positive
 - \circ Models complex semantics of x_i in input space, rather than its output
- Ordinal classification
 - Assume label relevance is not binary, but soft
 - Produce a vector of ordinal graded membership
 - Transform M-L problem to a set of ordinal set of problems
- Multi-task learning
 - Multiple tasks trained in parallel, sharing information
 - Knowledge from related tasks used as an inductive bias to improve generalization
 - Shared or different feature space, small task workload
- Data streams classification
 - Real-world objects are generated online and processed in real-time
 - Concept drift problem

- Multi-instance learning
 - o Instead of labeled instances, get binary-labeled bags of instances
 - o Assign positive label to bag if at least one member is positive
 - \circ Models complex semantics of x_i in input space, rather than its output
- Ordinal classification
 - Assume label relevance is not binary, but soft
 - Produce a vector of ordinal graded membership
 - Transform M-L problem to a set of ordinal set of problems
- Multi-task learning
 - Multiple tasks trained in parallel, sharing information
 - Knowledge from related tasks used as an inductive bias to improve generalization
 - Shared or different feature space, small task workload
- Data streams classification
 - Real-world objects are generated online and processed in real-time
 - Concept drift problem

- Multi-instance learning
 - o Instead of labeled instances, get binary-labeled bags of instances
 - Assign positive label to bag if at least one member is positive
 - \circ Models complex semantics of x_i in input space, rather than its output
- Ordinal classification
 - Assume label relevance is not binary, but soft
 - Produce a vector of ordinal graded membership
 - Transform M-L problem to a set of ordinal set of problems
- Multi-task learning
 - Multiple tasks trained in parallel, sharing information
 - Knowledge from related tasks used as an inductive bias to improve generalization
 - Shared or different feature space, small task workload.
- Data streams classification
 - Real-world objects are generated online and processed in real-time
 - Concept drift problem

- Multi-instance learning
 - o Instead of labeled instances, get binary-labeled bags of instances
 - Assign positive label to bag if at least one member is positive
 - \circ Models complex semantics of x_i in input space, rather than its output
- Ordinal classification
 - o Assume label relevance is not binary, but soft
 - Produce a vector of ordinal graded membership
 - Transform M-L problem to a set of ordinal set of problems
- Multi-task learning
 - Multiple tasks trained in parallel, sharing information
 - Knowledge from related tasks used as an inductive bias to improve generalization
 - Shared or different feature space, small task workload
- Data streams classification
 - Real-world objects are generated online and processed in real-time
 - Concept drift problem

- Multi-instance learning
 - o Instead of labeled instances, get binary-labeled bags of instances
 - Assign positive label to bag if at least one member is positive
 - \circ Models complex semantics of x_i in input space, rather than its output
- Ordinal classification
 - Assume label relevance is not binary, but soft
 - Produce a vector of ordinal graded membership
 - Transform M-L problem to a set of ordinal set of problems
- Multi-task learning
 - Multiple tasks trained in parallel, sharing information
 - Knowledge from related tasks used as an inductive bias to improve generalization
 - Shared or different feature space, small task workload
- Data streams classification
 - Real-world objects are generated online and processed in real-time
 - Concept drift problem

- Multi-instance learning
 - o Instead of labeled instances, get binary-labeled bags of instances
 - Assign positive label to bag if at least one member is positive
 - \circ Models complex semantics of x_i in input space, rather than its output
- Ordinal classification
 - Assume label relevance is not binary, but soft
 - Produce a vector of ordinal graded membership
 - Transform M-L problem to a set of ordinal set of problems
- Multi-task learning
 - Multiple tasks trained in parallel, sharing information
 - Knowledge from related tasks used as an inductive bias to improve generalization
 - Shared or different feature space, small task workload
- Data streams classification
 - Real-world objects are generated online and processed in real-time
 - Concept drift problem

- Multi-instance learning
 - o Instead of labeled instances, get binary-labeled bags of instances
 - Assign positive label to bag if at least one member is positive
 - \circ Models complex semantics of x_i in input space, rather than its output
- Ordinal classification
 - Assume label relevance is not binary, but soft
 - Produce a vector of ordinal graded membership
 - Transform M-L problem to a set of ordinal set of problems
- Multi-task learning
 - o Multiple tasks trained in parallel, sharing information
 - Knowledge from related tasks used as an inductive bias to improve generalization
 - Shared or different feature space, small task workload
- Data streams classification
 - Real-world objects are generated online and processed in real-time
 - Concept drift problem

- Multi-instance learning
 - o Instead of labeled instances, get binary-labeled bags of instances
 - Assign positive label to bag if at least one member is positive
 - \circ Models complex semantics of x_i in input space, rather than its output
- Ordinal classification
 - Assume label relevance is not binary, but soft
 - Produce a vector of ordinal graded membership
 - Transform M-L problem to a set of ordinal set of problems
- Multi-task learning
 - o Multiple tasks trained in parallel, sharing information
 - Knowledge from related tasks used as an inductive bias to improve generalization
 - \circ Shared or different feature space, small task workload
- Data streams classification
 - Real-world objects are generated online and processed in real-time
 Concept drift problem

- Multi-instance learning
 - o Instead of labeled instances, get binary-labeled bags of instances
 - Assign positive label to bag if at least one member is positive
 - \circ Models complex semantics of x_i in input space, rather than its output
- Ordinal classification
 - Assume label relevance is not binary, but soft
 - Produce a vector of ordinal graded membership
 - Transform M-L problem to a set of ordinal set of problems
- Multi-task learning
 - Multiple tasks trained in parallel, sharing information
 - Knowledge from related tasks used as an inductive bias to improve generalization
 - Shared or different feature space, small task workload
- Data streams classification
 - Real-world objects are generated online and processed in real-time
 Concept drift problem

- Multi-instance learning
 - o Instead of labeled instances, get binary-labeled bags of instances
 - Assign positive label to bag if at least one member is positive
 - \circ Models complex semantics of x_i in input space, rather than its output
- Ordinal classification
 - o Assume label relevance is not binary, but soft
 - Produce a vector of ordinal graded membership
 - Transform M-L problem to a set of ordinal set of problems
- Multi-task learning
 - Multiple tasks trained in parallel, sharing information
 - Knowledge from related tasks used as an inductive bias to improve generalization
 - Shared or different feature space, small task workload
- Data streams classification
 - Real-world objects are generated online and processed in real-time
 - Concept drift problem

- Multi-instance learning
 - o Instead of labeled instances, get binary-labeled bags of instances
 - Assign positive label to bag if at least one member is positive
 - \circ Models complex semantics of x_i in input space, rather than its output
- Ordinal classification
 - o Assume label relevance is not binary, but soft
 - Produce a vector of ordinal graded membership
 - Transform M-L problem to a set of ordinal set of problems
- Multi-task learning
 - Multiple tasks trained in parallel, sharing information
 - Knowledge from related tasks used as an inductive bias to improve generalization
 - Shared or different feature space, small task workload
- Data streams classification
 - o Real-world objects are generated online and processed in real-time
 - Concept drift problem

- Multi-instance learning
 - o Instead of labeled instances, get binary-labeled bags of instances
 - Assign positive label to bag if at least one member is positive
 - \circ Models complex semantics of x_i in input space, rather than its output
- Ordinal classification
 - o Assume label relevance is not binary, but soft
 - Produce a vector of ordinal graded membership
 - Transform M-L problem to a set of ordinal set of problems
- Multi-task learning
 - Multiple tasks trained in parallel, sharing information
 - Knowledge from related tasks used as an inductive bias to improve generalization
 - Shared or different feature space, small task workload
- Data streams classification
 - o Real-world objects are generated online and processed in real-time
 - o Concept drift problem

Summary

- Multi-label learning problem definition
- Multi-label learning representative algorithms
- Related learning methods

- Formal characterization on the underlying concept / mechanism on the appropriate usage of label correlations, especially on large output spaces
- Thorough experimental comparative study to discover pros and cons of different multi-label learning algorithms

Summary:

- Multi-label learning problem definition
- Multi-label learning representative algorithms
- Related learning methods

- Formal characterization on the underlying concept / mechanism on the appropriate usage of label correlations, especially on large output spaces
- Thorough experimental comparative study to discover pros and cons of different multi-label learning algorithms

Summary:

- Multi-label learning problem definition
- Multi-label learning representative algorithms
- Related learning methods

- Formal characterization on the underlying concept / mechanism on the appropriate usage of label correlations, especially on large output spaces
- Thorough experimental comparative study to discover pros and cons of different multi-label learning algorithms

Summary:

- Multi-label learning problem definition
- Multi-label learning representative algorithms
- Related learning methods

- Formal characterization on the underlying concept / mechanism on the appropriate usage of label correlations, especially on large output spaces
- Thorough experimental comparative study to discover pros and cons of different multi-label learning algorithms

Summary:

- Multi-label learning problem definition
- Multi-label learning representative algorithms
- Related learning methods

- Formal characterization on the underlying concept / mechanism on the appropriate usage of label correlations, especially on large output spaces
- Thorough experimental comparative study to discover pros and cons of different multi-label learning algorithms

Summary:

- Multi-label learning problem definition
- Multi-label learning representative algorithms
- Related learning methods

- Formal characterization on the underlying concept / mechanism on the appropriate usage of label correlations, especially on large output spaces
- Thorough experimental comparative study to discover pros and cons of different multi-label learning algorithms

Summary:

- Multi-label learning problem definition
- Multi-label learning representative algorithms
- Related learning methods

- Formal characterization on the underlying concept / mechanism on the appropriate usage of label correlations, especially on large output spaces
- Thorough experimental comparative study to discover pros and cons of different multi-label learning algorithms

Summary:

- Multi-label learning problem definition
- Multi-label learning representative algorithms
- Related learning methods

- Formal characterization on the underlying concept / mechanism on the appropriate usage of label correlations, especially on large output spaces
- Thorough experimental comparative study to discover pros and cons of different multi-label learning algorithms

Conclusion: Online resources

Resource Type	Resource URL and Descriptions			
Tutorial	http://www.ecmlpkdd2009.net/program/tutorials/learning-from-multi-label-data/ (In conjunction with			
	ECML PKDD 2009)			
	http://cig.fi.upm.es/index.php/presentations?download=4 (In conjunction with TAMIDA 2010)			
Workshops	http://lpis.csd.auth.gr/workshops/mld09/ (MLD'09: in conjunction with ECML PKDD 2009)			
	http://cse.seu.edu.cn/conf/MLD10/ (MLD'10: in conjunction with ICML/COLT 2010)			
	http://cse.seu.edu.cn/conf/LAWS12/ (LAWS*12: in conjunction with ACML 2012)			
Special Issue	http://mlkd.csd.auth.gr/events/ml2010si.html (Machine Learning Journal Special Issue on Learning			
	from Multi-Label Data [96])			
Software	http://mulan.sourceforge.net/index.html (The MULAN [93] open-source Java library)			
	http://meka.sourceforge.net/ (The MEKA project based on WEKA [38])			
	http://cse.seu.edu.cn/people/zhangml/Resources.htm#codes_mll (Matlab codes for multi-label learning)			
	http://mulan.sourceforge.net/datasets.html (Data sets from MULAN)			
Data Sets	http://meka.sourceforge.net/#datasets (Data sets from MEKA)			
	http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html (Data sets from LIBSVM [11])			

Figure: Online Resources for Multi-Label Learning

Conclusion: Related Work

- Madjarov, Gjorgji, et al. "An extensive experimental comparison of methods for multi-label learning." Pattern Recognition 45.9 (2012): 3084-3104
- Tsoumakas, Grigorios, and Ioannis Katakis. "Multi-label classification: An overview." International Journal of Data Warehousing and Mining 3.3 (2006)
- Zhang, Min-Ling, and Kun Zhang. "Multi-label learning by exploiting label dependency." Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2010

Conclusion: Additional Bibliography

- Vens, Celine, et al. "Decision trees for hierarchical multi-label classification." Machine Learning 73.2 (2008): 185-214.
- Tsoumakas, Grigorios, and Ioannis Vlahavas. "Random k-labelsets: An ensemble method for multilabel classification." Machine learning: ECML 2007 (2007): 406-417.
- Zhang, Min-Ling, and Zhi-Hua Zhou. "ML-KNN: A lazy learning approach to multi-label learning." Pattern recognition 40.7 (2007): 2038-2048.
- Elisseeff, Andr, and Jason Weston. "A kernel method for multi-labelled classification." Advances in neural information processing systems. 2002.
- Ghamrawi, Nadia, and Andrew McCallum. "Collective multi-label classification." Proceedings of the 14th ACM international conference on Information and knowledge management. ACM, 2005.
- Cheng, Weiwei, Eyke Hllermeier, and Krzysztof J. Dembczynski. "Graded multilabel classification: The ordinal case." Proceedings of

Thank you Questions?