Independent Metropolis using Laplace approximations for latent Gaussian process models

Matt Simpson

October 18, 2016

1 Expected acceptance probability

Let $\pi(\theta)$ denote the target posterior density and $J(\theta)$ the independent Metropolis proposal. Then the acceptance probability to move from θ to θ' is $a^*(\theta, \theta') = \min(a(\theta, \theta'), 1)$ where

$$a(\theta, \theta') = \frac{\pi(\theta')J(\theta)}{\pi(\theta)J(\theta')}.$$

Suppose the Markov chain has converged. Then $\theta' \sim p \perp \!\!\! \perp \theta \sim \pi$ and the expected acceptance probability can be expressed as¹

$$\begin{split} \mathbf{E}[a^*(\theta,\theta')] &= \mathbf{E}[a(\theta,\theta')\mathbbm{1}\left\{a(\theta,\theta') \leq 1\right\}] + \mathbf{E}[\mathbbm{1}\left\{a(\theta,\theta') > 1\right\}] \\ &= \int\limits_{\{a(\theta,\theta') \leq 1\}} \frac{\pi(\theta')J(\theta)}{\pi(\theta)J(\theta')}\pi(\theta)J(\theta')\,d\theta\,d\theta' + \int\limits_{\{a(\theta,\theta') > 1\}} \pi(\theta)J(\theta')\,d\theta\,d\theta' \\ &= \int\limits_{\{a(\theta',\theta) \geq 1\}} \pi(\theta')J(\theta)\,d\theta\,d\theta' + \int\limits_{\{a(\theta,\theta') > 1\}} \pi(\theta)J(\theta')\,d\theta\,d\theta' \\ &= 2\mathbf{E}[\mathbbm{1}\left\{a(\theta,\theta') > 1\right\}] + \mathbf{E}[\mathbbm{1}\left\{a(\theta,\theta') = 1\right\}] \\ &= 2P\left[\log \pi(\theta') - \log J(\theta') > \log \pi(\theta) - \log J(\theta)\right] \\ &+ P\left[\log \pi(\theta') - \log J(\theta') = \log \pi(\theta) - \log J(\theta)\right]. \end{split}$$

Now suppose that $J(\theta)$ is the Laplace approximation to $\pi(\theta)$ so that defining $\ell(\theta) = \log \pi(\theta)$ and $p(\theta) = N(\theta^*, H^{-1})$ where θ^* is the mode of $\pi(\theta)$ and H is the negative Hessian evaluated at the mode:

$$H = - \left. \frac{\partial^2 \ell}{\partial \theta \partial \theta'} \right|_{\theta = \theta^*}.$$

Then we have

$$\ell(\theta) = \ell(\theta^*) + (\theta - \theta^*)' \frac{\partial \ell}{\partial \theta} \Big|_{\theta = \theta^*} + \frac{1}{2} (\theta - \theta^*)' \frac{\partial^2 \ell}{\partial \theta \partial \theta'} \Big|_{\theta = \theta^*} (\theta - \theta^*) + R(\theta)$$

$$= \ell(\theta^*) - \frac{1}{2} (\theta - \theta^*)' H(\theta - \theta^*) + R(\theta)$$

$$= C + \log J(\theta) + R(\theta)$$

where $R(\theta)$ is the remainder term of the Taylor approximation and C is a constant. Then we have

$$E[a^*(\theta, \theta')] = 2P[R(\theta') - R(\theta) > 0] + P[R(\theta') = R(\theta)].$$

where $\theta' \sim \pi \perp \!\!\! \perp \theta \sim J$.

¹See optimal scaling of random walk metropolis paper for a theorem similar to this with more fancy details.

2 Characterizing the remainder term for exponential dispersion families

Suppose we have a latent Gaussian process $x_i \stackrel{ind}{\sim} N(w_i\beta, \phi^{-1})$ for i = 1, 2, ..., N with $\phi > 0$ the precision of x_i 's distribution. Further suppose that conditional on $x_{1:N}$ we have $y_i \stackrel{ind}{\sim} \pi(y_i|x_i,\lambda)$, an exponential dispersion family with link function $\eta(x)$:

$$\pi(y|x,\lambda) = \exp\left[\lambda(y\eta(x) - \kappa(x)) - c(y,\lambda)\right]$$

where $\lambda > 0$ is the dispersion parameter and both $\kappa(.)$ and c(.,.) are known functions. Suppose that λ and ϕ are both known and that $\beta \sim N(\bar{\beta}, \Omega^{-1})$ with mean $\bar{\beta}$ and precision matrix Ω known. Then we can write the log posterior of $x \equiv x_{1:N}$ and β as

$$\log \pi(x,\beta|y) \equiv \ell(x,\beta) = C + \lambda \sum_{i=1}^{N} [y_i \eta(x_i) - \kappa(x_i)] - \frac{\phi}{2} \sum_{i=1}^{N} (x_i - w_i \beta)^2 - \frac{1}{2} (\beta - \bar{\beta})' \Omega(\beta - \bar{\beta})$$

where C is an arbitrary constant. Then the negative Hessian evaluated at the posterior mode (x^*, β^*) is

$$H = - \left. \frac{\partial^2 \ell}{\partial(x,\beta)\partial(x',\beta')} \right|_{x=x^*,\beta=\beta^*} = \begin{bmatrix} D(x^*) & -\phi W \\ -\phi W' & \phi W'W + \Omega \end{bmatrix}$$

where $D(x^*)$ is an $N \times N$ diagonal matrix with $D_{ii} = \lambda[\kappa''(x_i^*) - \eta''(x_i^*)y_i] + \phi$, and W is an $N \times p$ matrix with rows w_i , and p is the dimension of β . So the proposal distribution is Gaussian with mean (x^*, β^*) and precision matrix H.

We can now characterize the remainder term $R(x,\beta) = \log \pi(x,\beta|y) - \log J(x,\beta)$:

$$R(x,\beta) = C + \lambda \sum_{i=1}^{N} [y_i \eta(x_i) - \kappa(x_i)] - \frac{\phi}{2} \sum_{i=1}^{N} (x_i - w_i \beta)^2 - \frac{1}{2} (\beta - \bar{\beta})' \Omega(\beta - \bar{\beta})$$

$$+ \frac{1}{2} \sum_{i=1}^{N} (x_i - x_i^*)^2 (\lambda [\kappa''(x_i^*) - \eta''(x_i^*) y_i] + \phi) + \phi \sum_{i=1}^{N} (x_i - x_i^*) w_i (\beta - \beta^*)$$

$$- \frac{1}{2} (\beta - \beta^*)' [\phi W'W + \Omega] (\beta - \beta^*)$$

$$= C + \lambda \sum_{i=1}^{N} [y_i \eta(x_i) - \kappa(x_i)] + \frac{\lambda}{2} \sum_{i=1}^{N} (x_i - x_i^*)^2 [\kappa''(x_i^*) - \eta''(x_i^*) y_i]$$

$$+ \beta' \Omega \bar{\beta} + \phi \sum_{i=1}^{N} x_i w_i \beta^* + \phi x_i^* w_i \beta - \beta' [\phi W'W + \Omega] \beta^*$$

$$= C + \lambda \sum_{i=1}^{N} [y_i \eta(x_i) - \kappa(x_i)] + \frac{\lambda}{2} \sum_{i=1}^{N} (x_i - x_i^*)^2 [\kappa''(x_i^*) - \eta''(x_i^*) y_i]$$

$$+ \left[\Omega(\bar{\beta} - \beta^*) + \phi \sum_{i=1}^{N} x_i^* w_i - \phi \beta^* W'W \right] \beta + \phi \sum_{i=1}^{N} w_i \beta^* x_i.$$

Then

$$R(x', \beta') - R(x, \beta) = \left[\Omega(\bar{\beta} - \beta^*) + \phi \sum_{i=1}^{N} x_i^* w_i - \phi \beta^* W' W \right] (\beta' - \beta) + \phi \sum_{i=1}^{N} w_i \beta^* (x_i' - x_i)$$

$$+ \lambda \sum_{i=1}^{N} \left[y_i [\eta(x_i') - \eta(x_i)] - \kappa(x_i') + \kappa(x_i) \right] + \frac{\lambda}{2} \sum_{i=1}^{N} \left[(x_i' - x_i^*)^2 - (x_i - x_i^*)^2 \right] [\kappa''(x_i^*) - \eta''(x_i^*) y_i]$$

Thoughts

- So outside of the term with $\eta(x_i)$ and $\kappa(x_i)$ this look a lot like the probability that 1) a weighted difference between β' and β plus 2) a weighted average of $x_i' x_i$ plus 3) the difference in weighted sample variances is i. 0.
- Might be able to characterize this for different link functions $(\eta(.))$. Maybe pick a particular distribution and see what pops out.
- Can instead characterize the remainder term using taylor's formula and note that because of the exponential family, we can get a better grip on what integral looks like!

3 Generic framework and examples

Suppose we have data $z_i \stackrel{ind}{\sim} \pi(z_i|y_i,\phi)$ where $y_i = x_i'\beta$ with $\beta \sim N(\bar{\beta}, B^{-1})$ with $\phi, \bar{\beta}$, and B known. $x_i'\beta$ could be a combination of fixed and random effects as long as the random effects are normally distributed with a known covariance matrix.

3.1 Gamma data model

In this case the log posterior is

$$\ell(\beta) = C + \sum_{i=1}^{N} \left[\phi e^{y_i} \log(\phi z_i) - z_i \phi - \log \Gamma(\phi e^{y_i}) \right] - \frac{1}{2} (\beta - \bar{\beta})' B(\beta - \bar{\beta}).$$

Then the proposal distribution is $\beta \sim N(\beta^*, \Omega^{-1})$ where $\beta^* = \arg \max \ell(\beta)$, $\Omega = -\left. \frac{\partial^2 \ell}{\partial \beta \partial \beta'} \right|_{\beta = \beta^*}$ and

$$\frac{\partial^2 \ell}{\partial \beta \partial \beta'} = \sum_{i=1}^N x_i x_i' \left[\phi e^{x_i' \beta} \log(\phi z_i) - \Psi(\phi e^{x_i' \beta}) \phi e^{x_i' \beta} - \Psi'(\phi e^{x_i' \beta}) \phi^2 e^{2x_i' \beta} \right] - B$$
$$= -X' DX - B$$

where $\Psi(x) = d \log \Gamma(x)/dx$, $X = (x_1, x_2, \dots, x_n)'$, and D is an $n \times n$ diagonal matrix with diagonal entries

$$D_{ii}(\beta) = -\phi e^{x_i'\beta} \log(\phi z_i) + \Psi(\phi e^{x_i'\beta}) \phi e^{x_i'\beta} + \Psi'(\phi e^{x_i'\beta}) \phi^2 e^{2x_i'\beta}.$$

So $\Omega = X'D^*X + B$ where $D^* = D(\beta^*)$.

Then the remainder term is

$$R(\beta) = C + \sum_{i=1}^{N} \left[\phi e^{x_i' \beta} \log(\phi z_i) - \log \Gamma(\phi e^{x_i' \beta}) \right] - \frac{1}{2} (\beta - \bar{\beta})' B(\beta - \bar{\beta}) + \frac{1}{2} (\beta - \beta^*)' (X' D^* X + B) (\beta - \beta^*)$$

$$= C + \sum_{i=1}^{N} \left[\phi e^{x_i' \beta} \log(\phi z_i) - \log \Gamma(\phi e^{x_i' \beta}) \right] - \frac{1}{2} \beta' X' D^* X \beta - \left[(\beta^* - \bar{\beta})' B + (\beta^*)' X' D^* X \right] \beta.$$