# Jeszcze dziwniejsza Dijkstra



Limit czasu: 5 s, Limit pamięci: 512 MB

Dane jest miasto z n skrzyżowaniami i m nieskierowanymi drogami. Krawędzie mogą się powtarzać i mogą występować pętelki (krawędź z wierzchołka do niego samego). Twoim zadaniem jest znaleźć najkrótszą drogę z wierzchołka 1 do wierzchołka n i wypisać wierzchołki znajdujące się na niej. Jeśli istnieje wiele takich ściezek, wypisz tę, która jest składa się z najmniejszej liczby krawędzi, a jeśli wciąż jest ich wiele, wypisz najmniejszą leksykograficznie.

#### Wejście

Pierwsza linia wejścia zawiera dwie liczby  $n, m \ (1 \le n, m \le 10^5)$  – liczbę skrzyżowań. Każdy z kolejnych m wierszy trzy liczby całkowite  $u_i, v_i, c_i \ (1 \le u_i, v_i \le n, 1 \le c_i \le 10^9)$  – oznaczające końce skrzyżowania i wagę krawędzi pomiędzy nimi.

### Wyjście

Na wyjściu wypisz długość najkrótszej ścieżki z wierzchołka 1 do n oraz wierzchołki znajdujące się na niej lub -1 jeśli taka ścieżka nie istnieje.

## **Przykłady**

Wejście dla testu jes0a:

| 5 | 6 |   |  |  |  |  |  |  |  |  |  |
|---|---|---|--|--|--|--|--|--|--|--|--|
| 1 | 2 | 2 |  |  |  |  |  |  |  |  |  |
| 2 | 5 | 5 |  |  |  |  |  |  |  |  |  |
| 2 | 3 | 2 |  |  |  |  |  |  |  |  |  |
| 1 | 4 | 1 |  |  |  |  |  |  |  |  |  |
| 4 | 3 | 3 |  |  |  |  |  |  |  |  |  |
| 3 | 5 | 1 |  |  |  |  |  |  |  |  |  |
|   |   |   |  |  |  |  |  |  |  |  |  |

Wyjście dla testu jes0a:

| 4   |     |  |  |
|-----|-----|--|--|
| 1 2 | 3 5 |  |  |

Weiście dla testu ies0b:

|   | vvejsele did testa jebob. |   |  |  |  |  |  |  |  |
|---|---------------------------|---|--|--|--|--|--|--|--|
| 5 | 3                         |   |  |  |  |  |  |  |  |
| 1 | 2 2                       | 2 |  |  |  |  |  |  |  |
| 1 | 4 :                       | 1 |  |  |  |  |  |  |  |
| 3 | 5 3                       | 1 |  |  |  |  |  |  |  |

Wyjście dla testu jes0b:

-1

#### **Ocenianie**

| Podzadanie | Ograniczenia                | Punkty |
|------------|-----------------------------|--------|
| 1          | $1 \le n, m \le 20$         | 15     |
| 2          | $1 \le n, m \le 1000$       | 35     |
| 3          | Brak dodatkowych ograniczeń | 50     |