Section 2.7 Exercises

David Piper

October 4, 2020

2.47 For two statements P and Q we want to show that $(P \wedge (\sim Q)) \wedge (P \wedge Q)$ and $(P \Longrightarrow \sim Q) \wedge (P \wedge Q)$ are contradictions. First let us observe that $(P \wedge (\sim Q)) \wedge (P \wedge Q)$ has the following truth table.

P	Q	$\sim Q$	$P \wedge (\sim Q)$	$P \wedge Q$	$(P \land (\sim Q)) \land (P \land Q)$
Т	Τ	F	F	Τ	F
Τ	F	${ m T}$	${ m T}$	F	F
F	Τ	F	F	F	F
F	F	Τ	F	F	F

From this truth table we can observe that $(P \land (\sim Q)) \land (P \land Q)$ is false for all possible values of P and Q, thus it is a contradiction.

Next let's consider the statement $(P \Longrightarrow \sim Q) \land (P \land Q)$. We can observe that it has the following truth table.

P	Q	$\sim Q$	$P \implies \sim Q$	$P \wedge Q$	$(P \implies \sim Q) \land (P \land Q)$
Т	Τ	F	F	Τ	F
Τ	F	${ m T}$	${ m T}$	F	F
F	\mathbf{T}	\mathbf{F}	${ m T}$	F	F
F	F	Τ	Τ	F	F

From this truth table we can observe that $(P \Longrightarrow \sim Q) \land (P \land Q)$ is false for all possible values of P and Q, thus it is a contradiction.

2.49 For the statements P, Q and R we want to show that $((P \Longrightarrow Q) \land (Q \Longrightarrow R)) \Longrightarrow (P \Longrightarrow R)$ is a tautology. First let us observe that these statements

have the following truth table.

Р	Q	R	$P \implies Q$	$Q \implies R$	$(P \implies Q) \land (Q \implies R)$	$P \implies R$
$\overline{\mathrm{T}}$	Т	Т	Т	T	T	T
Τ	${\rm T}$	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}
Τ	F	${ m T}$	\mathbf{F}	${f T}$	\mathbf{F}	${ m T}$
Τ	F	\mathbf{F}	\mathbf{F}	${f T}$	\mathbf{F}	\mathbf{F}
F	\mathbf{T}	${ m T}$	T	T	T	T
F	\mathbf{T}	\mathbf{F}	T	\mathbf{F}	\mathbf{F}	T
F	\mathbf{F}	${ m T}$	T	T	T	T
F	\mathbf{F}	\mathbf{F}	T	${f T}$	${ m T}$	${f T}$

From this truth table we can observe that $((P \Longrightarrow Q) \land (Q \Longrightarrow R)) \Longrightarrow (P \Longrightarrow R)$ is true for all possible values of P, Q and R; thus it is a tautology. If we restate this compound statement in words we have the following: If P implies Q and Q implies R then it follows that P implies R.

2.51 For the statements P and Q we want to find out if $(P \vee Q) \vee (Q \implies P)$ is a tautology, contradiction, or neither. First let us observe that these statements have the following truth table.

Р	Q	$P \lor Q$	$Q \implies P$	$(P \lor Q) \lor (Q \implies P)$
Т	Τ	Τ	Τ	T
\mathbf{T}	\mathbf{F}	${ m T}$	T	T
\mathbf{F}	${ m T}$	${ m T}$	\mathbf{F}	T
F	F	F	Τ	T

From this truth table we can observe that $(P \lor Q) \lor (Q \Longrightarrow P)$ is true for all possible values of P and Q, thus it is a tautology.