Math Notes

Xiong Ding

Copyright ©2015 by Xiong Ding

All rights reserved.

ISBN ...

 \dots Publications

Contents

1	Geometry, Topology and Physics – Nakahara	1
2	Grassmann Algebra – John Browne	3
3	Creation of Cosmos as Objectivation	5
4	More on Cosmic Subjectivation	7
5	More on Multiplicity	9
6	Curvature	11
7	Creation of the Physical Universe	13
8	An Example from the Later Stages	15

vi CONTENTS

Geometry, Topology and Physics – Nakahara

- inclusion map
- If $f: X \to Y$ preserves these algebraic structures, then f is called a **homomorphism**. If a homomorphism is bijective, then it is called an **isomorphism**.
- equivalence relation, equivalence classes, quotient space (X/\sim) , Möbius strip, T^2 (2-d torus), Σ_g (torus with g handles)
- linear map (an homomorphism preserving vector addition and scalar multiplication), linear function ($V \to K$), dimV = dim(kerf) + dim(imf).
- dual space (V^*) is a functional space whose axes are given by base functions $e^i(e_j) = \delta_{ij}$. This functional space is also a vector space, and if V is finite dimensional, we have $dimV = dimV^*$. Basically, $f \in V^*$ means f is linear functional defined in V, namely, $f: V \mapsto K$. Given an isomorphism $g: V \mapsto V^*$, define the bilinear form:

$$g(\mathbf{v}, \mathbf{w}) \doteq \langle \mathbf{v}, \mathbf{w} \rangle_g = \langle g\mathbf{v}, \mathbf{w} \rangle = (g(\mathbf{v}))(\mathbf{w})$$

Note, $g(\mathbf{v})$ returns a linear functional.

- discrete/trivial/usual topology, Hausdorff spaces (every metric space is Hausdorff space), closure \bar{A} , interior A° , boundary b(A), connected, arcwise connected, simply connected.
- homeomorphism is different from homomorphism. why homeomorphism? Because it defines a equivalence relation which enables us to deform one topological space continuously to another topological space in the same class.

Grassmann Algebra – John Browne

• exterior product, cobasis $\underline{e_i}$ defined as $e_i \wedge \underline{e_j} = \delta_{ij}e_1 \wedge e_2 \cdots \wedge e_n$ determinant,

$$\alpha_1 \wedge \alpha_2 \cdots \wedge \alpha_n = Det \cdot e_1 \wedge e_2 \cdots \wedge e_n$$

Cofactors

- simplicity (0, 1, n-1 and n are simple)
- exterior division:

$$\frac{\alpha_1 \wedge \alpha_2 \cdots \wedge \alpha_n \wedge \beta}{\beta} = (\alpha_1 + t_1 \beta) \wedge (\alpha_2 + t_2 \beta) \cdots \wedge (\alpha_n + t_n \beta)$$

Creation of Cosmos as Objectivation

More on Cosmic Subjectivation

Chapter 5

More on Multiplicity

Curvature

 ${\it chapter} Action\hbox{-}Reaction\hbox{-}Principle$

12 Curvature

Creation of the Physical Universe

An Example from the Later Stages

Bibliography

- [1] Books of Shrii Shrii Anandamurti (Prabhat Ranjan Sarkar): http://shop.anandamarga.org/
- [2] Avtk. Ananda Mitra Ac., The Spiritual Philosophy of Shrii Shrii Anandamurti: A Commentary on Ananda Sutram, Ananda Marga Publications (1991)

ISBN: 81-7252-119-7