INTRODUCTION AUDEPLEARNING

Notions de base et cas pratique

La science pour la santé ______
From science to health

Introduction au deep learning

Le Deep Learning, qu'es aquò ?

Introduction au deep learning

Objectifs:

- Définir le deep learning
 Saisir la logique derrière les réseaux de neurones
 Aborder un cas (très simple) pour commencer

Cas pratique:

Classifier des animaux

C'est un chien!

C'est un chat!

SO SO ME

01 TRANSFORMER LA REPRÉSENTATION DES DONNÉES

> 02 **DESCENTE DE GRADIENT: ENTRAÎNEMENT**

> > LES DONNÉES

Un réseau de neurones, c'est quoi?

Brique de base : couche dense

Principe : chaque neurone effectue la somme pondérée de son entrée x_i avec un biais b_i :

Poids et biais sont des paramètres propres à chaque neurone d'une même couche dense.

Couche dense composée de p neurones :

- neurone P₁: biais b₁, poids w₁
 neurone P₂: biais b₂, poids w₂

- neurone P_p : biais b_p , poids w_p

Brique de base : couche dense

Exemple : notes de classes

élèves	Mathématiques	Sport	S.V.T	Physique	Chimie	LV1	LV2
Gino	12	2	13	18	12	10	9
Marin	2	15	9	10	14	18	19
Arsène	10	20	14	13	11	13	14

Cas 1 : moyenne en matières scientifiques de Gino

■ Poids:
$$w_{scient} = (\frac{1}{4}, 0, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, 0, 0)$$

■ Entrée : $x_{Gino} = (12, 2, 13, 18, 12, 10, 9)$

Biais : $b_{Gino\ m.scient} = 0$

$$y_{Gino\ scient} = w * x + b$$

= (0,25 * 12) + (0,25 * 13) + (0,25 * 18) + (0,25 * 12)

Gino a une moyenne scientifique de 13,75

$$y_{Gino\ scient} = \sum_{1}^{7} w_{scient}^{i} x_{Gino}^{i} + b_{Gino\ m.scient}$$

Comment sélectionner les informations qui nous intéressent uniquement?

= 13.75

Brique de base : couche dense

élèves	Mathématiques	Sport	S.V.T	Physique	Chimie	LV1	LV2
Gino	12	2	13	18	12	10	9
Marin	2	15	9	10	14	18	19
Arsène	10	20	14	13	11	13	14

Cas 2 : sélection des moyennes en sport supérieures à 10, à l'aide du biais

• Poids:
$$w_0 = (0, 1, 0, 0, 0, 0, 0)$$

■ Entrée :
$$x_{Gino} = (12, 2, 13, 18, 12, 10, 9)$$

 $x_{Marin} = (2, 15, 9, 10, 14, 18, 19)$
 $x_{Arsène} = (10, 20, 14, 13, 11, 13, 14)$

$$s_i = \sum^j w_j \ x_i^j + b$$

|--|

,	
	N.
	_//
	/

Gino	0
Marin	5
Arsène	10

Biais : b = -10

La fonction y_i a pour rôle de mettre à zéro l'information inutile. Dans notre cas, on ne veut pas garder les moyennes négatives.

On nomme cette fonction ReLU.

Gino

Marin

Arsène

Brique de base : fonction d'activation

 Sélectionner les données, en déterminant si un neurone artificiel doit être activé ou non, et si oui à quel degré?

Fonction d'activation vue précédemment :

$$f_{ReLU}(x) = \begin{cases} 0 & \text{si } x \leq 0 \\ x & \text{si } x > 0 \end{cases}$$

Brique de base : fonction d'activation

Introduire de la <u>non-linéarité</u> entre nos couches de neurones

→ Modifier la représentation spatiale des données

- Perspective différente
- Problème non-linéaire → Solution complexe

Brique de base : couche de convolution

Filtres de convolution en traitement d'images

•	40	41	45	50								
0	40	42	46	52		0	7	0				
42	46	50	55	55	$ (\mathbf{X}) $	0	0	0			42	
48	52	56	58	60		0	0	0				
56	60	65	70	75								

Brique de base : couche de convolution

Exemples de filtres :

Brique de base : couche de convolution

Exemples de filtres :

Brique de base : couche de convolution

Brique de base : couche de convolution

Repoussage

Rajout du <u>biais</u> et de la <u>ReLU</u>

Sélection de l'information sur les pixels de l'image

Brique de base : couche de convolution

Principes d'une couche de convolution :

- Extraire l'information
- Identifier des paternes dans les données
- Propriété d'invariance par translation : le réseau reconnait un paterne quelle que soit sa position dans l'image

Mdsi 🕲 🕏

Assemblage de nos briques

FEATURE LEARNING

CLASSIFICATION

Mais comment notre réseau connait ces fameux poids, filtres, biais ?

02 ENTRAÎNEMENT: **DESCENTE DE GRADIENT**

Descente de gradient

Principe: trouver le minimum d'une fonction

Exemple ci-contre avec la fonction $f_{co\hat{u}t}(x) = x^2$

Algorithme:

- Calcul du gradient en un point x_i (pente $\nabla f(x_i)$)
- Test d'arrêt : $(\|\nabla f(x_i)\| < \varepsilon)$
- Calcul du pas : $\alpha_i = \alpha * |\nabla f(x_i)|$
- Nouvelle position : $x_{i+1} = x_i \alpha_i$

Descente de gradient

Principe: trouver le minimum d'une fonction

On note plusieurs paramètres importants :

- position initiale (point de départ)
- le pas : taux d'apprentissage ou *learning* rate
- l'algorithme de descente de gradient

Descente de gradient

Optimiser ok, mais optimiser quoi?

ightharpoonup Notre fonction de coût $f_{coût}$ qui prend en paramètres les poids de nos couches

Minimiser la fonction de coût ⇔ réduire l'erreur

Erreur = différence entre $y_{i,prédiction}$ (associée à l'entrée x_i) et $y_{i,réalité}$

Optimiser la fonction de coût = modifier les poids du réseau, afin que l'erreur soit minimisée, i.e dans la direction où la fonction diminue le plus vite.

Descente de gradient

Étapes :

- → Prédiction de notre réseau
- → Calcul de l'erreur
- → Calcul des gradients partiels pour chaque poids
- → Multiplication de chaque gradient par le *learning rate*, soustraire cette valeur pour obtenir les nouveaux poids et biais
- → Répéter pour chaque entrée à prédire

Rétropropagation du gradient

Une fois l'erreur $f_{co\hat{u}t}(y_{i,pred}, y_{i,réel})$ connue, une propagation inverse est faite pour réajuster les poids

Mathématiquement : expression du gradient de notre erreur en fonction des poids synaptiques des couches du réseau.

Leibnitz Chain Rule:

$$\frac{\partial E}{\partial w_j} = \frac{\partial E}{\partial x_j} \frac{\partial x_j}{\partial w_j}$$
$$\frac{\partial E}{\partial x_j} = \frac{\partial E}{\partial y_j} \frac{\partial y_j}{\partial x_j}$$

Rétropropagation du gradient ≠ descente de gradient

Analogie de la montagne

Objectif: Descendre au plus bas, sans information, étant mal-voyant

- → Selon la pente sous nos pieds, on va là où ça descend <u>le plus</u> et on balise le chemin
- → Une fois en bas, reprendre le chemin inverse pour comprendre comment l'impact du chemin pris sur le point d'arrivée

Aller encore plus bas la prochaine fois

03 LES DONNÉES

Les réseaux de neurones ne prennent que des nombres, et notamment un format : les <u>tenseurs</u>

Scalaire Vecteur Matrice Tenseur

3

3 2 (3,2) (1,5)

(1,2) (0,2

Audio

Séries temporelles

Texte

Tokenization

Je mange un avocat

Je	0	
mange	0	
un	0	
avocat	0	

0	0	1	0
0	0	0	1
0	0	0	1
0	1	0	0

Image

Image convertie en tenseur

Dataset MNIST

Correspondance données / but

Exemple: Classification chat/chien

Données: chats, chiens (neige)

Les données doivent couvrir le panorama souhaité

Trois points principaux:

Données qualitatives

Données diversifiées

Danger des données

(ou trouver le bon compromis)

Distribution bruitée sur cos(x)

Source: Dev.to

Passage au cas pratique

→ https://gitlab.in2p3.fr/isdm_formation/introduction-deep-learning

