

Оптимальный выбор местоположения нового офиса банка генетическим алгоритмом

ХАКАТОН СПБГУ X Альфа-Банк

г. Санкт-Петербург 2022 Навигаторы 2000

Кузнецова Дарья Латышенко Ульяна Бевз Роман Гордюшин Денис

Подготовка исходных данных

- □ Эталонные факторы рассматривались в пределах одного города Санкт-Петербурга.
- Очищаем датафремы от дубликатов по номеру 64-bit H3 index хексогона.
- □ Определение. Район сумма всех хексагонов, центр которых лежит внутри изохроны.

Принцип отбора параметров

- **Плотность населения** в районе
- Количество банкоматов (отделений) Альфа-банка в районе
- □ Количество банков: банков конкурентов в районе
- □ Транспортная доступность: остановок общественного транспорта внутри района

Целевой параметр и ограничения

- □ В рамках упрощения модели взяты первые 20 банкоматов с максимальным количеством транзакций АБ.
- □ Нормировали данные параметров.
- □ Взяты значения средних и моды.

Ограничения – категория банка

Название	Расшифровка
Общий доступ	category1
ЗП	category2
Отделение	category3
Самоинкассация	category4
	4

Объясняющие факторы

• Взяли 20 наибольших значений для таргета и эталонные (средние и мода) по городу Санкт-Петербургу

	7 8.357			
Численность	Число	Число	Число остановок	
населения в	банкоматов	отделений	общественного	
районе	Альфа-	банков	транспорта в районе	
	банка	конкурентов		
0.53809037	0.75	1	0.83673469	
0.46977648	0.875	0.90410959	0.7755102	
0.53048637	0.375	0.35616438	0.42857143	
0.61041277	0.25	0.21917808	0.46938776	
0.54838861	0.875	0.10958904	0.26530612	
0.60582222	0.5	0.2739726	0.24489796	
•••	•••	•••	•••	
	населения в районе0.53809037 0.46977648 0.53048637 0.61041277 0.54838861 0.60582222	Численность населения в районеЧисло банкоматов Альфа- банка0.538090370.750.469776480.8750.530486370.3750.610412770.250.548388610.8750.605822220.5	Численность населения в районеЧисло банкоматов банкаЧисло отделений банков конкурентов0.538090370.7510.469776480.8750.904109590.530486370.3750.356164380.610412770.250.219178080.548388610.8750.109589040.605822220.50.2739726	

Проверка данных на предположения об автокорреляции и мультикоппинеарности атмерения об автокорреляции и мультикоппинеарности атм_cnt

stop_list Corr: Corr: 0.586* 0.032 0.222 0.310 Corr: Corr: 0.239 -0.0020.432. 0.527* 0.543*0.723***

Диаграмма парной корреляции параметров

Автокорреляция (таргет)

Мультиколлинеарность

Обнаружение мультиколлинеарности - наличие линейной зависимости между объясняющими переменными (факторами) регрессионной модели. При этом различают полную коллинеарность, которая означает наличие функциональной (тождественной) линейной зависимости и частичную или просто мультиколлинеарность — наличие сильной корреляции между факторами.

```
from statsmodels.stats.outliers_influence import variance_inflation_factor

vif = [variance_inflation_factor(X_constant, i) for i in range(X_constant.shape[1])]

pd.DataFrame({'vif': vif[1:]}, index=df.columns[1:]).T
```

	population_list	atm_cnt	bank_list	stop_list
vif	1.396799	1.372072	1.904529	1.958901

Генетический алгоритм

это эвристический алгоритм поиска, используемый для решения задач оптимизации и моделирования путём случайного подбора, комбинирования и вариации искомых параметров с использованием механизмов, аналогичных естественному отбору в природе.

Результаты вычислений

```
category_id=['category1', 'category2','category3','category4']
coordinat=[]
for i in category_id:
   coordinat.append(location(i, 'Новосибирск'))
for i in range(4):
    print("Координаты банкомата " , category_id[i] , " - ",coordinat[i])
                                    (54.84847843465986, 82.97390668520336)
Координаты банкомата
                      category1
                                    (54.8171302314008, 83.09541006946871)
Координаты банкомата
                      category2 -
                                    (54.86157327583376, 82.97621963139348)
Координаты банкомата
                      category3 -
Координаты банкомата
                      category4
                                    (54.84112661283599, 83.10007774967546)
```

Результаты вычислений

category1

category2

Результаты вычислений

