Problème. Des suites de rationnels.

On considère une suite (a_n) d'entiers naturels vérifiant

$$\begin{cases} a_1 \ge 2 \\ \forall n \in \mathbb{N}^*, \ a_{n+1} \ge a_n^2 - a_n + 1 \end{cases}$$

- 1. Montrer que pour tout $n \in \mathbb{N}^*$, $a_n \ge n+1$
- 2. On considère la suite (x_n) définie par

$$\forall n \in \mathbb{N}^*, \ x_n = \prod_{k=1}^n a_k$$

et la suite (y_n) définie par

$$\forall n \in \mathbb{N}^*, \ y_n = x_n \times \sum_{k=1}^n \frac{1}{a_k}$$

Montrer que (x_n) et (y_n) sont strictement croissantes.

- 3. Montrer que pour tout $n \in \mathbb{N}^*$, x_n et y_n sont des entiers naturels.
- 4. On considère les suites (u_n) et (v_n) définies par

$$\forall n \in \mathbb{N}^*, \ u_n = \frac{y_n}{x_n} \qquad v_n = \frac{y_{n+1} - y_n}{x_{n+1} - x_n}$$

(a) Montrer que pour tout $n \in \mathbb{N}^*$,

$$v_n - u_n = \frac{1}{a_{n+1} - 1}.$$

(b) En déduire que pour tout $n \in \mathbb{N}^*$,

$$v_{n+1} - v_n = \frac{1}{a_{n+2} - 1} + \frac{1}{a_{n+1}} - \frac{1}{a_{n+1} - 1}.$$

- (c) Déduire des questions précédentes que (u_n) et (v_n) convergent vers une limite commune. On la notera ℓ dans la suite.
- 5. On suppose que ℓ est un rationnel. Donc, il existe $(p,q) \in \mathbb{Z} \times \mathbb{N}$ tel que $\ell = \frac{p}{q}$.
 - (a) Montrer que pour tout $n \in \mathbb{N}^*$, $px_n qy_n \in \mathbb{N}$.
 - (b) Montrer que $(px_n qy_n)$ est décroissante.
 - (c) Démontrer qu'une suite d'entiers naturels décroissante est stationnaire. On peut utiliser qu'une partie non vide de \mathbb{N} admet un plus petit élément.
 - (d) En déduire qu'il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$

$$a_{n+1} = a_n^2 - a_n + 1$$

6. Soit p un entier supérieur à 2.

Montrer que la suite $\left(\sum_{k=1}^{n} \frac{1}{p^{2^k}}\right)_{n \in \mathbb{N}^*}$ converge et que sa limite est un irrationnel.