

Assimilation de données et Réduction d'ordre: PBDW et GEIM

NIAKH IDRISSA

Sous la direction de Christophe Prud'homme

08 Juin 2018

Table des matières

- Introduction
- 2 Contexte et Problématique
- PBDW
- 4 GEIM
- **5** DIVERS

Plan

- Introduction
- 2 Contexte et Problématique
- BDW
- 4 GEIM
- 6 DIVERS

DÉFINITION

Couplage modèle mathématique et observations expérimentales.

DÉFINITION

Couplage modèle mathématique et observations expérimentales.

MÉTHODES D'ASSIMILATION DE DONNÉES

DÉFINITION

Couplage modèle mathématique et observations expérimentales.

MÉTHODES D'ASSIMILATION DE DONNÉES

• Méthodes séquentielles

DÉFINITION

Couplage modèle mathématique et observations expérimentales.

MÉTHODES D'ASSIMILATION DE DONNÉES

- Méthodes séquentielles
- Méthodes inverses

DÉFINITION

Couplage modèle mathématique et observations expérimentales.

MÉTHODES D'ASSIMILATION DE DONNÉES

- Méthodes séquentielles
- Méthodes inverses
- Méthodes variationnelles

<u>Dé</u>finition

Méthode de réduction du coût de calcul d'une simulation.

DÉFINITION

Méthode de réduction du coût de calcul d'une simulation.

DÉFINITION

Méthode de réduction du coût de calcul d'une simulation.

MÉTHODE DE RÉDUCTION D'ORDRE

• Méthodes de substitution

DÉFINITION

Méthode de réduction du coût de calcul d'une simulation.

- Méthodes de substitution
- Méthodes bases réduites

DÉFINITION

Méthode de réduction du coût de calcul d'une simulation.

- Méthodes de substitution
- Méthodes bases réduites
- Méthodes de décomposition

DÉFINITION

Méthode de réduction du coût de calcul d'une simulation.

- Méthodes de substitution
- Méthodes bases réduites
- Méthodes de décomposition
- Méthodes d'interpolation empirique

COUPLAGE AD-RO

MÉTHODES

COUPLAGE AD-RO

Méthodes

• Parametrized Background Data Weak(PBDW)

COUPLAGE AD-RO

MÉTHODES

- Parametrized Background Data Weak(PBDW)
- Generalized Empirical Interpolation Method(GEIM)

Plan

- Introduction
- 2 Contexte et Problématique
- BDW
- 4 GEIM
- 6 DIVERS

FORMULATION GÉNÉRALE DU PROBLÈME

$$\mathcal{P}: \Omega \times \mathcal{D} \to \mathbb{K} \tag{2.1}$$

- \mathcal{P} : Problème
- $\Omega \subseteq \mathbb{R}^d$: Domaine physique
- $\mathcal{D} \subseteq \mathbb{R}^{N_p}$: Domaine paramétrique
- ullet : Espace de Banach approprié
- $u \in \mathcal{X}$: solution du problème \mathcal{P}
- $\mathcal{M} = \{u(p) \mid p \in \mathcal{D}\}$: Espace des solutions de \mathcal{P} .
- \bullet Σ : Ensemble finis de formes linéaires représentant les capteurs.

Modèle imprécis

- Modèle imprécis
- Simulation coûteuse

- Modèle imprécis
- Simulation coûteuse

Contexte

- Modèle imprécis
- Simulation coûteuse

Problématique

- Modèle imprécis
- Simulation coûteuse

Problématique

• Comment peut-on corriger le modèle en utilisant les observations expérimentales?

Contexte

- Modèle imprécis
- Simulation coûteuse

Problématique

- Comment peut-on corriger le modèle en utilisant les observations expérimentales?
- Comment peut-on réduire le temps de simulation tout en restant proche de la vraie solution?

Plan

- Introduction
- 2 Contexte et Problématique
- PBDW
- 4 GEIM
- 6 DIVERS

DÉFINITION

Méthode de minimisation de type moindres carrées qui s'appuie sur deux espaces :

- $background : \mathcal{Z}_N$ type base réduite représentant \mathcal{P} .
- $update: \mathcal{U}_M$ informations collectées par les capteurs

FORMULATION PBDW

PRINCIPE

- $H_0^1(\Omega) \subseteq \mathcal{X} \subseteq H^1(\Omega)$.
- $\bullet < \cdot; \cdot >_{(X)}$ produit scalaire associé
- $y^{obs}(p)$ observations expérimentales
- $(l_m)_{1 \leq m \leq M}$ formes linéaires telles que $y^{obs}(p) = l_m(u(p))$
- On cherche à approcher u(p):

$$U_{N,M} = U_N(p) + \eta_M$$

- $U_N(p) \in \mathcal{Z}_N$ approximation base réduite de \mathcal{P} .
- $\eta_M \in \mathcal{U}_M$ terme de correction associé aux données.

CHOIX DES ESPACES background ET update

Espace background

- $\mathcal{M}^{Par} = \{u(p_1), u(p_2), \cdots, u(p_N)\} \subseteq \mathcal{M}$ solutions particulières.
- On approche u(p) par :

$$U_N(p) = \sum_{i=1}^{N} \beta_i(p)U(p_i)$$

- On construit $\mathcal{Z}_1 \subseteq \mathcal{Z}_2 \subseteq \cdots \subseteq \mathcal{Z}_n \subseteq \cdots \subseteq \mathcal{X}$ suite de espaces RB.
- Gram-Schmidt : $\{\zeta_i\}_{i=1}^N$ et on pose :

$$\mathcal{Z}_N = <\{\zeta_i\}_{i=1}^N >$$

• Minimisation Erreur d'interpolation :

$$\inf_{w \in \mathcal{Z}_N} ||u(p) - w||_{\mathcal{X}} \le \varepsilon_Z \ \forall N \ge N_{min}, \ \forall p \in \mathcal{D}$$

CHOIX DES ESPACES background ET update

Espace update

- Pour $p \in \mathcal{D}$, on suppose que $y_m^{obs}(p) = l_m(u(p))$.
- Représentation $l_m : \mathcal{R}_{\mathcal{X}} : \mathcal{X}' \to \mathcal{X}$ $\exists q_m \in \mathcal{X} : < \mathcal{R}_{\mathcal{X}} l_m, v >= l_m(v) \ \forall \ v \in \mathcal{X}.$
- $\mathcal{U}_M = <\{q_m\}_{i=1}^M >$.

MISE EN ŒUVRE PBDW

Problème de Minimisation

- Trouver $(U_{N,M} \in \mathcal{X}, Z_N \in \mathcal{Z}_N, \eta_M \in \mathcal{U}_M)$: $(U_{N,M}; Z_N; \eta_M) = \underset{U_{N,M} \in \mathcal{X}, Z_N \in \mathcal{Z}_N, \eta_M \in \mathcal{U}_M}{\operatorname{arginf}} \{ \|\eta_M\|_{\mathcal{X}}^2 \}$ $< U_{N,M} - Z_N, v >_{\mathcal{X}} = < \eta_M, v >_{\mathcal{X}} \} \ \forall \ v \in \mathcal{X}$ $< U_{N,M}, \phi >_{\mathcal{X}} = < u(p), \phi >_{\mathcal{X}} \forall \ \phi \in \mathcal{U}_M$
- Problème Lagrangien : Équation d'Euler-Lagrange
- Simplification : Problème mixte Trouver $(\eta_M(p) \in \mathcal{U}_M, Z_N(p) \in \mathcal{Z}_N)$: $< \eta_M, q >_{\mathcal{X}} + < Z_N, q >_{\mathcal{X}} = < u(p), q >_{\mathcal{X}} \, \forall \, q \in \mathcal{U}_M$ $< \eta_M, p >_{\mathcal{X}} = 0 \, \forall \, p \in \mathcal{Z}_N$

Plan

- 1 Introduction
- 2 Contexte et Problématique
- 3 PBDW
- 4 GEIM
- **5** DIVERS

Définition

Méthode non intrusive de réduction d'ordre et d'assimilation de données basée sur l'interpolation empirique.

FORMULATION GEIM

Principe

- $\mathcal{M}^{Par} = \{u(p_1), u(p_2), \cdots, u(p_M)\} \subseteq \mathcal{M}$ ensemble de M solutions particulières.
- $\Sigma^{Par} = \{\sigma_1, \sigma_2, \cdots, \sigma_M\} \subseteq \Sigma$ ensemble de formes linéaires associées à \mathcal{M}^{Par} .
- $\mathcal{M}^{GEIM} = \{q_1, q_2, \cdots, q_M\}$ base de fonctions d'interpolation issues de \mathcal{M}^{Par} et Σ^{Par} .
- $\mathcal{I}_M(u) = \sum_{j=1}^M \alpha_j(u)q_j$ tel que $\sigma_i(\mathcal{I}_M(u)) = \sigma_i(u)$ opérateur d'interpolation

CHOIX FORMES LINÉAIRES ET FONCTIONS DE BASE

ÉTAPE 1

- $u(p_1)$: Choisie comme la plus grande en $\|\cdot\|_{\mathcal{X}}$ de \mathcal{M}^{Par}
- $\sigma_1 = \underset{\sigma \in \Sigma}{argsup} |\sigma(u(p_1))|$
- $q_1 = \frac{u(p_1)}{\sigma_1(u(p_1))}$

ÉTAPE 2

- $u(p_2) = \underset{u \in M^{Par}}{argsup} \|u \sigma_1(u)q_1\|_{\mathcal{X}}$
- $\sigma_2 = \underset{\sigma \in \Sigma}{argsup} |\sigma[u(p_2) \sigma_1(u(p_2))q_1]|$
- $q_2 = \frac{u(p_2) \sigma_1(u(p_2))q_1}{\sigma_2[u(p_2) \sigma_1(u(p_2))q_1]}$

CHOIX FORMES LINÉAIRES ET FONCTIONS DE BASE

ÉTAPE GÉNÉRALE : M > 2

• $u \in \mathcal{M}^{Par}$: Résoudre

$$\sigma_i(u) = \sum_{j=1}^{M-1} \alpha_j^{M-1}(u)\sigma_i(q_j) \ \forall 1 \le i \le M-1$$

- On trouve les coefficients d'interpolations $\alpha_j^{M-1}(u)$
- Opérateur d'interpolation : $\mathcal{I}_{M-1}(u) = \sum_{j=1}^{M-1} \alpha_j^{M-1}(u)q_j$
- $u(p_M) = \underset{u \in \mathcal{M}^{Par}}{argsup} \|u \mathcal{I}_{M-1}(u)\|_X$
- $\sigma_M = \underset{\sigma \in \Sigma}{argsup} |\sigma(u(p_M) \mathcal{I}_{M-1}(u(p_M)))|$
- $\bullet \ q_M = \frac{u(p_M) \mathcal{I}_{M-1}(u(p_M))}{\sigma(u(p_M) \mathcal{I}_{M-1}(u(p_M)))}$

ERREUR D'APPROXIMATION

- $\mathcal{X} = L^2(\Omega)$
- $\bullet \ \wedge_M = \sup_{u \in \mathcal{M}} \frac{\|\mathcal{I}_M(u)\|_{L^2(\Omega)}}{\|u\|_{L^2(\Omega)}}$

Estimation d'erreur

- $||u \mathcal{I}_M(u)||_{L^2(\Omega)} \le (1 + \wedge_M) \inf_{w \in \mathcal{M}^{Par}} ||u w||_{L^2(\Omega)}$

IMPLÉMENTATION NUMÉRIQUE GEIM

Matrice d'interpolation

- $B^M = (B_{i,j}^M)_{1 \le i,j \le M}$ avec $B_{i,j}^M = \sigma_i(q_j) \ 1 \le i,j \le M$.
- \bullet B^M est une matrice triangulaire inférieure avec une diagonale unitaire.
- Étape hors-ligne

Problème d'interpolation

- Problème d'interpolation : avec $U_i^k = \sigma_i(u(p_k)), \alpha_i^k : i^{i\acute{e}m}$ coefficient d'interpolation.
- Solution :

$$\begin{cases}
\alpha_1^k = \sigma_1(u(p_k)) \\
\alpha_2^k = \sigma_2(u(p_k)) - \sigma_2(q_1)\alpha_1^k \\
\dots \\
\alpha_M^k = \sigma_M(u(p_k)) - \sum_{i=1}^{M-1} \sigma_M(q_i)\alpha_i^k
\end{cases}$$
(4.1)

IMPLÉMENTATION NUMÉRIQUE GEIM

FORMULES ITÉRATIVES

•
$$\mathcal{I}_{M}(u(p)) = \mathcal{I}_{M-1}(u(p)) + \frac{\sigma_{M}(u(p) - \mathcal{I}_{M-1}(u(p)))}{\sigma_{M}(u(p_{M}) - \mathcal{I}_{M-1}(u(p_{M})))} \times (u(p_{M}) - \mathcal{I}_{M-1}(u(p_{M})))$$

•
$$q_M = \frac{u(p_M) - \mathcal{I}_{M-1}(u(p_M))}{\sigma_M(u(p_M) - \mathcal{I}_{M-1}(u(p_M)))}$$

Complémentarité PBDW et GEIM

UTILISATION GEIM DANS PBDW

• Choix des capteurs

Complémentarité PBDW et GEIM

UTILISATION GEIM DANS PBDW

- Choix des capteurs
- Positionnement des capteurs

Plan

- Introduction
- 2 Contexte et Problématique
- BDW
- 4 GEIM
- **5** DIVERS

Adaptation dans la pratique

- Proper Order Decomposition (POD) method
- Adimentionner le problème
- Cas de plusieurs capteurs (GEIM)

QUESTION

Soit \mathcal{M} un sous espace de Banach de \mathcal{X} et Y_n une suite de sous espace vectoriel de dimension n de \mathcal{X} . On pose :

$$\mathcal{E}(\mathcal{M}; Y_n) = \sup_{x \in \mathcal{M}} (\inf_{y \in Y - n} ||x - y||_{\mathcal{X}})$$

La "n-width" de Kolmogorov est : $d_n(\mathcal{M}, \mathcal{X}) = \{\mathcal{E}(\mathcal{M}; Y_n) \mid Y_n \text{ sous espace de dimension n}\}$

