Affine Objects

Mohamed Hashi

May 30, 2016

This chapter introduces all the basic notions that are needed but not assumed to be known to the reader. We will start with a discussion of some purely categorical notions like slice categories and presheaves. Secondly, we will introduce a notion of a topology on a category and look at some constructions that are relevant for us. Then we will introduce modules on ringed sites. Lastly, the notion of a scheme is introduced.

1.1 Basic Category Theory

Some categorical notions like presheaves and slice categories will be introduced in this section. See [A10] and [MM92].

Definition 1 (Presheaf category). Let C be a category. Let $a \in C$. Let $f : a' \to a$ We define the category of presheaves on C as the category of contravariant functors to the category of sets Set. We will denote it by \hat{C} .

Define the functor $h: C \to \hat{C}$ as follows

$$a \mapsto \operatorname{Hom}(-, a),$$

$$f \mapsto f \circ -.$$

This functor is fully faithful by the Yoneda lemma.

Notation 2. Let I, C be categories. Let $L:I\to C$ be a functor. The limit over this functor will be denoted by $\lim_{\mathfrak{i}\in I}L(\mathfrak{i})$. The colimit will be denoted by $\operatornamewithlimits{colim}_{\mathfrak{i}\in I}L(\mathfrak{i})$.

Definition 3 (Sections functor). For any $a \in C$ define the functor

$$\Gamma(c;-):\widehat{\mathsf{C}}\to\mathsf{Set}$$

by

$$\mathfrak{F} \to \Gamma(\mathfrak{a};\mathfrak{F}).$$

Let $L: I \to C$ be a small diagram. Define

$$\Gamma(\underset{i\in I}{\text{colim}}\ L(i);-):\widehat{C}\to\mathsf{Set}$$

by

$$\mathfrak{F} \to \text{Hom}(\underset{\mathfrak{i} \in I}{\text{colim}} \ L(\mathfrak{i}), \mathfrak{F}) = \lim_{\mathfrak{i} \in I} \ \text{Hom}(L(\mathfrak{i}), \mathfrak{F}).$$

By definition of a colimit these definitions coincide when a colimit exists in C.

Remark. The category \hat{C} is cocomplete so even if C does not have a terminal object, we can still compute the global sections as $\Gamma(1;-)$

Definition 4 (Over/Under categories). Let C and C' be categories. Let $F: C \to C'$ and $z \in C'$. Define the category C_z and C^z as

$$Obj(C_z) := \{(a, w) \mid a \in C, w : F(a) \to z\},$$

$$Hom((a, w), (b, v)) := \{f : a \to b \mid v \circ F(f) = w\},$$

and

Obj(
$$C^z$$
) := {(a, w) | a ∈ C, w : z → F(a)},
Hom((a, w), (b, v)) := {f : a → b | F(f) ∘ w = v}.

We get faithful functors $C_z \to C : (a, w) \to a$ and $C^z \to C : (a, w) \to a$. We will call both functors localization functors and denote them by u.

Definition 5 (direct image). Let $f: C \to D$. Define the direct image functor $f_*: \hat{D} \to \hat{C}$ as

$$f_* = - \circ f$$
.

Definition 6 (Restriction). Let C, D be categories. Let $\mathfrak{F} \in \hat{D}$. Let $\alpha : C \to D$ be a functor. The restriction of \mathfrak{F} to C along α is defined to be $\alpha_*\mathfrak{F}$.

1.2 Topology

In this section we will define a notion of a topology on a category and look at the related notions of sheaves, sites and restriction of sites.

See [MM92] for more details.

Definition 7 (Sieve). Let C be a category and $a \in C$. Define the maximal sieve max(a) on a to be the set of all morphisms to a. In formula,

$$max(\alpha) = \{ f \in C \mid Codom(f) = \alpha \}.$$

A sieve S is a subset of max(a) such that $gf \in S$ for any $f \in S$ and any g.

Remark. Let C be a category and $a, b \in C$. Let $f: b \to a \in C_a$.

Any morphism to b is also a morphism to f and vice versa. This observation yields us that Sieves(b) = Sieves(f). Moreover composition in C and C_{α} are the same, so this identification respects pullback of sieves.

Definition 8 (Sieve category). Let C be a category and $a \in C$. The sieve category Sieves(a) consists of all the sieves on a as objects and inclusions of sieves as morphisms.

Definition 9 (Pullback of sieve). Let C be a category and $a, b \in C$. Let S be a sieve on a. Let $f: b \to a$.

The sieve f^*S on b is given by $f^*S(c) = \{g \in Hom(c, b) : fg \in S(c)\}$ for any $c \in C$.

To show that this is actually a subpresheaf of h(b), let $k: c \to c'$ and $h \in f^*S(c')$. Hence $fh \in S(c')$ and so $fhk \in S(c)$. Conclude that $hk \in f^*S(c')$.

This defines a functor f^* : Sieves(a) \rightarrow Sieves(b).

Definition 10 (Grothendieck Topology). A Grothendieck topology \mathcal{T} is a family $\mathcal{T}(a)$ of 'covering' sieves for every $a \in C$ with the following conditions:

- 1. $\max(a) \in \mathfrak{T}(a)$
- 2. $f^*R \in \mathfrak{T}(\mathfrak{a}')$ if $R \in \mathfrak{T}(\mathfrak{a})$ for all $f : \mathfrak{a}' \to \mathfrak{a}$
- 3. if $f^*R \in \mathfrak{I}(\mathfrak{a}')$ for all $f \in S$ with $S \in \mathfrak{I}(\mathfrak{a})$ then $R \in \mathfrak{I}(\mathfrak{a})$

Definition 11 (Basis). Let C be a category with pullbacks. A Grothendieck pretopology \mathcal{B} is a collection $\mathcal{B}(a)$ of 'covering' families $\{f_i:a_i\to a\}$ of morphisms for every $a\in C$ with the following conditions.

- 1. every isomorphism is a covering singleton family,
- 2. (Stability) The pullback of a covering family is a covering family. If $\{f_i : a_i \to a\}$ is covering and $g : b \to a$, then $\{f'_i : a_i \times_a b \to b\}$ is covering.
- 3. (Transitivity) If $\{f_i : a_i \to a\}$ is a covering family and $\{f_{ij} : a_{ij} \to a_i\}$ for every i, then $\{f_{ij} : a_{ij} \to a\}$ is a covering family.

Generating a topology from a basis: take any sieve containing a covering family to be a covering sieve.

Definition 12 (Site). A site (C, \mathcal{T}) is a category C with a Grothendieck topology \mathcal{T} . A morphism of sites $G: (C, \mathcal{T}) \to (D, \mathcal{S})$ is a functor $G': C \to D$ such that

A functor $G': C \to D$ is called cover-preserving if for every covering sieve R, the family $\{G'(f)|f\in R\}$ generates a S-covering sieve.

The category Sites has as objects sites and as morphisms cover-preserving functors. When no confusion can arise then we will use C to denote the whole site (C, \mathcal{T}) .

1.2.1 Sheaves

We will introduce the very important notion of a sheaf. See [MM92] for a more detailed treatment.

Definition 13 (Matching family). Let C be a category. Let \mathfrak{F} be a presheaf on on C. Let $a \in C$ be an object. Let R be a sieve on a. A set $\{x_i\}_{i \in R}$ with $x_i \in \Gamma(\text{Dom}(i); \mathfrak{F})$ indexed by a sieve R and such that $x_{g \circ i} = \mathfrak{F}(g)(x_i)$ for any $g : b \to \text{Dom}(i)$ and $b \in C$ is called a 'matching family'.

Definition 14 (Matching family/Morphisms). Let C be a category. Let \mathfrak{F} be a presheaf on on C. Let $\alpha \in C$ be an object. Let R be a sieve on α . Define $\Gamma(R;\mathfrak{F}) = \operatorname{Hom}(R,F)$. An element $\varphi \in \Gamma(R;\mathfrak{F})$ is uniquely identified by the matching family $\{\varphi(i)\}_{i\in R}$ of images. Conversely, any matching family $\{x_i\}_{i\in R}$, with $x_i \in \Gamma(\operatorname{Dom}(i);\mathfrak{F})$ indexed by R and such

that $x_{g \circ i} = \mathfrak{F}(g)(x_i)$ for any $g : b \to Dom(i)$ and $b \in C$, uniquely identifies a map $\varphi : R \to \mathfrak{F}$. Namely, take $\varphi_{\mathfrak{g}}(y) = x_{\mathfrak{g}}$.

Definition 15 (Amalgamation). An amalgamation of a matching family $\{x_i\}_R$ is an element $x \in \Gamma(\alpha; \mathfrak{F})$ such that $\mathfrak{F}(i)(x) = x_i$.

When you consider the matching family as a morphism ϕ , an amalgamation is a morphism $\phi: h(\alpha) \to \mathfrak{F}$ that extends ϕ .

Definition 16 (Separated presheaf). A presheaf \mathfrak{F} is separated if any matching family has at most one amalgamation.

Definition 17 (Sheaves). Let (C, T) be a site. Let $\mathfrak{F} \in \hat{C}$.

A presheaf that admits a unique amalgamation for every matching family is called a sheaf. The category Shv(C) is the full subcategory in \hat{C} of all sheaves.

In other words, we call \mathfrak{F} a sheaf if for each $a \in C$ and $R \in \mathfrak{I}(a)$ the map

$$\begin{split} \Gamma(\alpha;\mathfrak{F}) &\to \Gamma(R;\mathfrak{F}) \\ x &\mapsto \{x_i \mid i \in R\} \end{split}$$

where $x_i = \mathfrak{F}(i)(x)$ is an isomorphism.

Definition 18 (Plus construction). Let (C, \mathcal{T}) be a site. Let $\alpha, \alpha' \in C$ and $f : \alpha \to \alpha'$. Let $\mathfrak{F} \in \hat{C}$. Define the functor $(-)^+ : \hat{C} \to \hat{C}$ as follows.

For all $a \in C$,

$$F^+(\alpha) = \frac{\{(R,\phi) \mid R \in \mathfrak{T}(\alpha), \phi \in \Gamma(R;\mathfrak{F})\}}{\sim},$$

for all morphisms $f \in C$,

$$F^+(f)([(R, \varphi)]) = [(f^*R, \varphi h(f))].$$

The equivalence relation is defined as $(R,\phi)\sim (S,\varphi)$ if $\phi=\varphi$ on some covering sieve $Q\subset R\cap S.$

Let $L: \mathfrak{F} \to \mathfrak{F}'$. Then

$$(L^+)_{\alpha}([(R,\phi)]) = [(R,L\circ\phi)]$$

This functor comes with a natural transformation $\omega : \mathrm{Id} \to (-)^+$ defined by

$$\omega_{\mathfrak{F},\mathfrak{a}}(x) = [(\max(\mathfrak{a}), \mathfrak{y}]$$

where

$$y(i) = \mathfrak{F}(i)(x)$$
.

Lemma 19 (2.10 [ToposNotes]). Let \mathfrak{F} be a presheaf, \mathfrak{G} a sheaf and $g:\mathfrak{F}\to\mathfrak{G}$ a morphism in $\hat{\mathsf{C}}$. Then g factors through ω_F via a unique g'.

Lemma 20 (2.11 [ToposNotes]). For every presheaf \mathfrak{F} , F^+ is separated.

Lemma 21 (2.12 [ToposNotes]). If \mathfrak{F} is separated, then F^+ is a sheaf.

Definition 22. Define $sh = (-)^+ \circ (-)^+$.

Lemma 23 (Sheafification adjunction). Let (C, T) be a site. The functor sh is left adjoint to the inclusion $\hat{C} \to Shv(C)$ with unit

$$\omega_{\mathfrak{F}}^2 = \omega_{\mathfrak{F}^+} \circ \omega_{\mathfrak{F}}.$$

1.2.2 Relative topology

We will look at what the induced topology on a slice category looks like and what this implies for restriction of sheaves. See [Stacks, Tag 03A4] for a more detailed treatement.

Definition 24 (Relative topology). Let (C, T) be a site. Let $a \in C$.

Define the induced topology \mathfrak{T}_α on C_α by, for each $f\in C_\alpha$

$$\mathfrak{T}_{\mathfrak{a}}(\mathsf{f}) = \mathfrak{T}(\mathsf{Dom}(\mathsf{f})).$$

The identification from Remark 1.2 implies that T_a is a Grothendieck topology.

Definition 25 (Oversite). Let Y = (C, T) be a site. Let $\alpha \in C$. Define the site Y_{α} to be the category C_{α} with the induced topology T_{α} .

Definition 26 (Natural transformation s). Let (C, \mathcal{T}) be a site. Let $\alpha, b \in C$ and $f: b \to \alpha$. Let $u: C_\alpha \to C$.

Let $\{x_i \mid i \in R\}$ be a compatible family indexed by a sieve R on b. The same set $\{x_i \mid i \in R\}$ is a compatible family on f indexed by the same sieve R. This yields a natural isomorphism

$$s: u_* \circ (-)^+ \to (-)^+ \circ u_*,$$

by

$$\begin{split} s_{\mathfrak{F}} : \mathfrak{u}_* \mathfrak{F}^+ &\to (\mathfrak{u}_* \mathfrak{F})^+ \\ s_{\mathfrak{F}, f}([\{x_i \mid i \in R\}]) &= [\{x_i \mid i \in R\}]. \end{split}$$

We will treat s as an identification.

Lemma 27 (s and ω commute). Let $\mathfrak F$ be a presheaf on $(C, \mathfrak T)$. Let $f: b \to a \in C$. Let $u: C_a \to C$ be the localisation morphism. Then $\omega_{u_*\mathfrak F} = s_{\mathfrak F} \circ u_*\omega_{\mathfrak F}$.

Proof. For any section $x \in \Gamma(b;\mathfrak{F})$. Let $x_i = \mathfrak{F}(i)(x)$ for any morphism $i \in C$. Note that $\max(f) = \max(b)$. This implies that the compatible family $\{x_i\}$ indexed by the maximal sieve on f is sent by s to the same set $\{x_i\}$ indexed by the maximal sieve on b. In diagram form, that

$$\begin{array}{c} u_*\mathfrak{F} \\ \downarrow^{u_*\omega_{\mathfrak{F}}} \\ u_*\mathfrak{F}^+ \stackrel{s}{\longrightarrow} (u_*\mathfrak{F})^+ \end{array}$$

commutes.

Definition 28 (s²). Define

$$s^2: u_* \circ (-)^+ \circ (-)^+ \to (-)^+ \circ (-)^+ \circ u_*$$

as

$$s^2_{\mathfrak{F}} = {s_{\mathfrak{F}}}^+ \circ {s_{\mathfrak{F}}}^+.$$

Lemma 29. Let \mathfrak{F} be a presheaf on (C,\mathfrak{T}) . Let $f:b\to a\in C$. Let \mathfrak{F} be a presheaf on C. Then $\omega^2_{\mathfrak{u}_*\mathfrak{F}}=s^2_{\mathfrak{F}}\circ (\mathfrak{u}_*\omega^2_{\mathfrak{F}})$.

Proof. Let $a \in C$. We have the following identities.

$$\begin{split} \omega^2_{u_*\mathfrak{F}} &= \omega_{u_*\mathfrak{F}^+} \circ \omega_{u_*\mathfrak{F}} \text{ by definition} \\ &= \omega_{u_*\mathfrak{F}^+} \circ s_{\mathfrak{F}} \circ u_*\omega_{\mathfrak{F}} \text{ by applying Lemma 27} \\ &= s_{\mathfrak{F}}^+ \circ u_*\omega_{\mathfrak{F}}^+ \circ u_*\omega_{\mathfrak{F}} \text{ by naturality of } \omega \\ &= s_{\mathfrak{F}}^+ \circ u_*\omega_{\mathfrak{F}}^+ \circ s_{\mathfrak{F}} \circ u_*\omega_{\mathfrak{F}} \text{ by applying Lemma 27} \\ &= s_{\mathfrak{F}}^+ \circ s_{\mathfrak{F}^+} \circ u_*\omega_{\mathfrak{F}^+} \circ u_*\omega_{\mathfrak{F}} \text{ by naturality of } s \circ u_*\omega \\ &= s_{\mathfrak{F}}^2 \circ u_*\omega_{\mathfrak{F}}^2 \end{split}$$

Corollary 30. Let (C,T). Let $a,b \in C$. Let $f:b \to a \in C$. Sheafifying and restricting commute via the iso

$$s^2$$
: $sh_b \circ u_* \rightarrow u_* \circ sh_a$.

Lemma 31 (λ commutes with restriction). Let $(C, \mathcal{T}, \mathcal{D})$ be a ringed site. Let $\alpha \in C$. We have a natural isomorphism $t : \mathfrak{u}_* \circ \lambda \Rightarrow \lambda \circ (- \otimes_{\Gamma(1:\mathcal{D})} \Gamma(\alpha;\mathcal{D}))$.

Proof. Define the natural transformation $t:\lambda\circ(-\otimes_{\Gamma(1;\mathfrak{D})}\Gamma(a;\mathfrak{D}))\Rightarrow\mathfrak{u}_*\circ\lambda$, by for each $\Gamma(1;\mathfrak{D})$ -module M and for each $f:b\to a\in C_a$,

$$\begin{split} t_{M,f} : M \otimes_{\Gamma(1;\mathfrak{D})} \Gamma(\mathfrak{a};\mathfrak{D}) \otimes_{\Gamma(\mathfrak{a};\mathfrak{D})} \Gamma(\mathfrak{b};\mathfrak{D}) &\to M \otimes_{\Gamma(1;\mathfrak{D})} \Gamma(\mathfrak{b};\mathfrak{D}), \\ m \otimes r \otimes s &\mapsto m \otimes rs. \end{split}$$

Every component $t_{M,f}$ is an isomorphism by basic commutative algebra.

Let C be a category. Let $\alpha \in C$. Let ε be the counit of the adjunction $\lambda \dashv \Gamma(1;-)$ on C. Let ε_{α} be the counit of the adjunction $\lambda_{\alpha} \dashv \Gamma(\alpha;-)$ on C_{α} .

Lemma 32 (λ counit commute with restriction). We have $u_*\varepsilon \cong \varepsilon_a$ on presheaves of the form $\lambda_a(M \otimes \Gamma(b; \mathfrak{O}))$ with M a $\Gamma(1; \mathfrak{O})$ -module via

$$t \circ u_* \varepsilon \circ t^{-1} = \varepsilon_a$$
.

Proof. Both maps are the identity map if you unfold them.

Lemma 33 (Λ commutes with restriction). Let $(C, \mathcal{T}, \mathfrak{O})$ be a ringed site. We have a natural isomorphism

$$q: \mathfrak{u}_* \circ \Lambda \to \Lambda \circ (- \otimes_{\Gamma(1:\mathfrak{O})} \Gamma(\mathfrak{a}; \mathfrak{O})).$$

Proof. Define q to be the composition

$$u_* \circ sh \circ \lambda \stackrel{s^2\lambda}{\Rightarrow} sh \circ u_* \circ \lambda$$

$$\stackrel{sh(t)}{\Rightarrow} sh \circ \lambda \circ - \otimes_{\Gamma(1;\mathfrak{D})} \Gamma(\alpha;\mathfrak{D}))$$

By Definition 26 and lemma 31, t and s^2 are isomorphisms so q is an isomorphism as well.

1.3 Modules

Presheaf modules and sheaf modules on a ringed site will be introduced in this section. The functors λ and Λ introduced here will be used extensively. See [Stacks, Tag 03A4] for more detail.

Definition 34 (Presheaf modules). Let $Y = (C, \mathcal{T}, \mathfrak{D})$ be a ringed site. Let $R = \Gamma(1; \mathfrak{D})$.

A presheaf module on Y is a presheaf of sets $\mathfrak F$ on C together with a map of presheaves

$$\mathfrak{O} \times \mathfrak{F} \to \mathfrak{F}$$

such that for every object $a \in C$ the map $\Gamma(a; \mathfrak{D}) \times \Gamma(a; \mathfrak{F}) \to \Gamma(a; \mathfrak{F})$ defines a $\Gamma(a; \mathfrak{D})$ -module structure on $\Gamma(a; \mathfrak{F})$.

A morphism

$$\mathfrak{F} o \mathfrak{G}$$

is a morphism of presheaf modules if

commutes. The category of presheaf modules on Y will be denoted $\mathsf{PMod}(Y)$.

Definition 35. Let M, N be an R-module.

Define

$$\lambda: R\text{-}\mathsf{Mod} \to \mathsf{PMod}(Y)$$

by for all $a \in C$,

$$\lambda(M)(a) = M \otimes_R \Gamma(a; \mathfrak{O}),$$

for all $f: b \to a \in C$,

$$\lambda(M)(f): Id \otimes \mathfrak{O}(f)\text{,}$$

for all $g: M \to N \in R\text{-Mod}$,

$$\lambda(g)=(\alpha:g\otimes Id).$$

Lemma 36. Let $Y = (X, \mathcal{T}, \mathfrak{D})$ be a ringed site. The functor λ is left adjoint to

$$\Gamma(1;-):\mathsf{PMod}(Y)\to R\text{-Mod}$$

.

Proof. Let α be an object of C. Let M,N be R-modules. Let $\mathfrak{F},\mathfrak{G}\in\mathsf{PMod}(Y)$ be presheaf modules.

Let $\phi:\lambda(M)\to \mathfrak{G}$ be a morphism of presheaf modules. Let $\varphi:M\to \Gamma(1;\mathfrak{G})$ be a morphism of presheaf modules.

Define

$$\alpha = H_{M,\mathfrak{G}} : Hom(\lambda(M),\mathfrak{G}) \to Hom(M,\Gamma(1;\mathfrak{G}))$$

by

$$\alpha(\phi) = \phi_1$$
,

where ϕ_1 is the component of ϕ on the global sections.

Define

$$\beta = L_{M,\mathfrak{G}} : \text{Hom}(M, \Gamma(1;\mathfrak{G})) \to \text{Hom}(\lambda(M), \mathfrak{G})$$

by

$$\beta(\phi)_{\alpha} = \phi \otimes_{R} \Gamma(\alpha; \mathfrak{O}).$$

We will show that β and α are mutually inverse.

Let $d = \beta(\alpha(\phi))$. Let $m \otimes g \in M \otimes_R \Gamma(\alpha; \mathfrak{O})$. Let $p : \lambda(M)(1) \to \lambda(M)(\alpha)$ be the projection map. Let $q : \mathfrak{G}(1) \to \mathfrak{G}(\alpha)$ be the projection map. Then $d_\alpha(m \otimes g) = \phi_1(m) \otimes g$ and

$$\begin{split} \phi_\alpha(\mathfrak{m}\otimes g) &= g\phi_\alpha(\mathfrak{m}\otimes 1) \text{ by linearity} \\ &= g\phi_\alpha(\mathfrak{p}(\mathfrak{m})) \\ &= gq(\phi_1(\mathfrak{m})) \text{ by naturality of } \phi \\ &= g(\phi_1(\mathfrak{m})\otimes 1) \\ &= \phi_1(\mathfrak{m})\otimes g. \end{split}$$

Hence $d = \varphi$. In words, the natural transformations from presheaves of the from $\lambda(M)$ are uniquely determined by their global sections component.

Let $d = \alpha(\beta(\varphi))$. Let $m \in M$. Then $d(m) = (\varphi \otimes_R R)(m) = \varphi(m)$. Hence $d = \varphi$, which makes H and L mutual inverses.

Naturality in M and &

Let $g: N \to M$ and $h: \mathfrak{F} \to \mathfrak{G}$. Let $\rho \in \text{Hom}(\lambda(N), \mathfrak{F})$. Let $k = H_{M,\mathfrak{G}}(h \circ \rho \circ \lambda(f))$. Let $l = h_1 \circ H_{N,\mathfrak{F}}(\rho) \circ f$.

Unfolding the definition for H shows that $k = h_1 \rho_1 f$ and $l = h_1 \rho_1 f$ as well. This proves naturality in M and \mathfrak{G} and the adjunction between λ and $\Gamma(1;-)$.

Definition 37. Let (C, T, \mathfrak{O}) Define

$$\Lambda : \mathsf{R}\text{-}\mathsf{Mod} \to \mathsf{Mod}(\mathsf{O})$$

by $sh \circ \lambda$.

It follows that we have the adjunction $\Lambda \dashv \Gamma(1; -)$.

Definition 38. Let \mathfrak{F} be a sheaf of modules on $(C, \mathfrak{T}, \mathfrak{O})$. It is called quasi-coherent if the following holds. For any object $a \in C$ there exists a covering sieve S such that for any map $f: b \to a$ in S there exists a presentation

$$\bigoplus_{I} \mathfrak{O}\big|_{\mathfrak{b}} \to \bigoplus_{J} \mathfrak{O}\big|_{\mathfrak{b}} \to \mathfrak{F}\big|_{\mathfrak{b}} \to 0$$

Quasi-coherent modules form a full subcategory of the category of sheafs of modules over (C, T, \mathfrak{O}) which are denoted by $Qcoh(\mathfrak{O})$.

1.4 Schemes

Definition 39 (Spectrum of a ring). Let R be a ring. The spectrum SpecR of R is the ringed space defined as follows. The underlying set is the set of prime ideals of R. The (zariski) topology is generated by the basis $D(f) = \{\mathfrak{p} \subset R | f \notin \mathfrak{p}\}$. The sheaf of rings is given by

$$D(f) \mapsto R_f$$
.

Definition 40 (Distinguised open). Let SpecR be a affine scheme. The set

$$D(f) = \{ \mathfrak{p} \subset R | f \not\in \mathfrak{p} \}$$

for a global section f is called a distinguised open. The open $\mathrm{D}(f)$ is isomorphic to $\mathrm{Spec}(R_f)$ as a locally ringed space.

Definition 41 (Locus of a point). Let (X, \mathfrak{O}) be a scheme. Define the locus of a global section $x \in \Gamma(1; \mathfrak{O})$ to be

$$\ker(x) = \ker(\mathfrak{O}(X) \to \kappa(x)).$$

Lemma 42. The functor

$$\textit{Spec}: \mathsf{Rng} \to \mathsf{LRSpaces}$$

is left adjoint to

$$\Gamma(1;-): \mathsf{LRSpaces} \to \mathsf{Rng}.$$

With unit

$$F = \eta: (X, \mathfrak{O}) \to \textit{Spec}(\Gamma(1; \mathfrak{O})).$$

$$x \mapsto \ker(x),$$

Proof.

Definition 43 (Affine scheme). We call the ringed space Spec(R) an affine scheme.

Definition 44 (Scheme). A scheme S is a locally ringed space that admits a covering of affine schemes. A morphism of schemes is a morphism of locally ringed spaces. The category of schemes we will denote by Sch.

2 Restrictive

2.1 Restrictive

Definition 45 (Restrictive functor). A functor $f:(C, \mathcal{T}, \mathfrak{O}) \to (D, \mathcal{S}, \mathfrak{U})$ between ringed sites is called restrictive if for every quasi-coherent module \mathfrak{G} on $(D, \mathcal{S}, \mathfrak{U})$ the unit η of $f^{-1} \dashv f_*$ induces an isomorphism

$$\begin{split} \eta_{\mathfrak{G}}:&\mathfrak{G}\to f_*f^{-1}\mathfrak{G},\\ \eta_{\mathfrak{G},1}:&\Gamma(1;\mathfrak{G})\to\Gamma(1;f_*f^{-1}\mathfrak{G})\\ \eta_{\mathfrak{G},1}\otimes_{\Gamma(1;\mathfrak{D})}\Gamma(1;\mathfrak{U}):&\Gamma(1;\mathfrak{G})\otimes_{\Gamma(1;\mathfrak{D})}\Gamma(1;\mathfrak{U})\to\Gamma(1;f_*f^{-1}\mathfrak{G}). \end{split}$$

Definition 46 (Restrictive morphism). A morphism $f: a \to b \in C$ is called restrictive if the induced functor $C_a \to C_b$ is restrictive.

Example 47. In Sch, the morphism $Spec(A_f) \to Spec(A)$ is restrictive.

Lemma 48. The composition of two restrictive functors is restrictive. If the composition gf is restrictive, then g is restrictive

Non-Example 49. The open immersion $Spec(R^2) \setminus 0 \to Spec(R^2)$ is not restrictive. The quasi-coherent sheaf $\Lambda(\frac{R[x,y]}{xy})$ fails to satisfy the condition from the definition.

Non-Example 50 (Affine non-restrictive map). Both canonical inclusions $\mathbb{A}^1 \to \mathbb{P}^1$ are not restrictive. Look at the quasi-coherent module $\mathfrak{O}(-1)$. There are no global sections but on every affine chart this invertible sheaf is trivial.

Non-Example 51. Any inclusion Spec($\kappa(\mathfrak{p})$) $\to \mathbb{P}^1$ is not restrictive. Look at $\mathfrak{O}(-1)$.

Lemma 52 (Restrictive to affines). If $f: X \to Spec(R)$ is a restrictive open immersion. then X is affine.

2 Restrictive

Proof.

Bibliography

- [A10] Steve Awodey. Category Theory. Oxford University Press, 2010.
- [MM92] Saunders Mac Lane and Ieke Moerdijk. Sheaves in Geometry and Logic. Springer New York, 1992.
- [ToposNotes] Ieke Moerdijk and Jaap van Oosten. Topos Theory. URL: http://www.staff.science.uu.nl/~ooste110/syllabi/toposmoeder.pdf (visited on 09/15/2015).
 - [Stacks] The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu. 2016.