Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	6
1.1 Описание входных данных	7
1.2 Описание выходных данных	7
2 МЕТОД РЕШЕНИЯ	8
3 ОПИСАНИЕ АЛГОРИТМОВ	g
3.1 Алгоритм функции main	9
3.2 Алгоритм конструктора класса Class1	g
3.3 Алгоритм конструктора класса Class2	10
3.4 Алгоритм конструктора класса Class3	10
3.5 Алгоритм конструктора класса Class4	11
3.6 Алгоритм метода print класса Class1	11
3.7 Алгоритм метода print класса Class2	11
3.8 Алгоритм метода print класса Class3	12
3.9 Алгоритм метода print класса class4	12
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	13
5 КОД ПРОГРАММЫ	16
5.1 Файл class1.cpp	16
5.2 Файл class1.h	16
5.3 Файл class2.cpp	17
5.4 Файл class2.h	17
5.5 Файл class3.cpp	18
5.6 Файл class3.h	18
5.7 Файл class4.cpp	18
5.8 Файл class4.h	19
5.9 Файл main.cpp	19
6 ТЕСТИРОВАНИЕ	21

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	22
----------------------------------	----

1 ПОСТАНОВКА ЗАДАЧИ

Иерархия наследования

Описать четыре класса которые последовательно наследуют друг друга, последовательными номерами классов 1,2,3,4.

Реализовать программу, в которой использовать единственный указатель на объект базового класса (номер класса 1).

Наследственность реализовать так, что можно было вызвать методы, принадлежащие объекту конкретного класса, только через объект данного класса.

В закрытом разделе каждого класса определены два свойства: строкового типа для наименования объекта и целого типа для значения определенного целочисленного выражения.

Описание каждого класса содержит один параметризированный конструктор с строковым и целочисленным параметром.

В реализации каждого конструктора объекта определяются значения закрытых свойств:

- Наименование объекта по шаблону: «значение строкового параметра»_«номер класса»;
- Целочисленного свойства значением выражения возведения в степень номера класса целочисленного значения параметра конструктора.

Еще в описании каждого класса определен метод с одинаковым наименованием для всех классов, реализующий вывод значений закрытых свойств класса.

В основной функции реализовать алгоритм:

- 1. Вводится идентификатор и натуральное число от 2 до 10.
- 2. Создать объект класса 4, используя параметризированный конструктор,

которому в качестве аргументов передаются введенный идентификатор и натуральное число.

3. Построчно, для всех объектов согласно наследственности, от объекта базового (класс 1) до производного объекта (класса 4) вывести наименование объекта класса и значение целочисленного свойства.

1.1 Описание входных данных

Первая строка:

«идентификатор» «натуральное число»

Пример ввода:

Object 2

1.2 Описание выходных данных

Построчно (четыре строки):

«идентификатор»_ «номер класса» «значение целочисленного свойства»

Разделитель - 1 пробел.

Пример вывода:

Object_1 2

Object_2 4

Object_3 8

Object_4 16

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект класса class1 предназначен для;
- объект класса class2 предназначен для;
- объект класса class3 предназначен для;
- объект класса class4 предназначен для;
- стандартная библиотекка объектов ввода и вывода iostream;
- оператор присвоения =;
- оператор выделения памяти под новый объект new;
- оператор удаления динамически созданного объекта delete.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм функции main

Функционал: точка входа в программу.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм функции представлен в таблице 1.

Таблица 1 – Алгоритм функции таіп

Предикат	Действия	
		перехода
	объявление строки name, числа n	2
	ввод пате и п	3
	инициализация указателя ptr новым объектом class4, присведенным к	4
	class1	
	вызов print y ptr	5
	вызов print y ptr, приведенный к class2	6
	вызов print y ptr, приведенный к class3	7
	вызов print y ptr, приведенный к class4	8
	удалние ptr	9
	возврат 0	Ø
	Предикат	объявление строки пате, числа п ввод пате и п инициализация указателя ptr новым объектом class4, присведенным к class1 вызов print y ptr вызов print y ptr, приведенный к class2 вызов print y ptr, приведенный к class3 вызов print y ptr, приведенный к class4 удалние ptr

3.2 Алгоритм конструктора класса Class1

Функционал: создание объекта.

Параметры: нет.

Алгоритм конструктора представлен в таблице 2.

Таблица 2 – Алгоритм конструктора класса Class1

N₂	Предикат	Действия	No
			перехода
1		полю name присвоить n	Ø
		полю п присвоить п	

3.3 Алгоритм конструктора класса Class2

Функционал: создание объекта, заполнение полей.

Параметры: строка nsme, целое n - имя и возводимое число.

Алгоритм конструктора представлен в таблице 3.

Таблица 3 – Алгоритм конструктора класса Class2

N₀	Предикат	Действия	No
			перехода
1		полю name присвоить n	Ø
		полю п присвоить п	

3.4 Алгоритм конструктора класса Class3

Функционал: создание объекта, заполнение полей.

Параметры: строка name, целое n - имя и возводимое число.

Алгоритм конструктора представлен в таблице 4.

Таблица 4 – Алгоритм конструктора класса Class3

No	Предикат	Действия	No
			перехода
1		полю name присвоить n	Ø
		полю п присвоить п	

3.5 Алгоритм конструктора класса Class4

Функционал: создание объекта, заполнение полей.

Параметры: строка name, целое n - имя и возводимое число.

Алгоритм конструктора представлен в таблице 5.

Таблица 5 – Алгоритм конструктора класса Class4

N₀	Предикат	Действия	No
			перехода
1		полю name присвоить n	Ø
		полю п присвоить п	

3.6 Алгоритм метода print класса Class1

Функционал: вывод зачений полй.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 6.

Таблица 6 – Алгоритм метода print класса Class1

N₂	Предикат	Действия	N₂
			перехода
1		вывод пате, " ", п, переход на новую строку	Ø

3.7 Алгоритм метода print класса Class2

Функционал: вывод значений полей.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 7.

Таблица 7 – Алгоритм метода print класса Class2

N₂	Предикат	Действия	N₂
			перехода
1		вывод пате, " ", п, переход на новую строку	Ø

3.8 Алгоритм метода print класса Class3

Функционал: вывод значений полей.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 8.

Таблица 8 – Алгоритм метода print класса Class3

N₂	Предикат	Действия	No
			перехода
1		вывод пате, " ", п, переход на новую строку	Ø

3.9 Алгоритм метода print класса class4

Функционал: вывод значений полей.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 9.

Таблица 9 – Алгоритм метода print класса class4

N₂	Предикат	Действия	No
			перехода
1		вывод пате, " ", п	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-3.

Рисунок 1 – Блок-схема алгоритма

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл class1.cpp

```
#include "class1.h"

class1::class1(string name, int n)
{
    this->name = name + "_1";
    this->n = pow(n, 1);
}

void class1::print()
{
    cout << name << " " << n << "\n";
}</pre>
```

5.2 Файл class1.h

Листинг 2 – class1.h

```
#ifndef __CLASS__H
#define __CLASS__H

#include <string>
#include <math.h>
#include <iostream>
using namespace std;
class class1{
  public:
      class1(string, int);
      void print();
  private:
      string name;
      int n;
};
```

5.3 Файл class2.cpp

Листинг 3 – class2.cpp

```
#include "class2.h"

class2::class2(string name, int n):class1(name, n)
{
    this->name = name + "_2";
    this->n = pow(n, 2);
}

void class2::print(){
    cout << name << " " << n << "\n";
}</pre>
```

5.4 Файл class2.h

Листинг 4 – class2.h

```
#ifndef __CLASS2__H
  #define __CLASS2__H
  #include "class1.h"

class class2: private class1
  {
  public:
     class2(string, int);
     void print();
  private:
     string name;
     int n;
  };

#endif
```

5.5 Файл class3.cpp

Листинг 5 - class3.cpp

```
#include "class3.h"
  class3::class3(string name, int n):class2(name, n)
  {
    this->name = name + "_3";
    this->n = pow(n, 3);
  }

void class3::print(){
    cout << name << " " << n << "\n";
}</pre>
```

5.6 Файл class3.h

```
#ifndef __CLASS3__H
#define __CLASS3__H
#include "class2.h"

class class3: private class2
{
    string name;
    int n;
public:
    class3(string, int);
    void print();
};

#endif
```

5.7 Файл class4.cpp

Листинг 7 - class 4.cpp

```
#include "class4.h"
class4::class4(string name, int n):class3(name, n)
{
   this->name = name + "_4";
   this->n = pow(n, 4);
```

```
}
void class4::print(){
   cout << name << " " << n;
}</pre>
```

5.8 Файл class4.h

Листинг 8 – class4.h

```
#ifndef __CLASS4__H
  #define __CLASS4__H
  #include "class3.h"

class class4: private class3
{
    string name;
    int n;
    public:
        class4(string, int);
        void print();
};

#endif
```

5.9 Файл таіп.срр

Листинг 9 – таіп.срр

```
#include <stdib.h>
#include <stdio.h>
#include "class4.h"
int main()
{
    string name;
    int n;
    cin >> name >> n;
    class1 *ptr = (class1*)new class4(name, n);
    ptr-> print();

    ((class2*)ptr)->print();
    ((class3*)ptr)->print();
    ((class4*)ptr)->print();
    delete ptr;
```

return(0);
}

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 10.

Таблица 10 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
oop 2	oop_1 2 oop_2 4 oop_3 8 oop_4 16	oop_1 2 oop_2 4 oop_3 8 oop_4 16

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).