Skript Numerik I

von Prof. Dr. Luise Blank im WS14/15

Gesina Schwalbe

18. November 2014

Inhaltsverzeichnis

1	Einf	ührung	3					
	1.1	Anwen	dungen					
	1.2	"Gute"	'Programme					
2	Line	Lineare Gleichungssysteme: Direkte Methoden						
	2.1	Gaußs	ches Eliminationsverfahren					
		2.1.1	Vorwärtselimination					
		2.1.2	Rückwärtselimination					
		2.1.3	Vorsicht					
		2.1.4	Weitere algorithmische Anmerkungen					
		2.1.5	Dreieckszerlegung					
		2.1.6	Vorwärtssubstitution					
		2.1.7	Gauß-Elemination zur Lösung von $Ax = b \dots 13$					
		2.1.8	Rechenaufwand gezählt in "flops"					
		2.1.9	Definition: Landau-Symbole					
		2.1.10	Allgemeines zur Aufwandsbetrachtung					
		2.1.11	Formalisieren des Gauß-Algorithmus					
		2.1.12	Lemma (Eigenschaften der L_k -Matrizen)					
			Satz (LR- oder LU-Zerlegung)					
	2.2		ches Eliminationsverfahren mit Pivotisierung					
		2.2.1	Spaltenpivotisierung (=partielle/ halbmaximale Pivotisierung) 16					
		2.2.2	Bemerkung					
		2.2.3	Gauß-Elimination mit Spaltenpivotisierung					
		2.2.4	Satz: Dreieckszerlegung mit Permutationsmatrix					
		2.2.5	Lösen eines Gleichungssystems $Ax = b$					
		2.2.6	Bemerkungen					
		2.2.7	Beispiel zur Pivotisierung					
3	Fehl	eranaly	rse 21					
	3.1	-	darstellung und Rundungsfehler					
		3.1.1	Definition: Gleitkommazahl					
		3.1.2	Bemerkung					
		3.1.3	Beispiel					
		3.1.4	Verteilung der Maschinenzahlen					
		3.1.5	Bezeichnungen					
		3 1 6	Rundungsfehler 24					

In halts verzeichn is

		3.1.7	Bemerkung	25
		3.1.8	Auslöschung von signifikanten Stellen	6
	3.2	Kondit	tion eines Problems	6
		3.2.1	Definition: Problem	6
		3.2.2	Definition: absoluter und relativer Fehler	7
		3.2.3	Wiederholung: Normen	7
		3.2.4	Definition: Matrixnorm	7
		3.2.5	Definition: Frobeniusnorm, p-Norm, Verträglichkeit	8
		3.2.6	Bemerkungen	8
		3.2.7	Definition: absolute und relative normweise Kondition 2	9
		3.2.8	Lemma	9
		3.2.9	Beispiel: Kondition der Addition	0
		3.2.10	Beispiel: Lösen eines Gleichungssystems	1
		3.2.11	Definition: Kondition einer Matrix	3
		3.2.12	Lemma (Neumannsche Reihe)	4
		3.2.13	Bemerkung	5
		3.2.14	Beispiel: Kondition eines nichtlinearen Gleichungssystems 3	5
		3.2.15	Beispiel	6
		3.2.16	Definition: Komponentenweise Kondition	7
		3.2.17	Lemma	7
			1	8
	3.3	Stabili	8	9
		3.3.1	0	9
		3.3.2	1	0
		3.3.3		1
		3.3.4	0 / 1	1
		3.3.5	(1 0)	1
		3.3.6		3
		3.3.7	0	3
		3.3.8		3
		3.3.9	1	4
		3.3.10	8	5
				5
				5
				6
	3.4			6
		3.4.1	Satz (Prager und Oettli, 1964)	7
4	Line	are Gle	ichungssysteme: Direkte Methoden (Fortsetzung) 4	9
	4.1			9
		4.1.1		9
		4.1.2	*	9
		4.1.3	•	0
				'n

Inhaltsverzeichnis

		4.1.5	Bemerkung (nach Skeel 1980)	50
	4.2		sky-Verfahren	50
		4.2.1	Satz (Eigenschaften von symm., pos. def. Matrizen)	51
		4.2.2	Folgerung	52
		4.2.3	Cholesky-Zerlegung	53
		4.2.4	Rechenaufwand in flops	53
		4.2.5	Bemerkung	53
	4.3	Linear	e Ausgleichsprobleme	53
		4.3.1	Beispiel	53
		4.3.2	Lineares Ausgleichsproblem	55
		4.3.3	Projektionssatz	56
		4.3.4	Satz	57
		4.3.5	Lösung der Normalgleichung	58
		4.3.6	Satz	58
		4.3.7	Bemerkung	59
	4.4	Orthog	gonalisierungsverfahren	60
		4.4.1	Givens-QR-Algorithmus	63
		4.4.2	Bemerkungen	63
		4.4.3	Aufand des Givens-QR-Algorithmus	63
		4.4.4	Bemerkung	65
		4.4.5	Speicherung	67
		4.4.6	Aufwand für den Householder-QR-Algorithmus	67
5	Nun	nerische	Lösung nichtlinearer Gleichungssysteme	69
_	5.1		rung	69
		5.1.1	Beispiele	69
		5.1.2	Das Bisektionsverfahren	70
		5.1.3	Korollar	71
		5.1.4	Bemerkungen	71
	5.2		aktiteration	71
	·-	5.2.1	Beispiel	71
		5.2.2	Definition: Kontraktion	72
		5.2.3	Lemma	72
		5.2.4	Banachscher Fixpunktsatz	73
Lit	eratı	ır		77

Vorwort

Skriptfehler

An alle, die gedenken dieses Skript zur Numerikvorlesung im WS2014/15 zu nutzen: Es wird keinerlei Anspruch auf Richtigkeit, Vollständigkeit und auch sicher nicht Schönheit (ich bin LaTeX-Anfänger) dieses Dokuments erhoben.

Ihr würdet mir aber unglaublich weiterhelfen, wenn ihr jede Anmerkung – das kann alles, von groben inhaltlichen Fehlern über Rechtschreibkorrekturen bis hin zu Wünschen/Anregungen/Tipps zur Typografie, sein – an mich weiterleitet!

Jegliche Anmerkungen bitte gleich und jederzeit an:

gesina.schwalbe@stud.uni-regensburg.de

oder auch an gesina.schwalbe@googlemail.com

Copyright

Was das Rechtliche angeht bitte beachten:

Urheber dieses Skriptes ist Prof. Dr. Luise Blank.

Dies ist nur eine genehmigte Vorlesungsmitschrift und unterliegt dem deutschen Urheberrecht, jegliche nicht rein private Verwendung muss demnach vorher mit Frau Blank abgesprochen werden.

Bilder oder "IMAGE MISSING"

Leider habe ich mich bisher noch nicht in die (ordentliche) Grafikerstellung in LaTeX-Dokumenten eingearbeitet, weshalb das Skript erstmal nicht mit Grafiken dienen kann – die Fehlstellen sind mit "IMAGE MISSING" markiert.

Wenn ihr gerne Veranschaulichungen haben möchtet, könnt ihr jederzeit die entsprechenden Bilder an mich schicken, bitte mit Kapitelangabe. (Oder mich explizit

Inhaltsverzeichnis

darum bitten, dass ich mich übergangsweise um das Einscannen, Bearbeiten etc. kümmere). Dann werden sie an die entsprechenden Stellen eingebunden.

Erscheinungsdatum

Ich werde mich bemühen, das Skript jeweils am Vorlesungstag zumindest in unverbesserter Form online zu stellen, so dass v.a. diejenigen, die die Vorlesung nicht besuchen können, einen Überblick über den Stoff bekommen.

Innerhalb einer Woche sollte das Skript aktuell sein.

Anfangsteil

Nachdem ich nicht seit Semesterbeginn mittexe, fehlt noch ein Großteil des ersten Kapitels. Ich hoffe, es bis Mitte des Semesters nachholen zu können, aber keine Garantie. Ziel ist, dass es vor der Vorlesungszeit integriert ist.

06.10.2014

1 Einführung

Wozu?

Oft sind Probleme mit der gleichen Struktur zu lösen, z.B.

•
$$ax^2 + bx + c = 0 \Rightarrow x_{\pm} = -\frac{b}{2a} \pm \frac{1}{2a} \sqrt{b^2 - 4ac}$$

• Bestimmung des größten gemeinsamen Teilers zweier Zahlen
→ euklidischer Algorithmus

Hierfür ist ein allgemeiner Algorithmus erwünscht.

Ein weiterer Fall ist, dass ein Problem zwar analytisch gelöst werden kann, es aber zu lange dauert bis das Ergebnis bestimmt ist, z.B. tauchen bei der numerischen Simulation von Strömungen bis zu 1 Million Unbekannte auf. Damit sind Systeme mit $\approx 10^6$ Gleichungen zu lösen, wofür effiziente Algorithmen notwendig sind.

Näherungslösung sind bei solchen Problemen häufig ausreichend.

Es gibt auch Probleme, die nicht analytisch gelöst werden können, z.B. bei Differentialgleichungen ist vielleicht Existenz- und Eindeutigkeit gewährleistet, aber keine konstruktive Methode zur Berechnung bekannt.

Hierfür ist dann eine Näherungslösung gefragt.

Geschichte

Algorithmen gibt es schon lange bevor es Rechner gab, z.B. den euklidischen Algorithmus seit um 300 v.Chr.

Die Fragestellungen und der Blickwinkel verschieben sich jedoch in Abhängigkeit von den zu lösenden Problemen und der existierenden Computer-Hardware.

(Strömungsprobleme modelliert mit partiellen Differentialgleichungen, es stehen Parallelrechner, Vektorrechner, größere Speicher zur Verfügung, etc.)

1.1 Anwendungen

- Herd, Waschmaschine, Heizungsanlage
- Handy (über welchen Satelliten wird übertragen), Digitalkamera, MP3-Player
- Navigationssysteme
- Erstellung des Zugfahrplans
- Robotersteuerung (bis hin zu Roboterfußball)
- Fahrzeugindustrie
 - Fahrzeugbau (Crash-Simulation, Strömungsmodellierung)
 - Fahrzeugsteuerung
- Finanzmarkt z.B. Risikoanalyse im Wertpapierhandel
- Klimaanalyse z.B. Vorhersage von Erdbeben, Hurrikans, Überflutungen
- Medizinische Versorgung z.B. Bildverarbeitung, Prognose für Epedemieentwicklungen, Beschreibung des Blutkreislaufs
- Raffinerie-Industrie
- Kontrolle und Optimierung chemischer und biologischer Prozesse, z.B. Regelung von Wärmezufuhr
- u.s.w.

Fragestellungen

Rechengeschwindigkeit, Rechenaufwand (Anzahl der Rechenoperationen, Rechenzeit auf welchem Rechner...), Komplexität des Algorithmus

Beispiel 1

Berechnung der Lösung eines Gleichungssystems

 $\mathbf{A}\mathbf{x} = \mathbf{b}$ mit einer $n \times n$ -Matrix \mathbf{A}

1. Cramersche Regel

```
x_j = \frac{\det(A)_j}{\det A} (ersetze die j-te Spalte von A durch b) und \det A = \sum_{\pi} sign(\pi) \ a_{1m_1} \cdot \ldots \cdot a_{nm_n}
```

Benötigt etwa n! Multiplikationen und Additionen. Bei einer 20×20 -Matrix \boldsymbol{A} (was heutzutage klein ist) wären dies

 $\approx 2.5 \cdot 10^{18}$ Operationen. Falls jede arithmetische Operation 10^{-6} Sekunden (also

eine Mikrosekunde) benötigt, ist eine Rechenzeit von mehr als **eine Millionen** Jahre nötig!

- 2. Gaußsches Eliminationsverfahren Benötigt etwa n^3 Operationen, also ungefähr 8000 Operationen und weniger als **0,005 Sekunden** (Golub, Ortega: Scientific Computing).
- 3. Verhalten bei Störungen, Stabilität des Verfahrens (Eingabefehler, Rundungsfehler, Diskretisierungsfehler)

Beispiel

 $\frac{1}{10^{-8}}=10^8$ Störung des Nenners $\frac{1}{2\cdot 10^{-8}}=5\cdot 10^7$ \leadsto kleine Störung im Nenner kann zu großen Störungen im Ergebnis führen.

Beispiel

$$x^2 + 314 x - 2 = 0$$

Falls diese Gleichung mit der **p,q-Formel** (Mitternachtsformel) gelöst wird und immer auf 5 signifikante Stellen gerundet wird, ergibt sich ein

relativer Fehler =
$$\frac{|\text{Fehler}|}{|\text{L\"{o}sung}|}$$

von $\approx 57 \%$.

Eine geschickte Formatierung liefert ein Ergebnis mit einem relativen Fehler von $\approx 1,5\cdot 10^{-5}$, d.h. die ersten **4 Stellen sind exakt**. Dabei werden für $ax^2+bx+c=0$ folgende Ausdrücke verwendet:

$$x_1 = \frac{1}{2a} \left(-b - \operatorname{sign}(b) \sqrt{b^2 - 4ac} \right)$$

$$x_2 = \frac{2c}{-b - \operatorname{sign}(b) \sqrt{b^2 - 4ac}} .$$

Lösung 0.0063693, p,q-Formel 0.01, letzte Formel 0.0063692

Genauigkeit des Verfahrens, Fehleranalyse, Konvergenzgeschwindigkeit, Konvergenzordnung

Beispiel

Numerische Approximation von Ableitungen Für $f \in C^3(I)$ gilt die Taylor-Entwicklung:

$$f(x \pm h) = f(x) \pm h f'(x) + \frac{h^2}{2} f''(x) + R(x) \text{ mit } |R(x)| \le ch^3$$

Vorwärtsgenommener Differenzenquotient

$$(D_h^+ f)(x) \coloneqq \frac{f(x+h) - f(x)}{h} \approx f'(x),$$

$$|f'(x) - \frac{f(x+h) - f(x)}{h}| \le ch,$$

konvergiert also mit linearer Abhängigkeit der Schrittweite h

Zentraler Differenzenquotient

$$(D_h^0 f)(x) := \frac{f(x+h) - f(x-h)}{2 \cdot h} \approx f'(x),$$

$$|f'(x) - \frac{f(x+h) - f(x-h)}{2 \cdot h}| \le ch^2,$$

konvergiert mit quadratischer Ordnung bei gleichem Aufwand!

Some desasters attributable to bad numerical computing

(Last modified August 26, 1998 by Douglas N. Arnold, arnold@ima.umn.edu)

Have you been paying attention in your numerical analysis or scientific computation courses?

If not, it could be a costly mistake.

Here are some real life examples of what can happen when numerical algorithms are not correctly applied.

The Patriot Missile failure in Dharan, Saudi Arabia, on February 25, 1991 which resulted in 28 deaths, is ultimately attributable to poor handling of rounding errors.

The explosion of the Ariane 5 rocket just after lift-off on its maiden voyage off French Guiana, on June 4, 1996, was ultimately the consequence of a simple overflow.

The sinking of the Sleipner A offshore platform in Gandsfjorden near Stavanger, Norway, on August 23, 1991, resulted in a loss of nearly one billion dollars. It was found to be the result of inaccurate finite element analysis.

Weitere praxisrelevante Fragestellungen

- Nutze black box solver oder entwickle Lösungsmethode, welche auf das spezielle Problem angepaßt ist.
- Wie teuer ist die Implementierung? (= wieviel Arbeitszeit)
- Ist der implementierte Algorithmus vielseitig einsetzbar? (welche Problemklassen deckt er ab, welche Rechnerstruktur ist vorausgesetzt)

1.2 "Gute" Programme

- zuverläßig (fehlerfrei)
- robust (z.B. behandeln Ausnahmesituationen und filtern ungeeignete Daten heraus)
- portierbar auf andere Rechenanlagen
- wartungsfreundlich (leicht zu ändern oder zu erweitern)
- gut dokumentiert
- ausgiebig getestet soll in den Übungen trainiert werden

Eine Faustregel der numerischen Mathematik

Zu jedem noch so eleganten numerischen Verfahren gibt es ein Gegenbeispiel, für welches die Methode völlig versagt.

(Teubner Taschenbuch)

Welche Probleme werden hier behandelt?

- 1. Lineare Gleichungssysteme Ax = b
 - "kleine" bis "mittelgroße" Matrizen
 - → direkte Methoden: nach endlich vielen Schritten ist die exakte Lösung bis auf Rundungsfehler berechnet (z.B. Gauß-Elimination)
 - strukturierte Matrizen

Symmetrie oder sogar Bandstruktur:

1 Einführung

- große Matrizen (mit zusätzlichen Eigenschaften)
 - \rightarrow iterative Methoden: kenne Startwert x_0 , berechne neue Approximation x_i unter Ausnutzung der vorherigen bis die Näherungslösung x_i "gut genug ist".

2. Lineare Ausgleichsprobleme

Beispiel:

Wir messen den Zusammenhang zwischen Spannung U und Stromstärke I

Ohmsches Gesetz: $U = R \cdot I$

Gesucht ist der Widerstand R.

 (U_i, I_i) seien die Messdaten mit möglichen Messfehlern.

Finde nun R, sodass $f(R) = \min_{r} \sum_{i} (U_i - r I_i)^2$

3. Lösung nichtlinearer Gleichungen, z.B.

- Berechnung von Nullstellen g(x) = 0
- Berechnung von Fixpunkten f(x) = x

4. Eigenwertwertberechnung $Ax = \lambda x$, $\lambda \in \mathbb{C}$

5. Interpolation

8

Setze Meßdaten zu einer kontinuierlichen Funktion fort, aber wie "glatt"?

z.B. stückweise konstant, stückweise linear, oder falls sie eine Schwingung repräsentieren, berechne die zugehörige Fourierreihe

6. Berechnung von Integralen (Quadraturformeln)

Approximation von $\int_a^b f(x) dx$

Bei allem spielt die **Fehleranalyse** eine große Rolle und ihre Grundbegriffe werden in einem extra Abschnitt behandelt.

2 Lineare Gleichungssysteme: Direkte Methoden

Sei $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$. Gesucht ist $x \in \mathbb{R}^n$ mit

$$A \cdot x = b$$

Weitere Voraussetzungen sind die Existenz und Eindeutigkeit einer Lösung. Bemerkung:

- Ein verlässlicher Lösungsalgorithmus überprüft dies und behandelt alle Fälle.
- Die Cramersche Regel ist ineffizient (s. Einführung).
- Das Inverse für $x = A^{-1} \cdot b$ aufzustellen ist ebenso ineffizient, denn es ist keine Lösung für alle $b \in \mathbb{R}^n$ verlangt und der Algorithmus wird evtl. instabil aufgrund vieler Operationen.
- ⇒ Invertieren von Matrizen vermeiden!!
- ⇒ Lösen des Linearen Gleichungssystems!!

2.1 Gaußsches Eliminationsverfahren

Das Verfahren wurde 1809 von Friedrich Gauß, 1759 von Josepf Louis Lagrange beschrieben und war seit dem 1. Jhd. v. Chr. in China bekannt.

2.1.1 Vorwärtselimination

Das Gaußverfahren gilt der Lösung eines linearen Gleichungssystems der Form

$$Ax = b$$

mit $A = (a_{ij})_{i,j \le n} \in K^{n \times n}$ Matrix und $b = (b_i)_{i \le n} \in K^n$ Vektor. Der zugehörige Algorithmus sieht folgendermaßen aus:

$$a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} = b_{2}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{n1}x_{1} + a_{n2}x_{2} + \cdots + a_{nn}x_{n} = b_{n}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

$$(i-te Zeile) - (1. Zeile) \cdot \frac{a_{i1}}{a_{11}} \Rightarrow a_{i1} = 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

$$a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} = b_{1}$$

$$+ a_{22}(x_{2}) + \cdots + a_{2n}(x_{n}) = b_{2}^{(1)}$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$a_{nn}^{(1)}x_{n} = b_{n}^{(1)}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

 $_{
m mit}$

08.10.2014

$$a_{ij}^{(1)} = a_{ij} - a_{1j} \cdot \frac{a_{i1}}{a_{11}}$$
 für $i, j = 2, \dots, n$
$$b_i^{(1)} = b_i - b_1 \cdot \frac{a_{i1}}{a_{11}}$$
 für $i = 2, \dots, n$

In jedem Schritt werden die Einträge der k-ten Spalte analog unterhalb der Diagonalen (also $k=1,\cdots,n-1$) eliminiert:

$$(i\text{-te Zeile}) - (k\text{-te Zeile}) \cdot \frac{a_{ik}}{a_{kk}}$$
 für $i = k+1, \dots, n$

Die Reihe

$$A \rightarrow A^{(1)} \rightarrow A^{(2)} \rightarrow \cdots \rightarrow A^{(n-1)}$$

wird bis zum n-ten Schritt fortgeführt, d.h. bis eine obere Dreiecksgestalt eintritt:

$$\underbrace{\begin{pmatrix} a_{11} & \cdots & \cdots & a_{1n} \\ & a_{22}^{(1)} & \cdots & a_{2n}^{(1)} \\ & & \ddots & \vdots \\ 0 & & a_{nn}^{(n-1)} \end{pmatrix}}_{:=R} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \underbrace{\begin{pmatrix} b_1 \\ b_2^{(1)} \\ \vdots \\ b_n^{(n-1)} \end{pmatrix}}_{:=z}$$

$$Rx = z \qquad (2.1.1)$$

wobei für $i = k + 1, \dots, n$ die Einträge wie folgt aussehen:

$$l_{ik} \coloneqq \frac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}}$$

$$a_{ij}^{(k)} = a_{ij}^{(k-1)} - a_{kj}^{(k-1)} \cdot l_{ik}$$

$$b_{i}^{(k)} = b_{i}^{(k-1)} - b_{k}^{(k-1)} \cdot l_{ik}$$

$$(2.1.2)$$

$$f \text{ ür } j = k+1, \dots, n$$

$$(2.1.3)$$

$$a_{ij}^{(k)} = a_{ij}^{(k-1)} - a_{kj}^{(k-1)} \cdot l_{ik}$$
 für $j = k+1, \dots, n$ (2.1.3)

$$b_i^{(k)} = b_i^{(k-1)} - b_i^{(k-1)} \cdot l_{ik} \tag{2.1.4}$$

Dieser Prozess wird **Vorwärtselimination** genannt.

Der zugehörige Algorithmus ist:

$$egin{array}{lll} {f for} & k = 1, \dots, n-1 \ & | & {f for} & i = k+1, \dots, n \ & | & | & l_{ik} = a_{ik}/a_{kk} \ & | & {f for} & j = k+1, \dots, n \ & | & | & a_{ij} = a_{ij} - l_{ik}a_{kj} \ & | & {f end} \ & | & b_i = b_i - l_{ik}b_k \ & | & {f end} \ & {f end}$$

2.1.2 Rückwärtselimination

Für die Lösung des Gleichungssystems ist dann noch die Rückwärtssubstitution nötig:

$$x_n = \frac{b_n^{(n-1)}}{a_{nn}^{(n-1)}} \tag{2.1.5}$$

$$x_{n} = \frac{b_{n}^{(n-1)}}{a_{nn}^{(n-1)}}$$

$$x_{n-1} = \frac{b_{n-1}^{(n-2)} - a_{n-1,n}^{(n-1)} \cdot x_{n}}{a_{n-1}^{(n-2)}}$$

$$x_{k} = \frac{b_{k}^{(k-1)} - \sum_{j=k+1}^{n} a_{kj}^{(k-1)} x_{j}}{a_{kk}^{(k-1)}}$$

$$(2.1.5)$$

$$x_k = \frac{b_k^{(k-1)} - \sum_{j=k+1}^n a_{kj}^{(k-1)} x_j}{a_{kk}^{(k-1)}}$$
(2.1.7)

Als Algorithmus:

Abbildung 2.1: Veranschaulichung der LR-Zerlegung

2.1.3 Vorsicht

Algorithmen 2.1.1 und 2.1.2 sind nur ausführbar, falls für die sog. **Pivotelemente** $\mathbf{a}_{\mathbf{k}\mathbf{k}}^{(\mathbf{k}-\mathbf{1})}$ gilt:

$$a_{kk}^{(k-1)} \neq 0$$
 für $k = 1, \dots, n$

Dies ist auch für invertierbare Matrizen nicht immer gewährleistet.

2.1.4 Weitere algorithmische Anmerkungen

Matrix A und Vektor b sollten möglichst **nie** überschrieben werden! (Stattdessen kann eine Kopie überschrieben werden.)

Das Aufstellen von A und b ist bei manchen Anwendungen das teuerste, sie gehen sonst verloren. In 2.1.1 wird das obere Dreieck von A überschrieben. Dies ist möglich, da in (2.1.3) nur die Zeilen $k+1,\dots,n$ mithilfe der k-ten bearbeitet werden. Am Ende steht k im oberen Dreieck von k und k in k

Die l_{ik} werden spaltenweise berechnet und können daher anstelle der entsprechenden Nullen (in der Kopie) von A gespeichert werden, d.h.:

$$\widetilde{L} \coloneqq (l_{ik}) \tag{2.1.8}$$

und R werden sukzessive in A geschrieben. Der Vektor z und anschließend der Lösungsvektor x kann in (eine Kopie von) b geschrieben werden. Wird eine neue rechte Seite b betrachtet, muss 2.1.1 nicht komplett neu ausgeführt werden, da sich \widetilde{L} nicht ändert. Es reicht 2.1.4 zu wiederholen.

2.1.5 Dreieckszerlegung

Die Dreieckszerlegung einer Matrix A entspricht dem Verfahren aus 2.1.1, nur ohne die Zeile (2.1.4).

2.1.6 Vorwärtssubstitution

Die Vorwärtssubstitution entspricht der in 2.1.4 bzw. dem Verfahren aus 2.1.1 ohne die Bestimmung von l_{ik} und R, also nur Schritt (2.1.4).

2.1.7 Gauß-Elemination zur Lösung von Ax = b

1 Dreieckszerlegung

2 Vorwärtssubstitution $b_i^{(k)} = b_i^{(k-1)} - b_k^{(k-1)} \cdot l_{ik}$

3 Rückwärtssubstitution $x_k = \frac{b_k^{(k-1)} - \sum_{j=k+1}^n a_{kj}^{(k-1)} x_j}{a_{kk}^{(k-1)}}$

2.1.8 Rechenaufwand gezählt in "flops"

,flops" = floating point operations

1. Dreieckszerlegung

für j = k + 1, ..., n 1 Addition, 1 Multiplikation für a_{ij} für i = k + 1, ..., n 1 Division zusätzl. für l_{ik}

Dies ist je für $k=1,\ldots,n-1$, also ist die Zahl an Additionen und Multiplikationen

$$\sum_{k=1}^{n-1} (n-k)^2 = \sum_{k=1}^{n-1} k^2$$

$$= \frac{(n-1)n(2n-1)}{6}$$

$$= \frac{2n^3 - 3n^2 + n}{6}.$$

Für große n sind das etwa $\frac{n^3}{3}$ Additionen und Multiplikationen und

$$\sum_{k=1}^{n-1}(n-k)=\frac{n^2-n}{2}\approx\frac{n^2}{n}$$

2 Lineare Gleichungssysteme: Direkte Methoden

Divisionen.

Damit ergibt sich eine Gesamtanzahl an flops von

$$2 \cdot \frac{2n^3 - 3n^2 + n}{6} + \frac{n^2 - n}{2} = \frac{2}{3}n^3 - \frac{1}{2}n^2 - \frac{1}{6}n \approx \frac{2}{3}n^2$$

für große n.

2. Vorwärts- bzw. Rückwärtssubstitution

Hier ergeben sich je

$$\sum_{k=1}^{n-1} (n-k) = \frac{n^2 - n}{2} \approx \frac{n^2}{2}$$

Multiplikationen und Additionen sowie n Divisionen für die Rückwärtssubstitution und damit insgesamt

$$n^2 + n$$

flops.

Zusammenfassung

Die Dreieckszerlegung benötigt $\mathcal{O}(n^3)$ flops und die Vorwärts- bzw. Rückwärtssubstitution $\mathcal{O}(n^2)$ flops.

2.1.9 Definition: Landau-Symbole

Seien $f, g: D \longrightarrow \mathbb{R}, D \subset \mathbb{R}, -\infty \leq a \leq \infty$ und $(a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}}$ Folgen in \mathbb{R} .

a)
$$f(x) = \mathcal{O}(g(x))$$
 für $x \longrightarrow a$, falls

$$\exists U(a), c \in \mathbb{R} : \forall x \in U(a) : |f(x)| \le c \cdot |g(x)|$$

(bzw. falls $\lim_{x \to a} \frac{|f(x)|}{|g(x)|} \le c$)

b)
$$f(x) = o(g(x))$$
 für $x \longrightarrow a$, falls $\lim_{x \to a} \frac{|f(x)|}{|g(x)|} = 0$

c)
$$a_n = \mathcal{O}(b_n)$$
 für $n \longrightarrow \infty$, falls

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n \ge N : |a_n| \le \varepsilon |b_n|$$

2.1.10 Allgemeines zur Aufwandsbetrachtung

Die Anzahl der Rechenoperationen ist nicht immer ausschalggebend für den Aufwand, da z.B.

Parallelrechner: In manchen Algorithmen sind Rechenschritte parallel ausführbar. Damit entspricht die Zeit nicht der Anzahl an Operationen und es wird zusätzlich "Kommunikationszeit" benötigt.

Sortieralgorithmen: Die Indexverwaltung benötigt Zeit, aber keine/kaum Rechenoperationen

If-When-Abfragen: entsprechend

Rechenoperationen liefern jedoch oft eine gute Schätzung.

13.10.2014

2.1.11 Formalisieren des Gauß-Algorithmus

MISSING

2.1.12 Lemma (Eigenschaften der L_k -Matrizen)

- 1. L_k ist eine Frobeniusmatrix, d.h. sie unterscheidet sich höchstens in einer Spalte von der Einheitsmatrix I.
- 2. $L_k^{-1} = I + l_k e_k^T$
- 3. Es gilt:

$$L = L_1^{-1} \cdot \dots \cdot L_{n-1}^{-1}$$

$$= I + \sum_{i=1}^{n-1} l_i e_i^T$$

$$= \begin{pmatrix} 1 & 0 \\ \vdots & \vdots \\ l_{ij} & 1 \end{pmatrix}$$

$$= I + \widetilde{L}$$

$$(2.1.9)$$

Hiermit folgt:

2.1.13 Satz (LR- oder LU-Zerlegung)

Das obige Verfahren ((2.1.2) und (2.1.3)) erzeugt unter der Voraussetzung von nichtnullwertigen Pivotelementen eine Faktorisierung

$$A = L \cdot R$$

wobei R eine obere Dreiecksmatrix und L eine untere, normierte Dreiecksmatrix ist, d.h. für $i = 1, \dots, n$ gilt $l_{ii} = 1$.

Weiterhin existiert zu jeder regulären Matrix höchstens eine solche Zerlegung.

Beweis. MISSING

2.2 Gaußsches Eliminationsverfahren mit Pivotisierung

Beispiel Die Matrix $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ ist invertierbar, aber die Gauß-Elimination versagt. Permutiere also die erste mit der zweiten Zeile und der Algorithmus wird anwendbar.

Allgemein Vermeide die Division durch betragsmäßig kleine Zahlen!

2.2.1 Spaltenpivotisierung (=partielle/ halbmaximale Pivotisierung)

Im k-ten Eliminationsschritt ist

MISSING

2.2.2 Bemerkung

- a) Hiermit gilt $|l_{jk} \ll 1$.
- b) Anstelle von Spaltenpivotisierung kann eine **Zeilenpivotisierung** durchgeführt werden. Welche günstiger (in cpu-time) ist, hängt von der Rechnerarchitektur und der damit zusammenhängenden Umsetzung des Gauß-Algorithmus ab. (Beispielsweise greifen Vektorrechner entweder auf die gesamte Spalte oder auf die gesamte Zeile einer Matrix zu und bevorzugen dementsprechend Operationen spaltenbzw. zeilenweise.)
- c) Der Aufwand enthält (bis auf $|\cdot|$) keine Rechenoperationen (flops), aber $\mathcal{O}(n^2)$ Vergleiche und Vertauschungen.
- d) Eine vollständige Pivotsuche sucht das betragsmäßig größte Element der gesamten Restmatrix und benötigt $\mathcal{O}(n^3)$ Vergleiche (sie wird so gut wie nie angewendet).

Damit die LR-Zerlegung unabhängig von der rechten Seite erstellt werden kann, müssen die Permutationen gespeichert werden. Hierfür verwendet man einen sog. **Permutationsvektor** Π , wobei

$$\Pi^{(k-1)}(r) = s$$

bedeutet, dass nach dem (k-1)-ten Eliminationsschritt in der r-ten Zeile von $A^{(k-1)}$ die s-te bearbeitete Zeile von A steht, also

$$\Pi^{(k)}(k) = \Pi^{(k-1)}(p)$$

$$\Pi^{(k)}(p) = \Pi^{(k-1)}(k) \quad \text{und entsprechend}$$

$$\Pi^{(k)}(i) = \Pi^{(k)}(i) \quad \text{für } i \neq k, p$$

Für die Permutationsmatrix

$$P_{\Pi} = (e_{\Pi(1)}, \dots, e_{\Pi(n)})$$
 $e_{j} \coloneqq \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow \text{j-te Stelle}$

mit PA = LR

gilt

$$P^{-1} = P^T$$

und

 $\det P_{\Pi} = sign(\Pi) = \begin{cases} +1 & \text{falls } \Pi \text{ von gerader} \\ -1 & \text{falls } \Pi \text{ von ungerader} \end{cases}$ Anzahl an Transpositionen erzeugt wird

2.2.3 Gauß-Elimination mit Spaltenpivotisierung

Der zugehörige Algorithmus zur Spaltenpivotisierung ist:

```
\pi(1:n) = [1:n]
for k = 1, ..., n-1
| bestimme Pivotzeile p, so dass
| |a_{pk}| = \max\{|a_{jk}|, j = k, ..., n\}
| \pi(k) \leftrightarrows^1 \pi(p)
| A(k, 1:n) \leftrightarrows A(p, 1:n)
| if a_{kk} \ne 0
| |zeile = [k+1:n]
| A(zeile, k) = A(zeile, k)/a_{kk}
| A(zeile, zeile) = A(zeile, zeile) - A(zeile, k)A(k, zeile)
| else
| | ,,A ist singulär"
| end
end

s bedeutet ,,vertausche mit"
```

2.2.4 Satz: Dreieckszerlegung mit Permutationsmatrix

Für jede invertierbare Matrix A existiert eine Permutationsmatrix P, so dass eine Dreieckszerlegung

$$PA = LR$$

existiert. P kann so gewählt werden, dass alle Elemente von L betragsmäßig kleiner oder gleich 1 sind, d.h.

$$|l_{ij}| \le 1 \quad \forall i, j$$

Beweis. Da det $A \neq 0$ ist, existiert eine Transposition τ_1 , s.d.

$$a_{11}^{(1)} = a_{\tau_1,1} \neq 0$$

und

$$|a_{\tau_1,1}| \ge |a_{i1}| \quad \forall i = 1, \dots, n$$
.

Wir erhalten damit

$$L_1 P_{\tau_1} \cdot A = A^{(1)} = \begin{pmatrix} a_{11}^{(1)} & \cdots & \\ 0 & \\ \vdots & B^{(1)} \\ 0 & \end{pmatrix}$$

und alle Elemente von L_1 sind betragsmäßig kleiner oder gleich 1 sowie det L_1 = 1. Daraus folgt

$$\det B^{(1)} = \frac{1}{a_{11}^{(1)}} \cdot \det A^{(1)}$$

$$= \frac{1}{a_{\tau_1,1}^{(1)}} \cdot \det(L_1) \cdot \det(A)$$

$$= 0$$

Also ist $B^{(1)}$ invertierbar.

Induktiv erhalten wir dann

$$R = A^{(n-1)} = L_{n-1}P_{\tau_{n-1}} \cdot \ldots \cdot L_1P_{\tau_1} \cdot A$$

Da τ_i nur zwei Zahlen $\geq i$ vertauscht, ist

$$\Pi_i \coloneqq \tau_{n-1} \circ \cdots \circ \tau_i \quad \text{ für } i = 1, \dots (n-1)$$

eine Permutation der Zahlen $\{i, \ldots, n\}$, d.h. insbesondere gilt:

$$\Pi_i(j) = j$$
 für $j = 1, ..., (i-1)$
 $\Pi_i(j) \in \{i, ..., n\}$ für $j = i, ..., n$.

$$P_{\Pi_{i+1}} = (e_1, \dots e_i, e_{\Pi_{i+1}(i+1)}, \dots, e_{\Pi_{i+1}(n)}) = \begin{pmatrix} I_i & 0 \\ 0 & P_{\sigma} \end{pmatrix}$$

2 Lineare Gleichungssysteme: Direkte Methoden

Damit folgt:

$$\begin{split} P_{\Pi_{i}(i+1)} \cdot L_{i} \cdot P_{\Pi_{i+1}}^{-1} &= P_{\Pi_{i+1}} \cdot \begin{pmatrix} I_{i} & 0 \\ \hline -l_{i+1,i} & \\ 0 & \vdots & I_{n-i} \end{pmatrix} \cdot \begin{pmatrix} I_{i} & 0 \\ 0 & P_{\sigma}^{-1} \end{pmatrix} \\ &= \begin{pmatrix} I_{i} & 0 \\ 0 & P_{\sigma} \end{pmatrix} \cdot \frac{1}{1} \cdot \begin{pmatrix} I_{i} & 0 \\ \hline \cdot & -l_{i+1,i} & \\ 0 & \vdots & P_{\sigma}^{-1} \\ -l_{n,i} & \end{pmatrix} \\ &= \begin{pmatrix} I_{i} & 0 \\ \hline -l_{\Pi_{i+1}(i+1),i} & \\ 0 & \vdots & I_{n-i} \\ -l_{\Pi_{i+1}(n),i} & \end{pmatrix} \\ &= I - (P_{\Pi_{i+1}} l_{i}) e_{i}^{T} \\ &=: \widehat{L}_{i} \end{split}$$

und

$$\begin{split} R &= L_{n-1} \\ & \cdot \left(P_{\tau_{n-1}} L_{n-2} P_{\tau_{n-1}}^{-1} \right) \\ & \cdot \left(P_{\tau_{n-1}} P_{\tau_{n-2}} L_{n-2} P_{\tau_{n-2}}^{-1} P_{\tau_{n-1}}^{-1} \right) \\ & \vdots \\ & \cdot \left(P_{\tau_{n-1}} \cdots P_{\tau_{1}} L_{1} P_{\tau_{1}} \cdots P_{\tau_{n-1}} \right) \cdot A \\ &= L_{n-1} \widehat{L}_{n-2} \cdots \widehat{L}_{1} P_{\Pi_{1}} \cdot A \end{split}$$

Nach Lemma 2.1.12 gilt daher, es existiert eine Permutation Π_1 mit

$$P_{\Pi_1} \cdot A = LR$$
,

wobei R obere Dreiecksgestalt hat und

$$L = \begin{pmatrix} 1 & & & 0 \\ l_{\Pi_{2}(2),1} & \ddots & & \\ \vdots & \ddots & 1 & \\ l_{\Pi_{1}(n),1} & \cdots & l_{\Pi_{1}(n),n-1} & 1 \end{pmatrix}$$
 mit $|l_{ij}| \le 1$

gilt.

2.2.5 Lösen eines Gleichungssystems Ax = b

2.2.6 Bemerkungen

2.2.7 Beispiel zur Pivotisierung

15.10.2014

3 Fehleranalyse

$$\begin{array}{c|c} \widetilde{f} \text{ statt } f \\ x+\varepsilon \text{ statt } x \\ \hline \text{Eingabe} & \longrightarrow & \text{Algorithmus} \\ \end{array} \qquad \begin{array}{c|c} \widetilde{f}(x+\varepsilon) \text{ statt } f(x) \\ \hline \text{Resultat} \end{array}$$

Bei der Fehleranalyse liegt das Hauptaugenmerk auf

Eingabefehler

z.B.Rundungsfehler, Fehler in Messdaten, Fehler im Modell (falsche Parameter)

Fehler im Algorithmus

- z.B. Rundungsfehler durch Rechenoperationen, Approximationen (z.B. Ableitung durch Differenzenquotient oder die Berechnung von Sinus durch abgebrochene Reihenentwicklung)
- 1. Frage Wie wirken sich Eingabefehler auf das Resultat unabhängig vom gewählten Algorithmus aus?
- 2. Frage Wie wirken sich (Rundungs-)Fehler des Algorithmus aus? Und wie verstärkt der Algorithmus Eingabefehler?

3.1 Zahlendarstellung und Rundungsfehler

Auf (Digital-)Rechnern können nur endlich viele Zahlen realisiert werden. Die wichtigsten Typen sind:

• ganze Zahlen (integer):

$$z=\pm\sum_{i=0}^m z_i\beta_i \qquad \qquad \text{mit} \quad \begin{array}{l} \beta=\text{Basis des Zahlensystems (oft }\beta=2) \\ z_i\in\{0,\cdots\beta-1\} \end{array}$$

• Gleitpunktzahlen (floating point)

3.1.1 Definition: Gleitkommazahl

Eine Zahl $x \in \mathbb{Q}$ mit einer Darstellung

$$x = \sigma \cdot (a_1.a_2...a_t)_{\beta} \cdot \beta^e = \sigma \beta^e \cdot \sum_{\nu=1}^t a_{\nu} \beta^{-\nu+1}$$

$$\beta \in \mathbb{N} \qquad \text{Basis des Zahlensystems}$$

$$\sigma \in \{\pm 1\} \qquad \text{Vorzeichen}$$

$$m = (a_1.a_2 \cdots a_t)_{\beta} \qquad \text{Mantisse}$$

$$= \sum_{\nu=1}^t a_{\nu} \beta^{-\nu+1}$$

$$a_i \in \{0, \cdots, \beta-1\} \qquad \text{Ziffern der Mantisse}$$

$$t \in \mathbb{N} \qquad \text{Mantissenlänge}$$

$$e \in \mathbb{Z} \qquad \text{mit } e_{min} \leq e \leq e_{max} \text{ Exponent}$$

heißt Gleitkommazahl mit t Stellen und Exponent e zur Basis b. Ist $a_1 \neq 0$, so heißt x normalisierte Gleitkommazahl

3.1.2 Bemerkung

- a) 0 ist keine normalisierte Gleitkommazahl, da $a_1 = 0$ ist.
- b) $a_1 \neq 0$ stellt sicher, dass die Gleitkommadarstellung eindeutig ist.
- c) In der Praxis werden auch nicht-normalisierte Darstellungen verwendet.
- d) Heutige Rechner verwenden meist $\beta = 2$, aber auch $\beta = 8$, $\beta = 16$.

3.1.3 Beispiel

bit-Darstellung nach IEEE-Standard 754 von floating point numbers Sei die Basis $\beta=2.$

einfache Genauigkeit (float) Speicherplatz
$$t$$
 e_{min} e_{max} doppelte Genauigkeit (double) 64bits = 8Bytes 52 -1022 1023

Darstellung im Rechner (Bitmuster) für float:

$$\boxed{s \mid b_0 \cdots b_7 \mid a_2 \cdots a_{24}}$$
 (Da $a_1 \neq 0$, also $a_1 = 1$ gilt, wird a_1 nicht gespeichert)

Interpretation $(s, b, a_i \in \{0, 1\} \forall i)$

Abbildung 3.1: Ungleichmäßige Verteilung der Maschinenzahlen im Dezimalsystem

• s Vorzeichenbit:
$$\sigma = (-1)^s \Rightarrow \frac{\sigma(0)}{\sigma(1)} = 1$$

• $b = \sum_{i=0}^{7} b_i \cdot 2^i \in \{1, \dots, 254\}$ speichert den Exponenten mit $e = b - \underbrace{127}$ (kein Vorzeichen nötig)

Basiswert Beachte: $b_0=\cdots=b_7=1$ sowie $b_0=\cdots=b_7=0$ sind bis auf Ausnahmen keine gültigen Exponenten

- $m = (a_1.a_2...a_{24}) = 1 + \sum_{\nu=2}^{24} a_{\nu} 2^{1-\nu}$ stellt die Mantisse dar, $a_1 = 1$ wird nicht abgespeichert.
- Besondere Zahlen per Konvention:

$$x = 0$$
: s bel., $b = 0$, $m = 1$ $s \mid 0 \cdots 0 \mid 0 \cdots 0$

$$x = \pm \infty$$
: s bel., $b = 255$, $m = 1$ s $1 \cdot \cdot \cdot \cdot 1$ $0 \cdot \cdot \cdot \cdot 0$

$$x = \text{NaN } s \text{ bel.}, b = 255, m \neq 1$$

 $x = (-1)^s$ s bel., b = 0, $m \neq 1$ und x hat die Form $x = (0 + \sum_{\nu=2}^{24} a_{\nu} \cdot 2^{1-\nu}) \cdot 2^{126}$ ("denormalized" number)

Betragsmäßig größte Zahl:

$$0 \mid 01 \cdots 1 \mid 1 \cdots 1$$
 $x_{max} = (2 - 2^{-23}) \cdot 2^{127} \approx 3, 4 \cdot 10^{38}$

Betragsmäßig kleinste Zahl:

$$x_{min} = (2 - 2^{-23}) \cdot 2^{-126} = 2^{-149} \approx 1, 4 \cdot 10^{-45}$$

3.1.4 Verteilung der Maschinenzahlen

ungleichmäßig im Dezimalsystem, z. B.

$$x = \pm a_1.a_2a_3 \cdot 2^e$$
 $-2 \le e \le 1$ $a_i \in \{0, 1\}$

ist im Dualsystem gleichmäßig verteilt.

3.1.5 Bezeichnungen

overflow es ergibt sich eine Zahl, die betragsmäßig größer ist als die größte maschinendarstellbare Zahl

underflow entsprechend, betragsmäßig kleiner als die kleinste positive Zahl

Bsp.: overflow beim integer b = e + 127

$$\begin{array}{cccc} b & = 254 & 11111110 \\ & + & 3 & 00000011 \\ b + 3 = 257 \bmod 2^8 & = & 1 & 100000001 \end{array}$$

3.1.6 Rundungsfehler

Habe $x \in \mathbb{R}$ die normalisierte Darstellung

$$x = \sigma \cdot \beta^{e} \left(\sum_{\nu=1}^{t} a_{\nu} \beta^{1-\nu} + \sum_{\nu=t+1}^{\infty} a_{\nu} \beta^{1-\nu} \right)$$
$$= \sigma \cdot \beta^{e} \left(\sum_{\nu=1}^{t} a_{\nu} \beta^{1-\nu} + \beta^{1-t} \sum_{l=1}^{\infty} a_{t+l} \beta^{-l} \right)$$

mit $e_{min} \le e \le e_{max}$, dann wird mit fl(x) die gerundete Zahl bezeichnet, wobei fl(x) eindeutig gegeben ist durch die Schranke an den **absoluten Rundungsfehler**

$$|fl(x) - x| \le \begin{cases} \frac{1}{2}\beta^{e+1+t} & \text{bei symmetrischem Runden} \\ \beta^{e+1+t} & \text{bei Abschneiden} \end{cases}$$

Für die relative Rechengenauigkeit folgt somit

$$\frac{|fl(x) - x|}{|x|} \le \begin{cases} \frac{1}{2}\beta^{1-t} & \text{bei symmetrischem Runden} \\ \beta^{1-t} & \text{bei Abschneiden} \end{cases}$$

Die Maschinengenauigkeit des Rechners ist daher durch

$$eps = \beta^{1-t}$$
 (für float $\approx 10^{-7}$, für double $\approx 10^{-16}$)

gegeben.

Die Mantissenlänge bestimmt also die Maschinengenauigkeit. Bei einfacher Genauigkeit ist fl(x) bis auf ungefähr 7 signifikante Stellen genau.

Im Folgenden betrachten wir symmetrisches Runden und definieren daher

$$\tau = \frac{1}{2}eps$$

Weiterhin gilt:

Abbildung 3.2: Eingabemenge einer Maschinenzahl

a) Die kleinste Zahl am Rechner, welche größer als 1 ist, ist

$$1 + eps$$

b) Eine Maschinenzahl x repräsentiert eine Eingabemenge

$$E(x) = \{ \widetilde{x} \in \mathbb{R} : |\widetilde{x} - x| \le \tau |x| \}$$

3.1.7 Bemerkung

Gesetze der arithmetischen Operationen gelten i.A. nicht, z.B.

- x Maschinenzahl $\Rightarrow fl(x + \nu) = x$ für $|\nu| < \tau |x|$
- Assoziativ- und Distributivgesetze gelten nicht, z.B. für $\beta=10,\,t=3,\,a=0,1,\,b=105,\,c=-104$ gilt:

⇒ Für einen Algorithmus ist die Reihenfolge der Operationen wesentlich! Mathematisch äquivalente Formulierungen können zu verschiedenen Ergebnissen führen.

3.1.8 Auslöschung von signifikanten Stellen

Sei $x = 9,995 \cdot 10^{-1}, y = 9,984 \cdot 10^{-1}$. Runde auf drei signifikante Stellen und berechne x - y:

$$\widetilde{f}(x,y) \coloneqq fl(fl(x) - fl(y)) = fl(1,00 \cdot 10^{0} - 9,98 \cdot 10^{-1})$$

$$= fl(0,02 \cdot 10^{-1})$$

$$= fl(2,00 \cdot 10^{-3})$$

$$f(x,y) \coloneqq x - y$$

$$\coloneqq 0,0011 = 1,1 \cdot 10^{-3}$$

Daraus ergibt sich der relative Fehler

$$\frac{|\widetilde{f}(x,y) - f(x,y)|}{|f(x,y)|} = \frac{|2 \cdot 10^{-3} - 1, 1 \cdot 10^{-3}|}{|1, 1 \cdot 10^{-3}|} = 82\%$$

Der Grund hierfür ist, dass das Problem der Substraktion zweier annähernd gleich großer Zahlen schlecht konditioniert ist.

Zwei Regeln:

- 1) Umgehbare Substraktion annähernd gleich großer Zahlen vermeiden!
- 2) Unumgängliche Substraktion möglichst an den Anfang des Algorithmus stellen! (siehe später)

3.2 Kondition eines Problems

Es wird das Verhältnis

$$\frac{Ausgabefehler}{Eingabefehler}$$

untersucht.

3.2.1 Definition: Problem

Sei $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ mit U offen und sei $x \in U$. Dann bezeichne (f, x) das Problem, zu einem gegebenen x die Lösung f(x) zu finden.

3.2.2 Definition: absoluter und relativer Fehler

Sei $x \in \mathbb{R}^n$ und $\widetilde{x} \in \mathbb{R}^n$ eine Näherung an x. Weiterhin sei $\|\cdot\|$ eine Norm auf \mathbb{R}^n .

- a) $\|\widetilde{x} x\|$ heißt absoluter Fehler
- b) $\frac{\|\widetilde{x}-x\|}{\|x\|}$ heißt **relativer Fehler**

Da der relative Fehler skalierungsinvariant ist, d.h. unabhänging von der Wahl von x ist, ist dieser i.d.R. von größerem Interesse. Beide Fehler hängen von der Wahl der Norm ab! Häufig werden Fehler auch komponentenweise gemessen:

Für
$$i=1,\cdots,n$$
:
$$|\widetilde{x}_i-x_i| \leq \delta$$
 (absolut)
$$|\widetilde{x}_i-x_i| \leq \delta |x_i|$$
 (relativ)

3.2.3 Wiederholung: Normen

Euklidische Norm (
$$l_2$$
-Norm):
$$\|x\|_2 \coloneqq \sqrt{\sum_{i=1}^n |x_i|^2}$$

 $IMAGE\ MISSING$

 $\text{Maximumsnorm } (l_{\infty}\text{-Norm}) \text{:} \qquad \|x\|_{\infty} \coloneqq \max\{|x_i|: i=1, \cdots n\}$

IMAGE MISSING

Summennorm (
$$l_1$$
-Norm): $||x||_1 \coloneqq \sum_{i=1}^n |x_i|$

IMAGE MISSING

Hölder-Norm
$$(l_p\text{-Norm})$$
: $||x||_p \coloneqq \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$

3.2.4 Definition: Matrixnorm

Auf dem \mathbb{R}^n sei die Norm $\|\cdot\|_a$ und auf dem \mathbb{R}^m die Norm $\|\cdot\|_b$ gegeben. Dann ist die zugehörige **Matrixnorm** gegeben durch:

$$||A||_{a,b} \coloneqq \sup_{x \neq 0} \frac{||Ax||_b}{||x||_a}$$

$$= \sup_{||x||_a = 1} ||Ax||_b$$
(3.2.1)

Also ist $||A||_{a,b}$ die kleinste Zahl c > 0 mit

$$\|Ax\|_b \le c \|x\|_a \qquad \forall x \in \mathbb{R}^n$$

3.2.5 Definition: Frobeniusnorm, p-Norm, Verträglichkeit

Sei $A \in \mathbb{R}^{m \times n}$.

- a) **Frobeniusnorm** (Schurnorm): $||A||_F := \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}^2|}$
- b) **p-Norm**: $||A||_p := ||A||_{p,p}$
- c) Eine Matrixnorm heißt verträglich mit den Vektornormen $\|\cdot\|_a$, $\|\cdot\|_b$, falls gilt ¹:

$$||Ax||_b \le ||A|| \cdot ||x||_a \quad \forall x \in \mathbb{R}^n$$

3.2.6 Bemerkungen

a) Die Normen $\|\cdot\|_F$ und $\|\cdot\|_p$ sind $\mathbf{submultiplikativ}$, d.h.

$$||A \cdot B|| \le ||A|| \cdot ||B||$$

b) Die Norm $\|\cdot\|_{1,1}$ wird auch **Spaltensummennorm** genannt:

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|$$

Sie ist das Maximum der Spaltensummen².

c) Die Norm $\|\cdot\|_{\infty,\infty}$ wird auch **Zeilensummennorm** genannt³:

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|$$

- d) Die Frobeniusnorm $\|\cdot\|_F$ ist verträglich mit der euklidischen Norm $\|\cdot\|_2$
- e) Die Wurzeln aus den Eigenwerten von A^TA heißen **Singulärwerte** σ_i von A. Mit ihnen kann die $\|\cdot\|_{2,2}$ Norm dargestellt werden⁴:

$$\begin{split} \|A\|_2 &= \max\{\sqrt{\mu}: A^T A \cdot x = \mu x \text{ für ein } x \neq 0\} \\ &= \sigma_{max} \end{split}$$

22.10.2014

Beachte: $||A||_{a,b}$ ist die kleinste Norm im Gegensatz zu ||A||, welche hier beliebig ist.

²Beweis: siehe Übungsblatt 3

³Beweis: siehe Übungsblatt 3

⁴Beweis: siehe Übungsblatt 3

3.2a) Normweise Konditionsanalyse

3.2.7 Definition: absolute und relative normweise Kondition

Sei (f,x) ein Problem mit $f:U\subset\mathbb{R}^n\to\mathbb{R}^m$ und $\|\cdot\|_a$ auf \mathbb{R}^n und $\|\cdot\|_b$ auf \mathbb{R}^m eine Norm.

a) Die **absolute normweise Kondition** eines Problems (f, x) ist die kleinste Zahl $\kappa_{abs} > 0$ mit

$$\|f(\widetilde{x}) - f(x)\|_{b} \leq \kappa_{abs}(f, x) \|\widetilde{x} - x\|_{a} + o(\|\widetilde{x} - x\|_{a})$$

$$\left(f(\widetilde{x}) - f(x) = \underbrace{f'(x)(\widetilde{x} - x) \pm o(\|\widetilde{x} - x\|)}_{Taylorentwicklung} \quad \text{für } \widetilde{x} \to x\right)$$

$$(3.2.2)$$

b) Die **relative normweise Kondition** eines Problems (f, x) mit $x \neq 0, f(x) \neq 0$ ist die kleinste Zahl $\kappa_{rel} > 0$ mit

$$\frac{\|f(\widetilde{x}) - f(x)\|_b}{\|f(x)\|_b} \le \kappa_{rel}(f, x) \frac{\|\widetilde{x} - x\|_a}{\|x\|_a} + o\left(\frac{\|\widetilde{x} - x\|_a}{\|x\|_a}\right) \qquad \text{für } \widetilde{x} \to x$$
 (3.2.3)

- c) Sprechweise:
 - falls κ "klein" ist, ist das Problem "gut konditioniert"
 - falls κ "groß" ist, ist das Problem "schlecht konditioniert"

3.2.8 Lemma

Falls f differenzierbar ist, gilt

$$\kappa_{abs}(f, x) = \|Df(x)\|_{ab}$$
(3.2.4)

und für $f(x) \neq 0$

$$\kappa_{rel}(f, x) = \frac{\|x\|_a}{\|f(x)\|_b} \cdot \|Df(x)\|_{a,b}$$
(3.2.5)

wobei Df(x) die Jakobi-Matrix bezeichnet.

3.2.9 Beispiel: Kondition der Addition

 $f(x_1, x_2) \coloneqq x_1 + x_2, f : \mathbb{R}^2 \to \mathbb{R}.$ Wähle l_1 -Norm auf \mathbb{R}^2 (und \mathbb{R})

$$Df(x_1, x_2) = (\nabla f^T) = (\frac{\partial}{\partial x_1} f, \frac{\partial}{\partial x_2} f)$$
$$= (1, 1)$$
 (Matrix!)

damit

$$\kappa_{abs}(f, x) = \|Df(x)\|_{1,1}$$

$$= \|Df(x)\|_{1}$$

$$= 1$$

$$\kappa_{rel}(f, x) = \frac{\|x\|_{1}}{\|f(x)\|_{1}} \cdot \|Df(x)\|_{1}$$

$$= \frac{|x_{1}| + |x_{2}|}{|x_{1} + x_{2}|}$$
(Matrix-Norm!!)
$$= 1$$

Daraus folgt: Die Addition zweier Zahlen mit gleichem Vorzeichen ergibt

$$\kappa_{rel} = 1$$

Die Subtraktion zweier annähernd gleich großer Zahlen ergibt eine sehr schlechte relative Konditionierung:

$$\kappa_{rel} \gg 1$$

Zum Beispiel in 3.1.8: Es ist

$$x = \begin{pmatrix} 9,995 \\ -9,984 \end{pmatrix} \cdot 10^{-1}$$
$$\widetilde{x} = fl(x) = \begin{pmatrix} 1 \\ -9,98 \cdot 10^{-1} \end{pmatrix}$$

also

$$\frac{|f(\widetilde{x}) - f(x)|}{|f(x)|} = \frac{0.9}{1.1} = 0, \overline{81}$$

$$\leq \kappa_{rel}(f, x) \cdot \frac{\|\widetilde{x} - x\|_{1}}{\|x\|_{1}}$$

$$= \kappa_{rel}(f, x) \cdot 4, 6 \cdot 10^{-4}$$

3.2.10 Beispiel: Lösen eines Gleichungssystems

Sei $A \in \mathbb{R}^{n \times n}$ invertierbar und $b \in \mathbb{R}^n$. Es soll

$$Ax = b$$

gelöst werden. Die möglichen Lösungen in A und in b lassen sich folgendermaßen ermitteln:

a) Betrachte die Störungen in b: Sei hierzu

$$f: b \mapsto x = A^{-1}b$$

Berechne dann $\kappa(f,b)$ und löse

$$A(x + \Delta x) = b + \Delta b$$

$$f(b + \Delta b) - f(b) = \Delta x$$

$$= A^{-1} \cdot \Delta b \qquad \text{da } x = A^{-1}b$$

$$\Rightarrow \|\Delta x\|_b = \|A^{-1}\Delta b\|_b$$

$$\leq \|A^{-1}\|_{a,b} \cdot \|\Delta b\|_b \qquad \forall b, \Delta b$$

wobei $\|\cdot\|$ auf $\mathbb{R}^{n\times n}$ die dem \mathbb{R}^n zugeordnete Matrix-Norm sei.

Die Abschätzung ist **scharf**, d.h. es gibt ein $\Delta b \in \mathbb{R}^n$, so dass "=" gilt, nach Definition 3.2.4.

Also gilt 5 :

$$\kappa_{abs}(f,b) = \|A^{-1}\|_{a,b}$$
(3.2.6)

unabhängig von b. $(x \mapsto Ax \quad \kappa_{abs})$ Ebenso folgt die scharfe Abschätzung

$$\frac{\|f(b + \Delta b) - f(b)\|}{\|f(b)\|} = \frac{\|\Delta x\|}{\|x\|}$$

$$= \frac{\|A^{-1}\Delta b\|}{\|x\|}$$

$$\leq \frac{\|A^{-1}\| \cdot \|b\|}{\|x\|} \cdot \frac{\|\Delta b\|}{\|b\|}$$

Damit

$$\kappa_{rel}(f,b) = ||A^{-1}|| \cdot \frac{||b||}{||A^{-1} \cdot b||}$$
(3.2.7)

 ⁵vgl. auch Lemma 3.2.8: $\kappa_{abs}(f,b) = \|Df(b)\|_{a,b} = \|A^{-1}\|_{a,b}$

3 Fehleranalyse

Da $||b|| \le ||A|| \cdot ||x|| = ||A|| \cdot ||A^{-1}b||$ folgt:

$$\kappa_{rel}(f, b) \le ||A|| \cdot ||A^{-1}||$$
(3.2.8)

für alle (möglichen rechten Seiten) b.

3.2.8 ist scharf in dem Sinne, dass es ein $\widehat{b} \in \mathbb{R}^n$ gibt mit

$$\|\widehat{b}\| = \|A\| \cdot \|\widehat{x}\|$$

und somit

$$\kappa_{rel}(f, \widehat{b}) = ||A|| \cdot ||A^{-1}||$$

b) Betrachte die Störungen in A: Löse also

$$(A + \Delta A)(x + \Delta x) = b$$

Sei hierzu

$$f: A \mapsto x = A^{-1}b$$

$$\mathbb{R}^{n \times n} \to \mathbb{R}^n$$

und berechne $\kappa(f, A)$ mittels Ableitung $Df(A) : \mathbb{R}^{n \times n} \to \mathbb{R}^n$:

$$C \mapsto Df(A)C = \frac{d}{dt} \left((A + tC)^{-1} \cdot b \right) \Big|_{t=0}$$
$$= \frac{d}{dt} \left((A + tC)^{-1} \right) \Big|_{t=0} \cdot b$$

Weiterhin gilt

$$\frac{d}{dt}\left((A+tC)^{-1}\right)\Big|_{t=0} = -A^{-1}CA^{-1},\tag{3.2.9}$$

da

$$0 = \frac{d}{dt}I$$

$$= \frac{d}{dt}\left((A+tC)(A+tC)^{-1}\right)$$

$$= C(A+tC)^{-1} + (A+tC) \cdot \frac{d}{dt}(A+tC)^{-1}$$

$$\Leftrightarrow \frac{d}{dt}(A+tC)^{-1} = -(A+tC)^{-1} \cdot C(A+tC)^{-1},$$

falls (A + tC) invertierbar ist. Für ein genügend kleines t ist das gewährleistet, da A invertierbar ist (s. Lemma 3.2.12).

$$\Rightarrow Df(A)C = -A^{-1}CA^{-1}b$$

Somit folgt

$$\kappa_{abs}(f, A) = \|Df(A)\|
= \sup_{\substack{C \neq 0 \\ C \in \mathbb{R}^{n \times n}}} \frac{\|A^{-1}CA^{-1}b\|}{\|C\|}
\leq \sup_{\substack{C \neq 0 \\ C \in \mathbb{R}^{n \times n}}} \frac{\|A^{-1}\| \cdot \|C\| \cdot \|A^{-1}b\|}{\|C\|}
= \|A^{-1}\| \cdot \|x\|
\leq \|A^{-1}\|^2 \cdot \|b\|
\kappa_{rel}(f, A) = \frac{\|A\|}{\|f(A)\|} \cdot \|Df(A)\|
\leq \|A\| \cdot \|A^{-1}\|$$
(3.2.10)

c) betrachte Störungen in A und b:

$$(A + \Delta A)(x + \Delta x) = (b + \Delta b)$$

Für κ müsste $\|(A,b)\|$ festgelegt werden. Dies wird jedoch nicht betrachtet. Es gilt aber folgende Abschätzung für invertierbare Matrizen $A \in \mathbb{R}^{n \times n}$ und Störungen $\Delta A \in \mathbb{R}^{n \times n}$ mit $\|A^{-1}\| \cdot \|\Delta A\| < 1$:

$$\frac{\|\Delta x\|}{\|x\|} \le \|A\| \cdot \|A^{-1}\| \cdot (1 - \|A^{-1}\| \cdot \|\Delta A\|) \cdot \underbrace{\left(\frac{\|\Delta b\|}{\|b\|} + \frac{\|\Delta A\|}{\|A\|}\right)}_{\neq \frac{\|(\Delta A, \Delta b)\|}{\|(A, b)\|}}$$
(3.2.11)

Beweis. s. Übungsblatt

3.2.11 Definition: Kondition einer Matrix

Sei $\|\cdot\|$ eine Norm auf $\mathbb{R}^{n\times n}$ und $A\in\mathbb{R}^{n\times n}$ eine reguläre Matrix. Die Größe

$$\kappa_{\parallel \cdot \parallel}(A) = cond_{\parallel \cdot \parallel} \coloneqq \|A\| \cdot \|A^{-1}\|$$

heißt Kondition der Matrix bzgl. der Norm $\|\cdot\|$.

Ist $\|\cdot\|$ von einer Vektor-Norm $\|\cdot\|_p$ induziert, bezeichnet $cond_p(A)$ die $cond_{\|\cdot\|_p}(A)$. Wir schreiben cond(A) für $cond_2(A)$.

 $cond_{\|\cdot\|}(A)$ schätzt die relative Kondition eines linearen GLS Ax = b für alle möglichen Störungen in b oder in A ab und diese Abschätzung ist scharf.

Es stellt sich nun die Frage:

Wann existiert die Inverse der gestörten invertierbaren Matrix A? Hierzu werden wir die Relationen benötigen:

$$A + \Delta A = A(I + A^{-1}\Delta A)$$

und mit $C \in \mathbb{R}^{n \times n}$, ||C|| < 1

$$(I - C)^{-1} = \sum_{k=0}^{\infty} C^k$$
$$\|(I - C)^{-1}\| \le \frac{1}{1 - \|C\|}$$

27.10.2014

3.2.12 Lemma (Neumannsche Reihe)

Sei $C \in \mathbb{R}^{n \times n}$ mit ||C|| < 1 und mit einer submultiplikativen Norm $||\cdot||$, so ist (I - C) invertierbar und es gilt:

$$(I-C)^{-1} = \sum_{k=0}^{\infty} C^k$$

Weiterhin gilt:

$$\|(I-C)^{-1}\| \le \frac{1}{1-\|C\|}$$

Beweis. Es gilt zu zeigen, dass $\sum_{k=1}^{\infty} C^k$ existiert: Sei q := ||C|| < 1, dann gilt:

$$\begin{split} \left\| \sum_{k=0}^{m} C^k \right\| &\leq \sum_{k=0}^{m} \left\| C^k \right\| & \text{Dreiecksungleichung} \\ &\leq \sum_{k=0}^{m} \left\| C \right\|^k & \text{da } \left\| \cdot \right\| \text{ submultiplikativ} \\ &= \sum_{k=0}^{m} q^k \\ &= \frac{1-q^{m+1}}{1-q} \\ &\leq \frac{1}{1-\left\| C \right\|} & \forall m \in \mathbb{N}, \text{ da } q < 1 \text{ (geometr. Reihe)} \end{split}$$

Daraus folgt bereits, dass $\sum_{k=1}^{\infty} C^k$ existiert (nach Majorantenkriterium). Weiter gilt dann:

$$(I-C)\sum_{k=1}^{\infty} C^k = \lim_{m \to \infty} (I-C)\sum_{k=1}^m C^k$$
$$= \lim_{m \to \infty} (C^0 - C^{m+1})$$
$$= I$$

3.2.13 Bemerkung

a) Für symmetrische, positiv definite Matrix $A \in \mathbb{R}^{n \times n}$ gilt⁶:

$$\kappa_2(A) = \frac{\lambda_{max}}{\lambda_{min}} \tag{3.2.13}$$

b) Eine andere Darstellung von $\kappa(A)$ ist

$$\kappa(A) \coloneqq \frac{\max_{\|x\|=1} \|Ax\|}{\min_{\|x\|=1} \|Ax\|} \in [0, \infty]$$
 (3.2.14)

Diese ist auch für nicht invertierbare und rechteckige Matrizen wohldefiniert. Dann gilt offensichtlich:

- c) $\kappa(A) \ge 1$
- d) $\kappa(\alpha A) = \kappa(A)$ für $0 \neq \alpha \in \mathbb{R}$ (skalierungsinvariant)
- e) $A \neq 0$ und $A \in \mathbb{R}^{n \times n}$ ist genau dann singulär, wenn $\kappa(A) = \infty$. Wegen der Skalierungsinvarianz ist die Kondition zur Überprüfung der Regularität von A besser geeignet als die Determinante.

3.2.14 Beispiel: Kondition eines nichtlinearen Gleichungssystems

Sei $f:\mathbb{R}^n \to \mathbb{R}^n$ stetig differenzierbar und $y \in \mathbb{R}^n$ gegeben. Löse

$$f(x) = y$$

Gesucht:

$$\kappa(f^{-1},y)$$

 $^{^6}$ Beweis: siehe Übungsblatt 3

Abbildung 3.3: Gute und schlechte Kondition

mit f^{-1} Ausgabe und y Eingabe.

Sei Df(x) invertierbar, dann existiert aufgrund des Satzes für implizite Funktionen die inverse Funktion f^{-1} lokal in einer Umgebung von y mit $f^{-1}(y) = x$, sowie

$$D(f^{-1})(y) = (Df(x))^{-1}$$

Hiermit folgt:

$$\kappa_{abs}(f^{-1}, y) = \|(Df(x))^{-1}\|$$

$$\kappa_{rel}(f^{-1}, y) = \frac{\|f(x)\|}{\|x\|} \cdot \|(Df(x))^{-1}\|$$
(3.2.15)

Für skalare Funktionen $f: \mathbb{R} \to \mathbb{R}$ folgt somit:

$$\kappa_{rel}(f^{-1}, y) = \frac{|f(x)|}{|x|} \cdot \frac{1}{|f'(x)|}$$

Falls $|f'(x)| \to 0$ ist es eine schlechte absolute Kondition. Für $|f'(x)| \gg 0$ ist es eine gute absolute Kondition.

Damit bedeutet eine kleine Störung in y eine große Störung in x.

3.2b) Komponentenweise Konditionsanalyse

3.2.15 Beispiel

Falls A Diagonalgestalt hat, sind die Gleichungen unabhängig voneinander (entkoppelt). Die erwartete relative Kondition wäre dann – wie bei skalaren Gleicungen – stets gleich 1. Ebenso sind Störungen nur in der Diagonale zu erwarten. Jedoch:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & \varepsilon \end{pmatrix}$$

$$\Rightarrow A^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & \varepsilon^{-1} \end{pmatrix}$$

$$\Rightarrow \kappa_{\infty} = \kappa_{2} = \frac{1}{\varepsilon}$$
 für $0 < \varepsilon \le 1$

3.2.16 Definition: Komponentenweise Kondition

Sei (f,x) ein Problem mit $f(x) \neq 0$ und $x = (x_i)_{i=1,\dots,n}$ mit $x_i \neq 0$ für alle $i = 1,\dots,n$. Die **komponentenweise Kondition** von (f,x) ist die kleinste Zahl $\kappa_{rel} \geq 0$, so dass:

$$\frac{\|f(\widetilde{x}) - f(x)\|_{\infty}}{\|f(x)\|_{\infty}} \le \kappa_{rel} \cdot \max_{i} \frac{|\widetilde{x}_{i} - x_{i}|}{|x_{i}|} + o\left(\max_{i} \frac{|\widetilde{x}_{i} - x_{i}|}{|x_{i}|}\right) \qquad \text{für } \widetilde{x} \to x$$

Vorsicht:

$$\frac{\|\widetilde{x} - x\|_{\infty}}{\|x\|_{\infty}} \neq \max_{i} \frac{|\widetilde{x_i} - x_i|}{|x_i|}$$

3.2.17 Lemma

Sei f differenzierbar und fasse $|\cdot|$ komponentenweise auf, d.h. $|x| = \begin{pmatrix} |x_1| \\ \vdots \\ |x_n| \end{pmatrix}$. Dann gilt:

$$\kappa_{rel} = \frac{\||Df(x)| \cdot |x|\|_{\infty}}{\|f(x)\|_{\infty}}$$
(3.2.16)

Beweis. Vergleiche seien ebenfalls komponentenweise zu verstehen. Nach dem Satz von Taylor gilt:

$$f_{i}(\widetilde{x}) - f_{i}(x) = \left(\frac{\partial f_{i}}{\partial x_{i}}(x), \dots, \frac{\partial f_{i}}{\partial x_{n}}(x)\right) \cdot \begin{pmatrix} \widetilde{x}_{1} - x_{1} \\ \vdots \\ \widetilde{x}_{n} - x_{n} \end{pmatrix} + o\left(\|\widetilde{x} - x\|\right)$$

$$\Rightarrow |f_{i}(\widetilde{x}) - f_{i}(x)| \leq |Df(x)| \cdot \begin{pmatrix} |x_{1}| \cdot \frac{\widetilde{x}_{1} - x_{1}}{|x_{1}|} \\ \vdots \\ |x_{n}| \cdot \frac{\widetilde{x}_{n} - x_{n}}{|x_{n}|} \end{pmatrix} + o\left(\max_{i} \frac{\widetilde{x}_{i} - x_{i}}{|x_{i}|}\right) \qquad \text{da } x_{i} \text{ fest und } \widetilde{x}_{i} \to x_{i}$$

$$\leq |Df(x)| \cdot |x| \cdot \max_{i} \frac{\widetilde{x}_{i} - x_{i}}{|x_{i}|} + o\left(\max_{i} \frac{\widetilde{x}_{i} - x_{i}}{|x_{i}|}\right)$$

$$\Rightarrow \frac{\|f(\widetilde{x}) - f(x)\|_{\infty}}{\|f(x)\|_{\infty}} \leq \frac{\|\|Df(x)\| \cdot |x|\|_{\infty}}{\|f(x)\|_{\infty}} \cdot \max_{i} \frac{\widetilde{x}_{i} - x_{i}}{|x_{i}|} + o\left(\max_{i} \frac{\widetilde{x}_{i} - x_{i}}{|x_{i}|}\right)$$

Wähle $\widetilde{x}_i = x_j + h \cdot sign \frac{\partial f_i}{\partial x_j}(x)$ mit h > 0, dann gilt:

$$|Df_i(x)(\widetilde{x}-x)| = Df_i(x)(\widetilde{x}-x)$$

und in obiger Rechnung gilt Gleichheit.

Also folgt, dass

$$\frac{\||Df(x)|\cdot|x|\|_{\infty}}{\|f(x)\|_{\infty}} = \kappa_{rel}$$

3.2.18 Beispiel

a) Komponentenweise Kondition der Multiplikation

$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) \coloneqq x \cdot y$$

$$\Rightarrow Df(x,y) = (y,x)$$

$$\Rightarrow \kappa_{rel}(x,y) = \frac{\left\| (|y|,|x|) \cdot \binom{|x|}{|y|} \right\|_{\infty}}{|x \cdot y|}$$

$$= \frac{2 \cdot |x| \cdot |y|}{|x \cdot y|}$$

$$= 2$$

b) Komponentenweise Kondition eines linearen Gleichungssystems: Löse Ax=b mit möglichen Störungen in b, also zu

$$f: b \mapsto A^{-1}b$$

$$\kappa_{rel} = \frac{\| |A^{-1}| \cdot |b| \|_{\infty}}{\|A^{-1}b\|_{\infty}}$$

Falls A eine Diagonalmatrix ist, folgt:

$$\kappa_{rel} = 1$$

c) Komponentenweise Kondition des Skalarproduktes:

$$\langle x, y \rangle \coloneqq \sum_{i=1}^{n} x_{i} y_{i} = x^{T} y$$

$$f : \mathbb{R}^{2} \to \mathbb{R}, \ f(x, y) = \langle x, y \rangle$$

$$\Rightarrow Df(x, y) = (y^{T}, x^{T})$$

$$\kappa_{rel} = \frac{\left\| |(y^{T}, x^{T})| \cdot \left| \begin{pmatrix} x \\ y \end{pmatrix} \right| \right\|_{\infty}}{\left\| \langle x, y \rangle \right\|_{\infty}}$$

$$= \frac{2 \cdot |y^{T}| \cdot |x|}{\left| \langle x, y \rangle \right|}$$

$$= 2 \cdot \frac{\langle |x|, |y| \rangle}{\left| \langle x, y \rangle \right|}$$

$$= 2 \cdot \frac{\cos(|x|, |y|)}{\cos(x, y)}$$

da
$$cos(x, y) = \frac{\langle y, x \rangle}{\|x\|_2 \cdot \|y\|_2}$$
.

Abbildung 3.4: Schlechte Kondition des Skalarprodukts bei nahezu senkrechten Vektoren

Abbildung 3.5: Stabilität eines Algorithmus

Falls x und y nahezu senkrecht aufeinander stehen, kann das Skalarprodukt sehr schlecht konditioniert sein.

schlecht konditioniert sein. Zum Beispiel für $x = \widetilde{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ und $y = \begin{pmatrix} 1 + 10^{-10} \\ -1 \end{pmatrix}$, $\widetilde{y} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

3.3 Stabilität von Algorithmen

Bislang: Kondition eines gegebenen Problems (f, x).

Nun stellt sich die Frage: Was passiert durch das Implementieren am Rechner?

Ein "stabiler" Algorithmus sollte ein gut konditioniertes Problem nicht "kaputt machen".

3.3a) Vorwärtsanalyse

Die Fehlerfortpflanzung durch die einzelnen Rechenschritte, aus denen die Implementierung aufgebaut ist, wird abgeschätzt.

3.3.1 Bemerkung

Für die Rechenoperationene $+, -, \cdot, /$, kurz ∇ , gilt:

$$fl(a\nabla b) = (a\nabla b) \cdot (1+\varepsilon)$$

$$= (a\nabla b) \cdot \frac{1}{1+\mu}$$
(3.3.1)

 $\min |\varepsilon|, |\mu| \le eps.$ 29.10.2014

3.3.2 Beispiel

Sei $f(x_1, x_2, x_3) := \frac{x_1 x_2}{x_3}$ mit Maschinenzahlen x_i und $x_3 \neq 0$ und sei der Algorithmus durch

$$f(x_1, x_2, x_3) = (f^{(2)} \circ f^{(1)})(x_1, x_2, x_3)$$

gegeben mit

$$f^{(1)}(x_1, x_2, x_3) = (x_1 \cdot x_2, x_3)$$
 und
$$f^{(2)}(y, z) = \frac{y}{z}$$

Die Implementierung \widetilde{f} von f beinhaltet Rundungsfehler.

Sei $x = (x_1, x_2, x_3)$. Daraus folgt:

$$\widetilde{f}^{(1)}(x) = (fl(x_1 \cdot x_2), x_3)$$

= $(x_1 x_2 (1 + \varepsilon_1), x_3)$

mit $|\varepsilon_1| \le eps$:

$$\widetilde{f}(x) = \widetilde{f}^{(2)}(\widetilde{f}^{(1)}(x))$$

$$= fl(f^{(2)}(x_1x_2(1+\varepsilon_1), x_3))$$

$$= \frac{x_1x_2(1+\varepsilon_1)}{x_3} \cdot (1+\varepsilon_2)$$

$$= f(x) \cdot (1+\varepsilon_1)(1+\varepsilon_2)$$

mit $|\varepsilon_2| \le eps$:

$$\frac{|\widetilde{f}(x) - f(x)|}{|f(x)|} = |\varepsilon_1 + \varepsilon_2 + \varepsilon_1 \cdot \varepsilon_2|$$

$$\leq 2eps + eps^2$$

Dies ist eine "worst case" Analyse, da immer der maximale Fehler angenommen wird, und gibt i.d.R. eine starte Überschätzung des Fehlers an. Für qualitative Aussagen sind sie jedoch unnützlich.

In Computersystemen stehen mehr Operationen wie ∇ zur Verfügung, die mit einer relativen Genauigkeit eps realisiert werden können.

Daher:

3.3.3 Definition: Elementar ausführbar

Eine Abbildung $\phi: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ heißt **elementar ausführbar**, falls es eine elementare Operation $\widetilde{\phi}: \mathbb{F}^n \to \mathbb{F}^m$ gibt, wobei \mathbb{F} die Menge der Maschinenzahlen bezeichne mit

$$|\widetilde{\phi}_i(x) - \phi_i(x)| \le eps \cdot |\phi_i(x)| \quad \forall x \in \mathbb{F}^n \text{ und } i = 1, \dots, m.$$
 (3.3.2)

 $\widetilde{\phi}$ heißt dann **Realisierung** von ϕ .

Bemerkung: aus (3.3.2) folgt für $1 \le p \le \infty$:

$$\|\widetilde{\phi}(x) - \phi(x)\|_{p} \le eps \cdot \|\phi(x)\|_{n} \quad \forall x \in \mathbb{F}^{n}$$
 (3.3.3)

3.3.4 Definition: Algorithmus, Implementation

Sei $f: E \subseteq \mathbb{R}^n \to \mathbb{R}^m$ gegeben.

Ein Tupel $(f^{(1)}, \dots, f^{(l)})$ mit $l \in \mathbb{N}$ von elementar ausführbaren Abbildungen

$$f^{(i)}: U_1 \subseteq \mathbb{R}^{k_i} \to U_{i+1} \subseteq \mathbb{R}^{k_{i+1}}$$

mit $k_1 = n$ und $k_{l+1} = m$ heißt **Algorithmus** von f, falls

$$f = f^{(l)} \circ \dots \circ f^{(1)}$$

Das Tupel $(\widetilde{f}1^{(1)}, \dots, \widetilde{f}^{(l)})$ mit Abbildungen $\widetilde{f}^{(i)}$, welche Realisierungen der $f^{(i)}$ sind, heißt **Implementation** von $(f^{(1)}, \dots, f^{(l)})$. Die Komposition

$$\widetilde{f} = \widetilde{f}^{(l)} \circ \ldots \circ \widetilde{f}^{(1)}$$

heißt Implementation von f.

Im Allgemeinen gibt es verschiedene Implementierungen einer Abbildung f.

3.3.5 Lemma (Fehlerfortpflanzung)

Sei $x \in \mathbb{R}^n$ und $\widetilde{x} \in \mathbb{F}^n$ mit $|\widetilde{x}_i - x_i| \le eps|x_i|$ für alle $i = 1, \dots, n$. Sei $(f^{(1)}, \dots, f^{(l)})$ eine Algorithmus für f und $(\widetilde{f}^{(1)}, \dots, \widetilde{f}^{(l)})$ eine zugehörige Implementation. Mit den Abkürzungen

$$x^{(j+1)} \coloneqq f^{(j)} \circ \dots \circ f^{(1)}(x)$$
$$x^{(1)} \coloneqq x$$

und entsprechend mit $\widetilde{x}^{(j+1)}$ gilt, falls $x^{(j+1)} \neq 0$ für alle j = 0, ..., (l-1) und $\|\cdot\|$ eine beliebige p-Norm ist:

$$\frac{\|\widetilde{x}^{(j+1)} - x^{(j+1)}\|}{\|x^{(j+1)}\|} \le eps \cdot \mathcal{K} + o(eps)$$

$$\mathcal{K}^{(j)} = (1 + \kappa^{(j)} + \kappa^{(j)} \cdot \kappa^{(j-1)} + \dots + \kappa^{(j)} \cdot \dots \cdot \kappa^{(1)})$$
(3.3.4)

wobei $\kappa^{(j)} = \kappa_{rel}(f^{(j)}, x^{(j)})$ die Kondition der elementar ausführbaren Operationen $f^{(j)}$ ist.

Beweis.

$$\frac{\left\|\widetilde{x}^{(j+1)} - x^{(j+1)}\right\|}{\left\|x^{(j+1)}\right\|} = \frac{\left\|\widetilde{f}^{(j)}(\widetilde{x}^{(j)}) - f^{(j)}(x^{(j)})\right\|}{\left\|f^{(j)}(x^{(j)})\right\|}$$

$$\leq \frac{\left\|\widetilde{f}(\widetilde{x}) - f(\widetilde{x})\right\|}{\left\|f(\widetilde{x})\right\|} \cdot \frac{\left\|f(\widetilde{x})\right\|}{\left\|f(x)\right\|} + \frac{\left\|f(\widetilde{x}) - f(x)\right\|}{\left\|f(x)\right\|} \quad \text{(Index j vernachlässigt)}$$

$$\leq eps\left(1 + \frac{\left\|f(\widetilde{x}) - f(x)\right\|}{\left\|f(x)\right\|}\right) + \frac{\left\|f(\widetilde{x}) - f(x)\right\|}{\left\|f(x)\right\|}$$

$$\stackrel{\text{nach $3.3.3}}{=} eps + (eps + 1) \cdot \left(\kappa(j) \cdot \frac{\left\|\widetilde{x}^{(j)} - x^{(j)}\right\|}{\left\|x^{(j)}\right\|}\right) + o\left(\frac{\left\|\widetilde{x}^{(j)} - x^{(j)}\right\|}{\left\|x^{(j)}\right\|}\right)$$

Nach Voraussetzung gilt Gleichung (3.3.4) mit $\mathcal{K}^{(0)} = 1$ für j = 0. Für j = 1 folgt nach Voraussetzung mit Gleichung (3.3.3)

$$\frac{\|\widetilde{x}^{(2)} - x^{(2)}\|}{\|x^{(2)}\|} \le eps + (eps + 1) \cdot (\kappa^{(1)}eps + o(eps))$$

$$= eps(1 + \kappa^{(1)}) + o(eps)$$

$$= eps\mathcal{K}^{(1)} + o(eps)$$

Womit der Induktionsanfang gezeigt ist.

Für den Induktionsschritt von j-1 zu j:

$$\frac{\left\|\widetilde{x}^{(j+1)} - x^{(j+1)}\right\|}{x^{(j+1)}} \le eps + (1 + eps)\kappa^{(j)} \left[eps\mathcal{K}^{(j-1)} + o(eps)\right] + (1 + eps) \cdot o\left(eps \cdot \mathcal{K}^{(j-1)} + o(eps)\right)$$
$$= eps\left(1 + \kappa^{(j)} \cdot \mathcal{K}^{(j-1)}\right) + o(eps)$$

Mit $\mathcal{K}^{(j)} = 1 + \kappa^{(j)} \cdot \mathcal{K}^{(j-1)}$ folgt die Behauptung.

 ${\bf Hiermit\ folgt:}$

3.3.6 Korollar

Unter der Voraussetzung von Lemma 3.3.5 gilt:

$$\frac{\|\widetilde{f}(\widetilde{x}) - f(x)\|}{\|f(x)\|} \le eps \cdot \left(1 + \kappa^{(l)} + \kappa^{(l)} \cdot \kappa^{(l-1)} + \dots + \kappa^{(l)} \cdot \dots \cdot \kappa^{(1)}\right) + o(eps) \tag{3.3.5}$$

3.3.7 Bemerkung

Mit Korollar 3.3.6 ist offensichtlich, dass schlecht konditionierte Probleme zu elementar ausführbaren Abbildungen so früh wie möglich ausgeführt werden sollten.

Nach Beispiel 3.2.9 ist die Substraktion zweier annähernd gleicher Zahlen schlecht konditioniert. Deshalb sollte man unvermeidbare Subtraktionen möglichst früh durchführen. Allerdings hängt $\kappa^{(j)}$ nicht nur von $f^{(j)}$, sondern auch vom Zwischenergebnis $x^{(j)}$ ab, welches a priori unbekannt ist.

3.3.8 Bemerkung zur Sprechweise

Der Quotient

Gesamtfehler
$$\frac{\|\widetilde{f}(\widetilde{x}) - f(x)\|}{\|f(x)\|}$$

$$\|\widetilde{f}(x)\| \cdot \|\widetilde{x} - x\|$$

$$\|\widetilde{f}(x)\| \cdot \|\widetilde{x} - x\|$$
Fehler Eingabedurch Eingabed fehler

gibt die Güte des Algorithmus an. Als Stabilitätsindikator kann also

$$\sigma(f, \widetilde{f}, x) = \frac{\mathcal{K}}{\kappa_{rel}(f, x)}$$
(3.3.7)

verwendet werden und es gilt

$$\frac{\|\widetilde{f}(\widetilde{x}) - f(x)\|}{\|f(x)\|} < \underbrace{\sigma\left(f, \widetilde{f}, x\right)}_{\substack{\text{Beitrag} \\ \text{des} \\ \text{Algorithmus}}} \underbrace{\kappa_{rel}(f, x)}_{\substack{\text{Beitrag} \\ \text{des} \\ \text{Problems}}} \underbrace{\epsilon_{problems}}_{\substack{\text{Rundungs-fehler}}} + o(eps)$$

Falls $\sigma(f, \widetilde{f}, x) < 1$, dämpft der Algorithmus die Fehlerfortpflanzung der Eingabe- und Rundungsfehler und heißt **stabil**.

Für $\sigma(f, \widetilde{f}, x) \gg 1$ heißt der Algorithmus **instabil**.

Abbildung 3.6: Diagramm zur Rückwärtsanalyse

3.3.9 Beispiel

Nach Gleichung (3.3.3) gilt für die Elementaroperationen $\mathcal{K} \leq 1$. Da für die Subtraktion zweier annähernd gleich großer Zahlen $\kappa_{rel} \gg 1$ gilt, ist der Stabilitätsfaktor zweier annähernd gleich großer Zahlen sehr klein und der Algorithmus also stabil, Falls es sich jedoch bei einer zusammengesetzten Abbildung $f = h \circ g$ bei der zweiten Abbildung h um eine Subtaktion handelt, gilt

$$\mathcal{K} = (1 + \kappa(sub) + \kappa(sub) \cdot \kappa(g))$$

und die Stabilität ist gefährdet. Genauere Abschätzungen und damit genauere Indikatoren können durch komponentenweise Betrachtungen erhalten werden.

3.3b) Rückwärtsanalyse

Die Fragestellung ist nun:

Kann $\widetilde{f}(\widehat{x})$ als exaktes Ergebnis von einer gestörten Eingabe \widehat{x} unter der exakten Abbildung f aufgefasst werden?

Das würde heißen

$$\exists \widehat{x} \in \mathbb{R}^n : f(\widehat{x}) = \widetilde{f}(\widetilde{x}).$$

Dann schätze den Fehler

$$\|\widehat{x} - x\|$$

bzw. für nicht injektive f

$$\min_{\widehat{x} \in \mathbb{R}^n} \left\{ \|\widehat{x} - x\| \middle| f(\widehat{x}) = \widetilde{f}(\widetilde{x}) \right\}$$

ab.

Ein Anwendungsbeispiel:

Die Eingangsdaten seien Messdaten \tilde{x} mit 1 % relativer Genauigkeit. Liefert die Rückwärtsanalyse, dass $\tilde{f}(\tilde{x})$ als exaktes Ergebnis $f(\hat{x})$ mit Eingangsdaten \hat{x} , die höchstens um 0,5 % schwanken, aufgefasst werden kann, so ist das Verfahren "geeignet".

Die Rückwärtsanalyse ist

- in der Regel leichter durchführbar als die Vorwärtsanalyse und
- ebenfalls nur eine qualitative Schätzung der Genauigkeit der numerisch berechneten Werte.

3.3.10 Bemerkung

(siehe auch Folien)

Vorwärtsfehler ≤ Kondition des Problems · Rückwärtsfehler.

$$\|\tilde{f}(\tilde{x}) - f(x)\| \le \kappa(f, x) \|\hat{x} - x\|$$

Beispiel: Rückwärtsanalyse der Gauß-Elimination (geht auf Wilkinson zurück)

3.3.11 Satz

 $A \in \mathbb{R}^{n \times n}$ besitze eine LR-Zerlegung. Dann berechnet die Gauß-Elimination Matrizen \hat{L} und \hat{R} , so dass

$$\hat{L}\,\hat{R} = \hat{A}$$

und

$$|\hat{A} - A| \le \frac{eps}{1 - n \ eps} \left(|\hat{L}| \begin{pmatrix} 1 & 2 & \ddots & 0 \\ & 0 & 2 & \ddots & n \end{pmatrix} |\hat{R}| - |\hat{R}| \right)$$

$$\le \frac{n \ eps}{1 - n \ eps} |\hat{L}| |\hat{R}| = n \ eps |\hat{L}| |\hat{R}| + \mathcal{O}(n^2 eps^2)$$

falls $n \ eps \le 1/2$.

Beweis. siehe Stoer[6].

3.3.12 Satz (Sautter 1971)

 $A \in \mathbb{R}^{n \times n}$ besitze eine LR-Zerlegung. Dann berechnet das Gaußsche Eliminationsverfahren für das Gleichungssystem Ax = b eine Lösung \overline{x} mit

$$\overline{A}\overline{x} = b$$

 mit

$$|\overline{A} - A| \le 2 n \operatorname{eps} |\hat{L}| |\hat{R}| + \mathcal{O}(n^2 \operatorname{eps}^2).$$

Beweis. siehe Deufhard/Hohmann [1].

Weitere Abschätzungen existieren für Gauß-Elimination mit Pivotisierung und für spezielle Klassen von Matrizen.

3.3.13 Allgemeine Faustregeln für die LR-Zerlegung

- Falls die Matrix $n|\hat{L}||\hat{R}|$ die selbe Größenordnung wie |A| besitzt, ist der Algorithmus "gutartig";
- Für tridiagonale Matrizen ist der Algorithmus mit Spaltenpivotisierung stabil.
- Falls A oder A^T strikt diagonal dominant ist, d.h.

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|$$
 für alle $i = 1, \dots, n$,

ist Spaltenpivotisierung überflüssig. Der Algorithmus ist stabil.

• Für symmetrische, positiv definite Matrizen sollte keine Pivotisierung durchgeführt werden, um die Symmetrie zu erhalten. Der Algorithmus ist stabil.

Vorsicht

Selbst wenn die LR-Zerlegung stabil ist, in dem Sinne dass $|\overline{A} - A|$ klein ist für $\overline{A}\overline{x} = b$, kann die numerische Lösung \overline{x} sehr ungenau sein, da der Vorwärtsfehler $|\overline{x} - x|$ auch von der Kondition abhängt.

Ein Beispiel hierzu ist die Hilbertmatrix

$$H = \left(\frac{1}{i+j-1}\right)_{i,j=1,\dots,n} \; ,$$

für die cond(H) exponentiell mit der Dimension n wächst.

3.4 Beurteilung von Näherungslösungen linearer GLS

Zu Ax = b liege eine Näherungslösung \widetilde{x} vor.

3.4a) Im Sinne der Vorwärtsanalyse

Im Sinne der Vorwärtsanalyse und der Fehlerentwicklung durch das Problem gilt:

$$\frac{\|\widetilde{x} - x\|}{\|x\|} \le cond(A) \cdot \frac{\|\Delta b\|}{\|b\|}$$

nach Beispiel 3.2.10, mit dem Residuum

$$r(\widetilde{x}) \coloneqq A\widetilde{x} - b$$

$$= \widetilde{b} - b$$

$$= \Delta b$$
(3.4.1)

Wie der absolute Fehler ist das Residuum skalierungsabhängig. Daher ist $||r(\widetilde{x})||$ "klein" ungeeignet, um Genauigkeitsaussagen zu treffen.

Um den Fehler in x abzuschätzen, ist die Betrachtung von

$$\frac{\|r(\widetilde{x})\|}{\|b\|} \tag{3.4.2}$$

geeigneter.

Für große cond(A) ist dieser Quotient jedoch weiterhin ungeeignet.

3.4b) Im Sinne der Rückwärtsanalyse

3.4.1 Satz (Prager und Oettli, 1964)

Sei \tilde{x} eine Näherungslösung für Ax = b. Falls

$$|r(\tilde{x})| \le \varepsilon(|A||\tilde{x}| + |b|). \tag{3.4.3}$$

dann existiert eine Matrix \tilde{A} und ein Vektor \tilde{b} , so dass

$$\tilde{A}\tilde{x} = \tilde{b}$$

und

$$|\tilde{A} - A| \le \varepsilon |A| \quad \text{und} \quad |\tilde{b} - b| \le \varepsilon |b|.$$
 (3.4.4)

Aufgrund von (3.4.3) wird der komponentenweise relative Rückwärtsfehler durch

$$\max_{i} \frac{|A\tilde{x} - b|_{i}}{(|A||\tilde{x}| + |b|)_{i}}$$

abgeschätzt.

Für den normweisen relativen Rückwärtsfehler gilt entsprechend (Rigal und Gaches 1967)

$$\frac{\|A\tilde{x}-b\|}{\|A\|\|\tilde{x}\|+\|b\|}.$$

4 Lineare Gleichungssysteme: Direkte Methoden (Fortsetzung)

4.1 Gaußsches Eliminationsverfahren mit Aquilibrierung und Nachiteration

Mit Skalierung D_zA (**Zeilenskalierung**) oder D_sA (**Spaltenskalierung**) mittels Diagonalmatrizen D_z, D_s lässt sich eine Pivotstrategie beliebig abändern. Jetzt ist die Frage: Was ist eine "gute" Skalierung?

Skalierung ändert die Lönge der Basisvektoren des Bild- bzw. des Urbildvektorraumes. Durch Normierung der Länge auf 1 wird die Pivotstrategie unabhängig von der gewählten Einheit.

Sei $A \in \mathbb{R}^{n \times m}$ und $\|\cdot\|$ eine Vektornorm.

4.1.1 Äquilibrierung der Zeilen

Alle Zeilen von D_zA haben die gleiche Norm, z.B. $\|\cdot\| = 1$, wofür

$$D_z = \begin{pmatrix} \sigma_1 & 0 \\ & \ddots & \\ 0 & \sigma_n \end{pmatrix} \quad \text{mit } \sigma_i \coloneqq \frac{1}{\|(a_{i1}, \dots, a_{im})\|}$$
 (4.1.1)

gesetzt wird.

4.1.2 Äquilibrierung der Spalten

Alle Spalten von AD_s haben die gleiche Norm, z.B. $\|\cdot\| = 1$, wofür

$$D_{s} = \begin{pmatrix} \tau_{1} & 0 \\ & \ddots \\ 0 & \tau_{m} \end{pmatrix} \quad \text{mit } \tau_{j} \coloneqq \left\| \begin{pmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{pmatrix} \right\|^{-1}$$

$$(4.1.2)$$

gesetzt wird.

Äquilibrierung von Zeilen **und** Spalten führt zu einem nichtlinearen Gleichungssystem und ist i.d.R. aufwendig.

4.1.3 Lemma

Sei A zeilenäquilibriert bzgl. der l_1 -Norm, dann gilt:

$$cond_{\infty}(A) \le cond_{\infty}(DA)$$
 (4.1.3)

für alle regulären Diagonalmatrizen D.

Beweis. siehe Übungsaufgabe

Wie in Kapitel 3 gesehen, kann die Näherungslösung \widetilde{x} trotz Pivotisierung und Äquilibrierung noch sehr ungenau sein.

4.1.4 Nachiteration

Die Näherung \widetilde{x} kann durch Nachiteration verbessert werden. Falls \widetilde{x} exakt ist, gilt:

$$r(\widetilde{x}) \coloneqq b - A\widetilde{x} = 0 \tag{4.1.4}$$

ansonsten ist $A(x-\widetilde{x}) = r(\widetilde{x})$. Also löse die Korrekturgleichung

$$A\Delta x = r(\widetilde{x}) \tag{4.1.5}$$

und setze

$$x^{(1)} \coloneqq \widetilde{x} + \Delta x$$

Wiederhole dies sooft, bis $x^{(i)}$ "genau genug" ist. Die Lösung \widetilde{x} wird durch Nachiteration meist mit sehr gutem Erfolg verbessert [genaueres in 7] (4.1.5) wird mit der bereits vorhandenen LR-Zerlegung nur mit der neuen rechten Seite $r(\widetilde{x})$ gelöst, d.h. eine vorwärts und eine Rückwärtssubstitution mit $\mathcal{O}(n^2)$ flops.

4.1.5 Bemerkung (nach Skeel 1980)

Die Gauß-Elimination mit Spaltenpivotsuche und einer Nachiteration ist komponentenweise stabil.

4.2 Cholesky-Verfahren

Im Folgenden sei A eine symmetrische, positiv definite Matrix in $\mathbb{R}^{n\times n}$, d.h. $A=A^T$ und $\langle x,Ax\rangle=x^TAx>0$ für alle $x\neq 0$. (kurs: **spd Matrix**)

4.2.1 Satz (Eigenschaften von symm., pos. def. Matrizen)

Für jede sp
d Matrix $A \in \mathbb{R}^{n \times n}$ gilt:

- i) A ist invertierbar
- ii) $a_{ii} > 0$ für i = 1, ..., n
- iii) $\max_{ij} |a_{ij}| = \max_i a_{ii}$
- iv) Bei der Gauß-Elimination ohne Pivotsuche ist jede Restmatrix wieder eine spd Matrix.

Beweis. i) folgt aus (??)

- ii) Sei e_i der i-te Einheitsvektor, so folgt $a_{ii} = e_i^T A e_i > 0$.
- iii) siehe Übungsaufgabe
- iv) Es gilt:

$$A^{(1)} \coloneqq A = \begin{pmatrix} a_{11} & z^T \\ z & B^{(1)} \end{pmatrix}$$

$$A^{(2)} \coloneqq L_1 A^{(1)} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ -\frac{z}{a_{ii}} & I \end{pmatrix} = \begin{pmatrix} a_{11} & z^T \\ 0 \\ \vdots & B^{(2)} \\ 0 \end{pmatrix}$$

$$\Rightarrow L_1 A^{(1)} L_1^T = \begin{pmatrix} a_{11} & z^T \\ 0 \\ \vdots & B^{(2)} \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & -\frac{z}{a_{11}} \\ 0 \\ \vdots & I \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 \\ \vdots & B^{(2)} \\ 0 \end{pmatrix}$$

Weiterhin gilt:

$$x \neq 0 \Leftrightarrow L_1 x \neq 0$$

da L_1 invertierbar. Also gilt insgesamt:

$$\widetilde{x}^T B^{(2)} \widetilde{x} = x^T L_1 A^{(1)} L_1^T x \qquad \text{für } x \coloneqq \begin{pmatrix} 0 \\ \widetilde{x} \end{pmatrix}$$
$$= (L_1^T x)^T A(L_1^T x) > 0 \qquad \forall \widetilde{x} \neq 0$$

und damit ist auch $B^{(2)}$ spd.

Induktiv folgt hiermit iv).

□ Insbesondere ergibt sich:

$$(L_{n-1} \cdot \dots \cdot L_1) A^{(1)} (L_1^T \cdot \dots \cdot L_{n-1}^T) = \begin{pmatrix} d_1 & 0 \\ \vdots & \\ 0 & d_n \end{pmatrix},$$

wobei d_i das i-te Diagonalelement von $A^{(i)}$ ist und somit $d_i > 0$ für $i = 1, \dots, n$ gilt.

Sei $L = (L_1^{-1} \cdot \dots \cdot L_{n-1}^{-1})$ wie in (2.1.8), so ergibt sich:

4.2.2 Folgerung

Für jede spd Matrix A existiert eine eindeutige Zerlegung der Form

$$A = LDL^T$$

wobei L eine reelle unipotente (d.h. $l_{ii} = 1$) (, normierte) untere Dreiecksmatrix und D eine positive Diagonalmatrix ist. Diese Zerlegung heißt **rationale Cholesky-Zerlegung**. Die Zerlegung

$$A = \bar{L}\bar{L}^T \tag{4.2.1}$$

mit der reellen unteren Dreiecksmatrix

$$\bar{L} = L \begin{pmatrix} \sqrt{d_1} & 0 \\ & \ddots & \\ 0 & \sqrt{d_n} \end{pmatrix} = LD^{\frac{1}{2}}$$

heißt Cholesky-Zerlegung. .

Wegen (4.2.1) gilt:

$$a_{kk} = \bar{l}_{k1}^2 + \dots + \bar{l}_{kk}^2 \tag{4.2.2}$$

$$a_{ik} = \bar{l}_{i1}\bar{l}_{k1} + \dots + \bar{l}_{ik}\bar{l}_{kk}$$
 (4.2.3)

$$IMAGE\ MISSING$$
 (4.2.4)

Demnach funktioniert spaltenweises und zeilenweises Berechnen.

Es ergibt sich folgender Algorithmus:

4.2.3 Cholesky-Zerlegung

Der Algorithmus der Cholesky-Zerlegung ist wie folgt:

```
for k = 1, \dots, n

| l_{kk} = (a_{kk} - \sum_{j=1}^{k-1} l_{kj})^{\frac{1}{2}}

| for i = k + 1, \dots, n

| l_{ik} = (a_{ik} - \sum_{j=1}^{k-1} l_{ij} l_{kj})/l_{kk}

| end

end
```

4.2.4 Rechenaufwand in flops

Es sind je

$$\frac{1}{6}(n^2-n)$$
Additionen sowie Multiplikationen und
$$\frac{1}{6}(3n^2-3n)$$
 Divisionen

also ca. $\frac{2}{3}n^2$ flops für große n notwendig.

Im Vergleich zur LR-Zerlegung halbiert sich in etwa der Aufwand.

4.2.5 Bemerkung

- a) Wegen (4.2.2) gilt $|\bar{l}_{kj}| \leq \sqrt{a_{kk}}$, d.h. die Matrizene
inträge können nicht zu groß werden.
- b) Für spd Matrizen ist der Cholesky-Algorithmus stabil nach (??)
- c) Da A symmetrisch ist, muss nur die untere Dreiecksmatrix gespeichert werden. In Algorithmen kann \bar{L} in eine Kopie dieser Dreiecksmatrix geschrieben werden.
- d) Fast singuläre Matrizen können durch die Diagonale erkannt werden.

10.11.2014

4.3 Lineare Ausgleichsprobleme

4.3.1 Beispiel

(s. Einführung)

Seien m Messungen (I_i, U_i) für die Stromstärke I und die Spannung U gegeben.

4 Lineare Gleichungssysteme: Direkte Methoden (Fortsetzung)

Abbildung 4.1: Schaltplan einer einfachen U-I-Messung

Abbildung 4.2: Linearausgleich einer U-I-Messung mit Ursprungsgerade als Modellfunktion

Das Ohmsche Gesetz liefert hierfür:

$$U = R \cdot I$$

Gesucht ist der zugehörige Widerstand R.

Wird jetzt davon ausgegangen dass die I_i exakt sind, wird das R gesucht, für das RI_i im Mitttel den minimalen Abstand zu U_i hat. Genauer gesagt berechne

$$\min_{r \in \mathbb{R}} \sum_{i=1}^{m} (U_i - rI_i)^2$$

Vorsicht: Es wird **nicht** die Gerade (bzw. der lineare Untervektorraum) mit minimalem euklidischem Abstand zu (I_i, U_i) gesucht! Dieses Problem ist nichtlinear und aufwendig zu lösen.

4.3.2 Lineares Ausgleichsproblem

Gegeben seien Messdaten (t_i, b_i) mit $t_i, b_i \in \mathbb{R}$ für i = 1, ..., m und die Abhängigkeit b(t) werde beschrieben durch eine Modellfunktion, welche linear von den unbekannten Parametern x_1, \dots, x_n des Modells abhängt, d.h.

$$b(t) = a_1(t)x_1 + \dots + a_n(t)x_n$$

Für exakte Messdaten b_i würde

$$b(t_i) = b_i \quad \forall i \in \{1, \dots, m\}$$

gelten.

Im Allgemeinen werden jedoch $m \ge n$ Messwerte b_i bestimmt, und hiermit die n Parameter x_i so gewählt, dass die kleinsten **Fehlerquadrate auftreten**:

$$\min_{x_1,\dots x_n} \sum_{i=1}^m (b_i - b(t_i))^2 \tag{4.3.1}$$

(Nach Gauß kann (4.3.1) auch aus der Maximum-Likelihood-Methode für einen stochastischen Ansatz hergeleitet werden.)

Definiere:

$$b = (b_i)_{i=1,\dots,m} \in \mathbb{R}^m$$

$$x = (x_j)_{j=1,\dots,n} \in \mathbb{R}^n$$

$$A = (a_j(t_i))_{i=1,\dots,m} \in \mathbb{R}^{m \times n}$$

$$j=1,\dots,n$$

Damit ist (4.3.1) äquivalent zum **linearen Ausgleichsproblem**: Zu gegebenem $b \in \mathbb{R}^m$ und $A \in \mathbb{R}^{m \times n}$ mit $m \ge n$ ist das $\overline{x} \in \mathbb{R}^n$ gesucht mit

$$\|b - A\overline{x}\|_2 = \min_{x \in \mathbb{R}^n} \|b - Ax\|_2$$
 (4.3.2)

Das entspricht der "Lösung" eines überbestimmten, i.A. nicht erfüllbaren GLS Ax = b. Aufgrund der l_2 -Norm ist \overline{x} gegeben durch die orthogonale Projektion von b auf den Bildraum R(A), wie gleich gezeigt wird.

IMAGE MISSING

4.3.3 Projektionssatz

Sei V ein reeller Vektorraum mit einem Skalarprodukt $\langle \cdot, \cdot \rangle$ und der induzierten Norm $||v|| := \sqrt{\langle v, v \rangle}$. Sei $U \subset V$ ein endlich dimensionaler Untervektorraum und sei

$$U^{\perp} \coloneqq \{ v \in V \, | \, \langle v, u \rangle = 0 \quad \forall u \in U \}$$

Dann gilt:

1) Zu jedem $v \in V$ existiert genau ein $\overline{u} \in U$, so dass $v - \overline{u} \in U^{\perp}$, d.h.

$$\langle v - \overline{u}, u \rangle = 0 \quad \forall u \in U$$

Dies definiert die orthogonale Projektion

$$P: V \to U, \quad v \mapsto \overline{u} = Pv$$

2) Zu jedem $v \in V$ bestimmt $P \cdot v$ die eindeutige Lösung

$$||v - Pv|| = \min_{u \in U} ||v - u||$$

Also gilt mit einem eindeutigen $\overline{u} = Pv$, dass

$$||v - \overline{u}|| = \min_{u \in U} ||v - u|| \iff \langle v - \overline{u}, u \rangle = 0 \quad \forall u \in U$$
 (4.3.3)

Beweis. 1) Sei $\{u_1, \ldots, u_n\}$ eine Orthonormalbasis von U und $\overline{u} \in U$. Daraus folgt:

$$\exists ! (\alpha_i)_{i=1,\dots,n} \subset \mathbb{R} : \overline{u} = \sum_{i=1}^n \alpha_i u_i$$

Damit gilt:

$$0 = \langle v - \overline{u}, u \rangle \qquad \forall u \in U$$

$$\iff 0 = \langle v - \sum_{i=1}^{n} \alpha_i u_i, u_i \rangle \qquad \forall j = 1, \dots, n$$

$$\iff \langle v, u_j \rangle = \sum_{i=1}^{n} \alpha_i \langle u_i, u_j \rangle = \alpha_j$$

Setze also

$$P \cdot v = \overline{u}$$

$$= \sum_{i=1}^{n} \langle v, u_i \rangle u_i \in U$$
(4.3.4)

dann ist \overline{u} die eindeutig bestimmte Lösung für $v - \overline{u} \in U^{\perp}$

IMAGE MISSING

Sei $u \in U$. Dann gilt:

$$\|v - u\|^{2} = \|v - \overline{u} + \overline{u} - u\|^{2}$$

$$= \|v - \overline{u}\|^{2} + \underbrace{\langle v - \overline{u}, \overbrace{u - u} \rangle}_{=0} + \|u - \overline{u}\|^{2}$$

$$= \|v - \overline{u}\|^{2} + \|u - \overline{u}\|^{2}$$

$$= \|v - \overline{u}\|^{2} + \|u - \overline{u}\|^{2}$$
(4.3.5)

(Dies ist anschaulich der Satz des Pythagoras.)

4.3.4 Satz

Der Vektor $\overline{x} \in \mathbb{R}^n$ ist genau dann Lösung des linearen Ausgleichsproblems

$$\min_{x \in \mathbb{R}^n} \|b - Ax\|_2 ,$$

falls er die Normalengleichung

$$A^T A \overline{x} = A^T b \tag{4.3.6}$$

erfüllt

Insbesondere ist \overline{x} eindeutig, falls $A \in \mathbb{R}^{m \times n}$ maximalen Rang $n \leq m$ hat.

Beweis. Bezeichne $V = \mathbb{R}^m, U = R(A) = \{Ax \mid x \in \mathbb{R}^n\}, b \in \mathbb{R}^m$. Nach (4.3.3) gilt:

$$||b - A\overline{x}||_2 = \min_{x \in \mathbb{R}^n} ||b - Ax||_2$$

$$\Leftrightarrow \langle b - A\overline{x}, Ax \rangle = 0 \quad \forall x \in \mathbb{R}^n$$

$$\Leftrightarrow \langle A^T(b - A\overline{x}), x \rangle = 0 \quad \forall x \in \mathbb{R}^n$$

$$\Leftrightarrow A^T(b - A\overline{x}) = 0$$

$$\Leftrightarrow A^T A\overline{x} = A^T b$$

Nach dem Projektionssatz 4.3.3 existiert mindestens ein eindeutiges $\overline{y} = Pb$. Für dieses \overline{y} ist $\overline{x} \in \mathbb{R}^n$ mit $\overline{y} = A\overline{x}$ eindeutig bestimmt, falls A injektiv ist, d.h. falls rang(A) = n. \square

Ähnlich zum Skalarprodukt ist die relative Kondition von (P, b) schlecht, falls b fast senkrecht zu U steht. Die relative Kondition des linearen Ausgleichsproblems hängt zusätzlich von cond(A) ab.

4.3.5 Lösung der Normalgleichung

Falls rang(A) = n, ist $A^T A$ spd und das Cholesky-Verfahren ist anwendbar. Dafür ist

1. $A^T A$ zu berechnen:

Aufwand ca. $\frac{1}{2}n^2m$ Multiplikationen

Kondition häufig schlecht, da $\frac{1}{2}n^2$ Skalarprodukte berechnet werden

2. die Cholesky-Zerlegung von A^TA durchzuführen:

Aufward ca. $\frac{1}{6}n^3$ Multiplikationen

Kondition Für $A \in \mathbb{R}^{m \times n}$ mit $m \ge n$ und rang(A) = n gilt:

$$cond_2(A^T A) = cond_2(A)^2 \tag{4.3.7}$$

(siehe Übungsaufgabe 19)

Also überwiegt für $m \gg n$ der Aufwand $A^t A$ zu berechnen. Die auftretenden Konditionen entsprechen i.d.R. nicht dem des Ausgangsproblems.

Damit ist die Cholesky-Zerlegung für Normalgleichungen ungeeignet.

4.3.6 Satz

Sei $A \in \mathbb{R}^{m \times n}$ mit $m \ge n$ und rang(A) = n, sei $b \in \mathbb{R}^m$ und besitze A eine Zerlegung

$$A = Q \begin{pmatrix} R \\ 0 \end{pmatrix}$$

mit einer orthogonalen Matrix $Q \in \mathbb{R}^{m \times m}$ und einer oberen Dreiecksmatrix $R \in \mathbb{R}^{n \times n}$. Dann ist R invertierbar.

Bezeichne

$$\left(\frac{\overline{b}_1}{\overline{b}_2}\right) \coloneqq Q^T \cdot b \tag{4.3.8}$$

dann ist

$$\overline{x} = R^{-1}\overline{b}_1 \tag{4.3.9}$$

die Lösung des linearen Ausgleichsproblems und

$$\|\overline{b}_2\| = \|b - A\overline{x}\|$$
$$= \min_{x \in \mathbb{R}^n} \|b - Ax\|$$

Zur Erinnerung:

$$Q \text{ orthogonal} :\Leftrightarrow QQ^T = I$$

$$\Leftrightarrow Q^{-1} = Q^T$$

Weiterhin ist Q längenerhaltend, d.h. $\|Qv\|_2 = \|v\|_2$ und somit folgt

$$||Q||_2 = ||Q^{-1}||_2 = 1$$
 und
$$cond_2(Q) = 1$$
 (4.3.10)

Beweis. R ist invertierbar, da

$$rang(R) = rang(Q^{-1} \cdot A)$$

= $rang(A)$
= n

Außerdem gilt:

$$\|b - Ax\|_{2}^{2} = \|Q(Q^{T}b - {R \choose 0}x)\|_{2}^{2}$$

$$= \|Q^{T}b - {Rx \choose 0}\|_{2}^{2}$$

$$= \|\bar{b}_{1} - Rx\|_{2}^{2} + \|\bar{b}_{2}^{2}\|$$

wird minimal für $R\overline{x} = \overline{b}_1$

Da Q längenerhaltend ist, folgt mit 3.2.13 b) $(cond_A \coloneqq \frac{\max \|Ax\|}{\min \|Ax\|})$ sofort:

$$cond_2(A) = cond_2(R)$$

Die auftretende Kondition entspricht also der des Ausgleichsproblems.

4.3.7 Bemerkung

Sei $A \in \mathbb{R}^{n \times n}$ invertierbar und habe ein QR-Zerlegung, d.h. es existiert eine orthogonale Matrix Q und eine obere Dreiecksmatrix R, so dass:

$$A = Q \cdot R$$

Dann kann das Gleichungssystem Ax = b wie folgt gelöst werden:

- 1. Setze $z = Q^T b$, was Kondition 1 hat.
- 2. Löse durch Rückwärtssubstitution Rx = z.

12.11.2014

4.4 Orthogonalisierungsverfahren

Konsturiere eine QR-Zerlegung

$$A = Q \cdot \begin{pmatrix} R \\ 0 \end{pmatrix} \tag{4.4.1}$$

durch einen Eliminationsprozess:

$$A \to Q^{(1)}A \to Q^{(2)}Q^{(1)}A \to Q^{(p)} \cdot \dots \cdot Q^{(1)}A = \begin{pmatrix} R \\ 0 \end{pmatrix}.$$
 (4.4.2)

mit orthogonalen Matrizen $Q^{(i)}$. Dann gilt

$$Q = Q^{(1)T} \cdot \dots \cdot Q^{(p)T} \tag{4.4.3}$$

Dies ist im Gegensatz zur LR-Zerlegung aufgrund von $cond(Q^{(i)}) = 1$ immer stabil.

Für $Q \in \mathbb{R}^{2 \times 2}$ gibt es zwei mögliche Anschauungen, nämlich:

- a) Drehung IMAGE MISSING
- b) Spiegelung IMAGE MISSING

4.4a) Givens-Rotation

Es wird eine Drehung auf den 1. Einheitsvektor durchgeführt:

IMAGE MISSING

$$a = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \rightarrow \begin{pmatrix} \alpha \\ 0 \end{pmatrix} = \alpha e_1$$

d.h. Elimination von a_2 mit

$$\|\alpha e_1\|_2 = \|a\|_2$$

Also gilt für α

$$\alpha = \pm \|a\|_2$$

Drehuungen werden beschrieben durch

$$Q = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} = \begin{pmatrix} c & s \\ -s & c \end{pmatrix} \qquad \theta \in [0, 2\pi)$$

und es muss gelten

$$Qa = \begin{pmatrix} \alpha \\ 0 \end{pmatrix}$$

Hiermit folgt für ||a|| = 0

$$c = 1, s = 0$$

$$c = \frac{a_1}{\alpha}, s = \frac{a_2}{\alpha} \quad \text{mit}$$

$$\alpha = \pm \sqrt{a_1^2 + a_2^2}$$

$$(4.4.4)$$

für $||a|| \neq 0$.

Im Folgenden wird dies kurz mit

$$[c,s] = givens(a_1,a_2)$$

bezeichnet.

Als Givens-Rotation wird eine Matrix der Form

$$\Omega_{k,l} = \begin{pmatrix}
1 & & & & & & \\
& \ddots & & & & & \\
& & 1 & & & & \\
& & \mathbf{c} & & \mathbf{s} & & \\
& & & 1 & & & \\
& & & \ddots & & & \\
& & & -\mathbf{s} & & \mathbf{c} & & \\
& & & \ddots & & \\
& & & & 1
\end{pmatrix}$$

$$\leftarrow k\text{-te Zeile}$$

$$\leftarrow l\text{-te Zeile}$$

mit $c^2 + s^2 = 1$ und k < l bezeichnet. Es folgt:

$$\begin{split} \Omega_{kl}A &= \widetilde{A} \quad \text{mit} \\ \widetilde{a}_{ij} &= a_{ij} \quad \text{für } i \neq k, l \\ \widetilde{a}_{kj} &= ca_{kj} + sa_{lj} \\ \widetilde{a}_{lj} &= -sa_{kj} + ca_{lj} \end{split}$$

4 Lineare Gleichungssysteme: Direkte Methoden (Fortsetzung)

Demnach werden nur die k-te und l-te Zeile werden verändert. Falls nun $[c, s] = givens(x_k, x_l)$ gilt

$$\Omega_{k,l} \cdot x = \begin{pmatrix} x_1 \\ \vdots \\ x_{k-1} \\ \alpha \\ x_{k+1} \\ \vdots \\ x_{l-1} \\ 0 \\ x_{l+1} \\ \vdots \\ x_n \end{pmatrix} \quad \text{mit} \quad \alpha = \pm \left\| \begin{pmatrix} x_k \\ x_l \end{pmatrix} \right\|_2$$

d.h. eine Givens-Rotation erzeugt eine Null. Da nun

$$\mathbb{R}^{m \times n} \ni \begin{pmatrix} * & * & * & \dots \\ 0 & * & & & \\ 0 & 0 & \ddots & & \\ \vdots & & & & \\ 0 & 0 & 0 & \dots & * \end{pmatrix} = \begin{pmatrix} R \\ 0 \end{pmatrix}$$

gilt, sind

$$p = \sum_{j=1}^{n} (m - j)$$

Givens-Rotationen nötig, um eine QR-Zerlegung nach (4.4.1) zu erzeugen. Und eine Rotation, welche a_{ij} auf 0 setzt, ist durch zugehörige (c_{ij}, s_{ij}) gegeben.

Für eine 3x4-Matrix sieht das Verfahren folgendermaßen aus:

Es ergibt sich:

4.4.1 Givens-QR-Algorithmus

```
\begin{array}{l} \textbf{for } j = 1, \dots, n \\ | & \textbf{for } i = m, m-1, \dots, j+1 \\ | & | & \% \ setze \ a_{ij} \ auf \ 0 \\ | & | & [c,s] = givens(a_{i-1,j}, \dots, a_{ij}) \\ | & | & \text{speichere } c \ \text{und } s \ \text{für } a_{ij} \\ | & | & A(i-1:j,j:h) = \binom{c}{-s} \binom{s}{c} * A(i-1:j,j:n) \\ | & \textbf{end} \\ & \textbf{end} \end{array}
```

4.4.2 Bemerkungen

- a) A(i-1:i,1:j-1) = 0 und ist daher nicht zu berechnen oder zu speichern. Der Speicherplatz kann für die Speicherung der Givensrotationen benutzt werden.
- b) R steht anschließend in A.
- c) Die Bestimmung der Länge $|\alpha|$ wird so ausgeführt, dass over- "oder underflow vermieden wird. Weiterhin wird das Vorzeichen von c oder s festgelegt, so dass aufgrund von $c^2 + s^2 = 1$ nur ein Wert ρ gespeichert werden muss. Hiermit wird auch das Vorzeichen von α festgelegt: MISSING

4.4.3 Aufand des Givens-QR-Algorithmus

- a) $m \approx n$ \rightarrow ca. $\frac{4}{3}n^3$ Multiplikationen und $\frac{1}{2}n^2$ Quadratwurzeln nötig Die Givens-QR-Zerlegung ist somit ungefähr viermal so aufwändig wie die Gauß-Elimination, dafür jedoch stabil.
- b) $m\gg n$ \to ca. $2n^2m$ Multiplikationen und mn Quadratwurzeln nötig Das Verfahren ist daher zwei- bis viermal so aufwändig wie das Cholesky-Verfahren für die Normalgleichungen, aber stabil.

- 4 Lineare Gleichungssysteme: Direkte Methoden (Fortsetzung)
- c) Bei Hessenberg-Matrizen, d.h. Matrizen mit der Gestalt

$$A = \begin{pmatrix} * & \dots & * \\ * & * & * \\ & \ddots & \ddots & \\ 0 & & * \end{pmatrix}, \tag{4.4.6}$$

also $a_{ik} = 0 \forall i < k+1$, sind nur (n-1) Givens-Rotationen auszuführen.

Diese Matrizen tauchen z.B. bei Eigenwertberechungen auf und sind dort ein wichtiger Bestandteil der Verfahren.

4.4b) Householder-Reflexion

Es sei H eine Hyperebene im \mathbb{R}^m und zusätzlich ein Vektor $a \in \mathbb{R}^m$ gegeben.

IMAGE MISSING

Gesucht ist nun die Reflexion Q, so dass

$$Qa = \alpha e_1 = \begin{pmatrix} \alpha \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad \text{mit } \alpha = \pm \|a\|$$

Mit

$$v = a - \alpha e_1 \tag{4.4.7}$$

gegeben, welches senkrecht zu H steht.

Damit Stellenauslöschungen in v, d.h. in v_1 , vermieden werden, wähle ein entsprechendes Vorzeichen für α , also

$$\alpha = -sign(a_1) \|a\|_2 \tag{4.4.8}$$

Die zugehörige Reflexion Q ist gegeben durch

IMAGE MISSING

wobei

$$w = \langle \frac{v}{\|v\|}, x \rangle \cdot \frac{v}{\|v\|}$$

$$Qx = x - 2w = x - 2\frac{v^T x}{v^T v} v = (I - 2\frac{vv^T}{v^T v})x$$

$$Q = I - 2\frac{vv^T}{v^T v}$$

$$vv^T \in \mathbb{R}^{n \times n}, \ v^T v \in \mathbb{R}$$

$$(4.4.10)$$

und heißt **Householder Reflexion** (wurde 1958 von Householder eingeführt). Für die spezielle Wahl (4.4.7) mit (4.4.8) vom Vektor v folgt

$$vv^{T} = ||v||^{2} = ||a||^{2} - 2\alpha \langle a, e_{1} \rangle + \alpha^{2}$$

$$= -2\alpha (a_{1} - \alpha)$$

$$= -2\alpha v$$
(4.4.11)

4.4.4 Bemerkung

- a) Q ist symmetrisch
- b) Q ist orthogonal
- c) Q ist involutorisch, d.h. $Q^2 = I$ (bzw. gilt $Q^{-1} = Q^T = Q$)

Die Householder Reflexion setzt nicht nur eine Null, sondern im Vektor gleich alle gewünschten Nullen

Rotation:
$$\begin{pmatrix} * \\ * \\ * \end{pmatrix} \rightarrow \begin{pmatrix} * \\ * \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} * \\ 0 \\ 0 \end{pmatrix}$$
Reflexion: $\begin{pmatrix} * \\ * \\ * \end{pmatrix} \rightarrow \begin{pmatrix} * \\ 0 \\ 0 \end{pmatrix}$

Um die erste Spalte in A auf die gewünschte Gestalt zu bringen, bestimme $Q^{(1)}$ wie oben, indem die erste Spalte als a gewählt wird:

$$A \to A^{(1)} = Q^{(1)}A = \begin{pmatrix} \alpha^{(1)} & & \\ 0 & * & \\ \vdots & & \\ 0 & & \end{pmatrix}$$

In der k-ten Spalte sollen nun die (k-1)-ten Zeilen und die (k-1)-ten Spalten bleiben und die Restmatrix verändert werden.

4 Lineare Gleichungssysteme: Direkte Methoden (Fortsetzung)

$$A^{(k-1)} = \begin{pmatrix} * & & & & & & \\ & \ddots & & & * & \\ & & * & - & - & - \\ & & 0 & | & & \\ & & 0 & | & & \\ & & & 1 & & \\ & & 1 & & \\ & & 1 & & \\ & & 1 & & \\ & & 1 & & \\ & & 1 & & \\ & & 1 & & \\ & & 1 & & \\ & & 1 & & \\ & & 1 & & \\ & & 1 & & \\ & & 1 & & \\ & & 1 & & \\ & & 1 & & \\ & & 1 & & \\ & & 1 & & \\$$

Setze also

$$Q^{(k)} = \begin{pmatrix} I_{k-1} & 0\\ 0 & \overline{Q}^{(k)} \end{pmatrix}$$
 (4.4.12)

wobei $\overline{Q}^{(k)}$ durch die erste Spalte von $T^{(k)}$, d.h.

$$a = (a_{i,k}^{k-1})_{i=k,\dots,m} \subset \mathbb{R}^{m+1-k}$$
(4.4.13)

bestimmt wird. Dann gilt

$$Q^{(k)}A^{(k-1)} = \begin{pmatrix} * & & & & & & \\ & \ddots & & & * & & \\ & * & - & - & - & - \\ & 0 & | & * & & \\ & 0 & \vdots & | & 0 & * & \\ & \vdots & | & \vdots & \ddots & \\ & 0 & | & 0 & & * \end{pmatrix}$$

Nach insgesamt

$$p = \min(m - 1, n) \tag{4.4.14}$$

Schritten erhalten wir für $A \in \mathbb{R}^{m \times n}$

$$Q^T A = Q^{(p)} \cdot \dots \cdot Q^{(1)} A = \begin{pmatrix} R \\ 0 \end{pmatrix},$$
 (4.4.15)

wobei Bemerkung 4.4.4 auch für $Q^T = Q^{(p)} \cdot \ldots \cdot Q^{(1)}$ und somit auch für

$$Q = Q^{(1)} \cdot \dots \cdot Q^{(p)} \tag{4.4.16}$$

17.11.2014 gilt.

Abbildung 4.3: Zerlegung einer mxn-Matrix für m < n

4.4.5 Speicherung

Gespeichert werden müssen die obere Dreiecksmatrix R und die **Householdervektoren** $v^{(i)} \in \mathbb{R}m + 1 - i$. Die Diagonalelemente von R sind $r_{ii} = \alpha^{(i)}$. Folgende Speicheraufteilung ist möglich:

$$A \longrightarrow \left(\begin{array}{ccc} | & & & R \\ | & | & & \\ v^{(1)}| & v^{(2)}| & \ddots & \\ | & | & | & v^{(p)} \end{array} \right) \quad \text{und} \quad \left(\begin{array}{c} \alpha^{(1)} \\ \vdots \\ \alpha^{(p)} \end{array} \right)$$

Wohlgemerkt kann so auch $A \in \mathbb{R}m \times n$ mit m < n bearbeitet werden, dann wird A zu: Falls zusätzlich $v^{(i)}$ so normiert ist, dass $v_1^{(i)} = 1$ ist, braucht diese Komponente nicht gespeichert werden und R kann komplett in A gespeichert werden.

4.4.6 Aufwand für den Householder-QR-Algorithmus

- a) Falls $m \approx n$ sind ungefähr $\frac{2}{3}n^3$ Multiplikationen notwendig und ist somit ungefähr doppelt so teuer wie die LR-Zerlegung, ist aber stabil.
- b) Falls $m \gg n$ sind ungefähr $2mn^2$ Multiplikationen notwendig. Der Aufwand ist daher ungefähr so hoch wie beim Cholesky-Verfahren für Normalgleichungen, aber stabil.

5 Numerische Lösung nichtlinearer Gleichungssysteme

Beispiel:

linear: Ax = b

nichtlinear: $f(x) = \sin(x) + x^3 - 4 = 0$

5.1 Einführung

5.1.1 Beispiele

- 1) $f(x) = x^2 c = 0 \Leftrightarrow x = \pm \sqrt{c}$: Berechnung der Wurzel
- 2) Sei p ein Polynom: Nullstellenbestimmung
- 3) Löse das nichtlineare Randwertproblem

$$-\Delta u = f(u)$$

in $\Omega = (0,1)^2$ mit u = 0 auf $\partial \Omega$. Mit dem Differenzenverfahren¹ ergibt sich

$$A\vec{u} = h^2 \vec{f}(\vec{u})$$

ein System nichtlinearer Gleichungen.

Nullstellenbestimmung

Gegeben $D \subseteq \mathbb{R}^n, f: D \to \mathbb{R}^m$ stetig

Gesucht
$$x^* \in D$$
 mit $f(x^*) = 0$

¹s. Übungsaufgabe 2)

Abbildung 5.1: Beispiel zur Nullstellenexistenz

Fixpunktgleichung

Gegeben $D \subseteq \mathbb{R}^n, g: D \to \mathbb{R}^n$ stetig

Gesucht $x^* \in D$ mit $g(x^*) = x^*$

Falls m=n ist dies äquivalent zur Nullstellenbestimmung.

5.1.2 Das Bisektionsverfahren

Sei $f : [a, b] \to \mathbb{R}$ stetig udn $f(a) \cdot f(b) < 0$.

Dann folgt aus dem Zwischenwertsatz die Existenz mindestens einer Nullstelle $x^* \in (a,b)$.

Generiere eine Folge von Intervallen $[a^{(i)},b^{(i)}] \in [a^{(i-1)},b^{(i-1)}]$, die eine Nullstelle enthalten und mit $b^{(i)}-a^{(i)}\longrightarrow 0$. Definiere

$$x^{(i+1)} = \frac{1}{2}(b^{(i)} + a^{(i)}) \tag{5.1.1}$$

und

$$[a^{(i+1)}, b^{(i+1)}] := \begin{cases} [x^{(i+1)}, b^{(i)}] & \text{für } f(a^{(i)}) \cdot f(x^{(i+1)}) > 0 \\ [a^{(i)}, x^{(i+1)}] & \text{für } f(a^{(i)}) \cdot f(x^{(i+1)}) < 0 \end{cases}$$
(5.1.2)

Für jedes $i \ge 1$ gilt somit

$$b^{(i)} - a^{(i)} = \frac{1}{2^i}(b - a)$$

und es existiert eine Nullstelle x^* in $[a^{(i)},b^{(i)}]\in[a^{(i-1)},b^{(i-1)}]$ für alle i. Damit folgt

$$|x^{(i-1)} - x^*| \le \frac{1}{2} (b^{(i)} - a^{(i)})$$

= $2^{-(i+1)} (b - a) \longrightarrow 0$

Also $\lim_{i\to\infty} x^{(i)} = x^*$.

5.1.3 Korollar

Das oben angegebene Bisektionsverfahren konvergiert, falls $f:[a,b] \to \mathbb{R}$ stetig ist und $f(a) \cdot f(b) < 0$ gilt.

5.1.4 Bemerkungen

- a) $x^{(i)}$ wird als Intervallmitte, also unabhängig von $f(x^{(i)})$ gewählt. die Konvergenzgeschwindigkeit hängt von der Länge des Intervalls [a, b] ab und der Lage von x^* bezüglich der Intervallhalbierung ab.
 - Die Konvergenz kann demnach sehr langsam sein.
- b) Ein Vorteil ist, dass keine Differenzierbarkeitsvoraussetzungen nötig sind.
- c) Das Verfahren ist nicht für $f:D\longrightarrow \mathbb{R}^n$ anwendbar.

5.2 Fixpunktiteration

Gesucht sei ein Fixpunkt $x^* \in D \subseteq \mathbb{R}^n$ der stetigen Funktion $g: D \to \mathbb{R}^n$, d.h.

$$x^* = g(x^*) (5.2.1)$$

Idee: Nutze (5.2.1) zur Iteration, d.h. wähle $x^{(0)} \in D$, setze

$$x^{(k+1)} = g(x^{(k)})$$
 für $k \in 0, 1, ...$ (5.2.2)

Es bedarf noch der Voraussetzung, dass $x^{(k)} \in D \ \forall k$ Falls $x^{(k)}$ konvergiert, ist der Grenzwert x^* ein Fixpunkt, denn für stetiges g gilt:

$$x^* = \lim_{k \to \infty} x^{(k+1)} = \lim_{k \to \infty} g(x^{(k)})$$

$$g \text{ stetig} = g(\lim_{k \to \infty} x^{(k)}) = g(x^*)$$
(5.2.3)

5.2.1 Beispiel

Löse
$$x - e^{-x} - 1 = 0$$
.

a)
$$x = 1 + e^{-x} =: g_1(x)$$

 \longrightarrow Konvergenz

b)
$$e^{-x} = x - 1 \Leftrightarrow x = -ln(x - 1) = g_2(x)$$

 $\longrightarrow g(x^{(2)})$ nicht definiert!

Abbildung 5.2: Konvergenz der Fixpunktiteration für $x = 1 + e^{-x}$

Abbildung 5.3: Versagen der Fixpunktiteration für x = -ln(x-1)

5.2.2 Definition: Kontraktion

Sei $D \subseteq \mathbb{R}^n$ abgeschlossen und $\|\cdot\|$ eine Norm auf dem \mathbb{R}^n . Eine Abbildung $g: D \to \mathbb{R}^n$ heißt **Kontraktion** bezüglich $\|\cdot\|$, falls es ein $\kappa \in [0,1)$ gibt mit

$$\|g(u) - g(v)\| \le \kappa \|u - v\| \quad \forall u, v \in D$$

Die kleinste solche Zahl κ heißt Kontraktionszahl von g.

Offensichtlich ist jede auf D kontrahierende Abbildung stetig.

5.2.3 Lemma

Sei $D = \overline{\Omega}$ mit $\Omega \subseteq \mathbb{R}^n$ offen und konvex und $\|\cdot\|$ eine Norm auf dem R^n . Falls $g: D \longrightarrow \mathbb{R}^n$ eine stetig differenzierbare Funktion ist und bezüglich der zugeordneten Matrixnorm $\sup_{x \in \Omega} \|Dg(x)\| < 1$ gelte, so ist g kontrahierend bezüglich $\|\cdot\|$.

Beweis. Mit $u, v \in D$ gilt $u + t(v - u) \in D$, da D konvex ist. Somit ist $h : [0, 1] \to \mathbb{R}^n$ mit $h(t) \coloneqq g(u + t(v - u))$ wohldefiniert und stetig differenzierbar.

Abbildung 5.4: Grafische Veranschaulichung einer Kontraktion

Mit dem Hauptsatz der Differenzial- und Integralrechnung folgt:

$$||g(u) - g(v)|| = ||h(1) - h(0)||$$

$$= \left\| \int_0^1 h'(t)dt \right\|$$

$$= \left\| \int_0^1 Dg(u + t(v - u)) \cdot (v - u)dt \right\|$$

$$\leq \int_0^1 ||Dg(u + t(v - u))|| dt \cdot ||v - u||$$

$$\leq \sup_{x \in \Omega} ||Dg(x)|| \cdot ||v - u||$$

$$= \lim_{x \in \Omega} ||Dg(x)|| \cdot ||v - u||$$

5.2.4 Banachscher Fixpunktsatz

Sei $D \subset \mathbb{R}^n$ abgeschlossen und die Abbildung $g:D \longrightarrow \mathbb{R}^n$ eine Kontraktion. Dann gilt:

- 1) Es existiert genau ein Fixpunkt x^* von g.
- 2) Für jeden Startwert $x^{(0)} \in D$ konvergiert die Folge der Fixpunktiterierten

$$x^{(k+1)} = g(x^{(k)}) \xrightarrow{k \to \infty} x^* \tag{5.2.5}$$

3) Es gelte die a posteriori Fehlerabschätzung

$$\|x^{(k)} - x^*\| \le \frac{\kappa}{1 - \kappa} \|x^{(k)} - x^{(k-1)}\|$$
 (5.2.6)

und die a priori Fehlerabschätzung

$$\|x^{(k)} - x^*\| \le \frac{\kappa^k}{1 - \kappa} \|x^{(1)} - x^{(0)}\|$$
 (5.2.7)

Index

Äquilibrierung	Maschinengenauigkeit, 20
Spalten-, 43	relative Rechengenauigkeit, 20
Zeilen-, 43	Givens-QR-Algorithmus, 57
,	Givens-Rotation, 55
Algorithmus, 37	Gleitkommazahl, 18
Ausgleichsproblem	,
linear, 47, 49	Householder Reflexion, 58
	Householdervektoren, 60
Banachscher Fixpunktsatz, 67	T 1
Basis, 18	Implementation, 37
Bildraum, 49	integer, 17
Bisektionsverfahren, 64	Kondition
	Addition, 26
Cholesky-Zerlegung, 46, 47, 52	•
double, 18	gut/schlecht konditioniert, 25
Dreieckszerlegung, 5, 9	komponentenweise, 33
Dreieckszeriegung, 5, 9	Matrix, 29
elementar ausführbar, 37	normweise, absolut, 25
entkoppelt, 32	normweise. relativ, 25
chinoppoin, 62	Kontraktion, 66
Fehler, 17, 23	längenerhaltend, 53
absoluter, 23	Landau-Symbole, 10
absoluter Rundungsfehler, 20	LR-Zerlegung, 10, 11
Fortpflanzung, 37	LU-Zerlegung, 10, 11 LU-Zerlegung, 11
relativer, 23	LU-Zeriegung, 11
Fixpunktiteration, 64, 65	Mantisse, 18
floating point, 17, 18	Maximum-Likelihood-Methode, 49
floating point operations, 9	112011111111111111111111111111111111111
flops, 9	Nachiteration, 44
Frobeniusmatrix, 11	Neumannsche Reihe, 30
Tropolinabilitatini, Tr	Norm, 23
Güte	Euklidische Norm, 23
Algorithmus, 39	Frobeniusnorm, 24
Gauß-Eleminator, 9	Hölder-Norm, 23
Gaußsches Eliminationsverfahren, 5, 10	Matrixnorm, 23
Genauigkeit	Maximumsnorm, 23
	,

Index

```
Spaltensummennorm, 24
    submultiplikative, 24
    Summennorm, 23
    verträglich, 24
normalisierte Gleitkommazahl, 18
normweise Kondition, 25
Nullstellenbestimmung, 63
orthogonale Projektion, 50
Orthogonalisierung, 54
p-Norm, 24
Permutationsmatrix, 13
Pivotelement, 8
Pivotisierung, 12
    halbmaximale, 12
    partielle, 12
    Spalten-, 12
    vollständige, 12
    Zeilen-, 12
Problem, 22
Projektionssatz, 50
Rückwärtsanalyse, 40
Rückwärtssubstitution, 7
Realisierung, 37
Rechenaufwand, 9, 10
Rundungsfehler, 17
scharf, 27
Singulärwert, 24
Skalierung
    Spalten-, 43
    Zeilen-, 43
spd Matrix, 44
Stabilität, 39
unipotent, 46
Verfahren von Crout, 11
Vorwärtselimination, 5, 15
Vorwärtssubstitution, 5, 7, 9
Zahlendarstellung, 17
Zeilensummennorm, 24
```

Literatur

- [1] P. Deuflhard und A. Hohmann. <u>Numerische Mathematik. I, Eine algorithmisch orientierte Einführung</u>. 3. Aufl. de Gruyter, 2002.
- [2] von G. Golub und J.M. Ortega. Scientific Computing.
- [3] K.H. Hoffmann G. Haemmerlin. Numerische Mathematik. Springer Berlin.
- [4] W.H. Press u. a. Numerical Recipes in C++. Cambridge University Press.
- [5] R.W. Hoppe R.W. Freund. Stoer/Bulirsch: Numerische Mathematik 1. Springer.
- [6] J. Stoer und R. Bulirsch. Numerische Mathematik 2. Springer.
- [7] W.Dahmen und A. Reusken. <u>Numerik fuer Ingenieure und Naturwissenschaftler</u>. Springer.