Dynamical Systems & Applications — 28/09/23

An introduction to Topological Data Analysis

Part II/IV: Homology & homological inference

https://raphaeltinarrage.github.io

Non-embedabbility of the Möbius strip: Suppose we have a embedding f into \mathbb{R}^2 .

We draw two circles on the strip, C_1 and C_2 , that only intersect once.

In \mathbb{R}^2 , the circles C^1 and C^2 only intersect once, contradicting Jordan's theorem.

The circles are not tangent because of the following drawing (the order of the points is

respected):

Homework: The intervals [0,1) and (0,1) are not homeomorphic.

Non-embedabbility of the Möbius strip: Suppose we have a embedding f into \mathbb{R}^2 . We draw two circles on the strip, C_1 and C_2 , that only intersect once.

In \mathbb{R}^2 , the circles C^1 and C^2 only intersect once, contradicting Jordan's theorem.

The circles are not tangent because of the following drawing (the order of the points is

respected):

Homework: The intervals [0,1) and (0,1) are not homeomorphic.

By contradiction, suppose there exists a homeomorphism $f\colon [0,1)\to (0,1)$. Consider the induced map $g\colon [0,1)\setminus \{0\}\to (0,1)\setminus \{f(0)\}$. The map g is a homeomorphism. But $[0,1)\setminus \{0\}$ has one connected component, and $(0,1)\{f(0)\}$ two. This is impossible.

Part I/IV: Topological invariants Tuesday 26th

Part II/IV: Homology
Thursday 28th

Part III/IV: Persistent Homology Tuesday 3rd

Part IV/IV: Python tutorial Thursday 5th

Some datasets contain topology

Invariants of homotopy classes allow to describe and understand topological spaces

Number of connected components

Euler characteristic χ

Betti numbers $\beta_0, \beta_1, \beta_2, \dots$

 $\beta_1(X)$

 $\beta_2(X)$

Today we will define a powerful invariant, **homology groups**, that already contains the number of connected components, and the Euler characteristic.

Algebraic topology

Cardápio

I - Simplicial homology

- 1 Reminder of algebra
- 2 Homological algebra
- 3 Incremental algorithm

II - More about homology

- 1 Topology of simplicial complexes
- 2 Singular homology
- 3 Functoriality

III - Homological inference

- 1 Thickening parameter selection
- 2 Čech complex
- 3 Rips complex

The **group** $\mathbb{Z}/2\mathbb{Z}$ can be seen as the set $\{0,1\}$ with the operation

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 0$

For any $n \geq 1$, the **product group** $(\mathbb{Z}/2\mathbb{Z})^n$ is the group whose underlying set is

$$(\mathbb{Z}/2\mathbb{Z})^n = \{(\epsilon_1, ..., \epsilon_n), \epsilon_1, ..., \epsilon_n \in \mathbb{Z}/2\mathbb{Z}\}$$

and whose operation is defined as

$$(\epsilon_1, ..., \epsilon_n) + (\epsilon'_1, ..., \epsilon'_n) = (\epsilon_1 + \epsilon'_1, ..., \epsilon_n + \epsilon'_n).$$

The group $\mathbb{Z}/2\mathbb{Z}$ can be given a **field** structure

$$0 \times 0 = 0$$

 $0 \times 1 = 0$
 $1 \times 0 = 0$
 $1 \times 1 = 1$

and $(\mathbb{Z}/2\mathbb{Z})^n$ can be seen as a $\mathbb{Z}/2\mathbb{Z}$ -vector space over the field $\mathbb{Z}/2\mathbb{Z}$.

Definition: A vector space over $\mathbb{Z}/2\mathbb{Z}$ is a set V endowed with two operations

$$\begin{array}{c} V\times V\longrightarrow V & \mathbb{Z}/2\mathbb{Z}\times V\longrightarrow V \\ (u,v)\longmapsto u+v & (\lambda,v)\longmapsto \lambda\cdot v \\ \text{such that} \\ & \text{(associativity)} \ \ \forall u,v,w\in V, \ \ (u+v)+w=u+(v+w), \\ & \text{(identity)} \ \ \exists 0\in V, \ \forall v\in V, \ \ v+0=0+v=v, \\ & \text{(inverse)} \ \ \forall v\in V, \exists w\in V, \ \ u+v=v+u=0, \\ & \text{(commutativity)} \ \ \forall u,v\in V, \ \ u+v=v+u, \\ & \text{(compatibility of multiplication)} \ \ \forall \lambda,\mu\in \mathbb{Z}/2\mathbb{Z}, \forall v\in V, \lambda\cdot (\mu\cdot v)=(\lambda\times \mu)\cdot v, \\ & \text{(scalar distributivity)} \ \ \forall v\in V, 1\cdot v=v, \\ & \text{(scalar distributivity)} \ \ \forall \mu,\nu\in \mathbb{Z}/2\mathbb{Z}, \forall v\in V, \ (\lambda+\nu)\cdot v=\lambda\cdot v+\nu\cdot v, \\ & \text{(vector distributivity)} \ \ \forall \mu\in \mathbb{Z}/2\mathbb{Z}, \forall v,w\in V, \lambda\cdot (u+v)=\lambda\cdot v+\nu\cdot v. \end{array}$$

Definition: A vector space over $\mathbb{Z}/2\mathbb{Z}$ is a set V endowed with two operations

$$V \times V \longrightarrow V \qquad \qquad \mathbb{Z}/2\mathbb{Z} \times V \longrightarrow V$$
$$(u, v) \longmapsto u + v \qquad \qquad (\lambda, v) \longmapsto \lambda \cdot v$$

such that

```
\begin{array}{l} \text{(associativity)} \ \ \forall u,v,w \in V, \ \ (u+v)+w=u+(v+w), \\ \text{(identity)} \ \ \exists 0 \in V, \ \forall v \in V, \ v+0=0+v=v, \\ \text{(inverse)} \ \ \forall v \in V, \exists w \in V, \ u+v=v+u=0, \\ \text{(commutativity)} \ \ \forall u,v \in V, \ u+v=v+u, \\ \text{(compatibility of multiplication)} \ \ \forall \lambda,\mu \in \mathbb{Z}/2\mathbb{Z}, \forall v \in V, \lambda \cdot (\mu \cdot v)=(\lambda \times \mu) \cdot v, \\ \text{(scalar identity)} \ \ \forall v \in V, 1 \cdot v=v, \\ \text{(scalar distributivity)} \ \ \forall \mu,\nu \in \mathbb{Z}/2\mathbb{Z}, \forall v \in V, \ (\lambda+\nu) \cdot v=\lambda \cdot v+\nu \cdot v, \\ \text{(vector distributivity)} \ \ \forall \mu \in \mathbb{Z}/2\mathbb{Z}, \forall v,w \in V, \ \lambda \cdot (u+v)=\lambda \cdot v+\nu \cdot v. \end{array}
```

Proposition: Le (V, +) be a commutative group. It can be given a $\mathbb{Z}/2\mathbb{Z}$ -vector space structure iff $\forall v \in V, v + v = 0$.

Proposition: Let $(V, +, \cdot)$ be a finite $\mathbb{Z}/2\mathbb{Z}$ -vector space. Then there exists $n \geq 0$ such that V has cardinal 2^n , and $(V, +, \cdot)$ is isomorphic to the vector space $(\mathbb{Z}/2\mathbb{Z})^n$.

Proof: Consequence of the theory of vector spaces.

A **linear subspace** of $(V, +, \cdot)$ is a subset $W \subset V$ such that

$$\forall u, v \in W, u + v \in W$$
 and $\forall v \in W, \forall \lambda \in \mathbb{Z}/2\mathbb{Z}, \lambda v \in W.$

We define the following equivalence relation on V: for all $u, v \in V$,

$$u \sim v \iff u - v \in W$$
.

Denote by V/W the quotient set of V under this relation. For any $v \in V$, one shows that the equivalence class of v is equal to $v + W = \{v + w \mid w \in W\}$.

One defines a group structure \oplus on V/W as follows:

$$(u+W)\oplus(u'+W)=(u+u')+W.$$

Definition: The vector space $(V/W, \oplus, \cdot)$ is called the **quotient vector space**.

Proposition: We have $\dim V/W = \dim V - \dim W$.

I - Simplicial homology

- 1 Reminder of algebra
- 2 Homological algebra
- 3 Incremental algorithm

II - More about homology

- 1 Topology of simplicial complexes
- 2 Singular homology
- 3 Functoriality

III - Homological inference

- 1 Thickening parameter selection
- 2 Čech complex
- 3 Rips complex

Definition (reminder): Let V be a set (called the set of *vertices*). A **simplicial complex** over V is a set K of subsets of V (called the *simplices*) such that, for every $\sigma \in K$ and every non-empty $\tau \subset \sigma$, we have $\tau \in K$.

The dimension of a simplex $\sigma \in K$ is $\dim(\sigma) = |\sigma| - 1$.

Let K be a simplicial complex. For any $n \geq 0$, define

$$K_{(n)} = \{ \sigma \in K \mid \dim(\sigma) = n \}.$$

[0,1] + [0,2]

Let $n \geq 0$. The n-chains of K is the set $C_n(K)$ whose elements are the formal sums $\sum_{\sigma \in K_{(n)}} \epsilon_\sigma \cdot \sigma \quad \text{where} \quad \forall \sigma \in K_{(n)}, \ \epsilon_\sigma \in \mathbb{Z}/2\mathbb{Z}.$

Example: The 0-chains of $K = \{[0], [1], [2], [0, 1], [0, 2]\}$ are:

and the 1-chains

Let $n \geq 0$. The n-chains of K is the set $C_n(K)$ whose elements are the formal sums $\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \quad \text{where} \quad \forall \sigma \in K_{(n)}, \ \epsilon_{\sigma} \in \mathbb{Z}/2\mathbb{Z}.$

We can give $C_n(K)$ a **group structure** via

$$\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma + \sum_{\sigma \in K_{(n)}} \eta_{\sigma} \cdot \sigma = \sum_{\sigma \in K_{(n)}} (\epsilon_{\sigma} + \eta_{\sigma}) \cdot \sigma.$$

Moreover, $C_n(K)$ can be given a $\mathbb{Z}/2\mathbb{Z}$ -vector space structure.

Example: The 0-chains of $K = \{[0], [1], [2], [0, 1], [0, 2]\}$ are:

and the 1-chains

Let $n \geq 0$. The n-chains of K is the set $C_n(K)$ whose elements are the formal sums $\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma \quad \text{where} \quad \forall \sigma \in K_{(n)}, \ \epsilon_{\sigma} \in \mathbb{Z}/2\mathbb{Z}.$

We can give $C_n(K)$ a **group structure** via

$$\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma + \sum_{\sigma \in K_{(n)}} \eta_{\sigma} \cdot \sigma = \sum_{\sigma \in K_{(n)}} (\epsilon_{\sigma} + \eta_{\sigma}) \cdot \sigma.$$

Moreover, $C_n(K)$ can be given a $\mathbb{Z}/2\mathbb{Z}$ -vector space structure.

Example: In the simplicial complex $K = \{[0], [1], [2], [0, 1], [0, 2]\}$, the sum of the 0-chains [0] + [1] and [0] + [2] is [1] + [2]:

$$([0] + [1]) + ([0] + [2]) = [0] + [0] + [1] + [2] = [1] + [2].$$

$$\partial_n \sigma = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \tau$$

We can extend the operator ∂_n as a linear map $\partial_n : C_n(K) \to C_{n-1}(K)$.

Example: Consider the simplicial complex

$$K = \{[0], [1], [2], [3], [0, 1], [0, 2], [1, 2], [1, 3], [2, 3], [0, 1, 2]\}.$$

The simplex [0,1] has the faces [0] and [1]. Hence

$$\partial_1[0,1] = [0] + [1].$$

$$\partial_n \sigma = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \tau$$

We can extend the operator ∂_n as a linear map $\partial_n : C_n(K) \to C_{n-1}(K)$.

Example: Consider the simplicial complex

$$K = \{[0], [1], [2], [3], [0, 1], [0, 2], [1, 2], [1, 3], [2, 3], [0, 1, 2]\}.$$

The boundary of the 1-chain [0,1]+[1,2]+[2,0] is

$$\partial_1 ([0,1] + [1,2] + [2,0]) = \partial_1 [0,1] + \partial_1 [1,2] + \partial_1 [2,0]$$
$$= [0] + [1] + [1] + [2] + [2] + [0] = 0$$

$$\partial_n \sigma = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \tau$$

We can extend the operator ∂_n as a linear map $\partial_n : C_n(K) \to C_{n-1}(K)$.

Example: Consider the simplicial complex

$$K = \{[0], [1], [2], [3], [0, 1], [0, 2], [1, 2], [1, 3], [2, 3], [0, 1, 2]\}.$$

The simplex [0,1,2] has the faces [0,1] and [1,2] and [2,0]. Hence

$$\partial_2[0,1,2] = [0,1] + [1,2] + [2,0].$$

$$\partial_n \sigma = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \tau$$

We can extend the operator ∂_n as a linear map $\partial_n \colon C_n(K) \to C_{n-1}(K)$.

Proposition: For any $n \geq 1$, for any $c \in C_n(K)$, we have $\partial_{n-1} \circ \partial_n(c) = 0$.

Proposition: For any $n \geq 1$, for any $c \in C_n(K)$, we have $\partial_{n-1} \circ \partial_n(c) = 0$.

Proof: Suppose that $n \geq 2$, the result being trivial otherwise.

Since the boundary operators are linear, it is enough to prove that $\partial_{n-1} \circ \partial_n(\sigma) = 0$ for all simplex $\sigma \in K_{(n)}$.

By definition, $\partial_n(\sigma) = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \tau$, and

$$\partial_{n-1} \circ \partial_n(\sigma) = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \partial_{n-1}(\tau) = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1 |\nu| = |\tau| - 1}} \sum_{\nu \subset \tau} \nu$$

We can write this last sum as

$$\sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \sum_{\substack{\nu \subset \tau \\ |\nu| = |\tau| - 1}} \nu = \sum_{\substack{\nu \subset \sigma \\ |\nu| = |\sigma| - 2}} \alpha_{\nu} \nu$$

where $\alpha_{\nu} = \{ \tau \subset \sigma \mid |\tau| = |\sigma| - 1, \nu \subset \tau \}.$

It is easy to see that for every ν such that $\dim \nu = \dim \tau - 2$, we have $\alpha_{\nu} = 2 = 0$.

Let $n \geq 0$. We have a sequence of vector spaces

$$\cdots \longrightarrow C_{n+1}(K) \xrightarrow{\partial n+1} C_n(K) \xrightarrow{\partial n} C_{n-1}(K) \longrightarrow \cdots$$

The maps ∂_{n+1} and ∂_n are linear maps, and we can consider their kernel and image.

Definition: We define:

- The *n*-cycles: $Z_n(K) = \text{Ker}(\partial_n) = \{c \in C_n(K) \mid \partial_n(c) = 0\},$
- The *n*-boundaries: $B_n(K) = \operatorname{Im}(\partial_{n+1}) = \{\partial_{n+1}(c) \mid c \in C_{n+1}(K)\}.$

Example: The 1-cycles are:

The 1-boundaries are:

Let $n \geq 0$. We have a sequence of vector spaces

$$\cdots \longrightarrow C_{n+1}(K) \xrightarrow{\partial n+1} C_n(K) \xrightarrow{\partial n} C_{n-1}(K) \longrightarrow \cdots$$

The maps ∂_{n+1} and ∂_n are linear maps, and we can consider their kernel and image.

Definition: We define:

- The *n*-cycles: $Z_n(K) = \operatorname{Ker}(\partial_n) = \{c \in C_n(K) \mid \partial_n(c) = 0\},$
- The *n*-boundaries: $B_n(K) = \operatorname{Im}(\partial_{n+1}) = \{\partial_{n+1}(c) \mid c \in C_{n+1}(K)\}.$

Example: The 1-cycles are:

The 1-boundaries are:

Proposition: We have $B_n(K) \subset Z_n(K)$.

→ interpretation: among the cycles, the boundaries are not actual 'holes' (they are filled)

We have defined a sequence of vector spaces, connected by linear maps

$$\cdots \longrightarrow C_{n+1}(K) \longrightarrow C_n(K) \longrightarrow C_{n-1}(K) \longrightarrow \cdots$$

and for every $n \geq 0$, we have defined the cycles and the boundaries $Z_n(K)$ and $B_n(K)$.

Definition: The n^{th} (simplicial) homology group of K is the quotient vector space

$$H_n(K) = Z_n(K)/B_n(K).$$

interpretation: by taking the quotient, we kill the boundaries, and we are left only with the actual 'holes'

We have defined a sequence of vector spaces, connected by linear maps

$$\cdots \longrightarrow C_{n+1}(K) \longrightarrow C_n(K) \longrightarrow C_{n-1}(K) \longrightarrow \cdots$$

and for every $n \geq 0$, we have defined the cycles and the boundaries $Z_n(K)$ and $B_n(K)$.

Definition: The n^{th} (simplicial) homology group of K is the quotient vector space $H_n(K) = Z_n(K)/B_n(K)$.

interpretation: by taking the quotient, we kill the boundaries, and we are left only with the actual 'holes'

Remark: A finite $\mathbb{Z}/2\mathbb{Z}$ -vector space must be isomorphic to $(\mathbb{Z}/2\mathbb{Z})^k$ for some k.

Definition: Let K be a simplicial complex and $n \ge 0$. Its n^{th} Betti number is the integer $\beta_n(K) = \dim H_n(K)$.

$$H_n(K) = (\mathbb{Z}/2\mathbb{Z})^k \longrightarrow \beta_n(K) = k$$

We have defined a sequence of vector spaces, connected by linear maps

$$\cdots \longrightarrow C_{n+1}(K) \longrightarrow C_n(K) \longrightarrow C_{n-1}(K) \longrightarrow \cdots$$

and for every $n \geq 0$, we have defined the cycles and the boundaries $Z_n(K)$ and $B_n(K)$.

Definition: The n^{th} (simplicial) homology group of K is the quotient vector space $H_n(K) = Z_n(K)/B_n(K)$.

interpretation: by taking the quotient, we kill the boundaries, and we are left only with the actual 'holes'

Remark: A finite $\mathbb{Z}/2\mathbb{Z}$ -vector space must be isomorphic to $(\mathbb{Z}/2\mathbb{Z})^k$ for some k.

Definition: Let K be a simplicial complex and $n \ge 0$. Its n^{th} Betti number is the integer $\beta_n(K) = \dim H_n(K)$.

Example:

$$H_0(K) = \mathbb{Z}/2\mathbb{Z}$$
 \longrightarrow $\beta_0(K) = 1$

$$H_1(K) = \mathbb{Z}/2\mathbb{Z} \qquad \longrightarrow \qquad \beta_1(K) = 1$$

$$H_2(K) = 0 \qquad \longrightarrow \quad \beta_2(K) = 0$$

X	•				
$H_0(X)$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$(\mathbb{Z}/2\mathbb{Z})^2$
$\beta_0(X)$	1	1	1	1	2
$H_1(X)$	0	$\mathbb{Z}/2\mathbb{Z}$	0	$(\mathbb{Z}/2\mathbb{Z})^2$	$(\mathbb{Z}/2\mathbb{Z})^2$
$\beta_1(X)$	0	1	0	2	2
$H_2(X)$	0	0	$\mathbb{Z}/2\mathbb{Z}$	0	0
$\beta_2(X)$	0	0	1	0	0

I - Simplicial homology

- 1 Reminder of algebra
- 2 Homological algebra
- 3 Incremental algorithm

II - More about homology

- 1 Topology of simplicial complexes
- 2 Singular homology
- 3 Functoriality

III - Homological inference

- 1 Thickening parameter selection
- 2 Čech complex
- 3 Rips complex

Let K be a simplicial complex with n simplices. Choose a total order of the simplices

$$\sigma^1 < \sigma^2 < \dots < \sigma^n$$

such that

$$\forall \sigma, \tau \in K, \ \tau \subsetneq \sigma \implies \tau < \sigma.$$

In other words, a face of a simplex comes before the simplex itself. For every $i \le n$, consider the simplicial complex

$$K^i = {\sigma^1, ..., \sigma^i}.$$

We have $\forall i \leq n, K^{i+1} = K^i \cup \{\sigma^{i+1}\}$, and $K^n = K$. They form an inscreasing sequence of simplicial complexes

$$K^1 \subset K^2 \subset \ldots \subset K^n$$
.

Positividade dos simplexos

16/45 (1/8)

Let $k \geq 0$. We will compute the homology groups of K^i incrementally:

$$H_k(K^1), H_k(K^2), H_k(K^3), H_k(K^4), H_k(K^5), H_k(K^6), H_k(K^7), H_k(K^8), H_k(K^9), H_k(K^{10})$$

Positividade dos simplexos

16/45 (2/8)

Let $k \geq 0$. We will compute the homology groups of K^i incrementally:

$$H_k(K^1), H_k(K^2), H_k(K^3), H_k(K^4), H_k(K^5), H_k(K^6), H_k(K^7), H_k(K^8), H_k(K^9), H_k(K^{10})$$

Definition: Let $i \in [\![1,n]\!]$, and $d = \dim(\sigma^i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ^i is **positive** if there exists a cycle $c \in Z_d(K^i)$ that contains σ^i . In other words, there exist $c = \sum_{\sigma \in K^i_{(n)}} \epsilon_\sigma \cdot \sigma \in C_n(K^i)$ such that $\epsilon_{\sigma^i} = 1$ and $\partial_n(c) = 0$. Otherwise, σ^i is **negative**.

Example:

• $\sigma^1 \in K^1$ is **positive** because it is included in the cycle $c = \sigma^1$ (indeed, $\partial_0(\sigma^1) = 0$).

Let $k \geq 0$. We will compute the homology groups of K^i incrementally:

$$H_k(K^1), H_k(K^2), H_k(K^3), H_k(K^4), H_k(K^5), H_k(K^6), H_k(K^7), H_k(K^8), H_k(K^9), H_k(K^{10})$$

Definition: Let $i \in [1, n]$, and $d = \dim(\sigma^i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ^i is **positive** if there exists a cycle $c \in Z_d(K^i)$ that contains σ^i . In other words, there exist $c = \sum_{\sigma \in K^i_{(n)}} \epsilon_\sigma \cdot \sigma \in C_n(K^i)$ such that $\epsilon_{\sigma^i} = 1$ and $\partial_n(c) = 0$. Otherwise, σ^i is **negative**.

Example:

- $\sigma^1 \in K^1$ is **positive** because it is included in the cycle $c = \sigma^1$ (indeed, $\partial_0(\sigma^1) = 0$).
- $\sigma^2 \in K^2$ is **positive** because it is included in the cycle $c = \sigma^2$ (indeed, $\partial_0(\sigma^2) = 0$).

Let $k \geq 0$. We will compute the homology groups of K^i incrementally:

$$H_k(K^1), H_k(K^2), H_k(K^3), H_k(K^4), H_k(K^5), H_k(K^6), H_k(K^7), H_k(K^8), H_k(K^9), H_k(K^{10})$$

Definition: Let $i \in [1, n]$, and $d = \dim(\sigma^i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ^i is **positive** if there exists a cycle $c \in Z_d(K^i)$ that contains σ^i . In other words, there exist $c = \sum_{\sigma \in K^i_{(n)}} \epsilon_\sigma \cdot \sigma \in C_n(K^i)$ such that $\epsilon_{\sigma^i} = 1$ and $\partial_n(c) = 0$. Otherwise, σ^i is **negative**.

Example:

- $\sigma^1 \in K^1$ is **positive** because it is included in the cycle $c = \sigma^1$ (indeed, $\partial_0(\sigma^1) = 0$).
- $\sigma^2 \in K^2$ is **positive** because it is included in the cycle $c = \sigma^2$ (indeed, $\partial_0(\sigma^2) = 0$).
- $\sigma^6 \in K^5$ is **negative** because it is not included in a cycle $Z_1(K^5)$. Indeed, $C_1(K^5)$ only contains 0 and σ_5 , and $\partial_1(\sigma^5) = \sigma^1 + \sigma^2 \neq 0$.

Let $k \geq 0$. We will compute the homology groups of K^i incrementally:

$$H_k(K^1), H_k(K^2), H_k(K^3), H_k(K^4), H_k(K^5), H_k(K^6), H_k(K^7), H_k(K^8), H_k(K^9), H_k(K^{10})$$

Definition: Let $i \in [1, n]$, and $d = \dim(\sigma^i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ^i is **positive** if there exists a cycle $c \in Z_d(K^i)$ that contains σ^i . In other words, there exist $c = \sum_{\sigma \in K^i_{(n)}} \epsilon_\sigma \cdot \sigma \in C_n(K^i)$ such that $\epsilon_{\sigma^i} = 1$ and $\partial_n(c) = 0$. Otherwise, σ^i is **negative**.

Example:

- $\sigma^1 \in K^1$ is **positive** because it is included in the cycle $c = \sigma^1$ (indeed, $\partial_0(\sigma^1) = 0$).
- $\sigma^2 \in K^2$ is **positive** because it is included in the cycle $c = \sigma^2$ (indeed, $\partial_0(\sigma^2) = 0$).
- $\sigma^6 \in K^5$ is **negative** because it is not included in a cycle $Z_1(K^5)$. Indeed, $C_1(K^5)$ only contains 0 and σ_5 , and $\partial_1(\sigma^5) = \sigma^1 + \sigma^2 \neq 0$.
- $\sigma^8 \in K^8$ is **positive** because it is included in the cycle $c = \sigma^5 + \sigma^6 + \sigma^7 + \sigma^8$ (indeed, $\partial_1(c) = 2\sigma^1 + 2\sigma^2 + 2\sigma^3 + 2\sigma^4 = 0$).

Definition: Let $i \in [1, n]$, and $d = \dim(\sigma_i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ_i is **positive** if there exists a cycle $c \in Z_d(K^i)$ that contains σ_i . Otherwise, σ_i is **negative**.

Remark: By adding σ^i in the simplicial complex, the only groups that may change are $Z_d(K^i)$ and $B_{d-1}(K^i)$.

Positividade dos simplexos

Definition: Let $i \in [1, n]$, and $d = \dim(\sigma_i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ_i is **positive** if there exists a cycle $c \in Z_d(K^i)$ that contains σ_i . Otherwise, σ_i is **negative**.

Remark: By adding σ^i in the simplicial complex, the only groups that may change are $Z_d(K^i)$ and $B_{d-1}(K^i)$.

Lemma: If σ^i is positive, then $\beta_d(K^i) = \beta_d(K^{i-1}) + 1$, and for all $d' \neq d$, $\beta_{d'}(K^i) = \beta_{d'}(K^{i-1})$.

Proof: We start by proving the following fact: if $c \in Z_d(K^i)$ is a cycle that contains σ_i , then c is not homologous (in K^i) to a cycle of $c' \in Z_d(K^{i-1})$.

By contradiction: if c=c'+b with $c'\in Z_d(K^{i-1})$ and $b\in B_d(K^i)$, then $c-c'=b\in B_d(K^i)$. This is absurd because we just added σ_i : it cannot appear in a boundary of K^i .

As a consequence, $\dim Z_d(K^i) = \dim Z_d(K^{i-1}) + 1$.

We conclude by using the relation $\beta_d(K^i) = \dim Z_d(K^i) - \dim B_d(K^i)$.

Positividade dos simplexos

Definition: Let $i \in [1, n]$, and $d = \dim(\sigma_i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ_i is **positive** if there exists a cycle $c \in Z_d(K^i)$ that contains σ_i . Otherwise, σ_i is **negative**.

Remark: By adding σ^i in the simplicial complex, the only groups that may change are $Z_d(K^i)$ and $B_{d-1}(K^i)$.

Lemma: If σ^i is positive, then $\beta_d(K^i) = \beta_d(K^{i-1}) + 1$, and for all $d' \neq d$, $\beta_{d'}(K^i) = \beta_{d'}(K^{i-1})$.

Lemma: If σ^i is negative, then $\beta_{d-1}(K^i) = \beta_{d-1}(K^{i-1}) - 1$, and for all $d' \neq d-1$, $\beta_{d'}(K^i) = \beta_{d'}(K^{i-1})$.

Proof: We start by proving the following fact: $\partial_d(\sigma^i)$ is not a boundary of K^{i-1} .

Otherwise, we would have $\partial_d(\sigma^i) = \partial_d(c)$ with $c \in C_d(K^{i-1})$, i.e. $\partial_d(\sigma^i + c) = 0$. Hence $\sigma^i + c$ would be a cycle of K^i that contains c, contradicting the negativity of σ^i .

As a consequence, $\dim B_{d-1}(K^i) = \dim B_{d-1}(K^{i-1}) + 1$.

We conclude by using the relation $\beta_{d-1}(K^i) = \dim Z_{d-1}(K^i) - \dim B_{d-1}(K^i)$.

```
Lemma: If \sigma^i is positive, then \beta_d(K^i) = \beta_d(K^{i-1}) + 1, and for all d' \neq d, \beta_{d'}(K^i) = \beta_{d'}(K^{i-1}).
```

Lemma: If σ^i is negative, then $\beta_{d-1}(K^i) = \beta_{d-1}(K^{i-1}) - 1$, and for all $d' \neq d-1$, $\beta_{d'}(K^i) = \beta_{d'}(K^{i-1})$.

We deduce the following algorithm:

	K^1	K^2	K^3	K^4	K^5	K^6	K^7	K^8	K^9	K^{10}
Dimension	0	0	0	0	1	1	1	1	1	2
Positivity	+	+	+	+	_	_	_	+	+	_
$\beta_0(K^i)$	1	2	3	4	3	2	1	1	1	1
$eta_1(K^i)$	0	0	0	0	0	0	0	1	2	1

We deduce the following algorithm:

```
Input: an increasing sequence of simplicial complexes K^1 \subset \cdots \subset K^n = K

Output: the Betti numbers \beta_0(K), ...\beta_d(K)

\beta_0 \leftarrow 0, ..., \beta_d \leftarrow 0;

for i \leftarrow 1 to n do

d = \dim(\sigma^i);

if \sigma^i is positive then
\beta_k(K^i) \leftarrow \beta_k(K^i) + 1;

else if d > 0 then
\beta_{k-1}(K^i) \leftarrow \beta_{k-1}(K^{i-1}) - 1;
```

Característica de Euler

Reminder: the Euler characteristic of a simplicial complex K is

$$\chi(K) = \sum_{0 \le i \le n} (-1)^i \cdot (\text{number of simplices of dimension } i).$$

Proposition: The Euler characteristic is also equal to

$$\chi(K) = \sum_{0 \le i \le n} (-1)^i \cdot \beta_i(K).$$

Característica de Euler

Proposition: The Euler characteristic of K is equal to

$$\chi(K) = \sum_{0 \le i \le n} (-1)^i \cdot \beta_i(K).$$

Proof: Pick an ordering $K^1 \subset \cdots \subset K^n = K$ of K, with $K^i = K^{i-1} \cup \{\sigma^i\}$ for all $2 \le i \le n$.

By induction, let us show that, for all $1 \leq m \leq n$,

$$\sum_{0 \leq i \leq m} (-1)^i \cdot \beta_i(K^m) = \sum_{0 \leq i \leq m} (-1)^i \cdot (\text{number of simplices of dimension } i \text{ of } K^m).$$

For m=1, σ^m is a 0-simplex, and the equality reads 1=1.

Now, suppose that the equality is true for $1 \le m < n$, and consider the simplex σ^{m+1} . Let $d = \dim \sigma^{m+1}$. The right-hand side of the Equation is increased by $(-1)^d$.

If σ^{m+1} is positive, then $\beta_d(K^{m+1}) = \beta_d(K^m) + 1$, hence the left-hand side of the Equation is increased by $(-1)^d$.

Otherwise, it is negative, and $\beta_{d-1}(K^{m+1}) = \beta_{d-1}(K^m) - 1$, hence the left-hand side of the Equation is increased by $-(-1)^{d-1} = (-1)^d$.

The only thing missing to apply the incremental algorithm is to determine whether a simplex is positive or negative.

Let K be a simplicial complex, and $\sigma^1 < \sigma^2 < \cdots < \sigma^n$ and ordering of its simplices.

Define the **boundary matrix** of K, denoted Δ , as follows: Δ is a $n \times n$ matrix, whose (i,j)-entry $(i^{\text{th}} \text{ row}, j^{\text{th}} \text{ column is})$

 $\Delta_{i,j} = 1$ if σ^i is a face of σ^j and $|\sigma^i| = |\sigma^j| - 1$ 0 else.

 σ^{10}

By adding columns one to the others, we create chains.

If we were able to reduce a column to zero, then we found a cycle.

																						6×
	σ^1	σ^2	σ^3	σ^4	σ^5	σ^6	σ^7	σ^8	σ^9	σ^{10}				σ^1	σ^2	σ^3	σ^4	σ^5	σ^6	σ^7	ó ×	σ^9
σ^1	\int_{0}^{∞}	0	0	0	1	0	0	1	0	0			σ^1	\int_{0}^{∞}	0	0	0	1	0	0	0	0
σ^2	0	0	0	0	1	1	0	0	1	0			σ^2	0	0	0	0	1	1	0	0	1
σ^3	0	0	0	0	0	1	1	0	0	0			σ^3	0	0	0	0	0	1	1	0	0
σ^4	0	0	0	0	0	0	1	1	1	0			σ^4	0	0	0	0	0	0	1	0	1
σ^5	0	0	0	0	0	0	0	0	0	1			σ^5	0	0	0	0	0	0	0	0	0
σ^6	0	0	0	0	0	0	0	0	0	0			σ^6	0	0	0	0	0	0	0	0	0
σ^7	0	0	0	0	0	0	0	0	0	0			σ^7	0	0	0	0	0	0	0	0	0
σ^8	0	0	0	0	0	0	0	0	0	1			σ^8	0	0	0	0	0	0	0	0	0
σ^9	0	0	0	0	0	0	0	0	0	1			σ^9	0	0	0	0	0	0	0	0	0
σ^{10}	$\int 0$	0	0	0	0	0	0	0	0	0/			σ^{10}	$\int 0$	0	0	0	0	0	0	0	0
$\partial_1(\sigma^6)$) = (σ^2 -	$+ \sigma^{5}$	3							δ	$\theta_1(\sigma)$	0.5 + 6	σ^6 +	σ^7	$+ \alpha$	σ^8)	= 0	-			_

The process of reducing columns to zero is called **Gauss reduction**.

For any $j \in [1, n]$, define $\delta(j) = \max\{i \in [1, n] \mid \Delta_{i,j} \neq 0\}.$

If $\Delta_{i,j} = 0$ for all j, then $\delta(j)$ is undefined.

We say that the boundary matrix Δ is *reduced* if the map δ is injective on its domain of definition.

7

Algorithm 2: Reduction of the boundary matrix

Input: a boundary matrix Δ Output: a reduced matrix $\widetilde{\Delta}$

for $j \leftarrow 1$ to n do

while there exists i < j with $\delta(i) = \delta(j)$ do

add column i to column j;

								ν.	΄ Ο	
	σ^1	σ^2	σ^3	σ^4	σ^5	σ^6	σ^7	o o	σ^9	σ^{10}
σ^1	\int_{0}^{∞}	0	0	0	1	0	0	1	0	0
σ^2	0	0	0	0	1	1	0	0	1	0
σ^3	0	0	0	0	0	1	1	1	0	0
σ^4	0	0	0	0	0	0	1	0	1	0
σ^5	0	0	0	0	0	0	0	0	0	1
σ^6	0	0	0	0	0	0	0	0	0	0
σ^7	0	0	0	0	0	0	0	0	0	0
σ^8	0	0	0	0	0	0	0	0	0	1
$ \sigma^{2} $ $ \sigma^{3} $ $ \sigma^{4} $ $ \sigma^{5} $ $ \sigma^{6} $ $ \sigma^{7} $ $ \sigma^{8} $ $ \sigma^{9} $ $ \sigma^{10} $	0	0	0	0	0	0	0	0	0	1
σ^{10}	$\int 0$	0	0	0	0	0	0	0	0	0/
	•								J	,

Input: a boundary matrix Δ Output: a reduced matrix $\widetilde{\Delta}$

for $j \leftarrow 1$ to n do

while there exists i < j with $\delta(i) = \delta(j)$ do

add column i to column j;

									3	
	σ^1	σ^2	σ^3	σ^4	σ^5	σ^6	σ^7	o o	σ^9	σ^{10}
σ^1	$\int 0$	0	0	0	1	0	0	1	0	0
σ^2	0	0	0	0	1	1	0	0	1	0
σ^3	0	0	0	0	0	1	1 (1	0	0
σ^4	0	0	0	0	0	$\overset{\smile}{0}$	1	0	1	0
σ^5	0	0	0	0	0	0	0	0	0	1
σ^6	0	0	0	0	0	0	0	0	0	0
σ^7	0	0	0	0	0	0	0	0	0	0
σ^8	0	0	0	0	0	0	0	0	0	1
$ \sigma^{1} $ $ \sigma^{2} $ $ \sigma^{3} $ $ \sigma^{4} $ $ \sigma^{5} $ $ \sigma^{6} $ $ \sigma^{7} $ $ \sigma^{8} $ $ \sigma^{9} $ $ \sigma^{10} $	0	0	0	0	0	0	0	0	0	1
σ^{10}	$\int 0$	0	0	0	0	0	0	0	0	0/

									d ×	
	σ^1	σ^2	σ^3	σ^4	σ^5	σ^6	σ^7	o o	σ^9	σ^{10}
σ^1	\int_{0}^{∞}	0	0	0	1	0	0	1	0	0/
σ^2	0	0	0	0	1	1	0	1	1	0
σ^3	0	0	0	0	0	1	1	0	0	0
$ \sigma^{2} $ $ \sigma^{3} $ $ \sigma^{4} $ $ \sigma^{5} $ $ \sigma^{6} $ $ \sigma^{7} $	0	0	0	0	0	0	1	0	1	0
σ^5	0	0	0	0	0	0	0	0	0	1
σ^6	0	0	0	0	0	0	0	0	0	0
σ^7	0	0	0	0	0	0	0	0	0	0
σ^8	0	0	0	0	0	0	0	0	0	1
σ^9	0	0	0	0	0	0	0	0	0	1
σ^8 σ^9 σ^{10}	$\int 0$	0	0	0	0	0	0	0	0	0/

Input: a boundary matrix Δ Output: a reduced matrix $\widetilde{\Delta}$

for $j \leftarrow 1$ to n do

while there exists i < j with $\delta(i) = \delta(j)$ do

add column i to column j;

									1 ×	6
	σ^1	σ^2	σ^3	σ^4	σ^5	σ^6	σ^7	6 ×	σ^9	σ^{10}
σ^1	$\int 0$	0	0	0	1	0	0	1	0	0
σ^2	0	0	0	0 (1)	1	0	(1)	1	0
$ \sigma^{2} $ $ \sigma^{3} $ $ \sigma^{4} $ $ \sigma^{5} $ $ \sigma^{6} $ $ \sigma^{7} $ $ \sigma^{8} $ $ \sigma^{9} $	0	0	0	0	$\overset{\smile}{0}$	1	1	0	0	0
σ^4	0	0	0	0	0	0	1	0	1	0
σ^5	0	0	0	0	0	0	0	0	0	1
σ^6	0	0	0	0	0	0	0	0	0	0
σ^7	0	0	0	0	0	0	0	0	0	0
σ^8	0	0	0	0	0	0	0	0	0	1
σ^9	0	0	0	0	0	0	0	0	0	1
σ^{10}	$\int 0$	0	0	0	0	0	0	0	0	0/

								1 × 0					
	σ^1	σ^2	σ^3	σ^4	σ^5	σ^6	σ^7	چ > 6	σ^9	σ^{10}			
σ^1	\int_{0}^{∞}	0	0	0	1	0	0	0	0	0			
σ^2	0	0	0	0	1	1	0	0	1	0			
σ^2 σ^3 σ^4	0	0	0	0	0	1	1	0	0	0			
	0	0	0	0	0	0	1	0	1	0			
σ^5 σ^6 σ^7	0	0	0	0	0	0	0	0	0	1			
σ^6	0	0	0	0	0	0	0	0	0	0			
σ^7	0	0	0	0	0	0	0	0	0	0			
σ^8	0	0	0	0	0	0	0	0	0	1			
σ^9	0	0	0	0	0	0	0	0	0	1			
σ^8 σ^9 σ^{10}	$\int 0$	0	0	0	0	0	0	0	0	0/			

Input: a boundary matrix Δ Output: a reduced matrix $\widetilde{\Delta}$

for $j \leftarrow 1$ to n do

while there exists i < j with $\delta(i) = \delta(j)$ do

add column i to column j;

										3	C
									$\times \overset{^{\checkmark}}{\sigma^9}$	6 × 6	
	σ^1	σ^2	σ^3	σ^4	σ^5	σ^6	σ^7	6	$\times \frac{\mathfrak{o}}{\sigma^9}$	σ^{10}	
σ^1	$\int 0$	0	0	0	1	0	0	0	0	0)	
σ^2	0	0	0	0	1	1	0	0	1	0	
σ^3	0	0	0	0	0	1	1	0	0	0	
σ^4	0	0	0	0	0	0	1	0	1	0	
σ^5	0	0	0	0	0	0	0	0	0	1	
σ^6	0	0	0	0	0	0	0	0	0	0	
σ^7	0	0	0	0	0	0	0	0	0	0	
σ^8	0	0	0	0	0	0	0	0	0	1	
σ^9	0	0	0	0	0	0	0	0	0	1	
σ^{10}	$\int 0$	0	0	0	0	0	0	0	0	0/	
	`					Α.			A	•	

Input: a boundary matrix Δ

Output: a reduced matrix Δ

for $j \leftarrow 1$ to n do

while there exists i < j with $\delta(i) = \delta(j)$ do | add column i to column j;

Lemma: Suppose that the boundary matrix is reduced. Let $j\in [\![1,n]\!]$. If $\delta(j)$ is defined, then the simplex σ^j is negative.

Otherwise, it is positive.

$$\sigma^{1} \quad \sigma^{2} \quad \sigma^{3} \quad \sigma^{4} \quad \sigma^{5} \quad \sigma^{6} \quad \sigma^{7} \quad \delta^{5} \quad \delta^{6} \quad \delta^{7} \quad \delta^{7$$

Incremental computation of the homology

```
Input: an increasing sequence of simplicial complexes K^1 \subset \cdots \subset K^n = K

Output: the Betti numbers \beta_0(K), ..., \beta_d(K)

\beta_0 \leftarrow 0, ..., \beta_d \leftarrow 0;

for i \leftarrow 1 to n do

d = \dim(\sigma^i);

if \sigma^i is positive then
\beta_k(K^i) \leftarrow \beta_k(K^i) + 1;

else if d > 0 then
\beta_{k-1}(K^i) \leftarrow \beta_{k-1}(K^{i-1}) - 1;
```

Gauss reduction of the boundary matrix

```
Input: a boundary matrix \Delta
Output: a reduced matrix \widetilde{\Delta}
for i \leftarrow 1 \ j \circ n \ \mathbf{do}

| while there exists i < j \ with \ \delta(i) = \delta(j) \ \mathbf{do}
| add column i to column j;
```

I - Simplicial homology

- 1 Reminder of algebra
- 2 Homological algebra
- 3 Incremental algorithm

II - More about homology

- 1 Topology of simplicial complexes
- 2 Singular homology
- 3 Functoriality

III - Homological inference

- 1 Thickening parameter selection
- 2 Čech complex
- 3 Rips complex

In order to describe topological spaces, we will decompose them into simpler pieces. The pieces we shall consider are the standard simplices.

The **standard simplex of dimension** n is the following subset of \mathbb{R}^{n+1}

$$\Delta_n = \{ x = (x_1, ..., x_{n+1}) \in \mathbb{R}^{n+1} \mid x_1, ..., x_{n+1} \ge 0 \text{ and } x_1 + ... + x_{n+1} = 1 \}$$

In order to describe topological spaces, we will decompose them into simpler pieces. The pieces we shall consider are the standard simplices.

The **standard simplex of dimension** n is the following subset of \mathbb{R}^{n+1}

$$\Delta_n = \{x = (x_1, ..., x_{n+1}) \in \mathbb{R}^{n+1} \mid x_1, ..., x_{n+1} \ge 0 \text{ and } x_1 + ... + x_{n+1} = 1\}$$

Remark: For any collection of points $a_1,...,a_k \in \mathbb{R}^n$, their convex hull is defined as:

$$conv(\{a_1...a_k\}) = \left\{ \sum_{1 \le i \le k} t_i a_i \mid t_1 + ... + t_k = 1, \quad t_1, ..., t_k \ge 0 \right\}.$$

We can say that Δ_n is the convex hull of the vectors $e_1, ..., e_{n+1}$ of \mathbb{R}^{n+1} , where $e_i = (0, ..., 1, 0, ..., 0)$ (i^{th} coordinate 1, the other ones 0).

Let us give simplicial complexes a topology.

Definition: Let K be a simplicial complex, with vertex $V = \{1,...,n\}$. In \mathbb{R}^n , consider, for every $i \in [\![1,n]\!]$, the vector $e_i = (0,...,1,0,...,0)$ (i^{th} coordinate 1, the other ones 0).

Let |K| be the subset of \mathbb{R}^n defined as:

$$|K| = \bigcup_{\sigma \in K} \operatorname{conv} \left(\{ e_j, j \in \sigma \} \right)$$

where conv represent the convex hull of points.

Endowed with the subspace topology, $(|K|, \mathcal{T}_{|K|})$ is a topological space, that we call the topological realization of K.

If $a_1, ..., a_k \in \mathbb{R}^n$, the convex hull is defined as:

$$\operatorname{conv}(\{a_1...a_k\}) = \left\{ \sum_{1 \le i \le k} t_i a_i \mid t_1 + ... + t_k = 1, \quad t_1, ..., t_k \ge 0 \right\}.$$

Let us give simplicial complexes a topology.

Definition: Let K be a simplicial complex, with vertex $V = \{1,...,n\}$. In \mathbb{R}^n , consider, for every $i \in [\![1,n]\!]$, the vector $e_i = (0,...,1,0,...,0)$ (i^{th} coordinate 1, the other ones 0).

Let |K| be the subset of \mathbb{R}^n defined as:

$$|K| = \bigcup_{\sigma \in K} \operatorname{conv}\left(\{e_j, j \in \sigma\}\right)$$

where conv represent the convex hull of points.

Endowed with the subspace topology, $(|K|, \mathcal{T}_{|K|})$ is a topological space, that we call the topological realization of K.

Remark: If the simplicial complex can be drawn in the plane (or space) without crossing itself, then its topological realization simply is the subspace topology.

Example: $K = \{[0], [1], [2], [3], [0, 1], [1, 2], [2, 0], [1, 3], [2, 3], [0, 1, 2]\}.$

Definition: Let X be a topological space. A **triangulation** of X is a simplicial complex K such that its topological realization |K| is homeomorphic to X.

Example: The following simplicial complex is a triangulation of the circle:

$$K = \{[0], [1], [2], [0, 1], [1, 2], [2, 0]\}$$

Example: The following simplicial complex is a triangulation of the sphere:

$$K = \{[0], [1], [2], [3], [0, 1], [1, 2], [2, 3], [3, 0], [0, 2], [1, 3], [0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3]\}.$$

Definition: Let X be a topological space. A **triangulation** of X is a simplicial complex K such that its topological realization |K| is homeomorphic to X.

Given a topological space, it is not always possible to triangulate it. However, when it is, there exists many different triangulations.

Theorem (Manolescu, 2016): For any dimension $n \geq 5$ there is a compact topological manifold which does not admit a triangulation.

I - Simplicial homology

- 1 Reminder of algebra
- 2 Homological algebra
- 3 Incremental algorithm

II - More about homology

- 1 Topology of simplicial complexes
- 2 Singular homology
- 3 Functoriality

III - Homological inference

- 1 Thickening parameter selection
- 2 Čech complex
- 3 Rips complex

Let us consider a **topological space** X. We want a notion of **simplices**.

Let us consider a **topological space** X. We want a notion of **simplices**.

Definition: A singular n-simplex is a continuous map $\Delta_n \to X$, where Δ_n is the standard n-simplex. We denote S_n their set.

We now want a notion of **boundary**.

Let us consider a **topological space** X. We want a notion of **simplices**.

Definition: A singular n-simplex is a continuous map $\Delta_n \to X$, where Δ_n is the standard n-simplex. We denote S_n their set.

We now want a notion of **boundary**.

The boundary of Δ_n consists in n+1 copies of Δ_{n-1} .

We can restrict a singular n-simplex $\Delta_n \to X$ to the boundaries, giving n+1 singular (n-1)-simplices $\Delta_{n-1} \to X$.

Definition: The **boundary** of a singular n-simplex $\Delta_n \to X$ is the formal sum of the n+1 singular (n-1)-simplices $\Delta_{n-1} \to X$

For a **simplicial complex** K, we have defined

$$n$$
-chains

$$\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma$$
 where $\forall \sigma \in K_{(n)}, \ \epsilon_{\sigma} \in \mathbb{Z}/2\mathbb{Z}$

$$\partial_n \sigma = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \tau$$

$$\dots \xrightarrow{\partial_{n+2}} C_{n+1}(K) \xrightarrow{\partial_{n+1}} C_n(K) \xrightarrow{\partial_n} C_{n-1}(K) \xrightarrow{\partial_{n-1}} \dots$$

$$n$$
-cycles and n -boundaries $Z_n(K) = \operatorname{Ker}(\partial_n)$ $B_n(K) = \operatorname{Im}(\partial_{n+1})$

$$Z_n(K) = \mathsf{Ker}(\partial_n)$$

$$B_n(K) = \operatorname{Im}(\partial_{n+1})$$

$$n^{\text{th}}$$
simplicial homology group $H_n(K) = Z_n(K)/B_n(K)$

$$H_n(K) = Z_n(K)/B_n(K)$$

For a **simplicial complex** K, we have defined

$$n$$
-chains

$$\sum_{\sigma \in K_{(n)}} \epsilon_{\sigma} \cdot \sigma$$
 where $\forall \sigma \in K_{(n)}, \ \epsilon_{\sigma} \in \mathbb{Z}/2\mathbb{Z}$

boundary operator

$$\partial_n \sigma = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \tau$$

chain complex

$$\dots \xrightarrow{\partial_{n+2}} C_{n+1}(K) \xrightarrow{\partial_{n+1}} C_n(K) \xrightarrow{\partial_n} C_{n-1}(K) \xrightarrow{\partial_{n-1}} \dots$$

n-cycles and n-boundaries $Z_n(K) = \operatorname{Ker}(\partial_n)$ $B_n(K) = \operatorname{Im}(\partial_{n+1})$

$$Z_n(K) = \mathsf{Ker}(\partial_n)$$

$$B_n(K) = \operatorname{Im}(\partial_{n+1})$$

 n^{th} simplicial homology group $H_n(K) = Z_n(K)/B_n(K)$

$$H_n(K) = Z_n(K)/B_n(K)$$

For a **topological space** X, we can define

$$n$$
-chains

$$\sum_{\sigma \in S_n} \epsilon_{\sigma} \cdot \sigma$$
 where $\forall \sigma \in S_n, \ \epsilon_{\sigma} \in \mathbb{Z}/2\mathbb{Z}$

boundary operator

$$\partial_n \sigma = \sum_{\substack{\tau \subset \sigma \\ |\tau| = |\sigma| - 1}} \tau$$

chain complex

n-cycles and n-boundaries $Z_n(X) = \operatorname{Ker}(\partial_n)$ $B_n(X) = \operatorname{Im}(\partial_{n+1})$

$$Z_n(X) = \mathsf{Ker}(\partial_n)$$

$$B_n(X) = \operatorname{Im}(\partial_{n+1})$$

 n^{th} singular homology group $H_n(X) = Z_n(X)/B_n(X)$

$$H_n(X) = Z_n(X)/B_n(X)$$

Theorem: If X is a topological space and K a triangulation of it, then for all $n \ge 0$, $H_n(X) = H_n(K)$ (singular homology is equal to simplicial homology).

$$H_0(X) = \mathbb{Z}/2\mathbb{Z}$$

$$H_1(X) = \mathbb{Z}/2\mathbb{Z}$$

$$H_2(X) = 0$$

$$H_0(K) = \mathbb{Z}/2\mathbb{Z}$$

$$H_1(K) = \mathbb{Z}/2\mathbb{Z}$$

$$H_2(X) = 0$$

Theorem: If X is a topological space and K a triangulation of it, then for all $n \ge 0$, $H_n(X) = H_n(K)$ (singular homology is equal to simplicial homology).

$$H_0(X) = \mathbb{Z}/2\mathbb{Z}$$

$$H_1(X) = \mathbb{Z}/2\mathbb{Z}$$

$$H_2(X) = 0$$

$$H_0(K) = \mathbb{Z}/2\mathbb{Z}$$

$$H_1(K) = \mathbb{Z}/2\mathbb{Z}$$

$$H_2(X) = 0$$

Theorem: If X and Y are homotopy equivalent topological spaces, then for all $n \ge 0$, $H_n(X) = H_n(Y)$.

Corollary: If K and L are homotopy equivalent simplicial complexes, then for all $n \geq 0$, $H_n(K) = H_n(L)$.

the homology groups are **invariants** of homotopy classes

I - Simplicial homology

- 1 Reminder of algebra
- 2 Homological algebra
- 3 Incremental algorithm

II - More about homology

- 1 Topology of simplicial complexes
- 2 Singular homology
- 3 Functoriality

III - Homological inference

- 1 Thickening parameter selection
- 2 Čech complex
- 3 Rips complex

Homologia é um functor

We have seen that homology transforms topological spaces into vector spaces

$$H_i \colon \mathrm{Top} \longrightarrow \mathrm{Vect}$$

 $X \longmapsto H_i(X)$

Actually, it also transforms continous maps into linear maps

$$X \xrightarrow{f} Y$$

$$H_n(X) \xrightarrow{H_n(f)} H_n(Y)$$

This operation preserves **commutative diagrams**:

$$H_n(g \circ f)$$

$$H_n(X) \xrightarrow{H_n(f)} H_n(Y) \xrightarrow{H_n(g)} H_n(Z).$$

$$H_n(g \circ f) = H_n(g) \circ H_n(f)$$

Application (Brouwer's fixed point theorem):

Let $f: \mathcal{B} \to \mathcal{B}$ be a continous map, where \mathcal{B} is the unit closed ball of \mathbb{R}^n . Let us show that f has a fixed point (f(x) = x).

If not, we can define a map $F: \mathcal{B} \to \partial \mathcal{B}$ such that F restricted to $\partial \mathcal{B}$ is the identity. To do so, define F(x) as the first intersection between the half-line [x, f(x)) and $\partial \mathcal{B}$.

Denote the inclusion $i: \partial \mathcal{B} \to \mathcal{B}$. Then $F \circ i: \partial \mathcal{B} \to \partial \mathcal{B}$ is the identity. By functoriality, we have commutative diagrams

$$H_i(\partial \mathcal{B}) \xrightarrow{H_i(i)} H_i(\mathcal{B}) \xrightarrow{H_i(F)} H_i(\partial \mathcal{B}).$$

But for i = n - 1, we have an absurdity:

$$\mathbb{Z}/2\mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z}/2\mathbb{Z}.$$

I - Simplicial homology

- 1 Reminder of algebra
- 2 Homological algebra
- 3 Incremental algorithm

II - More about homology

- 1 Topology of simplicial complexes
- 2 Singular homology
- 3 Functoriality

III - Homological inference

- 1 Thickening parameter selection
- 2 Čech complex
- 3 Rips complex

O problema da inferência homológica_{32/45} (1/13)

Let $\mathcal{M} \subset \mathbb{R}^n$ be a bounded subset. Suppose that we are given a finite sample $X \subset \mathcal{M}$. Estimate the homology groups of \mathcal{M} from X.

X

 \mathcal{M}

O problema da inferência homológica_{32/45} (2/13)

Let $\mathcal{M} \subset \mathbb{R}^n$ be a bounded subset. Suppose that we are given a finite sample $X \subset \mathcal{M}$. Estimate the homology groups of \mathcal{M} from X.

 \mathcal{N}

We cannot use X directly. Its homology is disapointing:

$$\beta_0(X) = 30$$
 and $\beta_i(X) = 0$ for $i \ge 1$

number of connected components .

= number of points of X

O problema da inferência homológica_{32/45} (3/13)

Let $\mathcal{M} \subset \mathbb{R}^n$ be a bounded subset. Suppose that we are given a finite sample $X \subset \mathcal{M}$. Estimate the homology groups of \mathcal{M} from X.

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \{ y \in \mathbb{R}^{n} \mid \exists x \in X, ||x - y|| \le t \}.$$

O problema da inferência homológica_{32/45} (4/13)

Let $\mathcal{M} \subset \mathbb{R}^n$ be a bounded subset. Suppose that we are given a finite sample $X \subset \mathcal{M}$. Estimate the homology groups of \mathcal{M} from X.

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \{ y \in \mathbb{R}^{n} \mid \exists x \in X, ||x - y|| \le t \}.$$

O problema da inferência homológica_{32/45} (5/13)

Let $\mathcal{M} \subset \mathbb{R}^n$ be a bounded subset. Suppose that we are given a finite sample $X \subset \mathcal{M}$. Estimate the homology groups of \mathcal{M} from X.

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \{ y \in \mathbb{R}^{n} \mid \exists x \in X, ||x - y|| \le t \}.$$

O problema da inferência homológica_{32/45} (6/13)

Let $\mathcal{M} \subset \mathbb{R}^n$ be a bounded subset. Suppose that we are given a finite sample $X \subset \mathcal{M}$. Estimate the homology groups of \mathcal{M} from X.

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \{ y \in \mathbb{R}^{n} \mid \exists x \in X, ||x - y|| \le t \}.$$

O problema da inferência homológica_{32/45} (7/13)

Let $\mathcal{M} \subset \mathbb{R}^n$ be a bounded subset. Suppose that we are given a finite sample $X \subset \mathcal{M}$. Estimate the homology groups of \mathcal{M} from X.

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \{ y \in \mathbb{R}^{n} \mid \exists x \in X, ||x - y|| \le t \}.$$

O problema da inferência homológica_{32/45} (8/13)

Let $\mathcal{M} \subset \mathbb{R}^n$ be a bounded subset. Suppose that we are given a finite sample $X \subset \mathcal{M}$. Estimate the homology groups of \mathcal{M} from X.

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \{ y \in \mathbb{R}^{n} \mid \exists x \in X, ||x - y|| \le t \}.$$

O problema da inferência homológica_{32/45} (9/13)

Let $\mathcal{M} \subset \mathbb{R}^n$ be a bounded subset. Suppose that we are given a finite sample $X \subset \mathcal{M}$. Estimate the homology groups of \mathcal{M} from X.

 \mathcal{M}

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \{ y \in \mathbb{R}^{n} \mid \exists x \in X, ||x - y|| \le t \}.$$

O problema da inferência homológica_{32/45} (10/13)

Let $\mathcal{M} \subset \mathbb{R}^n$ be a bounded subset. Suppose that we are given a finite sample $X \subset \mathcal{M}$.

Example 1 the homology groups of \mathcal{M} from X.

Idea: Thicken X.

$$X^{t} = \{ y \in \mathbb{R}^{n} \mid \exists x \in X, ||x - y|| \le t \}.$$

O problema da inferência homológica_{32/45} (11/13)

Some thickenings are homotopy equivalent to \mathcal{M} .

Hence we can recover the homology of \mathcal{M} :

$$\beta_0(\mathcal{M}) = \beta_0(X^{0.3})$$
$$\beta_1(\mathcal{M}) = \beta_1(X^{0.3})$$
$$\beta_2(\mathcal{M}) = \beta_2(X^{0.3})$$

. . .

O problema da inferência homológica_{32/45} (12/13)

Some thickenings are homotopy equivalent to \mathcal{M} .

Hence we can recover the homology of \mathcal{M} :

$$\beta_0(\mathcal{M}) = \beta_0(X^{0.3})$$
$$\beta_1(\mathcal{M}) = \beta_1(X^{0.3})$$
$$\beta_2(\mathcal{M}) = \beta_2(X^{0.3})$$

. . .

Question 1: How to select a t such that $X^t \approx \mathcal{M}$?

Question 2: How to compute the homology groups of X^t ?

O problema da inferência homológica_{32/45} (13/13)

Some thickenings are homotopy equivalent to \mathcal{M} .

Hence we can recover the homology of \mathcal{M} :

$$\beta_0(\mathcal{M}) = \beta_0(X^{0.3})$$
$$\beta_1(\mathcal{M}) = \beta_1(X^{0.3})$$
$$\beta_2(\mathcal{M}) = \beta_2(X^{0.3})$$

. . .

Question 1: How to select a t such that $X^t \approx \mathcal{M}$?

Hausdorff distance

Reach

Question 2: How to compute the homology groups of X^t ?

I - Simplicial homology

- 1 Reminder of algebra
- 2 Homological algebra
- 3 Incremental algorithm

II - More about homology

- 1 Topology of simplicial complexes
- 2 Singular homology
- 3 Functoriality

III - Homological inference

- 1 Thickening parameter selection
- 2 Čech complex
- 3 Rips complex

Let X be any subset of \mathbb{R}^n . The function **distance to** X is the map

$$\operatorname{dist}(\cdot, X) : \mathbb{R}^n \longrightarrow \mathbb{R}$$
$$y \longmapsto \operatorname{dist}(y, X) = \inf\{\|y - x\|, x \in X\}$$

A **projection** of $y \in \mathbb{R}^n$ on X is a point $x \in X$ which attains this infimum.

Distância de Hausdorff

Let X be any subset of \mathbb{R}^n . The function **distance to** X is the map

$$\operatorname{dist}(\cdot, X) : \mathbb{R}^n \longrightarrow \mathbb{R}$$
$$y \longmapsto \operatorname{dist}(y, X) = \inf\{\|y - x\|, x \in X\}$$

A **projection** of $y \in \mathbb{R}^n$ on X is a point $x \in X$ which attains this infimum.

Definition: Let $Y \subset \mathbb{R}^n$ be another subset. The **Hausdorff distance** between X and Y is

$$\begin{aligned} \mathrm{d_{H}}\left(X,Y\right) &= \max \left\{ \sup_{y \in Y} \mathrm{dist}\left(y,X\right), & \sup_{x \in X} \mathrm{dist}\left(x,Y\right) \right\} \\ &= \max \left\{ \sup_{y \in Y} \inf_{x \in X} \left\|x - y\right\|, & \sup_{x \in X} \inf_{y \in Y} \left\|x - y\right\| \right\}. \end{aligned}$$

Let X be any subset of \mathbb{R}^n . The function **distance to** X is the map

$$\operatorname{dist}(\cdot, X) : \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$y \longmapsto \operatorname{dist}(y, X) = \inf\{\|y - x\|, x \in X\}$$

A **projection** of $y \in \mathbb{R}^n$ on X is a point $x \in X$ which attains this infimum.

Definition: Let $Y \subset \mathbb{R}^n$ be another subset. The **Hausdorff distance** between X and Y is

$$d_{H}(X,Y) = \max \left\{ \sup_{y \in Y} \operatorname{dist}(y,X), \sup_{x \in X} \operatorname{dist}(x,Y) \right\}$$
$$= \max \left\{ \sup_{y \in Y} \inf_{x \in X} \|x - y\|, \sup_{x \in X} \inf_{y \in Y} \|x - y\| \right\}.$$

Proposition: The Hausdorff distance is equal to $\inf\{t \geq 0 \mid X \subset Y^t \text{ and } Y \subset X^t\}$.

$$med(X) = \{ y \in \mathbb{R}^n \mid \exists x, x' \in X, x \neq x', ||y - x|| = ||y - x'|| = dist(y, X) \}.$$

$$med(X) = \{ y \in \mathbb{R}^n \mid \exists x, x' \in X, x \neq x', ||y - x|| = ||y - x'|| = dist(y, X) \}.$$

Examples:

The medial axis of the unit circle is the origin

$$med(X) = \{ y \in \mathbb{R}^n \mid \exists x, x' \in X, x \neq x', ||y - x|| = ||y - x'|| = dist(y, X) \}.$$

Examples:

The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment

$$med(X) = \{ y \in \mathbb{R}^n \mid \exists x, x' \in X, x \neq x', ||y - x|| = ||y - x'|| = dist(y, X) \}.$$

Examples:

The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment

The medial axis of a point is the empty set

$$med(X) = \{ y \in \mathbb{R}^n \mid \exists x, x' \in X, x \neq x', ||y - x|| = ||y - x'|| = dist(y, X) \}.$$

Examples:

The medial axis of the unit circle is the origin

The medial axis of a point is the empty set

The medial axis of two points is their bisector

$$med(X) = \{ y \in \mathbb{R}^n \mid \exists x, x' \in X, x \neq x', ||y - x|| = ||y - x'|| = dist(y, X) \}.$$

The **reach** of X is

reach
$$(X) = \inf \{ \text{dist } (y, X) \mid y \in \text{med } (X) \}$$

= $\inf \{ ||x - y|| \mid x \in X, y \in \text{med } (X) \}$.

$$med(X) = \{ y \in \mathbb{R}^n \mid \exists x, x' \in X, x \neq x', ||y - x|| = ||y - x'|| = dist(y, X) \}.$$

The **reach** of X is

reach
$$(X) = \inf \{ \text{dist } (y, X) \mid y \in \text{med } (X) \}$$

= $\inf \{ ||x - y|| \mid x \in X, y \in \text{med } (X) \}$.

$$med(X) = \{ y \in \mathbb{R}^n \mid \exists x, x' \in X, x \neq x', ||y - x|| = ||y - x'|| = dist(y, X) \}.$$

The **reach** of X is

reach
$$(X) = \inf \{ \text{dist } (y, X) \mid y \in \text{med } (X) \}$$

= $\inf \{ ||x - y|| \mid x \in X, y \in \text{med } (X) \}$.

Proposition: For every $t \in [0, \text{reach}(X))$, the spaces X and X^t are homotopy equivalent.

$$med(X) = \{ y \in \mathbb{R}^n \mid \exists x, x' \in X, x \neq x', ||y - x|| = ||y - x'|| = dist(y, X) \}.$$

The **reach** of X is

reach
$$(X) = \inf \{ \text{dist } (y, X) \mid y \in \text{med } (X) \}$$

= $\inf \{ ||x - y|| \mid x \in X, y \in \text{med } (X) \}$.

Proposition: For every $t \in [0, \text{reach}(X))$, the spaces X and X^t are homotopy equivalent.

$$med(X) = \{ y \in \mathbb{R}^n \mid \exists x, x' \in X, x \neq x', ||y - x|| = ||y - x'|| = dist(y, X) \}.$$

The **reach** of X is

reach
$$(X) = \inf \{ \text{dist } (y, X) \mid y \in \text{med } (X) \}$$

= $\inf \{ ||x - y|| \mid x \in X, y \in \text{med } (X) \}$.

Proposition: For every $t \in [0, \text{reach}(X))$, the spaces X and X^t are homotopy equivalent.

If $t \ge \operatorname{reach}(X)$, the sets X and X^t may not be homotopy equivalent.

Proposition: For every $t \in [0, \text{reach}(X))$, the spaces X and X^t are homotopy equivalent.

Proof: For every $t \in [0, \text{reach}(X))$, the thickening X^t deform retracts onto X. A homotopy is given by the following map:

$$X^t \times [0,1] \longrightarrow X^t$$

 $(x,t) \longmapsto (1-t)x + t \cdot \operatorname{proj}(x,X).$

Indeed, the projection proj(x, X) is well defined (it is unique).

Remember Question 1: How to select a t such that $X^t \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):

Let X and \mathcal{M} be subsets of \mathbb{R}^n . Suppose that \mathcal{M} has positive reach, and that $d_H(X,\mathcal{M}) \leq \frac{1}{17} \mathrm{reach}(\mathcal{M})$.

Then X^t and $\mathcal M$ are homotopic equivalent, provided that

$$t \in [4d_{\mathrm{H}}(X, \mathcal{M}), \mathrm{reach}(\mathcal{M}) - 3d_{\mathrm{H}}(X, \mathcal{M})).$$

Remember Question 1: How to select a t such that $X^t \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):

Let X and \mathcal{M} be subsets of \mathbb{R}^n . Suppose that \mathcal{M} has positive reach, and that $d_H(X,\mathcal{M}) \leq \frac{1}{17} \mathrm{reach}(\mathcal{M})$.

Then X^t and $\mathcal M$ are homotopic equivalent, provided that

$$t \in [4d_{\mathrm{H}}(X, \mathcal{M}), \mathrm{reach}(\mathcal{M}) - 3d_{\mathrm{H}}(X, \mathcal{M})).$$

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008):

Let X and \mathcal{M} be subsets of \mathbb{R}^n , with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M} . Suppose that \mathcal{M} has positive reach.

Then X^t and $\mathcal M$ are homotopic equivalent, provided that

$$t \in \left[2d_{\mathrm{H}}(X, \mathcal{M}), \sqrt{\frac{3}{5}} \mathrm{reach}(\mathcal{M}) \right].$$

I - Simplicial homology

- 1 Reminder of algebra
- 2 Homological algebra
- 3 Incremental algorithm

II - More about homology

- 1 Topology of simplicial complexes
- 2 Singular homology
- 3 Functoriality

III - Homological inference

- 1 Thickening parameter selection
- 2 Čech complex
- 3 Rips complex

Let us consider Question 2: How to compute the homology groups of X^t ?

We must a triangulation of X^t , that is: a simplicial complex K homeomorphic to X.

Actually, we will define something weaker: a simplicial complex K that is homotopy equivalent to X.

Let us consider Question 2: How to compute the homology groups of X^t ?

We must a triangulation of X^t , that is: a simplicial complex K homeomorphic to X.

Actually, we will define something weaker: a simplicial complex K that is homotopy equivalent to X.

Either case, we will have $\beta_i(X) = \beta_i(K)$ for all $i \geq 0$.

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

$$\bigcup_{1 \le i \le N} U_i = X.$$

The **nerve** of \mathcal{U} is the simplicial complex with vertex set $\{1,...,N\}$ and whose m-simplices are the subsets $\{i_1,...,i_m\}\subset\{1,...,N\}$ such that $\bigcap_{k=0}^m U_{i_k}\neq\emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

Definition: Let X be a topological space, and $\mathcal{U} = \{U_i\}_{1 \leq i \leq N}$ a cover of X, that is, a collection of subsets $U_i \subset X$ such that

$$\bigcup_{1 \le i \le N} U_i = X.$$

The **nerve** of \mathcal{U} is the simplicial complex with vertex set $\{1,...,N\}$ and whose m-simplices are the subsets $\{i_1,...,i_m\}\subset\{1,...,N\}$ such that $\bigcap_{k=0}^m U_{i_k}\neq\emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

$$\bigcup_{1 \le i \le N} U_i = X.$$

$$\bigcup_{1 \le i \le N} U_i = X.$$

$$X^{0.2} = \bigcup_{x \in X} \overline{\mathcal{B}}(x, 0.2)$$
 is covered by $\mathcal{U} = \{ \overline{\mathcal{B}}(x, 0.2) \mid x \in X \}$

$$\bigcup_{1 \le i \le N} U_i = X.$$

$$X^{0.2}=\bigcup_{x\in X}\overline{\mathcal{B}}\left(x,0.2
ight)$$
 is covered by $\mathcal{U}=\left\{ \overline{\mathcal{B}}\left(x,0.2
ight)\mid x\in X
ight\}$

$$\bigcup_{1 \le i \le N} U_i = X.$$

$$X^{0.3} = \bigcup_{x \in X} \overline{\mathcal{B}}(x, 0.3)$$
 is covered by $\mathcal{U} = \{ \overline{\mathcal{B}}(x, 0.3) \mid x \in X \}$

$$\bigcup_{1 \le i \le N} U_i = X.$$

$$X^{0.3} = \bigcup_{x \in X} \overline{\mathcal{B}}(x, 0.3)$$
 is covered by $\mathcal{U} = \{ \overline{\mathcal{B}}(x, 0.3) \mid x \in X \}$

$$\bigcup_{1 \le i \le N} U_i = X.$$

The **nerve** of \mathcal{U} is the simplicial complex with vertex set $\{1,...,N\}$ and whose m-simplices are the subsets $\{i_1,...,i_m\}\subset\{1,...,N\}$ such that $\bigcap_{k=0}^m U_{i_k}\neq\emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

Nerve theorem: Consider $X \subset \mathbb{R}^n$. Suppose that each U_i are balls (or more generally, closed and convex). Then $\mathcal{N}(\mathcal{U})$ is homotopy equivalent to X.

Complexo de Čech

Let X be a finite subset of \mathbb{R}^n , and $t \geq 0$. Consider the collection

$$\mathcal{V}^{t} = \left\{ \overline{\mathcal{B}}(x,t), x \in X \right\}.$$

This is a cover of the thickening X^t , and each components are closed balls. By Nerve Theorem, its nerve $\mathcal{N}(\mathcal{V}^t)$ has the homotopy type of X^t .

Definition: This nerve is denoted $\operatorname{\check{C}ech}^t(X)$ and is called the $\operatorname{\check{C}ech}$ complex of X at time t.

Let X be a finite subset of \mathbb{R}^n , and $t \geq 0$. Consider the collection

$$\mathcal{V}^{t} = \left\{ \overline{\mathcal{B}}(x,t), x \in X \right\}.$$

This is a cover of the thickening X^t , and each components are closed balls. By Nerve Theorem, its nerve $\mathcal{N}(\mathcal{V}^t)$ has the homotopy type of X^t .

Definition: This nerve is denoted $\operatorname{\check{C}ech}^t(X)$ and is called the $\operatorname{\check{C}ech}$ complex of X at time t.

The Question 2 (How to compute the homology groups of X^t ?) is solved.

I - Simplicial homology

- 1 Reminder of algebra
- 2 Homological algebra
- 3 Incremental algorithm

II - More about homology

- 1 Topology of simplicial complexes
- 2 Singular homology
- 3 Functoriality

III - Homological inference

- 1 Thickening parameter selection
- 2 Čech complex
- 3 Rips complex

Let $X = \{x_1, \dots, x_N\} \subset \mathbb{R}^n$ be finite, let $t \geq 0$ and consider the t-thickening

$$X^{t} = \bigcup_{x \in X} \overline{\mathcal{B}}(x, t).$$

By definition, its nerve, $\operatorname{\check{C}ech}^t(X)$, the $\operatorname{\check{C}ech}$ complex at time t, is a simplicial complex on the vertices $\{1,\ldots,N\}$ whose simplices are the subsets $\{i_1,\ldots,i_m\}$ such that

$$\bigcap_{1 \le k \le m} \overline{\mathcal{B}}(x_{i_k}, t) \neq \emptyset.$$

Let $X = \{x_1, \dots, x_N\} \subset \mathbb{R}^n$ be finite, let $t \geq 0$ and consider the t-thickening

$$X^{t} = \bigcup_{x \in X} \overline{\mathcal{B}}(x, t).$$

By definition, its nerve, $\operatorname{\check{C}ech}^t(X)$, the $\operatorname{\check{C}ech}$ complex at time t, is a simplicial complex on the vertices $\{1,\ldots,N\}$ whose simplices are the subsets $\{i_1,\ldots,i_m\}$ such that

$$\bigcap_{1 \le k \le m} \overline{\mathcal{B}}(x_{i_k}, t) \neq \emptyset.$$

Therefore, computing the Čech complex relies on the following geometric predicate:

Given m closed balls of \mathbb{R}^n , do they intersect?

This problem is known as the *smallest circle problem*.

It can can be solved in ${\cal O}(m)$ time, where m is the number of points.

Let $X = \{x_1, \dots, x_N\} \subset \mathbb{R}^n$ be finite, let $t \geq 0$ and consider the t-thickening

$$X^{t} = \bigcup_{x \in X} \overline{\mathcal{B}}(x, t).$$

By definition, its nerve, $\operatorname{\check{C}ech}^t(X)$, the $\operatorname{\check{C}ech}$ complex at time t, is a simplicial complex on the vertices $\{1,\ldots,N\}$ whose simplices are the subsets $\{i_1,\ldots,i_m\}$ such that

$$\bigcap_{1 \le k \le m} \overline{\mathcal{B}}(x_{i_k}, t) \neq \emptyset.$$

Therefore, computing the Čech complex relies on the following geometric predicate:

Given m closed balls of \mathbb{R}^n , do they intersect?

This problem is known as the *smallest circle problem*. It can can be solved in O(m) time, where m is the number of points.

in practice, we prefer a more simple version

We call a **clique** of G a set of vertices $v_1, ..., v_m$ such that for every $i, j \in [1, m]$ with $i \neq j$, the edge $[v_i, v_j]$ belongs to G.

Definition: Given a graph G, the corresponding **clique complex** is the simplicial complex whose

- vertices are the vertices of *G*,
- simplices are the sets of vertices of the cliques of G.

We call a **clique** of G a set of vertices $v_1, ..., v_m$ such that for every $i, j \in [1, m]$ with $i \neq j$, the edge $[v_i, v_j]$ belongs to G.

Definition: Given a graph G, the corresponding **clique complex** is the simplicial complex whose

- vertices are the vertices of G,
- simplices are the sets of vertices of the cliques of G.

Observation: The clique complex of a graph is a simplicial complex.

Let $X = \{x_1, \dots, x_N\} \subset \mathbb{R}^n$ and $t \geq 0$.

Consider the graph G^t whose vertex set is $\{1, \ldots, N\}$, and whose edges are the pairs (i, j) such that $||x_i - x_j|| \le 2t$.

Alternatively, G^t can be seen as the 1-skeleton of the Čech complex $\operatorname{\check{C}ech}^t(X)$.

Let $X = \{x_1, \dots, x_N\} \subset \mathbb{R}^n$ and $t \geq 0$.

Consider the graph G^t whose vertex set is $\{1, \ldots, N\}$, and whose edges are the pairs (i, j) such that $||x_i - x_j|| \le 2t$.

Alternatively, G^t can be seen as the 1-skeleton of the Čech complex $\operatorname{\check{C}ech}^t(X)$.

Definition: The **Rips complex** of X at time t is the clique complex of the graph G^t . We denote it $\operatorname{Rips}^t(X)$.

Let $X = \{x_1, \dots, x_N\} \subset \mathbb{R}^n$ and $t \ge 0$.

Consider the graph G^t whose vertex set is $\{1, \ldots, N\}$, and whose edges are the pairs (i, j) such that $||x_i - x_j|| \le 2t$.

Alternatively, G^t can be seen as the 1-skeleton of the Čech complex $\operatorname{\check{C}ech}^t(X)$.

Definition: The **Rips complex** of X at time t is the clique complex of the graph G^t . We denote it $\operatorname{Rips}^t(X)$.

Let $X = \{x_1, \dots, x_N\} \subset \mathbb{R}^n$ and $t \geq 0$.

Consider the graph G^t whose vertex set is $\{1, \ldots, N\}$, and whose edges are the pairs (i, j) such that $||x_i - x_j|| \le 2t$.

Alternatively, G^t can be seen as the 1-skeleton of the Čech complex $\operatorname{\check{C}ech}^t(X)$.

Definition: The **Rips complex** of X at time t is the clique complex of the graph G^t .

We denote it $Rips^t(X)$.

Proposition: For every $t \geq 0$, we have

$$\operatorname{\check{C}ech}^t(X) \subset \operatorname{Rips}^t(X) \subset \operatorname{\check{C}ech}^{2t}(X).$$

Proposition: For every $t \ge 0$, we have

$$\check{\operatorname{Cech}}^t(X) \subset \operatorname{Rips}^t(X) \subset \check{\operatorname{Cech}}^{2t}(X).$$

 $\operatorname{\check{C}ech}^{2t}(X)$

Proof: Let $t \geq 0$. The first inclusion follows from the fact that $\operatorname{Rips}^t(X)$ is the clique complex of $\operatorname{\check{C}ech}^t(X)$.

To prove the second one, choose a simplex $\sigma \in \operatorname{Rips}^t(X)$. Let us prove that $\omega \in \operatorname{\check{C}ech}^{2t}(X)$.

Let $x \in \sigma$ be any vertex. Note that $\forall y \in \sigma$, we have $||x - y|| \le 2t$ by definition of the Rips complex. Hence

$$x \in \bigcap_{y \in \sigma} \overline{\mathcal{B}}(y, 2t).$$

The intersection being non-empty, we deduce $\sigma \in \operatorname{\check{C}ech}^{2t}(X)$.

Question 1: How to select a t such that $X^t \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):

Let X and \mathcal{M} be subsets of \mathbb{R}^n . Suppose that \mathcal{M} has positive reach, and that $d_H(X,\mathcal{M}) \leq \frac{1}{17} \mathrm{reach}(\mathcal{M})$.

Then X^t and \mathcal{M} are homotopic equivalent, provided that

$$t \in [4d_{\mathrm{H}}(X, \mathcal{M}), \mathrm{reach}(\mathcal{M}) - 3d_{\mathrm{H}}(X, \mathcal{M})).$$

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008):

Let X and \mathcal{M} be subsets of \mathbb{R}^n , with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M} . Suppose that \mathcal{M} has positive reach.

Then X^t and \mathcal{M} are homotopic equivalent, provided that

$$t \in \left[2d_{\mathrm{H}}\left(X, \mathcal{M}\right), \sqrt{\frac{3}{5}} \mathrm{reach}\left(\mathcal{M}\right) \right).$$

Question 2: How to compute the homology groups of X^t ?

Question 1: How to select a t such that $X^t \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):

Let X and \mathcal{M} be subsets of \mathbb{R}^n . Suppose that \mathcal{M} has positive reach, and that $d_H(X,\mathcal{M}) \leq \frac{1}{17} \mathrm{reach}(\mathcal{M})$.

Then X^t and $\widetilde{\mathcal{M}}$ are homotopic equivalent, provided that

$$t \in \boxed{\left[4\mathrm{d_H}\left(X,\mathcal{M}\right),\mathrm{reach}\left(\mathcal{M}\right) - 3\mathrm{d_H}\left(X,\mathcal{M}\right)\right).}$$

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008):

Let X and \mathcal{M} be subsets of \mathbb{R}^n , with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M} . Suppose that \mathcal{M} has positive reach.

Then X^t and \mathcal{M} are homotopic equivalent, provided that

$$t \in \left[2d_{\mathrm{H}}\left(X, \mathcal{M}\right), \sqrt{\frac{3}{5}}\mathrm{reach}\left(\mathcal{M}\right)\right).$$

these quantities are not known!

Question 2: How to compute the homology groups of X^t ?

Question 1: How to select a t such that $X^t \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):

Let X and \mathcal{M} be subsets of \mathbb{R}^n . Suppose that \mathcal{M} has positive reach, and that $d_H(X,\mathcal{M}) \leq \frac{1}{17} \mathrm{reach}(\mathcal{M})$.

Then X^t and \mathcal{M} are homotopic equivalent, provided that

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008):

Let X and \mathcal{M} be subsets of \mathbb{R}^n , with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M} . Suppose that \mathcal{M} has positive reach.

Then X^t and \mathcal{M} are homotopic equivalent, provided that

$$t \in \left[2d_{\mathrm{H}}\left(X, \mathcal{M}\right), \sqrt{\frac{3}{5}}\mathrm{reach}\left(\mathcal{M}\right)\right).$$

these quantities are not known!

Is this object 1- or 2-dimensional?

Question 1: How to select a t such that $X^t \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):

Let X and \mathcal{M} be subsets of \mathbb{R}^n . Suppose that \mathcal{M} has positive reach, and that $d_H(X,\mathcal{M}) \leq \frac{1}{17} \mathrm{reach}(\mathcal{M})$.

Then X^t and \mathcal{M} are homotopic equivalent, provided that

$$t \in \left[4d_{\mathrm{H}}(X, \mathcal{M}), \mathrm{reach}(\mathcal{M}) - 3d_{\mathrm{H}}(X, \mathcal{M})\right).$$

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008):

Let X and \mathcal{M} be subsets of \mathbb{R}^n , with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M} . Suppose that \mathcal{M} has positive reach.

Then X^t and \mathcal{M} are homotopic equivalent, provided that

$$t \in \boxed{ \left[2d_{\mathrm{H}} \left(X, \mathcal{M} \right), \sqrt{\frac{3}{5}} \mathrm{reach} \left(\mathcal{M} \right) \right). }$$

these quantities are not known!

Is this object 1- or 2-dimensional?

Idea (multiscale analysis): Instead of estimating a value of t, we will choose all of them.