Definic martes, 13 de ju		11:22																							
Cuadra Sea:	atura go → ℝ	enério	ea:																						
$a, b \in \mathbb{R}$ $a < b$																									
	, $x_n \in$	[a, b]																							
				b									b												
Į	Jna cua	dratui	ra de	$\int f($	x) dx	usa	ndo	x_{1}	x ₂ ,	\dots, x_{η}	_n e	S	$\int p(.$	x) d	x										
_	Jonao.											a	!												
μ	$p \in \mathbb{R}_n[x]$	x] inte	erpola	a a <i>f</i>	en x_1	$,x_2,.$, x	n																	
	ón de u							,								_						_			
	Jna regl	a de i	ntegr	aciór	i tien	e pre	ecisi	ón <i>n</i>	\Leftrightarrow (es ex	xac	ta p	oara	poli	nor	nio	s de	gra	do r	nen	or	o ig	ual	qu	e r

Teoremas

martes, 27 de julio de 2021

18:23

Error en cuadratura general:

Sea:

$$f:C^{(n)}(a,b)$$

$$a,b \in \mathbb{R}$$

$$x_1, x_2, \dots, x_n \in (a, b)$$

 $p \in \mathbb{R}_n[x]$ interpola a f en $x_1, x_2, ..., x_n$

$$\left\langle \exists \xi_x \in (a,b) : \int_a^b f(x) \, \mathrm{d}x - \int_a^b p(x) \, \mathrm{d}x \right. = \frac{1}{n!} \int_a^b f^{(n)}(\xi_x) \prod_{i=1}^n (x - x_i) \, \mathrm{d}x \right\rangle$$

Aclaración:

 ξ_x significa que ξ es un valor que depende de x

Si una regla vale para la base, vale para cualquiera del espacio:

Sea:

$$B_n = \{b_0, b_1, ..., b_n\}$$
 una base ordenada de $\mathbb{R}_n[x]$

$$f$$
 continua en $[c,d]$

$$A_0, A_1, \dots A_n \in \mathbb{R}$$

$$x_0, x_1, ..., x_n \in [c, d]$$

Demostraciones

jueves, 13 de mayo de 2021

Error en cuadratura general:

Sea:

$$f:C^{(n)}(a,b)$$

$$a,b \in \mathbb{R}$$

$$x_1, x_2, \dots, x_n \in (a, b)$$

 $p \in \mathbb{R}_n[x]$ interpola a f en $x_1, x_2, ..., x_n$

$$\left(\exists \xi_x \in (a, b) : \int_a^b f(x) \, dx - \int_a^b p(x) \, dx \right. = \frac{1}{n!} \int_a^b f^{(n)}(\xi_x) \prod_{i=1}^n (x - x_i) \, dx$$

Aclaración:

 ξ_x significa que ξ es un valor que depende de x

Demostración:

Por teorema del error del polinomio interpolante:

$$\left\langle \forall x \in (a,b) : \left\langle \exists \xi \in (a,b) : f(x) - p(x) = \frac{f^{(n)}(\xi)}{n!} \prod_{i=1}^{n} (x - x_i) \right\rangle \right\rangle$$

Trabajo con esto:

$$\forall x \in (a,b) : \left\langle \exists \xi \in (a,b) : f(x) - p(x) = \frac{f^{(n)}(\xi)}{n!} \prod_{i=1}^{n} (x - x_i) \right\rangle$$

$$\left(\exists \xi_x \in (a,b) : \int_a^b f(x) - p(x) dx = \int_a^b \frac{f^{(n)}(\xi_x)}{n!} \prod_{i=1}^n (x - x_i) dx \right)$$

 \Leftrightarrow

$$\left\{ \exists \xi_x \in (a,b) : \int_a^b f(x) \, dx - \int_a^b p(x) \, dx = \frac{1}{n!} \int_a^b f^{(n)}(\xi_x) \prod_{i=1}^n (x - x_i) \, dx \right\}$$

Si una regla vale para la base, vale para cualquiera del espacio:

Sea:

 $B_n = \{b_0, b_1, ..., b_n\}$ una base ordenada de $\mathbb{R}_n[x]$ f continua en [c, d]

 $A_0, A_1, \dots A_n \in \mathbb{R}$ $x_0, x_1, \dots, x_n \in [c, d]$

$$\left(\forall b \in B_n : \int_{c}^{d} b(x) \, \mathrm{d}x = \sum_{j=0}^{n} A_j b(j) \Rightarrow \left(\forall p \in \mathbb{R}_n[x] : \int_{c}^{d} p(x) \, \mathrm{d}x = \sum_{j=0}^{n} A_j p(j)\right)$$

Demostración suponiendo el antecedente:

$$\int_{-\infty}^{d} p(x) \, \mathrm{d}x$$

= {Sean $a_0, a_1, ..., a_n$ tal que $p(x) = \sum_{j=0}^n a_j b_j(x)$ }

$$\int_{c}^{d} \left(\sum_{j=0}^{n} a_{j} b_{j}(x) \right) dx$$

$$= \sum_{j=0}^{n} a_j \int_{c}^{d} b_j(x) dx$$

= {Estoy suponiendo
$$\forall b \in B_n : \int_c^d b(x) dx = \sum_{j=0}^n A_j bx_j b_j \in B_n}$$

$$= \sum_{\substack{j=0\\n}}^{n} a_j \sum_{k=0}^{n} A_k b_j(x_k)$$
$$= \sum_{\substack{k=0\\n}}^{n} A_k \sum_{j=0}^{n} a_j b_j(x_k)$$

$$=\sum_{k=0}^n A_k \sum_{j=0}^n a_j b_j(x_k)$$

$$=\sum_{k=0}^{n}A_{k}p(x_{k})$$

Sea:

w(x) una función de peso

q de grado n+1

q otrogonal a todo $p \in \mathbb{R}_n[x]$ con respecto a w

$$x_0, x_1, \dots, x_n$$
 las raices de q

$$a_i = \int_a^b w(x) \prod_{\substack{j=0 \ j \neq i}}^n \frac{x - x_j}{x_i - x_j}$$

$$\forall f \in \mathbb{R}_{2n+1}[x] : \int_{a}^{b} f(x)w(x) \, \mathrm{d}x = \sum_{i=0}^{n} a_i f(x_i)$$

Red	alas	
	-,	

martes, 13 de julio de 2021

Reglas simples y sus errores: Para aproximar:

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

Nombre	Puntos		Error	Precisión
Rectángulo	1	f(a)(b-a)	$\frac{(b-a)^2}{2}f'(\xi)$	0
_				
Punto medio	1	a(a+b)	$(b-a)^3$	1
		$f\left(\frac{a+b}{2}\right)(b-a)$	$\frac{(b-a)^3}{24}f''(\xi)$	
Trapecio		` '		1
		$\frac{b-a}{2}f(a)+f(b)$	$-\frac{(b-a)^3}{12}f''(\xi)$	
Simpson	3	h a ((a + h))		3
Gpoon		$\frac{b-a}{6}\left(f(a)+4f\left(\frac{a+b}{2}\right)+f(b)\right)$	$-\frac{(b-a)}{3000}f^{(4)}(\xi)$	
		6 (2)	2000	

El error es con un $\exists \xi \in (a, b)$

Reglas compuestas:

Para aproximar $\int_a^b f(x) dx \operatorname{con} m$ subinterbalos:

Sea:

$$h = \frac{b - a}{m}$$

Nombre	Regla	Error	Precisión
Rectángulo	$\sum_{i=1}^{m-1} hf(a+hj)$	Escribe aquí la ecuación.	0
	$\sum_{j=0}^{n} nf(a+nj)$		
Punto medi	$\sum_{i=1}^{m-1} i \left(\frac{1}{i} \right) \left(\frac{1}{i} \right)$	Escribe aquí la ecuación.	1
	$\sum_{j=0}^{m-1} hf\left(a+h\left(j+\frac{1}{2}\right)\right)$		
Trapecio	$\sum_{a=0}^{m-1} \frac{h}{2} \Big(f(a+hj) + f(h(j+1)) \Big)$	Escribe aquí la ecuación.	1
	$\sum_{j=0}^{\infty} \frac{1}{2} (f(a+hj) + p(+h(j+1)))$		
Simpson	m-1	Escribe aquí la ecuación.	3
	$\sum_{j=0}^{\infty}$		

El error es con un $\exists \xi \in (a, b)$

$$\sum_{j=1}^{n} \frac{b-a}{n} f\left(a + \frac{b-a}{n} j - \frac{b-a}{2n}\right)$$

$$\sum_{j=1}^{n} \frac{b-a}{n} f\left(a + \frac{b-a}{n} \left(j - \frac{1}{2}\right)\right)$$

$$\sum_{j=1}^{n} hf\left(a + h\left(j - \frac{1}{2}\right)\right)$$

Donde:
$$h = \frac{b - a}{n}$$

$$\frac{\frac{3+4}{5}-3}{\frac{1}{5}\left(\frac{3+5}{2}\right)-\frac{1}{5}\left(\frac{3+$$

$$p_{2}(x) = f(a) \frac{\left(x - \frac{a+b}{2}\right)(x-b)}{\left(a - \frac{a+b}{2}\right)(a-b)} + f\left(\frac{a+b}{2}\right) \frac{(x-a)(x-b)}{\left(\frac{a+b}{2} - a\right)(\frac{a+b}{2} - b)} + f(b) \frac{(x-a)\left(x - \frac{a+b}{2}\right)}{(b-a)\left(b - \frac{a+b}{2}\right)}$$

$$p_{2}(x) = f(a) \frac{x^{2} - x\frac{a+3b}{2} + b\frac{a+b}{2}}{\frac{(a-b)^{2}}{2}} + f\left(\frac{a+b}{2}\right) \frac{x^{2} - x(a+b) + ab}{\frac{(a-b)^{2}}{4}} + f(b) \frac{x^{2} - \frac{3a+b}{2}x + a\frac{a+b}{2}}{\frac{(b-a)^{2}}{2}}$$

$$\frac{\int_{a}^{3} f(2) dx}{\int_{a}^{3} - x^{2} \frac{a + 3b}{4} + b \frac{a + b}{2} x} + f\left(\frac{a + b}{2}\right) \frac{x^{3}}{3} - \frac{x^{2}}{2}(a + b) + abx}{\int_{a}^{3} - \frac{x^{2}}{4}(a + b) + abx} + f(b) \frac{x^{3}}{3} - \frac{3a + b}{4} x^{2} + a \frac{a + b}{2} x}{(b - a)^{2}} \right) x = a \\
= \int_{a}^{3} - b^{2} \frac{a + 3b}{4} + b \frac{a + b}{2} b - \left(\frac{a^{3}}{3} - a^{2} \frac{a + 3b}{4} + b \frac{a + b}{2} a\right) + f\left(\frac{a + b}{2}\right) \frac{b^{3}}{3} - \frac{b^{2}}{2}(a + b) + abb - \left(\frac{a^{3}}{3} - \frac{a^{2}}{2}(a + b) + aba\right) + f(b) \frac{b^{3}}{3} - \frac{3a + b}{4} b^{2} + a \frac{a + b}{2} b - \left(\frac{a^{3}}{3} - \frac{3a + b}{4} a^{2} + a \frac{a + b}{2} a\right) + f(b) \frac{b^{3}}{3} - \frac{3a + b}{4} b^{2} + a \frac{a + b}{2} b - \left(\frac{a^{3}}{3} - \frac{3a + b}{4} a^{2} + a \frac{a + b}{2} a\right) + f(b) \frac{b^{3}}{3} - \frac{3a + b}{4} b^{2} + a \frac{a + b}{2} a + b \frac{a^{3}}{4} a^{2} + a \frac{a + b}{2} a + b \frac{a^{3}}{4} a^{2} + a \frac{a + b}{2} a + b \frac{a^{3}}{4} a^{2} + a \frac{a + b}{2} a + b \frac{a^{3}}{4} a^{2} + a \frac{a + b}{2} a + b \frac{a^{3}}{4} a^{2} + a \frac{a + b}{2} a + b \frac{a^{3}}{4} a^{2} + a \frac{a + b}{2} a + b \frac{a^{3}}{4} a^{2} + a \frac{a + b}{2} a + b \frac{a^{3}}{4} a^{2} + a \frac{a + b}{2} a +$$

$$\int_{0}^{1} f(x) dx \simeq \frac{(1-0)}{2} \left(F(0) + F(1) \right) - \frac{1}{2} \left(0 + 0 \right)$$

$$= 0$$

$$2b$$
) $\int_{0}^{1} F(x) dx \sim \frac{(\frac{1}{2} - 0)}{2} (F(0) + F(\frac{1}{2})) + \frac{(1 - \frac{1}{2})}{2} (F(\frac{1}{2}) + F(1))$

$$= \frac{1}{4} \left(0 + \frac{1}{2} \right) + \frac{1}{4} \left(\frac{1}{2} + 0 \right)$$

$$\geq 2 \cdot \frac{1}{8}$$

$$2 () \int_{0}^{1} f(x) dx \simeq \frac{1-0}{6} \left(f(0) + \frac{1-1}{2} + f(1) \right)$$

3)																			
martes, 11	de ma	yo de	2021	12	2:51														
												1							
												×							
))																			
3 9)					<i>(</i> .		_	_			1								
	946	6 3	~	_	()	ل ا	4	, 0	+	_ 1		12	_	0	_	ર્			
				· ·		1			,		J		6						
Vol	um	ner	า:																
	(.		2 8)	_	~ 6	1	₹											
	40	ላ ፈ'	.10	M	_	6 (lη	ر											
3 b)	(5 (h	3		D	5	m											
5 ,	1)	10	he)	>	-			1 - 1											
	14		LA!																

4)

artes, 11 de mayo de 2021 19:04

4a)

Hago que la igualdad valga para los polinomios de la base canónica a de $\mathbb{R}_2[x]$:

$$\int_{-1}^{1} 1 \, dx = A_0 1 + A_1 1 + A_2 1$$

$$\int_{-1}^{1} x \, dx = A_0 \left(-\frac{1}{2} \right) + A_1 0 + A_2 \frac{1}{2}$$

$$\int_{-1}^{1} x^2 \, dx = A_0 \left(-\frac{1}{2} \right)^2 + A_1 0^2 + A_2 \left(\frac{1}{2} \right)^2$$

$$2 = A_0 + A_1 + A_2$$

$$0 = -\frac{1}{2}A_0 + \frac{1}{2}A_2$$

$$\frac{2}{3} = \frac{1}{4}A_0 + \frac{1}{4}A_2$$

$$A_0 + A_1 + A_2 = 2$$

$$-A_0 + A_2 = 0$$

$$A_0 + A_2 = \frac{8}{3}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_0 \\ A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 8/3 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_0 \\ A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} -2/3 \\ 4/3 \\ 4/3 \end{bmatrix}$$
$$A_0 = \frac{4}{3}$$
$$A_1 = -\frac{2}{3}$$
$$A_2 = \frac{4}{3}$$

$$\int_{1}^{1} f(x) \, dx = A_0 f\left(-\frac{1}{2}\right) + A_1 f(0) + A_2 f\left(\frac{1}{2}\right)$$

Por teorema vale la igualdad para todos los polinomios en $\mathbb{R}_2[x]$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 2 \\ -7 & 0 & 1 & 0 & \frac{1}{8} & \frac{1}$$

4b)

Por como fue construida, vale hasta para grado

Para grado 3:

$$\int_{-1}^{1} x^3 \, \mathrm{d}x = 0$$

$$A_0 \left(-\frac{1}{2}\right)^3 + A_1 0^3 + A_2 \left(\frac{1}{2}\right)^3 = 0$$

Para grado 4:

$$\int_{-1}^{1} x^4 \, \mathrm{d}x = \frac{2}{5}$$

$$A_0 \left(-\frac{1}{2}\right)^4 + A_1 0^4 + A_2 \left(\frac{1}{2}\right)^4 = \frac{2}{16}$$

$$\frac{2}{5} \neq \frac{2}{16}$$

$$f(x) = e^{-x^{2}}$$

$$f'(x) = -2xe^{-x^{2}}$$

$$f''(x) = -2e^{-x^{2}} + 4x^{2}e^{-x^{2}} = 2e^{-x^{2}}(2x^{2} - 1)$$

Por teorema:

$$\exists \mu \in (0,1) : \text{error} = -\frac{1-0}{12} \left(\frac{1-0}{n}\right)^2 2 \left(e^{-\mu^2} (2\mu^2 - 1)\right)$$

Primero trabajo esto:

$$\exists \mu \in (0,1) : \text{error} = -\frac{1-0}{12} \left(\frac{1-0}{n}\right)^2 2 \left(e^{-\mu^2} (2\mu^2 - 1)\right)$$

$$\Rightarrow \exists \mu \in (0,1) : |\text{error}| = \left|\frac{1}{6n^2} e^{-\mu^2} (2\mu^2 - 1)\right|$$

$$\Rightarrow \{0 < \mu < 1\}$$

$$\Rightarrow 0 < \mu^2 < 1$$

$$\Rightarrow 0 > -\mu^2 > -1 \land 0 < 2\mu^2 < 2$$

$$\Rightarrow e^0 > e^{-\mu^2} > e^{-1} \land -1 < 2\mu^2 - 1 < 1$$

$$\Rightarrow 1 > e^{-\mu^2} > e^{-1} \land -1 < 2\mu^2 - 1 < 1$$

$$\Rightarrow |e^{-\mu^2}| < 1 \land |2\mu^2 - 1| < 1$$
Acoto con esto

Acoto con esto

 $|error| < \frac{1}{6n^2} 1 * 1$ $|error| < \frac{1}{6n^2}$

Ahora busco el n:

$$|error| < \frac{10^{-6}}{2}$$

$$\Leftarrow \frac{1}{6n^2} < \frac{10^{-6}}{2}$$

$$\frac{10^6}{3} < n^2$$

$$n > \sqrt{\frac{10^6}{3}}$$

$$n > \frac{1000\sqrt{3}}{3}$$

$$n > 577$$

Con regla de Simpson:

$$f''(x) = 2e^{-x^{2}}(2x^{2} - 1)$$

$$f'''(x) = -2 * 2xe^{-x^{2}}(2x^{2} - 1) + 2e^{-x^{2}}4x = 4e^{-x^{2}}(-2x^{3} + x + 2x) = 4e^{-x^{2}}x(-2x^{2} + 3)$$

$$f''''(x) = 4\left(-2xe^{-x^{2}}x(-2x^{2} + 3) + e^{-x^{2}}(-6x^{2} + 3)\right) + 4e^{-x^{2}}(4x^{4} - 6x^{2} - 6x^{2} + 3) = 4e^{-x^{2}}(4x^{4} - 12x^{2} + 3)$$

Por teorema:

$$\exists \mu \in (0,1) : \text{error} = -\frac{1-0}{180} \left(\frac{1-0}{n}\right)^4 \left(4e^{-\mu^2} (4\mu^4 - 12\mu^2 + 3)\right)$$

Primero trabajo esto:

$$\exists \mu \in (0,1) : \text{error} = -\frac{1-0}{180} \left(\frac{1-0}{n} \right)^4 \left(4e^{-\mu^2} (4\mu^4 - 12\mu^2 + 3) \right)$$

$$\Rightarrow \exists \mu \in (0,1) : |\text{error}| = \left| \frac{1}{180n^4} 4e^{-\mu^2} (4\mu^4 - 12\mu^2 + 3) \right|$$

$$\Rightarrow \{0 < \mu < 1\}$$

$$\Rightarrow 0 < \mu^2 < 1$$

$$\Rightarrow -1 < -\mu^2 < 0$$

$$\Rightarrow e^{-1} < e^{-\mu^2} < e^{0}$$

$$\Rightarrow \frac{4}{e} < 4e^{-\mu^2} < 4$$

$$\Rightarrow |4e^{-\mu^2}| < 4$$

$$0 < \mu < 1$$

$$\Rightarrow 0 < \mu^{2} < 1 \land 0 < \mu^{4} < 1$$

$$\Rightarrow -12 < -12\mu^{2} < 0 \land 0 < 4\mu^{4} < 4$$

$$\Rightarrow 0 - 12 + 3 < 4\mu^{4} - 12\mu^{2} + 3 < 4 + 0 + 3$$

$$\Rightarrow -9 < 4\mu^{4} - 12\mu^{2} + 3 < 7$$

$$\Rightarrow |4\mu^{4} - 12\mu^{2} + 3| < 9$$

$$|error| < \frac{1}{180n^4} 4 * 9$$

$$\Rightarrow |error| < \frac{1}{5n^4}$$

Ahora busco el n:

$$|error| < \frac{10^{-6}}{2}$$

7)	
jueves, 13 de mayo de 2021 10:50	
×	
Aplico la regla del trapecio:	
6 (,) ((,) ,) ,)	
$\frac{6}{2} \left(y_0 + 2 \left(y_1 + y_2 + y_3 \right) + y_4 \right)$	
6 / 2 8 2 (4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
$=\frac{6}{2}(38+2(41+46+48)+45)$	
= 6(14 + 133 + 22.5)	
= 1077	

Tengo la función de peso w(x) = 1, y la base ortoganl de \mathbb{R}_2 con respecto a esta función:

$$\varphi_0(x) = 1$$

$$\varphi_1(x) = x$$

$$\varphi_2(x) = x^2 - \frac{1}{3}$$

Ademas:

$$\varphi_3(x) = x^3 - \frac{3}{5}x = x(-\sqrt{3}) \sqrt{3} + \sqrt{3} \sqrt{5}$$
 ortoganal respecto a esa base

Por teorema:

$$\forall f \in \mathbb{R}_5[x] : \int_{-1}^1 f(x) \, \mathrm{d}x = \sum_{i=0}^2 a_i f(x_i)$$

Donde $a_i = \int_{-1}^1 \prod_{\substack{j=0 \ j \neq i}}^n \frac{x - x_j}{x_i - x_j} dx$, y x_i son las raices de φ_3

Las raices de φ_3 son $0, \sqrt{3/5}, -\sqrt{3/5}$

Calculo los a_i

$$a_0 = \int_{-1}^{1} \frac{x - \sqrt{3/5}}{0 - \sqrt{3/5}} \frac{x + \sqrt{3/5}}{0 + \sqrt{3/5}} dx$$
$$= -\frac{5}{3} \int_{1}^{1} \left(x^2 - \frac{3}{5}\right) dx$$

$$= -\frac{5}{3} \left(\frac{1^3}{3} - \frac{3}{5} - \frac{(-1)^3}{3} - \frac{3}{5} \right)$$

$$= \frac{8}{9}$$

$$a_{1} = \int_{-1}^{1} \frac{x - 0}{\sqrt{3/5} - 0} \frac{x + \sqrt{3/5}}{\sqrt{3/5} + \sqrt{3/5}} dx$$

$$= \frac{5}{6} \int_{1}^{1} x(^{2} + \sqrt{3/5}x) x$$

$$= \frac{5}{6} \left(\frac{1}{3} + \frac{\sqrt{3/5}}{2} + \frac{1}{3} - \frac{\sqrt{3/5}}{2} \right)$$

$$= \frac{5}{9}$$

$$a_{1} = \int_{-1}^{1} \frac{x - 0}{-\sqrt{3/5} - 0} \frac{x - \sqrt{3/5}}{-\sqrt{3/5}} dx$$

$$= \frac{5}{6} \int_{-1}^{1} x(^{2} - \sqrt{3/5}x) x$$

$$= \frac{5}{6} \left(\frac{1}{3} - \frac{\sqrt{3/5}}{2} + \frac{1}{3} + \frac{\sqrt{3/5}}{2}\right)$$

$$= \frac{5}{9}$$

Entonces queda:

$$\int_{-1}^{1} f(x) \, \mathrm{d}x = \frac{5}{9} f(\sqrt{3/5}) \frac{8}{9} f(0) + \frac{5}{9} f(3/5)$$

Intento con ecuación no lineal:

$$\int_{-1}^{1} 1 \, dx = A_1 1 + A_2 1 + A_3 1$$

$$\int_{-1}^{1} x \, dx = A_1 x_1 + A_2 x_2 + A_3 x_3$$

$$\int_{-1}^{1} x^2 \, dx = A_1 x_1^2 + A_2 x_2^2 + A_3 x_3^2$$

$$\int_{-1}^{1} x^3 \, dx = A_1 x_1^3 + A_2 x_2^3 + A_3 x_3^3$$

$$\int_{-1}^{1} x^4 \, dx = A_1 x_1^4 + A_2 x_2^4 + A_3 x_3^4$$

$$2 = A_1 + A_2 + A_3$$

$$0 = A_1x_1 + A_2x_2 + A_3x_3$$

$$\frac{2}{3} = A_1x_1^2 + A_2x_2^2 + A_3x_3^2$$

$$0 = A_1x_1^3 + A_2x_2^3 + A_3x_3^3$$

$$\frac{2}{5} = A_1x_1^4 + A_2x_2^4 + A_3x_3^4$$

Si
$$A_1 = A_2 = A_3 = 0$$

 $A_1 + A_2 + A_3 = 0 + 0 + 0 = 0 \neq 2$
 $\Rightarrow \neg (A_1 = A_2 = A_3 = 0)$

Ósea, $\exists j \in \{1,2,3\} : A_j \neq 0$

Si:
$$A_i$$
, $A_k = 0$, con $i \neq k$ y $A_j \neq 0$
 $0 = A_i x_i + A_k x_k + A_j x_j$
 $0 = 0 x_i + 0 x_k + A_j x_j$
 $0 = A_j x_j$

χ	c _j =	= 0																				
P	or	en	de:																			
<u> </u>	1	2	, .	2		$_{3}x_{3}^{2}$		Λ.	. .	А	ο.	А	0	_	,	2						
F.	$\mathbf{I}_{1}x$	ī +	- A ₂	x_2^{-}	+ A	$_3x_{\overline{3}}$	=	A_1	J +	A_2	UΗ	- A	30	= 0) ≠	3						
C)se	a, ∃	li, j	€ {	1,2,	3}:	i ≠	j:	A_i	, A_j	≠	0										

Base ortogonal de $\mathbb{R}_2[x]$ con respecto a x^2

$$\Phi_0(x) = 1$$

$$\Phi_1(x) = x$$

$$\Phi_1(x) = x$$

$$\Phi_2(x) = x^2 - \frac{3}{5} = x(+\sqrt{3/5}) + \sqrt{3/5}$$

Por teorema:

$$\forall f \in \mathbb{R}_{2+1}[x] : \int_{-1}^{1} f(x)x^2 \, \mathrm{d}x = \sum_{i=0}^{1} a_i f(x_i)$$

Donde
$$a_i = \int_{-1}^{1} x^2 \prod_{\substack{j=0 \ j \neq i}}^{1} \frac{\overline{x-x_j}}{x_i-x_j} dx$$
, y x_i son las raices de Φ_2

Las raices de
$$\Phi_2$$
 son $\sqrt{3/5}$, $-\sqrt{3/5}$

Calculó los a_i

$$a_{0} = \int_{-1}^{1} x^{2} \frac{x + \sqrt{3/5}}{\sqrt{3/5} + \sqrt{3/5}} dx$$

$$= \frac{1}{2} \sqrt{\frac{5}{3}} \int_{-1}^{1} x^{3} + \sqrt{3/5} x dx$$

$$= \frac{1}{2} \sqrt{\frac{5}{3}} \left(\frac{1}{4} + \frac{\sqrt{3/5}}{3} - \frac{1}{4} + \frac{\sqrt{3/5}}{3} \right)$$

$$= \frac{1}{3}$$

$$a_{1} = \int_{-1}^{1} x^{2} \frac{x - \sqrt{3/5}}{-\sqrt{3/5} - \sqrt{3/5}} dx$$

$$= -\frac{1}{2} \sqrt{\frac{5}{3}} \int_{-1}^{1} x^{3} - \sqrt{\frac{3}{5}} x^{3} dx$$

$$= -\frac{1}{2} \sqrt{\frac{5}{3}} \left(\frac{1}{4} - \frac{\sqrt{\frac{3}{5}}}{3} - \frac{1}{4} - \frac{\sqrt{\frac{3}{5}}}{3} \right)$$

$$= \frac{1}{3}$$

Queda entonces:

$$\int_{-1}^{1} f(x)x^{2} dx \simeq \frac{1}{3} f(\sqrt{3/5}) \frac{1}{3} f(\sqrt{3/5})$$