MATRICI ASSOCIATE ALLE APPLICAZIONI LINEARI

In questa nota, enunciamo e dimostriamo il teorema di caratterizzazione delle matrici associate a un'applicazione lineare tra spazi vettoriali finitamente generati su un campo K in basi ordinate fissate. Per le notazioni, facciamo riferimento a quelle usate a lezione.

Teorema. Sia $T: V \to W$ un'applicazione lineare tra due spazi vettoriali V e W finitamente generati su un campo K. Sia $\mathcal{B} = (e_1, \ldots, e_n)$ una base ordinata di V e sia $\mathcal{B}' = (e'_1, \ldots, e'_m)$ una base ordinata di W. Allora, esiste un'unica matrice $A \in \mathcal{M}_{m \times n}(K)$ tale che, per ogni vettore $u \in V$, posto $(x_1, x_2, \ldots, x_n) = \Phi_{\mathcal{B}}(u)$ e $(y_1, y_2, \ldots, y_m) = \Phi_{\mathcal{B}'}(T(u))$, si abbia

(1)
$$A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}.$$

Dim. Prima dimostriamo l'esistenza. Consideriamo la matrice A le cui colonne sono costituite dalle componenti in \mathcal{B}' dei vettori che sono le immagini dei vettori di \mathcal{B} mediante T. Quindi, calcoliamo

$$\Phi_{\mathcal{B}'}(T(e_1)) = (a_1^1, a_1^2, \dots, a_1^m)
\Phi_{\mathcal{B}'}(T(e_2)) = (a_2^1, a_2^2, \dots, a_2^m)
\vdots
\Phi_{\mathcal{B}'}(T(e_n)) = (a_n^1, a_n^2, \dots, a_n^m)$$

e poniamo

$$A := \begin{pmatrix} a_1^1 & a_2^1 & \dots & a_n^1 \\ a_1^2 & a_2^2 & \dots & a_n^2 \\ \vdots & \vdots & \vdots & \vdots \\ a_1^m & a_2^m & \dots & a_n^m \end{pmatrix}.$$

Osserviamo che

$$A\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_1^1 x_1 + a_2^1 x_2 + \dots + a_n^1 x_n \\ a_1^2 x_1 + a_2^2 x_2 + \dots + a_n^2 x_n \\ \vdots \\ a_1^m x_1 + a_2^m x_2 + \dots + a_n^m x_n \end{pmatrix}.$$

Quindi, dimostrare che A soddisfa l'uguaglianza (??) equivale a dimostrare che il vettore delle componenti di T(u) in \mathcal{B}' è

$$(a_1^1x_1 + a_2^1x_2 + \dots + a_n^1x_n, a_1^2x_1 + a_2^2x_2 + \dots + a_n^2x_n, \dots, a_1^mx_1 + a_2^mx_2 + \dots + a_n^mx_n).$$

Allora, calcoliamo:

$$T(u) = T(x_1e_1 + x_2e_2 + \dots + x_ne_n) = x_1T(e_1) + x_2T(e_2) + \dots + x_nT(e_n) =$$

$$= x_1(a_1^1e_1' + a_1^2e_2' + \dots + a_1^me_m') + x_2(a_2^1e_1' + a_2^2e_2' + \dots + a_2^me_m') + \dots + x_n(a_n^1e_1' + a_n^2e_2' + \dots + a_n^me_m') =$$

$$= x_1a_1^1e_1' + x_1a_1^2e_2' + \dots + x_1a_1^me_m' + x_2a_2^1e_1' + x_2a_2^2e_2' + \dots + x_2a_2^me_m' + \dots + x_na_n^1e_1' + x_na_n^2e_2' + \dots + x_na_n^me_m' =$$

$$= (a_1^1x_1 + a_2^1x_2 + \dots + a_n^1x_n)e_1' + (a_1^2x_1 + a_2^2x_2 + \dots + a_n^2x_n)e_2' + \dots + (a_1^mx_1 + a_2^mx_2 + \dots + a_n^mx_n)e_m'.$$

Adesso sappiamo che una matrice del tipo desiderato esiste perché A soddisfa la condizione (??). Dimostriamo l'unicità. Sia $B \in \mathcal{M}_{m \times n}(K)$ una matrice che soddisfa la condizione (??). Vediamo che necessariamente deve essere B = A.

Se consideriamo $u = e_1$, allora $\Phi_{\mathcal{B}}(e_1) = (1, 0, \dots, 0)$ e sappiamo che $\Phi_{\mathcal{B}'}(T(e_1)) = (a_1^1, a_1^2, \dots, a_1^m)$. Quindi deve essere

$$\underline{b}_1 = B \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} a_1^1 \\ a_1^2 \\ \vdots \\ a_1^m \end{pmatrix},$$

dove si ricordi che \underline{b}_1 è la prima colonna di B.

Se consideriamo $u=e_2$, allora $\Phi_{\mathcal{B}}(e_2)=(0,1,\ldots,0)$ e sappiamo che $\Phi_{\mathcal{B}'}(T(e_2))=(a_2^1,a_2^2,\ldots,a_2^m)$. Quindi deve essere

$$\underline{b}_2 = B \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} a_2^1 \\ a_2^2 \\ \vdots \\ a_2^m \end{pmatrix},$$

dove si ricordi che \underline{b}_2 è la seconda colonna di B.

Procediamo in questo modo, fin quando consideriamo $u = e_n$. Allora $\Phi_{\mathcal{B}}(e_n) = (1, 0, \dots, 0)$ e sappiamo che $\Phi_{\mathcal{B}'}(T(e_n)) = (a_n^1, a_n^2, \dots, a_n^m)$. Quindi deve essere

$$\underline{b}_n = B \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} a_n^1 \\ a_n^2 \\ \vdots \\ a_n^m \end{pmatrix},$$

dove si ricordi che \underline{b}_n è la prima colonna di B.

Siccome tutte le colonne di B sono uguali a quelle di A, allora B coincide con A. \square

La matrice A considerata nel teorema si dice matrice associata a T nelle basi ordinate \mathcal{B} e \mathcal{B}' e si denota con $M_{\mathcal{B},\mathcal{B}'}(T)$.

Questa matrice determina l'applicazione lineare $\tilde{T}: K^n \to K^n$ tale che

$$\tilde{T} = \Phi_{\mathcal{B}'} \circ T \circ \Phi_{\mathcal{B}}^{-1},$$

nel senso che $\tilde{T} = \tilde{T}_A$, dove

$$\tilde{T}_A: (x_1, x_2, \dots, x_n) \in K^n \to A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in K^m.$$