Naïve Bayes

Bayes Theorem

• Given a hypothesis H and evidence E for this hypothesis, then the probability of H given E, is: $P(E \mid H)P(H)$

$$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$

Example: Given are instances of fruits, described by their color and shape. Let:

- E is red and round
- H is the hypothesis that E is an apple

Bayes Theorem

Example: Given are instances of fruits, described by their color

and shape. Let:

- E is red and round
- H is the hypothesis that E is an apple

$$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$

- P(H|E) is the probability that E is an apple, given that we have seen that E is red and round
 - Called posterior probability of H conditioned on E
- **P(H)** is the probability that any given example is an apple, regardless of how it looks
 - · Called *prior probability* of *H*

Homework

P1	P2	Result	
Υ	Υ	good	
Υ	N	bad	
N	N	good	
N	Υ	bad	
Υ	N	good	
N	N	good	

New item to classify:

P1=N, P2=Y

E1 is P1=N, E2 is P2=Y

We need to compute

P(good|E) and P(bad|E) and compare them.

E1 is P1=N, E2 is P2=Y Compute P(good|E)

P1	P2	Result
Υ	Y	good
Y	N	bad
N	N	good
N	Y	bad
Υ	N	good
N	N	good

$$P(good \mid E) = \frac{P(E_1 \mid good) P(E_2 \mid good) P(good)}{P(E)}$$

E1 is P1=N, E2 is P2=Y Compute P(bad|E)

P1	P2	Result	
Υ	Y	good	
Υ	N	bad	
N	N	good	
N	Υ	bad	
Υ	N	good	
N	N	good	

$$P(good \mid E) = \frac{P(E_1 \mid good) P(E_2 \mid good) P(good)}{P(E)}$$

$$P(E)$$
 P(good)=4/6=2/3 P(bad)=2/6=1/3

$$P(E)$$

$$P(\text{good})=4/6=2/3$$

$$P(E1|\text{good})=P(P1=N|\text{good})=2/4=1/2$$

$$P(E1|\text{good})=P(P1=N|\text{good})=2/4=1/2$$

$$P(good \mid E) = \frac{\frac{1}{2} \frac{1}{4} \frac{2}{3}}{P(E)} = \frac{\frac{1}{12}}{P(E)}$$

$$P(bad \mid E) = \frac{\frac{1}{2} \frac{1}{2} \frac{1}{3}}{P(E)} = \frac{\frac{1}{12}}{P(E)}$$

The two probabilities are the same. To resolve the tie we randomly choose between the 2 classes => e.g. class good.

"Naïve" Definition (Cambridge Dictionary)

"too willing to believe that someone is telling the truth, that people's intentions in general are good, or that life is simple and fair..."

Why is Naïve Bayesian classification called "naïve"?

"Naïve" Definition (Cambridge Dictionary)

"too willing to believe that someone is telling the truth, that people's intentions in general are good, or that life is simple and fair..."

Why is Naïve Bayesian classification called "naïve"?

Naïve Bayes assumes that the values of the attributes are **independent** of each other and that all attributes are **equally important**. These assumptions are <u>unrealistic</u>, that's why it is called "Naïve".

NB with numerical & nominal attributes

Gaussian Distribution

Using the empirical rule in a normal distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Mean - the middle point of the data S.D. - reflect the spread of the data from the middle point

outlook	temperature	humidity	windy	play
sunny	85	85	false	no
overcast	80	90	true	no
overcast	83	86	false	yes
rainy	70	96	false	yes
rainy	68	80	false	yes
rainy	65	70	true	no
overcast	64	65	true	yes
sunny	72	95	false	no
sunny	69	70	false	yes
rainy	75	80	false	yes
sunny	75	70	true	yes
overcast	72	90	true	yes
overcast	81	75	false	yes
rainy	71	91	true	no

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

 σ (sigma): standard deviation μ (mu): mean

$$\mu = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n-1}}$$

outlook	temperature	humidity	windy	play
sunny	85	85	false	no
overcast	80	90	true	no
overcast	83	86	false	yes
rainy	70	96	false	yes
rainy	68	80	false	yes
rainy	65	70	true	no
overcast	64	65	true	yes
sunny	72	95	false	no
sunny	69	70	false	yes
rainy	75	80	false	yes
sunny	75	70	true	yes
overcast	72	90	true	yes
overcast	81	75	false	yes
rainy	71	91	true	no

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\mu_{\text{temp_yes}} = 73$$

 $\sigma_{\text{temp_yes}} = 6.2$

outlook	temperature	humidity	windy	play
sunny	85	85	false	no
overcast	80	90	true	no
overcast	83	86	false	yes
rainy	70	96	false	yes
rainy	68	80	false	yes
rainy	65	70	true	no
overcast	64	65	true	yes
sunny	72	95	false	no
sunny	69	70	false	yes
rainy	75	80	false	yes
sunny	75	70	true	yes
overcast	72	90	true	yes
overcast	81	75	false	yes
rainy	71	91	true	no

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\mu_{\text{temp_yes}} = 73$$

 $\sigma_{\text{temp_yes}} = 6.2$

f(temp=60|yes)

$$=\frac{1}{6.2\sqrt{2\pi}}e^{-\frac{(60-73)^2}{2*6.2^2}}=0.0071$$

outlook	temperature	humidity	windy	play
sunny	85	85	false	no
overcast	80	90	true	no
overcast	83	86	false	yes
rainy	70	96	false	yes
rainy	68	80	false	yes
rainy	65	70	true	no
overcast	64	65	true	yes
sunny	72	95	false	no
sunny	69	70	false	yes
rainy	75	80	false	yes
sunny	75	70	true	yes
overcast	72	90	true	yes
overcast	81	75	false	yes
rainy	71	91	true	no

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\mu_{\text{temp_yes}} = 73$$

 $\sigma_{\text{temp_yes}} = 6.2$

$$\mu_hum_yes = 79.1$$

 $\sigma_hum_yes = 10.2$

$$\mu_{\text{temp}}$$
 no = 74.6 σ_{temp} no = 8.0

$$\mu_{\text{hum_no}} = 86.2$$
σ hum no = 9.7

See Official Solution for

Exercise 3

Evaluation

Single Train Test Split

Weka default: 66-34

In research: 75-25, 80-20, etc.

10-fold Cross validation

Stratified 10-fold Cross validation - Example

Stratified 10-fold Cross validation - Example

Leave-one-out Cross validation

