安徽大学 2020—2021 学年第二学期 《高等数学 A (二)》期中考试试卷

(闭卷,时间120分钟)

考场登记表序号

题 号	1	1 1	三	四	五.	总分
得 分						
阅卷人						

填空题 (每小题 3分,共15分)

- 1. 直线 L_1 : $\frac{x-1}{1} = \frac{y-5}{-2} = \frac{z+8}{1}$ 与直线 L_2 : $\begin{cases} x-y=6 \\ 2y+z=3 \end{cases}$ 的夹角是
- 2. 交换积分次序 $\int_0^2 dy \int_{y^2}^{2y} f(x,y) dx =$ ______.
- 3. 己知 $f(x,y) = (2020 + \sin x + \cos x)^{2021y}$,则 $f_y'\left(\frac{\pi}{2},1\right) = 1$
- 4. 二阶微分方程 y"-4y'+13y=0, 其通解为
- 5. xoz 坐标面上曲线 $z = e^{x^2}$ 绕 z 轴旋转所得的旋转面方程为

二、选择题(每小题3分,共15分)

6. 平面x-y+2z-6=0与平面2x+y+z-5=0位置关系是(

分

- A. 平行 B. 垂直 C. 相交但不垂直 D. 重合

7. 设 z = f(x, y) 的全微分是 dz = xdx + ydy , 则点 (0,0) ()

A. 不是 f(x, y) 极值点

B. 是 f(x,y) 极小值点

C. 是 f(x,y) 极大值点

D. 无法判别

ap

礟

其中 $D: x^2 + y^2 \le 1$,则(

(A)
$$I_3 > I_2 > I_1$$

(B)
$$I_1 > I_2 > I_3$$

(C)
$$I_2 > I_1 > I_3$$

(D)
$$I_3 > I_1 > I_2$$

9. 设二元函数
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
 则 $f(x,y)$ 在点(0,0)处()

- A. 偏导数不存在 , 不连续, 不可微
- C. 偏导数不存在 , 不连续, 可微
- B. 偏导数存在 , 连续, 可微 D. 偏导数存在 , 连续, 不可 D. 偏导数存在, 连续, 不可微

10. 二阶常系数非齐次线性微分方程 $y'' + ay' + by = ce^x$ 的通解为 $y = (c_1 + c_2 x) e^{-x} + e^x$, 其中 c_1, c_2 为任意常数,则微分方程中的a,b,c分别为(

- (A) 1, 0, 1 (B) 1, 0, 2
- (C) 2, 1, 3
- (D) 2, 1, 4

三、计算题(每小题9分,共54分)

11. 求一阶微分方程的通解 $\frac{dy}{dx} - \frac{2}{x+1}y = (x+1)^{\frac{5}{2}}$

得 分

12. 计算二元极限
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{\sin(x^2y) - \arcsin(x^2y)}{x^6y^3}$$

13 求椭球面 $x^2+2y^2+z^2=1$ 上平行于平面 x-y+2z=0的切平面方程

14. 设 $z = f(xy, \frac{x}{y})$, 其中二元函数f具有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial x \partial y}$

15. 设
$$u = u(x, y), v = v(x, y)$$
是由方程组 $\begin{cases} xu + yv = 0 \\ yu - xv = 1 \end{cases}$ 确定的 x, y 的隐函数, $x \frac{\partial u}{\partial y}, \frac{\partial v}{\partial y}$

16. 计算二重积分
$$\iint_{D} \left| x^2 + y^2 - \frac{1}{4} \right| dxdy$$
, $D: x^2 + y^2 \le 1$.

四、应用题(共10分	四、	应用题	(共	10	分
------------	----	-----	----	----	---

得 分	
-----	--

17. 求表面积为a²而体积为最大的长方体的体积

五、证明题(共6分)

得分

18. 已知方程 $\varphi(cx-az,cy-bz)=0$ (φ 为可微函数) 所定义的隐函数 z=z(x,y), 证明 $a\frac{\partial z}{\partial x}+b\frac{\partial z}{\partial y}=c$