```
In []: import numpy as np
import matplotlib.pyplot as plt
In []: %run Utilities.ipynb
```

Метод наискорейшего спуска

Этот метод используется для поиска минимума дифференцируемой функции $f(x)=f(x_1,x_2,\ldots,x_n)$, смещая текущее решение в направлении отрицательного градиента $\nabla f=[rac{\partial f}{\partial x_1},rac{\partial f}{\partial x_2},\ldots,rac{\partial f}{\partial x_n}]^T$ на каждой итерации.

Метод состоит из следующих шагов:

Инициализация: Выбираются начальное приближение x_0 , размер шага $\gamma>0$, допустимая погрешность $\varepsilon>0$, и максимальное количество итераций N.

Тело метода (итеративное применение): На k-ой итерации у нас есть $x_{k+1} = x_k - \gamma \nabla f(x_k)$

Критерий остановки: По окончании каждой итерации проверяем условие $\|\nabla f(x_k)\| \le \varepsilon$. Когда это условие выполняется или когда мы достигаем максимального допустимого числа итераций, мы прекращаем выполнение алгоритма.

```
In [ ]: def steepest_descent(gradf, x0, gamma, epsilon, N):
    x = np.array(x0).reshape(len(x0), 1)
    for k in range(N):
        g = gradf(x)
        x = x - gamma*g
        if np.linalg.norm(g) < epsilon:
            break
    return x</pre>
```

```
In []: # y = 1/2 * x'*M*x
#
# x = [x1, x2]
# y = 1/2 * ( m_11*x1*x1 + m_12*x1*x2 + m_21*x2*x1 + m_22*x2*x2 )
def quadratic(x, M, reshape=True):
    if reshape:
        x = np.reshape(x, newshape=(len(x), 1))
    val = 1/2 * np.transpose(x) @ M @ x
    return val[0, 0]
```

```
In []: steepest descent(lambda x: quadratic grad(x, np.eye(2)), [1, 2], 1, 1e-4,
Out[]: array([[0.],
               [0.]])
In [ ]: def steepest descent v(gradf, x0, gamma, epsilon, N):
            x = [np.array(x0).reshape(len(x0), 1)]
            for k in range(N):
                g = gradf(x[-1])
                x.append(x[-1] - gamma*g)
                if np.linalg.norm(g) < epsilon:</pre>
                    break
            return x
In []: I = np.eye(2)
        run_sd_I = steepest_descent_v(
            lambda x: quadratic grad(x, I),
            x0=[1, 1],
            qamma=0.1,
            epsilon=1e-4,
            N=100)
In [ ]: plot run(lambda x: quadratic(x, np.eye(2)), [run sd I], np.arange(-2, 2,
                                                                        run 0
        1.5
```


$$\mathbf{x}_{k+1} = \mathbf{x}_k - rac{\gamma}{|
abla f(\mathbf{x}_k)|}
abla f(\mathbf{x}_k)$$


```
In [ ]: M2 = construct_matrix(1, 10, np.pi/4)
run_sd_M2 = steepest_descent_v(
    lambda x: quadratic_grad(x, M2),
    x0=[3, 0.1],
    gamma=0.01, epsilon=1e-4, N=100)
plot_run(lambda x: quadratic(x, M2), [run_sd_M2], np.arange(-1, 3, 0.05),
```


Основные модификации метода наибыстрейшего спуска Градиентный метод с моментом

В методе градиентного спуска с моментом, общая структура алгоритма остается неизменной, но текущая позиция в процессе поиска обновляется немного измененным способом:

$$\mathbf{v}_k = \omega \mathbf{v}_{k-1} + \gamma
abla f(\mathbf{x}_k)$$

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{v}_k$$

```
In [ ]: def steepest_descent_with_momentum_v(gradf, x0, gamma, epsilon, omega, N)
    x = [np.array(x0).reshape(len(x0), 1)]
    v = np.zeros(shape=x[-1].shape)
    for k in range(N):
        g = gradf(x[-1])
        v = omega*v + gamma*g
        x.append(x[-1] - v)
        # В этом алгоритме более логично проверять длину
        # шага (прыжка) `v`, а не сам градиент `g`.
```

```
if np.linalq.norm(q) < epsilon:</pre>
                    break
            return x
In [ ]: run sdm M2a = steepest descent with momentum v(
            lambda x: quadratic grad(x, M2).
            x0=[3, 0.1],
            gamma=0.15*0.1, epsilon=1e-4, omega=0.15*0.9, N=100)
        plot run(lambda x: quadratic(x, M2), [run sd M2a, run sdm M2a],
                 np.arange(-1, 3, 0.05), np.arange(-1, 3, 0.05), connect the dots
                 labels=["SD no momentum", "SD momentum"])

    SD no momentum

                                                                  SD momentum
       -1
       -2
                ^{-1}
                               0
                                            1
In [ ]: run_sdm_M2b = steepest_descent_with_momentum_v(
            lambda x: quadratic grad(x, M2),
            x0=[3, 0.1],
            gamma=0.05, epsilon=1e-4, omega=0.5, N=100)
        plot run(lambda x: quadratic(x, M2), [run sd M2a, run sdm M2a, run sdm M2
                 np.arange(-1, 3, 0.05), np.arange(-1, 3, 0.05), connect the dots
                 labels=["SD no momentum", "SD momentum", "SD momentum -- faster"
```


ПОЧЕМУ ЭТО ИМЕЕТ СМЫСЛ? Мы можем представить процесс оптимизации как скольжение шарика (текущего решения) (с трением) вниз по крутому склону (критерию оптимальности). Момент придает этому представлению дополнительный физический смысл: момент - в некотором смысле - представляет собой энергию, которую мы накапливаем в процессе движения. В результате скорости будут фильтроваться: компоненты скорости, которые остаются постоянно направленными из итерации в итерацию, будут суммироваться, в то время как компоненты переменного направления будут взаимно уничтожаться.

УСКОРЕННЫЙ ГРАДИЕНТ NESTEROV

Основная идея ускоренного градиента Нестерова заключается в том, что градиент вычисляется в будущей точке.

$$egin{aligned} \mathbf{x}_k' &= \mathbf{x}_{k-1} - \omega \mathbf{v}_{k-1} \ & \mathbf{v}_k &= \omega \mathbf{v}_{k-1} + \gamma
abla f(\mathbf{x}_k') \end{aligned}$$

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{v}_k$$

Ключевым моментом в ускоренном градиенте Нестерова является то, что градиент вычисляется не в текущей точке, а в предполагаемой будущей точке. Таким образом, мы придаем всей процедуре определенный предсказательный характер, ожидая улучшения ее общего поведения.

```
In []: def nesterov_gradient_descent_v(gradf, x0, gamma, epsilon, omega, N):
    x = [np.array(x0).reshape(len(x0), 1)]
    v = np.zeros(shape=x[-1].shape)
    for k in range(N):
        xpre = x[-1] - omega*v # x_k prim
        g = gradf(xpre)
        v = omega*v + gamma*g
        x.append(x[-1] - v)
        if np.linalg.norm(g) < epsilon:
            break
    return x</pre>
```


Сравнение рассмотренных ранее алгоритмов на более сложном примере Теперь рассмотрим поведение предыдущих алгоритмов на более сложном примере.

$$\int f(x_1,x_2) = 1.5x_1^2 + x_2^2 - 2x_1x_2 + 2x_1^3 + 0.5x_1^4$$

In []: plot_criterion(demo_criterion, np.arange(-3.5, 2.5, 0.1), np.arange(-3.5,

In []: plot_criterion(demo_criterion, np.arange(-3.5, 2.5, 0.1), np.arange(-3.5,

Адаптивные градиентные методы

Основная проблема всех рассмотренных ранее алгоритмов заключается в том, что скорость адаптации одинакова по всем осям. Это означает, что эти алгоритмы неэффективны (трудно настроить параметры) в случаях, когда критерий изменяется гораздо быстрее вдоль одной оси, чем вдоль другой. Если небольшое изменение одной переменной приводит к большим изменениям критерия оптимальности, то эту переменную следует изменять медленно, маленькими шагами. В противном случае, если небольшие изменения одной переменной приводят к незначительным изменениям критерия оптимальности, то эту переменную следует изменять быстро, большими шагами. Другими словами, скорость адаптации должна быть разной для каждой оси!

АДАГРАД

Adagrad использует адаптивный градиент, специфичный для каждой оси (каждой переменной).

Пусть $g_{k,i}$ - градиент критерия оптимальности по i-й переменной в k-й итерации,

$$G_{k,i} = \sum_{j=1}^k (g_{j,i})^2$$

где $G_{k,i}$ - сумма квадратов градиентов по i-й переменной до k-й итерации.

Обновление i-й переменной:

$$x_{k+1,i} = x_{k,i} - rac{\eta}{\sqrt{G_{k,i}+\epsilon}}g_{k,i}$$

где η - скорость обучения, ϵ - малая константа, предотвращающая деление на ноль.

Этот метод позволяет каждой переменной адаптивно регулировать скорость обучения, учитывая её историю градиентов.

Основная проблема алгоритма ADAGRAD заключается в аккумуляции градиентов в размере G, который постоянно увеличивается со временем. Это приводит к эффективному уменьшению длины шага во всех измерениях, что в конечном итоге снижает эффективность алгоритма с течением времени (из итерации в итерацию)!

```
In []: g1 = [1/np.sqrt(g[0,0]+1e-6) for g in G]
    g2 = [1/np.sqrt(g[1,0]+1e-6) for g in G]
    plt.plot(g1[2:], label="brzina ucenja u prvoj komponenti")
    plt.plot(g2[2:], label="brzina ucenja u drugoj komponenti")
    plt.grid()
```


RMSProp

Алгоритм RMSProp работает аналогично ADAGRAD, за исключением того, что квадраты градиента не накапливаются бесконечно. Вместо этого вводится процедура, которая поверхностно напоминает процедуру введения момента в градиентном алгоритме.

$$G_{k+1,i} = \omega G_{k,i} + (1-\omega)g_{k,i}^2$$

Типичное значение параметра ω - 0.9.

Предположим, что g^2 постоянно. Когда выражение выше сходится, значение G в установившемся состоянии будет

$$G = \omega G + (1-\omega)g^2$$

Иными словами, $G=q^2$

```
v = np.zeros(shape=x[-1].shape)
             G = [np.zeros(shape=x[-1].shape)]
             for k in range(N):
                 q = np.asarray(qradf(x[-1]))
                 G.append(omega*G[-1] + (1-omega)*np.multiply(g, g))
                 v = gamma * np.ones(shape=g.shape)/np.sgrt(G[-1] + epsilon1) * g
                 x.append(x[-1] - v)
                 if np.linalq.norm(q) < epsilon:</pre>
                     break
             return x. G
In [ ]: run_rmsprop_M2, G = rmsprop_v(
             lambda x: quadratic grad(x, M2),
             x0=[3, 0.1],
             gamma=0.1, omega=0.9, epsilon1=1e-6, epsilon=1e-6, N=100)
        plot run(lambda x: quadratic(x, M2), [run adagrad M2, run rmsprop M2],
                  np.arange(-1, 3, 0.05), np.arange(-1, 3, 0.05), connect the dots
                  labels=["adagrad", "rmsprop"])

    adagrad

                                                                            msprop
         2.5
         2.0
         1.5
         1.0
         0.5
         0.0
        -0.5
        -1.0
             -1.0
                     -0.5
                              0.0
                                      0.5
                                              1.0
                                                      1.5
                                                              2.0
                                                                       2.5
                                                                              3.0
In []: g1 = [1/np.sqrt(g[0,0]+le-6) \text{ for } g \text{ in } G]
        g2 = [1/np.sqrt(g[1,0]+1e-6) \text{ for } g \text{ in } G]
        plt.plot(g1[2:], label="brzina ucenja u prvoj komponenti")
        plt.plot(g2[2:], label="brzina ucenja u drugoj komponenti")
        plt.grid()
```


ADADELTA

Алгоритм ADADELTA подобен алгоритму RMSProp, и они были предложены примерно в одно и то же время, независимо друг от друга. Разница заключается в том, что ADADELTA не требует от пользователя ввода параметра γ . Он вычисляется автоматически. Сначала определяется величина

$$T_{k+1,i} = \omega T_{k,i} + (1-\omega) \Delta x_k^2$$

а затем определяется

$$\gamma_{k,i} = \sqrt{T_{k,i} + \epsilon}$$

так что в конце концов

$$x_{k+1,i} = x_{k,i} - rac{\sqrt{T_{k,i}+\epsilon}}{\sqrt{G_{k,i}+\epsilon}}g_{k,i}$$

```
In []: def adadelta v(gradf, x0, omega, epsilon1, epsilon, N):
             x = [np.array(x0).reshape(len(x0), 1)]
             v = np.ones(shape=x[-1].shape)
             G = [np.zeros(shape=x[-1].shape)]
             T = [np.zeros(shape=x[-1].shape)]
             for k in range(N):
                 g = np.asarray(gradf(x[-1]))
                 G.append(omega*G[-1] + (1-omega)*np.multiply(q, q))
                 T.append(omega*T[-1] + (1-omega)*np.multiply(v, v))
                 v = np.sqrt(T[-1] + epsilon1)/np.sqrt(G[-1] + epsilon1) * q
                 x.append(x[-1] - v)
                 if np.linalq.norm(q) < epsilon:</pre>
                     break
             return x, G
In [ ]: run adadelta M2, = adadelta v(
             lambda x: quadratic grad(x, M2),
             x0=[3, 0.1],
             omega=0.9, epsilon1=1e-6, epsilon=1e-6, N=100)
        plot run(lambda x: quadratic(x, M2), [run adagrad M2, run adadelta M2],
                  np.arange(-1, 3, 0.05), np.arange(-1, 3, 0.05), connect_the_dots
                  labels=["adagrad", "adadelta"])
                                                                            adagrad
                                                                            adadelta
         2.5
         2.0
         1.5
         1.0
         0.5
         0.0
        -0.5
        -1.0
        -1.5
             -1.0
                     -0.5
                              0.0
                                      0.5
                                              1.0
                                                      1.5
                                                              2.0
                                                                      2.5
                                                                              3.0
In []: g1 = [1/np.sqrt(g[0,0]+1e-6) \text{ for } g \text{ in } G]
        g2 = [1/np.sqrt(g[1,0]+le-6) \text{ for } g \text{ in } G]
```

```
plt.plot(g1[2:], label="brzina ucenja u prvoj komponenti")
plt.plot(g2[2:], label="brzina ucenja u drugoj komponenti")
plt.grid()
```


ADAM

ADAM (ADAPTIVE MOMENT ESTIMATION) - одна из наиболее широко используемых современных модификаций алгоритма наискорейшего спуска.

Сначала определяются вспомогательные величины:

$$m_k=\omega_1 m_{k-1}+(1-\omega_1)g_k$$

$$v_k=\omega_2 v_{k-1}+(1-\omega_2)g_k^2$$

и их скорректированные версии:

$$\hat{m}_k = rac{m_k}{1-\omega_1^k}$$

$$\hat{v}_k = rac{v_k}{1-\omega_2^k}$$

Затем текущее решение обновляется по алгоритму:

$$x_{k+1} = x_k - rac{\gamma}{\sqrt{\hat{v}_k} + \epsilon} \hat{m}_k$$

```
In []: def adam v(gradf, x0, gamma, omega1, omega2, epsilon1, epsilon, N):
            x = [np.array(x0).reshape(len(x0), 1)]
            v = [np.ones(shape=x[-1].shape)]
            m = [np.ones(shape=x[-1].shape)]
            for k in range(N):
                g = np.asarray(gradf(x[-1]))
                m.append(omega1*m[-1] + (1-omega1)*q)
                v.append(omega2*v[-1] + (1-omega2)*np.multiply(q, q))
                hat v = np.abs(v[-1]/(1-omega2)) # abs je neophodan zbog numerick
                hat m = m[-1]/(1-omega1)
                x.append(x[-1] - gamma * np.ones(shape=g.shape)/np.sqrt(hat_v + e
                # print(gamma * np.ones(shape=g.shape)/np.sgrt(hat v + epsilon1)
                # print(x[-1])
                if np.linalg.norm(g) < epsilon:</pre>
                    break
            return x, v, m
```


