DATA MINING

Final Project

Fariborz Norouzi

METCS699 – Boston University

Summer 2017

Dividing a dataset into training and test dataset

For providing dataset into weka and dividing a dataset into training dataset with 1219 instances and test dataset with 600 instances, I did following steps:

- 1. Import original data and remove the first two attributes and save as modified data
- 2. Apply by resample filter and save as training set

3. Undo and apply filter again, but set the invertSelection to True and save as test set.

1- Attribute selection method: CfsSubsetEval

It evaluates the worth of a subset of attributes by process of selecting a subset of relevant features for use in model construction. Subsets of features that are highly correlated with the class while having low inter correlation are preferred.

The names of attributes that were selected by this method are:

Number of attributes: 11

pctBlack, pctWhite, pctMaleDivorc, pctFemDivorc, pctAllDivorc, pct2Par, pctKids-4w2Par pct12-17w2Par, kidsBornNevrMarr, pctKidsBornNevrMarr, Class

Classifier Algorithm: J48

	TP Rate	FP Rate	Precision	F-Measure	MCC	ROC Area	Class
	0.589	0.121	0.713	0.645	0.494	0.817	0
	0.879	0.411	0.808	0.842	0.494	0.817	1
Weighted	0.782	0.313	0.776	0.776	0.494	0.817	
Avg.							

Confusion Matrix: J48

$$119 83 \mid a = 0$$

- Classifier Algorithm: Multilayer Perceptron

Correctly Classified Instances 480 80 %

	TP Rate	FP Rate	Precision	F-Measure	MCC	ROC Area	Class
	0.698	0.148	0.705	0.701	0.551	0.855	0
	0.852	0.302	0.848	0.850	0.551	0.855	1
Weighted	0.800	0.250	0.800	0.800	0.551	0.855	
Avg.							

Confusion Matrix: Multilayer Perceptron

141 61 |
$$a = 0$$

- Classifier Algorithm: Random Forest

Correctly Classified Instances 474 79 %

TP Rate	FP Rate	Precision	F-Measure	MCC	ROC Area	Class
0.644	0.136	0.707	0.674	0.521	0.842	0
0.864	0.356	0.827	0.845	0.521	0.842	1

Weighted	0.790	0.282	0.786	0.787	0.521	0.842	
Avg.							

a b <-- classified as

130 72 | a = 0

54 344 | b = 1

- Classifier Algorithm: Simple Logistic

Correctly Classified Instances 481 80.1667 %

	TP Rate	FP Rate	Precision	F-Measure	MCC	ROC Area	Class
	0.609	0.101	0.755	0.674	0.540	0.852	0
	0.899	0.391	0.819	0.857	0.540	0.852	1
Weighted	0.802	0.293	0.797	0.796	0.540	0.852	
Avg.							

Confusion Matrix: Simple Logistic

a b <-- classified as

123 79 | a = 0

 $40358 \mid b = 1$

Best model Performance in **CfsSubset** Attribute selection method is **Multilayer perceptron** because although simple logistic has the highest correctly classified instances which was 481 Correctly Classified Instances (80.167%) but Multilayer perceptron with 480 correct classified instances and better other measure performance such as higher TP class 0 rate, lower average and class one FP rate, higher average Precision, F-Measure, MCC and ROC Area rate.

	CLASS	J48	Multilayer	Random Forest	Simple logistic
TP	0	0.589	0.698	0.644	0.609
	1	0.879	0.852	0.864	0.899
Ave		0.782	0.800	0.790	0.802

FP	0	0.121	0.148	0.136	0.101
	1	0.411	0.302	0.356	0.391
Ave		0.313	0.250	0.282	0.293
Precision	0	0.713	0.705	0.707	0.755
	1	0.808	0.848	0.827	0.819
Ave		0.776	0.800	0.786	0.797
F-Measure	0	0.645	0.701	0.674	0.674
	1	0.842	0.850	0.845	0.857
Ave		0.776	0.800	0.787	0.796
MCC	0	0.494	0.551	0.521	0.540
	1	0.494	0.551	0.521	0.540
Ave		0.494	0.551	0.521	0.540
ROC Area	0	0.817	0.855	0.842	0.852
	1	0.817	0.855	0.842	0.852
Ave		0.817	0.855	0.842	0.852

2- Attribute selection method: CorrelationAttributeEval

One of popular filter metrics for classification problems is correlation. This method takes into account the usefulness of individual features for predicting the class label along with the level of intercorrelation among them.

The names of attributes that were selected by this method are:

Attributes: 12

pctKids2Par, pct2Par, pct12-17w2Par, pctAllDivorc, pctKidsBornNevrMarr, pctWhite pctWdiv, pctHousOwnerOccup, medNumBedrm, pctNotHSgrad, pctWwage, Class

- Classifier Algorithm: J48

Correctly Classified Instances

463

77.1667 %

	TP Rate	FP Rate	Precision	F-Measure	MCC	ROC Area	Class
	0.688	0.186	0.653	0.670	0.496	0.776	0
	0.814	0.312	0.837	0.825	0.496	0.776	1
Weighted	0.772	0.269	0.775	0.773	0.496	0.776	
Avg.							

Confusion Matrix: J48

A b <-- classified as

139 63 | a = 0

 $74\ 324 \mid b = 1$

- Classifier Algorithm: Multilayer Perceptron

Correctly Classified Instances

470

78.3333 %

	TP Rate	FP Rate	Precision	F-Measure	MCC	ROC Area	Class
	0.653	0.151	0.688	0.670	0.509	0.822	0
	0.849	0.347	0.828	0.839	0.509	0.822	1
Weighted	0.783	0.281	0.781	0.782	0.509	0.822	
Avg.							

Confusion Matrix: Multilayer Perceptron

a b <-- classified as

132 70 | a = 0

 $60\ 338 \mid \ b = 1$

- Classifier Algorithm: Random Forest

Correctly Classified Instances

474

79 %

	TP Rate	FP Rate	Precision	F-Measure	MCC	ROC Area	Class
	0.629	0.128	0.713	0.668	0.518	0.844	0
Ī	0.872	0.371	0.822	0.846	0.518	0.844	1

Weighted	0.790	0.289	0.786	0.786	0.518	0.844	
Avg.							

- a b <-- classified as
- 127 75 | a = 0
- 51 347 | b = 1

- Classifier Algorithm: Simple Logistic

Correctly Classified Instances

476

79.33 %

	TP Rate	FP Rate	Precision	F-Measure	MCC	ROC Area	Class
	0.614	0.116	0.729	0.667	0.523	0.856	0
	0.884	0.386	0.819	0.850	0.523	0.856	1
Weighted	0.793	0.295	0.789	0.788	0.523	0.856	
Avg.							

Confusion Matrix: Simple Logistic

a b <-- classified as

124 78 | a = 0

 $46\ 352 \mid b = 1$

Best model Performance in Correlation Attribute selection method is Simple Logistic because it had the highest correctly classified instances which was 476 Correctly Classified Instances (79.33%) and also it had better other measure performance that shown with red item in following table.

	CLASS	J48	Multilayer	Random Forest	Simple logistic	
ТР	0	0.688	0.653	0.629	0.614	
	1	0.814	0.849	0.872	0.884	
Ave		0.772	0.783	0.790	0.793	

FP	0	0.186	0.151	0.128	0.116
	1	0.312	0.347	0.371	0.386
Ave		0.269	0.281	0.289	0.295
Precision	0	0.653	0.688	0.713	0.729
	1	0.837	0.828	0.822	0.819
Ave	Ave		0.781	0.786	0.789
F-Measure	0	0.670	0.670	0.668	0.667
	1	0.825	0.839	0.846	0.850
Ave		0.773	0.782	0.786	0.788
MCC	0	0.496	0.509	0.518	0.523
	1	0.496	0.509	0.518	0.523
Ave		0.496	0.509	0.518	0.523
ROC Area	0	0.776	0.822	0.844	0.856
	1	0.776	0.822	0.844	0.856
Ave	Ave		0.822	0.844	0.856

3- Attribute selection method: GainRatioAttributeEval

This method evaluates the worth of an attribute by measuring the gain ratio with respect to the class. Gain Ratio is modification of the information Gain that takes number and size of branches into account when choosing an attribute.

The names of attributes that were selected by this method are:

Attributes: 13

pct2Par, pct12-17w2Par, pctPersOwnOccup, pctAllDivorc, pctBlack, medIncome pctWdiv, houseVacant, persEmergShelt, persPerOwnOccup, pctFgnImmig-8 pctFgnImmig-5, Class

- Classifier Algorithm: J48

Correctly Classified Instances

463

77.1667 %

	TP Rate	FP Rate	Precision	F-Measure	MCC	ROC Area	Class
	0.460	0.070	0.769	0.576	0.459	0.777	0
	0.930	0.540	0.772	0.844	0.459	0.777	1
Weighted	0.772	0.382	0.771	0.754	0.459	0.777	
Avg.							

Confusion Matrix: J48

a b <-- classified as

93 109 | a = 0

28 370 | b = 1

- Classifier Algorithm: Multilayer Perceptron

Correctly Classified Instances

495

82.5 %

	TP Rate	FP Rate	Precision	F-Measure	MCC	ROC Area	Class
	0.693	0.108	0.765	0.727	0.600	0.848	0
	0.892	0.307	0.851	0.871	0.600	0.848	1
Weighted	0.825	0.240	0.822	0.823	0.600	0.848	
Avg.							

Confusion Matrix : Multilayer Perceptron

a b <-- classified as

140 62 | a = 0

43 355 | b = 1

- Classifier Algorithm: Random Forest

Correctly Classified Instances

479

79.83%

	TP Rate	FP Rate	Precision	F-Measure	MCC	ROC Area	Class
	0.609	0.106	0.745	0.670	0.533	0.856	0
	0.894	0.391	0.818	0.855	0.533	0.856	1
Weighted	0.798	0.295	0.794	0.793	0.533	0.856	

Avg.				

- a b <-- classified as
- 123 79 | a = 0
- 42 356 | b = 1

- Classifier Algorithm: Simple Logistic

Correctly Classified Instances

488

81.3333 %

	TP Rate	FP Rate	Precision	F-Measure	MCC	ROC Area	Class
	0.619	0.088	0.781	0.691	0.567	0.863	0
	0.912	0.381	0.825	0.866	0.567	0.863	1
Weighted	0.813	0.282	0.810	0.807	0.567	0.863	
Avg.							

Confusion Matrix: Simple Logistic

- a b <-- classified as
- 125 77 | a = 0
- 35 363 | b = 1

Best model Performance in **Gain Ratio Attribute selection** method is **Multilayer Perceptron** because it had the highest correctly classified instance which was 495 Correctly Classified Instances (82.5%) and also it had better measure performance than other classified models.

	CLASS	J48	Multilayer	Random Forest	Simple logistic
ТР	0	0.460	0.693	0.609	0.619
	1	0.930	0.892	0.894	0.912
Ave		0.772	0.825	0.798	0.813
FP	0	0.070	0.108	0.106	0.088

	1	0.540	0.307	0.391	0.381
Ave		0.382	0.240	0.295	0.282
Precision	0	0.769	0.765	0.745	0.781
	1	0.772	0.851	0.818	0.825
Ave	Ave		0.822	0.794	0.810
F-Measure	0	0.576	0.727	0.670	0.691
r-ivicasure	1	0.844	0.871	0.855	0.866
Ave		0.754	0.823	0.793	0.807
MCC	0	0.459	0.600	0.533	0.567
1,200	1	0.459	0.600	0.533	0.567
Ave		0.459	0.600	0.533	0.567
ROC Area	0	0.777	0.848	0.856	0.863
	1	0.777	0.848	0.856	0.863
Ave		0.777	0.848	0.856	0.863

4- Attribute selection method: InfoGainAttributeEval

This method evaluates the worth of an attribute by measuring the information gain with respect to the class. It is measuring how each feature contributes in decreasing the overall entropy.

The names of attributes that were selected by this method are:

Attributes: 9

pct2Par, pctAllDivorc, persPoverty, pctWhite, pctPersOwnOccup, pctWdiv, persHomeless, blackPerCap, Class

- Classifier Algorithm: J48

Correctly Classified Instances

	TP Rate	FP Rate	Precision	F-Measure	MCC	ROC Area	Class
	0.629	0.106	0.751	0.685	0.550	0.839	0
	0.894	0.371	0.826	0.859	0.550	0.839	1
Weighted	0.805	0.282	0.801	0.800	0.550	0.839	
Avg.							

Confusion Matrix: J48

127 75 |
$$a = 0$$

$$42\ 356 \mid b = 1$$

- Classifier Algorithm: Multilayer Perceptron

Correctly Classified Instances 476 79.3333 %

	TP Rate	FP Rate	Precision	F-Measure	MCC	ROC Area	Class
	0.649	0.133	0.712	0.679	0.528	0.842	0
	0.867	0.351	0.829	0.848	0.528	0.842	1
Weighted	0.793	0.278	0.790	0.791	0.528	0.842	
Avg.							

Confusion Matrix: Multilayer Perceptron

131 71 |
$$a = 0$$

- Classifier Algorithm: Random Forest

Correctly Classified Instances 490 81.6667 %

	TP Rate	FP Rate	Precision	F-Measure	MCC	ROC Area	Class
	0.673	0.111	0.756	0.712	0.580	0.853	0
	0.889	0.327	0.843	0.866	0.580	0.853	1
Weighted	0.817	0.254	0.813	0.814	0.580	0.853	
Avg.							

$$44\ 354 \mid b = 1$$

- Classifier Algorithm: Simple Logistic

Correctly Classified Instances

485

80.8333 %

	TP Rate	FP Rate	Precision	F-Measure	MCC	ROC Area	Class
	0.599	0.085	0.781	0.678	0.554	0.860	0
	0.915	0.401	0.818	0.864	0.554	0.860	1
Weighted	0.808	0.295	0.805	0.801	0.554	0.860	
Avg.							

Confusion Matrix: Simple Logistic

121 81 |
$$a = 0$$

$$34\ 364 \mid b = 1$$

Best model Performance in **Information Gain Attribute selection** method is **Random Forest** because it had the highest correctly classified instance which was 490 Correctly Classified Instances (81.67%) and also it had better measure performance than other classified models.

	CLASS	J48	Multilayer	Random Forest	Simple logistic
ТР	0	0.629	0.649	0.673	0.599
	1	0.894	0.867	0.889	0.915
Ave		0.805	0.793	0.817	0.808
FP	0	0.106	0.133	0.111	0.085
	1	0.371	0.351	0.327	0.401
Ave		0.282	0.278	0.254	0.295
Precision	0	0.751	0.712	0.756	0.781

	1	0.826	0.829	0.843	0.818
Ave		0.801	0.790	0.813	0.805
F-Measure	0	0.685	0.679	0.712	0.678
	1	0.859	0.848	0.866	0.864
Ave		0.800	0.791	0.814	0.801
MCC	0	0.550	0.528	0.580	0.554
	1	0.550	0.528	0.580	0.554
Ave		0.550	0.528	0.580	0.551
ROC Area	0	0.839	0.842	0.853	0.860
	1	0.839	0.842	0.853	0.860
Ave		0.839	0.842	0.853	0.860

Discussion:

With an overall view of the all process and selected four models for final evaluation, we have:

CfsSubsetEval & Multilayer perceptron => 481 Correctly Classified Instances (80.167%)

CorrelationAttributeEval & Simple logistic => 476 Correctly Classified Instances (79.33%)

GainRatioAttributeEval & Multilayer perceptron => 495 Correctly Classified Instances (82.5%)

InfoGainAttributeEval & Random Forest => 490 Correctly Classified Instances (81.67%)

Attribute Selection Method		CfsSubset	Correlation	Gain Ratio	Info Gain
Model	CLASS	Multilayer	Simple logistic	Multilayer	Random Forest
ТР	0	0.698	0.614	0.693	0.673
	1	0.852	0.884	0.892	0.889

Ave		0.800	0.793	0.825	0.817
FP	0	0.148	0.116	0.108	0.111
	1	0.302	0.386	0.307	0.327
Ave		0.250	0.295	0.240	0.254
Precision	0	0.705	0.729	0.765	0.756
	1	0.848	0.819	0.851	0.843
Ave		0.800	0.789	0.822	0.813
F-Measure	0	0.701	0.667	0.727	0.712
	1	0.850	0.850	0.871	0.866
Ave		0.800	0.788	0.823	0.814
MCC	0	0.551	0.523	0.600	0.580
	1	0.551	0.523	0.600	0.580
Ave		0.551	0.523	0.600	0.580
ROC Area	0	0.855	0.856	0.848	0.853
	1	0.855	0.856	0.848	0.853
Ave		0.855	0.856	0.848	0.853

By considering the above table and comparison of accuracies, we can say that Gain Ratio Attribute selection method with multilayer perceptron is the best model because it has the highest correctly classified instance which is 495 Correctly Classified Instances (82.5%) and it has the highest TP rate, lowest FP rate, highest Precision, F-Measure and MCC than other models, therefore, I chose this model as the best classification model.

What you learned from this project.

I learned how to use WEKA for building and testing classification models, and also how to evaluate measure performance for choosing the best model.

Any other observations from this project.

practically on huge data sets in real world applications.						

After doing this project I am interested to learn more concepts about data mining and applying it