19 RÉPUBLIQUE FRA

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

11 Nº de publication :

2 819 099

(à n'utiliser que pour les commandes de reproduction)

21 Nº d'enregistrement national :

00 17215

51) Int Cl7 : H 01 L 21/324

(12)

DEMANDE DE BREVET D'INVENTION

A1

- 22 Date de dépôt : 28.12.00.
- (30) Priorité :

- (71) Demandeur(s): COMMISSARIAT A L'ENERGIE ATO-MIQUE Etablissement de caractère scientifique technique et industriel — FR.
- Date de mise à la disposition du public de la demande : 05.07.02 Bulletin 02/27.
- Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule
- Références à d'autres documents nationaux apparentés :
- 12 Inventeur(s): FOURNEL FRANCK, MORICEAU HUBERT, ZUSSY MARC et MAGNEA NOEL.
- 73 Titulaire(s):
- Mandataire(s): BREVATOME.

9 PROCEDE DE REALISATION D'UNE STRUCTURE EMPILEE.

La présente invention est un procédé de réalisation d'une structure empilée à partir de structures (30, 40) à assembler pour former l'empilement, ces structures (30, 40) comportant chacune au moins une partie cristalline (3, 4). Il comporte au moins les étapes suivantes:

- obtention des parties cristallines (3, 4) par prélèvement de ces parties cristallines (3, 4) à partir d'une même structure initiale (1) et formation des structures (30, 40) à assembler à partir des dites parties cristallines (3, 4)

bler à partir des dites parties cristallines (3, 4),
- assemblage des structures (30, 40) à assembler en
contrôlant les positions relatives des structures (30, 40), en
rotation dans le plan de l'interface, par rapport aux positions
relatives des parties cristallines (3, 4) respectives.

Application notamment en microélectronique, en optique, en optoélectronique.

FR 2 819 099 - A1

PROCEDE DE REALISATION D'UNE STRUCTURE EMPILEE

DESCRIPTION

DOMAINE TECHNIQUE

La présente invention est relative à un procédé de réalisation d'une structure empilée à partir de structures à assembler comprenant chacune au moins une partie cristalline. L'invention s'applique notamment dans le domaine de la microélectronique, de l'optique, de l'optoélectronique.

Généralement, on s'intéresse structures dont la partie cristalline est en matériau semi-conducteur et en particulier en silicium, en carbure de silicium, en germanium, Si_xGe_{1-x} , en nitrure de gallium, en phosphure d'indium, en arséniure de gallium ou tous autres composés III-V, II-VI, IV-IV. On peut aussi s'intéresser à des supraconducteurs, à des matériaux diélectriques tels que le diamant. Ces matériaux sont pris seuls ou en combinaison.

ETAT DE LA TECHNIQUE ANTERIEURE

L'assemblage de plaquettes réalisées en matériaux semiconducteurs est une étape classique et connue en électronique. On peut se référer par exemple au brevet américain US-5 661 316 de Kish Jr et al qui propose de réaliser une jonction ohmique entre les deux plaquettes 101, 102. On se réfère aux figures 1A, 1B.

Les faces des plaquettes à assembler 30 présentent généralement un angle d'inclinaison respectivement α,, α, par rapport cristallographique de surface. Dans ce brevet américain on cherche à réduire au maximum, dans le plan de

15

20

l'interface, l'angle de décalage en rotation θ entre les deux réseaux cristallins présentés par les faces à assembler et l'angle d'inclinaison résultant α qui est l'angle existant entre les plans cristallographiques des faces des plaquettes une fois mises en contact.

L'angle de décalage en rotation heta est mis en évidence sur la figure 1A. L'angle d'inclinaison résultant α est mis en évidence sur la figure 1B. Les traces des plans cristallographiques sont schématisées 10 par la série de lignes parallèles sur la figure 1B. L'angle de décalage en rotation heta est connu sous la dénomination anglo-saxonne d'angle de «twist», tandis que les angles d'inclinaison $lpha_1,\ lpha_2$ sont connus sous la dénomination anglo-saxonne d'angles de «tilt». L'angle 15 d'inclinaison existant entre les plans cristallographiques des deux faces des plaquettes 1, 2 une fois mises en contact dépend des angles de tilt α_1 , α_2 et de l'angle de twist θ .

Dans la suite de la description, le terme angle de décalage en rotation désignera l'angle de twist, le terme angle d'inclinaison désignera l'angle d'inclinaison d'une face par rapport aux plans cristallographiques de cette même face et le terme angle d'inclinaison résultant l'angle existant entre les plans cristallographiques de l'interface des deux plaquettes ou structures assemblées l'une à l'autre.

Dans la demande de brevet WO 99/05711 au nom du Commissariat à l'Energie Atomique, pour réaliser des microstructures ou des nanostructures auto-organisées, on cherche à ce qu'à l'interface entre les deux plaquettes, on soit en présence d'au moins un désaccord cristallographique très bien contrôlé de manière à former un réseau de défauts cristallins et/ou un réseau de contraintes au sein d'une zone cristalline s'étendant de chaque côté de l'interface. Pour cela on

5

20

25

30

cherche à être en présence à l'interface d'un angle de décalage en rotation θ et/ou d'un angle d'inclinaison résultant α bien prédéterminés.

Dans les deux cas, lorsqu'on veut réaliser de tels assemblages, on a besoin de contrôler avec une grande précision, à l'interface entre les deux structures à assembler, l'angle de décalage en rotation et/ou l'angle d'inclinaison résultant ainsi définis.

Actuellement pour contrôler à l'interface 10 entre deux structures, l'angle d'inclinaison résultant, on choisit des structures dont on connaît l'angle d'inclinaison. Cet angle peut se mesurer par exemple par rayons X.

peut également par des méthodes polissage non homogène ou d'enlèvement local de matière 15 imposer un angle d'inclinaison à chaque structure. Si connaît l'angle d'inclinaison de plusieurs structures, on peut effectuer un tri de manière à apparier des structures donneront qui un angle 20 d'inclinaison résultant đe valeur appropriée. La méthode de tri nécessite d'avoir à disposition une multitude de structures à assembler surtout grande précision de l'angle d'inclinaison résultant est recherchée.

Mais dans tous les cas, la valeur de l'angle d'inclinaison et sa direction par rapport aux axes cristallins qui définissent l'angle de rotation doivent être connus pour chacune des structures avant l'assemblage. Ces méthodes sont très lourdes à mettre en œuvre et sont consommatrices de temps.

De plus, si les angles d'inclinaison des deux structures à assembler ne sont pas rigoureusement identiques, ce qui est difficile à obtenir, il n'est pas possible que l'assemblage conduise à un angle d'inclinaison résultant quasi nul puisque c'est au

minimum environ la différence entre les angles d'inclinaison des deux faces à assembler.

Pour contrôler l'angle de décalage rotation, on peut munir les structures à assembler de méplats et utiliser ces méplats lors de l'assemblage comme le montre le brevet US-5 661 316 déjà cité. Mais difficulté réside dans le fait de connaître l'orientation cristallographique du méplat sur chacune des structures. Donc, il faut déterminer au moins un axe du réseau cristallin de chacune des structures. Une 10 méthode de détermination de l'axe cristallin peut se faire par rayons X mais plus la structure est mince moins la précision de la détermination est bonne. Avec un film cristallin dont l'épaisseur est de l'ordre de 200 nanomètres, la précision de détermination d'un axe 15 cristallin par les rayons X ne peut atteindre facilement le centième de degré.

L'article « Angular alignment for bonding » de Yuang-Fang CHOU et Ming-Hsun HSIEH paru dans Proceedings SPIE, The International Society for Optical Engineering, Micromachining Microfabrication Process Technology II, Vol2879, 1996, pages 291 à 299 propose une méthode de détermination de l'angle de décalage en rotation entre les réseaux cristallins de deux plaquettes à assembler. Il s'agit d'une méthode de gravure chimique anisotrope effectuée sur chacune des plaquettes avant leur assemblage. Elle permet de révéler leurs directions cristallines mais la difficulté consiste à contrôler l'angle de décalage en rotation đe leurs réseaux cristallins l'assemblage de manière à obtenir une grande précision. Par ailleurs, il n'est pas enseigné le contrôle de l'angle de tilt des plaquettes.

20

25

30

: }

EXPOSÉ DE L'INVENTION

5

10

15

20

25

30

35

La présente invention a pour but de proposer un procédé de réalisation d'une structure empilée qui ne présente pas les inconvénients de l'art antérieur. La structure empilée obtenue par le procédé de l'invention possède un angle de décalage en rotation entre les réseaux cristallins des deux parties cristallines des structures à assembler et/ou un angle d'inclinaison résultant aisément maîtrisables, et avec une grande précision qui peut atteindre le centième de degré.

Pour У parvenir, le procédé selon l'invention est un procédé de réalisation d'une structure empilée à partir de structures à assembler pour former l'empilement, ces structures à assembler comportant chacune au moins une partie cristalline. Il comporte au moins les étapes suivantes :

- obtention des parties cristallines par prélèvement de ces parties à partir d'une même structure initiale et formation à partir des dites parties cristallines des structures à assembler,

- assemblage des structures à assembler en contrôlant les positions relatives des structures, en rotation dans le plan de l'interface, par rapport aux positions relatives des parties cristallines respectives.

Les structures à assembler peuvent bien entendu être entièrement cristallines et dans ce cas l'étape de formation des structures à assembler est réalisée en même temps que l'étape d'obtention des parties cristallines.

Par contre, les structures à assembler peuvent comporter respectivement une partie cristalline sur un support, la partie cristalline pouvant être même recouverte d'une couche non cristalline.

Dans ce dernier cas de figure, plusieurs modes de réalisation des structures à assembler sont envisageables. En particulier la partie cristalline peut être associée à un support avant ou après le prélèvement dans la structure initiale. Par ailleurs chaque partie cristalline prélevée peut comporter un ou plusieurs matériaux cristallins empilés éventuellement associés à un ou plusieurs matériaux non cristallins.

On peut prévoir, avant l'assemblage et 10 après prélèvement, au moins une étape de préparation de la face à assembler d'au moins une des structures.

Cette étape de préparation peut être un polissage ou un lissage thermique de la face à assembler.

15 Cette étape de préparation peut être un amincissement de la structure de manière à mettre à jour un matériau cristallin enterré de la partie cristalline.

Cette étape de préparation peut être une 20 étape de dépôt ou de croissance d'un matériau sur la face à assembler.

Le matériau peut être cristallin ou amorphe.

Cette étape de préparation peut être une combinaison de ces étapes.

On peut prévoir avant le prélèvement d'au moins une des parties cristallines, une étape de fixation de la partie cristalline sur une première poignée. Cette poignée est importante si la partie cristalline est mince.

On peut prévoir une étape de fixation de la partie cristalline sur une seconde poignée après son prélèvement de la structure initiale, puis une étape de retrait de la première poignée libérant la face à assembler. Les parties cristallines sont alors

30

retournées par rapport à leurs positions avant prélèvement.

Avantageusement une étape d'implantation ionique peut être réalisée dans l'une au moins des structures et notamment dans l'une au moins des poignées ou à la jonction entre partie cristalline et poignée. Cette étape peut contribuer à l'élimination des poignées.

Le prélèvement peut être réalisé par des 10 moyens mécaniques, optiques, chimiques, thermiques pris seuls ou en combinaison.

On peut aussi réaliser une étape d'implantation ionique au travers d'une face de la structure initiale pour obtenir une zone fragilisée, puis un traitement apte à provoquer la séparation d'une partie cristalline au niveau de la zone fragilisée. Ce traitement peut être un recuit thermique, application de force mécanique ou une combinaison des deux.

L'étape d'assemblage peut se faire avec apport de matière ou sans apport de matière notamment par adhésion moléculaire.

Le contrôle des positions relatives des structures lors de l'assemblage peut comporter une étape de repérage d'au moins un axe cristallin d'au moins une des parties cristallines

De manière plus simple, le contrôle des positions relatives des structures lors de l'assemblage peut être réalisé à l'aide d'au moins une marque de repérage portée par la structure initiale retrouvant sur les parties cristallines après prélèvement. Bien entendu ces marques peuvent trouver dans les matériaux cristallins ou non de ces parties.

5

15

25

Un méplat ou un ou plusieurs ensembles de graduations peuvent faire office de marques de repérage.

On peut avant ou après le prélèvement reporter ces marques de repérage sur d'autres parties des structures à assembler et/ou de la structure initiale telles que leurs faces arrières, les poignées éventuelles.

Avantageusement, ces marques de repérage 10 peuvent être gravées dans la structure initiale qui a subi au préalable une étape d'implantation ionique afin de créer une zone fragilisée, ladite gravure s'étendant au-delà de la zone fragilisée. Après la fixation d'une poignée sur la face implantée et un traitement apte à provoquer la séparation au niveau de la zone fragilisée, les marques de repérage se retrouvent sur les deux structures à assembler.

Pour obtenir un positionnement avec précision, le contrôle des positions relatives des structures lors de l'assemblage peut être réalisé en ajustant, la position d'au moins une marque de repérage de l'une des structures à assembler par rapport à la position d'au moins une marque de repérage d'une autre structure à assembler, par des moyens choisis parmilles moyens optiques, mécaniques, acoustiques, hydrodynamiques, ces moyens étant pris seuls ou en combinaison.

La présente invention concerne également une structure empilée, obtenue par le procédé ainsi exposé, à partir de structures à assembler composées en partie ou en totalité d'au moins un des matériaux choisis parmi les semi-conducteurs, les supraconducteurs, les matériaux diélectriques, les

5

20

matériaux métalliques, les matériaux magnétiques, ces matériaux étant pris seuls, en combinaison et/ou en mélange.

Le procédé précédemment décrit peut être 5 réitéré pour l'empilement de plusieurs structures à assembler dont les parties cristallines peuvent être prélevées dans une même structure initiale.

BRÈVE DESCRIPTION DES DESSINS

- L'invention sera mieux comprise et d'autres 10 caractéristiques et avantages apparaîtront à la lecture de la description qui va suivre, donnée à titre purement illustratif et non limitatif, accompagnée des dessins annexés parmi lesquels :
- la figure 1A (déjà décrite) illustre 15 l'angle de décalage en rotation θ existant entre les réseaux cristallins de deux plaquettes assemblées l'une à l'autre ;
- la figure 1B (déjà décrite) illustre les angles d'inclinaison α_1 , α_2 formés entre les plans cristallographiques des faces à assembler des deux plaquettes et l'interface d'assemblage et l'angle d'inclinaison résultant α formé par les plans cristallographiques des faces, une fois mises en contact ;
- 25 les figures 2A, 2B, 2C illustrent différentes étapes du procédé selon l'invention ;
 - les figures 3A, 3B, 3C, 3D illustrent différentes étapes d'une première variante du procédé selon l'invention ;
- les figures 4A, 4B, 4C, 4D illustrent différentes étapes d'une seconde variante du procédé selon l'invention;
 - la figure 5 montre les variations typiques de l'angle d'inclinaison résultant α en

fonction de l'angle de décalage en rotation θ lors de l'assemblage de deux structures ;

- les figures 6A et 6B illustrent des marques de repérage effectuées sur la structure initiale avant la séparation ainsi que les marques obtenues sur les structures à assembler obtenues par prélèvement dans la structure initiale;
- la figure 7 illustre deux structures équipées d'un méplat assemblées l'une à l'autre ;
- la figure 8A montre plusieurs ensembles de graduations assimilables à des rapporteurs, portés par une structure initiale ;
 - la figure 8B montre de manière agrandie un détail d'un rapporteur de la figure 8A;
- les figures 9A à 9E illustrent différentes étapes d'une autre variante du procédé selon l'invention.

EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS

20 On se réfère aux figures 2. Sur la figure représentée une structure cristalline initiale. Les traces des plans cristallographiques p de cette structure initiale 1 sont schématisées par les lignes parallèles inclinées. La ligne en pointillés indique un plan de découpe à effectuer pour obtenir 25 deux parties cristallines 3, 4 devant servir pour former deux structures à assembler en les empilant l'une sur l'autre de manière à obtenir la structure empilée objet de l'invention. Sur la figure 2B, les deux parties cristallines 3, 4 ont été prélevées. Dans 30 l'exemple décrit, on suppose que les cristallines prélevées, fixées chacune sur un support 5, 6 mono ou multicouche, forment les structures à assembler 30, 40. On pourrait découper plus de deux parties cristallines 3, 4 dans la structure initiale 1 35

·)

et empiler plus de deux structures à assembler les unes sur les autres. On pourrait ainsi obtenir une structure empilée épaisse à partir d'une pluralité de parties cristallines minces. Cet empilage de structures à assembler peut être déposé sur un support quelconque.

On pourrait aussi coller deux à deux les parties cristallines 3,4 et ainsi obtenir une pluralité de structures assemblées 30, 40 à partir d'une même structure initiale 1.

Un angle d'inclinaison α_1 existe entre les plans cristallographiques du plan de coupe et la direction du plan de coupe.

La structure initiale peut être réalisée en totalité dans un ou plusieurs matériaux cristallins ou être composite à base de matériaux cristallins et non cristallins.

La séparation peut se faire à l'interface entre deux matériaux différents ou à l'intérieur d'un même matériau.

Les matériaux cristallins peuvent être semi-conducteurs, supraconducteurs, diélectriques, métalliques ou magnétiques.

Comme matériaux semi-conducteurs, on peut utiliser le silicium, le $Si_{x}Ge_{1-x}$, le carbure de silicium, le germanium, le nitrure de gallium, 25 phosphure d'indium, l'arséniure de gallium ou plus généralement tous composés III-V, II-VI, IV-IV. On peut aussi utiliser comme matériau diélectrique le diamant, comme matériaux métalliques le cuivre, le fer, platine, le palladium, comme matériaux magnétiques le 30 cuivre, le fer, les alliages CrCo, FeNi, FeNiAg, le grenat ((Terre rare) $_3$ Fe $_{5-x}$ Métal $_x$ O $_{12}$), comme matériaux supraconducteurs le YbaCuO, le NbN. Tous ces matériaux peuvent être pris seuls, en combinaison et/ou

5

en mélange. Comme matériaux non cristallins, on peut utiliser des polymères, le SiO_2 , le Si_3N_4 .

Dans la structure initiale 1 on va commencer par prélever au moins deux parties cristallines 3, 4 à partir desquelles les structures 30, 40 à assembler vont être obtenues.

Les deux parties cristallines prélevées présentent alors chacune un angle d'inclinaison α_1 , α_2 respectivement par rapport au plan de coupe

La découpe peut se faire avec des moyens mécaniques, avec une scie ou un jet d'eau par exemple, des moyens optiques avec un laser par exemple, des moyens chimiques ou thermiques ou selon le procédé décrit dans la demande de brevet FR-A-2 681 472. Ces moyens peuvent être utilisés seuls ou en combinaison.

Selon la demande de brevet FR-A- 2 681 472 qui permet la séparation par fracture de films minces, on implante des ions, des protons par exemple, au travers d'une face 2 de la structure initiale 1, pour obtenir une zone fragilisée 10, schématisée par les pointillés, à une profondeur déterminée par rapport à la face 2 implantée. Ladite face 2 implantée est ensuite par exemple fixée à une poignée 5 visant à faciliter la manipulation de la partie cristalline 3 qui va être ultérieurement prélevée. Cette poignée 5 peut avoir également un rôle de raidisseur de la partie cristalline lors de la séparation. La poignée peut être réalisée dans un au moins des matériaux de la liste citée plus haut.

Les moyens de fixation peuvent être un collage avec une substance adhésive, une substance provenant d'un dépôt par un procédé physique ou chimique tel que l'évaporation, la pulvérisation, le dépôt chimique en phase vapeur, par exemple ou un collage par adhérence moléculaire. Les moyens de

5

20

fixation peuvent être utilisés seuls ou en combinaison. En particulier, un traitement thermique peut être utilisé pour adapter l'efficacité de la fixation. Cette étape n'est pas représentée. Une étape de nettoyage chimique des faces à coller est généralement prévue avant une fixation par adhérence moléculaire.

Un traitement mécanique et/ou un traitement de recuit thermique peuvent être ensuite appliqués. Ils ont pour but de séparer en deux parties 3, 4, au niveau de la zone fragilisée 10, la structure initiale 1. Les faces séparées portent la référence 8 pour la partie cristalline 3 et la référence 9 pour la partie cristalline 4.

On peut envisager que la structure initiale

15 1 possède une autre face 7 tenue par une poignée 6
avant la séparation. Cette deuxième poignée 6 pourra
être fixée par l'une des méthodes préconisées plus
haut. Cette caractéristique n'est pas représentée sur
la figure 2A mais les deux poignées sont visibles sur
20 la figure 2B.

Si les poignées 5, 6 doivent être ôtées après obtention de la structure empilée, on choisira leur matériau et leur mode de fixation en conséquence. Par exemple une poignée en oxyde de silicium peut être éliminée dans un bain d'acide fluorhydrique. On pourrait les éliminer par un des moyens de séparation des parties cristallines décrits précédemment.

Dans l'exemple décrit, les parties cristallines 3, 4 fixées chacune à une poignée 5, 6 forment les structures 30, 40 à assembler. Les deux 30 structures obtenues 30, 40 vont être assemblées l'une à l'autre par leurs faces 8, 9 en contrôlant positions relatives des structures 30, 40, en rotation dans le plan de l'interface, par rapport aux positions relatives des parties cristallines 3, 4 respectives. La 35

5

10

référence est donnée par les positions relatives des parties cristallines avant la séparation.

Sur la figure 2C qui illustre l'assemblage des deux structures 30, 40, on suppose que les deux parties cristallines 3, 4 conservent les mêmes positions relatives en rotation avant la séparation et lors de l'assemblage.

Cette configuration sans décalage rotation permet de rendre nul ou quasi nul l'angle d'inclinaison 10 résultant entre les cristallographiques de l'interface, structures. En effet, les angles d'inclinaison des deux à assembler sont sensiblement égaux si séparation est induite suivant un seul plan de coupe 15 dans la structure initiale.

Si l'assemblage des structures conduit à un assemblage des parties cristallines prélevées telles quelles sans préparation de surface, avec un angle de décalage en rotation dans le plan de l'interface nul ou quasi nul, l'angle d'inclinaison résultant sera nul ou quasi nul.

Il est alors possible de minimiser ou de contrôler l'angle d'inclinaison résultant sans avoir à connaître l'angle d'inclinaison de chacune _des structures.

En outre, on peut introduire une variation d'angle d'inclinaison volontaire très bien contrôlée, par exemple par un polissage mécanochimique (CMP), sur au moins une des structures à assembler. On peut ainsi contrôler l'angle d'inclinaison résultant sans pour autant avoir besoin de connaître les angles d'inclinaison des deux structures à assembler.

L'assemblage des deux structures 30,40 peut être un scellement avec ou sans apport de matière à 35 l'interface entre les deux structures 30, 40. S'il y a

20

25

apport de matière pour réaliser la jonction, cette dernière peut avoir disparu ou non à l'assemblage. Un type d'assemblage avantageux est connu sous la dénomination de collage moléculaire. Ce collage moléculaire peut être par exemple, de type hydrophobe, hydrophile, anodique, eutectique ou métallique. Pour un collage moléculaire hydrophobe, les deux surfaces 8, 9 à assembler reçoivent un traitement pour les rendre hydrophobes. Ce traitement peut comprendre une étape de nettoyage chimique se terminant par exemple par une étape d'attaque à l'acide fluorhydrique. On effectue ensuite une mise en contact des faces 8. traitées, à température ambiante, en contrôlant positions relatives des deux structures 30, rotation dans le plan de l'interface, par rapport aux positions relatives des parties cristallines 3, respectives. La référence est la position des parties cristallines avant prélèvement. Cette mise en contact est illustrée à la figure 2C.

Les deux structures 30, 40 sont ensuite soumises à un traitement thermique de manière à favoriser les liaisons interatomiques à l'interface.

En outre, les deux structures 30, 40 à assembler peuvent être soumises à un ou plusieurs traitements de surface ou attaque de surface avant d'effectuer l'assemblage.

Par exemple, après la séparation, surfaces séparées possèdent des micro-rugosités peuvent être atténuées par un polissage mécanique, chimique ou mécanochimique ou un traitement thermique à haute température, dans différentes atmosphères, par exemple, pour le lissage de surface de silicium, sous hydrogène, sous argon, sous azote ou sous vide.

10

15

20

25

Chaque partie cristalline 3, peut comporter plusieurs matériaux cristallins empilés éventuellement associés à un ou plusieurs matériaux non cristallins, comme on le verra lors de la description 5 des figures 4. Dans ce cas, l'une au moins structures à assembler est composée plusieurs de matériaux, il est possible de réaliser amincissement, par exemple par attaque chimique et/ou ionique pour faire apparaître en surface un matériau cristallin qui serait encore enterré après séparation. 10 C'est cette configuration qu'illustrent les figures 4 décrites ultérieurement. Une couche d'arrêt gravure est incluse dans l'une, l'autre ou les deux structures à assembler et l'amincissement 15 attaque effectuée jusqu'à la couche d'arrêt 17.

On peut avantageusement réaliser au moins un dépôt ou la croissance d'au moins un matériau sur l'une au moins des surfaces séparées.

On suppose que cette variante est illustrée 20 à la figure 3B décrite ultérieurement. La face séparée 8 de la structure 30 est recouverte d'un matériau cristallin. La couche obtenue porte la référence 11. Avantageusement, le dépôt peut être fait par épitaxie.

Le matériau de la couche 11, au lieu d'être cristallin peut être amorphe. Ce peut être par exemple 25 de l'oxyde de silicium, du nitrure de silicium, verre, un polymère, par exemple une colle époxy. Ce matériau peut disparaître lors đe traitements thermiques, chimiques ou mécaniques réalisés avant, pendant ou après l'assemblage. 30 En conséquence, matériau peut être présent ou non à l'interface d'assemblage.

Les traitements de polissage, de croissance de dépôt, d'amincissement peuvent permettre d'imposer aux surfaces à assembler un angle d'inclinaison bien

déterminé et donc peuvent permettre d'induire un angle d'inclinaison résultant relatif dont la valeur est volontairement choisie.

Les étapes de préparation de surface peuvent également ne changer que très peu les angles d'inclinaison des faces à assembler. Par exemple, si on retire une épaisseur de 400 nanomètres à la surface d'une plaquette d'environ 10 centimètres de diamètre, la variation de l'angle d'inclinaison peut être inférieure au millième de degré.

Avantageusement, une étape d'implantation ionique peut être réalisée avant la mise en contact des structures 30, 40 à assembler, au niveau de l'une au moins des poignées 5, 6 ou à l'interface entre partie cristalline 3, 4 et la poignée correspondante 5, ou dans la partie cristalline 3, Cette implantation ionique peut être réalisée par l'hydrogène, de l'hélium, de l'erbium et/ou tout autre élément capable d'être implanté. Cette implantation induit en profondeur une zone fragilisée. Cette étape être mise à profit notamment pour séparer ultérieurement la poignée de la structure à laquelle elle est fixée. La séparation aura lieu au niveau de la zone fragilisée induite l'implantation _ en par appliquant, par exemple, le traitement préconisé dans la demande de brevet FR-A-2 681 472.

On suppose que sur la figure 2B une implantation ionique a été réalisée dans les structures à assembler 30, 40 à la jonction 2, 7 entre les poignées 5, 6 et les parties cristallines 3, 4, les zones fragilisées sont schématisées.

Cette étape d'implantation ionique peut être réalisée avant la séparation des parties cristallines, avant l'assemblage des structures ou après.

5

10

15

20

25

30

On se réfère aux figures 3. On part d'une structure initiale 1 (figure 3A). On équipe chacune de ses faces d'une poignée respectivement 5, 6 et l'on sépare en deux parties la structure initiale 1. On obtient les deux structures 30, 40 à assembler. Elles comportent chacune une partie cristalline 3, 4 fixée sur une poignée 5, 6. On fait subir à l'une des faces séparées 8 une croissance d'un matériau cristallin 11 (figure 3B). En ce qui concerne l'autre structure 40 obtenue après la séparation, on fixe sur séparée 9 une seconde poignée 12 (figure 3C). On retire ensuite tout ou partie de la première poignée Plusieurs possibilités de retrait peuvent envisagées.

On peut réaliser un arrachement en exerçant sur la poignée 6 et la partie cristalline 4 des forces opposées. Une élimination par attaque chimique ou par abrasion mécanique peut être envisagée. Une combinaison de ces méthodes peut être employée.

L'abrasion peut aller au-delà de la poignée 6 et consommer une partie de la partie cristalline 4. Les pointillés de la figure 3C montrent où s'arrête l'abrasion. L'arrêt de l'abrasion peut avantageusement être provoqué par une couche d'arrêt. On suppose que sur la figure 3D une couche de matière de la structure 40 a été ôtée dans la partie cristalline 4 lors du retrait de la première poignée 6. Ce retrait a mis à jour une face cristalline 13 de la partie cristalline 4 de la structure 40 et c'est cette face 13 qui va être assemblée à la face traitée de l'autre structure 30.

On aurait pu envisager que ce retournement de structure à l'aide d'une paire de poignées soit réalisé sur les deux structures 30, 40. Au moins l'une des faces assemblées peut ne pas être l'une des faces obtenues par la séparation.

10

20

25

30

figures Les 4 illustrent le Οù plusieurs séparations sont réalisées dans la structure initiale 1. Sur la figure 4A, la structure initiale 1 est composite et formée de plusieurs couches 15, cristallines, d'une couche amorphe 21 empilées les unes sur les autres, la couche amorphe 21 se trouvant entre deux couches cristallines 15, 16. Une couche d'arrêt 17 peut être placée entre l'une des couches cristallines 15 et la couche amorphe 21.

10 On sépare de la structure initiale 1, selon le plan 10, une première partie cristalline 3, elle est représentée fixée à une poignée 5 sur la figure 4B et l'ensemble forme l'une des structures 30 à assembler. La face séparée de la partie cristalline 3 est libre, elle porte la référence 8. Cette partie cristalline 3 15 est prélevée dans la couche cristalline 15.

On sépare ensuite, selon le plan 14 dans la masse de la structure initiale 1, une seconde partie cristalline 4 que l'on équipe au préalable également d'une poignée 6 (figure 4C). Cette seconde partie 20 cristalline 4 comporte du matériau cristallin de la couche cristalline 15, elle est associée à la couche d'arrêt 17 et à du matériau amorphe 22 de la couche 21. L'ensemble poignée 6, partie cristalline 4, 25 d'arrêt 17, matériau amorphe 22 forme la structure 40. Cette seconde structure 40 comporte une face libre 9 qui correspond au matériau amorphe 22. On attaque cette face libre 9 jusqu'à tout ou partie de la couche d'arrêt 17 de manière à éliminer le matériau amorphe 22. Si la couche d'arrêt est absente, l'élimination du matériau amorphe 22 conduit à la mise à jour du matériau cristallin de la couche cristalline 15.

La face libre 9 ainsi traitée est assemblée à la face libre 8 de l'autre structure 30. Ce mode 35

opératoire permet d'économiser la structure initiale 1 qui peut être réutilisée.

Lors de l'assemblage, si l'on provoque une rotation θ dans le plan de l'interface, de l'une des 5 structures à assembler par rapport à l'autre, on fait même, temps tourner la direction de l'angle d'inclinaison de la face à assembler de la structure en rotation, par rapport à la normale à ladite face. Cela permet de moduler la valeur de l'angle d'inclinaison 10 résultant α entre les deux structures. Un angle de rotation θ nul produira un angle d'inclinaison résultant lpha sensiblement égal à la différence, valeur absolue, des angles d'inclinaison α_1 , α_2 des faces à assembler, tandis qu'une rotation de 180° 15 produira angle un d'inclinaison résultant sensiblement égal à la somme des angles d'inclinaison des faces à assembler.

les deux structures à possèdent le même angle d'inclinaison au niveau de leur face à assembler, c'est le cas par exemple si 20 séparation a été réalisée, avec le procédé décrit dans le brevet FR-A-2 681 472, selon l'angle de décalage en rotation, l'angle d'inclinaison résultant varie entre 0° , pour une rotation nulle, et deux fois l'angle 25 d'inclinaison, pour une rotation de 180°. Par un tel séparation, l'angle d'inclinaison sensiblement celui de la face implantée de la structure initiale.

Dans cette configuration đe 30 avantageuse, si on cherche à obtenir angle d'inclinaison résultant nul, il n'est même nécessaire de connaître la valeur de d'inclinaison de la face implantée. En revanche, si on cherche une valeur prédéterminée de d'inclinaison résultant, seule la connaissance de la 35

valeur de l'angle d'inclinaison de la face implantée peut être nécessaire, mais le repérage de sa direction importe peu. Ce n'était pas le cas antérieurement.

La figure 5 montre les variations typiques de l'angle d'inclinaison résultant lpha en fonction de l'angle đe décalage en rotation θ des réseaux cristallins présentés par les faces assemblées.

Cependant, pour pouvoir maîtriser finement l'angle de décalage en rotation Đ des cristallins présentés par les deux faces à assembler, il n'est pas nécessaire, comme auparavant, de connaître les directions cristallines des réseaux cristallins présentés par lesdites faces, il suffit de contrôler de manière précise les positions relatives en rotation des structures à assembler.

On peut, dans cette optique, avant l'étape de séparation, réaliser une ou plusieurs marques de repérage 18, 19 dans la structure initiale 1. Ces marques de repérage sont telles qu'on les retrouve dans les structures 30, 40 à assembler obtenues à partir des parties cristallines prélevées dans la structure initiale.

On se réfère aux figures 6A, 6B. La figure 6A illustre en coupe, la structure initiale 1 en forme de disque portant, avantageusement à proximité de son 25 bord, deux marques 18, 19 de repérage avantageusement diamétralement opposées. Ces marques 18, 19 peuvent prendre, surface, en la forme de carrés micromètres de côté. Elles peuvent être espacées d'environ 8 centimètres si le diamètre de la structure 30 en fait environ dix. Ces marques 18, 19 s'étendent suffisamment profond dans la structure initiale 1 de sorte qu'on les retrouve sur les deux structures 30, 40 assembler obtenues directement à partir structure initiale 1. La figure 6B montre les deux

35

5

10

15

structures 30, 40 à assembler une fois séparées ainsi que les marques de repérage qu'elles portent 18.1, 18.2, 19.1, 19.1. Ces marques de repérage sont des fractions des marques de repérage portées par la structure initiale 1. Sur la figure 6B aucune poignée n'a été représentée, mais il pourrait y en avoir notamment si les structures à assembler sont des films minces.

Ces marques de repérage 18, 19 peuvent ou 10 non traverser de part en part la structure initiale 1, ce qui est important c'est que ces marques de repérage soient présentes sur les deux structures 30, 40 à assembler, et en particulier elles en traversent totalement au moins une.

Ces marques de repérage 18, 19 peuvent être réalisées par une méthode de gravure prise parmi la gravure chimique, ionique, optique, par exemple à l'aide d'un faisceau laser, mécanique à travers ou non d'un masque réalisé en polymère par exemple, ou par une combinaison de ces méthodes.

Munies de ces marques de repérage 18.1, 18.2, 19.1, 19.2, les structures 30, 40 peuvent être assemblées en alignant les marques deux à deux ou au contraire en prévoyant un décalage contrôlé en rotation entre elles. Leur alignement permet de réaliser un assemblage avec un angle de décalage en rotation sensiblement nul.

Le positionnement peut se faire avantageusement de manière optique, par exemple par infrarouge, de manière mécanique, acoustique ou hydrodynamique ou par une combinaison de ces méthodes.

Si les marques de repérage sont réalisées dans une même structure cristalline initiale dans laquelle se fera un prélèvement ou dans des structures en relation cristalline ce qui est le cas avec le dépôt

25

30

d'une couche par exemple par épitaxie, elles présentent même désalignement par rapport aux cristallines présentées par les faces à assembler. On sûr que si on aligne les marques de repérage, 5 l'angle de décalage en rotation θ des réseaux cristallins présentés par les faces à assembler sera nul aux erreurs d'alignement près et ce avantageusement quelle que soit l'orientation initiale des marques de repérago. La recherche des directions des réseaux cristallins est superflue. 10

Par exemple si les deux structures à assembler portent des marques de repérage 10 micromètres de large, séparées d'environ 10 centimètres, et que leur alignement deux à deux est réalisé, par exemple par infrarouge, sous microscope, il est possible d'obtenir un positionnement en rotation des deux structures possédant une précision de l'ordre du millième de degré.

Avantageusement ces marques de repérage 20 consomment très peu de surface utile par rapport à celle consommée par une gravure chimique anisotrope utilisée pour révéler une direction cristalline.

Au lieu de réaliser des marques de repérage comme décrit aux figures 6, il est possible de munir la structure initiale, généralement en forme de disque, d'un méplat 20. Cette variante est illustrée à la figure 7 qui montre la structure empilée objet de l'invention. Elle est formée de deux structures à assembler 30, 40 provenant de la structure initiale.

Un tel méplat, traversant tout ou partie de la structure initiale, unique dans son repérage relatif aux structures à assembler, résout avantageusement le problème rencontré par l'usage des méplats fournis de façon commerciale et qui sont arrondis par les chanfreins de bord de plaque.

15

Par ailleurs, pour contrôler l'angle de décalage en rotation entre les structures à assembler, on peut aussi employer une méthode de révélation d'au moins un axe cristallin des réseaux cristallographiques présentés par les faces à assembler. On peut citer par exemple la gravure chimique, les rayons X, une révélation optique, acoustique ou toute autre méthode appropriée utilisant une anisotropie de propriété.

On va décrire maintenant deux exemples de 10 réalisation d'une structure empilée obtenue par le procédé de l'invention. On se réfère aux figures 9.

On peut par exemple prélever un film 90 de SiGe. avec x<1 dans une structure initiale · 1 éventuellement supportée par un substrat 91. Pour cela on peut implanter de l'hydrogène, en quantité apte à permettre une séparation dans la structure initiale 1. Cette structure initiale 1 est équipée de marques de repérage 92 (figure 9A). On fixe le film 90 de SiGe $_{\rm x}$ sur un support 93 qui sert de poignée (figure 9B). Par traitement thermique par exemple, on effectue séparation du film 90 de la structure initiale (figure 9C). Ce film 90 va contribuer à former l'une des structures 30 à assembler. La référence 94 illustre la partie restante de la structure initiale 1 après la film 90. Cette partie restante va séparation du contribuer à former l'autre structure 40 à assembler.

Les marques de repérage se retrouvent sur les deux parties obtenues avec les références 92.1 sur le film 90 et 92.2 sur la partie restante 94 de la structure initiale.

Les marques de repérage 92 peuvent être reportées sur d'autres parties des structures 30, 40 à assembler. Sur la figure 9C, ces marques de repérage portent les références 96.1, 96.2 et elles sont

15

20

25

reportées sur les faces arrières des structures 30, 40 à assembler au niveau des poignées 91, 93.

Après la séparation, on réalise un dépôt 95 par épitaxie de SiGe_y sur le film séparé 90 tout en conservant les marques de repérage 92.1 (figure 9D).

On peut ensuite coller le film épitaxié 95 sur la partie restante 94 de la structure initiale 1 en maîtrisant les positions relatives du reste 94 de la structure initiale 1 et du film prélevé 90, en rotation dans le plan de l'interface, par rapport aux positions 10 qu'ils possédaient avant le prélèvement (figure 9E) en se servant des marques de repérage 92.1, 92.2. On contrôle alors les réseaux de dislocations générés à l'interface. On peut ainsi obtenir un film 15 épais de SiGe et une correspondance cristallographique maîtrisée à une épaisseur supérieure à l'épaisseur critique en épitaxie du SiGe, s'il avait dû être réalisé directement sur le reste de la structure initiale.

20 Un autre exemple du procédé l'invention est partiellement illustré aux figures 8. On part d'une plaque initiale 80 de silicium cristallin d'environ 10 centimètres de diamètre dont la normale à la surface possède un angle d'inclinaison de plus ou moins un degré dans la direction <001>. 25 On oxyde thermiquement cette plaque initiale 80 sur épaisseur d'environ 400 nanomètres. Cette plaque initiale 80 est implantée ioniquement par l'hydrogène à une énergie de 76 keV et une dose de 30 $6.10^{16} \text{ at/cm}^2$

On réalise ensuite des marques de repérage. Elles prennent ici la forme d'un ou plusieurs ensembles de graduations 86. Les graduations d'un ensemble peuvent être regroupées en plusieurs séries à la manière de celles d'une règle ou d'un rapporteur.

35

effectue une photolithographie On ensembles de graduations 86 sur la plaque initiale. Dans l'exemple de la figure 8A on a représenté deux ensembles de graduations, chacun d'entre eux s'étend sur un arc de cercle de 20° environ tel un rapporteur. Ils sont diamétralement opposés. La plaque initiale équipée des ensembles de graduations 86 est représentée à la figure 8A tandis que la figure 8B illustre une portion agrandie d'un des ensembles de graduations. Le rayon de chaque ensemble est de 1'ordre centimètres. Chaque ensemble 86 comporte une première marques 81 rectangulaires d'environ micromètres par 30 micromètres espacées d'un centième de degré. Une deuxième série de marques 82 placée entre la première série 81 et le bord de la plaque initiale 80 permet de repérer les vingtièmes de degrés. troisième série de marques 83 formée de rectangles plus grands, placée entre la première série 81 et le centre la plaque initiale 80 permet le repérage dixièmes de degrés. Une quatrième série de marques 84, placée entre le bord de la plaque initiale et deuxième série de marques 82 permet de repérer les degrés. Les séries de marques de la figure 8A ne sont pas à l'échelle dans un souci de clarté. Une marque 85 permet de repérer le milieu đe l'ensemble de graduations 86.

Une gravure ionique, par exemple, connue sous le sigle RIE pour la dénomination anglo-saxonne de Reactive Ionic Etching permet de graver les marques de repérage 81, 82, 83, 84, 85 dans l'oxyde de surface et le silicium de la plaque initiale jusqu'à une épaisseur d'environ 1150 nanomètres. Cette épaisseur est avantageusement adaptée à l'épaisseur d'oxyde et aux conditions d'implantation.

5

10

15

20

25

30

La plaque initiale est ensuite assemblée par adhésion moléculaire sur une autre plaque de silicium qui sert de poignée et de raidisseur et une séparation est effectuée au niveau de la zone où les ions d'hydrogène se sont implantés, comme décrit dans le brevet FR-A-2 681 472 déjà cité.

La face séparée de la plaque initiale est oxydée et la couronne qui apparaît lors de la découpe est enlevée soit par réduction de diamètre de la plaque soit par abrasion ionique.

La plaque de silicium sur laquelle le film obtenu par la séparation subit collé stabilisation du collage au moyen d'un recuit thermique à une température supérieure à environ 600°C puis une oxydation sacrificielle d'environ 100 nanomètres sur la découpée. Les faces découpées de la plaque initiale et de l'autre plaque sont ensuite désoxydées et polies, par exemple mécanochimiquement ou par recuit thermique lissant, par exemple avec l'hydrogène, sur environ 100 nanomètres d'épaisseur pour retrouver une qualité de surface comparable à celle possédée par les plaques de silicium disponibles dans le commerce, soit une rugosité inférieure environ 0,2 nanomètres rms.

Ces opérations modifient l'angle d'inclinaison de chacune des faces des plaques au maximum d'environ 2.10^{-4} degré.

faces polies des deux plaques ensuite assemblées l'une à l'autre par adhésion moléculaire hydrophobe en contrôlant lors l'assemblage, leur angle de décalage en rotation heta, par infrarouge, sous microscope, grâce aux ensembles graduations.

Pour un angle de décalage en rotation θ 35 inférieur au degré, l'angle d'inclinaison résultant α

5

10

15

20

ne dépasse pas 2% de l'angle d'inclinaison de la plaque initiale. Si l'angle d'inclinaison de la plaque initiale vaut 0.5 degré, l'angle d'inclinaison résultant α est inférieur à 9 millièmes de degré alors que si l'angle d'inclinaison de la plaque initiale vaut 0.3 degré, l'angle d'inclinaison résultant α est inférieur à 3 millièmes de degré.

En revanche, si l'angle de décalage en rotation θ croit jusqu'à 180 degrés, l'angle d'inclinaison résultant α croit jusqu'à atteindre une valeur environ égale à deux fois l'angle d'inclinaison de la plaque initiale.

Avantageusement un angle de décalage en rotation de 180° permettra, dans le cas de matériaux cristallins à symétrie d'ordre supérieure ou égale à deux, d'utiliser un comportement de type '0°' de rotation.

REVENDICATIONS

- 1. Procédé de réalisation d'une structure empilée à partir de structures (30, 40) à assembler pour former l'empilement, ces structures (30, 40) comportant chacune au moins une partie cristalline (3,4), caractérisé en ce qu'il comporte au moins les étapes suivantes :
- obtention des parties cristallines (3, 4)
 par prélèvement de ces parties cristallines (3, 4) à
 partir d'une même structure initiale (1) et formation
 des structures (30, 40) à assembler à partir des dites
 parties cristallines (3, 4),
- assemblage des structures (30, 40) à
 assembler en contrôlant les positions relatives des structures (30, 40), en rotation dans le plan de l'interface, par rapport aux positions relatives des parties cristallines (3, 4) respectives.
- 2. Procédé selon la revendication 1, caractérisé en ce que la structure (30) à assembler est formée en associant la partie cristalline (3) à un support (5), cette association se faisant avant ou après le prélèvement.

3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que la structure (30) à assembler est formée à partir d'une partie cristalline (3) recouverte d'une couche (11) non cristalline.

4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la partie cristalline (4) prélevée comporte un ou plusieurs matériaux cristallins empilés éventuellement associés à un ou plusieurs matériaux (22) non cristallins.

30

- 5. Procédé selon la revendication 1, caractérisé en ce que, lorsqu'une structure (30) à assembler est entièrement cristalline, sa formation se fait en même temps que l'obtention de la partie cristalline (3) associée.
- 6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'il comporte, avant 10 l'assemblage et après le prélèvement, au moins une étape de préparation de la face (8, 9) à assembler d'au moins une des structures (30, 40).
- 7. Procédé selon la revendication 6, 15 caractérisé l'étape de préparation est un polissage ou un lissage thermique de la face (8, 9) à assembler.
- 8. Procédé selon l'une des revendications 6 ou 7, caractérisé en ce que l'étape de préparation est 20 un amincissement de la structure (40) de manière à mettre à jour un matériau cristallin de la partie cristalline (4).
- 9. Procédé selon l'une des revendications 6 25 à 8, caractérisé en ce que l'étape de préparation est un amincissement de la structure (40) jusqu'à une couche d'arrêt (17) incluse dans la structure (40) à assembler.
- 10. Procédé selon l'une des revendications 6 à 9, caractérisé en ce que l'étape de préparation est une étape de dépôt ou de croissance d'un matériau (11) sur la face (8) à assembler.

- 11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce qu'il comporte, avant le prélèvement d'au moins une des parties cristallines (3, 4), une étape de fixation de la partie cristalline (3, 4) à assembler sur une première poignée (5, 6).
- 12. Procédé selon la revendication 11, caractérisé en ce qu'il comporte une étape de fixation de la partie cristalline (4) sur une seconde poignée (12) après son prélèvement de la structure initiale (1), puis une étape de retrait de la première poignée (6) libérant la face (13) à assembler.
- 13. Procédé selon l'une des revendications 15 1 à 12, caractérisé en ce qu'il comporte une étape d'implantation ionique dans l'une au moins des structures (30, 40.
- 14. Procédé selon l'une des revendications 20 1 à 13, caractérisé en ce que le prélèvement est réalisé par des moyens mécaniques, optiques, chimiques, thermiques, ces moyens étant pris seuls ou en combinaison.
- 15. Procédé selon l'une des revendications l à 14, caractérisé en ce que le prélèvement est réalisé par une étape d'implantation ionique au travers d'une face (2) de la structure initiale (1) pour obtenir une zone fragilisée (10), puis par traitement apte à provoquer la séparation de la partie cristalline (3) au niveau de la zone fragilisée (10).
- 16. Procédé selon l'une des revendications 1 à 15, caractérisé en ce que l'étape d'assemblage se 35 fait avec apport de matière.

17. Procédé selon l'une des revendications 1 à 15, caractérisé en ce que l'étape d'assemblage se fait par adhésion moléculaire.

5

18. Procédé selon la revendication 17, caractérisé en ce que l'étape d'assemblage se termine par un traitement thermique de manière à favoriser des liaisons interatomiques à l'interface.

10

15

- 19. Procédé selon l'une des revendications 1 à 18, caractérisé en ce que le contrôle des positions relatives des structures (30, 40) lors de l'assemblage comporte une étape de repérage d'au moins un axe cristallin d'au moins une des parties cristallines (3, 4).
- 20. Procédé selon l'une des revendications 1 à 18, caractérisé en ce que le contrôle des positions relatives des structures (30, 40) lors de l'assemblage 20 est réalisé à l'aide d'une ou plusieurs marques de repérage (18, 19, 20, 92) portées par la structure initiale (1) et se retrouvant sur les parties cristallines (3, 4) après prélèvement.

25

21. Procédé selon la revendication 20, caractérisé en ce que les marques de repérage sont formées par un ou plusieurs ensembles (86) de graduations.

30

35

22. Procédé selon l'une des revendications 20 ou 21, caractérisé en ce qu'il comporte une étape de report des marques de repérage (96.1, 96.2) sur d'autres parties de la structure initiale (1) et/ou des structures (30, 40) à assembler.

- 23. Procédé selon l'une des revendications 20 à 22, caractérisé en ce que les marques de repérage sont réalisées au moyen d'au moins une technique choisie parmi la gravure chimique, la gravure ionique, la gravure optique, la gravure mécanique.
- 24. Procédé selon la revendication 20, caractérisé en ce que la marque de repérage est un 10 méplat (20).
- 25. Procédé selon l'une des revendications 20 à 24, caractérisé en ce que le contrôle des positions relatives des structures (30, 40) lors de l'assemblage est réalisé en ajustant, la position d'au moins une marque de repérage (92.1) de l'une des structures (30) à assembler par rapport à la position d'au moins une marque de repérage (92.2) d'une autre structure (40) à assembler, par des moyens choisis parmi les moyens optiques, mécaniques, acoustiques, hydrodynamiques ces moyens étant pris seuls ou en combinaison.
- 26. Procédé selon l'une des revendications 25 1 à 25, caractérisé en ce qu'il consiste à séparer en deux parties la structure initiale (1), chacune d'entre elles conduisant à une des structures (30, 40) à assembler.
- 27. Procédé selon l'une des revendications 1 à 25, caractérisé en ce que plusieurs séparations dans la structure initiale (1) conduisent à l'obtention des structures à assembler (30, 40).

28. Structure empilée caractérisée en ce qu'elle est obtenue selon l'une quelconque des revendications 1 à 27, à partir de structures (30, 40) à assembler réalisées à base de matériaux semiconducteurs, supraconducteurs, diélectriques, magnétiques, métalliques, ces matériaux étant pris seuls, combinés, mélangés.

; ;

FIG. 1 A

FIG. 1B

()

FIG. 5

6/8

FIG. 6 A

FIG. 6B

 $(\dot{})$

FIG. 8B

()

RAPPORT DE RECHERCHE PRÉLIMINAIRE

établi sur la base des dernières revendications déposées avant le commencement de la recherche 2819099

N° d'enregistrement national

FA 600079 FR 0017215

DOCL	IMENTS CONSIDÉRÉS COMME PEI	RTINENTS	Hevendication(s)	Classement attribué à l'invention par l'INPI
Catégorie	Citation du document avec indication, en cas de bes des parties pertinentes	oin,	,	a i investion par i inpi
X	EP 0 460 437 A (FUJITSU LTD) 11 décembre 1991 (1991-12-11)		1,3,5-8, 10,14, 17-25, 27,28	H01L21/324
	* abrégé; revendications 11-13	,23 *	27,28	
),A	CHOU Y-F ET AL: "ANGULAR ALIGNAFER BONDING" PROCEEDINGS OF THE SPIE, SPIE, VA, US, vol. 2879, 14 octobre 1996 (199 pages 291-297, XP001011387 * le document en entier *	BELLINGHAM,	1-28	
	US 6 010 579 A (HENLEY FRANCOIS 4 janvier 2000 (2000-01-04) * abrégé *	S J ET AL)	1-28	
				DOMAINES TECHNIQUES RECHERCHÉS (Int.CL.7)
				H01L
		ent de la recherche		Examinateur
CA	27 ao TÉGORIE DES DOCUMENTS CITES	ût 2001		eur, M-A
X : partic Y : partic autre A : arrière O : divulg	iteconic des documents cites ulièrement pertinent à lui seul ulièrement pertinent en combinaison avec un document de la même catégorie a-plan technologique lation non-écrite nent intercalaire	T : théorie ou principe : E : document de breve à la date de dépôt e de dépôt ou qu'à un D : cite dans la demane L : cite pour d'autres ra & : membre de la mêm	l bénéficiant d'u et qui n'a été pub le date postérieu de lisons	ne date antérieure dié qu'à cette date rre.