CSCI 5525 Machine Learning Assignment 2

Ritiz Tambi tambi004

Using 1 Grace Day

Problem 2 partner - Krishna Chaitanya Bandi (bandi014)

Problem 1

A)

Lagrange Dual for a non-separable soft-margin case:

$$L^*(\alpha) = \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i x_j$$

To fit the above equation for CVXOPT

$$\max(\mathbf{1}^{\mathsf{T}}\alpha - \frac{1}{2}\alpha^{\mathsf{T}}K\alpha) => \min(\frac{1}{2}\alpha^{\mathsf{T}}K\alpha - \mathbf{1}^{\mathsf{T}}\alpha)$$

Constraints:

$$\alpha \ge 0$$
, $-\alpha \ge -C$, $\sum_i \alpha_i y_i = 0$

B)

(i)

С	Run_1	Run_2	Run_3	Run_4	Run_5	Run_6	Run_7	Run_8	Run_9	Run_10
0.01	1.5	0.5	0.75	1.25	1.75	1.75	1	2.25	1.25	1.25
0.1	1.75	0.75	0.5	2.0	0.75	0.75	1.25	1.75	1.5	0.75
1	1.25	2	1.75	0.5	0.75	1.25	1.5	2	1.25	0.5
10	1.25	0.5	0.75	1.5	1.25	2	0.75	0.75	2.25	1.25
100	2.25	0.75	1.25	2	1	1.5	1.5	3	1.5	1.75

Summary and Plots

Average Test_Mistakes: C: 0.01 Test_Mistakes: 5.3 C: 0.1 Test_Mistakes: 4.7 C: 1 Test_Mistakes: 5.1 C: 10 Test_Mistakes: 4.8 C: 100 Test_Mistakes: 6.7

Average Margins:

C: 0.01 Average_Margin: 1.082941963538976
C: 0.1 Average_Margin: 0.5128931427539817
C: 1 Average_Margin: 0.3288795995815271
C: 10 Average_Margin: 0.33156337288838184
C: 100 Average_Margin: 0.34237794856886566

Average Number of Support Vectors:

C: 0.01 Average_Num_SupportVectors: 156.2
C: 0.1 Average_Num_SupportVectors: 94.8
C: 1 Average_Num_SupportVectors: 90.9
C: 10 Average_Num_SupportVectors: 93.2
C: 100 Average_Num_SupportVectors: 91.8

(ii)

Average Test_Errors:

C: 0.01 Test_error: 1.324999999999975 Standard_Deviation: 0.4879805323985777
C: 0.1 Test_error: 1.17499999999997 Standard_Deviation: 0.5129571132170807
C: 1 Test_error: 1.2749999999999991 Standard_Deviation: 0.5297405025104278
C: 10 Test_error: 1.1999999999999975 Standard_Deviation: 0.5678908345800276
C: 100 Test_error: 1.674999999999999 Standard_Deviation: 0.6025985396596982

Initially as C increases test-error decreases. With further increase in C values, test-error also increases as depicted by the test-error values and plots above.

(iii)

Average Margins:

C: 0.01 Average_Margin: 1.082941963538976
C: 0.1 Average_Margin: 0.5128931427539817
C: 1 Average_Margin: 0.3288795995815271
C: 10 Average_Margin: 0.33156337288838184
C: 100 Average_Margin: 0.34237794856886566

As depicted above by the plots and average geometric-margin values per C; with increase in C values geometric margins decrease

(iv)

Average Number of Support Vectors:

C: 0.01 Average_Num_SupportVectors: 156.2
C: 0.1 Average_Num_SupportVectors: 94.8
C: 1 Average_Num_SupportVectors: 90.9
C: 10 Average_Num_SupportVectors: 93.2
C: 100 Average_Num_SupportVectors: 91.8

As depicted above by the plots and average number of Support Vector values per C; with increase in C values number of support vectors decrease. This is due to decreasing number of points within the margins as margins value decrease with C.

1) of salus decrees whome with whereas with E. 100 20 = Exists is a so margin a Mount whereas with E. 11 the whome winds can dead to more that a white accuracy of the model on that analytic accuracy of the model on that where there will be presented.

(ii) Given $\frac{1}{2} ||\omega||^{2} + C \underset{\sim}{2} \underbrace{\xi_{i}} (\omega, b)$ $\xi_{i} = \xi_{i} (\omega, b)$ $\xi_{i} / (\pi_{i}) > 1 - \xi_{i}$ $\xi_{i} \stackrel{?}{=} 1 - \xi_{i} / (\pi_{i}) = 0$ $\xi_{i} \stackrel{?}{=} 1 - \xi_{i} / (\pi_{i}) = 0$ $\xi_{i} \stackrel{?}{=} 1 - \xi_{i} / (\pi_{i}) = 0$

≥ E:= mare (1-50)(x0) E:= more (1-50)(w7x0+6),0) U Herry Loss

This eq" satisfie all the constraints.

a)

Implementing the **Pegasos algorithm** stated in the Research Paper, we obtained the following mean and standard deviation of runtime results. We observe that the loss function value decreases rapidly with increasing number of iterations.

Note: Our graphs depict for epochs till 400, but loss decreases further till n_epochs = 2000

Batch Size (k) = 1 Number of runs = 5 Mean Runtime = 0.0540613174 seconds Standard Deviation Runtime = 0.0054093021 seconds

Batch Size (k) = 20 Number of runs = 5 Mean Runtime = 2.5996386051 seconds Standard Deviation Runtime = 1.4536558864 seconds

Batch Size (k) = 200 Number of runs = 5 Mean Runtime = 3.8312240600 seconds Standard Deviation Runtime = 1.8121650722 seconds

Batch Size (k) = 1000 Number of runs = 5 Mean Runtime = 6.1666266918 seconds Standard Deviation Runtime = 0.7572492165 seconds

Batch Size (k) = 2000 Number of runs = 5 Mean Runtime = 1.6600903987 seconds Standard Deviation Runtime = 0.0935010046 seconds

b)

Derivation of the Gradient of the Softplus function is as follows,

$$\nabla L(w) = \frac{1}{N} \underbrace{\sum_{i=1:N} \nabla \left(\alpha \log \left(1 + e^{\frac{1-y_i w^T x_i}{\alpha}} \right) + \lambda ||w||^2 \right)}_{i=1:N} + \underbrace{\sum_{i=1:N} \nabla \left(\alpha \log \left(1 + e^{\frac{1-y_i w^T x_i}{\alpha}} \right) \right) + \nabla \left(\lambda ||w||^2 \right)}_{i=1:N} + \underbrace{\sum_{i=1:N} \left(\frac{\alpha}{1 + e^{\frac{1-y_i w^T x_i}{\alpha}}} + 2\lambda w \right)}_{i=1:N} + \underbrace{\sum_{i=1:N} \left(\frac{-x_i y_i}{1 + e^{\frac{y_i w^T x_i}{\alpha}}} + 2\lambda w \right)}_{i=1:N} + \underbrace{\sum_{i=1:N} \left(\frac{-x_i y_i}{1 + e^{\frac{y_i w^T x_i}{\alpha}}} + 2\lambda w \right)}_{i=1:N}$$

The mean and standard deviation of runtimes we obtained using the **Softplus algorithm** are as follows for different k values.

Batch Size (k) = 1 Number of runs = 5 Mean Runtime = 43.4661227703 seconds Standard Deviation Runtime = 30.3375075746 seconds

Batch Size (k) = 20 Number of runs = 5 Mean Runtime = 12.4473050117 seconds Standard Deviation Runtime = 2.3757711437 seconds

Batch Size (k) = 200 Number of runs = 5 Mean Runtime = 15.3314484596 seconds Standard Deviation Runtime = 1.4831238377 seconds

Batch Size (k) = 1000 Number of runs = 5 Mean Runtime = 22.4613066673 seconds Standard Deviation Runtime = 0.7229130157 seconds

Batch Size (k) = 2000 Number of runs = 5 Mean Runtime = 14.7364604949 seconds Standard Deviation Runtime = 4.7252624717 seconds

The **Pegasos** algorithm performs stochastic gradient descent on a non-smooth function (hinge loss) whereas the other version uses a soft function variant of hinge loss called **Softplus**, we observed that the Cost function has a steeper curve or the cost value decreased faster (better convergence) in **Softplus** variant than in **Hinge loss** variant (Pegasos) as we know **stochastic gradient descent** reaches the optimum value much faster in smoother functions compared to non-smoother functions.