پارت 1:

ابتدا دو دیتاست train و test را بارگذاری و تعریف کرده و سپس شروع به یک بررسی اولیه می کنیم تا اگر نیازی به پیش پردازش و یا تمیز کردن دیتا بود، عملیات های لازم را اعمال کنیم.

دیتای ما شامل 21 ستون میباشد که هیچ مقدار null ی ندار د.

تمام ستون ها از نوع عددی (int) می باشند و هیچ مقدار رشته ای (string) نداریم، نتیجتا دیتای ما نیاز به آماده سازی خاصی ندارد.

در نگاه اولمتوجه میشویم که رم و قدرت باطری بیشترین ارتباط را با رنج قیمت دارند.

خروجی دیتای خام ما برای نمایش اطلاعات فایل train:

ba	ittery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_cores	•••	px_height	px_width	ram	sc_h	sc_w	talk_time	three_g	touch_screen	wifi	price_rang
	842		2.2					0.6	188				756	2549							
	1021		0.5				53	0.7	136			905	1988	2631	17						
	563		0.5					0.9	145			1263	1716	2603	11						
	615		2.5					0.8	131			1216	1786	2769	16		11				
	1821		1.2				44	0.6	141			1208	1212	1411							
5	794		0.5					0.8	106			1222	1890	668							
6	1965		2.6				39	0.2	187			915	1965	2032	11		16				
7	1911		0.9				36	0.7	108			868	1632	3057							
8	1512		0.9				46	0.1	145			336	670	869	18	10					
9	510	1	2.0	1	5	1	45	0.9	168	6		483	754	3919	19	4	2	1	1	1	

خروجی دیتای خام ما برای نمایش اطلاعات فایل test:

	id	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	•••	рc	px_height	px_width	ram	sc_h	sc_w	talk_time	three_g	touch_screen wif
		1043		1.8		14			0.1	193		16	226	1412	3476	12				
		841		0.5					0.8	191		12	746	857	3895					
		1807		2.8				27	0.9	186			1270	1366	2396	17				
		1546		0.5		18		25	0.5	96		20	295	1752	3893	10				
		1434		1.4		11		49	0.5	108		18	749	810	1773					
5 9	996	1700		1.9				54	0.5	170		17	644	913	2121	14				
6 9	997	609		1.8				13	0.9	186			1152	1632	1933			19		
7 9	998	1185		1.4					0.5	80		12	477	825	1223			14		
8 9	999	1533		0.5				50	0.4	171		12	38	832	2509	15	11			
9 10	000	1270		0.5				35	0.1	140		19	457	608	2828					

:2

اولی رو گذاشتم پر ایس رنج به عنوان تارگت و فیچر ram رو انتخاب کردم به دلایل منطقی میتونیم از یه دونه هم بیشتر انتخاب کنیم ولی حدود هشتاد در صد صحت داشت.

تحلیل مولفه اساسی (PCA) یک «روش تبدیل خطی» ساده و در عین حال محبوب و کارآمد محسوب می شود.

تحلیل مولفه اساسی (PCA) قصد دارد همبستگی بین متغیرها را شناسایی کند.

اگر یک همبستگی قوی بین متغیرها وجود داشته باشد، می توانیم اغدام به کاهش ابعاد معنادار کنیم. به طور کلی ، آنچه در PCA به وقوع میپیوندد پیدا کردن جهت واریانس بیشینه در دادههای ابعاد بالا و طرحریزی کردن آن در زیرفضایی با ابعاد کمتر به طوری است که بیشترین اطلاعات حفظ شوند.

شرط استفاده از PCA این است که دیتایمان را اسکیل کرده باشیم.

دیتای اسکیل شده ی ما در تصویر زیر آورده شده است که ستون ها بر اساس مقدار امتیاز هایی مقدار دهی شده اند:

0	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	 рс	px_height	px_width	ram	sc_h	SC_W	talk_time	three_g	touch_screen
02597	-0.990050	0.830779	-1.019184	-0.762495	-1.043966	-1.380644	0.340740	1.349249	-1.101971	-1.408949	-1.146784	0.391703	-0.784983	0.283103	1.462493	-1.786861	-1.006018	0.986097 -0
95139	1.010051	-1.253064	0.981177	-0.992890	0.957886	1.155024	0.687548	-0.120059	-0.664768	0.585778	1.704465	0.467317	1.114266	-0.635317	-0.734267	0.559641	0.994018	-1.014099 0
37686	1.010051	-1.253064	0.981177	-0.532099	0.957886	0.493546	1.381165	0.134244	0.209639	1.392684	1.074968	0.441498	-0.310171	-0.864922	-0.368140	0.559641	0.994018	-1.014099 0
19319	1.010051	1.198517	-1.019184	-0.992890	-1.043966	-1.215274	1.034357	-0.261339	0.646842	1.286750	1.236971	0.594569	0.876859	0.512708	-0.002014	0.559641	-1.006018	-1.014099 0
25906	1.010051	-0.395011	-1.019184	2.002254	0.957886	0.658915	0.340740	0.021220	-1.101971	1.268718	-0.091452	-0.657666	-1.022389	-0.864922	0.730240	0.559641	0.994018	-1.014099 -0
11860	1.010051	-1.253064	0.981177	-0.992890	0.957886	-1.656260	1.034357	-0.967737	0.646842	1.300273	1.477661	-1.342799	0.164641	-0.405712	1.462493	0.559641	0.994018	-1.014099 -1
53694	1.010051	1.321096	0.981177	-0.992890	-1.043966	0.383299	-1.046495	1.320993	-0.227564	0.608317	1.651235	-0.085031	-0.310171	0.971917	0.913303	0.559641	0.994018	0.986097 0
30773	-0.990050	-0.762748	0.981177	-0.762495	0.957886	0.217930	0.687548	-0.911225	1.521249	0.502383	0.880565	0.860139	-0.784983	-1.094526	-1.100394	0.559641	0.994018	-1.014099 1
22527	-0.990050	-0.762748	-1.019184	-0.071307	0.957886	0.769162	-1.393304	0.134244	0.209639	-0.696707	-1.345816	-1.157454	1.351672	0.971917	1.462493	0.559641	0.994018	0.986097 -1
58331	1.010051	0.585621	0.981177	0.159088	0.957886	0.714039	1.381165	0.784130	0.646842	-0.365380	-1.151413	1.655004	1.589078	-0.405712	-1.649584	0.559641	0.994018	0.986097 1

در انتها خروجی بر روی نمودار به این شکل است:

	precision	recall	t1-score	support
9	0.92	0.93	0.92	105
1	0.85	0.82	0.84	91
2	0.87	0.92	0.89	92
3	0.99	0.95	0.97	112
accuracy			0.91	400
macro avg	0.91	0.91	0.91	400
weighted avg	0.91	0.91	0.91	400

:6-1

منطق این تکنیک این است که داده ها رو میشه بر اساس همسایه هاش هموار سازی کرد به عبارت دیگه این تکنیک نگاه میکنه داده و شبیه همسایه های یک داده چطوری هست و سعی میکنه داده رو شبیه همسایه هاش کنه. اگر یک داده با همسایه هاش زیاد فرق داشته باشه نشون دهنده اینکه داده نویزی هستش و باید هموار سازی روش انجام بشه.

نکته مهم در مورد این روش آن است که این روش در مورد داده های عددی کاربرد دارد که خوشبختانه داده های ما هم عددی است.

تصویر خروجی مربوط به 5=bins:

تصویر خروجی مربوط به bins=15:

تصویر خروجی مربوط به bins=30:

oattery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_cores	•••	px_width	ram	sc_h	SC_W	talk_time	three_g	touch_screen	wifi	price_range bin
842		2.2					0.6	188			756	2549							
1021		0.5				53	0.7	136			1988	2631	17						
563		0.5					0.9	145			1716	2603	11						
615		2.5				10	0.8	131			1786	2769	16		11				
1821		1.2		13		44	0.6	141			1212	1411							
794		0.5					0.8	106			1890	668							
1965		2.6				39	0.2	187			1965	2032	11	10	16				
1911		0.9				36	0.7	108			1632	3057							
1512		0.9				46	0.1	145			670	869	18	10	19				
510	1	2.0	1	5	1	45	0.9	168	6		754	3919	19	4	2	1	1	1	3

:6-2

کدبندی One-Hot ستونهای دودویی (binary) جدیدی میسازد که هر یک مربوط به یکی از مقادیری هستند که متغیر به خود میگیرد. این نوع رمزگذاری یک ویژگی باینری جدید برای هر دسته ممکن ایجاد می کند و مقدار 1 را به ویژگی هر نمونه که با دسته اصلی آن مطابقت دارد اختصاص می دهد.

میتوان با استفاده از آن به راحتی تغییر مقیاس داد. با استفاده از مقادیر عددی، ما به راحتی احتمالی را برای مقادیر خود تعیین می کنیم.

:6-3

تبدیل log مورد استفاده برای تبدیل داده های کجشده به انطباق تقریباً با نرمال است. اگر داده های اصلی از یک توزیع Iog-normal یا تقریباً مشابه پیروی کنند، آنگاه داده های تبدیل شده با log از توزیع نرمال یا نزدیک به نرمال بیروی می کنند.

4-6: دو ستون جدید برای مساحت و حجم ایجاد میکنیم.

	m_dep	px_height	px_width	Area px	volume cm
0	0.6	20	756	15120	6.350794
1	0.7	905	1988	1799140	881.633259
2	0.9	1263	1716	2167308	1365.488697
3	0.8	1216	1786	2171776	1216.269966
4	0.6	1208	1212	1464096	614.958446
1995	0.8	1222	1890	2309580	1293.444990
1996	0.2	915	1965	1797975	251.732107
1997	0.7	868	1632	1416576	694.165277
1998	0.1	336	670	225120	15.759377
1999	0.9	483	754	364182	229.448885

:8

بحث bootstrapping ، کلیت ایدش این است که توی طراحی مدل یا یه آزمایش یه چیزی رو به صورت رندوم تغییر بدید و در نهایت از همه این نتیجه ها استفاده کنید(مثلا میانگین بگیرید) از دید یادگیری ماشین و آمار ، این چیزی که می خوایم رندوم باشه می تونه ، دیتاست باشه ، می تونه خوده

مدل باشه)مثلا توی خوده شبکه عصبی، می تونید هر بار با یه initialization مجزا، یا learning rate های مختلف شبکه رو آموزش بدید یا ساختار شبکه رو عوض کنید و....

توی baggin ما در واقع چندتا دیتاست، از یه دیتاست ایجاد می کنیم و مدلهامون را روش آموزش می دهیم. و بعدش نتایج همه این مدل ها رو توی پیش بینی استفاده می کنیم.

اما توی k-fold Cross Validation ما در واقع یه دیتاست رو به چندین قسمت تقسیم می کنیم و یه قسمت رو می ذاریم کنار، روی یه قسمت آموزش میدیم و بعدش روی قسمتی که گذاشتیم کنار دقت رو اندازه می گیریم. که بیشتر به این خاطره که با دقت بیشتری بفهمیم مدل ما چه طوری عمل می کنه و بحثش برای افز ایش عملکرد مدل نیست. و در نهایت ما یک مدل به دست میاریم.

:9

5x2 cross-validation نوع خاصى از cross-validation تودرتو است.

اشاره دارد به ۲ repetition از یک folde2.

راهی به منظور انجام آزمونهای آماری و همچنین برآورد خوبی از واریانس آن خطاها است.

:10

در تحلیل خوشه ای، روش elbow یک روش اکتشافی است که در تعیین تعداد خوشه ها در یک مجموعه داده استفاده می شود. این روش شامل ترسیم تغییرات توضیح داده شده به عنوان تابعی از تعداد خوشه ها، و انتخاب elbow منحنی به عنوان تعداد خوشه های مورد استفاده است. اما روش elbow فقط یک ویژگی خوشه بندی جهانی را اندازه گیری می کند.

پارت 2:

برای آماده سازی دیتا برای بخش 1 ما نیاز داریم تا متغییر رشته ای heatingType را تبدیل به مقدار عددی کنیم به این شکل که هر عدد نماینده ی یک رشته است.

حال ما برای پاکسازی داده دو راه حل داریم که یکی پاک کردن آن ردیف ها است و دیگری بدست آوردن آن متغییر های پوچ با استفاده از میانه و میانگین و واریانس.

بهتر است که از جایگذاری آنها با میانگین و میانه و دیگر مقادیر خودداری کنیم. چرا که او لا در ستون دوم 37947 و در ستون سوم 26449 مقدار از دست رفته داریم و همچنین ستون دوم از نوع شئ می باشد و احتمالا جایگذاری مقادیر از دست رفته با میانه و میانگین کار ما را سخت تر میکند. در نتیجه ما ردیف هایی که مقادیر از دست رفته دارند را حذف میکنیم.

:1

برای به دست آوردن مقدار MSE باید هرمقدار پیشبینی شده را از مقدار مشاهده شده کم کرده و به توان دو برسانیم و مجموع این تفاضلات را جمع کرده و تقسیم بر تعداد کنیم که فرمول روبه رو را بدست میاوریم:

MSE formula = $(1/n) * \Sigma(actual - forecast)^2$

: ridge-3

رگرسیون ریج یک نسخه معمولی از رگرسیون خطی است. رگرسیون ریج الگوریتم های یادگیری ماشین را قادر می سازد تا نه تنها با داده ها مطابقت داشته باشند ، بلکه وزن مدل را تا حد ممکن کوچک نگه دارند.

مقیاس داده ها با استفاده از استاندارد مقیاس قبل از استفاده از رگرسیون ریج ضروری است ، زیرا به مقیاس ویژگی های ورودی حساس است. اکنون بیابید از طریق الگوریتم رگرسیون ریج به درک نحوه منظم سازی یک مدل Liner با استفاده از الگوریتم Ridge بیردازیم.

: lasso-3

این الگوریتم یک نوع دیگه از منظم سازی Linear Regression هست. مثل Ridge یک مقدار Regularization به خرن های فیچر Regularization به این الگوریتم این هست که وزن های فیچر های کم اهمیت رو حذف میکنه (برابر صفر قرار میده) به عبارت دیگه Lasso Regression به طور خودکار Feature Selection رو انجام میده.