Calcul matriciel

$$\alpha 3 - MP^*$$

1 Matrices et structure

- indexation : $M = \begin{pmatrix} m_{1,1} & m_{1,2} & \dots & m_{1,q} \\ \vdots & & & \vdots \\ m_{p,1} & m_{p,2} & \dots & m_{p,q} \end{pmatrix} \in \mathfrak{M}_{p,q}(\mathbb{K})$ où \mathbb{K} est un corps (commutatif en général).
- Soit $E_{i,j} = (\delta_{i,k}\delta_{j,l})_{\substack{1 \le k \le p \ i \le l \le q}}$; la famille $(E_{i,j})_{\substack{1 \le k \le p \ i \le l \le q}}$ forme une base de $\mathfrak{M}_{p,q}(\mathbb{K})$ et vérifie : $E_{i,j}E_{k,l} = \delta_{j,k}E_{i,l}$
- $M, N \in \mathfrak{M}_n(\mathbb{K})$ sont semblables si $\exists P \in GL_n(\mathbb{K})/N = P^{-1}MP$.
- $M, N \in \mathfrak{M}_n(\mathbb{K})$ sont équivalentes si $\exists P, Q \in GL_n(\mathbb{K})/N = PMQ^{-1}$.
- M et N sont équivalentes ssi rg M = rg N. En particulier si rg M = r alors M est équivalente à la réduite canonique de rang r $J_r = \left(\begin{array}{c|c} I_r & 0 \\ \hline 0 & 0 \end{array}\right)$

1.1 Ecriture par blocs

- Une combinaison linéaire de matrices décomposées par blocs se traite comme une matrices de scalaires, pour peu que la somme des blocs ait un sens.
- Il en est de même pour le produit matriciel.

1.2 Application

Soit
$$M \in \mathfrak{M}_n(\mathbb{K})$$
, $M = \begin{pmatrix} A_{1,1} & \dots & A_{1,r} \\ 0 & \ddots & \vdots \\ 0 & 0 & A_{r,r} \end{pmatrix}$ (M est triangulaire par blocs). Alors : $\det M = \prod_{i=1}^r \det A_{i,i}$.

1.3 Intervention des matrices-blocs

- Soit E un ev de dimension finie, $u \in \mathcal{L}(E)$. On suppose : $E = E_1 \oplus \ldots \oplus E_r$ avec E_1, \ldots, E_r stables par u. On note $u_i = u|_{E_i}^{E_i}$ l'induit de u sur E_i . Pour chaque E_i on construit une base \mathcal{B}_i ; la base \mathcal{B} résultant de la concaténation des \mathcal{B}_i est une base de E. Soit $A_i = M_{\mathcal{B}_i}u_i$, on a alors $M_{\mathcal{B}}u = \operatorname{diag}(A_1, \ldots, A_r)$.
- réciproque vraie

1.4 Opérations élémentaires

On pose :
$$E_{i,j} = (\delta_{i,k}\delta_{j,l})_{\substack{1 \leq k \leq n \\ 1 \leq i \leq n}}^{1 \leq k \leq n}, M_{i,j}(\lambda) = I_n + \lambda E_{i,j}$$
. Soit $M \in \mathfrak{M}_n(\mathbb{K})$, on note $M = \begin{pmatrix} C_1 \\ \vdots \\ C_n \end{pmatrix} = \begin{pmatrix} L_1 & \cdots & L_n \end{pmatrix}$.

- Faire $M \leftarrow M \times M_{i,j}(\lambda)$ revient à faire $C_i \leftarrow C_i + \lambda C_i$.
- Faire $M \longleftarrow M_{i,j}(\lambda) \times M$ revient à faire $L_i \longleftarrow L_i + \lambda L_i$.

1.5 Inversion des matrices carrées

- Méthode de la comatrice : soit $M \in \mathfrak{M}_n(\mathbb{K})$, on note \widetilde{M} la comatrice de M, où $(\widetilde{M})_{i,j} = (-1)^{i+j} \times \det \operatorname{mineur} M_{i,j}$. Alors $M^t \widetilde{M} = t \widetilde{M} M = I_n \det M$.
- Méthode du système linéaire : $M \in GL_n(\mathbb{K})$, $Y \in \mathbb{K}^n$, on résoud : MX = Y par rapport à X et l'expression du résultat donne les coefficients de M^{-1} .
- ullet La connaissance d'un polnôme annulateur peut éventuellement donner une expression polynômiale de M^{-1} .
- Décomposition $QR: M \in GL_n(\mathbb{R})$, on munit \mathbb{R}^n de son produit scalaire canonique, on note \mathcal{B}_0 la base canonique de \mathbb{R}^n . Soit \mathcal{C} la base de \mathbb{R}^n telle que $M_{\mathcal{B}_0}\mathcal{C} = M$. On a :

 B.O.N

 B.O.N

 Gram-Schmidt ; on écrit donc U = MT avec \mathcal{B} B.O.N

1.6 Trace

• Cas d'une matrice carrée : $M \in \mathfrak{M}_n(\mathbb{K}), M = (m_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}, \operatorname{tr} M = \sum_{i=1}^n m_{i,i}.$

 $U \in \mathcal{O}_n(\mathbb{R})$ et $T \in GL_n(\mathbb{R})$ triangulaire supérieure. Donc $M = UT^{-1}$.

- 1. tr est une forme linéaire sur $\mathfrak{M}_n(\mathbb{K})$.
- 2. si $A \in \mathfrak{M}_{p,q}(\mathbb{K})$ et $B \in \mathfrak{M}_{q,p}(\mathbb{K})$, alors $AB \in \mathfrak{M}_{p}(\mathbb{K})$, $BA \in \mathfrak{M}_{q}(\mathbb{K})$ et $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
- 3. si $A, B \in \mathfrak{M}_n(\mathbb{K})$ sont semblables, alors tr $A = \operatorname{tr} B$.
- Cas d'un endomorphisme : E de dimension finie, $u \in \mathcal{L}(E)$. On définit : $\operatorname{tr} u \stackrel{def}{=} \operatorname{tr} M_{\mathcal{B}} u$ où \mathcal{B} est une base quelconque de E.
 - 1. $\operatorname{tr} \in (\mathcal{L}(E))^*$
 - 2. Si E, F sont de dimension finie, $u \in \mathcal{L}(E, F), v \in \mathcal{L}(F, E)$, alors $\operatorname{tr}(u \circ v) = \operatorname{tr}(v \circ u)$.
 - 3. Si $u \in \mathcal{L}(E)$ et $v \in GL(E)$, alors $\operatorname{tr}(v^{-1}uv) = \operatorname{tr} u$
 - 4. Si $p \in \mathcal{L}(E)$ est un projecteur de rang r, alors tr $p = 1_{\mathbb{K}} \cdot r$ pas nécéssairement non nul.

2 Déterminants

Soit $M=(m_{i,j})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant n}}\in\mathfrak{M}_n(\mathbb{K}),$ la forme développée de $\det M$ est $\det M=\sum_{\sigma\in\mathfrak{S}_n}\varepsilon(\sigma)\prod_{k=1}^n m_{\sigma(k),k}.$

2.1 Déterminant de Vandermonde

On montre par récurrence sur n que :

$$\begin{vmatrix} 1 & x_1 & \cdots & x_1^{n-1} \\ 1 & x_2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & x_n & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{i < \underline{j}} (x_j - x_i)$$

2.2 Dérivée d'un déterminant

Soit
$$I$$
 un intervalle de \mathbb{R} , $n \geqslant 1$, $\Delta(t) = \begin{vmatrix} a_{1,1}(t) & \dots & a_{1,n}(t) \\ \vdots & & \vdots \\ a_{n,1}(t) & \dots & a_{n,n}(t) \end{vmatrix} = \begin{vmatrix} C_1(t) & \dots & C_n(t) & \text{où } \forall i,j,\ a_{i,j}:I \longrightarrow \mathbb{C} \text{ de classe } \mathcal{C}^k.$

- 1. Si k=0, alors Δ est \mathcal{C}^0 comme polynôme de fonctions \mathcal{C}^0
- 2. Si $k \geqslant 1, \Delta \in \mathcal{C}^k(I, \mathbb{C})$ et : $\Delta'(t) = \det(C_1'(t), C_2(t), \dots, C_n(t)) + \det(C_1(t), C_2'(t), \dots, C_n(t)) + \dots + \det(C_1(t), C_2(t), \dots, C_n'(t))$ Le résultat reste vrai en remplacant les colonnes par les lignes de Δ .

Discussion des systèmes linéaires

On appelle système linéaire tout système d'équation équivalent à un système de la forme MX = Y où $M \in \mathfrak{M}_{p,q}(\mathbb{K})$ donnée, $Y \in \mathbb{K}^p$ donné et $X \in \mathbb{K}^q$ inconnu. Soit S: MX = Y un système linéaire, on lui définit $S_0: MX = 0$ système homogène associé. Soit \mathcal{S} l'ensemble des solutions de S, \mathcal{S}_0 l'ensemble des solutions de S_0 ; \mathcal{S}_0 est un sev de \mathbb{K}^q . \mathcal{S} peut être vide ; dans ce cas on pose dim $\mathcal{S} \stackrel{def}{=} -\infty$; sinon, on pose dim $\mathcal{S} \stackrel{def}{=} \dim \mathcal{S}_0$. Si $X_0 \in S, \forall X \in \mathbb{K}^q, [X \in \mathcal{S}] \iff [(X - X_0) \in \mathcal{S}_0]$.

3.1 Cas des systèmes linéaires de Cramer

MX = Y est un système de Cramer si M est carrée et inversible. $\forall Y \in \mathbb{K}^n$, MX = Y possède alors une unique solution $X = M^{-1}Y$

- Si $M \in \mathfrak{M}_n(\mathbb{K})$, MX = Y est de Cramer ssi $S_0 = \{0\}$
- Formules de Cramer : $M = \begin{pmatrix} C_1 & \dots & C_n \end{pmatrix}$, MX = Y admet pour solution $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ où :

$$\forall i, x_i = \frac{\det(C_1, \dots, C_{i-1}, Y, C_{i+1}, \dots, C_n)}{\det M}$$

3.2 Cas où $M \in \mathfrak{M}_{p,q}(\mathbb{K})$ et $\operatorname{rg} M = p$

Supposons $p < q : \operatorname{rg}(C_1, \ldots, C_q) = p$. On extrait de (C_1, \ldots, C_q) une famille libre à p éléments, et cette famille engendre Vect (C_1, \ldots, C_q) . Par exemple si (C_1, \ldots, C_p) est libre :

- S possède au moins une solution $\forall Y$
- Y donné ainsi que $\xi_{p+1}, \ldots, \xi_q \in \mathbb{K}$, alors $\exists X \in \mathcal{S}$ unique dont les composantes vérifient $\forall i > p, x_i = \xi_i$.

On peut écrire $M = (A \mid B)$ avec $A \in GL_p(\mathbb{K})$, et $X = \left(\frac{X_1}{X_2}\right)$, $X_2 = \begin{pmatrix} \xi_{p+1} \\ \vdots \\ \xi_- \end{pmatrix}$; alors $X = \left(\frac{A^{-1}(Y - BX_2)}{X_2}\right)$. On a de plus dim S = q - p.

3.3 Cas général

 $MX = Y, M \in \mathfrak{M}_{n,q}(\mathbb{K}), \operatorname{rg} M = r.$

- Si r = p, voir 3.2
- Supposons r < p, $\operatorname{rg}(L_1, \dots, L_p) = r$. Supposons par exemple (L_1, \dots, L_r) libre. $\forall s > r, \exists \lambda_{1,s}, \dots, \lambda_{r,s} \in \mathbb{K}/L_s = \sum_{i=1}^r \lambda_{i,s} L_i$. Avec ces notations, $S \neq \emptyset$ ssi

$$\forall s > r, y_s = \sum_{i=1}^r \lambda_{i,s} y_i \quad (\mathcal{C}_s)$$

Avec ces notations, $S \neq \emptyset$ ssi $\forall s > r, y_s = \sum_{i=1}^r \lambda_{i,s} y_i \quad (\mathcal{C}_s)$ Si $\mathcal{C}_{r+1}, \dots, \mathcal{C}_p$ sont toutes vérifiées, S est aussi l'ensemble des solutions du système S' $\begin{bmatrix} L_1 X = y_1 \\ \vdots & S' \text{ est équivalent à } S \\ L_r X = y_r \end{bmatrix}$

car ils ont même ensemble de solutions. La matrice de S' est $\begin{pmatrix} L_1 \\ \vdots \\ L_r \end{pmatrix} \in \mathfrak{M}_{r,q}(\mathbb{K})$ de rang r, ce qui nous ramène à 3.2.

Si $S = \emptyset$, S est incompatible; sinon S est compatible.