0x18 - Case Study: SNN Accelerator

ENGR 3410: Computer Architecture

Jon Tse

Fall 2020

Feedback - Workload

Feedback - Understanding

Feedback - Pace

Feedback - Tools

Feedback - Final Project

Feedback - Top of Mind

Anything else on your mind?

2 responses

Happy Thanksgiving!

Final project things are going well! Assembly programs are fun!

Housekeeping

- Write Up Draft due Dec 14, Midnight Eastern
- Presentation Dec 15/17 during "class time"
 - Sign up in the Google Spreadsheet
 - Conflicts/special casing, please email me.
- Final Write Up (if necessary) due Dec 18.

NINJAs moving to "on call" hours. Use Slack.

Wrap up and AMA Thursday

Final Projects

GPU History
Conway's Game of Life
MIPS GPU Coprocessor
SPI Coprocessor
CPU/GPU Benchmarking

Multi-core CPU
Encryption
Caches
Extend Lab 4
Minecraft ALU
Snake in Assembly

Oversimplified Intro to Neuromorphic Computing

Machine Learning

Deep Learning

Spiking Neural Networks

Machine Learning

Explicit Programming

- Most software
- If this, then that!
- Can inspect algorithm
- _

Machine Learning

- Current buzzword
- Data and statistics of data foundation
- Algorithm hard to inspect
- Emergent behavior

Examples of Machine Learning

Classification

- Labeling data
- "This is a photo of a cat."
- "This email is spam."

Clustering

- Grouping data points
- Spotify song recommendations.
- Video recommendations on YouTube.

Types of Machine Learning

- Supervised Learning
 - Provide correct examples to learn.
 - ML engine generalizes rules based on examples.
- Unsupervised Learning
 - Provide raw data and maybe some metadata
 - ML engine returns some guesses at patterns.
- Reinforcement Learning
 - Unsupervised learning + some feedback
 - e.g. learning to play a video game

Deep Learning

One form of Machine Learning

Bio-inspired

Uses "Artificial Neural Networks"

Example of Deep Learning ANN

Example - Cat Photo Classifier

Example - Image Denoiser

How: Backpropagation

Spiking Neural Networks

Another form of Machine Learning

• Bio-mimetic

Uses "Spiking Neural Networks"

Example - Visual System

Example - Image Classifier

Training

Simulate Neuron Dynamics

Simulate Synapse (connection) dynamics

Wire it all up!

- What model?
 - Hodgkin-Huxley
 - Izhikevich
 - LIF Leaky Integrate and Fire

two differential equations

$$v' = ev^2 + fv + g - u + I$$

$$u' = a(bv - u)$$

$$(1)$$

$$(2)$$

with an after-spike reset.

if
$$v > \theta$$
, then: $v = c$ and $u = u + d$ (3)

Step	Multiplier	Adder
1	ev	g-u
2	(bv)	ev + f
3	v(ev+g)	v-u
4	a(bv-u)	v(ev+f)+g-u
5		v + v(ev + f) + g - u
6		u + a(bv - u)
7		v + v(ev + f) + g - u + I

Fig. 7. Fixed- versus floating-point implementations with parameters for tonic spikes. Step current is applied from time 100 to 300. The v and time axes are dimensionless.

Step 2- Synaptic Dynamics

Typical Neurons have 10³ to 10⁴ synapses!

Cannot wire all that up in 2D!

Solution: Time Domain Multiplex!

Step 2- Synaptic Dynamics

Step 3 - Wire it all up!

Usage Model

- Compute-in-Memory
 - Non von Neumann
 - No virtual memory, so limited capacity

- Compile desired network
 - Place and route, like on an FPGA
 - Stream onto chip
 - Run chip