INTR 5057 Research Design & Methods

Juraj Medzihorsky

Day 10, 2016-11-25

Homework #2

► Any questions?

Reliability & Validity

Random Sampling

Independence

Lack of association.

Independence & Probability

- ▶ Suppose X and Y that are binary, i.e. 0 or 1.
- ▶ Suppose we know that *X* is independent of *Y*.
- ▶ Probability of X is the same if Y = 1 and Y = 0.

$$P(X|Y) = P(X|\text{not }Y)$$

Independence & Drawing

- When drawing with replacement the draws are independent
- When drawing without replacement the draws are dependent

- ▶ 4 items in a box. 2 are coins and 2 are cubes. 2 are silver and 2 are gold.
- At least how many silver coins are there?

- ▶ 4 items in a box. 2 are coins and 2 are cubes. 2 are silver and 2 are gold.
- At least how many silver coins are there?
- ▶ 0. Why?

- ▶ 4 items in a box. 2 are coins and 2 are cubes. 2 are silver and 2 are gold.
- At least how many silver coins are there?
- ▶ 0. Why?
- Both coins can be golden.

- ▶ 4 items in a box. 2 are coins and 2 are cubes. 2 are silver and 2 are gold.
- At most how many silver coins are there?

- ▶ 4 items in a box. 2 are coins and 2 are cubes. 2 are silver and 2 are gold.
- At most how many silver coins are there?
- ▶ 2, Why?

- ▶ 4 items in a box. 2 are coins and 2 are cubes. 2 are silver and 2 are gold.
- At most how many silver coins are there?
- ▶ 2, Why?
- ▶ Both coins can be silver.

- ▶ 4 items in a box. 2 are coins and 2 are cubes. 2 are silver and 2 are gold.
- ▶ We draw 1 item at random. What is the chance it will be a coin?

- ▶ 4 items in a box. 2 are coins and 2 are cubes. 2 are silver and 2 are gold.
- ▶ We draw 1 item at random. What is the chance it will be a coin?
- **▶** 50%

- ▶ 4 items in a box. 2 are coins and 2 are cubes. 2 are silver and 2 are gold.
- ▶ We draw 1 item at random. What is the chance it will be golden?

- ▶ 4 items in a box. 2 are coins and 2 are cubes. 2 are silver and 2 are gold.
- ▶ We draw 1 item at random. What is the chance it will be golden?
- **▶** 50%

- ► There are 4 items in a box. 2 are coins and 2 are cubes. 2 are silver and 2 are gold.
- ▶ We draw 1 item at random. What is the chance it will be a golden coin?

- ► There are 4 items in a box. 2 are coins and 2 are cubes. 2 are silver and 2 are gold.
- ▶ We draw 1 item at random. What is the chance it will be a golden coin?
- ► That depends on whether material and shape are independent.

- ► There are 4 items in a box. 2 are coins and 2 are cubes. 2 are silver and 2 are gold.
- How would the contents of the box look if material and shape were independent?

- ► There are 4 items in a box. 2 are coins and 2 are cubes. 2 are silver and 2 are gold.
- How would the contents of the box look if material and shape were independent?
- ▶ 1 golden coin, 1 silver coin, 1 golden cube, 1 silver cube.

- ► There are 4 items in a box. 2 are coins and 2 are cubes. 2 are silver and 2 are gold.
- How would the contents of the box look if material and shape were independent?
- ▶ 1 golden coin, 1 silver coin, 1 golden cube, 1 silver cube.
- Can you write this as a table?

- ► There are 8 items in a box. 4 are coins and 4 are cubes. 4 are silver and 4 are gold. Material and shape are independent.
- ▶ We draw 1 item at random. What is the chance it will be a golden coin?

- ► There are 8 items in a box. 4 are coins and 4 are cubes. 4 are silver and 4 are gold. Material and shape are independent.
- ▶ We draw 1 item at random. What is the chance it will be a golden coin?

$$P(\text{golden coin}) = P(\text{golden}) \times P(\text{coin})$$

 $P(\text{golden coin}) = \frac{4}{8} \times \frac{4}{8} = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$

Multiplication Rule

- ▶ If 2 events are independent their joint probability is equal to the product of their probabilities.
- ▶ I.e. if

$$P(A|B) = P(A|not B)$$

then

$$P(A \& B) = P(A) \times P(B)$$

- ▶ 7 items in a box. 3 are coins and 4 are cubes. 5 are silver and 2 are gold. Material and shape are independent.
- ▶ We draw 1 item at random. What is the chance it will be a golden coin?

- ▶ 7 items in a box. 3 are coins and 4 are cubes. 5 are silver and 2 are gold. Material and shape are independent.
- ▶ We draw 1 item at random. What is the chance it will be a golden coin?

$$P(\text{golden coin}) = P(\text{golden}) \times P(\text{coin})$$

 $P(\text{golden coin}) = \frac{2}{7} \times \frac{3}{7} = \frac{6}{49}$

- ▶ 4 items in a box. 2 are coins and 2 are cubes.
- ▶ We draw 1 item at random with replacement. Then we draw another item at random with replacement.
- What is the chance that at least one of them will be a coin?

- ▶ 4 items in a box. 2 are coins and 2 are cubes.
- ▶ We draw 1 item at random with replacement. Then we draw another item at random with replacement.
- What is the chance that at least one of them will be a coin?
- ► The opposite of never getting a coin.

- ▶ 4 items in a box. 2 are coins and 2 are cubes.
- ▶ We draw 1 item at random with replacement. Then we draw another item at random with replacement.
- What is the chance that at least one of them will be a coin?
- ► The opposite of never getting a coin.
- $1 (\frac{2}{4} \times \frac{2}{4}) = 1 \frac{1}{4} = \frac{3}{4}$

Probability of 'At least 1 in N repetitions'

- Probability of getting a certain outcome at least once in several repetitions.
- ▶ It is the "opposite" of never getting the outcome.
- ▶ 1 minus the probability of never getting the outcome.

- ▶ 6 items in a box. 3 are coins and 3 are cubes.
- ▶ We draw 1 item at random with replacement. Then we draw another item at random with replacement.
- What is the chance that at least of them will be a coin?

- ▶ 6 items in a box. 3 are coins and 3 are cubes.
- ► We draw 1 item at random with replacement. Then we draw another item at random with replacement.
- What is the chance that at least of them will be a coin?
- $1 \frac{3}{6} \times \frac{3}{6} = 1 \frac{9}{36} = 1 \frac{1}{4} = \frac{3}{4}$

- ▶ 4 items in a box. 1 is a coin, 1 is a cube and 2 are sticks.
- ▶ We draw 1 item at random.
- ▶ What is the chance that it is a coin or a cube?

- ▶ 4 items in a box. 1 is a coin, 1 is a cube and 2 are sticks.
- ▶ We draw 1 item at random.
- What is the chance that it is a coin or a cube?
- $P(Cube) + P(Coin) = \frac{1}{4} + \frac{1}{4} = \frac{2}{4} = \frac{1}{2}$

Addition Rule

- ► Two events are **mutually exclusive** if the occurrence of one prevents the occurrence of the other one.
- ▶ If two events are **mutually exclusive** we can calculate the probability that at least one of them happens by adding up their probabilities.

Peer Review Example

▶ What is peer review in scientific journals?

Peer Review Example

- What is peer review in scientific journals?
- ► A journal receives 100 submissions. 80 of them are bad, the rest is good.
- ▶ The chance of a bad one getting published is 10%.
- ▶ The chance of a good one getting published is 90%.
- How many good and bad articles will get published?

Summarizing a Single Variable

How to summarize the following information?

Summarizing a Single Variable

- Average (mean)
- Mode
- Median
- Midrange

Average (Mean)

Average (Mean)

▶ Sum of all values divided by the number of values.

Mode

Mode

▶ The most common value.

Median

Median

▶ Half of the observations have less, half more.

Midrange

Midrange

Middle between maximal value and minimal value.

A Continuous Variable

Mean, Median, Mode, Midrange

A Continuous Variable

Two Continuous Variables

Standard Deviation

A measure of dispersion from the average.

Square root of the average squared distance from the average.

$$\sigma = \sqrt{\frac{\Sigma(\mu - x_i)^2}{N}}$$

Summarizing Two Variables

How to summarize the following information?

Х	у
1	1
0	1
1	0
1	0
0	0
1	0

Summarizing Two Variables

- Summarize each of them separately.
- ► Capture information about their association.

Cross Table

		У	
		0	1
X		3	1
	0	1	1

Cross Table

		У	
		0	1
X	1	a	b
	0	С	d

Cross Product Ratio

A measure of association between two binary variables also know as odds ratio.

If cross product ratio =1 then the variables are independent.

$$cpr = \frac{a \times d}{b \times c}$$

Cross Sum Ratio

An alternative to the cross product ratio.

$$csr = \frac{a+d}{b+c}$$

Relative Risk Ratio

A measure of association between two binary variables.

$$\mathit{rr} = rac{rac{a}{a+b}}{rac{c}{c+d}}$$

Summarizing Two Variables

How to summarize the following information?

у	Х
0.8	2.1
0.6	2.2
-1.6	-0.4
0.2	0.5
-1.3	1.3
-1.0	1.4

Scatter Plot

Correlation

A measure of association between two continuous variables.

$$\rho_{x,y} = \frac{cov(x,y)}{\sigma_x \sigma_y}$$

Ranges from -1 to 1 on a closed interval.

$$ho=-0.63$$

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ 臺 め९○

$\rho = 0.44$

$\rho = 0.09$

$\rho = -0.46$

Anscombe's Quartet

$\rho = 0.82$

The whole sample:

	heal	didn't
drug	20	20
no drug	16	24

Females:

	heal	didn't
drug	2	8
no drug	9	21

Males:

	heal	didn't
drug	18	12
no drug	7	3

- ▶ In the whole population association in one direction.
- ▶ In subsets of the population association in the opposite direction.
- Not really a paradox when you think about it.
- A serious problem is that people rush ahead with causal interpretations.

Association & Causality

- Non-statisticians say "correlation does not imply causation."
- Statisticians say "association does not imply causation."
- Calling all association "correlation" is like calling all motor vehicles "cars."

Homework #2

► Any questions?