

Tools & Databases of Short Linear Motifs

Holger Dinkel
EMBO Practical Course:
"Computational analysis of protein-protein interactions in cell function and disease"
Bangalore, 05. 12. 2019

The Eukaryotic Linear Motif resource for Functional Sites in Proteins

is a collection of 289 thoroughly annotated motif classes with over 3500 annotated instances.

It is also a prediction tool to detect these motifs in protein sequences employing different filters to distinguish between **functional** and **non-functional** motif instances.

The Eukaryotic Linear Motif resource for Functional Sites in Proteins

is a collection of 289 thoroughly annotated motif classes with over 3500 annotated instances.

It is also a prediction tool to detect these motifs in protein sequences employing different filters to distinguish between **functional** and **non-functional** motif instances.

Functiona	ıl sites	ELM classes		ELM inst	ances	GO terms	GO terms		ELM instances with affinity values	PubMed Links	
Total	176		289		3523		791	516	265	3467	
By category	ry	LIG	163	Human	2090	Biological process	430				
		MOD	37	Mouse	341						
		DOC	31	Rat	150	Cellular component	163				
		DEG	25	Yeast	110	•					
		TRG	22	Fly	98	Molecular function	198				
		CLV	11	Others	734						

Α

ELM Class

Condensed information about a motif. Regular Expressions used to annotate the motif (eg. [KR].L.{0,1}[FYLIVMP] for Cyclin motif)

DOC CYCLIN 1

Description:

Functional site class: Cyclin recognition site Functional site description: Functional site that interacts with cyclins, and thereby increases the specificity of phosphorylation by cyclin/CDK ELM with this model: MODE CYCLIN 1

Substrate recognition site that interacts with cyclin and thereby increases phosphorylation by cyclin/cdk complexes.

Predicted proteins should have a CDK phosphorylation site (#MOD_CDK_1). Also used by cyclin/cdk inhibitors. Pattern: 1981.1.(0.1)[PYLIVMP]

Pattern Probability: Present in taxon: Stukaryota Interaction Domain:

¿Cyclin_N (PF00134) Cyclin, N-terminal domain (Stochiometry: 1 PDB Structure: 1H24

ELM Class

Condensed information about a motif. Regular Expressions used to annotate the motif (eg. $[KR].L.\{0,1\}$ [FYLIVMP] for Cyclin motif)

Protein Name	Gene Name	Start	End	Subsequence	Logic	#Ev.	Organism	Notes
RB_HUMAN	ORBI	873	877	SHPPRICESSEA	TP	3	9 Homo saplens (Haman)	11H25
Q8UWJ8_CHICK	□CDH1-A	394	398	KLOSEST <mark>RYLYL</mark> ANSPOSEA	17	1	R Gallus gallus (Chicken)	
PMYT1_HUMAN	□PKMYT1	486	489	GRPPSPEPRINGELL SEPROTED	TP	1	S Homo saplens (Human)	
DE2F1_HUMAN	DE2F1	90	94	LORPPVENLEL STOROGELA	TP	3	S Homo sapiens (Human)	1H24
CDN1C_HUMAN	JCDKN1C	31	34	ATABLEWOOFFER	TP	1	Homo sapiens (Humari)	
RUX_DROME	Orax	248	251	PTARRCVI <mark>STLE</mark> THINTQEH	TP	1	S Drosophila melanogaster (fruit fly)	
DE2F2_HUMAN	DE2F2	87	91	ACRLPAR <mark>ENCEL</mark> ROTORPYV	TP	1	S Homo saplens (Human)	
DE2F3_HUMAN	DE2F3	134	138	OOGSESTANDENTET CERCONDARY	TP	1	E Homo sapiens (Humaró	
DAKA12_MOUSE	DAkap12	501	504	IMAGORAC <mark>KATA</mark> RREGIMAT	TP	1	E Mus musculus (House mouse)	14
CDC6_HUMAN	DCDC6	94	98	HERETAKO <mark>RNI/AL</mark> DRÓPALKE	TP	2	R Homo septens (Haman)	200H
CDN1A_HUMAN	COKNIA	19	22	HACORENCEMENT COACHER	TP	4	R Homo septens (Haman)	1% 14
CDN1A_HUMAN	DCDKN1A	155	159	THETOPYREE <mark>RELIP</mark> HEREP	TN	1	8 Homo sapiens (Haman)	
ORC6_YEAST	DORC6	178	182	ESPSITE <mark>RNIAF</mark> EEDEDEDE	TP	1	Saccharomyces cerevisiae (Baker's yeast)	
P53_HUMAN	OTP53	381	385	OQSTSRE EKLME KTEGFSSD	TP	5	10 Homo sapiens (Humarò	1H26
RBL1_HUMAN	⊃RBL1	658	661	SPERGERKERLFCEDPPREK	TP	3	Homo sapiens (Human)	1H28
DRBL2_HUMAN	DRBL2	680	684	PPASTTS BRAFFT INDSPESSO	TP	1	R Homo saplens (Hamaró	
HIRA_HUMAN	CHIRA	629	633	KARRLER BELEL EVET VERK	TP	1	E Homo saplens (Human)	

DOC CYCLIN 1

Functional site class: Cyclin recognition site

Functional site that interacts with cycline, and thereby increases the specificity of phosphorylation by cyclin/CDK
description:

outplease.

ELM with this model: MOCC_CYCLIN_1

Description: Substrate recognition site that interacts with cyclin and thereby increases phosphorylation by cyclin/odk complesses.

Description: Substrate recognition site that interacts with cyclin and thereby increases phosphorylation by cyclin/cdk to Predicted proteins about have a CDK phosphorylation site (#MOD_CDK_t). Also used by cyclin/cdk inhibitors.

Pattern: [SKl_t_t_0_1] FFLIVMP!

Pattern Probability: 0.0033239

Present in taxon: Stakaryeta
Interaction Domain: & Cyclin_N (PF00134) Cyclin_N-terminal domain (Stochiometry: 1

ELM Instance

ELM Class

Condensed information about a motif. Regular Expressions used to annotate the motif (eg. $[KR].L.\{0,1\}[FYLIVMP]$ for Cyclin motif)

Sequence		Start	End	Su	bsequence	Logic		PDB		Organism	Length
○(Q99741) CD	C6_HUMAN	94 98 11111		BERTLE	KE <mark>RSE, VP</mark> ONQEOTKS	тр	2CCH			ର Homo sapiens (Human)	560
Instance evid											,
Evidence class	PSMI		Method	1	BioSource	PubMed	Logic	Reliability	_	Notes	_
	perimental ©MI:0116 x-ray crystallograph			in vitro	SiCheng,2000	support	certain	Intena	n		
experimental	GME0114										
experimental experimental	GMI:0096		ull dow		in vivo/in vitro	Petersen,199	support	certain	Intera	ctionDetection	

DOC CYCLIN 1

Functional site class: Option recognition site
Functional site class: Option recognition site
Functional site

Description: Substrate recognition site that interacts with cyclin and thereby increases phosphorylation by cyclin/cdk complexes.

Predicted proteins aboutd have a CDK phosphorylation site (UMAOD_CDK_1). Also used by cyclin/cdk inhibitors.

Predicted proteins should have a CDK phosphorylation site (■MOD_CDK_1).

Pattern: [RK].1.{0,1}[FTLIVNP]

Pattern Probability: 0.0053239
Present in taxon: Stakaryota
Interaction Domain: & Cyclin, N (PFoot34) Cyclin, N-terminal domain (Stochiometry: 1

ELM Instance

- Experimental Evidences
- Methods
- References
- Interactions

ELM Class

Condensed information about a motif. Regular Expressions used to annotate the motif (eg. [KR].L.{0,1}[FYLIVMP] for Cyclin motif)

Sequence		Start	End	Su	ibsequence	Logic		PDB		Organism	Length	
ः(Q99741) CI	IC6_HUMAN	94 98		HENTENC <mark>HOLIV</mark> ONGECTAS		ТР		ССН	b.	S Hemo saplens (Human)	560	
Instance evi			Methor		BioSource	PubMed	Logic	Reliability		Notes	,	
		_		_			-	,	-		-	
experimental	©MI:0114	x-ray crystallography		in vitro	SCheng,200		t certain	InteractionDetection FeatureDetect		30		
experimental	@MI:0096	P	pull down		in vivo/in vitro	Petersen,195	support	certain	Intera	nteractionDetection		
	ce is part of th	e followi	ng swit	ching me	echanism(s) anno	stated at the	switches.	ELM resourc	00			

Functional site class: Cyclin recognition site Functional site Functional site that interacts with cyclins, and thereby increases the specificity of phosphorylation by cyclin/CDK ELM with this model: MODE CYCLIN 1

Substrate recognition site that interacts with cyclin and thereby increases phosphorylation by cyclin/odk complexes. Predicted proteins should have a CDK phosphorylation site (#MOD_CDK_1). Also used by cyclin/cdk inhibitors. Pattern:

(RK1.1.(0.1)(FYLIVMP)

Pattern Probability: Present in taxon: Interaction Domain

¿Cyclin_N (PF00134) Cyclin, N-terminal domain (Stochiometry: 1 PDB Structure: 1H24

ELM Instance

- Experimental Evidences

ELM Class

Condensed information about a motif. Regular Expressions used to annotate the motif (eg. $[KR].L.\{0,1\}[FYLIVMP]$ for Cyclin motif)

Sequence Si		Start	End	Si	bsequence	Logic		PDB		Organism	Length
○(Q99741) CI	C6_HUMAN	94	98	HERETHORSE MANUFACTURE		ТР	2CCH			ි Homo saplens (Human)	560
Instance evi			Metho	1	BioSource	PubMed	Logic	Reliability		Notes	1
experimental GMI:0114 x-ray crystalls		x-ray c	rystall	graphy	in vitro	SCheng,2006	support	certain	Intera	1	
		pull down		in vivo/in vitro	Paterson 1001		certain	InteractionDetection		1	
experimental	©MI:0096	P	uli dos	in	III ENOJIII ELIO	PERCENCE POR	anypart	Cercam	irroena	COULDENECOUI	

DOC CYCLIN 1

Functional and closes:

Cyclin recognition site

Functional and

Cyclin recognition site

Cyclin r

Description:

Substrate recognition site that interacts with cyclin and thereby increases phosphorylation by cyclin/cdk complexes.

Predicted proteins should have a CDK phosphorylation site (#MOD_CDK_1). Also used by cyclin/cdk inhibitors.

¿Cyclin_N (PF00134) Cyclin, N-terminal domain (Stochiometry: 1

Predicted proteins should have a CDK phosphorylation site (#MOD_Cl
Pattern: [RK].L.[0,1][FTLIVMP]

Pattern Probability: 0.0053239
Present in taxon: Stukarveta

ELM Instance

Interaction Domain

- Experimental Evidences
- Methods
- References
- Interactions

ELM Class

Condensed information about a motif. Regular Expressions used to annotate the motif (eg. $[KR].L.\{0,1\}[FYLIVMP]$ for Cyclin motif)

Sequence 8		Start	End	S	bsequence	Logic		PDB		Organism	Length
ः(Q99741) CI	C6_HUMAN	94	98	RESTLACE <mark>SSELVE</mark> CHSQLCTAC		TP	2CCH			8 Homo sapiens (Human)	
Instance evi			Methor		BioSource	PubMed	Logic	Reliability		Notes	,
		_					-	,	_	Notes	-
experimental	GMI:0114	_	_			8 Chang,2000	support	_	-		
experimental	@MI:0096	P	pull down		in vivo/in vitro	Petersen,199	support	certain	InteractionDetection		
					ochanism(s) ann						

DOC CYCLIN 1

Functional this class: Optime requisition site
Panatismal and
Pana

Description: Substrate recognition site that interacts with cyclin and thereby increases phosphorylation by cyclin/cdk complexes.

Predicted proteins about have a CDK phosphorylation rite (@MOD_CDK_1). Also used by cyclin/cdk inhibitors.

Predicted proteins should have a CDK phosphorylation site (#MOD_CDK_1). Also use Pattern: [RK].L.[0,1][FILIUMF]

Pattern Probability: 0.0053239

Present in taxon: Stukaryota
Interaction Domain: & Cyclin_N (PF00134) Cyclin, N-terminal domain (Stochiometry: 1

ELM Instance

- Experimental Evidences
- Methods
- References
- Interactions

ELM Class

Condensed information about a motif. Regular Expressions used to annotate the motif (eg. [KR].L.{0,1}[FYLIVMP] for Cyclin motif)

Sequence		Start	End	Su	bsequence	Logic		PDB		Organism	Length
		94 98 BESTL		10 886.07 38QL0183	TP	2CCH			8 Hemo saplens (Human)		
Instance evidence class	PSMI		Method	1	BioSource	PubMed	Logic	Reliability		Notes	1
			rvatalle	graphy	in vitro	SCheng,2000	support	certain	Intera		
experimental						support certain					
experimental experimental	©мі:0096	_	ull dow	m	in vivo/in vitro	Petersen,199	support	certain	Intera	ctionDetection	

DOC CYCLIN 1

Functional size closes: Option recognition size Protectional size closes (Quin recognition size Protectional size closes). Protectional size closes (Protectional size closes) (Protect

Substrate recognition site that interacts with cyclin and thereby increases phosphorylation by cyclin/cdk complexes.

Predicted proteins abould have a CDK phosphorylation site (I MOD_CDK_1). Also used by cyclin/cdk inhibitors.

Pattern: (RK).L.(0,1)(FYLIVMP)
Pattern Probability: 0.0053239

Present in taxon: Stukaryota
Interaction Domain: & Cyclin_N (PFoot34) Cyclin, N-terminal domain (Stochiometry: 1

ELM Instance

An experimentally verified instance of an ELM class in a particular sequence.

- Experimental Evidences
- Methods
- References
- Interactions

Tools & Databases of Short Linear Motifs

«MOD WntLipid«

ELM Home ELM Prediction ELM DB ELM Candidates ELM Information ELM downloads

»TRG Cilium Arf4 1»

Help

TRG AP2beta CARGO 1

Accession: ELME000247

Functional site class: AP-2 beta2 appendage CCV component motifs

ear domain

Functional site description: Several motifs are responsible for the binding of accessory endocytic proteins to the betae-as-bunit appendage of the adaptor protein complex AP-2 as part of their recruitment to the site of clathrin conted vesticle (CCV) formation. Proteins binding the platform subdomain have been found to be earge family specific (for example can load all GPCRs, or all LDL receptor family members) clathrin adaptors. Accessory proteins which help in CCV formation bind the sandtes subdomain is the or the alpha

ELM Description: Motif binding as a helix in a depression on the top surface of the AP-2 beta appendage platform subdomain. The pattern [ED]x(1,2)Fxx[FL]xxxR is conserved in beta Arrestins, ARH and Epsin-1, -2 of vertebrates. It is also found in homologues of

other metazoans, but the pattern is sometimes not matched exactly, meaning that the ELM regular expression will not provide a match. In other lineages, if there is an equivalent motif, the pattern is likely to have diverged.

Pattern: [DE].{1,2}F[^P][^P][FL][^P][^P][^P]R

Pattern Probability: 0.0000182

Present in taxon: SMetazoa

Interaction Domain: B2-adapt-app C (PF09066) Beta2-adaptin appendage, C-terminal

sub-domain (Stochiometry: 1:1)

PDB Structure: 2G30

export 58 instances as: fasta tsv

The Eukaryotic Linear Motif resource for Functional Sites in Proteins

Search ELMs Instances Candidates Links About News Help Diseases

Search ELM Instances

Full-Text Search (to show all instances, enter 'all' or '*') ap2

Filter by instance Logic true positive | . Filter by organism Homo sapiens

submit Reset

■ 58 Instances for search term 'ap2':

LV	ı
IG	l
OD	
RG	l
	l
	ı

	(click table headers for sorting)	rapz:							
	ELM identifier	Sequence	Start	End	Subsequence	Instance Logic	#Evidence	PDB	Organism
۷.	TRG_LysEnd_APsAcLL_1	OPRD_HUMAN	241	246	GLMLLRL <u>rsvrll</u> sgskekd	true positive	8		Homo sapiens (Human)
G	TRG_AP2beta_CARGO_1	ARRB1_HUMAN	385	395	TNDDDIVFEDFARQRLKGMK	true positive	5	2IV8	Homo sapiens (Human)
D	TRG_LysEnd_APsAcLL_1	HG2A_HUMAN	19	24	DQKPVMDDQRDLISNNEQLP	true positive	5		Homo sapiens (Human)
G	LIG_AP2alpha_2	EPS15_HUMAN	672	674	DPFATSSTDPFSAANNSSIT	true positive	4		Homo sapiens (Human)
-	LIG_AP2alpha_2	EPS15_HUMAN	692	694	SVETLKHNDPFAPGGTVVAA	true positive	4		Homo sapiens (Human)
-	LIG_AP2alpha_2	EPS15_HUMAN	709	711	VAASDSAT <mark>DPF</mark> ASVFGNESF	true positive	4		Homo sapiens (Human)
	LIG_AP2alpha_2	EPS15_HUMAN	737	739	TLSKVNNEDPFRSATSSSVS	true positive	4		Homo sapiens (Human)
-1	TRG_AP2beta_CARGO_1	EPN1_HUMAN	377	386	FDTEPDEFSDFDRLRTALPT	true positive	4		Homo sapiens (Human)
-1	TRG_LysEnd_APsAcLL_1	ATP7A_HUMAN	1483	1488	SVVTSEP <u>DKHSLL</u> VGDFRED	true positive	4		Homo sapiens (Human)
-	LIG_SxIP_EBH_1	CLAP2_HUMAN	492	502	ASAQ <u>KRSKIPRSQGC</u> SREAS	true positive	3		Homo sapiens (Human)
-	LIG_SxIP_EBH_1	CLAP2_HUMAN	515	525	LSVA <u>rssriprpsvs</u> qgcsr	true positive	3		Homo sapiens (Human)
-	TRG_LysEnd_APsAcLL_1	BCAM_HUMAN	604	609	HSGSEQP <u>EQTGLL</u> MGGASGG	true positive	3		Homo sapiens (Human)
	TRG_LysEnd_APsAcLL_1	NPC1_HUMAN	1271	1276	KSCATEERYKGT <u>ERERLL</u> NF	true positive	3		Homo sapiens (Human)
-	LIG_APCC_KENbox_2	CKAP2_HUMAN	80	84	KLKTKMA <u>DKENM</u> KRPAESKN	true positive	2		Homo sapiens (Human)
-	LIG_MAPK_1	MP2K1_HUMAN	3	11	MP <u>KKKPTPIQL</u> NPAPDGSAV	true positive	2		Homo sapiens (Human)
-	LIG_MAPK_1	MP2K4_HUMAN	40	48	SSMQG <u>KRKALKLNF</u> ANPPFK	true positive	2		Homo sapiens (Human)
-	TRG_AP2beta_CARGO_1	ARH_HUMAN	256	266	DDGL <u>DEAFSRLAQSR</u> TNPQV	true positive	2	2G30	Homo sapiens (Human)
-	TRG_LysEnd_APsAcLL_1	CD44_HUMAN	708	713	GEASKSQ <u>EMVHLV</u> NKESSET	true positive	2		Homo sapiens (Human)
-	LIG_AP2alpha_1	AMPH_HUMAN	324	328	QENIISF <u>FEDNF</u> VPEISVTT	true positive	1	1KY7	Homo sapiens (Human)
-	LIG_AP2alpha_2	EP15R_HUMAN	599	601	RGSFGAMD <u>DPF</u> KNKALLFSN	true positive	1	Tools	Homo sapiens (Human)
	LIG_AP2alpha_2	EP15R_HUMAN	618	620	NNTQELHP <u>DPF</u> QTEDPFKSD	true positive	1		Homo sapiens (Human)

ELM DATABASE:PATHWAYS

FI M PREDICTION TOOL

ELM PREDICTION TOOL

VIEW CONSERVATION IN JAIVIEW

Questions?

fakeposters.com

PROTEIN VISUALIZATION (PROVIZ)

ProViz http://proviz.ucd.ie/ is a tool to visualize biological data allowing the investigation of functional and evolutionary protein features. The tool is designed to be an intuitive and accessible resource to allow users with limited bioinformatic skills to rapidly access and visualise data pertinent to their research.

PROTEIN VISUALIZATION (PROVIZ)

"ProViz-a web-based visualization tool to investigate the functional and evolutionary features of protein sequences."; Jehl P, Manguy J, Shields DC, Higgins DG, Davey NE.; (Nucleic Acids Res. 2016 APR 16)

PROTEIN VISUALIZATION (PROVIZ)

"ProViz-a web-based visualization tool to investigate the functional and evolutionary features of protein sequences."; Jehl P, Manguy J, Shields DC, Higgins DG, Davey NE.; (Nucleic Acids Res. 2016 APR 16)

PeCan https://pecan.stjude.cloud/ provides interactive visualizations of pediatric cancer mutations across various projects at St. Jude Children's Research Hospital and its collaborators.

Data Summary

5.161

4,877

23

18.395

88.032

PECAN / PROTEINPAINT - VISUALIZATION OF PEDIATRIC CANCER MUTATIONS

Questions?

motifake.com