

氧化还原反应(一)

日期:	时间:	姓名:
Date:	_ Time:	Name:

初露锋芒

学习目标	
7 ~ 2 H 13'	

&

重难点

1. 了解氧化还原反应的基本概念

2. 知道氧化还原反应的特征和本质

3. 掌握氧化还原反应的基本规律

4. 知道氧化还原反应中电子转移的表示方法

1. 氧化还原反应的基本规律

2. 氧化还原反应中电子转移的表示方法

根深蒂固

一、氧化还原反应

1. 氧化还原反应的定义:	: 在反应中		的化学反应
(1) 本质:			
(2) 特征:		【判断依据】	

2. 氧化还原反应与四大基本反应类型的关系

- (1) 有单质参加的化合反应一定是氧化还原反应
- (2) 有单质生成的分解反应一定是氧化还原反应
- (3) 有单质参加或生成的化学反应不一定是氧化还原反应
- (4) 置换反应一定是氧化还原反应,复分解反应一定不是氧化还原反应

二、氧化还原反应的几组重要概念

4、氧化产物、还原产物

(1) 氧化产物:被氧化得到的产物叫氧化产物【化合价_____】

(2) 还原反应: 化合价_____,被____,发生还原反应

(2) 还原产物:被还原得到的产物叫还原产物【化合价】

5、氧化还原反应中相关概念间的关系

(1) 对立统一关系

氧化反应和还原反应虽是两个不同的过程,但在同一反应中同时发生,它们既对立又统一

(2) 两条主线关系

升 (化合价升高) →失 (失去电子) →氧 (被氧化); 降 (化合价降低) →得 (得到电子) →还 (被还原)。

注意:

①在氧化还原反应中,氧化剂和还原剂可以是不同反应物,也可以是同一反应物,氧化产物、还原产物可以是不同产物,也可以是同一种产物。

②由于有些氧化还原反应中,氧化剂或还原剂并没有全部发生氧化还原反应,因此在求氧化剂或还原剂的质量或二者的比例时易发生错误。

6、特殊的氧化还原反应

(1) 歧化反应: 即反应中同一元素从一个价态转化为两个价态。

一个高价态,一个低价态,也就是说同一物质既做氧化剂又做还原剂。

如 Cl₂+2NaOH → NaCl+NaClO+H₂O 中的 Cl₂

(2) 归中反应: 是指同一元素的不同价态升至或降至同一个价态(相近价态),

如: $SO_2+2H_2S \longrightarrow 3S\downarrow+2H_2O$

(3) 有的反应中反应物部分作氧化剂或还原剂,

如: 3Cu+8HNO₃(稀)—[△]→3Cu(NO₃)₂+2NO↑+4H₂O中的HNO₃

 $MnO_2 + 4HCl(浓) \xrightarrow{\Delta} MnCl_2 + Cl_2 \uparrow + 2H_2O 中的 HCl$

(4) 有的反应中氧化剂和还原剂是同一种物质,

如: $2KClO_3 \xrightarrow{\Delta} 2KCl + 3O_3 \uparrow 中的 KClO_3$

(5) 有的反应中氧化产物与还原产物是同一种物质,如: $Cu+Cl_2 \xrightarrow{\Delta} CuCl_2$ 中的 $CuCl_2$

三、常见的氧化剂、还原剂

	类别	实例
常	活泼非金属单质	F ₂ , Cl ₂ , Br ₂ , I ₂ , O ₂
见	元素处于高价态的氧化物	MnO ₂
氧 化	元素处于高价态的含氧酸	浓 H ₂ SO ₄ 、HNO ₃
剂	元素处于高价态的盐	KClO ₃ 、KMnO ₄ 、FeCl ₃
	过氧化物	Na ₂ O ₂ N ₂ O ₂

	类别	实例
常	活泼的金属单质	Na、Mg、Al、Zn、Fe
见	某些非金属单质	C、H ₂ 、Si
还	元素处于低价态的氧化物	CO, NO, SO ₂
原	元素处于低价态的酸	HBr、HI、H ₂ S
剂	元素处于低价态的盐	Na ₂ SO ₃ 、FeCl ₂ 、Na ₂ S、NaI

注意:有些物质既具有氧化性又具有还原性,化合价处于最高价的时候只具有氧化性,化合价处于最低价的时候只具有还原性

四、氧化还原反应的规律

- 1. 守恒规律
- (1) 质量守恒定律:

在化学反应中,反应前后元素原子种类及原子个数保持不变

(2) 电子守恒规律:

在任何氧化还原反应中氧化剂<mark>得电子总数</mark>与还原剂失电子总数相等,化合价升高降低总数相等。 对于既是氧化还原反应又是离子反应的,电荷总数相等。

2. 价态规律

元素在物质中所处的价态,决定该元素的氧化性或还原性。

元素处于最高价态,只有氧化性(如 KMnO₄、HNO₃等),但不一定具有强氧化性;

元素处于最低价态,只有还原性(如 S^{2-} 、 Γ 等),但不一定具有强还原性;

元素处于中间价态, 既有氧化性又有还原性。

3. "强先弱后"规律

一种氧化剂(或还原剂)与多种还原剂(或氧化剂)相遇时,总是先与<mark>还原性强</mark>(或<mark>氧化性强</mark>)的还原剂(或氧化剂)反应。

如过量的 Fe 加入稀硫酸和 CuSO₄ 的混合溶液中,由于氧化性 Cu²⁺>H⁺。

先: Fe+CuSO₄→FeSO₄+Cu

后: Fe+H₂SO₄→FeSO₄+H₂↑

4、"价态归中"规律

即同种元素不同价态之间,相邻价态不反应,发生反应时化合价向中间靠拢,但不交叉。

五、氧化还原反应中电子转移的表示方法

单线桥法:表示反应物中元素原子发生电子转移的数目和情况。

$$CuO + H_2 \xrightarrow{\Delta} Cu + H_2O$$

注意:

- ①单线桥的箭尾指向失电子(化合价升高)元素的原子,箭头指向得电子(化合价降低)元素的原子,即 电子由还原剂转移给氧化剂。
 - ②在线上只需标出电子转移总数及电子的标识 e,不需注明"得到"或"失去"的字样。

枝繁叶茂

题型1: 氧化还原反应的基本概念

例1: 丁	下列叙述正确的是 ()
Α.	在氧化还原反应中,失去电子的物质,所含元素化合价降低
В.	凡有元素化合价升降的化学反应都是氧化还原反应
C.	在氧化还原反应中所有的元素化合价都一定发生变化
D.	有得电子能力的物质在反应中一定作氧化剂
变式1:	下列叙述中,正确的是 ()
A.	还原剂在反应中失去电子发生还原反应
В.	氧化还原反应的本质是电子发生转移
C.	有单质产生的分解反应不一定是氧化还原反应
D.	氧化还原反应中,一种元素的化合价升高,一定有另一种元素的化合价降低
例 2: 丁	F列关于氧化剂的叙述正确的是 ()
Α.	分子中不一定含有氧元素
В.	在反应中易失电子
С.	发生氧化反应
D.	在反应中元素化合价升高
变式 1:	某元素从化合态变成游离态(
Α.	一定被氧化
В.	一定被还原
C.	可能是被氧化也可能是被还原
D.	可能既不是被氧化也不是被还原
例 3: 丁	·列变化中,需要加入合适的氧化剂才能实现的是 ()
Α.	$HCl \rightarrow H$
11	1101 / 11/2
В.	$CO_2 \rightarrow CO$
2.	
C.	$SO_2 \rightarrow SO_3$
D.	$FeCl_3 \rightarrow FeCl_2$
	3 2
★-4	工利亦化 计和再工量再口从加入层化划是工匠刘坐坐虚顶势去 / /
变式 1:	下列变化过程中不需要另外加入氧化剂或还原剂就能实现的有(())
Α.	$\text{Cl}^- \to \text{Cl}_2$ B. $\text{Fe}^{3+} \to \text{Fe}^{2+}$ C. $\text{KClO}_3 \to \text{KCl}$ D. $\text{KI} \to \text{I}_2$

变式 2: 用 H_2SO_4 酸化三氧化铬(CrO_3),遇酒精后,其颜色由红色变为蓝绿色,用这种现象可测得司机是否是酒后驾车,反应如下:

$$2CrO_3 + 3C_2H_5OH + 3H_2SO_4 \rightarrow Cr_2(SO_4)_3 + 3CH_3CHO + 6H_2O$$

此反应的氧化剂是 ()

- A. H₂SO₄
- B. CrO₃
- C. $Cr_2(SO_4)_3$
- D. C₂H₅OH

变式 3: 黑火药发生爆炸的反应方程式为: $S+2KNO_3+3C$ —^{点燃} $\to K_2S+3CO_2+N_2$, 还原产物是(

- A. K₂S
- B. CO₂
- $C. N_2$
- D. K_2S 和 N_2

例 4: 下列反应中, 盐酸既表现还原性, 又表现酸性的是 ()

A.
$$CaO + 2HCl \rightarrow CaCl_2 + H_2O$$

B.
$$4HCl + MnO_2 \xrightarrow{\text{miss}} MnCl_2 + Cl_2 \uparrow + 2H_2O$$

C.
$$Zn + 2HCl \rightarrow ZnCl_2 + H_2 \uparrow$$

D.
$$Na_2CO_3 + 2HCl \rightarrow 2NaCl + CO_2 \uparrow + H_2O$$

变式1: 下列变化中,水只作为氧化剂的是 ()

A.
$$2F_2 + 2H_2O \rightarrow 4HF + O_2 \uparrow$$

B.
$$2\text{Na} + 2\text{H}_2\text{O} \rightarrow 2\text{NaOH} + \text{H}_2 \uparrow$$

C.
$$Cl_2 + 2H_2O \rightleftharpoons HCl + HClO$$

D.
$$CaO + H_2O \rightarrow Ca(OH)_2$$

题型 2: 氧化还原反应的基本规律

例 8: G、Q、X、Y、Z 均为氯的含氧化合物,我们不了解它们的化学式,但知道它们在一定条件下具有如下的转化关系(未配平):

- $\bigcirc G \longrightarrow Q + NaCl$
- $2Q + H_2O \longrightarrow X + H_2$
- $3Y + NaOH \longrightarrow G + Q + H_2O$
- $4Z + NaOH \longrightarrow Q + X + H_2O$

这五种化合物中的氯的化合价由低到高的顺序是 ()

A. Q, G, Z, Y, X

B. G. Y. Q. Z. X

C. G, Y, Z, Q, X

D. Z. X. G. Y. Q

变式 1: 重铬酸铵【(NH₄)₂Cr₂O₇】是一种受热易分解的盐,下列对重铬酸铵受热分解产物的判断正确的是

A. $CrO_3 + NH_3 + H_2O$

B. $Cr_2O_3 + NH_3 + H_2O$

C. $CrO_3 + N_2 + H_2O$

D. $Cr_2O_3 + N_2 + H_2O$

例 9: 现有下列反应:

- ① $2\text{FeCl}_3 + 2\text{KI} \rightarrow 2\text{FeCl}_2 + \text{I}_2 + 2\text{KCl}_3$;
- ② 2FeCl₂ + Cl₂ \rightarrow 2FeCl₃ \circ

由此可判断下列物质氧化能力由强到弱的顺序正确的是(())

- A. I₂>Cl₂>FeCl₃
- B. Cl₂>FeCl₃>I₂
- C. I₂>FeCl₃>Cl₂
- D. Cl₂>I₂>FeCl₃

变式 1: 有如下反应: $2A^{-}+C_2 \rightarrow 2C^{-}+A_2$, $2C^{-}+B_2 \rightarrow 2B^{-}+C_2$, $2D^{-}+A_2 \rightarrow 2A^{-}+D_2$,由此可以推断的结论(

- A. 氧化性: A₂>B₂>C₂>D₂
- B. 还原性: D->A-> C->B-
- C. 反应 A₂+2B⁻→2A⁻+B₂ 可进行
- D. 反应 2D⁻+C₂→2C⁻+D₂ 不能进行

例 10: 己知:

- \bigcirc 2FeCl₃+2KI \rightarrow 2FeCl₃+2KCl+I₂;
- 22FeCl₂+Cl₂ \rightarrow 2FeCl₃;
- ③2KMnO₄+16HCl(浓) \rightarrow 2KCl+2MnCl₂+5Cl₂ \uparrow +8H₂O。

某溶液中有 Fe^{2+} 、I 和 CI 共存,要氧化除去 I 而不影响 CI 和 Fe^{2+} ,应选择试剂是 (

- A. HCl
- B. Cl₂
- C. KMnO₄
- D. FeCl₃

变式 1: 已知:

- ①向 KMnO4 晶体滴加浓盐酸,产生黄绿色气体;
- ②向 FeCl₂溶液中通入少量①产生的气体,溶液变黄色;
- ③取实验②生成的溶液滴在淀粉 KI 试纸上, 试纸变蓝色。

下列判断正确的是 ()

- A. 上述实验证明氧化性: KMnO₄>Cl₂>FeCl₃>I₂
- B. 上述实验中, 共涉及两个氧化还原反应
- C. 实验①生成的气体不能使湿润的淀粉 KI 试纸变蓝
- D. 实验②证明 FeCl₂既有氧化性又有还原性

题型 3: 氧化还原反应的电子转移的表示

例 11: 仔细分析下列反应的化合价变化,用单线桥法标出电子转移并判断氧化剂和还原剂。

氧化剂: ; 还原剂:

 $2 3Cu + 8HNO_3 \xrightarrow{\Delta} 3Cu(NO_3)_2 + 2NO \uparrow +4H_2O$

氧化剂: _____; 还原剂: _____

③ MnO₂ + 4HCl($\stackrel{\wedge}{R}$) $\xrightarrow{\Delta}$ MnCl₂ + Cl₂ ↑ +2H₂O

氧化剂: ; 还原剂:

 $\textcircled{4} 2H_2S + SO_2 \xrightarrow{\Delta} 3S + 2H_2O$

 $(5) \operatorname{Cl_2} + 2\operatorname{NaOH} \xrightarrow{\quad \Delta \quad} \operatorname{NaCl} + \operatorname{NaClO} + \operatorname{H_2O}$

 $\textcircled{6} \text{ KClO}_3 + 6 \text{HCl} \rightarrow \text{KCl} + 3 \text{Cl}_2 \uparrow + 3 \text{H}_2 \text{O}$

氧化剂: _________; 还原剂: _______

瓜熟蒂落

质	在氧化还原反应中, 参加的反应 型中,一定属于氧化过	(选填"-	一 一定"或"	不一定"	'或"一定不	下")是氧化	— 还原反应。	化学反应	的四种基本
2.	现有反应:								
		$Na_2CO_3 + CO$	$O_2 \uparrow + H_2O$;						
	② 2Na + Cl ₂ — ^{点燃}	→2NaCl ;							
	(3) Zn + CuSO ₄ \rightarrow ZnSO ₄ + Cu;								
	$ 4 2KMnO_4 \rightarrow K_2M$	$\text{MnO}_4 + \text{MnO}_2$	$+O_2\uparrow;$						
	⑤ CaO + CO ₂ — 高温	\rightarrow CaCO ₃ ;							
	⑥ $4\text{FeS}_2 + 11\text{O}_2 \xrightarrow{\text{\tiny \ref{id}}} 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2$ ∘								
	请把符合要求的反 (1)既属于分解反 (2)属于化合反应 (3)既属于化合反应 (4)属于分解反应 (5)不属于四大基	反应又属于氧位,但不是氧位,但不是氧位 反应又属于氧位,但不是氧位,但不是氧	化还原反应 化还原反应 化还原反应 化还原反应	Z的是 Z的是 Z的是 Z的是		0 0 0 0			
3.	下列物质不能做还原	原剂的是 ()						
	A. H ₂ S	B. Fe ²⁺		C.	Fe^{3+}	D.	SO_2		
	吸入人体内的 O ₂ 有 (Se) 元素的化合物。) A. 氧化剂 C. 既是氧化剂又是	亚硒酸钠(N	$(a_2SeO_3),$	能消除人 B. 还原	、体内的的活	性氧,由此			
5.	下列变化,需要加入	适当的氧化	剂才能完成		()				
	A. CuO→Cu			В.	Fe →FeCl ₂				
	C. H ₂ SO ₄ →CuSO ₄			D.	HNO₃→NO₂	2			

- 6. 下列元素中,只有还原性的是 ()
 - A. S^{-2} B. S^{0} C. S^{+4}
- D. S
- 7. 根据反应: 2H₂S+O₂→2S↓+2H₂O, 4NaI+O₂+ 2H₂SO₄→2I₂+2Na₂SO₄+2H₂O, Na₂S+I₂→2NaI+S↓, 判断下列 物质的氧化性由强到弱的顺序是 ()
 - A. $O_2>I_2>S$

B. H₂S>NaI>H₂O

C. $S>I_2>O_2$

D. H₂O>NaI>H₂S

- 8. 有下列氧化还原反应
 - \bigcirc 2NaBrO₃+Cl₂ \rightarrow Br₂+2NaClO₃
- ②NaClO₃+6HCl→3Cl₂+3H₂O+NaCl
- 32FeCl₃+2KI \rightarrow 2FeCl₂+I₂+2KCl
- 4)2FeCl₂+Cl₂ \rightarrow 2FeCl₃
- 其中氧化性由强到弱的顺序是 (
- A. NaBrO₃>NaClO₃>Cl₂>FeCl₃>I₂
- B. Cl₂>FeCl₃>I₂>NaClO₃>NaBrO₃
- C. I₂>FeCl₃>Cl₂>NaClO₃>NaBrO₃
- D. NaClO₃>NaBrO₃>FeCl₃>Cl₂>I₂
- 9. 已知 X_2 、 Y_2 、 Z_2 、 Z_2 、 Z_2 0 以 四种物质的氧化能力是 Z_2 2 Z_2 2 Z_2 3 下列氧化还原反应能发生的是 (
 - A. $2W^- + Z_2 \rightarrow 2Z^- + W_2$
- B. $2X^{-} + Z_{2} \rightarrow 2Z^{-} + X_{2}$
- C. $2W^- + Y_2 \rightarrow 2Y^- + W_2$
- D. $2Z^{-} + X_{2} \rightarrow 2X^{-} + Z_{2}$
- 10. 请根据要求填写化学方程式:
- (1) 在反应中盐酸作还原剂
- (2) 在反应中盐酸作氧化剂
- (3) 在反应中氯元素既被氧化,又被还原
- (4) 在氧化还原反应中氯元素既没有被氧化,又没有被还原
- 11. 氧化还原是常见的反应类型,根据信息回答以下问题:

В

(1) A 图是"四种基本反应类型与氧化还原反应的关系"图,请在 A 图中用阴影部分表示反应:
Cl ₂ +2NaBr→2NaCl+Br ₂ 所属的区域。
(2)"四种基本反应类型与氧化还原反应的关系"也可用 B 图表达。
①其中 I 为化合反应,则 II 为
②写出一个有水生成的符合反应类型Ⅲ的化学方程式:。
③写出一个有水参加的符合反应类型IV的化学方程式:,
其中水作为剂。(填氧化剂、还原剂等)
12. 现有下列微粒: H⁺、HCl、Mg、S²-、Cl₂、I⁻、HClO。
(1) 在化学反应中,只能失去电子的是; 只能获得电子的有。
既能失去电子又能获得电子的是。
(2) 任选其中一种微粒举例说明(用化学方程式表示)、
13. 现有下列物质:①浓盐酸;②漂粉精;③氯水;④碘化钾溶液;⑤NaOH固体;⑥生石灰。敞口放在空气
中,久置会变质。在变质过程中,既有氧化还原反应发生,又有非氧化还原反应发生的是
。(选填序号)
14. 仔细分析下列反应的化合价变化,用单线桥法标出电子转移并判断氧化剂和还原剂。
$ ① 2H2S + 3O2 \xrightarrow{\text{\text{\text{\text{A}}}}} 2H2O + 2SO2 $
氧化剂:
② $Cu + 2H_2SO_4(१)$ $\xrightarrow{\Delta}$ $CuSO_4 + SO_2$ ↑ $+2H_2O$
氧化剂:
③ 2KMnO ₄ +16HCl → 2KCl + 2MnCl ₂ +5Cl ₂ ↑ +8H ₂ O
氧化剂:
$\textcircled{4} \text{ 4NH}_3 + 6\text{NO} \xrightarrow{\Delta} 5\text{N}_2 + 6\text{H}_2\text{O}$
氧化剂:
⑤ $Cl_2 + 6KOH(浓)$ $\xrightarrow{\Delta} 5KCl + KClO_3 + 3H_2O$
氧化剂:; 还原剂:

15. 某反应中反应物与生成物有: AsH_3 、 H_2SO_4 、 $KBrO_3$ 、 K_2SO_4 、 H_3AsO_4 、 H_2O 和一种未知物质 X 。
(1) 已知 KBrO ₃ 在反应中得到电子,则该反应的还原剂是。
(2) 已知 0. 2mol KBrO ₃ 在反应中得到 1mol 电子生成 X,则 X 的化学式为。
(3)根据上述反应可推知。
a. 氧化性: $KBrO_3>H_3AsO_4$ b. 氧化性: $H_3AsO_4>KBrO_3$
c. 还原性: AsH ₃ >X d. 还原性: X>AsH ₃
16. 已知将盐酸滴入高锰酸钾溶液中,产生黄绿色气体,而溶液的紫红色褪去,发生的反应:
$2KMnO4 + 16HCl \longrightarrow 2KCl + 2MnCl2 + 5Cl2 \uparrow +8H2O$
现有一个氧化还原反应中,已知反应物和生成物有 KCl 、 H_2SO_4 、 $KMnO_4$ 、 $MnSO_4$ 、 H_2O 、 K_2SO_4 、 Cl_2 。 (1) 已知该反应中, $KMnO_4$ 得到电子,写出一个包含上述七种物质的氧化还原反应方程(不需要配平)
(2) 上述反应中,1mol 氧化剂在反应中得到mol e
(3)如果在反应后的溶液中加入 NaBiO ₃ ,溶液又变回紫红色,请判断下列正确的是。
A. 氧化性: $BiO_3^- > MnO_4^- > Cl_2$ B. 氧化性: $BiO_3^- > Cl_2 > MnO_4^-$
C. 氧化性: MnO ₄ > BiO ₃ > Cl ₂ D. 氧化性: Cl ₂ > MnO ₄ > BiO ₃