New York University High Performance Computing

Shenglong Wang hpc@nyu.edu

Topics

- Prince cluster login
- Python virtual environments setup
- Jupyter notebook on HPC cluster
- Demo

Useful links

- NYU HPC wiki
 - https://wikis.nyu.edu/display/NYUHPC/High+Performance+Computing+at+NYU
 - http://bit.ly/nyuithpc
- Prince cluster and SLURM tutorial
 - https://wikis.nyu.edu/display/NYUHPC/Slurm+Tutorial
 - http://bit.ly/nyuithpcslurm
- Python virtual environments
 - https://media.readthedocs.org/pdf/virtualenv/latest/virtualenv.pdf
- TensorFlow
 - https://www.tensorflow.org/install/
 - https://www.tensorflow.org/install/gpu#software_requirements
- PyTorch
 - https://pytorch.org
- NYU VPN
 - https://www.nyu.edu/life/information-technology/getting-started/network-and-connectivity/vpn.html

Prince cluster logins

- hostname: prince.hpc.nyu.edu
- open to NYU subnet
- off campus
 - setup ssh tunneling through HPC gateways
 - use NYU VPN
- Command
 - from Mac/Linux

```
ssh sw77@prince.hpc.nyu.edu -Y
```

• from Windows: putty

Python virtual environments setup

to setup virtual enviorment

- module purge
- module load python3/intel/3.6.3
- mkdir ~/pyenv
- cd pyenv
- virtualenv --system-site-packages py3.6.3
- source ~/pyenv/py3.6.3/bin/activate

To install Jupyter

• pip install jupyter

to install PyTorch

- pip3 install http://download.pytorch.org/whl/cu92/torch-0.4.1-cp36-cp36m-linux x86 64.whl
- pip3 install torchvision

to install TensorFlow

- CPU version: pip install tensorflow
- GPU version: pip install tensorflow-gpu

TensorFlow GPU version has to work with module cudnn/9.0v7.3.0.29

Simple interactive test

```
srun --cpus-per-task=1 --gres=gpu:1 --mem=10GB --x11 --pty /bin/bash
[sw77@gpu-31~]$ module load python3/intel/3.6.3 cudnn/9.0v7.3.0.29
[sw77@gpu-31~]$ source ~/pyenv/py3.6.3/bin/activate
(py3.6.3) [sw77@gpu-31~]$ python -c "import torch; print(torch.__version__); print(torch.__file__)"
0.4.1
/home/sw77/pyenv/py3.6.3/lib/python3.6/site-packages/torch/__init__.py
(py3.6.3) [sw77@gpu-31 ~]$ python -c "import tensorflow as tf; print(tf.__version__); print(tf.__file__)"
1.10.1
/home/sw77/pyenv/py3.6.3/lib/python3.6/site-packages/tensorflow/ init .py
(py3.6.3) [sw77@gpu-31 ~]$ python -c "import tensorflow as tf; tf.Session()"
2018-09-27 13:44:55.268068: I tensorflow/core/platform/cpu feature guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2018-09-27 13:44:55.505032: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1405] Found device 0 with properties:
name: Tesla P40 major: 6 minor: 1 memoryClockRate(GHz): 1.531
pciBusID: 0000:84:00.0
totalMemory: 22.38GiB freeMemory: 22.22GiB
2018-09-27 13:44:55.505246: I tensorflow/core/common runtime/gpu/gpu device.cc:1484] Adding visible gpu devices: 0
2018-09-27 13:44:56.751112: I tensorflow/core/common runtime/gpu/gpu device.cc:965] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-09-27 13:44:56.751240: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 0
2018-09-27 13:44:56.751278: I tensorflow/core/common runtime/gpu/gpu device.cc:984] 0: N
2018-09-27 13:44:56.751805: I tensorflow/core/common runtime/gpu/gpu_device.cc:1097] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 21551 MB memory) -> physical GPU (device: 0, name: Tesla P40, pci bus id: 0000:84:00.0, compute capability: 6.1)
(py3.6.3) [sw77@gpu-31~]$
```

Jupyter notebook setup

- implement a SBATCH script, submit job to queue to run Jupyter server on a GPU node
- after job gets run, check SLURM log file for setup instructions
- setup ssh tunneling from local computer to prince cluster

ssh -L 8468:localhost:8468 sw77@prince.hpc.nyu.edu

open web browser to connect to Jupyter server with url

http://localhost:8468/?token=aaf8434775ac4a3429533eca2b01933961d2da82b8778a43

examples are in the folder

/share/apps/examples/vision-ml

Storage allocations and shared work space

- Different file systems for different purposes
- /home: source code, scripts, executables, libraries, ...
- /scratch: job running, big input/output files
- /beegfs: jobs running, small IOs, good for ML projects
- /archive: long term storage
- /state/partition1: local on the compute nodes for temporary files

Mount point	Quota	Backup?	Availability	Variables	Value	
/home	20GB	Yes	all nodes	\$HOME	/home/\$USER	bBackup with 30-day snapshots
/beegfs	2TB/3M inodes	No	all nodes	\$BEEGFS	/beegfs/\$USER	60 days cleanup policy
/scratch	5TB/1M inodes	No	all nodes	\$SCRATCH	/scratch/\$USER	60 days cleanup policy
/archive	2ТВ	Yes	login nodes	\$ARCHIVE		bBackup with 30-day snapshots
/state/partition1	~100GB	No	compute nodes	\$SLURM_JOBTMP		cleanup after job finishes