Cost of Not Arbitrarily Splitting in Routing

Yingjie Bi and Kevin Tang

School of Electrical and Computer Engineering
Cornell University

Oct 12, 2017

Outline

Problem Formulation

Bounding the Performance Gap

Routing Optimization with Split Ratio Granularity Constraints

Introduction

- Practical restrictions can prevent an optimized routing solution to be fully realized.
- Routers can put additional restrictions on routing solutions such as:
 - At most W paths are allowed for each source-destination pair (Path cardinality constraints).
 - ► There is a minimum granularity for the split ratio (Split ratio granularity constraints).

Introduction

- Multipath routing achieves the best performance, but is hard to implement. Single-path routing is opposite.
- When the split ratio granularity becomes larger, routing performance decreases but implementation overhead also decreases.

Two Basic Questions

- ► How to estimate the performance gap between the multipath routing and routing with split ratio granularity constraints?
- ► How to find a good approximate solution to the split ratio granularity problem?

Notation

- Number of links L = 5. Number of users N = 2. Number of paths each user has K¹ = K² = 2.
- ▶ The paths of user *i* are represented by

$$R^1 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad R^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Put $R_{lk}^i = 1$ if path k of user i passes through link l.

Notation

- Link capacity $c = (c_1, \ldots, c_5)^T$.
- ► The *k*th entry x_k^i of vector x^i is the sending rate of user *i* on path *k*.
- ► The utility $U^i(\cdot)$ of user i is a function of its total transmission rate $\|x^i\|_1$.
- We focus on two common utility functions:
 - ▶ Linear utility $U^i(s) = s$.
 - ▶ Logarithmic utility $U^i(s) = \log s$.

Multipath Routing

The network utility maximization (NUM) problem with multipath routing:

$$\max \sum_{i=1}^{N} U^{i} \left(\|x^{i}\|_{1} \right)$$
s. t.
$$\sum_{i=1}^{N} R^{i} x^{i} \leq c,$$

$$x^{i} \in \mathcal{I}_{K^{i}}, \quad \forall i = 1, \dots, N.$$

- ▶ Here $\mathcal{I}_K = \{x \in \mathbb{R}^K | 0 \le x_k \le ||c||_{\infty}, k = 1, ..., K\}$, while $||c||_{\infty}$ is the maximum capacity among all links in the network.
- ▶ Without loss of generality, assume $||c||_{\infty} = 1$.
- ▶ Replace \mathcal{I}_K by a smaller set to introduce split ratio granularity constraints.

Split Ratio Granularity Constraints

- Suppose the split ratio of each user needs to be a multiple of 1/p, where p is a given integer.
- Choose the set

$$\mathcal{S}_{\mathcal{K}} = \{0\} \cup \left\{ x \in \mathcal{I}_{\mathcal{K}} \middle| x \neq 0, \frac{px_k}{\|x\|_1} \in \mathbb{Z}, k = 1, \dots, \mathcal{K} \right\}$$

to replace $\mathcal{I}_{\mathcal{K}}$ in the NUM problem.

p = 5

Outline

Problem Formulation

Bounding the Performance Gap

Routing Optimization with Split Ratio Granularity Constraints

Bounding the Performance Gap

- ▶ There exists an optimal solution to the multipath problem sending positive rates on at most N + L paths.
- ▶ For the linear utility case, the performance gap is bounded by

$$\max \quad \sum_{i=1}^{N} \rho_{\tilde{K}^i}$$
s. t.
$$\sum_{i=1}^{N} \tilde{K}^i \leq N + L,$$

$$0 \leq \tilde{K}^i \leq K^i, \ \tilde{K}^i \in \mathbb{Z}, \quad \forall i = 1, \dots, N.$$

Optimal Rounding

For a rate vector x, the optimal rounding y of x is a rate vector maximizing the total transmission rate such that the split ratio granularity constraints are satisfied and $y \le x$.

- ho_K is the maximum throughput loss during the rounding for a user using K paths.
- For the logarithmic utility case, ρ_K is replaced by $\log \rho_K^R$, which is the maximum relative throughput loss during rounding.

$$\rho_K = \max_{\Gamma = p, \dots, p+K-1} \frac{\Gamma - p}{\lceil \Gamma/K \rceil}, \quad \rho_K^R = \frac{K-1}{p+K-1}.$$

Outline

Problem Formulation

Bounding the Performance Gap

Routing Optimization with Split Ratio Granularity Constraints

Solving the Split Ratio Granularity Problem

- ▶ NP-hard to find the optimal solution to the split ratio granularity problem.
- ► The approach mentioned above provides an approximate solution based on the multipath problem.
- Can find a tighter relaxation that leads to a better performance guarantee.

Convex Relaxation

Replace the constraint set \mathcal{S}_K in the split ratio granularity problem by a convex set \mathcal{T}_K satisfying $\mathcal{S}_K \subseteq \mathcal{T}_K \subseteq \mathcal{I}_K$:

$$\mathcal{T}_{\mathcal{K}} = \{ x \in \mathcal{I}_{\mathcal{K}} | \|x\|_1 \le C_{\mathcal{K}} \}.$$

Here C_K is the maximum throughput over all rate vectors in S_K .

Convex Relaxation

- ▶ The performance guarantee for the approximation algorithm using convex relaxation is determined by ρ_K^C , which is the maximum throughput loss during the rounding for a rate vector in \mathcal{T}_K .
- ρ_K^C is either equal to ρ_K or

$$\frac{K-1}{p+K-1}C_K.$$

Summary

Thank You!