Rank-35 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_2^3 + X_0^2 X_1 = 0$$

General information

Number of lines	3
Number of points	7
Number of singular points	3
Number of Eckardt points	1
Number of double points	0
Number of single points	6
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{3}
Type of lines on points	$3, 1^6$

Singular Points

The surface has 3 singular points:

$$0: P_1 = \mathbf{P}(0,1,0,0) = \mathbf{P}(0,1,0,0)$$

$$1: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1)$$

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_6 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_6 = \mathbf{Pl}(0, 0, 0, 0, 1, 0)_9$$

$$\ell_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \mathbf{Pl}(0, 0, 0, 1, 0, 0)_5$$

$$\ell_2 = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{27} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{27} = \mathbf{Pl}(0, 1, 0, 1, 1, 0)_{17}$$

Rank of lines: (6, 30, 27)

Rank of points on Klein quadric: (9, 5, 17)

Eckardt Points

The surface has 1 Eckardt points:

$$0: P_3 = \mathbf{P}(0, 0, 0, 1) = \mathbf{P}(0, 0, 0, 1). T = -1$$

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 6 single points:

The single points on the surface are:

 $0: P_0 = (1, 0, 0, 0)$ lies on line ℓ_0

1: $P_1 = (0, 1, 0, 0)$ lies on line ℓ_1

2: $P_4 = (1, 1, 1, 1)$ lies on line ℓ_2

 $3: P_8 = (1, 1, 1, 0)$ lies on line ℓ_2

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line:

The points on the surface but not on lines are:

Line Intersection Graph

$$\begin{array}{c|c}
 & 0 & 1 & 2 \\
\hline
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
2 & 1 & 1 & 0
\end{array}$$

4: $P_9 = (1, 0, 0, 1)$ lies on line ℓ_0

5: $P_{10} = (0, 1, 0, 1)$ lies on line ℓ_1

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_3	P_3

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_3	P_3

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_3	P_3

The surface has 7 points:

The points on the surface are:

$$0: P_0 = (1,0,0,0)$$

$$3: P_4 = (1,1,1,1)$$

$$6: P_{10} = (0, 1, 0, 1)$$

$$0: P_0 = (1, 0, 0, 0) 1: P_1 = (0, 1, 0, 0) 2: P_3 = (0, 0, 0, 1)$$

$$4: P_8 = (1, 1, 1, 0)$$

$$2: P_3 = (0, 0, 0, 1)$$

$$3: P_4 = (1, 1, 1, 1)$$

 $4: P_8 = (1, 1, 1, 0)$
 $5: P_9 = (1, 0, 0, 1)$