COMPUTABILITY (14/12/2023)

I RECURSION THEOREM

return
$$f(x) + 1$$

return res

* functionals

$$\Phi: \mathcal{A}(\mathbb{N}_{k}) \to \mathcal{A}(\mathbb{N}_{k})$$

total

What is a functional Φ RECURSIVE (computable)?

Example: successor

where
$$SUCC(f)(x) = f(x) + 1$$

Example: factorial

$$\int act(x) = \begin{cases} 1 & \text{if } x=0 \\ x \times fact(x-1) & \text{if } x>0 \end{cases}$$

$$f \mapsto \bar{\Phi}_{fact}(f)$$

where
$$\oint_{\text{fact}} (f)(x) = \begin{cases}
1 & \text{if } x=0 \\
x \times f(x-1) & \text{if } x>0
\end{cases}$$

them the factorial fact:
$$|N \rightarrow N|$$
 is a fixed point of Φ_{fact} , i.e. a function $f: |N \rightarrow N|$ st.)

$$\Phi_{fact}(f) = f$$
in this cost the fixpoint exists unique

Example:

$$f: \mathbb{N} \to \mathbb{N}$$

$$f(x) = \begin{cases} 0 & \text{if } x = 0 \\ f(x+1) & \text{if } x > 0 \end{cases}$$

$$f(0) = 0$$
 $f(2) = ?$

$$\tilde{\Phi}(f)(x) = \begin{cases}
0 & \text{if } x=0 \\
f(x+1) & \text{if } x>0
\end{cases}$$

there are many fixed points for Φ

$$f(m) = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{if } x > 0 \end{cases}$$
This is what a programmer means

$$f_{K}(m) = \begin{cases} 0 & \text{if } x = 0 \\ K & \text{if } x > 0 \end{cases}$$
 for $K \in IN$

$$\begin{cases} \psi(0, y) = y+1 \\ \psi(x+1, 0) = \psi(x, 1) \\ \psi(x+1, y+1) = \psi(x, y) \end{cases}$$

functional
$$\Upsilon: \Im(IN^2) \rightarrow \Im(IN^2)$$

$$\begin{cases} T(f)(o,y) = y+1 \\ T(f)(x+1,0) = f(x,1) \\ T(f)(x+1,y+1) = f(x+1,f(x,y+1)) \end{cases}$$

y axermamm's function is some "special" fixpoint of I.

* What is a recursive (computable) functional?

idea: Given \$\(\D\)\ \(\D\)\ \(\D\)\ \(\D\)\)

we ask that for all $\vec{z} \in \mathbb{N}^n$

 $\Phi(f)(\vec{x})$ is computable

- -> using a fimite amount of imformation on f i.e. values of f over a fimite number of imputs
- the fimite amount of imformation is processed in an "effective way"

more precisely, in order to compute $\Phi(f)(\vec{z})$

- we use a fimite subfunction DEf

in a computable way i.e. there is op computable (in the old sense)

$$\Phi(f)(\alpha) = \varphi(\partial, \vec{\alpha})$$

$$= \varphi(\vartheta, x)$$

$$= \varphi(\vartheta, x)$$

$$= \varphi(\vartheta, x)$$

NOTE: fimite functions can be emcoded os mumbers

$$\beta \longrightarrow \widetilde{\beta} \in \mathbb{N}$$

$$\Re(x) = \begin{cases} y_1 & \text{if } x = x_1 \\ y_2 & \text{if } x = x_2 \\ y_m & \text{if } x = x_m \\ \uparrow & \text{otherwise} \end{cases}$$

$$\widetilde{\beta} = \prod_{i=1}^{m} \rho_{x_{i}+1}^{y_{i+1}}$$

given the above

$$z \in dom(\theta)$$
 if $(\tilde{\theta})_{z+1} \neq 0$

If $z \in dom(\theta)$ then $\theta(z) = (\tilde{\theta})_{z+1} - 1$

Def (Recursive mchamal): A functional $\Phi: \mathcal{F}(IN^k) \to \mathcal{F}(IN^h)$ is recursive if there is a total computable function $P: IN^{h+1} \to IN \quad \text{such that} \quad \text{for all} \quad \mathcal{F} \in \mathcal{F}(IN^k)$ for all $\mathcal{F} \in IN^h$

$$\Phi(f)(\vec{z}) = y$$
 iff there exists $\theta = f$ s.t. $\phi(\vec{\theta}, \vec{z}) = y$

All the functionals that we considered above are recursive.

OBSERVATION: Let $\Phi: \mathcal{F}(\mathbb{N}^{K}) \to \mathcal{F}(\mathbb{N}^{N})$ be a recursive functional and $f \in \mathcal{F}(\mathbb{N}^{K})$.

If f is computable then $\Phi(f)$ is computable

OBSERVATION: Let
$$\Phi: \mathcal{F}(IN^2) \to \mathcal{F}(IN^2)$$
 be a recursive functional if $f: IN \to IN$ is computable then $\Phi(f): IN \to IN$ computable $f: Pe$ een $\Phi(f) = Pa$ aen $\Phi(f) = Pa$ and $\Phi(f) = Pa$ aen $\Phi(f) = Pa$ and $\Phi(f) = Pa$

hence Φ induces a function over programs $h_{\underline{\Phi}}: |N-\!\!\!> |N|$

$$e \mapsto h_{\Phi}(e) = \alpha$$
 s.t. $\Phi(\varphi_e) = \varphi_{h_{\Phi}(e)}$

 $\frac{\text{extensiomal}}{\text{them}}: \quad \forall e, e' \in \mathbb{N} \quad \text{s.t.} \quad \varphi_e = \varphi_{e'}$ $\text{them} \quad \varphi_{h_{\frac{1}{2}}(e)} = \quad \varphi_{h_{\frac{1}{2}(e')}}$

Myhill - Shepherdsom's theorem

(1) Let $\Phi: \mathcal{F}(\mathbb{N}^k) \to \mathcal{F}(\mathbb{N}^i)$ be a recursive function.

Them there exists a total computable function $h_{\bar{\Phi}}: IN \to IN$ st. $\forall e \in IN$ $\Phi\left(q_e^{(\kappa)}\right) = \varphi_{h_{\bar{\Phi}}(e)}^{(i)}$ and $h_{\bar{\Phi}}$ is extensional

(2) Let h: $|N \to N|$ be a total computable function and h extensional. Then there is a unique treaturive functional $\Phi: {}^{4}(N^{k}) \to {}^{4}(N^{i})$

s.t. for all e \ IN

$$\Phi \left(\varphi_e^{(k)} \right) = \varphi_{h(e)}^{(i)}$$

· extensional program transformation h

I Recursion Theorem

Let $\Phi: \mathcal{F}(IN^k) \to \mathcal{F}(IN^k)$ be a rewronce functional.

Them Φ has a least fixed point $f_{\Phi}: \mathbb{N}^{k} \to \mathbb{N}$ which is computable i.e.

(i)
$$\Phi(f_{\bar{\Phi}}) = f_{\bar{\Phi}}$$

(ii)
$$\forall g \in \mathcal{F}(\mathbb{N}^K)$$
 s.t $\Phi(g) = g$ it holds that $f_{\underline{\Phi}} \subseteq g$

(iii) for is computable

Example: Ackermamm's function

 $\Psi: \mathcal{S}(\mathbb{N}^2) \to \mathcal{S}(\mathbb{N}^2)$

 $\Psi: \mathcal{Y}(\mathbb{N}^2) \rightarrow \mathcal{Y}(\mathbb{N}^2)$

$$\begin{cases} T(f)(0,y) = y+1 \\ T(f)(x+1,0) = f(x,1) \\ T(f)(x+1,y+1) = f(x+1,f(x,y+1)) \end{cases}$$

recursive functional

the Ackermamm function ψ is the least fixed point of Γ which exists and is computable by Γ Recursion Theorem.

(fixpoint is unique since it is total)

Example:

$$f(x) = \begin{cases} 0 & \text{if } x = 0 \\ f(x+1) & \text{if } x > 0 \end{cases}$$

functional

$$\tilde{\Phi}(f)(x) = \begin{cases} 0 \\ f(x+1) \end{cases}$$

there are many fixed points for

 $f(m) = \begin{cases} 0 & \text{if } x = 0 \\ \uparrow & \text{if } x > 0 \end{cases}$

$$f_{K}(m) = \begin{cases} 0 & \text{if } x > 0 \\ K & \text{if } x > 0 \end{cases}$$

We want this because it is the least fix point!!!

Example: mimimaliso.hom

com be seem as a least fixed point

$$\Phi(g)(\vec{z},y) = \begin{cases} g \\ g(\vec{z},y+\iota) \end{cases}$$

if
$$f(\vec{z}, y) = 0$$

if $f(\vec{z}, y) \downarrow$ and ± 0
otherwise

least fixed point is m: IN K+1 -> IN

$$m(\vec{z}, y) = \mu z y \cdot f(\vec{z}, z)$$

computable
by I Recursion Theorem

hence

$$m(\vec{x},0) = \mu z. f(\vec{x},z)$$