A SAS® Macro for Calibration of Survey Weights

Tony An, PhD SAS Institute Inc.

Ssas

%SurveyCalibrate: A Supplement to the SAS Survey PROCs

- PROC SURVEYSELECT
- PROC SURVEYIMPUTE
- PROC SURVEYMEANS
- PROC SURVEYFREQ
- PROC SURVEYREG
- PROC SURVEYLOGISTIC
- PROC SURVEYPHREG

Requires SAS/STAT and SAS/IML to run the macro

Outline

- Introduction
- Calibration methods
- %SurveyCalibrate macro
- Example
- Discussion

Sampling Weights

- Reduce bias
- Reflect sample design
- Adjust for nonresponses
- Estimate the variance

Weight Adjustments

- Nonresponse adjustment to reduce bias
- Weight trimming and smoothing
- Calibration to match the known population totals for some auxiliary variables (such as demographic variables)

Example

- Restaurant utility usage
- Franchise or independent
- Known number of restaurants in each category

Weighted Sum of Restaurants

Restaurant Type	Sum in Sample	Known Totals
Franchise	231	251
Independent	267	210

Ssas

Remedy - Calibration

- Adjust the weights -> calibration weights
- Calibration weights are as "close" as possible to the original weights
- Estimates over control variables with calibration weights match known quantities

Calibration Method

- Define a distance function *G* to measure the "closeness" between two sets of weights
- Find a solution that minimizes G under the constraints matching known population totals T for a set of controls variables X

Calibration Method

$$\sum_{i=1}^{n} w_{i} G(\tilde{w}_{i}, w_{i}) = \min_{\{\mathbf{v}: \sum_{i=1}^{n} v_{i} \mathbf{x}_{i} = \mathbf{T}\}} \sum_{i=1}^{n} w_{i} G(v_{i}, w_{i})$$

$$\tilde{w}_i = w_i \psi(\hat{\lambda}' \mathbf{x}_i)$$

$$\sum_{i=1}^n w_i \psi(\hat{\lambda}' \mathbf{x}_i) \mathbf{x}_i = \mathbf{T}$$

Common Calibration Methods

- Linear
- Exponential (raking)
- Truncated linear
- Logit (truncated exponential)

Linear Method

Distance function:

Calibration weights:

$$G(v, w) = \frac{1}{2}(v/w - 1)^2$$

$$\tilde{w}_{i} = w_{i}(1 + \hat{\lambda}'\mathbf{x}_{i})$$

$$= w_{i}\left(1 + \mathbf{x}'_{i}\left(\sum_{i=1}^{n} w_{i}\mathbf{x}_{i}\mathbf{x}'_{i}\right)^{-1}\left(\mathbf{T} - \sum_{i=1}^{n} w_{i}\mathbf{x}_{i}\right)\right)$$

$$\hat{\lambda} = \left(\sum_{i=1}^{n} w_i \mathbf{x}_i \mathbf{x}_i'\right)^{-1} \left(\mathbf{T} - \sum_{i=1}^{n} w_i \mathbf{x}_i\right)$$

Linear Methods

- A solution always exists
- Might have negative calibration weights

Ssas

Exponential Method

Distance function:

$$G(v, w) = 1 + \frac{v}{w} \left(\log \left(\frac{v}{w} \right) - 1 \right)$$

Calibration weights:

$$\tilde{w}_i = w_i \exp(\hat{\lambda}' \mathbf{x}_i)$$

Exponential Method

- Calibration weights always positive
- Might produce extremely large weights
- Solution might not exist
- Equivalent to the raking method when there are two categorical control variables

Truncated Linear Method

Distance function:

$$G(v,w) = \begin{cases} \frac{1}{2}(\frac{v}{w} - 1)^2 & \text{if } L < \frac{v}{w} < U \\ \infty & \text{otherwise} \end{cases}$$

Calibration weights:

$$\tilde{w}_i = \begin{cases} w_i L & \text{if } \hat{\lambda}' \mathbf{x}_i < L - 1 \\ w_i (1 + \hat{\lambda}' \mathbf{x}_i) & \text{if } L - 1 \le \hat{\lambda}' \mathbf{x}_i \le U - 1 \\ w_i U & \text{if } \hat{\lambda}' \mathbf{x}_i > U - 1 \end{cases}$$

Truncated Linear Methods

- Weights are bounded
- Solution might not exist
- Computation requires more resources
- The macro can choose the lower, upper, or both bounds for you

Ssas

LOGIT Method

Distance function:

$$G(v,w) = \begin{cases} \left(\left(\frac{v}{w} - L \right) \log \left(\frac{v/w - L}{1 - L} \right) + \left(U - \frac{v}{w} \right) \log \left(\frac{U - v/w}{U - 1} \right) \right) \frac{(U - L)w}{(1 - L)(U - 1)} & \text{if } L < v/w < U \\ \infty & \text{otherwise} \end{cases}$$

Calibration weights:

$$\tilde{w}_i = w_i \psi(\hat{\lambda}' \mathbf{x}_i)$$

LOGIT Methods

- It's also called the truncated exponential method
- Weights are bounded
- Solution might not exist
- Computation requires more resources

%SurveyCalibrate Macro

```
%macro SurveyCalibrate(
DATA=,
            /* Input data set name
OUT=,
            /* Output data set name
                                                                           */
/* Calibration parameters
METHOD=,
            /* LINEAR | EXPONENTIAL | TRUNLINEAR | LOGIT
WEIGHT=,
            /* Original weight variable
            /* Calibration weight variable, default CalWt
CALWT=,
CONTROLVAR=, /* Auxiliary control variables for calibration
CTRLTOTAL=, /* Marginal totals for CONTROLVAR
EPS=.
            /* Convergence criterion for stopping iteration, default=0.01 */
            /* Maximum number of iteration, default=25
MAXITER=,
LOWER=,
            /* Lower bound, must be in (0,1)
                                                                           */
UPPER=,
            /* Upper bound, must be bigger than 1 or .
NOINT=,
            /* Do not keep sum of sampling weights unchanged
/* Replication parameters
            /* Request no replicate weights
NOREPWT=,
VARMETHOD=, /* BRR | JK | BOOTSTRAP, default is JK
REPS=,
            /* Number of replicates for bootstrap or brr
CLUSTER=,
            /* Cluster variables
STRATA=,
            /* Strata variables
SEED=.
            /* Random seed
FAY=,
            /* Fay coefficient for BRR varmethod
RATE=,
            /* FPC for bootstrap replicate weights
OUTJKCOEFS=, /* OUTJKCOEFS data set
REPWEIGHTS= /* Replicate weight variables
```


Macro Parameters

- Calibration parameters
- Replication parameters
- Some parameters can be left blank

Required Calibration Parameters

```
%SurveyCalibrate(
DATA= /* Input data set name */,
OUT= /* Output data set name */,
WEIGHT=/* Original weight variable */,
CONTROLVAR=/* Auxiliary control variables for calibration */,
CTRLTOTAL= /* Marginal totals for CONTROLVAR */
)
```


Specifying Controls

CONTROLVAR=/* Auxiliary control variables for calibration */

- Control variables can be either continuous or categorical variables
- For categorical variables, you need to create indicator variables with data step before calling the macro

Optional Calibration Parameters

```
METHOD= /* LINEAR | EXPONENTIAL | TRUNLINEAR | LOGIT */
CALWT= /* Calibration weight variable, default CalWt */
EPS= /* Convergence criterion for stopping iteration, default=0.01 */
MAXITER= /* Maximum number of iteration, default=25 */
LOWER= /* Lower bound, must be in (0,1) */
UPPER= /* Upper bound, must be bigger than 1 or . */
NOINT= /* Do not keep sum of sampling weights unchanged */
```


Calibration for Replicates

- Use the same calibration method for each replicate
- Ensure the correct variance estimation after the calibration
- Skip if no variance estimation needed

Replication Parameters

- NOREPWT= /* Request no replicate weights */
- VARMETHOD= /* BRR | JK | BOOTSTRAP, default is JK */
- REPS= /* Number of replicates for bootstrap or brr */
- CLUSTER= /* Cluster variables */
- STRATA= /* Strata variables */
- SEED= /* Random seed */
- FAY= /* Fay coefficient for BRR varmethod */
- RATE= /* FPC for bootstrap replicate weights */
- OUTJKCOEFS=/* OUTJKCOEFS data set */
- REPWEIGHTS= /* Replicate weight variables */

Example

- National Health and Nutrition Examination Survey I (NHANES I)
 Epidemiologic Followup Study (NHEFS)
- 174 observations from the 1992 NHEFS vital and tracing status data set

Variables in the Data Set

- ID, unit identification
- VarStrata, stratum identification
- VarPSU, identification for primary sampling units
- SWeight, sampling weight associated with each unit
- Age, the subject's reported age at the 1992 interview
- VitalStatus, vital status of subject in 1992 contact
- PovArInd, indicator subject's household location in terms of poverty area (1 = poverty area, 2 = nonpoverty area)
- **Gender**, gender of subject (1 = male, 2 = female)

Known Totals vs. Reality

PovArInd	Known Population	Sample Estimate	Gender	Known Population	Sample Estimate
Poverty	536207	1507352	Male	3503378	3018151
Nonpoverty	6554845	5583700	Female	3587674	4072901

Create Indicator Variables

```
data Mortality; set Mortality;
  Poverty=0; NonPoverty=0; Male=0; Female=0;
  if (Gender=1) then Male =1;
  if (Gender=2) then Female =1;
  if (PovArInd=1) then Poverty =1;
  if (PovArInd=2) then NonPoverty=1;
run;
```


Calibration

```
%SurveyCalibrate(
   DATA
                  = Mortality,
                  = Final,
   OUT
                  = SWeight,
   WEIGHT
                  = Poverty NonPoverty Male
                                                  Female,
   CONTROLVAR
                                         3503378
   CTRLTOTAL
                  = 536207
                             6554845
                                                  3587674,
                  = TRUNLINEAR,
   METHOD
                  = 2.0,
   UPPER
                  = bootstrap,
   VARMETHOD
                  = 100,
   SEED
   CLUSTER
                  = VarPSU,
   STRATA
                  = VarStrata
);
```


Macro Log Messages

• NOTE: After 7 iterations, the lower bound is set to LOWER=0.3522109375

for the TRUNLINEAR method.

• NOTE: The calibration weights Cal_Sweight are created by using the TRUNLINEAR method with LOWER=0.3522109375 and UPPER=2 bounds.

Results

PovArInd	Known Population	Sample Estimate	After Calibration	Gender	Known Population	Sample Estimate	After Calibration
Poverty	536207	1507352	536207	Male	3503378	3018151	3503378
Non- poverty	6554845	5583700	6554845	Female	3587674	4072901	3587674

Analysis

	Using Origi	nal Weights	Using Calibration Weights		
Variable	Mean	Std Error	Mean	Std Error	
Age	65.073909	0.949498	65.126584	1.155297	
VitalStatus=1	0.644459	0.034795	0.659089	0.036309	
VitalStatus=3	0.267700	0.028865	0.270262	0.029592	
VitalStatus=4	0.034766	0.011432	0.026019	0.016890	
VitalStatus=5	0.016649	0.012291	0.012743	0.013272	
VitalStatus=6	0.036426	0.028146	0.031887	0.028144	

Ssas

Discussion

- No magic rule for choosing a calibration method
- Use the linear method first
- Try the exponential method if the linear method fails
- Compromise with truncated linear or logit methods at the price of computation resources
- Experiment with different settings

Summary

- Flexible and easy to use
- Accommodates most calibration needs
- Provides replicate weights for future analyses
- Leave optional parameters blank if not sure what to use

How to Get the Macro

Contact: Tony.An@sas.com

https://github.com/tony-an-sas/SASWeightCalibration

Ssas