KNN

2018年2月23日

0.1 数据读取

```
In [1]: import pandas as pd
        dc_all_listings = pd.read_csv('listings.csv')
        print(dc_all_listings.shape)
        dc_all_listings.head()
(3723, 92)
Out[1]:
                id
                                             listing_url
                                                                scrape_id last_scraped \
           7087327 https://www.airbnb.com/rooms/7087327
        0
                                                           20151002231825
                                                                            2015-10-03
                    https://www.airbnb.com/rooms/975833
        1
           975833
                                                           20151002231825
                                                                            2015-10-03
          8249488 https://www.airbnb.com/rooms/8249488
                                                           20151002231825
                                                                            2015-10-03
          8409022 https://www.airbnb.com/rooms/8409022
                                                           20151002231825
                                                                            2015-10-03
         8411173 https://www.airbnb.com/rooms/8411173
                                                           20151002231825
                                                                            2015-10-03
                                         name
          Historic DC Condo-Walk to Capitol!
        1
              Spacious Capitol Hill Townhouse
        2
             Spacious/private room for single
        3
             A wonderful bedroom with library
        4
                       Downtown Silver Spring
                                                     summary \
        0
          Professional pictures coming soon! Welcome to ...
                                                         NaN
        1
          This is an ideal room for a single traveler th...
        2
          Prime location right on the Potomac River in W...
          Hi travellers! I live in this peaceful spot, b...
                                                       space \
```

```
0
                                                   NaN
1
  Beautifully renovated Capitol Hill townhouse. ...
2
                                                   NaN
3
                                                   NaN
  This is a 750 sq ft 1 bedroom 1 bathroom.
                                               Whi...
                                          description experiences_offered \
  Professional pictures coming soon! Welcome to ...
                                                                       none
  Beautifully renovated Capitol Hill townhouse. ...
                                                                      none
  This is an ideal room for a single traveler th...
                                                                       none
3 Prime location right on the Potomac River in W...
                                                                       none
4 Hi travellers! I live in this peaceful spot, b...
                                                                      none
                                neighborhood_overview
                                                                           \
0
                                                   NaN
1
                                                   NaN
2
                                                   NaN
3
                                                   NaN
  Silver Spring is booming. You can walk to a n...
 review_scores_value requires_license license
0
                  NaN
                                      f
                                            NaN
1
                  9.0
                                      f
                                            NaN
2
                  NaN
                                      f
                                            NaN
3
                  NaN
                                      f
                                            NaN
4
                  NaN
                                            NaN
                 jurisdiction_names instant_bookable cancellation_policy \
  DISTRICT OF COLUMBIA, WASHINGTON
                                                     f
0
                                                                  flexible
  DISTRICT OF COLUMBIA, WASHINGTON
1
                                                     f
                                                                     strict
2
                                 NaN
                                                                  flexible
3
  DISTRICT OF COLUMBIA, WASHINGTON
                                                                  flexible
                                                     f
4
                                                     f
                                                                  flexible
                                 NaN
  require_guest_profile_picture require_guest_phone_verification
0
                                f
                                                                  f
1
                                f
                                                                  f
2
                                f
                                                                  f
3
                                f
                                                                   f
```

4 f f calculated_host_listings_count reviews_per_month 0 18 NaN 2.11 1 1 2 1.00 1 3 NaNNaN [5 rows x 92 columns]

print(dc_listings.shape)
dc_listings.head()

(3723, 8)

Out[2]:	${\tt accommodates}$	bedrooms	bathrooms	beds	price	minimum_nights	\
0	4	1.0	1.0	2.0	\$160.00	1	
1	6	3.0	3.0	3.0	\$350.00	2	
2	1	1.0	2.0	1.0	\$50.00	2	
3	2	1.0	1.0	1.0	\$95.00	1	
4	4	1.0	1.0	1.0	\$50.00	7	

number_of_reviews	maximum_nights	
0	1125	0
65	30	1
1	1125	2
0	1125	3
0	1125	4

数据特征:

• accommodates: 可以容纳的旅客

bedrooms: 卧室的数量bathrooms: 厕所的数量

beds: 床的数量price: 每晚的费用

minimum_nights: 客人最少租了几天maximum_nights: 客人最多租了几天

• number_of_reviews: 评论的数量

0.2 各个特征的描述统计

```
In [3]: # dc_listings.insert (5,'price_num',dc_listings['price'])
        # print ("insert")
        #import string
        #for i in dc_listings['price_num']:
             dc listings[5,i].split('$')[0]
        dc_listings['price'] = dc_listings.price.str.replace("\$|,",'').astype(float)
        #dc_listings['price_num'].replace('$','')
        print (dc_listings.head())
        print (dc_listings.describe())
   accommodates
                 bedrooms
                            bathrooms
                                        beds
                                             price
                                                      minimum_nights
0
              4
                                              160.0
                       1.0
                                   1.0
                                         2.0
                                                                    1
1
              6
                       3.0
                                   3.0
                                         3.0
                                              350.0
                                                                    2
2
              1
                       1.0
                                   2.0
                                         1.0
                                               50.0
                                                                    2
              2
3
                       1.0
                                   1.0
                                         1.0
                                               95.0
                                                                    1
                                                                    7
4
              4
                       1.0
                                   1.0
                                         1.0
                                               50.0
   maximum_nights
                   number_of_reviews
0
             1125
                                     0
               30
                                    65
1
2
             1125
                                     1
                                     0
3
             1125
             1125
                                     0
       accommodates
                         bedrooms
                                      bathrooms
                                                         beds
                                                                      price
        3723.000000
                      3702.000000
                                                 3712.000000
                                                               3723.000000
                                    3696.000000
count
           3.195004
                         1.210157
                                       1.256358
                                                     1.643319
                                                                 149.165995
mean
std
           2.012216
                         0.839851
                                       0.585539
                                                     1.182117
                                                                 140.110699
           1.000000
                         0.000000
                                       0.000000
                                                     1.000000
                                                                 10.000000
min
25%
           2.000000
                         1.000000
                                       1.000000
                                                     1.000000
                                                                 85.000000
50%
                                       1.000000
           2.000000
                         1.000000
                                                     1.000000
                                                                 115.000000
           4.000000
75%
                         1.000000
                                       1.000000
                                                     2.000000
                                                                 165.000000
          16.000000
                        10.000000
                                       8.000000
max
                                                    16.000000
                                                               2822.000000
       minimum_nights
                       maximum_nights number_of_reviews
          3723.000000
                          3.723000e+03
                                               3723.000000
count
```

```
2.250067
                          5.803069e+05
                                                15.306742
mean
std
             3.622879
                          3.519552e+07
                                                29.645586
             1.000000
                          1.000000e+00
                                                 0.000000
min
25%
             1.000000
                          1.200000e+02
                                                 1.000000
50%
             2.000000
                          1.125000e+03
                                                 4.000000
75%
             3.000000
                          1.125000e+03
                                                16.000000
           180.000000
                          2.147484e+09
                                               362.000000
max
```

D:\Anaconda3\lib\site-packages\ipykernel_launcher.py:8: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#in

D:\Anaconda3\lib\site-packages\ipykernel_launcher.py:5: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#in

```
Out[4]: 0
                  461
                2294
         2
                  503
         3
                  279
         4
                   35
         5
                   73
         6
                   17
         7
                   22
                    7
         8
         9
                   12
```

Name: distance, dtype: int64

0.3 各个特征与价格的相关性

In [5]: dc_listings.corr()

Out[5]:		${\tt accommodates}$	bedrooms	bathrooms	beds	price	\
	accommodates	1.000000	0.719362	0.580176	0.811764	0.503120	
	bedrooms	0.719362	1.000000	0.697185	0.715324	0.521759	
	bathrooms	0.580176	0.697185	1.000000	0.585579	0.495966	
	beds	0.811764	0.715324	0.585579	1.000000	0.463642	
	price	0.503120	0.521759	0.495966	0.463642	1.000000	
	minimum_nights	0.013727	0.024945	0.033149	0.003847	0.014055	
	maximum_nights	0.022959	0.015532	-0.007106	0.018866	0.014744	
	number_of_reviews	0.009725	-0.051872	-0.037448	-0.009338	-0.084339	
	distance	0.766304	0.672660	0.580009	0.711561	0.405729	

	minimum_nights	maximum_nights	number_of_reviews	distance
accommodates	0.013727	0.022959	0.009725	0.766304
bedrooms	0.024945	0.015532	-0.051872	0.672660
bathrooms	0.033149	-0.007106	-0.037448	0.580009
beds	0.003847	0.018866	-0.009338	0.711561
price	0.014055	0.014744	-0.084339	0.405729
minimum_nights	1.000000	-0.001159	-0.020709	0.004866
maximum_nights	-0.001159	1.000000	-0.001862	0.018091
number_of_reviews	-0.020709	-0.001862	1.000000	-0.021972
distance	0.004866	0.018091	-0.021972	1.000000

Out[6]: 2645 75.0 2825 120.0 2145 90.0 2541 50.0 3349 105.0

Name: price, dtype: float64

```
计算平均价格
```

```
In [7]: mean_price = dc_listings.price.iloc[:5].mean()
       mean_price
Out[7]: 88.0
0.4 模型的评估
   首先制定好训练集和测试集
   loc 是根据 dataframe 的具体标签选取列,而 iloc 是根据标签所在的位置
In [8]: dc_listings.drop("distance",axis = 1)
       #2793 行前的作为训练集,之后剩余做为测试集
       train_df = dc_listings.copy().iloc[:2792]
       test_df = dc_listings.copy().iloc[2792:]
       #train_df.head()
   基于单变量预测价格
In [9]: def predict_price(new_listing_value,feature_column):
           temp_df = train_df
           temp_df['distance'] = np.abs(dc_listings[feature_column] - new_listing_value)
           temp_df = temp_df.sort_values('distance')
           knn_5 = temp_df.price.iloc[:5]
           predict_price = knn_5.mean()
           return (predict_price)
       test_df['predicted_price']=test_df.accommodates.apply(predict_price,feature_column = 'acco
       test_df['squared_error'] = (test_df['predicted_price'] - test_df['price'])**(2)
       mse = test_df['squared_error'].mean()
       rmse = mse**(1/2)
       rmse
Out[9]: 212.98927967051543
```

0.5 不同的变量效果会不会不同呢?

test_df['predicted_price'] = test_df.accommodates.apply(predict_price,feature_column=feature)

0.6 综合利用所有的信息来一起进行测试

StandardScaler 作用: 去均值和方差归一化。且是针对每一个特征维度来做的,而不是针对样本。normalized_listings 就是标准化后的数据集

```
Out[11]:
           accommodates bedrooms bathrooms
                                                  beds
                                                           price minimum_nights
        0
               0.401420 -0.249501 -0.439211 0.297386 0.081119
                                                                       -0.341421
               1.399466 2.129508
                                    2.969551 1.141704 1.462622
                                                                       -0.065047
         1
        2
              -1.095648 -0.249501 1.265170 -0.546933 -0.718699
                                                                       -0.065047
              -0.596625 -0.249501 -0.439211 -0.546933 -0.391501
         3
                                                                       -0.341421
               0.401420 -0.249501 -0.439211 -0.546933 -0.718699
         4
                                                                        1.316824
           maximum_nights number_of_reviews
        0
                -0.016575
                                   -0.516779
                -0.016606
         1
                                    1.706767
         2
                -0.016575
                                   -0.482571
                -0.016575
                                   -0.516779
                -0.016575
        4
                                   -0.516779
In [12]: norm_train_df = normalized_listings.copy().iloc[0:2792]
        norm_test_df = normalized_listings.copy().iloc[2792:]
   scipy 中已经有现成的距离的计算工具了
In [13]: from scipy.spatial import distance
        first_listing = normalized_listings.iloc[0][['accommodates', 'bathrooms']]
        fifth_listing = normalized_listings.iloc[20][['accommodates', 'bathrooms']]
        first_fifth_distance = distance.euclidean(first_listing, fifth_listing)
        first_fifth_distance
```

Out[13]: 3.7230196040170322

0.7 多变量 KNN 模型

语法: scipy.spatial.distance.cdist(XA, XB, metric='euclidean', p=None, V=None, VI=None, w=None),该函数用于计算两个输入集合的距离,通过 metric 参数指定计算距离的不同方式得到不同的距离度量值

metric 的取值如下:

- braycurtis
- canberra
- chebyshev: 切比雪夫距离
- cityblock
- correlation: 相关系数cosine: 余弦夹角
- dice

```
• euclidean: 欧式距离
  • hamming: 汉明距离
  • jaccard: 杰卡德相似系数

    kulsinski

  • mahalanobis: 马氏距离

    matching

  • minkowski: 闵可夫斯基距离

    rogerstanimoto

    russellrao

  • seuclidean: 标准化欧式距离

    sokalmichener

    sokalsneath

  • sqeuclidean
  • wminkowski
  • yule
   常见的欧氏距离计算:
In [14]: from scipy.spatial.distance import cdist
        import numpy as np
        x1 = np.array([(1,3),(2,4),(5,6)])
        x2 = [(3,7), (4,8), (6,9)]
        cdist(x1,x2,metric='euclidean')
Out[14]: array([[4.47213595, 5.83095189, 7.81024968],
               [3.16227766, 4.47213595, 6.40312424],
               [2.23606798, 2.23606798, 3.16227766]])
   解析上述计算过程: 结果数组中的第一行数据表示的是 x1 数组中第一个元素点与 x2 数组中各个
元素点的距离, 计算两点之间的距离
In [15]: def predict_price_multivariate(new_listing_value,feature_columns):
            temp_df = norm_train_df
            temp_df['distance'] = distance.cdist(temp_df[feature_columns],[new_listing_value[feat
            temp_df = temp_df.sort_values('distance')
            knn_5 = temp_df.price.iloc[:5]
            predicted_price = knn_5.mean()
            return(predicted_price)
```

norm_test_df['predicted_price'] = norm_test_df[cols].apply(predict_price_multivariate,fea
norm_test_df['squared_error'] = (norm_test_df['predicted_price'] - norm_test_df['price'])

In [16]: cols = ['accommodates', 'bathrooms']

```
mse = norm_test_df['squared_error'].mean()
rmse = mse ** (1/2)
print(rmse)
```

0.7894063922577537

0.8 使用 Sklearn 来完成 KNN

```
In [17]: from sklearn.neighbors import KNeighborsRegressor
         cols = ['accommodates','bedrooms']
        knn = KNeighborsRegressor()
        knn.fit(norm_train_df[cols], norm_train_df['price'])
         two_features_predictions = knn.predict(norm_test_df[cols])
In [18]: from sklearn.metrics import mean_squared_error
        two_features_mse = mean_squared_error(norm_test_df['price'], two_features_predictions)
        two_features_rmse = two_features_mse ** (1/2)
        print(two_features_rmse)
0.8426824704818202
   加入更多的特征
In [19]: knn = KNeighborsRegressor()
         cols = ['accommodates','bedrooms','bathrooms','beds','minimum_nights','maximum_nights','n
        knn.fit(norm_train_df[cols], norm_train_df['price'])
        four_features_predictions = knn.predict(norm_test_df[cols])
         four_features_mse = mean_squared_error(norm_test_df['price'], four_features_predictions)
         four_features_rmse = four_features_mse ** (1/2)
         four_features_rmse
Out[19]: 0.8243838530880285
```