

deeplearning.ai

Basics of Neural Network Programming Logistic Regression

Logistic Regression

Given
$$x$$
, want $\hat{y} = P(y=1|x)$
 $x \in \mathbb{R}^{n}x$
 $O \le \hat{y} \le 1$

Paranters: $w \in \mathbb{R}^{n}x$, $w \in \mathbb{R}^{n}x$.

Output $\hat{y} = \sigma(w^{T}x + b)$

Output $\hat{y} = \sigma(w^{T}x + b)$

$$X_0 = 1, \quad x \in \mathbb{R}^{n_x + 1}$$

$$Y = 6 (0^T x)$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

deeplearning.ai

Basics of Neural Network Programming Logistic Regression cost function

Logistic Regression cost function

Swhere
$$x^T x^{(i)} + b$$
, where $\sigma(z^{(i)}) = \frac{1}{1+e^{-z}}$ (i) $z^{(i)} = \omega^T x^{(i)} + b$

Given want $y^{(i)}$, $y^{(1)}$, ..., $y^{(m)}$, $y^{(m)}$, want $y^{(i)} \approx y^{(i)}$.

Loss (error) function: $\int_{z^{(i)}} (\hat{y}, y) = \frac{1}{z} (\hat{y} - y)^2$

The entropy of $\int_{z^{(i)}} (\hat{y}, y) = -\log \hat{y} + (1-y)\log(1-\hat{y}) + (1-y)\log(1-\hat{y})$

The entropy of $\int_{z^{(i)}} (\hat{y}, y) = -\log(1-\hat{y}) + \log(1-\hat{y}) \log(1-\hat{y}) \log(1-\hat{y}) \log(1-\hat{y}) \log(1-\hat{y}) \log(1-\hat{y})$

The entropy of $\int_{z^{(i)}} (\hat{y}, y) = -\log(1-\hat{y}) + \log(1-\hat{y}) \log(1-\hat{y}) \log(1-\hat{y}) \log(1-\hat{y}) \log(1-\hat{y})$

The entropy of $\int_{z^{(i)}} (\hat{y}, y) = -\log(1-\hat{y}) = -\log(1-\hat{y}) \log(1-\hat{y}) \log(1-\hat{y}) \log(1-\hat{y}) \log(1-\hat{y})$

The entropy of $\int_{z^{(i)}} (\hat{y}, y) = -\log(1-\hat{y}) \log(1-\hat{y}) \log(1-\hat{y}) \log(1-\hat{y}) \log(1-\hat{y}) \log(1-\hat{y})$

Andrew No