JINGHUI LIU

Born 1997 in Jiangxi, PRC | +49 152 0952 9478

Max Planck Institute for Physics of Complex Systems (PKS) & Cell Biology and Genetics (CBG), Dresden SN, Germany e: jinghui.liu@pks.mpg.de | web | ORCID | Bluesky | X

EDUCATION

Massachusetts Institute of Technology

Cambridge MA, US

Doctor of Philosophy in Physics

Sep. 2022

Thesis: "Topology, Symmetry and Mechanics: Deciphering and Controlling information flows in a living cell".

Supervisor: Prof. Nikta Fakhri.

Advisors: Prof. Jörn Dunkel, Prof. Mehran Kardar and Prof. Iain W. Stewart.

Peking University

Beijing, China

Bachelor of Science in Physics

Jul. 2016

RESEARCH INTERESTS

Bioelectricity, regenerative biology, cell and tissue mechanics, optogenetics, topological defects, experimental/theoretical biophysics, soft condensed matter, complex systems.

RESEARCH EXPERIENCE

Max Planck Institute for Molecular Cell Biology and Genetics (MPI-CBG)

Dresden SN, DE

Marie Skłodowska-Curie Postdoctoral Fellow | European Commission

Sep., 2025 (expected start date)

Max Planck Institute for the Physics of Complex Systems (MPI-PKS)

Dresden SN, DE

ELBE Postdoctoral Fellow | Center for Systems Biology Dresden (CSBD)

Oct. 2022 – Aug., 2025 (expected end date)

Advisors: Prof. Frank Jülicher, Prof. Stephan Grill and Dr. Rita Mateus.

Department of Physics, Massachusetts Institute of Technology

Cambridge MA, US

Graduate Research Assistant (Prof. Nikta Fakhri)

Sep. – Dec., 2016, 2017 – 2022

 $G1\ Rotation\ Intern\ (Prof.\ Leonid\ Mirny) \quad Feb.-Jun.,\ 2017\ |\ Undergraduate\ Research\ Intern\ (Prof.\ Jeff\ Gore) \\ \quad Jul.-Sep.,\ 2015\ |\ Undergraduate\ Research\ Intern\ (Prof.\ Jeff\ Gore)$

School of Physics, Peking University

Beijing, China

Undergraduate Research Assistant (Prof. Qi Ouyang)

2014 - 2016

Publications (Selected)

*: Authors contributed equally to the publication

†: Corresponding authors

- 1. **Jinghui Liu***, Elisa Nerli*, Charlie Duclut, Amit Singh Vishen, Naomi Berbée, Sylvia Kaufmann, Cesar Ponce, Aristides B Arrenberg, Frank Jülicher[†], Rita Mateus[†]. Injury-induced electrochemical coupling triggers regenerative cell proliferation. Submitted. | bioRxiv
- 2. **Jinghui Liu***, Tom Bukart*, Alex Ziepke, John Reinhard, Yu-Chen Chao, Tzer Han Tan, S. Zachary Swartz, Erwin Frey[†], Nikta Fakhri[†]. Light-induced cortical excitability reveals programmable shape dynamics in starfish oocytes. *Nature Physics* (2025). | Nat Phys
 - -- Featured in: Nature Physics Research Briefing | MIT News | Science Daily | Science Mag | PHYS.org
- 3. Tina Wiegand*, **Jinghui Liu***, Lutz Vogeley, Isabel LuValle-Burke, Jan Geisler, Anatol W. Fritsch, Anthony A. Hyman[†], Stephan W. Grill[†]. Actin polymerization counteracts prewetting of N-WASP on supported lipid bilayers. *Proceedings of the National Academy of Sciences*, 121,50 (2024). | PNAS
- 4. **Jinghui Liu**, Jan F. Totz, Pearson W. Miller, Alasdair D. Hastewell, Yu-Chen Chao, Jörn Dunkel[†], Nikta Fakhri[†]. Topological braiding and virtual particles on the cell membrane. *Proceedings of the National Academy of Sciences*, 118,34 (2021). | PNAS
 - -- Featured in: American Mathematical Society (AMS) Math in the Media
- 5. Tzer Han Tan*, **Jinghui Liu***, Pearson W. Miller*, Melis Tekant, Jörn Dunkel[†], Nikta Fakhri[†]. Topological turbulence on the membrane of a living cell. *Nature Physics*, 1-6 (2020). | Nat Phys
 - -- Featured in: Cover Article | Nature Research Highlights | Physics World Frontier | PHYS.org

- 10. Alasdair D. Hastewell*, **Jinghui Liu***, Shreyas Gokhale*, Alexandru Bacanu, Lisa Lin, Jörn Dunkel[†], Nikta Fakhri[†]. Nonlinear and non-Hermitian mechanics of living nonreciprocal solids. In preparation.
- 9. **Jinghui Liu***, Elisa Nerli*, Charlie Duclut, Amit Singh Vishen, Naomi Berbée, Sylvia Kaufmann, Cesar Ponce, Aristides B Arrenberg, Frank Jülicher[†], Rita Mateus[†]. Injury-induced electrochemical coupling triggers regenerative cell proliferation. Submitted. | bioRxiv
- 8. Yu-Chen Chao*, Shreyas Gokhale*, Lisa Lin*, Alasdair D. Hastewell*, Alexandru Bacanu, Yuchao Chen, Junang Li, **Jinghui Liu**, HyunSeok Lee, Jörn Dunkel[†], Nikta Fakhri[†]. Selective excitation of work-generating cycles in nonreciprocal solids. In revision. | <u>arXiv</u>
- 7. Peter J. Foster[†], **Jinghui Liu**, Alexandra Zampetaki, Sebastian Fürthauer[†], Nikta Fakhri[†]. Active mechanics of sea star oocytes. In revision. | <u>bioRxiv</u> (<u>earlier version</u>)
- 6. **Jinghui Liu***, Tom Bukart*, Alex Ziepke, John Reinhard, Yu-Chen Chao, Tzer Han Tan, S. Zachary Swartz, Erwin Frey[†], Nikta Fakhri[†]. Light-induced cortical excitability reveals programmable shape dynamics in starfish oocytes. *Nature Physics* (2025). | Nat Phys
- 5. Tina Wiegand*, **Jinghui Liu***, Lutz Vogeley, Isabel LuValle-Burke, Jan Geisler, Anatol W. Fritsch, Anthony A. Hyman[†], Stephan W. Grill[†]. Actin polymerization counteracts prewetting of N-WASP on supported lipid bilayers. *Proceedings of the National Academy of Sciences*, 121,50 (2024). | PNAS
- 4. **Jinghui Liu**, Jan F. Totz, Pearson W. Miller, Alasdair D. Hastewell, Yu-Chen Chao, Jörn Dunkel[†], Nikta Fakhri[†]. Topological braiding and virtual particles on the cell membrane. *Proceedings of the National Academy of Sciences*, 118,34 (2021). | PNAS
- 3. Manon C. Wigbers*, Tzer Han Tan*, Fridtjof Brauns, **Jinghui Liu**, S. Zachary Swartz, Erwin Frey[†], Nikta Fakhri[†]. A hierarchy of protein patterns robustly decodes cell shape information. *Nature Physics*, 1-7 (2021). | Nat Phys
- 2. Tzer Han Tan*, **Jinghui Liu***, Pearson W. Miller*, Melis Tekant, Jörn Dunkel[†], Nikta Fakhri[†]. Topological turbulence on the membrane of a living cell. *Nature Physics*, 1-6 (2020). | <u>Nat Phys</u>
- 1. Tim A. Hoek, Kevin Axelrod, Tommaso Biancalani, Eugene A. Yurtsev, **Jinghui Liu**, Jeff Gore[†]. Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism[J]. *PLoS biology*, 14,8 (2016). | PLoS Biol

AWARDS AND HONORS

MPI-CBG, Horizon Europe, Marie Skłodowska-Curie Actions (MSCA) Postdoctoral Fellowship	2023
MPI-PKS, Center for Systems Biology Dresden, ELBE Postdoctoral Fellowship	2022
Santa Fe Institute, SFI Complexity Postdoctoral Fellowship (gratefully declined)	2022
DWI-Leibniz Institute, Women Interactive Materials Award	2021
MIT, School of Science, MathWorks Science Fellowship	2021 - 2022
UChicago Materials Research Center, Rising Star Award in Soft and Biological Matter	2020
MIT, Annual Biophysics Retreat, Grand Poster Prize	2019
MIT, Department of Physics, Morton E. Goulder Presidential Fellowship	2016 - 2017
Peking University, School of Life Sciences, Undergraduate Research Honor Program Scholarship	2015
Peking University, Hui-Chun Chin & Tsung-Dao Lee Chinese Undergraduate Research Endowment	2014 - 2015
Peking University, School of Physics, Wusi Scholarship	2014 - 2015

GRANT WRITING

Funded:

2023, Horizon Europe, Marie Skłodowska-Curie Actions Postdoctoral Fellowship (LIF; Life Science)

- Electrical signaling and growth control in zebrafish fin regeneration (€173847.36; PI: Jinghui Liu)
- Evaluation score: 99.20% (Excellence 5.00/5.00; Impact 5.00/5.00; Implementation 4.80/5.00)

Submitted:

2021, James S. McDonnell Foundation, Understanding Dynamic and Multi-scale Systems Postdoctoral Fellowship

Unravelling complexity of neural circuits through topological study of a visual perception system (PI: Jinghui Liu)

INVITED TALKS

Electrical signaling and growth control across organisms, <u>2025 Berkeley Future in Physics Workshop</u> , Berkeley	2025
Topological defects and information flows on the membrane of a living cell, <i>CMT Kids' Seminar</i> , <i>Harvard</i>	2021
CONTRIBUTED TALKS	
Injury-induced electrochemical coupling in zebrafish, Theory and Concepts in Biology, EMBL Heidelberg	2025
Electrical signaling and growth control in zebrafish fin regeneration, Annual Biophysics Retreat, MPI-PKS	2025
Fast electrical effects in zebrafish fin regeneration, Physical Biology Circle Meeting	2024
Electrical signaling and growth control in zebrafish fin regeneration, MPI-CBG Internal Seminar	2023
High resolution mapping of odd fluctuations and oscillations in living chiral crystals, DPG Spring Meeting	2023
$\label{light-induced} \textbf{Light-induced cortical excitability reveals programmable shape dynamics in starfish oocytes, } APS\ March\ Meeting$	2023
Tuning cell division machinery in oocytes using light, APS March Meeting	2022
Topological braiding and virtual particles in the cell membrane, WOST-women Virtual Talk Series	2022
Topological defects and information flows on the membrane of a living cell, Santa Fe Institute	2022
Topological defects and information flows on the membrane of a living cell, CSBD, MPI-PKS and MPI-CBG	2021
Topological defects and information flows on the membrane of a living cell, CPBF, Princeton University	2021
Topological defects and information flows on the membrane of a living cell, WIMA Award, DWI-Leibniz Institute	2021
Topological braiding and bosonic phases on the cell membrane, APS March Meeting	2021
Topological braids, loops and bosonic phases on the cell membrane, MSERC Award Session, UChicago	2020
Vortices, space-time braids and loops in the membrane of a living cell, Lunch Talk Series, MIT Physics	2020
Vortices, space-time braids and loops in the membrane of a living cell, GSNP Award Session, APS March Meeting	2020
Topological turbulence in the membrane of a living cell, <i>Turbulence across Vast Scales</i> , <i>Flatiron Institute</i> [video]	2019
Topological turbulence in the membrane of a living cell, GRS on Soft Condensed Matter Physics	2019
Topological turbulence in the membrane of a living cell, <i>Theory of Living Systems Meeting, Boston University</i> [video]	2019
Direct observation of topological turbulence in the oocyte membrane, APS March Meeting	2019
Direct observation of topological turbulence in a biological system, Annual Biophysics Retreat, MIT	2018
Tuning the mechanochemical machinery in oocytes using light, APS March Meeting	2018
Refereed Posters	
Injury-induced electrochemical coupling in organismal regeneration, Scientific Advisory Board Meeting, MPI-PKS	2025
Decomposing odd vibrations in living chiral crystals, GRC on Soft Condensed Matter Physics	2023
Electrical signaling in zebrafish fin regeneration, EMBO Workshop for Physics of Living Systems	2023
Topological turbulence in the membrane of a living cell, GRC on Soft Condensed Matter Physics	2019
Bifurcation dynamics of a signaling network underlying EMT transition, Annual URHP Retreat in Biology, PKU	2015
Resource-dependent species diversity in a cross-feeding microbial community, Annual Biophysics Retreat, MIT	2015
TEACHING EXPERIENCE	
Teaching Assistant:	
2020 - 2021 Spring, Junior Lab in Experimental Physics, Department of Physics, MIT (Instructor: Prof. Philip Harr	is)
2019 – 2020 Spring, Introduction to Biological Physics, Department of Physics, MIT (Instructor: Prof. Jeff Gore)	

COMMUNITY SERVICE

Dresden Science Night (#LNDWDD, Annual), On-site Exhibition Volunteer 2024

MPI-CBG, Advising Resources for individual Feedback on Interdisciplinary Talks (iFIT) 2023 – Present

MIT, Departmental Advising Resources for Easing Friction and Stress (Physics REFS) 2019 – 2021