Méthodes arborescentes exactes et approchées

Complexité, Algorithmes Randomisés et Approchés

September 28, 2016

Problème d'optimisation

Définition:

- Nom du problème : P
- Paramètres génériques du problème (nombres, graphes, ...)
- ▶ Une caractérisation de ce qu'est une solution réalisable :
 - ▶ Une instance / de P est une instanciation des paramètres génériques
 - A chaque I correspond un ensemble de solutions réalisables S(I).
- ▶ Une fonction objectif *f*

Résolution:

Déterminer un algorithme A qui, pour chaque instance I retourne une solution $s^*(I)$ de S(I) t.q. :

```
problème de minimisation : \forall s \in S(I), f(s^*(I)) \leq f(s), ou problème de maximisation : \forall s \in S(I), f(s^*(I)) \geq f(s).
```

- - Données : n points dans le plan

Données : *n* points dans le plan

Solution réalisable : Un cycle hamiltonien dans le graphe complet sous-jacent K_n

Données: n points dans le plan Solution réalisable: Un cycle hamiltonien dans le graphe complet sous-jacent K_n Fonction objectif: La longueur du cycle (que l'on souhaite minimiser)

Données: n points dans le plan Solution réalisable: Un cycle hamiltonien dans le graphe complet sous-jacent K_n Fonction objectif: La longueur du cycle (que l'on souhaite minimiser)

Le problème de décision associé à ce problème est NP-complet. \Rightarrow ce problème est NP-difficile.

Trouver une solution optimale du TSP

Première idée : énumérer l'ensemble des solutions réalisables du TSP : $\frac{(n-1)!}{2}$ cycles possibles

But : Trouver une solution optimale sans énumérer toutes les solutions.

"Branch-and-bound" (séparation-évaluation)

- "Branch" (brancher)
 - Diviser (partitionner) l'espace de recherche
 - \rightarrow Arbre d'énumération (ou arbre de recherche)
 - ► Explorer l'arbre de recherche

Espace des solutions

Brancher : exemple sur le problème du TSP

Soit 1 le premier sommet du cycle.

On choisit au niveau i le i^{eme} sommet du cycle (n - i choix).

"Branch-and-bound" (séparation-évaluation)

- "Branch" (brancher)
 - Diviser (partitionner) l'espace de recherche
 - → Arbre d'énumération (ou arbre de recherche)
 - Explorer l'arbre de recherche
- "Bound" (borner) (présenté pour un pb de minimisation)
 - Borne supérieure de la valeur d'une solution optimale
 - Borne inférieure de la valeur d'un nœud (et de son sous-arbre)

Borner

Au noeud courant on a :

- une borne supérieure B_{sup} d'une solution optimale (par exemple le coût d'une solution réalisable que l'on a déjà rencontrée)
 - \rightarrow ce que l'on a déjà
- une borne inférieure B_{inf} du coût de toute solution issue du noeud courant (borne inf de toute solution du sous-arbre courant)
 - \rightarrow ce que l'on peut espérer avoir de mieux en explorant le sous-arbre

Si $B_{inf} > B_{sup}$ alors on "élague" : on n'explore pas le sous-arbre enraciné au noeud courant.

Borner : exemple sur le problème du TSP

Soit G = (S, A) un graphe valué. Soit $i \in S$ un sommet. Soit $cout_adj_min1(i)$ le coût de la plus petite arête adjacente à i et $cout_adj_min2(i)$ le coût de la 2ème plus petite arête adjacente à i.

Propriété : Le coût d'un cycle hamiltonien de G est $\geq \frac{1}{2} \sum_{i=1}^{n} cout_adj_min1(i) + cout_adj_min2(i)$.

Borne inférieure du coût d'une solution dont les sommets S' forment un cycle partiel $(s_1, \ldots, s_k) = \text{coût}$ des arêtes du cycle partiel $+\frac{1}{2}(\text{cout_adj_min1}(s_1) + \text{cout_adj_min1}(s_k)) + \frac{1}{2}\sum_{i \in S \setminus S'}(\text{cout_adj_min1}(i) + \text{cout_adj_min2}(i))$

Exemple

"Branch-and-bound" (séparation-évaluation)

Un algorithme de branch-and-bound pour un problème de minimisation est basé sur

- une procédure de branchement qui décompose le problème,
 et
- ▶ une borne inférieure pour éviter d'avoir à parcourir tout l'arbre.

Arbre d'énumération

- L'arbre d'énumération n'est pas complètement stocké en mémoire.
- ► En effet, sa taille est proportionnelle à la taille de l'ensemble des solutions, qui est exponentielle.
- L'arbre d'énumération est exploré pour trouver la solution optimale.

Il y a deux façons classiques d'explorer l'arbre :

- ► Parcours en profondeur
- Parcours "le meilleur d'abord"

Charger le problème en mémoire

 $Premi\`ere\ branche = premier\ sous-probl\`eme$

Première feuille

Premier retour en arrière

Seconde feuille

Deuxième retour en arrière

et retourner en arrière à nouveau

et ainsi de suite...

...jusqu'à la dernière feuille

Complexité

- Complexité temporelle : généralement exponentielle en la taille du problème.
- ▶ Complexité en espace : en O(hn) avec n taille du problème et h hauteur de l'arbre d'énumération (h est polynomial en n).