

Intelligent Systems

Exercise 10 - Classification and Anomalies

Simon Reichhuber January 20, 2020

University of Kiel, Winter Term 2019

TABLE OF CONTENT

- 1. Quantifying self-organised systems
- 2. Dynamic degree of self-organisation

Quantifying self-organised

systems

- A. compute the static degree of self-organisation
- B. categorise the static degree of self-organisation

Compute the static degree of self-organisation

Three different self-organised systems.

1. A System 1

Strongly self-organised

$$k=3$$

$$m = 3$$

(3:3)

Self-organised

k = 2

m = 4

(2:4)

Weakly self-organised		
k = 1		
m = 3		
(1:3)		

- A. compute the static degree of self-organisation
- B. categorise the static degree of self-organisation

2B CATEGORIES OF SELF-ORGANISATION

Let S be an adaptive system consisting of m elements (m > 1) und and k fully or partially distributed control mechanisms CM $(k \ge 1)$. Then, the static degree of self-organisation is given as (k : m), which is categorised under one of the following categories:

TYPES OF SELF-ORGANISATION

Strongly self-organised system

A system with k = m and a static degree of self-organisation (m : m) is named **strongly self-organised**

Self-organised

A system with m > k > 1 and a static degree of self-organisation (k : m) is named **self-organised**.

Weakly self-organised

A system with k = 1 and a static degree of self-organisation (1:m) is named **weakly self-organised**.

categorise the static degree of self-organisation

System 1	System 2	System 3
k = 3	k = 2	k = 1
m=3	m=4	<i>m</i> = 3
(3:3)	(2:4)	(1:3)
⇒ strongly so.	⇒ so.	⇒ weakly so.

Remark:

s.-o. = self-organised

Dynamic degree of

self-organisation

- A. Build two graphs of the system for each observation
- B. Quantify the self-organization of the process between the two observations

2. A OBSERVATION 1

Build two graphs of the system for each observation *Observation*₁

- Request message of size 10-packets using TCP protocol from router ID-102 to router ID-101
- Request message of size 12-packets using UDP protocol from router ID-101 to router ID-203
- Request message of size 03-packets using UDP protocol from router ID-203 to router ID-100
- Request message of size 06-packets using TCP protocol from router ID-100 to router ID-203
- Request message of size 01-packets using TCP protocol from router ID-007 to router ID-101
- Request message of size 05-packets using TCP protocol from router ID-101 to router ID-102

2. A OBSERVATION 2 (1)

Two new routers of ID-301 and ID-311 added. *Observation*₂

- Request message of size 05-packets using TCP protocol from router ID-102 to router ID-101
- Request message of size 03-packets (each) using UDP protocol from router ID-101 to routers ID-100 and ID-007
- Request message of size 12-packets (each) using UDP protocol from router ID-100 to routers ID-301 and ID-311
- Request message of size 01-packets using TCP protocol from router ID-301 to router ID-203
- Request message of size 10-packets using TCP protocol from router ID-100 to router ID-203

. . .

2. A OBSERVATION 2 (2)

Observation₂

. . .

- Request message of size 06-packets using UDP protocol from router ID-203 to router ID-101
- Request message of size 02-packets using TCP protocol from router ID-007 to router ID-101
- Request message of size 05-packets using TCP protocol from router ID-101 to router ID-102

2. A OBSERVATION OF NETWORK'S TOPOLOGY

- A. Build two graphs of the system for each observation
- B. Quantify the self-organization of the process between the two observations

Quantify the self-organization of the process between the two observations

Formula given from the lecture:

$$\begin{split} \Delta(G_1,G_2) &= \\ \frac{|\{e_{ij}: e_{if} \in E_1 \oplus e_{ij} \in E_2\}|}{0.5*(|V_1| + |V_2|)} \end{split}$$

$$\Delta(\textit{G}_{1}, \textit{G}_{2}) =$$

$$\frac{8}{0.5 \, * \, (5 \, + \, 7)} \, \approx 1.33$$

