Relation Equivalence F, x~ 5 equivalence relation (Identity) x ~ x ( Symmetry ) (ii) x~y (=) y~x xny and yn = = xnz (Transitivity) (ii)  $6 \times 2 = 3 \times 4$   $(\Lambda_1, d_1) \sim (\Lambda_2, d_2)$  $(2,4) \sim (3,6)$   $d_2 n_1 = d_1 n_2$ / dn = dn  $(i) \frac{\eta}{d} \sim \frac{\eta}{d} \qquad dn = dn$   $(ii) \frac{\eta}{d} \sim \frac{\eta}{d} \qquad dn = dn$   $(ii) \frac{\eta}{d} \sim \frac{\eta}{d} \qquad dn = dn$   $(ii) \frac{\eta}{d} \sim \frac{\eta}{d} \qquad dn = dn$  $\frac{1}{4} \frac{1}{2} \sim \frac{1}{43} = \frac{1}{4} \sim \frac{1}{43}$ 

8 91 -13

Orientation Equivalence Relation

Change of basis 
$$e_i = \mathcal{L}_j A_i^j f_j$$

$$A = (A_i^j)_{1 \leq i,j \leq n}$$

(ii) 
$$\mathcal{E} \sim \mathcal{F}$$
:  $A_{\mathcal{F}}\mathcal{E} = A_{\mathcal{E}}\mathcal{F}$ 

$$\mathcal{E} \sim \mathcal{F} \rightarrow \mathbf{A} \quad \mathbf{A} \in \mathcal{F} \rightarrow \mathbf{A} \quad \mathbf{A} \rightarrow \mathbf{A} \quad \mathbf{A} \rightarrow \mathbf{A} \quad \mathbf{A} \rightarrow \mathbf{A} \quad \mathbf{A} \rightarrow \mathbf{A} \rightarrow \mathbf{A} \quad \mathbf{A} \rightarrow \mathbf{A} \quad \mathbf{A} \rightarrow \mathbf{A} \quad \mathbf{A} \rightarrow \mathbf{A} \rightarrow \mathbf{A} \quad \mathbf{A} \rightarrow \mathbf{A} \rightarrow \mathbf{A} \quad \mathbf{A} \rightarrow \mathbf{A} \rightarrow$$

det 
$$A_{\xi\xi} > 0$$

=) det  $A_{\xi\xi} > 0$ 

since  $0 < \text{det } Td = \text{det}(A_{\xi\xi} + A_{\xi\xi})$ 

=  $\text{det} A_{\xi\xi} + \text{det}(A_{\xi\xi} + A_{\xi\xi})$ 

Need to show det A E F 70 B det A FG 70 =) det 185 70

## Orientation Equivalence

Note there are precisely two equivalence classes.

Ex: show this on the back of on envelope!



$$A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \quad det A = 1 > 0$$



$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad dA \quad A \quad < 0$$

f = (er, e,)  $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$  det A < 0Not( E ~ = )

Remark: In general parametring

An ordered bisis

changes orientation is sign (perm) < 0

preserves Syn (perm) > 0

At is by Crawer's rule, Laplace's expansion

i.e. by alternating multilinearity of det.

fule



LH

Drientation Pleserving Maps

$$T(\mathcal{O}) = \mathcal{O}$$

Means  $\mathcal{O} = [(T(e_1), ..., T(e_n)] \leq 0$ 

Where  $\mathcal{O} = [(e_1, ..., e_n)] \leq 0$ 

Equivalence class

i.e. change of hosis

 $A: (e_1, ..., e_n) \rightarrow (T(e_1), ..., T(e_n))$ 

has det  $A \rightarrow 0$ 

Able  $A = T!$ 

Orientation Reversing: det  $T \leq 0$ 
 $T(e_1) \rightarrow e_1$ 
 $T(e_2) \rightarrow e_1$ 

Orientation Reserving Reversing Mays

$$T(e_{1}) = (1,1)$$

$$T(e_{1}) = (1,1)$$

$$e_{1}$$

$$T(e_{1}) = (1,1)$$

$$T = (3,5)$$

$$P(e_{1}) = (2,3) = T(e_{1})$$

$$T(e_{2})$$





S is prientable Thy

J snooth, unit normal field.

claim: bf:

Jud x grd = (qq qx) J2A x 94A

write de = ( on 4 ord) = ( M V )

dy = (3,4 2,4) = (5 T)

 $dr = \begin{pmatrix} a & b \\ c & a \end{pmatrix}$ 

U = 24 (en) = 24. 24 eq

= d4 (a) = a5+cT

V = 65 + d T 0

 $U \times V = (aS + cT) \times (bS + dT)$   $= aS \times dT + cT \times bS = (ad - cd) S \times T$ 

5 is prientable. P4: Suppose then define N= du 4x x du 4x 113 2 × 3 811 V2= 4(U) UL NUB: Na=NB 6~ since Duly Duly point in the same direction of 23 4p x 264B since det drag > 0 + 2, B. Define  $N(q) = N_{d}(q)$ gues a well defined smooth unit word verb everple. N well defined NL or ULOUP

| 14:      | (          | Conversely | 7.4    | N        | exists       |   |
|----------|------------|------------|--------|----------|--------------|---|
|          | talk       | oriental   | 7¢^    | <b>%</b> | ٧٨           |   |
|          | such       | +6-4-      | N =    | July x   | - D1 6x      | N |
|          |            |            |        | 112. le  | * 20 Call    |   |
|          | by         | コルトルシン     | u B    | v if     | necessary    |   |
| noke     |            | LN(1), N   | a (p1) | រ៍       | C∞           |   |
|          | *          | Ver - 550  | ,      | another  | 5y           |   |
| · ·      | ار باد     | × 9199     | 2 N =  | 754      | ar gedb      |   |
|          | 11324      | 4 904x11   | •      |          | 19 y of 4 by |   |
| (        |            | ) <u>/</u> |        |          | NB           |   |
| on VanVp |            |            |        |          |              |   |
|          | · ·        | et dea     | p 70   |          |              |   |
|          | <b>.</b> . | orientale  |        |          | Ø            |   |
| Nee      | d con      | necked -   | ) 500  | over.    |              |   |



Gauss Map N(12) N(P.) N(12)

$$\mathcal{D}^{2}$$
:  $N_{\pm}(\rho) = \pm \rho$ 

Then since 
$$\gamma(t) \in 6^2$$

at 
$$t=0$$
:  $0 = 2\langle X'(0), X(0) \rangle$   
=  $2\langle X, \rho \rangle$ 

$$\therefore N(\varphi) = \pm \varphi$$



Level Scts: 
$$C = regular Value$$

$$5 = F-1 \{c\}$$

$$X = Y'(a) \in T_{p} S \qquad p = Y(a)$$

$$X = Y'(a) \in T_{p} \leq p = Y(a)$$

$$\frac{D}{d} + \frac{d}{d} = C \cdot L$$

$$\frac{C}{d} = \frac{C}{d} \cdot (Y'(a)) = \frac{d}{d} \cdot (X) = 0$$





Cylinder t 5=0 u=27 **u=0** 

Mohius Strip t s=0 u=27 **u=0** M

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}}$$

$$\frac$$

```
Suppose 3 com unit normal vector field N
              Jud x gad
                              loca
             11 Jul x Jul 11
                             and mad
             254 × DEV
     Ny =
             11924×9441
Then it (N, Ny) = -1 < 0
   Hm (N, -Ne7 = 170
  Replace Ne by - Ne (smap u,v)
   Assur (N, Ny) = 1 > 0
     Y (u, v) G (0,277) x(-1,1) compoled!
Likewise an orne (N, Ny) = 1 70
\therefore N_{\alpha} = N = N_{\alpha} \quad \text{on overlap}
i.c. 113m4 x 3m4 = 13m4 x 3fm/
```

since July Jul = (det x) ds 4x d, 4 we get det e >0 on the owler contradiction - ..

Ø

