COMP0009 Logic and Databases Modal Logic

Robin Hirsch

December 8, 2019

A modal propositional formula is either a proposition p, q, r, \ldots , a negated modal formula, a disjunction/conjunction/implication of two formulas, a box formula or a diamond formula. A Kripke frame $\mathcal{F} = (W, R)$ consists of a set W of worlds and a binary relation $R \subseteq W \times W$ of arrows. In other words, a Kripke frame is just a directed graph.

1. Consider the Kripke frame $\mathcal{F} = (\{x, y, z\}, \{(x, y), (x, z), (z, x), (z, z)\})$ and let v be the valuation $v(p) = \{y, z\}, v(q) = \{x, z\}.$

Are the following true?

- (a) $\mathcal{F}, v, x \models \Box q$
- (b) $\mathcal{F}, v, x \models (q \land \Box (q \rightarrow p))$
- (c) $\mathcal{F}, v, x \models \Diamond \Box \bot$, where \bot is any unsatisfiable formula, e.g. $(p \land \neg p)$.

Answer: First is not true, since there is an arrow $(x,y) \in R$ and $\mathcal{F}, v, y \not\models q$. Second is true, since $\mathcal{F}, v, x \models q$ and for any w where $(x, w) \in R$ either w = y or w = z. In the first case we have $\mathcal{F}, v, y \not\models q$ and in the second $\mathcal{F}, v, z \models p$ either way $\mathcal{F}, v, w \models (p \rightarrow q)$, so $\mathcal{F}, v, x \models \Box(q \rightarrow p)$.

- 2. Write down a modal fromula that is true at a world w in a Kripke frame (regardless of the valuation) if and only if there are no outgoing edges from w (or no successors of w).

 Answer: $\Box \bot$. If there are no successors of w then $\Box \bot$ holds vacuously at w, but it fails to hold if there are any outgoing edges.
- 3. Let \mathcal{F} be one of the three Kripke Frames: (i) $\mathcal{Q} = (\mathbb{Q}, <)$, (ii) $\mathcal{N} = (\mathbb{N}, <)$, (iii) $\mathcal{N}^- = (\mathbb{N}, >)$, where \mathbb{N} is the set of natural numbers, \mathbb{Q} is the set of rational numbers and < denotes strict inequality (reversed for >). For each modal formula below, state whether the formula is valid in the frame \mathcal{F} .
 - (a) $\Box p \to p$ Answer: Not valid in any of the 3 frames, since they are not reflexive. To see this, let v be the valuation where $v(p) = W \setminus \{w\}$ (p is false at w but true everywhere else, some world w). Then $\mathcal{F}, v, w \models \Box p$ but $\mathcal{F}, v, w \not\models p$, so $\mathcal{F} \not\models (\Box p \to p)$.
 - (b) $\Diamond(p \lor \neg p)$ Answer: Valid in \mathcal{Q} and \mathcal{N} since they have **no final point**, but not in \mathcal{N}^- since $\mathcal{N}^-, 0 \not\models \Diamond \top$

- (c) $\Diamond \Diamond p \rightarrow \Diamond p$ Answer: Valid in all three, since they are transitive
- (d) $\Box\Box p \to \Box p$ Answer: Valid in \mathcal{Q} since it is dense, but not in \mathcal{N} or \mathcal{N}^- . E.g. let $v(p) = \mathbb{N} \setminus \{0, 1\}$. Then $\mathcal{N}, 0 \models \Box\Box p$ but $\mathcal{N}, 0 \not\models \Box p$ so $\mathcal{N}, 0 \not\models (\Box\Box p \to \Box p)$. For \mathcal{N}^- let $v(p) = \{0\}$. Then $\mathcal{N}^-, 2 \models \Box\Box p$ but $\mathcal{N}^- \not\models \Box p$ so not valid in \mathcal{N}^- . For validity over \mathcal{Q} , suppose for contradiction that $\mathcal{Q} \not\models (\Box\Box p \to \Box p)$. Then there is a valuation v and a rational number q such that $\mathcal{Q}, v, q \models \Box\Box p$ but $\mathcal{Q}, v, q \models \neg\Box p$. From the latter, there is r > q such that $\mathcal{Q}, v, r \not\models p$. But then, let $s = \frac{q+r}{2}$ (so q < s < r) and we have $\mathcal{Q}, v, s \not\models \Box p$, hence $\mathcal{Q}, v, q \not\models \Box\Box p$, contradicting the former assumption. Since $\mathcal{Q} \not\models (\Box\Box p \to \Box p)$ led to a contradiction, we deduce $\mathcal{Q} \models (\Box\Box p \to p)$.
- (e) □⊥ ∨ ⋄□⊥.
 Answer: Not valid in N or Q but valid in N⁻. Reason: the formula □⊥ can only hold at a point in a Kripke frame with no successors at all (then it holds vacuously). In Q or N every point has a successor, so □⊥ ∨ ⋄□⊥ is not even satisfiable, certainly not valid. However, in N⁻ the point 0 has no successor, therefore N⁻, v, 0 ⊨ □⊥ (vacuously), regardless of the valuation v. Every natural number n is either 0 or strictly bigger than 0, in the former case we have N⁻, v, 0 ⊨ □⊥ and in the latter case we have N⁻, v, n ⊨ ⋄□⊥. So N⁻ ⊨ (□⊥ ∨ ⋄□⊥).
- 4. (a) Suppose $\mathcal{F} \models \Diamond \top$ for some Kripke frame \mathcal{F} where \top is any valid formula, e.g. $p \vee \neg p$. What does this tell you about \mathcal{F} ? What if \mathcal{F} is transitive and irreflexive? Answer: Every world has an outgoing edge, there are no 'end worlds'. If \mathcal{F} is irreflexive and transitive there must be infinitely many worlds.
 - (b) Find a Kripke frame \mathcal{F} such that $\mathcal{F} \models (\Diamond \Box p \to \Box \Diamond p)$. Find a Kripke frame \mathcal{G} such that $\mathcal{G} \not\models (\Diamond \Box p \to \Box \Diamond p)$. Can you describe the frame property that this formula defines? Answer: Convergence: if $(x,y),(x,z) \in R$ then there is w such that $(y,w),(z,w) \in R$. If a frame is not convergent there are x,y,z with $(x,y),(x,z) \in R$ but there is no w with $(y,w) \in R$ and $(z,w) \in R$. Consider the valuation v where $v(p) = \{y' \in W : (y,y') \in R\}$. Then $\mathcal{F},v,y \models \Box p$, so $\mathcal{F},v,x \models \Diamond \Box p$. But $\mathcal{F},v,z \not\models \Diamond p$ (as there is no w with $(y,w),(z,w) \in R$) so $\mathcal{F},v,x \not\models \Diamond \Box p \to \Box \Diamond p$, hence $\mathcal{F} \not\models \Diamond \Box p \to \Box \Diamond p$. Conversely, suppose \mathcal{F} has the convergence property: if $(x,y),(x,z) \in R$ then there is $w \in W$ where $(y,w),(z,w) \in R$. Let v be any valuation, let v be any world, and suppose v if v