[M. Gubinelli - Processus discrets - M1 MMD 2010/2011 - 20101130 - poly 3 - v.4]

3 Comportement asymptotique des martingales

1 Convergence presque sure

On rappelle que une sur-martingale $(X_n)_{n\geqslant 1}$ peut être considérée comme le gain dans un jeu défavorable, au sens où ΔX_n est notre gain (pour une mise de 1) dans l'n-éme partie, le caractère défavorable du jeux viens du fait que $\mathbb{E}[\Delta X_n|\mathcal{F}_{n-1}]\leqslant 0$: en moyenne on perd.

Fixons a < b deux réels quelconque et considérons la stratégie de jeu suivante: on commence par attendre le premier instant S_1 où $X_{S_1} < a$, à ce moment on commence à jouer jusqu'au premier instant $T_1 > S_1$ où $X_{T_1} > b$. A ce moment on a gagné la quantité $X_{T_1} - X_{S_1} > b - a$ et on s'arrête de jouer jusqu'à $S_2 > T_1$ ou X_{S_2} redevient < a et on recommence. Si l'on fixe un horizon temporel $n < \infty$ et l'on note $U_n(a,b)$ le nombre de fois que $(X_k)_{1 \le k \le n}$ passe de $]-\infty,a[$ à $]b,+\infty[$ et W_n notre gain en utilisant la stratégie décrite on a que

$$W_n - W_0 \geqslant (b - a)U_n(a, b) - (X_n - a)_-$$
 (1)

Le terme $(X_n - a)_-$ corresponds à ce que on a eventuellement perdu dans la dernière montée avant d'atteindre b. Il est aussi facile voir que $(W_n)_{n\geqslant 1}$ est une sur-martingale car on peut écrire

$$W_n = W_0 + \sum_{k=1}^n H_n \, \Delta X_n$$

avec $H_n = \sum_{i=1}^{\infty} \mathbb{I}_{S_i \leqslant n \leqslant T_i - 1} = \mathbb{I}_{\{n \in \cup_{i \geqslant 1}[S_i, T_i - 1]\}}$. De façon équivalente on peut définir $(H_n)_{n \geqslant 1}$ par récurrence: $H_1 = 0$,

$$H_{n+1} = \mathbb{I}_{H_n=0, X_n < a} + \mathbb{I}_{H_n=1, X_n > b}$$
.

Alors $U_n(a,b) = \sum_{i=2}^n \mathbb{I}_{H_n=0,H_{n-1}=1}$.

Exercice 1. Montrer que $(H_n)_{n\geqslant 1}$ est un processus prévisible.

Pour montrer que l'équation (1) est satisfaite pour tout n on définit $T_n = \sup (0 \le k \le n : H_k = 0)$. C'est le dernier instant avant n où on recommence la stratégie d'achat. Ce n'est pas un temps d'arrêt. À ce moment, $X_{T_n} < a$, $U_n(a,b) = U_{T_n}(a,b)$ et $W_n - W_{T_n} = X_n - X_{T_n}$ car $H_k = 1$ pour tout $T_n \le k \le n$. Or $W_{T_n} - W_0 \ge (b-a)U_{T_n}(a,b)$ car chaque traversée montante il nous fait gagner au moins (b-a). Alors

$$\begin{split} W_n - W_0 &= W_{T_n} - W_0 + X_n - X_{T_n} \geqslant (b-a)U_{T_n}(a,b) + X_n - a \\ &= (b-a)U_n(a,b) + (X_n - a)_+ - (X_n - a)_- \\ &\geqslant (b-a)U_n(a,b) - (X_n - a)_- \,. \end{split}$$

Du fait que $(H_n)_{n\geqslant 1}$ est prévisible et que $0\leqslant H_n$ on obtient que $(W_n)_{n\geqslant 1}$ est une sur-martingale :

$$0 \geqslant \mathbb{E}[W_n - W_0] \geqslant \mathbb{E}[U_n(a,b)](b-a) - \mathbb{E}[(X_n - a)]$$

(dans un jeu défavorable, tout stratégie ne peut qu'apporter des pertes en moyenne). On en déduit donc le lemme suivante (car $\mathbb{E}[(X_n-a)_-] \leq \mathbb{E}[(X_n-a)_-] + \mathbb{E}[(X_n-a)_+] = \mathbb{E}[|X_n-a|]$)

Lemme 1. (Doob) Pour tout a < b et $n \ge 1$ on a que

$$\mathbb{E}[U_n(a,b)] \leqslant \frac{\mathbb{E}[|X_n - a|]}{b - a}$$

2 Section 1

ce qui donne une estimation du nombre de tranversées montantes de l'intervalle [a, b] par le processus $(X_k)_{1 \le k \le n}$ en fonction d'une moyenne sur sa valeur terminale. Une conséquence importante pour les sur-martingales bornées dans L^1 est donnée par le corollaire suivante:

Corollaire 2. Soit $(X_n)_{n\geqslant 1}$ une sur-martingale bornée dans $L^1(c$ -à-d sup_n $\mathbb{E}[|X_n|] < + \infty$), alors si on note $U(a, b) = \sup_{n\geqslant 1} U_n(a, b)$ le nombre de traversées de l'intervalle [a, b] par $(X_n)_{n\geqslant 1}$ on a que

$$\mathbb{P}(U(a,b) = +\infty) = 0$$

pour tout a < b.

Démonstration. Par l'inégalité de Doob sur le nombre des montées de $(X_n)_{n\geqslant 1}$ on a que

$$\mathbb{E}[U_n(a,b)] \leqslant \frac{a + \mathbb{E}[|X_n|]}{b - a} \leqslant \frac{a + \sup_n \mathbb{E}[|X_n|]}{b - a} < + \infty$$

pour tout a < b et $n \ge 1$. Par convergence monotone on a

$$\mathbb{E}[U(a,b)] = \lim_{n \to \infty} \mathbb{E}[U_n(a,b)] \leqslant \frac{a + \sup_n \mathbb{E}[|X_n|]}{b - a} < +\infty$$

et donc que $\mathbb{P}(U(a,b) = +\infty) = 0$ pour tout a < b

Tout cela montre que une sur-martingale ne peut pas osciller de façon trop irrégulière et que ça est liée au fait qu'il est impossible trouver des stratégies gagnantes sur une sur-martingale. Réciproquement un théorème analogue peut montrer que une sous-martingale bornée en L^1 n'admet pas une infinité de traversées descendantes et donc que en jouant sur une sous-martingale on ne peut pas perdre une quantité illimité d'argent.

Le théorème principale de ce chapitre est le suivante (à remarquer qu'il est formulé seulement pour les sous-martingales):

Théorème 3. (DOOB) Une sous-martingale $(X_n)_{n\geqslant 1}$ bornée dans L^1 converge p.s. vers une $v.a.\ X\in L^1$.

Démonstration. Le processus $Y_n = -X_n$ est une sur-martingale bornée dans L^1 . Soient $L_+ = \limsup_n Y_n$ et $L_- = \liminf_n Y_n$. Supposons que $\mathbb{P}(L_- < L_+) > 0$ (c-à-d Y_n ne converge pas p.s.). Par continuité de la probabilité \mathbb{P} il existent a < b tels que $\mathbb{P}(L_- < a < b < L_+) > 0$. Or

$$\{L_{-} < a < b < L_{+}\} \subseteq \{U(a, b) = +\infty\}$$

et on obtient donc que $\mathbb{P}(U(a,b)=+\infty)>0$ en contradiction avec la conséquence de la bornitude en L^1 de $(Y_n)_{n\geqslant 1}$. Donc on doit avoir $\mathbb{P}(L_- < L_+) = 0$ ce que donne la convergence p.s. de $(Y_n)_n$ vers $Y = L_- = L_+$ et donc de $(X_n)_{n\geqslant 1}$ vers X = -Y. Or, par Fatou, $\mathbb{E}[|X|] = \mathbb{E}[\liminf_n |X|] \leqslant \liminf_n \mathbb{E}[|X_n|] < +\infty$ et donc $X \in L^1$.

L'équivalent pour les sur-martingales est le théorème suivant.

Théorème 4. (DOOB) Une sur-martingale $(X_n)_{n\geqslant 1}$ positive converge p.s. vers une v.a. $X\in L^1$.

Démonstration. On a que $\mathbb{E}[|X_n|] = \mathbb{E}[X_n] \leqslant \mathbb{E}[X_0]$ par positivité et propriété de sur-martingale. Donc $(-X_n)_{n\geqslant 1}$ est une sous-martingale bornée dans L^1 . Par le théorème précédente elle converge vers un limite $-X \in L^1$. Cela revient a dire que $X_n \to X$ p.s. et $X \in L^1$.

Exercice 2. Montrer que si $X \ge 0$ est une v.a. et que $\mathbb{P}(X > 0) > 0$ alors il existe $\varepsilon > 0$ tel que $\mathbb{P}(X > \varepsilon) > 0$ (Sugg: considérer les événements $\{X \le 1/n\}$ et montrer que si $\mathbb{P}(X \ge 1/n) = 0$ alors $\mathbb{P}(X > 0) = 0$).

Exercice 3. Montrer que $\{L_- < a < b < L_+\} \subseteq \{U(a,b) = +\infty\}$ pour tout a < b.

Remarque 5. Bien que la limite d'une sous-martingale bornée dans L^1 soit une v.a. dans L^1 , cette convergence n'a pas a priori lieu dans L^1 . Voici un contre-exemple.

Soit $(Z_n)_{n\geqslant 0}$ une suite iid avec $\mathbb{P}(Z_n=+1)=1-\mathbb{P}(Z_n=-1)=p$. Soit u>1. On pose $X_0=x$ et $X_{n+1}=u^{Z_{n+1}}X_n$. Supposons que p=1/(1+u) de telle sorte que $\mathbb{E}[u^{Z_{n+1}}]=1$. Alors il est facile de vérifier que $(X_n)_{n\geqslant 0}$ est une martingale et donc $\mathbb{E}[X_n]=\mathbb{E}[X_0]=x$. Par la loi forte des grands nombres on a

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} Z_k = \mathbb{E}[Z_1] = 2 p - 1 = \frac{1-u}{1+u} < 0$$

d'où

$$\left(\frac{X_n}{x}\right)^{1/n} \to u^{2p-1} < 1 \qquad p.s.$$

Ainsi $X_n \to 0$ p.s., alors que son espérance est constante! (et donc $X_n \to 0$ dans L^1).

$2~~{ m Martingales}$ bornées dans L^2

Théorème 6. Soit $(M_n)_{n\geqslant 0}$ une martingale telle que $\alpha=\sup_{n\geqslant 0}\mathbb{E}[M_n^2]<+\infty$. Alors la suite M_n converge dans $L^2(\Omega)$ et p.s.

Démonstration. On écrit la martingale comme somme de ses incréments:

$$M_n = M_0 + \sum_{k=1}^n \Delta M_k$$

et on remarque que les incréments sont orthogonaux: si n > k:

$$\mathbb{E}[\Delta M_n \Delta M_k] = \mathbb{E}[\mathbb{E}[\Delta M_n \Delta M_k | \mathcal{F}_{n-1}]] = \mathbb{E}[\mathbb{E}[\Delta M_n | \mathcal{F}_{n-1}] \Delta M_k] = 0$$

car $\Delta M_k \in \mathcal{F}_k \subseteq \mathcal{F}_{n-1}$. Donc

$$\mathbb{E}[M_n^2] = \mathbb{E}[M_0^2] + \sum_{k=1}^n \mathbb{E}[(\Delta M_k)^2]$$

et

$$\mathbb{E}[M_0^2] + \sum_{k=1}^{\infty} \mathbb{E}[(\Delta M_k)^2] = \alpha$$

ce qui implique que la suite $\sum_{k=1}^n \Delta M_k$ converge dans $L^2(\Omega)$ et donc que $M_\infty = \lim_n M_n$ dans L^2 : en effet pour tout $k' \geqslant k \geqslant n$

$$\mathbb{E}[|M_{k'}-M_k|^2] = \sum_{\ell=k+1}^{k'} \mathbb{E}[(\Delta M_\ell)^2] \leqslant \sum_{\ell=n+1}^{\infty} \mathbb{E}[(\Delta M_\ell)^2] \to 0$$

quand $n \to +\infty$. La suite $(M_n)_{n\geqslant 0}$ est donc de Cauchy dans $L^2(\Omega)$. Comme la martingale est aussi bornée dans $L^1 \subseteq L^2$ alors $M_n \to X$ p.s. On veut montrer que $M_\infty = X$ p.s. De la convergence L^2 de M_n vers M_∞ on peut déduire que il existe une sous-suite $(n_k)_{k\geqslant 1}$ telle que M_{n_k} converge p.s. vers M_∞ . Mais alors $M_\infty = \lim_k M_{n_k} = \lim_n M_n = X$ p.s. .