Lectures on Natural Language Processing

4. Introduction to Deep Learning

Karl Stratos

Review: Feature Learning

Not linearly separable (e.g., XOR)

Accuracy 100% ✓

Accuracy $\leq 50\%$ X

Feature learning (aka. deep learning, neural networks)

- 1. Learn an input encoder $\mathbf{enc}_{\theta}: \mathbb{R}^d \to \mathbb{R}^H$ alongside linear classifier!
- 2. Use SGD to minimize a loss function differentiable in θ

► A system that employs a hierarchy of features of the input, learned end-to-end jointly with the predictor.

$$\phi(x; \theta_1, \theta_2, \dots, \theta_L) = F_1(x; \theta_1)$$

ightharpoonup We will refer to F_l as **layer** l

► A system that employs a hierarchy of features of the input, learned end-to-end jointly with the predictor.

$$\phi(x; \theta_1, \theta_2, \dots, \theta_L) = F_2(F_1(x; \theta_1); \theta_2)$$

 \blacktriangleright We will refer to F_l as **layer** l

► A system that employs a hierarchy of features of the input, learned end-to-end jointly with the predictor.

$$\phi(x;\theta_1,\theta_2,\ldots,\theta_L) = F_L(F_{L-1}(\cdots F_2(F_1(x;\theta_1);\theta_2)\cdots);\theta_L)$$

This is a vector in \mathbb{R}^{D_L} (D_L : final feature dimension)

 \blacktriangleright We will refer to F_l as layer l

A system that employs a hierarchy of features of the input, learned end-to-end jointly with the predictor.

$$\phi(x; \theta_1, \theta_2, \dots, \theta_L) = F_L(F_{L-1}(\dots F_2(F_1(x; \theta_1); \theta_2) \dots); \theta_L)$$

This is a vector in \mathbb{R}^{D_L} (D_L : final feature dimension)

- \blacktriangleright We will refer to F_l as **layer** l
- ► E.g., deep learning for classification:

$$f_y(x; W, b, \frac{\theta_1}{\theta_1}, \theta_2, \dots, \frac{\theta_L}{\theta_L}) = w_y \cdot \phi(x; \frac{\theta_1}{\theta_1}, \theta_2, \dots, \frac{\theta_L}{\theta_L}) + b_y$$

- ▶ All parameters $(W, b, \theta_1, \theta_2, \dots, \theta_L)$ are learned jointly
- $lackbox{}\phi(x; \theta_1, \theta_2, \dots, \theta_L) \in \mathbb{R}^{D_L}$: learned representation of x

A system that employs a hierarchy of features of the input, learned end-to-end jointly with the predictor.

$$\phi(x; \theta_1, \theta_2, \dots, \theta_L) = F_L(F_{L-1}(\dots F_2(F_1(x; \theta_1); \theta_2) \dots); \theta_L)$$

This is a vector in \mathbb{R}^{D_L} (D_L : final feature dimension)

- \blacktriangleright We will refer to F_l as **layer** l
- ► E.g., deep learning for classification:

$$f_y(x; W, b, \frac{\theta_1}{\theta_1}, \theta_2, \dots, \frac{\theta_L}{\theta_L}) = w_y \cdot \phi(x; \frac{\theta_1}{\theta_1}, \theta_2, \dots, \frac{\theta_L}{\theta_L}) + b_y$$

- All parameters $(W, b, \theta_1, \theta_2, \dots, \theta_L)$ are learned jointly
- $lackbox{}\phi(x; \theta_1, \theta_2, \dots, \theta_L) \in \mathbb{R}^{D_L}$: learned representation of x
- ► Learning methods that are not deep: SVMs, nearest neighbor classifiers, decision trees, perceptron

Example: Feedforward Classifier

Encoder

- ightharpoonup enc $_{U,a}: \mathbb{R}^d o \mathbb{R}^H$ defined by enc $_{U,a}(x) = g(U^\top x + a)$
- ▶ Parameters: $U = [u_1 \dots u_H] \in \mathbb{R}^{d \times H}$ and $a \in \mathbb{R}^H$
- Nonlinear and (sub-)differentiable **activation** function $g: \mathbb{R} \to \mathbb{R}$, applied elementwise (i.e., $[g(z)]_i = g(z_i)$)

Linear classifier (K classes)

- Parameters: $W = [w_1 \dots w_K] \in \mathbb{R}^{H \times K}$ and $b \in \mathbb{R}^K$
- ▶ Model: $p_{\theta}(y|x) \propto \exp(\mathbf{w}_{y}^{\top} \mathbf{enc}_{U,a}(x) + \mathbf{b})$

Training: Given $(x_1, y_1) \dots (x_N, y_N) \in \mathbb{R}^d \times \{1 \dots K\}$, minimize

$$\widehat{J}_N(\theta) = -\frac{1}{N} \sum_{i=1}^N \log p_{\theta}(y_i|x_i)$$

What is the gradient of \widehat{J}_N with respect to $\theta = (W, b, U, a)$?

Linear Classifier Gradients

Define $h_i := \mathbf{enc}_{U,a}(x_i)$. Then

$$\widehat{J}_N(\theta) = \frac{1}{N} \sum_{i=1}^N \log \left(\sum_{y=1}^K \exp(\mathbf{w}_y^{\mathsf{T}} h_i + \mathbf{b}_y) \right) - \mathbf{w}_{y_i}^{\mathsf{T}} h_i - \mathbf{b}_{y_i}$$

 h_i is not a function of (W, b), so we already know the gradients from before: for each $y \in \{1 ... K\}$

$$\nabla_{\boldsymbol{w_y}} \widehat{J}_N(\theta) = \frac{1}{N} \sum_{i=1}^N \left(p_{\theta}(y|x_i) - \mathbb{1}(y=y_i) \right) \boldsymbol{h_i}$$

$$\nabla_{\mathbf{b}_{\mathbf{y}}} \widehat{J}_{N}(\theta) = \frac{1}{N} \sum_{i=1}^{N} p_{\theta}(y|x_{i}) - \mathbb{1}(y = y_{i})$$

Feedforward Encoder Gradients

- $ightharpoonup \widehat{J}_N(\theta)$ is a function of $U_{j,k} \in \mathbb{R}$ through $h_1 \dots h_N \in \mathbb{R}^H$.
- ▶ By the **chain rule**:

$$\frac{\partial \widehat{J}_{N}(\theta)}{\partial U_{j,k}} = \sum_{i=1}^{N} \underbrace{\left(\frac{\partial \widehat{J}_{N}(\theta)}{\partial h_{i}}\right)^{\top}}_{1 \times H} \underbrace{\frac{\partial h_{i}}{\partial U_{j,k}}}_{H \times 1}$$

- lacksquare $rac{\partial \widehat{J}_N(heta)}{\partial h_i}$: Gradient of $\widehat{J}_N(heta) \in \mathbb{R}$ wrt. $h_i \in \mathbb{R}^H$ (easy)
- lacksquare $\frac{\partial h_i}{\partial U_{j,k}}$: Jacobian of $h_i \in \mathbb{R}^H$ wrt. $U_{j,k} \in \mathbb{R}$ (also easy)

$$\left[\frac{\partial h_i}{\partial U_{j,k}}\right]_t = \frac{\partial [h_i]_t}{\partial U_{j,k}}$$

Feedforward Encoder Gradients: Continued

Exercise: Verify that for $\delta_i := \sum_{y=1}^K p_{\theta}(y|x_i)w_y - w_{y_i} \in \mathbb{R}^H$

$$\frac{\partial \widehat{J}_N(\theta)}{\partial h_i} = \frac{1}{N} \delta_i$$
$$\frac{\partial h_i}{\partial U_{j,k}} = e_k \odot g'(Ux_i + a)[x_i]_j$$

where $e_k \in \{0,1\}^H$ is the k-th standard basis vector and \odot is elementwise multiplication. Then

$$\nabla_{U} \widehat{J}_{N}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \underbrace{x_{i}}_{d \times 1} \underbrace{\left(\delta_{i} \odot g'(\underline{U}^{\top} x_{i} + a)\right)^{\top}}_{1 \times H} \in \mathbb{R}^{d \times H}$$

Use this to take a gradient step on $U \in \mathbb{R}^{d \times H}$, similarly for $a \in \mathbb{R}^H$

Forward and Backward Pass

Forward

$$z_{i} = U^{\top} x_{i} + a \qquad \mathbb{R}^{H}$$

$$h_{i} = g(z_{i}) \qquad \mathbb{R}^{H}$$

$$p_{i} = \operatorname{softmax}(W^{\top} h_{i} + b) \qquad [0, 1]^{K}$$

$$J = \frac{1}{N} \sum_{i=1}^{N} \log[p_{i}]_{y_{i}} \qquad \mathbb{R}$$

Backward (Gradients for W, b omitted)

$$\delta_i = W \underbrace{p_i}_{p_i} - w_{y_i} \qquad \mathbb{R}^H$$

$$\nabla_U \widehat{J}_N(\theta) = \frac{1}{N} \sum_{i=1}^N x_i (\delta_i \odot g'(z_i))^\top \qquad \mathbb{R}^{d \times H}$$

$$\nabla_a \widehat{J}_N(\theta) = \frac{1}{N} \sum_{i=1}^N \delta_i \odot g'(z_i) \qquad \mathbb{R}^H$$

Nonlinear Activation Function

Nonlinear $g: \mathbb{R} \to \mathbb{R}$ crucial, otherwise we have a linear classifier again (assuming $H \geq \min\{d,K\}$)

$$\mathbf{score}_{\theta}(x,y) = w_y^\top (\boldsymbol{U}^\top x + \boldsymbol{a}) + b_y = v_y^\top x + c_y$$

where $V = UW \in \mathbb{R}^{d \times K}$ and $c = W^{\top}a + b$

► Popular activation functions

$$\begin{aligned} \operatorname{ReLU}(z) &= \max \left\{ 0, z \right\} & \operatorname{ReLU}'(z) &= \left\{ \begin{array}{l} 1 & \text{if } z \geq 0 \\ 0 & \text{otherwise} \end{array} \right. \\ & \tanh(z) &= \frac{\exp(2z) - 1}{\exp(2z) + 1} & \tanh'(z) = 1 - \tanh(z)^2 \\ & \sigma(z) &= \frac{1}{1 + \exp(-z)} & \sigma'(z) &= \sigma(z)(1 - \sigma(z)) \end{aligned}$$

Popular Activation Functions

sigmoid,
$$y=\sigma(x)=\frac{1}{1+\exp(-x)}$$

tanh, y = tanh(x)

rectified linear unit (ReLU), $y = \max\{0, x\}$:

Nonconvex Objective

 $ightharpoonup \widehat{J}_N$ is *not* convex in (U,a).

- ▶ Gradient descent will still find *some* stationary point.
 - But we don't really care if the stationary point is globally optimal for \widehat{J}_N (in fact that might be bad due to overfitting)
 - What we care: performance on downstream task

Universal Learners

- ► Feedforward with a nonlinear layer is highly expressive
 - Can separate non-separable examples (see Jupyter Notebook)
- Natural question: What class of functions can it express?
- ► The answer any function!
 - ▶ ... If it has enough parameters
 - For this reason, we say neural networks are universal learners
- Nothing exciting: This simply says we can memorize all N examples if H=O(N)
- Active research on universality with limited number of parameters

Revisiting Approximation vs Estimation Error

- Approximation error: due to limited model expressiveness, remains no matter how much data we have
- Estimation error: due to limited data, can reduce by getting more data

Deep learning: approximation error can always be driven to zero by considering a sufficiently large neural net

Regularization for Deep Learning

- Large neural networks can easily fit random labels.
- Same regularization techniques still useful: early stopping based on validation performance, weight decay
- Additional techniques
 - Dropout: Randomly make elements zero.
 - **Label smoothing**: Make one-hot label representation $\{0,1\}^K$ assign nonzero probabilities to other labels.
 - Layer normalization: Standardize elements in a layer.
- Even without explicit regularization, large neural networks can generalize surprisingly well.
 - Some attribute this fact to *implicit* regularization under SGD: "Understanding deep learning requires rethinking generalization" (Zhang et al., 2016)
 - ▶ But, in practice, explicit regularization is usually a must

Dropout

"Drop" (i.e., make it zero) each weight value with probability $p \in [0,1)$. Divide surviving weights by 1-p to restore the overall size of weights.

Idea: force the hidden layer to learn robust patterns, not memorize

- Only done for training: at test time no dropping or rescaling.
- ► How does this change the gradients?

Label Smoothing

- ► Cross-entropy loss $H(\mathbf{pop}(y|x), p_{\theta}(y|x))$
- ightharpoonup Cross-entropy loss with label smoothing: $\alpha \in [0,1]$

$$H((1-\alpha)\mathbf{pop}(y|x) + \alpha \mathrm{Unif}(\{1\ldots K\}), p_{\theta}(y|x))$$

ightharpoonup lpha > 0: Assign nonzero probabilities to labels other than gold ("soft targets")

$$\widehat{J}_N(\theta) = -\frac{1}{N} \sum_{i=1}^N (1 - \frac{\alpha}{\alpha}) \log p_{\theta}(y_i | x_i) + \frac{\alpha}{K} \sum_{y=1}^K \log p_{\theta}(y_i | x_i)$$

- Shown useful for machine translation and other tasks
 - ► See: "When Does Label Smoothing Help?" (Müller et al., 2019)

Layer Normalization

▶ Define **LayerNorm** : $\mathbb{R}^H \to \mathbb{R}^H$ by (for some tiny $\epsilon > 0$ to prevent division by zero)

$$\begin{split} \mu(h) := \frac{1}{H} \sum_{i=1}^{H} h_i & \sigma^2(h) := \frac{1}{H} \sum_{i=1}^{H} (h_i - \mu(h))^2 \\ \mathbf{LayerNorm}_i(h) = \frac{h_i - \bar{h}}{\sqrt{\sigma^2(h) + \epsilon}} & \forall i = 1 \dots H \end{split}$$

- ► This is a differentiable operation, so we will still be able to calculate gradients of the final loss with respect to parameters.
- If we treat vector elements as independent samples, $h' = \mathbf{LayerNorm}(h)$ have zero mean and unit variance ("whitened" or "standardized").
 - Model can't overfit by making values wildly different
- Related method: batch normalization (normalization across elements in a batch)

Gradient Calculation

Deep learning is a shockingly flexible paradigm.

$$\begin{split} & \mathbf{enc}_{\theta}(x) = \mathrm{ReLU}(U^{\top}x + a) & U \in \mathbb{R}^{d \times H}, \ a \in \mathbb{R}^{H} \\ & \mathbf{enc}_{\theta}(x) = \mathrm{tanh}(U^{\top}\mathrm{tanh}(U^{\top}\mathrm{ReLU}(U^{\top}x))) & U \in \mathbb{R}^{d \times d} \\ & \mathbf{enc}_{\theta}(x) = \mathbf{LayerNorm}(\mathrm{ReLU}(V^{\top}\sigma(U^{\top}x))) & U \in \mathbb{R}^{d \times H}, \ V \in \mathbb{R}^{H \times H'} \end{split}$$

Any of these encoders can be "plugged" into a linear classifier and trained by SGD on the cross-entropy loss (which remains differentiable).

- Central problem: Must derive gradients for every new loss/model!
- Instead of doing it by hand, can we automate this?

Automatic Differentiation and Backpropagation

- Automatic differentiation (AD, autodiff) is widely-used in scientific computing
 - Machine learning, optimization, probabilistic programming (given a program, AD can compute its derivative)
- ▶ At a high level, AD has two "modes": forward and reverse
- Forward mode AD is best when your function outputs a vector and you have a relatively small number of inputs
- Reverse mode AD is best when your function outputs a scalar but has many inputs
- ▶ Which situation better characterizes machine learning?

Automatic Differentiation and Backpropagation

- Automatic differentiation (AD, autodiff) is widely-used in scientific computing
 - Machine learning, optimization, probabilistic programming (given a program, AD can compute its derivative)
- ▶ At a high level, AD has two "modes": forward and reverse
- Forward mode AD is best when your function outputs a vector and you have a relatively small number of inputs
- Reverse mode AD is best when your function outputs a scalar but has many inputs
- ▶ Which situation better characterizes machine learning?
- Backpropagation = reverse mode AD
 - ▶ DAG + chain rule

DAG

A directed acylic graph (DAG) is a directed graph G=(V,A) with a topological ordering

For backpropagation: usually assume have many roots and 1 leaf

Computation Graph

- ▶ DAG G = (V, A) with a single output node $\omega \in V$.
- ▶ Every node $i \in V$ is equipped with a **value** $x^i \in \mathbb{R}$:
 - 1. For input node $i \in V_I$, we assume $x^i = a^i$ is given.
 - 2. For non-input node $i \in V_N$, we assume a differentiable function $f^i: \mathbb{R}^{|\mathbf{pa}(i)|} \to \mathbb{R}$ and compute

$$x^i = f^i((x^j)_{j \in \mathbf{pa}(i)})$$

- ▶ Thus G represents a function $\{a^i\}_{i \in V_I} \mapsto x^{\omega}$
- Forward pass
 - 1. Pick some topological ordering $\pi \in \Pi_G$
 - 2. For i in order of π , if $i \in V_N$ is a non-input node, set $x^i \leftarrow a^i := f^i((a^j)_{j \in \mathbf{pa}(i)})$
- Forward pass populates $x^i = a^i$ for every $i \in V$.

Multiple Possible Computation Graphs

These two computation graphs represent the same expression $(x+3)^2+4x^2$ but first has fewer nodes/edges.

Forward Pass: Populate Value Slots

Construct the computation graph associated with the function

$$f(x,y) := (x+y)xy^2$$

Compute its output value at x=1 and y=2 by performing a forward pass.

Forward Pass: Populate Value Slots

Construct the computation graph associated with the function

$$f(x,y) := (x+y)xy^2$$

Compute its output value at x=1 and y=2 by performing a forward pass.

Gradient Slots

- lacksquare Notation: Input slots $x_I=(x^i)_{i\in V_I}$, their values $a_I=(a^i)_{i\in V_I}$
- For every node $i \in V$, we introduce an additional slot $z^i \in \mathbb{R}$ storing the gradient of x^{ω} wrt. x^i at $x_I = a_I$:

$$z^i := \frac{\partial x^{\omega}}{\partial x^i} \bigg|_{x_I = a_I}$$

▶ Goal of backpropagation: Calculate z^i for every $i \in V$.

Key Ideas of Backpropagation

- Notation: Parental slots $x_I^i=(x^j)_{j\in\mathbf{pa}(i)}$, their values $a_I^i=(a^j)_{j\in\mathbf{pa}(i)}$
- ► Chain rule on the DAG structure

$$z^i := \frac{\partial x^{\pmb{\omega}}}{\partial x^i}\bigg|_{x_I = a_I} = \sum_{j \in \mathbf{ch}(i)} \frac{\partial x^{\pmb{\omega}}}{\partial x^j}\bigg|_{x_I = a_I} \times \frac{\partial x^j}{\partial x^i}\bigg|_{x_I^j = a_I^j}$$

Key Ideas of Backpropagation

- Notation: Parental slots $x_I^i=(x^j)_{j\in\mathbf{pa}(i)}$, their values $a_I^i=(a^j)_{j\in\mathbf{pa}(i)}$
- Chain rule on the DAG structure

$$\begin{aligned} z^i &:= \frac{\partial x^{\omega}}{\partial x^i} \bigg|_{x_I = a_I} = \sum_{j \in \mathbf{ch}(i)} \frac{\partial x^{\omega}}{\partial x^j} \bigg|_{x_I = a_I} \times \frac{\partial x^j}{\partial x^i} \bigg|_{x_I^j = a_I^j} \\ &= \sum_{j \in \mathbf{ch}(i)} \mathbf{Z}^{j} \times \underbrace{\frac{\partial f^j(x_I^j)}{\partial x^i}}_{\text{Jacobian of } f^j \text{ wrt } x^i} \bigg|_{x_I^j = a_I^j} \end{aligned}$$

Key Ideas of Backpropagation

- Notation: Parental slots $x_I^i=(x^j)_{j\in\mathbf{pa}(i)}$, their values $a_I^i=(a^j)_{j\in\mathbf{pa}(i)}$
- ► Chain rule on the DAG structure

$$\begin{split} z^i &:= \frac{\partial x^\omega}{\partial x^i} \bigg|_{x_I = a_I} = \sum_{j \in \mathbf{ch}(i)} \frac{\partial x^\omega}{\partial x^j} \bigg|_{x_I = a_I} \times \frac{\partial x^j}{\partial x^i} \bigg|_{x_I^j = a_I^j} \\ &= \sum_{j \in \mathbf{ch}(i)} \mathbf{Z}^{j} \times \underbrace{\frac{\partial f^j(x_I^j)}{\partial x^i}}_{\text{Jacobian of } f^j \text{ wrt } x^i} \bigg|_{x_I^j = a_I^j} \end{split}$$

Backward pass

- 1. Base case: $z^{\omega} = 1$
- 2. For i in reverse order of π : $z^i \leftarrow \sum_{j \in \mathsf{ch}(i)} z^j \times \frac{\partial f^j(x_I^j)}{\partial x^i} \bigg|_{x_I^j = a_I^j}$

25/37

Backward Pass: Populate Gradient Slots

Calculate the gradient of $f(x,y):=(x+y)xy^2$ with respect to x at x=1 and y=2 by performing backpropagation.

Backward Pass: Populate Gradient Slots

Calculate the gradient of $f(x,y):=(x+y)xy^2$ with respect to x at x=1 and y=2 by performing backpropagation.

$$\frac{\partial f(x,y)}{\partial x}\bigg|_{(x,y)=(1,2)} = 10$$

Implementation

- ► Each type of function f creates a child node from parent nodes and initializes its gradient to zero.
 - ▶ "Add" function creates a child node c with two parents (a,b) and sets $c.z \leftarrow 0$.
- Each node has an associated forward function.
 - Calling forward at c populates c.x = a.x + b.x (assumes parents have their values).
- ▶ Each node also has an associated **backward** function.
 - ightharpoonup Calling backward at c "broadcasts" its gradient c.z (assumes it's already calculated) to its parents

$$a.z \leftarrow a.z + c.z$$
$$b.z \leftarrow b.z + c.z$$

- ► In deep learning, input nodes are model parameters, output node is scalar loss.
 - Once we run the forward and backward pass, gradient of the loss wrt. model parameters stored in the input nodes.

Multi-Variable Case

► Computation graph in which input values that are vectors

$$x^i \in \mathbb{R}^{d^i} \qquad \forall i \in V$$

But the output value $x^{\omega} \in \mathbb{R}$ is always a scalar

► Gradients: vectors of the same size!

$$z^i \in \mathbb{R}^{d^i}$$
 $\forall i \in V$

Backpropagation: same form using the generalized chain rule

$$\begin{split} z^i &= \sum_{j \in \mathbf{ch}(i)} \frac{\partial x^\omega}{\partial x^j} \bigg|_{x_I = a_I} \times \frac{\partial x^j}{\partial x^i} \bigg|_{x_I^j = a_I^j} \\ &= \sum_{j \in \mathbf{ch}(i)} \frac{\mathbf{Z}^j}{\mathbf{X}^j} \times \underbrace{\frac{\partial f^j(x_I^j)}{\partial x^i}}_{\text{Jacobian of } f^j \text{ wrt. } x^i} \bigg|_{x_I^j = a_I^j} \end{split}$$

Standard Layers

Deep learning libraries provide many pre-defined nodes (aka. layers)

- ▶ Element-wise addition f(x,y) = x + y, product $f(x,y) = x \odot y$
- ▶ Element-wise log $f(x) = \log(x)$, exponentiation $f(x) = \exp(x)$
- Scalar mult. $f(x,\alpha) = \alpha x$, matrix-vector product f(A,x) = Ax
- ▶ Softmax: f(u) = softmax(u)
- Cross-entropy loss: $f([l_1 \dots l_N], (y_1 \dots y_N)) = -(1/N) \sum_i \log \operatorname{softmax}_{y_i}(l_i)$
- ▶ Dropout with probability p: $f(u) = \mathbf{Drop}_p(u)$

Each has its own forward and backward function, can plug and play

- Still have to be careful with numerical stability (e.g., always use an explicit cross-entropy loss layer, rather than using softmax which has unstable gradient)
- lacktriangle Syntactic sugar: "z=x+y" creates a computation graph under the hood

Loss of Feedforward Classifier

Single-example loss

$$z = Ux + a$$

$$h = g(z)$$

$$l = Wh + b$$

$$J = -\log \operatorname{softmax}_{y}(l)$$

- ► In practice, batch many examples into one computation graph
- (No transpose needed, shape weights appropriately)

Aside: Dropout Implementation

Forward: Stochastically define a masking vector scaled by (1-p), and save it for backward

$${\tt mask} = \left(\frac{\cdot}{0.7}, 0, \frac{\cdot}{0.7}\right)$$

Backward: Use saved mask to threshold/scale child gradient

$$\begin{split} \mathbf{Drop_{0.3}^{mask}}((u_1,u_2,u_3)) &= \left(\frac{u_1}{0.7},0,\frac{u_3}{0.7}\right) \\ &\frac{\partial \mathbf{Drop_{0.3}^{mask}}((u_1,u_2,u_3))}{\partial (u_1,u_2,u_3)} &= \begin{bmatrix} \frac{1}{0.7} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \frac{1}{0.7} \end{bmatrix} \\ (z_1,z_2,z_3) &\frac{\partial \mathbf{Drop_{0.3}^{mask}}((u_1,u_2,u_3))}{\partial (u_1,u_2,u_3)} &= &\mathbf{Drop_{0.3}^{mask}}((z_1,z_2,z_3)) \\ &\underbrace{= \mathbf{Drop_{0.3}^{mask}}((z_1,z_2,z_3))}_{\text{equiv. to applying same dropout to grad}} \end{split}$$

Initialization Strategies

- Non-convex objective; initialization is important
- ▶ All zeros? Bad idea: all units learn the same thing!
- ▶ Random: small values (e.g., $\mathcal{N}(0,.01)$, Unif(-0.01,0.01))
 - ▶ Problem: variance of activation grows with number of inputs
- ► The "Xavier" scheme (Glorot et al.): normalize the scale to provide roughly equal variance throughout the network
 - ▶ If n inputs, draw from $\mathcal{N}(\mu = 0, \sigma^2 = 1/n)$
 - Problem: implicitly assumes linear activations, breaks with ReLUs
- ▶ The "Kaiming" scheme (He et al): designed for ReLUs
 - ▶ Draw from $\mathcal{N}(0, 2/n)$, where n is the number of inputs
- Note: still OK to init biases with zeros

Learning Rate for Neural Networks

- For deep networks, setting the right learning rate is crucial.
- ► Typical behaviors, monitoring *training loss*:

ightharpoonup High LR ightarrow NaN crash, usually fixable by making LR smaller

Gradient Descent with Momentum

- ► SGD has trouble navigating "ravines" where surface curves much more steeply in one dimension than in another,
- ► SGD oscillates across the slopes of the ravine, making hesitant progress towards the (local) optimum.
- Momentum helps accelerate SGD in the relevant direction and dampens oscillations.

$$\Delta \theta_t = \gamma \Delta \theta_{t-1} + \eta_t \nabla J(\theta_t)$$

$$\theta_{t+1} = \theta_t - \Delta \theta_t$$

(Goodfellow et al.)

34/37

Gradient Clipping

- Because of nonlinearity gradient vectors can "explode"
 - Particularly problematic if the network has many layers (e.g., recurrent). Why? Result: NaN loss
- ightharpoonup Helpful trick: clip gradient update to have norm at most C

$$\Delta\theta \mapsto C \frac{\Delta\theta}{||\Delta\theta||}$$

Intuition: navigate steep local areas more conservatively

▶ "Never hurts": can set C to be large to turn it off

Ensembles of networks

- We may want to train multiple networks and somehow combine them
- Reduces variance (we have stochastic training of non-convex objective)
- ▶ Directly average the network weights? Terrible idea
- Averaging unit activations: equally bad
- Better idea: average the predictions
- Multi-class settings: output of network t is $p_t = (p_t(y=1), \dots, p_t(y=K))$ then use $\frac{1}{T} \sum_t p_t$

Need for Specialized Neural Architectures

- ► Feedforward implicitly assumes the input is a single vector.
- ▶ NLP: Input is a *sequence* (of symbols)!
- Option 1: BOW representation
 - Loses lots of information (e.g., ordering), high-dimensional
- Option 2: Giant feedforward with input dimension = max sequence length
 - ► Computationally intractable, too many parameters to learn
- Solution: Develop specialized architectures that can handle variable input lengths.
 - Example: Convolutional, recurrent, transformer
- Important to keep in mind: These specialized architectures are still "feedforward" (with weight sharing)
 - Feedforward is the building block of deep learning.