Introducción a la Programación Prof. Agustín Gravano

Primer semestre de 2022

Clase teórica 14: Representación de la información

Gracias al Prof. David González Márquez por compartir materiales para esta clase.

Datos

La computadora almacena y opera con información binaria (o digital).

El medio físico permite almacenar bits: ceros (0) y unos (1) representados (por ejemplo) mediante diferencias de tensión.

Entonces, la computadora trabaja siempre con secuencias de bits que se interpretan de distintas formas: como enteros, como caracteres, etc.

Veremos cómo representar los tipos usando secuencias de bits de cierta longitud.

Ejemplo con 4 bits:

Binario	Decimal		
(base 2)	(base 10)		
0000	0		
0001	1		
0010	2		
0011	3		
0100	4		
0101	5		
0110	6		
0111	7		
1000	8		
1001	9		
1010	10		
1011	11		
1100	12		
1101	13		
1110	14		
1111	15		

Conversión de binario a decimal

Queremos convertir el número binario 11001.00101 a notación decimal.

$$2^4 + 2^3 + 2^0 + 2^{-3} + 2^{-5} = 16 + 8 + 1 + \frac{1}{8} + \frac{1}{32} = 25.15625$$

Luego, la representación decimal de 11001.00101 es 25.15625

Conversor online, útil para revisar nuestras cuentas:

https://www.rapidtables.com/convert/number/decimal-to-binary.html

Conversión de decimal a binario

Queremos representar el número decimal 25.79 en notación binaria.

Parte entera: 25

Luego, $25 \rightarrow 11001$

Parte fraccionaria: 0.79

Luego, $0.79 \rightarrow 1100101...$

Luego, la representación binaria de 25.79 es 11001.1100101...

En el Ejercicio 7 de la Guía 6 se describen los algoritmos para hacer estas conversiones.

Los enteros (int) para una computadora son similares a los enteros matemáticos (el conjunto \mathbb{Z}):

$$\ldots$$
, -4 , -3 , -2 , -1 , 0 , 1 , 2 , 3 , 4 , \ldots

Pero en las computadoras están acotados por encima y por debajo:

$$MIN, \ldots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \ldots, MAX$$

donde MIN y MAX dependen de la cantidad de bits usados para representar un entero (ej.: 8 bits, 16 bits, etc.) y de la notación elegida.

Veamos algunas formas posibles de representar enteros mediante secuencias de bits:

- ► Notación Sin Signo
- Notación Signo y Magnitud
- ► Notación Complemento a 2
- ► Notación Exceso-e

Notación Sin Signo (n bits)

- lacktriangle Usa n bits para el valor.
- ▶ Rango representable 0 a $2^n 1$.
- ► No hay números negativos.

Conversión X (Decimal)
$$\rightarrow$$
 Y (Sin Signo): $Y = base2(X)$

Conversión Y (Sin Signo)
$$\rightarrow$$
 X (Decimal):
 $X = base10(Y)$

Ejemplo con 4 bits:

Binario	Sin Signo			
0000	0			
0001	1			
0010	2			
0011	3			
0100	4			
0101	5			
0110	6			
0111	7			
1000	8			
1001	9			
1010	10			
1011	11			
1100	12			
1101	13			
1110	14			
1111	15			

Notación Signo y Magnitud (n bits)

- ▶ Usa 1 bit para signo y n-1 bits para el valor.
- ► Rango representable $-(2^{n-1}-1)$ a $2^{n-1}-1$.
- ► Bit de signo: 0 = positivo, 1 = negativo.
- ► Los bits restantes determinan la magnitud.

Conversión X (Decimal)
$$\rightarrow$$
 Y (Signo-Magnitud):
Si X \geq 0: Y = concatenar(0, base2(X))
Si X \leq 0: Y = concatenar(1, base2(abs(X)))

Conversión Y (Signo-Magnitud)
$$\rightarrow$$
 X (Decimal):

Si
$$Y_{n-1} == 0$$
: $X = base10(Y_{n-2} ... Y_0)$
Si $Y_{n-1} == 1$: $X = -base10(Y_{n-2} ... Y_0)$

<u>Observación</u>: Por convención, Y_{n-1} refiere al bit más significativo (el primero de la izquierda).

Ejemplo con 4 bits:

Binario	Con Signo				
0000	0				
0001	1				
0010	2				
0011	3				
0100	4				
0101	5				
0110	6				
0111	7				
1000	-0				
1 001	-1				
1 010	-2				
1 011	-3				
1100	-4				
1 101	-5				
1 110	-6				
1 111	-7				

Notación Complemento a 2 (n bits)

- lacktriangle Usa n bits para el valor y signo.
- ▶ Rango representable $-(2^{n-1})$ a $2^{n-1}-1$.

```
Conversión Y (Complemento2) \rightarrow X (Decimal): Si Y_{n-1} == 0: X = base10(Y) Si Y_{n-1} == 1: X = -(base10(BitwiseNot(Y)+1))
```

Definición:

BitwiseNot = Invertir bit a bit Ej: BitwiseNot(1011) = 0100

Ejemplo con 4 bits:

D: .	6 1 0				
Binario	Compl.a 2				
0000	0				
0001	1				
0010	2				
0011	3				
0100	4				
0101	5				
0110	6				
0111	7				
1 000	-8				
1001	-7				
1 010	-6				
1 011	-5				
1 100	-4				
1 101	-3				
1 110	-2				
1111	-1				

Notación Exceso-e (n bits)

- lacktriangle Usa n bits, no considera bit para el signo.
- ▶ Rango representable -e a $2^n e 1$.
- ► Permite representar un rango arbitrario.

Conversión X (Decimal)
$$\rightarrow$$
 Y (Exceso-e): $Y = base2(X+e)$

Conversión Y (Exceso-e)
$$\rightarrow$$
 X (Decimal):

$$X = base10(Y) - e$$

Ejemplo con 4 bits:

Binario	Exceso-5			
0000	-5			
0001	-4			
0010	-3			
0011	-2			
0100	-1			
0101	0			
0110	1			
0111	2			
1000	3			
1001	4			
1010	5			
1011	6			
1100	7			
1101	8			
1110	9			
1111	10			

Algunos ejemplos de uso:

- ► Sin signo: unsigned int en C++, 32 bits, 0 a 4294967295.
- ► Signo y Magnitud: primeras computadoras (ej: IBM 7090, de 1958).
- Complemento a 2: tipo int en C++, de 32 bits, -2147483648 a 2147483647.
- Notación Exceso-e: Representación del exponente en IEEE-754 (ver slide 19).

En los lenguajes que tienen un máximo entero representable fijo (ej: C++, Java), cualquier operación que arroje un resultado >MAX o <-MAX dará un error de *overflow*.

Python3, Ruby y otros lenguajes modernos usan secuencias de bits de longitud variable para representar enteros. No limitan a priori el tamaño de los enteros representables, aunque en la práctica siempre habrá un límite dado por la memoria física disponible.

Números reales

Los números en una computadora son muy diferentes de los reales matemáticos (el conjunto \mathbb{R}).

Las siguientes igualdades son matemáticamente ciertas:

$$\sqrt{2.0} = 1.4142135623730950488016887242096980785696718753769\dots$$

$$\sqrt{2.0}^2 = 2.0$$

En una computadora, para representar números se usa una cantidad acotada de bits. Por lo tanto, no hay forma de representar todo el desarrollo de la parte decimal de $\sqrt{2.0}$.

$$\sqrt{2.0} = 1.4142135623730951$$

¡Hay infinitos reales representados por 1.4142135623730951!

 $\begin{array}{c} 1.4142135623730951 & \leadsto 1.4142135623730951 \\ 1.4142135623730951234 & \leadsto 1.4142135623730951 \\ 1.4142135623730951412976 & \leadsto 1.4142135623730951 \end{array}$

Números reales

Los números en una computadora son muy diferentes de los reales matemáticos (el conjunto \mathbb{R}).

Las siguientes igualdades son matemáticamente ciertas:

$$\sqrt{2.0} = 1.4142135623730950488016887242096980785696718753769\dots$$

$$\sqrt{2.0}^2 = 2.0$$

En una computadora, $\sqrt{2.0} = 1.4142135623730951$

Están acotados no solo por encima y por debajo (como los enteros), sino también en su precisión. Esto lleva a errores numéricos en los cálculos. Cómo lidiar con estos errores se ve en Métodos Computacionales.

Veamos dos formas de representar números reales con secuencias de bits:

- ▶ Notación de Punto Fijo
- ► Notación de Punto Flotante

Punto Fijo

 $\label{eq:total_para_representar} \mbox{Utilizamos } n \mbox{ bits en total para representar el número.}$

lacktriangle Un bit de signo, k para la parte entera y f para la parte fraccionaria.

► Alternativamente, el signo puede ser codificado en la parte entera. Por ejemplo, codificado como complemento a 2.

Punto Fijo - Ejemplo

Suponer una codificación de la forma:

```
signo (1 bit) parte entera (9 bits) parte fraccionaria (6 bits)
```

► Ejemplo 1: Secuencia de bits 0011001010001001 La interpretamos como: (0)011001010.001001 $\begin{cases} (0) \rightarrow \text{Positivo} \\ 011001010 \rightarrow 202 \\ 001001 \rightarrow 0.140625 \end{cases}$

Luego, 0011001010001001 ightarrow 202.140625

▶ Ejemplo 2: Secuencia de bits 10000001110000111 La interpretamos como: (1)000000110.000111 \rightarrow -6.109375 $\begin{cases} (1) \rightarrow \text{Negativo} \\ 000000110 \rightarrow 6 \\ 000111 \rightarrow 0.109375 \\ \text{Luego}, 1000000110000111 \rightarrow -6.109375 \end{cases}$

La notación de punto fijo se usó en lenguajes importantes como COBOL y Ada. Luego cayó en desuso, siendo reemplazada por la notación de punto flotante.

Números de punto flotante (float)

Un real r se representa en punto flotante por una terna (s, e, f) tal que:

El signo s es un bit: 0=positivo; 1=negativo.

El exponente e es un entero representado con alguna de las notaciones vistas. Puede ser negativo.

En la fracción f (también llamada mantisa, coeficiente, o significando), el 1 de la parte entera está implícito. Los bits xxxxxxxxx se interpretan como 1.xxxxxxxxx.

Punto Flotante · ¿Cómo se interpreta una secuencia de bits?

Suponer codificación: signo (1 bit) exponente (6 bits) fracción (9 bits)

El exponente está representado en complemento a 2.

▶ **Ejemplo 1:** Secuencia de bits 1000101101010000 La interpretamos como: (1)1. $101010000 \times 2^{000101}$ $\begin{cases} (1) \to \text{Negativo} \\ 1.101010000 \to 1.65625 \\ 000101 \to 5 \end{cases}$ Luego, $10001011010100000 \to -(1.65625 \times 2^5) \to -53$

```
▶ Ejemplo 2: Secuencia de bits 0111110111101111 La interpretamos como: (0)1.111010111 \times 2<sup>11110</sup>  \begin{cases} (0) \rightarrow \text{Positivo} \\ 1.111010111 \rightarrow 1.919921875 \\ 111110 \rightarrow -2 \end{cases}  Luego, 01111101111010111 \rightarrow 1.919921875 \times 2<sup>-2</sup> \rightarrow 0.48
```

Punto Flotante · ¿Cómo se construye una secuencia de bits?

Suponer codificación: signo (1 bit) exponente (6 bits) fracción (9 bits)

El exponente está representado en complemento a 2.

▶ **Ejemplo 1:** Número -53 $\begin{cases} \text{Negativo} \to (1) \\ 53 \to 110101 = 1.10101 \times 100000 = 1.101010000 \times 2^5 \\ 5 \to 000101 \end{cases}$ Luego, escribimos -53 como 1000101101010000

► Ejemplo 2: Número 0.48

```
Positivo \rightarrow (0)

0.48 \rightarrow 0.01111010111... = 1.111010111 \div 100 = 1.111010111 \times 2^{-2}

-2 \rightarrow 111110
```

Luego, escribimos 0.48 como 0111110111010111

Punto Flotante - Rango de representación

La representación en punto flotante no es uniforme sobre la recta númerica.

- Error de overflow: Magnitudes que grandes que el máximo valor absoluto representable.
- ► Error de underflow: Magnitudes más chicas que el mínimo valor absoluto representable (distinto de cero).

Punto Flotante · IEEE-754

Una codificación en punto flotante muy usada es el estándar IEEE-754, que viene en dos versiones: de 32 bits y de 64 bits.

32 Bits:

64 Bits:

C++ y Java tienen los tipos float y double, siguiendo el estándar IEEE-754 de 32 y 64 bits, respectivamente.

El tipo float de Python sigue el estándar IEEE-754 de 64 bits.

Caracteres

Existen muchas formas de representar codificar caracteres.

Las codificaciones se basan en **tablas**, que indican qué bits corresponden a cada carácter.

Dependiendo de la cantidad de bits/bytes usados para codificar cada carácter, pueden ser de tamaño fijo o variable.

Algunos ejemplos:

- ► ASCII: Fija, 1 byte. Aunque solo se usan 7 bits para codificar caracteres.
- ► UTF-8: Variable, 1 a 4 bytes. Codificación Unicode de longitud variable.
- UTF-16: Variable, 2 o 4 bytes. Codificación Unicode optimizado para caracteres multilingües.
- ► UTF-32: Fija, 4 bytes. Codificación Unicode simple.
- ► Latin-1 (ISO-8859-1): Fija, 1 byte. Caracteres latinos, tildes, diéresis, cedilla, eñe, etc.
- ► GB 18030: Variable, 1 a 4 bytes. Estándar utilizado en China.

Representación de caracteres · ASCII

```
Dec Hex
          Dec Hex
                     Dec Hex Dec Hex Dec Hex
                                                Dec Hex
                                                           Dec Hex
                                                                     Dec Hex
           16 10 DLE
                      32 20
  0 00 NUL
                                48 30 0 64 40 @ 80 50 P
                                                           96 60 `
                                                                     112 70 p
  1 01 SOH
           17 11 DC1
                      33 21 !
                                49 31 1
                                        65 41 A
                                                 81 51 Q
                                                           97 61 a
                                                                     113 71 q
  2 02 STX
           18 12 DC2
                      34 22 "
                                50 32 2
                                         66 42 B
                                                  82 52 R
                                                           98 62 b
                                                                     114 72 r
           19 13 DC3
                                51 33 3
                                                 83 53 S
                                                            99 63 c
  3 03 ETX
                      35 23 #
                                        67 43 C
                                                                     115 73 s
 4 04 EOT
           20 14 DC4
                      36 24 $
                                        68 44 D
                                                  84 54 T
                                                           100 64 d
                                                                     116 74 t
                                52 34 4
 5 05 ENO
           21 15 NAK
                      37 25 %
                               53 35 5
                                        69 45 E
                                                 85 55 U
                                                           101 65 e
                                                                    117 75 u
 6 06 ACK
           22 16 SYN
                      38 26 &
                                54 36 6
                                        70 46 F
                                                 86 56 V
                                                           102 66 f
                                                                     118 76 v
 7 07 BEL
           23 17 ETB
                      39 27 '
                                55 37 7
                                         71 47 G
                                                  87 57 W
                                                           103 67 a
                                                                    119 77 w
 8 08 BS
           24 18 CAN
                      40 28 (
                                56 38 8
                                         72 48 H
                                                  88 58 X
                                                           104 68 h
                                                                     120 78 x
  9 09 HT
           25 19 EM
                      41 29 )
                                57 39 9
                                         73 49 I
                                                  89 59 Y
                                                           105 69 i
                                                                     121 79 y
 10 OA LF
           26 1A SUB
                      42 2A *
                                58 3A :
                                         74 4A J
                                                 90 5A Z
                                                          106 6A i
                                                                     122 7A z
 11 OB VT
           27 1B ESC
                                        75 4B K 91 5B [
                      43\ 2B +
                                59 3B;
                                                          107 6B k
                                                                    123 7B {
 12 OC FF
           28 1C FS
                               60 3C <
                                        76 4C L 92 5C \
                                                          108 6C 1
                                                                     124 7C |
                      44 2C .
 13 OD CR
           29 1D GS
                      45 2D -
                               61 \ 3D =
                                         77 4D M
                                                 93 5D 1
                                                           109 6D m
                                                                     125 7D }
 14 OE SO
           30 1E RS 46 2E .
                                        78 4E N
                                                 94 5E ^
                               62 \ 3E >
                                                           110 6E n
                                                                     126 7E ~
 15 OF SI
           31 1F US 47 2F / 63 3F ?
                                        79 4F 0 95 5F
                                                          111 6F o
                                                                     127 7F DEL
```

Representación de caracteres · UTF-8

Los caracteres se codifican según el rango al que pertenezcan. Los primeros 127 corresponden a la codificación ASCII.

#bytes	desde	hasta	byte 1	byte 2	byte 3	byte 4
1	0	127	0xxxxxxx			
2	128	2047	110xxxxx	10xxxxxx		
3	2048	65535	1110xxxx	10xxxxxx	10xxxxxx	
4	65536	1114111	11110xxx	10xxxxxx	10xxxxxx	10xxxxxx

El primer byte indica cuántos bytes a continuación se deben leer (mismo prefijo).

Ejemplos:

U+03A3 \rightarrow ce a3 \rightarrow greek capital letter sigma \rightarrow Σ U+2197 \rightarrow e2 86 97 \rightarrow north east arrow \rightarrow \nearrow U+10890 \rightarrow f0 90 a2 90 \rightarrow nabataean letter final lamedh \rightarrow \flat

Representación de datos

Ejemplo: Formato WAV Almacena muestras de señales de audio sin comprimir, permite (p.ej.) frecuencias de muestro de 16 bits a 44kHz.

números con signo de 16 bits

pixel |

signo de 8 bits

Imagen Matriz de pixeles

Ejemplo: Formato BMP Guarda mapas de bits sin compresión. Permite guardar imágenes en escala de grises y en colores de 24 o 32 bits.

Ejemplo: Formato STL Permite representar superficies 3D por medio de la descripción de triángulos en coordenadas cartesianas.

Repaso de la clase de hoy

- Representación de números enteros
 - ▶ Sin Signo; Signo y Magnitud; Complemento a 2; Exceso-e.
 - Error de overflow.
- ► Representación de números reales
 - Punto Fijo; Punto Flotante.
 - Errores de overflow y underflow.
- ► Representación de caracteres
 - ASCII; UTF-8.

Bibliografía complementaria:

► Tanenbaum, "Organización de Computadoras. Un Enfoque Estructurado", 4ta Edición, 2000. Apéndices: "Números Binarios" y "Números de Punto Flotante" (disponibles en la sección *Extras* de la página de la materia).

Con lo visto, ya pueden resolver toda la Guía de Ejercicios 6.