# COMP 3311 DATABASE MANAGEMENT SYSTEMS

LECTURE 21 EXERCISES

CONCURRENCY CONTROL:

TIMESTAMP-BASED PROTOCOLS

Recall that this schedule is <u>not serializable</u> because there is a <u>cycle</u>  $T_1T_2T_3T_1$ . Therefore, the schedule will fail under any protocol that aims at conflict serializability.



#### **Precedence Graph**



## EXERCISE I (CONTO)

Use the single-version, timestamp-ordering protocol, to complete the following non-serializable schedule assuming the timestamps 1, 2, and 3 for transactions  $T_1$ ,  $T_2$ , and  $T_3$ , respectively. Show where the protocol will fail. Assume initial R/W timestamp of all items is 0.

# 13 0.

# Read If $TS(T_i) < WTS(Q)$ rollback If $TS(T_i) \ge WTS(Q)$ RTS(Q) = max(TS( $T_i$ ), RTS(Q)) Write

If  $TS(T_i) < RTS(Q)$  rollback If  $TS(T_i) < WTS(Q)$  rollback Otherwise  $WTS(Q) = TS(T_i)$ 

| S | (X)=2 WTS(X)=2                                                    | RTS(Y)=3 WTS(Y)=3                     | RTS(Z)=0 WTS(Z)=                                                     | 3                                         |
|---|-------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|-------------------------------------------|
|   | <i>T</i> <sub>1</sub> [TS=1]                                      | <i>T</i> <sub>2</sub> [TS=2]          | T <sub>3</sub> [TS=3]                                                |                                           |
|   | read(X) 	✓ TS(7 <sub>1</sub> )=1 ≥ W1                             | S(X)=0; set RTS(X)=1                  |                                                                      |                                           |
|   |                                                                   | read(Y) ✓ TS(7₂)=2≥W                  | TS(Y)=0; set RTS(Y)=2                                                |                                           |
|   |                                                                   | write(Y) ✓ TS(7 <sub>2</sub> )=2 ≥ RT | S(Y)=2 & ≥ WTS(Y)=0; set WTS(Y                                       | ′)=2                                      |
|   |                                                                   |                                       | write( $\mathbb{Z}$ ) $\checkmark$ TS( $\mathcal{T}_3$ )=3 $\ge$ RT  | $S(Z)=0 \& \ge WTS(Z)=0$ ; set $WTS(Z)=3$ |
|   | write(X) $\checkmark$ TS( $T_1$ )=1 $\ge$ RT                      | $S(X)=1 \& \ge WTS(X)=0$ ; set WTS(X) | ()=1                                                                 |                                           |
|   |                                                                   | read(X)                               | S(X)=1; set RTS(X)=2                                                 |                                           |
|   |                                                                   | write(X) $\sqrt{TS(T_2)}=2 \ge RT$    | "S(X)=2 & ≥ WTS(X)=1; set WTS(X                                      | <b>(</b> )=2                              |
|   |                                                                   |                                       | read(Y) ✓ TS(7 <sub>3</sub> )=3 ≥ W                                  | TS(Y)=2; set RTS(Y)=3                     |
|   |                                                                   |                                       | write( $\mathbf{Y}$ ) $\checkmark$ TS( $\mathcal{T}_3$ )=3 $\geq$ RT | $S(Y)=3 \& \ge WTS(Y)=2$ ; set $WTS(Y)=3$ |
|   | write( $\mathbb{Z}$ ) TS( $\mathcal{T}_1$ )=1 < WTS( $\mathbb{Z}$ | )=3 <mark>→ rollback</mark>           |                                                                      |                                           |

## EXERCISE I (CONTO)

Use the single-version, timestamp-ordering protocol, to complete the following non-serializable schedule assuming the timestamps 1, 2, and 3 for transactions  $T_1$ ,  $T_2$ , and  $T_3$ , respectively. Show where the protocol will fail. Assume initial R/W timestamp of all items is 0.

**COMP 3311** 

# Read If $TS(T_i) < WTS(Q)$ rollback If $TS(T_i) \ge WTS(Q)$ RTS(Q) = max(TS(T\_i), RTS(Q)) Write If $TS(T_i) < RTS(Q)$ rollback

4

If  $TS(T_i) < WTS(Q)$  ignore Otherwise  $WTS(Q) = TS(T_i)$ 

```
RTS(X)=2
                  WTS(X)=2
                                        RTS(Y)=3
                                                          WTS(Y)=3
                                                                                 RTS(Z)=0
                                                                                                   WTS(Z)=3
                                                  T_2 [TS=2]
               T₁ [TS=1]
                                                                                      T_3 [TS=3]
        read(X) \sqrt{TS(T_1)}=1 \ge WTS(X)=0; set RTS(X)=1
                                          read(Y) \sqrt{TS(T_2)}=2 \ge WTS(Y)=0; set RTS(Y)=2
                                          write(Y) \checkmark TS(7_2)=2 \ge RTS(Y)=2 & \ge WTS(Y)=0; set WTS(Y)=2
                                                                             write(\mathbb{Z}) \checkmark TS(\mathcal{T}_3)=3 \geq RTS(\mathbb{Z})=0 & \geq WTS(\mathbb{Z})=0; set WTS(\mathbb{Z})=3
        write(X) \checkmark TS(7_1)=1 \ge RTS(X)=1 \& \ge WTS(X)=0; set WTS(X)=1
                                          read(X) \sqrt{TS(T_2)}=2 \ge WTS(X)=1; set RTS(X)=2
                                          write(X) \sqrt{TS(T_2)}=2 \ge RTS(X)=2 \& \ge WTS(X)=1; set WTS(X)=2
                                                                              read(Y) \sqrt{TS(T_3)=3} \ge W^{\dagger}S(Y)=2; set RTS(Y)=3
                                                                              write(Y) \checkmark TS(T_3)=3 \ge RTS(Y)=3 \& \ge WTS(Y)=2; set WTS(Y)=3
        write(\mathbb{Z}) TS(\mathcal{T}_1)=1 < WTS(\mathbb{Z})=3 \Longrightarrow ignore
```

Use the multi-version, timestamp-ordering protocol to complete the schedule of Exercise 1 assuming the timestamps 1, 2, and 3 for transactions  $T_1$ ,  $T_2$ , and  $T_3$ , respectively. Assume initial R/W timestamp of  $T_1$ ,  $T_2$ , and  $T_3$ , respectively. Assume initial R/W timestamp of  $T_1$ ,  $T_2$ , and  $T_3$ , respectively. Assume initial R/W timestamp of  $T_3$ ,  $T_4$ , and  $T_5$  are used to label versions.



### EXERCISE 2 (CONTO)

Multi-version timestamp-ordering protocol assuming the timestamps 2, 1

and 3 for transactions  $T_1$ ,  $T_2$  and  $T_3$ , respectively.



#### Read

Reads always succeed set RTS( $Q_k$ ) =  $\max(\mathsf{TS}(T_i), \mathsf{RTS}(Q_k))$ 

#### Write

If  $TS(T_i) < RTS(Q_k)$  rollback If  $TS(T_i) = WTS(Q_k)$ overwrite contents If  $TS(T_i) > WTS(Q_k)$ create new version set R/WTS(Q')=TS( $T_i$ )

Any other timestamp ordering of the transactions, as in this example, will lead to a rollback.

The following schedule is conflict serializable.

a) What is the equivalent serial schedule?

**COMP 3311** 

b) Assign appropriate timestamps to the transactions  $T_1$ ,  $T_2$ ,  $T_3$  and  $T_4$  so that the schedule is conflict serializable according to the single version, timestamp-ordering protocol. Assume initial R/W timestamp of all items is 0.

| <i>T</i> <sub>1</sub> | <i>T</i> <sub>2</sub> | <i>T</i> <sub>3</sub> | $T_4$   |
|-----------------------|-----------------------|-----------------------|---------|
| read(X)               |                       |                       |         |
| write(X)              |                       |                       |         |
|                       | read(X)               |                       |         |
|                       |                       | read(Y)               |         |
|                       |                       | write(Y)              |         |
|                       | write(X)              |                       |         |
|                       |                       |                       | read(Y) |
| write(Y)              |                       |                       |         |

## EXERCISE 3 (CONTO)

a) What is the equivalent serial schedule?



#### **Precedence Graph**



The equivalent serial schedule is  $T_3$   $T_4$   $T_1$   $T_2$ 

b) Assign appropriate timestamps to the transactions  $T_1$ ,  $T_2$ ,  $T_3$  and  $T_4$  so that the schedule is conflict serializable according to the single version, timestamp-ordering protocol. Assume initial R/W timestamp of all items is 0.

# EXERCISE 3 (CONTO)

We note that, for this schedule, any other order of timestamps will fail according to the single version timestamp-ordering protocol as shown below for the order  $T_1$ ,  $T_2$ ,  $T_3$ ,  $T_4$ .

# Read If $TS(T_i) < WTS(Q)$ rollback If $TS(T_i) \ge WTS(Q)$ RTS(Q) = max( $TS(T_i)$ , RTS(Q)) Write If $TS(T_i) < RTS(Q)$ rollback If $TS(T_i) < WTS(Q)$ ignore Otherwise $WTS(Q) = TS(T_i)$

| <i>T</i> <sub>1</sub> [TS=1]                 | <b>T</b> <sub>2</sub> [TS=2]                                                         | <i>T</i> <sub>3</sub> [TS=3]                 | <b>T</b> <sub>4</sub> [TS=4]               |                        |
|----------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------|------------------------|
| read(X) $\checkmark$ TS( $7_1$ )=1 $\ge$ WT  | S(X)=0; set RTS(X)=1                                                                 |                                              |                                            |                        |
| write(X) $\checkmark$ TS( $T_1$ )=1 $\ge$ RT | S(X)=1 & ≥ WTS(X)=0; set WTS(>                                                       | ()=1                                         |                                            |                        |
|                                              | read(X) $\checkmark$ TS( $\frac{7}{2}$ )=2 $\ge$ WT                                  | S(X)=1; <b>set</b> RTS(X)=2                  |                                            |                        |
|                                              |                                                                                      | read(Y) ✓ TS(73)=3 ≥ WT                      | S(Y)=0; set RTS(Y)=3                       |                        |
|                                              |                                                                                      | write(Y) $\checkmark$ TS( $7_3$ )=3 $\ge$ RT | S(Y)=3 & ≥ WTS(Y)=0; set WTS(              | ( <b>Y</b> )=3         |
|                                              | write(X) $\checkmark$ TS( $T_2$ )=2 $\ge$ RTS(X)=2 $\&$ $\ge$ WTS(X)=1; set WTS(X)=2 |                                              |                                            |                        |
|                                              |                                                                                      |                                              | read(Y) $\checkmark$ TS( $T_4$ )=4 $\ge$ W | /TS(Y)=3; set RTS(Y)=4 |
| write( $Y$ ) TS( $T_1$ )=1 < RTS( $Y$        | )=4 <mark>⇒ rollback</mark>                                                          |                                              |                                            |                        |

Use the multi version, timestamp-ordering protocol, to complete the conflict serializable schedule of **Exercise 3** assuming the timestamps 1, 2, 3, and 4 for transactions  $T_1$ ,  $T_2$ ,  $T_3$  and  $T_4$ , respectively. Show where the protocol will fail. Assume initial R/W timestamp of all items is 0.



# EXERCISE 4 (CONTO)

#### Why rollback of write(Y) by $T_1$ rather than ignore?

The equivalent serial schedule, according to the timestamps, is  $T_1$   $T_2$   $T_3$   $T_4$ . Since  $T_3$  comes after  $T_1$  in the serial schedule,  $T_3$  should have read the value of Y written by  $T_1$  rather than the value that it read.

#### The schedule is not serializable.



#### Read Reads always succeed set RTS( $Q_k$ ) = max(TS( $T_i$ ), RTS( $Q_k$ )) Write If TS( $T_i$ ) < RTS( $Q_k$ ) rollback If TS( $T_i$ ) = WTS( $Q_k$ ) overwrite contents If TS( $T_i$ ) > WTS( $Q_k$ ) create new version set R/WTS( $Q_i$ )=TS( $T_i$ )

All transactions need to be rolled back!