

Latex

Dr. Victor Manuel Landassuri Moreno CUUAEM-VM

Instalación

- •En Linux viene instalado por default
- A lo mas hay que agregar librerías que no estén (synaptic en ubuntu por ejemplo):
 - -textlive-science
 - -textlive-full
 - -Textlive-latex-extra (está incluido en el anterior)
- •En Windows se puede instalar ProTex http://www.tug.org/protext/

Características

- Alta definición de textos y formulas
- En Word

$$\frac{\partial^{2} \mathcal{L}}{\partial z_{i}^{\sigma^{2}}} = -\frac{\partial \rho_{i}}{\partial z_{i}^{\sigma}} \left(\frac{\partial v_{i}}{\partial \rho_{i}} \frac{e^{v_{i}}}{1 - e^{v_{i}}} + v_{i} \frac{e^{v_{i}}}{\frac{\partial \rho_{i}}{\partial \rho_{i}}} (1 - e^{v_{i}}) + e^{2v_{i}}}{(1 - e^{v_{i}})^{2}} \right)$$

En Latex

$$\frac{\partial^2 \mathcal{L}}{\partial z_i^{\rho^2}} = -\frac{\partial \rho_i}{\partial z_i^{\rho}} \left(\frac{\partial v_i}{\partial \rho_i} \frac{e^{v_i}}{1 - e^{v_i}} + v_i \frac{e^{v_i} \frac{\partial v_i}{\partial \rho_i} (1 - e^{v_i}) + e^{2v_i} \frac{\partial v_i}{\partial \rho_i}}{(1 - e^{v_i})^2} \right)$$

Características

- No hay problemas por nuevas versiones
- Tampoco por licencias
- Ejemplo de una línea de código
 - -\textbf{ejemplo}
- Definiciones
 - -\documentclass[<options>]{<class file>}
- Comando escrito
 - -\documentclass[a4paper]{article}

Ejemplo

```
\documentclass{article}
% preb\'amulo
\usepackage[spanish,activeacute]{babel}
\usepackage{amsmath}
\title{Hola Mundo}
\author{Escribe aqu\'i tu nombre}
\begin{document}
% cuerpo del documento
\maketitle
Mi primer documento en \LaTeX{}.
\end{document}
```

Preambulo

```
\documentclass{article}
```

```
\usepackage[spanish,activeacute]{babel}
\usepackage{amsmath}
```

```
\title{Ejemplo de \LaTeX{}}
\author{Juan A. Navarro P\'erez}
\date{29 de enero de 2010}
```

Ecuaciones

```
Y despu'es de experimentar mucho con diferentes técnicas resulta que la
ecuaci'on
\begin{equation}
 w = \sum_{i=1}^{n} {(x_{i}+y_{i})^{2}}
\end{equation}
es muy importante.
... y como sabemos que
\begin{equation*}
 \lim_{x \to 0} {(x^{2} + 2x + 4)} = 4
\end{equation*}
se concluye ...
```

Y después de experimentar mucho con diferentes técnicas resulta que la ecuación

$$|z| = \sum_{i=1}^{n} (x_i + y_i)^2$$
 (1)

es muy importante.

... y como sabemos que

$$\lim_{x \to 0} (x^2 + 2x + 4) = 4$$

se concluye que...

Símbolos matemáticos

a^b	a^b	\hat{x}, \bar{x}	\hat{x}, \bar{x}
a_b	a_b	x \to \infty	$x \to \infty$
a^{xy}	a^{xy}	$\sin{10^{cric}}$	sin 10°
a^xy	$a^x y$	$\sqrt{x+2}$	$\sqrt{x+2}$
a_{n-1}	a_{n-1}	x \leq 4	$x \leq 4$
3\pi/4	$3\pi/4$	{a+b \over c+d}	$\frac{a+b}{c+d}$
x\in\Omega	$x\in \Omega$	i=1, 2, \dots, n	$i=1,2,\ldots,n$

Tablas

```
Fija la posicion de los tabuladores
       Salta al siguiente tabulador
11
       Fin de Inea
\kill
       Si una lnea naliza con este comando no se imprime
\+
       Hace que la lnea sig. empiece en el tabulador sig. al
       previsto
       Hace que la lnea sig. empiece en el tabulador anterior
       al previsto
\<
       Salta al tabulador anterior
       Hace que el texto anterior se justique a derecha
       Hace que el texto que sigue vaya hacia el margen
       derecho
```

Tablas

Si ponemos:

```
\begin{tabbing}
Nombre \= Apellido \= Padrón\\
Esteban \> Quito \> 80000\\
Elena \> Nito \> 80001\\
Olga \> Sana \> 80002\\
\end{tabbing}
```

Lo que obtendremos es:

```
Nombre Apellido Padrón
Esteban Quito 80000
Elena Nito 80001
Olga Sana 80002
```

Tabular environment

```
left-justified column
       centered column
       right-justified column
       vertical line
       double vertical line
Once in the environment,
       column separator
&
       start new row
\hline horizontal line
```

Ejemplos de Tabular

```
\begin{tabular}{ 1 c r }

1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\end{tabular}
```

```
\begin{tabular}{ 1 | c | | r | }
\hline

1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\hline
\end{tabular}
```

```
\begin{center}
\begin{tabular}{ 1 | c | | r | }
\hline

1 & 2 & 3 \\ \hline

4 & 5 & 6 \\ \hline

7 & 8 & 9 \\
\hline
\end{tabular}
\end{center}
```

Ejemplos de Tabular

```
\left\{ \left( 1\right) \right\} 
\hline
\multicolumn{3}{|c|}{Team sheet} \\
\hline
Goalkeeper & GK & Paul Robinson \\ \hline
\multirow{4}{*}{Defenders} & LB & Lucus Radebe \\
& DC & Michael Duberry \\
 & DC & Dominic Matteo \\
 & RB & Didier Domi \\ \hline
\multirow{3}{*}{Midfielders} & MC & David Batty \\
& MC & Eirik Bakke \\
& MC & Jody Morris \\ \hline
Forward & FW & Jamie McMaster \\ \hline
\multirow{2}{*}{Strikers} & ST & Alan Smith \\
& ST & Mark Viduka \\
\hline
\end{tabular}
```

Team sheet					
Goalkeeper	GK	Paul Robinson			
	LB	Lucus Radebe			
Defenders	DC	Michael Duberry			
Detenders	DC	Dominic Matteo			
	RB	Didier Domi			
	MC	David Batty			
Midfielders	MC	Eirik Bakke			
	MC	Jody Morris			
Forward	FW	Jamie McMaster			
Strikers	ST	Alan Smith			
Suikeis	ST	Mark Viduka			

Figuras

```
\begin{figure}[htp] % p permite usar toda la página \centering \includegraphics{erptsqfit} \caption{Transverse momentum istributions} \label{fig:erptsqfit} \end{figure}
```

Figuras

```
\documentclass[12pt]{article}
\usepackage{graphicx}

\begin{document}

\listoffigures

\section{Introduction}

\begin{figure} [hb]
  \centering
  \includegraphics[width=4in]{gecko}
  \caption[Close up of \textit{Hemidactylus} sp.]$
  {Close up of \textit{Hemidactylus} sp., which is part the genus of the gecko family. It is the second most speciose genus in the family.}

\end{figure}

\end{document}
```

List of Figures

1 Introduction

Figure 1: Close up of *Hemidactylus* sp., which is part the genus of the gecko family. It is the second most speciose genus in the family.

Figuras

```
\usepackage{subfig}
\begin{figure}
  \centering
  \subfloat[A gull] {\label{fig:gull}\includegraphics[width=0.3\textwidth]{gull}}
  \subfloat[A tiger] {\label{fig:tiger}\includegraphics[width=0.3\textwidth]{tiger}}
  \subfloat[A mouse] {\label{fig:mouse}\includegraphics[width=0.3\textwidth]{mouse}}
  \caption{Pictures of animals}
  \label{fig:animals}
\end{figure}
```


Figure 1: Pictures of animals

Compilar

latex name
bibtex name
latex name
latex name
dvips -o name.ps name

Opcional si se salta el ps dvipdf

De ps a pdf ps2pdf

Manejador de Referencias

Paquetes Windows / Lunix / compatible con LaTeX

Bibtex - JabRef

Paquetes Windows / compatible MS Word

- Reference manager
- EndNote