

By Manhua Lu Adapted from Kyu-Sang Kim

Announcements

- Quiz 3 due Friday 6 October @11:59pm AEST
- Assignment I due next week! (13 October @11:59pm)
 - Autotesting now available, just run the command
 - "3311 autotest assl"
 - If you don't know how to start, Prac Exercise 3, 4 & 5 are helpful for assignment!
 - And this tutorial!!

Learning Objectives

- → SQL Select Statements and Joins
- → SQL Select Aggregates
- → SQL Deletion Statements (Q10, Q11)
- Putting it all to practice...!

SQL Data Definition Language (DDL) Recap

SQL DDL Recap

```
create table Employees (
      eid
              integer,
             text,
      ename
      age
              integer,
      salary real,
      primary key (eid)
);
create table Departments (
      did
              integer,
              text,
      dname
      budget real,
      manager integer references Employees(eid),
      primary key (did)
);
create table WorksIn (
              integer references Employees(eid),
      eid
              integer references Departments(did),
      did
      percent real,
      primary key (eid, did)
);
```


Note: Employees table is created before it is referenced in the Departments table because order matters!!

SQL Update Statements

SQL Update Statements

```
update TableName
set Attribute = newAttribute
where condition
```


SQL Update Statements: Question

2. A new government initiative to get more young people into work cuts the salary levels of all workers under 25 by 20%. Write an SQL statement to

implement this policy change.

(Question is basically asking us to modify the contents of the SQL table)

```
create table Employees (
      eid
              integer,
              text.
      ename
              integer,
      salarv real.
      primary key (eid)
create table Departments (
      did
              integer.
             text,
      dname
      budget real,
      manager integer references Employees(eid),
      primary key (did)
);
create table WorksIn (
              integer references Employees(eid),
              integer references Departments(did),
      percent real,
      primary key (eid, did)
```


SQL Select Statements and Joins

• SQL Select Statements and Joins

select attribute from TableName where condition

"Jack works in Bed", "John works in Clothes", ...

Employees		
eid	ename	
1	Jack	
2	John	
3	Jill	

V	WorksIn		
eid	did	%	
1	3	0.8	
2	1	0.5	
3	2	0.6	

Departments		
did	dname	
1	Clothes	
2	Tech	
3	Bed	

```
create table Employees (
      eid
              integer,
             text.
      ename
              integer,
      age
      salary real,
      primary key (eid)
create table Departments (
      did
              integer,
      dname text,
      budget real,
      manager integer references Employees(eid),
      primary key (did)
);
create table WorksIn (
             integer references Employees(eid),
             integer references Departments(did),
      percent real,
      primary key (eid, did)
);
```

■ SQL Select Statements and Joins

select e.ename, d.dname

from Employees e

join WorksIn w on (e.eid = w.eid)

join Departments d on (w.did = d.did)

where additional conditions

Employees		
eid		
1	Jack	
2	John	
3	Jill	

WorksIn		
eid	did	%
1	3	0.8
2	1	0.5
3	2	0.6

Departments		
did	dname	
1	Clothes	
2	Tech	
3	Bed	

■ SQL Select Statements and Joins

select e.ename, d.dname
from Employees e
join WorksIn w on (e.eid = w.eid)
join Departments d on (w.did = d.did)
where additional conditions

Employees		
eid	ename	
1	Jack	
2	John	
3	Jill	

WorksIn		
eid	did	%
1	3	0.8
2	1	0.5
3	2	0.6

Departments		
did	dname	
1	Clothes	
2	Tech	
3	Bed	

The 1st join statement creates this new table →

e.ei d	e.en ame	w.e id	w.di d	w.%
1	Jack	1	3	0.8
2	John	2	1	0.5
3	Jill	3	2	0.6

■ SQL Select Statements and Joins

select e.ename, d.dname

from Employees e

join WorksIn w on (e.eid = w.eid)

ioin Departments d on (w.did = d.did)

where additional conditions

Employees		
eid	ename	
1	Jack	
2	John	
3	Jill	

	Worksin		
eid	did	%	
1	3	0.8	
2	1	0.5	
3	2	0.6	

[Departments	
did	dname	
1	Clothes	
2	Tech	
3	Bed	

The 1st join statement creates this new table →

e.ei d	e.en ame	w.e id	w.di d	w.%
1	Jack	1	3	0.8
2	John	2	1	0.5
3	Jill	3	2	0.6

The 2nd join statement creates this new table →

e.e id	e.en ame	w.ei d	w.di d	w.%	d.d id	d.dn ame
1	Jack	1	3	0.8	3	Bed
2	John	2	1	0.5	1	Cloth es
3	Jill	3	2	0.6	2	Tech

O2 → SQL Select Statements and Joins

```
from Employees e
join WorksIn w on (e.eid = w.eid)
join Departments d on (w.did = d.did)
where additional conditions
```

e.eid	e.ename	w.eid	w.did	w.%	d.did	d.dname
1	Jack	1	3	0.8	3	Bed
2	John	2	1	0.5	1	Clothes
3	Jill	3	2	0.6	2	Tech

The select statement displays only the ename and dname attr from the prev table →

e.ename	d.dname
Jack	Bed
John	Clothes
Jill	Tech

02 → SQL Joins

Source: https://www.w3schools.com/sql/sql_join.asp

SQL Select Aggregates

O3 → SQL Select Aggregates

- Generally a select statement returns a list of tuples that satisfy your query, sometimes we want to aggregate (combine) them
 - count
 - max
 - o min
 - string_agg() → may be helpful for Assl ••
- e.g.

```
select count(...)
from TableName
where condition
```


SQL Deletion Statements

O4. SQL Deletion Statements

- What happens when we delete something which other things refer to?
 - Default behaviour: Disallow the delete
 - On Delete Cascade: Delete all things that refer to it
 - On Delete Set Default: Set removed ID's to some default value

04 → SQL Deletion Statements Question

10. Consider the deletion of a department from a database based on this schema. What are the options for dealing with referential integrity between Departments and WorksIn? For each option, describe the required behaviour in SQL.

Referential integrity: Every reference to something (foreign key) must actually refer to something that exists.

SQL Deletion Statements Answer

The 3 approaches to dealing with referential integrity between Departments and WorksIn:

- Don't allow the deletion of a Departments tuple if any WorksIn tuple refers to it. This is the default that results from the 'create table' definition.
- When a Departments tuple is deleted, also delete all WorksIn tuples that refer to it. This requires adding an 'on delete cascade' to the definition of WorksIn.

```
create table WorksIn (
    eid    integer,
    did    integer,
    percent real,
    primary key (eid,did),
    foreign key (eid) references Employees(eid) on delete cascade,
    foreign key (did) references Departments(did) on delete cascade
):
```

3. For every WorksIn tuple that refers to the deleted department, set the dld field to the department id of some existing 'default' department.

```
create table WorksIn (

eid integer,

did integer default 1,

foreign key (eid) references Employees(id),

foreign key (did) references Departments(did) on delete set default

primary key (eid, did)
```

SQL Deletion Statements Question

11. For each of the possible cases in the previous question, show how deletion of the Engineering department would affect the following database:

EID	ENAME			AGE
	John S			26
	Jane D		4	10
3	Jack J	ones	55	
	Superm			
5	Jim Ja	nes	2	0
DID	DNAME			BUDGET
1	 Sales			50000
		erina		1000000
	Service			200000
,	JCI VIC	_		200000
EID	DID	PCT_TIM	E	E
				•
1	2	1.00		
2	1	1.00		
3	1	0.50		
3	3	0.50		
4	2	0.50		
4	3	0.5		
5	2	0.75		

- a. Disallow ... The database would not change. The DBMS would print an error message about referential integrity constraint violation.
- b. ON DELETE CASCADE ... All of the tuples in the WorksIn relation that have did = 2 are removed, giving:

DID	DNAME		BUDGET	MANAGER
1	Sales		500000	2
3	Servic	е	200000	4
EID	DID	PCT_TIME		
2	1	1.00		
3	1	0.50		
3	3	0.50		
4	3	0.50		

c. ON DELETE SET NULL ... All of the tuples in the WorksIn relation that have did = 2 have that attribute modified to NULL, giving:

DID	DNAME		BUDGET	MANAGER
1	Sales		500000	2
1	Sates		200000	2
3	Servic	е	200000	4
EID	DID	PCT_TIME		
1	NULL	1.00		
2	1	1.00		
3	1	0.50		
3	3	0.50		
4	NULL	0.50		
4	3	0.50		
5	NULL	0.75		

d. ON DELETE SET DEFAULT ... All of the tuples in the WorksIn relation that have did = 2 have that attribute modified to the default department (1), giving:

DID	DNAME		BUDGET	MANAGER
1	Sales		500000	2
3	Servi	e	200000	4
EID	DID	PCT_TIME		
1	1	1.00		
2	1	1.00		
3	1	0.50		
3	3	0.50		
4	1	0.50		
4	3	0.50		
5	1	0.75		

Putting it all to practice...!

→ Putting it all to practice…!

Consider the following data model for a a business that supplies various parts:

Based on the ER design and the above considerations, here is a relational schema to represent this scenario:

```
create table Suppliers (
      sid
              integer primary key,
      sname text,
      address text
);
create table Parts (
      pid
             integer primary key,
      pname text,
      colour text
);
create table Catalog (
             integer references Suppliers(sid),
      pid
             integer references Parts(pid),
             real,
      cost
      primary key (sid,pid)
```


