Теоретические основы метода потенциалов для поиска оптимального плана

Идея метода базируется на следующих теоремах.

Теорема 1. Для того, чтобы некоторый план ТЗ был оптимальным, необходимо и достаточно, чтобы ему соответствовала такая система m+n чисел $u_1,u_2,...,u_m$ и $v_1,v_2,...,v_n$, для которой выполняются условия:

$$V_i - U_i = C_{ii}, \text{ если } \chi_{ii} > 0$$
 (1)

$$V_j - \mathcal{U}_i \leq C_{ij}$$
, если $\mathcal{X}_{ij} = 0$ (2)

где γ_i - потенциал пункта поставки, γ_i - потенциал пункта потребления.

Условия 1-2 являются условием потенциальности плана.

Теорема 2. Для того, чтобы некоторый план ТЗ был оптимальным, необходимо и достаточно, чтобы он был потенциален.

Алгоритм для поиска оптимального плана на основе метода потенциалов

В алгоритме решается эквивалентная задача для построения системы m+n чисел $-u_1$, $-u_2$,..., $-u_m$ и $v_1,v_2,...,v_n$. Поэтому в условиях 1-2 потенциалы пунктов поставки и потребления суммируются. Алгоритм состоит из предварительного этапа и основного этапа, который повторяется в цикле до тех пор, пока план не станет потенциальным.

Предварительный этап.

- 1. Каким-либо способом ищется допустимый опорный план X, например, методом северозападного угла или методом минимальной стоимости. Для полученного плана строится система m+n чисел $-\mathbf{u}_1, -\mathbf{u}_2, \ldots, -\mathbf{u}_m$ и $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ таких, что $\mathbf{v}_j + \mathbf{u}_i = \mathbf{c}_{ij}$ для всех $\mathbf{x}_{ij} > 0$. Предполагается в начале, что $\mathbf{u}_1 = 0$.
- 2. Построенная система исследуется на потенциальность. Для этого проверяется $v_i + u_i \le c_{ii}$ для всех $\chi_{ii} = 0$.
- 3. Если система не потенциальна, то переходят к основному этапу (т.к. план не оптимален), иначе найден оптимальный план X.

Основной этап.

- 1. Среди ребер графа K, не включенных в дерево плана, находим такое ребро, где нарушение условия потенциальности $v_i + u_i \le c_{ii}$ максимально.
- 2. Включаем это ребро в дерево. При этом образуется простой цикл четной длины. Разметим ребра найденного цикла знаками «+» и «-», начиная с добавленного ребра.
- 3. Построим новый план X'. Для этого выберем среди ребер цикла с метками «-» ребро с минимальным значением χ_{ij} θ (это ребро удаляется из цикла) и пересчитаем веса ребер графа по следующему правилу:

 $\chi_{ii}^{\prime} \coloneqq \chi_{ii} - \theta$, если данное ребро имеет метку «-»;

 $\chi'_{ii} = \chi_{ii} + \theta$, если данное ребро имеет метку «+»;

 $\chi'_{ij} = \chi_{ij}$, если данное ребро не имеет метки.

Определим оценку плана L(X').

- 4. Для плана X ' строим новую систему -u'₁,-u'₂,...,-u'_m и v'₁,v'₂,...,v'_n таких, что $V'_{i} + U'_{i} = C_{ii}$ для всех $\chi'_{ij} > 0$.
- 5. Исследуем систему на потенциальность. Для этого проверяется условие $v_i + u_i \le c_{ii}$ для всех $x_{ii} = 0$.
- 6. Если система не потенциальна, то в качестве опорного плана считаем X = X и переходим на п.1 основного этапа. Иначе найден оптимальный план X = X.

Пример. Необходимо провести оптимизацию опорного плана методом потенциалов для следующей транспортной задачи.

Матрица (C
-----------	---

111	атрица С					
	1	2	3	4	5	A
1	2	4	2	3	8	120
2	3	5	6	6	2	30
3	6	8	7	4	5	40
4	3	4	2	1	4	60

В	30	80	20	30	90

250

Матрица X (опорный план)

	1	2	3	4	5				
1	30	80	10						
2			10	20					
3				10	30				
4					60				

L(X)=30x2+80x4+10x2+10x6+20x6+10x4+30x5+60x4=1010.

Решение

Предварительный этап.

1. Расчет потенциалов для пунктов потребления и поставки товаров по условию $V_j + u_i = C_{ij}$ для всех $\chi_{ij} > 0$.

$$u_1 = 0$$
.
 $v_1 = c_{11} - u_1 = 2 + 0 = 2$

$$v_2 = c_{12} - u_1 = 4 + 0 = 4$$

$$v_3 = c_{13} - u_1 = 2 + 0 = 2$$

$$u_2 = c_{23} - v_3 = 6 - 2 = 4$$

$$v_4 = c_{24} - u_2 = 6 - 4 = 2$$

$$u_3 = c_{34} - v_4 = 4-2= 2$$

 $v_5 = c_{35} - u_3 = 5 - 2 = 3$
 $u_4 = c_{45} - v_5 = 4-3 = 1$

	V1=2	V2=4	V3=2	V4=2	V5=3
U1=0	2	4	2		
U2= 4			6	6	
U3= 2				4	5
U4= 1					4

2. Проверка на потенциальность плана по условию $v_j + u_i \le c_{ij}$ для всех $\chi_{ij} = 0$. Для этого в каждой незанятой клетке матрицы найдем значение, например, $v_2 + u_3 = 4 + 2 = 6$, при этом $c_{32} = 8$ (эти значения приведены в соответствующей клетке матрицы -8(6)). Полужирным шрифтом здесь выделены те клетки матрицы, где есть нарушения условия потенциальности плана, всего 6 нарушений.

	V1=2	V2=4	V3=2	V4=2	V5=3
U1=0	Х	Х	Х	3(2)	8(3)
U2= 4	3(6)	5(8)	X	X	2(7)
U3= 2	6(4)	8(6)	7(4)	X	X
U4= 1	3(3)	4(5)	2(3)	1(3)	Х

Ниже на рисунке представлена графовая интерпретация выбора ребра.

3. Т.к. план X не оптимален, то переходим к основному этапу.

Основной этап (1 итерация).

1. Определим клетку с максимальным нарушением потенциальности (она выделена выше голубым цветом, здесь нарушение в 5 ед.).

2. Включаем это ребро в дерево плана X. При этом образуется простой цикл четной длины. Разметим ребра найденного цикла знаками «+» и «-», начиная с добавленного ребра.

1 30 80 10 20 4 0 + 10 30 + 10 4 60

3. Построим новый план X'. Для этого выберем среди ребер цикла с метками «-» ребро с минимальным значением χ_{ij} - θ (θ =20, это ребро удаляется из цикла) и пересчитаем веса ребер графа по следующему правилу:

 $\boldsymbol{\chi}^{m{!}}_{ij}\coloneqq \boldsymbol{\chi}_{ij}-\boldsymbol{\theta}$, если данное ребро имеет метку «-»;

 $\chi'_{ij} = \chi_{ij} + \theta$, если данное ребро имеет метку «+»;

 $\chi'_{ij} = \chi_{ij}$, если данное ребро не имеет метки.

	1	2	3	4	5
1	30	80	10		
2			10		20
3				30	10
4					60

Определим суммарную стоимость перевозок по плану X': L(X')=30x2+80x4+10x2+10x6+30x4+20x2+10x5+60x4=910.

4. Для плана X ' строим новую систему -u'₁,-u'₂,...,-u'_m и v'₁,v'₂,...,v'_n таких, что $V'_i + U'_i = C_{ii}$ для всех $\chi'_{ij} > 0$.

	V1=2	V2=4	V3=2	V4=-3	V5=-2
U1=0	2	4	2		
U2= 4			6		2
U3= 7				4	5
U4=6					4

5. Исследуем найденный план X' на потенциальность. Проверка на потенциальность плана по условию $V_j + U_i \le C_{ij}$ для всех $\chi_{ij} = 0$. Полужирным шрифтом здесь выделены те клетки матрицы, где есть нарушения условия потенциальности плана, всего 9 нарушений.

	V1=2	V2=4	V3=2	V4=-3	V5=-2
U1=0	X	X	X	3(-3)	8(-2)
U2= 4	3(6)	5(8)	Х	6(1)	X
U3=7	6(9)	8(11)	7(9)	Х	Х
U4=6	3(8)	4(10)	2(8)	1(3)	X

6. Т.к. система не потенциальна, то в качестве опорного плана считаем X = X' и переходим на π .1 основного этапа.

Основной этап (2 итерация).

- 1. Определим клетку с максимальным нарушением потенциальности (она выделена выше голубым цветом, здесь нарушение в 6 ед.).
- 2. Включаем это ребро в дерево плана X. При этом образуется простой цикл четной длины. Разметим ребра найденного цикла знаками «+» и «-», начиная с добавленного ребра.

_,,	absicilition of p	• op ••••			
	1	2	3	4	5
1	30	80 -	→ 10 +		
2			10		20 +
3				30	10
4		+ -			→ 60

3. Построим новый план X'. Для этого выберем среди ребер цикла с метками «-» ребро с минимальным значением χ_{ij} - θ (θ =10, это ребро удаляется из цикла) и пересчитаем веса ребер графа по следующему правилу:

 $\chi_{ii}^{\dagger} := \chi_{ii} - \theta$, если данное ребро имеет метку «-»;

 $\chi_{ii}^{\dagger} = \chi_{ii} + \theta$, если данное ребро имеет метку «+»;

 $\chi'_{ij} = \chi_{ij}$, если данное ребро не имеет метки.

Матрица Х'

	1	2	3	4	5
1	30	70	20		
2					30
3				30	10
4		10			50

Определим суммарную стоимость перевозок по плану X': L(X')=30x2+70x4+20x2+30x2+30x4+10x5+10x4+50x4=830.

4. Для плана X ' строим новую систему -u'₁,-u'₂,...,-u'_m и v'₁,v'₂,...,v'_n таких, что $V'_j + \mathcal{U}'_i = C_{ij}$ для всех $\chi'_{ij} > 0$.

. j i	- ij	1			
	V1=2	V2=4	V3=2	V4=3	V5=4
U1=0	2	4	2		
U2=-2					2
U3=1				4	5
U4= 0		4			4

5. Исследуем найденный план X' на потенциальность. Проверка на потенциальность плана по условию $v_j + u_i \le c_{ij}$ для всех $\chi_{ij} = 0$. Полужирным шрифтом здесь выделена клетка матрицы, где есть нарушения условия потенциальности плана, всего 1 нарушение.

	V1=2	V2=4	V3=2	V4=3	V5=4
U1=0	X	X	X	3(3)	8(4)
U2=-2	3(0)	5(2)	6(0)	6(1)	X
U3=1	6(3)	8(5)	7(3)	X	X
U4= 0	3(2)	X	2(2)	1(3)	X

6. Т.к. система не потенциальна, то в качестве опорного плана считаем X = X' и переходим на п.1 основного этапа.

Основной этап (3 итерация).

- 1. Определим клетку с максимальным нарушением потенциальности (она выделена выше голубым цветом, здесь нарушение в 2 ед.).
- 2. Включаем это ребро в дерево плана X. При этом образуется простой цикл четной длины. Разметим ребра найденного цикла знаками «+» и «-», начиная с добавленного ребра.

goodstromoro propu.							
	1	2	3	4	5		
1	30	70	20				
2					30		
3				30 _	10 +		
4		10		0 +	50		

3. Построим новый план X'. Для этого выберем среди ребер цикла с метками «-» ребро с минимальным значением χ_{ij} - θ (θ =30, это ребро удаляется из цикла) и пересчитаем веса ребер графа по следующему правилу:

$$\chi'_{ij} \coloneqq \chi_{ij} - \theta$$
, если данное ребро имеет метку «-»;

$$\chi_{ij}^{\dagger} = \chi_{ij} + \theta$$
, если данное ребро имеет метку «+»;

$$\chi'_{ii} = \chi_{ii}$$
, если данное ребро не имеет метки.

Матрица Х'

	1 '				
	1	2	3	4	5
1	30	70	20		
2					30
3					40
4		10		30	20

Определим суммарную стоимость перевозок по плану X': L(X')=30x2+70x4+20x2+30x2+40x5+10x4+30x1+20x4=790.

4. Для плана X ' строим новую систему -u'₁,-u'₂,...,-u'_m и v'₁,v'₂,...,v'_n таких, что $V'_j + U'_i = C_{ij}$ для всех $\chi'_{ij} > 0$.

, ·	V1=2	V2=4	V3=2	V4=1	V5=4
U1=0	2	4	2		
U2=-2					2
U3=1					5
U4= 0		4		1	4

5. Исследуем найденный план X' на потенциальность. Проверка на потенциальность плана по условию $v_j + u_i \le c_{ij}$ для всех $x_{ij} = 0$. Нарушений нет.

	V1=2	V2=4	V3=2	V4=1	V5=4
U1=0	X	X	X	3(3)	8(4)
U2=-2	3(0)	5(2)	6(0)	6(-1)	X
U3= 1	6(3)	8(5)	7(3)	4(2)	X
U4= 0	3(2)	X	2(2)	Х	Х

6. Т.к. система потенциальна, то найден оптимальный план X=X'.

Ответ. Оптимальный план перевозок (матрица X) с оценкой L(X)= 790.

	1	2	3	4	5
1	30	70	20		
2					30
3					40
4		10		30	20

Ниже на рисунке представлена графовая модель полученного решения. Модель является остовным деревом для двудольного графа (рис.1)

