

USC

Extending the PyCBC offline search to a many-detector network

210

Gareth S. Davies ¹, T. Dent ¹, M Tápai ², I.W. Harry ³, A.H. Nitz ⁴

IGFAE, University of Santiago de Compostela, ² University of Szeged, ³ University of Portsmouth, ⁴ Albert Einstein Institute, Hannover LIGO document LIGO-G1901550

- > PyCBC offline currently:
 - uses two detectors
 - > requires SNR trigger in both detectors
 - ranking statistic of background rate + p/t/a consistency
- > PyCBC offline multiifo:
 - SNR triggers from all combinations of two or more detectors combined
 - Updates to ranking statistic

Motivation and Summary

- More detectors improves:
 - > latency
 - > sky localisation and coverage
 - > statistical confidence
- > These lead to more/better detections (yay!)
- Comparison to the two-detector (two-ifo) search shows significant sensitivity improvement

PyCBC offline search: the basics

Whitened data and templates cross-correlated to produce SNR

- Coincidence (coincs)
 - Triggers (SNR peaks) from each detector compared to find coincidences in time (require same template)

Background & Significance

Time shifted

- ➤ Time-slides performed to get noise background
- ➤ Comparison to background→ assess significance

Ranking Statistic

- Method rank coincs for signal likelihood
- > Optimal ranking statistic: log (rate_{signal}/rate_{noise})
- Noise coinc rate estimated from individual detector trigger rates and allowed time window
- ➤ Much lower noise rates for three-ifo coincs & same signal rate → much higher rankings statistic (compared to two-ifo)
- Adjustments to rates for signal/noise consistency
- > Statistics compared across coinc types for true false alarm rates

Using Network Sensitivity Information

- > Each coinc made by a specific network of detectors
- ➤ Network more sensitive → more likely to detect signal → prior belief for signal increases
- Using σ^2 [2], a measure of sensitivity, for each detector in the coinc, convert to network sensitivity reweight signal rate
- Favours more sensitive times and more sensitive detector combinations

Comparison to Previous Method

- ➤ Via injections, calculate available volume×time (VT) for sources in the search
- Compare VT sensitivity between analyses
- ➤ Here compare VT of the new search in a chunk of O2 to the two-IFO search used in GWTC-1 [3]
- ➤ Some VT from extra latency → more time for coincs with 'any two from three' active detectors than requiring 'two from two'

Phase-time-amplitude (P/T/A) consistency

- Distributions of time- and phase-differences for coincs are different if from noise (uniform) or signals [1]
- > Relative amplitudes affected by antenna patterns given direction
- Log of rates for evenly distributed, simulated signals used as priors to add to ranking statistic above
- > Down-weights triggers that don't behave like signals

Discussion

- ➤ VT sensitivity of search increased by factor of 1 1.6 (source type dependent)
- Ongoing work:
 - P/T/A consistency checks currently using two-ifo priors for three-ifo coincs, creation of three-detector priors is ongoing
 - > Better fitting of background triggers for noise modelling

References

- [1] Nitz et al (2017) Astrophys.J. 849 no.2, 118
- [2] Allen et al (2002) Phys. Rev. D 85, 122006
- [3] LIGO, Virgo et al (2018) arXiv:1811.12907

