同轴电缆中电磁波的传输及金属中超声波的传输

沅	糸: _	目列化系
班	级: _	自 02 班
学生	姓名: _	彭程
学	号: _	2020011075
组	号: _	双四下 L
座位	立号: _	# 13

目录

1	实验	名称																2
2	数据	处理																2
	2.1	同轴电	缆中电磁源	皮的传输	į.													2
		2.1.1	开路负载															2
		2.1.2	短路负载												 			3
		2.1.3	匹配负载												 			4
	2.2	金属中	超声波的色	专输														4
		2.2.1	声速测量												 			4
		2.2.2	表面波的等	实验											 			5
		2.2.3	超声波探测	则缺陷.														5
3	思考	题																7
	3.1	同轴申	. 缆思考题 .			 									 			7
	3.2		思考题															7
4	实验	总结																7
5	原始	数据																8

1 实验名称

同轴电缆中电磁波的传输及金属中超声波的传输

2 数据处理

2.1 同轴电缆中电磁波的传输

同轴电缆输出负载	信号幅度 $V_i(mV)$	脉冲峰位 $t_i(ns)$
	$V_0 = 264$	$t_0 = 10$
	$V_1 = 296$	$t_1 = 160$
	$V_2 = 204$	$t_2 = 330$
	$V_3 = 136$	$t_3 = 490$
开路负载	$V_4 = 100$	$t_4 = 650$
	$V_5 = 72$	$t_5 = 820$
	$V_6 = 52$	$t_6 = 980$
	$V_7 = 40$	$t_7 = 1150$
	$V_8 = 32$	$t_8 = 1310$
	$V_0 = 252$	$t_0 = 10$
	$V_1 = -216$	$t_1 = 310$
短路负载	$V_2 = 108$	$t_2 = 620$
	$V_3 = -56$	$t_3 = 930$
	$V_4 = 28$	$t_4 = 1240$
正配名	$V_0 = 264$	$t_0 = 12$
匹配负载	$V_0 = 196$	$t_0 = 156$

下面分别利用各种负载下的数据计算电缆长度(吸收系数 α),并附其波形示意图(黄色:输入端;蓝色:输出端):

2.1.1 开路负载

图 1: 开路负载波形示意图

由线性拟合得到:

$$\delta t = 164.17 ns$$

故有:

$$l = v\delta t = 2 \times 10^8 \times 164.17 \times 10^{-9} = 32.83 \text{ m}$$

对于 α , 已知: $V_l = Ve^{-\alpha l}$, 两边取对数得到: $\ln(V_l) = \ln(V) - \alpha l$, 故可做线性拟合: 拟合得到

$$\alpha = 9.80 \times 10^{-3}~{\rm m}^{-1}$$

拟合曲线如下所示:

图 2: 开路负载脉冲传输时间图

图 3: 开路负载 $\alpha - lnL$ 关系图

2.1.2 短路负载

图 4: 短路负载波形示意图

同样, 由线性拟合得到:

$$\delta_t = 154ns$$

故有:

$$l = v\delta t = 2 \times 10^8 \times 128.2 \times 10^{-9} = 30.80 \text{ m}$$

拟合曲线如下所示:

图 5: 短路负载拟合图像

2.1.3 匹配负载

图 6: 匹配负载波形示意图

直接计算可得:

$$l = (t_1 - t_0) v = 28.8m$$

2.2 金属中超声波的传输

2.2.1 声速测量

得到的数据表格如下所示:

直探头	、 一纵波	斜探头−横波					
底面回波峰位 $(t_2/\mu s)$	表面回波峰位 $(t_1/\mu s)$	R1 弧面回波峰位 $(t_{R1}/\mu s)$	R2 弧面回波峰位 $(t_{R1}/\mu s)$				
20.00	0.80	25.20	44.40				

清华大学 4 物理实验 B(2)

1. 利用直探头测量试样中纵波声速 c_l

$$c_l = \frac{2H}{t_2 - t_1} = \frac{2R_2}{t_2 - t_1} = 6250 \text{ m/s}$$

2. 利用 45° 斜探头测量试样中横波声速 c_s

$$c_s = \frac{2H}{t_2 - t_1} = \frac{2(R_2 - R_1)}{t_2 - t_1} = 3125 \text{ m/s}$$

3. 利用声速计算样块的杨氏模量和泊松系数 已知测试样密度: $\rho = 2700 \text{ kg/m}^3$ (铝) 可知:

$$T = \frac{c_l}{c_s} = 2.00$$

则杨氏模量为

$$E = \frac{\rho c_s^2 \left(3 T^2 - 4\right)}{T^2 - 1} = 7.03 \times 10^{10} \text{ Pa}$$

Poisson 系数为

$$\sigma = \frac{T^2 - 2}{2(T^2 - 1)} = 0.33$$

2.2.2 表面波的实验

得到的数据表格如下所示:

可变探头-表面波										
探头角度 (°)	探头位置 (l_{EG}/mm)	表面波回波延时 $(\Delta t/\mu s)$								
60	95.0	65.20								
探头移动距	表面波回波	表面波回波								
离 (l_{EI}/mm)	峰位 $(t_2/\mu s)$	峰位 $(t_1/\mu s)$								
10.0	71.60	65.20								

1. 固定法测量表面波波速

$$c_R = \frac{2l_{EG}}{\Delta t} = \frac{2 \times 30 \text{ mm}}{22\mu \text{s}} = 2.91 \times 10^3 \text{ m/s}$$

2. 移动法测量表面波波速

$$c_R = \frac{2l_{EI}}{t_2 - t_1} = \frac{2 \times 35 \text{ mm}}{77 \mu \text{s} - 52 \mu \text{s}} = 3.13 \times 10^3 \text{ m/s}$$

2.2.3 超声波探测缺陷

得到的数据表格如下所示:

扩散角测量数据记录:

直探头-扩	散角(以 B	为测量点)	斜探头-扩散角 (以 B 为测量点)					
x_0	x_1	x_2	x_B	x_1	x_2			
52.0 mm	59.0 mm	47.0 mm	84.0 mm	89.0 mm	79.0 mm			

缺陷测量数据记录:

直探头测	训缺陷 C	斜探头测量缺陷 D 的位置				
底面波 $(t_H - t_1)$	缺陷波 $(t_C - t_1)$	x_A/t_A	x_B/t_B	x_D/t_D		
$20.80 \mu s$	$16.00 \mu s$	$25.0 \text{ mm}/22.40 \mu \text{s}$	$84.0 \text{ mm}/50.00 \mu \text{s}$	$117.0 \text{ mm}/31.60 \mu \text{s}$		

1. 直探头声束扩散角的测量可知:

$$\theta = 2 \tan^{-1} \frac{x_1 - x_2}{2H_B} = 2 \times 6.84^{\circ} = 13.68^{\circ}$$

2. 斜探头声束扩散角的测量

可知折射角:

$$\beta = \arctan\left(\frac{(x_B - x_A) - (L_B - L_A)}{H_B - H_A}\right) = 44.0^{\circ}$$

以 B 为测量点, $L = H_B/\cos\beta$, 故有

$$\theta = 2 \tan^{-1} \left(\frac{x_1 - x_2}{2L} (\cos \beta)^2 \right) = 4.26^{\circ}$$

3. 直探头测量缺陷深度

易知, 由于波的传播速度相同, 应有:

$$\frac{l_c}{l} = \frac{t_C - t_1}{t_H - t_1} = 0.769$$

$$l_c = l \times 0.769 = R_2 \times 0.769 = 46.14 \text{ mm}$$

所以 C 的高度 H_C 为:

$$H_C = l - l_c = R_2 - l_c = 13.86 \text{ mm}$$

4. 斜探头测量缺陷位置

由上述计算可知: 折射角 $\beta = 44.0^{\circ}$;

若斜探头传输延迟时间为 δ_t , 则:

$$H_A/\cos\beta = (t_A - \delta_t) c_S/2$$

$$H_B/\cos\beta = (t_B - \delta_t) c_S/2$$

由此可知:

$$\delta t = \frac{H_B t_A - H_A t_B}{H_B - H_A} = 4.00 \mu s$$

$$H_D = \cos \beta (t_D - \delta t) c_S / 2 = 31.02 mm$$

$$L_D = \tan \beta \times (H_A - H_D) + X_A - X_D + L_A =$$

又易知:

$$\tan \beta = \frac{\Delta + x_A - L_A}{H_A}$$

$$\Delta = 10.31 \text{ mm}$$

故由于刻度选择和探头真实出射所带来的偏移为 10.31 mm; 由此得到:

$$L_D = x_D + \Delta - H_D \tan \beta = 117mm + 10.31mm - 31.02mm \times 0.966 = 97.34mm$$

故 D 的深度 H_D 为 31.02 mm, D 的边距 L_D 为 97.34 mm

清华大学 6 物理实验 B(2)

3 思考题

3.1 同轴电缆思考题

1. 在测量过程中,如何定位光标更加准确?

在测量时间时,时间光标对准波峰位置的最高点测量;在测量幅度时,幅度光标和波峰的最高 点对齐,并在抖动存在时统一选择抖动的最高点或是最低点为对齐位置。

2. 如何减小或消除延长线的影响

找到一根长度已知的同轴电缆,使用同样的延长线进行测量,可计算标准值和测量值的差得到 δ_l ,从而作为测量的修正,将本次实验测量的结果加上 δ_l 即可一定程度上消除延长线影响。

3. 如何提高测量 τ 的精度

在测量时,增大示波器的 scale,选取既能清晰观察波形又能更为精确的分度值。

4. 三种测量同轴电缆长度的方法,哪一种更加可靠?为什么?

开路负载更可靠。因为开路负载反射系数最大为 1,得到的反射波峰最多也最清晰,测量误差更小,且由于反射波数量更大,数据量的增加同样减小了随机误差。两种方法不确定度都较开路更大。

3.2 超声波思考题

1. 在表面波测量过程中,固定法和移动法哪一种测得的结果更加准确?为什么?

用移动法测得的表面波声速更准确可靠,由于固定法中标定位置时对探头位置的估计是很不准确的,移动法可以消除信号发生器到探头之间的距离估计误差。

4 实验总结

这次实验的实验原理比较复杂,在预习过程中我遇到了很大的困难,也有很多没有看懂的地方。 在老师的讲解之下,我的大部分问题得到了解答,也增加了我的物理知识,很有收获。

这次实验中,我对波的性质有了更深入的了解,对波的反射和折射性质有了更好的理解,并且 在老师的讲解中知道了很多波的应用。尤其在第二个实验中,我第一次了解到表面波,还掌握了一 种由已知物体缺陷进行定标测量新的缺陷的位置的方法。

最后,感谢老师对我们的悉心指导!

5 原始数据

(二)超声波波速及式样杨氏模量、泊松系数测量(适当调整示波器分度值以适合于测量) 测试样密度: ρ =2700kg/m³(铝),其它参数参见附录 2

直探头	<纵波	斜探头	横波	可变探头表面波					
底面回波 峰位(t ₂ /μs)	表面回波 峰位(t ₁ /μs)	R ₁ 弧面回 波峰位(t _{R1} /μs)			探头位置 (I _{EG} mm)	表面波回波 延时(Δt/μs)			
20.00	0.80	25.10	44.40	60	95.0	65.20.			
				探头移动 距离(<i>l_{El}</i> /mm)	表面波回波 峰位(t ₂ /μs)	表面波回波 峰位(t ₁ /μs)			
				(0.0)	71.60	65-20			

到 プロンフロケン 6-13 2022 春物理实验 B(2)课程資料

(三)超声波探伤(适当调整示波器分度值)

直	探头-扩散	対 角	直探头测	J缺陷 €	斜探头测量缺陷 D 的位置						
<i>x</i> ₀ /mm	x ₁ /mm	.x ₂ /m m	底面波 (t _H -t ₁)/ _{MS}	缺陷波 (tc -t1)/us	x_A/t_A mm/MS	x _B /t _B mm/ms	xD/ID mm/MS				
.52.0	59.0	47.0	20.80	16.00	25.0	94.0	31.60.				
	斜积头	(B)									
Х _В	χ,	Χ ₂									
94.0	89.0	79.0									