EE7207 Lecture 8

Modern Recurrent Neural Networks

About me

Just call me Nick!

Nick LUO Wuqiong
Vice President
Data Science Lead
OCBC AI Lab

Examples of sequence data in applications

Language Model Speech Recognition

Machine Translation

Stock Prediction

Sequence to one

X: text sequence Y: next word Sequence to sequence

X: wave sequence Y: text sequence Sequence to sequence

X: text sequence (in one language)
Y: text sequence (in another language)

Sequence to one

X: sequence of market data
Y: next day/year price/direction

Most machine learning models can only handle structured data in a tabular form

It's difficult to deal with unstructured sequence data

Earlier attempt of converting unstructured sequence data into structured form:

Bag-of-words: the text sequence is represented as the bag of its words, discarding the word order

Recurrent Neural Network

many to one example

Backpropagation through time

Vanishing gradients and exploding gradient problem

The chain rule: $\sigma'(h_t) \times \sigma'(h_{t-1}) \times \cdots \times \sigma'(h_1)$

The value becomes very large if each of them is greater than 1: exploding gradients problem

• Gradient clipping: cap the gradient at a predefined value

The value becomes 0 fast if each of them is less than 1: vanishing gradients problem

• No easy way to handle this for vanilla RNN, we'll be introducing LSTM and GRU that can (partially) address this issue

Vanilla RNN is not good at capturing long-term dependencies.

Long Short-Term Memory (LSTM) Networks

- LSTM has gates to optionally let information through
- LSTM can decide how much old information to forget and how much new information to remember

- A highway for gradients to pass through
- Similar to ResNet for computer vision

Gated Recurrent Units (GRUs)

- GRU is simpler than LSTM, and can be used to build much bigger networks
- LSTM is more general and powerful
- Both LSTM and GRU employs Gating Mechanism to address the issue of long term dependencies

Bidirectional Recurrent Neural Networks (Bi-RNNs)

Encoder-Decoder Architecture

Real-world case study: sentiment classification on external news

Adopting AI in credit risk monitoring

20 November 2019 | By Nick Luo

© 5 mins read

Adopting AI in credit risk monitoring

Nick Luo (pictured standing, second from left) is a Data Scientist with the OCBC AI Lab under Group Customer Analytics & Decisioning, and the key person behind the Bank's auto news-scanning AI model developed for the Wealth Management team. Hear what Nick has to say about the project and how it has improved efficiency.

Finetune Language Models for Sentiment Analysis

- Huge amount of labelled data is needed to train a big neural network from scratch
- Transfer learning can significantly reduce the amount of labelled data
- Transfer learning refers to the use of a model that has been trained to solve one problem as the starting point to solve another related problem

Finetune Language Models for Sentiment Analysis

Use a trained language model as the starting point to build a sentiment classifier

Transfer learning helps reduce the amount of labelled data needed

Without transfer learning

- Need to label 200K articles
- 400 articles per week
- 500 weeks \approx 10 years!

With transfer learning

Assignment: Sentiment Classification Model for Movie Reviews