Computabilidad y Complejidad

Boletín de Ejercicios 1 -- Enunciados (Máquina de Turing)

01. Sea P la operación sobre lenguajes definida como sigue: para cada palabra x del lenguaje, si x contiene un número par de símbolos b, entonces cada símbolo a de x pasa a ser aa; si la palabra x tiene un número impar de símbolos b, entonces queda como está. Por ejemplo, si x = babaa, entonces P(x) = baabaaaa; si x = baa, entonces P(x) = baa. ¿Es la familia de los lenguajes recursivamente enumerables cerrada respecto de la operación P?

02. Sean L₁ y L₂ lenguajes. Se define la operación & como sigue:

$$L_1\&L_2 = \{ x \in L_1 / (\exists y \notin L_2) (|x| = |y|) \}.$$

¿Es la clase de los lenguajes recursivos cerrada bajo la operación &?

- **03**. Sean $L \subseteq \Sigma^*$ y $a \in \Sigma$. Se define la operación Insertar $(a, L) = \{xay / xy \in L\}$.
- a) Si L es recursivo ¿lo es también Insertar (a, L)?
- b) Si L es recursivamente enumerable ¿lo es también Inserta (a, L)?
- 04. Sean L y L' dos lenguajes, se define la operación F de modo que

$$F(L,L') = \{x \in L /x^r \notin L'\}.$$

Si L y L' son lenguajes recursivos ¿lo es también F (L, L')?

- **05**. ¿Son los lenguajes recursivamente enumerables cerrados para los homomorfismos inversos? ¿Y los lenguajes recursivos?
- 06. ¿Son los lenguajes recursivamente enumerables cerrados para los homomorfismos?
- **07**. Sean L₁, L₂ y L lenguajes no vacíos. Sea \mathscr{L}_{REN} la clase de los lenguajes recursivamente enumerables. Pruebe o refute la siguiente implicación: $(\forall L_1, L_2, L)$

$$[(L_1 \in \mathcal{L}_{REN} \land L_2 \in \mathcal{L}_{REN} \land L_1 \cap L_2 = \emptyset \land L_1 \cap L = \emptyset \land L \cap L_2 = \emptyset) \Rightarrow L \in \mathcal{L}_{REN}]$$

- **08**. Se define la siguiente operación sobre palabras: $P(x) = 0^n x 0^n$ donde $n = |x|_0$. Esta operación se extiende del modo usual a lenguajes, esto es: $P(L) = \{P(x) \mid x \in L\}$. Pruebe o refute las siguientes implicaciones:
 - 1) L es recursivo \Rightarrow P(L) es recursivo.
 - 2) P(L) es recursivo \Rightarrow L es recursivo.
- **09**. Sea Σ un alfabeto y R ⊆ Σ* un lenguaje recursivo dado. Para L, L' ⊆ Σ* se define L ♦ L' = {x ∈ L / (∃y ∈ L') (prefijos(x) ∩ sufijos(y) ∩ R ≠ Ø)}.
- Si L y L' son lenguajes recursivamente enumerables ¿lo es también L ♦ L'?
- 10. Dados un alfabeto Σ , $L \subseteq \Sigma^*$ y $x \in \Sigma^*$, se define la operación cociente $x^{-1}L = \{ y \in \Sigma^* / xy \in L \}.$
 - a) Si L es un lenguaje recursivo ¿lo es también $x^{-1}L$ para cada $x \in \Sigma^*$?
 - b) Si para $x \in \Sigma^*$, $x^{-1}L$ es un lenguaje recursivo ¿lo es también L?
 - c) Si L es un lenguaje recursivamente enumerable ¿lo es también $x^{-1}L$ para cada $x \in \Sigma^*$?
- 11. Sea L un lenguaje, se define $P(L) = \{x / (\exists u, v)(x = uv \land vu \in L)\}.$
 - I. Si L es un lenguaje recursivamente enumerable ¿lo es también P(L)?
 - II. Si L es un lenguaje recursivo ¿lo es también P(L)?
- **12**. Sea Σ un alfabeto, para $x,y \in \Sigma^*$ se define la operación

$$\diamondsuit(x,y) = \{z \mid (\exists u,v,w)(x = uv \land y = vw \land z = uvw)\}.$$

Esta operación se extiende a lenguajes L,L' $\subseteq \Sigma^*$ de la manera habitual, esto es,

$$\Diamond(L,L') = \bigcup_{x \in L, \ v \in L'} \Diamond(x,y).$$

Si L y L' son lenguajes recursivos ¿lo es también ♦(L,L')?

13. Sea Σ un alfabeto y L $\subset \Sigma^*$. Sea R $\subset \Sigma^*$ un lenguaje recursivo. Se define la operación

$$PR(L) = \{x \in L / (x \notin R) \land (x = x^r) \}.$$

- I. Si L es un lenguaje recursivamente enumerable ¿lo es también PR(L)?
- II. Si L es un lenguaje recursivamente enumerable ¿lo es también L PR(L)?
- **14**. Sean L_1 , L_2 , L_3 lenguajes. Se define la operación $\nabla(L_1, L_2, L_3)$ que define el lenguaje formado por las palabras que pertenecen al menos a dos de sus argumentos.

- I. ¿Es la operación ∇ una operación de cierre en la familia de los lenguajes recursivos? II. ¿Es la operación ∇ una operación de cierre en la familia de los lenguajes recursivamente enumerables?
- **15**. Sea Σ un alfabeto y sea < una relación de orden canónico definida sobre Σ^* . Sean dos lenguajes L, L' $\subset \Sigma^*$, se define la operación $\mu(L,L')$ del modo que sigue:

$$\mu(L,L') = \{x \in L \ / (\exists y \in L')(y \leq x)\}.$$

- 1) Si L y L' son lenguajes recursivamente enumerables, entonces ¿lo es también µ(L,L')?
- 2) Si L y L' son lenguajes recursivos, entonces ¿lo es también $\mu(L,L')$?
- **16**. Se define la operación $P: \{a,b\}^* \longrightarrow \emptyset (\{a,b\}^*)$ del modo que sigue:

I.
$$P(\lambda) = {\lambda}$$

II. $P(x) = a^*x$, si $x = by$
III. $P(x) = b^*x$, si $x = ay$

¿Es la operación P de cierre dentro de la clase de los lenguajes recursivos?

17. Dado un lenguaje L se define el lenguaje

$$\mu(L) = \{x / (x = x^r) \land (x \in prefijos(L))\}.$$

Si L es recursivamente enumerable, entonces ¿lo es también μ (L) ?