Integraler

Satt $F(x) = x^2$ och f(x) = 2xMan wet att derivation av F ar f $F(x) = x^2$ Sages att wara e_n e_n e_n Finitive

Function f(x) = 2x

Ann f(x)=2x har Manya P.F. $F(x)=x^2+1$ $F(x)=x^2-4$ Och i allmont $F(x)=x^2+C$ dar C ER (9odd. Konstant)

Tar alla P. F till f(x) = 2x

Ann Definitionen med för och

\$

Beteckning

Man Skriver

Ofloses integral av lilla & M.a.P. X ar Stor F

Ax definitionen Foijer att

$$\iint f' dx = f \quad Samma \quad f \quad i \quad boda \quad Led$$

$$f = f$$

 $(x) \int (x^2)^2 dx = x + c$

Ann P.F Kaller antiderivation Ockso

 $\int f(x)dx = F(x) + C$

Far R. P.F. till f far derivatan av F

Några Kanda integraler.

1 - d- formel

$$\int x^{\alpha} dx = \frac{1}{\alpha + 1} \times + C$$

$$\left(\frac{1}{\alpha+1} \times \frac{1}{\alpha+1}\right)' = \frac{1}{\alpha+1} \cdot (\alpha+1) \times \frac{1}{\alpha+1}$$

$$\int \sqrt{x} \, dx = \int x^{\frac{1}{2}} dx \qquad = \int x^{\frac{1}{2}}$$

$$=\frac{1}{\frac{1}{2}+1} \times \frac{1}{2} + C = \frac{2}{3} \times \frac{3}{2} + C$$

$$\int (x + 1) \int x dx$$

$$=\int (x+1) x^{1/2} dx = \int (x+x) dx$$

$$= \int \frac{3^2}{1} dx + \int \frac{1}{2} dx$$

Ann a-formel Funkar For a +-1

vad blir integral on d = -1.

Jz'dx= S/xdx=lnx+c

Anm (x>0)

$$\Rightarrow \int \frac{1}{x} dx = \ln x + C$$

XKO

$$y = |n(-x)|$$
 $-y' = \frac{1}{(-x)} \cdot (-1) = \frac{1}{x}$

Darfor Skriver ath

$$\int \frac{1}{x} dx = \ln|x| + C$$

Nogra andra Kanda integraler

$$\int Sinx \, dx = -Co, Sx + C$$

$$\int Co, Sx \, dx = \int Sinx + C$$

$$\int e^{x} dx = e^{x} + C$$

$$\int 2^{\times} dx =$$

$$A = e^{hA}$$

$$\int 2^{x} dx = \int e^{\ln 2^{x}} dx = \int e^{(4n2)} dx$$

$$=\frac{1}{\ln 2} \times (\ln 2)$$

$$=\frac{1}{\ln 2} \cdot 2 \times + C$$

$$3 = \frac{3}{2} \times \frac{3}{2} \times \frac{3}{4} \times$$

Vid derivering Multiplicerar Man Med inre derivatan

V: d'integrering For V: Omvant dvs deviderar med inre

$$\int e^{3x} dx = \frac{1}{\text{Inre}} e^{3x} + C$$

$$=\frac{1}{3}e^{3x}$$

$$\int Sin(4x) dx = -\frac{1}{4} \cdot (Cos4x)$$

$$\int 3^{2} dx = \int e^{\ln 3^{2}} dx$$

$$A = e^{\ln A}$$

$$=\int \frac{(\ln 3)}{\ln 3} \times \frac{(\ln 3)}{$$

$$=\frac{1}{\ln 3} \times + C$$

$$\int \frac{U'}{U} dx = \ln |U| + C$$

$$\int \frac{x^3}{1+x^4} dx$$

$$\int \frac{x^3}{1-x^4} dx = -\frac{1}{4} \int \frac{-4x^3}{1-x^4} dx$$

$$(arctanx)' = \frac{1}{1+x}$$

$$\int \frac{1}{1+x^2} dx = \operatorname{arc} + \operatorname{an} \times + \operatorname{c} \int$$

y = /2 x y = fanx y = Shix Corx y'= (Cosx). (osx - (-Sinx). sinx Co,8x = /2 Cosx $\int \frac{1}{\cos^2 x} dx = + \cos x + C$ Hur Man integrerar ? Nagra Konkreta Metoder

Metod1

(Derivatan framför)

Variabel substitution

(variabel byte)

Metod 2

Partial integration

Metod3 Anvands vid integral av Vationella funktioner.

Partial foot

Vad ar Partial Och

Nar Anvands Portial

Man Vet = fg + fg'

Interrera boda led

 $f(f9)^{\dagger} = \int f'9 + \int f9'$

fg = Sf'g + Sfg'

Denno Kan Skrivas Po to Satt

$$\int fg' = fg - \int fg'$$
 $\int fg' = fg - \int fg'$

2

De or boda Partial

Nar Partid nr 1 anvand, 5?

Man vet att

 $\int e^{x} dx = e^{x} + c \qquad \int Shx dx = -CoSx + c$ $\int cosx + dx = Shx + c$

vad blir

Jxexdx JxSinxdx

JX. Cosx dx

V: Kallar x för besvorlig eftersom Utan x vet v: vad integralen blir

Denna x Kan Forsvinnas med Partial 1.

 $\int \underbrace{\times e^{\times}}_{f} dx = f g - \int f' g dx$

 $\begin{pmatrix}
f = \times \longrightarrow f' = 1 \\
g' = e^{\times} \longrightarrow g = e^{\times}
\end{pmatrix}$

 $= \times e^{\times} - \int e^{\times} dx = \times e^{\times} - e^{\times} + C$

J X Sinx dx f g'

$$\begin{pmatrix}
f = x \rightarrow f' = 1 \\
g' = Sin x \rightarrow g = -Co, Sx
\end{pmatrix}$$

=fg-\f'g

Nar an Vender Vi (2)

J X Inix dx

J x arcSinx dx

SxarcCossxdx Sxarctanxdx

Ann X Farnas inte Son besvarlig efterson utan x Kan vi inte

integrale heller.

 $\int l_{x} \times dx = ?$ $\int arc \sin x \, dx = ?$

I Sodana fall anvander Vi andra Partial.

Jx lnx dx

f=x -> F= 1/2x 9=lnx -> 9'= 1/x

 $= f9 - \int f9' = \frac{1}{2} \times \ln x - \frac{1}{2} \int x dx$

= 1/2 × 1/4 × 2 + C

Sxarctanx dx
f'g

$$\begin{cases} f' = x \implies f = \frac{1}{2}x \\ 3 = \operatorname{arctan} x \implies 3' = \frac{1}{1+x} \end{cases}$$

$$= \frac{1}{2} \times \operatorname{arctan} \times -\frac{1}{2} \int \frac{x^2}{1+x^2} dx$$

$$\int \frac{x^2}{1+x^2} dx = \int \frac{x^2+1-1}{1+x^2} dx$$

$$\int (1 - \frac{1}{1 + x^2}) dx = x - \arctan x + C$$

Anm 17

Besvarlig × Kan tas bort ax

Partial nr 1 tva ganger.

fartial Nr (1) (V6 Jonjer.

 $\int_{f}^{2} \left(\int_{f}^{2} \times -3 f = 2 \times \right)$ $\int_{f}^{2} \left(\int_{g}^{2} \times -3 f = 2 \times \right)$ $\int_{f}^{2} \left(\int_{g}^{2} \times -3 f = 2 \times \right)$

 $= x^{2}e^{x} - 2\int xe^{x} dx$

 $\times e^{\times} - e^{\times} + C$

Svar:

 $\int_{x}^{2} e^{t} dt = xe^{t} - 2xe^{t} + 2e^{t} + C$

 $\int \times 5 \ln x dx$

Det finns en fordet @ has Partial 2)

Jamfort Med Partial (1)

Det behovs inte Partial 5 9angen

 $\int x^{5} \ln x dx \int f' x^{5} \rightarrow f = \frac{1}{6}x^{6}$ $\int f' g dx \int g = \ln x \rightarrow g' = \frac{1}{2}x^{6}$

= \frac{1}{6} \times \lambda \lambda \times \lambda \l

= 1/6 x 6 ln x - 1/3 6 x + C

Ann

tbland Kan Man Slippa användning av Partial 1 Nogra Senger.

 $\int_{x}^{2} e^{x} dx = (Ax^{2} + Bx + C) e^{x} + D$

Derivatan av (Ax2+Bx+c) e x ska bli x2ex

y=(Ax2+Bx+C)ex

y'= (2Ax+B) ex+ (Ax+Bx+c) ex

 $= (A \times^{2} + (2A+B) \times + B+C) e^{\times}$

= + 2

$$\begin{cases} A = 1 \\ 2A + B = 0 \quad \Rightarrow B = -2 \\ B + C = 0 \quad \Rightarrow C = 2 \end{cases}$$

$$\int x^2 e^{x} dx = \left(x^2 - 2x + 2\right) e^{x} + D$$