Image classification

RAFAŁ KLINOWSKI, JAKUB CISOWSKI BIOLOGICALLY INSPIRED ARTIFICIAL INTELLIGENCE, SEM. 6

What is image classification?

- Categorizing images
- Tries to answer the question: "What is in the picture?"
- * Based on pixels or vectors within an image
- Tries to recognize patterns within an image to make predictions
- * We explore "single-label classification" which only assigns one value to an image

Roses

Dog

Tulips

Cat

Real life examples of image recognition

- ❖ Medicine eg. to help doctors detect abnormalities such as cancer
- Self-driving cars
- ❖ Face ID and other facial recognition systems
- ❖ Retail eg. the ability to try on a piece of clothing online

Our project

Distinction between cat and dog breeds

- One step further than just saying "dog or cat"
- Input: an image
- Output: name of dog or cat breed as well as certainty (in %)

98% Beagle

84% Birman

Dataset used for training

- Courtesy of The University of Oxford
- JPG image files
- ❖ 37 cat or dog races
- About 200 images for each breed
- Over 7390 images in total
- Various sizes (have to be standardized before training)

Description of technology

- Programming language: Python
- TensorFlow used to create, train, save and load model
- Keras used to simplify data loading and dividing into different categories
- ❖ MatPlotLib used to generate plots describing model performance, accuracy
- * Algorithm:
 - Divide images into groups based on race
 - Calculate minimum, maximum and average image size (used when creating model)
 - Load data, split into two groups: training, validation
 - Create, compile, train and evaluate model
 - Save model as a group of files

What is a model?

- Program, consists of code, metrics, pre-calculated values, etc. often hundreds of thousands of lines
- Often split into multiple files when saved
- Trained to a set of data
- Can be "fed" data it hasn't seen before to make predictions
- Ideally should perfectly distinguish images that were used for training
- Most often evaluated using:
 - Accuracy (overall percentage of correct predictions)
 - Loss (value of cost function for validation data)
 - Confusion Matrix (tracks correct and incorrect predictions divided into classes)

Example model file

1	1 NumNormalizationFeatures=9040			
2	0	0	6,324555	
3	1	0	8,774964	
4	2	0	8,774964	
5	3	0	4,387482	
6	4	0	2,924988	
7	5	0	8,774964	
8	6	0	7,416198	
9	7	0	3,162278	
10	8	0	8,774964	
11	9	0	8,717798	
12	10	0	8,774964	
13	11	0	8,774964	
14	12	0	6,633249	
15	13	0	5,937171	
16	14	0	2,915476	
17	15	0	2,915476	
18	16	0	3,513821	
19	17	0	6,363961	
20	18	0	4,821826	
21	19	0	4,821826	
22	20	0	4,176123	

Example model tree

Sources

- https://www.kaggle.com/datasets/zippyz/cats-and-dogs-breeds-classification-oxford-dataset
- https://www.tensorflow.org/
- https://docs.python.org/3/reference/

The end