

Gegründet im Jahr 1669, ist die Universität Innsbruck heute mit mehr als 28.000 Studierenden und über 4.000 Mitarbeitenden die größte und wichtigste Forschungs- und Bildungseinrichtung in Westösterreich. Alle weiteren Informationen finden Sie im Internet unter: www.uibk.ac.at.

Faltungskodes

- Informationsstrom keine Blöcke fester Länge
- ein einziges Kodewort als Resultat
- Redundanz wird kontinuierlich eingefügt

Faltungskodes

- Informationsstrom keine Blöcke fester Länge
- ein einziges Kodewort als Resultat
- Redundanz wird kontinuierlich eingefügt

Verwendung

- Mobil- und Satellitenkommunikation
- Turbokodes

$$G = \begin{pmatrix} 111 \\ 101 \end{pmatrix}$$

$$G = \begin{pmatrix} 111 \\ 101 \end{pmatrix} = (7_8, 5_8)$$

$$G = \begin{pmatrix} 111 \\ 101 \end{pmatrix} = (7_8, 5_8)$$

Nachricht: (1, 1, 0, 1, 0, 0)

Folgezustand Input Zustand Output

Kode:

Nachricht: (1, 1, 0, 1, 0, 0)

Input	Zustand	Folgezustand	Output
1	00	10	11

Bit 1

Kode: (1, 1

Nachricht: (1, 1, 0, 1, 0, 0)

Input	Zustand	Folgezustand	Output
1	00	10	11
1	10	11	01

Kode: (1, 1, 0, 1

Nachricht: (1, 1, 0, 1, 0, 0)

Input	Zustand	Folgezustand	Output
1	00	10	11
1	10	11	01
0	11	01	01

Kode: (1, 1, 0, 1, 0, 1

Nachricht: (1, 1, 0, 1, 0, 0)

Input	Zustand	Folgezustand	Output
1	00	10	11
1	10	11	01
0	11	01	01
1	01	10	00

Kode: (1, 1, 0, 1, 0, 1, 0, 0

Nachricht: (1, 1, 0, 1, 0, 0)

Input	Zustand	Folgezustand	Output
1	00	10	11
1	10	11	01
0	11	01	01
1	01	10	00
0	10	01	10

—— Ві --→ Ві

Kode: (1, 1, 0, 1, 0, 1, 0, 0, 1, 0

Nachricht: (1, 1, 0, 1, 0, 0)

Zustand	Folgezustand	Output
00	10	11
10	11	01
11	01	01
01	10	00
10	01	10
01	00	11
	00 10 11 01	10 11 11 01 01 10 10 01

Kode: (1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1)

Kode

Kode: 11

Node. II 0

0 1 2 3 4 5 6

10 • • • • • •

11 • • • • •

Kode: 10 01 01 10 10 11

Nachricht:

01

Nachricht: 1 U

Martin Nocker

Viterbi-Algorithmus

- Varianten
 - hard decision Dekodierung
 - soft decision Dekodierung
- ▶ Dekodierung aufwändig → Flaschenhals

Viterbi-Algorithmus

- Varianten
 - hard decision Dekodierung
 - soft decision Dekodierung
- ▶ Dekodierung aufwändig → Flaschenhals

R vs. C/C++

- R-Code wird interpretiert → langsam
- ► Flaschenhälse: Schleifen, rekursive Funktionen
- Performance mittels C/C++-Code verbessern (kompiliert)
- Rcpp-Paket

Rcpp

- R-Datentypen
- einfacher Funktionsaufruf

C++-Code

```
1 #include <Rcpp.h>
2 using namespace Rcpp;
3
4 // [[Rcpp::export]]
5 IntegerVector myFunction(int a, int b) {
6
7    /* my cool C++ algorithm */
8 }
```

R-Code

```
1 \mid x \leftarrow myFunction(1, 2)
```

Quellen

- W. C. Huffman und V. Pless. Fundamentals of Error-Correcting Codes. 2010
- R. H. Morelos-Zaragoza. The Art of Error Correcting Coding. 2006
- D. Schönfeld, H. Klimant und R. Piotraschke. Informations- und Kodierungstheorie. 2012
- ► H. Wickham. Advanced R. 2015
- ► H. Wickham. R Packages. 2015