Session 3

Prof Amit Mehra

Agenda

- A/B Test at Vungle
- Power analysis

A/B Testing at Vungle

Case

Background

- Mobile advertising company with \$100 m people getting ad exposures from Vungle
- In-app advertising of other apps
- Used an algorithm to pick the ad from ad-inventory of multiple advertisers to show to an potential customer
- Wanted to consider a data science based prediction algorithm in place of the current one
 - Would utilize user histories, advertiser characteristics, publisher characteristics

Role of Vungle in ad-delivery

Mobile in-app ad funnel

Figure 1. Mobile in-app advertising funnel.

Requests	
Impressions	Impressions = Fill Rate
Completes	Completes Impressions = Completion Rate
Clicks	$\frac{\text{Clicks}}{\text{Impressions}} = \text{Click-through Rate}$
Installs	$\frac{Installs}{Impressions} = Conversion Rate$

Ad-monetization model

Cost per 1000 views, CPM

Cost per competed view, CPCV

Cost per click, CPC

Cost per Install, CPI

CPI was most popular - Publishers got 60% of revenue and Vungle got 40%

Current data - 98% fill rate; 88% completion rate; 5% CTR; 0.5% install rate

eRPM - effective revenue per 1000 impressions

- Both publishers and Vungle measured revenue based on eRPM
- Varied from \$2 to \$7

A/B test design

- 15/16 of users were shown ads based on current algorithm (A) and 1/16 of users shown ads based on data-science based algorithm(B)
- Vungle typically shows hundreds of millions of ad-impressions in a month
- Size of treatment group is kept smaller because if the new algorithm did not work well, then there could be a big loss