Economic Dynamics Theory and Computation Excercises Chapter 4

Mitchell Valdés-Bobes

July 6, 2021

4 Deterministic Dynamical Systems

4.1 The Basic Model

Problem 4.1. Show that if (S,h) is a dynamical system, if $x' \in S$ is the limit of some trajectory (i.e., $h^t(x) \to x'$ as $t \to \infty$ for some $x \in S$), and if h is continuous at x', then x' is a fixed point of h.

Answer. Consider the sequence $\{x_t\} \subset S$ defined as $x_t = h^t(x)$ since h is a continuous function we have:

$$x_t = h^t(x) \to x'$$
 \Longrightarrow $h(x_t) = h^{t+1}(x) \to h(x')$

Since the limit of a sequence must be unique we have that

h(x') = x'

Problem 4.2. Prove that if h is continuous on S and $h(A) \subset A$ (i.e., h maps $A \to A$), then $h(\operatorname{cl} A) \subset \operatorname{cl} A$

Answer. Let $x \in h(\operatorname{cl} A)$ this means that there is $x' \in \operatorname{cl} A$ such that h(x') = x. If $x' \in A$ then $h(x') = x \in A$ if $x' \notin A$ then there is $\{x_t\} \subset A$ such that $x_t \to x'$. Note that since h is continuous then $h(x_t) \to h(x') = x$ and since $h(x_t) \in A$ for all t then $x \in \operatorname{cl} A$.

Problem 4.3. Prove that x^* is locally stable if and only if there exists an $\epsilon > 0$ such that $B(\epsilon, x^*) \subset \Lambda(x^*)$

Answer. This problem is straightforward we get sufficiency since $B(\varepsilon; x^*)$ is an oppen set and necessity by definition of an open set that mus include a ball of radious $\varepsilon > 0$ for some ε .

Problem 4.4. Prove that if x^* is a fixed point of (S,h) to which every trajectory converges, then x^* is the only fixed point of (S,h).

Answer. Prove it by contradiction suppose that there are $x^* \neq x^{**}$ fixed points, and that **every** trayectory convertges to x^* , but this must be a contradiction since x^{**} is a fixed point implies that the trayectory $h^t(x^{**}) = x^{**} \to x^{**}$.

Problem 4.5. Prove Lemma 4.1.7:

If h is a map with continuous derivative h' and x^* is a fixed point of h with $|h'(x^*)| < 1$, then x^* is locally stable.

Answer. Consider x^* is a fixed point of h; by the definition of derivative we have that for any $x_n \to x^*$:

$$|h'(x^*)| = \lim_{n \to \infty} \frac{\rho(h(x_n), h(x^*))}{\rho(x_n - x^*)} < 1$$

By the definition of limit we have that for every $\varepsilon > 0$ there are N_1 and N_2 such that $\rho(x_n, x^*) < \varepsilon$ for every $n > N_1$ and

$$\lim_{t \to \infty} \frac{\rho(h(x_n), h(x^*))}{\rho(x_t, x^*)} < 1$$

for every $n > N_2$. Define $N = \max\{N_1, N_2\}$ and we have that:

$$\lim_{n \to \infty} \frac{\rho(h(x_n), h(x^*))}{\rho(x_n, x^*)} < 1 \qquad \Longrightarrow \qquad \rho(h(x_n), h(x^*)) < \rho(x_n, x^*) < \varepsilon$$

therefore $h(x_n) \to h(x^*) = x^*$. We have proved that for any x "close enough" to x^* $h(x) \to x^*$. Pick any such point $(x \in B(\varepsilon; x^*))$

Also note that for any t > 0

$$\rho(h^t(x), x^*) = \rho(h(h^{t-1}(x)), x^*) < \rho(h^{t-1}(x), x^*)$$

We can define a sequence ε_t such that $\varepsilon_1 = \varepsilon$, $\varepsilon_t \to 0$ and

$$0 \le \rho(h^t(x), x^*) < \varepsilon_t \implies \rho(h^t(x), x^*) \to 0 \implies h^t(x) \to x^*$$

Therefore x^* is locally stable.

Problem 4.6. A dynamical system (S,h) is called Lagrange stable if every trajectory is precompact in S. In other words, the set $\{h^n(x) : n \in \mathbb{N}\}$ is precompact for every $x \in S$ (i.e every subsequence of the trajectory has a convergent subsubsequence). Show that if S is a closed and bounded subset of \mathbb{R}^n , then (S,h) is Lagrange stable for any choice of h.

Answer. Since S is a bounded and closed subset of \mathbb{R}^n then for any $x \{h^n(x) : n \in \mathbb{N}\} \subset S$ implies that the sequence $x_n = h^n(x)$ is bounded, then by **Bolzano-Weierstrass theorem** it must have a convergent subsequence and since S is closed that subsequence must converge to an element of S.

Problem 4.7. Give an example of a dynamical system (S,h) where S is unbounded but (S,h) is Lagrange stable.

Answer. consider the followign two examples.

- Trivial example $S = \mathbb{R}$ and $h(x) = c \in \mathbb{R}$ for all $x \in \mathbb{R}$.
- Less trivial, same S but h(x) = x/c for some |c| > 1. Note that $h^t(x) = x/c^t \to 0$ for any $x \in \mathbb{R}$.

Problem 4.8. Let $S = \mathbb{R}$, and let $h : \mathbb{R} \to \mathbb{R}$ be an increasing function, in the sense that if $x \leq y$, then $h(x) \leq h(y)$. Show that every trajectory of h is a monotone sequence in \mathbb{R} (either increasing or decreasing).

Answer. Consider an $x \in \mathbb{R}$ such that $h(x) \leq x$ then $h^2(x) \leq h(x)$ iterating forward $h^t(t+1)(x) \leq h^t(x)$ for all t > 0 therefore the trayectory is decreasing. Alternatively if $x \leq h(x)$ we get an increasing trayectory. \square

2

Problem 4.9. Now order points in \mathbb{R}^n by setting $x \leq y$ whenever $x_i \leq y_i$ for i in $\{1, \ldots, n\}$ (i.e., each component of x is dominated by the corresponding component of y). Let $S = \mathbb{R}^n$, and let $h: S \to S$ be monotone increasing. (The definition is the same.) Show that the same result no longer holds -h does not necessarily generate monotone trajectories.

Answer. MISSING!!! □

Problem 4.10. Let $S = (\mathbb{R}, |\cdot|)$ and h(x) = ax + b. Prove that

$$h^{t}(x) = a^{t}x + b\sum_{i=0}^{t-1} a^{i} \quad (x \in S, t \in \mathbb{N})$$

(Hint: Use induction.) From this expression, prove that (S,h) is globally stable whenever |a| < 1, and exhibit the fixed point.

Answer. Since

$$h(x) = h^{1}(x) = ax + b = a^{1}x + b\sum_{i=0}^{0} a^{i}$$

we have our base case. Now, assume that for t = k

$$h^k(x) = a^k x + b \sum_{i=0}^{k-1} a^i$$

We will apply h to h^k to obtain h^{k+1} and check that the formula still holds:

$$h^{k+1}(x) = h(h^k(x)) = a\left(a^k x + b\sum_{i=0}^{k-1} a^i\right) + b$$
$$= a^{k+1}x + b\sum_{i=0}^{k-1} a^{i+1} + ba^0$$
$$= a^{k+1}x + b\sum_{i=0}^{k} a^i$$

Then if |a| < 1

$$\lim_{t \to \infty} h^t(x) = b \sum_{i=0}^{\infty} a^i = \frac{b}{1-a} \qquad (\forall x \in S)$$

Problem 4.11. Show that the condition |a| < 1 is also necessary, in the sense that if $|a| \ge 1$, then (S, h) is not globally stable. Show, in particular, that $h^t(x_0)$ converges to $x^* := b/(1-a)$ only if $x_0 = x^*$

Answer. MISSING

Problem 4.12. Let (S,h) be as in 4.10 Using Banach's Fixed Point Theorem, prove that (S,h) is globally stable whenever |a| < 1.

Answer. Recall:

Theorem. 1 (Banach). Let $T: S \to S$, where (S, ρ) is a complete metric space. If T is a uniform contraction on S with modulus λ , then T has a unique fixed point $x^* \in S$. Moreover for every $x \in S$ and $n \in \mathbb{N}$ we have $\rho(T^n x, x^*) \leq \lambda^n \rho(x, x^*)$, and hence $T^n x \to x^*$ as $n \to \infty$

Consider

$$\rho(h(x),h(y)) = \rho(ax+b,ay+b) = \left(a\left(y+\frac{b}{a}\right),a\left(y+\frac{b}{a}\right)\right) = |a||x-y| = |a|\rho(x,y)$$

Then if |a| < 1 select $|0 < \lambda < |a| < 1$ and we have

$$\rho(h(x), h(y)) < \lambda \rho(x, y)$$

We have showed that $T: S \to S$ where Tx = h(x) is a uniform contraction on S therefore it has a unique fixed point x^* and $h^n(x) \to x^*$ as $n \to \infty$.

Problem 4.13. Let $S := (0, \infty)$ with $\rho(x, y) := |\ln x - \ln y|$. Prove that ρ is a metric on S and that (S, ρ) is a complete metric space. Consider the growth model $k_{t+1} = h(k_t) = sAk_t^{\alpha}$, where $s \in (0, 1], A > 0$ and $\alpha \in (0, 1)$. Convert this into a dynamical system on (S, ρ) , and prove global stability using theorem Banach's Fixed Point Theorem.

Answer. We start by proving the ρ is a metric:

(i)
$$\rho(x,y) = 0 \iff |\ln x - \ln y| = 0 \iff \ln x = \ln y \iff \exp(\ln x) = \exp(\ln y) \iff x = y$$

(ii)
$$\rho(x,y) = |\ln x - \ln y| = |\ln y - \ln x| = \rho(y,x) \quad \forall x, y \in S$$

(iii)
$$\rho(x,y) = |\ln x - \ln y| = |(\ln x - \ln z) - (\ln y - \ln z)| \le |\ln x - \ln z| + |\ln y - \ln z| = \rho(x,z) + \rho(y,z)$$
 $\forall x,y,z \in S$

Next we show that (S, ρ) is a Complete Space. Consider a function $f:(S, \rho) \to (\mathbb{R}, |\cdot|)$ such that $f(x) = \ln x$ and a Cauchy sequence $\{x_n\}$:

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \mid \rho(x_n, x_m) = |\ln x - \ln y| = |f(x) - f(y)| < \varepsilon \quad \forall n, m > N$$

then $\{f(x_n)\}\$ is a Cauchy sequence in $(\mathbb{R}, |\cdot|)$ which is a compelte space thus $f(x_n) \to y = \ln x$ for some $x \in (0, \infty)$. Using the definition of limit we have:

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \mid |f(x_n) - y| = |\ln x_n - \ln x| = \rho(x_n, x) < \varepsilon \quad \forall n > N$$

We have showed that $x_n \to x$ in (S, ρ) , therefore (S, ρ) is complete.

Let $h: S \to S$ where $h(x) = sAx^{\alpha}$ consider $x, y \in S$:

$$\rho(h(x),h(y)) = |\ln(sAx^{\alpha}) - \ln(sAx^{\alpha})| = |\ln s + \ln A + \alpha \ln x - \ln s - \ln A - \alpha \ln y| = |\alpha(\ln x - \ln y)| = \alpha \rho(x,y)$$

Since $\alpha \in (0,1)$ we can select $0 < \lambda < \alpha < 1$ to get

$$\rho(h(x), h(y)) < \lambda \rho(x, y)$$

Since we have proved that h is a uniform contraction with modulus λ then we can apply Banach's Fixed Point Theorem to prove that h has only one fixed point x^* and that $\lim_{t\to\infty} h^t(x) = x^*$ thus concluding the prove that the dynamical system (S,h) is globally stable.

Problem 4.14. Consider the mapping h(x) = Ex + b where E is an $n \times n$ matrix and $b \in \mathbb{R}^n$, let $\|\cdot\|$ be any norm on \mathbb{R}^n , and define

$$\lambda := \max \{ ||Ex|| : x \in \mathbb{R}^n, ||x|| = 1 \}$$

If you can, prove that the maximum exists. Using the properties of norms and linearity of E, show that $||Ex|| \le \lambda ||x||$ for all $x \in \mathbb{R}^n$. Show in addition that if $\lambda < 1$, then (\mathbb{R}^n, h) is globally stable.

Answer. We start by showing that the maximum exists. First define the set $A = \{x \in \mathbb{R}^n \mid ||x|| = 1\}$, clearly A is a bounded and closed, therefore compact (by Heine-Borel); next consider the continuous function $f: A \to \mathbb{R}$ defined as f(x) = ||Ex||, since f is a continuous function on a compact set it attains it's supremum.

Next we will show that h is a uniform contraction of modulus λ .

$$||Ex|| = \frac{||x||}{||x||} ||Ex|| = \left| |E\left(\frac{x}{||x||}\right)| ||x|| \le \lambda ||x||$$

Showing that (\mathbb{R}, h) is globally stable is just an aplicaction of Banach's Fixed Point Theorem.

Problem 4.15. Prove that Long and Plosser's system is stable in the following way: Let $A = (a_{ij})$ be an $n \times n$ matrix where the sum of any of the rows of A is strictly less than 1 (i.e., $\max_i \alpha_i < 1$, where $\alpha_i := \sum_j |a_{ij}|$). Using the norm $\|\cdot\|_{\infty}$ in 4.14, show that for A we have $\lambda < 1$. Now argue that in Long and Plosser's model, (y_t) converges to a limit y^* , which is independent of initial output y_0 , and, moreover, is the unique solution to the equation $y^* = Ay^* + b$.

Answer. Consider $x \in S$ such that $||x||_{\infty} = \max_{i=1...n} |x_i| = 1$ and $||Ax||_{\infty}$ since $x = (x_1, ..., x_n) = \sum_{i=1}^n x_i e_i$ where e_i is the canonical base of \mathbb{R}^n then

$$||Ax||_{\infty} = ||A\sum_{i=1}^{n} x_i e_i|| \le \sum_{i=1}^{n} |x_i| ||Ae_i||_{\infty} \le ||x||_{\infty} \sum_{i=1}^{n} ||Ae_i||_{\infty}$$

Notice that

$$Ae_i = \begin{pmatrix} a_{i1} \\ \dots \\ a_{in} \end{pmatrix} = \sum_{j=1}^n a_{ij}e_j$$

then

$$||Ae_i||_{\infty} \le \sum_{j=1}^n |a_{ij}|| ||e_j|| \le \max_i \alpha_i < 1$$

Thus we have that

$$\lambda := \max \{ \|Ax\| : x \in \mathbb{R}^n, \|x\| = 1 \} < 1$$

Now consider

$$h(y) = Ay + b$$

we know that

$$h^{t}(y_{0}) = A^{t}y_{0} + b\sum_{i=0}^{t-1} A^{i}$$

First note that

$$0 \le \lim_{t \to \infty} \|A^t y_0\| \le \lim_{t \to \infty} \|y_0\| \left\| A^t \left(\frac{y}{\|y\|} \right) \right\| \le \lim_{t \to \infty} \lambda^t \|y_0\| = 0$$

therefore we have showed that the limit does not depend on the initial output y_0 .

Next consider $y^* = Ay^* + b$ and

$$y^* - b \sum_{i=0}^{t-1} A^i = Ay^* + b - b \sum_{i=0}^{t-1} A^i = Ay^* - b \sum_{i=1}^{t-1} A^i = A \left(y^* - b \sum_{i=1}^{t-1} A^{i-1} \right) = A \left(y^* - b \sum_{i=0}^{t-2} A^i \right)$$

$$= A \left(Ay^* + b - b \sum_{i=0}^{t-1} A^i \right) = A \left(Ay^* - b \sum_{i=1}^{t-2} A^i \right) = A^2 \left(y^* - b \sum_{i=1}^{t-2} A^{i-1} \right) = A \left(y^* - b \sum_{i=0}^{t-3} A^i \right)$$

$$\dots$$

$$= A^{t-1} (y^* - b) = A (Ay^* + b - b) = A^t y^*$$

Finally

$$\lim_{t \to \infty} \|h^t(y_0) - y^*\|_{\infty} = \|\lim_{t \to \infty} h^t(y_0) - y^*\|_{\infty} = \left\|\lim_{t \to \infty} y^* - b\sum_{i=0}^{t-1} A^i\right\|_{\infty} = \|\lim_{t \to \infty} A^t y^*\|_{\infty} = \lim_{t \to \infty} \|A^t y^*\|_{\infty} = 0$$

Therefore

$$h^t(y_0) \to y^* \qquad \forall y_0 \in \mathbb{R}^n$$

Problem 4.16. Let $B = (b_{ij})$ be an $n \times n$ matrix where the sum of any of the columns of B is strictly less than 1 (i.e., $\max_j \beta_j < 1$, where $\beta_j := \sum_i |b_{ij}|$). Using the norm $\|\cdot\|_1$ in 4.14, show that for B we have $\lambda < 1$. Conclude that if h(x) = Bx + b, then (\mathbb{R}^n, h) is globally stable.

Answer. Follows for Problem 4.15 \Box

Problem 4.17. Suppose that h is uniformly contracting on complete space S, so (S,h) is globally stable. Prove that if $A \subset S$ is nonempty, closed and invariant under h (i.e., $h(A) \subset A$), then the fixed point of h lies in A.

Answer. From Banach's Fixed Point Theorem h has a unique fixed point x^* and $h^n(x) \to x^*$ for any $x \in S$ in particular select $x \in A$ and define $x_n = h^n(x)$, since A is invariant under h then $\{x_n\} \subset A$ and since $x_n \to x^*$ and A is closed then $x^* \in A$.