## МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра ВТ

#### ОТЧЕТ

#### по лабораторной работе №1

по дисциплине «Цифровая обработка сигналов»

**Тема: Исследование характеристик сигналов во временной и частотной областях** 

| Студентка гр. 0321 | Земсков Д.И.      |
|--------------------|-------------------|
| Студент гр. 0321   | <br>Федосеев А.В. |
| Преподаватель      | Курдиков Б. А.    |

Санкт-Петербург

2023 г.

#### Отчет по лабораторной работе №1

Исследование характеристик сигналов во временной и частотной областях

Цель работы - исследование свойств характеристик сигналов во временной и частотной областях при моделировании в среде пакета MATLAB (использован пакет-аналог OCTAVE).

#### Задания:

- 1. Сформировать гармонические сигналы с частотами  $f_1 < (f_s/2), (f_s/2) < f_2 < f_s, f_3 > f_s$ . Для каждого сигнала получить его спектр и восстановить сигнал по его спектру. Вывести в графической форме исходный и восстановленный сигналы, а также спектр. Разметить соответствующие оси графиков в единицах времени и частоты. Объяснить полученные результаты.
- 2. Сформировать четную и нечетную гармонические последовательности, получить их спектры. Вывести в графической форме исходные сигналы, а также их спектры. Объяснить полученные результаты.
- 3. Повторить п.2 с изменением времени наблюдения на полпериода входной последовательности.
- 4. Сформировать сигнал сложной формы, получить его спектр и восстановить сигнал по его спектру. Вывести в графической форме исходный и восстановленный сигналы, а также спектр. Объяснить полученные результаты.

Исходные данные вариант 2:  $F_1 = 40 \ \Gamma u$ ,  $F_2 = 120 \ \Gamma u$ ,  $T = 0.25 \ c$ ,  $dt = 0.001 \ c$ 

```
1) Задание 1.1 Сигнал с частотой f_1 < (f_s/2);
  f_s = 1000 \, \Gamma \mu, \frac{f_s}{2} = 500 \, \Gamma \mu, f_1 = 400 \, \Gamma \mu
  f1 = 40;
  f2 = 120;
  T = 0.25; % время действия сигнала
   dt = 0.001; % интервал дискредитации
  fs = 1/dt; % частота дискретизации (s = sample) = 1/0.0.001 = 1 к\Gammaц
  f1 = 400; \%800, 1200
  N = fix(T/dt); % число отсчетов в реализации (перевод в целое число)
  t = 0:dt:(N-1)*dt; % вектор дискретизации по времени
  n = 0:1:(N-1); % array of counts
   df = 1 / T; % интервал дискретизации (= 4 \Gammaц)
  f = n * df; % recovered freq
  x = \sin(2*pi*f1*t); % return a vector x of sinus - non odd
   X=fft(x); % спектр сигнала x (ДПФ)
  p1 = sum(x.^2)/N; % равенство персиваля
  p2 = sum(abs(X).^2)/(N^2);
   if (round(10^4*p1)/10^4 == round(10^4*p2)/10^4) % округляем до 0,0001
    printf("Pавенство Персиваля выполняется, p1 = \%d, p2 = \%d", p1, p2);
   else
    printf("Paвенство Персиваля HE выполняется, p1 = \%d, p2 = \%d", p1, p2);
   endif
```

xv=ifft(X); % восстановленная по спектру последовательность (ОДПФ) diff = x.-xv; % разница между реальным и восстанвленным сигналом

 $t_orign = 0:0.000005:T; %$  для построения заданной частоты

subplot(411), plot(t\_orign,sin(2\*pi\*f1\*t\_orign),'-k;x(t);'), title('Исходный сигнал'), xlabel('c'), grid minor subplot(412), plot(x,'-k;x(n);'), title('Частота сигнала по дискретным отсчётам dt'), xlabel('n'), grid minor; subplot(413), plot(real(xv),'-m;real(xv);'), title('Восстановленный сигнал'), xlabel('n'), grid minor; subplot(414), plot(real(diff),'-c;real(diff);'), title('Погрешность при восстановлении'), xlabel('n'), grid minor;

subplot(311), plot(f,real(X),'-r;real(X(f));'), title('Действительная составляющая спектра'), xlabel(' $\Gamma$ ц'), grid minor; subplot(312), plot(f,imag(X),'-b;imag(X(f));'), title('Мнимая составляющая спектра'), xlabel(' $\Gamma$ ц'), grid minor; subplot(313), plot(f,abs(X),'-g;abs(X(f);'), title('Составляющая спектра по модулю'), xlabel(' $\Gamma$ ц'), grid minor;

#### Ниже на графиках показаны исходные и восстановленные сигналы, а также их разница.









1) Задание 1.2 Сигнал с частотой  $(f_s/2) < f_2 < f_s$ 

$$f_s = 1000 \, \Gamma \mu, \frac{f_s}{2} = 500 \, \Gamma \mu, f_2 = 800 \, \Gamma \mu$$















1) Задание 1.3 Сигнал с частотой  $\boldsymbol{f_3} > \boldsymbol{f_s}$ 

$$f_s = 1000 \, \Gamma u, \frac{f_s}{2} = 500 \, \Gamma u, f_2 = 1100 \, \Gamma u$$



#### Чтобы увидеть спектр в пределах от 0 до 1200 Гц, увеличим время наблюдения периода Т в 2 раза:







Вывод: из графиков видно, что восстановленные сигналы практически полностью совпадают с исходными в случае выполнения условий теоремы Котельникова, в противном случае — ошибка восстановления возрастает. Равенство Персиваля, при этом, всегда выполняется:

```
Равенство Персиваля выполняется, p1 = 0.5, p2 = 0.5
>>
```

#### 2) Задание 2. Рассмотрим чётную (х1) и нечётную (х2) гармонические последовательности:

```
% вариант 2
f1 = 40;
%f2 = 120;
T = 0.25; % время действия сигнала
dt = 0.001; % интервал дискредитации
fs = 1/dt; % частота дискретизации (s = sample) = 1/0,0.001 = 1 к\Gammaц
N = fix(T/dt); % число отсчетов в реализации (перевод в целое число)
t = 0:dt:(N-1)*dt; % вектор дискретизации по времени
n = 0:1:(N-1); % array of counts
df = 1 / T; % интервал дискретизации (= 4 \Gammaц)
f = n * df; % recovered freq
x1 = \sin(2*pi*f1*t); % return a vector x of sinus - non odd
x2 = cos(2*pi*f1*t); % return a vector x of sinus - non odd
X1=fft(x1); % спектр сигнала x (ДПФ)
X2=fft(x2); % спектр сигнала x (ДПФ)
xv1 = ifft(X1); % восстановленная по спектру последовательность (ОДПФ)
xv2 = ifft(X2); % восстановленная по спектру последовательность (ОДПФ)
p1 = sum(x1.^2)/N; % равенство персиваля
p2 = sum(abs(X1).^2)/(N^2);
if (round(10^4*p1)/10^4 == round(10^4*p2)/10^4) % округляем до 0,0001
 printf("Paвeнство Персиваля для чётной функции выполняется, p1 = %d, p2 = %d", p1, p2);
 printf("Paвенство Персиваля для чётной функции HE выполняется, p1 = %d, p2 = %d", p1, p2);
endif
p1 = sum(x2.^2)/N; % равенство персиваля
```

# Результат:

Вывод: спектры сигналов с чётной и нечётной гармонической последовательностью одинаковы.

Равенство Персиваля для чётной функции выполняется, p1 = 0.5, p2 = 0.5 Равенство Персиваля для нечётной функции выполняется, p1 = 0.5, p2 = 0.5>>

### 3) Задание 3.1 Увеличим Т (время наблюдения) в 2 раза: Результат:



Задание 3.2 Уменьшим Т (время наблюдения) в 2 раза:



Вывод: из графиков видно, что с увеличением длительности исходных сигналов увеличивается значение энергии.

Равенство Персиваля для чётной функции выполняется, p1 = 0.5, p2 = 0.5 Равенство Персиваля для нечётной функции выполняется, p1 = 0.5, p2 = 0.5>>

```
Задание 4.
% вариант 2
f1 = 40;
f2 = 120;
T = 0.25; % время действия сигнала
dt = 0.001; % интервал дискредитации
fs = 1/dt; \% частота дискретизации (s = sample) = 1/0,0.001 = 1 кГц
N = fix(T/dt); % число отсчетов в реализации (перевод в целое число)
t = 0:dt:(N-1)*dt; % вектор дискретизации по времени
n = 0:1:(N-1); % array of counts
df = 1 / T; % интервал дискретизации (= 4 \Gammaц)
f = n * df; % recovered freq
x1 = \sin(2*pi*f1*t); % return a vector x of sinus - non odd
x2 = \sin(2*pi*f2*t); % return a vector x of sinus - non odd
x3 = \sin(2*pi*f1*t) + \cos(2*pi*f2*t) - (-1+1.*rand(1,N));
X3 = fft(x3); % спектр сигнала x (ДПФ)
xv3 = ifft(X3); % восстановленная по спектру последовательность (ОДПФ)
```

```
diff = x3.-xv3;
```

subplot(311), plot(t,x1,'-b;x1(t);'), hold on, plot(t,x2,'-r;x2(t);'), hold on, plot(t,x3,'-k;x3(t);'), title('Сложный сигнал и его составляющие'), xlabel('c'), grid minor;

subplot(312), plot(f,abs(X3),'-g;abs(X1(f);'), title('Спектр сигнала'), xlabel('Гц'), grid minor; subplot(313), plot(f,real(xv3),'-m;real(xv3);'), title('Восстановленный спектр'), xlabel('n'), grid minor;

#### Результаты работы:



На графиках показаны исходные гармонические сигналы х1 (синусоида с частотой 40  $\Gamma$ ц), х2 (синусоида с частотой 120  $\Gamma$ ц), сигнал х3 (сумма сигналов х1, х2 + случайный шум) и их спектры.

**Вывод:** из графиков сигналов видно, что для сигнала, состоящего из одной гармоники, спектр сигнала представлен одним всплеском на заданной частоте сигнала, у случайного сигнала (белого шума) спектр распределен по всей частотной полосе и значения частотных коэффициентов небольшие. У сигнала, состоящего из суммы 2-х гармонических сигналов с частотами 40 и 120 Гц и случайного сигнала, спектр представлен двумя пиками на частотах 40 и 120 Гц и небольшими всплесками по всей частотной полосе, соответствующими шумовой составляющей. Таким образом можно сделать вывод, что чем сложнее сигнал (из большего числа гармоник состоит), тем сложнее спектр этого сигнала.

#### Ответы на контрольные вопросы:

- 1. Единичный импульс имеет сплошной спектр, который с увеличение частоты убывает. У синусоидальной и косинусоидальной последовательностей спектр будет состоять из одного пика на соответствующей частоте (частота определяется количеством периодов в 1 секунду).
- 2. Чем больше частота дискретизации (больше отчетов на периоде), тем точнее сигнал.
- 3. Равенство Парсеваля выражает квадрат нормы сигнала в Гильбертовом пространстве со скалярным произведением через квадраты модулей коэффициентов Фурье этого сигнала по некоторой ортогональной системе функций, т. е. находит энергию сигнала.