

10 梯度下降法

西安科技大学 牟琦 muqi@xust.edu.cn

10.1 梯度下降法原理

- 求解线性回归模型——函数求极值
 - 口解析解

根据严格的推导和计算得到,是方程的**精确解** 能够在**任意精度**下满足方程

口 数值解

通过某种**近似计算**得到的解 能够在**给定的精度**下满足方程

■ 一元凸函数求极值

$$f(x) = x^2 + 2$$

迭代法求极小值(步长=0.2)

迭代次数	X _i	候选值	$y=x^2+2$	取值	迭代次数	x _i	候选值	$y=x^2+2$	取值
0	3	2.8	9.84	$\sqrt{}$	8	1.4	1.2	3.44	$\sqrt{}$
	3	3.2	12.24				1.6	4.56	
1	2.8	2.6	8.76	$\sqrt{}$	9	1.2	1	3	V
		3	11				1.4	3.96	
2	2.6	2.4	7.76	$\sqrt{}$	10	1	0.8	2.64	√
		2.8	9.84				1.2	3.44	
3	2.4	2.2	6.84	$\sqrt{}$	11	0.8	0.6	2.36	√
		2.6	8.76				1	3	
4	2.2	2	6	$\sqrt{}$	12	0.6	0.4	2.16	
		2.4	7.76				0.8	2.64	
5	2	1.8	5.24	$\sqrt{}$	13	0.4	0.2	2.04	$\sqrt{}$
		2.2	6.84				0.6	2.36	
6	1.8	1.6	4.56	$\sqrt{}$	14	0.2	0	2	
		2	6				0.4	2.16	
7	1.6	1.4	3.96	$\sqrt{}$	15	0	-0.2	2.04	
	1.0	1.8	5.24				0.2	2.04	

迭代法求极小值(步长=0.5)

迭代次数	x_{i}	候选值	$y=x^2+2$	移动方向
0	3	2.5	8.25	$\sqrt{}$
0		3.5	14.25	
1	2.5	2	6	√
1		3	11	
2	2	1.5	4.25	√
2		2.5	8.25	
2	1.5	1	3	√
3		2	6	
4	1	0.5	2.25	
4		1.5	4.25	
	0.5	0	2	V
5		1	3	
	0	-0.5	2.25	
6		0.5	2.25	

震荡

overshoot the minimum

あタ科技大学

迭代法求极小值(步长=0.7)

迭代次数	x_{i}	候选值	$y=x^2+2$	移动方向
0	3	2.3	7. 29	
Ü	ა	3. 7	15. 69	
1	2. 3	1.6	4. 56	
	2. 3	3	11	
2	1.6	0.9	2. 81	
	1.0	2.3	7. 29	
3	0.9	0.2	2.04	
	0.9	1.6	4. 56	
4	0.2	-0.5	2. 25	$\sqrt{}$
	0.2	0.9	2.81	
5	-0.5	-1.2	3. 44	
	0. 5	0.2	2.04	$\sqrt{}$
6	0.2	-0.5	2. 25	$\sqrt{}$
	0.2	0.9	2.81	
7	-0.5	-1.2	3. 44	
	0.0	0.2	2.04	$\sqrt{}$
8	0.2	-0.5	2 . 25	$\sqrt{}$
0	0.2	0.9	2.81	

步长太小, 迭代次数多, 收敛慢 步长太大, 引起震荡, 可能无法收敛

步长=
$$\eta \frac{df(x)}{dx}$$

$$x^{(k+1)} = x^{(k)} - \eta \frac{df(x)}{dx}$$

- 自动调节步长
- 自动确定下一次更新的方向
- 保证收敛性

■ 二元凸函数求极值

$$x^{(k+1)} = x^{(k)} - \eta \frac{\partial f(x, y)}{\partial x}$$
$$y^{(k+1)} = y^{(k)} - \eta \frac{\partial f(x, y)}{\partial y}$$

$$\overrightarrow{grad} f(x, y) = \frac{\partial f}{\partial x} \overrightarrow{i} + \frac{\partial f}{\partial y} \overrightarrow{j}$$

$$\nabla = \begin{pmatrix} \frac{\partial f(x, y)}{\partial x} \\ \frac{\partial f(x, y)}{\partial y} \end{pmatrix}$$

 $\nabla = \begin{pmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial x} \end{pmatrix}$ 模为方向导数的最大值 方向为取得最大方向导数的方向

只要能够把损失函数描述成凸函数 那么就一定可以采用梯度下降法 以最快的速度更新权值向量w 找到使损失函数达到最小值点的位置

