Page : Date :

, and Since d=2

Thus, we need 3 parameters to hind to salve linear regression.

2. Closed form Solution:

$$\theta = (X^TX)^{-1}X^Ty$$

		_					√ <u></u>		
	X=	[1	1	5	7 Y=	[10	X y =	[440]	
1	0×3	1	2	6	toxi	10	3+1	1380	
		1	2	10		50		4560	
		1	2	12	2 7 8	60		2): (1
		1	3	17		70		/	
		1	3	12	5.74	50	/	C 13 12 18	
		1	4	6		30			
		1	4	5		20	- /		
		1	4	7		40	√		
		1	5	10		70			
	L			•					

$$(x^{T}x)^{-1} = \begin{bmatrix} 1.3298 - 0.214 & -0.065 \\ -0.214 & 0.0714 & 0 \\ -0.065 & 0 & 7.24 \times 10^{-3} \end{bmatrix}$$

 $h(x) = \begin{cases} 4 & 0; x; \\ 5 & 0; x; \end{cases}$ = -7.987 + 4.2857x; $+4.347.8x_2$

K.M.S

Sheet#7 Ensemble+NeuralNets+ Linear Regression

April 21, 2019

1 Sheet#7 Ensemble+NeuralNets+ Linear Regression

1.1 Question 1 on data given below.

1.1.1 Use Scikit-learn package for Finding the linear regression solution.

Comparing to the Closed form solution obtained perviously, it is exactly the same answer we got from the sklearn algorithm.

1.1.2 Add L-2 regularization to the obtained solution. We use Ridge regression from Scikit-learn to do so.

For alpha = 0.1,

```
Theta 0 is -7.868057374397225
Theta 1 is 4.255319148936171
Theta 2 is 4.344677769732079
For alpha = 1,
In [39]: clf = Ridge(alpha=1)
         clf.fit(X, Y)
         print("Theta 0 is ",clf.intercept_)
         print("Theta 1 is",clf.coef_[1])
         print("Theta 2 is",clf.coef_[2])
Theta 0 is -6.84892086330936
Theta 1 is 3.99999999999996
Theta 2 is 4.316546762589929
For alpha = 10,
In [43]: clf = Ridge(alpha=10)
         clf.fit(X, Y)
        print("Theta 0 is ",clf.intercept_)
         print("Theta 1 is",clf.coef_[1])
        print("Theta 2 is",clf.coef_[2])
Theta 0 is 0.013513513513508713
Theta 1 is 2.50000000000000004
Theta 2 is 4.054054054054054
For alpha = 100,
In [47]: clf = Ridge(alpha=100)
         clf.fit(X, Y)
         print("Theta 0 is ",clf.intercept_)
         print("Theta 1 is",clf.coef_[1])
         print("Theta 2 is",clf.coef_[2])
Theta 0 is 19.73197700132685
Theta 1 is 0.5263157894736842
Theta 2 is 2.5210084033613445
```

4.				input layer	AND gates loyer	ORgate
3-input Hajordy Tunction				(+1)	30	
XL	Xa	Хз	1 4	X1,20	+20	
0	0	0	Ö	(X ₂) (20)	120	*
0	0	1	0	120	+20	-
0	す	0	1	(X3)	+20	
o d	0	0	0	+ 20	30	
1	0	11	Ĭ			
1	1	0	1			
1	1	0	1			

K.M.S

Date.

3.

Regressor 1: (From linear Regression without Regulatization)

y = - 7.9895 + 4.2857 x1 + 4.3478 x2

For pl: y = 74.4347 (3,16)

For P2 : y= 17.9751

 $F_{or} P3 : y = 30.8322$ (5,4)

Regressor 2: (From Ridge Regression with > = 0.1)

y = -7.868 + 4.255x1 + 4.344 x2

For PJ: 4= 74.4127

For P2: y= 18.021

For P3: y = 30.787

Regressor3: (From Ridge Regression with $\lambda = 1$)

y = -6.8489 + 3.999 x1 + 4.316 x2

01

P1: y= 74.216

P2: y = 18.417

P3: 4= 30.417