ПАКЕТ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ РАСШИРЕННОЙ ПОДДЕРЖКИ СБИС 1888ТХ018. АДАПТИРОВАННЫЙ ЗАГРУЗЧИК U-ВООТ ДЛЯ ПЛАТЫ МВ115.01 НА КРИСТАЛЛЕ СБИС 1888ТХ018

Руководство оператора

ЮФКВ.30168-02 34 01 Листов 25

Инв. № подл. и Дата Взам. инв. № Инв. № дубл. Подп. и дата

АННОТАЦИЯ

Настоящее руководство распространяется на адаптированный загрузчик U-Boot для платы MB115.01 на кристалле СБИС 1888ТX018 (далее — Загрузчик U-Boot, программа).

Документ содержит общие сведения о программе, условия её выполнения, описание действий оператора при выполнении программы, описание сообщений оператору.

Документ составлен с учётом требований ГОСТ 19.101-77, ГОСТ 19.105-78, ГОСТ 19.106-78.

СОДЕРЖАНИЕ

1. Назначение программы	4
1.1 Общие сведения	4
2. Условия выполнения программы	6
2.1 Требования к среде функционирования	6
2.2 Установка программы	6
2.3 Подготовка к запуску программы	6
3. Выполнение программы	7
3.1 Запуск программы	7
3.2 Загрузка образа ядра	7
3.3 Настройка переменных окружения загрузчика	9
3.4 Работа с памятью	11
3.5 Работа с Flash памятью	14
3.6 Тестирование фиксированного блока памяти DDR встроенным тестом	15
3.7 Подключение устройства памяти как USB Mass Storage	16
4. Сообщения оператору	17
Приложение А. Список доступных команд загрузчика U-Boot	18
Перечень принятых сокрашений	23

1. НАЗНАЧЕНИЕ ПРОГРАММЫ

- 1.1 Общие сведения
- 1.1.1. Адаптированный загрузчик U-Boot для платы MB115.01 на кристалле СБИС 1888ТX018 входит в состав пакета программного обеспечения (далее по тексту ППО) расширенной поддержки СБИС 1888ТX018, разработки НТЦ «Модуль», предназначенного для выполнения на аппаратных ресурсах платы MB115.01 на кристалле СБИС 1888ТX018.
- 1.1.2. Загрузчик U-Boot предназначен для загрузки U-Boot, образа ядра и device tree c:
 - SD карты;
 - SPI Flash;
 - Ethernet (TFTP, EDCL).
 - 1.1.3. Загрузчик U-Boot обеспечивает следующие основные возможности:
 - Конфигурация DDR памяти на базе данных в EEPROM;
 - Поддержка драйверов:
 - UART;
 - Ethernet;
 - SDIO;
 - GPIO;
 - SPI;
 - PINMUX;
 - USB.
 - Поддержка протокола TFTP на канале Ethernet;
 - Управление через командную строку на порту UART;

- Тестирование фиксированного блока памяти DDR встроенным тестом;
- Запись и чтение SD-карты;
- Запись и чтение файлов на томе FAT16/FAT32/EXT3/EXT4 на SD-карте;
- Сохранение рабочих переменных на SD карте или SPI flash памяти (в зависимости от параметров, указанных при компиляции);
- Выполнение команды ums (с использованием штатного драйвера inventra musb).
 - 1.1.4. Используемая версия исходных кодов загрузчика U-Boot 2020.10.

2. УСЛОВИЯ ВЫПОЛНЕНИЯ ПРОГРАММЫ

- 2.1 Требования к среде функционирования
- 2.1.1. Загрузчик U-Boot должен исполняться на аппаратных ресурсах платы MB115.01 на СБИС 1888ТX018.
- 2.1.2. Условия эксплуатации Загрузчик U-Boot должны соответствовать условиям эксплуатации платы MB115.01.

2.2 Установка программы

- 2.2.1. Для корректной работы с SPI Flash носителем необходимо выполнить прошивку загрузчика U-Boot на носитель. Подробнее см. документ «Пакет программного обеспечения расширенной поддержки СБИС 1888ТХ018. Адаптированный загрузчик U-Boot для платы МВ115.01 на кристалле СБИС 1888ТХ018. Инструкция по применению исходных кодов».
- 2.2.2. Для корректной работы с SD-картой необходимо выполнить прошивку загрузчика U-Boot на карту. Подробнее см. документ «Пакет программного обеспечения расширенной поддержки СБИС 1888ТХ018. Адаптированный загрузчик U-Boot для платы MB115.01 на кристалле СБИС 1888ТХ018. Инструкция по применению исходных кодов».

2.3 Подготовка к запуску программы

2.3.1. Для корректной работы загрузки по сети по протоколу TFTP оператор должен настроить перед работой с программой сервер TFTP.

3. ВЫПОЛНЕНИЕ ПРОГРАММЫ

- 3.1 Запуск программы
- 3.1.1. Программа запускается автоматически при подключении платы.
- 3.1.2. Управление программой выполняется через командную строку. Список всех доступных команд приведён в приложении А (см. Приложение А. Список доступных команд загрузчика U-Boot).
- 3.1.3. Для выведения полного списка доступных команд используется команда help.
- 3.1.4. Для получения справки по отдельной команде после команды help следует указать название интересующей команды. Например, при вводе help base оператору будет выведена следующая информация:

```
base - print or set address offset

Usage:
base
    - print address offset for memory commands
base off
    - set address offset for memory commands to 'off'=>
```

- 3.2 Загрузка образа ядра
- 3.2.1. Загрузка образа ядра может выполняться с SPI Flash, SD-карты или по сети автоматически при запуске работы загрузчика, если это задано в переменных окружения (подробнее см. п. 3.3), или по соответствующей команде.
 - 3.2.1.1. К основным командам загрузки относятся:
- boot выполнение команды загрузки по умолчанию, то есть выполнение команды из переменной окружения bootcmd;
- bootd выполнение команды загрузки по умолчанию, то есть выполнение команды из переменной окружения bootcmd;
 - bootelf -загрузка образа ELF из памяти;

```
- bootm - загрузка образа приложения из памяти;
                     bootm [addr [arg ...]]
- bootp - загрузка образа по сети при помощи BOOTP протокола;
       bootp [loadAddress] [[hostIPaddr:]bootfilename]
где [loadAddress] — адрес, откуда выполняется загрузка;
[hostIPaddr:] - IP-адрес хост-сервера;
[bootfilename] - имя загружаемого файла.
- bootvx - загрузка образа приложения VxWorks;
- tftp - загрузка образа по сети при помощи протокола TFTP;
- dhcp - загрузка образа по сети при помощи протокола DHCP;
       bootp [loadAddress] [[hostIPaddr:]bootfilename]
где [loadAddress] — адрес, откуда выполняется загрузка;
[hostIPaddr:] - IP-адрес хост-сервера;
[bootfilename] - имя загружаемого файла.
- loadb - загрузка бинарного файла через терминал по протоколу Kermit;
                     loadb [ off ] [ baud ]
где [off] - смещение;
[baud:] - скорость передачи.
- loads - загрузка файла в формате S-Record через терминал;
                     loads [ off ] [ baud ]
где [off] - смещение;
[baud:] - скорость передачи.
```

- 3.2.2. Загрузка образа по протоколу TFTP
- 3.2.2.1. Для корректной загрузки по протоколу TFTP должен быть настроен сервер TFTP и переменные окружения ipaddr, serverip и bootfile.

3.2.2.2. Для загрузки образа ядра через сеть по протоколу TFTP используется команда: tftpboot.

tftpboot [loadAddress] [[hostIPaddr:]bootfilename]

где [loadAddress] — адрес, откуда выполняется загрузка;

[hostIPaddr:] -IP-адрес хост-сервера;

[bootfilename] — имя загружаемого файла.

- 3.2.2.3. Если в строке не указан [loadAddress], то значение берётся из переменной окружения loadaddr.
 - 3.3 Настройка переменных окружения загрузчика
- 3.3.1. Переменные окружения используются для настройки поведения загрузчика по желанию оператора.
- 3.3.2. Во время запуска загрузчик выполняет поиск переменных окружения, сохраненных в SPI Flash-памяти:
- 3.3.2.1. При успешном обнаружении устанавливаются переменные окружения, сохраненные в SPI Flash-памяти;
- 3.3.2.2. В случае ошибки устанавливаются переменные окружения, заданные по умолчанию.
- 3.3.3. Для настройки значений переменных окружения используется команда setenv.

Новое значение задаётся по следующей схеме:

setenv name value

где name — имя переменной окружения, a value — значение переменной.

3.3.4. К переменным окружения загрузчика, которые может задать оператор, относятся:

- ipaddr IP-адрес, необходимый для выполнения команды tftp. Подробнее
 см. п. 3.4;
- serverip IP-адрес TFTP-сервера, необходимый для выполнения команды tftp. Подробнее см. п. 3.2.2;
 - netmask маска подсети;
 - loadaddr адрес буфера для копирования образа с SD/MMC-карты;
- bootdelay время в секундах до выполнения команды, заданной в переменной bootcmd после перезагрузки загрузчика U-Boot. При этом на экране отображается обратный отсчёт, оператор может прервать выполнение команды, нажав любую кнопку на клавиатуре. Если значение переменной «0», то загрузка выполняется сразу же;
- bootfile имя файла, содержащего образ для загрузки образа по протоколу TFTP;
- bootcmd команда, выполняемая при перезагрузке загрузчика после обратного отсчёта, заданного в переменной bootdelay;
- bootm_low нижняя граница области памяти, используемой для загрузки образа;
 - bootm size размер области памяти, используемой для загрузки образа;
 - fdt addr r адрес, где хранится device tree.
- 3.3.5. Команда setenv используется также для удаления заданного значения у переменной. Уже заданное значение удаляется по следующей схеме:

setenv name

где name - имя переменной окружения.

3.3.6. Для изменения уже заданных значений переменных окружения используется команда editenv.

Новое значение задаётся по следующей схеме:

edit name value

где name — имя переменной окружения, а value — новое значение переменной.

- 3.3.7. Все описанные выше изменения, выполняемые с переменными окружения, сохраняются только в RAM. При перезагрузке все настройки будут утеряны. Для того чтобы сохранить изменения, используется команда saveenv.
 - 3.4 Работа с памятью
- 3.4.1. При частом обращении к определенному участку памяти устанавливают смещение для команд обращения при помощи команды base. Пример:

=> base 0x100000

Base Address: 0x00100000

3.4.1.1. При вводе команды без указания смещения выводится текущее значение смещения. Значение по умолчанию: 0.

=> base

Base Address: 0x0000000

- 3.4.1.2. Для отключения смещения используется команда base off.
- 3.4.2. Для подсчёта контрольных сумм CRC32 используется команда crc32 с указанием диапазона памяти в качестве аргумента:

```
=> crc 0x100004 0x3FC CRC32 for 00100004 ... 001003ff ==> 8083764e
```

- 3.4.2.1. При вводе трёх аргументов произведённый расчёт сохраняется в указанном участке памяти:
- => crc 0x100004 0x3FC 0x100000 CRC32 for 00100004 ... 001003ff ==> 8083764e => md 0x100000 4 00100000: 8083764e bd86200a 60a19054 2c12c402 ..vN...`..T,...

3.4.3. Для сравнения содержимого памяти двух участков памяти используется команда стр:

```
cmp [.b, .w, .1] addr1 addr2 count
```

3.4.3.1. Команда выполнит либо полную проверку участка, заданного в третьем аргументе (длина), либо остановится при первом обнаруженном различии:

```
=> cmp 0x100000 0x200000 0x400 word at 0x00100000 (0x8083764e) != word at 0x00200000 (0x27051956) Total of 0 words were the same
```

- 3.4.3.2. Команда может получить доступ к участкам памяти с разными размерами информации:
- стр.1 32 бита (longword). По умолчанию сравнение выполняет для 32-битной памяти;

```
стр. w - 16 бита (word),
```

стр.b - 8 байт (byte).

- 3.4.3.3. Аргумент count задаёт количество обрабатываемых единиц данных, т.е. размер машинных слов и символов (32 бита, 16 бит или 8 байт).
 - 3.4.4. Команда ср используется для копирования участков памяти:

где [.b, .w, .1] - разрядность копируемой информации в битах или байтах,

source - участок, откуда копируются данные;

target - участок, куда копируются данные;

count - количество копируемых данных в указанной величине.

Например:

```
=> cp.1 0x200000 0x100000 0x10000
```

^{=&}gt; cp.w 0x200000 0x100000 0x20000

^{=&}gt; cp.b 0x200000 0x100000 0x40000

3.4.5. Команда md используется для отображения содержимого памяти:

```
md [.b, .w, .l] address [# of objects]
```

где [.b, .w, .1] - разрядность отображаемой информации в битах или байтах, address - адрес участка памяти; [# of objects] - количество объектов.

3.4.5.1. Отображение содержимого памяти выполняется и в шестнадцатеричной системе счисления, и в ASCII:

```
=> md 0x100000

00100000: 8083764e bd86200a 60a19054 2c12c402 ..vN...`..T,...

00100010: c101d028 00438198 7ab01239 62406128 ...(.C..z..9b@a(

00100020: 0c900d05 320b4581 1ca3d0a2 c498293a ....2.E.....):
```

- 3.4.5.2. Загрузчик запоминает последний указанный адрес и аргумент количества, поэтому при вводе команды без аргументов, будет автоматически подставлен следующий адрес и прежний аргумент количества.
 - 3.4.6. Команда тт используется для изменения содержимого памяти:

где [.b, .w, .1] - разрядность изменяемой информации в битах или байтах, address - адрес участка памяти;

3.4.6.1. После ввода команды на экран выводится текущее содержимое участка памяти и знак вопроса для ввода новых данных в шестнадцатеричной системе:

```
=> mm 0x100000
00100000: 8083764e ? 0
00100004: bd86200a ? 0xaabbccdd
00100008: 60a19054 ? 0x01234567
0010000c: 2c12c402 ? .
```

3.4.7. Для проведения теста RAM используется команда mtest:

```
mtest [start [end [pattern [iterations]]]]
```

3.4.8. Для записи разных данных несколько раз на один и тот же адрес используется команда nm:

где [.b, .w, .1] - разрядность изменяемой информации в битах или байтах, address - адрес участка памяти.

3.4.9. Для запуска бесконечного цикла по диапазону адресов используется команда 100р

где [.b, .w, .1] - разрядность информации в битах или байтах,

address - адрес участка памяти;

number of objects - количество объектов.

- 3.5 Работа с Flash памятью
- 3.5.1. Команда ср используется для копирования участков памяти. Подробнее см. п. 3.4.4.
 - 3.5.2. Команда flinfo используется для вывода информации по flash-памяти.
 - 3.5.3. Команда erase используется для вывода информации по flash.
- 3.5.4. Для удаления от одного участка памяти до конца сектора используется команда erase start end.
 - 3.5.5. Для удаления всех участков памяти используется команда erase all.
- 3.5.6. Команда protect используется для включения или отключения защиты Flash носителя от записи. Защиту можно поставить на отдельные сектора памяти или на всю память. Подробнее см. справку загрузчика U-boot в программе.

- 3.6 Тестирование фиксированного блока памяти DDR встроенным тестом
- 3.6.1. Для тестирования произвольного блока памяти необходимо воспользоваться механизмом отображения адресов физической памяти на адресное пространство процессора. Это позволяет сделать команда mmap:

```
mmap set cpu adr { 4k \mid 16k \mid 64k \mid 1m \mid 16m \mid 256m \mid 1g } phys adr
```

- 3.6.2. Команда устанавливает отображение блока физической памяти указанного размера с адресом phys_adr на память процессора, начиная с адреса cpu_adr.
 - 3.6.3. Имеются следующие ограничения:
 - максимальный размер блока 256m (мегабайт);
- для отображения должны использоваться адреса процессора в диапазоне 0x50000000-0x5FFFFFF;
 - оба адреса должны быть выровнены по размеру блока;
- в начале физической памяти расположен код и данные самой программы,
 так что запуск разрушающего теста приведет к зависанию.
 - 3.6.4. Для того чтобы снять отображение, используется команда

3.6.4.1. Например, для тестирования второго гигабайта физической памяти задаётся следующая команда:

```
mmap set 50000000 256m 40000000
mtest 50000000 60000000 55555555 4
mmap drop 50000000 256m 50000000
mtest 50000000 60000000 55555555 4
```

 mmap
 drop
 50000000

 mmap
 set
 50000000
 256m
 60000000

 mtest
 50000000
 60000000
 55555555
 4

 mmap
 drop
 50000000
 256m
 70000000

 mtest
 50000000
 60000000
 55555555
 4

 mmap
 drop
 50000000
 55555555
 4

- 3.6.4.2. В данном примере в пространство процессора последовательно отображаются 4 блока по 256 мегабайт из второго гигабайта физической памяти, после чего каждый раз запускается стандартный тест.
 - 3.7 Подключение устройства памяти как USB Mass Storage
- 3.7.1. Команда ums используется для чтения устройства памяти как USB Mass Storage. Например,

ums 0 mmc 0

- где ums 0 выбор контроллера USB, а mmc 0 выбор устройства памяти
- 3.7.2. После запуска команды ums, можно использовать функции USB Mass Storage для загрузки и записи новых образов.

4. СООБЩЕНИЯ ОПЕРАТОРУ

- 4.1 В процессе своей работы Загрузчик U-Boot формирует лишь один типа сообщений информационные сообщения.
- 4.2 Информационные сообщения выводятся в строке после запуска команды, оповещая о статусе выполнения команды или полученных результатах.

ПРИЛОЖЕНИЕ А. СПИСОК ДОСТУПНЫХ КОМАНД ЗАГРУЗЧИКА U-BOOT

Команда	Описание					
base	установка смещения для команд обращения к памяти					
bdinfo	печать информации о модуле					
boot	выполнение команды загрузки					
bootd	выполнение команды загрузки по умолчанию					
bootelf	загрузка образа ELF из памяти					
bootm	загрузка образа приложения из памяти					
bootp	загрузка образа по сети при помощи ВООТР-протокола					
bootvx	загрузка образа приложения VxWorks					
cmp	сравнение содержимого памяти					
coninfo	печать информации о консольных устройствах					
ср	копирование содержимого памяти					
crc32	вычисление контрольной суммы					
dhcp	загрузка образа по сети при помощи DHCP-протокола					
dm	печать информации о драйверах устройств					
echo	печать аргументов					
editenv	редактирование переменных окружения					
env	управление переменными окружения					

Команда	Описание					
erase	удаление данных с Flash-памяти					
exit	завершить выполнение сценария					
ext4load	загрузка бинарного файла из файловой системы EXT4					
ext4ls	вывести список всех файлов в папке из файловой системы EXT4					
ext4size	задать размер файла из файловой системы ЕХТ4					
false	ничего не выполняет, неуспешное выполнение					
fatinfo	печать информации о файловой системе					
fatload	загрузка бинарного файла из файловой системы DOS					
fatls	вывести список всех файлов в папке из файловой системы DOS					
fatsize	задать размер файла из файловой системы DOS					
fdt	управление Flattened Device Tree (FDT)					
flinfo	печать информации по Flash памяти					
fstype	просмотреть тип файловой системы					
go	запуск приложения по указанному адресу					
gpio	запрос и управление интерфейса GPIO					
help	печать справки и полного списка команд монитора					
iminfo	печать информации об образе приложения					

20 ЮФКВ.30168-02 34 01

Команда	Описание					
imxtract	извлечь образ из файла с несколькими образами					
itest	вернуть значение true/false по целому числу					
load	загрузка файла из файловой системы					
loadb	загрузка файла через терминал по протоколу Kermit					
loads	загрузка файла в формате S-Record через терминал					
loadx	загрузка файла через терминал по протоколу XMODEM					
loady	загрузка файла через терминал по протоколу YMODEM					
loop	бесконечный цикл по диапазону адресов					
ls	вывести список файлов в папке					
md	отображение содержимого памяти					
mm	изменение содержимого памяти с автоматическим увеличением адреса					
mmap	маппинг физической памяти					
mmc	функции для работы с подсистемой ММС					
mmcinfo	отображение информации о ММС					
mtest	простой тест RAM памяти на чтение/запись					
mw	заполнение памяти					
nfs	загрузка образа по сети при помощи NFS-протокола					
nm	изменение памяти (постоянный адрес)					

21 ЮФКВ.30168-02 34 01

Команда	Описание					
part	команды для разбиения диска;					
ping	отправка запроса ICMP ECHO_REQUEST на хост-сервер в сети					
printenv	печать переменных окружения					
protect	включить/отключить защиту от записи для Flash-памяти					
reginfo	печать регистрационных данных					
reset	перезагрузка процессора					
run	выполнение команд из указанной переменной окружения					
save	сохранение файла в файловой системе					
saveenv	сохранение переменных окружения					
setenv	установка переменных окружения					
setexpr	установка переменных окружения как результат оценочного выражения					
showvar	печать локальных переменных hushshell					
size	задать размер файла					
sleep	отложить выполнение команды на какое-то время					
source	Выполнить сценарий из памяти					
test	выполнение минимального теста					
tftpboot	загрузка образа по сети при помощи протокола TFTP					

22 ЮФКВ.30168-02 34 01

Команда	Описание				
true	ничего не выполняет, успешное выполнение				
ums	подключение функций USB Mass Storage				
version	печать версий монитора, компилятора и компоновщика				

ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ

ASCII — American Standard Code for Information Interchange
(Американский стандартный код для обмена информацией)

ВООТР — Bootstrap protocol (Сетевой протокол, используемый для автоматического получения клиентом IP-адреса)

CRC – Cyclic Redundancy Check (Циклический избыточный код)

DDR – Double Data Rate (Удвоенная скорость передачи данных)

DHCP — Dynamic Host Configuration Protocol (Протокол динамической настройки узла)

DOS – Disk Operating System (Дисковая операционная система)

EDCL – Ethernet Debug Communication Link (Отладочная коммуникационная ссылка Ethernet)

ELF – Executable and Linkable Format (Формат исполнимых и компонуемых файлов)

EEPROM – Electrically Erasable Programmable Read-Only Memory (Электрически стираемое перепрограммируемое ПЗУ)

EXT – Extended File System (Расширенная файловая система)

FAT – File Allocation Table (Таблица размещения файлов)

FDT — Flattened Device Tree (Формат файла с упрощенным описание дерева устройств)

GPIO — General-Purpose Input/Output (Интерфейс ввода/вывода общего назначения)

IP — Internet Protocol (Межсетевой протокол)

MMC – MultiMedia Card (Портативная флеш-карта памяти,
 использующаяся для многократной записи и хранения
 информации в портативных электронных устройствах)

NFS	– Network File System (ПИротокол сетевого доступа к файловым				
	системам)				
RAM	– Random Access Memory (Память с произвольной выборкой)				
SD	– Secure Digital (Формат карт памяти для использования в				
	портативных устройствах)				
SDIO	– Secure Digital Input Output (Стандарт, поддержка которого				
	позволяет использовать со слотом расширения формата SD/MMS				
	соответствующую периферию)				
SPI	- Serial Peripheral Interface (Последовательный периферийный				
	интерфейс)				
TFTP	– Trivial File Transfer Protocol (Простой протокол передачи				
	файлов)				
UART	– Universal Asynchronous Receiver-Transmitter (Универсальный				
	асинхронный приёмопередатчик)				
USB	– Universal Serial Bus (Универсальная последовательная шина)				
НТЦ	научно-технический центр				
ППО	– пакет программного обеспечения				

	Лист регистрации изменений								
Изм.	Ном изменен- ных	ера листов заменен- ных	(страниц) новых	аннули- рован- ных	Всего листов (страниц) в докум.	№ документа	Входящий № сопрово- дительно- го докум. и дата	Подп.	Дата