Twierdzenie 1. $G = GL_n(\mathbb{C})$ lub G = U(n), wtedy przestrzeń klasyfikująca $BG = \operatorname{Grass}_n(\mathbb{C}^{\infty}) = \bigcup_N \operatorname{Grass}_n(\mathbb{C}^N)$.

Uniwersalna wiązka dla U(n) to $\operatorname{Stief}_n^{ort}(\mathbb{C}^n)$ okłady ortonormalne, dla $GL_n(\mathbb{C})$ to $\operatorname{Stief}_n(\mathbb{C}^\infty)$ układy liniowo niezależne.

Wniosek 2. $G \subset GL_n(\mathbb{C})$ domknięta (czyli Lie), wtedy BG ma model będący wstępującą sumą rozmaitości (bo Stief_n(\mathbb{C}^N)/G to rozmaitość).

Wniosek 3. $G \subset GL_n(\mathbb{C})$ algebraiczna, to BG ma model będący wstępującą sumą rozmaitości algebraicznych.

Przykład 4. Niech $G = T = (\mathbb{C}^*)^n$.

 $B\mathbb{C}^* = \mathbb{P}^{\infty}.$

 $B(G \times H) = BG \times BH$, czyli $B(\mathbb{C}^*)^n = (\mathbb{P}^{\infty})^n$.

Z innej strony $ET = \operatorname{Stief}_n(\mathbb{C}^{\infty}), BT = \operatorname{Stief}_n(\mathbb{C}^{\infty})/T = \operatorname{Grass}_n^{split}(\mathbb{C}^{\infty}) = \{V \in \operatorname{Grass}_n(\mathbb{C}^{\infty}) \text{ wraz z rozkładem } V = L_1 \oplus L_2 \oplus \ldots \oplus L_n\} \to \operatorname{Grass}_n(\mathbb{C}^{\infty}).$

Przykład 5. $BSL_n(\mathbb{C}) = \mathrm{Stief}_n(\mathbb{C}^{\infty})/SL_n(\mathbb{C}) = \{V \in \mathrm{Grass}_n(\mathbb{C}^{\infty}) \text{ wraz z izomorfizmem } \varphi : \Lambda^n V \to \mathbb{C}\} \to \mathrm{Grass}_n(\mathbb{C}^{\infty})$

Przykład 6. $BSO_n(\mathbb{C}) = \{V \in Grass_n(\mathbb{C}^{\infty}) \text{ wraz z niezdegenerowaną formą kwadratową na } V\}$ Przykład 7. Niech G będzie grupą Borela, tj. macierzami górnotrójkątnymi, wtedy $BG = \{V \in Grass_n(\mathbb{C}^{\infty}) \text{ wraz z filtracją } V_1 \subset \ldots \subset V_n = V\}$, czyli jest to tzw. częściowa rozmaitość flag.

Twierdzenie 8. Jeśli $G \hookrightarrow H \stackrel{\pi}{\twoheadrightarrow} K$ ciąg dokładny grup, G normalna, to istnieje rozwłóknienie $BG \to BH \to BK$.

Uwaga 9. G Lie zawiera torus, to BG nie może być skończenie wymiarowe.

Twierdzenie (bez dowodu) 10. G spójna Lie, T maksymalny torus w G, $H^*(BG, \mathbb{Q}) = H^*(BT, \mathbb{Q})^W$, W = NT/T.

Kohomologie ekwiwariantne

Chcemy je tak zdefiniować, by G-ekwiwariantna homotopijna równoważność $X \to Y$ indukowała izomorfizm na ekwiwariantnych kohomologiach.

Definicja 11. $H_G^*(X) = H^*(EG \times_G X)$

Uwaga12. $H_{\underline{G}}^*(\underline{X})$ jest funktorem kontrawariantnym ze względu na Xoraz kontrawariantnym ze względu na G.

Twierdzenie 13. $f: X \to Y$, G-ekwiwariantna homotopijna równoważność indukuje izomorfizm $H_G^*(Y) \simeq H_G^*(X)$.

Uwaga 14. $H_G^*(X)$ jest algebrą nad $H^*(BG)$.

$$Uwaga \ 15. \quad X \hookrightarrow EG \times_G X \twoheadrightarrow X/G \ \text{ indukuje ciąg homomorfizmów} \quad H^*(X/G) \twoheadrightarrow H^*_G(X) \longrightarrow H^*(X)$$

Twierdzenie 16. Jeśli G działa wolno na X, to $H^*(X/G) \to H^*(X)$ izomorfizm.

Lemat 17. G działa wolno, to włókna są ściągalne, czyli $EG \times_G X \simeq_{htp} X/G$.

Stwierdzenie 18. Jeśli X' wolna G-przestrzeń, $X' \to X$ to G-ekwiwariantna homotopijna równoważność, to $H_G^*(X) = H^*(X'/G)$.