(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 12 September 2002 (12.09.2002)

PCT

(10) International Publication Number WO 02/070665 A2

- (51) International Patent Classification?: C12N
 (21) International Application Number: PCT/US02/06765
 (22) International Filing Date: 4 March 2002 (04.03.2002)
 (25) Filing Language: English
 (26) Publication Language: English
 (30) Priority Data: 60/272,818 2 March 2001 (02.03.2001) US
 (71) Applicants (for all designated States except US): THE
- (71) Applicants (for all designated States except US): THE ROCKEFELLER UNIVERSITY [US/US]; 1230 York Avenue, New York, NY 10024 (US). ALK ABELLO A/S [DK/DK]; Boge Alle 6-8, Post Office Box 408, DK-2970 Horsholm (DK).

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): KING, Te, Piao [US/US]; 340 East 64th Street, New York, NY 10021 (US). SPANGFORT, Michael, Dho [SE/SE]; Hövitsmansgatan 14, S-254 37 Helsingborg (SE).
- (74) Agents: FEHLNER, Paul, F. et al.; Darby & Darby P.C., 805 Third Avenue, New York, NY 10022-7513 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

[Continued on next page]

(54) Title: RECOMBINANT HYBRID ALLRGEN CONSTRUCTS WITH REDUCED ALLERGENICITY THAT RETAIN IMMUNOGENICITY OF THE NATURAL ALLERGEN

	·
v	•
P	
PV1-46	7
PV108-155	
PV156-204	
PV1-155	<i></i>
PV1-8	Z
PV1-18	· .
PV1-24	7777
PV1-32	77777 300000000000000000000000000000000
PV1-39	·////
PV1-50	
PV1-57	
PV1-76	
PV22-32	// · · · · · · · · · · · · · · · · · ·
PV115-125	(*************************************
PV142-150	30000000000000000000000000000000000000
PV176-182	
PV195-204	×

(57) Abstract: Disclosed are recombinant hybrid proteins having at least one antigenic peptide sequence introduced into a scaffold protein that retain a native conformation. Also disclosed are recombinant nucleic acids and vectors encoding the hybrid proteins. The hybrid proteins retain immunogenicity but exhibit reduced allergenicity. The hybrid proteins are therefore particulary useful for therapeutic treatment of allergy.

WO 02/070665 A2

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

 without international search report and to be republished upon receipt of that report

RECOMBINANT HYBRID ALLERGEN CONSTRUCTS WITH REDUCED ALLERGENICITY THAT RETAIN IMMUNOGENICITY OF THE NATURAL ALLERGEN

This application claims priority under 35 U.S.C. § 119 (e) of U.S. Provisional Application Serial No. 60/272,818, filed March 2, 2001, which is hereby incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

5

10

15

The present invention is directed to recombinant hybrid proteins having native conformation and containing at least one antigenic peptide sequence introduced into a scaffold protein. The invention is further directed to recombinant nucleic acids and vectors encoding the recombinant vespid hybrid proteins and cells containing the recombinant vectors. Such recombinant hybrid proteins are useful for eliciting an immune response without eliciting an allergenic response, and are therefore particularly useful for therapeutic treatment of allergy.

BACKGROUND OF THE INVENTION

Genetically predisposed individuals become sensitized (allergic) to antigens originating from a variety of environmental sources, to the allergens of which the individuals are exposed. The allergic reaction occurs when a previously sensitized individual is reexposed to the same or a homologous allergen. Allergic responses range from hay fever, rhinoconductivitis, rhinitis and asthma to systemic anaphylaxis and death in response to, e.g.,

bee or hornet sting or insect bite. The reaction is immediate and can be caused by a variety of allergens such as compounds originating from grasses, trees, weeds, insects, food, drugs, chemicals and perfumes.

Biochemical Aspects of Allergens

5

10

20

Insect sting allergy to bees and vespids is of common occurrence. The vespids include hornets, yellow jackets and wasps (Golden *et al.*, 1989, Am. Med. Assoc. 262:240). Susceptible people can be sensitized on exposure to minute amounts of venom proteins; as little as 2-10 μ g of protein is injected into the skin on a single sting by a vespid (Hoffman and Jacobson, 1984, Ann. Allergy. 52:276).

There are many species of hornets (genus Dolichovespula), yellowjackets (genus Vespula) and wasp (genus Polistes) in North America (Akre et al., 1980, "Yellowjackets of America North of Mexico," Agriculture Handbook No. 552, US Department of Agriculture). The vespids have similar venom compositions (King et al., 1978, Biochemistry 17:5165; King et al., 1983, Mol. Immunol. 20:297; King et al., 1984, Arch. Biochem. Biophys. 230:1; King et al., 1985, J. Allergy and Clin. Immunol. 75:621; King, 1987, J. Allergy Clin. Immunol. 79:113; Hoffman, 1985, J. Allergy and Clin. Immunol. 75:611). Their venom each contains three major venom allergens, phospholipase (37 kD), hyaluronidase (43 kD) and antigen 5 (23 kD) of as yet unknown biological function.

In addition to the insect venom allergens described above, the complete amino acid sequence of several major allergens from different grass (Perez et al., 1990, J. Biol. Chem. 265:16210; Ansari et al., 1989, Biochemistry 26:8665; Silvanovich et al., 1991, J. Biol. Chem. 266:1204), tree pollen (Breiteneder, 1989, EMBO J. 8:1935; Valenta et al., 1991, Science, 253:557), weed pollen (Rafnar et al., 1991, J. Biol. Chem. 266:1229; Griffith et al., 1991, Int. Arch. Allergy Appl. Immunol. 96:296), mites (Chua et al., 1988, J. Exp. Med. 167:175), cat dander (Griffith et al., 1992, Gene. 113:263), and mold (Aruda et al., 1990, J. Exp. Med. 172:1529; Han et al., 1991, J. Allergy Clin. Immunol. 87:327) have been reported. These major allergens are proteins of 10-40 kD and they have widely different biological functions. Nearly all allergens of known sequences have a varying extent of sequence similarity with other proteins in our environment. A comprehensive list of nearly all known allergens is maintained under the auspices of the World Health Organization (WHO) and International Union of Immunological Standards (IUIS) Sub-Committee for

Allergen Nomenclature, available at Internet site allergen.org on the World Wide Web.

T and B Cell Epitope of Allergens

20

25

30

Antibody responses to proteins require the collaboration of T helper and B lymphocytes and antigen presenting cells (APC). The antigen receptors of B cells are the membrane-bound antibody (Ab) molecules, which recognize and bind immunogens directly. The antigen receptors of T cells (TCR) only recognize and bind complexes of antigenic peptide-MHC class II molecule. Immunogens are first processed by APC into peptides that are presented on the surface of APC in association with the MHC class II molecules (Unanue, 1992, Current Opinion in Immunol 4:63). As MHC molecules are highly polymorphic in individuals, they have different specificity of binding antigenic peptides (Rothbard and Gefter, 1991, Ann. Rev. Immunol. 9:527). This is one mechanism for genetic control of immune response.

T helper cells are activated when the antigen receptor binds the peptide-MHC complex on the surface of APC. Activated T cells secrete lymphokines. In mice (Street and Mosmann, 1991, FASEB J. 5:171) and apparently in humans (Wierenga et al., 1990, J. Immunol. 144:4651; Parronchi et al., 1991, Proc. Natl. Acad. Sci. USA. 88:4538) the T helper cells can be divided into different types on the basis of their patterns of lymphokine production. Primarily, T helper cells divide into two groups: Th1 cells producing IL-2 and IFN-γ and Th2 cells producing IL-4 and IL-5. These lymphokines in turn influence the antigen-activated B cells to differentiate and proliferate into plasma cells secreting Abs of different isotypes. IL-4 is one lymphokine known to influence IgE synthesis (Finkelman et al., 1990, Ann. Rev. Immunol. 8:303).

It is believed that the entire accessible surface of a protein molecule can be recognized as epitopes by the antigen receptors of B cells, although all epitopes are not necessarily recognized with equal likelihood (Benjamin et al., 1984, Ann. Rev. Immunol. 2:67). B cell epitopes of a protein are of two types: topographic and linear. The topographic type consists of amino acid residues which are spatially adjacent but may or may not be sequentially adjacent. The linear type consists of only sequentially adjacent residues. X-ray crystallographic data of Ag-Ab complexes indicate the size of their complementary binding region to have 16-17 amino acid residues (Amit et al., 1986, Science 233:747).

Phospholipase, like other protein antigens, can have both types of B cell epitopes or only one.

Vespid antigen 5s have both types. Bee venom melittin appears to have only one B cell epitope of linear type (King et al., 1984, J. Immunol. 133:2668).

peptides that have been processed in the lysosomes of APC by proteases (Unanue, 1992, Curr. Op. Immunol. 4:63). Analysis of naturally processed antigenic peptides bound to MHC class II molecules indicates that their size ranges from about 13 to 17 amino acid residues, but analysis of synthetic peptide-MHC class II molecule complex for their T cell proliferate response suggests a minimal size of about 8 amino acid residues (Cf. Rudensky et al., 1991, Nature 353:622). Studies suggest that T cell epitopes are distributed throughout the entire protein molecule, and they may function as major or minor determinants depending on the MHC haplotype of the immunized host (Roy et al., Science 244:572; Gammon et al., 1987, Immunol. Rev. 98:53; O'Hehir et al., 1991, Ann. Rev. Immunol. 9:67).

Hypersensitivity of the immediate type is known to be caused by the presence of allergen-specific IgE. IgE is found in the circulation and bound to specific IgE-Fc receptors on mast cells and basophils. Cross-linking of cell-bound IgE by allergens leads to release of histamine, leukotrienes and other chemical mediators that cause the allergic symptoms. IgE is one of the different isotypes of immunoglobulins. As pointed out above, lymphokines secreted by T cells influence isotype switch events in B cells.

Because of the central role of Th2 cells in determining the isotype switch event of B cells, the T cell epitopes of several allergens have been mapped (Cf. O'Hehir et al., supra). These allergens include ragweed Amb III, rye grass Lol p I, cat Fel d I, mouse urine Mus m I, midge Chi t I, bee venom phospholipase A2 (Dhillon et al., 1992, J. Allergy Clin. Immunol. 90:42) and melittin (Fehlner et al., 1991, J. Immunol. 146:799). The data do not reveal any unusual or common structural features. However, any conclusion from these data is qualified as these data are collected from humans and mice of different haplotypes.

Modulation of T and B Cell Responses

20

25

Normally hosts are tolerant to the dominant B and T cell epitopes of self proteins by clonal deletion and anergy. However this tolerance can be broken under certain circumstances (Gammon et al., 1991, Immunol. Today 12:193; Basten et al., 1991, Immunol. Rev. 122:5). It has been suggested that self-tolerance is broken in autoimmune diseases through encounters with foreign proteins that are similar to host proteins. Therefore the

sequence similarity of allergens with autologous proteins is of interest for closer investigation.

Mature B cells are activated in response to multivalent antigens, which can cross-link cell surface Ig receptors (DeFranco, 1987, Ann. Rev. Cell Biol. 3:143), and they are rendered anergic in response to mono-valent antigen (Basten et al., 1991, supra). Antigen activation of T cells requires not only the integration of TCR with peptide-MHC complex but also with other co-stimulating signals on the surface of APC (Schwartz, 1990, Science 248:1349; Jenkins and Miller, 1992, FASEB J. 6:2428). Interaction of TCR with peptide-MHC complex in absence of co-stimulating signals can lead to T cell anergy.

Experimental autoimmune encephalomyelitis (EAE) in mice or rats is a well-studied model for multiple sclerosis. Many studies have identified immunodominant T cell determinants for myelin basic protein, which is used to induce this condition. Peptides that correspond to immunodominant epitopes of myelin basic protein can induce tolerance to the same peptide antigen or to the intact myelin basic protein. The same peptides that induced tolerance could also induce T cell anergy in an ongoing autoimmune response (Gaur et al., 1992, Science 259:1491-1494).

Early studies have shown that the physical state of the immunogen and the route of immunization are important variables in determining the outcome of an immune response. In the light of our current understanding, these variables may well influence antigen presentation so as to have T and B cell activation or anergy.

Immunotherapy

10

20

30

One way to treat allergic diseases is by immunotherapy, which involves repeated subcutaneous injections of the offending allergen(s) into patients. For most patients following immunotherapy, allergen-specific IgG levels initially rise. A gradual decrease of allergen-specific IgE levels follows the IgG rise (Norman, 1993, Current Op. Immunol. 5:968). Treated patients also show changes in their T cell cytokine profile: IL-4 and IL-5 levels decreased and IFN-γ level increased (Secrist et al., 1993, J. Exp. Med. 178:2123.)

Studies have shown that immunotherapy with high doses of allergens is more effective for symptom reduction than that with low doses. However, effective dosages of allergens were limited by the potential danger of unwanted systemic allergic reaction in patients. Because of the undesirable systemic reaction on immunotherapy with native

PCT/US02/06765 WO 02/070665

allergens, there has been continued interest in the development of modified allergens with reduced allergenic activities for immunotherapy (T.P. King, 1993, in "Bronchial Asthma," edited by E.B. Weiss and M. Stein, Little Brown, Boston, pp. 43-49; R.E. O'Hehir et al., 1991, supra).

5

30

Allergenicity depends on the interaction of a multi-valent allergen with basophil or mast cell-bound IgE antibodies. Therefore, allergenicity of a protein can be reduced by decreasing its B cell epitope density. Reduction of B cell epitope density of a protein can be accomplished by several approaches. One approach is by partial or complete denaturation of allergens by chemical treatment or fragmentation (Takatsu et al., 1975, J Immunol 115:1469; Pesce et al., 1990, Int Arch Allergy Appl Immunol 92:88; Vrtala et al., 1997, J Clin Invest 99:1673) since the majority of B cell epitopes are of the discontinuous type, i.e., dependent on the native conformation of proteins. For example, urea treatment of the major allergen from ragweed pollen led to irreversible denaturation with loss of the discontinuous B cell epitopes but retention of the continuous B and T cell epitopes (Takatsu et al., 1975, J Immunol 115:1469). Immunotherapy of patients with the fully denatured ragweed allergen showed no changes in specific IgE and IgG levels for the native allergen although the peripheral blood mononuclear cells of treated patients did show decreased proliferative response on antigen stimulation (Norman et al., 1980, J Allergy Clin Immunol 66:336). Use of partially denatured allergens has also been proposed. This is exemplified by 20 the recombinant mite allergens, which lack the cysteine residues that are involved in maintaining the native structure of the protein (Smith et al., 1996, Mol Immunol 33:399; T. Takai et al., 1997, Nature Biothechnology 15:754).

Two reports have appeared on the use of T cell epitope peptides to modulate allergen-specific immune responses. One report is on the subcutaneous injection of mice with two peptides from the major cat allergen Fel d I to decrease T cell response to the entire molecule Fel d I (Briner et al., 1993, Proc. Natl. Acad. Sci. U.S.A. 90:7608-12). Another is on the intranasal therapy with a peptide from the major mite allergen Der p I to suppress allergen-specific response in naive or sensitized mice (Hoyne et al., 1993, J. Exp. Med. 178:1783-1788).

These findings suggested the use of T cell peptides as immunotherapeutic reagents since T cell peptides are like the denatured allergens in that they lack the

discontinuous B cell epitopes. The dominant T cell peptides of several allergens were tested in patients; cytokine level changes but not antibody level changes were observed (Muller et al., 1998, J Allergy Clin Immunol 101:747; Simons et al., 1996, Int Immunol 8:1937; Creticos et al., 1997, J Allergy Clin Immunol 99:401; Marcotte et al., 1997, J Allergy Clin Immunol 99:405). Importantly, these clinical findings with the urea-denatured allergen and T cell peptides suggest that the retention of the discontinuous B cell epitopes as well as the continuous B and T cell epitopes is required for modified allergens to be effective in modulating both antibody and cellular immune responses.

A second approach to reduce the accessibility of B cell epitopes of allergen involves polymerization of the allergen by formaldehyde or glutaraldehyde treatment (Marsh, 1971, Int Arch Allergy Appl Immunol 41:199; Patterson et al., 1973, J Immunol 110:1413) or by attachment of non-immunogenic polymers (King et al., 1979, J Exp Med 149:424). Glutaraldehyde polymerized antigens were found to be processed differently from the natural antigens in mice, and they were processed by antigen-presenting cells that secrete cytokines promoting Th1 responses (Gieni et al., 1993,. J Immunol 150:302). This second approach for improved immunotherapy had been tried with ragweed pollen allergens with immunological findings similar to those with natural allergens (Norman et al., 1982, J Allergy Clin Immunol 70:248; Norman, 1984, J Allergy Clin Immunol 73:787). One limitation of this approach was that near complete loss of the discontinuous B cell epitopes usually occurred when allergens were modified to achieve greater than 100-fold reduction in allergenicity.

15

20

30

A third approach is by site-directed mutagenesis to selectively alter the contact amino acid residues of B cell epitopes of allergens. If the key contact residues of B cell epitopes are known, this can be a useful approach. For example, a single residue mutation of Glu to Ser in the major birch allergen abolished its binding of a murine antibody, and resulted in a 40% decrease of its binding of IgEs from a serum pool of allergic patients (Mirza et al., 2000, J Immunol. 165:331). The different decreases probably reflect that the murine antibody and the human IgEs are respectively of monoclonal and polyclonal origins.

Since an MHC class II molecule of any one haplotype can bind a wide range of peptides in its binding groove, it may be possible to modulate T cell response by inhibition of allergen-derived T cell epitope binding to MHC molecules with other peptides. For

example, a mouse lysozyme peptide which is not immunogenic by itself in H-2k mice inhibits T cell response to hen egg white lysozyme (Adorini and Nagy, 1990, Immunol. Today 11:21). Another example is the *in vitro* inhibition of T cell response to a mite allergen by an influenza HA peptide (O'Hehir *et al.*, 1991, J. Allergy Clin. Immunol. 87:1120).

Immune response to an immunogen/allergen thus depends in part on the genetic make-up of the host, the route and mode of immunization and the immunogen/allergen. The extent to which an allergen determines the outcome of IgE response is not known. How many B and T cell epitopes must each allergen have? Are immunodominant B or T cell epitopes of an allergen recognized by different or all susceptible individuals? Are there T cell epitopes which favor IgE class switch events in B cells? Does antigenic cross reactivity of allergens with host proteins play a role as to why some proteins are more allergenic than others are? Can tolerance to a multi-valent allergen be induced by treatment with a single or a combination of B or T cell epitopes?

5

10

25

U.S. Patent Nos. 5,593,877; 5,612,209, 5,804,201, 6,106,844, 6,270,763 and 6,287,559 and U.S. application Serial No. 09/166,205 to King disclose the isolation of cDNAs encoding vespid venom proteins and the deduced amino acid sequences of proteins encoded by the cDNAs. The cDNAs allow the expression and purification of large quantities of vespid venom proteins and polypeptides for use in immunotherapy. Sequences, however, fail to yield information on the native structure of vespid venom. Hence, the cDNAs and deduced amino acid sequences do not yield information on discontinuous epitopes. Nor do the deduced vespid venom amino acid sequences predict epitopes that will be present on the surface of recombinantly produced vespid venom proteins. Consequently, the cDNA and deduced amino acid sequences alone cannot accurately predict which regions or peptides of vespid venom proteins will serve as efficient immunogens to stimulate a B cell-mediated immune response. Nor can the cDNA and deduced amino acid sequences alone predict the epitope density on the surface of a vespid venom protein, which is an important determinant of the potential to crosslink surface IgE molecules, and hence the allergenicity, of a vespid venom protein.

Thus, there is a need in the art to determine how modification of B cell epitopes in the native structure of allergen proteins permits the design of improved therapeutics.

There is also a need in the art to provide allergen proteins that stimulate a B cell-mediated immune response without stimulating IgE mediated allergic responses. In particular, there is need in the art for providing allergens with a reduced density of epitopes that are efficient in stimulating an IgG production in B cells but are inefficient at crosslinking IgE antibodies specific for the native allergen bound to the surface of, for example and without limitation, mast cells or basophils.

There is also a need in the art to provide hybrid proteins bearing non-cross-reactive B cell epitopes that are effective in immunotherapy. In particular there is a need to for hybrid proteins that present allergen peptide epitope sequences in a conformation that is accessible to receptors on the surface of immune cells and soluble proteins, especially antibodies.

Hence, what are needed are agents, pharmaceutical compositions and methods for generating an IgG B cell response that provides protection against allergens, without eliciting an allergic reaction such as anaphylactic shock.

The citation of references herein shall not be construed as an admission that such is prior art to the present invention.

SUMMARY OF THE INVENTION

15

The present invention provides a new approach to prepare modified allergens.

The modified allergens are hybrids consisting of a small portion of the "guest" allergen of interest and a large portion of a homologous but poorly cross-reacting "host" protein. The homologous host protein functions as a scaffold to maintain the native structure of the guest allergen of interest so that the conformation-dependent B cell epitopes of the guest allergen of interest are preserved in the hybrid, but at a reduced density. Homologous proteins of greater than 30% sequence identity and of similar functions are known to have closely similar three-dimensional structures (Chothia et al., 1990, Annual Review Biochem 59:1007; Russell, 1994, J Mol Biol 244:332), thus providing a plethora of guest/host proteins.

Thus, the present invention is directed to recombinant allergens, e.g., vespid venom allergens, of reduced allergenicity but that retain immunogenicity. Hence, the invention provides allergen protein, peptide epitope sequences corresponding to surface-accessible portions of the allergen, hybrid proteins comprising the peptide epitope sequences

inserted in the corresponding structural region of the host scaffold, nucleic acids encoding such hybrid constructs, and methods that may be used to stimulate a therapeutic immune response to the allergens with reduced allergic response, i.e., an allergy immunotherapy. In particular, the recombinant hybrid proteins, nucleic acids and methods of the invention provide for stimulating a B cell-based response against the allergen, without triggering an IgE-based allergic response such as acute anaphylaxis.

The hybrid proteins of the present invention are present in a native conformation. In one embodiment hybrid proteins comprise at least one allergen peptide epitope sequence in a native conformation. More specifically, the scaffold protein and the native protein from which the allergen peptide epitope sequence is derived have the same native conformation.

10

20

30

In certain embodiments the hybrid proteins of the invention comprise a fusion peptide, such as a signal peptide or handle for purification. In other embodiments the hybrid proteins of the invention may comprise a protease processing site, e.g., for cleavage of the purification handle. Accordingly, the hybrid proteins of the invention comprises an allergen peptide epitope sequence, a scaffold protein sequence, and, optionally, either separately or in combination, a fused sequence and protease processing site.

The recombinant peptide epitope sequences are found on the surface of the native protein from which the sequence is derived. In a specific embodiment, the allergen peptide is a loop region of the native protein.

It will be appreciated that hybrid proteins may comprise more than one peptide epitope sequence introduced into the scaffold protein sequence.

The present invention extends to hybrid proteins wherein the peptide antigen is from a allergen protein and the scaffold protein is a heterologous protein having greater than or equal to 30% sequence identity to the native allergen protein. In a specific aspect, each of the peptide antigen and the scaffold protein are derived from vespid venom proteins. More specifically, the peptide antigen and scaffold proteins may be derived from vespid venom Ag 5s.

In one embodiment, the peptide epitope sequences of the present invention are characterized by having between about 6 and 50 amino acids and being antigenic in a mouse for a B cell response (B cell epitopes). More particularly, in examples of the invention, an

allergen peptide epitope sequence of the invention is derived from an Ag 5 peptide selected from the group consisting of:

NNYCKIKC (SEQ ID: 1);

NNYCKIKCLKGGVHTACK (SEQ ID: 2);

NNYCKIKCLKGGVHTACKYGSLKP (SEQ ID: 3);

NNYCKIKCLKGGVHTACKYGSLKPNCGNKVVV (SEQ ID: 4);

NNYCKIKCLKGGVHTACKYGSLKPNCGNKVVVSYGLTKQ (SEQ ID:

5);

NNYCKIKCLKGGVHTACKYGSLKPNCGNKVVVSYGLTKQEKQDILK

10 (SEQ ID: 6);

5

25

QVGQNVALTGSTAAKYDDPVKLVKMWEDEVKDYNPKKKFSGNDFL

KTG (SEQ ID NO: 7);

HYTQMVWANTKEVGCGSIKYIQEKWHKHYLVCNYGPSGNFKNEELY

QTK (SEQ ID NO: 8)

15 LKPNCGNKVVV (SEQ ID NO: 9);

LTGSTAAKYDD (SEQ ID NO: 10);

PKKKFSGND (SEQ ID NO: 11)

IQEKWHK (SEQ ID NO: 12); and

FKNEELYQTK (SEQ ID NO: 13);

20 NNYCKIKCLKGGVHTACKYGSLKPNCGNKVVVSYGLTKQEKQDILK

EHND (SEQ ID NO: 93);

NNYCKIKCLKGGVHTACKYGSLKPNCGNKVVVSYGLTKQEKQDILK

EHNDFRQKIAR (SEQ ID NO: 94);

NNYCKIKCLKGGVHTACKYGSLKPNCGNKVVVSYGLTKQEKQDILK

EHNDFRQKIARGLETRGNPGPQPPAKNMKN (SEQ ID NO: 95).

The present invention further extends to an isolated expression vector comprising a promoter operationally associated with a nucleic acid of the invention.

Numerous promoters commercially available to the skilled artisan can be used in this aspect of the invention. Examples include, but are not limited to immediate early promoters of

30 hCMV, early promoters of SV40, early promoters of adenovirus, early promoters of vaccinia, early promoters of polyoma, late promoters of SV40, late promoters of adenovirus, late

promoters of vaccinia, late promoters of polyoma, the lac the trp system, the TAC system, the TRC system, the major operator and promoter regions of phage lambda, control regions of fd coat protein, 3-phosphoglycerate kinase promoter, acid phosphatase promoter, or promoters of yeast α mating factor, to name only a few. Numerous examples of expression vectors having applications herein, and which are also readily available to the skilled artisan are described infra.

The invention also provides a method for preparing a nucleic acid that encodes an allergen hybrid protein of the invention. This method comprises introducing a nucleotide sequence encoding a peptide epitope sequence of an allergen protein into a nucleotide sequence encoding a scaffold protein that is structurally homologous to the allergen protein. The nucleotide sequence encoding the peptide epitope sequence is introduced in-frame with the nucleotide sequence encoding the scaffold protein, and in a location such that in the allergen hybrid protein the peptide epitope sequence is present in a surface accessible region of the hybrid protein corresponding to its position in the allergen protein. In one such embodiment, the nucleotide sequence encoding the scaffold protein is mutated to introduce the nucleotide sequence encoding the peptide epitope sequence. In another such embodiment, the nucleotide encoding the peptide epitope sequence is introduced by ligating fragments from nucleic acids comprising the nucleotide sequence encoding the peptide epitope sequence and the nucleotide sequence encoding the scaffold protein treated with an endonuclease. If necessary, endonuclease restriction sites can be introduced into the nucleic acids comprising such sequences using standard techniques in the art.

10

30

The present invention further extends to a method for producing a hybrid protein of the invention by expression of an isolated nucleic acid molecule of the invention. Such production provides a plentiful source of the hybrid protein for diagnosis and therapy. An example of such a method of the invention for producing a hybrid protein culturing a host cell transformed or transfected with an expression vector of the invention so that the host cell produces the hybrid protein of the invention. Preferably, the hybrid protein of the invention so produced from the culture, the host cell, or both is recovered.

The present invention further extends to pharmaceutical compositions effective for the treatment of an allergen-specific allergic condition. In particular, the present

invention extends to a pharmaceutical composition comprising a hybrid protein of the invention, or a nucleic acid preferably an expression vector, encoding such a hybrid protein, and a pharmaceutically acceptable carrier thereof. The invention further includes pharmaceutical compositions containing a plurality of hybrid proteins of the invention, or containing a nucleic acid or nucleic acids encoding such a plurality.

Naturally, the present invention extends to a method for treating allergenspecific allergic condition comprising administering a therapeutically effective amount of a pharmaceutical composition of the invention. Administration of a pharmaceutical composition of the invention can occur by any route, and particularly orally, pulmonarily, nasally, topically or parenterally. Other routes of administration are also possible.

Yet another specific object of the invention is to provide a method for treating an allergen-specific allergy in a subject, wherein a pharmaceutical composition for treating an allergen-specific allergic condition is administered to the subject.

Moreover, the present invention extends to a pharmaceutical composition for modulating immune response of a mammal towards an immunogen, wherein the pharmaceutical composition comprises an allergen hybrid protein (or nucleic acid encoding such a protein) of the invention for modulating immune response towards an immunogen in a mammal, as set forth above, and a pharmaceutically acceptable carrier thereof.

As a result, administration of such a pharmaceutical composition modulates the immune system's ability to recognize and attack the immunogen. In a particular embodiment, the ability of the immune system of the mammal to recognize and attack the immunogen is increased upon administration of the pharmaceutical composition relative to the ability of the subject's immune system to recognize and attack the immunogen prior to administration of a pharmaceutical composition of the invention.

25

20

ABBREVIATIONS

	Dol m	Dolichovespula maculata	white faced hornet
	Dol a	D. arenaria	yellow hornet
	Pol a	Polistes annularis	wasp
30	Pol e	P. exclamans	wasp
	Ves m	Vespula maculifrons	yellowjacket

Ves v V. vulgaris

yellowjacket

PCR

polymerase chain reaction

RACE

rapid amplification of cDNA ends

TCR

T cell receptor for antigen

5

10

15

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1. Ves v 5 cDNA [SEQ ID NO: 14] and amino acid [SEQ ID NO: 16] sequences. Numbering at L refers to nucleotide position; numbering at R refers to amino acid position.

- Fig. 2. Pol a 5 cDNA [SEQ ID NO: 15] and amino acid [SEQ ID NO: 17] sequence. Numbering at L refers to nucleotide position; numbering at R refers to amino acid position.
- Fig. 3. Amino acid comparison of Ves v 5 (V) [SEQ ID NO: 16] and Pol à 5 (P) [SEQ ID NO: 17].
- Fig. 4. Schematic sequence representations of Ag 5s and hybrids. Residue numbers given for hybrids refer to those of Ves v 5.
- Fig. 5A-B. Alignment of Ves v 5 homologous proteins from insect venoms from Vespula maculifrons [Ves m 5, SEQ ID NO: 63]; Vespula vulgaris [Ves v 5, SEQ ID NO: 64]; Vespula flavopilosa [Ves f 5, SEQ ID NO: 65]; Vespula pensylvanica [Ves p 5, SEQ ID NO: 66]; Vespula germanica [Ves g 5, SEQ ID NO: 67]; Vespula vidua [Ves vi 5, SEQ ID NO: 68]; Vespula squamosa [Ves s 5, SEQ ID NO: 69]; Dolichovespula maculata [Dol m 5a, SEQ ID NO: 70]; Dolichovespula arenaria [Dol a 5, SEQ ID NO: 71]; Dolichovespula maculata [Dol m 5b, SEQ ID NO: 72]; Vespa mandarinia [Vesp m 5, SEQ ID NO: 73]; Vespa crabro [Ves c 5.01, SEQ ID NO: 74]; Vespa crabro [Ves c 5.02, SEQ ID NO:
- NO: 75]; Polistes fuscatus [Pol f 5, SEQ ID NO: 76]; Polistes exclamans [Pol e 5, SEQ ID NO: 77]; Polistes annularis [Pol a 5, SEQ ID NO: 78]; Solenopsis invicta [Sol i 3, SEQ ID NO: 79]; and Solenopsis richteri [Sol r 3, SEQ ID NO: 80].
 - Fig. 6A-B. SDS gel patterns of Ag 5s and hybrids.
 - Fig. 7. Circular dichroism (CD) spectra of Ves v 5 and hybrids.

Fig. 8A-C. Inhibition ELISA with mouse antibodies specific for natural Ves v 5 using (A) Ves v 5-specific antibodies isolated from BALB/c mice and depleted of Pol across reactive antibodies (B) antisera from ASW/n mice and (C) antisera from P/J mice.

Fig. 9A-C. Inhibition ELISA with sera from yellow jacket-sensitive patients.

Fig. 10 A-C. Binding of mouse Ves v 5-specific monoclonal antibodies to solid-phase Ves v 5 or hybrids.

Fig. 11 A-C. Histamine release assay of Ves v 5, Pol a 5 and hybrids.

Fig. 12A-B. Alignment of Ves v 5-like proteins. Aligned proteins are Ves v 5 [SEQ ID NO: 81]; Sol i 3 [SEQ ID NO: 82]; Lycopersicon esculentum p14a [SEQ ID NO: 83]; Schizophyllum commune SC7 [SEQ ID NO: 84]; human trypsin inhibitor [SEQ ID NO: 85]; human glipr [SEQ ID NO: 86]; Heloderma horridum helothermine [SEQ ID NO: 87]; and human TPX-1 [SEQ ID NO: 88].

DETAILED DESCRIPTION

15

25

30

The present invention is directed to recombinant allergen hybrid protein constructs of reduced allergenicity and but retaining immunogenicity, the nucleic acid molecules encoding such allergens, and methods of use for such allergens in the diagnosis and therapy of allergy. The hybrid proteins of the invention comprise a surface, e.g., loop or corner region, peptide epitope sequence introduced into a scaffold protein sequence. The hybrid proteins, nucleic acids and methods of the invention provide for stimulating a B cell-based response against the allergen without triggering an IgE-based allergic response. In a specific embodiment, a recombinant hybrid protein comprises a vespid venom surface or loop peptide antigen, particularly from Ves v 5, fused to a scaffold protein, particularly Pol a 5.

The invention is further directed to expression vectors comprising nucleic acid molecules that include allergen hybrid proteins of decreased allergenicity that retain immunogenicity, and to methods for producing such hybrid proteins of the invention by expressing and recovering such hybrid proteins.

The invention also provides pharmaceutical compositions effective for the treatment of an allergen-specific allergic condition comprising a hybrid protein of the invention or nucleic acid vector encoding such a hybrid protein, and methods for treating

such allergic conditions comprising administering a therapeutically effective amount of such pharmaceutical compositions.

The hybrid proteins of the invention can also be useful for diagnosis of allergen-specific allergic conditions.

5

10

15

25

The present invention is based, in part, on the discovery that insertion of sequences from surface accessible regions of yellowjacket (*Vespula vulgaris*) antigen 5 into the corresponding region of *Polistes annularis* antigen 5 yielded a hybrid construct that retained the immunogenicity of the parent proteins, but showed significantly reduced allergenicity. Moreover, the most advantageous positions for introducing sequences were at surface accessible sites, especially loop and corner regions, as determined from the crystal structure of Ves v 5.

Earlier work established that hybrid constructs, in which one-quarter to onethird of the allergenic protein was introduced into the corresponding region of a homologous scaffold protein. However, these hybrid constructs lack the advantages and refinements of the present invention.

Clinical studies in patients and tests with experimental animals have shown that there is limited cross reactivity of antibodies specific for the yellow jacket and paper wasp venom proteins (Lichtenstein et al., 1979, J Allergy Clin Immunol 64:5; Lu et al., 1993, J Immunol 150:2823). These observations form the basis of a preferred embodiment of the present invention. A preferred guest allergen antigen 5 is Ves v 5, a yellow jacket venom protein of 23 kd. A preferred homologous host allergen, which serves as a scaffold protein, is Pol a 5, a paper wasp venom protein of similar size. Ves v 5 and Pol a 5 have 59% sequence identity (Fig. 3). Both can be expressed in yeast and the recombinant proteins were shown to have the native conformation of the natural proteins (Monsalve et al., 1999, Protein Expr. Purif. 16:410).

Immunochemical findings are reported for hybrids of Ves v 5 and Pol a 5. The sequence representations of these hybrids are shown schematically in Fig. 4. Hybrids PV1-46, PV109-155 and PV156-204 contain respectively the first one-quarter (i.e., amino acids 1-46), the third one-quarter (i.e., amino acids 109-155) and the last one-quarter (i.e., amino acids 156-204) of the Ves v 5 molecule, together with portions of the Pol a 5 molecule to complete the hybrid Ag 5 molecule. A hybrid containing the second one-quarter of the

Ves v 5 molecule was not prepared, as this is a region of high sequence identity of Ves v 5 and Pol a 5 (see Fig. 3). Hybrid PV1-155 has the opposite arrangement of the Ves v 5 and Pol a 5 amino-terminal and carboxy-terminal fragments, when compared to PV156-204.

Hybrids PV1-8, PV1-18, PV1-24, PV1-32, PV22-32, PV115-125, PV142-150, PV176-182 and PV195-204 were designed to contain the surface, loop or corner regions of Ves v 5. These hybrids include 7-32 amino acids of Ves v Ag 5 substituted for a homologous region of Pol a Ag 5.

Switching corresponding regions of homologous proteins, especially in surface accessible, e.g., loop and corner, regions predictably conserves native structure. Surface accessible regions especially loop and corner regions, tend to demonstrate more flexibility and better tolerate changes while retaining structure. This approach also finds a counterpart in directed evolution, where homologous enzymes are recombined to yield novel, functional enzyme chimeras.

The term "allergen hybrid protein" refers to a recombinant or synthetic protein that has the native structure of the scaffold protein, but includes one or more sequences from an allergen. The allergen is a structural homolog of the scaffold protein, thus permitting introduction of the allergen sequences into corresponding positions in the scaffold protein. A "corresponding position" is the same position in the primary sequence or same topological position in the native structure. The allergen sequences are selected from a surface accessible region of the allergen and inserted in the corresponding surface accessible region of the scaffold protein. Because B cell epitopes of proteins in their native conformation are surface accessible, the sequences from the allergen introduced into the scaffold protein can act as B cell epitopes, hence they are called "peptide epitope sequences" of an allergen protein.

15

20

25

In connection with the present invention the expression "reduced allergenicity" means a molecule or antigen exhibits significantly reduced allergenic activity in an in vitro assay designed to measure such allergenicity. Such *in vitro* assays are well known in the art and include, for example and without limitation, assay of histamine release from basophils of a allergen sensitive patient or experimental animal following challenge. Furthermore, "activity" as used herein may refer to any measurable parameter or result that is indicative of the allergenicity of a molecule or antigen, such as, for example and without

limitation, the maximum response obtained in an assay or the amount or concentration of antigen required to elicit a defined result in an assay.

The term "retaining immunogenicity" (in any grammatical form) means that the hybrid protein elicits an immune response, particularly an IgG-predominated humoral immune response, that is comparable to the immune response elicited by the native allergen or scaffold protein (or both) and greater than the allergic (IgE) immune response they elicit. The hybrid-specific IgG will cross react with epitopes present on the allergen and the scaffold protein. This IgG response can block IgE binding, thus reducing or preventing allergic responses. In addition, the hybrid protein may elicit T cell anergy and other allergy suppressive immune responses.

10

20

In accordance with the present invention, proteins are "homologous" if, following alignment, they exhibit at least about 30 percent amino acid identity, as determined by programs that are well know in the art, including, as non-limiting examples, the programs Gap, Bestfit and BLAST. More preferable is where homologous proteins exhibit at least 50 percent amino acid identity. However, in a specific embodiment the allergen protein and the scaffold protein do not have more than 70% sequence identity to reduce the possibility of a high degree of cross reactivity that might lead to an unaccepatable degree of allergenicity of the hybrid protein. Greater sequence identity can be tolerated, particularly where the peptide epitope sequence inserted in the scaffold protein is very dissimilar, e.g., less than 50% identical and preferably less than 30% identical, to the corresponding sequence from the scaffold protein that it replaces.

Proteins are structurally homologous when, due to primary sequence similarity, they adopt a similar core secondary and tertiary structure so that their three-dimensional structures can be superimposed with almost complete (greater than 70%) overlap. Their surface tertiary structure, however, may vary.

In a preferred embodiment of the present invention, peptide epitope sequences from the allergen are inserted into or replace sequences within "scaffold" proteins.

Accordingly, a "scaffold protein" of the present invention is a protein which includes an allergen epitope sequence, either as an inserted sequence or as a replacement sequence for a homologous (corresponding) sequence of the scaffold protein. The scaffold protein adopts a native conformation. The allergen and scaffold can alternate positions; these terms are used

to indicate the source of sequences (from the "allergen") introduced into the "scaffold". Because the "allergen" and "scaffold" are homologous, they are both likely to act as allergens, albeit to different populations. Thus, a "scaffold" can be an "allergen" if its surface accessible sequences are introduced into another structurally homologous protein.

5

The expression "native conformation" includes a functional conformation adopted by a non-recombinant, i.e., natural protein, polypeptide, or antigen, within its natural environment or following purification under conditions that maintain the functional conformation adopted in said natural environment. Native conformation can be measured, for example and without limitation, by determining the CD spectrum of a protein. Native conformation may also be determined by measuring enzymatic activity. It will be understood by the skilled artisan that, in cases where the functional conformation of a natural nonrecombinant protein is unknown, "native conformation" will encompass forms of recombinant proteins that reproducibly exhibit a non-random defined conformation that includes secondary elements as typically found in properly folded functional proteins, such as for example, and without limitation, α helix and β sheet elements. It is also well known that, using recombinant techniques, additional amino acids may be joined to the amino or carboxyl end of a protein without disrupting the native conformation of the protein. Such additional amino acids may be short polypeptide "tags", which are typically 1-25 amino acids in length and which are typically disordered, or longer polypeptides which may form a distinct domain, which may itself be ordered or disordered.

The expression "surface-exposed amino acid" means that an amino acid residue is located at the surface of the three-dimensional structure in such a manner that when the allergen is in solution at least a part of at least one atom of the amino acid residue is accessible for contact with the surrounding solvent. Preferably, the amino acid residue in the three-dimensional structure has a solvent (water) accessibility of at least 20%, more preferably at least 30 %, still more preferably at least 40 % and most preferably at least 50%.

The expression "solvent accessibility" is defined as the area of the molecule accessible to a sphere with a radius comparable to a solvent (water, r = 1.4 Å) molecule.

An "allergen" has its ordinary meaning, i.e., is any proteinacious molecule that elicits an allergic response, e.g., histamine release to anaphylactic shock. Allergens are well known; a representative group are listed in Table 8 of this specification. Examples of allergens according

to the invention may suitably be an inhalation allergen originating, e.g., from trees, grasses, herbs, fungi, house dust mites, cockroaches and animal hair and dandruff. Important pollen allergens from trees, grasses and herbs are such originating from the taxonomic orders of Fagales, Oleales and Pinales including birch (Betula), alder (Alnus), hazel (Corylus), hombeam (Carpinus) and olive (Olea), the order of Poales including i.a. grasses of the genera Lolium. Phleum, Poa, Cynodon, Dactylis and Secale, the orders of Asterales and Urticales including herbs of the genera Ambrosia and Artemisia. Important inhalation allergens from fungi are such originating from the genera Alternaria and Cladosporium. Other important inhalation allergens are those from house dust mites of the genus Dermatophagoides, those from cockroaches and those from mammals such as cat, dog and horse. Further, recombinant allergens according to the invention may be mutants of venom allergens including such originating from stinging or biting insects such as those from the taxonomic order of Hymenoptera including bees (superfamily Apidae), wasps (superfamily Vespidea), and ants (superfamily Formicoidae). Specific allergen components include, e.g., Bet v 1 (B. verrucosa, birch), Aln g 1 (Alnus glutinosa, alder), Cor a 1 (Corylus avelana, hazel) and Car b 1 (Carpinus betulus, hornbeam) of the Fagales order. Others are Cry j 1 (Pinales), Amb a 1 and 2, Art v 1 (Asterales), Par j 1 (Urticales), Ole e 1 (Oleales), Ave e 1, Cyn d 1, Dac g 1, Fes p 1, Hol l 1, Lol p 1 and 5, Pas n 1, Phl p 1 and 5, Poa p 1, 2 and 5, Sec c 1 and 5, and Sor h 1 (various grass pollens), Alt a 1 and Cla h 1 (fungi), Der f 1 and 2, Der p 1 and 2 (house dust mites, D. farinae and D. pteronyssinus, respectively), Lep d 1 and 2 (Lepidoglyphus destructor; storage mite), Bla g 1 and 2, Per a 1 (cockroaches, Blatella germanica and Periplaneta americana, respectively), Feld 1 (cat), Canf 1 (dog), Equc 1, 2 and 3 (horse), Apis m 1 and 2 (honeybee), Ves v 1, 2 and 5, Pol a 1, 2 and 5 (all wasps) and Sol i 1, 2, 3 and 4 (fire ant). The term also includes all examples described in the "Background", supra. For example, the term "vespid venom allergen" refers to a protein found in the venom of a vespid, to which susceptible people are sensitized on exposure to the sting of the insect. While most antigens are characterized by being reactive with specific IgG class antibodies, an allergen is characterized by also being reactive with IgE type antibodies. The

10

25

30

immediate-type hypersensitivity.

As used herein, the term "vespid" is used according to the practice of those in the field of allergy, and refers to insects belonging to the worldwide family of Vespidae, *i.e.*, social wasps including hornets, yellowjackets, and paper wasps. In particular, vespids include the subfamilies Vespinae and Polistinae. More particularly, the vespids include the

IgE type antibodies are responsible for mediating the symptoms of an allergic condition, i.e.,

genera Vespa Linnaeus, Vespula Thomson, Dolichovespula Rohwer, and Polistes Latreille. Species in the genus Vespula include but are not limited to V. germanica (Fab.), V. squamosa (Drury), V. maculifrons (Buysson), V. flavopilosa (Jacobson), V. vulgaris (L.), and V. pensylvanica (Saussure). Species in the genus Polistes include but are not limited to P. annularis (Linnaeus), P. exclamans (Viereck), P. metricus (Say), P. fuscatus (Fabricius), and P. apachus (Saussure). Species in the genus Dolichovespula include but are not limited to D. maculata (L.) and D. arenaria (Fab.). Species in the genus Vespa include but are not limited to V. crabro (L.) and V. orientalis (Linnaeus).

The taxonomic classification of Vespula vulgaris is as follows:

10

15

Order: Hymenoptera
Suborder: Apocrita
Division: Aculeata
Superfamily: Vespoidea
Family: Vespidae
Subfamily: Vespinae

Genus: Vespula

Species Group: Vespula vulgaris species group

Species: vulgaris

The taxonomic classification for Polistes annularis is as follows:

Order: Hymenoptera Suborder: Apocrita Division: Aculeata Superfamily: Vespoidea Family: Vespidae Subfamily: Polistinae Tribe: Polistini Genus: **Polistes**

Subgenus: Aphanilopterus

Species: annularis

As used herein, the term "immunomodulatory" refers to an ability to increase or decrease an antigen-specific immune response, either at the B cell or T cell level. Immunomodulatory activity can be detected, e.g., in T cell proliferation assays, by measurement of antibody production, lymphokine production or T cell responsiveness. In particular, in addition to affects on B cell responses, the immunomodulatory polypeptides of

the invention may bind to molecules on the surface of T cells, and affect T cell responses as well.

As used herein, the phrase "immune system related disease or disorder" refers to a disease or disorder that evokes an immune response in a subject, or effects the ability of the immune system to respond to an immunogen. Hence, examples of immune system related diseases or disorders comprise a pathogenic disease or disorder; a viral disease or disorder, e.g., HIV, Herpes Simplex virus, or papilloma virus; an autoimmune disease, e.g., arthritis or Lupus.

Determining Allergen Structure

10

15

20

25

30

The three-dimensional structure of a protein may be determined by physical methods that are well known in the art, including and without limitation, x-ray crystallography, nmr spectroscopy and electron crystallography. Preferred, the three-dimensional structure of a protein is determined by x-ray crystallography. It is also preferred that such techniques yield a resolution of 5\AA or better, at which resolution a trace of the α -carbons in the polypeptide backbone of a protein may be obtained, allowing the determination of protein secondary structure features, as for example, α -helix and β -sheet elements. More preferred is where the three dimensional structure of protein is determined at a resolution of 2\AA or better, at which resolution the position of amino acid side chains may be ascertained. Structures of specific allergens are well known, as set forth in Table 9. These, or others, can be determined using the standard techniques set forth above.

The three dimensional structure of a protein may also be inferred by comparison to an homologous protein, whose structure has been determined empirically by a physical method, as for example by aligning and comparing amino acid sequences. Methods for comparing and aligning amino acid sequences are well known in the art and include, for example and without limitation, the Pileup, Gap, BestFit and Compare programs (Genetic Computer Group, Madison, WI). Such alignment and comparison allows the identification of regions of high amino acid identity or similarity, which may adopt similar or identical conformations in homologous proteins. In this manner, once the three dimensional structure is determined for one protein, the three-dimensional structure may be determined for many homologous proteins, which allows for the identification of surface and loop regions of homologous proteins.

The three dimensional structure and function of a proteins is typically effected to a lesser extent by changes in amino acids located in surface and loop regions of proteins, compared to effects observed due to changes in internally located amino acids. The amino acid residues of surface and loop regions are therefore typically less conserved among homologous proteins, compared to internal residues. It will be appreciated by one of ordinary skill in the art, however, that surface and loop regions will occupy the same relative position in the native conformation of homologous proteins. The surface and loop regions therefore represent "conserved elements" or "homologous elements" within homologous proteins.

In addition, various spectroscopic techniques can be used to evaluate structure, particularly to confirm that the hybrid protein retains the native structure of the allergen and scaffold proteins. These techniques include, without limitation, circular dichroism spectroscopy, nmr spectroscopy (particularly at lower resolution), neutron diffraction, fluorescence spectroscopy (and other light absorption and transmission spectroscopic techniques), and the like. In particularly, evaluating identity of spectra can indicate the degree to which the hybrid protein adopts the native conformation. Circular dichroism spectroscopy provides a preferred tool for this type of evaluation.

Molecular Biological Techniques

10

In accordance with the present invention there may be employed conventional molecular biology, microbiology, and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Sambrook, Fritsch & Maniatis, "Molecular Cloning: a Laboratory Manual," Second Edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (herein "Sambrook et al., 1989"); "DNA Cloning: a Practical Approach," Volumes I and II (D.N. Glover ed. 1985); "Oligonucleotide Synthesis" (M.J. Gait ed. 1984); "Nucleic Acid Hybridization" [B.D. Hames & S.J. Higgins, eds. (1985)]; "Transcription And Translation" [B.D. Hames & S.J. Higgins, eds. (1984)]; "Animal Cell Culture" [R.I. Freshney, ed. (1986)]; "Immobilized Cells And Enzymes" [IRL Press, (1986)]; B. Perbal, "A Practical Guide To Molecular Cloning" (1984). Other techniques in accordance with the present invention may be found in U.S. Patent Nos. 5,593,877; 5,612,209, 5,804,201, 6,106,844 and U.S. application Serial Nos.

PCT/US02/06765 WO 02/070665

08/484,388, 08/474;853, and 09/166,205 to King and in Monsalve et al. (1999, Protein Expr. Purif. 16:410).

A "nucleic acid molecule" refers to the phosphate ester polymeric form of ribonucleosides (adenosine, guanosine, uridine or cytidine; "RNA molecules") or deoxyribonucleosides (deoxyadenosine, deoxyguanosine, deoxythymidine, or deoxycytidine; "DNA molecules") in either single stranded form, or a double-stranded helix. Double stranded DNA-DNA, DNA-RNA and RNA-RNA helices are possible. The term nucleic acid molecule, and in particular DNA or RNA molecule, refers only to the primary and secondary structure of the molecule, and does not limit it to any particular tertiary forms. Thus, this term includes double-stranded DNA found, inter alia, in linear or circular DNA molecules, restriction fragments, viruses, plasmids, and chromosomes. In discussing the structure of particular double-stranded DNA molecules, sequences may be described herein according to the normal convention of giving only the sequence in the 5' to 3' direction along the nontranscribed strand of DNA (i.e., the strand having a sequence homologous to the mRNA). A "recombinant DNA molecule" is a DNA molecule that has undergone a molecular biological manipulation.

15

20

A nucleic acid molecule is "hybridizable" to another nucleic acid molecule, such as a cDNA, genomic DNA, or RNA, when a single stranded form of the nucleic acid molecule can anneal to the other nucleic acid molecule under the appropriate conditions of temperature and solution ionic strength (see Sambrook et al., supra). The conditions of temperature and ionic strength determine the "stringency" of the hybridization. For preliminary screening for homologous nucleic acid molecules, low stringency hybridization conditions, corresponding to a Tm of 55°, can be used, e.g., 5x SSC, 0.1% SDS, 0.25% nonfat dry milk, and no formamide; or 30% formamide, 5x SSC, 0.5% SDS). Moderate 25 stringency hybridization conditions correspond to a higher Tm, e.g., 40% formamide, with 5x or 6x SSC. High stringency hybridization conditions correspond to the highest Tm, e.g., 50% formamide, 5x or 6x SSC. Hybridization requires that the two nucleic acid molecules contain complementary sequences, although depending on the stringency of the hybridization, mismatches between bases are possible. The appropriate stringency for hybridizing nucleic acid molecules depends on the length of the nucleic acid molecules and the degree of complementation, variables well known in the art. The greater the degree of

similarity or homology between two nucleotide sequences, the greater the value of Tm for hybrids of nucleic acid molecules having those sequences. The relative stability (corresponding to higher Tm) of nucleic acid hybridizations decreases in the following order: RNA:RNA, DNA:RNA, DNA:DNA. For hybrids of greater than 100 nucleotides in length, equations for calculating Tm have been derived (see Sambrook et al., supra, 9.50-0.51). For hybridization with shorter nucleic acid molecules, i.e., oligonucleotides, the position of mismatches becomes more important, and the length of the oligonucleotide determines its specificity (see Sambrook et al., supra, 11.7-11.8). Preferably a minimum length for a hybridizable nucleic acid molecule is at least about 10 nucleotide; more preferably the length is at least about 20 nucleotides; even more preferably at least about 30 nucleotides; and most preferably at least about 40 nucleotides.

In a specific embodiment, the term "standard hybridization conditions" refers to a Tm of 55°C, and utilizes conditions as set forth above. In a preferred embodiment, the Tm is 60°C; in a more preferred embodiment, the Tm is 65°C.

15

25

A DNA "coding sequence" or "encoding sequence" is a double-stranded DNA sequence which is transcribed and translated into a polypeptide in vivo when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3' (carboxyl) terminus. A coding sequence can include, but is not limited to, prokaryotic sequences, cDNA from eukaryotic mRNA, genomic DNA sequences from eukaryotic (e.g., mammalian) DNA, and even synthetic DNA sequences. If the coding sequence is intended for expression in a eukaryotic cell, a polyadenylation signal and transcription termination sequence will usually be located 3' to the coding sequence.

Transcriptional and translational control sequences are DNA regulatory sequences, such as promoters, enhancers, terminators, and the like, that provide for the expression of a coding sequence in a host cell. In eukaryotic cells, polyadenylation signals are control sequences.

A "promoter sequence" is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. For purposes of defining the present invention, the promoter sequence is bounded at its 3' terminus by the transcription initiation site and extends upstream (5' direction) to

include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter sequence will be found a transcription initiation site (conveniently defined for example, by mapping with nuclease S1), as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase. Eukaryotic promoters will often, but not always, contain "TATA" boxes and "CAT" boxes.

A coding sequence is "under the control" of or "operationally associated" with transcriptional and translational control sequences in a cell when RNA polymerase transcribes the coding sequence into mRNA, which is then translated into the protein encoded by the coding sequence. A "signal sequence" can be included before the coding sequence. This sequence encodes a "signal peptide", N-terminal to the polypeptide, that directs the host cell to transport the polypeptide to the cell surface or secrete the polypeptide into the media. The signal peptide is usually selectively degraded by the cell upon exportation. Signal sequences can be found associated with a variety of proteins native to prokaryotes and eukaryotes.

10

15

30

A "nucleic acid molecule" refers to the phosphate ester polymeric form of ribonucleosides (adenosine, guanosine, uridine or cytidine; "RNA molecules") or deoxyribonucleosides (deoxyadenosine, deoxyguanosine, deoxythymidine, or deoxycytidine; "DNA molecules") in either single stranded form, or a double-stranded helix. Double stranded DNA-DNA, DNA-RNA and RNA-RNA helices are possible. The term nucleic acid molecule, and in particular DNA or RNA molecule, refers only to the primary and secondary structure of the molecule, and does not limit it to any particular tertiary forms. Thus, this term includes double-stranded DNA found, inter alia, in linear or circular DNA molecules, restriction fragments, viruses, plasmids, and chromosomes. In discussing the structure of particular double-stranded DNA molecules, sequences may be described herein according to the normal convention of giving only the sequence in the 5' to 3' direction along the nontranscribed strand of DNA (i.e., the strand having a sequence homologous to the mRNA). A "recombinant DNA molecule" is a DNA molecule that has undergone a molecular biological manipulation.

A nucleic acid molecule is "hybridizable" to another nucleic acid molecule, such as a cDNA, genomic DNA, or RNA, when a single stranded form of the nucleic acid

molecule can anneal to the other nucleic acid molecule under the appropriate conditions of temperature and solution ionic strength (see Sambrook et al., supra). The conditions of temperature and ionic strength determine the "stringency" of the hybridization. For preliminary screening for homologous nucleic acid molecules, low stringency hybridization conditions, corresponding to a Tm of 55°, can be used, e.g., 5x SSC, 0.1% SDS, 0.25% nonfat dry milk, and no formamide; or 30% formamide, 5x SSC, 0.5% SDS). Moderate stringency hybridization conditions correspond to a higher Tm, e.g., 40% formamide, with 5x or 6x SSC. High stringency hybridization conditions correspond to the highest Tm, e.g., 50% formamide, 5x or 6x SSC. Hybridization requires that the two nucleic acid molecules contain complementary sequences, although depending on the stringency of the hybridization, mismatches between bases are possible. The appropriate stringency for hybridizing nucleic acid molecules depends on the length of the nucleic acid molecules and the degree of complementation, variables well known in the art. The greater the degree of similarity or homology between two nucleotide sequences, the greater the value of Tm for hybrids of nucleic acid molecules having those sequences. The relative stability (corresponding to higher Tm) of nucleic acid hybridizations decreases in the following order: RNA:RNA, DNA:RNA, DNA:DNA. For hybrids of greater than 100 nucleotides in length. equations for calculating Tm have been derived (see Sambrook et al., supra, 9.50-0.51). For hybridization with shorter nucleic acid molecules, i.e., oligonucleotides, the position of mismatches becomes more important, and the length of the oligonucleotide determines its specificity (see Sambrook et al., supra, 11.7-11.8). Preferably a minimum length for a hybridizable nucleic acid molecule is at least about 10 nucleotide; more preferably the length is at least about 20 nucleotides; even more preferably at least about 30 nucleotides; and most preferably at least about 40 nucleotides.

10

15

20

25-

30

In a specific embodiment, the term "standard hybridization conditions" refers to a Tm of 55°C, and utilizes conditions as set forth above. In a preferred embodiment, the Tm is 60°C; in a more preferred embodiment, the Tm is 65°C.

A DNA "coding sequence" or "encoding sequence" is a double-stranded DNA sequence which is transcribed and translated into a polypeptide in vivo when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3'

(carboxyl) terminus: A coding sequence can include, but is not limited to, prokaryotic sequences, cDNA from eukaryotic mRNA, genomic DNA sequences from eukaryotic (e.g., mammalian) DNA, and even synthetic DNA sequences. If the coding sequence is intended for expression in a eukaryotic cell, a polyadenylation signal and transcription termination sequence will usually be located 3' to the coding sequence.

Transcriptional and translational control sequences are DNA regulatory sequences, such as promoters, enhancers, terminators, and the like, that provide for the expression of a coding sequence in a host cell. In eukaryotic cells, polyadenylation signals are control sequences.

10

20

30

A "promoter sequence" is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. For purposes of defining the present invention, the promoter sequence is bounded at its 3' terminus by the transcription initiation site and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter sequence will be found a transcription initiation site (conveniently defined for example, by mapping with nuclease S1), as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase. Eukaryotic promoters will often, but not always, contain "TATA" boxes and "CAT" boxes.

A coding sequence is "under the control" of or "operationally associated" with transcriptional and translational control sequences in a cell when RNA polymerase transcribes the coding sequence into mRNA, which is then translated into the protein encoded by the coding sequence. A "signal sequence" can be included before the coding sequence. This sequence encodes a "signal peptide", N-terminal to the polypeptide, that directs the host cell to transport the polypeptide to the cell surface or secrete the polypeptide into the media. The signal peptide is usually selectively degraded by the cell upon exportation. Signal sequences can be found associated with a variety of proteins native to prokaryotes and eukaryotes.

Nucleic Acid Molecules Encoding Hybrid Proteins

The invention relates to isolated nucleic acid molecules encoding recombinant allergen hybrid proteins. The invention further relates to a cell line stably containing a

recombinant nucleic acid molecule encoding a allergen hybrid protein, and capable of expressing such nucleic acid molecule to produce the hybrid protein. The nucleic acids can be generated from allergens, e.g., as listed in Table 8 and in certain patents and patent applications disclosed herein.

5

10

25

As a specific example, the present disclosure provides the complete nucleic acid sequence of a vespid venom protein. In particular, the present disclosure provides the nucleic acid sequence of a vespid Ag 5, in particular Ves v Ag 5 (SEQ ID NO: 14; see Fig. 1) and Pol a Ag 5 (SEQ ID NO: 15; see Fig. 2). Also provided are the amino acid sequences of Ves v Ag 5 (SEQ ID NO: 16; see Fig. 1) and Pol a Ag5 (SEQ ID NO: 17; see Fig. 2).

In a specific embodiment, to obtain a nucleic acid molecule of the invention, DNA fragments are amplified by polymerase chain reaction (PCR) to amplify a fragment encoding a sequence comprising the allergen peptide epitope sequence or a scaffold protein. Oligonucleotide primers representing an allergen protein or scaffold protein of the invention can be used as primers in PCR. Generally, such primers are prepared synthetically. PCR can be carried out, e.g., by use of a Perkin-Elmer Cetus thermal cycler and Taq polymerase (Gene AmpTM).

Nucleic acids of the invention may also be obtained by cloning of restrictions fragments. Alternatively, nucleic acids of the invention may be obtained by recombination of nucleic acids in vivo or in vitro. In some instances recombination depends on sequence homology between the nucleic acids that participate in a recombination event, but in other instances the nucleic acids undergoing recombination need not contain significant homology, as is the case, for example, in "illegitimate" recombination events. One of ordinary will recognize recombination of nucleic acids may be an inter- or intramolecular event.

Alternatives to isolating the allergen proteins or scaffold DNA or cDNA include, but are not limited to, chemically synthesizing the gene sequence itself from the sequence provided herein.

The above methods are not meant to limit the methods by which DNA of the invention may be obtained.

The methods used to obtain a nucleic acid of the invention may lead to the insertion or deletion of nucleotides at junctions where nucleic acids are joined, by recombinant or other techniques. In one embodiment, nucleotides may be inserted or deleted

at the junction of a nucleic acid encoding an antigenic peptide and the nucleic acid encoding a scaffold protein. Such nucleic acids are fully within the scope of the invention.

Accordingly, the invention encompasses hybrid proteins wherein amino acids have been inserted or deleted at the junction of a peptide epitope sequence and a scaffold protein sequence.

Nucleic acid sequence of the cloned hybrid protein, or starting materials thereof, can be modified by any of numerous strategies known in the art (Maniatis, T., 1990, Molecular Cloning, A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York). The sequence can be cleaved at appropriate sites with restriction endonuclease(s), followed by further enzymatic modification if desired, isolated, and ligated in vitro. In the production of the nucleic acid encoding a hybrid protein, care should be taken to ensure that the modified nucleic acid remains within the same translational reading frame as the scaffold protein, uninterrupted by translational stop signals.

Additionally, the nucleic encoding an allergen peptide epitope sequence or scaffold protein can be mutated *in vitro* or *in vivo*, to create and/or destroy translation, initiation, and/or termination sequences, or to create variations in coding regions and/or form new restriction endonuclease sites or destroy preexisting ones, to facilitate further *in vitro* modification. Any technique for mutagenesis known in the art can be used, including but not limited to, in vitro site-directed mutagenesis (Hutchinson *et al.*, 1978, J. Biol. Chem. 253:6551; Zoller and Smith, 1984, DNA 3:479-488; Oliphant *et al.*, 1986, Gene 44:177; Hutchinson *et al.*, 1986, Proc. Natl. Acad. Sci. U.S.A. 83:710), use of TAB[®] linkers (Pharmacia), etc. PCR techniques are preferred for site directed mutagenesis (see Higuchi, 1989, "Using PCR to Engineer DNA", in PCR Technology: Principles and Applications for DNA Amplification, H. Erlich, ed., Stockton Press, Chapter 6, pp. 61-70).

A large number of vector-host systems known in the art may be used to express a DNA of the invention. Possible vectors include, but are not limited to, plasmids or modified viruses, but the vector system must be compatible with the host cell used. Such vectors include, but are not limited to, bacteriophages such as lambda derivatives, or plasmids such as various pBR322 derivatives, for example, pUC, CR, pGEX vectors, pmal-c, pFLAG, etc. The insertion into a cloning vector can, for example, be accomplished by ligating the DNA fragment into a cloning vector which has complementary cohesive termini.

25

In a preferred aspect of the invention, the PCR amplified nucleic acid molecules of the invention contain 3'-overhanging A-nucleotides, and can be used directly for cloning into a pCR vector with compatible T-nucleotide overhangs (Invitrogen Corp., San Diego, CA). However, if the complementary restriction sites used to fragment the DNA are not present in the cloning vector, the ends of the DNA molecules may be enzymatically modified. Alternatively, any site desired may be produced by ligating nucleotide sequences (linkers) onto the DNA termini; these ligated linkers may comprise specific chemically synthesized oligonucleotides encoding restriction endonuclease recognition sequences. In an alternative method, the cleaved vector and a DNA of the invention may be modified by homopolymeric tailing. Recombinant molecules can be introduced into host cells via transformation, transfection, infection, electroporation, etc., so that many copies of the gene sequence are generated.

In specific embodiments, transformation of host cells with recombinant DNA molecules that incorporate the DNA of the invention enables generation of multiple copies of the DNA. Thus, the DNA may be obtained in large quantities by growing transformants, isolating the recombinant DNA molecules from the transformants and, when necessary, retrieving the inserted sequences from the isolated recombinant DNA.

The nucleotide sequences encoding Ves v 5 polypeptide epitope sequences of SEQ ID NO: 1-13 and 93-95 are given respectively in SEQ ID NO: 18-30 and 96-98.

20

25

30

Expression of an Allergen Hybrid Protein

The nucleotide sequence coding for a hybrid protein or an immunomodulatory fragment, derivative or analog thereof, can be inserted into an appropriate expression vector, *i.e.*, a vector that contains the necessary elements for the transcription and translation of the inserted protein-coding sequence. Such elements are termed herein a "promoter." Thus, the nucleic acid molecule encoding the hybrid protein is operationally associated with the promoter. An expression vector also preferably includes a replication origin. The necessary transcriptional and translational signals can also be supplied by the native gene encoding the allergen or scaffold protein and/or its flanking regions. Potential host-vector systems include but are not limited to mammalian cell systems, e.g., infected with virus (e.g., vaccinia virus, adenovirus, etc.); insect cell systems, e.g., infected with virus (e.g., baculovirus);

microorganisms such as yeast containing yeast vectors; or bacteria transformed with bacteriophage, DNA, plasmid DNA, or cosmid DNA. The expression elements of vectors vary in their strengths and specificities. Depending on the host-vector system utilized, any one of a number of suitable transcription and translation elements may be used.

5

10

15

In an alternative embodiment, a recombinant hybrid protein of the invention, or an immunomodulatory fragment, derivative or analog thereof, is expressed chromosomally, after integration of the hybrid protein coding sequence by recombination. In this regard, any of a number of amplification systems may be used to achieve high levels of stable gene expression (See Sambrook *et al.*, 1989, supra, at Section 16.28).

The cell into which the recombinant vector comprising the nucleic acid molecule encoding the hybrid protein is cultured in an appropriate cell culture medium under conditions that provide for expression of the hybrid protein by the cell. The expressed hybrid protein can then be recovered from the culture according to methods well known in the art. Such methods are described in detail, *infra*.

In a another embodiment, a hybrid protein can be expressed initially with amino acids that are subsequently cleaved from the hybrid protein. The sequences to be removed can be amino- or carboxyl-terminal to the hybrid protein sequences. The sequences may be removed either in vivo or in vitro. Preferably the sequences are removed by cleavage at a specific site by a protease, e.g., signal peptidase, Factor Xa, Kex2 or a dipeptidyl amino peptidase. A recombinant DNA molecule encoding such a hybrid protein that includes a polypeptide to be cleaved by a protease comprises a sequence encoding the peptide to be cleaved from the hybrid protein joined in-frame to the coding sequence for a allergen hybrid.

In a specific embodiment, the hybrid proteins are expressed with an additional sequence comprising about six histidine residues, e.g., using a pQE vector (QIAGEN, Chatsworth, CA). The presence of the histidine makes possible the selective isolation of recombinant proteins on a Ni-chelation column. Other such handles include, but are not limited to, FLAG, a myc tag, GST, etc.

In another embodiment, a periplasmic form of the hybrid protein (containing a signal sequence) can be produced for export of the protein to a yeast periplasm or into a culture medium. Export to the periplasm or into the medium can promote proper folding of the expressed protein.

Any of the methods previously described for the insertion of DNA fragments into a vector may be used to construct expression vectors containing a gene consisting of appropriate transcriptional/translational control signals and the protein coding sequences. These methods may include in vitro recombinant DNA and synthetic techniques and in vivo recombinants (genetic recombination).

Expression of nucleic acid sequence encoding a hybrid protein, or an immunomodulatory fragment thereof, may be regulated by a second nucleic acid sequence so that the hybrid protein is expressed in a host transformed with the recombinant DNA molecule. For example, expression of a hybrid protein may be controlled by any promoter/enhancer element known in the art, but these regulatory elements must be functional in the host selected for expression. Promoters which may be used to control expression of the hybrid protein coding sequences include, but are not limited to, the CMV promoter, the SV40 early promoter region (Benoist and Chambon, 1981, Nature 290:304-310), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto et al., 1980, Cell 22:787-797), the herpes thymidine kinase promoter (Wagner et al., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:1441-1445), the regulatory sequences of the metallothionein gene (Brinster et al., 1982, Nature 296:39-42); prokaryotic expression vectors such as the β -lactamase promoter (Villa-Kamaroff et al., 1978, Proc. Natl. Acad. Sci. U.S.A. 75:3727-3731), or the tac promoter (DeBoer et al., 1983, Proc. Natl. Acad. Sci. U.S.A. 80:21-25); see also "Useful proteins from recombinant bacteria" in Scientific American, 1980, 242:74-94; promoter elements from yeast or other fungi such as the Gal 4 promoter, the ADC (alcohol dehydrogenase) promoter, PGK (phosphoglycerol kinase) promoter, alkaline phosphatase promoter; and the animal transcriptional control regions, which exhibit tissue specificity and have been utilized in transgenic animals.

In addition, a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Different host cells have characteristic and specific mechanisms for the translational and post-translational processing and modification (e.g., glycosylation, cleavage [e.g., of a signal sequence]) of proteins. Appropriate cell lines or host systems can be chosen to ensure the desired modification and processing of the foreign protein expressed. For example, expression in a bacterial system can be used to produce an nonglycosylated core protein

25

product. However, the enzyme protein expressed in bacteria may not be properly folded. Expression in yeast can produce a glycosylated product. Expression in insect cells can be used to increase the likelihood of native glycosylation and folding of a heterologous allergen hybrid protein. Furthermore, different vector/host expression systems may affect processing reactions, such as proteolytic cleavages, to a different extent.

Vectors are introduced into the desired host cells by methods known in the art, e.g., transfection, electroporation, microinjection, transduction, cell hybrid, DEAE dextran, calcium phosphate precipitation, lipofection (lysosome fusion), use of a gene gun, or a DNA vector transporter (see, e.g., Wu et al., 1992, J. Biol. Chem. 267:963-967; Wu and Wu, 1988, J. Biol. Chem. 263:14621-14624; Hartmut et al., Canadian Patent Application No. 2,012,311, filed March 15, 1990).

10

15

20

25

30

Both cDNA and genomic sequences can be cloned and expressed.

It is further contemplated that the hybrid proteins of the present invention, or fragments, derivatives or analogs thereof, can be prepared synthetically, e.g., by solid phase peptide synthesis.

Once the recombinant hybrid protein is identified, it may be isolated and purified by standard methods including chromatography (e.g., ion exchange, affinity, size exclusion, and reverse phase chromatography), centrifugation, differential solubility, or by any other standard technique for the purification of proteins.

In a particular embodiment, a hybrid protein and fragments thereof can be engineered to include about six histidyl residues, which makes possible the selective isolation of the recombinant protein on a Ni-chelation column. In a preferred aspect, the proteins are further purified by reverse phase chromatography.

In another embodiment, the recombinant hybrid protein may include additional sequences that allow the hybrid protein to be targeted for affinity purification such as FLAG, MYC, or GST (glutathione-S-transferase). For example, antibody specific for the additional sequences of the hybrid protein can be immobilized on a solid support, e.g., cyanogen bromide-activated Sepharose, and used to purify the hybrid protein. In another embodiment, a binding partner of the additional sequences, such as a receptor or ligand, can be immobilized and used to affinity purify the hybrid protein.

In one embodiment, the hybrid protein, preferably purified, is used without further modification, *i.e.*, without cleaving or otherwise removing any sequences that may be present in addition to the peptide epitope sequence and the scaffold protein. In a preferred embodiment, the hybrid protein can be used therapeutically, *e.g.*, to modulate an immune response.

In a further embodiment, the purified hybrid protein is treated to cleave and remove any sequences that may have been added to the scaffold protein. For example, where the hybrid protein has been prepared to include a protease sensitive cleavage site, the hybrid protein can be treated with the protease to cleave the protease specific site and release the hybrid protein. In a specific embodiment, the hybrid protein is cleaved by treatment with Factor Xa.

In particular embodiments, recombinant hybrid proteins of the present invention include but certainly are not limited to those comprising, as a vespid venom antigen, a Ves v 5 peptide of SEQ ID NO: 1-13 or 93-95.

15

20

30

In a particular embodiment, recombinant vespid venom hybrid proteins of the present invention include but certainly are not limited to those comprising, as a scaffold protein, Pol a 5 protein of SEQ ID NO: 17.

Hybrid proteins can contain altered epitope or scaffold, or both, sequences, in which functionally equivalent amino acid residues are substituted for residues within the sequence resulting in a conservative amino acid substitution. For example, one or more amino acid residues within the sequence can be substituted by another amino acid of a similar polarity which acts as a functional equivalent, resulting in a silent alteration.

Substitutes for an amino acid within the sequence may be selected from other members of the class to which the amino acid belongs. For example, the nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine. The polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine. The positively charged (basic) amino acids include arginine, lysine and histidine. The negatively charged (acidic) amino acids include aspartic acid and glutamic acid.

Manipulations of the recombinant hybrid protein may also be made at the protein level such as glycosylation, acetylation, phosphorylation, amidation, reduction and

carboxymethylation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, etc. Any of numerous chemical modifications may be carried out by known techniques, including but not limited to specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, NaBH4; acetylation, formylation, oxidation, reduction; metabolic synthesis in the presence of tunicamycin; etc.

In a particular embodiment, the hybrid protein is expressed in an insect cell expression system, e.g., using a baculovirus expression vector. In a preferred embodiment, the hybrid protein is expressed in yeast, e.g., without limitation, Picchia pastoris, using appropriate expression systems. As pointed out above, these expression systems should yield "native" glycosylation and structure, particularly secondary and tertiary structure, of the expressed polypeptide.

Activity Assays With Hybrid Proteins of the Invention

Numerous assays are known in immunology for evaluating the immunomodulatory activity of an antigen. For example, the hybrid proteins can be tested for the ability to bind to antibodies specific for the allergen or the scaffold. Preferably, such antibodies that are detected in the diagnostic assay are of the IgG or IgE class. Hybrid proteins produced in eukaryotic expression systems, and particularly yeast cell expression systems, can have the correct structure for antibody binding. Hybrid proteins expressed in bacterial expression systems may not, and would thus require refolding prior to use in a diagnostic assay for antibody binding.

In another embodiment, the hybrid proteins of the invention can be tested in a proliferation assay for T cell responses. For such T cell response assays, the expression system used to produce the protein does not appear to affect the immunomodulatory activity of the protein. Generally, lymphocytes from a sensitized host are obtained. The host can be a mouse that has been immunized with an allergen, scaffold or hybrid protein, such as a vespid venom Ag 5 that has been produced recombinantly.

In a preferred embodiment, peripheral blood leukocytes are obtained from a human who is sensitive to the allergen. Using techniques that are well known in the art, T lymphocyte response to the protein can be measured in vitro. In a specific embodiment,

30

infra, T cell responses are detected by measuring incorporation of ³H-thymidine, which increases with DNA synthesis associated with proliferation.

Cell proliferation can also be detected using an MTT assay (Mossman, 1983, J. Immunol. Methods 65:55; Niks and Otto, 1990, J. Immunol. Methods 130:140). Any method for detecting T cell proliferation known in the art can be used with the vespid protein produced according to the present invention.

Similarly, lymphokine production assays can be practiced according to the present invention. In one embodiment, lymphokine production can be assayed using immunological or co-stimulation assays (see, e.g., Fehlner et al., 1991, J. Immunol. 146:799) or using the ELISPOT technique (Czerkinsky et al., 1988, J. Immunol. Methods 110:29). Alternatively, mRNA for lymphokines can be detected, e.g., by amplification (see Brenner et al., 1989, BioTechniques 7:1096) or in situ hybridization (see, e.g., Kasaian and Biron, 1989, J. Immunol. 142:1287). Of particular interest are those individuals whose T cells produce lymphokines associated with IgE isotype switch events, e.g., IL-4 and IL-5 (Purkeson and Isakson, 1992, J. Exp. Med. 175:973).

Thus, in a preferred aspect, the hybrid proteins produced according to the present invention can be used in *in vitro* assays with peripheral blood lymphocytes or, more preferably, cell lines derived from peripheral blood lymphocytes, obtained from allergen sensitive individuals to detect secretion of lymphokines ordinarily associated with allergic responses, *e.g.*, IL-4. Such assays may indicate which component or components of the hybrid protein are responsible for the allergic condition.

15

20

25

30

Therapeutic Uses of the Hybrid Protein and Nucleic Acid Vectors

The present invention provides a plentiful source of a hybrid protein, e.g., produced by recombinant techniques. Alternatively, a hybrid protein can be produced by peptide synthesis.

The invention contemplates use of hybrid proteins in therapeutic (pharmaceutical) compositions, for the use in the therapy of allergen-specific allergic conditions, treating allergen-specific allergic conditions, immune system related conditions, and modulating immune response in a mammal against an immunogen. In a specific embodiment, Ves v 5 and Pol a 5 hybrid proteins, or derivatives or analogs thereof, are

contemplated for use in diagnosis, therapy, treatment, and modulation of immune response according to the present invention.

The phrase "therapeutically effective amount" is used herein to mean an amount sufficient to treat, and preferably increase by at least about 30 percent, more 5 preferably by at least 50 percent, most preferably by at least 90 percent, the ability of the immune system of a subject to combat effectively an immunogen. As further studies are conducted, information will emerge regarding appropriate dosage levels for modulation of immune system response towards an immunogen in various patients, and the ordinary skilled worker, considering the therapeutic context, age and general health of the recipient, will be able to ascertain proper dosing.

Therapeutic Methods

10

20

30

Therapeutic compositions of the invention (see, infra) can be used in immunotherapy, also referred to as hyposensitization therapy. Immunotherapy has proven effective in allergic diseases, particular insect allergy. Allergens are administered parenterally over a long period of time in gradually increasing doses. Such therapy may be particularly effective when the allergen or allergens to which the patient is sensitive have been specifically identified and the therapy is targeted to those allergen(s). However, this approach suffers the drawback of potentially precipitating an allergic reaction; especially anaphylaxis. Thus, the availability of hybrid proteins in large quantities is important for immunotherapy of allergy because they induce an effective IgG response against the allergen without an allergic reaction.

As discussed in the Background of the Invention, the presence of B cell epitopes on an allergen can cause an undesirable systemic reaction when the allergen is used for immunotherapy. Thus, a particular advantage of the invention is the capability to provide allergen polypeptides that do not cause undesirable systemic effects.

In one embodiment, one or more hybrid proteins can be injected subcutaneously to decrease the T cell response to the native molecule, e.g., as described by Brine et al. (1993, Proc. Natl. Acad. Sci. U.S.A. 90:7608-12).

In another embodiment, one or more hybrid proteins can be administered intranasally to suppress allergen-specific responses in naive and sensitized subjects (see e.g., Hoyne et al., 1993, J. Exp. Med. 178:1783-88).

Administration of a hybrid protein of the invention is expected to induce a strong anti-allergen B cell (antibody), IgG response that will block IgE antibodies, and thus, have a therapeutic effect.

These results can also be achieved by administration of a vector that permits expression of the hybrid protein, *i.e.*, by gene therapy. Preferred vectors, particularly for cellular assays in vitro and in vivo, are viral vectors, such as lentiviruses, retroviruses, herpes viruses, adenoviruses, adeno-associated viruses, vaccinia virus, baculovirus, alphaviruses (especially Sindbis viruses and Semliki Forest viruses), and other recombinant viruses with desirable cellular tropism; and non-viral vectors. For gene therapy in vivo or ex vivo, a pharmaceutically acceptable vector is preferred, such as a replication incompetent viral vector. Pharmaceutically acceptable vectors containing the nucleic acids of this invention can be further modified for transient or stable expression. As used herein, the term "pharmaceutically acceptable vector" includes, but is not limited to, a vector or delivery vehicle having the ability to selectively target and introduce the nucleic acid into cells.

Thus, a gene encoding a functional or mutant protein or polypeptide domain fragment thereof can be introduced *in vivo*, *ex vivo*, or *in vitro* using a viral vector or through direct introduction of DNA. Expression in targeted tissues can be affected by targeting the transgenic vector to specific cells, such as with a viral vector or a receptor ligand, or by using a tissue-specific promoter, or both. Targeted gene delivery is described in PCT Publication No. WO 95/28494.

15

Viral vectors commonly used for *in vivo* or *ex vivo* targeting and therapy procedures are DNA-based vectors and retroviral vectors. Methods for constructing and using viral vectors are known in the art (*see, e.g.*, Miller and Rosman, BioTechniques 1992, 7:980-990). Preferably, the viral vectors are replication-defective, that is, they are unable to replicate autonomously in the target cell. Preferably, the replication defective virus is a minimal virus, *i.e.*, it retains only the sequences of its genome that are necessary for encapsidating the genome to produce viral particles.

DNA viral vectors include an attenuated or defective DNA virus, such as but not limited to, herpes simplex virus (HSV), papillomavirus, Epstein Barr virus (EBV), adenovirus, adeno-associated virus (AAV), alphavirus (especially Sindbis virus), and the like. Defective viruses that entirely or almost entirely lack viral genes are preferred.

Defective virus is not infective after introduction into a cell. Use of defective viral vectors allows for administration to cells in a specific, localized area, without concern that the vector can infect other cells. Thus, a specific tissue can be specifically targeted. Examples of particular vectors include, but are not limited to, a defective herpes virus 1 (HSV1) vector (Kaplitt et al., Molec. Cell. Neurosci. 1991, 2:320-330), defective herpes virus vector lacking a glyco-protein L gene, or other defective herpes virus vectors (PCT Publication Nos. WO 94/21807 and WO 92/05263); an attenuated adenovirus vector, such as the vector described by Stratford-Perricaudet et al. (J. Clin. Invest. 1992, 90:626-630; see also La Salle et al., Science 1993, 259:988-990); a defective adeno-associated virus vector (Samulski et al., J. Virol., 1987, 61:3096-3101; Samulski et al., J. Virol. 1989, 63:3822-3828; Lebkowski et al., Mol. Cell. Biol. 1988, 8:3988-3996); and Alphavirus vectors, including Sindbis virus and Semliki Forest virus-based vectors (U.S. Patent No. 5,091,309; PCT Publication No. WO 98/44132; Schlesinger and Dubensky, Curr. Opin. Biotechnol. 1999, 5:434-9; Zaks et al., Nat. Med. 1999, 7:823-7).

Various companies produce viral vectors commercially, including, but not limited to, Avigen, Inc. (Alameda, CA; AAV vectors), Cell Genesys (Foster City, CA; retroviral, adenoviral, AAV, and lentiviral vectors), Clontech (retroviral and baculoviral vectors), Genovo, Inc. (Sharon Hill, PA; adenoviral and AAV vectors), Genvec (France; adenoviral vectors), IntroGene (Leiden, Netherlands; adenoviral vectors), Molecular Medicine (retroviral, adenoviral, AAV, and herpes viral vectors), Norgen (adenoviral vectors), Oxford BioMedica (Oxford, United Kingdom; lentiviral vectors), and Transgene (Strasbourg, France; adenoviral, vaccinia, retroviral, and lentiviral vectors).

15

25

In another embodiment, the vector can be introduced *in vivo* by lipofection, as naked DNA, or with other transfection facilitating agents (peptides, polymers, etc.). Synthetic cationic lipids can be used to prepare liposomes for *in vivo* transfection of a gene encoding a marker (Felgner, et. al., Proc. Natl. Acad. Sci. USA 1987, 84:7413-7417; Felgner and Ringold, Science 1989, 337:387-388; see Mackey, *et al.*, Proc. Natl. Acad. Sci. USA 1988, 85:8027-8031; Ulmer *et al.*, Science 1993, 259:1745-1748). Useful lipid compounds and compositions for transfer of nucleic acids are described in PCT Patent Publication Nos. WO 95/18863 and WO 96/17823, and in U.S. Patent No. 5,459,127. Lipids may be chemically coupled to other molecules for the purpose of targeting (see Mackey, *et. al.*,

supra). Targeted peptides, e.g., hormones or neurotransmitters, and proteins such as antibodies, or non-peptide molecules could be coupled to liposomes chemically.

Other molecules are also useful for facilitating transfection of a nucleic acid in vivo, such as a cationic oligopeptide (e.g., PCT Patent Publication No. WO 95/21931), peptides derived from DNA binding proteins (e.g., PCT Patent Publication No. WO 96/25508), or a cationic polymer (e.g., PCT Patent Publication No. WO 95/21931).

It is also possible to introduce the vector *in vivo* as a naked DNA plasmid. Naked DNA vectors for gene therapy can be introduced into the desired host cells by methods known in the art, e.g., electroporation, microinjection, cell fusion, DEAE dextran, calcium phosphate precipitation, use of a gene gun, or use of a DNA vector transporter (see, e.g., Wu et al., J. Biol. Chem. 1992, 267:963-967; Wu and Wu, J. Biol. Chem. 1988, 263:14621-14624; Canadian Patent Application No. 2,012,311; Williams et al., Proc. Natl. Acad. Sci. USA 1991, 88:2726-2730). Receptor-mediated DNA delivery approaches can also be used (Curiel et al., Hum. Gene Ther. 1992, 3:147-154; Wu and Wu, J. Biol. Chem. 1987, 262:4429-4432). U.S. Patent Nos. 5,580,859 and 5,589,466 disclose delivery of exogenous DNA sequences, free of transfection facilitating agents, in a mammal. Recently, a relatively low voltage, high efficiency in vivo DNA transfer technique, termed electrotransfer, has been described (Mir et al., C.P. Acad. Sci. 1988, 321:893; PCT Publication Nos. WO 99/01157, WO 99/01158, and WO 99/01175).

Treatment of Immune System Related Diseases

20

30

As explained above, the present invention relates to hybrid proteins for treating immune system related diseases or disorders, or for modulating immune response in a mammal towards an immunogen. In particular, Applicant has discovered that the hybrid proteins of the invention have applications in modulating a subject's immune response to various immunogens, in a manner that elicits an immune response without eliciting an allergenic response. In a particular embodiment, hybrid proteins of the invention modulate a subject's immune system to have increased ability to combat pathogens and viruses including, but not limited to, HIV, Herpes Simplex virus, or papilloma virus. Such a method comprises administering to a subject a therapeutically effective amount of a pharmaceutical composition comprising a polypeptide encoded by an isolated nucleic acid molecule comprising a DNA molecule of the invention.

Furthermore, it has been

discovered that the hybrid proteins, nucleic acids and vectors of the invention also have applications in treating an immune system related disease or disorder, or a symptom related thereto. As used herein, the phrase "immune system related disease or disorder" refers to a disease or disorder which evokes an immune response in a subject, or effects the ability of the immune system to respond to an immunogen. Examples of immune system related diseases or disorders which can be treated with agents and pharmaceutical compositions of the invention include, but are not limited to, a pathogenic disease or disorder; a viral disease or disorder, e.g. HIV, Herpes Simplex virus, or papilloma virus; or an autoimmune disease, e.g. arthritis or Lupus.

Moreover, the present invention extends to a method for treating an immune system related disease or disorder, or a symptom related thereto, comprising administering a therapeutically effective amount of a pharmaceutical composition for treating an immune system related disease or disorder to a subject. Hence, for example, should the immune system related disease or disorder involve HIV, a clinically significant change would, for example, involve an increase in white blood cell count in a subject to whom a pharmaceutical composition of the invention is administered relative to white blood cell count prior to administration. Other such examples of monitoring a clinically significant change in a subject will be readily apparent to one of ordinary skill in the art. Furthermore, as further studies are conducted, information will emerge regarding appropriate dosage levels for treating an immune system related disease or disorder, or a symptom related thereto in various patients, and the ordinary skilled worker, considering the therapeutic context, age and general health of the recipient, will be able to ascertain proper dosing. Examples of pharmaceutically acceptable compositions are described infra.

Pharmaceutically Acceptable Compositions

10

25

30

The *in vivo* therapeutic compositions of the invention may also contain appropriate pharmaceutically acceptable carriers, excipients, diluents and adjuvants. As used herein, the phrase "pharmaceutically acceptable" preferably means approved by a regulatory agency of a government, in particular the Federal government or a state government, or listed in the U.S. Pharmacopeia or another generally recognized pharmacopeia for use in animals, and more particularly in humans. Suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E.W. Martin.

Such pharmaceutically acceptable carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include mannitol, human serum albumin (HSA), starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, magnesium carbonate, magnesium stearate, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. These compositions can take the form of solutions, suspensions, tablets, pills, capsules, powders, sustained-release formulations and the like.

Such compositions will contain an effective diagnostic or therapeutic amount of the active compound together with a suitable amount of carrier so as to provide the form for proper administration to the patient. While intravenous injection is a very effective form of administration, other modes can be employed, such as by injection, or by oral, nasal or parenteral administration.

The invention will be further clarified by the following examples, which are intended to be purely exemplary of the invention.

20 Example 1 Construction of Ag5 hybrid cDNAs

10

Primers 1-24 used in the Examples are listed in Table 1.

Ves v 5 EA and KR constructs were prepared by PCR amplification of Ves v 5 cDNA template (Lu et al., 1993, J. Immunol. 150:2823) with the primers 1 (SEQ ID NO: 31) and 3 (SEQ ID NO: 33) or 2 (SEQ ID NO: 32) and 3 (SEQ ID NO: 33), respectively. Pol a 5 EA and KR constructs were prepared by PCR amplification of a Pol a cDNA template (Lu et al., 1993, J. Immunol. 150:2823) with the primers 4 (SEQ ID NO: 34) and 6 (SEQ ID NO: 24) or 5 (SEQ ID NO: 35) and 6 (SEQ ID NO: 36), respectively. Each cDNA construct contained an EcoRI or XhoI site at the 5'terminus and an XbaI site at the 3'-terminus. cDNAs were cloned in the plasmid vector pPICZαA (Invitrogen Corp, San Diego, CA) as either EcoRI -XbaI or XhoI-XbaI fragments. Positive clones were identified by PCR. The sequences of recombinant Ag5 and hybrid cDNAs in pPICZαA were confirmed by DNA

sequencing of the inserts. Other constructs were prepared as described in King et al. (2001, J. Immunol. 166:6057-6065).

(i) PV1-46. The PV1-46 hybrid was constructed by joining amino-terminal sequences of Ves v 5 and carboxyl-terminal sequences of Pol a 5 at the peptide sequence EH,
 5 which is present at amino acids 47-48 and 49-50 of the respective proteins. The nucleotide sequence encoding the EH peptide in Ves v 5 is GAG CAC, which corresponds to a Bsi HKA I restriction enzyme cleavage site.

To facilitate construction of the PV1-46 hybrid, the natural DNA sequence (GAG CAT) encoding the Pol a 5 EH peptide at amino acids 49-50 was mutated to a Bsi HKA I site by a PCR overlap extension method (Ho et al., 1989, Gene 77:51), as follows. A first step comprised two separate PCRs. In one PCR, primers 4 (SEQ ID NO: 34) and 8 (SEQ ID NO: 38) and were used to amplify DNA encoding residues 1-53 of Pol a 5 wherein the EH-encoding sequence was converted to a Bsi HKA I site. In a second PCR, primers 7 (SEQ ID NO: 37) and 6 (SEQ ID NO:36) were used to amplify DNA encoding residues 47-205 of Pol a 5 wherein the EH-encoding sequence was converted to a Bsi HKA I site. Both PCRs were performed with 1-40 ng Pol a cDNA as template and 50 pmole each of sense and anti-sense primers in 100 µl of PCR buffer containing 0.2 mM dNTPs and 5 units Taq polymerase. Cycling conditions were 0.5 min denaturation at 95°, 0.5 min annealing at 55° and 2 min extension at 72° for 35 cycles. The products of these two PCRs contained an overlap region. In the second step of the overlap extension procedure, the purified products of the first two reactions were mixed to served as the template for a third PCR with flanking primers 4 (SEQ ID NO: 34) and 6 (SEQ ID NO: 36), yielding a full length Pol a 5 with the EH-encoding sequence converted to a Bsi HKA I site.

Hybrid PV1-46 encoding cDNA was then prepared by ligation of the appropriate Bsi HKA I fragments from Ves v 5 and the modified Pol a 5 cDNAs into pPICZαA, as described above for Ag5 encoding cDNAs.

25

(ii) PV109-155. The PV109-155 hybrid was constructed by joining aminoterminal sequences of Ves v 5 and carboxyl-terminal sequences of Pol a 5 at the peptide sequence KY, which is present at amino acids 106-107 and 109-110 of the respective proteins. The KY peptides of both Ag 5s are encoded by the nucleotide sequence AAA TAT. To construct PV109-155, KY-encoding sequences of appropriate Ag5 or hybrid cDNAs

were mutated to an Apo I restriction enzyme cleavage site (AAA TTT) encoding a peptide sequence of KF. These single base mutations were made using the PCR overlap extension method (Ho et al., 1989, Gene 77:51) described in Example 1. In one set of reactions, the KY-encoding nucleotide sequence of PV1-155 cDNA was converted by performing the PCR overlap procedure with mutagenic primers 9 (SEQ ID NO: 39) and 10 (SEQ ID NO: 40). In a second set of reactions, the KY-encoding nucleotide sequence of Pol a 5 cDNA was converted by performing the PCR overlap procedure with mutagenic primers 11 (SEQ ID NO: 41) and 12 (SEQ ID NO: 42). Hybrid PV109-155 encoding cDNA was prepared by ligation of the appropriate fragments from Apo I digestions of converted Pol a 5 and converted PV1-155 encoding cDNAs into pPICZαA.

(iii) PV1-155 and PV156-204. Ves v 5 and Pol a 5 cDNAs have a common Eae I restriction site encoding amino acid residues 154-156. Hybrid PV156-204 and PV1-155 encoding cDNAs were prepared by ligation of the appropriate Eae I fragments of their parent cDNAs into pPICZaA.

10

15

20

30

- (iv) PV1-8, PV1-18 and PV195-204. These hybrids were prepared by PCR with cDNA of Pol a 5 as the template. PV1-8 was prepared using primers 2 (SEQ ID NO: 32) and 6 (SEQ ID NO: 36). PV1-18 was prepared using primers 6 (SEQ ID NO: 36) and 13 (SEQ ID NO: 43). PV195-204 was prepared using primers 4 (SEQ ID NO: 34) and 14 (SEQ ID NO: 44). The hybrids were cloned into pPICZαA.
- (v) PV1-24, PV1-32, PV1-39, PV1-50, PV1-57 and PV1-70. These hybrids were constructed using the PCR overlap extension method given in Example 1 (Ho et al., 1989, Gene 77:51). For PV1-24, first round PCRs were conducted using primers 1 (SEQ ID NO: 31) and 15 (SEQ ID NO: 45) with Ves v 5 cDNA as template and primers 6 (SEQ ID NO: 36) and 16 (SEQ ID NO: 46) with Pol a 5 cDNA as template. The two overlapping PCR products were then purified and used as template in a third PCR using flanking primers 1 (SEQ ID NO: 31) and 6 (SEQ ID NO: 36) to yield PV1-24. For PV1-32, first round PCRs were conducted using primers 1 (SEQ ID NO: 31) and 18 (SEQ ID NO: 48) with Ves v 5 cDNA as template and primers 6 (SEQ ID NO: 36) and 17 (SEQ ID NO: 47) with Pol a 5 cDNA as template. The two overlapping PCR products were then purified and used as template in a third PCR using flanking primers 1 (SEQ ID NO: 31) and 6 (SEQ ID NO: 36) to yield PV1-24. For PV1-39, first round PCRs were conducted using primers 2 (SEQ ID NO: 36)

NO: 32) and 19 (SEQ ID NO: 49) with Ves v 5 cDNA as template and primers 6 (SEQ ID NO: 36) and 20 (SEQ ID NO: 50) with Pol a 5 cDNA as template. The two overlapping PCR products were then purified and used as template in a third PCR using flanking primers 2 (SEQ ID NO: 32) and 6 (SEQ ID NO: 36) to yield PV1-39. For PV1-50, first round PCRs were conducted using primers 2 (SEQ ID NO: 32) and 28 (SEQ ID NO: 58) with Ves v 5 cDNA as template and primers 6 (SEQ ID NO: 36) and 27 (SEO ID NO: 57) with Pol a 5 cDNA as template. The two overlapping PCR products were then purified and used as template in a third PCR using flanking primers 2 (SEQ ID NO: 32) and 6 (SEQ ID NO: 36) to yield PV1-50. For PV1-57, first round PCRs were conducted using primers 2 (SEO ID NO: 32) and 30 (SEQ ID NO: 60) with Ves v 5 cDNA as template and primers 6 (SEO ID NO: 36) and 29 (SEQ ID NO: 59) with Pol a 5 cDNA as template. The two overlapping PCR products were then purified and used as template in a third PCR using flanking primers 2 (SEQ ID NO: 32) and 6 (SEQ ID NO: 36) to yield PV1-57. For PV1-76, first round PCRs were conducted using primers 2 (SEQ ID NO: 32) and 32 (SEQ ID NO: 62) with Ves v 5 cDNA as template and primers 6 (SEQ ID NO: 36) and 31 (SEQ ID NO: 61) with Pol a 5 cDNA as template. The two overlapping PCR products were then purified and used as template in a third PCR using flanking primers 2 (SEQ ID NO: 32) and 6 (SEQ ID NO: 36) to yield PV1-76. Hybrid cDNAs were cloned into pPICZaA.

(vi) PV22-32, PV115-125, PV142-150 and PV176-182. These constructs are hybrid Ag 5s wherein short Ves v 5 polypeptides replace homologous sequences in otherwise intact full length Pol a 5.

The Pol a 5 sequences were substituted with Ves v 5 sequences using the PCR overlap extension method given in Example 1 (Ho et al., 1989, Gene 77:51). The template DNA used for the first set of two PCRs was the Pol a cDNA of Lu et al. (1993, J. Immunol. 150:2823). The upstream and downstream Pol a primers used in the PCR extension protocols were primers 4 (SEQ ID NO: 22) and 6 (SEQ ID NO: 24), respectively. Final products were cloned into pPICZ α A.

The overlapping primer pairs encoding the inserted Ves v 5 sequences were as follows: (a) PV22-32- primers 17 (SEQ ID NO: 47) and 18 (SEQ ID NO: 48) (b) PV115-125- primers 21 (SEQ ID NO: 51) and 22 (SEQ ID NO: 52) (c) PV142-150- primers 23 (SEQ ID NO: 53) and 24 (SEQ ID NO: 54) and (d) PV176-182- primers 25 (SEQ ID NO:

55) and 26 (SEQ ID NO: 56). PCR reaction and cycling conditions were those described for PV1-46.

Table 1. Primers for preparation of Ves v and Pol a 5s and their hybrids.

J	•	
	<u>Primer</u>	Sequence (5' to 3')
	1	CGTGAATTCAACAATTATTGTAAAATAAAA (SEQ ID NO: 31)
10	2	CGTCTCGAGAAAAGAAACAATTATTGTAAAATAAAA (SEQ ID NO: 32)
	3	CGTTCTAGATTACTTTGTTTGATAAAGTTC (SEQ ID NO: 33)
15	4	CGTGAATTCGTTGATATTGTAAAATAAAA (SEQ ID NO: 34)
1.5	5	CGTCTCGAGAAAAGAGTTGATTATTGTAAAATAAAA (SEQ ID NO: 35)
	6	CGTTCTAGATTATTTTTTGTATAAGGTAG (SEQ ID NO: 36)
20	7	GTAAGCGAGCACAATCGGTTT (SEQ ID NO: 37)
	8	AAACCGATTGTGCTCGCTTAC (SEQ ID NO: 38)
25	9	GTAGCAAAATTTCAGGTTGGA (SEQ ID NO: 39)
	10	TCCAACCTGAAATTTTGCTAC (SEQ ID NO: 40)
	11	ACCGCAAAATTTCCAGTTGGA (SEQ ID NO: 41)
30	12	TCCAACTGGAAATTTTGCGGT (SEQ ID NO: 42)
٠.	13 GCAAA	CGTGAATTCAACAATTATTGTAAAATAAAATGTTTGAAAGGAGGTGTCCATACTGCCT TATGGAGAA (SEQ ID NO: 43)
35	14 NO: 44)	CGTTCTAGATTACTTTGTTTGATAAAGTTCCTCATTCTTAAAATTTCCAGCTGG (SEQ ID
	15	GGCACAATTCTTGCTCGGTTTAAGACTTCCATA (SEQ ID NO: 45)
40	16	TATGGAAGTCTTAAACCGAGCAAGAATTGTGCC (SEQ ID NO: 46)
40	17	CTTAAACCGAATTGCGGTAATAAGGTAGTGGTATCGGTTGGTCCA (SEQ ID NO: 47)
	18	TGGACCAACCGATACCACTACTTATTACCGCAATTCGGTTTAAG (SEQ ID NO: 48)
45	19	TATGGTCTAACGAAACAAGAGAAAAAATTAATCGTA (SEC ID NO: 49)
	20	TACGATTAATTTTTCTCTTGTTTCGTTAGACCATA (SEC ID NO: 50)
50	21	TTAACAGGTAGCACGGCTGCTAAATACGATGATGTAGTCAGTC
50	22	ATCATCGTATTTAGCAGCCGTGCTACCTGTTAACGCTATATTTTG (SEQ ID NO: 52)

	23	CCTAAGAAAAAGTTTTCGGGAAACGACTTTGCTAAAATTGGC (SEQ ID NO: 53)
	24	GTCGTTTCCCGAAAACTTTTTCTTAGGATTAAAATCTTTCAC (SEQ ID NO: 54)
5	25	ATTCAAGAGAAATGGCACAAACATTACCTCATA (SEQ ID NO: 55)
	26	TTTGTGCCATTTCTCTTGAATATATTTTAGAGA (SEQ ID NO: 56)
10	27	GAGCACAATGACTTTAGACAAAAA (SEQ ID NO: 57)
10	28	TTTTTGTCTAAAGTCATTGTGCTC (SEQ ID NO: 58)
	29	AAAATTGCACGAGGGTTGGAAACA (SEQ ID NO: 59)
15	30	TGTTTCCAACCCTCGTGCAATTTT (SEQ ID NO: 60)
	31	AATATGAAAAATTTGGTATGGAAC (SEQ ID NO: 61)
20	32	GTTCCATACCAAATTTTTCATATT (SEQ ID NO: 62)
20		·

Ag5- or hybrid-encoding cDNAs of the EA- or KR-series were digested, respectively, with restriction enzymes Eco RI or Xho I, and Xba I, then inserted into similarly cut pPICZα-A vector (Invitrogen, San Diego, CA). The recombinant plasmids were amplified in TOP10F' cells. The Ag 5-coding sequences of all recombinant plasmids were confirmed by DNA sequencing. The Ag 5 coding-sequences corresponded to the sequence data in Genbank (Accession number M98858 for Ves v Ag 5 and accession number M98857 for Pol a Ag 5), with the exceptions of two single-nucleotide differences observed for Ves v 5. These changes were at positions 579 and 587 and resulted, respectively, in a silent G to A mutation and a T to A substitution that resulted in a codon change of M to K at amino acid residue 196. The two nucleotide changes may represent insect polymorphism, rather than random mutations since the Ag 5 cDNAs used were prepared in the same manner as it was done previously (Lu et al., 1993, J. Immunol. 150:2823).

Example 2 Expression and purification of Ag 5s and hybrids

Recombinant plasmids (1-2 μ g) were linearized by cutting with the restriction enzyme Sac I then used to transform competent Pichia pastoris KM71 yeast cells (about 8 x 10^9 cells in 40 μ l of 1M sorbitol) by electroporation. Transformed cells were diluted to 2 ml with 1M sorbitol and allowed to recover at 30° for 1 hr without shaking and for an additional hour with shaking at 200 rpm. Aliquots of 50 μ l or 100 μ l aliquots were then spread on 100 mm plates of YPDS medium containing 1.5 mg/ml Zeocin for selection of multi-copy

35

integrants (Invitrogen Manual). Selected clones were picked after 3-4 day incubation and screened by small scale expression to identify colonies producing hybrid protein. Small scale expression was carried out in 50 ml plastic tubes in the same manner as described below for large scale isolation but at 1/30 scale and the culture fluids were screened by SDS gel electrophoresis for secreted proteins.

Yeast cells from selected clones were grown in two 500 ml bottles, each containing 150 ml of pH 6.0 phosphate buffer containing yeast nitrogen base, biotin, glycerol and histidine at 30° with orbital shaking at 250 rpm to an A_{600mm} of 10-12. Cells were then collected by centrifugation and resuspended in 100 ml of similarly buffered medium containing methanol in place of glycerol. Incubation was continued at 30° with shaking at 250 rpm for 4-6 days with daily addition of 1 ml of 50% methanol.

Ag 5s or their hybrids were purified from the culture fluid concentrate by ion-exchange chromatography on SE-cellulose (Sigma) using a previously reported procedure (Monsalve et al., 1999, Protein Expr. Purif. 16:410). About 70% of the main peak was pooled, desalted by reversed phase chromatography on C18 silica and lyophilized. Recombinant Ag 5s or hybrids were dissolved in 0.01 M ammonium acetate buffer (pH 4.6) and stored at 4°. Recombinant protein concentrations were determined from absorbance at 280 nm, using molar extinctions calculated from tyrosine and tryptophan contents. The yields of Ag 5s or hybrids typically ranged from 1 to 7 mg per 100 ml of 4-day cultures.

Recombinant Ag 5s or hybrids were characterized by SDS gel electrophoresis, N-terminal sequence analysis and MALDI mass spectrometry. CD spectra at 0.2 mg/ml of recombinant proteins in 0.01 M acetate buffer of pH 4.6 were taken in cells of 1mm path length in an AVIV 62DS spectrometer.

20

25

Example 3 Physico-chemical characterization of recombinant vespid Ag 5s and hybrids

The Ag5s and hybrid proteins expressed in yeast strain KM71contained a secretory signal peptide. The signal peptide was linked to the expressed protein via a peptide of KR or KREAEAEF sequence. These two types of proteins were designated as the KR-and EA-series, respectively. Upon secretion from the yeast cells, the signal peptide was

cleaved from the secreted protein at the KR sequence (Kex 2 protease site) or the two EA sequences (Ste 13 dipeptidyl amino peptidase sites) (Invitrogen Manual).

Recombinant proteins were isolated from culture fluid by ion exchange chromatography on SE-cellulose followed by reversed phase chromatography on C18-silica and characterized by SDS gel electrophoresis. (Fig. 6). Several hybrids showed a closely-spaced doublet with mobilities similar to that of natural Ves v 5. The doublets are consistent with the varying extents of processing at their N-terminal ends, as indicated by N-terminal sequencing of hybrids PV1-155 and PV156-204 and mass spectrometry data (Table 2).

Recombinant Ag 5s and hybrids showed nearly identical CD spectra as those of the natural Ag 5s (Fig. 7). The spectra of the natural Ves v 5 and the EA-Ves v 5, and those of EA-PV1-46, EA-PV1-155 and EA-PV156-204 showed the presence of minima at about 208 nm with a shoulder at 225 nm (Fig. 7). These features are indicative of an ordered feature (Yang et al., 1986, Methods in Enzymology 130:208). Similar CD spectra were observed for the other hybrids listed in Table II (data are not shown). The CD spectrum of recombinant Ves v 5 from bacteria showed a minima at about 200 nm, which is indicative of a disordered structure (Monsalve et al., 1999, Protein Expr. Purif. 16:410).

The recombinant Ag 5s and hybrids from yeast were freely soluble in acid or basic buffers, as were the natural Ag 5s. This is in contrast to recombinant vespid Ag 5s from bacteria, which were freely soluble only in acidic buffer.

20

30

Results of mass spectrometric analysis of Ag 5s and hybrids are given in Table 2. EA-series Ag 5s were cleaved efficiently at the Kex 2 site but showed variable cleavages at the two Ste 13 sites. Recombinant EA-series proteins, therefore, had aminoterminal sequences of EAEAEF and EAEF, where the EF sequence was encoded by the Eco R I site used to insert cDNA into the vector. These data were similar to results reported previously (Monsalve et al., 1999, Protein Expr. Purif. 16:410).

The EAEAEF sequence of recombinant Ves v 5 is known to function as a strong hapten (Monsalve et al., 1999, Protein Expr. Purif. 16:410). Therefore, Ag 5s were also expressed as KR-series hybrids. Cleavage of KR-series proteins at the Kex 2 site yielded recombinant proteins with the N-terminal sequence of the natural proteins. Mass spectrometry analysis of the KR-series proteins Ves v5, Pol a 5, and hybrids KR-PV1-24 and KR-PV1-46 showed that they were cleaved, with varied efficiencies, at the Kex2 site, and at

residues 2, 7, and 9 upstream of the Kex2 site. (Table 2.) The recombinant proteins of the KR-series were usually of slightly lower yields than those of the EA-series.

Table 2. Mass spectrometric data of recombinant vespid Ag 5s and hybrids.

			Mass units		
Protein	Assumed sequence	Abundance ¹	calc'd	found	
EA-Ves v 5	EAEAEF-Vv	80%	23,954	23,947	
·	EAEF-Vv	20%	23,754	23,752	
EA-Pol a 5	EAEAEF-Pa	100%	23,611	23,613	
EA-PV1-18	EAEF-PV	43%	23,497	23,506	
	EAEAEF-PV	36%	23,697	23,698	
	REAEAEF-PV	21%	23,871	23,827	
EA-PV1-18	EAEAEF-PV	100%	23,697	23,701	
EA-PV1-32	EF-PV	60%	22,964	22,930	
*	EAEF-PV	40%	23,151	23,134	
EA-PV1-46	EAEF-PV	53%	23,300	23,327	
	EAEAEF-PV	47%	23,500	23,515	
EA-PV1-46	EF-PV	10%	23,099	23,109	
	EAEF-PV	50%	23,300	23,327	
	EAEAEF-PV	40%	23,500	23,515	
EA-PV1-155	EF-PV	53%	23,375	23,334	
•	EAEF-PV	47%	23,575	23,533	
EA-PV22-32	EAEF-PV	55%	23,135	23,203	
	EAEAEF-PV	. 45%	23,336	23,371	
EA-PV115-125	EAEAEF-PV	100%	23,873	23,887	
EA-PV142-150	EAEAEF-PV	100%	23,592	23,585	
EA-PV156-204	EAEF-PV	59%	23,776	23,775	
	EAEAEF-PV	41%	23,932	23,939	
EA-PV195-204	EAEAEF-PV	70%	23,700	23,688	
2.11 1175-204	REAEAEF-PV	30%	23,700 23,874	23,844	

KR-Ves v 5	Vv5	90%	23,277	23,274
	EEGVSLEKR-Vv	10%	24,305	24,298
KR-Ves v 5	Vv	95%	23,277	23,284
	EEGVSLEKR-V _V	5%	24,305	24,300
KR-Pol a 5	Pa	20%	22,934	22,951
	EEGVSLEKR-Pa	80%	23,962	23,992
KR-Pol a 5	Pa	10%	22,934	22,935
	EEGVSLEKR-Pa	90%	23,962	23,962
KR-PV1-24	PV	85%	22,903	22,897
	EEGVSLEKR-PV	15%	23,931	23,933
KR-PV1-46	PV	70%	22,823	22,834
•	KR-PV	30%	23,107	23,157
KR-PV1-46	PV	60%	22,823	22,834
	KR-PV	40%	23,107	23,157

¹Protein abundance was estimated from peak heights of samples in mass spectra. N-terminal sequences For of EA-Ves v 5, EA-Pol a 5, EA-PV3PV156-204 and EA- VP3PV1-155 samples of EA series, their assumed sequences were confirmed by Edman degradation.

Results of two preparations are shown for each of EA-PV1-18, EA-PV1-46, KR-Ves v 5, KR-Pol a and KR-PV1-46.

Amino terminal peptides have been assigned SEQ ID NO: as follows; EAEAEF [SEQ ID NO: 89]; EAEF [SEQ ID NO: 90]; REAEAEF [SEQ ID NO: 91] and EEGVSLEKR [SEQ ID NO: 92].

Example 4 ELISA studies

10

ELISA was performed in 96-well plates in the wells coated with 4 μ g/ml Ag 5 in 0.05 M Tris-HCI buffer of pH 8. Bound IgG₁ was detected with 2 μ g/ml biotinylated goat anti-mouse IgG (γ 1 specific) followed with 2 μ g/ml avidin-peroxidase conjugate (King *et al.*, 1995, J. Immunol 154:577). Antibody concentrations of sera samples were determined by comparison of their ELISA data with that of an immuno-affinity purified sample of Ves v 5-specific antibody.

Example 5 Ves v 5-specific B cell epitopes of hybrids

Murine polyclonal antibodies specific for natural Ves v 5 were isolated from 20 BALB/c sera by affinity chromatography on Ves v 5-specific immunosorbent and were

depleted of Pol a 5-cross-reacting antibodies by passage through Pol a 5-specific immunosorbent. The immunosorbents were prepared with CNBr activated Sepharose 2B (Pharmacia). Murine monoclonal antibodies specific for Ves v 5 were obtained as described (King et al., 1987, Mol. Immunol 24:857).

5

15

20

Ves v 5-specific B cell epitopes were detected by hybrid-inhibition of binding of mouse Ves v 5-specific antibodies to solid-phase Ves v 5. Both EA- and KR-Ves v 5 were tested as solid phase antigen with similar results. Five samples of mouse antisera were tested; three were from BALB/c strains and one each from ASW/sn and P/J strains. Results using one BALB/c serum sample are shown in Fig. 8A. At the highest concentration of 50 or 500µg/ml inhibitor tested, the two N-terminal hybrids EA-PV1-46 and EA-1-155 showed maximal inhibition approaching 100%, as did EA- or KR-Ves v 5. Two other N-terminal hybrids KR-PV1-24 and EA-PV1-32 had maximal inhibition of about 60% and the shortest N-terminal hybrid, EA-PV1-18, had maximal inhibition of about 20%. The C-terminal hybrid EA-PV156-204 had maximal inhibition of about 15%. Similar results were obtained for results of inhibition ELISA using antisera from ASW/sn (Fig. 8B) and P/J (Fig. 8C) mice.

Ves v 5-specific B cell epitopes were also detected by inhibition analyses with sera from six yellow jacket sensitive patients. The data from three patients are shown in Fig. 9A-C. The results were similar to those obtained with mouse IgGs.

The results of the ELISA inhibition studies using both mouse and human antisera indicated the immunodominance of the N-terminal region of Ves v 5.

The observed inhibition by the hybrids was not due to cross-reacting epitopes of the Pol a 5 portion of the molecule as the sample of Ves v 5-specific antibodies used for inhibition studies in BALB/c mice was depleted of Pol a 5-cross-reactive antibodies and no inhibition by Pol a 5 was detected (Fig. 8A). The high concentrations of hybrids required for half maximal inhibition relative to that of Ves v 5 did not reflect that the epitopes of the hybrids lacked the native structure of Ves v 5 as the recombinant Ves v 5 from bacteria that lacked the native structure did not show any inhibition (data not shown).

The difference in the inhibitory activities of Ves v 5 and hybrids was probably related to their epitope densities. Epitope density is known to influence strongly the affinity constant of a multivalent antigen and a bivalent antibody (Hornick and Karush, 1972, Immunochemistry 9:325; Crothers and Metzger, 1972, Immunochemistry 9:341).

The data in Figs. 8 and 9 suggested that the amino terminal portion of Ves v 5 includes the immunodominant B cell epitopes of Ves v 5. This finding was confirmed by tests with a panel of 17 monoclonal antibodies specific for Ves v 5 (King et al., 1987, Mol. Immunol 24:857). These monoclonal antibodies were specific for the natural Ves v 5 and recombinant proteins from yeast, but they did not bind the denatured form of recombinant Ves v 5 from bacteria (data not shown). ELISA results showed that one monoclonal antibody bound EA-Ves v 5 and EA-PV1-46 with similar affinity and maximal binding and it did not bind any of the other N- or C-terminal hybrids (Fig. 10A). Four other monoclonal antibodies showed greatly reduced maximal binding to EA-PV1-46 but no binding to any of the shorter N-terminal hybrids; the data for one such antibody are given in Fig. 10B. Lastly, one monoclonal antibody showed greatly reduced binding to EA-PV1-32 and EA-PV 1-46 and moderate binding to EA-PV1-18 and EA-PV 1-24 (Fig. 10C). These data show that six of the 17 monoclonal antibodies tested were specific for the N-terminal region of Ves v 5.

Example 6 Immune responses to hybrids

15

20

Groups of 3 or 4 female BALB/c mice were given biweekly intraperitoneal injections of 2 μ g immunogen and 1 μ g alum in 0.2 ml of phosphate buffered saline. Ag 5 or hybrid specific sera were collected at week 5 or later. Similar antibody levels were observed for sera collected at weeks 5, 7, and 9.

Mice immunized with hybrids produced antibodies specific for the hybrid, Pol a 5 and Ves v 5. The antibody levels of sera samples were measured before and after absorption with Pol a 5 to determine their specificity for Ves v 5. These data are summarized in Table 3A. Mice immunized with natural, EA- or KR-Ves v 5 gave nearly the same antibody responses, and only those of the KR-Ves v 5 are given Table 3A. EA-PV1-46 gave a higher antibody response in set A mice than KR-PV1-46 did in set B mice. This difference may be due to the different sets of mice used. EA-PV1-18 was used in both sets of experiments, and it gave higher antibody response in set A mice than that in set B mice.

Comparison of antibody levels in the N-terminal hybrid-specific sera samples in Table 3, before and after Pol a 5 absorption, indicated that 30-80% of the antibodies were specific for Ves v 5 when tested on solid-phase Ves v 5, and these values were less when tested on solid-phase hybrid. The higher contents of Ves v 5-specific antibodies detected on

solid-phase Ves v 5 than those on solid-phase hybrid suggest that the majority of hybridspecific antibodies recognize overlapping regions of Ves v 5 and Pol a 5 in the hybrid. The data in set A of Table 3A indicated that of the three N-terminal hybrids, PV1-155 was as immunogenic as Ves v 5 was, PV1-46 was half as imunogenic as Ves v 5 and PV1-18 was about 1/9th as immunogenic as Ves v 5. The data in set B indicate that PV1-46 and 1-32 were more immunogenic than PV1-24 and 1-18. The data from both sets suggest that the longer N-terminal hybrids PV1-46 and 1-32 stimulate higher contents of Ves v 5-specific antibodies and lower contents of Pol a 5- specific antibodies than the two shorter hybrids PV1-24 and 1-18 did.

10

15

20

Table 3A Murine antibody responses to vespid antigen 5s and hybrids

	Immunogen ¹ _	mg/ml specific IgG in sera by ELISA on solid-phase ^{2,3}					
SET		EA-Ves v 5	EA-Pol a 5	Hybrid			
A	KR-Ves v 5	8.9 (8.5)	0.6	•			
	KR-Pol a 5	2.8 (1.0)	7.0	-			
	EA-PV1-155	12.0	0.7				
	EA-PV1-46	4.2 (3.5)	1.9	7.6 (5.6)			
	EA-PV1-18	1.0 (0.8)	6.9	6.9 (0.7)			
	EA-PV156-204	1.6 (0.6)	10.0	2.6 (0.3)			
	EA-PV195-204	1.3 (0.4)	14.0	10.0 (0.3)			
В	KR-Ves v 5	15.0 (14.0)	0.2				
	KR-PV1-46	0.6 (0.5)	1.0	2.7 (3.0)			
	EA-PV1-32	0.9 (0.7)	4.3	8.0 (3.2)			
	KR-PV1-24	0.4 (0.3)	4.2	6.5 (0.9)			
	EA-PV1-18	0.4 (0.3)	4.5	5.3 (0.7)			

- 1. Sera were collected on week 7, after 3 biweekly ip injections of immunogen. Sets A and B studies were made at separate occasions.
- 2. Antibody concentration was estimated from reciprocal sera concentration required to give an absorbance change of 1.0 in 30 minutes. Under the conditions used, this change corresponded to a 0.1 µg/ml solution of purified Ves v 5 - specific antibody. The estimated antibody concentrations varied by about 40 % on repeat measurements.

3. Values in parenthesis were obtained after absorption of \(^1/_{500}\) diluted sera with 0.2 mg/ml EA-Pol a 5.

The results shown in Table 3A indicate the B cell epitope of Ves v 5 is in its N-terminal region. Additional hybrids of Ves v 5 and Pol a 5 were prepared and tested for immunogenicity in mice as described above, to delineate the N and the C-terminal limits of the dominant B cell epitope region. Results are given in Table 3B, which lists the IgG1 content specific for Ves v, Pol a or hybrid, and percent of specific IgG1 remaining after absorption with Pa.

Hybrid PV1-8 with the lowest Ves v content did not induce Ves v-specific antibody response. All other hybrids induced 0.4-4.5 mg/ml of Ves v-specific Ab with the exception of PV22-32. Hybrids with Ves v contents <PV1-32 are moderately specific for Ves v response, as 34-81% of their Ves v-specific antibody and 15-27% of their hybrid-specific antibodies were not absorbed by Pol a 5. Hybrids with Ves v contents >PV1-39 are more specific, as 66-96% of their Ves v 5-specific antibody and 91-100% of their hybrid-specific antibody were not absorbed by Pol a 5. These results together suggest the C-terminal limit of the dominant epitope region is between residues 32-39.

Hybrids with Ves v contents of <PV1-32 show 2-4 mg/ml of Pol a-specific antibody, and hybrids with Ves v contents of >PV1-39 showed 0.04-1.34 mg/ml of Pol a-specific antibody. As the Ves v content of hybrids was increased from PV1-32 to 1-76, there was a progressive decrease of Pol a-specific response. These results together suggest the C-terminal limit of the dominant epitope extends beyond residues 39, as suggested by considerations of the Ves v-specific response to hybrids.

15

20

25

The lack of Ves v-specific antibody response of PV1-8 and 22-32 as compared to the response of PV1-32 suggests the N-terminal limit of the dominant epitope region to be within residues 9-21.

Table 3B. Murine antibody responses to vespid antigen 5s and hybrids

Construct	Groups of mice	Ves v 5 specific IgG1; % Ves v	Pol a 5 specific IgG1	Hybrid specific IgG1; % Ves v
Pol a 5	1	1.80 mg/ml; 64%	4.50 mg/ml	
Ves v 5	4	10.7 ± 3.2 mg/ml 104 ±15%	0.2 ±0.1 mg/ml	
PV1-8	1	0	8.2 mg/ml	
PV1-18	4	0.6 ±0.44 mg/ml; 68 ±14%	4.1 ±2.0 mg/ml	7.5 ±4.5 mg/ml; 27 ±26%

PV1-24	2	0.35 ±0.06 mg/ml; 81 ±17%	$2.26 \pm 0.50 \text{ mg/ml}$	$5.86 \pm 1.30 \text{ mg/ml};$ $20 \pm 12\%$
PV1-32	3	0.52 ±0.39 mg/ml; 34 ±25%	3.77 ±1.89 mg/ml	$6.82 \pm 3.46 \text{ mg/ml};$ $15 \pm 6\%$
PV1-39	2	4.45 ±0.70 mg/ml; 89 ±27%	$1.72 \pm 0.06 \text{ mg/ml}$	$8.25 \pm 1/87 \text{ mg/ml};$ $76 \pm 23\%$
PV1-46	3	2.29 ±3.41 mg/ml; 86 ±14%	1.18 ± 0.96 mg/ml	7.57 ±7.33 mg/ml; 91 ±9%
PV1-50	1	1.01 mg/ml; 94%	0.44 mg/ml	11.22 mg/ml; 90%
PV1-57	1	0.67 mg/ml; 96%	0.22 mg/ml	11.88 mg/ml; 85%
PV1-76	1	1.32 mg/ml; 92%	0.04 mg/ml	11.88 mg/ml; 92%
PV22-32	1	0.04 mg/ml; 0%	4.88 _, mg/ml	6.31 mg/ml; 6%

Data are from averages of week 7 bleedings from 1-4 groups of 4 mice. % Ves v refers to antibody content after absorption with Pol a 5

Example 7 T cell response

Proliferation assays were performed with spleen cells from mice immunized with vespid antigen 5 or hybrid to study the specificity of T cell responses. Assays were performed in triplicate with spleen cells pooled from 2 to 3 mice, 10 days after 5 biweekly immunizations. Spleen cells (4×10^5) were cultured with test antigen in 0.2 ml of culture medium at 37° and 5% CO₂. Tritiated thymidine $(1 \mu Ci)$ was added on day 3, and the thymidine uptake was determined on day 4. The results were expressed as stimulation index values.

Results showed that the hybrids EA-PV1-46, EA-PV1-155 and EA-PV156-204 induced hybrid-specific as well as vespid antigen 5-specific T cell responses (Table 4). The data indicated that the best proliferative responses were obtained when the stimulating antigen was the immunogen. This is apparent from comparing the maximal stimulation index values at the highest antigen concentration of $100 \mu g/ml$ tested, and from comparing the lowest antigen concentration required for a stimulation index value of 4.

20 Table 4

5

15

Vespid antigen 5 or hybrid stimulated proliferation of murine spleen cells

Spleen cells		Stimulating A	g
specific for	BA-Ves v5	EA-Pol a 5	EA-hybrid
	Stimula	tion Index at 100) μg/ml Ag
KR-Ves v 5	8.2	1.5	-
KR-Pol a 5	2.2	6.3	-
EA-PV1-155	6.1	2.2	5.0
EA-PV1-46	6.0	8.0	13.5
EA-PV1-18	2.3	5.0	6.1
EA-PV156-204	4.1	4.2	6.8
EA-PV195-204	1.7	8.6	4.1
	μg/ml A	g for stimulation	index of 4
KR-Ves v 5	2.6	>100	•
KR-Pol a 5	>100	16	-
EA-PV1-155	11	>100	0.54
EA-PV1-46	20	2.2	0.26
EA-PV1-18	>100	47	19
EA-PV156-204	60	70 .	2.3
EA-PV195-204	>100	8	82

Background proliferation of spleen cells showed ³H-thymidine uptake of 400-900 cpm.

Example 8 Allergenicity of recombinant vespid Ag 5s and hybrids in

5 patients

Allergenicity was determined by histamine release assay from basophils of 10 yellow jacket sensitive patients, following challenge with Ag 5 or hybrids (Colombo *et al.*, 1995, J Allergy Clin. Imm. 95:565). The patients/results shown in Table 5 are divided into two groups. Group A patients (n=7) were about 1000 times more sensitive to Ves v 5 than to Pol a 5; Group B patients (n=3) were about equally sensitive to both antigen 5s.

Table 5.
Summary of histamine release data of hybrids

	Reciprocal Activity Relative to Ves v 5									
		Group	A	Group B						
Allergen	No. of patients	Mean	Range	No. of patients	Mean	Range				
Ves v 5	7	1	1	3	ı	1				
Pol a 5	7	1154	330-5500	3	0.7	0.2 - 2				
PV1-155	3	1	1-2	2	1	1				
PV1-46	5	126	13-3300	2	0.7	0.1 - 5				
PV1- 18	3	583	12-5000	2	24 ·	3.0 - 200				

PV22-32	3	3207	2000-5000	2	6	6-20
PV115-125	3	3207	2000-5000	2	5 ·	2-15
PV142-150	3	3000	2700-5000	2	5	2-15
PV156-204	6	1139	1000-3000	3	3	0.4 - 70
PV195-204	3	3207	50-5000	2	32	20.0 - 50

The complete data from one patient of each group are given in Figure 11.

Of the three N-terminal hybrids tested, EA-PV1-155 showed no decrease in allergnenicity. EA-PV1-46 and 1-18 showed geometric mean reductions of 126- and 583-fold respectively in group A patients, and 0.7- and 24-fold decreases respectively in group B patients. The two C-terminal hybrids EA-PV156-204 and 195-204 had reductions of 1139- and 3207-fold in group A patients respectively and 3- and 32-fold in group B patients respectively.

The different extents of reduction in allergenicity of the N- and C-terminal hybrids reflect both their IgE antibody concentration and their epitope density. The inhibition ELISA data in Figure 6 suggest a higher concentration of human IgG antibodies for the N-terminal region of Ves v 5 than those for the C-terminal region and this is likely also the case for IgE antibodies. Another contributing factor to the greater reduction in allergenicity of the C-terminal hybrid EA-PV156-204 as compared to the N-terminal hybrid EA-PV1-46 is probably due to its decreased epitope density as the C-terminal hybrid has fewer surface accessible residues of Ves v 5 than the N-terminal hybrid does. Similarly, the greater reduction in allergenicity of the shorter N- or C-terminal hybrids, PV1-18 or PV195-204, as compared to their respective longer ones also reflects the influence of epitope density.

The allergenicity of recombinant Ves v 5 from bacteria was compared with those of the natural Ves v and the recombinant Ves v 5 from yeast. In three patients tested, the recombinant protein from bacteria was about 103 times less potent than the natural protein or the recombinant protein from yeast (data not shown). These data confirm previous observations that the majority of B cell epitopes for allergens are dependent on the conformation of the native allergen (King et al., 2000, Int Arch Allergy 123:99).

20

25

The decrease in allergenicity of the recombinant Ves v 5 from bacteria, was due to loss of the conformation dependent B cell epitopes as the CD spectrum of the recombinant protein from bacteria showed it to have a disordered structure. However, the

decrease in allergenicity of the hybrid protein PV1-46 or PV156-204 was due to reduction of the number and density of Ves v 5-specific epitopes, as its CD spectrum indicated it had an ordered structure similar to that of Ves v 5. The reduction of the number and density epitopes of the hybrid PV1-46 and PV156-204 is in agreement with the B cell epitope and immunogenicity data given in Examples 5-7.

Example 9 Crystallization of recombinant Ves v 5

Crystals of Ves v 5 was grown by the vapor diffusion technique at 25°C. For crystallization, 5 µl of 5 mg/ml Ves v 5 was mixed with 5 µl of 18% PEG 6000, 0.1 M sodium citrate, pH 6.0 and equilibrated against 1 ml of 18% PEG 6000, 0.1 M sodium citrate, pH 6.0. X-ray diffraction data was collected at 100K from native Ves v 5 crystals and after incorporation of heavy-atom derivatives and used to solve the three-dimensional structure of Ves v 5. The atomic coordinates and structure factors of Ves v 5 have been deposited in the Protein Data Bank (PDB) with the accession number Q05110. The atomic coordinates of Ves v 5 are given in Table 6.

Table 6. Ves v 5 crystal coordinates

	REMARK	FILEN	AME=	"bref	inement.pd)	b "				
20	REMARK	r= 0	.215	955 f :	ree_r= 0.29	98202				
	REMARK	DATE:	28-0	ct-98	15:45:46		created by	y user:	anette	
	MOTA	· 1	CB	GLU	1	17.077	51.793	23.662	1.00 41.	80 APEP
	MOTA	2	CG	GLU	1	16.595	52.047	25.081	1.00 43.	97 APEP
	MOTA	3	CD	GLÜ	1	15.167	51.580	25.310	1.00 44.	74 APEP
25	MOTA	4	OE1	GLU	1	14.367	51.640	24.352	1.00 46.	38 APEP
	MOTA	5	OE2	GLU	1	14.845	51.156	26.444	1.00 43.	48 APEP
	ATOM	6	C	GLU	1	19.169	50.429	23.664	1.00 39.	72 APEP
	MOTA	7	0	GLU	1.	19.733	49.575	24.358	1.00 40.	19 APEP
	ATOM	8	N	GLU	1	17.005	49.431	24.404	1.00 41.	50 APEP
30	MOTA	9	CA	GLU	1	17.655	50.391	23.458	1.00 40.	85 APEP
	MOTA	10	N	ALA	2	19.820	51.423	23.064	1.00 37.	33 APEP
	MOTA	11	CA	ALA	2	21.267	51.571	23.179	1.00 34.	17 APEP
	MOTA	12	CB	ALA	2	21.668	51.735	24.657	1.00 34.3	25 APEP
	ATOM	13	C	ALA	2	21.935	50.341	22.585	1.00 32.3	32 APEP
35	MOTA	14	0	ALA	2	21.299	49.580	21.847	1.00 33.	01 APEP
	MOTA	15	N	GLU	3	23.215	50.148	22.899	1.00 29.	81 APEP
	MOTA	16	CA	GLU	3	23.956	48.991	22.402	1.00 26.3	33 APEP
	MOTA	17	CB	GLU	3	24.948	49.413	21.325	1.00 30.	89 APEP
	ATOM	18	CG	GLU	3	25.246	48.320	20.303	1.00 35.	96 APEP
40	MOTA	19	CD	GLU	3	24.029	47.468	19.973	1.00 38.	25 APEP
	MOTA	20	OBI	GLU	3	23.428	47.678	18.891	1.00 39.3	27 APEP
	MOTA	21	OE2	GLU	3	23.681	46.586	20.793	1.00 37.	45 APEP

	MOTA	22	C ·		3	24.693	48.269	23.530	1.00 21.89	APEP
	MOTA	23	0	GLÜ	3	25.780	48.679	23.959	1.00 20.16	APEP
	MOTA	24	N	ALA	4	24.093	47.180	23.995	1.00 17.32	APEP
	MOTA	25	CA	ALA	4	24.652	46.382	25.080	1.00 15.71	APEP
5	MOTA	26	CB	ALA	4	23.796	45.141	25.302	1.00 12.64	APEP
	ATOM	27	C	ALA	4	26.103	45.970	24.862	1.00 14.17	APEP
	MOTA	28	0	ALA	4	26.816	45.710	25.827	1.00 11.99	APEP
	ATOM	29	N	GLU	5	26.542	45.908	23.603	1.00 12.66	APEP
	ATOM	30	CA	GLU	5	27.917	45.503	23.319	1.00 13.51	APEP
10	MOTA	31	CB	GLU	5	28.222	45.583	21.817	1.00 15.08	APEP
	ATOM	32	CG	GLU	5 ·	29.647	45.127	21.479	1.00 20.49	APEP
	ATOM	33	CD	GLU	5	30.068	45.447	20.049	1.00 22.60	APEP
	MOTA	34	OE1	GLU	5	29.224	45.948	19.278	1.00 24.69	APEP
	MOTA	35	OE2	GLU	5	31.245	45.199	19.699	1.00 23.87	APEP
15 ·	ATOM	36	C	GLU	5	28.949	46.339	24.065	1.00 12.46	APEP
	ATOM	37	0	GLU	5	30.025	45.847	24.394	1.00 12.28	APEP
	MOTA	38	N	PHE	6	28.616	47.596	24.343	1.00 11.87	APEP
	ATOM	39	CA	PHE	6	29.546	48.491	25.022	1.00 11.93	APEP
	ATOM	40	CB	PHE	6	29.459	49.879	24.377	1.00 12.32	APEP
20	ATOM	41	CG	PHE	6	29.706	49.857	22.887	1.00 14.45	APEP
	ATOM	42	CD1	PHE	. 6	28.646	49.803	21.997	1.00 .14.86	APEP
	ATOM	43	CD2	PHE	6	31.001	49.811	22.381	1.00 14.25	APEP
	ATOM	44	CE1	PHE	6	28.870	49.698	20.623	1.00 15.78	APEP
	ATOM	45	CE2	PHE	6	31.236	49.705	21.008	1.00 13.92	APEP
25	ATOM	46	CZ	PHE	6	30.166	49.648	20.131	1.00 13.36	APEP
	MOTA	47	C	PHE	6	29.378	48.556	26.537	1.00 10.13	APEP
	ATOM	48	0	PHE	6	29.892	49.463	27.201	1.00 9.26	APEP
	ATOM	49	N	ASN	7	28.658	47.568	27.066	1.00 10.89	APEP
	ATOM	50	CA	ASN	7	28.411	47.422	28.498	1.00 7.63	APEP
30	ATOM	51	CB	ASN	. 7	27.040	46.786	28.750	1.00 6.94	APEP
	MOTA	52	CG	ASN	7	25.897	47.774	28.658	1.00 5.91	APEP
	MOTA	53	OD1	ASN	7	26.049	48.953	28.962	1.00 6.68	APEP
	ATOM	54	ND2	ASN	7	24.735	47.286	28.240	1.00 2.00	APEP
	ATOM	55	C	ASN	7	29.477	46.428	28.929	1.00 8.03	APEP
35	ATOM	56	Ο.	ASN	7	29.712	45.448	28.223	1.00 7.49	APEP
	ATOM	57 ·	N	ASN	8	30.126	46.663	30.066	1.00 7.97	APEP
	MOTA	58	CA	ASN	8	31.155	45.735	30.536	1.00 9.65	APEP
	ATOM	59	CB	ASN	8 .	32.193	46.469	31.384	1.00 11.85	APEP
	ATOM	60	CG	ASN	8	33.241	45.531	31.961	1.00 13.69	APEP
40	ATOM	61	OD1	ASN	8	33.493	44.459	31.415	1.00 12.11	APEP
	ATOM	62	ND2	ASN	8	33.858	45 [.] .935	33.071	1.00 12.79	APEP
	MOTA	63	C	ASN	8	30.553	44.586	31.350	1.00 10.91	APEP
	ATOM	64	0	ASN	8	30.397	44.690	32.564	1.00 11.39	APEP
	MOTA	65	N	TYR	9	30.225	43.490	30.674	1.00 10.20	APEP
45	ATOM	66	CA	TYR	9	29.631	42.331	31.328	1.00 9.11	APEP
	ATOM	67	ĆВ	TYR	9	28.956	41.431	30.287	1.00 8.55	APEP
	ATOM	68	CG	TYR	9	27.727	42.054	29.689	1.00 6.89	APEP
	MOTA	69	CD1	TYR	9	27.798	42.805	28.517	1.00 8.12	APEP
	ATOM	70	CE1		9	26.668	43.423	27.991	1.00 9.63	APEP
50	ATOM	71		TYR	9	26.498	41.932	30.318	1.00 7.93	APEP
	ATOM	72		TYR	9	25.362	42.543	29.806	1.00 9.55	APEP
	ATOM	73	CZ	TYR	9.	25.452	43.286	28.646	1.00 10.64	APEP
	ATOM	74	OH	TYR	9 .	24.325	43.893	28.149	1.00 11.41	APEP
	ATOM	75	C	TYR	9	30.628	41.509	32.131	1.00 10.32	APEP
55	ATOM	76	ō	TYR	9	30.237	40.584	32.840	1.00 8.46	APEP
	ATOM	77	N	CYS	10	31.912	41.834	32.017	1.00 11.72	APEP
	ATOM	78	CA	CYS	10	32.934	41.098	32.750	1.00 13.13	APEP
				-						

			_							
	MOTA	79	C '	CYS	10	32.832	41.404	34.240	1.00 14.57	APEP
	MOTA	80	0	CYS	10	33.565	40.835	35.051	1.00 14.20	APEP
	MOTA	81	CB	CYS	10	34.329	41.471	32.242	1.00 14.59	APEP
	MOTA	82	SG	CYS	10	34.747	40.862	30.569	1.00 13.90	APEP
5	MOTA	83	N	LYS	11	31.913	42.300	34.593	1.00 15.58	APEP
	MOTA	84	CA	LYS	11	31.706	42.695	35.982	1.00 17.16	APEP
	MOTA	85	CB	LYS	11	31.514	44.213	36.073	1.00 17.37	APEP
	ATOM	86	CG	LYS	11	32.805	45.020	35.908	1.00 19.88	APEP
	ATOM	87	CD	LYS	11	33.879	44.549	36.872	1.00 19.32	APEP
10	ATOM	88	CE	LYS	11	35.252	44.994	36.442	1.00 13.32	APEP
	ATOM	89	NZ	LYS	11	36.148	43.824	36.212	1.00 26.09	APEP
	ATOM	90	C	LYS	11	30.503	41.987			
	MOTA	91	o	LYS	11			36.600	1.00 18.39	APEP
	ATOM	92				30.330	41.990	37.822	1.00 18.93	APEP
15			N	ILE	12	29.676	41.382	35.748	1.00 17.37	APEP
15	MOTA	93	CA	ILE	12	28.488	40.662	36.197	1.00 17.54	APEP
	MOTA	94	CB	ILE	12	27.522	40.348	35.011	1.00 15.92	APEP
	ATOM	95	CG2		12	26.347	39.507	35.497	1.00 14.62	APEP
	MOTA	96		ILE	12	27.033	41.645	34.353	1.00 14.71	
	MOTA	97	CD1		12	26.197	42.543	35.246	1.00 14.44	APEP
20	MOTA	. 98	C	ILE	12	28.902	39.331	36.817	1.00 18.50	APEP
	MOTA	99	0	ILE	12	29.884	38.728	36.401	1.00 19.73	APEP
	ATOM	100	N	LYS	13	28.144	38.884	37.813	1.00 19.79	APEP
	ATOM	101	CA	LYS	13	28.391	37.605	38.468	1.00 21.47	APEP
	MOTA	102	CB	LYS	13	28.978	37.811	39.871	1.00 24.55	APEP
25	MOTA	103	CG	LYS	13	28.349	38.959	40.664	1.00 29.46	APBP
	MOTA	104	CD	LYS	13	29.139	39.272	41.934	1.00 32.01	APEP
	MOTA	105	CE	LYS	13	29.966	40.546	41.786	1.00 34.07	APEP
	ATOM	106	NZ	LYS	13	30.867	40.516	40.591	1.00 34.69	APEP
	ATOM	107	C	LYS	13	27.051	36.867	38.555	1.00 20.70	APEP
30	ATOM	108	ō	LYS	13	26.050	37.433	38.976	1.00 19.96	APEP
	ATOM	109	N	CYS	14	27.029	35.611	38.132	1.00 20.06	APEP
	ATOM	110	CA	CYS	14	25.808	34.831	38.176	1.00 20.78	APEP -
	ATOM	111	C	CYS	14	25.741	34.062			
	MOTA	112	0	CYS	14			39.482	1.00 22.64	APEP
35	ATOM	113	СВ			26.724	33.994	40.218	1.00 22.31	APEP
33	ATOM	114		CYS	14	25.752	33.875	36.987	1.00 19.10	APEP
			SG	CYS	14	25.352	34.724	35.422	1.00 16.84	APEP
	MOTA	115	N	LEU	15	24.577	33.492	39.775	1.00 24.99	APEP
	ATOM	116	CA	LEU	15	24.400	32.746	41.015	1.00 27.03	APBP
	MOTA	117	CB	LEU	15	22.953	32.251	41.138	1.00 27.78	APEP
40	ATOM	118	CG	LEU	15	22.054	32.963	42.152	1.00 28.08	APEP
	MOTA	119		LEU	15	20.699	32.269	42.194	1.00 28.30	APEP
	MOTA	120		LEU	15	22.699	32.953	43.535	1.00 27.17	APBP
	MOTA	121	C	LEU	15	25.365	31.574	41.090	1.00 27.24	APEP
	MOTA	122	0	LEU	15	26.065	31.402	42.088	1.00 28.76	APEP
45	MOTA	123	N	LYS	16	25.410	30.774	40.033	1.00 28.73	APEP
	MOTA	124	CA	LYS	16	26.300	29.621	40.005	1.00 30.04	APEP
	ATOM	125	CB	LYS	16	25.679	28.478	39.201	1.00 31.71	APEP
	MOTA	126	CG	LYS	16	24.162	28.401	39.271	1.00 32.24	APEP
	MOTA	127	CD	LYS	16	23.562	27.757	38.009	1.00 33.96	APEP
50	MOTA	128	CE	LYS	16	24.536	27.738	36.820	1.00 33.82	APEP
-	MOTA	129	NZ	LYS	16	23.828	27.604	35.515	1.00 33.08	APEP
	ATOM	130	C	LYS	16	27.659	29.966	39.417	1.00 33.03	APEP
	ATOM	131	0	LYS	16	28.442	29.900	39.092	1.00 30.04	
	ATOM	132	N	GLY	17	27.933	31.261	39.032		APEP
55	ATOM	133	CA	GLY					1.00 29.07	APEP
"					17	29.214	31.698	38.744	1.00 27.07	APEP
	MOTA	134	C	GLY	17	29.410	31.553	37.243	1.00 26.38	APEP
	MOTA	135	0	GLY	17	28.448	31.552	36.472	1.00 25.25	APEP

	MOTA	136	N ·	GLY	18	30.670	31.428	36.831	1.00 25.19	APEP
	MOTA	137	CA	GLY	18	30.983	31.294	35.420	1.00 22.24	APEP
	ATOM	138	C	GLY	18	31.139	32.655	34.771	1.00 20.24	APEP
	ATOM	139	0	GLY	18	30.510	33.622	35.195	1.00 21.83	APEP
5	ATOM	140	N	VAL	19	31.974	32.735	33.743	1.00 16.65	APEP
	ATOM	141	CA	VAL	19	32.212	33.989	33.040	1.00 15.58	APEP
	ATOM	142	CB	VAL	19	33.516	33.896	32.222	1.00 15.68	APEP
	ATOM	143		VAL	19	33.884	35.254	31.649	1.00 13.84	APEP
	ATOM	144		VAL	19	34.633	33.364	33.108	1.00 15.09	APEP.
10	ATOM	145	C	VAL	19	31.045	34.361	32.115	1.00 13.03	APEP
	ATOM	146	ō	VAL	19	30.622	33.562	31.278	1.00 14.11	APEP
	ATOM	147	N	HIS	20	30.528	35.577	32.265	1.00 11.37	
	MOTA	148	CA	HIS	20	29.410	36.020	31.444		APEP
	ATOM	149	CB	HIS	20	29.094	37.493	31.704	1.00 11.65	APÉP
15	ATOM	150	CG	HIS	20	27.721	37.900	31.704	1.00 12.93	APEP
	ATOM	151		HIS	20	26.597	38.156		1.00 13.85	APEP
	ATOM	152		HIS	20	27.392		31.974	1.00 15.96	APEP
	ATOM	153		HIS	20		38.102	29.941	1.00 15.59	APEP
	ATOM	154		HIS	20	26.126	38.466	29.853	1.00 15.25	APEP
20	ATOM	155	C	HIS	20	25,620	38.506	31.072	1.00 17.34	APEP
20	ATOM	156	0			29.679	35.811	29.961	1.00 11.56	APEP
	ATOM	157	И	HIS	20	30.783	36.054	29.467	1.00 9.12	APEP
	ATOM	158	CA	THR	21	28.650	35.355	29.260	1.00 12.15	APEP
	ATOM		CB	THR	21	28.739	35.090	27.828	1.00 12.76	APEP
25	ATOM	159		THR THR	21	27.349	34.686	27.287	1.00 13.90	APEP
23	ATOM	160 161			21	27.016	33.387	27.792	1.00 14.96	APEP
				THR	21	27.336	34.658	25.756	1.00 13.84	APEP
	MOTA	162	C	THR	21	29.294	36.278	27.025	1.00 12.07	APEP
	MOTA	163	0	THR	21	30.102	36.090	26.111	1.00 8.89	APEP
30	ATOM ATOM	164	N	ALA	22	28.873	37.490		1.00 10.72	APEP
30	MOTA	165	CA	ALA	22	29.312	38.698	26.693	1.00 11.63	APEP
	ATOM	166 167	CB	ALA	22	28.311	39.816	26.925	1.00 12.20	APEP.
			C	ALA	22	30.706	39.156	27.102	1.00 13.47	APEP
	MOTA MOTA	168	0	ALA	22	31.200	40.178	26.621	1.00 13.74	APEP
35		169	N	CYS	23	31.332	38.410	28.006	1.00 14.12	APEP
33	MOTA	170	CA	CYS	23	32.683	38.715	28.460	1.00 14.19	APEP
	MOTA	171	C	CYS	23	33.564	37.670	27.793	1.00 12.16	APEP
	MOTA	172	0	CYS	23	34.725	37.909	27.497	1.00 13.84	APEP
	MOTA	173	СВ	CYS	23	32.782	38.599	29.995	1.00 12.96	APEP
40	MOTA	174	SG	CYS	23	34.454	38.855	30.695	1.00 14.19	APEP
40	MOTA	175	N	LYS	24	32.987	36.501	27.561	1.00 13.18	APEP
	MOTA	176	CA	LYS	24	33.697	35.405	26.917	1.00 14.00	APEP
	MOTA	177	CB	LYS	24	32.894	34.109	27.048	1.00 13.62	APEP
	MOTA	178	CG	LYS	24	33.111	33.347	28.334	1.00 13.30	APEP
	MOTA	179	CD	LYS	24	32.593	31.929	28.193	1.00 14.90	APEP
45	MOTA	180	CE	LYS	24	31.656	31.540	29.311	1.00 15.48	APEP
•	ATOM	181	NZ	LYS	24	32.009	30.188		1.00 21.39	APEP
	MOTA	182	C	LYS	24	33.853	35.742	25.446	1.00 13.93	APEP
	MOTA	183	Ó	LYS	24	34.917	35.578	24.861	1.00 14.28	APEP
	MOTA	184	N	TYR	25	32.767	36.219	24.857	1.00 16.64	APEP
50	ATOM	185	CA	TYR	25	32.737	36.585	23.448	1.00 17.22	APEP
	MOTA	186	CB	TYR	25	31.736	35.684	22.719	1.00 18.12	APEP
	MOTA	187	CG	TYR	25	31.716	34.245	23.217	1.00 16.13	APBP
	MOTA	188	CD1	TYR	25	30.600	33.727	23.879	1.00 18.60	APEP
	MOTA	189	CEI	TYR	25	30.574	32.404	24.332	1.00 15.87	APEP
55	MOTA	190	CD2	TYR	25	32.810	33.403	23.021	1.00 16.98	APEP
	MOTA	191	CE2	TYR	25	32.794	32.081	23.469	1.00 14.73	APEP
	MOTA	192	CZ	TYR	25	31.677	31.590	24.120	1.00 16.64	APEP

									•	
	MOTA	193	он .	TYR	25	31.661	30.283	24.566	1.00 19.74	APEP
	ATOM	194	C	TYR	25	32.339	38.060	23.336	1.00 18.24	APEP .
	MOTA	195	0	TYR	25	31.155	38.404	23.332	1.00 17.58	APEP
	MOTA	196	N	GLY	26	33.340	38.929	23.250	1.00 19.90	APEP
5	ATOM	197	CA	GLY	26	33.086	40.358	23.182	1.00 22.78	APEP
	ATOM	198	C	GLY	26	32.536	40.927	21.886	1.00 25.12	APEP
	ATOM	199	0	GLY	26	32.260	42.125	21.815	1.00 26.30	APEP
	MOTA	200	N	SER	27	32.362	40.092	20.867	1.00 26.19	APEP
	ATOM	201	CA	SER	27	31.855	40.570	19.583	1.00 26.72	APEP
10	ATOM	202	CB	SER	27	32.960	40.435	18.522	1.00 25.95	APEP
	MOTA	203	OG	SER	27	32.457	40.041	17.259	1.00 24.78	APEP
	ATOM	204	С	SER	27	30.586	39.839	19.139	1.00 26.86	APEP
	ATOM	205	0	SER	27	30.159	38.878	19.774	1.00 25.87	APEP
	ATOM	206	N	LEU	28	29.979	40.312	18.053	1.00 29.54	APEP
15.	MOTA	207	CA	LEU	28	28.766	39.695	17.518	1.00 30.96	APEP
	ATOM	208	CB	LEU	28	27.793	40.769	17.021	1.00 33.13	APEP.
	ATOM	209	CG	LEU	28	28.127	42.217	17.391	1.00 34.56	APEP
	ATOM	210		LEU	28	29.022	42.812	16.319	1.00 34.22	APEP
	ATOM	211		LEU	28	26.843	43.030	17.551	1.00 34.12	APEP
20	ATOM	212	C	LEU	28	29.142	38.769	16.365		APEP
	ATOM	213	ō	LEU	28	28.277	38.224	15.673	1.00 31.18	APEP
	ATOM	214	N	LYS	29	30.448	38.602	16.176	1.00 30.29	APEP
	ATOM	215	CA	LYS	29	31.008	37.759	15.124	1.00 29.17	APEP
	ATOM	216	CB	LYS		32.490	38.102	14.937	1.00 31.20	APEP
25	ATOM	217	CG	LYS	29	33.016	37.866	13.534	1.00 32.99	APEP
	ATOM	218	CD	LYS	29	34.528	37.785	13.521	1.00 34.25	APEP
	ATOM	219	CE	LYS	29	35.150	39.121	13.885	1.00 35.23	APEP
	ATOM	220	NZ	LYS	29	35.686	39.098	15.273	1.00 37.84	APEP
	ATOM	221	c ·	LYS	29	30.867	36.269	15.444	1.00 27.53	APEP
30	ATOM	222	Õ	LYS	29	31.446	35.772	16.413	1.00 25.87	APEP
50	ATOM	223	N	PRO	30	30.104	35.530	14.621	1.00 27.59	APEP
	ATOM	224	CD	PRO	30	29.362	36.011	13.442	1.00 26.03	APEP
	ATOM	225	CA	PRO	30	29.905	34.091	14.840	1.00 25.87	APEP
	ATOM	226	CB	PRO	30	28.982	33.675	13.694	1.00 25.48	APEP
35	ATOM	227	CG	PRO	30	28.330	34.949	13.245	1.00 24.87	APEP
	ATOM	228	C	PRO	30	31.182	33.253	14.871	1.00 25.41	APEP
	ATOM	229	ō	PRO	30	32.061	33.404	14.018	1.00 26.47	APEP
	ATOM	230	И.	ASN	31	31,273	32.376		1.00 22.04	APEP
	ATOM	231	CA	ASN	31	32.407	31.469	16.030	1.00 21.43	APEP
40	MOTA	232	CB	ASN	31	33.061	31.623	17.413	1.00 21.58	APEP
	ATOM	233	CG	ASN	31	33.840	32.911	17.564	1.00 23.13	APEP
	ATOM	234		ASN	31	34.581	33.319	16.672	1.00 23.71	APEP
	ATOM	235		ASN	31	33.680	33.558	18.713	1.00 25.47	APEP
	ATOM	236	C	ASN	31	31.817	30.071	15.944	1.00 19.60	APEP
45	MOTA	237	ō	ASN	31	31.743	29.365	16.948	1.00 18.51	APEP
45	ATOM	238	N	CYS	32	31.384	29.667	14.756	1.00 18.76	APEP
	MOTA	239	CA	CYS	32	30.779	28.348	14.605	1.00 18.03	APEP
	ATOM	240	C	CYS	32	31.690	27.310	13.975	1.00 17.09	APEP
			o	CYS	32	31.234	26.464	13.207	1.00 17.05	APEP
50	ATOM	241 242		CYS	32	29.493	28.456	13.792	1.00 17.35	APEP
20	ATOM		CB			28.253	29.528	14.570	1.00 17.35	APEP
	MOTA	243	SG	CYS	32			14.311	1.00 16.28	
	ATOM	244	N	GLY	33	32.974	27.379			APEP
	MOTA	245	CA	GLY	33	33.942	26.433	13.786	1.00 21.31 1.00 22.56	APEP
S F	MOTA	246	C	GLY	33	33.914	26.269	12.278		APEP
55	MOTA	247	0	GLY	33	33.985	27.250	11.532	1.00 22.89	APEP
	ATOM	248	N	ASN	34	33.812	25.021	11.830	1.00 22.35	APEP
	MOTA	249	CA	ASN	34	33.787	24.724	10.409	1.00 23.03	APEP

									•	
	MOTA	250	CB.	ASN	34	34.531	23.410	10.136	1.00 26.79	APEP
	ATOM	251	CG	ASN	34 .	33.754	22.187	10.581	1.00 31.53	APBP ·
	ATOM	252	OD1		34	33.028	22.221	11.579	1.00 35.39	APEP
	ATOM	253		ASN	34	33.908	21.088	9.840	1.00 32.88	APEP
5	ATOM	254	C	ASN	34	32.377	24.682	9.821	1.00 22.38	APEP
3	ATOM	255	0	ASN	34	32.193	24.351	8.647	1.00 21.38	APEP
			И	LYS	35	31.377	25.029	10.629	1.00 19.97	APEP
	MOTA	256	CA	LYS	35	30.007	25.053	10.133	1.00 17.88	APEP
	ATOM	257			35	29.011	25.166	11.289	1.00 17.85	APEP
10	ATOM	258	CB	LYS	35 35	29.323	24.277	12.482	1.00 19.14	APEP
10	MOTA	259	CG	LYS		28.050	23.847	13.179	1.00 18.82	APEP
	MOTA	260	CD	LYS	35		23.884	14.689	1.00 18.39	APEP
	MOTA	261	CE	LYS	35 35	28.196	23.329	15.115	1.00 18.61	APEP
	MOTA	262	NZ	LYS	35	29.499		9.235	1.00 16.90	APEP
	MOTA	263	C	LYS	35	29.879	26.281	9.453	1.00 16.79	APEP
15	ATOM	264	0	LYS	35	30.557	27.284		1.00 16.73	APEP
	ATOM	265	N	VAL	36	29.029	26.202	8.218		
	MOTA	266	CA	VAL	36	28.831	27.342	7.330	1.00 15.62	APEP APEP
	MOTA	267	CB	VAL	36	28.560	26.916	5.872	1.00 15.89	
	MOTA	268	_	VAL	36	28.474	28.150	4.990	1.00 14.85	APEP
20	MOTA	269	CG2	VAL	36	29.663	26.000	5.374	1.00 17.84	APEP
	ATOM	270	C	VAL	36	27.636	28.149	7.820	1.00 13.37	APEP
	ATOM	271	0	VAL	36	26.530	27.631	7.949	1.00 11.50	APEP
	MOTA	272	N	VAL	37	27.882	29.422	8.095	1:00 13.37	APEP
	MOTA	273	CA	VAL	37	26.857	30.337	8.573	1.00 15.79	APEP
25	ATOM	274	CB	VAL	37 ·	27.506	31.450	9.424	1.00 16.40	APEP
	MOTA	275	CG1	VAL	37	26.487	32.521		1.00 16.09	APEP
	MOTA	276	CG2	VAL	37	28.096	30.847	10.681	1.00 13.21	APEP
	MOTA	277	C	VAL	37	26.067	30.971	7.422	1.00 16.67	APEP
•	ATOM	278	0	VAL	37	26.557	31.873	6.738	1.00 18.09	APEP
30	MOTA	279	N	VAL	38	24.843	30.492	7.211	1.00 16.92	APBP
	ATOM	280	CA	VAL	38	23.991	31.020	6.149	1.00 17.73	APEP
	ATOM	281	CB	VAL	38	22.662	30.229	6.051	1.00 15.03	APEP
	MOTA	282	CG1	VAL	-38	21.770	30.820	4.976	1.00 15.83	APEP
	ATOM	283	CG2	VAL	38	22.953	28.778	5.740	1.00 17.06	APEP
35	ATOM	284	C	VAL	38	23.704	32.480	6.486	1.00 17.90	APEP
	MOTA	285	0	VAL	38	23.852	33.372	5.645	1.00 18.01	
	ATOM	286	N	SER	39	23.305	32.713	7.731	1.00 15.41	APEP
	ATOM	287	CA	SER	39	23.019	34.052	8.214	1.00 14.21	APEP
	MOTA	288	CB	SER	39	21.857	34.674	7.438	1.00 14.70	APEP
40	ATOM	289	OG	SER	39	20.721	33.837	7.467	1.00 14.28	APEP
	ATOM	290	С	SER	39	22.679	34.006	9.700	1.00 14.75	APEP
	ATOM	291	0	SER	39	22.636	32.936	10.308	1.00 12.05	APEP
	ATOM	292	N	TYR	40	22.444	35.179	10.278	1.00 14.22	APEP
	ATOM	293	CA	TYR	40	22.111	35.272	11.686	1.00 14.10	APEP
. 45	ATOM	294	CB	TYR	40	23.397	35.179	12.530	1.00 15.42	APEP
	ATOM	295	CG	TYR	40	24.239	36.438	12.583	1.00 14.41	APEP
	MOTA	296		LTYR	40	23.921	37.472	13.464	1.00 15.34	APEP
	ATOM	297		LTYR	40	24.711	38.605	13.563	1.00 16.41	APEP
	ATOM	298		TYR	40	25.375	36.575	11.790	1.00 14.36	APEP
50	ATOM	299		TYR	40	26.179	37.712	11.879	1.00 17.60	APEP
20	ATOM	300	CZ	TYR	40	25.842	38.723	12.771	1.00 18.38	APEP
		301	OH	TYR	40	26.639	39.841	12.896	1.00 19.23	APBP
	MOTA	301	C	TYR	40	21.360	36.569	11.969	1.00 13.71	APEP
	MOTA		0	TYR	40	21.456	37.526	11.201	1.00 13.53	APEP
F	MOTA	303		GLY	41	20.602	36.590	13.061	1.00 12.13	APBP
55	MOTA	304	N CA		41	19.857	37.783	13.418	1.00 13.27	APEP
	MOTA	305			41	18.381	37.7656	13.102	1.00 13.46	APEP
	MOTA	306	С	GLY	-# T	10.301	37.030			

	MOTA	307	Ο.	GLY	41	17.968	36.726	12.419	1.00 14.55	APBP
	MOTA	308	N	LEU	42	17.586	38.601	13.590	1.00 12.94	APBP
	MOTA	309	CA	LEU	42	16.150	38.581	13.365	1.00 12.38	APEP
	MOTA	310	CB	LEU	42	15.421	38.302	14.676	1.00 11.85	APBP
5	MOTA	· 311	CG	LEU	42	15.462	36.858	15.170	1.00 9.57	APEP
	MOTA	312	CD1	LEU	42	15.279	36.828	16.682	1.00 10.07	APEP
	MOTA	313	CD2	LEU	42	14.374	36.063	14.475	1.00 9.98	APEP
	ATOM	314	C	LEU	42	15.651	39.895	12.791	1.00 12.90	APEP
	MOTA	315	0	LEU	42	16.066	40.968	13.223	1.00 13.81	APBP
10	MOTA	316	N	THR	43	14.758	39.808	11.816	1.00 12.41	APEP
	MOTA	317	CA	THR	43	14.200	41.006	11.210	1.00 13.32	APEP
	MOTA	318	CB	THR	43	13.412	40.693	9.919	1.00 11.63	APEP
	ATOM	319	OG1	THR	43	12.195	40.028	10.254	1.00 12.20	APEP
	ATOM	320	CG2	THR	43	14.222	39.804	8.994	1.00 11.85	APEP
15	ATOM	321	C	THR	43	13.249	41.637	12.208	1.00 13.30	APEP
	ATOM	322	ō	THR	43	12.801	40.990	13.161	1.00 12.67	APEP
	ATOM	323	N	LYS	44	12.939	42.904	11.977	1.00 14.11	APEP
	ATOM	324	CA	LYS	44	12.050	43.640	12.851	1.00 14.11	APEP
	ATOM	325	CB	LYS	44	11.975	45.100	12.379	1.00 14.33	APEP
20	ATOM	326	CG	LYS	44	10.594	45.667	12.152		
20	ATOM	327	CD	LYS	44	10.567	47.157		1.00 18.80 1.00 19.36	APEP
	ATOM	327	CE	LYS	44			12.489		APEP
	ATOM	329	NZ	LYS		9.655	47.915	11.552	1.00 21.90	APEP
	ATOM		C		44	10.430	48.714	10.570	1.00 20.87	APEP
25		330		LYS	44	10.672	42.985	12.923	1.00 13.76	APEP
23	ATOM	331	Ο.	LYS	44	10.083	42.910	13.999	1.00 14.04	APEP
	ATOM	332	N	GLN	45	10.162	42.487	11.798	1.00 12.41	APEP
	ATOM	333	CA	GLN	45	8.849	41.839	11.806	1.00 11.51	APEP
	ATOM	334	CB	GLN	45	8.334	41.646	10.370	1.00 10.79	APEP
20	ATOM	335	CG	GLN	45	7.063	40.816	10.246	1.00 10.70	APEP
30	ATOM	336	CD	GLN	45	5.812	41.538	10.743	1.00 12.43	APEP
	ATOM	337		GLN	45	5.696	42.763	10.650	1.00 12.72	APEP
	MOTA	338		GLN	45	4.869	40.772	11.274	1.00 11.44	APEP
	ATOM	339	C	GLN	45	8.917	40.496	12.548	1.00 10.87	APEP
	ATOM	340	0	GLN	45	7.987	40.123	13.267	1.00 9.48	APEP
35	MOTA	341	N	GLU	46	10.024	39.779	12.382	1.00 9.10	APEP
	ATOM	342	CA	GLU	46	10.207	38.496	13.059	1.00 9.69	APEP
	MOTA	343	CB	GLU	46	11.511	37.845	12.610	1.00 8.84	APEP
	MOTA	344	CG	GLU	46	11.366	36.916	11.407	1.00 9.10	APEP
	ATOM	345	CD	GLU	46	12.710	36.534	10.806	1.00 9.37	APEP
40	ATOM	346	OE1	GLU	46	13.723	37.158	11.173	1.00 7.41	APEP
	MOTA	347	OE2	GLU	. 46	12.755	35.607	9.966	1.00 10.21	APEP
	MOTA	348	C	GLU	46	10.217	38.666	14.582	1.00 10.14	APEP
٠.	MOTA	349	0	GLU	46	9.708	37.817	15.310	1.00 10.51	APEP
	ATOM	350	N	LYS	47	10.807	39.761	15.057	1.00 10.08	APEP
45	ATOM	351	CA	LYS	47	10.865	40.042	16.486	1.00 9.91	APEP
	ATOM	352	CB	LYS	47	11.675	41.318	16.749	1.00 9.24	APEP
	ATOM	353	CG	LYS	47	13.167	41.191	16.459	1.00 7.94	APEP
	ATOM	354	CD	LYS	47	13.906	42.509	16.710	1.00 9.13	APEP
	ATOM	3.55	CE	LYS	47	15.411	42.361	16.498	1.00 11.45	APEP
50	ATOM	356	NZ	LYS	47	16.127	43.675	16.431	1.00 11.96	APEP
	ATOM	357	C	LYS	47	9.438	40.229	16.984	1.00 10.20	APEP
	ATOM	358	0	LYS	47	9.027	39.626	17.969	1.00 10.20	APEP
	ATOM	359	N	GLN	48	8.689	41.065	16.275	1.00 10.41	
	ATOM	360	CA	GLN						APEP
55	ATOM	361			48	7.299	41.366	16.602	1.00 11.75	APEP
J			CB	GLN	48	6.759	42.409	15.624	1.00 11.16	APEP
	ATOM	362	CG	GLN	48	5.254	42.607	15.669	1.00 12.11	APEP
	MOTA	363	CD	GLN	48	4.767	43.515	14.556	1.00 12.60	APEP

	MOTA	3 <i>6</i> 4	OE1	-	48	5.301	44.606	14.359	1.00 10.04	APEP
	MOTA	365	NE2	GLN	48	3.758	43.065	13.816	1.00 11.92	APEP
	ATOM	366	C	GLN	48	6.420	40.123	16.563	1.00 12.69	APEP
	ATOM	367	0	GLN	48	5.488	39.993	17.353	1.00 13.53	APEP
5	MOTA	368	N	ASP	49	6.716	39.219	15.633	1.00 12.63	APEP
_	MOTA	369	CA	ASP	49	5.964	37.977	15.487	1.00 11.04	APEP
	ATOM	370	CB	ASP	49	6.290	37.322	14.144	1.00 14.99	APEP
	ATOM	371	CG	ASP	49	5.578	37.990	12.981	1.00 17.72	APEP
	ATOM	372	OD1		49	4.518	38.620	13.200	1.00 18.74	APEP
10	ATOM	373		ASP	49	6.082	37.878	11.844	1.00 19.80	APEP
10	ATOM	374	C	ASP	49	6.285	36.998	16.615	1.00 9.65	APEP
	ATOM	375	Ö	ASP	49	5.433	36.211	17.020		APEP
						7.519	37.034	17.107	1.00 8.25	APEP
	MOTA	376	N	ILE	50					
	ATOM	377	CA	ILE	50	7.916	36.152	18.203	1.00 8.01	APEP
15	MOTA	378	CB	ILE	50	9.454	36.132	18.387	1.00 7.72	APEP
	MOTA	379	CG2	ILE	5 0	9.823	35.416	19.693	1.00 7.19	APEP
	MOTA	380		ILE	50	10.103	35.410	17.203	1.00 6.44	APEP
	MOTA	381		ILE	50	11.582	35.687	17.041	1.00 4.97	APEP
	MOTA	382	C	ILE	50	7.256	36.621	19.499	1.00 8.14	APEP
20	MOTA	383	0	ILE	50	6.805	35.808	20.303	1.00 7.29	APEP
	ATOM	384	N	LEU	51	7.191	37.938	19.679	1.00 8.57	APEP
	MOTA	385	CA	LEU	51	6.571	38.529	20.854	1.00 9.76	APEP
	ATOM	386	CB	LEU	51	6.733	40.055	20.836	1.00 9.57	APEP
	ATOM	387	CG	LEU	51	6.509	40.844	22.139	1.00 12.08	APEP
25	ATOM	388		LEU	51	7.509	40.401	23.216	1.00 9.69	APEP
	ATOM	389		LEU	51	6.659	42.333	21.861	1.00 10.85	APEP
	ATOM	390	C	LEU	51	5.091	38.172	20.863	1.00 10.95	APEP
	ATOM	391	ō	LEU	51	4.571	37.664	21.861	1.00 12.16	APEP
	ATOM.	392	N	LYS	52	4.423	38.427	19.739	1.00 10.41	APEP
30	MOTA	393	CA	LYS	. 52	2.994	38.156	19.601	1.00 10.29	APEP
30	MOTA	394	CB	LYS	52	2.520	38.535	18.196	1.00 10.94	APBP
	ATOM	395	CG	LYS	52 52	1.066	38.956	18.132	1.00 14.35	APEP
		•		LYS	52 52	0.258	38.029	17.236	1.00 14.33	APEP
	ATOM	396	CD					16.543	1.00 10.34	APEP
25	MOTA	397	CE	LYS	52	-0.870	38.780			
35	MOTA	398	NZ	LYS	52	-2.107	38.817	17.374	1.00 17.77	APEP APEP
	ATOM	399	C	LYS	52	2.627	36.709	19.893	1.00 9.70	
	MOTA	400	0	LYS	52	1.553	36.432	20.419	1.00 9.63	APEP
	ATOM	401	N	GLU	53	3.508	35.780	19.540	1.00 10.85	APEP
	MOTA	402	CA	GLU	53	3.249	34.366	19.799	1.00 11.95	APEP
40	MOTA	403	CB	GLU	. 53	4.261	33.491	19.057	1.00 13.57	APEP
	ATOM	404	CG	GLU	53	3.957	31.996	19.089	1.00 15.51	APEP
	ATOM	405	CD	GLU	53	2.525	31.651	18.695	1.00 20.29	APEP
	ATOM	406	OE1	GLU	53	1.876	32.439	17.971	1.00 21.72	APEP
	ATOM	407	OE2	GLU	53	2.044	30.577	19.111	1.00 21.86	APEP
45	MOTA	408	C	GLU	53	3.362	34.120	21.294	1.00 12.09	APEP
•	ATOM	409	0	GLU	53	2.568	33.382	21.878	1.00 11.99	APEP
	ATOM	410	N	HIS	54	4.357	34.750	21.910	1.00 12.11	APEP
	ATOM	411	CA	HIS	54	4.580	34.610	23.340	1.00 11.34	APEP
	ATOM	412	CB	HIS	54	5.829	35.399	23.769	1.00 9.29	APEP
50	ATOM	413	CG	HIS	54	7.089	34.584	23.817	1.00 7.76	APEP
50	ATOM	414		HIS	54	7.695	33.933	24.840	1.00 9.61	APEP
				HIS	54 54	7.895	34.394	22.716	1.00 6.60	APEP
	ATOM	415				•			1.00 5.37	APEP
	ATOM	416		HIS	54	8.941	33.663	23.056		
	MOTA	417		HIS	54	8.844	33.370	24.340		APEP
55	ATOM	418	С	HIS	54	3.365	35.143	24.092	1.00 10.89	APEP
	ATOM	419	0	HIS	54	2.844	34.492	24.983	1.00 10.22	APEP
	MOTA	420	N	Așn	55	2.913	36.331	23.703	1.00 12.43	APEP

	MOTA	421	CA 1	asn	55	1.784	36.982	24.356	1.00 13.65	APEP
	MOTA	422	CB	asn	55 .	1.791	38.473	23.991	1.00 12.77	
	MOTA	423	CG	asn	55	2.950	39.232	24.655	1.00 12.31	APEP
	ATOM	424	OD1	asn	55	3.3 <i>96</i>	38.871	25.747	1.00 7.53	APEP
5	MOTA	425	ND2	ASN	55	3.436	40.280	23.993	1.00 9.40	APEP
	MOTA	426	C	asn	55	0.413	36.347	24.097	1.00 13.82	APBP
	MOTA	427	0	ASN	55	-0.457	36.355	24.973	1.00 13.31	APEP
	ATOM	428	N	ASP	56	0.221	35.795	22.907	1.00 12.69	APEP
	MOTA	429	CA	ASP	56	-1.036	35.134	22.572	1.00 12.59	APEP
10	ATOM	430	CB	ASP	56	-1.049	34.675	21.111	1.00 12.80	APBP
	MOTA	431	CG	ASP	56	-1.359	35.787	20.143	1.00 13.37	APEP
	MOTA	432	OD1	ASP	56	-1.902	36.825	20.565	1.00 13.48	APBP
	MOTA	433	OD2	ASP	56	-1.059	35.615	18.945	1.00 15.39	APEP
	ATOM	434	C	ASP	56	-1.153	33.899	23.450	1.00 10.48	APEP
15	ATOM	435	0	ASP	56	-2.224	33.577	23.953	1.00 10.14	APEP
	MOTA	436	N	PHE	57	-0.046	33.191	23.604	1.00 9.15	APEP
	MOTA	437	CA	PHE	57	-0.047	31.989	24.418	1.00 11.09	APEP
	ATOM	438	CB	PHE	57	1.272	31.227	24.252	1.00 12.68	APEP
	ATOM	439	CG	PHE	57	1.261	29.863	24.884	-1.00 11.85	APBP
20	ATOM	440	CD1	PHE	57	0.346	28.899	24.471	1.00 12.69	APEP
	ATOM	441	CD2	PHE	57	2.150	29.549	25.903	1.00 12.28	APEP
	MOTA	442	CEl	PHE	57	0.316	27.642	25.067	1.00 11.80	APEP
	ATOM	443		PHE	57	2.132	28.296	26.508	1.00 12.07	APEP
	ATOM	444	CZ	PHE	57	1.216	27.342	26.092	1.00 12.36	APEP
25	ATOM	445	C	PHE	57	-0.267	32.346	25.890	1.00 10.66	APEP
_	ATOM	446	0	PHE	57	-1.012	31.664	26.597	1.00 11.28	APEP
	ATOM	447	N	ARG	58	0.360	33.423	26.349	1.00 8.83	APEP
	ATOM	448	CA	ARG	58	0.204	33.830	27.738	1.00 10.25	APEP
	ATOM	449	CB	ARG	58	1.107	35.024	28.057	1.00 7.50	APBP
30	ATOM	450	CG	ARG	58	2.483	34.615	28.530	1.00 7.56	APEP
	ATOM	451	CD	ARG	58 [°]	3.478	35.755	28.446	1.00 7.29	APEP
	MOTA	452	NE	ARG	58	3.391	36.649	29.601	1.00 8.58	APEP
	ATOM	453	CZ	ARG	58	4.025	36.450	30.750	1.00 7.65	APEP
	ATOM	454		ARG	58	4.797	35.388	30.908	1.00 8.61	APEP
35	ATOM	455	NH2		58	3.892	37.318	31.738	1.00 9.84	APEP
	ATOM	456	C	ARG	58	-1.246	34.170	28.032	1.00 9.76	APEP
	ATOM	457	0	ARG	58	-1.793	33.733	29.042	1.00 11.57	APEP
	MOTA	458	N	GLN	59	-1.874	34.932	27.141	1.00 10.78	APEP
	ATOM	459	CA	GLN	. 59	-3.270	35.321	27.314	1.00 9.25	APEP
40	ATOM	460	СВ	GLN	59	-3.621	36.464	26.368	1.00 11.30	APEP
	ATOM	461	CG	GLN	59	-3.388	37.870	26.937	1.00 14.86	
	ATOM	462	CD	GLN	59	-3.254	37.924	28.457	1.00 15.40	
	MOTA	463		GLN	59	-2.306	38.508	28.976	1.00 20.39	
	MOTA	464		GLN	59	-4.203	37.328	29.171	1.00 16.19	
45	ATOM	465	C.	GLN	59	-4.233	34.156	27.107	1.00 8.85	
	MOTA	466	Ō	GLN	59	-5.275		27.753	1.00 8.65	•
	ATOM	467	N	LYS	60	-3.900	33.240	26.209	1.00 9.28	
	MOTA	468	CA	LYS	60	-4.765	32.084	25.999	1.00 9.29	
	MOTA	469	CB	LYS	60	-4.190	31.170	24.919	1.00 11.77	
50	ATOM	470	CG	LYS	60	-5.097	29.999	24.555	1.00 12.61	
	MOTA	471	CD	LYS	60	-4.357	28.678	24.660	1.00 12.86	
	ATOM	472	CE	LYS	60	-3.849	28.205	23.310	1.00 10.33	
	ATOM	473	NZ	LYS	60	-4.535	26.203	22.830	1.00 10.33	
	ATOM	474	C	LYS	<i>6</i> 0	-4.840	31.329	27.320	1.00 12.74	
55	ATOM	475	ó	LYS	60	-5.922	31.329	27.320	1.00 7.72	
J.J		475	Ŋ	ILE	61	-3.922	31.017	27.887	1.00 9.04	
	MOTA		CA		61	-3.570	30.348	29.161	1.00 9.87	
	MOTA	477	₩.	ILE	0.1	-3.570	30.340	29.101	1.00 3.07	AFDE

						•				
	ATOM	478	CB	ILE	61	-2.075	30.101	29.536	1.00 10.78	APEP
	MOTA	479	CG2	ILE	61	-1.970	29.598	30.973	1.00 10.13	APEP.
	MOTA	480	CG1	ILE	61	-1.428	29.152	28.507	1.00. 9.94	APEP
	ATOM	481	CD1	ILB	61	-1.212	27.720	28.980	1.00 10.64	APEP
5	ATOM	482	C	ILE	61	-4.254	31.141	30.283	1.00 9.04	APEP
	ATOM	483	0	ILE	61	-4.980	30.571.		1.00 9.20	APEP
	ATOM	484	N	ALA	62	-4.041	32.454	30.314	1.00 8.91	APEP
	ATOM	485	CA	ALA	62	-4.628	33.308	31.350	1.00 9.06	APEP
	ATOM	486	CB	ALA	62	-4.090	34.729	31.209	1.00 5.84	APER
10	ATOM	487	C	ALA	62	-6.165	33.327	31.363	1.00 11.19	APEP
	ATOM	488	0	ALA	62	-6:794	33.581	32.397	1.00 12.79	APEP
	ATOM	489	N	ARG	63	-6.769	33.053	30.214	1.00 12.79	APBP
•	ATOM	490	CA	ARG	63	-8.219	33.050	30.096	1.00 12.40	APEP
	ATOM	491	CB	ARG	63	-8.618	33.627	28.736	1.00 10.93	APEP
15	ATOM	492	CG	ARG	63	-8.043	35.027	28.505	1.00 10.77	APEP
	ATOM	493	CD	ARG	63	-8.608	35.684	27.278	1.00 15.66	
	ATOM	494	NE	ARG	63	-7.868	36.904	26.968	·	
	ATOM	495	CZ	ARG	63	-7.346	37.179	25.777	1.00 17.96 1.00 20.00	APEP
•	ATOM	496		ARG	63	-7.483	36.321	24.772		APEP
20	ATOM	497		ARG	63	-6.679	38.313		1.00 19.36	APEP
20	ATOM	498	C	ARG	63	-8.827		25.590 30.285	1.00 22.72	APEP
	ATOM	499	0	ARG	63		31.661		1.00 10.92	APEP
	ATOM	500	И	GLY	64	-10.036 -7.986	31.489 30.677	30.179	1.00 12.37	APEP
	ATOM	501	CA	GLY				30.575	1.00 12.22	APEP
25	ATOM	502	CA	GLY	64 64	-8.475 -8.985	29.325	30.780	1.00 11.71	APEP
23	ATOM	503	o	GLY	64		28.685 27.911	29.509	1.00 13.26	APEP
	ATOM	504	И	LEU		-9.950		29.540	1.00 14.03	APBP
	ATOM	505	CA	LEU	65 65	-8.331	28.998	28.391	1.00 11.24	APEP
	ATOM	506	CB	LEU	65 65	-8.711	28.463	27.095	1.00 10.84	APEP
30	ATOM	507	CG	LEU		-8.747	29.581	26.044	1.00 10.48	APBP
50					65 65	-9.602		26.396	1.00 8.01	APEP
	ATOM	508		LEU	65	-9.278	31.946	25.470	1.00 13.03	APEP
	ATOM	509		LEU	65	-11.074	30.450	26.291	1.00 10.77	APEP
	ATOM	510	C	LEU	65	-7.764	27.361	26.644	1.00 12.39	APEP
35	ATOM	511	0	LEU	65	-7.998	26.719	25.625	1.00 12.90	APEP
33	ATOM	512	N	GLU	66	-6.686	27.147	27.387	1.00 11.27	APEP
	ATOM	513	CA	GLU	66	-5.754	26.094	27.023	1.00 12.09	APEP
	ATOM	514	CB	GLU	66	-4.365	26.361	27.610	1.00 11.39	APEP
	ATOM	515	CG	GLU	66	-3.327	25.308	27.245	1.00 12.91	APEP
40	ATOM	516	CD	GLU	66	-3.362	24.941	25.774	1.00 13.85	APEP
40	ATOM	517		GLU	66	-2.689	25.629	24.988	1.00 18.33	APEP
	ATOM	518		GLU	66	-4.054	23.971	25.401	1.00 12.27	APEP
	ATOM	519	C	GLU	66	-6.323	24.799	27.575	1.00 12.38	APEP
	ATOM	520	0	GLU	66	-6.214	24.512	28.764	1.00 12.85	APEP
4.5	ATOM	521	N	THR	67	~6.943	24.022	26.696	1.00 13.75	APEP
45	ATOM	522	CA	THR	67	-7.553	22.769	27.091	1.00 13.16	APEP
	ATOM	523	СВ	THR	67	-8.562	22.295	26.018	1.00 13.92	APEP
	ATOM	524		THR	67	-7.858	21.894	24.830	1.00 14.81	APEP
	MOTA	525	CG2		67	-9.524	23.413	25.671	1.00 11.42	APEP
	MOTA	526	C	THR	67	-6.548	21.652	27.368	1:00 13.63	APEP.
50	ATOM	527	0	THR	67	-6.875	20.682	28.049	1.00 14.84	APEP
	ATOM	528	N	ARG	68	-5.326	21.793	26.861	1.00 13.12	APEP
	MOTA	529	CA	ARG	68	-4.301	20.770	27.042	1.00 11.47	APEP
	ATOM	530	CB	ARG	68	-3.222	20.914	25.967	1.00 13.83	APEP
	ATOM	531	CG	ARG	68	~3.715	20.741	24.538	1.00 13.10	APEP
55	MOTA	532	CD	ARG	68	-2.626	21.128	23.542	1.00 13.89	APEP
	ATOM	533	NE	ARG	68	-2.317	22.556	23.590	1.00 12.94	APEP
	MOTA	534	CZ	ARG	68	-1.244	23.111	23.033	1.00 11.20	APEP
									•	

	ATOM -	535	NH 1	ARG	68	-0.372	22.351	22.383	1 00 10 50	3 7777
	ATOM	536		ARG	68				1.00 10.56	APEP
	ATOM	537	C			-1.042	24.420	23.135	1.00 5.87	APEP
				ARG	68	-3.631	20.746	28.415	1.00 11.74	APEP
_	ATOM	538	0	ARG	68	-3.420	21.789	29.032	1.00 10.94	APEP
5	ATOM	539	N	GLY	69	-3.295	19.536	28.867	1.00 11.61	APEP
	ATOM	540	CA	GLY	69	-2.641	19.334	30.147	1.00 14.23	APEP
	MOTA	541	C	GLY	69	-2.565	17.857	30.518	1.00 16.11	APEP
	MOTA	542	0	GLY	69	-2.998	17.001	29.747	1.00 16.74	APEP
	MOTA	543	N	asn	70	-2.006	17.551	31.687	1.00 16.09	APEP
10	MOTA	544	CA	ASN	70	-1.896	16.172	32.156	1.00 17.23	APEP
	ATOM	545	CB	ASN	70	-0.439	15.704	32.132	1.00 18.05	APEP
	ATOM	546	CG	ASN	70	-0.310	14.203	32.291	1.00 20.68	APEP
	ATOM	547	OD1	ASN	70	-1.204	13.452	31.894	1.00 20.26	APEP
	MOTA	548		ASN	70	0.806	13.752	32.874	1.00 20.67	APEP
15	ATOM	549	C	ASN	70	-2.452	16.025	33.578	1.00 16.86	APEP
••	ATOM	550	ō	ASN	70	-1.717	15.739	34.523	1.00 15.70	
	ATOM	551	N	PRO	71	-3.770				APEP
	ATOM	552	CD	PRO	71			33.738	1.00 16.37	APEP
	ATOM					-4.467	16.046	35.026	1.00 16.71	APEP
20		553	CA	PRO	71	-4.713	16.522	32.663	1.00 16.24	APEP
20	ATOM	554	CB	PRO	71	-5.962	15.777	33.086		APEP
	ATOM	555	CG	PRO	71	-5.928	15.906	34.614	1.00 16.81	APEP
	MOTA	556	C	PRO	71	-4.999	18.012	32.491	1.00 16.23	APEP
	ATOM	557	0	PRO	71	-4.638	18.837	33.338	1.00 16.06	APEP
	ATOM	558	N	GLY	72	-5.666	18.342	31.392	1.00 13.86	APEP
25	ATOM	559	CÀ	GLY	72	-6.042	19.720	31.143	1.00 14.67	APEP
	ATOM	560	C	GLY	72	-7.437	19.902	31.716	1.00 14.79	APEP
	MOTA	561	0	GLY	72	-8.030	18.935	32.192	1.00 16.06	APEP
	ATOM	562 ·	N	PRO	73	-8.000	21.115	31.695	1.00 13.41	APEP
	ATOM.	563	CD	PRO	73	-9.343	21.354	32.253	1.00 13.38	APEP
30	ATOM	564	CA	PRO	73	-7.412	22.347	31.164	1.00 14.44	APEP
	ATOM	565	CB	PRO	73	-8.621	23.250	30.976	1.00 13.74	APEP
	ATOM	566	CG	PRO	73 .	-9.519	22.850	32.113	1.00 12.91	APEP
	ATOM	567	C	PRO	73	-6.412	22.977	32.129	1.00 13.52	APEP
	ATOM	568	ō	PRO	73	-6.271	22.537	33.268	1.00 13.30	APEP
35	ATOM	569	N	GLN	74	-5.713	24.004	31.658	1.00 13.50	APEP
	ATOM	570 .	CA	GLN	74	-4.782	24.723	32.506	1.00 12.34	
	ATOM	571	CB	GLN	74	-3.708	25.433			APEP
	MOTA	572	CG	GLN				31.672	1.00 10.31	APEP
	ATOM	573	CD	GLN		-2.658	24.505	31.043	1.00 9.27	APEP
40	ATOM				74	-2.070	23.484	32.024	1.00 12.07	APEP
40		574	OE1		74	-1.558	23.838	33.087	1.00 10.98	APEP
	ATOM	575	NE2	GLN	74	-2.137	22.210	31.654	1.00 12.44	APEP
	ATOM	576	С	GLN	74	-5.707	25.736	33.170	1.00 11.59	APEP
	MOTA	577	0	GLN	74	-6.710	26.139	32.579	1.00 12.75	APEP
	ATOM	578	N	PRO	75	-5.393	26.158	34.401	1.00 10.76	APEP
45	ATOM	579	CD	PRO	75	-4.230	25.770	35.221	1.00 10.45	APEP
	MOTA	580	CA	PRO	75	-6.254	27.128	35.092	1.00 10.89	APEP
	MOTA	581	CB	PRO	75	-5.876	26.948	36.561	1.00 10.78	APEP
	ATOM:	582	CG	PRO	75	-4.430	26.540	36.515	1.00 9.92	APEP
	ATOM	583	C	PRO	75	-6.077	28.571	34.642	1.00 10.22	APEP
50	MOTA	584	0	PRO	75	-5.017	28.955	34.170	1.00 11.44	APEP
	MOTA	585	N	PRO	76	-7.123	29.394	34.782	1.00 11.88	APEP
	ATOM	586	CD	PRO	76	-8.46Ì	29.107	35.327	1.00 11.00	APEP
	ATOM	587	CA	PRO	76	-6.968		34.365	1.00 13.85	
	MOTA	588	CB	PRO	76 76	-8.383	31.373			APEP
55								34.440	1.00 12.73	APEP
"	ATOM	589	CG	PRO	76 76	-9.284		34.830	1.00 14.35	APEP
	ATOM	590	С	PRO	76	-6.000	31.507	35.315	1.00 14.80	APEP
	MOTA	591	0	PRO	76	-5.672	30.987	36.382	1.00 14.45	APEP

	ATOM	592	N·	ALA	77	-5.553	32.697	34.930	1.00 15.36	APEP
	ATOM	593	CA	ALA	77	-4.617	33.458	35.745	1.00 16.81	APEP
	MOTA	594	CB	ALA	77	-3.264	33.531	35.050	1.00,15.29	APEP
	MOTA	595	C	ALA	77	-5.111	34.864	36.034	1.00 18.21	APEP
5	MOTA	596	0	ALA	77	-5.946	35.414	35.315	1.00 18.77	APEP
	MOTA	597	N	LYS	78	-4.578	35.447	37.095	1.00 19.69	APBP
	ATOM	598	CA	LYS	78 ·	-4.944	36.799	37.487	1.00 21.45	APEP
	MOTA	599	CB	LYS	78	-5.453	36.779	38.934	1.00 19.28	APEP
	ATOM	600	CG	LYS	78	-5.408	38.109	39.658	1.00 21.07	APEP.
10	MOTA	601	CD	LYS	78	-5.939	37.969	41.078	1.00 22.93	APEP
	MOTA	602	CE	LYS	78	-7.039	38.993	41.380	1.00 22.07	APEP
	MOTA	603	NZ	LYE	78	-8.416	38.442	41.192	1.00 18.83	APEP
	MOTA	604	C	LYS	78	-3.681	37.655	37.351	1.00 20.82	APEP
	MOTA	605	0	LYS	78	-3.735	38.825	36.973	1.00 22.49	APEP
15	MOTA	606	N	ASN	79	-2.546	37.024	37.632	1.00 20.62	APEP
	MOTA	607	CA	ASN	79	-1.225	37.650	37.596	1.00 20.96	APEP
	MOTA	608	CB	ASN	79	-0.322	36.893	38.591	1.00 21.73	APEP
	MOTA	609	CG	ASN	79	0.895	37.696	39.041	1.00 26:41	APEP
	MOTA	610	OD1	ASN	79	1.739	37.194	39.794	1.00 27.31	APEP .
20	ATOM	611	ND2	ASN	79	0.995	38.941	38.586	1.00 30.92	APEP
	MOTA	612	C	ASN	79	-0.570	37.649	36.199	1.00 20.23	APEP
	ATOM	613	0	ASN	79	0.658	37.679	36.109	1.00 20.51	APEP
	MOTA	614	N	MET	80	-1.354	37.648	35.117	1.00 17.31	APEP
	MOTA	615	CA	MET	80	0.745	37.581	33.783	1.00 16.95	APEP
25	ATOM	616	CB	MET	80	-1.334	36.398	33.014	1.00 14.01	APEP
	MOTA	617	CG	MET	80	-0.475	35.941	31.848	1.00 10.95	APEP
	ATOM	618	SD	MET	80	1.001	35.032	32.360	1.00 10.66	APEP
	MOTA	619	CE	MET	80	0.309	33.392	32.631	1.00 9.65	APEP.
	MOTA	620	C	MET	80	-0.743	38.809	32.863	1.00 17.13	APEP
30	MOTA	621	0	MET	80	-1.785	39.236	.32.377	1.00 17.76	APEP
	ATOM	622	N	LYS	81	0.450	39.343	32.602	1.00 16.19	APEP
	MOTA	623	CA	LYS	81	0.621	40.509	31.734	1.00 15.79	APEP
	ATOM	624	CB	LYS	81	1.360	41.626	32.480	1.00 19.28	APEP
	ATOM	625	CG	LYS	81	0.485	42.479	33.376	1.00 23.64	APBP
35	ATOM	626	CD	LYS	81	1.283	42.976	34.581	1.00 29.37	APEP
	ATOM	627	CB	LYS	81	0.652	42.551	35.914	1.00 30.79	APEP
	ATOM	628	NZ	LYS	81	1.639	41.850	36.794	1.00 31.43	APEP
	MOTA	629	C	LYS	81	1.428	40.135	30.489	1.00 15.20	APEP
	MOTA	630	0	LYS	81	2.144	39.133	30.478	1.00 13.27	APEP
40	MOTA	631	N	ASN	82	1.317	40.947	29.445	1.00 14.40	APEP
	ATOM	632	CA	ASN	82	.2.047	40.695	28.214	1.00 14.06	APEP
	MOTA	633	CB	ASN	82	1.442	41.492	27.059	1.00 15.84	APBP
	ATOM	634	CG	ASN	82	0.081	40.970	26.636	1.00 19.06	APEP
	MOTA	635	OD1	ASN	82	-0.837	41.746	26.366	1.00 20.37	APEP
45	ATOM	636	ND2	ASN	82	-0.058	39.649	26.579	1.00 20.55	APEP
	ATOM	637	C	ASN	82	3.496	41.107	28.400	1.00 11.87	APEP
	ATOM	638	0	ASN	82.	3.800	41.968	29.226	1.00 11.67	APBP
	ATOM	639	N	LEU	83	4.384	40.483	27.633	1.00 10.14	APEP
	ATOM	640	CA	LEU	. 83	5.809	40.789	27.684	1:00 9.10	APEP
50	ATOM	641	CB	LEU	83	6.648	39.577	27.272	1.00 9.30	APEP
	ATOM	642	CG	LEU	83	6.373	38.230	27.935	1.00 9.01	APEP
	MOTA	643		LEU	83	7.077	37.119	27.178	1.00 10.20	APEP
	MOTA	644		LEU	83	6.843	38.283	29.378	1.00 10.62	APEP
	ATOM	645	С	LEU	83	6.104	41.919	26.718	1.00 7.69	APEP
55	ATOM	646	0	LEU	83	5.285	42.254	25.866	1.00 7.01	APEP
	ATOM	647	N	VAL	84	7.277	42.516	26.878	1.00 7.90	APEP
	ATOM	648	CA	VAL	84	7.736	43.585	26.004	1.00 9.09	APEP
					- -					

	MOTA	64,9		VAL	84	7.888	44.947	26.765	1.00 9.60	APEP
	ATOM	650		VAL	84	6.511	45.476	27.152	1.00 11.40	APEP
	MOTA	651		VAL	84	8.753	44.788	28.003	1.00 8.85	APEP
_	MOTA	652	C	VAL	84	9.088	43.110	25.479	1.00 8.16	APEP
5	MOTA	653	0	VAL	84	9.720	42.245	26.086	1.00 7.18	APEP
	MOTA	654	N	TRP	85	9.524	43.637	24.343	1.00 9.08	APEP
	ATOM	655	CA	TRP	85	10.807	43.222	23.801	1.00 8.24	APEP
	MOTA	656	CB	TRP	85	10.844	43.412	22.283	1.00 7.78	APEP
	ATOM	657	CG	TRP	85	12.054	42.789	21.623	1.00 7.96	APEP
10	MOTA	658	CD2	TRP	85	12.162	41.460	21.092	1.00 6.06	APEP
	MOTA	659	CE2	TRP	. 85	13.459	41.330	20.544	1.00 5.27	APEP
	MOTA	660	CE3	TRP	85	11.290	40.366	21.023	1.00 5.63	APEP
	MOTA	661	CD1		85	13.260	43.392	21.384	1.00 6.75	APEP
	ATOM	662	NE1		85	14.104	42.522	20.737	1.00 5.69	APEP
15 .	MOTA	663	CZ2	TRP	. 85	13.905	40.153	19.935	1.00 5.15	APEP
	ATOM	664	CZ3	TRP	85	11.736	39.192	20.414	1.00 3.85	APEP
	MOTA	665	CH2	TRP	85	13.035	39.099	19.879	1.00 3.87	APEP
	MOTA	666	C	TRP	85	11.928	44.018	24.451	1.00 9.70	APEP
	MOTA	667	0	TRP	85	11.790	45.214	24.713	1.00 12.63	APBP
20	ATOM	668	N	ASN	86	13.036	43.340	24.722	1.00 9.17	APEP
	MOTA	669	CA	ASN	86	14.191	43.980	25.340	1.00 B.03	APEP
	ATOM	670	CB	asn	86	14.399	43.407	26.748	1.00 4.83	APEP
	MOTA	671	CG	ASN	86	15.484	44.121	27.505	1.00 5.77	APEP
	ATOM	672		ASN	86	16.657	43.826	27.332	1.00 5.23	APEP
25	MOTA	673		ASN	86	15.100	45.070	28.349	1.00 6.46	APEP
	MOTA	674	C	asn	86	15.450	43.789	24.474	1.00 7.66	APEP
	ATOM	675	0	ASN	86	15.885	42.667	24.215	1.00 6.17	APEP
	ATOM	676	N	ASP	87	16.028	44.899	24.030	1.00 8.98	APEP
	MOTA	677	CA	ASP	87	17.213	44.866	23.179	1.00 9.94	APEP
30	ATOM	678	CB	ASP	87	17.548	46.278	22.695	1.00 10.21	APEP
	MOTA	679	CG	ASP	87	16.602	46.757	21.622	1.00 9.93	APEP
	MOTA	680		ASP	87	16.065	45.902	20.901	1.00 10.59	APEP
	ATOM	681		ASP	87	16.392	47.980	21.498	1.00 11.15	APEP
	MOTA	682	C	ASP	87	18.445	44.249	23.827	1.00 11.13	APEP
35	ATOM	683	0	ASP	87	19.27 1	43.651	23.141	1.00 11.97	APEP
	ATOM	684	N	GLU	88	18.576	44.395	25.142	1.00 9.78	APEP
	ATOM	685	CA	GLU	88	19.728	43.836	25.838	1.00 10.33	APBP
	MOTA	686	CB.	GLU	88	19.841	44.422	27.255	1.00 12.21	APEP
	ATOM	687	CG	GLU	88	21.210	44.213	27.888	1.00 9.98	APEP
40	ATOM	688	CD	GLU	88	21.204	44.400	29.390	1.00 9.88	APEP
	ATOM	689		GLU	88	20.125	44.660	29.957	1.00 13.29	APEP
	MOTA	690		GLU	88	22.282	44.289	30.010	1.00 9.90	APEP
	ATOM	691	C	GLU	88	19.660	42.314	25.912	1.00 9.04	APEP
	ATOM	692	0	GLU	88	20.651	41.629	25.658	1.00 8.42	APEP
45	MOTA	693	N	LEU	89	18.491	41.789	26.269	1.00 8.21	APEP
	MOTA	694	CA	LEU	89	18.305	40.343	26.367	1.00 7.65	APEP
	ATOM	695	CB	LEU	89	16.88 1	40.016	26.824	1.00 7.64	APEP
	MOTA	696	CG	LEU	89	16.499	40.394	28.254	1.00 6.63	APEP
	MOTA	697		LEU	89	15.111	39.904	28.549	1.00 5.53	APEP
50	ATOM	698		LEU	89	17.487	39.785	29.237	1.00 7.49	APEP
	ATOM	699	C	LEU	89	18.554	39.719	24.997	1.00 8.92	APEP
	MOTA	700	0	LEU	89	19.214	38.689	24.885	1.00 7.56	APEP
	MOTA	701	N	ALA	90	18.010	40.357	23.964	1.00 8.77	APEP
	ATOM	702	CA	ALA	90	18.162	39.902	22.588	1.00 9.89	APEP
55	MOTA	703	CB	ALA	90	17.406	40.830	21.654	1.00 6.21	APEP
	MOTA	704	C	ALA	90	19.640	39.849	22.197	1.00 9.83	APEP
	ATOM	705	0	ALA	90	20.064	38.940	21.491	1.00 10.34	APEP

						•		•		
	MOTA	706	и.	TYR	91	20.415	40.821	22.672	1.00 10.22	APEP
	ATOM	707	CA	TYR	91	21.846	40.894	22.380	1.00 10.21	APEP
	MOTA	708	CB	TYR	91	22.426	42.203	22.921	1.00 11.27	APEP
	MOTA	709	CG	TYR	91	23.921	42.329	22.730	1.00 13.72	APEP
5	ATOM	710	CD1	TYR	91	24.458	42.653	21.487	1.00 14.77	APEP
	ATOM	711	CE1	TYR	91	25.837	42.747	21.301	1.00 16.40	APEP
	ATOM	712	CD2	TYR	91	24.802	42.104	23.788	1.00 14.30	APEP
	ATOM	713	CE2	TYR	91	26.178	42.195	23.614	1.00 14.06	APEP
	MOTA	714	CZ	TYR	91	26.688	42.516	22.370	1.00 18.00	APEP
10	MOTA	715	OH	TYR	91	28.052	42.608	22.191	1.00 18.78	APEP
	MOTA	716	С	TYR	91	22.620	39.714	22.967	1.00 11.02	APEP
	- ATOM	717	0	TYR	91	23.411	39.077	22.279	1.00 11.79	APEP
	MOTA	718	N	VAL	92	22.397	39.432	24.244	1.00 10.38	APEP
	ATOM	719	CA	VAL	92	23.075	38.325	24.903	1.00 8.66	APEP
15	MOTA	720	CB	VAL	92	22.785	38.319	26.427	1.00 8.13	APEP
	ATOM	721	CG1	VAL	92	23.488	37.142	27.095	1.00 5.04	APEP
	ATOM	722	CG2	VAL	92	23.267	39.622	27.046	1.00 6.97	APEP
	MOTA	723	C	VAL	92	22.634	37.002	24.286	1.00 9.57	APEP
	ATOM	724	0	VAL	92	23.418	36.063	24.194	1.00 10.64	APEP
20	MOTA	725	N	ALA	93	21.376	36.933	23.858	1.00 9.31	APEP
	MOTA	726	CA	ALA	93	20.854	35.722	23.238	1.00 9.67	APEP
	ATOM	727	CB	ALA	93	19.349	35.848	23.030	1.00 8.26	APEP
	ATOM	728	C.	ALA	93	21.561	35.489	21.898	1.00 9.72	APEP
	MOTA	729	Ο.	ALA	93	21.954	34.366	21.581	1.00 10.89	APEP
25	MOTA	730	N	GLN	94	21.730	36.565	21.130	1.00 8.57	APEP
	MOTA	731	CA	GLN	94	22.386	36.515	19.828	1.00 6.19	APEP
	ATOM	732	CB	GLN	94	22.316	37.892	19.162	1.00 7.13	APEP
	MOTA	733		GLN	94	22.606	37.891	17.668	1.00 6.55	APEP
	MOTA	734	CD	GLN	94	21.778	36.875	16.911	1.00 6.86	APEP
30	ATOM	735	OE1	GLN	94	20.551	37.018	16.775	1.00 7.69	APEP
	MOTA	736	NE2	GLN	94	22.441	35.836	16.412	1.00 4.45	APEP
	ATOM	737	C	GLN	94	23.843	36.082	19.946	1.00 7.41	APEP
	ATOM	738	0	GLN	94	24.302	35.217	19.203	1.00 8.55	APEP
	MOTA	739	N	VAL-	95	24.574	36.699	20.868	1.00 7.81	APEP
35	MOTA	740	CA	VAL	95	25.971	36.357	21.089	1.00 6.18	APEP
	MOTA	741	CB	VAL	95	26.551	37.112	22.327	1.00 8.06	APEP
	MOTA	742	CG1	VAL	95	27.899	36.523	22.728	1.00 8.13	APEP
	ATOM	743		VAL	95	26.716	38.583	22.011	1.00 7.34	APEP
	MOTA	744	C	VAL	95	26.091	34.855	21.324	1.00 7.07	APEP
40	MOTA	745	0	VAL	95	26.949	34.199	20.737	1.00 3.91	APEP
	MOTA	746	N	TRP	96	25.224	34.312	22.180	1.00 8.26	APEP
٠.	MOTA	747	CA	TRP	96	25.244	32.879	22.494	1.00 8.88	APEP
	ATOM	748	СВ	TRP	96	24.284	32.555	23.650	1.00 6.54	APEP
	ATOM	749	CG	TRP	96	24.258	31.089	24.030	1.00 7.96	APEP
45	ATOM	750	CD2	TRP -	96	25.390	30.232	24.240	1.00 7.64	APEP
	ATOM	751		TRP	96	24.892	28.946	24.549	1.00 7.17	APEP
	ATOM	752		TRP	96	26.778	30.426	24.197	1.00 8.39	APEP
	ATOM	753		TRP	96	23.150	30.305	24.217	1.00 8.48	APEP
	ATOM	754		TRP	96	23.524	29.016	24.527	1.00 5.50	APEP
50	ATOM	755		TRP	96	25.734	27.859	24.812	1.00 6.91	APEP
•	ATOM	756	CZ3	TRP	96	27.614	29.341	24.459	1.00 8.97	APEP
	MOTA	757	CH2	TRP	96	27.014	28.076	24.761	1.00 8.90	APEP
	ATOM	757 758	C	TRP	96	24.867	32.033	21.281	1.00 8.85	APEP
	MOTA	759	0	TRP	96	25.500	32.033	21.201	1.00 8.85	APEP
55	MOTA	760	И	ALA	97	23.827	32.453	20.566	1.00 8.27	APEP
JJ .	MOTA	761	CA	ALA	97					
		762	CB	ALA		23.390	31.721	19.381	1.00 9.88	APEP
	MOTA	102	CB	TIM	97	22.182	32.415	18.742	1.00 4.36	APEP

	MOTA	763	C 1	ALA	97	24.547	31.665	18.387	1.00 8.40	APEP
	ATOM	764	0	ALA	97	24.777	30.647	17.734	1.00 8.69	APEP
	ATOM	765	N	ASN	98	25.282	32.767	18.300	1.00 9.32	APEP
	MOTA	766	CA	ASN	98	26.402	32.883	17.375	1.00 9.40	APEP
5	MOTA	767	CB	ASN	98	26.898	34.336	17.347	1.00 8.07	APEP
	MOTA	768	CG	ASN	98	26.084	35.217	16.402	1.00 8.00	APEP
	MOTA	769		ASN	98	25.093	34.776	15.821	1.00 11.11	APEP
	MOTA	770	ND2	ASN	98	26.500	36.464	16.250	1.00 9.71	APEP
	MOTA	771	C	asn	98	27.568	31.926	17.647	1.00 9.78	APEP
10	ATOM	772	0	ASN	98	28.524	31.874	16.869	1.00 8.97	APEP
	MOTA	773	N	GLN	99	27.492	31.160	18.733	1.00 8.27	APEP
	MOTA	774	CA	GLN	99	28.556	30.212	19.051	1.00 9.27	APEP
	MOTA	775	CB	GLN	99	28.774	30.120	20.572	1.00 10.68	APEP
	MOTA	776	CG	GLN	99	29.117	31.452	21.241	1.00 9.08	APEP
15	MOTA	777	CD	GLN	99	30.119	32.266	20.444	1.00 10.60	APEP
	MOTA	778	OE1	GLN	99	31.195	31.780	20.107	1.00 11.69	APEP
	MOTA	779	NE2	GLN	99	29.772	33.511	20.146	1.00 12.17	APEP
	MOTA	780	C	GLN	99	28.205	28.839	18.484	1.00 10.52	APEP
	MOTA	781	0	GLN	99	29.049	27.942	18.426	1.00 11.67	APEP
20	MOTA	782	N	CYS	100	26.959	28.690	18.047	1.00 11.03	APEP
	MOTA	783	CA	CYS	100	26.474	27.439	17.470	1.00 12.62	APEP
	MOTA	784	C	CYS	100	26.711	26.234	18.373	1.00 14.10	APEP
	ATOM	785	0	CYS	100	27.113	25.166	17.906	1.00 13.71	APBP
	ATOM	786	CB	CYS	100	27.126	27.182	16.108	1.00 12.51	APEP
25	AŢOM	787	SG	CYS	100	26.639	28.321	14.766	1.00 13.92	APEP
	MOTA	788	N	GLN	101	26.457	26.411	19.667	1.00 13.78	APEP
	ATOM	789	CA	GLN	101	26.615	25.337	20.640	1.00 14.58	APBP
	ATOM	790	CB	GLN	101	27.656	25.723	21.696	1.00 16.78	APEP
	MOTA	791	CG	GLN	101	29.106	25.506	21.269	1.00 19.68	APEP
30	MOTA	792	CD	GLN	101	30.097	26.125	22.239	1.00 20.61	APEP
	MOTA	793	OEl	GLN	101	31.113	26.690	21.833	1.00 23.08	APEP
	MOTA	794	NE2	GLN	101	29.802	26.023	23.530	1.00 24.57	APBP
	MOTA	795	C	GLN	101	25.272	25.098	21.323	1.00 14.56	APEP
	ATOM	796	0	GLN	101	24.987	25.716	22.347	1.00 14.71	APEP
35	ATOM	797	N	TYR	102	24.457	24.201	20.767	1.00 12.66	APEP
	ATOM	798	CA	TYR	102	23.131	23.911	21.326	1.00 14.54	APEP
	MOTA	799	CB	TYR	102	22.469	22.721	20.610	1.00 13.93	APEP
	MOTA	800	CG	TYR	102	21.015	22.531	21.012	1.00 13.05	APEP
	ATOM	801	CD1	TYR	102	20.033	23.418	20.574	1.00 11.54	APEP
40	MOTA	802	CEl	TYR	102	18.710	23.295	20.990	1.00 10.81	APEP
	MOTA	803	CD2	TYR	102	20.632	21.505	21.881	1.00 13.43	APEP
	ATOM	804	CE2	TYR	102	19.298	21.373	22.307	1.00 13.52	APEP
	MOTA	805	CZ	TYR	102	18.348	22.276	21.853	1.00 11.37	APEP
	MOTA	806	OH	TYR	102	17.031	22.154	22.242	1.00 12.72	APEP
45	ATOM	807	C	TYR	102	23.123	23636		1.00 14.75	APEP
	ATOM	808	0	TYR	102	23.825	22.747	23.305	1.00 14.15	APEP
	MOTA	809	N	GLY	103	22.303	24.399	23.548	1.00 15.34	APEP
	MOTA	810	CA	GLY	103	22.194	24.241	24.988	1.00 13.83	APEP
	ATOM	811	C	GLY	103	22.174	25.586	25.698	1.00 14.82	APEP
50	MOTA	812	0	GLY	103	22.051	26.627	25.050	1.00 13.51	APEP
	MOTA	813	N	HIS	104	22.309	25.576	27.022	1.00 13.28	APEP
	ATOM	814	CA	HIS	104	22.293	26.821	27.792	1.00 13.00	APEP
	ATOM	815	CB	HIS	104	21.535	26.627	29.111	1.00 14.84	APEP
	ATOM	816	CG	HIS	104	20.085	26.309	28.938	1.00 17.77	APEP
55	MOTA	817	CD2	HIS	104	19.345	25.263	29.370	1.00 18.90	APEP
	MOTA	818	ND1	HIS	104	19.224	27.125	28.236	1.00 19.74	APEP
	ATOM	819	CE1	HIS	104	18.014	26.594	28.245	1.00 19.42	APEP

	MOTA	820	NE2	HIS	104	18.060	25.465	28.925	1.00 19.61	APEP
	MOTA	821	C	HIS	104	23.689	27.322	28.116	1.00 10.17	APRP
	ATOM	822	O٠	HIS	104	24.573	26.532	28.403	1.00, 8.70	APEP
	ATOM	823	N	ASP	105	23.890	28.635	28.058	1.00 10.86	APEP
5	ATOM	824	CA	ASP	105	25.188	29.197	28.417	1.00 12.42	APEP
	ATOM	825	CB	ASP	105	25.400	30.590	27.794	1.00 10.99	APEP
	ATOM	826	CG	ASP	105	24.172	31.463	27.875	1.00 11.97	APEP
	ATOM	827	OD1	ASP	105	23.054	30.914	27.966	1.00 14.08	APEP
	ATOM	828	OD2	ASP	105	24.324	32.705	27.844	1.00 11.83	APEP
10	ATOM	829	C	ASP	105	25.200	29.274	29.949	1.00 13.37	APEP
	ATOM	830	0	ASP	105	24.145	29.250	30.592	1.00 13.12	APEP
	MOTA	831	N	THR	106	26.395	29.361	30.522	1.00 14.55	APEP
	MOTA	832	CA	THR	106	26.573	29.385	31.971	1.00 15.70	APEP
	MOTA	833	CB	THR	106	28.032	29.051	32.322	1.00 17.02	APEP
15	ATOM	834	OG1	THR	106	28.349	27.739	31.837	1.00 19.67	APEP
	MOTA	835	CG2	THR	106	28.244	29.101	33.815	1.00 19.92	APEP
	MOTA	836	C	THR	106	26.181	30.661	32.712	1.00 14.86	APEP
	ATOM	837	0	THR	106	25.648	30.598	33.826	1.00 14.67	APEP
	ATOM	838	N	CYS	107	26.444	31.813	32.107	1.00 12.86	APEP
20	MOTA	839	CA	CYS	107	26.131	33.086	32.748	1.00 11.94	APEP
	ATOM	840	C	CYS	107	25.608	34.112	31.741	1.00 11.28	APEP
	ATOM	841	0	CYS	107	. 26.354	34.594	30.886	1.00 8.75	APEP
	ATOM	842	CB	CYS	107	27.389	33.618	33.451	1.00 11.80	APEP
	ATOM	843	SG	CYS	107	27.155	35.045	34.567	1.00 14.81	APEP
25	ATOM	844	N	ARG	108	24.324	34.448	31.857	1.00 10.42	APEP
	ATOM	845	CA	ARG	108	23.694	35.408	30.956	1.00 10.25	APEP
	ATOM	846	CB	ARG	108	22.656	34.703	30.080	1.00 7.60	APEP
	ATOM	847	CG	ARG	108	21.299	34.525	30.746	1.00 6.23	APEP
	ATOM	848	CD	ARG	108	20.458	33.460	30.047	1.00 4.46	APEP
30	ATOM	849	NE	ARG	108	21.066	32.136	30.118	1.00 8.96	APEP
	ATOM	850	CZ	ARG	108	20.688	31.192	30.971	1.00 9.87	APEP
	ATOM	851	NH1	ARG	108	19.703	31.427	31.825	1.00 9.20	APEP
	ATOM	852	NH2	ARG	108	21.284	30.013	30.968	1.00 9.69	APEP
	MOTA	853	C	ARG	108	23.015	36.575	31.667	1.00 10.62	APEP
35	ATOM .	854	0	ARG	108	22.465	37.454	31.011	1.00 11.81	APEP
	MOTA	855	N	ASP	109	23.051	36.583	32.998	1.00 10.19	APEP
	ATOM	856	CA	ASP	109	22.421	37.644	33.784	1.00 9.53	APEP
	ATOM	857	CB	ASP	109	22.737	37.457	35.267	1.00 11.00	APEP
	MOTA	858	CG	ASP	109	22.049	36.248	35.864	1.00 10.30	APEP
40	MOTA	859	OD1	ASP	109	21.137	35.704	35.213	1.00 8.82	APEP
	MOTA	860	OD2	ASP	109	22.420	35.839	36.984	1.00 12.03	APEP
	MOTA	861	C	ASP	109	22.827	39.051	33.368	1.00 10.45	APEP
	MOTA	862	0	ASP	109	23.931	39.274	32.878	1.00 11.18	APEP
,	MOTA	863	N	VAL	110	21.919	40.001	33.565	1.00 10.47	APEP
45	-ATOM	864	CA	VAL	110	22.192	41.400	33.240	1.00 11.15	APEP
	MOTA	865	CB	VAL	110	21.083	42.025	32.346	1.00 8.57	APEP
	MOTA	866	CG1	VAL	110	21.282	41.607	30.884	1.00 8.96	APEP
	ATOM	867	ÇG2	VAL	110	19.711	41.600	32.840	1.00 8.45	APEP
	MOTA	868	C	VAL	110	22.263	42.168	34.564	1.00 12.34	APEP
50	MOTA	869	0	VAL	110	22.044	41.591	35.631	1.00 11.18	APEP
	ATOM	870	N	ALA	111	22.567	43.460	34.493	1.00 12.60	APEP
	ATOM	871	CA	ALA	111	22.670	44.283	35.691	1.00 14.41	APEP
	ATOM	872	CB	ALA	111	23.192	45.665	35.329	1.00 14.98	APEP
	ATOM	873	C	ALA	111	21.351	44.412	36.445	1.00 15.05	APEP
55	MOTA	874	ō	ALA	111	21.348	44.491	37.665	1.00 17.05	APEP
	ATOM	875	N	LYS	112	20.233	44.425	35.723	1.00 17.03	APEP
	ATOM	876	CA	LYS	112	18.919	44.565	36.346	1.00 13.22	APEP
						20.723	34.303	50.340	1.00 14.02	AFBF

	ATOM	877	CB.	LYS	112	17.889	44.979	·35.295	1.00 17.33	APEP
	ATOM	878	CG	LYS	112	16.518	45.301	35.854	1.00 18.63	APEP
	ATOM	879	CD	LYS	112	15.722	46.156	34.885	1.00 20.78	APBP '
_	MOTA	. 880	CE	LYS	112	14.275	46.298	35.331	1.00 22.40	APEP
5	ATOM	881	NZ	LYS	112	13.378	46.775	34.230	1.00 24.78	APEP
	ATOM	882	C	LYS	112	18.395	43.334	37.092	1.00 14.63	APEP
	ATOM	883	0	LYS	112	17.763	43.462	38.138	1.00 15.19	APEP
	ATOM	884	N	TYR	113	18.652	42.145	36.565	1.00 14.03	. APEP
	ATOM	885	CA	TYR	113	18.155	40.941	37.211	1.00 12.90	APEP
10	ATOM	886	CB	TYR	113	16.627	40.866	37.062	1.00 14.34	APEP
	MOTA	887	CG	TYR	113	16.094	41.275	35.701	1.00 13.96	APEP
	ATOM -	.888		TYR	113	16.725	40.867	34.529	1.00 14.86	APEP
	ATOM	889	CE1	TYR	113	16.236	41.234	33.279	1.00 15.41	APEP
	MOTA	890	CD2	TYR	113	14.950	42.064	35.590	1.00 15.52	APEP
15	MOTA	891	CE3	TYR	113	14.447	42.439	34.345	1.00 17.15	APEP
	MOTA	892	CZ	TYR	113	15.098	42.021	33.192	1.00 18.32	APEP
	MOTA	893	OH	TYR	113	14.619	42.406	31.958	1.00 20.11	APEP
•	MOTA	894	C	TYR	113	18.761	39.659	36.658	1.00 12.75	APEP
	MOTA	895	0	TYR	113	19.592	39.685	35.742	1.00 9.39	APEP
20	MOTA	896	N	GLN	114	18.334	38.542	37.241	1.00 11.10	APEP
	MOTA	897	CA	GLN	114	18.762	37.223	36.820	1.00 11.13	APEP
	MOTA	898	CB	GLN	114	18.397	36.182	37.872	1.00 13.13	APEP
	MOTA	899	CG	GLN	114	19.492	35.921	38.881	1.00 17.82	APEP
	MOTA	900	CD	GLN	114	19.049	34.969	39.971	1.00 21.01	APEP
25	MOTA	901	OE1	GLN	114	18.984	33.754	39.767	1.00 24.17	APEP
	MOTA	902	NE2	GLN	114	18.735	35.517	41.140	1.00 21.13	APEP
	MOTA	903	C	GLN	114	17.969	36.977	35.549	1.00 10.94	APEP
	MOTA	904	0	GLN	114	16.851	37.489	35.418	1.00 10.27	APEP
	ATOM	905	N	VAL	115	18.529	36.195	34.626	1.00 8.78	APEP
30	ATOM	906	CA	VAL	115	17.879	35.936	33.339	1.00 6.98	APEP
	MOTA	907	CB	VAL	115	18.679	36.628	32.204	1.00 8.14	APEP
	ATOM	908		VAL	115	18.037	36.358	30.868	1.00 9.82	APEP
	ATOM	909	CG2	VAL	115	18.750	38.125	32.461	1.00 6.98	APEP
	ATOM	910	C	VAL	115	17.669	34.457	32.975	1.00 6.17	APEP
35	MOTA	911	0	VAL	115	18.581	33.634	33.093	1.00 4.78	APEP
	ATOM	912	N	GLY	116	16.449	34.142	32.540	1.00 5.97	APEP
	MOTA	913	CA	GLY	116	16.105	32.788	32.139	1.00 7.14	APEP
	ATOM	914	C	GLY	116	16.364	32.568	30.654	1.00 7.72	APEP
	ATOM	915	0	GLY	116	16.706	33.504	29.930	1.00 6.29	APEP
40	ATOM	916	N	GLN	117	16.195	31.337	30.186	1.00 8.62	APEP
	ATOM	917	CA	GLN	117	16.456	31.058	28.780	1.00 9.69	APEP
	ATOM	918	CB	GLN	117	17.980	31.001	28.550	1.00 8.96	APEP
	ATOM	919	CG	GLN	117	18.419	30.465	27.179	1.00 8.07	APEP
	ATOM	920	CD	GLN	117	19.935	30.331	27.046	1.00 7.90	APEP
45	MOTA	921	OE1	GLN	117	20.507	29.288	27.360	1.00 10.49	APEP
	MOTA	922	NE2	GLN	117	20.586	31.386	26.575	1.00 7.02	APEP
	ATOM	923	C	GLN	117	15.813	29.790	28.230	1.00 9.46	APEP
	ATOM	924	0	GLN	117	15.713	28.775	28.920	1.00 8.69	APEP
	ATOM	925	N	ASN	118	15.372	29.876	26.978	1.00 10.04	APEP
50	MOTA	926	CA	ASN	118	14.762	28.759	26.253	1.00 9.76	APEP
	ATOM	927	CB	asn	118	13.280	29.037	25.950	1.00 9.04	APEP
	MOTA	928	CG	ASN	118	12.357	28.735	27.127	1.00 9.64	APEP
	ATOM	929	OD1	ASN	118	12.696	27.976	28.035	1.00 9.37	APEP
	MOTA	930	ND2	ASN	118	11.178	29.337	27.108	1.00 8.63	APEP
55	ATOM	931	C	ASN	118	15.526	28.674	24.926	1.00 9.88	APEP
	ATOM	932	0	ASN	118	15.847	29.707	24.342	1.00 9.07	APEP
	ATOM	933	N	VAL	119	15.836	27.464	24.465	1.00 10.24	APEP

	2 2014									
	ATOM	934	CA.	VAL	119	16.533	27.288	23.188	1.00 9.82	APEP
	MOTA	935	CB	VAL	119	18.021	26.811	23.340	1.00 9.70	APEP
	MOTA	936		VAL	119	18.764	27.684	24.349	1.00 11.24	APEP
	ATOM	937	CG2	VAL	119	18.072	25.344	23.749	1.00 11.10	APEP
5	MOTA	938	C	VAL	119	15.784	26.247	22.379	1.00 10.42	APEP
	MOTA	939	0	VAL	119	15.116	25.380	22.939	1.00 7.84	APEP
	MOTA	940	N	ALA	120	15.894	26.345	21.057	1.00 11.69	APEP
	ATOM	941	CA	ALA	120	15.224	25.416	20.164	1.00 10.58	APEP
	MOTA	942	CB	ALA	120	13.853	25.960	19.783	1.00 9.38	APEP
10	MOTA	943	C	ALA	120	16.065	25.203	18.913	1.00 11.91	APEP
- •	ATOM	944	ō	ALA	120	16.749	26.114	18.447	1.00 11.05	APEP
	ATOM	945	N	LEU	121	16.005	23.999	18.363	1.00 11.03	APEP
	MOTA	946	CA	LEU	121	16.762	23.707	17.164	1.00 10.62	APEP
	ATOM	947	CB	LEU	121	18.219				
15	ATOM	948	CG	LEU	121		23.423	17.534	1.00 12.00	APEP
13						19.162	23.065	16.383	1.00 14.58	APEP
	ATOM	949		LEU	121	19.914	24.310	15.937	1.00 14.77	APEP
	ATOM	950		LEU	121	20.124	21.975	16.830	1:00 16.44	APEP
	MOTA	951	C	PEA	121	16.190	22.521	16.395	1.00 11.28	APEP
	MOTA	952	0	LEU	121	15.744	21.540	16.989	1.00 8.33	APEP
20	ATOM	953	N	THR	122	16.183	22.633	15.069	1.00 9.47	APEP
	ATOM	954	CA	THR	122	15.723	21.551	14.203	1.00 9.80	APEP
	ATOM	955	CB	THR	122	14.282	21.766	13.691	1.00 8.73	APEP
	ATOM	956	OG1	THR	122	14.272	22.801	12.704	1.00 8.66	APEP
	MOTA	957	CG2	THR	122	13.357	22.133	14.838	1.00 11.47	APEP
25	ATOM	958	C	THR	122	16.666	21.502	13.009	1.00 9.64	APEP
	ATOM	959	0	THR	122	17.232	22.524	12.616	1.00 9.15	APEP
	ATOM	960	N	GLY	123	16.847	20.308	12.451	1.00 9.74	APEP
	ATOM	961	CA	GLY	123	17.728	20.137	11.313	1.00 8.54	APEP
	MOTA	962	C	GLY	123	17.048		10.228	1.00 8.95	APEP
30	ATOM	963	o	GLY	123	16.199	18.482	10.514	1.00 9.03	APEP
-	ATOM	964	N	SER	124	17.420	19.580			
	MOTA	965	CA	SER				8.979	1.00 7.43	APEP
	ATOM	966			124	16.824	18.874	7.857	1.00 9.14	APEP
			CB	SER	124	15.584	19.642	7.393	1.00 10.09	APEP
25	ATOM	967	OG	SER	124	15.333	19.459	6.016	1.00 11.96	APEP
35	ATOM	968	C	SER	124	17.827	18.718	6.709	1.00 9.54	APBP
	ATOM	969	0	SER	124	18.716	19.551	6.537	1.00 10.56	APEP
	MOTA	970	И	THR	125	17.693	17.641	5.936	1.00 10.06	APEP
	ATOM	971	CA	THR	125	18.591	17.415	4.812	1.00 10.19	APEP
	MOTA	972	CB	THR	125	18.513	15.974	4.257	1.00 11.20	APEP
40	MOTA	973		THR	125	17.142	15.593	4.086	1.00 12.88	APBP
	MOTA	974		THR	125	19.218	15.001	5.191	1.00 8.70	•APEP
	ATOM	975	C	THR	125	18.274	18.369	3.676	1.00 9.96	APEP
	MOTA	976	0	THR	125	19.081	18.532	2.772	1.00 10.12	APEP
	ATOM	977	N	ALA	126	17.103	18.999	3.731	1.00 10.40	APEP
45	MOTA	978	CA	ALA	126	16.678	19.955	2.705	1.00-11.31	APEP
	MOTA	979	CB	ALA	126	15.169	19.863	2.492	1.00 11.00	APEP
	ATOM	980	C	ALA	126	17.060	21.383	3.086	1.00 13.19	APEP
	ATOM	981	0	ALA	126	17.116	21.735	4.271	1.00 12.55	APEP
	ATOM	982	N	ALA	127	17.314	22.207	2.078	1.00 12.78	APEP
50	ATOM	983	CA	ALA	127	17.700	23.590	2.315		
20	MOTA	984	CB	ALA	127	18.471		1.106	1.00 15.72	APEP
							24.135		1.00 15.36	APEP
	ATOM	985	C	ALA .	127	16.496	24.474	2.610	1.00 17.23	APEP
	ATOM	986	0	ALA	127	16.080	25.271	1.773	1.00 17.44	APEP
	ATOM	987	N	LYS	128	15.941	24.324	3.810	1.00 19.74	APEP
55	MOTA	988	CA	LYS	128	14.790	25.110	4.251	1.00 19.25	APEP
	MOTA	989	CB	LYS	128	13.481	24.387	3.917	1.00 21.28	APEP
	MOTA	990	CG	LYS	128	12.930	24.721	2.527	1.00 26.82	APEP

	MOTA	991	CD,	LYS	128	12.083	25.993	2.549	1.00 27.74	APEP
	MOTA	992	CE	LYS	128	11.582	26.365	1.152	1.00 27.56	APBP
	MOTA	993	NZ	LYS	128	10.376	27.258	1.191	1.00 24.53	APEP
	ATOM	994	C	LYS	128	14.918	25.311	5.760	1.00 20.56	APEP
5	ATOM	995	0	LYS	128	15.299	24.384	6.488	1.00 18.95	APEP
	MOTA	996	N	TYR	129	14.599	26.517	6.224	1.00 19.02	APEP
	ATOM	997	CA	TYR	129	14.712	26.853	7.644	1.00 18.90	APBP
	ATOM	998	CB	TYR	129	15.728	27.985	7.812	1.00 17.17	APEP
	ATOM	999	CG	TYR	129	17.060	27.645	7.188	1.00 15.78	APEP
10	MOTA	1000	CD1	TYR	129	17.319	27.934	5.847	1.00 15.45	APEP
	MOTA	1001	CE1	TYR	129	18.519	27.564	5.250	1.00 13.12	APBP
	ATOM	1002	CD2	TYR	129	18.043	26.984	7.918	1.00 16.01	APEP
	MOTA	1003	CE2	TYR	129	19.250	26.610	7.330	1.00 16.66	APEP
	MOTA	1004	\mathbf{cz}	TYR	129	19.479	26.900	5.994	1.00 15.93	APEP
15	MOTA	1005	OH	TYR	129	20.652	26.495	5.404	1.00 11.93	APEP
	ATOM	1006	C	TYR	129	13.384	27.213	8.312	1.00 18.94	APEP
	ATOM	1007	Ò	TYR	129	12.574	27.980	7.775	1.00 19.85	APEP
	MOTA	1008	N	ASP	130	13.178	26.645	9.496	1.00 17.23	APEP
	MOTA	1009	CA	ASP	130	11.953	26.844	10.259	1.00 16.64	APEP
20	MOTA	1010	CB	ASP	130	12.012	26.050	11.568	1.00 18.70	APEP
	ATOM	1011	CG	ASP	130	11.399	24.677	11.446	1.00 18.76	APEP
	MOTA	1012		ASP	130	11.067	24.267	10.319	1.00 17.38	APEP
	MOTA	1013	OD2	ASP	130	11.253	24.005	12.489	1.00 20.96	APEP
	MOTA	1014	C	ASP	130	11.615	28.285	10.588	1.00 14.91	APEP
25	MOTA	1015	0	ASP	13.0	12.489	29.111	10.831	1.00 14.08	APEP
	MOTA	1016	И	ASP	131	10.317	28.557	10.584	1.00 16.25	APEP
	ATOM	1017	CA	ASP	131	9.759	29.858	10.911	1.00 16.60	APEP
	MOTA	1018	CB	ASP	131	8.255	29.834	10.571	1.00 19.29	APEP
	ATOM -	1019	CG	ASP	131	7.558	31.166	10.807	1.00 24.36	APEP
30	MOTA	1020		ASP	131	8.036	31.978	11.630	1.00 27.58	APEP
	ATOM	1021	OD2	ASP	131	6.506	31.396	10.168	1.00 28.19	APEP
	ATOM	1022	C	ASP	131	9.993	29.961	12.428	1.00 15.04	APEP
	MOTA	1023	0	ASP	131	9.708	29.012	13.159	1.00 14.34	APEP
	ATOM	1024	N	PRO	132	10.534	31.092	12.910	1.00 12.77	APEP
35	MOTA	1025	CD	PRO	132	10.950	32.276	12.139	1.00 12.42	APEP
	ATOM	1026	CA	PRO	132	10.788	31.253	14.354	1.00 13.80	APEP
	MOTA	1027	CB	PRO	132	11.197	32.722	14.492	1.00 13.81	APEP
	MOTA	1028	CG	PRO	132	11.711	33.104	13.149	1.00 14.43	APEP
	MOTA	1029	C	PRO	132	9.592		15.251	1.00 13,34	APEP
40	MOTA	1030	0	PRO	132	9.758	30.239	16.278	1.00 12.55	APEP
	MOTA	1031	N	VAL	133	8.396	31.325	14.850	1.00 12.80	APEP
	ATOM	1032	CA	VAL	133	7.170	31.054	15.591	1.00 12.13	APEP
	MOTA	1033	CB	VAL	133	5.944	31.661	14.862	1.00 11.80	APEP
	MOTA	1034		VAL	133	4.653	31.032	15.364	1.00 10.96	APEP
- 45	MOTA		CG2	VAL	133	5.923	33.159	15.064	1.00 13.44	APEP
	MOTA	1036	С	.VAL	133	6.964	29.549	15.744	1.00 13.10	APEP
	ATOM	1037	0	VAL	133	6.452	29.083	16.763	1.00 11.95	APEP
	MOTA	1038	N	LYS	134	7.361	28.796	14.721	1.00 13.08	APEP
	MOTA	1039	CA	LYS	134	7.227	27.341	14.738	1.00 14.09	APEP
50	MOTA	1040	CB	LYS	134	7.594	26.756	13.374	1.00 14.78	APEP
	MOTA	1041	CG	LYS	134	7.716	25.238	13.367	1.00 17.92	APEP
	MOTA	1042	CD	LYS	134	7.273	24.661	12.024	1.00 20.75	APEP
	ATOM	1043	CE	LYS	134	7.454	23.147	11.974	1.00 21.88	APEP
	MOTA	1044	NZ	LYS	134	7.979	22.704	10.646	1.00 22.20	APEP
55	MOTA	1045	C	LYS	134	8.125	26.734	15.805	1.00 13.26	APEP
	ATOM	1046	0	LYS	134	7.775	25.732	16.437	1.00 12.31	APEP
	MOTA	1047	N	LEU	135	9.289	27.343	15.990	1.00 12.25	APEP

			_							
	MOTA	1048	CA	LEU	135	10.245	26.883	16.987	1.00 12.29	APEP
	MOTA	1049	CB	LEU	135	11.604	27.551	16.755	1.00 11.92	APEP
	MOTA	1050	CG	LEU	135	12.371	26.968	15.563	1.00 12.40	APEP
	MOTA	1051	CD1	LEU	135	13.673	27.703	15.354	1.00 -10.11	APEP
5	MOTA	1052	CD2	LEU	135	12.633	25.492	15.816	1.00 13.69	APEP
•	MOTA	1053	С	LEU	135	9.711	27.222	18.371	1.00 11.79	APEP
	MOTA	1054	0	LEU	135	9.862	26.443	19.311	1.00 12.52	APEP
	MOTA	1055	N	VAL	136	9.070	28.378	18.492	1.00 11.76	APEP
	MOTA	1056	CA	VAL	136	8.507	28.805	19.773	1.00 11.55	APEP
10	MOTA	1057	СВ	VAL	136	7.926	30.236	19.674	1.00 9.15	APEP
	ATOM	1058	CG1	VAL	136	7.043	30.531	20.874	1.00 9.61	APEP
	ATOM	1059	CG2	VAL -	136	9.053	31.247	19.587	1.00 5.53	APEP
	ATOM	1060	C	VAL	136	7.405	27.836	20.227	1.00 12.73	APEP
	MOTA	1061	0	VAL	136	7.370	27.421	21.385	1.00 11.68	APEP
15	MOTA	1062	N	LYS	137	6.521	27.477	19.298	1.00 13.14	APEP
	ATOM	1063	CA	LYS	137	5.422	26.554	19.563	1.00 12.46	APEP
	MOTA	1064	CB	LYS	137	4.562	26.376	18.307	1.00 12.12	APEP
	MOTA	1065	CG	LYS	137	3.866	27.659	17.847	1.00 16.24	APEP
	ATOM	1066	CD.	LYS	137	2.763	27.391	16.836	1.00 13.34	APEP
20	MOTA	1067	CE .	LYS	137	1.560	28.297	17.064	1.00 16.29	APEP
	MOTA	1068	NZ	LYS	137	0.433	27.565	17.706	1.00 12.20	APEP
	ATOM	1069	C	LYS	137	5.939	25.198	20.031	1.00 12.60	APEP
	ATOM	1070	0	LYS	137	5.183	24.406	20.589	1.00 13.30	APEP
	ATOM	1071	N	MET	138	7.220	24.924	19.797	1.00 12.70	APEP
25	MOTA	1072	CA	MET	138	7.807	23.662	20.240		APEP
	ATOM	1073	CB	MET	138	9.266	23.545	19.779	1.00 17.09	APEP
	MOTA	1074 .	CG	MET	138	9.478	22.767	18.482	1.00 21.36	APEP
	MOTA	1075	SD .	MET	138	11.111	23.089	17.711	1.00 26.01	APEP
	MOTA	1076	CE	MET	138	12.066	21.673	18.272	1.00 23.00	APEĖ
30	MOTA	1077	C	MET	138	7.755	23.665	21.768	1.00 15.35	APEP
	ATOM	1078	0	MET	138	7.447	22.650	22.395	1.00 15.78	APEP
	MOTA	1079	N	TRP	139	8.069	24.824	22.346	1.00 13.56	APEP
	MOTA	1080	CA	TRP	139	8.069	25.035	23.791	1.00 10.21	APEP
	MOTA	1081	CB	TRP	139	8.700	26.395	24.122	1.00 6.88	APEP
35	MOTA	1082	CG	TRP	139	10.112	26.582	23.589	1.00 7.62	APEP
	MOTA	1083	CD2	TRP	139	10.746	27.821	23.220	1.00 4.45	APEP
	MOTA	1084	CE2	TRP	139	12.051	27.507	22.784	1.00 4.04	APEP
	MOTA	1085	CE3	TRP	139	10.335	29.160	23.214	1.00 4.82	APEP
	MOTA	1086	CD1	TRP	139	11.037	25.606	23.367	1.00 6.61	APEP
40	MOTA	1087	NE1	TRP	139	12.203	26.151	22.886	1.00 5.06	APEP
	ATOM	1088	CZ2	TRP	139	12.955	28.490	22.347	1.00 2.98	APEP
	MOTA	1089	CZ3	TRP	139	11.229	30.137	22.778	1.00 2.00	APEP
	MOTA	1090	CH2	TRP	139	12.525	29.795	22.351	1.00 4.18	APEP
	MOTA	1091	C	TRP	139	6.628	24.997	24.312	1.00 11.53	APEP
45	MOTA	1092	0	TRP	139	6.350	-24.419	25.365	1.00 11.91	APEP
	ATOM	1093	N	GLU	140	5.723	25.622	23.557	1.00 11.23	APEP
	ATOM	1094	CA	GLU	140	4.306	25.690	23.890	1.00 10.95	APEP
	ATOM	1095	CB	GLU	140	3.538	26.427	22.798	1.00 9.60	APEP
	ATOM	1096	CG	GLU	140	3.622	27.919	22.834	1.00 7.49	APEP
50	ATOM	1097	CD	GLU	140	2.893	28.544	21.666	1.00 8.80	APEP
	ATOM	1098	OE1	GLU	140	1.937	27.921	21.150	1.00 11.85	APEP
	ATOM	1099		GLU	140	3.277	29.654	21.259	1.00 12.42	APEP
	ATOM	1100	C	GLU	140	3.672	24.321	24.038	1.00 11.65	APEP
	ATOM	1101	0	GLU	140	2.891	24.089	24.960	1.00 13.93	APEP
55	ATOM	1102	N	ASP	141	3.993	23.423	23.112	1.00 12.05	APEP
•	ATOM	1103	CA	ASP	141	3.433	22.078	23.106	1.00 13.22	APEP
	ATOM	1104	CB	ASP	141	3.850	21.346	21.833	1.00 12.72	APEP
						_	,		_	

	MOTA	1105	CG,	ASP	141	3.200	21.923	20.601	1.00 13.07	APEP
	MOTA	1106	OD1	ASP	141	2.240	22.706	20.747	1.00 12.10	APEP
	MOTA	1107	OD2	ASP	141	3.646	21.599	19.484	1.00 16.74	APEP
	MOTA	1108	С	ASP	141	3.782	21.235	24.320	1.00 13.83	APEP
5	MOTA	1109	0	ASP	141	3.199	20.172	24.530	1.00 13.83	APEP
	ATOM	1110	N	GLU	142	4.726	21.705	25.124	1.00 14.37	APEP
	ATOM	1111	CA	GLU	142	5.110	20.974	26.323	1.00 13.86	APEP
	ATOM	1112	CB	GLU	142	6.335	21.626	26.974	1.00 13.88	APBP
	ATOM	1113	CG	GLU	142	7.619	21.449			
10	ATOM	1114	CD	GLU	142			26.158	1.00 13.31	APEP
10	ATOM	1115		GLU		8.866	21.896	26.889	1.00 11.68	APEP
					142	8.749	22.706	27.829	1.00 14.70	APEP
	ATOM	1116		GLU	142	9.968	21.439	26.523	1.00 10.37	APEP
	MOTA	1117	C	GLU	142	3.937	20.957	27.301	1.00 14.65	APEP
	MOTA	1118	0	GLU	142	3.819	20.049	28.120	1.00 16.37	APEP
15	ATOM	1119	N.	VAL	143	3.063	21.954	27.197	1.00 14.52	APEP
	MOTA	1120	CA	VAL	143	1.904	22.071	28.084	1.00 14.56	APEP
	MOTA	1121	CB	VAL	143	0.970	23.221	27.644	1.00 14.44	APEP
	MOTA	1122	CG1	VAL	143	0.210	22.834	26.376	1.00 12.33	APEP
	ATOM	1123	CG2	VAL	143	-0.005	23.548	28.769	1.00 10.75	APEP
20	MOTA	1124	C	VAL	143	1.057	20.809	28.237	1.00 16.78	APEP
	MOTA	1125	0	VAL	143	0.399	20.631	29.258	1.00 16.28	APEP
	ATOM	1126	N	LYS	144	1.059	19.942	27.228	1.00 17.87	APBP
	ATOM	1127	CA	LYS	144	0.281	18.706	27.293	1.00 19.21	APEP
	MOTA	1128	CB	LYS	144	0.257	18.025	25.913	1.00 21.23	APEP
25	ATOM	1129	CG	LYS	144	1.602	17.471	25.452	1.00 23.20	APEP
	ATOM	1130	CD	LYS	144	1.578	15.949	25.346	1.00 25.43	APEP
	ATOM	1131	CE	LYS	144	2.739	15.423	24.506	1.00 25.49	APEP
	ATOM	1132	NZ	LYS	144	2.960	16.244	23.282	1.00 24.96	APEP
	ATOM	1133	C	LYS	144	0.852	17.746	28.350	1.00 18.76	APEP
30	ATOM	1134	0	LYS	144	0.188	16.794	28.776	1.00 18.94	APEP
	ATOM	1135	N	ASP	145	2.080	18.008	28.774	1.00 17.39	APEP
	ATOM	1136	CA	ASP	145	2.743	17.180	29.778	1.00 17.35	APEP
	ATOM	1137	CB	ASP	145	4.199	16.916	29.364	1.00 20.30	APEP
	ATOM	1138	CG	ASP	145	4.316	15.942	28.195	1.00 20.35	
35	ATOM	1139		ASP	145	3.374	15.153		1.00 20.35	APEP
55	ATOM	1140		ASP	145			27.959	•	APEP
	ATOM	1141	C	ASP	145	5.359	15.966	27.510	1.00 21.64	APEP
	MOTA		0			2.714	17.829	31.173	1.00 17.37	APEP
	ATOM	1142		ASP	145	3.069	17.192	32.164	1.00 15.03	APEP
40	•	1143	N	TYR	146	2.284	19.090	31.240	1.00 17.14	APEP
40	ATOM	1144	CA	TYR	146	2.200	19.821	32.506	1.00 15.39	APEP
	ATOM	1145	CB	TYR	146	2.368	21.320	32.264	1.00 14.76	APEP
	ATOM	1146	CG	TYR	146	2.696	22.071	33.533	1.00 15.28	APEP
	ATOM	1147	CD1		146	3.992	22.053	34.065	1.00 14.62	APEP
	ATOM	1148		TYR	146	4.286	22.682	35.277	1.00 13.76	APEP
45	ATOM	1149		TYR	146	1.705	22.743	34.242	1.00 14.99	APEP
	ATOM	1150	CE2		146	1.991	23.377	35.457	1.00 13.01	APEP
	MOTA	1151	\mathbf{cz}	TYR	146	3.281	23.340	35.964	1.00 12.87	APEP
	MOTA	1152	OH	TYR	146	3.563	23.958	37.162	1.00 12.82	APEP
	ATOM	1153	C	TYR	. 146	0.906	19.580	33.294	1.00 16.31	APEP
50	MOTA	1154	0	TYR	146	-0.202	19.837	32.804	1.00 15.92	APEP
	ATOM	1155	N	ASN	147	1.062	19.097	34.525	1.00 15.90	APEP
	ATOM	1156	CA	ASN	147	-0.066	18.792	35.415	1.00 17.53	APEP
	ATOM	1157	CB	ASN	147	0.265	17.551	36.248	1.00 17.07	APEP
	ATOM	1158	CG	ASN	147	-0.851	17.172	37.193	1.00 18.14	APEP
55	ATOM	1159		ASN	147	-1.885	17.835	37.242	1.00 19.58	APEP
	ATOM	1160		ASN	147	-0.651	16.096	37.949	1.00 15.35	APEP
	ATOM	1161	C	ASN	147	-0.405	19.957	36.355	1.00 17.15	APEP
			_			3.103	,,		17.13	er de

	MOTA	1162	0	ASN	147	0.289	20.196	37.334	1.00 16.44	APEP
	ATOM	1163	N	PRO	148	-1.499	20.677	36.082	1.00 17.84	APEP .
	ATOM	1164	CD	PRO	148	-2.462	20.508	34.981	1.00 16.74	APEP
	ATOM	1165	CA	PRO	148	-1.854	21.805	36.951	1.00 19.69	APEP
5	ATOM	1166	CB	PRO	148	-2.982	22.504	36.189	1.00 17.29	APEP
	ATOM	1167	CG	PRO	148	-3.588	21.436	35.367	1.00 17.85	APBP
	ATOM	1168	C	PRO	148	-2.246	21.467	38.395	1.00 21.26	APEP
	ATOM	1169	ō	PRO	148	-2.040	22.285			
	ATOM	1170	N	LYS	149			39.289	1.00 22.85	APEP
10	ATOM	1171	CA	LYS	149	-2.802	20.275	38.624	1.00 23.35	APEP
10	ATOM	1172	CB	LYS		-3.219	19.862	39.970	1.00 25.52	APEP
,					149	-4.006	18.546	39.917	1.00 25.99	APEP
	ATOM	1173	CG	LYS	149	-5.036	18.477	38.800	1.00 29.64	APEP
	MOTA	1174	· CD	LYS	149	-6.438	18.800	39.307	1.00 30.49	APEP
• •	MOTA	1175	CE	LYS	149	-7.162	19.775	38.382	1.00 30.51	APEP
15	MOTA	1176	NZ	LYS	149	-8.401	20.351	39.004	1.00 30.17	APEP
	ATOM	1177	C	LYS	149	-2.041	19.704	40.929	1.00 26.61	APEP
	MOTA	1178	0	LYS	149	-2.153	19.082	41.993	1.00 27.31	APEP
	ATOM	1179	N	LYS	150	-0.905	20.271	40.559	1.00 26.69	APEP
	MOTA	1180	CA	LYS	150	0.262	20.186	41.408	1.00 27.83	APEP
20	ATOM	1181	CB	LYS	150	0.904	18.795	41.260	1.00 26.22	APEP
	ATOM	1182	CG	LYS	150	2.205	18.718	40.495	1.00 25.69	APEP
	ATOM	1183	CD	LYS	150	2.416	17.320	39.908	1.00 25.52	APEP
	MOTA	1184	CE	LYS	150	2.140	16.214	40.922	1.00 24.65	APEP
	ATOM	1185	NZ	LYS	150	0.695	15.847	40.971	1.00 23.30	APEP
25	MOTA	1186	C	LYS	150	1.218	21.320	41.062	1.00 29.22	APEP
	ATOM	1187	0	LYS	150	1.504	21.577	39.895	1.00 31.30	APEP
	ATOM	1188	N	LYS	151	1.681	22.023	42.088	1.00 30.63	APEP
	ATOM	1189	CA	LYS	151	2.581	23.148	41.896	1.00 30.03	APEP
	ATOM	1190	СВ	LYS	151	3.134	23.622	43.244	1.00 20.75	APEP
30	MOTA	1191	CG	LYS	151	2.308	24.738	43.888	1.00 32.85	APEP
	ATOM	1192	CD	LYS	151	2.605	26.093	43.246	1.00 32.83	APEP
	MOTA	1193	CE	LYS	151	1.512	27.104	43.562		
	ATOM	1194	NZ	LYS	151	2.061			1.00 30.61	APEP
	ATOM	1195	C	LYS	151	3.720	28.331	44.196	1.00 27.07	APEP
35	ATOM	1196	Ö	LYS	151		22.801	40.956	1.00 28.42	APEP
33	ATOM	1197	N	PHE		3.984	21.633	40.685	1.00 28.09	APEP
	ATOM		CA		152	4.377	23.842	40.460	1.00 28.09	APEP
•		1198		PHE	152	5.494	23.719	39.539	1.00 27.23	APEP
	MOTA	1199	CB	PHE	152	6.138	25.098	39.349	1.00 23.04	APEP
40	ATOM	1200	CG	PHE	152	7.486	25.064	38.687	1.00 21.73	APEP
40	ATOM	1201		PHE	152	7.595	24.951	37.307	1.00 19.77	APEP
	MOTA	1202		PHE	152	8.646	25.171	39.442	1.00 21.08	APEP
	ATOM	1203		PHE	152	8.833	24.948	36.688	1.00 18.18	APEP
	MOTA	1204		PHE	152	9.894	25.169	38.832	1.00 20.33	APEP
	MOTA	1205	CZ	PHE	152	9.986	25.057	37.447	1.00 20.45	APEP
45	MOTA	-1206	C	-PHE		6.543	22.708	39.996	1.00 28.98	APEP
•	MOTA	1207	0	PHE	152	6.821	21.736	39.293	1.00 29.79	APEP
	ATOM	1208	N	SER	153	7.112	22.940	41.176	1.00 30.67	APEP
	MOTA	1209	CA	SER	153	8.162	22.084	41.735	1.00 32.34	APEP
	MOTA	1210	CB	SER	153	8.313	22.357	43.234	1.00 33.66	APEP
50	MOTA	1211	OG	SER	153	9.539	21.834	43.713	1.00 35.63	APEP
	ATOM	1212	C	SER	153	7.990	20.581	41.522	1.00 31.88	APEP
	ATOM	1213	0	SER	153	8.977	19.859	41.342	1.00 29.52	APEP
	ATOM	1214	N	GLY	154	6.744	20.113	41.547	1.00 32.09	APEP
	ATOM	1215	CA	GLY	154	6.488	18.694	41.373	1.00 31.42	APEP
55	MOTA	1216	C.	GLY	154	6.124	18.282	39.962	1.00 31.42	APEP
	ATOM	1217	o	GLY	154	5.317	17.371	39.771	1.00 31.82	
	ATOM	1218	N	ASN	155	6.719	18.941	38.973		APEP
	.11011	7210		AUM	133	0.713	10.341	30.3/3	1.00 30.65	APEP

			•							
	MOTA	1219	CA	ASN	155	6.448	18.635	37.573	1.00 28.76	APEP
	ATOM	1220	CB	ASN	155	5.796	19.842	36.893	1.00 27.64	APEP
	ATOM	1221	CG	ASN	155	4.332	19.614	36.579	1.00 26.54	APEP
	MOTA	. 1222	OD1	ASN	155	3.991	18.873	35.652	1.00 25.37	APEP
5	ATOM	1223	ND2	ASN	155	3.455	20.248	37.354	1.00 23.70	APEP
_	ATOM	1224	C	ASN	155	7.729	18.257	36.833	1.00 29.00	APEP
	ATOM	1225	ō	ASN	155	8.828	18.636	37.242	1.00 28.36	APEP
	ATOM	1226	N	ASP	156	7.580	17.507	35.744	1.00 28.55	APEP
	ATOM	1227	CA	ASP	156	8.714		34.933	1.00 28.23	APEP
10						8.219	16.108		1.00 20.23	APEP
10	MOTA	1228	CB	ASP	156			33.848	1.00 29.34	
	ATOM	1229	CG	ASP	156	9.251	15.058	33.474		APEP
	MOTA	1230		ASP	156	8.915	13.855	33.515	1.00 30.64	APEP
	ATOM	1231		ASP	156	10.396	15.434	33.133	1.00 32.06	APEP
	ATOM	1232	C	ASP	156	9.399	18.281	34.284	1.00 27.76	APEP
15	MOTA	1233	0	ASP	156	8.971	18.746	33.230	1.00 27.49	APEP
	ATOM	1234	N	PHE	157	10.464	18.789	34.897	1.00 28.19	APEP
	MOTA	1235	CA	PHE	157	11.129	19.951	34.326	1.00 29.10	APEP
	MOTA	1236	CB	PHE	157	11.963	20.705	35.387	1.00 32.07	APEP
	MOTA	1237	CG	PHE	157	13.062	19.893	36.038	1.00 35.87	APEP
20	ATOM	1238	CD1	PHE	157	14.226	19.555	35.330	1.00 36.99	APEP
	ATOM	1239	CD2	PHE	157	12.982	19.555	37.397	1.00.35.92	APEP
	ATOM	1240		PHE	157	15.297	18.901	35.966	1.00 36.12	APEP
	ATOM	1241		PHE	157	14.047	18.902	38.044	1.00 36.27	APEP
	ATOM	1242	CZ	PHE	157	15.208	18.577	37.323	1.00 36.25	APEP
25	ATOM	1243	C	PHE	157	11.967	19.639	33.100	1.00 28.86	APEP
23	ATOM	1244	o	PHE	157	12.423	20.543	32.400	1.00 28.11	APEP
				LEU	158	12.158	18.357	32.824	1.00 28.54	APEP
	ATOM	1245	N			12.158	17.962	31.653	1.00 28.65	APEP
	ATOM	1246	CA	LEU	158		16.657		1.00 29.80	APEP
20	ATOM	1247	CB	LEU	158	13.685		31.922		APEP
30	ATOM	1248	CG	LEU	158	15.217	16.660	31.842	1.00 28.78	
	MOTA	1249		LEU	158	15.688	15.223	31.692	1.00 29.48	APEP
	ATOM	1250		LEU	158	15.706	17.507	30.669	1.00 26.31	APEP
	MOTA	1251	C	LEU	158	11.962	17.773	30.488	1.00 27.95	APEP
	MOTA	1252	0	LEU	158	12.375	17.501	29.366	1.00 30.04	APEP
35	MOTA	1253	N	LYS	159	10.671	17.932	30.763	1.00 26.29	APEP
	ATOM	1254	CA	LYS	159	9.654	17.774	29.734	1.00 24.09	APEP
	ATOM	1255	CB	LYS	159	8.801	16.542	30.039	1.00 23.00	APEP
	ATOM	1256	CG	LYS	159	9.619	15.265	30.203	1.00 24.44	APEP
	MOTA	1257	CD	LYS	159	8.749	14.035	30.403	1.00 23.01	APEP
40	ATOM	1258	CE	LYS	159	7.414	14.154	29.691	1.00 22.17	APBP
	ATOM	1259	NZ	LYS	159	6.363	13.362	30.384	1.00 21.65	APEP
٠.	MOTA	1260	C	LYS	159	8.756	19.000	29.595	1.00 22.82	APEP
	ATOM	1261	ō	LYS	159	8.099	19.182	28.566	1.00 20.81	APEP
	ATOM	1262	N	THR	160	8.731	19.845	30.623	1.00 21.93	APEP
45	MOTA	1263	CA	THR	160	7.889	21.041	30.590	1.00 19.90	APEP
73		1264	CB	THR	160	6.684	20.884	31.554	1.00 17.71	APEP
	MOTA					7.163	20.721	32.894	1.00 17.71	APEP
	ATOM	1265		THR	160		19.670		1.00 17.43	APEP
	ATOM	1266		THR	160	5.856		31.182		
	MOTA	1267	C	THR	160	8.619	22.352	30.921	1.00 19.16	APEP
50	MOTA	1268	0	THR	160	8.005	23.419	30.937	1.00 20.80	APEP
	MOTA	1269	N	GLY	161	9.925	22.270	31.160	1.00 17.07	APEP
	MOTA	1270	CA	GLY	161	10.707	23.446	31.506	1.00 15.84	APEP
	MOTA	1271	C	GLY	161	10.629	24.679	30.616	1.00 15.32	APEP
	MOTA	1272	0	GLY	161	10.825	25.796	31.093	1.00 15.24	APEP
55	ATOM	1273	N	HIS	162	10.356	24.498	29.329	1.00 15.82	APEP
	ATOM	1274	CA	HIS	162	10.274	25.637	28.421	1.00 14.73	APEP
	MOTA	1275	CB	HIS	162	10.587	25.193	26.995	1.00 17.02	APEP
	ALON	,								

•											
	MOTA	1276	cc.	HIS	162	11.979	24.675	26.823	1.00	20 R5	APEP
	ATOM	1277		HIS	162	13.162	25.120	27.308	1.00		APBP
	ATOM	1278		HIS	162	12.268	23.554	26.076	1.00		APBP
	ATOM	1279		HIS	162	13.572	23.333	26.107	1.00		APBP
5	ATOM	1280		HIS	162	14.136	24.269	26.848	1.00		APEP
	ATOM	1281	C	HIS	162	8.893	26.277	28.486	1.00		
	MOTA	1282	ō	HIS	162	8.753	27.497	28.413	1.00		APEP
	MOTA	1283	N	TYR	163	7.875	25.442	28.628	1.00		
	ATOM	1284	CA	TYR	163	6.509	25.926	28.733	1.00		APEP
10	ATOM	1285	СВ	TYR	163	5.550	24.750	28.924	1.00		APEP.
- •	ATOM	1286	CG	TYR	163	4.271	25.122	29.653			APEP
	ATOM	1287		TYR	163	3.369	26.028	29.095	1.00		APEP
	ATOM	1288		TYR	163	2.196	26.378	29.759	1.00		APEP
	ATOM	1289	CD2		163	3.970	24.576		1.00	9.30	APEP
15	ATOM	1290	CE2		163	2.802	24.576	30.898	1.00	6.58	APEP
	ATOM	1291	CZ	TYR	163	1.918	25.818	31.571	1.00	8.87	APBP
	MOTA	1292	OH	TYR	163	0.745	26.143	30.995	1.00		
	ATOM	1293	C	TYR	163	6.387	26.863	31.635	1.00		APEP
	MOTA	1294	Ö	TYR	163	5.919	27.994	29.937	1.00		APEP
20	ATOM	1295	N	THR	164			29.820	1.00		APEP .
20	ATOM	1296	CA	THR	164	6.830	26.382	31.093	1.00	9.35	APEP
	ATOM	1297	CB	THR	164	6.740	27.143	32.335	1.00	8.02	APEP
	ATOM	1298	OG1	THR		7.259	26.301	33.511	1.00	6.41	APEP
	MOTA	1299	CG2	THR	164	8.571	25.811	33.209	1.00	5.81	APEP
25	ATOM	1300	C	THR	164	6.312	25.111	33.750	1.00	2.00	APEP
23	MOTA	1301	0	THR	164 164	7.422	28.513	32.327	1.00	8.62	APEP
	ATOM	1301	И			6.962	29.433	33.010	1.00	8.07	APEP
	ATOM	1302	CA	GLN GLN	165 165	8.508 9.183	28.663	31.570	1.00	8.53	APEP
	MOTA	1303	CB	GLN	165		29.964	31.499	1.00	7.81	APEP
30	ATOM	1304	CG			10.598	29.837	30.930	1.00	7.00	APEP
50	ATOM	1305	CD	GLN GLN	165 165	11.241		30.604	1.00	7.27	APBP
	ATOM	1307	OE1		165	11.537	32.023	31.840	1.00	7.94	APEP
	ATOM	1307	NE2	GLN	165	12.631	31.963	32.407	1.00	7.98	APEP
	ATOM	1309	C			10.566	32.815	32.257	1.00	5.43	APEP
35	ATOM	1310	0	GLN	165	8.370	30.902	30.609	1.00	7.95	APEP
55	ATOM	1311	N	GLN	165	8.363	32.113	30.811	1.00	8.38	APEP
	ATOM	1312	CA	MET MET	166 166	7.683	30.330	29.625	1.00	7.26	APEP
	MOTA	1312	CB	MET	166	6.859	31.118	28.715	1.00	8.35	APEP
	ATOM	1314	CG	MET	166	6.377 7.245	30.253	27.553	1.00	7.91	APBP
40	MOTA	1314	SD	MET	166		30.356	26.309	1.00		APEP
70	ATOM	1316	CE	MET	166	6.486	29.500	24.931	1.00 1		APEP
	ATOM	1317	C	MET		5.508	30.823	24.207	1.00 1		APEP
	ATOM	1317	0	MET	166 166	5.654	31.746	29.409	1.00	6.47	APEP
	ATOM	1319	N	VAL	167	5.313	32.890	29.128	1.00	7.34	APEP
45 -	ATOM	1320				5.011	31.009	30.314	1.00	7.21	APEP
43			CA	VAL	167	3.847	31.550	31.018	1.00	7.06	APEP
	ATOM	1321	CB	VAL	167	2.676	30.526		1.00	7.32	APEP
	MOTA	1322		VAL	167	2.295	30.107	29.654	1.00	3.76	APEP
	ATOM	1323	CG2		167	3.048	29.321	31.901	1.00	5.77	APEP
60	ATOM	1324	C	VAL	167	4.125	32.046	32.444	1.00	8.39	APEP
50	ATOM	1325	0	VAL	167	3.200	32.211	33.231	1.00	8.06	APEP
	MOTA	1326	N	TRP	168	5.396	32.290	32.767	1.00	9.11	APEP
	MOTA	1327	CA	TRP	168	5.793	32.784	34.089	1.00	8.50	APEP
	MOTA	1328	CB	TRP	168	7.320	32.745	34.232	1.00	7.79	APEP
	ATOM	1329	CG	TRP	168	7.806	32.690	35.657	1.00	9.67	APEP
55	ATOM	1330	CD2		168	7.960	31.519	36.474	1.00	8.72	APEP
	ATOM	1331	CE2		168	8.452	31.946	37.725	1.00 1		APEP
	ATOM	1332	CE3	TRP	168	7.730	30.153	36.268	1.00 1	0.13	APEP
									•		

	MOTA	1333		TRP	168	8.200	33.747	36.430	1.00	8.39	APEP
	ATOM	1334		TRP	168	8.589	33.309	37.670	1.00	8.61	APEP
	MOTA	1335	CZ2	TRP	168	8.722	31.054	38.769	1.00	8.53	APEP
	MOTA	1336	CZ3	TRP	168	7.998	29.265	37.305	1.00	6.40	APEP
5	MOTA	1337	CH2	TRP	168	8.488	29.721	38.539	1.00	9.27	APEP
	MOTA	1338	С	TRP	168	5.294	34.213	34.275	1.00	8.27	APEP
	MOTA	1339	0	TRP	168	5.782	35.136	33.627	1.00	8.24	APEP
	MOTA	1340	N	ALA	169 .	4.324	34.392	35.167	1.00	7.85	APEP
	MOTA	1341	CA	ALA	169	3.734	35.704	35.415	1.00	7.42	APEP
10	ATOM	1342	CB	ALA	169	2.668	35.585	36.476	1.00	6.86	APEP
	MOTA	1343	C	ALA	169	4.715	36.805	35.797	1.00	9.10	APEP
	ATOM	1344	0	ALA	169	4.525	37.968	35.433		10.62	APEP
	MOTA	1345	N	ASN	170	5.758	36.436	36.531	1.00	9.55	APEP
	ATOM	1346	CA	ASN	170	6.760	37.392	36.990		10.81	APEP
15	ATOM	1347	CB	ASN	170	7.557	36.792	38.158		10.24	APEP
	MOTA	1348	CG	ASN	170	6.907	37.057	39.513		11.09	APEP
	ATOM	1349		ASN	170	5.758	37.497	39.598		11.64	APEP
	ATOM	1350		ASN	170	7.643	36.783	40.578		14.04	APEP
	MOTA	1351	C	ASN	170	7.716		35.887		10.96	APEP
20	ATOM	1352	ō	ASN	170	8.317		35.999		10.88	APRP
	ATOM	1353	N	THR	171	7.866	37.071	34.830		10.69	APEP
	ATOM	1354	CA	THR	171	8.741	37.472	33.733		9.90	APEP
	ATOM	1355	CB	THR	171	9.002	36.308	32.757	1.00	8.82	APRP
	ATOM	1356	OG1		171	9.738	35.278	33.430		10.00	APEP
25	ATOM	1357	CG2	THR	171	9.793	36.790	31.541	1.00	6.32	APEP
	ATOM	1358	C	THR	171	8.026	38.592	32.992		10.43	APRP
	ATOM.	1359	ō	THR	171	6.842	38.468	32.669		11.58	APEP
	ATOM	1360	N	LYS	172	8.736	39.680	32.715		11.90	APEP
	MOTA	1361	CA	LYS	172	8.131	40.818	32.027		12.07	APEP
30	ATOM	1362	CB	LYS	172	8.176	42.054	32.934		13.23	APEP
50	ATOM	1363	CG	LYS	172	7.424	41.893	34.261		16.65	APEP
	ATOM	1364	CD	LYS	172	5.905	41.830	34.074		18.48	APEP
	ATOM	1365	CE	LYS	172	5.354	43.044	33.312		21.38	APEP
	ATOM	1366	NZ	LYS	172	4.386	43.852	34.117		19.33	APEP
35	ATOM	1367	C	LYS	172	8.751	41.166	30.677	1.00	9.74	APEP
75	ATOM	1368	Ö	LYS	172	8.122	41.834	29.856	1.00	9.87	APEP
	ATOM	1369	И	GLU	173	9.982	40.719	30.450		11.94	APEP
	ATOM	1370	CA	GLU	173	10.684	41.005	29.198		13.45	APEP
	ATOM	1371	CB	GLU	173	11.812	42.014	29.438		16.52	APEP
40	ATOM	1372	CG	GLU	173	11.752	42.721	30.778		21.67	APEP
70	ATOM	1372	CD	GLU	173	11.695	44.220	30.778		23.96	APEP
	ATOM	1374		GLU	173	11.727	44.679	29.455		24.88	APEP
	ATOM	1375	OE2	GLU	173	11.621		31.643		28.83	APEP
	ATOM	1376	C	GLU	173		44.935		•	10.86	APEP
45		1377	0	GLU		11.280	39.765	28.531			
43	ATOM				173	11.622	38.790	29.199		10.81 10.16	APEP
	MOTA	1378	N	VAL	174	11.404	39.830 38.741	27.209			APEP
	MOTA	1379	CA	VAL	174	11.968		26.416	1.00	9.96	APEP
	ATOM	1380	CB	VAL	174	10.856	37.811	25.846	1.00	9.93	APEP
50	ATOM	1381		VAL	174	10.099	38.519	24.740	1.00	7.96	APEP
50	MOTA	1382		VAL	174	11.460	36.508	25.323	1.00	7.52	APEP
	ATOM	1383	C	VAL	174	12.790	39.316	25.258		11.17	APEP
	ATOM	1384	0	VAL	174	12.485	40.383	24.728		11.23	APEP
	ATOM	1385	N	GLY	175	. 13.845	38.605	24.886	_	10.40	APEP
	ATOM	1386	CA	GLY	175	14.692	39.045	23.797	1.00	8.75	APEP
55	ATOM	1387	С	GLY	175	15.337	37.813	23.211	1.00	9.59	APEP
	MOTA	1388	0	GLY	175	15.882	36.991	23.949	1.00	6.65	APEP
	MOTA	1389	N	CYS	176	15.291	37.685	21.885	1.00	8.02	APEP

	MOTA	1390	CA	CYS	176	15.853	36.511	21.226	1.00 7.90	APEP
	ATOM	1391	C	CYS	176	16.940	36.771	20.186	1.00 7.85	APEP
	MOTA	1392	0	CYS	176	17.114	37.893	19.693	1.00 6.33	APEP
	MOTA	1393	CB	CYS	176	14.721	35.701	20.582	1.00 6.21	APEP
5	ATOM '	1394	SG	CYS	176	13.249	35.553	21.641	1.00 9.41	APEP
	ATOM	1395	N	GLY	177	17.672	35.703	19.880	1.00 8.22	APEP
	ATOM	1396	CA	GLY	177	18.737	35.744	18.895	1.00 10.14	APEP
	ATOM	1397	C	GLY	177	18.618	34.466	18.085	1.00 10.70	APEP
	MOTA	1398	0	GLY	177	18.182	33.446	18.623	1.00 8.40	APEP
10	ATOM	1399	N	SER	178	18.983	34.509	16.806	1.00 9.75	APEP
	ATOM	1400	CA	SER	178	18.881	33.325	15.959	1.00 9.62	APEP
	ATOM	1401	CB	SER	178	17.523	33.305	15.247	1.00 12.13	APEP
	MOTA	1402	OG	SER	178	17.614	33.902	13.964	1.00 15.65	APEP
	ATOM	1403	C	SER	178	19.999	33.227	14.921	1.00 8.56	APEP
15	MOTA	1404	0	SER	178	20.597	34.231	14.532	1.00 5.09	APEP
	ATOM	1405	N	ILE	179	20.270	32.001	14.482	1.00 9.37	APEP
	ATOM	1406	CA	ILE	179	21.310	31.744	13.498	1.00 9.01	APEP
	MOTA	1407	CB	ILE	179	22.673	31.531	14.181	1.00 8.43	APEP
	ATOM	1408	CG2	ILE	179	22.625	30.296	15.054	1.00 6.63	APEP
20	ATOM	1409	CG1	ILE	179	23.774	31.415	13.122	1.00 7.53	APEP
	ATOM	1410	CD1	ILE	179	25.093	32.035	13.535	1.00 8.62	APEP
	MOTA	1411	C	ILE	179	20.980	30.517	12.650	1.00 10.87	APEP
	MOTA	1412	Ο·	ILE	179.	20.506	29.497	13.158	1.00 10.47	APEP
	ATOM	1413	N	LYS	180	21.216	30.632	11.347	1.00 10.60	APEP
25	ATOM	1414	CA	LYS	180	20.952	29.536	10.430	1.00 11.05	APEP
	MOTA	1415	CB	LYS	180	20.077	30.018	9.269	1.00 11.05	APEP
	ATOM	1416	CG	LYS	180	18.745	30.596	9.724	1.00 13.07	APEP
	MOTA	1417	CD	LYS	180	17.902	31.048	8.543	1.00 15.79	APEP
	ATOM	1418	CE	LYS	180	16.580	31.655	8.996	1.00 14.81	APEP
30	MOTA	1419	NZ	LYS	180	15.620	31.802	7.862	1.00 16.66	APEP
	MOTA	1420	C	LYS	. 180	22.291	29.029	9.920	1.00 10.53	APEP
	MOTA	1421	0	LYS	180	23.137	29.817	9.505	1.00 12.20	APEP
	MOTA	1422	N	TYR	181	22.490	27.716	9.955	1.00 9.11	APEP
	MOTA	1423	CA	TYR	181	23.756	27.166	9.510	1.00 8.14	APEP
35	MOTA	1424	CB	TYR	181	24.786	27.300	10.633	1.00 6.13	APEP
	ATOM	1425	CG	TYR	181	24.460	26.483	11.863	1.00 8.18	APEP
	MOTA	1426	CDi	TYR	181	24.984	25.201	12.027	1.00 9.63	APEP
	MOTA	1427	CE1	TYR	181	24.706	24.450	13.172	1.00 8.66	APEP
	MOTA	1428	CD2	TYR	181	23.643	26.999	12.876	1.00 8.34	APEP
40	ATOM	1429	CE2	TYR	181	23.360	26.257	14.020	1.00 7.46	APEP
	MOTA	1430	CZ	TYR	181	23.896	24.986	14.161	1.00 8.38	APEP
	MOTA	1431	OH	TYR	181	23.634	24.244	15.293	1.00 8.05	APEP
	MOTA	1432	C	TYR	181	23.695	25.719	9.022	1.00 7.08	APEP
	MOTA	1433	0	TYR	181	22.728	25.001	9.262	1.00 7.97	APEP
45	MOTA	1434	N	ILE	182	24.743	25.303	8.323	1.00 8.25	APEP
	MOTA	1435	CA	ILE	182	24.814	23.948	7.804	1.00 7.94	APEP
	MOTA	1436	CB	ILE	182	25.011	23.959	6.293	1.00 9.43	APEP
	MOTA	1437	CG2	ILB	182	24.641	22.599	5.713	1.00 9.49	APEP
	MOTA	1438	CG1	ILE	182	24.147	25.065	5.680	1.00 9.61	APEP
50	MOTA	1439	CD1	ILE	182	24.502	25.429	4.278	1.00 7.05	APEP
	ATOM	1440	C	ILE	182	25.961	23.184	8.445	1.00 8.67	APEP
	MOTA	1441	0	ILE	182	27.112	23.588	8.333	1.00 8.62	APEP
	ATOM	1442	N	GLN	183	25.642	22.084	9.122	1.00 6.39	APEP
	MOTA	1443	CA	GLN	183	26.657	21.271	9.776	1.00 7.60	APEP
55	ATOM	1444	CB	GLN	183	26.485	21.313	11.304	1.00 8.26	APEP
	ATOM	1445	CG	GLN	183	27.184	20.160	12.059	1.00 11.17	APEP
	ATOM	1446	CD	GLN	183	26.842	20.105	13.560	1.00 10.23	APEP

	MOTA	1447	OE1	GLN	183	25.927	20.779	14.029	1.00 13.96	APEP
	MOTA	1448	NE2	GLN	183	27.578	19.293	14.304	1.00 9.47	APEP
•	ATOM	1449	С	GLN	183	26.603	19.824	9.308	1.00 6.95	APBP
	ATOM	1450	0	GLN	183	25.653	19.096	9.602	1.00 4.41	APBP
5	ATOM	1451	N	GLU	184	27.624	19.404	8.576	1.00 6.92	APBP
	ATOM	1452	CA	GLU	184	27.685	18.025	8.123	1.00 7.66	APEP
	ATOM	1453	CB	GLU	184	27.885	17.120	9.349	1.00 9.14	APEP
	ATOM	1454	CG	GLU	184	29.110	17.551	10.172	1.00 8.94	APEP
	MOTA	1455	CD	GLU	184	29.207	16.912	11.558	1.00 12.48	APEP
10	MOTA	1456	OE1	GLU	184	28.235	16.963	12.340	1.00 13.16	APEP
	MOTA	1457	OE2	GLU	184	30.278	16.361	11.869	1.00 15.28	APEP
	ATOM	1458	C	GLU	184	26.447	17.645	7.316	1.00 6.36	APEP
	MOTA	1459	0	GLU	184	25.858	16.581	7.493	1.00 4.35	APEP
	ATOM	1460	N	LYS	185	26.089	18.560	6.417	1.00 8.43	APEP
15	ATOM	1461	CA	LYS	185	24.956	18.451	5.504	1.00 10.57	APEP
	MOTA	1462	CB	LYS	185	25.054	17.165	4.685	1.00 12.55	APEP
	MOTA	1463	CG	LYS	185	25.705	17.371	3.331	1.00 16.19	APEP
	MOTA	1464	CD	LYS	185	26.930	16.498	3.173	1.00 20.18	APEP
	MOTA	1465	CE	LYS	185	26.783	15.553	1.990	1.00 22.27	APEP
20	ATOM	1466	NZ	LYS	185	25.360	15.182	1.744	1.00 25.09	APEP
	ATOM	1467	C	LYS	185	23.571	18.567	6.131	1.00 10.92	APEP
	MOTA	1468	0	LYS	185	22.566	18.219	5.509	1.00 10.67	APEP
	ATOM	1469	N	TRP	186	23.519	19.062	7.362	1.00 10.21	APBP.
	ATOM	1470	CA	TRP	186	22.250	19.252	8.039	1.00 9.13	APBP
25	ATOM	1471	CB	TRP	186	22.297	18.677	9.461	1.00 8.92	APEP
	ATOM	1472	CG	TRP	186	22.105	17.173	9.563	1.00 7.23	APBP
	ATOM	1473		TRP	186	20.883	16.433	9.380	1.00 7.44	APEP
	ATOM	1474		TRP	186	21.179	15.070	9.624	1.00 7.10	APEP
	ATOM	1475	CE3		186	19.569	16.787	9.036	1.00 7.24	APEP
30	ATOM	1476		TRP	186	23.057	16.253	9.895	1.00 7.55	APEP
•	ATOM	1477		TRP	186	22.510	14.991	9.934	1.00 7.21	APEP
	ATOM	1478	CZ2	TRP	186	20.209	14.061	9.536	1.00 4.65	APEP
	ATOM	1479		TRP	186	18.602	15.776	8.950	1.00 5.07	APEP
	ATOM	1480	CH2	TRP	186	18.934	14.430	9.198	1.00 4.34	APEP
35	ATOM	1481	C	TRP	186	22.029	20.757	8.097	1.00 9.22	APEP
-	ATOM	1482	ō	TRP	186	22.895	21.495	8.547	1.00 10.78	APEP
	MOTA	1483	N	HIS	187	20.876	21.214	7.622	1.00 11.53	APEP
	ATOM	1484	CA	HIS	187	20.555	22.637	7.642	1.00 10.59	APEP
	ATOM	1485	CB	HIS	187	19.773	23.005	6.375	1.00 11.28	APBP
40	ATOM	1486	CG	HIS	187	20.381	22.455	5.119	1.00 12.80	APEP
	MOTA	1487		HIS	187	20.511	21.183	4.674	1.00 13.63	APEP
	ATOM	1488		HIS	187	20.984	23.254	4.170	1.00 14.63	APEP
	ATOM	1489		HIS	187	21.463	22.497	3.198	1.00 14.03	APEP
	ATOM	1490		HIS	187	21.189	21.236	3.480	1.00 14.98	APEP
45	ATOM	1491	C	HIS	187	19.738	22.910	8.904	1.00 14.38	APEP
45	ATOM	1492	0	HIS	187	18.636	22.408	9.058	1.00 10.40	APEP
	ATOM	1492		LYS	188	20.287		9.817	1.00 10.40	APEP
			N			19.593	23.700			
	ATOM	1494	CA	LYS	188		23.970	11.068	1.00 9.30	APEP
50	ATOM	1495	CB	LYS	188	20.403	23.413	12.251	1.00 10.66	APEP
50	ATOM	1496	CG	LYS	188	21.395	22.314	11.909	1.00 7.22	APEP
	MOTA	1497	CD	LYS	188	21.627	21.422	13.118	1.00 8.34	APEP
	ATOM	1498	CE	LYS	188	22.696	20.369	12.871	1.00 9.03	APEP
	MOTA	1499	NZ	LYS	188	23.268	19.865	14.162	1.00 13.31	APEP
	MOTA	1500	C	LYS	188	19.289	25.428	11.349	1.00 7.81	APEP
55	MOTA	1501	0	LYS	188	19.988	26.328	10.890	1.00 9.61	APEP
	ATOM	1502	N	HIS	189	18.216	25.646	12.097	1.00 9.34	APEP
	MOTA	1503	CA	HIS	189	17.823	26.977	12.532	1.00 9.56	APEP

	MOTA	1504	CB.	HIS	189	16.391	27:315	12.119	1.00	9.45	APEP
	ATOM	1505	ÇG	HIS	189	16.033	28.756	12.331	1.00	11.25	APEP
	ATOM	1506	CD2	HIS	189	16.739	29.777	12.870		11.06	APEP
	ATOM	1507	ND1	HIS	189	14.822	29.291	11.946		13.10	APEP
5	ATOM	1508	CE1	HIS	189	14.800	30.579	12.237		11.47	APEP
	ATOM	1509	NE2	HIS	189	15.950	30.900	12.799		12.33	APEP
	ATOM	1510	C	HIS	189	17.911	26.904	14.049	1.00	9.30	APEP
	ATOM	1511	0	HIS	189	17.265	26.060	14.671	1.00	9.01	APEP
	ATOM	1512	N	TYR	190	18.717	27.781	14.635		10.00	APEP
10	ATOM	1513	CA	TYR	190	18.928	27.816	16.080	1.00	9.41	APEP
	ATOM	1514	CB	TYR	190	20.433	27.745	16.343		11.08	APEP
	MOTA	1515	CG	TYR	190	20.872	27.618	17.788		11.54	APEP
	MOTA	1516		TYR	190	20.017	27.124	18.777		11.05	APEP
	ATOM	1517		TYR	190	20.458	26.983	20.108		10.64	APEP
15	ATOM	1518	CD2	TYR	190	22.173	27.971	18.157		11.80	APEP
	ATOM	1519	CE2	TYR	190	22.618	27.835	19.467		12.63	APEP
•	ATOM	1520	CZ	TYR	190	21.767	27.342	20.435		11.58	APEP
	ATOM	1521	ОН	TYR	190	22.257	27.190	21.713		12.58	APEP
	ATOM	1522		TYR	190	18.337	29.076	16.716	1.00	8.19	APEP
20	ATOM	1523	ō	TYR	190	18.803	30.184	16.456	1.00	6.34	APEP
	ATOM	1524	N	LEU	191	17.313	28.895	17.549	1.00	7.47	APEP
	ATOM	1525	CA	LEU	191	16.656	30.011	18.226	1.00	8.92	APEP
	ATOM	1526	CB	LEU	191	15.151	30.001	17.926	1.00	8.75	APEP
	ATOM	1527	CG	LEU	191	14.308	31.101	18.599			
25	ATOM	1528		LEU	191	14.540	32.444	17.916		11.51	APEP
23	ATOM	1529		LEU	191	12.831	30.724	18.541	1.00	9.71	APEP
	ATOM	1530	C	LEU	191	16.890	29.996		1.00	9.30	APEP
	MOTA	1531		LEU	191	16.657	28.988	19.743	1.00	9.50	APEP
	ATOM	1532	N	VAL	192	17.347	31.128	20.416		11.01 9.30	APEP
30	ATOM	1533	CA	VAL	192	17.629	31.291	20.266	1.00		APEP
50	ATOM	1534	CB	VAL	192	19.145	31.536	21.690 21.923		10.13	APEP
	ATOM	1535	CG1		192	19.145	32.044	23.344		10.96	APEP
	ATOM	1536	CG2		192	19.934	30.267			11.81	APEP
	ATOM	1537	C	VAL	192	16.875		21.659		11.43	APEP
35		1538	0	VAL	192	17.078	32.510 33.621	22.231		10.34	APEP
55	ATOM	1539	И	CYS	193	16.009		21.745		10.10	APEP
	ATOM	1540	CA	CYS	193	15.276	32.315	23.226	1.00	8.18	APEP
	MOTA	1541	C	CYS	193		33.442	23.810	1.00	8.37	APEP
	ATOM	1542	0	CYS	193	15.600	33.609	25.296	1.00	8.44	APEP
40	ATOM	1542	СВ	CYS	193	15.514	32.650	26.061	1.00	6.27	APEP
40	ATOM	1544	SG	CYS		13.762	33.258	23.649	1.00	9.08	APEP
	ATOM	1545	N.	ASN	193 194	13.062	33.556	21.985	1.00	8.61	APEP
	MOTA					15.978	34.826	25.694	1.00	8.32	APEP
	ATOM	1546	CA CB	ASN	194	16.310	35.133	27.086	1.00	7.48	APEP
45		1547		ASN	194	17.582	35.991	27.149	1.00	8.69	APEP
73	ATOM	1548 1549	CG	ASN	194	18.840	35.190	26.868	1.00	6.67	APEP
	ATOM		OD1		194	18.772	33.995	26.596	1.00	9.58	APEP
	MOTA	1550	ND2		194	19.989	35.843	26.932	1.00	4.71	APEP.
	MOTA	1551	C	ASN	194	15.140	35.859	27.766	1.00	7.75	APEP
50	ATOM	1552	0	ASN	194	14.540	36.760	27.175	1.00	5.25	
50	MOTA	1553	N	TYR	195	14.834	35.475	29.009	1.00	7.83	APEP
	ATOM	1554	CA	TYR	195	13.699	36.047	29.749	1.00	7.00	APEP
	ATOM	1555	CB	TYR	195	12.736	34.924	30.138	1.00	6.30	APEP
	MOTA	1556	CG	TYR	195	12.180	34.180	28.949	1.00	8.42	APEP
	MOTA	1557	CD1		195	12.918	33.175	28.329	1.00	7.89	APEP
55	MOTA	1558	CE1		195	12.436	32.510	27.219	1.00	8.54	APEP
	MOTA	1559	CD2		195	10.934	34.501	28.422	1.00	6.50	APEP
	MOTA	1560	CE2	TYR	195	10.438	33.835	27.300	1.00	8.99	APEP

	ATOM	1561	CZ	TYR	195	11.199	32.837	26.707	1.00 8.08	APEP
	MOTA	1562	OH	TYR	195	10.724	32.142	25.617	1.00 8.91	APBP
	MOTA	1563	C	TYR	195	14.047	36.860	30.999	1.00 6.48	APEP
	ATOM	1564	0	TYR	195	14.840	36.422	31.822	1.00 7.26	APEP
5	MOTA	1565	N	GLY	196	13.418	38.025	31.154	1.00 6.42	APEP
	MOTA	1566	CA	GLY	196	13.709	38.867	32.303	1.00 6.88	APEP
	MOTA	1567	C	GLY	196	12.558	39.431	33.131	1.00 8.03	APEP
	ATOM	1568	0	GLY	196	11.649	40.075	32.596	1.00 8.29	APEP
	ATOM	1569	N.	PRO	197	12.541	39.157	34.445	1.00 6.50	APEP
10	ATOM	1570	CD	PRO	197	11.525	39.698	35.363	1.00 7.41	APEP
	ATOM	1571	CA	PRO	197	13.536	38.343	35.153	1.00 6.68	APEP
	ATOM	1572	CB	PRO	197	13.300	38.688	36.610	1.00 6.91	APEP
	ATOM	1573	CG	PRO	197	11.856	39.041	36.672	1.00 6.39	APEP
	ATOM	1574	C	PRO	197	13.266	36.868	34.854	1.00 6.69	APEP
15	ATOM	1575	0	PRO	197	12.255	36.537	34.238	1.00 6.02	APEP
	ATOM	1576	N	SER	198	14.153	35.975	35.286	1.00 7.01	APEP
	ATOM	1577	CA	SER	198	13.953	34.557	35.001	1.00 7.41	APEP
	ATOM	1578	CB OG	SER SER	198	15.233	33.755	35.303 36.682	1.00 4.71	APEP
20	ATOM ATOM	1579 1580	C	SER	198 198	15.558 12.765	33.752 33. <i>9</i> 27	35.717	1.00 11.52 1.00 7.39	APEP
20	ATOM	1581	0	SER	198	12.765	34.528	36.605	1.00 7.39	APEP
	ATOM	1582	N	GLY	199	12.423	32.716	35.289	1.00 7.86	APEP
	ATOM	1583	CA	GLY	199	11.332	31.977	35.893	1.00 7.00	APEP
	ATOM	1584	C	GLY	199	11.894	30.622	36.274	1.00 8.12	APEP
25	ATOM	1585	0	GLY	199	13.110	30.450	36.306	1.00 8.44	APEP
	ATOM	1586	N	ASN	200	11.022	29.670	36.570	1.00 9.40	APEP
	ATOM	1587	CA	ASN	200	11.433	28.317	36.929	1.00 11.14	APEP
	ATOM	1588	CB	ASN	200	12.344	27.742	35.844	1.00 11.38	APEP
	ATOM	1589	CG	ASN	200	11.581	27.365	34.591	1.00 12.36	APEP
30	ATOM	1590		ASN	200	10.360	27.478	34.550	1.00 13.35	APEP
	ATOM	1591		ASN	200	12.293	26.919	33:566	1.00 10.02	APEP
	ATOM	1592	C	ASN	200	12.102	28.177	38.296	1.00 12.89	APEP
	MOTA	1593	0	ASN	200	13.019	27.373	38.477	1.00 12.94	APEP
	ATOM	1594	N	PHE	201	11.632	28.957	39.262	1.00 14.46	APEP
35	ATOM	1595	CA	PHE	201	12.157	28.890	40.622	1.00 16.00	APEP
	MOTA	1596	CB	PHE	201	11.947	30.224	41.339	1.00 14.75	APEP
	MOTA	1597	CG.	PHE	201	12.805	31.338	40.811	1.00 13.67	APEP
	MOTA	1598	CD1	PHE	201	12.267	32.311	39.982	1.00 13.83	APEP
	MOTA	1599	CD2	PHE	201	14.151	31.421	41.157	1.00 17.70	APEP
40	MOTA	1600	CE1	PHE .	201	13.047	33.350	39.505	1.00 14.74	APEP
	MOTA	1601	CE2	PHE	201	14.948	32.460	40.685	1.00 17.45	APEP
••	MOTA	1602	\mathbf{cz}	PHE	201	14.394	33.427	39.857	1.00 17.09	APEP
	MOTA	1603	C	PHE	201	11.347	27.786	41.304	1.00 16.58	APEP
	MOTA	1604	0	PHE	201	10.124	27.876	41.385	1.00 16.44	APEP
45	ATOM	1605	N	LYS	202	12.026	26.755	41.797	1.00 18.81	APEP
	MOTA	1606	CA	LYS	202	11.351	25.617	42.421	1.00 21.27	APEP
	MOTA	1607	CB	LYS	202	12.386	24.588	42.883	1.00 25.00	APEP
	ATOM.	1608	CG	LYS	202	12.314	23.274	42.101	1.00 29.78	APEP
	ATOM	1609	CD	LYS	202	13.215	22.197	42.698	1.00 31.92	APEP
50	MOTA	1610	CE	LYS	202	12.574	20.816	42.609	1.00 32.51	APEP
	MOTA	1611	NZ	LYS	202	12.138	20.304	43.944	1.00 30.68	APEP
	MOTA	1612	C	LYS	202	10.365	25.899	43.555	1.00 21.29	APEP
	MOTA	1613	0	LYS	202	9.347	25.218	43.676	1.00 22.50	APEP
	MOTA	1614	N	ASN	203	10.642	26.894	44.385	1.00 20.90	APEP
55	MOTA	1615	CA	ASN	203	9.726	27.190	45.485	1.00 22.00	APEP
	ATOM	1616	CB	ASN	203	10.520	27.657	46.711	1.00 23.02	APEP
	MOTA	1617	CG	ASN	203	11.274	28.953	46.466	1.00 23.60	APEP

	MOTA	1618		ASN	203	11.559	29.698	47.401	1.00 24.95	APEP
	MOTA	1619	ND2	asn	203	11.605	29.223	45.209	1.00 25.38	APEP
	MOTA	1620	C	asn	203	8.656	28.232	45.134	1.00 20.82	APEP
	ATOM	1621	0	asn	203	8.096	28.877	46.025	1.00 20.77	APEP
5	MOTA	1622	N	GLU	204	8.363	28.384	43.845	1.00 16.60	APEP
	ATOM	1623	CA	GLU	204	7.382	29.372	43.414	1.00 17.29	APEP
	ATOM	1624	CB	GLU	204	8.093	30.550	42.737	1.00 17.84	APEP
	MOTA	1625	CG	GLU.	204	9.303	31.084	43.489	1.00 17.21	APEP
	MOTA	1626	CD	GLU	204	9.801	32.408	42.937	1.00 17.35	APEP
10 -	MOTA	1627	OE1	GLU	204	9.157	32.963	42.023	1.00 15.88	APEP
	MOTA	1628	OE2	GLU	204	10.842	32.895	43.422	1.00 17.79	APEP
	MOTA	1629	C	GLU	204	6.298	28.842	42.475	1.00 17.89	APEP
	ATOM	1630	0	GLU	204	6.383	27.727	41.963	1.00 16.49	APEP
	MOTA	1631	N.	GLU	205	5.283	29.672	42.251	1.00 19.78	APEP
15	ATOM	1632	CA	GLU	205	4.159	29.335	41.383	1.00 20.21	APEP
	MOTA	1633	CB	GLU	205	2.851	29.854	41.992	1.00 23.42	APEP
	MOTA	1634	CG	GLU	205	2.609	31.347	41.772	1.00 28.77	APEP
	ATOM	1635	CD	GLU	205	2.874	32.176	43.022	1.00 32.85	APEP
	MOTA	1636	OE1	GLU	205	3.942	31.984	43.660	1.00 31.69	APEP
20	MOTA	1637	OE2	GLU	205	2.008	33.019	43.364	1.00 32.48	APEP
	MOTA	1638	C	GLU	205	4.348	29.956	40.009	1.00 18.17	APEP
	ATOM	1639	0	GLU	205	4.918	31.039	39.891	1.00 15.97	APEP
	ATOM	1640	N	LEU	206	3.863	29.275	38.974	1.00 16.44	APEP
	ATOM	1641	CA	LEU	206	3.983	29.785	37.617	1.00 15.66	APEP
25	ATOM	1642	CB	LEU	206	3.275	28.860	36.626	1.00 15.15	APEP
	ATOM	1643	CG	LEU	206	3.869	27.478	36.368	1.00 12.15	APEP
	ATOM	1644		LEU	206	3.189	26.871	35.173	1.00 9.94	APEP
	ATOM	1645		LEU	206	5.370	27.579	36.148	1.00 10.37	APEP
	ATOM	1646	C	LEU	206	3.333	31.155	37.561	1.00 15.68	APEP
30	ATOM	1647	ō	LEU	206	3.928	32.125	37.076	1.00 16.18	APBP
-	ATOM	1648	N	TYR	207	2.105	31.217	38.065	1.00 14.52	APEP
	ATOM	1649	CA	TYR	207	1.332	32.451	38.090	1.00 15.05	APEP
	ATOM	1650	CB	TYR	207	0.742	32.746	36.705	1.00 12.49	APEP
	ATOM	1651	CG	TYR	207	-0.046	31.604	36.083	1.00 12.80	APEP
35	ATOM	1652	CD1		207	-1.379	31.365	36.441	1.00 13.16	APBP
55	ATOM	1653		TYR	207	-2.113	30.327	35.856	1.00 12:28	APEP
	ATOM	1654	CD2	TYR	207	0.533	30.774	35.120	1.00 14.06	APEP
	ATOM	1655	CE2	TYR	207	-0.195	29.731	34.528	1.00 14.10	APEP
	ATOM	1656	CZ	TYR	207	-1.513	29.515	34.903	1.00 12.49	APEP
40	ATOM	1657	OH	TYR	207	-2.220	28.487	34.332	1.00 12.47	APEP
40	ATOM	1658	C	TYR	207	0.206	32.331	39.113	1.00 12.47	APEP
	ATOM	1659	o	TYR	207	0.088	31.244	39.595	1.00 15.57	APEP
	ATOM	1660	N	GLN	207	-0.425	33.453	39.432	1.00 15.61	APEP
	ATOM	1661	CA	GLN	208	-1.523	33.455	40.393	1.00 15.81	APEP
45	ATOM	1662	CB	GLN	208		34.892	40.896	1.00 14.83	APEP
40						-1.733				
	ATOM	1663	CG	GLN		-2.440	34.994		1.00 16.28	APEP
	ATOM	1664	CD	GLN	208	-2.843	36.418	42.564	1.00 16.96	APEP
	ATOM	1665		GLN	208	-2.074	37.364	42.352	1.00 16.63	APEP
	ATOM	1666	NE2		208	-4.051	36.581	43.086	1.00 16.21	APEP
50	ATOM	1667	C.	GLN	208	-2.809	32.947	39.739	1.00 17.01	APEP
	ATOM	1668	0	GLN	208	-3.243	33.469	38.717	1.00 14.76	APEP
	ATOM	1669	N	THR	209	-3.422	31.921	40.316	1.00 19.39	APEP
	ATOM	1670	CA	THR	209	-4.649	31.392	39.736	1.00 23.16	APEP
	MOTA	1671	СВ	THR	209	-4.792	29.877	39.953	1.00 23.21	APEP
55	MOTA	1672	OG1		209	-5.010	29.617	41.343	1.00 27.25	APEP
	ATOM	1673	CG2	THR	209	-3.559	29.151	39.496	1.00 23.39	APEP
	MOTA	1674	С	THR	209	-5.873	32.063	40.340	1.00 25.33	APEP

	MOTA	1675	0	THR	209	-5.868	32.455	41.505	1.00 25.28	APEP
	MOTA	1676	N	LYS	210	-6.922	32.188	39.536	1.00 27.53	APEP
	ATOM	1677	CA	LYS	210	-8.160	32.801	39.986	1.00 29.31	APEP
	MOTA	1678	СВ	LYS	210	-8.491	34.019	39.122	1.00 30.03	APEP
5	ATOM	1679	CG	LYS	210	-8.643	33.696	37.647	1.00 28.82	APEP
•	ATOM	1680	CD	LYS	210	-9.575	34.675	36.963	1.00 29.76	APEP
	ATOM	1681	CE	LYS	210	-8.897	35.345	35.771	1.00 28.88	APEP
	MOTA	1682	NZ	LYS	210	-9.500	36.669	35.437	1.00 28.04	APEP
			C	LYS	210					
10	MOTA	1683				-9.272	31.775	39.873	1.00 31.66	APEP
10	MOTA	1684		LYS	210	-10.171	31.775	40.744	1.00 33.57	APEP
	MOTA	1685		LYS	210	-9.224	30.981	38.906	1.00 33.91	APEP
	MOTA	1686		TAW	1001	28.321	31.884.	30.023	1.00 4.99	TAWA
	ATOM	1687		WAT	1002	0.070	28.637	38.280	1.00 5.19	TAWA
	ATOM	1688		WAT	1003	9.574	34.984	40.199	1.00 6.03	AWAŢ
15	ATOM	1689		WAT	1004	13.423	28.241	4.674	1.00 6.60	AWAT
	MOTA	1690	OH2	WAT	1005	25.593	14.211	8.905	1.00 9.08	TAWA
	MOTA	1691	OH2	WAT	1006	-5.948	28.133	30.378	1.00 7.55	AWAT
	MOTA	1692	OH2	TAW	1007	13.729	27.746	30.599	1.00 8.15	AWAT
	MOTA	1693	OH2	WAT	1008	22.453	33.974	26.365	1.00 6.87	AWAT
20	ATOM	1694	OH2	WAT	1009	11.644	46.107	27.594	1.00 4.61	AWAT
	MOTA	1695	OH2	WAT	1010	-0.650	26.162	33.901	1.00 8.02	AWAT
	ATOM	1696	OH2	WAT	1011	8.755	23.060	34.455	1.00 10.12	AWAT
	ATOM	1697	OH2		1012	10.789	39.348	8.288	1.00 3.59	TAWA
	ATOM	1698		WAT	1013	28.091	15.737	14.912	1.00 8.00	AWAT
25	ATOM	1699		WAT	1015	16.397	43.678	19.387	1.00 2.04	AWAT
	ATOM	1700		WAT	1016	14.311	29.731	32.127	1.00 5.53	AWAT
	ATOM	1701		WAT	1017	2.570	41.167	21.545	1.00 5.42	AWAT
	MOTA	1702		WAT	1018	25.364	28.506	21.332	1.00 9.41	AWAT
	MOTA	1702		WAT	1019	26.107	50.461	26.214	1.00 5.64	TAWA
30	ATOM	1703		WAT	1019	30.469				
30							46.598	34.207	1.00 7.23	AWAT
	MOTA	1705		TAW	1021	30.251	20.969	8.904	1.00 13.93	AWAT
	MOTA	1706	OH2	WAT	1022	-4.476	37.486	34.043	1.00 7.76	TAWA
	ATOM	1707		WAT	1023	31.770	27.794	19.020	1.00 13.29	TAWA
	MOTA	1708		WAT	1024	17.644	44.091	30.228	1.00 8.53	TAWA
35	MOTA	1709		WAT	1025	-6.207	19.852	35.253	1.00 17.83	AWAT
	ATOM	1710		TAW	1026	14.737	24.657	10.954	1.00 12.71	TAWA
	MOTA	1711		WAT	1027	3.824	43.790	24.674	1.00 11.15	AWAT
	MOTA	1712		TAW	1028	7.499	17.209	26.860	1.00 18.25	AWAT
	ATOM	1713	OH2	TAW	1029	0.968	25.199	21.221	1.00 13.34	AWAT
40	MOTA	1714	OH2	\mathbf{WAT}	1030	11.738	36.462	38.807	1.00 14.39	AWAT
	MOTA	1715	OH2	WAT	1031	5.648	34.014	38.427	1.00 9.11	AWAT
	MOTA	1716	OH2	WAT	1032	1.664	14.320	37.328	1.00 15.77	AWAT
	ATOM	1717	OH2	TAW	1033	31.940	28.802	10.755	1.00 8.72	AWAT
	MOTA	1718	OH2	WAT	1034	5.832	22.098	18.171	1.00 6.17	TAWA
45	MOTA	1719	OH2	TAW	1035	33.701	30.509	31.974	1.00 18.85	AWAT
	ATOM	1720	OH2	WAT	1036	29.165	34.668	37.418	1.00 10.68	AWAT
	ATOM	1721		WAT	1037	-0.407	43.489	29.418	1.00 8.15	AWAT
	MOTA	1722	OH2		1038	30.861	44.589	26.320	1.00 13.36	TAWA
	ATOM	1723	OH2		1039	8.345	41.081	37.778	1.00 13.31	AWAT
50	ATOM	1724	OH2		1040	10.895	22.815	23.399	1.00 20.54	AWAT
<i>-</i>	MOTA	1725	OH2		1040	31.503	42.501	27.942	1.00 20.34	TAWA
	ATOM	1726	OH2		1042	-4.123	17.556	26.927	1.00 6.26	AWAT
	ATOM	1727	OH2		1043	23.631	25.350	17.618	1.00 16.68	AWAT
	MOTA	1728	OH2		1044	-9.263	19.789	28.769	1.00 17.07	TAWA
55	MOTA	1729		WAT	1045	2.681	26.188	40.094	1.00 10.27	TAWA
	ATOM	1730		TAW	1046	6.157	33.281	40.876	1.00 10.99	AWAT
	MOTA	1731	OH2	TAW	1047	1.411	42.305	11.357	1.00 12.65	TAWA

		•							
	MOTA	1732	OH2 WAT	1048	11.027	43.128	8.836	1.00 13.35	AWAT
	MOTA	1733	OH2 WAT	1049	8.163	26.637	9.371	1.00 9.12	AWAT
•	MOTA	1734	OH2 WAT	1050	30.812	52.897	21.367	1.00 5.26	AWAT
	MOTA	1735	OH2 WAT	1051	-1.056	38.906	21.594	1.00 21.26	AWAT
5	ATOM	1736	OH2 WAT	1052	23.484	37.806	38.523	1.00 5.01	AWAT
-	ATOM	1737	OH2 WAT	1053	16.091	23.219	9.132	1.00 9.59	AWAT
	ATOM	1738	OH2 WAT	1054	10.515	44.724	16.202	1.00 21.22	AWAT
	ATOM	. 1739	OH2 WAT	1055	3.858	42.457	19.188	1.00 18.71	AWAT
	ATOM		OH2 WAT	1056	20.767	38.301	29.092	1.00 7.32	AWAT
10		1740							
10	MOTA	1741	OH2 WAT	1057	31.450	37.717	33.751	1.00 12.78	AWAT
	ATOM.	1742	OH2 WAT	1058	-6.469	15.556	29.885	1.00 18.83	AWAT
	MOTA	1743	OH2 WAT	1059	19.569	32.500	35.567	1.00 13.66	TAWA
	MOTA	1744	OH2 WAT	1060	12.883	32.203	45.018	1.00 19.55	AWAT
	ATOM	1745	OH2 WAT	1061	16.666	38.811	39.230	1.00 12.36	TAWA
15	MOTA	1746	OH2 WAT	1062	1.627	24.661	38.597	1.00 11.62	AWAT
	MOTA	1747	OH2 WAT	1063	-3.797	23.480	20.462	1.00 13.70	TAWA
	ATOM	1748	OH2 WAT	1064	19.662	43.909	20.583	1.00 17.87	AWAT
	MOTA	1749	OH2 WAT	1065	28.959	36.788	18.981	1.00 20.15	AWAT
	MOTA	1750	OH2 WAT	1066	15.034	47.186	24.909	1.00 7.01	AWAT
20	MOTA	1751	OH2 WAT	1067	1.479	45.140	16.462	1.00 15.19	AWAT
	MOTA	1752	OH2 WAT	1068	-9.159	26.374	32.728	1.00 10.66	AWAT
	ATOM	1753	OH2 WAT	1069	18.343	40.026	15.719	1.00 11.74	AWAT
	ATOM	1754	OH2 WAT	1070	-4.926	34.883	22.765	1.00 5.57	
	ATOM	1755	OH2 WAT	1071	11.439	44.250	34.445	1.00 17.87	AWAT
25	ATOM	1756	OH2 WAT	1072	22.346	33.157	38.515	1.00 15.02	AWAT
23		1757	OH2 WAT	1072	16.431	21.026	-0.735	1.00 17.18	AWAT
	MOTA							-	
	ATOM	1758	OH2 WAT	1074	17.273	13.097	2.769	1.00 16.44	AWAT
	ATOM.	1759	OH2 WAT	1075	20.717	41.158	18.875	1.00 11.16	TAWA
	ATOM	1760	OH2 WAT	1076	13.429	19.165	10.121	1.00 9.99	AWAT
30	MOTA	1761	OH2 WAT	1077	22.253	23.110	28.097	1.00 14.11	TAWA
	MOTA	1762	OH2 WAT	.1078	-1.729	14.634	27.851	1.00 9.23	TAWA
	MOTA	1763	OH2 WAT	1079	16.196	36.453	9.936	1.00 18.57	AWAT
	MOTA	1764	OH2 WAT	1080	26.774	40.940	39.176	1.00 15.71	AWAT
	MOTA	1765	OH2 WAT	1081	27.996	20.266	5.357	1.00 3.12	TAWA
35	ATOM	1766	OH2 WAT	1082	14.345	44.903	9.828	1.00 16.53	AWAT
	ATOM	1767	OH2 WAT	1083	-6.956	19.549	24.667	1.00 13.41	AWAT
	MOTA	1768	OH2 WAT	1084	6.677	22.676	16.370	1.00 9.78	TAWA
	ATOM	1769	OH2 WAT	1085	24.055	17.307	14.279	1.00 9.70	TAWA
	ATOM	1770	OH2 WAT	1086	32.348	29.000	20.500	1.00 15.00	AWAT
40	ATOM	1771	OH2 WAT	1087	-6.421	34.306	42.856	1.00 13.87	AWAT
	ATOM	1772	OH2 WAT	1088	28.806	26.184	27.568	1.00 16.70	AWAT
	ATOM	1773	OH2 WAT	1089	9.354	17.475	43.914	1.00 16.99	AWAT
	ATOM	1774	OH2 WAT	1090	30.672	20.876	12.987	1.00 21.44	AWAT
	ATOM		OH2 WAT	1091	-7.795	23.654	35.198	1.00 12.77	AWAT
AE		1775							AWAT
45	ATOM	1776	OH2 WAT	1092	6.675	42.663	7.635	1.00 17.23	
	ATOM	1777	OH2 WAT	1093	14.348	49.247	34.229	1.00 10.41	AWAT
	MOTA	1778	OH2 WAT	1094	-2.481	40.065	24.802	1.00 16.54	TAWA
	ATOM	1779	OH2 WAT	1095	-5.184	39.229	18.838	1.00 28.58	AWAT
	ATOM	1780	OH2 WAT	1096	-6.282	29.165	17.208	1.00 27.91	TAWA
50	ATOM	1781	OH2 WAT	1097	3.526	19.041	19.713	1.00 16.33	AWAT
	MOTA	1782	OH2 WAT	1098	-5.490	40.336	27.666	1.00 20.30	AWAT
	MOTA	1783	OH2 WAT	1099	5.791	43.554	30.434	1.00 14.00	TAWA
	ATOM	1784	OH2 WAT	1100	10.085	34.242	9.352	1.00 19.88	AWAT
	ATOM	1785	OH2 WAT	1101	22.752	37.487	8.325	1.00 16.96	AWAT
55	ATOM	1786	OH2 WAT	1102	22.364	40.020	38.129	1.00 15.64	AWAT
	ATOM	1787	OH2 WAT	1102	33.666	37.537	19.756	1.00 23.15	AWAT
	MOTA	1788	OH2 WAT	1103	36.579	34.638	23.256	1.00 16.03	AWAT
	WI OLI	1700	OHE WAT	1104	30.373	54.050	20.200		AIIA.

PCT/US02/06765

							44 071	1.00 18.60	AWAT
	MOTA	1789	OH2 WAT	1105	31.645	31.136	11.971	1.00 15.23	AWAT
	ATOM	1790	OH2 WAT	1106	14.823	26.519	41.694	1.00 13.25	AWAT
	ATOM	1791	OH2 WAT	1107	13.638	21.317	9.375	1.00 12.10	AWAT
	MOTA	1792	OH2 WAT	1108	33.913	48.939	32.690		AWAT
5	ATOM	1793	OH2 WAT	1109	33.415	48.326	34.490	1.00 12.63	AWAT
,	ATOM	1794	OH2 WAT	1110	-8.560	41.287	43.725	1.00 17.46	AWAT
	ATOM	1795	OH2 WAT	1111	22.656	24.209	0.884	1.00 17.40	TAWA
	ATOM	1796	OH2 WAT	1112	2.716	41.252	15.063	1.00 10.21	AWAT
	ATOM	1797	OH2 WAT	1113	30.635	31.007	7.714	1.00 27.49	AWAT
10	ATOM	1798	OH2 WAT	1114	14.815	22.010	39.023	1.00 12.66	AWAT
10	MOTA	1799	OH2 WAT	1115	33.286	47.303	24.007	1.00 10.91	AWAT
•	ATOM	1800	OH2 WAT	1116	14.042	33.412	10.622	1.00 18.38	TAWA
	ATOM	1801	OH2 WAT	1117	20.195	27.499	32.658	1.00 10.30	TAWA
	ATOM	1802	OH2 WAT	1118	31.215	17.825	13.678 11.086	1.00 17.97	AWAT
15	ATOM	1803	OH2 WAT	1119	30.831	21.030	25.284	1.00 17.48	AWAT
13	ATOM	1804	OH2 WAT	1120	30.910	27.311	26.082	1.00 21.34	TAWA
	ATOM	1805	OH2 WAT	1121	6.259	13.355	15.089	1.00 23.24	TAWA
	ATOM	1806	OH2 WAT	1122	34.780	29.659	23.488	1.00 16.58	AWAT
	ATOM	1807	OH2 WAT	1123	33.170	28.242	41.455	1.00 17.75	AWAT
20	ATOM	1808	OH2 WAT	1124	0.913	40.672	42.266	1.00 22.18	AWAT
20	ATOM	1809	OH2 WAT	1125	25.393	36.689	15.035	1.00 20.08	AWAT
	ATOM	1810	OH2 WAT	1126	21.923	40.748	21.094	1.00 17.33	AWAT
	ATOM	1811	OH2 WAT	1127	-1.339	28.433	33.380	1.00 22.93	TAWA
	ATOM	1812	OH2 WAT		22.058	28.769 23.035	17.663	1.00 13.73	AWAT
25	ATOM	1813	OH2 WAT		2.232	40.228	40.117	1.00 39.84	TAWA
	ATOM	1814	OH2 WAT		4.834		1.692		AWAT
	ATOM	1815	OH2 WAT		16.182	27.937 43.322			TAWA
	MOTA	1816	OH2 WAT		36.696				ANAT
	ATOM	1817	TAN AN	500	-4.312	15.334	. 20.5.2	-	
30	END							•	

The solvent accessibilities of Ves v 5 amino acid residues are given in Table 7.

Table 7
Surface Exposure of Ves v 5 amino acids

Solv exp NO AA 0.802 3 E 0.060 Α 0.390 Ε 5 0.868 F 0.484 Ν 0.555 0.033 Υ 9 0.412 С . 10 0.978 Κ 11 0.225 12 I 0.951 Κ 13 0.038 С 14 0.714 15 L 1.000 16 Κ 0.143 17 G

35

18	G	0.275
	G	
19	·	0.445
20	H T	0.016
21	!	0.000
22	Α	0.049
23	C	0.209
24	K	0.489
25	Y	0.280
26	G	0.352
27	S	0.159
28	L	0.423
29	K	0.797
30	Р	0.231
31	N	0.396
32	C	0.055
33	G	0.429
34	N	0.775
35	K	0.297
36	v	0.489
37	v	0.280
38	v	0.379
39	Š	0.291
40	Y	0.291
41	Ğ	
	L	0.165
42	_ _	0.121
43	T	0.423
44	K	0.978
45	Q	0.538
46	E	0.264
47	K	0.396
48	Q	0.593
49	D	0:302
50	j	0.000
51	L	0.198
52	K	0.615
53	E	0.170
54	н	0.000
55	N	0.115
56	D	0.445
57	F	0.027
58	R	0.000
59	Q	0.198
60	ĸ.	0.407
61	ì	0.000
62	A	0.033
63	R	0.956
64	G	0.148
65	L.	0.593
66	E	0.005
67	Т	0.610

68	R	0.335
69	G ·	0.110
70 74	N	0.549 0.363
71	P	0.363
72	G	
73	P Q	0.440
74 75	P	0.005 0.209
75 76	P	0.209
76 77	A	0.022
78	ĸ	0.775
79	N	0.773
80	М	0.066
81	K	0.588
82	N	0.500
83	Ĺ	0.016
84	v	0.462
85	w	0.275
86	N	0.165
87	D	0.621
88	E	0.247
89	ĩ	0.005
90	Ã	0.055
91	Y	0.115
92	Ÿ	0.005
93	A	0.000
94	Q	0.159
95	V	0.011
96	W	0.077
97	Α	0.000
98	N	0.005
99	Q	0.027
100	С	0.027
101	Q	0.577
102	Υ	0.687
103	G	0.110
104	Н	0.549
105	D	0.022
106	Т	0.429
107	С	0.000
108	R	0.203
109	D	0.093
110	. V	0.044
111	Α	0.500
112	K	0.824
113	Y	0.209
114	, Q	0.423
115	. V	0.011
116	G	0.011
117	Q	0.066

118	N	0.005
119	V	0.022
120	Α	0.016
121	L	0.198
122	Ŧ	0.198
123	G	0.231
124	S	0.236
125	T	0.610
126	Α	0.253
127	Α	0.379
128	K	0.857
129	Y	0.352
130	D	0.220
131	D	0.495
132	Р	0.033
133	V	0.137
134	K	0.654
135	L	0.000
136	V	0.000
137	K	0.538
138	M	0.473
139	W	0.016
140	E	0.071
141	D	0.341
142	E	0.154
143	V.	0.000
144	K	0.560
145	D	0.390
146	Y	0.044
147	N	0.165
148	P	0.214
149	K	0.868
150	K	0.604
151	K	0.753
152	F	0.071
153	S	0.302
154	G	0.192
155	N	0.121
156	D	0.379
157	F	0.819
158	L	0.714
159	K	0.533
160	T	0.000
161	G	0.077
162	Н	0.231
163	Υ	0.000
164	T	0.000
165	Q	0.011
166	М	0.000
167	V	0.000

168 169 170	W A N	0.005 0.011 0.429
171	T	0.000
172	K	0.451
173	E	0.165
174	V	0.000
175	G	0.000
176	C	0.016
177	G	0.000
178	S	0.016
179	1	0.000
180 181	K Y	0.214 0.016
182	T I	0.016
183	à	0.275
184	E	0.841
185	ĸ	0.989
186	w	0.665
187	Ĥ	0.159
188	K	0.203
189	н	0.011
190	Y	0.000
191	L	0.000
192	V	0.000
193	С	0.000
194	N	0.000
195	Y	0.000
196	G	0.000
197	Р	0.225
198	S	0.110
199	G	0.027
200	N	0.308 0.341
201 202	F K	0.341
202	·N	0.797
204	E	0.757
205	Ē	0.511
206	Ĺ	0.055
207	Ÿ	0.082
208	à	0.566
209	T	0.473
210	K	0.962

Example 10 Alignment of Ag 5s

An alignment of selected antigen 5 sequences from Vespula, Dolichovespula, Vespa, Polistes and Solenopsis (fire ants) is shown in Fig. 12. Vespula, Dolichovespula,

Vespa and Polistes all belong to the Vespidae family. The figure also includes the secondary

structural elements of Ves v 5. When considering only the Vespula antigen 5s a very high degree of surface conservation is observed (Fig. 5), the conservation of residues being almost evenly distributed with only a few non-conserved residues scattered over the molecule.

In contrast, the surfaces conserved, when comparing sequences from the Vespula and Polistes genera, are restricted to 5 regions with solvent accessible areas of 392 Å², 585 Å², 589 Å², 673 Å² and 1053 Å², respectively. Solvent accessibility was calculated using the NACCESS program (S. J. Hubbard and J. M. Thornton, 1992, NACCESS. (v2.1.1) Department of Biochemistry and Molecular Biology, University College London) with a probe radius of 1.4 Å. Similarly, five surface patches corresponding to the 5 surface patches conserved between Vespula and Polistes, were conserved between Vespula and Vespa/Dolichovespula. In the latter case the areas are 280 Å², 496 Å², 730 Å², 803 Å² and 1043 Å², respectively. The residues contributing to one surface patch are primarily from the beginning of the B strand and from helix IV, the residues contributing to a second surface patch are primarily from the A strand and the loop between helix II and strand B, the residues contributing to a third surface patch is primarily from helix I and its surroundings and from the end of helix II, the residues contributing to a fourth surface patch is mainly of N-terminal origin while a fifth surface patch is dominated by residues from the end of helix I and the loop between helix I and the A strand.

20 DISCUSSION

Crystallographic studies of protein antigen-antibody complexes have shown that the contact residues of an epitope may contain as many as 17 residues on the surface of an antigen, and that these residues may, or may not, be contiguous to each other in the peptide chain (Davies et al., 1996, Proc. Natl Acad. Sci USA, 93:7). Epitope mapping of lysozyme with monoclonal antibodies have shown that the entire surface of a protein is potentially antigenic (Newmann et al., 1992, J. Immunol. 149:3260). Thus the hybrids with 1/10 to 3/4 of yellow jacket antigen 5, will have fewer epitopes than the parent molecule.

The CD spectral data in Figure 7 suggest that the hybrids have secondary structures closely similar, if not identical, with those of vespid antigen 5s. The inhibition data in Figures 8 and 9 with Ves v 5-specific human and mouse antibodies and the antibody binding data in Table 3 with hybrid-specific antibodies suggest that the hybrids have tertiary

structures closely similar or identical with that of Ves v 5, as these antibodies do not bind the denatured Ves v 5. Additional evidence came from screening with 17 monoclonal mouse IgG1 antibodies specific for the natural Ves v 5, six of which bound the N-terminal hybrid PV1-46. Therefore these data indicate that the hybrids contain the discontinuous B cell epitopes of Ves v 5.

The inhibition data with polyclonal antibodies and the binding data with monoclonal antibodies indicate that the dominant B cell epitopes of Ves v 5 are in its N-terminal region. Inspection of the structure of Ves v 5 in shows that nearly all residues in the N-terminal hybrid PV1-46 are surface accessible. (See Table 7) This is in contrast to the C-terminal hybrid PV156-204, in which only segments of Ves v 5 are surface accessible. (See Table 7) This difference in surface accessibility may explain the immunodominance of the N-terminal region of antigen 5. Others have shown that the entire surface of a protein is potentially antigenic but the regions with high surface accessibility and surface protrusion are dominant (Newmann et al., 1992, J. Immunol 149:3260 and Novotny et al., 1996, Adv Prot Chem 49:149).

At present the only known way to map discontinuous epitopes is by X-ray crystallography of Ag-Ab complexes (Davies et al., 1996, Proc. Natl Acad. Sci USA, 93:7) and this requires having specific monoclonal antibodies. The discontinuous epitopes of CD39 was mapped with a series of mouse-human hybrids, mouse and human CD39 molecules have 75% sequence identity and they share limited antigenic cross-reactivity (Maliszewski et al., 1994, J. Immunol 153:3574). These findings with CD39 and antigen 5 indicate that hybrids of two homologous proteins represent a useful approach to mapping their discontinuous B cell epitopes.

15

25

30

Our results with hybrid Ag 5s demonstrate that hybrid allergens can have a hundred to a thousand-fold reduction in allergenicity yet retain the immunogenicity of the natural allergens. This reduction in allergenicity of hybrids is believed to be mainly due to a decrease of B cell epitope density. Each hybrid of the Examples has only a portion of the B and T cell epitopes of Ves v 5. In principle, however, a mixture of hybrids can reconstitute the complete epitope library of Ves v 5. Thus, all epitopes can be reconstituted to prepare modified allergens for use as vaccines. Our results suggest that a PV hybrid with 20-30

residues of Ves v 5 will have maximal reduction in allergenicity yet retaining immunogenicity for Ves v 5.

Many allergens have sequence homology with proteins from diverse sources (Larsen et al., 1996, J Allergy Clin Immunol 97:577). For example, vespid Ag 5s have varying degrees of sequence homology with a variety of extracellular proteins from different organisms, ranging from fungi to humans (see Fig. 12). It is known that homologous proteins of 30% sequence identity may have the same or closely similar structures (Chothia et al., 1990, Annual Review Biochem 59:1007 and Russell et al., 1994, J. Mol. Biol. 244:332). Thus, hybrids may be prepared with a variety of homologous host proteins to function as scaffolds for the guest allergen fragment of interest.

* * *

The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description and the accompanying figures. Such modifications are intended to fall within the scope of the appended claims.

All patents, applications, publications, test methods, literature, and other materials cited herein are hereby incorporated by reference.

Table 8. Allergens

ORGANISM	ALLERGEN	PROTEIN	SIZE (kD)	C/P¹	REFERENCE/ ACCESSION NO
Weed pollens					
Asterales		·			
Ambrosia artemisiifolia short ragweed	Amb a 1 Amb a 2 Amb a 3 Amb a 5 Amb a 6 Amb a 7 Amb a ?	antigen E antigen K Ra3 Ra5 Ra6 Ra7	38 38 11 .5 10 12	CCCCPCC	8, 20 8, 21 22 11, 23 24, 25 26 27
Ambrosia trifida giant ragweed	Amb t 5	Ra5G	4.4	С	9, 10, 28
Artemisia vulgaris mugwort	Art v 1 Art v 2 Art v 3 Art v 4		27-29 35 12 14	C P C	28A 29 53
Helianthus annuus sunflower	Hel a 1 Hel a 2	profilin	34 15.7	C	29A Y15210
Mercurialis annua	Mer a 1	profilin	14-15	С	Y13271
Caryophyllales					
Salsola kali Russian thistle	Sal k 1	43	. 43	P	29B
Grass pollens	*			.	
Poales					
Cynodon dactylon Bermuda grass	Cyn d 1 Cyn d 7 Cyn d 12	profilin	32 14	000	30, S83343 31, X91256 31a, Y08390

	rlis glomerata rd grass	Dac g 1 Dac g 2 Dac g 3 Dac g 5	AgDg1	32 11 31	P C C P	32 33, S45354 33A, U25343 34
	us lanatus et grass	Hol 1 1			С	Z27084
Loliu rye gi	m perenne rass	Lol p 1 Lol p 2 Lol p 3 Lol p 5 Lol p 11	group I group II group III Lol p IX, Lol p Ib hom: trypsin inhibitor	27 11 11 31/35 16	C P P C	35, 36 37, 37A, X73363 38 34, 39 39A
	aris aquatica ry grass	Pha a 1	·		C.	40, S80654
Phleutimot	um pratense thy	PhI p 1 PhI p 2 PhI p 4 PhI p 5 PhI p 6 PhI p 12 PhI p 13	Ag25 profilin polygalacturonase	27 32 55-60	C C P C C C C	X78813 41, X75925 41A 42 43, Z27082 44, X77583 AJ238848
	pratensis tucky blue grass	Poap 1 Poap 5	group I	33 31/34	P C	46 34, 47
	ghum halepense nson grass	Sor h 1			С	48
Tree	e pollens					
Faga	ales				<u> </u>	
Alm	us glutinosa er	Aln g 1		17	С	S50892
Bett bire	ula verrucosa h	Bet v 1 Bet v 2 Bet v 3 Bet v 4 Bet v 6 Bet v 7	profilin h: isoflavone reductase cyclophilin	17 15 8 33.5 18	CCCCCP	49,50, Z80098 M65179 X79267 X87153, S54819 AF135127 P81531
Car	pinus betulus nbeam	Car b 1		17	С	51, X66932, X66918

Castanea sativa chestnut	Cas s 1 Cas s 5	chitinase	22 .	P	52
	Cas s 8	lipid transfer protein	9.7	P	53
Corylus avellana hazel	Cor a 1 Cor a 2	profilin	.17 14	C C	54A, X70999 AF327622
Quercus alba White oak	Que à 1		17	P	54
Lamiales					
Oleaceae	·	·			
Fraxinus excelsior ash	Fra e 1		20	P	58A
Ligustrum vulgare privet	Lig v 1		20	Ρ.	58A
Olea europea olive	Ole e 1 Ole e 2 Ole e 3 Ole e 4 Ole e 5 Ole e 6 Ole e 7	profilin superoxide dismutase	16 15-18 9.2 32 16 10	C C P P C	59, 60 60A 60B P80741 P80740 60C, U86342 60D, P81430
Syringa vulgaris lilac	Syr v 1		20	P	58A
Plantaginaceae					
Plantago lanceolata English plantain	Pla l 1		18	P	P842242
Pinales	(2)				
Cryptomeria japonica sugi	Cry j 1 Cry j 2		41-45	C C	55, 56 57, D29772
Cupressus arizonica cypress	Cup a 1		43	С	A1243570
Juniperus ashei mountain cedar	Jun a 1 Jun a 2 Jun a 3		43	P C P	P81294 57A, AJ404653 57B, P81295
Juniperus oxycedrus prickly juniper	Jun o 4	hom: calmodulin	29	С	57C, AF031471

			•			
	Juniperus sabinoides mountain cedar	Jun s		50	P	58
	Juniperus virginiana eastern red cedar	Jun v 1		43	P	P81825
5	Mites					
	Acarus siro mite	Aca s 13	fatty acid binding prot	14*	С	AJ006774
	Blomia tropicalis mite	Blo t 5 Blo t 12 Blo t 13	Bt11a Bt6, fatty acid bind prot.		CCC	U59102 U27479 U58106
10	Dermatophagoides pteronyssinus mite	Down 1				
	inte	Der p 1 Der p 2 Der p 3 Der p 4 Der p 5 Der p 6 Der p 7	antigen P1 trypsin amylase chymotrypsin	25 14 28/30 60 14 25 22/28	C C P C P C	61 62 63 64 65 66
		Der p 8 Der p 9 Der p 10 Der p 14	glutathione transferase collagenolytic serine pro. tropomyosin apolipophorin like prot.	36	C P C C	67A 67B Y14906
15	Dermatophagoides microceras mite	Der m 1		25	P	68
	Dermatophagoides farinae mite	Der f 1 Der f 2 Der f 3 Der f 10 Der f 11 Der f 14 Derf f 15 Derf f 16 Derf f 17	tropomyosin paramyosin mag3, apolipophorin 98k chitinase gelsolin/villin Ca binding EF protein	25 14 30 98 98 53 53	00000000	69 70, 71 63 72 72A D17686 AF178772 71A 71A
	Euroglyphus maynei mite	Eur m 14	apolipophorin	177	С	AF149827

						
	Lepidoglyphus destructor storage mite	Lep d 2		15	С	73, 74, 75
	Storage line	Lep d 5		13	Č.	75A, AJ 250278
		Lep d 7	·] .	C	75A, AJ271058
		Lep d 10	tropomyosin		č	AJ25096
		Lep d 13	Lopomyoom		č	75A, AJ250279
	Animals		• .		-,,	
	Bos domesticus					
5	domestic cattle	Bos d 2	Ag3, lipocalin	20	C	76, L42867
	(see also foods)	Bos d 3	Ca-binding S100 hom	11	С	L39834
		Bos d 4	alpha-lactalbumin	14.2	C.	M18780
		Bos d 5	beta-lactoglobulin	18.3	С	X14712
		Bos d 6	serum albumin	67	С	M73993
		Bos d 7	immunoglobulin	160		77
		Bos d 8	caseins	20-30		7.7
	Canis familiaris				İ	
	(Canis domesticus)	Can f 1		25	C C	78, 79
	dog	Can f 2		27	C	78, 79
		Can f 3	albumin		С	S72946
10	Equus caballus			•		·
	domestic horse	Equ c 1	lipocalin	25	С	U70823
		Equ c 2	lipocalin	.18	P	79A, 79B
		Equ c 3	Ag3-X	67	С	79C,X74045
		Equ c 4	1	17	.P.	79D
		Equ c 5	AgX	17	P	
	Felis domesticus					
	cat (saliva)	Fel d 1	cat-I	38	С	15
		Fel d 2	albumin	V	С	79E, X84842
	·	Fel d 3	cystatin	11	<u>.</u> C	79F, AF238996
•	Mus musculus			1		
15	mouse (urine)	Mus m 1	MUP	19	С	80, 81
	Rattus norvegius					
	rat (urine)	Rat n 1		17	С	82, 83
	Fungi (moulds)					
	Ascomycota	*				
20	Dothidiales					

		, 			
Alternaria alternata	Alta 1	1	28	lc	U82633
	Alt a 2	1	25	١č	83A, U62442
	Alta 3	heat shock prot. 70		c	U87807, U87808
	Alta 4	prot. disulfideisomerase	57	Č	X84217
	Alta 6	acid ribosomal prot. P2	111	c	X78222, U87806
	Alta7	YCP4 protein	22	c	•
	Alta 10				X78225
		aldehyde dehydrogenase	53	C	X78227, P42041
	Alt a 11	enolase	45	С	U82437
	Alt a 12	acid ribosomal prot. P1	11	C.	X84216
Cladosporium herbarum	Cla h 1		13		83B, 83C
_	Clah 2		23		83B, 83C
	Clah 3	aldehyde dehydrogenase	53	С	X78228
	Clah 4	acid ribosomal prot. P2	11	C	X78223
•	Cla h 5	YCP4 protein	22	Č	X78224
	Clah 6	enolase	46	č	X78226
	Cla h 12	acid ribosomal prot. P1	11	١č	
	Cla II 12	acid floosomai prot. F1	11		X85180
Eurotiales	·	*			<u> </u>
Aspergillus flavus	Asp fl 13	alkaline serine protease	34		84
Aspergillus fumigatus	Asp f 1		18	С	M83781, S39330
	Asp f 2		37	Č	U56938
	Asp f 3	peroxisomal protein	19	Č	U20722
	Asp f 4	perexiseriai protein	30	č	AJ001732
	Asp f 5	metalloprotease	40	C	Z30424
			26.5		
	Asp f 6	Mn superoxide dismut.		C	U53561
•	Asp f 7		12	C.	AJ223315
	Asp f 8	ribosomal prot. P2	11	C	AJ224333
	Asp f 9	*	34	С	AJ223327
	Asp f 10	aspartic protease	34	C	X85092
	Asp f 11	peptidyl-prolyl isomeras	24		84A
	Asp f 12	heat shock prot. P90	90	С	85
	Asp f 13	alkaline serine protease	34		84B
	Asp f 15		16	С	AJ002026
	Asp f 16		43	C	g3643813
	Asp f 17	:		C.	AJ224865
·	Asp f 18	vacuolar serine protease	34	, , , , , , , , , , , , , , , , , , ,	84C
		The second process			0.0
Aspergillus niger	Asp n 14	beta-xylosidase	105	C	AF108944
	Asp n 18	vacuolar serine protease	34	С	84B
	Asp n ?		85	С	Z84377
Aspergillus oryzae	Asp o 13	alkaline serine protease	34	С	X17561
, 	Asp o 21	TAKA-amylase A	53	č	D00434, M33218
	1		-		200737, 10133216
Penicillium	Pen b 13	alkaline serine protease	33		86A
brevicompactum	1				
				L	

	Penicillium citrinum	Pen c 3 Pen c 13 Pen c 19 Pen c 22w	peroxisomal mem. prot. alkaline serine protease heat shock prot. P70 enolase	18 33 70 46	C C	86B 86A U64207 AF254643
	Penicillium notatum	Pen n 13 Pen n 18 Pen n 20	alkaline serine protease vacuolar serine protease N-acetyl glucosaminidas	34 32 68		89 89 87
	Penicillium oxalicum	Pen o 18	vacuolar serine protease	34		89
	Onygenales		*			
5	Trichophyton rubrum	Trir 2 Trir 4	serine protease		C C	90 90
	Trichophyton tonsurans	Trit1 Trit4	serine protease	. 30 83	P C	91 90
	Saccharomycetales					
	Candida albicans	Cand a 1		40	С	88
	Candida boidinii	Cand b 2		20	С	J04984, J04985
10	Basidiomycota	-				
	Basidiolelastomycetes					
	Malassezia furfur	Mala f 1 Mala f 2	MF1, peroxisomal membrane protein	21	С	91A AB011804
		Mala f 3	MF2, peroxisomal membrane protein	20	С	AB011805
	·	Mala f 4 Mala f 5 Mala f 6	•	35 18* 17*	CCC	AJ011955 AJ011956
	Basidiomycetes					
	Psilocybe cubensis	Psi c 1 Psi c 2	cyclophilin	16		91B
15	Coprinus comatus shaggy cap	Cop c 1 Cop c 2 Cop c 3 Cop c 5 Cop c 7	leucine zipper protein	11	С	AJ132235 AJ242791 AJ242792 AJ242793 AJ242794
	Insects					
	Aedes aegyptii mosquito	Aed a 1 Aed a 2	аругаѕе	68 37	C C	L12389 M33157

Apis mellifera honey bee	Api m 1 Api m 2 Api m 4 Api m 6	phospholipase A2 hyaluronidase melittin	16 44 3 7-8	C C C	92 93 94
Bombus pennsylvanicus bumble bee	Bom p 1 Bom p 4	phospholipase protease	16	P P	95 95
Blattella germanica German cockroach	Bla g 1 Bla g 2 Bla g 4 Bla g 5 Bla g 6	Bd90k aspartic protease calycin glutathione transferase troponin C	36 21 22 27	00000	96 97 98 98
Periplaneta americana American cockroach	Per a 1 Per a 3 Per a 7	Cr-PII Cr-PI tropomyosin	72-78 37	CCC	98A Y14854

Chironomus thummi				Τ	T
thummi	Chi t 1-9	hamastatin	1.,		-
midges	Chi t 1.01	hemoglobin	16	C	99
Images		component III	.16	C	P02229
	Chi t 1.02	component IV	16	C	P02230
	Chi t 2.0101	component I	16	C	P02221
Ĭ	Chi t 2.0102	component IA	16	C	P02221
1	Chi t 3	component II-beta	16	C	P02222
	Chi t 4	component IIIA	16	C	P02231
	Chi t 5	component VI	16	C	P02224
Í	Chi t 6.01	component VIIA	16	C	P02226
1	Chi t 6.02	component IX	16	C	P02223
1	Chi t 7	component VIIB	16	C	P02225
·	Chi t 8	component VIII	16	C	P02227
	Chi t 9	component X	16	C	P02228
Dolichovespula maculata	·				*
white face hornet	Dol m 1	phospholipase A1	35	C.	100
	Dol m 2	hyaluronidase	44	c	101
1	Dol m 5	antigen 5	23	١č	102, 103
Dalishananala				 ~	102, 103
Dolichovespula arenaria yellow hornet	Dol a 5	antigen 5	23	c	104
	1			 	1.07
Polistes annularies wasp	Pol a 1	phospholipase A1	25	_	1,05
wasp			35	P	105
1	Pol a 2	hyaluronidase	44	P	105
	Pol a 5	antigen 5	23	С	104
Polistes dominulus				•	
Mediterranean paper wasp	Pol d 1	1			
	Pol d 4	serine protease	32-34	С	
	Pol d 5				P81656
Polistes exclamans					
wasp	Pol e 1	phospholipase A1	34	P	107
	Pole 5	antigen 5	23	С	104
Polistes fuscatus				. **	
wasp	Pol f 5	antigen 5	23	С	106
Polistes metricus				_	. 10
wasp	Pol m 5	antigen 5	23	С	106
Vespa crabo					
European hornet	Vesp c 1	phospholipase	34	P	107
	Vesp c 5	antigen 5	23	С	106
Vespa mandarina					
giant asian homet	Vesp m 1			l	
	Vesp m 5				P81657
Vespula flavopilosa					
yellowjacket	Ves f 5	antigen 5	23	С	106
	1				1 200

Vespula germanica yellowjacket	Ves g 5	antigen 5	23	c.	106
Vespula maculifrons yellowjacket	Ves m 1 Ves m 2 Ves m 5	phospholipase A1 hyaluronidase antigen 5	33.5 44 23	C P C	108 109 104
Vespula pennsylvanica yellowjacket	Ves p 5	antigen 5	23	c	106
Vespula squamosa yellowjacket	Ves s 5	antigen 5	23	С	106
Vespula vidua wasp	Ves vi 5	antigen 5	23	С	106
Vespula vulgaris yellowjacket	Ves v 1 Ves v 2 Ves v 5	phospholipase A1 hyaluronidase antigen 5	35 44 23	C P C	105A 105A 104
Myrmecia pilosula Australian jumper ant	Myr p 1 Myr p 2	-		C C	X70256 S81785
Solenopsis geminata tropical fire ant	Sol g 2 Sol g 4				111
Solenopsis invicta fire ant	Sol i 2 Sol i 3 Sol i 4		13 24 13	CCC	110, 111 110 110
Solenopsis saevissima Brazilian fire ant	Sol s 2				
Foods					
Gadus callarias	Gad c 1	allergen M	12	С	112, 113
Salmo salar Atlantic salmon	Sal s 1	parvalbumin	. 12	С	X97824
Bos domesticus domestic cattle (milk)	Bos d 4 Bos d 5 Bos d 6 Bos d 7 Bos d 8	alpha-lactalbumin beta-lactoglobulin serum albumin immunoglobulin caseins	14.2 18.3 67 160 20-30	ccc	M18780 X14712 M73993 77 77

Gallus domesticus					
chicken	Gal d 1	ovomucoid	28	С	114, 115
	Gal d 2	ovalbumin	44	C	114, 115
	Gal d 3	Ag22, conalbumin	78	С	114, 115
	Gal d 4	lysozyme	14	l c	114, 115
	Gal d 5	serum albumin	69	С	X60688
Metapenaeus ensis					
shrimp	Met e 1	tropomyosin	С	ļ	U08008
Penaeus aztecus			•		
shrimp	Pen a 1	tropomyosin	36	Р .	116
Penaeus indicus					
shrimp	Pen i 1	tropomyosin	34	С	117
Todarodes pacificus					
squid	Tod p 1	tropomyosin	38	P.	117A
Haliotis midae					
abalone	Hal m 1		49		117B
Apium graveolens	1,		1.5		2.005
celery	Api g 1	hom: Bet v 1	16*	C	248967
	Api g 4	profilin	55,50	_	AF129423
	Api g 5	ļ	55/58	P	P81943
Brassica juncea					,
oriental mustard	Bra j 1	2S albumin	14	С	118
Brassica rapa					
turnip	Bra r 2	hom: prohevein	25		P81729
Hordeum vulgare		,	•		
barley	Hor v 15	BMAI-1	15	С	119
Zea mays					
maize, corn	Zea m 14	lipid transfer protein	9	P	P19656
Oryza sativa			1		
rice	Ory s 1		<u> </u>	С	U31771
Corylus avellana			1		
hazelnut	Cor a 1.0401	hom: Bet v 1	17	С	AF136945
Malus domestica					
apple	Mal d 1	hom: Bet v 1	1	С	X83672
	Mal d 2	hom: thaumatin	1	C	AJ243427
· · · · · · · · · · · · · · · · · · ·	Mal d 3	lipid transfer protein	9	С	1.
Pyrus communis					
pear	Pyr c 1	hom: Bet v 1	18	C	AF05730
	Pyr c 4	profilin	14	C	AF129424
	Pyr c 5	hom: isoflavone	33.5	С	AF071477
	1	reductas	1	1	

		•			
Persea americana avocado	Pers a 1	endochitinase	32	c.	Z78202
Prunus armeniaca apricot	Pru ar 1 Pru ar 3	hom: Bet v 1 lipid transfer protein	9	C P	U93165
Prunus avium sweet cherry	Pru av 1 Pru av 2 Pru av 3 Pru av 4	hom: Bet v 1 hom: thaumatin lipid transfere protein profilin	10	0.000	U66076 U32440 AF221501 AF129425
Prunus domestica European plum	Pru d 3	lipid transfer protein	9	P .	119A
Prunus persica peach	Pru p 3	lipid transfer protein	10	P	P81402
Vitis vinifera grape	Vit v 1	lipid transfer protein	9	P	P80274
Musa x paradisiaca banana	Mus xp 1	profilin	15	С	AF377948
Ananas comosus pineapple	Ana c 1	profilin	15	С	AF377949
Lichti chinensis litchi	Lit c 1	profilin	15	С	AY049013
Sinapis alba yellow mustard	Sin a 1	2S albumin	14	С	120
Glycine max soybean	Gly m 1 Gly m 2 Gly m 3	HPS profilin	7 8 14	P P C	121 A57106 AJ223982
Arachis hypogaea peanut	Ara h 1 Ara h 2 Ara h 3 Ara h 4 Ara h 5 Ara h 6 Ara h 7	vicilin conglutin glycinin glycinin profilin hom: conglutin hom: conglutin	63.5 17 60 37 15 15	0000000	L34402 L77197 AF093541 AF086821 AF059616 AF092846 AF091737
Actinidia chinensis kiwi	Act c 1	cysteine protease	30	P	P00785
Capsicum annum bell pepper	Cap a 1w	osmotin-like protein	23	С	AJ297410

						·
	Solanum tuberosum potato	Solat1 Solat2 Solat3 Solat4	patatin cathepsin D inhibitor cys. protease inhibitor asp. protease inhibitor	43 21 21 16+4	P P P	P15476 P16348 P20347 P30941
	Bertholletia excelsa Brazil nut	Ber e 1	2S albumin	9	С	P04403, M17146
5	Juglans regia English walnut	Jug r 1 Jug r 2	2S albumin vicilin	44	υc	U66866 AF066055
	Ricinus communis Castor bean	Ric c 1	2S albumin		С	P01089
10	Sesamum indicum sesame	Ses i 1 Ses i 2 Ses i 3	2S albumin 2S albumin 7S vicilin-like globulin	9 7 45	000	121A, AF240005 AF091841 AF240006
	Cucumis melo muskmelon	Cuc m 1	serine protease	66	С	D32206
	Additional:					
15	Anisakis simplex nematode	Ani s 1 Ani s 2 Ani s 3	paramyosin tropomyosin	24 97 41	P C C	121B, A59069 AF173004 121C, Y19221
	Ascaris suum worm	Asc s 1		10	P	122
20	Dendronephthya nipponica soft coral	Den n 1		53	P	122A

	T	T			
Hevea brasiliensis				ł	
rubber (latex)	Hev b 1	elongation factor	58	P	123, 124
·	Hev b 2	1,3-glucanase	34/36	С	125
	Hev b 3		24	P	126, 127
	Hev b 4	component of	100-	P	128
		microhelix complex	115	1	•
	Hev b 5		16	C	U42640
	Hev b 6.01	hevein precursor	20	C	M36986, p02877
	Hev b 6.02	hevein	5	C	M36986, p02877
	Hev b 6.03	C-terminal fragment	14	C	M36986, p02877
	Hev b 7.01	hom: patatin from B- serum	42	С	U80598
	Hev b 7.02	hom: patatin from C- serum	44	С	AJ223038
	Hev b 8	profilin	14	С	Y15042.
				_	AJ132397,
			Ī		AF119365.
]	İ	1	AF119366
	Hev b 9	enolase	51	С	AJ132580
	Hev b 10	Mn superoxide dismut.	26	С	AJ249148
	Hev b 11w	class I chitinase]	С	AJ238579
·	Hev b 12	lipid transfer protein	9.3	С	
Ctenocephalides felis felis					
cat flea	Cte f 1				
	Cte f 2	M1b	27	С	AF231352
			21		A1231332
Homo sapiens		•			
human autoallergens	Hom s 1	·	73*	С	Y14314
	Hom s 2		10.3*	С	X80909
	Hom s 3		20.1*	C	X89985
	Hom s 4		36*	C	Y17711
	Hom s 5		42.6*	С	P02538

*Clone (C) or Protein (P) data

10 References to Appendix I

5

- 1. Marsh, D.G., and L.R. Freidhoff. 1992. ALBE, an allergen database. IUIS, Baltimore, MD, Edition 1.0.
- 2. Marsh, D. G., L. Goodfriend, T. P. King, H. Lowenstein, and T. A. E. Platts-Mills. 1986. Allergen nomenclature. Bull WHO 64:767-770.
 - 3. King, T.P., P.S. Norman, and J.T. Cornell. 1964. Isolation and characterization of allergen from ragweed pollen. II. Biochemistry 3:458-468.

- 4. Lowenstein, H. 1980. Timothy pollen allergens. Allergy 35:188-191.
- 5. Aukrust, L. 1980. Purification of allergens in Cladosporium herbarum. Allergy 35:206-207.
- 6. Demerec, M., E. A. Adelberg, A. J. Clark, and P. E. Hartman. 1966. A proposal for a uniform nomenclature in bacterial genetics. Genetics 54:61-75.
 - 7. Bodmer, J. G., E. D. Albert, W. F. Bodmer, B. Dupont, H. A. Erlich, B. Mach, S. G. E. Marsh, W. R. Mayr, P. Parham, T. Sasuki, G. M. Th. Schreuder, J. L. Strominger, A. Svejgaard, and P. I. Terasaki. 1991. Nomenclature for factors of the HLA system, 1990. Immunogenetics 33:301-309.
- 10 8. Griffith, I.J., J. Pollock, D.G. Klapper, B.L. Rogers, and A.K. Nault. 1991. Sequence polymorphism of Amb a I and Amb a II, the major allergens in Ambrosia artemisiifolia (short ragweed). Int. Arch. Allergy Appl. Immunol. 96:296-304.
 - 9. Roebber, M., D. G. Klapper, L. Goodfriend, W. B. Bias, S. H. Hsu, and D. G. Marsh. 1985. Immunochemical and genetic studies of Amb t V (Ra5G), an Ra5 homologue from giant ragweed pollen. J. Immunol. 134:3062-3069.
 - 10. Metzler, W. J., K. Valentine, M. Roebber, M. Friedrichs, D. G. Marsh, and L. Mueller.1992. Solution structures of ragweed allergen Amb t V. Biochemistry 31:5117-5127.
- Metzler, W. J., K. Valentine, M. Roebber, D. G. Marsh, and L. Mueller. 1992. Proton resonance assignments and three-dimensional solution structure of the ragweed allergen Amb a V
 by nuclear magnetic resonance spectroscopy. Biochemistry 31:8697-8705.
 - 12. Goodfriend, L., A.M. Choudhury, J. Del Carpio, and T.P. King. 1979. Cytochromes C: New ragweed pollen allergens. Fed. Proc. 38:1415.
 - 13. Ekramoddoullah, A. K. M., F. T. Kisil, and A. H. Sehon. 1982. Allergenic cross reactivity of cytochrome c from Kentucky bluegrass and perennial ryegrass pollens. Mol. Immunol.
- 25 19:1527-1534.

14. Ansari; A. A., E. A. Killoran, and D. G. Marsh. 1987. An investigation of human response to perennial ryegrass (Lolium perenne) pollen cytochrome c (Lol p X). J. Allergy Clin. Immunol. 80:229-235.

- Morgenstern, J.P., I.J. Griffith, A.W. Brauer, B.L. Rogers, J.F. Bond, M.D. Chapman, and
 M. Kuo. 1991. Amino acid sequence of Fel d I, the major allergen of the domestic cat: protein sequence analysis and cDNA cloning. Proc. Natl. Acad. Sci. USA 88:9690-9694.
 - 16. Griffith, I.J., S. Craig, J. Pollock, X. Yu, J.P. Morgenstern, and B.L.Rogers. 1992. Expression and genomic structure of the genes encoding FdI, the major allergen from the domestic cat. Gene 113:263-268.
- 10 17. Weber, A., L. Marz, and F. Altmann. 1986. Characteristics of the asparagine-linked oligosaccharide from honey-bee venom phospholipase A2. Comp. Biochem. Physiol. 83B:321-324.
 - 18. Weber, A., H. Schroder, K. Thalberg, and L. Marz. 1987. Specific interaction of IgE antibodies with a carbohydrate epitope of honey bee venom phospholipase A2. Allergy 42:464-470.
 - 19. Stanworth, D. R., K. J. Dorrington, T. E. Hugli, K. Reid, and M. W. Turner. 1990. Nomenclature for synthetic peptides representative of immunoglobulin chain sequences. Bulletin WHO 68:109-111.
 - 20. Rafnar, T., I. J. Griffith, M. C. Kuo, J. F. Bond, B. L. Rogers, and D.G. Klapper. 1991.
- 20 Cloning of Amb a I (Antigen E), the major allergen family of short ragweed pollen. J. Biol. Chem. 266: 1229-1236.
 - 21. Rogers, B.L., J.P. Morgenstern, I.J. Griffith, X.B. Yu, C.M. Counsell, A.W. Brauer, T.P. King, R.D. Garman, and M.C. Kuo. 1991. Complete sequence of the allergen Amb a II: recombinant expression and reactivity with T cells from ragweed allergic patients. J. Immunol.
- 25 147:2547-2552.

22. Klapper, D.G., L. Goodfriend, and J.D. Capra. 1980. Amino acid sequence of ragweed allergen Ra3. Biochemistry 19:5729-5734.

- 23. Ghosh, B., M.P. Perry, T. Rafnar, and D.G. Marsh. 1993. Cloning and expression of immunologically active recombinant Amb a V allergen of short ragweed (Ambrosia artemisiifolia) pollen. J. Immunol. 150:5391-5399.
- 24. Roebber, M., R. Hussain, D. G. Klapper, and D. G. Marsh. 1983. Isolation and properties of a new short ragweed pollen allergen, Ra6. J. Immunol. 131:706-711.
- 25. Lubahn, B., and D.G. Klapper. 1993. Cloning and characterization of ragweed allergen Amb a VI (abst). J. Allergy Clin. Immunol. 91:338.
- 10 26. Roebber, M., and D.G. Marsh. 1991. Isolation and characterization of allergen Amb a VII from short ragweed pollen. J. Allergy Clin. Immunol. 87:324.
 - 27. Rogers, B.L., J. Pollock, D.G. Klapper, and I.J. Griffith. 1993. Cloning, complete sequence, and recombinant expression of a novel allergen from short ragweed pollen (abst). J. Allergy Clin. Immunol. 91:339.
- 15 28. Goodfriend, L., A.M. Choudhury, D.G. Klapper, K.M. Coulter, G. Dorval, J. DelCarpio, and C.K. Osterland. 1985. Ra5G, a homologue of Ra5 in giant ragweed pollen: isolation, HLA-DR-associated activity and amino acid sequence. Mol. Immunol. 22:899-906.
 - 28A. Breitenbach M, pers. comm.
- Nilsen, B. M., K. Sletten, M. O'Neill, B. Smestead Paulsen, and H. van Halbeek. 1991.
 Structural analysis of the glycoprotein allergen Art v II from pollen of mugwort (Artemesia)
- 20 Structural analysis of the glycoprotein allergen Art v II from pollen of mugwort (Artemesia vulgaris). J. Biol. Chem. 266:2660-2668.
 - 29A Jimenez A, Moreno C, Martinez J, Martinez A, Bartolome B, Guerra F, Palacios R 1994. Sensitization to sunflower pollen: only an occupational allergy? Int Arch Allergy Immunol 105:297-307.

29B. Carnés J, Fernandez-Caldas E, Casanovas M, Lahoz C, Colás C. Immunochemical characterization of Salsola kali pollen extracts. Allergy 56, Supplement 68: 274, 2001.

- 29C. Giuliani A, Pini C, Bonini S, Mucci N, Ferroni L, Vicari G: Isolation and purification of a major allergen from Parietaria officinalis pollen. Allergy 42: 434-440, 1987.
- 5 30. Smith, P.M., Suphioglu, C., Griffith, I.J., Theriault, K., Knox, R.B. and Singh, M.B. 1996. Cloning and expression in yeast Pichia pastoris of a biologically active form of Cynd 1, the major allergen of Bermuda grass pollen. J. Allergy Clin. Immunol. 98:331-343.
- Suphioglu, C., Ferreira, F. and Knox, R.B. 1997. Molecular cloning and immunological characterisation of Cyn d 7, a novel calcium-binding allergen from Bermuda grass pollen. FEBS
 Lett. 402:167-172.
 - 31a. Asturias JA, Arilla MC, Gomez-Bayon N, Martinez J, Martinez A, and Palacios R. 1997. Cloning and high level expression of Cynodon dactylon (Bermuda grass) pollen profilin (Cyn d 12) in Escherichia coli: purification and characterization of the allergen. Clin Exp Allergy 27:1307-1313.
- 15 32. Mecheri, S., G. Peltre, and B. David. 1985. Purification and characterization of a major allergen from Dactylis glomerata pollen: The Ag Dg 1. Int. Arch. Allergy Appl. Immunol. 78:283-289.
 - 33. Roberts, A.M., L.J. Bevan, P.S. Flora, I. Jepson, and M.R. Walker. 1993. Nucleotide sequence of cDNA encoding the Group II allergen of Cocksfoot/Orchard grass (Dactylis glomerata), Dac g II. Allergy 48:615-623.

- 33a. Guerin-Marchand, C., Senechal, H., Bouin, A.P., Leduc-Brodard, V., Taudou, G., Weyer, A., Peltre, G. and David, B. 1996. Cloning, sequencing and immunological characterization of Dac g 3, a major allergen from Dactylis glomerata pollen. Mol. Immunol. 33:797-806.
- 34. Klysner, S., K. Welinder, H. Lowenstein, and F. Matthiesen. 1992. Group V allergens in
 grass pollen IV. Similarities in amino acid compositions and amino terminal sequences of the

group V allergens from Lolium perenne, Poa pratensis and Dactylis glomerata. Clin. Exp. Allergy 22: 491-497.

- 35. Perez, M., G. Y. Ishioka, L. E. Walker, and R. W. Chesnut. 1990. cDNA cloning and immunological characterization of the rye grass allergen Lol p I. J. Biol. Chem.
- 5 265:16210-16215.

15

- 36. Griffith, I. J., P. M. Smith, J. Pollock, P. Theerakulpisut, A. Avjioglu, S. Davies, T. Hough, M. B. Singh, R. J. Simpson, L. D. Ward, and R. B. Knox. 1991. Cloning and sequencing of Lol p I, the major allergenic protein of rye-grass pollen. FEBS Letters 279:210-215.
- 37. Ansari, A. A., P. Shenbagamurthi, and D.G. Marsh. 1989. Complete amino acid sequence of a Lolium perenne (perennial rye grass) pollen allergen, Lol p II. J. Biol. Chem. 264:11181-11185.
 - 37a. Sidoli, A., Tamborini, E., Giuntini, I., Levi, S., Volonte, G., Paini, C., De Lalla, C., Siccardi, A.G., Baralle, F.E., Galliani, S. and Arosio, P. 1993. Cloning, expression, and immunological characterization of recombinant Lolium perenne allergen Lol p II. J. Biol. Chem. 268:21819-21825.
 - 38. Ansari, A. A., P. Shenbagamurthi, and D. G. Marsh. 1989. Complete primary structure of a Lolium perenne (perennial rye grass) pollen allergen, Lol p III: Comparison with known Lol p I and II sequences. Biochemistry 28:8665-8670.
- 39. Singh, M. B., T. Hough, P. Theerakulpisut, A. Avjioglu, S. Davies, P. M. Smith, P. Taylor,
 R. J. Simpson, L. D. Ward, J. McCluskey, R. Puy, and R.B. Knox. 1991. Isolation of cDNA encoding a newly identified major allergenic protein of rye-grass pollen: Intracellular targeting to the amyloplost. Proc. Natl. Acad. Sci. 88:1384-1388.
 - 39a. van Ree R, Hoffman DR, van Dijk W, Brodard V, Mahieu K, Koeleman CA, Grande M, van Leeuwen WA, Aalberse RC. 1995. Lol p XI, a new major grass pollen allergen, is a member of a family of soybean trypsin inhibitor-related proteins. J Allergy Clin Immunol 95:970-978.

40. Suphioglu, C. and Singh, M.B. 1995. Cloning, sequencing and expression in Escherichia coli of Pha a 1 and four isoforms of Pha a 5, the major allergens of canary grass pollen. Clin. Exp. Allergy 25:853-865.

- 41. Dolecek, C., Vrtala, S., Laffer, S., Steinberger, P., Kraft, D., Scheiner, O. and Valenta, R. 1993. Molecular characterization of Phl p II, a major timothy grass (Phleum pratense) pollen allergen. FEBS Lett. 335:299-304.
 - 41A. Fischer S, Grote M, Fahlbusch B, Muller WD, Kraft D, Valenta R. 1996. Characterization of Phl p 4, a major timothy grass (Phleum pratense) pollen allergen. J Allergy Clin Immunol 98:189-198.
- 10 42. Matthiesen, F., and H. Lowenstein. 1991. Group V allergens in grass pollens. I. Purification and characterization of the group V allergen from Phleum pratense pollen, Phl p V. Clin. Exp. Allergy 21:297-307.
 - 43. Petersen, A., Bufe, A., Schramm, G., Schlaak, M. and Becker, W.M. 1995. Characterization of the allergen group VI in timothy grass pollen (Phl p 6). II. cDNA cloning of Phl p 6 and structural comparison to grass group V. Int. Arch. Allergy Immunol. 108:55-59.
 - 44. Valenta, R., Ball, T., Vrtala, S., Duchene, M., Kraft, D. and Scheiner, O. 1994. cDNA cloning and expression of timothy grass (Phleum pratense) pollen profilin in Escherichia coli: comparison with birch pollen profilin. Biochem. Biophys. Res. Commun. 199:106-118.
- 46. Esch, R. E., and D. G. Klapper. 1989. Isolation and characterization of a major cross-reactive grass group I allergenic determinant. Mol. Immunol. 26:557-561.

- 47. Olsen, E., L. Zhang, R. D. Hill, F. T. Kisil, A. H. Sehon, and S. Mohapatra. 1991. Identification and characterization of the Poa p IX group of basic allergens of Kentucky bluegrass pollen. J. Immunol. 147:205-211.
- 48. Avjioglu, A., M. Singh, and R.B. Knox. 1993. Sequence analysis of Sor h I, the group I allergen of Johnson grass pollen and it comparison to rye-grass Lol p I (abst). J. Allergy Clin.

Immunol. 91:340.

49. Breiteneder H, Pettenburger K, Bito A, Valenta R, Kraft D, Rumpold H, Scheiner O, Breitenbach M. The gene coding for themajor birch pollen allergen BetvI, is highly homologus to a pea disease resistance response gene. EMBO J. 8: 1935-1938,1989.

- 5 50. Swoboda I, Jilek A, Ferreira F, Engel E, Hoffman-Sommergruber K, Scheiner O, Kraft D, Breiteneder H, Pittenauer E, Schmid E. Isoforms of Bet v 1, the major birch pollen allergen, analyzed by liquid chromatography, mass spectrometry, and cDNA cloning. J. Biol. Chem. 270: 2607-2613, 1995.
- 51. Larsen JN, Stroman P, Ipsen H. PCR based cloning and sequencing of isogenes encoding the tree pollen major allergen Car b I from Carpinus betulus, hornbeam. Mol. Immunol. 29: 703-711, 1992.
 - 52. Kos T, Hoffmann-Sommergruber K, Ferreira F, Hirschwehr R, Ahorn H, Horak F, Jager S, Sperr W, Kraft D, Scheiner O. 1993. Purification, characterization and N-terminal amino acid sequence of a new major allergen from European chestnut pollen--Cas s 1. Biochem Biophys Res Commun 196:1086-92.
 - 53. Díaz-Perales A, Lombardero M, Sánchez-Monge R, García-Sellés FJ, Pernas M, Fernández-Rivas M, Barber D, Salcedo G. 2000. Lipid-transfer proteins as potential plant panallergens: cross-reactivity among proteins of Artemisia pollen, Castaneae nut and Rosaceae fruits, with different IgE-binding capacities. Clin Exp Allergy 30:1403-1410.
- 20 54. Ipsen, H., and O.C. Hansen. 1991. The NH2-terminal amino acid sequence of the immunochemically partial identical major allergens of alder (Alnus glutinosa) Aln g I, birch (Betula verrucosa) Bet v I, hornbeam (Carpinus betulus) Car b I and oak (Quercus alba) Que a I pollens. Mol. Immunol. 28:1279-1288.
- 55. Taniai, M., S. Ando, M. Usui, M. Kurimoto, M. Sakaguchi, S. Inouye, and T. Matuhasi.
 25. 1988. N-terminal amino acid sequence of a major allergen of Japanese cedar pollen (Cry j. n.
 - FEBS Lett. 239:329-332.

56. Griffith, I.J., A. Lussier, R. Garman, R. Koury, H. Yeung, and J. Pollock. 1993. The cDNA cloning of Cry j I, the major allergen of Cryptomeria japonica (Japanese cedar) (abst). J. Allergy Clin. Immunol. 91:339.

- 57. Sakaguchi, M., S. Inouye, M. Taniai, S. Ando, M. Usui, and T. Matuhasi. 1990.
- 5 Identification of the second major allergen of Japanese cedar pollen. Allergy 45:309-312.
 - 57A. Yokoyama M, Miyahara M, Shimizu K, Kino K, Tsunoo H. 2000. Purification, identification, and cDNA cloning of Jun a 2, the second major allergen of mountain cedar pollen. Biochem Biophys Res Commun 275:195-202.
- 57B. Midoro-Horiuti T, Goldblum RM, Kurosky A, Wood TG, Brooks EG. 2000. Variable

 Expression of Pathogenesis-Related Protein Allergen in Mountain Coder (Inninesses askei)
- 10 Expression of Pathogenesis-Related Protein Allergen in Mountain Cedar (Juniperus ashei) Pollen. J Immunol 164:2188-2192.
 - 57C. Tinghino R., Barletta B., Palumbo S., Afferni C., Iacovacci P., Mari A., Di Felice G., Pini, C. 1998. Molecular characterization of a cross-reactive Juniperus oxycedrus pollen allergen, Jun o 2: a novel calcium-binding allergen J. Allergy Clin. Immunol. 101:772-777.
- 15 58 Gross GN, Zimburean JM, Capra JD 1978. Isolation and partial characterization of the allergen in mountain cedar pollen. Scand J Immunol 8:437-41.
 - 58A Obispo TM, Melero JA, Carpizo JA, Carreira J, Lombardero M 1993. The main allergen of Olea europaea (Ole e I) is also present in other species of the oleaceae family. Clin Exp Allergy 23:311-316.
- 20 59. Lombardero M., Barbas J.A., Moscoso del Prado J., Carreira J. 1994. cDNA sequence analysis of the main olive allergen, Ole e I. Clin. Exp. Allergy 24:765-770.
 - 60. Villalba, M., E. Batanero, C. Lopez-Otin, L.M. Sanchez, R.I. Monsalve, M.A. Gonzalez de la Pena, C. Lahoz, and R. Rodriguez. 1993. Amino acid sequence of Ole e I, the major allergen from olive tree pollen (Olea europaea). Eur. J. Biochem. 216:863-869.
- 25 60A. Asturias JA, Arilla MC, Gomez-Bayon N, Martinez J, Martinez A, Palacios R 1997.

Cloning and expression of the panallergen profilin and the major allergen (Ole e 1) from olive tree pollen. J Allergy Clin Immunol 100:365-372.

- 60B. Batanero E, Villalba M, Ledesma A Puente XS, Rodriguez R. 1996. Ole e 3, an olive-tree allergen, belongs to a widespread family of pollen proteins. Eur J Biochem 241: 772-778.
- 5 60C. Batanero E, Ledesma A, Villalba M, Rodriguez R. 1997. Purification, amino acid sequence and immunological characterization of Ole e 6, a cysteine-enriched allergen from olive tree pollen. FEBS Lett. 410:293-296.
 - 60D. Tejera ML, Villalba M, Batanero E, Rodriguez R. 1999. Identification, isolation, and characterization of Ole e 7, a new allergen of olive tree pollen. J Allergy Clin Immunol 104:797-802.

- 60E. Ledesma, A., Villalba, M. and Rodriguez, R. 2000. Cloning, expression and characterization of a novel four EF-hand Ca(2+)-binding protein from olive pollen with allergenic activity. FEBS Lett. 466:192-196.
- 61. Chua, K. Y., G. A. Stewart, and W. R. Thomas. 1988. Sequence analysis of cDNA encoding for a major house dust mite allergen, Der p I. J. Exp. Med. 167:175-182.
 - 62. Chua, K. Y., C. R. Doyle, R. J. Simpson, K. J. Turner, G. A. Stewart, and W. R. Thomas. 1990. Isolation of cDNA coding for the major mite allergen Der p II by IgE plaque immunoassay. Int. Arch. Allergy Appl. Immunol. 91:118-123.
- 63. Smith WA, Thomas WR. 1996. Comparative analysis of the genes encoding group 3
 20 allergens from Dermatophagoides pteronyssinus and Dermatophagoides farinae. Int Arch Allergy Immunol 109: 133-40.
 - 64. Lake, F.R., L.D. Ward, R.J. Simpson, P.J. Thompson, and G.A. Stewart. 1991. House dust mite-derived amylase: Allergenicity and physicochemical characterisation. J. Allergy Clin. Immunol. 87:1035-1042.
- 25 65. Tovey, E. R., M. C. Johnson, A. L. Roche, G. S. Cobon, and B. A. Baldo. 1989. Cloning

and sequencing of a cDNA expressing a recombinant house dust mite protein that binds human IgE and corresponds to an important low molecular weight allergen. J. Exp. Med. 170:1457-1462.

- 66. Yasueda, H., T. Shida, T. Ando, S. Sugiyama, and H. Yamakawa. 1991. Allergenic and proteolytic properties of fourth allergens from Dermatophagoides mites. In: "Dust Mite Allergens and Asthma. Report of the 2nd international workshop" A. Todt, Ed., UCB Institute of Allergy, Brussels, Belgium, pp. 63-64.
- 67. Shen, H.-D., K.-Y. Chua, K.-L. Lin, K.-H. Hsieh, and W.R. Thomas. 1993. Molecular cloning of a house dust mite allergen with common antibody binding specificities with multiple components in mite extracts. Clin. Exp. Allergy 23:934-40.
 - 67A. O'Neil GM, Donovan GR, Baldo BA. 1994. Cloning and charaterisation of a major allergen of the house dust mite Dermatophagoides pteronyssinus, homologous with glutathione S-transferase. Biochim Biophys Acta, 1219:521-528.
- 67B. King C, Simpson RJ, Moritz RL, Reed GE, Thompson PJ, Stewart GA. 1996. The isolation and characterization of a novel collagenolytic serine protease allergen (Der p 9) from the dust mite Dermatophagoides pteronyssinus. J Allergy Clin Immunol 98:739-47.
 - 68. Lind P, Hansen OC, Horn N. 1988. The binding of mouse hybridoma and human IgE antibodies to the major fecal allergen, Der p I of D. pteronyssinus. J. Immunol. 140:4256-4262.
- 69. Dilworth, R. J., K. Y. Chua, and W. R. Thomas. 1991. Sequence analysis of cDNA coding for a mojor house dust allergn Der f I. Clin. Exp. Allergy 21:25-32.
 - 70. Nishiyama, C., T. Yunki, T. Takai, Y. Okumura, and H. Okudaira. 1993. Determination of three disulfide bonds in a major house dust mite allergen, Der f II. Int. Arch. Allergy Immunol. 101:159-166.
- 71. Trudinger, M., K. Y. Chua, and W. R. Thomas. 1991. cDNA encoding the major dust mite allergen Der f II. Clin. Exp. Allergy 21:33-38.

71A. Tategaki A, Kawamoto S, Aki T, Jyo T, Suzuki O, Shigeta S, Ono K. Newly described house dust mite allergens. ACI International suppl. 1: 74-76, 2000.

- 72. Aki T, Kodama T, Fujikawa A, Miura K, Shigeta S, Wada T, Jyo T, Murooka Y, Oka S, Ono K. 1995. Immunochemical characteristion of recombinant and native tropomyosins as a new allergen from the house dust mite Dermatophagoides farinae. J Allergy Clin Immunol 96:74-83.
- 72A. Tsai L, Sun Y, Chao P, Ng H, Hung M, Hsieh K, Liaw S, Chua K, 1999. Sequence analysis and expression of a cDNA clone encoding a 98-kDa allergen in Dermatophagoides farinae. Clin Exp Allergy 29:1606-1613.
- 72B. Gafvelin G, Johansson E, Lundin A, Smith AM, Chapman MD, Benjamin DC, Derewenda
 10 U, Van Hage-Hamsten M. 2001. Cross-reactivity studies of a new group 2 allergen from the dust
 mite Glycyphagus domesticus, Gly d 2, and group 2 allergens from Dermatophagoides
 pteronyssinus, Lepidoglyphus destructor, and Tyrophagus putrescentiae with recombinant
 allergens. J Allergy Clin Immunol 107:511-518.
- 73. van Hage-Hamsten, M., T. Bergman, E. Johansson, B. Persson, H. Jornvall, B. Harfast, and S.G.O. Johansson. 1993. N-terminal amino acid sequence of major allergen of the mite lepidoglyphus destructor (abst). J. Allergy Clin. Immunol. 91:353.
 - 74. Varela J, Ventas P, Carreira J, Barbas JA, Gimenez-Gallego G, Polo F. Primary structure of Lep d I, the main Lepidoglyphus destructor allergen. Eur J Biochem 225:93-98, 1994.
- 75. Schmidt M, van der Ploeg I, Olsson S, van Hage Hamsten M. The complete cDNA encoding the Lepidoglyphus destructor major allergen Lep d 1. FEBS Lett 370:11-14, 1995.
 - 75A. Eriksson TLJ, Rasool O, Huecas S, Whitley P, Crameri R, Appenzeller U, Gafvelin G, van Hage-Hamsten M. 2001. Cloning of three new allergens from the dust mite Lepidoglyphus destructor using phage surface display technology. Eur. J. Biochem. 268:287-294.
- 75B. Eriksson TL, Johansson E, Whitley P, Schmidt M, Elsayed S, van Hage-Hamsten M. 1998.

 Cloning and characterisation of a group II allergen from the dust mite Tyrophagus putrescentiae.

- Eur. J. Biochem. 251 (1-2), 443-447.
- 76. Rautiainen J, Rytkonen M, Pelkonen J, Pentikainen J, Perola O, Virtanen T, Zeiler T, Mantyjarvi R. BDA20, a major bovine dander allergen characterized at the sequence level is Bos d 2. Submitted.
- 5 77. Gjesing B, Lowenstein H. Immunochemistry of food antigens. Ann Allergy 53:602, 1984.
 - 78. de Groot, H., K.G.H. Goei, P. van Swieten, and R.C. Aalberse. 1991. Affinity purification of a major and a minor allergen from dog extract: Serologic activity of affiity-purified Can f I and Can f I-depleted extract. J. Allergy Clin. Immunol. 87:1056-1065.
 - 79. Konieczny, A. Personal communication; Immunologic Pharmaceutical Corp.
- 79A. Bulone, V. 1998. Separation of horse dander allergen proteins by two-dimensional electrophoresis. Molecular characterisation and identification of Equ c 2.0101 and Equ c 2.0102 as lipocalin proteins. Eur J Biochem 253:202-211.
 - 79B. Swiss-Prot acc. P81216, P81217.
- 79C. Dandeu J. P., Rabillon J., Divanovic A., Carmi-Leroy A., David B. (1993). Hydrophobic interaction chromatography for isolation and purification of Equ c 1, the horse major allergen. J. Chromatogr. 621:23-31.
 - 79D. Goubran Botros H., Rabillon J., Grégoire C., David B., Dandeu J.P. 1998. Thiophilic absorption chromatography: purification of Equ c 2 and Equ c 3, two horse allergens from horse sweat. J. Chromatogr. B 710:57-65.
- 79E. Hilger C, Kohnen M, Grigioni F, Lehners C, Hentges F. Allergic cross-reactions between cat and pig serum albumin. Allergy 52:179-187, 1997; and Hilger C, Grigioni F, Hentges F. Sequence of the gene encoding cat (Felis domesticus) serum albumin. Gene 169:295-296, 1996.
 - 79F. Ichikawa K, Vailes LD, Pomes A, Chapman MD. Molecular cloning, expression and modeling of cat allergen, cystatin (Fel d 3), a cysteine protease inhibitor. Clin Exp Allergy, In

Press 2001.

80. McDonald, B., M. C. Kuo, J. L. Ohman, and L. J. Rosenwasser. 1988. A 29 amino acid peptide derived from rat alpha 2 euglobulin triggers murine allergen specific human T cells (abst). J. Allergy Clin. Immunol. 83:251.

- 5 81. Clarke, A. J., P. M. Cissold, R. A. Shawi, P. Beattie, and J. Bishop. 1984. Structure of mouse urinary protein genes: differential splicing configurations in the 3'-non-coding region. EMBO J 3:1045-1052.
 - 82. Longbottom, J. L. 1983. Chracterization of allergens from the urines of experimental animals. McMillan Press, London, pp. 525-529.
- 10 83. Laperche, Y., K. R. Lynch, K. P. Dolans, and P. Feigelsen. 1983. Tissue-specific control of alpha 2u globulin gene expression: constitutive synthesis in submaxillary gland. Cell 32:453-460.
 - 83A. Bush RK, Sanchez H, Geisler D. 1999. Molecular cloning of a major Alternaria alternata allergen, rAlt a 2. J Allergy Clin Immunol 104:665-671.
- 15 83B. Aukrust L, Borch SM. 1979. Partial purification and characterization of two Cladosporium herbarum allergens. Int Arch Allergy Appl Immunol 60:68-79.
 - 83C. Sward-Nordmo M, Paulsen BS, Wold JK. 1988. The glycoprotein allergen Ag-54 (Cla h II) from Cladosporium herbarum. Structural studies of the carbohydrate moiety. Int Arch Allergy Appl Immunol 85:288-294.
- 20 84. Shen, et al. J. Allergy Clin. Immunol. 103:S157, 1999.
 - 84A. Crameri R. Epidemiology and molecular basis of the involvement of Aspergillus fumigatus in allergic diseases. Contrib. Microbiol. Vol. 2, Karger, Basel (in press).
 - 84B. Shen, et al. (manuscript submitted), 1999
 - 84C. Shen HD, Ling WL, Tan MF, Wang SR, Chou H, Han SIH. Vacuolar serine proteinase:

A major allergen of Aspergillus fumigatus. 10th International Congress of Immunology, Abstract, 1998.

- 85. Kumar, A., L.V. Reddy, A. Sochanik, and V.P. Kurup. 1993. Isolation and characterization of a recombinant heat shock protein of Aspergillus fumigatus. J. Allergy Clin. Immunol. 91:1024-1030.
- 86A. Shen HD, Lin WL, Tsai JJ, Liaw SF, Han SH. 1996. Allergenic components in three different species of Penicillium: crossreactivity among major allergens. Clin Exp Allergy 26:444-451.
- 86B. Shen, et al. Abstract; The XVIII Congress of the European Academy of Allergology and Clinical Immunology, Brussels, Belgium, 3-7 July 1999.
 - 87. Shen HD, Liaw SF, Lin WL, Ro LH, Yang HL, Han SH. 1995. Molecular cloning of cDNA coding for the 68 kDa allergen of Penicillium notatum using MoAbs. Clin Exp Allergy 25:350-356.
- 88. Shen, H.D., K.B. Choo, H.H. Lee, J.C. Hsieh, and S.H. Han. 1991. The 40 kd allergen of Candida albicans is an alcohol dehydrogenease: molecular cloning and immunological analysis using monoclonal antibodies. Clin. Exp. Allergy 21:675-681.
 - 89. Shen, et al. Clin. Exp. Allergy (in press), 1999.
 - 90. Woodfolk JA, Wheatley LM, Piyasena RV, Benjamin DC, Platts-Mills TA.1998. Trichophyton antigens associated with IgE antibodies and delayed type hypersensitivity.
- 20 Sequence homology to two families of serine proteinases. J Biol Chem 273:29489-96.
 - 91. Deuell, B., L.K. Arruda, M.L. Hayden, M.D. Chapman and T.A.E. Platts-Mills. 1991. Trichophyton tonsurans Allergen I. J. Immunol. 147:96-101.
- 91A. Schmidt M, Zargari A, Holt P, Lindbom L, Hellman U, Whitley P, van der Ploeg I, Harfast B, Scheynius A. 1997. The complete cDNA sequence and expression of the first major allergenic
 protein of Malassezia furfur, Mal f 1. Eur J Biochem 246:181-185.

91B. Horner WE, Reese G, Lehrer SB. 1995. Identification of the allergen Psi c 2 from the basidiomycete Psilocybe cubensis as a fungal cyclophilin. Int Arch Allergy Immunol 107:298-300.

- 91C. Hoffman DR, Schmidt JO. 2000. Phospholipases from Asian honeybees. J Allergy Clin Immunol 105:S56 (abs).
 - 92. Kuchler, K., M. Gmachl, M. J. Sippl, and G. Kreil. 1989. Analysis of the cDNA for phospholipase A2 from honey bee venom glands: The deduced amino acid sequence reveals homology to the corresponding vertebrate enzymes. Eur. J. Biochem. 184:249-254.
- 93. Gmachl, M., and G. Kreil. 1993. Bee venom hyaluronidase is homologous to a membrane protein of mammalian sperm. Proc. Natl. Acad. Sci. USA 90:3569-3573.
 - 93A. Hoffman DR. 1977. Allergens in bee venom III. Identification of allergen B as an acid phosphatase. J Allergy Clin. Immunol. 59:364-366.
 - 94. Habermann, E. 1972. Bee and wasp venoms. Science 177:314-322.
- 95. Hoffman DR, Jacobson RS. 1996. Allergens in Hymenoptera venom XXVII: Bumblebee venom allergy and allergens. J. Allergy Clin. Immunol. 97:812-821.
 - 95A. Hoffman DR, El-Choufani AE, Smith MM, de Groot H. 2001. Occupational allergy to bumblebee venom: Allergens of Bombus terrestris. J Allergy Clin Immunol In press.
 - 95B. Helm R, Cockrell G, Stanley JS, Brenner RJ, Burks W, Bannon GA. 1996. Isolation and characterization of a clone encoding a majore allergen (Bla g Bd90K) involved in IgE mediated cockroach hypersensitivity. J Allerg Clin Immunol 98:172-180.
 - 95C. Pomes A, Melen E, Vailes LD, Retief JD, Arruda LK, Chapman MD. 1998. Novel allergen structures with tandem amino acid repeats derived from German and American cockroach. J Biol Chem 273:30801-30807.
 - 96. Arruda LK, Vailes LD, Mann BJ, Shannon J, Fox JW, Vedvick TS, Hayden ML, Chapman

MD. Molecular cloning of a major cockroach (Blattella germanica) allergen, Bla g 2. Sequence homology to the aspartic proteases. J Biol Chem 270:19563-19568, 1995.

- 97. Arruda LK, Vailes LD, Hayden ML, Benjamin DC, Chapman MD. Cloning of cockroach allergen, Bla g 4, identifies ligand binding proteins (or calycins) as a cause of IgE antibody responses. J Biol Chem 270:31196-31201, 1995.
- 98. Arruda LK, Vailes LD, Benjamin DC, Chapman MD. Molecular cloning of German Cockroach (Blattella germanica) allergens. Int Arch Allergy Immunol 107:295-297, 1995.
- 98A. Wu CH, Wang NM, Lee MF, Kao CYY, Luo SF. 1998. Cloning of the American cockroach Cr-PII allergens: Evidence for the existence of cross-reactive allergens between species. J Allergy Clin Immunol 101:832-840.
 - 98B. Melen E, Pomés A, Vailes LD, Arruda LK, Chapman MD. 1999. Molecular cloning of Per a 1 and definition of the cross-reactive Group 1 cockroach allergens. J Allergy Clin Immunol 103:859-64.
- 98C. Wu CH, Lee MF, Liao SC, Luo SF. Sequencing analysis of cDNA clones encoding the
 15 American cockroach Cr-PI allergens. J Biol Chem 271:17937-17943, 1996.
 - 98D. Wu CH, Lee MF, Wang NM, Luo SF. Sequencing and immunochemical characterization of the American cockroach Per a 3 (Cr-PI) isoallergenic variants. Molecular Immunol 34:1-8, 1997.
 - 98E. Santos ABR, Chapman MD, Aalberse RC, Vailes LD, Ferriani VPL, Oliver C, Rizzo MC, Naspitz CK, Arruda LK. 1999. Cockroach allergens and asthma in Brazil: Identification of
- 20 tropomyosin as a major allergen with potential cross-reactivity with mite and shrimp allergens. J Allergy Clin Immunol 104:329-337.
 - 98F. Asturias JA, Gómez-Bayón N, Arilla MC, Martinez A, Palacios R, Sánchez-Gascón, Martinez J. 1999. Molecular characterization of American cockroach tropomyosin (Periplaneta americana allergen 7), a cross-reactive allergen. J Immunol 162:4342-4348.
- 25 99. Mazur, G., X. Baur, and V. Liebers. 1990. Hypersensitivity to hemoglobins of the Diptera

family Chironomidae: Structural and functional studies of their immunogenic/allergenic sites. Monog. Allergy 28:121-137.

- 100. Soldatova, L., L. Kochoumian, and T.P. King. 1993. Sequence similarity of a hornet (D. maculata) venom allergen phospholipase A1 with mammalian lipases. FEBS Letters 320:145-149.
- 101. Lu, G., L. Kochoumian and T.P. King. Whiteface hornet venom allergen hyaluronidase: cloning and its sequence similarity with other proteins (abst.). 1994. J. Allergy Clin. Immunol. 93:224.
- 102. Fang, K. S. F., M. Vitale, P. Fehlner, and T. P. King. 1988. cDNA cloning and primary
 structure of a white-faced hornet venom allergen, antigen 5. Proc. Natl. Acad. Sci., USA
 85:895-899.
 - 103. King, T. P., D. C. Moran, D. F. Wang, L. Kochoumian, and B.T. Chait. 1990. Structural studies of a hornet venom allergen antigen 5, Dol m V and its sequence similarity with other proteins. Prot. Seq. Data Anal. 3:263-266.
- 15 104. Lu, G., M. Villalba, M.R. Coscia, D.R. Hoffman, and T.P. King. 1993. Sequence analysis and antigen cross reactivity of a venom allergen antigen 5 from hornets, wasps and yellowjackets. J. Immunol. 150: 2823-2830.
 - 105. King, T. P. and Lu, G. 1997. Unpublished data.
- 105A. King TP, Lu G, Gonzalez M, Qian N and Soldatova L. 1996. Yellow jacket venom allergens, hyaluronidase and phospholipase: sequence similarity and antigenic cross-reactivity with their hornet and wasp homologs and possible implications for clinical allergy. J. Allergy Clin. Immunol. 98:588-600.
 - 106. Hoffman, D.R. 1993. Allergens in hymenoptera venom XXV: The amino acid sequences of antigen 5 molecules and the structural basis of antigenic cross-reactivity. J. Allergy Clin.
- 25 Immunol. 92:707-716.

- 107. Hoffman, D.R. 1992. Unpublished data.
- 108. Hoffman, D. R. 1993. The complete amino acid sequence of a yellowjacket venom phospholipase (abst). J. Allergy Clin. Immunol. 91:187.
- 109. Jacobson, R.S., D.R. Hoffman, and D.M. Kemeny. 1992. The cross-reactivity between bee and vespid hyaluronidases has a structural basis (abst). J. Allergy Clin. Immunol. 89:292.
 - 110. Hoffman, D.R. 1993. Allergens in Hymenoptera venom XXIV: The amino acid sequences of imported fire ant venom allergens Sol i II, Sol i III, and Sol i IV. J. Allergy Clin. Immunol. 91:71-78.
- Schmidt, M., R.B. Walker, D.R. Hoffman, and T.J. McConnell. 1993. Nucleotide
 sequence of cDNA encoding the fire ant venom protein Sol i II. FEBS Letters 319:138-140.
 - 112. Elsayed S, Bennich H. The primary structure of Allergen M from cod. Scand J Immunol 3:683-686, 1974.
- 113. Elsayed S, Aas K, Sletten K, Johansson SGO. Tryptic cleavage of a homogeneous cod fish allergen and isolation of two active polypeptide fragments. Immunochemistry 9:647-661,
 15 1972.
 - 114. Hoffman, D. R. 1983. Immunochemical identification of the allergens in egg white. J. Allergy Clin. Immunol. 71:481-486.
- 115. Langeland, T. 1983. A clinical and immunological study of allergy to hen's egg white.
 IV. specific IgE antibodies to individual allergens in hen's egg white related to clinical and
 immunolgical parameters in egg-allergic patients. Allergy 38:493-500.
 - 116. Daul, C.B., M. Slattery, J.E. Morgan, and S.B. Lehrer. 1993. Common crustacea allergens: identification of B cell epitopes with the shrimp specific monoclonal antibodies. In: "Molecular Biology and Immunology of Allergens" (D. Kraft and A. Sehon, eds.). CRC Press, Boca Raton. pp. 291-293.

117. K.N. Shanti, B.M. Martin, S. Nagpal, D.D. Metcalfe, P.V. Subba Rao. 1993. Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes. J. Immunol. 151:5354-5363.

- 117A. M. Miyazawa, H. Fukamachi, Y. Inagaki, G. Reese, C.B. Daul, S.B. Lehrer, S. Inouye, M.
 Sakaguchi. 1996. Identification of the first major allergen of a squid (Todarodes pacificus). J.
 Allergy Clin. Immunol. 98:948-953.
 - 117B Lopata AL, Zinn C, Potter PC. Characteristics of hypersensitivity reactions and identification of a unique 49 kd IgE-binding protein (Hal-m-1) in abalone (Haliotis midae). J. Allergy Clin. Immunol. 100: 642-648, 1997.
- 10 117C. K. Hoffmann-Sommergruber, G. O'Riordain, H. Ahorn, C. Ebner, M. Laimer Da Camara Machado, H. Pühringer, O. Scheiner, H. Breiteneder. 1999. Molecular characterization of Dau c 1, the Bet v 1 homologous protein from carrot and its cross-reactivity with Bet v 1 and Api g 1 Clin Exp Allergy 29:840-847.
- 118. Monsalve, R.I., M.A. Gonzalez de la Pena, L. Menendez-Arias, C. Lopez-Otin, M.
 Villalba, and R. Rodriguez. 1993. Characterization of a new mustard allergen, Bra j IE.
 Detection of an allergenic epitope. Biochem. J. 293:625-632.
 - 118A. Monsalve RI, Gonzalez de la Pena MA, Lopez-Otin C, Fiandor A, Fernandez C, Villalba M, Rodriguez R. 1997. Detection, isolation and complete amino acid sequence of an aeroallergenic protein from rapeseed flour. Clin Exp Allergy 27:833-841.
- 20 119. Mena, M., R. Sanchez?Monge, L. Gomez, G. Salcedo, and P. Carbonero. 1992. A major barley allergen associated with baker's asthma disease is a glycosylated monomeric inhibitor of insect alpha-amylase: cDNA cloning and chromosomal location of the gene. Plant Molec. Biol. 20:451-458.
- 119A. Xu H, Theerakulpisut P, Goulding N, Suphioglu C, Singh M. B. Bhalla P. L. Cloning
 expression and immunological characterization of Ory s 1, the major allergen of rice pollen.
 Gene 164:255-259, 1995.

119B. Pastorello EA, Ortolani C, Farioli L, Pravettoni V, Ispano M, Borga A, Bengtsson A, Incorvaia C, Berti C, Zanussi C. 1994. Allergenic cross-reactivity among peach, apricot, plum, and cherry in patients with oral allergy syndrome: an in vivo and in vitro study. J. Allergy Clin. Immunol. 94:699-707.

- 5 120. Menendez-Arias, L., I. Moneo, J. Dominguez, and R. Rodriguez. 1988. Primary structure of the major allergen of yellow mustard (Sinapis alba L.) seed, Sin a I. Eur. J. Biochem. 177:159-166.
 - 121. Gonzalez R, Varela J, Carreira J, Polo F. Soybean hydrophobic protein and soybean hull allergy. Lancet 346:48-49, 1995.
- 10 121A. Pastorello EA, Varin E, Farioli L, Pravettoni V, Ortolani C, Trambaioli C, Fortunato D, Giuffrida MG, Rivolta F, Robino A, Calamari AM, Lacava L, Conti A. The major allergen of sesame seeds (Sesamum indicum) is a 2S albumin. J. Chromatogr. B Biomed. Sci. Appl. 756: 85-93, 2001.
- 121B. Moneo I, Caballero ML, Gomez F, Ortega E, Alonso MJ. Isolation and characterization of
 a major allergen from the fish parasite Anisakis simplex. J. Allergy Clin. Immunol. 106:
 177-182, 2000.
 - 121C. Asturias JA, Eraso E, Martínez A. 2000. Is tropomysoin an allergen in Anisakis? Allergy 55:898-890.
- 122. Christie, J. F., B. Dunbar, I. Davidson, and M. W. Kennedy. 1990. N-terminal amino acid
 sequence identity between a major allergen of Ascaris lumbricoides and Ascaris suum and
 MHC-restricted IgE responses to it. Immunology 69:596-602.
 - 122A. Onizuka R, Kamiya H, Muramoto K, Goto R, Inoue K, Kumamoto K, Nakajima Y, Iida S, Ishigami F. Purification of major allergens from red soft coral (Dendrophythya nipponica). Int Arch Allergy Immunol, In press 2001.
- 25 123. Czuppon AB, Chen Z, Rennert S, Engelke T, Meyer HE, Heber M, Baur X. The rubber

elongation factor of rubber trees (Hevea brasiliensis) is the major allergen in latex. J Allergy Clin Immunol 92:690-697, 1993.

- 124. Attanayaka DPSTG, Kekwick RGO, Franklin FCH. 1991. Molecular cloning and nucleotide sequencing of the rubber elongation factor gene from hevea brasiliensis. Plant Mol Biol 16:1079-1081.
- 125. Chye ML, Cheung KY. 1995. J 1,3-glucanase is highly expressed in Laticifers of Hevea brasiliensis. Plant Mol Biol 26:397-402.
- 126. Alenius H, Palosuo T, Kelly K, Kurup V, Reunala T, Makinen-Kiljunen S, Turjanmaa K Fink J. 1993. IgE reactivity to 14-kD and 27-kD natural rubber proteins in Latex-allergic children with Spina bifida and other congenital anomalies. Int Arch Allergy Immunol 102:61-66.
 - 127. Yeang HY, Cheong KF, Sunderasan E, Hamzah S, Chew NP, Hamid S, Hamilton RG, Cardosa MJ. 1996. The 14.6 kD (REF, Hev b 1) and 24 kD (Hev b 3) rubber particle proteins are recognized by IgE from Spina Bifida patients with Latex allergy. J Allerg Clin Immunol in press.
- Sunderasan E, Hamzah S, Hamid S, Ward MA, Yeang HY, Cardosa MJ. 1995. Latex
 B-serum J-1,3-glucanase (Hev b 2) and a component of the microhelix (Hev b 4) are major Latex allergens. J nat Rubb Res 10:82-99.

Table 9. Selected allergens with structures available in Protein Database (PDB)

ID NO: 1A0K

5 Deposited: 02-Dec-1997 Exp. Method: X-ray Diffraction Resolution: 2.20 Å

Title Profilin I From Arabidopsis Thaliana

Classification Cytoskeleton

Compound Mol_Id: 1; Molecule: Profilin; Chain: Null; Engineered: Recombinant Plant

Protein; Biological_Unit: Monomer

10

ID NO: 1A9V

Deposited: 10-Apr-1998 Exp. Method: NMR, 10 Structures

Title Tertiary Structure Of The Major House Dust Mite Allergen Der P 2, NMR, 10

Structures

15 Classification Allergen

Compound Mol_Id: 1; Molecule: Mite Allergen Der P 2; Chain: Null; Engineered: Yes;

Mutation: D1S; Other_Details:D1S Mutant Made To Enhance N-Terminal Met

Removal

ID NO: 1AHK

20 Deposited: 07-Apr-1997 Exp. Method: NMR, Minimized Average Structure

Title Der F 2, The Major Mite Allergen From Dermatophagoides Farinae, NMR,

Minimized Average Structure

Classification Allergen

Compound Mol_Id: 1; Molecule: Der F 2; Chain: Null; Synonym: Der F II; Engineered: Yes

5 ID NO: 1AHM

Deposited: 07-Apr-1997 Exp. Method: NMR, 10 Structures

Title Der F 2, The Major Mite Allergen From Dermatophagoides Farinae, NMR, 10

Structures

Classification Allergen

10 Compound Mol_Id: 1; Molecule: Der F 2; Chain: Null; Synonym: Der F II; Engineered: Yes

ID NO: 1B6F

Deposited: 13-Jan-1999 Exp. Method: NMR, 23 Structures

Title Birch Pollen Allergen Bet V 1

15 Classification Plant Protein

Compound Mol_Id: 1; Molecule: Major Pollen Allergen Bet V 1-A; Chain: A; Engineered:

Yes; Mutation: Yes

ID NO: 1BBG

20 Deposited: 24-Apr-1998 Exp. Method: NMR, Minimized Average Structure

Title

Ragweed Pollen Allergen From Ambrosia Trifida V, NMR, Minimized Average

Structure

Classification Allergen

Compound Mol_Id: 1; Molecule: Pollen Allergen 5; Chain: Null

5

ID NO: 1BJ7

Deposited: 02-Jul-1998 Exp. Method: X-ray Diffraction Resolution: 1.80 Å

Title

Bovine Lipocalin Allergen Bos D 2

Classification Allergen

10 Compound

Mol_Id: 1; Molecule: D 2; Chain: Null; Synonym: Dander Major Allergen Bda20,

Dermal Allergen Bda20; Engineered: Yes; Biological_Unit: Monomer

ID NO: 1BMW

Deposited: 27-Jul-1998 Exp. Method: NMR, 38 Structures

15 Title

A Fibronectin Type III Fold In Plant Allergens: The Solution Structure Of Phl Pii

From Timothy Grass Pollen, NMR, 38 Structures

Classification Allergen

Compound

Mol_Id: 1; Molecule: Pollen Allergen Phl P2; Chain: Null; Synonym: Phl P II;

Engineered: Yes; Biological Unit: Monomer

20

ID NO: 1BTV

Deposited: 30-Jan-1997 Exp. Method: NMR, 20 Structures

Title Structure Of Bet V 1, NMR, 20 Structures

Classification Major Birch Pollen Allergen

Compound Mol_Id: 1; Molecule: Bet V 1; Chain: Null; Engineered: Yes

5

ID NO: 1BV1

Deposited: 08-Jul-1997 Exp. Method: X-ray Diffraction Resolution: 2.00 Å

Title Birch Pollen Allergen Bet V 1

Classification Allergen

10 Compound Mol_Id: 1; Molecule: Bet V 1; Chain: Null; Synonym: Major Pollen Allergen Bet V 1-A; Engineered: Yes

ID NO: 1BWH

Deposited: 24-Sep-1998 Exp. Method: X-ray Diffraction Resolution: 1.80 Å

15 Title The 1.8 A Structure Of Ground Control Grown Tetragonal Hen Egg White Lysozyme

Classification Hydrolase

Compound Mol_Id: 1; Molecule: Lysozyme; Chain: A; Synonym: Gal D IV, Allergen Gal D 4; Ec: 3.2.1.17

20

ID NO: 1BWI

Deposited: 24-Sep-1998 Exp. Method: X-ray Diffraction Resolution: 1.80 Å

Title The 1.8 A Structure Of Microbatch Oil Drop Grown Tetragonal Hen Egg White

Lysozyme

Classification Hydrolase

5 Compound Mol_Id: 1; Molecule: Lysozyme; Chain: A; Synonym: Gal D IV, Allergen Gal D

4; Ec: 3.2.1.17

ID NO: 1BWJ

Deposited: 18-Sep-1998 Exp. Method: X-ray Diffraction Resolution: 1.80 Å

10 Title The 1.8 A Structure Of Microgravity Grown Tetragonal Hen Egg White

Lysozyme

Classification Hydrolase

Compound Mol_Id: 1; Molecule: Lysozyme; Chain: A; Synonym: Gal D IV, Allergen Gal D

4; Ec: 3.2.1.17

15

ID NO: 1CQA

Deposited: 26-Jul-1996 Exp. Method: X-ray Diffraction Resolution: 2.40 Å

Title Birch Pollen Profilin

Classification Contractile Protein

20 Compound Mol_Id: 1; Molecule: Profilin; Chain: Null; Engineered: Yes

ID NO: 1E09

Deposited: 15-Mar-2000 Exp. Method: NMR, 22 Structures

Title Solution Structure Of The Major Cherry Allergen Pru Av 1

Classification Allergen

5 Compound Mol_Id: 1; Molecule: Pru Av 1; Chain: A; Engineered: Yes

ID NO: 1EW3

Deposited: 21-Apr-2000 Exp. Method: X-ray Diffraction Resolution: 2.30 Å

Title Crystal Structure Of The Major Horse Allergen Equ C 1

10 Classification Allergen

Compound Mol_Id: 1; Molecule: Allergen Equ C 1; Chain: A; Engineered: Yes

ID NO: 1F2K

Deposited: 26-May-2000 Exp. Method: X-ray Diffraction Resolution: 2.30 Å

15 Title Crystal Structure Of Acanthamoeba Castellanii Profilin II, Cubic Crystal Form

Classification Structural Protein

Compound Mol Id: 1; Molecule: Profilin II; Chain: A, B; Engineered: Yes

ID NO: 1FCQ

20 Deposited: 19-Jul-2000 Exp. Method: X-ray Diffraction Resolution: 1.60 Å

Title Crystal Structure (Monoclinic) Of Bee Venom Hyaluronidase

Classification Hydrolase

Compound Mol_Id: 1; Molecule: Hyaluronoglucosaminidase; Chain: A; Synonym:

Hyaluronidase, Api M II; Ec: 3.2.1.35; Engineered: Yes

5

ID NO: 1FCU

Deposited: 19-Jul-2000 Exp. Method: X-ray Diffraction Resolution: 2.10 Å

Title Crystal Structure (Trigonal) Of Bee Venom Hyaluronidase

Classification Hydrolase

10 Compound Mol_Id: 1; Molecule: Hyaluronoglucosaminidase; Chain: A; Synonym:

Hyaluronidase, Api M II; Ec: 3.2.1.35; Engineered: Yes

ID NO: 1FCV

Deposited: 19-Jul-2000 Exp. Method: X-ray Diffraction Resolution: 2.65 Å

15 Title Crystal Structure Of Bee Venom Hyaluronidase In Complex With Hyaluronic

Acid Tetramer

Classification Hydrolase

Compound Mol_Id: 1; Molecule: Hyaluronoglucosaminidase; Chain: A; Synonym:

Hyaluronidase, Api M II; Ec: 3.2.1.35; Engineered: Yes

20

ID NO: 1FLQ

Deposited: 15-Aug-2000 Exp. Method: X-ray Diffraction Resolution: 1.80 Å

Title Hen Egg White Lysozyme Mutant With Alanine Substituted For Glycine

Classification Hydrolase

Compound Mol_Id: 1; Molecule: Lysozyme; Chain: A; Synonym: 1,4--N-Acetylmuramidase C, Allergen Gal D 4, Gal D IV; Ec: 3.2.1.17; Engineered: Yes; Mutation: Yes

ID NO: 1FLU

5

Deposited: 15-Aug-2000 Exp. Method: X-ray Diffraction Resolution: 1.78 Å

Title Hen Egg White Lysozyme Mutant With Alanine Substituted For Glycine

10 Classification Hydrolase

Compound Mol_Id: 1; Molecule: Lysozyme; Chain: A; Synonym: 1,4--N-Acetylmuramidase
C, Allergen Gal D 4, Gal D IV; Ec: 3.2.1.17; Engineered: Yes; Mutation: Yes

ID NO: 1FLW

15 Deposited: 15-Aug-2000 Exp. Method: X-ray Diffraction Resolution: 1.81 Å

Title Hen Egg White Lysozyme Mutant With Alanine Substituted For Glycine

Classification Hydrolase

Compound Mol_Id: 1; Molecule: Lysozyme; Chain: A; Synonym: 1,4--N-Acetylmuramidase C, Allergen Gal D 4, Gal D IV; Ec: 3.2.1.17; Engineered: Yes; Mutation: Yes

20

ID NO: 1FLY

Deposited: 15-Aug-2000 Exp. Method: X-ray Diffraction Resolution: 1.83 Å

Title Hen Egg White Lysozyme Mutant With Alanine Substituted For Glycine

Classification Hydrolase

Compound Mol_Id: 1; Molecule: Lysozyme; Chain: A; Synonym: 1,4--N-Acetylmuramidase

C, Allergen Gal D 4, Gal D IV; Ec: 3.2.1.17; Engineered: Yes; Mutation: Yes

ID NO: 1FN5

Deposited: 21-Aug-2000 Exp. Method: X-ray Diffraction Resolution: 1.78 Å

Title Hen Egg White Lysozyme Mutant With Alanine Substituted For Glycine

10 Classification Hydrolase

Compound Mol_Id: 1; Molecule: Lysozyme; Chain: A; Synonym: 1,4--N-Acetylmuramidase C, Allergen Gal D 4, Gal D IV; Ec: 3.2.1.17; Engineered: Yes; Mutation: Yes

ID NO: 1FSK

15 Deposited: 11-Sep-2000 Exp. Method: X-ray Diffraction Resolution: 2.90 Å

Title Complex Formation Between A Fab Fragment Of A Monoclonal IgG Antibody and The Major Allergen From Birch Pollen Bet V 1

Classification Immune System

Compound Mol_Id: 1; Molecule: Major Pollen Allergen Bet V 1-A; Chain: A, D, G, J;

Synonym: Bet V I-A, Betvi Allergen; Engineered: Yes Mol_Id: 2; Molecule:

Immunoglobulin Light Chain; Chain: B, E, H, K; Synonym: Bv16 Fab-Fragment,

Mopc21 Coding Sequence; Engineered: Yes Mol_Id: 3; Molecule: Antibody

Heavy Chain Fab; Chain: C, F, I, L; Synonym: Heavy Chain Of The Monoclonal Antibody Mst2; Engineered: Yes

ID NO: 1G5U

5 Deposited: 02-Nov-2000 Exp. Method: X-ray Diffraction Resolution: 3.10 Å

Title Latex Profilin Hevb8

Classification Allergen

Compound Mol_Id: 1; Molecule: Profilin; Chain: A, B; Engineered: Yes

10 ID NO: 1H6M

Deposited: 19-Jun-2001 Exp. Method: X-ray Diffraction Resolution: 1.64 Å

Title Covalent Glycosyl-Enzyme Intermediate Of Hen Egg White Lysozyme

Classification Hydrolase (O-Glycosyl)

Compound Mol_Id: 1; Molecule: Lysozyme C; Synonym: 1,4--N-Acetylmuramidase C,

Allergen Gal D 4, Gal D IV; Chain: A; Ec: 3.2.1.17; Engineered: Yes; Mutation:

Yes; Other Details: Covalent 2-Fluorochitobiosyl Enzyme Intermediate

ID NO: 1JTI

15

Deposited: 21-Aug-2001 Exp. Method: X-ray Diffraction Resolution: 2.30 Å

20 Title Loop-Inserted Structure Of P1-P1' Cleaved Ovalbumin Mutant R339T

Classification Allergen

Compound Mol_Id: 1; Molecule: Ovalbumin; Chain: A, B; Engineered: Yes; Mutation: Yes

ID NO: 1JTT

Deposited: 22-Aug-2001 Exp. Method: X-ray Diffraction Resolution: 2.10 Å

5 Title Degenerate Interfaces In Antigen-Antibody Complexes

Classification Immune System, Lysozyme

Compound Mol_Id: 1; Molecule: Vh Single-Domain Antibody; Chain: A; Fragment: Vh

Domain Fragment; Engineered: Yes Mol_Id: 2; Molecule: Lysozyme; Chain: L;

Fragment: Enzyme; Synonym: 1,4--N-Acetylmuramidase C, Allergen Gal D IV;

10 Ec: 3.2.1.17

ID NO: 1K0K

Deposited: 19-Sep-2001 Exp. Method: X-ray Diffraction Resolution: 2.35 Å

Title Yeast Profilin, Cubic Crystal Form

15 Classification Contractile Protein

Compound Mol_Id: 1; Molecule: Profilin; Chain: A; Engineered: Yes

ID NO: 1KKC

Deposited: 07-Dec-2001 Exp. Method: X-ray Diffraction Resolution: 2.00 Å

20 Title Crystal Structure Of Aspergillus Fumigatus Mnsod

Classification Oxidoreductase

Compound Mol_Id: 1; Molecule: Manganese Superoxide Dismutase; Chain: A, B, X, Y;

Synonym: Mnsod; Ec: 1.15.1.1; Engineered: Yes

ID NO: 1KUR

5 Deposited: 22-Jan-2002 Exp. Method: Theoretical Model

Title Theoretical Model Of The Allergen Jun A 3 From Mountain Cedar Pollen

Classification Allergen

Compound Mol_Id: 1; Molecule: Allergen Jun A 3; Chain: A; Synonym:

Pathogenesis-Related Protein

10

ID NO: 1PLM

Deposited: 09-Jan-1998 Exp. Method: Theoretical Model

Title Arabidopsis Profilin 1 Complexed With Poly-L-Proline, Theoretical Model

Classification Complex (Protein/Peptide)

15 Compound Mol_Id: 1; Molecule: Profilin 1; Chain: A; Engineered: Yes Mol Id: 2; Molecule:

Poly-L-Proline; Chain: B; Engineered: Yes

ID NO: 1PRQ

Deposited: 18-Aug-1997 Exp. Method: X-ray Diffraction Resolution: 2.50 Å

20 Title Acanthamoeba Castellanii Profilin Ia

Classification Contractile Protein

Compound Mol_Id: 1; Molecule: Profilin Ia; Chain: Null; Engineered: Yes

ID NO: 1QMR

Deposited: 06-Oct-1999 Exp. Method: X-ray Diffraction Resolution: 2.15 Å

5 Title Birch Pollen Allergen Bet V 1 Mutant N28T, K32Q, E45S, P108G

Classification Allergen

Compound Mol_Id: 1; Molecule: Major Pollen Allergen Bet V 1-A; Chain: A; Synonym: Bet

V 1; Engineered: Yes; Mutation: Yes

10 **ID NO: 1QNX**

Deposited: 25-Oct-1999 Exp. Method: X-ray Diffraction Resolution: 1.90 Å

Title Ves V 5, An Allergen From Vespula Vulgaris Venom

Classification Allergen

Compound Mol_Id: 1; Molecule: Ves V 5; Chain: A; Synonym: Antigen 5; Engineered: Yes

ID NO: 1WHO

15

Deposited: 04-Apr-1997 Exp. Method: X-ray Diffraction Resolution: 1.90 Å

Title Allergen Phl P 2

Classification Allergen

20 Compound Mol_Id: 1; Molecule: Allergen Phl P 2; Chain: Null; Synonym: Phl P II;

Engineered: Yes

ID NO: 1WHP

Deposited: 04-Apr-1997 Exp. Method: X-ray Diffraction Resolution: 3.00 Å

5 Title Allergen Phl P 2

Classification Allergen

Compound Mol_Id: 1; Molecule: Allergen Phl P 2; Chain: Null; Synonym: Phl P II;

Engineered: Yes

10 **ID NO: 2BBG**

Deposited: 24-Apr-1998 Exp. Method: NMR, 30 Structures

Title Ragweed Pollen Allergen From Ambrosia Trifida V, NMR, 30 Structures

Classification Allergen

Compound Mol_Id: 1; Molecule: Pollen Allergen 5; Chain: Null

15

ID NO: 3BBG

Deposited: 24-Apr-1998 Exp. Method: NMR, 2 Structures

Title Multi-Conformer Structure Of Ragweed Pollen Allergen From Ambrosia Trifida

V, NMR, 2 Structures

20 Classification Allergen

Compound Mol_Id: 1; Molecule: Pollen Allergen 5; Chain: Null

ID NO: 3NUL

Deposited: 27-Nov-1996 Exp. Method: X-ray Diffraction Resolution: 1.60 Å

5 Title Profilin I From Arabidopsis Thaliana

Classification Actin-Binding Protein

Compound Mol_Id: 1; Molecule: Profilin I; Chain: Null; Engineered: Selenomethionyl

Protein

We claim:

1. An allergen hybrid protein having reduced allergenicity but retaining
immunogenicity, comprising a peptide epitope sequence of an allergen protein and a
scaffold protein that is structurally homologous to the allergen protein, wherein the hybrid
protein has a native conformation and the peptide epitope sequence is present in a surface
accessible region of the hybrid protein corresponding to its position in the allergen protein.

- 1 2. The hybrid protein of claim 1 wherein the peptide epitope sequence is 2 in a loop or corner region of the hybrid protein.
- 3. The hybrid protein of claim 1 wherein the scaffold protein has at least 50 percent sequence identity to the allergen from which the peptide epitope sequence is derived.
- The hybrid protein of claim 1 wherein the scaffold protein does not have more than 70 percent sequence identity to the allergen protein from which the peptide epitope sequence is derived.
- The hybrid protein of claim 1 wherein the peptide epitope sequence is about 6 to about 55 amino acids in length.
- 1 6. The hybrid protein of claim 5 wherein the peptide epitope sequence is 2 about 6 to about 45 amino acids in length.
- The hybrid protein of claim 6 wherein the peptide epitope sequence is about 6 to about 35 amino acids in length.
- 1 8. The hybrid protein of claim 7 wherein the peptide epitope sequence is 2 about 6 to about 25 amino acids in length.
- 1 9. The hybrid protein of claim 8 wherein the peptide epitope sequence is 2 about 6 to about 15 amino acids in length.
 - 10. The hybrid protein of claim 1 further comprising a signal peptide.

i	11. The hybrid protein of claim 1 further comprising a protease	
2	processing site.	
1	12. The hybrid protein of claim 1 which is a hybrid vespid venom	
2	allergen protein.	
	12 The helpid meetain of alains 12 subject is a helpid securid season	
1	13. The hybrid protein of claim 12, which is a hybrid vespid venom antigen 5 protein.	
2	anugen 5 protein.	
1	14. The hybrid protein of claim 13 wherein the peptide epitope sequence	Э
2	is from the genus Vespula and the scaffold protein is from the genus Polistes.	
1	15. The hybrid protein of claim 14 wherein the peptide epitope sequence	e
2	is from the species vulgaris.	
		•
ľ	16. The hybrid protein of claim 14 wherein the scaffold protein is from	
2	the species annularis.	
1	17. The hybrid protein of claim 13 wherein the peptide antigen compris	ses
2	a sequence selected from the group consisting of	
3	NNYCKIKC (SEQ ID: 1);	
4	NNYCKIKCLKGGVHTACK (SEQ ID: 2);	
5	NNYCKIKCLKGGVHTACKYGSLKP (SEQ ID: 3);	
6	NNYCKIKCLKGGVHTACKYGSLKPNCGNKVVV (SEQ ID: 4);	
7	NNYCKIKCLKGGVHTACKYGSLKPNCGNKVVVSYGLTKQ (SEQ II):
8	5);	
9	NNYCKIKCLKGGVHTACKYGSLKPNCGNKVVVSYGLTKQEKQDII	K
10	(SEQ ID: 6);	
11	QVGQNVALTGSTAAKYDDPVKLVKMWEDEVKDYNPKKKFSGND	FL
12	KTG (SEQ ID NO: 7);	
13	HYTQMVWANTKEVGCGSIKYIQEKWHKHYLVCNYGPSGNFKNEE	L
14	YQTK (SEQ ID NO: 8)	
15	LKPNCGNKVVV (SEQ ID NO: 9);	

16	LTGSTAAKYDD (SEQ ID NO: 10);
17	PKKKFSGND (SEQ ID NO: 11)
18	IQIKWHK (SEQ ID NO: 12); and
19	FKNEELYQTK (SEQ ID NO: 13);
20	NNYCKIKCLKGGVHTACKYGSLKPNCGNKVVVSYGLTKQEKQDILK
21	EHND (SEQ ID NO: 93);
22	NNYCKIKCLKGGVHTACKYGSLKPNCGNKVVVSYGLTKQEKQDILK
23	EHNDFRQKIAR (SEQ ID NO: 94);
24	NNYCKIKCLKGGVHTACKYGSLKPNCGNKVVVSYGLTKQEKQDILK
25	EHNDFRQKIARGLETRGNPGPQPPAKNMKN (SEQ ID NO: 95).
1	18. The hybrid protein of claim 1 wherein the peptide epitope sequence
2	comprises a conservative amino acid change.
1	19. The hybrid protein of claim 18 wherein the variant peptide is
2.	characterized as reducing antibody binding to the peptide epitope sequence by at least 50-
3 .	percent in an in vitro assay, wherein the variant is present in the assay at a concentration less
4	than 10-fold greater than the peptide epitope sequence, and the assay measures binding of
5	the peptide epitope sequence to an antibody directed against a polypeptide comprising the
6	peptide epitope sequence.
1	20. A nucleic acid encoding the allergen hybrid protein of any one of
2	claims 1-19.
1	21. A method for preparing a nucleic acid that encodes an allergen hybrid
2	protein; which method comprises introducing a nucleotide sequence encoding a peptide
3	epitope sequence of an allergen protein into a nucleotide sequence encoding a scaffold
.4	protein that is structurally homologous to the allergen protein, wherein the nucleotide
5	sequence encoding the peptide epitope sequence is in-frame with the nucleotide sequence
6	encoding the scaffold protein and is in a location such that in the allergen hybrid protein the
7	peptide epitope sequence is present in a surface accessible region of the hybrid protein
8	corresponding to its position in the allergen protein.

The method according to claim 21, wherein the nucleotide sequence encoding the scaffold protein is mutated to introduce the nucleotide sequence encoding the peptide epitope sequence.

- 1 23. The method according to claim 21, wherein the nucleotide encoding 2 the peptide epitope sequence is introduced by ligating fragments from nucleic acids 3 comprising the nucleotide sequence encoding the peptide epitope sequence and the 4 nucleotide sequence encoding the scaffold protein treated with an endonuclease.
 - 24. A nucleic acid prepared according to the method of claim 21.

1

- 1 25. An expression vector comprising the isolated nucleic acid of claim 20 operationally associated with a promoter.
- 26. A method for producing an allergen hybrid protein with reduced allergenicity but retaining immunogenicity, which method comprises culturing a cell transformed with the expression vector of claim 25 so that the hybrid allergen is produced by the cell.
- 1 27. The method of claim 26, which further comprises recovering the 2 hybrid allergen from the culture, the cell, or both.
- 1 28. A method for treating an allergic condition, which method comprises 2 administering a therapeutically effective amount of the hybrid protein of claim 1 or the 3 expression vector of claim 25 to a patient who is allergic to the allergen protein or the 4 scaffold protein, or both.
- The method of claim 28, wherein the hybrid protein or expression vector is administered orally, pulmonarily, nasally, topically or parenterilly.
- 30. A pharmaceutical composition comprising the hybrid protein of claim to the expression vector of claim 25 and a pharmaceutically acceptable diluent or carrier.
- 1 31. A method of designing a hybrid allergen of reduced allergenicity but 2 retaining immunogenicity, which method comprises

3		(a)	identifying a solvent exposed surface of an allergen;
4		(b)	identifying a protein that is structurally homologous to the
5	•	•	allergen; and
6		(c)	modifying sequence of the protein that is structurally
7			homologous to the allergen to incorporate a peptide sequence
8 ·			from the solvent exposed surface of the allergen.
1	32.	The r	method of claim 31 wherein said solvent exposed surface is
2	identified by a physic	cal mea	ns.
1	33.	The	nethod of claim 32 wherein said physical means is x-ray
2	crystallography.		
1	34.	The r	nethod of claim 31 wherein said solvent exposed surface is
2	identified by compar	ing the	amino acid sequence of the allergen to the amino acid sequence
3	of a structurally hom	ologou	s protein of known three-dimensional structure.
1	35.	The	nethod of claim 31, wherein the solvent exposed surface
2	comprises a loop or	a corne	r region.

FIG. 1

	N	.N	Y	C	K	I	K	C	L	K	G	G	V	H	T	A	C	K	Y	G	20
1	aa	caa	atta	att	gtaa	aat	aaa	ate	gttt	gaaa	99	agg	ıtgt	:cc	atac	tgo	ctg	caa	ata	tgga	
	s	L,	K	P	N	C	G	N	K	v .	v	v	s	Y	G	Ļ	T	ĸ	Q	E	40
61	ag	ıtct	taa	aac	cgaa	ttg	cgg	taa	ataa	ggta	gt	ggt	atc	ect	atgg	tċt	aac	gaa	aca	agag	
	K	Q	D	I	L	K	E	н	N	· D	F.	R	Q	ĸ	•1	A	R	G.	.L	E	60
121	aa	aca	aga	ıca	tctt	aaa	gga	gca	icaa	tgac	tt	tag	jaca	ıaa	aaat	tgc	acg	agg	att	ggag	
	T	R	G	N	P	G	P	Q	P	P	A	K	N	М	к	N	L	v	W	N	80
181	ac	tag	gagg	gta	atco	tgg	acc	aca	gcc	tcca	gc	gaa	gaa	ta	tgaa	aaa	ttt	ggt	atg	gaac	
	D	E	L	A	Y	v	A	Q	v	W	A	N	. Q	C	Q	Y	G	H	D	T	100
241	ga	cga	ıgtt	ag	ctta	tgt	cgc	CC	agt	gtgg	gc	taa	tca	at	gtca	ata	tgg	tca	.cga	tact	
	C	R	D	v	A.	K	Y	Q	v	G	Q	N	v	A	Ĺ	T	G	s	T	A	120
301	tg	cag	ıgga	ıtg	tago	aaa	ata	tca	ggt	tgga	ca	aaa	cgt	ag	cctt	aac	agg	tag	cac	ggct	
	A	K	Y.	D	D	P.	v	K	L	v	ĸ	M	W	E	D	E	v	K	D	Y	140
361	gc	taa	ata	cg	atga	tçc	agt	taa	act	agtt	aa	aat	gtg	99	aaga	tga	agt	gaa	aga	ttat	
	N	P	K	ĸ	ĸ	F	s	G	N	D	F	L	ĸ	T	G	H	Y	T	Q	М	160
421	aa	tcc	taa	ga	aaaa	gtt	ttc	999	aaa	cgac	tt	tct	gaa	aa	ccgg	cca	tta	cac	tca	aatg	
•	v	W	A	N	T,	K	E	v	G	С	G	s	I.	Ķ	Y	I.	Q	E	ĸ	W	180
481	gt	ttg	ggc	ta	acac	caa	gga	agt	tgg	ttgt	gg	aag	tạt	aa	aata	cat	tca	aga	gaa	atgg	
	H	ĸ	H	Y	L	v	C	N	Y	G	P	s	G	N	F	ĸ	N	E	E	L	200
541	ca	caa	aca	tt	acct	tgt	atg	taa	tta	tgga	CC	cag	cgg	aa	actt	taa	gaa	tga	ggaa	actt	
					*																204
601	tai	tca	aac	aa	agta	a															

FIG. 3

Ves HNDFRQKIAR GLETRGNPGP QPPAKNMKNL VWNDELAYVA QVWANQCQY.
Pol HNRFRQKVAQ GLETRGNPGP QPPAKNMKNL VWNDELAYVA QVWANQCQY.
Ves GHDTCRDVAK YQVGQNVALT GSTAAKYDDP VKLVKMWEDE VKDYNPKKKF
Pol VHDKCRNTAK YPVGQNIAYA G..GSNLPDV VSLIKLWENE VKDFNYNTGI

Ves SGNDFLKTGH YTQMVWANTK EVGCGSIKYI QEKWHKHYLV CNYGPSGNFK
Pol TKQNFAKIGH YTQMVWGKTK EIGCGSLKYM ENNMQNHYLI CNYGPAGNYL

Ves NEELYQTK 204 Pol GQLPYTKK 205

FIG. 2

															v				G	_	20
1	gt	tga	tta	tţ	gtaa	aat	aaa	gtg	tcc	aagt	99	tat	cca	ta	cagt	ctg	cca	ata	tgg	agaa	
															s			_		E	40
61	tc	gac	aaa	ac	caag	caa	gaa	ttg	tgc	cggt	aa	agt	aat	ca	aatc	ggt	tgg	tcc	aac	ggaa	
	E	E ·	ĸ	K	L	I	v	s	E	н.	N	R	F	R	Q	ĸ	v	A	Q	G	60
121	ga	gga	gaa	aa	aatt	aat	cgt	aag	cga	gcat	aa	tcg	gtt	ta	gaca	aaa	agt	tgc	aca	3999	
	L	B	T	R	G	N	P	G	P.	·Q	P	A	A	s	D	М	N	D	L	v	80
181	tt	gga	aac	aa	gagg	taa	tcc	tgg	acc	acaa	CC	tgc	tgc	ct	cgga	cat	gaa	tga	ttt	ggta	
	W	N	D	E	r.	A	H	I	A	Q	v	W	A	s	Q	C.	Q	F	L	v	100
241	tg	gaa	cga	tg	aatt	agc	aca	tat	cgc	gcaa	gŧ	atg	ggc	ca	gçca	atg	cca	att	tct	cgta	
	н	D	ĸ	C.	R	N	т	A	K	Y	P	v	G	Q	N	ı	A	Y	A	G	120
301	ca	cga	caa	at	gcag	gaa	tac	cgc	aaa	atat	CC	agt	tgg	ac	aaaa	tat	agc	gta	tgc	aggt	
															E						140
361	gg	ttc	taa	ct	tacc	aga	tgt	agt	cag	tcta	at	caa	act	tt.	ggga	aaa	cga	agt	gaa	agat	
	F	N	Y	N	т	G	I	T	ĸ	Q	N	F	A	ĸ	I	G	H	Y	T	Q	160
421	tt	taa	tta	ca	atac	agg	aat	aac	aaa	acaa	aa	ctt	tgc	ta	aaat	tgg	cca	tta	cac	tcaa	
	M	v	W	G	K	T	K	E	I	G	C	G	s	L	ĸ	Y	M	B	N	N	180
481	at	ggt	ttg	gg	gtaa	aac	taa	aga	aat	tggt	tg	tgg	atc	tc	taaa	ata	tat	gga	aaa	taat	
	м	0	N	н	Y	L	I	C	N	Y	G	P	A	G	N	Y	L	G	Q	L-	200
541		_	-			cct	cat	atg	taai	ttat	gg	acc	agc	tg	gaaa	tta	ctt	999	tca	acta	
	P	Y	т	K	ĸ	*												٠			205
601					2222		_														

FIG. 4

V	
P	
PV1-46	7//////
PV108-155	
PV156-204	······································
PV1-155	V/////////////////////////////////////
PV1-8	××××××××××××××××××××××××××××××××××××××
PV1-18	VZZ/1:::::::::::::::::::::::::::::::::::
PV1-24	
PV1-32	<u> </u>
PV1-39	
PV1-50	
PV1-57	
PV1-76	//////////////////////////////////////
PV22-32	SSSSS: ⊘ SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
PV115-125	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
PV142-150	**************************************
PV176-182	
PV195-204	<u>∞</u>

FIG. 5A

```
-<u>&&m&&&&&</u>mm
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    -----
                                                                                                                                                                                                                                                                                                                                                                                                                                         ÖÖÖÖZZZZZZZZZZ
                                                                                                                                                                                                                                                                                                                                                                                                       QQQQQQQQQQQQQQQQ
QQQQQ
                                                                                                                      -KKKGGGGMMMXX
                                                                        2222222220022
17113>>122>>>>
                                                                                                                                                                                                                                                                                                                                                                                       ជាមើលរូប រាជាមួយ ប្រជាជាមួយ បាជាមួយ ប្រជាជាមួយ ប្រជាជាមួយ ប្រជាជាមួយ ប្រជាជាមួយ បាជាមួយ ប្រជាជាមួយ ប្រជាជាមួយ បាជាមួយ                スポススススススススへのの
                                                    $\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac{1}{2}$\frac
                 PARTIE DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DEL COMPANIA DEL COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMP
                                                                                                                                                                                                                           თთთი
              ŸŸŸŸŸZZZZZZZZZZQQ
               0,000,000,000,000,000,000
                                                                                                                                                                                                                                                                                                                                                                                      $$$$$$$$_<u>+_____</u>
                                                                                                                                                                                                                                                                                                                                                                                            ασοδοδοσοσοσοσοσοσο
                  OOOOOOXXXXXXXXXXXXXX
                                                                                                                                                                                                                                                                                                                                                                                                                ZZZZZYZZYZZZZZ--
                                                                                                                                                                                                                                                                                                                                                                                       <u>ම් ග්ලිග්ග් ග්ලිග්ග්</u>ග්ගේ ග්ලිග්ග්රා
                                                                                                                                                                                                                                                                                                                                                                    Gagagazadaaaaaaaaa
                  ZZZZZ>>>++
                                                                                                                                                                                                                                                                                                                                                                                      Ves m 5
Ves v 5
Ves v 5
Ves v 5
Ves p 5
Ves q 6
Ves q 6
Dol m 5a
Dol m 5b
Dol m 5b
Dol m 5c
Ves c 5.01
Ves c 5.01
Ves c 5.01
Ves c 5.01
Ves c 5.01
Ves c 5.02
Ves c 5.03
Ves c 5.03
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5.04
Ves c 5
              Ves m 5
Ves v 5
Ves v 5
Ves p 5
Ves p 5
Ves p 5
Ves v 5
Dolam 5a
Dolam 5a
Dolam 5a
Dolam 5a
Dolam 5a
Dolam 5a
Dolam 5a
Dolam 5a
Dolam 5a
Ves p m 5
Ves p m 5
Ves p m 5
Ves p m 5
Ves p m 5
Ves p m 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
Ves v 5
V
```

BEST AVAILABLE COPY

BEST AVAILABLE COPY

FIG. 6A

FIG. 6B

FIG. 7

FIG. 8A

- -O- EA- or KR-Ves v 5
- → EA-PV1-46
- -Δ-EA-PV1-18
- -■- EA-PV1-155
- -+- KR-PV1-24
- -□- EA-PV156-204

FIG. 8B

- -O-EA- or KR-Ves v 5
- --**0**-- EA-PV1-46
- -Δ-EA-PV1-18
- -**■** EA-PV1-155
- -+- KR-PV1-24
- -□- EA-PV156-204

FIG. 8C

- -O-EA- or KR-Ves v 5
- -Δ- EA-PV1-18
- -EA-PV1-155
- -B-EA-PV156-204

FIG. 9A

- -O-EA- or KR-Ves v 5
- -Δ-- EA-PV1-18
- -■- EA-PV1-155
- -+-- KR-PV1-24
- -□-EA-PV156-204

FIG. 9B

- -O-- EA- or KR-Ves v 5
- -**♦**-- EA-PV1-46
- -Δ-EA-PV1-18
- -EA-PV1-155
- -+-- KR-PV1-24
- -B-EA-PV156-204

FIG. 9C

- -O-EA- or KR-Ves v 5
- ◆- EA-PV1-46
- -Δ-- EA-PV1-18
- -EA-PV1-155
- -+-- KR-PV1-24
- -B-EA-PV156-204

1G. 12A

		- 01,000
1 NYCKIK CLK GGVHTACKYGSLK PNCGNKVVVSYGLTKQEKQDILKERRN NYCKIK CLK GGVHTACKYGSLK PNCGNKVVVSYGLTKQEKQDILKERRN TNYCNLQSCKRNNAIHTMCQYTSPTPGPMCLE YSNVGFTDAEKDAIVNKHRN SPAPYGSEIDQWLKAVRN SPAPYGSEIDQWLKAVRN SPAPYGSEIDQWLKAVRN SPAPYGSEIDQWLKAVRN STAVVLLNSTDSSPPTNNFTDIEAALKAQLDSRSADALANRAPPGSEIDQWLKAYN STAVVLLNSTDSSPPTNNFTDIEAALKAQLDSRSHPGINTSNPDQQTEITDKHN KNYN HBIXI HBIXI HBIXI HBIXI HBIXI HBIXI HBIXI	50 DFROKTARGE BOOK NOT WINDELAY WAND OCOY GHO TO OCOY GHO TO OCOY GHO TO OCOY GHO TO OCOY GHO TO OCOY GHO TO OCOY GHO TO OCOY GHO TO OCO WAN OCO OCO WAS OCO WE HAND TO OCO WE HAND TO OCO WE HAND TO OCO WE HAND TO OCO WE HAND TO OCO OCO OCO OCO OCO OCO OCO OCO OCO	RDVAKYQ VGQNIVALTGSTA AKYDDPVKL WK MWEDEVKD WN PKKKFSG RNVERFA VGQNILAKGG GDFTGRAANQLWYNEV BENNISSFPS GENLAKGG GDFTGRAANQLWYNEV BENNISSFPS GONLAAWFSPQANKPMNISQGWNAEFPS CNY YLLRFL GONLSVRT GRYPKSILQLWYNDEN CNY YLKPPHKLHPNFTSLGENIWTGS VPT FSVSSAMYDEN COPF KTRLC EERTIDG VECGENLFFS APYTWSYAMYDEN COPF TRGGENLYMSS AFGSWYDEN LDEVYGVGPT StrandB Helix III
Ves v 5 Sol i 3 p14a Tomato SC7 Human Trypsin Inhib Human Glipr Helothermine Human TPX-1	Ves v 5 Sol i 3 p14a Tomato SC7 Human Trypsin Inhib Human Glipr Helothermine Human TPX-1	Ves v 5 Sol 13 p14a Tomato SC7 Human Trypsin Inhib Human Glipr Helothermine Human TPX-1

FIG. 12B

```
≽от
Фті
             ဖပပ
             മയയ
             ≻>∢
             >O-
             >¥Z
           スペスス
           ドアしし
           ≷≻മഗ
           \succ\alpha\alpha\alpha
           コエロロ
           >>ZZ
ZØZø
           こ人口の
           トベシュ
           >000
                                        LILSVIITILVQLKYPNLVLLD
           OKZQ
           ₽ZQ≻
           F>XQ
           ပပပပ
           പപമശ
           ZZZZ
           \Box
           ----
           0000
           רראט
           ೦೦೦೦
              ZY
           O . DO
           > 00
           OZKO
          0.ZQQ
          0.0.0.0
          0000
          0 4 0 0
          \omega\omega\omega
          0000
        <u>aa-aa</u>
                                        ошх
>--
        0>44H
        >0000
                                        z-z
        Z>4_0
  \times \times
        ーススのロ
                                        アーヨ
                                        _00
  QШ
        >0000
                                        ראר
FOO
                                         ---
              \times \times
                                        SAA
  ほられり
                                        ⊢≥×
  m 4 Q K H K K
                                        % ×
  ZOOLOHOZ
       STACE
                                        ZOW
                                        xxx
                                        س≅ہ
 0000000000
04>0×004
                                        _ 4.Ш
                             Ves v 5
Sol 1 3
pr 4a Tomato
SC7
Hwman Trypsin Inhib
Human Gilpr
Helothermine
Human TPX-1
 Ves v 5
Sol i 3
p14a Tomato
SC7
Human Trypsin Inhib
Human Glipr
Halothermine
Human TPX-1
```

SEQUENCE LISTING

```
<110> The Rockefeller University
  ALK Abelló
<120> RECOMBINANT HYBRID ALLERGEN CONSTRUCTS WITH REDUCED ALLERGENICITY THAT
RETAIN IMMUNOGENICITY OF THE NATURAL ALLERGEN
<130> 2313/2H587W00
<150> US 60/272,818
<151>
      2001-03-02
<160> 98
<170> PatentIn version 3.1
<210> 1
<211> 8
<212> PRT
<213> Vespula vulgaris
<400> 1
Asn Asn Tyr Cys Lys Ile Lys Cys
<210>
      2
<211>
      18
<212> PRT
<213> Vespula vulgaris
<400> 2
Asn Asn Tyr Cys Lys Ile Lys Cys Leu Lys Gly Gly Val His Thr Ala
                                                        15
                5
                                    10
```

Cys Lys

<210> 3 <211> 24 <212> PRT <213> Vespula vulgaris <400> 3

Asn Asn Tyr Cys Lys Ile Lys Cys Leu Lys Gly Gly Val His Thr Ala 1 5 10 15

Cys Lys Tyr Gly Ser Leu Lys Pro

<210> 4

<211> 32

<212> PRT

<213> Vespula vulgaris

<400> 4

Asn Asn Tyr Cys Lys Ile Lys Cys Leu Lys Gly Gly Val His Thr Ala 1 5 10 15

Cys Lys Tyr Gly Ser Leu Lys Pro Asn Cys Gly Asn Lys Val Val Val 20 25 30

<210> 5

<211> 39

<212> PRT

<213> Vespula vulgaris

<400> 5

Asn Asn Tyr Cys Lys Ile Lys Cys Leu Lys Gly Gly Val His Thr Ala 1 5 10 15

Cys Lys Tyr Gly Ser Leu Lys Pro Asn Cys Gly Asn Lys Val Val Val 20 25 30

Ser Tyr Gly Leu Thr Lys Gln

<210> 6

<211> 46

<212> PRT

<213> Vespula vulgaris

<400> 6

Asn Asn Tyr Cys Lys Ile Lys Cys Leu Lys Gly Gly Val His Thr Ala

1 5 10 15

Cys Lys Tyr Gly Ser Leu Lys Pro Asn Cys Gly Asn Lys Val Val 20 25 30

Ser Tyr Gly Leu Thr Lys Gln Glu Lys Gln Asp Ile Leu Lys
35 40 45

<210> 7

<211> 48

<212> PRT

<213> Vespula vulgaris

<400> 7

Gln Val Gly Gln Asn Val Ala Leu Thr Gly Ser Thr Ala Ala Lys Tyr 1 5 10 15

Asp Asp Pro Val Lys Leu Val Lys Met Trp Glu Asp Glu Val Lys Asp 20 25 30

Tyr Asn Pro Lys Lys Phe Ser Gly Asn Asp Phe Leu Lys Thr Gly 35 40 45

<210> 8

<211> 49

<212> PRT

<213> Vespula vulgaris

<400> 8

His Tyr Thr Gln Met Val Trp Ala Asn Thr Lys Glu Val Gly Cys Gly
1 10 15

Ser Ile Lys Tyr Ile Gln Glu Lys Trp His Lys His Tyr Leu Val Cys 20 25 30

Asn Tyr Gly Pro Ser Gly Asn Phe Lys Asn Glu Glu Leu Tyr Gln Thr 35 40 45

Lys

```
<210>.
<211>
       11
<212>
       PRT
<213>
       Vespula vulgaris
<400>
Leu Lys Pro Asn Cys Gly Asn Lys Val Val Val
<210>
       10
<211>
       11
<212>
       PRT
<213>
      Vespula vulgaris
<400>
       10
Leu Thr Gly Ser Thr Ala Ala Lys Tyr Asp Asp
                                    10
<210> 11
<211>
       9
<212>
       PRT
<213> Vespula vulgaris
<400>
      11
Pro Lys Lys Phe Ser Gly Asn Asp
                5
<210>
       12
<211>
       7
<212>
       PRT
<213> Vespula vulgaris
<400>
       12
Ile Gln Ile Lys Trp His Lys
<210>
       13
<211>
       10
<212>
       PRT
```

<213> Vesp	oula vulgari	.s				
<400> 13				•		
Phe Lys Asn 1	ı Glu Glu Le 5	eù Tyr Gln I	Thr Lys 10		*	
<210> 14 <211> 615 <212> DNA <213> Vesp	oula vuļgari	.s				
<400> 14 aacaattatt	gtaaaataaa	atgtttgaaa	ggaggtgtcc	atactgcctg	caaatatgga	60
agtcttaaac	cgaattgcgg.	taataaggta	gtggtatcct	atggtctaac	gaaacaagag	120
aaacaagaca	tcttaaagga	gcacaatgac	tttagacaaa	aaattgcacg	aggattggag	180
actagaggta	atcctggacc	acagcctcca	gcgaagaata	tgaaaaattt	ggtatggaac	240
gacgagttag	cttatgtcgc	ccaagtgtgg	gctaatcaat	gtcaatatgg	tcacgatact	300
tgcagggatg	tagcaaaata	tcaggttgga	caaaacgtag	ccttaacagg	tagcacggct	360
gctaaatacg	atgatccagt	taaactagtt	aaaatgtggg	aagatgaagt	gaaagattat	420
aatcctaaga	aaaagttttc	gggaaacgac	tttctgaaaa	ccggccatta	cactcaaatg	480
gtttgggcta	acaccaagga	agttggttgt	ggaagtataa	aatacattca	agagaaatgg	540
cacaaacatt	accttgtatg	taattatgga	cccagcggaa	actttaagaa	tgaggaactt	600
tatcaaacaa	agtaa					615
<210> 15 <211> 618 <212> DNA <213> Poli	istes annula	aris				
<400> 15	atanantaan	atataaaaa	aatstaasts	cantotacca	atataaaaa	60
		•		cagtctgcca		120
				aatcggttgg		180
				gacaaaaagt		240
TTOGGAGACGA	gaggraatcc	radaccacaa	CCLGCLGCCL	cogacatgaa	LUALLEGULA	240

tggaacgatg	aattagcaca	tatcgcgcaa	gtatgggcca	gccaatgcca	atttctcgta	300
cacgacaaat	gcaggaatac	cgcaaaatat	ccagttggac	aaaatatagc	gtatgcaggt	360
ggttctaact	taccagatgt	agtcagtcta	atcaaacttt	gggaaaacga	agtgaaagat	420
tttaattaca	atacaggaat	aacaaaacaa	aactttgcta	aaattggcca	ttacactcaa	480
atggtttggg	gtaaaactaa	agaaattggt	tgtggatctc	taaaatatat	ggaaaataat	540
atgcaaaatc	attacctcat	atgtaattat	ggaccagctg	gaaattactt	gggtcaacta	600
ccttatacaa	äaaaataa					618

<210> 16

<211> 204

<212> PRT

<213> Vespula vulgaris

<400> 16

Asn Asn Tyr Cys Lys Ile Lys Cys Leu Lys Gly Gly Val His Thr Ala 1 5 10 15

Cys Lys Tyr Gly Ser Leu Lys Pro Asn Cys Gly Asn Lys Val Val 20 25 30

Ser Tyr Gly Leu Thr Lys Gln Glu Lys Gln Asp Ile Leu Lys Glu His 35 40 45

Asn Asp Phe Arg Gln Lys Ile Ala Arg Gly Leu Glu Thr Arg Gly Asn 50 55 60

Pro Gly Pro Gln Pro Pro Ala Lys Asn Met Lys Asn Leu Val Trp Asn 65 70 75 80

Asp Glu Leu Ala Tyr Val Ala Gln Val Trp Ala Asn Gln Cys Gln Tyr 85 90 95

Gly His Asp Thr Cys Arg Asp Val Ala Lys Tyr Gln Val Gly Gln Asn 100 105 110

Val Ala Leu Thr Gly Ser Thr Ala Ala Lys Tyr Asp Asp Pro Val Lys 115 120 125

Leu Val Lys Met Trp Glu Asp Glu Val Lys Asp Tyr Asn Pro Lys Lys 130 135 140

Lys Phe Ser Gly Asn Asp Phe Leu Lys Thr Gly His Tyr Thr Gln Met 145 150 155 160

Val Trp Ala Asn Thr Lys Glu Val Gly Cys Gly Ser Ile Lys Tyr Ile 165 170 175

Gln Glu Lys Trp His Lys His Tyr Leu Val Cys Asn Tyr Gly Pro Ser 180 185 190

Gly Asn Phe Lys Asn Glu Glu Leu Tyr Gln Thr Lys 195 200

<210> 17

<211> 205

<212> PRT

<213> Polistes annularis

<400> 17

Val Asp Tyr Cys Lys Ile Lys Cys Pro Ser Gly Ile His Thr Val Cys 1 5 10 15

Gln Tyr Gly Glu Ser Thr Lys Pro Ser Lys Asn Cys Ala Gly Lys Val 20 25 30

Ile Lys Ser Val Gly Pro Thr Glu Glu Glu Lys Lys Leu Ile Val Ser 35 40 45

Glu His Asn Arg Phe Arg Gln Lys Val Ala Gln Gly Leu Glu Thr Arg 50 55 60

Gly Asn Pro Gly Pro Gln Pro Ala Ala Ser Asp Met Asn Asp Leu Val 65 70 75 80

Trp	Asn	Asp	Glu	Leu 85	Ala	His	Ile	Ala	Gln 90	Val	Trp	Ala	Ser	Gln 95	Cys	
Gln	Phe	Leu	Val 100	His	Asp	Lys	Cys	Arg 105	Asn	Thr	Ala	Lys	Tyr 110	Pro	Val	
Gly	Gln	Asn 115	Ile	Ala	Tyr	Ala	Gly 120	Gly	Ser	Asn	Leu	Pro 125	Asp	Val	Val	
Ser	Leu 130	Ile	Lys	Leu	Trp	Glu 135.		Glu	Val	Lys	Asp 140	Phe	Asn	Tyr	Asn	
Thr 145	Gly	Ile	Thr	Lys	Gln 150	Asn	Phe	Ala	Lys	Ile 155	Glÿ	His	Tyr	Thr	Gln 160	
Met	Val	Trp	_	Lys 165	Thr	Lys	Glu	Ile	Gly 170	Суз	Gly	Ser	Leu	Lys 175	Tyr	
Met	Glu	Asn	Asn 180	Met	Gln	Asn	His	Tyr 185	Leu	Ile	Суз	Asn	Tyr 190	Gly	Pro	
Ala	Gly	Asn 195	Tyr	Leu	Gly	Gln	Leu 200	Pro	Tyr	Thr-	Lys	Lys 205				
<210 <211 <212 <213	> 2 > 1	18 24 DNA Jespu	ıla v	vulga	aris											
<400 aaca		18 att g	gtaaa	aataa	aa at	gt		·								24
<210 <211 <212 <213	!> ! !> !	19 54 ONA Vespu	ila v	vulga	aris											
<400 aaca		19 att g	gtaaa	aataa	aa at	gttt	gaaa	a gga	aggto	gtcc	atac	ctgc	ctg d	caaa		54

<210> <211> <212> <213>	20 72 DNA Vesp	oula	vulgari	is				•
<400> aacaatt	20				ggaggtgtcc	atactgcctg	caaatatgga	60
agtctta	aaac	cg			,			. 72
<210> <211> <212> <213>	21 96 DNA Vesp	oula	vulgar	is				-
<400>	21							
aacaatt	tatt	gtaa	aataaa	atgtttgaaa	ggaggtgtcc	atactgcctg	caaatatgga	60
agtctta	aaac	cgaa	attgcgg	taataaggta	gtggta			96
<210> <211> <212> <213>	22 117 DNA Vesp	oula	vulgar	is				
<400>	22							
aacaatt	tatt	gtaa	aaataaa	atgtttgaaa	ggaggtgtcc	atactgcctg	caaatatgga	60
agtctta	aaac	cgaa	attgcgg	taataaggta	gtggtatcct	atggtctaac	gaaacaa	117
<210> <211> <212> <213>	23 138 DNA Vest	oula	vulgar:	is				
<400>	23		•		•			
aacaati	tatt	gtaa	aaataaa	atgttţgaaa	ggaggtgtcc	atactgcctg	caaatatgga	. 60
agtctta	aaac	cgaa	attgcgg	taataaggta	gtggtatcct	atggtctaac	gaaacaagag	120
aaacaa	gaca	tcti	taaag					138
<210> <211>	24 144						•	

<212> <213>	DNA Vesi	oula vulgar	is				
<400×	24						
<400>	24						
saggtt	ggac	aaaacgtagc	cttaacaggt	agcacggctg	ctaaatacga	tgatccagtt	60
aaactag	gtta	aaatgtggga	agatgaagtg	aaagattata	atcctaagaa	aaagttttcg	120
ggaaac	gact	ttctgaaaac	cggc				144
<210>	25						
<211>	147						
<212>	DNA						
<213>		oula vulgar	is	•			
4400	٥.						
<400>	25						
Jattaca	actc	aaatggtttg	ggċtaacacc	aaggaagttg	gttgtggaag	tataaaatac	.60
attcaaq	gaga	aatggcacaa	acattacctt	gtatgtaatt	atggacccag	cggaaacttt	120
aagaato	gagg	aactttatca	aacaaag .				147
<210>	26						
<211>	33						
<212>	DNA				•		
<213>		oula vulgar:	is				
	•	J			•		
<400>	26				·	•	
cttaaac	cga	attgcggtaa	taaggtagtg	gta			33
<210>	27						
<211>	33						
<212>	DNA						
<213>	Vesp	oula vulgar:	is				
<400>	27					•	
	-	acacaactac	taaatacgat	gat			33
	, ,	J 35-35-	· · · · · · · · · · · · · · · · · · ·	J -			33
<210>	28					•	
<211>	27	•					
<212>	DNA						
<213>		oula vulgar:	is				
. 4 0 6	-	_	•				
<400>	28			•			
cctaada	ıaaa	agttttcggg	aaacdac				27

<210><211><212><213>	29 21 DNA Vespula vulgaris				* .		
<400>	29 gaga aatggcacaa a	•			• .	.·	21
<210> <211> <212> <213>	30 30 DNA Vespula vulgaris		÷				
<400> tttaag	30 aatg aggaacttta tcaaacaaag						30
<210> <211> <212> <213>	31 30 DNA Artificial Sequence		*				
<220> <223>	Ves v 5' EA sense PCR primer 1	• •					
<400> cgtgaa	31 ttca acaattattg taaaataaaa						30
<210> <211> <212> <213>	32 36 DNA Artificial Sequence			a.			
<220> <223>	Ves v 5' KR sense PCR primer 2						
<400> cgtctc	32 gaga aaagaaacaa ttattgtaaa ataaaa						36
<210><211><211><212><213>	33 30 DNA Artificial Sequence		• .				
	Ves v 3' downstream antisense PCR	primer 3					

cgttct	agat tactttgttt gataaagttc	,	*	30
<210> <211> <212> <213>	34 30 DNA Artificial Sequence			·
<220> <223>	Pol a 5' EA sense PCR primer 4			
<400> cgtgaa	34 ttcg ttgattattg taaaataaaa			30
<210> <211> <212> <213>	35 36 DNA Artificial Sequence			
<220> <223>	Pol a 5' KR sense PCR primer 5			
<400> cgtctc	35 gaga aaagagttga ttattgtaaa ataaaa	•	. :	36
<210> <211> <212> <213>	36 30 DNA Artificial Sequence			
<220> <223>	Pol a 3' downstream antisense primer 6			
<400> cgttct	36 agat tattttttg tataaggtag			30
<210> <211> <212> <213>	37 21 DNA Artificial Sequence			
<220> <223>	Pol a aa 49-50 EH-mutagenic sense PCR primer	7		
<400>	37 .		•	

gtaagcgagc acaatcggtt t	21
<210> 38 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Pol a aa 49-50 EH-mutagenic antisense PCR primer 8	
<400> 38 aaaccgattg tgctcgctta c	21
<210> 39 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Ves v Apol conversion PCR primer 9	
<400> 39 gtagcaaaat ttcaggttgg a	21
<210> 40 <211> 21 <212> DNA <213> Artificial Sequence	·
<220> <223> Ves v Apol conversion PCR primer 10	
<400> 40 tccaacctga aattttgcta c	21
<210> 41 <211> 21 <212> DNA <213> Artificial Sequence	·
<220> <223> Pol a Apol conversion PCR primer 11	
<400> 41 accgcaaaat ttccagttgg a	21

<210> 42 <211> 21 <212> DNA	A	
	tificial Sequence	
<220> <223> Pol	l a ApoI conversion PCR primer 12	
<400> 42 tccaactgga	a aattttgcgg t	21
<210> 43 <211> 72 <212> DNA <213> Art	A tificial Sequence	
<220> <223> PV1	1-18 sense PCR primer 13	
<400> 43 cgtgaattca	a acaattattg taaaataaaa tgtttgaaag gaggtgtcca tactgcctgc (50
aaatatggag	g aa · ·	72
<210> 44 <211> 54 <212> DNA <213> Art	A tificial Sequence	
<220> <223> PV1	195-204 antisense PCR primer 14	
<400> 44 cgttctagat	t tactttgttt gataaagttc ctcattctta aaatttccag ctgg 5	54
<210> 45 <211> 33 <212> DNA <213> Art	A cificial Sequence	
<220> <223> PV1	18-24 and PV1-24 antisense PCR primer 15	
<400> 45 ggcacaattc	ttgctcggtt taagacttcc ata 3	3

<210> <211> <212>	46 33 DNA	•
<213>		
<220> <223>	PV18-24 and PV 1-24 sense PCR primer 16	
<400> tatggaa	46 agtc ttaaaccgag caagaattgt gcc	. 33
<210> <211> <212> <213>	47 45 DNA Artificial Sequence	
<220> ' <223>	PV22-32 and PV1-32 sense PCR primer 17	
<400> cttaaa	47 ccga attgcggtaa taaggtagtg gtatcggttg gtcca	45
<210><211><211><212><213>	48 45 DNA Artificial Sequence	
<220> <223>	PV22-32 and PV1-32 antisense PCR primer 18	
<400> tggacca	48 aacc gataccacta cettattace geaatteggt ttaag	45
<210> <211> <212> <213>	49 36 DNA Artificial Sequence	
<220> <223>	PV1-39 PCR primer 19	
<400> tatggt	49 ctaa cgaaacaaga gaaaaaatta atcgta	36
<210>	50	

<211>	36	
<212>	DNA	
<213>	Artificial Sequence	•
<220>		
<223>	PV1-39 PCR primer 20	
12238	TVI 35 TON PILMOL 20	
<400>	50	
		2 /
Lacgali	aat ttttctctt gtttcgttag accata	36
107.0		
<210>	51	
<211>	45	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PV115-125 sense PCR primer 21	
•		
<400>	51	
	ggta gcacggctgc taaatacgat gatgtagtca gtcta	45
ccaacaç	gea geaeggeige tadataegat gatgiagica geeta	7.
<010×	50	
<210>	52	
<211>	45	
<212>	DNA	
<213>	Artificial Sequence	
<220>	• *	
<223>	PV115-125 antisense PCR primer 22	
<400>	52	
atcatco	stat ttagcageeg tgetaeetgt taaegetata ttttg	45
	, one conjugacy special consequence conjugacy	
•		
<210>	53	
<211>	42	
<212>	DNA	
<213>	Artificial Sequence	
40.00:		
<220>		
<223>	PV142-150 sense PCR primer 23	
<400>	53	
cctaaga	aaaa agttttcggg aaacgacttt gctaaaattg gc	42
	\cdot	
<210>	54	
<211>	42	
<212>	DNA	

<213>	Artificial Sequence	
<220> <223>	PV142-150 antisense PCR primer 24	
<400> gtcgtt	54 tccc gaaaactttt tcttaggatt aaaatctttc ac	42
<210> <211> <212> <213>	55 33 DNA Artificial Sequence	
<220> <223>	PV176-182 sense PCR primer 25	
<400> attcaa	55 gaga aatggcacaa acattacctc ata	33
<210> <211> <212> <213>	56 33 DNA Artificial Sequence	
<220> <223>	PV176-182 antisense PCR primer 26	
<400> tttgtg	56 ccat ttctcttgaa tatattttag aga	33
<210> <211> <212> <213>	57 24 DNA Artificial Sequence	
<220> <223>	PV1-50 antisense PCR primer 27	
<400> gagcac	57 aatg actttagaca aaaa	24
<210><211><211><212><213>	58 24 DNA Artificial Sequence	

<220> <223>	PV1-57 antisense PCR primer 28		*
<400> tttttgt	58 tota aagtoattgt goto		24
<210> <211> <212> <213>	59 24 DNA Artificial Sequence	*	
<220> <223>	PV1-76 antisense PCR primer 29		
<400> aaaatto	59 gcac gagggttgga aaca		24
<210><211><211><212><213>	60 24 DNA Artificial Sequence		,
<220> <223>	PCR primer	. *	
<400> tgtttco	60 caac cctcgtgcaa tttt		24
<210> <211> <212> <213>	61 24 DNA Artificial Sequence		
<220> <223>	PCR primer	·	
<400> aatatga	61 aaaa atttggtatg gaac		24
<210> <211> <212> <213>	62 24 DNA Artificial Sequence		
<220> <223>	PCR primer		

24

gttccatacc aaatttttca tatt															
<210> 63 <211> 204 <212> PRT <213> Vespula maculifrons															
<400	<400> 63														
Asn 1	Asn	Tyr	Cys	Lys 5	Ile	Lys	Cys	Leu	Lys 10	Gly	Gly	Val	His	Thr 15	Ala
Суз	Lys	Tyr	Gly 20	Ser	Leu	Lys	Pro	Asn 25	Cys	Gly	Asn	Lys	Lys 30	Val	Val
Ser	Tyr	Gly 35	Leu	Thr	Lys	Gln	Glu 40	Lys	Gln	Asp	Île	Leu 45	Lys	Glu	His
Asn	Asp 50	Phe	Arg	Gln	Lys	Ile 55	Ala	Arg	Gly	Leu	Glu 60	Thr	Arg	Glÿ	Asn
Pro 65	Gly	Pro	Gln	Pro	Pro 70	Ala	Lys	Asn	Met	Lys 75	Asn	Leu	Val	Trp	Ser 80
Asp	Glu	Leu	Ala	Tyr 85	Ile	Ala	Gln	Val	Trp 90	Ala	Asn	Gln	Cys	Gln 95	Tyr
Gly	His	Asp	Thr 100	Cys	Arg	Asp	Val	Ala 105	Lys	Tyr	Gln	Va [.] l	Gly 110	Gln	Asn
Val	Ala	Leu 115	Thr	Gly	Ser	Thr	Ala 120	Ala	Val	Tyr	Asn	Asp 125	Pro	Val	Lys
Leu	Val 130	Lys	Met	Trp	Glu	Asp 135	Glu	Val	Lys	Asp	Tyr 140	Asn	Pro	Lys	Lys
Lys 145	Phe	Ser	Glu	Asn	Asn 150	Phe	Leu	Lys	Ile	Gly 155	His	Tyr	Thr	Gln	Met 160

Val Trp Ala Asn Thr Lys Glu Val Gly Cys Gly Ser Ile Lys Tyr Ile 165 170 175

Gln Glu Asn Trp His Lys His Tyr Leu Val Cys Asn Tyr Gly Pro Ser 180 185 190

Gly Asn Phe Gln Asn Glu Glu Leu Tyr Gln Thr Lys 195 200

<210> 64

<211> 204

<212> PRT

<213> Vespula vulgaris

<400> 64

Asn Asn Tyr Cys Lys Ile Lys Cys Leu Lys Gly Gly Val His Thr Ala 1 5 10 15

Cys Lys Tyr Gly Ser Leu Lys Pro Asn Cys Gly Asn Lys Val Val 20 25 30

Ser Tyr Gly Leu Thr Lys Gln Glu Lys Gln Asp Ile Leu Lys Glu His $35 \hspace{1cm} 40 \hspace{1cm} 45$

Asn Asp Phe Arg Gln Lys Ile Ala Arg Gly Leu Glu Thr Arg Gly Asn 50 55 60

Pro Gly Pro Gln Pro Pro Ala Lys Asn Met Lys Asn Leu Val Trp Asn 65 70 75 80

Asp Glu Leu Ala Tyr Val Ala Gln Val Trp Ala Asn Gln Cys Gln Tyr 85 90 95

Gly His Asp Thr Cys Arg Asp Val Ala Lys Tyr Gln Val Gly Gln Asn 100 105 110

Val Ala Leu Thr Gly Ser Thr Ala Ala Lys Tyr Asp Asp Pro Val Lys

115 120 125

Leu Val Lys Met Trp Glu Asp Glu Val Lys Asp Tyr Asn Pro Lys Lys 130 135 140

Lys Phe Ser Gly Asn Asp Phe Leu Lys Thr Gly His Tyr Thr Gln Met 145 150 155 160

Val Trp Ala Asn Thr Lys Glu Val Gly Cys Gly Ser Ile Lys Tyr Ile 165 170 175

Gln Glu Lys Trp His Lys His Tyr Leu Val Cys Asn Tyr Gly Pro Ser 180 185 190

Gly Asn Phe Met Asn Glu Glu Leu Tyr Gln Thr Lys 195 200

<210> 65

<211> 204

<212> PRT

<213> Vespula flavopilosa

<400> 65

Asn Asn Tyr Cys Lys Ile Lys Cys Leu Lys Gly Gly Val His Thr Ala 1 5 10 15

Cys Lys Tyr Gly Ser Leu Lys Pro Asn Cys Gly Asn Lys Val Val 20 25 30

Ser Tyr Gly Leu Thr Lys Gln Glu Lys Gln Asp Ile Leu Lys Glu His 35 40 45

Asn Asp Phe Arg Gln Lys Ile Ala Arg Gly Leu Glu Thr Arg Gly Asn 50 55 60

Pro Gly Pro Gln Pro Pro Ala Lys Asn Met Lys Asn Leu Val Trp Asn 65 70 75 80

Asp Glu Leu Ala Tyr Val Ala Gln Val Trp Ala Asn Gln Cys Gln Tyr 85 90 95

Gly His Asp Thr Cys Arg Asp Ile Ala Lys Tyr Gln Val Gly Gln Asn 100 105 110

Val Ala Leu Thr Gly Ser Thr Ala Ala Lys Tyr Asp Asp Pro Val Lys
115 120 125

Leu Val Lys Met Trp Glu Asp Glu Val Lys Asp Tyr Asn Pro Lys Lys 130 135 140

Lys Phe Ser Gly Asn Asn Phe Leu Lys Thr Gly His Tyr Thr Gln Met 145 150 155 160

Val Trp Ala Asn Thr Lys Glu Val Gly Cys Gly Ser Ile Lys Phe Ile 165 170 175

Gln Glu Lys Trp His Lys His Tyr Leu Val Cys Asn Tyr Gly Pro Ser 180 185 190

Gly Asn Phe Gln Asn Glu Glu Leu Tyr Gln Thr Lys 195 200

<210> 66

<211> 204

<212> PRT

<213> Vespula pensylvanica

<400> 66

Asn Asn Tyr Cys Lys Ile Lys Cys Leu Lys Gly Gly Val His Thr Ala 1 5 10 15

Cys Lys Tyr Gly Ser Leu Lys Pro Asn Cys Gly Asn Lys Ile Val Val 20 25 30

Ser Tyr Gly Leu Thr Lys Glu Glu Lys Gln Asp Ile Leu Lys Glu His 35 40 45

 Pro 65
 Gly Pro Gln
 Pro 70
 Ala Lys
 Asn Met Lys
 Asn Leu Val
 Trp Asn 80

 Asp Glu Leu Ala Tyr Val
 Ala Gln
 Val
 Trp 90
 Ala Asn Gln
 Cys Gln
 Tyr 95

 Gly His Asp Thr 100
 Cys Arg Asp Val
 Ala Lys Tyr Pro Val
 Gly Gln
 Asn 110
 Gly Asn 110
 Gln
 Asn 110
 Gln
 Asn 110
 Gln
 Asn 110
 Gln
 Asn 110
 Gln
 Asn 110
 Gln
 Asn 110
 Gln
 Asn 110
 Gln
 Asn 110
 Gln
 Asn 110
 Gln
 Asn 110
 Gln
 Asn 110
 Gln
 Asn 110
 Asn Asp Phe Arg Gln Lys Ile Ala Arg Gly Leu Glu Thr Arg Gly Asn

<210> 67

<211> 204

<212> PRT

<213> Vespula germanica

<400> 67

Asn Asn Tyr Cys Lys Ile Lys Cys Leu Lys Gly Gly Val His Thr Ala 1 5 10 15

200

Gly Asn Phe Gly Asn Glu Glu Leu Tyr Gln Thr Lys

Cys Lys Tyr Glu Ser Leu Lys Pro Asn Cys Ala Asn Lys Lys Val Val 25 Ala Tyr Gly Leu Thr Lys Gln Glu Lys Gln Asp Ile Leu Lys Glu His Asn Asp Phe Arg Gln Lys Ile Ala Arg Gly Leu Glu Thr Arg Gly Asn Pro Gly Pro Gln Pro Pro Ala Lys Asn Met Lys Asn Leu Val Trp Ser Asp Glu Leu Ala Tyr Ile Ala Gln Val Trp Ala Asn Gln Cys Gln Tyr 90 85 Gly His Asp Thr Cys Arg Asp Val Ala Lys Tyr Pro Val Gly Gln Asn 100 105 Val Ala Leu Thr Gly Ser Thr Ala Ala Lys Tyr Asp Asn Pro Val Lys 115 Leu Val Lys Met Trp Glu Asp Glu Val Lys Asp Tyr Asn Pro Lys Lys 130 135 Lys Phe Ser Glu Asn Asn Phe Leu Lys Ile Gly His Tyr Thr Gln Met 145 Val Trp Ala Asn Thr Lys Glu Val Gly Cys Gly Ser Ile Lys Tyr Ile Gln Asp Lys Trp His Lys His Tyr Leu Val Cys Asn Tyr Gly Pro Ser 180 Gly Asn Phe Gly Asn Glu Glu Leu Tyr Gln Thr Lys

<210> 68

<211> 206

<212> PRT

<213> Vespula vidua

<400> 68

Lys Val Asn Tyr Cys Lys Ile Lys Cys Leu Lys Gly Gly Val His Thr 1 5 10 15

Ala Cys Lys Tyr Gly Thr Ser Thr Lys Pro Asn Cys Gly Lys Met Val 20 25 30

Val Lys Ala Tyr Gly Leu Thr Glu Ala Glu Lys Gln Glu Ile Leu Lys 35 40 45

Val His Asn Asp Phe Arg Gln Lys Val Ala Lys Gly Leu Glu Thr Arg 50 55 60

Gly Asn Pro Gly Pro Gln Pro Pro Ala Lys Asn Met Asn Asn Leu Val 65 70 75 80

Trp Asn Asp Glu Leu Ala Asn Ile Ala Gln Val Trp Ala Ser Gln Cys 85 90 95

Asn Tyr Gly His Asp Thr Cys Lys Asp Thr Glu Lys Tyr Pro Val Gly 100 105 110

Gln Asn Ile Ala Lys Arg Ser Thr Thr Ala Ala Leu Phe Asp Ser Pro 115 120 125

Gly Lys Leu Val Lys Met Trp Glu Asn Glu Val Lys Asp Phe Asn Pro 130 135 140

Asn Ile Glu Trp Ser Lys Asn Asn Leu Lys Lys Thr Gly His Tyr Thr 145 150 155 160

Gln Met Val Trp Ala Lys Thr Lys Glu Ile Gly Cys Gly Ser Val Lys 165 170 175

Tyr Val Lys Asp Glu Trp Tyr Thr His Tyr Leu Val Cys Asn Tyr Gly
180 185 190

Pro Ser Gly Asn Phe Arg Asn Glu Lys Leu Tyr Glu Lys Lys 195 200 205

<210> 69

<211> 205

<212> PRT

<213> Vespula squamosa

<400> 69

Val Asp Tyr Cys Lys Ile Lys Cys Leu Lys Gly Gly Val His Thr Ala 1 5 10 15

Cys Lys Tyr Gly Thr Ser Thr Lys Pro Asn Cys Gly Asn Met Val Val 20 25 30

Lys Ser Tyr Gly Val Thr Gln Ala Glu Lys Gln Glu Ile Leu Lys Ile 35 40 45

His Asn Asp Phe Arg Asn Lys Val Ala Arg Gly Leu Glu Thr Arg Gly 50 55 60

Asn Pro Gly Pro Gln Pro Pro Ala Lys Asn Met Asn Asn Leu Val Trp 65 70 75 80

Asn Asn Glu Leu Ala Asn Ile Ala Gln Ile Trp Ala Ser Gln Cys Lys 85 90 95

Tyr Gly His Asp Thr Cys Lys Asp Thr Thr Lys Tyr Asn Val Gly Gln
100 105 110

Asn Ile Ala Val Ser Ser Ser Thr Ala Ala Val Tyr Glu Asn Val Gly 115 120 125

Asn Leu Val Lys Ala Trp Glu Asn Glu Val Lys Asp Phe Asn Pro Thr 130 135 140

Ile Ser Trp Glu Gln Asn Glu Phe Lys Lys Ile Gly His Tyr Thr Gln 145 150 155 160

Met Val Trp Ala Lys Thr Lys Glu Ile Gly Cys Gly Ser Ile Lys Tyr 165 170 175

Val Asp Asn Asn Trp Tyr Thr His Tyr Leu Val Cys Asn Tyr Gly Pro 180 185 190

Ala Gly Asn Phe Gly Asn Gln Glu Val Tyr Glu Arg Lys 195 200 205

<210> 70

<211> 204

<212> PRT

<213> Dolichovespula maculata ...

<400> 70

Asn Asn Tyr Cys Lys Ile Lys Cys Arg Lys Gly Ile His Thr Leu Cys 1 5 10 15

Lys Phe Gly Thr Ser Met Lys Pro Asn Cys Gly Arg Asn Val Val Lys 20 25 30

Ala Tyr Gly Leu Thr Asn Asp Glu Lys Asn Glu Ile Leu Lys Arg His 35 40 45

Asn Asp Phe Arg Gln Asn Val Ala Lys Gly Leu Glu Thr Arg Gly Lys 50 55 60

Pro Gly Pro Gln Pro Pro Ala Lys Asn Met Asn Val Leu Val Trp Asn 65 70 75 80

Asp Glu Leu Ala Lys Ile Ala Gln Thr Trp Ala Asn Gln Cys Asp Phe 85 90 95

Asn His Asp Asp Cys Arg Asn Thr Ala Lys Tyr Gln Val Gly Gln Asn

100 105 110

Ile Ala Ile Ser Ser Thr Thr Ala Thr Gln Phe Asp Arg Pro Ser Lys
115 120 125

Leu Ile Lys Gln Trp Glu Asp Glu Val Thr Glu Phe Asn Tyr Lys Val 130 135 140

Gly Leu Gln Asn Ser Asn Phe Arg Lys Val Gly His Tyr Thr Gln Met 145 150 155 160

Val Trp Gly Lys Thr Lys Glu Ile Gly Cys Gly Ser Ile Lys Tyr Ile 165 170 175

Glu Asp Asn Trp Tyr Thr His Tyr Leu Val Cys Asn Tyr Gly Pro Gly 180 185 190

Gly Asn Asp Phe Asn Gln Pro Ile Tyr Glu Arg Lys 195 200

<210> 71

<211> 203

<212> PRT

<213> Dolichovespula arenaria

<400> 71

Asn Asn Tyr Cys Lys Ile Cys Pro Lys Gly Thr His Thr Leu Cys Lys 1 5 10 15

Tyr Gly Thr Ser Met Lys Pro Asn Cys Gly Gly Lys Ile Val Lys Ser 20 25 30

Tyr Gly Val Thr Asn Asp Glu Lys Asn Glu Ile Val Lys Arg His Asn $35 \hspace{1cm} 40 \hspace{1cm} 45$

Glu Phe Arg Gln Lys Val Ala Gln Gly Leu Glu Thr Arg Gly Asn Pro 50 55 60

PCT/US02/06765 WO 02/070665

Gly Pro Gln Pro Pro Ala Lys Asn Met Asn Leu Leu Val Trp Asn Asp Glu Leu Ala Lys Ile Ala Gln Thr Trp Ala Asn Gln Cys Asn Phe Gly 85 90 His Asp Gln Cys Arg Asn Thr Ala Lys Tyr Pro Val Gly Gln Asn Val 100 105 Ala Ile Ala Ser Thr Thr Gly Asn Ser Tyr Gln Thr Met Ser Tyr Leu 115 Ile Lys Met Trp Glu Asp Glu Val Lys Asp Tyr Asn Pro His Lys Asp 130 135 140 Leu Met His Asn Asn Phe Ser Lys Val Gly His Tyr Thr Gln Met Val 145 150 155 Trp Gly Lys Thr Lys Glu Ile Gly Cys Gly Ser Val Lys Tyr Ile Glu 165 170 Asn Lys Trp His Thr His Tyr Leu Val Cys Asn Tyr Gly Pro Ala Gly 180 Asn Tyr Met Asn Gln Pro Val Tyr Glu Arg Lys 200 195 <210> 72 <211> 205 <212> PRT Dolichovespula maculata

Asn Asn Tyr Cys Lys Ile Lys Cys Ser Arg Gly Ile His Thr Leu Cys

Lys Phe Gly Thr Ser Met Lys Pro Asn Cys Gly Ser Lys Leu Val Lys 25

<400> 72

20

Val His Gly Val Ser Asn Asp Glu Lys Asn Glu Ile Val Asn Arg His 35 40 45

Asn Gln Phe Arg Gln Lys Val Ala Lys Gly Leu Glu Thr Arg Gly Asn 50 55 60

Pro Gly Pro Gln Pro Pro Ala Lys Asn Met Asn Val Leu Val Trp Asn 65 70 75 80

Asp Glu Leu Ala Lys Ile Ala Gln Thr Trp Ala Asn Gln Cýs Ser Phe 85 90 95

Gly His Asp Gln Cys Arg Asn Thr Glu Lys Tyr Gln Val Gly Gln Asn 100 105 110

Val Ala Ile Ala Ser Thr Thr Gly Asn Ser Tyr Ala Thr Met Ser Lys 115 120 125

Leu Ile Glu Met Trp Glu Asn Glu Val Lys Asp Phe Asn Pro Lys Lys 130 135 140

Gly Thr Met Gly Asp Asn Asn Phe Ser Lys Val Gly His Tyr Thr Gln 145 150 155 160

Met Val Trp Gly Lys Thr Lys Glu Ile Gly Cys Gly Ser Val Lys Tyr 165 170 175

Ile Glu Asn Asn Trp His Thr His Tyr Leu Val Cys Asn Tyr Gly Pro 180 185 190

Ala Gly Asn Tyr Met Asp Gln Pro Ile Tyr Glu Arg Lys 195 200 205

<210> 73

<211> 202

<212> PRT

<213> Vespa mandarinia

<400> 73

Asn Asn Tyr Cys Lys Ile Lys Cys Arg Ser Gly Ile His Thr Leu Cys 1 10 15

Lys Phe Gly Ile Ser Thr Lys Pro Asn Cys Gly Lys Asn Val Val Lys 20 25 30

Ala Ser Gly Leu Thr Lys Ala Glu Lys Leu Glu Ile Leu Lys Gln His 35 40 45

Asn Glu Phe Arg Gln Lys Val Ala Arg Gly Leu Glu Thr Arg Gly Lys
50 55 60

Pro Gly Pro Gln Pro Pro Ala Lys Ser Met Asn Thr Leu Val Trp Asn 65 70 75 80

Asp Glu Leu Ala Gln Ile Ala Gln Val Trp Ala Gly Gln Cys Asp Tyr 85 90 95

Gly His Asp Val Cys Arg Asn Thr Ala Lys Tyr Ser Val Gly Gln Asn 100 105 110

Ile Ala Glu Asn Gly Ser Thr Ala Ala Ser Phe Ala Ser Val Ser Asn 115 120 125

Met Val Gln Met Trp Ala Asp Glu Val Lys Asn Tyr Gln Tyr Gly Ser 130 135 140

Thr Lys Asn Lys Leu Ile Glu Val Gly His Tyr Thr Gln Met Val Trp
145 150 155 160

Ala Lys Thr Lys Glu Ile Gly Cys Gly Ser Ile Lys Tyr Ile Glu Asn 165 170 175

Gly Trp His Arg His Tyr Leu Val Cys Asn Tyr Gly Pro Ala Gly Asn 180 185 190

Ile Gly Asn Glu Pro Ile Tyr Glu Arg Lys 195 200

<210> 74

<211> 202

<212> PRT

<213> Vespa crabro

<400> 74

Asn Asn Tyr Cys Lys Ile Lys Cys Arg Ser Gly Ile His Thr Leu Cys 1 , 5 10 15

Lys Tyr Gly Thr Ser Thr Lys Pro Asn Cys Gly Lys Asn Val Val Lys 20 25 30

Ala Ser Gly Leu Thr Lys Gln Glu Asn Leu Glu Ile Leu Lys Gln His 35 40 45

Asn Glu Phe Arg Gln Lys Val Ala Arg Gly Leu Glu Thr Arg Gly Asn 50 55 60

Pro Gly Pro Gln Pro Pro Ala Lys Ser Met Asn Thr Leu Val Trp Asn 65 70 75 80

Asp Glu Leu Ala Gln Ile Ala Gln Val Trp Ala Asn Gln Cys Asn Tyr 85 90 95

Gly His Asp Asn Cys Arg Asn Ser Ala Lys Tyr Ser Val Gly Gln Asn 100 105 110

Ile Ala Glu Gly Ser Thr Thr Ala Asp Asn Phe Gly Ser Val Ser Asn 115 120 125

Met Val Lys Met Trp Glu Asp Glu Val Lys Asp Tyr Gln Tyr Gly Ser 130 135 140

Pro Lys Asn Lys Leu Asn Lys Val Gly His Tyr Thr Gln Met Val Trp 145 150 155 160

Ala Lys Thr Lys Glu Ile Gly Cys Gly Ser Ile Lys Tyr Ile Glu Asn 165 170 175

Gly Trp His Arg His Tyr Leu Val Cys Asn Tyr Gly Pro Ala Gly Asn 180 185 190

Val Gly Asn Glu Pro Ile Tyr Glu Arg Lys 195 200

<210> 75

<211> 202

<212> PRT

<213> Vespa crabro

<400> 75

Asn Asn Tyr Cys Lys Ile Lys Cys Arg Ser Gly Ile His Thr Leu Cys 1 10 15

Lys Tyr Gly Thr Ser Thr Lys Pro Asn Cys Gly Lys Asn Val Val Lys 20 25 30

Ala Ser Gly Leu Thr Lys Gln Glu Asn Leu Glu Ile Leu Lys Gln His 35 40 45

Asn Glu Phe Arg Gln Lys Val Ala Arg Gly Leu Glu Thr Arg Gly Asn 50 55 60

Pro Gly Pro Gln Pro Pro Ala Lys Ser Met Asn Thr Leu Val Trp Asn 65 70 75 80

Asp Glu Leu Ala Gln Ile Ala Gln Val Trp Ala Asn Gln Cys Asn Tyr 85 90 95

Gly His Asp Asn Cys Arg Asn Ser Ala Lys Tyr Ser Val Gly Gln Asn 100 105 110

Ile Ala Glu Gly Ser Thr Ser Ala Asp Asn Phe Val Asn Val Ser Asn 115 120 125

Met Val Lys Met Trp Glu Asp Glu Val Lys Asp Tyr Gln Tyr Gly Ser 130 135 140

Pro Lys Asn Lys Leu Asn Lys Val Gly His Tyr Thr Gln Met Val Trp 145 150 155 160

Ala Lys Thr Lys Glu Ile Gly Cys Gly Ser Glu Asp Tyr Ile Glu Asp 165 170 175

Gly Trp His Arg His Tyr Leu Val Cys Asn Tyr Gly Pro Ala Gly Asn 180 185 190

Val Gly Asn Glu Pro Ile Tyr Glu Arg Lys 195 200

<210> 76

<211> 205

<212> PRT

<213> Polistes fuscatus

<400> 76

Val Asp Tyr Cys Lys Ile Lys Cys Ser Ser Gly Ile His Thr Val Cys
1 . 5 . 10 . . 15

Gln Tyr Gly Glu Ser Thr Lys Pro Ser Lys Asn Cys Ala Asp Lys Val 20 25 30

Ile Lys Ser Val Gly Pro Thr Glu Glu Glu Lys Lys Leu Ile Val Asn 35 40 45

Glu His Asn Arg Phe Arg Gln Lys Val Ala Gln Gly Leu Glu Thr Arg
50 55 60

Gly Asn Pro Gly Pro Gln Pro Ala Ala Ser Asp Met Asn Asn Leu Val 65 70 75 80

Trp Asn Asp Glu Leu Ala His Ile Ala Gln Val Trp Ala Ser Gln Cys

85 90 95

Gln Ile Leu Val His Asp Lys Cys Arg Asn Thr Ala Lys Tyr Gln Val 100 105 110

Gly Gln Asn Ile Ala Tyr Ala Gly Gly Ser Lys Leu Pro Asp Val Val 115 120 125

Ser Leu Ile Lys Leu Trp Glu Asn Glu Val Lys Asp Phe Asn Tyr Asn 130 135 140

Lys Gly Ile Thr Lys Gln Asn Phe Gly Lys Val Gly His Tyr Thr Gln 145 150 155 160

Met Ile Trp Ala Lys Thr Lys Glu Ile Gly Cys Gly Ser Leu Lys Tyr 165 170 175

Met Lys Asn Asn Met Gln His His Tyr Leu Ile Cys Asn Tyr Gly Pro 180 185 190

Ala Gly Asn Tyr Leu Gly Gln Leu Pro Tyr Thr Lys Lys 195 200 205

<210> 77

<211> 205

<212> PRT

<213> Polistes exclamans

<400> 77

Val Asp Tyr Cys Lys Ile Lys Cys Pro Ser Gly Ile His Thr Val Cys
1 10 15

Gln Tyr Gly Glu Ser Thr Lys Pro Ser Lys Asn Cys Ala Gly Lys Val

Ile Lys Ser Val Gly Pro Thr Glu Glu Glu Lys Lys Leu Ile Val Ser 35 40 45

Glu His Asn Arg Phe Arg Gln Lys Val Ala Gln Gly Leu Glu Thr Arg Gly Asn Pro Gly Pro Gln Pro Ala Ala Ser Asp Met Asn Asp Leu Val Trp Asn Asp Glu Leu Ala His Ile Ala Gln Val Trp Ala Ser Gln Cys 90 Gln Phe Leu Val His Asp Lys Cys Arg Asn Thr Ala Lys Tyr Pro Val 100 -105 110 Gly Gln Asn Ile Ala Tyr Ala Gly Gly Ser Lys Leu Pro Asp Val Val 115 120 Ser Leu Ile Lys Leu Trp Glu Asn Glu Val Lys Asp Phe Asn Tyr Asn 130 135 Thr Gly Ile Thr Lys Gln Asn Phe Ala Lys Ile Gly His Tyr Thr Gln 145 150 155 Met Val Trp Gly Lys Thr Lys Glu Ile Gly Cys Gly Ser Leu Lys Tyr 170 Ile Glu Asn Lys Met Gln Asn His Tyr Leu Ile Cys Asn Tyr Gly Pro 180 185 190 Ala Gly Asn Tyr Leu Gly Gln Leu Pro Tyr Thr Lys Lys 200 <210> 78 <211> 205 <212> PRT <213> Polistes annularis

Val Asp Tyr Cys Lys Ile Lys Cys Pro Ser Gly Ile His Thr Val Cys

<400> 7.8

Gln Tyr Gly Glu Ser Thr Lys Pro Ser Lys Asn Cys Ala Gly Lys Val 30 20 Ile Lys Ser Val Gly Pro Thr Glu Glu Glu Lys Lys Leu Ile Val Ser 45 35 40 Glu His Asn Arg Phe Arg Gln Lys Val Ala Gln Gly Leu Glu Thr Arg 55 60 Gly Asn Pro Gly Pro Gln Pro Ala Ala Ser Asp Met Asn Asp Leu Val 75 Trp Asn Asp Glu Leu Ala His Ile Ala Gln Val Trp Ala Ser Gln Cys Gln Phe Leu Val His Asp Lys Cys Arg Asn Thr Ala Lys Tyr Pro Val 105 Gly Gln Asn Ile Ala Tyr Ala Gly Gly Ser Asn Leu Pro Asp Val Val Ser Leu Ile Lys Leu Trp Glu Asn Glu Val Lys Asp Phe Asn Tyr Asn Thr Gly Ile Thr Lys Gln Asn Phe Ala Lys Ile Gly His Tyr Thr Gln 150 155 Met Val Trp Gly Lys Thr Lys Glu Ile Gly Cys Gly Ser Leu Lys Tyr 170 Met Glu Asn Asn Met Gln Asn His Tyr Leu Ile Cys Asn Tyr Gly Pro Ala Gly Asn Tyr Leu Gly Gln Leu Pro Tyr Thr Lys Lys

<210> 79

<211> 212

<212> PRT

<213> Solenopsis invicta

<400> 79

Thr Asn Tyr Cys Asn Leu Gln Ser Cys Lys Arg Asn Asn Ala Ile His 1 5 10 15

Thr Met Cys Gln Tyr Thr Ser Pro Thr Pro Gly Pro Met Cys Leu Glu 20 25 30

Tyr Ser Asn Val Gly Phe Thr Asp Ala Glu Lys Asp Ala Ile Val Asn 35 40 45

Lys His Asn Glu Leu Arg Gln Arg Val Ala Ser Gly Lys Glu Met Arg 50 55 60

Gly Thr Asn Gly Pro Gln Pro Pro Ala Val Lys Met Pro Asn Leu Thr 65 70 75 80

Trp Asp Pro Glu Leu Ala Thr Ile Ala Gln Arg Trp Ala Asn Gln Cys 85 90 95

Thr Phe Glu His Asp Ala Cys Arg Asn Val Glu Arg Phe Ala Val Gly 100 105 110

Gln Asn Ile Ala Ala Thr Ser Ser Ser Gly Lys Asn Lys Ser Thr Pro 115 120 125

Asn Glu Met Ile Leu Leu Trp Tyr Asn Glu Val Lys Asp Phe Asp Asn 130 135 140

Arg Trp Ile Ser Ser Phe Pro Ser Asp Asp Asn Ile Leu Met Lys Val 145 150 155 160

Glu His Tyr Thr Gln Ile Val Trp Ala Lys Thr Ser Lys Ile Gly Cys 165 170 175

Ala Arg Ile Met Phe Lys Glu Pro Asp Asn Trp Thr Lys His Tyr Leu 180 185 190

Val Cys Asn Tyr Gly Pro Ala Gly Asn Val Leu Gly Ala Pro Ile Tyr 195 200 205

Glu Ile Lys Lys . 210

<210> 80

<211> 211

<212> PRT

<213> Solenopsis richteri

<400> 80

Thr Asn Tyr Cys Asn Leu Gln Ser Cys Lys Arg Asn Asn Ala Ile His 1 5 10 15

Thr Met Cys Gln Tyr Thr Ser Pro Thr Pro Gly Pro Met Cys Leu Glu 20 25 30

Tyr Ser Asn Val Gly Phe Thr Asp Ala Glu Lys Asp Ala Ile Val Asn 35 40 45

Lys His Asn Glu Leu Arg Gln Arg Val Ala Ser Gly Lys Glu Met Arg 50 55 60

Gly Thr Asn Gly Pro Gln Pro Pro Ala Val Lys Met Pro Asn Leu Thr 65 70 75 80

Trp Asp Pro Glu Leu Ala Thr Ile Ala Gln Arg Trp Ala Asn Gln Cys 85 90 95

Thr Phe Glu His Asp Ala Cys Arg Asn Val Glu Arg Phe Ala Val Gly
100 105 110

Gln Asn Ile Ala Ala Thr Ser Ser Ser Gly Lys Asn Lys Ser Thr Leu 115 120 125

Ser Asp Met Ile Leu Leu Trp Tyr Asn Glu Val Lys Asp Phe Asp Asn 130 135 140

Arg Trp Ile Ser Ser Phe Pro Ser Asp Gly Asn Ile Leu Met His Val 145 150 155 160

Gly His Tyr Thr Gln Ile Val Trp Ala Lys Thr Lys Lys Ile Gly Cys 165 170 175

Gly Arg Ile Met Phe Lys Glu Asp Asn Trp Asn Lys His Tyr Leu Val 180 185 190

Cys Asn Tyr Gly Pro Ala Gly Asn Val Leu Gly Ala Gln Ile Tyr Glu 195 200 205

Ile Lys Lys 210

<210> 81

<211> 204

<212> PRT

<213> Vespula vulgaris

<400> 81

Asn Asn Tyr Cys Lys Ile Lys Cys Leu Lys Gly Gly Val His Thr Ala 1 5 10 15

Cys Lys Tyr Gly Ser Leu Lys Pro Asn Cys Gly Asn Lys Val Val 20 25 30

Ser Tyr Gly Leu Thr Lys Gln Glu Lys Gln Asp Ile Leu Lys Glu His 35 40 45

Asn Asp Phe Arg Gln Lys Ile Ala Arg Gly Leu Glu Thr Arg Gly Asn 50 55 60

Pro Gly Pro Gln Pro Pro Ala Lys Asn Met Lys Asn Leu Val Trp Asn 65 70 75 80

Asp Glu Leu Ala Tyr Val Ala Gln Val Trp Ala Asn Gln Cys Gln Tyr 85 90 95

Gly His Asp Thr Cys Arg Asp Val Ala Lys Tyr Gln Val Gly Gln Asn 100 105 110

Val Ala Leu Thr Gly Ser Thr Ala Ala Lys Tyr Asp Asp Pro Val Lys 115 120 125

Leu Val Lys Met Trp Glu Asp Glu Val Lys Asp Tyr Asn Pro Lys Lys 130 135 140

Lys Phe Ser Gly Asn Asp Phe Leu Lys Thr Gly His Tyr Thr Gln Met 145 150 155 160

Val Trp Ala Asn Thr Lys Glu Val Gly Cys Gly Ser Ile Lys Tyr Ile 165 170 175

Gln Glu Lys Trp His Lys His Tyr Leu Val Cys Asn Tyr Gly Pro Ser 180 185 190

Gly Asn Phe Met Asn Glu Glu Leu Tyr Gln Thr Lys
195 200

<210> 82

<211> 212

<212> PRT

<213> Solenopsis invicta

<400> 82

Thr Asn Tyr Cys Asn Leu Gln Ser Cys Lys Arg Asn Asn Ala Ile His 1 5 10 15

Thr Met Cys Gln Tyr Thr Ser Pro Thr Pro Gly Pro Met Cys Leu Glu 20 25 30

Tyr Ser Asn Val Gly Phe Thr Asp Ala Glu Lys Asp Ala Ile Val Asn

35 40. 45

Lys His Asn Glu Leu Arg Gln Arg Val Ala Ser Gly Lys Glu Met Arg 50 55 60

Gly Thr Asn Gly Pro Gln Pro Pro Ala Val Lys Met Pro Asn Leu Thr 65 70 .75 80

Trp.Asp Pro Glu Leu Ala Thr Ile Ala Gln Arg Trp Ala Asn Gln Cys
85 90 95

Thr Phe Glu His Asp Ala Cys Arg Asn Val Glu Arg Phe Ala Val Gly
100 105 110

Gln Asn Ile Ala Ala Thr Ser Ser Ser Gly Lys Asn Lys Ser Thr Pro 115 120 125

Asn Glu Met Ile Leu Leu Trp Tyr Asn Glu Val Lys Asp Phe Asp Asn 130 135 140

Arg Trp Ile Ser Ser Phe Pro Ser Asp Asp Asn Ile Leu Met Lys Val 145 150 155 160

Glu His Tyr Thr Gln Ile Val Trp Ala Lys Thr Ser Lys Ile Gly Cys 165 170 175

Ala Arg Ile Met Phe Lys Glu Pro Asp Asn Trp Thr Lys His Tyr Leu 180 185 190

Val Cys Asn Tyr Gly Pro Ala Gly Asn Val Leu Gly Ala Pro Ile Tyr 195 200 205

Glu Ile Lys Lys 210

<210> 83

<211> 136

<212> PRT

<213> Lycopersicon esculentum

<400> 83

Gln Asn Ser Pro Gln Asp Tyr Leu Ala Val His Asn Asp Ala Arg Ala 1 5 10 15

Gln Val Gly Val Gly Pro Met Ser Trp Asp Ala Asn Leu Ala Ser Arg 20 25 30

Ala Gln Asn Tyr Ala Asn Ser Arg Ala Gly Asp Cys Asn Leu Ile His 35 40 45

Ser Gly Ala Gly Glu Asn Leu Ala Lys Gly Gly Asp Phe Thr Gly 50 55 60

Arg Ala Ala Val Gln Leu Trp Val Ser Glu Arg Pro Ser Tyr Asn Tyr 65 70 75 80

Ala Thr Asn Gln Cys Val Gly Gly Lys Lys Cys Arg His Tyr Thr Gln 85 90 95

Val Val Trp Arg Asn Ser Val Arg Leu Gly Cys Gly Arg Ala Arg Cys 100 105 110

Asn Asn Asn Gly Trp Trp Phe Ile Ser Cys Asn Tyr Asp Pro Val Gly
115 120 125

Asn Trp Ile Gly Gln Arg Pro Tyr 130 135

<210> 84

<211> 187

<212> PRT

<213> Schizophyllum commune

<400> 84

Ser Pro Ala Pro Val Asp Val Asp Ala Arg Ala Pro Val Ala Leu Asp 1 5 10 15

Ser Arg Ser Ile Asp Ile Asp Ser Arg Ser Ala Asp Ala Leu Ala Asn 20 25 30

Arg Ala Ala Pro Pro Gln Ser Glu Ile Asp Gln Trp Leu Lys Ala His 35 40 45

Asn Asn Glu Arg Ala Gln His Gly Ala Val Ala Leu Val Trp Asn Gln 50 55 60

Thr Leu Ser Asp Lys Ala Ala Asp Trp Ala Ser Gln Cys Ile Trp Glu 65 70 75 80

His Ser Asn Ser Gly Gln Asn Leu Ala Ala Trp Phe Ser Pro Gln Ala 85 90 95

Asn Lys Pro Met Asn Ile Ser Gln Gly Val Gly Gly Trp Asn Ala Glu 100 105 110

Glu Pro Asp Tyr Asn Thr Thr Thr Tyr Ser Gly Ala Gly His Trp Thr 115 120 125

Gln Val Val Trp Lys Ser Thr Thr Ser Val Gly Cys Ala Ala Tyr Ser 130 135 140

Cys Pro Pro Gly Thr Leu Gly Arg Lys Pro Thr Asp Pro Trp Lys Thr 145 150 155 160

Leu Trp Tyr Tyr Val Cys Asn Tyr Tyr Arg Pro Gly Asn Val Ser Pro 165 170 175

Arg Asp Lys Tyr Tyr Pro Ile Asn Val Gln Pro 180 185

<210> 85

<211> 239

<212> PRT

<213> Homo sapiens

<400> 85

Ser Thr Val Val Leu Leu Asn Ser Thr Asp Ser Ser Pro Pro Thr Asn 1 10 15

Asn Phe Thr Asp Ile Glu Ala Ala Leu Lys Ala Gln Leu Asp Ser Ala 20 25 30

Asp Ile Pro Lys Ala Arg Arg Lys Arg Tyr Ile Ser Gln Asn Asp Met 35 40 45

Ile Ala Ile Leu Asp Tyr His Asn Gln Val Arg Gly Lys Val Phe Pro 50 55 60

Pro Ala Ala Asn Met Glu Tyr Met Val Trp Asp Glu Asn Leu Ala Lys 65 70 75 80

Ser Ala Glu Ala Trp Ala Ala Thr Cys Ile Trp Asp His Gly Pro Ser 85 90 95

Tyr Leu Leu Arg Phe Leu Gly Gln Asn Leu Ser Val Arg Thr Gly Arg 100 105 110

Tyr Arg Ser Ile Leu Gln Leu Val Lys Pro Trp Tyr Asp Glu Val Lys 115 120 . 125

Asp Tyr Ala Phe Pro Tyr Pro Gln Asp Cys Asn Pro Arg Cys Pro Met 130 135 140

Arg Cys Phe Gly Pro Met Cys Thr His Tyr Thr Gln Met Val Trp Ala 145 150 155 160

Thr Ser Asn Arg Ile Gly Cys Ala Ile His Thr Cys Gln Asn Met Asn 165 170 175

Val Trp Gly Ser Val Trp Arg Arg Ala Val Tyr Leu Val Cys Asn Tyr 180 185 190

Ala Pro Lys Gly Asn Trp Ile Gly Glu Ala Pro Tyr Lys Val Gly Val 195 200 205

Pro Cys Ser Ser Cys Pro Pro Ser Tyr Gly Gly Ser Cys Thr Asp Asn 210 215 220

Leu Cys Phe Pro Gly Val Thr Ser Asn Tyr Leu Tyr Trp Phe Lys 225 230 235

<210> 86

<211> 245

<212> PRT

<213> Homo sapiens

<400> 86

Ala Asn Ile Leu Pro Asp Ile Glu Asn Glu Asp Phe Ile Lys Asp Cys 1 10 15

Val Arg Ile His Asn Lys Phe Arg Ser Glu Val Lys Pro Thr Ala Ser 20 25 30

Asp Met Leu Tyr Met Thr Trp Asp Pro Ala Leu Ala Gln Ile Ala Lys 35 40 45

Ala Trp Ala Ser Asn Cys Gln Phe Ser His Asn Thr Arg Leu Lys Pro 50 55 60

Pro His Lys Leu His Pro Asn Phe Thr Ser Leu Gly Glu Asn Ile Trp 65 70 75 80

Thr Gly Ser Val Pro Ile Phe Ser Val Ser Ser Ala Ile Thr Asn Trp 85 90 95

Tyr Asp Glu Ile Gln Asp Tyr Asp Phe Lys Thr Arg Ile Cys Lys Lys 100 105 110

Val Cys Gly His Tyr Thr Gln Val Val Trp Ala Asp Ser Tyr Lys Val 115 120 125

140 Ser Asn Gly Ala His Phe Ile Cys Asn Tyr Gly Pro Gly Gly Asn Tyr Pro Thr Trp Pro Tyr Lys Arg Gly Ala Thr Cys Ser Ala Cys Pro Asn 165 Asn Asp Lys Cys Leu Asp Asn Leu Cys Val Asn Arg Gln Arg Asp Gln Val Lys Arg Tyr Tyr Ser Val Val Tyr Pro Gly Trp Pro Ile Tyr Pro 195 200 Arg Asn Arg Tyr Thr Ser Leu Phe Leu Ile Val Asn Ser Val Ile Leu 215 Ile Leu Ser Val Ile Ile Thr Ile Leu Val Gln Leu Lys Tyr Pro Asn 235 230 Leu Val Leu Leu Asp <210> 87 <211> 223 <212> PRT <213> Heloderma horridum <400> 87 Glu Ala Ser Pro Lys Leu Pro Gly Leu Met Thr Ser Asn Pro Asp Gln 15 Gln Thr Glu Ile Thr Asp Lys His Asn Asn Leu Arg Arg Ile Val Glu 30

Gly Cys Ala Val Gln Phe Cys Pro Lys Val Ser Gly Phe Asp Ala Leu

Pro Thr Ala Ser Asn Met Leu Lys Met Thr Trp Ser Asn Lys Ile Ala

Gln Asn Ala Gln Arg Ser Ala Asn Gln Cys Thr Leu Glu His Thr Ser Lys Glu Glu Arg Thr Ile Asp Gly Val Glu Cys Gly Glu Asn Leu Phe Phe Ser Ser Ala Pro Tyr Thr Trp Ser Tyr Ala Ile Gln Asn Trp Phe 90 Asp Glu Arg Lys Tyr Phe Arg Phe Asn Tyr Gly Pro Thr Ala Gln Asn 100 105 Val Met Ile Gly His Tyr Thr Gln Val Val Trp Tyr Arg Ser Tyr Glu 115 120 Leu Gly Cys Ala Ile Ala Tyr Cys Pro Asp Gln Pro Thr Tyr Lys Tyr Tyr Gln Val Cys Gln Tyr Cys Pro Gly Gly Asn Ile Arg Ser Arg Lys Tyr Thr Pro Tyr Ser Ile Gly Pro Pro Cys Gly Asp Cys Pro Asp Ala 165 Cys Asp Asn Gly Leu Cys Thr Asn Pro Cys Lys Gln Asn Asp Val Tyr Asn Asn Cys Pro Asp Leu Lys Lys Gln Val Gly Cys Gly His Pro Ile 195 200 Met Lys Asp Cys Met Ala Thr Cys Lys Cys Leu Thr Glu Ile Lys <210> 88

<211> 222 <212> PRT

<213> Homo sapiens

<400> 88

- Lys Asp Pro Ala Phe Thr Ala Leu Leu Thr Thr Gln Leu Gln Val Gln 1 5 10 15
- Arg Glu Ile Val Asn Lys His Asn Glu Leu Arg Lys Ala Val Ser Pro 20 25 30
- Pro Ala Ser Asn Met Leu Lys Met Glu Trp Ser Arg Glu Val Thr Thr 35 40 45
 - Asn Ala Gln Arg Trp Ala Asn Lys Cys Thr Leu Gln His Ser Asp Pro 50 55 60
 - Glu Asp Arg Lys Thr Ser Thr Arg Cys Gly Glu Asn Leu Tyr Met Ser 65 70 75 80
 - Ser Asp Pro Thr Ser Trp Ser Ser Ala Ile Gln Ser Trp Tyr Asp Glu 85 90 95
 - Ile Leu Asp Phe Val Tyr Gly Val Gly Pro Lys Ser Pro Asn Ala Val 100 105 110
 - Val Gly His Tyr Thr Gln Leu Val Trp Tyr Ser Thr Tyr Gln Val Gly 115 120 125
 - Cys Gly Ile Ala Tyr Cys Pro Asn Gln Asp Ser Leu Lys Tyr Tyr 130 135 140
 - Val Cys Gln Tyr Cys Pro Ala Gly Asn Asn Met Asn Arg Lys Asn Thr 145 150 155 160
 - Pro Tyr Gln Gln Gly Thr Pro Cys Ala Gly Cys Pro Asp Asp Cys Asp 165 170 175
 - Lys Gly Leu Cys Thr Asn Ser Cys Gln Tyr Gln Asp Leu Leu Ser Asn 180 185 190

```
Cys Asp Ser Leu Lys Asn Thr Ala Gly Cys Glu His Glu Leu Leu Lys
                           200 .
Glu Lys Cys Lys Ala Thr Cys Leu Cys Glu Asn Lys Ile Tyr
   210
                       215
<210> 89
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> peptide
<400> 89
Glu Ala Glu Ala Glu Phe
<210> 90
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> peptide
<400> 90
Glu Ala Glu Phe
<210> 91
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> peptide
<400> 91
Arg Glu Ala Glu Phe
```

<210>

92

```
<211>
      9
<212>
      PRT
<213>
      Artificial Sequence
<220>
<223>
      peptide
<400>
      92
Glu Glu Gly Val Ser Leu Glu Lys Arg
                5
<210> 93
<211>
      50
<212>
      PRT
<213>
     Vespula vulgaris
<400>
      93
Asn Asn Tyr Cys Lys Ile Lys Cys Leu Lys Gly Gly Val His Thr Ala
                                                        15
                5
Cys Lys Tyr Gly Ser Leu Lys Pro Asn Cys Gly Asn Lys Val Val
            20
Ser Tyr Gly Leu Thr Lys Gln Glu Lys Gln Asp Ile Leu Lys Glu His
Asn Asp
    50
<210>
       94
<211>
       57
<212>
       PRT
       Vespula vulgaris
<213>
<400>
      94
Asn Asn Tyr Cys Lys Ile Lys Cys Leu Lys Gly Gly Val His Thr Ala
Cys Lys Tyr Gly Ser Leu Lys Pro Asn Cys Gly Asn Lys Val Val
```

	. 20	0				25					30			
Ser Tyr (Gly Lo	eu Thr	Lys	Gln	Glu 40	Lys	Gln	Asp	Ile	Leu 45	Lys	Glu	His	
Asn Asp I	Phe A	rg Gln	Lys	Ile 55	Ala	Arg								
	6 RT	a vulga	ris				,							
<400> 95	5							•						
Asn Asn 1	Tyr Cy	ys Lys 5	Ile	Lys	Cys	Leu	Lys 10	Gly	Gly	Val	His	Thr 15	Ala	
Cys Lys T	Tyr G. 20		Leu	Lys	Pro	Asn 25	Cys	Gly	Asn	Lys	Val 30	Val	Val	
Ser Tyr G	Gly Le 35	eu Thr	Lys	Gln	Glu 40	Lys	Gln	Asp	Ile	Leu 45	Lys	Glu	His	
Asn Asp E 50	Phe Ai	cg Gln	Lys	Ile 55	Ala	Arg	Gly	Leu	Glu 60	Thr	Arg	Gly	Asn	
Pro Gly E	Pro Gl	ln Pro	Pro 70	Ala	Lys	Asn	Met	Lys 75	Asn					
<210> 96 <211> 15 <212> DN <213> Ve	50 NA	a vulga	ris											
<400> 96			-	a+++	~==~	~~-	aata	tee	at 30	+ ~ ~ ~	+~ ~		2+002	60
aacaattat												•		
agtcttaaa							ycat	.cct	argg	LCTA	ac g	aaac	aayag	120
aaacaagac	Ja LCI	Ladayy	a yc	acaa	Lyac	•								150

<210> <211> <212> <213>	97 171 DNA Vesp	oula v ulgari	is				
<400>	97	•					
aacaatt	att	gtaaaataaa	atgtttgaaa	ggaggtgtcc	atactgcctg	caaatatgga	60
agtctta	aaac	cgaattgcgg	taataaggta	gtggtatcct	atggtctaac	gaaacaagag	120
aaacaaq	gaca	tcttaaagga	gcacaatgac	tttagacaaa	aaattgcacg	a	171
<210> <211> <212> <213>		oula vulgari	is				
<400> aacaatt	98 catt	gtaaaataaa	atgtttgaaa	ggaggtgtcc	atactgcctg	caaatatgga	60
agtctta	aaac	cgaattgcgg	taataaggta	gtggtatcct	atggtctaac	gaaacaagag	120
aaacaa	gaca	tcttaaagga	gcacaatgac	tttagacaaa	aaattgcacg	aggattggag	180
actaga	ggta	atcctggacc	acagcctcca	gcgaagaata	tgaaaaat		228