Guía de ejercicios # 0 - Introducción a los sistemas de numeración

Organización de Computadoras 2021 C3

UNQ

1 Sistemas de Numeración: Interpretacion

Restringir el tamaño de las cadenas

El sistema binario como lo conocemos se denomina formalmente $Binario\ Sin\ Signo$. Por ejemplo en un sistema $Binario\ Sin\ Signo$ donde todas sus cadenas tienen 4 bits, lo denotaremos BSS(4).

¿Por qué crees que se tiene la necesidad de restringir las cadenas?

1.1 Interpretando cadenas Binarias

La interpretación decimal puede aplicarse casi directamente en el sistema binario, considerando que **la base es 2** Veamos ejemplos:

- La cadena 11 se interpreta: $1 * 2^1 + 1 * 2^0 = 2 + 1 = 3$
- La cadena 101 se interpreta: $1 * 2^2 + 0 * 2^1 + 1 * 2^0 = 4 + 1 = 5$

Ejercicios

Interpretá las siguientes cadenas en Binario Sin Signo.

- 1. ★ 101101
- 2. * 01111111
- 3. ★ 10101010
- 4. ★ 00100010

1.2 Representando números

Para representar valores mediante cadenas binarias, se deben realizar divisiones sucesivas por la base 2 hasta obtener un cociente igual a cero, tomando cada resto como bits de la cadena.

Vamos a un ejemplo, si se necesita representar el número 26:

- Se divide el valor 26 por 2 hasta encontrar un cociente 0
- Se construye la cadena tomando solo los restos, empezando por el último (desde abajo hacia arriba): 11010

Ejercicios

- ★ Representá los números obtenidos en la sección de interpretación, para verificar que tus respuestas son correctas.
- 6. Representá los siguientes números en BSS(8), Luego interpretá la cadena obtenida para verificar que su respuesta es correcta.
 - (a) \bigstar 4
 - (b) ★ 16
 - (c) ★ 128
 - (d) ★ 86

1.3 Rango

Considerar cúantas cadenas diferentes pueden obtenerse si se cuenta con 3 dígitos (se denota BSS(3)). Son las siguientes: 000, 001, 010, 011, 100, 101, 110 y 111, es decir 8 cadenas diferentes. Dicho de otra manera: con 3 bits pueden hacerse 8 combinaciones, es decir 2^3 . Para este ejemplo el rango es: [0,7]

Ejercicios

- 7. Calcule el rango de los siguientes sistemas de numeración.
 - (a) $\bigstar BSS(5)$
 - (b) $\bigstar BSS(8)$

2 Aritmetica

2.1 Suma

Veamos los casos posibles que pueden darse a la hora de sumar dos operandos de un bit cada uno. Son 8 casos pues se debe distinguir cuando se tiene acarreo y cuando no

se tiene.

anterior=0 $\begin{array}{c} 0 \\ + 0 \\ 0 \\ \hline 0 \end{array}$ anterior=0 $\begin{array}{c} + 1 \\ 1 \\ 0 \\ \hline 1 \end{array}$ anterior=0 $\begin{array}{c} + 1 \\ 1 \\ 1 \\ \hline 1 \end{array}$ anterior=1 $\begin{array}{c} - 1 \\ 0 \\ 0 \\ \hline 1 \end{array}$ anterior=1 $\begin{array}{c} - 1 \\ 0 \\ 0 \\ 0 \end{array}$ anterior=1 $\begin{array}{c} - 1 \\ 0 \\ 0 \\ 0 \end{array}$ anterior=1 $\begin{array}{c} - 1 \\ 0 \\ 0 \\ 0 \end{array}$ anterior=1 $\begin{array}{c} - 1 \\ 0 \\ 0 \\ 0 \end{array}$ anterior=1 $\begin{array}{c} - 1 \\ 0 \\ 0 \\ 0 \end{array}$ anterior=1 $\begin{array}{c} - 1 \\ 0 \\ 0 \\ 0 \end{array}$ acarreo 1 $\begin{array}{c} - 1 \\ 0 \\ 0 \end{array}$

- 8. ★ Realizar las siguientes sumas:
 - (a) 10001 + 01110
 - (b) 01111 + 01111
 - (c) 10001 + 11001
- 9. \bigstar Interpretar los operandos y el resultado de cada operación del punto anterior.
- 10. Realizar las mismas sumas, pero suponiendo ahora un sistema restringido a 5 bits, es decir BSS(5). Interpretar nuevamente los resultados verificar si son correctos (interpretando los operandos y sumando o restando los valores obtenidos)

2.2 Resta

Los siguientes son los posibles casos que pueden darse a la hora de **restar dos operandos de un bit cada uno**. Así como en la suma, son 8 casos pues se debe distinguir cuando se tiene acarreo y cuando no se tiene.

- 11. ★ Realizar las siguientes restas:
 - (a) 01101 00111
 - (b) 11001 01111
 - (c) 00000 00001
- 12. Interpretar los operandos y el resultado de cada resta ¿Se obtuvo un resultado correcto?

3 Otros sistemas de numeración

Ya vimos que el sistema binario tiene símbolos 0 y 1, y por lo tanto la base es 2.

• La forma de interpretar una cadena es haciendo multiplicaciones por 2 elevado a la potencia asignada a cada posición

• La representación, se divide sucesivamente por 2 hasta tener cociente 0.

En el sistema octal, que tiene los símbolos del 0 al 7, **la base** es 8:

- Las multiplicaciones realizadas para la interpretación serán por 8 elevado a la potencia asignada a cada posición
- Las divisiones realizadas para la representación serán por 8.

En el sistema hexadecimal, que tiene los símbolos del 0 al 9 y de la A a la F, **la base es 16**:

- Las multiplicaciones realizadas para la interpretación serán por 16 elevado a la potencia asignada a cada posición
- Las divisiones realizadas para la representación serán por 16

Ejercicios para interpretar

- 13. ★ Interpretar en hexadecimal: ABC
- 14. ★ Interpretar en hexadecimal: DEF

Representar en Hexadecimal

- 15. Representar en Hexadecimal el valor 64
- 16. ★ Representar en Hexadecimal el valor 725

Agrupación de bits

- 17. ★ Convertir las siguientes cadenas binarias a cadenas en base 16 aplicando el método de **agrupación de bits**.
 - (a) 1001 0110 1010 0101
 - (b) 0000 0110 0111 0000
 - (c) 0001 1101 0001 1110
 - (d) 0011 0010 1001 0000

References

[1] Williams Stallings, Computer Organization and Architecture, octava edición, Editorial Prentice Hall, 2010. **Apéndice 8A: Sistemas de numeración**