Représentations numériques Revenir aux bases

Représentations en bases

- Bases ou radix r :
 - utilisation des symboles de 0 à r-1
 - Coefficients des puissances de r
- Base 10 ·

$$142 = 1 \times 10^2 + 4 \times 10^1 + 2 \times 10^0$$

• Base 10, nombre décimal

$$142.34 = 1 \times 10^{2} + 4 \times 10^{1} + 2 \times 10^{0} + 3 \times 10^{-1} + 4 \times 10^{-2}$$

Généralisation

La formule générale pour la base 10 est bien entendu :

$$x = \sum_{i=-\infty}^{i=\infty} c_i.10^i, \text{ avec } c_i \in \{0...9\}$$

et se généralise pour toute base r:

$$x = \sum_{i=-\infty}^{i=\infty} c_i \cdot r^i, \text{ avec } c_i \in \{0 \dots (r-1)\}$$

Savoir compter et convertir

Compter en binaire

Decimal		Bina	ry co	unt	
count	16s	8s	4s	2s	1s
0					0
1					1
2				1	0
3				1	t
4			1	0	0
5			1	0	1
6			1	1	0
7			1	1	1
8		1	0	0	0
9		1	0	0	1
10		1	0	1	0
11		ŧ	0	1	1
12		1	1	0	0
13		1	1	0	1
14		1	1	1	0
15		1	1	1	1
16	1	o	0	0	0
17	I	o	0	0	1
18	1	0	0	1	0
19	1	0	0	1	1
	24	23	2 ²	21	2º
	Powers of 2				

MSB

LSB

A quoi ça sert?

des variables de contrôle....ou de statut

Applicable partout!

Conversions entre base

par tables

Decimal (Base 10)	Binary (Base 2)	Octal (Base 8)	Hexadecimal (Base 16)	
0	0	0	0	
1	1	1	1	
2	10	2	2	
3	11	3	3	
4	100	4	4	
5	101	5	5	
6	110	6	6	
7	111	7	7	
8	1000	10	8	
9	1001	11	9	
10	1010	12	A	
11	1011	13	В	
12	1100	14	С	
13	1101	15	D	
14	1110	16	Е	
15	1111	17	F	

Conversions entre base par tables

le nombre
$$101101_2 = 10_1101_2 = 0010_1101_2 = 2D_{16} = \mathbf{0x2D}$$

Dans le cas de nombre fractionnaires, le sens de lecture s'inverse pour la partie fractionnaire. Ainsi :

le nombre
$$1011.01_2 = 1011.0100_2 = B.4_{16}$$

On procède de même pour la traduction octale.

$$(10110001101011.1111)_2 = (101\ 110\ 001\ 101\ 011\ .\ 111\ 100)_2 = (26153.74)_8$$

Conversions entre base par calcul

Conversions entre base par calcul

Conversions entre base

par calcul

Même principe pour la base hexadécimale

$$250 \div 16 = 15$$
 remainder of $10 - 15 \div 16 = 0$ remainder of $15 - 15 \div 16 = 0$ remainder of $15 - 15 \div 16 = 0.25 \times 16 = 4.00$

$$0.25 \times 16 = 4.00$$

$$0.00 \times 16 = 0.00$$

Autres codes binaires

BCD: binaire codé décimal

Chiffre	Quartet	Chiffre	Quartet
0	0000	5	0101
1	0001	6	0110
2	0010	7	0111
3	0011	8	1000
4	0100	9	1001

Chaque chiffre de 0 à 9 est ici représenté par 4 bits. Ceci simplifie la conversion : elle revient à étudier la juxtaposition des bits

Ex: 123 = 0001 0010 0011

Attention! C'est simple, mais ça ne marche qu'en codage BCD, peu utilisé...

Autres codes binaires

Code de Gray ou code réfléchi

$d\acute{e}cimal$	binaire classique	Gray	$0 \rightarrow 0000$
0	0000	0000	
1	0001	0001	$1 \to 0001$
2	0010	0011	
3	0011	0010	0 . 0000
4	0100	0110	$0 \to 0000$
5	0101	0111	$1 \to 0001$
6	0110	0101	
7	0111	0100	$2 \to 0011$
	•	•	$3 \rightarrow 0010$

Il existe un algorithme pour passer d'un nombre x à l'autre x + 1:

- on calcule le nombre de 1 dans x. On inverse le dernier bit de x quand ce nombre de 1 est pair.
- si le nombre de 1 est impair, on inverse le bit à gauche du 1 qui est le plus à droite.

Codage binaire des entiers positifs ou « unsigned »

résumé

Soit un nombre W de bits et soit $\vec{x} = [x_{w-1}, x_{w-2}, \dots, x_0]$ de bits. Nous avons vu précédemment (sans la nommer) que la simple fonction :

$$B2U_w(\vec{x}) \doteq \sum_{i=0}^{w-1} x_i 2^i$$

définit la valeur non-signée ("unsigned") de \vec{x} , dans \mathbb{N} . Les valeurs limites de cette fonction sont :

$$\begin{cases} UMax_w = \sum_{i=0}^{w-1} 2^i = 2^w - 1 \\ UMmin_w = \sum_{i=0}^{w-1} 0 = 0 \end{cases}$$

On a donc:

$$B2U_w: \{0,1\}^w \to \{0,\dots,2^w-1\}$$

Nombres signés Complément à 2 sur w bits

De manière similaire, on définit désormais la fonction qui permet de calculer la valeur du vecteur \vec{x} dans le cas d'une valeur signée, c'est-à-dire négative ou positive, **en complément à 2**.

$$B2T_w(\vec{x}) \doteq -x_{w-1}2^{w-1} + \sum_{i=0}^{w-2} x_i 2^i$$

Désormais, le bit de poids fort, le plus à gauche, contribue de manière négative à la somme totale. Précisons également que le 'T' vient de "two's complement". Calculons les valeurs min et max de cette fonction. Pour $\vec{x} = [10...0]$ et $\vec{x} = [01...1]$ respectivement, on trouve ⁶:

$$\begin{cases} TMin_w = -2^{w-1} \\ TMax_w = \sum_{i=0}^{w-2} 2^i = 2^{w-1} - 1 \end{cases}$$

(! erreur dans le poly)

On a donc:

$$B2U_w: \{0,1\}^w \to \{-2^{w-1},\dots,2^{w-1}-1\}$$

On pourra également dénoter cette fonction $C_{2,w}(\vec{x})$.

Complément à 2 sur w bits

signé	bit vector	non-signé
-4	100	4
-3	101	5
-2	110	6
-1	111	7
0	000	0
1	001	1
2	010	2
3	011	3

Nombres négatifs

Le complément à 1 d'un nombre binaire consite à simplement inverser tous ses bits.

Le complément à 2 d'un nombre binaire consiste à :

- laisser inchangé le 1 le plus à droite, ainsi que tous les 0 les plus à droite.
- modifier tous les autres digits.

Il existe toute fois une autre méthode, qui se retient plus facilement (peutêtre). Elle consiste en une formule simple :

Attention !!!!
-134 nécessite 9 bits
et non 8

Addition classique (et non « OU » binaire)

Représentations obsolètes

La représentation en magnitude signée est simplement :

$$B2S_w(\vec{x}) \doteq (-1)^{x_{w-1}} \sum_{i=0}^{w-2} x_i 2^i$$

Il existe également une représentation des nombres en complément à 1, très légèrement différente du complément à 2.

$$B2T_w(\vec{x}) \doteq -x_{w-1}(2^{w-1} - 1) + \sum_{i=0}^{w-2} x_i 2^i$$

Ces représentations proposent 2 encodages pour 0 !

Dans le cas de la magnitude signée : +0 = 0...0 et -0 = 10...0

Nombres négatifs

résumé

Signed decimal		8-bit omplement resentation	
+127	0	111 1111	
+126	0	111 1110	
+125	0	111 1101	ı
+124	0	111 1100	t
1 1	:		ı
+5	0	000 0101	ļ
+4	0	000 0100	ı
+3	0	000 0011	ı
+2	0	000 0010	ı
+1	0	000 0001	ı
+0	0	000 0000	
-1	1	111 1111	,
-2	1	111 1110	
-3	1	111 1101	
-4	1	111 1100	
-5	1	111 1011	
: 1	:		
-125	1	000 0011	
-126	1	000 0010	
-127	1	000 0001	
-128	1	000 0000	
	Sign	Magnitude	

same as binary numbers -125 ? =

Noter que les nombres en complément à 2 sont négatifs s'ils présentent un MSB à 1 !

125 se représente sur 7 bits, mais pas -125 : il faut 8 bits

Exemple: -3 sur 3 bits

•
$$3_{10} = 011_2$$

•
$$-3_{10} = /3_{10} + 1 = 100_2 + 1 = 101_2 = 5_{10}$$
????

- -3 vaut -il 5 ???
 - NON!
 - 5 ne peut pas être représenté sur 3 bits, si on y représente également les nombres négatifs

Pour un nombre donné de bits , il faut s'entendre sur le fait que la représentation d'un nombre est signée ou non

-4 100

Addition et soustraction

Addition: classique

	Addition
calcul	0110 + 0011
retenus	11
résultat	1001

Soustraction: x - y

- 1. on additionne x et le complément à 2 de y
- si le résulat présente une retenue finale, on l'oublie!
- s'il n'y a pas de retenue finale, on prend le complément à 2 du résultat et on palce un signe "-" devant le nombre.

exemple: $x = 1101100_2$ et $y = 1011011_2$

$$1101100 + 0100101 = 10010001$$

Le résultat est donc $x - y = 0010001_2$

108-91

Nombre en virgule fixe fixed point

- Déja vu précédemment...
- Le calculateur numérique devra connaître la position de la virgule, fixée une bonne fois pour toute.
- Impact sur les opérations classiques :
 - Le résultat de l'addition hérite de la position de la virgule identique à celle dans les opérandes
 - Cela est changé pour les autres opérations.

Nombres en virgule flottante ieee754

Exo: calculer le nombre max et min représentable

IEEE 754 (SP)

- L'exposant est biaisé (en excédant) à 127.
 C'est-à-dire que pour coder un exposant e, on code le nombre e+127.
- Les exposants représentables vont de -126 à 127 (les valeurs 00000000 et 11111111 sont réservées pour des cas exceptionnels)
- Les nombres sont normalisés, c'est-à-dire que la mantisse est entre 1 et 2.

IEEE 754

cas exceptionnels

- Si e=111111111₂ et m=0, le nombre représenté est + ou - l'infini. Les opérations sur l'infini sont gérés correctement.
- Si e=11111111₂ et m/=0, la représentation est considérée comme n'étant pas un nombre (NaN : Not a Number).
- Si e=0 et m=0 on représente le nombre +0 ou -0 selon le signe.
- Si e=0 et m\neq0 on dit que le nombre est dénormalisé. C'est-à-dire que la mantisse est écrite sans le 1 implicite.

Données symboliques

- Certaines données ne sont pas numériques
 - Enumérations, collections : couleurs, alphabets,...
 - Ou compositions de données numériques
- Un encodage de ces données est nécessaire

 $\begin{array}{c} \text{Enum\'eration} \\ \text{bleu} \rightarrow 0 \rightarrow 000 \\ \text{blanc} \rightarrow 1 \rightarrow 001 \\ \text{rouge} \rightarrow 2 \rightarrow 010 \\ \text{vert} \rightarrow 3 \rightarrow 011 \\ \text{noir} \rightarrow 4 \rightarrow 100 \\ \end{array}$

Données symboliques

code ASCII

• Encodage des caractères usuels

b ₇ ———				-	_	0	0	0 1	0 1	1 0	1 0	1	1 1
b ₅	_					0	1	0	1	0	1	0	1
Bits	b₄ ↓	b₃ ↓	b ₂ ↓	$_{\downarrow}^{b_{1}}$	Column ↑ Row↓	0	1	2	3	4	5	6	7
	0	0	0	0	0	NUL	DLE	SP	0	@	Р	•	p
	0	0	0	1	1	SOH	DC1	ļ.	1	Α	Q	a	q
	0	0	1	0	2	STX	DC2	=	2	В	R	b	r
	0	0	1	1	3	ETX	DC3	#	3	С	S	С	S
	0	1	0	0	4	EOT	DC4	\$	4	D	T	d	t
	0	1	0	1	5	ENQ	NAK	%	5	E	U	e	u
	0	1	1	0	6	ACK	SYN	&	6	F	V	f	V
	0	1	1	1	7	BEL	ETB	•	7	G	W	g	W
	1	0	0	0	8	BS	CAN	(8	Н	X	h	X
	1	0	0	1	9	HT	EM)	9	I	Υ	į	У
	1	0	1	0	10	LF	SUB	*	:	J	Z	j	Z
	1	0	1	1	11	VT	ESC	+		K	[k	{
	1	1	0	0	12	FF	FC	1	<	L	\	- 1	
	1	1	0	1	13	CR	GS	1	=	М]	m	}
	1	1	1	0	14	SO	RS		>	N	۸	n	~
	1	1	1	1	15	SI	US	1	?	0	_	0	DEL

ASCII Art

Données symboliques

Utf8 - Unicode

Définition du nombre d'octets utilisés

Représentation binaire UTF-8	Signification
0 xxxxxx	1 octet codant 1 à 7 bits
110xxxxx 10xxxxxx	2 octets codant 8 à 11 bits
1110xxxx 10xxxxxxx 10xxxxxx	3 octets codant 12 à 16 bits
11110xxx 10xxxxxx 10xxxxxx 10xxxxxx	4 octets codant 17 à 21 bits

Ce principe pourrait être étendu jusqu'à huit octets pour un seul point de code, mais UTF-8 pose la limite à quatre 1.

Character Binary code point		Binary code point	Binary UTF-8	Hexadecimal UTF-8	
\$	U+0024	0100100	00100100	24	
¢	U+00A2	000 10100010	11000010 10100010	C2 A2	
€	U+20AC	00100000 10101100	11100010 10000010 10101100	E2 82 AC	
024 588	U+24B62	00010 01001011 01100010	11110000 10100100 10101101 10100010	FO A4 AD A2	

Manipulations binaires

récupération d'un champ binaire

Comment récupérer y?

Il faut annuler / cette composante

...tout en gardant celle-là

$$y = pos \&\& 0x00FF$$

ex:

1011 0111 1110 1010

0000 0000 1111 1111

$$y = 0000 0000 1110 1010$$

Opérations dites « bit-à-bit »

Masque

Exemple (suite)

$$pos = (x << 8) + y$$

Comment récupérer x

..tout en gardant celle-là cette composante

...et la décaller à droite

Exemple (suite et fin)

On peut faire plus simple. Il suffit de décaler de 8 bits sur la gauche

(rappel) A quoi ça sert?

des variables de contrôle....ou de statut

Applicable partout!

Manipulations binaires

Dans les langages **traditionnels**, les bits ne sont accessibles qu'à travers des manipulations des entiers

Listing 2.1– Quelques manipulations de bits en C

```
a = a \mid 0x4; /* mise a 1 du bit 2 de la variable a*/a |=0x4; /* idem*/b &= ~(0x4) /* mise a 0 du bit 2 */b &= ~(1 << 2) /* idem, mais plus explicite*/c ~= ~(1 << 5) /* inversion du bit 5*/e >>=2 /* division de e par 4 */
```

Attention : a sera un entier ! On ne verra pas explicitement ses 0 et 1 binaires !

Essentiel pour la programmation des dispositifs embarqués

Code détecteurs d'erreurs bit de parité

ligne/canal de transmission (=> erreur)

Code détecteurs d'erreurs suite

Entrées	Sortie
DCBA	Р
0000	0
0001	1
0010	1
0011	0
0100	1
0101	0
0110	0
0111	1
1000	1
1001	0
1010	0
1011	1
1100	0
1101	1
1111	0
mot	bit de
	parité
CO1	10

La sortie est fonction des entrées, et des entrées seulement.

C'est une fonction combinatoire

A propos des codes correcteurs

- Codes de Hamming
- Code de Goppa
- Code de Golay
- Code de Reed-Solomon
- ...
- Turbo codes
 - Permet de s'approcher de la limite de Shannon