MONDAY EXERCISES

1. HECKE OPERATORS IN GEOMETRIC LANGLANDS: LECTURE 1

Topology of Lie groups and loop groups. Basic Lie theory with a focus on flag varieties, Schubert stratifications, relative position correspondences.

- 1.1. **Exercise.** Draw the weights, coweight, roots, and coroots for $SL_3(\mathbb{C})$ and $PGL_3(\mathbb{C})$ and compare them. Do the same for $SO_5(\mathbb{C})$ and $Sp_4(\mathbb{C})$, and for $SO_7(\mathbb{C})$ and $Sp_6(\mathbb{C})$.
- 1.2. Exercise. (Borel) Calculate the rational cohomology ring of the flag variety G/B in terms of functions $\mathcal{O}(0_{th})$ on the scheme-theoretic fiber

- 1.3. Exercise. (Bott-Samelson) Resolve any Schubert variety by an iterated \mathbb{P}^1 -bundle.
- 1.4. Exercise. Let $Gr_2^4(\mathbb{C})$ be the Grassmannnian of 2-planes in 4-space. Let $e_1, e_2, e_3, e_4 \in \mathbb{C}^4$ be the standard basis, and $E_2 = \{e_1, e_2\} \subset \mathbb{C}^4$ the standard 2-plane. Describe the Schubert variety

$$X=\{P\in Gr_2^4(\mathbb{C})|\dim(P\cap E_2)\geq 1\}$$

its singularity, and find a minimal resolution.

- 1.5. Exercise. Compare the presentations of an affine Weyl group in terms of reflections (Coxeter) and as a semi-direct product of the finite Weyl group with a lattice (Bernstein).
- 1.6. Exercise. Let \mathfrak{p} be a partition of n with p parts, and $n_{\mathfrak{p}} \in M_n(\mathbb{C})$ the corresponding nilpotent matrix. Identify the Springer fiber

$$X_{\mathfrak{p}} = \{ P \in \coprod_{k=0}^{n} Gr_{k}^{n}(\mathbb{C}) | n_{\mathfrak{p}}(P) \subset P \}$$

with a subvariety of the affine Grassmannian Gr_{GL_p} .

- 1.7. Exercise. Find as many descriptions as you can for the rational homology of a based loop group ΩK of a compact Lie group K.
- 1.8. **Exercise.** Let G be a complex reductive group. Describe the fixed points of the natural loop rotation action on the affine Grassmannian Gr_G .
- 1.9. **Exercise.** Show that the Schubert singularities of the affine Grassmannian of $SO_3(\mathbb{C})$ are all rationally smooth.

Date: July 30, 2012. Freiburg, Summer 2012. 1.10. Exercise. Let $a: S^2 \to S^2$ be the antipodal map, $\mathcal{F}r(S^2)$ the free topological group on S^2 , and $F = \mathcal{F}r(S^2)/(xa(x))$ its quotient by the relation xa(x) = 1 for any $x \in S^2$. Construct an equivalence of topological groups

$$F \xrightarrow{\sim} \Omega_{poly}(SO_3(\mathbb{R}))$$

to the polynomial based loop space of $SO_3(\mathbb{R}) \simeq \mathbb{RP}^3$.

Under the resulting identification of F with the affine Grassmannian of $SO_3(\mathbb{C})$, describe the components and Schubert cells as subspaces of F.

2. Geometric Langlands Duality and its Classical Limit: Lecture 1 Moduli stacks of bundles and local systems. Hecke and tensorization operators. A naive formulation of the Geometric Langlands conjecture.

Notation:

G: a complex reductive group;

C: a smooth complex projective curve of genus g > 1;

 $\mathcal{B}un$: the moduli stack of principal G bundles on C;

 $\mathcal{L}oc$: the moduli stack of G-local systems on C.

- 2.1. Exercise. Use deformation theory to describe the tangent complexes $\mathbb{T}_{\mathcal{B}un}$ and $\mathbb{T}_{\mathcal{L}oc}$.
- 2.2. Exercise. Show that $\mathcal{B}un$ is a smooth algebraic stack and compute its dimension. Compute the dimension of the coarse moduli space of stable principal G bundles on C.
- 2.3. Exercise. Let $G = \mathrm{SL}(2,\mathbb{C})$, then $\mathcal{B}un$ is the moduli stack of rank two vector bundles with trivial determinant on C. For every $n \in \mathbb{Z}_{>0}$ consider the open substack $\mathcal{B}un^{\leq (n)} \subset \mathcal{B}un$ parametrizing rank two vector bundles that do not admit line subbundles of degree > n. Show that $\mathcal{B}un^{\leq (n)}$ is quasi-compact. Use the fact that $\mathcal{B}un$ is the union of all $\mathcal{B}un^{\leq (n)}$ to argue that $\mathcal{B}un$ is not quasi-compact.
- 2.4. Exercise. Compute the dimension of the stack $\mathcal{L}oc$. Show that if $G = SL(2, \mathbb{C})$, then $\mathcal{L}oc$ is not smooth.
- 2.5. Exercise. Write $\mathcal{P}ic$ for the stack of principal $GL(1,\mathbb{C})$ bundles on C. Fix a point $x \in C$ and let $\mathcal{P}ic^{fr,x}$ be the moduli stack of line bundles equipped with a framing at x. By definition the groupoid of $\mathcal{P}ic^{fr,x}$ over a test scheme S is the groupoid of pairs (L, f), where L is a line bundle on $S \times C$, and $f : L_{|S \times \{x\}} \to \mathcal{O}_C$ is an isomorphism. Show that $\mathcal{P}ic^{fr,x}$ is a space.
- 2.6. Exercise. Show that the natural map $\mathcal{P}ic^{fr,x} \to \mathcal{P}ic \to \text{Pic}$ from $\mathcal{P}ic^{fr,x}$ to the coarse moduli space Pic of $\mathcal{P}ic$ is an isomorphism.
- 2.7. Exercise. Describe all Hecke correspondences on $\mathcal{P}ic$ and \mathbf{Pic} . Describe the Hecke functors on \mathbf{Pic} and the tensorization functors on the moduli stack of rank one local systems on C.
- 2.8. Exercise. Let $G = GL(n, \mathbb{C})$. Viewing $\mathcal{B}un$ as the stack of all rank n vecor bundles on C, describe the Hecke correspondences on $\mathcal{B}un$ corresponding to the fundamental weights ε_i of $GL(n, \mathbb{C})$. Fix a point $x \in C$ and a rank n vector bundle E on C. Compute the fibers of $p^{\varepsilon_i, x}, q^{\varepsilon_i, x} : \mathcal{H}ecke^{\varepsilon_i, x} \to \mathcal{B}un$ over the point E.
- 2.9. **Exercise.** Let $G = GL(n, \mathbb{C})$. Then $\mathcal{L}oc$ is the stack of vector bundles equipped with flat connections. Let $\mathbb{F} = (F, \nabla)$ be a point of $\mathcal{L}oc$ and let $\mathcal{O}_{\mathbb{F}}$ be the corresponding sky-scraper sheaf on $\mathcal{L}oc$. Compute the action of the tensorization operator $W^{\varepsilon_i,x}$ on $\mathcal{O}_{\mathbb{F}}$.

TUESDAY EXERCISES

1. HECKE OPERATORS IN GEOMETRIC LANGLANDS: LECTURE 2

Categorical tools. Differential graded categories of \mathcal{D} -modules, constructible sheaves, Lagrangian A-branes.

- 1.1. **Exercise.** Let T be a complex torus $T \simeq (\mathbb{C}^{\times})^n$ for some n. Give spectral descriptions for local systems on T and for \mathcal{D} -modules on T in terms of the dual torus T^* , the dual to the Lie algebra \mathfrak{t}^* , and the weight lattice $\Lambda^* = \operatorname{Hom}(T, \mathbb{C}^{\times})$.
- 1.2. Exercise. Classify regular holonomic \mathcal{D} -modules on \mathbb{A}^1 with singular support in

$$T_{\mathbb{A}^1}^*\mathbb{A}^1 \cup T_{\{0\}}^*\mathbb{A}^1 \subset T^*\mathbb{A}^1$$

Describe the corresponding constructible complexes.

- 1.3. Exercise. Let $E = \mathcal{D}_{\mathbb{A}^1}/\mathcal{D}_{\mathbb{A}^1}(\partial_x 1)$ be the "exponential" \mathcal{D} -module on \mathbb{A}^1 . Calculate its stalks and global sections.
- 1.4. **Exercise.** Let $f: Y \hookrightarrow X$ be the inclusion of a locally closed submanifold of a submanifold. Describe the following constructible complexes (all functors are derived):

$$i)f^*\mathbb{C}_X$$
 $ii)f_*\mathbb{C}_Y$ $iii)f_!\mathbb{C}_Y$ $iv)f^!\mathbb{C}_X$

- 1.5. Exercise. Describe natural triangles of constructible complexes which underly the standard long exact sequences of cohomology groups of pairs.
- 1.6. Exercise. Explain how Verdier duality and sheaf operations realize Poincaré duality. Construct Lefschetz duality for a manifold with boundary from sheaf operations.
- 1.7. Exercise. Given a stratification $S = \{S_{\alpha}\}$ of a manifold X, show that an S-constructible complex or \mathcal{D} -module on X will have singular support in $T_{\mathcal{S}}^*X = \coprod_{\alpha} T_{S_{\alpha}}^*X$. Show the converse holds as well.

Show that if the strata of S are the orbits of a contractible group N acting on X, then it is equivalent to consider N-equivariant constructible complexes or \mathcal{D} -modules.

- 1.8. Exercise. Let $f: X \to Y$ be a proper, finite map of complex varieties. Decompose $f_*\mathbb{C}_X$ as a direct sum of complexes and describe the indecomposable summands.
- 1.9. Exercise. Let $f: S^3 \to S^2$ be the Hopf fibration. Compare the constructible complex $f_*\mathbb{C}_{S^3}$ to the sum of its cohomology sheaves.
- 1.10. Exercise. Let $f: \tilde{X} \to X$ be a resolution of the Schubert variety

$$X = \{ P \in Gr_2^4(\mathbb{C}) | \dim(P \cap E_2) \ge 1 \}$$

Calculate the pushforward $f_*\mathbb{C}_{\tilde{X}}$.

Date: July 31, 2012. Freiburg, Summer 2012.

2. Geometric Langlands Duality and its Classical Limit: Lecture 2

Connected components and gerbes. Singular supports for coherent sheaves. The precise formulation of the Geometric Langlands conjecture.

Notation:

G: a complex reductive group;

C: a smooth complex projective curve of genus g > 1;

 $\mathcal{B}un$: the moduli stack of principal G bundles on C;

 $\mathcal{L}oc$: the moduli stack of G-local systems on C.

- 2.1. Exercise. Let G and LG be Langlands dual complex semisimple groups. Check that $\pi_1(G) \cong Z({}^LG)^{\wedge}$ and $Z(G) \cong \pi_1({}^LG)^{\wedge}$.
- 2.2. Exercise. Let $\mathbb{L} = (L, \nabla)$ be a rank one local system on C. For any d > 0 let $g_d : C^{\times d} \to C^{(d)} = C^{\times d}/\mathsf{S}_d$ be the natural projection, and let $\mathsf{aj}^d : C^{(d)} \to \mathsf{Pic}^d$ be the Abel-Jacobi map.

(a) Show that $(g_{d*}\mathbb{L}^{\boxtimes d})^{S_d}$ is a rank one local system.

(b) Show that for any d > 2g - 2 the push-forward $\mathsf{aj}_*^d \left[\left(g_{d*} \mathbb{L}^{\boxtimes d} \right)^{\mathsf{S}_d} \right]$ is a rank one local system.

Translation $(\bullet) \otimes \omega_C$ by the canonical line bundle transports the local system in part (b) to components \mathbf{Pic}^d of \mathbf{Pic} with $d \leq 2g - 2$. This defines a local system $\mathfrak{c}(\mathbb{L})$ on \mathbf{Pic} . Show that $\mathfrak{c}(\mathbb{L})$ is a Hecke eigensheaf with eigenvalue \mathbb{L} .

- 2.3. Exercise. Show that the derived category of coherent D-modules on $B\mathbb{G}_m$ is equivalent to the homotopy category of dg modules over the commutative dg algebra A freely generated over \mathbb{C} by a single generator in degree (-1).
- 2.4. Exercise. Show that we have an equivalence of derived categories $D(\mathbb{Z}, \mathcal{D}) \cong D_{\text{coh}}(B\mathbb{G}_m, \mathcal{O})$.
- 2.5. Exercise. Fix a point $x \in C$. Let \mathcal{M} be the moduli stack of rank one meromorphic local systems on C with logarithmic poles at x. Show that \mathcal{M} is a smooth algebraic stack.
- 2.6. Exercise. Let $(\mathcal{L}, \nabla) \to \mathcal{M} \times C$ be the universal logarithmic local system. Write $D := \mathcal{M} \times \{x\} \subset \mathcal{M} \times C$ for the divisor corresponding to $x \in C$. Here ∇ is a relative connection on \mathcal{L} with logarithmic poles along D. By definition ∇ is a \mathbb{C} -linear map $\nabla : \mathcal{L} \to \mathcal{L} \otimes p_C^* \Omega_C^1(D)$ satisfying the Leibnitz rule with respect to multiplication by locally defined holomorphic functions. The residue $\operatorname{res}_D(\nabla)$ is a algebraic section of \mathcal{O}_D , i.e. can be viewed as a regular function $r : \mathcal{M} \to \mathbb{C}$. Show that the moduli stack $\operatorname{\mathcal{L}oc}_{GL(1,\mathbb{C})}$ of rank one local systems on C is naturally isomorphic to the zero locus of the section r, i.e. show that the natural map $\operatorname{\mathcal{L}oc}_{GL(1,\mathbb{C})} \to \mathcal{M}$ induces an isomorphism

$$\mathcal{L}oc_{GL(1,\mathbb{C})}\cong\mathcal{M} imes_{0,\mathbb{C},m{r}}\mathcal{M}.$$

2.7. Exercise. Define the derived stack $\mathbb{R} \operatorname{\mathcal{L}oc}_{GL(1,\mathbb{C})}$ of rank one local systems as the derived zero locus of r, i.e.

$$\mathbb{R} \operatorname{\mathcal{L}oc}_{GL(1,\mathbb{C})} \cong \mathcal{M} \times_{0,\mathbb{C},\boldsymbol{r}}^h \mathcal{M}.$$

Prove that the derived structure on $\mathbb{R} \operatorname{\mathcal{L}oc}_{GL(1,\mathbb{C})}$ splits: show that $\mathbb{R} \operatorname{\mathcal{L}oc}_{GL(1,\mathbb{C})}$ is isomorphic to the dg stack whose underlying stack is $\operatorname{\mathcal{L}oc}_{GL(1,\mathbb{C})}$, and whose structure sheaf is $\mathcal{O}_{\operatorname{\mathcal{L}oc}_{GL(1,\mathbb{C})}} \otimes A$, where A is the dg algebra from Exercise ??.