MSRA SH Triton Study Group 5. Flash-Attention (Algorithm)

2025/08/15

Attention

•
$$\boldsymbol{Q} \in \mathbb{R}^{N_Q \times D}$$
; $\boldsymbol{K}, \boldsymbol{V} \in \mathbb{R}^{N_K \times D}$

•
$$S = \frac{QK^{\mathrm{T}}}{\sqrt{D}} \in \mathbb{R}^{N_Q \times N_K}$$

•
$$P_{ij} = \operatorname{softmax}(S_{ij}) = \frac{\exp(S_{ij} - \max_{j}(S_{ij}))}{\sum_{j} \exp(S_{ij} - \max_{j}(S_{ij}))}$$

•
$$\boldsymbol{O} = \boldsymbol{P}\boldsymbol{V} \in \mathbb{R}^{N_Q \times D}$$

Self-Attention with Causal Mask

• Definition:

•
$$N_Q = N_K$$

•
$$P_{ij} \leftarrow \begin{cases} P_{ij}, i \leq j \\ -\infty, i > j \end{cases}$$

- Challenges:
 - The big $N_Q \times N_K$ tensor
 - softmax() is inefficient
 - Redundant calculation on masked $m{P}_{ij}$

Flash Attention

Fused Attention: GeMM-Lever Efficiency

Assume 100% L2 cache hit ratio

	Total HBM Access	Total Calculation	Arithmetic Intensity
$S = QK^{\mathrm{T}}/\sqrt{D}$	$N_Q D + N_K D + N_Q N_K$	$N_Q N_K D$	Memory-bound
$\boldsymbol{P}_{ij} = \operatorname{softmax}(\boldsymbol{S}_{ij})$	$2N_QN_K$	CN_QN_K	Memory-bound
O = PV	$N_Q N_K + N_K D + N_Q D$	$N_Q N_K D$	Memory-bound
Fused attn()	$2N_QD + 2N_KD$	$(2D+C)N_QN_K$	Balanced

• $-N_QN_K$ GPU HBM cost, $-4N_QN_K$ GPU HBM access

Fused Attention: GeMM-Lever Efficiency

• Assume no L2 cache; $T_Q = T_K = D$; "best intensity" $E \coloneqq \frac{T_Q T_K}{T_Q + T_K}$

	Total HBM Access	Total Calculation	Arithmetic Intensity	Latency
$S = \frac{QK^{\mathrm{T}}}{\sqrt{D}}$	$\frac{N_K}{T_K} N_Q D + \frac{N_Q}{T_Q} N_K D + N_Q N_K$	$N_Q N_K D$	$\frac{T_Q T_K}{T_Q + T_K + \frac{T_Q T_K}{D}} < E$	$1:= \operatorname{mem}(3N_QN_K)$
$P_{ij} = \operatorname{softmax}(S_{ij})$	$2N_QN_K$	CN_QN_K	$\frac{C}{2} \ll E$	$\frac{2}{3}$
O = PV	$N_Q N_K + \frac{N_Q}{T_Q} N_K D + N_Q D$	$N_Q N_K D$	$\frac{T_Q T_K}{\frac{T_Q T_K}{D} + T_K + \frac{T_K}{N_K} T_Q} \approx E$	$\approx \frac{2}{3}$
Fused attn()	$2\frac{N_K}{T_K}N_QD + 2\frac{N_Q}{T_Q}N_KD$	$(2D+C)N_QN_K$	$\frac{2D+C}{2D}\frac{T_QT_K}{T_Q+T_K}\approx E$	$\frac{4}{3}$

Online Softmax

$$\mathbf{P}_{ij}^{0} = \frac{\exp\left(S_{ij}^{0} - \max_{0 \le l < T}(S_{il}^{0})\right)}{\sum_{l=0}^{T} \exp\left(S_{ij}^{0} - \max_{0 \le l < T}(S_{il}^{0})\right)} = \frac{\exp\left(S_{ij}^{0} - M_{i}^{0}\right)}{L_{i}^{0}}$$

$$\mathbf{P}_{ij}^{1} = \frac{\exp\left(S_{ij}^{1} - \max_{0 \le l < 2T}(S_{il}^{1})\right)}{\sum_{l=T}^{2T} \exp\left(S_{ij}^{1} - \max_{T \le l < 2T}(S_{il}^{1})\right)} = \frac{\exp\left(S_{ij}^{1} - M_{i}^{1}\right)}{L_{i}^{1}}$$

- $M_i^{[0,1]} = \max(M_i^0, M_i^1)$
- $L_i^{[0,1]} = \exp\left(M_i^0 M_i^{[0,1]}\right) L_i^0 + \exp\left(M_i^1 M_i^{[0,1]}\right) L_i^1$

•
$$P_{ij}^{[0,1]} = \frac{\exp\left(S_{ij}^{[0,1]} - \max_{0 \le l < 2T} \left(S_{il}^{[0,1]}\right)\right)}{\sum_{l=0}^{2T} \exp\left(S_{ij}^{[0,1]} - \max_{0 \le l < 2T} \left(S_{il}^{[0,1]}\right)\right)} = \frac{\exp\left(S_{ij}^{[0,1]} - M_{i}^{[0,1]}\right)}{L_{i}^{[0,1]}}$$

- For $1 \le j \le \frac{N}{T}$
 - Load $oldsymbol{S}_{ij}$
 - $M_i^{\text{local}} \leftarrow \max_{-1}(S_{ij})$
 - $L_i^{\text{local}} \leftarrow \text{sum}_{-1} \left(\exp(\mathbf{S}_{ij} M_i^{\text{local}}) \right)$
 - $P_{ij}^{local} \leftarrow \frac{\exp(S_{ij} M_i^{local})}{L_i^{local}}$
 - Update (M_i, L_i)
- For $1 \le j \le \frac{N}{T}$ $P_{ij} \leftarrow \frac{\exp(S_{ij} M_i)}{L_i}$ $= \exp(M_i^{\text{local}} M_i) \frac{L_i^{\text{local}}}{L_i} P_{ij}^{\text{local}}$

How to Fuse: Forward

$$\begin{cases}
\mathbf{S}_{ij}^{0} = D^{-1/2} \sum_{k=0}^{D} \mathbf{Q}_{ik} \mathbf{K}_{jk}^{0} \\
\mathbf{S}_{ij}^{1} = D^{-1/2} \sum_{k=0}^{D} \mathbf{Q}_{ik} \mathbf{K}_{jk}^{1}
\end{cases}$$

$$\begin{cases}
\mathbf{P}_{ij}^{0} = \frac{\exp\left(\mathbf{S}_{ij}^{0} - \max_{0 \le l < T}(\mathbf{S}_{il}^{0})\right)}{\sum_{l=0}^{T} \exp\left(\mathbf{S}_{ij}^{0} - \max_{0 \le l < T}(\mathbf{S}_{il}^{0})\right)} = \frac{\exp\left(\mathbf{S}_{ij}^{0} - M_{i}^{0}\right)}{L_{i}^{0}} \\
\mathbf{P}_{ij}^{1} = \frac{\exp\left(\mathbf{S}_{ij}^{1} - \max_{T \le l < 2T}(\mathbf{S}_{il}^{1})\right)}{\sum_{l=T}^{2T} \exp\left(\mathbf{S}_{ij}^{1} - \max_{T \le l < 2T}(\mathbf{S}_{il}^{1})\right)} = \frac{\exp\left(\mathbf{S}_{ij}^{1} - M_{i}^{1}\right)}{L_{i}^{1}}
\end{cases}$$

•
$$M_i^{[0,1]} = \max(M_i^0, M_i^1)$$

•
$$L_i^{[0,1]} = \exp\left(M_i^0 - M_i^{[0,1]}\right) L_i^0 + \exp\left(M_i^1 - M_i^{[0,1]}\right) L_i^1$$

$$\bullet \quad \boldsymbol{P}_{ij}^{[0,1]} = \frac{\exp\left(\boldsymbol{S}_{ij}^{[0,1]} - \max_{0 \le l < 2T} \left(\boldsymbol{S}_{il}^{[0,1]}\right)\right)}{\sum_{l=0}^{2T} \exp\left(\boldsymbol{S}_{ij}^{[0,1]} - \max_{0 \le l < 2T} \left(\boldsymbol{S}_{il}^{[0,1]}\right)\right)} = \frac{\exp\left(\boldsymbol{S}_{ij}^{[0,1]} - M_{i}^{[0,1]}\right)}{L_{i}^{[0,1]}}$$

$$\begin{cases}
\boldsymbol{O}_{ik}^{0} = \sum_{j=0}^{T} \boldsymbol{P}_{ij}^{0} \boldsymbol{V}_{jk}^{0} \\
\boldsymbol{O}_{ik}^{1} = \sum_{j=T}^{2T} \boldsymbol{P}_{ij}^{1} \boldsymbol{V}_{jk}^{1}
\end{cases}$$

$$\bullet \quad \boldsymbol{O}_{ik}^{[0,1]} = \sum_{j=0}^{2T} \boldsymbol{P}_{ij}^{[0,1]} \boldsymbol{V}_{jk}^{[0,1]} = \sum_{j=0}^{T} \boldsymbol{P}_{ij}^{[0,1]} \boldsymbol{V}_{jk}^{0} + \sum_{j=T}^{2T} \boldsymbol{P}_{ij}^{[0,1]} \boldsymbol{V}_{jk}^{1}$$

$$\bullet \quad = \sum_{j=0}^{T} \frac{\exp\left(\boldsymbol{S}_{ij}^{0} - \boldsymbol{M}_{i}^{[0,1]}\right)}{L_{i}^{[0,1]}} \boldsymbol{V}_{jk}^{0} + \sum_{j=T}^{2T} \frac{\exp\left(\boldsymbol{S}_{ij}^{1} - \boldsymbol{M}_{i}^{[0,1]}\right)}{L_{i}^{[0,1]}} \boldsymbol{V}_{jk}^{1}$$

$$\bullet \quad = \frac{\exp\left(\boldsymbol{M}_{i}^{[0,1]}\right)}{\exp\left(\boldsymbol{M}_{i}^{0}\right)} \frac{L_{i}^{0}}{L_{i}^{[0,1]}} \sum_{n=0}^{T} \frac{\exp\left(\boldsymbol{S}_{ij}^{0} - \boldsymbol{M}_{i}^{0}\right)}{L_{i}^{0}} \boldsymbol{V}_{jk}^{0} + \frac{\exp\left(\boldsymbol{M}_{i}^{[0,1]}\right)}{\exp\left(\boldsymbol{M}_{i}^{1}\right)} \frac{L_{i}^{1}}{L_{i}^{[0,1]}} \sum_{n=T}^{2T} \frac{\exp\left(\boldsymbol{S}_{ij}^{1} - \boldsymbol{M}_{i}^{1}\right)}{L_{i}^{1}} \boldsymbol{V}_{jk}^{1}$$

•
$$= \frac{\exp(M_i^{[0,1]})}{\exp(M_i^0)} \frac{L_i^0}{L_i^{[0,1]}} \boldsymbol{O}_{ik}^0 + \frac{\exp(M_i^{[0,1]})}{\exp(M_i^1)} \frac{L_i^1}{L_i^{[0,1]}} \boldsymbol{O}_{ik}^1$$

•
$$\coloneqq \alpha^0 \beta^0 \boldsymbol{O}_{ik}^0 + \alpha^1 \beta^1 \boldsymbol{O}_{ik}^1$$

How to Fuse: Forward

- Tile $m{Q}, m{O}$ into $rac{N_Q}{T_O}$ blocks $m{Q}_i, m{O}_i$; Tile $m{K}, m{V}$ into $rac{N_K}{T_K}$ blocks $m{K}_j, m{V}_j$
- Parallel for $1 \leq i \leq \frac{N_Q}{T_Q}$ in Registers: $\mathbf{Q}_i \leftarrow (0)_{\mathrm{float32}}^{T_Q \times D}, M_i \leftarrow (-\infty)_{\mathrm{float32}}^{T_Q}, L_i \leftarrow (0)_{\mathrm{float32}}^{T_Q}$
 - For $1 \le j \le \frac{N_K}{T_{-1}}$
 - $S_{ij} \leftarrow \frac{Q_i K_j^{\mathrm{T}}}{\sqrt{D}}$, $M_i^{\mathrm{local}} \leftarrow \max_{1} (S_{ij})$, $L_i^{\mathrm{local}} \leftarrow \sup_{1} (\exp(S_{ij} M_i^{\mathrm{local}}))$
 - Update (M_i, L_i) and calc (α, β) given $(M_i, M_i^{local}, L_i, L_i^{local})$
 - $P_{ij} \leftarrow \frac{\exp(S_{ij}-M_i)}{I_{ij}}$, $O_i \leftarrow \alpha\beta O_i + P_{ij}V_j$
 - Save O_i to GPU HBM

How to Fuse: Backward

$$\bullet \frac{\partial \phi}{\partial \mathbf{V}} = \mathbf{P}^{\mathrm{T}} \cdot \frac{\partial \phi}{\partial \mathbf{O}}, \ \frac{\partial \phi}{\partial \mathbf{P}} = \frac{\partial \phi}{\partial \mathbf{O}} \cdot \mathbf{V}^{\mathrm{T}}$$

$$\bullet \frac{\partial \phi}{\partial S_i} = \frac{\partial \phi}{\partial P_i} \left(\operatorname{diag}(\boldsymbol{P}_i) - \boldsymbol{P}_i^{\mathrm{T}} \boldsymbol{P}_i \right) = \frac{\partial \phi}{\partial P_i} \circ \boldsymbol{P}_i - \left(\frac{\partial \phi}{\partial \boldsymbol{P}_i} \cdot \boldsymbol{P}_i^{\mathrm{T}} \right) \boldsymbol{P}_i$$

$$\bullet \frac{\partial \boldsymbol{\phi}}{\partial \boldsymbol{P}_{i}} \cdot \boldsymbol{P}_{i}^{\mathrm{T}} = \left(\frac{\partial \boldsymbol{\phi}}{\partial \boldsymbol{o}_{i}} \cdot \boldsymbol{V}^{\mathrm{T}}\right) \cdot \boldsymbol{P}_{i}^{\mathrm{T}} = \frac{\partial \boldsymbol{\phi}}{\partial \boldsymbol{o}_{i}} \cdot \boldsymbol{O}_{i}^{\mathrm{T}} = \sum_{k=0}^{D} \frac{\partial \boldsymbol{\phi}}{\partial \boldsymbol{o}_{ik}} \boldsymbol{O}_{ik} \coloneqq \boldsymbol{\Delta}_{i}$$

•
$$\frac{\partial \phi}{\partial S} = \left(\frac{\partial \phi}{\partial P} - \Delta\right) \circ P$$

•
$$\frac{\partial \phi}{\partial \boldsymbol{Q}} = \frac{\partial \phi}{\partial \boldsymbol{S}} \cdot \boldsymbol{K}, \frac{\partial \phi}{\partial \boldsymbol{K}} = \frac{\partial \phi}{\partial \boldsymbol{S}^{\mathrm{T}}} \cdot \boldsymbol{Q}$$

Flash Attention: Tips

- Based on small head size (to store Q^i, K^j, V^j, O^i in SRAM)
- The two for-loops are swapable
- Training: save M and L for backward
- Backward is much slower (recompute & limited by SRAM)
- Skip masked blocks

Flash Attention Implementations

- Official: Dao-AlLab/flash-attention
- Easy to modify: openai/triton
- For C++ template lovers: nvidia/cutlass
- Compatibility: facebookresearch/xformers

Flash Attention 2

- Forward:
 - $\boldsymbol{o}_i \leftarrow \alpha \boldsymbol{o}_i + \exp(\boldsymbol{S}_{ij} M_i) \boldsymbol{V}_j; \boldsymbol{o}_i \leftarrow \frac{\boldsymbol{o}_i}{L_i}$
 - Save $L' = M + \log(L)$ for recompute
- Backward:

•
$$P = \frac{\exp(S-M)}{L} = \exp(S-L')$$

- Long Context Generation:
 - Partition on K/V caches
 - Another kernel to combine results
- Parallelism Workload Balance

Forward pass

Backward pass

Reading Materials

- Flash Attention: [2205.14135] FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness
- Flash Attention 2: [2307.08691] FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning
- Flash Decoding: <u>Flash-Decoding for long-context inference –</u>
 <u>PyTorch</u>
- Flash Attention 3: [2407.08608] FlashAttention-3: Fast and Accurate Attention with Asynchrony and Low-precision