THE BOEING COMPANY

Prepreg Material Specification: BMS 8-212, TYPE II, CLASS 1 or 3, GRADE 145 or 190

Resin Content:

35 (% WT)

Process Specification:

BAC 5317-1

70° F/DRY ENVIRONMENT, (0/±45/90) LAMINATES

Figure 2.2.1-4 Nominal $\alpha_{\mathbf{x}}$ Coefficient of Thermal Expansion

THE BOEING COMPANY

Prepreg Material Specification: BMS 8-212, TYPE II, CLASS 1 or 3, GRADE 145 or 190

Resin Content:

35 (% WT)

Process Specification:

BAC 5317-1

(0/±45/90) LAMINATES

PERCENT ± 45° PLIES

 $E_{x \text{ ENVIRONMENT}} = E_{x \text{ NOMINAL}} X MAF_ENV$

Figure 2.2.1-5 E_X Environmental Adjustment Factor

THE BOEING COMPANY

Prepreg Material Specification: BMS 8-212, TYPE II, CLASS 1 or 3, GRADE 145 or 190

Resin Content

35 (% WT)

Process Specification:

BAC 5317-1

(0/±45/90) LAMINATES

G_{XYENVIRONMENT} = G_{XYNOMINAL} X GMAF_ENV DG-100-529

Figure 2.2.1-6 G_{xy} Environmental Adjustment Factors

THE BOEING COMPANY

Prepreg Material Specification: BMS 8-212, TYPE II, CLASS 1 or 3, GRADE 145 or 190

Resin Content:

35 (% WT)

Process Specification:

BAC 5317-1

70° F/DRY ENVIRONMENT, (0/±45/90) LAMINATES

PERCENT ± 45° PLIES

 $E_{x \text{ TENSION}} = E_{x \text{ NOMINAL}} X MAFT$

Ex COMPRESSION = Ex NOMINAL X MAFC

Figure 2.2.1-7 E_x Tension/Compression Adjustment Factors

THE BOEING COMPANY

2.2.2 BMS 8-212, Type III, Class 1 or 3, Grade 145 or 190

This specification applies to 350°F cure epoxy resin impregnated BMS 9-8 Type I carbon fiber (average modulus range 32 to 35 msi) unidirectional tape.

Type III:

37 percent by weight resin content.

Class 1:

Unidirectional tape for manual layup.

Class 3:

Unidirectional tape for use with automated tape laying equipment or manual

layup.

Contents:

CT3 1 1	0001	TOI .	T)	
Table	2.2.2-1	PIV	Prot	perties

Figure 2.2.2-1	Nominal E _x Modulus Plot
Figure 2.2.2-2	Nominal G _{XV} Modulus Plot
Figure 2.2.2-3	Nominal v _{XV} Poisson's Ratio Plot
Figure 2.1.1-4	Nominal a Coefficient of Thermal Expansion Plot
Figure 2.2.2-5	E _X Environmental Adjustment Factors Plot
Figure 2.2.2-6	G _{XV} Environmental Adjustment Factors Plot
Figure 2.2.2-7	E _X Tension/Compression Adjustment Factors Plot

THE BOEING COMPANY

Table 2.2.2-1 Ply Properties

TABLE: 2.2.2-1		PLY PRO	PERTIES					
Prepreg Material Spec	cicification: Bl	VIS 8-212, TYF	E III CL	ASS 1 or	3, GRAD	DE 145 or	190	NTT-COLOR TO THE PARTY OF THE P
Resin Content:	37	(% WT)						
Cured Ply Thickness:	0.0	0059 (in) - GR	ADE 145	0	ni) 08 00 .) - GRADI	E 190	
Density:	0.0	056 lb/ln ³						
Process Specification:	BA	AC 5317-1						
					RONMEN	TAL COND	ITION	
PROPERTY		UNIT		5°F	-)°F		0°F (5)
		DRY	WET	DRY	WET	DRY	WET	
MODULUS ^②	E ₁ ①	Msi	4		1	7.1		
	. E ₂	Msl		<u>.</u>	1.28			
	G ₁₂	MsI	0.82		0.66		,	0.54
•	, G ₁₃ ∴ √	Msi	0.82		0.66			0.54
	G ₂₃	Msi	0.82		0.66	eng.		0.54
POISSON'S RATIO	V 12				0.	34-		
COEFFICIENTS OF LINEAR THERMAL	α1	in/in°F	.02 x	10 -6			.02 x	10 ⁻⁶
EXPANSION ③	α2	ln/in°F	15 x	10 ⁻⁶			15 x	10 -6
COEFFECIENTS OF LINEAR MOISTURE	β 1	in/in %M						
EXPANSION (4)	β2	in/in %M				-		
THERMAL CONDUCTIVITY	κ ₁	BTU/(hr ft °F)						
	κ ₂	BTU/(hr ft °F)						
	к _з	BTU/(hr ft °F)						

- ① E₁ is the average of tension and compression moduli. For special analyses use tension/compression modulus adjustment factors to determine tension or compression E₁.
- 2 Modulus values are secant values at a strain level of 4000 μ in/in. For special analysis use modulus versus strain curves to determine secant values at the desired strain level.
- 3 Values are for expansion between -75° F and 70° F, and 70° F and 180° F.
- 4 %M = Percent absorbed moisture by weight.
- (5) 180°F values are to be used for 160°F environment.

THE BOEING COMPANY

Prepreg Material Specification: BMS 8-212, TYPE III, CLASS 1 or 3, GRADE 145 or 190

Resin Content:

37 (% WT)

Process Specification:

BAC 5317-1

Figure 2.2.2-1 Nominal $\mathbf{E}_{\mathbf{x}}$ Modulus

THE BOEING COMPANY

Prepreg Material Specification: BMS 8-212, TYPE III, CLASS 1 or 3, GRADE 145 or 190

Resin Content:

37 (% WT)

Process Specification:

BAC 5317-1

70° F/DRY ENVIRONMENT, (0/±45/90) LAMINATES

PERCENT ± 45° PLIES

Figure 2.2.2-2 Nominal G_{xy} Modulus

THE BOEING COMPANY

Prepreg Material Specification: BMS 8-212, TYPE III, CLASS 1 or 3, GRADE 145 or 190

Resin Content:

37 (% WT)

Process Specification:

BAC 5317-1

Figure 2.2.2-3 Nominal v_{xy} Poisson's Ratio

THE BOEING COMPANY

Prepreg Material Specification: BMS 8-212, TYPE III, CLASS 1 or 3, GRADE 145 or 190

Resin Content:

37 (% WT)

Process Specification:

BAC 5317-1

Figure 2.2.2-4 Nominal $\alpha_{\mathbf{x}}$ Coefficient of Thermal Expansion

THE BOEING COMPANY

Prepreg Material Specification: BMS 8-212, TYPE III, CLASS 1 or 3, GRADE 145 or 190

Resin Content:

37 (% WT)

Process Specification:

BAC 5317-1

(0/±45/90) LAMINATES

PERCENT ± 45° PLIES

E_{x ENVIRONMENT} = E_{x NOMINAL} X MAF_ENV

Figure 2.2.2-5 $\mathbf{E_{X}}$ Environmental Adjustment Factors

THE BOEING COMPANY

Prepreg Material Specification: BMS 8-212, TYPE III, CLASS 1 or 3, GRADE 145 or 190

Resin Content:

37 (% WT)

Process Specification:

BAC 5317-1

(0/±45/90) LAMINATES

GXYENVIRONMENT = GXYNOMINAL X GMAF_ENV

Figure 2.2.2-6 G_{xy} Environmental Adjustment Factors

THE BOEING COMPANY

Prepreg Material Specification: BMS 8-212, TYPE III, CLASS 1 or 3, GRADE 145 or 190

Resin Content:

37 (% WT)

Process Specification:

BAC 5317-1

70° F/DRY ENVIRONMENT, (0/±45/90) LAMINATES

PERCENT ± 45° PLIES

ExTENSION = ExNOMINAL X MAFT

Ex COMPRESSION = Ex NOMINAL X MAFC

Figure 2.2.2-7 $\mathbf{E_{x}}$ Tension/Compression Adjustment Factors

THE BOEING COMPANY

2.2.3 BMS 8-212, Type IV, Class 2, Style 3K-70-PW

This specification applies to $350^{\circ}F$ cure epoxy resin impregnated BMS 9-8 Type I carbon fiber (average modulus range 32 to 35 msi) woven fabric.

Type IV:

40 percent by weight resin content.

Class 2:

Woven Fabric Prepreg.

Contents:

Table 2.2.3-1	Ply Properties
Figure 2.2.3-1	Nominal E _x Modulus Plot
Figure 2.2.3-2	Nominal G _{XV} Modulus Plot
Figure 2.2.3-3	Nominal v _{XV} Poisson's Ratio Plot
Figure 2.1.1-4	Nominal ax Coefficient of Thermal Expansion Plot
Figure 2.2.3-5	E _X Environmental Adjustment Factors Plot
Figure 2.2.3-6	G _{XY} Environmental Adjustment Factors Plot
Figure 2.2.3-7	Ex Tension/Compression Adjustment Factors Plot

THE BOEING COMPANY

Table 2.2.3-1 Ply Properties

TABLE: 2.2.3-1		PLY PROP	ERTIES					consideration with
Prepreg Material Speci	cification: BM	S 8-212, TYPI	≣ IV, CL	ASS 2, S	TYLE 3K	-70-PW		
Resin Content:	40 ((% WT)						
Cured Ply Thickness:	0.0	083 (in)						
Density:	0.0	55 lb/in ³						
Process Specification:	ВА	C 5317-1						
					RONMENT	-commentum management of the comments of the c		2- 6
PROPERTY		TINU	-75	Maria Caraca Car		°F	DRY	°F ⑤
		DRY	WET	DRY	WET	DRT	AACI	
MODULUS ^②	E ₁ ①	Msi			.8	30		
	E ₂	Msi	•		8.:	30——		
	G ₁₂	Msi	0.87		0.70			0.45
	G ₁₃	Msi	0.87		0.70			0.45
	G 23	Msi	0.87		0.70			0.45
POISSON'S RATIO	V 12		•	and the state of t	 0.	06		
COEFFICIENTS OF	α 1	in/in°F	1.6 x	10 -6			1.6 x	10 -6
EXPANSION 3	α2	in/in ° F	1.6 x	10 -6			1.6 >	10 -6
COEFFECIENTS OF LINEAR MOISTURE	β 1	in/in %M						
EXPANSION 4	β 2	in/in %M						
THERMAL	κ ₁	BTU/(hr ft °F)						
	κ2	BTU/(hr ft °F)						
: :	κ ₃ .	BTU/(hr ft °F)						<u></u>

- ① E₁ is the average of tension and compression moduli. For special analyses use tension/compression modulus adjustment factors to determine tension or compression E₁.
- 2 Modulus values are secant values at a strain level of 4000 μ in/in. For special analysis use modulus versus strain curves to determine secant values at the desired strain level.
- 3 Values are for expansion between -75° F and 70° F, and 70° F and 180° F.
- 4 %M = Percent absorbed moisture by weight.
- 5) 180°F values are to be used for 160°F environment.

THE BOEING COMPANY

Prepreg Material Specification: BMS 8-212, TYPE IV, CLASS 2, STYLE 3K-70-PW

Resin Content:

40 (% WT)

Process Specification:

BAC 5317-1

Figure 2.2.3-1 Nominal E_x Modulus

THE BOEING COMPANY

Prepreg Material Specification: BMS 8-212, TYPE IV, CLASS 2, STYLE 3K-70-PW

Resin Content:

40 (% WT)

Process Specification:

BAC 5317-1

Figure 2.2.3-2 Nominal G_{xy} Modulus

THE BOEING COMPANY

Prepreg Material Specification: BMS 8-212, TYPE IV, CLASS 2, STYLE 3K-70-PW

Resin Content:

40 (% WT)

Process Specification:

BAC 5317-1

Figure 2.2.3-3 Nominal v_{xy} Poisson's Ratio

THE BOEING COMPANY

Prepreg Material Specification: BMS 8-212, TYPE IV, CLASS 2, STYLE 3K-70-PW

Resin Content:

40 (% WT)

Process Specification:

BAC 5317-1

Figure 2.2.3-4 Nominal $\alpha_{\mathbf{x}}$ Coefficient of Thermal Expansion

THE BOEING COMPANY

Prepreg Material Specification: BMS 8-212, TYPE IV, CLASS 2, STYLE 3K-70-PW

Resin Content:

40 (% WT)

Process Specification:

BAC 5317-1

(0/±45/90) LAMINATES

PERCENT ± 45° PLIES

Exenvironment = Exnominal X MAF_ENV

Figure 2.2.3-5 $\mathbf{E_x}$ Environmental Adjustment Factors

THE BOEING COMPANY

Prepreg Material Specification: BMS 8-212, TYPE IV, CLASS 2, STYLE 3K-70-PW

Resin Content:

40 (% WT)

Process Specification:

BAC 5317-1

(0/±45/90) LAMINATES

GXYENVIRONMENT = GXYNOMINAL X GMAF_ENV

Figure 2.2.3-6 G_{xy} Environmental Adjustment Factors

THE BOEING COMPANY

Prepreg Material Specification: BMS 8-212, TYPE IV, CLASS 2, STYLE 3K-70-PW

Resin Content:

40 (% WT)

Process Specification:

BAC 5317-1

70° F/DRY ENVIRONMENT, (0/±45/90) LAMINATES

PERCENT ± 45° PLIES

Ex TENSION = Ex NOMINAL X MAFT

 $E_{x \text{ COMPRESSION}} = E_{x \text{ NOMINAL}} X MAFC$

Figure 2.2.3-7 E_x Tension/Compression Adjustment Factors

BOLTED JOINT TENSION STRENGTH

TAPE & FABRIC

Graphite/Epoxy BMS 8-212 Class 1&2 per BAC 5562

CAUTION: DATA MAY NOT BE VALID FOR LAMINATES WITH BUTT

SPLICES NEAR FASTENER(s)

Room Temperature

D/t 1.0 \longrightarrow 3.0

S/D 4.0 - 8.0

See Figure 4.3.3-2 For Restriction On Minimum

Percentage Of ± 45° Plies For Bearing Strength

From Reference 1, Page 4.1 and Reference 3 and Boeing Data

FIGURE 4.3.3-1

Boeing D6-44714 4-25

大名 医皮肤

POISSON'S RATIO

TAPE
GRAPHITE/EPOXY, BMS 8-212 Type II CLASS 1. PER BAC 5562

BOLTED JOINT BEARING STRENGTH

TAPE AND FABRIC

Graphite/Epoxy BMS 8-212 Class 1 & 2 per BAC 5562

ROOM TEMPERATURE

THIS DATA IS VALID FOR LAMINATES CONTAINING A MINIMUM OF 40% \$\frac{45\times}{45\times}\$ PLIES, AND FOR A COUNTERSINK DEPTH LESS THAN 2/3 THE LAMINATE THICKNESS.

From Reference 1, Page 4.2, Reference 2, and Boeing Data

Figure 4.3.3 - 2

POISSON'S RATIO

FABRIC GRAPHITE/EPOXY

3 8-212 CLASS 2, PER BAC 5562

RC=NOMINAL RESIN CONTENT PER BMS 8-212

FIGURE 4.3.5-3 BOEING D6-44714 4-38

IN-PLANE SHEAR MODULUS AND ALLOWABLE STRAINS

FABRIC

GRAPHITE/EPOXY, BMS 8-212 CLASS 2, PER BAC 5562

CAUTION : PROPERTIES IN THE CROSS - HATCHED REGION MAY BE ADVERSELY
AFFECTED BY TEMPERATURE AND HUMIDITY. RC= NOMINAL RESIN CONTENT PER BMS 8-212

FFECTED BY TEMPERATURE AND	RC= NUMINAL RES		ESTRAIN
LIMIT & ULTIMATE STRAIN (IN/IN)	LIMIT STRAIN	"A" BASIS	"B" BASIS
CANTUATE CHEAD 6	.0053	.0108	.0117
SANDWICH SHEAR Exy	1	.0070	.0076
SANDWICH SHEAR XY			

① ULTIMATE STRAIN ÷ 1.5

IN-PLANE SHEAR MODULUS AND ALLOWABLE STRAINS

TAPE

GRAPHITE/EPOXY, BMS 8-212 CLASS 1, PER BAC 5562

LIMIT & ULŢIMATE STRAIN (IN/IN)

	ULTIMATE	STRAIN
est de la companya d		

LIMIT STRAIN "A" BASIS "B" BASIS SHEAR E _{XV} .0053 .0133 .0144				
SHEAR E		LIMIT STRAIN	"A" BASIS	"B" BASIS
	SHEAR Exy	. 0053	.0133	.0144

CAUTION : PROPERTIES IN THE CROSS - HATCHED REGION MAY BE ADVERSELY AFFECTED BY TEMPERATURE AND HUMIDITY.

FIGURE 4.3.1-4
BOEING D6-44714
4-17

ELASTIC MODULUS AND ALLOWABLE STRAINS

FABRIC

GRAPHITE/EPOXY, BMS 8-212 CLASS 2, PER BAC 5562

CAUTION : PROPERTIES IN THE CROSS - HATCHED REGION

MAY BE ADVERSELY AFFECTED BY TEMPERATURE

RC-NOM RESIN CONTENT PER BMS 8-212

HUMIDITY.		ULTIMAT	E STRAIN
LIMIT & ULTIMATE STRAIN IN/IN)	LIMIT STRAIN	"A" BASIS	"B" BASIS
	.0035	.0059	.0064
LAMINATE TENSION	.0027	.0054	.0059
The second secon	(1)	.0043	.0046
SANDVICH COMPRESSION E	1	.0035	.0038
SANDWICH COMPRESSION E _C			

① ULTIMATE STRAIN ÷ 1.5

FIGURE 4.3.1-3 BOEING D6-44714

4-16

ELASTIC MODULUS AND ALLOWABLE STRAINS

TAPE
GRAPHITE/EPOXY, BMS 8-212 TYPE III CLASS 1, PER BAC 5562

<u>CAUTION</u>: PROPERTIES IN THE CROSS - HATCHED REGION MAY BE ADVERSELY AFFECTED BY TEMPERATURE AND HUMIDITY.

LIMIT & ULTIMATE STRAIN (IN/IN)		ULTIMATE STRAIN		
		LIMIT STRAIN	"A" BASIS	"B" BASIS
	TENSION Et	.0035	.0082	.0090
	COMPRESSION Ec	.0027	.0067	.0072

FIGURE 4.3.1-2 BOEING D6-44714 4-15

FLASTIC MODULUS AND ALLOWABLE STRAINS

TAPE

GRAPHITE/EPOXY, BMS 8-212 TYPE II CLASS 1, PER BAC 5562

CAUTION : PROPERTIES IN THE CROSS - HATCHED REGION MAY BE ADVERSELY AFFECTED BY TEMPERATURE AND HUMIDITY.

LIMIT & ULTIMATE STRAIN (IN/IN)		ULTIMAT	E STRAIN
	LIMIT STRAIN	"A" BASIS	"B" BASIS
TENSION Et	.0035	.0082	.0090
COMPRESSION Ec	.0027	.0067	.0072

FIGURE 4.3.1-1 BOEING D6-44714 4-14

Mechanical Properties (con't) 4.3

All properties presented are based on laminate thickness less than .30 inches. No change in these properties is anticipated when tests are completed on laminate thicknesses greater than .30 inch. Laminate thickness should be calculated using ply thickness values shown below. Adjustments for variations in measured fiber volume or part thickness should not be made.

					1
CURED THI	CKNESS TABLE (BMS 8-212)	NOMINAL CL	JRED THICKN	SS-INCHES*	par pily
FORM	BMS 8-212 DESIGNATION	TYPE II	TYPE III	TYPE IV	R
Tape	Class 1 Grade 95	.0037	. 0039		
	Class 1 Grade 145	.0056	.0059		
	Class 1 Grade 190	.0074	.0078		
Fabric	Class 2 3K-70-P	.0075	-	œ	
	Class 2 3K-70-PW	.0075	-	.0083	
	Class 2 3K-70-CSW	.0073	.0075	-	
	Class 2 3K-135-8H	.0144	.0150	₹ }	
	Class 2 1K-50-5H	. 0048	.0050	•	
			<u> </u>		

TABLE 4.3-1

Because Type I material properties are not included in this section, the thickness values for Type II materials should be used when making stress calculations for Type I materials. Although Type I materials have different thicknesses than Type II materials after cure, they contain the same amount of graphite fiber per ply resulting in the same allowable per ply. Therefore, by using Type II allowables and unit thickneses for stress calculations when using Type I material, the proper allowable stress and margin of safety will be obtained.

Boeing D6-44714

R

s Analysis. (See Table 4.2-1 for preliminary weight 1 data).