Honts for SII E20

Recap Let A and B be sets. Let f: A -> B.

- . It is a surjection from A to B $iff \quad (\forall y \in B) \ (f(x) = y \quad has \quad dt \quad least one \quad soln. \quad \forall \in A)$
- of is an injection from A to B iff $(\forall y \in B) (f(x) = y \text{ has at most one soln. } x \in A)$
- . f is a bijection from A to B iff $(\forall y \in B) (f(x) = y \text{ has } \alpha \text{ unique } \text{Soln. } A \in A)$

Question Let f be a function on A.

Supprse f is an injection.

Then f is a bijection from A to Rng(f).

- (a) an injection
- (b) a surjection
- (c) a bijection

All of the options make the statement true.

Reason f, by assumption, is injective. Since any function is a surjection from its domain to its range, $f: A \rightarrow Rng(f)$ is a surjection. Thus, $f: A \rightarrow Rng(f)$ is a bijection.

$$SIIE20(a)$$
 Let $g(x) = \frac{1}{1-x}$ for all $x \in [0,1)$.

$$\bigcirc$$
 Show $g:[0,1) \rightarrow [0,\infty)$.

(NTS: for any
$$x \in [0,1)$$
, $g(x) \in [0,\infty)$, i.e., $g(x) > 0$)

Pf. Let
$$1 \in [0,1)$$
. Since $1 \in [0,1)$, $0 \le x < 1$, so $0 > -x > -1$.

$$50$$
 $1-1$.

Thus $g(x) = x \cdot \frac{1}{1-x} > 0 \cdot 1 = 0$, i.e., $g(x) \in [0,\infty)$.

a Show g is an injection. (Along the way, find g'cys.)

Use the formulation of an injection:

. g is a bijection iff (YgEB)(gG)=y has at most one soln xGA)

. g is a bijection from [0,1) to Rag(g)

If $(\forall y \in R_{ng}(g))(g(x)=y)$ has a unique soln $x \in A$.

Pf Let $y \in R_{ng}(g)$. So y = g(x) for some $x \in [0,1)$. Then we have

$$y = \frac{x}{1-x}$$

$$\Rightarrow (1-x)y = x$$

 $\Rightarrow y - xy = 1$ $\Rightarrow y = x + xy$ So g is an injection.

 \Rightarrow $\chi(1+\chi)=\chi$

$$\Rightarrow a = \frac{y}{1+y} = g^{-1}(y).$$
We found a unique soln $a \in [0, 1)$ to $y = g(x)$.

(2) Show
$$\text{Rng}(g) = [0, \infty)$$
. Note By $\mathbb{O}, \mathbb{O}, \text{ and } \mathbb{O}$, we conclude that g is a bijection from $[0, 1)$ to $[0, \infty)$.

that Rug (g) \subseteq [0,00). Thus

Let $y \in [0, \infty)$. (WTS: $y \in Rng(g)$ which means y = g(x) for some $x \in [0, 1)$.)

We propose that
$$z = \frac{y}{1+y}$$
 (found in @) would do.

First, check g(w = y.

$$g(x) = g\left(\frac{y}{1+y}\right) = \frac{y}{1-y} + y = \frac{y}{1+y} = y$$

Lastly, we check
$$x = \frac{y}{1+y} \in [0, 1)$$
:

Since
$$y \in [0, \infty)$$
, $y > 0$, so $|+y > 1$, so $0 < \frac{1}{1+y} \le 1$.

Now we note that

$$x = \frac{y}{1+y} = \frac{1+y-1}{1+y} = 1 - \frac{1}{1+y}$$

Then it follows that

$$0 > -\frac{1}{1+y} > -1 \Rightarrow 1 > 1 - \frac{1}{1+y} > 0$$

$$\Rightarrow 1 > 1 - \frac{1}{1+y} > 0$$

$$\Rightarrow 1 > 1 - \frac{1}{1+y} > 0$$

Section 13

Fundamental Principle of Counting

Equinumerousness

Equinumerousness

Definition 1

Let A and B be sets. To say that \underline{A} is equinumerous to \underline{B} (denoted $\underline{A} \approx B$) means that there exists a bijection from A to B.

Examples. A

- B
- The sets $\{1,2\}$ and $\{\pi,e'\}$ are equinumerous because the function f on $\{1,2\}$ defined by $f(1)=\pi$ and f(2)=e is a bijection from $\{1,2\}$ to $\{\pi,e\}$.
- The set $\mathbb Z$ is equinumerous to the set of all even integers $B=\{2k:k\in\mathbb Z\}$ because the function $g:\mathbb Z\to B$ defined by g(n)=2n is a bijection.

Yet Z ≈ B!

B is a proper subset of Zi,

Equinumerousness (cont')

is an equivalence relation.

Proposition 1

Equinumerousness is reflexive, symmetric, and transitive. In other words:

- $oldsymbol{0}$ (Reflexivity) For each set A, we have A is equinumerous to A.
- ② (Symmetry) For all sets A and B, if A is equinumerous to B, then B is equinumerous to A.
- **3** (Transitivity) For all sets A, B, and C, if A is equinumerous to B and B is equinumerous to C, then A is equinumerous to C.

Idea of proof

- a bijection from A to itself.
- ② Stuce A≈B, there exists a bijection of from A to B.

Let $g = f^{-1}$. Then g is a bijection from B to A. Thus $B \approx A$.

Since A≈B and B≈C, there exist • a bijection of from A to B

· a bijection g from B to C

(Thon 7, Lec 32)

Let $h = g \circ f$. Then h is a bijection $A = g \circ f$.

From A to C. Thus $A \approx C$. $h = g \circ f$ This needs a proof. (HW)

 $A \xrightarrow{f(bij)} B$ $h = g \circ f \qquad \downarrow g(bij)$

Number of Elements and Equinumerousness

$$\omega = \{0, 1, 2, ...\}$$
 "whole numbers" or "non-negative integers"

Definition 2

Let A be a set and let $n \in \omega$. To say that A has n elements means that A is equinumerous to $\{1,\ldots,n\}$.

- A set has 0 elements iff it is empty. (See p.12 η_{τ} hec. 30)
- Saving that A is an n-element set is synonymous to saying that A has nelements.

Let A be a set.

$$\forall$$
 A has O elements \iff A \approx \not \iff there exists a bijection f from A to \not \Rightarrow .

Convention

• If
$$n=0$$
, then $\{1, ..., n\} = \emptyset$

· If n=1, then

 $f_1, \ldots, n_{\zeta} = f_1$

· If n=2, then $f_{1},...,n_{Y}=f_{1},2_{Y}$ Defin her $n \in \omega$. To say that $\underline{a_1, \dots, a_n}$ are distinct means that the function f defined by $f(k) = a_k, \quad \text{for all} \quad k = 1, \dots, n,$ is an injection.

Non example

 $\alpha_i = 3$

D2 = 5

not distinct

n-element Sets

Some printled details both the 7 first two sentences:

A has n elem. Defn A & f1, ..., n} => f1,...,n} = A => there exists a bijection f

Defn from f1,...,n) to A.

Proposition 2

Let A be a set and let $n \in \omega$. Then the following are equivalent.

- $oldsymbol{1}$ A has n elements.
- There exist distinct objects a_1, \ldots, a_n such that $A = \{a_1, \ldots, a_n\}$.

$$0 \Rightarrow 2$$

Proof. Suppose A has n elements. Then there is a bijection f from $\{1,\ldots,n\}$ to A. Let $a_k=f(k)$ for $k=1,\ldots,n$. Since f is a surjection from $\{1,\ldots,n\}$ to A, we have $A=\{a_1,\ldots,a_n\}$. Since f is an injection, the objects a_1,\ldots,a_n are distinct.

Conversely, suppose there exist distinct objects a_1,\ldots,a_n such that $A=\{a_1,\ldots,a_n\}$. Then $A=\mathrm{Rng}(f)$ where f is a function on $\{1,\ldots,n\}$ defined by $f(k)=a_k$. Since a_1,\ldots,a_n are distinct, f is injective, so f is a bijection from $\{1,\ldots,n\}$ to A, so A has n elements.

Finite and Infinite Sets

Definition 3

Let A be a set.

- To say that A is finite means that there exists $n \in \omega$ such that A has n elements.
- To say that *A* is infinite means that *A* is not finite.

Preliminary Lemmas

Comparing the Sizes of Sets

Lemma A

Let A and B be sets. Suppose that A is equinumerous to B. $(A \approx \beta)$ **1** If $s \notin A$ and $t \notin B$, then $A \cup \{s\}$ is equinumerous to $B \cup \{t\}$.

2 If $s \in A$ and $t \in B$, then $A \setminus \{s\}$ is equinumerous to $B \setminus \{t\}$.

Pefine g by

SIJEZD(C) $g(x) = \begin{cases} f(x) & \text{if } x \in A \\ f(x) & \text{if } x = s \end{cases}$ Then g is a bijection from $AU_{2}S_{1}^{2}$ to BU_{3}^{2} to BU_{3}^{2}

Comparing the Sizes of Sets (cont')

Lemma B

For all $m, n \in \omega$, if $\{1, \dots, m\}$ is equinumerous to $\{1, \dots, n\}$, then m = n.

This obvious result is proved using induction.

Key Results

Uniqueness of the Number of Elements

Theorem 4

The number of elements in a finite set is uniquely determined.

• According to the theorem, for each finite set A, there is a unique $n \in \omega$ such that A has n elements; we write $\overline{\overline{A}}$ for the unique n. The notation $\overline{\overline{A}}$ is read the number of elements in A or the cardinality of A.

Subsets of a Finite Set is Finite

Theorem 5

A subset of a finite set is finite and has at most as many elements as the whole set.

A precise rephrase of the theorem is: For each $n \in \omega$,

for each set B, if B has n elements, then for each $A\subseteq B$, A is finite and $\overline{A}\leqslant n$.

Thus one can prove this using induction.

Rigidity Property of Finite Sets

Not true for infanite sets.

A finite set cannot be equinumerous to a proper subset of itself.

Proof. Let B be a finite set and let A be a proper subset of B. We wish to show that B is not equinumerous to A. Suppose B is equinumerous to A. Since B is finite, B has n elements for some $n \in \omega$. Since B is equinumerous to A, A also has n elements. Since A is a proper subset of A, $B \setminus A$ is not empty. Let $b \in B \setminus A$ and let $C = A \cup \{b\}$. Then $C \subseteq B$ and C has n+1 elements. Hence by Theorem 13.30, $n+1 \le n$. But n+1 > n. Thus we have reached a contradiction/Therefore B must not be equinumerous to A.

$$B \approx Z$$