Introducing Proof Tree Automata and Proof Tree Graphs

Valentin D. Richard

LORIA. Université de Lorraine

Eleventh Scandinavian Logic Symposium 17 June 2022

What this talk is about

Calculus K

What this talk is about

Calculus ${\mathcal K}$

Graph G

What this talk is about

Calculus ${\mathcal K}$

Graph G

Graphical representation of automaton ${\mathcal A}$

Working on a huge calculus

G. Greco

Lambek-Grishin Calculus: Focusing, Display and Full Polarization

Giuseppe Greco ©
Vrije Universiteit, The Netherlands

Michael Moortgat

Utrecht University, The Netherlands

Valentin D. Richard

École Normale Supérieure Paris-Saclay, France

Apostolos Tzimoulis
Vrije Universiteit, The Netherlands

Original idea

000

References

A lot of rules!

Original idea

000

Visualizing the connections

See whether (and where) these rules connect to the rest of the calculus

Visualizing the connections

See whether (and where) these rules connect to the rest of the calculus

Figure 3 The topology of fD.LG-rules and phase transitions.

Identifying:

- Zones corresponding to phase
- Crucial rules mediating passing through these boundaries

Intuition about proof tree graphs

Proof tree graph (PTG):

- Vertices are sets of sequents
- Arcs are rules

Intuition about proof tree graphs

Proof tree graph (PTG):

- Vertices are sets of sequents
- Arcs are rules
- Dashed edges indicated nonempty intersection

$$S - - - S'$$
 if $S \cap S' \neq \emptyset$

Goals:

- Broad overview of the whole calculus
- See which sequents are accessible

$$\frac{}{\varphi \vdash \varphi} \text{ Ax. } \frac{\Delta, \varphi \vdash \psi}{\Delta \vdash \varphi \rightarrow \psi} \rightarrow \text{I. } \frac{\Delta \vdash \varphi \rightarrow \psi}{\Delta, \Gamma \vdash \psi} \rightarrow \text{E.}$$

$$\frac{}{\varphi \vdash \varphi} \text{ Ax. } \frac{\Delta, \varphi \vdash \psi}{\Delta \vdash \varphi \to \psi} \to \text{I. } \frac{\Delta \vdash \varphi \to \psi}{\Delta, \Gamma \vdash \psi} \to \text{E.}$$

$$\xrightarrow{\mathsf{Ax.}} \varphi \vdash \varphi$$

References

$$\frac{}{-\varphi \vdash \varphi} \text{ Ax. } \frac{\Delta, \varphi \vdash \psi}{\Delta \vdash \varphi \to \psi} \to \text{I. } \frac{\Delta \vdash \varphi \to \psi}{\Delta, \Gamma \vdash \psi} \to \text{E.}$$

$$\xrightarrow{\mathsf{Ax.}} \varphi \vdash \varphi$$

$$\frac{}{ -\varphi \vdash \varphi} \text{ Ax. } \frac{ \Delta, \varphi \vdash \psi}{ -\Delta \vdash \varphi \to \psi} \to \text{I. } \frac{ \Delta \vdash \varphi \to \psi \qquad \Gamma \vdash \varphi}{ -\Delta, \Gamma \vdash \psi} \to \text{E.}$$

$$\frac{}{\varphi \vdash \varphi} \mathsf{Ax.} \quad \frac{\Delta, \varphi \vdash \psi}{\Delta \vdash \varphi \to \psi} \to \mathsf{I.} \quad \frac{\Delta \vdash \varphi \to \psi}{\Delta, \Gamma \vdash \psi} \to \mathsf{E}$$

Formal definition

Set $\mathcal{K} = (S, \mathcal{R})$ a **calculus**: signature (sorted function symbols) and rules

 \blacksquare $\mathcal{T}(\mathbb{S})$ well-formed sequents

Formal definition

Set $\mathcal{K} = (\mathbb{S}, \mathcal{R})$ a **calculus**: signature (sorted function symbols) and rules

lacksquare $\mathcal{T}(\mathbb{S})$ well-formed sequents

Definition

A proof tree graph on \mathcal{K} is a hypergraph $G = (V, E, E_d)$

- $V \subseteq \wp(\mathcal{T}(\mathbb{S}))$
- $E \subseteq \bigcup_{n>0} V^n \times \mathcal{R}_n \times V$
- $E_d \subseteq V \times V$

References

SLSS, 17 June 2022

9 / 15

From graph to automaton

This PTG is just illustrative. The rules are invented.

From graph to automaton

This PTG is just illustrative. The rules are invented.

• Like a non-deterministic **finite** automaton \mathcal{A} , e.g.

Ax.
$$\rightarrow_R \downarrow_R \perp_L \neg \perp_R \neg \perp_R \in \mathcal{L}(\mathcal{A})$$
 ending on sequent

$$\neg \ {\downarrow} (\varphi \to \varphi), \neg \bot, \bot \vdash \bot$$

Intuition about proof tree automata

Proof tree automaton (PTA) \mathcal{A} :

- non-deterministic finite tree automaton
- States are sets of sequents
- Transitions are rules
- \blacksquare ε -transitions are possible on nonempty intersections

Intuition about proof tree automata

Proof tree automaton (PTA) \mathcal{A} :

- non-deterministic finite tree automaton
- States are sets of sequents
- Transitions are rules
- \blacksquare ε -transitions are possible on nonempty intersections

Goals:

- View backward proof search as **parsing**, i.e. finding a run on \mathcal{A}
- Establish a correspondence between operations on calculi and operations on tree automata

$$p \rightarrow q \vdash p \rightarrow q$$
 Ax.

$$\frac{p \to q \vdash p \to q}{p \to q \vdash p \to q} \xrightarrow{\epsilon_1}$$

Valentin D. Richard LORIA PTA and PTG SLSS, 17 June 2022

$$\frac{p \rightarrow q \vdash p \rightarrow q}{p \rightarrow q \vdash p \rightarrow q} \stackrel{Ax}{\epsilon_1}$$

$$\frac{p \rightarrow q \vdash p \rightarrow q}{p \rightarrow q \vdash p \rightarrow q} \stackrel{E_1}{\epsilon_2}$$

$$\frac{p + p}{p + p} \xrightarrow{\varepsilon_1}$$

$$\frac{p \to q + p \to q}{p \to q + p \to q} \xrightarrow{\mathcal{E}_1} \xrightarrow{\mathcal{E}_2} \xrightarrow{p \to q + p \to q} \xrightarrow{\mathcal{E}_2} \xrightarrow{\mathcal{E}_2}$$

$$\frac{p + p}{p + p} \xrightarrow{\epsilon_1} Ax. \qquad \frac{p \to q + p \to q}{p \to q + p \to q} \xrightarrow{\epsilon_1} \epsilon_1$$

$$\frac{p \to q + p \to q}{p \to q + p \to q} \xrightarrow{\epsilon_4} \epsilon_4$$

$$\xrightarrow{p \to q + q} \Rightarrow E$$

$$\frac{\begin{array}{c|c} p \vdash p \\ \hline p \vdash p \end{array} Ax. & \begin{array}{c} \hline p \rightarrow q \vdash p \rightarrow q \\ \hline p \rightarrow q \vdash p \rightarrow q \\ \hline p \rightarrow q \vdash p \rightarrow q \end{array} \xrightarrow{\varepsilon_1} \xrightarrow{\varepsilon_1} \xrightarrow{\varepsilon_1} \xrightarrow{\varepsilon_2} \xrightarrow{\varepsilon_4} \\
\hline \begin{array}{c} p, p \rightarrow q \vdash q \\ \hline p, p \rightarrow q \vdash q \end{array} \xrightarrow{\varepsilon_5} \xrightarrow{\varepsilon_5} \xrightarrow{\varepsilon_5}$$

$$\frac{\begin{array}{c|c} p \vdash p \\ \hline p \vdash p \\ \hline \end{array} Ax. & \begin{array}{c|c} p \rightarrow q \vdash p \rightarrow q \\ \hline p \rightarrow q \vdash p \rightarrow q \\ \hline p \rightarrow q \vdash p \rightarrow q \\ \hline \end{array} & \begin{array}{c|c} \varepsilon_1 \\ \varepsilon_1 \\ \hline p \rightarrow q \vdash p \rightarrow q \\ \hline \end{array} & \begin{array}{c|c} \varepsilon_2 \\ \hline \varepsilon_1 \\ \hline \varepsilon_2 \\ \hline \end{array} & \begin{array}{c|c} \varepsilon_2 \\ \hline \varepsilon_1 \\ \varepsilon_2 \\ \hline \end{array} & \begin{array}{c|c} \varepsilon_2 \\ \end{array} & \rightarrow E$$

Valentin D. Richard LORIA PTA and PTG SLSS, 17 June 2022 11 / 15

$$\frac{p + p}{p + p} Ax. \qquad \frac{p \rightarrow q + p \rightarrow q}{p \rightarrow q + p \rightarrow q} Ax. \qquad \frac{\epsilon_1}{p \rightarrow q + p \rightarrow q} \epsilon_1$$

$$\frac{p, p \rightarrow q + p \rightarrow q}{p \rightarrow q + p \rightarrow q} \epsilon_1$$

$$\frac{p, p \rightarrow q + p \rightarrow q}{p \rightarrow q + p \rightarrow q} \epsilon_2$$

$$\frac{p, p \rightarrow q + p \rightarrow q}{p, p \rightarrow q + q} \epsilon_2$$

$$\frac{p, p \rightarrow q + p \rightarrow q}{p, p \rightarrow q + q} \epsilon_2$$

$$\frac{p, p \rightarrow q + p \rightarrow q}{p, p \rightarrow q + q} \epsilon_2$$

SLSS, 17 June 2022

$$\frac{p \mapsto p}{p \vdash p} \xrightarrow{\text{Ax.}}
\frac{p \to q \vdash p \to q}{p \to q \vdash p \to q} \xrightarrow{\epsilon_1}$$

$$\frac{p \mapsto p}{p \vdash p} \xrightarrow{\epsilon_1}
\frac{p \to q \vdash q}{p \to q \vdash p \to q} \xrightarrow{\epsilon_2}$$

$$\frac{p, p \to q \vdash q}{p, p \to q \vdash q} \xrightarrow{\epsilon_2}$$

$$\frac{p, p \to q \vdash q}{p, p \to q \vdash q} \xrightarrow{\epsilon_2}$$

$$\frac{p, p \to q \vdash q}{p, p \to q \vdash q} \xrightarrow{\epsilon_2}$$

$$\frac{p, p \to q \vdash q}{p, p \to q \vdash q} \xrightarrow{\epsilon_2}$$

$$\frac{p, p \to q \vdash q}{p, p \to q \vdash q} \xrightarrow{\epsilon_2}$$

$$\frac{p, p \to q \vdash q}{p, p \to q \vdash q} \xrightarrow{\epsilon_2}$$

$$\frac{p, p \to q \vdash q}{p, p \to q \vdash q} \xrightarrow{\epsilon_2}$$

$$\frac{p, p \to q \vdash q}{p, p \to q \vdash q} \xrightarrow{\epsilon_2}$$

Valentin D. Richard LORIA

References

$$\frac{p + p}{p + p} \xrightarrow{Ax.} \xrightarrow{p \to q + p \to q} \xrightarrow{Ex} \xrightarrow{Ex} \xrightarrow{Ex} \xrightarrow{p \to q + p \to q} \xrightarrow{Ex} \xrightarrow{Ex} \xrightarrow{Ex} \xrightarrow{Ex} \xrightarrow{p, p \to q + q} \xrightarrow{Ex} \xrightarrow{Ex} \xrightarrow{p, p \to q + q} \xrightarrow{Ex} \xrightarrow{Ex} \xrightarrow{p, p \to q + q} \xrightarrow{Ex} \xrightarrow{Ex} \xrightarrow{p \to q + p \to q} \to \mathbb{E}.$$

$$\frac{p + p}{p \to q} \xrightarrow{Ex} \xrightarrow{p \to q + p \to q} \xrightarrow{Ex} \xrightarrow{Ex$$

Valentin D. Richard LORIA

References

The crucial role of control

ε -transitions are not always allowed:

- Depending on the instance sequent
- Instance sequents are changes by rules

The crucial role of control

ε -transitions are not always allowed:

- Depending on the instance sequent
- Instance sequents are changes by rules

Proof tree automaton \mathcal{A} = regular tree automaton $F(\mathcal{A})$

 \oplus control relations ∇ and ∇_{ε} on instances

The crucial role of control

ε -transitions are not always allowed:

- Depending on the instance sequent
- Instance sequents are changes by rules

Proof tree automaton \mathcal{A} = regular tree automaton $F(\mathcal{A})$

- \oplus control relations ∇ and ∇_{ε} on instances
- Run in $F(\mathcal{A})$ = free walk in the graph with no restriction
- $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{F}(\mathcal{A}))$
- $D \in \mathcal{L}(F(\mathcal{A}))$ is correct if $D \in \mathcal{L}(\mathcal{A})$

Decomposition

Decomposing \mathcal{A} as a functor $U: \mathcal{K} \to \mathcal{F}(\mathcal{A})$

Decomposition

Decomposing \mathcal{A} as a functor $U: \mathcal{K} \to \mathcal{F}(\mathcal{A})$

Proposition

 $D \in F(\mathcal{A})$ is correct iff D belong to the image of U

U is a monoidal refinement system (Melliès and Zeilberger 2015)

Decomposition

Decomposing \mathcal{A} as a functor $U: \mathcal{K} \to \mathcal{F}(\mathcal{A})$

Proposition

 $D \in F(\mathcal{A})$ is correct iff D belong to the image of U U is a monoidal refinement system (Melliès and Zeilberger 2015)

See full definitions, proofs an other relevant properties on arXiv...

Conclusion

Proof tree graph = Novel tool to visualize whole (or a part of a) calculus

→ try it yourself!

Proof tree automaton = Formalization of calculus as a finite state machine

Conclusion

Proof tree graph = Novel tool to visualize whole (or a part of a) calculus

→ try it yourself!

Proof tree automaton = Formalization of calculus as a finite state machine

Eventually: Correspondence between properties on

- Calculi
- Proof tree languages
- Graphs (e.g. topological arguments, rewriting techniques,...)
- Tree automata

Conclusion

Proof tree graph = Novel tool to visualize whole (or a part of a) calculus

→ try it yourself!

Proof tree automaton = Formalization of calculus as a finite state machine

Eventually: Correspondence between properties on

- Calculi
- Proof tree languages
- Graphs (e.g. topological arguments, rewriting techniques,...)
- Tree automata

Future plan:

 \blacksquare μ -calculus to express control properties using tree structure only

Thank you!

Comon, Hubert et al. (2008). Tree Automata Techniques and Applications. 262 pp. URL: https://hal.inria.fr/hal-03367725 (visited on 14/01/2022).

Greco, Giuseppe et al. (2021). "Lambek-Grishin Calculus: Focusing, Display and Full Polarization". In: Logic and Structure in Computer Science and Beyond. Ed. by Alessandra Palmigiano and Mehrnoosh Sadrzadeh. arXiv: 2011.02895 [math.L0].

Melliès, Paul-André and Noam Zeilberger (15th Jan. 2015). "Functors Are Type Refinement Systems". In: 42nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2015). poi: 10.1145/2676726.2676970. URL: https://hal.inria.fr/hal-01096910 (visited on 24/03/2021).

More examples

