Nella L'ezione 5 abbiano introdotto il prodotto di matrici, cooè una funzione;

$$(A,B) \longmapsto C = AB$$

définita nel mado sequente:

Se
$$A = (aij) \in \mathcal{M}_{m,n}(\mathcal{N}), B = (bij) \in \mathcal{M}_{n,p}(\mathcal{N})$$
 allow

esempio:

$$\begin{pmatrix}
0 & 3 & -7 & 2 \\
1 & 1 & 2 & -1
\end{pmatrix}
\begin{pmatrix}
1 & -1 \\
0 & 3 \\
4 & 5
\end{pmatrix} = \begin{pmatrix}
-1/4 & -26 \\
2 & 12
\end{pmatrix}$$

$$2 \times 4$$

$$4 \times 2$$

$$4 \times 2$$

Proprieta

$$(12) \begin{pmatrix} 3 \\ 4 \end{pmatrix} = (11) \qquad \begin{pmatrix} 3 \\ 4 \end{pmatrix} (12) = \begin{pmatrix} 3 & 6 \\ 4 & 8 \end{pmatrix}.$$

esempio: A = (20), B = (30) traplia. Quindi l'unica

esempio: A = (20), B = (30) traplia. Quindi l'unica

siano quadrate della

sterra ordine.

$$AB = \begin{pmatrix} 2 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ 2 & 0 \end{pmatrix}$$

$$BA = (30)(20) = (60)$$

Poiche AB = BA dichians che A e B commitent

$$A \in \mathcal{A}^{k}$$
 (K) $A \in \mathcal{A}^{k}$ (K) $A \in \mathcal{A}^{k}$ (K) $A \in \mathcal{A}^{k}$ (K) (K)

$$A(C+D) = AC+AD$$

5) Elemento neutro rispetto al produtto

Poiche il prodotto non è commutatio, dobbiano distinguere tra elemento neutro a sinistra e a destira.

Partiono da un esempio:

Consideriano M2,3 (1R).

Una matrice Is & un elemento neutro a sinistra per Mz,3(R) rispetto al produtto se

 $I_sA = A$, $\forall A \in \mathcal{M}_{2,3}(\mathbb{R})$.

Sia A \in $M_{2,3}$ (IR) \Longrightarrow A = $\begin{pmatrix} a & b & c \\ d & e & d \end{pmatrix}$, $a,b,c,d,e,f \in \mathbb{R}$.

Innovailable, se $I_s A = A \implies I_s \in M_2(\mathbb{R})$ $2\times 2 \quad 2\times 3 \quad 2\times 3$

Cerchiamo dingre $I_s = (a', b',) \in \mathcal{N}_2(\mathbb{R})$ tali chi:

Si vede facilmente che (a',b',c',d') = (1,0,0,1)

é una solvision del sistema.

In altre parole $I_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\tilde{\epsilon}$ in elements neutro sínistro per $\mathcal{W}_{2,3}(K)$ rispetto al produtto. In made simile si mastra che $I_d = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \in \mathcal{H}_3(\mathbb{R})$ $ext{$ext{t}}$ on elemente neutro destro per $\mathcal{H}_{2,3}(\mathbb{R})$ rispetto al produtto. Più in generale definians: Def: V n > 1, la matrice identité o unità di ordine n é In = (Sij) Elln(K)

done l'élemento neutro
rispetto alla moltiplicazione di K. delta di Kronicker esempio: $I_{1} = (1)$, $I_{2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $I_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ Per N>1 $Z_{N} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ cioè la matrice gradrata di ordine n che ha zeri ovenque tranne sulla diagonale dare ha tutti 1. Si può facilmente mostrore che Y A E Mm,n (K) si tra A = nZA \Rightarrow A = AmZcuce Im (risp. In) è un elemento neutro sinistro (risp. destro) per Mm, n(K) rispetto al prodotto. In particolare In è l'elemento neutro (sinistro e destro) per Mn(K), cioè: $\forall A \in \mathcal{H}_{N}(K)$, $\mathcal{I}_{N}A = A\mathcal{I}_{N} = A$.

```
NB: Ya, b E IR abbiano il prodotto notende:
                   (a+b)^2 = a^2 + 2ab + b^2
         Tale identità è una consequenza della commutatività del prodotto in IR, e non è più vera nel contesto delle unatrici.
         Infatti, VA, BE Un(K)
          (A+B)^2 := (A+B)(A+B) = (A+B)A + (A+B)B = A^2+BA+AB+B^2.
          e non possiains semplificare ulteriormente. (in genera)
          Ma se A e B commutano allora etteriamo di moro ? prodotto notevole:
             (A+B)^2 = A^2 + 2AB + B^2
                 AB = BA
Zavoriano ora in Un(K). In tal caso albiano un'opera
                \mathcal{H}_{n}(K) \times \mathcal{H}_{n}(K) \longrightarrow \mathcal{H}_{n}(K)
                    (A,B) - AB
 il ai elemento neutro (sivistro e destro) è dato dalla matrice In.
 Una matrice A Ethn (K) per cui esiste un inverso vispetto al prodotto è detta invertibile. Più precisamente:
Def: A \in U_n(K) si dice invertible se existe B \in U_n(K) tale the
                      AB = In = BA.
Osservazione: · Se B exste allara é unica.
                  Dim: Siano B, C tali che
                            · AB = In = BA
                            • AB = In = BA
• AC = In = CA associativita
                          allone: C = CIn = C(AB) = (CA) B = InB=B
                          \Rightarrow C = B. AB = In CA = In
                  Chianianio Lunque B e' inversa di A e
la denotiano A...
```

L'altra sarà outonaticamente verificata (purtroppo non abbiano abbastanta strumenti per dimostrare questo fatto a questo punto del corso).

Esempi

Vediano se existe una matrice
$$B = (ab) \in U2(1R)$$

$$\begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & 0 \end{pmatrix}$$

$$\begin{pmatrix} C & d \end{pmatrix} \begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & 0 \end{pmatrix}$$

$$\begin{pmatrix} C & d \end{pmatrix} \begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & 0 \end{pmatrix}$$

$$\begin{pmatrix} C & d \end{pmatrix} \begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & 0 \end{pmatrix}$$

$$\begin{pmatrix} C & d \end{pmatrix} \begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & 0 \end{pmatrix}$$

$$\begin{pmatrix} C & d \end{pmatrix} \begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & 0 \end{pmatrix}$$

$$\begin{pmatrix} C & d \end{pmatrix} \begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & 0 \end{pmatrix}$$

$$\begin{pmatrix} C & d \end{pmatrix} \begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & 0 \end{pmatrix}$$

$$\begin{pmatrix} C & d \end{pmatrix} \begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & 0 \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & 0 \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & 0 \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & 0 \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & 0 \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & 0 \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix} = \begin{pmatrix} A & A \end{pmatrix}$$

$$\begin{pmatrix} A & A \end{pmatrix}$$

impossibile!

4)
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 \bar{e} invertibile?

(noi abbiano mostrato che
$$A^{r}A = I_{2}$$
)

Dej: Una matrice quadrata AE Mn(K) si dice $A^T = A$, cice $a_{ij} - a_{ji}$, $\forall 1 \le i, j \le n$. Si dice invece ANTISIMMETRICA se $A^T = -A$, cive $a_{ij} = -a_{ji}$, $\forall 1 \leq i,j \leq n$. azi 1 2 3 4 1 azi
A = 3 6 8 9 E Simmetrica
4 7 9 6 esempio: $B = \begin{pmatrix} 0 & 1 & 2 & 3 \\ -1 & 0 & 4 & 5 \\ -2 & -4 & 0 & 6 \end{pmatrix} \in \text{ an his in websica}$ $\begin{pmatrix} -3 - 5 & -6 & 0 \\ \end{pmatrix}$ Non é un caso

Che tuti gli elementi
sulla disoponale di
B sono uguali a
zero Osservazione: Se A = (aij) è antisimmetrica | allora V: aii = - aii => 2aii =0 => aii =0 Def: Una matrice quadrata A E Uln (K) si dice ORTOGONALE $(\tau_A)_A = \nu_I = A(\tau_A)$ avero se $A^{-1} = A^{T}$. esercizio: Mostrare che Y O E IR la matrice $\left(\cos(\theta) - \sin(\theta) \right) \\
\left(\sin(\theta) \cos(\theta) \right)$ é ortogonale.

Voglians indtre dare noui specifici alle sequenti Libologie di matrici (100) (230) (456) (005) (000) (000) (1 $\begin{pmatrix} 1 & 0 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ diagonale scalare Dej: Una matrice quadrata A E Un (K) si dice: TRIANGOLARE INFERIORE (risp. SUPERIORE) Se aij=0 per Jsi (risp. se aij=0 per J<i) · DIAGONALE Se A è sia triangolare inferiore che triangolare superiore, ossis se • SCALARE Se A è diagonale e tutti gli elementi della diagonale sond uguali. In tal coso I X∈K tala che $\Delta = \lambda I_{\text{N}}$ esempio: La matrice nulla On E. Vln (K) è triang. inf., triang. sup., diagonale e scalart.