Academic Year of 2018 Admission to the Master's Program Department of Intelligence Science and Technology Graduate School of Informatics, Kyoto University (Fundamentals of Informatics)

(International Course)

13:30 - 15:00, February 7, 2018

NOTES

- 1. This is the Question Booklet in 3 pages including this front cover.
- 2. Do not open the booklet until you are instructed to start.
- 3. After start, check the number of pages and notify proctors (professors) immediately if you find missing pages or unclear printings.
- 4. This booklet has 2 questions written in English. Solve all questions.
- 5. Write your answers in English, unless specified otherwise.
- 6. Read carefully the notes on the Answer Sheets as well.

Master's Program

Fundamentals of Informatics

	Т
Ouestion	
Number	

F-1

- **Q. 1** A hash table is an effective data structure for implementing the operations, e.g. INSERT, SEARCH, and DELETE, in computer systems.
 - 1.1 What is the advantage of hash tables compared to directly addressing into an array?
 - 1.2 Given a hash table of size 7 to store integer keys, with linear probing and a hash function $h(x) = x \mod 7$, show the content of the hash table after inserting the keys 0,11,3,7,1,9 in the given order.
 - 1.3 Given a hash function h to hash n distinct keys into an array T of length m and assuming a uniform hashing, what is the expected cardinality of $\{\{k,l\}: k \neq l \text{ and } h(k) = h(l)\}$?

- Q. 2 Breadth first search (BFS) and depth first search (DFS) are two algorithms for traversing trees or graphs.
 - 2.1 Given a set of vertices $\{a,b,c,d,e,s\}$ of a graph, draw the directed graph according to the following vertex adjacency lists: $adj(s) = [a,c,d], adj(a) = [\], adj(c) = [b,e], adj(b) = [d], adj(d) = [c], adj(e) = [s],$ where an adjacency list adj(i) denotes the set of neighbors of a vertex i in the graph, and points to the neighbors of i.
 - 2.2 Give the visited vertices in an alphabetical order for the graph given in Q 2.1 using BFS and DFS, respectively. Assume that both algorithms are initially called with the vertex *s* and that the vertices are stored in the adjacency lists.
 - 2.3 Give a recursive algorithm for DFS in a graph.

Master'	S
Progran	n

Fundamentals of Informatics

Question	
Number	

F-2

An ensemble X is a tuple $(x, \mathcal{A}_X, \mathcal{P}_X)$, where the outcome x is the value of a random variable, which belongs to one of a set of possible values $\mathcal{A}_X = \{a_1, a_2, ..., a_i, ..., a_j\}$, having probabilities $\mathcal{P}_X = \{p_1, p_2, ..., p_i, ..., p_j\}$, with $P(x = a_i) = p_i \ge 0$ and $\sum_{i=1}^{j} P(x = a_i) = 1$. H(X) denotes Shannon entropy of ensemble X, and $\mathcal{E}[x]$ denotes the expectation of x.

- **Q.1** For an arbitrary ensemble X, what is $\mathcal{E}[1/P(x)]$?
- Q.2 If f is a convex function, $\mathcal{E}[f(x)] \ge f(\mathcal{E}[x])$ holds. Prove this inequality.
- **Q.3** Prove $H(X) \leq \log_2(|\mathcal{A}_X|)$ using the inequality in Q.2, where $|\mathcal{A}_X|$ denotes the number of elements in \mathcal{A}_X , i.e., $|\mathcal{A}_X| = \mathcal{I}$.

A binary symbol code C for an ensemble X is a mapping from the range of x, $\mathcal{A}_X = \{a_1, ..., a_J\}$ to $\{0,1\}^+$, where $\{\cdot\}^+$ denotes the set of all strings of finite length composed of elements from the set. c(x) denotes the codeword corresponding to x, and $\ell(x)$ denotes its length, with $\ell_i = \ell(a_i)$. The expected length L(C,X) of a binary symbol code C for ensemble X is $L(C,X) = \sum_{x \in \mathcal{A}_X} P(x)\ell(x)$.

- **Q.4** Let $\mathcal{A}_X = \{a, b, c, d\}$, $\mathcal{P}_X = \{1/2, 1/4, 1/8, 1/8\}$, and $C = \{0, 01, 011, 111\}$. Imagine picking one bit at random from the binary encoded sequence $\mathbf{c} = c(x_1)c(x_2)c(x_3)\cdots$. What is the probability that this bit is a 1?
- **Q.5** Let $\mathcal{A}_X = \{a, b, c, d, e, f, g\}$ and $\mathcal{P}_X = \{0.01, 0.24, 0.05, 0.20, 0.47, 0.01, 0.02\}$. Show a uniquely decodable binary symbol code for the ensemble X such that the expected length $L(\mathcal{C}, X)$ is not greater than 2.