

Automated Text Analysis in Political Science

Lecture 2: Preprocessing data, going from text to numbers May 7, 2019

dr. Martijn Schoonvelde

School of Politics and International Relations, UCD

Today's class

- Clean text in R: string operations and regular expressions
- Preprocessing data: going from text to numbers
- Create a bag of words in quanteda

- 1. All quantitative models of language are wrong but some are useful
 - "the data generation process for any text is a mystery" (p. 3)
 - "models should be evaluated based on their ability to perform some useful social scientific task"

- 1. All quantitative models of language are wrong but some are useful
 - "the data generation process for any text is a mystery" (p. 3)
 - "models should be evaluated based on their ability to perform some useful social scientific task"
- 2. Quantitative methods for text amplify resources and augment humans

- 1. All quantitative models of language are wrong but some are useful
 - "the data generation process for any text is a mystery" (p. 3)
 - "models should be evaluated based on their ability to perform some useful social scientific task"
- 2. Quantitative methods for text amplify resources and augment humans
- 3. There is nog globally best methods for automated text analysis
 - Some methods are good, others not, but this not because they are quantitative

- 1. All quantitative models of language are wrong but some are useful
 - "the data generation process for any text is a mystery" (p. 3)
 - "models should be evaluated based on their ability to perform some useful social scientific task"
- 2. Quantitative methods for text amplify resources and augment humans
- 3. There is nog globally best methods for automated text analysis
 - Some methods are good, others not, but this not because they are quantitative
- 4. Validate, validate, validate
 - Validation may take several forms, depending on your approach (supervised or unsupervised)

Assumptions in Automated Text Analysis

- Text is an empirical implication of a (latent) characteristic of interest
- Text can be represented through extracting relevant "features", which are analyzed using quantitative methods
- Oftentimes (and in most applications in this class): "bag of words"

Bag of words

- Also known as document-term-matrix (dtm) or in quanteda document-feature-matrix (dfm)
 - When transposed: term-document matrix (tdm)
- Matrix with each row a document and each column a word / feature
- Each cell denotes the number of times a particular n-gram appears in a particular document
- Order in which words occur is discarded
- Catch all term specific structure may vary
 - 1-gram, 2-gram, 3-gram
 - Word weights (tf-idf)
 - Yes / No

Implications of bag of words

- Pros
 - Reduce complexity while retaining lots of information
- Cons
 - Negations are discarded ("not good") appears as c("not", "good")
 - But taken into account when using bigrams
 - More generally: semantic context gets lost this is different from word embeddings models

Lost context

N-grams

Image credit: https://compsocialscience.github.io

From text to numbers (Welbers et al 2017)

- 1. Importing text
- 2. String operations to clean text
- Pre-processing: stemming, lemmatization, number removal, stop word removal
 - This also referred to as feature selection
- 4. Filtering and weighting of features
 - TF-IDF

Welbers et al. (2017)

Table 1. An overview of text analysis operations, with the R packages used in this Teacher's Corner.

Operation	R packages	
	example	alternatives
Data preparation		
importing text	readtext	jsonlite, XML, antiword, readxl, pdftool:
string operations	stringi	stringr
preprocessing	quanteda	stringi, tokenizers, snowballC, tm, etc.
document-term matrix (DTM)	quanteda	tm, tidytext, Matrix
filtering and weighting	quanteda	tm, tidytext, Matrix
Analysis		
dictionary	quanteda	tm, tidytext, koRpus, corpustools
supervised machine learning	quanteda	RTextTools, kerasR, austin
unsupervised machine learning	topicmodels	quanteda, stm, austin, text2vec
text statistics	quanteda	koRpus, corpustools, textreuse
Advanced topics		
advanced NLP	spacyr	coreNLP, cleanNLP, koRpus
word positions and syntax	corpustools	quanteda, tidytext, koRpus

Figure 1. Order of text analysis operations for data preparation and analysis.

Importing text

- Exact steps depend on how texts is stored
 - When stored as txt or csv files you can work with foreign library in R: read.csv(), read.txt() etc.
 - Often text is stored in other formats (JSON, XML, HTML) needs to be transformed into R objects
 - readtext can help with this
- Remember: often there exist multiple libraries and functions for doing the same thing
 - R open source different groups of developers tackling similar issues
 - Use that to your advantage: Google / Stackexchange / other resources

Clean text, string operations

- This can be done in base R
 - That is, no packages needed
- But also specific libraries
 - E.g, stringr, stringi
- Text analysis packages can do a lot, but often necessary to dive into regular expressions in R
 - Expect lots of trial and error
 - See base R cheat sheet: https://bit.ly/2GeeWV2
 - Or the stringr cheat sheet: https://bit.ly/2Vqxihy

Base R example

```
> corpus <- c(" This Is text_one <font size = '6'> ",
            "And here is teXt Number 2!?",
+
            "And %%$ number 3")
+
> #remove html tag
> corpus <- gsub("<.*?>", "", corpus)
> print(corpus)
[1] " This Is text_one "
[2] "And here is teXt Number 2!?"
[3] "And %%$ number 3"
```

Stringr example

```
> #transform to lower case
> corpus <- stringr::tolower(corpus)
> print(corpus)

[1] " this is text_one "
[2] "and here is text number 2!?"
[3] "and %%$ number 3"
```

Stringr example

```
> #remove anything but letters / alphabetic characters
> corpus <- stringr:str_replace_all(corpus, "[^[:alpha:]]", " ")
> print(corpus)
```

- [1] " this is text one "
- [2] "and here is text number
- [3] "and number "

Stringr example

```
> #strip surrounding white space
> corpus <- stringr::str_trim(corpus, side = "both")
> print(corpus)

[1] "this is text one"
[2] "and here is text number"
[3] "and number"
```

Pre-processing data

- Tokenization
- Lowercasing
- Stemming
- Lemmatization
- Stopword removal

Tokenization: unigrams

```
> library(quanteda)
> sentence <- "One small step for man,
one giant leap for mankind."
> unigrams <- tokens(sentence)
> print(unigrams)
tokens from 1 document.
text1 :
  [1] "One"    "small"    "step"    "for"    "man"    ","
  [8] "giant"    "leap"    "for"    "mankind" "."
```

NB everything that is not a white space is tokenized

Tokenization: bigrams

> bigrams <- tokens(sentence, ngrams = 2)

Stemming

```
> sentence <- "The fish went fishing with the fishes"
> tokens <- tokens(sentence)
> stems <- tokens_wordstem(tokens)
> print(stems)
tokens from 1 document.
text1 :
[1] "The" "fish" "went" "fish" "with" "the" "fish"
```

- Stemming: algorithmic conversion of inflected forms of words into their root forms
- Fast but not perfect:
 - Unrelated words may be grouped together; related words may not be grouped together
 - Stems may not be words themselves problematic if further analysis is based on dictionaries
- If you work in a different language this will require a different stemming algorithm
 - Success depends on whether language is inflected

Lemmatization

- Use of a dictionary to replace words with their root form
- More sophisticated than stemming
- Results are always words; neither does it group together unrelated words, nor does it miss to group together related words
- Less support in R but see for example: koRpus
- See also: http://www.bernhardlearns.com/2017/04/ cleaning-words-with-r-stemming.html

Stopwords

```
> sentence <- "The fish went fishing with the fishes"
> tokens <- tokens(sentence)</pre>
> stopwords <- stopwords("english")
> head(stopwords)
[1] "i"
            "me" "my" "myself" "we" "our"
> stems <- tokens_remove(tokens, stopwords)
> print(stems)
tokens from 1 document.
text1:
[1] "fish" "went" "fishing" "fishes"
```

dfm in quanteda

text4 1 1 1

```
> text <- c("This is a sentence",
           "This sentence is about a cat",
+
           "This sentence is about a dog",
+
+
           "This sentence is about a dog and a cat")
> dfm_text <- quanteda::dfm(text, tolower = TRUE,</pre>
+
                           stem = TRUE,
+
                           remove = stopwords("english"))
> print(dfm_text)
Document-feature matrix of: 4 documents, 3 features (33.3% spars
4 x 3 sparse Matrix of class "dfm"
      features
docs sentenc cat dog
 text1 1
 text2 1 1 0
 text3 1 0 1
```

Filtering and weighting

- Not all terms are equally informative feature selection
 - Very common words and very rare words
- A simple but effective method is to filter on document frequencies (the number of documents in which a term occurs), using a threshold for minimum and maximum number (or proportion) of documents
- Other possibility, assign weights, using, for example, tf-idf

tf-idf

- term frequency-inverse document frequency
- Number of times a word appears in a document offset by the frequency of the word in the corpus
- $\quad \bullet \quad \frac{\text{term frequency i}}{\text{total terms document i}} \times \textit{log}\big(\frac{\textit{n}_{\text{documents}}}{\textit{n}_{\text{documents containing term}}}\big)$
- Adjust for the fact that some words appear more frequently in general

tf-idf in quanteda

text2 0 0.15 0

text3 0

text4 0

0 0.15

0.10 0.10

Calculate tf-idf

- tf("cat") equals:
 - text1 = 0
 - text2 = 0.5
 - text3 = 0
 - text4 = 0.33
- idf("cat") equals $log_{10}(\frac{4}{2}) = 0.301$
- tf-idf("cat") equals:
 - text1 = 0
 - text2 = 0.15
 - text3 = 0
 - text4 = 0.10

Example

Let's get started in R