Data Mining:

Concepts and Techniques

(3rd ed.)

— Chapter 5 —

Xike Xie

Slides are based on Jiawei Han's work.

Chapter 5: Data Cube Technology

Data Cube Computation: Preliminary Concepts

- Data Cube Computation Methods
- Processing Advanced Queries by Exploring Data Cube Technology
- Multidimensional Data Analysis in Cube Space
- Summary

Data Cube: A Lattice of Cuboids

time, item, location, supplierc

Data Cube: A Lattice of Cuboids

- Base vs. aggregate cells; ancestor vs. descendant cells; parent vs. child cells
 - 1. (9/15, milk, Urbana, Dairy_land)
 - 2. (9/15, milk, Urbana, *)
 - 3. (*, milk, Urbana, *)
 - 4. (*, milk, Urbana, *)
 - 5. (*, milk, Chicago, *)
 - 6. (*, milk, *, *)

Cube Materialization: Full Cube vs. Iceberg Cube

Full cube vs. iceberg cube
 compute cube sales iceberg as
 select month, city, customer group, count(*)
 from salesInfo

cube by month, city, customer group

having count(*) >= min support

iceberg condition

- Computing only the cuboid cells whose measure satisfies the iceberg condition
- Only a small portion of cells may be "above the water" in a sparse cube
- Avoid explosive growth: A cube with 100 dimensions
 - 2 base cells: (a1, a2,, a100), (b1, b2, ..., b100)
 - How many aggregate cells if "having count >= 1"?
 - What about "having count >= 2"?

Iceberg Cube, Closed Cube & Cube Shell

- Is iceberg cube good enough?
 - 2 base cells: $\{(a_1, a_2, a_3 \ldots, a_{100}): 10, (a_1, a_2, b_3, \ldots, b_{100}): 10\}$
 - How many cells will the iceberg cube have if having count(*) >= 10? Hint: A huge but tricky number!

Close cube:

- Closed cell c: if there exists no cell d, s.t. d is a descendant of c, and d has the same measure value as c.
- Closed cube: a cube consisting of only closed cells
- What is the closed cube of the above base cuboid? Hint: only 3 cells
- Cube Shell
 - Precompute only the cuboids involving a small # of dimensions,
 e.g., 3 For (A₁, A₂, ... A₁₀), how many combinations to compute?
 - More dimension combinations will need to be computed on the fly

Roadmap for Efficient Computation

- General cube computation heuristics (Agarwal et al.'96)
- Computing full/iceberg cubes: 3 methodologies
 - Bottom-Up: Multi-Way array aggregation (Zhao, Deshpande & Naughton, SIGMOD'97)
 - Top-down:
 - BUC (Beyer & Ramarkrishnan, SIGMOD'99)
 - H-cubing technique (Han, Pei, Dong & Wang: SIGMOD'01)
 - Integrating Top-Down and Bottom-Up:
 - Star-cubing algorithm (Xin, Han, Li & Wah: VLDB'03)
- High-dimensional OLAP: A Minimal Cubing Approach (Li, et al. VLDB'04)
- Computing alternative kinds of cubes:
 - Partial cube, closed cube, approximate cube, etc.

General Heuristics (Agarwal et al. VLDB'96)

- Sorting, hashing, and grouping operations are applied to the dimension attributes in order to reorder and cluster related tuples
- Aggregates may be computed from previously computed aggregates, rather than from the base fact table
 - Smallest-child: computing a cuboid from the smallest, previously computed cuboid
 - Cache-results: caching results of a cuboid from which other cuboids are computed to reduce disk I/Os
 - Amortize-scans: computing as many as possible cuboids at the same time to amortize disk reads
 - Share-sorts: sharing sorting costs cross multiple cuboids when sort-based method is used
 - Share-partitions: sharing the partitioning cost across multiple cuboids when hash-based algorithms are used

Chapter 5: Data Cube Technology

- Data Cube Computation: Preliminary Concepts
- Data Cube Computation Methods

- Processing Advanced Queries by Exploring DataCube Technology
- Multidimensional Data Analysis in Cube Space
- Summary

Data Cube Computation Methods

Multi-Way Array Aggregation

BUC

Star-Cubing

High-Dimensional OLAP

Multi-Way Array Aggregation

- Array-based "bottom-up" algorithm
- Using multi-dimensional chunks
- No direct tuple comparisons
- Simultaneous aggregation on multiple dimensions
- Intermediate aggregate values are reused for computing ancestor cuboids
- Cannot do *Apriori* pruning: No iceberg optimization

Multi-way Array Aggregation for Cube Computation (MOLAP)

- Partition arrays into chunks (a small subcube which fits in memory).
- Compressed sparse array addressing: (chunk_id, offset)
- Compute aggregates in "multiway" by visiting cube cells in the order which minimizes the # of times to visit each cell, and reduces memory access and storage cost.

What is the best traversing order to do multi-way aggregation?

Multi-way Array Aggregation for Cube Computation (3-D to 2-D)

BC

Multi-way Array Aggregation for Cube Computation (2-D to 1-D)

Multi-Way Array Aggregation for Cube Computation (Method Summary)

- Method: the planes should be sorted and computed according to their size in ascending order
 - Idea: keep the smallest plane in the main memory, fetch and compute only one chunk at a time for the largest plane
- Limitation of the method: computing well only for a small number of dimensions
 - If there are a large number of dimensions, "top-down" computation and iceberg cube computation methods can be explored

Data Cube Computation Methods

Multi-Way Array Aggregation

■ BUC ►

Star-Cubing

High-Dimensional OLAP

Bottom-Up Computation (BUC)

- BUC (Beyer & Ramakrishnan, SIGMOD'99)
- Bottom-up cube computation (Note: top-down in our view!)
- Divides dimensions into partitions and facilitates iceberg pruning
 - If a partition does not satisfy min_sup, its descendants can be pruned
 - If $minsup = 1 \Rightarrow$ compute full CUBE!
- No simultaneous aggregation

BUC: Partitioning

- Usually, entire data set can't fit in main memory
- Sort distinct values
 - partition into blocks that fit
- Continue processing
- Optimizations
 - Partitioning
 - External Sorting, Hashing, Counting Sort
 - Ordering dimensions to encourage pruning
 - Cardinality, Skew, Correlation
 - Collapsing duplicates
 - Can't do holistic aggregates anymore!

Data Cube Computation Methods

Multi-Way Array Aggregation

BUC

Star-Cubing

High-Dimensional OLAP

Star-Cubing: An Integrating Method

- D. Xin, J. Han, X. Li, B. W. Wah, Star-Cubing: Computing Iceberg Cubes by Top-Down and Bottom-Up Integration, VLDB'03
- Explore shared dimensions
 - E.g., dimension A is the shared dimension of ACD and AD
 - ABD/AB means cuboid ABD has shared dimensions AB
- Allows for shared computations
 - e.g., cuboid AB is computed simultaneously as ABD
- Aggregate in a top-down manner but with the bottom-up sub-layer underneath which will allow Apriori pruning
- Shared dimensions grow in bottom-up fashion

Iceberg Pruning in Shared Dimensions

- Anti-monotonic property of shared dimensions
 - If the measure is anti-monotonic, and if the aggregate value on a shared dimension does not satisfy the iceberg condition, then all the cells extended from this shared dimension cannot satisfy the condition either
- Intuition: if we can compute the shared dimensions before the actual cuboid, we can use them to do Apriori pruning
- Problem: how to prune while still aggregate simultaneously on multiple dimensions?

Exercise 1

Assume a base cuboid of 10 dimensions contains only three base cells: (1) $(a_1, d_2, d_3, d_4, \ldots, d_9, d_{10})$, (2) $(d_1, b_2, d_3, d_4, \ldots, d_9, d_{10})$, and (3) $(d_1, d_2, c_3, d_4, \ldots, d_9, d_{10})$, where $a_1 \neq d_1, b_2 \neq d_2$, and $c_3 \neq d_3$. The measure of the cube is *count*.

- (a) How many nonempty cuboids will a full data cube contain?
- (b) How many nonempty aggregate (i.e., nonbase) cells will a full cube contain?
- (c) How many nonempty aggregate cells will an iceberg cube contain if the condition of the iceberg cube is " $count \ge 2$ "?
- (d) A cell, c, is a closed cell if there exists no cell, d, such that d is a specialization of cell c (i.e., d is obtained by replacing a * in c by a non-* value) and d has the same measure value as c. A closed cube is a data cube consisting of only closed cells. How many closed cells are in the full cube?

Exercise 1 - Answer

- (a) How many *nonempty* cuboids will a complete data cube contain? 2^{10} .
- (b) How many nonempty aggregated (i.e., nonbase) cells a complete cube will contain?
 - (1) Each cell generates $2^{10} 1$ nonempty aggregated cells, thus in total we should have $3 \times 2^{10} 3$ cells with overlaps removed.
 - (2) We have 3×2^7 cells overlapped once (thus count 2) and 1×2^7 (which is $(*, *, *, d_4, ..., d_{10})$) overlapped twice (thus count 3). Thus we should remove in total $1 \times 3 \times 2^7 + 2 \times 1 \times 2^7 = 5 \times 2^7$ overlapped cells.
 - (3) Thus we have: $3 \times 8 \times 2^7 5 \times 2^7 3 = 19 \times 2^7 3$.
- (c) How many nonempty aggregated cells will an iceberg cube contain if the condition of the iceberg cube is "count > 2"?
 - Analysis: (1) $(*, *, d_3, d_4, \ldots, d_9, d_{10})$ has count 2 since it is generated by both cell 1 and cell 2; similarly, we have (2) $(*, d_2, *, d_4, \ldots, d_9, d_{10})$:2, (3) $(*, *, d_3, d_4, \ldots, d_9, d_{10})$:2; and (4) $(*, *, *, d_4, \ldots, d_9, d_{10})$:3. Therefore we have, $4 \times 2^7 = 2^9$.
- (d) A cell, c, is a closed cell if there exists no cell, d, such that d is a specialization of cell c (i.e., d is obtained by replacing a * in c by a non-* value) and d has the same measure value as c. A closed cube is a data cube consisting of only closed cells. How many closed cells are in the full cube?
 - There are seven cells, as follows
 - $(1) (a_1, d_2, d_3, d_4, \dots, d_9, d_{10}) : 1,$
 - $(2) (d_1, b_2, d_3, d_4, \dots, d_9, d_{10}) : 1,$

- (3) $(d_1, d_2, c_3, d_4, \dots, d_9, d_{10}) : 1,$
- (4) (*, *, d_3 , d_4 , ..., d_9 , d_{10}): 2,
- (5) $(*, d_2, *, d_4, ..., d_9, d_{10}) : 2$,
- (6) $(d_1, *, *, d_4, \ldots, d_9, d_{10}) : 2$, and
- (7) $(*, *, *, d_4, ..., d_9, d_{10}) : 3.$

Exercise 2

- Suppose that a base cuboid has three dimensions, A, B, C, with the following number of cells: |A| = 1, 000, 000, |B| = 100, and |C| = 1000.
- (a) Assuming each dimension has only one level, draw the complete lattice of the cube.
- (b) If each cube cell stores one measure with 4 bytes, what is the total size of the computed cube if the cube is dense (each cell is nonempty)?

Exercise 2 - Answer

(b)

The total size of the computed cube is as follows.

- all: 1
- A: 1,000,000; B: 100; C: 1, 000; subtotal: 1,001,100
- *AB*: 100,000,000; *BC*: 100,000; *AC*: 1,000,000,000; subtotal:
- 1,100,100,000
- *ABC*:100,000,000,000
- Total: 101,101,101,101 cells \times 4 bytes = 404,404,404,404 bytes

Chapter 5: Data Cube Technology

- Data Cube Computation: Preliminary Concepts
- Data Cube Computation Methods

- Processing Advanced Queries by Exploring Data Cube
 Technology
 - Sampling Cube
 - Ranking Cube
- Multidimensional Data Analysis in Cube Space
- Summary

Processing Advanced Queries by Exploring Data Cube Technology

Sampling Cube

 X. Li, J. Han, Z. Yin, J.-G. Lee, Y. Sun, "Sampling Cube: A Framework for Statistical OLAP over Sampling Data", SIGMOD'08

Ranking Cube

- D. Xin, J. Han, H. Cheng, and X. Li. Answering top-k queries with multi-dimensional selections: The ranking cube approach. VLDB'06
- Other advanced cubes for processing data and queries
 - Stream cube, spatial cube, multimedia cube, text cube, RFID cube, etc. — to be studied in volume 2

Statistical Surveys and OLAP

- Statistical survey: A popular tool to collect information about a population based on a sample
 - Ex.: TV ratings, US Census, election polls
- A common tool in politics, health, market research, science, and many more
- An efficient way of collecting information (Data collection is expensive)
- Many statistical tools available, to determine validity
 - Confidence intervals
 - Hypothesis tests
- OLAP (multidimensional analysis) on survey data
 - highly desirable but can it be done well?

Surveys: Sample vs. Whole Population

Data is only a sample of **population**

Age\Education	High-school	College	Graduate
18			
19			
20			

Problems for Drilling in Multidim. Space

Data is only a **sample** of population but samples could be small when drilling to certain multidimensional space

Age\Education	High-school	College	Graduate
18			
19			
20			
•••			

OLAP on Survey (i.e., Sampling) Data

- Semantics of query is unchanged
- Input data has changed

Age/Education	High-school	College	Graduate
18			
19			
20			
•••			

Challenges for OLAP on Sampling Data

- Computing confidence intervals in OLAP context
- No data?
 - Not exactly. No data in subspaces in cube
 - Sparse data
 - Causes include sampling bias and query selection bias
- Curse of dimensionality
 - Survey data can be high dimensional
 - Over 600 dimensions in real world example
 - Impossible to fully materialize

Example 1: Confidence Interval

What is the average income of 19-year-old high-school students? Return not only query result but also confidence interval

Age/Education	High-school	College	Graduate
18			
19			
20			
••••			

Confidence Interval

- Confidence interval at ar x : $ar x \pm t_c \hat \sigma_{ar x}$
 - x is a sample of data set; \bar{x} is the mean of sample
 - t_c is the critical t-value, calculated by a look-up
 - $\hat{\sigma}_{ar{x}} = rac{s}{\sqrt{l}}$ is the estimated standard error of the mean
- Example: $\$50,000 \pm \$3,000$ with 95% confidence
 - Treat points in cube cell as samples
 - Compute confidence interval as traditional sample set
- Return answer in the form of confidence interval
 - Indicates quality of query answer
 - User selects desired confidence interval

Efficient Computing Confidence Interval Measures

- Efficient computation in all cells in data cube
 - Both mean and confidence interval are algebraic
 - Why confidence interval measure is algebraic?

$$\bar{x} \pm t_c \hat{\sigma}_{\bar{x}}$$

 \bar{x} is algebraic

 $\hat{\sigma}_{\bar{x}} = \frac{s}{\sqrt{l}}$ where both s and *l* (count) are algebraic

 Thus one can calculate cells efficiently at more general cuboids without having to start at the base cuboid each time

Example 2: Query Expansion

What is the average income of 19-year-old college students?

Age/Education	High-school	College	Graduate
18			
19			
20			
•••			

Boosting Confidence by Query Expansion

- From the example: The queried cell "19-year-old college students" contains only 2 samples
- Confidence interval is large (i.e., low confidence). why?
 - Small sample size
 - High standard deviation with samples
- Small sample sizes can occur at relatively low dimensional selections
 - Collect more data?— expensive!
 - Use data in other cells? Maybe, but have to be careful

Intra-Cuboid Expansion: Choice 1

Expand query to include 18 and 20 year olds?

Age/Education	High-school	College	Graduate
18			
19			
20			
•••			

Intra-Cuboid Expansion: Choice 2

Expand query to include high-school and graduate students?

Age/Education	High-school	College	Graduate
18			
19			
20			

Query Expansion

(Age, Occupation) cuboid

Chapter 5: Data Cube Technology

- Data Cube Computation: Preliminary Concepts
- Data Cube Computation Methods

- Processing Advanced Queries by Exploring Data Cube
 Technology
 - Sampling Cube
 - Ranking Cube

- Multidimensional Data Analysis in Cube Space
- Summary

Ranking Cubes – Efficient Computation of Ranking queries

- Data cube helps not only OLAP but also ranked search
- (top-k) ranking query: only returns the best k results according to a user-specified preference, consisting of (1) a selection condition and (2) a ranking function
- Ex.: Search for apartments with expected price 1000 and expected square feet 800
 - Select top 1 from Apartment
 - where City = "LA" and Num_Bedroom = 2
 - order by [price 1000]^2 + [sq feet 800]^2 asc
- Efficiency question: Can we only search what we need?
 - Build a ranking cube on both selection dimensions and ranking dimensions

Ranking Cube: Partition Data on Both **Selection and Ranking Dimensions**

One single data partition as the template

Slice the data partition by selection conditions

Materialize Ranking-Cube

Processing Ranking Query: Execution Trace

Select top 1 from Apartment where city = "LA" order by [price – 1000]^2 + [sq feet - 800]^2 asc

Bin boundary for price	[500, 600, 800, 1100,1350]	
Bin boundary for sq feet	[200, 400, 600, 800, 1120]	

f=[price-1000]^2 + [sq feet - 800]^2

With rankingcube: start search from here

Measure for LA: {11, 15} {11: t6,t7; 15:t5}

Execution Trace:

- 1. Retrieve High-level measure for LA {11, 15}
- 2. Estimate *lower bound score* for block 11, 15 f(block 11) = 40,000, f(block 15) = 160,000
- 3. Retrieve block 11
- 4. Retrieve low-level measure for block 11
- 5. f(t6) = 130,000, f(t7) = 97,600

Output t7, done!

Ranking Cube: Methodology and Extension

- Ranking cube methodology
 - Push selection and ranking simultaneously
 - It works for many sophisticated ranking functions
- How to support high-dimensional data?
 - Materialize only those atomic cuboids that contain single selection dimensions
 - Uses the idea similar to high-dimensional OLAP
 - Achieves low space overhead and high performance in answering ranking queries with a high number of selection dimensions

Data Cube Technology: Summary

- Data Cube Computation: Preliminary Concepts
- Data Cube Computation Methods
 - MultiWay Array Aggregation
 - BUC
 - Star-Cubing
- Processing Advanced Queries by Exploring Data Cube Technology
 - Sampling Cubes
 - Ranking Cubes

Ref.(I) Data Cube Computation Methods

- S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S. Sarawagi. On the computation of multidimensional aggregates. VLDB'96
- D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient view maintenance in data warehouses. SIGMOD'97
- K. Beyer and R. Ramakrishnan. Bottom-Up Computation of Sparse and Iceberg CUBEs.. SIGMOD'99
- M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman. Computing iceberg queries efficiently.
 VLDB'98
- J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A relational aggregation operator generalizing group-by, cross-tab and sub-totals. Data Mining and Knowledge Discovery, 1:29–54, 1997.
- J. Han, J. Pei, G. Dong, K. Wang. Efficient Computation of Iceberg Cubes With Complex Measures. SIGMOD'01
- L. V. S. Lakshmanan, J. Pei, and J. Han, Quotient Cube: How to Summarize the Semantics of a Data Cube, VLDB'02
- X. Li, J. Han, and H. Gonzalez, High-Dimensional OLAP: A Minimal Cubing Approach, VLDB'04
- Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorithm for simultaneous multidimensional aggregates. SIGMOD'97
- K. Ross and D. Srivastava. Fast computation of sparse datacubes. VLDB'97
- D. Xin, J. Han, X. Li, B. W. Wah, Star-Cubing: Computing Iceberg Cubes by Top-Down and Bottom-Up Integration, VLDB'03
- D. Xin, J. Han, Z. Shao, H. Liu, C-Cubing: Efficient Computation of Closed Cubes by Aggregation-Based Checking, ICDE'06

Ref. (II) Advanced Applications with Data Cubes

- D. Burdick, P. Deshpande, T. S. Jayram, R. Ramakrishnan, and S. Vaithyanathan. OLAP over uncertain and imprecise data. VLDB'05
- X. Li, J. Han, Z. Yin, J.-G. Lee, Y. Sun, "Sampling Cube: A Framework for Statistical OLAP over Sampling Data", SIGMOD'08
- C. X. Lin, B. Ding, J. Han, F. Zhu, and B. Zhao. Text Cube: Computing IR measures for multidimensional text database analysis. ICDM'08
- D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP operations in spatial data warehouses. SSTD'01
- N. Stefanovic, J. Han, and K. Koperski. Object-based selective materialization for efficient implementation of spatial data cubes. IEEE Trans. Knowledge and Data Engineering, 12:938– 958, 2000.
- T. Wu, D. Xin, Q. Mei, and J. Han. Promotion analysis in multidimensional space. VLDB'09
- T. Wu, D. Xin, and J. Han. ARCube: Supporting ranking aggregate queries in partially materialized data cubes. SIGMOD'08
- D. Xin, J. Han, H. Cheng, and X. Li. Answering top-k queries with multi-dimensional selections:
 The ranking cube approach. VLDB'06
- J. S. Vitter, M. Wang, and B. R. Iyer. Data cube approximation and histograms via wavelets.
 CIKM'98
- D. Zhang, C. Zhai, and J. Han. Topic cube: Topic modeling for OLAP on multi-dimensional text databases. SDM'09

Ref. (III) Knowledge Discovery with Data Cubes

- R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. ICDE'97
- B.-C. Chen, L. Chen, Y. Lin, and R. Ramakrishnan. Prediction cubes. VLDB'05
- B.-C. Chen, R. Ramakrishnan, J.W. Shavlik, and P. Tamma. Bellwether analysis: Predicting global aggregates from local regions. VLDB'06
- Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang, Multi-Dimensional Regression Analysis of Time-Series Data Streams, VLDB'02
- G. Dong, J. Han, J. Lam, J. Pei, K. Wang. Mining Multi-dimensional Constrained Gradients in Data Cubes. VLDB' 01
- R. Fagin, R. V. Guha, R. Kumar, J. Novak, D. Sivakumar, and A. Tomkins. Multi-structural databases. PODS'05
- J. Han. Towards on-line analytical mining in large databases. SIGMOD Record, 27:97–107, 1998
- T. Imielinski, L. Khachiyan, and A. Abdulghani. Cubegrades: Generalizing association rules. Data Mining & Knowledge Discovery, 6:219–258, 2002.
- R. Ramakrishnan and B.-C. Chen. Exploratory mining in cube space. Data Mining and Knowledge Discovery, 15:29–54, 2007.
- K. A. Ross, D. Srivastava, and D. Chatziantoniou. Complex aggregation at multiple granularities.
 EDBT'98
- S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven exploration of OLAP data cubes.
 EDBT'98
- G. Sathe and S. Sarawagi. Intelligent Rollups in Multidimensional OLAP Data. VLDB'01