Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu nr 2, zadanie nr 6

Bartłomiej Boczek, Aleksander Piotrowski, Łukasz Śmigielski

Spis treści

1.	Punkt	1	•	•	•		•		•		•		•			 	•		•	•		•		•		•	•	•			•	2
2.	Punkt	2														 																3
3.	Punkt	3														 																5
4.	Punkt	4														 																6
5.	Punkt	5														 																7
6.	Punkt	6														 																9
7.	Punkt	7				 										 																11

Z poniższych wykresów możemy odczytać, że dla punktu pracy U=Z=0 wartość wyjścia Y jest stała i ma wartość Y=0, co dowodzi poprawności wybrania punktu pracy.

Rys. 1.1. Sygnały w punkcie pracy

Na wykresie zależności wyjścia $Y_{\rm s}$ od $U_{\rm s}$ i $Z_{\rm s}$ możemy zaobserwować, że w przybliżeniu proces ma właściwości statyczne. Z odpowiedzi skokowych natomiast odczytujemy właściwości dynamiczne: obiekt ma opóźnienie oraz jest stabilny. Na podstawie powyższych informacji możemy obliczyć wzmocnienie statyczne dla skoku sterowania: $K_{\rm stat} = 2,0068$ oraz dla skoku zakłóceń: $K_{\rm stat} = 1,1057$

Rys. 2.1. Odpowiedź dla zmian sygnału sterującego

Rys. 2.2. Odpowiedź dla zmian sygnału zakłócenia

Rys. 2.3. Charakterystyka statyczna procesu $y(\boldsymbol{u},\boldsymbol{z})$

Odpowiedzi skokowe wyznaczamy analogicznie do poprzedniego projektu, jedyną zmianą jest to, że w przypadku obliczania odpowiedzi skokowej dla skoku sygnału sterujłcego, zerujemy wartość zakłóceń, a w przypadku obliczania odpowiedzi skokowej od zakłóce? zerujemy sygnał sterujący.

Rys. 3.1. Odpowiedź skokowa toru wejście-wyjście (góra) oraz zakłócenie-wyjście (dół)

Parametry regulatora DMC: $D=110;~N=130;~N_u=130;~\lambda=0,92$ dobrane metodą eksperymentalną oceniając jakość regulacji jakościowo, aby nie było oscylacji przy skokach sterowania oraz minimalizując błąd średniokwadratowy. Dla długości symulacji równej n=2500 wartość błędu E=39,8848.

Rys. 4.1. Przebiegi sygnałów wejściowych i wyjściowych procesu

Skoki zakłócenia z wartości 0 do 1 następują w chwilach:

k=160 powrót z wartości 1 do 0 w k=800

k=1040 powrót z wartości 1 do 0 w k=1200

k=1640 powrót z wartości 1 do 0 w k=2000

k = 2290

Wartość parametru $D^z=50$ została dobrana eksperymentalnie. Z rysunków wynika, że regulacja z pomiarem zakłócenia polepsza się jakościowo (skoki wyjścia są mniejsze) i ilościowo. Błąd E maleje z 71,1137 w przypadku bez pomiaru do 41,6930 w przypadku z pomiarem.

Rys. 5.1. Odpowiedż skokowa toru wejście-wyjście w wersji bez pomiaru

Rys. 5.2. Odpowiedź skokowa toru wejście-wyjście w wersji z pomiarem

Dla zakłócenia sinusoidalnego $Z=\sin(0:0.01:25)$; włączonego do obiektu w momencie k=80; regulacja z pomiarem zakłócenia jest znacznie lepsza, mimo że regulator DMC nie jest w stanie całkowicie wyeliminować oscylacji. Bez pomiaru błąd $E=49{,}1146$; z pomiarem $E=33{,}0742$.

Na poniższych wykresach widać, że regulacja z pomiarem zakłócenia powoduje wygładzenie oscylacji które wprowadza zakłócenie.

Rys. 6.1. Odpowiedź skokowa toru wejście-wyjście w wersji bez pomiaru

Rys. 6.2. Odpowiedź skokowa toru wejście-wyjście w wersji z pomiarem

Symulowanie szumu pomiarowego wykonujemy poprzez wołanie funkcji awgn(wektor-zakcenia,SNR) która zaszumia nasz wektor z wartościami zakłócenia. Dla skoków zakłócenia takich samych jak w zadaniu 5, dodaliśmy zaszumienie w postaci szumu białego o stałym widmie częstotliwościowym. Dla SNR=40dB, zakłócenia regulacji są znikome, błąd E=41,7274, jest to wartość niewiele większa od braku zaszumienia. Dla wartości poniżej 15dB szum zaczyna dominować.

Rys. 7.1. Odpowiedź dla SNR = 10

Rys. 7.2. Odpowiedź dla SNR = 10 zeskokiem zakłócenia

Rys. 7.3. Odpowiedź dla SNR = 20

Rys. 7.4. Odpowiedź dla SNR = 20 ze skokiem zakłócenia

Rys. 7.5. Odpowiedź dla SNR = 40 ze skokiem zakłócenia