Objectif

- classification en utilisant une séquence de questions fermées
- les questions sont organisées dans un arbre

1

Avantages

- fonctionnent avec des données non-métriques
- invariabilité par translation, par changement d'échelle, par transformation monotone des coordonnées
- interpretabilité
- entraînement efficace
- classification très efficace

- Désavantages
 - instabilité

- Algorithmes de CART (arbres de classification et régression)
 - combien de découpages par noeud?
 - quel attribut faut-il tester à un noeud?
 - quand arrêter de découper?
 - si l'arbre est trop grand, comment élaguer?
 - si une feuille est non-pure, comment choisir la catégorie?

- Nombre de découpages
 - tous les arbres de décision peuvent être représentés par un arbre de décision binaire

- Affectation de catégorie
 - vote par majorité

- Sélection de test
 - objectif: un arbre simple (rasoir d'Occam)
 - choisir le découpage qui augmente le plus la pureté

• L'impureté du noeud

- fréquence de classe: $\mu_j = \frac{\#\{\text{classe} = C_j\}}{n}$
- impureté d'entropie: $i(N) = -\sum_{i} \mu_{j} \lg \mu_{j}$
- impureté de variance (deux catégories):

$$i(N) = \mu_1 \mu_2$$

- impureté de Gini: $i(N) = \sum_{i \neq j} \mu_i \mu_j = 1 \sum_j \mu_j^2$
- impureté de mauvaise classification:

$$i(N) = 1 - \max_{i} \mu_{i}$$

• L'impureté de noeud

- Sélection de test
 - chute d'impureté:

$$\Delta i(N) = i(N) - \mu^{(g)} i(N^{(g)}) - (1 - \mu^{(g)}) i(N^{(d)})$$

- approche gloutonne
- Forme générale de la fonction
 - découpage sur un attribut simple arbre monotétique
 - découpage linéaire

Quand arrêter

- un point par feuille: overfitting
- trop tôt: grande erreur d'entraînement
- technique générale: validation/validation croisée
- chute d'impureté < seuil
- nombre de points < seuil
- principe de MDL (minimum description length): minimiser

$$\alpha \cdot taille + \sum_{feuilles \ N} i(N)$$

 méthodes statistiques pour mesurer la signification de la réduction d'impureté

• Élaguer

- l'effet d'horizon
- pousser l'arbre jusqu'à un point par feuille
- supprimer (unifier) les noeuds si le pureté ne diminue pas
- pas de validation croisée
- plus de calcul
- élaguer les règles pour simplifier la description

• Complexité: $O(dn \lg n)$

Choix de traits

Arbres multivariés

Choix de traits

Arbres multivariés

