Module 3-1: Linear Algebra I

國立中山大學電機系 魏家博

Outline

- Linear System of Equations
 - Consistent/Inconsistent Systems
 - Linear Dependence and Linear Independence
 - Rank and Nullity
- Linear Transformations
- Least Squares Problems and Matrix Calculus
 - Matrix Calculus
 - Local Minima/Global Minima
 - Gradient Descent

System of Equations

• A linear system of m equations in n unknowns is described as

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

- A linear system is inconsistent if it has no solution.
- A consistent system will have a nonempty solution set.

Electrical Networks

$$i_1 - i_2 + i_3 = 0$$
 (node X)
 $-i_1 + i_2 - i_3 = 0$ (node Y)
 $4i_1 + 2i_2 = 8$ (top loop)
 $2i_2 + 5i_3 = 9$ (bottom loop)

$$\begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 4 & 2 & 0 \\ 0 & 2 & 5 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 8 \\ 9 \end{bmatrix}$$

$$\mathbf{A} \qquad \mathbf{X} \qquad \mathbf{b}$$

Consistent System (Exact One Solution)

$$\begin{cases} x_1 - x_2 = 2 \\ x_1 + x_2 = 2 \end{cases}$$

- The system contains two lines intersecting at point (2,0).
- The system has 2 equations and 2 unknowns (m=2, n=2).

Consistent System (Infinite Solutions)

$$\begin{cases} -x_1 - x_2 = -2 \\ x_1 + x_2 = 2 \end{cases}$$

- The system contains a single line.
- The system has 2 equations and 2 unknowns (m=2, n=2).

Inconsistent System (No Solutions)

$$\begin{cases} x_1 + x_2 = 1 \\ x_1 + x_2 = 2 \end{cases}$$

- The system contains two parallel lines.
- The system has 2 equations and 2 unknowns (m=2, n=2).

Solution Sets of Linear Systems

- For a linear system of equations, there are three scenarios for its solutions:
 - Exact one solution (consistent)
 - Infinitely many solutions (consistent)
 - No solutions (inconsistent)

Quiz 1

- 1. For a linear system of equations, is it possible to have a finite number of solutions (more than one solution)?
- 2. Determine whether the following linear system of equations (m=3, n=2) is consistent or not.

Quiz 2

1. Determine whether the following linear systems of equations (m=3, n=3) is consistent or not.

(是否有解?若有解,是唯一解或無限多解?)

Overdetermined/Underdetermined Systems

- A linear system is said to be overdetermined if there are more equations than unknowns (m > n).
- A linear system is said to be underdetermined if there are fewer equations than unknowns (m < n).

	m > n	m = n	m < n
Consistent (exact one solution)	Ο	Ο	X
Consistent (infinitely many solutions)	0	0	0
Inconsistent	О	0	0

Underdetermined Systems

Consider

$$x_1 + x_2 + x_3 + x_4 + x_5 = 2$$

$$x_1 + x_2 + x_3 + 2x_4 + 2x_5 = 3$$

$$x_1 + x_2 + x_3 + 2x_4 + 3x_5 = 2$$

Elementary Row Operations

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 2 \\
1 & 1 & 1 & 2 & 2 & 3 \\
1 & 1 & 1 & 2 & 3 & 2
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 2 \\
0 & 0 & 0 & 1 & 1 & 1 \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & -\mathbf{1}
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 1 & 1 & 1 & 0 & 3 \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{2} \\
0 & 0 & 0 & 1 & -1
\end{pmatrix}$$

System of Equations in Matrix Form

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$
 \vdots \vdots $A\mathbf{x} = \mathbf{b}$
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

• Matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and vector $\mathbf{b} \in \mathbb{R}^m$ are given, while vector $\mathbf{x} \in \mathbb{R}^n$ is to be solved.

System of Equations in Vector Form

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \cdots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \cdots + x_n \mathbf{a}_n = \mathbf{b}$$

Linear Combination and Span

$$\mathbf{A}\mathbf{x} = \mathbf{b} \quad \iff \quad x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{b}$$

- $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n$ is called a linear combination of $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n$.
- The set of all linear combinations of $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n$ is called the span of $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n$.
- Theorem. The system Ax = b is consistent if and only if b can be expressed as a linear combination of a_1, a_2, \dots, a_n .
- Notice that $\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n] \in \mathbb{R}^{m \times n}$, $\mathbf{a}_i \in \mathbb{R}^m$, $\mathbf{b} \in \mathbb{R}^m$, and $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n$ are the column vectors of \mathbf{A} .

Quiz 3

1. Let **A** be a 5×3 matrix. If

$$\mathbf{b} = \mathbf{a}_1 + \mathbf{a}_2 = \mathbf{a}_2 + \mathbf{a}_3$$

Then what can you conclude about the number of solutions of $\mathbf{A}\mathbf{x} = \mathbf{b}$? (是否有解?若有解,是唯一解或無限多解?)

2. Let **A** be a 3×4 matrix. If

$$\mathbf{b} = \mathbf{a}_1 + \mathbf{a}_2 + \mathbf{a}_3 + \mathbf{a}_4$$

Then what can you conclude about the number of solutions of Ax = b?

Span Examples in \mathbb{R}^3

- The span of a vector is a line through the original (one-dimensional).
- The span of two independent vectors is a plane through the origin (two-dimensional).
- The span of three independent vectors is \mathbb{R}^3 .

Linear Dependence

• The vectors \mathbf{a}_1 , \mathbf{a}_2 , ..., \mathbf{a}_n is said to be linearly dependent if there exists scalars c_1 , c_2 , ..., c_n , not all zero, such that

$$c_1\mathbf{a}_1 + c_2\mathbf{a}_2 + \dots + c_n\mathbf{a}_n = \mathbf{0}$$

- Geometric Interpretation:
 - If \mathbf{x} and \mathbf{y} are linearly dependent in \mathbb{R}^2 , than there exist c_1 and c_2 that are not both 0, such that $c_1\mathbf{x}+c_2\mathbf{y}=0$. Then we have $\mathbf{x}=-\frac{c_2}{c_1}\mathbf{y}$.

(a) x and y are linearly dependent. (b) x and y are linearly independent.

Linear Dependence (cont.)

- Suppose that \mathbf{x} and \mathbf{y} are linearly independent in \mathbb{R}^3 .
- Since x, y, and the origin are not collinear, they determine a plane.

(a) **x**, **y**, **z** are linearly dependent.

(b) x, y, z are linearly independent.

Linear Independence

• The vectors \mathbf{a}_1 , \mathbf{a}_2 , \cdots , \mathbf{a}_n is said to be linearly independent if

$$c_1\mathbf{a}_1 + c_2\mathbf{a}_2 + \dots + c_n\mathbf{a}_n = \mathbf{0}$$

implies that the scalars c_1, c_2, \cdots, c_n must equal zero.

• Theorem. The system Ax = b has at most one solution for every $b \in \mathbb{R}^m$ if and only if the column vectors of A are linearly independent.

Proof. (\Leftarrow) If \mathbf{x}_1 and \mathbf{x}_2 were both solutions of $\mathbf{A}\mathbf{x} = \mathbf{b}$, then $\mathbf{x}_1 - \mathbf{x}_2$ would be a solution of $\mathbf{A}\mathbf{x} = \mathbf{0}$, because

$$A(x_1 - x_2) = Ax_1 - Ax_2 = b - b = 0$$

Since the column vectors of **A** are linearly independent, we must have $\mathbf{x}_1 - \mathbf{x}_2 = \mathbf{0}$, and hence \mathbf{x}_1 must equal \mathbf{x}_2 .

Example 1.

Let
$$\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\} = \{\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \}$$
. Consider $c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + c_3 \mathbf{a}_3 = \mathbf{0}$, i.e.,

$$c_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \mathbf{0} \implies \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Hence, the vectors \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 are linearly independent.

Example 2.

Let
$$\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\} = \{\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}\}$$
. Consider $c_1\mathbf{a}_1 + c_2\mathbf{a}_2 + c_3\mathbf{a}_3 = \mathbf{0}$, i.e.,

$$c_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = \mathbf{0} \implies \begin{bmatrix} c_1 + 2c_3 \\ c_2 + c_3 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \implies \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} -2\alpha \\ -\alpha \\ \alpha \end{bmatrix}$$

Hence, the vectors \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 are linearly dependent.

Example 3.

Let
$$\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\} = \{\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \}$$
. Consider $c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + c_3 \mathbf{a}_3 = \mathbf{0}$, i.e.,

$$c_{1} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + c_{2} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + c_{3} \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} = \mathbf{0} \implies \begin{bmatrix} c_{1} + 2c_{3} \\ c_{2} + c_{3} \\ c_{1} + c_{2} + 3c_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \implies \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} = \begin{bmatrix} -2\alpha \\ -\alpha \\ \alpha \end{bmatrix}$$

Hence, the vectors \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 are linearly dependent.

Example 4.

Let
$$\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\} = \{[1,0,2], [0,1,1], [1,1,3]\}$$
. Consider $c_1\mathbf{b}_1 + c_2\mathbf{b}_2 + c_3\mathbf{b}_3 = 0$, i.e.,

$$c_1[1,0,2] + c_2[0,1,1] + c_3[1,1,3] = \mathbf{0} \implies [c_1 + c_3, c_2 + c_3, 2c_1 + c_2 + 3c_3] = \mathbf{0}$$

 $[c_1, c_2, c_3] = [-\alpha, -\alpha, \alpha]$

Hence, the vectors \mathbf{b}_1 , \mathbf{b}_2 , \mathbf{b}_3 are linearly dependent.

Basis and Dimension

- The vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ for a basis for a vector space V if
 - 1. $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ are linearly independent.
 - 2. $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ span V.
- If a vector space V has a basis consisting of n vectors, we say that V has dimension n.
- Example. Below are bases for \mathbb{R}^3

$$\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}, \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \right\}, \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$$

Row/Column Spaces and Rank

- The subspace of $\mathbb{R}^{1\times n}$ spanned by the row vectors of $\mathbf{A} \in \mathbb{R}^{m\times n}$ is called the row space of \mathbf{A} .
- The subspace of \mathbb{R}^m spanned by the column vectors of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is called the column space of \mathbf{A} .
- The rank of A is the dimension of the row space of A.
- An equivalent definition of rank is the maximal number of linearly independent rows of A.
- **Theorem**. The dimension of the row space of **A** equals the dimension of the column space of **A**. That is, $rank(\mathbf{A}) = rank(\mathbf{A}^T)$.

Example 5.

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -1 & 1 \\ 2 & 4 & -3 & 1 \\ 1 & 2 & 1 & 3 \end{bmatrix} \xrightarrow{\times -2} \xrightarrow{\times -1} \begin{bmatrix} 1 & 2 & -1 & 1 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 2 & 2 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 2 & -1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 2 \end{bmatrix} \xrightarrow{\times -2} \xrightarrow{\times 1} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \mathbf{U} \rightarrow \text{rank}(\mathbf{U}) = \text{rank}(\mathbf{A}) = 2$$

- **U** is the reduced row echelon form of **A**.
- In fact, A = EU, where E is a nonsingular matrix.
- Note that $Ax = 0 \Leftrightarrow EUx = 0 \Leftrightarrow Ux = 0$
- Thus, Ax = 0 and Ux = 0 have the same solution set. They are equivalent systems.

Null Space and Nullity

- The set of all solutions to the system Ax = 0 is called the null space of A.
- The dimension of the null space of **A** is called the nullity of **A**.
- Theorem. If A is an $m \times n$ matrix, then rank(A) + nullity(A) = n.

In Example 3 and 4:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 1 & 1 & 3 \end{bmatrix} \in \mathbb{R}^{3 \times 3}, \operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^T) = 2, \operatorname{nullity}(\mathbf{A}) = 1$$

In Example 5:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -1 & 1 \\ 2 & 4 & -3 & 1 \\ 1 & 2 & 1 & 3 \end{bmatrix} \in \mathbb{R}^{3 \times 4}, \text{ rank}(\mathbf{A}) = 2, \text{ nullity}(\mathbf{A}) = 2$$

Detailed Derivation

• Ax = 0 and Ux = 0 have the same solution set. From Example 5,

•
$$\mathbf{U}\mathbf{x} = \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

•
$$\begin{cases} x_1 + 2x_2 + 2x_4 = 0 \\ x_3 + x_4 = 0 \end{cases} \implies \begin{cases} x_1 = -2x_2 - 2x_4 \\ x_3 = -x_4 \end{cases} \implies \text{Let } x_2 = \alpha \text{ and } x_4 = \beta.$$

•
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \alpha \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} -2 \\ 0 \\ -1 \\ 1 \end{bmatrix} \implies \text{nullity}(\mathbf{U}) = \text{nullity}(\mathbf{A}) = 2.$$

Useful Propositions

Proposition 1. The following three statements are equivalent.

- 1. The linear system Ax = b is consistent.
- 2. The vector **b** can be expressed as a linear combination of $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n$.
- 3. $rank(\mathbf{A}) = rank([\mathbf{A} \ \mathbf{b}])$

Proposition 2. Suppose $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. The following three statements are equivalent.

- 1. The linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ has at most one solution for every $\mathbf{b} \in \mathbb{R}^m$.
- 2. The column vectors of **A** are linearly independent.
- 3. $\operatorname{rank}(\mathbf{A}) = n$

Useful Propositions (cont.)

Remarks on Proposition 2

- Suppose rank(A) $\neq n$. That is, the column vectors of A are linearly dependent.
- Then, there exists a nonzero vector $\mathbf{z} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{z} = \mathbf{0}$.
- If $\hat{\mathbf{x}}$ is a solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$, then $\hat{\mathbf{x}} + \mathbf{z}$ is also a solution, because

$$\mathbf{A}(\hat{\mathbf{x}} + \mathbf{z}) = \mathbf{A}\hat{\mathbf{x}} + A\mathbf{z} = \mathbf{A}\hat{\mathbf{x}} = \mathbf{b}$$

• In other words, the linear system Ax = b has an infinite number of solutions if Ax = b is consistent and $rank(A) \neq n$.

Quiz 4

Let **A** be an $m \times n$ matrix.

- 1. What is the minimum value of rank(A) if A is not a zero matrix?
- 2. What is the maximum value of rank(A)?

Let **x** and **y** be vectors in \mathbb{R}^n and \mathbb{R}^m , respectively.

3. What is the value of rank($\mathbf{x}\mathbf{y}^T$)?

Notice that
$$\mathbf{x}\mathbf{y}^T = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \begin{bmatrix} y_1 & y_2 & \cdots & y_m \end{bmatrix} = \begin{bmatrix} x_1y_1 & x_1y_2 & \cdots & x_1y_m \\ x_2y_1 & x_2y_2 & \cdots & x_2y_m \\ \vdots & \vdots & \ddots & \vdots \\ x_ny_1 & x_ny_2 & \cdots & x_ny_m \end{bmatrix}$$

Properties of Square Matrices

- An $n \times n$ matrix **A** is said to be nonsingular or invertible if there exits a matrix **B** such that AB = BA = I. The matrix B is said to be a multiplicative inverse of **A**.
- We refer the multiplicative inverse of a nonsingular matrix $\bf A$ as the inverse of $\bf A$ and denote it by $\bf A^{-1}$.
- An $n \times n$ matrix **A** is said to be singular if it does not have a multiplicative inverse.
- Theorem. If A and B are nonsingular $n \times n$ matrices, then AB is also nonsingular and $(AB)^{-1} = B^{-1}A^{-1}$.

Proof.

$$(B^{-1}A^{-1})AB = B^{-1}(A^{-1}A)B = B^{-1}B = I$$

 $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AA^{-1} = I$

Algebraic Rules for Transposes and Inverses

Rules for Transposes

- $(\mathbf{A}^T)^T = \mathbf{A}$
- $(\alpha \mathbf{A})^T = \alpha \mathbf{A}^T$
- $(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$
- $(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$

Rules for Inverses

(Only for square and invertible matrices)

- $(A^{-1})^{-1} = A$
- $(\alpha \mathbf{A})^{-1} = \alpha^{-1} \mathbf{A}^{-1}$
- $(A + B)^{-1} = A^{-1} + B^{-1}$ (no such equality!)
- $(AB)^{-1} = B^{-1}A^{-1}$

Example. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$. Then $\mathbf{AB} \in \mathbb{R}^{m \times p}$. Notice that \mathbf{BA} does not exist, because the dimension is not compatible for matrix multiplication.

Algebraic Rules for Determinants

Rules for Determinants

(Only for square matrices)

- det(A + B) = det(A) + det(B) (no such equality!)
- det(AB) = det(A)det(B)
- $\det(\mathbf{A}^T) = \det(\mathbf{A})$
- $\det(\mathbf{A}^{-1}) = \det(\mathbf{A})^{-1}$
- $\det(\alpha \mathbf{A}) = \alpha^n \det(\mathbf{A})$ for $\mathbf{A} \in \mathbb{R}^{n \times n}$

Quiz 5

True-or-False Questions:

- 1. If **A** and **B** are $n \times n$ matrices, then $(\mathbf{A} + \mathbf{B})(\mathbf{A} \mathbf{B}) = \mathbf{A}^2 \mathbf{B}^2$.
- 2. If AC = BC and $C \neq O$ (the zero matrix), then A = B.
- 3. If AB = C and B is nonsingular, then $A = B^{-1}C$.

What is a Function (Transformation)?

A function L from a vector space V into a vector space W is denoted $L: V \to W$.

Linear Transformations

 A mapping L from a vector space V into a vector space W is said to be a linear transformation if

$$L(\mathbf{v}_1 + \mathbf{v}_2) = L(\mathbf{v}_1) + L(\mathbf{v}_2)$$
 (additivity)
 $L(\alpha \mathbf{v}) = \alpha L(\mathbf{v})$ (homogeneity)

for all $\mathbf{v}_1, \mathbf{v}_2 \in V$ and for all scalars α .

ullet An equivalent definition of a linear transformation L is that it satisfies

$$L(\alpha \mathbf{v}_1 + \beta \mathbf{v}_2) = \alpha L(\mathbf{v}_1) + \beta L(\mathbf{v}_2)$$

for all $\mathbf{v}_1, \mathbf{v}_2 \in V$ and for all scalars α and β .

• In the case that the vector spaces V and W are the same, we refer to a linear transformation $L: V \to V$ as a linear operator on V.

Scaling Operators

Let $L(\mathbf{x}) = 3\mathbf{x}$ for each $\mathbf{x} \in \mathbb{R}^n$. Since

$$L(\alpha \mathbf{x}) = 3(\alpha \mathbf{x}) = \alpha(3\mathbf{x}) = \alpha L(\mathbf{x}),$$

$$L(\mathbf{x} + \mathbf{y}) = 3(\mathbf{x} + \mathbf{y}) = 3\mathbf{x} + 3\mathbf{y} = L(\mathbf{x}) + L(\mathbf{y}),$$

it follows that *L* is a linear operator.

Rotation Operators

Let $L(\mathbf{x}) = [-x_2, x_1]^T$ for each $\mathbf{x} = [x_1, x_2]^T \in \mathbb{R}^2$. Since

$$L(\alpha \mathbf{x} + \beta \mathbf{y}) = \begin{bmatrix} -(\alpha x_2 + \beta y_2) \\ \alpha x_1 + \beta y_1 \end{bmatrix} = \alpha \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix} + \beta \begin{bmatrix} -y_2 \\ y_1 \end{bmatrix} = \alpha L(\mathbf{x}) + \beta L(\mathbf{y}),$$

it follows that L is a linear operator.

Translation Operators

Let a be a fixed nonzero vector in \mathbb{R}^2 . A mapping of the form

$$L(\mathbf{x}) = \mathbf{x} + \mathbf{a}$$

is called a translation. Show that a translation is **not** a linear operator. Illustrate geometrically the effect of a translation.

Solution. Since $L(\mathbf{0}) = \mathbf{0} + \mathbf{a} \neq \mathbf{0}$, L is not a linear operator.

Examples

- 5. Determine whether the following are linear transformations from \mathbb{R}^3 into \mathbb{R}^2 .
 - a) $L(\mathbf{x}) = (x_2, x_3)^T$ linear
 - b) $L(\mathbf{x}) = (0,0)^T$ linear
 - c) $L(\mathbf{x}) = (1 + x_1, x_2)^T$ not linear
 - d) $L(\mathbf{x}) = (x_3, x_1 + x_2)^T$ linear
- 6. Determine whether the following are linear transformations from \mathbb{R}^2 into \mathbb{R}^3 .
 - a) $L(\mathbf{x}) = (x_1, x_2, 1)^T$ not linear
 - b) $L(\mathbf{x}) = (x_1, x_2, x_1 + 2x_2)^T$ linear
 - c) $L(\mathbf{x}) = (x_1, 0, 0)^T$ linear
 - d) $L(\mathbf{x}) = (x_1, x_2, x_1^2 + x_2^2)^T$ not linear

Matrix Representation Theorem

Theorem. If $E = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and $F = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$ are ordered bases for vector spaces V and W, respectively, then corresponding to each linear transformation $L: V \to W$, there is an $m \times n$ matrix \mathbf{A} such that

$$[L(\mathbf{v})]_F = A[\mathbf{v}]_E$$
 for each $\mathbf{v} \in V$

$$\mathbf{v} \in V \xrightarrow{L} \mathbf{w} = L(\mathbf{v}) \in W$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbf{x} = [\mathbf{v}]_E \in \mathbb{R}^n \xrightarrow{\mathbf{A}} \mathbf{A} \mathbf{x} = [\mathbf{w}]_F \in \mathbb{R}^m$$

Matrix Representation of Differentiation

The linear transformation L defined by L(p) = dp/dx maps P_3 into P_2 , where the ordered bases $E = [x^2, x, 1]$ and F = [x, 1] for P_3 and P_2 .

If
$$p(x) = ax^2 + bx + c$$
, then $[p]_E = [a, b, c]^T$.

We know L(p) = 2ax + b and $[L(p)]_F = [2a, b]^T$.

It can be verified that

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 2a \\ b \end{bmatrix}$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$A \qquad [p]_E \quad [L(p)]_E$$

Column vectors of **A** can be derived in view of the following

$$L(x^2) = 2x + 0 \cdot 1$$

$$L(x) = 0x + 1 \cdot 1$$

$$L(1) = 0x + 0 \cdot 1$$

Least Squares Problem

- If a linear system Ax = b is inconsistent, we can look for a vector $\hat{\mathbf{x}}$ for which is closest to \mathbf{b} . Such solution $\hat{\mathbf{x}}$ is called a least squares solution to the linear system.
- Least squares problems refer to the following optimization problem

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} = \min_{\mathbf{x}} (\mathbf{A}\mathbf{x} - \mathbf{b})^{T} (\mathbf{A}\mathbf{x} - \mathbf{b})$$

Notice that the general form of an unconstrained optimization problem is

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

where the function $f: \mathbb{R}^n \to \mathbb{R}$ is called an objective function or a loss function.

Global and Local Minima

- We say f has a global minimum at \mathbf{x}^* if $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$.
- We say f has a local minimum at \mathbf{x}^* if $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all \mathbf{x} belonging to a neighborhood of \mathbf{x}^* .

Global and Local Minimizer

• We say that \mathbf{x}^* is a global minimizer of the optimization problem

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x})$$

if $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$. The following notation is used to denote \mathbf{x}^* .

$$\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

• We say that \mathbf{x}^* is a local minimizer if $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all \mathbf{x} belonging to a neighborhood of \mathbf{x}^* .

Convex Objective Functions

- **Theorem**. Any local minimum of a convex objective function is also a global minimum.
- Because the objective function of the least square problem is convex, any local minimum is also a global minimum.
- The objection function of a neural network (deep learning) is non-convex.
 - There often exist many local minima that are not global minima.

Single-Variable Calculus

Least Squares Problem

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} = \min_{\mathbf{x}} (\mathbf{A}\mathbf{x} - \mathbf{b})^{T} (\mathbf{A}\mathbf{x} - \mathbf{b})$$

• If \mathbf{x} is a scalar, and let $\mathbf{A} = 2$ and $\mathbf{b} = 3$, then the above becomes

$$\min_{x} (2x - 3)^{T} (2x - 3) = \min_{x} (2x - 3)^{2} = \min_{x} f(x)$$

• The global/local minimum occurs at x satisfying f'(x) = 0.

$$f'(x) = 2(2x - 3) \cdot 2 = 0 \implies 2x - 3 = 0 \implies x = 3/2.$$

Multivariable Calculus

Least Squares Problem

$$\min_{\mathbf{x}} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2 = \min_{\mathbf{x}} (\mathbf{A}\mathbf{x} - \mathbf{b})^T (\mathbf{A}\mathbf{x} - \mathbf{b}) = \min_{\mathbf{x}} f(\mathbf{x})$$

We have

$$f(\mathbf{x}) = (\mathbf{A}\mathbf{x} - \mathbf{b})^T (\mathbf{A}\mathbf{x} - \mathbf{b}) = \mathbf{x}^T \mathbf{A}^T \mathbf{A}\mathbf{x} - \mathbf{x}^T \mathbf{A}^T \mathbf{b} - \mathbf{b}^T \mathbf{A}\mathbf{x} + \mathbf{b}^T \mathbf{b}$$

- The global/local minimum occurs at \mathbf{x} satisfying $\nabla f(\mathbf{x}) = 0$.
- $\nabla f(\mathbf{x})$ is called the gradient of the function f.
- How can we calculate $\nabla f(\mathbf{x})$?

Matrix Derivatives

• There are six common types

	Scalar	Vector	Matrix
Scalar	$\frac{\partial y}{\partial x}$	$\frac{\partial \mathbf{y}}{\partial x}$	$\frac{\partial \mathbf{Y}}{\partial x}$
Vector	$\frac{\partial y}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$	
Matrix	$\frac{\partial y}{\partial \mathbf{X}}$		

Derivatives by Vector $\mathbf{x} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^T \\ \mathbf{v} = \begin{bmatrix} y_1 & \cdots & y_m \end{bmatrix}^T$

$$\mathbf{x} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^T$$

$$\mathbf{y} = \begin{bmatrix} y_1 & \cdots & y_m \end{bmatrix}^T$$

Numerator Layout Notation

$$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} & \cdots & \frac{\partial y}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{1 \times n}$$

$$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} & \cdots & \frac{\partial y}{\partial x_n} \end{bmatrix}^T \in \mathbb{R}^n$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \dots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \dots & \frac{\partial y_m}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \dots & \frac{\partial y_m}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_1}{\partial x_n} & \dots & \frac{\partial y_m}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{n \times m}$$

• $\frac{\partial y}{\partial y}$ is called the Jacobian matrix of y.

Derivatives of Scalars by Vector

$$\mathbf{x} = [x_1 \quad \cdots \quad x_n]^T, \qquad \mathbf{u} = [u_1 \quad \cdots \quad u_n]^T, \qquad \mathbf{u}^T \mathbf{x} = u_1 x_1 + \cdots + u_n x_n$$

(C1) If **u** is not a function of **x**:

$$\frac{\partial (\mathbf{u}^T \mathbf{x})}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial (\mathbf{u}^T \mathbf{x})}{\partial x_1} & \cdots & \frac{\partial (\mathbf{u}^T \mathbf{x})}{\partial x_n} \end{bmatrix}^T = \begin{bmatrix} u_1 & \cdots & u_n \end{bmatrix}^T = \mathbf{u}$$

(C2) If **u** is a function of **x**:

$$\frac{\partial (\mathbf{u}^T \mathbf{x})}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{x} + \frac{\partial \mathbf{x}}{\partial \mathbf{x}} \mathbf{u}$$

Computing $\nabla f(\mathbf{x})$

- $f(\mathbf{x}) = (\mathbf{A}\mathbf{x} \mathbf{b})^T (\mathbf{A}\mathbf{x} \mathbf{b}) = \mathbf{x}^T \mathbf{A}^T \mathbf{A}\mathbf{x} \mathbf{x}^T \mathbf{A}^T \mathbf{b} \mathbf{b}^T \mathbf{A}\mathbf{x} + \mathbf{b}^T \mathbf{b}$
- The gradient of $f(\mathbf{x})$ is

$$\nabla f(\mathbf{x}) = \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \frac{\partial (\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} - \frac{\partial (\mathbf{x}^T \mathbf{A}^T \mathbf{b})}{\partial \mathbf{x}} - \frac{\partial (\mathbf{b}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{x}}$$
$$= \frac{\partial (\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} - 2\frac{\partial (\mathbf{b}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{x}}$$

- From (C1), $\frac{\partial (\mathbf{b}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} = \frac{\partial (\mathbf{A}^T \mathbf{b})^T \mathbf{x}}{\partial \mathbf{x}} = \mathbf{A}^T \mathbf{b}$
- From (C2), $\frac{\partial (\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} = \frac{\partial (\mathbf{A}^T \mathbf{A} \mathbf{x})^T \mathbf{x}}{\partial \mathbf{x}} = \frac{\partial (\mathbf{A}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} \mathbf{x} + \frac{\partial \mathbf{x}}{\partial \mathbf{x}} (\mathbf{A}^T \mathbf{A} \mathbf{x}) = (\mathbf{A}^T \mathbf{A})^T \mathbf{x} + \mathbf{A}^T \mathbf{A} \mathbf{x} = 2\mathbf{A}^T \mathbf{A} \mathbf{x}$
- Hence, $\nabla f(x) = 2\mathbf{A}^T \mathbf{A} \mathbf{x} 2\mathbf{A}^T \mathbf{b}$

Analytical Solution to Least Squares Problems

The objective function can be written as

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} - \mathbf{x}^T \mathbf{A}^T \mathbf{b} - \mathbf{b}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{b} = \mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} - 2\mathbf{x}^T \mathbf{A}^T \mathbf{b} + \mathbf{b}^T \mathbf{b}$$

• Setting the gradient of f to zero, we obtain

$$\nabla f(x) = 2\mathbf{A}^T \mathbf{A} \mathbf{x} - 2\mathbf{A}^T \mathbf{b} = 0 \implies \mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$$
 (Normal Equation)

• If A has full column rank, then A^TA is nonsingular, and we have

$$\mathbf{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$$

- Notice that
 - The normal equation has at least one solution, because the range space of $\mathbf{A}^T \mathbf{A}$ and the range space of \mathbf{A}^T are the same, i.e., $R(\mathbf{A}^T \mathbf{A}) = R(\mathbf{A}^T)$.
 - If the column vectors of **A** are linearly independent, then the normal equation has exact one solution.

Multivariable Example

• If
$$\mathbf{x} = [x_1, x_2]^T$$
, and let $\mathbf{A} = \begin{bmatrix} 1 & -2 \\ -2 & -1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, then

•
$$\mathbf{A}\mathbf{x} - \mathbf{b} = \begin{bmatrix} 1 & -2 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} x_1 - 2x_2 - 1 \\ -2x_1 - x_2 + 1 \end{bmatrix}$$

•
$$\min_{\mathbf{x}} (\mathbf{A}\mathbf{x} - \mathbf{b})^T (\mathbf{A}\mathbf{x} - \mathbf{b}) = \min_{\mathbf{x}} (x_1 - 2x_2 - 1)^2 + (-2x_1 - x_2 + 1)^2$$

Method 1 (manually derived, only works for very simple problems):

$$\begin{array}{l}
\bullet \begin{cases} x_1 - 2x_2 - 1 = 0 \\ -2x_1 - x_2 + 1 = 0 \end{cases} \implies \begin{cases} x_1 = 0.6 \\ x_2 = -0.2 \end{cases}$$

Multivariable Example (cont.)

Method 2 (normal equation, only works for least squares problems)

•
$$\nabla f(x) = 2\mathbf{A}^T \mathbf{A} \mathbf{x} - 2\mathbf{A}^T \mathbf{b} = 0 \implies \mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$$

•
$$\mathbf{A}^T \mathbf{A} = \begin{bmatrix} 1 & -2 \\ -2 & -1 \end{bmatrix}^T \begin{bmatrix} 1 & -2 \\ -2 & -1 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$
, $\mathbf{A}^T \mathbf{b} = \begin{bmatrix} 1 & -2 \\ -2 & -1 \end{bmatrix}^T \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$

•
$$\mathbf{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}^{-1} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 0.6 \\ -0.2 \end{bmatrix}$$

Multivariable Example (cont.)

- Method 3 (gradient descent, works for general optimization problems)
- Consider the following sequence

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \alpha \, \nabla f(\mathbf{x}_n), n \ge 0$$

• Since $-\nabla f(\mathbf{x}_n)$ is the negative gradient at \mathbf{x}_n , we have

$$f(\mathbf{x}_0) \ge f(\mathbf{x}_1) \ge f(\mathbf{x}_2) \ge \cdots$$

In particular,

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \alpha \, \nabla f(\mathbf{x})$$

$$= \mathbf{x}_n - \alpha (2\mathbf{A}^T \mathbf{A} \mathbf{x}_n - 2\mathbf{A}^T \mathbf{b})$$

$$= (\mathbf{I} - 2\alpha \mathbf{A}^T \mathbf{A}) \mathbf{x}_n + 2\alpha \mathbf{A}^T \mathbf{b}$$

• The scalar α is called the learning rate.

Gradient Descent

Pseudo code

```
for k in range (max_iteration): x^{k+1} = x^k - \alpha \nabla f(x^k) if \left\|x^{k+1} - x^k\right\|_2 < 10^{-8}: #stopping criterion break
```

Multivariable Example (cont.)

Multivariable Example (cont.)

$$\alpha = 0.02$$

k	(x_1, x_2)	$f(\mathbf{x})$
0	(-2.00, 2.00)	58.00
1	(-1.48, 1.56)	37.12
2	(-1.06, 1.21)	23.76
3	(-0.73, 0.93)	15.20
4	(-0.46, 0.70)	9.73
5	(-0.25, 0.52)	6.23
:	:	:
29	(0.60,-0.20)	0

$$\alpha = 0.01$$

k	(x_1, x_2)	$f(\mathbf{x})$
0	(-2.00, 2.00)	58.00
1	(-1.74, 1.78)	46.98
2	(-1.51, 1.58)	38.05
3	(-1.30, 1.40)	30.82
4	(-1.11, 1.24)	24.97
5	(-0.94, 1.10)	20.22
:	:	:
60	(0.60,-0.20)	0

- If the learning rate is too small, then the convergence speed might be slow.
- If the learning rate is too large, then the update sequence cannot converge.

References

- [1] Steven J. Leon, Linear Algebra with Applications, Pearson, 2015.
- [2] Stephen Boyd and Lieven Vandenberghe, *Convex Optimization*,
 Cambridge University Press (http://web.stanford.edu/~boyd/cvxbook/)
- [3] Kaare B. Petersen and Michael S. Pedersen, *The Matrix Cookbook* (https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf)