Esercizio 1 Si consideri la rete descritta:

Si assuma che non ci sia altro traffico al di fuori di quello descritto successivamente e si trascurino i ritardi di elaborazione e di propagazione. Si calcoli il ritardo end-to-end per la trasmissione da H1 a H2 di:

- a) 1 pacchetto da 6000 byte
- b) oppure, 4 pacchetti da 1500 byte

Soluzione esercizio 1

a) Ritardo per 1 pacchetto da 6000 byte

Calcolo del ritardo di trasmissione:

- Dimensione del pacchetto: 6000 byte = **48000 bit** (6000 * 8bit)
- Velocità di trasmissione: 1 Mbit/s = 1000000 bit/s

Ritardo di trasmissione = Dimensione pacchetto / Velocità di trasmissione = $48000 \text{ bit } / 1000000 \text{ bit/s} = 0.048 \text{ secondi} = \underline{48 \text{ ms}}$

Calcolo del ritardo end-to-end:

Il ritardo end-to-end è la somma dei ritardi di trasmissione nei tre collegamenti:

Ritardo end-to-end = Ritardo trasmissione **H1-R1** + Ritardo trasmissione **R1-R2** + Ritardo trasmissione **R2-H2**

Ritardo end-to-end = 0.048 s + 0.048 s + 0.048 s = 0.144 secondi = 144 ms

b) Ritardo per 4 pacchetti da 1500 byte

Calcolo del ritardo di trasmissione per un singolo pacchetto:

- Dimensione del pacchetto: 1500 byte = **12000 bit** (1500 * 8bit)
- Velocità di trasmissione: 1 Mbit/s = 1000000 bit/s

Ritardo di trasmissione per un pacchetto = 12000 bit / 1000000 bit/s = 0.012 secondi = 12 ms

Calcolo del ritardo end-to-end per 4 pacchetti:

Ritardo end-to-end = (Ritardo trasmissione per un pacchetto + Ritardo trasmissione H1-R1 + Ritardo trasmissione R1-R2 + Ritardo trasmissione R2-H2)

Ritardo end-to-end = (0.012 s + 0.012 s + 0.012 s + 0.048 s) = **0.084 secondi** = **84 ms**

Risposte alle domande

- 1. Qual è il ritardo end-to-end per la trasmissione di 1 pacchetto da 6000 byte?

 Il ritardo end-to-end è di 0.144 secondi.
- 2. Qual è il ritardo end-to-end per la trasmissione di 4 pacchetti da 1500 byte?

 Il ritardo end-to-end è di 0.084 secondi.

Osservazioni

• Il ritardo end-to-end può variare a seconda del carico di traffico sulla rete.

Conclusione

Il ritardo end-to-end è un parametro importante da considerare nella progettazione e nella valutazione delle reti di computer. Un ritardo end-to-end elevato può causare problemi come ritardi nella comunicazione e nella trasmissione di dati.

Esercizio 2

a) Calcolo degli istanti di ricezione dei pacchetti

Per calcolare gli istanti in cui ciascun pacchetto viene completamente ricevuto dall'host H2, è necessario considerare il tempo di trasmissione e il ritardo di propagazione su entrambi i collegamenti.

Pacchetto 1:

- Tempo di trasmissione su H1-R1: 1000 bit / 2 Mbit/s = 0.5 ms
- Ritardo di propagazione su H1-R1: 1 ms
- Tempo di trasmissione su R1-H2: 1000 bit / 1 Mbit/s = 1 ms
- Ritardo di propagazione su R1-H2: 2 ms

Tempo totale di ricezione: 0.5 ms + 1 ms + 1 ms + 2 ms = 4.5 ms

Pacchetto 2:

- Tempo di trasmissione su H1-R1: 0.5 ms
- Ritardo di propagazione su H1-R1: 1 ms
- Tempo di **attesa in coda** a R1 (il pacchetto 1 è ancora in trasmissione)

- Tempo di trasmissione su R1-H2: 1 ms
- Ritardo di propagazione su R1-H2: 2 ms

Tempo totale di ricezione: 0.5 ms + 1 ms + tempo di attesa in coda (1 ms) + 1 ms + 2 ms = tempo di ricezione del pacchetto 1 + tempo di attesa in coda (1 ms) = 5.5 ms

Pacchetto 3:

- Tempo di trasmissione su H1-R1: 0.5 ms
- Ritardo di propagazione su H1-R1: 1 ms
- Tempo di attesa in coda a R1 (i pacchetti 1 e 2 sono ancora in trasmissione)
- Tempo di trasmissione su R1-H2: 1 ms
- Ritardo di propagazione su R1-H2: 2 ms

Tempo totale di ricezione: 0.5 ms + 1 ms + tempo di attesa in coda (1 ms) + 1 ms + 2 ms = tempo di ricezione del pacchetto 2 + tempo di attesa in coda (1 ms) = 6.5 ms

Esercizio 3

I. Tempo di trasferimento dei pacchetti da H1 a H3

Per calcolare il tempo di trasferimento dei due pacchetti da H1 a H3, è necessario

considerare il tempo di trasmissione su ciascun collegamento.

Pacchetto 1:

• Tempo di trasmissione su H1-R: 4000 bit / 10 Mbps = 0.4 ms

Pacchetto 2:

• Tempo di trasmissione su H1-R: 4000 bit / 10 Mbps = 0.4 ms

Tempo totale di trasferimento: 0.4 ms (pacchetto 1) + 0.4 ms (pacchetto 2) = 0.8

ms

II. Tempo di trasferimento del pacchetto da H2 a H3

Per calcolare il tempo di trasferimento del pacchetto da H2 a H3, è necessario

considerare il tempo di trasmissione su ciascun collegamento.

Pacchetto:

Tempo di trasmissione su H2-R: 5000 bit / 10 Mbps = 0.5 ms

Tempo totale di trasferimento: 0.005 s = 0.5 ms

ANALISI:

Calcolo dei tempi:

Pacchetto H2:

Tempo di elaborazione: 0.5 ms

• Tempo di trasmissione: 5000 bit / 1 Mbps = 5 ms

• Arrivo al router: t2 + 0.5 ms + 5 ms = 7.5 ms

Primo pacchetto H1:

• Tempo di trasmissione: 4000 bit / 10 Mbps = 0.4 ms

• Ritardo di propagazione: 7.5 ms (dovuto dal pacchetto precedente)

• Arrivo al router: 7.5 ms + 4 ms = 11.5 ms

 Ritardo di accodamento: 3.5 ms (il primo pacchetto di H1 ha subito un ritardo di accodamento perché è arrivato dopo del pacchetto di H2)

Secondo pacchetto H1:

• Tempo di trasmissione: 4000 bit / 10 Mbps = 0.4 ms

• Ritardo di propagazione: 1 ms

• Arrivo al router: 7.5 ms + 4 ms + 4 ms = 15.5 ms

 Ritardo di accodamento: 3.5 ms (il secondo pacchetto di H1 ha dovuto attendere la trasmissione del primo pacchetto di H1)

SPIEGAZIONE:

L'host H1 inizierà ad inviare i suoi due pacchetti dall'istante t0 fino all'istante t8, in questo frangente di tempo H2 all'istante t2 processerà e invierà il pacchetto in 0.5 ms pertanto il Router riceverà ed inizierà a processare il pacchetto di H2 all'istante t2.5 al quale sommando la grandezza del pacchetto calcolata precedentemente ci restituirà come risultato l'istante di arrivo del pacchetto di H2 (2.5 ms (momento della ricezione) + 5 ms (grandezza bit/1Mbit/s) = 7.5 ms.

All'istante t7.5 potrà iniziare la ricezione del primo pacchetto di H1 il quale impiegherà i suoi 4 ms precendetemente calcolati per arrivare del tutto e quindi otterremo data la somma (7.5 ms + 4 ms) =11.5 ms è l'istante di arrivo del primo pacchetto di H1 [Nota bene, se fosse iniziato all istante t8 avremmo avuto un ritardo di accodamento di 4 ms (il tempo di processare un singolo pacchetto , ma in questo caso il primo pacchetto è iniziato all istante t7.5 pertanto abbiamo ottenuto un ritardo di accodamento pari a 3.5 ms (4 ms - 0.5 ms) .

All'istante t11.5 terminato il primo di H1 inizierà il secondo di H1 dove facendo una semplice somma (11.5 ms + 4 ms) otterremo l'arrivo del secondo pacchetto che corrisponderà a 15.5 ms anch esso con un ritardo di accodamento di 3.5 ms.