5.2.5

EE25BTECH11002 - Achat Parth Kalpesh

October 2,2025

Question

Solve the following system of linear equation

$$3x + 2y = 5 \tag{1}$$

$$2x - 3y = 7 \tag{2}$$

Solution

The above equation can be written as

$$\begin{pmatrix} 3 & 2 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ 7 \end{pmatrix} \tag{3}$$

Solution

Performing row operations:

$$\begin{pmatrix} 3 & 2 & 5 \\ 2 & -3 & 7 \end{pmatrix} \xrightarrow{R_1 \leftarrow \frac{R_1}{3}} \begin{pmatrix} 1 & \frac{2}{3} & \frac{5}{3} \\ 2 & -3 & 7 \end{pmatrix} \tag{4}$$

$$\begin{pmatrix} 1 & \frac{2}{3} & \frac{5}{3} \\ 2 & -3 & 7 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - 2R_1} \begin{pmatrix} 1 & \frac{2}{3} & \frac{5}{3} \\ 0 & -\frac{13}{3} & \frac{11}{3} \end{pmatrix}$$
 (5)

$$\begin{pmatrix} 1 & \frac{2}{3} \\ 0 & -\frac{13}{3} \end{pmatrix} \stackrel{\frac{5}{3}}{\longleftrightarrow} \stackrel{R_2 \leftarrow -\frac{3}{13}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{2}{3} \\ 0 & 1 \end{pmatrix} \stackrel{\frac{5}{3}}{\longleftrightarrow}$$
 (6)

$$\begin{pmatrix} 1 & \frac{2}{3} & \frac{5}{3} \\ 0 & 1 & -\frac{11}{13} \end{pmatrix} \xrightarrow{R_1 \leftarrow R_1 - \frac{2}{3}R_2} \begin{pmatrix} 1 & 0 & \frac{29}{13} \\ 0 & 1 & -\frac{11}{13} \end{pmatrix}$$
 (7)

Solution

Thus,

$$\mathbf{x} = \begin{pmatrix} \frac{29}{13} \\ -\frac{11}{13} \end{pmatrix} \tag{8}$$

C Code

```
#include <stdio.h>
void solve_system(double A[2][2], double b[2], double* x_sol,
    double* y_sol) { // Solve the 2x2 system using Cramer's rule;
    det(A)
   double determinant = A[0][0] * A[1][1] - A[0][1] * A[1][0];
   // Check if a unique solution exists.
   if (determinant != 0) {// det(Ax)
       double determinant_x = b[0] * A[1][1] - A[0][1] * b[1];
       // det(Av)
       double determinant_y = A[0][0] * b[1] - b[0] * A[1][0];
       *x sol = determinant x / determinant;
       *y sol = determinant y / determinant;
   } else {
       // No unique solution, set results to 0 or an error
           indicator.
       *x sol = 0;
       *y sol = 0;
   }
```

```
import numpy as np
import matplotlib.pyplot as plt
import ctypes
lib_path = './solver.so'
solver lib = ctypes.CDLL(lib_path)
# Define the argument types and return type for the C function
# The function signature is: void solve_system(double A[2][2],
    double b[2], double* x, double* y)
solve_func = solver_lib.solve_system
solve func.argtypes = [
   np.ctypeslib.ndpointer(dtype=np.float64, ndim=2, shape=(2,2))
   np.ctypeslib.ndpointer(dtype=np.float64, ndim=1, shape=(2,)),
    ctypes.POINTER(ctypes.c_double),
    ctypes.POINTER(ctypes.c double)
solve func.restype = None
```

```
# Define the coefficient matrix A and the constant vector b
\# 2x - y = 10
# 3x + y = 5
A = np.array([[2, -3],
             [3, 2]], dtype=np.float64)
b = np.array([7, 5], dtype=np.float64)
# Create C-compatible variables to store the results
x_intersect_c = ctypes.c_double()
y_intersect_c = ctypes.c_double()
# Call the C function
solve func(A, b, ctypes.byref(x intersect c), ctypes.byref(
    y intersect c))
# Get the Python values from the C types
x intersect = x intersect c.value
y intersect = y intersect c.value
```

```
# --- 2. Plot the graph ---
 # Generate a range of x values for plotting the lines
 x_vals = np.linspace(x_intersect - 10, x_intersect + 10, 400)
 # Calculate y values for each equation
 \# Eq1: 2x - y = 10 \Rightarrow y = 2x - 10
y1 \text{ vals} = (5 - 3 * x \text{ vals}) / 2
 \# Eq2: 3x + y = 5 \Rightarrow y = 5 - 3x
 y2 \text{ vals} = (2 * x \text{ vals} - 7) / 3
 # Create the plot
 plt.figure(figsize=(10, 10))
plt.plot(x vals, y1 vals, color='blue')
 plt.plot(x vals, y2 vals, color='green')
```

```
# Mark and label the intersection point
|plt.plot(x_intersect, y_intersect, 'ro', markersize=8)
|plt.text(x_intersect + 1.0, y_intersect, f'({x_intersect:.2f}, {
    y_intersect:.2f})', fontsize=12, va='center')
# --- 3. Add non-overlapping labels directly to the lines ---
# Position the labels on the lines at specific points for clarity
plt.text(-5, 2.5, '2x - y = 10', color='blue', va='center', ha='
    left', fontsize=11)
|plt.text(12, 2.5, '3x + y = 5', color='green', va='center', ha='
    center', fontsize=11)
```

```
# --- 4. Style the plot ---
 plt.title('Solution of the System of Linear Equations')
 plt.xlabel('X-axis')
plt.ylabel('Y-axis')
 plt.axhline(0, color='black', linewidth=0.5)
 plt.axvline(0, color='black', linewidth=0.5)
 plt.grid(True, which='both', linestyle='--', linewidth=0.5)
 # Set axis limits to better match the example image
 plt.xlim(-15, 15)
 plt.ylim(-20, 20)
 plt.axis('equal') # Ensure aspect ratio is equal
 plt.show()
```


Figure: Visualization of the solution