补充

照片上的过程不太清楚, 我又整理了一下, 可以看看这个. 11/21/2021

1 大一点的磁球

磁球型号 N35; 重力 G = 0.6 N;直径 D = 2.2 cm; $d = \frac{\overline{N}}{2} \times 1 \text{ mm} = 0.5 \text{ cm};$ 线圈外绕厚度 表层电镀材料 Nickel, Argentum; 剩磁 R = 1.22 T; $\rho = 7.4 \text{ gcm}^{-3}$; 密度 $V = \frac{4}{3}\pi D^3 = 44.6 \text{ cm}^3;$ 体积 相对磁导率(查表知) $\mu_r = 1.09.$

想要知道材料的电感, 通过下式计算. 其中, $\mu_0 = 4\pi \times 10^{-7} \text{ N}$, 是真空磁导率.

$$\mu_r = \frac{2500 L (D+d)}{(D-d) N^2} = 4.36 \pi \times 10^{-7} \ \mathrm{N} \Longrightarrow L = \frac{\mu_r}{2500} \frac{D-d}{D+d} N^2 = 23 \ \mathrm{H}.$$

从而知道产生的感应电动势

$$\xi_{\vec{\boxtimes}} = LI \Longrightarrow I = \frac{\xi_{\vec{\boxtimes}}}{L} = \frac{U_{\vec{\Downarrow}}}{L};$$

再根据总磁矩计算公式

$$M = \sum_{i} m_i = \int m_i \, \mathrm{d}V = \int I_i \cdot \mathrm{d}S,$$

由于 220V 交流电压图像是正弦函数, 所以要除以根号 2(这里稍微修正一下, 因为之前积分似乎漏了个 $\frac{1}{2}$, 所以结果应该是原来的 0.5 倍)

$$M_{total} = I_{net} \int_{0}^{R} 2\pi r_{i} \cdot dr = \frac{U_{max}}{2\sqrt{2}L} \int_{0}^{\pi} r^{2} \cos\theta \, d\theta = 1.4 \times 10^{-4} \text{ Am}^{2}.$$

2 小一点的磁球

磁球型号(就当它是了) N35; 重力 G = 0.1 N;首径 D = 1.57 cm; $d = \frac{\bar{N}}{2} \times 1 \text{ mm} = 0.5 \text{ cm};$ 线圈外绕厚度 表层电镀材料 Nickel, Argentum; R = 1.17 T;剩磁 密度 $\rho = 7.4 \text{ gcm}^{-3}$; $V = \frac{4}{3}\pi D^3 = 16.2 \text{ cm}^3;$ 体积 相对磁导率 $\mu_r = 1.09;$

先代了数据算, 大不了以后再改;)

- (1) 材料的电感, $L = \frac{\mu_r}{2500} \frac{D-d}{D+d} N^2 = 5.1 \text{ H};$
- (2) 磁矩, $M_{total} = 0.33 \times 10^{-4} \text{ Am}^2$.

3 亥姆霍兹线圈

首先, 地磁场对实验的干扰绝不能被忽略不计.

地磁场的数据, 暂时先用电流在 100mA, 轴向距离(两线圈距离)在 50mm 的吧, 0.383 那个. 原理就是(1)磁场在中点处的叠加, (2)比奥萨伐尔, (3)安培环路.

这玩意纯粹是读仪表示数, 所以运算上没啥好看的. 把之前那个公式扔过来:

$$B = \frac{(4/5)^{3/2}\mu_0 nI}{R}.$$

4 建模

第一种实验方案: 竖直下放小球, 直接测出它们之间力的大小, 除了需要消除天平底盘的影响, 其他误差很小(比较局限, 因为**没有考虑(也难以实现)磁化强度方向夹角改变**, 而这会导致更多的作用力)

李老师的想法:整个装置可以做到用非磁性的材料制作,下方的球固定住,则它们之间的引力 = 力传感器的示数 – 上方磁球的重力.

重力直接用传感器测出即可. 旋转下方固定的小球, 即可改变磁场的方向.

但是后期涉及到求解"磁球运动轨迹"、各种阻力、地磁场和重力场分力的干扰,上面那个方法就会比较困难了. 我们暂时认为水平平面实验会更方便些.

实验初步阶段,除了坐标 $x(t),y(t),\varphi(t)$ 有可能需要对时间求导函数 $\dot{x}(t),\dot{y}(t),\dot{\varphi}(t)$,好像暂时没涉及别的微分项,还没到代数大工程的时候.

沿着竖直z方向, 从一维建起好了. 上述方案的已得数据如下:

F_1	x_1	In m^4	F_2	x_2	In m^4
0	23.7	0.003154957	0	14.95	0.00049953
0.01	7	0.00002401	0.01	10.8	0.00013605
0.02	5.6	9.8345E-06	0.02	6.4	1.6777E-05
0.04	4.7	4.87968E-06	0.03	5.2	7.3116E-06
			0.05	4.35	3.5806E-06
			0.08	4.3	3.4188E-06
			0.11	3.65	1.7749E-06
			0.21	3.05	8.6537E-07
F_3	x_3	In m^4	F	$r ext{ (in cm)}$	r^4
0.01	9.45	7.97494E-05	0	23.7	0.00315496
0.01	7.3	2.83982E-05	0.01	7	0.00002401
0.02	6.4	1.67772E-05	0.02	5.6	9.8345E-06
0.03	5.7	1.0556E-05	0.04	4.7	4.8797E-06
0.04	5.5	9.15063E-06	0	14.95	0.00049953
0.06	4.9	5.7648E-06	0.01	10.8	0.00013605
0.11	4.5	4.10063E-06	0.02	6.4	1.6777E-05
0.12	3.9	2.31344E-06	0.03	5.2	7.3116E-06
			0.05	4.35	3.5806E-06
			0.08	4.3	3.4188E-06

这坨东西的含义: r 是两个球的球心之间的距离, 单位是 cm. r^4 是两个球的球心之间的距离的四次方, 单位是 \mathbf{m}^4 .

考虑一下把数据手动输入到 COMSOL 的 parameter list 去...

随便先搭一个导磁球体,如下图.

(不过到现在就只搭了个球.....;)

(1)

引入 Force

官网上的教程看了一些,下面简单写一下引入已推导公式中的变量的操作: 受力即

$$\begin{split} \vec{F}_{net} &= \vec{F}_{12} + \vec{f}_t + \vec{f}_m + \vec{F}_{eddy} \ + \vec{F}_N \\ &= -\nabla \bigl(-\overrightarrow{m}_2 \cdot \overrightarrow{B} \bigr) - \Bigl(\mu mg + \frac{4}{3} \pi a^3 \sigma B^2 v \Bigr) \, \hat{v} - \mu m (-3U - \dot{\phi}/10) \hat{v}_t - (3U + \dot{\phi}/10) \hat{v}_n. \end{split}$$

接下来,绘制磁铁上洛伦兹<mark>力</mark>的z分量。

一维绘图组3

在主屏幕工具栏中单击 📠 添加绘图组,然后选择一维绘图组。

洛伦兹力, Fz

- 1 右键单击一维绘图组 3 并选择全局。
- 2 在全局的设置窗口中,单击 y 轴数据栏右上角的替换表达式。从菜单中选择组件 1 (comp1)> 定义 > 变量 > Fz z 方向的洛伦兹力 N。
- 3 在一维绘图组 3 工具栏中单击 **◎** 绘制。 将得到的绘图与图 4 进行比较。
- 4 右键单击全局 1 并选择重命名。
- 5 在**重命名"全局"**对话框中,在**新标签**文本框中键入"洛伦兹<mark>力</mark>,Fz"。
- 6 单击确定。
- 7 在一维绘图组 3 工具栏中单击 🕥 绘制。

按照以下操作说明操作,绘制磁铁的终极速度,如图 5 所示。

(2) 引入 Magnetic Field

COMSOL 软件功能实现说明

使用"**磁场**"接口来模拟<mark>磁场</mark>,包括铜管的速度(洛伦兹项)。通过铜管上的体积分计算洛伦兹力。另外,使用"无限元域"特征对铜管周围的自由空间区域建模,并使用"全局常微分和微分代数方程"接口实现下落磁铁的运动方程。通过两个研究步骤求解模型。首先,使用"稳态"研究步骤计算静止的永磁体内部及周围的矢势场。然后,使用这个稳态解作为初始条件,在"瞬态"研究步骤中确定下落磁铁的自由沉降速度和加速度。

案例库路径: ACDC_Module/Motors_and_Actuators/falling_magnet

(3) 引入磁球的 Net Dipole Moment

(4) 引入矢量运算, 如 Gradient 算符" ∇ "

COMSOL Multiphysics 举例

假设 $\phi = x^2 + y^2$, 则 $\nabla \phi = (2x, 2y, 0)$ 。

但是 MATLAB 不直接处理这类符号计算(它的符号工具箱可以)。COMSOL Multiphysics 粗略计算微分的数值近似解。所以标量场的梯度可以通过 COMSOL Multiphysics 的"基元"运算符得到。我们是如何轻易得到这一信息的呢?表 1中给出了具体做法。应当注意到,由于实际上没有偏微分方程被求解,Neumann 边界条件等价于中性或无条件边界。否则的话,只有边界数据满足 0=phi-x^2-y^2 时才是可能的解。