MLE phase transition of Gaussian tensor matching (Negative part of non-symmetric observations)

Jiaxin Hu

May 19, 2022

In previous note 0517, we provide the threshold of ρ^2 for MLE to achieve exact recovery. In this note, we provide the threshold of ρ^2 when it is impossible for MLE to achieve exact recovery. We still consider the non-symmetric case since we still need the relationship between node permutation error and edge permutation error.

The theorem for negative part remains to be a conjecture now. Two places need to be fixed to make it a concrete theorem: (1) choosing a precise constant C_0 that occurs in both positive and negative thresholds; (2) Lemma 3 following Ganassali (2020) should be rigorously extended for tensor case.

1 Preliminary

Non-symmetric correlated Gaussian observations.

Consider two order-m random tensor observations $\mathcal{A}, \mathcal{B}' \in \mathbb{R}^{n^{\otimes m}}$ and use $\boldsymbol{\omega} \in [n]^m$ to index the entries in \mathcal{A} and \mathcal{B} . Suppose that for all $\boldsymbol{\omega} \in [n]^m$ and some $\rho \in (0,1)$

$$\begin{pmatrix} \mathcal{A}_{\omega} \\ \mathcal{B}'_{\omega} \end{pmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right), \quad \text{and} \quad \begin{pmatrix} \mathcal{A}_{\omega} \\ \mathcal{B}'_{\omega} \end{pmatrix} \text{ is independent with } \begin{pmatrix} \mathcal{A}_{\omega'} \\ \mathcal{B}'_{\omega'} \end{pmatrix} \text{ for all } \omega \neq \omega'. \tag{1}$$

Let π^* be a permutation on [n] with corresponding permutation matrix $\Pi^* \in \{0,1\}^{n \times n}$, and consider the permuted observation \mathcal{B} such that for all $\boldsymbol{\omega} \in [n]^m$

$$\mathcal{B}_{\omega} = \mathcal{B}'_{\pi^* \circ \omega}$$
, or equivalently $\mathcal{B} = \mathcal{B}' \times_1 \Pi^* \times_2 \cdots \times_m \Pi^*$.

Our goal is to recover π^* (or equivalently Π^*) observing \mathcal{A}, \mathcal{B} . Note that \mathcal{A}, \mathcal{B} are not supersymmetric tensors while the permutation on every mode is the same!

MLE

By Theorem 1 in note 0402, the MLE of π^* , denoted $\hat{\pi}_{MLE}$, satisfies

$$\hat{\Pi}_{MLE} = \underset{\Pi \in \mathcal{P}_n}{\arg \max} \left\langle \mathcal{A} \times_1 \Pi \times_2 \dots \times_m \Pi, \mathcal{B} \right\rangle,$$

where $\hat{\Pi}_{MLE}$ is the permutation matrix corresponding to $\hat{\pi}_{MLE}$, and \mathcal{P}_n is the collection for all possible permutation matrices on [n].

2 Theorem

Theorem 1 (Converse part of MLE phase transition with non-symmetric observation, Conjecture). Consider the observations $(\mathcal{A}, \mathcal{B})$ from model (1) with true permutation π^* . Assume n is large enough and

$$\rho^2 \le \frac{(C_0 - \varepsilon) \log n}{n^{m-1}},$$

for some positive constant $C_0 > 0$ and small constant ε . Then, the MLE $\hat{\pi}_{MLE}$ exactly recovers true permutation π^* with probability o(1).

Remark 1 (Conjecture). The Theorem 1 is a conjecture since (1) the constant C_0 is critical to the proof and should be the same constant C_0 in the positive part in note 0517 and (2) the Lemma 3 should be well-extended for tensor case.

Proof of Theorem 1. Without the loss of generality, assume the true permutation π^* is the identity mapping. With observations $\mathcal{A}, \mathcal{B} \in \mathbb{R}^{n^{\otimes m}}$, consider the loss function

$$\mathcal{L}(\pi, \mathcal{A}, \mathcal{B}) = \langle \mathcal{A} \times_1 \Pi \times_2 \cdots \times_m \Pi, \mathcal{B} \rangle,$$

where $\Pi \in \{0,1\}^{n \times n}$ is the permutation matrix corresponding to π . We define the difference

$$\Delta(\pi) := \mathcal{L}(\pi, \mathcal{A}, \mathcal{B}) - \mathcal{L}(\pi^*, \mathcal{A}, \mathcal{B})$$

$$= \rho \sum_{\omega \in [n]^m} (\mathcal{A}_{\pi \circ \omega} - \mathcal{A}_{\omega}) \mathcal{A}_{\omega} + \sqrt{1 - \rho^2} \sum_{\omega \in [n]^m} (\mathcal{A}_{\pi \circ \omega} - \mathcal{A}_{\omega}) \mathcal{Z}_{\omega},$$

where the second equality follows from the fact that $\mathcal{B} = \rho \mathcal{A} + \sqrt{1 - \rho^2} \mathcal{Z}$, where $\mathcal{Z}_{\omega} \sim N(0, 1)$ for all $\omega \in [n]^m$ independently and \mathcal{Z} is independent with \mathcal{A} . By the derivation in note 0517, we have

$$\mathbb{P}(\Delta(\pi) \ge 0) = \mathbb{E}[\mathbb{E}[\mathbb{1}\{\Delta(\pi) \ge 0\} | \mathcal{A}]] = \mathbb{E}\left[\mathbb{P}\left(N(0, 1) \ge \frac{\rho \|\pi \circ \mathcal{A} - \mathcal{A}\|_F}{2\sqrt{1 - \rho^2}} \middle| \mathcal{A}\right)\right]$$
(2)

To show the failure of MLE, we need to show

$$\mathbb{P}(\hat{\pi}_{MLE} = \pi^*) \le o(1) \quad \Leftrightarrow \quad \mathbb{P}(\text{for all } \pi \ne \pi^*, \Delta(\pi) < 0) \le o(1)$$
$$\Leftrightarrow \quad \mathbb{P}(|\{\pi \in \mathcal{P}_n : \pi \ne \pi^*, \Delta(\pi) \ge 0\}| \ge 1) \ge 1 - o(1),$$

where \mathcal{P}_n is the collection for all possible permutation matrices on [n].

Let $D_{\pi} = \{i \in [n] : \pi(i) \neq i\}$ denote the set of unfixed points of π and $D_{\pi}^{m,E} = \{\omega \in [n]^m : \pi \circ \omega \neq \omega\}$ denote the set of unfixed order-m edges of π . Define the variable

$$X = \sum_{\pi \in \mathcal{P}_n: |D_{\pi}| = 2} \mathbb{1} \{ \Delta(\pi) \ge 0 \},$$

which counts the number of permutations that have node permutation error 2 and have larger likelihoods than true permutations. Hence, for the failure of MLE, it suffices to show that

$$\mathbb{P}(X \ge 1) \ge 1 - o(1).$$

For simplicity, let $d = |D_{\pi}^{m,E}| = n^m - (n-2)^m$ denote the number of unfixed edged for all π such that $|D_{\pi}| = 2$. Consider the event

$$E(\mathcal{A}) := \{ \text{for all } \pi \neq \pi^*, \quad 2d^E(1 - \epsilon_n) \le \|\pi \circ \mathcal{A} - \mathcal{A}\|_F^2 \le 2d^E(1 + \epsilon_n) \}.$$

where $\epsilon_n = \frac{C}{2}\sqrt{\log n/n^{m-1}}$. By Proposition 2, we have $\mathbb{P}(E^c(\mathcal{A})) = o(1)$. Let $\tilde{X} = X\mathbb{1}\{E(\mathcal{A})\}$ and notice that $X \geq \tilde{X}$. Then, it suffices to show

$$\mathbb{P}(\tilde{X} \ge 1) \ge 1 - o(1). \tag{3}$$

By the Paley-Zygmund inequality Lemma 1 and conclusions for the first and second moments of \tilde{X} in Lemmas 2 and 3, we have

$$\mathbb{P}(\tilde{X} \ge 1) = \mathbb{P}(\tilde{X} \ge n^{-\epsilon_0} \mathbb{E}[\tilde{X}]) \ge (1 - n^{-\epsilon_0})(1 - o(1)) = (1 - o(1)),$$

where ϵ_0 is some small constant smaller than ε .

Lemma 1 (Paley-Zygmund inequality). Let Z be a positive random variable with finite variance. Then, for all $c \in [0, 1]$, we have

$$\mathbb{P}(Z \ge c\mathbb{E}[Z]) \ge (1 - c^2) \frac{(\mathbb{E}[Z])^2}{\mathbb{E}[Z^2]}.$$

Lemma 2 (First moment of \tilde{X}). Consider the variable \tilde{X} defined in (3). We have

$$\mathbb{E}[\tilde{X}] \ge (1 - o(1)) \frac{n(n-1)\sqrt{1-\rho}}{\sqrt{2\pi}\rho\sqrt{d^E(1+\epsilon_n)}} \exp\left(-\frac{\rho^2 d^E(1+\epsilon_n)}{4(1-\rho^2)}\right)$$

Suppose $\rho^2 \leq \frac{(C_0 - \varepsilon) \log n}{n^{m-1}}$, for some positive constants $C_0 > 0$ and ε . Then, we have

$$\mathbb{E}[\tilde{X}] \ge C n^{\varepsilon_0},$$

for some positive constant C and $\varepsilon_0 < \varepsilon$.

Proof of Lemma 2. Note that the number of permutations π such that $|D_{\pi}| = 2$ is equal to $\binom{n}{2} = \frac{n(n-1)}{2}$. Let π be an arbitrary permutation satisfying $|D_{\pi}| = 2$. Then, we have

$$\begin{split} \mathbb{E}[\tilde{X}] &= \frac{n(n-1)}{2} \mathbb{P}(\Delta(\pi) \geq 0, E(\mathcal{A})) \\ &= \frac{n(n-1)}{2} \mathbb{E}\left[\mathbb{P}\left(N(0,1) \geq \frac{\rho \|\pi \circ \mathcal{A} - \mathcal{A}\|_F}{2\sqrt{1-\rho^2}} \bigg| \mathcal{A}\right) \mathbb{1}\{E(\mathcal{A})\} \right] \\ &\geq \frac{n(n-1)}{2} \mathbb{E}\left[(1-o(1)) \frac{2\sqrt{1-\rho}}{\sqrt{2\pi}\rho \|\pi \circ \mathcal{A} - \mathcal{A}\|_F} \exp\left(-\frac{\rho^2 \|\pi \circ \mathcal{A} - \mathcal{A}\|_F^2}{8(1-\rho^2)}\right) \mathbb{1}\{E(\mathcal{A})\} \right] \\ &\geq (1-o(1)) \frac{n(n-1)\sqrt{1-\rho}}{\sqrt{2\pi}\rho\sqrt{d^E(1+\epsilon_n)}} \exp\left(-\frac{\rho^2 d^E(1+\epsilon_n)}{4(1-\rho^2)}\right), \end{split}$$

3

where the second equation follows the derivation in (2), and the last two inequalities follow from the fact that $\mathbb{P}(N(0,1) \geq t) \geq \frac{t}{\sqrt{2\pi}(t^2+1)} \exp(-t^2/2)$, the event $E(\mathcal{A})$ such that $\|\pi \circ \mathcal{A} - \mathcal{A}\|_F^2 \leq 2d(1+\epsilon_n)$, and $d^E \geq 2n^{m-1}$ by Proposition 1.

Suppose $\rho^2 \leq \frac{(C_0 - \varepsilon) \log n}{n^{m-1}}$. With $d^E \geq 2n^{m-1}$, we further have

$$\mathbb{E}[\tilde{X}] \ge C' \frac{n^2}{\sqrt{\log n}} \exp\left(-\frac{d^E(C_0 - \varepsilon) \log n}{4n^{m-1}}\right) \ge Cn^{\epsilon_0},$$

where C' is some positive constant and the second inequality holds by choosing C_0 such that $n^2 \exp\left(-\frac{d^E C_0 \log n}{4n^{m-1}}\right) = c$ for some constant c.

Lemma 3 (Second moment of \tilde{X}). Consider the variable \tilde{X} defined in (3). Then, we have

$$\frac{(\mathbb{E}[X])^2}{\mathbb{E}[X^2]} \ge 1 - o(1).$$

Proof of Lemma 3. Follow the proof of Lemma 3.2 in Ganassali (2020).

Proposition 1 (Relationship between unfixed points and unfixed edges). Suppose we have a permutation π on [n]. Let $D_{\pi} = \{i \in [n] : \pi(i) \neq i\}$ denote the set of unfixed points of π and $D_{\pi}^{m,E} = \{\omega \in [n]^m : \pi \circ \omega \neq \omega\}$ denote the set of unfixed order-m edges. Then, we have

$$n^{m-1}|D_{\pi}| \le |D_{\pi}^{m,E}| \le mn^{m-1}|D_{\pi}|.$$

Proposition 2 (Edge disagreement with permutation π). Suppose we have an order-m observation $\mathcal{A} \in \mathbb{R}^{n^{\otimes m}}$ with i.i.d. standard Gaussian entries. Let $D^{m,E}_{\pi} = \{ \boldsymbol{\omega} \in [n]^m : \pi \circ \boldsymbol{\omega} \neq \boldsymbol{\omega} \}$ denote the set of unfixed order-m edges. We have the expectation

$$\mathbb{E}\left[\|\pi \circ \mathcal{A} - \mathcal{A}\|_F^2\right] = 2|D_{\pi}^{m,E}|,$$

and there exists a positive constant C such that

$$\left| \|\pi \circ \mathcal{A} - \mathcal{A}\|_F^2 - 2|D_{\pi}^{m,E}| \right| \le C|D_{\pi}^{m,E}|\sqrt{\frac{\log n}{n^{m-1}}},$$

with high probability.

References

Ganassali, L. (2020). Sharp threshold for alignment of graph databases with gaussian weights. arXiv preprint arXiv:2010.16295.