EXERCICES — CHAPITRE 12

Exercice 1 (\star) – Soient x et y > 0. Simplifier le plus possible les expressions suivantes.

1.
$$\ln\left(\frac{1}{x}\right) + \ln(2x)$$

4.
$$\ln\left(\frac{1}{x^2}\right) + \ln(x)$$

2.
$$\ln(x^3) - \ln(x^2) + \ln(\frac{1}{x^2})$$

5.
$$\ln\left(\frac{x}{y}\right) + \ln\left(\frac{y}{x}\right) - \ln\left(\frac{1}{x}\right)$$

3.
$$2\ln(x^3) - 3\ln(x^2)$$

6.
$$\ln(2x+2) - \ln(x+1)$$

Exercice 2 $(\star\star)$ – Résoudre les équations suivantes sur l'intervalle considéré.

1.
$$\ln(x+4) = 2\ln(x+2)$$
 sur $I =]-2, +\infty[$

2.
$$\ln(x+3) + \ln(x+1) = \ln(x+13)$$
 sur $I =]-1, +\infty[$

3.
$$\ln(3x-1) - \ln(x) = \ln(2)$$
 sur $I = \left| \frac{1}{3}, +\infty \right|$

4.
$$\ln(x) = 1$$
 sur $I =]0, +\infty[$

Exercice 3 $(\star\star)$ – Résoudre les inéquations suivantes sur l'intervalle considéré.

1.
$$\ln(x-2) \le 0$$
 sur $I =]2, +\infty[$

2.
$$\ln(4x+5) - \ln(x+2) \ge \ln(3)$$
 sur $I = \left[-\frac{5}{4}, +\infty \right]$

3.
$$\ln(x-3) \ge 1$$
 sur $I =]3, +\infty[$

4.
$$\ln\left(\frac{2x+1}{x+1}\right) \leqslant 0$$
 sur $I = \left[-\frac{1}{2}, +\infty\right]$

Exercice 4 ($\star\star$) – Déterminer les limites des fonctions suivantes en $+\infty$.

$$1. \ f(x) = \frac{1}{\ln(x)}$$

3.
$$f(x) = \ln(x^2 - 3x + 1)$$

$$5. \quad f(x) = \frac{\ln(2x)}{x^2}$$

$$2. \ f(x) = \frac{x}{\ln\left(x^2\right)}$$

1.
$$f(x) = \frac{1}{\ln(x)}$$

2. $f(x) = \frac{x}{\ln(x^2)}$
3. $f(x) = \ln(x^2 - 3x + 1)$
4. $f(x) = \ln\left(\frac{x - 1}{x + 1}\right)$
5. $f(x) = \frac{\ln(2x)}{x^2}$
6. $f(x) = x - \ln(x)$

$$6. \ f(x) = x - \ln(x)$$

Exercice 5 ($\star\star$) – Déterminer les limites des fonctions suivantes en 0.

$$1. \ f(x) = x - \ln(x)$$

4.
$$f(x) = x \ln(x+1)$$

2.
$$f(x) = (x^2 + 1) \ln(x)$$

5.
$$f(x) = \frac{1}{x} + \ln(x)$$

$$3. \ f(x) = x \ln(x^2)$$

6.
$$f(x) = (x^2 - 5x + 6) \ln(x^2 - 5x + 6) \ln(x$$

Exercice 6 $(\star\star)$ – Dans chacun des cas suivants, étudier les limites aux bornes de l'ensemble de définition de la fonction f définie sur $]0,+\infty[$.

1.
$$f(x) = 3x + 2 - \ln(x)$$

3.
$$f(x) = \frac{2\ln(x) - 1}{x}$$

$$2. \ f(x) = \frac{2x + \ln(x)}{x}$$

4.
$$f(x) = \frac{1}{x} - \ln(x)$$

Exercice 7 ($\star \star \star$) – Donner le domaine de définition et calculer la dérivée f'(x) des fonctions suivantes.

1.
$$f(x) = x - 2 - 2\ln(x)$$

1.
$$f(x) = x - 2 - 2\ln(x)$$
 4. $f(x) = x^2 + 1 + 2\ln(x)$ 7. $f(x) = \ln(x - 4)$

7.
$$f(x) = \ln(x - 4)$$

$$2. f(x) = x \ln(x)$$

2.
$$f(x) = x \ln(x)$$
 5. $f(x) = x^2 \ln(x)$ 8. $f(x) = \ln(1 + x^2)$

$$f(x) = \inf(x - \frac{1}{2})$$

$$3. \ f(x) = \frac{\ln(x)}{x}$$

3.
$$f(x) = \frac{\ln(x)}{x}$$
 6. $f(x) = \frac{x + 3\ln(x)}{x}$ 9. $f(x) = \frac{10}{\ln(4x - 2)}$

0.
$$f(x) = \frac{10}{\ln(4x - 3)}$$

Exercice 8 $(\star \star \star)$ – Soit f la fonction définie sur $]0, +\infty[$ par $f(x) = \frac{1}{x} + \ln(x)$.

- 1. Étudier les limites de f en 0 et en $+\infty$.
- 2. On note f' la dérivée de la fonction f. Calculer f'(x).
- 3. Étudier les variations de *f* .
- 4. Tracer l'allure de la courbe de la fonction f.

Exercice 9 $(\star \star \star)$ – Soit f la fonction définie sur $]0, +\infty[$ par $f(x) = \frac{\ln(x)}{x^2}$. On note C_f sa courbe représentative.

- 1. a) Étudier les limites de *f* aux bornes de son intervalle de définition.
 - b) La courbe C_f admet-elle des asymptotes?

2. a) Montrer que
$$f'(x) = \frac{1 - 2\ln(x)}{x^3}$$
.

- b) Étudier les variations de la fonction f.
- 3. Donner une équation de la tangente \mathcal{T} à la courbe \mathcal{C}_f au point d'abscisse 1.

Exercice 10
$$(\star \star \star)$$
 –

Partie I

Soit *g* la fonction définie sur $]0, +\infty[$ par $g(x) = 1 - x^2 - \ln(x)$.

- 1. Calculer la dérivée de la fonction g et étudier son signe. En déduire les variations de la fonction g.
- 2. Calculer g(1). En déduire le signe de g(x) pour x appartenant à l'intervalle $]0, +\infty[$.

Partie II

Soit f la fonction définie sur $]0, +\infty[$ par

$$f(x) = \frac{\ln(x)}{2x} - \frac{x}{2} + 1.$$

On note C_f sa courbe représentative dans un repère du plan.

- 1. a) Calculer la limite de f en 0. Interpréter graphiquement ce résultat.
 - b) Calculer la limite de f en $+\infty$.
 - c) Montrer que la droite \mathcal{D} d'équation $y = -\frac{x}{2} + 1$ est asymptote à la courbe \mathcal{C}_f en $+\infty$.
 - d) Calculer les coordonnées du point A, intersection de la droite \mathcal{D} et de la courbe \mathcal{C}_f .
- 2. a) Montrer que pour tout réel x appartenant à l'intervalle $]0, +\infty[$, $f'(x) = \frac{g(x)}{2x^2}$.
 - b) En déduire le signe de f'(x) puis les variations de la fonction f.
- 3. Tracer la droite \mathcal{D} et la courbe \mathcal{C}_f dans un repère.

Exercice 11 $(\star \star \star)$ – On considère la fonction f définie et dérivable sur l'intervalle $]0, +\infty[$ telle que pour tout réel x de cet intervalle, $f(x) = (1 + \ln(x))(2 - \ln(x))$. La courbe représentative \mathcal{C}_f est donnée ci-dessous.

- 1. Calculer les limites de la fonction f en 0 et en $+\infty$.
- 2. a) On note f' la fonction dérivée de la fonction f. Calculer f'(x) et vérifier que pour tout réel x de l'intervalle $]0, +\infty[$,

$$f'(x) = \frac{1 - 2\ln(x)}{x}.$$

- b) Étudier les variations de *f*. On précisera la valeur exacte du maximum de *f* et la valeur exacte de *x* pour laquelle il est atteint.
- 3. Déterminer une équation de la tangente \mathcal{T} à la courbe \mathcal{C}_f au point d'abscisse 1 et la tracer sur le graphique.
- 4. a) Donner le nombre de solutions de l'équation f(x) = 2.
 - b) Résoudre dans \mathbb{R} l'équation (1+X)(2-X)=2.
 - c) En déduire les solutions de l'équation f(x) = 2.

Exercice 12 $(\star \star \star)$ – Extrait d'ECRICOME 2019 / Ex2

Soit g la fonction numérique réelle définie sur l'intervalle $]0,+\infty[$ par

$$g(x) = 2x - 1 + \ln\left(\frac{x}{x+1}\right).$$

On note $\ensuremath{\mathcal{C}}$ sa courbe représentative dans un repère orthonormé.

- 1. a) Calculer la limite de *g* en 0 et interpréter graphiquement le résultat.
 - b) Montrer que $\lim_{x \to +\infty} \ln \left(\frac{x}{x+1} \right) = 0$. En déduire la limite de g en $+\infty$.
- 2. Étudier le sens de variation de g sur $]0,+\infty[$ et dresser son tableau de variation.
- 3. a) Démontrer que la courbe $\mathcal C$ admet une asymptote oblique $\mathcal D$ dont on précisera une équation.
 - b) Étudier la position de \mathcal{C} par rapport à \mathcal{D} .

Exercice 13 $(\star \star \star)$ – Calculer les intégrales suivantes.

1.
$$I_1 = \int_1^e \frac{-2}{x} \, \mathrm{d}x$$

2.
$$I_2 = \int_1^2 \frac{1}{4x} dx$$

3.
$$I_3 = \int_0^2 \frac{2x-1}{x^2-x+1} \, \mathrm{d}x$$

4.
$$I_4 = \int_2^e \frac{\ln(x)^2}{x} \, \mathrm{d}x$$