Introduction to Intelligent Vehicles [6. Cooperative Adaptive Cruise Control]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Fall 2019

Adaptive Cruise Control (ACC)

- What is ACC?
 - > Adjust vehicle speed to maintain a safe distance from the vehicle ahead
- ☐ Why is ACC helpful?
 - Maintain a safe distance and avoid a collision
- ☐ When is ACC working?
- ☐ Where is ACC working?
- ☐ Who develops ACC?
- ☐ How does ACC work?
 - Sense the distance from the vehicle ahead (also consider the speed itself)
 - > Decide if it is safe
 - > Maintain a safe distance from the vehicle ahead or brake if needed

Cooperative Adaptive Cruise Control (CACC)

☐ Two simplified CACC modes

- ➤ Gap control mode
 - The following vehicle (F) decides acceleration based on the gap, speeds, and accelerations of the two vehicles

- > Collision avoidance mode
 - The following vehicle (F) decelerates with its maximum deceleration

☐ Information and its sources

- > Gap, speeds, and accelerations
- > Camera, radar, lidar, and communication messages (e.g., 10Hz)

Random Stuff

- □ A more complicated model
 - One more mode: speed control mode

■ Math behind it

- ightharpoonup g_{safe} = 0.1 v + (v² / 2D) (v'² / 2D') + 1.0
 - 0.1: CACC message/task period
 - v: velocity of the following vehicle
 - v': velocity of the leading vehicle
 - D: maximum deceleration of the following vehicle
 - D': maximum deceleration of the leading vehicle
 - 1.0: minimum gap requirement

Benefits

□ ACC systems, like human drivers, may not exhibit string stability [Wikipedia]

- ☐ With more information, CACC can perform vehicle-following better
 - > CACC may also consider multiple leading vehicles

Q&A