Graphes: modélisation et parcours

OPTION INFORMATIQUE - TP nº 3.3 - Olivier Reynet

À la fin de ce chapitre, je sais :

- modéliser un graphe par liste d'adjacence
- modéliser un graphe par matrice d'adjacence
- passer d'une modélisation à une autre
- parcourir un graphe en largeur et en profondeur
- implémenter l'algorithme de Dijkstra

A Modélisation d'un graphe

Dans ce qui suit on peut considérer le graphe :

```
let g = [| [1;2]; [0;3;4]; [0;5;6]; [1]; [1]; [2]; [2] |];;
```

- A1. Sous quelle forme le graphe g est-il donné?
- A2. Dessiner le graphe g. Comment peut-on qualifier ce graphe?
- A3. On dispose d'un graphe sous la forme d'une liste d'adjacence. Écrire une fonction list_to_matrix qui transforme cette représentation en une matrice d'adjacence.
- A4. On dispose d'un graphe sous la forme d'une matrice d'adjacence. Écrire une fonction matrix_to_list qui transforme cette représentation en une liste d'adjacence.
- A5. On dispose d'un graphe orienté sous la forme d'une liste d'adjacence. Écrire une fonction desoriented_list qui transforme ce graphe en un graphe non orienté.
- A6. On dispose d'un graphe orienté sous la forme d'une matrice d'adjacence. Écrire une fonction desoriented_matrix qui transforme ce graphe en un graphe non orienté.

B Parcourir un graphe

Le parcours d'un graphe est une opération fondamentale et utilisée par de nombreux algorithmes, notamment Dijkstra et A*. On peut facilement mémoriser les différentes stratégies en observant les types d'ensemble qui sont utilisés pour stocker les sommets à parcourir au cours de l'algorithme :

- 1. Le parcours en **largeur** passe par tous les voisins d'un sommet avant de parcourir les descendants de ces voisins. Les sommets passent dans une **file** de type First In First Out.
- 2. Le parcours en **profondeur** passe par tous les descendants d'un voisin d'un sommet avant de parcourir tous les autres voisins de ce sommet. Les sommets passent dans une **pile** de type Last In First Out.

OPTION INFORMATIQUE

TP nº 3.3

3. L'algorithme de **Dijkstra** passe par le voisin le plus proche d'un sommet avant de parcourir les autres voisins de ce sommet. C'est un parcours en largeur qui utilise une **file de priorités** : lorsqu'on insère un nouvel élément dans cette file, celui-ci est placé d'après son niveau de priorité, le plus prioritaire en premier. Dans notre cas, la priorité est la distance. La plus petite distance en tête donc.

Dans cette section, on suppose qu'on manipule un graphe sous la forme d'une liste d'adjacence.

B1. Écrire une fonction de signature bfs : int list array -> int -> int list qui parcours en largeur un graphe et qui renvoie la liste des sommets parcourus. On pourra s'inspirer du code récursif suivant :

Tester l'algorithme sur le graphe suivant :

```
let g = [| [1;2] ; [0;3;4] ; [0;5;6] ; [1] ; [1] ; [2] ; [2] |] ;;
```

- B2. Écrire une fonction récursive de signature dfs : int list array -> int -> int list qui parcours en profondeur un graphe et qui renvoie la liste des sommets parcourus.
- B3. Que valent les complexités de bfs et dfs?

C Plus courts chemins: algorithme de Dijkstra

```
Algorithme 1 Algorithme de Dijkstra, plus courts chemins à partir d'un sommet donné
```

```
1: Fonction DIJKSTRA(G = (S, A, w), s_0)

ightharpoonup Trouver les plus courts chemins à partir de s_0 \in V
                                                 \triangleright \Delta est le dictionnaire des sommets dont on connaît la distance à s_0
2:
         \Delta \leftarrow s_0
         \Pi \leftarrow \emptyset
                                                              \triangleright \Pi[s] est le parent de s dans le plus court chemin de s_0 à s
3:
         d \leftarrow \emptyset
                                                                                       \triangleright l'ensemble des distances au sommet s_0
4:
         \forall s \in V, d[s] \leftarrow w(s_0, s)
                                                                         \triangleright w(s_0, s) = +\infty si s n'est pas voisin de s_0, 0 si s = s_0
5:
6:
         tant que \bar{\Delta} n'est pas vide répéter
                                                                             \triangleright \bar{\Delta}: sommets dont la distance n'est pas connue
             Choisir u dans \bar{\Delta} tel que d[u] = \min(d[v], v \in \bar{\Delta})
7:
                                                                                                                        ▶ Choix glouton!
             \Delta = \Delta \cup \{u\}
                                                                                \triangleright On prend la plus courte distance à s_0 dans \bar{\Delta}
8:
             pour x \in \mathcal{V}_G(u) répéter
                                                                                                          \triangleright pour tous les voisins de u
9:
                   si d[x] > d[u] + w(u, x) alors
10:
11:
                       d[x] \leftarrow d[u] + w(u, x)
                                                                                         ▶ Mises à jour des distances des voisins
                                                                               > Pour garder la tracer du chemin le plus court
                       \Pi[x] \leftarrow u
12:
13:
         renvoyer d, \Pi
```

- C1. Démontrer la terminaison de l'algorithme de Dijkstra.
- C2. Démontrer la correction de l'algorithme de Dijkstra.
- C3. Quelle est la complexité de l'algorithme de Dikjstra?

C4. Exécuter à la main l'algorithme de Dijsktra sur le graphe orienté suivant en complétant à la fois le tableau des distances et le tableau des parents qui permet de reconstruire le chemin a posteriori. Le tableau parent à la case i contient le sommet précédent sur le chemin.

Algorithme 2 Algorithme de Dijkstra, plus courts chemins à partir d'un sommet donné

```
1: Fonction DIJKSTRA(g, s_0)
                                                                    \triangleright Trouver les plus courts chemins à partir de s_0
        n \leftarrow nombre de sommets de G
2:
        pq ← une file de priorités
                                                                             > contient les tuples (distance, sommet)
3:
        ENFILER(pq,(0,s_0))
                                                                                   > initialisation de la file de priorités
4:
        d ← un dictionnaire
                                                                                             \triangleright recense les distances à s_0
5:
6:
        \forall s \in S, d[s] \leftarrow w(s_0, s)
                                                                \triangleright w(s_0, s) = +\infty si s n'est pas voisin de s_0, 0 si s = s_0
                                \triangleright parents[s]: le parent de s dans le plus court chemin de s_0 à s (dictionnaire)
7:
        parents \leftarrow \{s_0 : s_0\}
        visités ← Ø
8:
        tant que pq n'est pas vide répéter
9:
            \delta, u \leftarrow \text{DÉFILER}(pq)
                                                                                                          ▶ Choix glouton!
10:
11:
            AJOUTER(visités, u)
            pour v \in g[u] répéter
                                                                                              \triangleright Pour chaque voisin de u
12:
                si v ∉visités et d[u] + \delta < d[v] alors
                                                                       ⊳ si la distance est meilleure en passant par u
13:
                    d[v] \leftarrow d[u] + \delta
                                                                              ▶ Mises à jour des distances des voisins
14:
15:
                    ENFILER(pq, (d[v],v))
                    parents[v] \leftarrow u
                                                                     ▶ Pour garder la tracer du chemin le plus court
16:
        renvoyer d, parents
17:
```

C5. Compléter la fonction dijkstra: (int * int)list array -> int array * int array en suivant l'algorithme de Dijkstra 2. Cette fonction renvoie les plus courtes distances à partir d'un sommet d'un graphe ainsi que les directions à prendre. Cette fonction s'appuie sur une file de priorités implémentée par un tas binaire.

```
let f = if heap.(2*n + 1).priority < heap.(2*n + 2).priority then
                2*n + 1 else 2*n + 2 in
            if heap.(n).priority > heap.(f).priority then (swap heap n f; down
                heap first_not_used f;)
          end;;
let make_priority_queue n (v,p) = {first_free = 0; heap = Array.init n (fun i ->
     {value = v; priority=p})};;
let insert pq (v,p) =
  let size = Array.length pq.heap in
  if pq.first_free + 1 > size then failwith "FULL_PRIORITY_QUEUE";
  pg.heap.(pg.first_free) <- {value=v; priority=p};</pre>
  up pq.heap pq.first_free;
  pq.first_free <- pq.first_free + 1;;
let get_min pq =
  if pq.first_free = 0 then failwith "EMPTY_PRIORITY_QUEUE";
  let first = pq.heap.(0).value in
    pq.first_free <- pq.first_free - 1;</pre>
    pq.heap.(0) <- pq.heap.(pq.first_free);</pre>
    down pq.heap pq.first_free 0;
    first;;
let pq_dijkstra g start stop =
     let pq = make_priority_queue 10 (max_int,max_int) in
        let n = Array.length g in
        let d = Array.make n max_int in
            d.(start) <- 0;
            let parents = Hashtbl.create n in
            let computed = Array.make n false in
                insert pq (start, d.(start));
                for _ = 1 to n do
                (* TODO *)
                done;
        (d, parents);;
```

C6. Quelle la complexité de l'algorithme de Dijkstra ainsi implémenté?