Bethaney Mallory-Smothers

Introduction to Algorithms (CSC 3130-02)

Dr Parra-Rodriguez

20 March 2025

HashMaps


```
Pattern: Reproded Substitution

T(n) = 3T (n/H) + 4(n/4) \frac{1}{2} \frac{1}{4} \frac{1}{4}
```


3. Radix Sort

Sort by last letter: CAD, DOD, DOG, FIG, CAP, CAR, JOB, COL, COX, LOL, LOW, LOX, RAT, ROW, PIG, SUN, TSL, USD, VEA, VEE, VIS, WOW

Sort by middle letter: CAD, CAP, CAR, COX, COL, DOD, DOG, FIG, JOB, LOL, LOW, LOX, PIG, RAT, ROW, SUN, TSL, USD, VEA, VEE, VIS, WOW

Sort by first letter: CAD, CAP, CAR, COX, COL, DOD, DOG, FIG, JOB, LOL, LOW, LOX, PIG, RAT, ROW, SUN, TSL, USD, VEA, VEE, VIS, WOW

Final: CAD, CAP, CAR, COX, COL, DOD, DOG, FIG, JOB, LOL, LOW, LOX, PIG, RAT, ROW, SUN, TSL, USD, VEA, VEE, VIS, WOW

33 4 33 7 W0 9 9 9 9 9 9 9 9 9
AS S S S S S S S S S
AS S S S S S S S S S
107 Resize 11 WO 2 3 at S 5 13 = 8
24 5 43 3 ats \$13=8 107 Resize Consions: New 5: 1+5=6, 6+5=11
Collisions: New 8: 145=6 6+5=11
Consions:
hey 8: 145=6, 6+5=11
New 8: 145=6 648=11
have a desired at a detail
may 28 0 11 11 1 1 1 1 2 1 1 1 1 3 - 1 2 - 1 3 = 10
May 248 8+3=11, 11+3=1, 1+3=4, 4+3=7,7+3=10
Now, rehash all the evenments into the well table.
Index Value
1 ndex Value 0 21 mm summer of 1 of 1020,000,000,000,000,000
Index Value O 21 I 14
Index Value O (21) Index partition of 1 of the country, or yells. 1 14 2 43 start that but only eyell of the tracks. 3 9
Index Value O 21 I 14 2 43 ender 1224 and only spect the tracking by 3 9
1 1 1 1 2 43 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 14 2 20 2 20 1 20 20 20 20 20 20 20 20 20 20 20 20 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 14 2 100 100 100 100 100 100 100 100 100 1
1 1 1 2 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 14 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Index Value

7. Algorithm Analysis

Radix Sort for Strings

 $\begin{tabular}{ll} \textbf{Time Complexity}: O(NM) where N is the number of strings in the array and M is \\ the maximum string length. Each pass takes O(N), and we perform M passes. \\ \end{tabular}$

Space Complexity: O(N) due to the temporary buckets used in sorting.

Word Pattern Matching

Time Complexity: O(N), where N is the length of the string. We traverse the string once and use hash maps for constant-time lookups.

Space Complexity: O(N), as we store mappings in two hash maps.

Subarray Sum (EC Problem)

Time Complexity: O(N), as we iterate through the array once using the sliding window approach.

Space Complexity: O(1), since we only use a few integer variables.