Neural Networks

IKHAN CHOI

Contents

1. Motivation: statistical	mechanics	1
2. Models		1
2.1. Random fields		1
2.2. Bayesian networks		2
2.3. Markov networks		2
2.4. Neural networks		2
3. Inference	;	3
3.1. Viterbi algorithm	;	3
4. Learning	;	3
4.1. Gradient descent met	hod	3
4.2. Back propagation	;	3
4.3. Maximum likelihood	estimate	4

The AI paradigm changes when a new approximating method is discovered.

1. MOTIVATION: STATISTICAL MECHANICS

2. Models

2.1. Random fields.

Definition 2.1 (Random field). A random field is a set of random variables parametrized by a topological space or a (directed or undirected)graph.

Definition 2.2. In this note, we will call the random fields on a graph as *networks*.

Actually, networks and graphs are often used as synonyms.

Example 2.1 (Markov chain). Let G = (V, E) be a directed graph defined by

$$V = \mathbb{Z}_{>0}, \quad E = \{(t, t+1)\}_{t \in V},$$

that is, an element $t \in V$ denotes the time t.

Let S be a finite set of states such that every subset is measurable. Then, the set of S-valued random variables $\{X_t\}_{t\in V}$ indexed by V defines a random field. The Markov property is given by

$$X_t \perp \!\!\! \perp X_s \mid X_{t-1}$$

Last Update: July 19, 2019.

for $s \leq t$. Since \mathcal{S} is finite, we may rewrite it by

$$\Pr(X_t = x_t \mid X_{t-1} = x_{t-1}) = \Pr(X_t = x_t \mid X_{t-1} = x_{t-1}, \dots, X_0 = x_0).$$

Example 2.2 (Maxwell-Boltzman distribution). Let G = (V, E) be a graph defined by

$$V = \{n\}_{n=1}^{N}, \quad E = \emptyset$$

for a large natural number N; the set V is considered to be the set of ideal gas particles.

Define the space of microstates $S = \mathbb{Z}_x^3 \times \mathbb{Z}_p^3$, which embodies the discretized phase space. At each particle $n \in V$, an S-valued random variable denoted by $X_n = (x_n, p_n)$ is attached. Fix two constants m > 0 and $\beta := \frac{1}{k_B T} > 0$, and define the energy function $E: S \to \mathbb{R}$ with

$$E(x,p) := \frac{|p|^2}{2m}.$$

The assumption for Boltzmann factors is as follows: given the reciprocal thermodynamic temperature β

$$\Pr(X_n = i) \propto e^{-\beta E_i},$$

where $E_i := E(x_i, p_i)$. Thus, we can write

$$\Pr(X_n = i) = \frac{e^{-\beta E_i}}{\sum_{j=1}^N e^{-\beta E_j}} =: \frac{1}{Z} e^{-\frac{\beta}{2m}|p_i|^2}.$$

The function Z is called *partition function*. Note that it depends on the data of E and β .

2.2. Bayesian networks.

Definition 2.3 (Bayesian network). Let G be a directed acyclic graph.

The graph acts as a parameter space. We want to investigate mutual effects among the paramtrized random variables.

Theorem 2.3 (Factorization of probablity).

Example 2.4 (NBC, Naive Bayesian Classifier).

Example 2.5 (HMM, Hidden Markov Model).

2.3. Markov networks.

Definition 2.4 (Markov network).

Markov networks are sometimes called MRF, Markov random field.

Example 2.6 (CRF, Conditional Random Field). Consider a network with a graph G such that vertices are divided into two classes.

2.4. **Neural networks.** Probabilistic graphical models provide effective explanations of the neural networks, but neural networks are not confined only to graphical models.

Definition 2.5 (Neural network). *Neural network* cannot be defined mathematically. It indicates statistical models that can solve problems with a collection of artificial neurons by adjusting connection strength among them.

Example 2.7 (MLP, Multi-layer Perceptron).

Example 2.8 (RNN, Recurrent Neural Network).

3. Inference

3.1. Viterbi algorithm.

4. Learning

4.1. Gradient descent method.

4.2. **Back propagation.** Backpropagation refers to algorithms to train the weight matrices for minimizing the cost function J, which does not depend explicitly on any variables except the last layer vector $a^{(n)}$. However, since J is a function of the weight matrices implicitly, via $a^{(n)}$, we may find the representation of the gradiant of J as viewing it as a function on the space of weight matrices of each given layer. In other words, we want to find the coefficients of the differential form dJ on the basis $\{dW_{ij}^{(n-1)}\}_{i,j}$, $\{dW_{jk}^{(n-2)}\}_{j,k}$, or $\{dW_{kl}^{(n-3)}\}_{k,l}$, and so on.

Recall the definitions:

$$a_i^{(n)} = \sigma \left(\sum_j W_{ij}^{(n-1)} a_j^{(n-1)} \right).$$

Since the derivative of the sigmoid function is given by $\sigma' = \sigma - \sigma^2$, we can compute the following auxiliary relations

$$\frac{\partial a_i^{(n)}}{\partial a_j^{(n-1)}} = h(a_i^{(n)}) W_{ij}^{(n-1)} \quad \text{and} \quad \frac{\partial a_i^{(n)}}{\partial W_{i'j}^{(n-1)}} = \delta_{ii'} h(a_i^{(n)}) a_j^{(n-1)},$$

where $h(x) = x - x^2$.

Then, we can compute

$$dJ = \sum_{i} \frac{\partial J}{\partial a_{i}^{(n)}} \sum_{j} \frac{\partial a_{i}^{(n)}}{\partial W_{ij}^{(n-1)}} dW_{ij}^{(n-1)} = \sum_{i,j} \frac{\partial J}{\partial a_{i}^{(n)}} h(a_{i}^{(n)}) a_{j}^{(n-1)} dW_{ij}^{(n-1)},$$

which implies

$$\nabla J(W^{(n-1)}) = \left[\frac{\partial J}{\partial a_i^{(n)}} h(a_i^{(n)}) a_j^{(n-1)}\right] \frac{\partial}{\partial W_{ij}^{(n-1)}}.$$

Note that it is a function of a_i and a_j . The gradient descent method will take

$$W_{ij}^{(n-1)^+} := W_{ij}^{(n-1)} - \alpha \cdot \frac{\partial J}{\partial a_i^{(n)}} h(a_i^{(n)}) a_j^{(n-1)}$$

with a proper parameter $\alpha > 0$.

By the same reason,

$$dJ = \sum_{i,j,k} \frac{\partial J}{\partial a_i^{(n)}} \frac{\partial a_i^{(n)}}{\partial a_j^{(n-1)}} \frac{\partial a_j^{(n-1)}}{\partial W_{jk}^{(n-2)}} dW_{jk}^{(n-2)}$$
$$= \sum_{i,j,k} \frac{\partial J}{\partial a_i^{(n)}} \cdot h(a_i^{(n)}) W_{ij}^{(n-1)} \cdot h(a_j^{(n-1)}) a_k^{(n-2)} dW_{jk}^{(n-2)},$$

which implies

$$\nabla J(W^{(n-2)}) = \left[\sum_{i} \frac{\partial J}{\partial a_{i}^{(n)}} \cdot h(a_{i}^{(n)}) W_{ij}^{(n-1)} \cdot h(a_{j}^{(n-1)}) a_{k}^{(n-2)} \right] \frac{\partial}{\partial W_{ik}^{(n-2)}}.$$

Therefore, the gradient descent method will take

$$\begin{split} W_{jk}^{(n-2)^+} &:= W_{jk}^{(n-2)} - \alpha \cdot \sum_i \frac{\partial J}{\partial a_i^{(n)}} h(a_i^{(n)}) W_{ij}^{(n-1)} h(a_j^{(n-1)}) a_k^{(n-2)} \\ &= W_{jk}^{(n-2)} + (1 - a_j^{(n-1)}) a_k^{(n-2)} \sum_i (W_{ij}^{(n-1)^+} - W_{ij}^{(n-1)}) W_{ij}^{(n-1)}. \end{split}$$

In similar way,

$$W_{kl}^{(n-3)^{+}} := W_{kl}^{(n-3)} + (1 - a_k^{(n-2)}) a_l^{(n-3)} \sum_i (W_{jk}^{(n-2)^{+}} - W_{jk}^{(n-2)}) W_{jk}^{(n-2)} (?)$$

4.3. Maximum likelihood estimate.

Definition 4.1. Let f be a distribution function on a measure space X. Let $\{f_{\theta}\}_{\theta}$ be a parametrized family of distribution functions on X. The *likelihood* $L_n(\theta): \Omega^n \to \mathbb{R}_{\geq 0}$ for a fixed parameter θ is a random variable defined by

$$L_n(\theta) := \prod_{i=1}^n f_{\theta}(x_i)$$

where $\{x_i\}_i$ is a family of i.i.d. X-valued random variables with a distribution f.

The objective of the likelihood function is to find θ such that f_{θ} approximates the unknown distribution f. Write

$$\frac{1}{n}\log L_n(\theta) = \frac{1}{n}\sum_{i=1}^n \log f_{\theta}(x_i).$$

By the law of large numbers, $\frac{1}{n} \log L_n(\theta)$ converges to a constant function

$$\mathbb{E}(\log f_{\theta}(x)) = \int_{Y} f \log f_{\theta}$$

in measure as $n \to \infty$. This constant function is exactly what we call *cross entropy*.

The Kullback-Leibler divergence is a kind of asymmetric distance function defined from the difference with cross entropy

$$D_{KL}(f||f_{\theta}) := \int_{X} f \log f - \int_{X} f \log f_{\theta}.$$

It is proved to be always nonnegative by the Jensen inequality:

$$\int_{X} f \log f_{\theta} - \int_{X} f \log f = \int_{X} f \log \frac{f_{\theta}}{f} \le \log \left(\int_{X} f \frac{f_{\theta}}{f} \right) = 0.$$

Here, we exclude the region f = 0 from the integration region. Then, we can say, bigger $L_n(\theta)$ is, closer f_{θ} and f are.