Context-Aware Weighted KNN with Locally Adaptive k

Anieesh Saravanan 03/28/25 You know that feeling when you meet someone and your heart skips a beat?

Yeah, that's arrhythmia. You can die from that.

https://rusafu.com/quotes/tag/arrhythmia/

Table of contents

01

Project Overview

Relevance and Dataset
Characteristics

03

Analysis

Configuring Parameters and Classification

02

Preprocessing

Preparing the Dataset for Analysis

04

Conclusion

Results and Future Work

OO Introduction

Project Goal

- Develop a binary classification model for arrhythmia
- Diagnose patients with arrhythmia based on patient biometrics and ECG readings
- Streamline diagnosis process with supplementary outlook of data

Arrhythmia Overview

- Arrhythmia refers to irregular heartbeats
- Antiarrhythmic medications/therapies exist
- No simple guidelines for diagnosis
- Widely varying clinical manifestations and minimal warning signs
- Even experienced cardiologists may misinterpret ECG patterns

Common Myths

Myth: Arrhythmia always presents with severe, dramatic symptoms

Fact: Many arrhythmias can be subtle or even asymptomatic

Myth: Only unhealthy/elderly individuals develop arrhythmia

Fact: Arrhythmia can occur in healthy individuals (without heart conditions)

Myth: Abnormal heart rhythms are always obvious and easy to detect

Fact: Many arrhythmias require **specialized diagnostic tools** (like extended ECG monitoring) that may not be apparent with a simple pulse check

Impact

In 2021, arrhythmia was mentioned on at least **232,030** death certificates

O1 Project Overview

Dataset Overview

- Quantitative/Categorical dataset with 452 instances and 279 attributes
- Class attribute is the diagnosis of the patient (nonarrhythmia or type of arrhythmia)
- Sourced from UCI and originally compiled by H. Altay Guvenir
- <u>Missing values</u>: instances regarding vector angles (ECG electrode similarity)
- Class distribution: 54.20% nonarrhythmia, 45.80% arrhythmia

Attributes

class: Class Code 01-16

- Code 01: Normal
- b. Code 02: Ischemic changes (Coronary Artery Disease)
- Code 03: Old Anterior Myocardial Infarction
- Code 04: Old Inferior Myocardial Infarction
- Code 16: Others
- age: Age in years, linear
- age: Age in years, linear
 sex: Sex (0 = male; 1 = female), nominal
 height: Height in centimeters, linear
- weight: Weight in kilograms, linear
- QRSduration: Average of QRS duration in milliseconds, linear
- PRinterval: Average duration between onset of P and Q waves in milliseconds, linear
- Q-Tinterval: Average duration between onset of Q and offset of T waves in msec., linear
- Tinterval: Average duration of T wave in milliseconds, linear
- Pinterval: Average duration of P wave in milliseconds, linear

279. chV6_QRSTA: Of channel V6

Related Work

- Signal Pre-Processing and Fixed-Feature Extraction

Classification of Arrhythmia using KNN-Classifier

Heart Arrhythmia Classification Using Machine Learning Algorithms

Classifier Comparisons with Feature Selection

Classification of Arrhythmia

- Algorithmic Approaches with Feature Projection

A Supervised Machine Learning Algorithm for Arrhythmia Analysis

Identifying Best Feature Subset for Cardiac Arrhythmia Classification

O2 Preprocessing

Missing Value Handling

Imputed using the mean for numerical features and mode for categorical features.

```
numeric_pipeline = Pipeline(
    [("imputer", SimpleImputer(strategy = "mean")),
        ("scaler", StandardScaler())]
)

categorical_pipeline = Pipeline(
    [("imputer", SimpleImputer(strategy = "most_frequent")),
        ("onehot", OneHotEncoder(handle_unknown = "ignore", drop = "if_binary"))]
)
```

scikit-learn pipelines were used to streamline preprocessing

Feature Encoding

Used one-hot encoding on all categorical features (necessary for distance computations)

```
categorical_pipeline = Pipeline(
    [("imputer", SimpleImputer(strategy = "most_frequent")),
    ("onehot", OneHotEncoder(handle_unknown = "ignore", drop = "if_binary"))]
)
```

Encodings using scikit-learn functionality

Dataset Splitting

- Training Set: 80% of data for model training
- Testing Set: 20% for unbiased evaluation of model performance

Split with stratified distribution using scikit-learn functionality

Feature Selection

```
pca = PCA(n_components = 0.95, random_state = 42)
x_pca = pca.fit_transform(x_processed)
```

Preserves 95% of the variance while avoiding the curse of dimensionality

Eliminates all redundancy from correlated features.

Converting Dataset to OvR

```
y_binary = y.apply(lambda x: 0 if str(x).strip() == "1" else 1)
```

Class Code 1 is separated from Class Codes 2 - 16

```
class: Class Codes 01-16

a. Code 01: Normal

b. Code 02: Ischemic changes (Coronary Artery Disease)

c. Code 03: Old Anterior Myocardial Infarction

...

p. Code 16: Others
```

03 Analysis

Feature Weighting

- Mutual Information (MI):
 - Captures nonlinear dependencies between features and target
- Absolute Pearson Correlation:
 - Quantifies linear relationships

$$w = \alpha \times \frac{MI}{\Sigma MI + \epsilon} + (1 - \alpha) \times \frac{|Corr|}{\Sigma |Corr| + \epsilon}$$

Neighborhood Size

$$k = k_{min} + \frac{local\ density - minimum\ density}{maximum\ density - minimum\ density + \epsilon} \times (k_{max} - k_{min})$$

 k_{min} defaults to 3 and k_{max} defaults to 15

```
self.training_densities = np.median(distances[:, 1:], axis = 1)
self.min_density = np.min(self.training_densities)
self.max_density = np.max(self.training_densities)
```

"distances" variable contains distances from r nearest neighbors

Distance Metrics

Weighted Euclidean Distance:

- Incorporates feature weights directly

- Local Mahalanobis Distance:

 Uses a locally computed covariance matrix to account for interdependencies in features.

$$d = \beta \times d_{euclidean} + (1 - \beta) \times d_{mahalanobis}$$

Grid Search

O4 Conclusion

Results

	Accuracy (%)	Precision (%)	Recall (%)	F1 Score (%)
Default Parameters	68.13	84.21	38.10	52.46
Optimized Parameters	71.43	86.00	40.50	55.07

Future Work

- Hyperparameter tuning using cross-validation
- Application to other high-dimensional medical datasets
- Hybrid models that integrate adaptive KNN


```
Liebman J. (2002). Nonarrhythmia clinical electrocardiography--can it be returned to clinical viability? Journal of electrocardiology, 35(4), 293–298. 
https://doi.org/10.1054/jelc.2002.36273
```

University of Rochester Medical Center. (n.d.). Arrhythmias. Health Encyclopedia.

https://www.urmc.rochester.edu/encyclopedia/content?ContentTypeID=85&ContentID=P 00195

Hiremani, V., Devadas, R. M., L, H., S, S., & Pasha, A. (2023). Heart arrhythmia classification using machine learning algorithms. In *Proceedings of the 2nd International Conference on Ambient Intelligence in Health Care (ICAIHC)* (pp. 1–4). IEEE. https://doi.org/10.1109/ICAIHC59020.2023.10431441

- Samad, S., Khan, S. A., Haq, A., & Riaz, A. (2014). Classification of arrhythmia. *International Journal of Electrical Energy*, 2(1), 57–61. https://doi.org/10.12720/ijoee.2.1.57-61
- Guvenir, H. A., Acar, B., Demiroz, G., & Cekin, A. (1997). A supervised machine learning algorithm for arrhythmia analysis. In *Computers in Cardiology 1997* (pp. 433–436). IEEE. https://doi.org/10.1109/CIC.1997.647926
- Niazi, K. A. K., Khan, S. A., Shaukat, A., & Akhtar, M. (2015). Identifying best feature subset for cardiac arrhythmia classification. In *Proceedings of the 2015 Science and Information Conference (SAI)* (pp. 494–499). IEEE. https://doi.org/10.1109/SAI.2015.7237188

```
mutual info classif. (n.d.). scikit-learn. Retrieved March 27, 2025,
       https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_cl
       assif.html
StandardScaler. (n.d.). scikit-learn. Retrieved March 27, 2025,
       https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.ht
       ml
NearestNeighbors. (n.d.). scikit-learn. Retrieved March 27, 2025, from
       https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.htm
```

```
SimpleImputer. (n.d.). scikit-learn. Retrieved March 27, 2025, from
       https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
ColumnTransformer. (n.d.). scikit-learn. Retrieved March 27, 2025, from
       https://scikit-learn.org/stable/modules/generated/sklearn.compose.ColumnTransformer.ht
       ml
OneHotEncoder. (n.d.). scikit-learn. Retrieved March 27, 2025, from
       https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.ht
       ml
Pipeline. (n.d.). scikit-learn. Retrieved March 27, 2025, from
       https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
```

PCA. (n.d.). scikit-learn. Retrieved March 27, 2025, from

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

Rusafu.com. (n.d.). Arrhythmia Quotes. Retrieved March 28, 2025, from https://rusafu.com/quotes/tag/arrhythmia/

Corvino, G. (n.d.). Beating Heart [Illustration]. Dribbble. Retrieved March 28, 2025, from

https://dribbble.com/shots/11260618-Beating-Heart

Punkichi. (n.d.). Pumping Heart [Illustration]. Dribbble. Retrieved March 28, 2025, from

https://dribbble.com/shots/1963962-Pumping-Heart

Sandhya. (n.d.). Doctor's Day Dribbble [Illustration]. Dribbble. Retrieved March 28, 2025, from

https://dribbble.com/shots/4770653-Doctor-s-Day-Dribbble

Zukauskaite, K. (n.d.). Premium Stock: Medical, Health [Illustration]. Dribbble. Retrieved March 28, 2025, from https://dribbble.com/shots/10994835-Premium-Stock-Medical-Health

Chantale. (n.d.). Heart [Illustration]. Dribbble. Retrieved March 28, 2025, from https://dribbble.com/shots/5288643-Heart

Northwestern Medicine. (n.d.). How to Read an EKG (Infographic). Retrieved March 28, 2025, from https://www.nm.org/healthbeat/healthy-tips/how-to-read-an-ekg-infographic

Aakash, M. R. H. (n.d.). Human heart. The heart with a venous system. Anatomy. Flat vector [Illustration]. Dribbble. Retrieved March 28, 2025, from

https://dribbble.com/shots/22623314-Human-heart-The-heart-with-a-venous-system-Anatomy-Flat-vecto

Thank you!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**