MATH 307: Individual Homework 11

Shaochen (Henry) ZHONG, sxz517@case.edu

Due and submitted on 03/15/2021 Spring 2021, Dr. Guo

Problem 1

See HW instruction.

It is a linear mapping as it satisfies the following conditions (for $\lambda \in \mathbb{R}$):

$$f(\lambda u) = f(\lambda(a_0 + a_1x + a_2x^2 + a_3x^3))$$

$$= f(\lambda a_0 + \lambda a_1x + \lambda a_2x^2 + \lambda a_3x^3)$$

$$= \lambda a_3 = \lambda f(u)$$

$$f(u+v) = f(a_0 + a_1x + a_2x^2 + a_3x^3 + b_0 + b_1x + b_2x^2 + b_3x^3)$$

$$= f((a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + (a_3 + b_3)x^3$$

$$= a_3 + b_3 = f(u) + f(v)$$

Problem 2

See HW instruction.

- A is diagonal, and therefore also upper-/lower-triangular, and symmatric. Since it is a matrix with elements in \mathbb{R} , it is also hermitian.
- B is not diagonal nor upper-triangular, but it is lower triangular. It is neither symmetric nor hermitian.
- C is not diagonal not lower-triangular, but it is upper-triangular. It is neither symmetric nor hermitian
- D is not diagonal, not upper- or lower-triangular. It is symmatric but not hermitian as for row two in D, it should be equal to [2,4,i] but it is not.
- E is not diagonal, not upper- or lower-triangular. It is hermitian but not symmatric as the element of E is in \mathbb{R} .
- F is not a square matrix so it is not diagonal, not upper-, and not lower-triangular. For the same reason it is also not symmatric nor hermitian.

For easy grading:

matrix	Diagonal	UT	LT	Symmatric	Hermitian
\overline{A}	✓	✓	1	✓	✓
B	×	X	1	X	×
C	×	✓	X	X	×
D	×	X	X	✓	X
E	×	X	X	×	✓
F	X	X	X	X	×

Problem 3

See HW instruction.

First start with LHS, known that the ij-th entry in $(\alpha A + \beta B)$ is $\alpha A_{ij} + \beta B_{ij}$. Thus, by the definition of transpose, the ij-th entry in $(\alpha A + \beta B)^T$ must be $\alpha A_{ji} + \beta B_{ji}$. Now inspect the RHS, we have the ij-th entry in αA^T to be αA_{ji} ; similarly, the ij-th entry in

 βB^T is βB_{ji} . So the RHS equals to $\alpha A_{ji} + \beta B_{ji}$.

As the two sides are equal, the equality-in-question is therefore proven.

Problem 4

 $See\ HW\ instruction.$

Being the diagonal entries of a Hermitian matrix A, each entry has to be real valued as we must have $A_{ij} = \overline{A_{ji}}$. This is only possible when the imaginary part of A_{ij} is 0i, so it must be a real valued number.