CSC258 Prelab (Lab 1)

Part 1: 2-to-1 Multiplexer

1. Using only the AND, OR and NOT gates, below is a circuit with input y, s and x and output f=xs'+ys.

2. Below is the truth table of xs'+ys.

Х	Υ	S	XS'+YS
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Part 2:

1. Below is a circuit implementation of f = (a + b)' + cb'.

2. Below is the truth table of (a + b)' + cb'.

Α	В	С	(A+B)' + CB'
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

3. There is a cheaper implementation for the design. The Boolean expression above required 5 gates as shown in the circuit diagram. Using the following operations, we can show that only 4 gates are required.

We see that b'(a'+c) is an equivalent Boolean expression compared to (a+b)'+cb' and only requires 4 gates to implement as a circuit.

Below is the cheaper implementation of the circuit in step 1.

