EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

Mingxing Tan, Quoc V. Le

Youngwoo Kim

Index

- Introduction
- Related Work
- Compound Model Scaling
- Architecture
- Experiments
- Conclusion

It is common to scale only one of the three dimensions - depth, width, and image size.

- depth Deep Residual Learning for Image Recognition (He et al., 2016)
- width Wide Residual Networks (Zagoruyko & Komodakis, 2016)
- resolution GPipe: Efficient training of giant neural networks using pipeline parallelism (Huang et al., 2018)

Figure 2. Model Scaling. (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio.

Is there a principled method to scale up ConvNets that can achieve better accuracy and efficiency?

- Compound Scaling: Uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients
- For 2^N times more computational resources, increase network depth by α N, width by β N, and image size by γ N

- EfficientNets outperform other ConvNets

 Surpasses the best existing GPipe accuracy but using 8.4x fewer parameters and running 6.1x faster on inference

Figure 1. Model Size vs. ImageNet Accuracy. All numbers are for single-crop, single-model. Our EfficientNets significantly outperform other ConvNets. In particular, EfficientNet-B7 achieves new state-of-the-art 84.3% top-1 accuracy but being 8.4x smaller and 6.1x faster than GPipe. EfficientNet-B1 is 7.6x smaller and 5.7x faster than ResNet-152. Details are in Table 2 and 4.

Related Work - ConvNet Accuracy

GPipe pushes the state-of-the-art ImageNet top-1 accuracy to 84.3% using 557M parameters

 it is so big that it can only be trained with a specialized pipeline parallelism library

Related Work - ConvNet Efficiency

Neural Architecture Search becomes increasingly popular in designing efficient mobile-size ConvNets

 But it is unclear how to apply these techniques for larger models that have much larger design space and much more expensive tuning cost.

Related Work - Model Scaling

Prior studies such as WideResNet and scaled ResNet have shown that network depth and width are both important for ConvNets' expressive power

 it still remains an open question of how to effectively scale a ConvNet to achieve better efficiency and accuracy

Compound Model Scaling - Problem Formulation

$$\mathcal{N} = \bigodot_{i=1...s} \mathcal{F}_i^{L_i} \left(X_{\langle H_i, W_i, C_i \rangle} \right)$$

$$\begin{aligned} \max_{d,w,r} & Accuracy \big(\mathcal{N}(d,w,r) \big) \\ s.t. & \mathcal{N}(d,w,r) = \bigodot_{i=1...s} \hat{\mathcal{F}}_i^{d\cdot\hat{L}_i} \big(X_{\langle r\cdot\hat{H}_i,r\cdot\hat{W}_i,w\cdot\hat{C}_i \rangle} \big) \\ & \operatorname{Memory}(\mathcal{N}) \leq \operatorname{target_memory} \\ & \operatorname{FLOPS}(\mathcal{N}) \leq \operatorname{target_flops} \end{aligned}$$

Table 1. **EfficientNet-B0 baseline network** – Each row describes a stage i with \hat{L}_i layers, with input resolution $\langle \hat{H}_i, \hat{W}_i \rangle$ and output channels \hat{C}_i . Notations are adopted from equation 2.

Stage i	Operator $\hat{\mathcal{F}}_i$	Resolution $\hat{H}_i \times \hat{W}_i$	#Channels \hat{C}_i	#Layers \hat{L}_i
1	Conv3x3	224×224	32	1
2	MBConv1, k3x3	112×112	16	1
3	MBConv6, k3x3	112×112	24	2
4	MBConv6, k5x5	56×56	40	2
5	MBConv6, k3x3	28×28	80	3
6	MBConv6, k5x5	14×14	112	3
7	MBConv6, k5x5	14×14	192	4
8	MBConv6, k3x3	7×7	320	1
9	Conv1x1 & Pooling & FC	7×7	1280	1

Compound Model Scaling - Scaling Dimensions

Scaling up any dimension of network width, depth, or resolution improves accuracy, but the accuracy gain diminishes for bigger models

Compound Model Scaling - Compound Scaling

In order to pursue better accuracy and efficiency, it is critical to balance all dimensions of network width, depth, and resolution during ConvNet scaling

d=1.0, $r=1.0 \Rightarrow 18$ layers with 224 x 224

Compound Model Scaling

EfficientNet aims to double the FLOPs with each scaling step

α,β,γ are constants that can be determined by a small grid search

depth: $d=\alpha^{\phi}$ width: $w=\beta^{\phi}$ resolution: $r=\gamma^{\phi}$ s.t. $\alpha\cdot\beta^2\cdot\gamma^2\approx 2$ $\alpha\geq 1, \beta\geq 1, \gamma\geq 1$

$$FLOPs \propto d \cdot w^2 \cdot r^2$$

Architecture

Since model scaling does not change layer operators in baseline network, having a good baseline network is also critical.

- Evaluated scaling method using existing ConvNets
- also developed a new mobile-size baseline for better demonstration of effectiveness (EfficientNet)

Architecture

Developed baseline network with Multi-Objective Neural Architecture Search (MO-NAS)

- Optimizes both accuracy and FLOPs
- ACC(m) X [FLOPs(m)/T]^w
- ACC(m), FLOPs(m) denote the accuracy and FLOPs of model m
- T is the target FLOPs
- w=-0.07 is a hyperparameter for controlling the trade-off between accuracy and FLOPs
- Author optimized FLOPs rather than latency
- Architecture is similar to MnasNET, except the size differs due to the larger FLOPs target

Architecture

STEP 1: fix Φ = 1, assuming twice more resources available. Do a small grid search of α,β,γ based on previous equations. For EfficientNet-B0, α =1.2, β =1.1, γ =1.15

STEP 2: fix α,β,γ as constants and scale up baseline network with different Φ

Model	Top-1 Acc.	Top-5 Acc.	#Params	Ratio-to-EfficientNet	#FLOPs	Ratio-to-EfficientNet
EfficientNet-B0	77.1%	93.3%	5.3M	1x	0.39B	1x
ResNet-50 (He et al., 2016)	76.0%	93.0%	26M	4.9x	4.1B	11x
DenseNet-169 (Huang et al., 2017)	76.2%	93.2%	14M	2.6x	3.5B	8.9x
EfficientNet-B1	79.1%	94.4%	7.8M	1x	0.70B	1x
ResNet-152 (He et al., 2016)	77.8%	93.8%	60M	7.6x	11B	16x
DenseNet-264 (Huang et al., 2017)	77.9%	93.9%	34M	4.3x	6.0B	8.6x
Inception-v3 (Szegedy et al., 2016)	78.8%	94.4%	24M	3.0x	5.7B	8.1x
Xception (Chollet, 2017)	79.0%	94.5%	23M	3.0x	8.4B	12x
EfficientNet-B2	80.1%	94.9%	9.2M	1x	1.0B	1x
Inception-v4 (Szegedy et al., 2017)	80.0%	95.0%	48M	5.2x	13B	13x
Inception-resnet-v2 (Szegedy et al., 2017)	80.1%	95.1%	56M	6.1x	13B	13x
EfficientNet-B3	81.6%	95.7%	12M	1x	1.8B	1x
ResNeXt-101 (Xie et al., 2017)	80.9%	95.6%	84M	7.0x	32B	18x
PolyNet (Zhang et al., 2017)	81.3%	95.8%	92M	7.7x	35B	19x
EfficientNet-B4	82.9%	96.4%	19M	1x	4.2B	1x
SENet (Hu et al., 2018)	82.7%	96.2%	146M	7.7x	42B	10x
NASNet-A (Zoph et al., 2018)	82.7%	96.2%	89M	4.7x	24B	5.7x
AmoebaNet-A (Real et al., 2019)	82.8%	96.1%	87M	4.6x	23B	5.5x
PNASNet (Liu et al., 2018)	82.9%	96.2%	86M	4.5x	23B	6.0x
EfficientNet-B5	83.6%	96.7%	30M	1x	9.9B	1x
AmoebaNet-C (Cubuk et al., 2019)	83.5%	96.5%	155M	5.2x	41B	4.1x
EfficientNet-B6	84.0%	96.8%	43M	1x	19B	1x
EfficientNet-B7	84.3%	97.0%	66M	1x	37B	1x
GPipe (Huang et al., 2018)	84.3%	97.0%	557M	8.4x	-	-
We omit ensemble and multi-crop models	(Hu et al., 201	18), or models	pretrained o	n 3.5B Instagram image	s (Mahajan	et al., 2018).

Apply scaling method to widely-used architectures (ResNet, MobileNets)

Table 3.	Scaling	Up	MobileNets	and	ResNet.
----------	---------	----	------------	-----	---------

Model	FLOPS	Top-1 Acc.
Baseline MobileNetV1 (Howard et al., 2017)	0.6B	70.6%
Scale MobileNetV1 by width (w=2)	2.2B	74.2%
Scale MobileNetV1 by resolution $(r=2)$	2.2B	72.7%
compound scale ($d=1.4, w=1.2, r=1.3$)	2.3B	75.6%
Baseline MobileNetV2 (Sandler et al., 2018)	0.3B	72.0%
Scale MobileNetV2 by depth (d=4)	1.2B	76.8%
Scale MobileNetV2 by width (w=2)	1.1B	76.4%
Scale MobileNetV2 by resolution (r=2)	1.2B	74.8%
MobileNetV2 compound scale	1.3B	77.4%
Baseline ResNet-50 (He et al., 2016)	4.1B	76.0%
Scale ResNet-50 by depth (d=4)	16.2B	78.1%
Scale ResNet-50 by width $(w=2)$	14.7B	77.7%
Scale ResNet-50 by resolution $(r=2)$	16.4B	77.5%
ResNet-50 compound scale	16.7B	78.8%

parameters-accuracy and FLOPs-accuracy curve

EfficientNet-B3 achieves higher accuracy than ResNeXt-101 using 18x fewer FLOPs

Figure 5. FLOPS vs. ImageNet Accuracy – Similar to Figure 1 except it compares FLOPS rather than model size.

Table 4. **Inference Latency Comparison** – Latency is measured with batch size 1 on a single core of Intel Xeon CPU E5-2690.

	Acc. @ Latency		Acc. @ Latency
ResNet-152	77.8% @ 0.554s	GPipe	84.3% @ 19.0s
EfficientNet-B1	78.8% @ 0.098s	EfficientNet-B7	84.4% @ 3.1s
Speedup	5.7x	Speedup	6.1x

Table 5. EfficientNet Performance Results on Transfer Learning Datasets. Our scaled EfficientNet models achieve new state-of-the-art accuracy for 5 out of 8 datasets, with 9.6x fewer parameters on average.

	Comparison to best public-available results						Comparison to best reported results					
	Model	Acc.	#Param	Our Model	Acc.	#Param(ratio)	Model	Acc.	#Param	Our Model	Acc.	#Param(ratio)
CIFAR-10	NASNet-A	98.0%	85M	EfficientNet-B0	98.1%	4M (21x)	†Gpipe	99.0%	556M	EfficientNet-B7	98.9%	64M (8.7x)
CIFAR-100	NASNet-A	87.5%	85M	EfficientNet-B0	88.1%	4M (21x)	Gpipe	91.3%	556M	EfficientNet-B7	91.7%	64M (8.7x)
Birdsnap	Inception-v4	81.8%	41M	EfficientNet-B5	82.0%	28M (1.5x)	GPipe	83.6%	556M	EfficientNet-B7	84.3%	64M (8.7x)
Stanford Cars	Inception-v4	93.4%	41M	EfficientNet-B3	93.6%	10M (4.1x)	‡DAT	94.8%	(2)	EfficientNet-B7	94.7%	_
Flowers	Inception-v4	98.5%	41M	EfficientNet-B5	98.5%	28M (1.5x)	DAT	97.7%	(-	EfficientNet-B7	98.8%	5.
FGVC Aircraft	Inception-v4	90.9%	41M	EfficientNet-B3	90.7%	10M (4.1x)	DAT	92.9%	1:23	EfficientNet-B7	92.9%	2
Oxford-IIIT Pets	ResNet-152	94.5%	58M	EfficientNet-B4	94.8%	17M (5.6x)	GPipe	95.9%	556M	EfficientNet-B6	95.4%	41M (14x)
Food-101	Inception-v4	90.8%	41M	EfficientNet-B4	91.5%	17M (2.4x)	GPipe	93.0%	556M	EfficientNet-B7	93.0%	64M (8.7x)
Geo-Mean						(4.7x)						(9.6x)

[†]GPipe (Huang et al., 2018) trains giant models with specialized pipeline parallelism library.

[‡]DAT denotes domain adaptive transfer learning (Ngiam et al., 2018). Here we only compare ImageNet-based transfer learning results.

Transfer accuracy and #params for NASNet (Zoph et al., 2018), Inception-v4 (Szegedy et al., 2017), ResNet-152 (He et al., 2016) are from (Kornblith et al., 2019).

ImageNet performance of different scaling methods for the same EfficientNet-B0 baseline network

 compound scaling can further improve accuracy by up to 2.5% than other single-dimension scaling methods

Figure 7. Class Activation Map (CAM) (Zhou et al., 2016) for Models with different scaling methods- Our compound scaling method allows the scaled model (last column) to focus on more relevant regions with more object details. Model details are in Table 7.

Figure 8. Scaling Up EfficientNet-B0 with Different Methods.

Table 7. Scaled Models Used in Figure 7.

Model	FLOPS	Top-1 Acc.
Baseline model (EfficientNet-B0)	0.4B	77.3%
Scale model by depth (d=4)	1.8B	79.0%
Scale model by width $(w=2)$	1.8B	78.9%
Scale model by resolution $(r=2)$	1.9B	79.1%
Compound Scale ($d=1.4, w=1.2, r=1.3$)	1.8B	81.1%

Conclusion

- Balanced scaling of width, depth, and resolution is crucial for optimizing accuracy and efficiency in ConvNets.
- Prior ConvNet models lacked a systematic scaling method, leading to suboptimal performance.
- The proposed Compound Scaling method efficiently scales models while maintaining high performance.
- EfficientNet significantly reduces FLOPs and parameters while achieving SOTA accuracy.
- EfficientNet generalizes well across various tasks, excelling in both ImageNet and transfer learning datasets.