University of Colorado Department of Computer Science

Chaotic Dynamics – CSCI 4446/5446

Wolf's algorithm for computing Lyapunov exponents from data:

Algorithm:

- 1. Embed the data set.
- 2. Pick a point $x(t_0)$ somewhere in the middle of the trajectory.
- 3. Find that point's nearest neighbor. Call that point $z_0(t_0)$.
- 4. Compute $||z_0(t_0) x(t_0)|| = L_0$.
- 5. Follow the "difference trajectory" the dashed line forwards in time, computing $||z_0(t_i) x(t_i)|| = L_0(i)$ and incrementing i, until $L_0(i) > \epsilon$. Call that value L'_0 and that time t_1 .
- 6. Find $z_1(t_1)$, the "nearest neighbor" of $x(t_1)$, and loop to step 4. Repeat the procedure to the end of the fiduciary trajectory $(t = t_n)$, keeping track of the L_i and L'_i .

Use this formula to compute λ_1 , the biggest (positive) Lyapunov exponent:

$$\lambda_1 \approx \frac{1}{N\Delta t} \sum_{1}^{M-1} log_2 \frac{L_i'}{L_i}$$

...where M is the number of times you went through the loop above, and N is the number of timesteps in the fiduciary trajectory. $N\Delta t = t_n - t_0$.

Schematic of the directional "nearest neighbor" computation:

Start with $\theta = \pi/9$ and increase if necessary.

References:

- Please see the "Lyapunov exponents" section of the "Reading assignments for PS8-10 (Nonlinear Time Series Analysis)" handout.
 - Here are some other references, if you'd like more detail:
- P. Bryant et al., "Lyapunov exponents from observed time series," *Physical Review Letters*, **65**:1523-6 (1990).
- J.-P. Eckmann *et al.*, "Liapunov exponents from time series," *Phys. Rev. A* **34**:4971 (1986).
- M. Sano, "Measurement of the Lyapunov Exponents from a Chaotic Series," *Physical Review Letters* **55**:1082-1085 (1983).
- A. Wolf, "Quantifying chaos with Lyapunov exponents," in *Chaos*, Princeton University Press, 1986.