PSALTer results panel

Wave operator and propagator

	0	i k a - 4 √6	a.) 0	$\sqrt{5} \left(-k^2 \left(h_1 - 2 h_1 \right) \right)$	$k^2 {h - 2 h + 4 a \over 12 8 0}$	$\frac{1}{12} (k^2 (4 h_1, -2 h_1) - a_1)$	Cnin na	vrity/form	Covariantform					Multiplicitie							
$^{1}\mathcal{A}_{\mathrm{S}}^{\parallel \mathrm{h}}$			+(.,8				Spin-parity form Covariant form $k \stackrel{0^+W_s^{-t}}{=} 1 = 0 \qquad 2 \qquad \partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} = \partial_{\alpha}\partial_{\alpha}\partial_{\alpha}W^{\alpha\beta\chi}$				1	<u>=</u>		>							
			$\frac{1}{12} (k^2 (h_1, -2 h_1) +$				$ 2k \cdot \mathcal{W}_{S}^{\perp h^{\alpha}} + k \cdot \mathcal{W}_{S}^{\perp t^{\alpha}} + 6 i \cdot 1 \cdot \mathcal{T}^{\perp \alpha} = 0 2 \partial_{x} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{x} \partial_{\beta} \mathcal{W}^{\beta \alpha \chi} = = $					3	-		= \ 	0	0	0	4 ".0		
							$2\partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{-\alpha\beta} + \partial_{\alpha}\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{W}^{\beta\chi} \delta$						_			2.7					
							Totalex	xpected gauge generator						4	-)+440			
-				$a_{.}) \frac{1}{12}$				0, ⁺ T [⊥]	^{0,+} ℋ ∥	0+M			0+Ws ^h					11 12 12 a 2 0	$\frac{4\sqrt{2}}{3^a}$	34.	
$1\mathcal{A}_{\rm S}^{-1}{\rm h}$	0	i k a 0 0 √3	$\frac{2k^2(h_1+h_2)+a_2}{12\sqrt{2}}$		$\frac{1}{12} \left(-k^2 \left(h_1 + h_2 \right) + a_0 \right)$	$-\frac{k^2 (h_1 - 2h_1) + 4a_1}{12 \sqrt{2}}$	⁰⁺ T⁻ †	$\frac{4 k^2 (6 k^2 (h+h+h+h.)-a.)}{3 (4 + k^2)^2 a_0^2}$	$-\frac{8 k^2 (h_1 + h_1)}{\sqrt{3} (4 + k^2) a_1^2}$	$\frac{8i k(6k^2 (h_1 + h_2)^2)}{3(4+k^2)}$. +h.+h.)-a. 12 7 8 0	$\frac{10i k}{3(4+k^2)a}$	$\frac{4i\sqrt{2}}{3(4+k^2)}$	<u>k</u>			$\mathcal{H}^{+2}_{s_2}$	$\sqrt{\frac{2}{3}} (k^2 (h_1 + h_1) + 4a_0)$ $k a_0^2$, 4 E	I m	0
				+ h				, and the second	Ü	ů				U				2 i			
				$\frac{1}{12} \sqrt{\frac{5}{2}} (-2k^2 (h_1 + h_1) +$			^{0,+} ∕″ †	$-\frac{8 k^2 (h + h)}{\sqrt{3} (4 + k^2) a_0^2}$	$\frac{4(2 \ k^2 \ (-h \ , -h \ , +h \ , +h \ ,) +a \ ,)}{k^2 \ a \ ,^2}$	$-\frac{16i k(h)}{\sqrt{3}(4+h)}$	$\frac{11}{k^2}$ $\frac{12}{a_0^2}$	$-\frac{2i}{\sqrt{3} k a_0}$	k a.	-			q)+a.)			
							⁰⁺ Ws ^{1t} †	$8i k(6k^2(h + h + h + h + h)-a)$	$\frac{16 i k(h_1 + h_1)}{\sqrt{3} (4 + k^2) a_1^2}$	$\frac{16(6 k^2 (h_1 + h_2)^2)}{3(4 + k^2)^2}$. +h.+h.)-a.;	$\frac{20}{3(4+k^2)a}$	$\frac{8\sqrt{2}}{3(4+k^2)}$	10			2+7 ====================================	$\frac{4i(k^{2}(h_{11}+h_{12})+a_{1})}{\sqrt{3}ka_{0}^{2}}$	34.0	4 √2 3a.	0
								10 i k	o .	3(4+)-		1	3(41 x)	0			-5 ⁺	41 (k² (,			
1.745 lt		$\frac{1}{4}i\sqrt{\frac{5}{6}}k\alpha$	$\frac{1}{6}\sqrt{5}(k^2(h_1+h_1)+a_1)$	a.)	$\frac{1}{12} \sqrt{\frac{5}{2}} (-2 k^2 (h_1 + h_1) + a_1)$	$\frac{1}{12} \sqrt{5} (-k^2 (h_1 - 2 h_1) + a_0)$	0,+Ws †	$-\frac{12 a_0 + 3 k^2 a_0}{10}$	$\frac{2i}{\sqrt{3}} k \stackrel{a}{\underset{0}{\leftarrow}}$	12 a . + :	3 k ² a.	0	0					a. ²)			
	0)+2 4			⁰⁺ Ws ^{1h} †	$-\frac{4i\sqrt{2}k}{12a_0+3k^2a_0}$	$-\frac{4i\sqrt{\frac{2}{3}}}{ka_0}$	8 V 12 a + 1	$\frac{\sqrt{2}}{3 k^2 a}$	0	0					1 a +4 8 0		;ol	
				$\frac{1}{6}$ (-5 k^2 ($h_1 + h_2$) + 2				0 0	0	0	0							h h /)+a.))+4a	
							S ==	$\int_{1}^{\infty} (\frac{1}{2} (-2) d^{2} d^{2} d^{2} + 2 d^{2} d^$	$a \mathcal{A}^{\alpha\beta} \mathcal{A}^{\chi} + A \mathcal{A}^{\alpha\beta}$	$\mathcal{A}_{\alpha}^{\alpha\beta} \mathcal{A}_{\beta\chi}^{\chi} + 4 \mathcal{A}^{\alpha\beta\chi} \mathcal{W}_{\alpha\beta\chi} +$		$2^+_{\cdot}h^{\parallel}_{\alpha\beta}$		$^{2^{+}}\mathcal{F}_{S}{}^{\parallel}{}_{\alpha\beta}$		$^{2^{+}}\mathcal{A}_{S^{}\alpha\beta}^{}$ $^{2}\mathcal{A}_{S^{}\alpha\beta\chi}^{}$		$\frac{^{2}(h_{11}+h_{11})^{2}}{k^{2}a^{3}}$	11 12 12 13 k a 2	(h +h 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0
							JJJJ		$\frac{1}{0} \int_{\alpha}^{\alpha} \int_{\beta \chi}^{\alpha} \int_{\beta \chi}^{\alpha} \int_{\beta \chi}^{\alpha} \int_{\alpha \chi}^{\alpha} \int_{\beta \chi}^{\alpha} \int_{\alpha \chi}^{\alpha} \int_{\beta \chi}^{\alpha$	αβχ '	$^{2^{+}}h^{\parallel}$ † $^{\alpha\beta}$	0		$-\frac{i k a}{4 \sqrt{3}}$		$-\frac{i k a}{2 \sqrt{6}}$	$\begin{bmatrix} 2 \mathcal{A}_{S} \ _{\alpha\beta\chi} & \frac{1}{\zeta} \\ 0 & & \\ \end{bmatrix}$)2+4 k	$\frac{4 i (k^2 (h + h) + a)}{\sqrt{3} k a_0^2}$	$2i \sqrt{\frac{2}{3}} (k^2 (h_1 + h_2) + 4a_0) / k a_0^2$	
=	0	i k a 0 0 4 √6	$(-k^2(h_1 + h_1) - 2a_1)$	a.)		$\frac{1}{12} (k^2 (h_1 - 2 h_1) + a_1)$			$\partial_{\chi}\mathcal{A}_{\alpha\beta}^{\chi}$ - a $h^{\alpha}_{\alpha}\partial_{\chi}\mathcal{A}_{\beta}^{\beta\chi}$	+	$^{2^{+}}\mathcal{A}_{s}^{\parallel}\dagger^{\alpha\beta}$	i k a 1 6	(-k ² (h .	$+h_{12} + h_{1} + h_{1}$)-3 a.)	$-\frac{k^2 (h_1 + h_2 + 4(h_1 + h_2))}{12 \sqrt{2}}$	0	$\frac{2(k^4 \binom{n}{11} + h_1)^2 + 4k^2 \binom{n}{11} + h}{k^2 \binom{n}{2}}$		2 i	
$1^{-}\mathcal{A}_{S^{-}\mathfrak{U}_{\alpha}}^{\perpt}$				h.)+					$\mathcal{A}^{\beta\chi}_{\beta}$ -2 $h_{8}^{\delta}\partial_{\beta}\mathcal{A}_{\chi\delta}^{\delta}\partial^{\chi}\mathcal{A}$	αВ	^{2,+} <i>Α</i> (s, + + αβ			$\frac{h_1 + h_2 + 4(h_1 + h_2)}{12 \sqrt{2}}$			0				
				$\sqrt{5} (k^2 (h_1 + h_1) +$					$\binom{\delta}{\chi} \delta^{\chi} \mathcal{A}^{\alpha\beta} -$			2 γ6		12 √2	- 6 × (/	$\frac{1}{11} + \frac{h}{12} - \frac{2(h}{7} + \frac{h}{8}) + \frac{6}{4}$	0	$^{2^{+}}\mathcal{T}^{\parallel}$	$^{2^{+}}\mathcal{W}_{S}$ †	$^{2^{+}}\mathcal{W}_{S^{\perp}} +^{\alpha \beta}$	$^2\mathcal{M}_{\mathrm{s}}$ †
				(k² (h					$\int_{3}^{\delta} \partial^{\chi} \mathcal{A}^{\alpha\beta}_{\alpha} - 2 h \partial_{\chi} \mathcal{A}^{\delta}_{\beta}$, δ ^X A ^{αβ} -	$^{2}\mathcal{A}_{s}^{\parallel}\dagger^{\alpha\beta\chi}$		0			0	$\frac{a}{\frac{0}{4}}$	2+9	2+ 7 / 7	2 ⁺ Z	2 1/8
			1 (-k)						$^{\alpha\beta\chi}_{\alpha\beta\chi}\partial_{\delta}\mathcal{A}_{\alpha\chi}^{}$ -2 $h.\partial_{\beta}\mathcal{A}^{\alpha\beta\chi}_{}$		ı	0 ⁺ h [±]	0+b 0+3	As ^{±t}	^{0,+} ℋ _s ∥	0,+ As h					
1 $h^{^{\perp}}$	0		i k a 0 4 √6	$k \stackrel{1}{a} \frac{1}{6}$	i k a 8 $\sqrt{3}$	i k a 4 √6			$(a^{\alpha\beta}_{\alpha} \partial_{\delta} \mathcal{R}_{\beta\chi}^{\delta} - 2 h_{11} \partial_{\alpha} \mathcal{R}^{\delta})$		0,* h [±] †	0	0 ()	i k a 0 4	$\frac{i k a}{8 \sqrt{2}}$					
				$\sqrt{\frac{5}{6}}$					$a^{\alpha\beta\chi} \partial_{\delta} \mathcal{A}_{\beta\chi}^{\delta} +$	- РХ	^{0,+} h∥ †	0 0	o		$-\frac{i k a}{4 \sqrt{3}}$	$\frac{5ik a_0}{8\sqrt{6}}$					
В		0		$-\frac{1}{4}\ \tilde{\ell}$					${}^{\alpha}{}_{\alpha}{}^{\beta}\partial_{\delta}\mathcal{R}_{\beta}{}^{\delta}{}_{\chi} + 4 h. \partial^{\chi}\mathcal{R}_{\delta}{}^{\alpha}{}_{\delta}$	^β ∂ _δ A, ^δ +	⁰⁺ ℛs ^{⊥t} †	0 0	0		$\frac{a}{2}$	$\frac{a}{4\sqrt{2}}$					*
$1^+ \mathcal{A}_{S^\perp \alpha \beta}$. ₀ 4	0	0	0	0	0			$a^{\alpha\beta}_{\alpha} \partial_{\delta} \mathcal{A}_{\beta\chi}^{\delta} + 2 h_{\perp} \partial^{\chi} \mathcal{A}_{12}$		-			2,27			h.)+3a.			=	2 0 0 0
1.	αβ	+α	φ+	+α	+α	φ_			$+2 h_{11} \partial^{\chi} \mathcal{A}^{\alpha \beta}_{\alpha} \partial_{\delta} \mathcal{A}_{\chi \beta}^{\delta}$		⁰⁺ A _s "†		7-		+ h . + h . + h . 12 7 8	12 √2			3 W		авх
	$^{1+}\mathcal{A}_{S^{\perp}}\!\!+\!\!^{\alpha\beta}$	1 $^{\mu^{\perp}}$ †	$^{1}\mathcal{A}_{\mathrm{s}}^{\mathrm{ ext{ iny }}t}\dagger^{\alpha}$	$^{1}\mathcal{A}_{\mathrm{s}}^{\parallelt}t^{^{\alpha}}$	$^{1}\mathcal{A}_{\mathrm{s}}^{^{\perp\mathrm{h}}}\dagger^{^{\alpha}}$	$^{1}\mathcal{A}_{\mathrm{s}}^{\parallel}$ h †		t, x, y, z] d z d y			$^{0,+}\mathcal{R}_{s}^{\perp h}$ †		$\frac{5ika}{3\sqrt{6}} \frac{4}{4}$	$\frac{a_0}{\sqrt{2}}$ $\frac{2 k^2 (-2 h_{11})}{11}$	$\frac{2h_{12} + h_{1} + h_{1}) + 3a_{1}}{12\sqrt{2}}$	$\frac{1}{12} (k^2 (8 h_{11} + 8 h_{12} - 7 (k^2 + 1))) + \frac{1}{12} (k^2 (8 h_{11} + 8 h_{12} - 7 (k^2 + 1)))$	$\binom{h_1 + h_2}{7} - 3 = 0$) 3 W _s t	αβχ	2	+
	Η.		Н-	П-	Н	1						'									m

Massive and massless spectra

Unitarity conditions

$$(h_{.1} \mid h_{.}) \in \mathbb{R} \& \& a_{.} < 0 \& \& h_{.} < h_{.} \& (\frac{1}{2} (2h_{..} + h_{.} - h_{.}) - \frac{1}{2} \sqrt{\frac{5}{3}} \sqrt{h_{.}^{2} - 2h_{.} h_{.} + h_{.}^{2}} \le h_{..} < h_{.} \mid |h_{..} < h_{.} \le \frac{1}{2} (2h_{..} + h_{.} - h_{.}) + \frac{1}{2} \sqrt{\frac{5}{3}} \sqrt{h_{.}^{2} - 2h_{.} h_{.} + h_{.}^{2}})$$