Characteristic function

If A is a subset of the universal set U, the characteristic function denoted by f_A is defined as follows: $f_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$

We may add and multiply characteristic functions, since their values are numbers, and these operations sometimes help us prove theorems about properties of subsets.

$$f_{A \cap B} = f_{A} f_{B}$$

$$f_{A \cup B} = f_{A} + f_{B} - f_{A} f_{B}$$

$$f_{A \oplus B} = f_{A} + f_{B} - 2 f_{A} f_{B}$$

Proof: (a) $f_A(x) f_B(x)$ equals 1 if and only if both $f_A(x)$ and $f_B(x)$ are equal to 1, and this happens if and only if x is in A and x is in B, that is, x is in $A \cap B$. Since $f_A f_B$ is 1 on $A \cap B$ and 0 otherwise, it must be $f_{A \cap B}$.

(b) If $x \in A$, then $f_A(x) = 1$, so $f_A(x) + f_B(x) - f_A(x)f_B(x) = 1 + f_B(x) - f_B(x) = 1$. Similarly, when $x \in B$, $f_A(x) + f_B(x) - f_A(x)f_B(x) = 1$. If x is not in A or B, then $f_A(x)$ and $f_B(x)$ are 0, so $f_A(x) + f_B(x) - f_A(x)f_B(x) = 0$. Thus $f_A + f_B - f_A f_B$ is 1 on $A \cup B$ and 0 otherwise, so it must be $f_{A \cup B}$.

(c) We leave the proof of (c) as an exercise.

(c) If
$$x \in A = 2 \int_{A} (x) = 1 = 2 \int_{A} (x) + \int_{B} (x) - 2 \int_{A} \int_{B} (x) = 1 + \int_{B} (x) - 2 \int_{B} (x) = 1 + 1 - 2 = 0$$
 $f_{B}(x) = 1 = 2 + 1 + \int_{B} (x) - 2 \int_{B} (x) = 1 + 1 - 2 = 0$

but

IN case $x \notin B = 2 + 1 + \int_{B} (x) - 2 \int_{B} (x) = 1 + 0 - 2 \cdot 0$
 $= 1 - 0 = 1$

(1) If $x \in B = 2 \int_{B} (x) = 1 = 2 \int_{A} (x) + \int_{B} (x) = 2 \int_{A} (x)$