Tidy Intro

Рідлист

- R Cookbook, 2e (James (JD) Long and my_variable <- 10Paul Teetor) коли немає часу розбиратися з документацією, окрім прикладів базового R інкорпорує у себе також приклади роботи з tidyverse
- R for Data Science, 2e (Hadley Wickham, Mine Çetinkaya-Rundel, and Garrett Grolemund) всі основи (та більше) маніпуляції / візуалізації даних з tidyverse

Також можете спробувати Statistical Inference via Data Science: A ModernDive into R and the Tidyverse! (Chester Ismay and Albert Y. Kim), що окрім декількох коротких розділів про tidyverse пропонує дуже м'яке та візуально підкріплене ознайомлення з низкою статистичних концептів

Tidyverse as is

Екосистема tidyverse представляє собою набір бібліотек, що покликані уніфікувати процес роботи з даними за допомогою R, усі пакети tidyverse мають спільну філософію дизайну та граматику. Остання на момент створення цієї презентації версія tidyverse 2.0.0 включає у себе 31 пакет. Ядро tidyverse для щоденного використання включає у себе 8 пакетів, які одночасно можливо завантажити викликом library(tidyverse):

- ggplot2 декларативна система створення графіки, основана на філософії представленій у The Grammar of Graphics (Leland Wilkinson, 1999)
- dplyr універсифікована та послідовна граматика маніпуляції з даними
- tidyr набір функцій для "очищення" даних та приведення їх до загальної форми
- readr покращений імпорт даних прямокутного формату
- purr тулкіт для функціонального програмування з R
- tibble інтродукує новий клас формату даних аналогічний до data.frame tbl_df
- stingr пакет для маніпуляції з текстовими даними
- forcats пакет для маніпуляції з факторами

Також існує безліч бібліотек, які хоча і не є офіційно частиною **tidyverse**, слідують тим же принципам дизайну і є сумісними з ними. Окрім лінку наданого вище, CheatSheets до пакетів **tidyverse** та суміжних бібліотек можуть бути знайдені тут та тут

Tibble

Як data.frame, як написано у документації — "Tibbles are data.frames that are lazy and surly: they do less and complain more". На відміну від стандартних кадрів даних tibbles:

- При створенні не перетворюють текстовий вектор на фактор та не змінюють не-синтактичні імена колонок
- Не схвалюють присутність назв рядків
- Створення є послідовним, по колонкам, тому є можливість звертатися до колонок безпосередньо при створенні об'єкту
- При заповнені колонки ресайклінгу підлягають лише вектори довжиною 1
- Сабсетинг через [по замовчуванню повертає об'єкт типу tbl_df
- Сабсетинг через \$ не дозволяє часткового метчингу імені

Tibble не є заміною класу кадру даних, вони є *підкласом* даного класу. У цьому можна впевнитися перевіривши атрибути **tbl_df** об'єкту

```
1 library(palmerpenguins)
2 class(penguins)
3 #> [1] "tbl_df" "tbl" "data.frame"
```

Tibble

Створюються так само як звичайні кадри даних

```
1 tibb <- tibble(
2 a = runif(3),
3 b = rnorm(3),
4 prod = a * b, # рефернсинг до попередніх колонок у процесі створення
5 let = letters[1:3])
6 tibb
7 #> # A tibble: 3 × 4
8 #> a b prod let
9 #> <dbl> <dbl> <dbl> <chr>
10 #> 1 0.637 -0.275 -0.175 a
11 #> 2 0.0113 0.334 0.00377 b
12 #> 3 0.180 0.797 0.143 c
```

Також можливм є варіант створення "по рядках", що інколи є зручним для маленьких наборів даних

Функціональні еквіваленти

Пакет dplyr містить набір функцій низка з яких є аналогічними або ідентичними базовим функціям R, але на відміну від них мають більш зрозумілий та послідовний синтаксис, більш передбачувану поведінку, з самого початку розроблялися для комбінування з ріре-оператором та групованими даними. Більш повна таблиця порівняння з прикладами тут

dplyr verb	base R verb
arrange(df, x)	order(x), df[!duplicated(x), , drop = F]
<pre>distinct(df, x)</pre>	unique()
filter(df, x)	<pre>subset() or df[which(x), , drop = F]</pre>
<pre>pull(df, 1) , pull(df, x)</pre>	df[[1]], df\$x
rename(df, $y = x$), rename_with()	<pre>names() or stats::setNames()</pre>
mutate(x = y + z)	df\$x <- df\$y + df\$z,transform()
select(df, x, y)	<pre>subset() or df[c("x", "y")]</pre>
<pre>summarise(df, fun(x))</pre>	<pre>tapply(), aggregate(), by()</pre>
slice(df, c(1, 2, 5))	<pre>df[c(1, 2, 5), , drop = FALSE], also partialy sample()</pre>
*_join()`	merge()

Окрім цього purrr::map() та purrr::map2(), а також у певному сенсі dplyr::across(), є функціональними аналогами lapply()

Tidy data

Філософія екосистеми tidyverse передбачає роботу з даними у "чистому" або "довгому" форматі. Дані у довгому форматі напротивагу широкому формату передбачають, що:

- кожна колонка відповідає одній змінній
- кожен рядок відповідає одному спостереженню
- кожна комірка відповідає одному значенню

Для конверсії одного формату до іншого існують функції pivot_wider() та pivot_longer() відповідно. Широкий формат виглядає так:

```
1 wide_exaple
2 #> # A tibble: 3 × 5
3 #> ID Name Drug_A Drug_B Placebo
4 #> <dbl> <dbl> <dbl> <dbl> <br/>5 #> 1 1 Subj A 85 78 95
6 #> 2 2 Subj B 72 80 88
7 #> 3 3 Subj X 90 88 84
```

Варіант коли треба перевести з широкого у довгий зустрічається частіше

```
1 long_example <- wide_exaple |>
2  pivot_longer(
3   cols = 3:5,
4   names_to = "Treatment",
5   values_to = "Score"
6  )
```

Tidy data

Довгий формат виглядає так:

```
1 long example
2 #> # A tibble: 9 × 4
      ID Name Treatment Score
  #> <dbl> <chr> <dbl> <dbl>
  #> 1 1 Subj A Drug A 85
6 #> 2 1 Subj A Drug_B 78
7 #> 3 1 Subj A Placebo 95
8 #> 4 2 Subj B Drug A
                 72
 80
10 #> 6 2 Subj B Placebo
                   88
90
88
84
```

Зворотно у широкий формат

```
1 wide_example <- long_example |>
2  pivot_wider(
3    names_from = Treatment,
4    values_from = Score
5 )
```

Функції для рядків

Функція **filter()**, що повертає рядки кадру даних, що задовольняють певну логічну умову

```
1 iris |> filter(Sepal.Length > 6.5 & Petal.Length < 4.5)
2 #> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
3 #> 1 6.7 3.1 4.4 1.4 versicolor
4 #> 2 6.6 3.0 4.4 1.4 versicolor
```

Функція arrange(), що упорядковує дані від меншого до більшого по обраних змінних

```
1 iris |> arrange(Sepal.Length, Petal.Length) |> head(4)
      Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 #> 1
              4.3
                        3.0
                                    7.7
                                              0.1 setosa
              4.4
                        3.0
                                    1.3
                                              0.2 setosa
  #> 3
             4.4
                        3.2
                                   1.3
                                              0.2 setosa
                                             0.2 setosa
6 #> 4
        4.4 2.9
                                   1.4
```

Функція distinct() повертає усі унікальні значення

```
1 iris |> distinct(Species)
2 #> Species
3 #> 1 setosa
4 #> 2 versicolor
5 #> 3 virginica
```

Функції для колонок

Функція **mutate()**, що дозволяє створити нову колонку з розрахунками, що виконані на основі даних з інших колонок

Функція relocate(), що дозволяє перемістити колонку

```
1 iris |> relocate(Species, .before = everything()) |> head(2)
2 #> Species Sepal.Length Sepal.Width Petal.Length Petal.Width
3 #> 1 setosa 5.1 3.5 1.4 0.2
4 #> 2 setosa 4.9 3.0 1.4 0.2
```

Функція **rename()**, що дозволяє переіменовувати колонки

Та функція **select()**, що дозволяє вибрати конкретну колонку (або колонки) з кадру

Групування даних

Функція group_by(), як очевидно з назви, створює групи даних, що відображується у метаданих кадру

```
1 iris |> group by(Species) |> head(3)
2 #> # A tibble: 3 × 5
 #> # Groups: Species [1]
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
         <db1>
              <db1>
                      3.5
 #> 1
         5.1
                            1.4 0.2 setosa
7 #> 2
                                0.2 setosa
        4.9
                           1.4
8 #> 3 4.7 3.2
                            1.3
                                   0.2 setosa
```

Функції summarise(), reframe() та count() дозволяють застосувати дескриптивні статистичні функції до груп даних

Ітерації

Ітеративне застосування певної функції до декількох колонок усередині mutate() або summarise() може бути досягнуто за використання across()

```
1 iris |>
   group by (Species) |>
   summarise (across (where (is.numeric), mean), n = n())
  #> # A tibble: 3 × 6
    Species Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                             n
  #> <fct>
               <db1>
                               <db1>
                                          <db1>
                                                   <dbl> <int>
                                          1.46
  #> 1 setosa
                     5.01
                                3.43
                                                   0.246
                                                            50
8 #> 2 versicolor
                                2.77
                                     4.26 1.33
                   5.94
                                                            50
9 #> 3 virginica
                   6.59
                                2.97
                                           5.55 2.03
                                                            50
```

Pasom з filter() можуть бути застосовані if_all() та if_any

```
1 penguins |> filter(if all(3:6, is.na))
  #> # A tibble: 2 × 8
   #> species island bill length mm bill depth mm flipper length mm body mass g
   #> <fct> <fct>
                                        \langle db1 \rangle
                                                        \langle db1 \rangle
                                                                             \langle int. \rangle
                                                                                           \langle int \rangle
  #> 1 Adelie Torgersen
                                           NA
                                                            NA
                                                                                 NA
                                                                                               NA
6 #> 2 Gentoo Biscoe
                                           NA
                                                           NA
                                                                                 NA
                                                                                               NA
7 #> # i 2 more variables: sex <fct>, year <int>
```

Ітерації

Пакет purrr має аналог базового lapply під назвою map() (точніше ціле сімейство map, див. документацію), що картує функцію до кожного елементу листа або атомарного вектор.

```
1 # базовий варіант map() є функціонально ідентичним lapply()
2 str(lapply(1:3, function(x) rnorm(x)))
3 #> List of 3
4 #> $: num -0.0633
5 #> $: num [1:2] 0.548 -1.574
6 #> $: num [1:3] 0.1713 0.0619 -0.5303
7 str(map(1:3, function(x) rnorm(x)))
8 #> List of 3
9 #> $: num 0.572
10 #> $: num [1:2] 1.199 -0.171
11 #> $: num [1:3] 1.851 -0.845 -0.676
```

Функція **map** як **lapply** може приймати скорочений варіант звернення до анонімної функції, а також має свій власний варіант синтаксису

```
1 map(1:3, function(x) rnorm(x))
2 # теж саме що і
3 map(1:3, \(x) rnorm(x))
4 # теж саме що і ригг-стиль звернення до функції
5 map(1:3, ~rnorm(.x))
```

Також існує **map2**, що може виконувати ітерацію двох аргументів одночасно, зручно для використання при ітеративному збереженні даних або графіків

Найпростіший графік с ggplot2

Базовий синтаксис ggplot2 має вигляд

```
1 ggplot(data, aes(x, y)) + # дані та осі
2 geom() # одна з доступних геометрій
```

Де ggplot() створює об'єкт класу gg на який надалі за допомогою оператору + накладаються нові шари специфікації того, що у термінології ggplot2 буквально називається естетикою

```
penguins |>
ggplot(aes(x = bill_length_mm, y = bill_depth_mm)) +
geom_point()
```


Низка інших геометрій

- geom_jitter
- geom_bar, geom_col
- geom_histogram, geom_desity
- geom_boxplot, geom_violin
- geom_line, geom_smooth
- geom_errorbar
- stat_summary

Найпростіший графік с ggplot2

```
1 penguins |>
2 ggplot(aes(bill_length_mm, bill_depth_mm, color = species)) + # ще одна естетика
3 geom_point(alpha = .75) +
4 geom_smooth(method = lm, se = F) + # додаткова геометрія
5 labs(x = "bill length", y = "bill depth", title = "Bill depth-size correlation",
6 subtitle = "from dataset 'Palmerpenguins'") +
7 scale_color_brewer(palette = "Set2") +
8 theme_minimal()
```

Bill depth-size correlation

P.S. реальні дані з реального життя

Очевидно неповний список лінків звідки можливо дістати реальні набори даних відносно великих розмірів аби попрактикуватися у візуалізації даних, а також статистичному моделюванні та машинному навчанні

- R4DS Online Learning Community (2023). Tidy Tuesday: A weekly social data project. GitHub репозиторій проєкту TidyTuesday, новий датасет кожен понеділок
- Awesome public datasets core GitHub репозиторій, що колекціонує лінки на публічні датасети, по категоріям
- Apxiв проєкту Inter-university Consortium for Political and Social Research (ICPSR)
- Гарвардський Dataverse apxiв
- UC Irvine Machine Learning Repository
- Papers With Code (ці більше спрямовані конкретно на машинне навчання)
- Мультидисциплінарний open-access журнал Data in Brief
- GitHub репозиторій з колекцією журналів, які спеціалізуються на публікації наборів даних
- Пакети наборів даних, що є додатками до книг серії OpenIntro та ISLR2