Definition 2.2. A blockchain protocol (Π , extract) has chain growth rate $T_0(\cdot), g_0(\cdot, \cdot, \cdot, \cdot), g_1(\cdot, \cdot, \cdot, \cdot)$

in Γ -environments if for all Γ -admissible $(n(\cdot), \rho, \Delta(\cdot), A, Z)$, there exists some negligible function

 ϵ such that for every $\kappa \in \mathbb{N}$, $T \geq T_0(\kappa)$, $t_0 \geq \frac{T}{g_0(\kappa, n(\kappa), \rho, \Delta(\kappa))}$ and $t_1 = \frac{T}{g_1(\kappa, n(\kappa), \rho, \Delta(\kappa))}$ the following

 $\Pr\left[\textit{view} \leftarrow \textit{EXEC}^{(\Pi,\textit{extract})}(A,Z,\kappa) : \textit{growth}^{t_0,t_1}(\textit{view},\Delta(\kappa),\kappa) = 1 \right] \geq 1 - \epsilon(\kappa)$

holds: