Multiple Logistic Regression

HL Chapter 2

Regression analysis

FITS A STRAIGHT LINE TO THIS MESSY SCATTERPLOT. 2 IS CALLED THE INDEPENDENT OR PREDICTOR VARIABLE, AND 2 IS THE DEPENDENT OR RESPONSE VARIABLE. THE REGRESSION OR PREDICTION LINE HAS THE FORM

y = a+bz

L9GIT

Linear portion of the logistic regression equation

$$z = \beta_0 + \beta_1 x \leftarrow \begin{array}{c} \text{CAUTION} \\ \text{Risk} \\ \text{Factor} \end{array}$$

Wait a minute...only one risk factor?

Goal

- Build a model to predict or explain a dichotomous outcome (0/1) such as disease or mortality status
- Use more than one predictor

The multivariate model

 The multivariate logistic regression model is defined as

$$\pi(x) = \frac{e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p}}$$

(p=number of variables in the model)

The logit transformation

$$\begin{split} g(\widetilde{x}) &= g(x_1, x_2, ..., x_p) = \ln(\frac{\pi(\widetilde{x})}{1 - \pi(\widetilde{x})}) = \\ & \ln\left[\frac{e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p}}\right] \\ & \ln(e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p \\ & \text{Slope coefficients} \end{split}$$

Design variables (aka dummy variables)

- In SAS, categorical variables are treated as if they were continuous
- Example: GLOW500 data set

RATERISK = self reported risk of fracture

1 = less than others of the same age

2 = same as others of the same age

3 = greater than others of the same age

Design variables (aka dummy variables)

- The variable RATERISK is treated in SAS as if the numbers 1, 2 and 3 were values of a continuous variable such as age
- This doesn't make sense and design variables must be created

Design variable creation

- Most common approach:
 - Select a reference category (e.g., RATERISK = 1) to which the other categories are compared
- If a variable has c categories, we need c-1 design variables

RATERISK	R2	R3
1 = less than others of the same age	0	0
2 = same as others of the same age	1	0
3 = greater than others of the same age	0	1

Design variables

• Example:

ID	RATERISK	R2	R3
1	1 = less than others of the same age	0	0
2	2 = same as others of the same age	1	0
3	3 = greater than others of the same age	0	1
4	2 = same as others of the same age	1	0
5	1 = less than others of the same age	0	0
6	2 = same as others of the same age	1	0
Etc.			

Design variables in SAS Option 1: Create your own

```
data glow500; set sdat.glow500;

if raterisk=1 then do; r2=0; r3=0; end;
else if raterisk=2 then do; r2=1; r3=0; end;
else if raterisk=3 then do; r2=0; r3=1; end;
run;

proc logistic descending data=glow500;
model fracture=r2 r3;
run;
```

Design variables in SAS Option 2: Let SAS create them

proc logistic descending data=glow500;

class raterisk/param=ref ref=first;

model fracture=raterisk;
run;

Results Option 1

Analysis of Maximum Likelihood Estimates						
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	
Intercept	1	-1.6023	0.2071	59.8311	<.0001	
r2	1	0.5462	0.2664	4.2028	0.0404	
r3	1	0.9091	0.2711	11.2418	0.0008	

Results Option 2

Analysis of Maximum Likelihood Estimates						
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept		1	-1.6023	0.2071	59.8311	<.0001
RATERISK	2	1	0.5462	0.2664	4.2028	0.0404
RATERISK	3	1	0.9091	0.2711	11.2418	0.0008

Stat. significance of design variables

Analysis of Maximum Likelihood Estimates							
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq		
Intercept	1	-1.6023	0.2071	59.8311	<.0001		
r2	1	0.5462	0.2664	4.2028	0.0404		
r3	1	0.9091	0.2711	11.2418	0.0008		

- R2 is only borderline stat. significant at the 0.05 level
- What happens if we exclude R2 from the model?

Stat. significance of design variables

- R3=1 for RATERISK=3
- R3=0 for RATERISK=1 and 2
- R3 compares RATERISK=3 to RATERISK=1 and 2
- Before excluding R2, ee must ensure that this comparison makes sense

RATERISK	R2	R3
1 = less than others of the same age	0	0
2 = same as others of the same age	1	0
3 = greater than others of the same age	0	1

Entering design variables in a model

- Excluding part of a set of design variables may result in combinations of categories that don't make sense (e.g., combining "agree" with "disagree")
- In general, all design variables in a set should be kept in the model even if some are statistically nonsignificant
- When only part of a set of design variables is included, it is important to determine whether the resulting comparisons make sense

Significance in multivariate models

- SAS uses the Wald test
- Likelihood ratio test can be obtained but it is not automatically provided by SAS and requires calculations

proc logistic descending data=glow500;
 class raterisk/param=ref ref=first;
 model fracture=age weight priorfrac premeno raterisk;
run;

Significance in multivariate models

• WEIGHT and PREMENO are stat. non-significant

Analysis of Maximum Likelihood Estimates							
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	
Intercept		1	-5.6057	1.2207	21.0897	<.0001	
AGE		1	0.0501	0.0134	13.9660	0.0002	
WEIGHT		1	0.00408	0.00693	0.3470	0.5558	
PRIORFRAC		1	0.6795	0.2424	7.8581	0.0051	
PREMENO		1	0.1870	0.2767	0.4565	0.4993	
RATERISK	2	1	0.5345	0.2759	3.7539	0.0527	
RATERISK	3	1	0.8741	0.2892	9.1381	0.0025	

Remove one variable at a time

Remove WEIGHT

proc logistic descending data=glow500;
 class raterisk/param=ref ref=first;
 model fracture=age priorfrac premeno raterisk;
run;

Remove one variable at a time

• WEIGHT removed; PREMENO is still non-significant

Analysis of Maximum Likelihood Estimates							
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	
Intercept		1	-5.1500	0.9361	30.2653	<.0001	
AGE		1	0.0478	0.0128	13.9796	0.0002	
PRIORFRAC		1	0.6921	0.2414	8.2238	0.0041	
PREMENO		1	0.1926	0.2765	0.4852	0.4861	
RATERISK	2	1	0.5336	0.2759	3.7402	0.0531	
RATERISK	3	1	0.8547	0.2868	8.8777	0.0029	

Remove one variable at a time

Remove PREMENO

proc logistic descending data=glow500;
 class raterisk/param=ref ref=first;
 model fracture=age priorfrac raterisk;
run;

Remove one variable at a time

 Remove PREMENO; the remaining variables are statistically significant at the 0.05 level

Analysis of Maximum Likelihood Estimates							
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	
Intercept		1	-4.9905	0.9027	30.5641	<.0001	
AGE		1	0.0459	0.0124	13.6179	0.0002	
PRIORFRAC		1	0.7002	0.2412	8.4308	0.0037	
RATERISK	2	1	0.5485	0.2750	3.9786	0.0461	
RATERISK	3	1	0.8657	0.2862	9.1500	0.0025	

Removing >1 variable at a time: Likelihood ratio (LR) test

Test statistic:

$$G = -2ln \left[\frac{likelihood\ AFTER\ removing\ variables}{likelihood\ BEFORE\ removing\ variables} \right]$$

 $= -2[\ln(likelihood\ AFTER\ removing\ variables)]$

Removing >1 variable at a time: Likelihood ratio (LR) test

- H₀: Coefficients of variables of interest equal to 0
- If H_0 is true, then G is χ^2 distributed with df = number of removed variables

Removing >1 variable at a time: Likelihood ratio (LR) test

 Model with all 6 variables including WEIGHT and PREMENO

Testing Global Null Hypothesis: BETA=0					
Test	Chi-Square	DF	Pr > ChiSq		
Likelihood Ratio	44.2598	6	<.0001		
Score	44.5299	6	<.0001		
Wald	40.4058	6	<.0001		

p<0.05

→ Model with 6 variables is significantly better than model without any variables

Removing >1 variable at a time: Likelihood ratio (LR) test

Model with 4 variables (WEIGHT and PREMENO removed)

Testing Global Null Hypothesis: BETA=0					
Test	Chi-Square	DF	Pr > ChiSq		
Likelihood Ratio	43.4363	4	<.0001		
Score	43.9332	4	<.0001		
Wald	39.8785	4	<.0001		

p<0.05

→ Model with 4 variables is significantly better than model without any variables

Removing >1 variable at a time: Likelihood ratio (LR) test

• Is the model with 6 variables significantly better than the model with 4 variables?

Test	Chi-Square	DF				
Likelihood Ratio	44.2598 ←	6	2 ln (likelihood before removing variables)			
			removing variables)			
Test	Chi-Square	DF				
Likelihood Ratio	43.4363 ←	4	ا (likelihood after)			
Likelihood-ratio test: Likelihood Ratio						
G = 44.2598 - 43.4363 = 0.8235						

• df = 2 (2 variables removed)

Removing >1 variable at a time: Likelihood ratio (LR) test

data pval;
p=1-probchi(0.8235,2);

run;

proc print data=pval; run;

p = 0.6625 → The 6 variable model is not significantly better than the 4 variable model

Note: Wald or Score test could have been used instead

IMPORTANT: Missing values

- When a variable with missing values is removed from the model, the number of observations differs between the two models being compared
- To correctly compare two models, they must be based on the same set of observations
- See in-class assignment 3 for an example