Name: Shashank Gowdagiri

USC ID: 1956-0195-02

User login: sgowdagi@usc·edu

Question 3 Answers:

The distance for calculation is the Manhattan distance for each node. It gives the sum of the differences of the coordinates of the current node from the start node, and its distance till the end node.

The Heuristic is in time, which is the sum of the path taken (i.e distance already travelled) divided by the speed (which is calculated as given)

(Current[x]-goal[x]) + (current[y]-goal[y])/current speed

It is consistent because the f(n) value is always consistently increasing, and the order of expansion is directly dependent on the total heuristic value calculated. (lowest first)

The second consistent heuristic would be the straight line distance. In this case as well, there are no path where the f(n) value is decreasing. It is consistent.

Due to the differing run times of the heuristic dependent algorithms, neither heuristic is dominant.

Question 6 Table with values

		Runtime(ms)	Number of Iterations	Path Length	Solution cost (time)
Input1.txt	BFS	180	401	93	46.157
	DFS	96	179	125	115.22
	A*(Heuristic 1)	189	379	93	46.100
	A* (Heuristic 2)	200	389	93	46
	Beam (k=5)	148	116	56	34
	Beam (k=10)	160	283	53	39

	Beam(k=50)	183	379	93	39
Input 2.txt	BFS	102	546	49	24.078
	DFS	104	50	49	25.184
	A*(Heuristic 1)	280	104	47	24.0
	A* (Heuristic 2)	270	230	47	24.0
	Beam (k=5)	135	379	49	
	Beam (k=10)	167	458	47	
	Beam(k=50)	198	104	47	
Input3.txt	BFS	231	2969	326	353.12286
	DFS	190	Path not found		
	A*(Heuristic	200	2469	324	162.5
	A* (Heuristic 2)	190	2450	324	167
	Beam (k=5)	100	Path not found		
	Beam (k=10)	98	Path not found		
	Beam(k=50)	311	2469	324	

In terms of comparing the algorithms for time and space complexity,

BFS – It is complete when the branching factor is finite. With constant step cost, it is also optimal. Time and space complexity reduces if , instead of just visiting the node, we could check it for the goal node instead of waiting to expand.

DFS – It is not optimal. IT is complete only when the nodes expanded are finite. The time and space complexity of DFS is O(b(power) m).

A* - Depending on the heuristic used for A*, the distance and time towards the goal changes. It is therefore, very important to choose a right heuristic. An overestimated heuristic, (which I encountered while testing and debugging) could lead to disastrous run time complexities.

Beam – The nodes expanded from every node, (in this case the maze cell), prune the options of finding the goal cell. If only a certain number of states are allowed to be expanded, then there is a very real possibility of losing the goal cell multiple times. The run times increases as the value of the beam decreases, since the odds of finding the goal are reduced.