Triad Motif Significance Profile

•••

May 18, 2017 Sally Yuen

Background: Motif

Motif

subgraph patterns which appear significantly more often than expected at random

Importance

Assist in understanding the structural design principles of a complex network

Stable Motifs

Background: Z-score

Z-score analysis

Track significance of an over- and underrepresentation for each motif using a z-score

Calculation

For a motif i,

$$Z_i = \frac{N_{original, i} - \langle N_{random, i} \rangle}{\sigma_{random, i}}$$

Terms

 $N_{original,\,i}=$ frequency of motif i in the original network

< $N_{random, i}$ > = avg frequency of motif i in randomized networks and

 $\sigma_{random, i}$ = respective standard deviation

Background: Significance Profile

Significance Profile SP

Is the vector of normalized Z-scores for a network

$$SP_i = \frac{Z_i}{\sqrt{\sum Z_i^2}}$$

Example SP Triad Significance Profile TRANSC-B.SUBTILIS - NEURONS www.b

Main Objective

- To extract and visualize various triad motif significance profiles
 - Determine input networks
 - Calculate Z-score of each motif and creating the SP
 - Plot and display profiles and networks

Input Networks

- Biological networks
 - E-coli transcription
 - Yeast transcription
- Social Networks
 - Prison network
 - Macrae, Sociometry 23, 360-371 (1960)
 - Leadership course network
 - L. D. Zeleny, Sociometry 13, 314-328 (1950).
- Circuit Networks

Calculating Z-scores

- N originaltriadic_census
- <N____>
 - o Implement a randomization method
 - Need degree preservation
 - Keep track of changing motif frequencies
- σ_{random}
 - o numpy.std

Plotting Results

- Plotting graphs after and before randomization w/Cytoscape + networkx
- Plotting SP w/networkx

Results: Randomization

Randomization: E.coli Transcription Network

Before Randomization: E.Coli

After Randomization: E.coli

Results: Motif Significance Profiles

Motif Significance Profile: E.coli Transcription

Publications

- R. Milo et al., "Superfamilies of evolved and designed networks." Science 303, 1538 (2004)
- R. Milo *et al.*, *Network Motifs: Simple Building Blocks of Complex Networks Science* 298, 824 827 (2002)

Thank you!

Motif Significance Profiles: Social Networks

