Straight Objective Type

- The co-efficient of x^5 in the expansion of $(1 + x)^{21} + (1 + x)^{22} + \dots + (1 + x)^{30}$ is (A) ${}^{51}C_5$ (B) ${}^{9}C_5$ (C) ${}^{31}C_6 {}^{21}C_6$ (D) ${}^{30}C_5 {}^{20}C_5$
- The co-efficient of x^5 in the expansion $(x^2 x 2)^5$ is (C) - 86(D) - 81
- 3. In the expansion of $\left(5^{\frac{1}{2}} + 7^{\frac{1}{8}}\right)^{1024}$, the no. of integral term is
- The value of $^{15}C_0^2 ^{15}C_1^2 + ^{15}C_2^2 \dots ^{15}C_{15}^2$ is (A) 15 (B) 15 (D) 51
- 5. If Cr stands for Cr, then the sum of the series (where n is an even positive integer,)

$$\frac{2\left(\frac{n}{2}\right)!\left(\frac{n}{2}\right)!}{n!}\left[C_0^2 - 2C_1^2 + 3C_2^3 - \dots + (-1)^n(n+1)C_n^2\right] \text{ is equal to}$$
(A) 0 (B) $(-1)^{n/2}(n+1)$ (C) $(-1)^n(n+2)$

- 6. The expression $\{x + (x^3 1)^{1/2}\}^5 + \{x (x^3 1)^{1/2}\}^5$ is a polynomial of degree (D)
- If R = $(5\sqrt{5} + 11)^{2n+1}$ and f= R [R] then Rf must be equal to
 (A) 5^{2n+1} (B) 11^{2n+1} (e) 4^{2n+1} (D) 1
- The number of irrational terms in the expansion of $(\sqrt[4]{9} + \sqrt[6]{8})^{500}$ is (B) 41 (C)40(A) 459 (D) 460

Multiple Correct Choice Type

- The sum of the co-efficient in the expansion of $(1 + ax 2x^2)^n$ is

 - (A) +ve, when a < 1 and n = 2 k, k \in N (B) –ve, when a < 1 and n = 2k +1, k \in N
 - (C) +ve, when a > 1 and $n \in N$
- (D) zero, when a = 1
- 10. If for z as real or complex, $(1+z^2+z^4)^8 c_0 + c_1 z^2 + c_2 z^4 + \dots + c_{16} z^{32}$ then

$$(A) c_0 - c_1 + c_2 - c_3 + \dots + c_{16} = 1$$

$$(B) c_0 + c_3 + c_6 + c_9 + c_{12} + c_{15} = 3^7$$

$$(D) c_2 + c_5 + c_8 + c_{11} + c_{14} = 3^6$$

$$(D) c_1 + c_4 + c_7 + c_{10} + c_{13} + c_{16} = 3^7$$

$$(B)^{T}C_{0} + C_{3} + C_{6} + C_{9} + C_{12} + C_{15} = 3^{7}$$

$$C_2 + C_5 + C_8 + C_{11} + C_{14} = 3^6$$

(D)
$$c_1 + c_4 + c_7 + c_{10} + c_{13} + c_{16} = 3^7$$

Comprehension Type

The 2^{nd} , 3^{rd} and 4^{th} terms in the expansion of $(x + a)^n$ are 240, 720 and 1080, respectively.

- 11. The value of $(x-a)^n$ can be
- (C) 32
- (D) none of these

(D) 131

4D) none of these

- 12. The value of least term in the expansion is
- (B) 160
- (C) 32
- (D) 81

13. The sum of odd numbered terms is (A) 1664 (B) 2376

(C) 1562

(D) 1486

Integer Type

14. The value of
$$\sum_{i=0}^{10} \sum_{j=0}^{10} {}^{10}C_i {}^{10}C_j - \sum_i \sum_{j=1}^{10} {}^{10}C_i {}^{10}C_j$$
 is ${}^{n}C_r$ then the value of $\left(\frac{n}{r}\right)$ is $\frac{\pi}{2}$

15. Let $(\sqrt{2}+1)^6=1+f$ where 0 < f < 1 and I is an integer then the value of (I+f)(1-f) is

Matrix - Match Type

16. Match the following

Column – I		Column – II	
(A)	The co-efficient of two consecutive terms in the expansion of $(1 + x)^n$ will be exclude, then n can be	(p)	9
(B)	If 15 ⁿ + 23 ⁿ is divided by 19 then n can be	(q)	10
(C)	$^{10}\text{C}_0$. $^{20}\text{C}_{10}$ – $^{10}\text{C}_1$. $^{18}\text{C}_{10}$ + $^{10}\text{C}_2$. $^{16}\text{C}_{10}$ – is divisible by 2^n , then n can be	(r)	11
(D)	If the co-efficient of T_r , T_{r+1} , T_{r+2} terms of $(1 + x)^{14}$ are in A.P, then r is less than	(s)	12