Detecting gibberish in open-ended survey questions

Quick introduction

Bsc . Psychology Tilburg University

Msc. Economic Psychology Tilburg University

Msc. Data Science & Society Tilburg University

d.vangils@markteffect.nl

in Demian van Gils

Data Specialist @ Markteffect

About Markteffect

Markteffect is a full-service market research company

- Eindhoven, since 2007
- +/- 75 FTE in Eindhoven and +/- 30 FTE in Amsterdam
- Needs assessment
 Campaign pre-test
 Campaign effect
 Customer Journey research
 Image- & Brand-awareness
 ... & more!

FMCG

Education

Finance

Leisure

Markteffect directresearch

J 040 239 22 90 Sollicitatie@markteffect.nl

Home Vacatures Ons verhaal Cookie Policy

Online survey studies

Size & Scope

Around 90% of our studies involve online surveys

Over 3 million responses in 2022

In 33 different languages

7

ς

Ensuring data quality

Layers of defense

In the survey itself

Bot detection

Survey design

In the data quality tool

Speeders

Patterns (straightliners & outliers)

Gibberish

By the researcher

Sanity check

Open ended questions

Different types of open ended questions

- Real open-ended questions
- Elaboration
- Multiple text
- Escape options

Open ended questions

Different types of open ended questions

- Escape options
- Multiple text
- Elaboration
- Real open-ended

Geeft een goed gevoel
Gncjrntgkf gig
Er waren berichten over dat energydrinks gezien de verslavings- en g
Energy drankjes staan ter discussie of deze wel zo gezond zijn, zeker
Energiedrankjes zijn niet goed voor de gezondheid.
Energiedrankjes horen niet thuis in de sport
Energiedrankjes geen goede drankjes zijn, dus ook niet gepromoot m
Elke sponsor is nodig en deze past goed
Een leuke actieve sponsor
Dit hoort niet thuis in de sport

Geeft een goed gevoel

Gncjrntgkf gig

Er waren berichten over dat energydrinks gezien de verslavings- en ge
Energy drankjes staan ter discussie of deze wel zo gezond zijn, zeker

Energiedrankjes zijn niet goed voor de gezondheid.

Energiedrankjes horen niet thuis in de sport

Energiedrankjes geen goede drankjes zijn, dus ook niet gepromoot m

Elke sponsor is nodig en deze past goed

Een leuke actieve sponsor

Dit hoort niet thuis in de sport

Project layout

Project layout

What do we need?

- An automated "first layer of defense" against nonsensical text input
- Filters + machine learning

What should we keep in mind?

- Computational constraints
- Limited information
- Multilingual data
- Consequences for respondents

Project layout: Desk research

Define key concepts

Read research papers

Look at existing solutions

Project layout

Define our steps

Markteffect

Data collection

Data collection

Collecting good responses

- Different topics
- Different types
- Different languages

Collecting bad responses

Is gibberish really 'random'?

Data collection

Collecting good responses

- Different topics
- Different types
- Different languages

Collecting bad responses

Is gibberish really 'random'?

Bad	Good	
Vxzjvzjj gtjhuujjkk	not ready for it	
hihihi	Inspire team laeders to propose training to staff	
agkagl gakhbvzd	Creative works	
Evdvev	Conditions	
Jeji iekfk	from the radio	
fdsfsd	Government	
Yuggfb hyffgg hgfff	It sounds nice but the chance of winning is small.	
Jedn	In the store itself	
ljou uyyui	Never thought about it	
Djdjddjfjxkdkdkdk	price	
adg reghfhgj fhksg re	helpful	
assdadfasfaa adsfasfas aasdf	various products	
czou8	medicine	
asjkvhk	Versatile and good	
b	Soccer	

Feature Engineering

Feature engineering

Feature engineering refers to the process of using domain knowledge to select and transform the most relevant variables from raw data when creating a predictive model using machine learning or statistical modeling.

Feature engineering

What characteristics can you come up with?

Bad	Good
Vxzjvzjj gtjhuujjkk	not ready for it
hihihi	Inspire team laeders to propose training to staff
agkagl gakhbvzd	Creative works
Evdvev	Conditions
Jeji iekfk	from the radio
fdsfsd	Government
Yuggfb hyffgg hgfff	It sounds nice but the chance of winning is small.
Jedn	In the store itself
ljou uyyui	Never thought about it
Djdjddjfjxkdkdkdk	price
adg reghfhgj fhksg re	helpful
assdadfasfaa adsfasfas aasdf	various products
czou8	medicine
asjkvhk	Versatile and good
b	Soccer

Feature engineering: Proportion of vowels

We can use regex to calculate the proportion of vowels in a string

vowels = re.findall("[aeiouáéíóúàèìòùäëïöü]", input_string, re.IGNORECASE)

Why do you think the proportion of vowels would be a good predictor for detecting gibberish?

Feature engineering: Proportion of non-alphabetic characters

We can use regex to calculate the proportion of non-alphabetic characters

```
vowels = re.findall("[^a-zA-Z]", input_string)
```

Note that we ignore accented characters in this example. You could use the unicode package in python to normalize accents.

Also note that the pattern "[^a-zA-Z]" is not the same as "[^A-z]"!

The (average) distance that was traveled on the keyboard to generate the response

We map the keyboard layout on an x-y plane

	Х	Υ
Q	1	5
W	3	5
E	5	5
R	7	5
Т	9	5
Υ	11	5
U	13	5
1	15	5
0	17	5
Р	19	5
Α	1.5	3
S	3.5	3
D	5.5	3
F	7.5	3
G	9.5	3
н	11.5	3
J	13.5	3
K	15.5	3
L	17.5	3
Z	2.5	1
X	4.5	1
С	6.5	1
V	8.5	1
В	10.5	1
N	12.5	1
M	14.5	1

We can now use Euclidean Distance to calculate the distance between each consecutive character in the input string

Euclidean Distance (d) =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Image from: https://rosalind.info/glossary/euclidean-distance/

We can then calculate the keystroke distance like so:

The keystroke distance is given by:

$$\frac{1}{N-1} \sum \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Where N is the length of the input string

Example "leuk":

$$KD_{LEUK} = \frac{D_{LE} + D_{EU} + D_{UK}}{3}$$

$$D_{LE} = \sqrt{(17.5 - 5)^2 + (3 - 5)^2} \approx 12.66$$

$$D_{EU} = \sqrt{(5 - 13)^2 + (5 - 5)^2} = 8$$

$$D_{UK} = \sqrt{(13 - 15.5)^2 + (5 - 3)^2} \approx 3.2$$

$$KD_{LEUK} \approx \frac{12.66 + 8 + 3.2}{3}$$

$$KD_{LEUK} \approx 7.95$$

Feature engineering: Entropy

At its core, entropy is a measure of disorder or uncertainty in a system

Image from: https://towardsdatascience.com/understanding-entropy-the-golden-measurement-of-machine-learning

Feature engineering: Entropy

A coin toss, using a fair coin, will have high entropy; we cannot accurately predict the next coin toss. Even if we have observed the following: [tails, heads, tails, heads].

A coin toss, using a weighted coin, where we have observed [heads, heads, heads] has low entropy. We can be quite certain that the next coin toss will yield heads.

Feature engineering: Entropy

The (binary) entropy of a string

$$Entropy(S) = -\sum_{i} p(i) * log2(p(i))$$

Example "leuk":

Entropy(leuk) =
$$-\frac{1}{4} * \log 2(\frac{1}{4}) - \frac{1}{4} * \log 2(\frac{1}{4}) - \frac{1}{4} * \log 2(\frac{1}{4}) - \frac{1}{4} * \log 2(\frac{1}{4})$$

= $-0.25 * -2 - 0.25 * -2 - 0.25 * -2 - 0.25 * -2$
= 2

Notebook

Notebook

You can find the notebook and datasets at:

https://github.com/markteffect/guestlecture-uvt

