

Varianta 4

Subjectul I

a)
$$\sqrt{53}$$
. b) $\frac{19}{5}$. c) $5\sqrt{2}$. d) $A(\sqrt{2}, \sqrt{2})$, $B(-\sqrt{2}, -\sqrt{2})$. e) $a = -8$, $b = 0$. f) -1.

Subjectul II

1) a) 1717. b)
$$x = 1$$
. c) [-3, 2]. d) $T_5 = 2^6 \cdot C_{10}^4 \cdot \sqrt[3]{x}^{22}$. e) 3.

2) a) Calcul direct. b)
$$x = 0$$
, $x = -1$. c) 0. d) $\frac{1}{3}$. e) $\frac{2007 \cdot 2009}{2008^2}$.

Subjectul III

a) Calcul direct.

b) det
$$(A - xI_2) = \begin{vmatrix} a - x & b \\ c & d - x \end{vmatrix} = x^2 - (a+d)x + ad - bc = f(x).$$

c) Din relațiile lui Viète avem $x_1 + x_2 = tr(A)$, $x_1x_2 = det A$.

d)tr
$$I_2 = 2$$
, det $I_2 = 1 \Rightarrow f(x) = x^2 - 2x + 1 = (x-1)^2 \Rightarrow x_1 = x_2 = 1$.

e) Prima relație se obține prin calcul direct, iar a doua prin înmulțirea sa cu A^n .

f) Dacă $x_1(n)$ și $x_2(n)$ sunt rădăcinile atașate polinomului asociat matricei A^n , arătăm că au loc relațiile $\begin{cases} x_1(n) + x_2(n) = x_1^n + x_2^n \\ x_1(n) \cdot x_2(n) = x_1^n \cdot x_2^n \end{cases}$.

Cum
$$x_1(n) \cdot x_2(n) = \det(A^n) = \left[\det(A^n)\right]^n$$
 și

 $x_1^n \cdot x_2^n = (x_1 x_2)^n = [\det(A^n)]^n \Rightarrow x_1(n) x_2(n) = x_1^n x_2^n$. Demonstrăm prin inducție că $tr(A^n) = x_1^n + x_2^n$, oricare ar fi $n \in N$ și deci x_1^n și x_2^n sunt rădăcinile cerute.

g) Presupunem $A^n = I_2$ și fie x_1, x_2 rădăcinile polinomului f atașat lui A. Atunci, conform punctului f), x_1^n, x_2^n sunt rădăcinile lui $A^n = I_2$. Polinomul f atașat lui I_2 are rădăcina dublă 1, deci $x_1^n = x_2^n = 1$. Rezultă $|x_1| = |x_2| = 1$. Atunci $|x_1 + x_2| \le |x_1| + |x_2| = 2 \Rightarrow |trA| \le 2$, contradicție.

Subjectul IV:

a) Calcul direct.

b)
$$\lim_{x \to \infty} \frac{f_1(x)}{x^4} = \lim_{x \to \infty} \frac{x - \frac{1}{4}x^4}{x^4} = -\frac{1}{4}$$
.

c)
$$f'_n(x) = 1 - x^3 + x^6 - ... + (-1)^n \cdot x^{3n}$$

d) Din c)
$$\Rightarrow f'_n(x) = 1 \cdot \frac{1 - (-x^3)^{n+1}}{1 - (-x^3)} = \frac{1 - (-1)^{n+1} x^{3n+3}}{1 + x^3}, \ \forall \ x \in \mathbf{R} \setminus \{-1\}.$$

e)
$$\int_{0}^{1} \frac{1}{1+x^{3}} dx = \frac{1}{3} \int_{0}^{1} \frac{1}{x+1} dx - \frac{1}{3} \int_{0}^{1} \frac{x-2}{x^{2}-x+1} dx = \frac{1}{3} \ln 2 + \frac{\pi\sqrt{3}}{9}$$
.

f) Integrând egalitatea de la d) pe [0,1] și ținând seama de rezultatul de la e) obținem

$$f_n(x)\big|_0^1 = \frac{1}{3}\ln 2 + \frac{\pi\sqrt{3}}{9} - (-1)^{n+1}\int_0^1 \frac{x^{3n+3}}{1+x^3} dx \text{ . Dar } f_n(x)\big|_0^1 = f_n(1) - f_n(0) = a_n.$$

g)
$$\forall x \in [0,1] \text{ avem } 0 \le \frac{x^{3n+3}}{1+x^3} \le x^{3n+3} \Rightarrow \int_0^1 \frac{x^{3n+3}}{1+x^3} dx \le \int_0^1 x^{3n+3} dx \Rightarrow$$

$$\Rightarrow \left| \int_{0}^{1} \frac{x^{3n+3}}{1+x^{3}} dx \right| \le \int_{0}^{1} \left| \frac{x^{3n+3}}{1+x^{3}} \right| dx = \frac{1}{3n+4}.$$

Cum
$$\lim_{n\to\infty}\frac{1}{3n+4}=0$$
, rezultă că $\lim_{n\to\infty}(-1)^{n+1}\int\limits_0^1\frac{x^{3n+3}}{1+x^3}dx=0$. Ținând cont de egalitatea de la

f), obținem că
$$\lim_{n\to\infty} a_n = \frac{1}{3}\ln 2 + \frac{\pi\sqrt{3}}{9}$$
.