5-day Hands-on Workshop on:

Python for Scientific Computing and TensorFlow for Artificial Intelligence

By Dr Stephen Lynch FIMA SFHEA

Holder of Two Patents
Author of PYTHON, MATLAB®, MAPLE™ AND MATHEMATICA® BOOKS
STEM Ambassador and Speaker for Schools

s.lynch@mmu.ac.uk

https://www2.mmu.ac.uk/scmdt/staff/profile/index.php?id=2443

Schedule (Day 5): Start Session 1

Day 5					
Topics	Hours	Topics	Hours		
AI: KERAS and TensorFlow	10am-11am	AI: Recurrent Neural Networks	1pm-2pm		
AI: Convolutional Neural Networks	11am-12pm	AI: Introduction to TensorBoard	2pm-3pm		

Download files from GitHub:

https://github.com/DrStephenLynch/Tekbac

Application Programming Interface (API)

https://keras.io/api/applications/

Machine and Deep Learning Books

TensorFlow

TensorFlow Books

Linear Regression in TensorFlow 2

letropolitan University

Linear Regression in TensorFlow 2

Linear Regression in TensorFlow 2

```
[8] weights = layer0.get_weights()
    weight = weights[0][0]
    bias = weights[1]
    print('weight: {} bias: {}'.format(weight, bias))
    y_learned = x_train * weight + bias
    plt.scatter(x_train, y_train, label='Training Data')
    plt.plot(x_train, y_learned, color='red', label='Fit Line')
    plt.legend()
    plt.xlabel('x')
    plt.ylabel('y')
    plt.show()
```


Equation of Line of Best Fit

$$y = w * x + b$$

XOR Implementation in TensorFlow 2

```
[6] import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    import tensorflow as tf
    from tensorflow import keras
    import sys
    training data = np.array([[0,0],[0, 1], [1, 0], [1, 1]], 'float32')
    target data = np.array([[0], [1], [1], [0]], 'float32')
    model = tf.keras.models.Sequential()
    model.add(tf.keras.layers.Dense(4, input dim = 2, activation = 'relu'))
    model.add(tf.keras.layers.Dense(1, activation = 'sigmoid'))
    model.compile(loss='mean squared error',optimizer=tf.keras.optimizers.Adam(0.1),metrics=['accuracy'])
    hist = model.fit(training data, target data, epochs = 600, verbose = 0)
    print(model.predict(training data).round())
    val loss, val acc = model.evaluate(training data, target data)
    print(val loss, val acc)
```


XOR Implementation in TensorFlow 2

```
loss_curve = hist.history["loss"]
acc_curve = hist.history["accuracy"]
plt.plot(loss_curve, label='Loss')
plt.plot(acc_curve, label='Accuracy')
plt.xlabel('Epochs')
plt.legend()
plt.show()
1.0
0.8
0.6
                                        Loss
                                        Accuracy
0.4
0.2
0.0
                  200
           100
                        300
                               400
                                      500
                                            600
                       Epochs
```


Keras, TensorFlow and PyTorch

	Keras	TensorFlow	PyTorch C
Level of API	high-level API ¹	Both high & low level APIs	Lower-level API ²
Speed	Slow	High	High
Architecture	Simple, more readable and concise	Not very easy to use	Complex ³
Debugging	No need to debug	Difficult to debugging	Good debugging capabilities
Dataset Compatibility	Slow & Small	Fast speed & large	Fast speed & large datasets
Popularity Rank	1	2	3
Uniqueness	Multiple back-end support	Object Detection Functionality	Flexibility & Short Training Duration
Created By	Not a library on its own	Created by Google	Created by Facebook ⁴
Ease of use	User-friendly	Incomprehensive API	Integrated with Python language
Computational graphs used	Static graphs	Static graphs	Dynamic computation graphs ⁵

Boston Housing Data in TensorFlow: Keras

```
[1] import tensorflow as tf
    from tensorflow import keras
    import numpy as np
    import matplotlib.pyplot as plt
[2] from keras.datasets import boston housing
    (x train, y train), (x test, y test) = boston housing.load data(path='boston housing.npz',test split=0,seed=113)
[3] model = keras.Sequential([keras.layers.Dense(1, input dim=13, kernel initializer='normal'),])
    model.compile(loss='mean squared error', optimizer=tf.keras.optimizers.Adam(0.01))
     hist=model.fit(x train, y train, epochs=1000, validation split=0.2, verbose=0)
                                                                                              700
[5] plt.plot(range(1000), hist.history['loss'], range(1000), hist.history['val loss'])
                                                                                              600
                                                                                              500
                                                                                               400
```


300

200

100

800

1000

Boston Housing Data in TensorFlow: Hidden Layers and Overfitting

[5] plt.plot(range(1000), hist.history['loss'], range(1000), hist.history['val loss'])

```
[1] import tensorflow as tf
    from tensorflow import keras
    import numpy as np
    import matplotlib.pyplot as plt
[2] from keras.datasets import boston housing
    (x train, y train), (x test, y test) = boston housing.load data(path='boston housing.npz',test split=0,seed=113)
[3] model = keras.Sequential([
    keras.layers.Dense(100, input dim=13, kernel initializer='normal', activation='relu'),
    keras.layers.Dense(100, kernel initializer='normal', activation='relu'),
    keras.layers.Dense(1, kernel initializer='normal'),
    1)
                                                                                                160
[4] model.compile(loss='mean squared error', optimizer=tf.keras.optimizers.Adam(0.01))
                                                                                                140
     hist=model.fit(x train, y train, epochs=1000, validation split=0.2, verbose=0)
                                                                                                120
```


Boston Housing Data in TensorFlow: Overfitting: End Session 1

[5] plt.plot(range(1000), hist.history['loss'], range(1000), hist.history['val loss'])

```
[1] import tensorflow as tf
    from tensorflow import keras
    import numpy as np
    import matplotlib.pyplot as plt
[2] from keras.datasets import boston housing
    (x train, y train), (x test, y test) = boston housing.load data(path='boston housing.npz',test split=0,seed=113)
[3] model = keras.Sequential([
    keras.layers.Dense(100, input dim=13, kernel initializer='normal', activation='relu'),
    keras.layers.Dense(100, kernel_initializer='normal', activation='relu'),
    keras.layers.Dense(1, kernel initializer='normal'),
    1)
                                                                                              500
[4] model.compile(loss='mean squared error', optimizer=tf.keras.optimizers.Adam(0.01))
    hist=model.fit(x_train, y_train, epochs=1000, validation split=0.9, verbose=0)
                                                                                              400
```


300

200

100

200

800

1000

Convolutional Neural Network (CNN): Start Session 2

A **Convolutional Neural Network** (**CNN**) is a class of deep neural networks, most commonly applied to analyzing visual imagery. Inspired by biological processes in the animal visual cortex.

https://www.youtube.com/watch?v=2-OI7ZB0MmU

Convolutional Neural Networks Books

Identify the following features:

1	-1	-1	
-1	1	-1	\
-1	-1	1	

-1	-1	1	
-1	1	-1	
1	-1	-1	

-1	1	-1	
1	-1	1	O
-1	1	-1	

Convolution Layer

Pooling Layer

Merge the two images to give:

Rewrite image as a sequence:

Rewrite the sequence as a matrix:

Set up the filters:

Filters

Filter 1

Filter 2

Filter 3

Filter 4

Apply the filters:

Work out these numbers

Pooling Layer

Fully Connected Layer

Fully Connected Layer

Convolutional Neural Network (MNIST Dataset)

MNIST database of handwritten digits

Dataset of 60,000 28x28 grayscale images of the 10 digits, along with a test set of 10,000 images.

Usage:

```
from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
```

Returns:

- o 2 tuples:
 - x_train, x_test: uint8 array of grayscale image data with shape (num_samples, 28, 28).
 - y_train, y_test: uint8 array of digit labels (integers in range 0-9) with shape (num_samples,).

Arguments:

o path: if you do not have the index file locally (at '~/.keras/datasets/' + path), it will be downloaded to this location.

Convolutional Neural Network (MNIST Dataset)


```
📤 MNIST Hidden Layers.ipynb 💢
      File Edit View Insert Runtime Tools Help
+ Code + Text
         import tensorflow as tf
         import matplotlib.pyplot as plt
        mnist = tf.keras.datasets.mnist # Digits 0-9, 28x28= pixels
         (x train, y train), (x test, y test) = mnist.load data()
         print('Dimensions of first image=',x train[0].shape)
         print(x train[0])
        #plt.imshow(x train[0])
                                                      # Plots the colour image.
        plt.imshow(x train[0], cmap = plt.cm.binary) # Plots a grey scale image.
```



```
# Normalize the data.
x_train = tf.keras.utils.normalize(x_train, axis = 1)
x_test = tf.keras.utils.normalize(x_test, axis = 1)
print(x_train[0])
plt.imshow(x_train[0], cmap = plt.cm.binary)
```


Normalized Image (x_train[0])


```
model = tf.keras.models.Sequential()
   model.add(tf.keras.layers.Flatten()) # The input layer.
   model.add(tf.keras.layers.Dense(128, activation = tf.nn.relu)) # The 1st hidden layer with RELU activation.
   model.add(tf.keras.layers.Dense(128, activation = tf.nn.relu)) # The 2nd hidden layer with RELU activation.
   model.add(tf.keras.layers.Dense(10, activation = tf.nn.softmax)) # The number of classifications with softmax activation.
   model.compile(optimizer='adam',
           loss='sparse categorical crossentropy',
           metrics=['accuracy'])
  model.fit(x train, y train, epochs=3)
Train on 60000 samples
Epoch 1/3
Epoch 2/3
Epoch 3/3
<tensorflow.python.keras.callbacks.History at 0x7f70142ad860>
   val loss, val acc = model.evaluate(x test, y test)
   print(val loss, val acc)
   0.1104153299085796 0.9657
```

```
predictions = model.predict([x_test])
print(predictions)
```

```
import numpy as np
index = 1000
print(np.argmax(predictions[index]))
plt.imshow(x_test[index])
plt.show()
```



```
CNN MINIST.ipynb 
      File Edit View Insert Runtime Tools Help All changes saved
+ Code + Text
        import tensorflow as tf
         import matplotlib.pyplot as plt
        mnist = tf.keras.datasets.mnist # Digits 0-9, 28x28= pixels
         (x train, y train), (x test, y test) = mnist.load data()
    1 # Normalize the data.
        x train = tf.keras.utils.normalize(x train, axis = 1)
        x test = tf.keras.utils.normalize(x test, axis = 1)
        x train = x train.reshape((x train.shape[0], x train.shape[1], x train.shape[2], 1))
        x test = x test.reshape((x test.shape[0], x test.shape[1], x test.shape[2], 1))
```



```
input_shape=(28,28,1)
inputs = tf.keras.layers.Input(shape=input_shape)  # The input layer.
layer = tf.keras.layers.Conv2D(filters=64, kernel_size=(5,5), strides=(2,2), activation=tf.nn.relu)(inputs)
layer = tf.keras.layers.Conv2D(filters=64, kernel_size=(5,5), strides=(2,2), activation=tf.nn.relu)(layer)
layer = tf.keras.layers.Flatten()(layer)
layer = tf.keras.layers.Dense(128, activation = tf.nn.relu)(layer)  # The 1st hidden layer with RELU activation.
layer = tf.keras.layers.Dense(128, activation = tf.nn.relu)(layer)  # The 2nd hidden layer with RELU activation.
outputs = tf.keras.layers.Dense(10, activation = tf.nn.softmax)(layer)  # The number of classifications with softmax activation.
```


Layer (type)	Output Shape	Param #				
input_2 (InputLayer)	[(None, 28, 28, 1)]	0				
conv2d_2 (Conv2D)	(None, 12, 12, 64)	1664				
conv2d_3 (Conv2D)	(None, 4, 4, 64)	102464				
flatten_1 (Flatten)	(None, 1024)	0				
dense_3 (Dense)	(None, 128)	131200				
dense_4 (Dense)	(None, 128)	16512				
dense_5 (Dense)	(None, 10)	1290				
Total params: 253,130 Trainable params: 253,130 Non-trainable params: 0						
Train on 60000 samples Epoch 1/3						
60000/60000 [=======] - 33s	558us/sample -	loss:	0.1717	- acc:	0.946
Epoch 2/3 60000/60000 [========= Epoch 3/3	======] - 33s	547us/sample -	loss:	0.0608	- acc:	0.981
60000/60000 [========		/	7 (2020)	0 0410	100000000000000000000000000000000000000	0 007

Google Colab (CNN MNIST Dataset): End Session 2

```
x = x_test.reshape((x_test.shape[0], x_test.shape[1], x_test.shape[2], 1))
    predictions = model.predict([x test])
    print(predictions)
    import numpy as np
    index = 1000
   print(np.argmax(predictions[index]))
   plt.imshow(x test[index].reshape((28,28)))
   plt.show()
T+ [[3.91767618e-10 3.75979825e-09 4.56916780e-08 ... 9.99998450e-01
     4.04364231e-09 1.31759430e-06]
    [7.06394231e-12 1.56008383e-07 9.99999881e-01 ... 5.07569098e-10
     4.52388370e-11 3.62123864e-14]
    [1.08492145e-07 9.99971986e-01 7.53841096e-06 ... 5.89023466e-06
     8.70545534e-07 8.48745231e-07]
    [4.42824692e-08 3.24178254e-05 1.39420010e-07 ... 8.49580756e-05
     4.52493041e-05 6.18437247e-04]
    [4.69727501e-09 1.78956447e-10 3.33151770e-11 ... 1.50632440e-09
     3.29844079e-05 2.30408276e-10]
    [3.05831890e-07 4.55387106e-09 1.44481149e-07 ... 1.76121354e-10
      8.38539762e-08 5.32932765e-09]]
    10
    15
    20
    25
                         20
```


Recurrent Neural Network (RNN): Start Session 3

An unrolled recurrent neural network.

A **Recurrent Neural Network** (**RNN**) is a class of artificial neural networks where connections between nodes form a directed graph along a temporal sequence. This allows it to exhibit temporal dynamic behaviour.

Recurrent Neural Networks Books

Recurrent Neural Network: The Hopfield Neural Network

John J Hopfield

Hebb's Postulate of Learning. Let x₁, x₂,..., x_M denote a set of N-dimensional fundamental memories. The synaptic weights of the network are determined using the formula

$$\mathbf{W} = \frac{1}{N} \sum_{r=1}^{M} \mathbf{x}_r \mathbf{x}_r^T - \frac{M}{N} \mathbf{I}_n$$

where I_n is the $N \times N$ identity matrix. Once computed, the synaptic weights remain fixed.

2. **Initialization.** Let \mathbf{x}_p denote the unknown probe vector to be tested. The algorithm is initialized by setting

$$x_i(0) = x_{ip}, \quad i = 1, 2, \dots, N,$$

where $x_i(0)$ is the state of neuron i at time n = 0, x_{ip} is the ith element of vector \mathbf{x}_p , and N is the number of neurons.

 Iteration. The elements are updated asynchronously (i.e., one at a time in a random order) according to the rule

$$x_i(n+1) = \text{hsgn}\left(\sum_{j=1}^{N} w_{ij} x_j(n)\right), i = 1, 2, \dots, N,$$

where

$$\operatorname{hsgn}(v_i(n+1)) = \begin{cases} 1, & v_i(n+1) > 0\\ x_i(n), & v_i(n+1) = 0\\ -1, & v_i(n+1) < 0 \end{cases}$$

and $v_i(n+1) = \sum_{j=1}^{N} w_{ij}x_j(n)$. The iterations are repeated until the vector converges to a stable value. Note that at least N iterations are carried out to guarantee convergence.

Result. The stable vector, say, x_{fixed}, is the result.

Example 5. A five-neuron discrete Hopfield network is required to store the following fundamental memories:

$$\mathbf{x}_1 = (1, 1, 1, 1, 1)^T$$
, $\mathbf{x}_2 = (1, -1, -1, 1, -1)^T$, $\mathbf{x}_3 = (-1, 1, -1, 1, 1)^T$.

- (a) Compute the synaptic weight matrix W.
- (b) Use asynchronous updating to show that the three fundamental memories are stable.
- (c) Test the following vectors on the Hopfield network (the random orders affect the outcome):

$$\mathbf{x}_4 = (1, -1, 1, 1, 1)^T$$
, $\mathbf{x}_5 = (0, 1, -1, 1, 1)^T$, $\mathbf{x}_6 = (-1, 1, 1, 1, -1)^T$.

Solution. (a) The synaptic weight matrix is given by

$$\mathbf{W} = \frac{1}{5} \left(\mathbf{x}_1 \mathbf{x}_1^T + \mathbf{x}_2 \mathbf{x}_2^T + \mathbf{x}_3 \mathbf{x}_3^T \right) - \frac{3}{5} \mathbf{I}_5,$$

SO

$$\mathbf{W} = \frac{1}{5} \begin{pmatrix} 0 & -1 & 1 & 1 & -1 \\ -1 & 0 & 1 & 1 & 3 \\ 1 & 1 & 0 & -1 & 1 \\ 1 & 1 & -1 & 0 & 1 \\ -1 & 3 & 1 & 1 & 0 \end{pmatrix}.$$

(b) Step 1. First input vector, $\mathbf{x}_1 = \mathbf{x}(0) = (1, 1, 1, 1, 1)^T$.

Step 2. Initialize
$$x_1(0) = 1, x_2(0) = 1, x_3(0) = 1, x_4(0) = 1, x_5(0) = 1.$$

Step 3. Update in random order $x_3(1), x_4(1), x_1(1), x_5(1), x_2(1)$, one at a time.

$$x_3(1) = hsgn(0.4) = 1,$$

 $x_4(1) = hsgn(0.4) = 1,$
 $x_1(1) = hsgn(0) = x_1(0) = 1,$
 $x_5(1) = hsgn(0.8) = 1,$
 $x_2(1) = hsgn(0.8) = 1.$

Thus $\mathbf{x}(1) = \mathbf{x}(0)$ and the net has converged.

Step 4. The net has converged to the steady state \mathbf{x}_1 .

Step 1. Sixth input vector, $\mathbf{x}_6 = \mathbf{x}(0) = (-1, 1, 1, 1, -1)^T$.

Step 2. Initialize $x_1(0) = -1$, $x_2(0) = 1$, $x_3(0) = 1$, $x_4(0) = 1$, $x_5(0) = -1$.

Step 3. Update in random order $x_3(1), x_2(1), x_5(1), x_4(1), x_1(1)$, one at a time.

$$x_3(1) = hsgn(-0.4) = -1,$$

$$x_2(1) = \text{hsgn}(-0.4) = -1,$$

$$x_5(1) = \text{hsgn}(-0.4) = -1,$$

$$x_4(1) = hsgn(-0.4) = -1,$$

$$x_1(1) = hsgn(0) = x_1(0) = -1.$$

Step 3 (again). Update in random order $x_2(1), x_1(1), x_5(1), x_4(1), x_3(1)$, one at a time.

$$x_2(2) = hsgn(-0.8) = -1,$$

$$x_1(2) = hsgn(0) = x_1(1) = -1,$$

$$x_5(2) = \text{hsgn}(-0.8) = -1,$$

$$x_4(2) = hsgn(-0.4) = -1,$$

$$x_3(2) = hsgn(-0.4) = -1.$$

Thus $\mathbf{x}(2) = \mathbf{x}(1)$ and the net has converged.

Step 4. The net has converged to the spurious steady state $-\mathbf{x}_1$.

Example 6. Write a Python program that illustrates the behavior of the discrete Hopfield network as a content-addressable memory using N=81 neurons and the set of handcrafted patterns displayed in Figure 20.12.

Figure 20.12: Five handcrafted patterns.


```
1 # Hopfield Model
3 import matplotlib.pyplot as plt
4 import numpy as np
5 import random
8 nb patterns = 5
9 pattern width = 9
10 pattern height = 9
11 max iterations = 81
12
13 # Initialize the patterns
14 X = np.zeros((nb patterns, pattern width * pattern height))
15
24 -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1]
27 -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1]
30 -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1]
31
32 # Show the patterns
33 fig, ax = plt.subplots(1, nb patterns, figsize=(10, 5))
34
35 for i in range(nb patterns):
  ax[i].matshow(X[i].reshape((pattern_height, pattern_width)), cmap='gray')
37
  ax[i].set xticks([])
38
  ax[i].set yticks([])
40 plt.show()
```



```
42 \text{ W} = ((np.outer(X[0], X[0]) + np.outer(X[1], X[1]) + np.outer(X[2], X[2]) + np.outer(X[3], X[3]) + np.outer(X[4], X[4])) - 5*np.identity(81))/81
43
44 def hsgn(v, x):
      if v>0:
           return 1
      elif v == 0:
           return x
49
      else:
50
           return -1
51
52 # Create a corrupted test pattern
54 noiselevel = 1/3
55 values = list(range(nb patterns))
56 patInd = random.choice(values)
57 Y = np.array(X[patInd])
                                                                                 Pattern index= 2
58 x test = np.array((2*(np.random.rand(81, 1).flatten() > noiselevel)-1)*Y)
59 x test.flatten()
60 print('Pattern index=',patInd)
                                                                                                                                                    Recovered pattern
                                                                                               Corrupted pattern
62 # Recover the original patterns
63 A = x_test.copy()
64 A. flatten()
66 n=np.random.permutation(81)
68 for _ in range(max_iterations):
      for j in range(81):
           A[n[j]]=hsgn(np.dot(W[n[j]],A), A[n[j]])
70
71
73 # Show corrupted and recovered patterns
74 fig, ax = plt.subplots(1, 2, figsize=(10, 5))
76 ax[0].matshow(x_test.reshape(pattern_height, pattern_width), cmap='gray')
77 ax[0].set_title('Corrupted pattern')
78 ax[0].set_xticks([])
79 ax[0].set_yticks([])
81 ax[1].matshow(A.reshape(pattern_height, pattern_width), cmap='gray')
82 ax[1].set_title('Recovered pattern')
83 ax[1].set_xticks([])
84 ax[1].set_yticks([])
86 plt.show()
```


RNN: Long Short Term Memory Networks

The repeating module in a standard RNN contains a single layer.

RNN: Long Short Term Memory Networks

The repeating module in an LSTM contains four interacting layers.

RNN: Long Short Term Memory Networks

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Figure (a): Forget gate layer.

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Figure (b): Update the state.

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Figure (c): The new cell state.

Figure (d): Decide on output.


```
import tensorflow as tf
from tensorflow import keras
import pandas as pd
import numpy as np
import seaborn as sns
from pylab import rcParams
import matplotlib.pyplot as plt
from matplotlib import rc
%matplotlib inline
%config InlineBackend.figure format='retina'
sns.set(style='whitegrid', palette='muted', font scale=1.5)
rcParams['figure.figsize'] = 16, 10
RANDOM SEED = 42
np.random.seed(RANDOM SEED)
```



```
[2] x = 0.1
    chaos = []
    for t in range(1000):
                                                                           1.0
      x = 4 * x * (1 - x)
      chaos = np.append(chaos,x)
                                                                           0.8
    time = np.arange(0, 100, 0.1)
    plt.plot(chaos, label='logistic map chaos')
    plt.legend();
                                                                           0.6
[3] df = pd.DataFrame(dict(chaos=chaos), index=time, columns=['chaos'])
    df.head()
                                                                           0.4
D+
           chaos
                                                                           0.2
     0.0 0.360000
     0.1 0.921600
                                                                           0.0
     0.2 0.289014
                                                                                            200
                                                                                                        400
                                                                                                                    600
                                                                                                                                800
                                                                                                                                            1000
     0.3 0.821939
     0.4 0.585421
```



```
[5] def create_dataset(X, y, time_steps=1):
    Xs, ys = [], []
    for i in range(len(X) - time_steps):
        v = X.iloc[i:(i + time_steps)].values
        Xs.append(v)
        ys.append(y.iloc[i + time_steps])
    return np.array(Xs), np.array(ys)
```



```
[6] time steps = 10
    # reshape to [samples, time steps, n features]
    X train, y train = create dataset(train, train.chaos, time steps)
    X test, y test = create dataset(test, test.chaos, time steps)
    print(X train.shape, y train.shape)
   (790, 10, 1) (790,)
[7] model = keras.Sequential()
    model.add(keras.layers.LSTM(128, input shape=(X train.shape[1], X train.shape[2])))
    model.add(keras.layers.Dense(1))
    model.compile(loss='mean squared error', optimizer=keras.optimizers.Adam(0.001))
```



```
history = model.fit(X train, y train, epochs=30, batch size=16,
                            validation split=0.1, verbose=1, shuffle=False)
  Epoch 1/30
                                           1s 2ms/sample - loss: 0.1535 - val loss: 0.1277
  Epoch 2/30
                                 ====== 1 - 1s 1ms/sample - loss: 0.1288 - val loss: 0.1261
  711/711 [====
  Epoch 3/30
                                         - 1s 1ms/sample - loss: 0.1266 - val loss: 0.1252
  Epoch 4/30
  711/711 [=====
                                         - 1s 1ms/sample - loss: 0.1251 - val loss: 0.1251
  Epoch 5/30
                                    ====1 - 1s 1ms/sample - loss: 0.1244 - val loss: 0.1255
  711/711 [=======
  Epoch 6/30
                                   ==== ] - 1s 1ms/sample - loss: 0.1240 - val loss: 0.1254
  Epoch 7/30
                                         - 1s 1ms/sample - loss: 0.1234 - val loss: 0.1252
  711/711 [=====
  Epoch 8/30
  711/711 [===
                                ======= 1 - 1s 1ms/sample - loss: 0.1229 - val loss: 0.1249
```



```
€ 0.16
[9] plt.plot(history.history['loss'], label='train')
    plt.plot(history.history['val loss'], label='test')
                                                                       0.14
    plt.legend();
                                                                       0.12
                                                                       0.10
                                                                       0.08
                                                                       0.06
                                                                       0.04
[10] y pred = model.predict(X test)
                                                                       0.02
                                                                                         10
                                                                                                15
                                                                                                        20
                                                                                                               25
[11] plt.plot(np.arange(0, len(y train)), y train, 'g', label="history")
     plt.plot(np.arange(len(y train), len(y train) + len(y test)), y test, marker='.', label="true")
     plt.plot(np.arange(len(y train), len(y train) + len(y test)), y pred, 'r', label="prediction")
     plt.ylabel('Value')
     plt.xlabel('Time Step')
     plt.legend()
     plt.show();
```



```
[12] plt.plot(y_test, marker='.', label="true")
  plt.plot(y_pred, 'r', label="prediction")
  plt.ylabel('Value')
  plt.xlabel('Time Step')
  plt.legend()
  plt.show()
```


RNN: LSTM and Financial Mathematics: End Session 3

Run the Python notebook LSTM_TS_Forecast_US_EUR_Exchange_Rate.ipynb through GitHub.

Figure: Using LSTM to predict the US/EUR exchange rate.

An Introduction to TensorBoard: MNIST Dataset: Start Session 4

```
(1) try:
      %tensorflow version 2.x
    except Exception:
      pass
    # Load the TensorBoard notebook extension
    %load ext tensorboard
    TensorFlow 2.x selected.
[2] import tensorflow as tf
    import datetime
[3] # Clear any logs from previous runs
    irm -rf ./logs/
[4] mnist = tf.keras.datasets.mnist
    (x train, y train),(x test, y test) = mnist.load data()
    x train, x test = x train / 255.0, x test / 255.0
    def create model():
      return tf.keras.models.Sequential([
        tf.keras.layers.Flatten(input shape=(28, 28)),
        tf.keras.layers.Dense(512, activation='relu'),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation='softmax')
      1)
```


An Introduction to TensorBoard

An Introduction to TensorBoard

Run this command to get both curves!

TensorBoard Graphs

MATLAB® Deep Learning Toolbox

https://uk.mathworks.com/videos/what-is-deep-learning-toolbox--1535667599631.html

Google Colab and the Tensor Processing Unit (TPU)

A Tensor Processing Unit (TPU) is an AI Accelerator application-Specific Integrated Circuit (ASIC) developed By Google for Deep Learning using TensorFlow.

Google Colab and the Tensor Processing Unit

TPUs in Colab

In this example, we'll work through training a model to classify images of flowers on Google's lightning-fast Cloud TPUs. Our model will take as input a photo of a flower and return whether it is a daisy, dandelion, rose, sunflower, or tulip.

We use the Keras framework, new to TPUs in TF 2.1.0. Adapted from this notebook by Martin Gorner.

Google Colab and the Tensor Processing Unit

Using AI to write Shakespeare!

ake thee of thy sweet self dost see,

From heaven thee, as the beauty of thy didge?

Then were thou art my love whose soor coll, and she vounes,

That in my stars in his praise the ever wor,

Whose whould his spiret the deser thee is bart,

And thou thy self dost thou mayst live in thee

Then do I not the wrose to deepile lease.

The worthous shalt be bland nor my seas, With pentter than the owness doth bear, Where that beauty like of many a forming. Thou art as find in that which the thing thee,

Al Ethics and Cyber Security

End Day 5 Summary

Day 5			
Topics	Hours	Topics	Hours
AI: KERAS and TensorFlow	10am-11am	AI: Recurrent Neural Networks	1pm-2pm
AI: Convolutional Neural Networks	11am-12pm	AI: Introduction to TensorBoard	2pm-3pm

Application Programming Interface (API)

https://github.com/DrStephenLynch/Tekbac https://keras.io/api/applications/

