

THE UNIVERSITY OF ADELAIDE AUSTRALIA

Assessment Cover Sheet

Student Name	Andrew Martin
Student ID	1704466
Assessment Title	Assignment 5
Due Date	Monday 22nd October, 2018 by 5:00pm
Course	STATS 3005 Time Series III
Tutorial Group Number	1
Date Submitted	20/10/18
Lecturer	Professor Patty Solomon

KEEP A COPY

It is a good idea to keep a copy of your work for your own records. If you have submitted assessment work electronically make sure you have a backup copy.

PLAGIARISM AND COLLUSION

Plagiarism: using another person's ideas, designs, words or works without appropriate acknowledgement.

Collusion: another person assisting in the production of an assessment submission without the express requirement, or consent or knowledge of the assessor.

NB: In this course you are encouraged to work with other students but the work you submit must be your own. This means you must understand it and be able to explain it if required.

CONSEQUENCES OF PLAGIARISM AND COLLUSION

The penalties associated with plagiarism and collusion are designed to impose sanctions on offenders that reflect the seriousness of the University's commitment to academic integrity. Penalties may include: the requirement to revise and resubmit assessment work, receiving a result of zero for the assessment work, failing the course, expulsion and/or receiving a financial penalty.

I declare that all material in this assessment is my own work except where there is clear
acknowledgement and reference to the work of others. I have read the University Policy Statement
on Plagiarism, Collusion and Related Forms of Cheating
(http://www.adelaide.edu.au/policies/?230).

I give permission for my assessment work to be reproduced and submitted to other academic staff for the purposes of assessment and to be copied, submitted and retained in a form suitable for electronic checking of plagiarism.

Signed	Date
-	

Time Series A5

Andrew Martin

October 20, 2018

1. AR(1) process:

$$Y_t = 0.8Y_{t-1} + Z_t$$

Where Z_t is a white noise process with $\mathrm{var}(Z_t) = \sigma^2$

(a) Find the spectrum $f_y(\omega)$

Solution Y_t is an AR(1) process, so the spectrum has form:

$$f_y(\omega) = \frac{\sigma^2}{|\phi(e^{i\omega})|^2}$$

Where in this case $\phi(u) = (1 - 0.8u)$

$$\begin{aligned} |\phi(e^{i\omega})|^2 &= |1 - 0.8e^{i\omega}|^2 \\ &= |1 - 0.8\cos(\omega) - 0.8i\sin(\omega)|^2 \\ &= (1 - 0.8\cos(\omega))^2 + (0.8\sin(\omega))^2 \\ &= 1 - 1.6\cos(\omega) + 0.64\cos^2(\omega) + 0.64\sin^2\omega \\ &= 1.64 - 1.6\cos(\omega) \end{aligned}$$

Which gives

$$f_y(\omega) = \frac{\sigma^2}{1.64 - 1.6\cos(\omega)}$$

As required.

(b) Obtain a plot of the spectrum $f_y(\omega)$ for $\sigma^2 = 1$ Solution This is found in figure 1. The code is in the appendix

Figure 1: Plot of the spectrum $f_y(\omega) = \frac{1}{1.64 - 1.6\cos(\omega)}$

As required.

(c) Let $U_t = DY_t = (1 - B)Y_t$ be the process defined by differencing Y_t . Find the spectrum $f_u(\omega)$. Solution If U_t is a linear filter of Y_t , with form:

$$U_t = \sum_{j=-\infty}^{\infty} a_j Y_{t-j}$$

then:

$$f_U(\omega) = |a(\omega)|^2 f_y(w)$$

Where

$$a(\omega) = \sum_{j=-\infty}^{\infty} a_j e^{ij\omega}$$

In this case, we have

$$U_t = Y_t - Y_{t-1} = \sum_{j=-1}^{0} (-1)^{j-1} Y_{t-j}$$

This gives:

$$a(\omega) = \sum_{j=-1}^{0} (-1)^{j-1} e^{ij\omega} = e^{-i\omega} - 1$$

Giving:

$$f_{U}(\omega) = |a(\omega)|^{2} f_{y}(\omega)$$

$$= |e^{-i\omega} - 1|^{2} \frac{\sigma^{2}}{1.64 - 1.6\cos(\omega)}$$

$$= |\cos(\omega) - i\sin(\omega) - 1|^{2} \frac{\sigma^{2}}{1.64 - 1.6\cos(\omega)}$$

$$= ((\cos(\omega) - 1)^{2} + \sin^{2}(\omega)) \frac{\sigma^{2}}{1.64 - 1.6\cos(\omega)}$$

$$= (\cos^{2}(\omega) + \sin^{2}(\omega) - 2\cos(\omega) - 1) \frac{\sigma^{2}}{1.64 - 1.6\cos(\omega)}$$

$$= \frac{-2\sigma^{2}\cos(\omega)}{1.64 - 1.6\cos(\omega)}$$

As required.

(d) Obtain a plot of $|a(\omega)|^2$, where $a(\omega)$ is the transfer function of the differencing operator. Would you describe this as a high pass filter or a low pass filter?

Solution This is plotted in figure 2. As we can see it is removing the low frequencies, and amplifying the high frequencies. This makes it a high-pass filter. The code is in the appendix

Figure 2: plot of $|a(\omega)|^2 = -2\cos(\omega)$

As required.

(e) Obtain a plot of the spectrum $f_u(\omega)$ for $\sigma^2 = 1$. **Solution** This is plotted in figure 3. The code is in the appendix

Figure 3: plot of $f_U(\omega) = \frac{-2\sigma^2 \cos(\omega)}{1.64 - 1.6 \cos(\omega)}$

As required.

2. Consider the MA(2) process:

$$Y_t = Z_t + 0.5Z_{t-1} + 0.5Z_{t-2}$$

(a) Find the spectrum by evaluating $f(\omega) = \sigma^2 |\theta(e^{i\omega})|^2$ Solution

$$\begin{aligned} \theta(u) &= 1 + 0.5u + 0.5u^2 \\ \theta(e^{i\omega}) &= 1 + 0.5e^{i\omega} + 0.5(e^{i\omega})^2 \\ |\theta(e^{i\omega})|^2 &= (1 + 0.5\cos(\omega) + 0.5\cos(2\omega))^2 + (0.5\sin(\omega) + 0.5\sin(2\omega))^2 \\ &= 1 + 0.25\cos^2(\omega) + 0.25\cos^2(2\omega) + \cos(\omega) + \cos(2\omega) + \cos(\omega)\cos(2\omega) \\ &\quad + 0.25\sin^2(\omega) + 0.25\sin^2(2\omega) + \sin(\omega)\sin(2\omega) \\ &= 1 + 0.25 + 0.25 + \cos(\omega) + \cos(2\omega) + \cos(\omega)\cos(2\omega) + \sin(\omega)\sin(2\omega) \\ &= 1.5 + \cos(\omega) + \cos(2\omega) + \cos(\omega)\cos(2\omega) + \sin(\omega)\sin(2\omega) \\ &= 1.5 + 2\cos(\omega) + \cos(2\omega) \\ &= 0.5 + 2\cos(\omega) + 2\cos^2(\omega) \end{aligned}$$

$$f(\omega) = \sigma^2 |\theta(e^{i\omega})|^2$$
$$= 2\sigma^2 (\cos(\omega) + 0.5)^2$$

As required.

(b) Write down the autocovariance function directly **Solution**

 $= 2(\cos(\omega) + 0.5)^2$

$$\begin{split} \gamma_k &= \mathrm{cov}(Y_t, Y_{t+k}) \\ &= \mathrm{cov}(Z_t + 0.5Z_{t-1} + 0.5Z_{t-2}, Z_{t+k} + 0.5Z_{t+k-1} + 0.5Z_{t+k-2}) \\ &= \mathrm{cov}(Z_t, Z_{t+k}) + 0.5\mathrm{cov}(Z_t, Z_{t+k-1}) + 0.5\mathrm{cov}(Z_t, Z_{t+k-2}) + 0.5\mathrm{cov}(Z_{t-1}, Z_{t+k}) + 0.25\mathrm{cov}(Z_{t-1}, Z_{t+k-1}) \\ &+ 0.25\mathrm{cov}(Z_{t-1}, Z_{t+k-2}) + 0.5\mathrm{cov}(Z_{t-2}, Z_{t+k}) + 0.25\mathrm{cov}(Z_{t-2}, Z_{t+k-1}) + 0.25\mathrm{cov}(Z_{t-2}, Z_{t+k-2}) \end{split}$$

If we let $g_k = \text{cov}(Z_t, Z_{t+k})$ and apply covariance laws, this gives:

$$\gamma_k = g_k + 0.5g_{k-1} + 0.5g_{k-2} + 0.5g_{k+1} + 0.25g_k + 0.25g_{k-1} + 0.5g_{k+2} + 0.25g_{k+1} + 0.25g_k$$
$$= 0.5g_{k+2} + 0.75g_{k+1} + 1.5g_k + 0.75g_{k-1} + 0.5g_{k-2}$$

Note that $g_0 = \sigma^2$, and $g_k = 0$ for $k \ge 1$ This gives:

$$\gamma_k = \begin{cases} 1.5\sigma^2, & k = 0\\ 0.75\sigma^2, & k = \pm 1\\ 0.5\sigma^2, & k = \pm 2\\ 0, & |k| \ge 3 \end{cases}$$

As required.

(c) Using the inversion formula, find γ_0 .

Solution Using the nicer inversion formula:

$$\gamma_k = \frac{1}{\pi} \int_0^{\pi} \cos(k\omega) f(\omega) d\omega$$

$$= \frac{1}{\pi} \int_0^{\pi} \cos(k\omega) 2\sigma^2(\cos(\omega) + 0.5)^2 d\omega$$

$$= \frac{2\sigma^2}{\pi} \int_0^{\pi} \cos(k\omega) (\cos(\omega) + 0.5)^2 d\omega$$

$$\gamma_0 = \frac{2\sigma^2}{\pi} \int_0^{\pi} (\cos(\omega) + 0.5)^2 d\omega$$

$$= \frac{2\sigma^2}{\pi} \int_0^{\pi} 0.25 + \cos(\omega) + \cos^2(\omega) d\omega$$

$$= \frac{2\sigma^2}{\pi} \left(\int_0^{\pi} 0.25 d\omega + \int_0^{\pi} \cos(\omega) d\omega + \int_0^{\pi} \cos^2(\omega) d\omega \right)$$

$$= \frac{2\sigma^2}{\pi} \left(0.25\pi + \int_0^{\pi} \frac{1}{2} + \cos(2\omega) d\omega \right)$$

$$= \frac{2\sigma^2}{\pi} \left(0.25\pi + \frac{\pi}{2} \right)$$

$$= \frac{2\sigma^2}{\pi} \left(0.25\pi + \frac{\pi}{2} \right)$$

$$= \frac{2\sigma^2}{\pi} \left(0.25\pi + \frac{\pi}{2} \right)$$

Which is the same as the answer to b. As required.

Code

The code used to produce the plots is below:

```
pdf(file="A5Plots.pdf")
fyw = function(w){1/(1.64 - 1.6*cos(w))}
plot(fyw,0,pi)

aw2 = function(w){-2*cos(w)}
plot(aw2,0,pi)

fuw = function(w){-2*cos(w)/(1.64 - 1.6*cos(w))}
plot(fuw,0,pi)

dev.off()
```