ㅎ광상 사치광체의 연장성에 대한 평가

현충렬, 원현철, 황보현

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《지질탐사사업을 현대화하자면 앞선 탐사방법을 적극 받아들여야 합니다. 앞선 탐사방법을 받아들이는데서 중요한것은 지구화학탐사방법을 받아들이는것입니다.》(《김정일선집》 중보판제14권 505폐지)

지난 시기 언진산관입암체의 암석학적특징과 관입암체 및 그 주변부에서 Cu, Au, W, B 등과 같은 원소들의 광화작용특성을 밝히기 위한 연구[1, 2]들이 적지 않게 진행되였다.

론문에서는 표토물추출액의 총이온함량을 지시제로 리용하는 새로운 표토지구화학탐 사방법을 확립하고 사치광체의 연장성을 평가하였다.

1. 연구지역의 지질학적특징

언진산관입암체는 황해북도 연산군과 수안군사이 북서-남동방향의 언진산줄기를 이루면서 면적이 120km²인 불규칙한 타원모양(길이 13.5km, 너비 8km, 둘레길이 36km)으로 드러나있다.

관입암체의 북쪽에는 양덕관입암체, 동쪽에는 법동관입암체, 남쪽에는 오봉관입암체가 놓여있는데 이 관입암체들의 성광학적특징은 서로 비슷하다.

언진산관입암체가 스카른금, 동광상형성에서 성인암의 역할을 하였다는데 대해서는 이미 연구되였다.

광상의 서쪽에는 남산광체, 남서쪽에는 제청골광체, 남쪽에는 해방광체, 서광체, 동광체, 모래재광체, 예낭골광체, 언진광체, 동쪽에는 배재광체가 발달한다.

사치광체는 남산광체로부터 남쪽으로 1km정도 떨어져있는데 사당우군층과 구현군층의 경계를 따라 발달된 스카른동광체로서 최대주향연장길이는 130m정도이다.

2. 표도물추출액의 총이온함량을 지시제로 리용하는 표로지구화학탐사

1) 방법의 원리

표토는 잔적표토와 운적표토 등 여러가지로 구분되지만 기본은 기반암석의 풍화산물이다. 표토는 형성과정에 기반암석의 원소조성을 거의나 이어받는다. 그리고 광체의 조성원소들도 표토에 반입되여 이상마당이 형성된다.

광체의 조성원소들이 표토에로 이동하는 물림새에 대하여서는 여러가지로 론하고있다. 숨은 광체가 지하수면의 아래에 위치하고 공극수가 발달하거나 토양이 물로 포화된 조 건에서 광체는 전해액속에 놓이는것과 같으므로 광체의 량쪽에서는 산화환원전위차가 생 긴다. 이때 전자는 Eh가 낮은데로부터 높은데로 이동한다.

그러면 광체의 밑부분에서는 +전기마당이 생기고 광체의 웃부분에서는 -전기마당이 생 기는데 광체주위에서 양이온은 우로, 음이온은 아래로 이동하여 전기적중성을 보장한다. 이 리하 전기화학적용해작용에 의하여 광체와 토양의 물리화학적파라메터들이 변하게 된다.[3]

이밖에도 지하수순환, 이온확산, 모세관작용, 식물작용, 심부기체에 의한 금속이온들의 이동 등 여러 작용들에 의하여 광체속의 금속이온들이 이동되여 표토에 흡착된다. 흡착된 금 속양이온들은 표토의 이온전도도를 높이므로 광체가 존재하는 구역의 표토에서는 이온전 도도가 비광체구역에서보다 높게 나타난다.

2) 측정조건

표토시료의 립도

표토의 이온전도도측정에 미치는 립도의 영향을 고려하기 위하여 3개의 립도크기(1.2mm, 400 μm, 100 μm)를 설정하고 매 립도에 따르

는 이온전도도를 측정한다. 매 시료 1g을 각각 100mL의 증류수에 넣

의 이온전도도값으로 한다.(표)

고 항온조에서 교반기로 교반한다. 다음 이온전도도를 측정하고 측정값이 더 는 높아지지 않을 때의 이온전도도를 그 시료

표에서 보는바와 같이 모든 시료들에서 립 도가 100 μm 일 때의 이온전도도가 매우 높다. 립도를 100 μm 이하로 선택하면 시료처리에 품 이 많이 들며 표토시료에 점토광물들이 많아 지므로 점토광물의 물풀림성과 이온흡착성에 의한 영향으로 외곡된 정보가 반영될수 있다.

표 린도에 따르느 이오저도도(us/cm)

\pm . Example 17 \pm 0 \pm 0 \pm 0 \pm 1			
시료	립도	교반전 이온전도도	교반후 이온전도도
1	1.2mm	1	8
	$400 \mu m$	1	9
	100 μm	1	9
2	1.2mm	1	3
	$400 \mu m$	1	4
	$100 \mu \mathrm{m}$	1	7
3	1.2mm	4	14
	$400 \mu m$	7	16
	100 μm	9	18

② 교반액의 온도

온도구간을 너무 길게 설정하면 현장에서의 항온조건보장이 어려우며 표토에 흡착된 금 속이온이나 가용성염류의 풀림성에 의하여 광체를 반영하는 효과가 떨어질수 있다. 따라서 이온전도도측정값에 미치는 온도의 영향을 고려하기 위하여 온도구간을 15∼50℃까지 5℃ 의 간격으로 설정하고 항온을 보장하면서 온도에 따르는 이온전도도변화를 교반시간과의 련 관속에서 고찰하였다.

모든 온도구간에서 교반을 5min동안 진행한 후에는 이온전도도변화가 거의 관찰되지 않 는다. 각이한 항온조건에서 교반을 5min동안 진행한 후 이온전도도측정을 진행한 결과 40 ~45℃의 구간에서 이온전도도값이 제일 높았으며 온도를 더 높이면 이온전도도값이 떨어 지는 경향성이 나타났다.

③ 교반시간과 방치시간

교반을 5~6min정도 진행한 후에 이온전도도에서는 변화가 관측되지 않는다. 따라서 교 반시간을 5min으로 설정한다.

5min동안 교반하고 용액을 2~3min동안 방치한 후에 이온전도도가 제일 높게 측정되 였으며 방치시간이 길어짐에 따라 이온전도도값이 떨어졌다.

이상과 같은 결과들을 종합하여 합리적인 측정조건(립도 100 µm 이하, 온도 40~45℃, 교 반시간 5min, 방치시간 2~3min)을 설정하였다.

3) 광체구역에서 이상마당분포

시료채취는 표토지구화학탐사시료채취의 일반원리에 따라 진행하였다.

사치광체의 주향방향이 동-서방향이므로 시료채취는 이것에 수직인 북-남방향을 따라 진행하였다.

광체의 연장성을 평가하기 위하여 탐사선은 이미 알려진 광체의 주향이 끝난 지점(그림 1의 -20m 위치)으로부터 서쪽으로 설정하였다. 탐사망은 40m×20m로 설정하였다.

조사구역에서 이온전도도등값선도는 그림 1과 같다.

그림 1. 조사구역에서 이온전도도등값선도

사치광체의 주요광족형이 스카른형황동광-황철광-금이므로 시료의 동함량을 측정하여 이온전도도측정값에 의한 예상광체이상마당의 분포특성을 검증하였다.

동함량은 분광광도법으로 결정하였다.

동표준용액계렬과 시료용액계렬을 만들고 투광률을 측정한 다음 흡광도를 계산하였다. 즉 동표준용액계렬의 흡광도에 의하여 검량선을 작성한 다음 시료용액계렬의 흡광도를 리 용하여 시료에서의 동함량을 결정하였다. 동함량등값선도는 그림 2와 같다.

그림 2. 조사구역에서 동합량등값선도

그림 1, 2에서 보는바와 같이 이온전도도측정값에 의한 이상마당의 위치와 동함량측정에 의한 이상마당의 위치는 북서쪽에서 일치한다.

이미 알려진 광체의 끝부분에 현속되여 나타나는 동이상마당과 이온전도도측정값에 의한 약한 이상마당의 위치도 일치한다.

조사구역의 가운데부분에서는 다같이 이상이 나타나지 않는데 이것은 이 위치가 골짜 기의 물흐름선상에 놓여있으므로 표토구조가 발달되지 않은것으로 하여 생긴 원인이라고 볼 수 있다. 따라서 사치광체는 북서쪽으로 더 연장된다는것을 알수 있다.

맺 는 말

광상구역에서 사치광체는 이미 알려진 광체의 북서쪽으로 연장된다.

참고문헌

- [1] 김일성종합대학학보(자연과학) 62, 9, 144, 주체105(2016).
- [2] 김일성종합대학학보(자연과학) 59, 11, 11, 주체102(2013).
- [3] 王学求; 勘查地球化学近十年进展, 32, 2, 8, 2013.

주체107(2018)년 4월 5일 원고접수

Extensity Evaluation of Shachi Ore Body in "5" Ore Deposit

Hyon Chung Ryol, Won Hyon Chol and Hwangbo Hyon

In the study region, Shachi ore body is extended towards the north-west direction of the ore body already known.

Key words: ionic conductivity, ore deposit