2. Dado un conjunto X con |X|=n y un entero $k \leq n$ queremos encontrar el máximo valor que pueden sumar los elementos de un subconjunto S de X de tamaño k. Más formalmente, queremos calcular $\max_{S\subseteq X, |S|=k} \sum_{s\in S} s$.

$$X = \{x_1...x_n\}$$
, y tenemos un $k \le n$

maximo subconjunto S de X de tamaño k

$$X = \{1, 23, 3, 56, 2, 6\}, k = 4$$

 $S = \{56, 23, 6, 3\}$

a) Proponer un algoritmo greedy que resuelva el problema, demostrando su correctitud. Extender el algoritmo para que también devuelva uno de los subconjuntos S que maximiza la suma.

```
Algoritmo(X,k):
```

```
X' <- sort(X) tal que ordena de mayor a menor
res = 0
para todo i: 1...k:
  res+= X'[i]
return res</pre>
```

Invariante: la suma de los k elementos más grandes hasta la k-esima iteración

Tenemos un conjunto X' que es el conjunto X, ordenado de forma decreciente. $\forall i < j :: X'_i > X'_j$

Entonces los k primeros elementos son los mas grandes por el invariante. y la solución greedy G nos dice que: $G = \sum_{i=1}^k X_i'$

Tenemos una solucion optima O y sabemos que $O \leq G$ porque por invariante, G tiene los k elementos más grandes.

Pero O no puede ser peor que G porque O es optima, luego O no es menor a G, por lo que O es igual de optima que G