L3: Analyse matricielle

Correction devoir 2

Exercice 1

1. La matrice A est à diagonale strictement dominante, donc $a_{ii} \neq 0$ pour tout $i \in \{1, \dots, n\}$. Il en résulte que la matrice D est inversible $(\det(D) \neq 0)$. La matrice D^{-1} est diagonale, et ses coefficients sont égaux à l'inverse de ceux de D. Par conséquent, L et U sont bien définies.

Par définition, on a $\mathcal{L}_{\omega} = (D - \omega E)^{-1} \{ (1 - \omega)D + \omega F \}$. On a aussi

$$\mathcal{L}_{\omega} = (Id - \omega D^{-1}E)^{-1}D^{-1}D\{(1-\omega)Id + \omega D^{-1}F\} = (Id - \omega L)^{-1}\{(1-\omega)Id + \omega U\}.$$

Par définition, le polynôme caractéristique de \mathcal{L}_{ω} est donné par

$$p(\lambda) := \det \left((Id - \omega L)^{-1} \{ (1 - \omega)Id + \omega U \} - \lambda Id \right),$$

et d'après ce qui précède et utilisant le fait que $\det(A.B) = \det(A).\det(B)$, on obtient

$$\begin{split} p(\lambda) &:= \det \left((Id - \omega L)^{-1} (\{(1 - \omega)Id + \omega U\} - \lambda (Id - \omega L)) \right) \\ &= \det ((Id - \omega L)^{-1}) \det (-\lambda (Id - \omega L) + (1 - \omega)Id + \omega U). \end{split}$$

2. Soit μ une valeur propre de \mathcal{L}_{ω} de module supérieur à 1. Comme $\omega \in]0, 1[$, on a $1 - \omega \in]0, 1[$, et comme $|\mu| \geq 1$, on a $1 - \mu - \omega \neq 0$. Remarquons que

$$\begin{split} &-\lambda(Id-\omega L)+(1-\omega)Id+\omega U=(1-\lambda-\omega)Id+\lambda\omega L+\omega U\\ &=(1-\lambda-\omega)(Id+\frac{\lambda\omega}{1-(\lambda+\omega)}L+\frac{\lambda\omega}{1-(\lambda+\omega)}U)\\ &=(1-\lambda-\omega)(Id-\alpha(\lambda)L-\beta(\lambda)U), \end{split}$$

pour λ telle que $1 - \lambda - \omega \neq 0$.

Utilisant le fait que pour $c \in \mathbb{R}$, on a $\det(c.A) = c^N \det A$, on déduit de ce qui précède que pour λ telle que $1 - \lambda - \omega \neq 0$

$$p(\lambda) = \det((Id - \omega L)^{-1}) \cdot \det((1 - \lambda - \omega)(Id - \alpha(\lambda)L - \beta(\lambda)U))$$

= \det((Id - \omega L)^{-1}) \cdot(1 - \lambda - \omega)^N \cdot \det(Id - \alpha(\lambda)L - \beta(\lambda)U),

Comme $1 - \mu - \omega \neq 0$, on a bien $\det(Id - \alpha(\mu)L - \beta(\mu)U) = 0$. 3. On pose $\mu = r.e^{i\theta}$. On a $r \geq 1$. On a clairement $|\beta(\mu)| \leq |\alpha(\mu)|$. Montrons que $|\alpha(\mu)| < 1$. On a

$$|\alpha(\mu)|^2 = \frac{r^2 \omega^2}{r^2 + (\omega - 1)^2 + 2r(\omega - 1)\cos\theta} \le \frac{r^2 \omega^2}{r^2 + (\omega - 1)^2 - 2r(1 - \omega)} = \frac{r^2 \omega^2}{(r - (1 - \omega))^2} = \frac{\omega^2}{(1 - (\frac{1 - \omega}{r}))^2}.$$

Or, comme $r \geq 1$, on a $(1 - (\frac{1-\omega}{r}))^2 \geq (1 - (1-\omega))^2$, d'où $\frac{\omega^2}{(1 - (\frac{1-\omega}{r}))^2} \leq \frac{1}{(1 - (\frac{1-\omega}{r}))^2}$

$$\frac{\omega^2}{\omega^2} = 1.$$

4. On a A = D(Id - L - U), $(Id - L - U)_{ii} = 1$ pour tout i et pour $j \neq i$, $(Id - L - U)_{ij} = \frac{a_{ij}}{a_{ii}}$.

A étant à diagonale strictement dominante, on a $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$, $\forall i \in \{1, \dots, N\}$, soit

$$1 > \sum_{i \neq i} \left| \frac{a_{ij}}{a_{ii}} \right|$$

Il en résulte que Id - L - U est à diagonale strictement dominante.

5. La matrice Id - L - U est à diagonale strictement dominante, donc

$$1 > \sum_{k=1}^{i-1} |L_{ik}| + \sum_{k=i+1}^{N} |U_{ik}|, \quad \forall \ i \ge 2$$

Comme d'après 3. $|\alpha(\mu)| \leq 1$ et $|\beta(\mu)| \leq 1$, on déduit que

$$\sum_{k=1}^{i-1} |L_{ik}| + \sum_{k=i+1}^{N} |U_{ik}| \ge \sum_{k=1}^{i-1} |\alpha(\mu)| |L_{ik}| + \sum_{k=i+1}^{N} |\beta(\mu)| |U_{ik}|, \quad \forall \ i \ge 2.$$

Il en résulte aussitôt que $Id - \alpha(\mu)L - \beta(\mu)U$ est à diagonale strictement dominante.

On a montré en travaux dirigés qu'une matrice à diagonale strictement dominante est inversible, donc $Id - \alpha(\mu)L - \beta(\mu)U$ est inversible.

6. Puisque la matrice $Id - \alpha(\mu)L - \beta(\mu)U$ est inversible, son déterminant est différent de 0. Or, d'après la question 2, si μ est une valeur propre de module supérieur à 1, on a $\det(Id - \alpha(\mu)L - \beta(\mu)U) = 0$. Contradiction. Donc la matrice $Id - \alpha(\mu)L - \beta(\mu)U$ n'admet pas de valeur propre de module supérieur à 1 et son rayon spectral est strictement inférieur à 1. Il en résulte que la méthode de relaxation pour une matrice à diagonale strictement dominante converge.