Rekurrente Neuronale Netze

Gregor Mitscha-Baude

May 9, 2016

Rehumente Neuronale Netre

Gregor Mitscha-Baude

Standard neuronales Netz:

► Fixe Dimensionen von Input und Output!

- ► In viele Anwendungen variable Input/Output-Länge.
 - Spracherkennung
 - Maschinenübersetzung
 - ► Image captioning

- ► In viele Anwendungen variable Input/Output-Länge.
 - Spracherkennung
 - Maschinenübersetzung
 - Image captioning
- ► allgemein: Textgenerierung
- Musik, Videos, Aktienkurse, ...

- ► In viele Anwendungen variable Input/Output-Länge.
 - Spracherkennung
 - Maschinenübersetzung
 - Image captioning
- ► allgemein: Textgenerierung
- Musik, Videos, Aktienkurse, ...
- menschliches Gehirn

- RNNs operieren auf Sequenz von Inputs.
- ► RNNs modellieren zeitliche Abhängigkeiten.

Übersicht

- RNNs Basics
- Moderne RNNs: LSTM
- ► Aktuelle Forschung zu RNNs: Attention

Section 1

Wie funktionieren RNNs? - Die Basics

► Hidden Layer haben Verbindung zu sich selbst.

► Hidden Layer haben Verbindung zu sich selbst.

- ▶ können eigenen Zustand (state) weitergeben
- weight tying entlang der zeitlichen Dimension

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Verschiedene Architekturen sind möglich:

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Plain Vanilla RNN

- ▶ hier nur ein Hidden Layer
- wird in der Praxis nicht verwendet

Mathematische Formulierung

Plain vanilla RNN

$$h_t = \tanh(W_x x_t + W_h h_{t-1} + b)$$

► Lernen = Optimierung

$$\min_{W,b} \sum_t C(h_t)$$

▶ *C* ... Kostenfunktion

Lernen: Backpropagation Through Time

- Output-Kosten generieren Gradienten
- ► Gradient fließt gegen Pfeilrichtung
- ▶ Backpropagation rückwärts in der Zeit

RNNs sind immer deep

- ▶ Selbes Problem wie bei allen Deep Nets
 - exponentiell verschwindender Gradient
- ► ⇒ Langzeitabhängigkeiten sind schwer zu lernen

Section 2

- ▶ h_t in vanilla RNNs ist schlechtes Kurzzeitgedächtnis
 - wird immer mit Gewichten multipliziert
 - durchläuft Nichtlinearität (tanh)
 - "vergisst" dadurch vergangene Schritte schnell

- ▶ *h_t* in vanilla RNNs ist schlechtes Kurzzeitgedächtnis
 - wird immer mit Gewichten multipliziert
 - durchläuft Nichtlinearität (tanh)
 - "vergisst" dadurch vergangene Schritte schnell
- ► Lösung: wir brauchen längeres Kurzzeitgedächtnis.
- ► LSTM (Long Short-Term Memory): Hochreiter, Schmidhuber '97

- ▶ *h_t* in vanilla RNNs ist schlechtes Kurzzeitgedächtnis
 - wird immer mit Gewichten multipliziert
 - durchläuft Nichtlinearität (tanh)
 - "vergisst" dadurch vergangene Schritte schnell
- ► Lösung: wir brauchen längeres Kurzzeitgedächtnis.
- ► LSTM (Long Short-Term Memory): Hochreiter, Schmidhuber '97
 - ▶ memory cell C_t
 - durchläuft keine Nichtlinearität

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Memory cell

Zustand, "Gedächtnis"

durchläuft multiplikatives Gate und einfache Addition

Gate

$$c = \sigma(x) * c$$

- $ightharpoonup \sigma(x)$ ist Sigmoid
 - ▶ nahe $1 \Rightarrow c$ fließt durch (offenes Gate)
 - ▶ nahe $0 \Rightarrow c$ wird ausgelöscht (geschlossenes Gate)

LSTM hat drei Gates

- ▶ forget gate
- ▶ input gate
- output gate

LSTM ist der Standard

- funktioniert besser als vanilla RNN
- ▶ in der Praxis mehrere LSTMs übereinander gestapelt
- Neu: Vereinfachungen von LSTM, die ähnlich effektiv sind
 - ▶ GRU (Gated Recurrent Unit; Cho et al. '14)
 - DSGU (Deep Simple Gated Unit; Gao, Glowacka '16)

LSTM in Androids Spracherkennung

- ▶ 2012: Android setzt ConvNets in Spracherkennung ein
 - erste große industrielle Anwendung von Deep Learning
- ▶ 2014: Google Research zeigt Vorteile von LSTM vs. ConvNets (Sak et al. '14)
- ► September 2015: Android wechselt auf LSTM RNNs

Section 3

Memory/Attention – RNNs in der aktuellen Forschung

RNNs in der aktuellen Forschung

- ► Memory/Attention
- Recurrent Batch Normalization
- Rekurrente Autoencoder
- Adaptive Computation Time
- **.**..

Memory/Attention

Motivation: komplexe Algorithmen brauchen Speicher. Ist in LSTM implizit vorhanden, aber Speichergröße an den Rechenaufwand pro Schritt geknüpft:

$$\#$$
 Weights $\simeq |C_t|^2$

- ⇒ Ungeeignet für großen Speicher.
- ⇒ Brauchen besseres Speichermodell / Adress-Mechanismus.

Memory/Attention

Motivation: komplexe Algorithmen brauchen Speicher. Ist in LSTM implizit vorhanden, aber Speichergröße an den Rechenaufwand pro Schritt geknüpft:

$$\#$$
 Weights $\simeq |C_t|^2$

- ⇒ Ungeeignet für großen Speicher.
- \Rightarrow Brauchen besseres Speichermodell / Adress-Mechanismus.
- Verwandte Idee: RNN soll Aufmerksamkeit auf kleinen Teil des Inputs lenken können: zB Detail in Bild, oder bestimmte Fakten in Wikipedia.
 - ⇒ Attention, benötigt auch Adress-Mechanismus.

Memory/Attention

Drei wichtige Paper fast zeitgleich:

- ▶ Bahdanau et al., Sep 2014: NMT mit Attention
- ▶ Weston et al., Okt 2014: Memory Networks
- ► Graves et al., Okt 2014: Neural Turing Machines

Neural Turing Machines (Graves et. al '14)

- ► NN mit Architektur einer Turing-Maschine
 - "differenzierbarer Computer"
- Controller ist LSTM oder Feedforward Netz
- Read/Write Heads produzieren Gewichtungen über N Speicherblocks
 - Parameteranzahl ist unabhängig von N

Neural Turing Machines – Copy Task

Neural Turing Machines – Copy Task

▶ Nicht gezeigt: NTM verallgemeinert auf längere Sequenzen, LSTM nicht

Zusammenfassung (technisch)

- ▶ RNNs sind neuronale Netze die auf sich selbst verweisen
 - ▶ Training wie bei normalen Netzen

Zusammenfassung (technisch)

- ▶ RNNs sind neuronale Netze die auf sich selbst verweisen
 - ► Training wie bei normalen Netzen
- LSTM ist Standard-Architektur
 - ▶ für simple RNNs
 - Building block für kompliziertere

Zusammenfassung (technisch)

- ▶ RNNs sind neuronale Netze die auf sich selbst verweisen
 - ► Training wie bei normalen Netzen
- LSTM ist Standard-Architektur
 - ▶ für simple RNNs
 - Building block für kompliziertere
- Attention ist neues Konzept mit klarer Motivation und tollen Ergebnissen

Referenzen

- ► Andrej Karpathy: The Unreasonable Effectiveness of Recurrent Neural Networks
 http://karpathy.github.io/2015/05/21/rnn-effectiveness/
- ► Chris Colah: Understanding LSTM Networks http://colah.github.io/posts/2015-08-Understanding-LSTMs/