

Universidade Federal de Santa Catarina

Centro Tecnológico, de Ciências Exatas e Educação Departamento de Matemática

TCC I Qualificação

LICENCIATURA EM MATEMÁTICA

Introdução à Álgebra Geométrica

Guilherme Philippi (guilherme.philippi@hotmail.com),

ORIENTADOR: Felipe Delfini Caetano Fidalgo (felipe.fidalgo@ufsc.br).

7 de março de 2022

Sumário

1	Resumo	1					
2	Introdução						
3	Objetivos e Justificativa 3.1 Objetivo Principal						
4	Metodologia e Resultados Esperados						
5	Planos de Trabalho e Cronogramas 5.1 Plano de Trabalho						
6	Exequibilidade	4					
\mathbf{B}^{i}	ibliografia	5					

1 Resumo

O tema deste trabalho é Aplicações

2 Introdução

3 Objetivos e Justificativa

3.1 Objetivo Principal

O que foi exposto acima torna possível a contextualização do **principal objetivo** deste projeto, que está em estudar todos os aspectos matemáticos do DGP e suas variações, bem como da verificação se será possível encontrar uma ordem para os vértices do sistema proposto, isto é, verificar a solução do DVOP aplicado à conformações de sistemas de Robôs Móveis e aos resultados computacionais.

3.2 Objetivos Específicos

Com o intuito de contemplar isto, ressaltamos alguns dos objetivos específicos:

- (1) Estudar formas viáveis (pelos vieses energético, de construção e precisão da medida) para obtenção das distâncias entre os elementos do sistema físico.
- (2) Estudar as possíveis distribuições dos Robôs Móveis em um sistema genérico, visando verificar quais conjuntos de dados possam ser garantidos como entradas para a construção do problema, tal como em.
- (3) Verificar a solução do DVOP aplicado ao problema proposto e estudar o ordenamento de vértices que se adeque aos objetivos do trabalho.

- (4) Caso consiga-se uma boa ordenação para os vértices, verificar a aplicação do algorítimo BP para a solução do DDGP proposto, se não, estudar outros algorítimos que possam solucionar o problema;
- (5) Estudar a complexidade computacional do algorítimo proposto aplicado as possíveis distribuições estudadas no item.
- (6) Simular computacionalmente o algoritmo para solução do problema com instâncias artificialmente geradas, dominando cada passo utilizado;
- (7) Aplicar o algoritmo estudado em estruturas de pequena escala, como instâncias reais do problema;
- (8) Ter contato matemático e computacional com problemas científicos;
- (9) Habituar-se a ler, citar e escrever documentos científicos;
- (10) Associar os objetos estudados como aplicações e generalizações de estudos teóricos e práticos nas disciplinas dos cursos de graduação.

3.3 Justificativa

Este projeto é tanto viável para alunos de Matemática quanto das Engenharias, cursos presentes no Centro de Blumenau, visto que tem viés interdisciplinar.

Os pré-requisitos conceituais básicos tangem Física, Geometria Analítica, Álgebra Linear, Cálculo Diferencial e Integral, Automação e Programação.

Além disso, este tema está ganhando cada vez mais espaço na literatura, uma vez que esta é uma área em crescimento constante devido a grande quantidade de novas aplicações advindas do rápido desenvolvimento tecnológico das últimas décadas. Assim, este estudo dá aos alunos a possibilidade de participar de estudos de pesquisa a nível de Iniciação Científica que possam contribuir, de maneira até significativa, com trabalhos em andamento de pesquisa com relevante nível acadêmico.

Isto, além de trazer pra prática o significado de vários estudos realizados no curso, ainda permite que o aluno tenha contato com ideias e experiências das quais possa fazer uso em eventual pós-graduação, como início de uma carreira acadêmica na área. Também, o contato com a literatura científica brasileira e estrangeira.

Por fim, ainda existem poucos pesquisadores no Brasil trabalhando nesta área que é bem ampla, como já foi comentado até agora neste texto. Ou seja, este projeto ainda tem por prerrogativa contribuir para a formação de pessoal que deve dar prosseguimento aos estudos na área, aumentando a quantidade de especialistas em GD no futuro, tornando o Brasil como uma referência.

4 Metodologia e Resultados Esperados

Pretende-se focar, inicialmente, no estudo teórico, utilizando as referências [4], , [16], [21] e [1], além de artigos e livros citados como referências nestes itens da Literatura.

Este trabalho deve-se dar em separado na primeira parte, com encontros periódicos com o orientador, seja em forma de reunião ou de exposição oral, para apurar os desenvolvimentos teóricos e sanar eventuais dúvidas que surjam. Paralelamente, deve-se pedir que o aluno escreva o que está aprendendo, utilizando LaTeX, a fim de aprender a escrever cientificamente sobre o que se estuda.

Espera-se conseguir aplicar o DVOP de forma satisfatória ao sistema proposto, de forma a obter uma boa ordenação aos Robôs Móveis, assim, conseguindo montar o DDGP e aplicar o algorítimo BP. Caso não se consiga fazê-lo, espera-se poder estudar e aplicar outros algorítimos presentes ou não na literatura para propor uma solução ao problema.

Contudo, o essencial, espera-se desenvolver uma implementação do algoritmo a fim, estimando o desempenho computacional no tocante à resolução de um DGP - tanto artificial como real, visando estudar sua complexidade computacional. Por fim, pretende-se elaborar um documento final com tais conteúdos e com simulações computacionais para indicar a validade científica do mesmo.

Pretende-se participar de reuniões científicas a fim de trocar experiências e idéias com outros alunos e pesquisadores, bem como estabelecer uma rede de contatos e colaborações.

Além disso, deseja-se escrever e submeter um artigo a nível de iniciação Científica a algum periódico nacional.

5 Planos de Trabalho e Cronogramas

Segue abaixo os planos de trabalho e respectivos cronogramas, ajustados para um ano de vigência, prevendo inclusive as escritas dos relatórios

5.1 Plano de Trabalho

(1) Levantamento bibliográfico sobre Sistemas de Automação em literatura específica, formas de se obter distâncias, além de estudo sobre estruturas e funções destes sistemas

Nesta atividade, o bolsista deverá juntamente com o orientador fazer um apanhado de artigos e livros referentes ao tema que servirão de apoio teórico. ele durará metade do período porque frequentemente novas bibliografias deverão ser consultadas. Além disto, este é o tempo onde o bolsista terá a oportunidade de estudar a fundo e propor formas de se obter os valores de distâncias medidos entre os elementos dos sistemas.

(2) Levantamento bibliográfico sobre o DVOP, DDGP e estudo do problema

Nesta atividade, o bolsista deverá juntamente com o orientador fazer um apanhado de artigos e livros referentes ao tema que servirão de apoio teórico. ele durará metade do período porque frequentemente novas bibliografias deverão ser consultadas. Já o estudo do tema será dividido em partes:

- (i) estudo da Teoria de Grafos;
- (ii) estudo dos modelos de DGP usando grafos;
- (iii) modelar um DGP que caracterize o sistema real estudado
- (iv) modelagem e estudo de solução do DVOP sobre o sistema real;
- (v) estudo extenso sobre algorítimos existentes para solucionar o problema;
- (vi) estudar a factibilidade da solução do problema e, caso for possível, propor um algorítimo que o solucione.

Todas as contas devem ser abertas e teoremas demonstrados. Este item e o anterior estão ligados e durarão o mesmo tempo porque devem ser estudados em paralelo, já que são os temas principais e co-relacionados fortemente.

(3) Escrita do relatório parcial referente à primeira metade da vigência, contemplando os dois itens anteriores

Nesta atividade, que durará a primeira metade do projeto, o aluno deve escrever parcialmente o relatório periodicamente a cada avanço teórico realizado. Dever-se-á estar em paralelo com os itens anteriores.

(4) Estudo detalhado e minucioso (teórico e computacional) do Algoritmo Proposto

Nesta atividade, que durará o quarto e quinto bimestre, o bolsista deverá estudar em detalhes a estrutura algorítmica do algoritmo que fora proposto no item anterior. Este estudo será dividido em partes:

- (i) estudo sobre a Teoria de Complexidade Computacional
- (ii) verificar a complexidade computacional do algorítimo adotado
- (iii) estudar formas de se alterar o sistema afim de se obter melhores soluções computacionais

(5) Simulações em conjunto com instâncias artificiais e reais

Nesta atividade, o bolsista deverá simular numericamente com instâncias artificiais e reais, usando o algoritmo implementado por ele. Durará toda a segunda metade do projeto, visto que a cada passo que se estuda deve-se realizar as implementações computacionais.

(6) Submissões a possíveis encontros científicos, o que em nossa área ocorre no primeiro semestre do ano

Nesta atividade, o bolsista deverá aprender a escrever propostas, resumos, posteres e, eventualmente, se comunicar oralmente sobre o objeto de seus estudo científico.

(7) Escrita do relatório final

Nesta atividade, o bolsista deverá finalizar o relatório parcial com a escrita do relatório final, aparando as arestas e fazendo as correções necessárias apontadas pelo orientador.

5.2 Cronograma

Atividades	1° bimestre	2° bimestre	3° bimestre	4° bimestre	5° bimestre	6° bimestre
(1)						
(2)						
(3)						
(4)						
(5)						
(6)						
(7)						

6 Exequibilidade

Devida a natureza das implementações propostas no projeto, o aluno realizará um trabalho de pesquisa em livros e artigos, de simulações em seus computadores pessoais, utilizando o software livre Octave (uma versão livre com recursos similares ao Matlab, ou outro, dependendo da

preferência do estudante) e poderá implementar um ambiente real (utilizando microcontroladores como Arduíno ou similares, dependendo da preferência do bolsista) afim de aplicar a solução proposta (se existir). O ambiente de estudo deve ser escolhido pelo aluno. As reuniões e seminários serão realizados em alguma sala-de-aula na Sede Acadêmica do Centro.

Referências

- [1] Audrey Lee-St. John Leo Liberti Antonio Mucherino Carlile Lavor, Jon Lee and Maxim Sviridenko. Discretization orders for distance geometry problems. *Optimization Letters*, 6(Issue 4):783–796, April 2012.
- [2] Michel-Marie Deza and Elena Deza. Dictionary of distances. Elsevier, 2006.
- [3] Michel-Marie Deza and Elena Deza. Encyclopedia of distances. In *Encyclopedia of distances*, pages 1–583. Springer, 2009.
- [4] Andreas Savvides, Chih-Chieh Han, and Mani B Strivastava. Dynamic fine-grained localization in ad-hoc networks of sensors. In *Proceedings of the 7th annual international conference on Mobile computing and networking*, pages 166–179. ACM, 2001.
- [5] Leonard M Blumenthal. Theory and applications of distance geometry. 1953.
- [6] Arthur Cayley. On a theorem in the geometry of position. Cambridge Mathematical Journal, 2:267–271, 1841.
- [7] Karl Menger. New foundation of euclidean geometry. American Journal of Mathematics, 53(4):721–745, 1931.
- [8] Nelson Maculan Leo Liberti, Carlile Lavor and Antonio Mucherino. Euclidean distance geometry and applications. *Siam Review*, 56(1):3–69, 2014.
- [9] Yechiam Yemini. Some theoretical aspects of position-location problems. In 20th Annual Symposium on Foundations of Computer Science (sfcs 1979), pages 1–8. IEEE, 1979.
- [10] James B Saxe. Embeddability of weighted graphs in k-space is strongly np-hard. In Proc. of 17th Allerton Conference in Communications, Control and Computing, Monticello, IL, pages 480–489, 1979.
- [11] TF Havel. Distance geometry, dm grant and rk harris (eds.), encyclopedia of nuclear magnetic resonance, 1995.
- [12] C Lavor and L Liberti. Um convite á geometria de distâncias. SBMAC, Notas em Matemática Aplicada, 71, 2014.
- [13] Gordon M Crippen. A novel approach to calculation of conformation: distance geometry. Journal of Computational Physics, 24(1):96–107, 1977.
- [14] C. Lavor, N. Maculan, M. Souza, and R. Alves. Álgebra e Geometria no Cálculo de Estrutura Molecular. IMPA, Rio de Janeiro, RJ, 31º colóquio brasileiro de matemática edition, 2017.
- [15] Carlile Lavor, Leo Liberti, and Antonio Mucherino. The interval branch-and-prune algorithm for the discretizable molecular distance geometry problem with inexact distances. Journal of Global Optimization, 56(3):855–871, 2013.

- [16] Carlile Lavor, Leo Liberti, Bruce Donald, Bradley Worley, Benjamin Bardiaux, Thérèse E Malliavin, and Michael Nilges. Minimal nmr distance information for rigidity of protein graphs. Discrete Applied Mathematics, 256:91–104, 2019.
- [17] Leo Liberti, Carlile Lavor, and Nelson Maculan. A branch-and-prune algorithm for the molecular distance geometry problem. *International Transactions in Operational Research*, 15(1):1–17, 2008.
- [18] Carlile Lavor, Leo Liberti, Nelson Maculan, and Antonio Mucherino. The discretizable molecular distance geometry problem. Computational Optimization and Applications, 52(1):115– 146, 2012.
- [19] A. Pogorelov. Geometry, 1987.
- [20] J. B. Rosen A. T. Philips and V. H. Walke. Molecular structure determination by convex underestimation of local energy minima. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 23:181–198, 1996.
- [21] Leo Liberti, Carlile Lavor, Nelson Maculan, and Antonio Mucherino. Euclidean distance geometry and applications. *Society for Industrial and Applied Mathematics*, 56(1):3–69, February 2014.