LabC DFT report

r11943043 潘奕亘 r11943012 曾維雋 b07901073 吳秉軒

A. Introduction

In LabC basic topic 1, we are going to design a 1024 points DFT (Discrete Fourier Transform) circuit, transforms a sequence of N complex numbers into another sequence of complex numbers, which is defined by

$$egin{aligned} X_k &= \sum_{n=0}^{N-1} x_n \cdot e^{-rac{i2\pi}{N}kn} \ &= \sum_{n=0}^{N-1} x_n \cdot \left[\cos\!\left(rac{2\pi}{N}kn
ight) - i \cdot \sin\!\left(rac{2\pi}{N}kn
ight)
ight] \end{aligned}$$

Our target is to maximize the score $\frac{T_{clock} \times F_{max}}{\tau_{simulation}}$, so we need to properly utilize the hardware resource and maximize throughput.

B. Implementation

1. Baseline

In the baseline, Vitis HLS automatically do pipeline in the inner for loop, but can only achieve II = 10, because the inner for loop exist read after write data dependency, so the total latency approximately equals to $1024 \times (22 + 10 \times 1023 + 2) \approx 1.05 \times 10^7$ cycles.

2. Opt1_pipeline

In opt1_pipeline, we change the order of the outer and inner for loop, therefore solve the data dependency problem and we can achieve II = 1 in the inner loop, and the total latency become $\approx 1/10x$ of the baseline.

3. Opt2_unroll Factor = 16:

						Memory		BRAM_18K		TURAM	Words	Bits	Banks	W*Bits*Banks
Name	BRAM_18K	Den	EE	LUT	URAM	p_ZL22cos_coefficients_table_0_U	p_ZL22cos_coefficients_table_0_ROM_AUTO_1R			0 0	64	32	1	2048
	DIVAIVI_TOK	DSP	FF	LUT	UIVAIVI		p_ZL22cos_coefficients_table_10_ROM_AUTO_1R		0	0 0	64	32	1	2048
DSP	-	-	-	-	-		p_ZL22cos_coefficients_table_11_ROM_AUTO_1R			0 0	64	32	1	2048
Expression	-	-	0	526	-		p_ZL22cos_coefficients_table_12_ROM_AUTO_1R			0 0	64	32	1	2048
				320	_		p_ZL22cos_coefficients_table_13_ROM_AUTO_1R			0 0	64	32	1	2048
FIFO	-	-	-	-	-		p_ZL22cos_coefficients_table_14_ROM_AUTO_1R		0	0 0	64	32	1	2048
Instance	-	161	18048	25660	-		p_ZL22cos_coefficients_table_15_ROM_AUTO_1R		0	0 0	64	32	1	2048
Memory	620		0	Λ			p_ZL22cos_coefficients_table_1_ROM_AUTO_1R			0 0	64	32		2048
	020	•	U	U			p_ZL22cos_coefficients_table_2_ROM_AUTO_1R			0 0	64	32	1	2048
Multiplexer	-	-	-	87	-		p_ZL22cos_coefficients_table_3_ROM_AUTO_1R			0 0	64	32	1	2048
Register	-	-	18098	1248	-	p_ZL22cos_coefficients_table_4_U				0 0	64	32	1	2048
	500		26116	07504		p_ZL22cos_coefficients_table_5_U	p_ZL22cos_coefficients_table_5_ROM_AUTO_1R			0 0	64	32	1	2048
Total	620	161	36146	27521	0		p_ZL22cos_coefficients_table_6_ROM_AUTO_1R		0	0 0	64	32	1	2048
Available	280	220	106400	53200	0		p_ZL22cos_coefficients_table_7_ROM_AUTO_1R			0 0	64	32	1	2048
	221	73	33	51	0		p_ZL22cos_coefficients_table_8_ROM_AUTO_1R			0 0	64	32	1	2048
Utilization (%)	221	75	- 33	- 31	U	p_ZL22cos_coefficients_table_9_U	p_ZL22cos_coefficients_table_9_ROM_AUTO_1R	14	0	0 0	64	32	1	2048
						1 7122	7133 : (C : I I A BOM MITO 4B	20	Α	م له		- 22	_	2040

When applying array partition and loop unroll, Vitis HLS also do pipeline automatically, so the total latency improve massively. When the unroll factor is 16, the total latency $\approx 1/16$ of opt1_pipeline, and if enhance the unroll factor, the latency improvement enhance linearly.

Here we can see that the BRAM usage exceeds the limit, because though we apply array partition on cos and sin table, but the access to cos and sin table are dependent on the loop index (n * k) & 1023, so the access are not sequentially, therefore need to store more duplicated coefficient in BRAM.

Copy cos and sin table manually:

Memory	Module	BRAM_18K	FF	LUT	URAM	Words	Bits	Banks	W*Bits*Banks
cos_coefficients_table_0_U	cos_coefficients_table_0_ROM_AUTO_1R	2	0	0	0	1024	32	1	32768
cos_coefficients_table_1_U	cos_coefficients_table_0_ROM_AUTO_1R	2	0	0	0	1024	32	1	32768
cos_coefficients_table_2_U	cos_coefficients_table_0_ROM_AUTO_1R	2	0	0	0	1024	32	1	32768
cos_coefficients_table_3_U	cos_coefficients_table_0_ROM_AUTO_1R	2			0	1024	32		32768
cos coefficients table 4 U	cos_coefficients_table_0_ROM_AUTO_1R	2	0	0	0	1024	32	1	32768
cos_coefficients_table_5_U	cos_coefficients_table_0_ROM_AUTO_1R	2	0	0	0	1024	32	1	32768
cos_coefficients_table_6_U	cos_coefficients_table_0_ROM_AUTO_1R	2		0	0	1024		1	32768
cos_coefficients_table_7_U	cos_coefficients_table_0_ROM_AUTO_1R	2	0	0	0	1024	32	1	32768
cos coefficients table 8 U	cos_coefficients_table_0_ROM_AUTO_1R	2	0	0	0	1024	32	1	32768
cos_coefficients_table_9_U	cos_coefficients_table_0_ROM_AUTO_1R	2	0	0	0	1024	32	1	32768
cos_coefficients_table_10_U	cos_coefficients_table_0_ROM_AUTO_1R	2		0	0	1024		1	32768
cos_coefficients_table_11_U	cos_coefficients_table_0_ROM_AUTO_1R	2	0	0	0	1024	32	1	32768
cos_coefficients_table_12_U	cos_coefficients_table_0_ROM_AUTO_1R	2	0	0	0	1024	32	1	32768
cos_coefficients_table_13_U	cos_coefficients_table_0_ROM_AUTO_1R	2	0	0	0	1024	32	1	32768
cos_coefficients_table_14_U	cos_coefficients_table_0_ROM_AUTO_1R	2	0	0	0	1024	32	1	32768
cos_coefficients_table_15_U	cos_coefficients_table_0_ROM_AUTO_1R	2	0	0	0	1024	32	1	32768

After copy the coefficient table manually, like we copy 16 cos and sin table here, then we can access 16 coefficients by 16 different array, and the total BRAM usage are only 64, for one cos or sin table only use 2 BRAM each, also the flip flop and LUT usage are less.

Factor = 32:

fadd_32ns_32ns_32_10_full_dsp_1_U32	fadd_32ns_32ns_32_10_full_dsp_1	0	2	365	421	0
fmul_32ns_32ns_32_8_max_dsp_1_U33	fmul_32ns_32ns_32_8_max_dsp_1	0	3	199	324	0

When the partition and unroll factor enhance to 32, the hardware usage is the twice of the case factor 16, but the DSP usage exceeds the limit, since a floating point adder needs 2 DSPs and a floating point multiplier needs 3 DSPs, so the maximum factor will be 21.

Factor = 21:

Finally, we assign array partition and unroll factor to be 21 and do the loop unroll by hand, and we get the best performance with latency $\approx 5 \text{x} 10^4$ cycles and also maximize the hardware utilization.

C. Comparison and result

	baseline	Opt1_pipeline	Opt2_unroll
Latency	10503169	1048601	50210
improvement	1x	10x	209x

When using array partition and loop unroll with factor = 21, we get the best performance, the clock cycle time is 5.6ns, and the maximum frequency is 246.67Mhz, and the total simulation time in co-sim is 281324.4ns, so our final score is 0.0049.

D. Github link: https://github.com/b07901049/1111HLS_labC_DFT.git