(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 8 November 2001 (08.11.2001)

PCT

(10) International Publication Number WO 01/83717 A2

(51) International Patent Classification7:

C12N 9/00

(21) International Application Number: PCT/CA01/00607

(22) International Filing Date:

2 May 2001 (02.05.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/201,841

3 May 2000 (03.05.2000) US

- (71) Applicant (for all designated States except US): GLY-CODESIGN INC. [CA/CA]; 480 University Avenue, Suite 400, Toronto, Ontario M5G IV2 (CA).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): RAO, Mohan [IN/EA]; 95 Thorncliffe Park Drive, Apartment 3409, Toronto, Ontario M4H 1L7 (CA). TVAROSKA, Igor [SK/CA]; 65 High Park Avenue, Apartment 2201, Toronto, Ontario M6P 2R7 (CA).

- (74) Agents: VAN ZANT, Joan M. et al.; Swabey Ogilvy Renault, Suite 1600, 1981 McGill College Avenue, Montreal, Québec H3A 2Y3 (CA).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

[Continued on next page]

(54) Title: DESIGNING MODULATORS FOR GALACTOSYLTRANSFERASES

(57) Abstract: The invention relates to structures and models of ligand binding domains of galactosyltransferases, and the ligand binding domains with ligands. The structural coordinates that define the structures and any ligands bound to the structures enable the determination of homologues, the structures of polypeptides with unknown structure, and the identification of modulators of the galactosyltransferases. The invention also relates to structures and models of nucleotide-sugar donors for the galactosyltransferases, and the design of modulators for the galactosyltransferases based on the properties of these structures and models.

01/83717 A2

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/83717 PCT/CA01/00607

TITLE: Designing Modulators for Galactosyltransferases

FIELD OF THE INVENTION

5

10

. 15

20

25

30

35

The invention relates to structures and models of ligand binding domains of galactosyltransferases, and the ligand binding domains with ligands. The structural coordinates that define the structures and any ligands bound to the structures enable the determination of homologues, the structures of polypeptides with unknown structure, and the identification of modulators of the galactosyltransferases. The invention also relates to structures and models of nucleotide-sugar donors for the galactosyltransferases, and the design of modulators for the galactosyltransferases based on the properties of these structures and models.

BACKGROUND OF THE INVENTION

Carbohydrate groups of glycoproteins are involved in various signaling and molecular recognition processes leading to important biological functions (1) and diseases (2). The processing and synthesis of a large number of both *N*- and *O*- linked carbohydrate chains involve the sequential and coordinated action of many different glycosyltransferases. Glycosyltransferases catalyze the transfer of monosaccharide from nucleotide sugars to a specific hydroxyl of various saccharide acceptors that leads to the formation of a new glycosidic linkage. There is at least one distinct glycosyltransferase for every type of glycosidic linkage.

Galactosyltransferases are a class of enzymes that utilize uridine-5'-diphosphogalactose (UDP-Gal) as the donor. Recently, a retaining galactosyltransferase, α -1,3-galactosyltransferase (α -1-3GalT; E.C.2.4.1.151) (4) has attracted much attention due to a problem of organ rejection in xenotransplantation. This enzyme is responsible for the formation of terminal α -Gal sequences in Gal α 1-3 Gal β 1- GlcNAc α 1-R. Oligosaccharide structures with a terminal Gal α 1-3Gal β 3 sequence (α -galactosyl epitopes) are xenoactive antigens (5) and are considered to be the major cause of hyperacute rejections in xenotransplantation. α -1,3-Galactosyltransferase is absent in humans and, conversely, large quantities of natural anti- α -1,3-Gal antibodies exist in the human body which react with the α -Gal epitope, thus providing a barrier to xenotransplant. The appearance of aberrant α -1,3-GalT in human cells is assumed to be responsible for some forms of anti-immune diseases (6).

Galactosyltransferases share a common topology with type II membrane proteins. Type II membrane proteins generally have a large N-terminal catalytic domain, a short stem region and a hydrophobic rich transmembrane domain (3). Although, various groups have performed a host of biochemical studies on this enzyme to understand structure-function relationships, the actual binding and catalytic mechanism of α -1,3-GalT is poorly understood. For an understanding of these important aspects in atomic detail it is essential to have a three-dimensional structure of α -1,3-GalT and structural information about the binding of UDP-Gal and oligosaccharide acceptor in the active site of α -1,3-GalT. Unfortunately, no crystal structure is available on α -1,3-GalT in native or complexed form.

SUMMARY OF THE INVENTION

The present inventors have produced a homology model for galactosyltransferases, and complexes of the enzymes with ligands including UDP and UDP-Gal. The homology model was developed by means of molecular modeling using the SpsA glycosyltransferase structure. In particular, a protein-ligand docking approach was used to model α -1,3-GalT complexed with UDP and UDP-Gal. In the predicted model complex, the diphosphate interacts with a DVD motif (Asp-225, Val-226 and Asp-227) of α -1-3GalT through a Mn²⁺ cation. The uridine part of the UDP binds into the cavity that consists of Phe-134, Tyr-139, Ile-140, Val-136, Arg-194, Arg-202, Lys-209, Asp-

10

15

20

25

30

35

40

173, His-218, and Thr-137, in a "canonical conformation". Structural features of the α -1,3-GalT model were compared with available structural data on this class of enzymes and revealed similarities in the UDP binding pocket.

The invention provides a model or secondary, tertiary, and/or quanternary structure of a ligand binding domain of a galactosyltransferase. Binding domains are of significant utility in drug discovery. The association of natural ligands and substrates with the binding domains of galactosyltransferases is the basis of biological mechanisms. The associations may occur with all or any parts of a binding domain. An understanding of these associations will lead to the design and optimization of drugs having more favorable associations with their target enzyme and thus provide improved biological effects. Therefore, information about the shape and structure of galactosyltransferases and their ligand-binding domains is invaluable in designing potential modulators of galactosyltransferases for use in treating diseases and conditions associated with or modulated by the galactosyltransferases.

Ligand binding domains include one or more of the binding domains for a disphosphate group of a sugar nucleotide donor, a nucleotide of a sugar nucleotide donor, a nitrogeneous heterocyclic base (preferably a pyrimidine base, more preferably uracil) of a sugar nucleotide donor, a sugar of the nucleotide of a sugar nucleotide donor, a selected sugar of a sugar nucleotide donor that is transferred to an acceptor, and/or an acceptor. The structure of a ligand binding domain may be defined by selected binding sites in the domain.

Thus, broadly stated the present invention provides a model or a secondary or three dimensional structure of a ligand binding domain of a galactosyltransferase comprising one or more of the amino acid residues shown in Table 1 or Figure 2, 3, 4, or 6.

The invention also relates to a model or a secondary or three dimensional structure of a ligand binding domain of a galactosyltransferase defined by the structural coordinates of one or more of the atomic interactions or contacts of Table 1. Each of the atomic interactions is defined in Table 1 by an atomic contact (more preferably a specific atom where indicated) on the sugar nucleotide donor and an atomic contact (more preferably a specific atom where indicated) on the galactosyltransferase.

In accordance with an aspect of the invention, there is also provided a model of a ligand binding domain designed in accordance with a method of the invention and comprising hydrogen binding partners for the amide hydrogen, carbonyl oxygen in position 4, and the carbonyl oxygen of uracil.

The invention also provides a model of a ligand binding domain that binds the uridine portion of UDP and comprises two or more of Phe-134, Tyr-139, Ile-140, Val-136, Arg-194, Arg-202, Lys-209 (numbered as ATOM 204 in Table 8), Asp-173 (numbered as ATOM 169 in Table 8), His-218 (numbered as ATOM 213 in Table 8), and Thr-137 (numbered as ATOM 132 in Table 8). The invention also provides a model of a ligand binding domain that interacts with a pyrophosphate portion of UDP comprising Asp-225, Val-226, and Asp-227.

The invention provides a model or secondary, tertiary and/or quanternary structure of a galactosyltransferase.

The invention contemplates a model or secondary, tertiary and/or quanternary structure of a galactosyltransferase in association with a ligand or substrate.

The structures and models of the invention provide information about the atomic contacts involved in the interaction between the enzyme and a known ligand which can be used to screen for unknown ligands. Therefore the present invention provides a method of screening for a ligand capable of binding a galactosyltransferase ligand

10

15

20

25

30

35

binding domain, comprising the use of a secondary or three-dimensional structure or a model of the invention. For example, the method may comprise the step of contacting a ligand binding domain with a test compound, and determining if the test compound binds to the ligand.

A method of the invention may identify a ligand which can modulate the biological activity of a galactosyltransferase. Such a ligand is referred to herein as a "modulator". In an embodiment, the present invention contemplates a method of identifying a modulator of a galactosyltransferase or a ligand binding domain or binding site thereof, comprising the step of using the structural coordinates of a galactosyltransferase or a ligand binding domain or binding site thereof, or a model of the invention to computationally evaluate a test compound for its ability to associate with the galactosyltransferase or ligand binding domain or binding site thereof. Use of the structural coordinates of a galactosyltransferase structure, ligand binding domain, or binding site thereof, of the invention to identify a ligand or modulator is also provided.

A structure or model of the invention may be used to design, evaluate, and identify ligands of galactosyltransferases other than ligands that associate with a galactosyltransferase. The ligands may be based on the shape and structure of a galactosyltransferase, or a ligand binding domain or atomic interactions, or atomic contacts thereof. Therefore, ligands, in particular modulators, may be derived from ligand binding domains or analogues or parts thereof.

The present invention also contemplates a ligand identified by a method of the invention. A ligand may be a competitive or non-competitive inhibitor of a galactosyltransferase. Preferably, the ligand is capable of modulating the activity of a galactosyltransferase enzyme. Thus the methods of the invention permit the identification early in the drug development cycle of compounds that have advantageous properties.

In an embodiment of the invention, a method is provided for identifying a potential modulator of a galactosyltransferase by determining binding interactions between a test compound and atomic contacts of a binding domain of a galactosyltransferase defined in accordance with the invention comprising:

- (a) generating the atomic contacts on a computer screen;
- (b) generating test compounds with their spatial structure on the computer screen; and
- (c) determining whether the compounds associate or interact with the atomic contacts defining the galactosyltransferase;
- (d) identifying test compounds that are potential modulators by their ability to enter into a selected number of atomic contacts.

Another aspect of the invention provides methods for identifying a potential modulator of a galactosyltransferase function by docking a computer representation of a test compound with a computer representation of a structure of a galactosyltransferase or a ligand binding domain thereof that is defined as described herein. In an embodiment the method comprises the following steps:

- (a) docking a computer representation of a compound from a computer data base with a computer representation of atomic interactions or contacts of a ligand binding domain of a galactosyltransferase to obtain a complex;
- (b) determining a conformation of the complex with a favourable geometric fit and favourable complementary interactions; and
- (c) identifying test compounds that best fit the atomic interactions or contacts as potential modulators of the galactosyltransferase.

10

15

20

25

30

35

In another embodiment the method comprises the following steps:

- (a) modifying a computer representation of a test compound complexed with a ligand binding domain of a galactosyltransferase by deleting or adding a chemical group or groups;
- determining a conformation of the complex with a favourable geometric fit and favourable complementary interactions; and
- (c) identifying a test compound that best fits the ligand binding domain as a potential modulator of a galactosyltransferase.

In still another embodiment the method comprises the following steps:

- selecting a computer representation of a test compound complexed with atomic contacts of a binding domain of a galactosyltransferase; and
- (b) searching for molecules in a data base that are similar to the test compound using a searching computer program, or replacing portions of the test compound with similar chemical structures from a data base using a compound building computer program.

The ligands or compounds identified according to the methods of the invention preferably have structures such that they are able to enter into an association with a ligand binding domain. Selected ligands or compounds may be characterized by their suitability for binding to particular binding domains. A ligand binding domain or binding site may be regarded as a type of negative template with which the compounds correlate as positives in the manner described herein and thus the compounds are unambiguously defined. Therefore, it is possible to describe the structure of a compound suitable as a modulator of a galactosyltransferase by accurately defining the atomic interactions to which the compound binds to a ligand binding domain and deriving the structure of the compound from the spacial structure of the target.

The invention contemplates a method for the design of ligands, in particular modulators, for galactosyltransferases based on the three dimensional structure of a sugar nucleotide donor (or part thereof) defined in relation to its spatial association with the three dimensional structure of the galactosyltransferase or a ligand binding domain thereof. Generally, a method is provided for designing potential inhibitors of a galactosyltransferase comprising the step of using the structural coordinates of a sugar nucleotide donor or part thereof, defined in relation to its spatial association with a three dimensional structure or model of a galactosyltransferase or a ligand binding domain thereof, to generate a compound for associating with a ligand binding domain of the galactosyltransferase. The following steps are employed in a particular method of the invention: (a) generating a computer representation of a sugar nucleotide donor, or part thereof, defined in relation to its spatial association with the three dimensional structure of a galactosyltransferase or a ligand binding domain thereof; (b) searching for molecules in a data base that are similar to the defined sugar nucleotide donor, or part thereof, using a searching computer program, or replacing portions of the compound with similar chemical structures from a database using a compound building computer program.

Therefore the invention further contemplates classes of ligands, in particular modulators, of a galactosyltransferase based on the three-dimensional structure of a sugar nucleotide donor, or part thereof, defined in relation to the sugar nucleotide donor's spatial association with a three dimensional structure of a galactosyltransferase.

10

15

20

25

30

35

It will be appreciated that a ligand or modulator of a galactosyltransferase may be identified by generating an actual secondary or three-dimensional model of a ligand binding domain or binding site, synthesizing a compound, and examining the components to find whether the required interaction occurs.

Modulators which are capable of modulating the activity of galactosyltransferases have therapeutic and prophylactic potential. Therefore, the methods of the invention for identifying modulators may comprise one or more of the following additional steps:

- testing whether the ligand is a modulator of the activity of a galactosyltransferase, preferably testing the activity of the modulator in cellular assays and animal model assays;
- (b) modifying the modulator;
- (c) optionally rerunning steps (a) or (b); and
- (d) preparing a pharmaceutical composition comprising the modulator.

Steps (a), (b) (c) and (d) may be carried out in any order, at different points in time, and they need not be sequential.

There is also provided a pharmaceutical composition comprising a modulator, and a method of treating and/or preventing disease comprising the step of administering a modulator or pharmaceutical composition comprising a modulator to a mammalian patient.

In an aspect, the invention contemplates a method of treating a disease associated with a galactosyltransferase with inappropriate activity in a cellular organism, comprising:

- (a) administering a modulator identified using the methods of the invention in an acceptable pharmaceutical preparation; and
- (b) activating or inhibiting a galactosyltransferase to treat the disease.

The invention provides for the use of a modulator identified by the methods of the invention in the preparation of a medicament to treat a disease associated with a galactosyltransferase with inappropriate activity in a cellular organism. Use of the structural coordinates of a galactosyltransferase structure of the invention to manufacture a medicament is also provided.

Another aspect of the invention provides machine readable media encoded with data representing a model of the invention or the coordinates of a structure of a galactosyltransferase or ligand binding domain or binding site thereof as defined herein, or the three dimensional structure of a sugar nucleotide donor defined in relation to its spatial association with a three dimensional structure of a galactosyltransferase as defined herein. The invention also provides computerized representations of a model of the invention or the secondary or three-dimensional structures of the invention, including any electronic, magnetic, or electromagnetic storage forms of the data needed to define the structures such that the data will be computer readable for purposes of display and/or manipulation. The invention further provides a computer programmed with a homology model of a ligand binding domain of a galactosyltransferase. The invention still further contemplates the use of a homology model of the invention as input to a computer programmed for drug design and/or database searching and/or molecular graphic imaging in order to identify new ligands for galactosyltransferases.

These and other aspects of the present invention will become evident upon reference to the following detailed description and attached drawings.

15

20

25

30

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described in relation to the drawings in which:

- Figure 1. Sequence alignment between SpsA and bovine α -1,3-GalT.
- Figure 2. A superposition of the SpsA structure and the α -1,3-GalT model. The active site residues of SpsA and the corresponding residues of α -1,3-GalT are shown as tubes. SpsA is shown in magenta and α -1,3-GalT is in blue. The side-chains of the α -1,3-GalT model are labeled. The active site modeled metal ion is shown as a red sphere.
- Figure 3. The low-energy computed docking modes of UDP to the α -1,3-GalT. About 60 low energy binding modes of UDP are shown in colored lines. The lowest energy binding mode is shown in thick tube. The critical amino acid residues are shown and labeled. All the low energy binders assume similar binding orientation.
- Figure 4. Possible docking modes of UDP-Gal to the α 1,3-GalT. The lowest-energy docking mode is shown as thick tube and some of the low energy binding modes are shown as thin lines.
- Figure 5. The predicted complex of α -1-3GalT and the inhibitor. Two top ranking docking modes are shown and in both, the inhibitor occupies the acceptor and pyrophosphate binding regions of the α -1,3-GalT. The lowest energy-binding mode is shown in thick tube.

Figure 6 shows the overall view of a docking model of bovine alpha 1,3 galT-UDP complex. GalT is shown in colored ribbon. The UDP is shown in think tubes. The amino acid residues that interact with UDP are shown in tubes and the modeled Mn²⁺ is shown in a sphere. The conserved DVD motif interaction with a metal can be seen.

Figure 7 shows an overall representation of the UDP-Gal complex.

Figure 8 shows computed low energy binding modes of UDP-Gal.

Figure 9 shows lowest energy binding modes of LacNAc- β -Ome to α -1,3-GalT.

DESCRIPTION OF THE TABLES

- Table 1 Atomic interactions between a galactosyltransferase and UDP.
- Table 2 Characterization of the top five binding modes of UDP to α -1,3-galactosyltransfease.
- Table 3 Predicted secondary structures for the α -1,3-GalT sequence that was used for generating a homology model of α -1,3-GalT.
 - Table 4 Structural coordinates of a galactosyltransferase
 - Table 5 Structural coordinates of UDP.
 - Table 6 Structural coordinates of UDP-Gal.
 - Table 7 Structural coordinates of uracil, ribose, and pyrophosphate of UDP.
 - Table 8 Structural coordinates of a galactosyltransferases.
- In Table 4, from the left, the second column identifies the atom number; the third identifies the atom type; the fourth identifies the amino acid type; the fifth identifies the residue number; the sixth identifies the x coordinates; the seventh identifies the y coordinates; and the eighth identifies the z coordinates.

35 DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Definitions:

Unless otherwise indicated, all terms used herein have the same meaning as they would to one skilled in the art of the present invention. Practitioners are particularly directed to Current Protocols in Molecular Biology

10

15

20

25

30

35

40

(Ansubel) for definitions and terms of the art. Abbreviations for amino acid residues are the standard 3-letter and/or 1-letter codes used in the art to refer to one of the 20 common L-amino acids.

The term "associate", "association" or "associating" refers to a condition of proximity between a ligand, chemical entity or compound or portions or fragments thereof, and a galactosyltransferase, or portions or fragments thereof (e.g. ligand binding domain). The association may be non-covalent i.e. where the juxtaposition is energetically favored by for example, hydrogen-bonding, van der Waals, or electrostatic or hydrophobic interactions, or it may be covalent.

The term "galactosyltransferase" refers to an enzyme that catalyzes the transfer of a single monosaccharide unit i.e. galactose, from a donor to the hydroxyl group of an acceptor saccharide. The acceptor can be either a free saccharide, glycoprotein, glycolipid, or polysaccharide. The donor can be a sugar nucleotide, preferably UDP-Gal. Galactosyltransferases show a precise specificity for both the sugar acceptor and donor and generally require the presence of a metal cofactor.

Galactosyltransferases are derivable from a variety of sources, including viruses, bacteria, fungi, plants, and animals. In a preferred embodiment the galactosytransferases are derivable from an animal, preferably a mammal including but not limited to bovine, ovine, porcine, murine equine, most preferably a human. The enzyme may be from any source, whether natural, synthetic, semi-synthetic, or recombinant. Preferably the galactosyltransferase is a α 1-3 galactosyltransferase, preferably derivable from bovine.

A galactosyltransferase or part thereof in the present invention may be a wild type enzyme, or part thereof, or a mutant, variant or homologue of such an enzyme.

The term "wild type" refers to a polypeptide having a primary amino acid sequence which is identical with the native enzyme (for example, the mammalian enzyme).

The term "mutant" refers to a polypeptide having a primary amino acid sequence which differs from the wild type sequence by one or more amino acid additions, substitutions or deletions. Preferably, the mutant has at least 90% sequence identity with the wild type sequence. Preferably, the mutant has 20 mutations or less over the whole wild-type sequence. More preferably the mutant has 10 mutations or less, most preferably 5 mutations or less over the whole wild-type sequence. A mutant may or may not be functional.

The term "variant" refers to a naturally occurring polypeptide which differs from a wild-type sequence. A variant may be found within the same species (i.e. if there is more than one isoform of the enzyme) or may be found within a different species. Preferably the variant has at least 90% sequence identity with the wild type sequence. Preferably, the variant has 20 mutations or less over the whole wild-type sequence. More preferably, the variant has 10 mutations or less, most preferably 5 mutations or less over the whole wild-type sequence.

The term "part" indicates that the polypeptide comprises a fraction of the wild-type amino acid sequence. It may comprise one or more large contiguous sections of sequence or a plurality of small sections. The "part" may comprise a ligand binding domain as described herein. The polypeptide may also comprise other elements of sequence, for example, it may be a fusion protein with another protein. Preferably the polypeptide comprises at least 50%, more preferably at least 65%, most preferably at least 80% of the wild-type sequence.

The term "homologue" means a polypeptide having a degree of homology with the wild-type amino acid sequence. The term "homology" can be equated with "identity".

In the present context, a homologous sequence is taken to include an amino acid sequence which may be at least 75, 85 or 90% identical, preferably at least 95 or 98% identical to the wild-type sequence. Typically, the

10

15

20

25

30

35

40

homologues will comprise the same sites (for example ligand binding domain) as the subject amino acid sequence. Although homology can also be considered in terms of similarity (i.e. amino acid residues having similar chemical properties/functions), in the context of the present invention it is preferred to express homology in terms of sequence identity.

Homology comparisons can be conducted by eye, or more usually, with the aid of readily available sequence comparison programs. These commercially available computer programs can calculate % homology between two or more sequences (e.g. Wilbur, W.J. and Lipman, D. J. Proc. Natl. Acad. Sci. USA (1983), 80:726-730).

The term "function" refers to the ability of a modulator to enhance or inhibit the association between a galactosyltransferase and a compound, or the activity of the galactosyltransferase.

"Ligand binding domain" refers to a region of a molecule or molecular complex that as a result of its shape, favourably associates with a ligand or a part thereof. For example, it may be a region of a galactoysltransferase that is responsible for binding a substrate or known modulator.

The term "ligand binding domain" includes homologues of a ligand binding domain or portions thereof. As used herein, the term "homologue" in reference to a ligand binding domain refers to a ligand binding domain or a portion thereof which may have deletions, insertions or substitutions of amino acid residues as long as the binding specificity of the molecule is retained. In this regard, deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophobicity, and/or the amphipathic nature of the residues as long as the binding specificity of the ligand binding domain is retained.

As used herein, the term "portion thereof" means the structural coordinates corresponding to a sufficient number of amino acid residues of a galactosyltransferase ligand binding domain (or homologues thereof) that are capable of associating with or interacting with a test compound that binds to the ligand binding domain. This term includes galactosyltransferase ligand binding domain amino acid residues having amino acid residues from about 4Å to about 5Å of a bound compound or fragment thereof. Thus, for example, the structural coordinates provided in the structure may contain a subset of the amino acid residues in the ligand binding domain which may be useful in the modelling and design of compounds that bind to the ligand binding domain.

A ligand binding domain may be defined by its association with a ligand. With reference to the structures and models of the invention, residues in the ligand binding domain may be defined by their spatial proximity to a ligand. For example, such may be defined by their proximity to a substrate or modulator.

A ligand binding domain of the invention may comprise a DVD motif comprising one or more of Asp-225, Val-226, and Asp-227. A ligand binding domain may comprise one or more of Phe-134, Tyr-139, Ile-140, Val-136, Arg-194, Arg-202, Lys-209 (numbered as ATOM 204 in Table 8), Asp-173 (numbered as ATOM 169 in Table 8), His-218 (numbered as ATOM 213 in Table 8), and Thr-137 (numbered as ATOM 132 in Table 8) that binds uridine.

"Ligand" refers to a compound or entity that associates with a ligand binding domain, including substrates or analogues or parts thereof. A ligand may be designed rationally using a model according to the invention. A ligand may be a modulator.

"Modulator" refers to a molecule which changes or alters the biological activity of a galactosyltransferase. A modulator may increase or decrease galactosyltransferase activity, or change its characteristics, or functional or immunological properties. It may be an inhibitor that decreases the biological or immunological activity of the protein. A modulator may include but is not limited to peptides, members of random peptide libraries and

10

15

20

25

30

35

40

combinatorial chemistry-derived molecular libraries, phosphopeptides (including members of random or partially degenerate, directed phosphopeptide libraries), antibodies, carbohydrates, monosaccharides, oligosaccharides, polysaccharides, glycolipids, saponins, heterocyclic compounds, nucleosides or nucleotides or parts thereof, and small organic or inorganic molecules. A modulator may be an endogenous physiological compound or it may be a natural or synthetic compound. The term "modulator" also refers to a chemically modified ligand or compound, and includes isomers and racemic forms.

The term "structural coordinates" as used refers to a set of values that define the position of one or more amino acid residues with reference to a system of axes. A data set of structural coordinates defines the three dimensional structure of a molecule or molecules. Structural coordinates can be slightly modified and still render nearly identical three dimensional structures. A measure of a unique set of structural coordinates is the root-mean-square deviation of the resulting structure. Structural coordinates that render three dimensional structures that deviate from one another by a root-mean-square deviation of less than 2 Å, preferably less than 0.5 Å, more preferably less than 0.3 Å, may be viewed by a person of ordinary skill in the art as identical.

Variations in structural coordinates may be generated because of mathematical manipulations of the structural coordinates of a galactosyltransferase described herein. For example, the structural coordinates of Table 4 or 8 may be manipulated by crystallographic permutations of the structural coordinates, fractionalization of the structural coordinates, integer additions or substractions to sets of the structural coordinates, inversion of the structural coordinates or any combination of the above.

Variations in structure due to mutations, additions, substitutions, and/or deletions of the amino acids, or other changes in any of the components that make up a structure of the invention may also account for modifications in structural coordinates. If such modifications are within an acceptable standard error as compared to the original structural coordinates, the resulting structure may be the same. Therefore, a ligand that associates with or binds to a ligand binding domain of a galactosyltransferase would also be expected to associate with or bind to another ligand binding domain whose structural coordinates defined a shape that fell within the acceptable error. Such modified structures of a ligand binding domain are also within the scope of the invention.

Various computational analyses may be used to determine whether a ligand or the ligand binding domain thereof is sufficiently similar to all or parts of a ligand or ligand binding domain of the invention. Such analyses may be carried out using conventional software applications and methods as described herein.

The term "modeling" includes the quantitative and qualitative analysis of molecular structure and/or function based on atomic structural information and interaction models. The term includes conventional numeric-based molecular dynamic and energy minimization models, interactive computer graphic models, modified molecular mechanics models, distance geometry, and other structure-based constraint models. Preferably modeling is performed using a computer and may be optimized using known methods. This is called modeling optimization.

The term "substrate" refers to molecules that associate with a galactosyltransferase as it catalyzes the transfer of a selected sugar from a nucleotide sugar donor to an acceptor that leads to the formation of a new glycosidic linkage. A substrate includes a sugar nucleotide donor and acceptor and parts thereof.

A "sugar nucleotide donor" refers to a nucleotide coupled to a selected sugar that is transferred by a galactosyltransferase to an acceptor. The selected sugar may be a monosaccharide or disaccharide, preferably a monosaccharide. A suitable selected sugar includes galactose. The galatose may be modified for example, the hydroxyls may be blocked with acetonide, acylated, or alkylated or substituted with other groups such as halogen.

BNSDOCID: <WO___0183717A2_I_;

15

20

25

30

35

40

The nucleotide is preferably UDP. The heterocyclic amine base in the nucleotide may be modified. For example, when the base is uridine it may be modified at the C-5 or C-6 position with groups including but not limited to alkyl, aryl, gallic acid, and with electron donating and electron withdrawing groups. The sugar in the nucleotide (e.g. ribose) may be modified at the 2' or 3' position with groups including but not limited to alkyl, aryl, gallic acid, and with electron donating and electron withdrawing groups.

An "acceptor" refers to the part of a carbohydrate structure (e.g. glycoprotein, glycolipid) where the selected sugar of a sugar nucleotide donor is transferred by the galactosyltransferase.

The term "alkyl", alone or in combination, refers to a branched or linear hydrocarbon radical, typically containing from 1 through 20 carbon atoms, preferably 1 through 10 carbon atoms, more preferably 1 to 6 carbon atoms. Typical alkyl groups include but are not limited to methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, tertbutyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, and the like.

The term "alkenyl", alone or in combination, refers to an unsaturated branched or linear group typically having from 2 to 20 carbon atoms and at least one double bond. Examples of such groups include but are not limited to ethenyl, 1-propenyl, 2-propenyl, 1-butenyl, 1,3-butadienyl, 1-hexenyl, 2-hexenyl, 1-pentenyl, 2-pentenyl, and the like.

The term "alkynyl", alone or in combination, refers to an unsaturated branched or linear group having 2 to 20 carbon atoms and at least one triple bond. Examples of such groups include but are not limited to ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 1-pentynyl, and the like.

The term "cycloalkyl" refers to cyclic hydrocarbon groups and includes but is not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl.

The term "aryl", alone or in combination, refers to a monocyclic or polycyclic group, preferably a monocyclic or bicyclic group. An aryl group may optionally be substituted as described herein. Examples of aryl groups and substituted aryl groups are phenyl, benzyl, p-nitrobenzyl, p-methoxybenzyl, biphenyl, and naphthyl.

The term "alkoxy" alone or in combination, refers to an alkyl or cycloalkyl linked to the parent molecular moiety through an oxygen atom. The term "aryloxy" refers to an aryl linked to the parent molecular moiety through an oxygen atom. Examples of alkoxy groups are methoxy, ethoxy, propoxy, vinyloxy, allyloxy, butoxy, pentoxy, hexoxy, cyclopentoxy, and cyclohexoxy. Examples of aryloxy groups are phenyloxy, O-benzyl i.e. benzyloxy, O-p-nitrobenzyl and O-p-methyl-benzyl, 4-nitrophenyloxy, 4-chlorophenyloxy, and the like.

The term "halo" or "halogen", alone or in combination, means fluoro, chloro, bromo, or iodo.

The term "amino", alone or in combination, refers to a chemical functional group where a nitrogen atom (N) is bonded to three substituents being any combination of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, or aryl with the general chemical formula $-NR_{14}R_{16}$ where R_{14} and R_{16} can be any combination of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, or aryl. Optionally one substituent on the nitrogen atom can be a hydroxyl group (-OH) to give an amine known as a hydroxylamine. Examples of amino groups are amino (-NH₂), methylamine, ethylamine, dimethylamine, 2-propylamine, butylamine, isobutylamine, cyclopropylamine, benzylamine, allylamine, hydroxylamine, cyclohexylamino (-NHCH_{(CH₂)5}), piperidine (-N(CH₂)5) and benzylamino (-NHCH₂C₆H₅).

The term "thioalkyl", alone or in combination, refers to a chemical functional group where a sulfur atom (S) is bonded to an alkyl. Examples of thioalkyl groups are thiomethyl, thioethyl, and thiopropyl.

The term "thioaryl", alone or in combination, refers to a chemical functional group where a sulfur atom (S) is bonded to an aryl group with the general chemical formula $-SR_{16}$ where R_{16} is an aryl group which may be

substituted. Examples of thioaryl groups and substituted thioaryl groups are thiophenyl, para-chlorothiophenyl, thiobenzyl, 4-methoxy-thiophenyl, 4-mitro-thiophenyl, and para-nitrothiobenzyl.

Heterocyclic rings are molecular rings where one or more carbon atoms have been replaced by hetero atoms (atoms not being carbon) such as for example, oxygen (O), nitrogen (N) or sulfur (S), or combinations thereof. Examples of heterocyclic rings include ethylene oxide, tetrahydrofuran, thiophene, piperidine (piperidinyl group), pyridine (pyridinyl group), and caprolactam. A carbocyclic or heterocyclic group may be optionally substituted at carbon or nitrogen atoms with for example, alkyl, phenyl, benzyl or thienyl, or a carbon atom in the heterocyclic group together with an oxygen atom may form a carbonyl group, or a heterocyclic group may be fused with a phenyl group.

Three Dimensional Structure of Galactosyltransferases and Ligand Binding Domains of Same

The present invention provides a galactosyltransferase secondary, tertiary and/or quanternary structure. The invention also provides a homology model that represents the secondary, tertiary, and/or quanternary structure of a galactosyltransferase. A model may, for example, be a structural model (or representation thereof), or a computer model. The model itself may be in two or three dimensions. It is possible for a computer model to be in three dimensions despite the constraints imposed by a conventional computer screen, if it is possible to scroll along at least a pair of axes, causing "rotation" of the image.

-In accordance with an aspect of the invention a method is provided for designing a homology model of a ligand binding domain of a galactosytransferase wherein the homology model may be displayed as a three-dimensional image, the method comprising:

- providing an amino acid sequence and structural coordinates of a ligand binding domain structure
 of a glycosyltransferase, preferably SpsA glycosytransferase;
- (ii) modifying said structure to take into account differences between the amino acid configuration of the ligand binding domains of the galactosyltransferase on the one hand and the SpsA glycosyltransferase on the other hand to generate a homology model, and
- (iii) if required refining the homology model.

The method may further comprise comparing the homology model with the structures of other, similar, proteins.

A model or structure of a preferred galactosyltransferase of the invention has the atomic structural coordinates as shown in Table 4 or Table 8. Computer representations of the structure i.e. models are illustrated in the Figures.

The structural coordinates in a structure or model of the invention may comprise the amino acid residues of a galactosyltransferase ligand binding domain, or a portion or homolog thereof useful in the modeling and design of test compounds capable of binding to the galactosyltransferase. Therefore, the invention also relates to a secondary and three dimensional structure or model of a ligand binding domain of a galactosyltransferase. Ligand binding domains include the ligand binding domains for a disphosphate group of a sugar nucleotide donor, a nucleotide of a sugar nucleotide donor, a nitrogeneous heterocyclic base (preferably a pyrimidine base, more preferably uracil) of a sugar nucleotide donor, and/or a sugar (e.g. galactose) of a sugar nucleotide donor. The structure of a ligand binding domain may be defined by selected atomic interactions or contacts in the domain, preferably two or more of the atomic interactions or contacts as defined in Table 1.

20

15

. 10

25

35

15

20

25

30

35

40

It is understood that a structure or model of the invention includes a structure where at least one amino acid residue is replaced with a different amino acid residue or by adding or deleting amino acid residues, and having substantially the same three dimensional structure as the galactosyltransferase as described in Table 4 and the Figures, or the ligand binding domains as described in Table 1 (and further defined by the structural coordinates of the ATOMS in Table 4 or Table 8), i.e. having a set of atomic structural coordinates that have a root mean square deviation of less than or equal to about 2Å, preferably less than 0.5Å, most preferably less than 0.3Å, when superimposed with the atomic structure coordinates of the galactosyltransferase as described in Table 4 or Table 8, or the binding domains as described in Table 1 (and further defined by the structural coordinates of the ATOMS in Table 4) when at least 50% to 100% of the atoms of the sugar nucleotide donor binding domain or binding domains of components of the donor as the case may be, are included in the superimposition.

The invention also features a secondary and three dimensional structure or model of a galactosyltransferase in association with one or more molecules (e.g. substrates such as UDP-Gal, uridine-ribose, monophophate-Mn²⁺, or diphosphate-Mn²⁺). The association may be covalent or non-covalent. The molecule may be any organic molecule, and it may modulate the function of a galactosyltransferase by for example inhibiting or enhancing its function, or it may be an acceptor or donor for the galactosyltransferase. It is preferred that the geometry of the compound and the interactions formed between the compound and the galacytosyltransferase provide high affinity binding between the two molecules.

The structure and model of the galactosyltransferase decribed herein has allowed the identification and characterization of the binding domain of UDP and UDP-Gal. The UDP-Gal binding domain has been subdivided into three sub-sites (the uracil-binding domain, the ribose-binding domain, the diphosphate-Mn²⁺ binding domain, and the Gal binding domain) and characterized.

Therefore, in an embodiment of the invention, a secondary and three dimensional structure or model of a ligand binding domain of a galactosyltransferase that binds a diphosphate of a sugar nucleotide donor is provided comprising at least two of atomic interactions 9, 10, and 11 of Table 1, each atomic interaction defined therein by an atomic contact (more preferably, a specific atom where indicated) on the diphosphate, and an atomic contact (more preferably, a specific amino acid residue where indicated) on the galactosyltransferase (i.e. enzyme atomic contact). In a preferred embodiment, the ligand binding domain comprises atomic interactions 9 and 10, 10 and 11, 9 and 11, or 9, 10, and 11 of Table 1. Preferably, the binding domain is defined by the atoms of the enzyme atomic interactions having the structural coordinates for the atoms listed in Table 4 or Table 8. Therefore, in an embodiment of the invention the binding domain is defined by the structural coordinates referred to as ATOM 1690, and ATOM 1718 of Table 8most preferably ATOM 1690 to ATOM 1718 inclusive of Table 8. The binding domain of a galactosyltransferase for a diphosphate of a sugar nucleotide donor is also characterized by a DVD motif (Asp-225, Val-226, and Asp-227).

In another embodiment of the invention, a secondary or three dimensional structure or model of a ligand binding domain of a galactosyltransferase that binds a heterocyclic amine base of a sugar nucleotide donor is provided comprising at least two, preferably three, of atomic interactions 1, 2, 3, and 4 of Table 1, each atomic interaction defined therein by an atomic contact (more preferably, a specific atom where indicated) on the heterocyclic amine base, and an atomic contact (more preferably, a specific amino acid residue where indicated) on the galactosyltransferase (i.e. enzyme atomic contact). In a preferred embodiment, the ligand binding domain comprises atomic interactions 1 and 2; 1 and 3; 1 and 4; 2 and 3; 2 and 4; 3 and 4; or 1, 2, and 3; 2, 3, and 4; 1, 3,

and 4; 1, 2, and 4; or 1, 2, 3 and 4 of Table 1. Preferably, the binding domain is defined by the atoms of the enzyme atomic interactions having the structural coordinates for the atoms listed in Table 4 or Table 8. Therefore, in an embodiment of the invention the binding domain is defined by the structural coordinates referred to as ATOM 720, ATOM 1360, ATOM 1490, ATOM 154 to ATOM 155 in Table 8. The ligand binding domain of a galactosyltransferase for a heterocyclic amine base of a sugar nucleotide donor is also characterized by two helices and two β sheets in anti-parallel fashion. A ligand binding domain for uracil can also be characterized by the following three hydrogen bonds: (1) the amide hydrogen of uracil in position 3 and OD1 of Asp-168, (2) the carbonyl oxygen of uracil in position 4 and the side chain of Lys-204, and (3) the carbonyl oxygen of uracil in position 2 and the amide hydrogen of the His-213 side chain.

In another embodiment of the invention, a secondary and three dimensional structure or model of a ligand binding domain of a galactosyltransferase that binds the sugar of the nucleotide (e.g. ribose) of a sugar nucleotide donor is provided comprising at least two, preferably three, of atomic interactions 5, 6, 7, and 8 of Table 1, each atomic interaction defined therein by an atomic contact (more preferably, a specific atom where indicated) on the sugar, and an atomic contact (more preferably, a specific amino acid residue where indicated) on the galactosyltransferase (i.e. enzyme atomic contact). In a preferred embodiment, the binding domain comprises atomic interactions 5 and 6; 5 and 7; 5 and 8; 6 and 7; 6 and 8; 7 and 8; 5, 6, and 7; 5, 6, and 8; 6, 7, and 8; 5, 7, and 8; and 5, 6, 7, and 8 of Table 1. Preferably, the ligand binding domain is defined by the atoms of the enzyme atomic interactions having the structural coordinates for the atoms listed in Table 4 or Table 8. Therefore, in an embodiment of the invention the binding domain is defined by the structural coordinates referred to as ATOM 1690, ATOM 97 to ATOM 115, ATOM 1436 to ATOM 1454 of Table 8.

Atomic interactions 1 through 11 in Table 1 are preferably each characterized by the types of binding and/or the distances between atomic contacts indicated in Table 1.

In another embodiment of the invention, a secondary or three dimensional structure of a ligand binding domain of a galactosyltransferase that binds a nucleotide (preferably UDP) of a sugar nucleotide donor is provided comprising at least two or more of atomic interactions 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11 of Table 1, each atomic interaction defined therein by an atomic contact (more preferably, a specific atom where indicated) on the nucleotide, and an atomic contact (more preferably, a specific amino acid residue where indicated) on the galactosyltransferase (i.e. enzyme atomic contact). In a preferred embodiment, the binding domain comprises atomic interactions 2, 3, 5, 6, , 9, 10, and 11; 4, 7, 8, 9, 10, and 11; 1, 2, 3, 5, 6, 9, 10, 11, or 1 to 11 inclusive of Table 1. Preferably, the ligand binding domain is defined by the atoms of the enzyme atomic interactions having the structural coordinates for the atoms listed in Table 4 or Table 8. Therefore, in an embodiment of the invention the ligand binding domain is defined by the structural coordinates referred to as ATOM 720, ATOM 1360, ATOM 1490, ATOM 154, ATOM 155, ATOM 1690, ATOM 97 to ATOM 115, ATOM 1436 to ATOM 1454, and ATOM 1718, of Table 8. The binding domain of a galactosyltransferase for a nucleotide of a sugar nucleotide donor is also characterized by a 100 amino acid nucleotide recognition domain.

A UDP binding domain of a galactosyltransferase is also characterized by an open α,β -sandwich made up of three helices packed against four β -sheets. The following amino acid residues have also been identified to be part of the UDP binding domain: Phe-134, Typ-139, Ile-140, Val-136, Arg-194, Arg-202, Lys-209, Asp-173, His-218, Thr-137, Asp-225, Val-226, and Asp-227.

5

10

15

20

25

30

In yet another embodiment of the invention, a secondary and three dimensional structure or model of a ligand binding domain of a galactosyltransferase that binds a sugar nucleotide donor (preferably UDP-Gal) is provided comprising at least three of the atomic interactions of Table 1, each atomic interaction defined therein by an atomic contact (more preferably, a specific atom where indicated) on the sugar nucleotide donor, and an atomic contact (more preferably, a specific amino acid residue where indicated) on the galactosyltransferase (i.e. enzyme atomic contact). In a preferred embodiment, the binding domain comprises atomic interactions 1 to 11 inclusive of Table 1. Preferably, the ligand binding domain is defined by the atoms of the enzyme atomic interactions having the structural coordinates for the atoms listed in Table 4 or Table 8. Therefore, in an embodiment of the invention the ligand binding domain is defined by the structural coordinates referred to as ATOM 720, ATOM 1360, ATOM 1490, ATOM 154, ATOM 155, ATOM 1690, ATOM 97 to ATOM 115, ATOM 1436 to ATOM 1454, and ATOM 1718 of Table 4.

Identification of Homologues

10

15

20

25

30

35

The knowledge of the structures and models of the invention enables one skilled in the art to identify homologues of galactosyltransferases. This is achieved by searches of three-dimensional databases. Since structural folds are conserved to a greater extent than sequence, one may identify homologues with very little sequence identity or similarity. Programs that provide this type of database searching are known in the art and include Dal and the Fold recognition server located at UCLA (8). The structural coordinates of a protein structure are submitted and the program performs a multiple structural alignment with proteins in the protein data bank. Homologues identified in accordance with the present invention may be used in the methods of the invention described herein.

Computer Format of Structures/Models

Information derivable from the structures of the present invention (for example the structural coordinates) or a model of the present invention may be provided in a computer-readable format.

Therefore, the invention provides a computer readable medium or a machine readable storage medium which comprises the models of the invention or structural coordinates of a galactosyltransferase including all or any parts of the galactosyltransfersae (e.g ligand-binding domain), ligands including portions thereof, or substrates including portions thereof. Such storage medium or storage medium encoded with these data are capable of displaying on a computer screen or similar viewing device, a three-dimensional graphical representation of a molecule or molecular complex which comprises the enzyme or ligand binding domains or similarly shaped homologous enzymes or ligand binding domains. Thus, the invention also provides computerized representations of a model or structure of the invention, including any electronic, magnetic, or electromagnetic storage forms of the data needed to define the structures such that the data will be computer readable for purposes of display and/or manipulation.

In an aspect the invention provides a computer for producing a model or three-dimensional representation of a molecule or molecular complex, wherein said molecule or molecular complex comprises a galactosyltransferase or ligand binding domain thereof defined by structural coordinates of galactosyltransferase amino acids or a ligand binding domain thereof, or comprises structural coordinates of atoms of a ligand or substrate, or a three-dimensional representation of a homologue of said molecule or molecular complex, wherein said computer comprises:

(a) a machine-readable data storage medium comprising a data storage material encoded with machine readable data wherein said data comprises the structural coordinates of a galactosyltransferase

- 15 -

- amino acids according to Table 4 or Table 8 or a ligand binding domain thereof, or a ligand according to Table 5, 6, or 7;
- (b) a working memory for storing instructions for processing said machine-readable data;
- (c) a central-processing unit coupled to said working memory and to said machine-readable data storage medium for processing said machine readable data into said three-dimensional representation; and
- (d) a display coupled to said central-processing unit for displaying said three-dimensional representation.

A homologue may comprise a galactosyltransferase or ligand binding domain thereof, or ligand or substrate that has a root mean square deviation from the backbone atoms of not more than 1.5 angstroms. 10

The invention also provides a computer for determining at least a portion of the structural coordinates corresponding to an X-ray diffraction pattern of a molecule or molecular complex wherein said computer comprises:

- a machine-readable data storage medium comprising a data storage material encoded with machine (a) readable data wherein said data comprises the structural coordinates according to Table 4, 5, 6, 7, or 8;
- a machine-readable data storage medium comprising a data storage material encoded with machine (b) readable data wherein said data comprises an X-ray diffraction pattern of said molecule or molecular complex;
- a working memory for storing instructions for processing said machine-readable data of (a) and (c) (b);
- a central-processing unit coupled to said working memory and to said machine-readable data (d) storage medium of (a) and (b) for performing a Fourier transform of the machine readable data of (a) and for processing said machine readable data of (b) into structural coordinates; and
- a display coupled to said central-processing unit for displaying said structural coordinates of said (e) molecule or molecular complex.

The invention also contemplates a computer programmed with a homology model of a ligand binding domain according to the invention; a machine-readable data-storage medium on which has been stored in machinereadable form a homology model of a ligand binding domain of a galactosyltransferase; and the use of a homology model as input to a computer programmed for drug design and/or database searching and/or molecular graphic imaging in order to identify new ligands for galactosyltransferases.

Structural Determinations

The present invention also provides a method for determining the secondary and/or tertiary structures of a polypeptide by using a model according to the invention. The polypeptide may be any polypeptide for which the secondary and or tertiary structure is uncharacterised or incompletely characterised. In a preferred embodiment the polypeptide shares (or is predicted to share) some structural or functional homology to a galactosyltransferase, preferably a \$1,3 galactosyltranferase. For example, the polypeptide may show a degree of structural homology over some or all parts of the primary amino acid sequence. For example the polypeptide may have one or more domains which show homology with a galactosyltransferase domain (Kapitonov and Yu (1999) Glycobiology 9(10): 961-978).

5

15

20

25

10

15

20

25

30

35

The polypeptide may be a galactosyltransferase with a different specificity for a ligand or substrate. The polypeptide may be a galactosyltransferase which requires a different metal cofactor. Alternatively (or in addition) the polypeptide may be a galactosyltransferase from a different species.

The polypeptide may be a mutant of the wild-type galactosyltransferase. A mutant may arise naturally, or may be made artificially (for example using molecular biology techniques). The mutant may also not be "made" at all in the conventional sense, but merely tested theoretically using the model of the present invention. A mutant may or may not be functional.

Thus, using a model of the present invention, the effect of a particular mutation on the overall two and/or three dimensional structure of a galactosyltransferase and/or the interaction between the enzyme and a ligand or substrate can be investigated. Alternatively, the polypeptide may perform an analogous function or be suspected to show a similar catalytic mechanism to the galactosyltransferase enzyme. For example the polypeptide may transfer a sugar residue from a sugar nucleotide donor.

The polypeptide may also be the same as the polypeptide described herein, but in association with a different ligand (for example, modulator or inhibitor) or cofactor. In this way it is possible to investigate the effect of altering a ligand or compound with which the polypeptide is associated on the structure of a ligand binding domain.

Secondary or tertiary structure may be determined by applying the structural coordinates of the model of the present invention to other data such as an amino acid sequence, X-ray crystallographic diffraction data, or nuclear magnetic resonance (NMR) data. Homology modeling, molecular replacement, and nuclear magnetic resonance methods using these other data sets are described below.

Homology modeling (also known as comparative modeling or knowledge-based modeling) methods develop a three dimensional model from a polypeptide sequence based on the structures of known proteins (e.g. native or mutated galactosyltransferases). In the present invention the method utilizes a computer representation of the structure of a galactosyltransferase, or a binding domain or complex of same as described herein, a computer representation of the amino acid sequence of a polypeptide with an unknown structure (additional native or mutated galactosyltransferases), and standard computer representations of the structures of amino acids. The method in particular comprises the steps of; (a) identifying structurally conserved and variable regions in the known structure; (b) aligning the amino acid sequences of the known structure and unknown structure (c) generating coordinates of main chain atoms and side chain atoms in structurally conserved and variable regions of the unknown structure based on the coordinates of the known structure thereby obtaining a homology model; and (d) refining the homology model to obtain a three dimensional structure for the unknown structure. This method is well known to those skilled in the art (Greer, 1985, Science 228, 1055; Bundell et al 1988, Eur. J. Biochem. 172, 513; Knighton et al., 1992, Science 258:130-135, http://biochem.vt.edu/courses/modeling/ homology.htn). Computer programs that can be used in homology modeling are Quanta and the Homology module in the Insight II modeling package distributed by Molecular Simulations Inc, or MODELLER (Rockefeller University, www.iucr.ac.uk/sinris-top/logical/prgmodeller.html).

In step (a) of the homology modeling method, a known galactosyltransferase structure is examined to identify the structurally conserved regions (SCRs) from which an average structure, or framework, can be constructed for these regions of the protein. Variable regions (VRs), in which known structures may differ in conformation, also must be identified. SCRs generally correspond to the elements of secondary structure, such as

15

20

25

30

35

40

alpha-helices and beta-sheets, and to ligand- and substrate-binding sites (e.g. acceptor and donor binding sites). The VRs usually lie on the surface of the proteins and form the loops where the main chain turns.

Many methods are available for sequence alignment of known structures and unknown structures. Sequence alignments generally are based on the dynamic programming algorithm of Needleman and Wunsch [J. Mol. Biol. 48: 442-453, 1970]. Current methods include FASTA, Smith-Waterman, and BLASTP, with the BLASTP method differing from the other two in not allowing gaps. Scoring of alignments typically involves construction of a 20x20 matrix in which identical amino acids and those of similar character (i.e., conservative substitutions) may be scored higher than those of different character. Substitution schemes which may be used to score alignments include the scoring matrices PAM (Dayhoff et al., Meth. Enzymol. 91: 524-545, 1983), and BLOSUM (Henikoff and Henikoff, Proc. Nat. Acad. Sci. USA 89: 10915-'0919, 1992), and the matrices based on alignments derived from three-dimensional structures including that of Johnson and Overington (JO matrices) (J. Mol. Biol. 233: 716-738, 1993).

Alignment based solely on sequence may be used, though other structural features also may be taken into account. In Quanta, multiple sequence alignment algorithms are available that may be used when aligning a sequence of the unknown with the known structures. Four scoring systems (i.e. sequence homology, secondary structure homology, residue accessibility homology, CA-CA distance homology) are available, each of which may be evaluated during an alignment so that relative statistical weights may be assigned.

When generating coordinates for the unknown structure, main chain atoms and side chain atoms, both in SCRs and VRs need to be modeled. A variety of approaches may be used to assign coordinates to the unknown. In particular, the coordinates of the main chain atoms of SCRs will be transferred to the unknown structure. VRs correspond most often to the loops on the surface of the polypeptide and if a loop in the known structure is a good model for the unknown, then the main chain coordinates of the known structure may be copied. Side chain coordinates of SCRs and VRs are copied if the residue type in the unknown is identical to or very similar to that in the known structure. For other side chain coordinates, a side chain rotamer library may be used to define the side chain coordinates. When a good model for a loop cannot be found fragment databases may be searched for loops in other proteins that may provide a suitable model for the unknown. If desired, the loop may then be subjected to conformational searching to identify low energy conformers if desired.

Once a homology model has been generated it is analyzed to determine its correctness. A computer program available to assist in this analysis is the Protein Health module in Quanta which provides a variety of tests. Other programs that provide structure analysis along with output include PROCHECK and 3D-Profiler [Luthy R. et al, Nature 356: 83-85, 1992; and Bowie, J.U. et al, Science 253: 164-170, 1991]. Once any irregularities have been resolved, the entire structure may be further refined. Refinement may consist of energy minimization with restraints, especially for the SCRs. Restraints may be gradually removed for subsequent minimizations. Molecular dynamics may also be applied in conjunction with energy minimization.

The structural coordinates of a galactosyltransferase structure may be applied to nuclear magnetic resonance (NMR) data to determine the three dimensional structures of polypeptides in solution (e.g. additional native or mutated galactosyltransferases). (See for example, Wuthrich, 1986, John Wiley and Sons, New York: 176-199; Pflugrath et al., 1986, J. Molecular Biology 189: 383-386; Kline et al., 1986 J. Molecular Biology 189:377-382). While the secondary structure of a polypeptide may often be determined by NMR data, the spatial connections between individual pieces of secondary structure are not as readily determined. The structural coordinates of a polypeptide can guide the NMR spectroscopist to an understanding of the spatical interactions between secondary

10

15

20

25 .

30

35

40

structural elements in a polypeptide of related structure. Information on spatial interactions between secondary structural elements can greatly simplify Nuclear Overhauser Effect (NOE) data from two-dimensional NMR experiments. In addition, applying the structural coordinates after the determination of secondary structure by NMR techniques simplifies the assignment of NOE's relating to particular amino acids in the polypeptide sequence and does not greatly bias the NMR analysis of polypeptide structure.

In an embodiment, the invention relates to a method of determining three dimensional structures of polypeptides with unknown structures, preferably a native or mutated galactosyltransferases, by applying the structural coordinates of a galactosyltransferase structure, or ligand binding domain or complex thereof described herein to nuclear magnetic resonance (NMR) data of the unknown structure. This method comprises the steps of: (a) determining the secondary structure of an unknown structure using NMR data; and (b) simplifying the assignment of through-space interactions of amino acids. The term "through-space interactions" defines the orientation of the secondary structural elements in the three dimensional structure and the distances between amino acids from different portions of the amino acid sequence. The term "assignment" defines a method of analyzing NMR data and identifying which amino acids give rise to signals in the NMR spectrum.

Screening Method

The present invention provides a method of screening for a ligand that associates with a ligand binding domain and/or modulates the function of a galactosyltranssferase, by using a structure or a model according to the present invention. The method may involve investigating whether a test compound is capable of associating with or binding a ligand binding domain.

In accordance with an aspect of the present invention, a method is provided for screening for a ligand capable of associating with or binding to a ligand binding domain, wherein said method comprises the use of a structure or model according to the invention.

In another aspect, the invention relates to a method of screening for a ligand capable of associating with or binding to a ligand binding domain, wherein the ligand binding domain is defined by the amino acid residue structural coordinates given herein, the method comprising contacting the ligand binding domain with a test compound and determining if said test compound binds to said ligand binding domain.

In one embodiment, the present invention provides a method of screening for a test compound capable of interacting with a key amino acid residue of a ligand binding domain of a galactosyltransferase.

Another aspect of the invention provides a process comprising the steps of:

- (a) performing the method of screening for a ligand as described above;
- (b) identifying one or more ligands capable of binding to a ligand binding domain; and
- (c) preparing a quantity of said one or more ligands.

A further aspect of the invention provides a process comprising the steps of:

- (a) performing the method of screening for a ligand as described above;
- (b) identifying one or more ligands capable of binding to a ligand binding domain; and
- (c) preparing a pharmaceutical composition comprising said one or more ligands.

Once a test compound capable of interacting with a key amino acid residue in a galactosyltransferase ligand binding domain has been identified, further steps may be carried out either to select and/or to modify compounds and/or to modify existing compounds, to modulate the interaction with the key amino acid residues in the galactosyltransferase ligand binding domain.

Yet another aspect of the invention provides a process comprising the steps of:

- (a) performing the method of screening for a ligand as described above;
- (b) identifying one or more ligands capable of binding to a ligand binding domain;
- (c) modifying said one or more ligands capable of binding to a ligand binding domain;
- (d) performing said method of screening for a ligand as described above;
- (e) optionally preparing a pharmaceutical composition comprising said one or more ligands.

As used herein, the term "test compound" means any compound which is potentially capable of associating with a ligand binding domain. If, after testing, it is determined that the test compound does associate with or bind to the ligand binding domain, it is known as a "ligand".

A "test compound" includes, but is not limited to, a compound which may be obtainable from or produced by any suitable source, whether natural or not. The test compound may be designed or obtained from a library of compounds which may comprise peptides, as well as other compounds, such as small organic molecules and particularly new lead compounds. By way of example, the test compound may be a natural substance, a biological macromolecule, or an extract made from biological materials such as bacteria, fungi, or animal (particularly mammalian) cells or tissues, an organic or an inorganic molecule, a synthetic test compound, a semi-synthetic test compound, a carbohydrate, a monosaccharide, an oligosaccharide or polysaccharide, a glycolipid, a glycopeptide, a saponin, a heterocyclic compound, a structural or functional mimetic, a peptide, a peptidomimetic, a derivatised test compound, a peptide cleaved from a whole protein, or a peptide synthesised synthetically (such as, by way of example, either using a peptide synthesizer or by recombinant techniques or combinations thereof), a recombinant test compound, a natural or a non-natural test compound, a fusion protein or equivalent thereof and mutants, derivatives or combinations thereof.

The test compound may be screened as part of a library or a data base of molecules. Data bases which may be used include ACD (Molecular Designs Limited), NCI (National Cancer Institute), CCDC (Cambridge Crystallographic Data Center), CAST (Chemical Abstract Service), Derwent (Derwent Information Limited), Maybridge (Maybridge Chemical Company Ltd), Aldrich (Aldrich Chemical Company), DOCK (University of California in San Francisco), and the Directory of Natural Products (Chapman & Hall). Computer programs such as CONCORD (Tripos Associates) or DB-Converter (Molecular Simulations Limited) can be used to convert a data set represented in two dimensions to one represented in three dimensions.

Test compounds may be tested for their capacity to fit spatially into a galactosyltransferase ligand binding domain. As used herein, the term "fits spatially" means that the three-dimensional structure of the test compound is accommodated geometrically in a galactosyltransferase ligand binding domain. The test compound can then be considered to be a ligand.

A favourable geometric fit occurs when the surface area of the test compound is in close proximity with the surface area of the cavity or pocket without forming unfavorable interactions or associations. A favourable complementary interaction occurs where the test compound interacts by hydrophobic, aromatic, ionic, dipolar, or hydrogen donating and accepting forces. Unfavourable interactions or associations may be steric hindrance between atoms in the test compound and atoms in the binding site.

In an embodiment of the invention, a method is provided for identifying potential modulators of galactosyltransferase function. The method utilizes the structural coordinates or model of a galactosyltransferase three dimensional structure, or binding domain thereof. The method comprises the steps of (a) docking a computer

10

15

20

25

30

35

15

20

25

30

35

representation of a test compound from a computer data base with a computer model of a ligand binding domain of a galactosyltransferase; (b) determining a conformation of a complex between the test compound and binding domain with a favourable geometric fit or favorable complementary interactions; and (c) identifying test compounds that best fit the galactosyltransferase binding domain as potential modulators of galactosyltransferase function. The initial galactosyltransferase structure may or may not have substrates bound to it. A favourable complementary interaction occurs where a compound in a compound-galactosyltransferase complex interacts by hydrophobic, ionic, or hydrogen donating and accepting forces, with the active-site or ligand binding domain of a galactosyltransferase without forming unfavorable interactions.

If a model of the present invention is a computer model, the test compounds may be positioned in a ligand binding domain through computational docking. If, on the other hand, the model of the present invention is a structural model, the test compounds may be positioned in the ligand binding domain by, for example, manual docking.

As used herein the term "docking" refers to a process of placing a compound in close proximity with a galactosyltransferase ligand binding domain, or a process of finding low energy conformations of a test compound/galactosyltransferase complex.

A screening method of the present invention may comprise the following steps:

- (i) generating a computer model of a galactosyltransferase or a ligand binding domain thereof according to the first aspect of the invention;
- (ii) docking a computer representation of a test compound with the computer model;
- (iii) analysing the fit of the compound in the galactosyltransferase or ligand binding domain thereof. In an aspect of the invention a method is provided comprising the following steps:
- (a) docking a computer representation of a structure of a test compound into a computer representation of a ligand binding domain of a galactosyltransferase defined in accordance with the invention using a computer program, or by interactively moving the representation of the test compound into the representation of the binding domain;
- (b) characterizing the geometry and the complementary interactions formed between the atoms of the ligand binding domain and the test compound; optionally
- (c) searching libraries for molecular fragments which can fit into the empty space between the compound and ligand binding domain and can be linked to the compound; and
- (d) linking the fragments found in (c) to the compound and evaluating the new modified compound. In an embodiment of the invention a method is provided which comprises the following steps:
- (a) docking a computer representation of a test compound from a computer data base with a computer representation of a selected site (e.g. an inhibitor binding domain) on a galactosyltransferase structure or model defined in accordance with the invention to obtain a complex;
- (b) determining a conformation of the complex with a favourable geometric fit and favourable complementary interactions; and
- (c) identifying test compounds that best fit the selected site as potential modulators of the galactosyltransferase.

A method of the invention may be applied to a plurality of test compounds, to identify those that best fit the selected site.

10

15

20

25

30

35

40

The model used in the screening method may comprise a galactosyltransferase or ligand binding domain thereof either alone or in association with one or more ligands and/or cofactors. For example, the model may comprise the ligand-binding domain in association with a ligand, substrate, or analogue thereof.

If the model comprises an unassociated ligand binding domain, then the selected site under investigation may be the ligand binding domain itself. The test compound may, for example, mimic a known substrate for the enzyme in order to interact with the ligand binding domain. The selected site may alternatively be another site on the enzyme.

If the model comprises an associated ligand binding domain, for example a ligand binding domain in association with a ligand or substrate molecule or analogue thereof, the selected site may be the ligand binding domain or a site made up of the ligand binding domain and the complexed ligand, or a site on the ligand itself. The test compound may be investigated for its capacity to modulate the interaction with the associated molecule.

A test compound (or plurality of test compounds) may be selected on the basis of its similarity to a known ligand for the galactosyltransferase. For example, the screening method may comprise the following steps:

- (i) generating a computer model of a galactosyltransferase ligand binding domain in complex with a ligand;
- (ii) searching for a test compound with a similar three dimensional structure and/or similar chemical groups; and
- (iii) evaluating the fit of the test compound in the ligand binding domain.

Searching may be carried out using a database of computer representations of potential compounds, using methods known in the art.

The present invention also provides a method for designing ligands for a galactosyltransferase. It is well known in the art to use a screening method as described above to identify a test compound with promising fit, but then to use this test compound as a starting point to design a ligand with improved fit to the model. A known modulator can also be modified to enhance its fit with a model of the invention. Such techniques are known as "structure-based ligand design" (See Kuntz et al., 1994, Acc. Chem. Res. 27:117; Guida, 1994, Current Opinion in Struc. Biol. 4: 777; and Colman, 1994, Current Opinion in Struc. Biol. 4: 868, for reviews of structure-based drug design and identification; and Kuntz et al 1982, J. Mol. Biol. 162:269; Kuntz et al., 1994, Acc. Chem. Res. 27: 117; Meng et al., 1992, J. Compt. Chem. 13: 505; Bohm, 1994, J. Comp. Aided Molec. Design 8: 623 for methods of structure-based modulator design).

Examples of computer programs that may be used for structure-based ligand design are CAVEAT (Bartlett et al., 1989, in "Chemical and Biological Problems in Molecular Recognition", Roberts, S.M. Ley, S.V.; Campbell, N.M. eds; Royal Society of Chemistry: Cambridge, pp 182-196); FLOG (Miller et al., 1994, J. Comp. Aided Molec. Design 8:153); PRO Modulator (Clark et al., 1995 J. Comp. Aided Molec. Design 9:13); MCSS (Miranker and Karplus, 1991, Proteins: Structure, Function, and Genetics 8:195); and, GRID (Goodford, 1985, J. Med. Chem. 28:849).

The method may comprise the following steps:

- (i) docking a model of a test compound with a model of a selected ligand binding domain;
- (ii) identifying one or more groups on the test compound which may be modified to improve their fit in the selected ligand binding domain;
- (iii) replacing one or more identified groups to produce a modified test compound model; and

10

15

20 .

25

30

35

40

- (iv) docking the modified test compound model with the model of the selected ligand binding domain. Evaluation of fit may comprise the following steps:
- mapping chemical features of a test compound such as by hydrogen bond donors or acceptors,
 hydrophobic/lipophilic sites, positively ionizable sites, or negatively ionizable sites; and
- (b) adding geometric constraints to selected mapped features.

The fit of the modified test compound may then be evaluated using the same criteria.

The chemical modification of a group may either enhance or reduce hydrogen bonding interaction, charge interaction, hydrophobic interaction, Van Der Waals interaction or dipole interaction between the test compound and the key amino acid residue(s) of the selected site. Preferably the group modifications involve the addition, removal, or replacement of substituents onto the test compound such that the substituents are positioned to collide or to bind preferentially with one or more amino acid residues that correspond to the key amino acid residues of the selected site.

Identified groups in a test compound may be substituted with, for example, alkyl, alkoxy, hydroxyl, aryl, cycloalkyl, alkenyl, alkynyl, thiol, thioalkyl, thioaryl, amino, or halo groups. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. It should, of course, be understood that components known in the art to alter conformation should be avoided.

If a modified test compound model has an improved fit, then it may bind to the selected site and be considered to be a "ligand". Rational modification of groups may be made with the aid of libraries of molecular fragments which may be screened for their capacity to fit into the available space and to interact with the appropriate atoms. Databases of computer representations of libraries of chemical groups are available commercially, for this purpose.

A test compound may also be modified "in situ" (i.e. once docked into the potential binding domain), enabling immediate evaluation of the effect of replacing selected groups. The computer representation of the test compound may be modified by deleting a chemical group or groups, replacing chemical groups, or by adding a chemical group or groups. After each modification to a compound, the atoms of the modified compound and potential binding site can be shifted in conformation and the distance between the modulator and the active site atoms may be scored on the basis of geometric fit and favourable complementary interactions between the molecules. This technique is described in detail in Molecular Simulations User Manual, 1995 in LUDI.

Examples of ligand building and/or searching computer programs include programs in the Molecular Simulations Package (Catalyst), ISIS/HOST, ISIS/BASE, and ISIS/DRAW (Molecular Designs Limited), and UNITY (Tripos Associates).

The "starting point" for rational ligand design may be a known ligand for the enzyme. For example, in order to identify potential modulators of a galactosyltransferase, a logical approach would be to start with a known ligand (for example a substrate molecule or inhibitor) to produce a molecule which mimics the binding of the ligand. Such a molecule may, for example, act as a competitive inhibitor for the true ligand, or may bind so strongly that the interaction (and inhibition) is effectively irreversible. Such a method may comprise the following steps:

- (i) generating a computer model of a galactosyltransferase ligand binding domain in complex with a ligand;
- (ii) replacing one or more groups on the ligand computer model to produce a modified ligand; and

(iii) evaluating the fit of the modified ligand in the ligand binding domain.

The replacement groups could be selected and replaced using a compound construction program which replaces computer representations of chemical groups with groups from a computer database, where the representations of the compounds are defined by structural coordinates.

In an embodiment, a screening method is provided for identifying a ligand of a galactosyltransferase comprising the step of using the structural coordinates or model of a substrate molecule or component thereof, defined in relation to its spatial association with a galactosyltransferase structure or a ligand binding domain, to generate a compound that is capable of associating with the galactosyltransferase or ligand binding domain.

The invention contemplates a method for the design of modulators for galactosyltransferases based on the three dimensional structure or model of a sugar nucleotide donor (or parts thereof) defined in relation to the three dimensional structure of a ligand binding domain.

In accordance with particular aspects of the invention, a method is provided for designing potential inhibitors of a galactosyltransferase comprising the step of using the structural coordinates of uracil, uridine, or UDP of Table 5, 6, or 7 to generate a compound for associating with the active site of a ligand binding domain of a galactosyltransferase. The following steps are employed in a particular method of the invention: (a) generating a computer representation of uracil, uridine, or UDP defined by structural coordinates of Table 5, 6 or 7; (b) searching for molecules in a data base that are similar to the defined uracil, uridine, or UDP using a searching computer program, or replacing portions of the compound with similar chemical structures from a database using a compound building computer program.

In another embodiment of the invention, a method is provided for designing potential inhibitors of a glycosyltransferase comprising the step of using the structural coordinates of UDP-Gal of Table 6, to generate a compound for associating with the active site of a galactosyltransferase. The following steps are employed in a particular method of the invention: (a) generating a computer representation of UDP-Gal defined by the structural coordinates of Table 6; (b) searching for molecules in a data base that are similar to the defined UDP-Gal using a searching computer program, or replacing portions of the compound with similar chemical structures from a database using a compound building computer program.

The screening methods of the present invention may be used to identify compounds or entities that associate with a molecule that associates with a galactosyltransferase enzyme (for example, a substrate molecule).

Compounds and entities (e.g. ligands) of a galactosyltransferase identified using the above-described methods may be prepared using methods described in standard reference sources utilized by those skilled in the art. For example, organic compounds may be prepared by organic synthetic methods described in references such as March, 1994, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, New York, McGraw Hill. (See detailed discussion herein.)

Test compounds and ligands which are identified using a model of the present invention can be screened in assays such as those well known in the art. Screening can be, for example, in vitro, in cell culture, and/or in vivo. Biological screening assays preferably centre on activity-based response models, binding assays (which measure how well a compound binds), and bacterial, yeast and animal cell lines (which measure the biological effect of a compound in a cell). The assays can be automated for high capacity-high throughput screening (HTS) in which large numbers of compounds can be tested to identify compounds with the desired activity. The biological assay,

20

15

ŝ

10

25

35

may also be an assay for the ligand binding activity of a compound that selectively binds to the ligand binding domain compared to other enzymes.

Ligands/Modulators

The present invention provides a ligand or compound or entity identified by a screening method of the present invention. A ligand or compound may have been designed rationally by using a model according to the present invention. A ligand or compound identified using the screening methods of the invention specifically associate with a target compound. In the present invention the target compound may be a galactosyltransferase or a molecule that is capable of associating with a galactosyltransferase (for example a substrate molecule). In a preferred embodiment the ligand is capable of binding to the ligand binding domain of a galactosyltransferase.

A ligand or compound identified using a screening method of the invention may act as a "modulator", i.e. a compound which affects the activity of a galactosyltransferase. A modulator may reduce, enhance or alter the biological function of a galactosyltransferase. For example a modulator may modulate the capacity of the enzyme to transfer a sugar from a nucleotide sugar donor to a specific hydroxyl of various saccharide acceptors that leads to the formation of a new glycosidic linkage. An alteration in biological function may be characterised by a change in specificity. For example, a modulator may cause the enzyme to accept a different substrate molecule, to transfer a different sugar, or to work with a different metal cofactor. In order to exert its function, the modulator commonly binds to the ligand binding domain.

A modulator which is capable of reducing the biological function of the enzyme may also be known as an inhibitor. Preferably an inhibitor reduces or blocks the capacity of the enzyme to form new glycosidic linkages. The inhibitor may mimic the binding of a substrate molecule, for example, it may be a substrate analogue. A substrate analogue may be designed by considering the interactions between the substrate molecule and the enzyme (for example by using information derivable from a model of the invention) and specifically altering one or more groups.

In a highly preferred embodiment, a modulator acts as an inhibitor of a galactosyltransferase and is capable of inhibiting N- or O-glycan biosynthesis.

The present invention also provides a method for modulating the activity of a galactosyltransferase within a cell using a modulator according to the present invention. It would be possible to monitor the expression of N-glycans on the cell surface following such treatment by a number of methods known in the art (for example by detecting expression with an N-and O-glycan specific antibody).

In another preferred embodiment, the modulator modulates the catalytic mechanism of the enzyme.

A modulator may be an agonist, partial agonist, partial inverse agonist or antagonist of a galactosyltransferase or a ligand binding domain.

The term "agonist" includes any ligand, which is capable of binding to a ligand binding domain and which is capable of increasing a proportion of active enzyme, resulting in an increased biological response. The term includes partial agonists and inverse agonists.

The term "partial agonist" includes an agonist that is unable to evoke the maximal response of a biological system, even at a concentration sufficient to saturate a specific ligand binding domain.

The term "partial inverse agonist" includes an inverse agonist that evokes a submaximal response to a biological system, even at a concentration sufficient to saturate a specific ligand binding domain. At high concentrations, it will diminish the actions of a full inverse agonist.

20

15

5

10

25

30

10

15

20

25

30

35

40

The invention relates to a galactosyltransferase ligand binding domain antagonist, wherein said ligand binding domain is that defined by the amino acid structural coordinates described herein. For example the ligand may antagonise the inhibition of galactosyltransferase by an inhibitor.

The term "antagonist" includes any agent that reduces the action of another agent, such as an agonist. The antagonist may act at the same site as the agonist (competitive antagonism). The antagonistic action may result from a combination of the substance being antagonised (chemical antagonism) or the production of an opposite effect through a different binding site (functional antagonism or physiological antagonism) or as a consequence of competition for the binding site of an intermediate that links the enzyme to the effect observed (indirect antagonism).

The term "competitive antagonism" refers to the competition between an agonist and an antagonist for a ligand binding domain that occurs when the binding of agonist and antagonist becomes mutually exclusive. This may be because the agonist and antagonist compete for the same binding site or combine with adjacent but overlapping sites. A third possibility is that different sites are involved but that they influence the same macromolecules in such a way that agonist and antagonist molecules cannot be bound at the same time. If the agonist and antagonist form only short lived combinations with the binding site so that equilibrium between agonist, antagonist and binding site is reached during the presence of the agonist, the antagonism will be surmountable over a wide range of concentrations. In contrast, some antagonists, when in close enough proximity to their binding site, may form a stable covalent bond with it and the antagonism becomes insurmountable when no spare receptors remain.

As mentioned above, an identified ligand or compound may act as a ligand model (for example, a template) for the development of other compounds. A modulator may be a mimetic of a ligand or ligand binding domain. A mimetic of a ligand may compete with a natural ligand for a galactosyltransferase and antagonize a physiological effect of the enzyme in an animal. A mimetic of a ligand may be an organically synthesized compound. A mimetic of a ligand binding domain, may be either a peptide, polysaccharide, oligosaccharide, or other biopharmaceutical (such as an organically synthesized compound) that specifically binds to a natural substrate molecule for a galactosyltransferase and antagonize a physiological effect of the enzyme in an animal.

Once a ligand has been optimally selected or designed, substitutions may then be made in some of its atoms or side groups in order to improve or modify its binding properties. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. It should, of course, be understood that components known in the art to alter conformation should be avoided. Such substituted chemical compounds may then be analyzed for efficiency of fit to a galactosyltransfease ligand binding domain by the same computer methods described above.

Preferably, positions for substitution are selected based on the predicted binding orientation of a ligand to a galactosyltransferase ligand binding domain.

A technique suitable for preparing a modulator will depend on its chemical nature. For example, organic compounds may be prepared by organic synthetic methods described in references such as March, 1994, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, New York, McGraw Hill. Peptides can be synthesized by solid phase techniques (Roberge JY et al (1995) Science 269: 202-204) and automated synthesis may be achieved, for example, using the ABI 43 1 A Peptide Synthesizer (Perkin Elmer) in accordance with the instructions provided by the manufacturer. Once cleaved from the resin, the peptide may be purified by preparative high performance liquid chromatography (e.g., Creighton (1983) Proteins Structures and Molecular Principles, WH

10

15

20

25

30

Freeman and Co, New York NY). The composition of the synthetic peptides may be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; Creighton, supra).

If a modulator is a nucleotide, or a polypeptide expressable therefrom, it may be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers MH et al (1980) Nuc Acids Res Symp Ser 215-23, Horn T et al (1980) Nuc Acids Res Symp Ser 225-232), or it may be prepared using recombinant techniques well known in the art.

Direct synthesis of a ligand or mimetics thereof can be performed using various solid-phase techniques (Roberge JY et al (1995) Science 269: 202-204) and automated synthesis may be achieved, for example, using the ABI 43 1 A Peptide Synthesizer (Perkin Elmer) in accordance with the instructions provided by the manufacturer. Additionally, the amino acid sequences obtainable from the ligand, or any part thereof, may be altered during direct synthesis and/or combined using chemical methods with a sequence from other subunits, or any part thereof, to produce a variant ligand.

In an alternative embodiment of the invention, the coding sequence of a ligand or mimetics thereof may be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers MH et al (1980) Nuc Acids Res Symp Ser 215-23, Horn T et al (1980) Nuc Acids Res Symp Ser 225-232).

A wide variety of host cells can be employed for expression of the nucleotide sequences encoding a ligand of the present invention. These cells may be both prokaryotic and eukaryotic host cells. Suitable host cells include bacteria such as *E. coli*, yeast, filamentous fungi, insect cells, mammalian cells, typically immortalized, e.g., mouse, CHO, human and monkey cell lines and derivatives thereof. Preferred host cells are able to process the expression products to produce an appropriate mature polypeptide. Processing includes but is not limited to glycosylation, ubiquitination, disulfide bond formation and general post-translational modification.

In an embodiment of the present invention, the ligand may be a derivative of, or a chemically modified ligand. The term "derivative" or "derivatised" as used herein includes the chemical modification of a ligand.

A chemical modification of a ligand and/or a key amino acid residue of a ligand binding domain of the present invention may either enhance or reduce hydrogen bonding interaction, charge interaction, hydrophobic interaction, Van Der Waals interaction or dipole interaction between the ligand and the key amino acid residue(s) of a galactosyltransferase ligand binding domain.

Preferably such modifications involve the addition of substituents onto a test compound such that the substituents are positioned to collide or to bind preferentially with one or more amino acid residues that correspond to the key amino acid residues of a galactosyltransferase ligand binding domain. Typical modifications may include, for example, the replacement of a hydrogen by a halo group, an alkyl group, an acyl group or an amino group.

The invention also relates to classes of modulators of galactosyltransferase based on the structure and shape of a substrate, defined in relation to the substrate's molecule's spatial association with a galactosyltransferase structure of the invention or part thereof. Therefore, a modulator may comprise a substrate molecule having the shape or structure, preferably the structural coordinates, of a substrate molecule in an active site binding pocket of a reaction catalyzed by a galactosyltransferase.

Modulators Based on the 3D Structure of a Nucleotide Sugar Donor

One class of modulators defined by the invention are compounds of the following formula I having the structural coordinates of uracil of Table 5, preferably Run 9, Cluster 1 or ATOM 1 to ATOM 9, inclusive of Table 7:

wherein R_1 and R_2 are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxy, hydroxyl, thiol, thioaryl, amino, halogen, carboxylic acid or esters or thioesters thereof, amines, sulfate, sulfonic or sulfinic acid or esters thereof, phosphate, pyrophophate, gallic acid, phosphonates, thioamide, and $-OR_{12}$ where R_{12} is alkyl, cycloalkyl, alkenyl, alkynyl, or heterocyclic ring;

and salts and optically active and racemic forms of a compound of the formula I.

Another class of modulators defined by the invention are compounds of the following formula II having the structural coordinates of uridine of Table 5, preferably Run 9, Cluster 1 or ATOMs 1 to 20 inclusive, of Table 7:

10

5

wherein R₁, R₂, R₃, R₄, and R₅ are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxy, hydroxyl, thiol, thioaryl, amino, halogen, carboxylic acid or esters or thioesters thereof, amines, sulfate, sulfonic or sulfinic acid or esters thereof, phosphate, pyrophosphate, gallic acid, phosphonates, thioamide, and -OR₁₂ where R₁₂ is alkyl, cycloalkyl, alkynyl, or heterocyclic ring,

15

and salts and optically active and racemic forms of a compound of the formula II.

Yet another class of modulators defined by the invention are compounds of the following formula III having the structural coordinates of UDP in Table 5, preferably Run 9, Cluster 1, or ATOMs 1 to 28 inclusive of Table 7:

wherein R₁, R₂, R₃, R₄, R₆, and R₁₁ are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxy, hydroxyl, thiol, thioaryl, amino, halogen, carboxylic acid or esters or thioesters thereof, amines, sulfate, sulfonic or sulfinic acid or esters thereof, phosphate, gallic acid, phosphonates, thioamide, and -OR₁₂ where R₁₂ is alkyl, cycloalkyl, alkenyl, alkynyl, or heterocyclic ring, R₆ may be a monosaccharide or disaccharide, preferably a monosaccharide, including galactose, glucose, and mannose,

and salts and optically active and racemic forms of a compound of the formula III.

Yet another class of modulators defined by the invention are compounds of the following formula IV having the structural coordinates of UDP-Gal in Table 6, preferably Run, Cluster 1:

$$R_{s}$$
 R_{10}
 R_{10}
 R_{10}
 R_{2}
 R_{10}
 R_{2}
 R_{3}
 R_{4}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{4}
 R_{5}

wherein R₁, R₂, R₃, R₄, R₇, R₈, R₉, and R₁₀ are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxy, hydroxyl, thiol, thioaryl, amino, halogen, carboxylic acid or esters or thioesters thereof (e.g. -CH₂OH), amines, sulfate, sulfonic or sulfinic acid or esters thereof, phosphate, gallic acid, phosphonates, thioamide, and -OR₁₂ where R₁₂ is alkyl, cycloalkyl, alkenyl, alkynyl, or heterocyclic ring, and X is a counter-ion including sodium, lithium, potassium, calcium, magnesium, manganese, cobalt ions and the like, as well as nontoxic ammonium, quaternary ammonium, and amine cations, preferably Mn²⁺,

and salts and optically active and racemic forms of a compound of the formula IV.

15

20

5

10

15

20

25

30

35

One or more of R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, and/or R₁₀ alone or together, which contain available functional groups as described herein, may be substituted with for example one or more of the following: alkyl, alkoxy, hydroxyl, aryl, cycloalkyl, alkenyl, alkynyl, thiol, thioalkyl, thioaryl, amino, or halo. The term "one or more" used herein preferably refers to from 1 to 2 substituents.

The present invention contemplates all optical isomers and racemic forms thereof of the compounds of the invention, and the formulas of the compounds shown herein are intended to encompass all possible optical isomers of the compounds so depicted.

The present invention also contemplates salts and esters of the compounds of the invention. In particular, the present invention includes pharmaceutically acceptable salts. By pharmaceutically acceptable salts is meant those salts which are suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art and are described for example, in S. M. Berge, et al., J. Pharmaceutical Sciences, 1977, 66:1-19.

Compositions and Methods of Treatment

The ligands and the modulators of the invention (e.g. inhibitors) may be used to modulate the biological activity of a galactosyltransferase in a cell, including modulating a pathway in a cell regulated by the galactosyltransferase or modulating a galactosyltransferase with inappropriate activity in a cellular organism.

The present invention thus provides a method for treating a condition in a subject regulated by a galactosyltransferase or involving inappropriate galactosyltransferase activity comprising administering to a subject an effective amount of a modulator identified using the methods of the invention. The invention still further relates to a pharmaceutical composition which comprises a three dimensional galactosyltransferase of the invention or a portion thereof (e.g. a ligand binding domain), or a modulator of the invention in an amount effective to regulate one or more of the above-mentioned conditions and a pharmaceutically acceptable carrier, diluent or excipient.

The invention also provides the use of a ligand or modulator according to the invention in the manufacture of a medicament to treat and/or to prevent a disease in a patient.

Inhibitors or antagonists of $\alpha 1,3$ -Gal transferase of the present invention may be particularly useful in reducing xenotransplant rejection in an animal patient. Xenograft tissue may be treated with, or derived from an animal that has been treated with an inhibitor to decrease $Gal\alpha(1,3)$ Gal epitopes on the xenograft tissue. This treatment will reduce or avoid an immune reaction between circulating antibodies in the transplant recipient reactive with the epitopes. Preferably the xenograft tissue is of pig origin and the xenograft recipient is a human. The xenograft tissue includes any tissue which expresses antigens having $Gal\alpha(1,3)Gal$ epitopes. The tissue may be in the form of an organ, for example a kidney, heart, lung, or liver, or it may be in the form of parts of organs, cell clusters, glands and the like (e.g. lenses, pancreatic islet cells, skin, and corneal tissue).

The modulators of the invention may be converted using customary methods into pharmaceutical compositions. The pharmaceutical compositions contain the modulators either alone or together with other active substances. Such pharmaceutical compositions can be for oral, topical, rectal, parenteral, local, inhalant, or intracerebral use. They are therefore in solid or semisolid form, for example pills, tablets, creams, gelatin capsules, capsules, suppositories, soft gelatin capsules, liposomes (see for example, U.S. Patent Serial No. 5,376,452), gels, membranes, and tubelets. For parenteral and intracerebral uses, those forms for intramuscular or subcutaneous administration can be used, or forms for infusion or intravenous or intracerebral injection can be used, and can

10

15

20

25

30

35

40

therefore be prepared as solutions of the modulators or as powders of the modulators to be mixed with one or more pharmaceutically acceptable excipients or diluents, suitable for the aforesaid uses and with an osmolarity which is compatible with the physiological fluids. For local use, those preparations in the form of creams or ointments for topical use or in the form of sprays should be considered, for inhalant uses, preparations in the form of sprays should be considered.

The pharmaceutical compositions can be prepared by <u>per se</u> known methods for the preparation of pharmaceutically acceptable compositions which can be administered to patients, and such that an effective quantity of the active substance is combined in a mixture with a pharmaceutically acceptable vehicle. Suitable vehicles are described, for example, in Remington's Pharmaceutical Sciences (Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa., USA 1985). On this basis, the pharmaceutical compositions include, albeit not exclusively, the modulators in association with one or more pharmaceutically acceptable vehicles or diluents, and contained in buffered solutions with a suitable pH and iso-osmotic with the physiological fluids.

The modulators may be indicated as therapeutic agents either alone or in conjunction with other therapeutic agents or other forms of treatment. By way of example, inhibitors may be used in combination with anti-proliferative agents, antimicrobial agents, immunostimulatory agents, or anti-inflammatories. The modulators may be administered concurrently, separately, or sequentially with other therapeutic agents or therapies.

The compositions containing modulators can be administered for prophylactic and/or therapeutic treatments. In therapeutic applications, compositions are administered to a patient already suffering from a condition as described above, in an amount sufficient to cure or at least alleviate the symptoms of the disease and its complications. An amount adequate to accomplish this is defined as a "therapeutically effective dose". Amounts effective for this use will depend on the severity of the disease, the weight and general state of the patient, the nature of the administration route, the nature of the formulation, and the time or interval at which it is administered.

In prophylactic applications, compositions containing modulators are administered to a patient susceptible to or otherwise at risk of a particular condition. Such an amount is defined to be a "prophylactically effective dose". In this use, the precise amounts depend on the patient's state of health and weight, the nature of the administration route, the nature of the formulation, and the time or interval at which it is administered.

The following non-limiting examples illustrate the invention:

Example 1

The modeling of bovine α -1,3-GalT was carried out using homology modeling procedures and α -1,3-GalT-ligand complexes were generated using automated docking procedures. These computational modeling approaches allow fairly reasonable predictions of three-dimensional structures of proteins and their complexes with substrates and ligands thereby offering a rational way of investigating structure-function relationships (12). The amino acid sequence of α -1,3-GalT was obtained from a publicly available sequence data bank (13).

Homology modeling. - The basic steps in the construction of a protein model based on a homologous structure are sequentially in the following order: amino acid sequence alignment, copying aligned coordinates, building loops, and refinement. The sequence alignment and secondary structure predictions were carried out using the Fold recognition server located at UCLA (14). The Molecular Simulations Inc. collection of programs was used for all protein modeling (15-17). The template structure chosen was the three-dimensional crystal structure (9) of SpsA determined at a resolution of 1.5 Å. The initial alignment of α -1,3-GalT and SpsA transferase sequences was obtained using the pair-wise alignment with the HOMOLOGY program (15). Multiple alignment of amino acid sequences was

10

15

20

25

30

35

performed using the Needleman and Wunch method (18). This method is capable to provide an optimum alignment of two sequences that represents the best overall balance between the number of good amino acid matches and the least number of required gaps. When necessary, the initial pair-wise sequence alignments were manually modified to obtain structure-oriented alignments. After creating the alignment, the coordinates of the homologous regions were transferred from the SpsA structure to the bovine α -1,3-GalT using the MODELER program (16). The geometry of the generated model was then locally optimized to remove steric side-chain clashes. The builder module of the InsightII program (17) was used to add hydrogen atoms to the enzyme and assign partial charges.

Docking. - Structures of α -1,3-GalT complexes with UDP, UDP-Gal, and a recently design inhibitor (19) were

determined using the AutoDock suite of programs (20), which finds favorable docked configurations for a ligand in a protein-binding site starting from in an arbitrary conformation, orientation and position of a ligand molecule. AutoDock combines conformational search methods such as genetic algorithm and stochastic algorithm with a grid based energy calculation using molecular mechanics type force field, including electrostatic, hydrogen bonding, dispersion/repulsion, and solvation and entropic terms. The overall interaction between the enzyme and ligands were computed using the Amber-like force field as implemented in AutoDock (20). A Mn2+ cation position was located, based on the SpsA structure, near the side chain of the Asp227, which belongs to the aspartate-valine-aspartate (DVD) sequence motif. An aspartate-any residue-aspartate (DXD) or the aspartate-any residue-histidine (DXH) motif is common to many glycosyl transferases (21) and is involved in binding metal cations as well as its substrate. Water molecules were not considered in these computations. Positions of all protein atoms were fixed during the docking. The dihedral angles of all ligands were optimized while bond lengths and bond angles were restrained to standard values. Starting structure of UDP was obtained from SpsA-UDP complex and the UDP-Gal was generated using InsightII (17). The conformation of the ribose, galactose and uracil rings were fixed during the docking. In the present work a genetic algorithm was used as the search method. One hundred docking runs were performed for generating complexes of α -1,3-GalT with each of the chosen ligands. For each docking simulation, the population size was set to 50 and 27,000 generations were run. The docked models are clustered using a root mean square tolerance value of 1.5 Å. This approach has been successfully used for a wide variety of structural problems and has been fully described elsewhere (20).

Results and Discussions

Homology model of α -1,3-GalT. - The amino acid sequence alignment of α -1,3-GalT with SpsA and homologous proteins are shown in Figure 1. The highest scoring alignment shows about 40% similarity and 20% identity (45 amino acids are identical). The amino acid residues of SpsA that interact with UDP or located within the UDP binding site are underlined. A clear sequence similarity can be noticed at the active site regions of SpsA and the corresponding aligned residues of α -1,3-GalT. In this figure it can be seen that the residues are well conserved in the region that encompasses the putative UDP binding pocket of SpsA. Table 3 shows the predicted secondary structures for the α -1,3-GalT sequence that was used for generating a homology model of α -1,3-GalT.

The homology model of α -1,3-GalT consists of two compact domains. The predicted N-terminal domain has about 100 residues starting at Gln-125 and ends at Gln-231 and the C-terminus domain has the remaining modeled residues. Figure 2 shows a superposition of the α -1,3-GalT model (blue) and the corresponding SpsA structure (magenta). The amino acid residues of SpsA that interact with the UDP ligand are shown as tubes. The corresponding amino acid residues of α -1,3-GalT are shown as thin tubes. In addition to this overlap at the active site, several exo-

site residues are homologous and placed in similar positions in the three-dimensional space. It can be seen from Figure 2 that the modeled α -1,3-GalT is a compact structure similar to that of SpsA. The overall size of the model of α -1,3-GalT is about 50 Å x 45 Å x 40 Å. The (ϕ, ψ) angles of the constructed model are well within the allowed region of the Ramachandran maps (22). The UDP binding site is identified at the cleft between the strands of conserved residues and an alpha helix within this domain. This site is very deep and is highly electronegative in nature. The active site consists of an open α,β-sandwich made up of three helices packed against four standard βsheets. The general topology of the modeled α-1,3-GalT resembles those of GnT I and SpsA with the secondary structural elements similarly arranged in space. The following amino acid residues have been identified to be part of the UDP docking pocket of α-1,3-GalT: Phe-134, Tyr-139, Ile-140, Val-136, Arg-194, Arg-202, Lys-209, Asp-173, His-218, Thr-137, Asp-225, Val-226, and Asp-227. The modeled catalytic domain has a core structure common to most of the known transferases (9-11). Moreover, amino acid residues that are involved in the UDP-Gal recognition and in the catalytic mechanism are homologous both in sequence and spatial relationship. As a consequence, the overall electrostatic property of the active site of the α-1,3-GalT is highly comparable with the UDP binding sites of GnTI and SpsA. Thus, the present analysis suggests that although the sequence homologies of SpsA, GnT I and α-1,3-GalT are relatively low, they have a structurally conserved framework of about 100 residues that specifically recognize UDP.

Complex of α -1,3-GalT with UDP and UDP-Gal. – In the GnT I, SpsA, and β 4Gal T1 structures (9-11), the above-described architecture of the secondary structure elements specifically recognizes UDP. In these X-ray structures, a conserved aspartate (Asp39 in SpsA and Asp144 in GnT I) generally interacts though the hydrogen bond interaction with the carbonyl at the 4th position of the uracil ring. The carbonyl at the 2nd position of the uracil favors charge interactions with the conserved His residue that resides at the bottom of the UDP pocket. The ribose ring packs with the conserved hydrophobic residue (Thr-9 in SpsA and Ile-113 in GnT I) that is located at the bottom of the pocket. In the model of α -1,3-GalT, the metal binding site is located at one of the β -strands that contains the conserved DVD (Asp-225, Val-226 and Asp227) motif. These conserved residues are assumed to be located in the vicinity of the pyrophosphate-binding region. The C-terminal portion of the model has a confined groove, which has a stretch of charged residues. The docking studies described below suggest that this region can specifically recognize inhibitors, which are designed based on the acceptor substrate model (19).

Simulation of the α -1,3-GalT-UDP complexes, using an automated docking procedure led to several complex structures that represent different binding modes of UDP, which were clustered to nine groups. Analysis of results revealed that in about 80% of the docking calculations, the UDP binds at the well-defined pocket located at the DVD motif. The low energy docking modes of UDP to the α -1,3-GalT are shown in Figure 3. The α -1,3-GalT structure is presented in ribbon form and the amino acid residues that directly interact with UDP are labeled. Five top ranking clusters are characterized in Table 2 together with the computed binding energy and the estimated inhibition constant. Possible intermolecular contacts in the lowest energy complex are listed in Table 1. In the top three clusters, UDP binds in the deep pocket generally in a similar conformation. This is illustrated in Figure 3, where the preferred binding mode is shown as a thick blue tube. Three hydrogen bonds that are possible between the uracil and α -1,3-GalT characterize this binding mode. These are (1) the amide hydrogen of uracil in position 3 and OD1 of Asp-168, (2) the carbonyl oxygen of uracil in position 4 and the side chain of Lys-204, and (3) the carbonyl oxygen of uracil in position 2 and the amide hydrogen of the His-213 side chain. The hydroxyl groups at the 2 and 3 positions of the

10

15

20

25

30

ribose ring forms three hydrogen bonds with the Asp-225 side chain oxygens. The pyrophosphate oxygens interact with the Asp-227 side chain through the metal ion. Apart from these hydrogen bond interactions many favorable hydrophobic interactions are possible between the uridine and the protein. It is clear from Table 1 that the bound UDP generally favors interactions with conserved amino acid residues of the enzyme. However, some of the residues that do not interact directly with UDP but lie in the close vicinity of the UDP docked region are Tyr-139, Ile-140, Val-136, Arg-194, Asp-197, Ile-198, Arg-202, Lys-204, His209 and His-213. It is noteworthy that some of these residues such as Tyr139, Asp-197 are conserved across various species (8). It is possible that these active site side chains may be involved in direct binding interactions with UDP.

The lowest energy cluster consists of about 30% of all the docking runs. The analysis of the other low energy clusters that represent about 70% of docked structures clearly shows that many of the docking modes were very close to the lowest energy-binding mode. However, small variations in the nature of local interactions between the pyrophosphate part and the enzyme were observed. It can be seen from Figure 3 that the 5 and 6 positions of the uracil ring are exposed to the solvent and the remaining positions of the uracil fragment are in contact with the protein.

The structure of the UDP-Gal complex with α -1,3-GalT has been generated using the approach described above. Figure 4 shows the low energy binding modes of this complex. The comparison of the α -1,3-GalT complexes with UDP and UDP-Gal reveals that the uridine portion of the UDP-Gal assumes a similar binding orientation as in the case of the α -1,3-GalT-UDP complex. These results suggest that the addition of the galactopyranose residue to UDP does not alter the binding mode of the uridine, which is tightly bound in the active site. On the contrary, the pyrophosphate is more flexible and its conformation alters upon addition of this monosaccharide unit to the UDP. These data indicate that the design of an inhibitor based on the docking sites of pyrophosphate and donor sugar group fragments of UDP-Gal should consider the possible conformational flexibility of the pyrophosphate group and the corresponding diversity associated with binding interactions.

In the crystal structure of the complex of SpsA with UDP, the UDP is bound at the active site of the enzyme (8). The uracil ring of the bound UDP is placed into the cavity where its carbonyl and amide hydrogens form two hydrogen bonds with side-chains of Arg-71 and Asp-39, respectively. Apart from these hydrogen bond interactions, a favorable stacking interaction between the uracil ring and side chain of Tyr-11 is possible. A strong hydrogen bond interaction is possible between the hydroxyl of ribose in the position 3 and the side chain oxygen of Asp-99. The pyrophosphate conformation is confined to a particular orientation due to the favorable charge interactions with the bound metal ion. Unligil et al (10) has solved a structure of GnT I complexed with UDP-GlcNAc at 1.5 Å resolution. In this crystal structure of the GnT I complex, the uracil ring favors a similar interaction, as observed in the SpsA complex, with the nucleotide binding domain residues consisting of a Lys and an Asp. The ribose portions of the UDP bind into the hydrophobic rich region of the GnT I and thereby gains a stacking energy. Thus, these two structures possess a clear structural and sequence similarity at the UDP binding pocket. However, overall there is no sequence homology between the two proteins. The bound UDP conformation is very similar in these structural complexes. These data suggest that amino acid conservation at the UDP binding pocket is important for the precise recognition of UDP ligands. The homology model of α-1,3-GalT contains these critical amino acids at the identified pocket of the enzyme (Figures 2 and 3). The top ranking docked complexes are in agreement with reported X-ray structures of glycosyltransferases (7, 9, and 11). This suggests that a part of the substrate binding pocket in glycosyltrasferases is specifically tailored to bind UDP. It is evident from the computed docking models that the binding modes of UDP

10

15

20

25

30

35

generally favor a standard type of interaction with the enzyme. In the predicted low energy complexes of UDP and UDP-Gal with α -1,3-GalT, the DVD motif of the enzyme interacts with pyrophosphate through the modeled metal cation.

Binding mode of an inhibitor to α -1,3-GalT

Recently, an inhibitor based on the acceptor of α -1,3-GalT has been designed (19). This compound has a disaccharide linked to a bromine substituted naphthamide ring. It has been shown that the removal of the terminal sugar unit in this inhibitor does not inhibit α -1,3-GalT, but instead inhibits β -1,4-GalT. Thus, the determination of the binding mode of this inhibitor to α -1,3-GalT might provide a stereochemical explanation for the observed binding affinities. Using the above described docking procedure, this synthetic inhibitor was docked to the surface of α -1,3-GalT. Docking simulations produced two distinct favorable regions for this molecule located in the active site of the enzyme. In the one, the inhibitor occupies the UDP binding site. Generally, in this low energy binding mode the inhibitor is placed well in the uridine pocket. The second largest cluster of conformations is located at the acceptor site. Figure 5 shows the computed binding mode of the inhibitor at the acceptor-binding region of the protein. In this binding mode, the terminal saccharide binds close to the Asp-227 side chain and the bulky aromatic group of the inhibitor interacts with the side chain of of Ile-283. The bromide atom is located close to the side chain of Asp-227 and the naphthamide ring is placed on the top of Met-224 side chain. It can be seen that the inhibitor not only occupies the acceptor-binding region of the protein but also has considerable interactions at the donor site of the enzyme. Thus, these predicted binding modes of inhibitor could explain its inhibitory activity.

Figures 6 to 9 also show models of α -1,3-GalT and ligand binding domains of the enzyme.

Conclusions

5

10

15

20

25

30

35

Using a combination of homology modeling and molecular docking approaches, the α -1,3-GalT structure and its complexes with UDP, UDP-Gal, and a synthetic inhibitor have been modeled. The predicted N-terminal domain of the of the α -1,3-GalT has about 100 residues that start at Gln-125 and end at Gln-131. The overall secondary structure arrangements, amino acid properties, spatial arrangement of critical amino acid residues and size of this domain are highly comparable with other GnT structures. The predicted pocket on this domain surface of α -1,3-GalT specifically recognizes UDP in a unique binding mode. Structural analysis and comparative studies of the modeled binding site with the GnT I and SpsA structures suggested the high degree of similarity at the UDP binding pocket. This implies a possible structural homology in glycosyltransferases in spite of their low sequence identity and homology. Thus the modeled bovine structure of α -1,3-GalT provides a framework to better understand the functional and structural similarities between galactosyltransferases.

While the present invention has been described with reference to what are presently considered to be the preferred examples, it is to be understood that the invention is not limited to the disclosed examples. To the contrary, the invention is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

All publications, patents and patent applications are herein incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety.

References

15

25

30

- 1. Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 1993; 3: 97-130.
- 2. Montreuil J, Vliegenthart JFG, Schachter H. Glycoproteins and Disease; Neuberger A. and van Deenen LLM, editors. Amsterdam: Elsevier; 1995. Vol. 30.
- 5 3. Paulson JC, Colley KJ. Glycosyltransferases structure, location, and control of cell type-specific glycosylation. J Biol Chem 1989; 264: 17614-17618.
 - 4. Campbell JA, Davies G J, Bulone V, Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 1997; 326: 929-942.
- 5. Chen X, Andreana PR, Wang PG. Carbohydrates in transplantation. Curr Opinion Chem Biol 1999; 3: 650-658.
 - 6. Galili U. 1992. In Bona C, Kaushik AK. editors, Molecular Immunobiology of Self-Reactivity. Marcel Dekker, Inc., New York, NY, pp. 355-373.
 - Vrielink A, Ruger W, Driessen HPC, Freemont PS. Crystal structure of the DNA modifying enzyme β-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J 1994; 13: 3413-3422.
 - 8. Imberty A, Monier C, Bettler E, Morera S, Freemont P, Sippl M, Flockner H, Ruger W, Breton C. Fold recognition study of α3-galactosyltransferase and molecular modeling of the nucleotide sugar-binding domain. Glycobiology 1999; 9: 713-722.
- 9. Charnock SJ, Davies GJ. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry 1999; 38: 6380-6385.
 - 10. Gastinel LN, Cambillau C, Bourne Y. Crystal structures of the bovine β4galactosyltransferase catalytic domain and its complex with uridine diphosphogalactose. EMBO J 1999; 18: 3546-3557.
 - 11. Unligil UM, Zhou S, Yuwaraj S, Sarkar M, Schachter H, Rini JM. X-ray crystal Structure of rabbit N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily. EMBO J 2000; 20: 5269-5280.
 - 12. Zemla A, Venclovas C, Moult J, Fidelis K. Processing and analysis of CASP3 protein structure predictions. Proteins Suppl 1999; 3: 222-9;
 - 13. http://www.ncbi.nlm.nih.gov:80/entrez
 - 14. Rice D, Fischer D, Weiss R, Eisendberg D. (1997). Fold assignments for amino acid sequences of the CASP2 experiment. Proteins Suppl 1: 113-22; http://fold.doe-mci.ucla.edu.
 - 15. HOMOLOGY, User Guide, 1997, San Diego MSI, 1997.
 - 16. MODELER, User Guide, 1997, San Diego MSI, 1997.
 - 17. Insight II, User Guide, 1997, San Diego MSI, 1997.
- 18. Needlman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 1970; 48: 443-453.
 - 19. Chung S, Takayama S, Wong C. Acceptor substrate-based selective inhibition of galactosyltransferases. Bioorg Med Chem 1998; 8: 3359-3364.
 - 20. Morris GM, Goodsell DS, Hallidy RS, Huey R, Hart WE, Belew RK, Olson A.J. Automated Docking Using a Lamarckian Genetic Algorithm and Empirical Binding Free Energy Function. J Comput Chem 1998; 19: 1639-1662.

40

5

- 21. Hagen FK, Hazes B, Raffo R, deSa D, Tabak LA. Structure-function analysis of the UDP-N-acetyl-d-galactosamine: polypeptide N-acetylgalactosaminyltransferase. J Biol Chem 1999; 274: 6797-6803.
- 22. Ramkrishnan C, Ramachandran GN. Stereochemical criteria for polypetide and protein chain conformations. II. Allowed conformations for a pair of peptide unit. Biophys J 1965; 5: 909-933.

Table 1
Atomic Interactions between GalT and UDP

Atomic	Atomic	Atomic Contact	Distance Between	Nature of
Interaction	Contact on UDP	on GalT	Atomic Contacts	Interaction
			on GalT and UDP	
1	Uracil NH	Asp-168 OD1	2.1 ± 0.5	НВ
2	Uracil O1	Lys-204 HZ1	3.0 ± 0.5	HB
3	Uracil 02	His-213 NE2	2.7 ± 0.5	HB
4	Uracil Ring	Phe 134 Ring	4.2 ± 0.5	HP
5	Ribose OH2	Asp-225 OD2	2.2 ± 0.5	НВ
6	Ribose OH3	Asp –225 OD2	2.5 ± 0.5	HB
7	Ribose ring	Leu 131	4.1 ± 0.5	HP
8	Ribose Ring	Ile-210	4.0 ± 0.5	HP
9 -	O1a (Diphosphate)	Asp-225 OD2(Mn)	4.6 ± 0.5	MM
10	Ola (diphosphate)	Asp-227 OD2(Mn)	4.5 ± 0.5	MM
11	O2b (diphosphate)	Asp-227 OD2(Mn)	5.1 ± 0.5	MM .

5

HB: hydrogen bond interaction

MM: metal mediated interaction

HP: hydrophobic interaction

 $Table\ 2$ Characterization of the Top Five Binding Modes of UDP to the $\alpha\text{-}1\text{,}3\text{-}GalT$

2	,	,

Cluster Rank	Number of Conformers in Cluster	Computed Free energy in Kcal/mol	Calculated inhibition constant in µM
1	30	-8.72	0.40
2	24	-8.42	0.60
3	16'	-8.18	1.00
4	6	-7.63	2.50
5	7	-7.54	2.90

Table 3

alphagt

PHD prediction:

	•			
	detail:	Rel	sec sec	, 1, 2, 3, 4, 5, 6 MNVKGKVILSMLVVSTVIVVFWEYIHSPEGSLPWINPSRNPEVGGSSIOKGMWLPRWFNN ERREEBEEEEEEEEEEEEE
		prE	sec sec	000000000000000000000000000000000000
	subset:	-	sec sec	996432100000111111000011268877621001466754476765566555566667 LL ERBESEEREEREEREERELLLY. SPEER., LL LLL. L LLLLL
	ACCESSI	BILI	ľΥ	
	3st:		āCC	eebebebbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
	10st:		acc	97070500000000000000002060970000000005007006700577200650077
		Rol	acc	1551641779865576498879500310241445682221214220301133011110243
	subset:	SUB	acc	ee.eb.abababababbabbbbe.ddddda.e.e.
		AA PHD	sec	,789101112 GYHEEDGDINEEKEQRNEDE.SKLKLSDWFNPFKRPEVVTMTKWKAPVVWEGTYNRA EEEEE EEEEE HH
		Rel		263322265433522467767778887544555989999268886267713661255527
	detail:			100012002012012010010010010010000000000
		Hra	sec	11111111122332342111211100001121110000000000
		prE		0133333100000000000000000001221111000000478887411156774322116
		prL		86555456665565567777777888766566989899521011578843124566631
	subset:			LLLLLLL.LLLLLLLLLLLLLLLLLLLLLL
	ACCESSI	BILIT	PΥ	
	3st:	P_3	acc .	bbbbbbeeeecbeeeeeeeeeeeebebbebb eee eebbbbbebcbebbbbbb bb
	10st:	PHD	acc	00000067777077677767776770600700579958700000626060007004500
		Rel	acc	210200133340351444144431450220401144513545241101313434201114
	subset:	SUB	acc	b.ee.eee.eee.eeeeeeeebb.bb.eb
				,
		AA		VLDNYYAKQKITVGLTVFAVGRYIEHYLEEFLTSANKHFMVGHPVIFYINVDDVSRMPLI
		PHD		HHHHHHHHESES EEEEEEHHHHHHHHHHHHHHHHHHEEEEEBEEEEEEE
		Rel	sec	89999565214740586752259999999999853215544459999997177788246
	detail:			
		bill		88998676431000000002579999999999865432111000000000000100000
		prE		0000000123676468787400000000000000146666668999997510000367
		bxr		000002222221242111133200000000000123321122220000001488888522
	subsec:	SUB	sec	HHHHHHHHS EEEEEHHHHHHHHHHHHHHHEEBEEEEEEE.LJLLLE
	ACCESSIE	• •	225	
•	ACCESSIE		-	There where while the transfer of the state
	35t: 10st:	P_3 PHD		bee bbeeebbbbbbbbbbbbbbbbbbbbbbbbbbbbb
	TOSU:			007740077700000000006006006000760060076000000
	aubech:	Rel		554410143530507473781228103651542043025452228894874301213135
	subset:	೨೮೮	acc	bbeee.e.b.bbb.bbbbe.bbb.bbbbbb
		AA.		,19,20,21,22,23,24
		PHD	560	ELGPLRSFKVFKIKPEKRWQDISMMRMKTIGEHIVAHIQHEVDFLFCMDVDQVFQDKFGV
		Rel		EE EEEEEE HHHHHHHHHHHHHHHHHHHHHHEEEEEEEE
	detail:	17627	5 6 C	54878514888861543458799999999988764223578998434112157552
		prH	esa l	0.000.001.000.0001.276600000000000000000000000000000000000
		prE		000000100000001236688888899987889988775422110000011232110100
		pri		76111246888874200000000000000000000112245678888655322321123
	subset:			238886431011146653211000000002100001112322210001232344467665
	245560	300	255	E.LLL., EEEEE.LHRHHHHHHHHHHHHHHHHHHHHHHHHHHHH

```
ACCESSIBILITY
       P_3 acc
              3st:
              60074500600706777607700005060007000000606000000060650067500 \ell
10st:
       PHD acc
       Rel acc
              13030212245442346313354232721634294306211505586304122313121:
subset: SUB acc
                .....b.beb..ec...bd..d..b.e.dd..d...b..beb..b.....l
               ...,.....25...,....26...,....27...,....28...,...29...,....
       AA.
              ETLGESVAQLQAWWYKADPNDFTYERRKESAAYIPFGEGDFYYHAAIFGGTPTQVLNIT(
       PHD sec
              ЕЕ НИНПИННИННИН
                                      EE
                                               ĒĒEEEEE
                                                         нинниння
                              ннннн
       Rel sec
              231356899887643138831133211122342214767456787613897458888885
detail:
       prH sec
              013577889887765320134455433433321110000111000111001668888888
       prE sec
              55300000000012322000011122100012454211126778774200000000000
       prL sec
              333321100001111358864333344455553346777621101135898321111100
subset: SUB sec
              ACCESSIBILITY
3st:
       P_3 acc
              10st:
       PHD acc
              60007000605000070577706575676000006697050000000099506600.6006.
       Rel acc
              235043452513030401464221512712241510340151249632531011711512
subset: SUB acc
              ..,...31...,...32...,....33...,....34...,...35...,...3
              ECFKGILKDKKNDIEAQWHDESHLNKYFLLNKPTKILSPEYCWDYH.IGLPADIKLVKMS
                                HHHHEEEEE EE
       PHD sec
              нинниннин
                         EEE
                                                 ннннн
                                                        HHH EEEE
      Rel sec
              999999754246621332352111134555388513174220234432452111216788
detail:
      prH sec
              999999766521121111223444452222100000001334455553213443221100
      prE sec
              000000111000034553200001115666510245412111212111111112337788
       prL sec
              000000112467744325565544421101288643586444332224564443431000
subset: SUB sec
              HHHHHHHH...LL.....EEE.LLL...L....EEEE
ACCESSIBILITY
3st:
      P_3 acc
              10st:
       PHD acc
              700700067677607000577750570000777670007720070000060006000600
      Rel acc
              464512214154025700133323140340463150134515130154021204236241
subset: SUB acc
              ...,....37...,....38...,....39...,...,40...,....41...,....42
              WOTKEYNVVRMNV
      AA
      PHD sec
              EE
             6323432215799
      Rel sec
detail:
      prH sec
              0122232221100
      prE sec
              7531112231000
      prL sec
              1345654446799
subset: SUB sec
              E....LLLL
ACCESSIBILITY
3st:
      P_3 acc
              be ee ebbeeee
      PHD acc
10st:
              0657736006799
              1206411242333
      Rel acc
subset: SUB acc
              |...ee...b...
```

5

- 41 -

TABLE 4

	ATOM		1	n ^	GLN	129		-4.878	33.589	36.449
5	ATOM		2	HN1	GLN	129		-4.249	34.321	36.811
5	ATOM		3	HN2	GLN	129		-4.600	33.343	35.488
			4	CA	GLN	129		-4.790	32.431	37.282
	MOTA MOTA	•	5	HA	GLN	129		-5.554	32.501	38.056
			6	CB	GLN	129		-5.062	31.113	36.543
10	ATOM									
10	MOTA		7	HB1		129		-4.999	30.257	37.215
	MOTA	•	.8	HB2	GLN	129	•	-4.343	30.949	35.740
	MOTA		9	CG,	GLN	129		-6.456	31.098	35.916
	ATOM		10	HG1	GLN	129		-6.680	30.069	35.633
	MOTA		11	HG2	GLN	129		-6.432	31.752	35.044
15	MOTA		12	CD	GLN	129		-7.437	31.609	36.963
	MOTA		13	OE1	GLN	129		-7.663	30.975	37.993
	MOTA		14	NE2	GLN	129		-8.032	32.803	36.697
	ATOM		15	HE2	GLN	129		-7.816	33.303	35.822
	ATOM		16	HE2	GLN	129		-8.700	33.208	37.369
20	MOTA		17	·C	GLN	129		-3.430	32.389	37.898
	ATOM		18	0	.GLN	129		-2.451	32.890	37.347
	MOTA		19.	N	LYS	130		-3.379	31.794	39.100
	MOTA		20	HN	LYS	130		-4.252	31.369	39.444
•	ATOM		21	CA	LYS	130		-2.232	31.691	39.951
25	ATOM		22	HA	LYS	130		-1.740	32.653	40.094
	ATOM		23	CB	LYS	130		-2.600	31.151	41.342
•	MOTA		24	HB1	LYS	130		-1.751	31.131	42.021
			25	HB2	LYS	130		-3.039	30.153	41.325
	MOTA									42.090
20	ATOM		26	CG	LYS	130		-3.620	32.014	
30	MOTA		27		LYS	130		-3.849	31.529	43.039
	MOTA		28	HG2	LYS	130		-4.516	32.095	41.475
	MOTA		29	CD	LYS	130		-3.137	33.432	
	MOTA		30	HD1	LYS	130		-3.945	34.135	42.598
	MOTA		31		LYS	130		-2.565	33.884	41.586
35	MOTA		32	CE	LYS	130		-2.224	33.518	43.622
	ATOM		33	HE1	LYS	130		-2.626	32.907	44.430
	MOTA		34	HE2	LYS	130		-2.152	34.551	43.962
	MOTA		35	NZ	LYS	130		-0.869	33.030	43.278
	ATOM		36	HZ1	LYS	130		-0.261	33.091	44.107
40	ATOM		37	HZ2	LYS	130		-0.925	32.050	42.965
	ATOM		38	HZ3	LYS	130		-0.477	33.609	42.521
	MOTA		39	С,	LYS	130		-1.201	30.759	39.397
	ATOM		40	0	LYS	130		-0.005	30.974	39.587
	ATOM		41	N	ILE	131	•	-1.619	29.692	38.694
45	ATOM		42	HN	ILE	131		-2.598	29.601	38.388
	ATOM		43	CA	ILE	131		-0.643	28.688	38.389
	ATOM		44	HA	ILE	131		0.116	28.575	39.162
	ATOM		45	CB	ILE	131		-1.212	27.300	38.320
	ATOM		46	HB	ILE	131		-1.745	27.101	39.250
50	MOTA		47	CG2	ILE	131		-2.172	27.231	37.122
50	ATOM		48	HG2	ILE	131		-2.597	26.230	37.054
			49	HG2				-2.973	27.957	37.054
	MOTA				ILE	131				
	MOTA		50	HG2	ILE	131		-1.627	27.458	36.206
~ ~	ATOM		51	CG1		131		-0.082	26.256	38.292
55	MOTA		52	HG1	ILE	131		0.695	26.441	39.033
	MOTA		53		ILE	131		0.438	26.208	37.335
	MOTA		54	CD1	ILE	131		-0.566	24.832	38.560
	MOTA		55	HD1	ILE	131		0.281	24.147	38.526
	MOTA		56	HD1	ILE	131		-1.030	24.785	39.545
60	ATOM.		57	HD1	ILE	131		-1.294	24.546	37.802
	ATOM		58	С	ILE	131		0.108	28.958	37.133
	MOTA		59	0	ILE	131		-0.444	29.257	36.075
	ATOM		60	N	THR	132		1.443	28.868	37.270
	MOTA		61	HN	THR	132		1.826	28.697	38.211
65	MOTA	•	62	CA	THR	132		2.359	28.998	36.182
	MOTA		63	ΉA	THR	132		1.727	29.134	35.304
	MOTA		64	CB	THR	132		3.354	-30.109	36.364
	111 013			20				3.334	55.205	

	MOTA	65	HB THR	132		2.812	21 041	36 505
	MOTA	· 66	OG1 THR	- 132		4.162	31.041	36.525
	ATOM	67	HG1 THR	132			30.248	35.205
		68				4.271	31.247	34.980
5	MOTA	69	CG2 THR HG2 THR	132		4.232	29.788	37.584
ر	ATOM			132		4.960	30.586	37.729
	MOTA	70	HG2 THR	132		3.606	29.703	38.472
	ATOM	71	HG2 THR	132		4.755	28.846	37.418
	MOTA	72	C THR	132		3.127	27.718	36.179
	ATOM	73	O THR	132		3.437	27.174	37.238
10	ATOM	74	N VAL	133		3.424	27.170	34.989
	MOTA	75	HN VAL	- 133		3.112	27.603	34.109
	MOTA	. 76	CA VAL	133		4.191	25.963	34.990
	MOTA	77	HA VAL	133		4.260	25.629	36.026
	MOTA	78	CB VAL	133		3.579	24.853	34.180
15	MOTA	79	HB VAL	133		3.467	25.193	33.150
	MOTA	80	CG1 VAL	133		4.509	23.630	34.237
	ATOM	81	HG1 VAL	133		4.077	22.817	33.653
	MOTA	82	HG1 VAL	133		5.483	23.894	33.826
	ATOM	83	HG1 VAL	133		4.627	23.310	35.272
20	ATOM	84	CG2 VAL	133		2.171	24.570	
	ATOM	85	HG2 VAL	133				34.735
	ATOM					1.708	23.768	34.162
·		86	HG2 VAL	133		2.245	24.273	35.781
	MOTA	87	HG2 VAL	133		1.561	25.471	34.657
26	MOTA	88	C VAL	133		5.534	26.296	34.425
25	MOTA	89	O VAL	133		5.641	26.933	33.380
	MOTA	90	N GLY	134		6.606	25.880	35.122
	MOTA	91	HN GLY	134		6.480	25.331	35.984
	MOTA	- 92	CA GLY	134		7.924	26.201	34.664
	ATOM	. 93	HA1 GLY	134		8.466	26.642	35.501
30	ATOM	94	HA2 GLY	134		7.825	26.909	33.841
	MOTA	95	C GLY	134		8.565	24.937	34.214
	MOTA	96	O GLY	134		8.578	23.936	34.928
	MOTA	97	N LEU	135		9.135	24.962	33.001
	ATOM	98	HN LEU	135		9.132	25.827	32.441
35	MOTA	99	CA LEU	135		9.745	23.777	32.495
	ATOM	100	HA LEU	135		9.529	22.955	33.178
	MOTA	101	CB LEU	135		9.288	23.401	31.082
	ATOM	102	HB1 LEU	135		9.436	24.224	30.383
	MOTA	103	HB2 LEU	135		8.230	23.142	
40	ATOM	104	CG LEU	135		10.068		31.061
	ATOM	105	HG LEU	135			22.194	30.542
	ATOM	106		135		11.124	22.437	30.425
	ATOM					9.638	21.839	29.113
		107	HD2 LEU	135		10.211	20.980	28.764
45	ATOM	108	HD2 LEU	135		8.576	21.595	29.102
43	ATOM	109	HD2 LEU	135		9.822	22.689	28.456
	MOTA	110	CD1 LEU	135		9.956	21.005	31.498
	ATOM	111	HD1 LEU	135		10.516	20.161	31.095
	MOTA	112	HD1 LEU	135		10.364	21.280	32.470
	ATOM	113	HD1 LEU	135		8.908	20.725	31.610
50	ATOM	114	C LEU	135		11.215	23.999	32.405
	ATOM	115	O LEU.	135		11.682	25.098	32.119
	MOTA	116	N THR	136		11.994	22.945	32.698
	ATOM	117	HN THR	136	•	11.563	22.078	33.052
	MOTA	118	CA THR	136		13.413	23.007	32.527
55	ATOM .	119	HA THR	136		13.609	24.037	32.229
	MOTA	120	CB THR	136		14.187	22.632	33.762
	ATOM	121	HB THR	136		15.253	22.703	
	ATOM	122	OG1 THR	136		13.233		33.546
	ATOM	123	HG1 THR				21.296	34.144
60	ATOM	123		136		12.992	21.271	34.641
00			CG2 THR	136		13.814	23.602	34.899
	MOTA	125	HG2 THR	136		14.370	23.339	35.799
	MOTA	126	HG2 THR	136		14.063	24.621	34.604
	ATOM	127	HG2 THR	136		12.745	23.534	35.100
<i></i>	MOTA	128	C THR	136		13.710	22.003	31.462
65	MOTA	129	O THR	136		13.227	20.872	31.523
	MOTA	130	JAV N	137		14.487	22.397	30.431
	ATOM	131	HN VAL	137		14.898	23.340	30.399
	ATOM	132	CA VAL	137		14.718	21.447	29.381

							_	•	
	MOTA	133	HА	VAL	137		14.363	20.462	29.683
	MOTA	134		VAL	137		14.014	21.789	28.099
	MOTA	135	HB	VAL	137		14.297	21.056	27.343
	ATOM	136	CG1	VAL	137		12.497	21.745	28.349
_									
5	ATOM	137		VAL	137		11.969	21.991	27.427
	MOTA	138	HG1	VAL	137		12.210	20.745	28.675
	MOTA	139	HG1	VAL	137		12.234	22.468	29.121
	ATOM	140		VAL	137.		14.536	23.149	27.604
	ATOM	141	HG2	VAL	137		14.035	23.413	26.672
10	ATOM	142	HG2	VAL	137		14.332	23.912	28.355
. 0					137				
	MOTA	143		VAL			15.610	23.086	27.433
	ATOM	144	С	VAL	137.		16.179	21.363	29.078
	MOTA	145	0	VAL	137		16.898	22.362	29.101
		146	N		138		16.663		
	MOTA			PHE				20.128	28.828
15	ATOM	147	HN	PHE	138		16.051	19.306	28.928
	ATOM	148	CA	PHE	138	•	18.025	19.961	28.425
	MOTA	149	HА	PHE	138		18.327	20.795	27.792
1				_			•		
	MOTA	150	CB	PHE	138		19.021	19.919	29.599
	ATOM	151	HB1	PHE	138		18.676	19.145	30.284
20	MOTA	152	HB2	PHE	138		19.009	20.904	30.064
20									
	MOTA	153	CG	PHE	138		20.360	19.595	29.027
	MOTA	154	CD1	PHE	138		21.167	20.575	28.499
	ATOM	155	HD1	PHE	138		20.829	21.612	28.499
	MOTA	156	CD2	PHE	138		20.800	18.291	29.005
25	MOTA	157	HD2	PHE	138		20.164	17.504	29.412
	ATOM	158	CE1	PHE	138		22.396	20.258	27.971
			HE1						
	MOTA	159	,		138		23.030	21.043	27.558
	MOTA	160	CE2	PHE	138		22.027	17.965	28.480
	MOTA	161	HE2	PHE	138		22.363	16.928	28.473
30	ATOM	162	CZ	PHE	138		22.828	18.954	27.962
50									
	ATOM	163	ΗZ	PHE	138		23.804	18.704	27.545
-	ATOM	164	С	PHE	138		18.174	18.680	27.658
	ATOM	165	0	PHE	138		18.069	17.587	28.211
	MOTA	166	N	ALA	139		18.436	18.820	26.344
35	ATOM	167	HN	ALA	139		18.400	19.778	25.968
	ATOM	168	CA	ALA	139		18.760	17.776	25.412
	MOTA	169	HA	ALA	139		18.689	18.186	24.405
	MOTA	170	CB	ALA	139		20.209	17.281	25.561
	ATOM	171	HB1	ALA	139		20.401	16.492	24.833
40	ATOM	172	HB2	ALA	139		20.896	18.109	25.388
							20.358		
	MOTA	173	HB3	ALA	139	*		16.889	26.567
	MOTA	174	С	ALA	139		17.868	16.578	25.473
	MOTA	175	0	ALA	139		18.359	15.456	25.348
	ATOM	176		VAL	140	•	16.546	16.733	
4.5								_	
45	MOTA	177	HN	VAL	. 140		16.109	17.634	25.911
	ATOM	178	CA	VAL	140		15.812	15.518	25.511
	ATOM	179		VAL	140		16.520	14.737	25.234
		180					15.073	15.043	26.706
	ATOM			VAL	140				
	MOTA	181	HB	VAL	140		14.435	15.884	26.977
50	ATOM	182	CG1	VAL	140		14.311	13.812	26.211
	ATOM	183		VAL	140		13.731	13.389	27.031
							•		
	MOTA	184		VAL	140		13.639	14.101	25.402
	ATOM	185	HG1	VAL	140		15.019	13.068	25.846
	ATOM	186	CG2		140		16.062	14.743	27.846
5.5									
55	MOTA	187		VAL	140		15.513	14.395	28.721
	MOTA	188	HG2	VAL	140		16.763	13.972	27.526
	ATOM	189	HG2		140	•	16.611	15.650	28.099
	MOTA	190		VAL	140 '		14.803	15.735	24.437
	ATOM	191	0	VAL	140		13.632	16.009	24.704
60	MOTA	192	N	GLY	141		15.244	15.558	23.183
	MOTA	193	HN	GLY	141		16.215	15.244	23.042
	MOTA	194	CA	GLY	141		14.425	15.788	22.033
	MOTA	195	HA1	GLY	141		15.021	15.687	21.126
	ATOM	196	HA2	GLY	141		14.004	16.793	22.071
65									
65	MOTA	197	C	GLY	141		13.311	14.796	21.995
	ATOM	198	0	GLY	141		12.214	15.108	21.538
	ATOM	199	N	ARG	142			13.554	22.433
						•			
	MOTA	200	HN	ARG	142		14.509	13.337	22.819

	* mak	001							
	ATOM	201		ARG	142		12.581	12.529	22.365
	ATOM	202	HA .	ARG	142		12.172	12.468	21.357
	ATOM	203	CB .	ARG ·	142		13.130	11.135	22.711
	ATOM	204	. HB1 .		142		12.356	10.368	22.729
5	ATOM	205	HB2		142		13.609		
J								11.099	23.689
	MOTA	206		ARG	142		14.181	10.646	21.712
	MOTA	` 207		ARG	142		15.085	11.239	21.848
	ATOM	208	HG2	ARG	142		13.783	10.777	20.706
	MOTA	209	CD :	ARG	142		14.564	9.175	21.872
10	MOTA	210		ARG	142		13.654	8.593	21.725
	ATOM	211		ARG	142		14.963	9.060	22.879
	ATOM	212							
				ARG	142		15.587	8.880	20.830
	ATOM	213		ARG	142		15.303 ¹	8.494	19.918
_	ATOM	214	CZ Z	ARG	142		16.903	9.124	21.093
15	MOTA	215	NH1	ARG	142		17.268	9.588	22.323
	MOTA	216	HH1	ARG	142		18.260	9.775	22.529
	ATOM	217		ARG	142		16.553	9.752	23.045
	ATOM	218		ARG	142				
							17.848	8.912	20.131
20	MOTA	219		ARG	142		18.840	9.098	20.335
20	ATOM	220		ARG	142		17.568	8.566	19.202
	MOTA	221	C Z	ARG	142		11.466	12.829	23.318
	MOTA	222	0 2	ARG	142	-	10.302	12.577	23.012
	ATOM	223	N :	TYR	143		11.805	13.312	24.527
	MOTA	224		TYR	143		12.795	13.518	24.721
25	MOTA	. 225		TYR	143		10.834	13.549	
	ATOM	226				-			25.554
				TYR	143		10.121	12.725	25.537
	ATOM	227		ryr	143	•	11.480	13.520	26.952
	MOTA	228		ryr	143		10.718	13.833	27.665
	ATOM	229		ryr	143		12.322	14.212	26.931
30	MOTA	230	CG :	ryr	143		11.927	12.112	27.201
	ATOM	231	CD1	ΓYR	143		11.169	11.057	26.750
	MOTA	232	HD1	TYR	143		10.246	11.253	26.203
	MOTA	233	CD2	ryr	143		13.049	11.829	27.950
	ATOM	234		ΓYR	143		13.633	12.650	28.365
35	ATOM	235		ryr	143		11.559	9.758	26.979
22	ATOM	236		ryr					
					143		10.957	8.934	26.595
	MOTA	237		PYR	143		13.447	10.536	28.185
	MOTA	238		ryr	143		14.351	10.338	28.762
	ATOM	239		ΓYR	143		12.704	9.493	27.691
40	MOTA	240	OH 3	ryr	143		13.106	8.161	27.926
	MOTA	241	нн ј	ryr	143.		12.350	7.654	28.408
	ATOM	242.	C 3	ΓYR	143		10.033	14.831	25.431
	ATOM-	243	0 7	ΓYR	143		8.809	14.823	25.543
	MOTA	244		LE	144		10.687	15.959	25.108
45	ATOM	245		LLE	144		11.631	15.889	24.702
	ATOM	246		LLE	144				
							10.110	17.266	25.312
	ATOM	247		LLE	144		9.960	17.404	26.383
	ATOM	248		LLE	144		11.045	18.376	24,925
	ATOM	249		LE	144		12.013	18.187	25.390
50	ATOM	250	CG2 1	LE	144		11.176	18.388	23.394
•	ATOM	251	HG2]	LE	144		11.852	19.188	23.093
•	MOTA	252	HG2 I	LE	144		11.572	17.431	23.055
	MOTA	253	HG2 I	LLE	144		10.196	18.553	22.947
	ATOM	254		LE	144		10.563	19.706	25.525
55	MOTA	255		LE	144		10.256	19.621	26.567
	MOTA	256							
				LE	144		9.705	20.127	25.002
	ATOM	257		LE	144		11.630	20.799	25.502
	MOTA	258		LE	144		11.225	21.711	25.940
<i>-</i> 0	MOTA	259		LE	144		12.496	20.474	26.079
60	MOTA	260	HD1 I	LE	144		11.931	20.992	24.473
	MOTA	261	C I	LE	144		8.786	17.503	24.644
	MOTA	262		LE	144		7.929	18.176	25.216
	ATOM	263		LU	145		8.559		23.427
	ATOM	264		SLU	145		9.270	16.399	22.969
65	ATOM	265		FLU	145		7.311		
	ATOM	266		PO				17.261	22.771
					145		7.201	18.334	22.616
	ATOM	267		LU	145		7.200	16.541	21.414
	ATOM	268	HB1 G	SLU	145		7.489	15.499	21.553

	ATOM	269	HB2 GLU	145		7.869	17.033	20.708
	ATOM	270	CG GLU	145		5.792	16.557	20.809
	ATOM	271	HG1 GLU	145		5.064	16.333	21.588
	ATOM	272	HG2 GLU	145.		5.730	15.806	20.021
5	ATOM	273	CD GLU	145		5.512	17.933	20.2Ź7
-	ATOM	274	OE1 GLU	145		5.854	18.943	20.899
	ATOM	275	OE2 GLU	145		4.951	17.992	19.100
	ATOM	277	C GLU	145		6.174	16.771	23.610
	ATOM	278	O GLU	145		5.182	17.477	23.791
10	ATOM	279 -	N HIS	146		6.300	15.550	24.158
	MOTA	280	HN HIS	146		7.192	15.044	24.055
	ATOM	281	CA HIS	146		5.227	14.935	24.880
	ATOM.	282	HA HIS	146		4.330	14.892	24.262
	MOTA	283	ND1 HIS	146		3.840	12.371	26.806
15	MOTA	284	HD1 HIS	146		4.262	12,665	27.699
	MOTA	285	CG HIS	146		4.305	12.661	25.543
	ATOM	286	NE2 HIS	146		2.430	11.416	25.377
	ATOM	287	HE2 HIS	146		1.637	10.885	24989
	ATOM	288	CD2 HIS	146		3.432	12.070	24.683
20	MOTA	289	HD2 HIS	146		3.511	12.106	23.596
	MOTA	290	CE1 HIS	146		2.717	11.624	26.648
	MOTA	291	HE1 HIS	146		2.122	11.240	27.477
	ATOM	292	CB HIS	146		5.530	13.469	25.238
	ATOM	293	HB1 HIS	146		6.169	13.358	26.113
25	MOTA	294	HB2 HIS	146		6.040	12.924	24.443
	ATOM	295	C HIS	146		4.915	15.719	26.121
	ATOM	296	O HIS	146		3.747	15.885	26.466
	MOTA	- 297	N TYR	147		5.938	16.225	26.842
	ATOM	298	HN TYR	147		6.915	16.068	26.555
30	ATOM	299	CA TYR	147		5.630	16.989	28.020
	ATOM	300	HA TYR	147		.5.026	16.397	28.707
	MOTA	301	CB TYR	147		6.829	17.505	28.833
	MOTA	302	HB1 TYR	147		7.620	17.877	28.183
	MOTA	303	HB2 TYR	147		7.258	16.717	29.452
3 <i>5</i> ,	MOTA	304	CG TYR	147		6.200	18.589	29.645
	MOTA	305	CD1 TYR	147		5.277	18.281	30.619
	MOTA	306	HD1 TYR	147		5.019	17.237	30.798
	MOTA	307	CD2 TYR	147		6.501	19.914	29.422
	MOTA	308	HD2 TYR	147		7.220	20.183	28.649
40	MOTA	309	CE1 TYR	147	-	4.673	19.260	31.369
	MOTA	310	HE1 TYR	147		3.953	18.993	32.142
	ATOM	311	CE2 TYR	147		5.901	20.902	30.169
	ATOM	.312	HE2 TYR	147	,	6.154	21.947	29.991
4 -	MOTA	313	CZ TYR	147		4.982	20.576	31.140
45	ATOM	314	OH TYR	147		4.365	21.589	31.905
	ATOM	315	HH TYR	147		5.006	.22.389	31.996
	MOTA	316	C TYR	147		4.869	18.220	27.653
	MOTA	317	O TYR	147		3.844	18.528	28.259
60	ATOM	318	N LEU	148		5.349	18.934	26.621
50	ATOM	319	HN LEU	148		6.152	18.547	26.105
	MOTA	320	CA LEU	.148		4.823	20.193	26.187
	MOTA	321	HA LEU	148		4.944		26.999
	MOTA	322	CB LEU	148		5.608	20.637	24.935
	MOTA	323	HB1 LEU	148		5.473	19.864	24.178 25.227
55	MOTA	324	HB2 LEU	148		6.654	20.733	24.264
	MOTA	325	CG LEU	148		5.229	21.964	25.021
	ATOM	326	HG - LEU	148		5.245	22.748	23.693
	MOTA	327	CD2 LEU	148		3.801	21.957	23.033
CO	ATOM	328	HD2 LEU	148		3.589	22.921	
60	ATOM	329	HD2 LEU	148		3.712	21.169	22.945
	ATOM	330	HD2 LEU	148		3.088	21.776 22.258	24.497 23.160
	ATOM	331	CD1 LEU	148		6.255	22.258	23.160
	ATOM	332	HD1 LEU	148		6.002 7.250	23.199	23.599
65	ATOM	333	HD1 LEU	148			22.333	22.427
63	MOTA	334	HD1 LEU	148		6.242 3.371	20.006	25.855
	MOTA	335	C LEU	148		2.518	20.774	26.301
	MOTA	336	O LEU	148			18.939	25.105
	MOTA	337	N GLU	149		3.054	10.333	دن.درے

	ATOM	338	HN GLU	149		3.806	18.294	24.822
	ATOM	339	CA GLU	149		1.714	18.659	24.622
	ATOM	340	HA GLU	149		1.317	19.494	
	ATOM	341	CB GLU	149		1.630	17.377	24.104
5		342						23.835
ک	MOTA		HB1 GLU	149		2.205	16.546	24.243
	MOTA	343	HB2 GLU	149		1.997	17.502	22.816
	MOTA	344	CG GLU	149		0.206	16.837	23.680
	ATOM	345	HG1 GLU	149		-0.294	16.880	24.648
	MOTA	346	HG2 GLU	149		0.256	15.805	23.331
10	MOTA	347	CD GLU	. 149		-0.536	17.693	22.670
	MOTA	348	OE1 GLU	149		0.137	18.476	21.949
	MOTA	349 ·	OE2 GLU	149		-1.789	17.573	22.607
	MOTA	351	C GLU	149		0.831	18.435	25.867
	ATOM	352	O GLU	149		-0.298	18.921	25.905
15	ATOM	353	N GLU	150		1.332	17.710	26.881
	ATOM	354	HN GLU	150		2.321	17.422	26.863
	ATOM	355	CA GLU	150		0.502	17.335	27.988
	ATOM	356	HA GLU	150		-0.343	16.748	27.628
	ATOM	357	CB GLU	150		1.238	16.472	29.027
20	ATOM	358	HB1 GLU	150		1.833	17.063	29.723
~0 、	MOTA	359	HB2 GLU	150		1.929	15.760	28.574
	ATOM	360	CG GLU	150		0.287	15.640	29.891
		361						
	MOTA		HG1 GLU	150		-0.491	16.316	30.242
25	MOTA	362	HG2 GLU	150		0.880	15.237	30.713
25	ATOM	363	CD GLU	150		-0.271	14.539	28.996
	MOTA	364	OE1 GLU	150		-0.108	14.660	27.752
	ATOM	365	OE2 GLU	150		-0.862	13.565	29.534
	MOTA	- 367	C GLU	150	,	-0.004	18.564	28.674
	MOTA	368	O GLU	150		-1.156	18.611	29.106
30	MOTA	369	N PHE	151		0.859	19.584	28.821
	MOTA	370	HN PHE.	151		1.819	19.495	28.458
	ATOM	371	CA PHE	151	•	0.458	20.792	29.476
	MOTA	372	HA PHE	151		0.018	20.581	30.450
	MOTA	373	CB PHE	151		1.638	21.741	29.732
35	MOTA	374	HB1 PHE	151		2.158	21.863	28.781
	MOTA	375	HB2 PHE	151		2.269	21.267	30.483
	ATOM	376	CG PHE	151		1.063	23.023	30.218
	ATOM	377	CD1 PHE	151		0.595	23.151	31.506
	MOTA	378	HD1 PHE	151		0.642	22.301	32.187
40	ATOM	379	CD2 PHE	151		1.003	24.107	29.374
	ATOM	380	HD2 PHE	151		1.375	24.016	28.353
	ATOM	381	CE1 PHE	151		0.069	24.346	31.936
	ATOM	382	HE1 PHE	151		-0.303	24.440	32.956
	ATOM	383	CE2 PHE	151	•			
45	ATOM					0.479	25.302	29.800
43		384		151		0.436	26.153	29.120
	ATOM `	385	CZ PHE	151		0.010	25.422	31.084
	MOTA	386	HZ PHE	151		-0.406	26.369	31.427
	ATOM	387	C PHE	151		-0.559	21.534	28.661
	MOTA	388	O PHE	151		-1.590	21.955	29.184
50	ATOM	389	N LEU	152	•	-0.310	21.684	27.346
	MOTA	390	HN LEU.	152		0.509	21.214	26.936
٠.	MOTA	391	CA LEU	152	•	-1.153	22.480	26.497
	MOTA	392.	HA LEU	152		-1.211	23.501	26.874
	MOTA	393	CB LEU	152		-0.669	22.514	25:038
55	ATOM	394	HB1 LEU	152		-1.410	23.048	24.442
	ATOM	395	HB2 LEU	152	•	-0.564	21.487	24.687
	MOTA	396	CG LEU	152		0.685	23.218	24.846
	MOTA	397	HG LEU	152		1.471	22.726	25.418
	ATOM	398	CD2 LEU	152		0.667	24.632	25.454
60	ATOM	399	HD2 LEU	152		1.637	25.105	25.303
00	ATOM	400	HD2 LEU	152				
						-0.105	25.227	24.968
	ATOM	401	HD2 LEU	152		0.458	24.566	26.521
	MOTA	402	CD1 LEU	152	•	1.112	23.214	23.369
C E	MOTA	403	HD1 LEU	152		2.072	23.719	23.267
65	MOTA	404	HD1 LEU	152		1.203	22.186	23.020
	ATOM	405	HD1 LEU	152		0.363	23.735	22.772
	ATOM	406	C LEU	152		-2.534	21.905	26.455
	ATOM	407	O LEU	152		-3.523	22.634	26.528

	ATOM	408	N THR	153	-2.624	20.568	26.352
•	ATOM	409	HN THR	153	-1.760	20.012	26.416
	MOTA	410	CA THR	153	-3.865	19.882	26.156
	ATOM	411	HA THR	153	-4.395	20.239	25.272
5	ATOM	412	CB THR	153	-3.685	18.410	25.940
_	ATOM	413					
			HB THR	153	-2.933	18.254	25.167
	ATOM	414	OG1 THR	153	-4.907	17.832	25.510
	ATOM	415	HG1 THR	153	-5.654	18.539	25.547
	ATOM	416	CG2 THR	153	-3.223	17.764	27.257
10	ATOM	417	HG2 THR	153			
10					-3.089	16.692	27.110
	MOTA	418	HG2 THR	153	-2.278	18.208	27.569
	MOTA	419	HG2 THR	153	-3.975	17.933	28.029
	ATOM.	420	C THR	153	-4.792	20.058	27.316
	MOTA	421	O THR	153			
1.5	•				-6.002	20.106	27.103
15	MOTA	422	N SER	154	-4.245	20.151	28.550
	MOTA	423	HN SER	154	-3.217	20.193	28.608
	ATOM	424	CA SER	154	-4.981	20.196	29.791
	ATOM	425	HA SER	154			
					-5.266	19.197	30.123
	MOTA	426	CB SER	154	-4.167	20.786	30.955
20	MOTA	427	HB1 SER	154	-4.784	20.840	31.852
	MOTA	428	HB2 SER	154	-3.826	21.790	30.700
	ATOM	429	OG SER	154	-3.037	19.970	31.221
	ATOM	430	HG SER	154	-3.260	19.311	31.981
	MOTA	431	C SER	154	-6.234	20.995	29.656
25	MOTA	432	O SER	154	-6.230	22.221	29.738
	MOTA	433	N ALA	155	-7.353	20.279	29.429
	ATOM	434					
			HN ALA	155	-7.289	19.253	29.357
	MOTA	435	CA ALA	155	-8.627	20.913	29.284
	ATOM	436	HA ALA	155	-8.526	21.664	28.501
30	ATOM	437	CB ALA	.155	-9.751	19.926	28.929
	ATOM	438	HB1 ALA	155			
	14.				-10.693	20.467	28.833
		439	HB2 ALA	155	-9.518	19.433	27.986
	ATOM	. 440	HB3 ALA	155	-9.841	19.179	29.717
	ATOM	441	C . ALA	155	-8.963	21.528	30.594
35	MOTA	442	O ALA	155	-9.412	22.669	30.649
20							
	MOTA	443	N ASN	156	-8.754	20.767	31.682
	ATOM	444	HN ASN	156	-8.421	19.802	31.544
	ATOM	445	CA ASN	156	-8.972	21.225	33.022
	MOTA	446	HA ASN	156	-8.595	20.478	33.720
40	ATOM	447	CB ASN	156	-8.254	22.544	
. 40							33.350
	ATOM	448	HB1 ASN	156	-8.587		34.334
• *	ATOM	449	HB2 ASN	156	-8.520	23.274	32.586
	MOTA	450	CG ASN	156	-6.756	22.281	33:348
	ATOM	451	OD1 ASN	156	-7.736	21.772	
45							33.890
45	MOTA	452	ND2 ASN	156	-6.497	23.300	32.486
	ATOM	453	HD2 ASN	156	-5.527	23.497	32.199
,	MOTA	454	HD2 ASN	156.	-7.269	23.874	32.120
•	MOTA	. 455	C ASN	156	-10.432		33.237
		456					
	ATOM		O ASN	156	-11.114	22.056	32.428
50	ATOM	457	N LYS	157	-10.963	20.868	34.341
	ATOM	458	HN LYS	157 -	-10.386	20.284	34.962
	ATOM	459	CA LYS	157	-12.342	21.100	34.632
	ATOM	460	HA LYS	157	-12.892	20.888	33.715
	ATOM	461	CB LYS	157	-12.866	20.247	35.799
55	ATOM	462	HB1 LYS	157	-13.840	20.565	36.170
	ATOM	463	HB2 LYS	157	-12.214	20.255	36.673
	ATOM						
		464	CG LYS	157	-13.039	18.769	35.448
	MOTA	465	HG1 LYS	157	-13.382	18.168	36.291
	ATOM	466	HG2 LYS	157	-12.115	18.301	35.109
60	MOTA	467	CD LYS	157	-14.056	18.535	34.331
	MOTA	468	HD1 LYS	157	-14.141	17.489	34.036
	MOTA	469	HD2 LYS	157	-13.822	19.075	33.413
	MOTA	470	CE LYS	157	-15.476	18.967	34.704
	MOTA	471	HE1 LYS	157	-15.486	20.021	34.983
65	ATOM	472	HE2 LYS	157			
55					-15.839	18.377	35.545
	MOTA	473	NZ LYS	157	-16.386	18.770	33.554
	MOTA	474	HZ1 LYS	157	-17.338	- 19.063	33.814
	MOTA	475	HZ2 LYS	157	-16.060	19.334	32.756
		-		- •			2200

						•	
	MOTA	476	HZ3 LYS	157	-16.395	17 774	22 200
	ATOM	. 477	C LYS	157		17.774	33.289
					, -12.453	22.529	35.040
	MOTA	478	O LYS	157	-13.219	23.300	34.462
_	ATOM		N HIS	158	-11.653	22.918	36.051
5	ATOM		HN HIS	158	-11.014	22.238	36.486
	MOTA	481	CA HIS	158	-11.682	24.265	36.530
	ATOM		HA HIS	158	-12.717	24.551	36.721
	ATOM		ND1 HIS	158	-12.504	24.615	
-	ATOM		HD1 HIS				39.778
10				158	-12.842	25.570	39.593
10	ATOM		CG HIS	158	-11.570	23.919	39.043
	MOTA		NE2 HIS	158	-12.274	22.634	40.759
	ATOM	487	HE2 HIS	158	-12.386	21.843	41.409
	ATOM	488	CD2 HIS	158	-11.440	22.711	39.656
	MOTA	489	HD2 HIS	158	-10.774	21.914	
15	ATOM		CE1 HIS	158			
	ATOM				-12.892	23.800	40.792
			HE1 HIS	158	-13.628	24.077	41.546
	MOTA		CB HIS	158	-10.884	24.473	37.830
	MOTA		HB1 HIS	158	-10.697	25.522	38.059
	ATOM	494	HB2 HIS	158	-9.901	24.003	37.814
20	ATOM	495	C HIS	. 158	-11.090	25.158	35.495
	MOTA		O HIS	158	-11.707	26.144	35.098
	ATOM		N PHE	159			
					-9.878	24.828	35.004
	ATOM		HN PHE	159	-9.394	23.966	35.293
~ -	ATOM		CA PHE	159	-9.297	25.732	34.065
25	MOTA		HA PHE	159	-9.603	26.738	34.353
	MOTA	501	CB PHE	159	-7.764	25.681	34.055
	ATOM	502 I	HB1 PHE	159	-7.466	26.283	33.197
	ATOM		HB2 PHE	159	-7.517	24.624	33.951
	MOTA		CG PHE	159	-7.349		
30	ATOM					26.262	35.362
50			CD1 PHE	159	-7.253	25.470	36.482
	MOTA		HD1 PHE	159	-7.477	24.406	36.411
	ATOM		CD2 PHE	159	-7.082	27.607	35.474
	MOTA		ID2 PHE	159	-7.170	28.249	34.597
	ATOM		CE1 PHE	159	-6.877	26.007	37.691
35	MOTA	510 H	HE1 PHE	159	-6.798	25.367	38.570
	ATOM	511 (CE2 PHE	159	-6.707	28.149	36.679
	MOTA	512 F	RE2 PHE	159	-6.492	29.215	36.753
	ATOM		CZ PHE	159	-6.602	27.349	37.791
	ATOM		IZ PHE	159	-6.301	27.777	38.748
40	ATOM		PHE	159	-9.814		
	ATOM	516				25.368	32.728
				159	-9.080	24.820	31.910
	ATOM	517 N		160	-11.096	25.716	32.478
	MOTA		IN MET	160	-11.620	26.224	33.205
	ATOM		CA MET	160	-11.755	25.406	31.246
45	MOTA	520 H	IA MET	160	-11.756	24.319	31.165
	MOTA	521 (B MET	160	-13.167	26.013	31.157
	ATOM		B1 MET	160	-13.568	25.796	30.168
	ATOM		B2 MET	160			30.100
	ATOM		-		-13.085	27.088	31.314
50			G MET	160	-14.161	25.473	32.186
50	ATOM		G1 MET	160	-13.755	25.649	33.182
	MOTA		G2 MET	160	-14.292	24.405	32.009
	ATOM	527 S	D MET	160	-15.803	26.255	32.109
	ATOM	528 C	E MET	160	-15.256	27.848	32.785
	MOTA		El MET	160	-16.105	28.530	
55	ATOM		E2 MET	160			32.842
-	ATOM		E3 MET		-14.844	27.698	33.782
				160	-14.491	28.276	32.136
	ATOM	532 C		160	-10.959	26.053	30.174
	MOTA	533 O	MET	160	-10.572	25.421	29.194
	MOTA	534 N	VAL	161	-10.678	27.353	30.356
60	MOTA	535 H	N VAL	161	-11.032	27.849	31.187
	ATOM		A VAL	161	-9.885	28.043	
	ATOM		A VAL	161			29.393
	ATOM				-10.403	27.905	28.444
			B VAL	161	-9.691	29.495	29.724
65	ATOM		B VAL	161	-9.036	29.936	28.973
ردن	ATOM		G1 VAL	161	-11.065	30.186	29.710
	ATOM		G1 VAL	161	-10.944	31.243	29.948
	ATOM		G1 VAL	161	-11.513	30.087	28.721
	MOTA	543 H	G1 VAL	161	-11.715	29.720	30.451

	ATOM	544	CG2 VAL	161	-8.949	29.606	31.066
	ATOM	545	HG2 VAL	161	-8.803	30.657	31.316
	MOTA	546	HG2 VAL	161	-9.538	29.125	31.848
_	ATOM	547	HG2 VAL	161 161	-7.980 -8.553	29.113 27.384	30.988 29.439
5	MOTA	548 549	C VAL	161	-7.872	27.364	28.423
	ATOM ATOM	550	N GLY	162	-8.163	26.922	30.642
	ATOM	551	HN GLY	162	-8.791	27.003	31.455
v	ATOM	552	CA GLY	162	-6.879	26.320	30.788
10	MOTA	553	HA1 GLY	162	-6.820	25.592	29.979
	ATOM	554	HA2 GLY	162	-6.893	25.872	31.781
	ATOM	555	C GLY	162	-5.917	27.443	30.653
	MOTA		O GLY	162	-5.095	27.471	29.738
	ATOM	557	N HIS	163	-5.986	28.417	31.580
15	ATOM	558	HN HIS	163	-6.644 -5.105	28.363 29.529	32.371 31.417
	ATOM	559	CA HIS	163 163	-4.633	29.529	30.434
	ATOM ATOM	560 561	HA HIS ND1 HIS	163	-4.408	32.895	32.061
	ATOM	562	HD1 HIS	163	-4.423	32.809	33.088
20	ATOM	563	CG HIS	163	-5.031	32.063	31.157
	ATOM	564	NE2 HIS	163	-3.941	33.690	30.038
	MOTA	565	HE2 HIS	163	-3.566	34.274	29.276
	MOTA	566	CD2 HIS	- 163	-4.736	32.563	29.927
	MOTA	567	HD2 HIS	163	-5.079	32.135	28.985
25	MOTA	568	CE1 HIS	163	-3.771	33.850	31.338
	MOTA	569	HE1 HIS	163	-3.186	34.657	31.779 31.539
	MOTA	570 - 571	CB HIS	163 163	-5.851 -6.161	30.870 30.997	32.576
	MOTA MOTA	. 572	HB1 HIS HB2 HIS	163	-6.720	30.840	30.881
30	ATOM	573	C HIS	163	-3.990	29.528	32.424
50	MOTA	574	O HIS	163	-3.946	30.412	33.279
	MOTA	575	N PRO	164	-3.086	28.577	32.396
	MOTA	576	CA PRO	164	-1.916	28.762	33.206
	MOTA	577	HA PRO	164	-2.224	29.395	34.038
35	MOTA	578	CD PRO	164	-3.499	27.180	32.416
	ATOM	579	HD1 PRO	164	-3.821	26.952	31.400 33.142
	MOTA	580	HD2 PRO CB PRO	164 164	-4.310 -1.484	27.120 27.380	33.711
,	ATOM ATOM	581 582	CB PRO HB1 PRO	164	-1.775	27.364	
40	ATOM	583	HB2 PRO	164	-0.406	27.351	33.553
	ATOM	584	CG PRO	164	-2.261	26.386	32.840
	MOTA	585	HG1 PRO	164	-2.527	25.494	33.408
	MOTA	586	HG2 PRO	164	-1.668	26.071	31.981
	MOTA	587	C PRO	164	-0.906	29.419	32.324
45	ATOM	588	O PRO	164	-1.124	29.479	31.114
	ATOM	589	N VAL	165 165	0.192	29.930 29.907	33.923
	MOTA	590 591	HN VAL CA VAL	165	0.289 1.230	30.507	32.104
	MOTA MOTA	592	HA VAL	`165	0.798	30.606	31.109
50	ATOM.	593	CB VAL	165	1.744	31.775	32.701
20	MOTA	594	HB VAL	165	2.116	31.563	33.703
	ATOM	595	CG1 VAL	165	2.876	32.311	31.816
	MOTA	596	HG1 VAL	165	3.261	33.239	32.240
	MOTA	597	HG1 VAL	165	3.678	31.575	31.765
55	MOTA	598	HG1 VAL	165	2.494	32.502	30.813
	MOTA	599	CG2 VAL	165	0.563	32.741 33.675	32.876 33.312
	MOTA	600	HG2 VAL HG2 VAL	165 165	0.919 0.111	32.943	31.905
	MOTA	601 602	HG2 VAL HG2 VAL	165	-0.178	32.293	33.536
60	ATOM ATOM	603	C VAL	165	2.349	29.530	32.175
50	MOTA	604	O VAL	165	2.786	29.163	33.262
	MOTA	605	N ILE	166	2.834	29.042	31.023
	MOTA	606	HN ILE	166	2.452	29.317	30.107
	MOTA	607	CA ILE	166	3.910	28.121	31.152
65	ATOM	608	HA ILE	166	4.101	27.964	32.213
	MOTA	609	CB ILE	166	3.608	26.763	30.571
	MOTA	610	HB ILE	166	2.794	-26.288	31.118
	MOTA	611	CG2 ILE	166	3.192	26.890	29.088

	ATOM	612	HG2 ILE	166		2.977	25.901	28.685
	ATOM	613	HG2 ILE	166		2.301	27.514	29.012
	ATOM	-614	HG2 ILE	166		4.003	27.346	28.520
	MOTA	615	CG1 ILE	166		4.774	25.800	30.845
5	ATOM	616	HG1 ILE	166		5.104		31.884
	ATOM	617	HG1 ILE	166		5.649 4.406	26.024 24.346	30.236 30.555
	ATOM	618	CD1 ILE	166 166		5.263	23.705	30.765
	MOTA	619 620	HD1 ILE	166		3.569	24.050	31.187
10	MOTA MOTA	621	HD1 ILE	166		4.124	24.244	29.507
10	ATOM	622	C ILE	166		5.102	28.703	30.488
,	ATOM	623	O ILE	166		5.193	28.742	29.262
	MOTA	624	N PHE	167		6.061	29.220	31.275
	MOTA	625	HN PHE	167		5.967	29.345	32.293
15	ATOM	626	CA PHE	167		7.217	29.57,3	30.535
	ATOM .	627	HA PHE	167		6.831	29.904	29.571
	MOTA	628	CB PHE	167		7.966	30.866	30.928
	ATOM	629	HB1 PHE	167		7.351	31.709	30.612
	MOTA	630	HB2 PHE	167		8.926	30.859	30.412
20	MOTA	631	CG PHE	167		8.264	31.079	32.373
	MOTA	632	CD1 PHE	167	*	7.278	31.435	33.267
	MOTA	633	HD1 PHE	167		6.250	31.539	32.919 32.814
	ATOM	634	CD2 PHE	167		9.558 10.354	30.994 30.747	32.014
25	ATOM	635	HD2 PHE	167 167		7.569	31.660	34.590
25	MOTA	636 637	CE1 PHE HE1 PHE	167		6.776	31.926	35.289
	ATOM ATOM	638	CE2 PHE	167		9.859	31.219	34.134
	MOTA	~ 639	HE2 PHE	167		10.890	31.135	34.478
	ATOM	640	CZ PHE	167		8.865	31.550	35.026
30	MOTA	641	HZ PHE	167	•	9.106	31.723	36.074
50	ATOM	642	C PHE	167		8.002	28.333	30.471
	ATOM	643	O PHE	167		8.859	28.019	31.296
	MOTA	644	N TYR	168		7.625	27.556	29.446
	MOTA	645	HN TYR	168		6.935	27.914	28.769
-35	ATOM	646	CA TYR	168		8.154	26.252	29.272
	MOTA	647	HA TYR	168		7.814	25.630	30.099
	MOTA	648	CB TYR	168		8.061	25.640	27.863
	MOTA	649	HB1 TYR	168		8.769 8.321	24.812 26.423	27.823 27.151
40	MOTA	650	HB2 TYR	168		6.765	25.096	27.423
40	MOTA	651 652	CG TYR	168 168		6.214	24.010	28.059
	ATOM ATOM	653	HD1 TYR	168		6.734	23.563	28.907
	ATOM	654	CD2 TYR	168		6.164	25.598	26.300
	MOTA	. 655	HD2 TYR	168		6.631	26.412	25.744
45	ATOM	656	CE1 TYR	168		5.018	23.478	27.644
	ATOM	657	HE1 TYR	168		4.569	22.639	28.177
	MOTA	658	CE2 TYR	168		4.974	25.071	25.879
	MOTA	659	HE2 TYR	168		4.479	25.489	25.003
-	MOTA	660	CZ TYR	168		4.397	24.021	26.547
50	MOTA	661	OH TYR	168		3.166	23.496	26.097
	MOTA	662	HH TYR	168		2.446	24.232	26.131
	ATOM	663	C TYR	168		9.607	26.344	29.265 30.143
	MOTA	664	O TYR	168		10.301	25.843 27.032	28.248
E E	ATOM	665	N ILE HN ILE	· 169 169	•	9.605	27.716	27.673
55	MOTA	666 667	CA ILE	169		11.469		28.081
	MOTA MOTA	668	HA ILE	169		11.592	25.644	28.393
	MOTA	669	CB ILE	169		11.935	26:582	26.652
	ATOM	670	HB ILE	169		11.252	25.950	26.085
60	ATOM	671	CG2 ILE	169		11.969	27.977	26.023
	MOTA	672	HG2 ILE	169		12.307	27.902	24.989
	MOTA	673	HG2 ILE	169		10.970	28.412	26.047
	MOTA	674	HG2 ILE	169		12.655	28.612	26.583
	MOTA	675	CG1 ILE	169		13.295	25.868	26.602
65	MOTA	676	HG1 ILE	169		13.327	24.957	27.200
	ATOM	677	HG1 ILE	169		14.119	26.481	26.968
	MOTA	678	CD1 ILE	169		13.704	25.441	25.194
	MOTA	679	HD1 ILE	169		14.673	24.944	25.231

	ATOM ATOM ATOM	680 681 682	HD1 I	LE LE	169 169 169		12.958 13.772 12.414	24.755 26.320 27.491	24.791 24.553 28.858
	ATOM	683		LE	169		12,688	28.655	28.578
5	MOTA	684	N N	ÆT ·	170		12.900	26.847	29.920
	ATOM	685	HN N	ÆT.	170		12.428	26.010	30.289
	MOTA	686	CA N	1ET	170		14.075	27.338_	30.526
	ATOM	687		ÆΤ	170		14.282	28.370	30.240
	MOTA	688		1ET	170	•	14.089	27.212	32.049
10	ATOM	689		ÆŢ	170		13.937	26.178	32.361
	ATOM	690		ÆT.	170		13.302	27.813	32.503
	MOTA	691		1ET 1ET	170 170		15.421 16.291	27.679 27.235	32.631 32.147
	MOTA	692 693		1ET	170		15.541	27.233	33.690
15	ATOM ATOM	694		ÆT	170		15.682	29.472	32.510
15	ATOM	695		1ET	170		16.169	29.427	30.762
	MOTA	696		4ET	170		16.394	30.438	30.421
	ATOM	697		MET	170		17.054	28.800	30.646
	MOTA	698	HE3 1	TEM	170		15.353	29.016	30.167
20	MOTA	699	C I	TEN	170		15.057	26.366	29.975
	MOTA	700		MET	170		15.375	25.353	30.598
	MOTA	701		VAL	171		15.540	26.639	28.752
	MOTA	702		VAL.	171		15.301	27.518	28.272
0.0	MOTA	703		VAL	171		16.395	25.677	28.138
25	ATOM	704		VAL	171		16.078 16.369	24.685 25.696	28.460 · 26.637
	MOTA	705 706		VAL VAL	171 171		15.335	25.611	26.304
	MOTA MOTA	700		VAL	171		16.975	27.021	26.149
	MOTA	708		VAL	171		16.961	27.048	25.060
30	ATOM	709		VAL	171		16.390	27.854	26.540
• •	ATOM	710		VAL	171		18.003	27.103	26.502
	ATOM	711		VAL	171		17.107	24.448	26.125
	MOTA	712	HG2	JAV	171		17.099	24.442	25.035
	ATOM	713		VAL	171		18.137	24.463	26.481
35	MOTA	714		LAV	171		16.608	23.553	26.496
	ATOM	715		VAL	171		17.791	25.952	28.574
	ATOM	716		VAL	171		18.213	27.101 24.868	28.701 28.839
	ATOM ATOM	717 718		ASP ASP	172 172		18.537 18.126	23.932	28.714
40	ATOM	719		ASP	172		19.886	24.984	29.288
70	ATOM	720		ASP	172		19.974	25.936	29.810
	MOTA	721		ASP	172		20.295	23.806	30.189
	MOTA	722		ASP	172		20.368	22.910	29.573
*	MOTA	723	HB2 .	ASP	172		19.534	23.679	30.958
45	MOTA	724	CĠ .	ASP	172		21.638	24.127	30.819
	ATOM	725		ASP	172		21.805	25.272	31.320
	MOTA	726		ASP	172		22.512	23.221	30.823
	MOTA	727		ASP	172		20.766	24.938	28.077
50	MOTA	728		ASP	172		21.788	24.254 25.705	28.079 27.026
50	MOTA	729		ASP	173 173		20.413 19.576	26.302	27.026
	MOTA MOTA	730		ASP ASP	173		21.177	25.711	25.809
	ATOM	732		ASP	173		20.653	26.309	25.065
	MOTA	733		ASP	173		22.582	26.326	25.965
55	ATOM	734	HB1		173		23.195	25.647	26.557
-	MOTA	735		ASP	173		22.485	27.288	26.470
	MOTA	736	CG	ASP	173		23.186	26.514	24.577
	MOTA	737	OD1	ASP	173		23.330	25.502	23.840
	MOTA	738	OD2	ASP	173		23.521	27.679	24.237
60	MOTA	739		ASP	173		21.325	24.304	25.323
	ATOM	740		ASP	173		22.406	23.721	25.390
	ATOM	741		VAL	174		20.215	23.721	24.827 24.797
	MOTA	742		VAL	174		19.338	24.259 22.371	24.797
65	ATOM	743		JAV JAV	174 174		20.223	22.371	24.339
U.J	MOTA MOTA	744 745		VAL	174		18.875	21.712	24.363
	ATOM	745	HB	VAL	174		18.968	20.718	23.927
	ATOM	747		VAL	174		18.404	21.616	25.824
		•							

	ATOM ATOM ATOM	749	HG1 VAL HG1 VAL	174 174 174		17.425 19.117 18.336	21.139 21.024 22.617	25.861 26.398 26.251
	ATOM	751	CG2 VAL	174		17.923	22.499	23.446
5	MOTA		HG2 VAL	174 174		16.939 17.839	22.031 23.526	23.454
	ATOM ATOM		HG2 VAL	174		18.316	22.500	22.429
	MOTA	755	C VAL	174		20.696	22.366	22.921
10	ATOM	756 75 7	O VAL N SER	174` 175		20.953	23.413 21.156	22.328
10	ATOM ATOM	758	N SER HN SER	175		20.560	20.313	22.873
Υ.	ATOM	759	CA SER	175		21.314	21.015	21.004
	MOTA	760	HA SER	175 175		22.165 21.834	21.680 19.604	20.855 20.671
15	ATOM ATOM	761 762	CB SER HB1 SER	175		22.615	19.309	21.371
,	ATOM	763	HB2 SER	175		22.248	19.577	19.663
	ATOM .	764	OG SER	175 175		20.783 19.906	18.655 19.132	20.748 21.002
	MOTA MOTA	765 766	HG SER C SER	175		20.236	21.368	20.034
20	ATOM	767-	O SER	175		19.112	21.700	20.408
	ATOM	768	N ARG	176		20.596 21.539	21.302 20.946	18.740 18.530
	MOTA MOTA	769 770	HN ARG CA ARG	176 176			20.546	17.628
	ATOM		HA ARG	176		19.491	22.736	17.692
25	MOTA	772	CB ARG	176		20.519	21:457 22.049	16.302 16.237
	ATOM ATOM	773 774	HB1 ARG HB2 ARG	176 176		21.432 19.908	21.725	15.440
	MOTA	775	CG ARG	176		20.926	19.992	16.118
20	MOTA	776	HG1 ARG	176	,	20.053	19.434 19.611	15.781 17.076
30	MOTA MOTA	777 778	HG2 ARG	176 ° 176		21.278 22.041	19.774	15.093
	ATOM	779	HD1 ARG	176		22.352	18.731	15.148
	MOTA	780	HD2 ARG	176	,	22.867 21.499	20.438 20.094	15.345 13.745
35	ATOM ATOM	781 782	NE ARG HE ARG	176 176		20.490	20.256	13.615
رر	MOTA	783	CZ ARG	176		22.351	20.171	12.682
	MOTA	784	NH1 ARG	176		23.689	19.966 20.023	12.865 12.064
	MOTA ATOM	785 786	HH1 ARG HH1 ARG	176 176		24.333	19.753	13.805
40	ATOM	787	NH2 ARG	176		21.872	20.454	11.437
•	ATOM	788	HH2 ARG HH2 ARG	176 176		22.518 20.863	20.512 20.611	10.637 11.297
•	ATOM ATOM	. 789 790	C ARG	176		18.520	20.876	17.575
	MOTA	791	O ARG	176		17.433	21.426	17.406
45	ATOM	792 793	N MET	177 177		18.617 19.518	19.544 19.105	17.731 17.967
	MOTA MOTA	793 794	HN MET CA MET	177		17.434	18.752	17.561
	ATOM	795	HA MET	177		16.992	18.939	16.583
50	MOTA	796 797	CB MET HB1 MET	177 177		17.688 17.922	17.234 16.864	17.581 18.579
50	ATOM ATOM	798	HB2 MET	177		18.522	16.943	16.942
	MOTA	799	CG MET	177		16.475	16.432	17.097
	MOTA	800	HG1 MET HG2 MET	177 177		16.079 15.736	16.922 16.422	16.208 17.898
55	MOTA MOTA	801 802	SD MET	177		16.817	14.701	16.654
	MOTA	803	CE MET	177		17.175	14.161	18.350
	MOTA	804	HE1 MET HE2 MET	177 177		17.422 18.019	13.099 14.730	18.349 18.741
	MOTA MOTA	805 806	HE3 MET	177		16.301	14.330	18.978
60	MOTA	807	C MET	177		16.426	19.091	18.615
	MOTA	808	O MET	177		15.230 16.833	19.136 19.309	18.332 19.830
	MOTA MOTA	809 810	N PRO CA PRO	178 178		15.853	19.648	20.824
	ATOM	811	HA PRO	178		15.036	18.927	20.853
65	MOTA	812	CD PRO HD1 PRO	178 178		17.943 18.829	18.564 19.169	20.396 20.205
	MOTA MOTA	813 814	HD1 PRO HD2 PRO	178		17.955	17.611	19.868
	MOTA	815	CB PRO	178		16.566	19.506	22.168

	* mov	016	מת נתט	178		15.870	19.206	22.951
	ATOM	816	HB1 PRO					
	ATOM	817	HB2 PRO	178		17.023	20.448	22.470
	ATOM	818	CG PRO	.178		17.623	18.420	21.894
	MOTA	819	HG1 PRO	178		17.126	17.485	22.152
5		820	HG2 PRO	178		18.454	18.676	22.551
5	MOTA							20.570
	ATOM	821	C PRO	178		15.239	20.991	
	MOTA	822	O PRO	178		14.067	21.189	20.890
	ATOM	823	N LEU	179		16:014	21.921	19.989
	ATOM	824	HN LEU	179		16.980	21.679	19.727
				•				
10	MOTA	825	CA LEU	179		15.528	23.241	19.724
	ATOM	826	HA LEU	179		15.187	23.666	20.668
	MOTA	827	CB LEU	179		16.584	24.129	19.044
	ATOM	828	HB1 LEU	179		16.153	25.119	18.897
						16.845	23.676	18.087
	MOTA	829	HB2 LEU	179				
15	MOTA	830	CG LEU	179		17.890	24.305	19.845
	MOTA	831	HG LEU	179	-	18.373	23.344	20.019
	ATOM	832	CD2 LEU	179		17.630	24.786	21.280
							24.896	21.804
	MOTA	833	HD2 LEU	179	,	18.579		
	MOTA	834	HD2 - LEU	179		17.116	25.748	21.253
20	ATOM	835	HD2 LEU	179		17.009	24.058	21.801
	ATOM	836	CD1 LEU	179		18.881	25.203	19.088
						19.794	25.312	19.674
	MOTA		HD1 LEU					
	MOTA	838	HD1 LEU	179		19.119	24.752	18.125
	MOTA	839	HD1 LEU	179		18.434	26.184	18.928
25	ATOM	840	C LEU	179		14.403	23.127	18.747
		841	O LEU	179		13.360	23.759	18.912
	MOTA							17.698
	MOTA	842	N ILE	180		14.597	22.304	
	ATOM	- 843	HN ILE	180		15.468	21.757	17.638
	ATOM	844	CA ILE	.180		13.609	22.175	16.662
30	ATOM	845	HA ILE	180		13.363	23.164	16.275
30							21.341	15.484
	ATOM	846	CB ILE	180		14.045		
	ATOM	847	HB ILE	180		13.225	21.314	14.767
	ATOM	848	CG2 ILE	180		15.289	22.001	14.868
	ATOM	849	HG2 ILE	180		15.625	21.415	14.012
25						15.041	23.011	14.542
35	ATOM	850	HG2 ILE	180				
	ATOM	851	HG2 ILE	180		16.084	22.045	15.612
	ATOM	852	CG1 ILE	180		14.265	19.876	15.882
•	ATOM	853	HG1 ILE	180		13.449	19.458	16.470
		854	HG1 ILE	180		15.160	19.718	16.484
	ATOM					•		
40	ATOM	855	CD1 ILE	180		14.418	18.937	14.688
	MOTA	856	HD1 ILE	180		14.570	17.918	15.043
	MOTA	857	HD1 ILE	180		13.517	18.977	14.076
	ATOM	858	HD1 ILE	180		15.276	19.245	14.090
							21.538	
_	ATOM	859	C ITE	180		12.382		
45	MOTA	860	O ILE	180		11.264	21.896	16.861
	MOTA	861	N GLU	181		12.562	20.579	18.155
	MOTA	862	HN GLU	181	,	13.513	20:357	18.483
				181		11.440	19.864	
	MOTA	863	CA GLU					
	MOTA	864	HA GLU	181		10.954	19.323	17.880
50	MOTA	865	CB GLU	181		11.850	18.883	19.805
	MOTA	866	HB1 GLU	181		10.946	18.441	20.225
		867	HB2 GLU	181		12.395	19.437	20.569
	ATOM							
	MOTA	868	CG GLU	181		12.749	17.741	19.325
	MOTA	869	HG1 GLU	181		13.188	17.272	20.205
55	MOTA	870	HG2 GLU	181		13.518	18.172	18.684
-	ATOM	0.00	CD GLU	181		11.880	16.760	18.556
		,			•			
	MOTA	872	OE1 GLU	181		11.057	16.057	19.201
	ATOM	873	OE2 GLU	181		12.028	16.705	
	MOTA	875	C GLU	181		10.498	20:849	19.301
60	MOTA	876	O GLU	181		9.297	20.797	19.038
00							21.789	
	ATOM	877	N LEU	182		11.011		20.123
	MOTA	878	HN LEU	182		12.019	21.823	20.331
	ATOM	879	CA LEU	182		10.104	22.736	20.697
	MOTA	880	HA LEU	182		9.331	22.163	21.209
65	ATOM	881	CB LEU	182		10.717	23.682	21.744
05								
	ATOM	882	HB1 LEU	182		10.048	24.499	22.015
	MOTA	883	HB2 LEU	182		11.640	-24.149	21.399
	ATOM	884	CG LEU	182		11.067	22.965	23.056

	ATOM	885	HG LEU	182	•	10.229	22.368	23.415
	ATOM	.886	CD2 LEU	182		11.230	23.973	24.202
	MOTA	887	HD2 LEU	182		11.478	23.442	25.121
	MOTA	888	HD2 LEU	182		12.031	24.673	~23.960
5	MOTA	. 889	HD2 LEU	182		10.299	24.522	24.339
	MOTA	890	CD1 LEU	182		12.267	22.021	22.871
	MOTA	891	HD1 LEU	182	-	12.491	21.528	23.817
	MOTA	892	HD1 LEU	182		12.027	21.270	22:118
	MOTA	893	HD1 LEU	182		13.135	22.595	22.547
10	MOTA	894	C LEU	182		9.546	23.540	19.568
	MOTA	895	O LEU	182		8.354	23.829	19.549
	MOTA	896	N GLY	183		10.423	23.888	18.602
	MOTA	897	HN GLY	183		11.397	23.595	18.764
1.5	ATOM	898	CA GLY	183		10.193		17.376
15	MOTA	899	HA1 GLY	183		10.272	23.909	16.546
	ATOM ·	900	HA2 GLY	183		10.949	25.392	17.293
	MOTA		C GLY	183		8.852	25.269	
	ATOM	902	O GLY	183		8.682	26.430	17.658 16.761
20	MOTA	903	N PRO	184		7.892	24.554	
20	MOTA	904	CA PRO			6.596	25.124 25.933	16.533 15.804
	MOTA	905	HA PRO	184		6.630 8.149		15.804
	MOTA	906	CD PRO	184 184		8.339	23.402 22.579	16.602
	MOTA	907 908	HD1 PRO HD2 PRO	_		9.018	23.677	15.315
25	MOTA		HD2 PRO			5.789	24.027	15.842
23	MOTA	909 910	HB1 PRO			5.048	24.453	15.166
	MOTA	911	HB2 PRO	184		5.261	23.411	16.571
	MOTA	912	. CG PRO			6.865	23.220	15.080
	MOTA MOTA	913	HG1 PRO			6.910	23.220	14.095
30	ATOM	914	HG2 PRO			6.487	22.198	15.070
50	MOTA	915	C PRO			6.011	25.688	17.781
	MOTA	916	O PRO		7	5.454	26.784	17.734
	MOTA	917	N LEU	185		6.103	24.949	18.894
	MOTA	918	HN LEU	185		6.491	23.996	18.840
35	ATOM	919	CA LEU	185		5.673	25.458	20.151
•	ATOM	920	HA LEU			4.675	25.876	20.020
	ATOM	921	CB LEU			5.599	24.371	21.228
	ATOM	922	HB1 LEU			5.361	24.768	22.214
	MOTA	, 923	HB2 LEU	185		6.536	23.826	21.344
40	ATOM	924	CG LEU	185		4.525	23.305	20.930
	MOTA	925	HG LEU	185		4.538	22.508	21.673
	MOTA	926	CD2 LEU	185		4.850	. 22.515	19.651
	ATOM	927	HD2 LEU	185		4.071	21.773	19.474
	MOTA	928	HD2 LEU	185		4.899	23.199	18.804
45	MOTA	929	HD2 LEU	185	٠,٠	5.809	22.012	19.768
	MOTA	930	CD1 LEU	185		3.111	23.915	20.934
	MOTA	-931	HD1 LEU			2.378	23.137	20.721
	MOTA	932	HD1 LEU			2.905	24.350	21.912
	MOŢA	933	HD1 LEU			3.048	24.691	20.171
50	ATOM	934	C LEU			6.646	26.513	20.577
	ATOM	935	O LEU			6.236	27.546	21.103
	ATOM	936	n ARG			7.964	26.292	
	MOTA	937	HN ARG			8.286	25.438	19.883
	MOTA	938	CA ARG			8.900	27.280	20.814
55 _.	ATOM	939	HA ARG			8.472	27.795	21.674
	ATOM	940	CB ARG			10.277	26.738	21.260
	MOTA	941	HB1 ARG			10.104	25.959	22.003
	MOTA	942	HB2 ARG		•	10.840	27.568	21.688
C C	ATOM	943	CG ARG			11.149	26:124	20.163
60	MOTA	944	HG1 ARG			11.235	26.770	19.289
	MOTA	945	HG2 ARG			10.757	25.172	19.803
	MOTA	946	CD ARG			12.579	25.849	20.638
	MOTA	947	HD1 ARG			13.127	25.518	19.756
65	MOTA	948	HD2 ARG			12.495	25.074	21.399
65	MOTA	949	NE ARG			13.083	27.142	21.181
	MOTA	950	HE ARG			12.411	27.863	21.481 21.287
	MOTA	951	CZ ARG			14.421 15.325	27.384	21.287
	MOTA	952	NH1 ARG	186		10.323	26.443	20.005

	ATOM	953	HH1 ARG	186		26.630	20.967
	ATOM	954	HH1 ARG	186		25.545	20.500
	MOTA	955	NH2 ARG	186		28.579	21.778 21.859
_	MOTA	956	HH2 ARG	186 186		28.765 29.296	22.068
5	ATOM	957 958	HH2 ARG C ARG	186		28.244	19.703
	ATOM ATOM	959	O ARG	186		28.605	19.399
	ATOM	960	N SER	187		28.677	19.042
	ATOM	961	HN SER	187		28.274	19.235
10	ATOM	962	CA SER	187	8.223	29.702	18.069
•	ATOM	963	HA SER	187	8.998	30.409	18.365
	MOTA	964	CB SER	187		29.160	16.673
	MOTA	965	HB1 SER	187		28.544	16.313
	MOTA.	966	HB2 SER	187		28.557	16.725
15	ATOM	967	OG SER	187		30.244 30.924	15.780 16.207
•	ATOM	968	HG SER	187 187		30.324	18.027
	MOTA MOTA	969 970	C SER O SER	187		30.969	17.033
	ATOM	971	N PHE	188		30.173	19.155
20	ATOM	972	HN PHE	188		29.660	19.931
	ATOM	973	CA PHE	188	4.814	30.651	19.366
	MOTA	974	HA PHE	188	4.707	31.113	20.347
	ATOM	975	CB PHE	188	- · - · · -	31.696	18.348
	MOTA	976	HB1 PHE	188	3.199	31.542	18.239
25 ,	ATOM		HB2 PHE	188		31.541 33.115.	17.397 18.746
•	ATOM	- 978	CG PHE	188 188	4.485 5.654	33.800	18.496
	MOTA ·	979 - 980	HD1 PHE	188	6.477	33.300	17.987
	ATOM	981	CD2 PHE	188	3.454	33.771	19.376
30	MOTA	982	HD2 PHE	188	2.521	33.241	19.569
	ATOM	983	CE1 PHE	188	5.786	35.113	18.885
	MOTA	984	HE1 PHE	188	. 6.716	35.646	18.689
	MOTA	985	CE2 PHE	188	3.578	35.081	19.768
	MOTA	986	HE2 PHE	188	2.751	35.583	20.270
35·	MOTA	987	CZ PHE	188	4.750 4.858	35.755 36.795	19.521 19.829
	ATOM	988 989	HZ PHE C PHE	188 188	3.825	29.546	19.282
	MOTA MOTA	990	O PHE	188	3.879	28.548	20.002
	ATOM	991	N LYS	189	2.890	29.761	18.338
40	ATOM	992	HN LYS	189	3.029	30.589	17.742
	MOTA	993	ÇA LYS	189	1.726	28.977	18.066
	ATOM	994	HA LYS	189	1.014	29.568	17.491
	ATOM	995	CB LYS	189	1.923	27.777	17.123 17.652
	ATOM	996	HB1 LYS	189	2.382 2.568	26.942 28.047	16.287
45	MOTA	997 998	HB2 LYS	189 189	0.578	27.306	16.558
	ATOM	999	HG1 LYS	189	-0.134	27.007	17.327
	MOTA	1000	HG2 LYS	189	0.663	26.444	15.896
	ATOM	1001	CD LYS	189	-0.149	28.380	15.731
50	MOTA	1002	HD1 LYS	189	0.976	27.901	15.207
	MOTA	1003	HD2 LYS	189		28.802	15.023
	MOTA	1004	CE LYS	189	-0.733	29.545	16.543
	ATOM	1005	HE1 LYS	18 <u>9</u> 189	0.051 -1.472	30.062 29.184	17.095 17.258
55	MOTA	1006 1007	HE2 LYS	189		30.523	15.653
55	ATOM ATOM	1007	HZ1 LYS	189	-1.776	31.295	16.215
	ATOM	1009	HZ2 LYS	189	-0.704	30.896	14.983
	ATOM	1010	HZ3 LYS	189	-2.155	30.060	15.138
,	MOTA	1011	C · LYS	189	1.098	28.557	19.348
60	MOTA	1012	O LYS	189		27.411	19.516
	MOTA	1013	N VAL	190		29.508	20.299
	MOTA	1014	HN VAL	190	1.621	30.366	20.115
	MOTA	1015	CA VAL	190	0.383 -0.655	29.431 29.650	21.544 21.294
65	MOTA	1016 1017	HA VAL	190 190	0.344	28.073	22.204
رن	MOTA MOTA	1017	HB VAL	190	0.112	27.289	21.483
	ATOM	1019	CG1 VAL	190	1.696	.27.728	22.847
	ATOM	1020	HG1 VAL	190	1.637	26.745	23.314

	ATOM	1021	HG1 VAL	190		2.472	27.720	22.081
•	ATOM	1022	HG1 VAL	190	. '	1.940	28.475	23.603
	ATOM	1023	CG2 VAL	190		-0.856	28.072	23.164
	MOTA	1023	HG2 VAL	190		-0.922	27.106	23.664
5	ATOM	1025	HG2 VAL	190		-0.728	28.858	23.908
٠,		1026	HG2 VAL	190		-1.772	28.252	22.601
	MOTA	1027	C VAL	190		1.024	30.470	22.409
	MOTA			190		2.221	30.413	22.683
	MOTA	1028				0.225	31.465	22.847
	MOTA	1029	N PHE	191				22.647
10	MOTA	1030	HN PHE	191		-0.778	31.392	
	MOTA	1031	CA PHE	191		0.656	32.620	23.591
	MOTA	1032	HA PHE	191	•	1.482	33.101	23.067
	MOTA	1033	CB PHE	191		-0.475	33.640	23.756
	MOTA	1034	HB1 PHE	191		-0.053	34.492	24.289
15	MOTA	1035	HB2 PHE	191		-1.260	33.146	24.328
	ATOM	1036	CG PHE	191		-0.925	34.005	22.383
	ATOM	1037	CD1 PHE	191		-0.158	34.830	21.595
	ATOM	1038	HD1 PHE	191	`	0.788	35.216	21.972
	MOTA	1039	CD2 PHE	191		-2.123	33.528	21.902
20	ATOM	1040	HD2 PHE	191		-2.735	32.876	22.527
-	ATOM	1041	CE1 PHE	191		-0.581	35.171	20.334
	ATOM	1042	HE1 PHE	191		0.028	35.825	19.711
			CE2 PHE	191		-2.556	33.865	20.643
	MOTA	1043		- 191		-3.506	33.486	20.268
26	MOTA	1044		191		-1.778		19.860
25	ATOM	1045	CZ PHE			-2.111	34.950	18.856
	ATOM	1046	HZ PHE	191			32.195	24.950
	MOTA	1047	C PHE	191		1.107		
	ATOM	1048	O PHE	191		1.908	32.867	25.601
	MOTA	1049	N LYS	192		0.571	31.046	25.387
30	MOTA	1050	HN LYS	192		-0.023	30.539	24.716
	ATOM	1051	CA LYS	192		0.730	30.441	26.676
	MOTA	1052	HA LYS	192		0.271	31.074	27.436
	MOTA	1053	CB LYS	192		0.157	29.021	26.625
	MOTA	1054	HB1 LYS	192		0.873	28.398	26.088
35	ATOM	1055	HB2 LYS	192		-0.796	29.071	26.100
	ATOM	1056	CG LYS	192		-0.114	28.323	27.951
	MOTA	1057	HG1 LYS	192		-0.762	28.925	28.589
	ATOM	1058	HG2 LYS	192		0.809	28.141	28.499
	ATOM	1059	CD LYS	192		-0.800	26.971	27.738
40	MOTA	1060	HD1 LYS	192		-1.146	26.607	28.705
	ATOM	1061	HD2 LYS	192		-0.073	26.284	27.305
	MOTA	1062	CE LYS	192		-2.012	27.014	26.799
	MOTA	1063	HE1 LYS	192		-2.144	26.052	26.305
	ATOM	1064	HE2 LYS	192	-	-1.874	27.780	26.036
45	ATOM	1065	NZ LYS	192		-3.244	27.325	27.562
40		1066	HZ1 LYS	192		-4.048		26.919
	MOTA	1067	HZ2 LYS	192		-3.398	26.600	28.276
	ATOM	1068	HZ3 LYS	192		-3.142	28.242	28.020
	ATOM					2.187	30.279	26.980
50	ATOM	1069	C LYS	192		2.606	30.457	28.122
- 50	MOTA	1070	O LYS	192			29.952	25.954
	ATOM	1071	N ILE	193		2.996		
	MOTA	1072	HN ILE	193		2.603	29.946	25.002
	ATOM	1073	CA ILE	193		4.381	29.611	26.127
	MOTA	1074	HA. ILE		•	4.546	29.002	27.016
55	MOTA	1075	CB ILE	193		4.902	28.846	24.948
	MOTA	1076	HB ILE	193		4.735	29.444	24.052
	MOTA	1077	CG2 ILE	193		6.402	28.596	25.161
	MOTA	1078	HG2 ILE	193		6.802	28.040	24.313
	MOTA	1079	HG2 ILE	193		6.921	29.550	25.246
60	MOTA	1080	HG2 ILE	193		6.549	28.020	26.075
	MOTA	1081	CG1 ILE	193		4.067	27.578	24.687
.•	MOTA	1082	HG1 ILE	193		3.001	27.784	24.590
	ATOM	1083	HG1 ILE	193		4.155	26.840	25.485
	MOTA	1084	CD1 ILE	193		4.471	26.850	23.397
65	MOTA	1084	HD1 ILE	193		3.847	25.965	23.268
00		1085	HD1 ILE	193		4.336	27.516	22.546
	ATOM		HD1 ILE	193		5.517	26.550	23.461
	MOTA	1087		193		5.253	30.833	26.271
	MOTA	1088	C ILE	123		5.233	50.055	

	T COM	1089	O ILE	193		5.089	31.833	25.576
	ATOM			194		6.213	30.772	27.222
	MOTA	1090	N LYS					
	MOTA	1091	HN LYS	194		6.246	29.938	27.826
	MOTA	1092	CA LYS	194		7.192	31.807	27.438
5	ATOM	1093	HA LYS	194		7.104	32.498	26.599
_	ATOM	1094	CB LYS	194		7.012	32.605	28.750
		1095	HB1 LYS	194		7.934	33.154	28.946
	ATOM							29.555
	ATOM	1096	HB2 LYS	194		6.807	31.899	
	MOTA	1097	CG LYS	194		5.863	33.621	28.716
10	MOTA	1098	HG1 LYS	194		4.970	33.236	28.225
	ATOM	1099	HG2 LYS	194		6.121	34.537	28.186
			CD LYS	194		5.412	34.062	30.117
	MOTA	1100						30.550
	MOTA	1101	HD1 LYS	194		4.663	33.398	
	MOTA	1102	HD2 LYS	194		4.967	35.057	30.126
15	ATOM	1103	CE LYS	194		6.570	34.110	31.134
	ATOM	1104	HE1 LYS	194		7.248	33.267	31.000
			HE2 LYS	194		6.199	34.075	32.158
	MOTA	1105						
	MOTA	1106	NZ LYS	194		7.369	35.361	30.985
	MOTA	1107	HZ1 LYS	194		8.134	35.365	31.676
20	ATOM	1108	HZ2 LYS	194		7.765	35.406	30.035
	MOTA	1109	HZ3 LYS	194		6.761	36.178	31.142
				194		8.530	31.130	27.477
	ATOM	1110	C LYS					
	MOTA	1111	O LYS	194		8.866	30.363	28.379
	MOTA	1112	N PRO	195		9.272	31.379	26.438
25	MOTA	1113	CA PRO	195		10.582	30.791	26.334 .
	ATOM	1114	HA PRO	195		10.568	29.829	26.847
			CD PRO	195		8.635	31.518	25.136
	MOTA	1115			*			25.155
	MOTA	1116	HD1 PRO	195		8.172	32.504	
	MOTA	1117	HD2 PRO	195		7.918	30.699	25.086
30	MOTA	1118	CB PRO	195		10.801	30.506	24.844
	MOTA	1119	HB1 PRO	195		10.608	29.439	24.733
				195		11.837	30.786	24.656
	MOTA	1120	HB2 PRO				31.395	24.121
	MOTA	1121	CG PRO	195		9.781		
	MOTA	1122	HG1 PRO	195		9.449	30.934	23.191
35	MOTA	1123	HG2 PRO	195		10.212	32.366	23.878
	MOTA	1124	C PRO	195		11.681	31.617	26.943
		1125	O PRO	195		11.522	32.829	27.091
	ATOM			196		12.794	30.945	27.318
•	MOTA	1126	N GLU					
	MOTA	1127	HN GLU	196		12.765	29.917	27.259
40	MOTA	1128	-CA GLU	196		14.011	31.542	27.79 1
	MOTA	1129	HA GLU	196		14.120	32.488	27.261
	MOTA	1130	CB GLU	196		14.103	31.795	29.305
						13.964	30.870	29.865
	ATOM	1131						29.631
	ATOM	1132	HB2 GLU	196		13.340	32.501	
45	ATOM	1133	CG GLU	196		15.470	32.372	29.683
	MOTA	1134	HG1 GLU	196		15.666	33.261	29.085
	ATOM	1135	HG2 GLU	196	•	16.243	31.627	29.494
	ATOM	1136	CD GLU	196		15.471	32.742	31.160
							33.541	31.568
	MOTA	1137	OE1 GLU	196		14.584		
- 50	MOTA	1138	OE2 GLU	196		16.361	32.229	31.895
	ATOM	1140	C GLU	196		15.111	30.581	27.467
	MOTA	1141	O GLU	196		14.905	29.368	27.468
	ATOM	1142	N LYS	197		16.315	31.112	27.172
				197		16.431	32.135	27.194
	ATOM	1143	HN LYS					
55	MOTA	1144	CA LYS	197		17.441	30.288	
	MOTA	1145	HA LYS	197		17.260	29.285	27.217
	MOTA	1146	CB LYS	197		17.702	30.274	25.314
	ATOM	1147	HB1 LYS	197		17.780	31.307	24.976
						16.865	29.769	24.833
	MOTA	1148	HB2 LYS	197				
60	MOTA	1149	CG LYS	197		18.980	29.555	24.868
	MOTA	1150	HG1 LYS	197		18.992	28.509	25.174
	MOTA	1151	HG2 LYS	197		19.877	30.013	25.285
	ATOM	1152	CD LYS	197		19.150	29.568	23.345
				197		18.935	30.575	22.988
	ATOM	1153	HD1 LYS					
65	MOTA	1154	HD2 LYS	197		18.448	28.849	22.920
	ATOM	1155	CE LYS	197		20.548	29.193	22.846
	MOTA	1156	HE1 LYS	197		21.268	29.266	23.660
	ATOM	1157	HE2 LYS	197		20.853	29.867	22.045
			_					

	ATOM	1158	NZ LYS	197	20.549	27.804	22.329
				197		27.563	21.996
	ATOM	1159	HZ1 LYS				
	ATOM .	1160	HZ2 LYS	197	20.275	27.157	23.082
	ATOM	1161	HZ3-LYS	197	19.880	27.727	21.549
-				197		30.883	27.456
5	MOTA	1162	C LYS				
	MOTA	1163	O LYS	197	18.825	32.101	27.507
	MOTA	1164	n Arg	198	19.574	30.030	27.968
				198	•	29.018	27.996
	ATOM	1165					
	MOTA	1166	CA ARG	198	20.809	30.554	28.475
10	ATOM	1167	HA ARG	198	20.676	31.636	28.498
10		1168	CB ARG	198		30.083	29.903
	ATOM						
	MOTA	1169	HB1 ARG	198		30.362	30.179
	MOTA	1170	HB2 ARG	198	21.021	28.999	29.970
	ATOM	1171	CG ARG	198	20.142	30.727	30.894
						30.700	30.453
15	ATOM	1172.	HG1 ARG	198			
	MOTA	1173	HG2 ARG	198	20.463	31.755	31.064
	ATOM	1174	CD ARG	198	20.054	30.048	32.259
							32.130
	MOTA	1175	HD1 ARG	198		28.986	
	ATOM	1176	HD2 ARG	198	19.046	30.191	32.651
20	ATOM	1177	NE ARG	198	21.057	30.673	33.162
20						31.115	32.776
	MOTA	1178	HE ARG	198	21.903		
	ATOM	1179	CZ ARG	198	20.840	30.651	34.509
	ATOM	1180	NH1 ARG	198	19.689	30.115	35.005
					19.525	30.099	36.022
	MOTA	1181	HH1 ARG	198			
25	ATOM	1182	HH1 ARG	198	18.983	29.726	34.363
	MOTA	1183	NH2 ARG	198	21.769	31.166	35.363
				198	21.601	31.148	36.379
	MOTA	1184					
	MOTA	1185	HH2 ARG	198	22.640	31.573	34.993
	ATOM	1186	C ARG	198	21.858	30.110	27.504
30	ATOM	1187	O ARG	198	22.486	29.064	27.662
30							26.454
	MOTA	1188	N TRP	199	22.055	30.935	
	MOTA	1189	HN TRP	199	21.571	31.844	26.462
	ATOM	1190	CA TRP	199	22.892	30.634	25.328
,						29.703	24.859
	MOTA	1191	HA TRP	199			
35	MOTA	1192	CB TRP	199	22.851	31.783	24.304
	ATOM .	1193	HB1 TRP	199	23.539	32.556	24.649
		1194	HB2 TRP	199	21.827	32.154	24.265
	MOTA						
	MOTA	1195	CG TRP	199	23.247	31.455	22.881
	MOTA	1196	CD2 TRP	199	24.577	31.186	22.406
40	ATOM	1197	CD1 TRP	199	22.425	31.352	21.798
40					,	31.491	21.819
	MOTA	1198	HD1 TRP	199	21.344	-	
	MOTA	1199	NE1 TRP	199	23.156	31.046	20.677
	MOTA	1200	HE1 TRP	199	22.778	30.919	. 19.727
			CE2 TRP	199	24.481	30.936	21.036
	ATOM	1201					
45	MOTA	1202	CE3 TRP	199	25.778	31.148	23.055
	MOTA	1203	HE3 TRP	199	25.852	31.343	24.125
	ATOM	1204	CZ2 TRP	199	25.588	30.645	20.293
						30.451	19.222
	MOTA	1205	HZ2 TRP	199	25.516		
	MOTA	1206	CZ3 TRP	199	26.892	30.853	22.300
50	ATOM	1207	HZ3 TRP	199	27.869	30.813	22.783
50				199	26.799	30.607	20.946
	MOTA	1208					
	MOTA	1209	HH2 TRP	199	27.703	30.377	20.382
	MOTA	1210	C TRP	199	24.316	30.487	25.766
	ATOM	1211	O TRP	199	24.886	29.398	25.718
55	MOTA	1212	n GLN	200	24.919	31.599	26.223
	MOTA	1213	HN GLN	200	24.369	32.466	26.302
	MOTA	1214	CA GLN	200	26.301	31.616	26.604
						31.084	25.856
	ATOM	1215	HA GLN	200	26.890		
	MOTA	1216	CB GLN	200	. 26.879	33.034	26.774
60	MOTA	1217	HB1 GLN	200	27.898	32.945	27.148
50				200	26.253	33.574	27.486
	ATOM	1218	HB2 GLN				
	MOTA	1219	CG GLN	200	26.930	33.860	25.488
	MOTA	1220	HG1 GLN	200	27.298	33.211	24.693
		1221	HG2 GLN	200	27.607	34.697	25.659
	MOTA						
65	MOTA	1222	CD GLN	200	25.520	34.344	25.193
	MOTA	1223	OE1 GLN	200	24.781	34.733	26.097
	MOTA	1224	NE2 GLN	200	25.128	34.314	23.891
		7223			25.779	33.982	23.165
	ATOM	1225	HE2 GLN	200	25.119	JJ. 302	20.100

	ATOM	1226	HE2 GLN	200	24.18	81 34.624	23.631
	ATOM	1227	C GLN		26.45	59 30.951	27.925
	ATOM	1228	O GLN		27.5		28.249
	ATOM	1229	N ASE		25.3		28.720
5	ATOM	1230	HN ASE		24.4		28.356
5		1231	CA ASE		25.5		30.078
	MOTA	1231	HA ASE		26.1		30.641
	MOTA				24.2		30.900
	MOTA	1233	CB ASE		23.6		30.573
	MOTA	1234	HB1 ASE				30.704
10	ATOM	1235	HB2 ASE		23.7		
	MOTA	1236	CG ASI				32.372
	MOTA	1237	OD1 ASE		25.1		32.757
	MOTA	1238	OD2 ASI		. 24.3		33.131
	MOTA	1239	C ASI		26.1		30.197
15	MOTA	1240	O ASI		27.1		30.921
	MOTA	1241	N ILI		25.6		29.498
	MOTA	1242	HN ILE	202			28.817
	MOTA	1243	CA ILI	202	26.2	41 26.862	29.814
	MOTA	1244	HA ILI	202	27.0	09 26.996	30.576
20	ATOM	1245	CB IL		25.3	55 25.809	30.414
	ATOM	1246	HB IL		24.7		31.206
	ATOM	1247	CG2 ILI		24.4		29.314
•	ATOM	1248	HG2 IL		23.7		29.736
		1249	HG2 ILI		23.8		28.903
26	ATOM		HG2 IL		25.0		28.521
25	MOTA	1250			26.2		31.085
	MOTA	1251	CG1 ILI				31.668
	MOTA	1252	HG1 IL		27.0		30.304
	ATOM	1253	HG1 IL		26.6		
	MOTA	1254	CD1 IL		25.4		32.027
30	MOTA	1255	HD1 IL		26.1		32.459
	MOTA	1256	HD1 IL		25.0		32.824
	MOTA	1257	HD1 IL		24.6		31.470
	MOTA	1258	C IL		26.8		28.612
	MOTA	1259	O IL	E 202	26.5	15 26.545	27.474
35	MOTA	1260	N SE	R 203	27.9	07 25.428	28.878
	MOTA	1261	HN SE	R 203	28.1	.35 25.234	29.863
	ATOM	1262	CA SE	R ^ 203	28.6		27.864
	MOTA	1263	HA SE	R 203	28.1	04 24.825	26.941
	ATOM	1264	CB SE	R 203	30.0	25.464	, 27.606
40	ATOM	1265	HB1 SE		29.9	26.501	27.299
	MOTA	1266	HB2 SE		30.5	91 24.947	26.818
	ATOM	1267	OG SE		30.8	345 25.453	28.778
	ATOM	1268	HG SE		31.1		28.963
	ATOM	1269	C SE		28.9		28.309
45	MOTA	1270	O SE		27.9		28.667
43		1271	N ME		30.1		28.258
	ATOM				30.9		27.968
	MOTA	1272	HN ME		30.5		28.581
	MOTA	1273	CA ME		30.2		27.847
50	MOTA	1274	HA ME		32.1		28.594
50	ATOM	1,275	CB ME				27.661
	MOTA	1276	HB1 ME		32.6		
	MOTA	1277	HB2 ME		32.4		
	MOTA	1278	CG ME		32.8		
	MOTA	1279	HG1 ME		32.4		
55	MOTA	1280	HG2 ME	T 204	. 32.		
	MOTA ·	1281	SD ME		34.		
	MOTA	1282	CE ME	T 204	35.		
	MOTA	1283	HE1 ME	T 204	36.0		
	MOTA	1284	HE2 ME	T 204	34.	488 22:240	27.378
60	ATOM	1285	HE3 ME		34.		28.221
	ATOM	1286	C ME		30.		
	ATOM	1287	O ME		29.		
		1288	N ME		30.		
	ATOM	1289	HN ME		31.		
45	MOTA				29.		
65	ATOM	1290	CA ME		29.		
	ATOM	1291	HA ME				
	MOTA	1292	CB ME		30.		
	MOTA	1293	HB1 ME	T 205	31.	619 1,7.849	, 51.000

	ATOM	1294	HB2	MET	205		30.340	17.300	30.557
	ATOM	1295	CG	MET	205		29.935	16.939	32.614
	ATOM .	1296	HG1		205		28.856	16.814	32.517
	ATOM	1297	HG2	MET	205		30.090	17.351	33.611
5	MOTA	1298	SD	MET	205		30.610	15.257	32.677
	MOTA	1299	CE	MET	205		29.841	14.726	31.118
	MOTA	1300	HE1	MET	205		30.107	13.689	30.916
	ATOM	1301	HE2	MET	205		28.758	14.814	31.199
	MOTA	1302	HE3	MET	205		30.197	15.358	30.304
10	MOTA	1303	c ·	MET	205		30.466	19.951	32.656
•	MOTA	1304	0	MET	205		29.792	19.953	33.685
	ATOM	1305	·N	ARG	206		31.649	20.582	32.573
	ATOM	1306	HN	ARG	206		32.168	20.584	31.683
-	MOTA	1307	CA	ARG	206		32.193	21.253	33.719
15	ATOM	1308	HA	ARG	206		32.346	20.537	34.526
	ATOM	1309	CB	ARG	206		33.535	21.941	33.423
	MOTA	1310	HB1	ARG	206		33.476	22.671	32.616
	ATOM	1311	HB2	ARG	206		34.320	21.245	33.127
	ATOM	1312	CG	ARG	206		34.100	22.704	34.620
20	ATOM	1313	HG1	ARG	206		34.234	22.087	35.509
	ATOM	1314	HG2	ARG	206		33.472	23.533	34.947
	MOTA	1315	CD	ARG	206		35.472	23.326	34.361
	MOTA	1316	HD1	ARG	206		35.729	23.910	35.245
	MOTA	`1317	HD2	ARG	206		35.375	23.954	33.475
25	ATOM	1318	NE	ARG	206		36.425	22.203	34.142
	MOTA	1319	HE	ARG	206		36.707	21.939	33.187
	ATOM	1320	CZ	ARG	206		36.922	21.524	35.218
	MOTA	1321 -	NH1	ARG	206		36.524	21.865	36.479
	MOTA	1322	HH1	ARG	206		36.898	21.355	37.292
30	MOTA	1323	HHl	ARG	206		35.851	22.632	36.617
	ATOM	1324	NH2	ARG	206		37.806	20.501	35.032
	MOTA	1325	HH2	ARG	206		38.181	19.990	35.844
ŕ	MOTA	1326	HH2	ARG	206		38.099	20.240	34.080
	MOTA	1327	C	ARG	206		31.245	22.317	34.177
35	ATOM	1328	0	ARG	206		30.931	22.407	35.363
	MOTA	1329	N	MET	207		30.745	23.148	33.245
	MOTA	1330	HN	MET	207		30.992	23.020	32.253
	MOTA	1331	CA	MET	207		29.868	24.212	33.636
	MOTA	1332	HA	MET	207		30.358	24.805	34.407
40	MOTA	1333	CB	MET	207		29.527	25.178	32.487
	ATOM	1334	HB1		207	,	28.776	25.915	32.771
	ATOM	1335	HB2	MET	207		29.134	24.663	31.611
	MOTA	1336	CG	MET	207		30.747	25.971	32.007
	MOTA	1337	HG1	MET	207		31.400	25.291	31.460
45	ATOM	1338		MET	207		31.255	26.375	
	MOTA	1339	SD	MET	20,7		30.371	27.368	30.905
	ATOM	1340	CE	MET	207		29.718	28.430	32.219
	ATOM	1341	HE1	MET	207		29.405	29.384	31.795
50	ATOM	1342			207		28.863	27.944	32.689
50	MOTA	1343	HE3		207		30.493	28.603	32.966
	ATOM	1344	С	MET	207		28.604	23.622	34.165
	ATOM	1345	0	MET	207 .		28.017	24.138	35.113
	ATOM	1346	N	LYS	208		28.162	22.503	33.568
ے ہے	ATOM	1347	HN	LYS	208		28.721	22.081	32.812
55	MOTA	1348	CA	LYS			26.932	21.883	33.959
	MOTA	1349	HA	LYS	208		26.113	22.595	33.857
	MOTA	1350	CB	LYS	208		26.588	20.656	33.100
	MOTA	1351	HB1	LYS	208	_	25.687	20.147	33.445
C O	MOTA	1352	HB2	LYS	208		27.383	19.910	33.104
60	MOTA	1353	CG	LYS	208		26.344	21.019	31.636
	MOTA	1354	HG1		208		27.155	21.666	31.304
	MOTA	1355	HG2		208		25.387	21.537	31.566
	MOTA	1356	CD	LYS	208		26.292	19.818	30.696
	MOTA	1357	HD1	LYS	208		25.447	19.160	30.896
65	MOTA	1358	HD2		208		27.181	19.190	30.762
	MOTA	1359	CE	LYS	208		26.171	20.221	29.224
	ATOM	1360	HE1		208		26.057	19.330	28.606
	MOTA	1361	HE2	LYS	208		27.067	20.759	28.914

	7.004	1262	NO TWO	208		24.991	21.095	29.040
	ATOM	1362	NZ LYS					
	MOTA	1363	HZ1 LYS :			24.913	21.363	28.049
	ATOM	1364	HZ2 LYS	208		24.140	20.588	29.326
	ATOM	1365	HZ3'LYS	208		25.096	21.941	29.617
5		1366	C LYS	208		27.021	21.436	35.384
5	MOTA							
	MOTA	1367	O LYS	208		26.035	21.468	36.113
	MOTA	1368	N THR	209		28.203	20.970	35.808
	ATOM	1369	HN THR	209		28.996	20.971	35.150
	ATOM	1370	CA THR	209		28.418	20.469	37:137
10:								
10	MOTA	1371	HA THR	209		27.630	19.795	37.471
	MOTA	1372	CB THR	209		29.652	19.629	37.255
	- MOTA	1373	HB THR	209		29.702	19.268	38.283
	ATOM	1374	OG1 THR	209		30.816	20.390	36.970
								37.613
_	MOTA	1375	HG1 THR	209		31.573	20.116	
15	MOTA	1376	CG2 THR	209		29.514	18.469	36.258
	MOTA	1377	HG2 THR	209		30.397	17.832	36.315
	ATOM	1378	HG2 THR	209		28.628	17.883	36.502
								35.247
	MOTA	1379	HG2 THR	209		29.418	18.867	
	MOTA	1380	C THR	209		28.488	21.556	38.171
20	MOTA	1381	O THR	209		28.309	21.281	39.357
20				210		28.765	22.811	37.770
	MOTA	1382						
	ATOM	1383	HN ILE	210		28.804	23.026	36.763
	MOTA	1384	CA ILE	210		29.007	23.858	38.729
	ATOM	1385	HA ILE	210		29.899	23.675	39.327
25				210			25.197	38.087
25	MOTA	1386	CB ILE			29.261		
	MOTA	1387	HB ILE	210		30.064	25.093	37.357
	MOTA	1388	CG2 ILE	210		27.975	25.670	37.390
	ATOM	1389	HG2 ILE	210		28.150	26.639	36.923
								36.628
	MOTA	1390	HG2 ILE	210		27.687	24.946	
30	MOTA	1391	HG2 ILE	210		27.175	25.760	38.125
	ATOM	1392	CG1 ILE	210		29.803	26.193	39.125
	MOTA	1393	HG1 ILE	210		30.619	25.792	39.726
						29.051	26.521	39.844
	ATOM	1394	HG1 ILE	210				
	MOTA	1395	CD1 ILE	210		30.353	27.477	38.506
35	ATOM	1396	HD1 ILE	210		30.718	28.134	39.295
	MOTA	1397	HD1 ILE	210		31.172	27.232	37.830
				210		29.562		37.950
	MOTA	1398	HD1 ILE					
	MOTA	1399	C ILE	210		27.869	24.019	39700
	MOTA	1400	O ILE	210		28.106	24.125	40.902
40	MOTA	1401	N GLY	211		26.602	24.043	39.245
10		1402		211		26.394	23.941	38.241
	MOTA							
	MOTA	1403	CA GLY	211		25.549	24.214	40.210
	MOTA .	1404	HA1 GLY	· 211		25.282	25.271	40.211
	MOTA	1405	HA2 GLY	211		25.942	23.898	41.176
45	ATOM	1406	C GLY	211		24.410	23.362	39.775
45							22.797	38.684
	MOTA	1407	O GLY	211		24.440		
	ATOM	1408	N GLU	212		23.383	23:205	40.640
	MOTA	1409	HN GLU	212		23.387	23.626	41.580
	ATOM	1410	CA GLU	212		22.293	22.415	40.163
50						22.642	21.508	39.670
50	ATOM	1411	HA GLU	212				
	MOTA	1412	CB GLU	212		21.156	22.073	41.138
	MOTA	1413	HB1. GLU	212		20.767	22.954	41.647
	ATOM	1414	HB2 GLU	212		21.474	21.381	41.918
						19.962	21.415	40.433
	MOTA	1415	CG GLU	212				
55	MOTA	1416	HG1 GLU	212		19.930		39.389
	MOTA	1417	HG2 GLU	212		19.034	21.712	40.921
	ATOM	1418	CD GLU	212		20.093	19.903	40.496
								41.597
	MOTA	1419	OE1 GLU	212		19.844	19.346	
	MOTA	1420	OE2 GLU	212		20.420	19.287	39.448
60	ATOM	1422	C GLU	212		21.640	23.352	39.227
J J	ATOM	1423	O GLU	212	•	21.015	24.313	39.669
	MOTA	1424	N HIS	213	•	21.775	23.098	37.916
	MOTA	1425	HN HIS	213		22.243	22.235	37.604
	MOTA	1426	CA HIS	213		21.272	24.025	36.956
65	ATOM	1427	HA HIS	213		21.693	25.019	37.105
00								35.496
	ATOM	1428	ND1 HIS	213		24.202	23.591	
	MOTA	1429	HD1 HIS	213		24.304	22.682	35.970
	MOTA	1430	CG HIS	213		23.024	24.223	35.174
			•					

	ATOM ATOM	1431 1432	NE2 HIS HE2 HIS	213 213	25.306	25.499 26.269	34.494 34.088 34.561
•	ATOM	1.433	CD2 HIS	213 213	23.379 22.676	25.385 26.124	34.176
_	MOTA	1434 1435	HD2 HIS	213		24.398	35.067
5	ATOM	1435	HE1 HIS	213	26.264	24.163	35.182
	ATOM	1430	CB HIS	213		23.701	35.503
	ATOM ATOM	1438	HB1 HIS	213	20.957	24.146	34.797
	ATOM	1439	HB2 HIS	213	21.666	22.625	35.326
10	ATOM	1440	C HIS	213	19.789	24.147	37.046
10	MOTA	1441	O HIS	213	19.267	25.255	36.949
	MOTA	1442	N ILE	214	19.068	23.031	37.257
	MOTA	1443	HN ILE	214	19.548	22.130	37.389
	ATOM		CA ILE	214	17.634	23.088	37.302
15	MOTA	1445	HA ILE	214	17.275	23.468	36.345
	MOTA	1446	CB ILE	214	17.022	21.728	37.528
	MOTA	1447	HB ILE	214	17.416	21.055	36.767
	MOTA	1448	CG2 ILE	214	17.420	21.263	38.937
	MOTA	.1449	HG2 ILE	214	16.991	20.280	39.131
20	MOTA	1450	HG2 ILE	214	18.506	21.206	39.008
	MOTA	1451	HG2 ILE	214	17.045	21.974	39.674
	MOTA	1452	CG1 ILE	214	15.503	21.722 20.692	37.266 37.326
	MOTA	1453	HG1 ILE	214	15.152 15.328	22.132	36.272
25	MOTA	1454	HG1 ILE	214	14.677	22.546	38.254
25	ATOM	1455 1456	CD1 ILE HD1 ILE	214 214	13.622	22.481	37.990
	MOTA MOTA	1457	HD1 ILE	214	14.823	22.158	39.262
	ATOM	1458	HD1 ILE	214	14.997	23.587	38.216
	ATOM	1459	C ILE	214	17.231	24.007	38.418
30	ATOM	1460	O ILE	214	16.278	24.771	38.272
50	ATOM	1461	N VAL	215	17.948	23.970	39.561
	ATOM	1462	HN VAL	215	18.754	23.333	39.636
	MOTA	1463	CA VAL	215	17.599	24.812	40.677
	MOTA	1464	HA VAL	215	16.578	24.580	40.981
35	MOTA	1465	CB VAL	215	18.573	24.769	41.818
	MOTA	1466	HB VAL	215	19.552	25.061	41.437
	ATOM	1467	CG1 VAL	215	18.088	25.753	42.894
	MOTA	1468	HG1 VAL	215	18.779	25.741 26.758	43.736 42.474
40	MOTA	1469	HG1 VAL HG1 VAL	215 215	18.044 17.095	25.459	43.235
40	MOTA	1470	HG1 VAL CG2 VAL	215	18.762	23.337	42.309
	MOTA MOTA	1471 1472	HG2 VAL	215	19.472	23.327	43.136
	ATOM	1473	HG2 VAL	215	17.806	22.939	42.646
	ATOM	1474	HG2 VAL	215	19.145	22.721	41.495
45	MOTA	1475	C VAL	215	17.701	26.234	40.249
	ATOM	1476	O VAL	215	16.816	27.039	40.530
	MOTA	1477	n ala	216	18.811	26.581	39.575
	MOTA	1478	HN ALA	216	19.505	25.863	39.324
	MOTA	1479	CA ALA		19.031	27.946	39.204
50	MOTA	1480	HA ALA	216	18.971	28.588	40.083
	MOTA	1481	CB ALA	216	20.420	28.184	38.591
	MOTA	1482	HB1 ALA	216	20.527	29.237	38.331
	ATOM	1483	HB2 ALA	216	21.189	27.909 27.576	39.314 37.694
	MOTA	1484	HB3 ALA	216	20.531 17.993	28.387	38.213
55	MOTA	1485	C ALA	216 216	17.436	29.478	38.331
	MOTA MOTA	· 1486 1487	O ALA N HIS	217	17.430	27.533	37.217
	ATOM	1488	HN HIS	217	18.138	26.605	37.208
	MOTA	1489	CA HIS	217	16.774	27.870	36.166
60	ATOM	1490	HA HIS	217	17.111	28.781	35.671
- •	ATOM	1491	ND1 HIS	217	18.889	27.082	34.036
	MOTA	1492	HD1 HIS	217	18.875	28.112	34.020
	MOTA	1493	CG HIS	217	17.908	26.255	34.537
	MOTA	1494	NE2 HIS	217	19.599	24.996	33.731
65	MOTA	1495	HE2 HIS	217	20.177	24.187	33.465
	MOTA	1496	CD2 HIS	217	18.357	24.985	34.341
	MOTA	1497	HD2 HIS	217	17.813	24.084	34.625 33.568
	MOTA	1498	CE1 HIS	217	19.877	26.277	55.500

	ATOM	1499	HE1	HIS	217		-	20.794	26.646	33.109
	MOTA	1500	CB	HIS	217			16.620	26.727	35.147
	ATOM	1501	HB1	HIS	217			15.982	27.078	34.336
_	MOTA	1502	HB2	HIS	217			16.165	25.876	35.654
.5	MOTA	1503	С	HIS	217			15.415	28.088	36.749 36.403
	ATOM ATOM	1504 1505	O N	HIS ILE	217 218			14.711 15.017	29.038 27.190	36.403
	ATOM	1505	HN	ILE	218			15.676	26.451	37.002
*	ATOM	1507	CA	ILE	218			13.717	27.215	38.255
10	ATOM	1508	HA	ILE	218			12.960	27.231	37.471
	ATOM	1509	CB	ILE	218			13.447	25.975	39.062
	MOTA	1510	HB	ILE	218			13.729	25.100	38.477
	ATOM	1511	CG2	ILE	218			14.273	26.027	40.355
	MOTA	1512	HG2	ILE	218			14.082	25.131	40.946
15	MOTA	1513	HG2	ILE	218			15.333	26.079	40.108
	MOTA	1514	HG2	ILE	218			13.992	26.908	40.932
	ATOM ATÓM	1515 1516	CG1 HG1	ILE	218 218		,	11.943	25.805 26.002	39.298 38.404
	ATOM	1517	HG1	ILE	218			11.560	26.476	40.067
20	ATOM	1518	CD1	ILE	218			11.573	24.394	39.747
	ATOM	1519	HD1	ILE	218			10.495	24.331	39:900
	ATOM	1520	HD1	ILE	218			11.873	23.678	38.982
	ATOM	1521	HD1	ILE	218			12.085	24.163	40.681
	MOTA	1522	С	ILE	218			13.579	28.438	39.107
25	MOTA	1523	0	ILE	218			12.496	29.013	39.207
	ATOM	1524	N	GLN	219			14.684	28.884	39.733 39.604
	ATOM ATOM	1525 -1526	HN CA	GLN GLN	219 219			15.580 14.618	28.394 30.040	40.581
	MOTA	1527	HA	GLN	219			13.921	29.807	41.386
30	ATOM	1528	CB	GLN	219			15.987	30.457	41.145
	ATOM	1529	HB1	GLN	219	-		15.858	31.377	41.715
	ATOM	1530	HB2	GLN	219			16.668	30.617	40.309
	MOTA	1531	CG	GLN	219			16.621	29.419	42.072
		1532	HG1	GLN	219			16.751	28.501	41.498
35	MOTA	1533	HG2	GLN	219		•	15.942	29.269	42.911
	MOTA MOTA	1534 1535	CD OE1	GLN .	219 219			17.961 19.007	29.975 29.358	42.536
	ATOM	1536		GLN	219			17.928	31.177	43.175
	ATOM	1537	HE2	GLN	219			17.030	31.660	43.316
40	MOTA	1538	HE2	GLN	219			18.801	31.602	43.517
	MOTA	1539	Ç	GLN	219			14.132	31.173	39.740
	MOTA '		. 0	GLN	219			13.303	31.969	40.178
,	MOTA	1541	N	HIS	220			14.627		38.493
45	ATOM	1542	HN	HIS	220.			15.305 14.212	30.562 32.327	38.157 37.632
43	ATOM ATOM	1543 .1544	CA HA	HIS HIS	220 220			14.212	33.265	38.111
	ATOM	1545		HIS	220			17.279	31.761	36.687
	ATOM	1546		HIS	220			17.157	30.847	37.146
	MOTA	1547	CG	HIS	220			16.283	32.567	36.183
50	MOTA	1548		HIS	220			18.280	33.562	35.850
	MOTA	1549		HIS	220			19.002	34.239	35.567
	ATOM	1550		HIS	220			16.912	33.660	35.676
	ATOM	1551		HIS	220			16.407 18.452	34.499	35.197 36.462
55	MOTA MOTA	1552 1553	CE1	HIS HIS	220 220			19.426	32.404 32.010	36.752
J.J	ATOM	1554	CB	HIS	220			14.821	32.237	36.222
	MOTA	1555		HIS	220			14.355	32.913	35.505
	MOTA	1556		HIS	220			14.739	31.245	35.777
-	MOTA	1557	С	HIS	220			12.731	32:222	37.468
60	MOTA	1558	0	HIS	220			12.014	33.218	37.543
	ATOM	1559	N·	GLU	221			12.237	30.991	37.255
	MOTA	1560	HN	GLU	221			12.881	30.187	37.231
	MOTA	1561	CA	GLU	221			10.835	30.772 31.344	37.058 36.197
65	MOTA MOTA	1562 1563	HA CB	GLU GLU	221 221			10.492	29.283	36.819
<u> </u>	ATOM	1564	HB1		221			11.098	28.692	37.529
	ATOM	1565	HB2		221			10.800	29.035	35.795
	MOTA	1566	CG	GLU	221			9.046	28.913	36.999

	ATOM	1567	HG1 GLU	221		8.822	28.111	36.295
	ATOM	1568	HG2 GLU	221 221		8.457 8.863	29.805 28.455	36.786 38.442
	ATOM	1569 1570	CD GLU OE1 GLU	221		9.899	28.242	39.126
5	ATOM ATOM	1571	OE2 GLU	221		7.690	28.302	38.875
5	ATOM ·	1573	C GLU	221		10.082	31.210	38.275
	ATOM	1574	O GLU	221		9.118	31.968	38.179
	ATOM	1575	N VAL	222		10.550	30.761	39.453
	MOTA	1576	HN VAL	222		11.389	30.164	39.425
10	MOTA	1577	CA VAL	222		9.989	31.036 ~	
	MOTA	1578	HA VAL	222	•	10.193	30.260	41.482
	ATOM	1579	CB VAL	222		10.606	32.242	41.403
	MOTA	1580	HB VAL	222		11.666	32.056 33.466	41.575 40.485
1.5	ATOM	1581	CG1 VAL HG1 VAL,	222 222		10.439 10.885	34.340	40.465
15	MOTA MOTÁ	1582 1583	HG1 VAL, HG1 VAL	222		10.005	33.277	39.533
	ATOM	1584	HG1 VAL	222		9.378	33.648	40.312
	ATOM	1585	CG2 VAL	222		9.978	32.417	42.796
	ATOM	1586	HG2 VAL	222		10.415	33.287	43.286
20	ATOM	1587	HG2 VAL	222		8.902	32.560	42.695
	MOTA	1588	HG2 VAL	222		10.170	31.527	43.396
	MOTA	1589	C VAL	222		8.495		40.730
,	MOTA	1590	O VAL	222		7.982	32.255	40.437 41.055
0.5	ATOM	1591	N ASP	223		7.777 8.297	30.070 29.192	41.055
25	ATOM	1592 1593	HN ASP . CA ASP	223 223		6.339	30.030	41.221
	ATOM ATOM	1593	CA ASP HA ASP	223		6.009	30.612	42.082
	MOTA	1595	CB ASP	223		5.484	30.685	40.115
	MOTA	1596	HB1 ASP	223		4.538	30.147	40.060
30 .	MOTA	1597	HB2 ASP	223		6.033	30.606	39.177
	MOTA	1598	CG ASP	223		5.261	32.145	40.496
	ATOM	1599	OD1 ASP	223		5.616	32.509	41.650
	MOTA	1600	OD2 ASP	223		4.737	32.913	39.646
2.5	ATOM	1601	C ASP	223 223		5.830 6.563	28.624 27.742	41.427 41.868
35	MOTA	1602 1603	O ASP N PHE	223		4.523	28.411	41.120
	MOTA MOTA	1603	HN PHE	224		4.000	29.205	40.723
	ATOM	1605	CA PHE	224		3.801	27.176	41.300
	ATOM	1606	HA PHE	224		3.677	26.937	42.356
40	MOTA	1607	CB PHE	224		2.382	27.181	40.693
	MOTA	1608	HB1 PHE	224		2.020	26.162	40.558
•	MOTA	1609	HB2 PHE	224	•	2.383	27.676	39.722
	MOTA	1610	CG PHE	224		1.432	27.903 29.275	41.589 41.686
4.5	ATOM	1611	CD1 PHE	224 224		1.441 2.157	29.275	41.103
45	MOTA MOTA	1612 1613	HD1 PHE CD2 PHE	224		0.503	27.192	42.315
•	ATOM	1614	HD2 PHE	224		0.474	26.106	42.232
	MOTA	1615	CE1 PHE	224		0.552	29.923	42.514
	ATOM	1616	HE1 PHE	224		0.574	31.010	42.590
50	MOTA	.1617	CE2 PHE	224		-0.386	27.833	43.142
	ATOM	1618	HE2 PHE	224		-1.112	27.256	43.716
٠.	MOTA	1619	CZ PHE	224	•	-0.361	29.203	43.245 43.902
,	ATOM	1620	HZ PHE	224		-1.062 4.517	29.716 26.027	43.902
<i>E E</i>	MOTA	1621	C PHE	224		5.617	26.027	40.129
55	MOTA MOTA	1622 1623	O PHE N LEU	224 225		3.841	24.859	40.720
	MOTA	1624	HN LEU	225		2.918	24.898	41.175
	MOTA	1625	CA LEU	225		4.243	23.569	40.227
	ATOM	1626	HA LEU	225		4.881	23:079	40.963
60	MOTA	1627	CB LEU	225		2.995	22.680	39.996
	MOTA	1628	HB1 LEU	225		2.360	23.201	39.279
	MOTA	1629	HB2 LEU	225		2.502	22.561	40.960
	MOTA	1630	CG LEU	225		3.186	21.253	39.437
<i>~</i> =	MOTA	1631	HG LEU	225		3.913 3.772	20.712	40.041 38.017
65	MOTA	1632 1633	CD2 LEU HD2 LEU	225 225		3.772	21.234 20.202	37.682
	MOTA MOTA	1634	HD2 LEU	225		3.104	21.766	37.340
	ATOM	1635	HD2 LEU	225		4.748	21.719	38.020

	ATOM ATOM ATOM	1636 1637 1638	CD1 LEU HD1 LEU HD1 LEU	225 225 225		1.850 1.992 1.490	20.498 19.492 20.436	39.467 39.071 40.493
5	MOTA MOTA MOTA	1639 1640 1641	HD1 LEU C LEU O LEU	225 225 225		1.119 5.000 4.719	21.028 23.732 24.655	38.856 38.948 38.187
	ATOM ATOM ATOM	1642 1643 1644	N PHE HN PHE CA PHE	226 226 226		5.995 6.207 6.755	22.840 22.104 22.913	38.693 39.381 37.471
10	ATOM ATOM ATOM	1645 1646 1647	HA PHE CB PHE HB1 PHE	226 226 226		6.249 8.153 8.092	23.571 23.549 24.525	36.764 37.608 38.090
15	ATOM ATOM ATOM	1648 1649 1650	HB2 PHE CG PHE CD1 PHE	226 226 226		8.616 9.049 9.081	23.685 22.690 22.819	36.630 38.423 39.790
	MOTA MOTA MOTA	1651 1652 1653	HD1 PHE CD2 PHE HD2 PHE	226 226 226		8.440 9.861 9.839 9.915	23.552 21.759 21.648 22.030	40.281 37.817 36.733 40.540
20	ATOM ATOM ATOM ATOM	1654 1655 1656 1657	CE1 PHE HE1 PHE CE2 PHE HE2 PHE	226 226 226 226		9.934 10.698 11.338	22.138 20.968 20.234	41.625 38.565 38.076
25	ATOM ATOM ATOM	1658 1659 1660	CZ PHE HZ PHE C PHE	226 226 226		10.727 11.392 6.880	21.105 20.482 21.538	39.932 40.530 36.870
	MOTA MOTA MOTA MOTA	1661 1662 1663 1664	O PHE N CYS HN CYS CA CYS	226 227 227 227		6.370 7.563 8.072 7.600	20.561 21.439 22.263 20.217	37.417 35.704 35.352 34.941
30	MOTA MOTA MOTA MOTA	1665 1666 1667 1668	HA CYS CB CYS HB1 CYS HB2 CYS	227 227 227 227	•	7.270 6.745 5.700 6.885	19.370 20.338 20.434 19.442	35.542 33.681 33.976 33.076
35	MOTA MOTA MOTA	1669 1670 1671	SG CYS HG CYS C CYS	227 227 227		7.273 8.271 8.994	21.807 22.414 19.924	32.758 33.416 34.456
	MOTA MOTA MOTA	1672 1673 1674	O CYS N MET HN MET	227 228 228		9.930 9,138 8.300	20.685 18.775 18.195	34.696 33.746 33.598
40	MOTA MOTA MOTA MOTA	1675 1676 1677 1678	CA MET HA MET CB MET HB1 MET	228 228 228 228		10.384 11.162 10.920 11.690	18.311 19.057 16.997 16.604	33.183 33.351 33.783 33.119
45	MOTA MOTA MOTA	1679 1680 1681	HB2 MET CG MET HG1 MET	228 228 228	٠	10.092 11.539 10.767	16.294 17.159 17.527	33.866 35.175 35.850
,	MOTA MOTA MOTA	1682 1683 1684	HG2 MET SD MET CE MET	228 228 228		12.360 12.208 13.052 13.557	17.872 15.627 16.449 15.702	35.102 35.891 37.274 37.887
50	MOTA MOTA MOTA MOTA	1685 1686 1687 1688	HE1 MET HE2 MET HE3 MET C MET	228 228 228 228		13.785 12.321 10.219	17.155 16.982 18.088	36.885 37.881 31.698
55	MOTA MOTA MOTA	1689 1690 1691	O MET N ASP HN ASP CA ASP	228 229 229 229		9.166 11.276 12.046 11.419	18.384 17.543 17.175 17.432	31.135 31.040 31.617 29.599
60	ATOM MOTA ATOM ATOM	1692 1693 1694 .1695	CA ASP HA ASP CB ASP HB1 ASP	229 229 229 229		11.556 12.584 12.660	18.408 16.502 16.448	29.134 29.221 28.135
	MOTA MOTA MOTA	1696 1697 1698 1699	HB2 ASP CG ASP OD1 ASP OD2 ASP	229 229 229 229	i	12.396 13.877 14.290 14.473	15.509 17.061 18.175 16.367	29.628 29.800 29.383 30.667
65	ATOM ATOM ATOM ATOM	1700 1701 1702	C ASP O ASP N VAL	229 229 230		10.209 9.504 9.990 10.766	16.804 17.462 15.496 14.939	28.972 28.217 29.198 29.583
	MOTA	1703	HN VAL	230		10.766	エ コ・フンフ	23.303

	MOTA MOTA MOTA	1704 1705 1706	CA VAL HA VAL CB VAL	230 . 230 230	7.900	14.819 15.498 13.658	28.939 28.819 27.992
5	MOTA MOTA MOTA	1707 1708 1709	HB VAL CG1 VAL HG1 VAL	230 230 230	9.384	13.902 12.421 11.585	27.090 28.656 27.957
	ATOM ATOM ATOM	1710 1711 1712	HG1 VAL HG1 VAL CG2 VAL	230 230 .230	8.822 7.280	12.651 12.154 13.400	28.929 29.551 27.600
10	MOTA MOTA MOTA	1713 1714 1715	HG2 VAL HG2 VAL HG2 VAL	230 230 230	7.232 6.698 6.869	12.558 13.169 14.288	26.909 28.493 27.120
15	MOTA MOTA MOTA	1716 1717 1718	C VAL O VAL N ASP	230 230 231	8.776 7.814 9.954	14.078 13.442 14.330	30.176 30.614 30.781
	ATOM ATOM ATOM	1719 1720 1721	HN ASP CA ASP HA ASP	231 231 231	10.552 10.438 10.691	15.057 13.684 12.643	30.363 31.933 31.733
20	MOTA MOTA MOTA	1722 1723 1724	CB ASP HB1 ASP HB2 ASP	231 231 231	11.666 11.345 12.368	14.402 15.332 14.617	32.516 32.986 31.709
ů.	MOTA MOTA MOTA	1725 1726 1727		231 231 231	12.324 11.583 13.580	13.501 12.764 13.531	33.548 34.249 33.641
25	MOTA MOTA	1728 1729 1730	C ASP O ASP N GLN	231 231 232	9.293 8.864 8.694	13.822 12.864 15.019	32.841 33.471 32.834
20	ATOM ATOM ATOM	1731 1732	HN GLN CA GLN	232 232 232	9.097 7.483 7.365	15.815 15.146 14.212	32.320 33.562 34.112
30	ATOM ATOM ATOM	1733 1734 1735	HA GLN CB GLN HB1 GLN	232 232	7.467 7.655 8.218	16.343 17.296 16.273	34.525 34.030 35.312
35	MOTA MOTA MOTA	1736 1737 1738	HB2 GLN CG GLN HG1 GLN	232 232 232	6.135 5.387	16.517 16.788 17.309	35.249 34.503 35.987
	MOTA MOTA MOTA	1739 1740 ,1741	HG2 GLN CD GLN OE1 GLN	232 232 232	6.261 5.797 6.666	15.195 14.480	35.913 36.411 35.907
40	MOTA MOTA MOTA MOTA	1742 1743 1744 1745	NE2 GLN HE2 GLN HE2 GLN C GLN	232 232 232 232	4.482 3.788 4.180 6.416	14.852 15.482 13.963 15.354	35.479 36.330 32.546
45	ATOM ATOM ATOM	1746 1747 1748	O GLN N VAL HN VAL	232 233 233	6.600 5.289 5.217	16.091 14.641 13.926	31.582 32.697 33.435
	ATOM ATOM ATOM	1749 1750 1751	CA VAL HA VAL CB VAL	233 233 233	4.189 4.381 4.004	14.887 15.867 13.876	31.817 31.380 30.725
50	MOTA MOTA MOTA	1752 1753 1754	HB VAL CG1 VAL HG1 VAL	233 233 233	3.104 5.233 5.112	14.130 13.915 13.185	30.165 29.805 29.005
55	ATOM ATOM ATOM	1755 1756 1757	HG1 VAL HG1 VAL CG2 VAL HG2 VAL	233 233 233 233	5.334 6.127 3.736 3.599	14.911 13.677 12.511 11.766	29.374 30.381 31.360 30.576
55	MOTA MOTA- MOTA-	1758 1759 1760	HG2 VAL	233 233	4.583 2.835 2.981	12.228 12.564 14.859	31.985 31.971 32.678
60	MOTA MOTA MOTA MOTA	1761 1762 1763 1764	C VAL O VAL N PHE HN PHE	233 233 234 234	2.931 1.973 2.042	14.124 15.682 16.309	33.664 32.341 31.527
65	MOTA MOTA MOTA	1765 1766 1767 1768	CA PHE HA PHE CB PHE HB1 PHE	234 234 234 234	0.804 1.148 -0.280 -1.159	15.652 15.887 16.652 16.444	33.158 34.165 32.721 33.331
0.0	MOTA MOTA MOTA MOTA	1769 1770 1771	HB2 PHE CG PHE CD1 PHE	234 234 234	-0.462 0.269 0.224	16.472 18.014 18.559	31.662 32.974 34.237

	ATOM	1772	HD1 PHE	234	-0.217	17.989	35.053
	ATOM	1773	CD2 PHE	234	0.831	18.746	31.953
	MOTA	1774	HD2 PHE	234	0.874	18.328	30.948
	MOTA	1775	CE1 PHE	234	0.730	19.814	34.481
5	ATOM	1776	HE1 PHE	234	0.687	20.233	35.486
ر							
	ATOM	1777	CE2 PHE	234	1.339	20.001	32.194
	ATOM	1778	HE2 PHE	234	1.783	20.573	31.379
				234	1.290	20.537	33.458
	MOTA	1779					
	MOTA	1780	HZ PHE	234	1.692	21.532	33.647
10	MOTA	1781	C PHE	234.	0.268	14.272	33.029
10					-0.201		31.963
	MOTA	1782	O PHE	234		13.878	
	ATOM	1783	n GLN	235	0.341	13.500	34.131
	ATOM	1784	HN GLN	235	0.723	13.894	35.002
	MOTA	1785	CA GLN	235	-0.104	12.141	34.108
15	ATOM	1786	HA GLN	235	0.356	11.676	33.236
	MOTA	1787	CB GLN	235	0.320	11.345	35.362
					-0.228	11.744	36.215
	MOTA	1788	HB1 GLN	235			
	MOTA	1789	HB2 GLN	235	1.394	11.474	35.494
	ATOM	1790	CG GLN	235	0.048	9.835	35.315
00							
20	MOTA	1791	HG1 GLN	235	-1.024	9.672	35.212
	ATOM	1792	HG2 GLN	235	0.407	9.382	36.238
	MOTA	1793	CD GLN	235	0.781	9.239	34.123
	MOTA	1794	OE1 GLN	235	0.699	9.751	33.008
	MOTA	1795	NE2 GLN	235	1.523	8.123	34.359
25	MOTA	1796	HE2 GLN	235	1.566	7.725	35.308
د شد							33.590
	MOTA	1797	HE2 GLN	235	2.042	7.678	
	MOTA	1798	C GLN	235	-1.590	12.182	34.004
	MOTA	1799	O GLN	235	-2.166	13.229	33.719
					-2.248	11.029	34.224
	MOTA	1800	N ASP	236			
30	ATOM	1801	HN ASP	236	-1.726	10.189	34.511
	ATOM	1802	CA ASP	236	-3.662	10.965	34.061
*	ATOM	1803	HA ASP	236	-3.938	10.002	34.490
	MOTA	1804	CB ASP	236	-4.442	12.107	34.741
	ATOM	1805	HB1 ASP	236	-4.126	13.054	34.302
35	MOTA	1806	HB2 ASP	236	-4.222	12.092	35.808
23		•	CG ASP	236	-5.932	11.886	34.504
	ATOM	1807			•		
	MOTA.	1808	OD1 ASP	236	-6.292	10.869	33.855
	ATOM	1809	OD2 ASP	236	-6.733	12.735	34.978
	MOTA	1810	C ASP	236	-3.866	11.057	32.595
					•		
40	MOTA	1811	O ASP	236	-3.893	10.045	31.898
	MOTA	1812	N LYS	237	-3.989	12.297	32.086
	MOTA	1813	HN LYS	237	-3.917	13.125	32.693
				237	-4.221	12.436	30.689
	MOTA	1814	CA LYS				
	MOTA	1815	HA LYS	237	-3.492	11.808	30.175
45	MOTA	1816	CB LYS	237	-5.666	12.122	30.258
	MOTA	1817	HB1 LYS	237	-5.765	12,380	29.204
	MOTA	1818	HB2 LYS	237	-6.337	12.723	30.872
	MOTA	1819	CG LYS	237	-6.105	10.664	30.407
	MOTA	1820	HG1 LYS	237	-5.839	10.240	31.374
50							29.659
50	ATOM	1821	HG2 LYS	237	-5.658	10.010	
	MOTA	1822	CD LYS	237	-7.619	10.484	30.271
	MOTA	1823	HD1 LYS	237	-7.920	10.835	29.284
							31.050
	MOTA	1824	HD2 LYS	237	-8.106	11.071	
	ATOM	1825	CE LYS	237	-8.087	9.037	30.415
55	MOTA	1826	HE1 LYS	237	-7.810	8.655	31.398
-		1827	HE2 LYS	237	-7.621	8.419	29.648
	MOTA						
	MOTA	1828	NZ LYS	237	-9.558	8.967	30.266
	MOTA	1829	HZ1 LYS	237	-9.868	7.990	30.364
	MOTA	1830	HZ2 LYS	237	-10.005	9.544	30.993
<i>~</i>							
60	MOTA	1831	HZ3 LYS	237	-9.826	9.321	29.336
	MOTA	1832	C LYS	237	-4.039	13.867	30.352
•	MOTA	1833	O LYS	237	-2.991	14.465	30.588
							29.836
	ATOM	1834	N PHE	238	-5.131	14.451	
	MOTA	1835	HN PHE	238	-5.999	13.898	29.784
65	MOTA	1836	CA PHE	238	-5.162	15.792	29.356
				238	-4.502	15.808	28.488
	MOTA	1837					
	MOTA	1838	CB PHE	238		- 16.254	29.014
	ATOM	1839	HB1 PHE	238	-6.516	17.282	28.660
			. =		,	-	

	n m OM	1840	כפע	DUF	238	-7.17	6 16.182	29.928
	MOTA	1841		PHE	238	-7.10		27.953
	ATOM	1842	CG	PHE	238			26.628
	MOTA		CD1	PHE	238	-6.80 -6.18		
_	ATOM	1843	HD1	PHE	238	-7.88		28.292
5	ATOM	1844	CD2	PHE	238			29.339
	ATOM	1845	HD2			-8.13		
	MOTA	1846	CE1		238	-7.28		25.658
	ATOM,	1847	HE1	PHE	238	-7.04		24.610
- 0	ATOM	1848	CE2	PHE	238	-8.37		27.327
10	ATOM	1849	HE2		238	-8.99		27.610
	ATOM	1850	CZ	PHE	238	-8.06		
	MOTA	1851	HZ	PHE	238	-8.44		25.236
	MOTA	1852	C	PHE	238	-4.66		30.474
	ATOM	1853	0	PHE	238	-4.04		30.275
15	MOTA	1854	N	GLY	239	-4.93		31.708
	ATOM	1855	HN	GLY	239	-5.45		31.875
	MOTA	1856	CA		239	-4.46		32.776
	MOTA	1857	HA1		239	-3.59		32.363
	MOTA	1858	HA2		239	-4.21		33.566
20	ATOM	1859	С	GLY .		-5.59		33.094
	MOTA	1860	0	GLY	239	-5.46		33.854
	MOTA	1861	N	VAL	240	-6.74		32.470
	MOTA	1862	HN	VAL	240	-6.77		31.771
	ATOM	1863	CA	VAL	240	-7.92	and the second s	32.783
25	ATOM	1864	AH	VAL	240	-7.81		32.539
	MOTA	1865	CB	VAL	240	-9.14		32.124
	MOTA	1866	HB	VAL	240	-9.27		32.454
	MOTA	1867	CG1	VAL	240	-10.37		32.528
	MOTA	1868	HG1	VAL	240	-11.26	2 18.156	32.054
30 -	MOTA	1869	HG1	VAL	240	-10.48	9 18.539	33.611
	MOTA	1870	HG1	VAL	240	-10.23		32.205
	MOTA	1871	CG2	VAL	240 -	-8.89	8 17.656	30.608
	ATOM	1872	HG2	VAL	240	-9.77	8 17.239	30.117
	MOTA	1873	HG2	VAL	240	-8.70	6 18.656	30.219
35	MOTA	1874	HG2	VAL.	240	-8.03		30.411
	MOTA	1875	С	VAL	240	-8.06	5 18.086	34.239
-	MOTA	1876	0	VAL	240	-8.23	6 19.017	35.024
	MOTA	1877	N	GLU	241	-7.96	9 16.804	34.626
	ATOM	1878	HN	GLU	241	-7.84		33.922
40	ATOM	1879	CA	GLU	241	-8.04	,	36.006
	MOTA	1880	HA	GLU	241	-8.90		36.461
	MOTA	1881	CB	GLU	241	-8.18	2 14.954	36.261
	MOTA	1882	HB1	GLU	. 241	-8.09	2 14.679	37.312
	ATOM	1883	HB2	GLU	241	-7.43		35.746
45	MOTA	1884	CG	GLU	241	-9.53	0 14.381	35.813
	MOTA	1885	HG1	GLU	241	-9.57	8 14.441	34.726
	ATOM	1886	HG2	GLU	241	-10.31	9 14.978	36.270
	MOTA	1887	CD	GLU	241	-9.60	6 12.933	36.280
	MOTA	1888	OE1	GLU	241	-8.88	0 12.587	37.251
50	ATOM	1889	OE2	GLU	241	-10.39		35.679
	MOTA	1891	C.	GLU	241	-6.80		36.706
	MOTA	1892	0	GLU	241	-6.87	7 17.477	37.800
	ATOM	1893	N	THR	242	5.61	2 16.729	36.094
	MOTA .	1894	HN	THR	242	-5.55	7 16.390	35.123
55	MOTA	1895	CA	THR	242	-4.42	8 17.015	36.856
	MOTA	1896	HA	THR	242	-4.41	1 16.457	37.792
	MOTA	1897	CB	THR	242	-3.14	6 16.638	36.166
•	ATOM	1898	HB	THR	242	-2.32	4 16.779	36.867
	MOTA	1899	OG1	THR	242	-2.91	6 17.463	35.035
60	MOTA	1900	HG1	THR	242	-2.47		35.336
	MOTA	1901	CG2	THR	242	-3.24	2 15.165	35.735
	MOTA	1902	HG2	THR	242	-2.32		35.231
	MOTA	1903	HG2	THR	242	-3.39		36.614
	MOTA	1904	HG2	THR	242	-4.08		35.053
65	MOTA	1905	C	THR	242	-4.33		37.201
	MOTA	1906	0	THR	242	-4.23		38.373
	MOTA	1907	N	LEU	243	-4.38	9 19.351	36.190
	MOTA	1908	HN	LEU	243	-4.56	2 19.024	35.228

	ATOM	1909	CA :	LEU	243		-4.205	20.747	36.450
	MOTA	1910 ·	HA I	LEU	243		-3.282	20.883	37.014
	ATOM	1911	CB 3	LEU	243		-4.096	21.566	35.146
	MOTA	1912	HB1	LEU	243		-5.066	21.538	34.648
5 ·	ATOM	1913	HB2 3	LEU	243		-3.327	21.109	34.524
5									
	ATOM	1914	CG :	LEU	243		-3.717	23.051	35.327
							. 2 512	22 550	34.380
	MOTA	1915	HG :	LEU.	243		-3.512	23.550	34.360
	ATOM	1916	CD2	LEU	243		-2.360	23.187	36.035
•	ATÓM	1917	HD2	LEU	243		-2.115	24.243	36.151
10	MOTA	1918	HD2	LEU	243		-2.413	22.717	37.017
10									
	MOTA	1919	HD2	LEU	243		-1.589	22.699	35.440
		1020					-4.827	23.865	36.006
	MOTA	1920	CD1	بإعط	243				30.000.
	ATOM	1921	HD1	LEU	243		-4.506	24.902	36.108
	MOTA	1922	HD1 :	LEU	243	•	-5.732	23.823	35.400
15	MOTA	1923	HD1 :	LEU	243		-5.031	23.450	36.993
13									
	ATOM	1924	C :	LEU	243		-5.365	21.249	37.239
							-6 107	21.944	38.240
	MOTA	1925	0 :	LEU	243		-5.197	21.944	
	ATOM	1926	N (GLY	244		-6.586	20.880	36.815
	MOTA	1927	HN (GLY	244		-6.680	20.224	36.026
20	MOTA	1928	CA	GLY	244		-7.756	21.399	37.456
~ 0									
	ATOM	1929	HA1	GLY	244		-8.652	21.054	36.941
	7. TO M	1930	HA2	GLY	244		-7.741	22.489	37.442
	ATOM								
	MOTA	1931	C	GLY	244		-7.812	20.938	.38.877
							-8.095	21.721	39.781
	ATOM	1932	0 (GLY	244				
25	MOTA	1933	N	GLU	245		-7.545	19.641	39.112
	MOTA	1934	HN	GLU	245		-7.240	19.033	38.338
•	MOTA	1935	CA	GLU	245		-7.681	19.101	40.431
~	MOTA	.1936	HA (GLU	245		-8.678	19.294	40.829
	MOTA	1937	CB	GLU	245		-7.485	17.575	40.478
		_				•			
30	MOTA	1938	HB1	GLU	245		-6.471	17.259	40.235
		1939		GLU	245		-8.126	17.033	39.782
	ATOM			GTIO	243				
	MOTA	1940	CG	GLU	245		-7.777	16.963	41.850
									12 601
	ATOM	1941	HG1	GLU	245		-7.269	17.564	42.604
	MOTA	1942-	HG2	GLU	245		-7.400	15.940	41.852
2-									
3 <i>5</i>	MOTA	1943	CD	GLU	245		-9.285	16.984	42.067
	MOTA	1944	OE1	GLU	245		-10.030	16.900	41.054
	MOTA	1945	OE2	GLU	245		-9.712	17.085	43.248
	MOTA	1947	C	GLU	245		-6.683	19.712	41.364
	ATOM	1948	0	GLU	245		-7.024	20.092	42.483
40		1949	N	CTD	246		-5.418	19.833	40.926
40	MOTA			SER					
	MOTA	. 1950	HN	SER	246	,	-5.179	19.574	39.958
							4 402	20.323	41.812
	MOTA	1951	CA ·	SER	246		-4.403		
	MOTA	1952	HA	SER	246		-4.378	19.722	42.720
	MOTA	1953	CB	SER	246		-2.999	20.278	41.186
45 .	MOTA	1954	HB1	SER	246.		-2.973	20.888	40.283
75									
	MOTA-	1955	HB2	SER	246		-2.739	19.251	40.926
	MOTA	1956	OG	SER	246		-2.040	20.776	42.105
	ATOM	1957	HG	SER	246		-1.351	21.354	41.603
	MOT A	1958	С	SER	246		-4.688	21.744	42.180
	MOTA						•		
50	ATOM	1959	0	SER	246		-4.642	22.107	43.356
	MOTA	1960		LAV	247		-5.011	22.586	41.182
	ATOM	1900	14	ΛWD					
	ATOM	1961	HN	VAL	247		-5.104	22.234	40.218
	MOTA	1962	CA	VAL	247		-5.227	23.973	41.462
	ATOM	1963	HA	VAL	247		-4.338	24.374	41.948
E									
55	MOTA	1964	CB	VAL	247		-5.493	24.793	40.237
	ATOM	1965	HB	VAL	247		-6.380	24.396	39.742
	MOTA	1966	CG1	VAL	247		-5.725	26.250	40.668
	ATOM	1967	HG1	7.7.7.T	247		-5.921	26.863	39.788
	MOTA	1968	HG1	VAL	247		-6.581	26.299	41.341
60									
60	MOTA	1969	HG1		247		-4.839	26.624	41.180
	ATOM	1970	CG2	VAT.	247		-4.314	24.619	39.264
	MOTA	1971	HG2	VAL	247		-4.493	25.210	38.366
	MOTA	1972	HG2		247		-3.395	24.956	39.743
	MOTA	1973	HG2	VAL	247		-4.218	23.567	38.993
65	MOTA	1974		VAL	247		-6.409	24.102	42.364
رن									
	MOTA	1975	0	VAL	247		-6.402	24.888	43.310
									42.119
	ATOM	1976		ALA	248		-7.453	23.295	
	MOTA	1977	HN	ALA	248		-7.392	22.581	41.379
	0.1								

	3 mOM	1978	ת א אד א	248	-8.656	22 422	42.892
	ATOM		CA ALA			23.432	
	ATOM	1979	HA ALA	248	-9.059	24.434	42.743
	ATOM	1980	CB ALA	248	-9.729	22.403	42.504
	MOTA	1981	HB1 ALA	248	-10.616	22.552	43.120
5	ATOM	1982	HB2 ALA	248	-9.991	22.528	41.454
•							
	ATOM	1983	HB3 ALA	248	-9.342	21.396	42.664
	ATOM	1984´	C ALA	248	-8.330	23.220	44.333
				248	-8.797		
	ATOM	1985	O ALA			23.964	45.194
	MOTA	1986	N GLN	249	-7.501	22.208	44.644
10		1987	HN GLN	249	-7.065		43.907
10	MOTA					21.636	
	ATOM	1988	CA, GLN	249	-7.241	21.946	46.027
	ATOM	1989	HA GLN	249	-8.175	21.712	46.538
	MOTA	1990	CB GLN	249	-6.260	20.780	46.238
	MOTA	1991	HB1 GLN	249	-6.012	20.727	47298
٠ ـ ـ							
15	MOTA	1992	HB2 GLN	249	-5.366	20.971	45.645
	MOTA	1993	CG GLN	249	-6.814	19.416	45.821
	MOTA	1994	HG1 GLN	249	-5.981	18.715	45.780
	ATOM	1995	HG2 GLN	. 249	-7.278	19.530	44.841
	MOTA	1996	CD GLN	249	-7.837	18.989	46.862
20	ATOM	1997	OE1 GLN	249	-8.081	19.697	47.839
	MOTA	1998	NE2 GLN	249	-8.454	17.796	46.653
	MOTA	1999	HE2 GLN	249	-8.221	17.234	45.822
	ATOM	2000	HE2 GLN	249	-9.155	17.453	47.326
	MOTA	2001	C GLN	249	-6.621	23.151	46.659
25							•
25	MOTA	2002	O GLN	249	-7.124	23.660	47.660
	MOTA	2003	N LEU	250	-5.510	23.653	46.084
		2004	HN LEU	250	-5.155	23.254	45.203
	ATOM						
	MOTA	-2005	CA LEU	250	-4.826	24.747	46.710
	MOTA	2006	HA LEU	250	-4.611	24.549	47.760
30	MOTA	2007	CB LEU	250	-3.487	25.076	46.023
	MOTA	2008	HB1 LEU	250	-3.058	25.950	46.511
	MOTA	2009	HB2 LEU	250	-3.685	25.281	44.971
	ATOM	2010	CG LEU	250	-2.444	23.947	46.088
	ATOM	2011	HG LEU	250	-2.811 (23.044	45.600
35	ATOM	2012	CD2 LEU	250	-2.222	23.471	47.531
	MOTA	2013	HD2 LEU	250	-1.479	22.674	47.540
	MOTA	2014	HD2 LEU	250	-1.868	24.304	48.138
	MOTA	2015	HD2 LEU	250	-3.161	23.097	47.939
	MOTA	2016	CD1 LEU	250	-1.139	24.359	45.390
40	MOTA	2017	HD1 LEU	250	-0.420	23.542	45.452
40							
	MOTA	2018	HD1 LEU	250	-1.341	24.585	44.344
	MOTA	2019	HD1 LEU	250	-0.727	25.242	45.880
	MOTA	2020	C LEU		-5.629	26.012	46.665
	MOTA	2021	O LEU	250	-5.949	26.596	47.699
45							
43	MOTA	2022	N GLN	251	-5.992	26.443	45.444
	MOTA	2023	HN GLN	251	-5.814	25.836	44.631
	MOTA	2024	CA GLN	251	-6.619	27.716	45.234
	MOTA	2025	HA GLN	251	-6.095	28.543	45.713
	ATOM	2026	CB GLN	251	-6.641	28.131	43.752
- n							
50	MOTA	2027	HB1 GLN	251	-7.358	28.923	43.536
	MOTA	2028	HB2 GLN	251	-6.903	27.314	43.079
			4				
	MOTA	2029	CG GLN	251	-5.292	28.656	43.248
	MOTA	2030	HG1 GLN	251	-5.026	29.552	43.809
•							
	MOTA	2031	HG2 GLN	251	-5.376	28.895	42.188
55	ATOM	2032	CD GLN	251	-4.232	27.583	43.455
					,		
	ATOM	2033	OE1 GLN	251	-4.397	26.429	43.064
	ATOM	2034	NE2 GLN	251	· - 3.099	27.976	44.099
	MOTA	2035	HE2 GLN	251	-2.996	28.952	44.412
	ATOM	2036	HE2 GLN	251	2.344	27.296	44.274
60		2037	C GLN	251	-8.015	27.786	45.754
00	MOTA						
	ATOM	2038	O GLN	251	-8.381	28.778	46.383
		2039	N ALA	252		26.738	45.522
	ATOM				•		
	ATOM	2040	HN ALA	252	-8.463	25.879	45.087
	ATOM	2041	CA ALA	252	-10.212	26.835	45.888
C F							
65	MOTA	2042	HA ALA	252	-10.659	27.662	45.335
	MOTA	2043	CB ALA	252	-11.003	25.551	45.588
	MOTA	2044	HB1 ALA	252	-12.042	25.686	45.887
	MOTA	2045	HB2 ALA	252	-10.957	25.336	44.520

		,1					
	ATOM	2046	HB3 ALA	252	-10.570	24.719	46.144
	MOTA	2047	C ALA	252	-10.296	27.082	47.350
	ATOM	2048	O ALA	252	-10.959	28.015	47.800
	ATOM	2049	N TRP	253	-9.598	26.254	48.137
5	ATOM	2050	HN TRP	253	-9.055	25.481	47.728
	ATOM	2051	CA TRP	253	-9.614	26.455	49.548
	ATOM	2052	HĄ TRP	253	-8.852	25.813	49.992
	ATOM	2053	CB TRP	253	-9.299	27.899	49.982
	ATOM	2054	HB1 TRP	253	-10.049	28.560	49.546
10	ATOM	2055	HB2 TRP	253	-8.304	28.158	49.620
	ATOM	2056	CG TRP	253	-9.315	28.104	51.479
	MOTA	2057	CD2 TRP	253	-10.480	28.518	52.218
	MOTA	2058	CD1 TRP	253	-8.316	27.961	52.389
	MOTA	2059	HD1 TRP	253	-7.297	27.656	52.152
15	ATOM	2060	NE1 TRP	253	-8.777	28.255	53.650
	MOTA	2061	HE1 TRP	253	-8.220	28.222	54.516
	MOTA	2062	CE2 TRP	253	10.108	28.600	53.561
	ATOM	2063	CE3 TRP	253	-11.754	28.804	51.810
	MOTA	2064	HE3 TRP	253	-12.044	28.740	50.761
20	ATOM	2065	CZ2 TRP	253	-11.007	28.970	54.518
	ATOM	2066	HZ2 TRP	253	-10.720	29.035	55.568
	ATOM	2067	CZ3 TRP	253	-12.655	29.178	52.782
	ATOM	2068	HZ3 TRP	253	-13.679	29.415	52.495
٠	ATOM	2069	CH2 TRP	253	-12.292	29.260	54.109
25	ATOM	2070	HH2 TRP	253	-13.034	29.559	54.849
	MOTA	2071	C TRP	253	-10.965	26.093	50.053
	ATOM	2072	O TRP	253	-11.957	26.168	49.329
	MOTA	2073	N TRP	254	-11.027	25.676	51.330
20	ATOM	2074	HN TRP	254	-10.153	25.591	51.869
30	ATOM	2075	CA TRP	254	-12.265		51.964
	ATOM	2076	HA TRP	254	-12.709	26.302	52.238
	ATOM	2077	CB TRP	254	-13.222	24.508	51.098
	ATOM	2078.	HB1 TRP	254	-12.845	23.513	50.862
35	ATOM	2079 2080	HB2 TRP CG TRP	254 254	-13.447	24.958	50.131
33	ATOM ATOM	2081	CG TRP CD2 TRP	254	-14.568 -15.672	24.270	51.736
	ATOM	2081	CD1 TRP	254	-15.005	25.180 23.233	51.614 52.508
	ATOM	2083	HD1 TRP	254	-14.405	22.369	52.792
	ATOM	2084	NE1 TRP	254	-16.315	23.440	52.874
40	ATOM	2085	HE1 TRP	254	-16.884	22.809	53.455
	ATOM	2086	CE2 TRP	254	-16.736	24.636	52.330
	ATOM	2087	CE3 TRP	254	-15.785	26.373	50.959
	ATOM	2088	HE3 TRP	254	-14.950	26.796	50.401
	ATOM	2089	CZ2 TRP	254	-17.938	25.280	52.402
45	ATOM	2090	HZ2 TRP	254	-18.773	24.859	52.962
	ATOM	2091	CZ3 TRP	254	-16.998	27.020	51.033
	ATOM .	2092	HZ3 TRP	254		27.975	50.523
	ATOM	2093	CH2 TRP	254	-18.055	26.483	51.741
	MOTA	2094	HH2 TRP	254	-19.001	27.022	51.777
50	MOTA	2095	C TRP	254	-11.892	24.510	53.135
	ATOM	2096	O TRP	254	-10.746	24.081	53.258
	ATOM	-2097	N TYR	255	-12.848	24.266	54.047
	MOTA	2098	HN TYR	255	-13.793	24.665	53.954
	MOTA	2099	CA TYR	255	-12.500	23.430	55.151
55	MOTA	2100	HA TYR	255	-11.625	23.890	55.611
	MOTA	2101	CB TYR	255	-13.646	23.262	56.162
	MOTA	2102	HB1 TYR	255	-14.489	22.816	55.633
	MOTA	2103	HB2 TYR	. 255	-13.897	24.251	56.544
	MOTA	2104	CG TYR	255	-13.159	22.369	57.251
60	MOTA	2105	CD1 TYR	255	-12.398	22.875	58.280
	MOTA	2106	HD1 TYR	255	-12.151	23.937	58.297
	MOTA	2107	CD2 TYR	255	-13.464	21.027	57.247
	MOTA	2108	HD2 TYR	255	-14.067	20.614	56.439
	MOTA	2109	CE1 TYR	255	-11.946	22.054	59.289
65	MOTA	2110	HE1 TYR	255	-11.344	22.465	60.099
	MOTA	2111	CE2 TYR	255	-13.016	20.203	58.250
	MOTA	2112	HE2 TYR	255	-13.264	19.142	58.234
	MOTA	2113	CZ TYR	255	-12.256	20.715	59.273

	T III OM	2111	017	mvn	255	-11.794	19.871	60.306
	ATOM	2114	OH	TYR		-11.194	19.017	
-	MOTA	2115	HH	TYR	255	-12.089	20.249	61.217
							-	
	ATOM	2116	С	TYR	255	-12.207	22.088	54.573
		2117			255	.11 102	21 562	54.704
	ATOM	2117	0	TYR,		-11.103	21.563	
5	MOTA	2118	N	LYS	256	-13.211	21.508	53.889
	ATOM .	2119	HN	LYS	256	-14.108	22.005	53.789
	T ITION	2120	Ch	TVC		-13.057	20 236	53.301
	ATOM	2120	CA	LYS	256	-13.057	20.216	53.301
	ATOM	2121	HA	LYS	256	-12.623	19.534	54.032
	AION							
	MOTA	2122	CB	LYS	256	-14.390	19.614	52.820
10	MOTA	2123	HB1	LYS	256	-15.152	19.558	53.597
	7 m OM	2124	HB2	LYS	256	-14.301	18.596	52.441
	ATOM	2124.	nbz	L13	236	-14.501	10.550	
	MOTA	2125	CG	LYS	256	-15.045	20.400	51.683
			_		_			
	MOTA	2126	HG1	LYS	256	-14.357	20.653	50.876
						15 470		
	MOTA	2127	HG2	LYS	256	-15.472	21.351	52.002
15	ATOM	2128	CD	LYS	256 -	-16.195	19.651	51.008
15								
	MOTA	2129	HD1	LYS	256	-16.765	20.263	50.308
	MOTA	2130	HD2	LYS	256	-16.934	19.261	51.708
	MOTA	2131	CE	LYS	256	-15.742	18.436	50.194
	AION		CE	1112				
	MOTA	2132	HE1	LYS	256	-15.231	17.724	50.841
20 .	MOTA	2133	HE2	LYS	256	-15.060	18.751	49.404
	MOTA	2134	ΝZ	LYS	256	-16.914	17.774	49.580
	ATOM	- 2135	HZ1	LYS	256	-16.602	16.958	49.034
	MOTA	2136	HZ2	LYS	256	-17.561	17.464	50.320
	MOTA	2137	HZ3	LYS	256	-17.398	18.437	48.958
25	7) TP CNA	2138			256	-12.155	20.315	52.114
25	ATOM		C	LYS				
	ATOM	2139	0	LYS	256	-11.245	19.503	51.957
	MOTA	2140	N	ALA	. 257	-12.376	21.329	51.252
								E1 4E6
	MOTA	2141		ALA	257	-13.096	22.037	51.456
	ATOM .	2142	CA	ALA	257	-11.599	21.410	50.048
_	ATOM.							
30	MOTA	2143	$_{ m HA}$	ALA	257	-11.784	20.515	49.454
50		-						
	ATOM	2144	CB	ALA	257	-11.938	22.647	49.200
	7 III OM	2145	HB1	ALA	257	-11.318	22.654	48.303
	ATOM	2145	UDI	ALL	251		22.034	40.505
	MOTA	2146	HB2	ALA	257	-12.989	22.617	48.914
	MOTA	2147	HB3	ALA	257	-11.746	23.550	49.780
25		2140		70.7.70	257	10 150	21 400	50.418
35	MOTA	2148	С	ALA	257	-10.158	21.498	30.410
	ATOM	2149	0	ALA	257	-9.392	20.567	50.170
	ATOM							
	MOTA	2150	N	ASP	258	-9.744	22.615	51.041
	MOTA	2151	HN	ASP	258	-10.388	23.400	51.215
	ATOM	2152	CA	ASP	258	-8.377	22.671	51.454
	AT ON							
40	MOTA	2153	$^{\rm HA}$	ASP	258	-8.195	21.850	52.147
. •								
	ATOM	2154	CB	ASP	258	-7.380	22.568	50.287
		2155		A C D		7 .422	22 405	49.715
	MOTA	2155	HB1	ASP	258	-7.433	23.495	
	ATOM	2156	HB2	ASP	258	-7.666	21.715	49.672
	MOTA	2157	CG	ASP	258	-5.989	22.372	50.871
15	7) TI ON	2150	001	A C D		E 070	22 210	52.126
45	MOTA	2158	OD1	MOP	258	-5.879	22.319	
	MOTA	2159	OD2	ASD	258	-5.020	22.265	50.073
	MOTA	2160	С	ASP	258	-8.144	23.982	52.120
	MOTA	2161	0	ASP	258	-8.499	25.035	51.601
	MOTA	2162	N	PRO	259	-7.550	23.942	53.269
50	ATOM	2163	CA	PRO	259	-7.232	25.190	53.902
	MOTA	2164	AH	PRO	259	-7.984	25.946	53.675
	MOTA	2165	CD	PRO	259	-7.971	22.940	54.235
	ATOM	2166	HD1	PRO	259	-7.192	22.177	54.227
	ATOM	2167	HD2	PRO	259	-8.932	22.570	53.878
55	አጥር አ				259	-7.168	24.904	55.399
ڊر	MOTA	2168	CB	PRO		- / . T PR	∠4.304	JJ. 399
	MOTA	2169	HB1	PRO	259	-7.531	25.757	55.974
	MOTA	2170	HB2	PRO	259	-6.145	24.697	55:712
	MOTA	2171	CG	PRO	259	-8.074	23.675	55.580
					259	-9.100	23.976	55.794
	MOTA	2172		PRO				
60	MOTA	2173	HG2	PRO	259	-7.726	23.053	56.405
	ATOM	2174	С	PRO	259	-5.908	25.542	53.327
	MOTA	2175	0	PRO	259	-5.446	24.799	52.464
	ATOM	2176	N	ASN	260	-5.281	26.651	53.759
	MOTA	2177	HN	ASN	260	-5.719	27.281	54.445
65								
65	ATOM	2178	CA	ASN	260	-3.980	26.920	53.225
					260	-4.106	27.027	52.148
	ATOM	2179		ASN				
	MOTA	2180	CB	ASN	260	-3.353	28.235	53.743
	MOTA	2181	HB1	ASN	260	-3.969	29.085	53.449

	ATOM	2182	HB2 ASN	260		-2.354	28.363	53.326
	ATOM	2183	CG ASN	260		-3.251	28.203	55.262
		2184	OD1 ASN	260		-4.209	27.862	55.954
	ATOM							55.798
_	MOTA	2185	ND2 ASN	260		-2.054	28.565	
5	ATOM	2186	HD2 ASN	260		-1.278	28.844	55.182
	MOTA	2187	HD2 ASN	260		-1.925	28.559	56.820
	ATOM	2188	C ASN	260		-3.126	25.747	53.586
	MOTA	2189	O ASN	260		-2.726	25.572	54.737
	ATOM	2190	N ASP	261		-2.842	24.884	52.593
10		2191	HN ASP	261		-3.151	25.083	51.630
10	ATOM						23.690	52.879
	MOTA	2192	CA ASP	261		-2.111		
	MOTA	2193	HA ASP	261		-1.559	23.824	53.809
	MOTA	2194	CB ASP	261		-2.994	22.434	53.010
	MOTA	2195	HB1 ASP	261		-2.359	21.549	52.988
15	MOTA	2196	HB2 ASP	261		-3.699	22.407	52.179
10	ATOM	2197	CG ASP	261		-3.753	22.496	54.330
	ATOM	2198	OD1 ASP	261		-3.245	23.148	55.280
				261		-4.850	21.882	54.408
	MOTA	2199	OD2 ASP					
	MOTA	2200	C ASP	261		-1.161	23.420	51.762
20	· MOTA	2201	O ASP	261		-1.063	24.177	50.797
	MOTA	2202	N PHE	262		-0.424	22.304	51.918
	MOTA	2203	HN PHE	262		-0.588	21.752	52.771
	ATOM	2204	CA PHE	262		0.566	21.814	51.008
	MOTA	2205	HA PHE	262	-	0.703	22.623	50.290
25				262		1.823	21.407	51.796
25	ATOM	2206	CB PHE					52.411
	ATOM	2207	HB1 PHE	262		1.645	20.525	
	MOTA	2208	HB2 PHE	262		2.157	22.202	52.462
	ATOM	-2209	CG PHE	262	,	2.957	21.088	50.893
	ATOM	2210	CD1 PHE	262		3.827	22.077	50.497
30	MOTA	2211	HD1 PHE	262	~	.3.675	23.100	50.844
20	ATOM	2212	CD2 PHE	262		3.157	19.800	50.461
			•			2.477	19.009	50.776
	MOTA	2213	HD2 PHE					49.670
	MOTA	2214	CE1 PHE	262	_	4.885	21.789	
	MOTA	2215	HE1 PHE	262	-	5.569	22.579	49.359
35	ATOM	2216	CE2 PHE	262		4.212	19.509	49.634
	ATOM	2217	HE2 PHE	262		4.363	18.485	49.290
	ATOM	2218	CZ PHE	262		5.078	20.499	49.236
	ATOM	2219	HZ PHE	262		5.915	20.262	48.579
	ATOM	2220	C PHE			-0.039	20.576	50.420
40				262		-0.720	19.836	51.128
40	ATOM	2221	O PHE					
	ATOM	2222	N THR	263		0.152	20.313	49.109
	MOTA	2223	HN THR	263		0.725	20.929	48.514
	MOTA	2224	CA THR	263		-0.479	19.134	48.583
	MOTA	2225	HA THR	263		-0.713	18.443	49.392
45	ATOM	2226	CB THR	263		-1.753	19.421	47.846
	ATOM	2227	HB THR	263		-1.533	20.090	47.014
		2228	OG1 THR	263		-2.686	20.055	48.709
	ATOM						21.009	48.923
	MOTA	2229	HG1 THR	263		-2.364		
	MOTA	2230	CG2 THR	263		-2.331	18.096	47.324
50	MOTA	2231	HG2 THR.	263		-3.259	18.290	46.786
	ATOM	2232	HG2 THR	263		-1.614	17.625	46.652
	MOTA	2233	HG2 THR	263		-2.531	17.430	48.164
	ATOM	2234	C THR	263		0.435	18.451	47.613
		2235	O THR	263	-	1.217	19.096	46.917
	ATOM				-	0.361		47.562
55	MOTA	2236	N TYR	264			17.101	
	ATOM	2237	HN TYR	264		-0.251	16.601	48.221
	MOTA	2238	CA TYR	264		1.128	16.359	46.603
	MOTA	2239	HA TYR	264		1.472	17.073	45.855
	ATOM	2240	CB TYR	264		2.376	15.650	47.166
60	ATOM	2241	HB1 TYR	264	•	2.989	16.340	47.746
50				264		2.994	15.248	46.363
	ATOM	2242	HB2 TYR				14.520	48.058
	MOTA	2243	CG TYR			1.993		
	MOTA	2244	CD1 TYR			1.649	14.735	49.373
	MOTA	2245	HD1 TYR			1.647	15.748	49.773
65	MOTA	2246	CD2 TYR	264		1.998	13.233	47.571
	MOTA	2247	HD2 TYR	264		2.276	13.052	46.532
	ATOM	2248	CE1 TYR			1.308	-13.678	50.184
	MOTA	2249	HE1 TYR			1.034	13.856	51.224
	111 013	~~3	+ + 11	201				

_									
	ATOM	2250	CE2	TYR	264		1.658	12:173	48.377
	ATOM	2251	HE2	TYR	264		1.664	11.159	47.977
		2252	CZ	TYR	264		1.311	12.395	49.686
	ATOM								
	MOTA	2253	OH	TYR			0.963	11.309	50.515
5	MOTA	2254	HH	TYR	264		0.276	11.618	51.217
	MOTA	2255	С	TYR	264		0.210	15.332	46.020
	MOTA	2256	0	TYR	264		-0.838	15.027	46.587
	ATOM	2257	N	GLU	265		0.584	14.773	44.852
									44.453
	MOTA	2258	HN	GLU	265			14.994	
10	ATOM	2259	CA	GLU	265		-0.291	13.872	44.161
	ATOM	2260	HA	GLU	265		-1.208	13.769	44.741
•	ATOM	2261	CB	GLU	265		-0.621	14.429	42.767
	ATOM	2262	HB1		265		0.233	14.234	42.120
				GLU	265		-0.800	15.500	42.871
	· MOTA	2263	HB2						
15	ATOM	2264	CG	GLU	265		-1.844	13.843	42.070
	ATOM	2265	HG1	GLU	265		-2.611	13.771	42.841
-	MOTA	2266	HG2	GLU	265		-1.526	12.872	41.691
	MOTA	2267	CD	GLU	265		-2.196	14.831	40.966
	ATOM	2268	OE1	GLU	265		-1.626	15.954	40.985
20			OE2		265		-3.036	14.489	40.095
20	ATOM	2269		GLU					
	MOTA	2271	С	GLU	265		0.397	12.546	
	MOTA	2272	Ο,	GLU	265		1.598	12.434	44.271
	MOTA	2273	N	ARG	266		-0.365	11.493	43.665
	ATOM	2274	HN	ARG	266		-1.369	11.637	43.486
25	ATOM	2275	CA	ARG	266		0.189	10.175	43.523
23		2276	HA	ARG	266.		0.892	10.012	44.340
	MOTA							9.046	43.540
	MOTA	2277	CB	ARG	, 266		-0.855		
•	ATOM	2278	HB1	ARG	266		-0.451	8.069	43.275
	MOTA	2279	HB2	ARG	266		-1.682	9.202	42.848
30	MOTA	2280	CG	ARG	266		-1.517	8.839	44.901
	ATOM	2281	HG1	ARG	266		-2.192	9.648	45.183
	ATOM	2282		ARG	266		-0.805	8.762	45.723
							-2.361	7.566	44.981
	MOTA	2283	CD	ARG	266				
	ATOM	2284		ARG	. 266		-1.734	6.737	44.651
35	MOTA	2285	HD2	ARG	266		-3.220	7.702	44.324
	MOTA	2286	NE	ARG	266		-2.783	7.398	46.400
	MOTA	2287	HE	ARG	266		-2.869	8.221	47.013
	ATOM	2288	CZ	ARG	266		-3.055	6.152	46.886
•		2289		ARG	266		-2.958	5.065	46.067
40	ATOM								46.433
40	MOTA	2290	HH1	ARG	266		-3.163	4.124	
	ATOM	2291	HH1	ARG	. 266		-2.679	5.184	45.083
	ATOM.	2292	NH2	ARG	266		-3.413	5.992	48.193
	ATOM	2293	HH2	ARG	266		-3.619	5.052	48.560
	MOTA	2294	HH2	ARG.	266		-3.478	6.812	48.813
45	MOTA	2295	C	ARG	266	,	0.881	10.104	42.208
-13		2296	Õ	ARG	. 266	•	0.463		41.235
	ATOM						1.979	9.329	42.154
	MOTA	2297	N	ARG	267				
	MOTA	2298	HN	ARG	267		2.288	8.803	42.984
	MOTA	2299	·CA	ARG	267		2.710	9.246	40.932
50	MOTA	2300	HA	ARG	267		2.245	9.909	40.202
	MOTA	2301	CB	ARG	. 267	1	4.190	9.606	41.128
	MOTA	2302		ARG	267		4.777	9.522	40.213
		2303		ARG	267		4.693	8.969	41.857
	ATOM								
	MOTA	2304	CG	ARG	267		4.400	11.039	41.622
55	MOTA	2305	HG1	ARG	267		3.662	11.363	42.356
	· MOTA	2306	HG2	ARG	267		4.354	11.787	40.830
	MOTA	2307	CD	ARG	267		5.754	11.265	42.299
	ATOM	2308		ARG	267		5.861	10.534	43.100
		2309	HD2		267		5.772	12.279	42.697
60	MOTA								41.278
60	MOTA	2310	NE	ARG	267		6.821	11.084	
	MOTA	2311	$_{ m HE}$	ARG	267		6.571	10.906	40.294
	MOTA	2312	CZ	ARG	267		8.133	11.155	41.650
	MOTA	2313	NH1		267		8.459	11.363	42.958
	ATOM	2314	HH1		267		9.448	11.417	43.241
65	ATOM	2315		ARG	267		7.716	11.466	43.664
رن			-		267		9.119	11.022	40.715
	ATOM	2316		ARG					40.998
	MOTA	2317		ARG	267		10.108	11.076	
	MOTA	2318	нн2	ARG	267		8.874	10.866	39.727

	MOTA	2319	C F	ARG 2	267	2	670	7.832	40.447
									•
	ATOM	2320			267		493	7.010	40.846
	ATOM	2321	N I	LYS 2	268	1.	696	7.504	39.573
	ATOM	2322	HN I	LYS 2	268	0	934 -	8.168	39.374
_									
5	ATOM	2323			268		725	6.226	38.922
	MOTA	2324	HA I	SYS 2	268	2.	350	5.512	39.457
	ATOM	2325	CB I	LYS 2	268	ο.	324	5.630	38.681
	MOTA	2326	HB1 I		268		100	6.107	37.798
	MOTA	2327	HB2 I	LYS 2	268	-0.	285	5.831	39.561
10	ATOM	2328	CG I	SYS 2	268	ο.	298	4.114	38.442
•	MOTA	2329			268		741	3.808	38.327
	ATOM	2330	HG2 I	SYS 2	268	. 0.	752	3.628	39.305
٠.	ATOM	2331	CD I	LYS 2	268	٦.	.053	3.636	37.200
	MOTA	2332			268		115	3.884	37.210
15	MOTA	2333	HD2 I	LYS 2	268	0.	677	4.058	36.268
	ATOM	2334	CE I	SYS 2	268	1.	004	2.121	36.994
	MOTA	2335			268		029	1.790	36.904
	MOTA	2336	HE2 I	JYS 2	2.68	1.	465	1.614	37.843
	ATOM	2337	NZ I	SYS 2	268	1.	735	1.753	35.761
20									
20	ATOM	2338			268		697	0.732	35.630
	MOTA	2339	HZ2 I	LYS 2	268	1.	301	2.218	34.951
	ATOM	2340	HZ3 I		268		718	2.052	35.841
	MOTA	2341			268		286	6.620	37.609
	MOTA	2342	0 I	GYS 2	268	- 1.	912	6.148	36.538
25	ATOM	2343	N G	SLU 2	269	3.	252	7.535	37.708
		2344							38.648
	MOTA				269		548	7.838	
	MOTA	2345	CA G	SLÙ 2	269	3.	. 888	8.108	36.585
	ATOM	2346	HA G	SLU 2	269	3.	128	8.660	36.033
	ATOM	2347			269		011	9.051	37.041
30	ATOM	2348	HB1 G	ELU 2	269	4.	624	9.960	37.503
	ATOM	2349	HB2 G	SLU 2	269	5.	645	9.369	36.214
		2350					932	8.398	38.071
	MOTA				269				
	ATOM	2351	HG1 G	SLU 2	269	6.	.587	7.698	37.551
	ATOM	2352	HG2 G	SLU 2	269	5.	315	7.874	38.801
35	ATOM	2353			269		747	9.491	38.748
30									
	MOTA	2354	OE1 G	SLU 2	269	6.	550	10.684	38.397
	MOTA	2355	OE2 G	SLU 2	269 -	7.	582	9.140	39.624
	MOTA	2357			269		445	6.994	35.785
	MOTA	2358			269		595	5.872	36:266
40	MOTA	2359	N S	SER 2	270	4.	.748	7.289	34.511
•	MOTA	2360	HN S	SER 2	270	Δ	513	8.219	34.136
	ATOM	2361			270		391	6.332	33.670
	MOTA	2362	HA S	SER 2	270	4.	828	5.409	33.807
	MOTA	2363	CB S	SER 2	27.0	5.	425	6.707	32.177
45		2364							
43	MOTA				270		414	6.802	31.783 _,
	MOTA	2365	HB2 S	SER 2	270	5.	947	5.941	31.603
	MOTA	2366	OG S	SER 2	270	6.	097	7.942	31.989
	ATOM	2367			270		063		32.339
	ATOM	2368	C S	SER 2	270		788	6.252	34.170
50	MOTA	2369	0 5	SER 2	270	7.	575	5.432	33.704
	MOTA	2370			271		150	7.171	35.098
	ATOM	2371	HN A	ALA 2	271	· 6.	456	7.880	35.376
	MOTA	2372	CA A	ALA 2	271	8.	442	7.213	35.715
	MOTA	2373			271		145	7.337	34.891
55·	ATOM	2374	CB P	ALA 2	27 1	8.	599	8.254	36.825
	MOTA	2375	HB1 A	ALA 2	271	9.	610	8.207	37.228
	ATOM	2376	HB2 A		271		416	9.249	36.419
	MOTA	2377	HB3 A	λLA 2	271	7.	882	8.049	37.620
	ATOM	2378	C P	ALA 2	271	8.	575	5.925	36.412
60	ATOM	2379			271		693	5.491	36.685
50									
	ATOM	2380			272		405	5.344	36.761
	- ATOM	2381	HN A	ALA 2	272	6.	531	5.865	36.603
	ATOM	2382			272		326	4.044	37.337
	MOTA	2383			272	7.	642	4.176	38.372
65	MOTA	2384	CB A	ALA 2	272	5.	925	3.420	37.214
	ATOM	2385	HB1 A		272		927	2.430	37.670
	MOTA	2386	HB2 A		272			4.053	37.723
	MOTA	2387	HB3 P	ALA 2	272	5.	656	3.333	36.161

PCT/CA01/00607

			_						
	ATOM	2388	C	ALA	272		8.258	3.213	36.532
	ATOM	2389	0	ALA	272		9.072	2.473	37.074
	ATOM	2390	N	TYR	273		8.199	3.402	35.202
_	MOTA	2391	HN	TYR			7.478	4.034	34.825
5	ATOM	2392	CA	TYR	273		9.094	2.763	34.289
	MOTA	2393	HA	TYR	273		9.209	1.748	34.668
	ATOM	2394	CB	TYR	273		8.643	2.876	32.821
		2395			273		9.331		
	MOTA		HB1	TYR				2.333	32.173
	MOTA	2396	HB2	TYR	273		_. 8.623	3.922	32.513
10	ATOM	2397	CG	TYR	273		7.278	2.304	32.656
	ATOM	2398	CD1	TYR	273		6.173	3.097	32.864
	MOTA	2399	HD1	TYR	273		6.306	4.140	33.152
				-					
	MOTA	2400	CD2	TYR	273		7.095	0.988	32.298
	MOTA	2401	HD2	TYR	273		7.961	0.346	32.134
15	MOTA	2402	CE1	TYR	273		4.904	2.592	32.713
	ATOM	2403	HE1	TYR	273		4.038	3.232	32.878
•	MOTA	2404	CE2	TYR	273		5.827	0.476	32.144
	MOTA	2405	HE2	TYR	273		5.692	-0.565	31.856
	ATOM	2406	CZ	TYR	273		4.730	1.278	32.353
20	MOTA	2407	ОН	TYR	273		3.429	0.754	32.197
20									
	MOTA	2408	HH	TYR	273		2.736	1.500	32.352
	MOTA	2409	С	TYR	273		10.354	3.569	34.349
	MOTA	2410	. 0	TYR	273		10.407	4.679	33.822
	ATOM	2411	N	ILE	274		11.407	3.044	35.002
25	ATOM	2412		ILE	274		11.340	2.124	
23			HN						35.459
	ATOM	2413	CA	ILE	274		12.624	3.798	35.044
	ATOM	2414	AН	ILE	274		12.412	4.791	34.648
	MOTA	2415	CB	ILE	274		13.248	3.924	36.406
	ATOM	2416	HB	ILE	274		13.303	2.917	36.820
20									
30	ATOM	2417	CG2	ILE	274		14.642	4.542	36.198
	ATOM	2418	HG2	ILE	274		15.139	4.654	37.162
	ATOM	2419	HG2	ILE	274		15.237	3.890	35.558
	ATOM	2420	HG2	ILE	274		14.541	5.519	35.726
	MOTA	2421	CG1	ILE	274		12.374	4.755	37.358
35	MOTA	2422	HG1	ILE	274		12.729	4.732	38.388
	MOTA	2423	HG1	ILE	274		11.340	4.412	37.392
	ATOM	2424	CD1	ILE	274		12.311	6.232	36.971
	ATOM	2425	HD1	ILE	274		11.679	6.767	37.680
	ATOM	2426	HD1	ILE	274		13.315	6.656	36.989
40	MOTA	2427	HD1	ILE	274.		11.894	6.328	35,969
	MOTA	2428	С	ILE	274		13.625	3.087	34.206
	ATOM	2429	0	ILE	274		13.749	1.865	34.243
	ATOM	2430	N	PRO	275		14.308	3.853	33.410
	MOTA	2431	CA	PRO	275		15.358	3.271	32.630
45	ATOM	2432	HA	PRO	275	•	15.019	2.296	32.281
	ATOM	2433	CD	PRO	275		13.627	4.919	32.691
	ATOM	2434	HD1	PRO	275		13.856	5.834	33.236
	MOTA	2435	HD2	PRO	275		12.569	4.660	32.716
-	MOTA	2436	CB	PRO	275		15.576	4.204	31.441
50	ATOM	2437	HB1	PRO	275		15.854	3.642	30.550
	ATOM	2438	HB2	PRO	275		16.373	4.919	31.648
	MOTA	2439	CG	PRO	275		.14.216	4.902	31.272
	MOTA	2440	HG1	PRO	275		13.678	4.265	30.570
	MOTA	2441	HG2	PRO	275		14.472	5.887	30.880
55	ATOM	2442	С	PRO	275		16.561	3.135	33.500
33									
	MOTA	2443	0	PRO	275		16.674	3.878	34.473
	MOTA	2444	N	PHE	276		17.462	2.188	33.190
	MOTA	2445	HN	PHE	276		17.302	1.551	32.396
	ATOM	2446	CA	PHE	. 276		18.649	2.082	33.981
60									
60	MOTA	2447	HA	PHE	276		18.748	3.018	34.529
	MOTA	2448	CB	PHE	276		18.613	0.964	35.044
	MOTA	2449	HB1	PHE	276		17.772	1.094	35.726
	MOTA	2450	HB2	PHE	276	•	19.524	0.957	35.641
	ATOM			PHE					
C =		2451	CG		276		18.477	-0.377	34.412
65	MOTA	2452	CD1	PHE	276	,	17.278	-0.790	33.879
	MOTA	2453	HD1	PHE	276		16.417	-0.122	33.908
	MOTA	2454	CD2	PHE	276		19.548	-1.240	34.388
	ATOM	2455	HD2	PHE	276		20.499	-0.933	34.823
	* * 1 OM	2477	1102	- 11D	2/0		20.433	-0.553	J3.043

	ATOM	2456	CE1	PHE	276	17.152	-2.035	33.309
	MOTA	2457 .	HE1	PHE	276	16.199	-2.347	32.884
٠.	MOTA	2458	CE2	PHE	276	19.428	-2.485	33.821
	MOTA	2459	HE2	PHE	276	20.285	-3.158	33.801
5 .	ATOM	2460	CZ	PHE	276	18.231	-2.885	33.278
	ATOM	2461		PHE	276	18.137	-3.872	32.826
	MOTA	2462		PHE	276	19.780	1.866	33.036
	MOTA	2463		PHE	276	19.649	2.139	31.844
	ATOM	2464		GLY	277	20.933	1.399	33.552
10	MOTA	2465		GLY	277	. 20.993	1.171	34.555
10	ATOM	2466		GLY	277	22.078	1.219	32.707
	ATOM	2467		GLY	277	22.869	0.759	33.300
	ATOM	2468		GLY	277	22.389	2.198	32.342
	ATOM	2469		GLY	277	21.685	0.333	31.573
15	MOTA	2470		GLY	277	21.690	0.754	30.417
10	ATOM	2471		GLU	278	21.332	-0.927	31.877
	MOTA	2472		GLU	278	21.352	-1.255	32.852
	ATOM	2473		GLU	278	20.924	-1.806	30.824
	ATOM	2474		GLU	278	21.695	-1.768	30.054
20	ATOM	2475		GLU	278	20.707	-3.257	31.283
20	ATOM	2475	HB1		278	19.940	-3.257	32.051
	ATOM	2477	HB2		27.8	21.600	-3.716	31.707
		2477		GLU	27.6 278	20.271	-4.193	30.154
	MOTA		HG1		278	21.078	-4.133 -4.233	29.422
25	MOTA	2479	HG2		278 278	19.363	-4.233	29.422
23	ATOM	2480						30.757
	MOTA	2481	CD OE1	GLU	278	20.013 20.174	-5.565	31.998
	ATOM	2482			278		-5.708	
x	MOTA	2483	OE2	-	278	19.644	-6.489	29.985
70	ATOM	2485		GLU	278	19.614	-1.308	30.315
30	ATOM	2486		GLU	278	19.391	-1.243	29.106
	ATOM	2487		GLY	279	18.714	-0.913	31,236
	MOTA	2488		GLY	279	18.958	-0.916	32.237
	MOTA	2489		GLY	279	17.415	-0.491	30.809
25	ATOM	2490		GLY	279	17.593	0.375	30.172
35	MOTA	2491		GLY	.279	16.877	-0.251	31.727
•	MOTA	2492		GLY	279	16.847	-1.659	30.077 30.256
	MOTA	2493		GLY	279	17.294 15.838	-2.791 -1.416	29.222
	MOTA	2494 2495		ASP	280 280	15.446	-2.191	28.668
40	MOTA	2495		ASP		15.300	-0.101	29.069
40	MOTA	2490		ASP ASP	280	16.143	0.583	28.983
	ATOM							27.846
	MOTA	2498 2499	CB HBl	ASP	280	14.374 13.494	0.016 -0.606	28.011
-	ATOM				280			26.963
45	ATOM	2500		ASP	280	14.914	-0.324	•
45	MOTA	2501		ASP	280	13.963	1.472	27.681
	ATOM	2502	OD1		280 `	14.347	2.304	28.546
	MOTA	2503		ASP	280	13.253 14.479	1.772	26.683
	ATOM	2504 2505		ASP	280	14.479	0.184 1.251	30.284 30.884
50	ATOM	2505	O N	ASP	280	13.646	-0.795	30.682
50	ATOM ATOM	2507		PHE PHE	281 281	13.659	-1.694	30.002
	ATOM	2508		PHE		12.741	-0.630	31.782
					281		0.368	32.198
	MOTA	2509		PHE	281	12.875		
<i>5</i>	ATOM	2510		PHE	281	11.293	-0.827	31.297
55	MOTA	2511		PHE	281	11.206	-1.698	30.647
	ATOM	2512	HB2		281	10.941	0.036	30.734
	ATOM	2513	CG	PHE	281	10.361	-1.027	32.436
	ATOM	2514	CD1		281	9.885	0.033	33.169
60	ATOM	2515	HD1		281	10.200	1.048	32.926
60	ATOM	2516	CD2		281	9.949	-2.302	32.748
	ATOM	2517	HD2		281	10.319	-3.145	32.165
	ATOM	2518	CE1		281	9.013	-0.183	34.208
	MOTA	2519		PHE	281	8.637	0.658	34.788
C E	ATOM	2520	CE2		281	9.078	-2.525	33.785
65	ATOM	2521		PHE	281	8.757	-3.539	34.025
	ATOM	2522	CZ	PHE	281	8.615	-1.461	34.516
	ATOM	2523	HZ	PHE	281		-1.631	35.346
	MOTA	2524	С	PHE	281	13.051	-1.666	32.816

	ATOM	2525	0	PHE	281		12.644	-2.819	22 601
							•		32.681
	ATOM	2526	N .	TYR	282		13.810	-1.295	33.871
	MOTA	2527	HN	TYR	282		14.179	-0.338	33.954
	MOTA	2528	CA	TYR	282		14.079	-2.287	34.870
5	ATOM	2529	HA	TYR	282		14.418	-3.216	34.411
· .		2530							
	MOTA		CB	TYR	282		15.293	-1.981	35.778
	ATOM	2531	HB1	TYR	. 282		16.230	-1.942	35.223
	MOTA	2532	HB2	TYR	282		15.431	-2.731	36.557
	ATOM	2533	CG	TYR	282		15.167	-0.672	36.477
10	ATOM	2534	CD1	TYR	282		15.505		
10								0.501	35.847
	ATOM	2535	HD1	TYR	282		15.862	0.477	34.817
	MOTA	2536	CD2	$\cdot TYR$	282	-	14.742	-0.622	37.780
	ATOM	2537	HD2	TYR	282		14.488	-1.547	38.298
	ATOM	2538	CE1	TYR	282				
1 -							15.397	1.706	36.502
15	ATOM	2539	HE1	TYR	282		15.660	2.631	35.988
	MOTA	2540	CE2	TYR	282		14.631	0.575	38.441
	ATOM	2541	HE2	TYR	282		14.283	0.597	39.474
	ATOM	2542	CZ	TYR	282		14.958	1.744	
									37.803
	ATOM	2543	OH	TYR	282		14.843	2.972	38.488
20	ATOM .	2544	HH	TYR	282		15.739	3.478	38.440
	ATOM	2545	С	TYR	- 282		12.844	-2.583	35.672
	ATOM	2546	ō	TYR	282		12.471	-3.748	
									35.808
	MOTA	2547	N	TYR	283		12.148	-1.559	36.218
	MOTA	2548	HN	TYR	283		12.481	-0.586	36.153
25	ATOM	2549	CA	TYR	283		10.918	-1.889	36.894
	ATOM	2550	HA	TYR	283		10.394	-2.679	
									36.357
	MOTA	2551	CB	TYR	283		11.029	-2.502	38.313
	ATOM	2552	HB1	TYR	283		11.706	-3.355	38.358
	ATOM	2553	HB2	TYR	283		10.076	-2.862	38.698
30	ATOM	2554	CG	TYR	283		11.533	-1.535	39.329
50		2555							
	ATOM		CD1	TYR	283		10.709	-0.556	39.836
	MOTA	2556	HD1	TYR	283		9.678	-0.487	39.488
	MOTA	2557	CD2	TYR	283		12.828	-1.607	39.784
	MOTA	2558	HD2	TYR	283		13.494	-2.377	39.395
35	ATOM	2559	CE1		283				
55				TYR		•	11.168	0.336	40.777
	ATOM	2560	HE1	TYR	283		10.505	1.108	41.166
	MOTA	2561	CE2	TYR	283		13.295	-0.719	40.725
	ATOM	2562	HE2	TYR	283		14.325	-0.788	41.076
	MOTA	2563	CZ	TYR	283		12.464	0.254	41.223
40	-	2564							
40	MOTA		OH	TYR	283		12.941	1.166	42.189
	MOTA	2565	HH	TYR	283		13.805	1.609	41.846
	MOTA	2566	С	TYR	283		10.032	-0.688	36.969
	MOTA	2567	0	TYR	283		10.398	0.392	36.511
	MOTA	2568	N	HIS	284		8.817	-0.883	37.540
15									
45	MOTA	2569	НŊ	HIS	284		8.615	-1.813	37.932
	MOTA	2570	CA	HIS	284		7.789	0.121	37.635
	MOTA	2571	HA	HIS	284		8.024	0.930	36.944
	ATOM	2572		HIS	284		6.216	-2.488	35.948
	ATOM	2573		HIS					
50					284		6.497	-3.176	36.660
50	MOTA	2574	CG	HIS	284		6.112	-1.124	36.119
	ATOM	2575	NE2	HIS	284		5.564	-1.651	33.995
	MOTA	2576	HE2		284		5.274	-1.572	33.009
	ATOM	2577	CD2			-			
					284			-0.630	34.916
	MOTA	2578 /			284	, .	5.539	0.425	34.707
55	MOTA	2579	CE1	HIS	284		5.876	-2.748	34.660
	MOTA	2580	HE1	HIS	284		5.861	-3.748	34.225
	MOTA	2581	СВ	HIS			6.363		
					284			-0.420	37.419
	MOTA	2582	HB1	HIS	284		5.676	0.424	37.461
	MOTA	2583	HB2	HIS	284		6.154	-1.135	38.214
60	ATOM	2584	С	HIS	284		7.749	0.638	39.040
	ATOM	2585	0	HIS	284		8.007	-0.096	39.993
	MOTA	2586	N	ALA	285		7.424	1.937	39.207
	MOTA	2587	HN	ALA	285		7.259	2.541	38.390
	ATOM,	2588	CA	ALA	285		7.310	2.469	40.534
65	ATOM	2589	HA	ALA	285		7.116		
55								1.651	41.228
	ATOM	2590	CB	ALA	285		8.568	3.217	41.007
	ATOM	2591		ALA	285		8.410	3.592	42.018
	MOTA	2592	HB2	ALA	285		9.420	2.537	41.001
								• - '	

								•
	ATOM	2593	HB3	ALA.	285	8.767	4.054	40.337
	ATOM	2594	С	ALA	285	6.179	3.450	40.570
	ATOM	2595	0	ALA	285	6.114	4.387	39.774
	MOTA	2596	N	ALA	286	5.240	3.250	-41.512
5	ATOM	2597	HN	ALA	286	5.293	2.426	42.127
-		2598	CA	ALA	286	4.165	4.186	41.658
	ATOM							
	MOTA	2599	HA	ALA	286	4.386	5.003	40.971
	ATOM	2600	CB	ALA	286	2.776	3.583	41.385
	ATOM	2601	HB1	ALA	286 ,	2.014	4.351	41.516
10								
10	MOTA	2602	HB2	ALA	286	2.738	3.204	40.364
	MOTA	2603	HB3	ALA	286	2:591	2.766	42.083
	MOTA	2604	С	ALA	286	4.186	4.609	43.083
	ATOM	2605	ō	ALA	286	4.231	3.771	43.983
	MOTA	2606	N	ILE	287	4.182	5.928	43.340
15	MOTA	2607	HN	ILE	. 287	4.190	6.628	42.584
	MOTA	2608	CA	ILE	287	4.165	6.306	44.716
	MOTĄ	2609	AH	ILE	287	4.350	5.406	45.303
	MOTA	2610	CB T	ILE	287	5.221	7.292	45.121
	ATOM	2611	HB	ILE	287	6.199	6.912	44.827
20	ATOM	2612	CG2	ILE	287	4.954	8.635	44.421
20								
	MOTA	2613 .	HG2	ILE	287	5.718	9.355	44.712
	ATOM	2614	HG2	ILE	287	4.981	8.494	43.341
	ATOM	2615	HG2	ILE	287	3.973	9.009	44.714
	ATOM	2616	CG1		287	5.268	7.370	46.657
25								
25	MOTA	2617	HG1	ILE	287	5.211	6.356	47.054
	MOTA	2618	HG1	ILE	287	4.419	7.962	46.998
	ATOM	2619	CD1	ILE	287 -	6.536	8.015	47.203
•							8.033	48.292
	MOTA	-2620	HD1	ILE		6.495		
	ATOM	2621	HDl	ILE	287	7.405	7.439	46.882
30	ATOM	2622	HD1	ILE	287	6.617	9.034	46.825
	MOTA	2623	С	ILE	287	2.824	6.878	45.004
	MOTA	2624	0	ILE	287	2.349	7.780	
	ATOM	2625	N	PHE	288	2.166	6.336	46.041
	ATOM	2626	HN	PHE	288	2.619	5.606	46.610
35	ATOM	2627	CA	PHE	288	0.844	6.766	46.360
55								_
	MOTA	2628	HА	PHE	288	0.314	7.005	45.438
	MOTA	2629	CB	PHE	288	0.022	5.701	47.109
	ATOM	2630	HB1	PHE	288	-0.024	4.814	46.477
	ATOM	2631	HB2	PHE	288	-0.972	6.113	47.284
40			•					
40	MOTA	2632	ÇG	PHE	288	0.719	5.411	48.394
	MOTA	2633	CD1	$_{\mathrm{PHE}}$	288	0.473	6.170	49.516
	MOTA	2634	HD1	PHE	288	-0.239	6.993	49.465
	ATOM	2635	CD2	PHE	288	1.622	4.377	48.476
	MOTA	2636	HD2	PHE	288	1.825	3.768	47.596
45	ATOM	2637	CE1	PHE	288	1.118	5.902	50.700
	ATOM	2638	HE1	PHE	288	0.915	6.510	51.581
	ATOM	2639	CE2	PHE	288	2.271	4.104	49.658
	ATOM	2640	HE2	PHE	288	2.985	3.282	49.710
	MOTA	2641	ÇΖ	PHE	288	2.019	4.867	50.772
50	MOTA	2642	HZ	PHE	288	2.532	4.652	51.710
	ATOM	2643	С	PHE	288	0.919	7.975	47.226
	MOTA	2644	0	PHE	288	1.985	8.365	47.700
	MOTA	2645	N	GLY	289	-0.246	8.614	47.413
	MOTA	2646	HN	GLY	289	-1.081	8.270	46.918
5 5	MOTA	2647	CA	GLY	289	-0.380	9.751	48.268
22		•				•		
	MOTA	2648	HA1	${ t GLY}$	289	-0.452	10.594	47.581
	MOTA	2649	HA2	GLY	289	0.528	9.741	48.870
	ATOM	2650	С	GLY	289	-1.627	9.482	49.039
	ATOM	2651	Ö	GLY	289	-2.633	9:061	48.474
<i>~</i>								
60	MOTA	2652	N .	GLY	290	-1.623	9.766	50.352
	MOTA	2653	HN	GLY	290	-0.809	10.219	50.793
	ATOM	2654	CA	GLY	290	-2.781	9.422	51.122
	ATOM	2655	HA1	GLY	290	-2.987	8.367	50.938
	MOTA	2656	HA2	GLY	290	-3.596	10.058	50.777
65	MOTA	2657	С	GLY	290	-2.450	9.676	52.550
	MOTA	2658	0	GLY	290	-3.336	9.797	53.394
	ATOM	2659	N	THR	291	-1.144	9.740	52.861
	MOTA	2660	HN	THR	291	-0.430	9.564	52.140

	7 IT OM	2661	כא שנום	. 291	-0 752	10 053	E4 200
	ATOM		CA THR		-0.752	10.053	54.200
	ATOM	2662	HA THR	291	-1.670	10.259	54.751
	ATOM	2663	CB THR	291	0.034	8.963	54.865
	MOTA	2664	HB THR	291	0.531	8.034	54.798
5	ATOM	2665	OG1 THR	291	0.239	9.270	56.236
_							
	MOTA	2666	HG1 THR	291	0.690	10.193	56.318
	MOTA	2667	CG2 THR	291	1.384	8.819	54.141
	ATOM	2668	HG2 THR	291			
					1.968	8.029	54.615
	ATOM	2669	HG2 THR	291	1.211	8.565	53.096
10	ATOM	2670	HG2 THR	291	1.931	9.760	54.201
10							
	MOTA	2671	C THR	291	0.135	11.249	54.113
	ATOM	2672	O THR	291	0.847	11.440	53.129
	MOTA	2673	n Pro	292	0.076	12.091	55.104
	ATOM	2674	CA PRO	292	0.963	13.219	55.127
15		2675					
13	ATOM	26/5	HA PRO	292	0.975	13.613	54.111
	MOTA	2676	CD PRO	292	-1.165	12.363	55.802
	MOTA	2677	HD1 PRO	292	-1.532		56.306
						11.470	
	MOTA	2678	HD2 PRO	292	-1.937	12.699	55.109
	ATOM	2679	CB PRO	292	0.343	14.234	56.091
20							
20	\mathtt{MOTA}	2680	HB1 PRO	292	-0.012	15.042	55.452
	MOTA	2681	HB2 PRO	292	1.160	14.526	56.751
	MOTA	2682	CG PRO	292	-0.784	13.464	56.803
	MOTA	2683	HG1 PRO	292	-1.627	14.120	57.018
	MOTA	2684	HG2 PRO	292	-0.433	13.045	57.746
25	MOTA	2685	C PRO	292	2.291	12.689	55.553
	ATOM	2686	O PRO	292	2.312	11.692	56.272
	MOTA	2687	N THR	293	3.410	13.304	55.125
	ATOM	2688	HN THR	293	3.372	14.144	54.530
	ATOM	2689	CA THR	293	4.657	12.730	55.540
30	ATOM	2690	HA THR	293	4.615	12.530	56.611
• -							
	MOTA	2691	CB THR	293	4.965	11.443	54.826
	ATOM	2692	HB THR	293	4.086	10.800	54.875
	ATOM	2693	OG1 THR	293	6.043	10.762	55.450
	MOTA	2694	HG1 THR	293	5.950	10.837	56.473
35	ATOM	2695	CG2 THR	293	5.310	11.768	53.361
22							
	ATOM	2696	HG2 THR	293	5.537	10.845	52.828
	MOTA	2697	HG2 THR	293	4.462	12.261	52.888
		2698	HG2 THR				
	MOTA			293	6.178	12.427	53.330
	MOTA	2699	C THR	293	5.760	13.698	55.243
40 -	ATOM	2700	O THR	293	5.512	14.853	54.898
70 -							
	ATOM	2701	N GLN	294	7.018	13.232	55.407
	MOTA	2702	HN GLN	294	7.145	12.267	55.745
	ATOM	2703	CA GLN	294	8.185	14.020	55.132
	MOTA	2704	HA GLN	294	7.953	15.029	55.474
45	ATOM	2705	CB GLN	294	9.463	13.495	55.808
73							
	MOTA	2706	HB1 GLN	294	9.376	13.399	56.890
	ATOM	2707	HB2 GLN	294	10.333	14.131	55.649
	MOTA	2708	CG GLN	294	9.889	12.109	55.319
	MOTA	2709	HG1 GLN	294	10.886	11.901	55.706
50	MOTA	2710	HG2 GLN				
50				294	9.894	12.118	54.229
•	MOTA	2711	CD GLN	294	8.888	11.089	55.842
	MOTA	2712	OE1 GLN	294	8.171	11.339	56.810
					-		
	ATOM	2713	NE2 GLN	294	8.837	9.900	55.184
	MOTA	2714	HE2 GLN	294	9.455	9.730	54.378
55							
در	MOTA	2715	HE2 GLN	294	8.182	9.168	55.493
	MOTA	2716	C GLN	294	8.393	13.945	53.656
	ATOM	2717	O GLN	294	8.364	12.866	53.071
	ATOM	2718	N VAL	295	8.607	15.117	53.030
	ATOM	2719	HN VAL	295	8.702	15.963	53.609
40							
60	MOTA	2720	CA VAL	295	8.711	15.261	51.607
	MOTA	2721	HA VAL	295	7.868	14.803	51.090
	MOTA	2722	CB VAL	295	8.762	16.700	51.190
	MOTA	2723	HB VAL	295	8.832	16.741	50.103
	ATOM	2724	CG1 VAL	295	7.476	17.390	51.674
CE							
65	MOTA	2725	HG1 VAL	·295	7.494	18.440	51.380
	ATOM	2726	HG1 VAL	295	6.610	16.903	51.226
	MOTA	2727	HG1 VAL	295	7.411	17.319	52.760
	MOTA	2728	CG2 VAL	295	10.060	17.321	51.733
						_ ,	

	MOTA	2729	HG2 VA	ь 295	10.113	18.369	51.438
	ATOM	2730	HG2 VA	L 295	10.071	17.249	52.820 ⁻
		2731	HG2 VA		10.918	16.786	51.325
	ATOM,						
	MOTA	2732	.C VA		9.952	14.621	51.071
5	MOTA	2733	O VA	L 295	9.928	14.073	49.970
	ATOM	2734	N LE	บ 296	11.061	14.679	51.836
		2735	HN LE		10.977	15.056	52.791
	MOTA				*		
	MOTA	2736	CA LE		12.356	14.241	51.387
	ATOM	2737	HA LE	U 296	12.801	14.943	50.682
10	ATOM	2738	CB LE		13.389	14.119	52.522
10	•					13.722	52.197
	MOTA	2739	HB1 LE		14.351		
	ATOM	2740	HB2 LE	บ 296	13.072	13.461	53.332
	ATOM	2741	CG LE	U 296	13.720	15.459	53.203
	MOTA	2742	HG LE		14.068	16.197	52.480
1 5					14.932	15.326	54.138
15	MOTA	2743	CD2 LE				•
	ATOM	2744	HD2 LE	U 296	15.140	16.289	54.604
	MOTA	2745	HD2 LE	U 296	14.716	14.588	54.911
	ATOM	2746	HD2 LE	U 296	15.801	15.005	53.563
					12.487	16.049	53.908
	ATOM	2747	CD1 LE				
20	MOTA	2748	HD1 LE		12.754	16.995	54.379
-	MOTA	2749	HD1 LE	U 2,96	11.696	16.218	53.177
	ATOM	2750	HD1 LE	U 296	12.135	15.352	54.669
	MOTA	2751	C LE		12.289	12.915	50.698
	MOTA	2752	O LE		12.052	11.878	51.315
25	MOTA	2753	N AS	N 297	12.493	12.954	49.365
	MOTA	2754	HN AS	N 297	12.601	13.882	48.932
	ATOM	2755	CA AS		12.572	11.812	48.500
	MOTA	2756	HA AS		12.864	12.120	47.496
	ATOM	2757	CB AS	N 297	13.619	10.787	48.968
30	MOTA	2758	HB1 AS	N 297	13.208	10.221	49.805
	ATOM	2759	HB2 AS		14.517	11.319	49.280
•		2760	CG AS		13.941	9.849	47.810
	MOTA						
	ATOM	2761	OD1 AS		13.408	9.981	46.709
	MOTA	2762	ND2 AS	N 297	14.848	, 8.869	48.066
35	ATOM	2763	HD2 AS	N 297	15.272	8.792	49.001
	MOTA	2764	HD2 AS	N 297	15.110	8.204	47.324
		2765	C AS		11.243	11.128	48.424
•	ATOM						47.596
	MOTA	2766	0 AS		11.045	10.241	
	MOTA	2767	N II	E 298	10.283	11.522	49.278
40	ATOM	2768	HN II	E 298	10.459	12.282	49.951
	MOTA	2769	CA II		9.011	10.864	49.235
		2770	HA II		9.169	9.787	49.194
	MOTA						
	MOTA	2771	CB II			11.120	50.462
	MOTA	2772	HB II	E 298	8.772	10.947	51.352
45	MOTA	2773	CG2 II	E 298	7.674	12.576	50.436
	ATOM	2774	HG2 II		7.063	12.770	51.318
						13.249	50.434
	MOTA	2775	HG2 II		8.532		
	MOTA	2776	HG2 II	E 298	7.079	12.743	49.538
	MOTA	2777	CG1 II	E 298	7.023	10.091	50.579
50	ATOM	2778	HG1 II		6.505	10.266	51.522
50							
	MOTA	2779	HG1 II		7.461	9.093	50.557
	ATOM	2780	CD1 II	E 298	5.981	10.159	49.463
	MOTA	2781	HD1 II	E 298	5.218	9.399	49.631
	ATOM	2782	HD1 II		5.516	11.145	49.459
55					6.464	9.982	48.503
23	ATOM	2783					
	MOTA	2784	C II	LE 298	8.268	11.317	48.015
	MOTA	2785	0 11	LE 298	7.655	10.512	47.318
	MOTA	2786	N TH	IR 299	8.326	12.625	47.699
	ATOM	2787		IR 299	8.932	13.260	48.239
60							
60	ATOM	2788	CA TH		7.543	13.133	46.612
	MOTA	2789	HA T	IR 299	7.026	12.300	46.136
	MOTA	2790	CB TI		6.540	14.152	47.052
	MOTA	2791		IR 299	5.923	13.701	47.829
					5.705	14.530	45.967
	MOTA	2792		IR 299			
65	MOTA	2793		ir 299	5.593	15.554	45.960
	MOTA	2794	CG2 T	ir 299	7.308	15.365	47.594
	MOTA	2795		AR 299	6.601	-16.126	47.923
	ATOM	2796		IR 299	7.927	15.057	48.436
	AT OU	2150	11-12 II	درے ہے۔	1.521	20.00.	

	ATOM ATOM ATOM	2797 2798 2799	HG2 THR C THR O THR	299 299 299	7.943 8.453 9.616	15.775 13.799 14.067	46.808 45.641 45.944
5	ATOM ATOM ATOM	2800 2801 2802	n GLN HN GLN CA GLN	300 300 300	7.940 6.954 8.798	14.078 13.873 14.664	44.424 44.208 43.443
	MOTA MOTA MOTA	2803 2804 2805	HA GLN CB GLN HB1 GLN	300 300 300	9.843 8.600 8.658	14.430 14.163 13.074	43.644 42.000 42.010
10	MOTA MOTA MOTA	2806 2807 2808	HB2 GLN CG GLN HG1 GLN	300 300 300	9.392 7.269 7.148	14.588 14.540 15.613	41.384 41.353 41.499
	MOTA MOTA	2809 2810	HG2 GLN CD GLN	300 _300	6.501 7.383	13.963 14.165	41.869 39.881
15	ATOM ATOM ATOM	2811 2812 2813	OE1 GLN NE2 GLN HE2 GLN	300 300 300	7.435 7.444 7.397	12.990 15.195 16.167	39.523 38.996 39.333
20	ATOM ATOM	2814 2815	HE2 GLN	300 300	7.538 8.658	15.003 16.155	37.988 43.425
20	ATOM ATOM	2816 2817	O GLU	300 301	8.025 9.270	16.768	4,4.283
•	ATOM ATOM ATOM	2818 2819 2820	HN GLU CA GLU HA GLU	301 301 301	9.648 9.479	16.088	41.676
25	ATOM ATOM ATOM	2821 2822	CB GLU HB1 GLU	301 301 301	9.979 10.342 10.429	18.671	42.894
	ATOM ATOM ATOM	2823 2824	HB2 GLU	301 301 301	9.852 11.754	19.398 17.829 17.760	40.641
30	ATOM ATOM	2825 2826	HG1 GLU	301 301	12.122	17.992	40.955
	MOTA	2827	CD GLU	301	12.370 11.669	18.232	40.190
	ATOM ATOM	2828 2829	OE1 GLU OE2 GLU	301 301	10.579 12.691	15.781 15.560	40.319 40.985
35	ATOM ATOM	2831 2832	C GLU	301 301	8.209 8.164	18.886 20.095	41.841 42.059
,	ATOM ATOM	2833 2834	N CYS	302 302	7.142 7.164	18.209 17.180	41.388 41.372
	ATOM ATOM	2835 2836	CA CYS HA CYS	302 302	5.968 6.126	18.897 19.452	40.924 39.999
40	MOTA MOTA	. 2837 2838	CB CYS HB1 CYS	302 302	4.808 3.865	17.953 18.485	40.565 40.438
	MOTA MOTA	2839 2840	HB2 CYS SG CYS	302 · 302	4.636 5.104	17.198 17.053	41.332 39.014
45	MOTA MOTA	2841 2842	HG CYS	302 ⁻ 302	4.320 5.435	17.554 19.912	38.049 41.907
	ATOM ATOM	2843 2844	O CYS	302 303	4.999 5.435	20.973 19.679	41.470 43.238
	ATOM ATOM	2845 2846	HN PHE CA PHE	303 303	5.871 4.793	18.836	43.638
50	ATOM ATOM	2847 2848	HA PHE CB PHE	303 303	3.947 4.165	21.131	43.564 45.354
	MOTA MOTA	2849 2850	HB1 PHE HB2 PHE	303	4.971	19.862	46.052
55	MOTA	2851	CG PHE	303	3.621 3.242	19.183	45.082 45.921
55	MOTA MOTA	2852 2853	CD1 PHE HD1 PHE	303 303	2.002 1.699	21.321 20.734	45.360 44.493
	MOTA MOTA	2854 2855	CD2 PHE HD2 PHE	303 303	3.602 4.576	21.857 21.700	47.020 47.481
60	MOTA MOTA	2856 2857	CE1 PHE HE1 PHE	303 303	1.141 0.164	22.260 22.415	45.878 45.420
	MOTA MOTA	2858 2859	CE2 PHE HE2 PHE	303 303	2.745 3.045	22.798 23.382	47.543 48.413
	MOTA MOTA	2860 2861	CZ PHE HZ PHE	303 303	1.512 0.834	23.003	46.972 47.385
65	MOTA MOTA	2862 2863	C PHE O PHE	303 303	5.742 6.717	21.766 21.578	44.450 45.178
	MOTA MOTA	2864 2865	N LYS HN LYS	304 304	5.433 4.581	22.985 23.107	43.975 43.409

	$\lambda m \cap M$	2866	CA L	rs 304		6.268	24.113	44.242
	MOTA			_				
	MOTA	2867	HA L	rs 304		7.253	23.919	43.816
	2 mon	2868		rs 304		5.737	25.406	43.588
	ATOM							
	MOTA	2869	HB1 LY	<i>ts</i> 304		5.896	25.330	42.512
-								
5	MOTA	2870	HB2 L	rs 304		6.292	26.247	44.004
	ATOM	2871	CG L	rs 304		4.245	25.690	43.809
				_				
	ATOM	2872	HG1 LY	rs 304		3.698	24.760	43.657
	ATOM	2873	HG2 L	rs 304		3.935	26.445	43.086
	ATOM	2874	CD L	rs 304		3.878	26.212	45.198
10	MOTA .	2875	HD1 L	rs 304		4.366	27.153	45.455
	ATOM	2876	HD2 L	rs 304		4.140	25.529	46.006
	MOTA	2877	CE L	(S 304		2.382	26.481	45.378
	MOTA	2878	HE1 L	rs 304		1.815	25.565	45.212
								11 CCE
	ATOM	2879	HE2 L	rs 304		2.050	27.236	44.665
15	ATOM	2880	NZ L	rs 304		2.117	26.967	46.751
13								
	ATOM	2881	HZ1 LY	rs 304		1.109	27.146	46.864
	MOTA	2882	HZ2 L	rs 304		2.417	26.255	47.432
	MOTA	2883	HZ3 L	rs 304		2.640	27.840	46.913
	MOTA	2884	C L	rs 304		6.361	24.287	45.721
20		-				-		
20	ATOM	2885	O . F.	rs 304		7.430	24.585	46.251
	ATOM	2886	N G	LY 305		5.246	24.082	46.441
	MOTA	2887	HN G	LY 305		4.371	23.802	45.976
								47 060
	MOTA	2888	CA G	LY 305		5.288	24.257	47.860
	MOTA	2889	HA1 G	Y 305		6.252	23.857	48.172
25	MOTA	2890	HA2 GI	Y 305		4.441	23.690	48.245
•	T (TI C) A	2001	C C	LY 305		E 161	25.719	48.079
	MOTA	2891				5.161		
	MOTA	2892	0 G1	Y 305		5.651	26.503	47.268
	4							
	MOTA	2893	N I	LE 306		4.501	26.118	49.184
	ATOM	2894	HN I	LE 306		4.123	25.418	49.838
30	ATOM	2895	CA I	LE 306		4.326	27.513	49.449
	MOTA	2896	HA II	LE 306		3.697	27.920	48.658
	MOTA	2897	CB II	JE 306		3.594	27.798	50.731
	ATOM	2898	HB I	LE 306		3.598	28.878	50.880
						2.161	27.263	50.578
	ATOM	2899		LE 306			21.203	
35	MOTA	2900	HG2 II	JE 306		1.601	27.454	51.493
55								
	MOTA	2901	HG2 I	LE 306		1.673	27.764	49.742
		2902	HG2 I	LE 306		2.191	26.190	50.389
	MOTA	2502	ngz II	200				
	MOTA	2903	CG1 I	LE 306		4.337	27.222	51.943
	MOTA	2904	HG1 I	LE 306		5.393	27.492	51.966
40	ATOM	2905	HG1 I	LE 306		4.312	26.133	51.983
40								
	ATOM	2906	CD1 I	LE: 306		3.763	27.695	53.279
	MOTA	2907	HD1 I	LE 306		4.333	27.252	54.096
	MOTA	2908	HD1 I	LE 306		- 3.828	28.781	53.338
				•				
	MOTA	2909	HD1 I	LE 306		2.720	27.389	53.356
15								40 440
45	MOTA	2910	C II	LE 306		5.674	28.141	49.449
	MOTA	2911	0 I	LE 306		6.478	27.978	50.364
	MOTA	2912	N L	EU 307		5.941	28.867	48.354
			HN L	דרכ נזיה		5.192	28.985	
	MOTA	2913	ות דוו	EU 307	•			47.050
	MOTA	2914	CA L	EU 307		7.199	29.486	48.098
50								
50	ATOM	2915	HA L	EU 307		7.955	28.703	48.134
	MOTO	2916	CB L	EU -307		7.210	30.189	46.725
	MOTA							
	MOTA	2917	HB1 L	≥ U 307		6.423	30.943	46.727
	MOTA	2918	HB2 L	EU 307		7.025	29.435	45.960
	MOTA	2919	CG L	EU 307		8.523	30.905	46.351
55	MOTA	2920	HG L	EU 307		8.558	31.200	45.302
	MOTA	2921	CD2 L	ະບ 307		9.714	29.929	46.432
	MOTA	2922	HD2 L	EU 307		10.632	30.452	46.165
	MOTA	2923	HD2 L	EU 307		9.799	29.543	47.448
	MOTA	2924	HD2 L	EU 307		9.554	29.101	45.742
60	ATOM	2925	CD1 L	ะบ 307		8.750	32.186	47.158
UU								
	MOTA	2926	HD1 L	EU 307		9.689	32.648	46.853
	MOTA	2927	HD1 L	EU 307		7.929	32.880	46.977
	MOTA	2928	HD1 L	EU 307		8.793	31.944	48.220
	MOTA	2929	C L	EU 307		7.410	30.505	49.163
65								
65	MOTA	2930		EU 307		8.534	30.723	49.608
	MOTA	2931	N L	YS 308		6.319	31.148	49.609
	MOTA	2932	HN L	YS 308		5.382	-30.859	49.292
	MOTA	2933	CA L	YS 308		6.463	32.233	50.524

	ATOM	2934	HA LY	s 308	. 7.048	33.047	50.097
	ATOM	2935	CB LY	s 308	5.116	32.858	50.931
	ATOM	2936	HB1 LY	s 308	4.471	32.172	51.481
•	ATOM	2937	HB2 LY		4.524	33.195	50.080
5	ATOM	2938	CG LY		5.268	34.086	51.833
,	ATOM	2939	HG1 LY		6.044	34.727	51.414
					5.550	33.747	52.830
	MOTA	2940	HG2 LY				51.965
	MOTA	2941	CD PX		3.992	34.919	
	ATOM	2942	HD1 LY		3.151	34.365	52.383
10	ATOM	2943	HD2 LY		3.629	35.312	51.015
	ATOM	2944	CE LY	s 308	4.151	36.144	52.868
	MOTA	2945	HE1 LY	s 308	4.925	36.802	52.473
	MOTA	2946	HE2 LY	s 308	4.433	35.833	53.874
	ATOM	2947	NZ LY		2.877	36.893	52.939
15	ATOM	2948	HZ1 LY		2.994	37.714	53.548
15		2949	HZ2 LY		2.607	37.202	51.994
	MOTA		HZ3 LY		2.141	36.283	53.323
	ATOM	2950			7.153	31.809	51.784
	MOTA	2951	C LY				
	ATOM	2952	O LY		8.133	32.436	
20	MOTA	2953	N AS				52.452
	MOTA	2954	HN AS		5.948	30.131	52.082
	MOTA	2955	CA AS	P 309	7.337	30.463	53.712
	MOTA	2956	HA AS	P 309	7.338	31.351	54.345
	MOTA	2957	CB AS	P 309	6.610	29.452	54.635
25 -	ATOM	2958	HB1 AS		5.567	29.706	54.821
~~	ATOM	2959	HB2 AS		7.062	29.362	55.623
	ATOM	2960	CG AS		6.582	28.034	54.079
	,		OD1 AS			27.841	52.864
	MOTA	-2961				27.111	54.884
	MOTA	2962	OD2 AS				53.518
30	ATOM	2963	C AS			30.037	
•	MOTA	2964	O AS			30.454	54.266
	MOTA	2965	N L			29.208	52.494
	, ATOM	2966	HN LY	s 310		28.936	51.852
	MOTA	2967	CA LY	s 310	10.346	28.697	52.280
35 [°]	MOTA	2968	HA LY	rs 310	10.683	28.199	53.189
	MOTA	2969	CB L		10.370	27.637	51.162
	MOTA	2970		s. 310	9.775	26.784	51.487
	ATOM	2971	HB2 LY				50.994
	ATOM	2972		'S 310		28.114	
40		2973	HG1 L			28.757	49.921
40	ATOM					27.304	49.169
	MOTA	2974	HG2 L			28.923	48.989
	MOTA	2975	CD L				49.598
	MOTA	2976	HD1 L			29.351	
	MOTA	2977	HD2 L			29.753	48.474
45	MOTA	2978	CE L	'S _. 310		28.072	47.916
	MOTA	. 2979	HE1 L	(S 310		28.655	47.407
	MOTA	2980	HE2 L	rs 310	10.727	27.742	47.184
	ATOM	2981	NZ L	rs 310	12.094	26.882	48.535
	ATOM	2982		rs 310	12.547	26.314	47.806
50	ATOM	2983		YS 310		27.185	49.222
-	ATOM	2984		YS 310	•	26.320	49.010
	ATOM	2985		YS 310		29.834	51.951
						29.917	52.454
	MOTA	2986				30.770	51.125
	MOTA	2987		YS 311		30.770	50.773
55	MOTA	2988		YS 311			
	MOTA	2989		YS 311		31.885	50.723
	ATOM	2990	HA L	YS 311		31.502	50.245
	MOTA	2991	CB L	YS 311	10.833	32.824	49.750
	ATOM	2992	HB1 L	YS 311	9.923	33:258	50.163
60	MOTA	2993		YS 311	10.517	32.340	48.826
	ATOM	2994		YS 311		34.024	49.298
	MOTA	2995		YS 313		33.754	48.979
		2996		YS 31:		34.774	50.076
	MOTA			YS 313		34.776	48.114
65	MOTA	2997				35.179	48.317
65	MOTA	2998		YS 313		34.162	47.222
	ATOM	2999		YS 313			
	MOTA	3000		YS 31:		-35.977	47.657
	MOTA	3001	HE1 L	YS 31:	12.880	35.649	47.350

			•						
	ATOM	3002	HE2	LYS	311	11.	986	36.693	48.472
	ATOM	3003	NZ	LYS'	311	11.3	225	36.641	46.512
	ATOM	3004	HZ1	LYS	311	11.	789	37.448	46.210
							-		
	MOTA	3005	HZ2	LYS	311	11.	135	35.974	45.732
5	ATOM	3006	HZ3	LYS	311	10.	289	36.964	46.795
	ATOM	3007	С	LYS	311	11.	913	32.675	51.940
	ATOM	3008	0	LYS	311	13.	005	33.229	52.047
	A1 OM		U						
	ATOM	3009	N	ASN	312	10.	984	32.755	52.905
		3010	UNI	ASN	312	10.	007	32.239	52.827
	MOTA		HN						
10	ATOM	3011	CA	ASN	312	11.	257	33.575	54.045
	ATOM	3012	HA	ASN	312	11.		34.609	53.739
	MOTA	3013	CB	ASN	312	10.0	099	33.574	55.063
					312				
	ATOM	3014	HB1	ASN		10.		32.590	55.527
	MOTA	3015	HB2	ASN	312	9.	168	33.801	54.542
1.5									
15	ATOM	3016	CG	ASN	312	10.	5/2	34.633	56.125
	MOTA	3017	OD1	ASN	312	11.	435	34.669	56.741
	MOTA	3018	ND2	ASN	312	9.	373	35.531	56.346
	MOTA	3019	HD2	ASN	312	8.5	496	35.468	55.809
	ATOM	3020	HD2	ASN	312		495	36.273	57.050
20	ATOM	3021	С	ASN	312	12.	484	33.089	54.758
-0									
	ATOM	3022	O '	ASN	312	13.	420	33.856	. 54.976
•	MOTA	3023	N	ASP	313	12.	519	31.797	55.141
			•						
	ATOM	3024	HN	ASP	-313	11.	753	31.159	54.884
		3025	CA.	ASP	313	13.	633	31.317	55.912
	MOTA								
25	MOTA	3026	HA	ASP	313	13.	846	31.958	56.767
					313	13.		29.912	56.491
	ATOM	3027	CB	ASP		•			
	MOTA	3028	HB1	ASP	[,] 313	13.	397	29.191	55.674
					313	12.	121	29.904	56.992
	MOTA	3029	HB2	ASP					
	MOTA	3030	CG	ASP	313	14.	499	29.594	57.485
20									57.678
30	MOTA	3031	OD1	ASP	313	15.	390	30.458	
	MOTA	3032	OD2	ASP	313	14.	459	28.480	58.071
	MOTA	3033	С	ASP	313	14.	093	31.247	55.098
	ATOM	3034	0	ASP	313	15.	914	31.818	55.477
	MOTA	3035	N	ILE	314	14.	840	30.543	. 22.921
35	MOTA	3036	HN	ILE	314	13.	931	30.171	53.642
	ATOM	3037	CA	ILE	314	16.	OOT	30.290	53.140
	MOTA	3038	HA	ILE	314	16.	848	29.957	53.740
	MOTA	3039	CB	ILE	314	15.		29.155	52.172
	MOTA	3040	HB	ILE	314	16.	744	29.065	51.605
40									
40	ATOM	3041	CG2	ILE	314	15.		27.894	53.003
	MOTA	3042	HG2	ILE	314	15.	394	27.043	52.337
					314	16.		27.699	53.668
	ATOM	3043	HG2	ILE		-			
	MOTA	3044	HG2	ILE	314	14.	631	28.044	53.595
	ATOM	3045	CG1	ILE	314	14.		29.445	51.128
45	MOTA	3046	HG1	ILE	314	14.	891	30.396	50.619
				ILE	314	13.		29.494	51.571
	ATOM	3047	HG1						
	MOTA	3048	CD1	ILE	314	14.	672	28.373	50.041
	ATOM	3049	HD1	ILE	31.4	13.		28.623	49.326
	ATOM	3050	HD1	ILE	314	15.	631	28.325	49.525
50	ATOM	3051	HD1	ILE	314	14.		27.406	50.494
50									
	MOTA	3052	C	ILE	314	16.	439	31.514	52.401
		3053	0		314	17.		31.642	52.065
	ATOM		U	ILE					
	MOTA	3054	N	GLU	315	15.	488	32.421	52.112
	ATOM	3055	,HN	GLU	315	14.		32.218	52.456
55	MOTA	3056	CA	GLU	315	15.	658	33.644	51.373
-								24 200	
	MOTA	3057	HA	GLU	315	14.		34.208	51.379
	ATOM	3058	CB	GLU	315	16.	633	34.692	51.965
•									
	MOTA	3059	, HB1	GLU	315	16.		34.881	52.993
	ATOM	3060	HB2	GLU	315	16.	556	35.593	51.355
60									
60	MOTA	3061	CG	GLU	315	18.		34.328	52.014
	ATOM	3062	HG1	GLU	315	18.	700	35.213	51.754
	MOTA	3063	HG2	GLU	315	18.		33.528	51.297
	MOTA	3064	CD	GLU	315	18.	455	33.866	53.426
	MOTA	3065	OE1	GLU	315	17.		33.744	54.248
65	ATOM	3066	OE2	GLU	315	19.	662	33.627	53.700
	MOTA	3068	С	GTA	315	16.		33.328	49.964
	MOTA	3069	0	GLU	315	16.	677	3.4.123	49.280
			N	ALA	316	15.		32.138	49.494
	MOTA	3070	14	THE	210	10.	020	JZ.130	32.323

	ATOM	3071	HN ALA	316	,	15.141	31.488	50.133
	MOTA	3072	CA ALA	316		15.825	31.747	48.134
	ATOM	3073	HA ALA	316		15.932	32.684	47.588
_	MOTA	3074	CB ALA	316		17.028	30.811	47.931 46.874
5	ATOM	3075	HB1 ALA	316	•	17.118	30.559 31.311	48.264
	MOTA	3076	HB2 ALA	316		17.938 16.882	29.899	48.510
	ATOM	3077	HB3 ALA	316		14.602	30.978	47.770
	ATOM	3078	C ALA	316 316		13.837	30.575	48.642
10	ATOM	3079 3080	O ALA N GLN	317		14.355	30.790	46.464
10	MOTA	3081	HN GLN	317		14.951	31.225	45.745
	ATOM	3082	CA GLN	317		13.244	29.970	46.096
	MOTA MOTA	3082	HA GLN	317		12.404	30.119	46.774
	ATOM	3084	CB GLN	317	-	12.787	30.170	44.639
15	ATOM	3085	HB1 GLN	317		13.561	29.940	43.907
13	ATOM	3086	HB2 GLN	317		12.478	31.191	44.418
	ATOM	3087	CG GLN	317		11.592	29.294	44.250
	ATOM	3088	HG1 GLN	317		10.703	29.682	44.748
	ATOM	3089	HG2 GLN	317		11.793	28.272	44.571
20	ATOM	3090	CD GLN	317		11.423	29.353	42.741
	ATOM	3091	OE1 GLN	317		12.182	30.026	42.045
	ATOM	3092	NE2 GLN	317		10.406	28.615	42.219
	ATOM	3093	HE2 GLN	317		9.796	28.067 -	42.841
	ATOM	3094	HE2 GLN	317	1	10.246	28.605	41.201
25	MOTA	3095	C GLN	317		13.799	28.597	46.193
	ATOM	3096	O GLN	317		14.136	28.135	47.282
	MOTA	3097	N TRP	318		13.907	27.901	45.049
	MOTA	3098	HN TRP	318		13.524	28.260	44.162
	MOTA	3099	CA TRP	318		14.574	26.649	45.118
30	ATOM	3100	HA TRP	318		14.080	25.983 25.917	45.826 43.774
	ATOM	3101	CB TRP	318		14.701	25.159	43.868
	MOTA	3102	HB1 TRP	318		15.480 14.968	26.645	43.009
	ATOM	3103	HB2 TRP CG TRP	318 318		13.438	25.227	43.334
25	MOTA	3104 3105	CG TRP CD2 TRP	318		13.430	23.824	43.520
35	MOTA	3105	CD2 TRP	318		12.327	25.721	42.716
	ATOM ATOM	3107	HD1 TRP	318		12.181	26.762	42.428
	ATOM	3108	NE1 TRP	318		11.419	24.709	42.511
	ATOM	3109	HE1 TRP	318		10.496	24.810	42.066
40	ATOM	3110	CE2 TRP	318		11.953	23.535	43.000
	ATOM	3111	CE3 TRP	318		13.992	22.855	44.083
	ATOM	3112	HE3 TRP	318		14.976	23.084	44.492
	MOTA	3113	CZ2 TRP	318	• •	11.450	22.267	43.040
•	MOTA	`3114	HZ2 TRP	318		10.461	22.038	42.642
45	MOTA	3115	CZ3 TRP	318		13.484	21.576	44.113
	ATOM	3116	HZ3 TRP	318		14.080	20.775	44.550
,	MOTA	3117	CH2 TRP	318		12.237	21.287	43.602
	MOTA	3118	HH2 TRP	318		11.867	20.263	43.643
	ATOM	3119	C TRP	318	•	15.934	27.003	45.561
50	MOTA	3120		318		16.704	27.633 26.644	44.839 46.804
	MOTA	3121	N HIS	319		16.265 15.590	26.209	47.449
	MOTA	3122	HN HIS	319		17.609	26.203	47.178
	MOTA	3123	CA HIS	319 319		17.968	27.836	46.744
55	ATOM	3124	HA HIS ND1 HIS	319		19.405	28.897	49.152
55	MOTA	3125 3126	HD1 AIS	319		18.737	29.653	48.947
	MOTA	3127		319		19.158	27.543	
	ATOM ATOM	3128	NE2 HIS	319		21.298	27.881	49.725
	MOTA	3129	HE2 HIS	319		22.271	27.714	50.017
60	MOTA	3130	CD2 HIS	319		20.325	26.938	49.441
50	ATOM	3131	HD2 HIS	319		20.474	25.860	49.493
	MOTA	3132	CE1 HIS	319		20.698	29.042	49.537
	MOTA	3133	HE1 HIS	319		21.186	30.007	49.675
	ATOM	3134	CB HIS	319		17.831	26.955	48.701
65	MOTA	3135	HB1 HIS	319		17.801	25.974	49.176
	MOTA	3136	HB2 HIS	319		17.086	27.553	49.226
	MOTA	3137	C HIS	319		18.318	-25.721	46.634
	MOTA	3138	O HIS	319		17.970	25.193	45.578

						_			
	ATOM	3139	N A	SP	320		19.339	25.255	47.343
	ATOM	3140	HN A	SP.	320	1	19.651	25.725	48.205
	ATOM	3141	CA A	SP	320		19.985	24.084	46.866
	ATOM	3142			320		20.748	23.809	47.594
-					320		19.014	22.906	46.680
5	ATOM	3143		SP					
	ATOM	3144		SP	320		18.406	23.133	45.804
	ATOM	3145	HB2 A	SP	320	:	18.414	22.844	47.588
	MOTA	3146	CG A	SP	320		19.862	21.664	46.475
	MOTA	3147		ASP	320		21.108	21.797	46.605
10				SP	320		19.287	20.581	46.189
10	MOTA	3148							
	MOTA	3149		SP	320		20.591	24.410	45.543
	MOTA	3150	O A	ASP	320	:	20.863	23.527	44.734
	ATOM	3151	N G	LU	321	:	20.805	25.711	45.284
	ATOM	3152		LU	321		20.507	26.433	45.956
15				ELU	321		21.449		44.064
15	MOTA	3153							
	ATOM	3154		SLU	321		20.858	25.621	43.272
	MOTA	3155	CB G	SLU	321	:	21.492	27.598	43.819
	MOTA	3156	HB1 G	LU	321		20.466	27.955	43.727
	MOTA	3157		ELU	321		22.049	27.776	42.900
20		3158		SLU	321		22.160	28.416	44.920
20	ATOM								
	ATOM	3159		SLU	321		23.186	28.056	44.997
	MOTA	3160	HG2 G	SLU	321		21.591	28.234	45.832
	MOTA	3161	CD G	SLU	. 321		22.094	29.872	44.482
	ATOM	3162		ELU	321		22.672	30.192	43.409
25	MOTA	3163		SLU	321		21.454	30.681	45.206
23									
	ATOM	3165		SLU	321		22.827	25.529	44.160
	MOTA	3166	0 0	SLU	321		23.432	25.205	43.136
	ATOM	3167	N . 5	SER	322		23.347	25.443	45.412
	MOTA	3168	HN S	SER	322		22.814	25.829	46.204
30	ATOM	3169		SER	322		24.618	24.827	45.659
30		*-						25.437	45.262
	ATOM	3170		SER	322		25.430		
	MOTA	3171	CB S	SER	322		24.927	24.624	47.160
	ATOM	3172	HB1 S	SER	322		24.996	25.576	47.687
	MOTA	3173	HB2 S	SER	322		25.872	24.103	47.309
35	ATOM	3174		SER	322		23.918	23.859	47.803
55		3175		SER	322		23.260	24.491	48.282
	MOTA								
	MOTA	3176		SER	322.		24.526	23.521	44.959
	MOTA	3177	0 9	SER	322			23.387	43.897
	MOTA	3178	N I	HIS	323		23.752	22.560	45.498
40	MOTA	3179	HN F	HIS	323		23.409	22.679	46.462
	ATOM	3180		HIS	323		23.388	21.374	44.775
							22.610	20.799	45.277
	MOTA	3181		HIS	323				
	MOTA	3182		HIS	323		23.939	19.802	41.804
	MOTA	3183	HD1 H	HIS	323		23.138	19.168	41.935
-45	ATOM	3184	CG I	HIS	323		24.093	21.047	
	MOTA	3185	NE2 I	HIS	323		25.895	20.563	41.076
	ATOM	3186		HIS	323		26.802	20.635	40.593
					•		25.298	21.496	41.902
	ATOM	3187		HIS	323				
	MOTA	3188		HIS	323		25.732	22.463	42.154
50-	MOTA	3189	CE1 F	HIS	323		25.041	19.562	41.048
	ATOM	3190	HE1 I	HIS	323		25.200	18.644	40.481
	ATOM	3191		HIS	323		23.056	21.632	43.306
				HIS	323		22.997	22.695	43.070
	MOTA	3192							43.010
	MOTA	3193		HIS	323		22.100	21.202	
55	ATOM	3194	C I	HIS	323		24.526	20.450	44.588
	MOTA	3195	·O I	HIS	323		24.289	19.248	44.451
	MOTA	3196		LEU	324		25.759	20.990	44.683
		3197		LEU	324		25.853	21.886	45.182
	ATOM								
	ATOM	3198		LEU	324		26.948	20.402	44.136
60	ATOM .	3199		LEU	324		26.967	20.551	43.057
	MOTA	3200	CB :	LEU	324		28.238	20.916	44.804
	MOTA	3201		LEU	324		29.079	20.386	44.357
	ATOM	3202		LEU	324		28.167	20.708	45.872
									44.658
	MOTA	3203		LEU	324		28.526		
65	MOTA	3204		LEU	324		29.405		45.234
	MOTA	3205	CD2	LEU	324		27.446	23.275	45.336
	ATOM	3206	HD2	LEU	324		27.687	-24.331	45.211
	ATOM	3207		LEU	324		26.478		44.881
	011	5207							

	MOTA	3208	HD2 LEU	324	27.407	23.036	46.399
	ATOM	3209	CD1 LEU	324		22.792	43.195
		3210	HD1 LEU	324		23.861	43.121
	MOTA		HD1 LEU	324		22.235	42.822
-	ATOM	3211		324		22.546	42.598
5	ATOM	3212	HD1 LEU		26.964	18.949	44.430
	MOTA	3213	C LEU	324			43.526
•	MOTA	3214	O LEU	324	27.140	18.135	
	ATOM	3215	n Asn	325	26.706	18.583	45.693
	MOTA	3216	hn asn	325	26.480	19.291	46.406
10	MOTA	3217	CA ASN	325	26.749	17.198	46.034
	ATOM	3218	HA ASN	325	27.658	16.729	45.657
	ATOM	3219	CB ASN	325	26.815	16.936	47.552
	ATOM.	3220	HB1 ASN	325	27.743	17.346	47.949
	ATOM	3221	HB2 ASN	325	26.782	15.862	47.735
-15	ATOM	3222	CG ASN	325	25.629	17.606	48.231
	ATOM	3223	OD1 ASN	325	24.608	16.987	48.528
	ATOM	3224	ND2 ASN	325	25.786	18.928	48.504
	MOTA	3225	HD2 ASN	325	26.658	19.409	48.238
	ATOM	3226	HD2 ASN	325	25.034	19.450	48.976
20	ATOM	3227	C ASN	325	25.583	16.464	45.452
20	ATOM	3228	O ASN	325	25.266	16.592	44.272
	ATOM	3229	N LYS	326	24.918	15.656	46.293
		3230	HN LYS	326	25.203	15.646	47.283
	ATOM ATOM	3231	CA LYS	326	23.836	14.806	45.892
25				326	24.162	14.154	45.082
25	MOTA	3232	HA LYS	326	23.320	13.917	47.038
	MOTA	3233	CB LYS		22.934	14.484	47.885
	ATOM	3234	HB1 LYS	326	24.085	13.262	47.456
	ATOM	3235	HB2 LYS	326	· ·	12.989	46.620
	MOTA	3236	CG LYS	326	22.178		46.138
30	MOTA	3237	HG1 LYS	326	21.349	13.508	47.453
	ATOM	3238	HG2 LYS	326	21.729	12.448	
	ATOM	3239	CD LYS	326	22.604	11.907	45.625
	ATOM	3240	HD1 LYS~		23.383	11.245	46.004
	MOTA	3241	HD2 LYS	326	23.002	12.303	44.691
35	MOTA	3242	CE LYS	326	21.466	10.976	45.205
	ATOM	3243	HE1 LYS	326	21.801	10.312	44.407
	MOTA	3244	HE2 LYS	326	20.618	11.560	44.845
	MOTA	3245	NZ LYS	326	21.028	10.157	46.357
	ATOM	3246	HZ1 LYS	326	20.262	9.534	46.064
40	MOTA	3247	HZ2 LYS	326	21.820	9.592	46.697
	MOTA	3248	HZ3 LYS	326	20.699	10.775	47.112
	MOTA	3249	C LYS	326	22.690	15.639	45.423
	MOTA	3250	O LYS	326	21.808	15.145	44.722
	MOTA	3251	N TYR	327	22.680	16.933	45.786
45	MOTA	3252	HN TYR	327	23.495	17.331	46.273
	ATOM	3253	CA TYR	327	21.549	17.763	45.504
	MOTA	3254	HA TYR	327	20.671	17.418	46.051
	MOTA	3255	CB TYR	327	21.740	19.220	
	ATOM	3256	HB1 TYR	327	20.870	19.767	45.570
50	ATOM	3257	HB2 TYR	327	22.666	19.561	45.471
50		3258	CG TYR	327	21.821	19.215	47.421
	MOTA			327	20.702	18.966	48.183
	MOTA	3259	CD1 TYR		19.748		47.692
	MOTA	3260	HD1 TYR	327			48.056
	MOTA	3261	CD2 TYR	327	23.010	19.475 19.685	47.465
55	MOTA	3262	HD2 TYR	327	23.902		
	MOTA	3263	CE1 TYR	327	20.774	18.963	49.556
	MOTA	3264	HE1 TYR	327	19.882	18.760	50.149
	MOTA	3265	CE2 TYR	327	23.091	19.474	49.429
	MOTA	3266	HE2 TYR	327	24.043	19.678	49.920
60	MOTA	3267	CZ TYR	327	21.972	19.216	50.182
	MOTA	3268	OH TYR	327	22.050	19.213	51.590
	MOTA	3269	HH TYR	327	22.273	20.162	51.924
	MOTA	3270	C TYR	327	21.228	17.742	44.049
	MOTA	3271	O TYR	327	20.066	17.901	43.680
65	MOTA	3272	N PHE	328	22.233	17.554	43.175
	MOTA	3273	HN PHE	328	23.201	17.416	43.497
	MOTA	3274		328	21.907	17.554	41.779
	MOTA	3275	HA PHE	328	21.453	18.518	41.551
	111 011	52.5					

	MOTA	3276	CB	PHE	328		23.092	17.255	40.855
	ATOM	3277	HB1	PHE	328		23.318	16.194	40.961
	-								
	ATOM	3278	HB2	PHE	328		23.920	17.881	41.188
	MOTA	3279	CG	PHE	328		.22.659	17.596	39.469
5	ATOM	3280	CD1	PHE	328		21.861	16.738	38.747
	ATOM	3281	HDl	PHE	328		21.540	15,796	39.191
		3282	CD2	PHE	328		23.059	18.779	38.889
	ATOM								
	ATOM	3283	HD2	PHE	328		23.694	19.465	39.449
	ATOM	3284	CE1	PHE	328		21.466	17.060	37.470
10	MOTA	3285	HEl	PHE	328		20.832	16.374	36.908
	MOTA	3286	CE2		328		22.666	19.106	37.613
	MOTA	3287	HE2	PHE	328		22.989	20.047	37.167
	ATOM	3288	CZ	PHE	328		21.867	18.245	36.900
	ATOM	3289	HZ	PHE	328		21.553	18.500	35.887
15	MOTA	3290	C ·	PHE .	328		20.956	16.433	41.547
	MOTA	3291	0	PHE	328		19.935	16.596	40.880
	MOTA	3292	N	LEU	329		21.270	15.262	42.130
	ATOM	3293	HN	LEU	329		22.106	15.206	42.730
	ATOM	3294	CA	LEU	329		20.470	14.096	41.933
20	ATOM	3295	HA	LEU	329		20.416	13.895	40.863
	MOTA	3296	СВ	LEU	329		21.059	12.859	42.644
	MOTA	3297	HB1	LEU	329		21.110	13.079	43.711
	MOTA	3298	HB2	LEU	329		22.053	12.679	42.234
	ATOM	3299	CĠ	LEU	329		20.262	11.543	42.491
25	MOTA	3300	HG	LEU	329		20.813	10.667	42.832
د									
	MOTA	3301	CD2	LEU	329		.20.060	11.202	41.000
	MOTA	,3302	HD2	LEU	329		19.497	10.273	40.912
	ATOM	-3303	HD2	LEU	329		19.510	12.008	40.514
	ATOM	3304	HD2	LEU	329		21.031	11.085	40.519
30		3305			329				43.283
50	ATOM		CD1	LEU			18.949	11.540	
	MOTA	3306	HD1	LEU	329		18.436.	10.590	43.134
	MOTA	3307	HD1	LEU	329		19.164	11.674	44.343
	MOTA	3308	HD1	LEU	329		18.313	12.354	42.937
	MOTA	3309	С	LEU	329		19.112	14.364	42.488
35	ATOM	3310	Ö	LEU	329		18.107	14.056	41.848
رر									
	MOTA	3311	N	LEU	330	•	19.035	14.962	43.688
	MOTA	3312	HN	LEU	330		19.874	15.282	44.193
	MOTA	3313	CA	LEU	330		17.722	15.129	44.223
	ATOM	3314	$HA^{'}$	LEU	330		17.010	14.721	43.506
40	ATOM	3315	CB	LEU	330		17.543	14.422	45.576
70									
-	MOTA	3316	HB1	LEU	330		17.997	15.041	46.349
	MOTA	3317	HB2	LEU	330		18.036	13.451	45.523
	MOTA	3318	CG -	LEU	330		16.072	14.181	45.970
~	MOTA	3319	HG	LEU	330		15.976	13.716	46.951
45	ATOM	3320	CD2	LEU	330		15.436	13.109	45.072
73			-			,			
	MOTA	3321	HD2	LEU	330		14.398	12.955	45.368
•	MOTA	3322	HD2	LEU	330		15.472	13.437	44.033
	ATOM	3323	HD2	LEU	330		15.985	12.174	45.177
	ATOM	3324	CD1	LEU	330		15.262	15.482	46.026
50	ATOM	3325	HD1		330	~	14.233	15.258	46.308
50				LEU					
	ATOM	3326	HD1	LEU	330		15.703	16.153	46.763
	MOTA	3327	HD1	LEU	330		15.274	15.960	45.047
	ATOM	3328	С	LEU	330		17.487	16.592	44.431
	ATOM	3329	0	LEU	330		17.444	17.077	45.562
5.5									
55	MOTA	3330	N	ASN	331		17.328		43.328
	MOTA	3331	HN	ASN	331		17.407	16.901	42.400
	MOTA	3332	CA	ASN	331		17.051	18.742	43.424
	MOTA	3333	АH	ASN	331		17.837	19.170	44.047
								19.424	42.048
60	ATOM	3334	CB	ASN	331		16.976		
60	MOTA	3335	HB1	ASN	331		16.171	18.958	41.480
	MOTA	3336	HB2	ASN	331		17.933	19.284	41.544
	ATOM	3337	CG	ASN	331		16.694	20.904	42.264
	ATOM	3338	OD1		331		16.194	21.591	41.374
									43.480
65	ATOM	3339	ND2		331		17.027	21.411	
65	ATOM	3340	HD2	ASN	331		17.444	20.799	44.197
	MOTA	3341	HD2	ASN	331		16.863	22.407	43.685
	MOTA	3342	С	ASN	331		15.703	18.864	44.050
	MOTA	3343	0	ASN	331		15.436	19.785	44.821
			_						

	ATOM	3344	N	LYS	332	14.823	17.903	43.713
	ATOM	3345		LYS	332	15.153	17.154	43.086
	ATOM	3346	CA	LYS	332	13.462	17.843	44.159
	ATOM	3347	HA	LYS	332	12.928	18.738	43.841
5	ATOM	3348	CB	LYS	332	12.715	16.655	43.515
٠.				LYS	332	12.740	16.788	42.433
	ATOM	3349						
	ATOM	3350	HB2	LYS	332	11.689	16.662	43.883
	ATOM	3351	CG	LYS	332	13.296	15.273	43.816
	ATOM	3352	HG1	LYS	332 -	13.499	15.128	44.877
10		3353		LYS	332	14.239	15.095	43.298
10	ATOM							
	MOTA	3354		LYS	332	. 12.355	14.138	43.399
	ATOM	3355	HD1	LYS	332	12.076	14.291	42.357
	ATOM	3356	HD2	LYS	332	11.475	14.170	44.042
		3357		LYS	332	12.963	12.738	43.515
. ~	ATOM							
15	MOTA	3358		LYS	332	13.258	12.543	44.546
	MOTA	3359	HE2	LYS	332	13.841	12.657	42.875
	ATOM	3360	NZ	LYS	332	11.972	11.719	43.099
	ATOM	3361		LYS	332	12.389	10.781	43.180
	ATOM	3362		LYS	332	11.142	11.779	43.706
20	MOTA	3363	HZ3	LYS	332	11.695	11.888	42.122
	ATOM	3364	C	LYS	332	13.419	17.754	45.662
	ATOM	. 3365	0	LYS	332	14.399	18.071	46.332
		3366		PRO	333	12.345	17.329	46.275
,	MOTA							
	ATOM	3367	CA	PRO	333	12.372	17.351	47.704
25	ATOM	3368	AH	PRO	333	12.569	18.375	48.023
	ATOM	3369	CD	PRO	333	10.990	17.562	45.801
	MOTA	3370		PRO	333	10.839	17.134	44.810
	MOTA	-3371	HD2	PRO	333	10.772	18.628	45.737
	MOTA	3372	CB	PRO	333	10.943	17.070	48.173
30	MOTA	3373	HB1	PRO	333	10.656	17.963	48.728
	ATOM	3374	HB2	PRO	333	11.028	16.175	48.789
		3375	CG	PRO	333	10.141	16.860	46.870
	ATOM							
	ATOM	3376	HG1	PRO	333	9.148	17.302	46.948
	ATOM	3377	HG2	PRO	333	10.021	15.798	46.654
35	MOTA	3378	С	PRO-	333	13.404	16.485	48.328
	ATOM	3379	0	PRO	333	13.222	15.270	48.380
						14.503	17.100	48.802
	MOTA	3380	N	THR	334			
	MOTA	3381	HN	THR	334	14.657	18.101	48.614
	MOTA	3382	CA	THR	334	15.454	16.361	49.568
40	ATOM.	3383	HA	THR	334	14.917	15.955	50.425
	ATOM	3384	CB	THR	334	16.184	15.293	48.819
								48.137
	MOTA	3385	HB	THR	334	15.468	14.836	
	MOTA	3386	OG1	THR	334	16.744	14.358	49.730
	MOTA	3387	HG1	THR	334	16.396	14.553	50.680
45	MOTA	3388	CG2	THR	334	17.332	15.979	48.066
		3389	HG2	THR	334	17.895	15.234	47.503
	ATOM							
	ATOM	3390	HG2	THR	334	16.925	16.721	47.379
	ATOM	3391	HG2	THR	334	17.994	16.471	48.779
	MOTA	3392	С	THR	334	16.513	17.324	49.973
50	MOTA	3393	0	THR	334	17.386	16.980	50.767
50		3394	N	LYS	335	16.445	18.569	49.459
	MOTA							
	MOTA	3395	HN	LYS	335	15.670	18.833	48.834
	ATOM	3396	CA	LYS	335	17.463	19.521	49.793
	MOTA	3397	HA	LYS	335	18.411	19.126	49.429
55	ATOM	3398	CB	LYS	335	17.278	20.909	49.153
55								
	ATOM	3399	HB1	LYS	335	16.280	21.324	49.291
	MOTA	3400	HB2	LYS	- 335	17.441	20.918	48.075
	MOTA	3401	CG	LYS	335	18.229	21.970	49.706
	ATOM	3402	HG1	LYS	335	18.105	22.009	50.788
<u>د</u> ۸								
60	ATOM	3403	HG2	LYS	335	17.971	22.928	49.255
	MOTA	3404	CD	LYS	335	19.705	21.709	49.420
	MOTA	3405	HD1	LYS	335	19.938	21.661	48.356
	ATOM	3406	HD2	LYS	335	20.067	20.769	49.837
			CE	LYS	335	20.633	22.785	49.987
c=	MOTA	3407						
65	MOTA	3408	HE1	LYS	335	20.509	22.855	51.068
	MOTA	3409	HE2	LYS	335	20.399	23.753	49.542
	MOTA	3410	NZ	LYS	335	22.043	22.448	49.688
	ATOM	3411	HZ1	LYS	335	22.660	23.178	50.073
	-11017	222			223	22.000		22.273

	ATOM	3412	HZ2	LYS	335		22.277	21 5/1	50.114
	MOTA	3413	HZ3	LYS	335		22.174	22.392	48.668
•	MOTA	3414	С	LYS	-335		17.466	19.668	51.276
					335				
	ATOM	3415	0	LYS			16.479	20.090	51.878
5	ATOM	3416	N	ILE	336		18.609	19.311	51.894
	ATOM	3417	HN	ILE	336		19.416	19.017	51.326
	ATOM	3418	CA	ILE	336		18.728	19.330	53.318
	ATOM	3419	HA	ILE	336		18.033	18.591	53.715
	ATOM	3420	CB	ILE	336		20.119	19.029	53.790
10	ATOM	3421	HB	ILE	336		20.798	19.724	53.296
10									
	MOTA	3422	CG2	ILE	336		20.151	19.218	55.317
	MOTA	3423	HG2	ILE	336		21.153	19.005	55.689
		3424	HG2	ILE	336		19.884	20.246	55.562
	MOTA								
	ATOM	3425	HG2	ILE	336		19.439	18.537	55.783
15	ATOM	3426	CG1	ILE	336		20.547.	17.623	53.337
10									
	MOTA	3427	HGl	ILE	336		21.559	17.358	53.640
	ATOM	3428	HG1	ILE	336		20.530	17.492	52.255
	ATOM	3429	CD1	ILE	336		19.659	16.509	53.889
	ATOM	3430	HDl	ILE	336		20.018	15.545	53.528
20	•								
20	MOTA	3431	HDl	ILE	336		19.691	16.524	54.978
	ATOM	3432	HD1	ILE	336		18.633	16.662	53.554
		3433	С	IĽE	336		18.382	20.700	53.777
	ATOM					4.2			
	ATOM	3434	0	ILE	336		17.575	20.864	54.690
	MOTA	3435	N	LEU	337		18.982	21.729	53.151
25	MOTA	3436 -	HN	LEU	337		19.674	21.566	52.405
	ATOM	3437	CA	LEU	337		18.631	23.055	53.553
	MOTA	3438	HA	LEU	337		18.867	23.081	54.617
	MOTA	-3439	CB	LEU	337		19.395	24.134	52.758
		3440			337			24.117	51.732
	MOTA		HB1	LEU			19.028		
30	MOTA	3441	HB2	LEU	337		20.457	23.889	52.796
	ATOM	3442	CG	LEU	337		19.243	25.585	53.272
	MOTA	3443	HG	LEU	337		19.605	25.670	54.297
	MOTA	3444	CD2	LEU	337		17.779	26.024	53.416
									53.780
	MOTA	3445	HD2	LEU	337		17.741	27.051	
35	MOTA	3446	HD2	LEU	337		17.284	25.965	52.446
							17.270	25.369	54.123
	MOTA	3447	HD2	LEU	337				
	MOTA	3448	CD1	LEU	33 7		20.047	26.557	52.396
	MOTA	3449	HD1	LEU	337		19.927	27.573	52.775
	MOTA	3450	HD1	LEU	337		21.102	26.283	52.422
40	MOTA	3451	HD1	LEU	337		19.684	26.508	51.370
	MOTA	3452	С	LEU	337		17.177	23.154	53.246
	MOTA	3453	0	LEU	337		16.363	23.423	54.127
	ATOM	3454	N	SER	338		16.815	22.904	51.972
	MOTA	3455	HN	SER	338		17.540	22.720	51.263
45	MOTA	3456	CA	SER	338		15.436	22.893	51.593
, ,									
	ATOM	3457	HA	SER	338		14.985	21.977	51.975
	MOTA	3458	CB	SER	338		14.632	24.099	52.112
						*-	15.054	25.026	51.722
	ATOM	3459	HB1	SER	338				
	ATOM	3460	HB2	SER	338		14.663	24.129	53.201
50	MOTA	3461	OG	SER	338		13.279	24.000	51.694
50									
	MOTA	3462	HG	SER	338		12.822	24.919	51.786
	MOTA	3463	С	SER	338		15.360	22.935	50.106
	ATOM	3464	0	SER	338		16.069	23.692	49.445
	MOTA	3465	N	PRO	339		14.516	22.103	49.568
55									
55	MOTA	3466	CA	PRO	339		14.255	22.163	48.161
	MOTA	3467	AH	PRO	339		15.088	22.609	47.617
		3468	CD	PRO	339		14.402	20.747	50.076
	MOTA								
	ATOM	3469	HD1	PRO	33 <i>9</i>		13.856	20.842	51.015
	MOTA	3470	HD2	PRO	339		15.429	20:405	50.202
60									
60	MOTA	3471	CB	PRO	339	-	13.990	20.730	47.702
	MOTA	3472	HB1	PRO	339		14.931	20.414	47.251
	MOTA	3473	HB2	PRO	339		13.166	20.822	46.996
	ATOM	3474	CG	PRO	339		13.630	19.980	48.993
	ATOM	3475	HG1	PRO	339	•	13.939	18.936	48.938
/-									
65	MOTA	3476	HG2	PRO	339		12.555	20.001	49.171
	MOTA	3477	С	PRO	339		13.035	23.010	48.130
	MOTA	3478	0	PRO	339		12.498	.23.283	49.203
	MOTA	3479	N	GLU	340		12.566	23.426	46.943
									- · -

	MOM &	3480	LINI	CIII	340	13.039	23.165	46.066
	ATOM ATOM	3480	HN CA	GLU	340	11.393	24.242	46.929
	ATOM	3482	HA	GLU	340	11.639	25.128	47.513
	ATOM	3483	CB	GLU	340	10.903	24.629	45.525
5	ATOM	3484	HB1	GLU	340	10.465	23.789	44.985
J	ATOM	3485	HB2	GLU	340	11.702	25.011	44.890
	ATOM	3486	CG	GLU	340	9.828	25.719	45.553
	ATOM	3487	HG1	GLU	340	10.290	26.661	45.847
	ATOM	3488	HG2	GLU	340	9.060	25.437	46.273
10	ATOM	3489	CD	GLU	340	9.220	25.846	44.163
10	ATOM	3490	OE1	GLU	340	9.038	24.792	43.499
	ATOM	3491	OE2	GLU	340	8.910	26.997	43.756
	MOTA	3493	C	GLU	340	10.319	23.421	47.551
	ATOM	3494	Ō	GLU	340	9.411	23.946	48.192
15	ATOM	3495	N	TYR	341	10.412	22.087	47.387
	ATOM	3496	HN	TYR	.341	11.209	21.680	46.877
	ATOM	3497	CA	TYR	341	9.395	21.245	47.929
	ATOM	3498	HA	TYR	341	8.461	21.552	47.458
	MOTA	3499	CB	TYR	341	9.632	19.753	47.675
20	MOTA	3500	HB1	TYR	341	10.303	19.407	48.461
	ATOM	3501	HB2	TYR	341	10.081	19.674	46.685
	MOTA	3502	CG	TYR	341	8.300	19.094	47.743
	ATOM	3503	CD1	TYR	341	7.518	19.074	46.613
	ATOM '	3504	HD1	TYR	341	7.882	19.541	45.698
25	ATOM	3505	CD2	TYR	341	7.831	18.510	48.895
	ATOM	3506	HD2	TYR	341	8.438	18.525	49.800
	ATOM	3507	CE1	TYR	341	6.284	18.473	46.621
	MOTA	-3508	HE1	TYR	341	5.679	18.453	45.714
	MOTA	3509	CE2	TYR	341	6.594	17.906	48.907
30	MOTA	3510	HE2	TYR	341 -	6.230	17.433.	49.819
	ATOM	3511	CZ	TYR	341	5.816	17.898	47.774
	MOTA	3512	OH	TYR	341	4.549	17.279	47.794
	ATOM	3513	HH	TYR	341	3.827	17.980	48.016
	MOTA	3514	C,	TYR	341	9.395	21.484	49.404
35	ATOM	3515	0 .	TYR	341	10.318	22.088	49.946
	ATOM	3516	N	CYS	342	8.345	21.014	50.097
	MOTA	3517	HN	CYS	342	7.623	20.457	49.618
	ATOM	3518	CA	CYS	342	8.225	21.281	51.499
	MOTA	3519	AH	CYS	342	8.441	22.333	51.687
40	MOTA	3520	CB	CYS	342	6.811	20.969	52.020
	MOTA	3521	HB1	CYS	342	6.520	19.927	51.884
	MOTA	3522	HB2	CYS	342	6.031	21.552	51.529
	MOTA	3523	SG	CYS	342	6.610	21.296	53.793
	MOTA	3524	HG	CYS	342	7.043	22.533	54.072
45	MOTA	3525	С	CYS -	342	9.196	20.428	52.255
	MOTA	3526	0	CYS	342	8.801	19.459	
	MOTA	3527	N	TRP	343	10.498	20.774	52.202
	ATOM	3528	HN	TRP	343	10.795	21.575	51.627
	MOTA	3529	CA	TRP	343	11.470	20.028	52.947
50	MOTA	3530	. HA	TRP	343	11.348	18.981	52.669
	MOTA	3531	CB	TRP	343	12.913	20.484	52.698
	MOTA	3532	HB1	TRP	343	13.091	21.526	52.963
	MOTA	3533	HB2	TRP	343	13.223	20.397	51.657
	MOTA	3534	CG	TRP	343	13.937	19.696	53.482
55	MOTA	3535	CD2	TRP	343	14.489	20.117	54.739
	MOTA	3536	CD1	TRP	343	14.520	18.497	53.186
	MOTA	3537	HD1	TRP	343	14.321	17.909	52.290
	ATOM	3538	NE1	TRP	343	15.394	18.141	54.186
	MOTA	3539	HE1	TRP	343	15.959	17:281	54.213
60	MOTA	3540	CE2	TRP	343	15.387	19.130	55.147
	MOTA	3541	CE3	TRP	343	14.264	21.234	55.492
	MOTA	3542	HE3	TRP	343	13.561	22.002	55.172
	ATOM	3543	CZ2	TRP	343	16.075	19.245	56.322
	MOTA	3544	HZ2	TRP	343	16.774	18.475	56.647
65	MOTA	3545	CZ3	TRP	343	14.964	21.348	56.673
	ATOM	3546	HZ3	TRP	343	14.814	22.228	57.300
	MOTA	3547	CH2	TRP	343	15.851	20.373	57.080
	ATOM	3548	нн2	TRP	343	16.385	20.497	58.022

•	ATOM	3549	С	TRP	343		11.180	20.256	54.394
	ATOM	3550		TRP	343		11.151	19.320	55.189
	MOTA	3551		ASP	344		10.955	21.527	54.770
	atom	3552		ASP	344		11.001	22.283	54.072
5	MOTA	3553	CA	ASP	344		10.650	·21.836	56.137
	ATOM	3554	HA.	ASP	344		10.573	20.877	56.651
	ATOM	3555		ASP	344		11.687	22.748	56.812
	ATOM	3556		ASP	344		12.658	22.257	56.752
	ATOM	3557		ASP	344		11.388	22.890	57.850
10	MOTA	3558		ASP	344		11.704	24.075	56.066
	MOTA	3559	OD1	ASP	344		11.690	24.046	54.807
	ATOM	3560	OD2	ASP	344		11.738	25.136	56.745
	MOTA	3561	C	ASP	344		9.360	22.580	56.111
	ATOM	3562		ASP	344	~	8.754	22.715	55.051
1.5					345		8.913	23.047	57.296
15	ATOM	3563		TYR					
	MOTA	3564		TYR	345		9.471	22.833	58.134
	ATOM	3565	CA	TYR	345		7.713	23.820	57.473
	MOTA	3566	HA	TYR	345		7.873	24.541	58.275
	ATOM	3567	CB	TYR	345		7.279	24.664	56.257
20	ATOM	3568		TYR	345		6.334	25.147	56.507
_0	ATOM	3569	HB2		345		7.163	23.991	55.408
-	MOTA	3570		TYR	345		8.344	25.674	55.999
	ATOM .	3571	CD1	TYR	345		8.405	26.833	56.739
	MOTA	3572	HD1	TYR	345		7.668	27.013	57.521
25	MOTA	3573	CD2	TYR	345		9.279	25.464	55.012
	ATOM	3574	HD2	TYR	345		9.240	24.552	54.417
	ATOM	3575		TYR	345		9 387	27.766	56.499
		-3576		TYR	345		9.426	28:680	57.092
	MOTA								
	ATOM	3577		TYR	345		10.263	26.393	54.769
30 ·	MOTA	3578		TYR	345.		11.000	26.215	53.985
	ATOM	3579	CZ	TYR	345	•	10.318	27.546	55.513
	MOTA	3580	OH	TYR	345		11.326	28.500	55.264
	MOTA	3581	HH	TYR	345		12.183	28.235	55.769
	ATOM	3582		TYR	345		6.593	22.901	57.828
35	MOTA	3583		TYR	345		6.663	22.172	58.815
55							5.517	22.921	57.018
	MOTA	3584		HIS	346				
	MOTA	3585		HIS	346		5.531	23.508	56.172
	MOTA	3586	CA	HIS	346		4.352	22.138	57.312
	MOTA	3587	AH	HIS.	346		4.231	22.053	58.392
40	MOTA	3588	NDI	HIS	346		2.100	24.270	58.548
	ATOM	3589	HD1	HIS	346	-	1.748	23.531	59.174
	MOTA	3590		HIS	346		2.747	24.090	57.346
	MOTA	3591		HIS	346		2.559	26.299	57.763
	ATOM	3592			346		2.625	27.323	57.671
15				HIS					
45.	MOTA	3593		HIS	346		3.020	25.339	56.880
	ATOM	3594			346		3.532	25.553	55.942
	MOTA	3595	CE1	HIS	346		2.013	25.609	58.748
	ATOM	3596	HE1	HIS	346		1.548	26.064	59.623
	MOTA	3597	CB	HIS	346		3.057	22.749	56.750
50	MOTA	3598		HIS	. 346		2.184	22.124	56.938
50	ATOM	3599		HIS	346		3.098	22.898	55.671
									56.722
	MOTA	3600	С	HIS	346		4.501	20.774	
	MOTA	3601	0	HIS	346		5.584	20.370	56.303
	MOTA	3602	N	ILE	347		3.386	20.016	56.706
55	MOTA	3603	HN	ILE	347		2.511	20.405	57.086
	MOTA	3604	CA	ILE	347		3.382	18.685	56.175
	ATOM	3605	HA	ILE	347		4.426	18.419	56.014
	ATOM	3606	СВ	ILE	347		2.720	17.696	57.097
	•								
60	MOTA	3607	HB	ILE	347		1.703	18.029	57.308
60	ATOM	3608	CG2	ILE	347		2.685	16.317	56.415
	MOTA	3609	HG2	ILE	347		2.206	15.596	57.078
	MOTA	3610	HG2	ILE	347		2.121	16.385	55.485
	ATOM	3611	HG2	ILE	347		3.703	15.992	56.200
	MOTA	3612	CG1	ILE	347		3.452	17.675	58.449
65	ATOM	3613	HG1	ILE	347		3.633	18.667	58.862
		3614	HG1	ILE			4.433	17.202	58.406
	MOTA				347				59.541
	ATOM	3615	CD1	ILE	347		2.696	16.922	
	MOTA	3616	HD1	ILE	347		3.271	16.948	60.467

	ATOM	3617	HDl	ILE	347	1.72	6 17.393	59.703
	ATOM	3618	HD1	ILE	347	2.54		
	ATOM	3619	C	ILE	347	2.60		54.899
	ATOM	3620	0	ILE	347	1.82		54.687
5	ATOM	3621	N	GLY	348	2.80		53.999
J		3622	HN	GLY	348	3.45		54.220
	ATOM							
	ATOM	3623	CA	GLY	348	2.13		52.735
	ATOM	3624	HA1	GLY	348	2.77		51.974
	MOTA	3625	HA2	GLY	348	1.89		52.476
10	MOTA	3626	С	GLY	348	0.86		52.839
	MOTA	3627	0	GLY	348	0.81		53.488
	MOTA	3628	И	LEU	349	-0.19		52.169
	ATOM	3629	HN	LEU	349	-0.09		51.638
	MOTA '	3630	CA	LEU	349	-1.47	4 16.829	52.172
15	MOTA	3631	AH	LEU	349	-1.47	4 16.133	53.011
	ATOM	3632	CB	LEU	349	-2.66	6 17.793	52.297
	ATOM	3633	HB1	LEU	349	-3.63	4 17.298	52.226
	ATOM	3634	HB2	LEU	349	2.68	3 18.565	51.527
	MOTA	3635·	CG	LEU	349	-2.70	1 18.557	53.634
20	ATOM	3636	HG	LEU	349	-3.51	0 19.288	53.652
	ATOM	3637	CD2	LEU	349	-1.46		53.800
•	ATOM	3638	HD2	LEU	349	-1.51		54.754
	MOTA	3639	HD2	LEU		-0.56		53.777
	MOTA	3640	HD2	LEU	349	-1.42		52.988
25		3641	CD1	LEU	349	-2.91		54.819
25	ATOM				349	-2.91		55.748
	ATOM	3642	HD1	LEU				
	ATOM	3643	HD1	LEU	349	-3.86		54.697
	MOTA	-3644	HD1	LEU	349	-2.09		54.854
	ATOM	3645	С.	LEU	349	-1.60		50.863
30	MOTA	3646	0	LEU	349	-1.29		49.799
	ATOM	3647	N	PRO	350	-2.04		50.948
	MOTA	3648	CA	PRO	350	-2.15		49.763
	MOTA	3649	HA	PRO	350	-1.27		49.147
	MOTA	3650	CD	PRO	350	-1.68		52.112
35	MOTA	3651	HD1	PRO	350	-2.55	5 14.110	52.762
	MOTA	3652	HD2	PRO	350	-0.81	7 14.601	52.553
	MOTA	3653	CB	PRO	350	-2.09	5 12.634	50.233
	MOTA	3654	HB1	PRO	350	-1.55	0 12.120	49.442
	MOTA	3655	HB2	PRO	350	-3.14		50.318
40	ATOM	3656	CG	PRO	350	-1.34	9 12.702	51.573
	ATOM	3657	HG1	PRO	350	-0.30	3 12.561	51.301
	ATOM	3658	HG2	PRO	350	-1.77	6 11.885	52.154
	MOTA	3659	С	PRO	350	-3.34	9 14.333	48.904
	MOTA	3660	0	PRO	350	-4.38	9 14.753	49.409
45	ATOM	3661	N	ALA.	351	-3.19		47.590
	MOTA	3662	HN	ALA	351	-2.24		47.246
	MOTA	3663	CA	ALA	351	-4.27		46.642
	ATOM	3664	HA	ALA	351	-5.22		47.131
	MOTA	3665	CB	ALA	351	-4.08		45.497
50	MOTA	3666		ALA	351	-4.93		44.821
50	ATOM	3667	HB2	ALA	351	-4.00		45.909
		3668	HB3			-3.16		44.950
	ATOM				351	-4.18		
	MOTA	3669	C	ALA	351			46.052
e e	ATOM	3670	0	ALA	351	-3.22		45.352
55	MOTA	3671	N	ASP	352	-5.19		46.309
	ATOM	3672	HN	ASP	352	-6.04		
	MOTA	3673	CA	ASP	352	-5.07		45.917
	ATOM	3674	HA	ASP	352	-4.05		46.077
	ATOM	3675	CB	ASP	352	-6.01		46.717
60	MOTA	3676	HB1	ASP	352	-7.04		46.396
	MOTA	3677	HB2	ASP	352	-5.94	2 9.784	47.781
	ATOM	3678	CG	ASP	352	-5.63	6 8.100	46.493
	ATOM	3679	OD1	ASP	352	-5.39	3 7.704	45.322
	MOTA	3680		ASP	352	-5.59		47.506
65	ATOM	3681	С	ASP	352	-5.40		44.469
•	MOTA	3682	ō	ASP	352	-6.49		44.128
	ATOM	3683	N	ILE	353	-4.45		43.580
	ATOM	3684	HN	ILE	353	-3.58		43.918

	,								
	MOTA	3685	CA	ILE	353		-4.614	10.421	42.174
	MOTA	3686	HA	ILE	353		-5.130	9.465	42.076
	MOTA	3687	CB .	ILE	353		-5.385	11.489	41.444
	ATOM	3688	HB	ILE	353	•	-5.369	11.263	40.378
5	MOTA	3689	CG2	ILE	353		-6.831	11.495	41.967
	ATOM	3690		ILE	353		-7.403	12.264	41.447
	ATOM	3691		ILE	353		-7.287	10.521	41.787
	ATOM	3692		ILE	353		-6.831	11.703	43.036
		3693				•	-4.682	12.852	41.552
10	ATOM			ILE	353				
10	ATOM	3694		ILE	353		-5.226	13.569	40.939
	MOTA	3695		ILE	353		-3.659	12.739	41.192
	MOTA	3696		ΪĿΕ	353		-4.617	13.407	42.974
	ATOM	3697	HD1	ILE	353		-4.106	14.370	42.966
	MOTA	3698	HD1	ILE	353		-5.628	13.537	43.361
15	MOTA	3699	HD1	ILE	353		-4.071	12.712	43.612
	ATOM	3700	С	ILE	353		-3.240	10.386	41.586
	MOTA	3701		ILE	353		-2.372	11.154	41.993
	ATOM	3702		LYS	354		-2.986	9.477	40.623
	ATOM	3703		LYS	354		-3.706	8.806	40.319
20									
20	MOTA	3704		LYS	354		-1.676	9.479	40.039
	MOTA	3705		LYS	. 354		-1.013	9.932	40.777
	MOTA	3706		LYS	354		~-1.200	8.073	39.637
	MOTA	3707		LYS	354		-0.230	8.069	39.140
	MOTA	3708	HB2	LYS	354		-1.877	7.567	38.949
25	MOTA	3709	CG	LYS	354		-1.047	7.120	40.824
	MOTA	3710	HG1	LYS	354		-0.453	7.527	41.643
	ATOM	3711		LYS	354		-0.563	6.176	40.572
	MOTA	-3712		LYS	354		-2.375	6.717	41.469
	ATOM	3713		LYS	354		-3.055	6.210	40.784
30	ATOM			LYS	354		-2.943	7.561	41.860
30 .									
	ATOM	3715		LYS	354		-2.215	5.761	42.652
	MOTA	3716		LYS	354		-1.608	6.227	43.427
	ATOM	3717		LYS	354		-1.729	4.842	42.324
	MOTA	3718	NZ	LYS	354		-3.543	5.428	43.215
35	MOTA	3719	HZ1	LYS	354		-3.427	4.784	44.011
	MOTA	.3720	HZ2	LYS	354		-4.006	6.290	43.536
	MOTA	3721	HZ3	LYS	354		-4.121	4.978	42.491
	MOTA	3722	С	LYS	354		-1.776	10.287	38.791
	MOTA	3723		LYS	354		-1.149	9.986	37.778
40	MOTA	3724		LEU	355		-2.588	11.352	38.843
••	ATOM	3725		LEU	355		-3.084	11.560	39.721
	ATOM	3726		LEU	355		-2.787	12.208	37.714
		3727			355		-2.937	11.591	36.828
	MOTA			LEU					
1.5	ATOM	3728		LEU	355		-3.989	13.145	37.908
45 .	ATOM	3729		LEU	355		-4.228	13.731	37.021
	MOTA	3730		LEU	355		-3.845	13.875	38.704
	ATOM	3731	CG	LEU	355		-5.290	12.404	38.267
	MOTA	3732	НG	LEU	355		-5.209	11.908	39.234
	MOTA	3733	CD2	LEU	355		-5.537	11.204	37.343
50	ATOM	3734	HD2	LEU	355		-6.464	10.708	37.629
	MOTA	3735	HD2	LEU	355		-5.613	11.548	36.312
	ATOM	3736	HD2		355		-4.708	10.501	37.430
	ATOM	3737		LEU	355		-6.482	13.372	38.340
		3738			355		-7.385	12.818	38.596
<i></i>	ATOM			LEU					
55	ATOM	3739		LEU	355		-6.291	14.127	39.103
	ATOM	3740		LEU	355		-6.615	13.858	37.374
	MOTA	3741		LEU	355		-1.577	13.067	37.545
	ATOM	3742	0	LEU	355		-1.167	13.390	36.432
•	MOTA	3743	N	VAL	356		-0.974	13.447	38.680
60	ATOM	3744	HN	VAL	356		-1.281	13.031	39.571
	ATOM	3745		VAL	356		0.081	14.411	38.695
	ATOM	3746		VAL	356		-0.239	15.400	38.370
	ATOM	3747		VAL	356		0.613	14.654	40.076
	ATOM	3748		VAL	356		-0.188	15.056	40.696
65									40.656
0.5	MOTA	3749		VAL	356		1.113	13.323	
	MOTA	3750	HG1		356		1.503	13.488	41.661
	ATOM	3751	HG1		356		0.289	12.612	40.699
	MOTA	3752	HGl	VAL	356		1.905	12.924	40.021

	MOTA	3753	CG2	VAL	356		1.686	15.754	39.997
	ATOM	3754	HG2	VAL	356		2.085	15.945	40.993
	MOTA	3755	HG2	VAL	. 356		2.492	15.429	39.340
	ATOM	3756	HG2	VAL	356		1.242	16.668	39.603
5	MOTA	3757	С	VAL	356		1.224	14.042	37.801
_	ATOM	3758	ō	VAL	356		1.563	14.814	36.907
	ATOM	3759	N	LYS	357	~	1.857	12.864	37.971
		3760	HN	LYS	357		1.538	12.139	38.628
	MOTA								
	ATOM	3761	CA	LYS	357		3.021	12.723	37.145
10	MOTA	3762	AH	LYS	357	٠.	3.075	13.488	36.370
	MOTA	3763	CB	LYS	357		4.366	12.769	37.900
	ATOM	3764	HB1	LYS	357	•	5.164	12.753	37.158
	MOTA	3765	HB2	LYS	357		4.412	11.894	38.548
	ATOM	3766	CG	LYS	357		4.616	13.991	38.790
15	MOTA	3767	HG1	LYS	357		4.238	14.919	38.361
	MOTA	3768	HG2	LYS	357		5.673	14.170	38.986
	ATOM	3769	CD	LYS	357		3.959	13.879	40.166
	MOTA	3770		LYS	357		4.246	12.924	40.606
	ATOM	3771	HD2	LYS	357		2.878	13.932	40.033
20		3772	CE	LYS	357		4.358	14.980	41.150
20	MOTA				357 357				40.750
	MOTA	3773	HE1	LYS		٠.	4.076	15.953	
	MOTA	3774	HE2	LYS	357		5.435	14.958	41.312
	MOTA	3775	NZ	LYS	357		3.668	14.770	42.444
	ATOM	3776	HZ1	LYS	357		3.940	15.513	43.103
25	MOTA	3777	HZ2	LYS	357		2.649	14.796	42.299
	MOTA	3778	HZ3	LYS	357		3.936	13.854	42.831
	ATOM	3779	C .	LYS	357		3.062	11.409	36.443
	ATOM	3780	0	LYS	357	•	2.441	10.425	36.844
	ATOM	3781	N	MET	358		3.820	11.423	35.329
30	MOTA	3782	HN	MET	358		4.173	12.343	35.030
	ATOM	3783	CA	MET	358		4.194	10.306	34.514
	ATOM	3784	HA	MET	358		4.098	9.364	35.054
	MOTA	3785	CB	MET	358		3.394	10.245	33.203
		3786			358		3.750	11.041	32.550
2.5	ATOM		HB1						
35	MOTA	3787	HB2		358		2.339	10.383	33.441
	ATOM	3788	· CG	MET	358		3.524	8.931	32.439
	MOTA	3789	HG1		358		3.163	8.127	33.081
	MOTA	3790	HG2	MET	358		4.576	8.785	32.191
	MOTA	3791	SD	MET	358		2.583	8.851	30,885
40	MOTA	3792	CE	MET	358		3.706	9.922	29.944
	ATOM	3793	HE1	MET	358	*	3.335	10.032	28.925
	MOTA	3794	HE2	MET	358		3.758	10.901	30.419
	MOTA	3795	HE3	MET	358	.:	4.700	9.476	29.922
	MOTA	3796	С	MET	358		5.620	10.646	34.193
45	MOTA	3797	0	MET	358		5.921	11.821	33.992
	ATOM	3798	N	SER	359		6.563	9.678	34.147
	ATOM	3799	HN	SER	359		6.347	8.674	34.227
		3800	CA		359		7.899	10.188	33.975
	MOTA			SER			7.932		
60	MOTA	3801	AH	SER	359			11.039	33.296
50	MOTA	3802	CB	SER	359		8.435	10.752	35.314
	MOTA	3803	HB1	SER	359		8.438	10.019	36.121
	MOTA	3804	HB2	SER	359		7.855	11.594	35.691
	MOTA	3805	OG	SER	359		9.770	11.223	35.231
	MOTA	3806	НĢ	SER	359		10.404	10.542	35.672
55	ATOM	3807	С	SER	359		8.838	9.150	33.409
	MOTA	3808	0	SER	359		8.455	8.052	33.024
	MOTA	3809	N	TRP	360		10.120	9.515	33.241
	ATOM	3810	HN	TRP	360		10.396	10.491	33.419
	MOTA	3811	CA	TRP	360		11.110	8:569	32.818
60	ATOM	3812	HA	TRP	360		10.756	7.591	33.145
00									31.297
	ATOM	3813	CB	TRP	360		11.354	8.542	
	ATOM	3814	HB1	TRP	360		12.306	8.044	31.111
	ATOM	3815	HB2	TRP	360		11.383	9.570	30.936
~~	MOTA	3816	CG	TRP	360		10.290	7.809	30.512
65	MOTA	3817	CD2	TRP	360		9.025	8.364	30.117
	MOTA	3818	CD1	TRP	360		10.307	6.524	30.054
	MOTA	3819	HD1	TRP	360		11.130	5.823	30.191
	MOTA	3820	NE1	TRP	360		9.135	6.244	29.396

	ATOM	3821	HEl	TRP	360	8.893	5.346	28.952
	ATOM	3822	CE2	TRP	360	8.336	7.367	29.428
	ATOM	3823	CE3	TRP	360	8.482	9.600	30.315
	ATOM	3824	HE3	TRP	360	9.021	10.378	30.857
5	ATOM	3825	CZ2	TRP	360	7.087	7.591	28.924
	MOTA	3826	HZ2	TRP	360	6.545	6.813	28.386
	ATOM	3827	CZ3	TRP	360	7.223	9.824	29.802
	ATOM	3828	HZ3	TRP	360	6.758	10.800	29.938
	ATOM	3829	CH2	TRP	360	6.538	8.840	29.121
10	MOTA	3830	HH2	TRP	360	5.544	9.054	28.730
	ATOM	3831	С	TRP	360	12.381	8.970	33.487
	ATOM	3832	0	TRP	360	12.598	10.150	·33.753
	ATOM	3833	N	GLN	361	13.264	7.996	33.790
	ATOM	3834	HN	GLN	361	13.084	7.016	33.531
15	ATOM	3835	CA	GLN	361	14.460	8.370	34.486
	MOTA	3836	HA	GLN	361	14.467	9.444	34.669
	MOTA	3837	CB	GLN	361	14.621	7.684	35.851
	ATOM	3838	HB1	GLN	361	14.654	6.597	35.790
	MOTA	3839	HB2	GLN	361	13.811	7.906	36.546
20	MOTA	3840	CG	GLN	361	15.902	8.084	36.587
	ATOM	3841	HG1	GLN	361	15.875	9.162	36.749
-	ATOM	3842	HG2	GLN	361	16.750	7.806	35.962
-	ATOM	3843	CD	GLN	361	15.935	7.338	37.912
	ATOM	38,44	OE1	GLN	361	15.019	6.582	38.234
25	ATOM	3845	NE2	GLN	361	17.017	7.555	38.705
	ATOM	3846	HE2	GLN	361	17.762	8.197	38.396
	MOTA	3847	HE2	GLN	361	17.093	7.079	39.615
	MOTA	3848	С	GLN	361	15.662	8.012	33.670
	MOTA	3849	HC	GLN	361	16.428	8.765	33.483
30	MOTA	3850	0	GLN	361 、	15.798	6.880	33.208
	MOTA	3851	MN	MET	362	15.622	12.956	35.080

PCT/CA01/00607

WO 01/83717

- 98 -

Table 5

Residue number will be set to the conformation's cluster rank.

```
MODEL
                   9
             Run = 9
     USER
     USER
             Cluster Rank = 1
     USER
              Number of conformations in this cluster = 30
     USER
                                                    = 2.450 A
10
     USER
             RMSD from reference structure
     USER
                                                    = -8.72 kcal/mol \{=(1)+(3)\}
             Estimated Free Energy of Binding
     USER
     USER Estimated Inhibition Constant, Ki = +4.04e-07 [Temperature = 298.15 K]
     USER
             Final Docked Energy
                                                    = -11.73 \text{ kcal/mol} [=(1)+(2)]
15
     USER
     USER
             (1) Final Intermolecular Energy = -10.90 kcal/mol

(2) Final Internal Energy of Ligand = -0.82 kcal/mol

(3) Torsional Free Energy = +2.18 kcal/mol
     USER
     USER
     USER
20
     USER
     USER
              DPF = test.dpf
     USER
             NEWDPF move udp_tr.pdbq
NEWDPF about16.792999 18.735001 34.970001
     USER
     USER
25
              NEWDPF tran016.520614 19.803704 34.894085
     USER
             NEWDPF quat0-0.767123 -0.504336 0.396444 20.877983
     USER
            _NEWDPF ndihe7
     USER
             NEWDPF dihe0-172.23 93.36 -16.11 -9.99 -31.01 0.20 156.88
     USER
     USER
                                                                   vdW
                                                                           Elec
30
     USER
                           Rank
                                                  У
                                                          Z
                                       18.167 20.363 33.367
                                                                 -0.38 -0.11 -0.211 2.450
                1 N1 UDP 1
     MOTA
                                       18.485 21.574 32.818 -0.84 +0.28 +0.396 2.450
     ATOM
                2 C2 UDP
                                1
                                       19.821 21.872 32.732
20.069 22.789 32.334
20.878 21.052 33.133
                                                                   -0.53 -0.40 -0.440 2.450
+0.07 +0.53 +0.440 2.450
-0.75 +0.30 +0.396 2.450
                3 N3 UDP.
                                1
     MOTA
                4 H3 UDP
5 C4 UDP
     ATOM
                                1
35
     MOTA
                       UDP
                                1
                6 C5 UDP
                                                                   -0.55 +0.00 +0.000 2.450
                                       20.479 19.798 33.691
                                1
     MOTA
                                    19.174 19.496 33.774
                                                                   -0.49 +0.00 +0.000 2.450
     ATOM
                7 C6 UDP
                                1
                                      17.619 22.362 32.433
22.026 21.474 32.994
16.753 19.988 33.503
               8 O2 UDP
                                                                   -0.35 -0.26 -0.396 2.450
     MOTA
                                1
                                1 .
                                                                   -0.24 - 0.27
                                                                                   -0.396
               10 C1' UDP
               9 O4 UDP
                                                                                            2.450
     MOTA
                                                                   -0.65 +0.07 +0.324 2.450
40
                                1
     MOTA
               11 C2' UDP
                                       16.402 18.617 32.920
                                                                 -0.60 +0.00 +0.113 2.450
     ATOM -
                                1
               12 C3' UDP
     ATOM
                                1
                                       15.116 18.296 33.717
                                                                   -0.67 + 0.00 + 0.113 2.450
                                      15.358 18.950 35.076
                                                                   -0.56 +0.02 +0.113 2.450
     MOTA
               13 C4' UDP
                               1
                                1 16.521 19.804 34.894
1 16.102 18.725 31.548
1 15.697 17.839 31.214
                                                                   14 04' UDP
                                                                                            2.450
     ATOM
45
     MOTA
               15
                   O2' UDP
                                                                                            2.450
               16 HO2'UDP
                                                                  -0.28 -0.47 +0.424 2.450
     MOTA
               17
                   O3' UDP
                                       14.035 18.955 33.051
                                                                   -0.27 + 0.16 - 0.537 2.450
                                1
     ATOM
                                      14.102 18.785 32.037
               18 HO3'UDP
                                1
                                                                   -0.17 -0.28 +0.424 2.450
     MOTA
                                      15.666 17.939 36.181
15.126 18.439 37.390
15.642 18.457 38.881
                                                                   -0.30 +0.04 +0.113 2.450
+0.00 -0.18 -0.368 2.450
               19 C5' UDP
                                1
     ATOM
               20 O5' UDP
21 PA UDP
                                                                 +0.00 -0.18 -0.368 2.450
-0.61 +0.45 +1.019 2.450
50
     MOTA
                                1
      MOTA
                                1
                                       17.132 18.480 38.845 -0.15 -0.08 -0.255 2.450
               22 O1A UDP
                                1
     MOTA
                                       14.933 19.550 39.617
                                                                   -0.24
                                                                           -0.09 -0.255 2.450
     MOTA
               23 O2A UDP
                                1
                                                                   -0.07
                                       15.133 16.987 39.239
      ATOM
               24 O3A UDP
                                1
                                                                           -0.23 -0.510 2.450
               25 PB UDP . 1
                                       15.835 15.723 39.920
15.020 14.448 39.353
15.532 15.971 41.352
                                                                           +0.43 +1.019
55
                                                                    -0.72
                                                                                            2.450
     MOTA
                  O1B UDP
                                                                    -0.03
                                                                           -0.11
                                                                                   -0.255
                                                                                            2.450
      MOTA
               26
                                1
                                                                   -0.68 -0.23 -0.255 2.450
      MOTA
               27 O2B UDP
                                1
                                        17.233 15.484 39.480
                                                                 -0.12 -0.06 -0.255 2.450
               28 O3B UDP
      MOTA
                                1
      TER
60
      ENDMDL
      MODEL
                 94
      USER
              Run = 94
      USER
              Cluster Rank = 1
      USER
              Number of conformations in this cluster = 30
65
      USER
      USER
              RMSD from reference structure = 2.311 A
      USER
```

```
Estimated Free Energy of Binding = -8.70 \text{ kcal/mol} [=(1)+(3)]
Estimated Inhibition Constant, Ki = +4.17e-07 [Temperature = 298.15 K]
       USER
        USER
        USER
                                                                         = -11.71 \text{ kcal/mol} [= (1) + (2)]
                   Final Docked Energy
       USER
       USER
                   (1) Final Intermolecular Energy = -10.88 kcal/mol
        USER
               (2) Final Internal Energy of Ligand = -0.82 kcal/mol
(3) Torsional Free Energy = +2.18 kcal/mol
       USER
       USER
       USER
10
       USER
                   DPF = test.dpf
       USER
                   NEWDPF move udp_tr.pdbq
NEWDPF about16.792999 18.735001 34.970001
       USER
        USER
       USER
                   NEWDPF tran016.394484 19.723058 34.607480
       USER
                   NEWDPF quat00.577475 0.654292 -0.488287 -20.995277
15
             NEWDPF ndihe7
        USER
               NEWDFF dihe0-101.36 -19.47 179.91 29.29 -15.02 1.94 142.30
        USER
        USER
        USER
       ATOM 1 N1 UDP 1
ATOM 2 C2 UDP 1
ATOM 3 N3 UDP 1
20
       MOTA
       ATOM
25
       MOTA
       ATOM 7 C6 UDP
ATOM 8 O2 UDP
ATOM 9 O4 UDP
        MOTA
30
      MOTA
        MOTA
        MOTA
        MOTA
        MOTA
35
       ATOM
        MOTA
        MOTA
        ATOM

    1
    15.265
    18.274
    36.999
    +0.05
    -0.17
    -0.368
    2.311

    1
    15.981
    18.217
    38.403
    -0.56
    +0.43
    +1.019
    2.311

    1
    17.432
    18.480
    38.185
    -0.13
    -0.08
    -0.255
    2.311

    1
    15.236
    19.101
    39.354
    -0.20
    -0.11
    -0.255
    2.311

    1
    15.744
    16.656
    38.636
    +0.01
    -0.22
    -0.510
    2.311

    1
    16.303
    15.613
    39.711
    -0.67
    +0.38
    +1.019
    2.311

    1
    16.262
    16.411
    41.115
    -0.60
    -0.27
    -0.255
    2.311

    1
    17.695
    15.431
    39.229
    -0.12
    -0.60
    -0.27
    -0.255
    2.323

        MOTA
40
        MOTA
        MOTA
        MOTA
                   24 O3A UDP
25 PB UDP
26 O1B UDP
27 O2B UDP
        MOTA
                                           1 16.303 15.613 39.711 -0.67 +0.38 +1.019 2.311
1 16.262 16.411 41.115 -0.60 -0.27 -0.255 2.311
1 17.695 15.431 39.228 -0.12 -0.05 -0.255 2.311
1 15.428 14.435 39.937 -0.08 -0.10 -0.255 2.311
        MOTA
45
        ATOM
        MOTA
                     28 O3B UDP
        MOTA
        ENDMDL
50
        MODEL
                         92
        USER
                   Run = 92
                   Cluster Rank = 1
        USER
        USER
                   Number of conformations in this cluster = 30
        USER ,
                   RMSD from reference structure = 2.359 A
55
        USER
        USER
                    Estimated Free Energy of Binding = -8.92 \text{ kcal/mol} [=(1)+(3)]
        USER
                                                                           = +2.89e-07 [Temperature = 298.15 K]
                   Estimated Inhibition Constant, Ki
        USER
        USER
                                                                            = -11.69 \text{ kcal/mol} [= (1) + (2)]
60
                    Final Docked Energy
        USER
        USER
                   (1) Final Intermolecular Energy = -11.10 kcal/mol
        USER
                    (2) Final Internal Energy of Ligand = -0.59 kcal/mol
        USER
                                                                 = +2.18 kcal/mol
        USER
                    (3) Torsional Free Energy
65
        USER
        USER
                    DPF = test.dpf
        USER
        USER
                    NEWDPF move udp_tr.pdbq
```

- 100 -

```
NEWDPF about16.792999 18.735001 34.970001
             USER
                                   NEWDPF tran016.539656 19.734441 34.728197
             USER
                                   NEWDPF quat0-0.689836 +0.566725 0.450499 25.546722
             USER
                                   NEWDPF ndihe7
             USER
  5
                                   NEWDPF dihe0-130.87 -28.43 -171.32 27.28 8.87 -22.44 135.77
            USER
             USER
       USER ATOM 1 N1 UDP 1 18.242 20.356 33.288 -0.37 -0.11 -0.211 2.359 ATOM 2 C2 UDP 1 18.519 21.569 32.723 -0.84 +0.27 +0.396 2.359 ATOM 3 N3 UDP 1 19.837 21.949 32.710 -0.51 -0.42 -0.440 2.359 ATOM 4 H3 UDP 1 20.052 22.868 32.300 +0.10 +0.55 +0.440 2.359 ATOM 5 C4 UDP 1 20.559 19.948 33.772 -0.58 +0.00 +0.000 2.359 ATOM 6 C5 UDP 1 20.559 19.948 33.772 -0.58 +0.00 +0.000 2.359 ATOM 7 C6 UDP 1 19.273 19.566 33.784 -0.50 +0.00 +0.000 2.359 ATOM 8 02 UDP 1 17.631 22.290 32.261 -0.35 -0.24 -0.396 2.359 ATOM 9 04 UDP 1 22.040 21.699 33.119 -0.26 -0.29 -0.396 2.359 ATOM 10 C1' UDP 1 16.848 19.895 33.349 -0.66 +0.07 +0.324 2.359 ATOM 11 C2' UDP 1 16.619 18.490 32.788 -0.58 +0.00 +0.113 2.359 ATOM 12 C3' UDP 1 15.308 18.109 33.514 -0.64 -0.01 +0.113 2.359 ATOM 13 C4' UDP 1 15.423 18.814 34.865 -0.57 +0.02 +0.113 2.359 ATOM 15 02' UDP 1 16.540 19.734 34.728 -0.57 +0.02 +0.113 2.359 ATOM 16 H02' UDP 1 16.540 19.734 34.728 -0.29 +0.14 -0.537 2.359 ATOM 16 H02' UDP 1 16.540 19.734 34.728 -0.29 +0.14 -0.537 2.359 ATOM 18 H03' UDP 1 15.555 18.034 31.167 -0.34 -0.48 +0.424 2.359 ATOM 18 H03' UDP 1 15.522 18.557 37.230 -0.29 +0.18 -0.537 2.359 ATOM 19 C5' UDP 1 15.522 18.557 37.230 -0.29 +0.18 -0.537 2.359 ATOM 19 C5' UDP 1 15.522 18.557 37.230 -0.29 +0.18 -0.537 2.359 ATOM 20 O5' UDP 1 15.522 18.557 37.230 -0.04 -0.17 -0.368 2.359 ATOM 20 O5' UDP 1 15.522 18.557 37.230 -0.04 -0.17 -0.255 2.359 ATOM 25 CBB UDP 1 15.522 18.557 37.230 -0.04 -0.17 -0.255 2.359 ATOM 25 CBB UDP 1 15.522 18.557 37.230 -0.04 -0.17 -0.255 2.359 ATOM 25 CBB UDP 1 15.522 18.557 37.230 -0.04 -0.17 -0.255 2.359 ATOM 25 CBB UDP 1 15.525 16.087 41.174 -0.67 -0.25 -0.550 2.359 ATOM 25 CBB UDP 1 15.525 16.087 41.174 -0.67 -0.25 2.359 ATOM 26 CBB UDP 1 15.525 16.087 41.174 -0.67 -0.25 2.359 ATOM 26 CBB UDP 1 15.555 16.087 41.174 -0.67 -0.25 2.359 ATOM 28 CBB UDP 1 15.555 16.087 41.174 -0.67 -0.25 2.359 ATOM 28 CBB UDP 1 15.535 16.087 41.174 -0.67 -0.25 2.359 ATOM 28 CBB UDP 1 15.535 16.087 41.174 -0.67 -0.25 2.359 ATOM 28 CBB UDP 1 15.535 16.087 41.174 -0.67 -0.2
                                                                                                                                                                         vdW
             USER
                                                                                                                                                  z
                                                                                                                                                                                             Elec
                                                                                                                                                                                                                                       RMS
                                                                    Rank
                                                                                                                             У
                                                                                                   18.242 20.356 33.288 -0.37 -0.11 -0.211 2.359
                                    1 N1 UDP 1
15
20
25
30 ATOM
35
             TER
             ENDMDL
                                          80
             MODEL
             USER
                                   Run = 80
40
             USER
                                    Cluster Rank = 1
             USER
                                   Number of conformations in this cluster = 30
             USER
             USER
                               RMSD from reference structure
                                                                                                                                  = 2.428 A
             USER
                                   Estimated Free Energy of Binding = -8.73 \text{ kcal/mol} [=(1)+(3)]
Estimated Inhibition Constant, Ki = +4.00e-07 [Temperature = 298.15 K]
45
             USER
             USER
             USER
                                                                                                                                    = -11.68 \text{ kcal/mol} [= (1) + (2)]
             USER
                                   Final Docked Energy
             USER.
             USER
                                   (1) Final Intermolecular Energy = -10.91 kcal/mol
                                   (2) Final Internal Energy of Ligand = -0.77 kcal/mol
             USER
                                   (3) Torsional Free Energy = +2.18 kcal/mol
             USER
             USER
             USER
55
                                   DPF = test.dpf
          USER
             USER
                                    NEWDPF move udp tr.pdbq
             USER
                                    NEWDPF about16.792999 18.735001 34.970001
                                    NEWDPF tran016.264354 19.749050 34.748403
             USER
                                    NEWDPF quat0-0.636753 -0.548763 0.541668 23.855418
             USER
60
             USER
                                    NEWDPF ndihe7
                                    NEWDPF dihe0-176.64 45.50 -32.26 16.31 -15.69 -5.13 142.41
             USER
             USER
                                                                                                                                                                                             Elec
             USER
                                                                                                         х
                                                                                                                             V
                                                                                                                                                    z
                                                                                                                                                                          vdW

    N1
    UDP
    1
    17.903
    20.465
    33.279
    -0.41
    -0.10
    -0.211
    2.428

    2
    C2
    UDP
    1
    18.132
    21.705
    32.750
    -0.68
    +0.26
    +0.396
    2.428

    3
    N3
    UDP
    1
    19.439
    22.119
    32.710
    -0.52
    -0.45
    -0.440
    2.428

    4
    H3
    UDP
    1
    19.618
    23.057
    32.327
    +0.10
    +0.67
    +0.440
    2.428

    5
    C4
    UDP
    1
    20.550
    21.389
    33.139
    -0.77
    +0.34
    +0.396
    2.428

             MOTA
65
             MOTA
             MOTA
             MOTA
             MOTA
```

PCT/CA01/00607 WO 01/83717

_ - 101 -

```
6 C5 UDP 1 20.244 20.100 33.675 -0.60 +0.00 +0.000 2.428  
7 C6 UDP 1 18.969 19.685 33.713 -0.52 +0.00 +0.000 2.428  
8 O2 UDP 1 17.213 22.419 32.344 -0.37 -0.24 -0.396 2.428  
9 O4 UDP 1 21.660 21.911 33.040 -0.29 -0.30 -0.396 2.428  
10 C1' UDP 1 16.524 19.967 33.367 -0.67 +0.04 +0.324 2.428  
11 C2' UDP 1 16.312 18.577 32.762 -0.63 -0.01 +0.113 2.428  
12 C3' UDP 1 15.035 18.137 33.515 -0.69 -0.01 +0.113 2.428  
13 C4' UDP 1 15.176 18.796 34.886 -0.56 +0.02 +0.113 2.428  
14 O4' UDP 1 16.264 19.749 34.748 -0.07 -0.05 -0.227 2.428  
15 O2' UDP 1 16.047 18.672 31.383 -0.22 +0.20 -0.537 2.428  
16 HO2'UDP 1 15.803 17.742 31.014 -0.26 -0.50 +0.424 2.428  
17 O3' UDP 1 13.922 18.707 32.819 -0.29 +0.15 -0.537 2.428  
18 HO3'UDP 1 15.535 17.804 35.993 -0.25 +0.04 +0.113 2.428  
20 O5' UDP 1 15.5212 18.402 37.234 +0.01 -0.18 -0.368 2.428  
21 PA UDP 1 15.866 18.342 38.668 -0.54 +0.44 +1.019 2.428  
22 O1A UDP 1 15.496 16.815 38.944 -0.03 -0.23 -0.510 2.428  
24 O3A UDP 1 15.496 16.815 38.944 -0.03 -0.23 -0.510 2.428  
26 O1B UDP 1 15.384 14.325 39.458 -0.03 -0.21 -0.255 2.428  
26 O1B UDP 1 15.384 14.325 39.458 -0.03 -0.21 -0.255 2.428  
27 O27 UDP 1 15.384 14.325 39.458 -0.03 -0.21 -0.255 2.428  
28 O27 UDP 1 15.384 14.325 39.458 -0.03 -0.21 -0.255 2.428  
29 O27 UDP 1 15.384 14.325 39.458 -0.03 -0.21 -0.255 2.428  
20 O5' UDD 1 15.384 14.325 39.458 -0.03 -0.21 -0.255 2.428  
20 O5' UDP 1 15.535 17.804 38.906 -0.72 +0.42 +1.019 2.428  
20 O5' UDP 1 15.559 19.318 39.556 -0.21 -0.10 -0.255 2.428  
21 PA UDP 1 15.496 16.815 38.944 -0.03 -0.23 -0.510 2.428  
22 O1B UDP 1 15.496 16.815 38.944 -0.03 -0.23 -0.510 2.428  
24 O3A UDP 1 15.384 14.325 39.458 -0.03 -0.21 -0.255 2.428  
26 O1B UDP 1 15.384 14.325 39.458 -0.03 -0.21 -0.255 2.428  
27 O27 UDP 1 15.384 14.325 39.458 -0.03 -0.21 -0.255 2.428  
29 O27 UDP 1 15.384 14.325 39.458 -0.03 -0.21 -0.255 2.428  
20 O27 UDP 1 15.384 14.325 39.458 -0.03 -0.23 -0.255 2.428  
20 O27 UDP 1 15.506  
20 O27 UDP 1 15.607  
20 O27 UDP 1 15.607  
20 O27 UDP 1 15.607  
20 O27 UDP 1 15
                  ATOM
                  ATOM
                  ATOM
                 ATOM
   5.
               MOTA
                  ATOM
                  ATOM
                 ATOM
                 MOTA
10
             ATOM
                  MOTA
                 MOTA
                 ATOM
                 ATOM
15
            MOTA
                  MOTA
                  MOTA
                  MOTA
                 ATOM
20
                                             25 PB UDP. 1 16.112 15.696 39.906 -0.72 +0.42 +1.019 2.428 26 O1B UDP 1 15.384 14.325 39.458 -0.03 -0.11 -0.255 2.428 27 O2B UDP 1 15.627 16.164 41.229 -0.68 -0.23 -0.255 2.428 28 O3B UDP 1 17.556 15.427 39.690 -0.13 -0.03 -0.255 2.428
                 ATOM
                  ATOM
                  ATOM
                  TER
25
                 ENDMDL
                                                   27
                  MODEL
                  USER
                                              Run = 27
                  USER
                                           - Cluster Rank = 1
                                              Number of conformations in this cluster = 30
                  USER
30
                 USER
                  USER
                                               RMSD from reference structure
                                                                                                                                                                              = 2.268 A
                  USER
                                               Estimated Free Energy of Binding = -8.56 \text{ kcal/mol} [=(1)+(3)]
Estimated Inhibition Constant, Ki = +5.27e-07 [Temperature = 298.15 K]
                  USER
                  USER
35
                 USER
                                                Final Docked Energy
                                                                                                                                                                                      = -11.63 \text{ kcal/mol} [= (1) + (2)]
                  USER
                  USER
                                             (1) Final Intermolecular Energy = -10.74 kcal/mol
(2) Final Internal Energy of Ligand = -0.89 kcal/mol
(3) Torsional Free Energy = +2.18 kcal/mol
                  USER
                  USER
40
                 USER
                  USER
                  USER
                  USER
                                                DPF = test.dpf
                                                NEWDPF move udp_tr.pdbq
                  USER
45
                                               NEWDPF about16.792999 18.735001 34.970001
                 USER
                  USER
                                                NEWDPF tran016.331560 19.472735 34.565318
                  USER
                                                NEWDPF quat0-0.490819 -0.684766 0.538695 25.212334
                                                NEWDPF ndihe7
                  USER
                                               NEWDPF dihe0-131.49 50.61 -168.07 36.57 -13.24 1.80 131.03
                  USER
                                               Rank x y z vdw Elec q RMS

1 N1 UDP 1 18.039 20.309 33.246 -0.38 -0.10 -0.211 2.268
2 C2 UDP 1 18.266 21.581 32.799 -0.85 +0.27 +0.396 2.268
3 N3 UDP 1 19.561 22.029 32.866 -0.52 -0.46 -0.440 2.268
4 H3 UDP 1 19.737 22.991 32.546 +0.05 +0.79 +0.440 2.268
5 C4 UDP 1 20.662 21.305 33.326 -0.76 +0.35 +0.396 2.268
6 C5 UDP 1 20.359 19.981 33.772 -0.58 +0.00 +0.000 2.268
7 C6 UDP 1, 19.097 19.533 33.705 -0.50 +0.00 +0.000 2.268
8 O2 UDP 1 17.354 22:293 32:373 -0.36 -0.23 -0.396 2.268
9 O4 UDP 1 21.761 21.858 33.327 -0.20 -0.36 -0.396 2.268
10 C1' UDP 1 16.672 19.773 33.217 -0.67 +0.05 +0.324 2.268
11 C2' UDP 1 16.538 18.413 32.527 -0.61 -0.01 +0.113 2.268
12 C3' UDP 1 15.228 17.901 33.171 -0.64 -0.02 +0.113 2.268
13 C4' UDP 1 15.264 18.487 34.582 -0.60 +0.02 +0.113 2.268
14 O4' UDP 1 16.332 19.473 34.565 -0.06 -0.05 -0.227 2.268
15 O2' UDP 1 16.359 18.577 31.140 -0.22 +0.17 -0.537 2.268
16 HO2'UDP 1 15.535 18.041 30.834 -0.24 -0.56 +0.424 2.268
17 O3' UDP 1 15.535 18.041 30.834 -0.24 -0.56 +0.424 2.268
17 O3' UDP 1 15.535 18.041 30.834 -0.24 -0.56 +0.424 2.268
 50
                  USER
                  USER
                  MOTA
                  MOTA
                 ATOM
 55
                  MOTA
                  ATOM
                  MOTA
                  ATOM
                  MOTA
60
                  MOTA
                   MOTA
                  MOTA
                   MOTA
                                               13 C4' UDP 1
14 O4' UDP 1
15 O2' UDP 1
16 HO2'UDP 1
17 O3' UDP 1
                   ATOM
 65
                  МОТА
                   ATOM
                  ATOM
                   MOTA
```

- 102 -

```
    14.521
    19.029
    31.649
    -0.25
    -0.35
    +0.424
    2.268

    15.580
    17.445
    35.655
    -0.29
    +0.04
    +0.113
    2.268

    15.412
    18.058
    36.919
    +0.06
    -0.17
    -0.368
    2.268

    16.233
    18.008
    38.265
    -0.62
    +0.41
    +1.019
    2.268

                                18 HO3'UDP
19 C5' UDP
                                                                   1
           АТОМ
                                                                     1.
           ATOM
                                20 05' UDP
           ATOM
                                                                     7
                                21 PA UDP
           МОТА
                             22 O1A UDP 1 17.673 18.192 37.926 -0.15 -0.07 -0.255 2.268 23 O2A UDP 1 15.608 18.955 39.240 -0.18 -0.11 -0.255 2.268 24 O3A UDP 1 15.943 16.468 38.566 +0.00 -0.22 -0.510 2.268 25 PB UDP 1 16.424 15.469 39.718 -0.63 +0.36 +1.019 2.268 26 O1B UDP 1 16.040 16.219 41.097 -0.67 -0.23 -0.255 2.268 27 O2B UDP 1 17.891 15.464 39.492 -0.12 -0.02 -0.255 2.268 28 O3B UDP 1 15.670 14.191 39.779 -0.05 -0.10 -0.255 2.268
          MOTA
           MOTA
           MOTA
           MOTA
           MOTA
10
          MOTA
           ATOM
           TER
           ENDMDL
                                      37
           MODEL
15
           USER
                             Run = 37
                             Cluster Rank = 1
           USER
                          Number of conformations in this cluster = 30
           USER
           USER
                                                                                                               = 2.337 A
           USER
                        RMSD from reference structure
20
           USER
                        Estimated Free Energy of Binding = -8.76 \text{ kcal/mol} [=(1)+(3)]
Estimated Inhibition Constant, Ki = +3.82e-07 [Temperature = 298.15 K]
           USER
           USER
           USER
                                                                                                                  = -11.60 \text{ kcal/mol} [= (1) + (2)]
                        Final Docked Energy
           USER
25, USER
                         (1) Final Intermolecular Energy = -10.93 kcal/mol
           USER
           USER (2) Final Internal Energy of Ligand = -0.66 kcal/mol
USER -(3) Torsional Free Energy = +2.18 kcal/mol
            USER
30
           USER
                        DPF = test.dpf
           USER
                        NEWDPF move udp_tr.pdbq
            USER
                             NEWDPF about16.792999 18.735001 34.970001
            USER
                        NEWDPF tran016.642481 19.664002 34.683293
            USER
                        NEWDPF quat00.689785 0.638573 -0.341206 -21.274560
35
           USER
                        NEWDPF ndihe7
        USER
                         NEWDPF dihe0-143.29 -16.74 -20.40 5.95 -28.82 6.66 151.74
            USER
            USER
                                                                                                                                z
                                                                                                                                                  vdW
                                                                                                                                                                Elec
                                                                                                                                                                                        α
            USER
                                                                                           x
                                                            Rank
                                1 N1 UDP 1 18.371 20.252 33.262 -0.36 -0.11 -0.211 2.337 2 C2 UDP 1 18.727 21.475 32.765 -0.81 +0.28 +0.396 2.337
                            1 N1 UDP 1 18.371 20.252 33.262 -0.36 -0.11 -0.211 2.337 2 C2 UDP 1 18.727 21.475 32.765 -0.81 +0.28 +0.396 2.337 3 N3 UDP 1 20.068 21.764 32.759 -0.54 -0.38 -0.440 2.337 4 H3 UDP 1 20.343 22.689 32.400 +0.06 +0.49 +0.440 2.337 5 C4 UDP 1 21.096 20.924 33.191 -0.74 +0.30 +0.396 2.337 6 C5 UDP 1 20.659 19.659 33.692 -0.53 +0.00 +0.000 2.337 7 C6 UDP 1 19.350 19.365 33.697 -0.48 +0.00 +0.000 2.337 8 O2 UDP 1 17.888 22.281 32.358 -0.33 -0.26 -0.396 2.337 9 O4 UDP 1 22.252 21.340 33.125 -0.24 -0.30 -0.396 2.337 10 C1' UDP 1 16.950 19.885 33.312 -0.66 +0.08 +0.324 2.337 11 C2' UDP 1 16.620 18.534 32.673 -0.60 +0.00 +0.113 2.337 12 C3' UDP 1 15.292 18.202 33.391 -0.66 -0.01 +0.113 2.337 13 C4' UDP 1 15.466 18.816 34 779 -0.57 +0.02 +0.113 2.337
40
           ATOM
           MOTA
            MOTA
            MOTA
            MOTA
45
            MOTA .
            MOTA
            ATOM
            MOTA
                                10 C1' UDP
11 C2' UDP
12 C3' UDP
13 C4' UDP
            МОТА
 50
           MOTA
            MOTA
                                                                                    15.292 18.202 33.391 -0.66 -0.01 +0.113 2.337

15.466 18.816 34.779 -0.57 +0.02 +0.113 2.337

16.642 19.664 34.683 -0.06 -0.07 -0.227 2.337

16.394 18.683 31.291 -0.22 +0.13 -0.537 2.337

15.610 18.081 31.004 -0.31 -0.47 +0.424 2.337

14.253 18.888 32.688 -0.24 +0.22 -0.537 2.337

14.399 19.905 32.765 -0.37 -0.36 +0.424 2.337
                                                                      1
            MOTA
                               13 C4' UDP 1
14 O4' UDP 1
15 O2' UDP 1
16 HO2'UDP 1
17 O3' UDP 1
18 HO3'UDP 1
19 C5' UDP 1
20 O5' UDP 1
21 PA UDP 1
                                                                                    15.400 16.616 34.779
16.642 19.664 34.683
16.394 18.683 31.291
15.610 18.081 31.004
14.253 18.888 32.688
14.399 19.905 32.765
15.707 17.771 35.870
            MOTA
            MOTA
55
         MOTA
            MOTA
            MOTA
                                                                                                                                                    -0.36 +0.04 +0.113 2.337
            MOTA
                                                                                    15.707 17.771 35.870 -0.36 +0.04 +0.113 2.337

15.214 18.294 37.088 +0.06 -0.17 -0.368 2.337

15.799 18.368 38.552 -0.54 +0.44 +1.019 2.337

17.282 18.480 38.442 -0.13 -0.08 -0.255 2.337

15.062 19.430 39.306 -0.22 -0.10 -0.255 2.337

15.399 16.877 38.955 +0.00 -0.23 -0.510 2.337

16.080 15.778 39.895 -0.73 +0.43 +1.019 2.337
           MOTA
 60
         MOTA
                                 22 O1A UDP
                                                                       1
            MOTA
                                                                      1
                                 23 O2A UDP
24 O3A UDP
25 PB UDP
            MOTA
            MOTA
                                                                       1
                                                                    1 15.399 16.877 38.955 +0.00 -0.23 -0.510 2.337

1 16.080 15.778 39.895 -0.73 +0.43 +1.019 2.337

1 15.467 14.371 39.390 -0.02 -0.11 -0.255 2.337

1 15.536 16.165 41.221 -0.68 -0.23 -0.255 2.337

1 17.545 15.626 39.701 -0.18 -0.03 -0.255 2.337
            ATOM
            MOTA
                                26 O1B UDP
                                27 O2B UDP
            ATOM
                                28 O3B UDP
            ATOM
            TER
```

```
ENDMDL
                             83
        MODEL
        USER Run = 83
        USER
                      Cluster Rank = 1
                  Number of conformations in this cluster = 30
        USER
        USER
        USER
                      RMSD from reference structure
                                                                                   = 2.261 A
        USER
                      Estimated Free Energy of Binding = -8.49 \text{ kcal/mol} [=(1)+(3)]
        USER
                  Estimated Inhibition Constant, Ki = +5.99e-07 [Temperature = 298.15 K]
10
      USER
        USER
                                                                                          -11.46 \text{ kcal/mol} [= (1) + (2)]
        USER.
                      Final Docked Energy
        USER
                      (1) Final Intermolecular Energy = -10.67 kcal/mol
(2) Final Internal Energy of Ligand = -0.79 kcal/mol
(3) Torsional Free Energy = +2.18 kcal/mol
        USER
15
        USER
        USER
        USER
        USER
                      DPF = test.dpf
        USER
20
        USER
                      NEWDPF move udp_tr.pdbq
                      NEWDPF about16.792999 18.735001 34.970001
        USER
                      NEWDPF tran016.357985 19.606004 34.816153
        USER
                      NEWDPF quat0-0.457891 -0.473843 0.752202 19.873212
        USER
        USER
                      NEWDPF ndihe7
                      NEWDPF dihe0-102.27 -10.98 18.83 69.93 -8.93 -8.56 143.76
25
        USER
        USER

        x
        y
        z
        vdW
        Elec
        q
        RMS

        17.847
        20.520
        33.298
        -0.42
        -0.10
        -0.211
        2.261

        17.991
        21.811
        32.873
        -0.89
        +0.27
        +0.396
        2.261

        19.276
        22.280
        32.771
        -0.52
        -0.49
        -0.440
        2.261

        19.392
        23.256
        32.466
        +0.09
        +0.81
        +0.440
        2.261

        20.441
        21.560
        33.040
        -0.78
        +0.35
        +0.396
        2.261

        20.223
        20.216
        33.473
        -0.61
        +0.00
        +0.000
        2.261

        18.970
        19.747
        33.571
        -0.52
        +0.00
        +0.000
        2.261

        17.018
        22.522
        32.609
        -0.35
        -0.26
        -0.396
        2.261

        21.522
        22.133
        32.905
        -0.18
        -0.29
        -0.396
        2.261

        26.497
        19.961
        33.445
        -0.66
        +0.04
        +0.324
        2.261

        16.282

                                                                                                              vdW
                                                                                                                        Elec
        USER
                                                                                                z
                                             Rank
                                                                   x
                     - 1 N1 UDP 1
        MOTA
        MOTA
                         2 C2 UDP
                                                   1
                         3 N3 UDP
30
        MOTA
                         4 H3 UDP
5 C4 UDP
6 C5 UDP
                                                    1
        MOTA
                                     UDP
UDP
                                                     1
        MOTA
       MOTA
                                                    1
                         7 C6 UDP
                                                  1
        ATOM .
35
                         8 O2 UDP
                                                  1
       MOTA
                         9 O4 UDP
                                                  1
        MOTA
                                                . 1
        MOTA
                        10 Cl' UDP
                        11 C2' UDP
12 C3' UDP
        ATOM
                                                    1
                                                                                                             -0.68 -0.01 +0.113 2.261

-0.57 +0.02 +0.113 2.261

-0.06 -0.06 -0.227 2.261

-0.19 +0.21 -0.537 2.261

-0.21 -0.42 +0.424 2.261

-0.32 +0.11 -0.537 2.261

-0.44 -0.31 +0.424 2.261

-0.30 +0.04 +0.113 2.261

+0.01 -0.17 -0.368 2.261

-0.67 +0.41 +1.019 2.261

-0.20 -0.05 -0.255 2.261

-0.24 -0.12 -0.255 2.261
        MOTA
                                                     1
                       13 C4' UDP
                                                               15.316 18.601 34.948
                                                  1
        MOTA
                                                               16.358 19.606 34.816
                      14 O4' UDP
        MOTA
                                                  1
                                                               15.903 18.835 31.391
14.882 18.739 31.303
13.902 18.651 32.985
13.966 19.677 33.045
                      15 O2' UDP
                                                  1
        ATOM
                      16 HO2'UDP
17 O3' UDP
        MOTA
                                                     1.
        MOTA
                                                     1
                      18 HO3'UDP
45
                                                    1
        MOTA
                       19 C5' UDP
                                                               15.797 17.527 35.924
        MOTA
        ATOM :
                                                               15.528 17.981 37.236
                      20 O5' UDP
                                                    1
                                                         16.241 17.761 38.626
17.687 18.081 38.451
15.474 18.500 39.678
                        21 PA UDP
                                                    1
        MOTA
                        22 O1A UDP
23 O2A UDP
                                                     1
        MOTA
                                                                                                              -0.24 -0.12 -0.255 2.261
50
         MOTA
                                                     1
                        24 O3A UDP
                                                                                                              -0.01 -0.22 -0.510 2.261
                                                               16.039 16.179 38.656
        MOTA
                                                     1
                        25 PB UDP
                                                               15.854 15.121 39.841
                                                                                                              -0.63 +0.38 +1.019 2.261
                                                     1
         MOTA
                                                                                                              +0.11 -0.05 -0.255 2.261
-0.01 -0.09 -0.255 2.261
-0.60 -0.19 -0.255 2.261
                                                               17.108 14.114 39.690
14.581 14.471 39.442
16.010 15.692 41.204
                       26 O1B UDP
                                                   1
         MOTA
                                                  1.
                        27 O2B UDP
         ATOM
55
        MOTA
                        28 O3B UDP
                                                    1
         TER
         ENDMDL
         MODEL
                           65
                       Run = 65
         USER
60
         USER
                       Cluster Rank = 1
                       Number of conformations in this cluster = 30
         USER
         USER
                                                                                    = 2.304 A
         USER
                       RMSD from reference structure
         USER
                                                                                           -8.71 \text{ kcal/mol} [=(1)+(3)]
                       Estimated Free Energy of Binding =
65
         USER
                      Estimated Inhibition Constant, Ki = +4.12e-07 [Temperature = 298.15 K]
         USER
         USER
                                                                                       = -11.45 \text{ kcal/mol} [=(1)+(2)]
         USER
                       Final Docked Energy
```

```
USER
                      (1) Final Intermolecular Energy = -10.89 \text{ kcal/mol}
        USER
                      (2) Final Internal Energy of Ligand ≈ -0.56 kcal/mol
        USER
                                                                       = +2.18 \text{ kcal/mol}
                   (3) Torsional Free Energy
        USER
 5
        USER
        USER
                      DPF = test.dpf
        USER
                     NEWDPF move udp_tr.pdbq
        USER
                      NEWDPF about16.792999 18.735001 34.970001
        USER
                      NEWDPF tran016.670987 19.529452 34.985959
10
        USER
                     NEWDPF quat0-0.609578 -0.251836 0.751660 12.309821
        USER
        USER NEWDPF ndihe7
                      NEWDPF dihe0174.86 35.30 170.27 1.85 94.80 -103.65 115.10
        USER
        USER
                                                                                                                                                RMS
                                                                                                                    Elec
15
        USER
                                           Rank

      18.083
      20.325
      33.334
      -0.38
      -0.10
      -0.211
      2.304

      18.319
      21.606
      32.917
      -0.85
      +0.28
      +0.396
      2.304

      19.629
      21.940
      32.687
      -0.53
      -0.41
      -0.440
      2.304

      19.816
      22.907
      32.388
      +0.07
      +0.65
      +0.440
      2.304

      20.733
      21.096
      32.819
      -0.75
      +0.27
      +0.396
      2.304

      20.419
      19.770
      33.251
      -0.56
      +0.00
      +0.000
      2.304

      19.140
      19.432
      33.474
      -0.48
      +0.00
      +0.000
      2.304

      17.406
      22.420
      32.770
      -0.33
      -0.29
      -0.396
      2.304

      21.849
      21.556
      32.580
      -0.14
      -0.18
      -0.396
      2.304

      16.704
      19.905
      33.614
      -0.64
      +0.07
      +0.324
      2.304

      15.116
      18.166
      33.822
      -0.65
      +0.00
      +0.113
      2.304

      15.48
      18.635
      35.210
      -0.55
      +0.03
      +0.113
      2.304
    <
                                                              18.083 20.325
                                                                                                        -0.38 -0.10 -0.211 2.304
                                                                                        33.334
                                           1
        MOTA
                         1 N1
                                    UDP
                         2 C2 UDP
                                                  1
        MOTA
        MOTA
                         3 N3 UDP
                         4 H3 UDP
        ATOM
                                                  1
                         5 C4 UDP
20
                                                  1
        MOTA
                         6 C5
                                                  1
        ATOM
                                    UDP
                         7 C6
                                    UDP
         MOTA
                                                  1
                         8 02
                                    UDP
                                                  1
        MOTA
                                                           21.849 21.556 32.580
16.704 19.905 33.614
16.275 18.619 32.904
15.116 18.166 33.822
15.548 18.635 35.210
                        9 O4 UDP
                                                  1
        MOTA
25
                       10 C1' UDP
                                                  1
         MOTA
                        11 C2' UDP
         MOTA
                                                  1
                                                  1
                                                                                                        -0.65 +0.00 +0.113 2.304

-0.55 +0.03 +0.113 2.304

-0.05 -0.08 -0.227 2.304

-0.27 +0.21 -0.537 2.304

-0.35 -0.48 +0.424 2.304

-0.22 +0.09 -0.537 2.304

-0.35 -0.32 +0.424 2.304
         ATOM
                        12
                             C3' UDP
                             C4' UDP
         MOTA
                        13
                                                  1
                        14 O4' UDP
                                                             16.671 19.529 34.986
                                                  1
         MOTA
                       15 02' UDP
                                                             15.784 18.905 31.616
30
        ATOM .
                                                            15.535 18.027 31.140
13.951 18.887 33.410
14.224 19.643 32.767
16.010 17.490 36.112
                                                  1
                        16 HO2'UDP
         MOTA
                       17 O3' UDP
18 HO3'UDP
19 C5' UDP
                                                  1
         MOTA
                                                  1
         ATOM
                                                                                                         -0.40 +0.04 +0.113 2.304
                                                  1
         MOTA
                                                                                                         -0.03 -0.15 -0.368 2.304

-0.70 +0.42 +1.019 2.304

-0.14 -0.06 -0.255 2.304

-0.21 -0.12 -0.255 2.304

-0.02 -0.22 -0.510 2.304
                                                         16.561 18.057 37.285
                        20 O5' UDP
35
                                                  1
        ATOM
                                                         16.153 18.005 38.808
17.382 18.249 39.616
14.977 18.907 39.017
15.798 16.450 38.822
                        21 PA UDP .
                                                  1
         ATOM
                        22 O1A UDP
                                                  1
         MOTA
                        23 O2A UDP
                                                  1
         MOTA
                              O3A UDP
                                                  1
         MOTA
                        24
                                                                                                         -0.66 +0.39 +1.019 2.304
                                                             16.010 15.288 39.900
                        25 PB UDP
                                                  1
40
         MOTA
                                                                                                         -0.67 -0.25 -0.255 2.304
+0.00 -0.04 -0.255 2.304
-0.06 -0.10 -0.255 2.304
                                                             15.889 16.031 41.330
                        26 O1B UDP
                                                  1
         MOTA
                                                              17.410 14.888 39.610
14.929 14.270 39.927
                   . 27
                               O2B UDP
                                                  1
         ATOM
                        28 O3B UDP
                                                  1
         MOTA
         TER
 45
         ENDMDL
         MODEL
                             14
                       Run = 14
         USER
                       Cluster Rank = 1
         USER
                       Number of conformations in this cluster = 30
         USER
 50
         USER
                                                                                 = 2.451 A
                       RMSD from reference structure
          USER
         USER :
                                                                                 = -8.42 kcal/mol [=(1)+(3)]
                       Estimated Free Energy of Binding
         USER
                                                                                = +6.69e-07 [Temperature = 298.15 K]
                       Estimated Inhibition Constant, Ki
         USER
 55
         USER
                                                                                  = -11.42 \text{ kcal/mol} [=(1)+(2)]
          USER
                       Final Docked Energy
          USER
                       (1) Final Intermolecular Energy = -10.60 kcal/mol
          USER
                       (2) Final Internal Energy of Ligand = -0.82 kcal/mol
          USER
                                                                                = +2.18 kcal/mol
                       (3) Torsional Free Energy
 60
          USER
          USER
          USER
                       DPF = test.dpf
          USER
                       NEWDPF move udp_tr.pdbq
          USER
                       NEWDPF about16.792999 18.735001 34.970001
 65
          USER
                       NEWDPF tran017.100220 19.724175 34.926891
          USER
                       NEWDPF quat00.896782 0.345563 -0.276348 -20.343759
          USER
                       NEWDPF ndihe7
          USER
```

```
NEWDPF dihe0179.92 79.45 -26.55 -16.81 -42.81 3.24 -180.00
     USER
     USER
                                                                               Elec
                                                     У
                                                                        vdW
                                                                                                  RMS
                                            х
     USER
                             Rank
                                                                        -0.34 -0.11 -0.211 2.451
                                          18.694 20.131 33.299
                1 N1 UDP
                                1
     MOTA
                                         19.052 21.300 32.688
20.396 21.516 32.524
20.674 22.402 32.079
                                                                        -0.77 +0.27 +0.396 2.451
                2 C2 UDP
                                  1
5
     ATOM
                                                                                -0.30 -0.440 2.451
                                                                       -0.51
                3 N3 UDP
                                  1
     MOTA
                                                                        +0.08 +0.21 +0.440 2.451
                 4 H3
                         UDP
     MOTA
                                          21.424 20.651 32.904
                                                                        -0.72 +0.26 +0.396 2.451
                         UDP
                                  1
     MOTA
                 5
                    C4
                                                                                                 2.451
                                                                                +0.00 +0.000
                                                                        -0.51
                                          20.984 19.444 33.531
                        UDP
                 6 C5
                                  1
     ATOM
                                          19.671 19.222 33.690
                                                                        -0.47
                                                                                +0.00 +0.000
                                                                                                 2.451
                7 C6
                        UDP
10
     MOTA
                                                                                -0.27 -0.396 2.451
                                          18.212 22.123 32.316
22.585 21.000 32.692
17.271 19.844 33.519
                                                                        -0.30
                -8 02
                         UDP
                                  1
     MOTA
                                                                        -0.24 -0.25 -0.396 2.451
                9 04 UDP
                                  1
      MOTA
                                                                        -0.61 +0.10 +0.324 2.451
                                  1 .
               10 Cl' UDP
      MOTA
                                          16.813 18.475 33.009
                                                                                +0.01 +0.113 2.451
                                                                        -0.53
                   C2' UDP
                                  1
      MOTA
                11
                                                                       -0.59 +0.00 +0.113 2.451
                                          15.554 18.259 33.881
                12 C3' UDP
15
                                  1
      MOTA
                                                                        -0.55 +0.03 +0.113 2.451
-0.05 -0.10 -0.227 2.451
                                          15.903 18.947 35.200
                13 C4' UDP
                                  1
      MOTA
                                          17.100 19.724 34.927
16.449 18.550 31.651
16.098 17.634 31.338
14.479 18.955 33.244
                14 O4' UDP
      MOTA
                                                                        -0.21 +0.11 -0.537 2.451
                15 02' UDP
                                  1
      MOTA
                                                                      -0.22 -0.34 +0.424 2.451
                16 HO2'UDP
                                  1
      MOTA
                                                                      -0.22 + 0.14 - 0.537 \cdot 2.451
                                  1
1
                    O3' UDP
20
      ATOM
                17
                                          14.616 18.939 32.223
                                                                        -0.09 \quad -0.24 \quad +0.424 \quad 2.451
                18 HO3'UDP
      MOTA
                                                                        -0.46 +0.04 +0.113 2.451
+0.04 -0.17 -0.368 2.451
-0.69 +0.46 +1.019 2.451
                                          16.209 17.961 36.327
                19 C5' UDP
                                  1
      MOTA
                                          15.331 18.241 37.401
15.526 18.335 38.963
16.986 18.480 39.231
14.600 19.383 39.497
                                  -1
                20 O5' UDP
      MOTA
                21 PA UDP
                                  1
      MOTA
                                                                        -0.17 -0.09 -0.255 2.451
                    O1A UDP
                                  1
25
      MOTA
                22

    -0.29
    -0.11
    -0.255
    2.451

    -0.05
    -0.23
    -0.510
    2.451

    -0.72
    +0.42
    +1.019
    2.451

    -0.04
    -0.10
    -0.255
    2.451

      ATOM
                23
                    O2A UDP
                                  1
                                          15.068 16.838 39.267
                24
                    O3A UDP
                                  1
      MOTA
                                          15.770 15.608 40.009
              - 25 PB UDP
                                  1
      MOTA
                                          14.899 14.318 39.578
15.542 15.969 41.431
17.140 15.298 39.525
                26 O1B UDP
      MOTA
                                                                        -0.71 -0.24 -0.255 2.451
                                  1 `
                27 O2B UDP
30 ATOM
                                                                         -0.10 -0.06 -0.255 2.451
                28 O3B UDP
                                  1
      MOTA
      TER
      ENDMDL
                    99
      MODEL
               Run = 99
35
      USER
      USER
               Cluster Rank = 1
               Number of conformations in this cluster = 30
      USER
      USER
                                                        = 2.336 A
               RMSD from reference structure
      USER
40
      USER
                                                        = -8.47 kcal/mol [=(1)+(3)]
               Estimated Free Energy of Binding
      USER
                                                       = +6.23e-07 [Temperature = 298.15 K]
               Estimated Inhibition Constant, Ki
      -USER
      USER
                                                        = -11.36 \text{ kcal/mol} [= (1) + (2)]
               Final Docked Energy
      USER
45
      USER
              (1) Final Intermolecular Energy = -10.65 \text{ kcal/mol}
      USER
               (2) Final Internal Energy of Ligand = -0.71 kcal/mol
(3) Torsional Free Energy = +2.18 kcal/mol
      USER
             (3) Torsional Free Energy
       USER
       USER
50
       USER
               DPF = test.dpf
       USER
               NEWDPF move udp tr.pdbq
       USER
               NEWDPF about16.792999 18.735001 34.970001
       USER
               NEWDPF tran016.837146 19.319611 35.006964
       USER
               NEWDPF quat0-0.287528 -0.036292 0.957084 6.817381
 55
       USER
               NEWDPF ndihe7
       USER
               NEWDPF dihe0179.27 74.01 -73.43 -63.66 -99.15 70.88 172.83
       USER
       USER
                                                                                                   RMS
                                                                         vdW
                                                                                 Elec
                                                                Z
       USER
                                                                         -0.36 -0.10 -0.211 2.336
                                           18.200 20.203
18.479 21.505
                                                              33.359
                  1 N1 UDP
                                   1
 60
       MOTA
                                                                         -0.82 +0.29 +0.396 2.336
                                                              33.049
                          UDP
                                   1
                  2
                     C2
       ATOM
                                                                                         -0.440 2.336
                                           19.791 21.800 32.777
                                                                         -0.55 -0.39
                          UDP
                  3
                     N3
                                  . 1
       MOTA
                                                                         +0.03 +0.65 +0.440 2.336
                                           20.011 22.781 32.558
       MOTA
                  4
                     Н3
                         UDP
                                   1
                                                                         -0.73 +0.25 +0.396 2.336
-0.53 +0.00 +0.000 2.336
-0.47 +0.00 +0.000 2.336
                                                   20.897 32.768
                         UDP
                                           20.855
                    C4
                                   1
                  5
       ATOM
                                           20.497 19.552 33.093
 65
                  6
                     C5
                          UDP
       MOTA
                                                   19.253
                         UDP
                                           19.216
                                                              33.355
                     С6
                  7
                                   1
       ATOM
                                                    22.371
                                                                         -0.28 -0.32
                                                                                         -0.396 2.336
                     02
                          UDP
                                   1
                                           17.602
                                                              33.029
                  8
       ATOM
                                                                         -0.20 -0.19 -0.396 2.336
                                           21.979 21.327 32.510
                          UDP
                                   1
       MOTA
                  9
                    04
```

```
16.818 19.822 33.676 -0.62 +0.08 +0.324 2.336
16.288 18.630 32.876 -0.62 +0.00 +0.113 2.336
15.157 18.145 33.812 -0.65 +0.00 +0.113 2.336
                                10 Cl' UDP
           MOTA
                                                                     1
                        10 C1' UDP 1 16.818 19.822 33.676 -0.62 +0.08 +0.324 2.336  
11 C2' UDP 1 16.288 18.630 32.876 -0.62 +0.00 +0.113 2.336  
12 C3' UDP 1 15.157 18.145 33.812 -0.65 +0.00 +0.113 2.336  
13 C4' UDP 1 15.683 18.461 35.211 -0.54 +0.03 +0.113 2.336  
14 O4' UDP 1 16.837 19.320 35.007 -0.03 -0.08 -0.227 2.336  
15 O2' UDP 1 15.746 19.059 31.649 -0.28 +0.19 -0.537 2.336  
16 HO2'UDP 1 15.361 18.251 31.141 -0.25 -0.48 +0.424 2.336  
17 O3' UDP 1 14.010 18.954 33.535 -0.18 +0.08 -0.537 2.336  
18 HO3'UDP 1 14.056 19.295 32.564 -0.26 -0.27 +0.424 2.336  
19 C5' UDP 1 16.133 17.215 35.975 -0.37 +0.04 +0.113 2.336  
20 O5' UDP 1 15.535 17.253 37.257 +0.26 -0.17 -0.368 2.336  
21 PA UDP 1 15.745 18.170 38.524 -0.58 +0.44 +1.019 2.336  
22 O1A UDP 1 17.206 18.434 38.656 -0.14 -0.08 -0.255 2.336  
23 O2A UDP 1 14.819 19.342 38.422 +0.01 -0.12 -0.255 2.336  
24 O3A UDP 1 15.296 17.070 39.589 -0.16 -0.24 -0.510 2.336  
25 PB UDP 1 15.432 15.660 41.703 -0.68 -0.24 -0.255 2.336  
26 O1B UDP 1 17.435 16.232 40.207 -0.48 -0.07 -0.255 2.336  
28 O3B UDP 1 17.435 16.232 40.207 -0.48 -0.07 -0.255 2.336  
28 O3B UDP 1 15.642 14.500 39.559 -0.04 -0.10 -0.255 2.336
                               11 C2' UDP
12 C3' UDP
           ATOM
                                                                     1
           MOTA
           ATOM
           MOTA
           ATOM
           MOTA
           ATOM
           MOTA
10
           ATOM
           MOTA
           MOTA
           ATOM
           ATOM
15
           MOTA
           ATOM
           ATOM
           MOTA
           ATOM
20
           TER
           ENDMDL
                                 89
           MODEL
           USER Run = 89
           USER
                             Cluster Rank = 1
25
                          Number of conformations in this cluster = 30
           USER
           USER
            USER
                            RMSD from reference structure
                                                                                                                 = 2.343 A
           USER
                        Estimated Free Energy of Binding = -8.33 \text{ kcal/mol} = (-1) + (3)
           USER
                        Estimated Inhibition Constant, Ki = +7.88e-07 [Temperature = 298.15 K]
30
           USER
           USER
                        Final Docked Energy
                                                                                                                 = -11.35 \text{ kcal/mol} [= (1) + (2)]
           USER
           USER
                            (1) Final Intermolecular Energy = −10.51 kcal/mol
           USER
                        (2) Final Internal Energy of Ligand = -0.85 kcal/mol
35
           USER
                        (3) Torsional Free Energy = +2.18 kcal/mol
         - USER
           USER
            USER
           USER
                             DPF = test.dpf
40
                        NEWDPF move udp_tr.pdbq
           USER
                        NEWDPF about16.792999 18.735001 34.970001
           USER NEWDPF tran017.054940 19.477433 34.899250
                       NEWDPF quat00.673805 0.287903 -0.680513 -10.385254
            USER
            USER
                            NEWDPF ndihe7
           USER NEWDPF ndihe7
USER NEWDPF dihe0-157.20 94.24 8.30 -47.60 -85.48 50.85 179.66
45
           ÜSER
                                                                                                                                                                Elec
            USER
                                                            Rank
                                                                               x
                                                                                                                                                  vdW
                                                                               18.496 20.235 33.255 -0.35 -0.11 -0.211 2.343

18.781 21.510 32.850 -0.81 +0.29 +0.396 2.343

20.102 21.797 32.623 -0.54 -0.36 -0.440 2.343

20.326 22.759 32.333 +0.07 +0.48 +0.440 2.343
                              1 N1 UDP
                                                             . 1
           MOTA
                              2 C2 UDP
3 N3 UDP
4 H3 UDP
                                                                          18.781 21.510 32.850
20.102 21.797 32.623
20.326 22.759 32.333
           MOTA
                                                                     1
50
           ATOM
                                                                    20.809 19.593 33.165

1 19.518 19.301 33.385

1 17.899 22.360 32.711

1 22.306 21.330 20

1 17.102 10
           MOTA

      5
      C4
      UDP
      1
      21.173
      20.910
      32.747
      -0.74
      +0.25
      +0.396
      2.343

      6
      C5
      UDP
      1
      20.809
      19.593
      33.165
      -0.54
      +0.00
      +0.000
      2.343

      7
      C6
      UDP
      1
      19.518
      19.301
      33.385
      -0.48
      +0.00
      +0.000
      2.343

      8
      O2
      UDP
      1
      17.899
      22.360
      32.711
      -0.29
      -0.31
      -0.396
      2.343

      9
      O4
      UDP
      1
      22.306
      21.330
      32.511
      -0.20
      -0.19
      -0.396
      2.343

      10
      C1' UDP
      1
      17.102
      19.865
      33.531
      -0.63
      +0.09
      +0.324
      2.343

      11
      C2' UDP
      1
      16.625
      18.603
      32.809
      -0.59
      +0.00
      +0.113
      2.343

      12
      C3' UDP
      1
      15.449
      18.185
      33.722
      -0.61
      +0.00
      +0.113
      2.343

      14
      O4' UDP
      1
      17.055
      19.477
      34.899
      -0
                                5 C4 UDP 1
                                                                                   21.173 20.910 32.747 -0.74 +0.25 +0.396 2.343
           ATOM
           MOTA
           ATOM
           MOTA
55
           MOTA
           MOTA
           MOTA
           MOTA
60
           ATOM
           ATOM
           MOTA
           MOTA
           MOTA
                                                                                     14.225 18.926 32.293
                                                                                                                                                  -0.16 -0.24 +0.424 2.343
65
           MOTA
                               18 HO3'UDP
                                                                   1
                               19 C5' UDP 1 16.317 17.454 36.005
20 O5' UDP 1 15.535 17.503 37.184
21 PA UDP 1 15.723 18.213 38.580
           MOTA
                                                                                                                                                 -0.40 +0.04 +0.113 2.343
                                                                                                                                                 +0.15 -0.17 -0.368 2.343
           MOTA
                                                                                                                                                  -0.59 + 0.44 + 1.019 2.343
           ATOM
```

- 107 -

```
22 O1A UDP 1 17.185 18.409 38.796 -0.16 -0.08 -0.255 2.343 23 O2A UDP 1 14.832 19.415 38.627 -0.06 -0.11 -0.255 2.343 24 O3A UDP 1 15.209 16.980 39.452 -0.12 -0.23 -0.510 2.343 25 PB UDP 1 15.954 15.754 40.159 -0.78 +0.45 +1.019 2.343 26 O1B UDP 1 15.139 14.446 39.676 -0.06 -0.10 -0.255 2.343 27 O2B UDP 1 15.699 16.058 41.590 -0.72 -0.29 -0.255 2.343 28 O3B UDP 1 17.339 15.516 39.679 -0.16 -0.05 -0.255 2.343
                MOTA
                ATOM
                MOTA
                MOTA
               ATOM
               MOTA
                ATOM.
                TER
               ENDMDL
10
                MODEL
                                      . 75
                                    Run = 75
               USER
                                    Cluster Rank = 1
                USER
                               Number of conformations in this cluster = 30
                USER
                USER
 1.5
                USER RMSD from reference structure
                                                                                                                                 = 2.190 A
                USER
                                Estimated Free Energy of Binding = -8.35 \text{ kcal/mol} [=(1)+(3)]
                USER
                USER Estimated Inhibition Constant, Ki = +7.52e-07 [Temperature = 298.15 K]
                USER
                                                                                                                                      = +11.34 \text{ kcal/mol} [=(1)+(2)]
  20
                USER Final Docked Energy
                USER
                USER (1) Final Intermolecular Energy = -10.53 kcal/mol
USER (2) Final Internal Energy of Ligand = -0.81 kcal/mol
USER (3) Torsional Free Energy = +2.18 kcal/mol
  25
                USER
                USER
                USER
                               DPF = test.dpf
                USER NEWDPF move udp_tr.pdbq
USER NEWDPF about16.792999 18.735001 34.970001
                USER NEWDPF tran016.649808 19.351573 34.884284
  30
                USER NEWDPF quat00.238273 0.242155 -0.940525 -7.710898
                USER NEWDPF ndihe7
                USER NEWDPF dihe0162.51 45.31 -179.82 136.56 -34.17 0.93 124.87
                             Rank

x
y
z
vdW
Elec
q
RMS

1 N1 UDP
1 18.047 20.259 33.278 -0.38 -0.10 -0.211 2.190

2 C2 UDP 1 18.316 21.566 32.981 -0.84 +0.28 +0.396 2.190

3 N3 UDP
1 19.631 21.879 32.746 -0.54 -0.40 -0.440 2.190

4 H3 UDP
1 19.844 22.864 32.537 +0.04 +0.71 +0.440 2.190

5 C4 UDP
1 20.707 20.990 32.764 -0.74 +0.26 +0.396 2.190

6 C5 UDP
1 20.358 19.639 33.074 -0.54 +0.00 +0.000 2.190

7 C6 UDP
1 19.074 19.323 33.299 -0.48 +0.00 +0.000 2.190

8 O2 UDP
1 17.429 22.420 32.939 -0.30 -0.31 -0.396 2.190

9 O4 UDP
1 21.832 21.436 32.538 -0.16 -0.18 -0.396 2.190

10 C1' UDP
1 16.661 19.859 33.555 -0.64 +0.06 +0.324 2.190

11 C2' UDP
1 16.169 18.663 32.736 -0.65 -0.01 +0.113 2.190

12 C3' UDP
1 15.502 18.477 35.053 -0.56 +0.03 +0.113 2.190

14 O4' UDP
1 16.650 19.352 34.884 -0.04 -0.07 -0.227 2.190

15 O2' UDP
1 15.558 18.281 30.868 -0.28 -0.45 +0.424 2.190

16 HO2'UDP
1 15.558 18.281 30.868 -0.28 -0.45 +0.424 2.190

17 O3' UDP
1 15.558 18.281 30.868 -0.28 -0.45 +0.424 2.190

18 HO3'UDP
1 15.558 18.281 30.868 -0.28 -0.45 +0.424 2.190

19 C5' UDP
1 15.558 18.281 30.868 -0.28 -0.45 +0.424 2.190

19 C5' UDP
1 17.525 17.236 38.076 -0.63 +0.28 +1.019 2.190

20 O5' UDP
1 17.796 18.371 39.013 -0.21 -0.03 -0.255 2.190

21 PA UDP
1 17.796 18.371 39.013 -0.21 -0.03 -0.255 2.190

22 O1A UDP
1 17.796 18.371 39.013 -0.21 -0.03 -0.255 2.190

24 O3A UDP
1 15.718 15.879 39.943 -0.73 +0.44 +1.019 2.190

25 PB UDP
1 14.699 17.718 15.879 39.943 -0.73 +0.44 +1.019 2.190
                USER
                                                                                                                                                                          vdW
                                                                                                                                                                                          Elec
  35
                USER
                MOTA
                MOTA
                MOTA
                MOTA
  40
                ATOM
                ATOM
                ATOM
                ATOM
                MOTA
  45
                MOTA
                MOTA
                MOTA
                MOTA
                MOTA
  50
            ATOM
                ATOM
                MOTA
                ATOM
                ATOM
   55
                ATOM
                ATOM
                ATOM
                MOTA

    1
    17.796
    18.371
    39.013
    -0.21
    -0.03
    -0.255
    2.190

    1
    16.769
    16.000
    38.744
    -0.03
    -0.18
    -0.510
    2.190

    1
    15.718
    15.879
    39.943
    -0.73
    +0.44
    +1.019
    2.190

    1
    14.699
    17.113
    39.721
    -0.15
    -0.12
    -0.255
    2.190

    1
    16.601
    16.105
    41.115
    -0.56
    -0.24
    -0.255
    2.190

    1
    14.849
    14.676
    39.880
    +0.00
    -0.08
    -0.255
    2.190

                ATOM
   60
                                       25 PB UDP
                ATOM
                                        26 OlB UDP
                ATOM
                                       27 O2B UDP
                MOTA
                MOTA
                                        28 O3B UDP
                 TER
   65
                ENDMDL
                 MODEL
                                        34
                 USER Run = 34
                 USER Cluster Rank = 1
```

- 108 -

```
Number of conformations in this cluster = 30
      USER
      USER
      USER
                RMSD from reference structure
                                                          = 2.097 A
      USER
                Estimated Free Energy of Binding
                                                         = -8.20 kcal/mol [=(1)+(3)]
      USER
                Estimated Inhibition Constant, Ki = +9.82e-07
                                                                           [Temperature = 298.15 \text{ K}]
      USER
      USER
                Final Docked Energy
                                                          = -11.33 \text{ kcal/mol} [= (1) + (2)]
      USER
                (1) Final Intermolecular Energy = -10.38 \text{ kcal/mol}
      USER
                (2) Final Internal Energy of Ligand = -0.96 kcal/mol
(3) Torsional Free Energy = +2.18 kcal/mol
      USER
      USER
                (3) Torsional Free Energy
      USER
      USER
15
      USER
                DPF = test.dpf
      USER
                NEWDPF move udp_tr.pdbq
                NEWDPF about16.792999 18.735001 34.970001
      USER
      USER
                NEWDPF tran016.582017 19.303584 34.740441
      USER
                NEWDPF quat0-0.262934 -0.600146 0.755440 8.281891
20
               NEWDPF ndihe7
      USER
                NEWDPF dihe0-95.21 12.27 76.12 136.23 -39.68 40.94 148.63
      USER
      USER
      USER
                                                                          vdW
                                                                                   Elec
                              Rank
                                                                                                     RMS
                                              х
                                                       У
                                                                 z
                                                                          -0.37 -0.10 -0.211 2.097
-0.83 +0.27 +0.396 2.097
-0.54 -0.39 -0.440 2.097
                                           18.079 20.184 33.211
18.387 21.485 32.927
      MOTA
                  1 N1 UDP
                                 1
                  2 C2 UDP
25
                                    1
      MOTA
                                           18.367 21.485 32.927
19.717 21.776 32.764
19.958 22.757 32.565
20.776 20.870 32.842
20.388 19.526 33.135
19.089 19.231 33.290
      MOTA
                  3 N3 UDP
                 4 H3 UDP
      MOTA
                                    1
                                                                          +0.03 +0.64 +0.440 2.097
      MOTA
                 5 C4 UDP
                                                                          -0.73
                                                                                   +0.26 +0.396 2.097
                                   1
      MOTA
                  6
                    C5
                          UDP
                                   1
                                                                          -0.53
                                                                                   +0.00 - +0.000
                                                                                                     2.097
30
                  7, C6 UDP
                                                                          -0.47 +0.00 +0.000 2.097
                                   1
     ATOM
                                           17.517 22.354 32.836
                                                                          -0.31 -0.30 -0.396 2.097
      MOTA
                 8 02 UDP
                                   1
                                           21.919 21.296 32.678
16.674 19.807 33.413
16.208 18.618 32.570
15.002 18.136 33.409
15.412 18.448 34.848
      MOTA
                 9 04 UDP
                                   -1
                                                                          -0.22 -0.22 -0.396 2.097
                10 C1' UDP
11 C2' UDP
12 C3' UDP
                                                                          -0.65 +0.06 +0.324 2.097
-0.66 -0.01 +0.113 2.097
-0.70 -0.01 +0.113 2.097
      MOTA
                                   1
      MOTA
                                   1
35
     MOTA
                                   1
                 13 C4' UDP
                                                                          -0.57 +0.02 +0.113
      MOTA
                                   1
                                                                                                     2.097
      ATOM
                 14 O4' UDP
                                   1
                                           16.582 19.304 34.740
                                                                          -0.04
                                                                                   -0.07 -0.227
                15 02' UDP
                                          15.770 19.049 31.304 -0.17 +0.21 -0.537
14.756 19.225 31.332 -0.30 -0.36 +0.424
13.885 18.949 33.040 -0.27 +0.14 -0.537
14.208 19.905 32.835 -0.40 -0.39 +0.424
      ATOM
                                   1
                                                                                   +0.21 -0.537 2.097
      ATOM .
                 16 HO2'UDP
                                   1
                                                                                                     2.097
                 17 03' UDP
40
    ATOM
                                    1
                                                                                                     2.097
      MOTA
                 18 HO3'UDP
                                                                          -0.40 -0.39 +0.424
                                   J
                                                                                                     2.097
                                           14.206 19.903 32.633
15.793 17.201 35.645
15.583 17.480 37.016
16.541 17.904 38.195
17.777 18.479 37.591
15.767 18.746 39.161
      MOTA
                 19 C5' UDP
                                    1
                                                                        -0.31 +0.04 +0.113 2.097
                20 O5' UDP
21 PA UDP
22 O1A UDP
      MOTA
                                                                        +0.14 -0.17 -0.368
                                   1
                                                                                                     2.097
                                                                          -0.62 +0.39 +1.019
      MOTA
                                   1
                                                                                                     2.097
                                                                          -0.14 -0.08 -0.255 2.097
45
     ATOM
                                   1
                 23 O2A UDP
                                                                          -0.16 -0.11 -0.255 2.097
     MOTA
                                   1
                                            16.829 16.419 38.703
      MOTA
                 24 O3A UDP
                                                                          -0.05 -0.18 -0.510 2.097
                                   1
                                           16.037 15.420 39.668
16.000 16.175 41.096
16.961 14.258 39.690
      ATOM
                 25 PB UDP
                                   1
                                                                          -0.65 +0.40 +1.019
                                                                                                     2.097
                                                                          -0.67 -0.23 -0.255 2.097
+0.04 -0.05 -0.255 2.097
                 26 O1B UDP
      ATOM
                                   1
50
     MOTA
                 27 O2B UDP
                                   1
                                            14.606 15.233 39.320
                                                                          +0.09 -0.09 -0.255 2.097
      MOTA
                 28 O3B UDP
                                   1
      TER
      ENDMDL
      MODEL
                    20
55
      USER
                Run = 20
      USER
                Cluster Rank = 1
      USER
                Number of conformations in this cluster = 30
      USER
      USER
               RMSD from reference structure
                                                       = 2.190 A
60
      USER
                                                       = -8.37 \text{ kcal/mol} [= (1) + (3)]
      USER
                Estimated Free Energy of Binding
                Estimated Inhibition Constant, Ki = +7.36e-07 [Temperature = 298.15 K]
      USER
      USER
      USER
                Final Docked Energy
                                                          = -11.31 \text{ kcal/mol} [= (1) + (2)]
      USER
      USER
                (1) Final Intermolecular Energy = −10.55 kcal/mol
               (2) Final Internal Energy of Ligand = -0.77 kcal/mol
     ·USER
                (3) Torsional Free Energy = +2.18 kcal/mol
      USER
```

```
USER
        USER
        USER
                 .DPF = test.dpf
                  NEWDPF move udp_tr.pdbq
NEWDPF about16.792999 18.735001 34.970001
        USER
        USER
                  NEWDPF tran016.600663 19.139251 34.607528
                  NEWDPF quat0-0.372510 0.542970 -0.752609 -7.650237
        USER
                  NEWDPF ndihe7
        USER
                  NEWDPF dihe0-104.31 14.83 -107.06 15.47 -94.66 40.90 152.31
        USER
10
        USER
                                                   x y z vdW Elec q RMS
18.075 20.143 33.132 -0.37 -0.09 -0.211 2.190
                                                                          z
                                                                                                            q
        USER
                                    Rank
                    1 N1 UDP 1
2 C2 UDP 1
        MOTA

    18.075
    20.143
    33.132
    -0.37
    -0.09
    -0.211
    2.190

    18.384
    21.463
    32.956
    -0.82
    +0.27
    +0.396
    2.190

    19.713
    21.760
    32.794
    -0.54
    -0.39
    -0.440
    2.190

    19.956
    22.754
    32.677
    +0.03
    +0.69
    +0.440
    2.190

    20.768
    20.846
    32.773
    -0.73
    +0.25
    +0.396
    2.190

    20.377
    19.484
    32.955
    -0.52
    +0.00
    +0.000
    2.190

    19.079
    19.182
    33.109
    -0.47
    +0.00
    +0.000
    2.190

    17.518
    22.340
    32.958
    -0.30
    -0.31
    -0.396
    2.190

    21.910
    21.280
    32.624
    -0.22
    -0.21
    -0.396
    2.190

                     2 C2 UDP
        MOTA
        MOTA
                     3 N3 UDP
                     4 H3 UDP
15
        MOTA
                    5 C4 UDP
6 C5 UDP
7 C6 UDP
        MOTA
        MOTA
        MOTA
                     8 O2 UDP
        ATOM
                     9 . O4 UDP
20
        ATOM
                    10 C1' UDP
        ATOM · ·
                    11 C2' UDP
        MOTA
                    12 C3' UDP
        ATOM
                    13 C4' UDP
        MOTA
25
                    14 O4' UDP
        ATOM
                    15 02' UDP
        MOTA
                    16 HO2'UDP
        ATOM
        MOTA
                   17
                         O3' UDP
                    18 HO3'UDP
        MOTA
30 · ATOM
                    19 C5' UDP
                    20 05' UDP
        ATOM
                                                  16.459 17.421 37.975
17.794 16.803 37.739
16.397 18.893 38.244
15.626 16.531 39.004
                    21 PA UDP
        MOTA
                    22 O1A UDP
23 O2A UDP
        ATOM
        MOTA
                    24 O3A UDP
35
        MOTA
                                                   15.999 15.820 40.387 -0.80 +0.51 +1.019 2.190
                    25. PB UDP
        MOTA
                                         1
                                                   15.099 16.580 41.493 -0.45 -0.30 -0.255 2.190 17.434 16.180 40.511 -0.51 -0.09 -0.255 2.190 15.571 14.401 40.484 -0.15 -0.10 -0.255 2.190
                    26 O1B UDP
                                        1
        ATOM
                                          1
        MOTA
                    27 O2B UDP
                                                                                    -0.51 -0:09 -0.255 2.120
-0.15 -0.10 -0.255 2.190
        MOTA
                    28 O3B UDP
                                          1
 40
        TER
        ENDMDL
        MODEL
                        , 7
                   Run = 7
        USER
        USER
                   Cluster Rank = 1
 45
        USER
                   Number of conformations in this cluster = 30
        USER
                                                                     = 2.106 A
                   RMSD from reference structure
        USER
                                                                    = -8.01 kcal/mol [=(1)+(3)]
        USER
                   Estimated Free Energy of Binding
                                                                  = +1.34e-06 [Temperature = 298.15 K]
 50
        USER
                   Estimated Inhibition Constant, Ki
        USER
                                                                     = -11.14 \text{ kcal/mol} [= (1) + (2)]
        USER
                   Final Docked Energy
        USER
                  (1) Final Intermolecular Energy = -10.19 kcal/mol
        USER
                  (2) Final Internal Energy of Ligand = -0.95 kcal/mol
(3) Torsional Free Energy = +2.18 kcal/mol
 55
        USER
        USER
        USER
        USER
                   DPF = test.dpf
        USER
 60
                   NEWDPF move udp tr.pdbq
        USER
                   NEWDPF about16.792999 18.735001 34.970001
                   NEWDPF tran016.771562 19.240141 34.663676
        USER
                   NEWDPF quat0-0.276654 -0.688269 0.670632 9.784323
        USER
        USER
                   NEWDPF ndihe7
                   NEWDPF dihe0179.04 77.47 173.47 135.89 -39.09 46.20 144.65
 65
        USER
        USER
        USER
                                                                                        vdW
                                                                                                  Elec
                                                                                                                       RMS
                                                                  У
                     1 N1 UDP 1
                                                    18.311 20.117 33.175 -0.35 -0.10 -0.211 2.106
        MOTA
```

- 110 -

```
2 C2 UDP
3 N3 UDP
4 H3 UDP
          ATOM 2 C2 UDF 1 18.620 21.418 32.890 -0.81 +0.28 +0.396 2.106
ATOM 3 N3 UDF 1 19.953 21.715 32.766 -0.54 -0.38 -0.440 2.106
ATOM 4 H3 UDF 1 20.195 22.696 32.567 +0.03 +0.60 +0.440 2.106
ATOM 5 C4 UDF 1 21.014 20.815 32.885 -0.73 +0.66 +0.440 2.106
ATOM 6 C5 UDF 1 20.624 19.471 33.175 -0.52 +0.00 +0.000 2.106
ATOM 7 C6 UDF 1 19.323 19.171 33.293 -0.46 +0.00 +0.000 2.106
ATOM 8 02 UDF 1 17.749 22.281 32.765 -0.31 -0.30 -0.396 2.106
ATOM 9 04 UDF 1 22.159 21.247 32.752 -0.23 -0.23 -0.396 2.106
ATOM 10 C1' UDF 1 16.902 19.734 33.336 -0.64 +0.07 +0.324 2.106
ATOM 11 C2' UDF 1 16.469 18.535 32.489 -0.64 +0.07 +0.324 2.106
ATOM 12 C3' UDF 1 15.604 18.379 34.741 -0.55 +0.02 +0.113 2.106
ATOM 14 04' UDF 1 16.069 18.955 31.205 -0.23 +0.16 -0.537 2.106
ATOM 15 O2' UDF 1 16.069 18.955 31.205 -0.23 +0.16 -0.537 2.106
ATOM 16 HO2'UDF 1 15.750 18.141 30.661 -0.30 -0.45 +0.424 2.106
ATOM 17 O3' UDF 1 14.258 19.144 31.902 -0.23 -0.34 +0.424 2.106
ATOM 18 HO3'UDF 1 15.800 17.459 36.928 +0.08 +0.424 2.106
ATOM 20 O5' UDF 1 15.800 17.459 36.928 +0.08 -0.16 -0.368 2.106
ATOM 21 PA UDF 1 15.800 17.459 36.928 +0.08 -0.16 -0.368 2.106
ATOM 22 O1A UDF 1 16.573 17.981 38.046 -0.62 +0.37 +1.019 2.106
ATOM 24 O3A UDF 1 16.517 15.522 39.619 -0.63 +0.35 +1.019 2.106
ATOM 25 PB UDF 1 16.557 15.522 39.619 -0.63 +0.35 +1.019 2.106
ATOM 26 O1B UDF 1 16.575 15.522 39.619 -0.63 +0.35 +1.019 2.106
ATOM 27 O2B UDF 1 16.557 15.522 39.619 -0.63 +0.35 +1.019 2.106
ATOM 28 O3B UDF 1 16.575 15.522 39.619 -0.63 +0.35 +1.019 2.106
ATOM 28 O3B UDF 1 16.575 15.522 39.619 -0.63 +0.35 +1.019 2.106
ATOM 27 O2B UDF 1 16.557 15.522 39.619 -0.69 -0.255 2.106
ATOM 28 O3B UDF 1 16.575 15.522 39.619 -0.69 -0.255 2.106
ATOM 28 O3B UDF 1 16.575 15.522 39.619 -0.69 -0.255 2.106
ATOM 27 O2B UDF 1 16.575 15.522 39.619 -0.69 -0.255 2.106
ATOM 28 O3B UDF 1 16.575 15.522 39.619 -0.69 -0.255 2.106
ATOM 27 O2B UDF 1 16.575 15.522 39.619 -0.69 -0.255 2.106
ATOM 28 O3B UDF 1 16.575 15.522 39.619 -0.01 -0.09 -0.255 2.106

    18.620
    21.418
    32.890
    -0.81
    +0.28
    +0.396
    2.106

    19.953
    21.715
    32.766
    -0.54
    -0.38
    -0.440
    2.106

    20.195
    22.696
    32.567
    +0.03
    +0.60
    +0.440
    2.106

                ATOM
                                                                                                        1
10
20
25
                 TER
                ENDMDL
                                               . 59
30 MODEL
             USER Run = 59
                USER
                                           Cluster Rank = 1
                 USER
                                             Number of conformations in this cluster = 30
                 USER
             USER RMSD from reference structure
                                                                                                                                                                           = 2.112 A
                 USER
                 USER Estimated Free Energy of Binding = -8.37 \text{ kcal/mol} [=(1)+(3)]
USER Estimated Inhibition Constant, Ki = +7.26e-07 [Temperature = 298.15 K]
                  USER
40
                                                                                                                                                                               = -11.13 \text{ kcal/mol} [= (1) + (2)]
                 USER
                                         Final Docked Energy
                 USER
                                         (1) Final Intermolecular Energy = -10.55 kcal/mol
                 USER
                 USER (2) Final Internal Energy of Ligand = -0.58 kcal/mol
USER (3) Torsional Free Energy = +2.18 kcal/mol
45
                 USER
                 USER
             USER
                                             DPF = test.dpf
                  USER
                                             NEWDPF move udp_tr.pdbq
                                             NEWDPF about16.792999 18.735001 34.970001
                 USER
50
                 USER
                                             NEWDPF tran016.789117 19.079734 34.943430
                 USER
                                           NEWDPF quat00.532175 0.338229 0.776138 5.198164
                  USER NEWDPF ndihe7
                  USER NEWDPF dihe0163.86 24.42 -162.76 -24.87 124.02 -143.97 114.20
                                            Rank x y z vdW Elec q RMS

1 N1 UDP 1 18.129 20.036 33.316 -0.34 -0.10 -0.211 2.112

2 C2 UDP 1 18.455 21.346 33.100 -0.80 +0.27 +0.396 2.112

3 N3 UDP 1 19.767 21.606 32.800 -0.53 -0.37 -0.440 2.112

4 H3 UDP 1 20.024 22.592 32.651 +0.03 +0.61 +0.440 2.112

5 C4 UDP 1 20.789 20.663 32.676 -0.70 +0.24 +0.396 2.112

6 C5 UDP 1 20.382 19.312 32.907 -0.50 +0.00 +0.000 2.112

7 C6 UDP 1 19.100 19.048 33.196 -0.45 +0.00 +0.000 2.112

8 O2 UDP 1 17.618 22.247 33.185 -0.28 -0.32 -0.396 2.112

9 O4 UDP 1 21.921 21.064 32.407 -0.19 -0.19 -0.396 2.112

10 C1' UDP 1 16.743 19.689 33.659 -0.61 +0.07 +0.324 2.112

11 C2' UDP 1 16.131 18.589 32.788 -0.64 -0.01 +0.113 2.112

12 C3' UDP 1 15.014 18.078 33.728 -0.67 +0.00 +0.113 2.112

13 C4' UDP 1 15.605 18.256 35.125 -0.53 +0.03 +0.113 2.112
                 USER
55
             USER
                                    1 N1 UDP 1
2 C2 UDP 1
3 N3 UDP 1
                  MOTA
                 MOTA
                 MOTA
                 ATOM
 60
                 ATOM
                  MOTA
                  MOTA
                  MOTA
                  ATOM
                 MOTA
                  MOTA
                  ATOM
                  MOTA
```

- 111 -

```
14 O4' UDP 1 16.789 19.080 34.943 -0.01 -0.08 -0.227 2.112 15 O2' UDP 1 15.563 19.139 31.622 -0.29 +0.22 -0.537 2.112 16 HO2'UDP 1 15.357 18.386 30.952 -0.19 -0.49 +0.424 2.112 17 O3' UDP 1 13.895 18.955 33.563 -0.18 +0.07 -0.537 2.112 18 HO3'UDP 1 14.220 19.862 33.198 -0.35 -0.37 +0.424 2.112 19 C5' UDP 1 16.026 16.935 35.769 -0.36 +0.04 +0.113 2.112 20 O5' UDP 1 16.746 17.237 36.949 +0.04 -0.15 -0.368 2.112 21 PA UDP 1 16.315 17.725 38.386 -0.63 +0.40 +1.019 2.112 22 O1A UDP 1 17.557 17.965 39.176 -0.27 -0.04 -0.255 2.112 23 O2A UDP 1 15.343 18.853 38.235 -0.10 -0.12 -0.255 2.112 24 O3A UDP 1 15.653 16.343 38.828 -0.01 -0.22 -0.510 2.112 25 PB UDP 1 16.007 15.274 39.964 -0.67 +0.39 +1.019 2.112 26 O1B UDP 1 15.929 16.105 41.347 -0.68 -0.26 -0.255 2.112 27 O2B UDP 1 17.408 14.938 39.608 -0.02 -0.04 -0.255 2.112 28 O3B UDP 1 14.997 14.197 40.130 -0.09 -0.10 -0.255 2.112
                MOTA
                ATOM
                ATOM .
                ATOM
                ATOM
                ATOM
                ATOM
                MOTA
                MOTA
10
            ATOM
                MOTA
                MOTA
                MOTA
                MOTA
15
              MOTA
                TER
                ENDMDL
                                                    98
                MODEL
                                           Run' = 98.
                 USER
20
                USER
                                           Cluster Rank = 1
                                           Number of conformations in this cluster = 30
                USER
                 USER
                 USER RMSD from reference structure = 2.109 A
                 USER
                                                                                                                                                                 = -7.94 kcal/mol [=(1)+(3)]
25
                USER
                                       Estimated Free Energy of Binding
                                      Estimated Inhibition Constant, Ki = +1.51e-06 [Temperature = 298.15 K]
                USER
                 USER
                                                                                                                                                                   = -11.08 kcal/mol, [=(1)+(2)]
                 USER - Final Docked Energy
                 USER
                                        (1) Final Intermolecular Energy = -10.12 kcal/mol
30
                 USER
                USER
                                           (2) Final Internal Energy of Ligand = -0.96 kcal/mol
                                   (3) Torsional Free Energy
                                                                                                                                                           = \pm 2.18 \text{ kcal/mol}
                 USER
                 USER
                 USER
35
                USER DPF = test.dpf
                                           NEWDPF move udp tr.pdbq
                USER
                                           NEWDPF about16.792999 18.735001 34.970001
                                           NEWDPF tran016.893783 19.279399 34.797086
             USER
                USER '
                                           NEWDPF quat00.214303 0.443762 -0.870143 -7.171696
40
                 USER
                                           NEWDPF ndihe7
                                   NEWDPF ndine/
NEWDPF dihe0-119.38 43.09 -179.96 146.93 -44.48 49.68 150.19
              USER USER USER Rank x y z vdw Elec q RMS ATOM 1 N1 UDP 1 18.342 20.174 33.229 -0.35 -0.10 -0.211 2.109 ATOM 2 C2 UDP 1 18.641 21.478 32.946 -0.82 +0.29 +0.396 2.109 ATOM 3 N3 UDP 1 19.666 21.759 32.746 -0.82 +0.29 +0.396 2.109 ATOM 4 H3 UDP 1 20.201 22.752 32.548 +0.03 +0.61 +0.440 2.109 ATOM 5 C4 UDP 1 21.026 20.862 32.782 -0.74 +0.25 +0.396 2.109 ATOM 6 C5 UDP 1 20.647 19.515 33.074 -0.53 +0.00 +0.000 2.109 ATOM 7 C6 UDP 1 19.353 19.220 33.267 -0.47 +0.00 +0.000 2.109 ATOM 8 02 UDP 1 17.769 22.347 32.892 -0.28 -0.32 -0.396 2.109 ATOM 9 04 UDP 1 22.164 21.290 32.585 -0.22 -0.20 -0.396 2.109 ATOM 10 C1' UDP 1 16.451 18.614 32.634 -0.63 +0.00 +0.113 2.109 ATOM 11 C2' UDP 1 15.272 18.125 33.506 -0.65 -0.01 +0.113 2.109 ATOM 12 C3' UDP 1 15.272 18.125 33.506 -0.65 -0.01 +0.113 2.109 ATOM 14 04' UDP 1 15.727 18.423 34.933 -0.554 +0.03 +0.113 2.109 ATOM 16 H02' UDP 1 15.973 19.058 31.386 -0.22 -0.08 +0.32 -0.310 ATOM 16 H02' UDP 1 15.973 19.058 31.386 -0.23 +0.00 +0.113 2.109 ATOM 16 H02' UDP 1 15.973 19.058 31.386 -0.23 +0.04 +0.113 2.109 ATOM 16 H02' UDP 1 16.894 19.279 34.797 -0.02 -0.08 -0.227 2.109 ATOM 16 H02' UDP 1 16.894 19.279 34.797 -0.02 -0.08 -0.227 2.109 ATOM 16 H02' UDP 1 16.894 19.279 34.797 -0.02 -0.08 +0.227 2.109 ATOM 16 H02' UDP 1 16.894 19.279 34.797 -0.02 -0.08 -0.227 2.109 ATOM 16 H02' UDP 1 16.894 19.279 34.797 -0.02 -0.08 -0.227 2.109 ATOM 16 H02' UDP 1 16.894 19.279 34.797 -0.02 -0.08 -0.227 2.109 ATOM 17 03' UDP 1 14.429 19.672 32.512 -0.27 -0.32 +0.424 2.109 ATOM 18 H03' UDP 1 14.429 19.672 32.512 -0.27 -0.38 +0.424 2.109 ATOM 19 C5' UDP 1 16.133 17.168 35.707 -0.38 +0.04 +0.113 2.109 ATOM 20 O5' UDP 1 16.853 18.005 38.224 -0.63 +0.03 +0.012 1.09 ATOM 20 O5' UDP 1 16.853 18.005 38.224 -0.63 +0.03 +0.012 1.09 ATOM 20 O5' UDP 1 16.853 18.005 38.224 -0.63 +0.03 +0.012 1.09 ATOM 21 PA UDP 1 18.020 18.665 37.572 -0.11 -0.08 -0.255 2.109 ATOM 24 03A UDP 1 16.659 18.819 39.152 -0.11 -0.11 -0.255 2.109 ATOM 24 03A UDP 1 16.659 18.819 39.152 -0.11 -0.11 -0.255 2.109 ATOM 25 PB UDP 1 16.529 15.472 3
                 USER
                 USER
45
50
55
              MOTA
60
 65
```

- 112 -

```
26 O1B UDP 1
27 O2B UDP 1
- 28 O3B UDP 1
                                      15.059 15.383 39.000 +0.05 -0.11 -0.255 2.109
16.487 16.122 40.998 -0.59 -0.22 -0.255 2.109
17.078 14.100 39.516 +0.06.-0.06 -0.255 2.109
     MOTA
     MOTA
     ATOM
     TER
    ENDMDL
     MODEL .
                 91
     USER Run = 91
     USER
             Cluster Rank = 1
     USER
             Number of conformations in this cluster = 30
10
     USER
     USER RMSD from reference structure
                                                  = 2.427 A
     USER
     USER Estimated Free Energy of Binding = -8.15 \text{ kcal/mol} = (1) + (3)
     USER Estimated Inhibition Constant, Ki = +1.05e-06 [Temperature = 298.15 K]
15
     USER
           Final Docked Energy
                                                   = -11.05 \text{ kcal/mol} [=(1)+(2)]
     USER
     USER
          (1) Final Intermolecular Energy = -10.33 kcal/mol

(2) Final Internal Energy of Ligand = -0.72 kcal/mol

(3) Torsional Free Energy = +2.18 kcal/mol
     USER
     USER
20
    USER
     USER
     USER
             DPF = test.dpf
     USER
     USER
             NEWDPF move udp tr.pdbq
25
     USER
             NEWDPF about16.792999 18.735001 34.970001
             NEWDPF tran017.439802 19.336859 35.113934
     USER
             NEWDPF quat0-0.853123 -0.282142 0.438836 8.841905
     USER
           - NEWDPF ndihe7
     USER
          NEWDPF dihe0176.08 67.48 151.37 -55.37 -90.07 58.66 -174.00
     USER
30
     USER
                                        х у
                                                        z
     USER
     MOTA
     ATOM
     MOTA
35
    MOTA
     ATOM
     MOTA
     ATOM
    MOTA.
40
    ATOM
     MOTA
    MOTA
     ATOM
     ATOM
    MOTA '
45
     ATOM
     MOTA
     MOTA
    ATOM
50
    ATOM
     MOTA
     ATOM
     ATOM
     MOTA
55
   MOTA
     ATOM
     MOTA
     MOTA
     МОТА
60
     ENDMDL
     MODEL
                 78
     USER
             Run = 78
     USER
             Cluster Rank = 1
65
            Number of conformations in this cluster = 30
     USER
     USER
     USER
           RMSD from reference structure
                                                 = 2.417 A
     USER
```

```
Estimated Free Energy of Binding = -8.24 \text{ kcal/mol} [=(1)+(3)]
      USER
                Estimated Inhibition Constant, Ki = +9.08e-07 [Temperature = 298.15 K]
      USER
      USER
                                                                = -10.97 \text{ kcal/mol} [= (1) + (2)]
                 Final Docked Energy
      USER
 5
      USER
                (1) Final Intermolecular Energy = -10.42 kcal/mol

(2) Final Internal Energy of Ligand = -0.55 kcal/mol

(3) Torsional Free Energy = +2.18 kcal/mol
      USER
      USER
      USER
      USER
10
      USER
                 DPF = test.dpf
       USER .
                 NEWDPF move udp tr.pdbq
      USER
                 NEWDPF about16.792999 18.735001 34.970001
       USER
                 NEWDPF tran016.577195 19.722656 34.915745
       USER
                 NEWDPF quat0-0.672356 -0.299327 0.677009 17.193969
15
       USER
                 NEWDPF ndihe7
       USER
                 NEWDPF dihe0167.91 -111.85 -172.88 17.96 -34.07 -1.67 163.75
       USER
       USER
                                                                                   vdW
                                                                                            Elec
                                                                                                        q
                                                                                                                RMS
                                                                       Z
       USER
                                  Rank
                                                   х
                                                                                  -0.40 -0.10 -0.211 2.417

    18.021
    20.465
    33.266
    -0.40
    -0.10
    -0.211
    2.417

    18.220
    21.723
    32.770
    -0.87
    +0.27
    +0.396
    2.417

    19.524
    22.098
    32.566
    -0.51
    -0.42
    -0.440
    2.417

                  1 N1 UDP
                                   1
20
       MOTA
                   2 C2 UDP
3 N3 UDP
4 H3 UDP
                                        1
       MOTA
       MOTA
                                       1
                                                                                +0.14 +0.59 +0.440 2.417
-0.77 +0.28 +0.396 2.417
                                                 19.683 23.050 32.207
                                       1
       MOTA
                                               20.655 21.314 32.797
20.378 20.008 33.308
19.106 19.630 33.506
17.281 22.485 32.533
21.760 21.805 32.568
                                                                                  -0.77 +0.28 +0.396 2.417
-0.59 +0.00 +0.000 2.417
                   5 C4 UDP
                                     1
       MOTA
                    6 C5 UDP
                                     1
25
       MOTA
                                                                                  -0.51 +0.00 +0.000 2.417
                    7 C6 UDP
                                       7
       MOTA
                                                                                -0.36 -0.26 -0.396 2.417
                                        1
                    8 O2 UDP
       MOTA
               - 9 O4 UDP
                                                                                -0.08 -0.17 -0.396 2.417
       ATOM
                                        1
                                                                               -0.65 +0.06 +0.324 2.417
-0.62 +0.00 +0.113 2.417
-0.66 +0.00 +0.113 2.417
-0.56 +0.03 +0.113 2.417
                  10 C1' UDP
                                              16.650 20.006 33.523
                                       1
       MOTA
                                               16.650 20.006 35.325 -0.65 +0.00 +0.113 2.417 

16.303 18.657 32.889 -0.62 +0.00 +0.113 2.417 

15.127 18.217 33.792 -0.66 +0.00 +0.113 2.417 

15.483 18.798 35.160 -0.56 +0.03 +0.113 2.417 

16.577 19.723 34.916 -0.06 -0.07 -0.227 2.417 

15.852 18.833 31.567 -0.24 +0.21 -0.537 2.417 

15.852 18.833 31.567 -0.24 +0.21 -0.537 2.417
30
                   11 C2' UDP
                                       1
       MOTA
                  12 C3' UDP
                                       1
       MOTA
               13 C4' UDP
14 O4' UDP
15 O2' UDP
                                       1
       MOTA
                                   1
       MOTA
       MOTA
                 16 HO2'UDP
35
       MOTA
                  17 O3' UDP
       MOTA
                18 HO3'UDP
       MOTA
                   19 C5' UDP
       MOTA
                   20 O5' UDP
21 PA UDP
       MOTA
40
     - ATOM
                   22 Ola UDP
       MOTA
                 23 O2A UDP
       ATOM
                 24 O3A UDP
25 PB UDP
26 O1B UDP
27 O2B UDP
       MOTA
       MOTA
45
       MOTA
                                                                                   -0.06 -0.04 -0.255 2.417
                                                17.397 15.083 39.659
                                        1
       MOTA
                                                                                   -0.11 -0.11 -0.255 2.417
                   28 O3B UDP
                                                 15.076 14.159 40.290
       MOTA
       TER
        ENDMDL
       MODEL
 50
                      67
                  Run = 67
        USER
                  Cluster Rank = 1
        USER
                  Number of conformations in this cluster = 30
        USER
        USER
                  RMSD from reference structure = 2.230 A
 55
        USER
        USER
                  Estimated Free Energy of Binding = -8.10 \text{ kcal/mol} [=(1)+(3)]
        USER
                  Estimated Inhibition Constant, Ki = +1.15e-06 [Temperature = 298.15 K]
        USER
        USER
                                                                 = \cdot -10.95 \text{ kcal/mol} [= (1) + (2)]
 60
                  Final Docked Energy
        USER
        USER
                  (1) Final Intermolecular Energy = -10.28 kcal/mol (2) Final Internal Energy of Ligand = -0.67 kcal/mol
        USER
        USER
                                                            = +2.18 \text{ kcal/mol}
        USER
                   (3) Torsional Free Energy
 65
        USER
        USER
                   DPF = test.dpf
        USER
                   NEWDPF move udp_tr.pdbq
        USER
```

SURDOCID AMO 31897:742 (

```
NEWDPF about16.792999 18.735001 34.97.0001
       USER
       USER
                 NEWDPF tran017.161973 19.546069 34.694746
                 NEWDPF quat00.907012 0.421046 -0.007048 -17.600431
       USER
                 NEWDPF ndihe7
       USER
                 NEWDPF dihe0-150.07 88.07 161.44 45.36 22.65 -28.61 139.40
       USER
       USER
       USER
                                                   ×
                                                                         z
                                                                                    vdW
                                                                                              Elec
                                  Rank
                                                                                                                    RMS
                                                 18.821 19.878 33.115 -0.32 -0.10 -0.211 2.230
                  1 N1 UDP
                                    1
      MOTA
                                                 19.295 21.037 32.566
20.657 21.137 32.436
21.023 22.012 32.037
21.594 20.165 32.793
21.034 18.976 33.354
                                                                                     -0.70 +0.25 +0.396 2.230
                    2 C2 UDP
      MOTA
                                        1
                 3 N3 UDP
4 H3 UDP
5 C4 UDP
                                                                                  -0.49 -0.25 -0.440 2.230
-0.02 +0.11 +0.440 2.230
-0.67 +0.25 +0.396 2.230
10
      MOTA
                                        1
       ATOM
                                        1
      MOTA
                             UDP
                                        1
                  6 C5 UDP
                                                                                  -0.46 +0.00 +0.000 2.230
      ATOM
                                        1
      MOTA
                   7 C6
                             UDP
                                        1
                                                 19.703 18.868 33.480 -0.43 +0.00 +0.000 2.230

    18.542
    21.948
    32.218
    -0.28
    -0.26
    -0.396
    2.230

    22.786
    20.416
    32.617
    -0.21
    -0.28
    -0.396
    2.230

    17.373
    19.713
    33.298
    -0.61
    +0.10
    +0.324
    2.230

    16.804
    18.416
    32.716
    -0.56
    +0.00
    +0.113
    2.230

    15.512
    18.276
    33.555
    -0.62
    +0.00
    +0.113
    2.230

                   8 O2 UDP
                                        1
15
      MOTA
      ATOM
                   9 04
                             UDP
                                        1
                   10 C1' UDP
                                        1
       MOTA
                  11 C2' UDP
      ATOM
                                        1
                  12 C3' UDP
                                        1
      MOTA
                                                 15.894 18.870 34.910
20
                  13 C4' UDP
                                                                                    -0.55 +0.02 +0.113 2.230
     ATOM
                                        1
                                                 15.894 18.870 34.910 -0.55 +0.02 +0.113 2.230

17.162 19.546 34.695 -0.04 -0.09 -0.227 2.230

16.478 18.585 31.357 -0.23 +0.12 -0.537 2.230

15.659 18.004 31.125 -0.34 -0.45 +0.424 2.230

14.519 19.096 32.932 -0.11 +0.21 -0.537 2.230

14.585 18.999 31.909 -0.17 -0.30 +0.424 2.230
                  14 04' UDP
      MOTA
                                        1
                  15 02' UDP
16 HO2'UDP
                                        1
       ATOM
       MOTA
                                        1
                  17 03' UDP
      ATOM
                                        1
                                       1 1
     MOTA
                  18 HO3'UDP
                                        1 16.086 17.810 35.995 -0.17 -0.30 +0.424 2.230

1 16.086 17.810 35.995 -0.44 +0.04 +0.113 2.230

1 16.063 18.464 37.250 -0.05 -0.16 -0.368 2.230

1 16.420 18.005 38.717 -0.68 +0.39 +1.019 2.230

1 17.896 18.128 38.884 -0.25 -0.03 -0.255 2.230
                  19 C5' UDP
      MOTA
                   20 05' UDP
      MOTA
       MOTA
                - 21
                       PA
                             UDP
                   22 Ola UDP
       ATOM
                                                                                  -0.21 -0.12 -0.255 2.230
                                                 15.535 18.739 39.674
30
     MOTA
                  23 O2A UDP
                                        1
                                                 16.027 16.474 38.501
                   24 O3A UDP
                                                                                   +0.00 -0.22 -0.510 2.230
      ATOM
                                                 15.939 15.218 39.486
15.737 15.862 40.954
17.298 14.640 39.327
14.736 14.368 39.294
                   25 PB UDP
                                                                                  -0.59 +0.40 +1.019 2.230
                                        1
       MOTA
                  26 O1B UDP
27 O2B UDP
                                        1
       MOTA
                                                                                     -0.53
                                                                                              ~0.17 -0.255
                                                                                                                   2.230
                                                                                     -0.02 -0.06 -0.255 2.230
       MOTA
                                        1
                  28 O3B UDP
                                                                                     -0.02 -0.11 -0.255 2.230
35
      MOTA
                                        1
       ENDMDL
       MODEL
                       4
       USER
                 Run = 4
40
                 Cluster Rank = 1
       USER
       USER
                 Number of conformations in this cluster = 30
       USER
       USER
                 RMSD from reference structure
                                                                  \approx 2.180 A
       USER
                 Estimated Free Energy of Binding \approx -7.94 \text{ kcal/mol} = (1)+(3)
45
       USER
               Estimated Inhibition Constant, Ki = +1.52e-06 [Temperature = 298.15 K]
       USER
       USER
                 Final Docked Energy
                                                                  \approx -10.90 kcal/mol [=(1)+(2)]
       USER
                 (1) Final Intermolecular Energy = -10.12 kcal/mol
(2) Final Internal Energy of Ligand = -0.79 kcal/mol
50
       USER
       USER
                                                         = +2.18 \text{ kcal/mol}
       USER
                 (3) Torsional Free Energy
       USER
       USER
55
       USER
                 DPF = test.dpf
       USER
                 NEWDPF move udp_tr.pdbq
                 NEWDPF about16.792999 18.735001 34.970001
       USER
                 NEWDPF tran016.815113 19.444013 34.902784
       USER
       USER
                 NEWDPF quat0-0.630271 -0.262187 0.730764 9.610976
60
       USER
                 NEWDPF ndihe7
       USER
                 NEWDPF dihe0-171.96 113.05 85.63 129.04 -22.39 18.54 152.66
       USER
                                                                                     vdW
       USER
                                   Rank
                                                    x
                                                                          z
                                                                                               Elec
                                                                                                           a
                                                                                                                    RMS
                                                 18.242 20.226 33.257
                                                                                     -0.36 -0.10 -0.211 2.180
       MOTA
                    1 N1
                             UDP 1
65
                    2 C2
                             UDP
                                                 18.524 21.507 32.871
                                                                                     -0.82 +0.28 +0.396 2.180
       ATOM
                                        1
                                                 19.844 21.797 32.636
20.066 22.763 32.359
20.915 20.907 32.736
                                                                                     -0.54 -0.37 -0.440 2.180
+0.06 +0.53 +0.440 2.180
-0.74 +0.25 +0.396 2.180
                                        1
       ATOM
                    3 N3
                              UDP
       ATOM
                    4 H3
                              UDP
                                        1
                    5 C4 UDP
                                        1
       MOTA
```

- 115 -

```
6 C5 UDP 1 20.553 19.584 33.137 -0.54 +0.00 +0.000 2.180 7 C6 UDP 1 19.264 19.290 33.364 -0.47 +0.00 +0.000 2.180 8 02 UDP 1 17.642 22.360 32.753 -0.31 -0.30 -0.396 2.180 9 04 UDP 1 22.046 21.330 32.496 -0.20 -0.18 -0.396 2.180 10 C1' UDP 1 16.850 19.854 33.541 -0.64 +0.07 +0.324 2.180 11 C2' UDP 1 16.365 18.604 32.803 -0.62 +0.00 +0.113 2.180 12 C3' UDP 1 15.198 18.172 33.720 -0.65 +0.00 +0.113 2.180 13 C4' UDP 1 15.660 18.589 35.116 -0.55 +0.03 +0.113 2.180 14 04' UDP 1 15.874 18.941 31.527 -0.25 +0.19 -0.537 2.180 15 O2' UDP 1 15.387 18.131 31.120 -0.23 -0.51 +0.424 2.180 17 O3' UDP 1 15.387 18.131 31.120 -0.23 -0.51 +0.424 2.180 18 H03' UDP 1 16.085 17.404 35.983 -0.40 +0.11 2.180 19 C5' UDP 1 15.874 18.691 32.384 -0.14 -0.17 +0.424 2.180 19 C5' UDP 1 15.875 17.8691 32.384 +0.014 -0.17 +0.424 2.180 20 O5' UDP 1 15.837 17.743 37.334 +0.02 -0.16 -0.368 2.180 20 O5' UDP 1 15.837 17.404 35.983 -0.40 +0.04 +0.113 2.180 20 O5' UDP 1 15.837 17.743 37.334 +0.02 -0.16 -0.368 2.180 20 O5' UDP 1 16.085 17.404 35.983 -0.40 +0.04 +0.113 2.180 20 O5' UDP 1 16.085 17.404 35.983 -0.40 +0.04 +0.113 2.180 20 O5' UDP 1 16.085 17.404 35.983 -0.40 +0.04 +0.113 2.180 20 O5' UDP 1 16.085 17.404 35.983 -0.40 +0.04 +0.113 2.180 20 O5' UDP 1 16.085 17.404 35.983 -0.40 +0.04 +0.011 2.180 20 O5' UDP 1 15.837 17.743 37.334 +0.02 -0.16 -0.368 2.180 20 O5' UDP 1 16.085 17.404 35.983 -0.40 +0.04 +0.012 2.180 20 O5' UDP 1 15.837 17.743 37.334 +0.02 -0.16 -0.368 2.180 20 O5' UDP 1 15.999 18.554 39.690 -0.10 -0.12 -0.255 2.180 24 O3A UDP 1 16.921 14.021 39.691 +0.04 -0.06 -0.255 2.180 26 O1B UDP 1 15.994 15.506 39.673 -0.62 +0.38 +1.019 2.180 26 O1B UDP 1 16.921 14.021 39.621 +0.04 -0.06 -0.255 2.180 28 O3B UDP 1 14.607 15.093 39.256 +0.05 -0.09 -0.255 2.180 28 O3B UDP 1 14.607 15.093 39.256 +0.05 -0.09 -0.255 2.180 28 O3B UDP 1 14.607 15.093 39.256 +0.05 -0.09 -0.255 2.180 28 O3B UDP 1 14.607 15.093 39.256 +0.05 -0.09 -0.255 2.180 28 O3B UDP 1 14.607 15.093 39.256 +0.05 -0.09 -0.255 2.180 28 O3B UDP 1 14.607 15.093 39.256 +0.05 -0.09 -0.255
                 MOTA
                 ATOM
                 MOTA
                 MOTA
  5
                 MOTA
                 MOTA
                 ATOM
                 MOTA
                 MOTA
10
                 MOTA
                 MOTA
                 ATOM
                  MOTA
                 MOTA
15
                 MOTA
                  ATOM
             MOTA .
                  MOTA
                  ATOM
20
                 МОТА
             ATOM
                  ATOM
                  ATOM
                  TER
25
                   ENDMDL
                  MODEL
                                                   68
                   USER
                                        Run ≈ 68
                   USER -Cluster Rank = 1
                                     Number of conformations in this cluster = 30
                   USER
 30
                   USER
                                            RMSD from reference structure
                                                                                                                                                                    = 2.052 A
                   USER
                   USER
                                           Estimated Free Energy of Binding = -8.04 \text{ kcal/mol} [=(1)+(3)]
Estimated Inhibition Constant, Ki = +1.27e-06 [Temperature = 298.15 K]
                   USER
                                     Estimated Inhibition Constant, Ki
                   USER
 35
                   USER
                                                                                                                                                                    = -10.89 \text{ kcal/mol} [= (1) + (2)]
                   USER
                                        Final Docked Energy
                   USER
                                        (1) Final Intermolecular Energy = -10.22 kcal/mol
(2) Final Internal Energy of Ligand = -0.67 kcal/mol
(3) Torsional Free Energy = +2.18 kcal/mol
                   USER
                   USER
                                             (3) Torsional Free Energy =
 40
                   USER
                   USER
                   USER
                                             DPF = test.dpf
                   USER
                                            NEWDPF move udp tr.pdbq
                   USER
                                             NEWDPF about16.792999 18.735001 34.970001
  45
                   USER
                   USER NEWDPF tran017.046913 18.963031 34.725298
                   USER
                                            NEWDPF quat0-0.538364 0.625258 -0.564993 -1.207985
                    USER
                                             NEWDPF ndihe7
                   USER NEWDPF dihe0177.60 43.09 -156.33 -38.18 133.10 -146.64 118.61
  50
           USER
                                                                                                                    x y z vdW Elec q RMS
18.510 19.778 33.128 -0.31 -0.10 -0.211 2.052
18.922 21.058 32.881 -0.73 +0.26 +0.396 2.052
                    USER
                                                                                       Rank
                                                                                           1
                                                    1 N1 UDP
                    MOTA
                                               2 C2 UDP 1 18.922 21.058 32.881 -0.73 +0.26 +0.396 2.052
3 N3 UDP 1 20.259 21.229 32.630 -0.50 -0.29 -0.440 2.052
4 H3 UDP 1 20.580 22.192 32.458 +0.03 +0.34 +0.440 2.052
5 C4 UDP 1 21.227 20.224 32.585 -0.66 +0.23 +0.396 2.052
6 C5 UDP 1 20.731 18.909 32.845 -0.47 +0.00 +0.000 2.052
7 C6 UDP 1 19.424 18.731 33.086 -0.43 +0.00 +0.000 2.052
8 O2 UDP 1 18.137 22.008 32.896 -0.26 -0.31 -0.396 2.052
9 O4 UDP 1 22.391 20.549 32.353 -0.22 -0.24 -0.396 2.052
10 C1' UDP 1 17.093 19.525 33.419 -0.59 +0.08 +0.324 2.052
11 C2' UDP 1 16.453 18.431 32.561 -0.62 -0.01 +0.113 2.052
12 C3' UDP 1 15.268 18.022 33.467 -0.64 -0.01 +0.113 2.052
13 C4' UDP 1 15.809 18.217 34.883 -0.51 +0.03 +0.113 2.052
14 O4' UDP 1 15.969 18.963 34.725 +0.01 -0.08 -0.227 2.052
15 O2' UDP 1 15.535 18.222 30.793 -0.25 -0.50 +0.424 2.052
17 O3' UDP 1 15.535 18.222 30.793 -0.25 -0.50 +0.424 2.052
17 O3' UDP 1 14.212 18.955 33.222 -0.23 +0.14 -0.537 2.052
                                                    2 C2 UDP
3 N3 UDP
                    MOTA
                   MOTA
  55
                   MOTA .
                   АТОМ
                    ATOM
                    MOTA
                    MOTA
  60
                    MOTA
                    MOTA
                    MOTA
                    MOTA
                    MOTA
   65
                    MOTA
                     MOTA
                     MOTA
                     MOTA
```

- 116 -

TER

```
-0.27 -0.29 +0.424 2.052
-0.36 +0.04 +0.113 2.052
+0.04 -0.15 -0.368 2.052
                                         14.540 19.681 32.569
16.123 16.899 35.591
16.716 17.206 36.838
               18 HO3'UDP
     MOTA
                                 1
     ATOM
               19 C5' UDP
                                 1
               20 O5' UDP
                                 1
     ATOM
               21 PA UDP
                                         16.152 17.782 38.194
                                                                       -0.58 +0.41 +1.019 2.052
     ATOM
                                 1
               22 Ola UD2
23 O2A UDP
                                         17.314 18.186 39.035
                                                                       -0.21 -0.07 -0.255 2.052
                                 1
     ATOM
                                         15.113 18.813 37.878
15.562 16.395 38.718
16.071 15.327 39.793
16.010 16.107 41.207
                                                                       -0.06 -0.12 -0.255 2.052
+0.02 -0.22 -0.510 2.052
     MOTA
                                 1
     MOTA
                                 1
               25 PB UDP
                                                                       -0.64 +0.39 +1.019
     ATOM
                                 1
                                                                                                2.052
               26 O1B UDP
                                                                       -0.68 -0.24 -0.255
                                 1
     MOTA
                                                                                                2.052
                                         17.471 15.121 39.345
               27 O2B UDP
                                                                       -0.08 -0.05 -0.255
10
     MOTA
                                1
                                                                                               2.052
                                                                       -0.08 -0.11 -0.255 2.052
     MOTA
               28 O3B UDP
                                1
                                         15.166 14.165 39.982
     TER
     ENDMDL
     MODEL
15
              Run = 69
     USER
     USER
              Cluster Rank = 1
     USER
              Number of conformations in this cluster = 30
     USER
     USER
              RMSD from reference structure
                                                       = 2.378 A
20
     USER
              Estimated Free Energy of Binding = -8.23 \text{ kcal/mol} [=(1)+(3)]
     USER
             Estimated Inhibition Constant, Ki = +9.27e-07 [Temperature = 298.15 K]
     USER
     USER
              Final Docked Energy
                                                       = -10.89 \text{ kcal/mol} [= (1) + (2)]
     USER
25
     USER
              (1) Final Intermolecular Energy = -10.41 kcal/mol
     USER
              (2) Final Internal Energy of Ligand = -0.48 kcal/mol
     USER
             (3) Torsional Free Energy = +2.18 kcal/mol
     USER
     USER
30
     USER
              DPF = test.dpf
     USER
              NEWDPF move udp_tr.pdbq
     USER
              NEWDPF about16.792999 18.735001 34.970001
              NEWDPF tran016.201952 19.564603 34.695888
     USER
35
     USER
              NEWDPF quat00.514657 0.516195 -0.684595 -28.099016
     USER
              NEWDPF ndihe7
              NEWDPF dihe0-150.93 172.72 28.50 65.97 16.78 -26.91 120.36
     USER
     USER -
                                                                       vdW
                                                                              Elec
     USER
                             Rank
                                                             z
                                                                                                 RMS
                                    17.763 20.463 33.243
17.856 21.722 32.717
19.109 22.280 32.690
                                                                       -0.42 -0.09 -0.211 2.378
-0.89 +0.25 +0.396 2.378
                1 N1 UDP
2 C2 UDP
40
     MOTA
                              1
     MOTA
                                 1
                3 N3
                                                                       -0.54 -0.45 -0.440 2.378
                        UDP
     MOTA
                                 1
     MOTA
                4 H3 UDP
                                 1
                                         19.185 23.233 32.309
                                                                    +0.08 +0.65 +0.440 2.378
              5 C4 UDP
                                                                       -0.78 +0.38 +0.396 2.378
     ATOM
                                 1
                                         20.290 21.679 33.128
                                         20.126 20.363 33.660
18.906 19.807 33.686
16.866 22.328 32.302
21.336 22.322 33.040
                                                                   -0.64 +0.00 +0.000 2.378
-0.53 +0.00 +0.000 2.378
-0.32 -0.21 -0.396 2.378
45
                6. C5 UDP
                                 1 .
     MOTA
                7 C6
     MOTA
                        UDP
                                 1
                8 02
                        UDP
     MOTA
                                 1
                        UDP
                                                                       -0.42 -0.38 -0.396 2.378
               9 04
                                1
     ATOM
               10 C1' UDP 1
                                        16.448 19.813 33.317
                                                                    -0.66 +0.03 +0.324 2.378
     MOTA
                                                                      -0.60 -0.01 +0.113 2.378

-0.64 -0.01 +0.113 2.378

-0.59 +0.02 +0.113 2.378

-0.06 -0.05 -0.227 2.378
             11 C2' UDP
50
                                 1
                                        16.399 18.409 32.710
     ATOM
                                         15.173 17.827 33.450
15.226 18.495 34.823
16.202 19.565 34.696
     ATOM
               12
                   C3' UDP
                                 1
                   C4' UDP
     MOTA
               13
                                 1
               14 O4' UDP
     MOTA
                                 1
                   O2' UDP
                                        16.139 18.476 31.327
                                                                       -0.19 +0.22 -0.537 2.378
     ATOM
               15
                                 1
55
     MOTA
               16
                  HO2'UDP
                                 1
                                         15.599 17.649 31.039
                                                                       -0.17 -0.64 +0.424 2.378
                                       14.010 18.269 32.744
13.434 17.455 32.486
15.684 17.548 35.932
15.763 18.291 37.133
                   O3' UDP
                                                                                               2.378
     MOTA
               17
                                 1
                                                                       -0.37 +0.13 -0.537
                                                                       -0.01 +0.09 +0.424 2.378
-0.25 +0.04 +0.113 2.378
-0.03 -0.16 -0.368 2.378
               18 HO3'UDP
19 C5' UDP
     MOTA
                                 1
     MOTA
                                 1
               20 05' UDP
     MOTA
                                 1
               21 PA UDP
                                        16.398 18.000 38.548
                                                                       -0.66 +0.40 +1.019 2.378
60
     MOTA
                                 1
     MOTA
               22 Ola UDP
                                 1
                                        17.873 18.184 38.429
                                                                       -0.21 -0.04 -0.255 2.378
               23 O2A UDP
                                         15.664 18.804 39.575
16.048 16.444 38.559
15.798 15.387 39.732
                                                                       -0.15 -0.12 -0.255 2.378
-0.01 -0.21 -0.510 2.378
     ATOM
                                 1
     ATOM
               24 O3A UDP
                                 1
               25 PB UDP
                                                                       -0.65 +0.40 +1.019
     MOTA
                                 1
                                                                                                2.378
                                1 14.581 14.697 39.235
1 15.825 15.967
               26 Olb UDP
                                                                       +0.06 -0.05 -0.255 2.378
     ATOM
               27 O2B UDP
                                                                       -0.01 -0.10 -0.255 2.378
     MOTA
                                         15.825 -15.967 41.099
     MOTA
               28 O3B UDP
                                                                       -0.63 -0.20 -0.255 2.378
```

```
ENDMDL
        MODEL
                            61
        USER
                      Run = 61
                      Cluster Rank = 1
        USER
 5
        USER
                      Number of conformations in this cluster = 30
        USER
                   RMSD from reference structure
                                                                                       = 2.557 A
        USER
        USER
                      Estimated Free Energy of Binding = -7.87 \text{ kcal/mol} [=(1)+(3)]
        USER
                      Estimated Inhibition Constant, Ki = +1.71e-06 [Temperature = 298.15 K]
10
        USER
        USER
                                                                                       = -10.89 \text{ kcal/mol} [= (1) + (2)]
                      Final Docked Energy
        USER
        USER
                      (1) Final Intermolecular Energy = -10.05 kcal/mol (2) Final Internal Energy of Ligand = -0.84 kcal/mol
        USER
15
                      (3) Torsional Free Energy = +2.18 \text{ kcal/mol}
        USER
         USER
         USER
        USER
                      DPF = test.dpf
20
                      NEWDPF move udp_tr.pdbq
        USER
                      NEWDPF about16.792999 18.735001 34.970001
         USER
                      NEWDPF tran016.562668 19.480276 35.364105
         USER
        USER
                      NEWDPF quat00.504391 0.164975 -0.847569 -18.647284
        USER
                      NEWDPF ndihe7
                      NEWDPF dihe0-178.72 70.98 -178.92 -84.93 -87.09 46.14 171.15
25
        USER
                                                                  x y z vdW Elec q RMS
17.871 20.369 33.675 -0.39 -0.10 -0.211 2.557
17.960 21.651 33.210 -0.86 +0.28 +0.396 2.557
        USER
                                             Rank
                   1 N1 UDP
2 C2 UDP
                                               1
         MOTA
         ATOM

      1
      19.223
      22.123
      32.959
      -0.53
      -0.48
      -0.440
      2.557

      1
      19.299
      23.093
      32.623
      +0.05
      +0.79
      +0.440
      2.557

      1
      20.415
      21.414
      33.114
      -0.78
      +0.34
      +0.396
      2.557

      1
      20.254
      20.078
      33.596
      -0.59
      +0.00
      +0.000
      2.557

      1
      19.022
      19.606
      33.839
      -0.51
      +0.00
      +0.000
      2.557

      1
      16.960
      22.352
      33.040
      -0.29
      -0.28
      -0.396
      2.557

      1
      21.471
      21.988
      32.850
      -0.19
      -0.27
      -0.396
      2.557

      1
      16.549
      19.807
      33.979
      -0.60
      +0.06
      +0.324
      2.557

      1
      16.266
      18.455
      33.319
      -0.55
      +0.00
      +0.113
      2.557

      1
      15.168
      17.908
      34.261
      -0.59
      +0.01
      +0.113
      2.557

      1
      15.548
      18.474
      35.629
      -0.53
      +0.04
      +0.113
      <t
                                                     1
                                                                 19.223 22.123 32.959 -0.53 -0.48 -0.440 2.557
30
                          3 N3 UDP
        MOTA
                          4 H3 UDP
        ATOM
                         5 C4 UDP 1
6 C5 UDP 1
7 C6 UDP 1
8 O2 UDP 1
         ATOM
         MOTA
        MOTA
35
        MOTA
                                      UDP . 1
                        9 04
        MOTA
                       11 C2' UDP 1
12 C3' UDP 1
13 C4'
         ATOM .
        MOTA
        ATOM
                        13 C4' UDP
40
         MOTA
       MOTA
                        14 O4' UDP
                      15 02' UDP
16 H02'UDP
17 03' UDP
18 H03'UDP
         MOTA
        MOTA
        MOTA
45
        MOTA
                       19 C5' UDP
        MOTA
                                                               15.490 17.543 37.819 +0.16 -0.17 -0.368 2.557
15.833 18.324 39.146 -0.55 +0.45 +1.019 2.557
17.314 18.480 39.212 -0.19 -0.07 -0.255 2.557
14.987 19.558 39.205 -0.14 -0.10 -0.255 2.557
15.367 17.162 40.135 -0.28 -0.28 -0.510 2.557
                        20 05' UDP
         MOTA
                                                   1
                        21 PA UDP . 1
         MOTA
                        22 O1A UDP
23 O2A UDP
                                                   1
         MOTA
50
         ATOM
                                                      1
                        24 O3A UDP
         MOTA
                                                      1
                        25 PB UDP
                                                                 15.773 15.623 40.282
                                                                                                                -0.75 +0.45 +1.019 2.557
         MOTA
                                                    1
                                                                 17.381 15.607 40.125
15.104 15.041 39.091
15.535 15.049 41.631
                                                                                                                -0.17 -0.04 -0.255 2.557
-0.01 -0.11 -0.255 2.557
-0.49 -0.17 -0.255 2.557
         MOTA
                        26 O1B UDP
                                                    1
                        27 O2B UDP
                                                    1
         MOTA
55
         MOTA
                        28 O3B UDP
         TER
         ENDMDI.
                               6
         MODEL
         USER
                      Run = 6
60
         USER
                       Cluster Rank = 1
                       Number of conformations in this cluster = 30
         USER
                                                                                       = 2.174 A
         USER
                      RMSD from reference structure
         USER
                      Estimated Free Energy of Binding = -8.10 \text{ kcal/mol} [=(1)+(3)]
Estimated Inhibition Constant, Ki = +1.16e-06 [Temperature = 298.15 K]
65
         USER
         USER
         USER
                                                                                        = -10.88 \text{ kcal/mol} [=(1)+(2)]
         USER
                      Final Docked Energy
```

```
USER
                      (1) Final Intermolecular Energy = -10.28 kcal/mol
        USER
                      (2) Final Internal Energy of Ligand = -0.60 kcal/mol
        USER
                                                                                       +2.18 kcal/mol
                      (3) Torsional Free Energy =
        USER
        USER
                      DPF = test.dpf
        USER
                     NEWDPF move udp_tr.pdbq
        USER
                     NEWDPF about16.792999 18.735001 34.970001
        USER
                     NEWDPF tran016.843938 19.665299 34.549841
        USER
                     NEWDPF quat0-0.680946 -0.646119 0.344735 19.606725
        USER
                     NEWDPF ndihe7
        USER
                     NEWDPF dihe0-164.02 79.05 -46.01 2.37 80.35 -64.66 114.70
        USER
        USER
                                                                                                                                                  RMS
                                                                                                      vdW
                                                                                                                      Elec
                                            Rank
                                                                                            z
15
       USER
                                                           18.554 20.272 33.114 -0.36 -0.11 -0.211 2.174
18.912 21.504 32.639 -0.81 +0.28 +0.396 2.174
20.255 21.782 32.618 -0.53 -0.35 -0.440 2.174
20.531 22.713 32.276 +0.10 +0.38 +0.440 2.174
                      1 N1 UDP 1
        MOTA
                      2 C2 UDP
                                                1
        MOTA
                  . N.S. UDP
.4 H3 UDP
.5 C4 UDP
                                                  1
       MOTA
                     4 H3 UDP 1 20.531 22.713 32.276 +0.10 +0.38 +0.440 2.174  
5 C4 UDP 1 21.282 20.924 33.014 -0.75 +0.28 +0.396 2.174  
6 C5 UDP 1 20.843 19.651 33.492 -0.54 +0.00 +0.000 2.174  
7 C6 UDP 1 19.532 19.368 33.512 -0.48 +0.00 +0.000 2.174  
8 O2 UDP 1 18.073 22.325 32.265 -0.33 -0.27 -0.396 2.174  
9 O4 UDP 1 22.441 21.332 32.938 -0.25 -0.27 -0.396 2.174  
10 C1' UDP 1 17.131 19.916 33.179 -0.66 +0.08 +0.324 2.174  
11 C2' UDP 1 16.779 18.583 32.514 -0.61 +0.00 +0.113 2.174  
12 C3' UDP 1 15.460 18.244 33.247 -0.64 -0.01 +0.113 2.174  
13 C4' UDP 1 15.662 18.825 34.646 -0.57 +0.02 +0.113 2.174  
14 O4' UDP 1 16.844 19.665 34.550 -0.06 -0.07 -0.227 2.174  
16 HO2' UDP 1 16.532 18.765 31.140 -0.20 +0.10 -0.537 2.174  
17 O3' UDP 1 16.002 17.960 30.776 -0.43 -0.37 +0.424 2.174  
18 HO3' UDP 1 14.416 18.955 32.577 -0.24 +0.24 -0.537 2.174  
19 C5' UDP 1 15.913 17.753 35.708 -0.43 +0.04 +0.113 2.174  
20 O5' UDP 1 16.283 18.408 36.906 -0.03 -0.15 -0.368 2.174  
21 PA UDP 1 16.194 18.010 38.430 -0.64 +0.41 +1.019 2.174
                                                   1
        ATOM
20
        MOTA
        MOTA
        MOTA
        MOTA
        MOTA
25
        MOTA
        MOTA
        MOTA
                 12 C3 UDP
13 C4' UDP
14 O4' UDP
15 O2' UDP
16 HO2' UDP
17 O3' UDP
        MOTA
        ATOM
30 · ATOM
        MOTA
        MOTA
        MOTA
                                                  1 15.913 17.753 35.708 -0.43 +0.04 +0.113 2.174
1 16.283 18.408 36.906 -0.03 -0.15 -0.368 2.174
1 16.194 18.010 38.430 -0.64 +0.41 +1.019 2.174
1 17.443 18.479 39.096 -0.19 -0.06 -0.255 2.174
        MOTA
      MOTA
                  21 PA UDP
22 O1A UDP
23 O2A UDP
        MOTA
        MOTA
                                                                                                          -0.19 -0.12 -0.255 2.174
+0.02 -0.21 -0.510 2.174
-0.52 +0.35 +1.019 2.174
+0.08 -0.16 -0.255 2.174
                                                             14.882 18.484 38.971
                                                   )
        MOTA
                                                             16.272 16.435 38.184
                                               1 16.972 15.237 38.184
1 16.972 15.237 38.979
1 16.522 13.903 38.187
1 16.297 15.342 40.297
1 18.455 15 227 30.007
                        24 O3A UDP
        MOTA
                        25 PB UDP 1
        MOTA
                        26 O1B UDP
         MOTA
                                                                                                           -0.20 -0.09 -0.255 2.174
                        27 O2B UDP
         MOTA
                                                          18.455 15.227 38.895
                                                                                                         -0.11 -0.04 -0.255 2.174
                        28 O3B UDP
         MOTA
         TER
         ENDMDL
45
                          26
         MODEL
                      Run = 26
         USER
                       Cluster Rank = 1
         USER
                       Number of conformations in this cluster = 30
         USER
 50
         USER
                                                                                    = 2.271 A
                       RMSD from reference structure
         USER
                                                                                    = -8.13 kcal/mol [=(1)+(3)]
                       Estimated Free Energy of Binding
         USER
                                                                                   = +1.09e-06 [Temperature = 298.15 K]
                       Estimated Inhibition Constant, Ki
         USER
         USER
                                                                                    = -10.83 \text{ kcal/mol} [= (1) + (2)]
         USER
                       Final Docked Energy
         USER
                       (1) Final Intermolecular Energy = -10.31 kcal/mol
         USER
                      (2) Final Internal Energy of Ligand = -0.51 kcal/mol
(3) Torsional Free Energy = +2.18 kcal/mol
         USER
                       (3) Torsional Free Energy
 60
         USER
         USER
         USER
                       DPF = test.dpf
         USER
                       NEWDPF move udp_tr.pdbq
         USER
                       NEWDPF about 16.\overline{7}9299918.73500134.970001
 65
                       NEWDPF tran016.632623 19.448723 35.340054
         USER
                       NEWDPF quat00.615270 -0.245958 -0.748964 -10.093568
         USER
                       NEWDPF ndihe7
         USER
```

- 119 -

```
NEWDPF dihe0174.97 44.52 29.30 28.43 75.61 -90.02 127.13
     USER
     USER
                                                                     .Elec
                                                               Why
                                                                               α
     USER
                          Rank
                                       x
                                                       Z
                                     17.907 20.223 33.570
                                                               -0.37
                                                                     -0.10 -0.211 2.271
     ATOM
               1 N1 UDP
                                                               -0.83
                                                                     +0.27
                                                                             +0.396
                                                     33.150
                                                                                     2.271
                                     18.147 21.502
5
               2
                C2
                      UDP
                              1
     MOTA
                                                               -0.55
                                                                     -0.39
                                                                             -0.440
                     UDP
                                     19.440 21.795
                                                     32.799
                                                                                     2.271
               3 N3
                              1
     ATOM
                                     19.633
                                             22.760
                                                     32.496
                                                               +0.03
                                                                     +0.60
                                                                             +0.440
                                                                                     2,271
     ATOM
               4
                 нз
                     UDP
                              3
                                                               -0.73
                                                                     +0.26
                                                                             +0.396 2.271
                                     20.521 20.911
                                                     32.812
     ATOM
               5
                 C4
                      UDP
                              1
                                                               -0.53
                                                                     +0.00
                                                                             +0.000
                                     20.202 19.590 33.254
                 C5
                     UDP
     ATOM
               6
                              1
                                                                                    2.271
                                     18.939 19.292
                                                     33.595
                                                               -0.47
                                                                     +0.00
                                                                             +0.000
10
     ATOM
               7
                 C6
                     UDP
                              1
                                                     33.103
                                                               -0.29
                                                                     -0.30
                                                                             -0.396
                                                                                     2.271
                                     17.254 22.350
     MOTA
               8
                 02
                     UDP
                              1
                 04
                                                               -0.20
                                                                     -0.19
                                                                             -0.396
                                                                                     2,271
              9
                     UDP
                                     21.624 21.337
                                                     32.472
     MOTA
                              1
                                                                     +0.06 +0.324
                                                                                     2.271
     MOTA
              10
                 C1 '
                     UDP
                              1
                                     16.547
                                             19.847
                                                     33.977
                                                               -0.61
                                     16.006 18.589
                                                     33.294
                                                               -0.60
                                                                     +0.00
                                                                             +0.113 2.271
                 C2' UDP
     ATOM
              11
                              1
                                                               -0.62 +0.01
15
              12
                 C3' UDP
                              1
                                     14.925 18.160 34.313
                                                                             +0.113 2.271
     MOTA
                                                               -0.52 + 0.04
                                                                             +0.113 2.271
     MOTA
              13
                 C4' UDP
                                     15.505 18.590 35.660
                                                     35.340
                                     16.633 19.449
                                                               -0.04
                                                                     -0.09
                                                                             -0.227
                                                                                     2.271
              14 04' UDP
                              1
     ATOM
                                             18.914
                                                     32.063
                                                               -0.26
                                                                     +0.22
                                                                             -0.537
                                                                                     2.271
              15
                 O2' UDP
                              1
                                     15.403
     MOTA
                                     15.076 18.053
                                                               -0.18
                                                                     -0.46 + 0.424
                                                                                     2.271
              16
                  HO2'UDP
                              1
                                                     31.602
     ATOM
                 O3' UDP
                                     13.752 18.927
                                                     34.026
                                                               -0.09
                                                                     -0.03
                                                                             -0.537
                                                                                     2.271
20
     MOTA
              17
                              . 1
                                     13.950 19.584
                                                     33.258
                                                               -0.37
                                                                     -0.26 +0.424 2.271
     MOTA
              18
                 HO3'UDP
                              1
                                                     36.496
                                                               -0.36
                                                                     +0.05
                                                                             +0.113
                                                                                    2.271
     ATOM
              19
                  C5' UDP
                              1 .
                                     16.010 17.414
                                                                     -0.15
                 O5' UDP
                                     16.440 17.923
                                                     37.745
                                                               -0.05
                                                                             -0.368
                                                                                     2.271
              20
     ΑΨОМ
                              1
                                                                     +0.43 +1.019 2.271
                                     16.141
                                             17.518
                                                     39.240
                                                               -0.77
     ATOM
              21
                 PA UDP
                              1
                                     17.435 17.530 39.981
                                                               -0.35
                                                                     -0.07
                                                                             -0.255 2.271
     ATOM
              22
                  O1A UDP
                              1
     MOTA
              23 O2A UDP
                                    15.025 18.373 39.752
                                                               -0.26
                                                                     -0.13
                                                                             -0.255 2.271
                              1
                                                               -0.02
                                                                     -0.22
                                                                             -0.510 2.271
              24
                  O3A UDP
                                     15.720 16.014 38.913
    MOTA
                              1
                                     15.458
                                             14.728
                                                     39.827
                                                               -0.57
                                                                     +0.39
                                                                             +1.019
                                                                                     2.271
     MOTA
              25 PB UDP
                              1
                                                     39.531
                                                               +0.02
                                                                     -0.08
                                                                             -0.255
                                                                                     2.271
     MOTA
              26 O1B UDP
                              1
                                     16.713
                                             13.754
                                                               -0.02
                                                                     -0.10
                                                                             -0.255
                                                                                     2.271
                                                     39.222
30
              27
                  O2B UDP
                              1
                                     14.207
                                             14.205
    MOTA .
                                                                     -0.14
                                                                             -0.255
              28 O3B .UDP
                              1
                                     15.535 14.985
                                                     41.287
                                                               -0.38
     MOTA
     TER
     ENDMDL
     MODEL
                 44
35
             Run = 44
     USER
     USER
             Cluster Rank = 1
     USER
             Number of conformations in this cluster = 30
     USER
                                                 = 2.334 A
     USER
             RMSD from reference structure
40
     USER
                                                    -8.06 \text{ kcal/mol} [=(1)+(3)]
                                               =
             Estimated Free Energy of Binding
     USER
             Estimated Inhibition Constant, Ki = +1.24e-06 [Temperature = 298.15 K]
     USER
     USER
                                                 = -10.79 \text{ kcal/mol} [= (1) + (2)]
             Final Docked Energy
     USER
45
     USER
             (1) Final Intermolecular Energy = -10.24 \text{ kcal/mol}
     USER
             (2) Final Internal Energy of Ligand = -0.55 kcal/mol
     USER
                                                 = +2.18 kcal/mol
     USER
             (3) Torsional Free Energy
     USER
50
     USER
             DPF = test.dpf
     USER
             NEWDPF move udp_tr.pdbq
     USER
     USER
             NEWDPF about16.792999 18.735001 34.970001
             NEWDPF tran016.271561 19.593224 34.779030
     USER
             NEWDPF quat00.519881 0.500873 -0.691990 -26.382845
55
     USER
     USER
             NEWDPF ndihe7
             NEWDPF dihe0-7.19 74.61 -113.35 69.18 12.29 -18.57 135.17
     USER
     USER
                          Rank
                                                               vdW
                                                                      Elec
                                                                                      RMS
     USER
                                                                             -0.211 2.334
+0.396 2.334
                                     17.817 20.480 33.302
                                                               -0.41
                                                                      -0.10
60
     MOTA
               1 N1
                      UDP
                              1
                                                     32.788
                                                               -0.89
                                                                      +0.26
                 C2
                      UDP
                                      17.921 21.743
     MOTA
               2
                              1
                                                                            -0.440 2.334
                  N3
                                      19.183
                                             22.278
                                                     32.739
                                                               -0.53
                                                                     -0.47
     MOTA
               3
                      UDP
                              1
                                      19.268 23.234
                                                     32.368
                                                               +0.08 +0.70
                                                                             +0.440 2.334
     MOTA
               4
                 H3
                      UDP
                              1
                                     20.363 21.651
                                                     33.144
                                                               -0.77
                                                                      +0.38
                                                                             +0.396
                 C4
                      UDP
     MOTA
               5
                              1
65
                                                     33.665
                                                               -0.63
                                                                      +0.00
                                                                             +0.000
                                                                                    2.334
                                      20.186 20.332
     MOTA
                 C5
                      UDP
                              1
                  C6
                      TIDE
                                      18.957 19.798
                                                     33.711
                                                               -0.53
                                                                      +0.00
                                                                             +0.000
                                                                                     2.334
               7
                              ٦
     MOTA
                                                                             -0.396 2.334
     MOTA
               8
                  02
                      UDP
                              1
                                      16.934 - 22.372
                                                     32.403
                                                               -0.35
                                                                     -0.22
                                      21.418 22.276
                                                               -0.41 -0.36
                                                                             -0.396 2.334
                                                     33.040
     MOTA
               9 04
                      UDP
                              1
```

- 120 -

```
16.492 19.853 33.398
16.403 18.458 32.776
15.183 17.889 33.537
15.279 18.540 34.916
16.272 19.593 34.779
                                                                         -0.66 +0.04 +0.324 2.334
                10 C1' UDP
                                  7
     MOTA
                                                                         -0.60 +0.00 +0.113 2.334
-0.65 -0.01 +0.113 2.334
               11 C2' UDP
12 C3' UDP
                                  1
     ATOM
                                  1
     MOTA
                                                                         -0.58 + 0.02 + 0.113 2.334
                    C4' UDP .-
     ATOM
                13
                                  1
                14 04' UDP
15 02' UDP
                                                                         -0.06 -0.05 -0.227 2.334
                                  1
     ATOM
                                         16.272 19.593 34.779
16.113 18.546 31.401
15.957 19.531 31.145
14.013 18.361 32.862
14.233 18.530 31.870
15.744 17.572 36.003
15.535 18.194 37.257
                                                                         -0.21 +0.21 -0.537 2.334
-0.05 -0.08 +0.424 2.334
-0.36 +0.11 -0.537 2.334
-0.10 -0.32 +0.424 2.334
                                  1
     ATOM
                16 HO2'UDP 1
     MOTA
                17 03' UDP
     MOTA
                                  1
                18 HO3'UDP
                                  1
     ATOM
                                                                         -0.24 +0.04 +0.113 2.334
10
                19 C5' UDP
                                  1
     MOTA
                                                                         -0.02 -0.17 -0.368 2.334
                20 .05' UDP
                                   1
     MOTA
                                                                         -0.69 +0.42 +1.019 2.334

-0.16 -0.06 -0.255 2.334

-0.25 -0.12 -0.255 2.334

-0.01 -0.21 -0.510 2.334
                                           16.149 17.970 38.693
                21 PA UDP
                                   1
     MOTA
                                          17.550 18.480 38.673
15.204 18.533 39.708
16.154 16.376 38.613
16.024 15.225 39.715
14.558 14.590 39.472
16.070 16.026 40.965
                22 O1A UDP
                                   1
     MOTA
                23 O2A UDP
     MOTA
                24 O3A UDP
                                   1
15
     MOTA
                                                                         -0.63 +0.39 +1.019 2.334
                25 PB UDP
                                   1
     ATOM
                                                                         +0.02 -0.09 -0.255 2.334
                   O1B UDP
     ATOM
                26
                                                                         -0.59 -0.20 -0.255 2.334
     MOTA
                27 O2B UDP
                                   1
                                                                         +0.03 -0.07 -0.255 2.334
                                  1
                                           16.951 14.082 39.523
                28 03B UDP
     ATOM
20
     TER
     ENDMDL
                  93
     MODEL
     USER
               Run = 93
               Cluster Rank = 1
     USER
               Number of conformations in this cluster = 30
25
     USER
     USER
                                                         = 2.047 A
               RMSD from reference structure
      USER
      USER.
               Estimated Free Energy of Binding = -7.80 \text{ kcal/mol} [=(1)+(3)]
      USER
               Estimated Inhibition Constant, Ki = +1.91e-06
                                                                            [Temperature = 298.15 K]
30
      USER
      USER
                                                          = -10.78 \text{ kcal/mol} [= (1) + (2)]
      USER
               Final Docked Energy
      USER
               (1) Final Intermolecular Energy = -9.98 kcal/mol
      USER
                (2) Final Internal Energy of Ligand = -0.80 kcal/mol
35
      USER
                                                  = +2.18 \text{ kcal/mol}
                (3) Torsional Free Energy
      USER
      USER
      USER
      USER
               DPF = test.dpf
               NEWDPF move udp_tr.pdbq
40
      USER
               NEWDPF about16.792999 18.735001 34.970001
      USER
               NEWDPF tran017.106934 19.121410 34.610553
      USER
               NEWDPF quat00.289729 0.319963 -0.902043 -3.357918
      USER ·
      USER
               NEWDPF ndihe7
               NEWDPF dihe0169.72 84.68 85.45 74.96 138.36 -122.86 108.33
45
      USER
      USER
                                                                          vdW
                                                                                  Elec
                                                                                                     RMS
                                                                z
                                                                                              a
                                                       У
      USER
                                              X
                                                                          -0.33 -0.10 -0.211 2.047
                                           18.546 19.949 32.998
                  1 N1 UDP 1
      MOTA
                                                                          -0.76 +0.26 +0.396 2.047
-0.51 -0.29 -0.440 2.047
+0.06 +0.32 +0.440 2.047
                                          18.907 21.237 32.717
                 · 2 C2 UDP
                                   1
      ATOM
                                         20.238 21.457 32.468
20.521 22.426 32.271
21.246 20.491 32.458
50
                  3 N3 UDP
                                   1
      MOTA
                  4 H3 UDP
      ATOM
                                   1
                                                                          -0.69 +0.22 +0.396 2.047
                  5 C4
                          UDP
                                   1
      MOTA
                                           20.802 19.165 32.752
                                                                          -0.50 +0.00 +0.000 2.047
                    C5
                          UDP
                                   1
      MOTA
                  6
                                           19.502 18.940 32.991
                                                                          -0.45 +0.00 +0.000 2.047
                  7 C6
                          UDP
                                   1
      MOTA
                                                                          -0.29 -0.30 -0.396 2.047
-0.24 -0.20 -0.396 2.047
                                           18.085 22.155 32.701
                  8 02
                          UDP
                                   1
55
      MOTA
                                           22.398 20.856 32.223
                                                                          -0.24 -0.20
      MOTA
                 9 04
                          UDP
                                   1
                                                                          -0.62 +0.08 +0.324 2.047
                                           17.138 19.648 33.289
                 10 C1' UDP
                                   1
      MOTA
                                                                          -0.63 -0.01 +0.113 2.047
                                                     18.505 32.459
                                           16.549
                 11 C2' UDP
                                   1
      MOTA
                                           15.376 18.073 33.370
                                                                          -0.63 -0.01 +0.113 2.047
                          UDP
                                   1
      MOTA
                 12
                     C3'
                                                                          -0.51 +0.02 +0.113 2.047
                                           15.900 18.331 34.782
                     C4' UDP
60
      MOTA
                 13
                                   1
                                                                                                    2.047
                                                                          +0.00 -0.08 -0.227
                 14 04' UDP
                                                     19.121 34.611
                                           17.107
      MOTA
                                   1
                                                                          -0.22 +0.16 -0.537 2.047
-0.30 -0.42 +0.424 2.047
-0.25 +0.16 -0.537 2.047
                                                     18.988 31.233
                     O2' UDP
                                           16.052
                 15
      MOTA
                                           15.773 18.195 30.639
14.285 18.955 33.093
14.263 19.168 32.085
                 16 HO2'UDP
                                           15.773
                                   7
      ATOM
                 17 03' UDP
                                   1
      MOTA
                                                                           -0.19 -0.31 +0.424 2.047
                     HO3'UDP
 65
      ATOM
                 18
                                   1
                                                                           -0.36 +0.04 +0.113 2.047
                                            16.262 17.047 35.530
                 19 C5' UDP
      MOTA
                                   1
                                                                           +0.03 -0.15 -0.368
                                                                                                    2.047
                 _20 O5' UDP
                                           17.045 17.404 36.653
                                  1
      ATOM
                                                                           -0.62 +0.37 +1.019 2.047
                                            16.709 17.643 38.176
                 21 PA UDP
      ATOM
```

- 121 -

```
    17.832
    18.422
    38.771
    -0.20
    -0.04
    -0.255
    2.047

    15.325
    18.205
    38.276
    -0.06
    -0.12
    -0.255
    2.047

    16.828
    16.111
    38.604
    -0.03
    -0.18
    -0.510
    2.047

    16.043
    15.207
    39.663
    -0.62
    +0.38
    +1.019
    2.047

                                                    1
1
                          22 O1A UDP
23 O2A UDP
24 O3A UDP
25 PB UDP
         MOTA
         MOTA
                                                          1
          MOTA
                                                          1
         MOTA
                                                                       16.135 16.029 41.051
16.902 13.995 39.690
14.585 15.087 39.409
                                                                                                                           -0.62 -0.21 -0.255 2.047
+0.04 -0.06 -0.255 2.047
+0.08 -0.08 -0.255 2.047
                        . 26 O1B UDP
         MOTA
         ATOM
                          27 O2B UDP
                           28 O3B UDP
                                                       1
          MOTA
         TER
         ENDMDL
10
          MODEL
                           . 16
                        Run = 16
         USER
                         Cluster Rank = 1
          USER
                         Number of conformations in this cluster = 30
          USER
          USER
                                                                                                = 1.845 A
15
                      RMSD from reference structure
          USER
          USER
                      Estimated Free Energy of Binding = -7.59 \text{ kcal/mol} [=(1)+(3)]
          USER
                    Estimated Inhibition Constant, Ki = +2.73e-06 [Temperature = 298.15 K]
          USER
          USER
                                                                                           = -10.63 \text{ kcal/mol} [= (1) + (2)]
20
                     Final Docked Energy
          USER
          USER
                        (1) Final Intermolecular Energy = -9.77 kcal/mol
          USER
                        (2) Final Internal Energy of Ligand = -0.86 kcal/mol
          USER
                                                                                            = +2.18 \text{ kcal/mol}
                        (3) Torsional Free Energy
          USER
25
          USER
          USER
                       DPF = test.dpf
          USER
                     NEWDPF move udp_tr.pdbq
NEWDPF about16.792999 18.735001 34.970001
          USER
          USER
30
          USER
                        NEWDPF tran016.760984 19.372334 34.613037
                    NEWDPF quat00.476570 0.558632 -0.678831 -10.358588
          USER
                    NEWDPF ndihe7
          USER
                     NEWDPF dihe0-179.67 65.79 64.64 -43.11 -39.67 2.21 151.27
          USER
          USER

        x
        y
        z
        vdW
        Elec
        q
        RMS

        18.274
        20.197
        33.068
        -0.36
        -0.10
        -0.211
        1.845

        18.571
        21.487
        32.727
        -0.82
        +0.27
        +0.396
        1.845

        19.901
        21.786
        32.572
        -0.54
        -0.35
        -0.440
        1.845

        20.134
        22.759
        32.330
        +0.06
        +0.51
        +0.440
        1.845

        20.968
        20.897
        32.711
        -0.74
        +0.24
        +0.396
        1.845

        20.591
        19.564
        33.061
        -0.54
        +0.00
        +0.000
        1.845

        19.293
        19.261
        33.209
        -0.47
        +0.00
        +0.000
        1.845

        17.693
        22.340
        32.580
        -0.33
        -0.28
        -0.396
        1.845

        22.109
        21.329
        32.545
        -0.21
        -0.19
        -0.396
        1.845

        16.870
        19.813
        33.265
        -0.66
        +0.07
        +0.324
        1.845

        16.432

                                                                                                                                         Elec
                                                                                                                            vdW
                                                                                                                                                                         RMS
35
          USER
                                                   Rank
                                                                            x
                         1 N1 UDP 1
          ATOM
          MOTA
                          2 C2 UDP
                                                           1
                             3 N3 UDP
          ATOM
                                                           1
                             4 H3
                                         UDP
          MOTA
                                                           1
                             5 C4 UDP
40
          MOTA
                                                           1
                             6 C5 UDP
                                                           1
         MOTA .
                             7 C6 UDP
          ATOM
                                                           1
                           8 O2 UDP
9 O4 UDP
10 C1' UDP
11 C2' UDP
                                                           1
          ATOM
                                                           1
          ATOM
45
          MOTA
          ATOM
                                                           1
                                                                                                                            -0.67 -0.02 +0.113 1.845

-0.56 +0.02 +0.113 1.845

-0.03 -0.07 -0.227 1.845

-0.23 +0.17 -0.537 1.845

-0.27 -0.50 +0.424 1.845
                        12 C3' UDP
                                                                       15.217 18.123 33.314
         MOTA.
                                                           1
                                                                       15.599 18.509 34.742
                          13 C4' UDP
          ATOM
                                                           1
                          14 O4' UDP
                                                                   16.761 19.372 34.613
16.010 18.945 31.180
15.668 18.111 30.681
          MOTA
                                                           1
                           15 O2' UDP
16 HO2'UDP
 50
                                                           1
         ATOM
                                                           1
           MOTA
                                                                        14.097 18.904 32.887
                            17 03' UDP
                                                                                                                            -0.25 +0.19 -0.537 1.845
           ATOM
                                                           1
                                                                                                                            -0.25 +0.19 -0.537 1.845

-0.22 -0.35 +0.424 1.845

-0.39 +0.04 +0.113 1.845

+0.07 -0.16 -0.368 1.845

-0.60 +0.39 +1.019 1.845

-0.10 -0.06 -0.255 1.845

-0.18 -0.11 -0.255 1.845
                                                                        14.295 19.315 31.964
                            18 HO3'UDP
                                                           1
           MOTA
                                                                       15.981 17.305 35.605
15.686 17.625 36.951
16.448 17.389 38.312
17.886 17.155 37.993
16.103 18.502 39.251
          ATOM .
                          19 C5' UDP
                            20 O5' UDP
 55
          ATOM
                                                           1
                            21 PA UDP
                                                           1
           ATOM
                            22 O1A UDP
23 O2A UDP
           MOTA
                                                            1
           ATOM
                                                            1
                                                                        16.103 16.302 39.231
15.738 16.001 38.649
16.164 14.475 38.440
16.007 14.220 36.852
15.104 13.778 39.211
17.597 14.193 38.713
                                                                                                                            +0.03 -0.22 -0.510 1.845
-0.39 +0.54 +1.019 1.845
-0.22 -0.29 -0.255 1.845
+0.01 -0.13 -0.255 1.845
                            24 O3A UDP
           MOTA
                                                           1
                            25 PB UDP
          MOTA
                                                           1
           MOTA
                            26 O1B UDP 1
                            27 O2B UDP
28 O3B UDP
                                                         1
           ATOM
                                                                                                                          +0.00 -0.10 -0.255 1.845
           MOTA
                                                         1
           TER
 65
           ENDMDL
           MODEL
           USER
                          Run = 15
                          Cluster Rank = 1
           USER
```

- 122 -

```
Number of conformations in this cluster = 30
             USER
             USER
             USER
                                 RMSD from reference structure
                                                                                                                          = 2.223 A
             USER
  5
             USER
                          Estimated Free Energy of Binding = -7.66 \text{ kcal/mol} [=(1)+(3)]
             USER
                           Estimated Inhibition Constant, Ki = +2.43e-06 [Temperature = 298.15 K]
             USER
             USER
                                 Final Docked Energy
                                                                                                                            = -10.34 \text{ kcal/mol} [= (1) + (2)]
             USER
             USER (1) Final Intermolecular Energy = -9.84 kcal/mol
10
             USER (2) Final Internal Energy of Ligand = -0.50 kcal/mol
                          (3) Torsional Free Energy
                                                                                                                       = +2.18 kcal/mol
             USER
             USER
             USER
15
             USER
                                 DPF = test.dpf
                           NEWDPF move udp_tr.pdbq
             USER
             USER NEWDPF about16.792999 18.735001 34.970001
                          NEWDPF tran016.863568 19.504418 34.934969
             USER
             USER
                          NEWDPF quat0-0.617758 -0.594434 0.514804 13.202837
20
                                NEWDPF ndihe7
             USER
                               NEWDPF dihe0102.16 43.08 -71.59 8.44 90.61 -97.23 107.68
             USER
             USER
             USER
                                 1 N1 UDP
                                                                  Rank
                                                                                                                                           z
                                                                                                                                                              vdW
                                                                                                                                                                              Elec
                                                                                             18.441 20.239 33.409
             MOTA
                                                                         1
                                                                                                                                                              -0.35 -0.11 -0.211 2.223
                                                                                             18.760 21.507 33.012
20.096 21.792 32.894
20.345 22.750 32.610
21.152 20.908 33.122
                                                                                                                                                              -0.82 +0.30 +0.396 2.223

-0.54 -0.41 -0.440 2.223

+0.03 +0.62 +0.440 2.223

-0.74 +0.29 +0.396 2.223
25
             MOTA
                                     2 C2 UDP
                                                                            1
                                     3 N3
4 H3
             MOTA
                                                        UDP
                                                                            1
                              4 H3 UDP
5 C4 UDP
6 C5 UDP
             MOTA
                                                                            1
             ATOM
                                                                            1
                                 6 C5 UDP 1 20.753 19.597 33.528 -0.33 -0.24 +0.12 -0.537 2.223  
10 C1' UDP 1 15.364 18.194 33.644 -0.63 +0.00 +0.113 2.223  
13 C4' UDP 1 15.692 18.654 35.064 -0.55 +0.03 +0.113 2.223  
14 O4' UDP 1 16.246 18.896 31.502 -0.24 +0.12 -0.537 2.223  
16 HO2'UDP 1 16.994 18.596 30.862 -0.24 +0.16 -0.537 2.223  
17 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
18 C5 UDP 1 16.994 18.595 33.133 -0.24 +0.16 -0.537 2.223  
19 O3' UDP 1 16.994 18.595 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.133 -0.24 +0.16 -0.537 2.223  
10 O3' UDP 1 14.267 18.955 33.
                                                                                       20.753 19.597 33.528 -0.53 +0.00 +0.000 2.223
             ATOM
30
             MOTA
             MOTA
             MOTA
             MOTA
             ATOM
35
             MOTA
             MOTA
             MOTA
             MOTA
             MOTA
40
            ATOM
                                  18 HO3'UDP 1 14.607 19.611 32.416 -0.21 -0.28 +0.424 2.223
             MOTA
                                  18 HO3 UDP 1 14.607 19.611 32.416 -0.21 -0.28 +0.424 2.223 19 C5' UDP 1 16.032 17.497 36.004 -0.41 +0.04 +0.113 2.223 20 05' UDP 1 16.661 18.039 37.150 -0.03 -0.15 -0.368 2.223 21 PA UDP 1 16.337 17.982 38.693 -0.68 +0.40 +1.019 2.223 22 01A UDP 1 17.627 18.086 39.432 -0.25 -0.04 -0.255 2.223 23 02A UDP 1 15.266 18.983 38.992 -0.19 -0.11 -0.255 2.223 23 02A UDP 1 15.266 18.983 38.992 -0.19 -0.11 -0.255 2.223
             ATOM
             MOTA
             MOTA
45
             MOTA
             MOTA
                                                                                           15.837 16.467 38.690 +0.00 -0.22 -0.510 2.223
             ATOM
                                  24 O3A UDP
                                                                         1
                                  25 PB UDP 1 15.882 15.298 39.781 -0.65 +0.39 +1.019 2.223 26 O1B UDP 1 14.585 14.389 39.460 -0.02 -0.10 -0.255 2.223 27 O2B UDP 1 15.706 16.076 41.033 -0.62 -0.20 -0.255 2.223 28 O3B UDP 1 17.026 14.363 39.633 +0.04 -0.05 -0.255 2.223
             ATOM
             MOTA
50
             MOTA
             MOTA
             TER
             ENDMDL
```

55

- 123 -

Residue number will be set to the conformation's cluster rank.

Table 6

```
32
  5
            MODEL
                                Run = 32
             USER
             USER
                                Cluster Rank = 1
                                Number of conformations in this cluster = 3
             USER
             USER
 10
             USER RMSD from reference structure
                                                                                                                         = 2.229 A
            USER
                                Estimated Free Energy of Binding = -9.58 \text{ kcal/mol} [=(1)+(3)]
Estimated Inhibition Constant, Ki = +9.46e-08 [Temperature = 298.15
             USER
             USER
             K1
 15
             USER
             USER
                           Final Docked Energy
                                                                                                                          = -13.09 \text{ kcal/mol} [= (1) + (2)]
             USER
                           (1) Final Intermolecular Energy = -13.94 kcal/mol

(2) Final Internal Energy of Ligand = +0.85 kcal/mol

(3) Torsional Free Energy = +4.36 kcal/mol
             USER
             USER
20
             USER
             USER
             USER
                           DPF = udp_gal.dpf
             USER
                                NEWDPF move udp_gal.pdbq
             USER
25
                                NEWDPF about15.798000 16.955999 35.483002
             USER
                                NEWDPF tran015.935308 17.497402 35.985764
             USER
             USER
                             NEWDPF quat0-0.511638 0.842288 -0.169640 -0.016065
                           -NEWDPF ndihe14
                            NEWDPF diheOO.72 72.20 174.47 61.19 -168.15 179.54 -19.00 -11.55 -110.12 -5.97
             USER
30
             49.04 165.23 96.49 -141.60
             USER
             USER
                                                                                                                                     z
                                                                 Rank
                                                                                                                У
                                                                                                                                                          vdW
                                                                                                                                                                           Elec
                                                                                                                                                                                                 q
                                                                                           18.011 20.255 33.276 -0.38 -0.10 -0.211 2.229
             MOTA
                               . 1 N
                                                    UD1 1
                                                                               18.286 21.586 32.961

19.609 21.849 32.689 -0.54 -0.39 -0.440 2.229

20.671 20.940 32.698 -0.73 +0.25 +0.396 2.229

20.312 19.592 33.032 -0.54 +0.00 +0.000 2.229

19.024 19.298 33.304 -0.47 +0.00 +0.000 2.229

17.428 22.465 32.926 -0.30 -0.31 -0.396 2.229

21 808 21.330 32.427 -0.18 -0.17 -0.396 2.229

-0.65 +0.06 +0.324 2.229
             MOTA
                                  2 C
                                                      UD1
35
                                   3 N1 UD1
             MOTA
                                                                          1
                                    4 C1 UD1
5 C2 UD1
            ATOM
                                                                          1
             ATOM
                                                                           1
                                   6 C3 UD1
             MOTA
                                                                          1
                                   7 O UD1
             MOTA
                                                                        1

      17.428
      22.465
      32.926
      -0.30
      -0.31
      -0.396
      2.229

      21.808
      21.330
      32.427
      -0.18
      -0.17
      -0.396
      2.229

      16.615
      19.895
      33.578
      -0.65
      +0.06
      +0.324
      2.229

      16.077
      18.680
      32.819
      -0.65
      -0.01
      +0.113
      2.229

      14.956
      18.216
      33.749
      -0.68
      +0.00
      +0.113
      2.229

      15.422
      18.644
      35.144
      -0.56
      +0.03
      +0.113
      2.229

      16.524
      19.565
      34.947
      -0.06
      -0.07
      -0.227
      2.229

      19.844
      22.824
      32.454
      +0.05
      +0.64
      +0.440
      2.229

      15.662
      19.025
      31.511
      -0.23
      +0.22
      -0.537
      2.229

      15.060
      18.283
      31.134
      -0.10
      -0.57
      +0.424
      2.229

      13.725
      19.337
      32.597
      -0.33
      -0.27
      +0.04
      +0.113
      2.229

      15.935
      17.497
      35.986
      -0.36
      +0.04
      +0.113

40
            MOTA
                                  8 01 UD1
                                                                       1
                                  9 C4 UD1
10 C5 UD1
11 C6 UD1
             MOTA
                                                                          1
             MOTA
                                                                          1
1 ·
             MOTA
                                                                          1.
             MOTA
                                  12 C7 UD1
45
             MOTA
                                  13 02 UD1
                                                                          1 .
             MOTA
                                  14 H1 UD1
                                                                      1
                                  15 O3 UD1
16 HO3 UD1
17 O4 UD1
             ATOM
                                                                      1
             ATOM
                                                                           1
             MOTA
                                                                           1

      13.725
      19.337
      32.597
      -0.33
      -0.27
      +0.424
      2.229

      15.935
      17.497
      35.986
      -0.36
      +0.04
      +0.113
      2.229

      16.536
      18.003
      37.186
      -0.03
      -0.15
      -0.368
      2.229

      17.675
      17.188
      37.959
      -0.61
      +0.28
      +1.019
      2.229

      18.860
      18.071
      37.912
      -0.04
      +0.00
      -0.255
      2.229

      17.936
      15.914
      37.242
      +0.05
      -0.11
      -0.255
      2.229

      17.175
      16.955
      39.357
      -0.22
      -0.14
      -0.510
      2.229

      15.787
      16.521
      39.969
      -0.81
      +0.51
      +1.019
      2.229

      15.957
      15.846
      41.284
      -0.64
      -0.22
      -0.255
      2.229

      15.245
      15.340
      39.034
      +0.01
      -0.16
      -0.368
      2.229

      15.995
      14.191
      38.694
      -0.41
      +0.12
      +0.27
      2.229

      15.190
      13.345
      37.718
      -0.35
      +0.09
      +0.113
      2.229
    <
50
                                  18 HO4 UD1
                                                                          1
            ATOM
             MOTA
                                  19 C8 UD1
                                                                       1
                                   20 05 UD1 1
             MOTA
                                  21 PA UD1 1
22 O1A UD1 1
23 O2A UD1 1
             MOTA
             MOTA
55
            MOTA
                                   24 O3A UD1
             ATOM
                                                                          1
             MOTA
                                  25 PB UD1
                                                                       1
             MOTA
                                   26 O1B UD1
                                                                       1
                                  27 O2B UD1
28 O6 UD1
29 C9 UD1
30 C14 UD1
                                                                                                                                                         -0.64 -0.22 -0.255 2.229
+0.01 -0.16 -0.368 2.229
-0.41 +0.12 +0.227 2.229
-0.35 +0.09 +0.113 2.229
-0.27 -0.77 -0.537 2.229
            MOTA
                                                                      1
60
                                                                       1
             MOTA
             MOTA
                                                                           1
             ATOM
                                                                          1
                                                                                           15.060 14.028 36.445
                                   31 O11 UD1
             MOTA
                                                                        1
             MOTA
                                   32 H11 UD1
                                                                                          15.628 14.888 36.456
                                                                                                                                                      +0.08 +0.38 +0.424 2.229
                                  33 C13 UD1
34 O10 UD1
35 HO10UD1
65
            MOTA
                                                                                           13.829 13.117 38.359
                                                                                                                                                          -0.45 +0.06 +0.113 2.229
                                                                      1
                                                                                                                                                          -0.06 -0.19 -0.537 2.229
-0.03 +0.02 +0.424 2.229
                                                                      1
                                                                                           13.011 12.358 37.481
13.199 12.641 36.508
             MOTA
            ATOM
                                                                         1
```

- 124 -

```
36 C12 UD1
37 O122UD1
                                                           13.978 12.379 39.705
14.315 11.027 39.382
13.665 10.671 38.667
                                                                                                    -0.48 +0.09 +0.113 2.229
+0.05 -0.41 -0.537 2.229
        ATOM
                                                1
        MOTA
                                                1
                   2 38 H122UD1 -
                                                                                                     +0.09 . +0.30 +0.424 2.229
        ATOM
                                                7
                     39 C10 UD1
                                                           15.087 12.960 40.605
                                                                                                     -0.58 +0.07 +0.113 2.229
       MOTA
                                                           15.535 11.852 41.547 -0.54 +0.09 +0.113 2.229
16.047 10.737 40.847 +0.01 -0.38 -0.537 2.229
15.411 9.934 40.964 +0.09 +0.33 +0.424 2.229
16.258 13.366 39.840 +0.01 -0.09 -0.227 2.229
    ATOM
                     40 C11 UD1 1
                     41 08 UD1
42 H8 UD1
43 07 UD1
        ATOM
                                                1
       MOTA
                                                1
        MOTA
        TER
10
       FNDMDL
        MODEL
                         22
                    Run = 22
        USER
                    Cluster Rank = 1
        USER
                    Number of conformations in this cluster = 3
        USER
15
        USER
        USER
                    RMSD from reference structure
                                                                              = 2.268 A
        USER
        USER Estimated Free Energy of Binding = -9.61 \text{ kcal/mol} [=(1)+(3)]
        USER Estimated Inhibition Constant, Ki = +9.10e-08
                                                                                                               [Temperature = 298.15 ·
20
        K)
        USER
                  Final Docked Energy
                                                                               = -12.75 \text{ kcal/mol} = (1) + (2)
        USER
        USER
        USER (1) Final Intermolecular Energy = -13.96 \text{ kcal/mol}
                  (2) Final Internal Energy of Ligand = +1.21 kcal/mol
(3) Torsional Free Energy = +4.36 kcal/mol
25
       USER
        USER
        USER
        USER -
        USER
                 DPF = udp_gal.dpf
30
       USER NEWDPF move udp_gal.pdbq
                    NEWDPF about15.798000 16.955999 35.483002
        USER
                 NEWDPF tran015.906499 17.202339 35.526945
        USER
                     NEWDPF quat0-0.557219 0.582353 -0.591922 -6.199978
        USER
                   NEWDPF ndihel4
        USER
                   NEWDPF dihe0-60.31 98.78 176.75 -59.94 -135.34 13.12 -121.85 63.91 -96.51 -
        178.60 -155.47 -91.96 33.25 179.90
        USER
                                                                                                  vdW Elec q RMS
-0.38 -0.09 -0.211 2.268
        USER
                                         Rank
                                                              X
                                                                            у.
                                                                                         z
                                                    17.957 20.246 33.121
                1 N UD1 1 17.957 20.246 33.121 -0.38 -0.09 -0.211 2.268 2 C UD1 1 18.162 21.609 32.903 -0.86 +0.27 +0.396 2.268 3 N1 UD1 1 19.479 21.969 32.733 -0.53 -0.42 -0.440 2.268 4 C1 UD1 1 20.596 21.129 32.758 -0.75 +0.27 +0.396 2.268 5 C2 UD1 1 20.307 19.743 32.989 -0.55 +0.00 +0.000 2.268 6 C3 UD1 1 19.027 19.354 33.159 -0.49 +0.00 +0.000 2.268 7 O UD1 1 17.252 22.433 32.863 -0.31 -0.29 -0.396 2.268 8 O1 UD1 1 21.720 21.605 32.583 -0.15 -0.19 -0.396 2.268 9 C4 UD1 1 16.572 19.782 33.312 -0.66 +0.04 +0.324 2.268 10 C5 UD1 1 16.162 18.585 32.450 -0.67 -0.02 +0.113 2.268 11 C6 UD1 1 15.020 17.996 33.277 -0.68 -0.02 +0.113 2.268 12 C7 UD1 1 15.371 18.365 34.722 -0.58 +0.02 +0.113 2.268 13 O2 UD1 1 16.420 19.363 34.650 -0.05 -0.06 -0.227 2.268 14 H1 UD1 1 19.664 22.970 32.570 +0.04 +0.77 +0.440 2.268
                        1 N UD1 1
        MOTA
       MOTA
        MOTA
        ATOM
        MOTA
        MOTA
45
       MOTA
        MOTA
        ATOM
        ATOM
        MOTA
50
        MOTA
        ATOM
                     14 H1 UD1
                                                         19.664 22.970 32.570 +0.04 +0.77 +0.440 2.268
        MOTA
                                                1
                                                                                                     -0.12 +0.22 -0.537 2.268

-0.28 -0.17 +0.424 2.268

-0.40 +0.06 -0.537 2.268

-0.19 -0.26 +0.424 2.268

-0.37 +0.04 +0.113 2.268

+0.04 -0.15 -0.368 2.268
        ATOM
                     15 O3 UD1
                                                1
                                                         15.806 18.985 31.140
                                                      16.228 18.342 30.458
13.716 18.475 32.923
13.699 18.716 31.922
15.906 17.202 35.527
                    16 HO3 UD1
17 O4 UD1
18 HO4 UD1
19 C8 UD1
                                             , 1
        ATOM
                                            1
55
       MOTA
        MOTA
                                                1
        ATOM
                                                1
                     20 O5 UD1
                                                           17.089 17.601 36.234
        MOTA
                                                .1
                                                                                                     -0.55 +0.34 +1.019 2.268
                     21 PA UD1
                                                           17.403 17.064 37.708
        MOTA
                                              1
                                                                                                     -0.55 +0.34 +1.019 2.268

-0.21 -0.04 -0.255 2.268

-0.01 -0.09 -0.255 2.268

+0.01 -0.21 -0.510 2.268

-0.72 +0.45 +1.019 2.268

-0.20 -0.12 -0.255 2.268

-0.56 -0.16 -0.255 2.268

-0.05 -0.13 -0.368 2.268

-0.46 +0.11 +0.227 2.268

-0.34 +0.09 +0.113 2.268
60
                       22 O1A UD1
                                                         17.928 18.244 38.428
        MOTA
                                                           18.429 15.994 37.630
16.106 16.562 38.278
15.593 16.256 39.738
14.588 17.251 40.183
                      23 O2A UD1
24 O3A UD1
25 PB UD1
        MOTA
                                                1
        ATOM
                                                1
        MOTA
                                                1
                      26 O1B UD1
        MOTA
                                                1
     MOTA
                     27 O2B UD1
                                                1
                                                           16.724 16.091 40.690
                                                         14.962 14.786 39.682
        ATOM
                     28 O6 UD1
                      29 C9 UD1
30 C14 UD1
                                                           15.709 13.612 39.431
15.519 13.206 37.976
        MOTA
                                                1
        ATOM
```

- 125 -

```
16.144 14.175 37.095
                                                                                     -0.10 -0.54 -0.537 2.268
                   31 O11 UD1
       MOTA
                  32 H11 UD1
                                      1
                                                16.693 14.844 37.654 +0.10 +0.25 +0.424 2.268
       ATOM
                                                                                     -0.43 . +0.06 +0.113 2.268
                   33 C13 UD1
       MOTA
                                                14.018 13.134 37.737
                                                                                     -0.30 -0.27 -0.537 2.268

-0.17 -0.23 +0.424 2.268

-0.48 +0.07 +0.113 2.268

+0.00 -0.35 -0.537 2.268
                 34 O10 UD1 1
35 HO10UD1 1
36 C12 UD1 1
37 O122UD1 1
38 H122UD1 1
39 C10 UD1 1
40 C11 UD1 1
41 O8 UD1 1
42 H8 UD1 1
                                       1
                                                 13.769 12.792 36.381
       ATOM
                   34 O10 UD1
                                             13.769 12.792 36.381

12.822 13.098 36.118

13.367 12.093 38.668

13.748 10.812 38.160

14.102 10.914 37.199

13.837 12.199 40.133

13.635 10.835 40.776

12.399 10.256 40.411

12.486 9.812 39.484

15.257 12.509 40.232
      MOTA
       MOTA
       ATOM
                                                                                     +0.00 -0.35 -0.537 2.268
+0.07 +0.27 +0.424 2.268
-0.49 +0.11 +0.113 2.268
-0.33 +0.15 +0.113 2.268
-0.13 -0.83 -0.537 2.268
+0.09 +0.39 +0.424 2.268
+0.00 -0.15 -0.227 2.268
       MOTA
       MOTA
10
       MOTA
       MOTA
                  42 H8 UD1
43 O7 UD1
       MOTA
                                        1
       MOTA
       TER
       ENDMDL
15
       MODEL
                    38
       USER
                 Run = 38
       USER
                 Cluster Rank = 1
       USER
                 Number of conformations in this cluster = 3
20
       USER
                                                                 = 2.343 A
       USER
                 RMSD from reference structure
       USER
                                                                 = -8.52 kcal/mol [=(1)+(3)]
       USER
                 Estimated Free Energy of Binding
       USER
                 Estimated Inhibition Constant, Ki = +5.73e-07
                                                                                              [Temperature = 298.15
25
       Κl
       USER
               Final Docked Energy
                                                                   = -11.93 \text{ kcal/mol} [= (1) + (2)]
       USER
       USER -
                 (1) Final Intermolecular Energy = -12.87 kcal/mol
(2) Final Internal Energy of Ligand = +0.95 kcal/mol
(3) Torsional Free Energy = +4.36 kcal/mol
       USER
30
       USER
       USER
       USER
       USER
                 DPF = udp gal.dpf
       USER
35
                 NEWDPF move udp gal.pdbq
       USER
                 NEWDPF about15.798000 16.955999 35.483002
       USER
                 NEWDPF tran016.468929 17.225999 35.649499
       USER
                 NEWDPF quat00.571135 -0.378482 -0.728393 4.119217
       USER
                 NEWDPF ndihe14
       USER
40
                 NEWDPF dihe0135.84 72.34 72.68 26.52 178.87 20.84 -19.04 11.86 -120.48 46.73 -
       26.80 160.70 125.77 -111.68 -
       USER
                                                                                                          . q
                                                                                     vdW Elec
                                                                                                                    RMS
       USER
                                   Rank
                                                 x y z vdW Elec q RMS
18.760 19.976 33.111 -0.33 -0.11 -0.211 2.343
                                                                           Z
                    1 N UD1, 1
       MOTA
                                                 19.112 21.303 32.859 -0.78 +0.28 +0.396 2.343
45
       ATOM
                    2 C UD1
                                              20.454 21.506 32.633
21.467 20.543 32.632
21.029 19.203 32.900
19.721 18.967 33.126
                                                                                     -0.52 -0.31 -0.440 2.343
-0.71 +0.23 +0.396 2.343
-0.51 +0.00 +0.000 2.343
                    3 N1 UD1
                                      1
       MOTA
                   4 C1 UD1 1
5 C2 UD1 1
6 C3 UD1 1
       MOTA
       MOTA
                                                                                     -0.45 +0.00 +0.000 2.343
       MOTA
                                              18.302 22.227 32.838 -0.27 -0.35 -0.396 2.343
                    7 O UD1
                                        1
50
       ATOM
                   8 01 UD1
                                              22.630 20.883 32.406 -0.25 -0.23 -0.396 2.343
       ATOM
                                       1
                                                                                     -0.60 +0.10 +0.324 2.343

-0.60 +0.00 +0.113 2.343

-0.60 -0.01 +0.113 2.343

-0.51 +0.03 +0.113 2.343

-0.01 -0.09 -0.227 2.343
                                                 17.339 19.679 33.362
16.760 18.526 32.539
15.591 18.084 33.420
16.040 18.432 34.843
       MOTA
                   9 C4 UD1
                                       1
                                      1
1
1
                   10 C5 UD1
       ATOM
                             UD1
                   11 C6
12 C7
       MOTA
55
       MOTA
                              UD1
                                         1
                                                 17.193 19.299 34.713
                  13 02
                             UD1
                                        1
       ATOM
                                                 20.746 22.476 32.445
                                                                                      +0.05 +0.37 +0.440 2.343
       ATOM
                  14 Hl
                             UDI
                                       1 .
                                                                                      -0.21 +0.10 -0.537 2.343
                                                 16.401 18.945 31.237
                   15 O3 UD1
                                       1
       MOTA
                                                 16.159 19.943 31.251
14.338 18.706 33.106
14.452 19.313 32.282
                                                                                     +0.00 -0.04 +0.424 2.343
-0.27 +0.13 -0.537 2.343
-0.18 -0.28 +0.424 2.343
                   16 HO3 UD1
       MOTA
                                       1
                   17 O4 UD1
18 HO4 UD1
                                                                        33.106
60
                                         1
       MOTA
       MOTA
                                         1
                                         1 16.469 17.226 35.649
1 16.397 17.525 37.051
                                                                                      -0.37 +0.04 +0.113 2.343
                   19 C8 UD1
       MOTA
                                                                                     +0.02 -0.15 -0.368 2.343
                   20 O5 UD1
       ATOM
                   21 PA UD1
                                                 17.665 17.350 38.010
                                                                                      -0.63 +0.27 +1.019 2.343
       MOTA
                                      1
1
1
1
                                                 18.004 18.726 38.431
18.780 16.744 37.239
17.232 16.478 39.155
15.873 16.279 39.930
                   22 O1A UD1
                                                                                     +0.15   -0.04   -0.255   2.343
+0.13   -0.09   -0.255   2.343
-0.15   -0.13   -0.510   2.343
65
       ATOM
                   23 O2A UD1
24 O3A UD1
25 PB UD1
       MOTA
       MOTA
                                                                                      -0.78 \pm 0.49 \pm 1.019 2.343
       MOTA
```

	MOTA	26	OlB UD1	1	15.020	17.490	39.856	-0.23	-0.13	-0.255	2.343
	ATOM	27	O2B UD1	1	16.103	15.802	41.320	-0.58	-0.22	-0.255	2,343
	MOTA	28	06 UD1	1	15.153	15.026	39.242	-0.03	-0.15	-0.368	2.343
	MOTA	29	C9 UD1	1	15.824	13.846	38.846	-0.41	+0.12	+0.227	2.343
5	MOTA	30	C14 UD1	1	15.066	13.208	37.691	-0.36	+0.09	+0.113	2.343
	MOTA	31	011 UD1	1	15.159	14.040	36.505	-0.26	-0.76	-0.537	2.343
	MOTA	- 32	H11 UD1	1	14.326	14.642	36.442	+0.03	+0.20	+0.424	2.343
	ATOM	33	C13 UD1	1	13.621	13.062	38.146	-0.46	+0.06	+0.113	2.343
	MOTA	34	010 UD1	1	12.847	12.501	37.096	-0.10	-0.09	-0.537	2.343
10	MOTA	35	HO10UD1	1	12.729	13.199	36.347	-0.12	-0.17	+0.424	2.343
	MOTA	36	C12 UD1	1	13.533	12.167	39.398	-0.49	+0.09	+0.113	2.343
	MOTA	37	0122UD1	1	13.775	10.831	38.949	+0.03	-0.40	-0.537	2.343
	ATOM	38	H122UD1	1	13.044	10.555	38.279	+0.09	+0.28	+0.424	2.343
	MOTA	39	C10 UD1	1	14.576	12.517	40.479	-0.51	+0.09	+0.113	2.343
15	MOTA	. 40	Cll UD1	1	14.796	11.268	41.320	-0.33	+0.12	+0.113	2.343
	ATOM	41	08 UD1	1	15.279	10.188	40.548	+0.04	-0.41	-0.537	2.343
	ATOM	42	H8 UD1	1.	16.309	10.214	40.524	+0.09	+0.29	+0.424	2.343
	ATOM	43	07 UD1	1	15.865	12.874	39.903	+0.01	-0.12	-0.227	2.343
	TER										
20	ENDMDL			,				•			

- 127 -

Table 7

	Uracıl											
5	MOTA	1	N1	UDP	1	18.167	20.363	33.367	-0.38	-0.11	-0.211	2.450
	MOTA	2	C2	UDP	1	18.485	21.574	32.818	-0.84	+0.28	+0.396	2.450
	MOTA	3	ΝЗ	UDP	1	19.821	21.872	32.732	-0.53	-0.40	-0.440	2.450
,	ATOM	4	нЗ	UDP	1	20.069	22.789	32.334	+0.07	+0.53	+0.440	2.450
	ATOM	5	C4	UDP	1	20.878	21.052	33.133	-0.75	+0.30	+0.396	2.450
10	ATOM	6	C5	UDP	1	20.479	19.798	33.691	-0.55	+0.00	+0.000	2.450
	MOTA	7	C6	UDP	1	19.174	19.496	33.774	-0.49	+0.00	+0.000	2.450
	ATOM	8	02	UDP	1	17.619	22.362	32.433	-0.35	-0.26	-0.396	2.450
	ATOM	9	04	UDP	1	22.026	21.474	32.994	-0.24	-0.27	-0.396	2.450
	Ribose											
15	MOTA	10	C1'	UDP	1	16.753	19.988	33.503	-0.65	+0.07	+0.324	2.450
	ATOM	11	C2 '	UDP	1	16.402	18.617	32.920	-0.60	+0.00	+0.113	2.450
	ATOM	12	C3'	UDP	1	15.116	18.296	33.717	-0.67	+0.00	+0.113	2.450
	ATOM	13	C4 '	UDP	1	15.358	18.950	35.076	-0.56	+0.02	+0.113	2.450
	MOTA	14	04'	UDP	1	16.521	19.804	34.894	-0.07	-0.07	-0.227	2.450
20	ATOM	15	02'	UDP	1	16.102	18.725	31.548	-0.24	+0.17	-0.537	2.450
	MOTA	16	HO2		1	15.697	17.839	31.214	-0.28	-0.47	+0.424	2.450
	MOTA	17	03'	UDP	. 1	14.035	18.955	33.051	-0.27	+0.16	-0.537	2.450
	MOTA	18	ноз		. 1	14.102	18.785	32.037	-0.17	-0.28	+0.424	2.450
	ATOM	19	C5'	UDP	1	15.666	17.939	36.181	-0.30	+0.04	+0.113	2.450
25	MOTA	20	05'	UDP	1	15.126	18.439	37.390	+0.00	-0.18	-0.368	2.450
	Pyrophos				•							
	MOTA	21	PA	UDP	1	15.642	18.457	38.881	-0.61	+0.45	+1.019	2.450
	MOTA	22	01A	–	1	17.132	18.480	38.845	-0.15	-0.08	-0.255	2.450
	ATOM	23	02A		1 .	14.933	19.550	39.617	-0.24	-0.09	-0.255	2.450
30	MOTA	24		UDP	1	15.133	16.987	39.239	-0.07	-0.23	-0.510	2.450
	MOTA	25	PB	UDP	1	15.835	15.723	39.920	-0.72	+0.43	+1.019	2.450
	ATOM	26	01B	UDP	1	15.020	14.448	39.353	-0.03	-0.11	-0.255	2.450
	ATOM	27	02B	UDP	1	15.532	15.971	41.352	-0.68	-0.23	-0.255	2.450
	ATOM	28	03B	UDP	1	17.233	15.484	39.480	-0.12	-0.06	-0.255	2.450
35						•				,		

Table 8

	REMARK	4 10	AL (COMPL	IES WITH	FORMAT V.	2.0, 12-	-JAN-200	0				
5	ATOM	1	N	GLN	125	3.774	29.638	36.504	1.00	0.00		*	N
•	ATOM	2	CA	GLN	125	2.861	28.997	35.607	1.00	0.00			С
	ATOM	3	С	GLN	125	3.659	28.369	34.516	1.00	0.00	•		С
	ATOM	4	Ö	GLN	125	3.480	27.195	34.201	1.00	0.00			0
	ATOM	5	СВ	GLN	125	1.885	29.988	34.950	1.00	0.00			С
10	ATOM	6	CG	GLN	125	0.963	30.690	35.948	1.00	0.00			C
10		7	CD	GLN	125	0.056	31.635	35.172	1.00	0.00			Ċ
	MOTA	8	OE1		125	-0.698	32.411	35.755	1.00	0.00			Ö
	ATOM				125	0.131	31.571	33.815	1.00	0.00			N
	ATOM	9	NE2			4.428	30.225	35.967	1.00	0.00			Н
1.5	ATOM		LH	GLN	125			37.166	1.00	0.00			H
15	ATOM		2H	GLN	125	3.249	30.226		1.00	0.00			H
	MOTA	12	AH	GLN	125	2.310	28.245	36.172					
	ATOM		LHB	GLN	125	1.217	29.524	34.223	1.00	0.00			H
	ATOM		2HB '	GLN	125	2.381	30.792	34.407	1.00	0.00			H
	MOTA	15 1		GLN	125	1.583	31.242	36.653	1.00	0.00			H
20	ATOM		2HG	GLN	125	0.377	29.928	36.463	1.00	0.00			H
	MOTA			GLN	125	-0.457	32.187	33.237	1.00	0.00			H
	MOTA	18 2	2HE2	GLN.	125	0.776	30.906	33.365	1.00	0.00			H
	ATOM	19	N	LYS	126	4.583	29.141	33.917	1.00	0.00			N
	MOTA	20	CA	LYS	126	5.373	28.597	32.859	1.00	0.00			С
25	MOTA	21	С	LYS	126	6.430	27.759	33.485	1.00	0.00			С
	MOTA	22	0	LYS	126	6.743	27.906	34.665	1.00	0.00			0
	MOTA	23	CB	LYS	126	6.036	29.676	31.992	1.00	0.00			С
	ATOM	24	CG	LYS	126	5.011	30.426	31.142	1.00	0.00			С
	MOTA	25	CD	LYS	126	3.953	31.165	31.965	1.00	0.00			С
30	ATOM .	26	CE	LYS	126	4.502	32.348	32.763	1.00	0.00			С
	ATOM	27	NZ	LYS	126	3.406	33.004	33.511	1.00	0.00			N
	ATOM	28	Н	LYS	126	4.719	30.116	34.218	1.00	0.00			· H
	ATOM	29	AH	LYS	. 126	4.707	28.002	32.232	1.00	0.00			H
	ATOM	30 :		LYS	126	6.769	29.248	31.308	1.00	0.00			H
35	ATOM	31 2		LYS	126	6.555	30.417	32.599	1.00	0.00			H
22	ATOM	32		LYS	126	4.444	29.781	30.469	1.00	0.00			H
	ATOM	33 3		LYS	126	5.450	31.188	30.498	1.00	0.00			Н
	ATOM	34		LYS	126	3.514	30.461	32.672	1.00	0.00			H
	ATOM	35 2		LYS	126	3.192	31.546	31.283	1.00	0.00			Н
40	ATOM	36 :		LYS	126	4.954	33.073	32.087	1.00	0.00			Н
40	ATOM		2HE	LYS	126	5.256	32.001	33.469	1.00	0.00			Н
		38 :		LYS	126 126	2.520	32.513	33.323	1.00	0.00			H
	MOTA		ZHZ	LYS	126	3.609	32.970	34.520	1.00	0.00			H
	MOTA				126	3.324	33.985	33.210	1.00	0.00	•		H
15.	MOTA		3HZ			6.994	26.817	32.713	1.00	0.00			N
45	ATOM	41	N	ILE	127		25.997	33.310	1.00	0.00			C
	MOTA	42	CA	ILE	127	7.996		32.400	1.00	0.00			c
	MOTA	43	С	ILE	127	9.165	25.944	31.181	1.00	0.00			0
	ATOM	44	0	ILE	127	9.040	26.043		1.00	0.00			C
	MOTA	45	CB	ILE	127	7.575	24.578	33.539					_
50	ATOM	46		ILE	127	8.654	23.841	34.351	1.00	0.00			C
	MOTA	47		ILE	127	7.271	23.937	32.176	1.00	0.00			C
	ATOM .	48		ILE	127.	8.211	22.470	34.856	1.00	0.00			C
	MOTA	49	H	ILE	127	6.714	26.691	31.729	1.00	0.00			H
	MOTA	50	AH	ILE	127	8.278	26.436	34.266	1.00	0.00			H
55	MOTA	51	HB	ILE	127	6.684	24.581	34.167	1.00	0.00			Н
	ATOM	52	1HG1	ILE	127	8.974	24.379	35.242	1.00	0.00			H
	ATOM	53	2HG1	ILE	127	9.570	23.652	33.791	1.00	0.00			H
	MOTA	54	1HG2	ILE	127	7.435	24.668	31.385	1.00	0.00		•	H
	MOTA	55	2HG2	ILE	127	7.928	23.081	32.021	1.00	.0.00			H
60	ATOM			ILE	127	6.232	23.605	32.153	1.00	0.00			H
•	MOTA			ILE	127	7.188	22.276	34.533	1.00	0.00			Н
	ATOM		2HD1		127	8.870	21.702	34.451	1.00	0.00			Н
	ATOM		3HD1		127	8.257	22.450	35.944	1.00	0.00			H
	MOTA	60	N	THR	128	10.355	25.811	33.002	1.00	0.00		•	N
65	ATOM	61	CA	THR	128	11.546	25.664	32.234	1.00	0.00			C
00	ATOM	62	C	THR	128	11.987	24.261	32.465	1.00	0.00			č
		63	0	THR	128	12.094	23.810	33.605	1.00	0.00			o
	ATOM	63	J	TUL	120	12.034	40.010	55.005	2.00	5.55			_

	ATOM	64 CB	THR	128		12.634	26.603	32.656	1.00	0.00		С
	ATOM	65 OG		128		12.906	26.435	34.037	1.00	0.00	_	0
	MOTA	66 CG2	THR	128		12.179	28.044	32.377	1.00	0.00		С
	ATOM	67 H	THR	128		10.409	25.815	34.030	1.00	0.00		H
5	ATOM	68 HA	THR	128		11.246	25.860	31.204	1.00	0.00		H
	MOTA	69 HB	THR	. 128		13.534	26.375	32.084	1.00	0.00		H
	ATOM	70 HG:		128		12.856	27.348	34.510	1.00	0.00		H
	ATOM .	71 1HG2		128		11.179	28.032	31.941	1.00	0.00		H
	ATOM	72 2HG2		128		12.161	28.607	33.310	1.00	0.00		H
10	MOTA	73 3HG2		128		12.872	28.516	31.680	1.00	0.00	•	H
	ATOM	74 N	VAL	129		12.221	23.517	31.369	1.00	0.00		N
	MOTA	75 CA	VAL	129		12.615	22.148	31.497	1.00	0.00		C
	MOTA	76 C	VAL	129		14.091	22.103	31.268	1.00	0.00		С
<i>i -</i>	MOTA	77 0	VAL	129		14.601	22.747	30.358	1.00	0.00		0
15	ATOM	78 CB	VAL	129		11.961	21.255	30.478	1.00	0.00		C
	ATOM .		LAV	129		12.454	19.813 21.408	30.683 30.611	1.00	0.00		C
	ATOM	•	VAL VAL	129 129		10.434 12.116	23.935	30.433	1.00	0.00		Н
	ATOM ATOM	81 H 82 HA	VAL	129		12.110	21.838	32.507	1.00	0.00		H
20	ATOM	83 HB	VAL	129		12.228	21.599	29.478	1.00	0.00		H
20	ATOM	84 1HG:		129		13.157	19.783	31.515	1.00	0.00		H
	ATOM		L VAL	129		11.604	19.165	30.902	1.00	0.00		Н
	MOTA		L VAL	129		12.949	19.465	29.776	1.00	0.00		H
	ATOM		VAL	129		10.207	22.120	31.404	1.00	0.00		· H
25	ATOM		VAL	129	•	10.021	21.770	29.669	1.00	0.00		H
	ATOM		VAL	129		9.991	20.441	30.853	1.00	0.00		H
	MOTA	90 N	GLY	130		14.827	21.351	32.109	1.00	0.00		N
	MOTA	- 91 CA	GLY	130		16.251	21.295	31.941	1.00	0.00		С
	ATOM	92 C	GLY	130		16.576	19.918	31.483	1.00	0.00		. C
30	MOTA	93 O	GLY	130		16.223	18.933	32.129	1.00	0.00		0
	MOTA	94 H	GLY	130		14.371	20.821	32.865	1.00	0.00		Н
	MOTA	95 1HA	GLY	130		16.691	21.516	32.912	1.00	0.00		Η.
	MOTA	96 2HA	GLY	130		16.509	22.045	31.194	1.00	0.00		H
	MOTA	97 N	LEU	131`		17.293	19.816	30.350	1.00	0.00	•	N
35	MOTA	98 CA	LEU	131		17.552	18.511	29.838	1.00	0.00		С
	MOTA	99 C	LEU	131		19.040	18.385	29.719	1.00	0.00		С
	MOTA	100 0	LEU	131		19.709	19.308	29.260	1.00	0.00		0 C
	ATOM	101 CB 102 CG	LEU	131 131		16.969 16.783	18.330 16.855	28.430 28.071	1.00 1.00	0.00		C
40	ATOM ATOM		LEU LEU	131	•	15.603	16.268	28.862	1.00	0.00		C
40	ATOM		2 LEU	131		16.663	16.648	26.550	1.00	0.00		 c
	ATOM	104 CD	LEU	131		17.644	20.655	29.866	1.00	0.00		H
	ATOM	106 HA	LEU	131		17.135		30.557	1.00	0.00		Н
	ATOM	107 1HB	LEU	131		17.611	18.762	27.662	1.00	0.00		Н
45	ATOM	108 2HB	LEU	131		15.993	18.804	28.327	1.00	0.00		Н
_	MOTA	109 HG	LEU	131		17.686	16.296	28.314	1.00	0.00		H ·
-	ATOM	110 1HD	l LEU	131		15,170	17.040	29.497	1.00	0.00		H
	ATOM.	111 2HD	1 LEU	131		14.845	15.903	28.168	1.00	0.00		Н
	MOTA	112 3HD	l LEU	131		15.954	15.443	29.481	1.00	0.00		H
50	MOTA	113 1HD		131		16.737	17.611	26.044	1.00	0.00		Н
	MOTA	114 2HD		131		17.466	15.995	26.207	1.00	0.00		H
	MOTA	115 3HD		131		15.700	16.190	26.319	1.00	0.00		Н
	MOTA	116 N	THR	132		19.607	17.244	30.157	1.00	0.00		N
	ATOM	117 CA	THR			21.018	17.037	30.005		0.00		C
55	MOTA	118 C	THR	132		21.177	15.992	28.951	1.00	0.00		С
	MOTA	119 0	THR	132		20.496	14.967	28.976	1.00	0.00		0
	MOTA	120 CB	THR	132		21.706	16.558	31.252 31.699	1.00	0.00		С
	ATOM		1 THR	132		21.133	15.339	32.338	1.00	0.00		0 C
60	ATOM		2 THR	132 132		21.583 19.026	17.642 16.519	30.601	1.00	0.00	•	Н
60	ATOM ATOM	123 H 124 HA	THR THR	132		21.437	17.997	29.705	1.00	0.00		Н
,	ATOM	124 HA 125 HB	THR	132		22.756	16.372	31.027	1.00	0.00		H
	MOTA		1 THR	132		20.160	15.504	31.994	1.00	0.00		H
	ATOM	127 1HG		132		21.028	18.492	31.941	1.00	0.00		H
65	MOTA	128 2HG		132		21.055	17.234	33.200	1.00	0.00		H
	MOTA	129 3HG		132		22.578	17.967	32.641	1.00	0.00		Н
	ATOM	130 N	VAL	133		22.079	16.244	27.979	1.00	0.00		N
	ATOM	131 CA		133		22.229	15.303	26.910	1.00	0.00		С

	MOTA	132	С	VAL	133	23.665	14.894	26.786	1.00	0.00			С
	ATOM	133	Õ	VAL	133	24.595	15.690	26.922	1.00	0.00			ō
	ATOM	134	CB	VAL	133	21.830	15.851	25.570	1.00	000			Ċ
	ATOM	135	CG1		133	20.354	16.275	25.623	1.00	0.00			c
5	ATOM	136		VAL	133	22.783	16.997	25.201	1.00	0.00	-		C
5		137	H H		133	22.765		28.005	1.00	0.00			Н
	MOTA			VAL			17.100		1.00	0.00			Н
	ATOM	138	HA	VAL	133	21.624	14.417	27.105					
	MOTA	139	HB	VAL	133	21.968	15.076	24.815	1.00	0.00			Н
	MOTA		1HG1		133	19.953	16.076	26.617	1.00	0.00		•	H
10	MOTA		2HG1	VAL.	133	20.273	17.340	25.405	1.00	0.00			Н
	MOTA		3HG1		133	19.786	15.709	24.883	1.00	0.00			Н
	ATOM		1HG2		133	23.514	17.133	25.998	1.00	0.00			H
	ATOM		2HG2	VAL	133	23.299	16.755	24.272	1.00	0.00			H
	MOTA		3HG2		133	22.212	17.916	25.070	1.00	0.00			Н
15	MOTA	146	N	PHE	134	23.857	13.592	26.526	1.00	0.00			N
	MOTA	147	CA	PHE	134	25.138	13.016	26.297	1.00	0.00			С
	ATOM	148	С	PHE	134	24.939	12.254	25.042	1.00	0.00			C.
	MOTA	149	0	PHE	134	23.939	12.454	24.357	1.00	0.00			0
	MOTA	150	CB	PHE	134	25.581	12.031	27.387	1.00	0.00			C.
20	MOTA	151	CG	PHE	134	25.779	12.856		1.00	0.00			С
	ATOM	152	CD1	PHE	134	24.964	12.698	29.703	1.00	0.00			С
	MOTA	153	CD2	PHE	134	26.810	13.759	28.664	1.00	0.00			С
	MOTA	154	CE1	PHE	134	25.156	13.454	30.834	1.00	0.00			С
	MOTĄ	155	CE2	PHE	134	27.006	14.518	29.790	1.00	0.00			С
25	ATOM	156	CZ	PHE	134	26.179	14.370	30.876	1.00	0.00			С
	ATOM	157	H	PHE	134	23.032	12.975	26.490	1.00	0.00	*		Н
	MOTA	158	HA	PHE	134	25.901	13.786	26.189	1.00	0.00			H
	MOTA	159	1HB	PHE	134	26.504	11.585	27.015	1.00	0.00			Н
	ATOM	160	2HB	PHE	134	24.765	11.316	27.479	1.00	0.00			Н
30	MOTA	161	HD1	PHE	134	24.157	11.965	29.674	1.00	0.00			H
	MOTA	162	HD2	PHE	134	27.479	13.875	27.809	1.00	0.00			Н
	ATOM :	- 163	HE1		134	24.500	13.328	-31.695	1.00	0.00			Н
	ATOM	164	HE2	PHE	134	27.821	15.241	29.824	1.00	0.00			H
	ATOM	165	HZ	PHE	134	26.334	14.976	31.769	1.00	0.00			H
35	MOTA	166	N	ALA	135	25.881	11.365	24.698	1.00	0.00			N
	ATOM	167	CA	ALA	135	25.736	10.705	23.434	1.00	0.00			С
	ATOM	168	С	ALA	135	24.749	9.589	23.519	1.00	0.00			С
	ATOM	169	0	ALA	135	25.132	8.421	23.496	1.00	0.00			0
,	ATOM	170	CB	ALA	135	27.051	10.116	22.893	1.00	0.00			С
40	MOTA	171	Н	ALA	135	26.678	11.163	25.318	1.00	0.00			Н
	ATOM	172	HA	ALA	135	25.389	11.396	22.666	1.00	0.00			Н
•	ATOM:		1HB	ALA	135	27.858	10.321	23.596	1.00	0.00			Н
•	MOTA		2HB	ALA	135	26.943	9.038	22.769	1.00	0.00			Н
	ATOM		3HB	ALA	135	27.284	10.570	21.930	1.00	0.00			Н
45	ATOM	176	N	VAL	136	23.446	9.913	23.642	1.00	0.00			N
	ATOM	177	CA	VAL	136	22.465	8.870	23.562	1.00	0.00			С
	MOTA	178	C	VAL	136	21.648	9.153	22.336	1.00	0.00			C
	MOTA	179	ō	VAL	136	20.541	9.686	22.389	1.00	0.00			0
	ATOM	180	CB	VAL	136	21.574	8.768	24.772	1.00	0.00			C
50	ATOM	181		VAL	136	20.893	10.116	25.062	1.00	0.00			C
	ATOM	182		VAL	136	20.572	7.638	24.501	1.00	0.00			С
•	ATOM	183	Н	VAL	136	23.160	10.891	23.790	1.00	0.00			Н
	ATOM	184	НA	VAL	136	23.018	7.934	23.486	1.00	0.00		,	Н
	ATOM	185	HB	VAL	136	22.149	8.481	25.652	1.00	0.00			Н
55	ATOM		1HG1		136	21.209	10.850	24.321	1.00	0.00	•		Н
55	ATOM		2HG1		136	19.810	9.994	25.013	1.00	0.00			H
	ATOM		3HG1		136	21.175	10.459	26.057	1.00	0.00			H
	ATOM		1HG2		136	20.763	7.209	23.517	1.00	0.00			Н
			2HG2		136	20.681	6.864	25.261		0.00			H
60	ATOM ATOM		3HG2		136	19.557	8.035	24.532	1.00	0.00			Н
00										0.00			
	MOTA	192	N	GLY	137	22.180	8.741	21.176	1.00				И
	MOTA	193	CA	GLY	137	21.598	9.106	19.921	1.00	0.00			С
	MOTA	194	С	GLY	137	20.249	8.504	19.733	1.00	0.00			С
65	MOTA	195	0	GLY	137	19.339	9.157	19.228	1.00	0.00			0
65	MOTA	196	H	GLY	137	23.023	8.150	21.188	1.00	0.00			Н
	MOTA	197		GLY	137	22.206	8.781	19.077	1.00	0.00			Н
	MOTA			GLY	137	21.476	10.184	19.823	1.00	0.00			Н
	MOTA	199	N	ARG	138	20.103	7.223	20.105	1.00	0.00			N

								1 00	0 00			_
	MOTA	200 CA .		138	18.884	6.506	19.899	1.00	0.00			С
	ATOM	201 C .	ARG	138	17.789	7.041	20.772	1.00	0.00			С
	ATOM	202 0	ARG	138	16.648	7.142	20.331	1.00	0.00			0
	ATOM			138	19.029	5.019	20.256	1.00	0.00			С
_				138	20.086	4.283	19.440	1.00	0.00			С
5	ATOM							1.00	0.00			C
	MOTA			138	19.502	3.245	18.482					
	ATOM	206 NE .	ARG	138	18.334	3.855	17.782	1.00	0.00			N
	ATOM	207 CZ	ARG	138	17.889	3.261	16.637	1.00	0.00			С
	ATOM		ARG	138	18.585	2.201	16.132	1.00	0.00			N
10	ATOM	209 NH2		138	16.757	3.708	16.016	1.00	0.00			N
10				138	20.895	6.740	20.553	1.00	0.00			Н
	MOTA							1.00	0.00			Н
	MOTA			138	18.552	6.584	18.863					
•	MOTA	212 1HB		138	18.071	4.528	20.078	1.00	0.00			H
	MOTA	213 2HB	ARG	138	19.309	4.944	21.306	1.00	0.00		•	H
15	MOTA	214 1HG	ARG	138	20.803	3.735	20.051	1.00	0.00	•		H
_	MOTA	215 2HG	ARG	138	20.688	4.941	18.814	1.00	0.00			H
	MOTA			138	19.188	2.378	19.063	1.00	0.00			Н
	,			138	20.274	2.965	17.765	1.00	0.00			H
	ATOM					4.700	18.152	1.00	0.00			H
	MOTA			138	17.876							
20	MOTA	219 1HH1		138	19.430	1.863	16.614	1.00	0.00			H
	MOTA	220 2HH1	ARG	138	18.265	1.739	15.268	1.00	0.00			Н
	MOTA	221 1HH2	ARG	138	16.231	4.500	16.411	1.00	0.00			Н
	ATOM	222 2HH2		138	16.429	3.252	15.152	1.00-	0.00			H
	ATOM		TYR	139	18.106	- 7.327	22.054	1.00	0.00			N
25			TYR	139	17.141	7.688	23.058	1.00	0.00			С
23	ATOM			139	16.701	9.138	23.118	1.00	0.00			С
	MOTA		TYR				23.509	1.00	0.00			o
	MOTA		TYR	139	15.571	9.413						C
	MOTA	- 227 CB	TYR	139	17.606	7.224	24.444	1.00	0.00			
	ATOM	228 CG	TYR	139	17.790	5.742	24.314	1.00	0.00			C.
30	MOTA	229 CD1	TYR	139	16.725	4.947	23.963	1.00	0.00			С
	MOTA	230 CD2	TYR	139	18.998	5.136	24.575	1.00	0.00			С
	ATOM	231 CE1	TYR	139	16.864	3.584	23.834	1.00	0.00			С
	ATOM		TYR /	139	19.142	3.774	24.445	1.00	0.00			С
	ATOM	233 CZ	TYR	139	18.081	2.988	24.068	1.00	0.00			С
35	ATOM	234 OH	TYR	139	18.231	1.587	23.930	1.00	0.00			0
33			TYR	139	19.097	7.284	22.328	1.00	0.00			H
	ATOM	•			16.242	7.099	22.875	1.00	0.00			Н
-	ATOM	236 HA	TYR	139			25.120	1.00	0.00			Н
	MOTA	237 1HB	TYR	139	16.798	7.505						H
	ATOM	238 2HB	TYR	139	18.535	7.764	24.624	1.00				
40	ATOM	239 HD1	TYR	139	15.752	5.404	23.783	1.00	0.00			Н
	MOTA	240 HD2	TYR	139	19.848	5.741	24.887	1.00	0.00			H
	MOTA	241 HE1	TYR	139	16.007	2.975	23.545	1.00	0.00			Н
	ATOM	242 HE2	TYR '	139	20.109	3.313	24.643	1.00	0.00			Н
	ATOM	243 HH	TYR	139	17.306	1.154	23.791	1.00	0.00			H
45	MOTA	244 N	ILE	140	17.564	10.112	22.757	1.00	0.00		•	N
45			ILE	140	17.287	11.521	22.936	1.00	0.00			С
	ATOM				16.072	11.997	22.202	1.00	0.00			C
	MOTA	246 C	ILE	140			22.729	1.00	0.00			0
	MOTA	247 0	ILE	140	15.317	12.810						C
	MOTA	248 CB		140	18.430	12.394	22.498	1.00	0.00			
50	MOTA	249 CG1		140	18.741	12.087	21.022	1.00	0.00			С
	MOTA	250 CG2	ILE	140	19.611	12.229	23.462	1.00	0.00			С
	MOTA	251 CD1	ILE	140	19.798	12.984	20.382	1.00	0.00			С
	MOTA	252 H	ILE	140	18.462	9.838	22.333	1.00	0.00			H
	ATOM	253 HA	ILE	140	17.130	11.708	23.998	1.00	0.00			Η
55	ATOM	254 HB	ILE	140	18.117	13.438	22,492	1.00	0.00			Н
22				140	17.821	12.208	20.449	1.00	0.00			Н
	ATOM	255 1HG1				11.061	20.958	1.00	0.00			Н
	ATOM	256 2HG1		140	19.103				0.00			Н
	ATOM .	257 1HG2		140	19.346	11.515	24.242					
	ATOM	258 2HG2		140	20.479	11:862	22.914	1.00	0.00			Н
60	ATOM	259 3HG2	ILE	140	19.847	13.191	23.915	1.00	0.00			H
	MOTA	260 1HD1		140	20.154	13.707	21.115	1.00	0.00			Н
	ATOM	261 2HD1		140	20.633	12.373	20.038	1.00	0.00			H
	ATOM	262 3HD1		140	19.362	13.512	19.534	1.00	0.00			H
	ATOM	263 N	GLU	141	15.842	11.505	20.979	1.00	0.00			N
65	MOTA	264 CA	GLU	141	14.778	11.954	20.132	1.00	0.00			С
05	ATOM	265 C	GLU	141	13.475	11.779	20.850	1.00	0.00			C
			GLU	141	12.644	12.683	20.902	1.00	0.00			o
	MOTA				14.738	11.068	18.876	1.00	0.00			c
	MOTA	267 CB	GLU	141	14./30	11.000	10.070	1.00	0.00			_

- 132 _-

	ATOM	268 CG	GLU	141	13.662	11.398	17.847	1.00	0.00			С
	MOTA	269 CD	GLU	141	13.763	10.310	16.789	1.00	0.00			С
^	MOTA	270. OE1	GLU	141	14.828	9.634	16.753	1.00	.0.00			0
	ATOM	271 OE2			12.782	10.123	16.023	1.00	0.00			0
5	ATOM	272 H	GLU	141	16.464	10.763	20.627	1.00	0.00			Н
		273 HA	GLU	141	14.932	13.006	19.894	1.00	0.00			Н
	ATOM						19.198	1.00	0.00			Н
	ATOM	274 1HB	GLU	141	14.563	10.041						
	ATOM	275 2HB	GLU	141	15.699	11.163	18.371	1.00	0.00			H
	MOTA	276 1HG	GLU	141	13.914	12.388	17.467	1.00	0.00			H
10	MOTA	277 2HG	GLU	141	12.719	11.377	18.393	1.00	0.00			Н
	MOTA	278 N	HIS	142	13.289	10.597	21.455	1.00	0.00			N
	MOTA	279 CA	HIS	142	12.086	10.211	22.131	1.00	0.00			С
	ATOM	280 C	HIS	142	11.845	11.099	23.313	1.00	0.00			С
	ATOM	281 0	HIS	142	10.720	11.534	23.559	1.00	0.00			0
15	ATOM	282 CB	HIS	142	12.224	8.783	22.670	1.00	0.00			С
10	ATOM	283 CG	HIS	142	11.008	8.298	23.379	1.00	0.00			С
			HIS	142	10.927	7.058	23.966	1.00	0.00			N
	MOTA					8.899	23.600	1.00	0.00			C
	MOTA		HIS	142	9.808				0.00			C
	ATOM		HIS	142	9.691	6.968	24.514	1.00				
20	MOTA		HIS	142	8.975	8.060	24.317	1.00	0.00			N
	MOTA	288 H	HIS	142	14.064	9.919	21.432	1.00	0.00			H
	MOTA	289 HA	HIS	142	11.231	10.288	21.458	1.00	0.00			H
	MOTA	290 1HB	HIS	142	13.038	8.666	23.385	1.00	0.00			H
	MOTA	291 2HB	HIS	142	12.416	8.043	21.892	1.00	0.00			Н
25	. ATOM	292 HD1	HIS	142	11.662	6.337	23.985	1.00	0.00			H
	MOTA		HIS	142	9.541	9.899	23.260	1.00	0.00			H
	ATOM		HIS	142	9.329	6.094	25.055	1.00	0.00			H
	ATOM		HIS	142	8.010	8.245	24.628	1.00	0.00			Н
	ATOM	296 N	TYR	143	12.917	11.376	24.070	1.00	0.00			N
30	MOTA	297 CA	TYR	143	12.847	12.085	25.311	1.00	0.00			C
30					12.362	13.475	25.001	1.00	0.00	,	•	C
	MOTA	298 C	TYR	143								0
	MOTA	299 0	TYR	143	11.390	13.953	25.584	1.00	0.00			
	ATOM	300 CB	TYR	143	14.265	12.216	25.877	1.00	0.00			C
	MOTA	301 CG	TYR	143	14.353	12,188	27.364	1.00	0.00			С
35	ATOM	302 CD1	TYR	143	13.642	13.019	28.204	1.00	0.00			С
	MOTA	303 CD2	TYR	143	15.190	11.243	27.924	1.00	0.00		•	С
	MOTA	304 CE1	TYR	143	13.802	12.925	29.571	1.00	0.00			Ċ
	MOTA	305 CE2	TYR	143	15.357	11.146	29.290	1.00	0.00			С
	ATOM	306 CZ	TYR	143	14.662	12.001	30.119	1.00	0.00			С
40	ATOM	307 OH	TYR	143	14.825	11.929	31.520	1.00	0.00			0
	ATOM	308 н	TYR	143	13.840	11.061	23.740	1.00	0.00			Н
	ATOM	309 HA	TYR	143		11.546	25.949	1.00	0.00			Н
	MOTA	310 1HB	TYR	143	14.676	13.168	25.543	1.00	0.00			Н
		311 2HB	TYR	143	14.859	11.384	25.499	1.00	0.00			Н
15	ATOM						27.786	1.00	0.00			H
45	MOTA		TYR	143	12.951	13.752						
	ATOM		TYR	143	15.731	10.557	27.271	1.00	0.00			H
	MOTA		TYR	143	13.240	13.591	30.225	1.00	0.00			H
	MOTA			. 143	16.032	10.400	29.710	1.00	0.00			H
	MOTA	316 HH	TYR	143	14.815	12.879	31.916	1.00	0.00			H
50	ATOM	317 N	LEU	144	13.012	14.156	24.026	1.00	0.00			N
	MOTA	318 CA	LEU	144	12.699	15.521	23.676	1.00	0.00			С
	MOTA	319 C	LEU	144	11.328	15.648	23.096	1.00	0.00			С
	MOTA	320 O	LEU	144	10.590	16.568	23.440	1.00	0.00			0
	MOTA	321 CB	LEU	144	13.708	16.137	22.693	1.00	0.00			С
55	ATOM	322 CG	LEU	144	15.006	16.551	23.386	1.00	0.00			C
7,5	ATOM		LEU	144	16.003	17.174	22.393	1.00	0.00			Č
						17.512	24.538	1.00	0.00			c
	ATOM		LEU	144	14.667							
	ATOM	325 H	LEU	144	13.764	13.677	23.510	1.00	0.00			H
	MOTA	326 HA	LEU	144	12.739	16.182	24.541	1.00	0.00			H
60	MOTA	327 1HB	LEU	144	13.313	17.029	22.206	1.00	0.00			H
	MOTA	328 2HB	LEU	144	13.983	15.442	21.899	1.00	0.00			Н
	ATOM	329 HG	LEU	144	15.501	15.698	23.851	1.00	0.00			H
	ATOM	330 1HD1	LEU	144	15.563	17.186	21.395	1.00	0.00			H
	MOTA	331 2HD1	LEU	144	16.233	18.194	22.700	1.00	0.00			H
65	MOTA	332 3HD1		144	16.919	16.583	22.378	1.00	0.00	•		Н
	ATOM	333 1HD2		144	13.588	17.663	24.580	1.00	0.00			Н
	ATOM	334 2HD2		144	15.010	17.085	25.480	1.00	0.00			Н
	ATOM	335 3HD2		144	15.161	18.468	24.371	1.00	0.00			H
	AI ON	JJJ J11D2		777	. 13.101	10.400	21.0,1	2.00	0.00			••

	ATOM	336 N GL	145		10.934	14.706	22.226	1.00	0.00			N
	ATOM	337 CA GLU			9.653	14.803	21.588	1.00	0:00			С
	ATOM	-338 C GLT			8.586	14.783	22.637	1.00	0.00			С
	ATOM	339 O GL			7.560	15.453	22.512	1.00	0.00			0
5	ATOM	340 CB GLU			9.368	13.627	20.636	1.00	0.00			С
٠.	ATOM	341 CG GL	145		10.226	13.647	19.371	1.00	0.00			С
	ATOM	342 CD GL	145		9.522	14.481	18.306	1.00	0.00			С
	ATOM	343 OE1 GL	J 145		8.392	14.096	17.899	1.00	0.00			0
	MOTA	344 OE2 GL	J 145		10.111	15.506	17.874	1.00	0.00			0
10	MOTA.	345 H GL	J 145		11.553	13.910	22.015	1.00	0.00			H
	ATOM	346 HA GL			9.607	15.736	21.027	1.00	0.00			H
	MOTA	347 1HB GL			8.337	13.595	20.282		0.00			H
	MOTA	348 2HB GL			9.546	12.650	21.087	1.00	0.00			H
	MOTA	349 1HG GL			10.358	12.625	19.015	1.00	0.00			Н
15	MOTA	350 2HG GL			11.195	14.086	19.606	1.00	0.00			H N
	MOTA	351 N GL			8.791	14.004	23.712 24.661	1.00 1.00	0.00			C
	ATOM	352 CA GL			7.727	13.932 15.289	25.248	1.00				C
	ATOM	353 C GL			7.460 6.301	15.269	25.417	1.00	0.00			Ö
20	MOTA	354 O GL			7.955	12.919	25.785	1.00	0.00			Ċ
20	ATOM	355 CB GL ¹ 356 CG GL ¹			6.927	13.058	26.897	1.00	0.00			Č
	MOTA	356 CG GL 357 CD GL			5.522	12.785	26.372	1.00	0.00			C
	ATOM ATOM	358 OE1 GL			5.141	13.300	25.282	1.00	0.00		-	0
	ATOM	359 OE2 GL			4.797	12.056	27.087	1.00	0.00			0
25	ATOM	360 H GL			9.670	13.485	23.844	1.00	0.00			Н
23	ATOM	361 HA GL			6.816	13.574	24.180	1.00	0.00			Н
	MOTA	362 1HB GL			8.935	13.033	26.247	1.00	0.00			H
	ATOM	- 363 2HB GL			7.894	11.890	25.428	1.00	0.00			Н
	MOTA	364 1HG GL	U 146		6.943	14.064	27.315	1.00	0.00	•		H
30	MOTA	365 2HG GL	U 146		7.131	12.352	27.702	1.00	0.00			H
	MOTA	366 N PH	E 147		8.519	16,052	25.589	1.00	0.00			N
	MOTA	367 CA PH			8.267	17.365	26.115	1.00	0.00			С
	MOTA	368 C PH			7.670	18.299	25.118	1.00	0.00			С
	MOTA	369 O PH			6.691	18.985	25.413	1.00	0.00			0
35	MOTA	370 CB PH			9.479	18.072	26.751	1.00	0.00			C
	MOTA	371 CG PH			9.295	17.919	28.217	1.00	0.00			C
	MOTA	372 CD1 PH			9.728	16.820 18.916	28.917 28.880	1.00	0.00			C
	ATOM	373 CD2 PH			8.621 9.500	16.753	30.273	1.00	0.00			Č
40	MOTA	374 CE1 PH 375 CE2 PH			8.396	18.852	30.231	1.00	0.00			Ċ
40	MOTA .	376 CE2 FH			8.844	17.762	30.935	1.00	0.00			C
	MOTA	370 CZ III			9.481	15.703	25.475	1.00	0.00			Н
	ATOM	378 HA PH			7.577	17.369	26.959	1.00	0.00			Н
	ATOM	379 1HB PH			9.416	19.106	26.413	1.00	0.00			H
45	ATOM	380 2HB PH			10.352	17.544	26.367	1.00	0.00			Н
	ATOM	381 HD1 PH			10.246	16.009	28.404	1.00	0.00			Н
•	ATOM	382 HD2 PH	E 147		8.257	19.777	28.319	1.00	0.00			H
	MOTA	383 HE1 PH	E 147		9.846	15.883	30.831	1.00	0.00			H
	MOTA	384 HE2 PH			7.867	19.657	30.740	1.00	0.00			Н
50	MOTA	385 HZ PH			8.680	17.697	32.010	1.00	0.00			H
	MOTA	386 N LE			8.228	18.345	23.901	1.00	0.00			И
	MOTA	387 CA LE			7.756	19.335	22.986	1.00	0.00			C
	ATOM	388 C LE			6.317	19.106	22.646	1.00	0.00			C 0
	ATOM	389 O LE			5.555	20.070	22.555 21.719	1.00	0.00			C
55	ATOM	390 CB LE		•	8.611	19.432	22.036	1.00	0.00			C
	MOTA	391 CG LE			10.027	19.958 20.091	20.763	1.00	0.00			č
	ATOM	392 CD1 LE 393 CD2 LE			10.877 9.967	21.255	22.861	1.00	0.00			Ċ
	MOTA			,	8.974	17.687	23.633	1.00	0.00			Н
60	MOTA MOTA	394 H LE 395 HA LE			7.845	20.334	23.412		0.00			Н
00	ATOM	396 1HB LE			8.164	20.108	20.990	1.00	0.00			Н
	ATOM	397 2HB LE			8.721	18.459	21.239	1.00	0.00			Н
	ATOM	398 HG LE			10.559	19.290	22.713	1.00	0.00			H
	MOTA	399 1HD1 LE			10.289		19.899	1.00	0.00			H
65	ATOM	400 2HD1 LE			11.185		20.638	1.00	0.00	•		H
-	MOTA	401 3HD1 LE	EU 148		11.759		20.847	1.00	0.00			H
	MOTA	402 1HD2 LE			8.926	21.522	23.043	1.00	0.00			Н
	MOTA	403 2HD2 LE	EU 148		10.475	21.104	23.813	1.00	0.00			Н

	ATOM	404	3HD2	T.F.II	148		10.457	22.058	22.311	1.00	0.00				Ή
	ATOM	405	N	THR	149		5.881	17.845	22.464	1.00	0.00				N
	ATOM	406	CA	THR	149		4.505	17.686	22.089	1.00	0.00		,		C
	ATOM	407	С	THR	149		3.639	17.773	23.311	1.00	0.00				c
5	ATOM	408	0	THR	149		2.939	16.829	23.673	1.00	0.00				ō
	ATOM	409	CB	THR	149		4.203	16.400	21.368	1.00	0.00				Č
	ATOM	410	OG1	THR	149		4.989	16.316	20.188	1.00	0.00				Ō
	ATOM	411	CG2	THR	149		2.711	16.386	20.982	1.00	0.00				C
	ATOM	412	H	THR	149		6,504	17.034	22.587	1.00	0.00				H
10	ATOM	413	HA	THR	149 [°]		4.224	18.473	21.389	1.00	0.00				Н
	ATOM	414	HB	THR	149		4.427	15.564	22.031	1.00	0.00				Н
	ATOM	415	HG1		149		5.121	17.259	19.795	1.00	0.00				Н
	MOTA		1HG2		149		2.238	17.306	21.323	1.00	0.00				H
	ATOM	417	2HG2		149		2.616	16.309	19.898	1.00	0.00	•			Н
15	ATOM	418	3HG2	THR	149		2.222	15.531	21.450	1.00	0.00				Н
	ATOM	419	N	SER	150		3.672	18.934	23.987	1.00	0.00				N
	ATOM	420	CA	SER	150		2.792	19.149	25.095	1.00	0.00				С
	ATOM	421	C	SER	150		1.441	19.352	24.478	1.00	0.00				C.
20 .	ATOM	422	0	SER	150		1.340	19.828	23.350	1.00	0.00				0
20	ATOM	423	CB	SER	150	,	3.136	20.402	25.916	1.00	0.00				C
	MOTA MOTA	424	OG - H	SER	150		2.239	20.543	27.008	1.00	0.00				0
	ATOM	426	н НА	SER SER	150 150		4.333 2.868	19.672 18.240	23.706 25.692	1.00	0.00				H
	ATOM		1HB	SER	150		3.066	21.295	25.295	1.00	0.00				H H
25	ATOM	428	2HB	SER	150		4.150	20.333	26.309	1.00	0.00				Н
	ATOM	429	HG	SER	150		2.118	21.542	27.226	1.00	0.00				Н
1	ATOM	430	N	ALA	151		0.353	18.994	25.191	1.00	0.00				N
		431	CA	ALA	151		-0.938	19.093	24.579	1.00	0.00		,		C
	ATOM	432	С	ALA	151		-1.199	20.514	24.215	1.00	0.00				Ċ
30	MOTA	433	0	ALA	151		-1.451	20.805	23.050	1.00	0.00				ō
	MOTA	434	CB	ALA	151		-2.081	18.634	25.500	1.00	0.00				С
	ATOM	435	H	ALA ·	.151		0.449	18.655	26.158	1.00	0.00				Н
	MOTA	436	HA.	ALA _	151		-0.957	18.473	23.682	1.00	0.00				H
	MOTA	437	1HB	ALA	151		-1.670	18.316	26.458	1.00	0.00				H
35	ATOM		2HB	ALA	151		-2.775	19.459	25.65 7	1.00	0.00				H
	MOTA	439	3HB	ALA	151		-2.608	17.799	25.037	1.00	0.00				H
	ATOM	440	N	ASN	152		-1.074	21.419	25.208	1.00	0.00				N
	MOTA	441	CA	ASN	152		-1.299	22.839	25.124	1.00	0.00				Ç
40	MOTA	442	С	ASN	152		-2.555	23.137	25.881	1.00	0.00	•			С
40	ATOM	443	O CB	ASN	152		-2.645	24.149	26.571	1.00	0.00				0
	ATOM ATOM	444 445	CB CG	ASN ASN	152 152		-1.443 -2.843	23.453	23.706 23.104	1.00	0.00				C
·	MOTA	446	OD1		152 -		-3.517	22.258	23.159	1.00	0.00			•	0
	ATOM	447	ND2		152		-3.317	24.403	22.485	1.00	0.00	•	,		N
45	ATOM	448	Н	ASN	152		-0.786	21.054	26.127	1.00	0.00				Н
	MOTA	449	HA	ASN	152		-0.435		25.571	1.00	0.00				H.
	ATOM	450	1HB	ASN	152	•	-0.765	23.018	22.971	1.00	0.00				H
	MOTA		2HB	ASN	152		-1.246	24.524	23.672	1.00	0.00				Н
	ATOM		1HD2		152		-4.247	24.397	22.052	1.00	0.00				H
50	MOTA	453	2HD2	ASN	152		-2.734	25.254	22.449	1.00	0.00		•		Н
	MOTA	454	N	LYS	153		-3.577	22.269	25.770	1.00	0.00				N
	MOTA	455	CA	LYS	153		-4.751	22.505	26.551	1.00	0.00				С
	ATOM	456	С	LYS	153		-4.348	22.302	27.967	1.00	0.00				С
ے ہے	ATOM	457	0	LYS	153		-4.538	23.175	28.813	1.00	0.00				0
55	ATOM	458	CB	LYS	153		-5.884	21.508	26.258	1.00	0.00	•			С
	ATOM	459	CG	LYS	153		-6.668	21.807	24.979	1.00	0.00				С
	ATOM	460	CD	LYS	153		-7.456	23.119	25.040	1.00	0.00				С
	ATOM	461	CE	LYS	153		-8.706	23.049	25.924	1.00	0.00				С
60	ATOM ATOM	462 463	NZ H	LYS	153		-9.731	22.186	25.293	1.00	0.00				N
50	ATOM	464	n HA	LYS LYS	153 153		-3.515	21.456	25.139	1.00	0.00				H
	ATOM	465		LYS	153 153		-5.049 -6.586	23.532 21.533	26.341 27.090	1.00	0.00				Н
	ATOM	466		LYS	153		-6.586 -5.447	20.514	26.154	1.00	0.00				H
	ATOM	467		LYS	153		-7.404	20.314	24.733	1.00	0.00				H H
65	ATOM	468		LYS	153		-6.037	21.892	24.733	1.00	0.00				H
	ATOM	469		LYS	153		-7.819	23.459	24.070	1.00	0.00				Н
	ATOM	470		LYS	153		-6.882	23.958	25.433	1.00	0.00				Н
	MOTA	471		LYS	153		-9.125	24.045	26.063	1.00	0.00				Н

	MOTA	472 2HE	LYS	153	-8.453	22.635	26.900	1.00	0.00			Н
	MOTA	473 1HZ	LYS	153	-9.372	21.824	24.397	1.00	0.00			Н
	MOTA	474 2HZ	LYS	153	-9.948	21.397	25.918	1.00	0.00			H
	MOTA	475 3HZ	LYS	153	-10.585	22.735	25.123	1.00	0.00			H
5	MOTA	476 N	HIS	154	-3.749	21.128	28.244	1.00	0.00			N
ر												
	MOTA	477 CA	HIS	154	-3.330	20.820	29.574	1.00	0.00			С
	MOTA	478 C	HIS	154	-2.229	21.764	29.916	1.00	0.00			С
	ATOM	479 O	HIS	154	-2.313	22.481	30.912	1.00	0.00			0
	ATOM	480 CB	HIS	154	-2.854	19.366	29.707	1.00	0.00			С
10	MOTA	481 CG	HIS	154	-3.979	18.411	29.430	1.00	0.00		•	С
	MOTA	482 ND1	HIS	154	-3.823	17.066	29.176	1.00	0.00	•		N
	ATOM		HIS	154	-5.318	18.647	29.367	1.00	0.00			C
												_
	ATOM		HIS	154	÷5.066	16.560	28.973	1.00	0.00			С
	MOTA	485 NE2	HIS	154	-6.006	17.482	29.079	1.00	0.00			N
15	ATOM	486 H~	HIS	154	-3.591	20.445	27.488	1.00	0.00			Н
10												H
	ATOM	487 HA	HIS	154	-4.195	20.957	30.222	1.00	0.00			
	MOTA	488 1HB	HIS	154	-2.483	19.171	30.713	1.00	0.00			Н
	MOTA	489 2HB	HIS	154	-2.049	19.157	29.001	1.00	0.00			H
	ATOM		HIS	154	-2.934	16.545	29.146	1.00	0.00			Н
20												
20	MOTA		HIS	154	-5.784	19.620	29.522	1.00	0.00			H
	ATOM	492 HE1	HIS	154	5.265	15.512	28.748	1.00	0.00			Н
	ATOM	493 HE2	HIS	154	-7.023	17.360	28.971	1.00	0.00			H
		494 N	PHE		-1.165	21.818	29.089		0.00			N
	MOTA			155				1.00				
	ATOM	495 CA	PHE	155	-0.190	22.815	29.405	1.00	0.00			С
25	MOTA	496 C	PHE	155	-0.650	23.984	28.609	1.00	0.00			С
	ATOM	497 O	PHE	155	-0.273	24.133	27.448	1.00	0.00			0
	ATOM	498 CB	PHE	155	1.245	22.479	28.971	1.00	0.00			С
	MOTA	-499 CG	PHE	155	2.127	23.357	29.793	1.00	0.00			С
	MOTA	500 CD1	PHE	155	2.314	24.682	29.487	1.00	0.00			С
30	ATOM	501 CD2		155	2.767	22.844	30.895	1.00	0.00			С
50												-
	ATOM		PHE	155	3.128	25.474	30.263	1.00	0.00	,		C
	MOTA	503 CE2	PHE	155	3.583	23.629	31.675	1.00	0.00			С
	ATOM	504 CZ	PHE	155	3.767	24.952	31.359	1.00	0.00			С
. •	ATOM	505 н	PHE		-1.061	21.183	28.284	1.00	0.00			H
0.5												
35	MOTA	506 HA	PHE	155	-0.175	23.027	30.474	1.00	0.00			Н
	ATOM	507 1HB	PHE	155	1.288	22.706	27.905	- 1.00	0.00			Н
	MOTA	508 2HB	PHE	155	1.375	21.418	29.188	1.00	0.00			H
	MOTA		PHE	155	1.812	25.111	28.619	1.00	0.00			H
	ATOM	510 HD2	PHE	155	2.625	21.795	31.155	1.00	0.00			H
40	MOTA	511 HE1	PHE	155	3.266	26.524	30.005	1.00	0.00			H
	ATOM		PHE	155	4.083	23.201	32.543	1.00	0.00			Н
	MOTA	513 HZ	PHE	155	4.413	25.580	31.971	1.00	0.00			H
	ATOM	514 N	\mathtt{MET}	156	-1.446	24.859	29.262	1.00	0.00			N
	MOTA	515 CA	MET	156	-2.169	25.915	28.617	1.00	0.00			C
45	ATOM	516 C	MET	156	-1.274	26.681	27.710	1.00	0.00			С
73												
	MOTA	517 0	MET	156	-1.482	26.694	26. <u>4</u> 98	1.00	0.00			0
	ATOM	518 CB	MET	156	-2.778	26.915	29.617	1.00	0.00			C
	ATOM	519 CG	MET	156	-3.719	27.936	28.973	1.00	0.00			С
	ATOM	520 SD	MET	156 -	-5.305	27.249	28.409	1.00	0.00			s
50							30.079					
50	ATOM	521 CE	MET	156	-5.925	26.894		1.00	0.00			С
	ATOM	522 H	MET	156	-1.538	24.761	30.283	1.00	0.00			Н
	MOTA	523 HA	MET	156	-2.991	25.510	28.027	1.00	0.00			H
	ATOM	524 1HB	MET	156	-2.036	27.513	30.146	1.00	0.00			Н
	MOTA '	525 2HB	MET	156	-3.370	26.445	30.402	1.00	0.00			H
55	MOTA	526 1HG	MET	· 156	-3.217	28.362	28.104	1.00	0.00			H.
	ATOM	527 2HG	MET	156	-3.938	28.709	29.708	1.00	0.00			H
	MOTA	528 1HE	MET	156	-5.179	27.195	30.815	1.00	0.00			H
	ATOM	529 2HE	\mathtt{MET}	156	-6.848	27.447	30.249	1.00	0.00			H
	ATOM	530 3HE	MET	156	-6.119	25.825	30.175	1.00	0.00			H
60	ATOM	531 N	VAL	157	-0.237	27.331	28.256	1.00	0.00			N
	MOTA	532 CA	VAL		0.589	28.078	27.364	1.00	0.00			С
	MOTA	533 C	VAL	157	1.258	27.091	26.474	1.00	0.00			С
	ATOM	534 O	VAL	157	1.390	27.309	25.271	1.00	0.00			0
	ATOM	535 CB	VAL	157	1.637	28.902	28.060	1.00	0.00			Ċ
65												
65	MOTA		VAL		2.615	27.972	28.791	1.00	0.00			С
	MOTA		VAL		2.316	29.803	27.016	1.00	0.00			С
	ATOM	538 H	VAL	157	-0.046	27.293	29.267	1.00	0.00			H
	ATOM	539 HA	VAL		-0.071	28.746	26.812	1.00	0.00			H
	0	000			0.071	20.,10	20.012		5.00			

	ATOM	540 HB	VAL	157	1.157	29.565	28.780	1.00	0.00		H
	MOTA	541 1HG1		157	2.318	26.935	28.632	1.00	0.00		H
	MOTA	542 2HG1	VAL	157	3.621	28.124	28.402	1.00	0.00		H
	ATOM	543 3HG1	VAL	157	2.600	28.194	29.857	1.00	0.00		H
5	ATOM	544 1HG2	VAL	157	1.872	29.622	26.036	1.00	0.00		H
	MOTA	545 2HG2	VAL	157	2.175	30.848	27.291	1.00	0.00		H
	ATOM	546 3HG2		157	3.381	29.577	26.979	1.00	0.00		Н
	ATOM	547 N	GLY	158	1.682	25.952	27.051	1.00	0.00		N
	ATOM	548 CA	GLY	158	2.374	24.964	26.287	1.00	0.00		С
10	ATOM	549 C	GLY	158	3.693	25.566	25.964	1.00	0.00		С
	MOTA	550 O	GLY	158	4.422	25.074	25.105	1.00	0.00		0
	ATOM	551 H	GLY	158	1.505	25.791	28.053	1.00	0.00		Н
	MOTA	552 1HA	GLY	158	1.754	24.790	25.407	1.00	0.00		Н
	ATOM	553 2HA	GLY	158	2.447	24.092	26.938	1.00	0.00		H
15	ATOM	554 N	HIS	159	4.039	26.665	26.659	1.00	0.00		N
	ATOM	555 CA	HIS	159	5.280	27.303	26.363	1.00	0.00	,	С
	ATOM	556 C	HIS	159	6.185	27.184	27.537	1.00	0.00		С
•	MOTA	557 O	HIS	159	6.237	28.065	28.394	1.00	0.00		0
	ATOM	558 CB	HIS	159	5.130	28.805	26.067	1.00	0.00		С
20	ATOM	559 CG	HIS	159	6.430	29.485	25.748	1.00	0.00		С
	ATOM	560 ND1	HIS	159	7.012	29.494	24.501	1.00	0.00		N
	MOTA	561 CD2	HIS	159	7.268	30.197	26.553	1.00	0.00		С
	MOTA	562 CE1	HİS	159	8.162	30.205	24.609	1.00	0.00		С
	MOTA	563 NE2	HIS	159	8.361	30.653	25.836	1.00	0.00		N
25 \	ATOM	564 H	HIS	159	3.418	27.038	27.391	1.00	0.00		Н
	ATOM	565 HA	HIS	159	5.735	26.820	25.498	1.00	0.00		- H
	ATOM	566 1HB	HIS	159	4.708	29.371	26.897	1.00	0.00		H
	ATOM	567 2HB	HIS	159	4.481	29.017	25.217	1.00	0.00		H
	MOTA		HIS	159	6.644	29.046	23.649	1.00	0.00		H
30	MOTA	569 HD2	HIS	159	7.100	30.381	27.614	1.00	0.00		Н
	ATOM	570 HE1	HIS	159	8.844	30.386	23.778	1.00	0.00		H
	MOTA	571 HE2	HIS	159	9.151	31.215	26.181	1.00	0.00		H
	MOTA	572 N	PRO	160	6.878	26.091	27.621	1.00	0.00		N
-	MOTA	573 CA	PRO	160	7.881	25.999	28.636	1.00	0.00		С
35	MOTA	574 C	PRO	160	9.130	26.444	27.957	1.00	0.00		С
	ATOM	575 0	PRO	160	9.143	26.496	26.728	1.00	0.00		0
	MOTA	576 CB	PRO	160	7.936	24.532	29.067	1.00	0.00		С
	MOTA	577 CG	PRO	160	7.240	23.770	27.930	1.00	0.00		С
	MOTA	578 CD	PRO	160	6.260	24.803	27.361	1.00	0.00		C
40	ATOM	579 HA	PRO	160	7.532	26.674	29.417	1.00	0.00		Н
	ATOM	580 1HB	PRO	160	7.395	24.504	30.013	1.00	0.00		H
•	MOTA	581 2HB	PRO	160	8.999	24.313	29.159	1.00	0.00		H
	MOTA	582 1HG	PRO	160	6.723	22.887	28:308	1.00	0.00		Н
	MOTA	583 2HG	PRO	160	7.960	23.440	27.181	1.00	0.00		H
45	ATOM	584 1HD	PRO	160	6.156	24.753	26.277	1.00	0.00		H
	MOTA	585 2HD	PRO	160	5.306	24.835	27.888	1.00	0.00		Н
	ATOM	586 N	VAL	161	10.179	26.798	28.715	1.00	0.00		N
	ATOM	587 CA	VAL	161	11.414	27.057	28.050	1.00	0.00		С
	MOTA	588 C	VAL	161.	12.184	25.811	28.276	1.00	0.00		С
50	MOTA	589 O	VAL	161	12.576	25.516	29.404	1.00	0.00		0
	MOTA	590 CB	VAL	161	12.211	28.183	28.640	1.00	0.00		С
	ATOM		. VAL	161	13.571	28.240	27.924	1.00	0.00		С
	ATOM		VAL	161	11.394	29.479	28.519	1.00	0.00		С
•	ATOM	593 H	VAL	161	10.095	26.879	29.738	1.00	0.00		Н
55	MOTA	594 HA	VAL	161	11.255	27.250	26.989	1.00	0.00	•	H
	MOTA	595 HB	VAL	161	12.345	27.987	29.703	1.00	0.00		Н
	MOTA	596 1HG1		161	13.618	27.453	27.170	1.00	0.00		н
	ATOM	597 2HG1		161	13.688	29.211	27.443	1.00	0.00	,	H
	ATOM	598 3HG1		161	14.370	28.095	28.650	1.00	0.00		Н
60	ATOM	599 1HG2		161	10.440	29.264	28.036	1.00	0.00		H
	ATOM	600 2HG2		161	11.213	29.889	29.512	1.00	0.00		Н
	ATOM	601 3HG2		161	11.947	30.203	27.921	1.00	0.00		н
	ATOM	602 N	ILE	162	12.401	25.022	27.213	1.00	0.00		N
	MOTA	603 CA	ILE	162	13.098	23.805	27.455	1.00	0.00		c
65	ATOM	604 C	ILE	162	14.534	24.031	27.149	1.00	0.00		č
33	ATOM	605 0	ILE	162	14.913	24.289	26.011	1.00	0.00		Ö
	MOTA	606 CB	ILE	162	12.561	22.641	26.660	1.00	0.00		c
	ATOM	607 CG1		162	13.202	21.326	27.125	1.00	0.00		c
	0.2			- 02							_

						-							
	ATOM	608	CG2	ILE	162		, 22,921	25.157	1.00	0.00			C
	ATOM	609	CD1	ILE	162	12.483	20.090	26.587	1.00	0.00			С
	MOTA	610	H	ILE	162	12.079	25.283	26.270	1.00	0.00			H
	ATOM .	611	AH	ILE	162	12.959	.23.541	28.503	1.00	0.00			H
5	MOTA	612	HB	ILE	162	11.507	22.485	26.892	1.00	0.00			H
-	ATOM	613	1HG1	ILE	162	13.208	21.216	28.209	1.00	0.00			Н
	ATOM	614	2HG1	ILE	162	14.240	21.225	26.810	1.00	0.00			Н
	ATOM	615	1HG2	ILE	162	13.162	23.899	25.011	1.00	0.00			H
			2HG2	ILE		13.332		24.702	1.00	0.00			H
10	ATOM				162		22.154					•	
10	ATOM	617		ILE	162	11.719	22.907	24.689	1.00	0.00			H
	MOTA	618	1HD1	ILE	162	11.641	20.399	25.967	1.00	0.00			H.
	MOTA.	619	2HD1	ILE	162	13.175	19.498	25.988	1.00	0.00			\mathbf{H}_{\perp}
	ATOM ·	620	3HD1	ILE	162	12.118	19.489	27.420	1.00	0.00			H
	ATOM	621	N	PHE	163	15.381	23.965	28.191	1.00	0.00			N
15	ATOM	622	CA	PHE	163	16.786	24.084	27.985	1.00	0.00			С
	ATOM	623	C ·	PHE	163	17.125	22.659	27.726	1.00	0.00			С
	ATOM	624	0	PHE	163	17.897	22.033	28.449	1.00	0.00			Ō
	ATOM	625	CB	PHE	163	17.495	24.524	29.276	1.00	0.00			c
20	ATOM	626	CG	PHE	163	18.695	25.330	28.926	1.00	0.00			С
20	ATOM .	627	CD1		163	19.891	24.765	28.556	1.00	0.00			С
	ATOM	628			163	18.592	26.700	28.988	1.00	0.00			С
	MOTA	629	CEl	PHE	163	20.963	25.573	28.249	1.00	0.00			С
	MOTA	630	CE2	PHE	163	19.659	27.508	28.683	1.00	0.00			С
	ATOM	631	CZ	PHE	163	20.852	26.942	28.311	1.00	0.00			C
25	MOTA	632	H	PHE	163	15.012	23.827	29.143	1.00	0.00			H
	ATOM	633	HA	PHE	163	17.020	24.740	27.146	1.00	0.00			Н
	ATOM	634		PHE	163	17.797	23.640	29.838	1.00	0.00			Н
		635	2HB	PHE	163	16.810	25.125	29.874	1.00	0.00			Н
	ATOM	636	HD1		163	19.991	23.680	28.505	1.00	0.00			H
2.0													
30	MOTA	637	HD2		163	17.645	27.152	29.284	1.00	0.00			Н
	ATOM	638	HE1		163	21.910	25.122	27.953	1.00	0.00			H
	ATOM	639	HE2		163	19.559	28.592	28.736	1.00	0.00			Н
	MOTA	640	HZ	PHE	163 .	21.706	27.573	28.066	1.00	0.00			H
	MOTA	641	N	TYR	164	16.533	22.115	26.649	1.00	0.00			N
35	MOTA	642	CA	TYR	164	16.658	20.723	26.383	1.00	0.00			С
	ATOM	643	Ċ	TYR	164	18.087	20.449	26.152	1.00	0.00			C
	ATOM	644	0	TYR	164	18.573	19.357	26.444	1.00	0.00			0
	MOTA	645	CB	TYR	164	15.861	20.235	25.146	1.00	0.00			Ċ
	ATOM	646	CG	TYR	164	16.389	20.821	23.873	1.00	0.00			Ċ
40	ATOM	647	CD1		164	17.522	20.314	23.271	1.00	0.00			c
40							21.861						
	ATOM	648	CD2	TYR	164 .	15.731		23.256	1.00	0.00			C
	MOTA	649	CE1	TYR	164	18.005	20.845	22.098	1.00	0.00			С
	MOTA	650	CE2		164	16.207	22.397	22.081	1.00	0.00		_	С
	MOTA	651	CZ	TYR	164	17.347	21.893	21.500	1.00	0.00			С
45	MOTA	652	OH	TYR	164	17.836	22.443	20.297	1.00	0.00			0
	MOTA	653	H	TYR	164	15.984	22.710	26.01 1	1.00	0.00			H
	ATOM	654	HA	TYR	164	16.284	20.191	27.258	1.00	0.00			Н
	ATOM		1HB	TYR	164	14.807	20.507	25.206	1.00	0.00			H
	MOTA	656	2HB	TYR	164	15.901	19.151	25.036	1.00	0.00			H
50	ATOM	657	HD1		164	18.044	19.476	23.733	1.00	0.00			Н
50	MOTA	658	HD2		164	14.822	22.264	23.703	1.00	0.00			Н
		659	HE1				20.435	21.643	1.00	0.00			
	MOTA				164	18.907							H
	ATOM	660	HE2	TYR	164	15.677	23.224	21.608	1.00	0.00			H
	MOTA	661	HH	TYR	164	18.333	23.321	20.498	1.00	0.00			Н
55	MOTA	662	N	ILE	165	18.824	21.440	25.631		0.00	•		N
	MOTA	663	CA	ILE	165	20.121	20.985	25.289	1.00	0.00			С
	MOTA	664	С	ILE	165	21.181	21.517	26.199	1.00	0.00			С
	ATOM	665	0	ILE	165	21.709	22.613	26.027	1.00	0.00			0
	ATOM	666	CB	ILE	165	20.447	21:230	23.830	1.00	0.00			С
60	ATOM	667	CG1		165	21.665	20.408		1.00	0.00			č
,,,	ATOM	668	CG2		165	20.533	22.742	23.568	1.00	0.00			c
										0.00			
	MOTA	669	CD1		165	22.997	20.777	24.012	1.00				C
	ATOM	670	H	ILE	165	18.491	22.405	25.497	1.00	0.00			H
	MOTA	671	НA	ILE	165	20.212	19.899	25.326	1.00	0.00			Н
65	MOTA	672	HB	ILE	165	19.666	20.798	23.203	1.00	0.00			H
	MOTA		1HG1		165	21.778	20.553	22.290	1.00	0.00			Н
	MOTA	674	2HG1	ILE	165.	21.472	19.360	23.598	1.00	0.00			H
	ATOM	675	1HG2	ILE	165	20.339	23.283	24.494	1.00	0.00			H

		676 2462		165	21 520	22 002	23.203	1.00	0.00		Н
	MOTA	676 2HG2 677 3HG2		165 165	21.529 19.791	22.992 23.024	22.820	1.00	0.00		H
	MOTA	677 3HG2 678 1HD1	ILE	165	22.844	21.592	24.719	1.00	0.00		Н
	MOTA	678 IHD1		165	23.398	19.910	24.537	1.00	0.00		Н
5	MOTA MOTA	680 3HD1		165	23.700	21.092	23.241	1.00	0.00		Н
5	ATOM	681 N	MET	166	21.499	20.724	27.236	1.00	0.00		N
	ATOM	682 CA	MET	166	22.695	20.976	27.973	1.00	0.00		С
	ATOM	683 C	MET	166	23.516	19.802	27.587	1.00	0.00		С
	ATOM	684 0	MET	166	23.480	18.760	28.239	1.00	0.00		0
10	ATOM	685 CB	MET	166	22.531	20.969	29.497	1.00	0.00		С
	ATOM	686 CG	MET	166	21.894	22.253	30.014	1.00	0.00		С
	ATOM	687 SD	MET	166	22.909	23.743	29.768	1.00	0.00		S
	MOTA	688 CE	MET	166	24.234	23.246	30.907	1.00	0.00		С
	MOTA	689 H	MET	166	20.884	19.940	27.497	1.00	0.00		H
15	ATOM	690 HA	MET	166	23.152	21.922	27.685	1.00	0.00		Н
	MOTA	691 1HB	MET	166	23.485	20.865	30.013	1.00	0.00		Н
	MOTA	692 2HB	MET	166	21.900	20.148	29.840	1.00	0.00	,	H
	MOTA	693 1HG	MET	166	21.721	22.142	31.084	1.00	0.00		Н
	MOTA	694 2HG	MET	166	20.951	22.403	29.487	1.00	0.00		H
20	MOTA	695 1HE	MET	166	23.997	22.273	31.338	1.00	0.00		.H H
	MOTA	696 2HE	MET	166	25.176	23.182	30.363 31.704	1.00	0.00		H
	MOTA	697 3HE 698 N	MET	166 167	24.324 24.282	23.983 19.947	26.494	1.00	0.00		N
	MOTA	698 N 699 CA	VAL VAL	167	24.282	18.801	25.997	1.00	0.00		Ċ
25	ATOM ATOM	700 C	VAL	167	26.352	18.808	26.540	1.00	0.00		Č
23	ATOM	701 0	VAL	167	26.993	19.851	26.660	1.00	0.00		Ō
	ATOM	702 CB	VAL	167	25.078	18.751	24.502	1.00	0.00		С
	ATOM		VAL	167	26.003	19.894	24.048	1.00	0.00		С
	ATOM		VAL	167	25.571	17.354	24.093	1.00	0.00		С
30	MOTA	705 H	VAL	167	24.369	20.860	26.026	1.00	0.00		. Н
	MOTA	706 HA	VAL	167	24.440	17.907	26.323	1.00	0.00		Н
_	MOTA	707 HB	VAL	167	24.078.	18.875	24.086	1.00	0.00	•	Н
	MOTA	708 1HG1		167	26.348	20.450		1.00	0.00		Н
	MOTA	709 2HG1		167	26.861	19.479	23.519	1.00	0.00		H
35	MOTA	710 3HG1		167	25.455	20.562	23.383	1.00	0.00		Н
	MOTA	711 1HG2		167	25.721	16.745	24.984	1.00	0.00		H H
*	MOTA	712 2HG2		167	24.828 26.513	16.879 17.444	23.451	1.00	0.00		H
	MOTA	713 3HG2 714 N	ASP	167 168	26.836	17.444	26.917	1.00	0.00	•	N
40	ATOM ATOM	714 N 715 CA	ASP	168	28.165	17.525	27.426	1.00	0.00		C
40	ATOM	716 C	ASP	168	29.058	17.306	26.251	1.00	0.00		Ċ.
	ATOM	717 0	ASP	168	29.868	16.381	26.249	1.00	0.00		0
	MOTA	718 CB	ASP	168	28.387	16.336	28.371	1.00	0.00		С
	ATOM	719 CG	ASP	168	29.851	15.945	28.259	1.00	0.00	*	С
45	ATOM	720 OD1	ASP	168	30.612	16.679	27.573	1.00	0.00		0
	ATOM	721 OD2	ASP	168	30.235		28.870	1.00	0.00	•	0
	ATOM	722 H	ASP	168	26.252	16.767	26.839	1.00	0.00		Н
	MOTA	723 HA	ASP	168	28.369	18.470	27.927	1.00	0.00		Н
	MOTA	724 1HB	ASP	168	27.728	15.536	28.038	1.00	0.00		Н
50	MOTA	725 2HB	ASP	168	28.136	16.676	29.377	1.00	0.00		H
	ATOM	726 N	ASP	169	28.943	18.184	25.234 24.032	1.00	0.00		и С
	MOTA	727 CA	ASP	169	29.722 29.683	18.092 16.694	23.501	1.00	0.00		C
	ATOM	728 C 729 O	ASP ASP	169 169	30.666	15.958	23.583	1.00	0.00		0
55	MOTA MOTA	730 CB	ASP	169	31.194	18.496	24.209	1.00	0.00		Ċ
55	ATOM	731 CG	ASP	169	32.052	17.421	23.556	1.00	0.00		Ċ
	MOTA		ASP	169	32.403	17.591	22.357	1.00	0.00		0
	MOTA		ASP	169	32.363	16.413	24.244	1.00	0.00		0
	MOTA	734 H	ASP	169	28.266	18.955	25.323	1.00	0.00		Н
60	ATOM	735 HA	ASP	169	29.323	18.767	23.275	1.00	0.00		Н
	ATOM	736 1HB	ASP	169	31.393	18.562	25.278	1.00	0.00		. Н
	MOTA	737 2HB	ASP	169	31.334	19.460	23.722	1.00	0.00		. Н
	MOTA	738 N	VAL		28.531	16.285	22.936	1.00	0.00		N
	MOTA	739 CA	VAL	170	28.426	14.963	22.396	1.00	0.00		C
65	ATOM	740 C	VAL		28.652	15.052	20.924	1.00	0.00	. ,	С
	MOTA	741 O	VAL		28.473	16.106	20.317	1.00	0.00		0
	MOTA	742 CB	VAL		27.084	14.333	22.627	1.00	0.00		С
	MOTA	743 CG1	VAL	170	27.074	12.924	22.011	1.00	0.00		С

	ATOM	744 CG2	VAL	170		26.794	14.357	24.139	1.00	0.00		,C
	ATOM	745 H	VAL	170		27.724	16.924	22.892	1.00	0.00		H
	MOTA	746 HA	VAL	170		29.187	14.346	22.873	1.00	0.00		H
	ATOM	· 747 HB	VAL	170		26.314	14.945	22.157	1.00	0.00		H
5	MOTA	748 1HG1		170		28.042	12.719	21.554	1.00	0.00		H
	MOTA	749 2HG1		170		26.877	12.187	22.790	1.00	0.00		Н.
	MOTA	750 3HG1		170		26.294	12.864	21.251	1.00	0.00		, H
	ATOM	751 1HG2		170		27.629	14.822	24.662	1.00	0.00		H
	MOTA		VAL	170		25.885	14.928	24.326	1.00	0.00		H
10	MOTA	753 3HG2		170		26.662	13.337	24.500	1.00	0.00		H
	MOTA	754 N	SER	171		29.090	13.940	20.310	1.00	0.00		N
	MOTA	755 CA	SER	171		29.316	13.919	18.897	1.00	. 0.00		. C
	ATOM	756 C	SER	171		27.985	13.651	18.275	1.00	0.00		CO
	MOTA	757 0	SER	171		26.978	13.649	18.980	1.00	0.00		C
15	MOTA	758 CB	SER	171		30.306	12.816	18.459	1.00	0.00		0
	MOTA	759 OG	SER	171		30.577	12.901	17.067		0.00		H
	MOTA	760 H	SER	171		29.265	13.090	20.864 18.644	1.00	0.00		H
	ATOM	761 HA	SER	171		29.710	14.903 11.825	18.662	1.00	0.00		H
20	MOTA	762 1HB	SER	171		29.900	12.908	18.992	1.00	0.00		H
20	ATOM	763 2HB	SER	171		31.252 30.700	13.888	16.800	1.00	0.00		. Н
	ATOM	764 HG	SER	171 172		27.978	13.425	16.942	1.00	0.00		N
	MOTA .	765 N	ARG			26.839	13.151	16.103	1.00	0.00		C
	ATOM	766 CA 767 C	ARG ARG	172 172		25.594	13.778	16.650	1.00	0.00		Č
25	MOTA	768 O	ARG	172		24.658	13.096	17.058	1.00	0.00		Ö
23	ATOM	769 CB	ARG	172		26.582	11.647	15.910	1.00	0.00		Ċ
*	ATOM ATOM	770 CG	ARG	172		25.412	11.334	14.976	1.00	0.00		c
	MOTA	770 CG	ARG	172		25.168	9.834	14.794	1.00	0.00		C
	MOTA	772 NE	ARG	172		24.011	9.670	13.869	1.00	0.00		N
30	MOTA	773 CZ	ARG	172		23.678	8.427	13.414	1.00	0.00		С
30	ATOM		ARG	172		24.396	7.338	13.815	1.00	0.00		N
	ATOM		ARG	172		22.625	8.271	12.560	1.00	0.00		N
	MOTA	776 H	ARG	172		28.893	13.451	16.471	1.00	0.00		Н
	ATOM	777 HA	ARG	172		26.985	13.538	15.094	1.00	0.00		H
35	ATOM	778 1HB	ARG	172		26.359	11.208	16.882	1.00	0.00		H
	ATOM	779 2HB	ARG	172		27.478	11.196	15.484	1.00	0.00		H
	ATOM	780 1HG	ARG	172		25.546	11.729	13.969	1.00	0.00		Н
	ATOM	781 2HG	ARG	172		24.462	11.741	15.323	1.00	0.00		Н
	MOTA	782 1HD	ARG	172		24.949	9.410	15.774	1.00	0.00		Н
40	ATOM	783 2HD	ARG	172		26.073.	9.398	14.371	1.00	0.00		Н
	ATOM	784 HE	ARG	172		23.464	10.491	13.574	1.00	0.00		H
	.ATOM	. 785 1HH1	ARG	172		25.189	7.453	14.461	1.00	0.00		H
	MOTA	786 2HH1	ARG	172		24.144	6.400	13.471	1.00	0.00		H
	ATOM	787 1HH2	ARG:	172	•	22.080	9.091	12.258	1.00	0.00		 Н
45	MOTA	788 2HH2	ARG	172		22.374	7.332	12.217	1.00	0.00		Н
	ATOM	789 N	MET	173		25.574	15.121	16.643	1.00	0.00		N
	MOTA	790 CA	MET	173		24.514	. 15.985	17.080	1.00	0.00		C
	MOTA	791 C.	MET	173		23.271	15.956	16.207	1.00	0.00		С
	MOTA	792 O	MET	173		22.220	16.236	16.781	1.00	0.00		0
50	MOTA	793 ÇB	MET	173		24.965	17.453	17.143	1.00	0.00		С
	MOTA	794 CG	MET	173		26.131	17.692	18.105	1.00	0.00	•	С
	MOTA	795 SD	MET	173		27.725	17.037	17.523	1.00	0.00		S
	MOTA	796 CE	MET	173		27.899	18.244	16.176	1.00	0.00		C
	MOTA	797 H	MET	173		26.419	15.585	16.281	1.00	0.00		H
55	MOTA		MET	173		24.217	15.679	18.083	1.00	0.00	•	H
	MOTA	799 1HB	MET	173		24.180	18.134	17.470	1.00	0.00		H
	MOTA	800 2HB	MET	173		25.301	17.845	16.183	1.00	0.00		H
	MOTA.	801 1HG	MET	173		25.898	17.205	19.052	1.00	0.00		Н
	MOTA	802 2HG	MET	173		26.245	18.767	18.244	1.00	0.00		H
60	MOTA	803 1HE	MET	173		27.038	18.913	16.173		0.00		H
	ATOM	804 2HE	MET	173		28.809	18.824	16.323	1.00	0.00		Н
	MOTA	805 3HE	MET	173		27.953	17.719	15.222	1.00	0.00		H
	MOTA	806 N	PRO	174		23.232	15.682	14.906	1.00	0.00		И
	MOTA	807 CA	PRO	174		22.027	15.893	14.140	1.00	0.00		C
65	MOTA	808 C	PRO	174		20.773	15.279	14.674	1.00	0.00		С
	MOTA	809 O	PRO	174		19.710	15.754	14.285	1.00	0.00		0
	ATOM	810 CB	PRO	174		22.314	15.362	12.737	1.00	0.00		, C
•	MOTA	811 CG	PRO	174		23.324	14.239	12.993	1.00	0.00		С

	ATOM	812	CD	PRO	174	24.105	14.737	14.215	1.00	0.00			´C
	ATOM	813	HA	PRO	174	21.852	16.967	14.086	1.00	0.00			Н
	ATOM	814	1HB	PRO	174	22.727	16.142	12.098	1.00	0.00			Н
•	ATOM		2HB	PRO	174	21.404	14.991	12.263	1.00	0.00			H
5	ATOM		1HG	PRO	174	23.973	14.092	12.129	1.00	0.00			Н
_	ATOM		2HG	PRO	174	22.817	13.295	13.193	1.00	0.00			Н
	ATOM	818	1HD	PRO	174	24.317	13.233	14.925	1.00	0.00			H
	ATOM	819		PRO	174	25.000	15.292	13.936	1.00	0.00			Н
	ATOM	820	N	LEU	175	20.820	14.229	15.513	1.00	0.00			Ŋ
10	ATOM	821	CA	LEU	175	19.557	13.719	15.967	1.00	0.00			C
10		822			175	18.856	14.813			0.00		•	C
	MOTA		С	LEU			15.054	16.709	1.00	0.00			
	ATOM	823	0	LEU	175	17.668		16.501	1.00				0
	ATOM	824	CB	LEU	175	19.682	12.496	16.893	1.00	0.00			C
1.0	MOTA	825	CG	LEU	175	20.153	11.228	16.156	1.00	0.00			C
15	MOTA	826	CD1	LEU	175	19.103	10.760	15.135	1.00	0.00			C
	ATOM	827	CD2	LEU	175	21.543	11.421	15.532	1.00	0.00.			С
	MOTA	828	H	LEU	175	21.713	13.813	15.813		. 0.00			Н
	MOTA	829	AH	LEU	175	18.983	13.412	15.092	1.00	0.00			H
	ATOM		1HB	LEU.	175	18.740	12.226	17.372	1.00	0.00			H
20	ATOM	831		LEU	175	20.393	12.646	17.704	1.00	0.00			H
	MOTA	832	HG	LEU	175	20.326	10.410	16.855	1.00	0.00			Η
	ATOM	833	1HD1	LEU	175	18.247	11.435	15.157	1.00	0.00			H
	ATOM		2HD1		175	19.540	10.761	14.136	1.00	0.00			H
	ATOM		3HD1		175	18.775	9.751	15.386	1.00	0.00			H
25	ATOM	836	1HD2		175	21.902	12.427	15.747	1.00	0.00			H
	MOTA	837	2HD2	LEU	175	22.234	10.691	15.952	1.00	0.00			Н
	ATOM	838	3HD2	LEU	175	21.479	11.281	14.452	1.00	0.00			H
	MOTA	839	N	ILE	176	19.582	15.505	17.603	1.00	0.00			N
	ATOM	840	CA	ILE	.176	19.021	16.602	18.332	1.00	0.00	•		C
30	MOTA	841	С	ILE	176	18.856	17.761	17.396	1.00	0.00			С
	ATOM	842	0	ILE	176	17.894	18.522	17.484	1.00	0.00			Ο.
	ATOM	843	CB	ILE	176	19.889	17.028	19.481	1.00	0.00			С
	MOTA	844	CG1	ILE	176	19.109	17.948	20.433	1.00	0.00			С
	ATOM	845	CG2	ILE	176	21.181	17.642	18.914	1.00	0.00	-		C
35	MOTA	846	CD1	ILE	176	19.795	18.154	21.784	1.00	0.00			- C
	MOTA	847	H	ILE	176	20.563	15.240	17.767	1.00	0.00			Н
	MOTA	848	HА	ILE	176	18.054	16.294	18.730	1.00	0.00			H
	MOTA	849	HB	ILE	176	20.117	16.149	20.085	1.00	0.00			Н
	MOTA	850	1HG1	ILE	176	18.111	17.580	20.675	1 00	0.00			H
40	MOTA	851	2HG1	ILE	176	18.952	18.952	20.038	1.00	0.00			H
	MOTA	852	1HG2	ILE	176	21.148	17.616	17.824	1.00	0.00			Н
	MOTA	853	2HG2	ILE	176	21.271	18.674	19.250	1.00	0.00			Н
	ATOM	854	3HG2	ILE	176	22.040	17.070	19.264	1.00	0.00			Н
	MOTA	855	1HD1	ILE	176	20.728	17.592	21.807	1.00	0.00		•	Н
45	MOTA	856	2HD1	ILE	176	20.005	19.213	21.927	1.00	0.00			Н
	MOTA	857	3HD1	ILE	176	19.140	17.803	22.581	1.00	0.00			Н
	MOTA	858	N	GLU	177	19.806	17.900	16.455	1.00	0.00			N
	MOTA	859	CA	GLU	177	19.880	19.007	15.542	1.00	0.00			С
	MOTA	860	С	GLU	177	18.707	19.040	14.608	1.00	0.00			С
50		861	0	GLU	177	18.246	20.115	14.227	1.00	0.00			0
	ATOM	862	CB	GLU	177	21.183	18.981	14.714	1.00	0.00			С
	ATOM	863	CG	GLU	177	21.468	20.288	13.969	1.00	0.00		•	C
	MOTA	864	CD	GLU	177	22.934	20.298	13.545	1.00	0.00			C
	ATOM	865		GLU	177	23.550	19.200	13.498	1.00	0.00			ō
55	ATOM	866	OE 2	GLÜ	177	23.457	21.411	13.266	1.00	0.00			Ö
	ATOM	867	Н	GLÜ	177	20.526	17.166	16.384	1.00	0.00			Н
	ATOM	868	НA	GLU	177	19.897	19.963	16.064	1.00	0.00			H
	ATOM		1HB	GLU	177	21.198	18.211	13.942	1.00	0.00			H
	ATOM		2HB	GLU	177	22.078	18.798	15.308	1.00	0.00			Н
60	ATOM		1HG	GLU	177	21.262	21.122	14.639	1.00	0.00			
00	ATOM		2HG	GTO	177	20.820	20.338	13.093	1.00	0.00			H H
	ATOM	873		LEU	178	18.171	17.867		1.00	0.00			
			N		178			14.229					N
	MOTA	874	CA	LEU		17.164	17.780	13.210	1.00	0.00			С
65	MOTA	875	С	LEU	178	15.945	18.581	13.544	1.00	0.00			С
05	ATOM	876	O	LEU	178	15.455	19.334	12.706	1.00	0.00			0
	ATOM	877	CB	LEU	178	16.678	16.342	12.969	1.00	0.00			С
	ATOM	878	CG	LEU	178	17.748	15.383	12.413	1.00	0.00			С
	ATOM	879	CDT	LEU	178	17.169	13.975	12.197	1.00	0.00			С

PCT/CA01/00607

WO 01/83717

- 141 -

	MOTA	880	CD2	T.F.U	178	18.419	15.956	11.154	1.00	0.00			С
	MOTA	881	H	LEU	178	18.493	17.001	14.685	1.00	0.00			H
	MOTA	882		LEU	178	17.517	18.144	12.245	1.00	000			H
	ATOM	883	1HB	LEU	178	15.861	16.375	12.247	1.00	0.00			H
5	ATOM	884	2HB	LEU	178	16.335	15.934	13.920	1.00	0.00			H
	ATOM	885	HG	LEU	178	18.590	15.296	13.099	1.00	0.00			Н
										0.00			
	MOTA		1HD1		178	16.118	13.965	12.487	1.00				H
	ATOM	887	2HD1	LEU	178	17.257	13.702	11.145	1.00	0.00			H
	MOTA	888	3HD1	LEU	178	17.720	13.257	12.804	1.00	0.00			H
10	ATOM	889	1HD2	7.F31	178	17.987	16.930	10.923	1.00	0.00			H
10	ATOM		2HD2		178	19.489	16.065	11.330	1.00	0.00			H
	MOTA		3HD2		178	18.256	15.279	10.315	1.00	0.00			H
	MOTA	892	N	GLY	179	15.415	18.479	14.776	1.00	0.00			N
	ATOM	893	CA	GLY	179	14.154	19.139	14.949	1.00	0.00			С
15	ATOM	894	С	GLY	179	14.199	20.110	16.075	1.00	0.00			С
15		895	Ö	GLY	179	13.695	21.225	15.954	1.00	0.00			Ö
	MOTA												
	ATOM	896	H	GLY	179	15.880	17.965	15.538	1.00	0.00			Н,
	MOTA	897	1HA	GLY	179	13.357	18.426	15.163	1.00	0.00			H
	ATOM	898	2HA	GLY	179	13.866	19.690	14.053	1.00	0.00			H
20		899	N	PRO	180	14.773	19.733	17.174	1.00	0.00	•		N
0 شد													
	MOTA	900	CA	PRO	180	14.743	20.627	18.289	1.00	0.00			С
	MOTA	901	С	PRO	180-	15.493	21.892	18.046	1.00	0.00			С
	ATOM	902	0	PRO	180	15.199	22.883	18.711	1.00	0.00			0
	ATOM	903	- CB	PRO	180	15.172	19.808	19.511	1.00	0.00			С
25						15.490	18.403	18.955	1.00	0.00			Č
دند	ATOM	904	CG	PRO	180								
	MOTA	905	CD	PRO	180.	14.745	18.351	17.613	1.00	0.00		-	С
	ATOM	906	AH	PRO	180	13.734	20.933	18 <i>.</i> 565	1.00	0.00			H
	ATOM -	907	1HB	PRO	180	14.310	19.829	20.178	1.00	0.00		,	H
	ATOM		2HB	PRO	180	16.044	20.329	19.905	1.00	0.00			H
20							17.721			0.00			
30	ATOM	909		PRO	180	15.098		19.709	1.00				H
	ATOM	910		PRO	180	16.576	18.390	18.863	1.00	0.00			H
	ATOM	911	1HD	PRO	180	15.243	17.700	16.894	1.00	0.00			Н
	ATOM	912	2HD	PRO	180	13.721	17.995	17:728	1.00	0.00			H
	MOTA	913	N	LEU	181	16.467	21.893	17.121	1.00	0.00			N
25													
35	ATOM	914	CA	LEU	181	17.165	23.111	16.833	1.00	0.00			C
	MOTA	915	C.	LEU	181	16.199	24.075	16.231	1.00	0.00			С
	ATOM	916	0	LEU	181	16.226	25.266	16.537	1.00	0.00			0
	MOTA	917	CB	LEU	181	18.337	22.920	15.859	1.00	0.00	•		С
	ATOM	918	CG	LEU	181	19.575	22.321	16.546	1.00	0.00			Ċ
40													
40	MOTA	919	CD1	LEU	181	20.341	23.397	17.335	1.00	0.00			С
	MOTA	920	CD2	LEU	181	19.181	21.138	17.444	1.00	0.00			С.
	MOTA	921	H	LEU	181	16.710	21.025	16.622	1.00	0.00			Н
	ATOM	922	AH	LEU	181	17.567	23.504	17.766	1.00	0.00			Н
		923	1HB	LEU	181	18.657	23.859	15.408	1.00	0.00			
4.5	ATOM												H
45	MOTA	924	2HB	LEU	181	18.086	22.251	15.035	1.00	0.00			Н
	MOTA	925	HG	LEU	181	20.258	21.891	15.813	1.00	0.00			H
	ATOM	926	1HD1	LEU	181	19.832	24.355	17.231	1.00	0.00			H
	ATOM		2HD1		181	20.379	23.118	18.388	1.00	0.00			Н
	ATOM		3HD1		181	21.355	23.481	16.945	1.00	0.00			
50													H
50	MOTA		1HD2		181	18.102	20.986	17.393	1.00	0.00			Н
	MOTA	930	2HD2	LEU	181	19.690	20.236	17.103	1.00	0.00			Н
	ATOM	931	3HD2	LEU	181	19.469	21.350	18.473	1.00	0.00			Н
	ATOM	932	N	ARG	182	15.300	23.579	15.363	1.00	0.00			N
									1.00				
	ATOM	933	CA	ARG	182	14.348	24.458	14.756		0.00			С
55	MOTA	934	С	ARG	182	13.540	25.045	15.861	1.00	0.00	•		С
	ATOM	935	0	ARG	182	13.199	26.227	15.836	1.00	0.00			0
	ATOM	936	CB	ARG		13.385	23.745	13.789	1.00	0.00			C
							24.688		1.00	0.00			
	ATOM	937	CG	ARG	182	12.366		13.144					C
	MOTA	938	CD	ARG	182	11.503	24.028	12.065	1.00	0.00			С
60	ATOM	939	NE	ARG	182	12.360	23.836	10.860	1.00	0.00			N
	MOTA	940	CZ	ARG	182	11.960	23.000	9.857	1.00	0.00			C
	ATOM	941		ARG	182	10.785	22.314	9.967	1.00	0.00			N
	MOTA	942		ARG	182	12.736	22.850	8.745	1.00	0.00			Ŋ
	MOTA	943	H	ARG	182	15.296	22.574	15.136	1.00	0.00			Н
65	MOTA	944	HA	ARG	182	14.918	25.216	14.218	1.00	0.00			Н
	MOTA		1HB	ARG	182	12.793	22.963	14.267	1.00	0.00			H
	ATOM		2HB	ARG	182	13.892	23.255	12.957	1.00	0.00			Н
	MOTA	94/	1 HG	ARG	182	12.906	25.512	12.679	1.00	0.00			Н

	ATOM	948 2HG ARG	182	11.69	9 25.058	13.922	1.00	0.00			Н
	ATOM	949 1HD ARG	182	10.66		11.856	1.00	0.00			Н
	MOTA	950 2HD ARG	182	11.15		12.461	1.00	0.00			H
	ATOM	951 HE ARG	182	13.25		10.783	1.00	0.00			Н
5	MOTA	952 1HH1 ARG	182	10.19		10.806	1.00	0.00			H
	ATOM	953 2HH1 ARG	182	10.48	3 21.683	9.210	1.00	0.00			H
	ATOM	954 1HH2 ARG	182	1362	23.367	8.662	1.00	0.00			Н
	ATOM	955 2HH2 ARG	182	12.43	35 22.219	7.988	1.00	0.00			Н
	ATOM	956 N SER	183	13.22	26 24.222	16.878	1.00	0.00			N
10	ATOM	957 CA SER	183	12.45	0 24.713	17.975	1.00	0.00			C
-	ATOM	958 C SER	183	13.18	25.875	18.559	1.00	0.00			С
	ATOM	959 O SER	183	14.39	25.840	18.757	1.00	0.00			0
	ATOM	960 CB SER	183	12.23		19.093	1.00	0.00			С
	ATOM	961 OG SER	183	11.48	37 22.579	18.603	1.00	0.00	•		0
- 15	MOTA	962 H SER	183	13.54	3 23.242	16.866	1.00	0.00			Η
	MOTA	963 HA SER	183	11.47	9 25.013	17.580	1.00	0.00			Н
	MOTA	964 1HB SER	183	11.69		19.924	1.00	0.00			H
	MOTA	965 2HB SER	183	13.20	23.316	19.452	1.00	0.00			Н
	ATOM	966 HG SER	183	10.55		18.314	1.00	0.00			H
20	ATOM	967 N PHE	184	12.43	30 26.948	18.842	1.00	0.00		_	N
	ATOM	968 CA PHE	184	12.93	34 28.161	19.411	1.00	0.00			С
	ATOM	969 C PHE	184	13.33		20.818	1.00	0.00			C
	ATOM	970 O PHE	184	14.09		21.433	1.00	0.00			0
•	ATOM	971 CB PHE	184	11.89		19.429	1.00	0.00			С
25	MOTA	972 CG PHE	184	10.75		20.300	1.00	0.00			С
	MOTA	973 CD1 PHE	184	10.79		21.654	1.00	0.00			C
	ATOM	974 CD2 PHE	184	9.6		19.763	1.00	0.00			С
	MOTA	975 CE1 PHE	184	9.75		22.463	1.00	0.00			С
	ATOM	976 CE2 PHE	184	8.63		20.567	1.00	0.00			С
30	ATOM	977 CZ PHE	184	8.6		21.920	1.00	0.00			С
5.0	ATOM	978 H PHE	184	11.42		18.636	1.00	0.00			H
	MOTA	979 HA PHE	184	13.78		18.811	1.00	0.00			Н
	ATOM	980 1HB PHE	184	11.5		18.407	1.00	0.00			Н
	ATOM	981 2HB PHE	184	12.3		19.825	1.00	0.00			Н
35	MOTA	982 HD1 PHE	184	11.6		22.090	1.00	0.00			H
22	ATOM	983 HD2 PHE	184	9.6		18.690	1.00	0.00			Н
	MOTA	984 HE1 PHE	184	9.7		23.535	1.00	0.00			H
	ATOM	985 HE2 PHE	184	7.7		20.131	1.00	0.00			Н
	ATOM	986 HZ PHE	184	7.8		22.559	1.00	0.00			H
40	ATOM	987 N LYS		12.8		21.350	1.00	0.00			N
,,,	ATOM	988 CA LYS	185	12.9		22.738	1.00	0.00		-	С
	ATOM	989 C LYS	185	14.3		23.216	1.00	0.00			С
	ATOM	990 O LYS	185	14.6		24.138	1.00	0.00			0
	ATOM	991 CB LYS		12.5		23.006	1.00	0.00			С
45	ATOM	992 CG LYS	185	11.1		22.741	1.00	0.00			С
	ATOM	993 CD LYS		10.1		23.658	1.00	0.00			С
	MOTA	994 CE LYS		8.6		23.392	1.00	0.00			С
	MOTA	995 NZ LYS		7.8		24.378	1.00	0.00			N
	MOTA	996 H LYS		12.3	38 26.078	20.732	1.00	0.00			H
50	MOTA	997 HA LYS		12.3	52 27.025	23.372	1.00	0.00			H
	ATOM	998 1HB LYS		12.7			1.00	0.00			H
	ATOM	999 2HB LYS		13.1		22.356	1.00	0.00			H
	ATOM	1000 1HG LYS		10.8		22.870	1.00	0.00			H
	ATOM	1001 2HG LYS		10.7		21.730	1.00	0.00			Н
55	MOTA	1002 1HD LYS		10.2		23.571	1.00	0.00	•		H
	ATOM	1003 2HD LYS		10.3			1.00	0.00			H
	ATOM	1004 1HE LYS		8.5			1.00	0.00			H
	ATOM	1005 2HE LYS		8.4			1.00	0.00			H
	ATOM	1006 1HZ LYS		8.4			1.00	0.00			Н
60	MOTA	1000 1HZ LYS		7.1			1.00	0.00			Н
00	MOTA	1007 2HZ BIS		7.2			1.00	0.00			Н
	MOTA	1000 JHZ HIS		15.3			1.00	0.00			N
	MOTA	1010 CA VAI		16.6			1.00	0.00			C
	MOTA	1011 C VAI		17.8			1.00	0.00			С
65	MOTA	1011 C VAI		17.5			1.00	0.00			0
00	MOTA	1013 CB. ANI		16.8			1.00	0.00		•	С
	MOTA	1014 CG1 VAI		17.1			1.00	0.00			C
	ATOM	1015 CG2 VAI		17.9			1.00	0.00			С
					-						

	7) TI OM	1016 Н	VAL	186		15.255	25.196	21.862	1.00	0.00			H	
	MOTA	· ·				16:887	27.197	23.285	1.00	0.00			Н	
	MOTA	1017 HA	VAL	186									Н	
	ATOM	1018 HB	VAL	186		15.937	25.744	25.159	1.00	0.00				
	MOTA	1019 1HG1	VAL	186		17.207	23.799	23.450	1.00	0.00			H	
5	ATOM	1020 2HG1		186		18.166	23.896	24.945	1.00	0.00			H	
5		1021 3HG1		186		16.430	23.513	25.025	1.00	0.00			H	
	MOTA							24.679	1.00	0.00			Н	
1	MOTA	1022 1HG2		186		18.313	27.191							
	ATOM	1023 2HG2	VAL	186		17.504	26.867	26.231	1.00	0.00			Н	
	ATOM	1024 3HG2	VAL	186		18.761	25.758	25.633	1.00	0.00			Н	
10		1025 N	PHE	187		19.048	25.904	22.793	1.00	0.00			N	
10.	MOTA						25.391	22.216	1.00	0.00			С	
	MOTA	1026 CA	PHE	187		20.262							c	
	MOTA	1027 C	PHE	187		21.286	26.460	22.477	1.00	0.00				
	ATOM	1028 O	PHE	187		21.009	27.384	23.239	1.00	0.00			0	
	ATOM	1029 CB	PHE	187		20.152	25.175	20.689	1.00	0.00			С	:
						21.285	24.332	20.203	1.00	0.00			С	:
15	MOTA	1030 CG	PHE	187						0.00			C	
	ATOM	1031 CD1		187		21.291	22.977	20.443	1.00					
	ATOM	1032 CD2	PHE	187		22.322	24.87.7	19.478	1.00	0.00			С	
	MOTA	1033 CE1	PHE	187	•	22.324	22.185	19.996	1.00	0.00			С	
			PHE	187		23.357		19.029	1.00	0.00			С	:
	MOTA								1.00	0.00			C	
. 20	ATOM	1035 CZ	PHE	187		23.362	22.742	19.291						
	MOTA	1036 H	PHE	187		19.133	26.619	23.528	1.00	0.00			Н	
	MOTA	1037 HA	PHE	187		20.448	24.460	22.752	1.00	0.00			H	
	MOTA	1038 1HB	PHE	187		20.181	26.132	20.169	1.00	0.00		_	. н	i
						19.215	24.674	20.445	1.00	0.00			H	
	ATOM	1039 2HB	PHE	187									Н	
25	MOTA	1040 HD1	PHE	187		20.466	22.524	20.994	1.00	0.00				
	MOTA	1041 HD2	PHE	187		22.322	25.944	19.257	1.00	0.00			H	
	ATOM		PHE	187		22.318	21.114	20.201	1.00	0.00			Н	ł
				187		24.174	24.538	18.464	1.00	0.00	•		H	1
	ATOM	-1043 HE2						18.941	1.00	0.00			F	
	MOTA	1044 HZ	PHE	187		24.184	22.118							
30	MOTA	1045 N	LYS	188		22.500	26.319	21.890	1.00	0.00			N	
	MOTA	1046 CA	LYS	188		23.583	27.276	21.893	1.00	0.00			C	
	MOTA	1047 C	LYS	188		24.870	26.565	22.163	1.00	0.00			C	2
				188		24.885	25.410	22.586	1.00	0.00			C)
	MOTA	1048 0	LYS							0.00			Ċ	
	MOTA	1049 CB	LYS	188		23.496	28.450	22.890	1.00					
35	MOTA	1050 CG	LYS	188		22.508	29.554	22.501	1.00	0.00			C	
	MOTA	1051 CD	LYS	188		22.239	30.545	23.634	1.00	0.00		` '	C	
-			LYS	188		21.535	29.916	24.838	1.00	0.00				3
	MOTA						30.934	25.890	1.00	0.00			Ŋ	
	ATOM	1053 NZ	LYS	188		21.318							ŀ	
	MOTA	1054 H	LYS	188		22.668	25.435	21.388	1.00	0.00				
40	ATOM	1055 HA	LYS	188		.23.632	27.767	20.921	1.00	0.00			F	
	MOTA	1056 1HB	LYS	188		24.483	28.906	22.964	1.00	0.00			F	i
						23.179	28.053	23.854	1.00	0.00			F	Н
	MOTA	1057 2HB	LYS	188						0.00			I	
	MOTA	1058 1HG	LYS	188		21.530	29.169	22.209	1.00					
	ATOM	1059 2HG	LYS	188		22.849	30.156	21.659	1.00	0.00				H
45	MOTA	1060 1HD	LYS	188		21.606	31.381	23.337	1.00	0.00				Н
-13	ATOM		LYS	188		23.144	30.999	24.036	1.00	0.00			F	Η
		1061 2HD				22.142	29.110	25.249	1.00	0.00				Н
	MOTA	1062 1HE	LYS	188										Н
	MOTA	1063 2HE	LYS	188		20.569	29.509	24.537	1.00	0.00				
	MOTA	1064 1HZ	LYS	188		21.691	31.840	25.573	1.00	0.00				Н
.50	MOTA	1065 2HZ	LYS	188		20.309	31.025	26.077	1.00	0.00			I	Н
.50		1066 3HZ	LYS	188		21.802	30.646	26.752	1.00	0.00			1	Н
	MOTA								1.00	0.00		-		N
	MOTA	1067 N	ILE	189		25.996	27.260	21.897						
	MOTA	1068 CA	ILE	189		27.304	26.713	22.113	1.00	0.00				C
	MOTA	1069 C	ILE	189		27.526	26.621	23.583	1.00	. 0.00				С
55	ATOM	1070 0	ILE	189		28.132	25.670	24.075	1.00	0.00			(0
22						28.414	27.572	21.575	1.00	0.00			(С
	MOTA	1071 CB	ILE	189						0.00				c
	MOTA	1072 CG1	ILE	189		28.312	27.716	20.048	1.00					
	MOTA	1073 CG2	ILE	189		29.747	26.968	22.052	1.00	0.00			. (
	ATOM	1074 CD1		189		29.257	28:773	19.478	1.00	0.00			(С
60						25.912	28.217	21.525	1.00	0.00				Н
60	MOTA	1075 H	ILE	189						0.00				Н
	MOTA	1076 HA	ILE	189		27.335	25.726	21.651	1.00					
	MOTA	. 1077 HB	ILE	189		28.274	28.578	21.968	1.00	0.00				H
	ATOM	1078 1HG1		189		27.316	28.002	19.708	1.00	0.00				H
	MOTA	1079 2HG		189		28.547			1.00	0.00				Н
<i></i>									1.00	0.00				Н
65	MOTA	1080 1HG2		189		29.549								Н
	MOTA	1081 2HG2		189		30.352			1.00	0.00				
	ATOM	1082 3HG2	2 ILE	189		30.284	.27.701	22.653	1.00	0.00				Н
	ATOM	1083 1HD		189		29.828	29.224	20.288	1.00	0.00				Н
	0,1	1000 #1101		200										

	ATOM ATOM ATOM	1086	3HD1 N	ILE LYS	189 189 190	29.940 28.677 27.035	28.305 29.543 27.629	18.768 18.969 24.324		0.00			H H N
_	ATOM	1087	CA	LYS	190	27.213	27.664	25.745	1.00	0.00			C
5	ATOM ATOM	1088 1089	С О	LYS LYS	190 190	26.543 27.070	26.467 25.870	26.343 27.280	1.00	0.00			C 0
	ATOM	1090	CB	LYS	190	26.635	28.933	26.394	1.00	0.00			С
	ATOM	1091	CG	LYS	190	26.988	29.068	27.877	1.00	0.00			C
	ATOM	1092	CD	LYS	190	26.785	30.479	28.432	1.00	0.00			Ç
10	ATOM	1093	CE	LYS	190	27.971	31.413	28.171	1.00	0.00			Č
	ATOM	1094	NZ	LYS	190	28.057	31.738	26.730	1.00	0.00			N
	MOTA	1095	H	LYS	190	26.520	28.391	23.860	1.00	0.00	-		H
	ATOM	1096	HA	LYS	190	28.280	27.646	25.964	1.00	0.00			H
1.0	MOTA	1097		LYS	190 .	25.547	28.982	26.349	1.00	0.00			H
15	MOTA	1098		LYS	190	26.986	29.853	25.927	1.00	0.00			Н
	ATOM ATOM	1099 1100		LYS LYS	190 190	28.025 26.398	28.823 28.423	28.104 28.528	1.00	0.00			H H
	ATOM	1101		LYS	190	26.633	30.502	29.511	1.00	0.00			H
	ATOM	1102		LYS	190	25.919	30.990	28.010	1.00	0.00			Н
20	ATOM	1103		LYS	190	28.900	30.934	28.478	1.00	.0.00			Н
	MOTA	1104	2HE	LYS	190	27.850	32.339	28.732	1.00	0.00			Н
	MOTA	1105		LYS	190	27.297	31.261	26.224	1.00	0.00			H
	MOTA	1106		LYS	190	27.968	32.756	26.601	1.00	0.00			H
0.5	MOTA		3HZ	LYS	190	28.965	31.423	26.360	1.00	0.00			H
25	MOTA	1108	N	PRO	191	25.406	26.078	25.838	1.00	0.00			И
	ATOM ATOM	1109 1110	CA C	PRO PRO	191 191	24.785 25.649	24.909 23.721	26.381 26.128	1.00	0.00			C C
	ATOM	1111	0	PRO	191	25.410	22.675	26.728	1.00	0.00			0
	ATOM	1112	CB	PRO	191	23.391	24.869	25.766	1.00	0.00			C
30	MOTA	1113	CG	PRO	191	23.050	26.360	25.589	1.00	0.00	-		Č
	MOTA	1114	CD	PRO	191	24.413	27.047	25.405	1.00	0.00			С
	MOTA	1115	HA	PRO	191	24.647	25.033	27.455	1.00	0.00			Н
	MOTA	1116		PRO	191	22.684	24.364	26.425	1.00	0.00			Н
25	MOTA		2HB	PRO	191	23.396	24.336	24.815	1.00	0.00			H
35	MOTA		1HG	PRO	191	22.537	26.633	26.511	1.00	0.00	-		H
	MOTA MOTA		2HG 1HD	PRO PRO	191 191	22.415 24.642	26.391 27.260	24.703 24.361	1.00	0.00			, H , H
	ATOM	1121		PRO	191	24.541	27.200	26.053	1.00	0.00			Н
	ATOM	1122	N	GLU	192	26.651	23.854	25.242	1.00	0.00		,	N
40	MOTA	1123	CA	GLU	192	27.569	22.774	25.046	1.00	0.00			С
	ATOM	1124	С	GLU	192	28.727	23.091	25.928	1.00	0.00			С
	MOTA	1125	0	GLU	192	29.185	24.232	25.968	1.00	0.00			0
	ATOM	1126	CB	GLU	192	28.119	22.653	23.615	1.00	0.00			С
45	ATOM ATOM	1127 1128	CG CD	GLU	192	27.073 27.796	22.223	22.586	1.00	0.00			С
43	ATOM	1128	OE1	GLU GLU	192 192	28.458	21.960 22.898	21.272 20.753	1.00 1.00	0.00			C O
	ATOM	1130	OE2		192	27.705	20.807		1.00	0.00			0
	ATOM	1131	H	GLU ·	192	26.757	24.728	24.707	1.00	0.00			Н
	MOTA	1132	HA	GLU	192	27.020	21.881	25.348	1.00	0.00			Н
50	MOTA	1133		GLU	192	28.924	21.926	23.513	1.00	0.00			Н
	MOTA	1134		GLU	192	28.530	23.582	23.221	1.00	0.00			H
	ATOM	1135		GLU	192	26.354	23.036	22.483	1.00	0.00			H
	ATOM	1136		GLU	192	26.593	21.318	22.958	1.00	0.00			Н
55	ATOM ATOM	1137 1138	N CA	LYS LYS	193 193	29.226	22.090 22.366	26.676	1.00	0.00			N
55	ATOM	1138	CA	LYS	193	30.300 31.517	22.500	27.583 26.770	1.00	0.00			C
	ATOM	1140	Ō	LYS	193	32.251	21,775	26.365	1.00	0.00			0
	MOTA	1141	СВ	LYS	193	30.616	21.189	28.517	1.00	0.00			Ċ
	MOTA	1142	CG	LYS	193	29.422	20.775	29.380	1.00	0.00			C
60	MOTA	1143	CD	LYS	193	28.864	21.913	30.235	1.00	0.00			С
	ATOM	1144	CE	LYS	193	28.068	22.942	29.429	1.00	0.00			С
	ATOM	1145	ΝZ	LYS	193	27.558	24.004	30.323	1.00	0.00			N
	ATOM	1146	H	LYS	193	28.840	21.137	26.597	1.00	0.00			H
65	MOTA MOTA	1147 1148	HA 1HB	LYS LYS	193 193	30.008 31.425	23.220 21.405	28.194 29.214	1.00	0.00			H H
00	ATOM	1148		LYS	193	30.919	20.290	27.980	1.00	0.00			H H
	ATOM	1150		LYS	193	29.651	19.975	30.084	1.00	0.00			H
	MOTA	1151		LYS	193	28.573	20.410	28.801	1.00	0.00			Н

	ATOM	1152	1HD	LYS	193		29.636	22.484	30.750	1.00	0.00			Н
	ATOM	1153		LYS	193		28.186	21.572	31.017	1.00	0.00			H
	ATOM	1154		LYS	193		27.222	22.460	28.937	1.00	0.00			Н
	ATOM	1155		LYS	193		28.704	23.396	28.669	1.00	0.00			Н
5		1156			193		27.854	23.811	31.290	1.00	0.00			H
5	ATOM			LYS					30.024	1.00	0.00			H
	ATOM	1157		LYS	193		27.934	24.915						
	MOTA	1158	3HZ	LYS	193		26.529	24.026	30.277	1.00	0.00			H
	MOTA	1159	N	ARG	194		31.741	23.979	26.494	1.00	0.00			N
	ATOM	1160	CA	ARG	194		32.867	24.397	25.713	1.00	0.00			С
10	ATOM	1161	С	ARG	194		34.107	24.240	26.526	1.00	0.00			С
	MOTA	1162	0	ARG	194		35.099	23.690	26.051	1.00	0.00			0
	ATOM	1163	CB	ARG	194		32.793	25.871	25.273	1.00	0.00			С
	ATOM	1164	CG	ARG	194		32.765	26.874	26.429	1.00	0.00			С
	ATOM	1165	CD	ARG	194		32.708	28.332	25.962	1.00	0.00			. C
15	ATOM	1166	NE	ARG	194		32.685	29.199	27.173	1.00	0.00			N
	ATOM	1167	CZ	ARG	194		32.910	30.540	27.058	1.00	0.00			С
	MOTA	1168	NH1		194		33.179	31.085	25.836	1.00	0.00			N
	ATOM	1169	NH2		194		32.863	31.338	28.165		0.00			N
	ATOM	1170	Н	ARG	194		31.086	24.688	26.853	1.00	0.00			Н
20	ATOM	1171	HA	ARG	194		32.928	23.777	24.818	1.00	0.00			Н
20		1172							24.693	1.00	0.00			Н
,	MOTA			ARG	194	:	31.880	26.009						
	MOTA	1173	2HB	ARG	194		33.671	26.091	24.665	1.00	0.00			Н
	MOTA	1174		ARG	194		33.640	26.809	27.075	1.00	0.00			Н
	MOTA	1175		ARG	194		31.906	26.745	27.088	1.00	0.00			Н
25	ATOM	1176		ARG	194		31.799	28.459	25.372	1.00	0.00		•	H
	MOTA	1177	2HD	ARG	194		33.595	28.525	25.359	1.00	0.00			H
	ATOM	1178	HE	ARG	194		32.499	28.785	28.098	1.00	0:00			Н
	MOTA	1179	1HH1	ARG	194		33.212	30.484	25.000	1.00	0.00			H
	MOTA	1180	2HH1	ARG	194		33.348	32.097	25.749	1.00	0.00			Η.
30	ATOM	1181	1HH2	ARG	194		32.657	30.927	29.087	1.00	0.00			Η
	ATOM	1182			194		33.033	32.350	28.077	1.00	0.00			Н
	ATOM	1183	N	TRP	195		34.072	24.705	27.790	1.00	0.00			N
	ATOM	1184	CA	TRP	195		35.243	24.637	28.613	1.00	0.00			С
	ATOM	1185	C	TRP	195		35.661	23.212	28.692	1.00	0.00			Ċ
35	ATOM	1186	Ö	TRP	195		36.778	22.858	28.320	1.00	0.00			ō
33	ATOM	1187	CB	TRP	195		34.987	25.126	30.050	1.00	0.00			Ċ
			CG		195		36.189	25.050	30.963	1.00	0.00			C
-	MOTA	1188		TRP										C
	MOTA	1189	CD1		195		37.206	25.941	31.148	1.00	0.00			C
40	ATOM	1190	CD2		195		36.447	23.951	31.849	1.00	0.00			
40	MOTA	1191	NE1	TRP	195		38.082	25.461	32.093	1.00	0.00			N
	ATOM	1192	CE2	TRP	195		37.626	24.236	32.535	1.00	0.00			C.
	MOTA	1193		TRP	195		35.753	22.796	32.075	1.00	0.00			С
	MOTA	1194	CZ2	TRP	195		•	23.369	33.460	1.00	0.00			С
	MOTA	1195	CZ3	TRP	195		36.266	21.921	33.007	1.00	0.00			С
45	ATOM	1196	CH2	TRP	195		37.433	22.203	.33.686	1.00	0.00		-	С
	MOTA	1197	H	TRP	195		33.202	25.109	28.165	1.00	0.00			Н
	MOTA	1198	AH	TRP	195		36.015	25.246	28.144	1.00	0.00			Н
	MOTA	1199	1HB	TRP	195		34.202	24.507	30.486	1.00	0.00	•		H.
	ATOM	1200	2HB	TRP	195		34.673	26.169	30.004	1.00	0.00			Ĥ
50	ATOM	1201		TRP	195		37.308	26.891	30.624	1.00	0.00			Н
	MOTA	1202		TRP	195		38.936	25.936	32.416	1.00	0.00			Н
	MOTA	1203		TRP	195		34.829	22.575	31.539	1.00	0.00			Н
	ATOM	1203		TRP	195		39.054	23.590	33.998	1.00	0.00			Н
		1205		TRP	195		35.740	20.988	33.211	1.00	0.00			Н
55	MOTA													
55	ATOM	1206		TRP	195		37.810	21.488	34.417	1.00		-		Н
	MOTA	1207	N	GLN	196		34.753	22.348	29.172	1.00	0.00			N
	MOTA	1208	CA	GLN	196		35.083	20.963	29.256	1.00	0.00			С
	ATOM	1209	С	GLN	. 196		34.251	20.260	28,238	1.00	0.00			С
	MOTA	1210	0	GLN	196		33.074	19. 9 82	28.453	1.00	0.00			0
60	MOTA	1211	CB	GLN	196		34.819	20.372	30.657	1.00	0.00			С
	MOTA	1212	CG	GLN	196		33.366	20.482	31.127	1.00	0.00			С
	MOTA	1213	CD	GLN	196		33.276	19.909	32.534	1.00	0.00			С
	ATOM	1214		GLN	196		33.699	18.784	32.794	1.00	0.00			0
	MOTA	1215	NE2		196		32.713	20.713	33.475	1.00	0.00			N
65	ATOM	1216	Н	GLN	196		33.827	22.681	29.476	1.00	0.00			Н
	MOTA	1217		GLN	196		36.148	20.879	29.041	1.00	0.00			Н
	ATOM	1217		GLN	196		35.439	20.075	31.375	1.00	0.00			Н
	MOTA	1219		GLN	196		35.439	19.313	30.636	1.00	0.00			H
	NI OF	1413	تللدك	GTIN	720		55.015	19.010	20.020	4.00	0.00			-1

									1 00	0 00			.,
	ATOM	1220 1HG	GLN	196		32.741	19.912	30.438	1.00	0.00			H
	ATOM	1221 2HG	GLN	196		33.084	21.535	31.121	1.00	0.00			H
	MOTA	1222 1HE2	GLN	196		32.628	20.385	34.448	1.00	0.00			H
	ATOM	1223 2HE2	GLN	196		32.371	21.649	33.214	1.00	0.00			H
5	ATOM	1224 N	ASP	197		34.851	19.958	27.074	1.00	0.00			N
	MOTA	1225 CA	ASP	197		34.088	19.298	26.062	1.00	0.00			C
	MOTA	1226 C	ASP	197		33.661	17.997	26.650	1.00	0.00			С
	MOTA	1227 0	ASP	197		32.490 .	17.632	26.567	1.00	0.00			0
	ATOM	1228 CB	ASP	197		34.906	19.015	24.791	1.00	0.00			C
10	ATOM	1229 CG	ASP	197		35.203	20.352	24.123	1.00	0.00			C
	MOTA	1230 OD1	ASP	197		34.612	21.375	24.562	1.00	0.00			0
	MOTA	1231 OD2	ASP	197		36.027	20.370	23.170	1.00	0.00			0
	MOTA	1232 H	ASP	197		35.840	20.197	26.914	1.00	0.00			H
	MOTA	1233 HA	ASP	197		33.246	19.955	25.841	1.00	0.00			H
15	MOTA	1234 1HB	ASP	197		34.303	18.377	24.143	1.00	0.00			H
	MOTA	1235 2HB	ASP	197		35.825	18.513	25.092	1.00	0.00			H
	ATOM.	1236 N	ILE	198		34.631	17.292	27.269	1.00	0.00			N C
•	MOTA	1237 CA	ILE	198		34.499	16.047	27.977	1.00	0.00			C
	MOTA	1238 C	ILE	198		35.358	15.067	27.250	1.00 1.00	0.00			0
20	MOTA	1239 0	ILE	198		36.124	15.447	26.367 28.097	1.00	0.00	· .		c
	ATOM	1240 CB	ILE	198		33.112	15.470	29.233	1.00	0.00			č
	ATOM	1241 CG1		198		33.053	1.4.434 14.897	26.728	1.00	0.00			· Č
	ATOM .	1242 CG2		198		32.712	15.040	30.609	1.00	0.00			Ċ
0.5	MOTA	1243 CD1		198		33.296 35.578	17.693	27.229	1.00	0.00			Н
25	MOTA	1244 H	ILE	198 198		34.847	16.239	28.991	1.00	0.00			Н
•	MOTA	1245 HA 1246 HB	ILE	198		32.435	16.271	28.393	1.00	0.00			Н
	MOTA	1246 HB 1247 1HG1		198		33.793	13.640	29.128	1.00	0.00			Н
	MOTA ATOM	1247 ING1	ILE	198		32.089	13.928	29.302	1.00	0.00			H
30	ATOM	1249 1HG2		198		33.524	15.049	26.018	1.00	0.00			Н
50	ATOM	1250 2HG2		198		32.510	13.830	26.824	1.00	0.00			H
	ATOM	1251 3HG2		198		31.816	15.404	26.368	1.00	0.00			H
	MOTA	1252 1HD1		198		33.467	16.111	30.509	1.00	0.00			H
	MOTA	1253 2HD1		198		32.424	14.868	31.241	1.00	0.00			H
35	MOTA	1254 3HD1	ILE	198		34.170		31.062	1.00	0.00			H
	MOTA	1255 N	SER	199		35.246	13.772	27.596	1.00	0.00			N
	ATOM	1256 CA	SER	199		36.063	12.779	26.971	1.00	0.00			C
	MOTA	1257 C	SER	199		35.305	11.490	26.984	1.00	0.00			C
	MOTA	1258 O	SER	199		34.076	11.470	26.954	1.00	0.00			0 C
40	MOTA	1259 CB	SER	199		37.403	12.539	27.688	1.00	0.00			0
	MOTA	1260 OG	SER	199		38.210	13.704	27.614 28.317	1.00	0.00			Н
	MOTA	1261 H	SER	199	•	34.565	13.493 13.106	25.950	1.00	0.00			H
	ATOM	1262 HA	SER	199 199		36.263 37.934	11.711	27.219	1.00	0.00			Н
45	MOTA	1263 1HB 1264 2HB	SER SER	199		37.227	12.297	28.736	1.00	0.00			Н
43	MOTA			199		39.202	13.440	27.692	1.00	0.00			Н
	MOTA MOTA	1265 HG 1266 N	SER MET	200		36.051	10.370	27.007	1.00	0.00			Ń
	ATOM	1267 CA	MET	200		35.486	9.053	26.947	1.00	0.00		٠	С
	ATOM	1268 C	MET	200		34.786	8.725	28.228	1.00	0.00			C.
50	ATOM	1269 O	MET	200		34.360	9.603	28.976	1.00	0.00			0
	MOTA	1270 CB	MET	200		36.541	7.967	26.686	1.00	0.00			· C
	MOTA	1271 CG	MET	200		37.206	8.112	25.316	1.00	0.00			С
	MOTA	1272 SD	MET	200		38.530	6.916	24.972	1.00	0.00			S
	MOTA	1273 CE	MET	200		38.888	7.568	23.315	1.00	0.00			С
55	MOTA	1274 H	MET	200		37.074	10.462	27.070	1.00	0.00			H
	MOTA	1275 HA	MET	200		34.765	8.984	26.132	1.00	0.00			H
	MOTA	1276 1HB	MET	200		36.122	6.961	26.716	1.00	0.00			H
	MOTA	1277 2HB	MET	200		37.347	7.982	27.419	1.00	0.00			Н
	MOTA	1278 1HG	MET	200		37.643	9.108	25.255	1.00	0.00			H H
60	MOTA	1279 2HG	MET	200		36.440	7.978	24.552	1.00				Н
	MOTA	1280 1HE	MET	200		38.224	8,406 7.904	23.102 23.272	1.00	0.00			H
	MOTA	1281 2HE	MET	200		39.923		23.272	1.00	0.00			Н
	MOTA	1282 3HE	MET	200		38.730 34.643	6.78 <u>4</u> 7.410		1.00	0.00			N.
<i>C</i> =	MOTA	1283 N	MET MET	201 201		33.949	6.882		1.00	0.00			C
65	MOTA MOTA	1284 CA 1285 C	MET	201		34.632	7.330		1.00	0.00			c
	MOTA	1286 0	MET	201		33.966	7.659		1.00	0.00			0
	MOTA	1287 CB	MET	201		33.891	5.344	29.590	1.00	0.00			С
	0.1	· - -				· · · -							

		•										
	ATOM	1288 CG	MET	201	35.265	4.683	29.484	1.00	0.00			С
	MOTA	1289 SD	MET	201	35.204	2.915	29.066	1.00	0.00			S
	ATOM	1290 CE	MET	201	34.620	3.186	27.367	1.00	0.00			С
	ATOM	1291 Н	MET	201	35.060	6.741	27.823	1.00	0.00			H
5	MOTA	1292 HA	MET	201	32.921	7.244	29.615	1.00	0.00			H
	ATOM	1293 1HB	MET	201	33.319	4.946	28.751	1.00	0.00			H
	ATOM	1294 2HB	MET	201	33.433	4.907	30.477	1.00	0.00			H
	MOTA	1295 1HG	MET	201	35.768	4.780	30.445	1.00	0.00			H
	MOTA	1296 2HG	MET	201	35.831	5.190	28.702	1.00	0.00			Н
10	MOTA	1297 · 1HE	MET	201	34.510		27.186	1.00	0.00			H
	ATOM	1298 2HE	MET	201	35.341	2.770	26.663	1.00	0.00			H
	MOTA	1299 3HE	MET	201	33.656	2.694	27.230	1.00	0.00			H
	ATOM	1300 N	ARG	202	35.975	7.374	30.873	1.00	0.00			N
	MOTA	1301 CA	ARG	202	36.676	7.778	32.060	1.00	0.00			С
15	MOTA	1302 C	ARG	202	36.273	9.176	32.395	1.00	0.00			С
	ATOM	1303 0	ARG	202	35.972	9.491	33.545	1.00	0.00			0
	MOTA	1304 CB	ARG	202	38.197	7.887	31.873	1.00	0.00			С
	ATOM	1305 CG	ARG	202	38.943	6.593	31.561	1.00	0.00			С
	MOTA	1306 CD	ARG	202	40.437	6.852	31.353	1.00	0.00			C
20	MOTA	1307 NE	ARG	202	41.109	5.558	31.053	1.00	0.00			N
	MOTA	1308 CZ	ARG	202	41.993	5.490	30.016		0.00	.*		C
	MOTA		ARG	202	42.188	6.583	29.219	1.00	0.00			N
	MOTA	1310 NH2	ARG	202	42.678	4.335	29.770	1.00	0.00			N
	MOTA	1311 H	ARG	202	36.501	7.118	30.025	1.00	0.00			H
25	MOTA	1312 HA	ARG	202	36.405	7.099	32.869	1.00	0.00			H
	MOTA	1313 1HB	ARG	202	38.617	8.277	32.799	1.00	0.00			H
	MOTA	1314 2HB	ARG	202	38.380	8.565	31.040	1.00	0.00			H
	MOTA	1315 1HG	ARG	202	38.558	6.125	30.654	1.00	0.00			H
•	MOTA	1316 2HG	ARG	202	38.841	5.873	32.373	1.00	0.00			H
30	MOTA	1317 1HD	ARG	202	40.846	7.286	32.264	1.00	0.00			H
	MOTA	1318 2HD	ARG	202	40.559	7.542	30.518	1.00	0.00			Н
	MOTA	1319 HE	ARG	202	40.908	4.723	31.622	1.00	0.00		•	H
	MOTA	1320 1HH1		202	41.668	7.453	29.402	1.00	0.00			H H
	MOTA	1321 2HH1		202	42.854	6.536	28.435	1.00	0.00			
35	MOTA	1322 1HH2		202	42.528	3.510	30.368	1.00	0.00			H H
	ATOM	1323 2HH2		202	43.344	4.288	28.985	1.00	0.00			n N
	MOTA	1324 N	MET	203	36.247	10.050	31.374	1.00	0.00			C
	MOTA	1325 CA	MET	203	36.017	11.448	31.587	1.00	0.00			C
	MOTA	1326 C	MET	203	34.664	11.639	32.181	1.00	0.00			Ö
40	MOTA	1327 0	MET	203	34.483	12.426	33.106 30.275	1.00	0.00			C
	ATOM	1328 CB	MET	203	36.040	12.247		1.00	0.00			C
	MOTA	1329 CG	MET	203	36.305	13.743	30.460 30.635	1.00	0.00			s.
	MOTA	1330 SD	MET	203	-38.063	14.190	32.030	1.00	0.00			C
	MOTA	1331 CE	MET	203	38.429 36.396	13.087 9.706	30.414	1.00	0.00			Н
45	MOTA	1332 H	MET	203	36.774	11.837	32.267	1.00	0.00			Н
	MOTA	1333 HA	MET	203	35.069	12.138	29.790	1.00	0.00			Н
	MOTA	1334 1HB	MET	203	36.831	11.845	29.642		0.00			Н
	MOTA	1335 2HB	MET	203 203	35.791	14.070	31.364	1.00	0.00			Н
60	MOTA	1336 1HG	MET MET	203	35.918	14.267	29.586	1.00	0.00			Н
50	MOTA	1337 2HG	MET	203	37.528	12.537	32.305	1.00	0.00			H
	MOTA	1338 1HE	MET	203	39.210	12.383	31.742	1.00	0.00			H
	ATOM	1339 2HE	MET	203	38.767	13.677	32.881	1.00	0.00			Н
	MOTA	1340 3HE	LYS	203	33.657	10.928	31.660	1.00	0.00			N
55	MOTA	1341 N 1342 CA	LYS	204	32.345	11.162	32.170	1.00	0.00			С
55	ATOM		LYS	204	32.172	10.597	33.542	1.00	0.00			С
	MOTA		LYS	204	31.300	11.030	34.287	1.00	0.00			0
	ATOM	1344 O 1345 CB	LYS	204	31.205	10.660	31.289	1.00	0.00			С
	ATOM			204	29.883	11.352	31.643	1.00	0.00			C
60	MOTA	1346 CG 1347 CD	LYS LYS	204	29.808	12.801	31.166	1.00	0.00			Č
ou	MOTA		LYS	204	29.989	12.939	29.654	1.00	0.00			Ċ
	ATOM	1348 CE 1349 NZ	LYS	204	29.112	11.989	28.941	1.00	0.00			N
	ATOM	1349 NZ 1350 H	LYS	204	33.823	10.235	30.916	1.00	0.00			Н
	MOTA MOTA	1350 H 1351 HA	LYS	204	32.117	12.226	32.233	1.00	0.00			Н
65	ATOM	1351 HA	LYS	204	31.057	9.586	31.407	1.00	0.00	•		Н
0.5	MOTA	1352 1HB	LYS		31.406	10.851	30.235	1.00	0.00			Н
	MOTA	1354 1HG	LYS		29.688	-11.393	32.714	1.00	0.00			н
	ATOM	1355 2HG	LYS		29.008	10.864	31.212	1.00	0.00			H
	0.1			-								

	ATOM	1356 1HD	LYS	204	30.571	13.435	31.616	1.00	0.00		H
	ATOM	1357 2HD	LYS	204	28.853	13.273	31.396	1.00	0.00		H
							29.374	1.00	0.00		H
	MOTA	1358 1HE	LYS	204	31.022	12.732					
_	MOTA	1359 2HE	LYS	204	29.738	13.949	29.331	1.00	0.00		H
5	MOTA	1360 1HZ	LYS	204	28.570	11.441	29.624	1.00	0.00		H
	MOTA	1361 2HZ	LYS	204	28.466	12.509	28.329	1.00	0.00		H
	MOTA	1362 3HZ	LYS	204	29.686	11.352	28.370	1.00	0.00		H
	MOTA	1363 N	THR	205	32.937	9.558	33.895	1.00	0.00		N
	ATOM	1364 CA	THR	205	32.820	8.959	35.191	1.00	0.00		C
10	ATOM	1365 C	THR	205	33.421	9.841	36.234	1.00	0.00		С
10	MOTA	1366 0	THR	205	33.103	9.701	37.413	1.00	0.00		ō
				205	33.476	7.622	35.274	1.00	0.00		Č
	ATOM		THR								
	MOTA	1368 OG1		205	34.878	7.724	35.072	1.00	0.00		0
	MOTA	1369 CG2		205	32.847	6.772	34.170	1.00	0.00		. C
15	MOTA	1370 H	THR	205	33.621	9.182	33.223	1.00	0.00		H
	MOTA	1371 HA	THR	205	31.772	8.793	35.444	1.00	0.00		H
	MOTA	1372 HB	THR	205	33.259	7.240	36.271	1.00	0.00		H
	MOTA	1373 HG1	THR	205	35.287	8.327	35.799	1.00	0.00		H
	ATOM	1374 1HG2	THR	205	32.105	7.363	33.633	1.00	0.00		H
20	MOTA	1375 2HG2		205	33.621	6.445	33.476	1.00	0.00		Н
20	ATOM	1376 3HG2		205	32.365	5.899	34.612	1.00	0.00		H
						10.754	35.842	1.00	0.00		N
	MOTA	1377 N	ILE	206	34.329						
	ATOM	1378 CA	ILE	206	35.034	11.535	36.816	1.00	0.00		C
	MOTA	1379 C	ILE	206	34.105	12.396	37.621	1.00	0.00		C
25	MOTA	1380 O	ILE	206	34.317	12.542	38.819	1.00	0.00		0
	MOTA	1381 CB	ILE	206	36.137	12.392	36.249	1.00	0.00		C
	MOTA	1382 CG1	ILE	206	35.624	13.519	35.338	1.00	0.00		С
	MOTA	1383 CG2	ILE	206	37.115	11.439	35.546	1.00	0.00		С
	ATOM	1384 CD1	ILE	206	35.054	14.729	36.079	1.00	0.00		С
30	ATOM	1385 Н	ILE	206	34.518	10.892	34.838	1.00	0.00		Н
20	MOTA	1386 HA	ILE	206	35.578	10.908	37.522	1.00	0.00		Н
	MOTA	1387 HB	ILE	206	36.597	12.905	37.093	1.00	0.00		H
					34.830	13.114	34.710	1.00	0.00		H
	ATOM	1388 1HG1		206							
0.5	MOTA	1389 2HG1		206	36.456	13.869	34.728	1.00	0.00		H
35 .	ATOM	1390 1HG2		206	36.757	10.414	35.642	1.00	0.00		H
	MOTA	1391 2HG2		206	37.183	11.701	34.490	1.00	0.00		Н
	MOTA	1392 3HG2	ILE	206	38.099	11.524	36.005	1.00	0.00		Н
	MOTA	1393 1HD1	ILE	206	35.119	14.561	37.154	1.00	0.00		H
	MOTA	1394 2HD1	ILE	206	35.624	15.619	35.815	1.00	0.00		H
40	ATOM	1395 3HD1	ILE	. 206	34.010	14.870	35.797	1.00	0.00		H
~	ATOM	1396 N	GLY	207	33.051	12.996	37.034	1.00	0.00		N
	ATOM	1397 CA	GLY	207	32.264	13.845	37.883	1.00	0.00		С
	ATOM	1398 C	GLY	207	30.833	13.516	37.728	1.00	0.00		c
	ATOM	1399 0	GLY	207	30.434	12.850	36.776	1.00	0.00		Ö
45					32.824	12.854	36.039	1.00	0.00		H
40	MOTA	1400 H	GLY	207							
	MOTA	1401 1HA	GLY	207 .	32.424	14.888	37.610	1.00	0.00		Н
	MOTA	1402 2HA	GLY	207	32.555	13.697	38.922	1.00	0.00		H
	MOTA	1403 N	GLU	208	30.014	13.978	38.690	1.00	0.00		N
	MOTA	1404 CA	GLU	208	28.631	13.734	38.496	1.00	0.00		С
50	MOTA	1405 C	GLU	208	28.284	14.781	37.488	1.00	0.00		С
	MOTA	1406 0	GLU	·208	27.981	15.916	37.843	1.00	0.00		0
	MOTA	1407 CB	GLU	208	27.794	13.968	39.758	1.00	0.00		С
	ATOM	1408 CG	GLU	208	28.261	13.090	40.923	1.00	0.00		С
	ATOM	1409 CD	GLU	208	28.611	11.716	40.364	1.00	0.00		Ċ
55			GLU	208	27.837	11.214	39.505	1.00	0.00		Ö
55	MOTA							1.00			0
	MOTA		GĽU	208		-11.152	40.786		0.00		
	MOTA	1412 H	GLU	208	30.369	14.478	39.516	1.00	0.00		Н
•	MOTA	1413 HA	GLU	208 ;	28.451	12.723	38.128	1.00	0.00		Н
	MOTA	1414 1HB	GLU	208		-13.744	39.593	1.00	0.00		H
60	MOTA	1415 2HB	GLU	208	27.850	15.002	40.096	1.00	0.00		H
	MOTA	1416 1HG	GLU	208	27.443	13.022	41.640	1.00	0.00		H
	MOTA	1417 2HG	GLU	208	29.135	13.563	41.370	1.00	0.00		н
	ATOM	1418 N	HIS	209	28.353	14.427	36.189	1.00	0.00		N
	MOTA	1419 CA	HIS	209	28.205	15.402	35.146	1.00	0.00		c
65	MOTA	1420 C	HIS	209	26.837		35.084	1.00	0.00	•	č
0.0	ATOM	1421 0	HIS	209	26.701	17.181	34.811	1.00	0.00		ŏ
							33.740	1.00	0.00		C
	ATOM		HIS	209	28.616						c
•	MOTA	1423 CG	HIS	209	30.061	15.227	33.463	1.00	0.00		C

	MOTA	1424. ND1	HIS	209	30.499	16.447	32.996	1.00	0.00			N
	MOTA	1425 CD2		209	31.178	14.464	33.616	1.00	0.00			C C
	ATOM ATOM	1426 CE1 1427 NE2		209 209	31.847 32.306	16.367 15.182	32.896 33.258	1.00	0.00			N
5	ATOM		HIS	209	28.514	13.440	35.940	1.00	0.00			H
	ATOM		HIS	209	28.883	16.248	35.252	1.00	0.00			Н
	ATOM		HIS	209	28.023	15.415	32.967	1.00	0.00			H
	MOTA		HIS	209	28.476 29.913	13.850 17.263	33.629 32.767	1.00	0.00			H H
10	ATOM ATOM	1432 HD1 1433 HD2		209 209	31.183	13.433	33.970	1.00	0.00			Н
10	ATOM	1434 HE1		209	32.480	17.186	32.555	1.00	0.00			Н
	MOTA	1435 HE2	HIS	209	33.285	14.863	33.270	1.00	0.00			H
	MOTA	1436 N	ILE	210	25.788	15.189	35.333	1.00	0.00			N C
15	ATOM.	1437 CA 1438 G	ILE ILE	210 210	24.456 24.317	15.709	35.250 36.239	1.00	0.00			C
15	ATOM ATOM	1438 G 1439 O	ILE	210	23.712	17.852	35.936	1.00	0.00			Ö
	ATOM	1440 CB	ILE	210	23.410	14.681	35.589	1.00	0.00			C
	MOTA			210	23.451	13.504	34.604	1.00	0.00			С
	MOTA	1442 CG2		210	22.049	15.384	35.643 35.062	1.00	0.00			C C
20	ATOM ATOM	1443 CD1 1444 H	ILE ILE	210 210	22.594 25.941	12.326 14.201	35.583	1.00	0.00			Н
	ATOM	1445 HA	ILE.	210	24.289	16.076	34.237	1.00	0.00			Н
	MOTA	1446 HB	ILE	210	23.660	14.248	36.557	1.00	0.00			Н
	MOTA			210	24.457	13.110	34.463	1.00	0.00	•		H
25	MOTA		ILE	210 210	23.089 22.178	13.775 16.444	33.612 35.424	1.00 1.00	0.00			H H
	MOTA MOTA	1449 1HG2 1450 2HG2		210	21.380	14.940	34.905	1.00	0.00			Н
		-1451 3HG2		210	21.619	15.268	36.638	1.00	0.00	-		H
	MOTA			210	22.120	12.568	36.013	1.00	0.00			H
30	MOTA	1453 2HD1		210	21.826	12.122	34.315 35.184	1.00	0.00			H H
	MOTA MOTA	1454 3HD1 1455 N	VAL	210 211	23.223 24.869	11.444 16.664	37.456	1.00	0.00			N
	ATOM	1456 CA	VAL	211	24.693	17.704	38.431	1.00	0.00			С
	MOTA	1457 C	VAL	211	25.417	18.932	37.989	1.00	0.00		•	С
35	MOTA	1458 O	VAL	211	24.936	20.045	38.195	1.00	0.00			0 C
	ATOM	1459 CB 1460 CG1	VAL	211 211	25.127 24.270	17.349	39.819 40.226	1.00	0.00			C
	ATOM ATOM	1460 CG1 1461 CG2		211	26.648	17.145	39.891	1.00	0.00			· c
	ATOM	1462 H	VAL	211	25.405	15.814	37.683	1.00	0.00			H
40	MOTA	1463 HA	VAL	211	23.631	17.929	38.537	1.00	0.00			H
	MOTA	1464 HB 1465 1HG1	VAL	211	24.932 23.595	18.234 15.888	40.424 39.409	1.00	0.00			H H
	MOTA MOTA	1465 ING1		211 211	24.916	15.297	40.446	1.00	0.00	•		Н
	ATOM	1467 3HG1		211	23.687	16.398	41.112	1.00	0.00			H
45	MOTA	1468 1HG2	VAL	211	27.083	17.305	38.904	1.00	0.00			H
	MOTA	1469 2HG2		211	27.077	17.855	40.597	1.00	0.00			H H
	MOTA MOTA	1470 3HG2 1471 N	VAL	21 1 212	26.863 26.600	16.129 18.777	40.222 37.366	1.00	0.00			N
	ATOM	1472 CA	ALA	212	27.310	19.959	36.980	1.00	0.00			С
50	ATOM	1473 C	ALA	212	26.495	20.728	35.979	1.00	0.00			С
	MOTA	1474 0	ALA	212	26.306	21.937	36.114	1.00	0.00			0
	ATOM	1475 CB	ALA	212	28.679 26.981	19.661 17.839	36.344 37.173	1.00	0.00			C H
	MOTA MOTA	1476 H 1477 HA	ALA ALA	212 212	27.486	20.579	37.858	1.00	0.00			H
55	MOTA	1478 1HB	ALA	212	28.839	18.583	36.313	1.00	0.00			Н
	MOTA	1479 2HB	ALA	212	28.703	20.060	35.330	1.00	0.00			H
	ATOM	1480 3HB	ALA	212	29.465	20.127	36.937	1.00	0.00			H
	MOTA MOTA	1481 N 1482 CA	HIS HIS	213 213	25.966 25.230	20.037 20.689	34.952 33.902	1.00	0.00			И С
60	ATOM	1483 C	HIS	213	23.947	21.271	34.410		0.00			Ċ
	MOTA	1484 0	HIS	213	23.565	22.378	34.030	1.00	0.00			0
	MOTA	1485 CB	HIS	213	24.836	19.741	32.759	1.00	0.00			С
	MOTA	1486 CG	HIS	213	25.993	19.281	31.927 30.856	1.00	0.00			C N
65	MOTA MOTA		HIS HIS	213 213	25.864 27.319	18.426 19.575	30.836	1.00	0.00			C
0,5	ATOM		HIS	213	27.108	18.249	30.345	1.00	0.00			Ċ
	ATOM		HIS	213	28.025	18.926	31.013	1.00	0.00			N
	MOTA	1491 H	HIS	213	26.091	19.015	34.917	1.00	0.00			Н

	n moM	1492 HA	UTC	213	25.802	21.503	33.458	1.00	0.00			Н
	ATOM ATOM	1492 HA 1493 1HB	HIS HIS	213	24.140	20.263	32.102	1.00	0.00			H
	ATOM	1494 2HB	HIS	213	24.364	18.858	33.191	1.00	0.00			Н
	MOTA		HIS	213	24.991	18.002	30.509	1.00	0.00			Н
5	ATOM		HIS	213	27.763	20.230	32.760	1.00	0.00			H
5	ATOM		HIS	213	27.326	17.620	29.481	1.00	0.00			Н
	ATOM	1498 HE2		213	29.038	18.962	30.831	1.00	0.00			Н
	ATOM	1499 N	ILE	214	23.233	20.532	35.275	1.00	0.00			N
	ATOM	1500 CA	ILE	214	21.952	20.991	35.725.	1.00	0.00			С
10	ATOM	1501 C	ILE	214	22.133	22.235	36.526	1.00	0.00			С
	ATOM	1502 0	ILE	214	21.288	23.128	36.492	1.00	0.00			0
	MOTA	1503 CB	ILE	214	21.221	20.006	36.587	1.00	0.00			С
	MOTA	1504 CG1		214	21.026	18.672	35.855	1.00	0.00		,	С
	MOTA	1505 CG2		214	19.879	20.645	36.977	1.00	0.00			C
15	ATOM	1506 CD1		214	20.453	17.586	36.763	1.00	0.00			C
	MOTA	1507 H	ILE	214	23.606	19.634	35.615	1.00	0.00			H H
	MOTA	1508 HA	ILE	214	21.322.	21.197	34.859	1.00	0.00			н
	MOTA	1509 HB	ILE	214	21.842 21.959	19.815 18.275	37.462 35.455	1.00	0.00	•		H
20	ATOM	1510 1HG1 1511 2HG1		214 214	20.342	18.756	35.433	1.00	0.00			Н
20	ATOM ATOM	1511 2HG1		214	19.805	21.637	36.531	1.00	0.00			Н
	ATOM	1512 1HG2		214	19.060	20.023	36.614	1.00	0.00			Н
	ATOM	1514 3HG2		214	19.817	20.728	38.062	1.00	0.00			Н
	ATOM	1515 1HD1		214	20.298	17.991	37.762	1.00	0.00			Н
25	MOTA	1516 2HD1		214	19.500	17.240	36.360	1.00	0.00			H
	MOTA		ILE	214	21.150	16.749	36.814	1.00	0.00			H
	ATOM	1518 N	GLN	215	23.248	22.330	37.270	1.00	0:00			N
	ATOM	1 519 CA	GLN	215	23.456	23.479	38.098	1.00	0.00			С
	MOTA	1520 C	GLN	215	23.439	24.675	37.208	1.00	0.00			С
30	MOTA	1521 0	GLN	215	22.818	25.688	37.526	1.00	0.00			0
	ATOM	1522 CB	GLN	215	24.809	23.448	38.840	1.00	0.00		1	C
	MOTA	1523 CG	GLN	215	25.064	24.664	39.737	1.00	0.00			C
	ATOM	1524 CD	GLN	215	25.576	25.823	38.890	1.00	0.00			CO
25	MOTA		GLN	215	25.486	26.981 25.506	39.294 37.693	1.00	0.00			N
35	MOTA	1526 NE2 1527 H	GLN S	215 215	26.139 23.951	23.506	37.244	1.00	0.00			Н
	ATOM ATOM	1527 H	GLN	215	22.642	23.507	38.822	1.00	0.00			H
	MOTA	1529 1HB	GLN	215	25.605	23.411	38.097	1.00	0.00			Н
	ATOM	1530 2HB	GLN	215	24.832	22.560	39.471	1.00	0.00			Н
40	MOTA	1531 1HG	GLN	215	25.808		40.491	1.00	0.00			H
	ATOM	1532 2HG	GLN	215	24.135	24.955	40.227	1.00	0.00			Н
	MOTA	1533 1HE2	GLN	215	26.510	26.250	37.085	1.00	0.00			Н
	MOTA	1534 2HE2	GLN	215	26.193	24.521	37.394	1.00	0.00			H
	MOTA	1535 N	HIS	216	24.099	24.574	36.042	1.00	0.00			N
45	ATOM	1536 CA	HIS	216	24.140	25.700	35.162	1.00	0.00			C
	MOTA	1537 C	HIS	216	22.738	26.055	34.766	1.00	0.00			С
	MOTA	1538 0	HIS	216	22.360	27.225	34.780	1.00	0.00			0
	MOTA	1539 CB	HIS	216	24.936	25.429 25.354	33.871 34.086	1.00	0.00			C
50	ATOM ATOM	1540 CG 1541 ND:	HIS HIS	216 216	26.420 27.091	24.230	34.514	1.00	0.00			N
30	MOTA		HIS	216	27.373	26.311	33.914	1.00	0.00			C
	ATOM		HIS	216	28.406	24.559	34.579	1.00	0.00			Ċ
	ATOM		2 HIS	216	28.626	25.812	34.223	1.00	0.00			N
	ATOM	1545 H	HIS	216	24.570	23.694	35.785	1.00	0.00			H
55	ATOM	1546 HA	HIS	216	24.605	26.536	35.683	1.00	0.00	•		H
	ATOM	1547 1HB	HIS	216	24.798	26.193	33.105	1.00	0.00			Н
	MOTA	1548 2HB	HIS	216	24.671	24.489	33.385	1.00	0.00			H
	MOTA	1549 HD	l HIS	216	26.674	23.315	34.741	1.00	0.00			H
	MOTA		2 HIS	216	27.176	27.329	33.579	1.00	0.00			Н
60	MOTA		l HIS	216	29.190	23.868	34.889	1.00	0.00			H
	MOTA		2 HIS	216	29.528	26.306	34.184	1.00	0.00			H
	MOTA	1553 N	GLU	217	21.919	25.045	34.418	1.00	0.00			N C
	MOTA	1554 CA	GLU	217	20.587	25.304 25.956	33.946 35.006	1.00	0.00			C
65	MOTA MOTA	1555 C 1556 O	GLU	217 217	19.754 19.127	26.983	34.752	1.00	0.00	•		0
دن	MOTA	1556 CB	GLU	217	19.127	24.022	33.548	1.00	0.00			C
	MOTA	1558 CG	GLU		20.439	23.309	32.340	1.00	0.00			c
	MOTA	1559 CD		217	19.599	22.072	32.051	1.00	0.00			С
										-		

	•										
	ATOM	1560 OE1	GLU	217	19.277	21.335	33.021	1.00	0.00		0
	ATOM	1561 OE2		217	19.267	21.845	30.856	1.00	0.00		0
	ATOM	1562 H	GLU	217	22.251	24.073	34.491	1.00	0.00		H
	ATOM	1563 HA	GLU	217	20.597	25.965	33.079	1.00	0.00		Н
5		1564 1HB		217	18.793	24.187	33.284	1.00	0.00		H
3	ATOM		GLU				34.333	1.00	0.00		Н
	ATOM	1565 2HB	GLU	217	19.811	23.267			0.00		Н
	MOTA	1566 1HG	GLU	217	21.464	23.030	32.584	1.00			
	MOTA	1567 2HG	GLU	217	20.417	23.995	31.493	1.00	0.00		H
	ATOM	1568 N	VAL	218	19.761	25.387	36.228	1.00	0.00		N
10	MOTA	1569 CA	VAL	218	18.946	25.841	37.325	1.00	0.00		С
	MOTA	1570 C	VAL	218	17.557	26.178	36.853	1.00	0.00		С
	MOTA	1571 0	VAL	218	17.279	27.310	36.461	1.00	0.00		0
	MOTA	1572 CB	VAL	218	19.537	27.001	38.086	1.00	0.00		С
	MOTA	1573 CG1	VAL	218	19.787	28.182	37.131	1.00	0.00		С
15	MOTA		VAL	218	18.595	27.337	39.254	1.00	0.00		- C
	ATOM	1575 H	VAL	218	20.384	24.582	36.386	1.00	0.00		Η.
	ATOM	1576 HA	VAL	218	18.867	25.070	38.091	1.00	0.00		Н
	ATOM	1577 HB	VAL	218	20.482	26.704	38.539	1.00	0.00		H
	ATOM	1578 1HG1		218	19.478	27.906	36.122	1.00	0.00		H
20		1579 2HG1		218	19.211	29.046		1.00	0.00		Н
20 .	MOTA	1579 2HG1			20.848	28.430	37.130	1.00	0.00	*	H
	MOTA				17.742	26.430	39.240	1.00	0.00		Н
	MOTA	1581 1HG2		.218					0.00		Ή
	ATOM	1582 2HG2		218	19.130	27.227	40.196	1.00			
~ -	MOTA .	1583 3HG2		218	18.243	28.363	39.153	1.00	0.00	-	H
25	MOTA	1584 N	ASP	219	16.632	25.186	36.896	1.00	0.00		N
	MOTA	1585 CA	ASP	219	15.285	25.411	36.422	1.00	0.00		С
	MOTA	1586 C	ASP	219	14.295	24.575	37.206	1.00	0.00		C
	MOTA	1 587 O	ASP	219	14.647	23.982	38.225	1.00	0.00		0
	ATOM	1588 CB	ASP	219	15.116	25.023	34.944	1.00	0.00		С
30	MOTA	1589 CG	ASP	219	15.806	26.077	34.089	1.00	0.00		C
	MOTA		ASP	219	15.722	27.280	34.453	1.00	0.00		0
	MOTA		ASP	219	16.430	25.693	33.063	1.00	0.00		0
	MOTA	1592 Н	ASP	219	16.892	24.262	, 37.270	1.00	0.00		H
	MOTA	1593 HA	ASP	219	15.008	26.459	36.532	1.00	0.00		H
35 .	MOTA	1594 1HB	ASP	219	14.050	24.985	34.718	1.00	0.00		H
	ATOM	1595 2HB	ASP	219	15.574	24.046	34.790	1.00	0.00	_	Н
	ATOM	1596 N	PHE	220	13.010	24.525	36.743	1.00	0.00		N
	MOTA	1597 CA	PHE	220	11.964	23.735	37.359	1.00	0.00	• *	C
	MOTA	1598 C	PHE	220	12.327	22.298	37.204	1.00	0.00		C
40	MOTA	1599 O	PHE	220	13.502	21.949	37.134	1.00	0.00		0
	MOTA	1600 CB	PHE	220	10.563	23.849	36.720	1.00	0.00		C
	MOTA	1601 CG	PHE	220	9.831	25.056	37.198	1.00	0.00		С
	MOTA	1602 CD1		220	9.388	25.119	38.500	1.00	0.00	,	С
	MOTA	1603 CD2	PHE	220	9.535	26.093	36.344	1.00	0.00		C
45	MOTA	1604 CE1	PHE	220	8.696	26.216	38.955	1.00	0.00		С
	MOTA	1605 CE2	PHE	220	8.842	27.193	36.793	1.00	0.00		С
	MOTA	1606 CZ	PHE	220	8.425	27.257	38.101	1.00	0.00		С
	MOTA	1607 H	PHE	220	12.772	25.080	35.908	1.00	0.00		H
	MOTA	1608 HA	PHE	220	11.910	24.014	38.411	1.00	0.00		H
50	MOTA	1609 1HB	PHE	220	9.939	22.986	36.952	1.00	0.00		H .
	MOTA	1610 2HB	PHE	220	10.616	23.919	35.633	1.00	0.00		H
	MOTA	1611 HD1	PHE	220	9.588	24.289	39.177	1.00	0.00		H
	MOTA	1612 HD2	PHE	220	9.852	26.042	35.302	1.00	0.00		H
	ATOM	1613 HE1	PHE	220	8.362	26.259	39.991	1.00	0.00		Н
55	ATOM		PHE	220	8.623	28.014	36.110	1.00	0.00		H
	ATOM	1615 HZ	PHE	220	7.881	28.130	38.459	1.00	0.00		H
	MOTA	1616 N	LEU	221	11.300	21.423	37.148	1.00	0.00		N
	MOTA	1617 CA	LEU	221	11.526	20.012	37.009	1.00	0.00		С
	ATOM	1618 C	LEU	221	12.371	19.845	35.793	1.00	000		С
60	ATOM	1619 0	LEU	221	12.331	20.695	34.908	1.00	0.00		ō
	ATOM	1620 CB	LEU	221	10.240	19.203	36.758	1.00	0.00		Ċ
	MOTA	1621 CG	LEU	221	9.188	19.334	37.871	1.00	0.00		Ċ
	ATOM		LEU	221	8.666	20.776	37.969	1.00	0.00		Ċ
	ATOM		LEU	221	8.055	18.312	37.689	1.00	0.00		Ċ
65	MOTA	1624 H	LEU	221	10.333	21.775	37.206	1.00	0.00	•	Н
J.J	MOTA	1625 HA	LEU	221	12.035	19.695	37.919	1.00	0.00		H
	ATOM	1626 1HB	LEU	221	10.507	18.149	36.676	1.00	0.00		Н
	MOTA	1627 2HB	LEU	221	9.788	19.556	35.831	1.00	0.00		H
	111 011	102, 2110	220	~	5.700						

	MOTA	1628 HG	LEU	221	9.608	19.063	38.839	1.00	0.00		Н
	ATOM	1629 1HD1		221	9.161	21.394	37.220	1.00	0.00		H
	MOTA	1630 2HD1		221	7.590	20.786	37.793 38.962	1.00 1.00	0.00		H H
5	MOTA MOTA	1631 3HD1 1632 1HD2		221 221	8.875 8.246	21.172 17.710	36.800	1.00	0.00		H
5	ATOM	1633 2HD2		221	8.006	17.662	38.563	1.00	0.00		H
	ATOM	1634 3HD2		221	7.106	18.836	37.574	1.00	0.00		Н
	ATOM ·	1635 N	PHE	222	13.170	18.758	35.719	1.00	0.00		N
	ATOM	1636 CA	PHE	222	14.012	18.591	34.568	1.00	0.00		С
10	ATOM	1637 C	PHE	222	13.954	17.178	34.077	1.00	0.00		С
	ATOM	1638 0	PHE	222	13.414	16.287	34.732	1.00	0.00		0
	MOTA	1639 CB	PHE	222	15.491	18.954	34.813	1.00	0.00		C
	MOTA	1640 CG	PHE	222	16.042	18.085	35.894 37.214	1.00	0.00		C C
15	MOTA		PHE	222 222	15.894 16.713	18.442 16.922	35.590	1.00	0.00		C
13	ATOM ATOM		PHE	222	16.404	17.652	38.216	1.00	0.00		Ċ
	MOTA		PHE	222	17.225	16.126	36.589	1.00	0.00		č
	ATOM	1645 CZ	PHE	222	17.071	16.492	37.904	1.00	0.00		С
	MOTA	1646 H	PHE	222	13.175	18.060	36.476	1.00	0.00		H
20	MOTA	1647 HA		222	13.690	19.249	33.761	1.00	0.00		H
,	MOTA	1648 1HB	PHE	222	15.562	19.999	35.113	1.00	0.00		H
	MOTA	1649 2HB	PHE	222	16.058	18.798	33.895	1.00	0.00		H
	MOTA		PHE	222	15.366 . 16.840	19.361 16.628	37.468 34.547	1.00	0.00		H H
25	MOTA MOTA		PHE	222 222	16.279	17.945	39.258	1.00	0.00		H
23	ATOM	1652 HE1		222	17.752	15.205	36.337	1.00	0.00		H
	MOTA	1654 HZ	PHE	222	17.476	15.864	38.697	1.00	0.00		Н
	MOTA	1655 N	CYS	223	14.495	16.954	32.860	1.00	0.00		N
	MOTA	1656 CA	CYS	223	14.523	15.645	32.272	1.00	0.00		C
30	MOTA	1657 C	CYS	223	15.892	15.430	31.711	1.00	0.00		C
	MOTA	1658 O	CYS	223	16.741	16.317	31.765	1.00	0.00		0
•	ATOM	1659 CB	CYS	223	13.513	15.449	31.131	1.00	0.00		C S
	MOTA	1660 SG 1661 H	CYS CYS	223 223 -	11.804 14.899	15.347 17.745	31.734 32.338	1.00	0.00		H
35	MOTA MOTA	1662 HA	CYS	223	14.301	14.924	33.059	1.00	0.00		. Н
33	ATOM	1663 1HB	CYS	223	13.697	14.534	30, 567	1.00	0.00	•	H
	ATOM	1664 2HB	CYS	223	13.538	16.266	30.410	1.00	0.00		·H
	MOTA	1665 HG	CYS	. 223	11.311	16.583	31.894	1.00	0.00		H
	MOTA	1666 N	MET	224	16.151	14.223	31.171	1.00	0.00		N .
40	MOTA	1667 CA	MET	224	17.462	13.955	30.656	1.00	0.00	•	С
	ATOM	1668 C	MET	224	17.336	13.567 13.636	29.227 28.638	1.00	0.00		. C
	MOTA MOTA	1669 O 1670 CB	MET MET	224 224	16.274 18.205	12.807	31.356	1.00	0.00		C
	ATOM	1671 CG	MET	224	18.579	13.131	32.805	1.00	0.00	*	c
45	ATOM	1672 SD	MET	224	19.743	11.963	33.559	1.00	0.00		s
	MOTA	1673 CE	MET	224	21.132	12.454	32.499	1.00	0.00		С
	MOTA	1674 H	MET	224	15.416	13.502	31.128	1.00	0.00		H
	ATOM	1675 HA	MET	224	18.062	14.859	30.753	1.00	0.00		Н
	ATOM	1676 1HB	MET	224	19.139	12.540	30.862	1.00	0.00		H
50	ATOM	1677 2HB	MET	224	17.622	11.886	31.400 33.403	1.00	0.00		Н
	MOTA	1678 1HG 1679 2HG	MET MET	224 224	17.667 19.041	13.121 14.117	32.825	1.00	0.00		H H
	MOTA MOTA	1680 1HE	MET	224	20.807	13.236	31.813	1.00	0.00		H
	ATOM	1681 2HE	MET	224	21.947	12.828	33.117	1.00	0.00		H
55	ATOM	1682 3HE	MET	224	21.476	11.591	31.928	1.00	0.00		Н
	ATOM	1683 N	ASP	225	18.477	13.306	28.585	1.00	0.00		N
	MOTA	1684 CA	ASP	225	18.574	12.743	27.269	1.00	0.00		С
	MOTA	1685 C	ASP	225	18.441	11.266	27.412	1.00	0.00		С
	MOTA	1686 O	ASP	225	17.947	10.561	26.527	1.00	0.00		0
60	MOTA	1687 CB	ASP	225	19.958	13.023	26.656		0.00		C
	MOTA	1688 CG	ASP	225	21.036	12.366	27.527	1.00	0.00		С 0
	MOTA MOTA		L ASP 2 ASP	225 225	20.926 21.989	12.417 11.795	28.783 26.930	1.00	0.00		0
	MOTA	1690 OD2	ASP	225	19.357	13.526	29.072	1.00	0.00		Н
65	MOTA	1692 HA	ASP		17.761	13.165	26.678	1.00	0.00		Н
	ATOM	1693 1HB	ASP	225	20.120	14.100	26.617	1.00	0.00		H
	MOTA	1694 2HB	ASP	225	19.993	12.607	25.648	1.00	0.00		H
	MOTA	1695 N	VAL	226	18.856	10.834	28.623	1.00	0.00		N

- 153 -

											,		
	ATOM	1696	CA	VAL	226	19.158	9.502	29.031	1.00	0.00			С
	MOTA	1697	С	VAL	226	18.347	8.518	28.280	1.00	0.00			С
	ATOM	1698	0	$_{ m VAL}$	226	18.884	7.845	27.398	1.00	0.00			0
•	MOTA	1699	CB	VAL	226	18.990	9.296	30.517	1.00	0.00			С
_													_
5	MOTA	1700	CG1	VAL	226	17.611	9.798	30.968	1.00	0.00			C
	ATOM	1701	CG2	VAL	226	19.236	7.806	30.813	1.00	0.00			С
	ATOM	1702	H '	VAL	226	18.968	11.560	29.344	1.00	0.00			Η
	MOTA	1703	HA	VAL	226	20.208	9.267	28.859	1.00	0.00			Н
	ATOM	1704	HB	VAL	226	19.758	9.844	31.061	1.00	0.00			Н
10	ATOM	1705	1HG1	VAL	226	17.067	10.189	30.108	1.00	0.00			H
	MOTA	1706	2HG1	VAI.	226	17.049	8.973	31.407	1.00	0.00			·H
	MOTA	1/0/	3HG1	VAL	226	17.735	10.587	31.708	1.00	0.00			H
	MOTA	1708	1HG2	VAL	226	19.466	7:283	29.884	1.00	0.00			H
	ATOM		2HG2		226	20.073		31.503	1.00	0.00			Н
15	MOTA	1710	3HG2	VAL	226	18.342	7.371	31.261	1.00	0.00			Н
	MOTA	1711	N	ASP	227	17.039	8.440	28.569	1.00	0.00			N
												-	
	ATOM	1712	CA	ASP	227	16.309	7.427	27.888	1.00	0.00			С
	MOTA	1713	С	ASP	227	14.967	7.350	28.528	1.00	0.00			С
	ATOM	1714	0	ASP	227	14.329		28.509	1.00	0.00			ō
0.0													
20	MOTA	1715	CB	ASP	227	16.952	6.035	28.074	1.00	0.00			C
	MOTA	1716	CG	ASP	227	17.128	5.778	29.562	1.00	0.00			С
	MOTA	1717	ODI	ASP	227	17.242	6.775	30.322	.1.00	0.00			0
	MOTA	1718	OD2	ASP	227	17.127	4.585	29.966	1.00	0.00	,		0
			Н			16.590							
	MOTA	1719		ASP	227			29.243	1.00	0.00			Н
25	MOTA	1720	AH	ASP	227	16.241	7.728	26.842	1.00	0.00			H
	ATOM	1721	1HB	ASP	227	17.919	6.029	27.571	1.00	0.00			H
	MOTA	1722	2HB	ASP	227	16.292	5.286	27.635	1.00	0.00			H
	MOTA	-1723	N	GLN	228	14.479	8.462	29.110	1.00	0.00			N
	ATOM	1724	CA	,									
				GLN	228	13.185	8.299	29.701	1.00	0.00			C
30	MOTA	1725	С	GLN	228	12.303	9.423	29.286	1.00	0.00			С
	MOTA	1726	0	GLN	228	12.746	10.488	28.871	1.00	0.00			0
	MOTA	1727	CB	GLN	228	13.189	8.205	31.239	1.00	0.00			С
	MOTA	1728	CG	GLN	228	13.694	9.436	31.978	1.00	0.00			C
	MOTA	1729	CD	GLN	228	12.506		32.470	1.00	0.00			C
2 5													
35 ·	ATOM	1730	OE1	GLN	228	11.525	10.507	31.769	1.00	0.00			0
	MOTA	1731	NE2	GLN	228	12.609	10.695	33.753	1.00	0.00			N
	ATOM	1732	H	GLN	228	14.993	9.354	29.128	1.00	0.00			H
	MOTA	1733	HA	GLN	228	12.749	7.356	29.370	1.00	0.00			H
	MOTA	1734	1HB	GLN	228	13.834	7.373	31.522	1.00	0.00			
• •													H
40	MOTA	1735	2HB	GLN	228	12.163	8.032	31.566	1.00	0.00			Н
	MOTA	1736	1 HG	GLN	228	14.299	10.041	31.303	1.00	0.00			H
	MOTA	1737	2HG	GLN	228	14.299	9.125	32.829	1.00	0.00			H
	MOTA	17:38	1HE2	GLN	228	11.851	11.256	34.167	1.00	0.00			Н
	ATOM	1739	2HE2		228	13.444	10.465	34.310	1.00	0.00			Н
45	ATOM	1740	Ν -	VAL	229	10.985	9.216	29.302	1.00	0.00			N
	MOTA	1741	CA	VAL	229	10.265	10.409	29.007	1.00	0.00			C
	ATOM	1742											
			С	VAL	229	8.943		29.650	1.00	0.00			C,
	MOTA	1743	0	VAL	229	8.623	9.181	30.145	1.00	0.00			0
	MOTA	1744	CB	VAL	229	10.113	10.706	27.554	1.00	0.00			С
50													
50	MOTA	1745		VAL	229	8.812	10.093	27.020	1.00	0.00			С
	ATOM	1746	CG2	VAL	229	10.297	12.218	27.396	1.00	0.00			С
	MOTA	1747	H	VAL	229			29.502		0.00			
						10.543			1.00				H
	MOTA	1748	HA	VAL	229	10.847	11.227	29.430	1.00	0.00			Н
	MOTA	1749	HB	VAL	229	10.950	10.289	26.994	1.00	0.00			H
55													
55	MOTA		1HG1		229	8.293	9.578	27.828	1.00	0.00	•		Н
	MOTA	1751	2HG1	VAL	229	8.173	10.882	26.624	1.00	0.00			H
	MOTA		3HG1		229	9.043		26.226	1.00	0.00			Н
	MOTA		1HG2		229	10.486	12.665	28.371	1.00	0.00			H
	MOTA	1754	2HG2	VAL	229	11.142	12:414	26.736	1.00	0.00			H
60													
UU	MOTA		3HG2		229	9.393		26.967	1.00	0.00			Н
	ATOM	1756	N	PHE	230	8.137	11.336	29.699	1.00	0.00			N
	MOTA	1757	CA	PHE	230	6.941		30.407	1.00	0.00			С
	MOTA	1758	С	PHE	230	6.080	10.040	29.682	1.00	0.00			С
	MOTA	1759	0	PHE	230	5.747	10.180	28.506	1.00	0.00			0
65	ATOM	1760	СВ	PHE	230	6.180		31.153	1.00	0.00			
00													С
	MOTA	1761	CG	PHE	230	6.085	13.496	30.474	1.00	0.00			С
	MOTA	1762	CD1	PHE	230	5.393	_13.701	29.304	1.00	0.00			С
	ATOM	1763	UD2	PHE	230	6.665	14.576	31.097	1.00	0.00			С

	7 mov	1761	CEI	D.::E	230		E 226	14 063	28.755	1.00	0.00				С
	ATOM ATOM		CE1 CE2	PHE	230	•	5.326 6.606	14.963 15.837	30.560	1.00	0.00				C
	ATOM		CZ	PHE	230		5.934	16.030	29.377	1.00	0.00				c
	ATOM		H	PHE	230		8.354	12.252	29.282	1.00	0.00				H
5	ATOM	1768	HA	PHE	230		7.134	10.603	31.390	1.00	0.00				H
	ATOM	1769 1		PHE	230		6.692	12.337	32.099	1.00	0.00				H.
•	ATOM .		HB	PHE	230		5.156	11.825	31.311	1.00	0.00				Н
	ATOM		HD1		230		4.897	12.865	28.810	1.00	0.00				Н
	ATOM		HD2		230		7.185	14.426	32.042	1.00	0.00				Н
10	ATOM	1773			230		4.787	15.117	27.820	1.00	0.00				H
	MOTA	1774		PHE	230		7.086	16.675	31.065	1.00	0.00				H
	ATOM	1775	ΗZ	PHE	230		5.882	17.024	28.932	1.00	0.00				Н
	ATOM	1776	N	GLN	231		5.783	8.965	30.445	1.00	0.00				N
	MOTA	1777	CA	GLN	231		5.096	7.740	30.141	1.00	0.00				С
15	ATOM	1778	С	GLN	231		3.686	8.004	29.740	1.00	0.00				С
	MOTA	1779	0	GLN	231		3.205	7.413	28.775	1.00	0.00		•		0
	MOTA	1780	CB	GLN	231		5.053	6.853	31.396	1.00	0.00				C
	ATOM	1781	CG	GLN	231		4.363	5.498	31.242	1.00	0.00				C
20	ATOM	1782	CD	GLN	231		4.308	4.877	32.635	1.00	0.00				С
20	MOTA	1783	OE1		231		3.298	4,306	33.045	1.00 1.00	0.00				N
	ATOM ATOM	1784 1785	NE2		231 231		5.432 6.107	4.995 9.036	33.394 31.420	1.00	0.00				Н
	ATOM	1786	H HA	GLN GLN	231		5.583	7.211	29.322	1.00	0.00	٠.			H
	MOTA	1787 1		GLN	231		4.514	7.397	32.171	1.00	0.00			•	Н
25	MOTA	1788 2		GLN	231		6.080	6.653	31.699	1.00	0.00				Н
	ATOM	1789 1		GLN	231		4.974	4.914	30.554	1.00	0.00				Н
	ATOM	1790 2		GLN	231		3.369	5.699	30.840	1.00	0.00				Н
	ATOM	1791 1	HE2		231		5.455	4.599	34.344	1.00	0.00				Н
	MOTA	1792 2	HE2	GLN	231		6.259	5.479	33.017	1.00	0.00				Н
30	MOTA	1793	N.	ASP	232		2.981	8.885	30.475	1.00	0.00				N
	ATOM	1794	CA	ASP	232		1.612	9.139	30.151	1.00	0.00				С
	MOTA	1795	C .	ASP	232		1.582	10.076	28.998	1.00	0.00				С
	ATOM	1796	0	ASP	232		1.205	11.239	29.130	1.00	0.00				0
	MOTA	1797	CB	ASP	232		0.813	9.726	31.322	1.00	0.00				С
35	ATOM	1798	CG	ASP	232		0.596	8.588	32.310	1.00	0.00				C O
	MOTA	1799	OD1		232		-0.379	7.816 8.476	32.104 33.280	1.00 1.00	0.00				0
	MOTA MOTA	1800 1801	OD2 H	ASP	232 232		1.392 3.425	9.372	31.265	1.00	0.00				н
	ATOM	1801	л НА	ASP	232		1.146	8.187	29.893	1.00	0.00				Н
40	ATOM	1803		ASP	232		-0.123	10.094	30.903	1.00	0.00				Н
,,,	ATOM	1804 2		ASP	232		1.422	10.527	31.741	1.00	0.00				Н
	ATOM	1805	N	LYS	233		1.911	9.483	27.834	1.00	0.00				N
	ATOM	1806	CA	LYS	233		2.059	9.917	26.474	1.00	0.00				С
	MOTA	1807	С	LYS	233		2.031	11.393	26.237	1.00	0.00				С
45	MOTA	1808	0	LYS	233		2.270	12.236	27.099	1.00	0.00				0
	ATOM	1809	CB	LYS	233		0.968	9.331	25.555	1.00	0.00	-			С
	ATOM	1810	CG	LYS	233		0.905	7.803	25.516	1.00	0.00				С
	MOTA -	1811	CD	LYS	233		-0.411	7.293	24.923	1.00	0.00				С
50	MOTA	1812	CE	LYS	233		-1.647	7.734 7.215		1.00	0.00				C N
50	ATOM . ATOM	1813 1814	NZ H	LYS LYS	233 233		-2.871 2.102	8.477	25.066 27.947	1.00	0.00				Н
	ATOM	1815	п НА	LYS	233		3.022	9.557	26.113	1.00	0.00				Н
	ATOM	1816		LYS	233		1.160	9.675	24.538	1.00	0.00				Н
	ATOM	1817 2		LYS	233		0.000	9.687	25.907	1.00	0.00				Н
55	ATOM	1818 1		LYS	233		0.990	7.361	26.508	1.00	0.00				Н
-	ATOM	1819 2		LYS	233		1.705	7.372	24.913	1.00	0.00				Н
	MOTA	1820		LYS	233		-0.472	6.205	24.876	1.00	0.00				Н
	ATOM	1821 2		LYS	233		-0.587	7.634	23.902	1.00	0.00				Н
	MOTA	1822	1HE	LYS	233		-1.695	8.822	25.749	1.00	0.00				H
60	MOTA	1823 2	2HE	LYS	233		-1.591	7.347	26.732	1.00	0.00				Н
	MOTA	1824		LYS	233		-2.613	6.674	24.228	1.00	0.00				Н
	MOTA	1825 2		LYS	233		-3.377	6.606	25.724	1.00	0.00				Н
•	MOTA	1826		LYS	233		-3.475	8.002	24.793	1.00	0.00				Н
	MOTA	1827	N	PHE	234		1.777	11.710	24.954	1.00	0.00				N
65	ATOM	1828	CA	PHE	234		1.759	13.034	24.418	1.00	0.00		•		C
	MOTA	1829	С	PHE	234		0.709	13.786	25.149 25.441	1.00	0.00				0
	ATOM	1830 1831	O CB	PHE PHE	234 234		0.895 1.375	14.969 13.047	22.928	1.00	0.00				c
	MOTA	TOOT		FRE	234		1.3/3	13.04/	22.720	2.00	0.00				_

	ATOM	1832 CG	PHE	234	2	317	12.149	22.193	1.00	0.00		С
	ATOM		PHE	234			12.540	21.919	1.00	0.00		C
	ATOM		PHE	234		899	10.909	21.762	1.00	0.00		C
				234		466	11.707	21.732	1.00	0.00		C
5	MOTA		PHE						1.00			C
ر	ATOM		PHE	234		752	10.072	21.081 20.818	1.00	0.00		C
	MOTA	1837 CZ	PHE	234		040	10.469					Н
	ATOM	1838 H	PHE	234		579	10.934	24.305	1.00	0.00		
•	ATOM	1839 HA	PHE	234		749	13.459	24.582	1.00	0.00		Н
10	ATOM	1840 1HB	PHE	234		456	14.070	22.562	1.00	0.00		H
10	ATOM	1841 2HB	PHE	234		350	12.686	22.835	1.00	0.00		H
	ATOM		PHE	234		954	13.520	22.244	1.00	0.00		H
	MOTA		PHE	234		877	10.586	21.963	1.00	0.00		H
	ATOM		PHE	234		486	12.029	21.033	1.00	0.00		Н
	MOTA		PHE	234		405	9.093	20.749	1.00	0.00		Н
15	MOTA	1846 HZ	PHE	234		719	9.808	20.279	1.00	0.00		Н
	MOTA	1847 N	GLY	235	-0.		13.104	25.425	1.00	0.00		N
	MOTA	1848 CA	GLY	235	-1.		13.680	26.208	1.00	0.00		C
	MOTA	1849 C	·GLY	235	-0.		14.173	27.418	1.00	0.00		C
••	MOTA	1850 O	GLY	235	-0.		13.387	28.255	1.00	0.00		0
20	MOTA	1851 H	GLY	235	-0.		12.146	25.062	1.00	0.00		Н
	ATOM	1852 1HA	GLY	235	-2.		12.934	26.454	1.00	0.00		Н
	MOTA	1853 2HA	GLY	235		972	14.489	25.667		0.00		H
	ATOM	1854 N	VAL	236	-0.		15.508	27.495	1.00	0.00		N
	MOTA	1855 CA	VAL	236		170	16.056	28.538	1.00	0.00		С
25	MOTA	1856 C	VAL	236	-0.		16.087	29.799	1.00	0.00		С
	MOTA	1857 O	VAL	236	-0.		17.109	30.481	1.00	0.00	-	0
	MOTA	1858 CB	VAL	236		648	17.440	28.268	1.00	0.00		С
	MOTA		VAL	236		634	17.359	27.103	1.00	0.00		С
	MOTA		VAL	236	-0.		18.339	28.023	1.00	0.00		С
30	ATOM	1861 H	VAL	236	-1.		16.125	26.808	1.00	0.00		Н
	MOTA	1862 HA	VAL	236		062	15.447	28.681	1.00	0.00		H
	ATOM	1863 HB	VAL	236		129	17.798	29.177	1.00	0.00		Н
	ATOM	1864 1HG1		236		728	16.322	26.778	1.00	0.00		H
	MOTA	1865 2HG1		236		269	17.967	26.275	1.00	0.00		H
35	MOTA	1866 3HG1		236		607	17.729	27.424	1.00	0.00		Н
	MOTA	1867 1HG2		236	-1.		17.745	28.106	1.00	0.00		Н
	ATOM	1868 2HG2		236	-0.		19.138	28.764	1.00	0.00		Н
	ATOM	1869 3HG2		236	-0.		18.771	27.024	1.00	0.00		Н
4.0	MOTA	1870 N	GLU	237		195	14.948	30.156	1.00	0.00		N
40	MOTA		GLU	237	-1.		14.911	31.454	1.00	0.00		С
	MOTA	1872 C	GLU	237		560	15.055	32.317	1.00	0.00		C
	MOTA	1873 0	GLU	237		590	15.716	33.347	1.00	0.00		0
	ATOM	1874 CB	GLU	237	-2.		13.574	31.794	1.00	0.00		C
	MOTA	1875 CG	GLU	237	-3.		13.423	31.190	1.00	0.00		C
45	MOTA	1876 CD	GLU	237	-4.		14.039	32.179	1.00	0.00		С
	MOTA		GLU	237		564	15.189	32.625	1.00	0.00		0
	MOTA		GLU	237	-5.		13.359	32.515	1.00	0.00		0
	MOTA	1879 H	GĻU	237	-1.		14.138	29.520	1.00	0.00		Н
50	ATOM	1880 HA	GLU	237	-2.		15.721	31.599	1.00	0.00		Н
50	MOTA	1881 1HB	GLU	237	-2.		13.411	32.862	1.00	0.00		H
	ATOM	1882 2HB	GLU	237	-1.		12.699	31.446	1.00	0.00		Н
	ATOM	1883 1HG	GLU	237	-4.		12.355	31.056	1.00	0.00		н
	MOTA	1884 2HG	GLU	237	-3.		13.955	30.238	1.00	0.00		Н
	MOTA	1885 N	THR	238		559	14.451	31.880	1.00	0.00		N
55	MOTA	1886 CA	THR	238		759	14.474	32.658	1.00	0.00	•	. C
	MOTA	1887 C	THR	238		244	15.878	32.867	1.00	0.00		С
	MOTA	1888 0	THR	238		386	16.320	34.006	1.00	0.00		0
	MOTA	1889 CB	THR	238			13.716	31.974	1.00	0.00		C
	MOTA		THR	238		071	14.280	30.692	1.00	0.00		0
60 ·	ATOM		THR	238		418	12.248	31.829	1.00	0.00		C
	MOTA	1892 H	THR	238		551	13.964	30.972	1.00	0.00		Н
	MOTA	1893 HA	THR	238		601	14.029	33.640	1.00	0.00		Н
	ATOM	1894 HB	THR	238		755	13.781	32.574	1.00	0.00		Н
<i>(</i> =	MOTA		THR	238		511	15.205	30.795	1.00	0.00		Н
65	MOTA	1896 1HG2		238		425	12.115	32.259	1.00	0.00		H
	MOTA	1897 2HG2		238		394	11.978	30.773	1.00	0.00		H
	ATOM	1898 3HG2		238		128	11.607	32.351	1.00	0.00		Н
	MOTA	1899 N	LEU	239	. 2.	493	16.631	31.778	1.00	0.00		N

	ATOM	1900 CA	LEU	239	3.068	17.938	31.923	1.00	0.00		С
	MOTA	1901 C	LEU	239	2.048	18.842	32.531	1.00	0.00		С
	ATOM	1902 0	LEU	239	2.335	19.584	33.470	1.00	0.00		0
	MOTA	1903 CB	LEU	239	3.477	18.540	30.565	1.00	0.00		С
5	MOTA	1904 CG	LEU	239	4.523	19.673	30.645	1.00	0.00		С
	MOTA	1905 CD1	LEU	.239	4.601	20.450	29.321	1.00	0.00		С
	ATOM	1906 CD2	LEU	239	4.347	20.565	31.882	1.00	0.00		С
	MOTA	1907 H	LEU	239	2.270	16.268	30.840	1.00	0.00		H
	MOTA	1908 HA	LEU	239	3.941	17.863	32.570	1.00	0.00		Н
10 .	MOTA	1909 1HB	LEU	239	2.584	18.951	30.093	1.00	0.00		Η
	MOTA	1910 2HB	LEU	239	3.903	17.743	29.955	1.00	0.00		H
	ATOM	1911 HG	LEU	239	5.516	19.276	30.856	1.00	0.00		H
	MOTA	1912 1HD1	LEU	239	3.893	20.026	28.608	1.00	0.00		H
	MOTA	1913 2HD1	LEU	239	4.354	21.496	29.498	1.00	0.00		Н
15	MOTA	1914 3HD1		239	5.610	20.378	28.916	1.00	0.00		H
	MOTA	1915 1HD2		239	3.499	20.210	32.468	1.00	0.00		H
	MOTA	1916 2HD2		239	5.250	.20.526	32.490	1.00	0.00		Н
	MOTA	1917 3HD2	LEU	239	4.165	21.592	31.566	1.00	0.00		H
	MOTA	1918 N	GLY	240	0.810	18.774	32.009	1.00	0.00		N
20	MOTA	1919 CA	GLY	240	-0.223	19.663	32.444	1.00	0.00		С
	ATOM	1920 C	GLY	240	-0.528	19.425	33.885	1.00	0.00		C
	ATOM	1921 0	GLY	240	-0.675	20.370	34.658	1.00	0.00		0
	MOTA	1922 Н	GLY	240	0.602	18.071	31.285	1.00	0.00		H
	MOTA	1923 1HA	GLY	240	-1.127	19.497	31.859	1.00	0.00		H
25	MOTA	1924 2HA	\mathtt{GLY}	240	0.096	20.697	32.316	1.00	0.00	•	Н
	MOTA	1925 N	GLU	241	-0.636	18.149	34.289	1.00	0.00		N
	MOTA	1926 CA	GLU	241	-1.010	17.853	35.642	1.00	0.00	•	C
	MOTA	1927 C	GLU	241	0.040	18.318	36.594	1.00	0.00		С
	MOTA	1928 0	GLU	241	-0.278	18.862	37.650	1.00	0.00		0
30	MOTA	1929 CB	GLU	241	-1.230	16.361	35.924	1.00	0.00		C
	MOTA	1930 CG	GLU	241	-1.628	16.065	37.370	1.00	0.00		. C
	ATOM	1931 CD	GLU	241	-1.804	14.559	37.469	1.00	0.00		
	ATOM		GLU	241	-1.731	13.902	36.397 38.601	1.00	0.00		. 0
35	MOTA	1933 OE2 1934 H	GLU	241 241	-2.014 -0.450	14.044 17.382	33.627	1.00	0.00		н
33	ATOM ATOM	1934 H 1935 HA	GLU	241	-1.946	18.347	35.900	1.00	0.00		Н
	ATOM	1936 1HB	GLU	241	-0.347	15.748	35.741	1.00	0.00		H
	ATOM	1937 2HB	GLU	241	-2.016	15.914	35.315	1.00	0.00		Н
	MOTA	1938 1HG	GLU	241	-2.558	16.602	37.550	1.00	0.00		H
40	ATOM	1939 2HG	GLU	241	-0.812	16.427	37.995	1.00	0.00		Н
	MOTA	1940 N	SER	242	1.327	18.111	36.263	1.00	0.00		N
	ATOM	1941 CA	SER	242	2.331	18.491	37.212	1.00	0.00		С
	ATOM	1942 C	SER	242	2.290	19.972	37.418	1.00	0.00		- C
	MOTA	1943 0	SER	242	2.237	20.450	38.551	1.00	0.00		0
45	MOTA	1944 CB	SER	242	.3.752	18.117	36.756	1.00	0.00		С
	MOTA	1945 · OG	SER	242	3.879	16.704	36.680	1.00	0.00		0
	ATOM	1946 H	SER	242	1.582	17.693	35.357	1.00	0.00		H
	MOTA	1947 HA	SER	242	2.144	17.988	38.161	1.00	0.00		H
	MOTA	1948 1HB	SER	242	4.483	18.502	37.466	1.00	0.00		Н
50	MOTA	1949 2HB	SER	242	3.951	18.545	35.773	1.00	0.00		Н
	ATOM	1950 HG	SER	242	2.944	16.278	36.604	1.00	0.00		H
	MOTA	1951 N	VAL	243	2.292	20.747	36.317	1.00	0.00		N
	ATOM	1952 CA	VAL	243	2.308	22.172	36.473	1.00	0.00		С
	MOTA	1953 C	VAL	243	1.029	22.598	37.118	1.00	0.00		С
55	MOTA	1954 0	VAL	243	1.021	23.439	38.016	1.00	0.00	,	0
	MOTA	1955 CB	VAL	243	2.446	22.904	35.165	1.00	0.00		C
	MOTA		VAL	243	2.403	24.420	35.439	1.00	0.00		C
	ATOM		VAL	243	3.745	22.442	34.483	1.00	0.00		C
C 0	MOTA	1958 H	VAL	243	2.282	20.323	35.378	1.00	0.00		Н
60	ATOM	1959 HA	VAL	243	3.156	22.445	37.100		0.00		H
	MOTA	1960 HB	VAL	243	1.620	22.615	34.513	1.00	0.00		Н
	ATOM	1961 1HG1		243	2.283	24.593	36.508	1.00	0.00		H
	MOTA	1962 2HG1		243	3.331	24.877	35.098 34.903	1.00	0.00		H H
65	MOTA	1963 3HG1		243	1.563 4.242	24.862 21.702	34.903	1.00	0.00		H
دن	ATOM	1964 1HG2		243 243	3.510	21.702	33.516	1.00	0.00		. Н
	ATOM ATOM	1965 2HG2 1966 3HG2		243	4.404		34.338	1.00	0.00		. н Н
	ATOM	1966 3HG2	ALA	243	-0.089	21.991	36.686	1.00	0.00		N
	VI ON	100/ N	TUT	~ 44	.0.003	عرر ، بدت	55.550		2.00		••

	ATOM	1968 CA	ALA	244	-1.381	22.364	37.178	1.00	0.00		С
	ATOM	1969 C	ALA	244	-1.464	22.089	38.641	1.00	0.00		С
	MOTA	1970 0	ALA	244	-1.979	22.906	39.397	1.00	000		0
	MOTA	1971 CB	ALA	244	-2.522	21.587	36.498	1.00	0.00		Č
5					-0.015	21.240		1.00	0.00		н
5	MOTA	1972 H	ALA	244			35.984				
	MOTA	1973 HA	ALA	244	-1.550	23.426	37.004	1.00	0.00		H
	ATOM	1974 1HB	ALA	244	-2.105	20.896	35.764	1.00	0.00		Н
	ATOM	1975 2HB	ALA	244	-3.078	21.026	37.249	1.00	0.00		H
	ATOM	1976 3HB	ALA	244	-3.191	22.287	35.997	1.00	0.00		Н
10	ATOM	1977 N	GLN	245	-0.932	20.945	39.095	1.00	0.00		N
	ATOM	1978 CA	GLN	245	-1.081	20.586	40.472	1.00	0.00		С
	ATOM	1979 C	GLN	245	-0.434	21.623	41.326	1.00	0.00	•	Č
					-0.974		42.364	1.00	0.00		Õ
	ATOM	1980 0	GLN	245							
	MOTA	1981 CB	GLN	245	-0.444	19.224	40.788	1.00	0.00		C
15	MOTA	1982 CG	GLN	245	-0.680	18.744	42.219	1.00	0.00		С
	MOTA	1983 CD	GLN	245	-0.143	17.325	42.312	1.00	0.00		С
	MOTA	1984 OE1	GLN	245	0.422	16.805	41.351	1.00	0.00		0
	MOTA	1985 NE2	GLN	245	-0.323	16.683	43.496	1.00	0.00		N
	MOTA	1986 Н	GLN	245	-0.416	20.325	38.453	1.00	0.00		H
20	MOTA	1987 HA	GLN	245	-2.141	20.521	40.715	1.00	0.00		Н
20		1988 1HB	GLN	245	0.632	19.305	40.637	1.00	0.00		H
	ATOM		-								
	MOTA	1989 2HB	GLN	245	-0.869	18.481	40.113	1.00	0.00	_	H
	MOTA	1990 1HG	GLN	245	-1.754	18.779	42.398	1.00	0.00		H
	MOTA	1991 2HG	GLN	245	-0.140	19.422	42.880	1.00	0.00		H
25	MOTA	1992 1HE2	GLN	245	0.020	15.719	43.616	1.00	0.00		Н
	ATOM	1993 2HE2	GLN	245	-0.802	17.160	44.272	1.00	0.00		H
	ATOM	1994 N	LEU	246	0.738	22.131	40.904	1.00	0.00		N
	MOTA	-1995 CA	LEU	246	1.420	23.068	41.744	1.00	0.00	•	С
	MOTA	1996 C	LEU	246	0.544	24.255	41.995	1.00	0.00		c
30									0.00		
30	MOTA	1997 0	LEU	246	0.235	24.566	43.143	1.00			0
	MOTA	1998 CB	LEU	246	2.728	23.589	41.122	1.00	0.00		С
	ATOM	1999 CG	LEU	246	3.804	22.505	40.924	1.00	0.00		С
	MOTA		LEU	246	5.081	23.092	40.304	1.00	0.00		С
	MOTA	2001 CD2	LEU	246	4.072	21.740	42.227	1.00	0.00		С
35	MOTA	2002 H	LEU	246	1.136	21.851	39.996	1.00	0.00		Н
	ATOM	2003 HA	LEU	246	1.667	22.598	42.696	1.00	0.00		H
	MOTA	2004 1HB	LEU	246	3.141	24.351	41.781	1.00	0.00		Н
									0.00		
	MOTA	2005 2HB	LEU	246	2.498	24.012	40.144	1.00		٠, .	. Н
	MOTA	2006 HG	LEU	246	3.451	21.712	40.263	1.00	0.00		Н
40	MOTA	2007 1HD1		246	4.946	24.160	40.137	1.00	0.00		H
	MOTA	2008 2HD1	LEU	246	5.920	22.933	40.981	1.00	0.00		H
	MOTA	2009 3HD1	LEU	246	5.283	22.598	39.353	1.00	0.00		H
	ATOM	2010 1HD2	LEU	246	3.435	22.135	43.018	1.00	0.00		H
	ATOM	2011 2HD2	LEU	246	3.853	20.682	42.079	1.00	0.00		H
45	ATOM	2012 3HD2		246	5.117	21.858	42.510	1.00	0.00		Н
	ATOM	2013 N	GLN	247	0.093	24.944	40.933	1.00			N
							41.168		0.00		
	ATOM	2014 CA	GLN	247	-0.684	26.129		1.00			C
	MOTA	2015 C	GLN	247		25.791	41.680	1.00	0.00		. C
	MOTA	2016 O	GLN	247	-2.532	26.370	42.654	1.00	0.00		0
50	MOTA	2017 CB	GLN	247	-0.881	26.986	39.907	1.00	0.00		С
	MOTA	2018 CG	GLN	247	-1.694	26.296	38.811	1.00	0.00		С
	ATOM	2019 CD	GLN	247	-1.848	27.279	37.660	1.00	0.00		С
	ATOM		GLN	247	-2.517	26.995	36.668	1.00	0.00		0
	ATOM		GLN	247		28.474	37.797	1.00	0.00		N
55											
23	MOTA	2022 H	GLN	247	0.299	24.630	39.974	1.00	0.00		Н
	MOTA	2023 HA	GLN	247	-0.207	26.775	41.904	1.00	0.00		H
	MOTA	2024 1HB	GLN	247	0.100	27.223	39.495		0.00		H
	MOTA	2025 2HB	GLN	247	-1.407	27.897	40.189	1.00	0.00		H
	MOTA	2026 1HG	GLN	247	-2.662	26.030	39.233	1.00	0.00		H
60	ATOM	2027 2HG	GLN	247	-1.144	25.408	38.499	1.00	0.00		H
	ATOM	2028 1HE2		247	-1.284	29.182	37.052	1.00	0.00		Н
	ATOM	2029 2HE2		247	-0.663		38.645	1.00	0.00		H
	MOTA	2030 N	ALA	248	-2.695	24.812	41.023	1.00	0.00		N
<i>(</i> =	MOTA	2031 CA	ALA	248		24.432	41.207	1.00	0.00		C
65	MOTA	2032 C	ALA	248	-4.356		42.539	1.00	0.00		С
	MOTA	2033 0	ALA	248		24.009	43.033	1.00	0.00		0
	MOTA	2034 CB	ALA	248	-4.564	-23.434	40.146	1.00	0.00		С
	MOTA	2035 H	ALA	248	-2.153	24.285	40.322	1.00	0.00		H

	ATOM	2036 HA	ALA	248 .	-4.686	25.323	41.108	1.00	0.00			H
	ATOM	2037 1HB	ALA	248	-3.755	23.209	39.450	1.00	0.00			H
	ATOM	2038 2HB	ALA	248	-4.887	22.514	40.634	1.00	0.00			H
•	ATOM	2039 3HB	ALA	248	-5.401	23.869	39.600	1.00	0.00			Н
5	MOTA	2040 N	TRP	249	-3.392	23.071	43.125	1.00	0.00		- 1	N
,	ATOM	2041 CA		249	-3.588	22.300	44.332	1.00	0.00			C
		2041 CA		249	-4.401	23.052	45.341	1.00	0.00			C
	ATOM		TRP									
	MOTA	2043 0	TRP	249	-4.442	24.282	45.333	1.00	0.00			0
	MOTA	2044 CB		249	-2.297	21.836	45.028	1.00	0.00			С
10	MOTA	2045 CG		249	-2.564	20.972	46.241	1.00	0.00			С
	ATOM	2046 CD	1 TRP	249	-2.739	21.331	47.546	1.00	0.00			С
	MOTA	2047 CD	2 TRP	249	-2.704	19.543	46.192	1.00	0.00			С
	ATOM	2048 NE	1 TRP	249	-2.978	20.216	48.314	1.00	0.00			N
	MOTA	2049 CE	2 TRP	249	-2.959	19.109	47.493	1.00	0.00			С
15	ATOM	2050 CE		249	-2.628	18.666	45.150	1.00	0.00			Ć
13	ATOM		2 TRP	249	-3.143	17.783	47.771	1.00	0.00			Č
		2051 CZ		249	-2.812	17.330	45.433	1.00	0.00			C
	MOTA											C
	ATOM	2053 CH		249	-3.064	16.898	46.718	1.00	0.00			
	MOTA	2054 H	TRP	249	-2.462	23.048	42.682	1.00	0.00			H
20	MOTA	2055 HA		249	-4.108	21.363	44.130	1.00	0.00			H
	MOTA	2056 1HB	TRP	249	-1.685	22.666	45.379	1.00	0.00			H
	MOTA	2057 2HB	TRP	249	-1.654	21.245	44.374	1.00	0.00			H
	ATOM	2058 HD	1 TRP	249	-2.695	22.352	47.924	1.00	0.00			H
	ATOM	2059 HE	1 TRP	249	-3.143	20.209	49.330	1.00	0.00			H
25	MOTA	2060 HE	3 TRP	249	-2.429	19.008	44.134	1.00	0.00			Н
	MOTA		2 TRP	249	-3.344	17.439	48.785	1.00	0.00	_		· H
	ATOM		3 TRP	249	-2.757	16.600	44.625	1.00	0.00			Н
	ATOM	2063 HH		249	-3.203	15.833	46.904	1.00	0.00			H
						22.282	46.230	1.00	0.00			N
20	ATOM	2064 N	TRP	250	-5.066							
30	MOTA	2065 CA		250	-5.997	22.750	47.219	1.00	0.00			С
	MOTA	2066 C	TRP	250	-5.505	24.012	47.835	1.00	0.00			C.
	ATOM	2067· O	TRP	250	-4.711	24.006	48.775	1.00	0.00			0
	MOTA	2068 CB	TRP	250	-6.252	21.725	48.339	1.00	0.00			С
	MOTA	2069 CG	TRP	250	-7.228	22.179	49.396	1.00	0.00			С
35	MOTA	2070 CD	1 TRP	250	-7.802	23.402	49.587	1.00	0.00			С
	MOTA	2071 CD	2 TRP	250	-7.744	21.323	50.426	1.00	0.00			С
	MOTA		1 TRP	250	-8.646	23.361	50.672	1.00	0.00			N
	ATOM	2073 CE		250	-8.620	22.086	51.197	1.00	0.00			С
	ATOM		3 TRP	250	-7.510	20.007	50.703	1.00	0.00			Ċ
40	ATOM		2 TRP	250	-9.280	21.540	52.262	1.00	0.00			č
70									0.00			C
	ATOM	2076 CZ		250	-8.174	19.460	51.779	1.00				
	ATOM		2 TRP	250	-9.043	20.212	52.543	1.00	0.00			C
	MOTA	2078 Н	TRP	250	-4.889	21.267	46.195	1.00	0.00			H
	MOTA	2079 на		250	-6.968	22.940	46.763	1.00	0.00			Н
45	MOTA	2080 1HB	TRP	250	-5.303	21.518	48.834	1.00	0.00			H
	ATOM	2081 2HB	TRP	250	-6.655	20.819	47.886	1.00	0.00			H
	MOTA	2082 HD	1 TRP	250	-7.618	24.281	48.970	1.00	0.00			H
	ATOM	2083 HE	1 TRP	250	-9.203	24.149	51.031	1.00	0.00			H
	MOTA	2084 HE	3 TRP	250	-6.825	19.413	50.097	1.00	0.00			H
50	MOTA		2 TRP	250	-9.967	22.132	52.865	-1.00	0.00			Н
	ATOM		3 TRP	250	-8.009	18.412	52.031	1.00	0.00			Н
	ATOM		2 TRP	250	-9.552	19.745	53.386	1.00	0.00			Н
	•	2088 N		251		25.140	47.277	1.00	0.00			
	ATOM		TYR		-5.973							N
	ATOM	2089 CA		251	-5.632	26.446	47.746	1.00	0.00			C
55	MOTA	2090 C	TYR	251	-6.001	27.329	46.598	1.00	0.00			С
	MOTA	2091 0	TYR	251	-6.391	26.827	45.546	1.00	0.00			0
	MOTA	2092 CB	TYR	251	-4.122	26.588	48.038	1.00	0.00			С
	MOTA	2093 CG	TYR	251	-3.855	27.870	48.753	1.00	0.00	•		С
	MOTA	2094 CD	1 TYR	251	-4.004	27.935	50.120	1.00	0.00			С
. 60	MOTA		2 TYR	251	-3.457	29.002	48.078	1.00	0.00			С
	ATOM		1 TYR	251	-3.762	29.104	50.802	1.00	0.00			Ċ
	ATOM		2 TYR	251	-3.213	30.175	48.753	1.00	0.00			· , C
	ATOM	2098 CZ		251	-3.365	30.227	50.118	1.00	0.00		•	c
	ATOM . ATOM	2098 CZ 2099 OH		251	-3.116		50.814	1.00	0.00			0
65						31.430						
65	MOTA	2100 H	TYR	251	-6.609	25.060	46.471	1.00	0.00			Н
	ATOM	2101 HA		251	-6.191	26.697	48.646	1.00	0.00			H
	ATOM	2102 1HB		251	-3.557	26.581	47.105	1.00	0.00			Н
	MOTA	2103 2HB	TYR	251	-3.780	25.761	48.660	1.00	0.00			H

	ATOM ATOM		TYR	251 251	-4.318 -3.333 -3.885	27.047 28.968 29.139	50.669 46.995 51.884	1.00 1.00	0.00			H H H
	MOTA		TYR	251 251	-2.899	31.063	48.205	1.00	0.00			Н
e	MOTA	2107 HE2 2108 HH	TYR TYR	251	-2.228	31.838	50.488	1.00	0.00			H
5	ATOM ATOM		LYS	252	-5.927	28.662	46.765	1.00	0.00			N
	ATOM		LYS	252	-6.222	29.485	45.633	1.00	0.00			С
•	ATOM		LYS	252	-5.202	29.112	44.610	1.00	0.00			С
	ATOM		LYS	252	-5.524	28.799	43.465	1.00	0.00			0
10	ATOM		LYS	252	-6.079	30.989	45.931	1.00	0.00			С
10	ATOM		LYS	252	-7.160	31.532	46.869	1.00	0.00			С
	ATOM	2115 CD	LYS	252	-7.078	30.987	48.297	1.00	0.00			С
	ATOM	2116 CE	LYS	252	-6.052	31.707	49.174	1.00	0.00			С
	MOTA	2117 NZ	LYS	252	-6.089	31.160	50.549	1.00	0.00			N
15	MOTA	2118 H	LYS	252	-5.668	29.073	47.672	1.00	0.00			H
	MOTA	2119 HA	LYS	- 252	-7.240	29.219	45.350	1.00	0.00			H H
	ATOM	2120 1HB	LYS	252	-6.133	31.616	45.041	1.00	0.00			H
	MOTA	2121 2HB	LYS	252	-5.133	31.250	46.405 46.464	1.00 1.00	0.00			H
	MOTA	2122 1HG	LYS	252	-8.134	31.258 32.615	46.920	1.00	0.00			H
20	ATOM	2123 2HG	LYS	252	-7.057 -6.801	29.934	48.350	1.00	0.00			н
	ATOM	2124 1HD	LYS	252	-8.015	31.057	48.848	1.00	0.00			H
	MOTA	2125 2HD 2126 1HE	LYS	252 252	-6.276	32.773	49.211	1.00	0.00			Н
	ATOM	2126 IRE 2127 2HE	LYS LYS	252	-5.050	31.569	48.765	1.00	0.00			H
25	MOTA MOTA	2127 ZHE	LYS	252	-6.799	30.416	50.604	1.00	0.00			H
23	ATOM	2129 2HZ	LYS	252	-5.166	30.771	50.789	1.00	0.00			H
	ATOM	2130 3HZ	LYS	252	-6.327	31.911	51.211	1.00	0.00			H
	ATOM	2131 N	ALA	253	-3.928	29.121	45.036	1.00	0.00			N
	MOTA	2132 CA	ALA	253	-2.828	28.699	44.224	1.00	0.00			С
30	ATOM	2133 C	ALA	253	-1.768	28.363	45.213	1.00	0.00			С
	MOTA	2134 O	ALA	253	-1.332	29.233	45.965	1.00	0.00			0
	ATOM	2135 CB	ALA	253	-2.270	29.807	43.315	1.00	0.00			C
	MOTA	2136 H	ALA	253	-3.733	29.447	45.993	1.00	0.00			H H
	MOTA	2137 HA	ALA	253	-3.100	27.835	43.617	1.00	0.00			H
35	MOTA	2138 1HB	ALA	253	-2.837	30.724	43.470 43.557	1.00	0.00			Н
	MOTA	2139 2HB	ALA	253	-1.221 -2.355	29.982 29.499	43.337	1.00	0.00			Н
	ATOM	2140 3HB	ALA	253 254	-1.325	27.092		1.00	0.00			N
	MOTA	2141 N 2142 CA	ASP ASP	254	-0.364	26.857	46.306	1.00	0.00			С
40	MOTA MOTA	2142 CA 2143 C	ASP	254	0.945	26.444	45.725	1.00	0.00			С
40	MOTA	2144 0	ASP	254	1.185	25.290	45.380	1.00	0.00			0
	ATOM	2145 CB	ASP	254	-0.826	25.827	47.354	1.00	0.00			C
•	ATOM	2146 CG	ASP	254	-1.081	24.488	46.688	1.00	0.00			C
	MOTA		ASP	254	-1.331	24.467	45.453	1.00	0.00			0
45	MOTA	2148 OD2	ASP	254	-1.024	23.463	47.416	1.00	0.00		-	0
	MOTA	2149 H	ASP	254	-1.649	26.354	44.631	1.00	0.00			H
	MOTA		ASP	254	-0.204	27.758	46.897	1.00	0.00			H H
	MOTA	2151 1HB	ASP	254	-1.746	26.166	47.829	1.00	0.00			Н
	ATOM	2152 2HB	ASP	254	-0.058	25.702	48.117 45.598	1.00	0.00			N .
50	MOTA	2153 N	PRO	255	1.799	27.413 27.150	45.144	1.00	0.00			C
	ATOM	2154 CA	PRO	255	3.131 3.913	26.561	46.271	1.00	0.00			Č
	MOTA	2155 C	PRO	255 255	5.002	26.041	46.034	1.00	0.00			Ō
	MOTA	2156 O 2157 CB	PRO	255	3.682	28.485	44.632	1.00	0.00			С
55	ATOM ATOM	2157 CB	PRO	255	2.680	29.543	45.131	1.00	0.00			С
رد	ATOM	2150 CD	PRO	255	1.368	28.760	45.269	1.00	0.00			С
	MOTA	2160 HA	PRO	255	3.084	26.448	44.310	1.00	0.00			Н
	MOTA	2161 1HB	PRO	255		28.380	43.547	1.00	0.00			Н
•	ATOM	2162 2HB	PRO	255	4.670	28.570	45.083	1.00	0.00			H
60	ATOM	2163 1HG	PRO	255	2.587	30.360	44.416	1.00	0.00			Н
_	ATOM	2164 2HG	PRO	255	2.999		46.083	1.00	0.00	•		Н
	ATOM	2165 1HD	PRO	255	0.737		46.057	1.00	0.00			Н
	MOTA	2166 2HD	PRO	255	0.795		44.341	1.00	0.00			H
	MOTA	2167 N	ASN	256	3.382		47.505	1.00	0.00			N C
65	MOTA	2168 CA	ASN	256	4.103		48.650	1.00	0.00			С
	ATOM	2169 C	ASN	256	4.282		48.576 48.865	1.00	0.00			Ö
	MOTA	2170 O	ASN	256 256	5.364 3.409		49.988	1.00	0.00			c
	ATOM	2171 CB	ASN	230	3.403	20.403	.5.500					_

•	MOTA	2172 CG	ASN	256		2.086	25.743	50.031	1.00	0.00			С
	MOTA	2173 OD:	l ASN	256		1.248	25.897	49.145	1.00	0.00			0
	MOTA	2174 ND	2 ASN	256		1.893	24.904	51.084	1.00	0.00			N
	MOTA	2175 H	ASN	256		2.444	27.052	47.627	1.00	0.00			H
5	MOTA	2176 HA	ASN	256		5.086	26.643	48.695	1.00	0.00			H
	MOTA	2177 1HB	ASN	256		3.241.	27.564	50.046	1.00	0.00			Н
	MOTA	2178 2HB	ASN	256		4.058	26.160	50.799	1.00	0.00			H
	ATOM	2179 1HD	2 ASN	256		1.017	24.367	51.161	1.00	0.00			H
	MOTA	2180 2HD	2 ASN	256		2.622	24.805	51.804	1.00	0.00			H
10	MOTA	. 2181 N	ASP	257		3.235	23.948	48.173	1.00	0.00			N
	ATOM	2182 CA	ASP	257		3.373	22.521	48.199	1.00	0.00			С
	MOTA	2183 C	ASP	25 7		4.172	22.062	47.023	1.00	0.00			C
	MOTA	2184 O	ASP	257		4.248	22.734	45.995	1.00	0.00			0
	MOTA	2185 CB	ASP	257		2.036	21.752	48.210	1.00	0.00			C
15	MOTA	2186 CG	ASP	257		1.274	22.042	46.925	1.00	0.00			C
	MOTA		1 ASP	257		1.721	22.934	46.156	1.00	0.00			0.
	MOTA		2 ASP	257		0.230	21.375	46.697	1.00	0.00			0
	MOTA	2189 Н	ASP	257		2.360	24.390	47.855	1.00	0.00			H
	MOTA	2190 HA	ASP	257		3.880	22.211	49.112	1.00	0.00			H
20	ATOM	2191 1HB	ASP	257		1.440	22.071	49.065	1.00	0.00			H
	MOTA	2192 2HB	ASP	257		2.233	20.682	48.282	1.00	0.00			H
	MOTA	2193 N	PHE	258		4.823	20.892	47.190	1.00	0.00			N
	ATOM	2194 CA	PHE	258		5.592	.20.266	46.156	1.00	0.00			С
	ATOM	2195 C	PHE	258		4.993	18.915	45.937	1.00	0.00	-		С
25	MOTA	2196 O	PHE	258		4.476	18.303	46.870	1.00	0.00			0
	ATOM	2197 CB	PHE	258		7.071	20.059	46.515	1.00	0.00			C C
	MOTA	2198 CG		258	-	7.636	19.177	45.458	1.00	0.00		•	C
	ATOM		1 PHE	258		7.941	19.671	44.211	1.00	0.00			C
2.0	ATOM		2 PHE	258		7.855	17.846	45.722 43.243	1.00	0.00			C
30	ATOM		1 PHE	258		8.460	18.842 17.016	44.760	1.00	0.00			C
	ATOM		2 PHE	258		8.375 8.679	17.514	43.517	1.00	0.00			C
	ATOM	2203 CZ		258		4.764	20.425	48.106	1.00	0.00			Н
	MOTA	2204 H 2205 HA	PHE	258 258		5.505	20.902	45.275	1.00	0.00			Н
35	MOTA MOTA	2205 HA 2206 1HB		258	•	7.082	19.591	47.499	1.00	0.00			Н
33	ATOM	2200 INB		258		7.525	21.049	46.518		0.00			Н
	ATOM		1 PHE	258		7.770	20.724	43.988	1.00	0.00			Η.
	ATOM		2 PHE	258		7.613	17.445	46.706	1.00	0.00			н.
	ATOM	2210 HE		258		8.697	19.240	42.256	1.00	0.00			Н
40	ATOM	2211 HE	2 PHE	258		8.546	15.962	44.982	1.00	0.00			H
	ATOM	2212 HZ	PHE	258		9.092	16.858	42.750	1.00	0.00			H
	ATOM	2213 N	THR	259		5.027	18.416	44.685	1.00	0.00			N
	MOTA	2214 CA	THR	259		4.421	17.142	44.438	1.00	0.00			С
	MOTA	2215 C	THR	259		5.332	16.310	43.599	1.00	0.00			С
45	ATOM	2216 .0	THR	259		6.119	16.829	42.810	1.00	0.00		2	0
	ATOM	2217 CB	THR	259		3.119	17.232	43.697	1.00	0.00			С
	MOTA		1 THR	259		2.494	15.958	43.645	1.00	0.00			0
	MOTA		2 THR	259		3.392	17.757	42.279	1.00	0.00			С
	MOTA	2220 Н	THR	259		5.479	18.939	43.922	1.00	0.00			H
50	ATOM	2221 HA		259		4.238	16.635	45.385	1.00	0.00			Н
	MOTA	2222 HB		259		2.458	17.915	44.229	1.00	0.00			H
	ATOM		1 THR	259		1.471	16.077	43.610	1.00	0.00			Н
	MOTA	2224 1HG		259		4.460	17.935	42.156	1.00	0.00			Н
	MOTA	2225 2HG		259		3.061	17.019	41.547	1.00	0,00			H H
55	MOTA	2226 3HG		259		2.848	18.689	42.125	1.00	0.00			N
	ATOM	2227 N	TYR	260		5.261	14.975	43.780 42.957	1.00 1.00	0.00			C
	ATOM	2228 CA		260		6.022	14.083		1.00	0.00			C
	ATOM	2229 C	TYR	260		5.075	13.034	42.471		0.00			0
C O	ATOM	2230 O	TYR	260		4.032	12.797	43.079	1.00	0.00			C
- 60	ATOM	2231 CB		260		7.210	13.401	43.665	1.00	0.00			C
	ATOM	2232 CG		260		6.732	12.520	44.769 45.988	1.00	0.00			C
	MOTA	2233 CD		260		6.376	13.049	44.588	1.00	0.00			C
	ATOM		2 TYR	260		6.661	11:158	47.007	1.00	0.00			c
65	ATOM		1 TYR	260 260		5.945 6.231	12.233 10.336	45.603	1.00	0.00			c
65	ATOM ATOM	2236 CE 2237 CZ		260		5.872	10.336	46:815	1.00	0.00			C
	ATOM	2237 CZ 2238 OH		260		5.431	10.033	47.859	1.00	0.00			Õ
	ATOM	2236 On 2239 H	TYR	260		4.652	14.592	44.518	1.00	0.00			Н
	121 014	2222 11	T T T/	200		-1.002	23.002		• •				

	MOTA	2240 HA TYR	260	6.427	14.679	42.139	1.00	0.00		H
	ATOM	2241 1HB TYR	260	7.884	14.144	44.091	1.00	0.00		H
	MOTA	2242 2HB TYR	260	7.778	12.789	42.963	1.00	0.00		H
	ATOM	2243 HD1 TYR	260	6.436	14.125	46.147	1.00	0.00	•	H
5	MOTA	2244 HD2 TYR	260	6.948	10.725	43.629	1.00	0.00		H
	MOTA	2245 HE1 TYR	260	5.661	12.663	47.967	1.00	0.00		H
	MOTA	2246 HE2 TYR	260	6.175	9.258	45.446	1.00	0.00		H
	MOTA	2247 HH TYR	260	4.745	10.536	48.439	1.00	0.00		H
	ATOM	2248 N GLU	261	5.408	12.390	41.336	1.00	0.00		N
10	MOTA	2249 CA GLU	261	4.521	11.412	40.775	1.00	0.00		С
	MOTA	2250 C GLU	261	5.158	10.065	40.886	1.00	0.00		С
	ATOM	2251 O GLU	261	6.286	9.925	41.356	1.00	0.00		0
	MOTA	2252 CB GLU	261	4.219	11.655	39.286	1.00	0.00		С
	ATOM	2253 CG GLU	261	3.389	12.917	39.035	1.00	0.00	*	С
15	MOTA	2254 CD GLU	261	4.257	14.127	39.348	1.00	0.00		С
	ATOM	2255 OE1 GLU	261	5.409	14.181	38.841	1.00	0.00		0
	ATOM	2256 OE2 GLU	261	3.779	15.013	40.106	1.00	0.00		0
	ATOM	2257 H GLU	261	6.301	12.600	40.869	1.00	0.00		H
	ATOM	2258 HA GLU	261	3.582	11.430	41.329	1.00	0.00		H
20	ATOM	2259 1HB GLU	261	3.659	10.843	38.821	1.00	0.00		H
	ATOM	2260 2HB GLU	261	5.116	11.772	38.678	1.00	0.00		H
	ATOM	2261 1HG GLU	261	2.518	12.887	39.689	1.00	0.00		H
	MOTA	2262 2HG GLU	261	3.084	12.921	37.988	1.00	0.00		H
	ATOM	2263 N ARG	262	4.409	9.024	40.474	1.00	0.00		N
25	ATOM	2264 CA ARG	262	4.912	7.682	40.478	1.00	0.00		С
	MOTA	2265 C ARG	262	5.836	7.571	39.313	1.00	0.00		C
	ATOM	2266 O ARG	262	5.746	8.344	38.359	1.00	0.00		0
	MOTA	2267 CB ARG	262	3.821	6.611	40.302	1.00	0.00		С
	ATOM	2268 CG ARG	262	2.842	6.530	41.475	1.00	0.00		C
30	MOTA	2269 CD ARG	262	1.728	5.502	41.266	1.00	0.00		С
50	ATOM	2270 NE ARG	262	0.894	5.979	40.127	1.00	0.00		N
	ATOM	2271 CZ ARG	262	-0.207	5.271	39.738	1.00	0.00		С
	ATOM	2272 NH1 ARG	262	-0.549	4.125	40.395	1.00	0.00	•	N
	ATOM	2273 NH2 ARG	262	-0.967	5.711	38.692	1.00	0.00		N
35	ATOM	2274 H ARG	262	3.447	9.197	40.146	1.00	0.00		Н
-	MOTA	2275 HA ARG	262	5.428	7.546	41.428	1.00	0.00		H
	ATOM	2276 1HB ARG	262	4.212	5.599	40.193	1.00	0.00		Н
	MOTA	2277 2HB ARG	262	3.193	6.763	39.423	1.00	0.00		H
	ATOM	2278 1HG ARG	262	2.330	7.471	41.677	1.00	0.00		. Н
40	MOTA	2279 2HG ARG	262	3.316	6.252	42.416	1.00	0.00		, H
	ATOM	2280 1HD ARG	262	1.153	5.454	42.191	1.00	0.00		Н
	MOTA	2281 2HD ARG	262	2.205	4.548	41.041	1.00	0.00		H
	MOTA	2282 HE ARG	262	1.148	6.845	39.631	1.00	0.00		H
	MOTA	2283 1HH1 ARG	262	0.023	3.793	41.184	1.00	0.00		H
45	ATOM	2284 2HH1 ARG	262	-1.379	3.591	40.101	1.00	0.00	•	.H
	MOTA	2285 1HH2 ARG	262	-0.709	6.576	38.196		0.00		H
	MOTA	2286 2HH2 ARG	262	-1.797	5.177	38.398	1.00	0.00		H
	MOTA	2287 N ARG	263	6.773	6.608	39.364	1.00	0.00		N
	ATOM	2288 CA ARG	263	7.701	6.525	38.280	1.00	0.00		C
50	MOTA	2289 C ARG	263	8.128	5.105	38.141	1.00	0.00		C
	MOTA	2290 O ARG	263	8.055	4.322	39.086	1.00	0.00		0
,	MOTA	2291 CB ARG	263	8.985	7.313	38.573	1.00	0.00		C
	MOTA	2292 CG ARG	263	8.733	8.781	38.921	1.00	0.00		C
	MOTA	2293 CD ARG	263	9.924	9.441	39.615	1.00	0.00		C
55	MOTA	2294 NE ARG	. 263	10.023	8.832	40.972	1.00	0.00		N
	MOTA	2295 CZ ARG	263	9.671	9.547	42.081	1.00	0.00		С
	MOTA	2296 NH1 ARG	263	9.233	10.835	41.951	1.00	0.00		N
	MOTA	2297 NH2 ARG	263	9.768	8.978	43.318	1.00	0:00		N
	ATOM	2298 H ARG	263	6.820		40.157	1.00	0.00		H
60	MOTA	2299 HA ARG	263	7.198		37.375	1.00	0.00		Н
	ATOM	2300 1HB ARG	263	9.682		37.735	1.00	0.00		H
	ATOM	2301 2HB ARG	263	9.557		39.411	1.00	0.00		Н
•	ATOM	2302 1HG ARG	263	7.884		39.591	1.00	0.00		H
	MOTA	2303 2HG ARG		8.522		38.045	1.00	0.00		Н
65	MOTA	2304 1HD ARG		9.709		39.660	1.00	0.00		Н
	MOTA	2305 2HD ARG		10.801		39.005	1.00	0.00		Н
	ATOM	2306 HE ARG		10.359		41.074	1.00	0.00		H
	MOTA	2307 1HH1 ARG	263	9.168	11.265	41.017	1.00	0.00		H

	ATOM	2308 2HH1	ARG	263	8.967	11.375	42.786	1.00	0.00	,		н
	ATOM	2309 1HH2	ARG	263	10.106	8.010	43.414	1.00	0.00			H
	MOTA	-2310 2HH2	ARG	263	9.502	ູ9.516	44.154	1.00	0.00			H
	ATOM	2311 N	LYS	264	8.570	4.726	36.929	1.00	0.00			N
5	MOTA	2312 CA	LYS	264	9.148	3.428	36.808	1.00	0.00			Ç.
	ATOM	2313 C	LYS	264	10.578	3.670	37.133	1.00	0.00			С
	ATOM	2314 0	LYS	264	11.396	3.925	36.250	1.00	0.00			0
	ATOM.	2315 CB	LYS	264	9.070 7.655	2.837 2.407	35.390 35.004	1.00	0.00			C C
10	MOTA MOTA	2316 CG 2317 CD	LYS	264 264	7.088	1.325	35.923	1.00	0.00			C
10	ATOM	2317 CB	LYS	264	5.672	0.882	35.551	1.00	0.00			C
	ATOM	2319 NZ	LYS	264	5.215	-0.179	36.476	1.00	0.00			. N
	ATOM	2320 H	LYS	264	8.493	5.352	36.115	1.00	0.00			H
	MOTA	2321 HA	LYS	-264	8.685	2.725	37.501	1.00	0.00			н
15	ATOM	2322 1HB	LYS	264	9.695	1.953	35.265	1.00	0.00			H
	MOTA	2323 2HB	LYS	264	9.389	3.540	34.620	1.00	0.00			H
	MOTA	2324 1HG	LYS	264	7.594	1.999	33.995	1.00	0.00			H
	MOTA	2325 2HG	LYS	264	6.937	3.226	35.035	1.00	0.00		•	H
00	ATOM	2326 1HD	LYS	264	7.021	1.627	36.968	1.00	0.00			H
20	ATOM	2327 2HD	LYS	264	7.675	0.406	35.933	1.00	0.00			H
	ATOM	2328 1HE	LYS	264	5.658	0.493	34.532 35.616	1.00	0.00			H H
	ATOM ATOM	2329 2HE 2330 1HZ	LYS	264 264	4.988 5.95 <i>6</i>	1.728 -0.379	37.162	1.00	0.00			H
	ATOM	2330 1HZ 2331 2HZ	LYS	264	4.367	0.136	36.968	1.00	0.00			H
25	ATOM	2332 3HZ	LYS	264	5.003	-1.033	35.941	1.00	0.00			H
20	MOTA	2333 N	GLU	265	10.901	3.614	38.438	1.00	0.00			N
	ATOM	2334 CA	GLU	265	12.232	3.911	38.861	1.00	0.00			С
	MOTA	2335 C	GLU	265	12.640	2.838	39.810	1.00	0.00			С
	ATOM	2336 0	GLU	265	12.170	1.706	39.718	1.00	0.00			0
30	ATOM	2337 CB	GLU	265	12.346	5.273	39.569	1.00	0.00			C
	MOTA	2338 CG	GLU	265	13.781	5.779	39.744	1.00	0.00			С
	ATOM	2339 CD	GLU	265	14.355	6.111	38.376	1.00	0.00			C
	ATOM		GLU	265	13.820	5.593	37.362	1.00	0.00			0
35	MOTA		GLU	265	15.347	6.890	38.332	1.00	0.00			0
33	ATOM ATOM	2342 H 2343 HA	GLU GLU	265 265	10.186 12.857	· 3.356 3.919	39.133	1.00	0.00			H H
	MOTA	2344 1HB	GLU	265	11.906	5.179	40.561	1.00	0.00			н
	MOTA	2345 2HB	GLU	265	11.805	6.011	38.977	1.00	0.00			H
	ATOM	2346 1HG	GLU	265	14.374	4.997	40.219	1.00	0.00			H
40	MOTA	2347 2HG	GLU	265	13.766	6.671	40.370	1.00	0.00			Н
	MOTA	2348 N	SER	266	13.547	3.167	40.747	1.00	0.00			N
	MOTA	2349 CA	SER	266	14.033	2.159	41.627	1.00	0.00		-	С
	MOTA	2350 C	SER	266	14.768	1.245	40.725	1.00	0.00			С
	MOTA	2351 0	SER	266	15.774	1.622	40.125	1.00	0.00			. 0
45	MOTA	2352 CB	SER	266	12.920	1.371	42.340	1.00	0.00			С
	MOTA	2353 OG	SER	266	12.204	2.227	43.218	1.00	0.00			0
	MOTA ATOM	2354 H 2355 HA	SER	266 266	13.885 14.684	4.136 2.585	40.826	1.00	0.00			H H
	MOTA	2356 1HB	SER	266	13.352	0.554	42.917	1.00	0.00			H
50	ATOM	2357 2HB	SER	266	12.227	0.957	41.607	1.00	0.00			Н
	ATOM	2358 HG	SER	.266	12.615	3.170	43.190	1.00	0.00			н
	ATOM	2359 N	ALA	267	14.271	0.007	40.598	1.00	0.00			. N
	MOTA	2360 CA	ALA	267	14.900	-0.876	39.675	1.00	0.00			С
	ATOM	2361 C	ALA	267	14.689	-0.281	38.319	1.00	0.00			С
55	MOTA	2362 0	ALA	267	15.627	-0.183	37.530	1.00	0.00			Ο,
	MOTA	2363 CB	ALA	267	14.283	-2.286	39.676	1.00	0.00			С
	MOTA	2364 Н	ALA	267	13.457	-0.296	41.152	1.00	0.00			H
	MOTA	2365 HA	ALA	267	15.952	-0.911	39.957	1.00	0.00			н .
60	MOTA	2366 1HB	ALA	267	13.469	-2.326 -2.514	40.400	1.00	0.00			H
60	MOTA MOTA	2367 2HB 2368 3HB	ALA ALA	267 267	13.896 15.045	-2.514 -3.016	38.682 39.945	1.00	0.00			H H
	MOTA	2369 N	ALA	268	13.439	0.145	38.027	1.00	0.00			N
	MOTA	2370 CA	ALA	268	13.439	0.696	36.748	1.00	0.00			C
	ATOM	2371 C	ALA	268	12.964	-0.484	35.852	1.00	0.00			Č
65	ATOM	2372 0	ALA	268	12.531	-1.550	36.284	1.00	0.00			Ö
	MOTA	2373 CB	ALA	268	14.139	1.664	36.163	1.00	0.00			С
	MOTA	2374 H	ALA	268	12.707	0.071	38.748	1.00	0.00			Н
	ATOM	2375 HA	ALA	268	12.159	1.226	36.917	1.00	0.00			Н

									-		
	n m OM	2376 1HB ALA	268	14.977	1.756	36.853	1.00	0.00			H
	MOTA			14.496	1.279	35.207	1.00	0.00			H
	ATOM	2377 2HB ALA									Н
	MOTA	2378 3HB ALA		13.683	2.642	36.012	1.00	0.00			
	ATOM	2379 N TYF	. 269	13.332	-0.332	34.568	1.00	0.00			N
5	MOTA	2380 CA TYF	269	13.308	-1.488	33.728	1.00	0.00			С
5	MOTA	2381 C TYF		14.732	-1.897	33.563	1.00	0.00			С
				15.522	-1.202	32.926	1.00	0.00			0
	MOTA	2382 O TYF									Ċ
	ATOM	2383 CB TYF		12.681	-1.244	32.345	1.00	0.00			
	MOTA	2384 CG TYF	269	11.233	-0.984	32.594	1.00	0.00			С
10	ATOM	2385 CD1 TYF	269	10.355	-2.032	32.757	1.00	0.00			С
	ATOM	2386 CD2 TYF		10.754	0.303	32.675	1.00	0.00			С
				9.019	-1.800	32.990	1.00	0.00			С
	ATOM	2387 CE1 TYP									Č
	MOTA	2388 CE2 TYF		9.419	0.541	32.907	1.00	0.00			
	MOTA	2389 CZ TYF	269	8.550	-0.511	33.065	1.00	0.00			С
15	MOTA	2390 OH TYF	269	7.180	-0.270	33.304	1.00	0.00			0
	ATOM	2391 H TYF		13.621	0.586	34.202	1.00	0.00			H
				12.712	-2.228	34.261	1.00	0.00			Н
	MOTA	2392 HA TYF						0.00			Н
	ATOM	2393 1HB. TYP		12.854	-2.156	31.774	1.00				
	ATOM	2394 2HB TYF	269	13.200	-0.380	31.930	1.00	0.00			H
20	MOTA	2395 HD1 TY	269	10.722	-3.056	32.700	1.00	0.00			H
	MOTA	2396 HD2 TY	,	11.438	1.142	32.554	1.00	0.00			H
				8.333	-2.638	33.115	1.00	0.00			H
	MOTA	2397 HE1 TYP						0.00		~	H
	MOTA	2398 HE2 TY		9.050		32.965	1.00				
	MOTA	2399 HH TY	₹ 269	7.012	0.745	33.348	1.00				H
25	MOTA	2400 N ILE	270	15.098	-3.047	34.160	1.00	0.00			N
	ATOM	2401 CA ILI	270	16.461	-3.480	34.110	1.00	0.00			С
				16.574	-4.571	33.104	1.00	0.00			С
	MOTA				-5.602	33.165	1.00	0.00			O
	MOTA	2403 O ILI									
	MOTA	2404 CB ILI	E 270	16.966	-4.007	35.424	1.00	0.00			Ċ
30	MOTA	2405 CG1 ILI	270	16.151	-5.234	35,872	1.00	0.00			С
	ATOM	, 2406 CG2 ILI	E 270 '	16.952	-2.849	36.435	1.00	0.00			С
		2407 CD1 ILI		16.781	-5.991	37.041	1.00	0.00	•		.С
	ATOM			14.395	-3.616	34.653	1.00	0.00			H
	ATOM	2408 H IL									Н
	MOTA	2409 HA IL		17.083	-2.632	33.822	1.00	0.00			
35	MOTA	2410 HB IL	₹ 270	17.979	-4.377	35.269	1.00	0.00			Н
	MOTA	2411 1HG1 IL	270	16.020	-5.979	35.087	1.00	. 0.00			H
	ATOM	2412 2HG1 IL		15.141	-4.988	36.202	1.00	0.00			H
		2412 2HG1 1B		16.582	-1.946	35.948	1.00	0.00			Н
	MOTA					37.270	1.00	0.00			Н
	MOTA	2414 2HG2 IL		16.300	-3.103						
40	MOTA	2415 3HG2 IL		17.963	-2.675	36.803		0.00			H
	MOTA	2416 1HD1 IL	270 €	17.708	-5.499	37.335	1.00	0.00			H
	MOTA	2417 2HD1 IL		16.090	-5.997	37.884	1.00-	0.00			H
	ATOM	2418 3HD1 IL		16.993	-7.016	36.738	1.00	0.00			H
				17.430	-4.325	32.159	1.00	0.00			N
	MOTA	2419 N PR				31.096	1.00	0.00			C
45	MOTA	2420 CA PR		17.665	-5.252						
	MOTA	2421 C PR	0 271	18.094	-6.552		1.00	0.00			С
	ATOM	2422 O PR	0 271	18.881	-6.547	32.635	1.00	0.00			0
	ATOM	2423 CB PR	0 271	18.797	-4.642	30.276	1.00	0.00			C.
, .	MOTA	2424 CG PR		19.610	-3.876	31.337	1.00	0.00			С
50				18.552		32.359	1.00	0.00			С
50	MOTA	2425 CD PR						0.00			Н
	MOTA	2426 HA PR		16.738		30.536	1.00				
	MOTA	2427 1HB PR	0 271	18.410		29.501	1.00	0.00			H
	ATOM	2428 2HB PR	0 271	19.389	-5.414	29.786	1.00	0.00			Н
	ATOM	2429 1HG PR		20.126		30.891	1.00	0.00			H
5.5		2430 2HG PR		20.358		31.795	1.00	0.00			Н
55	ATOM					33.395	1.00	0.00			Н
	MOTA	2431 1HD PR		18.852							
	MOTA	2432 2HD PR		18.150		32.161	1.00	0.00			H
	MOTA	2433 N PH	E 272	17.579	-7.672	31.155	1.00	0.00			N
	ATOM	2434 CA PH		17.987		31.590	1.00	0.00			C
60				19.382		31.106	1.00	0.00			С
60	MOTA					31.707	1.00	0.00			ŏ
	MOTA	2436 O PH			-9.874					_	
	MOTA	2437 CB PH			-10.094	30.977	1.00	0.00			C
	MOTA	2438 CG PH	E 272	17.811	-11.395	31.241	1.00	0.00			С
	MOTA	2439 CD1 PH			-12.023	32.459	1.00	0.00			С
65	ATOM	2440 CD2 PH			-11.993	30.252	1.00	0.00			С
05					-13.224	32.689	1.00	0.00			C
	MOTA	2441 CE1 PH		10.331	-17.564			0.00			c
	MOTA	2442 CE2 PH			-13.194	30.473	1.00				
	MOTA	2443 CZ PH	E 272	19.076	-13.812	31.695	1.00	0.00			С

	,			·
	ATOM	2444 H PHE	272·	16.871 -7.591 30.410 1.00 0.00 H
	ATOM	2445 HA PHE	272	17.922 -8.967 32.678 1.00 0.00 H
	ATOM	2446 1HB PHE	272	17.050 -9.912 29.905 1.00 0.00 H
		2447 2HB PHE	272	16.149 -10.069 31.448 1.00 0.00 H
E	MOTA	2448 HD1 PHE	272	17.110 -11.563 33.251 1.00 0.00 H
5	MOTA		272	18.648 -11.508 29.280 1.00 0.00 H
	MOTA	-		18.238 -13.710 33.660 1.00 0.00 H
	MOTA	2450 HE1 PHE	272	
	MOTA	2451 HE2 PHE	272	43,770 43:001
	ATOM	2452 HZ PHE	272	
10	ATOM	2453 N GLY	273	13.703
	ATOM	2454 CA GLY	273	2000
	MOTA	2455 C GLY	273	20.614 -9.133 28.003 1.00 0.00 C
	MOTA	2456 O GLY	273	21.319 -8.908 27.020 1.00 0.00
	MOTA	2457 H GLY	273	19.013 -7.829 29.589 1.00 0.00 H
15	ATOM	2458 1HA GLY	273	21.602 -9.333 29.895 1.00 0.00 H
	ATOM	2459 2HA GLY	273	21.499 -7.677 29.304 1.00 0.00 H
	ATOM	2460 N GLU	274	19.476 -9.846 27.948 1.00 0.00 N
	ATOM	2461 CA GLU	274	18.940 -10.319 26.713 1.00 0.00 C
	ATOM	2462 C GLU	274	18.518 -9.086 25.998 1.00 0.00 C
20		2463 O GLU	274	18.538 -9.015 24.769 1.00 0.00
20	MOTA	_	274	17.706 -11.220 26.903 1.00 0.00 C
	MOTA			17.361 -12.077 25.680 1.00 0.00 C
	MOTA	2465 CG GLU	274	16.616 -11.235 24.652 1.00 0.00 C
	MOTA	2466 CD GLU	274	10.010 21.200 27.000
	ATOM	2467 OE1 GLU	274	10.111 10.100 10.000
25	ATOM	2468 OE2 GLU	274	10.4/1 11./10 10.10
	MOTA	2469 H GLU	274	10.575 20.007 20.010
	MOTA	2470 HA GLU	274	19.770 -10.844 26.241 1.00 0.00 H
	MOTA	2471 1HB GLU	274	16.846 -10.584 27.115 1.00 0.00 H
	MOTA	2472 2HB GLU	274	17.899 -11.894 27.737 1.00 0.00 H
30	MOTA	2473 1HG GLU	274	16.730 -12.913 25.980 1.00 0.00 H
	MOTA	2474 2HG. GLU	274	18.275 -12.463 25.229 1.00 0.00 H
	ATOM	2475 N GLY	275	18.144 -8.054 26.782 1.00 0.00 N
	MOTA	2476 CA GLY	275	17.694 -6.818 26.215 1.00 0.00 C
	ATOM	2477 C GLY	275	16.234 -6.719 26.466 1.00 0.00 C
35	ATOM	2478 O GLY	275	15.637 -5.654 26.331 1.00 0.00 0
برر	ATOM	2479 H GLY	275	18.182 -8.156 27.806 1.00 0.00 H
	MOTA	2480 1HA GLY	275	17.913 -6.849 25.147 1.00 0.00 H
		2480 1HA GLY	275	18.238 -6.014 26.710 1.00 0.00 H
	MOTA		276	15.608 -7.849 26.850 1.00 0.00 N
40	ATOM			14.200 -7.829 27.109 1.00 0.00 C
40	ATOM	2483 CA ASP	276	14.038 -7.181 28.442 1.00 0.00 C
	MOTA	2484 C ASP	276	14.050 7.202 20.112 2.11
	MOTA	2485 O ASP	276	
	MOTA	2486 CB ASP	276	
	ATOM	2487 CG ASP	276	20.007
45	MOTA	2488 OD1 ASP	276	13.700 0.300 2
	MOTA	2489 OD2 ASP	276	13.354 -11.023 25.614 1.00 0.00 0
	MOTA	2490 H ASP	276	16.140 -8.724 26.956 1.00 0.00 H
	MOTA	2491 HA ASP	276	13.755 -7.248 26.301 1.00 0.00 H
	ATOM	2492 1HB ASP	276	12.543 -9.095 27.543 1.00 0.00 H
50	MOTA	2493 2HB ASP	276	14.157 -9.829 27.838 1.00 0.00 H
	MOTA	2494 N PHE	277	12.795 -7.146 28.960 1.00 0.00 N
	MOTA	2495 CA PHE	277	12.576 -6.530 30.226 1.00 0.00 C
	ATOM	2496 C PHE	277	12.671 -7.611 31.252 1.00 0.00 C
	MOTA	2497 O PHE	277	11.708 -8.342 31.486 1.00 0.00
55		2498 CB PHE	277	11.166 -5.929 30.358 1.00 0.00 C
23	MOTA	•	277	11.010 -4.919 29.273 1.00 0.00 C
	MOTA			10.651 -5.319 28.006 1.00 0.00 C
	MOTA	2500 CD1 PHE	277	
	MOTA .	2501 CD2 PHE	277	
	MOTA	2502 CE1 PHE	277	
60	MOTA	2503 CE2 PHE	277	
	MOTA	2504 CZ PHE	277	
	MOTA	2505 H PHE	277	12.007 -7.562 28.443 1.00 0.00 H
	MOTA	2506 HA PHE	277	13.356 -5.779 30.348 1.00 0.00, H
	MOTA	2507 1HB PHE	277	11.099 -5.469 31.344 1.00 0.00 H
65	MOTA	2508 2HB PHE	277	10.452 -6.746 30.248 1.00 0.00 H
	ATOM	2509 HD1 PHE	277	10.479 -6.376 27.803 1.00 0.00 H
	ATOM	2510 HD2 PHE	277	11.512 -3.249 30.511 1.00 0.00 H
	ATOM	2511 HE1 PHE	277	10.220 -4.732 25.993 1.00 0.00 H

- 165 -

	ATOM ATOM ATOM	2512 2513 2514	HE2 HZ N	PHE PHE TYR	277 277 278	10	.256 .607 .860	-1.601 -2.337 -7.772	28.702 26.439 31.864	1.00 1.00 1.00	0.00 0.00 0.00			H H N
	ATOM	2515	CA	TYR	278		.996	-8.805	32.842	1.00	0.00			C
5	MOTA	2516	С	TYR ,	278	13	.234	-8.444	34.075	1.00	0.00			С
	ATOM	2517	0	TYR	278		.479	-9.261	34.604	1.00	0.00			0
	ATOM	2518		TYR	278		.446	-9.075	33.265	1.00	0.00			С
	ATOM ATOM	2519 2520	CG CD1	TYR TYR	278 278			-10.173 -11.468	34.268 33.857	1.00	0.00			C C
10	MOTA	2521	CD2		278		.494	-9.912	35.614	1.00	0.00			C
	ATOM	2522		TYR	278			-12.493	34.766	1.00	0.00	•		Ċ
	MOTA	2523	CE2	TYR	278	15	.419	-10.935	36.532	1.00	0.00			С
	MOTA	2524	CZ	TYR	278			-12.228	36.107	1.00	0.00			С
1.5	ATOM	2525	OH	TYR	278			-13.277	37.047	1.00	0.00			0
15	ATOM ATOM	2526 2527	H HA	TYR TYR	278 278		.656 .607	-7.161 -9.744	31.631 32.448	1.00 1.00	0.00			H
	ATOM	2528		TYR	278		.805	-8.135	33.684	1.00	0.00			H
	MOTA	2529		TYR	278		.965	-9.364	32.351	1.00	0.00			Н
	ATOM	2530		TYR	278			-11.684	32.793	1.00	0.00			H
20	MOTA	2531	HD2	TYR	278		. 654	-8.889	35.954	1.00	0.00			Н
	ATOM	2532	HE1	TYR .	278			-13.515	34.423	1.00	0.00			H
	MOTA	2533	HE2	TYR	278			-10.720	37.596	1.00	0.00			H
	ATOM ATOM	2534 2535	HH	TYR TYR	278 279		. 399 . 398	-13.070 -7.197	37.732 34.562	1.00	0.00		,	H N
25	ATOM	2536	CA	TYR	279		. 758	-6.824	35.794	1.00	0.00			C
	ATOM	2537	C	TYR	279		.053	-5.524	35.575	1.00	0.00			Č
	ATOM	2538	0	TYR	279		.429	-4.747	34.697	1.00	0.00			0
	MOTA	2539	CB	TYR	279	13	.767	-6.632	36.943	1.00	0.00			С
20	ATOM	2540	CG	TYR	279		.033	-6.261	38.186	1.00	0.00			C
30	ATOM ATOM	2541 2542		TYR TYR	279 279		.472 .914	-7.237 -4.944	38.976 38.571	1.00 1.00	0.00			C C
	ATOM	2543		TYR	279		.797	-6.907	40.130	1.00	0.00			C.
	ATOM	2544		TYR	279		. 242	-4.608	39.722	1.00	0.00			č
	MOTA	2545	CZ	TYR	279		. 681	-5.589	40.503	1.00	0.00			C
35	MOTA	2546	OH	TYR	279	10	.992	-5.247	41.685	1.00	0.00			0
	ATOM	2547	H	TYR	279		. 979	-6.515	34.053	1.00	0.00			H
	ATOM ATOM	2548 2549	HA	TYR TYR	279 279		.050	-7.609 -5.838	36.058 36.679	1.00	0.00			H H
	ATOM	2550		TYR	279		.466 .311	-7.562	37.102	1.00	0.00			Н
40	MOTA	2551		TYR	279		.562	-8.283	38.685	1.00	0.00			H
	MOTA	2552	HD2	TYR	279		. 357	-4.160	37.956	1.00	0.00			Н
	MOTA	2553	HE1	TYR	279		. 355	-7.689	40.746	1.00	0.00			H
	MOTA	2554	HE2	TYR	279		.154	-3.561	40.015	1.00	0.00			H
45	MOTA MOTA	2555 2556	HH N	TYR HIS	279 280		.059 .989	-4.231 -5.267	41.840 36.363	1.00 1.00	0.00			H N
40	ATOM	2557	CA	HIS	280		. 235	-4.059	36.201	1.00	0.00			C
	ATOM	2558	C	HIS	280		.105	-3.437	37.556	1.00	0.00	-		č
	ATOM	.2559	0	HIS	280		. 822	-4.127	38.534	1.00				0
	MOTA	2560	CB	HIS	280		.801	-4.330	35.718	1.00	0.00			С
50	ATOM	2561	CG	HIS	280		.752	-5.281	34.558	1.00	0.00			С
	ATOM ATOM	2562 2563	ND1	HIS	280 280		.694 .759	-6.650 -5.050	34.703 33.217	1.00 1.00	0.00			N
	ATOM	2564		HIS	280		. 669	-7.176	33.453	1.00	0.00			С
	ATOM	2565	NE2		280		.707	-6.244	32.518	1.00	0.00			N
55	ATOM	2566	H	HIS	280		.715	-5.945	37.088	1.00	0.00			Н
	MOTA	2567	HА	HIS	280 1		.794	-3.421	35.516	1.00	0.00			Н
	MOTA	2568		HIS	280		.290	-3.424	35.388	1.00	0.00			H
	MOTA	2569 2570		HIS	280		.172	-4.766	36.494	1.00	0.00			H
60	ATOM ATOM	2571		HIS HIS	280 280		.673 .799	-1.173 · -4.062	35.590 32.757	1.00	0.00			H H
	MOTA	2572		HIS	.280		. 622	-8.244	33.244	1.00	0.00			H
	ATOM	2573	HE2		280		. 699	-6.376	31.496	1.00	0.00			Н
	ATOM	2574	N	ALA	281		.314	-2.108	37.663	1.00	0.00			N
	ATOM	2575	CA	ALA	281		.175	-1.508	38.958	1.00	0.00			С
65	MOTA	2576	C	ALA	281		. 410	-0.232	38.819	1.00	0.00			С
	ATOM ATOM	2577 2578	O CB	ALA ALA	281 281		.697 .516	0.591 -1.162	37.950 39.624	1.00 1.00	0.00			0 0
	ATOM	2579	Н	ALA	281		.565	-1.542	36.839	1.00	0.00			Н
										🕶				

	MOTA	2580 HA	ALA	281	9.638	-2.197	39.609	1.00	0.00		Н
	ATOM	2581 1HB	ALA	281	12.334	-1.448	38.963	1.00	0.00		H
	MOTA	2582 2HB	ALA	281	11.561	-0.089	39.814	1.00	0.00		H
	MOTA	2583 3HB	ALA	281	11.604	-1.702	40.566	1.00	0.00		H
5	MOTA	2584 N	ALA	282	8.394	-0.044	39.684	1.00	0.00		N
	MOTA	2585 CA	ALA	282	7.641	1.175	39.659	1.00	0.00		С
	ATOM	2586 C	ALA	282	7.535	1.640	41.070	1.00	0.00		С
										•	
	MOTA	2587 0	ALA	282	7.371	0.838	41.987	1.00	0.00		0
	ATOM	2588 CB	ALA	282	6.206	1.006	39.131	1.00	0.00		С
10	MOTA	2589 H	ALA	282	8.157	-0.779	40.365	1.00	0.00		н
	ATOM	2590 HA	ALA	282	8.199	1.874	39.036	1.00	0.00		H
	ATOM	2591 1HB	ALA	282	6.034	-0.038	38.870	1.00	0.00		Н
	ATOM	2592 2HB	ALA	282	5.496	1.308	39.901	1.00	0.00		H
	MOTA	2593 3HB	ALA	282	6.068	1.627	38.246	1.00	0.00		H
15	ATOM	2594 N	ILE	283	7.655	2.960	41.291	1.00	0.00		N
	ATOM	2595 CA	ILE	283	7.501	3.417	42.634	1.00	0.00		С
	ATOM	2596 C	ILE	283	6.273	4.261	42.670	1.00	0.00		C
	MOTA	2597 O.	${ t ILE}$	283	6.094	5.159	41.847	1.00	0.00		0
	MOTA	2598 CB	ILE	283	8.655	4.217	43.170	1.00	0.00		C
20	MOTA		ILE	283	8.501	4.389	44.691	1.00	0.00		C
20											
	MOTA	2600 CG2	ILE	283	8.755	5.538		1.00	0.00		C
	MOTA	2601 CD1	ILE	283	9.765	4.892	45.386	1.00	0.00		С
	MOTA	2602 H	ILE	283	7.850	3.616	40.521	1.00	0.00		H
	MOTA	2603 HA	ILE	283	7.402	2.532	43.263	1.00	0.00		H
25					9.573	3.643	43.046	1.00	0.00		H
÷2	MOTA		ILE	283							
	MOTA	2605 1HG1		283	8.243	3.468	45.214	1.00	0.00		H
	MOTA	2606 2HG1	ILE	283	7.724	5.098	44.977	1.00	0,00		H
	ATOM	2607 1HG2	ILE	283	7.967	5.577	41.638	1.00	0.00		H
	ATOM	2608 2HG2	ILE	283	8.641	6.375	43.079	1.00	0.00		H
20											
30	ATOM	2609 3HG2		283	9.727	5.599	41.901	1.00	0.00		H
	MOTA	2610 1HD1	ILE	283	10.553	5.035	44.647	1.00	0.00		H
	MOTA	2611 2HD1	ILE	283	9.555	5.839	45.881	1.00	0.00		H
	MOTA	2612 3HD1		283	10.089	4.160	46.125	1.00	0.00		Н
	ATOM	2613 N	PHE	284	5.379	3.963	43.629	1.00	0.00		
2.5											N
35	MOTA	2614 CA	PHE	284	4.153	4.691	43.748	1.00	0.00		С
	ATOM	2615 C	PHE	284	4.420	5.967	44.469	1.00	0.00		C
	ATOM	2616 0	PHE	284	5.515	6.204	44.978	1.00	0.00		0
	ATOM	2617 CB	PHE	284	3.069	3.986	44.587	1.00	0.00		, c
	MOTA	2618 CG	PHE	284	2.427	2.887	43.816	1.00	0.00		С
40	ATOM	2619 CD1	PHE	284	3.011	1.645	43.722	1.00	0.00	•	С
	MOTA	.2620 CD2	PHE	284	1.215	3.104	43.202	1.00	0.00		С
	ATOM		PHE	284	2.397	0.640	43.012	1.00	0.00		С
								1.00	0.00		
	MOTA		PHE	284	0.596	2.103	42.491				С
	ATOM	2623 CZ	PHE	284	1.189	0.867	42.395	1.00	0.00		C
45	MOTA	2624 Н	PHE	284	5.580	3.198	44.288	1.00	0.00		H
	MOTA	2625 HA	PHE	284	3.768	4.898	42.749	1.00	0.00		Н
	MOTA	2626 1HB	PHE	284 .	2.288	4.685	44.885	1.00	0.00		Н
		2627 2HB				3.554	45.493	1.00	0.00		
	MOTA		PHE	284	3.494						Н
	MOTA		PHE	284	3.965	1.456	44.213	1.00	0.00		H
50	MOTA	2629 HD2	PHE	284	0.739	4.081	43.280	1.00	0.00		Н
	MOTA	2630 HE1	PHE,	284	2.869	-0.339	42.938	1.00	0.00		H
	MOTA		PHE	284	-0.361	2.289	42.005	1.00	0.00		Н
	MOTA	2632 HZ	PHE	284	0.703	0.069	41.832	1.00	0.00		Н
	MOTA	2633 N	GLY	285	3.397	6.842	44.485	1.00	0.00		N
55	MOTA	2634 CA	GLY	285	3.440	8.052	45.247	1.00	0.00		С
	ATOM	2635 C	GLY	285	2.218	7.984	46.105	1.00	0.00		Ċ
	MOTA	2636 O	GLY	285	1.216	8.645	45.834	1.00	0.00		0
	ATOM	2637 н	GLY	285	2.554	6.633	43.929	1.00	0.00		H
	MOTA	2638 1HA	GLY	285	3.416	8.839	44.494	1.00	0.00		Н
60	ATOM	2639 2HA	GLY	285	4.378	7.985	45.797	1.00	0.00		H
	ATOM						47.151		0.00		
			GLY	286	2.279	7.135		1.00			N
	MOTA	2641 CA	GLY	286	1.177	6.887	48.036	1.00	0.00		С
	MOTA	2642 C	GLY	286	0.923	8.016	48.986	1.00	0.00		С
	ATOM	2643 O	GLY	286	-0.225	8.408	49.189	1.00	0.00		0
65	ATOM	2644 H	GLY	286	3.164	6.637	47.324	1.00	0.00		Н
0.5											
	MOTA	2645 1HA	GLY	286	1.320	6.004	48.659		0.00		Н
	ATOM	2646 2HA	GLY	286	0.235	6.726	47.510	1.00	0.00		H
	MOTA	2647 N	THR	- 287	1.982	8.558	49.621	1.00	0.00		N
				-	· -						

	ATOM ATOM	2648 CA TH 2649 C TH 2650 O TH	R 287	1.737 2.959 3.998	10.420	50.617 50.730 50.140	1.00 1.00 1.00	0.00 0.00 0.00			с с о
5	ATOM ATOM ATOM	2651 CB TH 2652 OG1 TH	R 287	1.472	8.963	51.971 52.881	1.00	0.00			С 0
	ATOM ATOM	2653 CG2 TH 2654 H TH	R 287	2.779 2.941	8.343	52.493 49.397	1.00	0.00			C H
	MOTA MOTA	2655 HA TH 2656 HB TH	IR 287	0.879 0.703	10.156	50.300 51.864	1.00	0.00			H H
10	MOTA	2657 HG1 TH	IR 287	1.547 3.570	10.804	52.780 51.758	1.00	0.00			H H
	ATOM ATOM	2659 2HG2 TH	IR 287	3.060	8.823	53.430 52.661	1.00	0.00			н н
	ATOM ATOM	2660 3HG2 TH 2661 N PH	RO 288	2.633 2.838	11.501	51.452	1.00	0.00			N C
15	ATOM ATOM	2662 CA PE 2663 C PE	288	3.990 4.929	11.677	51.656 52.612	1.00	0.00			С.
	ATOM ATOM	2664 O PF 2665 CB PF		4.465 3.458		53.489 52.144	1.00 1.00	0.00			0
20	MOTA MOTA	2666 CG PI 2667 CD PI	RO 288 RO 288	2.056 1.618		51.515 51.375	1.00 1.00	0.00 0.00			C
20	ATOM ATOM	2668 HA PI	RO 288 RO 288	4.502 4.097		50.707 51.810	1.00	0.00			H H
	MOTA	2670 2HB PI	RO 288	3.414	1 13.711	53.232 50.564	1.00	0.00		*	H H
25	ATOM ATOM	2672 2HG PI	RO 288	1.469	9 14.331	52.233 52.202	1.00 1.00	0.00			H H
	MOTA MOTA	2674 2HD P	RO 288	1.180	12.073	50.400	1.00	0.00			H N
,	MOTA MOTA	2676 CA T	IR 289	6.250 7.160	5 11.281	53.373	1.00	0.00			C
30	ATOM ATOM	2678 O T	HR 289 HR 289	8.535 8.67	7 12.880	53.093	1.00	0.00			0
	ATOM ATOM		HR 289 HR 289	7.21 7.89	3 9.199.		1.00	0.00	,		0
35	ATOM ATOM		HR 289 HR 289	7.92° 6.59		51.916 51.703	1.00	0.00			C H
,	ATOM ATOM		HR 289 HR 289	(6.84) 6.19	3 9.402	54.386 53.222	1.00	0.00			H
	MOTA MOTA	2685 HG1 T	HR 289 HR 289	7.65 8.22		55.196 51.407	1.00 1.00	0.00 0.00			H H
40	ATOM ATOM	2687 2HG2 T	HR 289 HR 289	8.81 7.25	3 8.838	52.129 51.276	1.00	0.00			H H
	MOTA	2689 N G	LN 290	9.57	8 11.106	53.571 53.362	1.00	0.00			N C
	MOTA MOTA	2691 C G	LN 290	11.30	7 11.065	51.975 51.607	1.00	0.00		•	C O
45	MOTA MOTA	2693 CB G	LN 290 LN 290	11.18	7 10.823	54.345	1.00	0.00			C
	MOTA MOTA	2695 CD G	LN 290 LN 290	11.79 12.40	8 12.729	55.783 55.844	1.00	0.00			С
50	MOTA MOTA	2696 OE1 G 2697 NE2 G		12.95 12.32	3 13.376		1.00	0.00	•		и О
	ATOM ATOM	_	LN 290 LN 290	9.38 10.99			1.00 1.00	0.00			H H
	ATOM ATOM	2700 1HB G	LN 290 LN 290	12.97 11.80			1.00 1.00	0.00 0.00		,	H H
55	ATOM ATOM	2702 1HG G	LN 290 LN 290	12.33 10.73	7 10.646		1.00	0.00	•		H H
	ATOM ATOM	2704 1HE2 G	LN 290	12.72	1 14.320	57.141	1.00	0.00			H H
60	ATOM	2706 N V	'AL 291	11.75	2 12.047	51.171	1.00	0.00			N C
60	MOTA MOTA	2708 C V	AL 291 AL 291	13.31	0 11.142	49.519	1.00	0.00			C O
	MOTA MOTA	2710 CB \	AL 291 AL 291	12.20	14 13.227	49.097	1.00	0.00			C
65	MOTA MOTA	2711 CG1 V 2712 CG2 V			2 13.971	49.761	1.00	0.00			С
	ATOM ATOM	2713 H V	AL 291 AL 291	11.88			1.00 1.00	0.00 0.00	•		H
	MOTA		/AL 291				1.00	0.00			H

	ATOM	2716 1HG1 VAL	291	10.132	13.346	49.702	1.00	0.00		Ħ
	ATOM	2717 2HG1 VAL	291	10.989-	14.906	49.710	1.00	0,00		H
	ATOM	2718 3HG1 VAL	291	10.495	14.169	48.167	1.00	0.00		H
	MOTA	2719 1HG2 VAL	291	13.793	13.353	50.554	1.00	0.00		H
5	MOTA	2720 2HG2 VAL	291	14.140	14.179	49.016	1.00	0.00		H H
	MOTA	2721 3HG2 VAL	291	13.012	14.909	50.183	1.00	0.00		N
	ATOM	2722 N LEU	292	14.277	11.164	50.462 50.237	1.00	0.00		C
	MOTA	2723 CA LEU	292	15.569	9.193	49.670	1.00	0.00		C
	MOTA	2724 C LEU	292	15.457 14.870	8.285	50.255	1.00	0.00		Ö
10	ATOM	2725 O LEU 2726 CB LEU	292 292	16.488	10.588	51.485	1.00	0.00		Ċ
	ATOM	2727 CG LEU	292	15.978	9.868	52.755	1.00	0.00		С
	ATOM ATOM	2728 CD1 LEU	292	14.588	10.374	53.161	1.00	0.00		С
	ATOM	2729 CD2 LEU	292	16.112	8.339	52.686	1.00	0.00		С
15	ATOM	2730 H LEU	292	14.083	11.615	51.367	1.00	0.00		Н
15	ATOM	2731 HA LEU	292	16.163	11.162	49.537	1.00	0.00		Н
	ATOM	2732 1HB LEU	292	16.648	11.629	51.762	1.00	0.00		H
	MOTA	2733 2HB LEU	292	17.423	10.102	51.208	1.00	0.00		H
	MOTA	2734 HG LEU	292	16.648	10.032	53.598	1.00	0.00		H
20	MOTA	2735 1HD1 LEU	292	14.259	11.139	52.457	1.00	0.00		H. H
	MOTA	2736 2HD1 LEU	292	13.881	9.544	53.150	1.00	0.00		H
	MOTA	2737 3HD1 LEU	292	14.634	10.798 8.055	54.163 51.730	1.00	0.00		H
	MOTA	2738 1HD2 LEU	292	16.551 16.752	7.992	53.497	1.00	0.00		н
25	MOTA	2739 2HD2 LEU	292 292	15.126	7.882	52.781	1.00	0.00		н
25	MOTA	2740 3HD2 LEU 2741 N ASN	292	15.983	9.054	48.437	1.00	0.00		N
	MOTA MOTA	2741 N ASN 2742 CA ASN	293	16.061	7.821	47.709	1.00	0.00		С
	MOTA	2742 CA ASN	293	14.705	7.432	47.211	1.00	0.00		С
	MOTA	2744 O ASN	293	14.585	6.761	46.187	1.00	0.00		0
30	ATOM	2745 CB ASN	293	16.617	6.667	48.565	1.00	0.00		C
•	ATOM	2746 CG ASN	293	16.899	5.473	47.662	1.00	0.00		C
	MOTA	2747 OD1 ASN	293	15.993	4.858	47.102	1.00	0.00		0
	MOTA	2748 ND2 ASN	293 (18.208	5.136	47.513	1.00	0.00		N
	ATOM	2749 H ASN	293	16.358	9.898	47.982	1.00	0.00		H H
35	ATOM	2750 HA ASN	293	16.731	7.931	46.856	1.00	0.00		л Н
	MOTA	2751 1HB ASN	293	15.877	6.397 6.995	49.319 49.046	$1.00 \\ 1.00$	0.00		H
	ATOM	2752 2HB ASN	293	17.537 18.469	4.340	46.913	1.00	0.00		Н
	ATOM	2753 1HD2 ASN	293 293	18.937	5.676	47.999	1.00	0.00		H
40	MOTA MOTA	2754 2HD2 ASN 2755 N ILE	294	13.638	7.863	47.904	1.00	0.00		N
40	ATOM	2756 CA ILE	294	12.326	7.463	47.488	1.00	0.00		С
	ATOM	2757 C ILE	294	11.915	8.198	46.246	1.00	0.00		, , C
	ATOM	2758 O ILE	294	11.329	7.610	45.338	1.00	0.00		· O
	ATOM	2759 CB ILE	294	11.275	7.676	48.544	1.00	0.00		C
45	MOTA	2760 CG1 ILE	294	9.992	6.906	48.184	1.00	0.00		C
	MOTA	2761 CG2 ILE	294	11.064		48.729	1.00			C
	MOTA .	2762 CD1 ILE	294	9.010	6.779	49.349	1.00	0.00		C
	MOTA	2763 H ILE	294	13.761	8.473	48.724	1.00	0.00		H H
	MOTA	2764 HA ILE	294	12.297	6.394	47.275 49.474	$1.00 \\ 1.00$	0.00		H
50	MOTA	2765 HB ILE	294	11.620 10.176	7.225 5.883	47.854	1.00	0.00		Ĥ
	MOTA	2766 1HG1 ILE	294 294	9.420	7.366	47.378	1.00	0.00		H
	ATOM	2767 2HG1 ILE 2768 1HG2 ILE	294	11.723	9.731	48.053	1.00	0.00		H
	MOTA MOTA	2769 2HG2 ILE	294	10.027	9.439	48.505	1.00	0.00		Н
55	ATOM	2770 3HG2 ILE	294	11.291	9.462	49.758	1.00	0.00	•	H
22	MOTA	2771 1HD1 ILE	294	9.423	7.272	50.228	1.00	0.00		H
	MOTA	2772 2HD1 ILE	294	8.064	7.249	49.080	1.00	0.00		H
	MOTA	2773 3HD1 ILE	294	8.841	5.724	49.569	1.00	0.00		H
	ATOM	2774 N THR	295	12.229	9.505	46.162	1.00	0.00		N
60	MOTA	2775 CA THR	295	11.793	10.311	45.055	1.00	0.00		С
	ATOM	2776 C THR	295	12.858	10.330	44.009	1.00	0.00		С
	MOTA	2777 O THR	295	13.954	9.813	44.216	1.00	0.00		0
	MOTA	2778 CB THR	295	11.534	11.733	45.450	1.00	0.00		С
	MOTA	2779 OG1 THR	295	12.727	12.310	45.957	1.00	0.00	•	0
65	MOTA	2780 CG2 THR	295	10.429	11.764	46.521 46.907		0.00		Н
	ATOM	2781 H THR	295	12.794	9.936	44.639		0.00		H
	ATOM	2782 HA THR	295 295	10.878 11.214	9.887 12.294	44.639		0.00		н
	MOTA	2783 HB THR	490 .	71.214	エム・ムンサ	22.012	2.00			**

					005									
	ATOM				295		13.410	12.412	45.193	1.00	0.00			H
	MOTA	2785 1		THR	295		10.100	10.746	46.734	1.00	0.00			H
	MOTA	2786 2	HG2	THR	295		10.818	12.218	47.432	1.00	0.00			H
	ATOM	2787 3	HG2	THR	295		9.584	12.348	46.155	1.00	0.00			H
5.	MOTA	2788	N	GLN	296		12.554	10.945	42.843	1.00	0.00			N
	ATOM	2789	CA	GLN	296		13.513	10.934	41.777	1.00	0.00			C
	ATOM		С	GLN	296		13.855	12.321	41.328	1.00	0.00			С
	ATOM		0	GLN	296		13.503	13.320	41.952	1.00	0.00			ō
	ATOM		CB	GLN	296		13.059	10.149	40.537	1.00	0.00			Ċ
10.			-									• •		
10	MOTA		CG	GLN	296		12.877	8.659	40.827	1.00	0.00			C
	ATOM		CD	GLN	296		14.158	8.135	41.460	1.00	0.00			С
	MOTA		OE1		296	J	14.149	7.631	42.583	1.00	0.00			0
	MOTA		NE2		296		15.289	8.241	40.712	1.00	0.00			N
	MOTA	2797	H	GLN	296		11.645	11.415	42.722	1.00	0.00			H
15	MOTA	2798	HA	GLN	296		14.443	10.453	42.078	1.00	0.00			H
	ATOM	2799 1	HB	GLN	296		13.774	10.219	39.717	1.00	0.00			H
	MOTA	2800 2	HB	GLN	296		12.106	10.506	40.146	1.00	0.00			H
	MOTA	2801 1	HG	GLN	296		12.678	8.148	39.884	1.00	0.00			H
	ATOM	2802 2		GLN	296			8.543	41.510	1.00	0.00			Н
20	ATOM	2803 1			296		16.185	7.891	41.081	1.00	0.00			Н
20	ATOM			GLN	296		15.249	8.670	39.776	1.00	0.00			H
	ATOM		N	GLU	297		14.554	12.362	40.176	1.00	0.00			N
								13,472	39.516		0.00			C
	ATOM		CA	GLU	297		15.187			1.00				
25	MOTA		С	GLU	297		14.220	14.506	39.044	1.00	0.00			С
25	ATOM		0	GLU	297		14.611	15.656	38.850	1.00	0.00			0
	ATOM		CB	GLU	297		15.974	13.048	38.267	1.00	0.00			С
	ATOM		CG	GLU	297		15.075	12.505	37.152	1.00	0.00			С
	MOTA		CD	GLU	297		15.952	12.171	35.955	1.00	0.00	•		С
	MOTA	2812	OE1	GLU	297		16.938	11.409	36.142	1.00	0.00			0
30	MOTA	2813	OE2	GLU	297		15.653	12.677	34.841	1.00	0.00			0
	ATOM	2814	H	GLU	· 297		14.649	11.457	39.693	1.00	0.00			Н
	MOTA	2815	AH	GLU	297		15.893	14.004	40.152	1.00	0.00			Н
	ATOM	2816 1	.HB	GLÜ	297		16.702	12.263	38.470	1.00	0.00			H
	MOTA	2817 2	HB	GLU	297		16.537	13.868	37.822	1.00	0.00			H
35	ATOM	2818 1	.HG	GLU	297		14.348	13.275	36.894	1.00	0.00			Н
	MOTA	2819 2		GLU	297		14.573	11.611	37.523	1.00	0.00			Н
	ATOM		N	CYS	298		12.944	14.139	38.848	1.00	0.00			N
	ATOM		CA	CYS	298		11.986	14.986	38.195	1.00	0.00		,	C
	ATOM		C	CYS	298		11.981	16.390	38.760	1.00	0.00			Ċ
40	ATOM		0	CYS	298		11.900	17.327	37.968	1.00	0.00			o
40	ATOM	2824	СВ	CYS	298		10.550	14.445	38.303	1.00	0.00			c
											0.00	•		S
	MOTA	2825	SG	CYS	298		9.335	15.519	37.481	1.00				
	ATOM		H	CYS	298		12.639	13.212	39.179	1.00	0.00			Н
	ATOM		HA	CYS	298		12.179	15.083	37.126	1.00	0.00			H
45	MOTA		.HB	CYS	298		10.216	14.344	39.335	1.00	0.00			H
	MOTA	2829 2	HB	CYS	298		10.438	- 13.459	37.851	1.00	0.00			Н
	ATOM		HG	CYS	298		9.782	16.782	37.481	1.00	0.00			H
	ATOM		N	PHE	299		12.054	16.616	40.098	1.00	0.00			N
	MOTA	2832	CA	PHE	299		12.065	17.995	40.533	1.00	0.00			C
50	MOTA	2833	С	PHE	299		12.861	18.123	41.799	1.00	0.00			Ĉ
	ATOM	2834	0 -	PHE	299		14.090	18.050	41.787	1.00	0.00			0
	MOTA	2835	CB	PHE	299		10.656	18.565	40.804	1.00	0.00			C.
	ATOM	2836	CG	PHE	299		10.768	20.044	41.001.	1.00	0.00			С
	ATOM		CD1		299		11.026	20.869	39.930	1.00	0.00			С
55	ATOM		CD2		299		10.589	20.618	42.240	1.00	0.00			Ċ
55	MOTA		CE1		299		11.124	22.231	40.096	1.00	0.00			C
	ATOM		CE2				10.687	21.978	42.414	1.00	0.00			C
					299									c
	ATOM	2841	CZ	PHE	299		10.958	22.789	41.340	1.00	0.00			
60	ATOM	2842	H	PHE	299		12.099	15.839	40.772	1.00	0.00			H
60	ATOM		HA	PHE	299			18.621	39.763	1.00	0.00			H
	ATOM	2844 1		PHE	299		10.256	18.093	41.701	1.00	0.00			H
	MOTA	2845 2		PHE	299		10.020	18.345	39.946	1.00	0.00			H
	MOTA		HD1		299		11.154	20.437	38.937	1.00	0.00			H
	MOTA	2847	HD2	PHE	.299		10.365	19.983	43.097	1.00	0.00			H
65	MOTA		HE1		299		11.334	22.869	39.237	1.00	0.00	٠.		H
	MOTA	2849	HE2	PHE	299		10.549	22.412	43.404	1.00	0.00			Н
	ATOM	2850	HZ	PHE	299		11.040	23.867	41.473	1.00	0.00			H
	MOTA	2851	N	LYS	300		12.152	18.377	42.919	1.00	0.00			N

												-		
	MOTA	2852	CA	LYS	300		12.711	18.546	44.231	1.00	0.00			С
	ATOM	2853	С	LYS	300		11.842	19.526	44.938	1.00	0.00			c
	MOTA	2854	0	LYS	300		10.626	19.541	44.767	1.00	0.00			Ö
	ATOM	2855	CB	LYS	300		14.135	19.134	44.286	1.00	0.00			C
5		2856	CG	LYS	300		14.273	20.503	43.618	1.00	0.00			C
5	MOTA	2857	CD	LYS	300		15.543	21.248	44.032	1.00	0.00			C
	ATOM							22.016						
	MOTA	2858	CE	LYS	300		15.398		45.347	1.00	0.00			C
	ATOM	2859		LYS	300		15.336	21.070	46.484	1.00	0.00			N
	MOTA	2860	H	LYS	300		11.129	18.455	42.825	1.00	0.00			H
10	MOTA	2861	HA	LYS	300		12.695	17.563	44.703	1.00	0.00			H
	MOTA	2862		LYS	300		14.809	18.446	43.776	1.00	0.00			Н
	MOTA	2863		LYS	300		14.419	19.245	45.332	1.00	0.00			Н
	MOTA .	2864	1HG	LYS	300		13.448	21.177	43.850	1.00	0.00			H
	MOTA	2865	2HG	LYS	300		14.307	-20.446	42.530	1.00	0.00			H
15	MOTA	2866	1HD	LYS	300		15.868	21.989	43.302	1.00	0.00			Н
	ATOM	2867	2HD	LYS	300		16.402	20.593	44.177	1.00	0.00			·H
	MOTA	2868	1HE	LYS	300		14.485	22.611	45.334	1.00	0.00			Н
	MOTA	2869		LYS	300		16.250	22,680	45.488	1.00				Н
	MOTA	2870		LYS	300		15.404	20.104	46.132	1.00	0.00			Н
20	ATOM	2871		LYS	300		16.117	21.256	47.129	1.00	0.00			н
20	'ATOM		3HZ	LYS	300		14.443	21.190	46.983	1.00	0.00			Н
	MOTA	2873	N	GLY	301		12.461	20.372	45.778	1.00	0.00			N
		2874	CA		301		11.731	21.382	46.474	1.00	0.00			
	ATOM			GLY										С
25	ATOM	2875	С	GLY	301		12.122	22.678	45.854	1.00	0.00			C
25	ATOM	2876	0	GLY	301		12.740	22.704	44.791	1.00	0.00			0
	MOTA	2877	H	GLY	301		13.477	20.290	45.922	1.00	0.00			Н
	ATOM		1 HA	GLY	301		12.033	21.310	47.518	1.00	0.00			H
	MOTA		2HA	GLY	301	1	10.676	21.149	46.327	1.00	0.00			H
	ATOM	2880	N	ILE	302		11.773	23.795	46.516	1.00	0.00			N
30	MOTA	2881	CA	ILE	302		12.113	25.074	45.979	1.00	0.00			С
	ATOM	2882	С	ILE	302		13.590	25.101	45.795	1.00	0.00			C
	MOTA	2883	0	ILE	302		14.361	_24.917	46.735	1.00	0.00			0
	MOTA	2884	CB .	ILE	302		11.700	26.223	46.852	1.00	0.00			С
	MOTA	2885	CG1	ILE	302		12.017	27.565	46.171	1.00	0.00			С
35	MOTA	2886	CG2	ILE	302		12.347	26.031	48.230	1.00	0.00			C
	MOTA	2887	CD1	ILE	302		11.371	28.7,67	46.859	1.00	0.00			С
	MOTA	2888	Н	ILE	302		11.261	23.728	47.407	1.00	0.00			Н
	ATOM	2889	HA	ILE	302		11.590	25.177	45.028	1.00	0.00		,	H
	ATOM-	2890	HB	ILE	302		10.612	26.215	46.930	1.00	0.00			H
40	ATOM	2891			302		11.682	27.617	45.134	1.00	0.00			H
40	MOTA	2892		ILE	302		13.081	27.795	46.137	1.00	0.00			H
		2893					12.939	25.116	48.229	1.00				
	MOTA				302						0.00			H
	MOTA	2894			302		12.992	26.881	48.450	1.00	0.00			H
4.5	MOTA		3HG2	ILE	302		11.569	25.959	48.990	1.00	0.00			H
45	MOTA	2896			302		10.796	28.427	47.721	1.00	0.00			H
	MOTA	2897			302		12.147	29.457	47.189	1.00	0.00			Н
	MOTA	2898	3HD1	ILE	302	•	10.708	29.274	46.158	1.00	0.00			H
	MOTA	2899	И	LEU	303	-	14.007	25.313	44.536	1.00	0.00			N
	MOTA	2900	CA	LEU	303		15.389	25.330	44.179	1.00	0.00			С
50	MOTA	2901	С	LEU	303		16.008	26.457	44.925	1.00	0.00			С
	MOTA	2902	0	LEU	303		17.130	26.353	45.418	1.00	0.00			0
	ATOM	2903	CB	LEU	303		15.605	25.636	42.686	1.00	0.00			С
	ATOM	2904	CG	LEU	303		14.969	24.617	41.721	1.00	-0.00			C'
	MOTA	2905	CD1	LEU	. 303		15.618	23.232	41.852	1.00	0.00			С
55	ATOM	2906	CD2	LEU	303		13.439	24.583	41.865	1.00	0.00			С
	ATOM	2907	Н	LEU	303		13.303	25.469	43.800	1.00	0.00			Н
	ATOM	2908	HA	LEU	303		15.800	24.365	44.476	1.00	0.00			Н
	ATOM	2909		LEU	303		16.677	25.646	42.492	1.00	0.00			H
60	MOTA	2910		LEU	303		15.165	26.610	42.471	1.00	0.00			H
60	MOTA	2911	HG	LEU	303		15.076	24.926	40.681	1.00	0.00			H
	MOTA	2912			303		16,400	23.267	42.610	1.00	0.00			Н
	MOTA	2913			303		14.862	22.502	42.143	1.00	0.00			Н
	MOTA	2914			303		16.052	22.941	40.895	1.00	0.00			H
	MOTA	2915			303		13.129	25.296	42.628	1.00	0.00			Н
65	MOTA	2916			303		12.978	24.847	40.913	1.00	0.00			Н
	MOTA	2917		LEU	303		13.123	23.581	42.155	1.00	0.00			H
	MOTA	2918	N	LYS	304		15.262	27.569	45.034	1.00	0.00			N
	MOTA	2919	CA	LYS	304		15.783	28.750	45.650	1.00	0.00			С

APON 2921 O								.= .=.				_
RTON		MOTA	2920 C.	LYS	304	16.148	28.473	47.072	1.00	0.00		С
MTON		MOTA	2921 0	TAS,	304	17.219	28.875	47.520				0
S		MOTA	2922 CB	LYS	304 .	14.786	29.922	45.653	1.00	000		С
ATOM 2925 CE LYS 304 13.634 30.266 41.907 1.00 0.00 ATOM 2927 H LYS 304 12.93.07 14.00 0.00 ATOM 2928 HB LYS 304 16.93 29.318 41.007 1.00 0.00 ATOM 2928 HB LYS 304 16.93 29.318 45.120 1.00 0.00 ATOM 2930 2HB LYS 304 15.088 30.752 46.290 1.00 0.00 ATOM 2931 LKS LYS 304 15.088 30.752 46.290 1.00 0.00 ATOM 2931 LKS LYS 304 15.088 30.752 46.290 1.00 0.00 ATOM 2931 LKS LYS 304 15.956 30.796 43.849 1.00 0.00 ATOM 2932 LKS 304 15.536 30.796 43.849 1.00 0.00 ATOM 2932 LKS 304 15.536 30.796 43.849 1.00 0.00 ATOM 2933 LKS LYS 304 12.857 29.317 43.613 1.00 0.00 ATOM 2934 2MB LYS 304 12.857 29.317 43.613 1.00 0.00 ATOM 2935 LKS LYS 304 14.593 30.554 41.465 1.00 0.00 ATOM 2935 LKS LYS 304 13.946 31.165 1.00 0.00 ATOM 2935 LKS LYS 304 12.963 30.554 41.656 1.00 0.00 ATOM 2935 LKS LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2935 LKS LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2935 LKS LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2935 LKS LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2935 LKS LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2935 LKS LYS 304 12.765 29.128 40.886 1.00 0.00 ATOM 2935 LKS LYS 304 12.765 29.128 40.886 1.00 0.00 ATOM 2936 LKS LYS 304 12.765 29.128 40.886 1.00 0.00 ATOM 2936 LKS LYS 305 15.287 27.757 49.27 1.00 0.00 ATOM 2940 N ASF 305 15.287 27.757 49.27 1.00 0.00 ATOM 2940 N ASF 305 15.287 27.757 49.57 1.00 0.00 ATOM 2940 LKS		ATOM	2923 CG	LYS	304	14.564	30.544	44.272	1.00	0.00		С
ATOM 2925 CE LYS 304 13.634 30.266 41.907 1.00 0.00 ATOM 2927 H LYS 304 12.93.07 14.00 0.00 ATOM 2928 HB LYS 304 16.93 29.318 41.007 1.00 0.00 ATOM 2928 HB LYS 304 16.93 29.318 45.120 1.00 0.00 ATOM 2930 2HB LYS 304 15.088 30.752 46.290 1.00 0.00 ATOM 2931 LKS LYS 304 15.088 30.752 46.290 1.00 0.00 ATOM 2931 LKS LYS 304 15.088 30.752 46.290 1.00 0.00 ATOM 2931 LKS LYS 304 15.956 30.796 43.849 1.00 0.00 ATOM 2932 LKS 304 15.536 30.796 43.849 1.00 0.00 ATOM 2932 LKS 304 15.536 30.796 43.849 1.00 0.00 ATOM 2933 LKS LYS 304 12.857 29.317 43.613 1.00 0.00 ATOM 2934 2MB LYS 304 12.857 29.317 43.613 1.00 0.00 ATOM 2935 LKS LYS 304 14.593 30.554 41.465 1.00 0.00 ATOM 2935 LKS LYS 304 13.946 31.165 1.00 0.00 ATOM 2935 LKS LYS 304 12.963 30.554 41.656 1.00 0.00 ATOM 2935 LKS LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2935 LKS LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2935 LKS LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2935 LKS LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2935 LKS LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2935 LKS LYS 304 12.765 29.128 40.886 1.00 0.00 ATOM 2935 LKS LYS 304 12.765 29.128 40.886 1.00 0.00 ATOM 2936 LKS LYS 304 12.765 29.128 40.886 1.00 0.00 ATOM 2936 LKS LYS 305 15.287 27.757 49.27 1.00 0.00 ATOM 2940 N ASF 305 15.287 27.757 49.27 1.00 0.00 ATOM 2940 N ASF 305 15.287 27.757 49.57 1.00 0.00 ATOM 2940 LKS	5		2924 CD	LYS	304	13.849	29.625	43.280	1.00	0.00		С
ATOM 2926 NZ LYS 304	-											Č
ATOM 2927 H LYS 304 14.999 27.571 44.668 1.00 0.00												Ŋ
ATOM 2928 HA LYS 304 15.673 29.090 45.120 1.00 0.00									-			
10												Н
ATOM 2930 2HB LYS 304 13.790 29.648 46.001 1.00 0.00 ATOM 2931 HG LYS 304 15.56 30.796 43.849 1.00 0.00 ATOM 2932 2HG LYS 304 15.56 30.796 43.849 1.00 0.00 ATOM 2932 2HG LYS 304 12.957 29.317 43.613 1.00 0.00 ATOM 2934 2HD LYS 304 12.957 29.317 43.613 1.00 0.00 ATOM 2935 HB LYS 304 14.858 28.698 43.084 1.00 0.00 ATOM 2935 HB LYS 304 14.838 28.698 43.084 1.00 0.00 ATOM 2935 HB LYS 304 14.958 30.534 41.465 1.00 0.00 ATOM 2937 HZ LYS 304 12.960 28.437 41.509 1.00 0.00 ATOM 2937 HZ LYS 304 12.960 28.437 41.509 1.00 0.00 ATOM 2937 HZ LYS 304 12.960 28.437 41.509 1.00 0.00 ATOM 2937 HZ LYS 304 12.960 28.437 41.509 1.00 0.00 ATOM 2937 HZ LYS 304 12.960 28.437 41.509 1.00 0.00 ATOM 2939 BZ LY LYS 304 12.968 29.727 40.698 1.00 0.00 ATOM 2930 N ASP 305 15.287 27.767 47.827 1.00 0.00 ATOM 2930 N ASP 305 15.287 27.767 47.827 1.00 0.00 ATOM 2941 CA ASP 305 15.862 26.797 49.367 1.00 0.00 ATOM 2942 C ASP 305 15.862 26.797 49.367 1.00 0.00 ATOM 2943 O ASP 305 17.762 27.159 50.165 1.00 0.00 ATOM 2944 CB ASP 305 12.319 27.809 50.267 1.00 0.00 ATOM 2943 DASP 305 12.319 27.4715 50.165 1.00 0.00 ATOM 2944 DASP 305 12.319 27.4715 50.7165 1.00 0.00 ATOM 2949 HA ASP 305 12.319 27.4715 50.7165 1.00 0.00 ATOM 2949 HA ASP 305 12.319 27.4715 50.7765 1.00 0.00 ATOM 2949 HA ASP 305 13.596 29.090 49.942 1.00 0.00 ATOM 2949 HA ASP 305 14.428 27.366 47.423 1.00 0.00 ATOM 2949 HA ASP 305 14.428 27.366 47.423 1.00 0.00 ATOM 2949 HA ASP 305 14.960 28.587 50.975 1.00 0.00 ATOM 2949 HA ASP 305 14.960 28.587 50.975 1.00 0.00 ATOM 2949 HA ASP 305 14.500 28.587 49.698 1.00 0.00 ATOM 2949 HA ASP 305 14.960 28.587 49.698 1.00 0.00 ATOM 2949 HA ASP 305 14.960 28.587 49.698 1.00 0.00 ATOM 2949 HA ASP 305 14.960 28.587 49.698 1.00 0.00 ATOM 2950 LB ASP 305 14.960 28.587 49.698 1.00 0.00 ATOM 2951 BH ASP 305 14.960 28.587 49.698 1.00 0.00 ATOM 2951 BH ASP 305 14.960 28.587 49.698 1.00 0.00 ATOM 2951 BH ASP 305 14.960 28.587 49.698 1.00 0.00 ATOM 2951 BH ASP 305 14.960 28.587 49.698 1.00 0.00 ATOM 2951 BH ASP 305 14.960 28.587 49.698 1.00 0.00 ATOM 2951 BH A		ATOM										H
ATOM 2931 1RG LYS 304 15.556 30.796 43.849 1.00 0.00 ATOM 2932 1RG LYS 304 12.857 29.317 43.613 1.00 0.00 ATOM 2932 1RD LYS 304 12.857 29.317 43.613 1.00 0.00 ATOM 2935 1RE LYS 304 14.838 28.698 43.098 4.00 0.00 ATOM 2935 1RE LYS 304 14.593 30.534 41.465 1.00 0.00 ATOM 2936 1RE LYS 304 13.056 31.656 42.005 1.00 0.00 ATOM 2937 1R2 LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2939 3RZ LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2939 3RZ LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2939 3RZ LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2939 3RZ LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2939 3RZ LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2930 3RZ LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2940 N ASP 305 15.507 27.592 49.215 1.00 0.00 ATOM 2941 CA ASP 305 15.607 27.592 49.215 1.00 0.00 ATOM 2941 CA ASP 305 15.607 27.592 49.215 1.00 0.00 ATOM 2943 ASP 305 14.513 26.886 50.034 1.00 0.00 ATOM 2943 ASP 305 14.513 26.886 50.034 1.00 0.00 ATOM 2944 CB ASP 305 13.392 27.890 50.267 1.00 0.00 ATOM 2945 CA ASP 305 13.392 27.890 50.267 1.00 0.00 ATOM 2946 DDI ASP 305 13.392 27.890 50.267 1.00 0.00 ATOM 2947 ASP 305 13.392 27.890 50.267 1.00 0.00 ATOM 2948 H ASP 305 13.392 27.890 50.267 1.00 0.00 ATOM 2949 BA ASP 305 15.517 28.558 49.698 1.00 0.00 ATOM 2949 BA ASP 305 15.51 28.558 49.698 1.00 0.00 ATOM 2949 BA ASP 305 15.151 28.558 49.698 1.00 0.00 ATOM 2949 BA ASP 305 14.428 27.366 47.423 1.00 0.00 ATOM 2949 BA ASP 305 14.428 27.366 49.455 1.00 0.00 ATOM 2949 BA ASP 305 14.428 27.366 49.455 1.00 0.00 ATOM 2951 2RB ASP 305 14.980 24.980 49.158 1.00 0.00 ATOM 2951 2RB ASP 305 14.980 24.980 49.158 1.00 0.00 ATOM 2951 BA ASP 305 14.980 24.980 49.158 1.00 0.00 ATOM 2951 BA ASP 305 14.980 24.980 49.158 1.00 0.00 ATOM 2952 N LYS 306 18.990 24.8824 1.00 0.00 ATOM 2953 C LYS 306 18.990 24.8824 1.00 0.00 ATOM 2952 N LYS 306 18.990 24.8824 1.00 0.00 ATOM 2953 C LYS 306 18.990 24.8824 1.00 0.00 ATOM 2952 R LYS 306 18.990 24.8824 1.00 0.00 ATOM 2953 R LYS 306 18.990 24.8824 1.00 0.00 ATOM 2955 C LYS 306 18.990 24.8824 1.00 0.00 ATOM 2956 C	10	ATOM		LYS	304	15.088	30.752	46.290	1.00			H
ATOM 2931 1RG LYS 304 15.556 30.796 43.849 1.00 0.00 ATOM 2932 1RG LYS 304 12.857 29.317 43.613 1.00 0.00 ATOM 2932 1RD LYS 304 12.857 29.317 43.613 1.00 0.00 ATOM 2935 1RE LYS 304 14.838 28.698 43.098 4.00 0.00 ATOM 2935 1RE LYS 304 14.593 30.534 41.465 1.00 0.00 ATOM 2936 1RE LYS 304 13.056 31.656 42.005 1.00 0.00 ATOM 2937 1R2 LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2939 3RZ LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2939 3RZ LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2939 3RZ LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2939 3RZ LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2939 3RZ LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2930 3RZ LYS 304 12.760 28.437 41.509 1.00 0.00 ATOM 2940 N ASP 305 15.507 27.592 49.215 1.00 0.00 ATOM 2941 CA ASP 305 15.607 27.592 49.215 1.00 0.00 ATOM 2941 CA ASP 305 15.607 27.592 49.215 1.00 0.00 ATOM 2943 ASP 305 14.513 26.886 50.034 1.00 0.00 ATOM 2943 ASP 305 14.513 26.886 50.034 1.00 0.00 ATOM 2944 CB ASP 305 13.392 27.890 50.267 1.00 0.00 ATOM 2945 CA ASP 305 13.392 27.890 50.267 1.00 0.00 ATOM 2946 DDI ASP 305 13.392 27.890 50.267 1.00 0.00 ATOM 2947 ASP 305 13.392 27.890 50.267 1.00 0.00 ATOM 2948 H ASP 305 13.392 27.890 50.267 1.00 0.00 ATOM 2949 BA ASP 305 15.517 28.558 49.698 1.00 0.00 ATOM 2949 BA ASP 305 15.51 28.558 49.698 1.00 0.00 ATOM 2949 BA ASP 305 15.151 28.558 49.698 1.00 0.00 ATOM 2949 BA ASP 305 14.428 27.366 47.423 1.00 0.00 ATOM 2949 BA ASP 305 14.428 27.366 49.455 1.00 0.00 ATOM 2949 BA ASP 305 14.428 27.366 49.455 1.00 0.00 ATOM 2951 2RB ASP 305 14.980 24.980 49.158 1.00 0.00 ATOM 2951 2RB ASP 305 14.980 24.980 49.158 1.00 0.00 ATOM 2951 BA ASP 305 14.980 24.980 49.158 1.00 0.00 ATOM 2951 BA ASP 305 14.980 24.980 49.158 1.00 0.00 ATOM 2952 N LYS 306 18.990 24.8824 1.00 0.00 ATOM 2953 C LYS 306 18.990 24.8824 1.00 0.00 ATOM 2952 N LYS 306 18.990 24.8824 1.00 0.00 ATOM 2953 C LYS 306 18.990 24.8824 1.00 0.00 ATOM 2952 R LYS 306 18.990 24.8824 1.00 0.00 ATOM 2953 R LYS 306 18.990 24.8824 1.00 0.00 ATOM 2955 C LYS 306 18.990 24.8824 1.00 0.00 ATOM 2956 C		ATOM	2930 2HB	LYS	304	13.790	29.648	46.001	1.00	0.00		Н
ATOM		ATOM		LYS	304	15.536	30.796	43.849	1.00	0.00		. Н
ATOM 2933 1HD LYS 304 12.857 29.317 43.613 1.00 0.00 ATOM 2935 1HE LYS 304 14.838 28.698 43.098 1.00 0.00 ATOM 2935 1HE LYS 304 14.593 30.534 41.465 1.00 0.00 ATOM 2937 1H2 LYS 304 12.760 28.437 41.599 1.00 0.00 ATOM 2938 2HZ LYS 304 12.760 28.437 41.599 1.00 0.00 ATOM 2939 3HZ LYS 304 12.760 28.437 41.599 1.00 0.00 ATOM 2939 3HZ LYS 304 12.760 28.437 41.599 1.00 0.00 ATOM 2930 3HZ LYS 304 12.760 28.437 41.599 1.00 0.00 ATOM 2940 N ASP 305 15.287 27.767 47.827 1.00 0.00 ATOM 2941 C ASP 305 15.287 27.767 47.827 1.00 0.00 ATOM 2942 C ASP 305 15.287 27.767 47.827 1.00 0.00 ATOM 2943 0 ASP 305 16.862 26.797 49.367 1.00 0.00 ATOM 2944 CB ASP 305 16.862 26.797 49.367 1.00 0.00 ATOM 2945 C ASP 305 13.392 27.890 50.165 1.00 0.00 ATOM 2948 H ASP 305 13.392 27.890 50.247 1.00 0.00 ATOM 2949 28.7 ASP 305 13.392 27.890 50.247 1.00 0.00 ATOM 2949 ASP 305 13.392 27.890 50.247 1.00 0.00 ATOM 2949 BA ASP 305 13.596 29.090 49.942 1.00 0.00 ATOM 2949 BA ASP 305 15.517 28.558 49.699 1.00 0.00 ATOM 2949 BA ASP 305 15.517 28.558 49.699 1.00 0.00 ATOM 2949 BA ASP 305 14.462 26.557 50.55 1.00 0.00 ATOM 2949 BA ASP 305 14.600 26.557 50.75 1.00 0.00 ATOM 2949 BA ASP 305 15.392 27.890 50.24 1.00 0.00 ATOM 2949 BA ASP 305 15.392 27.890 50.267 1.00 0.00 ATOM 2949 BA ASP 305 15.392 27.890 50.267 1.00 0.00 ATOM 2949 BA ASP 305 15.390 27.890 49.942 1.00 0.00 ATOM 2949 BA ASP 305 15.390 27.390 49.942 1.00 0.00 ATOM 2949 BA ASP 305 15.390 27.890 49.942 1.00 0.00 ATOM 2949 BA ASP 305 15.390 27.890 49.942 1.00 0.00 ATOM 2949 BA ASP 305 15.390 27.890 49.942 1.00 0.00 ATOM 2949 BA ASP 305 15.390 27.890 49.942 1.00 0.00 ATOM 2949 BA ASP 305 15.390 27.890 49.942 1.00 0.00 ATOM 2949 BA ASP 305 16.4282 27.366 49.650 1.00 0.00 ATOM 2949 BA ASP 305 16.4282 27.366 49.650 1.00 0.00 ATOM 2951 CB LYS 306 18.990 49.990 49.912 1.00 0.00 ATOM 2952 N LYS 306 18.990 49.990 49.912 1.00 0.00 ATOM 2953 CB LYS 306 18.990 49.990 49.912 1.00 0.00 ATOM 2950 CB LYS 306 18.990 49.990 49.912 1.00 0.00 ATOM 2950 CB LYS 306 18.990 49.99					-							Н
15												н
ATOM	1.5											
ATOM 2936 ZHE LYS 304 12.760 22.437 61.500 1.00 0.00 ATOM 2937 HZ LYS 304 12.760 22.437 61.500 1.00 0.00 ATOM 2938 3HZ LYS 304 12.760 22.437 61.500 1.00 0.00 ATOM 2940 N ASP 305 15.287 27.767 47.827 1.00 0.00 ATOM 2941 CA ASP 305 15.807 27.592 49.215 1.00 0.00 ATOM 2942 C ASP 305 15.807 27.592 49.215 1.00 0.00 ATOM 2944 CA ASP 305 15.807 27.592 49.215 1.00 0.00 ATOM 2944 CA ASP 305 15.807 27.592 49.215 1.00 0.00 ATOM 2945 CA ASP 305 15.807 27.592 49.215 1.00 0.00 ATOM 2944 CB ASP 305 17.726 27.159 50.165 1.00 0.00 ATOM 2945 CG ASP 305 13.392 27.890 50.165 1.00 0.00 ATOM 2946 CG ASP 305 13.392 27.890 50.267 1.00 0.00 ATOM 2948 HA ASP 305 15.507 27.592 49.215 1.00 0.00 ATOM 2948 HA ASP 305 15.507 27.592 49.215 1.00 0.00 ATOM 2948 HA ASP 305 15.506 22.715 60.776 1.00 0.00 ATOM 2948 HA ASP 305 15.506 22.715 60.767 1.00 0.00 ATOM 2948 HA ASP 305 15.506 22.715 60.767 1.00 0.00 ATOM 2948 HA ASP 305 15.506 22.715 60.778 1.00 0.00 ATOM 2949 HA ASP 305 15.751 28.558 49.698 1.00 0.00 ATOM 2950 HB ASP 305 14.960 26.567 50.975 1.00 0.00 ATOM 2951 LBB ASP 305 14.960 26.567 50.975 1.00 0.00 ATOM 2952 N LYS 306 17.018 25.697 48.606 1.00 0.00 ATOM 2955 CB LYS 306 19.398 25.699 48.452 1.00 0.00 ATOM 2955 CB LYS 306 19.398 25.699 48.455 1.00 0.00 ATOM 2955 CB LYS 306 18.210 23.580 48.037 1.00 0.00 ATOM 2956 CB LYS 306 18.210 23.580 48.037 1.00 0.00 ATOM 2956 CB LYS 306 18.200 23.580 48.037 1.00 0.00 ATOM 2956 CB LYS 306 18.200 23.580 48.037 1.00 0.00 ATOM 2956 CB LYS 306 18.200 23.580 48.037 1.00 0.00 ATOM 2957 CB LYS 306 18.200 23.580 48.037 1.00 0.00 ATOM 2956 CB LYS 306 18.200 23.580 48.037 1.00 0.00 ATOM 2956 CB LYS 306 18.200 23.580 48.037 1.00 0.00 ATOM 2956 CB LYS 306 18.200 23.580 48.037 1.00 0.00 ATOM 2957 CB LYS 306 18.200 23.400 45.844 1.00 0.00 ATOM 2957 CB LYS 306 18.200 23.400 45.844 1.00 0.00 ATOM 2956 CB LYS 306 18.200 23.400 45.844 1.00 0.00 ATOM 2960 ND LYS 306 18.200 23.400 45.844 1.00 0.00 ATOM 2960 ND LYS 306 18.200 23.400 45.844 1.00 0.00 ATOM 2960 ND LYS 306 18.200 23.400 45.844 1.00 0.00 ATOM 2960 ND LYS 3	15								1			H
ATOM 2937 1HZ LYS 304 12.760 28.427 41.509 1.00 0.00 ATOM 2938 2HZ LYS 304 12.048 29.772 40.658 1.00 0.00 ATOM 2940 N ASP 305 15.287 27.78 40.688 1.00 0.00 ATOM 2941 CA ASP 305 15.607 27.592 49.215 1.00 0.00 ATOM 2942 C ASP 305 15.607 27.592 49.215 1.00 0.00 ATOM 2943 0 ASP 305 16.862 26.797 49.367 1.00 0.00 ATOM 2944 CB ASP 305 16.862 26.797 49.367 1.00 0.00 ATOM 2945 CG ASP 305 14.513 26.886 50.034 1.00 0.00 ATOM 2946 ODI ASP 305 13.596 29.090 49.942 1.00 0.00 ATOM 2946 ODI ASP 305 13.596 29.090 49.942 1.00 0.00 ATOM 2946 ASP 305 13.596 29.090 49.942 1.00 0.00 ATOM 2948 HA ASP 305 14.428 27.366 47.423 1.00 0.00 ATOM 2949 HA ASP 305 14.428 27.366 47.423 1.00 0.00 ATOM 2949 HA ASP 305 14.428 27.366 47.423 1.00 0.00 ATOM 2949 HA ASP 305 14.4960 26.567 50.975 1.00 0.00 ATOM 2950 1HB ASP 305 14.960 26.567 50.975 1.00 0.00 ATOM 2951 2HB ASP 305 14.960 26.567 50.975 1.00 0.00 ATOM 2952 N LYS 306 18.190 24.902 48.606 1.00 0.00 ATOM 2952 N LYS 306 18.190 24.902 48.606 1.00 0.00 ATOM 2955 CB LYS 306 18.190 24.902 48.604 1.00 0.00 ATOM 2955 CB LYS 306 18.390 24.902 48.604 1.00 0.00 ATOM 2950 CB LYS 306 18.398 25.699 48.455 1.00 0.00 ATOM 2959 CB LYS 306 18.354 23.727 46.523 1.00 0.00 ATOM 2959 CB LYS 306 18.354 23.727 46.523 1.00 0.00 ATOM 2959 CB LYS 306 18.354 23.727 46.523 1.00 0.00 ATOM 2959 CB LYS 306 18.354 23.727 46.523 1.00 0.00 ATOM 2959 CB LYS 306 18.354 23.727 46.523 1.00 0.00 ATOM 2959 CB LYS 306 18.354 23.727 46.523 1.00 0.00 ATOM 2959 CB LYS 306 18.354 23.727 46.523 1.00 0.00 ATOM 2959 CB LYS 306 18.354 23.727 46.523 1.00 0.00 ATOM 2958 CB LYS 306 18.354 23.727 46.523 1.00 0.00 ATOM 2958 CB LYS 306 18.354 23.727 46.523 1.00 0.00 ATOM 2958 CB LYS 306 18.354 23.727 46.523 1.00 0.00 ATOM 2968 HB LYS 306 18.341 22.344 4.327 1.00 0.00 ATOM 2968 LB LYS 306 18.341 22.344 4.327 1.00 0.00 ATOM 2968 LB LYS 306 19.368 23.202 44.074 1.00 0.00 ATOM 2968 LB LYS 306 19.368 23.202 44.074 1.00 0.00 ATOM 2968 LB LYS 306 19.339 23.202 44.074 1.00 0.00		MOTA		LYS								н.
ATOM		MOTA	2936 2HE	LYS	304	13.026	31.165	42.005	1.00	0.00		H
20		ATOM	2937 1HZ	LYS	304	12.760	28.437	41.509	1.00	0.00		Н
20		ATOM	2938 2HZ	LYS	304	12.048	29.727	40.698	1.00	0.00		Н
ATOM 2940 N ASP 305 15.287 27.767 47.827 1.00 0.00 0.00 ATOM 2941 CA ASP 305 15.607 27.592 49.215 1.00 0.00 0.00 ATOM 2941 CA ASP 305 15.607 27.592 49.215 1.00 0.00 0.00 ATOM 2943 0 ASP 305 17.726 27.159 50.1655 1.00 0.00 0.00 ATOM 2944 CB ASP 305 17.726 27.159 50.1655 1.00 0.00 0.00 ATOM 2945 CB ASP 305 13.392 27.880 50.267 1.00 0.00 0.00 ATOM 2946 ATOM 2946 001 ASP 305 13.392 27.880 50.267 1.00 0.00 0.00 ATOM 2947 OD2 ASP 305 13.392 27.890 49.922 1.00 0.00 0.00 ATOM 2948 H ASP 305 14.28 27.471 50.778 1.00 0.00 0.00 ATOM 2948 H ASP 305 14.28 27.366 47.423 1.00 0.00 0.00 ATOM 2948 H ASP 305 14.28 27.366 47.423 1.00 0.00 0.00 ATOM 2949 HA ASP 305 14.164 26.567 50.575 1.00 0.00 0.00 ATOM 2950 IHB ASP 305 14.164 26.567 50.575 1.00 0.00 0.00 ATOM 2951 2HB ASP 305 14.164 26.032 49.452 1.00 0.00 0.00 ATOM 2952 N LYS 306 17.018 25.667 48.606 1.00 0.00 ATOM 2952 N LYS 306 18.190 24.902 48.824 1.00 0.00 ATOM 2955 CB LYS 306 18.190 24.902 48.824 1.00 0.00 ATOM 2955 CB LYS 306 18.210 23.580 48.037 1.00 0.00 ATOM 2955 CB LYS 306 18.210 23.580 48.037 1.00 0.00 ATOM 2955 CB LYS 306 18.200 23.580 48.037 1.00 0.00 ATOM 2955 CB LYS 306 18.200 23.580 48.037 1.00 0.00 ATOM 2955 CB LYS 306 18.200 23.580 48.037 1.00 0.00 ATOM 2955 CB LYS 306 18.200 23.580 48.037 1.00 0.00 ATOM 2956 CB LYS 306 18.200 23.580 48.037 1.00 0.00 ATOM 2950 CB LYS 306 18.200 23.400 45.844 1.00 0.00 ATOM 2950 CB LYS 306 18.200 23.400 45.844 1.00 0.00 ATOM 2950 CB LYS 306 18.700 22.400 45.844 1.00 0.00 ATOM 2950 CB LYS 306 18.700 22.400 45.844 1.00 0.00 0.00 ATOM 2950 CB LYS 306 18.700 22.400 45.844 1.00 0.00 0.00 ATOM 2950 CB LYS 306 18.200 22.400 45.844 1.00 0.00 0.00 ATOM 2950 CB LYS 306 18.200 22.400 45.844 1.00 0.00 0.00 ATOM 2950 CB LYS 306 18.200 22.400 45.844 1.00 0.00 0.00 ATOM 2950 LB LYS 306 18.200 22.400 45.844 1.00 0.00 0.00 ATOM 2950 LB LYS 306 18.200 22.400 45.844 1.00 0.00 0.00 ATOM 2950 LB LYS 306 18.200 22.400 44.6250 1.00 0.00 0.00 ATOM 2950 LB LYS 306 18.200 22.400 44.6250 1.00 0.00 0.00 ATOM 2950 CB LYS 306 18.200 22.400 44.6250 1.00 0.0	20										•	Н
ATOM	20 .											N
## ATOM												
ATOM												С
25		MOTA	2942 C	ASP	305							С
RTOM		MOTA	2943 0	ASP	305	17.726	27.159	50.165	1.00	0.00		0
RTOM	25	MOTA	2944 CB	ASP	305	14.513	26.886	50.034	1.00	0.00		C
ATOM			2945 CG				27.890	50,267	1.00	0.00		С
ATOM												Ō
ATOM												Ö
ATOM												
ATOM	••					,						н -
ATOM	30	MOTA		ASP		15.751						H
ATOM		ATOM	2950 lHB	ASP	305	14.960	26.567	50.975	1.00	0.00		H
ATOM		MOTA	2951 2HB	ASP	305	14.164	26.032	49.452	1.00	0.00		H
ATOM	•	MOTA	2952 N	LYS	306	17.018	25.697	48.606	1.00	0.00		N
35												C
ATOM	25											Č
ATOM 2956 CB LYS 306 18.210 23.580 48.037 1.00 0.00 ATOM 2957 CG LYS 306 18.354 23.727 46.523 1.00 0.00 ATOM 2959 CD LYS 306 18.700 22.400 45.844 1.00 0.00 ATOM 2959 CE LYS 306 18.844 22.501 44.327 1.00 0.00 ATOM 2960 NZ LYS 306 19.175 21.174 43.761 1.00 0.00 ATOM 2961 H LYS 306 16.320 25.436 47.893 1.00 0.00 ATOM 2962 HA LYS 306 18.240 24.620 49.875 1.00 0.00 ATOM 2963 HB LYS 306 17.270 23.060 48.225 1.00 0.00 ATOM 2965 HB LYS 306 19.056 22.990 48.388 1.00 0.00 ATOM 2966 LYS 306 19.056 22.990 48.388 1.00 0.00 ATOM 2966 LYS 306 17.437 24.087 46.055 1.00 0.00 ATOM 2966 LYS 306 17.903 21.686 46.056 1.00 0.00 ATOM 2969 HB LYS 306 17.903 21.686 46.056 1.00 0.00 ATOM 2969 HB LYS 306 19.639 23.202 44.074 1.00 0.00 ATOM 2971 HZ LYS 306 19.639 23.202 44.074 1.00 0.00 ATOM 2971 HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2971 HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2971 HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2971 HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2971 HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2972 LZE LYS 306 20.080 21.224 43.072 1.00 0.00 ATOM 2973 HZ LYS 306 20.080 21.224 43.075 1.00 0.00 ATOM 2975 CA LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2979 CG LYS 307 20.430 27.216 44.908 1.00 0.00 ATOM 2979 CG LYS 307 20.430 27.216 44.908 1.00 0.00 ATOM 2979 CG LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2979 CG LYS 307 21.337 28.616 44.908 1.00 0.00 ATOM 2980 CD LYS 307 21.337 28.616 44.908 1.00 0.00 ATOM 2980 CD LYS 307 21.337 28.616 44.908 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2982 NZ LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2981 HA LYS 307 21.357 28.616 46.899 1.00 0.00 ATOM 2982 NZ LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2982 NZ LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2984 HA LYS 307 21.261 26.535 46.699 1.00 0.00	رد											
ATOM 2957 CG LYS 306 18.354 23.727 46.523 1.00 0.00 ATOM 2958 CD LYS 306 18.700 22.400 45.844 1.00 0.00 ATOM 2959 CD LYS 306 18.844 22.501 44.327 1.00 0.00 ATOM 2960 NZ LYS 306 18.844 22.501 44.327 1.00 0.00 ATOM 2961 H LYS 306 19.175 21.174 43.761 1.00 0.00 ATOM 2962 HA LYS 306 16.320 25.436 47.893 1.00 0.00 ATOM 2963 1HB LYS 306 16.320 24.620 49.875 1.00 0.00 ATOM 2964 2HB LYS 306 17.270 23.060 48.225 1.00 0.00 ATOM 2965 1HG LYS 306 19.066 22.990 48.388 1.00 0.00 ATOM 2966 2HG LYS 306 19.140 24.431 46.250 1.00 0.00 ATOM 2966 2HG LYS 306 17.437 24.087 46.055 1.00 0.00 ATOM 2965 1HD LYS 306 17.903 21.686 46.056 1.00 0.00 ATOM 2969 1HD LYS 306 17.993 21.686 46.056 1.00 0.00 ATOM 2969 1HE LYS 306 19.639 23.202 44.074 1.00 0.00 ATOM 2969 1HE LYS 306 19.639 23.202 44.074 1.00 0.00 ATOM 2970 2HE LYS 306 19.639 23.202 44.074 1.00 0.00 ATOM 2971 1HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2972 2HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2973 3HZ LYS 306 18.441 20.891 43.095 1.00 0.00 ATOM 2973 1HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2973 1HZ LYS 306 18.441 20.891 43.095 1.00 0.00 ATOM 2973 1HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2973 1HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2973 1HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2973 1HZ LYS 306 18.441 20.891 43.095 1.00 0.00 ATOM 2973 1HZ LYS 307 20.182 27.948 45.591 1.00 0.00 ATOM 2975 CA LYS 307 20.194 28.205 47.945 1.00 0.00 ATOM 2977 0. LYS 307 20.194 28.205 47.945 1.00 0.00 ATOM 2978 CB LYS 307 20.198 27.988 45.591 1.00 0.00 ATOM 2978 CB LYS 307 21.337 28.616 44.998 1.00 0.00 ATOM 2980 CD LYS 307 22.037 29.699 45.732 1.00 0.00 ATOM 2981 CC LYS 307 23.252 30.313 45.055 1.00 0.00 ATOM 2983 H LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2985 1HB LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2985 1HB LYS 307 18.426 26.476 46.819 1.00 0.00												0
## ATOM											•	С
ATOM		MOTA.	2957 CG	LYS	306	18.354	23.727	46.523	1.00	0.00		С
ATOM 2960 NZ LYS 306 19.175 21.174 43.761 1.00 0.00 ATOM 2961 H LYS 306 16.320 25.436 47.893 1.00 0.00 ATOM 2962 HA LYS 306 18.240 24.620 49.875 1.00 0.00 ATOM 2963 1HB LYS 306 17.270 23.060 48.225 1.00 0.00 45 ATOM 2964 2HB LYS 306 19.056 22.990 48.388 1.00 0.00 ATOM 2965 1HG LYS 306 19.140 24.431 46.250 1.00 0.00 ATOM 2966 2HG LYS 306 17.437 24.087 46.055 1.00 0.00 ATOM 2967 1HD LYS 306 17.903 21.686 46.056 1.00 0.00 ATOM 2968 2HD LYS 306 17.903 21.686 46.056 1.00 0.00 ATOM 2969 1HE LYS 306 19.648 22.044 46.246 1.00 0.00 ATOM 2969 1HE LYS 306 19.639 23.202 44.074 1.00 0.00 ATOM 2971 1HZ LYS 306 17.910 22.850 43.886 1.00 0.00 ATOM 2972 2HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2973 3HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2974 N LYS 307 19.311 26.450 47.347 1.00 0.00 ATOM 2975 CA LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2977 0 LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2978 CB LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2979 CG LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2979 CG LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2979 CG LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2979 CG LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2979 CG LYS 307 21.972 28.465 48.185 1.00 0.00 ATOM 2980 CD LYS 307 22.337 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2985 HB LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2985 HB LYS 307 23.851 31.358 45.895 1.00 0.00		MOTA	2958 CD	LYS	306	18.700	22.400	45.844	1.00	0.00		С
ATOM 2960 NZ LYS 306 19.175 21.174 43.761 1.00 0.00 ATOM 2961 H LYS 306 16.320 25.436 47.893 1.00 0.00 ATOM 2962 HA LYS 306 18.240 24.620 49.875 1.00 0.00 ATOM 2963 1HB LYS 306 17.270 23.060 48.225 1.00 0.00 ATOM 2964 2HB LYS 306 19.056 22.990 48.388 1.00 0.00 ATOM 2965 1HG LYS 306 19.140 24.431 46.250 1.00 0.00 ATOM 2966 2HG LYS 306 17.437 24.087 46.055 1.00 0.00 ATOM 2967 1HD LYS 306 17.903 21.686 46.055 1.00 0.00 ATOM 2968 2HD LYS 306 17.903 21.686 46.055 1.00 0.00 ATOM 2968 2HD LYS 306 19.648 22.044 46.246 1.00 0.00 ATOM 2969 1HE LYS 306 19.639 23.202 44.074 1.00 0.00 ATOM 2970 2HE LYS 306 17.910 22.850 43.886 1.00 0.00 ATOM 2971 1HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2973 3HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2973 3HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2974 N LYS 307 19.311 26.450 47.347 1.00 0.00 ATOM 2975 CA LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2977 0 LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2978 CB LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2979 CG LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2979 CG LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2979 CG LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2979 CG LYS 307 21.972 28.465 48.185 1.00 0.00 ATOM 2980 CD LYS 307 21.337 28.616 44.908 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 23.851 31.358 45.895 1.00 0.00 ATOM 2985 HB LYS 307 21.261 26.535 46.699 1.00 0.00 ATOM 2985 HB LYS 307 21.261 26.535 46.699 1.00 0.00	40	MOTA	2959 CE	LYS	306	18.844	22.501	44.327	1.00	0.00		С
ATOM 2961 H LYS 306 16.320 25.436 47.893 1.00 0.00 ATOM 2962 HA LYS 306 18.240 24.620 49.875 1.00 0.00 ATOM 2963 1HB LYS 306 17.270 23.060 48.225 1.00 0.00 ATOM 2964 2HB LYS 306 17.270 23.060 48.225 1.00 0.00 ATOM 2965 1HG LYS 306 19.140 24.431 46.250 1.00 0.00 ATOM 2965 1HG LYS 306 19.140 24.431 46.250 1.00 0.00 ATOM 2967 1HD LYS 306 17.437 24.087 46.055 1.00 0.00 ATOM 2967 1HD LYS 306 17.903 21.686 46.056 1.00 0.00 ATOM 2968 2HD LYS 306 19.648 22.044 46.026 1.00 0.00 ATOM 2969 1HE LYS 306 19.639 23.202 44.074 1.00 0.00 ATOM 2970 2HE LYS 306 19.639 23.202 44.074 1.00 0.00 ATOM 2971 1HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2973 3HZ LYS 306 18.441 20.891 43.095 1.00 0.00 ATOM 2973 3HZ LYS 306 20.080 21.224 43.272 1.00 0.00 55 ATOM 2974 N LYS 307 19.311 26.450 47.347 1.00 0.00 ATOM 2975 CA LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2976 C LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2977 O LYS 307 20.794 28.205 47.945 1.00 0.00 ATOM 2978 CB LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2979 CG LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2980 CD LYS 307 22.372 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 23.851 31.358 45.895 1.00 0.00 ATOM 2983 H LYS 307 23.851 31.358 45.895 1.00 0.00 ATOM 2984 HA LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00												N
ATOM 2962 HA LYS 306 18.240 24.620 49.875 1.00 0.00 ATOM 2963 1HB LYS 306 17.270 23.060 48.225 1.00 0.00 ATOM 2964 2HB LYS 306 19.056 22.990 48.388 1.00 0.00 ATOM 2965 1HG LYS 306 19.140 24.431 46.250 1.00 0.00 ATOM 2966 2HG LYS 306 17.437 24.087 46.055 1.00 0.00 ATOM 2966 2HG LYS 306 17.437 24.087 46.055 1.00 0.00 ATOM 2968 2HD LYS 306 17.903 21.686 46.056 1.00 0.00 ATOM 2969 1HE LYS 306 19.648 22.044 46.246 1.00 0.00 ATOM 2970 2HE LYS 306 17.910 22.850 43.886 1.00 0.00 ATOM 2971 1HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2972 2HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2973 3HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2973 3HZ LYS 306 18.441 20.891 43.095 1.00 0.00 ATOM 2974 N LYS 307 19.311 26.450 47.347 1.00 0.00 ATOM 2975 CA LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2977 O LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2977 O LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2978 CB LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2979 CG LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2980 CD LYS 307 22.237 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2983 H LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 26.476 46.819 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00	,											H
ATOM 2963 1HB LYS 306 17.270 23.060 48.225 1.00 0.00 ATOM 2964 2HB LYS 306 19.056 22.990 48.388 1.00 0.00 ATOM 2966 2HG LYS 306 19.140 24.431 46.250 1.00 0.00 ATOM 2966 2HG LYS 306 17.437 24.087 46.055 1.00 0.00 ATOM 2967 1HD LYS 306 17.903 21.686 46.056 1.00 0.00 ATOM 2968 2HD LYS 306 19.648 22.044 46.246 1.00 0.00 ATOM 2969 1HE LYS 306 19.639 23.202 44.074 1.00 0.00 ATOM 2970 2HE LYS 306 17.910 22.850 43.886 1.00 0.00 ATOM 2971 1HZ LYS 306 17.910 22.850 43.886 1.00 0.00 ATOM 2972 2HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2973 3HZ LYS 306 18.441 20.891 43.095 1.00 0.00 ATOM 2973 3HZ LYS 306 20.080 21.224 43.272 1.00 0.00 ATOM 2975 CA LYS 307 19.311 26.450 47.347 1.00 0.00 ATOM 2976 C LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2977 O LYS 307 20.490 27.216 46.887 1.00 0.00 ATOM 2978 CB LYS 307 20.794 28.205 47.945 1.00 0.00 ATOM 2979 CG LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2979 CG LYS 307 22.118 27.988 45.591 1.00 0.00 ATOM 2980 CD LYS 307 22.037 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2983 H LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2983 H LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00												H
45 ATOM 2964 2HB LYS 306 19.056 22.990 48.388 1.00 0.00 ATOM 2965 1HG LYS 306 19.140 24.431 46.250 1.00 0.00 ATOM 2967 1HD LYS 306 17.437 24.087 46.055 1.00 0.00 ATOM 2968 2HD LYS 306 19.648 22.044 46.246 1.00 0.00 50 ATOM 2969 1HE LYS 306 19.639 23.202 44.074 1.00 0.00 ATOM 2970 2HE LYS 306 17.910 22.850 43.886 1.00 0.00 ATOM 2971 1HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2973 3HZ LYS 306 18.441 20.891 43.955 1.00 0.00 55 ATOM 2973 3HZ LYS 307 20.430 27.216 46.887 1					-							
ATOM 2965 1HG LYS 306 19.140 24.431 46.250 1.00 0.00 ATOM 2966 2HG LYS 306 17.437 24.087 46.055 1.00 0.00 0.00 ATOM 2967 1HD LYS 306 17.903 21.686 46.056 1.00 0.00 0.00 ATOM 2968 2HD LYS 306 19.648 22.044 46.246 1.00 0.00 0.00 ATOM 2969 1HE LYS 306 19.639 23.202 44.074 1.00 0.00 ATOM 2971 1HZ LYS 306 19.639 23.202 44.074 1.00 0.00 0.00 ATOM 2971 1HZ LYS 306 19.233 20.481 44.520 1.00 0.00 0.00 ATOM 2972 2HZ LYS 306 18.441 20.891 43.095 1.00 0.00 0.00 ATOM 2973 3HZ LYS 306 18.441 20.891 43.095 1.00 0.00 0.00 ATOM 2973 3HZ LYS 306 20.080 21.224 43.272 1.00 0.00 0.00 ATOM 2974 N LYS 307 19.311 26.450 47.347 1.00 0.00 0.00 ATOM 2975 CA LYS 307 20.430 27.216 46.887 1.00 0.00 0.00 ATOM 2976 C LYS 307 20.430 27.216 46.887 1.00 0.00 0.00 ATOM 2977 O LYS 307 20.430 27.216 46.887 1.00 0.00 0.00 ATOM 2978 CB LYS 307 20.118 27.988 45.591 1.00 0.00 0.00 ATOM 2979 CG LYS 307 20.118 27.988 45.591 1.00 0.00 0.00 ATOM 2979 CG LYS 307 22.37 28.616 44.908 1.00 0.00 0.00 ATOM 2980 CD LYS 307 22.037 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 22.037 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2984 HA LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2985 1HB LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00												• Н
ATOM 2966 2HG LYS 306 17.437 24.087 46.055 1.00 0.00 ATOM 2967 1HD LYS 306 17.903 21.686 46.056 1.00 0.00 ATOM 2968 2HD LYS 306 19.648 22.044 46.246 1.00 0.00 ATOM 2969 1HE LYS 306 19.639 23.202 44.074 1.00 0.00 ATOM 2970 2HE LYS 306 17.910 22.850 43.886 1.00 0.00 ATOM 2971 1HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2972 2HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2972 2HZ LYS 306 18.441 20.891 43.095 1.00 0.00 ATOM 2973 3HZ LYS 306 20.080 21.224 43.272 1.00 0.00 ATOM 2975 CA LYS 307 19.311 26.450 47.347 1.00 0.00 ATOM 2976 C LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2977 0 LYS 307 20.794 28.205 47.945 1.00 0.00 ATOM 2977 0 LYS 307 21.972 28.465 48.185 1.00 0.00 ATOM 2978 CB LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2979 CG LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2980 CD LYS 307 22.037 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 23.252 30.313 45.895 1.00 0.00 ATOM 2984 HA LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 26.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.666 27.293 44.882 1.00 0.00 ATOM 2985 1HB LYS 307 19.666 27.293 44.882 1.00 0.00 ATOM 2985 1HB LYS 307 19.666 27.293 44.882 1.00 0.00 ATOM 2986 2HB LYS 307 19.666 27.293 44.882 1.00 0.00 ATOM 2986 2HB LYS 307 19.666 27.293 44.882 1.00 0.00 ATOM 2986 2HB LYS 307 19.666 27.293 44.882 1.00 0.00 ATOM 2986 2HB LYS 307 19.666	45	MOTA		LYS			.22.990		1.00			Н
ATOM 2967 1HD LYS 306 17.903 21.686 46.056 1.00 0.00 ATOM 2968 2HD LYS 306 19.648 22.044 46.246 1.00 0.00 ATOM 2969 1HE LYS 306 19.639 23.202 44.074 1.00 0.00 ATOM 2970 2HE LYS 306 17.910 22.850 43.886 1.00 0.00 ATOM 2971 1HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2972 2HZ LYS 306 18.441 20.891 43.095 1.00 0.00 ATOM 2973 3HZ LYS 306 20.080 21.224 43.272 1.00 0.00 ATOM 2974 N LYS 307 19.311 26.450 47.347 1.00 0.00 ATOM 2975 CA LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2977 0 LYS 307 20.794 28.205 47.945 1.00 0.00 ATOM 2977 0 LYS 307 21.972 28.465 48.185 1.00 0.00 ATOM 2979 CG LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2979 CG LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2980 CD LYS 307 21.337 28.616 44.908 1.00 0.00 ATOM 2981 CE LYS 307 22.037 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 23.851 31.358 45.895 1.00 0.00 ATOM 2984 HA LYS 307 19.466 27.293 44.882 1.00 0.00 ATOM 2985 1HB LYS 307 19.466 28.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.466 28.795 45.834 1.00 0.00		MOTA	2965 1HG	LYS	306	19.140	24.431	46.250	1.00	0.00		Н
ATOM 2967 1HD LYS 306 17.903 21.686 46.056 1.00 0.00 ATOM 2968 2HD LYS 306 19.648 22.044 46.246 1.00 0.00 ATOM 2969 1HE LYS 306 19.639 23.202 44.074 1.00 0.00 ATOM 2970 2HE LYS 306 17.910 22.850 43.886 1.00 0.00 ATOM 2971 1HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2972 2HZ LYS 306 18.441 20.891 43.095 1.00 0.00 ATOM 2973 3HZ LYS 306 20.080 21.224 43.272 1.00 0.00 ATOM 2974 N LYS 307 19.311 26.450 47.347 1.00 0.00 ATOM 2975 CA LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2977 0 LYS 307 20.794 28.205 47.945 1.00 0.00 ATOM 2977 0 LYS 307 21.972 28.465 48.185 1.00 0.00 ATOM 2979 CG LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2979 CG LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2980 CD LYS 307 21.337 28.616 44.908 1.00 0.00 ATOM 2981 CE LYS 307 22.037 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 23.851 31.358 45.895 1.00 0.00 ATOM 2984 HA LYS 307 19.466 27.293 44.882 1.00 0.00 ATOM 2985 1HB LYS 307 19.466 28.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.466 28.795 45.834 1.00 0.00		MOTA	2966 2HG	LYS	306	17.437	24.087	46.055	1.00	0.00		- H
ATOM 2968 2HD LYS 306 19.648 22.044 46.246 1.00 0.00 ATOM 2970 2HE LYS 306 17.910 22.850 43.886 1.00 0.00 ATOM 2971 1HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2972 2HZ LYS 306 18.441 20.891 43.095 1.00 0.00 ATOM 2973 3HZ LYS 306 20.080 21.224 43.272 1.00 0.00 ATOM 2974 N LYS 307 19.311 26.450 47.347 1.00 0.00 ATOM 2975 CA LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2977 C LYS 307 20.794 28.205 47.945 1.00 0.00 ATOM 2978 CB LYS 307 21.972 28.465 48.185 1.00 0.00 ATOM 2979 CG LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2980 CD LYS 307 22.037 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2984 HA LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00			2967 1HD	LYS	306	17.903	21.686	46.056	1.00	0.00		. Н
50 ATOM 2969 1HE LYS 306 19.639 23.202 44.074 1.00 0.00 ATOM 2971 1HZ LYS 306 17.910 22.850 43.886 1.00 0.00 ATOM 2971 1HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2972 2HZ LYS 306 18.441 20.891 43.095 1.00 0.00 ATOM 2973 3HZ LYS 306 20.080 21.224 43.272 1.00 0.00 ATOM 2974 N LYS 307 19.311 26.450 47.347 1.00 0.00 ATOM 2975 CA LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2976 C LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2977 O LYS 307 21.972 28.465 48.185 1.00 0.00 ATOM 2978 CB LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2979 CG LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2980 CD LYS 307 22.037 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 22.037 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2982 NZ LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 23.851 31.358 45.895 1.00 0.00 ATOM 2983 H LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2984 HA LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2986 2HB LYS 307 19.426 28.795 45.834 1.00 0.00												Н .
ATOM 2970 2HE LYS 306 17.910 22.850 43.886 1.00 0.00 ATOM 2971 1HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2972 2HZ LYS 306 18.441 20.891 43.095 1.00 0.00 ATOM 2973 3HZ LYS 306 20.080 21.224 43.272 1.00 0.00 55 ATOM 2974 N LYS 307 19.311 26.450 47.347 1.00 0.00 ATOM 2975 CA LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2976 C LYS 307 20.794 28.205 47.945 1.00 0.00 ATOM 2977 O LYS 307 21.972 28.465 48.185 1.00 0.00 ATOM 2978 CB LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2979 CG LYS 307 21.337 28.616 44.908 1.00 0.00 ATOM 2980 CD LYS 307 22.037 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2982 NZ LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 23.851 31.358 45.895 1.00 0.00 ATOM 2984 HA LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00	50											Н
ATOM 2971 1HZ LYS 306 19.233 20.481 44.520 1.00 0.00 ATOM 2972 2HZ LYS 306 18.441 20.891 43.095 1.00 0.00 ATOM 2973 3HZ LYS 306 20.080 21.224 43.272 1.00 0.00 55 ATOM 2974 N LYS 307 19.311 26.450 47.347 1.00 0.00 ATOM 2975 CA LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2976 C LYS 307 20.794 28.205 47.945 1.00 0.00 ATOM 2977 O LYS 307 21.972 28.465 48.185 1.00 0.00 ATOM 2978 CB LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2979 CG LYS 307 21.337 28.616 44.908 1.00 0.00 ATOM 2980 CD LYS 307 22.037 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2982 NZ LYS 307 23.851 31.358 45.895 1.00 0.00 ATOM 2983 H LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2984 HA LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00	50											
ATOM 2972 2HZ LYS 306 18.441 20.891 43.095 1.00 0.00 ATOM 2973 3HZ LYS 306 20.080 21.224 43.272 1.00 0.00 55 ATOM 2974 N LYS 307 19.311 26.450 47.347 1.00 0.00 ATOM 2975 CA LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2976 C LYS 307 20.794 28.205 47.945 1.00 0.00 ATOM 2977 O LYS 307 21.972 28.465 48.185 1.00 0.00 ATOM 2978 CB LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2979 CG LYS 307 21.337 28.616 44.908 1.00 0.00 ATOM 2980 CD LYS 307 22.037 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2982 NZ LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 23.851 31.358 45.895 1.00 0.00 ATOM 2984 HA LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00												H
ATOM 2973 3HZ LYS 306 20.080 21.224 43.272 1.00 0.00 55 ATOM 2974 N LYS 307 19.311 26.450 47.347 1.00 0.00 ATOM 2975 CA LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2976 C LYS 307 20.794 28.205 47.945 1.00 0.00 ATOM 2977 O LYS 307 21.972 28.465 48.185 1.00 0.00 ATOM 2978 CB LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2979 CG LYS 307 21.337 28.616 44.908 1.00 0.00 ATOM 2980 CD LYS 307 22.037 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2982 NZ LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 23.851 31.358 45.895 1.00 0.00 ATOM 2983 H LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2984 HA LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2985 2HB LYS 307 19.666 27.293 44.882 1.00 0.00												Н
55 ATOM 2974 N LYS 307 19.311 26.450 47.347 1.00 0.00 ATOM 2975 CA LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2976 C LYS 307 20.794 28.205 47.945 1.00 0.00 ATOM 2977 O LYS 307 21.972 28.465 48.185 1.00 0.00 ATOM 2978 CB LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2979 CG LYS 307 21.337 28.616 44.908 1.00 0.00 ATOM 2980 CD LYS 307 22.037 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2982 NZ LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 23.851 31.358 45.895 1.00 0.00 ATOM 2983 H LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2984 HA LYS 307 21.261 26.535 46.699 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2986 2HB LYS 307 19.666 27.293 44.882 1.00 0.00		MOTA	2972 2HZ	LYS	306	18.441		43.095	1.00	0.00		H
55 ATOM 2974 N LYS 307 19.311 26.450 47.347 1.00 0.00 ATOM 2975 CA LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2976 C LYS 307 20.794 28.205 47.945 1.00 0.00 ATOM 2977 O LYS 307 21.972 28.465 48.185 1.00 0.00 ATOM 2978 CB LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2979 CG LYS 307 21.337 28.616 44.908 1.00 0.00 ATOM 2980 CD LYS 307 22.037 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2982 NZ LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2983 H LYS 307 23.851 31.358 45.895 1.00 0.00 ATOM 2983 H LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2984 HA LYS 307 21.261 26.535 46.699 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2986 2HB LYS 307 19.666 27.293 44.882 1.00 0.00		ATOM	2973 3HZ	LYS	306	20.080	21.224	43.272	1.00	0.00		H
ATOM 2975 CA LYS 307 20.430 27.216 46.887 1.00 0.00 ATOM 2976 C LYS 307 20.794 28.205 47.945 1.00 0.00 ATOM 2977 O LYS 307 21.972 28.465 48.185 1.00 0.00 ATOM 2978 CB LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2979 CG LYS 307 21.337 28.616 44.908 1.00 0.00 ATOM 2980 CD LYS 307 22.037 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2982 NZ LYS 307 23.851 31.358 45.895 1.00 0.00 ATOM 2983 H LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2984 HA LYS 307 21.261 26.535 46.699 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2986 2HB LYS 307 19.666 27.293 44.882 1.00 0.00	55	MOTA		LYS	307	19.311	26.450	47.347	1.00	0.00		. N
ATOM 2976 C LYS 307 20.794 28.205 47.945 1.00 0.00 ATOM 2977 O LYS 307 21.972 28.465 48.185 1.00 0.00 ATOM 2978 CB LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2979 CG LYS 307 21.337 28.616 44.908 1.00 0.00 ATOM 2980 CD LYS 307 22.037 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2982 NZ LYS 307 23.851 31.358 45.895 1.00 0.00 ATOM 2983 H LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2984 HA LYS 307 21.261 26.535 46.699 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2986 2HB LYS 307 19.666 27.293 44.882 1.00 0.00	_									0 00		С
ATOM 2977 O LYS 307 21.972 28.465 48.185 1.00 0.00 ATOM 2978 CB LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2979 CG LYS 307 21.337 28.616 44.908 1.00 0.00 ATOM 2980 CD LYS 307 22.037 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2982 NZ LYS 307 23.851 31.358 45.895 1.00 0.00 ATOM 2983 H LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2984 HA LYS 307 21.261 26.535 46.699 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2986 2HB LYS 307 19.666 27.293 44.882 1.00 0.00												č
ATOM 2978 CB LYS 307 20.118 27.988 45.591 1.00 0.00 ATOM 2979 CG LYS 307 21.337 28.616 44.908 1.00 0.00 ATOM 2980 CD LYS 307 22.037 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2982 NZ LYS 307 23.851 31.358 45.895 1.00 0.00 ATOM 2983 H LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2984 HA LYS 307 21.261 26.535 46.699 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2986 2HB LYS 307 19.666 27.293 44.882 1.00 0.00												
60 ATOM 2979 CG LYS 307 21.337 28.616 44.908 1.00 0.00 ATOM 2980 CD LYS 307 22.037 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2982 NZ LYS 307 23.851 31.358 45.895 1.00 0.00 ATOM 2983 H LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2984 HA LYS 307 21.261 26.535 46.699 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2986 2HB LYS 307 19.666 27.293 44.882 1.00 0.00												0
ATOM 2980 CD LYS 307 22.037 29.699 45.732 1.00 0.00 ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2982 NZ LYS 307 23.851 31.358 45.895 1.00 0.00 ATOM 2983 H LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2984 HA LYS 307 21.261 26.535 46.699 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2986 2HB LYS 307 19.666 27.293 44.882 1.00 0.00		MOTA										С
ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2982 NZ LYS 307 23.851 31.358 45.895 1.00 0.00 ATOM 2983 H LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2984 HA LYS 307 21.261 26.535 46.699 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2986 2HB LYS 307 19.666 27.293 44.882 1.00 0.00	60	ATOM	2979 CG	LYS	307	21.337	28.616	44.908	1.00	0.00		C.
ATOM 2981 CE LYS 307 23.252 30.313 45.035 1.00 0.00 ATOM 2982 NZ LYS 307 23.851 31.358 45.895 1.00 0.00 ATOM 2983 H LYS 307 18.426 26.476 46.819 1.00 0.00 ATOM 2984 HA LYS 307 21.261 26.535 46.699 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2986 2HB LYS 307 19.666 27.293 44.882 1.00 0.00				LYS		22.037	29.699	45.732	1.00	0.00		С
ATOM 2982 NZ LYS 307 23.851 31.358 45.895 1.00 0.00 ATOM 2983 H LYS 307 18.426 26.476 46.819 1.00 0.00 65 ATOM 2984 HA LYS 307 21.261 26.535 46.699 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2986 2HB LYS 307 19.666 27.293 44.882 1.00 0.00												Ċ
ATOM 2983 H LYS 307 18.426 26.476 46.819 1.00 0.00 65 ATOM 2984 HA LYS 307 21.261 26.535 46.699 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2986 2HB LYS 307 19.666 27.293 44.882 1.00 0.00												N
65 ATOM 2984 HA LYS 307 21.261 26.535 46.699 1.00 0.00 ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2986 2HB LYS 307 19.666 27.293 44.882 1.00 0.00												
ATOM 2985 1HB LYS 307 19.426 28.795 45.834 1.00 0.00 ATOM 2986 2HB LYS 307 19.666 27.293 44.882 1.00 0.00												H
ATOM 2986 2HB LYS 307 19.666 27.293 44.882 1.00 0.00	60											Н
		ATOM							1.00	.0.00		Н
		MOTA		LYS	307	19.666	- 27.293	44.882	1.00	0.00		H
ATOM 2987 ING LYS 307 21.007 29.072 43.974 1.00 0.00		ATOM	2987 1HG	LYS	307	21.007	29.072	43.974	1.00	0.00		н

	ATOM	2988 2HG	LYS	307	22.064	27.827	44.714	1.00	0.00		Н
	ATOM		LYS	307	22.413	29.344	46.691	1.00	0.00		H
	ATOM		LYS	307 .	21.396	.30.546	45.977	1.00	0.00		H
	ATOM		LYS	307	22.949	30.761	44.088	1.00	0.00		H
5	ATOM	2992 2HE	LYS	307	23.997	29.541	44.841	1.00	0.00		H
	MOTA		LYS	307	23.312	31.434	46.769	1.00	0.00		H
	MOTA		LYS	307	24.825	31.106	46.113	1.00	0.00		H
	MOTA		LYS	307	23.832	32.261	45.401	1.00	0.00		H
	ATOM		ASN	308	19.788	28.784	48.622	1.00	0.00		N C
10	MOTA		ASN	308	20.100	29.798	49.585	1.00	0.00		C
	ATOM		ASN	308 '	21.006	29.231 29.785	50.635	1.00	0.00		0
	ATOM		ASN	308	22.071 18.848	30.327	50.906 50.307	1.00	0.00		c
	MOTA		ASN ASN	308 308	19.247	31.528	51.153	1.00	0.00		Č
15	ATOM	3001 CG 3002 OD1		308	20.366	32.029	51.054	1.00	0.00		Ö
15	MOTA	3002 OD1		308	18.309	32.003	52.016	1.00	0.00		N
	ATOM ATOM	3003 ND2	ASN	308	18.811	28.504	48.451	1:00	0.00		H
	ATOM		ASN	308	20.597	30.631	49.089	1.00	0.00		H
	ATOM	3006 1HB	ASN	308	18.450	29.533	50.939	1.00	0.00		Н
20	MOTA	3007 2HB	ASN	308	18.112	30.618	49.557	1.00	0.00		H
20	ATOM	3008 1HD2		308	18.524	32.811	52.617	1.00	0.00		H
	ATOM	3009 2HD2		308	17.383	31.554	52.068	1.00	0.00		H
	MOTA	3010 N	ASP	309	20.605	28.106	51.258	1.00	0.00		N
	ATOM	3011 CA	ASP	309	21.388	27.540	52.320	1.00	0.00		С
25	MOTA	3012 C	ASP	309	22.665	26.942	51.803	1.00	0.00		C
	MOTA	3013 0	ASP	309	23.747	27.246	52.304	1.00	0.00		0
	MOTA	3014 CB	ASP	309 .	20.635	26.430	53.073	1.00	0.00		С
	MOTA	⁻ 3015 CG	ASP	309	19.471	27.076	53.813	1.00	0.00		C
	ATOM	3016 OD1		309	19.395	28.333	53.812	1.00	0.00		0
30	MOTA		ASP	309	18.644	26.320	54.390	1.00	0.00		H
	MOTA	3018 H	ASP	309	19.728	27.647 28.292	50.969 53.061	1.00	0.00		H
	MOTA	3019 HA	ASP	309 309	21.657 21.333	25.966	53.769	1.00	0.00		H
	ATOM	3020 1HB 3021 2HB	ASP ASP	309	20.279	25.709	52.336	1.00	0.00		Н
35	'ATOM ATOM	3021 2HB	ILE	310	22.562	26.078	50.772	1.00	0.00		N
٠	ATOM	3023 CA	ILE	310	23.688	25.341	50.263	1.00	0.00		С
	ATOM	3024 C	ILE	310	24.679	26.236	49.592	1.00	0.00		С
	ATOM	3025 0	ILE	310	25.879	26.087	49.814	1.00	0.00		0
	MOTA	3026 CB	ILE	310	23.289	24.288	49.273	1.00	0.00		С
40	ATOM	3027 CG1	ILE	310	22.391	23.238	49.948	1.00	0.00		С
	MOTA	3028 CG2	ILE	310	24.575	23.700	48.668	1.00	0.00		С
	MOTA	3029 CD1	ILE	310	23.080	22.501	51.096	1.00	0.00		C
	MOTA	3030 H	ILE	310	21.641	25.940	50.331	1.00	0.00		H
	MOTA	3031 HA	ILE	310	24.218	24.814	51.056	1.00	0.00	,	H H
45	MOTA	3032 HB	ILE	310	22.677		48.507	1.00	0.00	•	л Н
	ATOM	3033 1HG1		310	22.051 21.483	22.458 23.659	49.266 50.379	1.00	0.00		H
	MOTA	3034 2HG1		310	25.442	24.192	49.107	1.00	0.00		H
	MOTA	3035 1HG2 3036 2HG2		310 310	24.620	22.631	48.877	1.00	0.00		H
50	ATOM ATOM	3036 2HG2		310	24.575	23.858	47.589	1.00	0.00		H
50	ATOM	3037 3HG2		310	24.097	22.876	51.210	1.00	0.00		H
	MOTA	3039 2HD1		310	22.525	22.667	52.019	1.00	0.00	-	H
	ATOM	3040 3HD1		310	23.109	21.433	50.877	1.00	0.00		н
	ATOM	3041 N	GLU	311	24.186	27.194	48.779	1.0,0	0.00		N
55	MOTA	3042 CA	GLU	311	24.943	28.128	47.983	1.00	0.00	•	С
	ATOM	3043 C	GLU	311	25.034	27.561	46.604	1.00	0.00		С
	ATOM	3044 O	GLU	311	25.245	28.291	45.636	1.00	0.00		0
	MOTA	3045 CB	GLU	311	26.400	28.389	48.424	1.00	0.00		С
	MOTA	3046 CG	GLU	311	27.404	27.341	47.930	1.00	0.00		C
60	MOTA	3047 CD	GLU	311	28.788	27.726	48.434	1.00	0.00		C
	MOTA		GLU	311	28.894	28.759	49.148	1.00	0.00		0
	MOTA		GLU	311	29.759		48.108	1.00	0.00		O H
	ATOM	3050 H	GLU	311	23.160		48.721	1.00	0.00		H H
<i>~</i>	ATOM	3051 HA	GLU	311	24.401		47.993 49.513	1.00 1.00	0.00	•	л Н
65	MOTA	3052 1HB	GLU	311	26.432 26.709		48.028	1.00	0.00		H
	MOTA	3053 2HB 3054 1HG	GLU	311 311	27.383		46.840	1.00	0.00		H
	MOTA MOTA	3054 ING 3055 2HG	GLU	311	27.110		48.326		0.00		H
	AT OF	2022 2110	Ç10								

PCT/CA01/00607

													•	
	ATOM	3056	N	ALA	312		24.867	26.231	46.477	1.00	0.00			N
	MOTA		CA	ALA	312		24.906	25.633	45.176	1.00	0.00			С
	MOTA	3058	C	ALA	312		23.634	24.875	45.010	1.00	0.00			С
	ATOM	3059	0	ALA	312		23.143	24.248	45.948	1.00	0.00			0
5			CB	ALA	312		26.064	24.640	44.983	1.00	0.00			Č
2	ATOM													
	ATOM		H	ALA	312		24.712	25.646	47.311	,1.00	0.00			H
	ATOM	3062	HA	ALA	312		24.991	26.446	44.456	1.00	0.00			H
	MOTA		HB	ALA	312		26.649	24.580	45.900	1.00	0.00			H
	ATOM		HB	ALA	312		25.662	23.655	44.744	1.00	0.00			H
10	ATOM	3065 3	HB	ALA	312 .		26.702	24.979	44.166	1.00	0.00			H
	ATOM	3066	N	GLN	.313		23.033	24.961	43.810	1.00	0.00			N
	ATOM		CA	GLN	313	,	21.840	24.209	43.578	1.00	0.00			C
	ATOM	3068	C	GLN	313		22.262	22.783	43.604	1.00	0.00			С
	ATOM	3069	0	GLN	313		21.709	21.961	44.335	1.00	0.00			0
15	MOTA	3070	CB	GLN	313		21.222	24.531	42.204	1.00	0.00			C
				GLN	313		19.914	23.796	41.908	1.00	0.00			Ċ
	ATOM		CG											
	ATOM	3072	CD	GLN	313		19.409	24.248	40.546	1.00	0.00			Ć
	MOTA	3073	OE1	GLN	313		20.146	24.834	39.754	1.00	0.00			0
	ATOM	3074	NE2		313		18.107	23.967	40.266	1.00	0.00			N
20														
20	ATOM.		H	GLN	313		23.426	25.559	43.069		0.00			Н
	ATOM	3076	HA	GLN	313		21.168	24.474	44.394	1.00	0.00			H
	ATOM	3077 1	HB	GLN	313		21.939	24.249	41.433	1.00	0.00			H
	MOTA		HB	GLN	313		21.014	25.600	42.165	1.00	0.00			H
										1.00				
	MOTA		HG	GLN	313		19.194	24.049	42.686		0.00			Н
25	ATOM	3080 2	HG	GLN	313		20.115	22.724	41.906	1.00	0.00			H
	ATOM	3081 1	HE2	GLN	31:3		17.702	24.247	39.361	1.00	0.00			Н
	MOTA	3082 2		GLN	313		17.526	23.474	40.959	1.00	0.00	-		Н
							•							
	MOTA		N	TRP	314		23.311	22.485	42.818	1.00	0.00			N
	ATOM	3084	CA	TRP	314		23.881	21.180	42.738	1.00	0.00			С
30	ATOM	3085	C ·	TRP	314		25.260	21.370	43.255	1.00	0.00	•		C
	ATOM	3086	0	TRP	314		26.227	21.379	42.499	1.00	0.00			0
	MOTA	3087	CB	TRP	314		23.999	20.710	41.282	1.00	0.00			С
	MOTA	3088	CG	TRP	314		22.655	20.632	40.606	1.00	0.00			С
	MOTA	3089	CD1	TRP	314	•	21.909	21.637	40.066	1.00	0.00			С
35	MOTA			TRP	314		21.902	19.424	40.433	1.00	0.00			С
55														
	MOTA			TRP	314		20.730	21.131	39.578	1.00	0.00			N
	MOTA	3092	CE2	TRP	314		20.714	19.769	39.793	1.00	0.00			С
•	ATOM	3093	CE3	TRP	314		22.179	18.135	40.779	1.00	0.00			С
	ATOM	3094	CZ2	TRP	314		19.777	18.824	39.487	1.00	0.00			С
40	MOTA		CZ3		314		21.234	17.182	40.471	1.00	0.00			Č
40														
	MOTA	3096	CH2		314		20.057	17.522	39.839	1.00	0.00			C
	MOTA	3097	H	TRP	314.		23.723	23.235	42.245	1.00	0.00			Η.
	ATOM	3098	HA	TRP	314		23.317	20.470	43.343	1.00	0.00			Н
	ATOM		.HB	TRP	314		24.448	19.719	41.209	1.00	0.00			. Н
15														
45	MOTA	3100 2		TRP	314		24.615	21.383	40.686	1.00	0.00			H
	MOTA	3101	HD1	TRP	314		22.204	22.685	40.027	1.00	0.00			Н
	ATOM	3102	HE1	TRP	314		19.982	21.677	39.126	1.00	0.00			Н
	ATOM		HE3		314		23.110	17.869	41:279	1.00	0.00			H
			HZ2						38.985					
	MOTA				314		18.846	19.088		1.00	0.00	: -		H
50	MOTA	3105	HZ3	TRP	314		21.419	16.140	40.731	1.00	0.00			H
	MOTA	3106	HH2	TRP	314		19.330	16.741	39.612	1.00	0.00			Н
	ATOM	3107	N	HIS	315		25.394	21.550	44.575	1.00	0.00			N
	MOTA	3108	CA	HIS	315		26.710	21.750		1.00	0.00			C
	MOTA	3109	C	HIS	315		27.413	20.459	44.874	1.00	0.00			С
55	MOTA	3110	0	HIS	315		28.636	20.413	44.749	1.00	0.00			0
	MOTA	3111	CB	HIS	315		26.750	22.063	46.589	1.00	0.00			С
	MOTA	3112	CG	HIS	315		28.077	22.611	47.025	1.00	0.00			С
	ATOM	3113	NDl	HIS	315		29.203	21.848	47.241	1.00	0.00			N
	MOTA	3114	CD2	HIS	315		28.448	23.898	47.276	1.00	0.00			С
60	ATOM		CE1		315		30.191	22.703	47.607	1.00	0.00			Ċ
00														
	MOTA		NE2		315		29.780	23.959	47.642	1.00	0.00			N
	MOTA	3117	H	HIS	315		24.575	21.544	45.200	1.00	0.00			H
	MOTA	3118	AH	HIS	315		27.126	22.567	44.495	1.00	0.00			н
	MOTA	3119 1		HIS	315		26.565	21.181	47.202	1.00	0.00			н
65	•	3120 2												
C)	ATOM			HIS	315		26.002	22.800	46.880	1.00	0.00			H
	MOTA		HD1		315		29.280	20.825	47.143	1.00	0.00			Н
	MOTA	3122	HD2	HIS	315		27.786 -	24.760	47.198	1.00	0.00			H
	MOTA	3123	HE1	HIS	315		31.207	22.390	47.845	1.00	0.00			Н
				-					=		-			-

				0.1.5	20 200	04 705	47.887	1.00	0.00			н
	ATOM	3124 HE2		315 .	30.328	24.795 19.363		1.00	0.00			N
	MOTA	•	ASP	316	26.632 27.255	18.084	44.726	1.00	0.00			C
	MOTA		ASP	316 316	27.233	17.819	43.324	1.00	0.00			c
_	ATOM		ASP	316	27.269	16.820	42.727	1.00	0.00			ō
5	MOTA		ASP ASP	316	26.354	16.932	45.193	1.00	0.00			C
	ATOM		asi Asp	316	26.248	17.068	46.702	1.00	0.00			С
	ATOM ATOM	3131 OD1		316	26.964	17.944	47.256	1.00	0.00			0 ~
	ATOM	3132 OD2		316	25.459	16.310	47.324	1.00	0.00			0
10	ATOM		ASP	316	25.605	19.447	44.846	1.00	0.00			H
10	ATOM		ASP	316	28.137	18.049	45.365	1.00	0.00			H
	ATOM		ASP	316	26.856	16.014	44.887	1.00	0.00	•		H
	ATOM		ASP	316	25.397	17.075	44.689	1.00	0.00			Н
	ATOM	3137 N	GLU	317	28.494	18.714	42.758	1.00	0.00			N
15	MOTA		GLU	317	29.027	18:404	41.475	1.00	0.00			С
	MOTA	3139 C	GLU	317	29.978	17.306	41.754	1.00	0.00			С
	MOTA	3140 0	GLU	317	30.193	16.472	40.869	1.00	0.00			0
	ATOM	3141 CB	GLU	317	29.769	19.557	40.766	1.00	0.00			С
	MOTA	3142 CG	GLU	317	31.038	20.061	41.451	1.00	0.00			C ·
20	MOTA	3143 CD	GLU	317	31.668	21.086	40.513	1.00	0.00			С
	MOTA		GLU	317	32.161	20.672	39.430	1.00	0.00	•	-	0
	MOTA	3145 OE2	GLU	317	31.658	22.296	40.865	1.00	0.00	*		H
٠	MOTA	3146 H	GLU	317	28.733	19.594	43.235	1.00 1.00	0.00			H
	MOTA	3147 HA	GLU	317	28.239	18.091 20.403	40.789	1.00	0.00			H
25	MOTA	3148 1HB	GLU	317	29.085 30.058	19.208	39.774	1.00	0.00			Н
	ATOM	3149 2HB	GLU	317 317	31.681	19.193	41.599	1.00	0.00			H
	ATOM	3150 1HG 3151 2HG	GLU GLU	317	30.729	20.507	42.396	1.00	0.00			Н
	MOTA	3151 2nG 3152 N	SER	318	30.507	17.340	43.021	1.00	0.00			N
30	MOTA MOTA	3152 N 3153 CA	SER	318	31.471	16.482	43.681	1.00	0.00			С
30	ATOM	3153 CA 3154 C	SER	318	31.683	15.359	42.781	1.00	0.00			С
	ATOM	3155 0	SER	318	31.131	14.271	42.940	1.00	0.00			0.
	ATOM	3156 CB	SER	318	30.999	15.951	45.046	1.00	0.00			С
	ATOM	3157 OG	SER	318	30.898	17.022	45.973	1.00	0.00			Ο.
35	ATOM	3158 H	SER	318	30.156	18.112	43.605	1.00	0.00		,	Н
,	MOTA	3159 HA	SER	318	32.365	17.090	43.817	1.00	0.00			H
	ATOM	3160 1HB	SER	318	31.711	15.218	45.425	1.00	0.00			H
	MOTA	3161 2HB	SER	318	30.022	15.477	44.942	1.00	0.00			H
	MOTA	3162 HG	SER	318	31.605	17.736	45.751	1.00	0.00			H N
40	MOTA	3163 N	HIS	319	32.511	15.687	41.781	1.00	0.00			C
	MOTA	3164 CA	HIS	319	32.640	14.944	40.586 40.840	1.00	0.00	•		C
	MOTA	31.65 C	HIS	319	32.692 31.715	13.484 12.770	40.611	1.00	0.00			Ô
	ATOM ·		HIS	319 319	33.869	15.405	39.763	1.00	0.00			Č
45	MOTA	3167 CB 3168 CG	HIS HIS	319	34.885	16.229	40.506	1.00	0.00			C
43	MOTA		HIS	319	35.774	15.739	41.436		0.00			N
	ATOM ATOM		HIS	319	35.149	17.562	40.405	1.00	0.00			С
	MOTA		HIS	319	36.528	16.792	41.848	1.00	0.00			С
	MOTA		HIS	319	36.185	17.919	41.250	1.00	0.00			N
50	MOTA	3173 H	HIS	319	33.089	16.532	41.889	1.00	0.00			H
	ATOM	3174 HA	HIS	319	31.806	15.114	39.905	1.00	0.00			H
	MOTA	3175 1HB	HIS	319	33.507		38.933	1.00	0.00			H
	MOTA	3176 2HB	HIS	319	34.382	14.514	39.399	1.00	0.00			H
	ATOM		HIS	319	35.852		41.757	1.00	0.00			H
55	MOTA		HIS	319	34.617		39.749	1.00	0.00			H
	MOTA		HIS	319	37.325		42.587	1.00	0.00			H
	MOTA		HIS	319	36.596		41.383		0.00			H
	MOTA	3181 N	LEU	320	33.829		41.338	1.00	0.00			И С
	MOTA	3182 CA	LEU	320	33.960		41.453		0.00			C
60	MOTA	3183 C	LEU	320	33.221		42.623		0.00			0
	ATOM	3184 0	LEU	320	32.483		42.489 41.608		0.00			c
	MOTA	3185 CB	LEU	320	35.438 36.349		40.441		0.00			C
	MOTA	3186 CG	LEU	320 320	36.495		40.370		0.00			C
65	MOTA		LEU	320	37.714		40.509		0.00	•		Ċ
دن	MOTA MOTA	3188 CD2	LEU	320	34.588	_	41.630		0.00			н
	MOTA	3190 HA	LEU	320	33.586		40.584		0.00			Н
	MOTA	3191 1HB	LEU	320	35.490		41.670		0.00			H

PCT/CA01/00607

	ATOM	3192	2HB	LEU	320	•	35.823	11.646	42.519	1.00	0.00			Н
	MOTA	3193	HG	LEU	320		35.965	11.314	39.473	1.00	0.00			H
	MOTA	3194	1HD1	LEU	320		35.915	13.624	41.171	1.00	0.00			H
	ATOM	3195	2HD1	LEU	320		37.545	13.436	40.480	1.00	0.00			H
5	MOTA	3196	3HD1	LEU	320		36.128	13.522	39.407	1.00	0.00			H
	ATOM	3197	1HD2		320		37.740	10.274	41.373	1.00	0.00			H
	MOTA	3198	2HD2	LEU	320		37.870	10.356	39.600	1.00	0.00			H
	ATOM	3199	3HD2	LEU	320		38.501	11.686	40.601	1.00	0.00			H_{c}
	MOTA	3200	N	ASN	321		33.369	11.655	43.800	1.00	0.00			N
10	ATOM	3201	CA	ASN	321		32.981	11.026	45.032	1.00	0.00			С
	ATOM	3202	С	ASN	321		31.507	10.933	45.227	1.00	0.00			С
	ATOM	3203	0	ASN	321		30.830	11.938	45.420	1.00	0.00			0
	MOTA	3204	CB	ASN	321		33.583	11.700	46.279	1.00	0.00			С
	MOTA	3205	CG	ASN	321	•	33.564	10.699	47.429	1.00	0.00			С
15	MOTA	3206	OD1	ASN	321		34.621	10.221	47.835	1.00	0.00			0
	ATOM	3207	ND2	ASN	321		32.356	10.377	47.969	1.00	0.00			N
	MOTA	3208	н	ASN	321		33.765	12.605	43.817	1.00	0.00			Н
	MOTA	3209	HA	ASN	321		33.382	10.012	45.041	1.00	0.00			H
	MOTA	3210	1HB	ASN	321		32.980	12.573	46.526	1.00	0.00			Н
20	ATOM	3211		ASN	321		34.606	11.997	46.052	1.00	0.00			Н
	MOTA	3212	1HD2		321		32.303	9.707	48.750	1.00	0.00	٠,		Н
	MOTA	3213	2HD2		321		31.495	10.802	47.596	1.00	0.00	,		Н
,	ATOM	3214	N	LYS	322		31.016	9.677	45.216	1.00	0:00			N
	MOTA	3215	CA	LYS	322		29.662	9.267	45.453	1.00	0.00			С
25	MOTA	3216	С	LYS	322		29.164	8.606	44.218	1.00	0.00			Ċ
	MOTA	3217	ō	LYS	322		29.905	7.895	43.539	1.00	0.00			Ō
	ATOM	3218	СВ	LYS	322		28.655	10.351	45.921	1.00	0.00			C
	MOTA	3219	CG	LYS	322		28.204	11.408	44.904	1.00	0.00			Ċ
	ATOM	3220	CD	LYS.			26.891	12.077	45.310	1.00	0.00			· c
30	MOTA	3221	CE	LYS	322		26.960	12.783	46.661	1.00	0.00			Ċ
50	ATOM	3222	NZ	LYS	322		27.034	14.246	46.472	1.00	0.00			N
	ATOM	3223	Н	LYS	322		31.691	8.925	45.014	1.00	0.00			Н
	ATOM	3224	HA	LYS	322		29.665	8.573	46.294	1.00	0.00			Н
	ATOM	3225		LYS	322		29.122	10.896	46.741	1.00	0.00			Н
3Ŝ ·	ATOM	3226		LYS	322		27.751	9.835	46.247	1.00	0.00			. H
	ATOM	3227		LYS	322		28.044	10.984	43.912	1.00	0.00			Н
	ATOM	3228	2HG	LYS	322		28.937	12.206	44.786	1.00	0.00			H
	ATOM	3229		LYS	322 -		26.056	11.381	45.394	1.00	0.00			Н
	ATOM	3230		·LYS	322		26.556	12.839	44.606	1.00	0.00			н
40	ATOM	3231		LYS	322		27.842	12.458	47.213	1.00	0.00			Н
	ATOM	3232		LYS	322		26.074	12.553	47.253	1.00	0.00			Н
	ATOM			LYS	322		27.022	14.463	45.465	1.00	0.00			Н
	ATOM	3234		LYS	322		26.226	14.693	46.928	1.00	0.00			Н
	ATOM	3235	3HZ	LYS	322		27.905	14.603	46.890	1.00	0.00			Н
45	MOTA	3236	N	TYR	323	***	27.877	8.812	43.892	1.00	0.00			N
	ATOM	3237	CA	TYR	323		27.365	8.140	42.748	1.00	0.00		~	· C
	ATOM	3238	C	TYR	323		26.560	9.116	41.954	1.00	0.00			Ċ
	ATOM	3239	ō	TYR	323		26.111	10.140	42.466	1.00	0.00			Ō
	ATOM	3240	CB	TYR	323		26.425	6.999	43.149	1.00	0.00			C
50	ATOM	3241	CG	TYR	323		27.172	6.143	44.116	1.00	0.00			C
	MOTA	3242		TYR	323		27.955	5.095	43.699	1.00	0.00			č
	ATOM	3243		TYR	323		27.091	6.394	45.468	1.00	0.00			C
	ATOM	3244		TYR			28.639	4.317	44.599	1.00	0.00			Ċ
	ATOM	3245		TYR	323		27.769	5.623	46.380	1.00	0.00			Č
55	ATOM	3246	CZ	TYR			28.544	4.576	45.946	1.00	0.00			Ċ
	ATOM	3247	OH .	TYR	323		29.242	3.783	46.876	1.00	0.00			ō
	ATOM	3248	Н	TYR	323		27.280	9.436	44.452	1.00	0.00		٠	Н
	ATOM	3249	HA	TYR	323		28.207	7.770	42.163	1.00	0.00			Н
	ATOM	3250		TYR	323		26.175	6.459	42.235	1.00	0.00	٠.,		Н
60	ATOM	3251		TYR	323		25.547	7.457	43.604	1.00	0.00			Н
00	MOTA	3252		TYR	323		28.034	4.877	42.634	1.00	0.00			Н
	MOTA	3253	HD2		323		26.476	7.221	45.821	1.00	0.00			H
	MOTA	3254		TYR	323		29.258	3.492	44.245	1.00	0.00			Н
	ATOM	3255	HE2		323		27.692	5.841	47.445	1.00	0.00			Н
65	MOTA	3256	HH	TYR	323		28.865	3.948	47.820	1.00	0.00			Н
55	MOTA	3257	N	PHE	323		26.404	8.832	40.650	1.00	0.00			N
	MOTA	3258	CA	PHE	324		25.571		39.823	1.00	0.00			C
	MOTA	3259	C	PHE	324		24.186	9.469	40.336	1.00	0.00			C
	432 011		•		243		23.100	2.302	40.000	2.00	5.55			•

	MOTA	3260 O	PHE	324	23.420	10.424	40.441	1.00	0.00		0
	ATOM	3261 CB	PHE	324	25.516	9.189	38.347	1.00	0.00	•	С
	MOTA	3262 CG	PHE	324	26.667	9.706	37.536	1.00	0.00		С
	ATOM	3263 CD1	PHE	324	27.847	9.007	37.410	1.00	0.00		С
5	MOTA	3264 CD2	PHE	324	26.543	10.913	36.882	1.00	0.00		. C
	ATOM	3265 CE1	PHE	324	28.882	9.508	36.654	1.00	0.00		С
	MOTA	3266 CE2	PHE	324	27.571	11.421	36.123	1.00	0.00		С
	ATOM	3267 CZ	PHE	324	28.744	10.718	36.010	1.00	0.00		С
	ATOM	3268 H	PHE	324	26.889	8.019	40.243	1.00	0.00		H
10	MOTA	3269 HA	PHE	324	25.936	10.666	39.940	1.00	0.00		H
	MOTA	3270 1HB	PHE	324	24.613	9.523	37.835	1.00	0.00		Н
	MOTA	3271 2HB	PHE	324	25.536	8.104	38.240	1.00	0.00		н
•	MOTA		PHE	324	27.962	8.047	37.914	1.00	0.00		H
	MOTA		PHE	324	25.613	11.475	36.968	1.00	0.00		H
15	MOTA		PHE	324	29.812	8.946	36.564	1.00	0.00		H
	MOTA		PHE	324	27.454	12.377	35.613	1.00	0.00		H
	ATOM	3276 HZ	PHE	324	29.564	11.115	35.412	1.00	0.00		H
•	ATOM	3277 N	LEU	325	23.861	8.213	40.695	1.00	0.00		N
20	MOTA	3278 CA 3279 C	LEU	325	22.565 22.154	7.783 8.523	41.130 42.366	1.00	0.00		C
20	ATOM		LEU	325 325		8.948		1.00			0
	ATOM ATOM	3280 O 3281 CB	LEU LEU	325	21.008 22.578	6.295	42.497 41.501	1.00	0.00		, C
	ATOM	3282 CG	LEU	325	21.243	5.784	42.071	1.00	0.00		c
	ATOM		LEU	325	20.119	5.791	41.021	1.00	0.00		c
25	ATOM		LEU	325	21.435	4.421	42.755	1.00	0.00		c
23	ATOM	3285 H	LEU	325	24.605	7.502	40.653	1.00	0.00		Н
	ATOM	3286 HA	LEU	325	21.821	7.967	40.354	1.00	0.00		Н
	MOTA	3287 1HB	LEU	325	23.346	6.135	42.257	1.00	0.00		Н
	ATOM	3288 2HB	LEU	325	22.800	5.718	40.603	1.00	0.00		Н
30	MOTA	3289 HG	LEU	325	20.890	6.389	42.905	1.00	0.00		H
	ATOM	3290 1HD1	LEU	325	20.508	6.163	40.073	1.00	0.00		H
	MOTA	3291 2HD1	LEU	325	19.741	4.777	40.885	1.00	0.00		H
	ATOM	3292 3HD1	LEU	325	19.309	6.437	41.359	1.00	0.00		H
	MOTA	3293 1HD2	LEU	325	22.480	4.121	42.681	1.00	0.00		H
35	MOTA	3294 2HD2		325	21.152	4.497	43.804	1.00	0.00		H
	MOTA	3295 3HD2		325	20.808	3.676	42.264	1.00	0.00		H
	MOTA	3296 N	LEU	326	23.075	8.667	43.330	1.00	0.00		И
	MOTA	3297 CA	LEU	326	22.749	9.347	44.548	1.00	0.00		С
40	MOTA.	3298 C	LEU	326	22.616	10.799	44.259	1.00	0.00		C
40	MOTA	3299 O	LEU	326	21.899	11.523	44.946	1.00	0.00		0
	MOTA	3300 CB	LEU	326	23.812 23.773	9.146 7.738	45.642 46.252	1.00	0.00		C
	MOTA	3301 CG 3302 CD1	LEU LEU	326	22.500	7.562		1.00	0.00		
	ATOM ATOM		LEU	326 326	23.909	6.638	47.098 45.177	1.00	0.00		C
45	ATOM	3304 H	LEU	326	24.022	8.286	43.177	1.00	0.00		н
	ATOM	3305 HA	LEU	326	21.808	8.948	44.927	1.00	0.00		Н
•	ATOM	3306 1HB	LEU	326	23.693	9.840	46.474		0.00		H
	MOTA	3307 2HB	LEU	326	24.827	9.287	45.271	1.00	0.00		Н
	ATOM	3308 HG	LEU	326	24.642	7.580	46.889	1.00	0.00		H
50	ATOM	3309 1HD1		326	21.914	8.481	47.070	1.00	0.00		Н
	MOTA	3310 2HD1		326	21.906	6.741	46.695	1.00	0.00		H
	ATOM	3311 3HD1		326	22.776	7.338	48.128	1.00	0.00		H
	MOTA	3312 1HD2		326	24.005	7.099	44.194	1.00	0.00		H
	ATOM	3313 2HD2	LEU	326	. 24.793	6.035	45.383	1.00	0.00		H
.55	MOTA	3314 3HD2	LEU	326	23.024	6.001	45.193	1.00	0.00	• ,	Н
	ATOM	3315 N	ASN	327	23.303	11.267	43.211	1.00	0.00		N
	ATOM	3316 CA	ASN	327	23.370	12.670	42.986	1.00	0.00		С
	ATOM	3317 C	ASN	327	22.005	13.254	42.709	1.00	0.00		С
	MOTA	3318 O	ASN	327	21.752	14.368	43.167	1.00	0.00		0
60	MOTA	3319 CB	ASN	327	24.390	13.029	41.895	1.00	0.00		С
	MOTA	3320 CG	ASN	327	25.049	14.313	42.368	1.00	0.00		С
	MOTA		ASN	327	26.049	14.787	41.831	1.00	0.00		0
	MOTA		ASN	327	24.471	14.901	43.446	1.00	0.00		N
45	MOTA	3323 H	ASN	327	23.780	10.615	42.571	1.00	0.00		H
65	MOTA	3324 HA	ASN	327	23.777	13.195	43.849	1.00	0.00		Н
	MOTA	3325 1HB	ASN	327	23.805	13.155	40.983	1.00	0.00		H
	MOTA MOTA	3326 2HB 3327 1HD2	ASN	327	25.076	12.183	41.852	1.00	0.00		H
	VI OIJ	JULI INUL	W 21A	327 .	24.869	15.767	43.835	1.00	0.00		H

	ATOM	3328 2HD2 A	ASN	327		23.633	14.481	43.874	1.00	0.00	•			Н
	ATOM		LYS	328		21.089	12.555	41.978	1.00	0.00				N
	ATOM		LYS	328		19.771	13.121	41.767	1.00	0.00				С
	MOTA	3331 C I	LYS	328		19.211	13.426	43.104	1.00	0.00				С
5	MOTA	3332 O I	LYS	328		19.463	12.693	44.050	1.00	0.00				0
	ATOM	3333 CB 1	LYS	328		18.750	12.263	40.983	1.00	0.00				С
	MOTA	3334 CG I	LYS	328		18.902	10.751	41.124	1.00	0.00				С
	MOTA		LYS	328.		20.036	10.188	40.268	1.00	0.00				C
	MOTA		LYS	328		19.653	10.045	38.792	1.00	0.00				N
10	MOTA		LYS	328		18.515	9.110	38.650	1.00	0.00				H
	ATOM		LYS	328		21.331	11.636	41.580	1.00	0.00				H
	ATOM		LYS	328		19.902	14.022 12.498	41.168	1.00	0.00				H
	ATOM		LYS	328		18.857 17.752	12.438	41.340	1.00	0.00				Н
1.5	ATOM		LYS	328 328		18.004	10.207	40.828	1.00	0.00				Н
15	MOTA		LYS LYS	328		19.116	10.442	42.147	1.00	0.00				Н
	MOTA		LYS	328		20.358	9.197	40.589	1.00	0.00				Н
	ATOM ATOM		LYS	328		20.929	10.812	40.285	1.00	0.00				Н
	ATOM	*	LYS	328		20.498	9.659	38.221	1.00	0.00				H
20	ATOM		LYS	328		19.365	11.013	38.384	1.00	0.00				Н
20	MOTA		LYS	328		18.235	8.764	39.579	1.00	0.00				H
	ATOM		LYS .	-328		17.720	9.599	38.213	1.00	0.00				H
	ATOM		LYS	328		18.795	8.314	38.058	1.00	0.00				H
٠.	ATOM		PRO	329	٠	18.490	14.528	43.136	1.00	0.00				N
25	MOTA	3352 CA	PRO	329		17.995	15.142	44.344	1.00	0.00				С
	ATOM	3353 C	PRO	329		17.563	14.144	45.354	1.00	0.00				C
	MOTA	3354 O	PRO	329		16.396	13.757	45.352	1.00	0.00				0
	ATOM	-3355 CB	PRO	329		16.840	16.054	43.919	1.00	0.00				C
	ATOM		PRO	329		16.999	16.206	42.397	1.00	0.00				C
30	MOTA		PRO	329		17.707	14.917	41.977	1.00	0.00				H
	ATOM		PRO	329		18.743	15.765	44.832	1.00	0.00				H
	ATOM		PRO	329		16.999	16.980 15.517	44.471 44.214	1.00 1.00	0.00				H
	MOTA		PRO	329		15.938 17.591	17.088	42.153	1.00	0.00				Н
3.5	ATOM		PRO	329 329		16.028	16.308	41.911	1.00	0.00				Н
35	ATOM	-	PRO	329		17.028	14.081	41.804	1.00	0.00				Н
	ATOM		PRO PRO	329		18.437	15.058	41.180	1.00	0.00				Н
	MOTA MOTA		THR	330		18.507	13.736	46.223	1.00	0.00		•		N
	MOTA		THR	330		18.272	12.783	47.254	1.00	0.00				С
40	ATOM		THR	330		19.467	12.850	48.135	1.00	0.00				С
	ATOM	3368 0	THR	330		19.475	12.264	49.215	1.00	0.00				0
	ATOM	3369 CB	THR	330		18.217	11.350	46.783	1.00	0.00				С
	MOTA	3370 OG1	THR	330		19.439	10.996	46.151	1.00	0.00				0
	MOTA	3371 CG2	THR	330		17.033	11.140	45.823	1.00	0.00				С
45	ATOM	3372 H	THR	330		19.452	14.135	46.137	1.00	0.00				H
	MOTA	3373 HA	THR	330		17.356	13.108	47.747	1.00	0.00				H
	MOTA	3374 HB	THR	330		18.096	10.672	47.628	1.00	0.00				H H
	MOTA	3375 HG1		330		19.492	11.449 12.079	45.228 45.697	1.00	0.00		٠		H
	MOTA	3376 1HG2		330		16.495	10.802	44.855	1.00	0.00				. Н
50	MOTA	3377 2HG2		330 330		17.404 16.359	10.388	46.235	1.00	0.00				н
	MOTA	3378 3HG2 3379 N	LYS	331		20.510	13.596	47.715		0.00			,	N
	MOTA MOTA	3379 N 3380 CA	LYS	331		21.658	13.604	48.564	1.00	0.00				С
	ATOM	3380 CA	LYS	331		21.219	14.380	49.761		0.00				С
55	MOTA	3382 0	LYS	331		20.372	15.265	49.651		0.00		•		0
20	MOTA	3383 CB	LYS	331		22.912	14.261	47.976	1.00	0.00				С
	ATOM	3384 CG	LYS	331		24.225	13.648	48.472	1.00	0.00				С
	ATOM	3385 CD	LYS	331		24.389	13.572	49.985	1.00	0.00				С
	ATOM	3386 CE	LYS	331		25.663	12:842	50.413	1.00	0.00				С
60	ATOM	3387 NZ	LYS	331		25.531	12.388	51.815		0.00				N
	ATOM	3388 Н	LYS	331		20.479		46.833		0.00				H
	MOTA	3389 HA	LYS	331		21.850	12.549	48.759		0.00				H
	MOTA	3390 1HB	LYS	331		22.910	15.315	48.253		0.00				H
	MOTA	3391 2HB	LYS	331		22.881		4.6.892		0.00				H
65	MOTA	3392 1HG	LYS	331		25.045		48.089		0.00				H H
	MOTA	3393 2HG	LYS	331		24.285		48.090		0.00				H
	ATOM	3394 1HD	LYS	331		23.569								H
	MOTA	3395 2HD	LYS	331		24.438	14.552	50.458	1.00	0.00				11

- 178 -

	MOTA	3396 1H	E LYS	331 .		26.516	13.514	50.332	1.00	0.00			H
	ATOM	3397 2H	E LYS	331		25.825	11.977	49.769	1.00	0.00	•		H
										0.00			
	MOTA	3398 1H		331		24.610	12.668	52.181	1.00				H
	ATOM	3399 2H	Z LYS	331		25.618	11.362	51.853	1.00	0.00			H
5	MOTA	3400 3H	Z LYS	331		26.272	12.817	52.386	1.00	0.00			H
	ATOM	3401 N	ILE	332		21.784	14.062	50.939	1.00	0.00			N
	ATOM		A ILE	332		21.342	14.644	52.172	1.00	0.00			C
	MOTA	3403 C		332		21.553	16.121	52.152	1.00	0.00		*	С
	MOTA	3404 0	ILE	332		20.758	16.862	52.728	1.00	0.00			0
10	MOTA	3405 C	B ILE	332		22.072	14.114	53.379	1.00	0.00			С
	ATOM		G1 ILE	332		23.561	14.495	53.330	1.00	0.00			С
	ATOM		G2 ILE	332		21.826	12.596	53.459	1.00	0.00			Č
	MOTA		D1 ILE	332		24.290	14.284	54.658	1.00	0.00			С
	MOTA	3409 H	ILE	332		22.556	13.380	50.955	1.00	0.00			H
15	MOTA	3410 H	A ILE	332		20.281	14.445	52.324	1.00	0.00			H
	MOTA	3411 H	B ILE	332		21.677	14.617	54.261	1.00	0.00			H
	ATOM	3412 1H		332		23.735	15.540	53.073	1.00	0.00			Н
	MOTA	3413 2H		332		24.132	13.924	52.598	1.00	0.00			H
	MOTA	3414 1H	G2 ILE	332		21.190	12.286	52.629	1.00	0.00			Н
20	MOTA	3415 2H	G2 ILE	332		22.778	12.069	53.402	1.00	0.00	٠		H
	MOTA	3416 3H	G2 ILE	332	•	21.334	12.356	54.401	1.00	0.00			H
	ATOM	3417 1H				23.591		55.398		0.00	-		
				332			13.894		1.00				H
	MOTA		D1 ILE	332		25.103	13.572	54.517	1.00	0.00			H
	MOTA	3419 3H	D1 ILE	332		24.694	15.234	55.005	1.00	0.00			H `
25	MOTA	3420 N	LEU	333		22.615	16.605	51.481	1.00	0.00			N
	MOTA		A LEU	333		22.866	18.011	51.586	1.00	0.00			C
	ATOM			333			18.740	50.390	1.00	0.00			Ċ
		_				22.334							
	MOTA	3423 0		333		21.128	18.814	50.188	1.00	0.00			0
	ATOM	3424 C	B LEU	333		24.348	18.375	51.772	1.00	0.00			C
30	MOTA	3425 C	G LEU	333		24.550	19.883	52.016	1.00	0.00			С
	ATOM		D1 LEU	333		23.819	20.341	53.291	1.00	0.00			C
	ATOM		D2 LEU	333		26.039	20.259	52.035		0.00			Č
									1.00				
	MOTA	3428 H		333		23.220	15.991	50.917	1.00	0.00			H
	MOTA	3429 H	A LEU	333		22.388	18.426	52.473	1.00	0.00			H
35	ATOM	3430 1H	B LEU	.333		24.947	18.116	50.899	1.00	0.00			H
	MOTA	3431 2H		333			17.858	52.621	1.00	0.00			·H
	ATOM	3432 H		333		24.165	20.470	51.182	1.00	0.00			
													. Н
	MOTA	3433 1H		333		23.313	19.489	53.746	1.00	0.00			H
	MOTA	3434 2H	D1 LEU	333		24.540	20.753	53.995	1.00	0.00			H
40	MOTA	3435 3H	D1 LEU	. 333		23.084	21.104	53.034	1.00	0.00			H
	MOTA	3436 1H	D2 LEU	333		26.641	19.366	51.869	1.00	0.00			Н
	ATOM	3437 2H		333		26.241	20.984	51.247	1.00	0.00			H
	MOTA	3438 ЗН		333		26.292	20.693	53.002	1.00	0.00			Н
	MOTA	3439 N	SER	334		23.227	19.303	49.556	1.00	0.00			N
45	MOTA	3440 C	A SER	334		22.815	20.174	48.490	1.00	0.00			С
	MOTA	3441 C	SER	334		21.764	19.543	47.615	1.00	0.00			С
	MOTA	3442 0		334		20.758	20.197	47.345	1.00	0.00			ō
	ATOM		B SER	334		23.992	20.643	47.610	1.00	0.00			С
	MOTA	3444 0	G SER	334		23.529	21.501	46.579	1.00	0.00			0
50	ATOM	3445 H	SER	334		24.229	19.105	49.684	1.00	0.00			· H
	MOTA	3446 H	A SER	334		22.392	21.107	48.861	1.00	0.00			Н
	ATOM	3447 1H		334		24.488	19.788	47.151	1.00	0.00			Н
	MOTA	3448 2H		334		24.722	21.186	48.209	1.00	0.00			H
	ATOM		G SER	334		24.003	22.412	46.650	1.00	0.00			Н
55	MOTA	3450 N	PRO	335		21.899	18.330	47.158	1.00	0.00	•		N
	ATOM		A PRO	335		20.859	17.820	46.305	1.00	0.00			С
	MOTA	3452 C		335		19.605	17.492						
								47.041	1.00	0.00			C
	ATOM	3453 0		335		18.686	16.997	46.388	1.00	0.00			0
	MOTA		B PRO	335		21.468	16.684	45.479	1.00	0.00			С
60	MOTA	3455 C	G PRO	335		22.905	16.541	46.006	1.00	0.00			С
	MOTA		D PRO	335		23.197	17.884	46.680	1.00	0.00			Ċ
	ATOM		A PRO	335		20.564	18.519	45.523	1.00	0.00			
													H
	MOTA	3458 1H		335		21.412	17.029	44.446	1.00	0.00			Н
	MOTA	3459 2H		335		20.837	15.819	45.686	1.00	0.00			H
65	MOTA	3460 1H	IG PRO	335		23.502	16.352	45.113	1.00	0.00			H
	MOTA	3461 2H	IG PRO	335		22.857	15.698	46.695	1.00	0.00			Н
	MOTA	3462 1H		335		23.801	17.809	47.583	1.00	0.00			Н
	MOTA	3463 2H	D PRO	335		23.512	18.670	45.994	1.00	0.00			Н

	ATOM	3464 1	N GL	336		19.575	17.755	48.372	1.00	0.00			N
	ATOM		CA GL			18.470	17.548	49.279	1.00	0.00			С
	MOTA		C GL			17.185	17.642	48.537	1.00	0.00			С
	ATOM		O GL			16.692	18.732	48.246	1.00	0.00			0
5	ATOM		CB GL			18.418	18.586	50.418	1.00	0.00			С
-	ATOM		CG GL		•	18.453	20.030	49.901	1.00	0.00			С
	ATOM		CD GL			18.762	20.971	51.059	1.00	0.00			C
	MOTA		OE1 GL			18.934	20.470	52.202	1.00	0.00			0
	ATOM		OE2 GL			18.828	22.206	50.814	1.00	0.00			0
10	ATOM		H GL			20.435	18.145	48.780	1.00	0.00			H
	ATOM		HA GL			18.547	16.561	49.736	1.00	0.00	_		Н
	ATOM		HB GL			19.254	18.490	51.109	1.00	0.00			Н
	ATOM	3476 2				17.513	18.500	51.020	1.00	0.00			Н
	ATOM		HG GL			17.483	20.281	49.472	1.00	0.00			Н
15	ATOM		HG GL			19.226	20.120	49.138	1.00	0.00			Н
1.5	ATOM		N TY			16.633	16.466	48.185	1.00	0.00		•	N
	ATOM		CA TY			15.420	16.433	47.432	1.00	0.00			С
	ATOM		C TY			14.430	17.194	48.240	1.00	0.00			C
	ATOM		O TY			13.956	18.250	47.828	1.00	0.00			0
20	ATOM		CB TY			14.899	15.002	47.283	1.00	0.00			С
	ATOM		CG TY			13.666	15.028	46.458	1.00	0.00			С
	ATOM		CD1 TY			12.443	15.315	47.015	1.00	0.00			С
	ATOM		CD2 TY			13.746	14.753	45.113	1'.00	0.00			С
	MOTA		CE1 TY			11.311	15.328	46.234	1.00	0.00			С
25	ATOM		CE2 TY			12.621	14.762	44.327	1.00	0.00	,		С
	ATOM		CZ TY			11.402	15.050	44.891	1.00	0.00			С
	ATOM		OH TY			10.242	15.060	44.090	1.00	0.00			0
	MOTA		H TY			17.088	15.584	48.460	1.00	0.00			Н
	ATOM		HA TY			15.654	16.910	46.480	1.00	0.00			Н
30	MOTA		HB TY			14.680	14.604	48.274	1.00	0.00			Н
• -	ATOM	3494 2				15.665	14.399	46.795	1.00	0.00			Н
	MOTA		HD1 TY			12.369	15.533	48.080	1.00	0.00			Н
	ATOM		HD2 TY			14.713	14.525	44.666	1.00	0.00			Н
	MOTA		HE1 TY			10.343	15.558	46.679	1.00	0.00			Н
35	ATOM		HE2 TY			12.694	14.542	43.262	1.00	0.00			H
	ATOM		нн тү			9.966	16.033	43.896	1.00	0.00			Н
	ATOM		и су			14.109	16.673	49.435	1.00	0.00			N
	ATOM		CA CY			13.277	17.399	50.342	1.00	0.00			С
	ATOM	3502	C CY	s 338		13.989	17.315	51.643	1.00	0.00			C
40	MOTA	3503	O CY	s 338		13.386	17.395	52.712	1.00	0.00			0
	MOTA	3504	CB CY	s 338		11.876	16.792	50.529	1.00	0.00			С
	ATOM	3505	SG CY	S 338		10.811	17.035	49.076	1.00	0.00			S
	ATOM	3506	н сү	s 338		14.464	15.743	49.699	1.00	0.00			H
	MOTA	3507	HA CY	s 338		13.233	18.404	49.923	1.00	0.00			Н
45	MOTA	3508 1	HB CY	s 338		11.341	17.226	51.374	1.00	0.00			Н
	MOTA	3509 2	нв су	s 338		11.906	15.717	50.707	1.00	0.00			Н
	MOTA	3510	HG CY	S 338		10.717	18.343	48.803	1.00	0.00			H
	MOTA	3511	N TR			15.323	17.158	51.567	1.00	0.00			N
	MOTA		CA TR			16.108	17.085	52.757	1.00	0.00			С
50	MOTA		C TR			16.105	18.421	53.421	1.00	0.00			С
	MOTA		O TR			16.115	18.507	54.647	1.00	0.00			0
	MOTA		CB TR			17.569	16.664	52.521	1.00	0.00			С
	ATOM		CG TR			17.763	15.170	52.415	1.00	0.00			C·
	ATOM		CD1 TR			17.577	14.320	51.364	1.00	0.00			С
55	MOTA		CD2 TR			18.216	14.366	53.514	1.00	0.00	•		С
	MOTA		NE1 TR			17.880	13.033	51.744	1.00	0.00			N
	MOTA		CE2 TR			18.277	13.048	53.066	1.00	0.00			С
	ATOM		CE3 TR			18.552	14.701	54.795	1.00	0.00			С
	MOTA		CZ2 TR			18.678	12.039	53.897	1.00	0.00			C
60	MOTA		CZ3 TR			18.958	13.684	55.629	1.00	0.00			С
	MOTA		CH2 TR		•	19.019	12.378	55.188	1.00	0.00			С
	MOTA		H TR			15.779	17.090	50.646	1.00	0.00			H
	MOTA		HA TR			15.674	16.337	53.421	1.00	0.00			H
<i>c</i> =	ATOM		HB TR			18.250	16.978	53.311	1.00	0.00			H
65	ATOM		HB TR			18.000	17.067	51.604	1.00	0.00	•		H
	MOTA		HD1 TR			17.238	14.616	50.371	1.00	0.00			H
	MOTA		HE1 TR			17.820		51.143	1.00	0.00			H
	MOTA	3531	HE3 TR	P 339		18.500	15.732	55.142	1.00	0.00			Н

PCT/CA01/00607

WO 01/83717

	ATOM	3532	HZ2	WD D	339	18.726	11.006	53.551	1.00	0.00			н
	ATOM			TRP	339	19.236	13.914	56.657	1.00	0.00			Н
	ATOM		HH2		339	19.344	11.597	55.876	1.00	0.00	•		H
	ATOM			ASP	340	16.084	19.507	52.626	1.00	0.00			N
5	ATOM			ASP	340	16.220	20.808	53.210	1.00	0.00			C
	ATOM			ASP	340	15.106	21.092	54.169	1.00	0.00			Ċ
	ATOM			ASP	340	15.311	21.083	55.381	1.00	0.00			ō
	MOTA			ASP	340	16.200	21.927	52.156	1.00	0.00			С
	ATOM			ASP	340	16.861	23.152	52.768	1.00	0.00			С
10	ATOM	3541 (OD1	ASP	340	17.663	22.967	53.721	1.00	0.00			0
	ATOM	3542	OD2	ASP	340	16.587	24.283	52.284	1.00	0.00			0
	MOTA	3543	H	ASP	340	15.971	19.403	51.607	1.00	0.00			H
	MOTA			ASP	340	17.158	20.899	53.757	1.00	0.00			Н
	ATOM			ASP	340	15.158	22.127	51.903	1.00	0.00			H
15	MOTA			ASP	340	16.754	21.574	51.286	1.00	0.00			Н
	ATOM			TYR	341	13.880	21.325	53.655	1.00	0.00			Ŋ
	MOTA			TYR	341	12.811	21.631	54.562	1.00	0.00			С
	ATOM			TYR	341	11.534	21.445	53.812	1.00	0.00			С
20	ATOM			TYR	341	10.693	22.343	53.811	1.00	0.00			0
20	ATOM			TYR	341	12.732	23.114 23.591	54.977 55.556	1.00	0.00			C C
	ATOM ATOM		CD1	TYR	341 [,] 341	14.018 14.307	23.391	56.892	1.00	0.00			С
	ATOM		CD1		341	14.940	24.202	54.740	1.00	0.00			C
	ATOM			TYR	341	15.503	23.901	57.399	1.00	0.00			c
25	ATOM			TYR	341	16.134	24.661	55.240	1.00	0.00			c
20	ATOM			TYR	341	16.418	24.510	56.574	1.00	0.00			Č
	ATOM			TYR	341	17.643	24.979	57.094	1.00	0.00			o
	MOTA			TYR	341	13.716	21.284	52.638	1.00	0.00			Н
	MOTA			TYR .	341	12.893	20.937	55.398	1.00	0.00			H
30	MOTA	3561 1	HB	TYR	341	11.958	23.280	55.726	1.00	0.00		•	H
	ATOM	3562 2	HB	TYR	341	12.502	23.757	54.127	1.00	0.00			H
	MOTA		HD1		341	13.585	22.965	57.553	1.00	0.00			H
	MOTA		HD2		341	14.720	24.324	53.679	1.00	0.00			Н
0.5	MOTA			TYR	341	15.725	23.778	58.459	1.00	0.00			H
35	MOTA			TYR	341	16.853	25.143	54.579	1.00	0.00			Н
	MOTA			TYR	341	18.264	25.250	56.318	1.00	0.00			H
	MOTA			HIS	342	11.324	20.291 20.217	53.157 52.432	1.00	0.00			N C
	MOTA MOTA			HIS HIS	342 342	10.090 9.505	18.855	52.432	1.00	0.00			C
40	ATOM			HIS	342	10.209	17.874	52.807	1.00	0.00			o
-10	MOTA			HIS	342	10.247	20.457	50.920	1.00	0.00			C
	ATOM			HIS	342	10.701	21.845	50.578	1.00	0.00			Ċ
	ATOM		ND1		342	9.855	22.924	50.450	1.00	0.00			N
	MOTA		CD2		342	11.951	22.322	50.329	1.00	0.00			С
45	MOTA	3576	CE1 -	HIS	342 .	10.629	23.992	50.131	1.00	0.00			С
	MOTA	3577	NE2	HIS	342	11.908	23.676	50.046	1.00	0.00			N
	MOTA			HIS	342	12.001	19.515	53.174	1.00	0.00			Н
	ATOM			HIS	342	9.389	20.954	52.824	1.00	0.00			H
50	ATOM	3580 1		HIS	342	9.323	20.313	50.358	1.00	0.00			H
50	ATOM	3581 2		HIS	342	10.973	19.795	50.447	1.00	0.00			H
	ATOM		HD1		342	8.832	22.921	50.572	1.00	0.00			H
	MOTA		HD2		342	12.860	21.720	50.349	1.00	0.00			H
	MOTA MOTA		HE1 HE2		342 342	10.239 12.697	24.996 24.298	49.964 49.819	1.00	0.00			H H
55	ATOM			ILE	343	8.165	18.783	52.464	1.00	0.00			N
55	ATOM			ILE	343	7.472	17.533	52.467	1.00	0.00			C
	ATOM			ILE	343	6.905	17.422	51.092	1.00	0.00			c
	MOTA			ILE	343	6.523	18.429	50.498	1.00	0.00			Ö
	MOTA			ILE	343	6.331	17.470	53.441	1.00	0.00			C
60	ATOM		CG1		343	5.808	16.029	53.559	1.00	0.00			Ċ
	MOTA		CG2		343	5.269	18.490	52.999	1.00	0.00			С
	MOTA		CD1		343	6.816	15.065	54.185	1.00	0.00			С
	MOTA		Н	ILE	343	7.623	19.654	52.371	1.00	0.00			H
	MOTA			ILE	343	8.244	16.797	52.690	1.00	0.00			Н
65	ATOM			ILE	343	6.716	17.716	54.430	1.00	0.00	•		H
	MOTA	3597 1			343	5.543	15.583	52.600	1.00	0.00			H
	MOTA	3598 2			343	4.910	15.941	54.171	1.00	0.00			H
	MOTA	3599 1	HG2	THE	343	5.607	18.999	52.096	1.00	0.00			Н

WO 01/83717 PCT/CA01/00607

- 181 -

	ATOM ATOM		2HG2 3HG2		. 343 343	4.331 5.114	17.973 19.221	52.794 53.792	1.00	0.00			H H
	ATOM		1HD1		343	7.730	15.604	54.430	1.00	0.00			Н
	ATOM	3603	2HD1	ILE	343	6.393	14.635	55.093	1.00	0.00			H
5	MOTA	3604	3HD1	ILE	343	7.043	14.267	53.478	1.00	0.00			H
	MOTA	3605	N	GLY	344	6.844	16.203	50.527	1.00	0.00			N
	MOTA	3606	CA	GLY	344	6.372	16.128	49.176	1.00	0.00			С
	ATOM	3607	С	GLY	344	5.021	15.494	49.159	1.00	0.00			С
••	ATOM	3608	0	GLY	344	4.800	14.458	49.783	1.00	0.00			0
10	MOTA	3609	H	GLY	344	7.125	15.357	51.044	1.00	0.00			H
	ATOM	3610		GLY	344	7.064	15.529	48.584	1.00	0.00			Н
	MOTA	3611		GLY	344	6.309	17.133	48.759	1.00	0.00			Н
	ATOM ATOM	3612	N CA	LEU LEU	345	4.076 2.764	16.108 15.541	48.418 48.315	1.00	0.00	,		N C
15	ATOM '	3614	C	LEU	345 345	2.718	14.786	47.024	1.00	0.00			C
. 13	ATOM	3615	Ö	LEU	345	3.242	15.217	45.998	1.00	0.00			0
	ATOM	3616	CB	LEU	345	1.617	16.577	48.385	1.00	0.00			Č
	ATOM	3617	CG	LEU	345	1.585	17.639	47.268	1.00	0.00			C
	ATOM	3618	CD1	LEU	345	1.188	17.040	45.911	1.00	0.00			Ċ
20	MOTA	3619	CD2	LEU	345	0.699	18.832	47.661	1.00	0.00			С
	MOTA	3620	H	LEU	345	4.297	16.985	47.925	1.00	0.00			H
	MOTA	3621		LEU	345	2.634	14.884	49.175	1.00	0.00		٠.	H
	ATOM	3622		LEU	345	1.709	17.112	49.329	1.00	0.00		*	H
25	MOTA	3623		LEU	345	0.673	16.033	48.333	1.00	0.00			H
25	MOTA	.3624	HG 1HD1	LEU	345	2.554	18.116 15.970	47.127	1.00	0.00			Н
	MOTA MOTA		2HD1		345 345	1.008 0.280	17.524	46.023 45.551	1.00	0.00			H H
	ATOM	-3627			345	1.992	17.199	45.193	1.00	0.00			H
	ATOM		1HD2		345	0.282	18.664	48.654	1.00	0.00			H
30	ATOM		2HD2		345	1.297	19.743	47.667	1.00	0.00			Н
	MOTA	3630	3HD2	LEU	345	-0.112	18.935	46.940	1.00	0.00			Н
	MOTA	3631	N·	PRO	346	2.140	13.624	47.084	1.00	0.00			N
	MOTA	3632	CA	PRO	346	2.120	12.778	45.921	1.00	0.00			С
0.5	ATOM	3633	С	PRO	346	1.045	13.032	44.913	1.00	0.00			C
35	MOTA	3634	0	PRO	346	-0.015	13.551	45.259	1.00	0.00			0
•	MOTA	3635 3636	. CB CG	PRO	346	2.103	11.337	46.440	1.00	0.00			С
	MOTA MOTA	3637	CD	PRO PRO	346 346	1.688 2.191	11.458 12.852	47.915 48.314	1.00	0.00			C
,	ATOM	3638	HA	PRO	346	3.070	12.906	45.403	1.00	0.00			Н
40	MOTA	3639		PRO	346	3.122	10.979	46.298	1.00	0.00			Н
	MOTA	3640	2HB	PRO	346	1.368	10.826	45.817	1.00	0.00			Н
	MOTA	3641	1HG	PRO	346	2.149	10.674	48.516	1.00	0.00			H
	MOTA	3642		PRO	346	0.607	11.371	48.025	1.00	0.00)		Н
	MOTA	3643		PRO	346	1.527	13.382	48.997	1.00	0.00			H
45	MOTA	3644		PRO	346	3.240	12.875	48.608	1.00	0.00			Н
	MOTA	3645	N	ALA	347	1.340	12.674	43.647	1.00	0.00			N
	ATOM ATOM	3646 3647		ALA ALA	347 347	0.397 0.458	12.667 11.247	42.568 42.104	1.00	0.00			C C
	ATOM	3648	0	ALA	347	1.475	10.809	41.569	1.00	0.00			0
50	MOTA	3649	.CB	ALA	347	0.792	13.567	41.385	1.00	0.00			Ċ
_	MOTA	3650	H	ALA	347	2.307	12.386	43.441	1.00	0.00			H
	MOTA	3651	AH	ALA	347	-0.599	12.946	42.910	1.00	0.00			Н
	MOTA	3652	1HB	ALA	347	1.743	14.053	41.599	1.00	0.00			H
	MOTA	3653		ALA	347	0.889	12.961	40.483	1.00	0.00			Н
55	MOTA	3654		ALA	347	0.023	14.324	41.231	1.00	0.00			H
	MOTA	3655	N	ASP	348	-0.637	10.488	42.298	1.00	0.00			N
	MOTA	3656	CA	ASP	348	-0.598	9.075	42.046	1.00	0.00			С
	ATOM ATOM	3657 3658	С 0	ASP ASP	348 348	-0.710 -1.773	8.788 8.384	40.583 40.115	1.00 1.00	0.00			С 0
60	ATOM	3659	CB	ASP	348	-1.752	8.323	42.738	1.00	0.00			C
	MOTA	3660	CG	ASP	348	-1.502	6.825	42.738	1.00	0.00			C
	MOTA	3661		ASP	348	-0.449	6.363	43.146	1.00	0.00			ō
	MOTA	3662		ASP	348	-2.357	6.125	42.025	1.00	0.00			ō
	ATOM	3663	Н	ASP	348	-1.509	10.924	42.629	1.00	0.00			H
65	ATOM	3664	HA	ASP	348	0.336	8.640	42.401	1.00	0.00			H
	MOTA	3665		ASP	348	-2.689	8.579	42.244	1.00	0.00			Н
	MOTA	3666		ASP	348	-1.790	8.619	43.786	1.00	0.00			H
	MOTA	3667	N	ILE	349	0.387	8.972	39.819	1.00	0.00			N

									•			
	ATOM	3668 CA	ILE	349	0.351	8. <i>62</i> 3	38.427	1.00	0.00			C
	MOTA	3669 C	ILE	349	1.763	8.377	37.997	1.00	0.00			С
	MOTA	3670 O	ILE	349	2.688	9.009	38.502	1.00	0.00			0
	ATOM	3671 CB	ILE	349	-0.191	9.705	37.543	1.00	0.00			С
5	ATOM		ILE	34.9	-1.623	10.074	37.963	1.00	0.00			C
	ATOM	3673 CG2		349	-0.089	9.204	36.094	1.00	0.00			C
	ATOM			349	-2.147	11.354	37.315	1.00	0.00			C
	MOTA	3675 н	ILE	349	1.246	9.361	40.232	1.00	0.00			H
	MOTA	3676 HA	ILE	349	-0.259	7.724	38.336	1.00	0.00			Н
10	MOTA	3677 HB	ILE	349	0.421	10.592	37.704	1.00	0.00			Н
	MOTA	3678 1HG1	ILE	349	-1.638	10.216	39.043	1.00	0.00			H
	ATOM	3679 2HG1	ILE	349	-2.286	9.258	37.675	1.00	0.00			H
	ATOM	3680 1HG2	ILE	349	0.345	8.204	36.084	1.00	0.00			H
	ATOM	3681 2HG2	ILE	349	-1.083	9.171	35.649	1.00	0.00			H
15	MOTA	3682 3HG2		349	0.543	9.880	35.518	1.00	0.00			H
13	ATOM	3683 1HD1		349	-1.381	11.770	36.660	1.00	0.00			. Н
				349	-3.039	11.127	36.731	1.00	0.00			Н
	MOTA	3684 2HD1										
•	ATOM	3685 3HD1		349	-2.395	12.079	38.090	1.00	0.00			H
	MOTA	3686 N	LYS	350	1.974	7.444	37.047	1.00	0.00			N
20	MOTA	3687 CA	LYS	350	3.316	7.189	36.606	1.00	0.00			С
	MOTA	3688 C	LYS	350	3.605	8.177	35.522	1.00	0.00		٠.	С
	MOTA	3689 O	LYS	350	4.019	7.818	34.421	1.00	0.00			0
	ATOM	3690 CB	LYS	350	3.474	5.780	36.012	1.00	0.00			С
	ATOM	3691 CG	LYS	350	3.185	4.668	37.025	1.00	0.00			С
25	ATOM	3692 CD	LYS	350	2.949	3.297	36.387	1.00	0.00			С
	ATOM	3693 CE	LYS	350	1.581	3.161	35.710	1.00	0.00			С
	ATOM	3694 NZ	LYS	350	1.430	1.810	35.120	1.00	0.00			N
				350	1.183	6.921	36.643	1.00	0.00			Н
	ATOM	-	LYS									H
20	MOTA	3696 HA	LYS	350	3.961	7.329	37.473	1.00	0.00			
30	ATOM	3697 1HB	LYS	350	4.479	5.585	35.638	1.00	0.00			Н
	MOTA	3698 2HB	LYS	350	2.805	5.595	35.171	1.00	0.00		*	H
	ATOM	3699 1HG	LYS	350	2.299	4.847	37.634	1.00	0.00.			Н
	ATOM	3700 2HG	LYS	350	3.989	4.506	37.742	1.00	0.00			H
	MOTA	3701 1HD	LYS	350	2.995	2.470	37.096	1.00	0.00	•		Н
35	ATOM	3702 2HD	LYS	350	3.673	3.044	35.612	1.00	0.00			H
_	MOTA	3703 1HE	LYS	350	1.475	3.900	34.916	1.00	0.00			Н
	ATOM	3704 2HE	LYS	350	0.782	3.314	36.435	1.00	0.00			H
	ATOM	3705 1HZ	LYS	350	2.282	1.260	35.297	1.00	0.00			Н
	ATOM	3706 2HZ	LYS	350	0.621	1.336	35.547	1.00	0.00			H
40						1.893	34.104		0.00			H
40	MOTA	3707 3HZ	LYS	350	1.280			1.00				
	MOTA	3708 N	LEU	351	3.385	9.468	35.824	1.00	0.00			N
	ATOM	3709 CA	LEU	351	3.578	10.539	34.888	1.00	0.00			С
	MOTA	3710 C	LEU	351	5.033	10.745	34.635	1.00	0.00			С
	MOTA	3711 0	LEU	351	5.466	10.904	33.495	1.00	0.00			0
45	ATOM	3712 CB	LEU	351	3.084	11.884	35.443	1.00	0.00			С
	ATOM	3713 CG	LEU	351	. 1.577	11.957	35.740	1.00	0.00			С
	ATOM	3714 CD1	LEU	351	1.199	13.347	36.283	1.00	0.00			С
	MOTA		LEU	351	0.741	11.549	34.514	1.00	0.00			С
	MOTA	3716 н	LEU	351	3.061	9.700	36.774	1.00	0.00			Н
50	ATOM	3717 HA	LEU	351	3.087	10.305	33.943	1.00	0.00			Ħ
50	ATOM	3718 1HB	LEU	351	3.307	12.656	34.706	1.00	0.00			Н
							36.378		0.00			H
	MOTA	3719 2HB	LEU	351	3.608	12.076		1.00				
	MOTA	3720 HG	LEU	351	1.296	11.210	36.483	1.00	0.00			H
	MOTA	3721 1HD1		351	2.090	13.971	36.335	1.00	0.00			H
55	ATOM	3722 2HD1		351	0.469	13.810	35.619	1.00	0.00			Н
	ATOM	3723 3HD1	LEU	351	0.769	13.243	37.279	1.00	0.00			H
	MOTA	3724 1HD2	LEU	351	1.405	11.293	33.689	1.00	0.00			H
	ATOM	3725 2HD2		351	0.124	10.685	34.764	1.00	0.00			H
	MOTA	3726 3HD2		351	0.099	12.379	34.218	1.00	0.00			Н
60	ATOM	3727 N	VAL	352	5.823	10.712	35.724	1.00	0.00			N
00	MOTA	3728 CA	VAL	352	7.192	11.128	35.687	1.00	0.00			C
		3728 CA 3729 C	VAL	352 352	7.192	10.483	34.586	1.00	0.00			c
	MOTA											
	MOTA	3730 O	VAL	352	8.415	11.166	33.673	1.00	0.00			0
<i>(=</i>	ATOM	3731 CB	VAL	352	7.941	10.828	36.950	1.00	0.00			С
65	ATOM		VAL	352	9.422	11.184	36.731	1.00	0.00	•		C
	MOTA		VAL	352	7.285	11.599	38.106	1.00	0.00			С
	MOTA	3734 H	VAL	352	5.429	10.375	36.614	1.00	0.00			Н
	MOTA	3735 HA	VAL	352	7.296	12.203	35.542	1.00	0.00			Н

PCT/CA01/00607

•											
	ATOM	3736 нв	VAL	352	7.830	9.766	37.170	1.00	0.00		H
	ATOM		L VAL	352	9.559	11.563	35.718	1.00	0.00		Н
	ATOM		VAL	352	9.722	11.947	37.448	1.00	0.00		H
						10.293		1.00	0.00		Н
~	MOTA	3739 3HG		352	10.034		36.870				
5	ATOM	3740 1HG2		352	6.439	12.172	37.727	1.00	0.00		H
	ATOM	3741 2HG2		352	6.936	10.894	38.861	1.00	0.00	•	H
	MOTA	3742 3HG2	Z VAL	352	8.013	12.277	38.550	1.00	0.00		Н
	MOTA	3743 N	LYS	353	8.094	9.151	34.606	1.00	0.00		N
	MOTA	3744 CA	LYS	353	9.002	8.687	33.610	1.00	0.00		С
10	ATOM	3745 C	LYS	353	8.806	7.241	33.319	1.00	0.00		С
	ATOM	3746 0	LYS	353	8.176	6.499	34.070	1.00	0.00		0
	MOTA	3747 CB	LYS	353	10.454	8.836	34.085	1.00	0.00		C
	ATOM	3748 CG	LYS	353	10.710	8.059	35.379	1.00	0.00		Ċ
									0.00		C
	MOTA	3749 CD	LYS	353	12.154	8.085	35.881	1.00			
15	MOTA	3750 CE	LYS	353	12.405	9.180	36.921	1.00	0.00		С
	ATOM	3751 NZ	$_{ t LYS}$	353	13.702	8.961	37.600	1.00	0.00		N
	MOTA	3752 H·	LYS	353	7.603	8.531	35.266	1.00	0.00		Н
	MOTA	3753 HA	LYS	353	8.877	9.224	32.670	1.00	0.00		H
	MOTA	3754 1HB	LYS	353	10.710	9.877	34.280	1.00	0.00		H
20	MOTA	3755 2HB	LYS	353	11.161	8.465	33.343	1.00	0.00		H
	ATOM	3756 1HG	LYS	353	10.445	7.016	35.204	1.00	0.00		H
	ATOM	3757 2HG	LYS	353	10.086	8.491	36.161	1.00	0.00		Н
		3758 1HD		353	12.877	8.260	35.085	1.00	0.00		Н
	ATOM'		LYS						0.00		H
~ -	ATOM	3759 2HD	LYS	353	12.456	7.151	36.355	1.00			
25	MOTA	3760 1HE	LYS	353	11.616	9.178	37.673	1.00	0.00		Н
	ATOM	3761 2HE	LYS	353	12.425	10.160	36.444	1.00	0.00		H
	MOTA	3762 1HZ	LYS	353	14.150	8.115	37.219	1.00	0.00		H
	MOTA	~3763 2HZ	LYS	353	14.314	9.774	37.442	1.00	0.00		H
	MOTA	3764 3HZ	LYS	353	13.544	8.840	38.610	1.00	0.00		H
30	MOTA	3765 N	MET	354	9.354	6.847	32.154	1.00	0.00		N
	ATOM	3766 CA	MET	354	9.425	5.496	31.689	1.00	0.00		С
	ATOM	3767 C	MET	354	10.824	5.357	31.183	1.00	0.00		С
	ATOM	3768 0	MET	354	11.259		30.372	1.00	0.00		O
		3769 CB	MET	354	8.512	5.217	30.480	1.00	0.00		c
35	MOTA				8.587	3.776	29.968	1.00	0.00		Ċ
33	MOTA	3770 CG	MET	354							s
	MOTA	3771 SD	MET	354	7.756	2.535	31.007	1.00	0.00		
	MOTA	3772 CE	MET	354	6.075	3.003	30.504	1.00	0.00		С
	ATOM	3773 н	MET	354	9.754	7.577	31.548	1.00	0.00		H
	MOTA	3774 HA	MET	354	9.207	4.897	32.574	1.00	0.00		H
40	MOTA	3775 1HB	MET	354	8.734	5.833	29.609	1.00	0.00.		H
	MOTA	3776 2HB	MET	354	7.453	5.387	30.678	1.00	0.00		H
	MOTA	3777 1HG	MET	354	9.638	3.494	29.905	1.00	0.00		H
	ATOM	3778 2HG	MET	354	8.117	3.742	28.985	1.00	0.00		Н
	MOTA	3779 1HE	MET	354	6.124	3.824	29.788	1.00	0.00		Н
45	ATOM	3780 2HE	MET	354	5.582	2.147	30.041	1.00	0.00		H
-7 <i>3</i>	ATOM	3781 3HE	MET	354	5.507	3.318	31.379	1.00	0.00		Н
									0.00		N
	MOTA	3782 N	SER	355	11.596	4.352	31.648	1.00			
	MOTA	3783 CA	SER	355	12.917	4.301	31.093	1.00	0.00		С
	MOTA	3784 C	SER	355	13.571	2.984	31.369	1.00	0.00		C
50	MOTA	3785 O	SER	355	13.150	2.232	32.246	1.00	0.00		0
	ATOM	3786 CB	SER	355	13.859	5.371	31.662	1.00	0.00		С
	ATOM	3,787 OG	SER	355	14.104	5.120	33.038	1.00	0.00		0
	ATOM	3788 н	SER	355	11.261	3.674	32.347	1.00	0.00		H
	MOTA	3789 HA	SER	355	12.897	4.439	30.012	1.00	0.00		H
55	ATOM	3790 1HB	SER	355	13.408	6.358	31.557	1.00	0.00		Н
	MOTA	3791 2HB	SER	355	14.807	5.356	31.125	1.00	0.00		Ħ
	ATOM	3792 HG	SER	355	13.991	5.993	33.572	1.00	0.00		Н
					14.625		30.584	1.00	0.00		N
	ATOM	3793 N	TRP	356		2.669					
<i>~</i>	MOTA	3794 CA	TRP	356	15.405	1.496	30.852	1.00	0.00		С
60	MOTA	3795 C	TRP	356	16.875	1.764	30.729	1.00	0.00		С
	MOTA	3796 O	TRP	356	17.302	2.676	30.022	1.00	0.00		0
	MOTA	3797 CB	TRP	356	14.971	0.189	30.139	1.00	0.00		С
	MOTA	3798 CG	TRP	356	14.288	0.285	28.795	1.00	0.00		C
	MOTA	3799 CD	1 TRP	356	12.945	0.377	28.575	1.00	0.00		С
65	ATOM	,	2 TRP		14.905	0.228	27.497	1.00	0.00		С
•	ATOM		1 TRP	356	12.682	0.370	27.230	1.00	0.00		N
	ATOM		2 TRP	356	13.878		26.553	1.00	0.00		С
	MOTA		3 TRP	356	16.215	0.128	27.121	1.00	0.00		Č
	017	2202 00		550	10.217	3.120		•			-

	ATOM	3804	CZ2	TRP	356	14.143	0.230	25.215	1.00	0.00	C
	ATOM	3805	CZ3	TRP	356	16.478	0.094	25.768	1.00	0.00	С
	ATOM	3806	CH2	TRP	356	15.463	0.142	24.835	1.00	0.00	C.
	ATOM	3807	H	TRP	356	14.869	3.275	29.788	1.00	0.00	H
5	ATOM	3808	HA	TRP	356	15.233	1.116	31.859	1.00	0.00	H
2	ATOM	3809	HC	TRP	356	17.579	1.138	31.276	1.00	0.00	H
	ATOM	3810	1HB	TRP	356	14.267	-0.319	30.798	1.00	0.00	H
	ATOM	3811	2HB	TRP	356	15.871	-0.403	29.977	1.00	0.00	H
	ATOM	3812	HD1	TRP	356	12.189	0.446	29.357	1.00	0.00	H
10	ATOM	3813	HE1	TRP	356	11.748	0.423	26.798	1.00	0.00	Н
10	ATOM	3814		TRP	356	17.016	0.077	27.858	1.00	0.00	Н
	ATOM	3815		TRP	356	13.341	0.259	24.477	1.00	0.00	Н
		3816	HZ3		356	17.511	0.027	25.427	1.00	0.00	Н
	ATOM				356	15.711	0.109	23.774	1.00	0.00	Н
	MOTA	3817	nnz	TRP							
15	MOTA	3818	MG	MET	357	21.729	10.606	29.309	1.00	0.00	С
	TER										

WE CLAIM

10

15

20

25

30

35

- 1. A model for a ligand binding domain of a galactosyltransferase.
- 2. A model as claimed in claim 1 wherein the ligand binding domain is a binding domain for a disphosphate group of a sugar nucleotide donor, a nucleotide of a sugar nucleotide donor, a nitrogeneous heterocyclic base of a sugar nucleotide donor, a sugar of a nucleotide of a sugar nucleotide donor, a selected sugar of a sugar nucleotide donor that is transferred to an acceptor, or an acceptor.
 - 3. A model of a ligand binding domain as claimed in any of the preceding claims wherein the model comprises one or more of the amino acid residues shown in Table 1 or Figure 2, 3, or 4.
 - 4. A model of a ligand binding domain as claimed in claim 1 comprising hydrogen binding partners for the amide hydrogen, carbonyl oxygen in position 4 and the carbonyl oxygen of uracil.
 - 5. A model of a ligand binding domain as claimed in claim 1 that binds the uridine portion of UDP and comprises Phe-134, Tyr-139, Ile-140, Val-136, Arg-194, Arg-202, Lys-209, Asp-173, His-218, and Thr-137.
 - A model of a ligand binding domain as claimed in claim 1 that interacts with a pyrophosphate portion
 of UDP comprising Asp-225, Val-226, and Asp-227 of a galactosyltransferase.
 - 7. A model or secondary, tertiary and/or quanternary structure of a galactosyltransferase for an α 1,3-galactosyltransferase.
 - 8. A model according to any preceding claims wherein the galactosyltransferase is characterized by the atomic contacts of a galactosyltransferase as shown in Table 1.
 - 9. A model as claimed in claim 8 wherein the atomic contacts are defined by the structural coordinates of the atomic contacts as shown in Table 4 or Table 8.
 - 10. A model according to any preceding claims in association with a ligand or substrate.
 - 11. A model according to any preceding claims having the structural coordinates shown in Table 4 or Table 8.
 - 12. A computer readable medium having stored thereon a model according to any preceding claim.
 - 13. A computerized representation of a model according to any of the preceding claims.
 - 14. A method of screening for a ligand capable of binding a ligand binding domain of a galactosyltransferase comprising the use of a model according to any preceding claim.
 - 15. A ligand identified by a method according to claim 14.
 - 16. A ligand according to claim 15 that is capable of associating with one or more atomic contacts of a galactosyltransferase as shown in Table 1.
 - 17. A secondary and three dimensional structure or model of a ligand binding domain of a galactosyltransferase that associates with a diphosphate of a sugar nucleotide donor comprising atomic interactions 9, 10, and 11 of Table 1, each atomic interaction defined therein by an atomic contact on the diphosphate, and an atomic contact on the galactosyltransferase.
- A ligand binding domain of a galactosyltransferase that associates with uracil characterized by the following three hydrogen bonds: (1) the amide hydrogen of uracil in position 3 and OD1 of Asp-168 of the galactosyltransferase, (2) the carbonyl oxygen of uracil in position 4 and the side chain of Lys-

- 186 -

5

10

20

25

30

35

204 of the galactosyltransferase, and (3) the carbonyl oxygen of uracil in position 2 and the amide hydrogen of the His-213 side chain of the galactosyltransferase.

- A secondary or three dimensional structure or model of a ligand binding domain of a 19. galactosyltransferase that associates with a heterocyclic amine base of a sugar nucleotide donor comprising atomic interactions 1, 2, 3, and 4 of Table 1, each atomic interaction defined therein by an atomic contact on the heterocyclic amine base, and an atomic contact on the galactosyltransferase.
- 20. A secondary and three dimensional structure or model of a ligand binding domain of a galactosyltransferase that associates with a ribose of a sugar nucleotide donor comprising atomic interactions 5, 6, 7, and 8 of Table 1, each atomic interaction defined therein by an atomic contact on the sugar, and an atomic contact on the galactosyltransferase.
- 21. A secondary or three dimensional structure of a ligand binding domain of a galactosyltransferase that associates with UDP comprising atomic interactions 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11 of Table 1, each atomic interaction defined therein by an atomic contact on the nucleotide, and an atomic contact on the galactosyltransferase.
- 15 22. A secondary and three dimensional structure or model of a ligand binding domain of a galactosyltransferase that associates with UDP-Gal comprising atomic interactions 1 through 11 of Table 1, each atomic interaction defined therein by an atomic contact on the UDP of the UDP-Gal, and an atomic contact on the galactosyltransferase.
 - 23. A method of identifying a modulator of a galactosyltransferase or a ligand binding domain thereof comprising the step of using the structural coordinates of a galactosysltransferase or a ligand binding domain thereof as shown in Table 4 or 8, or a model according to any preceding claim to computationally evaluate a test compound for its ability to associate with the galactosyltransferase or binding domain or binding site thereof.
 - 24. A method for identifying a potential modulator of a galactosyltransferase by determining binding interactions between a test compound and atomic contacts of a ligand binding domain of a galactosyltransferase comprising:
 - generating the atomic contacts on a computer screen (a)
 - (b) generating test compounds with their spatial structure on the computer screen;
 - (c) determining whether the compounds associate or interact with the atomic contacts defining the galactosyltransferase; and
 - (d) identifying test compounds that are potential modulators by their ability to enter into a selected number of atomic contacts.
 - 25. A method for identifying a potential modulator of a galactosyltransferase function by docking a computer representation of a test compound with a computer representation of a structure of a galactosyltransferase or a ligand binding domain thereof having the amino acid residues of a galactosytransferase or a ligand binding domain thereof as shown in Table 1 or Figures 3, 4, or 5.
 - 26. A method for the design of ligands for galactosyltransferases based on the three dimensional structure of a sugar nucleotide donor or part thereof comprising using the structural coordinates shown in Table 5, 6, or 7.

- A method as claimed in claim 26 comprising (a) generating a computer representation of a sugar nucleotide donor, or part thereof, defined by the structural coordinates shown in Table 5, 6, or 7; (b) searching for molecules in a data base that are similar to the defined sugar nucleotide donor, or part thereof, using a searching computer program, or replacing portions of the compound with similar chemical structures from a database using a compound building computer program.
- 28. A method as claimed in claim 27 comprising one or more of the following additional steps:
 - testing whether a ligand is a modulator of the activity of a galactosyltransferase in cellular assays and animal model assays;
 - (b) modifying the ligand;

10

15

20

- (c) optionally rerunning steps (a) or (b); and
 - (d) preparing a pharmaceutical composition comprising the modulator.
- 29. A modulator identified by a method of claim 23, 24, 25, or 28.
- 30. Compounds of the formula I having the structural coordinates of uracil of Table 5, preferably Run 9, Cluster 1 or ATOM 1 to ATOM 9, inclusive of Table 7:

wherein R_1 and R_2 are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxyl, thiol, thioaryl, amino, halogen, carboxylic acid or esters or thioesters thereof, amines, sulfate, sulfonic or sulfinic acid or esters thereof, phosphate, pyrophophate, gallic acid, phosphonates, thioamide, and $-OR_{12}$ where R_{12} is alkyl, cycloalkyl, alkenyl, alkynyl, or heterocyclic ring;

31. Compounds of the following formula II having the structural coordinates of uridine of Table 5, preferably Run 9, Cluster I or ATOM 1 to 20 inclusive, of Table 7:

10

wherein R_1 , R_2 , R_3 , R_4 , and R_5 are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxy, hydroxyl, thiol, thioaryl, amino, halogen, carboxylic acid or esters or thioesters thereof, amines, sulfate, sulfonic or sulfinic acid or esters thereof, phosphate, pyrophosphate, gallic acid, phosphonates, thioamide, and $-OR_{12}$ where R_{12} is alkyl, cycloalkyl, alkenyl, alkynyl, or heterocyclic ring, and salts and optically active and racemic forms of a compound of the formula II.

32. Compounds of the formula III having the structural coordinates of UDP in Table 5, preferably Run 9, Cluster 1, or ATOM 1 to 28 inclusive of Table 7:

wherein R_1 , R_2 , R_3 , R_4 , R_6 , and R_{11} are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxy, hydroxyl, thiol,

15 33. Compounds of the formula IV having the structural coordinates of UDP-Gal in Table 6, preferably Run, Cluster 1:

10

15

wherein R₁, R₂, R₃, R₄, R₇, R₈, R₉, and R₁₀ are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxy, hydroxyl, thiol, thioaryl, amino, halogen, carboxylic acid or esters or thioesters thereof (e.g. -CH₂OH), amines, sulfate, sulfonic or sulfinic acid or esters thereof, phosphate, gallic acid, phosphonates, thioamide, and -OR12 where R₁₂ is alkyl, cycloalkyl, alkenyl, alkynyl, or heterocyclic ring, and X is a counter-ion including sodium, lithium, potassium, calcium, magnesium, manganese, cobalt ions and the like, as well as nontoxic ammonium, quaternary ammonium, and amine cations, preferably Mn²⁺, and salts and optically active and racemic forms of a compound of the formula IV.

- 34. A pharmaceutical composition comprising a ligand, modulator, or compound according to any preceding claim, and a pharmaceutically acceptable carrier, diluent, excipient, or adjuvant or any combination thereof.
- 35. A method of treating and/or preventing disease comprising the step of administering a pharmaceutical composition according to claim 34 to a mammalian patient.
- 36. A method of treating a disease associated with a galactosyltransferase with inappropriate activity in a cellular organism, comprising:
 - (a) administering a pharmaceutical composition as claimed in claim 34; and
 - activating or inhibiting a galactosyltransferase to treat the disease. (b)
- 20 37. Use of a modulator or compound as claimed in any of the preceding claims in the preparation of a medicament to treat a disease associated with a galactosyltransferase with inappropriate activity in a cellular organism.
 - Use of the structural coordinates of a galactosyltransferase structure as shown in Table 1 or 8, or the 38. structural coordinates of a ligand as shown in Table 5, 6, or 7 to manufacture a medicament.
- 25 39. A computer for producing a model or three-dimensional representation of a molecule or molecular complex, wherein said molecule or molecular complex comprises a galactosyltransferase or ligand binding domain thereof defined by structural coordinates of galactosyltransferase amino acids or a ligand binding domain thereof, or comprises structural coordinates of atoms of a ligand or substrate, or a three-

PCT/CA01/00607

dimensional representation of a homologue of said molecule or molecular complex, wherein said computer comprises:

- (a) a machine-readable data storage medium comprising a data storage material encoded with machine readable data wherein said data comprises the structural coordinates of a galactosyltransferase amino acids according to Table 4 or 8 or a ligand binding domain thereof, or a ligand according to Table 5, 6, or 7;
- (b) a working memory for storing instructions for processing said machine-readable data;
- (c) a central-processing unit coupled to said working memory and to said machine-readable data storage medium for processing said machine readable data into said three-dimensional representation; and
- (d) a display coupled to said central-processing unit for displaying said three-dimensional representation.

10

5

```
GALT (
              5) gkvilsmlvvstvivvfweyihspegslfwinpsrnpev (43
SPSA ( ---> )
GALT (
            44) ggssiqkgwwlprwfnngyheedgdineekeqrnedesk (82
SPSA ( ---> )
GALT (
           83) lklsdwfnpfkrpevvtmtkwkapvvwegtynravldny (121
SPSA (
           122) yakqkitvgltvfavgryiehyleefltsankhfmvghp (160 A2) P---KVSVIMTSYNKSDYVAKSISSILSQT---F--SDF (A32
GALT (
SPSA (
           161) vifyimvddvsr--mplielgplrsfkv-fkikpekrwq (196 A33) ELF-IMDDNSNEETLNVIRP-FLNDNRVRF---YQS--- ( ga
GALT (
SPSA (
          197) dismmrmktigehivahiqhevd----fl-fcmdvdqv (229
A64) DISGVKERTEKTRYAALINQAIEMAEGEYITYATD-DNI (A101
GALT (
SPSA (
         230) fqdkfgvetlgesvaqlqawwykadpnd-ftyerrkesa (267 ) Alo2) Y--MP--DRLLKMVRELDT-----HPEKAVIYSASK--- ( gap )
GALT (
SPSA (
          268) ayipfgeg-dfyyhaaifggtpt-qvlnitqec----f (299 A129) TYHL---N | DIVKETVRFAAQVTWNAFCAIDHCSVMHRY (A166
GALT (
~SPSA (
GALT ( 300) kgilkdkkndieaqwhdeshlnkyfllnkptkilspeyc (338 ) SPSA (gap )-SVLEKVKEKFGSYW-DES-PA-FYRIGD-AR---F-F- ( gap )
         339) w---dyhiglpadiklvkmswqtkeynvvrnnv (368 A196) WRVNHFYPFYPLDEEL-DLNYIT|EF--VRNLPPQRNCR (A244
GALT (
SPSA (
GALT ( <--- )
                                                                                      (A256
SPSA ( A245) ELRESLKKLGMG
```


(19) World Intellectual Property Organization International Bureau

A REAL BRANCH REAL HOUR AND A STATE OF THE STA

(43) International Publication Date 8 November 2001 (08.11.2001)

PCT

(10) International Publication Number WO 01/083717 A3

- (51) International Patent Classification⁷: C12N 9/10, G06F 19/00, C07D 239/54, C07H 19/073, 19/10, A61K 31/513, 31/7072, C07H 19/06, G06F 17/50
- (21) International Application Number: PCT/CA01/00607
- (22) International Filing Date: 2 May 2001 (02.05.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/201,841

3 May 2000 (03.05.2000) US

- (71) Applicant (for all designated States except US): GLY-CODESIGN INC. [CA/CA]; 480 University Avenue, Suite 400, Toronto, Ontario M5G 1V2 (CA).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): RAO, Mohan [IN/CA]; 95 Thorncliffe Park Drive, Apartment 3409, Toronto, Ontario M4H 1L7 (CA). TVAROSKA, Igor

[SK/CA]; 65 High Park Avenue, Apartment 2201, Toronto, Ontario M6P 2R7 (CA).

- (74) Agents: VAN ZANT, Joan M. et al.; Swabey Ogilvy Renault, Suite 1600, 1981 McGill College Avenue, Montreal, Québec H3A 2Y3 (CA).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report

[Continued on next page]

(54) Title: DESIGNING MODULATORS FOR ALPHA-1, 3 GALACTOSYLTRANSFERASES BASED ON A STRUCTURAL MODEL

(57) Abstract: The invention relates to structures and models of ligand binding domains of galactosyltransferases, and the ligand binding domains with ligands. The structural coordinates that define the structures and any ligands bound to the structures enable the determination of homologues, the structures of polypeptides with unknown structure, and the identification of modulators of the galactosyltransferases. The invention also relates to structures and models of nucleotide-sugar donors for the galactosyltransferases, and the design of modulators for the galactosyltransferases based on the properties of these structures and models.

01/083717 A3

(88) Date of publication of the international search report: 8 August 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

nal Application No

PCT/CA 01/00607 A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N9/10 G06F19/00 C07H19/073 C07H19/10 CO7D239/54 A61K31/513 A61K31/7072 C07H19/06 G06F17/50 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C12N G06F GOIN Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, BIOSIS, EMBL, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. CHARNOCK SIMON J ET AL: "Structure of the χ 18,32 nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms" BIOCHEMISTRY, AMERICAN CHEMICAL SOCIETY. EASTON, PA, US, vol. 38, no. 20, 18 May 1999 (1999-05-18), pages 6380-6385, XP001038468 ISSN: 0006-2960 Y pages 6381-6382 and Figure 4 14,23-28 Further documents are listed in the continuation of box C. Patent family members are listed in annex. χ Special categories of cited documents: *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the 'A' document defining the general state of the art which is not considered to be of particular relevance invention ·E· earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 26/02/2002 30 January 2002 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Form PCT/ISA/210 (second sheet) (July 1992)

Vix, 0

PCT/CA 01/00607

C (Continue	ition) DOCUMENTS CONSIDERED TO BE RELEVANT	<u> </u>	
Category °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
X	IMBERTY ANNE ET AL: "Fold recognition study of alpha3-galactosyltransferase and molecular modeling of the nucleotide sugar-binding domain." GLYCOBIOLOGY, vol. 9, no. 7, July 1999 (1999-07), pages 713-722, XP001026527 ISSN: 0959-6658	· ·	18,33
Υ	abstract, Fig 1, page 717, Fig. 3 and page 719		14,23-28
Y	JOZIASSE D H ET AL: "BOVINE ALPHA-1-3 GALACTOSYLTRANSFERASE ISOLATION AND CHARACTERIZATION OF A COMPLEMENTARY DNA CLONE IDENTIFICATION OF HOMOLOGOUS SEQUENCES IN HUMAN GENOMIC DNA" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 264, no. 24, 1989, pages 14290-14297, XP001026521 ISSN: 0021-9258 abstract, fig. 2 and page 14296		18,35,36
Υ	DATABASE EMBL 'Online! accession P14769, protein EC 2.4.1.151, 1 April 1990 (1990-04-01) JOZIASSE DH ET AL.: "bovine alpha 1-3 galactosyltransferase gene" XP002186993 the whole document		18
X	DATABASE SIGMA-ALDRICH 'Online! Products for Life Science, "search for UDP" retrieved from HTTP://WWW.SIGMA-ALDRICH.COM XP002186994 Uracil, Uridine 5'-diphosphogalactose, Uridine, etc are common products listed in different providers catalog		30-33
X	GASTINEL LOUIS NOEL ET AL: "Crystal structures of the bovine beta4galactosyltransferase catalytic domain and its complex with uridine diphosphogalactose." EMBO (EUROPEAN MOLECULAR BIOLOGY ORGANIZATION) JOURNAL, vol. 18, no. 13, 1 July 1999 (1999-07-01), pages 3546-3557, XP002186991		18,33
Υ	ISSN: 0261-4189 page 3548-50, Fig 2, 4 ,5 and page 3554/		23-28

nal Application No PCT/CA 01/00607

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	d	
Category °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
Y	ASZODI ANDRAS ET AL: "Protein modeling by multiple sequence threading and distance geometry." PROTEINS, no. SUPPL. 1, 1997, pages 38-42, XP001038475 ISSN: 0887-3585 the whole document		18,23-28
Y	CHUNG S J ET AL: "Acceptor substrate-based selective inhibition of galactosyltransferases" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 8, no. 23, 1 December 1998 (1998-12-01), pages 3359-3364, XP004143758 ISSN: 0960-894X Fig 1, table 1, page 3362		23-28, 35,36
Y	BRETON CHRISTELLE ET AL: "Structure/function studies of gTycosyltransferases." CURRENT OPINION IN STRUCTURAL BIOLOGY, vol. 9, no. 5, October 1999 (1999-10), pages 563-571, XP001026532 ISSN: 0959-440X page 566 and Fig. 4		18,23
A	US 5 849 991 A (CRAWFORD ROBERT J ET AL) 15 December 1998 (1998-12-15) columns 2,4,6,8		18,23-28
A	THODEN JAMES B ET AL: "Structural analysis of UDP-sugar binding to UDP-galactose 4-epimerase from Escherichia coli." BIOCHEMISTRY, vol. 36, no. 21, 1997, pages 6294-6304, XP001038467 ISSN: 0006-2960 page 2558, Figure 4, 6, 7.		30-33
P, Y	UNLIGIL ULUG M ET AL: "X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: Catalytic mechanism and a new protein superfamily." EMBO (EUROPEAN MOLECULAR BIOLOGY ORGANIZATION) JOURNAL, vol. 19, no. 20, 16 October 2000 (2000-10-16), pages 5269-5280, XP001026132 ISSN: 0261-4189 pp5270 left column, Fig. 2 and 4.		18

I nal Application No PCT/CA 01/00607

Category °	cition) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
T	RAO MOHAN ET AL: "Structure of bovine alpha-1,3-galactosyltransferase and its complexes with UDP and UDPGal inferred from molecular modeling." PROTEINS, vol. 44, no. 4, 1 September 2001 (2001-09-01), pages 428-434, XP001038482	18,23-28
	ISSN: 0887-3585 the whole document	
	_	

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1-13,17,19-22, 29, 34-39

Presentation of information: The claims 1-13, 17, 19-22, 38-39 relate to, or comprise, a three dimensional homology model for the ligand binding domain of a galactosyltransferase or its production which is considered to be a subject-matter encompassed by Rule 39.1(v) and/or (vi) PCT, being subject-matter which the ISA is not required to search under Art. 17(2)(a)(i) PCT. The above mentioned claims relate to a presentation of information (protein model structure coordinates) identified as a coordinates listings and their possible use -claim 38- (using appropriate molecular modelling software), or information stored on a computer (claim 39 and 13) or computer readable media (claim 12). Thus, said claims will not be searched.

Enzyme "ligand/s" or "modulator/s" and their use: Present claims 15-16, 29, 34-37 relate to a compound (and its use in pharmaceutical composition or in methods of treatment) defined by reference to a its binding property to a glycosyltransferase (a "ligand" or a "modulator" of alpha 1-3 glycosyltransferase). The claims cover all products having this characteristic or property, whereas the application provides support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT for NONE such products. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). A meaningful search cannot be established because it is not possible to determine if any of the presently known substances is falling under the terms of these "modulator" product claims. Besides it is noted, that the compounds of claims 15-16 and 29 are not rendered novel just because of the fact that they have been identified by the method of claims 23-28, e.g. such compounds can already exist.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

PCT/CA 01/00607

Patent document cited in search report	Publication date	,	Patent family member(s)	Publication date
US 5849991	15-12-1998	AU BR CA EP AU AU WO JP	695373 B2 9506652 A 2181433 A1 0755451 A1 1544595 A 711144 B2 7742898 A 9520661 A1 9508277 T	13-08-1998 02-09-1997 03-08-1995 29-01-1997 15-08-1995 07-10-1999 01-10-1998 03-08-1995 26-08-1997