

ADVERSARIAL MACHINE LEARNING

ATTACK MODELS: CARLINI WAGNER ATTACKS

- ▶ Nicholas Carlini and David Wagner proposer three attack models with L_0 , L_2 and L_∞ distance
- L2 attack is most optimal and broke all the existing defences

The defined the problem as following:

Carlini, N., & Wagner, D. (2017, May). Towards evaluating the robustness of neural networks.

minimize $\mathcal{D}(x, x + \delta)$ such that $C(x + \delta) = \ell$ $x+\delta \in [0,1]^n$

 \mathcal{D} can be L_0, L_2, L_∞ distance

ATTACK MODELS: CARLINI WAGNER L2 ATTACK

This is a hard problem. So they defined f such that:

$$C(x + \delta) = \ell$$
 if and if only $f(x + \delta) \le 0$

So the optimization problem becomes:

minimize
$$\mathcal{D}(x, x + \delta) + c \cdot f(x + \delta)$$
 s.t. $x + \delta \in [0, 1]^n$

Variable replacement

They replaced
$$\delta_i$$
 as $\delta_i = \frac{1}{2}(\tanh(w_i) + 1) - x_i$

So the optimization problem becomes

minimize
$$\|\frac{1}{2}(\tanh(w)+1) - x\|_2^2 + c \cdot f(\frac{1}{2}(\tanh(w)+1))\|$$

with f defined as

$$f(x') = \max(\max\{\mathcal{H}(x')_i : i \neq l\} - \mathcal{H}(x')_l, -\kappa).$$

They solve optimization using multiple starting point gradient descent

ATTACK MODELS: CARLINI WAGNER ATTACKS

- ▶ Nicholas Carlini and David Wagner proposer three attack models with L_0 , L_2 and L_∞ distance
- L2 attack is most optimal and broke all the existing defences
- The defined the problem as following:

minimize
$$\mathcal{D}(x, x + \delta)$$

such that $\mathcal{C}(x + \delta) = \ell$
 $x + \delta \in [0, 1]^n$

 \mathcal{D} can be L_0, L_2, L_{∞} distance