Introduction to SPICE

Acknowledgement

 These slides are adapted from the lecture: Spice Simulation by Prof. David Harris of Harvey Mudd College.

Introduction to SPICE

- Simulation Program with Integrated Circuit Emphasis
 - Developed in 1970's at Berkeley
 - Many commercial versions are available
 - HSPICE is a robust industry standard
 - · Has many enhancements that we will use
- Written in FORTRAN for punch-card machines
 - Circuits elements are called cards
 - Complete description is called a SPICE deck

Writing Spice Decks

- Writing a SPICE deck is like writing a good program
 - Plan: sketch schematic on paper or in editor
 - Modify existing decks whenever possible
 - Code: strive for clarity
 - Start with circuit name and its functionality
 - Generously comment
 - Test:
 - Predict what results should be
 - Compare with actual
 - Garbage In, Garbage Out!

Voltage Sources

- Node 0 is the ground terminal
- DC Source

```
Vname N1 N2 Type Value
```

```
Example:
```

Piecewise Linear Source

```
Vname N1 N2 PWL(T1 V1 T2 V2 T3 V3 ...)
```

```
Example:
```

```
Vin in 0 pwl 0ps 0 100ps 0 150ps 1.8 800ps 1.8
```

Voltage Sources...contd.

Pulsed Source

V<name> N1 N2 PULSE V1 V2 td tr tf pw per Example: Vin in gnd PULSE 0 5 0.5ns 0.1ns 0.1ns 4ns 8ns

PULSE v1 v2 td tr tf pw per

SPICE Elements

Letter	Element	
R	Resistor	
С	Capacitor	
L	Inductor	
K	Mutual Inductor	
V	Independent voltage source	
1	Independent current source	
M	MOSFET	
D	Diode	
Q	Bipolar transistor	
W	Lossy transmission line	
X	Subcircuit	
Е	Voltage-controlled voltage source	
G	Voltage-controlled current source	
Н	Current-controlled voltage source	
F	Current-controlled current source	

Units

Letter	Unit	Magnitude
а	atto	10 ⁻¹⁸
f	fempto	10 ⁻¹⁵
р	pico	10 ⁻¹²
n	nano	10 ⁻⁹
u	micro	10 ⁻⁶
m	milli	10 ⁻³
k	kilo	10 ³
Х	mega	10 ⁶
g	giga	109

Ex: 100 femptofarad capacitor = 100fF, 100f, 100e-15

Example: INV Circuit

- Each MOSFET has four terminals:
 - D (Drain)
 - G (Gate)
 - S (Source)
 - B (Body)
- The bulk terminal of PMOS should be tied to Vdd
- The bulk terminal of NMOS should be tied to Ground
- Each MOSFET has W (Width) and L (Length)

MOSFET Elements

M element for MOSFET

Mname drain gate source body type W=<width> L=<length>

Example:

INV Circuit SPICE Deck

```
Inverter SPICE deck
       Parameters and models
.include mosistsmc180.sp.txt
.options post list scale=1n
       Simulation netlist
Vdd Vdd 0 1.8V
Vin in 0 PULSE 0 1.8V 0.5ns 0.1ns 0.1ns 10ns 20ns
m0 out in Vdd Vdd PMOS W=360 L=180
m1 out in 0 0 NMOS W=180 L=180
Cload out 0 0.01pF
                                                                 360nm/180nm
                                                                   out
       Stimulus and plot statements
tran 1n 40n
                                                                 180nm/180nm
.plot V(in) V(out)
.end
                                                       G_{m1}
                            CMOS VLSI Design
```

Running HSPICE

- Run from Command Line prompt% hspice -i inv.sp -o inv.lis
- When the job finishes, HSPICE displays: >info: ***** hspice job concluded

SPICE Explorer

prompt% sx

Viewing Waveforms

Getting Started

- ☐ Connect to USF RC Research Cluster
- ☐ Setup path by editing .bashrc file
- Copy inverter and model files
- ☐ Run hspice
- ☐ Run sx
- ☐ Print the waveforms to a file