Unidad No. Polinomio de interpolación de Newton en Polinomio Newton Dif_divididas

La n-ésima diferencia dividida finita es

$$f[x_n, x_{n-1}, \dots, x_1, x_0] = \frac{f[x_n, x_{n-1}, \dots, x_1] - f[x_{n-1}, x_{n-2}, \dots, x_0]}{x_n - x_0}$$

El polinomio de interpolación de Newton en diferencias divididas es:

$$f_n(x) = f(x_0) + (x - x_0) f[x_1, x_0] + (x - x_0)(x - x_1) f[x_2, x_1, x_0]$$

+ \cdots + (x - x_0)(x - x_1) \cdots \cdot(x - x_{n-1}) f[x_n, x_{n-1}, \cdots, x_0]

Puntos	0	1	2	3	 n
x	x_0	\boldsymbol{x}_1	x_2	x_3	 x_n
f(x)	$f[x_0]$	$f[x_1]$	$f[x_2]$	$f[x_3]$	 $f[x_n]$

Polinomio Newton Dif_divididas

Supóngase que se tiene una función dada en forma tabular como se presenta:

y se desea aproximarla preliminarmente con un polinomio de primer grado que pasa, por ejemplo, por los puntos (0) y (1).

Dicho polinomio es de la forma:

$$p(x) = a_0 + a_1(x - x_0)$$

donde x_0 es la abscisa del punto (0) y a_0 y a_1 son constantes por determinar.

Polinomio Newton Dif_divididas

Para encontrar el valor de a_0 se hace $x = x_0$, de la cual $a_0 = p(x_0) = f[x_0]$, Para encontrar el valor de a_1 se hace $x = x_1$, de donde $a_1 = (f[x_1] - f[x_0]) / (x_1 - x_0)$, o sea la primera diferencia dividida $f[x_0, x_1]$.

Al sustituir los valores de estas constantes en la ecuación

$$p(x) = a_0 + a_1(x - x_0)$$

Tenemos: polinomio de primer grado en términos de diferencias divididas.

$$p(x) = f[x_0] + (x - x_0) f[x_{0'} x_1]$$

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$$

Polinomio Newton Dif_divididas

Para aproximar la función tabular con un polinomio de segundo grado que pase por los puntos (0), (1) y (2) y que tenga la forma

$$p_2(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)$$

donde x_0 y x_1 son as abscisas de los puntos (0) y (1) y a_0 , a_1 y a_2 son constantes por determinar, entonces:

si
$$x = x_{0}$$
, $a_{0} = p_{2}(x_{0}) = f[x_{0}]$
si $x = x_{1}$, $a1 = \frac{f[x_{1}] - f[x_{0}]}{x_{1} - x_{0}} = f[x_{0}, x_{1}]$

$$f[x_{2}] - f[x_{0}] - (x_{2} - x_{0}) = \frac{f[x_{1}] - f[x_{0}]}{x_{1} - x_{0}} = f[x_{0}, x_{1}]$$

$$\operatorname{si} x = x_{2}, \ a_{2} = \frac{f[x_{2}] - f[x_{0}] - (x_{2} - x_{0}) - f[x_{1}] - f[x_{0}]}{(x_{2} - x_{0}) - (x_{2} - x_{1})}$$

Polinomio Newton Dif_divididas

$$\operatorname{si} x = x_{2}, \ a_{2} = \frac{f[x_{2}] - f[x_{0}] - (x_{2} - x_{0}) - \frac{f[x_{1}] - f[x_{0}]}{x_{1} - x_{0}}}{(x_{2} - x_{0}) (x_{2} - x_{1})}$$

$$a_2 = \frac{-f[x_2] - f[x_1]}{x_2 - x_1} - \frac{f[x_1] - f[x_0]}{x_1 - x_0} = f[x_0, x_1, x_2]$$

Sustituyendo estos coeficientes en la ecuación

$$p_2(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)$$

$$p_2(x) = f[x_0] + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x_2]$$
a0
a1

Tenemos: polinomio de segundo grado en términos de diferencias divididas

Polinomio Newton Dif_divididas

GENERALIZANDO, se puede establecer por inducción que para un polinomio de grado *n* escrito en la forma

$$p_n(x) = a_0 + a_1 (x - x_0) + a_2 (x - x_0) (x - x_1) + \dots + a_n (x - x_0) (x - x_1) \dots (x - x_{n-1})$$

que pasa por los puntos (0), (1), (2),..., (n); los coeficientes a_0 , $a_{1,...,a_n}$ están dados por:

$$a_{0} = f[x_{0}]$$

$$a_{1} = f[x_{0}, x_{1}]$$

$$a_{2} = f[x_{0}, x_{1}, x_{2}]$$

$$\vdots$$

$$\vdots$$

$$a_{n} = f[x_{0}, x_{1}, x_{2}, \dots, x_{n}]$$

es una aproximación polinomial de Newton, la cual se puede expresar sintéticamente como:

$$p_n(x) = \sum_{k=0}^{n} a_k \prod_{i=0}^{k-1} (x - x_i)$$

Polinomio Newton Dif_divididas

Ejemplo: Elabore una aproximación polinomial de Newton para la información tabular de las presiones de vapor de la acetona e interpole la temperatura para una presión de 2 atm.

Ejercicio 1

Tabla 5.2		de ebulli presiones		acetona
Dunto	0	- 1	2	2

Puntos	O	1	2	3
T (°C)	56.5	113.0	181.0	214.5
P (atm)	1	5	20	40

Ejercicio 2

Puntos	0	1	2	3	4	5
х	-2	-1	0	2	3	6
f (x)	-18	-5	-2	-2	7	142

Puntos	0	1	2	3	4	5
x	-2	-1	0	2	3	6
f(x)	-18	-5	-2	-2	7	142

 $x_s = f[x_s]$

formación		Diferencias divi	ididas	
f(x)	Primeras	Segundas	Terceras	
$f_0 = f[x_0]$	a0			
	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_2}$	a1		
611	~1 ~0	$f[x_1, x_2] - f[x_1, x_2] - f[x_0, x_1]$	a2	
$f[x_1]$	$f[x_2] - f[x_1]$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$	$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_1, x_2}$	
	$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	ft1 ft1	$f[X_0, X_1, X_2, X_3] = {X_3 - X_0}$	
$f[x_2]$		$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_2 - x_1}$		
	$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$		$f[x_1, x_2, x_3, x_4] = \frac{f[x_2, x_3, x_4] - f[x_1, x_2, x_3]}{x_1 - x_2}$	
$f[x_1]$		$f[x_2, x_3, x_4] = \frac{f[x_3, x_4] - f[x_2, x_3]}{x_4 - x_3}$	24-21	
$f[x_3]$	$f[x_3, x_4] = \frac{f[x_4] - f[x_3]}{x_1 - x_2}$	$x_4 - x_2$	$f[x_2, x_3, x_4, x_5] = \frac{f[x_3, x_4, x_5] - f[x_2, x_3, x_4]}{r - r}$	
	x ₄ =x ₃		$f[X_2, X_3, X_4, X_5] = {X_5 - X_2}$	
$f[x_4]$		$f[x_3, x_4, x_5] = \frac{f[x_4, x_5] - f[x_3, x_4]}{x_5}$		

Polinomio Newton Dif_divididas

Polinomio Newton Dif_divididas mediante los puntos (0), (1)

$$f[x_{0'} x_1] = \frac{-5 - (-18)}{-1 - (-2)} = 13$$

Polinomio Newton Dif_divididas mediante los puntos (1), (2)

$$f[x_1, x_2] = \frac{-2 - (-5)}{0 - (-1)} = 3$$

La segunda diferencia dividida mediante los puntos (0), (1) y (2)

$$f[x_{0'} x_{1'} x_2] = \frac{3-13}{0-(-2)} = -5$$

Polinomio Newton Dif_divididas

Puntos	x	f (x)	1er orden	2 ^{do} orden	3er orden	4º orden
0	-2	-18	a0	a1	a2	
1	-1	-5	3	-5	1	а3
2	0	-2	0	-1	1	0
3	2	-2	9	3	1	0
4	3	7	45	9	1	
5	6	142	43			

Notemos: que las Polinomio Newton Dif_divididas de cuarto orden son todas cero, lo cual concuerda con que la tercera y cuarta derivada de un polinomio de tercer grado.

si al construir una tabla de Polinomio Newton Dif_divididas en alguna de las columnas el valor es constante (y en la siguiente columna es cero), la información proviene de un polinomio de grado igual al orden de las diferencias que tengan valores constantes.

Para
$$n = 1$$

$$p(x) = a_0 + a_1(x - x_0) = f[x_0] + f[x_{0'} x_1](x - x_0)$$

$$p(x) = -18 + 13(x + 2) = 34$$

n=3
$$P(x) = a_0 +a1(x-x_0) +a2(x-x_0)(x-x_1) +a3(x-x_0)(x-x_1)(x-x_2) \\ -18 +13*(x+2) -5*(x+2)*(x+1) + (x+2)(x+1)(x-0) = -2$$

$$P(x) = a_0 + a1(x-x_0) + a2(x-x_0)(x-x_1)$$

$$p(x) = -18 + 13(x + 2) - 5(x+2)(x+1)$$

$$P(2) = -18 + 13* (2 + 2) -5*(2+2)*(2+1) = -26$$