Cloud Computing Fundamentals

Cloud Computing delivers computing services over the internet.

CLOUD SERVICE MODELS:

- 1. laaS (Infrastructure as a Service)
 - Provides virtualized computing resources
 - User manages: OS, middleware, applications
 - Provider manages: Hardware, networking, storage
 - Examples: AWS EC2, Google Compute Engine, Azure VMs
 - Use case: Full control over infrastructure
- 2. PaaS (Platform as a Service)
 - Provides development and deployment platform
 - User manages: Applications, data
 - Provider manages: OS, middleware, runtime
 - Examples: Heroku, Google App Engine, Azure App Service
 - Use case: Focus on development, not infrastructure
- 3. SaaS (Software as a Service)
 - Provides ready-to-use software
 - User manages: Data within application
 - Provider manages: Everything else
 - Examples: Gmail, Salesforce, Office 365, Dropbox
 - Use case: Use software without installation

CLOUD DEPLOYMENT MODELS:

- 1. Public Cloud
 - Shared infrastructure
 - Cost-effective, scalable
 - Examples: AWS, Azure, Google Cloud
 - Less control over security
- 2. Private Cloud
 - Dedicated to single organization
 - More control and security
 - Higher cost
 - On-premises or hosted
- 3. Hybrid Cloud
 - Combination of public and private
 - Flexibility and optimization
 - Sensitive data in private, public for scalability
- 4. Multi-Cloud
 - Multiple public cloud providers
 - Avoid vendor lock-in
 - Best-of-breed services

MAJOR CLOUD PROVIDERS:

1. Amazon Web Services (AWS)

- Market leader
- Services:
 - * EC2: Virtual servers
 - * S3: Object storage
 - * RDS: Managed databases
 - * Lambda: Serverless computing
 - * CloudFront: CDN
- Pay-as-you-go pricing
- 2. Microsoft Azure
 - Strong enterprise integration
 - Services:
 - * Virtual Machines
 - * Azure SQL Database
 - * Azure Functions
 - * Azure Active Directory
 - Hybrid cloud strength
- 3. Google Cloud Platform (GCP)
 - Data analytics and ML strength
 - Services:
 - * Compute Engine
 - * Cloud Storage
 - * BigQuery: Data warehouse
 - * TensorFlow on cloud
 - Competitive pricing

CLOUD COMPUTING BENEFITS:

- 1. Cost Savings
 - No upfront hardware cost
 - Pay only for what you use
 - Reduced IT maintenance
- 2. Scalability
 - Scale up/down based on demand
 - Auto-scaling
 - Handle traffic spikes
- 3. Accessibility
 - Access from anywhere
 - Internet connection needed
 - Collaboration made easy
- 4. Disaster Recovery
 - Automatic backups
 - Geographic redundancy
 - Quick recovery
- 5. Automatic Updates
 - Provider handles patches
 - Latest features automatically

- Security updates

VIRTUALIZATION:

Core technology behind cloud computing.

- 1. Virtual Machines (VMs)
 - Multiple OS on single hardware
 - Hypervisor manages VMs
 - Types: Type 1 (bare-metal), Type 2 (hosted)
 - Examples: VMware, VirtualBox, KVM
- 2. Containers
 - Lightweight virtualization
 - Share OS kernel
 - Docker: Container platform
 - Kubernetes: Container orchestration
 - Faster startup than VMs

CLOUD STORAGE:

- 1. Object Storage
 - Store files as objects
 - Scalable, durable
 - Examples: AWS S3, Google Cloud Storage
 - Use case: Backups, media files
- 2. Block Storage
 - Fixed-size blocks
 - Low latency
 - Examples: AWS EBS, Azure Disk Storage
 - Use case: Databases, applications
- 3. File Storage
 - Hierarchical file system
 - Shared access
 - Examples: AWS EFS, Azure Files
 - Use case: Shared documents

SERVERLESS COMPUTING:

- No server management
- Pay only for execution time
- Auto-scaling
- Examples: AWS Lambda, Azure Functions, Google Cloud Functions

Use cases:

- API backends
- Data processing
- Scheduled tasks
- Event-driven applications

CLOUD NETWORKING:

- 1. Virtual Private Cloud (VPC)
 - Isolated network in cloud
 - Subnets, route tables

- Security groups
- 2. Load Balancers
 - Distributes traffic across servers
 - High availability
 - Health checks
- 3. Content Delivery Network (CDN)
 - Caches content at edge locations
 - Faster content delivery
 - Reduced latency
 - Examples: CloudFront, Cloudflare

CLOUD SECURITY:

- 1. Shared Responsibility Model
 - Provider: Security OF the cloud
 - Customer: Security IN the cloud
 - Clear boundaries
- 2. Identity and Access Management (IAM)
 - User authentication and authorization
 - Roles and permissions
 - Principle of least privilege
- 3. Encryption
 - Data at rest: Encrypted storage
 - Data in transit: TLS/SSL
 - Key management services
- 4. Security Groups & Firewalls
 - Control inbound/outbound traffic
 - Network segmentation
 - Defense in depth

CLOUD MIGRATION:

Strategies (6 R's):

- 1. Rehost (Lift and Shift)
 - Move as-is to cloud
 - Quick migration
 - Minimal changes
- 2. Replatform
 - Minor optimizations
 - Use managed services
 - Example: Database to RDS
- 3. Refactor
 - Re-architect for cloud
 - Serverless, microservices
 - Maximum cloud benefits
- 4. Repurchase
 - Move to SaaS
 - Example: CRM to Salesforce

5. Retain

- Keep on-premises
- Not ready for cloud

6. Retire

- Decommission unused applications
- Cost savings

CLOUD COST MANAGEMENT:

- 1. Right-sizing
 - Choose appropriate instance types
 - Don't over-provision
- 2. Reserved Instances
 - Commit for 1-3 years
 - Up to 75% discount
- 3. Spot Instances
 - Unused capacity at discount
 - Interruptible
 - Good for batch jobs
- 4. Auto-scaling
 - Scale based on demand
 - Reduce costs during low usage
- 5. Monitoring
 - Track usage and costs
 - Set budgets and alerts
 - Tools: AWS Cost Explorer, Azure Cost Management