Simple Linear Regression V & Introduction to Multiple Linear Regression

Regression Diagnostics and Remedies

Multiple Linea Regression

Lecture 6

Simple Linear Regression V & Introduction to Multiple Linear Regression

Reading: Chapter 11, 12

STAT 8020 Statistical Methods II September 2, 2019

> Whitney Huang Clemson University

Agenda

Simple Linear Regression V & Introduction to Multiple Linear Regression

Regression Diagnostics and Remedies

Multiple Linea Regression

Regression Diagnostics and Remedies

MaxHeartRate vs. Age Residual Plot Revisited

Simple Linear Regression V & Introduction to Multiple Linear Regression

Regression Diagnostics and Remedies

A Non-Linear Pattern

Possible Remedies:

- Transform X
- Nonlinear regression

Simple Linear Regression V & Introduction to Multiple Linear Regression

Regression Diagnostics and Remedies

Non-Constant Variance

Possible Remedies:

- ullet Transform Y
- Weighted least squares

Simple Linear Regression V & Introduction to Multiple Linear Regression

Regression Diagnostics and Remedies

Correlated Errors

A Possible Remedy:

Allow correlated errors in SLR

Simple Linear Regression V & Introduction to Multiple Linear Regression

Regression
Diagnostics and
Remedies

Extrapolation in SLR

Extrapolation beyond the range of the given data can lead to seriously biased estimates if the assumed relationship does not hold the region of extrapolation

Simple Linear Regression V & Introduction to Multiple Linear Regression

Regression Diagnostics and Remedies

- Model: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$
- Estimation: Use the method of least squares to estimate the parameters
- Inference
 - Hypothesis Testing
 - Confidence/prediction Intervals
 - ANOVA
- Model Diagnostics and Remedies

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{p-1} X_{p-1} + \varepsilon_i, \quad \varepsilon_i \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$$

Example: Species diversity on the Galapagos Islands. We are interested in studying the relationship between the number of plant species (Species) and the following geographic variables: Area, Elevation, Nearest, Scruz, Adjacent.

Simple Linear Regression V & Introduction to Multiple Linear Regression

Regression Diagnostics and

How Do Geographic Variables Affect Species Diversity?

 $\mbox{Species} = \beta_0 + \beta_1 \mbox{Area} + \beta_2 \mbox{Elevation} + \beta_3 \mbox{Nearest} + \beta_4 \mbox{Scruz} + \beta_5 \mbox{Adjacent} + \mbox{error}$

Simple Linear Regression V & Introduction to Multiple Linear Regression

Regression
Diagnostics and
Remedies

Fit a Multiple Linear Regression using R

```
lm(formula = Species ~ Area + Elevation + Nearest + Scruz + Adjacent,
   data = aala
Residuals:
    Min
              10
                   Median
                                30
                                        Max
-111.679 -34.898
                   -7.862
                            33,460 182,584
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.068221 19.154198
                                  0.369 0.715351
           -0.023938
                       0.022422 -1.068 0.296318
Area
Elevation 0.319465
                       0.053663 5.953 3.82e-06
Nearest
           0.009144
                     1.054136
                                  0.009 0.993151
Scruz
           -0.240524
                     0.215402 -1.117 0.275208
Adiacent
           -0.074805
                       0.017700 -4.226 0.000297
(Intercept)
Area
Flevation
Nearest
Scruz
Adjacent
           ***
Signif. codes:
 '***' 0.001 '**' 0.01 '*' 0.05 '.<u>' 0.1 ' ' 1</u>
Residual standard error: 60.98 on 24 degrees of freedom
Multiple R-squared: 0.7658,
                               Adjusted R-squared: 0.7171
-statistic: 15.7 on 5 and 24 DF, p-value: 6.838e-07
```

Simple Linear Regression V & Introduction to Multiple Linear Regression

Regression
Diagnostics and
Remedies

Regression
Diagnostics and
Remedies

Regression

$$\boldsymbol{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}, \quad \boldsymbol{X} = \begin{pmatrix} 1 & X_{1,1} & X_{2,1} & \cdots & X_{p-1,1} \\ 1 & X_{1,2} & X_{2,2} & \cdots & X_{p-1,2} \\ \vdots & \ddots & \ddots & \vdots \\ 1 & X_{1,n} & X_{2,n} & & X_{p-1,n} \end{pmatrix}$$

We can express MLR as

$$Y = X\beta + \varepsilon$$
,

where
$$\boldsymbol{\beta} = (\beta_0, \cdots, \beta_{p-1})^T$$
 and $\boldsymbol{\varepsilon} = (\varepsilon_1, \cdots, \varepsilon_n)^T$

Error Sum of Squares (SSE) = $\sum_{i=1}^{n} (Y_i - \beta_0 - \sum_{j=1}^{p-1} \beta_j X_j)^2$ can be expressed in Matrix notation as:

$$(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})$$

Multiple Linear Regression Topics

Similar to SLR, we will discuss

- Estimation
- Inference
- Diagnostics and Remedies

We will also discuss some new topics

- Model Selection
- Multicollinearity

Simple Linear Regression V & Introduction to Multiple Linear Regression

Regression
Diagnostics and
Remedies