Conditional independance on extremal linear latent model

CAPEL Alexandre

2025-01-16

Contents

1	The	e latent linear model	1
	1.1	Presentation	1
	1.2	Induced properties	2
2	Con	${f ditionnal}$ independance over Z	2
	2.1	Heuristic and definition	2
	2.2	Properties	2
	2.3	Extremal independance	2
	2.4	Extremal conditionnal independance	2

In this document, we want to define a new notion on conditional independence for a particular model and see if it corresponds to the "classic" extremal conditional independence.

1 The latent linear model

1.1 Presentation

Let's consider a random vector X of \mathbb{R}^d such that we have the following representation :

$$X = MZ + \varepsilon$$

where Z represents a unobservable random vector of \mathbb{R}^K (identified as the latent variable), M is a $d \times K$ matrix and $\varepsilon \in \mathbb{R}^d$ a random noise.

For the next assumptions, we will use the same context as (Boulin 2024), and so:

- K is not known and the dimensional parameters d and K can increase and be larger than n, the number of observation.
- all the components of the random vector Z are asymptotically independent with a tail indexx equal to one. It means that we can express the exponential measure as below:

$$\Lambda_Z = \sum_{k=1}^K \delta_0 \otimes \cdots \otimes \Lambda_{Z_k} \otimes \cdots \otimes \delta_0, \qquad \Lambda_{Z_k}(dy) = y^{-2} dy$$

• the random noise ε possess a distribution with a tail that is lighter than the factors (what does it mean ?).

1.2 Induced properties

Theses assumptions give to the random vector X the regular variation property and bring also a spectral measure Φ which have a discrete representation :

$$\Phi(.) = \sum_{k=1}^{K} ||A_{.k}|| \delta_{\frac{A_{.k}}{||A_{.k}||}}(.),$$

with $\delta_x(.)$ the Dirac measure on x.

I don't really see why all of this is true...

Thus, we can compute the limits for the maxima n replications of X

2 Conditionnal independance over Z

- 2.1 Heuristic and definition
- 2.2 Properties
- 2.3 Extremal independance
- 2.4 Extremal conditionnal independance

References

Boulin, Alexis. 2024. "Variable Clustering of Multivariate Time Series According to the Dependence of Their Extremes." PhD thesis, Université Côte d'Azur.