7. Quantum entanglement

Vaughan Sohn December 10, 2024

Contents

Entanglement in pure state

Entanglement in mixed state

Quantity of the entanglement

Entanglement witness

General theory of Entanglement witness

Product state

Pure state에서 entanglement를 판단하는 대표적인 기준은 composite system의 state를 product state의 형태로 표현이 가능한지 확인하는 것이다.

- product state: $|\psi\rangle_{AB} = |\psi\rangle_{A} \otimes |\psi\rangle_{B}$
- entangled state: $|\psi\rangle_{AB} \neq |\psi\rangle_{A} \otimes |\psi\rangle_{B}$

Example:

• 다음 state는 entangled state인가?

$$\frac{1}{\sqrt{2}}\left(|00\rangle + |01\rangle + |10\rangle + |11\rangle\right)$$

다음 state는 entangled state인가?

$$\frac{1}{\sqrt{2}}\left(|00\rangle + |01\rangle + |10\rangle - |11\rangle\right)$$

Question

이 방법보다 더 간단한 방법은 없을까?

⇒ Schmidt decomposition!

Schmidt decomposition

Theorem 1 (Schmidt decomposition)

Schmidt decomposition은 다음과 같이 정의된다.

$$|\psi\rangle = \sum_{ij} c_{ij} |i\rangle |j\rangle = \sum_{k=1}^{d} D_k |u_k\rangle |v_k\rangle$$

where $|\psi\rangle_{AB} \in \mathcal{H}_A \otimes \mathcal{H}_d$, $dim(H_A \otimes H_b) = d^2$.

Schmidt coefficient의 rank를 확인하여 entangled인지 구분할 수 있다.

- product state: d=1
- entangled state: d > 1

Schmidt decomposition

* Proof:

Schmidt decomposition은 다음과 같이 quantum state의 coefficient를 대각화가 가능한 $d \times d$ matrix의 원소로 생각하는 것에서부터 출발한다.

$$c_{ij} = [C]_{ij} = [UDV]_{ij}$$

따라서 이 표현을 대신 대입하게되면, 대각행렬 D의 원소들만을 사용하여 quantum state를 새로운 basis에 대해 표현할 수 있다.

$$\begin{split} |\psi\rangle &= \sum_{ij} [UDV]_{ij} \, |i\rangle \, |j\rangle \\ &= \sum_{ijk} u_{ik} D_{kk} v_{kj} |i\rangle |j\rangle \\ &= \sum_{k} D_k \underbrace{\sum_{i} u_{ik} |i\rangle}_{|u_k\rangle} \underbrace{\sum_{j} v_{kj} |j\rangle}_{|v_k\rangle} \\ &= \sum_{k=1}^{d} D_k \, |u_k\rangle \, |v_k\rangle \, . \end{split}$$

LU equivalent

Definition 2 (LU equivalent)

두 n-qubit state $|\psi\rangle$ 와 $|\phi\rangle$ 가 **LU equivalent**라면 다음을 만족하는 어떤 local unitary U_1,U_2,\cdots,U_n 가 존재한다.

$$|\phi\rangle = (U_1 \otimes U_2 \otimes \cdots \otimes U_n) |\psi\rangle$$

 \Rightarrow 만약 어떤 임의의 state $|\psi\rangle$ 가 product state와 LU equivalent라면 $|\psi\rangle$ **역시** product state이며, entangled state와 LU equivalent라면 $|\psi\rangle$ **역시** entangled state이다.

Example:

• LU equivalent인지 확인하고 이로부터 entangled state인지 판단하라.

$$\frac{1}{\sqrt{2}} \left(|00\rangle + |01\rangle + |10\rangle - |11\rangle \right), \qquad \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

• LU equivalent인지 확인하고 이로부터 product state인지 판단하라.

$$\frac{1}{\sqrt{2}}\left(|00\rangle + |01\rangle + |10\rangle + |11\rangle\right), \qquad |00\rangle$$

LU equivalent and Schmidt coefficient¹

Note

만약 두 상태가 **동일한 Schmidt coefficient**를 가진다면, LU equivalent이다.

다음과 같이 Schmidt decomposition으로 표현된 두 상태를 가정하자.

- $|\psi\rangle = D_1 |00\rangle + D_2 |11\rangle$
- $|\phi\rangle = D_1 |uv\rangle + D_2 |u^{\perp}v^{\perp}\rangle$

그렇다면, 다음의 unitary가 존재함을 쉽게 추측할 수 있다.

- $U|u\rangle = |0\rangle$, $U|u^{\perp}\rangle = 1$
- $V|v\rangle = |0\rangle, V|v^{\perp}\rangle = 1$

따라서 두 상태는 LU equivalent이다.

$$|\psi\rangle = (U \otimes V) |\phi\rangle$$

 $^{^{1}}$ Schmidt rank 또한 entanglement의 양을 분석하기 위해 사용되므로 LU equivalent와 관계가 있다.

Reduced state and LU equivalent

(recap) Composite system은 **partial trace**를 이용하여 각 composed system에 대한 reduced state를 나타낼 수 있다.

•
$$\rho^A = \operatorname{tr}_B[\rho^{AB}] = \sum_i \langle i|_B \, \rho^{AB} \, |i\rangle_B$$

•
$$\rho^B = \operatorname{tr}_A[\rho^{AB}] = \sum_i \langle i|_A \rho^{AB} |i\rangle_A$$

LU equivalent한 다음 두 상태를 가정하자.

•
$$|\psi\rangle = D_1 |00\rangle + D_2 |11\rangle$$

•
$$|\phi\rangle = D_1 |uv\rangle + D_2 |u^{\perp}v^{\perp}\rangle$$

$$|\psi\rangle = (U \otimes V)\,|\phi\rangle$$

각 상태에 대해 reduced state를 구하면, 다음과 같다.

$$\left|\psi\right\rangle = \begin{cases} \rho_{\psi}^{A} = D_{1}^{2}\left|0\right\rangle\left\langle0\right| + D_{2}^{2}\left|1\right\rangle\left\langle1\right| \\ \rho_{\psi}^{B} = D_{1}^{2}\left|0\right\rangle\left\langle0\right| + D_{2}^{2}\left|1\right\rangle\left\langle1\right| \end{cases}, \quad \left|\phi\right\rangle = \begin{cases} \rho_{\phi}^{A} = D_{1}^{2}\left|u\right\rangle\left\langle u\right| + D_{2}^{2}\left|u^{\perp}\right\rangle\left\langle u^{\perp}\right| \\ \rho_{\phi}^{B} = D_{1}^{2}\left|v\right\rangle\left\langle v\right| + D_{2}^{2}\left|v^{\perp}\right\rangle\left\langle v^{\perp}\right| \end{cases}$$

 \Rightarrow Spectral decomposition으로 표현된 ρ^A, ρ^B 가 동일한 eigenvalue $(\lambda_i \triangleq D_i^2)$ 를 가지는 것을 알 수 있다. 2

•

 $^{^2}ho_{\psi}^A,
ho_{\psi}^B$ 는 완전히 equivalent한 state, $ho_{\phi}^A,
ho_{\phi}^B$ 는 Schmidt coefficient가 동일하므로 LU equivalent.

Example

다음 state가 entangled state인지 아닌지 다양한 방법³으로 해결해보자.

• Example 1:

$$\frac{1}{\sqrt{2}}\left(|00\rangle + |01\rangle + |10\rangle + |11\rangle\right)$$

• Example 2:

$$\frac{1}{\sqrt{3}}\left(|00\rangle + |01\rangle + |10\rangle\right)$$

³product, Schmidt decomposition, LU-equivalent

(Example 2) LU equivalent와 reduced matrix를 이용하여 해결하는 solution: 주어진 state가 다음과 같이 Schmidt decomposition으로 표현할 수 있다고 하자.

$$|\psi\rangle = \frac{1}{\sqrt{3}}(|00\rangle + |01\rangle + |10\rangle) = \sum_{k} D_k |u_k\rangle |v_k\rangle$$

그러면 각각의 system A,B에 local operator를 가하여 동일한 basis $\{|k\rangle\}$ 로 나타낼 수 있으며, 이 state와는 LU-equivalent 관계이다.

$$|\psi'\rangle = \sum_{k} D_{k} |k\rangle |k\rangle = (U \otimes V) |\psi\rangle$$

 $|\psi\rangle$ 에 대한 reduced state는 각각 다음과 같다.

$$\rho^{A} = \sum D_{k}^{2} |u_{k}\rangle \langle u_{k}| = U\left(\sum_{k} D_{k}^{2} |k\rangle \langle k|\right) U^{\dagger}$$

$$\Rightarrow \rho^A = \frac{2}{3} \left| + \right\rangle \left\langle + \right| + \frac{1}{3} \left| 0 \right\rangle \left\langle 0 \right| = U \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} U^{\dagger}$$

이때, $\lambda_1>0$, $\lambda_2>0$ 이므로 $|\psi\rangle$ 는 entangled state이다. \Box

Canonical form of Two-qubit state

Schmidt decomposition을 이용하면 canonical form을 정의할 수 있다.

Definition 3 (Canonical form of two-qubit state)

다음과 같이 표현되는 two-qubit state는 어떤 two-qubit state $|arphi\rangle$ 와도 LU-equivalent 하도록 만드는 coefficient lpha,eta를 가진다.

$$\begin{split} |\psi\rangle &= \alpha \, |00\rangle + \beta \, |11\rangle \\ &= \cos\theta \, |00\rangle + \sin\theta \, |11\rangle \,, \qquad (0 \le \theta \le \pi/4) \end{split}$$

* (why?) : $\{|0\rangle,|1\rangle\}$ 은 single qubit state의 대표적인 basis이며, 위의 canonical form은 대표적인 basis를 이용한 Schmidt decomposition의 형태이다.

*Local unitary*를 이용하면 어떤 형태의 Schmidt decomposition이든 위와 같은 형태로 변환시킬 수 있기 때문에, 어떠한 상태와도 LU-equivalent 할 수 있다.

- $|u_1\rangle = U|0\rangle$, $|u_2\rangle = U|1\rangle$
- $|v_1\rangle = V |0\rangle$, $|v_2\rangle = V |1\rangle$

$$|\varphi\rangle = \alpha |u_1 v_1\rangle + \beta |u_2 v_2\rangle = (U \otimes V)(\alpha |00\rangle + \beta |11\rangle) \approx^{LU} |\psi\rangle$$

Separable state

Mixed state에서 entanglement를 판단하는 대표적인 기준은 composite system의 density matrix가 separable state의 형태로 표현이 가능한지 확인하는 것이다.

Definition 4 (Separable state)

A separable state can be prepared by LOCC(Local Operation and Classical Communication)

$$\rho^{AB} = \sum_{i} p(i) \left(\rho_{i}^{A} \otimes \rho_{i}^{B} \right)$$

- LO: 각 system A, B에서 ρ_i 를 준비하기 위해 사용하는 연산
- CC: mixed state의 확률분포 $\sim p$ 를 공유하기 위한 communication 4

 $^{^{4}\}text{TODO} \text{: } A\text{, }B$ 가 각각 p(i)의 확률로 ρ_{i}^{A} 를 준비하는게 맞는지 확인 필요

Non-separable state: entangled state

Definition 5 (Non-separable state)

A separable state cannot be prepared by LOCC

$$\rho^{AB} \neq \sum_{i} p(i) \left(\rho_i^A \otimes \rho_i^B \right)$$

• Example $1:\epsilon$ 이 1에 가까울수록 separable state에 가까워 A.5

$$\rho = (1 - \epsilon) |\psi_{ent}\rangle \langle \psi_{ent}| + \epsilon \frac{I}{4}$$

• Example 2:

$$\rho = \frac{1}{2} |00\rangle \langle 00| + \frac{1}{2} |11\rangle \langle 11|$$
(sol.)
$$\rho = \frac{1}{2} (|0\rangle \langle 0| \otimes |0\rangle \langle 0|) + \frac{1}{2} (|1\rangle \langle 1| \otimes |1\rangle \langle 1|)$$

• Example 3⁶:

$$\begin{split} \rho &= \frac{1}{2} \left| \Phi^+ \right\rangle \left\langle \Phi^+ \right| + \frac{1}{2} \left| \Phi^- \right\rangle \left\langle \Phi^- \right| \\ \text{(sol.)} \quad \rho &= \frac{1}{2} (\left| 0 \right\rangle \left\langle 0 \right| \otimes \left| 0 \right\rangle \left\langle 0 \right| + \left| 1 \right\rangle \left\langle 1 \right| \otimes \left| 1 \right\rangle \left\langle 1 \right|) \end{split}$$

⁵I/4가 separable이므로

⁶부호가 다른 두 entanglement state들의 mixed state라서 product로 표현할 수 없는 state들이 소거된다.

Example

• Example 4:

$$\rho = \frac{1}{4} \left(\left| \Phi^+ \right\rangle \left\langle \Phi^+ \right| + \left| \Phi^- \right\rangle \left\langle \Phi^- \right| + \left| \Psi^+ \right\rangle \left\langle \Psi^+ \right| + \left| \Psi^- \right\rangle \left\langle \Psi^- \right| \right)$$

• Example 5 :

$$\rho = \frac{1}{3} \left(\left| \Phi^+ \right\rangle \left\langle \Phi^+ \right| + \left| \Phi^- \right\rangle \left\langle \Phi^- \right| + \left| \Psi^+ \right\rangle \left\langle \Psi^+ \right| \right)$$

Mixed state의 entanglement를 확인하는 또 하나의 방법을 바로 PPT Criteria라고 한다.

Theorem 6 (Positive Partial Transpose contidion)

만약 ρ 가 separable state라면, ρ 를 이루는 system중에서 일부 system만 transpose를 취하더라도 여전히 quantum state, 즉 positive matrix 여야한다.

$$\rho^{T_B} = \sum_{i} p(i) |e_i\rangle \langle e_i| \otimes (|f_i\rangle \langle f_i|)^T \ge 0,$$

where $\rho = \sum_{i} p(i) |e_i\rangle \langle e_i| \otimes |f_i\rangle \langle f_i|$.

- Partial transpose: 특정 system에 대해서만 transpose를 취하는 연산
- Partial transpose in matrix:
 - \circ T_A : Block 1과 Block 4 내부의 요소가 각각 전치된다.
 - \circ T_B : Block 2와 Block 3 내부의 요소가 각각 전치된다.

$$\rho = \begin{bmatrix} \mathsf{Block} \ 1 \ (00) & \mathsf{Block} \ 2 \ (01) \\ \mathsf{Block} \ 3 \ (10) & \mathsf{Block} \ 4 \ (11) \end{bmatrix}$$

• Positive matrix: non-negative eigenvalue만을 가지는 행렬

Example

Example 1 (Bell state) : $ho=|\Phi^+\rangle\langle\Phi^+|$ 의 matrix representation은 다음과 같다.

$$\rho = |\Phi^{+}\rangle \langle \Phi^{+}| = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}, \qquad \operatorname{eig}(\rho) : 1/2, 0$$

반면, 이 state의 partial transpose는 다음과 같이 **negative eigenvalue**를 가지기 때문에 entangled state이다.

$$\rho^{T_B} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad \text{eig}(\rho): -1/2, 1/2$$

Example

Example 2:

다음과같이 Bell state와 pure state의 mixed state로 표현된 ho를 p가 얼마일때를 기준으로 entangled / separable state로 나뉘는가?

$$\rho_p = (1 - p) |\Phi^+\rangle \langle \Phi^+| + p \frac{I}{4}$$

⇒ (hint) 기준이 되는 지점은 partial trace의 minimum eigenvalue가 음수가 되는 지점!

$$\rho^{T_B} = (1 - p) \underbrace{\left(|\Phi^+\rangle \langle \Phi^+| \right)^{T_B}}_{\lambda_{\min} = -1/2} + p \underbrace{\left(\frac{I}{4} \right)^{T_B}}_{\lambda_{\min} = 1/4}$$

따라서 minimum eigenvalue로부터 얻은 기준은 p=2/3 이다.

$$\lambda^* = \min_{i} \langle v_i | \rho^{T_B} | v_i \rangle$$
$$= (1 - p) \left(-\frac{1}{2} \right) + \frac{p}{4} < 0$$

Summary: condition of entanglement

Summary

- pure state
 - o (definition) product state인지 아닌지 확인한다.

$$(\text{sep}) \qquad |\psi\rangle^{AB} = |\psi\rangle^{A} \otimes |\psi\rangle^{B}$$

- o Schmidt decomposition : rank = 1이라면 product, rank > 1이라면 entangled.
- o Product state와 LU-equivalent라면 product, entangled state와 LU-equivalent라면 entangled.
- o Reduced state의 Schmidt rank = 1이라면 product, rank > 1이라면 entangled.⁷
- mixed state
 - o (definition) separable state인지 아닌지 확인한다.

$$(\text{sep}) \qquad \rho^{AB} = \sum_i p(i) \rho_i^A \otimes \rho_i^B$$

o PPT Criteria : partial trace가 positive라면 separable, positive가 아니라면 entangled.

⁷확인 필요

Idea of entanglement measure

System : 다음의 2-qubit quantum state⁸에

$$|\psi\rangle = \cos\theta |00\rangle + \sin|11\rangle, \qquad (0 < \theta < \pi/4)$$

Quantum dynamics $\mathcal{E}^A()$ 를 가하여 $(K_s:$ success, $K_f:$ failure (e.g., noise))

$$\mathcal{E}^A(\cdot) = K_s(\cdot)K_s^{\dagger} + K_f(\cdot)K_f^{\dagger}$$

다음의 success state를 만들어내고자 한다고 하자.9

$$|\Phi^+\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

그렇다면, \mathcal{E}^A ()에 대한 Kraus operator는 다음과 같이 표현된다. 10

$$K_s = a \left(\frac{\sin \theta}{\cos \theta} |0\rangle \langle 0| + |1\rangle \langle 1| \right)$$

$$K_f = \sqrt{I - K_s^{\dagger} K_s} = \sqrt{1 - a^2 \frac{\sin^2 \theta}{\cos^2 \theta}} |0\rangle \langle 0| + \sqrt{1 - a^2} |1\rangle \langle 1|$$

 $^{10}(\text{tip})$ K_s 를 구하면 K_f 는 K의 completeness relation으로부터 쉽게 얻을 수 있다.

⁸canonical form

 $^{{}^9\}mathcal{E}^A$ 는 system A에만 가해지는 LO이므로 entanglement를 만들어내지 못한다는 사실을 알고있다.

Idea of entanglement measure

(contd.) 앞에서 정의한 K_s, K_f 는 각각 전체 system에 다음과 같이 동작한다.

• $(K_s \otimes I)$, a = 1일 때, 다음과 같다.

$$(K_s \otimes I) |\psi\rangle = \sqrt{2} \sin \theta \frac{|00\rangle + |11\rangle}{\sqrt{2}} = \sqrt{2} \sin \theta |\Phi^+\rangle$$

• $(K_f \otimes I)$, a = 1일 때, 다음과 같다. 11

$$(K_f \otimes I) |\psi\rangle = \sqrt{\frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta}} |00\rangle$$

따라서 정리하자면, quantum channel \mathcal{E}^A 를 사용하여 system A에 LO를 가했을 때, 우리가 원하는 success state $|\Phi^+\rangle$ 를 만들어낼 확률은 $2\sin^2\theta$ 이다.

만약 $\mathcal{E}^A(\cdot)$ 를 $|\psi\rangle$ 에 가하는 과정을 N번 수행하면, success state $|\Phi^+\rangle$ 는 $N\cdot 2\sin^2\theta$ 개가 만들어 질 것이라고 기대할 수 있다. 반면, failure state는 product state이다.

Idea of entanglement measure

따라서 (maximal entangled state인) $|\Phi^+\rangle$ 를 entanglement의 **단위**로 생각할 수 있다.

¹¹product state가 되었다.

Idea of entanglement measure

예를 들어, 다음과 같은 서로 다른 두 상태를 가정하자.

$$|\psi_1\rangle = \cos\theta_1 |00\rangle + \sin\theta_1 |11\rangle, \qquad |\psi_2\rangle = \cos\theta_2 |00\rangle + \sin\theta_2 |11\rangle$$

각각의 상태에 $\mathcal{E}^A(\cdot)$ 를 가하는 과정을 N번 반복하면, 각각 $|\Phi^+\rangle$ state가 만들어진 개수는 다음과 같다.

- $|\psi_1\rangle: M_1 \triangleq N \cdot 2\sin^2\theta_1$
- $|\psi_2\rangle$: $M_2 \triangleq N \cdot 2\sin^2\theta_2$

따라서, $|\Phi^+\rangle$ state의 개수를 비교하여, 만약 $M_1>M_2$ 라면 $|\psi_1\rangle$ 이 $|\psi_2\rangle$ 보다 더 entangled state라고 판단할 수 있다.

앞의 아이디어를 일반화하여, single qubit $|\psi\rangle$ 에만 적용하는 operation이 아니라 N개의 복사본으로 이루어진 $|\psi\rangle^{\otimes N}$ 에 적용하는 **multi-qubit** operation까지 고려해보자.

 $ightarrow |\psi
angle^{\otimes N}$ 에 각각의 Local Operation을 취했을 때 얻는 $|\Phi^+
angle$ state의 개수 $M.^{12}$

 $|\psi\rangle^{\otimes N}$ state를 전개하면 다음과 같다.

$$\begin{split} |\psi\rangle^{\otimes N} &= \left(\cos\theta \left|00\right\rangle + \sin\theta \left|11\right\rangle\right)^{\otimes N} \\ &= \left(\cos\theta \left|00\right\rangle + \sin\theta \left|11\right\rangle\right)_{A_1B_1} \cdot \cdot \cdot \left(\cos\theta \left|00\right\rangle + \sin\theta \left|11\right\rangle\right)_{A_NB_N} \\ &= \left(\cos^2\theta \left|00\right\rangle_{A_1A_2} \left|00\right\rangle_{B_1B_2} + \cos\theta \sin\theta \left(\left|01\right\rangle_{A_1A_2} \left|01\right\rangle_{B_1B_2} + \left|10\right\rangle_{A_1A_2} \left|10\right\rangle_{B_1B_2} \right) \\ &+ \sin^2\theta \left|11\right\rangle_{A_1A_2} \left|11\right\rangle_{B_1B_2} \right) \left(\cos\theta \left|00\right\rangle + \sin\theta \left|11\right\rangle\right)^{\otimes N-2} \\ &= \cos^N\theta \left|0^n\right\rangle_{A_1^n} \left|0^n\right\rangle_{B_1^N} + \cos^{N-1}\theta \sin\theta \left(\left|0^{n-1}1\right\rangle \left|0^{n-1}1\right\rangle + \left|0^{n-2}10\right\rangle \left|0^{n-2}10\right\rangle \\ &+ \cdot \cdot \cdot \cdot + \left|10^{n-1}\right\rangle \left|10^{n-1}\right\rangle\right) + \cdot \cdot \cdot + \sin^N\theta \left|1^n\right\rangle \left|1^n\right\rangle \end{split}$$

 $^{^{12}}$ TODO: 각 local operation을 취했을 때 얻어지는 M 중에서 최댓값?

(contd.) 앞에서 전개한 $|\psi\rangle^{\otimes N}$ 의 state에 WLLN을 적용하면, $|\psi\rangle^{\otimes N}$ state를 이루는 qubit이 다음의 분포를 따른다고 추정할 수 있다. 13

$$0 \sim \sin^2 \theta, \qquad 1 \sim \cos^2 \theta$$

즉, N qubit에서 0의 개수와 1의 개수가 각각 다음과 같으리라고 기대할 수 있다.

$$\#0 = N \cdot \sin^2 \theta, \qquad \#1 = N \cdot \cos^2 \theta$$

실제로 위와 같은 개수의 0과 1을 갖는 sequence가 바로 Typical sequence이다.

Recap: Typical set, Typical subspace, Typical projector

• Typical set : $X \sim Bern(p)$, i.i.d

$$A_{\epsilon}^{(n)} = \{x_1^n : 2^{-n(H(p)+\epsilon) \le P_X(x^n) \le 2^{-n(H(p)-\epsilon)}}\}$$

- Typical subspace : $T_{\epsilon}^{(n)} = \text{span}\{|x_1 \cdots x_n\rangle, : x_1 \cdots x_n \in A_{\epsilon}^{(n)}\}$
- Typical subspace projector : $P_{\epsilon}^{(n)} = \sum_{x_1^n \in A_{\epsilon}^{(n)}} |x_1^n\rangle \langle x_1^n|$

 $^{^{13}}$ 전개 없이도 $|\psi_1\rangle$ 의 canonical form에서 확률을 예측할 수 있다.

(contd.) Typical subspace projector를 system A의 Local Operator로 가하면, 다음과 같고

$$(P_{\epsilon}^{(N)} \otimes I) |\psi\rangle^{\otimes N} = \sum_{x_1^N \in A_{\epsilon}^N} \sqrt{2^{-NH([\cos^2\theta,\sin^2\theta])}} |x_1^N\rangle |x_1^N\rangle$$

원래 상태와 typical subspace에 투영된 상태 간 distance는 N이 증가함에 따라 0으로 수렴한다.

$$\| |\psi\rangle^{\otimes N} - (P_{\epsilon}^{(N)} \otimes I) |\psi\rangle^{\otimes N} \| \to 0, \quad as \ N \to \infty$$

(아이디어) $|\Phi^+\rangle$ 은 maximal entangled state이므로, quantum compression에서 N qubit을 나타내기 위해 사용하는 random qubit으로 간주할 수 있다. 따라서 다음이 성립한다.

$$|\psi\rangle^{\otimes N} \approx (P_{\epsilon}^{(N)} \otimes I) |\psi\rangle^{\otimes N} \approx |\Phi^{+}\rangle^{\otimes M}, \quad as \ N \to \infty$$

따라서 주어진 state의 entanglement measure는 다음과 같이 정의된다.

Definition 7 (Entropy of entanglement)

N은 $|\psi\rangle$ 의 개수를 의미하며 , M은 $|\Phi^+\rangle$ 의 개수를 나타낸다.

$$E(|\psi\rangle) = \frac{M}{N} = S(\rho^A)$$

반면, mixed state에 대한 entanglement measure는 다음과 같이 정의된다.

Definition 8 (Entropy of entanglement on mixed state¹⁴)

$$E(\rho) = \inf_{\{p(i), |\psi_i\rangle\}} \sum_{i} p(i)E(|\psi_i\rangle)$$

where $\rho = \sum_{i} p(i) |\psi_i\rangle \langle \psi_i|$

- Mixed state는 pure state들의 convex combination이므로 pure state의 entropy of entanglement로 계산된다.
- (주의) 단, 하나의 mixed state는 다양한 방식으로 표현될 수 있기 때문에, 그 중에서 가장 작은 값(infimum)으로 정의해야한다.

Example:

$$\rho = \frac{1}{2} |\Phi^{+}\rangle \langle \Phi^{+}| + \frac{1}{2} |\Phi^{-}\rangle \langle \Phi^{-}|$$
$$= \frac{1}{2} |00\rangle \langle 00| + \frac{1}{2} |11\rangle \langle 11|$$

- (decomposition 1) $E(|\Phi^+\rangle) + E(|\Phi^-\rangle) > 0$
- (decomposition 2) $E(|00\rangle) + E(|11\rangle) = \boxed{0}$.

¹⁴Convex-roof constraction

Question $1: 왜 |\Phi^+\rangle$ 의 개수로 entanglement의 quantity를 나타내는가?

 Alice가 자신의 qubit에 아무리 LOCC를 가하더라도, LOCC는 entanglement를 만들어낼 수 없고 오히려 entanglement를 감소시킬 수 있기 때문에, LOCC를 가하여 만들어지는 각 상태들은 entanglement의 크기에 대해 "순서"를 가진다.

$$\{\psi_1,\ \psi_2,\cdots,\psi_n\}$$
 : order structure

• 이때, 이 상태들 중에서 가장 큰 entanglement entropy를 가지는 state가 바로 $|\Phi^+\rangle$ 이다! 따라서 다음 관계가 성립한다. 15

$$|\Phi^{+}\rangle \xrightarrow{p=1} |\psi_{i}\rangle, \qquad |\psi_{i}\rangle \xrightarrow{p<1} |\Phi^{+}\rangle, \qquad \forall i$$

Question 2 : single qubit에 대한 LO와 multiple qubit에 대한 LO가 어떻게 다른가?

- single qubit에 대한 LOCC로 만들어낼 수 있는 $|\Phi^+\rangle$ 의 개수는 $N\cdot 2\sin^2 heta$ 이며
- multiple qubit에 대한 LOCC까지 고려했을 때, $N \cdot S(\rho^A)$ 이다.
- entropy의 concavity 때문에 $S(\rho^A)>2\cdot\sin^2\theta$ 가 성립한다.

¹⁵maximally entangled state

A가 bell state로 준비한 quantum state를 quantum channel $\mathcal{E}(\cdot)$ 를 사용하여 전송한다고 하자. 이 때 system 전체에 가해지는 연산은 $I\otimes\mathcal{E}^B$ 로 표현할 수 있다.

$$\rho^{AB} = I \otimes \mathcal{E}^B(|\Phi^+\rangle \langle \Phi^+|)$$

Quantum channel을 Kraus operator로 나타냈을 때, 16 ρ^{AB} 는 다음과 같다.

$$\rho^{AB} = \sum_{i} I \otimes K_{i}^{B} |\Phi^{+}\rangle \langle \Phi^{+}| I \otimes K_{i}^{B^{\dagger}} = \sum_{i} p(i)\sigma_{i}^{AB}$$

where $p(i)\sigma_i^{AB} = (I \otimes K_i^B) |\Phi^+\rangle \langle \Phi^+| (I \otimes K_i^B)^\dagger$

 $^{^{16}\}mathcal{E}(\cdot) = \sum_{i} K_{i}(\cdot) K_{i}^{\dagger}$

(contd.) ρ^{AB} 를 mixed state로 나타내기 위해서 $p(i), \sigma_i$ 를 계산하자.

• p(i): state에 trace를 취해서 얻을 수 있다. 17

$$p(i) = \operatorname{tr}\left[K_i^B \left|\Phi^+\right\rangle \left\langle \Phi^+\right| K_i^{B^{\dagger}}\right]$$

• σ_i : $p(i)\sigma_i$ 를 p(i)로 나눈다.

$$\sigma_{i} = \frac{K_{i} \left| \Phi^{+} \right\rangle \left\langle \Phi^{+} \right| K_{i}^{B\dagger}}{\mathsf{tr} \left[K_{i}^{B} \left| \Phi^{+} \right\rangle \left\langle \Phi^{+} \right| K_{i}^{B\dagger} \right]}$$

 \Rightarrow 정리하면 Alice가 $|\Phi^+\rangle$ 를 만들고 두 번쨰 qubit을 B에게 전송하여 e-bit를 공유하고자 하였지만 noisy channel 때문에 각각 p(i) 확률로 σ_i 라는 다른 state로 변하게 된다.

Note

Pure state (e.g., $|\Phi^+\rangle$)로부터 mixed state(e.g., ρ^{AB})가 만들어지는 것은 physically 가능하지만, mixed state를 다시 원래 pure state로 되돌리는 것은 physically 불가능하다.

 $^{^{17}}I$ 생략

이제 다음 상황을 한번 가정해보자.

- A가 어떤 state를 생성하고, quantum channel을 통해 전송하여 B와 ho^{AB} state를 공유하고 있다. (unknown state)
- 위 과정을 N번 반복하며 얻은 $ho^{\otimes N}$ 에 LOCC를 가하여 $|\Phi^+\rangle^{\otimes M}$ 을 만들 수 있는가?

Answer: 다음과정을 거치면 가능하다. (단, 특정 probability에 따라 가능하다.)

1. Twirling¹⁸ : 주어진 state를 LOCC를 사용하여 다음 형태로 변환한다.

$$\rho_F = \frac{1}{n} \sum_i (U_i \otimes U_i^*) \rho(U_i \otimes U_i^*)^{\dagger}$$

Isotropic state 19 ; ho_F 는 다음과 같이 표현된다. (unknown parameter p로 표현됨)

$$\rho_F = (1 - p) |\Phi^+\rangle \langle \Phi^+| + p \frac{I}{4}$$

isotropic state와 $|\Phi^+\rangle$ 간의 overlap; singlet fraction을 측정한다.

$$F = \langle \Phi^+ | \rho_F | \Phi^+ \rangle$$

 19 특정 Bell state와 I/4 사이의 convex combination 상태

 $^{^{18}}$ 주어진 양자상태를 특정한 대칭성을 가진 상태로 변환하는 과정: A에 random unitary를 가하고 B에 그 unitary의 conjugation을 가하는 연산을 n번 수행하여 평균낸다.

(contd.) F를 계산하면 다음과 같이 p에 대해서 나타낼 수 있으며

$$F = (1 - p) + \frac{p}{4} = 1 - \frac{3}{4}p$$

이를 이용하면 ρ_F 를 F에 대해서 표현할 수 있다.

$$\rho_F = F |\Phi^+\rangle \langle \Phi^+| + \frac{1 - F}{3} |\Phi^-\rangle \langle \Phi^-| + \frac{1 - F}{3} |\Psi^+\rangle \langle \Psi^+| + \frac{1 - F}{3} |\Psi^-\rangle \langle \Psi^-|$$

따라서 F의 값에 따라, ρ_F 의 state를 추측할 수 있다.

- F = 1, $\rho_F = |\Phi^+\rangle \langle \Phi^+|$
- F = 1/2, ρ_F 에서 p = 2/3이 된다.

Conclusion

 ρ_F is entangled if and only if F > 1/2.

Twirling 과정을 거친 뒤에는 $ho_F^{\otimes}N$ state를 가지게 된다.

2. Bilateral CNOT을 가한다.

2개의 ρ_F 에 대해 CNOT을 가한 뒤 측정한다.

- 3. Classical Communication: A와 B의 측정결과를 공유하여 다음과 같이 결정한다.
 - if i = j: accept the first register
 - if $i \neq j$: discard and restart
- 4. Resulting state $\tilde{\rho}_F$ 에 대한 F는 다음과 같다.

$$F' = \langle \Phi^+ | \tilde{\rho}_F | \Phi^+ \rangle = \frac{F^2 + \left(\frac{1-F}{3}\right)^2}{F^2 + \frac{2}{3}F(1-F) + \frac{5}{9}(1-F)^2}$$

F와 F'의 관계를 그림으로 그리면 다음과 같다.

- 만약 F>1/2라면 위의 과정을 통해 얻은 resulting state $\tilde{\rho}_F$ 에 대한 fidelity가 증가한다. (i.e., $|\Phi^+\rangle$ 와 더 가까운 상태가 된다.)
- 새로 얻은 $\tilde{\rho}_F$ 에 대해 다시 앞선 과정을 반복하면, 점차 F'가 증가하게 될 것이고 결국 F=1로 수렴하게 된다.
 - $\Rightarrow |\Phi^+\rangle$ is distilled!

Summary: quantuntity of entanglement

Summary

- Entanglement measure
 - o pure state:

$$E(|\psi\rangle) = S(\rho^A)$$

o mixed state:

$$E(\rho) = \inf_{\{p(i), |\psi_i\rangle\}} \sum_i p(i) E(|\psi_i\rangle)$$

- Distillation of entanglement (with LOCC)
 - o pure state:
 - single qubit LOCC: $N \cdot 2 \sin^2 \theta$ 개의 $|\Phi^+\rangle$ 를 만들 수 있다.
 - multi-qubit LOCC: $N \cdot S(\rho^A)$ 개의 $|\Phi^+\rangle$ 를 만들 수 있다.
 - o mixed state:
 - 1. Twirling $\rho \to \rho_F$
 - 2. Fidelity $F(|\Phi^+\rangle \langle \Phi^+|, \rho)$ if F > 1/2 can distilled.
 - 3. Bilateral CNOT and measure
 - 4. Classical communication, if i=j accept the first register
 - 5. repeat, until $F' \to 1$.

Entanglement witness

주어진 state의 정보를 알고있다면 20 , 앞에서 소개한 방법을 활용하여 entangled인지 아닌지 파악할 수 있다. 그렇다면, 알려지지 않은 임의의 state가 entangled인지는 어떻게 판단할 수 있을까?

⇒ 이를 위하여 도입된 Observable이 바로 Entanglement witness이다.

Definition 9 (Entanglement witness)

다음 2가지 조건을 만족하는 observable $W=W^{\dagger}$ 는 entanglement witness이다.

- $tr[W\sigma_{sep}] \ge 0$, $\forall \sigma_{sep}$: 모든 separable state에 대해 positive trace를 가진다.
- ${\sf tr}[W\sigma_{ent}] < 0$, $\exists \sigma_{ent}:$ 어떤 entangled state에 대해서는 negative trace를 가진다.

따라서 EW를 이용하면, trace positive test를 통해서 주어진 state가 entangled state 인지 아닌지 확인할 수 있다. (in physical, observable W에 대한 측정 결과가 음수인지 양수인지 확인하는 것)

Trace positive test

- If $tr[W\rho] < 0$, then ρ is **must** entangled state.
- If $\operatorname{tr}[W\rho] \geq 0$, then ρ is product of entangled state. (not sure)

²⁰state vector, density matrix를 표현할 수 있다면

Entanglement witness

Example: 다음 W가 Entanglement witness의 조건을 만족하는지 확인하라.

$$W = \frac{1}{2}I \otimes I - |\Phi^{+}\rangle \langle \Phi^{+}|$$

Idea

 $\arg\min_{\sigma_{sep}} \mathrm{tr}[W\sigma_{sep}]$ 에 대해서도 여전히 trace가 positive임을 보일 수 있다면 첫 번째 조건을 만족함을 알 수 있다.

 σ_{sep} 이 separable state라면, 정의에 의하여 다음과 같이 표현할 수 있다.

$$\sigma_{sep} \sum_{i} p(i) |e_i f_i\rangle \langle e_i f_i|$$

따라서 positive trace test는 다음과 같이 기술된다.

$$\begin{split} \min_{\rho_{sep}} \operatorname{tr}[W\sigma_{sep}] &= \min_{\left\{p(i), |e_i f_i\rangle\right\}} \sum_i p(i) \operatorname{tr}[W \left| e_i f_i \right\rangle \left\langle e_i f_i \right|] \\ &\geq \min_{\left| e f \right\rangle} \operatorname{tr}[W \left| e f \right\rangle \left\langle e f \right|] \\ &= \frac{1}{2} - \max_{\left| e f \right\rangle} \left| \left\langle \Phi^+ \middle| e f \right\rangle \right|^2 = \frac{1}{2} - \frac{1}{2} = \boxed{0} \end{split}$$

따라서 모든 separable state에 대해 minimum trace가 0이므로 첫 번째 조건을 만족한다.

그럼 실제 physically, Entanglement witness를 이용한 test를 어떻게 설계해야할까?

$$W = \frac{1}{2}I \otimes I - |\Phi^{+}\rangle \langle \Phi^{+}|$$

I/2는 constant이므로 $|\Phi^+\rangle\langle\Phi^+|$ 를 구현해야한다.

ightarrow Bell basis에서의 측정으로 구현할 수 있지만, Bell basis의 측정은 비싸다. 21

(아이디어) Bell basis는 Pauli observable, 즉 local observable들로 표현할 수 있다.

$$|\Phi^{+}\rangle\langle\Phi^{+}| = \frac{1}{4}\left(I\otimes I + Z\otimes Z + X\otimes X - Y\otimes Y\right)$$
$$W = \frac{1}{4}\left(I\otimes I - X\otimes X + Y\otimes Y - Z\otimes Z\right)$$

이를 positive trace test에 대입하면, 다음과 같이 각각의 local observable에 대한 측정결과의 기댓값의 합으로 표현할 수 있다는 것을 알 수 있다.

$$\operatorname{tr}[W\rho] = \frac{1}{4} \left(\underbrace{\operatorname{tr}[II\rho]}_{=1} - \operatorname{tr}[XX\rho] + \operatorname{tr}[YY\rho] - \operatorname{tr}[ZZ\rho] \right)$$

²¹H, CNOT를 computational basis measurement전에 가해줘야한다.

Feasibleness

따라서 각각의 Pauli observable은 다음과 같이 자신에 대응되는 basis를 이용하여 측정한 결과를 사용하여 표현할 수 있다. 22

$$\begin{split} \operatorname{tr}[XX\rho] &= \operatorname{tr}\Big[\Big(\left|++\right\rangle\left\langle++\right|+\left|--\right\rangle\left\langle--\right|-\left|+-\right\rangle\left\langle+-\right|-\left|-+\right\rangle\left\langle-+\right|\Big)\rho\Big] \\ &= p(++)+p(--)-p(+-)-p(-+) \end{split}$$

마찬가지로 다른 Pauli observable의 기댓값도 구할 수 있다.

Note

W는 local observable들로 decomposition 할 수 있기 때문에 실험적으로 구현할 수 있다. \longrightarrow feasible!

 $^{^{22}|+-\}rangle$ 와 같은 상태의 측정은 첫번째 measurement는 $|+\rangle$ 이고 두번쨰 measurement는 $|-\rangle$ 인 상황

Example

Example: 다음 state가 entangled state가 되는 p를 EW를 사용하여 구해보자.

$$\rho = p\frac{I}{4} + (1 - p) |\Phi^{+}\rangle \langle \Phi^{+}|$$

EW에 대한 trace는 다음과 같다.

$$\begin{aligned} \operatorname{tr}[W\rho] &= \operatorname{tr}\left[\left(\frac{1}{2}I \otimes I - |\Phi^{+}\rangle \langle \Phi^{+}|\right)\rho\right] \\ &= \frac{1}{2} - \operatorname{tr}[|\Phi^{+}\rangle \langle \Phi^{+}|\rho] \\ &= \frac{1}{2} - \left(\frac{1}{4}p + (1-p)\right) \end{aligned}$$

따라서 이 trace가 음수가 되기 위한 p는 다음과 같이 구해진다. \Box

$$\frac{1}{2}<1-\frac{3}{4}p\quad \Rightarrow \quad p<\frac{2}{3}.$$

37

Summary: entanglement witness of arbitrary quantum state

Summary

- Entanglement witness : 다음 2가지 조건을 만족하는 observable $W=W^\dagger$ 는 entanglement witness이다.
 - \circ tr[$W\sigma_{sep}$] > 0, $\forall \sigma_{sep}$: 모든 separable state에 대해 positive trace를 가진다.
 - \circ tr $[W\sigma_{ent}]$ < 0, $\exists \sigma_{ent}$: 어떤 entangled state에 대해서는 negative trace를 가진다.
- Entangled test:
 - \circ 만약 trace가 negative라면 ρ 는 확실히 entangled state이다.
 - \circ 만약 trace가 positive라면 ho는 product 또는 entangled state이다.

Convexity on separable state set

서로 다른 두 state의 convex combination을 생각해보자.

$$\sigma = (1 - p)\sigma_1 + p\sigma_2, \qquad (0 \le p \le 1)$$

- separable state의 convex combination으로 정의된 state는 여전히 separable state
- separable state와 entangled state의 convex combination으로 정의된 state는 p의 값에 따라서 entangled or separable이 결정된다. (using EW)
- entangled state의 convex combination으로 정의된 state는 entangled state가 아닐수도 있다.

 \Rightarrow 즉, 전체 quantum state set에서 separable state는 *convex set* 형태를 띄며, entangled state는 *non-convex set*의 형태를 보인다.

Quantum channel: The mathematical structure behind EW

Alice가 maximally entangled state $|\Phi^+\rangle$ 를 준비하여 2번째 qubit을 Bob에게 quantum channel Λ 를 통해 전송한다고 하자. 전체 system의 state는 다음과 같을 것이다.

$$\rho^{AB} = [I \otimes \Lambda](|\Phi^+\rangle \langle \Phi^+|)$$

이때, quantum channel을 통과하여 얻은 상태가 valid quantum state가 되기 위해서 지켜야하는 성질은 다음과 같다. (CPTP)

Completely Positive²³

• positive $(\Lambda \ge 0)$: 연산 전후 positivity를 보존한다.

$$\forall \sigma \geq 0, \qquad \Lambda(\sigma) \geq 0.$$

- k positive ($[I_k \otimes \Lambda] \ge 0$.) : I가 $k \times k$ matrix 일 때 positivity를 보존한다. (i.e., subsystem dim k에 대해 보존)
- completely positive : $\forall k$ 에 대해 k positive $\Rightarrow \Lambda$ is completely positive if $k \geq d^{24}$

Trace Preserving

$$\operatorname{tr}[\Lambda(A) = 1], \quad \text{for } \operatorname{tr}[A] = 1$$

²³CP가 필요한 이유: measurement확률이 양수여야하기 때문

²⁴d는 system의 차원

Quantum channel: The mathematical structure behind EW

Question: 만약 quantum channel Λ 가 P이지만 TP는 아닐때, separable state의 positivity는 보존되는가?

Answer: 보존된다! separable state는 두 system의 state의 곱으로 표현될 수 있기 때문에, 각각의 system에 따로 따로 연산을 취할 수 있기에 positivity를 보존할 수 있다.

$$(I \otimes \Lambda)\sigma_{sep} = \sum_{i} p(i) \underbrace{\sigma_{i}^{A}}_{\geq 0} \otimes \underbrace{\Lambda(\sigma_{i}^{B})}_{\geq 0(\Lambda \geq 0)} \geq 0.$$

Note

• separable state는 각 system에 대해 따로따로 연산을 취할 수 있기 때문에 CP condition을 필요로하지 않는다.(P를 만족하면 자동으로 CP도 만족한다.)²⁵

$$\text{if } \Lambda \geq 0, \quad \text{then } (I \otimes \Lambda) \geq 0. \qquad \Leftrightarrow \qquad \forall \sigma_{sep}, \quad (I \otimes \Lambda) \sigma_{sep} \geq 0.$$

• 반면 entangled state는 CP condition을 만족하지 않으면, 연산 결과 positivity가 보존되지 않는 경우가 존재한다.

$$\exists \Lambda, \ s.t. \ \ \text{if} \ \Lambda \geq 0, \quad \text{but} \ (I \otimes \Lambda) \not \geq 0. \qquad \Leftrightarrow \qquad \exists \rho_{ent}, \ s.t. \ \ (I \otimes \Lambda) \rho_{ent} \not \geq 0.$$

²⁵마치 classical mechanics의 system처럼

Another definition of entanglement using Channel

(idea) 앞에서 정의한 quantum channel의 성질을 이용하여 entangled state를 구분하는 방법을 다른 방식으로 정의할 수 있다.

Definition 10 ((recap) entanglement)

ho가 entangled state라면, LOCC로 준비될 수 없다.

Definition 11 (entanglement on positivity)

ho가 entangled state라면, 다음을 만족하는 positive channel Λ 가 존재한다. ($\exists~\Lambda\geq0$, but $I\otimes\Lambda$ $\not ge0$)

$$(I \otimes \Lambda)[\rho] \not\geq 0$$

Another definition of EW using Channel

또한, 이를 이용하여 Entanglement Witness를 유도할 수 있다.

- Quantum state $(I \otimes \Lambda) \rho$ 가 positive가 아니라는 뜻은, negative eigenvalue를 가진다는 의미이다.
- 이는 다음을 만족하는 positive projector Q가 존재한다는 의미이다.²⁶

$$\operatorname{tr}[Q(I \otimes \Lambda)[\rho]] < 0$$
 $(equivalent)$ $\operatorname{tr}[(I \otimes \Lambda)^{\dagger}[Q]\rho] < 0$

• 위 식에서 $(I \otimes \Lambda)^{\dagger}[Q]$ 를 entanglement witness로 정의할 수 있다.

$$W \triangleq (I \otimes \Lambda)^{\dagger}[Q]$$

이제 W가 다음 2개의 성질을 만족하기 때문에 entanglement witness임을 보이고자한다.

- $\exists \rho_{ent}$ s.t. $\operatorname{tr}[W\rho_{ent}] < 0 \rightarrow$ 자명하게 성립.
- $\forall \sigma_{sep}$ s.t. $\mathrm{tr}[W\sigma_{sep}] \geq 0$ 성질 2번은 다음 관계에 따라 성립함을 입증할 수 있다.

$$\operatorname{tr}[(I\otimes\Lambda)^{\dagger}[Q]\sigma_{sep}]=\operatorname{tr}[\underbrace{Q}_{\geq 0}\underbrace{(I\otimes\Lambda)[\sigma_{sep}]}_{\geq 0}]$$

²⁶TODO

Choi-Jamiolkowski isomorphism

Map과 Bipartite operator간에는 어떤 관계가 존재한다.

• map: 주어진 quantum state를 다른 state로 변환하는 linear operator $(\Lambda \geq 0)$

$$\Lambda : S(\mathcal{H}) \to S(\mathcal{H})$$

• bipartite operator: 2개의 system에 가해지는 operator

$$\mathcal{X} \in B(\mathcal{H} \otimes \mathcal{H})$$

 \Rightarrow Map Λ 가 주어지면, bipartite operator는 다음과 같이 특정 한 system에 map을 취하고 다른 system에는 아무런 연산도 하지 않는 것으로 표현할 수 있다.

$$\mathcal{X} = (I \otimes \Lambda)[|\Phi^+\rangle \langle \Phi^+|]$$

- 만약 $\mathcal{X} \geq 0$ 이라면, Λ 는 CP이며 \mathcal{X} 는 valid quantum state가 된다.
- 만약 $\mathcal{X} \not\geq 0$ 이라면, Λ 는 not CP이며 \mathcal{X} 는 잘못된 mapping을 통해 얻은 EW이다.

 \Leftarrow 반대로 operator \mathcal{X} 가 주어지면, Λ 는 다음과 같이 표현할 수 있다.

$$\Lambda[\sigma] = d \cdot \mathsf{tr}_A[\sigma_A^T \mathcal{X}_{AB}] \ge 0$$

Choi-Jamiolkowski isomorphism

Theorem 12 (Choi-Jamiolkowski isomorphism)

Map과 bipartite operato²⁷는 one-to-one correspondence(i.e., isomorphism)를 가진다.

Example 1:

• map \rightarrow operator : given map $D[\rho] = (\operatorname{tr} \rho) \cdot I/d$

$$\mathcal{X} = (I \otimes D)[|\Phi^{+}\rangle \langle \Phi^{+}|] = \frac{1}{d} \sum_{ij} |i\rangle \langle j| \otimes \underbrace{D[|i\rangle \langle j|]}_{\delta_{ij} \cdot I/d}$$
$$= \frac{1}{d} \sum_{i} |i\rangle \langle i| \otimes \frac{I}{d} = \frac{1}{d^{2}} I \otimes I.$$

• operator o map : given operator $\mathcal{X} = \frac{1}{d^2} I \otimes I$

$$D[\sigma] = d \cdot \operatorname{tr}_{A}[\sigma_{A}^{T} \mathcal{X}_{AB}] = d \cdot \operatorname{tr}_{A}[\sigma_{A}^{T} \frac{1}{d^{2}} I_{A} \otimes I_{B}]$$
$$= \frac{I_{B}}{d} \operatorname{tr}[\sigma_{A}^{T}] = \frac{I}{d} \operatorname{tr}[\sigma_{A}]$$

²⁷Choi matrix(operator), CJ operator, · · ·

Choi-Jamiolkowski isomorphism

Example 2: *Identity* map $I[\rho] = \rho$ 에 대한 choi operator는?

ullet map o operator

$$\mathcal{X} = (I \otimes I)[|\Phi^{+}\rangle \langle \Phi^{+}|] = |\Phi^{+}\rangle \langle \Phi^{+}|$$

ullet operator o map

$$\begin{split} I[\sigma] &= d \cdot \operatorname{tr}_{A}[\sigma_{A}^{T} \mathcal{X}_{AB}] \\ &= d^{2} \cdot \operatorname{tr}_{AA'} \left[\sigma_{A'} \otimes \mathcal{X}_{AB} \left| \Phi^{+} \right\rangle_{AA'} \left\langle \Phi^{+} \right| \right] \qquad (\text{by } d \operatorname{tr}_{A'}[\sigma_{A'} \left| \Phi^{+} \right\rangle_{AB} \left\langle \Phi^{+} \right|] = \sigma_{A}^{T}) \\ &= d^{2} \cdot \operatorname{tr}_{AA'} \left[\sigma_{A'} \otimes \left| \Phi^{+} \right\rangle_{AB} \left\langle \Phi^{+} \right| \left| \Phi^{+} \right\rangle_{AA'} \left\langle \Phi^{+} \right| \right] = \sigma_{B}. \end{split}$$

 \rightarrow 이는 quantum teleportation 문제를 표현한다! (system AB가 \mathcal{X} 를 공유, AA'에 대한 Bell 측정을 수행, $\sigma_{A'}$ state를 σ_B state로 전달함)

Useful tips

28

$$d \operatorname{tr}_{A} [\sigma_{A} | \Phi^{+} \rangle_{AB} \langle \Phi^{+} |] = \sigma_{B}^{T}$$
$$d \operatorname{tr}_{A} [\sigma_{A}^{T} | \Phi^{+} \rangle_{AB} \langle \Phi^{+} |] = (\sigma_{B}^{T})^{T} = \sigma_{B}$$

²⁸transpose를 없애려고 사용하는듯?

Summary

Summary

- Quantum state SET
 - o Separable state들의 집합은 convex set.
 - o Entangled state들의 집합은 non-convex set.
- ullet Quantum channel Λ
 - o (positivity)
 - 연산 대상이되는 system의 positivity를 보존하면 P
 - 전체 system의 positivity를 보존하면 CP
 - 전체 system의 positivity를 보존할 수 없으면 not CP
 - \circ (channel) $(I\otimes\Lambda)\geq 0$ & TP라면 Λ 는 valid quantum channel로 사용할 수 있다.
 - \circ (EW) $W \triangleq (I \otimes \Lambda)^{\dagger}[Q]$ 를 entanglement witness로 사용할 수 있다.

$$\begin{cases} W = [I \otimes \Lambda](|\Phi^+\rangle \langle \Phi^+|) \not\geq 0 & \text{(not CP)} \\ \rho = [I \otimes \Lambda](|\Phi^+\rangle \langle \Phi^+|) \geq 0 & \text{(CP)} \end{cases}$$

- Choi-Jamiolkowski isomorphism
 - \circ map \rightarrow operator

$$\mathcal{X} = (I \otimes \Lambda)[|\Phi^+\rangle \langle \Phi^+|]$$

 \circ operator \rightarrow map

$$\Lambda[\sigma] = d \cdot \operatorname{tr}_A[\sigma_A^T \mathcal{X}_{AB}] \geq 0$$

47

References

 Lecture notes for EE547: Introduction to Quantum Information Processing (Fall 2024)