Axel Lauer

Model benchmarking and monitoring

with ESMValTool v2.12.0

ESMValTool community workshop Oberpfaffenhofen, Germany, 27-29 May 2024

New preprocessor

distance_metric

Calculates a distance metric with respect to a given reference dataset over dimensions specified.

metric	unweighted	weighted
Root mean square error (RMSE)	$RMSE_{unweighted} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (X_i - R_i)^2}$	$RMSE_{weighted} = \sqrt{\sum_{i=1}^{N} w_i (X_i - R_i)^2}$
Pearson's correlation coefficient	$r_{unweighted} = \frac{\sum_{i=1}^{N} (X_i - \bar{X})(R_i - \bar{R})}{\sqrt{\sum_{i=1}^{N} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{N} (R_i - \bar{R})^2}}$	$r_{weighted} = \frac{\sum_{i=1}^{N} [w_i(X_i - \bar{X})(R_i - \bar{R})]}{\sqrt{\sum_{i=1}^{N} (w_i(X_i - \bar{X})^2)} \sqrt{\sum_{i=1}^{N} (w_i(R_i - \bar{R})^2)}}$
Earth mover's distance (EMD)	$EMD = \min_{\gamma \in \mathbb{R}^{n \times n}_+} \sum_{i,j}^n \gamma_{ij} x_i - r_j \text{with} \sum_j^n \gamma_{ij} = p_x(x_i); \; \sum_i^n \gamma_{ij} = p_r(r_j)$	

New plot types (multi_datasets.py)

- annual cycles ("benchmarking_annual_cycle")
- box plots ("benchmarking_boxplot")
- diurnal cycles ("benchmarking_annual_cycle" and "diurnal_cycle")
- maps ("benchmarking_map")
- time series ("benchmarking_timeseries")
- zonal mean profiles ("benchmarking_zonal")
- → Metrics calculated for an ensemble of models (e.g. CMIP6) can be used for comparison with the results from a select simulation.

Time series (global average anomalies)

Average RMSE of the monthly mean values at each grid box

range of the 10% to 90% percentiles of RMSE values from the ensemble of CMIP6 models used for comparison

Annual cycle (global average)

Average RMSE of the annual cycle at each grid box

Diurnal cycle (average tropical ocean)

Precipitation 4.75 ERA5 MIROC6 MultiModelPercentile10 4.50 MultiModelPercentile90 3.25 3.00 -21

12

Hour

15

18

Average RMSE of the diurnal cycle at each grid box

RMSE of Precipitation (2000-2004)

Stippled areas mask grid cells where the RMSE is smaller than the 90% percentile of RMSE values from an ensemble of CMIP6 models.

Bias
Air Temperature (2000-2004)
MIROC6

Stippled areas mask grid cells where the absolute BIAS (|BIAS|) is smaller than the maximum of the absolute 10% (|p10|) and the absolute 90% (|p90|) percentiles from an ensemble of CMIP6 models, i.e.

|BIAS|≤max(|p10|,|p90|).

Comparison of the geographical pattern of 5-year means of different variables from a simulation of MIROC6 (red cross) in comparison to the CMIP6 ensemble (boxplot)

Pull request

Benchmarking recipes (Lauer et al.) #3598