## **Business Case: Yulu - Hypothesis Testing**



## **About Yulu**

Yulu is India's leading micro-mobility service provider, which offers unique vehicles for the daily commute. Starting off as a mission to eliminate traffic congestion in India, Yulu provides the safest commute solution through a user-friendly mobile app to enable shared, solo and sustainable commuting.

Yulu zones are located at all the appropriate locations (including metro stations, bus stands, office spaces, residential areas, corporate offices, etc) to make those first and last miles smooth, affordable, and convenient!

Yulu has recently suffered considerable dips in its revenues. They have contracted a consulting company to understand the factors on which the demand for these shared electric cycles depends. Specifically, they want to understand the factors affecting the demand for these shared electric cycles in the Indian market.

## How you can help here?

The company wants to know:

- Which variables are significant in predicting the demand for shared electric cycles in the Indian market?
- How well those variables describe the electric cycle demands

## **Column Profiling:**

- · datetime: datetime
- season: season (1: spring, 2: summer, 3: fall, 4: winter)
- holiday: whether day is a holiday or not (extracted from <a href="http://dchr.dc.gov/page/holiday-schedule">http://dchr.dc.gov/page/holiday-schedule</a> (http://dchr.dc.gov/page/holiday-schedule))
- workingday: if day is neither weekend nor holiday is 1, otherwise is 0.
- · weather:
  - 1: Clear, Few clouds, partly cloudy, partly cloudy
  - 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist
  - 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds
  - 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog
- temp: temperature in Celsius
- · atemp: feeling temperature in Celsius
- · humidity: humidity
- · windspeed: wind speed
- · casual: count of casual users
- · registered: count of registered users
- · count: count of total rental bikes including both casual and registered

# Import the dataset and do usual exploratory data analysis steps like checking the structure & characteristics of the dataset

```
In [39]: import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    from scipy.stats import chi2_contingency
    from scipy.stats import chi2
    from scipy.stats import ttest_ind
In [2]: yulu_df = pd.read_csv('C://Users//dell//OneDrive//Desktop//Personal Doc//Yulu Dataset.csv')
yulu_df
```

#### Out[2]:

|       | datetime         | season | holiday | workingday | weather | temp  | atemp  | humidity | windspeed | casual | registered | count |
|-------|------------------|--------|---------|------------|---------|-------|--------|----------|-----------|--------|------------|-------|
| 0     | 01-01-2011 00:00 | 1      | 0       | 0          | 1       | 9.84  | 14.395 | 81       | 0.0000    | 3      | 13         | 16    |
| 1     | 01-01-2011 01:00 | 1      | 0       | 0          | 1       | 9.02  | 13.635 | 80       | 0.0000    | 8      | 32         | 40    |
| 2     | 01-01-2011 02:00 | 1      | 0       | 0          | 1       | 9.02  | 13.635 | 80       | 0.0000    | 5      | 27         | 32    |
| 3     | 01-01-2011 03:00 | 1      | 0       | 0          | 1       | 9.84  | 14.395 | 75       | 0.0000    | 3      | 10         | 13    |
| 4     | 01-01-2011 04:00 | 1      | 0       | 0          | 1       | 9.84  | 14.395 | 75       | 0.0000    | 0      | 1          | 1     |
|       |                  |        |         |            |         |       |        |          |           |        |            |       |
| 10881 | 19-12-2012 19:00 | 4      | 0       | 1          | 1       | 15.58 | 19.695 | 50       | 26.0027   | 7      | 329        | 336   |
| 10882 | 19-12-2012 20:00 | 4      | 0       | 1          | 1       | 14.76 | 17.425 | 57       | 15.0013   | 10     | 231        | 241   |
| 10883 | 19-12-2012 21:00 | 4      | 0       | 1          | 1       | 13.94 | 15.910 | 61       | 15.0013   | 4      | 164        | 168   |
| 10884 | 19-12-2012 22:00 | 4      | 0       | 1          | 1       | 13.94 | 17.425 | 61       | 6.0032    | 12     | 117        | 129   |
| 10885 | 19-12-2012 23:00 | 4      | 0       | 1          | 1       | 13.12 | 16.665 | 66       | 8.9981    | 4      | 84         | 88    |

10886 rows × 12 columns

#### In [3]: yulu\_df.describe()

#### Out[3]:

|       | season       | holiday      | workingday   | weather      | temp        | atemp        | humidity     | windspeed    | casual       | register   |
|-------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|------------|
| count | 10886.000000 | 10886.000000 | 10886.000000 | 10886.000000 | 10886.00000 | 10886.000000 | 10886.000000 | 10886.000000 | 10886.000000 | 10886.0000 |
| mean  | 2.506614     | 0.028569     | 0.680875     | 1.418427     | 20.23086    | 23.655084    | 61.886460    | 12.799395    | 36.021955    | 155.5521   |
| std   | 1.116174     | 0.166599     | 0.466159     | 0.633839     | 7.79159     | 8.474601     | 19.245033    | 8.164537     | 49.960477    | 151.0390   |
| min   | 1.000000     | 0.000000     | 0.000000     | 1.000000     | 0.82000     | 0.760000     | 0.000000     | 0.000000     | 0.000000     | 0.0000     |
| 25%   | 2.000000     | 0.000000     | 0.000000     | 1.000000     | 13.94000    | 16.665000    | 47.000000    | 7.001500     | 4.000000     | 36.0000    |
| 50%   | 3.000000     | 0.000000     | 1.000000     | 1.000000     | 20.50000    | 24.240000    | 62.000000    | 12.998000    | 17.000000    | 118.0000   |
| 75%   | 4.000000     | 0.000000     | 1.000000     | 2.000000     | 26.24000    | 31.060000    | 77.000000    | 16.997900    | 49.000000    | 222.0000   |
| max   | 4.000000     | 1.000000     | 1.000000     | 4.000000     | 41.00000    | 45.455000    | 100.000000   | 56.996900    | 367.000000   | 886.0000   |

### In [4]: yulu\_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10886 entries, 0 to 10885
Data columns (total 12 columns):

| Ducu                     | COTAMM13 (CO | car iz coramno). |         |  |  |  |
|--------------------------|--------------|------------------|---------|--|--|--|
| #                        | Column       | Non-Null Count   | Dtype   |  |  |  |
|                          |              |                  |         |  |  |  |
| 0                        | datetime     | 10886 non-null   | object  |  |  |  |
| 1                        | season       | 10886 non-null   | int64   |  |  |  |
| 2                        | holiday      | 10886 non-null   | int64   |  |  |  |
| 3                        | workingday   | 10886 non-null   | int64   |  |  |  |
| 4                        | weather      | 10886 non-null   | int64   |  |  |  |
| 5                        | temp         | 10886 non-null   | float64 |  |  |  |
| 6                        | atemp        | 10886 non-null   | float64 |  |  |  |
| 7                        | humidity     | 10886 non-null   | int64   |  |  |  |
| 8                        | windspeed    | 10886 non-null   | float64 |  |  |  |
| 9                        | casual       | 10886 non-null   | int64   |  |  |  |
| 10                       | registered   | 10886 non-null   | int64   |  |  |  |
| 11                       | count        | 10886 non-null   | int64   |  |  |  |
| dtype                    | es: float64( | 3), int64(8), ob | ject(1) |  |  |  |
| memory usage: 1020.7+ KB |              |                  |         |  |  |  |

```
In [5]: yulu_df.isna().sum()
Out[5]: datetime
                      0
        season
                      0
        holiday
                      0
        workingday
        weather
                      0
        temp
                      0
        atemp
                      0
        humidity
        windspeed
        casual
                      0
        registered
        count
                      0
        dtype: int64
In [6]: # count of no. of rows and coloumns
        yulu df.shape
Out[6]: (10886, 12)
In [7]: yulu_df['weather'].unique()
Out[7]: array([1, 2, 3, 4], dtype=int64)
In [8]: yulu_df['weather'].value_counts()
Out[8]: 1
             7192
             2834
              859
                1
        Name: weather, dtype: int64
In [9]: # minimum datetime and maximum datetime
        yulu_df['datetime'].min(), yulu_df['datetime'].max()
Out[9]: ('01-01-2011 00:00', '19-12-2012 23:00')
```

```
In [10]: yulu_df['datetime'] = pd.to_datetime(yulu_df['datetime'])

cat_cols= ['season', 'holiday', 'workingday', 'weather']
for col in cat_cols:
    yulu_df[col] = yulu_df[col].astype('object')
```

In [11]: yulu\_df.iloc[:, 1:].describe(include='all')

#### Out[11]:

|        | season  | holiday | workingday | weather | temp        | atemp        | humidity     | windspeed    | casual       | registered   | count        |
|--------|---------|---------|------------|---------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|
| count  | 10886.0 | 10886.0 | 10886.0    | 10886.0 | 10886.00000 | 10886.000000 | 10886.000000 | 10886.000000 | 10886.000000 | 10886.000000 | 10886.000000 |
| unique | 4.0     | 2.0     | 2.0        | 4.0     | NaN         | NaN          | NaN          | NaN          | NaN          | NaN          | NaN          |
| top    | 4.0     | 0.0     | 1.0        | 1.0     | NaN         | NaN          | NaN          | NaN          | NaN          | NaN          | NaN          |
| freq   | 2734.0  | 10575.0 | 7412.0     | 7192.0  | NaN         | NaN          | NaN          | NaN          | NaN          | NaN          | NaN          |
| mean   | NaN     | NaN     | NaN        | NaN     | 20.23086    | 23.655084    | 61.886460    | 12.799395    | 36.021955    | 155.552177   | 191.574132   |
| std    | NaN     | NaN     | NaN        | NaN     | 7.79159     | 8.474601     | 19.245033    | 8.164537     | 49.960477    | 151.039033   | 181.144454   |
| min    | NaN     | NaN     | NaN        | NaN     | 0.82000     | 0.760000     | 0.000000     | 0.000000     | 0.000000     | 0.000000     | 1.000000     |
| 25%    | NaN     | NaN     | NaN        | NaN     | 13.94000    | 16.665000    | 47.000000    | 7.001500     | 4.000000     | 36.000000    | 42.000000    |
| 50%    | NaN     | NaN     | NaN        | NaN     | 20.50000    | 24.240000    | 62.000000    | 12.998000    | 17.000000    | 118.000000   | 145.000000   |
| 75%    | NaN     | NaN     | NaN        | NaN     | 26.24000    | 31.060000    | 77.000000    | 16.997900    | 49.000000    | 222.000000   | 284.000000   |
| max    | NaN     | NaN     | NaN        | NaN     | 41.00000    | 45.455000    | 100.000000   | 56.996900    | 367.000000   | 886.000000   | 977.000000   |
|        |         |         |            |         |             |              |              |              |              |              |              |

4

```
In [12]: # number of unique values in each categorical columns
yulu_df[cat_cols].melt().groupby(['variable', 'value'])[['value']].count()
```

#### Out[12]:

| valua |      |
|-------|------|
|       | <br> |
|       |      |

| variable   | value |       |
|------------|-------|-------|
| holiday    | 0     | 10575 |
|            | 1     | 311   |
| season     | 1     | 2686  |
|            | 2     | 2733  |
|            | 3     | 2733  |
|            | 4     | 2734  |
| weather    | 1     | 7192  |
|            | 2     | 2834  |
|            | 3     | 859   |
|            | 4     | 1     |
| workingday | 0     | 3474  |
|            | 1     | 7412  |

```
In [13]: # count of casual users
         yulu_df['casual'].value_counts()
Out[13]: 0
                986
                667
         2
                487
                438
         3
                354
                . . .
         332
                  1
         361
                  1
         356
                  1
         331
                  1
         304
                  1
         Name: casual, Length: 309, dtype: int64
In [14]: # count of registered users
         yulu_df['registered'].value_counts()
Out[14]: 3
                195
                190
                177
                155
                150
         570
                  1
         422
                  1
         678
                  1
         565
                  1
         636
                  1
         Name: registered, Length: 731, dtype: int64
In [15]: yulu_df['workingday'].value_counts()
Out[15]: 1
              7412
              3474
         Name: workingday, dtype: int64
```

What we have find in this dataset so far is-

- There is no missing values
- Count of registered users
- count of casual users
- number of unique values in each categorical columns
- minimum datetime and maximum datetime

## **Univariate Analysis**

```
In [16]: # understanding the distribution for numerical variables
num_cols = ['temp', 'atemp', 'humidity', 'windspeed', 'casual', 'registered','count']

fig, axis = plt.subplots(nrows=2, ncols=3, figsize=(16, 12))

index = 0
for row in range(2):
    for col in range(3):
        sns.histplot(yulu_df[num_cols[index]], ax=axis[row, col], kde=True)
        index += 1

plt.show()
sns.histplot(yulu_df[num_cols[-1]], kde=True)
plt.show()
```





- casual, registered and count somewhat looks like Log Normal Distrinution
- temp, atemp and humidity looks like they follows the Normal Distribution
- windspeed follows the binomial distribution

```
In [17]: # plotting box plots to detect outliers in the data
fig, axis = plt.subplots(nrows=2, ncols=3, figsize=(16, 12))

index = 0
for row in range(2):
    for col in range(3):
        sns.boxplot(x=yulu_df[num_cols[index]], ax=axis[row, col])
        index += 1

plt.show()
sns.boxplot(x=yulu_df[num_cols[-1]])
plt.show()
```





• Looks like humidity, casual, registered and count have outliers in the data.

```
In [18]: # countplot of each categorical column
fig, axis = plt.subplots(nrows=2, ncols=2, figsize=(16, 12))

index = 0
for row in range(2):
    for col in range(2):
        sns.countplot(data=yulu_df, x=cat_cols[index], ax=axis[row, col])
        index += 1

plt.show()
```



| • | Data looks common as it should be like equal number of days in each season, more working days and weather is mostly Clear, Few clouds partly cloudy, partly cloudy. |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                                                                     |
|   |                                                                                                                                                                     |
|   |                                                                                                                                                                     |
|   |                                                                                                                                                                     |
|   |                                                                                                                                                                     |
|   |                                                                                                                                                                     |
|   |                                                                                                                                                                     |
|   |                                                                                                                                                                     |
|   |                                                                                                                                                                     |
|   |                                                                                                                                                                     |

# **Bi-variate Analysis**

```
In [19]: # plotting categorical variables againt count using boxplots
fig, axis = plt.subplots(nrows=2, ncols=2, figsize=(16, 12))

index = 0
for row in range(2):
    for col in range(2):
        sns.boxplot(data=yulu_df, x=cat_cols[index], y='count', ax=axis[row, col])
        index += 1

plt.show()
```



- In summer and fall seasons more bikes are rented as compared to other seasons.
- Whenever its a holiday more bikes are rented.
- It is also clear from the workingday also that whenever day is holiday or weekend, slightly more bikes were rented.
- Whenever there is rain, thunderstorm, snow or fog, there were less bikes were rented.

```
In [21]: # plotting numerical variables againt count using scatterplot
fig, axis = plt.subplots(nrows=2, ncols=3, figsize=(16, 12))

index = 0
for row in range(2):
    for col in range(3):
        sns.scatterplot(data=yulu_df, x=num_cols[index], y='count', ax=axis[row, col])
        index += 1

plt.show()
```



- Whenever the humidity is less than 20, number of bikes rented is very very low.
- Whenever the temperature is less than 10, number of bikes rented is less.
- Whenever the windspeed is greater than 35, number of bikes rented is less.

# In [22]: # understanding the correlation between count and numerical variables yulu\_df.corr()['count']

C:\Users\dell\AppData\Local\Temp\ipykernel\_5608\3672462325.py:2: FutureWarning: The default value of numeric\_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric\_only to silence this warning.

yulu df.corr()['count']

Out[22]: temp 0.394454 atemp 0.389784 humidity -0.317371 windspeed 0.101369 casual 0.690414 registered 0.970948 count 1.000000

Name: count, dtype: float64

In [23]: sns.heatmap(yulu\_df.corr(), annot=True)
 plt.show()

C:\Users\dell\AppData\Local\Temp\ipykernel\_5608\1497349677.py:1: FutureWarning: The default value of numeric\_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric\_only to silence this warning.

sns.heatmap(yulu\_df.corr(), annot=True)



## **Hypothesis Testing**

```
Null Hypothesis (H0): Weather is independent of the season
```

Alternate Hypothesis (H1): Weather is not independent of the season

Significance level (alpha): 0.05

We will use chi-square test to test hypyothesis defined above.

```
In [26]: data table = pd.crosstab(yulu df['season'], yulu df['weather'])
         print("Observed values:")
         data table
         Observed values:
Out[26]:
          weather
                            3 4
           season
               1 1759 715 211 1
               2 1801 708 224 0
               3 1930 604 199 0
               4 1702 807 225 0
In [32]: val = chi2 contingency(data table)
         expected values = val[3]
         expected values
Out[32]: array([[1.77454639e+03, 6.99258130e+02, 2.11948742e+02, 2.46738931e-01],
                [1.80559765e+03, 7.11493845e+02, 2.15657450e+02, 2.51056403e-01],
```

[1.80559765e+03, 7.11493845e+02, 2.15657450e+02, 2.51056403e-01], [1.80625831e+03, 7.11754180e+02, 2.15736359e+02, 2.51148264e-01]])

```
In [36]: nrows, ncols = 4, 4
         dof = (nrows-1)*(ncols-1)
         print("degrees of freedom: ", dof)
         alpha = 0.05
         chi sqr = sum((o-e)**2/e for o, e in zip(data table.values, expected values)))
         chi sqr statistic = chi sqr[0] + chi sqr[1]
         print("chi-square test statistic: ", chi sqr statistic)
         critical val = chi2.ppf(q=1-alpha, df=dof)
         print(f"critical value: {critical val}")
         p val = 1-chi2.cdf(x=chi_sqr_statistic, df=dof)
         print(f"p-value: {p val}")
         if p val <= alpha:</pre>
             print("\nSince p-value is less than the alpha 0.05, We reject the Null Hypothesis. Meaning that\
             Weather is dependent on the season.")
         else:
             print("Since p-value is greater than the alpha 0.05, We do not reject the Null Hypothesis")
         degrees of freedom: 9
```

degrees of freedom: 9 chi-square test statistic: 44.09441248632364 critical value: 16.918977604620448 p-value: 1.3560001579371317e-06

Since p-value is less than the alpha 0.05, We reject the Null Hypothesis. Meaning that Weather is dependent on the season.

Null Hypothesis: Working day has no effect on the number of cycles being rented.

**Alternate Hypothesis:** Working day has effect on the number of cycles being rented.

Significance level (alpha): 0.05

We will use the 2-Sample T-Test to test the hypothess defined above

Out[38]: (30171.346098942427, 34040.69710674686)

- Before conducting the two-sample T-Test we need to find if the given data groups have the same variance. If the ratio of the larger data groups to the small data group is less than 4:1 then we can consider that the given data groups have equal variance.
- Here, the ratio is 34040.70 / 30171.35 which is less than 4:1

```
In [41]: ttest_ind(a=data_group1, b=data_group2, equal_var=True)
Out[41]: Ttest_indResult(statistic=-1.2096277376026694, pvalue=0.22644804226361348)
```

Since pvalue is greater than 0.05 so we can not reject the Null hypothesis. We don't have the sufficient evidence to say that working day has effect on the number of cycles being rented.

**Null Hypothesis:** Number of cycles rented is similar in different weather and season.

**Alternate Hypothesis:** Number of cycles rented is not similar in different weather and season.

Significance level (alpha): 0.05

Here, we will use the ANOVA to test the hypothess defined above

```
In []: # defining the data groups for the ANOVA

gp1 = yulu_df[yulu_df['weather']==1]['count'].values
gp2 = yulu_df[yulu_df['weather']==2]['count'].values
gp3 = yulu_df[yulu_df['weather']==3]['count'].values
gp4 = yulu_df[yulu_df['weather']==4]['count'].values

gp5 = yulu_df[yulu_df['season']==1]['count'].values
gp6 = yulu_df[yulu_df['season']==2]['count'].values
gp7 = yulu_df[yulu_df['season']==3]['count'].values
gp8 = yulu_df[yulu_df['season']==4]['count'].values
# conduct the one-way anova
f_oneway(gp1, gp2, gp3, gp4, gp5, gp6, gp7, gp8)
```

#### Recommendations

- In summer and fall seasons the company should have more bikes in stock to be rented. Because the demand in these seasons is higher as compared to other seasons.
- With a significance level of 0.05, workingday has no effect on the number of bikes being rented.
- In very low humid days, company should have less bikes in the stock to be rented.
- Whenever temprature is less than 10 or in very cold days, company should have less bikes.
- Whenever the windspeed is greater than 35 or in thunderstorms, company should have less bikes in stock to be rented.

# Thank you