Laboratorio II, modulo 2 2015-2016

Amplificatori operazionali

cfr. http://physics.ucsd.edu/~tmurphy/phys121/phys121.html

Amplificatori operazionali

Amplificatori operazionali

- sono disegnati come triangoli negli schematici dei circuiti
- ci sono due input
 - invertente and non-invertente
- un output
- alimentazione (nessuna messa a terra, floating)

Operazionale ideale

- guadagno in voltaggio infinito
 - una differenza di voltaggio fra i due input è amplificata infinitamente
 - nella realtà ~200000
- impedenza in ingresso infinita
 - non c'è flusso di corrente in entrata agli input
 - nella realtà ~ $10^{12} \Omega$ (operazionali con transistor FET)
- impedenza in uscita nulla
 - indipendente dal carico
 - in realtà vero fino ad una certa corrente (5-25 mA)
- infinitamente veloci (banda infinita)
 - in realtà, limitati a pochi MHz
 - slew rate limitato a 0.5–20 V/μs

Modello

Ideale vs reale

	Ideal	Practical (LM741)
Open Loop gain A	∝	10 ⁵
Gain-Bandwidth Product <i>GBP</i>	× ×	1MHz
Input Impedance $Z_{\rm in}$	∝	0.3-2MΩ
Output Impedance Z_{out}	0 Ω	10-100 Ω
Output Voltage V_{out}	Depends only on $V_d = (V_+-V)$ Differential mode signal	Depends slightly on average input $V_c = (V_+ + V)/2$ Common- Mode signal
CMRR	× ×	80-100dB

Operazionale senza feedback

Relazione fra uscita e ingressi:

$$V_{out} = G \times (V_+ - V_-)$$

- se V₊ > V_−, l'uscita sarà positiva
- se V₂ > V₊, l'uscita sarà negativa

 Un Guadagno di 200000 rende l'utilizzo dell'operazionale, in questo montaggio mostrato sopra, praticamente inutilizzabile

Guadagno infinito e feedback negativo

- Il guadagno infinito sarebbe inutile eccetto in un montaggio auto-regolante con feedback negativo:
 - feedback negativo -> stabilità
 - feedback positivo → deriva e oscillazioni
- collegando l'output al'input invertente:
 - se l'output è $< V_{in}$, l'output tenderà a diventare positivo
 - se l'output è > V_{in} , l'output tenderà a diventare negativo
 - \rightarrow il risultato è che l'output velocemente si forza a diventare esattamente V_{in}

Buffer

- Anche con un carico:
 - l'operazionale farà il possibile (all'interno delle sue limitazioni di corrente) per cambiare l'output affinchè l'input invertente raggiunga $V_{\rm in}$
 - il feedback negativo lo rende auto-regolante
 - nel caso disegnato l'operazionale produce (o tira, se $V_{\rm in}$ è negativa) una corrente* attraverso il carico finchè l'output non raggiunge $V_{\rm in}$
 - \rightarrow abbiamo creato un **buffer**: possiamo "applicare" V_{in} a un carico senza alterarlo con nessuna corrente

* l'output, a differenza degli input produce o tira corrente

Patologia da feedback positivo

- nella configurazione sotto, se l'input non invertente è anche di pochissimo > $V_{\rm in}$, l'output sarà positivo (in realtà dipende dalla differenza ma è amplificato dal guadagno ideale dell'operazionale)
- questo rende l'output maggiore di V_{in} ancora di più, peggiorando la situazione di cui sopra
- il sistema deriva immediatamente alla tensione di alimentazione (la direzione dipende dalla condizione iniziale)

Feedback

$$G = \frac{V_{out}}{V_{in}}$$

$$V_{out} = AV'$$

$$V' = V_{in} + \beta V_{out}$$

$$V_{out} = A \left(V_{in} + \beta V_{out} \right)$$

$$V_{out} (1 - \beta A) = AV_{in}$$

$$\frac{V_{out}}{V_{in}} = \frac{A}{(1 - \beta A)}$$

$$G = \frac{A}{(1 - \beta A)} \sim \frac{1}{\beta}$$

"Regole d'oro" dell'operazionale

- quando un amplificatore operazionale è in una qualsiasi configurazione a feedback negativo, obbedirà alle seguenti due regole:
 - gli input non tirano o producono corrente (questo è vero anche senza feedback)
 - l'operazionale farà di tutto per portare a zero la differenza di voltaggio fra i due input

Operazionale invertente

Operazionale invertente

- terminali a "ground virtuale":
 - la corrente attraverso R_1 è $I_f = V_{in}/R_1$
- non c'è corrente in entrata all' operazionale (prima regola):
 - la corrente attraverso R_1 deve andare attraverso R_2
 - la caduta di potenziale ai capi di R_2 è $I_fR_2 = V_{in}(R_2/R_1)$
- quindi $V_{\text{out}} = 0 V_{\text{in}}(R_2/R_1) = -V_{\text{in}}(R_2/R_1)$
- quindi V_{in} viene amplificato di un fattore $-R_2/R_1$:
 - il segno negativo lo rende un amplificatore invertente

Operazionale non-invertente

Operazionale non-invertente

- il terminale negativo viene portato a V_{in} (cfr. ground virtuale):
 - la corrente attraverso R_1 è $I_f = V_{in}/R_1$
- la corrente in R₁ non viene dagli input:
 - viene dall'output, attraverso R₂
 - la caduta su R_2 è $I_fR_2 = V_{in}(R_2/R_1)$
 - $-V_{\text{out}} = V_{\text{in}} + V_{\text{in}}(R_2/R_1) = V_{\text{in}}(1 + R_2/R_1)$
 - il guadagno è $(1 + R_2/R_1)$, ed è positivo

Amplificatore sommatore

Amplificatore sommatore

- come l'invertente ma con due input:
 - input invertente a "ground virtuale"
 - $-I_1$ e I_2 si sommano e passano per R_f
 - otteniamo la somma (invertita):

$$V_{\text{out}} = -R_f (V_1/R_1 + V_2/R_2)$$

- se $R_2 = R_1$, la somma è "normale": $(V_1 + V_2)$
- altrimenti è "pesata"

Amplificatore sottrattore

Amplificatore sottrattore

• l'input non invertente è un partitore di tensione:

$$-V_{\text{nodo}} = V_{+}R_{2}/(R_{1} + R_{2})$$

- quindi $I_f = (V_- V_{\text{nodo}})/R_1$
 - $-V_{\text{out}} = V_{\text{nodo}} I_f R_2 = V_+ (1 + R_2/R_1)(R_2/(R_1 + R_2)) V_- (R_2/R_1)$
 - quindi $V_{\text{out}} = (R_2/R_1)(V_+ V_-)$

Differenziatore/Filtro passa-alto

$$I = \frac{dQ}{dt} = C\frac{dV}{dt}$$

$$I = C \frac{d}{dt} (V_{in} - V_{out}) = \frac{V_{out}}{R}$$

Se vale la condizione

$$\frac{dV_{out}}{dt} \ll \frac{dV_{in}}{dt}$$

cioè se la caduta ai capi di R è << di quella ai capi di C

$$C\frac{dV_{in}}{dt} = \frac{V_{out}}{R} \quad \Rightarrow \quad V_{out} = RC\frac{dV_{in}}{dt}$$

Amplificatore differenziatore/filtro passa-alto

Amplificatore differenziatore/filtro passa-alto

• per il capacitore Q = CV

$$I = \frac{dQ}{dt} = C\frac{dV}{dt}$$

$$V_{out} = -I_{cap}R = -RC\frac{dV}{dt}$$

 quindi abbiamo realizzato un differenziatore o un filtro passa-alto

Amplificatore integratore/filtro passa-basso

Amplificatore integratore/filtro passa-basso

- $I_f = V_{in}/R \rightarrow C \cdot dV_{cap}/dt = V_{in}/R$
 - e siccome il capacitore a sinistra è a "ground virtuale":
 V_{out} = V_{cap} → dV_{out}/dt = V_{in}/RC

$$V_{out} = -\frac{1}{RC} \int V_{in} dt$$

 abbiamo quindi realizzato un integratore o un filtro passabasso

Altri montaggi

Amplificatore non invertente

$$v_o = (1 + \frac{R_f}{R_a})v_i$$

Amplificatore non invertente con partitore

$$v_o = (1 + \frac{R_f}{R_a})(\frac{R_2}{R_1 + R_2})v_i$$

Inseguitore di voltaggio - buffer

$$v_o = v_i$$

Amplificatore a guadagno < 1

$$v_o = \frac{R_2}{R_1 + R_2} v_i$$

esempio: serie 741

esempio: serie 741

Relazione Frequenza-Guadagno

- idealmente i segnali sono amplificati a tutte le frequenze
- nella realtà la banda è limitata
- gli operazionali della famiglia 741 hanno un limite di pochi KHz.
- frequenza a guadagno unitario, f_1 : la frequenza a cui il guadagno vale 1
- frequenza di cutoff, f_c : la frequenza a cui il guadagno ha avuto una diminuizione di 3dB

Prodotto GB

Esempio: determinare la frequenza di cutoff di un'operazionale che ha una frequenza di guadagno unitario di $f_1 = 10$ MHz e un guadagno differenziale $G_d = 20$ V/mV (2000)

Soluzione:

 $f_1 = 10 \text{ MHz}$

usando l'equazione del prodotto GB:

$$f_1 = G_d f_c$$

 $f_c = f_1 / G_d = 10 \text{ MHz} / 20 \text{ V/mV}$
 $= 10 \times 10^6 / 20 \times 10^3$
 $= 500 \text{ Hz}$

GBP per il 741

Gain-Bandwidth Product (GBP) = A * BW

Common-Mode Rejection Ratio

Definiamo:

Input differenziale:

$$V_d = (V_+ - V_-)$$

Input modo comune:

$$V_{c} = \frac{1}{2} (V_{+} + V_{-})$$

Un operazionale reale avrà:

$$V_o = G_d V_d + \frac{1}{2} G_c V_c$$

G_d: guadagno differenziale G_c: guadagno modo comune

CMRR =
$$G_d/G_c$$
 o, in dB
= $20log_{10}(G_d/G_c)$

Nota:

se
$$G_d >> G_c$$
, cioè CMRR $\rightarrow \infty$
 $\rightarrow V_o \sim G_d V_d$

Misura CMRR

Risolviamo il sistema:

$$V_{d1} = (100-20) \text{mV} = 80 \text{mV}$$
 $V_{d2} = (100-40) \text{mV} = 60 \text{mV}$ $V_{d2} = \frac{1}{6}(100+40) \text{mV} = 70 \text{mV}$

$$V_{c1} = \frac{1}{2}(100+20)\text{mV} = 60\text{mV}$$
 $V_{c2} = \frac{1}{2}(100+40)\text{mV} = 70\text{mV}$

(1)
$$V_0 = 80 \text{mV } G_d + 60 \text{mV } G_c = 80.6 \text{V}$$

(2)
$$V_o = 60 \text{mV } G_d + 70 \text{mV } G_c = 60.7 \text{V}$$

$$\rightarrow$$
 G_d=1000 G_c=10 \rightarrow CMRR = 20 log₁₀(1000/10) = 40dB