Символьное и численное решение обыкновенного дифференциального уравнения (ОДУ) первого порядка

$$\frac{dy}{dt} = (1+y) \cdot \sin(t)$$

Символьное решение (точное)

Наиболее точные результаты вычислений мы получаем при использовании символьной математики (Symbolic Math Toolbox). В MatLab прежде, чем использовать символьные переменные, а также символьные функции, их обязательно следует объявить символьными (syms).

- Объявим z(x) символьной функцией;
- составим заданное дифференциальное уравнение, обозначяя его ед;
- начальное условие обзначим cond;
- решение с помощью команды dsolve присвоим переменной zex(x)

```
syms z(t)
eqn = diff(z,t) == (1+z)*sin(t);
cond = z(0) == 0;
zex(t) = dsolve(eqn,cond)
```

```
zex(t) = ee^{-cos(t)} - 1
```

Замечание 1.

Решение в явном виде далеко не всегда может быть найдено: достаточно изменить правую часть заданного уравнения, прибавив к ней z^2

```
diff(z,t) == (1+z)*sin(t)+z^2,
```

чтобы Matlab выдал сообщение

```
Warning: Explicit solution could not be
found.

zex(x) =
[ empty sym ]
```

Это означает, что в явном виде решение не найти, и дифференциальное уравнение нужно решать численно. В этом случае могут быть использованы решатели ode45, ode 23, ode113, а также другие.

Замечание 2.

Следует также иметь в виду, что переменные и функции, однажды объявленными символьными, в дальнейшем воспринимаются программой только как символьные, и если далее планируется применять z или x в командах численной математики или в команде plot(x,z), то их надо преобразовать в double, либо не использовать вовсе, а применять для искомых величин просто другие обозначения.

Замечание 3. Использование математической программы WolframAlpha.

Вид явного решения можно получить или проверить, обратившись к имеющейся в свободном доступе в интернете математической программе WolframAlpha. Достаточно набрать в командной строке код

solve
$$y' = (1+y)*\sin(x)$$
, $y(0)=0$

и получить ответ:

exact solution
$$y(x) = e^{1-\cos(x)} - 1$$
, Matlab.

что как видим, практически совпадает с ответом

Численное решение ОДУ

Рассмотрим численное решение заданного дифференциального уранения первого порядка

$$\frac{dy}{dt} = (1+y) \cdot \sin(t)$$

с помощью трех решателей **ode45**, **ode23**, **ode113**, которые сравним по времени счета, по числу возвращаемых точек решения и по точности результатов.

Сравнение результатов по времени счета и по количеству точек (графически и таблично).

Оценка времени вычислений решателя **ode45** с помощью команды (tic,toc), а также вывод таблицы значений и графика результатов

```
tic,[t,y] = ode45(@(t,y) (1+y).*sin(t), [0 10], [0]), toc
```

```
t = 0 0.2500 0.5000 0.7500 1.0000 1.2500 1.7500 2.0000 2.2500
```

```
    :

y =

    0
    0.0316
    0.1304
    0.3080
    0.5838
    0.9822
    1.5334
    2.2510
    3.1222
    4.1003
    :

Elapsed time is 0.030963 seconds.
```

```
plot(t,y,'r*'),title('ode45 решение y=y(t)')
```


Число точек, в которых выполнены вычисления

```
ode45_N=length(t),

ode45_N=45
```

Для **ode23**

```
tic
[t1,y1]= ode23(@(t,y) (1+y).*sin(t), [0 10], [0]);
toc,
```

Elapsed time is 0.032911 seconds.

```
plot(t1,y1,'gp'),title('ode23 решение y=y(t)')
```


Число расчетных точек

```
ode23_N=length(t1),
ode23_N = 49
```

Для **ode113**

```
tic,
[t2,y2]= ode113(@(t,y) (1+y).*sin(t), [0 10], [0]);
toc,
```

Elapsed time is 0.076313 seconds.

```
plot(t2,y2,'mo'), title('ode113 решение y=y(t)')
```


Число расчетных точек

```
ode113_N=length(t2)
ode113_N = 56
```

Создание структурных массивов, включающиих моменты времени, числовые значения решение и название решателя. Общий график.

```
sol=ode45(@(t,y) (1+y).*sin(t), [0 10], [0]);
plot(t,y,'r*'),title('Сравнение распложения точек для трех решателей ')

soll=ode23(@(t1,y1) (1+y1).*sin(t1), [0 10], [0]);
hold on, plot(t1,y1,'gp'),

sol2=ode113(@(t2,y2) (1+y2).*sin(t2), [0 10], [0]);
plot(t2,y2,'mo'),
legend('ode45','ode23','ode113','Location','north')
hold off
```


Задание m точек, равномерно распределенных на заданном интервале [t0,tf]

```
m=12;%число точек на интервале
t0=0; tf=10;%начальная и конечная точки интервала
t = linspace(t0,tf,m);%равномерно распределенные m точек на интервале [t0,tf]
```

Интерполяция решений в одинаковые моменты времени.

Для вывода решений на общий график и дальнейшей сравнительной оценки решений выполним интерполяцию численных решений в одиинаковые моменты t

```
y=deval(sol,t,1); % интерполяция решения ode45 в заданных точках y1=deval(sol1,t,1);%интерполяция решения ode23 в заданных точках y2=deval(sol2,t,1);%интерполяция решения ode113 в заданных точках
```

Вычислим значения точного решения, полученного в символьных вычислениях, в те же моменты времени t

```
yex=exp(1-cos(t))-1;%точное решение уравнения -1 + e^(1 - cos(x))
```

Вывод на общий график значений y(t), полученных разными решателями в одинаковые моменты времени

```
plot(t,yex,'bd',t,y,'r*',t,y1,'gp',t,y2,'mo'),
title('Графическое сравнение решений диф. ур-я'),
legend('точное','ode45','ode23','ode113','Location','northwest')
```


Вывод сравнительной таблицы решений у(t) от разных решателей

```
T=table; %создание таблицы
N=1:m;
T.N=N';% задание порядкового номера строкам
T.t=t';% ввод м моментов времени
T.exact=yex'; T.ode45=y';
T.ode23=y1'; T.ode113=y2';% размещение решений по столбцам с названиями
T %вывод таблицы
```

T =	12×6	table				
	N	t	exact	ode45	ode23	ode113
	1	Θ	0	0	0	Θ
	2	0.90909	0.4704	0.47059	0.47036	0.4704
	3	1.8182	2.4725	2.4746	2.4712	2.4728
	4	2.7273	5.7896	5.7884	5.787	5.7905
	5	3.6364	5.554	5.5575	5.5516	5.5547
	6	4.5455	2.2096	2.2112	2.2085	2.2096
	7	5.4545	0.38281	0.38403	0.38136	0.383
	8	6.3636	0.0032397	0.0035196	0.0021405	0.0033465
	9	7.2727	0.56977	0.57007	0.56799	0.56996
	10	8.1818	2.7509	2.7524	2.7453	2.7516
	11	9.0909	5.9921	5.9942	5.9812	5.9908
	12	10	5.2907	5.2941	5.281	5.2825