In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import math
titanic_data=pd.read_csv(r'Titanic-Dataset.csv')
titanic_data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtyp	es: float64(2), int64(5), obj	ect(5)

memory usage: 83.7+ KB

In [2]:

titanic_data.head(10)

Out[2]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708
4										>

In [4]:

print(titanic_data.shape)

(891, 12)

In [5]:

```
print("# of passangers in original dataset:",len(titanic_data))
```

of passangers in original dataset: 891

In [7]:

```
#analyzing data
sns.countplot(x="Survived",data=titanic_data)
```

Out[7]:

<Axes: xlabel='Survived', ylabel='count'>

In [9]:

#plot to show that female passanger were more likely to survive
sns.countplot(x="Survived",hue="Sex",data=titanic_data)

Out[9]:

<Axes: xlabel='Survived', ylabel='count'>

In [10]:

#plot to show that first class passanger were more likely to survive
sns.countplot(x="Survived",hue="Pclass",data=titanic_data)

Out[10]:

<Axes: xlabel='Survived', ylabel='count'>

In [11]:

```
#more lower or middle age persons travelling in titanic
titanic_data["Age"].plot.hist()
```

Out[11]:

<Axes: ylabel='Frequency'>

In [12]:

```
#fare value ranges mostly between 0 to 100
titanic_data["Fare"].plot.hist(bins=20,figsize=(10,5))
```

Out[12]:

<Axes: ylabel='Frequency'>

In [13]:

```
#Analyze sibling-spouse
sns.countplot(x="SibSp",data=titanic_data)
```

Out[13]:

<Axes: xlabel='SibSp', ylabel='count'>

In [14]:

#DATA CLEANING- Removing NaN values and neccesary column in the dataset titanic_data.isnull()

Out[14]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
0	False	False	False	False	False	False	False	False	False	False	True
1	False	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	True
3	False	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False	True
886	False	False	False	False	False	False	False	False	False	False	True
887	False	False	False	False	False	False	False	False	False	False	False
888	False	False	False	False	False	True	False	False	False	False	True
889	False	False	False	False	False	False	False	False	False	False	False
890	False	False	False	False	False	False	False	False	False	False	True

891 rows × 12 columns

In [15]:

titanic_data.isnull().sum()

Out[15]:

0
0
0
0
0
177
0
0
0
0
687
2

In [16]:

sns.boxplot(x="Pclass",y="Age",data=titanic_data)

Out[16]:

<Axes: xlabel='Pclass', ylabel='Age'>

In [17]:

titanic_data.drop("Cabin",axis=1,inplace=True)

In [18]:

titanic_data.head(2)

Out[18]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Eml
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
4											•

In [19]:

```
titanic_data.dropna(inplace=True)
print(titanic_data.shape)
```

(712, 11)

In [21]:

```
titanic_data.isnull().sum()
```

Out[21]:

PassengerId 0 Survived 0 Pclass 0 Name 0 Sex Age 0 SibSp Parch 0 Ticket 0 Fare 0 Embarked 0 dtype: int64

In [22]:

```
#string values present a lot, so covert it into categorical value
pd.get_dummies(titanic_data['Sex'])
```

Out[22]:

	female	male
0	0	1
1	1	0
2	1	0
3	1	0
4	0	1
885	1	0
886	0	1
887	1	0
889	0	1
890	0	1

712 rows × 2 columns

In [23]:

```
sex=pd.get_dummies(titanic_data['Sex'],drop_first=True)
sex.head(5)
```

Out[23]:

	male
0	1
1	0
2	0
3	0

In [24]:

1

```
pd.get_dummies(titanic_data["Embarked"])
```

Out[24]:

	С	Q	S
0	0	0	1
1	1	0	0
2	0	0	1
3	0	0	1
4	0	0	1
885	0	1	0
886	0	0	1
887	0	0	1
889	1	0	0
890	0	1	0

712 rows × 3 columns

In [25]:

```
embark=pd.get_dummies(titanic_data["Embarked"],drop_first=True)
embark.head()
```

Out[25]:

```
Q S
0 0 1
```

- 1 0 0
- 2 0
- 3 0 1
- 4 0 1

In [26]:

```
pd.get_dummies(titanic_data["Pclass"])
```

Out[26]:

	1	2	3
0	0	0	1
1	1	0	0
2	0	0	1
3	1	0	0
4	0	0	1
885	0	0	1
886	0	1	0
887	1	0	0
889	1	0	0
890	0	0	1

712 rows × 3 columns

In [27]:

```
pcls=pd.get_dummies(titanic_data["Pclass"],drop_first=True)
pcls.head()
```

Out[27]:

- 2 3
- 0 0 1
- 1 0 0
- 2 0 1
- **3** 0 0
- 4 0 1

In [30]:

titanic_data=pd.concat([titanic_data,sex,embark,pcls],axis=1)
titanic_data.head(5)

Out[30]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500

5 rows × 21 columns

In [31]:

titanic_data.drop(['Sex','Embarked','PassengerId','Name','Ticket'],axis=1,inplace=True)

In [32]:

```
titanic_data.columns
```

Out[32]:

```
Index(['Survived',
                       'Pclass',
                                         'Age',
                                                    'SibSp',
                                                                  'Parch',
                                                                                 'Fa
re',
            'male',
                             'Q',
                                           'S',
                                                           2,
                                                                        3,
                                                                                 'ma
le',
                             'S',
                'Q',
                                             2,
                                                           3],
      dtype='object')
```

In [33]:

```
titanic_data.head(2)
```

Out[33]:

	Survived	Pclass	Age	SibSp	Parch	Fare	male	Q	S	2	3	male	Q	S	2	3	
0	0	3	22.0	1	0	7.2500	1	0	1	0	1	1	0	1	0	1	
1	1	1	38.0	1	0	71.2833	0	0	0	0	0	0	0	0	0	0	

In [34]:

```
X=titanic_data.drop("Survived",axis=1)
y=titanic_data["Survived"]
```

In [35]:

pri	nt(X)													
2	Pclass	Age	SibSp	Parch	Fare	male	Q	S	2	3	male	Q	S	2
9	3	22.0	1	0	7.2500	1	0	1	0	1	1	0	1	0
1														

```
1
              38.0
                         1
                                     71.2833
                                                                          0
0
2
             26.0
                                 0
                                      7.9250
                                                      0
                                                         1
                                                                          0
                                                                             1
                                                                                 0
           3
                                                            0
                                                                1
1
3
              35.0
                         1
                                     53.1000
           1
                                 0
                                                  0
                                                      0
                                                         1
                                                            0
                                                                0
                                                                          0
                                                                             1
                                                                                 0
0
4
           3
              35.0
                          0
                                 0
                                      8.0500
                                                  1
                                                      0
                                                        1
                                                            0
                                                               1
                                                                       1
                                                                          0
                                                                             1
                                                                                 0
1
. .
. .
           3 39.0
                          0
                                     29.1250
885
                                                      1
                                                         0
                                                            0
                                                                1
                                                                          1
                                                                                 0
1
           2
             27.0
                          0
                                     13.0000
                                                         1
                                                                          0
                                                                             1
886
                                 0
                                                  1
                                                      0
                                                            1
                                                                0
                                                                       1
                                                                                 1
0
887
           1
             19.0
                          0
                                 0
                                     30.0000
                                                      0
                                                         1
                                                            0
                                                                0
                                                                          0
                                                                             1
                                                                                 0
0
             26.0
                          0
                                     30.0000
                                                                          0
889
                                                      0
                                                         0
                                                                0
                                                                             0
                                                                                 0
0
                          0
890
           3 32.0
                                 0
                                      7.7500
                                                     1
                                                        0
                                                            0
                                                               1
                                                                          1
                                                                             0
                                                                                 0
1
```

[712 rows x 15 columns]

```
In [37]:
```

```
X=titanic_data.iloc[:,[1,2,3,4,5,6,7,8,9]].values
Y=titanic_data.iloc[:,0].values
print(X)
[[ 3. 22.
                    0.
                        1.
           1. ...
                            0.1
 [ 1. 38.
                            0.1
           1. ...
                    0.
                        0.
 [ 3. 26.
           0. ...
                    0.
                        1.
                            0.1
 [ 1. 19.
           0. ... 0.
                        1.
                            0.1
   1. 26.
           0. ...
                    0.
                        0.
                            0.1
           0. ... 1.
                        0.
 [ 3. 32.
                            0.]]
```

In [38]:

```
print(Y)
```

```
1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1
 \begin{smallmatrix} 0&1&0&0&1&1&0&0&1&1&0&0&1&0&1&0&1&0&0&0&0&1&0&1&1&1&1&0&0&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&0&1&1&0&1&0&1&0&1&0&1&1&0&1&0&1&1&0&1&0&1&1&0&1&0&1&1&0&1&0&1&1&0&1&1&0&1&1&0&1&0&1&1&0&1&1&0&1&1&0&1&1&0&
 0000001101
```

In [39]:

```
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.25,random_state=1)
```

In [40]:

```
#Feature scalling
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
X train=sc.fit_transform(X_train)
X_test-sc.transform(X_test)
print(X_train)
print(Y_train)
        1.27600045 0.51248812 ... -0.21693046 -1.78097586
[[-1.43765909
 -0.55571893]
[-0.25656685
        0.33402559 -0.55653007 ... -0.21693046
                              0.56148993
 1.79947082]
[-1.43765909 1.4778522 -0.55653007 ... -0.21693046
                              0.56148993
 -0.55571893]
[ 0.92452538
        1.94883963 -0.55653007 ... -0.21693046
 -0.55571893]
[-0.25656685
        0.40130951 -0.55653007 ... -0.21693046 -1.78097586
 1.79947082]
[ 0.92452538 -0.60794926 -0.55653007 ... -0.21693046  0.56148993
 -0.55571893]]
[1\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 1\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
0\;1\;0\;1\;0\;0\;0\;1\;0\;0\;1\;1\;0\;1\;0\;0\;0\;0\;1\;0\;0\;1\;1\;1\;1\;0\;1\;1\;0\;0\;1\;0\;0\;1\;0\;0\;0
10110000100010001
In [41]:
from sklearn.linear model import LogisticRegression
In [42]:
classifier=LogisticRegression()
In [43]:
classifier.fit(X_train,Y_train)
Out[43]:
▼ LogisticRegression
LogisticRegression()
```

```
In [44]:
```

```
Y_pred=classifier.predict(X_test)
```

```
In [46]:
```

```
from sklearn.metrics import classification_report
print(classification_report(Y_test,Y_pred))
```

	precision	recall	f1-score	support
0	0.59	0.98	0.74	102
1	0.75	0.08	0.14	76
accuracy			0.60	178
macro avg	0.67	0.53	0.44	178
weighted avg	0.66	0.60	0.48	178

In [47]:

```
from sklearn.metrics import confusion_matrix
confusion_matrix(Y_test,Y_pred)
```

Out[47]:

```
array([[100, 2], [70, 6]], dtype=int64)
```

In [51]:

```
from sklearn.metrics import accuracy_score
accuracy_score(Y_test,Y_pred)
```

Out[51]:

0.5955056179775281

In [53]:

```
classifier.score(X_train,Y_train)
```

Out[53]:

0.8033707865168539

In [54]:

```
classifier.score(X_test,Y_test)
```

Out[54]:

0.5955056179775281

In []: