Proyecto creación bases de datos para Tadeo Tours.

Alaix Andrés

Correa Adriana

Universidad de Bogotá Jorge Tadeo Lozano.

Bases de Datos

Jun Gabriel Villamil

1. INTRODUCCIÓN:

Contexto del negocio:

Tadeo Tours es una empresa dedicada al turismo, y sus servicios son la gestión con hoteles y aerolíneas. Sus servicios pueden ser tomados dentro del territorio nacional o fuera de él.

Antecedentes:

Tadeo tours actualmente hace sus procesos de reserva en un formato preestablecido. Ahora quiere implementar una base de datos unificada para ofrecer mejores servicios a sus clientes.

Justificación:

Este proyecto es importante ya que contribuye al crecimiento de la empresa, esto debido a que en los últimos tiempos ofrece servicios a más personas por fuera de la universidad.

Adicional a lo anterior, también automatiza procesos y los hace más rápidos y eficientes para los colaboradores.

2. Generalidades del proyecto:

Este proyecto se centrará en dos tablas principales: la de clientes y la de reservas. Estas dos tablas son fundamentales debido a su relación con las otras tablas.

Se contemplan 13 tablas: cliente, contacto cliente, viajeros, reservas, pagos, reservas hotel, reservas avión, vuelos, aerolínea, hotel cancelaciones, cambios, fecha hora vuelo.

La idea es que cuando un cliente solicite una reserva, tengamos su información de contacto y generemos un ID único para ese cliente. A partir de las preferencias del cliente, se generará la reserva tanto en la tabla general como en las tablas específicas de reserva de hotel y de avión. Posteriormente, una vez creada la reserva, se completará la información del hotel, del avión, de la aerolínea y de la fecha y hora del vuelo.

Si el cliente desea realizar una cancelación o un cambio, se consultará la tabla de fecha y hora del vuelo para determinar la viabilidad de la modificación.

Además, contamos con una tabla de viajeros donde se solicita la edad para determinar si se debe cobrar el pasaje de avión. También se dispone de una columna para asignar un ID a cada viajero, lo que facilita el seguimiento y registro preciso de la cantidad de viajeros.

3. MODELO ENTIDAD RELACIÓN:

a.

Enlace de acceso: https://lucid.app/lucidchart/a89819a2-194d-4f92-90d4-b1585deb0d8d/edit?viewport_loc=-711%2C-

943%2C2725%2C1322%2C0_0&invitationId=inv_79dfa6bb-16ef-459f-9456-858e0ef0a976

Explicación del modelo:

Tomaremos la tabla de cliente como tabla inicial; para explicar su proceso de creación. Este enfoque lógico es aplicable a todas las demás tablas. Inicialmente creamos dos tablas: una llamada "clientes" y otra llamada "información cliente".

En la tabla de "clientes", teníamos un campo de identificación de cliente (ID cliente) y una relación con la clave foránea de reserva.

Por otro lado, en la tabla "información cliente", se almacenaba la información de contacto y dirección del cliente. En esta tabla, se establecía nuevamente una relación con el campo de ID cliente.

Esto está mal por principio de normalización, ya que esto es redundante, por eso, unimos estas dos tablas en una sola.

Otro de los retos al momento de crear el modelo fue la creación de la tabla reservas, ya que en un inicio teníamos una tabla con toda la información de las reservas, tanto de del avión como de hotel. Por eso decidimos crear otras dos tablas (adicional a la de reservas), una para la reserva de hotel y otra para la reserva de avión, aquí se almacena información específica de la reserva (las categorías tanto de avión como de hotel). Como ya dijimos anteriormente la principal tabla es la de reservas; aquí también hay una tabla llamada estado, que nos dice si el

pago de la reserva está aprobado o no. Esta última tabla (estado), se relaciona con la tabla de pago, y ahí tenemos información del medio de pago y el valor del pago.

En general, para todo el modelo, seguimos este principio: los datos de una tabla no deben repetirse en otra tabla. Además, si es necesario, creamos tablas adicionales para almacenar información relacionada con una tabla principal.

b. Diccionario de datos: La información del resto de las tablas se encuentra dentro del enlace

Nombre: CLIENTE		Fecha:02-04-24						
Descripción: tabla	escripción: tabla con la información del cliente y su id dentro de la tabla							
	nombre de la columna	tipo de dato	tamaño máximo	s de integridad	descripción			
					cedula de ciudadania del cliente que			
	id_cliente	Number	6	PK	contrata nuestros servicios			
					nombre del cliente que contrata			
	nombre_cliente	varchar	100	NN	nuestros servicios			
	apellido_cliente							
					direccion del cliente que contrata			
	dirección	varchar	100	FK	nuestros servicios			
	telefono_casa	Number	12	NN	telefono de la casa del cliente			
	telefono_trabajo	Number	12	NN	telefono del trabajo del cliente			
	fax	Number	10	NN	fax del cliente			
	email	varchar	50	NN	correo del cliente			

Enlace de acceso: <u>BD diccionario Tours.xlsx</u>

4. CATALOGACIÓN DE SCRIPTS:

NOMBRE SCRIPT	DESCRIPCIÓN	FECHA	VERSIÓN
	permite la creación de tablas		
	necesarisa pra resolver las preguntas		
Create tables	del proyecto	11/5/2024	2
	permite la insecion de datos dentro de		
Insert into	las tablas	2/4/2024	1
	permite realizar cambios en la		
	estructura. Podemos eliminar, agregar		
alter table	o modificar columnas	10/5/2024	1
	es una sentencia SQL que se		
	utiliza para crear un objeto de		
	secuencia en una base de datos		
	relacional. Una secuencia es un		
	objeto que genera números		
	secuenciales automáticamente en		
	orden ascendente o descendente		
Create Sequence		2/4/2024	1
	las "constraints" (restricciones)		
	son reglas que se aplican a las		
	columnas de una tabla para		
	garantizar la integridad de los		
	datos almacenados en la base de		
	datos. Estas restricciones se		
	utilizan para imponer reglas o		
	condiciones específicas sobre los		
	datos que pueden ser insertados,		
	actualizados o eliminados en una		
	tabla		
Constraints		12/5/2024	1

Enlace de acceso: <u>CATALOGACION tadeo tours</u>

5. GUIA DE INSTALACIÓN:

En el siguiente enlace se encontrarán el repositorio de GitHub, con archivos requeridos y mencionados en esta guía de instalación

Repositorio de GitHub de Tadeo Tours: https://github.com/alaixgg/Tadeo-Tours-Ferreteria/tree/main/Tadeo%20Tours

Pasos para la instalar la base de datos:

1. Cree una nueva conexión a base de datos, esta llámela db_Tadeo_Tours

2. Ejecute el archivo "1. CREATE TABLE.sql" (https://github.com/alaixgg/Tadeo-Tours-Ferreteria/blob/main/Tadeo%20Tours/1,%20CREATE%20TABLE.sql)

En este archivo, se definen las estructuras de las tablas que compondrán tu base de datos. Cada tabla tiene un conjunto de columnas con sus tipos de datos y restricciones.

Por ejemplo, la tabla CIUDAD tiene tres columnas: id_ciudad, nombre_ciudad, y id_hotel. La columna id_ciudad es un número que actúa como clave primaria, es decir, cada fila en esta tabla tiene un identificador único de ciudad. La columna nombre_ciudad almacena el nombre de la ciudad, y id_hotel se usa para relacionar las ciudades con los hoteles que tienen en ellas.

Cada tabla tiene su propia estructura y restricciones definidas, como claves primarias y restricciones de no nulo.

3. Ejecute el archivo "2. Alter Table (constraints FK).sql" (https://github.com/alaixgg/Tadeo-Tours-Ferreteria/blob/main/Tadeo%20Tours/2.%20Alter%20Table%20(constraints%20FK).sql)

En este archivo, se añaden restricciones de clave externa (foreign key constraints, FK) a las tablas ya creadas. Estas restricciones definen relaciones entre las tablas y aseguran la integridad referencial de la base de datos.

4. Ejecute el archivo "3. Index.sql" (https://github.com/alaixgg/Tadeo-Tours-Ferreteria/blob/main/Tadeo%20Tours/3.%20index.sql)

Los índices se utilizan para mejorar el rendimiento de las consultas en la base de datos.

Por ejemplo, el índice idx_nombre_ciudad se crea en la tabla CIUDAD en la columna nombre_ciudad. Lo que consigue que cuando realices consultas que buscan por nombre de ciudad, la base de datos puede utilizar este índice para encontrar las filas más rápidamente.

Ejecute el archivo "4. SEQUENCE.sql"
 (https://github.com/alaixgg/Tadeo-Tours Ferreteria/blob/main/Tadeo%20Tours/4.%20secuencias.sql)

Las secuencias se utilizan para generar valores únicos de forma automática, como claves primarias o valores de identificación.

Por ejemplo, la secuencia seq_id_ciudad se utiliza para generar valores únicos para la columna id_ciudad en la tabla CIUDAD. Cada vez que se inserta una nueva ciudad, la secuencia proporcionará un nuevo número de identificación único para esa ciudad.

 Ejecute el archivo "5. Inserccion de datos .sql" (https://github.com/alaixgg/Tadeo-Tours-

6. Consultas:

Enlace de las consultas, repositorio de GitHub: https://github.com/alaixgg/Tadeo-Tours-Ferreteria/blob/main/Tadeo%20Tours/6.%20Consultas%20.sql

7. Creación de paquetes

Enlace del script para la creación de paquetes, repositorio de GitHub:

https://github.com/alaixgg/Tadeo-Tours-

Ferreteria/blob/main/Tadeo%20Tours/7.%20Paquetes.sql

8. Conclusiones:

Este proyecto como parte de un proceso pedagógico da relevancia a la prueba de nuestros conocimientos aplicados.

El poder hacer todo el proceso que haría un arquitecto de datos da importancia al proceso educativo.