Theoretical Aspects of Computer Science (380CT)

Dr Kamal Bentahar

School of Engineering, Environment and Computing Coventry University

03/10/2016

The team

- Dr Kamal Bentahar (ML, ab3735)
- Dr Abdulrahman Altahhan (ab8556)
- Dr Matthew England (ab9797)
- Dr Rob Low (mtx014)

Foundations of CS: practical & theoretical understanding.

- What is an "algorithm"?
- How "hard" is a problem?
- Can we "compute/solve" anything?
- If not then what are the limits.

- Foundations of CS: practical & theoretical understanding.
- Formal specification of patterns and "languages."

For example:

- \bullet a^*b^* , a^nb^n , $a^ib^jc^k$
- $\bullet \ \{w \in \{0,1\}^* \mid w \text{ has equal number of 0s and 1s} \}$
- L recognized by a given automaton

- Foundations of CS: practical & theoretical understanding.
- Formal specification of patterns and "languages."
- Models of computation and the issues of computability and complexity.

- Deterministic/Non-Deterministic Automoata (DFA/NFA)
- Push Down Automata (PDA)
- Turing Machines (TM).

- Foundations of CS: practical & theoretical understanding.
- Formal specification of patterns and "languages."
- Models of computation and the issues of computability and complexity.
- Algorithmic techniques used to tackle complex problems.
 - Complexity classes: P, NP, NP-complete, NP-hard, etc.
- Algorithms to solve or heuristics to try...

- Foundations of CS: practical & theoretical understanding.
- Formal specification of patterns and "languages."
- Models of computation and the issues of computability and complexity.
- Algorithmic techniques used to tackle complex problems.

It's fun, cool, intellectually challenging, insightful, ...

```
... it is! :-)
```


On completion of this module the student should be able to:

Use formal notation to specify patterns and languages.

- Use formal notation to specify patterns and languages.
- Specify and simulate various automata.

- Use formal notation to specify patterns and languages.
- Specify and simulate various automata.
- Explain the connection between classes of languages, models of computation and types of algorithms.

- Use formal notation to specify patterns and languages.
- Specify and simulate various automata.
- Explain the connection between classes of languages, models of computation and types of algorithms.
- Classify the computability and complexity of real world problems.

- Use formal notation to specify patterns and languages.
- Specify and simulate various automata.
- Explain the connection between classes of languages, models of computation and types of algorithms.
- Classify the computability and complexity of real world problems.
- Specify and implement methods to estimate solutions to intractable problems.

Teaching and Learning

- Lectures: Mon 9am.
- Tutorials/exercises check your timetable.
- Pen and paper, JFLAP, GeoGebra, Programming.
- Formative tests.

Develop a portfolio of practical exercises.

Laboratory	48 hours	24%
Lecture	24 hours	12%
Self guided	128 hours	64%
Total	200 hours	<u> </u>

Assessment

Assessement: 50% Coursework and 50% Exam.

Resits: second portfolio and exam

Pass requirements:

- Coursework ≥ 35%
- **and** Exam > 35%
- and Module Mark \geq 40%.

• Mathematical background (Review) Sets, functions, relations, propositional logic and predicate calculus. O-notation.

- Mathematical background (Review) Sets, functions, relations, propositional logic and predicate calculus. O-notation.
- Automata DFAs, NFAs, PDAs, TMs. Determinism and Nondeterminism.
 Relationship between automata and classes of languages. Limits of automata (pumping lemma, undecidability and unrecognisability). Simulation package (JFLAP).

- Mathematical background (Review) Sets, functions, relations, propositional logic and predicate calculus. O-notation.
- Automata DFAs, NFAs, PDAs, TMs. Determinism and Nondeterminism. Relationship between automata and classes of languages. Limits of automata (pumping lemma, undecidability and unrecognisability). Simulation package (JFLAP).
- Computability and Complexity The Church-Turing Thesis, Reduction, P versus NP, NP-completeness, Polynomial time verification, Polynomial time reduction. Search problems and NP-hardness. Overview of further complexity classes (e.g. PSPACE, EXPTIME)

- Mathematical background (Review) Sets, functions, relations, propositional logic and predicate calculus. O-notation.
- Automata DFAs, NFAs, PDAs, TMs. Determinism and Nondeterminism. Relationship between automata and classes of languages. Limits of automata (pumping lemma, undecidability and unrecognisability). Simulation package (JFLAP).
- Computability and Complexity The Church-Turing Thesis, Reduction, P versus NP, NP-completeness, Polynomial time verification, Polynomial time reduction. Search problems and NP-hardness. Overview of further complexity classes (e.g. PSPACE, EXPTIME)
- Algorithms and Heuristics Exhaustive search, Approximation Algorithms, Greedy Algorithms, Metaheuristics. Pseudocode and implementation (C++, Python, ...).

Essential Reading

Sipser, M. (1997) Introduction to the Theory of Computation. 2nd Edn. Thomson Course Technology Inc

Essential Reading

Sipser, M. (1997) Introduction to the Theory of Computation. 2nd Edn. Thomson Course Technology Inc

Recommended Reading

Name of the Spirit of Computing. 3rd Edn. Addison Wesley

Essential Reading

Sipser, M. (1997) Introduction to the Theory of Computation. 2nd Edn. Thomson Course Technology Inc

Recommended Reading

- Harel, D. (2004) Algorithmics: The Spirit of Computing. 3rd Edn. Addison Wesley
- Garey, S. and Johnson, D. (1979) Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman

Essential Reading

Sipser, M. (1997) Introduction to the Theory of Computation. 2nd Edn. Thomson Course Technology Inc

Recommended Reading

- Harel, D. (2004) Algorithmics: The Spirit of Computing. 3rd Edn. Addison Wesley
- Garey, S. and Johnson, D. (1979) Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman
- Dean, N. (1996) The Essence of Discrete Mathematics. Prentice Hall

Essential Reading

Sipser, M. (1997) Introduction to the Theory of Computation. 2nd Edn. Thomson Course Technology Inc

Recommended Reading

- Harel, D. (2004) Algorithmics: The Spirit of Computing. 3rd Edn. Addison Wesley
- Garey, S. and Johnson, D. (1979) Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman
- Dean, N. (1996) The Essence of Discrete Mathematics. Prentice Hall
- Hoos, H. and Stutzler, T. (2005) Stochastic Local Search: Foundations and Applications. Morgan Kaufmann

Pre-requisites

210CT

- Algorithms (Searching and sorting, Recursion, Divide and Conguer strategies, Greedy algorithms)
- Complexity and efficiency (Time and space complexity, Big-O notation)

Pre-requisites

124MS

- Propositional Calculus (Statements, ⇒ , ⇔ ,¬, ∧, ∨, ⊂, ⊃, ∈, Truth tables. Formal proof.)
- ▶ Predicate calculus (Predicates, ∃, ∀)
- Sets and Functions (Subset, Cardinality, Venn diagrams, Functions, domain and codomain, Composition and inverse. Relations.)
- Algebra (Congruences)
- Graph Theory (connectivity, depth and breadth first search, shortest path, Trees)
- Algorithms (Uncomputable problems. Asymptotic efficiency. Heuristic algorithms)

Polynomials vs Eponentials

Realtime Moodle quiz...