Note: Annotations start at slide 12

Introduction to Econometrics: Linear Regression

Hammad Shaikh

January 18, 2018

Regression Overview

- Empirical analysis in economics is to provide precise quantitative answers to questions of economic interest
 - What is the effect of reducing class size on test scores?

- Economic model relates economic variables of interest to one another using a equation
 - Achievement = f(effort, class size, parental investment)
- Econometric model completes an economic model by specifying any additional uncertainty
 - Achievement = f(effort, class size, parental investment, ϵ)

Linear regression model

- Y = dependant / outcome / response variable
 - What are plausible Y's in class size reduction policy?

- X = independent / explanatory / predictor variable
 - Contains treatment of interest and other factors that effect Y
 - What are the X's in class size reduction policy?

• Simple regression: $Y = \beta_0 + \beta_1 X + \epsilon$

• Multiple regression: $Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_k X_k + \epsilon$

Functional vs. Statistical Relationship

 Regression model describes the statistical relationship between outcome Y and response variable(s) X

Relationship Between X and Y

- The covariance is a measure of the linear association between X (class size) and Y (test score)
 - $S_{xy} = \widehat{Cov}(x, y) = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})(y_i \bar{y})$
 - Units are Units of $X \times U$ nits of Y (No. of students \times Score)
- \bullet Cov(X,Y) > 0 means a positive relation between X and Y
- Correlation is a unit less measure of the strength of linear relationship between X and Y
 - $ho_{xy}=rac{S_{xy}}{S_xS_y}$ is a number between -1 and 1
 - $oldsymbol{
 ho}_{\mathsf{x}\mathsf{y}}=1$ means perfect positive linear relationship

Simple Regression Example

 Question: What is the relationship between class size and test scores in California?

- Data available from 420 California school districts
 - 5th grade district average math and reading score
 - Student to Teacher Ratio (STR): number of students divided by number of teachers (within district)

• What is the regression model of interest?

Test Score and Student to Teacher Ratio

 We want to model above relationship with a simple linear regression

Estimating Simple Regression

FIGURE 4.1 Scatter Plot of Test Score vs. Student-Teacher Ratio (Hypothetical Data)

The scatterplot shows hypothetical observations for seven school districts. The population regression line is $\beta_0 + \beta_1 X$. The vertical distance from the i^{th} point to the population regression line is $Y_i - (\beta_0 + \beta_1 X_i)$, which is the population error term u_i for the i^{th} observation.

- Simple regression estimates: $\widehat{\beta}_1 = \frac{\mathit{Cov}(X,Y)}{\mathit{Var}(X)}, \ \widehat{\beta}_0 = \overline{Y} \widehat{\beta}_1 \overline{X}$
 - Known as Ordinary Least Squares (OLS) estimator

Effect of STR on Achievement

• $TestScore_d = \beta_0 + \beta_1 STR_d + \epsilon_d$ • We want to estimate $\beta_1 = \frac{\triangle TestScore}{\triangle STR}$. Interpret β_1 ?

• Line of best fit: $\widehat{TestScore}_d = \widehat{b}_0 + \widehat{b}_1 STR_d$ • $(\widehat{b}_0, \widehat{b}_1)$ found by minimizing $\sum_{i=1}^n (TestScore_d - TestScore_d)^2$

• $\hat{b}_1 = \frac{\widehat{Cov}(\mathit{TestScore}_d, \mathit{STR}_d)}{\widehat{\mathit{Var}}(\mathit{STR}_d)}$ and $\hat{b}_0 = \overline{\mathit{TestScore}} - \hat{b}_1 \overline{\mathit{STR}}$

Effect of STR on Achievement Cont.

 Districts with larger class sizes (higher STR) are associated with lower test scores

Effect of STR on Achievement Cont.

• Estimated model: $\widehat{TestScore}_d = 698.9 - 2.28STR_d$

- Primary estimate of interest is $\hat{b}_1 = -2.28$
 - Districts with one more student per teacher on average are associated with 2.28 points lower test scores

• How to interpret intercept of $\hat{b}_0 = 698.9$?

Properties of Slope Estimator

- Recall { Rand. Var B, Estimate ?
- We generally want estimators to be unbiased and consistent
 - Slope estimator $\widehat{\beta}_1$ unbiased if $E(\widehat{\beta}_1) = \beta_1$
 - Slope estimator $\widehat{\beta}_1$ consistent if $\widehat{\beta}_1 \stackrel{P}{\to} \beta_1$ as n grows large. $\underbrace{\sum X}_{i,j} \underbrace{Assumphon}_{i,j} discussed$

• It can shown (using CLT) that if ϵ independent of X then the distribution of slope estimator $\widehat{\beta}_1 = \frac{Cov(X,Y)}{Var(X)}$ is:

• Show that $\widehat{\beta}_1$ is unbiased and consistent

Simple Linear Regression and Hypothesis Testing

- Simple linear regression: $TestScore_d = \beta_0 + \beta_1 STR_d + \epsilon_d$
 - β_0 (intercept) and β_1 (slope) are unknown parameters
 - Use sample $(STR_d, TestScore_d)_{d=1}^n$ to make inference about the simple linear regression parameters

• Question: How much can we trust the primary estimate b_1 ?

Alternative Hypothesis: Class size effects achievement

Pralue

SLR and Hypothesis Testing Cont.

- Under $H_0: \beta_1=0$ we have $\widehat{\beta}_1 \sim N(0,\frac{\sigma_\epsilon^2}{\sum_{i=1}^n (X_i-\bar{X}_i)^2})$ O
 - Since ϵ unknown, σ_{ϵ}^2 is also unknown. The solution is to replace it with s_{ϵ}^2 , the sample variance of the residuals

$$S_e^2 = \frac{1}{3} \sum_{i=1}^{6} e_i$$
, e_i is residual, $e_i = y_i - \hat{y}_i$

- If $H_1: \beta_1 \neq 0$ we compute p-value $= 2 * Pr(\widehat{\beta}_1 > \widehat{b}_1)$
 - \widehat{b}_1 is very significant if p-value < 0.01, significant if p-value < 0.05, and marginally significant if p-value < 0.1
- Computing p-value involves $SE(\widehat{b_1}) = \sqrt{Var(\widehat{eta_1})}$
 - Typically (not always) if $|\frac{\widehat{b_1}}{SE(\widehat{b_1})}| > 2$ then $\widehat{b_1}$ is significant that $|\widehat{b_1}| = |\widehat{b_1}| = |\widehat{b_1}|$
- P-value ≈ 0 for class size application

Fitness of Regression Model

- R^2 measures the proportion of variation in the outcome (Y) explained by the independent variable(s) (X)
 - R2 is a number between 0 and 1 (R2 is unitle s5)
 - ullet $R^2=1$ means regression model perfectly fits the data
- $R^2 = \frac{SSR}{SST}$; SST = Sum of Square Total, SSR = Sum of Square Regression

• SST =
$$\sum_{i=1}^{n} (y_i - \bar{y})^2$$
 and SSR = $\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$
Varition in y Var. in $y \in x$ Plained by reg. y

 \bullet R^2 applies to both simple and multiple linear regression

Simple Linear Regression Summary

- The population linear regression model
 - $Y = \beta_0 + \beta_1 X + \epsilon$ B, is param, of interest
- Line of best fit and OLS estimator

•
$$\widehat{\beta}_1 = \frac{Cov(X,Y)}{Var(X)}$$
 and $\widehat{\beta}_0 = \overline{Y} - \widehat{\beta}_1 \overline{X}$

Slope Estimator

- Hypothesis testing
- Yand Y not related

• Measures of fit for simple regression: $\hat{y} = \hat{b}_0 + \hat{b}_1 x$

Correlation and R²

Extending to Multiple Regression

- Results from simple linear regression are usually not causal
 - Many other factors that affect both X and Y are not accounted for in the model
 - Can bias slope estimates (omitted variable bias)

• Returns to education: AdultIncome_i = $\beta_0 + \beta_1 YrsEduc_i + \epsilon_i$

• What are some variables in ϵ_i that may bias \hat{b}_1 ?

- Two solutions to help obtain causal result:
 - 1) Randomized control trial, or 2) Multiple regression

Randomized Control Trial (RCT)

1xi not related to Ei

RCT is gold standard

• Simple regression model: $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$

We want & LX

- In a RCT the Xs are randomly assigned to individuals
 - ullet No omitted variable bias since X_i independent to ϵ_i
 - Now \widehat{b}_1 has a causal interpretation
- -> Only diff. blu control & Treatment is X

- Correlation does not imply causation?
 - Generally true for observational data, but false for experimental data where treatment variable is randomly assigned
- Returns of education: $Y_i = \beta_0 + \beta_1 YrsEduc_i + \epsilon_i$ to $Y_{rs} \in \mathcal{A}_{rs}$
 - Can we randomly assign years of education to individuals?
- -> Not ethical, so no

Multiple Regression

- Slope estimate in simple regression can be biased from omitted variables related to X and Y
 - Solution is to include the omitted variables into the model

- Multiple regression: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k + \epsilon$
 - β_1 = effect of changing X_1 on Y holding X_2, \ldots, X_k constant
 - b_1 can be causal if all relevant variables are included
 - Conditional independence: ϵ indep. to X_1 given X_2, \ldots, X_k

• Returns to education:
$$Y_i = \beta_0 + \beta_1 YrsEduc_i + \beta_2 Exp_i + \beta_3 ParentIncome_i + \epsilon_i$$

are still ammited

Regression Table Example

The Example $\rightarrow 4$ regressions below $\rightarrow 0$ wage: = 11+2 Yrs Educi Un Two Outcomes

Table: Income and	Health F	Returns to E	Education (Fake Dat	^{:а)} (у
	Y=	Hourly Wage	Hourly Wage	Years Lived	Years Lived
Constant	b ₀ —	11*** (2.5)	10*** (0.1)	65*** (10)	66*** (10)
Years of Educ	î	• 2*** (0.5)	1*** (0.1)	2*** (0.25)	3***
Experience	$\nu_{\rm i}$	ì	3***	(0.20)	0.5**
Parent income (\$1000)	•	ડ૯(છે,)	0.1** (0.048)		0.15* (0.075)
R-square		0.15	0.30	0.10	0.20
No. of indivisuals Stars denote level of significance *10%.** 5		15000	15000	15000	15000

N=15000 indiv. in data Regression table generally contain coefficient estimates,

standard errors, no. of observations, and R^2

by in (1): People with an extra year of educ, are associated with living 3 yrs longer on avg. after controlling for work exp. and their parent in work 20/21

Summary of Linear Regression

- Goal: examine causal relationship between outcome Y and explanatory variable X
- Simple linear regression is a good starting point
 - Slope estimate is likely biased due to omitted variables that effect both X and Y
- Experiments (RCTs) are ideal for determining causal relationship between X and Y
 - Costly and sometimes unfeasable
- Multiple regression can control for several relevant variables
 - Obtain causal relationship under conditional independance