

Deep Learning and Quantum Many Body Systems

A programming guide

刘金国 (Jin-Guo Liu)

Setup your workplace

Following the guide https://github.com/GiggleLiu/marburg/

If you cloned this repository or lecture notes days before, pull for updates please!

Use the Right Device

CPU Ultra-low power Intel Core i5-7200U (15 W)

Parallelism

2 cores (2.5GHZ), AVX2 SIMD

40 GFLOPS

How to calculate FLOPS?

See notebook *gpu/hardware.ipynb* in our github repository for an example.

NVIDIA GeForce 940MX (23 W)

384 CUDA cores (1.189GHZ)

913 GFLOPS

AVX2 acceleration of saxpy function

AVX2 vectorized

Load data to SIMD register

Read result from SIMD register

CUDA programming model

Free ourselves from low-level programming

Define the Computation

Choose the device to run

Computation graph

CPU/GPU(s)/TPU

Neural network version of Feynman Diagram

An Example of Computation Graph

$$f(x) = \sigma(Wx + b)$$

load data to graph

A node knows how to compute its **derivative** w.r.t each argument (edge).

Can be used to train a NN

Loss function

Choromanska, Anna, et al. "The loss surfaces of multilayer networks." Artificial Intelligence and Statistics. 2015.

Losses Expressed as Computation Graphs

Convex optimization model

VGG-16 network (138 M parameters)

Not to find the **global minima**, but to obtain a low enough loss efficiently.

So Far

Computation Graphs

Provide unified framework to use computation resources

Devices

Neural Networks

Hands on time

with numpy:

build functions used in computation graphs conquer digits classification problem

★ build your own computation graph node

https://goo.gl/6d2sei

A Digit Classification Problem

https://goo.gl/DZtidF

Solution

$$egin{aligned} y &= \sum_i (\log(\sum_j e^{x_j}) - x_i) p_i \ rac{\partial \mathcal{L}}{\partial x_i} &= rac{\partial \mathcal{L}}{\partial y} (rac{e^{x_i}}{\sum_j e^{x_j}} - p_i) \end{aligned}$$

State of Art Python Neural Network Libraries

Developer Google Brain Team

Initial release November 9, 2015

Stable release 1.5.0 / January 26, 2018

Repository <u>aithub.com/tensorflow/tensorflow/</u>

Written in Python, C++, CUDA

Platform Linux, macOS, Windows, Android

License Apache 2.0 open source license

Website <u>www.tensorflow.org</u>

PYT⁶**RCH**

Developer Facebook's Al research group

Initial release October 2016

Stable release 0.3.0 / 5 December 2017

Repository <u>github.com/pytorch/pytorch</u>

Written in Python, C, CUDA

Platform Linux, macOS

Website <u>pytorch.org</u>

Major difference

static graph

dynamic graph

Static and Dynamic Graphs

Static graphs

Define the graph, feed data into the graph, run on its VM and get output.

- Platform independent
- Optimize the graph before running

Dynamic graphs

Build graph while running, remember the graph for back propagation.

- Pythonic control flow
- Rebuild the graph in each run, more flexible

A Benchmark on Performance

VGG 16 network

Pytorch used in this tutorial

Advantages:

Performance
easy for extensions
easy to debug
friendly to beginners

Disadvantages:

No complex number support
Sometimes being unstable and buggy

https://goo.gl/8Caymh

local: nice.py

Hands on time

Notebook with Solution https://goo.gl/FhAHRZ

with pytorch:

build a NICE network solve a sampling problem

★ build a RealNVP network to do it better

A typical application
Accelerate Monte Carlo sampling for φ₄ Model

Hands on time

Experience CUDA acceleration without having Nvidia GPUs

Open colab notebook

Edit

- Notebook settings
 - Hardware accelerator
 - Choose GPU

with pytorch and GPU:

build a restricted Boltzmann machine (RBM)

write a digits generative model

★ recover a broken image

RBM as a wave function ansatz for VMC

https://goo.gl/d7kPzy

local: rbm_generation.py

Miguel, A., & Hinton, G. E. (n.d.). On Contrastive Divergence Learning, 0.

$$rac{\partial \mathcal{L}}{\partial heta} = \langle rac{\partial E_{ heta}(x)}{\partial heta}
angle_{x \sim \mathcal{D}} - \langle rac{\partial E_{ heta}(x)}{\partial heta}
angle_{x \sim p_{ heta}(x)}$$

Gibbs sampling process

https://goo.gl/VxYYQX

A Typical Result

How does VMC Work

 $egin{aligned} \Delta_{ ext{loc}}(x) &= rac{\partial \log \psi(x, heta)}{\partial heta} \ E_{ ext{loc}}(x) &= rac{\langle x|H|\psi(heta)
angle}{\langle x|\psi(heta)
angle} \ \langle H
angle &= \langle E_{ ext{loc}}
angle_{\{x\}} \ \langle rac{\partial}{\partial heta}
angle &= \langle \Delta_{ ext{loc}}
angle_{\{x\}} \end{aligned}$

Carleo, Giuseppe, and Matthias Troyer. "Solving the quantum many-body problem with artificial neural networks." Science 355.6325 (2017): 602-606.

https://goo.gl/vPFtdU

Cai, Zi, and Jinguo Liu. "Approximating quantum many-body wave functions using artificial neural networks." Physical Review B 97.3 (2018): 035116.

local: rbm_ansatz.py

RBM as a Wave Function Ansatz

$$positive \ p(x) \propto \langle x | \psi
angle$$

$$x_i=\pm 1$$

$$p(x| heta) = e^{\sum_i a_i x_i} \prod_{i=1}^M 2 \cosh(b_i + \sum_j W_{ij} x_j)$$

$$H = J \sum_{i=1}^{N} S_{i}^{z} S_{i+1}^{z} - \frac{1}{2} (S_{i}^{+} S_{i+1}^{-} + S_{i}^{+} S_{i+1}^{-})$$

Ground State for Frustrated Quantum Spin Systems An Open Question yet

Thanks

Lei Wang

Being a level 12 scientist, Lei Wang's brain is filled with crazy ideas.

Shuo-Hui Li

Besides being strong at robotics and coding stuff, he has a bottomless stomach.

Jin-Guo Liu

Digging and coding are similar, they both produce bugs. Mole hands, coding speed + 50%.

More Slides

https://goo.gl/6d2sei

Setup your workplace

Local Setup

- setup environment according to <u>https://github.com/GiggleLiu/marburg/</u>
- clone notebooks to local host
 \$ git clone

https://github.com/GiggleLiu/marburg.git

- 3. run it
 - \$ cd winterchool/notebooks
 - \$ ipython notebook
- 4. Open computation_graph.ipynb

If you cloned this repository or lecture notes days before, pull for updates please!

Online notebook

Google Collaborator + Google Drive https://colab.research.google.com https://drive.google.com

- 1. Sign in Google drive
- 2. Connect Google drive with Google Colaboratory
 - a. right click on google drive page
 - b. More
 - c. Connect more apps
 - d. search "Colaboratory" and "CONNECT
- 3. Open the online notebook link on top right
- 4. Click "open with colaboratory" on top
- 5. Save a copy of notebook to your google drive
- 6. Run/Edit this notebook

Two Trends in CPU manufacturing

SIMD

Instruction Pool

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten Dotted line extrapolations by C. Moore

Parallelism Extremists GPU

	# Cores	Clock Speed	Memory
CPU (Intel Core i7-7700k)	4 (8 threads with hyperthreading)	4.4 GHz	Shared with system
CPU (Intel Core i7-6950X)	10 (20 threads with hyperthreading)	3.5 GHz	Shared with system
GPU (NVIDIA Titan Xp)	3840	1.6 GHz	12 GB GDDR5X
GPU (NVIDIA GTX 1070)	1920	1.68 GHz	8 GB GDDR5

GPU Programming? CUDA programming model (Nvidia)

Why convex optimization model works

Figure 6 compares SGD with SA.

Figure 6: Test loss distributions for SGD and SA for different numbers of hidden units (nh).

- Deeper network: narrower loss distribution
- Global minima: overfit (fit too good for training set, can not be generalized to test set.)