+

Neural Networks 2

CS 287

Review: Bilinear Model

Bilinear model,

$$\hat{\mathbf{y}} = f((\mathbf{x}^0 \mathbf{W}^0) \mathbf{W}^1 + \mathbf{b})$$

- $\mathbf{x}^0 \in \mathbb{R}^{1 imes d_0}$ start with one-hot.
- $ightharpoonup \mathbf{W}^0 \in \mathbb{R}^{d_0 imes d_{\mathrm{in}}}, \ d_0 = |\mathcal{F}|$
- $lackbox{W}^1 \in \mathbb{R}^{d_{
 m in} imes d_{
 m out}}$, $\mathbf{b} \in \mathbb{R}^{1 imes d_{
 m out}}$; model parameters

Notes:

- Bilinear parameter interaction.
- $ightharpoonup d_0 >> d_{
 m in}$, e.g. $d_0 = 10000$, $d_{
 m in} = 50$

Review: Bilinear Model: Intuition

$$(\mathbf{x}^0\mathbf{W}^0)\mathbf{W}^1 + \mathbf{b}$$

$$\begin{bmatrix} w_{1,1}^1 & \cdots & w_{0,d_{\mathrm{out}}}^1 \\ \cdots & \cdots & \cdots \\ w_{d_{\mathrm{in}},0}^1 & \cdots & w_{d_{\mathrm{in}},d_{\mathrm{out}}}^1 \end{bmatrix}$$

Review: Window Model

Goal: predict t_5 .

Windowed word model.

$$w_1 \ w_2 \ [w_3 \ w_4 \ w_5 \ w_6 \ w_7] \ w_8$$

- ► w₃, w₄; left context
- ▶ *w*₅; Word of interest
- \triangleright w_6 , w_7 ; right context
- d_{win} ; size of window ($d_{\text{win}} = 5$)

Review: Dense Windowed BoW Features

- $ightharpoonup f_1, \ldots, f_{d_{win}}$ are words in window
- ▶ Input representation is the concatenation of embeddings

$$\boldsymbol{x} = [v(f_1) \ v(f_2) \ \dots \ v(f_{d_{\min}})]$$

Example: Tagging

$$w_1 \ w_2 \ [w_3 \ w_4 \ w_5 \ w_6 \ w_7] \ w_8$$

$$\mathbf{x} = [v(w_3) \ v(w_4) \ v(w_5) \ v(w_6) \ v(w_7)]$$

Rows of W^1 encode position specific weights.

Quiz

We are doing tagging with a windowed bilinear model with hinge-loss and no capitalization features. The model has $d_{\rm win}=5$, $d_{\rm in}=50$, $d_{\rm out}=40$, and vocabulary size 10000.

We are given the input window:

The dog walked to the

Unfortunately we incorrectly classify walked as NN as opposed to VP, in a bilinear model with a hinge-loss .

What is the maximum number of parameters that receive a non-zero gradient?

```
 \begin{bmatrix} w_{0,1}^{1} & \dots & w_{0,d_{\mathrm{in}}}^{0} \\ w_{the,1}^{0} & \dots & w_{the,d_{\mathrm{in}}}^{0} \\ \vdots & & & & & \\ w_{dog,1}^{0} & \dots & w_{dog,d_{\mathrm{in}}}^{0} \\ \vdots & & & & & \\ \vdots & & & & & \\ w_{walked,1}^{0} & \dots & w_{walked,d_{\mathrm{in}}}^{0} \\ \vdots & & & & & \\ \vdots & & & & & \\ w_{to,1}^{0} & \dots & w_{to,d_{\mathrm{in}}}^{0} \\ \vdots & & & & & \\ w_{to,1}^{0} & \dots & w_{to,d_{\mathrm{in}}}^{0} \\ \vdots & & & & & \\ w_{the,1}^{0} & \dots & w_{the,d_{\mathrm{in}}}^{0} \\ \vdots & & & & & \\ w_{do,1}^{0} & \dots & w_{do,d_{\mathrm{in}}}^{0} \end{bmatrix} \begin{bmatrix} w_{1,1}^{1} & \dots & w_{1,NN}^{1} & \dots & w_{1,VP}^{1} & w_{0,d_{\mathrm{out}}}^{1} \\ \vdots & & & & & \\ w_{din}^{1}, NN & \dots & w_{din}^{1}, NN & \dots & w_{din}^{1}, NP & w_{din}^{1}, d_{\mathrm{out}} \end{bmatrix}
```

 $\mathbf{W}^0 = 5 \times d_{\rm in}$ $\mathbf{W}^1 = d_{\rm in} \times 2$

Consider the following windowed model, and assume for now a linear model.

$$w_1$$
 the w_3 w_4 w_5

- ▶ What information do we have about the tag of w_3 ?
- ▶ What weight should the features values associated with the in position w₂ take?

Next Consider the following windowed model, and assume for now a linear model.

$$w_1$$
 w_2 w_3 dog w_5

- ▶ What information do we have about the tag of w_3 ?
- ▶ What weight should the features values associated with dog in position w_4 take?

Now finally consider the following windowed model, and assume for now a linear model.

w_1 the w_3 dog w_5

- ▶ What information do we have about the tag of w_3 ?
- What weight would we want if we combined both the features values?

Table

Contents

Neural Networks

Backpropagation

Semi-Supervised Training

Neural Network

One-layer multi-layer perceptron architecture,

$$NN_{MLP1}(\mathbf{x}) = g(\mathbf{x}\mathbf{W}^1 + \mathbf{b}^1)W^2 + \mathbf{b}^2$$

- **xW** + **b**; perceptron
- **x** is the dense representation in $\mathbb{R}^{1 \times d_{\mathrm{in}}}$
- ullet $\mathbf{W}^1 \in \mathbb{R}^{d_{
 m in} imes d_{
 m hid}}$, $\mathbf{b}^1 \in \mathbb{R}^{1 imes d_{
 m hid}}$; first affine transformation
- $m{W}^2 \in \mathbb{R}^{d_{ ext{hid}} imes d_{ ext{out}}}$, $m{b}^2 \in \mathbb{R}^{1 imes d_{ ext{out}}}$; second affine transformation
- $ightharpoonup g: \mathbb{R}^{d_{ ext{hid}} imes d_{ ext{hid}}}$ is an activation non-linearity (often pointwise)
- $g(\mathbf{xW}^1 + \mathbf{b}^1)$ is the hidden layer

Schematic

Non-Linear Functions

Logistic sigmoid function:

$$\sigma(t) = \frac{1}{1 + \exp(-t)}$$

- $\boldsymbol{\sigma}((\mathbf{x}\mathbf{W}^1+\mathbf{b}^1)_i)$
- ▶ Intuition: Each hidden dimension ("neuron") is result of logistic regression.
- ▶ These probabilities are "features" for next layer.

Feature Conjunctions

Consider the example \dots

Non-Convexity

Other Non-Linearities: ReLU

Rectified Linear Unit:

$$\mathsf{ReLU}(t) = \max\{0, t\}$$

Intuition:

Saturation

Saturation: Intuition

Function Approximator

MLP1 is a universal approximator

Deep Neural Networks (DNNs)

Can stack MLPs,

$$\begin{split} \mathit{NN}_\mathit{MLP1}(\mathbf{x}) &= g(\mathbf{x}\mathbf{W}^1 + \mathbf{b}^1)W^2 + \mathbf{b}^2 \\ \mathit{NN}_\mathit{MLP2}(\mathbf{x}) &= g(\mathit{NN}_\mathit{MLP1}(\mathbf{x})\mathbf{W}^1 + \mathbf{b}^1)W^2 + \mathbf{b}^2 \end{split}$$

Can have multiple hidden layers, etc.

Other types of networks

Highway Network (one example)

$$NN_{MLP2}(\mathbf{x}) = g(NN_{MLP1}(\mathbf{x})\mathbf{W}^1 + \mathbf{b}^1)W^2 + \mathbf{b}^2$$

Deep Neural Networks (DNNs)

Contents

Neural Networks

 ${\sf Backpropagation}$

Semi-Supervised Training

Consider a vector-valued parameterized function $f(\mathbf{x};)$ where

▶
$$f(\mathbf{x}) : \mathbb{R}^m \mapsto \mathbb{R}^n$$
; function

 $ightharpoonup \in \mathbb{R}^d$; function parameters

Consider a scalar-valued loss function $L(\mathbf{x};)$ where

 $L(\mathbf{x}): \mathbb{R}^n \mapsto \mathbb{R}$; function

Backpropagation

Forward Compute $L(f(\ldots f()))$

Backward

$$\frac{\partial L}{\partial f(\dots f(x_i))} = \sum_{j=1}^m \frac{\partial f(\mathbf{x})_j}{\partial x_i} \frac{\partial L(f(\mathbf{x}))}{\partial f(\mathbf{x})_j}$$

Torch Implementation

<u>8</u>

Torch Implementation

<u>8</u>

Torch Names

- ▶ x; input
- ▶ $f(\mathbf{x})$; self.output (saved on forward pass)
- $ightharpoonup \frac{\partial L}{x_i}$; self.gradInput
- $ightharpoonup \frac{\partial L}{f(\mathbf{x})_i}$; gradOutput
- ▶ ; gradWeight
- $ightharpoonup \frac{\partial L}{\partial t}$; gradWeight

Max

Max

Contents

Neural Networks

Backpropagation

Semi-Supervised Training