Topic 2 – Molecules of Elements

2.1 Stability of An Atom (4.1, 6.1)

Element: pure substance that × broken down into simpler substances by chemical processes

Substance	Classification	Atoms	
Sugar	Common d	Carbon, hydrogen, oxygen	
Water vapour	Compound	Hydrogen, oxygen	
Carbon		Carbon	
Hydrogen	Element	Hydrogen	
Oxygen		Oxygen	

Chemical symbols of elements

Names and symbols of common elements

Proton number	Symbol	Element
1	Н	Hydrogen
2	Не	Helium
3	Li	Lithium
4	Be	Beryllium
5	В	Boron
6	С	Carbon
7	N	Nitrogen
8	0	Oxygen
9	F	Fluorine
10	Ne	Neon
11	Na	Sodium
12	Mg	Magnesium
13	Al	Aluminium
14	Si	Silicon
15	P	Phosphorus
16	S	Sulphur
17	Cl	Chlorine
18	Ar	Argon
19	K	Potassium
20	Ca	Calcium
	Fe	Iron
	Со	Cobalt
	Ni	Nickel
	Cu	Copper

Zn	Zinc
Br	Bromine
Ag	Silver
Sn	Tin
I	Iodine
Au	Gold
Hg	Mercury
Pb	Lead

• *Shiny*: lustrous

• Dull: non-lustrous

• *Ductile*: can be drawn into wires

• *Malleable*: can be hammered into different shapes without breaking

• Brittle: easily broken when hammered

Classifying elements

Classified based on:

Ways	Classification	
1. Metallic & non-metallic properties	 Metals Non-metals Metalloids (both) 	
2. Physical states (r.t.p.)	 Gases Liquids Solids 	

Properties

Properties	Metals	Metalloids	Non-metals	
Appearance	Shiny	Shiny	Dull	
Physical state at r.t.p.	Mostly solids (except Hg)	Solids 1 7) Vola		
Melting & boiling points	High (except Na, K, Hg)	High	Low (except C, Si)	
Ductility	Ductile	D.::441.	Daitale if collid	
Malleability	Malleable	Brittle	Brittle if solid	
Heat conductivity	Good	Moderate	Poor (except graphite, diamond)	
Electrical conductivity	Good	Moderate	Poor (except graphite)	

Physical states

Physical state	Metals	Metalloids	Non-metals
Gases		Helium (He oxygen (O ₂)	
Liquids	Mercury (Hg)		Bromine (Br ₂)
Solids	Gold (Au), aluminium (Al), 	Silicon (Si),	Carbon (C), sulfur (S),

Atoms and molecules

Atoms: smallest particles of an element having chemical properties of the element

Element: only 1 type of atom

Molecule: group of 2 or more atoms chemically combined

Molecular formula:

[Element][number of atoms]

*number of atoms is negligible if 1

H₂: 1 molecule of hydrogen 2H: two atoms of hydrogen

Туре	Atoms	Explanation	Examples
1. Monatomic element	1	Noble gases	Helium (He)Neon (Ne)Argon (Ar)
2. Diatomic molecule	2	Diatomic : 2 atoms chemically bonded	 Hydrogen (H₂) Chlorine (Cl₂) Iodine (I₂)
3. Polyatomic molecule	≥3	Triatomic : 3 atoms chemically bonded	 Ozone (O₃) Phosphorus (P₄) Sulfur (S₈)

Noble gasses behave differently

Noble gases

- Elements
 - 1. Helium (He)
- 4. Krypton (Kr)
- 2. Neon (Ne)
- 5. Xenon (Xe)
- 3. Argon (Ar)
- 6. Radon (Rn)
- Monatomic (exist as individual atoms)
- Stable, unreactive
- × react to form compounds / molecules

Electronic configuration of noble gas

Electronic configuration of noble gas atoms

Electronic configuration	Outer electrons	Elements	
Duplet	2	Не	
Octet	8	Ne, Ar, Kr, Xe, Rn	

Noble gas: unreactive \rightarrow fully filled outer shells

- 1. Duplet electronic configuration
- 2. Octet electronic configuration

Atoms achieve electronic configuration of noble gas

Fully filled outer shells

- 1. **Lose** outer electrons \rightarrow positive <u>ion</u>
- 2. **Gain** outer electrons \rightarrow negative <u>ion</u>
- 3. Share outer electrons \rightarrow covalent bond

2.2 Covalent Bonding (7.1)

Covalent bond: bond formed by sharing of electrons between atoms

- Atoms share electrons → molecule
- Strong force of attraction between atoms
- '- ': 1 single covalent bond (1 pair of shared electrons)
 - ' = ': 1 double covalent bond (2 pair of shared electrons)
- Formation of covalent bond
 - 1. Atoms of same element
 - 2. Atoms of different elements

Molecules of elements

Molecule Molecule	Dot and cross diagram (remember to write the key)	Covalent bond	Structural formula	Molecular formula
Hydrogen		1	Н – Н	H_2
Chlorine		1	Cl – Cl	Cl_2
Oxygen		2	O = O	O_2
Nitrogen		3	$N \equiv N$	N_2

Molecules of compounds

Atoms of different elements → covalent bond

- 1. Covalent compound
- 2. Molecular compound

Compound	Bonds	Dot and cross diagram	Structural formula	Molecular formula
Water	2 single O–H bonds		O / \ H H	H ₂ O
Methane	4 single C–H bonds		H H-C-H H	CH4
Carbon dioxide	2 double C=O bonds		O = C = O	CO ₂

Chemical formulae of covalent substances

Molecules of elements

- 1. Diatomic molecule: subscript 2 after chemical symbol
- 2. Triatomic molecule: subscript 3 after chemical symbol
- 3. Molecule: large number of atoms
 - Chemical formula = chemical symbol of element
 - Sulfur: $S_8 \rightarrow S$

Covalent compounds

- name indicates:
 - 1. elements present
 - 2. prefix

Prefix	Atoms
mono	1
di	2
tri	3
tetra	4

- Common substances
 - 1) ammonia (NH₃)
 - 2) hydrogen peroxide (H₂O₂)
 - 3) methane (CH₄)
 - 4) ozone (O₃)
 - 5) water (H₂O)