MATHS 4 05/04/21 G0004190057 77-2 JAGükas 81 Maximize $Z = 4m_1 - 2m_2 - m_3$ subject to $m_1 + m_2 + m_3 \le 3$ $2\eta_1 + 2\eta_2 + \eta_3 \leq 4$ 11 - 7/2 and M1, M2, M3 >0 Introducing slack variables (s,, s2, s3) Manimize $Z = 4n_1 - 2n_2 - n_3 + 0s_1 + 0s_2 + 0s_3$ subject to n1 + n2 + n3 + 51 = 3 $2n_1 + 2n_2 + n_3 + s_2 = 4$ $n_1 - n_2$ $+ s_3 = 0$ M, M2, M3, 5, 52, 53 >0 Cj 4 ITERATION 1 -2 -1 0 0 MIN RATIO 0 XB/M, B CB XB 53 21 M3 S 7/2 SI 3 S, 0 0 0 1 3 S 4 0 2 0 2 0 2 0 T 53 0 $\circ \rightarrow$ -1 . 0 0 2 0 Z = 0 0 0 0 0 0 -4 200 O 2 01 9 Negetive minimum Zj-Cj=-4 and its column inden is 1 : Entering Variable = 21, minimum ratio is a and its your index is 3 : leaving basis variable is 53 :. Pivot element = 1

JUNAID GIRKAR

(Jundaram)

JUNAID. GIRKAR 60004190057 JAGÜKAL

	ITERATION -	2	cj	4	-2	- 1	0	0	0	MIN RATIO
	В	Cg	XB	711	212	213	5,	52	53	XB/N2
	Sı	0	3	0	2	. 1	1	0	-1	1.5
	52	6	4	0	14	2: 1	0	1	-2	ı →
	21,	4	O	(-1	0	0	0	1	_
	Z=0		Z_{j}	4	-4	0	0	0	4	
			Zj-Gj	0	-2	l	O	Ö	4	
			,		*******		·	s t - j		
	Negetive	minimun	n zj-	9 = 5	2 and	its	colur	ກາກ 🗎 ເເ	nden :	= 2
	: Entering					. *		40		
	Minimur				indea	= 2				
	: leaving									
	.: Pivot				1					
,	MERATION-3	*	C	4	-2	-1	0	0,		MIN RATIO
	8	C8 1	MB	911	712	W3	51	S ₂	Sz	
	Sı	O	1	0	0	0.5)	-0.5	O	
	n_2	-2	-	D		0.25	0	0.25	-D.S	5
	2/1	4	1	01	0	0.25	О	0.25	5.0	-
	Z=2		2j	4	-2	0.5	D	0.5	3	
			Z_{i} - C_{i}	0,	D.	1.5	D	O	5 3	
			- 		2.					
	since c	24 Zj-	C1 > C	5						
		ptimal			25 91,=	1 7/2	1 = 1	. N3	= 0	
	Manim	um Z:	= 2_		r.	``)		2	."	
	1,-,-,-	7		,			· ·			
				,						
	III									

Given
$$Z = 4m_1^2 + 3m_2^2$$

Subject to: $n_1 + 2m_2 = 9$
 $n_1, n_2 > 0$

we have the lagrangian function:

$$L(M_1, M_2, \lambda) = 4M_1^2 + 3M_2^2 - \lambda(M_1 + 2M_2 - 9)$$

obtaining paxial derivatives

$$\frac{\partial n_1}{\partial n_2} \Rightarrow 8n_1 - \lambda = 0 \Rightarrow 8n_1 = \lambda \longrightarrow 0$$

$$\frac{\partial L}{\partial n_2} = 0 \implies 6n_2 - 2\lambda = 0 \implies 6n_2 = 2\lambda \implies 3n_2 = \lambda \implies 2$$

$$\frac{\partial L}{\partial \lambda} = 0 \Rightarrow \eta_1 + 2\eta_2 - 9 = 0 \Rightarrow \eta_1 + 2\eta_2 = 9 \Rightarrow 0$$

$$\frac{\eta_1 = 3 \, \eta_2}{8}$$

$$3n_2 + 16n_2 = 72$$

 $1. n_2 = 3.79$

$$n_1 = 3m_2 = \frac{1}{2}$$

JUNAID. GIRKAR 60004190057 JAGÜKON

From ①,
$$\lambda = 8n_1 = 8(1.42)$$

$$\lambda = 11.36$$

$$\lambda_0 = 15(1.42, 3.79)$$

$$\lambda_1 = 1 + 2n_2 - 9 = 0$$

$$\lambda_1 = 1 + 3n_2 = 0$$

$$\lambda_$$

<u>Sundaram</u>

$$Z_{min} = 4(1.42)^{2} + 3(3.79)^{2}$$

= $4(2.016) + 3(14.364)$
= 51.156

82 Minimize
$$z = 591 + 292$$

Such that $M_1 - 92 \le 1 - 1$
 $91 + 92 > 9 - 2$
 $91 - 392 \le 3 - 3$

 m_1 , $m_2 > 0$

Number of dual constraints = No of prime variables = 2

let y, yz, yz be dual variables collesponding to 1st, 2nd and 3rd constraints

Minimize 7 = 91 - 492 + 393Sum that 91 - 92 + 93 > 5 -91 - 92 - 393 > 291 , 92, 93 > 0

The standard form iv.

Minimize $7 = -\left[Man\left(-7 = -y_1 + 4y_2 - 3y_3 + 0s_1 + 0s_2 - mq_1 - mq_2\right)\right]$ Such that $y_1 - y_2 + y_3 - s_1 + q_1 = 5$ $-y_1 - y_2 - 3y_3 - s_2 + q_2 = 2$ $y_1, y_2, y, 3, s_1 s_2, > 0$

JUNAID. GIRKAR GOOOYI 90057 JAGUKOJ

Iteration 1:

- 1	1										
		C1.		-1		-3	0	O	-m	- m	
	G	XB	sol	4,	y2	Y3	5,	52	9,	92	Min Ratio
	-m	ai	5		-1				- 1	0	
	_m	92	2	-1	-1	-3	0	-1	Ö	. 1	-
	सं	-cj		1	2m-4	2m+3	m	m	2 2 L	0	

since all zj-cj>,0

But the besis column has autilial valiable i.e. outilial valiable is not deposted from basis column

- :. The dual of LPF has in jeas able solution
- :. The primal of LPP will have unbounded solution

Sundaram