计算方法 作业 3

刘彦铭 ID: 122033910081

Last Edited: 2022 年 11 月 2 日

李庆杨等, 数值分析, 第 5 版, 华中科大, P.199, 1,2,3,4,5,6,7,8,9,11,12,13,15,16,17,19,20,21,22,24,26,27,28,30,32,33 1. 习题 1

(1) 中间过程全用 4 位小数计算,直接消元: 进行三次行变换
$$R_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -0.5483 & 1 & 0 & 0 \\ -0.8899 & 0 & 1 & 0 \\ -0.4355 & 0 & 0 & 1 \end{bmatrix}$$
, $R_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -0.5483 & 1 & 0 & 0 \\ -0.4355 & 0 & 0 & 1 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -0.2573 & 1 & 0 \\ 0 & -1.0845 & 0 & 1 \end{bmatrix}, R_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -163.8330 & 1 \end{bmatrix}, 得到线性方程组:$$

$$\begin{bmatrix} 0.4096 & 0.1234 & 0.3678 & 0.2943 \\ 0 & 0.3195 & 0.1998 & -0.0485 \\ 0 & 0 & -0.0006 & -0.1851 \\ 0 & 0 & 0 & 30.6426 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0.4043 \\ -0.0667 \\ 0.0814 \\ -13.6955 \end{bmatrix}$$

得到解: $[x_1, x_2, x_3, x_4]^{\mathsf{T}} = [-0.1709, -1.6536, 2.2020, -0.4469]^{\mathsf{T}}$

中间过程仍用 4 位小数计算,但选取列主元,进行三次消元(置换 + 消去)
$$R_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -0.5483 & 1 & 0 & 0 \\ -0.8899 & 0 & 1 & 0 \\ -0.4355 & 0 & 0 & 1 \end{bmatrix}, P_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, R_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -0.2372 & 1 & 0 \\ 0 & -0.9221 & 0 & 1 \end{bmatrix}, P_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, R_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -0.2506 & 1 \end{bmatrix}, Ax = b \rightarrow (R_3 P_3 R_2 P_2 R_1) Ax = (R_3 P_3 R_2 P_2 R_1) b,$$
即得到线性方程组:

$$\begin{bmatrix} 0.4096 & 0.1234 & 0.3678 & 0.2943 \\ 0 & 0.3465 & 0.1184 & 0.2645 \\ 0 & 0 & 0.0906 & -0.2924 \\ 0 & 0 & 0 & -0.1870 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0.4043 \\ -0.4318 \\ 0.3315 \\ 0.0835 \end{bmatrix}$$

得到解: $[x_1, x_2, x_3, x_4]^{\top} = [-0.1826, -1.6632, 2.2179, -0.4465]^{\top}$

很显然,(2) 和 (1) 的解不完全一样,为对比误差,可计算误差 $||A\hat{x}-b||_2$,可知 (1) 的解对应的误差范数 为 1.5484, (2) 的解对应的误差范数为 1.0858×10^{-4} , 在本例中, 列主元消元的解精度更高。

2. 习题 2

(1) 由于消元时不会消去第一行,所以消元前, $A=\left[\begin{array}{cc}a_{11}&a_1^\top\\a_1&A_1\end{array}\right]$,且 A_1 是对称矩阵。据消元过程 $A_2=$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x = U^{-1}L^{-1}Pb = \begin{bmatrix} 4.587 \\ -0.632 \\ 2.735 \end{bmatrix}$$

- (1) 利用数学归纳法证明 $a_{ij}^{(k)}=a_{ij}^{(1)}-\sum_{t=1}^{k-1}m_{it}a_{tj}^{(t)}$: (a) k=1 时,显然成立;(b) 由 (7.2.9) 的递推式: $a_{ij}^{(k+1)}=a_{ij}^{(k)}-m_{ik}a_{kj}^{(k)}=a_{ij}^{(1)}-\sum_{t=1}^{k-1}m_{it}a_{tj}^{(t)}-m_{ik}a_{kj}^{(k)}=a_{ij}^{(1)}-\sum_{t=1}^{k}m_{it}a_{tj}^{(t)}$.
- (2) 直接代入 $u_{rj} = a_{rj}^{(r)} = a_{rj}^{(1)} \sum_{t=1}^{r-1} m_{rt} a_{tj}^{(t)} = a_{rj} \sum_{t=1}^{r-1} l_{rt} u_{tj} = a_{rj} \sum_{k=1}^{r-1} l_{rk} u_{kj}$. 由 (1) 知: 对于 i > r, $a_{ir}^{(r)} = a_{ir} \sum_{k=1}^{r-1} l_{ik} u_{kr}$, 所以 $l_{ir} = m_{ir} = a_{ir}^{(r)} / a_{rr}^{(r)} = (a_{ir} \sum_{k=1}^{r-1} l_{ik} u_{kr}) / u_{rr}$

4. 习题 4

记 A_k 表示由 A 的前 k 行前 k 列构成的子矩阵. $LU = \begin{bmatrix} L_k & 0 \\ \star_1 & \star_2 \end{bmatrix} \begin{bmatrix} U_k & \star_3 \\ 0 & \star_4 \end{bmatrix} = \begin{bmatrix} L_k U_k & \star_5 \\ \star_6 & \star_7 \end{bmatrix} = A$. 从 而 $A_k = L_k U_k$, $\det(A_k) = \det(L_k) \cdot \det(U_k) \neq 0$,因为单位三角阵的顺序主子式不为零。

5. 习题 5

由于顺序主子式均非 0, 所以可以顺利地进行不选择主元的高斯消元,最终得到方程 $A^{(n)}x=b^{(n)}$,其中 $A^{(n)}=L_{n-1}L_{n-2}\cdots L_1A$ 是一个上三角矩阵,而 $L_i,1\leq i< n$ 均为单位下三角的初等行变换矩阵。 令 $U=A^{(n)},L=L_1^{-1}\cdots L_{n-1}^{-1}$,即得到 A=LU,且满足 L 是单位下三角阵,U 是上三角阵。

6. 习题 6

对于 $i, j \ge 2$, 经过一次消元后 (消去第一列), $a'_{ij} = a_{ij} - a_{i1}/a_{11} \times a_{1j}$.

考虑消元之后的第 i 行,i > 1, $|a'_{ii}| = |a_{ii} - a_{i1}/a_{11} \times a_{1i}| \ge |a_{ii}| - |a_{i1}/a_{11}| \cdot |a_{1i}|$

由于 $\sum_{j>1,j\neq i} |a_{ij}| \leq \sum_{j>1,j\neq i} (|a_{ij}| + |a_{i1}/a_{11}| \cdot |a_{1j}|)$,所以

$$\begin{aligned} |a'_{ii}| - \sum_{j>1, j\neq i} |a'_{ij}| & \geq |a_{ii}| - |a_{i1}/a_{11}| \cdot |a_{1i}| - \sum_{j>1, j\neq i} |a_{ij}| - |a_{i1}/a_{11}| \cdot \sum_{j>1, j\neq i} |a_{1j}| \\ & = |a_{ii}| - \sum_{j>1, j\neq i} |a_{ij}| - |a_{i1}|/|a_{11}| \cdot \sum_{j\neq i} |a_{1j}| \\ & > |a_{ii}| - \sum_{j>1, j\neq i} |a_{ij}| - |a_{i1}| \\ & = |a_{ii}| - \sum_{j\neq i} |a_{ij}| \\ & > 0. \end{aligned}$$

故而 A_2 子矩阵仍是对角占优矩阵。

7. 习题 7

- (1) 由于 A 是对称正定矩阵,故存在 Cholesky 分解: $A = LL^{\top}$. 从而 $A_{ii} = \sum_{k} L_{ik}L^{\top}ki = \sum_{k\leq i} L_{ik}^2$. 因为 $A = LL^{\top}$ 是正定矩阵,故 L 任一行向量不为零向量,所以 $A_{ii} = \sum_{k\leq i} L_{ik}^2 > 0$.
- (2) 对消元前的 A 分块, $A = \begin{bmatrix} a_{11} & a_1^\top \\ a_1 & A_1 \end{bmatrix}$,据高斯消元过程,有 $A_2 = A_1 (a_{11})^{-1}a_1a_1^\top$ 显然对称.对于任意 $x \in \mathbb{R}^{n-1}$,令 $\beta = -(a_{11})^{-1}a_1^\top x \in \mathbb{R}$,由于 A 正定,故 $[\beta; x^\top]$ $\begin{bmatrix} a_{11} & a_1^\top \\ a_1 & A_1 \end{bmatrix}$ $\begin{bmatrix} \beta \\ x \end{bmatrix} > 0$,展开即得: $x^\top A_1 x + 2\beta a_1^\top x + \beta^2 a_{11} = x^\top A_1 x (a_{11})^{-1}(a_1^\top x)(a_1^\top x) = x^\top A_2 x > 0$.所以 A_2 对称且正定。

- (3) 由于 $A_2 = A_1 (a_{11})^{-1} a_1 a_1^{\mathsf{T}}, a_1 \in \mathbb{R}^{n \times 1}, a_{11} > 0$. 显然有 A_2 对角线元素小于等于对应位置的 A_1 中元素,即 $a_{ii}^{(2)} < a_{ii}, i = 2, 3, \dots, n$.
- (4) (2) 中我们已证明 A_2 是对称正定阵,所以 A_2 对角线元素大于 0,即 $a_{ii}^{(2)} = a_{ii} (a_{11})^{-1}a_{i1}^2 > 0$,于是有 $a_{i1}^2 < a_{11} \cdot a_{ii}$ 这说明 $a_{i1} < \max\{a_{11}, a_{ii}\}, \forall i \neq 1$,说明第 1 列的元素绝对值小于对角线元素绝对值的最大者。设 P_{1k} 是交换第 1 行 (列) 与第 k 行 (列) 的初等置换矩阵,由于 $A = Q\Lambda Q^{\mathsf{T}}$, $P_{1k}AP_{1k} = (P_{1k}Q)\Lambda(P_{1k}Q)^{\mathsf{T}}$,所以 $P_{1k}AP_{1k}$ 也是对称正定矩阵,这就验证了 A 的第 k 列元素绝对值小于对角线元素绝对值的最大者。
- (5) 由 (4) 知, $\max_{2 \le i, j \le n} |a_{ij}^{(2)}| = a_{kk}^{(2)}$,对于某一个 $k, 2 \le k \le n$ 成立. $\max_{2 \le i, j \le n} |a_{ij}| = a_{ll}$,对于某一个 $l, 2 \le l \le n$ 成立. 而由 (3) 知, $a_{kk}^{(2)} \le a_{kk} \le a_{ll}$. 这就证明了命题 (5)
- (6) 可用数学归纳法证明,结论显然

结论是显然的, 但验证较为繁琐, 这里方便起见, 不妨假设 i < j, 对 L_k 作分块:

 $L_k = [L_{< k}, l_k, L_{k...i}, l_i, L_{i...j}, l_j, L_{> j}]$ 其中 l_k, l_i, l_j 是原矩阵的 k, i, j 列, $L_{< k}, L_{k...i}, L_{i...j}, L_{> j}$ 是由上述三列分割而成的四块矩阵. $L_k I_{ij} = [L_{< k}, l_k, L_{k...i}, l_j, L_{i...j}, l_i, L_{> j}]$;

 $\widetilde{L}_{k} = I_{ij}(L_{k}I_{ij}) = [I_{ij}L_{< k}, I_{ij}l_{k}, I_{ij}L_{k...i}, I_{ij}l_{j}, I_{ij}L_{i...j}, I_{ij}l_{i}, I_{ij}L_{> j}] = [L_{< k}, I_{ij}l_{k}, L_{k...i}, l_{i}, L_{i...j}, l_{j}, L_{> j}]$ 所以 \widetilde{L}_{k} 相较 L_{k} 只有第 k 列发生变化, $l_{k} \to I_{ij}l_{k}$. l_{k} 中非零元出现在 k 行以后,且 $l_{k,k} = 1$,由于 k < i < j,所以 $I_{ij}l_{k}$ 的非零元也出现在 k 行以后,且 $(I_{ij}l_{k})_{k,k} = 1$. 所以 \widetilde{L}_{k} 也是指标为 k 的初等下三角阵。

9. 习题 9

A=LU 其中 L 是下三角阵,U 是单位上三角阵,于是 $A^*=U^*L^*$,其中 U^* 是单位下三角阵, L^* 是上三角阵。可运用 7.4.1 部分的结论:

- (1) $(L^{\star})_{1i} = (A^{\star})_{1i}, 1 \leq i \leq n; (U^{\star})_{i1} = (A^{\star})_{i1}/(L^{\star})_{11}, i \geq 2.$ $l_{i1} = a_{i1}, i \geq 1; u_{1i} = a_{1i}/l_{11}, i \geq 2.$
- (2) $(L^*)_{ri} = (A^*)_{ri} \sum_{k=1}^{r-1} (U^*)_{rk} (L^*)_{ki}, i \ge r; \exists I:$ $l_{ir} = a_{ir} \sum_{k=1}^{r-1} l_{ik} u_{kr}, i \ge r.$
- (3) $(U^*)_{ir} = ((A^*)_{ir} \sum_{k=1}^{r-1} (U^*)_{ik} (L^*)_{kr}) / (L^*)_{rr}, i > r; \exists I:$ $u_{ri} = (a_{ri} \sum_{k=1}^{r-1} l_{rk} u_{ki}) / l_{rr}, i > r.$

10. 习题 11

- (1) 对称正定矩阵 A 是实正规矩阵,故可正交相似于对角矩阵,即存在正交矩阵 Q, $A = Q\Lambda Q^{\mathsf{T}}$. $A^{-1} = (Q^{\mathsf{T}})^{-1}\Lambda^{-1}Q^{-1} = Q\Lambda^{-1}Q^{\mathsf{T}}$, 其中 Λ^{-1} 仍是对角矩阵,故 A^{-1} 也是对称正交矩阵。
- (2) L 存在性: $A = Q\Lambda Q^{\top} = (Q\Lambda^{1/2}Q^{\top})(Q\Lambda^{1/2}Q^{\top})$. 注意到本题要证明的结论 $A = L^{\top}L$ 与 Cholesky 分解略不同,但基本思路是一致的。由于 $Q\Lambda^{1/2}Q^{\top}$ 满秩,故对其列向量组按照 $n \to 1$ 的顺序作 Schmidt 正交化,可以得到分解 $Q\Lambda^{1/2}Q^{\top} = Q'L$,其中 Q' 是列正交矩阵,L 是对角线元素为正的下三角矩阵。从而有 $A = (Q'L)^{\top}(Q'L) = L^{\top}Q'^{\top}Q'L = L^{\top}L$.

L 唯一性: 考虑上述分解存在的必要条件,可按照 $k: n \to 1$ 的顺序计算: $l_{kk} = \sqrt{A_{kk} - \sum_{j=k+1}^{n} l_{jk}^2}$, $l_{ki} = \frac{A_{kk} - \sum_{j=k+1}^{n} l_{jk} l_{ji}}{l_{kk}}$, $\forall i < k$,由此知,如果该分解存在,则唯一

$$\begin{bmatrix} 1/3 & -1/7 & -4/25 & -16/17 \\ & 3/7 & 12/25 & 13/17 \\ & & -7/25 & -8/17 \\ & & & 5/17 \end{bmatrix} \begin{bmatrix} 1 & & & & \\ 1/3 & 1 & & \\ & -5/7 & -1/7 & 1 \\ & -1/5 & 4/25 & -3/25 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -3 & -1 \\ 3 & 1 & 0 & 7 \\ -1 & 2 & 4 & -2 \\ 1 & 0 & -1 & 5 \end{bmatrix}$$

$$= E_4$$

所以

$$A^{-1} = \begin{bmatrix} 1/3 & -1/7 & -4/25 & -16/17 \\ & 3/7 & 12/25 & 13/17 \\ & & -7/25 & -8/17 \\ & & & 5/17 \end{bmatrix} \begin{bmatrix} 1 \\ 1/3 & 1 \\ -5/7 & -1/7 & 1 \\ -1/5 & 4/25 & -3/25 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$= \frac{1}{85} \begin{bmatrix} -4 & 50 & -23 & -80 \\ 33 & -30 & 41 & 65 \\ -19 & 25 & -3 & -40 \\ -3 & -5 & 4 & 25 \end{bmatrix}$$

12. 习题 13

按照公式 $\alpha_1 = b_1, \beta_1 = c_1/b_1, \gamma_i = a_i, \alpha_i = b_i - a_i\beta_{i-1}, \beta_i = c_i/\alpha_i, i > 1$ 计算:

$$A = LU = \begin{bmatrix} 2 & & & & \\ -1 & 3/2 & & & \\ & -1 & 4/3 & & \\ & & -1 & 5/4 & & \\ & & & -1 & 6/5 \end{bmatrix} \begin{bmatrix} 1 & -1/2 & & & \\ & 1 & -2/3 & & \\ & & 1 & -3/4 & \\ & & & 1 & -4/5 \\ & & & & 1 \end{bmatrix}$$

$$Ly = b \Rightarrow y = \left[\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}\right]^{\top}, \, Ux = y \Rightarrow x = \left[\frac{5}{6}, \frac{2}{3}, \frac{1}{2}, \frac{1}{3}, \frac{1}{6}\right]^{\top}$$

13. 习题 15

由于 A 的某一顺序主子式 $\det(A_2) = 0$,故 A 不能 LU 分解;由于 B 的某一顺序主子式 $\det(B_2) = 0$,故 B 不能 LU 分解;C 的顺序主子式均非零,故有唯一的 LU 分解。

14. 习题 16

$$\begin{bmatrix} 0 & 3 & 4 \\ 1 & -1 & 1 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 交换 1, 3 两行,消去第 1 列得:
$$\begin{bmatrix} 2 & 1 & 2 \\ 0 & -3/2 & 0 \\ 0 & 3 & 4 \end{bmatrix} x = \begin{bmatrix} 3 \\ 1/2 \\ 1 \end{bmatrix}$$

经过回代得到
$$x=[x_1,x_2,x_3]^{\top}=\left[\frac{7}{6},-\frac{1}{3},\frac{1}{2}\right]$$

15. 习题 17

首先我们归纳地证明带宽为 2t+1 的带状 n 阶方阵 A_n 作 LU 分解 $A_n = L_n U_n$,那么 L_n, U_n 也是带宽为 2t+1 的带状矩阵:

(i) n=1 时显然成立;

(ii) 对
$$A_{n+1} = L_{n+1}U_{n+1}$$
 作分块:
$$\begin{bmatrix} a_{11} & A_{1,\geq 2} \\ A_{\geq 2,1} & A_n \end{bmatrix} = A_{n+1} = L_{n+1}U_{n+1} = \begin{bmatrix} 1 & 0 \\ L_{\geq 2,1} & L_n \end{bmatrix} \begin{bmatrix} u_{11} & U_{1,\geq 2} \\ 0 & U_n \end{bmatrix},$$
 得到 $n+1$ 阶带状方阵 LU 分解的必要条件: $u_{11} = a_{11}$, $U_{1,\geq 2} = A_{1,\geq 2}$, $L_{\geq 2,1} = (u_{11})^{-1}A_{\geq 2,1}$,
$$A_n = L_nU_n.$$
 根据归纳假设 L_n, U_n 都是带宽为 $2t+1$ 的带状矩阵; 因为 A_{n+1} 是带宽为 $2t+1$ 的带状阵,所以 $U_{1,\geq 2} = A_{1,\geq 2}$ 与 $L_{\geq 2,1} = (u_{11})^{-1}A_{\geq 2,1}$ 的非零元都在前 t 个分量。因此 L_{n+1}, U_{n+1} 也是带宽为 $2t+1$ 的带状矩阵。

由于 L_n , U_n 是带宽为 2t+1 的带状三角阵, 充分考虑非零元的位置, 显然有:

对
$$i \geq r$$
, $a_{ri} = \sum_{k=1}^{n} l_{rk} u_{ki} = \sum_{k=\max(1,i-t)}^{r-1} l_{rk} u_{ki} + l_{rr} u_{ri}$, 而 $l_{rr} = 1$, 所以 $u_{ri} = a_{ri} - \sum_{k=\max(1,i-t)}^{r-1} l_{rk} u_{ki}$. 对 $i > r$, $a_{ir} = \sum_{k=1}^{n} l_{ik} u_{kr} = \sum_{k=\max(1,i-t)}^{r-1} l_{ik} u_{kr} + l_{ir} u_{rr}$, 所以 $l_{ir} = (a_{ir} - \sum_{k=\max(1,i-t)}^{r-1} l_{ik} u_{kr})/u_{rr}$.

16. 习题 19

- (1) $||x||_{\infty} = \max_{i} |x_{i}| \le \sum_{i} |x_{i}| = ||x||_{1} \le \sum_{i} \max_{k} |x_{k}| = n||x||_{\infty}$
- (2) 注意到 $A^{\top}A$ 是实对称矩阵, $A^{\top}A = Q\Lambda Q^{\top}$. $tr(A^{\top}A) = tr(Q\Lambda Q^{\top}) = tr(\Lambda Q^{\top}Q) = tr(\Lambda) = \sum_{i} \Lambda_{ii}$. $||A||_{2}^{2} = \lambda_{max}(A^{\top}A) = \max_{k} \Lambda_{kk} \leq \sum_{i} \Lambda_{ii} = tr(A^{\top}A) = ||A||_{F}^{2}$. (因为 $A^{\top}A$ 特征值非负) $||A||_{F}^{2} = tr(A^{\top}A) = \sum_{i} \Lambda_{ii} \leq n \max_{k} \Lambda_{kk} = n||A||_{2}^{2}$. 所以有 $\sqrt{1/n} \cdot ||A||_{F} \leq ||A||_{2} \leq ||A||_{F}$

17. 习题 20

- 正定: 由于 ||x|| 是范数, 所以 $||x||_P = ||Px|| \ge 0$, 且 $||x||_P = ||Px|| = 0 \Rightarrow Px = 0 \Rightarrow x = P^-10 = 0$.
- 齐次: 由于 $||kx|| = |k| \cdot ||x||$, 所以 $||kx||_P = ||P(kx)|| = ||k(Px)|| = |k| \cdot ||Px||$.
- 三角不等式: $||x+y|| \le ||x|| + ||y||$, 所以有 $||x+y||_P = ||P(x+y)|| = ||(Px) + (Py)|| \le ||Px|| + ||Py|| = ||x||_P + ||y||_P$.

18. 习题 21

- 正定:由于 A 正定,所以 $(Ax,x) = x^{\top}Ax \ge 0$, $||x||_A = (Ax,x)^{1/2} \ge 0$,且根据 A 正定的条件,当且仅当 x = 0 时取等号.
- 齐次: $(A(kx), kx) = k^2 x^{\top} A x = k^2 (Ax, x)$, 所以 $||kx||_A = (A(kx), kx)^{1/2} = |k| \cdot ||x||_A$.
- 三角不等式: 对称正定阵 A 做 Cholesky 分解: $A = LL^{\top}$, 由 Cauchy-Schwarz 不等式,有 $\forall x, y \in \mathbb{R}^n, \langle L^{\top}x, L^{\top}y \rangle \leq \sqrt{\langle L^{\top}x, L^{\top}x \rangle} \sqrt{\langle L^{\top}y, L^{\top}y \rangle}$,展开有: $x^{\top}Ay = x^{\top}LL^{\top}y \leq \sqrt{x^{\top}LL^{\top}xy^{\top}LL^{\top}y} = \sqrt{x^{\top}Axy^{\top}Ay}$. 所以 $(||x||_A + ||y||_A)^2 ||x + y||_A^2 = 2\left(\sqrt{x^{\top}Ax}\sqrt{y^{\top}Ay} x^{\top}Ay\right) \geq 0$,即 $||x||_A + ||y||_A \geq ||x + y||_A$.

19. 习题 22

 $(||x||_2 + ||y||_2)^2 - ||x + y||_2^2 = 0 \Rightarrow 0 \le \sqrt{x^\top x} \sqrt{y^\top y} = x^\top y$. 由 Cauchy-Schwarz 不等式知,上述等式成立当且仅当 x, y 共线.

20. 习题 24

根据矩阵范数的定义即可得到:

$$||A||' = \max_{x \neq 0} \frac{||Ax||'}{||x||'} = \max_{x \neq 0} \frac{||PAx||}{||Px||} = \max_{x \neq 0} \frac{||(PAP^{-1})(Px)||}{||Px||} = ||PAP^{-1}||$$

可利用奇异值分解来证明:由于 $A \in \mathbb{R}^{n \times n}$,作奇异值分解 $A = Q_1 \begin{bmatrix} \Lambda_r & 0 \\ 0 & 0 \end{bmatrix}_{n \times n} Q_2$,其中 Q_1 ,Q 均为 q_2 ,以为 q_3 ,以为 q_4 ,从于 q_4 ,从于 q_4 q_4 ,从于 q_4 q_4 ,从于 q_4 $q_$

所以 AA^{T} 与 $A^{\mathsf{T}}A$ 正交相似,它们有相同的特征值。

22. 习题 27

根据矩阵范数定义 $||A^{-1}||_{\infty} = \max_{x \neq 0} \frac{||A^{-1}x||_{\infty}}{||x||_{\infty}}$, 因为 A 可逆,令 $y = A^{-1}x \neq 0$, 即 x = Ay 有:

$$||A^{-1}||_{\infty} = \max_{x \neq 0} \frac{||A^{-1}Ay||_{\infty}}{||Ay||_{\infty}} = \max_{y \neq 0} \frac{||y||_{\infty}}{||Ay||_{\infty}} = \min_{y \neq 0} \frac{||Ay||_{\infty}}{||y||_{\infty}}$$

23. 习题 28

 $(A + \delta A)^{-1} = (A(E + A^{-1}\delta A))^{-1} = (E + A^{-1}\delta A)^{-1}A^{-1}$. 因为 A 非奇异,故只需要验证 $(E + A^{-1}\delta A)^{-1}$ 存在,由书中定理 7.18 可以证明其存在性,因为 $||A^{-1}\delta A|| \le ||A^{-1}|| \cdot ||\delta A|| < 1$.

令 $\delta X = A^{-1} - (A + \delta A)^{-1}$,则由 $(A^{-1} - \delta X)(A + \delta A) = E$ 知: $\delta X = A^{-1}\delta A(A + \delta A)^{-1}$,根据定理 7.18 $||(E + A^{-1}\delta A)^{-1}|| \leq \frac{1}{1 - ||A^{-1}\delta A||} \leq \frac{1}{1 - ||A^{-1}|| \cdot ||\delta A||}$,所以

$$||\delta X|| \le ||A^{-1}|| \cdot ||\delta A|| \cdot ||A + \delta A|| \le ||A^{-1}|| \cdot ||\delta A|| \cdot ||(E + A^{-1}\delta A)^{-1}|| \cdot ||A^{-1}||$$

所以

$$\frac{||A^{-1} - (A + \delta A)^{-1}||}{||A^{-1}||} = \frac{||\delta X||}{||A^{-1}||} \leq ||A^{-1}|| \cdot ||\delta A|| \cdot \frac{1}{1 - ||A^{-1}|| \cdot ||\delta A||} = \frac{\operatorname{cond}(A) \frac{||\delta A||}{||A||}}{1 - \operatorname{cond}(A) \frac{||\delta A||}{||A||}}$$

24. 习题 30

- (2) $WW^{\top} = D^{1/2}L^{\top}LD^{1/2} = D$,与 $W^{\top}W$ 正交相似,有相同的特征值,所以 $cond(W^{\top})_2 = cond(W)_2$. 所以有 $cond(A)_2 = cond(W^{\top})_2 cond(W)_2$.

25. 习题 32

显然有 $\operatorname{cond}(A)_2 = \sqrt{\lambda_{\max}(A^{\top}A)}/\sqrt{\lambda_{\min}(A^{\top}A)} = \sqrt{\lambda_{\max}(E)}/\sqrt{\lambda_{\min}(E)} = 1.$

26. 习题 33

 $\operatorname{cond}(AB) = ||AB|| \cdot ||(AB)^{-1}|| \leq ||A|| \cdot ||B|| \cdot ||B^{-1}|| \cdot ||A^{-1}|| = \operatorname{cond}(A) \cdot \operatorname{cond}(B).$