Air Quality

Brandon Bevan

May 7, 2018

Based from the Coursera course "Reproducible Research" by Johns Hopkins University

The goal of this document is to provide an example of "literate statistical programming" by "weaving" together English text, R Code, and graphics provided by ggplot and R's builtin plotting capabilities.

"Literate statistical programming" with R Markdown files allows for "reproducible" research through the ability of the critic to

- 1. Download the markdown file
- 2. Re-run the analyses in R
- 3. Regenerate the HTML (or pdf)

In this document, we provide a regression analysis of air quality data.

```
library(datasets)
data(airquality)
summary(airquality)
```

```
##
        Ozone
                         Solar.R
                                            Wind
                                                              Temp
##
    Min.
           : 1.00
                             : 7.0
                                              : 1.700
                                                                :56.00
                     Min.
                                      Min.
                                                         Min.
   1st Qu.: 18.00
                                       1st Qu.: 7.400
##
                      1st Qu.:115.8
                                                         1st Qu.:72.00
##
   Median : 31.50
                      Median :205.0
                                       Median : 9.700
                                                         Median :79.00
##
    Mean
           : 42.13
                      Mean
                             :185.9
                                       Mean
                                              : 9.958
                                                         Mean
                                                                :77.88
##
    3rd Qu.: 63.25
                      3rd Qu.:258.8
                                       3rd Qu.:11.500
                                                         3rd Qu.:85.00
##
   Max.
           :168.00
                      Max.
                             :334.0
                                       Max.
                                              :20.700
                                                         Max.
                                                                :97.00
   NA's
                      NA's
                             :7
##
           :37
##
        Month
                          Day
##
   Min.
           :5.000
                     Min.
                            : 1.0
   1st Qu.:6.000
                     1st Qu.: 8.0
   Median :7.000
##
                     Median:16.0
           :6.993
                            :15.8
##
    Mean
                     Mean
##
    3rd Qu.:8.000
                     3rd Qu.:23.0
##
    Max.
           :9.000
                     Max.
                            :31.0
##
```

As can be seen, the variables within the data set are Ozone levels, Solar Radiation levels, Wind, Temperature, Month, and Day measurements.

Here is a plot of each pair of variables against one another.

```
pairs(airquality)
```


We will test a regression model of Ozone versus Temperature.

```
fit <- lm(Ozone ~ Temp, airquality)</pre>
summary(fit)
##
## lm(formula = Ozone ~ Temp, data = airquality)
##
## Residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
## -40.729 -17.409 -0.587 11.306 118.271
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
                            18.2872 -8.038 9.37e-13 ***
## (Intercept) -146.9955
## Temp
                             0.2331 10.418 < 2e-16 ***
                  2.4287
## ---
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 23.71 on 114 degrees of freedom
(37 observations deleted due to missingness)
Multiple R-squared: 0.4877, Adjusted R-squared: 0.4832
F-statistic: 108.5 on 1 and 114 DF, p-value: < 2.2e-16</pre>

Next, we plot the regression line.

library(stats)

##

```
x <- airquality$Temp
y <- airquality$Ozone

plot(x,y)
abline(fit)</pre>
```


We can see that temperature may be a good predictor for Ozone levels, leading us to believe that increasing temperatures may positively correlate to increasing Ozone levels.