AE 737: Mechanics of Damage Tolerance

Lecture 21-22 - Finite Elements

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

12-14 April 2022

1

schedule

- 12 Apr Finite Elements in Fracture
- 14 Apr Finite Elements in Fracture, HW 7 Due
- (19 Apr) Class Canceled
- 21 Apr Exam Review
- 26 Apr Exam 2

finite element techniques

finite element methods in fracture

- Direct method (use near-tip stress field)
 - Requires very fine mesh near the tip to be accurate
 - Can be made feasible with specialty elements

fem in fracture

- Crack closure method
 - An energy based method
 - Calculate energy to close crack one element away from crack tip
 - Can have a courser mesh than direct method

4

more information

- More information can be found in my AE837 Notes
 - direct method theory link¹
 - direct method screencast demos link²

¹https://ndaman.github.io/fracture/exam%202/lecture11.html

²https://ndaman.github.io/fracture/exam%202/lecture12.html

fem in fracture

- J-integral method
 - Many FE codes give a convenient method to calculate the J-integral
 - Learn about this in 837, but gives a mesh-independent way to calculate stress intensity
 - link³

fem in fracture

- Cohesive elements
 - Specialty elements act like an adhesive between two materials
 - Used to model crack propagation when crack path (and material behavior) are known

6

³https://ndaman.github.io/fracture/exam%202/lecture13.html

fem in fracture

XFFM

- eXtended Finite Flement Method
- Can predict crack growth in any direction
- Adds extra physics model inside an element (fine mesh not necessarily required)

8

other advanced techniques

- peridynamics
- phase field
- remeshing

direct method

• We already know that the stress field near the crack tip is

$$\sigma_{yy} = \frac{K_I}{\sqrt{2\pi x}}$$

- We can solve this for K_I and we should (in theory) be able to calculate K_I
- We will get a unique K_I value for every point (x) along crack plane

10

direct method

- For this method to be accurate, we need to capture the singularity at crack tip
- This requires a very fine mesh (computationally expensive)
- Alternatively, many FE packages include "singularity" elements which allow a coarse(r) mesh

modeling tips

- Use symmetry in your model to reduce node count
- Center-crack can be modeled using on 1/4 of the model
- Use biased node seeding (more nodes near tip)

12

symmetry

symmetry

14

analyzing results

- If our results are accurate, we should be able to calculate the same K_I at any point
- To ensure convergence, we plot the calculated K_I vs. x (distance from crack tip)
- In the region where this plot is a horizontal line, we consider a converged K_I

analyzing results

 It is also possible to consider the crack opening displacement

$$u_y = \frac{K_I(\kappa + 1)}{4G\pi} \sqrt{-2\pi x}$$

• Where κ is to easily differentiate between plane stress and plane strain

$$\kappa = 3 - 4\nu$$
 (plane strain)
$$\kappa = \frac{3 - \nu}{1 + \nu}$$
 (plane stress)

16

a few other examples

- Mixed-mode fracture link⁴
- Plasticity link⁵

⁴https://ndaman.github.io/fracture/exam%202/lecture16.html

⁵https://ndaman.github.io/fracture/exam%202/plasticity.html