파생금융상품론 8주차 과제

2018320161 송대선

마감일 : 2020년 11월 01일

11.7)

행사가격이 45인 풋옵션을 매수하고, 행사가격이 50인 콜옵션을 매수함으로써 스트랭글을 구성한다. 이에 대한 이익패턴은 다음과 같다.

조건	손익
$S_T < K_1$	$K_1 - S_T - c - p$
$K_1 \leq S_T < K_2$	-c-p
$K_2 \leq S_T$	S_T-K_2-c-p

where

$$k_1 = 45, k_2 = 50, p = 3, c = 2$$

이를 대입하면, 다음과 같다.

조건	손익
$S_T < 45$	$40-S_T$
$45 \le S_T < 50$	-5
$50 \le S_T$	$S_T - 55$

11.10-a)

행사가격이 30인 풋옵션을 매수하고, 행사가격이 35인 풋옵션을 매도함으로써 풋 강세 스프레드을 구성한다. 이에 대한 이익패턴은 다음과 같다.

조건	손익
$S_T < K_1$	$K_1 - K_2 + p_2 - p_1$
$K_1 \leq S_T < K_2$	$S_T - K_2 + p_2 - p_1$
$K_2 \leq S_T$	$p_2 - p_1$

where

$$k_1 = 30, k_2 = 35, p_1 = 4, p_2 = 7$$

이를 대입하면, 다음과 같다.

조건	손익
$S_T < 30$	-2
$30 \le S_T < 35$	$S_T - 32$
$35 \leq S_T$	3

11.10-b)

행사가격이 30인 풋옵션 $(p_1=4)$ 을 매도하고, 행사가격이 35인 풋옵션 $(p_2=7)$ 을 매수함으로써 풋 약세 스프레드를 구성한다. 이에 대한 이익패턴은 다음과 같다.

조건	손익
$S_T < K_1$	$-K_1 + K_2 + p_1 - p_2$
$K_1 \leq S_T < K_2$	$-S_T + K_2 + p_1 - p_2$
$K_2 \leq S_T$	$p_1 - p_2$

where

$$k_1 = 30, k_2 = 35, p_1 = 4, p_2 = 7$$

이를 대입하면, 다음과 같다.

조건	손익
$S_T < 30$	2
$30 \le S_T < 35$	$-S_T + 32$
$35 \leq S_T$	-3

11.12)

행사가격이 60인 콜옵션을 매수하고, 행사가격이 60인 풋옵션을 매수함으로써 스트레들를 구성한다. 이에 대한 이익패턴은 다음과 같다.

조건	손익
$S_T < K$	$K-S_T-c-p$
$K \leq S_T$	$S_T - K - c - p$

where

$$k=60, c=6, p=4$$

이를 대입하면, 다음과 같다.

조건	손익
$S_T < 60$	$-S_T + 50$
$60 \leq S_T$	$S_T - 70$

스트레들로 인해 손해를 보는 주가의 범위는 다음과 같다.

$$if \ S_T < K$$

$$then \ K - S_T - c - p < 0$$

$$K - c - p < S_T$$

따라서 조건에 의하여

$$K - c - p < S_T < K$$
$$50 < S_T < 60$$

$$if K \leq S_T$$

$$then S_T - K - c - p < 0$$

$$S_T \leq k + c + p$$

따라서 조건에 의하여

$$K \le S_T < K + c + p$$
$$60 \le S_T \le 70$$

두 가지 영역

$$50 < S_T < 60,$$

$$60 \le S_T \le 70$$

의 합은

$$50 < S_T \le 70$$

이다.

따라서 스트레들로부터 손실를 보는 주가의 범위는

$$50 < S_T \le 70$$

이다.

추가문제1)

$$S_0 - D - K \approx 3.208$$

$$S_0 - Ke^{-rT} \approx 6.3526$$

$$C - P = 2$$

$$C - P < S_0 - Ke^{-rT}$$

$$S_0 - D - K > C - P$$

$$S_0 + P > C + D + K$$

$$K = 60, C = 5, P = 3, D = 0.8e^{-rt} = 0.792, T = 4/12, t = 1/12, S_0 = 64, r = 0.12$$

따라서 차익거래 전략은

- 1. 기초자산 1주를 S_0 에 공매도하고,
- 2. 풋옵션을 매도하고,
- 3. 콜옵션을 매수하고,
- 4. D만큼 채권을 매수하고
- 5. K만큼 채권을 매수하고,
- $6. \ A (= S_0 + P C D K)$ 만큼 채권을 매수하는 전략이다.

	현재시점	배당지급 전 t시점	
전략	현재시점	$S_t \ge K$	$S_t < K$
기초자산 S_0 에 공매도	S_0	$-S_t$	$-S_t$
풋옵션 매도	P	$-P_t$	$-P_t$ or $-(K-S_t)$
콜옵션 매수	-C	$S_t - K$ or C_t	C_t
D만큼 채권 매수	-D	De^{rt}	De^{rt}
K만큼 채권 매수	-K	Ke^{rt}	Ke^{rt}
A만큼 채권 매수	-A	Ae^{rt}	Ae^{rt}
합계	0	$Ke^{rt} - K + Ae^{rt} + De^{rt} - P_t$ or	$Ke^{rt} - K + De^{rt} + C_t + Ae^{rt}or$
		$Ke^{rt} - S_t + C_t + Ae^{rt} + De^{rt} - P_t$	$De^{rt} - S_t - P_t + C_t + Ke^{rt} + Ae^{rt}$

	배당지급 후 t시점		
전략	$S_t \ge K$	$S_t < K$	
기초자산 S_0 에 공매도	$-S_t - De^{rt}$	$-S_t - De^{rt}$	
풋옵션 매도	$-P_t$	$-(K-S_t)$	
콜옵션 매수	C_t	C_t	
D만큼 채권 매수	De^{rt}	De^{rt}	
K만큼 채권 매수	Ke^{rt}	Ke^{rt}	
A만큼 채권 매수	Ae^{rt}	Ae^{rt}	
합계	$C_t - P_t - S_t + Ke^{rt} + Ae^{rt}$	$Ke^{rt} - K + C_t + Ae^{rt}$	

	만기 T시점	
전략	$S_T \geq K$	$S_T < K$
기초자산 S_0 에 공매도	$-S_T - De^{rT}$	$-S_T - De^{rT}$
풋옵션 매도	0	$-(K-S_T)$
콜옵션 매수	$S_T - K$	0
D만큼 채권 매수	De^{rT}	De^{rT}
K만큼 채권 매수	Ke^{rT}	Ke^{rT}
A만큼 채권 매수	Ae^{rT}	Ae^{rT}
합계	$Ke^{rT} - K + Ae^{rT}$	$Ke^{rT} - K + Ae^{rT}$

where $A=S_0+P-C-D-K$ $K=60, C=5, P=3, D=0.792, T=4/12, t=1/12, S_0=64, r=0.12$ 이를 대입하면, 다음과 같다.

	현재시점	배당지급 전 1개월 뒤 시점	
전략	현재시점	$S_t \ge 60$	$S_t < 60$
기초자산 64에 공매도	64	$-S_t$	$-S_t$
풋옵션 매도	3	$-P_t$	$-P_t$ or $S_t - 60$
콜옵션 매수	-5	S_t -60 or C_t	C_t
약 0.792만큼 채권 매수	약 -0.792	0.8	0.8
60만큼 채권 매수	-60	약 60.603	약 60.603
약 1.208만큼 채권 매수	약 -1.208	약 1.2201	약 1.2201
합계	0	약 2.6231-P _t or	약 2.6231+C _t or
		약 62.6231 -S _t + $C_t - P_t$	약62.6231-S _t $-P_t + C_t$

	배당지급 후 1개월 뒤 시점	
전략	$S_t \ge 60$	$S_t < 60$
기초자산 64에 공매도	$-S_t - 0.8$	$-S_t - 0.8$
풋옵션 매도	$-P_t$	$S_t - 60$
콜옵션 매수	C_t	C_t
약 0.792만큼 채권 매수	0.8	0.8
60만큼 채권 매수	약 60.603	약 60.603
약 1.208만큼 채권 매수	약 1.2201	약 1.2201
합계	약 $61.8231 - S_t + C_t - P_t$	약 1.8231+C _t

	만기	시점
전략	$S_T \ge 60$	$S_T < 60$
기초자산 64에 공매도	$-S_T - 0.8244$	$-S_T - 0.8244$
풋옵션 매도	0	$S_T - 60$
콜옵션 매수	$S_T - 60$	0
약 0.792만큼 채권 매수	약 0.8244	약 0.8244
60만큼 채권 매수	약 62.4486	약 62.4486
약 1.208만큼 채권 매수	약 1.2573	약 1.2573
합계	약 3.7059	약 3.7059

추가문제2)

$$K=60, C=8, P=1, D=0.8, T=4/12, t=1/12, S_0=64, r=0.12$$

$$\begin{split} C - P &= 7, \, S_0 - K e^{-rT} = 6.3526 \\ C - P &> S_0 - K e^{-rT} \\ C + K e^{-rT} &> S_0 + P \end{split}$$

Where $A=C+Ke^{-rT}-S_0-P$ 따라서 차익거래 전략은

- 1. 콜옵션 매도 2. Ke^{-rT} 만큼 채권 차입

- 3. 풋옵션 매수4. 기초자산 매수5. A만큼 채권 매수

전략	현재 시점
콜옵션 매도	C
Ke^{-rT} 만큼 채권 차입	Ke^{-rT}
풋옵션 매수	-P
기초자산 매수	$-S_0$
A만큼 채권 매수	-A
합계	0

	배당전 t시점	
전략	$S_t > K$	$S_t < K$
콜옵션 매도	$-(S_t - K)$	$-C_t$
Ke^{-rT} 만큼 채권 차입	$-Ke^{-r(T-t)}$	$-Ke^{-r(T-t)}$
풋옵션 매수	P_t	$K - S_t$
기초자산 매수	S_t	S_t
A만큼 채권 매수	Ae^{rt}	Ae^{rt}
합계	$K - Ke^{-r(T-t)} + Ae^{rt} + P_t$	$K - Ke^{-r(T-t)} + Ae^{rt} - C_t$

	배당 후 t시점	
전략	$S_t > K$	$S_t < K$
콜옵션 매도	$-(S_t - K)$	$-C_t$
Ke^{-rT} 만큼 채권 차입	$-Ke^{-r(T-t)}$	$-Ke^{-r(T-t)}$
풋옵션 매수	P_t	$K - S_t$
기초자산 매수	$S_t + D$	$S_t + D$
A만큼 채권 매수	Ae^{rt}	Ae^{rt}
합계	$K - Ke^{-r(T-t)} + D + Ae^{rt} + P_t$	$K - Ke^{-r(T-t)} + D + Ae^{rt} - C_t$

	만기 시점	
전략	$S_t > K$	$S_t < K$
콜옵션 매도	$-(S_T-K)$	0
Ke^{-rT} 만큼 채권 차입	-K	-K
풋옵션 매수	0	$K - S_T$
기초자산 매수	$S_T + De^{r(T-t)}$	$S_T + De^{r(T-t)}$
A만큼 채권 매수	Ae^{rT}	Ae^{rT}
합계	$Ae^{rT} + De^{r(T-t)}$	$Ae^{rT} + De^{r(T-t)}$

전략	현재 시점
콜옵션 매도	8
Ke^{-rT} 만큼 채권 차입	57.6474
풋옵션 매수	-1
기초자산 매수	-64
A만큼 채권 매수	-1.2267
합계	0

	배당전	l t시점
전략	$S_t > K$	$S_t < K$
콜옵션 매도	$60 - S_t$	$-C_t$
Ke^{-rT} 만큼 채권 차입	-58.2267	-58.2267
풋옵션 매수	P_t	$60 - S_t$
기초자산 매수	S_t	S_t
A만큼 채권 매수	1.2391	1.2391
합계	$3.0123 + P_t$	$3.0123 - C_t$

	배당 후	t시점
전략	$S_t > K$	$S_t < K$
콜옵션 매도	$60 - S_t$	$-C_t$
Ke^{-rT} 만큼 채권 차입	-58.2267	-58.2267
풋옵션 매수	P_t	$60 - S_t$
기초자산 매수	$0.8 + S_t$	$0.8 + S_t$
A만큼 채권 매수	1.2391	1.2391
합계	$3.8123 + P_t$	$3.8123 - C_t$

	만기	시점
전략	$S_t > K$	$S_t < K$
콜옵션 매도	$60 - S_T$	0
Ke^{-rT} 만큼 채권 차입	-60	-60
풋옵션 매수	0	$60 - S_T$
기초자산 매수	$0.8244 + S_T$	$0.8244 + S_T$
A만큼 채권 매수	1.2768	1.2768
합계	2.0634	2.0634

예제 1)

행사가격이 30인 콜옵션 $(c_1=3)$ 을 매수하고, 행사가격이 35인 콜옵션 $(c_2=1)$ 을 매도함으로써 콜 강세 스프레드을 구성한다. 이에 대한 이익패턴은 다음과 같다.

조건	손익
$S_T \leq K_1$	$c_2 - c_1$
$K_1 < S_T \le K_2$	$S_T - K_1 + c_2 - c_1$
$K_2 < S_T$	$K_2 - K_1 + c_2 - c_1$

조건	손익
$S_T \leq K_1$	-2
$K_1 < S_T \le K_2$	$-32 + S_T$
$K_2 < S_T$	3

행사가격이 247.5인 콜옵션 $(c_1 = 3.61)$ 을 매도하고,

행사가격이 250인 콜옵션 $(c_2=2.48)$ 을 매수함으로써 콜 약세 스프레드을 구성한다.

이에 대한 이익패턴은 다음과 같다.

조건	손익
$S_T \leq K_1$	$c_1 - c_2$
$K_1 < S_T \le K_2$	$-S_T + K_1 + c_1 - c_2$
$K_2 < S_T$	$K_1 - K_2 + c_1 - c_2$

조건	손익
$S_T \leq K_1$	1.13
$K_1 < S_T \le K_2$	$248.63 - S_T$
$K_2 < S_T$	-1.37

예제 3)

우선 콜 강세 스프레드를 구성한다.

행사가격이 235인 콜옵션 $(c_1=2.44)$ 을 매수하고,

행사가격이 237.5인 콜옵션 $(c_2=1.4)$ 을 매도함으로써 콜 강세 스프레드을 구성한 다.

이에 대한 이익패턴은 다음과 같다.

조건	손익
$S_T \leq K_1$	$c_2 - c_1$
$K_1 < S_T \le K_2$	$S_T - K_1 + c_2 - c_1$
$K_2 < S_T$	$K_2 - K_1 + c_2 - c_1$

조건	손익
$S_T \leq K_1$	-1.04
$K_1 < S_T \le K_2$	$-236.04 + S_T$
$K_2 < S_T$	1.46

그리고 풋 약세 스프레드를 구성한다.

행사가격이 235인 풋옵션 $(p_1 = 3.26)$ 을 매도하고,

행사가격이 237.5인 풋옵션 $(p_2=4.67)$ 을 매수함으로써 풋 약세 스프레드를 구성한다.

이에 대한 이익패턴은 다음과 같다.

조건	손익
$S_T < K_1$	$-K_1 + K_2 + p_1 - p_2$
$K_1 \leq S_T < K_2$	$-S_T + K_2 + p_1 - p_2$
$K_2 \leq S_T$	$p_1 - p_2$

$$k_1 = 235, k_2 = 237.5, p_1 = 3.26, p_2 = 4.67$$

이를 대입하면, 다음과 같다.

조건	손익
$S_T < 235$	1.09
$235 \le S_T < 237.5$	$-S_T + 236.09$
$237.5 \le S_T$	-1.41

위 두개의 스프레드를 합치면 다음과 같다.

조건	손익
$S_T < 235$	0.05
$235 \le S_T < 237.5$	0.05
$237.5 \le S_T$	0.05

따라서 항상 0.05만큼의 이익이 발생한다.

예제 3 - 1)

행사가격이 232.5인 콜옵션 $(c_1=3.99)$ 을 매도하고, 행사가격이 235인 콜옵션 $(c_2=2.44)$ 을 매수, 행사가격이 232.5인 풋옵션 $(p_1=2.25)$ 을 매수하고, 행사가격이 235인 풋옵션 $(p_2=3.26)$ 을 매도함으로써 박스 스프레드을 구성한다. 그러면 어떠한 조건에도 확정적으로 $K_1-K_2+c_1-c_2-p_1+p_2=0.06$ 의 수익을 얻는다.

예제 4)

행사가격이 55인 콜옵션 $(c_1=10)$ 을 1개 매수하고, 행사가격이 60인 콜옵션 $(c_2=7)$ 을 2개 매도하고, 행사가격이 65인 콜옵션 $(c_3=5)$ 을 1개 매수함으로 나비형 스프레드를 구성한다. 이 경우, $(2K_2=K_1+K_3)$ 도 만족함으로, 이에 대한 이익패턴은 다음과 같다.

조건	손익
$S_T \leq K_1$	$2c_2 - c_1 - c_3$
$K_1 < S_T \le K_2$	$S_T - K_1 + 2c_2 - c_1 - c_3$
$K_2 < S_T \le K_3$	$K_3 - S_T + 2c_2 - c_1 - c_3$
$K_3 < S_T$	$2c_2 - c_1 - c_3$

조건	손익
$S_T \leq K_1$	-1
$K_1 < S_T \le K_2$	$-56 + S_T$
$K_2 < S_T \le K_3$	$64-S_T$
$K_3 < S_T$	-1

예제 4 - 1)

행사가격이 240인 풋옵션 $(p_1=2.29)$ 을 1개 매수하고, 행사가격이 242.5인 풋옵션 $(c_2=3.16)$ 을 2개 매도하고, 행사가격이 245인 풋옵션 $(c_3=4.32)$ 을 1개 매수함으로 나비형 스프레드를 구성한다.

이 경우, $(2K_2 = K_1 + K_3)$ 도 만족함으로, 이에 대한 이익패턴은 다음과 같다.

조건	손익
$S_T \leq K_1$	$2p_2 - p_1 - p_3$
$K_1 < S_T \le K_2$	$S_T - K_1 + 2p_2 - p_1 - p_3$
$K_2 < S_T \le K_3$	$K_3 - S_T + 2p_2 - p_1 - p_3$
$K_3 < S_T$	$2p_2 - p_1 - p_3$

조건	손익
$S_T \leq K_1$	-0.29
$K_1 < S_T \le K_2$	$-240.29 + S_T$
$K_2 < S_T \le K_3$	$244.71 - S_T$
$K_3 < S_T$	-0.29

예제 5)

행사가격이 242.5인 콜옵션(c=2.29)을 매수하고, 행사가격이 240인 풋옵션(p=3.16)을 매수함으로써 스트레들를 구성한다. 이에 대한 이익패턴은 다음과 같다.

조건	손익
$S_T < K_1$	$K_1 - S_T - c - p$
$K_1 < S_T < K_2$	-c-p
$K_2 \leq S_T$	$S_T - K_2 - c - p$

where

$$K_1 = 240, K_2 = 242.5, c = 2.29, p = 3.16$$

이를 대입하면, 다음과 같다.

조건	손익
$S_T < 240$	$-S_T + 234.55$
$240 < S_T \le 240$	-5.45
$242.5 \le S_T$	$S_T - 247.95$

11.4)

행사가격이 15인 콜옵션 $(c_1=4)$ 을 1개 매수하고, 행사가격이 17.5인 콜옵션 $(c_2=2)$ 을 2개 매도하고, 행사가격이 20인 콜옵션 $(c_3=0.5)$ 을 1개 매수함으로 나비형 스프레드를 구성한다. 이 경우, $(2K_2=K_1+K_3)$ 도 만족함으로, 이에 대한 이익패턴은 다음과 같다.

조건	손익
$S_T \leq K_1$	$2c_2 - c_1 - c_3$
$K_1 < S_T \le K_2$	$S_T - K_1 + 2c_2 - c_1 - c_3$
$K_2 < S_T \le K_3$	$K_3 - S_T + 2c_2 - c_1 - c_3$
$K_3 < S_T$	$2c_2 - c_1 - c_3$

조건	손익
$S_T \leq K_1$	-0.5
$K_1 < S_T \le K_2$	$-15.5 + S_T$
$K_2 < S_T \le K_3$	$19.5 - S_T$
$K_3 < S_T$	-0.5

11.7)

행사가격이 45인 풋옵션을 매수하고, 행사가격이 50인 콜옵션을 매수함으로써 스트랭글을 구성한다. 이에 대한 이익패턴은 다음과 같다.

조건	손익
$S_T < K_1$	$K_1 - S_T - c - p$
$K_1 \leq S_T < K_2$	-c-p
$K_2 \leq S_T$	$S_T - K_2 - c - p$

where

$$k_1 = 45, k_2 = 50, p = 3, c = 2$$

이를 대입하면, 다음과 같다.

조건	손익
$S_T < 45$	$40-S_T$
$45 \le S_T < 50$	-5
$50 \le S_T$	$S_T - 55$

11.10 - a)

행사가격이 30인 풋옵션을 매수하고, 행사가격이 35인 풋옵션을 매도함으로써 풋 강세 스프레드을 구성한다. 이에 대한 이익패턴은 다음과 같다.

조건	손익
$S_T < K_1$	$K_1 - K_2 + p_2 - p_1$
$K_1 \le S_T < K_2$	$S_T - K_2 + p_2 - p_1$
$K_2 \leq S_T$	$p_2 - p_1$

$$k_1 = 30, k_2 = 35, p_1 = 4, p_2 = 7$$

이를 대입하면, 다음과 같다.

조건	손익
$S_T < 30$	-2
$30 \le S_T < 35$	$S_T - 32$
$35 \leq S_T$	3

11.10 - b)

행사가격이 30인 풋옵션 $(p_1=4)$ 을 매도하고, 행사가격이 35인 풋옵션 $(p_2=7)$ 을 매수함으로써 풋 약세 스프레드를 구성한다. 이에 대한 이익패턴은 다음과 같다.

조건	손익
$S_T < K_1$	$-K_1 + K_2 + p_1 - p_2$
$K_1 \leq S_T < K_2$	$-S_T + K_2 + p_1 - p_2$
$K_2 \leq S_T$	$p_1 - p_2$

where

$$k_1 = 30, k_2 = 35, p_1 = 4, p_2 = 7$$

이를 대입하면, 다음과 같다.

조건	손익
$S_T < 30$	2
$30 \le S_T < 35$	$-S_T + 32$
$35 \leq S_T$	-3

11.12)

행사가격이 60인 콜옵션을 매수하고, 행사가격이 60인 풋옵션을 매수함으로써 스트레들를 구성한다. 이에 대한 이익패턴은 다음과 같다.

조건	손익
$S_T < K$	$K-S_T-c-p$
$K \leq S_T$	$S_T - K - c - p$

$$k=60, c=6, p=4$$

이를 대입하면, 다음과 같다.

조건	손익
$S_T < 60$	$-S_T + 50$
$60 \le S_T$	$S_T - 70$

스트레들로 인해 손해를 보는 주가의 범위는 다음과 같다.

$$if S_T < K$$

$$then K - S_T - c - p < 0$$

$$K - c - p < S_T$$

따라서 조건에 의하여

$$K - c - p < S_T < K$$
$$50 < S_T < 60$$

$$if K \leq S_T$$

$$then S_T - K - c - p < 0$$

$$S_T \leq k + c + p$$

따라서 조건에 의하여

$$K \le S_T < K + c + p$$
$$60 \le S_T \le 70$$

두 가지 영역

$$50 < S_T < 60$$
,

$$60 \le S_T \le 70$$

의 합은

$$50 < S_T \le 70$$

이다.

따라서 스트레들로부터 손실를 보는 주가의 범위는

$$50 < S_T \le 70$$

이다.

11.20)

행사가격이 55인 풋옵션 $(p_1=3)$ 을 1개 매수하고, 행사가격이 60인 풋옵션 $(c_2=5)$ 을 2개 매도하고, 행사가격이 65인 풋옵션 $(c_3=8)$ 을 1개 매수함으로 나비형 스프레드를 구성한다. 이 경우, $(2K_2=K_1+K_3)$ 도 만족함으로, 이에 대한 이익패턴은 다음과 같다.

조건	손익
$S_T \leq K_1$	$2p_2 - p_1 - p_3$
$K_1 < S_T \le K_2$	$S_T - K_1 + 2p_2 - p_1 - p_3$
$K_2 < S_T \le K_3$	$K_3 - S_T + 2p_2 - p_1 - p_3$
$K_3 < S_T$	$2p_2 - p_1 - p_3$

조건	손익
$S_T \leq K_1$	-1
$K_1 < S_T \le K_2$	$-56+S_T$
$K_2 < S_T \le K_3$	$64 - S_T$
$K_3 < S_T$	-1

따라서, 이 나비형 스프레드로부터 손실을 보는 주가 범위는

$$S_T < -(-K_1 + 2p_2 - p_1 - p_3) \ AND \ S_T > K_3 + 2p_2 - p_1 - p_3$$

 $S_T < 56 \ AND \ S_T > 64$

이다.