Julia で学ぶ計算論的神経科学

山本 拓都

2023年5月13日

目次

第1章	はじめに	5
第2章	神経細胞のモデル	7
第3章	シナプス伝達のモデル	9
第4章	神経回路網の演算処理	11
第5章	局所学習則	13
第6章	生成モデルとエネルギーベースモデル	15
第7章	貢献度分配問題の解決策	17
第8章	運動制御	19
第9章	強化学習	21
第 10 章	神経回路網によるベイズ推論	23
10.1	神経サンプリング	23
	10.1.1 ガウス尺度混合モデル	23
	10.1.2 興奮性・抑制性神経回路によるサンプリング	32
	10.1.3 Spiking ニューラルネットワークにおけるサンプリング	36
	10.1.4 シナプスサンプリング	37

第1章

はじめに

第2章

神経細胞のモデル

第3章

シナプス伝達のモデル

第4章

神経回路網の演算処理

第5章

局所学習則

第6章

生成モデルとエネルギーベースモデル

第7章

貢献度分配問題の解決策

第8章

運動制御

8.1 無限時間最適フィードバック制御モデル

8.1.1 モデルの構造

無限時間最適フィードバック制御モデル (infinite-horizon optimal feedback control model) [?]

$$dx = (\mathbf{A}x + \mathbf{B}u)dt + \mathbf{Y}ud\gamma + \mathbf{G}d\omega \tag{8.1}$$

$$dy = \mathbf{C}xdt + \mathbf{D}d\xi \tag{8.2}$$

$$d\hat{x} = (\mathbf{A}\hat{x} + \mathbf{B}u)dt + \mathbf{K}(dy - \mathbf{C}\hat{x}dt)$$
(8.3)

8.1.2 実装

ライブラリの読み込みと関数の定義.

```
using Base: @kwdef
using Parameters: @unpack
using LinearAlgebra, Kronecker, Random, BlockDiagonals, PyPlot
rc("axes.spines", top=false, right=false)
rc("font", family="Arial")
```

定数の定義

$$\alpha_1 = \frac{b}{t_a t_e I}, \quad \alpha_2 = \frac{1}{t_a t_e} + \left(\frac{1}{t_a} + \frac{1}{t_e}\right) \frac{b}{I}$$

$$\tag{8.4}$$

$$\alpha_3 = \frac{b}{I} + \frac{1}{t_a} + \frac{1}{t_e}, \quad b_u = \frac{1}{t_a t_e I}$$
 (8.5)

```
@kwdef struct SaccadeModelParameter
    n = 4 \# number of dims
    i = 0.25 \# kgm^2
    b = 0.2 \# kgm^2/s
    ta = 0.03 \# s
    te = 0.04 \# s
    L0 = 0.35 \# m
    bu = 1 / (ta * te * i)
    \alpha 1 = bu * b
    \alpha 2 = 1/(ta * te) + (1/ta + 1/te) * b/i
    \alpha 3 = b/i + 1/ta + 1/te
    A = [zeros(3) I(3); -[0, \alpha 1, \alpha 2, \alpha 3]']
    B = [zeros(3); bu]
    C = [I(3) zeros(3)]
    D = Diagonal([1e-3, 1e-2, 5e-2])
    Y = 0.02 * B
    G = 0.03 * I(n)
    Q = Diagonal([1.0, 0.01, 0, 0])
    R = 0.0001
    U = Diagonal([1.0, 0.1, 0.01, 0])
end
```

$$\mathbf{X} := \begin{bmatrix} x \\ \tilde{x} \end{bmatrix}, d\bar{\omega} := \begin{bmatrix} d\omega \\ d\xi \end{bmatrix}, \bar{\mathbf{A}} := \begin{bmatrix} \mathbf{A} - \mathbf{BL} & \mathbf{BL} \\ \mathbf{0} & \mathbf{A} - \mathbf{KC} \end{bmatrix}$$
(8.6)

$$\bar{\mathbf{Y}} := \begin{bmatrix} -\mathbf{YL} & \mathbf{YL} \\ -\mathbf{YL} & \mathbf{YL} \end{bmatrix}, \bar{G} := \begin{bmatrix} \mathbf{G} & \mathbf{0} \\ \mathbf{G} & -\mathbf{KD} \end{bmatrix}$$
 (8.7)

とする. 元論文では F, \bar{F} が定義されていたが、 F=0 とするため、以後の式から削除した.

$$\mathbf{P} := \begin{bmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{P}_{12} & \mathbf{P}_{22} \end{bmatrix} := E \left[\mathbf{X} \mathbf{X}^{\top} \right]$$
 (8.8)

$$\mathbf{P} := \begin{bmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{P}_{12} & \mathbf{P}_{22} \end{bmatrix} := E \begin{bmatrix} \mathbf{X} \mathbf{X}^{\top} \end{bmatrix}$$

$$\mathbf{V} := \begin{bmatrix} \mathbf{Q} + \mathbf{L}^{\top} R \mathbf{L} & -\mathbf{L}^{\top} R \mathbf{L} \\ -\mathbf{L}^{\top} R \mathbf{L} & \mathbf{L}^{\top} R \mathbf{L} + \mathbf{U} \end{bmatrix}$$
(8.8)

aaa

$$K = \mathbf{P}_{22} \mathbf{C}^{\top} \left(\mathbf{D} \mathbf{D}^{\top} \right)^{-1} \tag{8.10}$$

$$\mathbf{L} = (R + \mathbf{Y}^{\top} (\mathbf{S}_{11} + \mathbf{S}_{22}) \mathbf{Y})^{-1} \mathbf{B}^{\top} \mathbf{S}_{11}$$
(8.11)

$$\bar{\mathbf{A}}^{\mathsf{T}}\mathbf{S} + \mathbf{S}\bar{\mathbf{A}} + \bar{\mathbf{Y}}^{\mathsf{T}}\mathbf{S}\bar{\mathbf{Y}} + \mathbf{V} = 0 \tag{8.12}$$

$$\bar{\mathbf{A}}\mathbf{P} + \mathbf{P}\bar{\mathbf{A}}^{\top} + \bar{\mathbf{Y}}\mathbf{P}\bar{\mathbf{Y}}^{\top} + \bar{\mathbf{G}}\bar{\mathbf{G}}^{\top} = 0 \tag{8.13}$$

 $\mathbf{A}=(a_{ij})$ を $m\times n$ 行列, $\mathbf{B}=(b_{kl})$ を $p\times q$ 行列とすると、それらのクロネッカー積 $\mathbf{A}\otimes \mathbf{B}$ は

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}\mathbf{B} & \cdots & a_{1n}\mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{m1}\mathbf{B} & \cdots & a_{mn}\mathbf{B} \end{bmatrix}$$
(8.14)

で与えられる $mp \times nq$ 区分行列である.

Roth's column lemma (vec-trick)

$$(\mathbf{B}^{\top} \otimes \mathbf{A}) \operatorname{vec}(\mathbf{X}) = \operatorname{vec}(\mathbf{A}\mathbf{X}\mathbf{B}) = \operatorname{vec}(\mathbf{C})$$
(8.15)

によりこれを解くと,

$$\mathbf{S} = -\text{vec}^{-1} \left(\left(\mathbf{I} \otimes \bar{\mathbf{A}}^{\top} + \bar{\mathbf{A}}^{\top} \otimes \mathbf{I} + \bar{\mathbf{Y}}^{\top} \otimes \bar{\mathbf{Y}}^{\top} \right)^{-1} \text{vec}(\mathbf{V}) \right)$$
(8.16)

$$\mathbf{P} = -\text{vec}^{-1} \left(\left(\mathbf{I} \otimes \bar{\mathbf{A}} + \bar{\mathbf{A}} \otimes \mathbf{I} + \bar{\mathbf{Y}} \otimes \bar{\mathbf{Y}} \right)^{-1} \text{vec}(\bar{\mathbf{G}} \bar{\mathbf{G}}^{\top}) \right)$$
(8.17)

となる. ここで $\mathbf{I} = \mathbf{I}^{\mathsf{T}}$ を用いた.

K, L, S, P の計算

K, L, S, P の計算は次のようにする.

- 1. L と K をランダムに初期化
- 2. SとPを計算
- 3. LとKを更新
- 4. 収束するまで 2 と 3 を繰り返す.

収束スピードはかなり速い.

function infinite_horizon_ofc(param::SaccadeModelParameter, maxiter=1000, ← ∈=1e-8)

Qunpack n, A, B, C, D, Y, G, Q, R, U = param

initialize

```
L = rand(n)' # Feedback gains
     K = rand(n, 3) \# Kalman gains
     I_{2n} = I(2n)
     for _ in 1:maxiter
          A^- = [A-B*L B*L; zeros(size(A)) (A-K*C)]
          Y^- = [-ones(2) ones(2)] \otimes (Y*L)
          G^- = [G zeros(size(K)); G (-K*D)]
          V = BlockDiagonal([Q, U]) + [1 -1; -1 1] \otimes (L'* R * L)
          # update S. P
          S = -reshape((I_{2n} \otimes (A^{-})' + (A^{-})' \otimes I_{2n} + (Y^{-})' \otimes (Y^{-})') \setminus vec(V), \dashv
               (2n, 2n)
          P = -reshape((I_{2n} \otimes A^- + A^- \otimes I_{2n} + Y^- \otimes Y^-) \setminus vec(G^- * (G^-)'), \rightarrow
               (2n, 2n))
          # update K, L
          P_{22} = P[n+1:2n, n+1:2n]
          S_{11} = S[1:n, 1:n]
          S_{22} = S[n+1:2n, n+1:2n]
          K_{t-1} = copy(K)
          L_{t-1} = copy(L)
          K = P_{22} * C' / (D * D')
          L = (R + Y' * (S_{11} + S_{22}) * Y) \setminus B' * S_{11}
          if sum(abs.(K - K_{t-1})) < \varepsilon && sum(abs.(L - L_{t-1})) < \varepsilon
               break
          end
     end
     return L, K
end
```

```
param = SaccadeModelParameter()
L, K = infinite_horizon_ofc(param);
```

シミュレーション

関数を書く.

```
function simulation(param::SaccadeModelParameter, L, K, dt=0.001, T=2.0, =
   init_pos=-0.5; noisy=true)
   @unpack n, A, B, C, D, Y, G, Q, R, U = param
   nt = round(Int, T/dt)
```

```
X = zeros(n, nt)
    u = zeros(nt)
    X[1, 1] = init_{pos} \# m; initial position (target position is zero)
    if noisy
        sqrtdt = √dt
        X^{-} = zeros(n, nt)
        X^{[1, 1]} = X[1, 1]
        for t in 1:nt-1
            u[t] = -L * X^{[:, t]}
            X[:, t+1] = X[:,t] + (A * X[:,t] + B * u[t]) * dt + sqrtdt * (Y - A)
                * u[t] * randn() + G * randn(n))
            dy = C * X[:,t] * dt + D * sqrtdt * randn(n-1)
            X^{(:, t+1)} = X^{(:,t)} + (A * X^{(:,t)} + B * u(t)) * dt + K * (dy -
                - C * X^{[:,t]} * dt
        end
    else
        for t in 1:nt-1
            u[t] = -L * X[:, t]
            X[:, t+1] = X[:, t] + (A * X[:, t] + B * u[t]) * dt
        end
    end
    return X, u
end
```

理想状況でのシミュレーション

```
dt = 1e-3
T = 1.0
```

```
Xa, ua = simulation(param, L, K, dt, T, noisy=false);
```

ノイズを含むシミュレーション

ノイズを含む場合.

```
n = 4
nsim = 10
XSimAll = []
uSimAll = []
for i in 1:nsim
    XSim, u = simulation(param, L, K, dt, T, noisy=true);
    push!(XSimAll, XSim)
```

```
push!(uSimAll, u)
end
```

結果の描画

```
tarray = collect(dt:dt:T)
label = [L"Position ($m$)", L"Velocity ($m/s$)", L"Acceleration ($m/s^2$)", <math>\neg
    L"Jerk ($m/s^3$)"]
fig, ax = subplots(1, 3, figsize=(10, 3))
for i in 1:2
    for j in 1:nsim
        ax[i].plot(tarray, XSimAll[j][i,:]', "tab:gray", alpha=0.5)
    end
    ax[i].plot(tarray, Xa[i,:], "tab:red")
    ax[i].set_ylabel(label[i]); ax[i].set_xlabel(L"Time ($s$)"); -
        ax[i].set_xlim(0, T); ax[i].grid()
end
for j in 1:nsim
    ax[3].plot(tarray, uSimAll[j], "tab:gray", alpha=0.5)
end
ax[3].plot(tarray, ua, "tab:red")
ax[3].set_ylabel(L"Control signal ($N\cdot m$)"); ax[3].set_xlabel(L"Time -
    ($s$)"); ax[3].set_xlim(0, T); ax[3].grid()
tight_layout()
```


図 8.1 cell017.png

8.1.3 Target jump

target jump する場合の最適制御 [?]. 状態に target 位置も含むモデルであれば target 位置をずらせばよいが、ここでは自己位置をずらし target との相対位置を変化させることで target jump を実現する.

```
function target_jump_simulation(param::SaccadeModelParameter, L, K, →
   dt=0.001, T=2.0,
       Ttj=0.4, tj_dist=0.1,
        init_pos=-0.5; noisy=true)
    # Ttj : target jumping timing (sec)
    # tj_dist : target jump distance
   Qunpack n, A, B, C, D, Y, G, Q, R, U = param
    nt = round(Int, T/dt)
   ntj = round(Int, Ttj/dt)
   X = zeros(n, nt)
    u = zeros(nt)
   X[1, 1] = init_{pos} \# m; initial position (target position is zero)
   if noisy
        sgrtdt = √dt
        X^{-} = zeros(n, nt)
        X^{[1, 1]} = X[1, 1]
        for t in 1:nt-1
            if t == nti
                X[1, t] = tj_{dist} # When k == ntj, target 
                    jumpさせる(実際には現在の位置をずらす)
                X^{[1, t]} = tj_{dist}
            end
            u[t] = -L * X^{[:, t]}
            X[:, t+1] = X[:,t] + (A * X[:,t] + B * u[t]) * dt + sqrtdt * (Y ↔
               * u[t] * randn() + G * randn(n))
            dy = C * X[:,t] * dt + D * sqrtdt * randn(n-1)
            X^{(:, t+1]} = X^{(:,t]} + (A * X^{(:,t]} + B * u[t]) * dt + K * (dy - C)
               - C * X^{[:,t]} * dt
        end
    else
        for t in 1:nt-1
            if t == ntj
                X[1, t] = tj_{dist} # When k == ntj, target 
                    jumpさせる(実際には現在の位置をずらす)
            end
            u[t] = -L * X[:, t]
            X[:, t+1] = X[:, t] + (A * X[:, t] + B * u[t]) * dt
        end
    end
```

```
X[1, 1:ntj-1] .-= tj_dist;
    return X, u
end
Ttj = 0.4
tj_dist = 0.1
nt = round(Int, T/dt)
ntj = round(Int, Ttj/dt);
Xtj, utj = target_jump_simulation(param, L, K, dt, T, noisy=false);
XtjAll = []
utjAll = []
for i in 1:nsim
    XSim, u = target_jump_simulation(param, L, K, dt, T, noisy=true);
    push!(XtjAll, XSim)
    push!(utjAll, u)
end
target_pos = zeros(nt)
target_pos[1:ntj-1] .-= tj_dist;
fig, ax = subplots(1, 3, figsize=(10, 3))
for i in 1:2
    ax[1].plot(tarray, target_pos, "tab:green")
    for j in 1:nsim
        ax[i].plot(tarray, XtjAll[j][i,:]', "tab:gray", alpha=0.5)
   ax[i].axvline(x=Ttj, color="gray", linestyle="dashed")
   ax[i].plot(tarray, Xtj[i,:], "tab:red")
    ax[i].set_ylabel(label[i]); ax[i].set_xlabel(L"Time ($s$)"); -
       ax[i].set_xlim(0, T); ax[i].grid()
end
for j in 1:nsim
    ax[3].plot(tarray, utjAll[j], "tab:gray", alpha=0.5)
end
ax[3].axvline(x=Ttj, color="gray", linestyle="dashed")
ax[3].plot(tarray, utj, "tab:red")
ax[3].set_ylabel(L"Control signal ($N\cdot m$)"); ax[3].set_xlabel(L"Time -
   ($s$)"); ax[3].set_xlim(0, T); ax[3].grid()
```

tight_layout()

図 8.2 cell023.png

第9章

強化学習

第 10 章

神経回路網によるベイズ推論