Thermoelastic fracture problems using Extended Finite Element Method

By Bharat Bhushan (153100048)

Under the guidance of Prof. Salil S. Kulkarni

Department of Mechanical Engineering, IIT Bombay

October 26, 2016

Outline

- Introduction
- Motivation
- Literature Survey
- Objectives
- Computer implementation
- Example problems
- Conclusion and future work

 Thermo-elastic Fracture mechanics is a field in which we Study the propagation of the crack in presence of temperature field.

- Thermo-elastic Fracture mechanics is a field in which we Study the propagation of the crack in presence of temperature field.
- Some application areas are as follows:

- Thermo-elastic Fracture mechanics is a field in which we Study the propagation of the crack in presence of temperature field.
- Some application areas are as follows:

- Thermo-elastic Fracture mechanics is a field in which we Study the propagation of the crack in presence of temperature field.
- Some application areas are as follows:

- Thermo-elastic Fracture mechanics is a field in which we Study the propagation of the crack in presence of temperature field.
- Some application areas are as follows:

(a) Ultrafast laser

(C) The cylinder-nozzle intersection.

(b) Cracks generated in material

- Thermo-elastic Fracture mechanics is a field in which we Study the propagation of the crack in presence of temperature field.
- Some application areas are as follows:

(a) Ultrafast laser

(C) The cylinder-nozzle intersection.

(b) Cracks generated in material

(d) Cracked baffle bolt of Belgian Nuclear Reactor

- Thermo-elastic Fracture mechanics is a field in which we Study the propagation of the crack in presence of temperature field.
- Some application areas are as follows:

(a) Ultrafast laser

(C) The cylinder-nozzle intersection.

(b) Cracks generated in material

(d) Cracked baffle bolt of Belgian Nuclear Reactor

source: Tian, X., Shen. (2006). A direct finite element method study of generalized thermoelastic problems. International Journal of Solids and Structures, 43(7), 2050-2063.

 Atkinson has solved a Dirichlet problem for Laplace's equation on a pie shaped region as:

• Atkinson has solved a Dirichlet problem for Laplace's equation on a pie shaped region as: $u(x,y)=r^{\frac{\pi}{\phi}}\sin\alpha\theta,\ r>0,\ 0<\theta<\phi$

- Atkinson has solved a Dirichlet problem for Laplace's equation on a pie shaped region as: $u(x,y)=r^{\frac{\pi}{\phi}}\sin\alpha\theta,\ r>0,\ 0<\theta<\phi$
 - Case I: $0 < \phi < \pi$: u' is continuous as we approach towards the origin

- Atkinson has solved a Dirichlet problem for Laplace's equation on a pie shaped region as: $u(x,y)=r^{\frac{\pi}{\phi}}\sin\alpha\theta,\ r>0,\ 0<\theta<\phi$
 - Case I: $0 < \phi < \pi$: u' is continuous as we approach towards the origin
 - $\circ~$ Case II: $\pi < \phi < 2\pi :~u'$ is not continuous as (x,y) approaches the origin

Pie-shaped region.

- Atkinson has solved a Dirichlet problem for Laplace's equation on a pie shaped region as: $u(x,y) = r^{\frac{\pi}{\phi}} \sin \alpha \theta, \ r > 0, \ 0 < \theta < \phi$
 - Case I: $0 < \phi < \pi$: u' is continuous as we approach towards the origin
 - \circ Case II: $\pi < \phi < 2\pi$: u' is not continuous as (x,y) approaches the origin
- When $\phi = 2\pi$, the problem becomes a crack problem:

$$u \propto r^{\frac{1}{2}}$$
 and $u' \propto r^{-\frac{1}{2}}$

Pie-shaped region.

- Atkinson has solved a Dirichlet problem for Laplace's equation on a pie shaped region as: $u(x,y) = r^{\frac{\pi}{\phi}} \sin \alpha \theta, \ r > 0, \ 0 < \theta < \phi$
 - Case I: $0 < \phi < \pi$: u' is continuous as we approach towards the origin
 - \circ Case II: $\pi < \phi < 2\pi$: u' is not continuous as (x,y) approaches the origin
- When $\phi = 2\pi$, the problem becomes a crack problem:

$$u \propto r^{\frac{1}{2}}$$
 and $u' \propto r^{-\frac{1}{2}}$

• Substituting T in place of u: $T \propto r^{\frac{1}{2}}$ and $T' \propto r^{-\frac{1}{2}}$

Pie-shaped region.

- Atkinson has solved a Dirichlet problem for Laplace's equation on a pie shaped region as: $u(x,y) = r^{\frac{\pi}{\phi}} \sin \alpha \theta, \ r > 0, \ 0 < \theta < \phi$
 - Case I: $0 < \phi < \pi$: u' is continuous as we approach towards the origin
 - \circ Case II: $\pi < \phi < 2\pi$: u' is not continuous as (x,y) approaches the origin
- When $\phi = 2\pi$, the problem becomes a crack problem:

$$u \propto r^{\frac{1}{2}}$$
 and $u' \propto r^{-\frac{1}{2}}$

- Substituting T in place of u: $T \propto r^{rac{1}{2}}$ and $T' \propto r^{-rac{1}{2}}$
- Thus, around the crack tip, thermal stresses also has square root singularity: our motivation for analyzing a thermo-elastic crack problem.

Pie-shaped region.

 $X\text{-}\mathsf{FEM}\ \mathsf{enrichment}\ \mathsf{strategy}$

X-FEM enrichment strategy

$$\textit{Heavyside enrichment functions}: \qquad \textit{h}(x,y) = \begin{cases} 1, & \textit{for } y \geq 0 \\ -1, & \textit{for } y \leq 0 \end{cases}$$

X-FEM enrichment strategy

Heavyside enrichment functions :

$$h(x,y) = \begin{cases} 1, & \text{for } y \ge 0 \\ -1, & \text{for } y \le 0 \end{cases}$$

$$u^h = \sum_i N_i(x)u_i + \sum_{j \in J} N_j(x)h(x)a_j + \sum_{k \in K} N_k(x) \left(\sum_{l=1}^4 \gamma_l(x)b_{kl}\right)$$

Heavyside enrichment functions : h(x, y)

$$h(x,y) = \begin{cases} 1, & \text{for } y \ge 0 \\ -1, & \text{for } y \le 0 \end{cases}$$

$$u^h = \sum_{i} N_i(x) u_i + \sum_{j \in J} N_j(x) h(x) a_j + \sum_{k \in K} N_k(x) \left(\sum_{l=1}^4 \gamma_l(x) b_{kl} \right)$$

$$v^h = \sum_i N_i(x)v_i + \sum_{j \in J} N_j(x)h(x)c_j + \sum_{k \in K} N_k(x)\left(\sum_{l=1}^4 \gamma_l(x)d_{kl}\right)$$

X-FEM enrichment strategy

Heavyside enrichment functions :
$$h(x,y) = \begin{cases} 1, & \text{for } y \geq 0 \\ -1, & \text{for } y \leq 0 \end{cases}$$
$$u^h = \sum_i N_i(x) u_i + \sum_{j \in J} N_j(x) h(x) a_j + \sum_{k \in K} N_k(x) \left(\sum_{l=1}^4 \gamma_l(x) b_{kl} \right)$$
$$v^h = \sum_i N_i(x) v_i + \sum_{j \in J} N_j(x) h(x) c_j + \sum_{k \in K} N_k(x) \left(\sum_{l=1}^4 \gamma_l(x) d_{kl} \right)$$
$$\text{where}, \gamma = \left[\sqrt{r} \cos \left(\frac{\theta}{2} \right), \sqrt{r} \sin \left(\frac{\theta}{2} \right), \sqrt{r} \sin \left(\frac{\theta}{2} \right) \sin(\theta), \sqrt{r} \cos \left(\frac{\theta}{2} \right) \sin(\theta) \right]$$

X-FEM enrichment strategy

Heavyside enrichment functions : $h(x,y) = \begin{cases} 1, & \text{for } y \ge 0 \\ -1, & \text{for } y \le 0 \end{cases}$

$$u^h = \sum_i N_i(x)u_i + \sum_{j \in J} N_j(x)h(x)a_j + \sum_{k \in K} N_k(x)\left(\sum_{l=1}^4 \gamma_l(x)b_{kl}\right)$$

$$v^h = \sum_i N_i(x)v_i + \sum_{j \in J} N_j(x)h(x)c_j + \sum_{k \in K} N_k(x)\left(\sum_{l=1}^4 \gamma_l(x)d_{kl}\right)$$

where,
$$\gamma = \left[\sqrt{r}\cos\left(\frac{\theta}{2}\right), \sqrt{r}\sin\left(\frac{\theta}{2}\right), \sqrt{r}\sin\left(\frac{\theta}{2}\right)\sin(\theta), \sqrt{r}\cos\left(\frac{\theta}{2}\right)\sin(\theta)\right]$$

Source:Belytschko, T., & Black, T. (1999). Elastic crack growth in finite elements with minimal remeshing. International journal for numerical methods in engineering, 45(5), 601-620.

 Finite element formulation of semi-coupled thermoelasticity and implementation in MATLAB

- Finite element formulation of semi-coupled thermoelasticity and implementation in MATLAB
- Validation of FEM programs by performing patch tests.

- Finite element formulation of semi-coupled thermoelasticity and implementation in MATLAB
- Validation of FEM programs by performing patch tests.
- Development of Extended Finite Element Program for coupled thermoelastic fracture problems

- Finite element formulation of semi-coupled thermoelasticity and implementation in MATLAB
- Validation of FEM programs by performing patch tests.
- Development of Extended Finite Element Program for coupled thermoelastic fracture problems
- Utilization of the developed X-FEM Program in other fields which is governed by Laplace's equation

• A semi-coupled thermoelasticity problem is formulated.

- A semi-coupled thermoelasticity problem is formulated.
- In semi-coupled problems we neglected the effect of displacements on temperature field.

- A semi-coupled thermoelasticity problem is formulated.
- In semi-coupled problems we neglected the effect of displacements on temperature field.
- In presence of temperature field, the Hooke's law can be given by:

$$\begin{cases} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{cases} = \frac{E}{(1 - \nu^{2})} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & 1 - \nu \end{bmatrix} \begin{cases} \varepsilon_{x} - \alpha \Delta T \\ \varepsilon_{y} - \alpha \Delta T \\ \varepsilon_{xy} \end{cases}$$

- A semi-coupled thermoelasticity problem is formulated.
- In semi-coupled problems we neglected the effect of displacements on temperature field.
- In presence of temperature field, the Hooke's law can be given by:

$$\begin{cases} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{cases} = \frac{E}{(1 - \nu^{2})} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & 1 - \nu \end{bmatrix} \begin{cases} \varepsilon_{x} - \alpha \Delta T \\ \varepsilon_{y} - \alpha \Delta T \\ \varepsilon_{xy} \end{cases}$$

• The governing equations of the thermoelasticity are derived as follows:

$$\begin{split} \frac{\partial}{\partial x} \left[c_{11} \frac{\partial u}{\partial x} + c_{12} \frac{\partial v}{\partial y} \right] + \frac{\partial}{\partial y} \left[c_{66} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right] - (c_{11} + c_{12}) \alpha \frac{\partial T}{\partial x} - f_x &= 0 \\ \frac{\partial}{\partial x} \left[c_{66} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right] + \frac{\partial}{\partial y} \left[c_{12} \frac{\partial u}{\partial x} + c_{22} \frac{\partial v}{\partial y} \right] - (c_{11} + c_{12}) \alpha \frac{\partial T}{\partial y} - f_y &= 0 \\ k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) &= q \end{split}$$

Weak Form Equations of Coupled Thermoelasticity

Weak Form Equations of Coupled Thermoelasticity

$$\begin{split} -\int_{\Omega} \left[c_{11} \frac{\partial N_{i}}{\partial x} \frac{\partial N_{j}}{\partial x} u_{j} + c_{12} \frac{\partial N_{i}}{\partial x} \frac{\partial N_{j}}{\partial y} v_{j} \right] dx dy + \int_{\Omega} \left[c_{66} \frac{\partial N_{i}}{\partial y} \frac{\partial N_{j}}{\partial y} u_{j} dx dy + \frac{\partial N_{i}}{\partial y} \frac{\partial N_{j}}{\partial x} v_{j} \right] dx dy \\ -\int_{\Omega} \frac{\partial N_{i}}{\partial x} \beta N_{j} T_{j} dx dy + \int_{\Omega} N_{i} f_{x} dx dy + \int_{\Gamma} N_{i} \vec{t} dx = 0 \end{split}$$

Weak Form Equations of Coupled Thermoelasticity

$$\begin{split} -\int_{\Omega} \left[c_{11} \frac{\partial N_{i}}{\partial x} \frac{\partial N_{j}}{\partial x} u_{j} + c_{12} \frac{\partial N_{i}}{\partial x} \frac{\partial N_{j}}{\partial y} v_{j} \right] dx dy + \int_{\Omega} \left[c_{66} \frac{\partial N_{i}}{\partial y} \frac{\partial N_{j}}{\partial y} u_{j} dx dy + \frac{\partial N_{i}}{\partial y} \frac{\partial N_{j}}{\partial x} v_{j} \right] dx dy \\ -\int_{\Omega} \frac{\partial N_{i}}{\partial x} \beta N_{j} T_{j} dx dy + \int_{\Omega} N_{i} f_{x} dx dy + \int_{\Gamma} N_{i} \vec{t} dx = 0 \end{split}$$

$$\begin{split} -\int_{\Omega} \left[c_{11} \frac{\partial N_{i}}{\partial y} \frac{\partial N_{j}}{\partial y} v_{j} + c_{12} \frac{\partial N_{i}}{\partial y} \frac{\partial N_{j}}{\partial x} u_{j} \right] dx dy + \int_{\Omega} \left[c_{66} \frac{\partial N_{i}}{\partial x} \frac{\partial N_{j}}{\partial x} v_{j} dx dy + \frac{\partial N_{i}}{\partial x} \frac{\partial N_{j}}{\partial y} u_{j} \right] dx dy \\ -\int_{\Omega} \frac{\partial N_{i}}{\partial y} \beta N_{j} T_{j} dx dy + \int_{\Omega} N_{i} f_{y} dx dy + \int_{\Gamma} N_{i} \vec{t} dy = 0 \end{split}$$

Weak Form Equations of Coupled Thermoelasticity

$$\begin{split} -\int_{\Omega} \left[c_{11} \frac{\partial N_{i}}{\partial x} \frac{\partial N_{j}}{\partial x} u_{j} + c_{12} \frac{\partial N_{i}}{\partial x} \frac{\partial N_{j}}{\partial y} v_{j} \right] dx dy + \int_{\Omega} \left[c_{66} \frac{\partial N_{i}}{\partial y} \frac{\partial N_{j}}{\partial y} u_{j} dx dy + \frac{\partial N_{i}}{\partial y} \frac{\partial N_{j}}{\partial x} v_{j} \right] dx dy \\ -\int_{\Omega} \frac{\partial N_{i}}{\partial x} \beta N_{j} T_{j} dx dy + \int_{\Omega} N_{i} f_{x} dx dy + \int_{\Gamma} N_{i} \vec{t} dx = 0 \end{split}$$

$$\begin{split} -\int_{\Omega} \left[c_{11} \frac{\partial N_{i}}{\partial y} \frac{\partial N_{j}}{\partial y} v_{j} + c_{12} \frac{\partial N_{i}}{\partial y} \frac{\partial N_{j}}{\partial x} u_{j} \right] dx dy + \int_{\Omega} \left[c_{66} \frac{\partial N_{i}}{\partial x} \frac{\partial N_{j}}{\partial x} v_{j} dx dy + \frac{\partial N_{i}}{\partial x} \frac{\partial N_{j}}{\partial y} u_{j} \right] dx dy \\ -\int_{\Omega} \frac{\partial N_{i}}{\partial y} \beta N_{j} T_{j} dx dy + \int_{\Omega} N_{i} f_{y} dx dy + \int_{\Gamma \text{MARTERS}_{Typ}} N_{i} \vec{t} dy = 0 \end{split}$$

$$k \int_{\Omega} \left(\frac{\partial N_i}{\partial x} \frac{\partial N_j}{\partial x} + \frac{\partial N_i}{\partial y} \frac{\partial N_j}{\partial y} \right) T_j dx dy - \int_{\Omega} N_i N_j q dx dy = \int_{\Gamma} N_i \bar{Q} ds$$

• Neglecting the body forces, above equations can be written in matrix form as:

$$\begin{bmatrix} K_{11} & K_{12} \\ 0 & K_{22} \end{bmatrix} \begin{Bmatrix} U^e \\ T^e \end{Bmatrix} = \begin{Bmatrix} F \\ Q \end{Bmatrix}$$

• Neglecting the body forces, above equations can be written in matrix form as:

$$\begin{bmatrix} K_{11} & K_{12} \\ 0 & K_{22} \end{bmatrix} \begin{Bmatrix} U^e \\ T^e \end{Bmatrix} = \begin{Bmatrix} F \\ Q \end{Bmatrix}$$

$$\begin{split} [K_{11}^e] &= \int_{\Omega} [B]^T [C] [B] dx dy \quad [K_{12}^e] = \int_{\Omega} [B]^T [\beta] [N^\theta] dx dy \quad [K_{22}^e] = \int_{\Omega} [B^\theta]^T [K] [B^\theta] dx dy \\ \{F\} &= \int_{\Gamma} [N]^T \overline{t} ds \quad \{Q\} = \int_{\Gamma} [N^\theta]^T \overline{Q} ds \end{split}$$

• Neglecting the body forces, above equations can be written in matrix form as:

$$\begin{bmatrix} K_{11} & K_{12} \\ 0 & K_{22} \end{bmatrix} \begin{Bmatrix} U^e \\ T^e \end{Bmatrix} = \begin{Bmatrix} F \\ Q \end{Bmatrix}$$

Where,

$$\begin{split} [K_{11}^e] &= \int_{\Omega} [B]^T [C] [B] dx dy \quad [K_{12}^e] = \int_{\Omega} [B]^T [\beta] [N^\theta] dx dy \quad [K_{22}^e] = \int_{\Omega} [B^\theta]^T [K] [B^\theta] dx dy \\ \{F\} &= \int_{\Gamma} [N]^T \overline{t} ds \quad \{Q\} = \int_{\Gamma} [N^\theta]^T \overline{Q} ds \end{split}$$

• Computer implementation:

Neglecting the body forces, above equations can be written in matrix form as:

$$\begin{bmatrix} K_{11} & K_{12} \\ 0 & K_{22} \end{bmatrix} \begin{Bmatrix} U^e \\ T^e \end{Bmatrix} = \begin{Bmatrix} F \\ Q \end{Bmatrix}$$

$$\begin{split} [K_{11}^e] &= \int_{\Omega} [B]^T[C][B] dx dy \quad [K_{12}^e] = \int_{\Omega} [B]^T[\beta][N^\theta] dx dy \quad [K_{22}^e] = \int_{\Omega} [B^\theta]^T[K][B^\theta] dx dy \\ \{F\} &= \int_{\Gamma} [N]^T \bar{t} ds \quad \{Q\} = \int_{\Gamma} [N^\theta]^T \bar{Q} ds \end{split}$$

- Computer implementation:
 - A MATLAB program is developed to solve the 2-dimensional thermoelasticity problems based on above Finite Element model

Neglecting the body forces, above equations can be written in matrix form as:

$$\begin{bmatrix} K_{11} & K_{12} \\ 0 & K_{22} \end{bmatrix} \begin{Bmatrix} U^e \\ T^e \end{Bmatrix} = \begin{Bmatrix} F \\ Q \end{Bmatrix}$$

$$\begin{split} [K_{11}^e] &= \int_{\Omega} [B]^T[C][B] dx dy \quad [K_{12}^e] = \int_{\Omega} [B]^T[\beta][N^\theta] dx dy \quad [K_{22}^e] = \int_{\Omega} [B^\theta]^T[K][B^\theta] dx dy \\ \{F\} &= \int_{\Gamma} [N]^T \bar{t} ds \quad \{Q\} = \int_{\Gamma} [N^\theta]^T \bar{Q} ds \end{split}$$

- Computer implementation:
 - A MATLAB program is developed to solve the 2-dimensional thermoelasticity problems based on above Finite Element model
 - o 4-noded quadrilateral (Q4) elements and 3-degrees of freedom per node

Neglecting the body forces, above equations can be written in matrix form as:

$$\begin{bmatrix} K_{11} & K_{12} \\ 0 & K_{22} \end{bmatrix} \begin{Bmatrix} U^e \\ T^e \end{Bmatrix} = \begin{Bmatrix} F \\ Q \end{Bmatrix}$$

$$\begin{split} [K_{11}^e] &= \int_{\Omega} [B]^T[C][B] dx dy \quad [K_{12}^e] = \int_{\Omega} [B]^T[\beta][N^\theta] dx dy \quad [K_{22}^e] = \int_{\Omega} [B^\theta]^T[K][B^\theta] dx dy \\ \{F\} &= \int_{\Gamma} [N]^T \bar{t} ds \quad \{Q\} = \int_{\Gamma} [N^\theta]^T \bar{Q} ds \end{split}$$

- Computer implementation:
 - A MATLAB program is developed to solve the 2-dimensional thermoelasticity problems based on above Finite Element model
 - o 4-noded quadrilateral (Q4) elements and 3-degrees of freedom per node
 - 2 × 2 Gauss quadrature rule is used for numerical integration

 A square plate is taken and meshed with 5 elements as shown in the figure below.

- A square plate is taken and meshed with 5 elements as shown in the figure below.
- Minimum number of essential boundary conditions is fixed to eliminate the rigid body motions

- A square plate is taken and meshed with 5 elements as shown in the figure below.
- Minimum number of essential boundary conditions is fixed to eliminate the rigid body motions
- Loads are applied such that there is constant state of stress in the body

(a) Mesh Configuration

- A square plate is taken and meshed with 5 elements as shown in the figure below.
- Minimum number of essential boundary conditions is fixed to eliminate the rigid body motions
- Loads are applied such that there is constant state of stress in the body
- Numerical integration is performed using 2×2 Gauss quadrature rule.

a) Mesh Configuration

- A square plate is taken and meshed with 5 elements as shown in the figure below.
- Minimum number of essential boundary conditions is fixed to eliminate the rigid body motions
- Loads are applied such that there is constant state of stress in the body
- Numerical integration is performed using 2×2 Gauss quadrature rule.

(b) Results of Patch Test

F	Node (x,y)
4 3	1 (0,0)
4	2 (2,0)
8 7	3 (2,2)
	4 (0,2)
5 3 6 2	5 (0.85,0.7)
5 6	6 (1.5,1)
1	7 (1.2,1.4)
1 2	8 (0.7,1.6)

(4) 11002110 11 1 2001 1 100				
	Gauss Point	σ_x/F	σ_y/F	τ_{xy}/F
	1	0.166×10^{-15}	1	0.1665×10^{-15}
Element 1	2	-0.033×10^{-15}	1	0.1665×10^{-15}
	3	-0.063×10^{-15}	1	0.222×10^{-15}
	4	0	1	0
	1	0.062×10^{-15}	1	0
Element 2	2	41633×10^{-15}	1	-0.222×10^{-15}
	3	0.02775×10^{-15}	1	0.138×10^{-15}
	4	-0.2220×10^{-15}	1	0
	1	0.222×10^{-15}	1	0.1665×10^{-15}
Element 3	2	0.0555×10^{-15}	1	0.222×10^{-15}
	3	-0.0555×10^{-15}	1	
	4	0.22204×10^{-15}	1	0 7
	1	-0.222×10^{-15}	9/1	0.1665×10^{-15}
F1	2	0.222×10^{-15}	1	0.1665×10^{-15}
Element 4	3	-0.063×10^{-15}	1	0.222×10^{-15}
	4	0.222×10^{-15}	1	0
	1	-0.422×10^{-15}	- 1	0.1665×10^{-15}
Florent F	2	0.222×10^{-15}	1	0.1665×10^{-15}
Element 5	3	-0.063×10^{-15}	1	0.222×10^{-15}
	4	0.222×10^{-15}	1	- U O -

• A temperature distribution of $T=x^2+y^2$ is applied on 4 boundaries of plate which satisfies the Poisson's equation $\frac{\partial^2 T}{\partial x^2}+\frac{\partial^2 T}{\partial y^2}=4$.

- A temperature distribution of $T=x^2+y^2$ is applied on 4 boundaries of plate which satisfies the Poisson's equation $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 4$.
- Heat source q = 4 is applied throughout the body.

- A temperature distribution of $T=x^2+y^2$ is applied on 4 boundaries of plate which satisfies the Poisson's equation $\frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial y^2} = 4$.
- Heat source q = 4 is applied throughout the body.
- Results are compared with the analytical solutions in the following table:

Nodes	% Error in Temperature T	% Error in displacement u_y
30	$-0.0523342237 \times 10^{-12}$	0.00034894013
33	$0.1046684475 \times 10^{-12}$	0.00082764871
63	$0.0916486147 \times 10^{-12}$	0.00015321553

Mesh Refinements

Mesh Refinements

Mesh Refinements

Errors obtained on node 30 after mesh refinements

Number of Elements	% Error in displacement u_x	% Error in displacement u_y
7 × 7	0.00034894013	0.00034894013
12 × 12	1.764697×10^{-7}	1.764697×10^{-7}
20 × 20	1.265804×10^{-8}	1.265804×10^{-8}

• An edge crack problem is solved applying stress $\sigma_y = 100$ Mpa and taking E=200 Gpa and ν =0.3.

• An edge crack problem is solved applying stress $\sigma_y = 100$ Mpa and taking E=200 Gpa and ν =0.3.

- An edge crack problem is solved applying stress $\sigma_y = 100$ Mpa and taking E=200 Gpa and ν =0.3.
- Stress intensity factor is calculated using the crack closure integral technique.

- An edge crack problem is solved applying stress $\sigma_y = 100$ Mpa and taking E=200 Gpa and ν =0.3.
- Stress intensity factor is calculated using the crack closure integral technique.
- Same problem is solved in X-FEM program developed by Parnaik and compared by our solution

- An edge crack problem is solved applying stress $\sigma_y = 100$ Mpa and taking E=200 Gpa and ν =0.3.
- Stress intensity factor is calculated using the crack closure integral technique.
- Same problem is solved in X-FEM program developed by Parnaik and compared by our solution

source: Koustubh Parnaik. (2013). Implementation of Extended Finite Element Method (X-FEM) for static fracture problems. Department of Mechanical Engineering, IIT Bombay. 13 of 16

(a) Crack closure technique

Crack closure integral:
$$G_I = \frac{W}{RA} =$$

(a) Crack closure technique

Crack closure integral:
$$G_I =$$

$$F_{I} = \frac{W}{B\Delta a} = \frac{F_{y}^{a} u_{y}^{b}}{2B\Delta a}$$

Thus,
$$K_I = \sqrt{}$$

$$G_I = rac{W}{B\Delta a} = rac{F_y^a u_y^b}{2B\Delta a}$$
 Thus, $K_I = \sqrt{rac{G_I}{E}} = 5.24586910 imes 10^9$ Pa \sqrt{m}

(a) Crack closure technique

Crack closure integral:
$$G_I = \frac{W}{B\Delta a} = \frac{F_y^a u_y^b}{2B\Delta a}$$
 Thus, $K_I = \sqrt{\frac{G_I}{E}} = 5.24586910 \times 10^9$ $Pa\sqrt{m}$

Analytical:
$$K_I = C * \sigma \sqrt{\pi a} = 4.726065 \times 10^9 \ Pa\sqrt{m}$$

(a) Crack closure technique

(b) X-FEM enrichment of nodes

$$G_I = \frac{W}{B\Delta a} = \frac{F_y^a u_y^b}{2B\Delta a}$$

$$G_I = rac{W}{B\Delta a} = rac{F_y^a u_y^b}{2B\Delta a}$$
 Thus, $K_I = \sqrt{rac{G_I}{E}} = 5.24586910 imes 10^9$ Pa \sqrt{m}

Analytical:
$$K_I = C * \sigma \sqrt{\pi a} = 4.726065 \times 10^9 \ Pa\sqrt{m}$$

Method used	% Error = $\{K_{theoretical} - K_{numerical}/K_{theoretical}\} \times 100$		
Finite Element Method	11.1%		MY
Extended Finite Element Method	4%	प्रोचानिक	

source:Kumar, P., & Prashant, K. (2009). Elements of fracture mechanics. Tata McGraw-Hill Education.

• Conclusions:

- Conclusions:
 - Finite Element Formulation of semi-coupled thermoelasticity is performed.

- Conclusions:
 - Finite Element Formulation of semi-coupled thermoelasticity is performed.
 - MATLAB program is developed based on the semi-coupled formulation.

- Conclusions:
 - Finite Element Formulation of semi-coupled thermoelasticity is performed.
 - MATLAB program is developed based on the semi-coupled formulation.
 - Patch tests were performed to validate the FEM program.

Conclusions:

- Finite Element Formulation of semi-coupled thermoelasticity is performed.
- MATLAB program is developed based on the semi-coupled formulation.
- Patch tests were performed to validate the FEM program.
- Results of FEM and X-FEM programs were compared and it is shown that solution improves when X-FEM is used.

- Conclusions:
 - Finite Element Formulation of semi-coupled thermoelasticity is performed.
 - MATLAB program is developed based on the semi-coupled formulation.
 - Patch tests were performed to validate the FEM program.
 - Results of FEM and X-FEM programs were compared and it is shown that solution improves when X-FEM is used.
- Future work:

- Conclusions:
 - Finite Element Formulation of semi-coupled thermoelasticity is performed.
 - MATLAB program is developed based on the semi-coupled formulation.
 - Patch tests were performed to validate the FEM program.
 - Results of FEM and X-FEM programs were compared and it is shown that solution improves when X-FEM is used.
- Future work:
 - Finite Element Formulation of Fully-coupled problems

Conclusions:

- Finite Element Formulation of semi-coupled thermoelasticity is performed.
- MATLAB program is developed based on the semi-coupled formulation
- Patch tests were performed to validate the FEM program.
- Results of FEM and X-FEM programs were compared and it is shown that solution improves when X-FEM is used.

Future work:

- Finite Element Formulation of Fully-coupled problems
- Application of the Extended Finite Element enrichments to both displacement and temperature fields

Conclusions:

- Finite Element Formulation of semi-coupled thermoelasticity is performed.
- MATLAB program is developed based on the semi-coupled formulation.
- Patch tests were performed to validate the FEM program.
- Results of FEM and X-FEM programs were compared and it is shown that solution improves when X-FEM is used.

Future work:

- Finite Element Formulation of Fully-coupled problems
- Application of the Extended Finite Element enrichments to both displacement and temperature fields
- Utilization of the X-FEM program in other fields which is governed by the Laplace's equation.

Thank You!

