1.) Import the Credit Card Fraud Data From CCLE¶

```
In [38]: import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
```

```
In [39]: df = pd.read_csv("/Users/snehilshandilya/Desktop/fraudTest_2.csv")
```

In [40]: df.head()

Out[40]:

	Unnamed: 0	trans_date_trans_time	cc_num	merchant	category	amt	first	last	gender	street	 la
0	0	2020-06-21 12:14:25	2291163933867244	fraud_Kirlin and Sons	personal_care	2.86	Jeff	Elliott	М	351 Darlene Green	 33.965
1	1	2020-06-21 12:14:33	3573030041201292	fraud_Sporer- Keebler	personal_care	29.84	Joanne	Williams	F	3638 Marsh Union	 40.320 [°]
2	2	2020-06-21 12:14:53	3598215285024754	fraud_Swaniawski, Nitzsche and Welch	health_fitness	41.28	Ashley	Lopez	F	9333 Valentine Point	 40.672
3	3	2020-06-21 12:15:15	3591919803438423	fraud_Haley Group	misc_pos	60.05	Brian	Williams	М	32941 Krystal Mill Apt. 552	 28.569 [°]
4	4	2020-06-21 12:15:17	3526826139003047	fraud_Johnston- Casper	travel	3.19	Nathan	Massey	М	5783 Evan Roads Apt. 465	 44.252!

5 rows × 23 columns

2.) Select four columns to use as features (one must be trans_date_trans)

```
In [41]: df_select = df[["trans_date_trans_time", "category", "amt", "city_pop", "is_fraud"]]
df_select.head()
```

Out [41]:

	trans_date_trans_time	category	amt	city_pop	is_fraud
0	2020-06-21 12:14:25	personal_care	2.86	333497	0
1	2020-06-21 12:14:33	personal_care	29.84	302	0
2	2020-06-21 12:14:53	health_fitness	41.28	34496	0
3	2020-06-21 12:15:15	misc_pos	60.05	54767	0
4	2020-06-21 12:15:17	travel	3.19	1126	0

3.) Create a unique variable out of trans_date.

```
In [42]: df["trans_date_trans_time"] = pd.to_datetime(df["trans_date_trans_time"])
In [43]: df_select["time_var"] = [i.hour_for_i in df["trans_date_trans_time"]]
```

/var/folders/sv/s309_3dd79s_59j12prhgcd00000gn/T/ipykernel_22576/1545706583.py:1: SettingWithCopyWarnin a:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df_select["time_var"] = [i.hour for i in df["trans_date_trans_time"]]

```
In [44]: df_select["time_var"]
Out[44]: 0
                   12
                   12
                   12
                   12
                   12
         555714
                   23
         555715
                   23
         555716
                   23
         555717
                   23
         555718
                   23
         Name: time_var, Length: 555719, dtype: int64
In [45]: dummies = pd.get_dummies(df_select["category"])
         X = pd.concat([dummies, df_select[["amt", "city_pop", "time_var"]]], axis = 1)
         Y = df_select["is_fraud"]
In [46]: X.head()
Out [46]:
```

grocery_net	grocery_pos	health_fitness	home	kids_pets	misc_net	misc_pos	personal_care	shopping_net	shopping_pos	travel	amt	cit
0	0	0	0	0	0	0	1	0	0	0	2.86	3
0	0	0	0	0	0	0	1	0	0	0	29.84	
0	0	1	0	0	0	0	0	0	0	0	41.28	
0	0	0	0	0	0	1	0	0	0	0	60.05	
0	0	0	0	0	0	0	0	0	0	1	3.19	

```
In [47]: from sklearn import preprocessing
min_max_scaler = preprocessing.MinMaxScaler(feature_range = (0,1))
X = min_max_scaler.fit_transform(X)
```

4.) Splitting the data into training and testing set

```
In [48]: from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.3)
```

5.) Making three sets of training data

a) Oversample

```
In [49]: pip install imblearn
```

Requirement already satisfied: imblearn in ./opt/anaconda3/lib/python3.9/site-packages (0.0)
Requirement already satisfied: imbalanced-learn in ./opt/anaconda3/lib/python3.9/site-packages (from imblearn) (0.10.1)

Requirement already satisfied: threadpoolctl>=2.0.0 in ./opt/anaconda3/lib/python3.9/site-packages (fro m imbalanced-learn->imblearn) (2.2.0)

Requirement already satisfied: scipy>=1.3.2 in ./opt/anaconda3/lib/python3.9/site-packages (from imbala nced-learn->imblearn) (1.7.3)

Requirement already satisfied: joblib>=1.1.1 in ./opt/anaconda3/lib/python3.9/site-packages (from imbal anced-learn->imblearn) (1.2.0)

Requirement already satisfied: scikit-learn>=1.0.2 in ./opt/anaconda3/lib/python3.9/site-packages (from imbalanced-learn->imblearn) (1.0.2)

Requirement already satisfied: numpy>=1.17.3 in ./opt/anaconda3/lib/python3.9/site-packages (from imbal anced-learn->imblearn) (1.21.5)

Note: you may need to restart the kernel to use updated packages.

```
In [50]: from imblearn.over_sampling import RandomOverSampler
```

```
In [51]: ros = RandomOverSampler(random_state = 0)
    ros.fit(X_train,Y_train)
    X_resampled_over, Y_resampled_over = ros.fit_resample(X_train,Y_train)
```

b) Undersampling

```
In [52]: from imblearn.under_sampling import RandomUnderSampler
```

```
In [53]: rus = RandomUnderSampler(random_state = 0)
rus.fit(X_train,Y_train)
X_resampled_under, Y_resampled_under = rus.fit_resample(X_train,Y_train)
```

c) SMOTE

```
In [54]: from imblearn.over_sampling import SMOTE
```

```
In [55]: oversample = SMOTE()
X_smote, Y_smote = oversample.fit_resample(X_train,Y_train)
```

Fitting regression models

```
In [56]: from sklearn.linear_model import LogisticRegression
```

Testing the models

a) Oversampled Data

```
In [63]: # Get predictions
Y_pred = log_reg_over.predict(X_test)

# Evaluate the model performance using accuracy score
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(Y_test, Y_pred)
print("Accuracy:", accuracy)
```

Accuracy: 0.9078372801650711

b) Undersampled Data

```
In [64]: Y_pred1 = log_reg_under.predict(X_test)

# Evaluate the model performance using accuracy score
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(Y_test, Y_pred1)
print("Accuracy:", accuracy)
```

Accuracy: 0.7463830706110991

c) SMOTE

```
In [65]: Y_pred2 = log_reg_smote.predict(X_test)

# Evaluate the model performance using accuracy score
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(Y_test, Y_pred2)
print("Accuracy:", accuracy)
```

Accuracy: 0.9063257275846349

On the basis of the accuracy of the three models, we see that SMOTE and Oversampled data performs the best in Out of Sample Metrics with an accuracy score of approximately 90%. On the other hand, the undersampled data is the least accurate with an accuracy score of 74%

Selecting two features

In [66]: df_select[df_select["is_fraud"] ==1][["amt", "city_pop"]]

Out [66]:

	amt	city_pop
1685	24.84	23
1767	780.52	1306
1781	620.33	1306
1784	1077.69	71335
1857	842.65	23
517197	1041.51	14462
517274	868.09	14462
517341	1039.42	14462
517529	289.27	14462
517571	766.38	14462

2145 rows × 2 columns

In [68]: import matplotlib.pyplot as plt

Plotting the two classes before SMOTE

plt.show()

```
Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 'is_fraud'], dtype='object')
In [115]: plt.scatter(data_temp[data_temp["is_fraud"] == 0][14], data_temp[data_temp["is_fraud"] == 0][15])
plt.scatter(data_temp[data_temp["is_fraud"] == 1][14], data_temp[data_temp["is_fraud"] == 1][15])
```


In [113]: data temp = pd.concat([X train, Y train], axis=1)

Plotting the two classes after SMOTE

```
In [117]: X_smote_new = pd.DataFrame(X_smote)
Y_smote_new = pd.DataFrame(Y_smote)
```

```
In [121]: data_temp_new = pd.concat([X_smote_new, Y_smote_new], axis = 1)
In [122]: plt.scatter(data_temp_new[data_temp_new["is_fraud"] == 0][14], data_temp_new[data_temp_new["is_fraud"] = plt.scatter(data_temp_new[data_temp_new["is_fraud"] == 1][14], data_temp_new[data_temp_new["is_fraud"] = plt.show()
```

