信息安全技术

离散概率基础

U: finite set (e.g. $U = \{0,1\}^n$)

Def: **Probability distribution** P over U is a function P: U \rightarrow [0,1]

such that
$$\sum_{x \in U} P(x) = 1$$

Examples:

- **1.** <u>Uniform distribution</u>: for all $x \in U$: P(x) = 1/|U|
- 2. Point distribution at x_0 : $P(x_0) = 1$, $\forall x \neq x_0$: P(x) = 0

Distribution vector: (P(000), P(001), P(010), ..., P(111))

Events

• For a set
$$A \subseteq U$$
: $Pr[A] = \sum_{x \in A} P(x) \in [0,1]$

The set A is called an event

note: Pr[U]=1

Example:
$$U = \{0,1\}^8$$

• A = { all x in U such that $lsb_2(x)=11$ } $\subseteq U$

for the uniform distribution on $\{0,1\}^8$: Pr[A] = 1/4

Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

The union bound

• For events A_1 and A_2 $Pr[A_1 \cup A_2] \le Pr[A_1] + Pr[A_2]$

$$A_1 \cap A_2 = \emptyset \Rightarrow lr[A_1 \vee A_2] = lr[A_1] + lr[A_2]$$

Example:

```
A_1 = \{ all x in \{0,1\}^n s.t lsb_2(x)=11 \};

A_2 = \{ all x in \{0,1\}^n s.t. msb_2(x)=11 \}
```

$$Pr[lsb_2(x)=11 \text{ or } msb_2(x)=11] = Pr[A_1 \cup A_2] \le \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

Random Variables

Def: a random variable X is a function $X:U \rightarrow V$

Example:
$$X: \{0,1\}^n \to \{0,1\}$$
 ; $X(y) = lsb(y) \in \{0,1\}$

For the uniform distribution on U:

$$Pr[X=0] = 1/2, Pr[X=1] = 1/2$$

More generally:

rand. var. **X** induces a distribution on V: $Pr[X=v] := Pr[X^{-1}(v)]$

The uniform random variable

Let U be some set, e.g. $U = \{0,1\}^n$

We write $r \stackrel{R}{\leftarrow} U$ to denote a **uniform random variable** over U

for all $a \in U$: Pr[r = a] = 1/|U|

(formally, r is the identity function: r(x)=x for all $x \in U$)

Let r be a uniform random variable on $\{0,1\}^2$

Define the random variable $X = r_1 + r_2$

Then
$$Pr[X=2] = \frac{1}{4}$$

Hint:
$$Pr[X=2] = Pr[r=11]$$

Randomized algorithms

- Deterministic algorithm: $y \leftarrow A(m)$
- Randomized algorithm $y \leftarrow A(\ m\ ; r\) \quad \text{where} \quad r \leftarrow^{\tiny{R}} \{0,1\}^n$

output is a random variable

$$y \stackrel{R}{\leftarrow} A(m)$$

Example: $A(m; k) = E(k, m), y \stackrel{R}{\leftarrow} A(m)$

