1 Proof of Theorem 3.1

We first consider the objective function for $\lambda > 0$:

$$J(\mathbf{s}) = \|\mathbf{s} - \mathbf{r}_g\|^2 + \lambda \mathbf{s}^\top \left((1 - \alpha - \beta) L_u + \alpha L_g + \beta L_{\text{uni}} \right) \mathbf{s}$$
 (1)

. To find the optimal \mathbf{s}_g in the sense of minimizing $J(\mathbf{s})$, we take the gradient of $J(\mathbf{s})$ with respect to \mathbf{s} and set it to zero:

$$\nabla_{\mathbf{s}} J(\mathbf{s}) = 2(\mathbf{s} - \mathbf{r}_q) + 2\lambda \left((1 - \alpha - \beta) L_u + \alpha L_q + \beta L_{\text{uni}} \right) \mathbf{s} = \mathbf{0}, \tag{2}$$

where $\mathbf{0}$ is the all-zeros vector. Eq. (2) can be rewritten as

$$(I + \lambda ((1 - \alpha - \beta)L_u + \alpha L_q + \beta L_{\text{uni}})) \mathbf{s} = \mathbf{r}_q.$$
(3)

Due to the fact that $L_u = I - \bar{P}_u$, $L_q = I - \bar{P}_q$, and $L_{\text{uni}} = I - \bar{P}_{\text{uni}}$, we have

$$A \triangleq I + \lambda \left((1 - \alpha - \beta)(I - \bar{P}_u) + \alpha (I - \bar{P}_g) + \beta (I - \bar{P}_{uni}) \right)$$

= $(1 + \lambda)I - \lambda \left((1 - \alpha - \beta)\bar{P}_u + \alpha\bar{P}_g + \beta\bar{P}_{uni} \right).$ (4)

Let $H = (1 - \alpha - \beta)\bar{P}_u + \alpha\bar{P}_q + \beta\bar{P}_{uni}$. Then, it follows that

$$A = (1 + \lambda)I - \lambda H,\tag{5}$$

which results in

$$\mathbf{s} = ((1+\lambda)I - \lambda H)^{-1} \mathbf{r}_{g}$$

$$= \frac{1}{1+\lambda} \left(I - \frac{\lambda}{1+\lambda} H \right)^{-1} \mathbf{r}_{g}.$$
(6)

Letting $\mu = \frac{\lambda}{1+\lambda}$, we have

$$\mathbf{s} = (1 - \mu) \left(I - \mu H \right)^{-1} \mathbf{r}_g. \tag{7}$$

Assuming $0 < \alpha, \beta < 1$, since $0 < \mu < 1$ and H is a combination of three matrices \bar{P}_u , \bar{P}_g , and $\bar{P}_{\rm uni}$, the spectral radius of μH is less than 1. Thus, we can expand the inverse of $I - \mu H$ using the Neumann series:

$$(I - \mu H)^{-1} = \sum_{n=0}^{\infty} (\mu H)^n.$$
 (8)

Thus, Eq. (7) can be rewritten as

$$\mathbf{s} = (1 - \mu) \sum_{n=0}^{\infty} (\mu H)^n \mathbf{r}_g. \tag{9}$$

This infinite series represents a polynomial function of H applied to \mathbf{r}_g . Truncating the series at a finite K, we have

$$\mathbf{s} \approx (1 - \mu) \sum_{n=0}^{K} (\mu H)^n \mathbf{r}_g, \tag{10}$$

which indicates that **s** can be approximated by applying a polynomial graph filter to \mathbf{r}_q , where the filter coefficients are determined by $1 - \mu$ and μ^n .

Given that H is a weighted sum of \bar{P}_u , \bar{P}_g , and \bar{P}_{uni} , and each item similarity graph can be represented using their respective polynomial filters $f_1(\bar{P}_u)$, $f_2(\bar{P}_g)$, and $f_3(\bar{P}_{\text{uni}})$, Eq. (10) can be finally expressed as

$$\mathbf{s} \approx \mathbf{r}_g \left((1 - \alpha - \beta) f_1(\bar{P}_u) + \alpha f_2(\bar{P}_g) + \beta f_3(\bar{P}_{uni}) \right), \tag{11}$$

where the polynomial filters approximate the series expansion. Therefore, we conclude that Group-GF's prediction is an approximate solution to the optimization problem in Eq. (11) under the condition that the spectral radius of μH is less than 1, which holds when $0 < \alpha, \beta < 1$. This completes the proof of Theorem 3.1.