

Xin Chen

chenxin3131@mail.dlut.edu.cn

Mentor: Prof. Dong Wang

Dalian University of Technology

Visual Object Tracking

- **■** Goal
 - Track an arbitrary object in a video given its initial location **Single-object**, **Category-free**
- Challenges
 Occlusion, Light Change, Background Clutter, etc.

Papers & Github-repo Recommendation

Papers:

SINT, SiamFC, SiamRPN, SiamDW, SiamRPN++, SiamFC++, Ocean

ECO, ATOM, DiMP, PrDiMP, KYS

TransT, AlphaRefine, LTMU

Github-repo:

[TransT] https://github.com/chenxin-dlut/TransT

[Paper/Code/Results] https://github.com/wangdongdut/Online-Visual-Tracking-SOTA

[Long-term][Paper/Code/Results] https://github.com/wangdongdut/Long-term-Visual-Tracking

[PaperWriting] https://github.com/wangdongdut/PaperWriting

[PyTracking] https://github.com/visionml/pytracking

[PySOT] https://github.com/STVIR/pysot

[TracKit] https://github.com/researchmm/TracKit

[OPE-Evaluation] https://github.com/got-10k/toolkit

[VOT] https://github.com/votchallenge

Transformer Tracking (TransT)

Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun yang, Huchuan Lu. Transformer Tracking. CVPR, 2021.

Code: https://github.com/chenxin-dlut/TransT

https://github.com/chenxin-dlut/TransT

Our TransT Framework

> Attention to Replace "Correlation"

 $\begin{aligned} & \text{MultiHead}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{Concat}(\mathbf{H}_1, ..., \mathbf{H}_{n_h}) \mathbf{W}^O \\ & \mathbf{H}_i = \text{Attention}(\mathbf{Q} \mathbf{W}_i^Q, \mathbf{K} \mathbf{W}_i^K, \mathbf{V} \mathbf{W}_i^V) \end{aligned}$

Ego-Context Augment Module

Cross-Feature Augment Module

- ✓ ECA based on self-attention and CFA based on cross-attention
- ✓ CFA performs feature fusion, retaining rich semantic information
- ✓ ECA and CFA establish dependence between long distance features and aggregate global information

Our Feature Fusion Network

Original Transformer

Similar with DETR

https://github.com/chenxin-dlut/TransT

DUT, IIAU-LAB

Large-scale Benchmark Results

										
Method	Source	LaSOT [14]			TrackingNet [30]			GOT-10k [19]		
Wictiou	Source	AUC	P_{Norm}	P	AUC	P_{Norm}	P	AO	$SR_{0.5}$	$SR_{0.75}$
TransT	Ours	64.9	73.8	69.0	81.4	86.7	80.3	72.3	82.4	68.2
TransT-N2	Ours	64.2	73.5	68.2	80.9	86.4	79.2	69.9	80.1	65.9
TransT-GOT	Ours	-	-	-	-	-	-	67.1	76.8	60.9
SiamR-CNN [39]	CVPR2020	64.8	72.2	-	81.2	85.4	80.0	64.9	72.8	59.7
Ocean [48]	ECCV2020	56.0	65.1	56.6	-	-	-	61.1	72.1	47.3
KYS [3]	ECCV2020	55.4	63.3	-	74.0	80.0	68.8	63.6	75.1	51.5
DCFST [49]	ECCV2020	-	-	-	75.2	80.9	70.0	63.8	75.3	49.8
SiamFC++ [44]	AAAI2020	54.4	62.3	54.7	75.4	80.0	70.5	59.5	69.5	47.9
PrDiMP [10]	CVPR2020	59.8	68.8	60.8	75.8	81.6	70.4	63.4	73.8	54.3
CGACD [13]	CVPR2020	51.8	62.6	-	71.1	80.0	69.3	-	-	-
SiamAttn [46]	CVPR2020	56.0	64.8	-	75.2	81.7	-	-	-	-
MAML [40]	CVPR2020	52.3	-	-	75.7	82.2	72.5	-	-	-
D3S [26]	CVPR2020	-	-	-	72.8	76.8	66.4	59.7	67.6	46.2
SiamCAR [16]	CVPR2020	50.7	60.0	51.0	-	-	-	56.9	67.0	41.5
SiamBAN [5]	CVPR2020	51.4	59.8	52.1	-	-	-	-	-	-
DiMP [2]	ICCV2019	56.9	65.0	56.7	74.0	80.1	68.7	61.1	71.7	49.2
SiamPRN++ [21]	CVPR2019	49.6	56.9	49.1	73.3	80.0	69.4	51.7	61.6	32.5
ATOM [9]	CVPR2019	51.5	57.6	50.5	70.3	77.1	64.8	55.6	63.4	40.2
ECO [8]	ICCV2017	32.4	33.8	30.1	55.4	61.8	49.2	31.6	30.9	11.1
MDNet [31]	CVPR2016	39.7	46.0	37.3	60.6	70.5	56.5	29.9	30.3	9.9
SiamFC [1]	ECCVW2016	33.6	42.0	33.9	57.1	66.3	53.3	34.8	35.3	9.8

LaSOT Attribute

Results on NFS, OTB2015 and UAV123

Results on VOT2020

- > TransT-N2 + Alpha-Refine: EAO 48.8
- > TransT-N4 + Alpha-Refine: EAO 47.2
- > TransT-Mask (add a mask branch on TransT): EAO 49.5

Ablation Study

Method	LaSOT [14]			Trac	kingNet [[30]	GOT-10k [19]			
Wicthod	AUC	P_{Norm}	P	AUC	P_{Norm}	P	AO	$SR_{0.5}$	SR _{0.75}	
TransT	64.9	73.8	69.0	81.4	86.7	80.3	72.3	82.4	68.2	
TransT-np	62.9	71.5	66.9	81.1	86.4	80.0	71.5	81.5	67.5	
TransT(ori)	62.3	71.1	66.2	81.3	86.1	78.9	70.3	80.2	65.8	
TransT(ori)-np	60.9	69.4	64.8	80.9	85.6	78.4	68.6	78.2	65.1	

Ablation Study

Method	ECA	CFA	Correlation	LaSOT [14]			TrackingNet [30]			GOT-10k [19]		
	LCA			AUC	P_{Norm}	P	AUC	P_{Norm}	P	AO	$SR_{0.5}$	SR _{0.75}
TransT				64.9	73.8	69.0	81.4	86.7	80.3	72.3	82.4	68.2
TransT				62.9	71.9	66.2	81.1	86.2	79.1	70.6	81.2	65.7
TransT			$\sqrt{}$	57.7	65.4	59.5	77.5	82.2	74.0	62.8	72.2	54.8
TransT			$\sqrt{}$	47.7	48.6	41.7	68.8	71.4	60.9	50.9	58.0	33.3
TransT-np	$\sqrt{}$	$\sqrt{}$		62.9	71.5	66.9	81.1	86.4	80.0	71.5	81.5	67.5
TransT-np		$\sqrt{}$		61.0	69.6	64.5	80.0	85.0	77.9	68.1	78.3	64.0
TransT-np	$\sqrt{}$		$\sqrt{}$	57.3	65.2	58.8	76.2	80.8	72.8	61.4	70.7	53.7
TransT-np				35.3	17.9	20.1	46.5	40.3	27.4	38.2	36.8	7.0

Conclusion

- > A New Transformer-based Tracking Framework
- 1. A simple and efficient baseline.
- 2. High performance.
- 3. Completely offline.
- 4. Using same hy-parameter and same model for all test-sets.

Unsolved Challenges

> Distractor

Occlusion and appearance change when distractors exists.

> Out of the Search Region

4 times search region size cannot cover all situations, but a larger search region will aggravate the challenge of distractors.

- > Xin Chen, et al. Transformer Tracking.
- ➤ Ning Wang, et al. Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking.
- ➤ Bin Yan, et al. Learning Spatio-Temporal Transformer for Visual Tracking.
- > Peize Sun, et al. TransTrack: Multiple-Object Tracking with Transformer.
- ➤ Tim Meinhardt, et al. TrackFormer: Multi-Object Tracking with Transformers.

Thanks!

(Q & A)