A RPN Calculator for real and complex numbers

Andreas Thadewald

February 9, 2024

Calculation of AC-Circuits and more!

Contents

1	The calculator	3
	1.1 Reverse Polish Notation (RPN)	4
2	Complex numbers	5
3	Operating instructions	6
	3.1 Trigonometric Functions	6
	3.2 Homers last theorem	7
4	Calculation of AC-Circuits	8
	4.1 Simple Resistor-Circuit	8
	4.2 Circuit with complex resistors	9
	4.3 Circuit with coils and capacitors	10

1 The calculator

How to get the Values in the display like in the picture above:

1 Enter 30 cplx Enter 1 e^x

1.1 Reverse Polish Notation (RPN)

First the numbers, then the operator (+, * ...). Example: 35 Enter 14.7 $\boxed{+}$

Field	Stack	
Т	0.0000	not visible
U	0.0000	not visible
Y	0.0000	visible
X	0.0000	visible

Calculate (35+14.7)*7/(22.7-3.14)

\mathbf{T}	0.0000		0.0000		0.0000		0.0000		0.0000	
U	0.0000		0.0000		0.0000		0.0000		0.0000	
Y	0.0000		0.0000		35.0000		35.0000		0.0000	
X	0.0000	35	35	Enter	35.0000	14.7	14.7	+	49.7000	7

${ m T}$	0.0000		0.0000		0.0000		0.0000	
U	0.0000		0.0000		0.0000		347.9000	
Y	49.7000		0.0000		347.9000		22.7000	
X	7	*	347.9000	22.7	22.7	Enter	22.7000	3.14

${ m T}$	0.0000		0.0000		0.0000
U	347.9000		0.0000		0.0000
Y	22.7000		347.9000		0.0000
X	3.14	_	19.56	/	17.7863

2 Complex numbers

Complex numbers are two-dimensional numbers, with a real- and imaginary part. Calculation is similar to binomial theorem.

$$(a+b)^2=a^2+2ab+b^2$$
 binomial theorem
$$(a+ib)^2=a^2+i2ab-b^2=a^2-b^2+i2ab$$
 Complex number

Get $-b^2$ because of $i^2 = -1$.

There are two ways to represent complex numbers:

- Rectangular coordinates (a + ib) (Rect)
- Polar coordinates $|r| * e^{i\varphi}$ mit $|r| = \sqrt{a^2 + b^2}$ (Pol)

Figure 1: complex number plane

3 Operating instructions

The complex number 3 + i5 in rectangular coordinates (Rect):

The real part 3 in the Y-Field and the imaginary part 5 in the X-Field.

3.1 Trigonometric Functions

Take a look at the complex plane, you see a right triangle with these relation with the radius r = 1 of a circle.

$$\cos^2 a + \sin^2 b = 1$$

'Formular of Euler':

$$e^{i\cdot\varphi^{\circ}} = \cos(\varphi^{\circ}) + i\sin(\varphi^{\circ})$$

Calculation of sine, cosine and tangent of $\varphi = 30^{\circ}$ (Pol and Deg):

because of the "Formular of Euler".

The input (Pol and Deg):

Input	X-Field	Y-Field
1	1	0.0000
Enter	1.0000	1.0000
30	30	1.0000
cplx	$1.0000 \ \angle 30.0000$	0.0000
Rect	$0.8660\ i0.5000$	0.0000
cplx	0.5000	0.8660
x⇔y	0.8660	0.5000
/	0.5774	0.0000

The $\sin(30^\circ) = 0.5$, the $\cos(30^\circ) = 0.866$. The last value in the table is $\tan(30^\circ) = 0.5774$. and backwards the atan (Rect and Deg):

Input	X-Field	Y-Field
1	1	0.5774
x⇔y	0.5774	1.0000
cplx	1.0000 i0.5774	0.0000
Pol	$1.1547 \angle 30.0000$	0.0000

3.2 Homers last theorem

Calculation with big numbers. The Simpsons and Fermat's last theorem!

$$3987^{12} + 4365^{12} = 4472^{12}$$

One of the author of the of the TV-series wrote a C-Programm to find this equation.

Input	X-Field	Y-Field	U-Register
3987	3987	0.0000	
Enter	3987.0000	3987.0000	
12	12	3987.0000	
y^x	1.6134e + 43	0.0000	
4365	4365	1.6134e + 43	
Enter	4365.0000	4365.0000	1.6134e + 43
12	12	4365.0000	1.6134e+43
y^x	4.7842e + 43	1.6134e + 43	
+	6.3977e + 43	0.0000	
4472	4472	6.3977e + 43	
Enter	4472.0000	4472.0000	6.3977e + 43
12	12	4472.0000	6.3977e + 43
y^x	6.3977e + 43	6.3977e + 43	

The left and the right side of the equation are equal!. But the prec toggle-button shows, that Fermat's last theorem was not disproved.

4 Calculation of AC-Circuits

4.1 Simple Resistor-Circuit

Calculation of R_{total}

Figure 2: Resistor-Network

$$R_{total} = 2\Omega + \cfrac{1}{\cfrac{1}{5\Omega} + \cfrac{1}{3\Omega + \cfrac{1}{\cfrac{1}{7\Omega} + \cfrac{1}{1\Omega + 4\Omega}}}}$$

Input	X-Field	Y-Field
1	1	0.0000
Enter	1.000	1.0000
4	4	1.0000
+	5.0000	0.0000
1/x	0.2000	0.0000
7	7.0000	0.2000
1/x	0.14286	0.2000
+	0.34286	0.0000
1/x	2.91667	0.0000
$\overset{'}{3}$	3	2.9167
+	5.9167	0.0000
1/x	0.1690	0.0000
5	5	0.1690
1/x	0.2000	0.1690
+	0.3690	0.0000
1/x	2.7099	0.0000
$\stackrel{\prime}{2}$	2	2.7099
+	4.7099	0.0000

4.2 Circuit with complex resistors

Calculate Z_{total} and the current I (Select Rect and Deg).

$$U = 5V$$

$$Z_1 = 200\Omega + i100\Omega$$

$$Z_2 = 100\Omega - i50\Omega$$

$$Z_3 = 150\Omega + i150\Omega$$

$$U \uparrow \bigcirc$$

$$Z_2 \qquad \boxed{Z}$$

$$Z_{total} = Z_1 + \frac{1}{\frac{1}{Z_2} + \frac{1}{Z_3}}$$
 and $I = \frac{U}{Z_{total}}$

Input	X-Field	Y-Field	U-Register
100	100	0.0000	
Enter	100.0000	100.0000	
50	50	100.0000	
+/_	- 50	100.0000	
cplx	100 <i>i</i> -50	0.0000	
1/x	0.0080i0.0040	0.0000	
150	150	$0.0080\ i0.0040$	
Enter	150.0000	150.0000	0.0080~i0.0040
cplx	$150.0000 \ i 150.0000$	0.008i0.004	
1/x	$0.0033\ i$ - 0.0033	0.008i0.004	
+	$0.00113\ i0.0007$	0.0000	
1/x	$87.9310 \ i$ - 5.1724	0.0000	
200	200	$87.9310\ i$ - 5.1724	
Enter	200.0000	200.0000	$87.9310 \ i$ - 5.1724
100	100	200.0000	87.9310 <i>i</i> -5.1724
cplx	$200 \ i100$	$87.9310\ i$ - 5.1724	
+	$287.9310\;i94.8276$	0.0000	
5	5	$287.9310\ i 94.8276$	
x⇔y	$287.9310\;i94.8276$	5.0000	
	0.0157i - 0.0052	0.0000	
Pol	$0.0165 \angle -18.2288$	0.0000	

$$Z_{total} = 287.9310\Omega + i94.8276\Omega$$
 and $I = 16.5mA * e^{-18.2288}$

4.3 Circuit with coils and capacitors

Calculate Z_{total} (Select Rect and Deg).

$$\begin{split} Z_1 &= X_{C_2} || (X_{L_2} + R_3) : 200 \ i \text{ --}100 \\ Z_2 &= [(Z_1 + R_4) || R_2] || X_{C_1} : 7.3442 \ i \text{ --}16.0160 \\ Z_{total} &= Z_2 + R_1 + X_{L_2} : 27.3442 \ i 33.9840 \end{split}$$

The input in the calculator:

- 100 Enter 100E6 +/- * cplx
- 0 Enter 100 cplx 50 + $^{1}/_{x}$ + $^{1}/_{x}$
- $30 + \frac{1}{x} 50 \frac{1}{x} + 0$ Enter 100 Enter $500E6 + \frac{1}{x} * cplx + \frac{1}{x}$
- 20 + 0 Enter 100 Enter 0.5 * Cplx +