LECTURE 2: BASIC TOPOLOGY

1. The order topology

Here we give an important example of a non-metric topology.

Definition 1.1. A partially ordered set, or poset, is a pair (P, \leq) , where P is a set and \leq is a binary relation on P. The binary relation must satisfy the following properties:

- (1) (reflexivity) $x \leq x$.
- (2) (antisymmetry) If $x \le y$ and $y \le x$, then x = y.
- (3) (transitivity) If $x \le y$ and $y \le z$, then $x \le z$.

Exercise 1.2. Condition (2) in definition 1.1 is actually unneccessary, because it follows from (1) and (3).

WARNING: There are several inequivalent topologies that can be defined in a natural way from a partial order. What we will call the *order topology* is this unit is not universally called the order topology everywhere in the mathematical literature. It is also not consistent with the most common definition of the order topology of a totally ordered set.

Definition 1.3. Let (P, \leq) be a poset. The **order topology** on P is defined to be the smallest topology on P where the sets $C_x = \{y \in P : x \leq y\}$ are closed. The topology generated by the basis of open sets

$$\mathcal{B} = \{ P \setminus (C_{x_1} \cup \dots \cup C_{x_n}) : x \in X \}. \tag{1.1}$$

Example 1.4. If (\mathbb{R}, \leq) is given the order topology, the closed sets are the intervals $[a, \infty)$ for $a \in \mathbb{R}$, and the open sets are the intervals $(-\infty, a)$. This is NOT the same as the usual Euclidean topology on \mathbb{R} (which is also often called "the order topology").

Example 1.5. The set 2^S of subsets of a set S form a poset under inclusion. We work out this example for the set $S = \{1, 2, 3\}$.

2. THE ZARISKI TOPOLOGY

Let R be a commutative ring with unity. We put a topology on Spec(R) as follows. For every ideal I, let

$$V_I := \{ P \in \operatorname{Spec}(R) : I \le P \}. \tag{2.1}$$

Proposition 2.1. The V_I are the closed sets of a topology on Spec(R).

Proof. (1) We have $V_R = \emptyset$ and $V_{(0)} = \operatorname{Spec}(R)$.

(2) If \mathcal{I} is any collection of ideals, then we can take $J = \sum_{I \in \mathcal{I}} I$ to be the ideal generated by all the the ideals in \mathcal{I} . Hence,

$$\bigcap_{I \in \mathcal{I}} V_I = \{ P \in \text{Spec}(R) : I \le P \text{ for all } I \in \mathcal{I} \}
= V_J.$$
(2.2)

$$=V_{I}. (2.3)$$

(3) If $\{I_1, \ldots, I_n\}$ is a finite collection of ideals, then their intersection is also an ideal $L = \bigcap_{i=1}^n I_i$, and

$$\bigcup_{j=1}^{n} V_{I_j} = \{ P \in \operatorname{Spec}(R) : I_j \le P \text{ for some } 1 \le j \le n \}$$
 (2.4)

$$=V_L. (2.5)$$

We've now proven that $\operatorname{Spec}(R)$ satisfies the "closed set"-variants of the three axioms of a topological space.

3. Continuous functions

Definition 3.1. Let X and Y be topological spaces, and let $\phi: X \to Y$ be a function. The function ϕ is **continuous** if the inverse image of any open set is open. In other words, if $V \subseteq Y$ is open, then

$$\phi^{-1}(V) = \{ x \in X : f(x) \in V \} \text{ is open.}$$
(3.1)

Note that $\phi^{-1}(Y \setminus V) = X \setminus \phi^{-1}(V)$, so the condition that ϕ is continuous is also equivalent to, "the inverse image of any closed set is closed".

Now consider a ring homomorphism $f: R \to S$, where R and S are commutative rings with unity. Then, there is an induced map

$$f^* : \operatorname{Spec}(S) \to \operatorname{Spec}(R)$$
 (3.2)

given by $f^*(Q) = f^{-1}(Q)$. We see that $f^*(Q)$ is prime, because for any $a, b \in R$,

$$ab \in f^*(Q) \implies f(ab) \in Q$$
 (3.3)

$$\implies f(a)f(b) \in Q \tag{3.4}$$

$$\implies f(a) \in Q \text{ or } f(b) \in Q$$
 (3.5)

$$\implies a \in f^*(Q) \text{ or } b \in f^*(Q).$$
 (3.6)

Moreover, it turns out that f^* is continuous.

Proposition 3.2. The induced map $f^* : \operatorname{Spec}(S) \to \operatorname{Spec}(R)$ is continuous.

Proof. For any ideal $I \leq R$, define $f_*(I)$ to be the ideal generated by all f(r) such that $r \in R$. (Note that f(I) itself may not be an ideal, unlike $f^{-1}(I)$).

$$(f^*)^{-1}(V_I) = \{ Q \in \text{Spec}(S) : f^*(Q) \in V_I \}$$
(3.7)

$$= \{ Q \in \text{Spec}(S) : I \le f^*(Q) \}. \tag{3.8}$$

The statement that $I \leq f^*(Q)$ is saying, "if $r \in I$, then $f(r) \in Q$ ". This is equivalent to saying, "the ideal generated by f(r) for $r \in I$ is contained in Q", that is, $f_*(I) \leq Q$. Hence,

$$(f^*)^{-1}(V_I) = \{ Q \in \text{Spec}(S) : f_*(I) \le Q \}$$
(3.9)

$$=V_{f_*(I)}. (3.10)$$

We've shown that the inverse image of any closed set is closed; thus, f^* is continuous.