Determining Unknown Boundary Conditions in Fluid-Thermal Systems Using the Dynamic Data Driven Application Systems Methodology

D. Knight, Q. Ma, T. Rossman and Y. Jaluria Department of Mechanical and Aerospace Engineering Rutgers - The State University of New Jersey

Third International Symposium on Integrating CFD and Experiments in Aerodynamics

June 20-21, 2007

Research supported by

NSF Grant CNS-0539152

Monitored by Dr. Frederica Darema

maintaining the data needed, and c including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington	
		2. REPORT TYPE N/A		3. DATES COVE	RED	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Determining Unknown Boundary Conditions in Fluid-Thermal Systems				5b. GRANT NUMBER		
Using the Dynamic Data Driven Application Systems Methodology				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Department of Mechanical and Aerospace Engineering Rutgers - The State University of New Jersey 8. PERFORMING ORGANIZATION REPORT NUMBER						
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited						
13. SUPPLEMENTARY NOTES Third International Symposium on Integrating CFD and Experiments in Aerodynamics, June 20-21, 2007, The original document contains color images.						
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 16	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline

- Introduction
- Problem Definition
- Dynamic Data Driven Applications System Methodology
- Results
- Conclusions

Introduction

• In many engineering applications involving fluid-thermal systems, detailed quantitative infomation on the flow, temperature and species concentration is needed for system optimization

Optical fibre furnace

Turbofan engine

Introduction

Numerical simulation can obtain the desired information and thus optimize the system
 However, this approach requires well-defined boundary and operating conditions which may not be completely known due to limited access for experimental measurements

Optical fibre furnace

Turbofan engine

Introduction

• The objective of our research is to develop a Dynamic Data Driven Applications System approach that synergizes experiment and simulation to determine the boundary and operating conditions, thereby achieving a full simulation capability

Optical fibre furnace

Turbofan engine

Jet in Crossflow

• Heated wall jet in crossflow

The objective is to determine the jet inflow conditions (U_j, T_j) using a Dynamic Data Driven Applications Systems method that synergizes experiment and simulation

Parameters				
Item	Known	Unknown		
$\overline{U_{\infty}}$				
T_{∞}	$\sqrt{}$			
p_{∞}	$\sqrt{}$			
U_{j}		$\sqrt{}$		
T_{j}		$\sqrt{}$		
p_{j}	\checkmark			

Jet in Crossflow

• Experiment

Rutgers Low Speed Wind Tunnel Non-intrusive laser diode measurement Measure absorbance vs time at fixed (x,y) Static temperature T vs time from absorbance Limited region for absorbance measurement Each (x,y) measurement requires ≈ 1 hr

Experimental configuration

Jet in Crossflow

• Laser diode absorbance

Instantaneous absorbance

$$A(x,y) = \frac{(I_o - I(x,y,t))}{I_o}$$

where I_o is incident intensity at (x,y,z_1) and I(x,y,t) is transmitted intensity at (x,y,z_2)

Absorbance per cm of the ${}^QR_2(6)$ line of the oxygen transition $b_1\Sigma_g^+\nu'=0\leftarrow X^3\Sigma_g^-\nu''=0$ at 761.139 nm is

$$\frac{d\mathcal{A}}{dz} = 0.083 \, T^{-1} - 2.26 \cdot 10^{-5}$$

where T(x,y,z,t) is the static temperature in K

Laser diode arrangement

Typical T vs time

Jet in Crossflow

• Simulation

Laminar Navier-Stokes equations

Incompressible, ideal gas

Unsteady, time-dependent

Sutherland viscosity law

Fluent©

Parallel (8 processors)

Jet in Crossflow

• Flow Structure

Jet in Crossflow

Assumptions

Large set S_s of discrete data locations defined (\leq no. of grid cells in simulation) $_{\sf E}$

For each experiment, time series data obtained for small subset $S_e^k, k=1,2,\ldots$ of locations

For each simulation, time series data obtained for entire set S_s for each U_j and T_j

• The quantity for comparison between experiment and simulation is the mean temperature $T_m(x,y)$

Problem

Develop and apply a DDDAS Methodology for determining U_j and T_j

Response Surface Models

- Energy equation decouples from the mass and momentum equations
- Instantaneous temperature behaves as passive scalar and thus must scale as

$$T(x,y,t) - T_{\infty} = (T_j - T_{\infty})f(x,y,t;U_j,U_{\infty})$$

• Response Surface Model

$$T_m(x,y) - T_{\infty} = \left(T_j - T_{\infty}\right) \left[\beta_o(x,y) + \beta_1(x,y) \left(\frac{U_j}{U_{\infty}}\right) + \beta_2(x,y) \left(\frac{U_j}{U_{\infty}}\right)^2\right]$$

• The coefficients $\beta_i(x,y)$ are obtained from simulations performed for a fixed value T_j-T_∞ (selected from the range indicated in Table) and a set of U_j

Flow Conditions

Parameter	Value	
U_{∞} (m/s)	4.0	
T_{∞} (K)	290.	
p_{∞} (kPa)	101.8	
U_j (m/s)	4.0 to 8.0	
T_j (K)	350 to 450	
$p_j^{ ilde{r}}$ (kPa)	101.8	

Dynamic Data Driven Applications System Methodology

- 1. Select monitor locations S_s for simulations
- 2. Generate Response Surface Models based on simulations for fixed ΔT_i^i
- 3. Select monitor locations S_e^k for experiments
- 4. Estimate experimental values for T_j-T_∞ and U_j using Response Surface Models and experimental data at monitor locations
- 5. Repeat at Step No. 2 if estimated T_j-T_∞ is significantly different than used to generate Response Surface Models; otherwise, determine new measurement locations S_e^{k+1}
- 6. Repeat until converged

Distances in cm from jet center

Dynamic Data Driven Applications System Methodology

- Estimating experimental value of $T_i T_{\infty}$ and U_i
 - Calculate square error between the experimental mean temperature and the Response Surface Model for each possible subset of l locations within S_e^k as computed as

$$E = \sum_{l} \left\{ \Delta T_{m_e} - \Delta T_j \left[\beta_o(x, y) + \beta_1(x, y) \left(\frac{U_j}{U_\infty} \right) + \beta_2(x, y) \left(\frac{U_j}{U_\infty} \right)^2 \right] \right\}^2$$

where $\Delta T_j = T_j - T_{\infty}$, $\Delta T_{m_e} = T_{m_e} - T_{\infty}$, and the sum is over l locations within S_e^k (the minimum number for l is 2)

Example: Assume S_e^k contains six locations and let l=2. For each possible set of two locations from S_e^k , the values of ΔT_j and U_j that minimize E are determined. This yields fifteen triplets $(\Delta T_j, U_j, E)$.

- For a given value of l, the predicted values of ΔT_j and U_j , denoted by ΔT_j^l and U_j^l , are taken to be the triplet with the minimum E (i.e., the values of ΔT_j and U_j with the smallest square error).
- The procedure is repeated for all values of l from l=2 to n= size S_e^k .
- The estimate for the experimental value of T_j-T_∞ is the average of these values $T_j-T_\infty=(n-1)^{-1}\sum_{l=2}^{l=n}\Delta T_j^l$ and similarly for U_j .

Results

• Application of DDDAS Methodology

No.	Step	Description
$\overline{1}$	1	A total of eighteen monitor locations were selected
2	2	Response Surface Models were generated at all monitor locations using $\Delta T_i =$ 66 K
3	3	Six locations (Nos. 3, 9, 10, 14, 15 and 16) were selected for experiment
4	4	Using the experimental mean temperature measurements at the six locations, the
		estimated values $\Delta T_j = 110 \pm 16$ K and $U_j = 7.3 \pm 1$ m/s obtained using the RSMs
5	5	A new set of locations for experiments was defined based upon the RSMs
		(Nos. 2, 4, 5 and 17)
6	4	A revised estimate $\Delta T_j = 120 \pm 16$ K and $U_j = 7.1 \pm 1$ m/s obtained using the RSMs
7	2	A revised $T_j - T_\infty = 115$ K was selected for creation of the RSMs recognizing that the
		value originally used $(T_j - T_\infty = 66 \text{ K})$ was far below the value predicted by the RSMs
8	4,5	The new RSMs yield the estimate $T_j - T_\infty = 105 \pm 13$ K and $U_j = 7.1 \pm 1$ m/s

Result

Quantity	Experiment	Predicted
$T_j - T_{\infty}$	107 ± 10 K	$105\pm13~\mathrm{K}$
U_j	8.0 m/s	7.1 ± 1 m/s

Conclusions

- Developed DDDAS methodology for evaluation of fluid thermal systems
 - Examples are optical fibre furnace and turbofan combustor
 - Need for complete flowfield simulation to optimize system performance
 - Boundary conditions for flowfield simulation are not completely known a priori
 - Non-intrusive optical measurements (e.g., laser diode absorbance) feasible in limited region
 - DDDAS method to determine complete boundary conditions by synergizing experiment and simulation
- ullet Developed DDDAS method to determining T_j and U_j
- ullet DDDAS method predicts T_j-T_∞ and U_j within experimental uncertainty