# R. Notebook

#### Parametros:

## Mean :2

car

```
Measure = G-mean

Columns = sampling, weight_space, underbagging

Performance = holdout_measure

Filter keys = imba.rate

Filter values = 0.01

library("scmamp")

library(dplyr)
```

#### Tratamento dos dados

```
Carregando data set compilado
ds = read.csv("/home/rodrigo/Dropbox/UNICAMP/IC/estudo_cost_learning/SummaryResults/summary_compilation
ds = filter(ds, learner != "classif.rusboost")
summary(ds)
##
                                weight_space
                   learner
                       :17100
                               Mode :logical
##
   classif.ksvm
   classif.randomForest:17100
                               FALSE:41040
   classif.rusboost
                               TRUE: 10260
                      :
##
   classif.xgboost
                       :17100
                               NA's :0
##
##
##
##
                              measure
                                             sampling
                                                          underbagging
##
   Accuracy
                                  :10260
                                           ADASYN:10260
                                                          Mode :logical
                                           FALSE :30780
##
  Area under the curve
                                  :10260
                                                          FALSE: 41040
## F1 measure
                                           SMOTE :10260
                                                          TRUE :10260
                                   :10260
## G-mean
                                   :10260
                                                          NA's :0
  Matthews correlation coefficient:10260
##
##
##
  tuning_measure
##
                     holdout_measure
                                      holdout_measure_residual
  Min.
         :-0.1277
                     Min. :-0.2120
                                            :-0.4658
##
                                      Min.
  1st Qu.: 0.6911
                     1st Qu.: 0.4001
                                      1st Qu.: 0.1994
## Median : 0.9700
                     Median : 0.8571
                                      Median : 0.5581
## Mean : 0.7903
                     Mean : 0.6718
                                      Mean : 0.5298
## 3rd Qu.: 0.9975
                     3rd Qu.: 0.9900
                                      3rd Qu.: 0.8755
## Max.
          : 1.0000
                     Max. : 1.0000
                                      Max.
                                            : 1.0000
## NA's
          :1077
                     NA's
                          :1077
                                      NA's
                                            :1077
## iteration_count
                                       dataset
                                                      imba.rate
## Min. :1
               abalone
                                           : 900
                                                    Min. :0.0010
## 1st Qu.:1
                   adult
                                           : 900 1st Qu.:0.0100
## Median :2
                                             900
                   bank
                                                    Median :0.0300
```

900

Mean :0.0286

```
## 3rd Qu.:3
                    cardiotocography-10clases:
                                                900
                                                      3rd Qu.:0.0500
## Max.
           :3
                    cardiotocography-3clases :
                                                900
                                                      Max.
                                                             :0.0500
## NA's
           :1077
                    (Other)
                                             :45900
Filtrando pela metrica
ds = filter(ds, measure == params$measure)
Filtrando o data set
if(params$filter_keys != 'NULL' && !is.null(params$filter_keys)){
  dots = paste0(params$filter_keys," == '",params$filter_values,"'")
  ds = filter (ds, .dots = dots)
}
summary(ds)
##
                    learner
                               weight_space
##
   classif.ksvm
                        :600
                               Mode :logical
## classif.randomForest:600
                               FALSE: 1440
                        : 0
  classif.rusboost
                               TRUE: 360
   classif.xgboost
                        :600
                               NA's :0
##
##
##
##
                                              sampling
                                                          underbagging
                                measure
                                            ADASYN: 360
##
   Accuracy
                                    :
                                        0
                                                          Mode :logical
   Area under the curve
                                        0
                                            FALSE :1080
                                                          FALSE: 1440
  F1 measure
                                        0
                                            SMOTE: 360
                                                          TRUE :360
##
                                                          NA's :0
   G-mean
                                    :1800
  Matthews correlation coefficient:
##
##
##
##
  tuning_measure
                     holdout_measure holdout_measure_residual
          :0.0000
                            :0.0000
                                            :0.0000
## Min.
                     Min.
                                     Min.
  1st Qu.:0.5895
                     1st Qu.:0.0000
                                     1st Qu.:0.1104
## Median :0.9629
                     Median :0.7066
                                    Median :0.4187
                            :0.5605
## Mean
          :0.7515
                                             :0.4386
                     Mean
                                     Mean
  3rd Qu.:0.9987
                     3rd Qu.:0.9645
                                      3rd Qu.:0.7566
## Max.
          :1.0000
                     Max.
                            :1.0000
                                      Max.
                                             :1.0000
## NA's
           :54
                     NA's
                            :54
                                      NA's
                                             :54
## iteration_count
                                         dataset
                                                       imba.rate
                                                           :0.01
## Min.
         :1
                    abalone
                                             : 45
                                                     Min.
## 1st Qu.:1
                    adult.
                                               45
                                                     1st Qu.:0.01
## Median :2
                    bank
                                                     Median:0.01
                                                45
                                                           :0.01
## Mean
         :2
                    car
                                                45
                                                     Mean
## 3rd Qu.:3
                    cardiotocography-10clases:
                                                45
                                                     3rd Qu.:0.01
## Max.
                                                            :0.01
          :3
                    cardiotocography-3clases:
                                                45
                                                     Max.
## NA's
          :54
                    (Other)
                                             :1530
Computando as médias das iteracoes
ds = group_by(ds, learner, weight_space, measure, sampling, underbagging, dataset, imba.rate)
ds = summarise(ds, tuning_measure = mean(tuning_measure), holdout_measure = mean(holdout_measure),
               holdout_measure_residual = mean(holdout_measure_residual))
ds = as.data.frame(ds)
```

```
Criando dataframe
```

```
# Dividindo o ds em n, um para cada técnica
splited_df = ds %>% group_by_at(.vars = params$columns) %>% do(vals = as.data.frame(.)) %>% select(vals
# Juntando cada uma das partes horizontalmente em um data set
df_tec_wide = do.call("cbind", splited_df)
# Renomeando duplicacao de nomes
colnames(df_tec_wide) = make.unique(colnames(df_tec_wide))
# Selecionando apenas as medidas da performance escolhida
df_tec_wide_residual = select(df_tec_wide, matches(paste("^", params$performance, "$|", params$performa
# Renomeando colunas
new_names = NULL
for(i in (1:length(splited_df))){
  id = toString(sapply(splited_df[[i]][1, params$columns], as.character))
 new_names = c(new_names, id)
colnames(df_tec_wide_residual) = new_names
# Verificando a dimensao do df
dim(df_tec_wide_residual)
## [1] 120
# Renomeando a variavel
df = df_tec_wide_residual
head(df)
     ADASYN, FALSE, FALSE FALSE, FALSE, FALSE, FALSE, TRUE
##
## 1
               0.0000000
                                  0.00000000
                                                      0.5587283
## 2
               0.0000000
                                  0.08202566
                                                      0.6875628
## 3
               0.0000000
                                  0.00000000
                                                      0.6598937
## 4
               0.4646156
                                  0.85911676
                                                      1.0000000
## 5
               0.0000000
                                                      0.7960663
                                  0.63807119
## 6
               0.1924501
                                  0.73678114
                                                      0.9366085
##
   FALSE, TRUE, FALSE SMOTE, FALSE, FALSE
## 1
            0.00000000
                                 0.0000000
## 2
            0.06713144
                                 0.1144564
## 3
            0.00000000
                                 0.0000000
## 4
            0.85911676
                                 0.6054989
## 5
            0.63807119
                                 0.1666667
## 6
            0.73678114
                                 0.1924501
summary(df)
## ADASYN, FALSE, FALSE FALSE, FALSE, FALSE, FALSE, TRUE
          :0.0000
                        Min. :0.0000
                                            Min.
                                                   :0.2753
## 1st Qu.:0.0000
                        1st Qu.:0.0000
                                            1st Qu.:0.7603
## Median :0.4700
                        Median :0.5443
                                            Median :0.8939
## Mean
         :0.4929
                        Mean :0.4864
                                            Mean
                                                   :0.8402
## 3rd Qu.:0.8741
                        3rd Qu.:0.8805
                                            3rd Qu.:0.9702
## Max. :1.0000
                        Max. :1.0000
                                            Max.
                                                   :1.0000
```

```
## NA's
        :8
                      NA's :1
## FALSE, TRUE, FALSE SMOTE, FALSE, FALSE
        :0.0000 Min.
                           :0.0000
  1st Qu.:0.0000
                    1st Qu.:0.0000
##
## Median :0.5295
                    Median :0.5400
## Mean
         :0.4851
                   Mean
                           :0.4871
## 3rd Qu.:0.8725 3rd Qu.:0.8981
                   Max.
## Max.
         :1.0000
                           :1.0000
## NA's
         :2
                    NA's
                           :7
```

## Verificando a média de cada coluna selecionada

```
for(i in (1:dim(df)[2])){
  print(paste("Media da coluna ", colnames(df)[i], " = ", mean(df[,i], na.rm = TRUE), sep=""))
}

## [1] "Media da coluna ADASYN, FALSE, FALSE = 0.492870322243109"

## [1] "Media da coluna FALSE, FALSE, FALSE = 0.486437257506925"

## [1] "Media da coluna FALSE, FALSE, TRUE = 0.840184788728806"

## [1] "Media da coluna FALSE, TRUE, FALSE = 0.485050360216659"

## [1] "Media da coluna SMOTE, FALSE, FALSE = 0.487071631799661"
```

### Fazendo teste de normalidade

```
plotDensities(data = na.omit(df))
```



## Testando as diferencas

```
friedmanTest(df)

##

## Friedman's rank sum test

##

## data: df

## Friedman's chi-squared = 119.61, df = 4, p-value < 2.2e-16</pre>
```

# Testando as diferencas par a par

```
test <- nemenyiTest (df, alpha=0.05)
abs(test$diff.matrix) > test$statistic
        ADASYN, FALSE, FALSE FALSE, FALSE, FALSE, FALSE, TRUE
##
## [1,]
                       FALSE
                                           FALSE
                                                                TRUE
## [2,]
                                                                TRUE
                       FALSE
                                           FALSE
## [3,]
                        TRUE
                                            TRUE
                                                               FALSE
## [4,]
                       FALSE
                                           FALSE
                                                                TRUE
## [5,]
                       FALSE
                                                                TRUE
                                           FALSE
        FALSE, TRUE, FALSE SMOTE, FALSE, FALSE
                     FALSE
## [1,]
                                         FALSE
```

| ## | [2,] | FALSE | FALSE |
|----|------|-------|-------|
| ## | [3,] | TRUE  | TRUE  |
| ## | [4,] | FALSE | FALSE |
| ## | [5,] | FALSE | FALSE |

## Plotando os ranks

```
print(colMeans(rankMatrix(df)))

## ADASYN, FALSE, FALSE FALSE, FALSE, FALSE, FALSE, TRUE
## 3.195833 3.466667 1.600000

## FALSE, TRUE, FALSE SMOTE, FALSE, FALSE
## 3.412500 3.325000
```

# Plotando grafico de Critical Diference

```
result = tryCatch({
    plotCD(df, alpha=0.05, cex = 0.35)
}, error = function(e) {})
```

