BEST AVAILABLE COPY

PCT/JP2004/011595 13. 9. 2004

REC'D 07 OCT 2004

PCT

WIPO

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 8月15日

出願番号 Application Number:

特願2003-293739

[ST. 10/C]:

[JP2003-293739]

出 願 人
Applicant(s):

東京エレクトロン株式会社 大見 忠弘

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 6月 7日

【書類名】 特許願 【整理番号】 JPP030119

【提出日】平成15年 8月15日【あて先】特許庁長官殿【国際特許分類】H01L 21/31

【発明者】

【住所又は居所】 東京都港区赤坂五丁目3番6号 TBS放送センター 東京エレ

クトロン株式会社内

【氏名】 小林 保男

【発明者】

【住所又は居所】 東京都港区赤坂五丁目3番6号 TBS放送センター 東京エレ

クトロン株式会社内

【氏名】 川村 剛平

【発明者】

【住所又は居所】 宮城県仙台市青葉区米ヶ袋2丁目1―17―301

【氏名】 大見 忠弘

【発明者】

【住所又は居所】 宮城県仙台市宮城野区平成1-1-22-K6

【特許出願人】

【識別番号】 000219967

【氏名又は名称】 東京エレクトロン株式会社

【特許出願人】

【識別番号】 000205041 【氏名又は名称】 大見 忠弘

【代理人】

【識別番号】 100091513

【弁理士】

【氏名又は名称】 井上 俊夫

【手数料の表示】

【予納台帳番号】 034359 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

 【包括委任状番号】
 9105399

【書類名】特許請求の範囲

【請求項1】

4 2 0 ℃以下の熱履歴を経たフッ素添加カーボン膜からなる絶縁膜を備え、前記熱履歴を 経る前の絶縁膜中の水素原子の含有量が 3 原子%以下であることを特徴とする半導体装置

【請求項2】

絶縁膜は層間絶縁膜であることを特徴とする請求項1記載の半導体装置。

【請求項3】

水素原子の含有量が1×10⁻³ 原子%以下であり、炭素及びフッ素の化合物からなる原料ガスをプラズマ化し、基板上に水素原子の含有量が3原子%以下であるフッ素添加カーボン膜からなる絶縁膜を成膜する工程を含むことを特徴とする半導体装置の製造方法。

【請求項4】

前記絶縁膜を成膜する工程の後、基板を420℃以下の温度で加熱する工程を含むことを 特徴とする請求項3記載の半導体装置の製造方法。

【請求項5】

炭素及びフッ素の化合物からなる原料ガスはC5F8ガスであることを特徴とする請求項3または4記載の半導体装置の製造方法。

【曹類名】明細書

【発明の名称】半導体装置及び半導体装置の製造方法

【技術分野】

[0001]

本発明は、フッ素添加カーボン膜からなる絶縁膜例えば層間絶縁膜を備えた半導体装置 及び半導体装置の製造方法に関する。

【背景技術】

[0002]

半導体装置の高集積化を図るための手法の一つとして配線を多層化する技術があり、多層配線構造をとるためには、n番目の配線層と(n+1)番目の配線層とを導電層で接続すると共に導電層以外の領域は層間絶縁膜と呼ばれる薄膜が形成される。この層間絶縁膜の代表的なものとしてSiO2膜があるが、近年デバイスの動作についてより一層の高速化を図るために層間絶縁膜の比誘電率を低くすることが要求されている。

[0003]

このような要請により、炭素(C)及びフッ素(F)の化合物であるフッ素添加カーボン膜(フロロカーボン膜)が注目されている。SiO2膜の比誘電率が4付近であるのに対して、フッ素添加カーボン膜は、原料ガスの種類を選定すれば比誘電率が2以下になることから層間絶縁膜として極めて有効な膜である。フッ素添加カーボン膜の原料ガスとしては種々のガスが知られているが(特許文献1)、例えばC5F8(オクトフロロシクロペンテン)ガスは網状構造体からなる膜を形成できる点で優れた原料ガスである。

[0004]

ところでこのような原料ガス中には水素が微量ながら例えば10⁻² オーダの原子%含まれている。ただしここでいう原料ガス中の原子%とは、C5F8を一つの原子とみなして計算した値である。水素が微量ながら含まれる理由については、原料ガス中に完全に取り除くことのできない水分が含まれており、この水分を構成している水素であると推測される。

[0005]

一方このように微量な水素が含まれるC5F8ガスを用いてフッ素添加カーボン膜を成膜すると、膜中の水素含量は例えば5原子%もの値になる。原料ガス中の水素含量が極微量でありながら、膜中の水素含量が多い理由は、原料ガス中の水素がフッ素の未結合手に選択的に結合するからであると考えられる。しかしながらフッ素添加カーボン膜中に水素が取り込まれていると、この水素がフッ素と結合してフッ化水素を生成し、このためデバイスの製造工程中において例えば350℃以上に加熱されるとフッ化水素が膜から抜けてしまい、この結果フッ素添加カーボン膜の重量減少が起こる。つまり原料ガス中に水素が含まれていると、フッ素添加カーボン膜は熱的安定性に欠けるという課題がある。そして加熱工程時に脱ガスが起こると、膜が空洞化して脆くなってしまい、密着性が悪くなったり、層間絶縁膜による配線の押さえ込み作用が低下し、配線のうねりやエレクトロマイグレーションが発生しやすくなると共に、フッ化水素による配線の腐食も懸念される。

[0006]

【特許文献1】特開平10-144675号:段落0017

【発明の開示】

【発明が解決しようとする課題】

[0007]

本発明はこのような背景に基づいてなされたものであり、その目的は、良好なフッ素添加カーボン膜からなる絶縁膜を備えた半導体装置を提供することにある。また本発明の他の目的は、炭素及びフッ素の化合物からなる原料ガスを用いてフッ素添加カーボン膜からなる絶縁膜を成膜するにあたり、熱的安定性に優れた絶縁膜を成膜することのできる半導体装置の製造方法を提供することにある。

【課題を解決するための手段】

[0008]

本発明の半導体装置は、420℃以下の熱履歴を経たフッ素添加カーボン膜からなる絶縁膜を備え、前記熱履歴を経る前の絶縁膜中の水素原子の含有量が3原子%以下であることを特徴とする。この絶縁膜は例えば層間絶縁膜である。

[0009]

本発明の半導体装置の製造方法は、水素原子の含有量が1×10⁻³ 原子%以下であり、炭素及びフッ素の化合物からなる原料ガスを用いてプラズマ処理し、基板上に水素原子の含有量が3原子%以下であるフッ素添加カーボン膜からなる絶縁膜を成膜する工程を含むことを特徴とする。ここで原料ガス中の水素原子の原子%の定義は、炭素及びフッ素の化合物を一つの原子と見立てて計算された値であり、例えば水素以外に例えば酸素などの他の原子が原料ガス中に含まれる場合においても、水素を初め不純物の含有量が極微量であることから、化合物の分子数に対する水素の原子数の割合を意味する。また絶縁膜中の水素原子の原子%の定義は、各原子の数の総数、例えば炭素原子、フッ素原子及び水素原子の数の総数に対する水素原子の割合である。この発明においては、前記絶縁膜を成度する工程の後、例えば基板を420℃以下のの温度で加熱する工程、例えば380℃~42ガスは例えばC5F8ガスである。

【発明の効果】

[0010]

フッ素添加カーボン膜中に水素原子が含まれていると、後工程における加熱時に水素とフッ素とが反応して膜中から抜けてしまうが、本発明によれば、420 C以下の熱履歴、例えば 380 C~420 Cの熱履歴においては、水素原子の含有量が 3 原子%以下であれば、その重量減少が少なく、絶縁膜としての機能低下が抑えられる。そして炭素及びフッ素の化合物からなる原料ガスを用いてフッ素添加カーボン膜を製造する場合には、水素原子の含有量が 1×10^{-3} 原子%以下の原料ガスを用いれば、水素原子の含有量が 3 原子%以下の絶縁膜が得られる。

【発明を実施するための最良の形態】

[0011]

本発明の半導体装置の製造方法は、フッ素添加カーボン膜(CF膜)からなる絶縁膜を成膜する工程を含むが、絶縁膜として層間絶縁膜を成膜する方法の実施の形態について説明する。図1はこの実施の形態の製法のイメージを示す図である。基板1としては例えばCMOSを含む集積回路形成用のものが用いられ、例えば表面にBPSG膜11が形成されたものが用いられる。BPSG膜11とはボロン(B)及びリン(P)がドープされたシリケートガラス膜であり、このBPSG膜11に変えてTEOSを原料として成膜したシリコン酸化膜であってもよい。

[0012]

そして原料ガス 2 としては炭素及びフッ素の化合物である例えば C5F8ガスが用いられるが、この C5F8ガス中の水素原子の含有量は 1×10^{-3} 原子%以下であることが必要である。この C5F8ガスをプラズマ化させると、プラズマ中に含まれる炭素及びフッ素の化合物の活性種が基板 1 の表面に堆積してフッ素添加カーボン膜 3 が成膜される。このとを原料ガス中に含まれる水素がフッ素添加カーボン膜 3 中に取り込まれるが、既述のように水素がフッ素の未結合手に選択的に結合することからフッ素添加カーボン膜 3 中に取り込まれるが素の量は原料ガス中の含有率に比べて多くなる。ここで水素原子の含有量を 1 ッ素添加カーボン膜 3 中に取り込まれる水素の量は、3 原子%以下である C5F8ガスを使用して後述のようにプラズマ処理すれば、2 システルの水分量の関定値から計算で求めているため、水分量で規定すれば、高温がス中の水分量の関定値から計算で求めているため、水分量で規定すれば、原料ガス中の水分量が 2 の、2 の 2 の

[0013]

図2はこのようにして成膜された層間絶縁膜を備えた半導体装置の一例であり、41は p型シリコン層、42、43は夫々ソース、ドレインをなす n 型部分、44はゲート酸化膜、45はゲート電極であり、これらによりMOSトランジスタが構成されている。また 46はBPSG膜、47は例えばタングステン(W)からなる配線であり、48はサイドスペーサである。そしてBPSG膜 46の上には、例えば銅からなる配線層 51が埋め込まれた層間絶縁膜 52が多層に積み上げられている(図2では便宜上 2 層としてある)。なお 53 は例えば窒化シリコンからなるハードマスク、54 は配線金属の拡散を防止するための例えばチタンナイトライドあるいはタンタルナイトライドなどからなる保護層、55 は保護膜である。

[0014]

[0015]

フッ素添加カーボン膜である層間絶縁膜52の中に含まれる水素は加熱されるとフッ素と結合しフッ化水素 (HF)となって膜から離脱し、その結果膜が空洞化して脆くなってしまう。そこで加熱工程の最高温度つまり層間絶縁膜52の熱履歴が上記の温度範囲においては、膜中の水素の含有量が3原子%以下であればフッ化水素の離脱量が少なく熱的安定性が優れている。

[0016]

[0017]

前記処理容器 6 1 の上部には載置台 6 2 と対向するように、例えば平面形状が略円形状に構成された例えばアルミナからなる第 1 のガス供給部 6 4 が設けられている。このガス供給部 6 4 における載置台 6 2 と対向する面には多数の第 1 のガス供給孔 6 5 が形成されている。ガス供給孔 6 5 はガス流路 6 6 を介して第 1 のガス供給路 6 7 に連通している。第 1 のガス供給路 6 7 はプラズマガスであるアルゴン(A r)ガスやクリプトン(K r)ガスなどの供給源が接続されている。

[0018]

また載置台62と第1のガス供給部64との間には、例えば平面形状が略円形状に構成された導電体からなる第2のガス供給部68が設けられ、このガス供給部68における載置台62と対向する面には多数の第2のガス供給孔69が形成されている。このガス供給部68の内部には、例えば図4に示すようにガス供給孔69の一端側と連通する格子状のガス流路71が形成されており、このガス流路71には第2のガス供給路72の一端側が接続されている。また第2のガス供給部68には、当該ガス供給部68を貫通するように、多数の開口部73が形成されている。この開口部73は、プラズマを当該ガス供給部68の下方側の空間に通過させるためのものであり、例えば隣接するガス流路71同士の間に形成されている。

[0019]

ここで第2のガス供給部68は、第2のガス供給路72を介して既述の原料ガスである C5F8ガスの供給源(図示せず)と接続され、この原料ガスは、第2のガス供給路72を 介してガス流路71に順次通流し、前記ガス供給孔69を介して、第2のガス供給部68 の下方側の空間に一様に供給される。なお74は排気管であり、真空排気手段75に接続 されている。

[0020]

前記第2のガス供給部68の上部側には、例えばアルミナなどの誘電体により構成され たカバープレート76が設けられ、このカバープレート76の上部側には、当該カバープ レート76と密接するようにアンテナ部77が設けられている。このアンテナ部77は、 図5にもに示すように、平面形状が円形の下面側が開口する扁平なアンテナ本体78と、 このアンテナ本体78の前記下面側の開口部を塞ぐように設けられ、多数のスリットが形 成された円板状の平面アンテナ部材(スリット板)79とを備えており、これらアンテナ 本体78と平面アンテナ部材79とは導体により構成され、扁平な中空の円形導波管を構 成している。

[0021]

また前記平面アンテナ部材79とアンテナ本体78との間には、例えばアルミナや酸化 ケイ素、窒化ケイ素等の低損失誘電体材料により構成された遅相板81が設けられている 。この遅相板81はマイクロ波の波長を短くして前記導波管内の管内波長を短くするため のものである。この実施の形態では、これらアンテナ本体78、平面アンテナ部材79、 遅相板81によりラジアルラインスリットアンテナが構成されている。

[0022]

このように構成されたアンテナ部77は、前記平面アンテナ部材79がカバープレート 76に密接するように図示しないシール部材を介して処理容器61に装着されている。そ してこのアンテナ部77は同軸導波管82を介して外部のマイクロ波発生手段83と接続 され、例えば周波数が2.45GHzあるいは84GHzのマイクロ波が供給されるよう になっている。この際、同軸導波管82の外側の導波管82Aはアンテナ本体78に接続 され、中心導体82Bは遅相板81に形成された開口部を介して平面アンテナ部材79に 接続されている。

[0023]

前記平面アンテナ部材79は例えば厚さ1mm程度の銅板からなり、図5に示すように 例えば円偏波を発生させるための多数のスリット84が形成されている。このスリット8 4は略T字状に僅かに離間させて配置した一対のスリット84a, 84bを1組として、 周方向に沿って例えば同心円状や渦巻き状に形成されている。なおこのスリット84は略 八字状に僅かに離間させて配置させてもよい。このようにスリット84aとスリット84 bとを相互に略直交するような関係で配列しているので、2つの直交する偏波成分を含む 円偏波が放射されることになる。この際スリット対84a,84bを遅相板81により圧 縮されたマイクロ波の波長に対応した間隔で配列することにより、マイクロ波が平面アン テナ部材79より略平面波として放射される。

[0024]

続いて上記の成膜装置により実施される成膜プロセスの一例について説明する。先ず基 板であるウエハWを搬入して載置台62上に載置する。続いて処理容器61の内部を所定 の圧力まで真空引きし、第1のガス供給路67を介して第1のガス供給部64にプラズマ ガス例えばArガスを所定の流量例えば300sccmで供給すると共に、第2のガス供 給路72を介して原料ガス供給部である第2のガス供給部68に原料ガス例えばC5F8ガ スを所定の流量例えば150sccmで供給する。そして処理容器61内を例えばプロセ ス圧力13.3Paに維持し、載置台62の表面温度を350℃に設定する。

[0025]

一方マイクロ波発生手段83から2.45GHz,2000Wの高周波(マイクロ波) を供給すると、このマイクロ波は、TMモード或いはTEモード或いはTEMモードで同 軸導波管82内を伝搬してアンテナ部77の平面アンテナ部材79に到達し、同軸導波管 の中心導体82Bを介して、平面アンテナ部材142の中心部から周縁領域に向けて放射 状に伝搬される間に、スリット対84a,84bからマイクロ波がカバープレート76、

[0026]

このとき既述のようにスリット対84a,84bを配列したので、円偏波が平面アンテ ナ部材79の平面に亘って均一に放出され、この下方の処理空間の電界密度が均一化され る。そしてこのマイクロ波のエネルギーにより、広い処理空間の全域に亘って高密度で均 一なプラズマが励起される。そしてこのプラズマは、第2のガス供給部68の開口部73 を介して当該ガス供給部68の下方側の処理空間に流れ込んで行き、当該ガス供給部68 からこの処理空間に供給されるC5F8ガスを活性化させてつまりプラズマ化して活性種を 形成する。こうして生成された活性種がウエハWの表面に堆積してフッ素添加カーボン膜 からなる層間絶縁膜が成膜される。

[0027]

上述の例では層間絶縁膜を例に挙げているが、層間絶縁膜以外の絶縁膜であってもよい 。また原料ガスとしてはC5F8ガスに限らず、CF4ガス、C2F6ガス、C3F8ガス、C3 F9ガス及びC4F8ガスなどを用いることができるが、原料ガス中のフッ素(F)と炭素 (C) との比率 (F/C) は $1\sim4$ であることが好ましく、 $1\sim2$ であることがより好ま しい。更にまたフッ素添加カーボン膜中のF/Cは、0.1よりも小さくなると導電性を 帯びるようになり、また1.5を越えると膜の密着性が悪くなることから、0.1~1. 5が好ましく、0.1~0.7がより好ましい。

[0028]

(実施例)

水素の含有量が1.17×10-3原子%であるC5F8ガスを原料ガスとして用い、上述の プラズマ成膜装置を用いて、プラズマ処理を行って2つのベアシリコン基板上にフッ素添 加カーボン膜を500nm成膜した。水素の含有量は水分の含有量から計算で求めた値で あり、水分の含有量は質量分析により求め、その値は0.5重量ppmであった。流量や 電力などのプロセス条件は上述の数値通りである。そして一方のシリコン基板を真空雰囲 気である容器内で10-3原子%であるC5F8ガスを原料ガスとして用いた他は、実施例と同 様にして2枚のベアシリコン基板上にフッ素添加カーボン膜を成膜し、同様の試験をおこ なって重量減少を調べた。水素の含有量は水分の含有量から計算で求めた値であり、水分 の含有量は 0.5 重量 p p m であった。結果は図 6 の実線 b に示すとおりである。また他 方のシリコン基板についてフッ素添加カーボン膜中の水素の濃度を調べたところ、5原子 %であった。

[0029]

(考察)

この結果から室温から360℃付近までは、実施例及び比較例のいずれのフッ素添加カ ーボン膜についても重量減少はほとんどないが、350℃を越えたあたりから比較例の膜 については重量減少が顕著になってくる。一方実施例の膜については380℃付近まで重 量減少の程度は小さいが、380℃付近を越えると重量減少が顕著になってくる。しかし ながら420℃に至るまでは、実施例の膜は比較例の膜に比べて重量減少の程度が小さく 、425℃になるといずれの膜も重量減少が激しくなって10%よりも大きくなってしま う。

[0030]

即ち、フッ素添加カーボン膜が350~420℃の熱履歴を受ける場合つまりフッ素添 加カーボン膜を成膜した後の工程中にこの範囲の加熱温度になる工程が含まれる場合には 、実施例の膜の方が比較例の膜に比べて重量減少が小さい。またこのことは、重量減少を ある値以下に抑えようとするのであれば、加熱工程のプロセス温度を高くできることを意 味している。後工程である成膜工程などにおいては、良質な薄膜を得るためにあるいはプ ロセス時間を短くしてスループットを高くするためにプロセス温度を高くすることが有利 である場合が多いことから、プロセス温度を高くできることは半導体製造工程としては有 利である。

[0031]

このように水素の含有濃度が3原子%のフッ素添加カーボン膜は、水素の含有濃度が5原子%のフッ素添加カーボン膜に比べて重量減少が小さいが、これは膜中の水素とフッ素とが結合してフッ化水素として膜から離脱する量が小さいからと考えられる。従って脱ガス量が少ないことから、膜の空洞化が抑えられ、また既述のように配線のうねりやエレクトロマイグレーションの発生が低減されるし、フッ化水素による配線の腐食も抑制され、この結果歩留まりが向上する。

[0032]

以上のことからフッ素添加カーボン膜中の水素の含有濃度がマージンを見て3.0原子%以下であれば上述の効果を十分得ることができ、そのためには原料ガスである炭素とフッ素とを含む化合物のガス中の原子%が 1.17×10^{-3} 原子%以下であればこうしたフッ素添加カーボン膜が得られる。

【図面の簡単な説明】

[0033]

- 【図1】本発明の実施の形態にかかるフッ素添加カーボン膜を成膜する様子を示す説明図である。
- 【図2】本発明の実施の形態にかかる半導体装置を示す断面図である。
- 【図3】本発明の実施の形態に用いられるプラズマ成膜装置の一例を示す縦断側面図である。
- 【図4】上記のプラズマ成膜装置に用いられる第2のガス供給部を示す平面図である
- 【図5】上記のプラズマ成膜装置に用いられるアンテナ部を一部断面で示す斜視図である。
- 【図6】フッ素添加カーボン膜の加熱温度とその膜の重量減少との関係を原料ガス中の水素量の差異に基づいて比較したグラフである。

【符号の説明】

[0034]

1	- 基板
2	C5F8ガス
3	フッ素添加カーボン膜(CF膜)
4	p型シリコン層
4 4	ゲート酸化膜
4 6	BPSG膜
4 7	タングステンからなる配線
5 1	銅からなる配線層
5 2	フッ素添加カーボン膜 (CF膜)
6 1	処理容器
6 2	載置台
6 4	第1のガス供給部
6 8	第2のガス供給部
8 3	マイクロ波発生手段
1 0 4	アンテナ部
1 1 4	排気管
1 4 1	アンテナ本体
1 4 2	平面アンテナ部材
1 4 3	遅相板
1 4 4	同軸導波管
84、84 a	、84b スリット
W	ウエハ

【書類名】図面 【図1】

【図2】

【図4】

【図5】

【要約】

【課題】 炭素及びフッ素の化合物からなる原料ガスを用いてフッ素添加カーボン膜(CF膜)からなる絶縁膜を成膜するにあたり、熱的安定性に優れた絶縁膜を成膜すること 【解決手段】 水素原子の含有量が 1×10^{-3} 原子%以下であり、炭素及びフッ素の化合物からなる原料ガス例えばC5F8ガスを、ラジアルラインスリットアンテナから放出されたマイクロ波によりプラズマ化し、基板上に水素原子の含有量が3原子%以下である CF膜からなる絶縁膜を成膜する。このようなCF膜によれば350~420~の温度で加熱する工程を経ても、膜中の水素がフッ素と結合してHFとして離脱する量が少なくなる。

【選択図】 図1

出願人履歴情報

識別番号

[000219967]

1. 変更年月日 [変更理由] 住 所

氏 名

2003年 4月 2日

理由] 住所変更

東京都港区赤坂五丁目3番6号

東京エレクトロン株式会社

出願人履歴情報

識別番号

[000205041]

1. 変更年月日 [変更理由] 住 所

氏 名

1990年 8月27日

理由] 新規登録

宮城県仙台市青葉区米ケ袋2-1-17-301

大見 忠弘

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
\square REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: ____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.