Proldem Set 2.

- I. Given $f: D \rightarrow \mathbb{R}$ and $B \subseteq \mathbb{R}$, let to preimage of B written $f^{-1}(B)$ be to set of all points in D that get mapped to points in B, or $f(B) = \{x \in D : fw \in B\}$
 - a) let $f(x) = x^2$, let A = [0, 4] and let B = [-1, 1].

Find f-1(A) and f-1(B).

- b) Does f-1 (ANB) = f-1 (A) (1 f-1 (B)?

 Does f-1 (AUB) = f-1 (A) (1 f-1 (B)?
- c) Show that for all A, B & TR and f: TR -> TR,

 the above statements hold.
- 2. Show that he sequence $X_1 = 1$, $X_{n+1} = \frac{1}{2} \times n + 1$ is would above by 7. (I.e.: that $X_n \le 7$ all $n \in \mathbb{N}$)
- 3 e) let y = 1 and for each NEM Lefine y = (3 y +4) /4.

Show that you's Gray nEN.

- b) Show that he sequence y, yz, ... is increasing.
- 4. Let $Z_5 = \{0,3,3,43\}$ and Leline addition and multiplication on abulo 5 (i.e. define them as we harmally do, but subtract multiples of 5 until the sum/product 50 \in Z_5 .)
 - a) Show that $\forall \ Z \in \mathbb{Z}_{5}$ here exists an elementy for which Z + y = 0. (This is called an additive inverse.)
 - b) show that for any ZER, 270, there exists an element y for which Z.y=1. (This is called a multiplicative inverse)
 - E) A set that has well defined additive and multiplicative inverses for all non-zero elements is called a held.

 Is Zy = Ev, 1, 2, 33 a held?