

Diagramma Entità Relazione Basi di Dati

Corso di Laurea in Informatica per il Management

Alma Mater Studiorum - Università di Bologna

Prof. Marco Di Felice

Dipartimento di Informatica – Scienza e Ingegneria marco.difelice3@unibo.it

Progettazione di DB

Progettazione di DB

Sono disponibili molti **modelli concettuali** per la progettazione di basi di dati:

-RELAZIONE (ER)

UNIFIED MODELING
LANGUAGE (UML)

Modello Entità-Relazione → Modello per la rappresentazione concettuale dei dati ad alto livello di astrazione proposto nel 1976.

E' basato su rappresentazione grafica (diagramma).

- Utile per modellare i dati di interesse di un DB.
- Utile come documentazione di un DB.
- Indipendente dal modello logico in uso e dal DBMS di riferimento.

ANALISI REQUISITI

Si vuole realizzare una base di dati di una Software House, di cui si vogliono rappresentare i dati dei dipendenti e dei progetti. Ogni dipendente e' identificato da un nome, ed ha una stipendio e data di assunzione. I dipendenti possono far parte di progetti software. E' consentito ad un dipendente di partecipare a piu' di un progetto, allocando mesi-uomo su ciascun progetto. Inoltre, ogni progetto ha un direttore unico tra i dipendenti che vi partecipano. Ogni progetto ha un titolo univoco, un budget, e puo' disporre di diverse release. Ad ogni release di un progetto e' associato un numero progressivo ed una data. Tra i dipendenti, si vogliono gestire i dati dei tecnici e degli sviluppatori. Di ogni sviluppatore, si vuole tenere traccia delle skill specifiche. Gli sviluppatori sono ulteriormente suddivisi in Programmatori ed Analisti.

COMPONENTI DI UN DIAGRAMMA E-R

- Entità
- Relazioni
- Attributi
- Cardinalità delle relazioni
- Cardinalità degli attributi
- Identificatori
- Generalizzazioni

Entità -> Classe di oggetti (fatti, persone, cose) della realtà di interesse con proprietà comuni e con esistenza autonoma.

Esempi: IMPIEGATO, STUDENTE, PROFESSORE ...

Graficamente, un'entità viene rappresentata attraverso un **rettangolo** (con nome dell'entità al centro).

Impiegato

Studente

Professore

In prima approssimazione, un'entità può essere tradotta in una tabella (del modello relazionale), di cui però non è ancora definito lo schema.

Ad ogni entità è associato un **nome**, che identifica l'oggetto rappresentato. Per convenzione, si usano nomi al singolare per rappresentare entità.

L'istanza di un'entità è uno specifico oggetto appartenente a quell'entità (es. una specifica persona, uno specifico studente, uno specifico professore, etc).

Mario Rossi Michele Bianchi ...

COMPONENTI DI UN DIAGRAMMA E-R

- o Entità
- Relazioni
- Attributi
- Cardinalità delle relazioni
- Cardinalità degli attributi
- Identificatori
- Generalizzazioni

Relazione -> Legame logico fra due o più entità, rilevante nel sistema che si sta modellando.

Graficamente, una relazione viene rappresentata attraverso un rombo/diamante collegato ad entità (anche più di due).

 In prima approssimazione, una relazione può essere tradotta in una tabella (del modello relazionale), di cui però non è ancora definito lo schema.

Ad ogni relazione è associato un **nome**, che la identifica nello schema. Per convenzione, si usano **nomi al singolare** (non i verbi, se possibile) per rappresentare le relazioni.

L'istanza di una relazione è una combinazione di istanze dell'entità che prendono parte all'associazione.

Es. La coppia (c,d) è un'instanza della relazione Lavoro, dove c è un'istanza di Impiegato, e d è un'istanza di Dipartimento.

o Esempi di **relazioni binarie** (2 entita' coinvolte ...)

In generale, una relazione può coinvolgere un numero arbitrario di entità (relazioni n-arie).

Relazione **ricorsiva** \rightarrow una relazione può coinvolgere più istanze della stessa entità.

In caso di relazioni ricorsive, il modello E-R consente di definire un ruolo per ciascun ramo della relazione.

In caso di relazioni ricorsive, il modello E-R consente di definire un ruolo per ciascun ramo della relazione.

COMPONENTI DI UN DIAGRAMMA E-R

- o Entità
- Relazioni
- Attributi
- Cardinalità delle relazioni
- Cardinalità degli attributi
- Identificatori
- Generalizzazioni

Attributo -> Proprietà elementare di un'entità o di una relazione del modello.

Ogni attributo è definito su un dominio specifico ...

Attributo -> Proprietà elementare di un'entità o di una relazione del modello.

Ogni attributo è definito su un dominio specifico ...

E' possibile definire **attributi composti** come unione di attributi affini di una certa entità/relazione. Sono rappresentati da un ovale.

COMPONENTI DI UN DIAGRAMMA E-R

- o Entità
- Relazioni
- Attributi
- Cardinalità delle relazioni
- Cardinalità degli attributi
- Identificatori
- Generalizzazioni

- Quante volte uno studente può ripetere un determinato esame?
- Dato un corso, quanti appelli sono previsti?

 Cardinalità delle relazioni → Coppia di valori (min, max) che specificano il numero minimo/massimo di occorrenze delle relazione cui ogni istanza di entità può partecipare.

- Ogni instanza di Informatico deve comparire almeno in un'istanza della relazione Partecipazione.
- La stessa instanza di Informatico può comparire al massimo in 30 istanze della relazione Partecipazione.
- La stessa instanza di Progetto può comparire al massimo in 100 istanze della relazione Partecipazione.

Nella pratica, si usano solo <u>due valori per il minimo</u>:

- o **0** -> Partecipazione **opzionale** dell'entità.
- 1 → Partecipazione obbligatoria dell'entità

In pratica: Ogni paziente deve essere in cura presso (almeno) un medico.

Nella pratica, si usano solo <u>due valori per il minimo</u>:

- O → Partecipazione opzionale dell'entità.
- 1 → Partecipazione obbligatoria dell'entità

In pratica: Possono esistere pazienti che non sono in cura presso alcun medico.

Nella pratica, si usano solo <u>due valori per il massimo</u>:

- \circ 1 \rightarrow Al massimo 1 istanza conivolta.
- N → Non esiste un limite massimo (N arbitrario)

In pratica: Ad ogni paziente corrisponde al massimo un medico (o nessuno, dipende dal valore minimo).

Nella pratica, si usano solo <u>due valori per il massimo</u>:

- \circ 1 \rightarrow Al massimo 1 istanza coinvolta.
- \circ N \rightarrow Non esiste un limite massimo (N>1, arbitrario)

In pratica: Ogni paziente puo' essere in cura presso un numero arbitrario di medici ...

In base al valore della **cardinalità massima delle entità** E1 ed E2 (<u>cardMax(E1)</u>, <u>cardMax(E2)</u>) coinvolte in una relazione R, si distinguono tre casi:

- Relazioni uno-ad-uno: cardMax(E1)=1, cardMax(E2)=1.
- Relazioni uno-a-molti: cardMax(E1)=1, cardMax(E2)=N
 oppure: cardMax(E1)=N, cardMax(E2)=1.
- Relazioni molti-a-molti: cardMax(E1)=N, cardMax(E2)=N.

ESEMPI RELAZIONI UNO-A-UNO

ESEMPI RELAZIONI UNO-A-MOLTI

ESEMPI RELAZIONI MOLTI-A-MOLTI

- **D**. **Chi stabilisce** se una relazione è molti-a-molti, uno-a-molti, uno-a-uno?
- R. Dipende dalla realtà di interesse, dovrebbe emergere dal documento di specifica dei dati!
- **D**. **A che serve** sapere una relazione è molti-a-molti, uno-a-molti, uno-a-uno?
- R. E' fondamentale in fase di traduzione del modello!

ESEMPI di TRADUZIONE NEL MODELLO RELAZIONALE

ESEMPI di TRADUZIONE NEL MODELLO RELAZIONALE

La cardinalità può essere specificata anche in presenza di **relazioni ricorsive con ruoli**.

COMPONENTI DI UN DIAGRAMMA E-R

- o Entità
- Relazioni
- Attributi
- Cardinalità delle relazioni
- Cardinalità degli attributi
- Identificatori
- Generalizzazioni

Come per le relazioni, anche per gli attributi è possibile definire una cardinalità minima e massima.

La cardinalità si può applicare anche agli attributi composti.

COMPONENTI DI UN DIAGRAMMA E-R

- o Entità
- Relazioni
- Attributi
- Cardinalità delle relazioni
- Cardinalità degli attributi
- Identificatori
- Generalizzazioni

Identificatore

Strumento per identificare in maniera univoca le istanze di una entità.

Corrisponde al concetto di **chiave** nel modello relazionale (quindi deve godere del requisito di minimalità!)

Ogni entità deve avere un identificatore (ma non la relazione).

- o Interno → Composto da <u>attributi dell'entità</u>.
- Esterno → Composto da <u>attributi dell'entità</u> + <u>entità esterne</u>.

Identificatore Interno > Composto da uno o più attributi dell'entità.

○ Codice è l'identificatore interno → Non possono esistere due istanze di Impiegato con lo stesso codice!!

Identificatore Interno > Composto da uno o più attributi dell'entità.

La coppia <Data Nascita, Cognome > è l'identificatore dell'Impiegato.

NOTA: Gli attributi che formano l'identificatore (interno) di un'entità devono avere cardinalità **(1,1)**.

Gli esempi sopra riportati NON sono corretti ...

Identificatore Esterno \rightarrow Include anche entità esterne, collegate attraverso relazioni all'entità corrente.

 Uno studente è identificato dal suo numero di matricola e dall'università cui è iscritto ...

PROPRIETA' DELL'IDENTIFICATORE ESTERNO

- Può comprendere anche attributi dell'entità corrente (es. Matricola)
- L'entità esterna deve essere in relazione (1,1) con l'entità corrente.

In pratica, gli identificatori esterni servono a modellare le situazioni in cui un'istanza di un'entità ha valori univoci solo all'interno di un certo contesto, definito dalle relazioni cui partecipa l'entità ...

ERRORE! Libro è coinvolto in una relazione (1,N)

O Collana NON può essere un identificatore esterno di Libro ...

COMPONENTI DI UN DIAGRAMMA E-R

- o Entità
- Relazioni
- Attributi
- Cardinalità delle relazioni
- Cardinalità degli attributi
- Identificatori
- Generalizzazioni

Generalizzazione → Definisce una **gerarchia tra entità** basata sul concetto di ereditarietà.

In generale, un'entità E e' una **generalizzazione** di E_1 , E_2 , ... E_n se ogni istanza di E_1 , E_2 , ... E_n lo è anche di E.

E₁, E₂, ... E_n sono **specializzazioni** di E.

- Tutti gli attributi di E sono anche attributi di E₁, E₂, ... E_n
- E₁, E₂, ... E_n partecipano a tutte le relazioni di E.

Uno Studente dispone di Codice Fiscale, Nome, Età ...

o E' possibile definire **generalizzazioni a cascata** ..

Relazione

Attributo

Cardinalità delle relazioni (0,1), (1,1),(1,N), ...

Cardinalità degli attributi (0,1), (1,1),(1,N), ...

Identificatori

Generalizzazioni

COMPONENTI DEL MODELLO E-R

Il dizionario dei dati è una tabella contentente la descrizione delle entità/relazioni del modello E-R.

DIZIONARIO DELLE ENTITA'

Entità	Descrizione	Attributi	Identificatore
Impiegato	Dipendente	Codice,	Codice
	dell'azienda	Cognome,	
		Stipendio	
Progetto	Progetti	Nome,	Nome
	aziendali	Budget	
Dipartimento	Struttura	Nome,	Nome,
	aziendale	Telefono	Sede
Sede	Sede	Città,	Città
	dell'azienda	Indirizzo	

Il dizionario dei dati è una tabella contentente la descrizione delle entità/relazioni del modello E-R.

DIZIONARIO DELLE RELAZIONI

Relazioni	Descrizione	Componenti	Attributi
Direzione	Direzione di un	Impiegato,	
	dipartimento	Dipartimento	
Afferenza	Afferenza a un	Impiegato,	Data
	dipartimento	Dipartimento	
Partecipazione	Partecipazione	Impiegato,	
	a un progetto	Progetto	
Composizione	Composizione	Dipartimento,	
	dell'azienda	Sede	

PROBLEMA: Il diagramma E-R è uno strumento di modellazione molto potente e generale, ma **non tutti i vincoli presenti nelle specifiche sono esprimibili** nel modello ...

- Un laureando deve aver sostenuto tutti gli esami del suo corso di laurea.
- Il voto di un corso è un numero tra 18 e 30.
- Il numero di impiegati di un dipartimento si ottiene contando gli impiegati (tecnici esclusi).

Per esprimere i vincoli non rappresentabili dal diagramma E-R, si utilizzano delle **business rules** (regole aziendali):

- Descrizione di un concetto rilevante per l'applicazione (es. entita', relazioni, etc) → rappresentate nel glossario dei dati.
- Vincoli sui dati dell'applicazione
- Derivazione di concetti

Le **business rules** possono essere raccolte in tabelle, e devono essere allegate al diagramma E-R.

Regole di vincolo

- 1. Il direttore di un dipartimento deve a afferire a tale dipartimento
- 2. Un impiegato non deve avere uno stipendio maggiore del direttore del dipartimento al quale afferisce

Regole di derivazione

(1) Il budget di un dipartimento si ottiene sommando il budget dei progetti afferenti a quel dipartimento

Ricapitolando:

- > STEP 0: Analisi dei requisiti
- > STEP1: Progettazione Concettuale
 - ♦ STEP 1.1: Diagramma E-R
 - ♦ STEP 1.2: Dizionario delle entità
 - ♦ STEP 1.2: Dizionario delle relazioni
 - ♦ STEP 1.3: Tabella delle business rules

PROGRAMMAZIONE CONCETTUALE:

UN ESEMPIO

Si vuole progettare la base di dati per un sistema on-line di condivisione di cliparti tra utenti registrati al sistema. Ogni clipart ha un codice (univoco), un titolo, una descrizione, e puo' disporre di diverse versioni. Ogni versione dispone di un numero progressivo, una risoluzione ed un formato. Ogni clipart è associata al nickname del suo creatore (un utente registrato del sistema). Ogni utente ha un nickname univoco, un nome, cognome, ed uno o piu' indirizzi email. Sono previste due tipologie di utenti: utenti semplici ed utenti premium. Gli utenti semplici non possono creare piu' di 50 clipart nel sistema. Per gli utenti premium è necessario registrare la data in cui l'abbonamento premium scade. Ogni utente può inserire commenti a ciascuna clipart del sistema. Un commento è composto da una nota (stringa di testo), una data associata ed un punteggio (un numero compreso tra 0 e 5). Inoltre, le clipart possono essere organizzate in collezioni tematiche. Ogni collezione dispone di un nome univoco, e del numero totale di files (versioni*clipart) associati.

DIZIONARIO DELLE ENTITA'

Entita'	Descrizione	Attributi	Identificatore
Clipart	Clipart del sistema	Codice, Titolo, Descrizione	Codice
Versione	Versione della clipart	Numero, Formato, Risoluzione	Numero, Clipart
Raccolta	Insieme di clipart	Nome, NrFiles	Nome
Commento	Commento inserito dall'utente	Nome, Punti, Data	Data, Utente, Clipart
Utente	Utente del sistema	Nome, Cognome, Nickname, Email	Nickname
Utente Semplici	Utente generico		Nickname
Utente Premium	Utente con abbonamento	Data	Nickname

DIZIONARIO DELLE RELAZIONI

Relazione	Descrizione	Componenti	Attributi
Versioning	Associa versioni ad una clipart	Clipart, Versione	
Partecipazione	Specifica il contenuto di una raccolta	Clipart, Raccolta	
Creazione	Associa una clipart al suo creatore	Clipart, Utente	
Allegato	Associa un commento scritto da un utente ad una clipart	Clipart, Utente, Commento	

TABELLA DELLE BUSINESS RULES

Regole di vincolo

- (1) Gli utenti semplici non possono creare piu' di 50 clipart nel sistema.
- (2) Il punteggio deve essere compreso tra 0 e 5.

Regole di derivazione

(1) Il numero totale di files si ottiene moltiplicando il numero totale di clipart per il numero di versioni associate a ciascuna di esse.