D ' N					
Register No:					

Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110

(An Autonomous Institution, Affiliated to Anna University, Chennai)

B.E. / B.Tech. End Semester Theory Examinations, Nov / Dec 2021

Fifth Semester

COMPUTER SCIENCE AND ENGINEERING

UCS1503 Theory of Computation

(Regulations 2018)

Time: Three Hours Answer ALL Questions Maximum: 100 Marks

K1: Remembering K2: Understanding K3: Applying K4: Analyzing K5: Evaluating

$PART - A (10 \times 2 = 20 Marks)$

01.	K2	Compare deterministic and non-deterministic finite automata.	CO1
02.	K2	Write the regular expression for following language over the alphabet $\{0,1\}$:	CO1
		The set of all strings with atmost one pair of consecutive 0's.	
03.	K3	Derive the string "aaabbabbba" by left most derivation using the productions	CO2
		given:	
		$P: S \rightarrow aB \mid bA$,	
		$A \rightarrow a \mid aS \mid bAA$	
		B→ b bS aBB	
04.	K3	Remove the useless symbols in this grammar:	CO2
		E→AB a	
		A→ab	
		B→aB	
05.	K1	List the different ways of language acceptances by a Pushdown Automata	CO3
		and define them.	
06.	K1	State the pumping lemma for Context Free Language.	CO3
07.	K1	Write the formal definition for Turing Machine.	CO4
08.	K3	Design a Turing Machine to perform addition of two integers.	CO4
09.	K1	What is undecidability? Give two examples for undecidable problems.	CO5
10.	K2	Show that the complement of a recursive language is recursive.	CO5

$PART - B (5 \times 6 = 30 Marks)$

(No Sub-divisions in Part-B)

11. K2 Show that the set $L=\{0^P \mid P \text{ is prime }\}$	gular. CO1
---	------------

12.	K3	What is ambiguous grammar? Check whether the given grammar is						
		ambigu	ambiguous.					
		S→A	A1B					
		A → ()Α λ					
		в→	0B 1B λ					
13.	K3	Constru	Construct a PDA for the Language $L = \{a^nb^mc^n \mid w \text{ is in } \{a,b,c\}^*\}.$					
14.	K3	Design a Turing Machine for the language $L = \{0^n1^n \mid n \ge 1\}$.						
15.	K3	Let $\Sigma = \{0,1\}$. Let A and B be the lists of three strings each, defined as						
			List A	List B				
		i	w_i	x_i				
		1	110	110110				
		2	0011	00				
		3	0110	110				
		Find the instance of PCP.						

PART – C ($5 \times 10 = 50$ Marks) (No Sub-divisions in Part-C)

16.	K3	Construct a DFA equivalent of the NFA given below with p as initial state and s CO1					
		as final state.					
		states	0	1			
		→p	{q,s}	{q}			
		q	{r}	{q,r}			
		r	{s}	{p}			
		*s	-	{p}			
	•		•	OR			
17.	17. K3 Find the regular expression for the given Finite Automata using Rij ^(k) method:						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
18.	К3	Write the procedure to convert CFG to CNF and apply it on the following CFG:					
		$S \rightarrow AAC$					
		$A \rightarrow aAb \mid \lambda$					
		C → aC I λ					

UCS1503 2

		OR	
19.	К3	Write the procedure to convert CFG to GNF and apply it on the following CFG: S → AB A → BS b B → SA a	CO2
20.	K3	Construct a PDA for the Language $L=\{wcw^R \mid w \text{ is in } \{a,b\}^*\}$ by empty stack.	CO3
		Verify whether the model accepts the string = abcba.	
		OR	
21.	K3	Construct a Context Free Grammar G which accepts the PDA N(M), where $M=(\{q0,q1\},\{a,b\},\{z0,z\},\delta,q0,z0,\Phi)$ and where δ is given by a. $\delta(q0,b,z0)=\{(q0,zz0)\}$ b. $\delta(q0,\epsilon,z0)=\{(q0,\epsilon)\}$ c. $\delta(q0,b,z)=\{(q0,zz)\}$ d. $\delta(q0,a,z)=\{(q1,z)\}$ e. $\delta(q1,b,z)=\{(q1,\epsilon)\}$ f. $\delta(q1,a,z0)=\{(q0,z0)\}$	CO3
22.	I KZ	Explain the programming techniques for Turing machine construction.	CO4
		OR	
23.	K2	Explain how the Turing machine is used in computation with an example.	CO4
24.	K2	Prove the following: a. Halting problem is undecidable b. MPCP reduces to PCP	CO5
		OR	
25.	K2	Find whether the following languages are recursive or recursively enumerable and prove the same $ a.\ Union\ of\ two\ recursively\ enumerable\ languages. $ $ b.\ Diagnolization\ Language\ (L_d) $ $ c.\ Universal\ Language\ (L_u) $	CO5

CO1: Construct automata, regular expression for any given pattern (K3)

CO2: Identify the grammar type and the need of formal languages, and grammars (K3)

CO3: Model the pushdown automata for any CFL (K3)

CO4: Construct Turing Machines for the given languages (K3)

CO5: Explain the Decidability or Undecidability of various problems (K2)

UCS1503 3