CSC7066/CSC4066 Media Security

Tutorial Two

A Multiresolution Watermark for Digital Images by Xia et al.

Presentation

- What are the differences from Cox's paper?
 - Very short
 - Not much Details
 - Directly presents the idea
- □ Why?
 - Conference Paper
- Conference, Why?
 - Timely, state-of-the-art works
 - Oral presentation: 20 30 min.
 - Poster presentation

Key Points

- Transform Domain
- Wavelet Transform, Why?
 - Multiresolution analysis
 - HVS
 - Emerging Coding standards
 - » 1997
 - » EZW ; obsolete
 - » SPIHT
 - » JPEG2000

DISCRETE WAVELET TRANSFORM - I

Basic problem in DFT and DCT

- Spatial localization of the particular frequency
- FFT gives only the frequency, not the location

DISCRETE WAVELET TRANSFORM - II

Why is spatial information important?

But it does NOT say where they are.

DISCRETE WAVELET TRANSFORM - III

- Discrete Wavelet Transform (DWT) answers this question by providing spatial information along with the frequency information.
 - Provides multiresolution representation of the signal
 - The DWT theory involves filtering and high volume maths.
 - » "Digital Image Processing", 2nd edition, Gonzales and Woods, Prentice Hall
 - » TA1632/GONZ

DISCRETE WAVELET TRANSFORM - IV

Dr. Fatih KURUGOLLU Media Security Tutorial Two- Slide 7

DISCRETE WAVELET TRANSFORM - V

- How does it work?
- 1D signal
- 1 level decomposition

DWT - VI

Multiresolution

DWT-VII

Example

• s : signal

DWT-VIII

- First decomposition
- [a1, d1] = dwt(s,'db1','mode','per');

DWT- IX

- Second decomposition
- [a2, d2] = dwt(a1,'db1','mode','per');

DWT - X

- Images
- Row / Column order
- 4 subbands
 - LL
 - LH
 - HL
 - HH

LL ₁	LH₁
HL ₁	HH ₁

LL ₂	LH ₂	1 4
HL ₂	HH ₂	LH₁
Н	L ₁	HH₁

DWT-XI

Example

[ll1,lh1,hl1,hh1] = dwt2(im,'db1','mode','per'); [ll2,lh2,hl2,hh2] = dwt2(ll1,'db1','mode','per');

Embedding (Encoding)

- Watermark
 - PRGS

- Embed all detail coefficients; exclude the approximation
 - WHY?

Embedding Rule :

$$\hat{y} = y + \alpha \times (y)^2 \times wm$$

Why square?

Extraction (Decoding)

- Blind or Non-Blind
- Hierarchical search for the watermark
 - Cross correlation
 - » Same as the Cox et al.

HH1
 HH1,LH1
 HH1,LH1,HL1
 HH1,LH1,HL1,HH2
 HH1,LH1,HL1,HH2,LH2
 HH1,LH1,HL1,HH2,LH2,HL2

Implementation Details

- Image size
 - 512x512
 - Any other sizes?
- Wavelet Filter
 - Haar
 - » Daubechies
 - » Bi-orthogonal

- # of Level
 - 2 level
 - 7 subbands
 - » 6 of them are embedded

Weakness

- Many details are missing
 - What is the watermark length?
 - How can it be distributed to the bands?
- Haar wavelet
 - Most simple
 - Does not reflect HVS
- But earliest method for DWT based WM