(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-10875

(43)公開日 平成7年(1995)1月13日

(51) lnt.Cl. ⁶ C 0 7 D 471/04 A 6 1 K 31/435	酸別記号 114 A AAK AAM ABE ABN	庁内整理番号	FΙ	技術表示箇所
		審査請求	未請求 請求項	質の数4 FD (全 9 頁) 最終頁に続く
(21)出願番号	特顧平5-172024		(71)出顧人	000137764 株式会社ミドリ十字
(22)出顧日	平成5年(1993)6月2	21日	(72)発明者	大阪府大阪市中央区今橋1丁目3番3号 松浦 昭宏 静岡県焼沖市岡当目10番地 サッポロビー ル株式会社医薬開発研究所内
			(72)発明者	芦沢 直樹 静岡県焼津市岡当目10番地 サッポロビー ル株式会社医薬開発研究所内
% 1.1			(72)発明者	清水 千賀子 静岡県焼津市岡当目10番地 サッポロピー ル株式会社医薬開発研究所内
			(74)代理人	弁理士 高島 一 最終頁に続く

(54) 【発明の名称】 選択的ホスホジエステラーゼ I V阻害剤

(57)【要約】 (修正有)

【構成】 一般式(1)で表される1,8-ナフチリジ ン誘導体またはその医薬的に許容される塩を有効成分と して含有する選択的ホスホジエステラーゼIV阻害剤。

$$\begin{array}{ccc}
R^2 & R^2 \\
R^3 & N & N & 0
\end{array}$$
(1)

(式中、R¹ は水素原子、置換または非置換のアルキル 基またはアルケニル基; R2 水素原子あるいは置換また は非置換のアルキル基;R³,R⁴ およびR⁵ はそれぞ れ同一または異なってもよく、水素原子あるいは置換ま たは非置換のアルキル基を示す。)

【効果】 選択的ホスホジエステラーゼIV阻害作用によ り気管支喘息症、血栓症、うつ病、脳血管閉塞後の中枢 機能低下症、脳血管性痴呆症、アルツハイマー型痴呆 症、各種炎症、肥満症および心不全症等の疾患の予防や 治療的処置のための薬剤として有用である。

【特許請求の範囲】

【請求項1】 一般式(1)

【化1】

(式中、R¹は水素原子、置換または非置換のアルキル 基またはアルケニル基: R' は水素原子あるいは置換ま 10 たは非置換のアルキル基: R', R' およびR' はそれぞ れ同一または異なってもよく、水素原子あるいは置換ま たは非置換のアルキル基を示す。) で表される物質また はその医薬的に許容される塩を含有する選択的ホスホジ エステラーゼIV阻害剤。

【請求項2】 置換または非置換のアルキル基およびア ルケニル基上の置換基が、ハロゲン原子、シクロアルキ ル基、水酸基、アセトキシ基、アルコキシ基、オキソ基 またはハロゲン原子等で置換されていてもよいアリール 基である請求項1記載の選択的ホスホジエステラーゼIV 20 阻害剤。

【請求項3】 R¹ がハロゲン原子, アリール基および アセトキシ基等で置換されていてもよいアルキル基また はアルケニル基であり、R'が水素原子または水酸基、 アセトキシ基、オキソ基等で置換されていてもよいアル キル基である請求項1記載の選択的ホスホジエステラー ゼIV阻害剤。

【請求項4】 気管支喘息症,血栓症,うつ病,脳血管 閉塞後の中枢機能低下症、脳血管性痴呆症、アルツハイ の予防および治療に有用である請求項1記載の選択的ホ スホジエステラーゼIV阳害剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、選択的ホスホジエステ ラーゼIV阻害剤に関し、詳しくは1、8-ナフチリジン 誘導体またはその医薬的に許容される塩を含有する選択 的ホスホジエステラーゼIV (PDE IV) 阻害剤に関する。 [0002]

内セカンドメッセンジャーであるcAMPやcQMPは、ホスホ ジエステラーゼ(PDE) により分解され不活性化する。PD E は生体内の組織に広く分布し、PDE 阻害剤は該PDE を 阻害することにより細胞内のcAMPやcOMPの濃度を上昇さ せ、種々の薬理作用をもたらすことが知られている。例 えば血管平滑筋や気管支平滑筋においては弛緩作用、心 臓においては陽性変力および変時作用を引き起こす。ま た、中枢においてはcAMP増加に伴う中枢機能の調整、す なわち抗うつ作用、記憶・学習機能改善作用を有する。 そのほかに血小板においては凝集抑制、炎症細胞におい 50 ては活性化抑制作用を、また脂肪組織においては脂肪分 解作用を示す[C.D.Nicholson et al., Trends in Pharm acol.,12, 19 (1991)].

【0003】したがって、PDE を阻害する薬剤は種々の 疾病、すなわち気管支喘息症、血栓症、うつ病、脳血管 閉塞後の中枢機能低下症、脳血管性痴呆症、アルツハイ マー型痴呆症、各種炎症、肥満症および心不全などの治 療薬として有効であると考えられている。

【0004】テオフィリンは代表的なPDE 阻害剤として 従来より喘息症の治療に用いられてきた。しかし、本薬 のPDE 阻害作用が非特異的なために、気管支平滑筋弛緩 作用以外に強心作用や中枢作用を有し、そのため副作用 が常に問題とされている。そこで、PDE のアイソザイム の中でも、特に気管支平滑筋および炎症細胞に多く存在 するIV型に対して特異的に阻害作用を有する薬剤の開発 が望まれている。

【0005】また、PDE IVは中枢組織、脂肪組織にも多 く存在する。前者においてPDE IVの阻害は神経細胞内の cAMP濃度を上昇させ、抗うつ作用や学習・記憶能力の改 兽作用を導く。さらに、脂肪細胞においてはPDE IV阻害 作用により脂肪の分解が促進される。

【0006】本発明者らはかかる知見を踏まえ、鋭意PD E IV抑制物質の探索を行った結果、後述する一連の1, :8-ナフチリジン誘導体がPDE 阻害作用、しかもPDE IV に対して顕著な抑制作用を有することを見出し、本発明 を完成するに至った。また、これらの化合物には、モル モット摘出気管標本の種々の収縮物質(ヒスタミン,ロ イコトリエンD.) による収縮を抑制する作用、ラット 好中球の活性化の抑制作用、卵白アルブミンで予め感作 マー型痴呆症,各種炎症,肥満症および心不全等の疾患 30 した麻酔モルモットにおいて卵白アルブミンの再投与に よって惹起された気道収縮の抑制作用なども見出され tc.

> 【0007】したがって、これら化合物は気管支喘息 症、血栓症、うつ病、脳血管閉塞後の中枢機能低下症、 脳血管性痴呆症、アルツハイマー型痴呆症、各種炎症、 肥満症および心不全症をはじめとする種々の呼吸器系疾 患,炎症性疾患,中枢系疾患,循環器系疾患等の予防お よび治療に有効であると考えられる。

【0008】これら1、8-ナフチリジン誘導体は特開 【従来の技術および発明が解決しようとする課題】細胞(40)平4-234389号公報,特開平5-25171号公 報、特開平5-25172号公報およびジャーナル・オ ブ・オーガノメタリック・ケミストリー、213 巻、405 ~417 頁(1981 年) において開示されている物質である が、これらが選択的なPDE IV阻害作用を有し、抗喘息作 用を有することはこれまで全く知られていなかった。

[0009]

【課題を解決するための手段】本発明は、一般式(1) [0010]

(化2)

【0011】(式中、R1は水素原子,置換または非置 換のアルキル基またはアルケニル基; R' は水素原子あ るいは置換または非置換のアルキル基; R¹,R¹ および R' はそれぞれ同一または異なってもよく、水素原子あ るいは置換または非置換のアルキル基を示す。)で表さ 10 しい。 れる物質またはその医薬的に許容される塩を含有する選 択的ホスホジエステラーゼIV阻害剤を提供するものであ る。

【0012】本明細書中、アルキル基とは、炭素数1~ 6の直鎖または分岐状のアルキル基を意味し、具体的に はメチル基、エチル基、プロピル基、イソプロピル基、 ブチル基、イソブチル基、sec - ブチル基、tert-ブチ ル基、ペンチル基、イソペンチル基、sec -ペンチル 基、tert-ベンチル基、ヘキシル基、イソヘキシル基、 sec -ヘキシル基、tert-ヘキシル基などが挙げられ る。アルケニル基としては、例えばビニル基、アリル 基、ブテニル基およびペンテニル基等が挙げられる。

【0013】さらに、これらアルキル基、アルケニル基。

は別の置換基で置換されていてもよく、この場合の置換 基としてはハロゲン原子、シクロアルキル基、水酸基、 アセトキシ基、アルコキシ基、オキソ基またはハロゲン 原子等で置換されていてもよいアリール基が挙げられ る。ことで、シクロアルキル基としては、シクロプロピ ル基およびシクロブチル基等が挙げられる。アリール基 としてはフェニル基およびナフチル基等が挙げられる。 アルコキシ基は、前述したアルキル基より誘導されるア ルコキシ基を意味するが、中でもメトキシ基が最も好ま

【0014】本発明に用いる1、8-ナフチリジン誘導 体の具体例を第1表(その1,その2)に例示するが、 本発明はこれらに限定されるものではなく、選択的にホ スホジエステラーゼIV阻害作用を有するものは本発明に 含まれる。本発明の一般式(1)で表される化合物は通 常の方法により合成され、例えば特開平4-23438 9号公報, 同5-25171号公報, 同5-25172 号公報に記載の方法により製造することができる。な お、1、8-ナフチリジン誘導体の医薬的に許容される 20 塩とは、例えば塩酸塩、酢酸塩、フマル酸塩などがあ る。

 $\{0.015\}$

【表1】

(4)

	_										
	R\$	н	ж	×	=	=	I	Ξ	=	=	н
	R4	Н	=	æ	==	÷	=	=	=	=	=
	R³	Н	=	=	Ж		=	=	=	=	×
表 (その1)	R²	H	#	н	н	×	н	=	æ	- CH ₃	- CH ₃
第	R.	- CH ₂	- CH ₂ - CH = CH ₂	- CH ₂ CH ₂ -	- CH ₂ CH ₂ CH ₂	- CH ₂ Cl	- CH2CH2CH3	- CH ₂ CH(CH ₃) ₂	- CH2CH2CH2CH3	- CH2	- (CH ₂) ₃ - 0 - COCH ₃
	化合物	-	7	က	4	rs.	9	2	∞	ъ 	10

[0016] [表2]

_											-	
	R	æ	=	=	- CH3	=	×	=	- CH3	- CH3	=	Ħ
	R.	æ	æ	- CH3	×	5 22	==	±	=	=		Ħ
	R³	=	×	Ħ	Ħ	H	×	=	- CH3	- CH3	==	=
表 (その2)	R2	- CH ₂ - CH(0H)CH ₃	- CH ₂ - CO - CH ₃	ж	н	- CH ₃	H	- CH ₃	¥	Œ	- (CH ₂) ₄ - 0 - C0 - CH ₃	- CH2CH2CH2OH
第 1	R'	- CH ₃	- CH ₃	- CH ₃	- CH3	- CH ₂ CH ₂ CH ₂ - CI	- CH ₂ CH ₂ - C1	- CH ₂ - CF ₃	#	- CH ₃	- CH ₃	- CH ₃
-	化合物	11	12	13	14	15	16	17	81	19	- S	21

【0017】本発明により、1、8-ナフチリジン誘導 体を前述の疾患の予防および治療を目的として投与する 場合、投与量、投与方法は1,8-ナフチリジン誘導体 40 および必要に応じて結合剤、崩壊剤、滑沢剤、着色剤、 の種類、投与対象、症状などによって異なる。例えばそ の投与剤形としては、散剤、カブセル剤、シロップ剤な どとして投与しても良いし、また坐剤、注射剤、外用 剤、点滴剤、エアロゾルなどとして投与しても良い。投 与量は症状の程度、患者の年齢、疾患の種類、既往暦な どによって著しく異なるが、通常は一日あたり約0.0 1~200mg/kg、好ましくは0.05~50mg /kg、より好ましくは0.1~10mg/kgの割合 で一日1~数回に分けて投与する。

【0018】製剤化の際は、通常の製剤担体を用い、当 50 としては、例えば澱粉、寒天、ゼラチン末、結晶セルロ

該技術分野における常法にしたがって製造できる。すな わち、経口的固形製剤を製造する場合は、主薬に賦形剤 矯味剤、矯臭剤などを加えた後、常法にしたがって錠 剤、被覆製剤、顆粒剤、散剤、カプセル剤などとする。 【0019】賦形剤としては、例えば乳糖、コーンスタ ーチ、白糖、ブドウ糖、ソルビット、結晶セルロース、 二酸化ケイ素などが用いられる。結合剤としては、例え ぱポリビニルアルコール, ポリビニルエーテル, エチル セルロース、メチルセルロース、アラビアゴム、トラガ ント、ゼラチン、シェラック、ヒドロキシプロピルスタ ーチ、ボリビニルピロリドンなどが用いられる。崩壊剤

ース、炭酸カルシウム、炭酸水素ナトリウム、クエン酸 カルシウム、デキストリン、ペクチンなどが用いられ

【0020】滑沢剤としては、例えばステリアン酸マグ ネシウム, タルク、ポリエチレングリコール、シリカ、 硬化植物油などが用いられる。着色剤としては、医薬品 への添加が許可されているものが用いられる。矯味、矯 臭剤としては、例えばココア末、ハッカ脳、芳香酸、ハ ッカ油、龍脳、桂皮末などが用いられている。

【0021】これらの錠剤、顆粒剤に糖衣、ゼラチン 衣、その他必要により適宜コーティングを施すことは何 ら差し支えない。注射剤を調製する場合には、必要に応 じて主薬に p H調整剤,緩衝剤,安定化剤,可溶化剤な どを添加し、常法により皮下、筋肉内、静脈内用注射剤 とする。

[0022]

【実施例】以下に、本発明を実施例により詳しく説明す る。本発明の1,8-ナフチリジン誘導体は気管支喘息 症の効果的な予防・治療薬であり、安全性も非常に高い ことを以下に実施例を示して具体的に説明する。なお、 20 【表3】 実施例で用いた化合物(被検物質)の番号は、前記第1*

*表に示したものと対応している。

【0023】実施例1

1,8-ナフチリジン誘導体のPDE 阻害作用

10

(方法) 酵素源としてブタ心室筋のホモジネートの違心 上瀆をオルト-(ジエチルアミノエチル)-セルロース - クロマトグラフィーにてアイソザイムに分離したもの を用いた。各アイソザイムはそれぞれの活性調節剤との 反応により確認した。基質として〔'H〕-cAMPを用 い、5'-ヌクレオチダーゼ存在下で反応を行った。被 10 験物質はジメチルスルホキシドに溶解して反応液に添加 した。PDE により生じた ('H) -5' -AMP は5' -ヌクレオチダーゼにより〔³H〕-アデノシンに分解し た。陰イオン交換樹脂を添加して未反応の〔 'H 〕-cA MPを吸着させ反応を停止した。上清の〔 'H 〕-アデノ シンの放射活性を測定し、PDE 阻害作用を算出した。 【0024】 (実験成績) 成績を第2表に示す。表から 明らかなように、いずれの化合物もPDE IVを選択的に阻 害した。

[0025]

第 2 表

投与群	PDE IV 阻害 (%)	I C 50 (μM)
化合物 123456789012345678901	084319334085021811790 55757566346363377	3000 3000 3000 31000 3116000 311600 311600 311600 311600 311600 311600 311600 3116000 311600 316000 316000 316000 316000 316000 316000 316000 316000 316

【0026】実施例2

モルモット摘出気管標本のヒスタミンあるいはロイコト リエンD、誘発収縮に対する抑制作用

(方法)ハートレー系モルモットを頭部打撲で失神さ せ、脱血致死せしめた後、気管を摘出し、常法にしたが ってリング状標本を作成した。標本は37°Cに保温し、

クレブス・リンガー液中に懸垂し、等張性張力を測定し た。ヒスタミン(3 μM) あるいはロイコトリエンD. (1 n M) で標本を収縮させ、反応が安定した時点でジ メチルスルホキシドに溶解した被験物質をタイロード液 中に投与した。収縮前の基線を弛緩率100%として弛 綴率を算出した。

95%O, -5%CO, 混合ガスを通気した10mlの 50 【0027】(実験成績)成績を第3表に示す。表から

11

明らかなように、濃度10μΜにおいて、ヒスタミン誘 *たものは13/25点であった。 発収縮を50%以上抑制した被験物質は14/25点で

[0028]

【表4】 あり、ロイコトリエンD、誘発収縮を50%以上抑制し*

第 3 表

投与群	
化合物 1 10 11 - 3 10 21 - 4 10 80 93 5 10 42 -	トリエン
記合物	3

ーは試験例なしを示す。

【0029】実施例3

モルモット摘出肺標本のメタコリン誘発収縮に対する抑

(方法) ハートレー系モルモットを頭部打撲で失神さ せ、脱血致死せしめた後、肺を摘出し、常法にしたがっ て標本を作成した。気管に挿入したカニューレより37 *Cに保温した生理食塩液を灌流し、流量を測定した。ま た、メタコリン(50ng/ml)を灌流して収縮反応

を惹起させた後、被験物質を投与して抑制作用を観察し た。

40 【0030】(実験成績)成績を第4表に示す。ととで 試験した被験物質はいずれも30 µMで強力なメタコリ ン収縮抑制作用を示し、最小有効濃度(MIC)は10 μMであった。

[0031]

【表5】

投与群	抑制	活 性
	抑制% (30 µM)	MIC (μM)
化合物 1 3 1 4	9 2 1 0 0	1 0 1 0

MICは最小有効濃度を示す。

【0032】実施例4

1,8-ナフチリジン誘導体のラット好中球の活性化抑 制作用

(方法) ハートレー系モルモットの腹腔内にグリコーゲ ンを投与し、4時間後に腹水を回収した。遠心により得 た好中球をformyl-, -methionyl-, -leucyl-, -phen ylalanine(fMLP) で刺激し、発生した活性酸素の励起エ ネルギーが基底状態に戻るときの発光をルシゲニンで増米 *幅して測定した。被験物質はジメチルスルホキシドで溶 解し、fMLP刺激時に添加した。

14

【0033】(実験成績)成績を第5表に示す。表から 明らかなように、濃度100μMにおいて好中球の活性 化を30%以上抑制した被験物質は9/13点であっ た。

[0034]

【表6】

第 5 表

投与群	活性化抑制(%)			
汉一子件	100μΜ	10 µM		
化合物 4 7 8 9 10 11 12 13 21	3 2.8 5 6.0 3 9.2 1 6.6 4 0.1 3 5.7 3 1.2 3 9.7 3 5.6	3.7 3.8 1 8.9 - 8.2		

- は試験例なしを示す。

【0035】実施例5

感作モルモットにおける抗原誘発気道収縮に対する1, 8-ナフチリジン誘導体の抑制作用

(方法) ハートレー系モルモットを卵白アルブミンで抗 原感作し、その14日以降に実験に使用した。モルモッ トをペントバルビタールナトリウムで麻酔後、気管に三 方カニューレを挿入し、人工呼吸を施した。気道抵抗を※40 【表7】

※ Konzett-Rossler 法変法により測定した。頸静脈にもカ ニューレを挿入し、抗原の投与を行った。被験物質はい ずれも10mg/kgの投与量とし、抗原投与の2分前 に頸静脈より投与した。

(実験成績) 成績を第6表に示す。

[0036]

第 6 表

投与群	気道収縮抑制 (%)
1文子符	(10mg/kg i.v.)
化合物 7 9 11 21	8 3.1 4 9 9.5 9 9 3.8 7 9 1.3 2

【0037】実施例6

1、8-ナフチリジン誘導体のマウスにおける急性毒性 (方法)6~8週令のICR系マウスを1群3~7匹と して、一晩の絶食後、実験に用いた。溶媒(0.5%カルボキシメチルセルロース水溶液)または被験物質を溶 解もしくは懸濁した溶媒を0.1m1/10g体重でマウスに経口投与し、動物の生死を投与後72時間観察した。なお、被験物質はいずれも300mg/kgの投与*

*量とした。

【0038】(実験成績)成績を第7表に示す。とこで試験した被験物質はいずれも300mg/kgの投与量で急性毒性試験において陰性であった。この結果から、50%致死経口投与量(LD,。値)は300mg/kg以上と判断された。

16

[0039]

【表8】

第 7 表

投与群	投与動物数	死亡数	
化合物 7	7	0	
13	7	1	

[0040]

※満作用などの種々の薬理作用をもたらす。したがって、 気管支喘息症,血栓症,うつ病,脳血管閉塞後の中枢機 能低下症,脳血管性痴呆症,アルツハイマー型痴呆症, 各種炎症,肥満症および心不全などの予防・治療薬とし

フロントページの続き

(51)Int.Cl.⁶

識別記号 庁内整理番号

FΙ

技術表示箇所

A 6 1 K 31/435

A C B

. . . .

ACN

A E D 9454-4C

(72)発明者 雲中 恭裕

静岡県焼津市岡当目10番地 サッポロビー ル株式会社医薬開発研究所内

(72)発明者 長谷 岳真

静岡県焼津市岡当目10番地 サッポロビー ル株式会社医薬開発研究所内