(12) DEMAND

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

14 février 2002 (14.02.2002)

PCT

(10) Numéro de publication internationale WO 02/11759 A1

- (51) Classification internationale des brevets⁷: A61K 39/385, 39/00, A61P 35/00
- (21) Numéro de la demande internationale : PCT/FR01/02575
- (22) Date de dépôt international: 8 août 2001'(08.08.2001)
- (25) Langue de dépôt :

français

(26) Langue de publication :

français

- (30) Données relatives à la priorité : 00/10480 9 août 2000 (09.08.2000)
- (71) Déposant (pour tous les États désignés sauf US) : NEO-VACS [I-R/FR]; 59, avenue Victor Hugo, 75116 Paris (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): ZAGURY, Jean-François [FR/FR]; 117, rue Vieille du Temple, 1-75003 Paris (FR). BIZZINI, Bernard [FR/FR]; 65, rue du Roc, F-81000 Albi (FR). LE BUANEC, Hélène [FR/FR]: 29, rue Poliveau, F-75005 Paris (FR). ZAGURY, Daniel [FR/FR]; 1, rue Frédéric Leplay, F-75007 Paris (FR).

- (74) Mandataire: RINUY, Santarelli; 14, avenue de la Grande Armée, Boîte postale 237, 75822 Paris Cedex 17 (DE).
- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée:

- avec rapport de recherche internationale
- avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

- (54) Title: VACCINES AGAINST CYTOKINES AND GROWTH FACTORS DERIVED FROM MALIGNANT TUMOURS
- (54) Titre: VACCIN CONTRE LES CYTOKINES OU FACTEURS DE CROISSANCE ISSUS DE TUMEURS MALIGNES
- (57) Abstract: The invention concerns vaccines comprising as active principle an immunogen which is a cytokinetic factor or a cell regulating factor particularly transcriptional or another type of factor with immunosuppressive/apoptotic/angiogenic properties abnormally released in the extracellular (stromal) environment by cancer or stromal cells of malignant tumours, and a pharmaceutically acceptable carrier for inducing a systemic or mucosal immune response with secretory formation of class IgC or IgA neutralising antibodies directed against the native factor, or which is derived from such a factor and the use of said immunogen to obtain a medicine for use as anticancer drug. .
- (57) Abrégé: Vaccines renfermant à titre de principe actif un immunogène qui est un facteur cytokinique ou un facteur de régulation cellulaire particulièrement transcriptionnel ou un autre type de facteur à propriétés immunosuppressives/apoptotiques/angiogéniques anormalement relâché dans le milieu extracellulaire (stromal) par les cellules cancéreuses ou stromales de tumeurs malignes, ainsi qu'un excipient pharmaceutiquement acceptable permettant l'induction d'une réaction immuniataire systèmique ou mucosale avec formation d'anticorps neutralisants de classe IgG ou IgA sécrétoire dirigée contre le facteur natif, ou qui dérive d'un tel facteur et utilisation d'un tel immunogène pour l'obtention d'un médicament destiné à une utilisation en tant qu'anticancéreux.

10

15

20

25

30

<u>Utilisation d'immunogènes pour traiter ou prévenir au sein des tumeurs malignes les dérèglements immunitaires ou vasculaires induits par des facteurs extracellulaires</u>

La présente invention concerne l'utilisation de préparations vaccinales médicamenteuses à usage thérapeutique ou prophylactique destinées à traiter ou prévenir au sein des tumeurs malignes les dérèglements immunitaires en particulier l'immunosuppression et l'apoptose des cellules immunitaires ou vasculaires comme l'angiogénèse, induits par des facteurs extracellulaires, cytokines ou autres facteurs de régulation en particulier transcriptionnels, anormalement produits par les cellules cancéreuses ou les cellules stromales.

Les traitements conventionnels des cancers qu'ils soient d'origine virale, induits par des rétrovirus, ou l'EBV ou l'HPV ou encore les virus de l'hépatite, ou d'origine chronique, dus à l'amiante ou à des dérivés benzéniques, qu'ils soient de type épithélial (carcinomes) ou conjonctif (sarcomes) ou encore sanguin (lymphomes) comportent l'ablation chirurgicale des tumeurs le plus souvent associée à une chimiothérapie et/ou une radiothérapie.

Bien qu'efficaces pour certains cancers, particulièrement pris à des stades précoces, ces traitements souvent difficilement tolérés sont insuffisants et des récidives et des métastases compromettent l'évolution des malades.

C'est pourquoi lorsque les scientifiques dans les années 80 et 90 ont cloné et purifié des antigènes de tumeurs associés (TAA) ou spécifiques (TSA) aux cellules cancéreuses provenant de nombreuses tumeurs malignes (cancer du sein, de la prostate, colorectal, du col utérin; lymphome ATL), de nombreuses expérimentations et essais cliniques de vaccination anti-cancer (Dvorak E. Experimental design for vaccine preparations against human malignant tumors. Med Hypotheses (1986) 20:429-52, Houghton AN. On course for a cancer vaccine. Lancet (1995) 345:1384-5, Herlyn D, Linnenbach A, Koprowski H, Herlyn M. Epitope-and antigen-specific cancer vaccines. Int Rev Immunol (1991) 7:245-57, Ostankovitch M, Choppin J, Guillet JG. Tumor cell

10

antigenicity: cancers and vaccines. Rev Prat (1995) 45:1921-6, Zhu MZ, Marshall J, Cole D, Schlom J, Tsang KY. Specific cytolytic T-cell responses to human CEA from patients immunized with recombinant avipox-CEA vaccine. Clin Cancer Res (2000) 6:24-33, Tsunoda T, Tanimura H, Yamaue H, Tanaka H, Matsuda K. Tumor specific CTL therapy for advanced cancer and development for cancer vaccine. Hepatogastroenterology (1999) 46:1287-92), utilisant comme antigènes les TAA et TSA ont été réalisés, visant à détruire spécifiquement les cellules malignes porteuses de ces antigènes grâce à l'action de cellules tueuses, particulièrement de lymphocytes cytolytiques (CTL), porteurs de récepteurs spécifiques, induits par la réaction immunitaire vaccinale.

Les essais cliniques utilisant de tels vaccins réalisés chez les malades porteurs de différentes tumeurs (mélanome, cancer du sein, cancer colorectal, cancer de la vessie, ...) ont permis d'établir les faits suivants :

- 15 Les préparations vaccinales anti-cancer contenant les antigènes tumoraux (TAA ou TSA) présentés sous différentes formes ont été bien tolérées et n'ont généralement pas provoqué de complications régionales ou systémiques.
- De telles préparations vaccinales peuvent induire chez les malades une réponse immunitaire de type CTL (Tsunoda T, Tanimura H, Yamaue H, Tanaka H, Matsuda K. Tumor specific CTL therapy for advanced cancer and 20 development for cancer vaccine. Hepatogastroenterology (1999) 1:1287-92, Schwaab T, Heaney JA, Schned AR, Harris RD, Cole BF, Noelle RJ, Phillips DM, Stempkowski L, Ernstoff MS. A randomized phase II trial comparing two different sequence combinations of autologous vaccine and human recombinant interferon gamma and human recombinant interferon alpha2B 25 therapy in patients with metastatic renal cell carcinoma: clinical outcome and analysis of immunological parameters. J Urol (2000) 163:1322-7, Steller MA, Gurski KJ, Murakami M, Daniel RW, Shah KV, Celis E, Sette A, Trimble EL, Park RC, Marincola FM. Cell-mediated immunological responses in cervical 30 and vaginal cancer patients immunized with a lipidated epitope of human papillomavirus type 16 E7. Clin Cancer Res (1998) 4:2103-9, susceptible in vitro de détruire spécifiquement les cibles cellulaires porteuses d'épitopes de

10

15

20

TAA ou TSA complexés au Complexe Majeur d'Histocompatibilité.

 Par contre à ce jour aucun essai clinique de phase III n'a pu montrer que ces préparations vaccinales, visant à détruire spécifiquement les cellules cancéreuses par la différentiation de cellules tueuses, étaient efficaces.

Ainsi dès 1992, après que Levine (The p53 tumor suppressor gene and gene product. Princess Takamatsu Symp (1989) 20:221-30) ainsi que d'autres équipes scientifiques eurent montré que la protéine p53 native qui a des effets de réparation sur les brins d'ADN et des effets immunosuppressifs du cycle cellulaire ou un mutant de cette protéine était abondamment produite et accumulée dans les tumeurs malignes, le même Levine propose de réaliser une vaccination utilisant la protéine p53, apparaissant comme étant un antigène de tumeur associé (TAA). Celle-ci était présentée à la surface de cellules dendritiques (DC) ou adjuvantée dans un vecteur bactérien (type BCG) de manière à induire une réponse immunitaire de type CTL dirigée contre les cellules cancéreuses (Voir aussi WO-A-94/02167).

A l'appui de cette demande de brevet, des publications scientifiques montrent le rôle bénéfique des cellules tueuses et le rôle péjoratif des anticorps spécifiques dans l'évolution des tumeurs malignes (Theobald M, Biggs J, Dittmer D, Levine AJ, Sherman LA. Targeting p53 as a general tumor antigen. Proc Natl Acad Sci U S A (1995) 92:11993-7, Roth J. et al, p53 as a target for cancer vaccines: recombinant canarypox virus vectors expressing p53 protect mice against lethal tumor cell challenge, 1996, Proc Natl Acad Sci USA.; 93:4781-6).

A la suite de Levine, d'autres équipes modifiant le vecteur ou l'adjuvant de l'immunogène p53 ont déposé une dizaine de demandes de brevets sur l'utilisation de nouvelles présentations galéniques de vaccin anti p53 visant également à induire la formation de cellules tueuses CTL ciblant les cellules cancéreuses exprimant la protéine p53.

Les essais expérimentaux associés à ces vaccins anti p53 ont montré l'innocuité et l'immunogénicité évaluée par l'apparition de cellules tueuses anti p53. Plus, le seul essai clinique de vaccination anti p53 réalisé et publié a confirmé l'innocuité et l'immunogénicité du vaccin. Cependant aucun

30

essai de phase III n'a pu valider l'efficacité de cette stratégie vaccinale.

La demanderesse a découvert avec étonnement que l'immunosuppression et l'angiogénèse du micro environnement des cellules infectées par certains virus tel le VIH-1 et du micro environnement des cellules cancéreuses apportent une explication rationnelle à l'absence d'efficacité de ces stratégies vaccinales car ces stratégies antérieures ciblent la cellule cancéreuse et non le dérèglement de son micro environnement.

Or, alors que jusqu'à présent les traitements ont tous visé à tuer directement les cellules cancéreuses elles-mêmes, c'est à dire les cellules parenchymateuses, la demanderesse a trouvé qu'il était autant ou même plus judicieux de lutter contre les molécules produites dans le micro environnement extra cellulaire (stromal) de la tumeur et favorisant le développement de cette dernière.

Rappelons que tout tissu ou tumeur est formée de cellules parenchymateuses qui baignent dans un micro environnement appelé stroma. Ce stroma est lui-même constitué de cellules stromales (qui peuvent être des cellules immunitaires, endothéliales, ou fibroblastiques) et d'un milieu extra cellulaire.

Les travaux de la demanderesse ont montré en effet que des facteurs solubles secrétés par les cellules infectées par le VIH-1, en particulier la protéine Tat ou par les cellules immunitaires de patients infectés par le VIH en particulier l'IFNα et le TGFβ ou produits par des cellules cancéreuses, telles la protéine E7 de l'HPV dans le cancer du col utérin ou la protéine Tax du HTLV1 dans les leucémies ATL ou la protéine p53 dans le cancer colorectal , avaient des propriétés immunosuppressives susceptibles d'inhiber les réactions immunitaires cellulaires au sein des tumeurs et de ce fait expliquaient l'inefficacité des vaccins antérieurs.

L'étude bibliographique a permis de conforter ces observations de la demanderesse, en confirmant la présence de facteurs immunosuppressifs relâchés dans le milieu extracellulaire de tumeurs malignes :

Certains de ces facteurs non encore identifiés ont été produits par des cellules de cancer colorectal (Ebert EC, Roberts Al, O'Connell SM,

15

20

25

Robertson FM, Nagase H. Characterization of an immunosuppressive factor derived from colon cancer cells. J Immunol. (1987) 138:2161-8 ou Remacle-Bonnet MM, Pommier FJ, Kaplanski S, Rance RJ, Depieds RC. Inhibition of normal allogenic lymphocyte mitogenesis by a soluble inhibitor extracted from human colonic carcinoma. J Immunol (1976) 117:1145-51,

- des cellules de glioblastome (29-Fontana A, Hengartner H, de Tribolet N, Weber E. Glioblastoma cells release interleukin 1 and factors inhibiting interleukin 2-mediated effects. J Immunol. (1984) 132:1837-44),
- des mélanomes (30.Hersey P, Bindon C, Czerniecki M, Spurling A, Wass J,
 McCarthy WH. Inhibition of interleukin 2 production by factors released from tumor cells. J Immunol. (1983) 131:2837-42), ou
 - des ascites malignes (Tamura K, Shibata Y, Matsuda Y, Ishida N. Isolation and characterization of an immunosuppressive acidic protein from ascitic fluids of cancer patients. Cancer Res. (1981) 41:3244-52, Oh SK, Moolten FL. Non specific immunosuppressive factors in malignant ascites: further characterization and possible relationship to erythrocyte receptors of human peripheral T cells. J Immunol. (1981) 127:2300-7).

D'autres facteurs de régulation transcriptionnelle, comme rapporté plus haut, sont d'origine cellulaire telle la protéine p53, accumulée dans certaines tumeurs malignes, en particulier colorectales (Remvikos Y, Tominaga O, Hammel P, Laurent-Puig P, Salmon RJ, Dutrillaux B, Thomas G. Increased p53 protein content of colorectal tumours correlates with poor survival. Br J Cancer 1992 66:758-64, Gan H, Ouyang Q, Wang Y. Expression of p53 protein in colorectal cancer and its relationship to cell proliferative activity and prognosis. Chung Hua Chung Liu Tsa Chih (1996) 18:244-6). La protéine p53, relâchée par transport actif par des voies de sécrétion n'utilisant pas le signal peptide ou par diffusion passive est présente dans le milieu extracellulaire, et elle a été isolée par chromatographie sur fibre de verre à partir de sérum de cancéreux (Zusman I, Sandler B, Gurevich P, Zusman R, Smirnoff P, Tendler Y, Bass D, Shani A, Idelevich E, Pfefferman R, Davidovich B, Huszar M, Glick J. Comparative study of the role of serum levels of p53 antigen and its tumor cell concentration in colon cancer detection. Hum Antibodies Hybridomas. (1996)

25

:123-8, Sandler B, Smirnoff P, Tendelr Y, Zinder O, Zusman R, Zusman I. Specificity of polyclonal anti-p53 IgG for isolation of the soluble p53 antigen from human serum. Int J Mol Med. 1998 1:767-70).

Des cytokines, telles le TGFβ notoirement immunosuppressif; le VEGF facteur de croissance angiogénique, l'IL 6 pro-inflammatoire ou l'IL 10 également immunosuppressive, sont anormalement secrétées et relâchées dans le milieu extracellulaire de certaines cellules cancéreuses. La demanderesse a elle-même montré que les cellules de lignée cancéreuses SIHA, tout comme les cellules DU145 du cancer de la prostate et les cellules MT2 de lignées leucémiques produisent anormalement et relâchent dans le milieu extracellulaire des cytokines telles le VEGF et/ou l'IL 6 tandis que les cellules RAJI de lignées leucémiques secrètent dans le milieu extracellulaire de l'IL 10.

Dans ce contexte, la présente invention a pour objet l'utilisation 15 comme médicament anticancéreux de nouvelles préparations vaccinales dénuées de toxicité et destinées à neutraliser :

- soit des cytokines immunosuppressives, apoptotiques ou angiogéniques produites dans le compartiment stromal extra cellulaire en excès par les cellules cancéreuses ou stromales de tumeurs malignes. Les exemples de vaccins anti-cytokines décrits dans EP-591.281 concernaient particulièrement des vaccins anti-IFNα utilisés contre le SIDA et d'autres affections immunitaires.
- soit des facteurs de régulation cellulaire, particulièrement transcriptionnels ou d'autres facteurs à propriétés immunosuppressives, apoptotiques ou angiogéniques anormalement produits dans le compartiment stromal extra cellulaire par les cellules cancéreuses. Les exemples d'immunogènes décrits dans WO-A-00/03732 dérivaient de facteurs de régulation d'origine virale telles les protéines E7 du HPV 16, Tax du HTLV-1 et du Tat du HIV-1.

Dans ces nouvelles préparations vaccinales non toxiques, 30 l'immunogène

1- est constitué par des facteurs cytokiniques ou dérive de facteurs cytokiniques ou de facteurs de régulation cellulaire particulièrement transcriptionnels ou

20

25

d'autres facteurs à propriétés immunosuppressives / apoptotiques / angiogéniques anormalement produits par les cellules cancéreuses ou stromales de turneurs malignes dans le milieu extra cellulaire.

2- est de préférence présenté sous une forme galénique permettant d'induire une réaction immunitaire induisant préférentiellement des anticorps de classe IgG et/ou IgA capables d'antagoniser localement les facteurs immunosuppressifs / apoptotiques / angiogéniques anormalement présents dans le milieu extracellulaire des tumeurs et d'en inhiber les effets.

La présente invention propose notamment l'utilisation comme 10 médicament anticancéreux de vaccins dirigés particulièrement contre des facteurs pathogènes produits anormalement dans la matrice extracellulaire des tumeurs malignes et notamment

- la protéine TGFβ: Le TGFβ étant une cytokine immunosuppressive majeure produite par de nombreuses cellules cancéreuses;
- 15 la protéine IL 10 : L'IL 10 étant également une cytokine immunosuppressive majeure
 - la protéine p53 : Si la protéine de régulation p53 produite anormalement par les cellules cancéreuses et accumulée dans les tumeurs peut représenter un antigène de tumeur associé (TAA) comme cela a été montré dans l'art antérieur, la demanderesse a découvert qu'elle peut également agir dans sa configuration extracellulaire comme facteur immunosuppressif et apoptogène sur les cellules immunitaires comme illustré ci-après dans les exemples.
 - Le VEGF, facteur de croissance des cellules endothéliales: La cytokine VEGF étant une cytokine majeure de l'angiogénèse, activant la prolifération des cellules endothéliales.
 - L'IL 6, l'IFNγ et le TNFα, cytokines pro inflammatoires participant également aux processus d'angiogénèse, en activant l'expression des molécules d'adhérence des cellules endothéliales (ICAM, VCAM, E sélectine).

Tous ces vaccins visent à induire une réaction immunitaire avec 30 formation d'anticorps de classe IgG (pour tous les cancers) et surtout de classe IgA (pour les cancers épithéliaux) de manière à neutraliser localement, au sein de la tumeur, les facteurs pathogènes particulièrement immunosuppressifs /

apoptotiques / angiogéniques et à en bloquer leurs effets, permettant ainsi à l'immunité naturelle ou à un vaccin dirigé contre les antigènes TAA ou TSA de fonctionner normalement et d'éliminer les cellules malades.

C'est pourquoi la présente demande a pour objet un vaccin caractérisé en ce qu'il renferme à titre de principe actif un immunogène qui est un facteur ou qui dérive d'un facteur cytokinique ou d'un facteur de régulation cellulaire particulièrement transcriptionnel ou d'un autre type de facteur à propriétés immunosuppressives / apoptotiques / angiogéniques anormalement produit par les cellules cancéreuses ou stromales de tumeurs malignes, ainsi qu'un excipient pharmaceutiquement acceptable permettant l'induction d'une réaction immunitaire systémique ou mucosale avec formation d'anticorps de classe IgG ou IgA sécrétoire dirigée contre le facteur natif et plus particulièrement un vaccin caractérisé en ce qu'il renferme à titre de principe actif un immunogène qui est

- 15 un facteur cytokinique ou un facteur de régulation cellulaire particulièrement transcriptionnel type ou un autre de facteur propriétés immunosuppressives / apoptotiques / angiogéniques anormalement relâché dans le milieu extracellulaire (stromal) par les cellules cancéreuses ou les cellules stromales de tumeurs malignes, ainsi qu'un excipient 20 pharmaceutiquement acceptable permettant l'induction d'une réaction immunitaire systémique ou mucosale avec formation d'anticorps neutralisants de classe IgG ou IgA sécrétoire dirigés contre le facteur natif,
 - ou qui dérive d'un tel facteur,

à l'exception de :

- 25 l'IL 6, un fragment d'IL 6 ou un analogue d'IL 6 sous une forme produisant une immunité non mucosale et non couplé à une protéine porteuse comme le KLH,
 - un épitope de p53 trop court pour être immunogène et couplé à une protéine porteuse comme le KLH.
- 30 une composition d'une protéine p53 ou peptide de p53, d'IL 12 et d'un adjuvant.

Dans des conditions préférentielles de mise en œuvre,

25

30

l'immunogène dérive d'un facteur cytokinique ou d'un facteur de régulation cellulaire particulièrement transcriptionnel ou d'un autre type de facteur à propriétés immunosuppressives / apoptotiques / angiogéniques anormalement produit par les cellules cancéreuses ou stromales de tumeurs malignes par traitement chimique, physique, par mutation génétique, par conditionnement adjuvant ou est le produit d'une vaccination génétique (vaccin à ADN) ou est un fragment protéique ou peptidique d'un tel facteur ou encore dérive d'un tel fragment protéique ou peptidique.

L'immunogène sera de préférence couplé à une protéine porteuse.

En effet la demanderesse a découvert qu'une telle mesure augmente le nombre des sites auxiliaires (helper) et de ce fait augmente la réponse anticorps neutralisant le facteur extra cellulaire ciblé.

Dans encore d'autres conditions préférentielles de mise en œuvre l'immunogène dérive d'un facteur cytokinique ou d'un facteur de régulation cellulaire particulièrement transcriptionnel ou d'un autre type de facteur à propriétés immunosuppressives / apoptotiques / angiogéniques anormalement produit par les cellules cancéreuses ou stromales de tumeurs malignes ou d'un fragment protéique ou peptidique d'un tel facteur par couplage à une protéine porteuse qui est le KLH.

Dans d'autres conditions préférentielles de mise en œuvre, l'immunogène est choisi parmi la TGFβ, l'IL 10, la protéine p53, le VEGF, l'IL 6, l'IFN α, l'IFNγ, le Fas ligand et le TNFα ou en dérive.

L'immunogène de ces préparations vaccinales, dénuées de toxicité comme tout médicament, pourra dériver d'un facteur immunosuppressif / apoptotique / angiogénique ou d'un de ses fragments peptidiques par traitement chimique, physique, par mutation génétique, par conditionnement adjuvant ou être le produit d'une vaccination génétique (vaccin à ADN). De tels traitements de l'immunogène qui ont été décrits dans WO-A-00/03732 peuvent être utilisés dans la présente invention pour l'obtention d'un vaccin dénué de toute toxicité et en particulier dépourvu de tout caractère immunosuppressif. Mais les immunogènes peuvent aussi être utilisés à l'état natif.

Les traitements chimiques consistent par exemple à détoxiquer la

-10

20

25

30

protéine native ou recombinante par un traitement aux aldéhydes notamment le formaldéhyde, aldéhyde monofonctionnel et donc n'agissant pas par couplage de molécules, conformément à la détoxication des toxines tétaniques ou diphtériques, ou consistent encore en des traitements bloquant les groupements sulfidryles, tels la carboxamidation, la maléimidation ou la carboxyméthylation ou en tout autre traitement bloquant d'autres résidus aminés comme décrit dans des demandes antérieures de la demanderesse.

Dans toujours d'autres conditions préférentielles de mise en œuvre, l'immunogène est un mutant du facteur natif ou un fragment du facteur natif.

On pourra utiliser un mutant du facteur possédant au moins 70 %, de préférence au moins 80 % et tout particulièrement au moins 90 %. d'homologie avec le facteur protéique natif ou encore un fragment protéique ou peptidique du facteur. Dans le cas d'un peptide, celui-ci sera de préférence porté par une protéine porteuse tel le KLH ou le toxoïde tétanique. On pourra avantageusement utiliser aussi une protéine porteuse dans le cas du facteur protéique natif ou encore d'un fragment protéique de celui-ci.

Les produits décrits ci-dessus utilisés comme immunogènes, à l'exception des facteurs natifs, sont nouveaux, au moins pour la plupart d'entre eux. Ils entrent donc dans le cadre de l'invention.

Les traitements physiques peuvent être réalisés par la chaleur, les radiations U.V., les rayons X ou le contact avec une atmosphère riche en O₂. Ces traitements physiques générant des modifications intramoléculaires entre radicaux chimiques (groupement thiols par exemple), peuvent de manière appropriée changer la conformation de la molécule, l'inactiver fonctionnellement tout en conservant ses propriétés immunogènes.

Les modifications génétiques peuvent être obtenues par ingénierie génétique opérant des insertions, des délétions ou des substitutions de résidus. Les mutants génétiques pourront ou non subir un traitement chimique et/ou physique complémentaire. Les protéines modifiées ci-dessus peuvent par exemple être préparées à partir d'une protéine ayant une séquence identique ou similaire à une séquence peptidique d'un facteur ci-dessus. Tous ces procédés sont bien connus de l'état de la technique.

10

20

Un vaccin à ADN (vaccination génétique) pourra comprendre un plasmide comportant un gène promoteur d'expression comme celui du CMV et le gène codant pour un immunogène défini ci-dessus (facteur natif ou dérivé dont fragments).

Par "dérivent" ou "dériver" de facteurs immunosuppressifs / apoptotiques / angiogéniques, l'on entend aussi que le composé immunogène peut être constitué de la totalité ou d'un fragment de la protéine de départ ou encore peu notamment être couplé à une protéine porteuse comme le KLH (keyhole limpet hemocyanin) ou le tétanos toxoïde, directement ou de préférence par un réactif bifonctionnel de couplage.

Il peut comporter une ou plusieurs modifications dans les acides aminés de cette protéine ou fragment telles que des délétions, substitutions, additions, ou fonctionnalisations telles qu'acylation d'acides aminés, dans la mesure où ces modifications restent dans le cadre précisé ci-dessus (absence de toxicité, caractères immunologiques). Par exemple, en général le remplacement d'un résidu leucine par un résidu isoleucine ne modifie pas de telles propriétés; les modifications doivent généralement concerner moins de 40% d'acides aminés, notamment moins de 30% de préférence moins de 20% et tout particulièrement moins de 10% du facteur protéique. Il est important que la protéine ou fragment modifié ne soit pas dénaturé comme on peut le faire par exemple par un traitement physique comme la chaleur afin de préserver ses sites conformationnels pour que les anticorps induits par les dérivés modifiés soient actifs vis à vis de la protéine native.

De manière générale, en ce qui concerne les modifications, l'homologie ou la similitude entre l'immunogène modifié et la protéine ou partie de protéine immunosuppressive native, ainsi que les dimensions du composé immunogène, de même que les modalités d'utilisation, ou de couplage du composé immunogène selon l'invention à une protéine immunogène telle que le toxoïde tétanique, on peut en particulier se référer à WO-A-86/06 414 ou à EP-A-0.220.273 ou encore à PCT/US.86/00831, équivalents.

Un fragment peut comporter de 8 à 110 acides aminés par exemple, de préférence de 20 à 110, notamment de 12 à 60, particulièrement

15

20

25

30

de 25 à 60, plus particulièrement de 12 à 40 et tout particulièrement de 30 à 50 acides aminés. Un tel fragment peut comporter aussi du ou des côtés C ou N terminal de 1 à 5 acides aminés supplémentaires c'est-à-dire différents du segment d'origine. Un fragment doit en outre comporter une cystéine au moins pour pouvoir faire l'objet de la carboxyméthylation.

Un fragment protéique pourra comporter la totalité des acides aminés de la séquence native, délétée de moins de 25 acides aminés, de préférence moins de 15 acides aminés, particulièrement moins de 10 acides aminés et tout particulièrement moins de 5 acides aminés, voire même un seul acide aminé.

Pour le conditionnement adjuvant, l'immunogène pourra notamment être inclus dans une émulsion eau dans huile, en utilisant par exemple l'ISA 51.

Une préparation vaccinale contenant l'immunogène anti immunosuppressif / apoptotique / angiogénique pourra être administrée sous une forme galénique appropriée à induire une réponse immunitaire de type systémique par voie Intra Musculaire (IM), Sous Cutanée (SC), Intra Dermique (ID) ou de type mucosal par voies intra nasale, orale, vaginale ou rectale.

Une préparation vaccinale contenant l'immunogène anti immunosuppressif / apoptotique / angiogénique pourra également contenir d'autres immunogènes, tels les antigènes TAA ou TSA de cancer ou des adjuvants telles des cytokines ou des protéines d'entérotoxines, type CTB ou Lt mutant (LTµ) (Freytag LC, Clements JD, Bacterial toxins as mucosal adjuvants Curr Top Microbiol Immunol; (1999) 236:215-36).

Une préparation galénique à visée systémique, administrée par voie SC, IM, ID, pourra être une émulsion eau renfermant l'immunogène, dans huile, ou une suspension de phosphate de calcium enchâssant l'immunogène, ou de l'hydroxyde d'aluminium adsorbant l'immunogène.

Une préparation galénique visant une réponse immunitaire mucosale administrée préférentiellement par voie nasale ou orale, mais aussi par voie vaginale ou rectale surtout pour des rappels, pourra être notamment constituée de micro sphères de polymères biodégradables, tels les PLG

30

(poly(lactide-co-glycolides)), PLA ((poly(lactides)) et les PCL, (poly(epsilon-caprolactones)) à forme retard (Baras B. et al, Single-dose mucosal immunization with biodegradable microparticles containing a Schistosoma mansoni antigen. Infect Immun. (1999) 67:2643-8) dans lesquelles sont incluses les molécules d'antigènes, de suspensions aqueuses de phosphate de calcium enchâssant ou adsorbant l'antigène, de nanoparticules, telles les nanoparticules de chitosan.

Les préparations vaccinales pourront être conditionnées pour la voie intra nasale sous forme de gel avec comme excipient le carbopol, de gouttes nasales ou de spray et pour la voie orale sous forme de capsules gastrorésistantes, de dragées ou de granules gastrorésistants.

- Dans le cas de vaccin ADN administré par voie systémique ou mucosale, la présentation galénique du plasmide pourra être une suspension dans un liquide physiologique tel le PBS physiologique (tampon phosphate = PBS). Les plasmides pourront être inclus dans des microsphères de polymères biodégradables (PLG, PLA, PCL) et administrées dans des capsules gastrorésistantes pour ingestion (voie orale). L'ADN pourra également être exprimé dans un vecteur vivant bactérien, type salmonelle ou viral type adénovirus ou poxvirus.
- La présente demande a aussi pour objet l'utilisation à titre d'immunogène d'un facteur qui est un facteur cytokinique ou un facteur de régulation cellulaire particulièrement transcriptionnel ou un autre type de facteur à propriétés immunosuppressives / apoptotiques / angiogéniques anormalement relâché dans le milieu extra cellulaire (stromal) par des cellules cancéreuses ou stromales de tumeurs malignes ou qui dérive d'un tel facteur.

La présente demande a encore pour objet l'utilisation d'un immunogène qui est un facteur ou qui dérive d'un facteur cytokinique ou d'un facteur de régulation cellulaire particulièrement transcriptionnel ou d'un autre type de facteur à propriétés immunosuppressives / apoptotiques / angiogéniques anormalement produit par des cellules cancéreuses ou stromales de tumeurs malignes pour l'obtention d'un médicament destiné à une utilisation en tant qu'anticancéreux par mécanisme de réduction des effets, sur le

.10

15

20

25

30

micro environnement desdites cellules cancéreuses ou stromales de turneurs malignes, d'un facteur cytokinique ou d'un facteur de régulation cellulaire particulièrement transcriptionnel ou d'un autre type de facteur à propriétés immunosuppressives / apoptotiques / angiogéniques anormalement produit par lesdites cellules cancéreuses ou stromales de turneurs malignes.

La présente demande a enfin pour objet un immunogène qui est un facteur ou qui dérive d'un facteur cytokinique ou d'un facteur de régulation cellulaire particulièrement transcriptionnel ou d'un autre type de facteur à propriétés immunosuppressives / apoptotiques / angiogéniques anormalement relâché dans le milieu extra cellulaire par les cellules cancéreuses ou stromales de tumeurs malignes pour son utilisation dans une méthode de traitement thérapeutique du corps humain ou animal, c'est-à-dire à titre de médicament, notamment de vaccin curatif ou préventif.

Les immunogènes objets de la présente invention possèdent de très intéressantes propriétés pharmacologiques. Ils sont doués notamment de remarquables propriétés antagonistes, réductrices, inhibitrices ou notamment neutralisantes, des propriétés immunosuppressives / apoptotiques / angiogéniques de facteurs anormalement produits dans le milieu extracellulaire (stromal) par les cellules cancéreuses ou stromales de tumeurs malignes à la différence de composés de l'art antérieur qui agissent directement sur les cellules cancéreuses de tumeurs malignes.

Ces propriétés sont illustrées ci-après dans la partie expérimentale. Elles justifient l'utilisation des vaccins et immunogènes ci-dessus décrits à titre de médicament.

Les médicaments selon la présente invention trouvent leur emploi par exemple dans le traitement tant curatif que préventif de cancers d'origine épithéliale comme par exemple le cancer colorectal, le cancer de la prostate, le cancer du sein et d'origine conjonctive tels les sarcomes ou d'origine sanguine tels les lymphomes type Epstein-Barr ou les leucémies.

La présente demande a également pour objet un procédé d'immunisation active de patients caractérisé en ce que l'on utilise à titre d'immunogène un composé immunogène tel que défini ci-dessus

15

20

30

avantageusement associé à un adjuvant d'immunité minéral, huileux ou de synthèse, ou encore un composé immunogène tel que défini ci-dessus, avantageusement couplé par exemple à l'aide d'un dialdéhyde ou associé à une protéine augmentant son immunogénicité.

Ces immunisations peuvent être réalisées tant à titre curatif qu'à titre préventif.

Les conditions préférentielles de mise en œuvre des vaccins cidessus décrits s'appliquent également aux autres objets de l'invention visés cidessus.

Les exemples qui suivent illustrent la présente invention.

La figure 1 montre l'inhibition de la prolifération cellulaire par le TGFβ exprimée en % de prolifération cellulaire ((cpm contrôle / cpm échantillon) x 100) à trois concentrations (30, 10 et 3 ng/ml) de TGFβ et de protéine p24. Le contrôle correspond à une concentration de protéine recombinante utilisée égale à 0.

La figure 2 montre l'effet de sérum de souris immunisées avec l'immunogène VEGF non couplé ou couplé au KLH selon différentes techniques de couplage et à 4 dilutions différentes indiquées en haut du tableau. Les expériences ont été menées de gauche à droite avec des souris naïves, des souris immunisées avec du VEGF au jour J 60, des souris immunisées avec du KLH-glutaraldéhyde-VEGF pH 9 au jour J 60, des souris immunisées avec du KLH-SMCC-VEGF au jour J 60, des souris immunisées avec du KLH-SIAB-VEGF au jour J 60. Le pourcentage de neutralisation est donné en ordonnées.

25 Exemple 1 : Vaccin à base de l'immunogène VEGF destinée à induire une réaction immunitaire systémique avec formation préférentielle d'anticorps spécifiques de classe IgG.

Le vaccin est formé d'une émulsion eau dans huile constituée de 50 % d'ISA 51 (Seppic, Paris) et de 50 % d'une solution aqueuse de VEGF (20 à 200 µg/dose).

30

Exemple 2 : Vaccin à base de l'immunogène plasmidique pour vaccination ADN de type systémique IL 10.

Les plasmides codant pour l'IL 10 (50 à 200 µg/dose) sont mis en suspension dans 0,2 à 1 ml de PBS pour administration intramusculaire.

Exemple 3 : Vaccin à base de l'immunogène p53 destinée à induire une réaction immunitaire de type mucosale avec formation préférentielle d'anticorps anti p53 de classe IgA.

L'immunogène p53 (20 à 100 µg/dose) est inclus dans un gel de phosphate de calcium en présence ou non d'adjuvant LTµ (5 à 20 µg/dose) pour l'instillation intra nasale. La préparation est administrée par voie intranasale soit sous forme de gouttes nasales, soit sous forme d'un gel par addition de carbopol.

15 Exemple 4 : Vaccin à base de l'immunogène IL 10 destinée à induire une réaction immunitaire de type réaction mucosale avec formation préférentielle d'anticorps anti IL 10 de classe IgA :

On a préparé des micro sphères de PLG contenant l'immunogène (100 à 300 µg/dose) et un mutant de la toxine LT (5-25 µg/dose)

L'inclusion de l'IL 10 et du LTµ est réalisée dans les micro sphères biodégradables selon le protocole de Baras B. et al (Baras B. et al, Single-dose mucosal immunization with biodegradable microparticles containing a Schistosoma mansoni antigen. Infect Immun. (1999) 67:2643-8).

25 Exemple 5: Vaccin à base de l'immunogène plasmidique IFNγ pour vaccination ADN de type mucosale.

Les plasmides d' IFNγ (100-500 μg/dose) en présence de LTμ (5-20 μg/dose) sont inclus dans des microsphères de PLG selon le protocole décrit par Baras B. et al. L'administration par voie orale se fait par gavage ou par ingestion de capsules gastrorésistantes contenant les microsphères et un excipient à base d'alginate.

Exemple 6 : Vaccin à base de l'immunogène VEGF destinée à induire une réaction immunitaire systémique avec formation préférentielle d'anticorps spécifiques de classe IgG.

Le vaccin est formé d'une émulsion eau dans l'huile constituée de 50 % d'ISA 51 (SEPPIC) et de 50 % d'une solution aqueuse de VEGF (20 à 200 μg/dose).

L'immunogène provient de la préparation 3 de VEGF stabilisée par du glutaraldéhyde.

10 Exemple 7 : Vaccin à base de l'immunogène VEGF couplé au KLH destinée à induire une réaction immunitaire systémique avec formation préférentielle d'anticorps spécifiques de classe IgG.

Le vaccin est formé d'une émulsion eau dans l'huile constituée de 50 % d'ISA 51 (SEPPIC) et de 50 % d'une solution aqueuse de VEGF (20 à 200 µg/dose).

Exemple 8 : Vaccin à base de l'immunogène E7 de HPV16 couplé au KLH pour induire une réaction immunitaire systémique.

Le vaccin est formé d'une émulsion eau dans huile de 50 % d'ISA 20 (SEPPIC, Paris) et de 50 % d'une solution aqueuse de E7 couplé au KLH (20 à 200 µg/dose).

Les immunogènes servant à la préparation des vaccins ci-dessus ont été préparés comme suit :

25 Préparation 1 : Immunogène anti IL 6

Immunogène IL 6 dérivé de la cytokine recombinante IL 6 par traitement au formol suivi d'un traitement par le glutaraldéhyde :

A 1 ml d'une solution d'IL 6 à 1 mg/ml dans du tampon phosphate stérile, on ajoute 28 µl d'une solution de formol (35 %) dilué au 1/10 dans du tampon phosphate stérile. Après addition de merthiolate au 1/10.000, le mélange est placé 9 jours à l'étuve à 37°C. Il est ensuite additionné de glutaraldéhyde à la concentration 0,0026 M. Après 3 minutes, le mélange est

additionné de 100 µl de glycine à 50 mg/ml pour bloquer les groupements aldéhydiques en excès et il est dialysé contre un grand volume de tampon phosphate. L'immunogène est ainsi stabilisé.

5 Caractéristiques de l'IL 6

L'antigénicité de la cytokine recombinante IL 6 traitée par rapport à celle de la protéine recombinante native a été mesurée à l'aide d'un test ELISA de R&D (D6050) : la cytokine recombinante IL 6 détoxiquée présente une antigénicité égale à l'antigénicité de la protéine native correspondante.

L'absence de toxicité in vitro est mesurée par un test de prolifération cellulaire. Des cellules mononucléées du sang périphérique humain sont cultivés en présence du super antigène SEB et en présence d'une dose de la protéine recombinante IL 6 native ou détoxiquée correspondant à 10 fois et 30 fois la dose physiologique de la cytokine native. La prolifération cellulaire est exprimée en % de prolifération cellulaire [cpm (coups par minute) contrôle/cpm échantillon] x 100). Le contrôle correspond à une concentration de protéine recombinante utilisée égale à 0. Les résultats sont présentés dans le tableau suivant :

		% de prolifération cellulaire
IL 6 native	0 ng/ml	100
IL 6 native	30 ng/ml	98
IL 6 traitée	30 ng/ml	95

20

25

10

15

L'IL 6 traitée utilisée à des doses 10 fois et 30 fois supérieures aux doses physiologiques ne modifie pas la prolifération des cellules mononucléées du sang périphérique humain activés par le SEB.

Préparation 2 : Immunogène anti p53

L'immunogène p53 a été détoxiqué par traitement au formol selon le protocole décrit par Ramon (Ramon G, Sur le pouvoir floculant et les propriétés immunisantes d'une toxine diphtérique rendue anatoxique

20

25

(anatoxine). C.r. hebd. Séances Acad. Sci. (1923) 177: 1338-1340), suivi d'un traitement au glutaraldéhyde de la protéine p53 recombinante (sc-4246, Santa Cruz) dans les conditions suivantes : à 10 μl d'une solution de p53 native à 1 mg/ml, on ajoute 3 μl d'une solution de formol dilué au 1/100 dans du tampon phosphate stérile. Le mélange est placé 2 jours à l'étuve à 37 °C. Il est ensuite additionné de 25 μl de glutaraldéhyde au 1/100. Après 15 minutes de réaction à température de laboratoire, on ajoute 2 μl de glycine 2M pour bloquer les groupements aldéhydiques en excès.

10 Caractéristique de l'immunogène p53

L'antigénicité de la protéine recombinante p53 traitée par rapport à celle de la protéine recombinante native a été mesurée à l'aide d'un test ELISA d'Amersham Pharmacia Biotech (p53 Rapid Format Pantropic Human ELISA, VQIA26): Les protéines p53 native et traitée présentent une antigénicité équivalente.

Absence de toxicité in vitro : la protéine p53 traitée utilisée à des doses dix fois et 30 fois supérieures aux doses physiologiques (0,5 à 5 ng/ml) ne modifie pas la prolifération de cellules mononucléées du sang périphérique humain activées par le SEB ou par les anticorps anti CD3. La mesure de la prolifération a été réalisée par le test à la ³H-thymidine.

Préparation 3 : Immunogène anti VEGF

L'immunogène VEGF dérivé de VEGF (293-VE-010; R&D) est obtenu par traitement à la glutaraldéhyde dans les conditions suivantes : à 100 µl d'une solution de VEGF natif à 5 µg/ml dans du tampon phosphate, on ajoute 5 µl d'une solution de glutaraldéhyde dilué au 1/500 dans du tampon phosphate stérile. Après 5 minutes de réaction à température ambiante, on ajoute 2 µl de glycine 1M pour bloquer la réaction.

30 Caractéristique du VEGF

L'antigénicité de la cytokine VEGF traitée par rapport à celle de la cytokine recombinante native a été mesurée à l'aide d'un test ELISA de R&D

15

20

(DVE00): les cytokines native et traitée présentent une antigénicité équivalente.

L'absence de toxicité in vitro a été mesurée à l'aide d'un test de prolifération cellulaire. Des cellules mononucléées du sang périphérique humain sont cultivées en présence du super antigène SEB et en présence d'une dose de la proteine recombinante VEGF native ou traitée correspondant à 10 fois et 30 fois la dose physiologique de la cytokine native. La prolifération cellulaire est exprimée en % de prolifération cellulaire ((cpm contrôle/cpm échantillon) x 100). Le contrôle correspond à une concentration de protéine recombinante utilisée égale à 0. Les résultats sont présentés dans le tableau suivant :

		% de prolifération cellulaire
VEGF natif	0 ng/mi	100
VEGF natif	30 ng/ml	92
VEGF traité	30 ng/ml	97

La cytokine VEGF traitée utilisée à des doses 10 fois et 30 fois supérieures aux doses physiologiques ne modifie pas la prolifération des cellules mononucléées du sang périphérique humain activées par le SEB.

Préparation 4 : Immunogène anti TGFß

Immunogène TGFβ dérivé du TGFβ est détoxiqué par traitement au formol selon le protocole décrit par Ramon (Ramon G, Sur le pouvoir floculant et les propriétés immunisantes d'une toxine diphtérique rendue anatoxique (anatoxine). C.r. hebd. Séances Acad. Sci. (1923) 177 : 1338-1340), suivi d'un traitement à la glutaraldéhyde, conformément au protocole décrit pour l'immunogène p53.

25 Caractéristique de l'immunogène TGFβ

L'antigénicité de la cytokine TGFβ traitée par rapport à celle de la protéine recombinante native a été mesurée à l'aide d'un test ELISA de R&D (DB100): Les cytokines TGFβ native et traitée présentent une antigénicité

équivalente.

10

15

20

L'absence de toxicité de la cytokine TGFβ traitée a été mesurée par un test de prolifération de cellules T décrit dans l'exemple A1. Ce test montre que le TGFβ détoxiqué utilisé à des doses physiologiques de 0,5 à 5 ng/ml ne diminue pas la prolifération des lymphocytes.

Préparation 5 : Immunogène anti IL 10

a) Immunogène IL 10 dérivé de l'IL 10 par traitement au formol

L'IL 10 est obtenu à partir de la protéine de fusion de l'IL 10 par traitement au formol à 37°C suivi d'un traitement court à la glutaraldéhyde, conformément au protocole décrit pour l'immunogène p53. La protéine de fusion IL 10 a été produite chez E. Coli à partir d'un ADNc cloné dans le plasmide d'expression bactérien prSetA et purifié sous forme d'une protéine de fusion avec Tag His. Cette protéine de fusion purifiée est homogène en électrophorèse d'acrylamide et en Western blot.

Caractéristique de l'immunogène IL 10

L'antigénicité de la cytokine IL 10 traitée par rapport à celle de la protéine recombinante native a été mesurée à l'aide d'un test ELISA de R&D (D1000): Les cytokines IL 10 native et traitée présentent une antigénicité équivalente.

L'absence de toxicité in vitro est mesurée par un test de prolifération cellulaire. La cytokine IL 10 traitée utilisée à des doses 10 fois et 30 fois supérieures aux doses physiologiques ne modifie pas la prolifération des cellules mononucléées du sang périphérique humain activées par le SEB.

b) Immunogène plasmidique IL 10 pour vaccination d'ADN

L'immunogène plasmidique IL 10 est représenté par un ADNc de IL 10 cloné dans le plasmide d'expression bactérien prSetA.

25

Préparation 6 : Vaccin anti TNFα

a) Immunogène TNFa dérivé du TNFa par traitement chimique

L'immunogène dérivé du TNFα (Péprotech Inc., Rocky Hill) est obtenu par traitement au formol à 37°C suivi d'un traitement court à la glutaraldéhyde, conformément au protocole décrit pour l'immunogène p53.

Caractéristique du TNFa:

L'antigénicité de la cytokine TNF α traitée par rapport à celle de la protéine recombinante native a été mesurée à l'aide d'un test ELISA de R&D (DTA50) : Les cytokines TNF α native et traitée présentent une antigénicité équivalente.

L'absence de toxicité in vitro est mesurée par un test de prolifération cellulaire. La cytokine TNFα traitée utilisée à des doses 10 fois et 30 fois supérieures aux doses physiologiques ne modifie pas la prolifération des cellules mononucléées du sang périphérique humain activés par le SEB.

b) Immunogène plasmidique TNFα pour vaccination ADN

L'immunogène plasmidique TNFα est représenté par un ADNc de TNFα cloné dans le plasmide d'expression bactérien prSetA.

20

30

10

15

Préparation 7 : Immunogènes IFNy

a) L'immunogène IFNy dérivé de l' IFNy

Cet immunogène (Péprotech Inc., Rocky Hill) est obtenu par traitement au formol à 37 °C suivi d'un traitement court à la glutaraldéhyde, conformément au protocole décrit pour l'immunogène p53.

Caractéristique de l'immunogène :

L'antigénicité de la cytokine IFNγ traitée par rapport à celle de la protéine recombinante native a été mesurée à l'aide d'un test ELISA de R&D (DTA50): Les cytokines IFNγ native et traitée présentent une antigénicité équivalente.

L'absence de toxicité in vitro est mesurée par un test de prolifération cellulaire. La cytokine IFNγ traitée utilisée à des doses 10 fois et 30 fois supérieures aux doses physiologiques ne modifie pas la prolifération des cellules mononucléées du sang périphérique humain activés par le SEB.

5

15

20

25

30

b)Immunogène plasmidique IFNγ pour vaccination ADN

L'immunogène plasmidique IFNy est représenté par un ADNc de l'IFNy cloné

10 Préparation 8 : Immunogène KLH-SIAB-VEGF

Le couplage du VEGF à la protéine KLH, utilisée comme carrier a pour effet de potentialiser l'immunogénicité du VEGF.

Le couplage a été réalisé par réaction du VEGF réduit avec KLH activé par traitement par le sulfosuccinimidyl [4-iodoacétyl] aminobenzoate (appelé sulfo-SIAB).

Etape 1 : Réduction du VEGF par le DTT

1 mg de VEGF en solution dans 500 µl de PBS a été additionné de 40 µl d'une solution de DTT (Dithiotréitol) à 50 mg/ml. Le mélange a été conservé pendant 2 heures à température ambiante, à l'abri de la lumière, et le mélange réactionnel a été filtré à travers une colonne de Sephadex G25 (1 x 15 cm) équilibrée en PBS contenant EDTA-Na₂ 5 mM, pH 7,0.

Etape 2 : Traitement du KLH par le sulfo-SIAB

Le sulfo-SIAB est un bras écarteur qui permet de lier la protéine porteuse, ici KLH, avec l'immunogène VEGF pour faire un conjugué.

150 μl d'une solution de KLH à 20 mg/ml ont été additionnés de 50 μl de tampon borate 0,1 M – EDTA Na₂-5 mM, pH 8,5, suivi de l'addition de 20 μl d'une solution dans l'eau de sulfo-SIAB à 3,4 mg/ml, la réaction a eu lieu pendant 30 min. à température ambiante et à l'abri de la lumière, sous une barrière d'azote. Le mélange réactionnel a été alors filtré à travers une colonne de Sephadex G25 (1 x 11 cm) équilibrée avec le même tampon.

15

30

Etape 3 : Couplage du VEGF réduit à KLH-SIAB

1 ml de solution de VEGF réduit a été mélangé avec 500 µl de KLH-SIAB. Le mélange a été incubé, à l'abri de la lumière et à température ambiante, sous azote, pendant 1 heure, puis pendant 15 heures à 4° C.

Après que la réaction a été bloquée par addition de cystéine à concentration finale 5 mM, pendant 20 min., le mélange a été purifié par chromatographie d'exclusion.

10 Caractéristiques de l'immunogène KLH-SIAB-VEGF :

L'antigénicité du VEGF conjugué s'est révélée comparable à celle du VEGF isolé.

L'absence de toxicité in vitro a été mesurée par un test de prolifération cellulaire. Le conjugué KLH-SIAB-VEGF utilisé à des doses 10 fois et 30 fois supérieures aux doses physiologiques ne modifie pas la prolifération des cellules mononucléées du sang périphérique humain activés par le SEB.

Préparation 9 : Immunogène KLH-SMCC-VEGF

Le couplage du VEGF à la protéine KLH, utilisée comme carrier a 20 pour effet de potentialiser l'immunogénicité du VEGF.

Le couplage a été réalisé par réaction du VEGF réduit avec le KLH activé par traitement par le (sulfosuccinimidyl [4-N-maléimidométhyl]—cyclohexane-1-carboxylate) (sulfo-SMCC).

25 Etape 1 : Réduction du VEGF par le DTT

Le sulfo-SMCC est un bras écarteur qui permet de lier la protéine porteuse, ici KLH, avec le VEGF pour former un conjugué.

1 mg de VEGF en solution dans 500 μl de PBS a été additionné de 40 μl d'une solution de DTT à 50 mg/ml. Le mélange a été conservé pendant 2 heures à température ambiante, à l'abri de la lumière, et le mélange réactionnel a été filtré à travers une colonne de Sephadex G25 (1 x 15 cm) équilibrée en PBS contenant EDTA-Na₂ 5 mM, pH 7,0.

Etape 2: Traitement du KLH par le sulfo-SMCC

150 μl d'une solution de KLH à 20 mg/ml ont été additionnés de 50 μl de tampon borate 0,1 M – EDTA Na₂-5 mM, pH 8,5, suivi de l'addition de 20 μl d'une solution dans l'eau de sulfo-SMCC à 3,4 mg/ml, la réaction a eu lieu pendant 30 min. à température ambiante et à l'abri de la lumière, sous une barrière d'azote. Le mélange réactionnel a été alors filtré à travers une colonne de Sephadex G25 (1 x 11 cm) équilibrée avec le même tampon.

10 Etape 3 : Couplage de VEGF réduit à KLH-SMCC

1 ml de solution de VEGF réduit a été mélangé avec 500 µl de KLH-SMCC. Le mélange a été incubé, à l'abri de la lumière et à température ambiante, sous azote, pendant 1 heure, puis pendant 15 heures à 4° C.

Après que la réaction a été bloquée par addition de cystéine à concentration finale 5 mM, pendant 20 min., le mélange a été purifié par chromatographie d'exclusion.

Caractéristique de l'immunogène KLH-SMCC-VEGF :

L'antigénicité de VEGF conjugué s'est révélée comparable à celle 20 du VEGF isolé.

L'absence de toxicité in vitro est mesurée par un test de prolifération cellulaire. le conjugué KLH-SMCC-VEGF utilisé à des doses 10 fois et 30 fois supérieures aux doses physiologiques ne modifie pas la prolifération des cellules mononucléées du sang périphérique humain activés par le SEB.

25

Préparation 10 : Immunogène KLH-glutaraldéhyde-VEGF

Le couplage a pour effet de potentialiser l'immunogénicité de la protéine VEGF.

Le couplage a été réalisé par réaction de la molécule VEGF avec 30 KLH activé par la glutaraldéhyde.

1 ml de solution de KLH à 10 mg/ml dans PBS a été activé par dialyse contre 100 ml d'une solution de glutaraldéhyde à 0,2 % dans PBS,

pendant une nuit, à 4° C. L'excès de glutaraldéhyde a été éliminé par dialyse de la protéine activée contre 3 changements de 200 ml de PBS de 2 heures chacun.

A 400 µl de KLH activé (4 mg) sont ajoutés 1 mg d'une solution à 1 mg/ml de la protéine VEGF dans PBS et le mélange réactionnel est agité, pendant 1 nuit, à 4° C. Les groupements aldéhydiques libres sont alors bloqués par réaction pendant 1 heure avec 100 µl de glycine 2.5 M et le mélange est purifié par chromatographie d'exclusion. L'antigénicité de la protéine VEGF dans le conjugué s'est révélée légèrement supérieure à celle de VEGF isolé.

10

.5

Préparation 11 : Immunogène KLH- glutaraldéhyde -E7

Le couplage a pour effet de potentialiser l'immunogénicité de la protéine E7.

Le couplage a été réalisé par réaction de la molécule E7 avec 15 KLH activé par la glutaraldéhyde à partir d'1 ml de solution de KLH à 10 mg/ml dans du PBS selon le même protocole que celui décrit pour la préparation 10.

L'antigénicité de la protéine E7 dans le conjugué s'est révélée légèrement supérieure à celle de E7 isolé.

20 Préparation 12 : KLH- glutaraldéhyde -IFNlpha

L'IFNα a été conjugué au KLH dans les mêmes conditions que celles décrites dans la préparation 11 pour la protéine E7.

L'antigénicité de l'IFN α conjugué s'est révélée légèrement supérieure à celle de l'IFN α traité au glutaraldéhyde seul.

25

Etude pharmacologique

 A - Présence dans le milieu extracellulaire de tumeurs malignes, de molécules participant à l'immunosuppression, l'apoptose ou l'angiogénèse du micro environnement des cellules cancéreuses.

15

20

30

Expérimentation A1:

La protéine p53 qui s'accumule dans les tumeurs malignes et est présente dans les milieux extracellulaires dont le sérum (Zusman I, Sandler B, Gurevich P, Zusman R, Smirnoff P, Tendler Y, Bass D, Shani A, Idelevich E, Pfefferman R, Davidovich B, Huszar M, Glick J. Comparative study of the role of serum levels of p53 antigen and its tumor cell concentration in colon cancer detection. Hum Antibodies Hybridomas. (1996) :123-8), active la surproduction par les APC d'IFN α , médiateur de l'immunosuppression, et de TNF α , cytokine participant à l'expression des molécules d'adhérence des cellules endothéliales et à l'apoptose des cellules immunitaires.

Protocole expérimental

Des macrophages, qui proviennent de la différentiation de monocytes élutriés cultivés pendant 5 jours dans des poches de téflon en présence de GMC-SF (F. Sallusto et al, Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med (1994) 179, 1109), sont activés avec du LPS pendant 16 heures. Ces macrophages ainsi activés sont ensuite cultivés en présence de doses croissantes (0 – 10 μg/ml) de la protéine recombinante p53 native (sc-4246, Santa Cruz) et de protéine contrôle) dans du milieu sans sérum pendant 24 heures. La protéine contrôle a été la protéine recombinante p24 (protéine du HIV-1, origine ANRS)

25 Résultats:

La mesure de la surproduction APC d'IFN α et de TNF α dans les surnageants (SN) de culture des APCs s'effectue respectivement par le test biologique standard de l'IFN α , utilisant la lyse des cellules MDBK par le VSV (S. Rubinstein et al, Convenient assay for interferons. J. Virol (1981) 37, 755) et par un test ELISA de R&D (DTA50, R&D).

Le titre d'IFN α dans les surnageant correspond à l'inverse de la plus forte dilution des surnageants induisant 50 % de protection des cellules

contre l'effet cytopathique du VSV. La mesure de TNF α dans les surnageants est réalisée en suivant le protocole décrit par le producteur et est exprimée en pg/ml. Les résultats sont représentés dans le tableau suivant

p53 expérimental	Titre d'IFNα (dilution ⁻¹)	TNFα (pg/ml)
10 μg/ml	128	· 8700
3 μg/ml	64	6200
1 μg/ml	32	5600
0,3 μg/ml	12	2600
0,1 μg/ml	6	1300
00 µg/ml	2	200

5

p24 contrôle	Titre d'IFNα (dilution ⁻¹)	TNFα (pg/ml)
10 μg/ml	2	250
3 µg/ml	2	200
1 µg/ml	2	200
0,3 μg/ml	.2	200
0,1 µg/ml	2	200
00 µg/ml	2	200

La protéine recombinante p53 native induit la surproduction d'IFN α et de TNF α , alors que la protéine recombinante p24 utilisée dans les contrôles n'induit aucune synthèse.

10

Un lysat de culture de cellules d'insectes à baculovirus exprimant la protéine p53 a donné des résultats similaires à ceux décrits pour la protéine recombinante p53 produite chez E. Coli.

Expérimentation A2:

15

La cytokine TGF β , relâchée dans le milieu extracellulaire par des cellules cancéreuses inhibe la prolifération de cellules T et active la production par les macrophages de l'IFN α , cytokine immunosuppressive majeure.

Protocole expérimental

Des cellules mononucléées du sang périphérique humain, isolées sur gradient de Ficoll à partir du sang périphérique de sujet sain, sont cultivés en présence de l'anticorps anti-CD3 et en présence de doses croissantes (0–30 ng/ml) de la protéine recombinante TGFβ active (240-B-002, R&D) et de doses croissantes (0-30 ng/ml) d'une protéine contrôle, la protéine recombinante p24.

29

L'inhibition de la prolifération des cellules T est mesurée à l'aide d'un test de prolifération cellulaire (Lachgar A., Bernard J., Bizzini B., Astgen A., Le Coq H., Fouchard M., Chams V., Feldman M., Richardson M., Rappaport J., Burny A. & J.F. Zagury: Repair of the in vitro HIV-1-induced immunosuppression and blockade of the generation of functional suppressive CD8 cells by anti-alpha interferon and anti-Tat antibodies. Biomed & Pharmacother. (1996) 50:13-18).

L'activation de la production d'IFNα par les macrophages est mesurée selon le protocole décrit dans l'expérimentation A1. Les macrophages activés sont cultivés en présence de doses croissantes (0–1 μg/ml) de la protéine recombinante TGFβ active et d'une protéine contrôle, la protéine recombinante p24, dans du milieu sans sérum pendant 24 heures.

20 Résultats:

25

Inhibition de la prolifération cellulaire par le TGFβ:

La prolifération cellulaire est exprimée en % de prolifération cellulaire ((cpm contrôle / cpm échantillon) x 100) à trois concentrations (30, 10 et 3 ng/ml) de TGFβ et de protéine p24. Le contrôle correspond à une concentration de protéine recombinante utilisée égale à 0. Les résultats sont présentés dans la figure 1 :

Ces résultats montrent que la prolifération cellulaire est diminuée de manière dose dépendante par le TGFβ actif, alors qu'elle ne l'est pas par la p24.

Activation par le TGF β de la surproduction d'IFN α par les macrophages.

Le titre d'IFN α dans les surnageants correspond à l'inverse de la

10

20

plus forte dilution des surnageants induisant 50 % de protection contre l'effet cytopathique du VSV. Les résultats sont présentés dans le tableau suivant :

TGFβ expérimental	Titre d'IFNα
1 μg/ml	16 -
300 ng/ml	8
100 ng/ml	4
30 ng/ml	. 2
00 ng/ml	0

P24 contrôle	Titre d'IFNα
1 μg/ml	0
300 ng/ml	0
100 ng/ml	0
30 ng/ml	0
00 ng/ml	0

La protéine recombinante TGFβ active induit la surproduction d'IFNα, alors que la protéine recombinante p24 n'induit aucune synthèse.

Expérience de vaccination 1 :

Vaccination anti-IL 10 de la souris pour l'induction d'une immunité systémique et mucosale avec formation préférentielle d'anticorps spécifiques de classes IgG et IgA.

Protocole d'immunisation

- 15 Jour 0 : Injection IM d'une suspension d'immunogène plasmidique exprimant l'IL 10 (100 μg) dans 0,2 ml de PBS préparée à l'exemple 2.
 - Jour 7, jour 8, jour 9: Administration par gavage de suspensions aqueuses de micro sphères (PLGA) incluant l'immunogène IL 10 (100 μg/dose) et l'adjuvant LTμ (5 μg/dose).
 - Les souris contrôles reçoivent les mêmes préparations sans

immunogène.

Suivi:

On sacrifie les animaux 15 jours après la dernière immunisation et on constate l'absence de toxicité (mesurée par l'absence de signes cliniques (comportement ; poils ; poids) et par examen anatomique après autopsie.

Réaction immunitaire testée par la présence dans le sérum d'anticorps de type IgG et IgA, mesurée par ELISA et exprimée par la densité optique 15 jours après le dernier gavage.

10

20

	Souris contrôle (D.O)	Souris immunisées (D.O)
Ac anti IL 10 classe IgG	0,2	0,920
Ac anti IL 10 classe IgA	0,1	0,780

Résultats:

Innocuité clinique et absence de lésions anatomiques.

Présence d'anticorps (Ac) anti IL 10 de type IgG et de type IgA

15 dans le sérum

Expérience de vaccination 2 :

Vaccination anti-VEGF de la souris par l'induction d'une immunité systémique et mucosale avec formation préférentielle d'anticorps spécifique de classe IgG et IgA.

Protocole d'immunisation

- Jour 0 : Injection IM d'une suspension d'immunogène VEGF (20 μg) dans l'ISA 51 préparée à l'exemple 1.
- Jour 7, jour 14, jour 21 : Administration intranasale à l'aide de pipette Hamilton de 10 μl d'une suspension aqueuse contenant 20 μg d'immunogène et 5 μg de LTμ enchâssés dans un gel de phosphate de calcium.

Les souris contrôles reçoivent les mêmes préparations sans immunogène

Suivi:

On sacrifie les animaux 15 jours après la dernière immunisation et on constate l'absence de toxicité (mesurée par l'absence de signes cliniques (comportement ; poils ; poids) et par examen anatomique après autopsie.

Réaction immunitaire testée par la présence dans le sérum d'anticorps de type IgG et IgA, mesurée par ELISA et exprimée par la densité optique 15 jours après la dernière instillation.

	Souris contrôle (D.O)	Souris immunisées (D.O)
Ac anti VEGF classe IgG	0,27	1,64
Ac anti VEGF classe IgA	0,15	1,118

10

5

Résultats:

Innocuité clinique et absence de lésions anatomiques.

Présence d'anticorps anti VEGF de type IgG et de type IgA dans le sérum.

15

Expérience de vaccination 3 :

Vaccination anti p53 de la souris par l'induction d'une immunité systémique et mucosale avec formation préférentielle d'anticorps spécifique de classe IgG et IgA.

20

Protocole d'immunisation

- Jour 0 : Injection IM d'une suspension d'immunogène p53 (20 μg) dans l'ISA
 51 préparée comme à l'exemple 1.
- Jour 7, jour 14, jour 21: Administration intra nasale à l'aide de pipette
 Hamilton de 10 μl d'une suspension aqueuse contenant 20 μg d'immunogène et 5 μg de LTμ enchâssés dans un gel de phosphate de calcium.

Les souris contrôles reçoivent les mêmes préparations sans immunogène

Suivi:

On sacrifie les animaux 15 jours après la dernière immunisation et on constate l'absence de toxicité (mesurée par l'absence de signes cliniques (comportement ; poils ; poids) et par examen anatomique après autopsie.

Réaction immunitaire testée par la présence dans le sérum et dans la salive d'anticorps de type IgG et IgA, mesurée par ELISA et exprimée par la densité optique 15 jours après la dernière instillation.

Résultats:

10

5

Innocuité clinique et absence de lésions anatomiques.

Présence d'anticorps anti p53 de type IgG et de type IgA dans le sérum et dans la salive.

sérum	Souris contrôle (D.O)	Souris immunisées (D.O)
Ac anti p53 classe IgG	0,184	1,492
Ac anti p53 classe lgA	0,208	1,071

salive	Souris contrôle (D.O)	Souris immunisées (D.O)
Ac anti p53 classe IgG	0,184	1,5
Ac anti p53 classe IgA	0,208	0,980

15

25

Expérience de vaccination 4 :

Vaccination anti IL 6 de la souris pour l'induction d'une immunité systémique avec formation d'anticorps spécifiques de classe IgG

20 Protocole d'immunisation

- Jour 0 : Injection IM d'une suspension d'immunogène IL 6 (20 μg) dans l'ISA 51 préparée comme à l'exemple 1.
- Jour 21 : Rappel par voie IM d'une émulsion d'IL 6 (5 μg) dans l'ISA 51 Les souris contrôles reçoivent les mêmes préparations sans immunogène

Suivi:

On sacrifie les animaux 15 jours après le rappel et on constate l'absence de toxicité (mesurée par l'absence de signes cliniques (comportement ; poils ; poids) et par examen anatomique après autopsie.

Réaction immunitaire testée par la présence dans le sérum d'anticorps de type IgG et IgA, mesurée par ELISA et exprimée par la densité optique 7 jours après le rappel.

	Souris contrôle (D.O)	Souris immunisées (D.O)
Ac anti IL 6 classe IgG	0,280	2,356
Ac anti IL 6 classe IgA	0,230	0,320

10 Résultats:

Innocuité clinique et absence de lésions anatomiques.

Présence d'anticorps anti IL 6 de type IgG dans le sérum.

Expérience de vaccination 5 :

Vaccination anti IL 6 de la souris par l'induction d'une immunité systémique et mucosale avec formation préférentielle d'anticorps spécifique de classe IgG et IgA.

Protocole d'immunisation

- Jour 0 : Injection IM d'une suspension d'immunogène IL 6 (20 μg) dans l'ISA
 51 préparée comme à l'exemple 1.
 - Jour 7, jour 8, jour 9 : Administration par gavage de micro sphères de PLG contenant l'immunogène (100 μg/dose) et l'adjuvant LTμ (5 μg/dose).

Les souris contrôles reçoivent les mêmes préparations sans 25 immunogène

Suivi:

On sacrifie les animaux 15 jours après le dernier gavage et on constate l'absence de toxicité (mesurée par l'absence de signes cliniques

(comportement ; poils ; poids) et par examen anatomique après autopsie.

Réaction immunitaire testée par la présence dans le sérum d'anticorps de type IgG et IgA, mesurée par ELISA et exprimée par la densité optique 15 jours après le dernier gavage.

5

	Souris contrôle (D.O)	Souris immunisées (D.O)
Ac anti IL 6 classe IgG	0,250	1,400
Ac anti IL 6 classe IgA	0,175	1,62

Résultats:

Innocuité clinique et absence de lésions anatomiques.

Présence d'anticorps anti IL 6 de type IgG et de type IgA dans le

10 sérum.

20

Exemple de vaccination 6 : vaccination anti-VEGF par le conjugué KLH-SIAB-VEGF.

L'activité immunogénique (humorale) du conjugué KLH-SIAB-15 VEGF par rapport à celle du VEGF natif a été étudiée chez la souris balb c de 18-20 g.

Au jour J 0, un groupe de 3 souris reçoit une injection de 0,2 ml $(50~\mu g)$ d'une émulsion en adjuvant complet de Freund par voie intramusculaire. Une injection de rappel de 5 μg en adjuvant incomplet de Freund est donnée à J 21 et J 60.

Un prélèvement sanguin au niveau rétro-orbital est effectué sur chaque souris avant la première injection à J -2

- 3 souris contrôles reçoivent les mêmes préparations sans immunogène.
- 3 souris reçoivent 100 µg de la préparation et l'absence de symptômes de maladie est étudiée pendant les 7 jours suivant l'injection.

Les souris sont sacrifiées 12 jours après la dernière immunisation.

L'absence de toxicité est mesurée par l'absence de signes cliniques : (comportement, poils, poids) et par examen anatomique après

autopsie.

Résultats:

Aucune des 3 souris immunisées avec 100 µg de la préparation ne manifeste de symptômes de maladie pendant les 7 jours suivant l'injection.

Les souris immunisées aussi bien par le conjugué KLH-SIAB-VEGF que par le VEGF uniquement ne présentent aucun signe clinique et aucune lésions anatomiques.

La réaction immunitaire est mesurée par :

10 a) la présence dans le-sérum d'anticorps de type IgG dirigés contre la protéine recombinante VEGF native, mesurée par ELISA et exprimée en titre (inverse de la dilution donnant une densité optique supérieure à 0.3)

Ti	tre				
J-2	J 72				
<500 ⁻¹	<500 ⁻¹				
<500-1	. , <500 ⁻¹				
<500-1	<500-1				
vec le VEGF :					
<500-1	500-1				
<500 ⁻¹	1000-1				
<500 ⁻¹	750 ⁻¹				
Souris immunisées avec le conjugué KLH-SIAB-VEGF :					
<500 ⁻¹	>64000-1				
<500 ⁻¹	>64000-1				
<500-1	>64000 ⁻¹				
	J-2				

Les souris immunisées avec le conjugué KLH-SIAB-VEGF présentent des titres d'anticorps de type IgG anti-VEGF plus importants que ceux des souris immunisées avec le VEGF uniquement.

Exemple 7 : comparaison des activités neutralisantes des sérums de souris immunisées par le conjugué KLH-SIAB-VEGF ou par du VEGF natif.

L'activité neutralisante de ces anticorps a été mesurée à l'aide du test biologique standard de l'activité du VEGF. Différentes dilutions de sérums (1/100 - 1/800) prélevés à J -2 et J 72 sont incubées pendant 2 heures avec 10 ng/ml de VEGF natif. Ces dilutions sont ensuite déposées sur des cellules endothéliales (HUVEC) cultivées dans des puits à fond plat d'une plaque de micro-culture à raison de 3000 cellules/puits. La culture cellulaire est poursuivie à 37 °C en atmosphère humide chargée à 5 % de CO₂ pendant 6 jours. 18 heures avant la fin de l'incubation, 0.5 μCi de thymidine tritiée / puits sont ajoutés.

Les résultats sont donnés en % de neutralisation.

			% de neutralisation			
		1/100	1/200	1/400	1/800	
Souris imr	nunisées av	ec le VEGF			<u></u>	
souris 4	J -2	0	0	0	0	
	J 72	15	0	0	0	
souris 5	J-2	0	0	0	0	
	J 72	20	0	0	0	
souris 6	J -2	0	0	0	0	
	J 72	15	0	0	0	
Souris imm	nunisées av	ec le KLH-V	EGF			
souris 7	J -2	0	0	0	0	
	J 72	100	100	100	100	
souris 8	J-2	0	0	0	0	
	J 72	100	100	100	100	
souris 9	J -2	0	0	0	0	
	J 72	100	100	100	100	

Les anticorps induits par le conjugué KLH-VEGF ont un pouvoir neutralisant plus important que celui des anticorps induits par le VEGF.

.5

Exemple 9 : Comparaison des activités neutralisantes des souris immunisées avec soit le VEGF natif, soit le conjugué KLH-SIAB-VEGF, soit le conjugué KLH-SMCC-VEGF, soit le KLH-gluta-VEGF.

L'activité neutralisante est déterminée selon le même protocole expérimental que celui décrit dans l'exemple 8. Comme dans le protocole d'expérimentation de l'exemple 7, les souris ont été immunisées à J 0, J 21 et à J 60.

La figure 2 résume les résultats obtenus : On voit que dès J 30, des neutralisations importantes apparaissent pour les conjugués KLH-SIAB-VEGF et KLH-SMCC-VEGF. Il faut attendre J 70 pour obtenir des neutralisations avec le conjugué KLH-glutaraldéhyde-VEGF. Par contre, on n'observe pas de neutralisation pour le VEGF natif.

15 Exemple 10 : vaccination avec le conjugué KLH - glutaraldéhyde - E7.

L'activité immunogénique (humorale et cellulaire) du conjugué KLH-E7 par rapport à celle de la protéine E7 a été étudiée chez la souris balb c de 18-20 g.

Au jour J 0, un groupe de 3 souris reçoit une injection de 0,2 ml 20 (50 μg) d'une émulsion en ACF par voie intramusculaire. Une injection de rappel de 5 μg en AIF est donnée à J 21 et J 60.

Un prélèvement sanguin au niveau rétro-orbital est effectué sur chaque souris avant la première injection à J -2

- 3 souris contrôles reçoivent les mêmes préparations sans 25 immunogène.
 - 3 souris reçoivent 100 µg de la préparation et l'absence de symptômes de maladie est étudiée pendant les 7 jours suivant l'injection.

Les souris sont sacrifiées 12 jours après la dernière immunisation.

L'absence de toxicité est mesurée par l'absence de signes 30 cliniques : (comportement, poils, poids) et par examen anatomique après autopsie.

Résultats:

Aucune des 3 souris immunisées avec 100 µg de la préparation ne manifeste de symptômes de maladie pendant les 7 jours suivant l'injection.

Les souris immunisées aussi bien par le conjugué KLH-E7 que par la protéine E7 uniquement ne présentent aucun signe clinique et aucune lésion anatomique.

La réaction immunitaire est mesurée par :

la présence dans le sérum d'anticorps de type IgG dirigée contre la protéine recombinante E7 native, mesurée par ELISA et exprimée en titre (inverse de la dilution donnant une densité optique supérieure à 0.3)

	Ti	tre
	J-2	J 72
souris contrôle:		
souris 1	<500-1	<500 ⁻¹
souris 2	<500-1	<500 ⁻¹
souris 3	<500 ⁻¹	<500 ⁻¹
souris immunisées a	vec la protéine E7 :	
souris 4	<500 ⁻¹	32 000-1
souris 5	<500-1	64 000-1
souris 6	<500 ⁻¹	48 000-1
souris immunisées a	vec le conjugué KLH-	E7 :
souris 7	<500-1	>64 000-1
souris 8	<500-1	>64 000-1
souris 9	<500-1	>64 000-1

Les souris immunisées avec le conjugué KLH-E7 présentent des titres d'anticorps de type IgG anti-E7 plus importants que ceux des souris immunisées avec la protéine E7 uniquement.

REVENDICATIONS

- 1. Un vaccin caractérisé en ce qu'il renferme à titre de principe actif un immunogène qui est
- 5 un facteur cytokinique ou un facteur de régulation cellulaire particulièrement transcriptionnel ou un autre type de facteur propriétés immunosuppressives / apoptotiques / angiogéniques anormalement relâché dans le milieu extracellulaire (stromal) par les cellules cancéreuses ou les cellules stromales de tumeurs malignes, ainsi qu'un excipient 10 pharmaceutiquement acceptable permettant l'induction d'une réaction immunitaire systémique ou mucosale avec formation d'anticorps neutralisants de classe IgG ou IgA sécrétoire dirigés contre le facteur natif,
 - ou qui dérive d'un tel facteur,

à l'exception de :

- l'IL 6, un fragment d'IL 6 ou un analogue d'IL 6 sous une forme produisant une immunité non mucosale et non couplé à une protéine porteuse comme le KLH,
 - un épitope de p53 trop court pour être immunogène et couplé à une protéine porteuse comme le KLH.
- 20 une composition d'une protéine p53 ou peptide de p53, d'IL 12 et d'un adjuvant.
- 2. Un vaccin selon la revendication 1 caractérisé en ce que l'immunogène dérive d'un facteur cytokinique ou d'un facteur de régulation cellulaire particulièrement transcriptionnel ou d'un autre type de facteur à propriétés immunosuppressives / apoptotiques / angiogéniques anormalement produit par les cellules cancéreuses ou stromales de tumeurs malignes par traitement chimique, physique, par mutation génétique, par conditionnement adjuvant ou est le produit d'une vaccination génétique (vaccin à ADN) ou est un fragment protéique ou peptidique d'un tel facteur ou encore dérive d'un tel fagment protéique ou peptidique.
 - 3. Un vaccin selon la revendication 1 ou 2 caractérisé en ce que l'immunogène dérive d'un facteur cytokinique ou d'un facteur de régulation

30

cellulaire particulièrement transcriptionnel ou d'un autre type de facteur à propriétés immunosuppressives / apoptotiques / angiogéniques anormalement produit par les cellules cancéreuses ou stromales de tumeurs malignes ou d'un fragment protéique ou peptidique d'un tel facteur par couplage à une protéine porteuse qui est le KLH.

- 4. Un vaccin selon la revendication 1, 2 ou 3 caractérisé en ce que l'immunogène est choisi parmi la TGF β , l'IL 10, la protéine p53, le VEGF, l'IL 6, l'IFN γ , l'IFN α , le Fas ligand et le TNF α ou en dérive.
- 5. Un vaccin selon la revendication 1, 2 ou 3 caractérisé en ce que l'immunogène est la TGFβ ou en dérive .
 - 6. Un vaccin selon la revendication 1, 2 ou 3 caractérisé en ce que l'immunogène est l'IL 6 couplée à une protéine porteuse qui est le KLH.
 - 7. Un vaccin selon la revendication 1, 2 ou 3 caractérisé en ce que l'immunogène est la protéine p53 ou en dérive .
- 15 8. Un vaccin selon la revendication 1, 2 ou 3 caractérisé en ce que l'immunogène est le VEGF ou en dérive.
 - 9. Un vaccin selon la revendication 1, 2 ou 3 caractérisé en ce que l'immunogène est l'IL 6 ou en dérive.
- 10. Un vaccin selon la revendication 1, 2 ou 3 caractérisé en ce
 20 que l'immunogène est l'IFNγ ou l'IFNα ou en dérive.
 - 11. Un vaccin selon la revendication 1, 2 ou 3 caractérisé en ce que l'immunogène est le $\mathsf{TNF}\alpha$ ou en dérive.
 - 12. Un vaccin selon l'une des revendications 1 à 11 caractérisé en ce qu'il renferme à titre de principe actif un immunogène qui est un mutant du facteur natif ou un fragment du facteur natif.
 - 13. Utilisation d'un immunogène qui est un facteur cytokinique ou qui dérive d'un facteur cytokinique ou d'un facteur de régulation cellulaire particulièrement transcriptionnel ou d'un autre type de facteur à propriétés immunosuppressives / apoptotiques / angiogéniques anormalement produit dans le milieu extracellulaire (stromal) par des cellules cancéreuses ou stromales de tumeurs malignes pour l'obtention d'un médicament destiné à une utilisation en tant qu'anticancéreux par mécanisme de réduction des effets, sur

-10 - ---

le micro environnement desdites cellules cancéreuses ou stromales de tumeurs malignes, d'un facteur cytokinique ou d'un facteur de régulation cellulaire particulièrement transcriptionnel ou d'un autre type de facteur à propriétés immunosuppressives / apoptotiques / angiogéniques anormalement produit par lesdites cellules cancéreuses ou stromales de tumeurs malignes.

14. Utilisation selon la revendication 13, caractérisée en ce que l'immunogène est choisi parmi la parmi la TGF β , l'IL 10, la protéine p53, le VEGF, l'IL 6, l'IFN γ , l'IFN α , le Fas ligand et le TNF α ou en dérive.

Fig. 1

Fig. 2

INTERNATIONAL SEARCH REPORT

POR 01/02575

A. CLASSIFICATION OF SUBJECT MATA...

IPC 7 A61K39/385 A61K39/00 A61P35/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC $\,7\,$ A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, BIOSIS, MEDLINE, LIFESCIENCES, CHEM ABS Data, EMBASE, SCISEARCH

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 92 22577 A (PASTEUR MERIEUX SERUMS VACC) 23 December 1992 (1992-12-23) cited in the application page 11, line 11 - line 30	1-5,9-12
X	WO 94 02167 A (UNIV PRINCETON) 3 February 1994 (1994-02-03) cited in the application the whole document	1-4,7, 12-14
X	WO 96 10423 A (SLOAN KETTERING INST CANCER; LUDWIG INST CANCER RES (US)) 11 April 1996 (1996-04-11) the whole document	1-4,7, 12-14
	-/	
		·
χ Furth	ner documents are listed in the continuation of box C. Patent family members as	re listed in annex.

χ Patent family members are listed in annex.
 T later document published after the international filling date or priority date and not in conflict with the application but clied to understand the principle or theory underlying the invention *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combined with one or more other such documents, such combination being obvious to a person skilled in the art. *&* document member of the same patent family
Date of malling of the international search report 16/01/2002
Authorized officer Teyssier, B

INTERNATIONAL SEARCH REPORT

ational Application No

C.(Continu	extion) DOCUMENTS C ERED TO BE RELEVANT		
Category *	C4.11cm of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
A .	WO 97 09064 A (ANGELETTI P IST RICHERCHE BIO :CILIBERTO GENNARO (IT); SAVINO ROCC) 13 March 1997 (1997-03-13) the whole document		6
Ą	WO 99 15201 A (LIVINGSTON PHILIP O ;SLOAN KETTERING INST CANCER (US); RAGUPATHI G) 1 April 1999 (1999-04-01)	•	
A	WO 00 03732 A (VACS INTERNATIONAL ;ZAGURY JEAN FRANCOIS (FR)) 27 January 2000 (2000-01-27) cited in the application	·	
P,X	WO 00 50071 A (HAEUW JEAN FRANCOIS ;PF MEDICAMENT (FR); BECK ALAIN (FR); GOETSCH). 31 August 2000 (2000-08-31) page 3, line 18 -page 4, line 3		1,2,4,5,
P,A	ZAGURY D ET AL: "Toward a new generation of vaccines: The anti-cytokine therapeutic vaccines." PROCEEDINGS OF THE NATIONAL ACADEMY OF		
	SCIENCES OF THE USA, vol. 98, no. 14, 3 July 2001 (2001-07-03), pages 8024-8029, XP002186083		
	v		
	*		
		,	
		•	

INTERNATIONAL SEARCH REPORT

Data to the second	 -				P. R	01/02575
Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 9222577	A·	23-12-1992	FR	2677654	1 A1	18-12-1992
			ΑT	185149) T	15-10-1999
			ΑU	2147992	2 A	12-01-1993
			CA	2111580		23-12-1992
			DE	69230068		04-11-1999
			' DE	69230068		09-03-2000
			DK	591281		20-12-1999
			ΕP	0591281		13-04-1994
			ES	2136088		16-11-1999
		•	WO	9222577		23-12-1992
			GR	3032037		31-03-2000
			US	6093405		25-07-2000
WO 9402167	Α	03-02-1994	AU	4788693		14-02-1994
			CA	2140624	A1	03-02-1994
			EΡ	0651653	A1	10-05-1995
		**	JP	7509251		12-10-1995
			WO	9402167	A1	03-02-1994
WO 9610423	Α	11-04-1996	AU	3735095		26-04-1996
			WO	9610423		11-04-1996
		*	ZA	9508230	A 	15-07-1996
WO 9709064	Α	13-03-1997	IT	RM950589		03-03-1997
			AU	703300		25-03-1999
			AU	6942896		27-03-1997
			CA	2229045		13-03-1997
			CN	1198098		04-11-1998
			EP	0858345		19-08-1998
			WO	9709064		13-03-1997
			JP	10511111		27-10-1998
			JP	3157837	BZ	16-04-2001
WO 9915201	Α	01-04-1999	ΑU	9580298		12-04-1999
			EP	1017419		12-07-2000
			JP	2001517638		09-10-2001
·		*	WO	9915201	A1	01-04-1999
WO 0003732	Α	27-01-2000	FR	2781158		21-01-2000
		•	AU	4149699		07-02-2000
			EP	1096953		09-05-2001
			WO	0003732	A1	27-01-2000
WO 0050071	Α	31-08-2000	FR	2789902		25-08-2000
			AU	2921100		14-09-2000
			WO	0050071	Δ1	31-08-2000

ational Application No

RAPPORT DE RECHERCHE INTERNATIONALE

ide Internationale No FR 01/02575

A. CLASSEMENT DE L'OBJET DE CIB 7 A61K39/385

MANDE A61K39/00

A61P35/00

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 7. A61K

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) EPO-Internal, WPI Data, BIOSIS, MEDLINE, LIFESCIENCES, CHEM ABS Data, EMBASE,

SCISEARCH

Catégorie °	ENTS CONSIDERES COMME PERTINENTS Identification des documents cités, avec, le cas échéant, l'Indication	des passages pertinents	no, des revendications visées
X	WO 92 22577 A (PASTEUR MERIEUX SER VACC) 23 décembre 1992 (1992-12-23 cité dans la demande page 11, ligne 11 - ligne 30	RUMS 3)	1-5,9-12
X	WO 94 02167 A (UNIV PRINCETON) 3 février 1994 (1994-02-03) cité dans la demande le document en entier		1-4,7, 12-14
X	WO 96 10423 A (SLOAN KETTERING INS ;LUDWIG INST CANCER RES (US)) 11 avril 1996 (1996-04-11) le document en entier 	ST CANCER	1-4,7, 12-14
	- /	·	
χ Voir (la suite du cadre C pour la fin de la liste des documents	Les documents de familles de	prevets sont indiqués en annexe
"A" docume consid "E" docume ou apri "L" docume priorité autre c "O" docume une ex "P" docume	ent définissant l'état général de la technique, non éré comme particulièrement pertinent unt antérieur, mais publié à la date de dépôt international ès cette date ent pouvant jeter un doute sur une revendication de ou cité pour déterminer la date de publication d'une citation ou pour une raison spéciale (telle qu'indiquée) ent se référant à une divulgation orale, à un usage, à position ou tous autres moyens ent publié avant la date de dépôt international, mais	To document ultérieur publié après la di date de priorité et n'appartenenant technique pertinent, mais cité pour ou la théorie consiliuant la base de K' document particulièrement pertinent être considérée comme nouvelle oi inventive par rapport au document document particulièrement pertinent ne peut être considérée comme im lorsque le document est associé à documents de même nature, cette pour une personne du métier s' document qui fait partie de la même	pas à l'état de la comprendre le principe l'invention i l'invention revendiquée ne peut a comme impliquant une activité considéré isolément l'invention revendiquée pliquant une activité inventive un ou plusieurs autres combinaison étant évidente
Date à laque	elle la recherche internationale a été effectivement achevée	Date d'expédition du présent rappo	t de recherche internationale
. 19	9 décembre 2001	16/01/2002	
Nom et adre	sse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Fonctionnaire autorisé Teyssier, B	

RAPPORT DE RECHERCHE INTERNATIONALE

PCT 01/02575

C.(suite) D	OCUMENTS CONSIDERES CO. PERTINENTS	01/02575
Catégorie *	Identification des documents cités, avec, le cas échéant, l'indicationdes passages pertine	
	entine de	no. des revendications visées
А	WO 97 09064 A (ANGELETTI P IST RICHERCHE BIO ;CILIBERTO GENNARO (IT); SAVINO ROCC) 13 mars 1997 (1997-03-13) le document en entier	6
А	WO 99 15201 A (LIVINGSTON PHILIP O ;SLOAN KETTERING INST CANCER (US); RAGUPATHI G) 1 avril 1999 (1999-04-01)	
Α	WO 00 03732 A (VACS INTERNATIONAL ;ZAGURY JEAN FRANCOIS (FR)) 27 janvier 2000 (2000-01-27) cité dans la demande	
P,X	WO 00 50071 A (HAEUW JEAN FRANCOIS ;PF MEDICAMENT (FR); BECK ALAIN (FR); GOETSCH) 31 août 2000 (2000-08-31) page 3, ligne 18 -page 4, ligne 3	1,2,4,5, 8-14
P,A	ZAGURY D ET AL: "Toward a new generation of vaccines: The anti-cytokine therapeutic vaccines." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE USA, vol. 98, no. 14, 3 juillet 2001 (2001-07-03), pages 8024-8029, XP002186083	
.		·
	,	}
		*
	·	
	•	

Formulaire PCT/ISA/210 (suite de la deuxième feuille) (julilet 1992)

RAPPORT DE RECHERCHE INTERNATIONALE

nde Internationale No

	FR.	01/	0257	Ę
--	-----	-----	------	---

					_
Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet(s)	Date de publication
WO 9222577	Ą	23-12-1992	FR AT AU CA	2677654 A1 185149 T 2147992 A 2111580 A1	18-12-1992 15-10-1999 12-01-1993 23-12-1992
			DE DE DK EP	69230068 D1 69230068 T2 591281 T3 0591281 A1	04-11-1999 09-03-2000 20-12-1999 13-04-1994
			ES WO GR US	2136088 T3 9222577 A1 3032037 T3 6093405 A	16-11-1999 23-12-1992 31-03-2000 25-07-2000
 WO 9402167		03-02-1994	 AU	4788693 A	14-02-1994
			CA EP	2140624 A1 0651653 A1	03-02-1994 10-05-1995
·· ··· · · · · · · · · · · · · · · · ·		and a second	JP WO	7509251 T	12-10-1995 03-02-1994
WO 9610423	Α .	11-04-1996	AU WO ZA	3735095 A 9610423 A1 9508230 A	26-04-1996 11-04-1996 15-07-1996
W0 9709064	Α	13-03-1997	IT	RM950589 A1	03-03-1997
			AU AU	703300 B2 6942896 A 2229045 A1	25-03-1999 27-03-1997 13-03-1997
			CA CN EP	1198098 A 0858345 A1	04-11-1998 19-08-1998
			WO JP JP	9709064 A1 10511111 T 3157837 B2	13-03-1997 27-10-1998 16-04-2001
WO 9915201	Α	01-04-1999	AU EP	9580298 A 1017419 A1	12-04-1999 12-07-2000
		÷	JP WO	2001517638 T 9915201 A1	09-10-2001 01-04-1999
WO 0003732	Α	27-01-2000	FR AU EP	2781158 A1 4149699 A 1096953 A1	21-01-2000 07-02-2000 09-05-2001
			WO	0003732 A1	27-01-2000
WO 0050071	Α	31-08-2000	FR AU WO	2789902 A1 2921100 A 0050071 A1	25-08-2000 14-09-2000 31-08-2000

THIS PAGE BLANK (USPTO)

VERSION CORRIGÉE

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 14 février 2002 (14.02.2002)

(10) Numéro de publication internationale WO 02/011759 A1

- (51) Classification internationale des brevets⁷: A61K 39/385, 39/00, A61P 35/00
- (21) Numéro de la demande internationale :

PCT/FR01/02575

- (22) Date de dépôt international: 8 août 2001 (08.08.2001)
- (25) Langue de dépôt :

français

(26) Langue de publication :

français

(30) Données relatives à la priorité :

- 00/10480 9 août 2000 (09.08.2000) FR
- (71) Déposant (pour tous les États désignés sauf US): NEO-VACS [FR/FR]; 59, avenue Victor Hugo, 75116 Paris (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): ZAGURY, Jean-François [FR/FR]; 117, rue Vieille du Temple, F-75003 Paris (FR). BIZZINI, Bernard [FR/FR]; 65, rue du Roc, F-81000 Albi (FR). LE BUANEC, Hélène [FR/FR]; 29, rue Poliveau, F-75005 Paris (FR). ZAGURY, Daniel [FR/FR]; 1, rue Frédéric Leplay, F-75007 Paris (FR).
- (74) Mandataire: RINUY, Santarelli; 14, avenue de la Grande Armée, Boîte postale 237, 75822 Paris Cedex 17 (DE).

- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SL, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée:

- avec rapport de recherche internationale
- (48) Date de publication de la présente version corrigée: 17 juillet 2003
- (15) Renseignements relatifs à la correction: voir la Gazette du PCT n° 29/2003 du 17 juillet 2003, Section II

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

- (54) Title: VACCINES AGAINST CYTOKINES AND GROWTH FACTORS DERIVED FROM MALIGNANT TUMOURS
- (54) Titre: VACCIN CONTRE LES CYTOKINES OU FACTEURS DE CROISSANCE ISSUS DE TUMEURS MALIGNES
- (57) Abstract: The invention concerns vaccines comprising as active principle an immunogen which is a cytokinetic factor or a cell regulating factor particularly transcriptional or another type of factor with immunosuppressive/apoptotic/angiogenic properties abnormally released in the extracellular (stromal) environment by cancer or stromal cells of malignant tumours, and a pharmaceutically acceptable carrier for inducing a systemic or mucosal immune response with secretory formation of class IgC or IgA neutralising antibodies directed against the native factor, or which is derived from such a factor and the use of said immunogen to obtain a medicine for use as anticancer drug.
- (57) Abrégé: Vaccins renfermant à titre de principe actif un immunogène qui est un facteur cytokinique ou un facteur de régulation cellulaire particulièrement transcriptionnel ou un autre type de facteur à propriétés immunosuppressives/apoptotiques/angiogéniques anormalement relâché dans le milieu extracellulaire (stromal) par les cellules cancéreuses ou stromales de tumeurs malignes, ainsi qu'un excipient pharmaceutiquement acceptable permettant l'induction d'une réaction immuniataire systèmique ou mucosale avec formation d'anticorps neutralisants de classe IgG ou IgA sécrétoire dirigée contre le facteur natif, ou qui dérive d'un tel facteur et utilisation d'un tel immunogène pour l'obtention d'un médicament destiné à une utilisation en tant qu'anticancéreux.

10

15

25

30

<u>Utilisation d'immunogènes pour traiter ou prévenir au sein des tumeurs malignes les dérèglements immunitaires ou vasculaires induits par des facteurs extracellulaires</u>

La présente invention concerne l'utilisation de préparations vaccinales médicamenteuses à usage thérapeutique ou prophylactique destinées à traiter ou prévenir au sein des tumeurs malignes les dérèglements immunitaires en particulier l'immunosuppression et l'apoptose des cellules immunitaires ou vasculaires comme l'angiogénèse, induits par des facteurs extracellulaires, cytokines ou autres facteurs de régulation en particulier transcriptionnels, anormalement produits par les cellules cancéreuses ou les cellules stromales.

Les traitements conventionnels des cancers qu'ils soient d'origine virale, induits par des rétrovirus, ou l'EBV ou l'HPV ou encore les virus de l'hépatite, où d'origine chronique, dus à l'amiante ou à des dérivés benzéniques, qu'ils soient de type épithélial (carcinomes) ou conjonctif (sarcomes) ou encore sanguin (lymphomes) comportent l'ablation chirurgicale des tumeurs le plus souvent associée à une chimiothérapie et/ou une radiothérapie.

Bien qu'efficaces pour certains cancers, particulièrement pris à 20 des stades précoces, ces traitements souvent difficilement tolérés sont insuffisants et des récidives et des métastases compromettent l'évolution des malades.

C'est pourquoi lorsque les scientifiques dans les années 80 et 90 ont cloné et purifié des antigènes de tumeurs associés (TAA) ou spécifiques (TSA) aux cellules cancéreuses provenant de nombreuses tumeurs malignes (cancer du sein, de la prostate, colorectal, du col utérin; lymphome ATL), de nombreuses expérimentations et essais cliniques de vaccination anti-cancer (Dvorak E. Experimental design for vaccine preparations against human malignant tumors. Med Hypotheses (1986) 20:429-52, Houghton AN. On course for a cancer vaccine. Lancet (1995) 345:1384-5, Herlyn D, Linnenbach A, Koprowski H, Herlyn M. Epitope-and antigen-specific cancer vaccines. Int Rev Immunol (1991) 7:245-57, Ostankovitch M, Choppin J, Guillet JG. Tumor cell

antigenicity: cancers and vaccines. Rev Prat (1995) 45:1921-6, Zhu MZ, Marshall J, Cole D, Schlom J, Tsang KY. Specific cytolytic T-cell responses to human CEA from patients immunized with recombinant avipox-CEA vaccine. Clin Cancer Res (2000) 6:24-33, Tsunoda T, Tanimura H, Yamaue H, Tanaka H, Matsuda K. Tumor specific CTL therapy for advanced cancer and development for cancer vaccine. Hepatogastroenterology (1999) 46:1287-92), utilisant comme antigènes les TAA et TSA ont été réalisés, visant à détruire spécifiquement les cellules malignes porteuses de ces antigènes grâce à l'action de cellules tueuses, particulièrement de lymphocytes cytolytiques (CTL), porteurs de récepteurs spécifiques, induits par la réaction immunitaire vaccinale.

Les essais cliniques utilisant de tels vaccins réalisés chez les malades porteurs de différentes tumeurs (mélanome, cancer du sein, cancer colorectal, cancer de la vessie, ...) ont permis d'établir les faits suivants :

- Les préparations vaccinales anti-cancer contenant les antigènes tumoraux
 (TAA ou TSA) présentés sous différentes formes ont été bien tolérées et n'ont généralement pas provoqué de complications régionales ou systémiques.
- De telles préparations vaccinales peuvent induire chez les malades une réponse immunitaire de type CTL (Tsunoda T, Tanimura H, Yamaue H, 20 Tanaka H, Matsuda K. Tumor specific CTL therapy for advanced cancer and development for cancer vaccine. Hepatogastroenterology (1999) 1:1287-92, Schwaab T, Heaney JA, Schned AR, Harris RD, Cole BF, Noelle RJ, Phillips DM, Stempkowski L, Ernstoff MS. A randomized phase II trial comparing two different sequence combinations of autologous vaccine and human 25 recombinant interferon gamma and human recombinant interferon alpha2B therapy in patients with metastatic renal cell carcinoma: clinical outcome and analysis of immunological parameters. J Urol (2000) 163:1322-7, Steller MA, Gurski KJ, Murakami M, Daniel RW, Shah KV, Celis E, Sette A, Trimble EL. Park RC, Marincola FM. Cell-mediated immunological responses in cervical 30 and vaginal cancer patients immunized with a lipidated epitope of human papillomavirus type 16 E7. Clin Cancer Res (1998) 4:2103-9, susceptible in vitro de détruire spécifiquement les cibles cellulaires porteuses d'épitopes de

15

20

TAA ou TSA complexés au Complexe Majeur d'Histocompatibilité.

Par contre à ce jour aucun essai clinique de phase III n'a pu montrer que ces préparations vaccinales, visant à détruire spécifiquement les cellules cancéreuses par la différentiation de cellules tueuses, étaient efficaces.

Ainsi dès 1992, après que Levine (The p53 tumor suppressor gene and gene product. Princess Takamatsu Symp (1989) 20:221-30) ainsi que d'autres équipes scientifiques eurent montré que la protéine p53 native qui a des effets de réparation sur les brins d'ADN et des effets immunosuppressifs du cycle cellulaire ou un mutant de cette protéine était abondamment produite et accumulée dans les tumeurs malignes, le même Levine propose de réaliser une vaccination utilisant la protéine p53, apparaissant comme étant un antigène de tumeur associé (TAA). Celle-ci était présentée à la surface de cellules dendritiques (DC) ou adjuvantée dans un vecteur bactérien (type BCG) de manière à induire une réponse immunitaire de type CTL dirigée contre les cellules cancéreuses (Voir aussi WO-A-94/02167).

A l'appui de cette demande de brevet, des publications scientifiques montrent le rôle bénéfique des cellules tueuses et le rôle péjoratif des anticorps spécifiques dans l'évolution des tumeurs malignes (Theobald M, Biggs J, Dittmer D, Levine AJ, Sherman LA. Targeting p53 as a general tumor antigen. Proc Natl Acad Sci U S A (1995) 92:11993-7, Roth J. et al, p53 as a target for cancer vaccines: recombinant canarypox virus vectors expressing p53 protect mice against lethal tumor cell challenge, 1996, Proc Natl Acad Sci USA.; 93:4781-6).

A la suite de Levine, d'autres équipes modifiant le vecteur ou l'adjuvant de l'immunogène p53 ont déposé une dizaine de demandes de brevets sur l'utilisation de nouvelles présentations galéniques de vaccin anti p53 visant également à induire la formation de cellules tueuses CTL ciblant les cellules cancéreuses exprimant la protéine p53.

Les essais expérimentaux associés à ces vaccins anti p53 ont montré l'innocuité et l'immunogénicité évaluée par l'apparition de cellules tueuses anti p53. Plus, le seul essai clinique de vaccination anti p53 réalisé et publié a confirmé l'innocuité et l'immunogénicité du vaccin. Cependant aucun

25

30

essai de phase III n'a pu valider l'efficacité de cette stratégie vaccinale.

La demanderesse a découvert avec étonnement que l'immunosuppression et l'angiogénèse du micro environnement des cellules infectées par certains virus tel le VIH-1 et du micro environnement des cellules cancéreuses apportent une explication rationnelle à l'absence d'efficacité de ces stratégies vaccinales car ces stratégies antérieures ciblent la cellule cancéreuse et non le dérèglement de son micro environnement.

Or, alors que jusqu'à présent les traitements ont tous visé à tuer directement les cellules cancéreuses elles-mêmes, c'est à dire les cellules parenchymateuses, la demanderesse a trouvé qu'il était autant ou même plus judicieux de lutter contre les molécules produites dans le micro environnement extra cellulaire (stromal) de la tumeur et favorisant le développement de cette dernière.

Rappelons que tout tissu ou tumeur est formée de cellules parenchymateuses qui baignent dans un micro environnement appelé stroma. Ce stroma est lui-même constitué de cellules stromales (qui peuvent être des cellules immunitaires, endothéliales, ou fibroblastiques) et d'un milieu extra cellulaire.

Les travaux de la demanderesse ont montré en effet que des facteurs solubles secrétés par les cellules infectées par le VIH-1, en particulier la protéine Tat ou par les cellules immunitaires de patients infectés par le VIH en particulier l'IFN α et le TGF β ou produits par des cellules cancéreuses, telles la protéine E7 de l'HPV dans le cancer du col utérin ou la protéine Tax du HTLV1 dans les leucémies ATL ou la protéine p53 dans le cancer colorectal , avaient des propriétés immunosuppressives susceptibles d'inhiber les réactions immunitaires cellulaires au sein des tumeurs et de ce fait expliquaient l'inefficacité des vaccins antérieurs.

L'étude bibliographique a permis de conforter ces observations de la demanderesse, en confirmant la présence de facteurs immunosuppressifs relâchés dans le milieu extracellulaire de tumeurs malignes :

Certains de ces facteurs non encore identifiés ont été produits par des cellules de cancer colorectal (Ebert EC, Roberts Al, O'Connell SM,

20

25

30

Robertson FM, Nagase H. Characterization of an immunosuppressive factor derived from colon cancer cells. J Immunol. (1987) 138:2161-8 ou Remacle-Bonnet MM, Pommier FJ, Kaplanski S, Rance RJ, Depieds RC. Inhibition of normal allogenic lymphocyte mitogenesis by a soluble inhibitor extracted from human colonic carcinoma. J Immunol (1976) 117:1145-51.

- des cellules de glioblastome (29-Fontana A, Hengartner H, de Tribolet N, Weber E. Glioblastoma cells release interleukin 1 and factors inhibiting interleukin 2-mediated effects. J Immunol. (1984) 132:1837-44),
- des mélanomes (30.Hersey P, Bindon C, Czerniecki M, Spurling A, Wass J,
 McCarthy WH. Inhibition of interleukin 2 production by factors released from tumor cells. J Immunol. (1983) 131:2837-42), ou
- des ascites malignes (Tamura K, Shibata Y, Matsuda Y, Ishida N. Isolation and characterization of an immunosuppressive acidic protein from ascitic fluids of cancer patients. Cancer Res. (1981) 41:3244-52, Oh SK, Moolten FL.
 Non specific immunosuppressive factors in malignant ascites: further characterization and possible relationship to erythrocyte receptors of human peripheral T cells. J Immunol. (1981) 127:2300-7).

D'autres facteurs de régulation transcriptionnelle, comme rapporté plus haut, sont d'origine cellulaire telle la protéine p53, accumulée dans certaines tumeurs malignes, en particulier colorectales (Remvikos Y, Tominaga O, Hammel P, Laurent-Puig P, Salmon RJ, Dutrillaux B, Thomas G. Increased p53 protein content of colorectal tumours correlates with poor survival. Br J Cancer 1992 66:758-64, Gan H, Ouyang Q, Wang Y. Expression of p53 protein in colorectal cancer and its relationship to cell proliferative activity and prognosis. Chung Hua Chung Liu Tsa Chih (1996) 18:244-6). La protéine p53, relâchée par transport actif par des voies de sécrétion n'utilisant pas le signal peptide ou par diffusion passive est présente dans le milieu extracellulaire, et elle a été isolée par chromatographie sur fibre de verre à partir de sérum de cancéreux (Zusman I, Sandler B, Gurevich P, Zusman R, Smirnoff P, Tendler Y, Bass D, Shani A, Idelevich E, Pfefferman R, Davidovich B, Huszar M, Glick J. Comparative study of the role of serum levels of p53 antigen and its tumor cell concentration in colon cancer detection. Hum Antibodies Hybridomas. (1996)

WO 02/011759

20

25

:123-8, Sandler B, Smirnoff P, Tendelr Y, Zinder O, Zusman R, Zusman I. Specificity of polyclonal anti-p53 IgG for isolation of the soluble p53 antigen from human serum. Int J Mol Med. 1998 1:767-70).

Des cytokines, telles le TGFβ notoirement immunosuppressif; le VEGF facteur de croissance angiogénique, l'IL 6 pro-inflammatoire ou l'IL 10 également immunosuppressive, sont anormalement secrétées et relâchées dans le milieu extracellulaire de certaines cellules cancéreuses. La demanderesse a elle-même montré que les cellules de lignée cancéreuses SIHA, tout comme les cellules DU145 du cancer de la prostate et les cellules MT2 de lignées leucémiques produisent anormalement et relâchent dans le milieu extracellulaire des cytokines telles le VEGF et/ou l'IL 6 tandis que les cellules RAJI de lignées leucémiques secrètent dans le milieu extracellulaire de l'IL 10.

Dans ce contexte, la présente invention a pour objet l'utilisation comme médicament anticancéreux de nouvelles préparations vaccinales dénuées de toxicité et destinées à neutraliser :

- soit des cytokines immunosuppressives, apoptotiques ou angiogéniques produites dans le compartiment stromal extra cellulaire en excès par les cellules cancéreuses ou stromales de tumeurs malignes. Les exemples de vaccins anti-cytokines décrits dans EP-591.281 concernaient particulièrement des vaccins anti-IFNα utilisés contre le SIDA et d'autres affections immunitaires.
- soit des facteurs de régulation cellulaire, particulièrement transcriptionnels ou d'autres facteurs à propriétés immunosuppressives, apoptotiques ou angiogéniques anormalement produits dans le compartiment stromal extra cellulaire par les cellules cancéreuses. Les exemples d'immunogènes décrits dans WO-A-00/03732 dérivaient de facteurs de régulation d'origine virale telles les protéines E7 du HPV 16, Tax du HTLV-1 et du Tat du HIV-1.

Dans ces nouvelles préparations vaccinales non toxiques, 30 l'immunogène

 1- est constitué par des facteurs cytokiniques ou dérive de facteurs cytokiniques ou de facteurs de régulation cellulaire particulièrement transcriptionnels ou

25

d'autres facteurs à propriétés immunosuppressives / apoptotiques / angiogéniques anormalement produits par les cellules cancéreuses ou stromales de tumeurs malignes dans le milieu extra cellulaire.

2- est de préférence présenté sous une forme galénique permettant d'induire une réaction immunitaire induisant préférentiellement des anticorps de classe IgG et/ou IgA capables d'antagoniser localement les facteurs immunosuppressifs / apoptotiques / angiogéniques anormalement présents dans le milieu extracellulaire des tumeurs et d'en inhiber les effets.

La présente invention propose notamment l'utilisation comme 10 médicament anticancéreux de vaccins dirigés particulièrement contre des facteurs pathogènes produits anormalement dans la matrice extracellulaire des turneurs malignes et notamment

- la protéine TGFβ : Le TGFβ étant une cytokine immunosuppressive majeure produite par de nombreuses cellules cancéreuses ;
- 15 la protéine IL 10 : L'IL 10 étant également une cytokine immunosuppressive majeure
 - la protéine p53: Si la protéine de régulation p53 produite anormalement par les cellules cancéreuses et accumulée dans les tumeurs peut représenter un antigène de tumeur associé (TAA) comme cela a été montré dans l'art antérieur, la demanderesse a découvert qu'elle peut également agir dans sa configuration extracellulaire comme facteur immunosuppressif et apoptogène sur les cellules immunitaires comme illustré ci-après dans les exemples.
 - Le VEGF, facteur de croissance des cellules endothéliales: La cytokine VEGF étant une cytokine majeure de l'angiogénèse, activant la prolifération des cellules endothéliales.
 - L'IL 6, l'IFN

 γ et le TNF

 α, cytokines pro inflammatoires participant également aux processus d'angiogénèse, en activant l'expression des molécules d'adhérence des cellules endothéliales (ICAM, VCAM, E sélectine).

Tous ces vaccins visent à induire une réaction immunitaire avec 30 formation d'anticorps de classe IgG (pour tous les cancers) et surtout de classe IgA (pour les cancers épithéliaux) de manière à neutraliser localement, au sein de la tumeur, les facteurs pathogènes particulièrement immunosuppressifs /

apoptotiques / angiogéniques et à en bloquer leurs effets, permettant ainsi à l'immunité naturelle ou à un vaccin dirigé contre les antigènes TAA ou TSA de fonctionner normalement et d'éliminer les cellules malades.

C'est pourquoi la présente demande a pour objet un vaccin caractérisé en ce qu'il renferme à titre de principe actif un immunogène qui est un facteur ou qui dérive d'un facteur cytokinique ou d'un facteur de régulation cellulaire particulièrement transcriptionnel ou d'un autre type de facteur à propriétés immunosuppressives / apoptotiques / angiogéniques anormalement produit par les cellules cancéreuses ou stromales de tumeurs malignes, ainsi qu'un excipient pharmaceutiquement acceptable permettant l'induction d'une réaction immunitaire systémique ou mucosale avec formation d'anticorps de classe IgG ou IgA sécrétoire dirigée contre le facteur natif et plus particulièrement un vaccin caractérisé en ce qu'il renferme à titre de principe actif un immunogène qui est

- un facteur cytokinique ou un facteur de régulation cellulaire particulièrement 15 type de facteur propriétés un autre transcriptionnel immunosuppressives / apoptotiques / angiogéniques anormalement relâché dans le milieu extracellulaire (stromal) par les cellules cancéreuses ou les excipient tumeurs malignes, ainsi gu'un stromales de cellules pharmaceutiquement acceptable permettant l'induction d'une 20 immunitaire systémique ou mucosale avec formation d'anticorps neutralisants de classe IgG ou IgA sécrétoire dirigés contre le facteur natif,
 - ou qui dérive d'un tel facteur,

à l'exception de :

- l'IL 6, un fragment d'IL 6 ou un analogue d'IL 6 sous une forme produisant une immunité non mucosale et non couplé à une protéine porteuse comme le KLH,
 - un épitope de p53 trop court pour être immunogène et couplé à une protéine porteuse comme le KLH,
- 30 une composition d'une protéine p53 ou peptide de p53, d'IL 12 et d'un adjuvant.

Dans des conditions préférentielles de mise en œuvre,

20

l'immunogène dérive d'un facteur cytokinique ou d'un facteur de régulation cellulaire particulièrement transcriptionnel ou d'un autre type de facteur à propriétés immunosuppressives / apoptotiques / angiogéniques anormalement produit par les cellules cancéreuses ou stromales de tumeurs malignes par traitement chimique, physique, par mutation génétique, par conditionnement adjuvant ou est le produit d'une vaccination génétique (vaccin à ADN) ou est un fragment protéique ou peptidique d'un tel facteur ou encore dérive d'un tel fragment protéique ou peptidique.

L'immunogène sera de préférence couplé à une protéine porteuse.

En effet la demanderesse a découvert qu'une telle mesure augmente le nombre des sites auxiliaires (helper) et de ce fait augmente la réponse anticorps neutralisant le facteur extra cellulaire ciblé.

Dans encore d'autres conditions préférentielles de mise en œuvre l'immunogène dérive d'un facteur cytokinique ou d'un facteur de régulation cellulaire particulièrement transcriptionnel ou d'un autre type de facteur à propriétés immunosuppressives / apoptotiques / angiogéniques anormalement produit par les cellules cancéreuses ou stromales de tumeurs malignes ou d'un fragment protéique ou peptidique d'un tel facteur par couplage à une protéine porteuse qui est le KLH.

Dans d'autres conditions préférentielles de mise en œuvre, l'immunogène est choisi parmi la TGF β , l'IL 10, la protéine p53, le VEGF, l'IL 6, l'IFN α , l'IFN γ , le Fas ligand et le TNF α ou en dérive.

L'immunogène de ces préparations vaccinales, dénuées de toxicité comme tout médicament, pourra dériver d'un facteur immunosuppressif / apoptotique / angiogénique ou d'un de ses fragments peptidiques par traitement chimique, physique, par mutation génétique, par conditionnement adjuvant ou être le produit d'une vaccination génétique (vaccin à ADN). De tels traitements de l'immunogène qui ont été décrits dans WO-A-00/03732 peuvent être utilisés dans la présente invention pour l'obtention d'un vaccin dénué de toute toxicité et en particulier dépourvu de tout caractère immunosuppressif. Mais les immunogènes peuvent aussi être utilisés à l'état natif.

Les traitements chimiques consistent par exemple à détoxiquer la

20

25

protéine native ou recombinante par un traitement aux aldéhydes notamment le formaldéhyde, aldéhyde monofonctionnel et donc n'agissant pas par couplage de molécules, conformément à la détoxication des toxines tétaniques ou diphtériques, ou consistent encore en des traitements bloquant les groupements sulfidryles, tels la carboxamidation, la maléimidation ou la carboxyméthylation ou en tout autre traitement bloquant d'autres résidus aminés comme décrit dans des demandes antérieures de la demanderesse.

Dans toujours d'autres conditions préférentielles de mise en œuvre, l'immunogène est un mutant du facteur natif ou un fragment du facteur natif.

On pourra utiliser un mutant du facteur possédant au moins 70 %, de préférence au moins 80 % et tout particulièrement au moins 90 %. d'homologie avec le facteur protéique natif ou encore un fragment protéique ou peptidique du facteur. Dans le cas d'un peptide, celui-ci sera de préférence porté par une protéine porteuse tel le KLH ou le toxoïde tétanique. On pourra avantageusement utiliser aussi une protéine porteuse dans le cas du facteur protéique natif ou encore d'un fragment protéique de celui-ci.

Les produits décrits ci-dessus utilisés comme immunogènes, à l'exception des facteurs natifs, sont nouveaux, au moins pour la plupart d'entre eux. Ils entrent donc dans le cadre de l'invention.

Les traitements physiques peuvent être réalisés par la chaleur, les radiations U.V., les rayons X ou le contact avec une atmosphère riche en O₂. Ces traitements physiques générant des modifications intramoléculaires entre radicaux chimiques (groupement thiols par exemple), peuvent de manière appropriée changer la conformation de la molécule, l'inactiver fonctionnellement tout en conservant ses propriétés immunogènes.

Les modifications génétiques peuvent être obtenues par ingénierie génétique opérant des insertions, des délétions ou des substitutions de résidus. Les mutants génétiques pourront ou non subir un traitement chimique et/ou physique complémentaire. Les protéines modifiées ci-dessus peuvent par exemple être préparées à partir d'une protéine ayant une séquence identique ou similaire à une séquence peptidique d'un facteur ci-dessus. Tous ces procédés sont bien connus de l'état de la technique.

10

15

20

25

30

Un vaccin à ADN (vaccination génétique) pourra comprendre un plasmide comportant un gène promoteur d'expression comme celui du CMV et le gène codant pour un immunogène défini ci-dessus (facteur natif ou dérivé dont fragments).

11

Par "dérivent" ou "dériver" de facteurs immunosuppressifs / apoptotiques / angiogéniques, l'on entend aussi que le composé immunogène peut être constitué de la totalité ou d'un fragment de la protéine de départ ou encore peu notamment être couplé à une protéine porteuse comme le KLH (keyhole limpet hemocyanin) ou le tétanos toxoïde, directement ou de préférence par un réactif bifonctionnel de couplage.

Il peut comporter une ou plusieurs modifications dans les acides aminés de cette protéine ou fragment telles que des délétions, substitutions, additions, ou fonctionnalisations telles qu'acylation d'acides aminés, dans la mesure où ces modifications restent dans le cadre précisé ci-dessus (absence de toxicité, caractères immunologiques). Par exemple, en général le remplacement d'un résidu leucine par un résidu isoleucine ne modifie pas de telles propriétés; les modifications doivent généralement concerner moins de 40% d'acides aminés, notamment moins de 30% de préférence moins de 20% et tout particulièrement moins de 10% du facteur protéique. Il est important que la protéine ou fragment modifié ne soit pas dénaturé comme on peut le faire par exemple par un traitement physique comme la chaleur afin de préserver ses sites conformationnels pour que les anticorps induits par les dérivés modifiés soient actifs vis à vis de la protéine native.

De manière générale, en ce qui concerne les modifications, l'homologie ou la similitude entre l'immunogène modifié et la protéine ou partie de protéine immunosuppressive native, ainsi que les dimensions du composé immunogène, de même que les modalités d'utilisation, ou de couplage du composé immunogène selon l'invention à une protéine immunogène telle que le toxoïde tétanique, on peut en particulier se référer à WO-A-86/06 414 ou à EP-A-0.220.273 ou encore à PCT/US.86/00831, équivalents.

Un fragment peut comporter de 8 à 110 acides aminés par exemple, de préférence de 20 à 110, notamment de 12 à 60, particulièrement

25

30

de 25 à 60, plus particulièrement de 12 à 40 et tout particulièrement de 30 à 50 acides aminés. Un tel fragment peut comporter aussi du ou des côtés C ou N terminal de 1 à 5 acides aminés supplémentaires c'est-à-dire différents du segment d'origine. Un fragment doit en outre comporter une cystéine au moins pour pouvoir faire l'objet de la carboxyméthylation.

Un fragment protéique pourra comporter la totalité des acides aminés de la séquence native, délétée de moins de 25 acides aminés, de préférence moins de 15 acides aminés, particulièrement moins de 10 acides aminés et tout particulièrement moins de 5 acides aminés, voire même un seul acide aminé.

Pour le conditionnement adjuvant, l'immunogène pourra notamment être inclus dans une émulsion eau dans huile, en utilisant par exemple l'ISA 51.

Une préparation vaccinale contenant l'immunogène anti immunosuppressif / apoptotique / angiogénique pourra être administrée sous une forme galénique appropriée à induire une réponse immunitaire de type systémique par voie Intra Musculaire (IM), Sous Cutanée (SC), Intra Dermique (ID) ou de type mucosal par voies intra nasale, orale, vaginale ou rectale.

Une préparation vaccinale contenant l'immunogène anti immunosuppressif / apoptotique / angiogénique pourra également contenir d'autres immunogènes, tels les antigènes TAA ou TSA de cancer ou des adjuvants telles des cytokines ou des protéines d'entérotoxines, type CTB ou Lt mutant (LTµ) (Freytag LC, Clements JD, Bacterial toxins as mucosal adjuvants Curr Top Microbiol Immunol; (1999) 236:215-36).

Une préparation galénique à visée systémique, administrée par voie SC, IM, ID, pourra être une émulsion eau renfermant l'immunogène, dans huile, ou une suspension de phosphate de calcium enchâssant l'immunogène, ou de l'hydroxyde d'aluminium adsorbant l'immunogène.

Une préparation galénique visant une réponse immunitaire mucosale administrée préférentiellement par voie nasale ou orale, mais aussi par voie vaginale ou rectale surtout pour des rappels, pourra être notamment constituée de micro sphères de polymères biodégradables, tels les PLG

15

20

25

30

(poly(lactide-co-glycolides)), PLA ((poly(lactides)) et les PCL, (poly(epsilon-caprolactones)) à forme retard (Baras B. et al, Single-dose mucosal immunization with biodegradable microparticles containing a Schistosoma mansoni antigen. Infect Immun. (1999) 67:2643-8) dans lesquelles sont incluses les molécules d'antigènes, de suspensions aqueuses de phosphate de calcium enchâssant ou adsorbant l'antigène, de nanoparticules, telles les nanoparticules de chitosan.

Les préparations vaccinales pourront être conditionnées pour la voie intra nasale sous forme de gel avec comme excipient le carbopol, de gouttes nasales ou de spray et pour la voie orale sous forme de capsules gastrorésistantes, de dragées ou de granules gastrorésistants.

Dans le cas de vaccin ADN administré par voie systémique ou mucosale, la présentation galénique du plasmide pourra être une suspension dans un liquide physiologique tel le PBS physiologique (tampon phosphate = PBS). Les plasmides pourront être inclus dans des microsphères de polymères biodégradables (PLG, PLA, PCL) et administrées dans des capsules gastrorésistantes pour ingestion (voie orale). L'ADN pourra également être exprimé dans un vecteur vivant bactérien, type salmonelle ou viral type adénovirus ou poxvirus.

La présente demande a aussi pour objet l'utilisation à titre d'immunogène d'un facteur qui est un facteur cytokinique ou un facteur de régulation cellulaire particulièrement transcriptionnel ou un autre type de facteur à propriétés immunosuppressives / apoptotiques / angiogéniques anormalement relâché dans le milieu extra cellulaire (stromal) par des cellules cancéreuses ou stromales de tumeurs malignes ou qui dérive d'un tel facteur.

La présente demande a encore pour objet l'utilisation d'un immunogène qui est un facteur ou qui dérive d'un facteur cytokinique ou d'un facteur de régulation cellulaire particulièrement transcriptionnel ou d'un autre type de facteur à propriétés immunosuppressives / apoptotiques / angiogéniques anormalement produit par des cellules cancéreuses ou stromales de tumeurs malignes pour l'obtention d'un médicament destiné à une utilisation en tant qu'anticancéreux par mécanisme de réduction des effets, sur le

25

30

micro environnement desdites cellules cancéreuses ou stromales de tumeurs malignes, d'un facteur cytokinique ou d'un facteur de régulation cellulaire particulièrement transcriptionnel ou d'un autre type de facteur à propriétés immunosuppressives / apoptotiques / angiogéniques anormalement produit par lesdites cellules cancéreuses ou stromales de tumeurs malignes.

La présente demande a enfin pour objet un immunogène qui est un facteur ou qui dérive d'un facteur cytokinique ou d'un facteur de régulation cellulaire particulièrement transcriptionnel ou d'un autre type de facteur à propriétés immunosuppressives / apoptotiques / angiogéniques anormalement relâché dans le milieu extra cellulaire par les cellules cancéreuses ou stromales de tumeurs malignes pour son utilisation dans une méthode de traitement thérapeutique du corps humain ou animal, c'est-à-dire à titre de médicament, notamment de vaccin curatif ou préventif.

Les immunogènes objets de la présente invention possèdent de très intéressantes propriétés pharmacologiques. Ils sont doués notamment de remarquables propriétés antagonistes, réductrices, inhibitrices ou notamment neutralisantes, des propriétés immunosuppressives / apoptotiques / angiogéniques de facteurs anormalement produits dans le milieu extracellulaire (stromal) par les cellules cancéreuses ou stromales de tumeurs malignes à la différence de composés de l'art antérieur qui agissent directement sur les cellules cancéreuses de tumeurs malignes.

Ces propriétés sont illustrées ci-après dans la partie expérimentale. Elles justifient l'utilisation des vaccins et immunogènes ci-dessus décrits à titre de médicament.

Les médicaments selon la présente invention trouvent leur emploi par exemple dans le traitement tant curatif que préventif de cancers d'origine épithéliale comme par exemple le cancer colorectal, le cancer de la prostate, le cancer du sein et d'origine conjonctive tels les sarcomes ou d'origine sanguine tels les lymphomes type Epstein-Barr ou les leucémies.

La présente demande a également pour objet un procédé d'immunisation active de patients caractérisé en ce que l'on utilise à titre d'immunogène un composé immunogène tel que défini ci-dessus

15

avantageusement associé à un adjuvant d'immunité minéral, huileux ou de synthèse, ou encore un composé immunogène tel que défini ci-dessus, avantageusement couplé par exemple à l'aide d'un dialdéhyde ou associé à une protéine augmentant son immunogénicité.

Ces immunisations peuvent être réalisées tant à titre curatif qu'à titre préventif.

Les conditions préférentielles de mise en œuvre des vaccins cidessus décrits s'appliquent également aux autres objets de l'invention visés cidessus.

Les exemples qui suivent iliustrent la présente invention.

La figure 1 montre l'inhibition de la prolifération cellulaire par le TGF β exprimée en % de prolifération cellulaire ((cpm contrôle / cpm échantillon) x 100) à trois concentrations (30, 10 et 3 ng/ml) de TGF β et de protéine p24. Le contrôle correspond à une concentration de protéine recombinante utilisée égale à 0.

La figure 2 montre l'effet de sérum de souris immunisées avec l'immunogène VEGF non couplé ou couplé au KLH selon différentes techniques de couplage et à 4 dilutions différentes indiquées en haut du tableau. Les expériences ont été menées de gauche à droite avec des souris naïves, des souris immunisées avec du VEGF au jour J 60, des souris immunisées avec du KLH-glutaraldéhyde-VEGF pH 9 au jour J 60, des souris immunisées avec du KLH-SMCC-VEGF au jour J 60, des souris immunisées avec du KLH-SIAB-VEGF au jour J 60. Le pourcentage de neutralisation est donné en ordonnées.

Exemple 1 : Vaccin à base de l'immunogène VEGF destinée à induire une réaction immunitaire systémique avec formation préférentielle d'anticorps spécifiques de classe IgG.

Le vaccin est formé d'une émulsion eau dans huile constituée de 50 % d'ISA 51 (Seppic, Paris) et de 50 % d'une solution aqueuse de VEGF (20 à 200 μg/dose).

Exemple 2 : Vaccin à base de l'immunogène plasmidique pour vaccination ADN de type systémique IL 10.

Les plasmides codant pour l'IL 10 (50 à 200 µg/dose) sont mis en suspension dans 0,2 à 1 ml de PBS pour administration intramusculaire.

5

Exemple 3 : Vaccin à base de l'immunogène p53 destinée à induire une réaction immunitaire de type mucosale avec formation préférentielle d'anticorps anti p53 de classe IgA.

L'immunogène p53 (20 à 100 µg/dose) est inclus dans un gel de 10 phosphate de calcium en présence ou non d'adjuvant LTµ (5 à 20 µg/dose) pour l'instillation intra nasale. La préparation est administrée par voie intranasale soit sous forme de gouttes nasales, soit sous forme d'un gel par addition de carbopol.

15 Exemple 4 : Vaccin à base de l'immunogène IL 10 destinée à induire une réaction immunitaire de type réaction mucosale avec formation préférentielle d'anticorps anti IL 10 de classe IgA :

On a préparé des micro sphères de PLG contenant l'immunogène (100 à 300 µg/dose) et un mutant de la toxine LT (5-25 µg/dose)

20

30

L'inclusion de l'IL 10 et du LTµ est réalisée dans les micro sphères biodégradables selon le protocole de Baras B. et al (Baras B. et al, Single-dose mucosal immunization with biodegradable microparticles containing a Schistosoma mansoni antigen. Infect Immun. (1999) 67:2643-8).

25 Exemple 5 : Vaccin à base de l'immunogène plasmidique IFNγ pour vaccination ADN de type mucosale.

Les plasmides d' IFNγ (100-500 μg/dose) en présence de LTμ (5-20 μg/dose) sont inclus dans des microsphères de PLG selon le protocole décrit par Baras B. et al. L'administration par voie orale se fait par gavage ou par ingestion de capsules gastrorésistantes contenant les microsphères et un excipient à base d'alginate.

Exemple 6 : Vaccin à base de l'immunogène VEGF destinée à induire une réaction immunitaire systémique avec formation préférentielle d'anticorps spécifiques de classe IgG.

Le vaccin est formé d'une émulsion eau dans l'huile constituée de 50 % d'ISA 51 (SEPPIC) et de 50 % d'une solution aqueuse de VEGF (20 à 200 µg/dose).

L'immunogène provient de la préparation 3 de VEGF stabilisée par du glutaraldéhyde.

10 Exemple 7 : Vaccin à base de l'immunogène VEGF couplé au KLH destinée à induire une réaction immunitaire systémique avec formation préférentielle d'anticorps spécifiques de classe IgG.

Le vaccin est formé d'une émulsion eau dans l'huile constituée de 50 % d'ISA 51 (SEPPIC) et de 50 % d'une solution aqueuse de VEGF (20 à 200 µg/dose).

Exemple 8 : Vaccin à base de l'immunogène E7 de HPV16 couplé au KLH pour induire une réaction immunitaire systémique.

Le vaccin est formé d'une émulsion eau dans huile de 50 % d'ISA 20 (SEPPIC, Paris) et de 50 % d'une solution aqueuse de E7 couplé au KLH (20 à 200 µg/dose).

Les immunogènes servant à la préparation des vaccins ci-dessus ont été préparés comme suit :

25 Préparation 1 : Immunogène anti IL 6

Immunogène IL 6 dérivé de la cytokine recombinante IL 6 par traitement au formol suivi d'un traitement par le glutaraldéhyde :

A 1 ml d'une solution d'IL 6 à 1 mg/ml dans du tampon phosphate stérile, on ajoute 28 µl d'une solution de formol (35 %) dilué au 1/10 dans du tampon phosphate stérile. Après addition de merthiolate au 1/10.000, le mélange est placé 9 jours à l'étuve à 37°C. Il est ensuite additionné de glutaraldéhyde à la concentration 0,0026 M. Après 3 minutes, le mélange est

additionné de 100 µl de glycine à 50 mg/ml pour bloquer les groupements aldéhydiques en excès et il est dialysé contre un grand volume de tampon phosphate. L'immunogène est ainsi stabilisé.

5 Caractéristiques de l'IL 6

L'antigénicité de la cytokine recombinante IL 6 traitée par rapport à celle de la protéine recombinante native a été mesurée à l'aide d'un test ELISA de R&D (D6050) : la cytokine recombinante IL 6 détoxiquée présente une antigénicité égale à l'antigénicité de la protéine native correspondante.

10

L'absence de toxicité in vitro est mesurée par un test de prolifération cellulaire. Des cellules mononucléées du sang périphérique humain sont cultivés en présence du super antigène SEB et en présence d'une dose de la protéine recombinante IL 6 native ou détoxiquée correspondant à 10 fois et 30 fois la dose physiologique de la cytokine native. La prolifération cellulaire est exprimée en % de prolifération cellulaire [cpm (coups par minute) contrôle/cpm échantillon] x 100). Le contrôle correspond à une concentration de protéine recombinante utilisée égale à 0. Les résultats sont présentés dans le tableau suivant :

		% de prolifération cellulaire
IL 6 native	0 ng/ml	100
IL 6 native	30 ng/ml	98
IL 6 traitée	30 ng/ml	95

20

L'IL 6 traitée utilisée à des doses 10 fois et 30 fois supérieures aux doses physiologiques ne modifie pas la prolifération des cellules mononucléées du sang périphérique humain activés par le SEB.

25 Préparation 2 : Immunogène anti p53

L'immunogène p53 a été détoxiqué par traitement au formol selon le protocole décrit par Ramon (Ramon G, Sur le pouvoir floculant et les propriétés immunisantes d'une toxine diphtérique rendue anatoxique

15

20

25

(anatoxine). C.r. hebd. Séances Acad. Sci. (1923) 177: 1338-1340), suivi d'un traitement au glutaraldéhyde de la protéine p53 recombinante (sc-4246, Santa Cruz) dans les conditions suivantes : à 10 μl d'une solution de p53 native à 1 mg/ml, on ajoute 3 μl d'une solution de formol dilué au 1/100 dans du tampon phosphate stérile. Le mélange est placé 2 jours à l'étuve à 37 °C. Il est ensuite additionné de 25 μl de glutaraldéhyde au 1/100. Après 15 minutes de réaction à température de laboratoire, on ajoute 2 μl de glycine 2M pour bloquer les groupements aldéhydiques en excès.

10 Caractéristique de l'immunogène p53

L'antigénicité de la protéine recombinante p53 traitée par rapport à celle de la protéine recombinante native a été mesurée à l'aide d'un test ELISA d'Amersham Pharmacia Biotech (p53 Rapid Format Pantropic Human ELISA, VQIA26): Les protéines p53 native et traitée présentent une antigénicité équivalente.

Absence de toxicité in vitro : la protéine p53 traitée utilisée à des doses dix fois et 30 fois supérieures aux doses physiologiques (0,5 à 5 ng/ml) ne modifie pas la prolifération de cellules mononucléées du sang périphérique humain activées par le SEB ou par les anticorps anti CD3. La mesure de la prolifération a été réalisée par le test à la ³H-thymidine.

Préparation 3 : Immunogène anti VEGF

L'immunogène VEGF dérivé de VEGF (293-VE-010; R&D) est obtenu par traitement à la glutaraldéhyde dans les conditions suivantes : à 100 µl d'une solution de VEGF natif à 5 µg/ml dans du tampon phosphate, on ajoute 5 µl d'une solution de glutaraldéhyde dilué au 1/500 dans du tampon phosphate stérile. Après 5 minutes de réaction à température ambiante, on ajoute 2 µl de glycine 1M pour bloquer la réaction.

30 Caractéristique du VEGF

L'antigénicité de la cytokine VEGF traitée par rapport à celle de la cytokine recombinante native a été mesurée à l'aide d'un test ELISA de R&D

(DVE00): les cytokines native et traitée présentent une antigénicité équivalente.

L'absence de toxicité in vitro a été mesurée à l'aide d'un test de prolifération cellulaire. Des cellules mononucléées du sang périphérique humain sont cultivées en présence du super antigène SEB et en présence d'une dose de la protéine recombinante VEGF native ou traitée correspondant à 10 fois et 30 fois la dose physiologique de la cytokine native. La prolifération cellulaire est exprimée en % de prolifération cellulaire ((cpm contrôle/cpm échantillon) x 100). Le contrôle correspond à une concentration de protéine recombinante utilisée égale à 0. Les résultats sont présentés dans le tableau suivant :

-		% de prolifération cellulaire
VEGF natif	0 ng/ml	100
VEGF natif	30 ng/ml	92
VEGF traité	30 ng/ml	97

La cytokine VEGF traitée utilisée à des doses 10 fois et 30 fois supérieures aux doses physiologiques ne modifie pas la prolifération des cellules mononucléées du sang périphérique humain activées par le SEB.

Préparation 4 : Immunogène anti TGFβ

15

Immunogène TGFβ dérivé du TGFβ est détoxiqué par traitement au formol selon le protocole décrit par Ramon (Ramon G, Sur le pouvoir floculant et les propriétés immunisantes d'une toxine diphtérique rendue anatoxique (anatoxine). C.r. hebd. Séances Acad. Sci. (1923) 177 : 1338-1340), suivi d'un traitement à la glutaraldéhyde, conformément au protocole décrit pour l'immunogène p53.

25 Caractéristique de l'immunogène TGFβ

L'antigénicité de la cytokine TGFβ traitée par rapport à celle de la protéine recombinante native a été mesurée à l'aide d'un test ELISA de R&D (DB100) : Les cytokines TGFβ native et traitée présentent une antigénicité

équivalente.

L'absence de toxicité de la cytokine TGFβ traitée a été mesurée par un test de prolifération de cellules T décrit dans l'exemple A1. Ce test montre que le TGFβ détoxiqué utilisé à des doses physiologiques de 0,5 à 5 ng/ml ne diminue pas la prolifération des lymphocytes.

Préparation 5 : Immunogène anti IL 10

a) Immunogène IL 10 dérivé de l'IL 10 par traitement au formol

L'IL 10 est obtenu à partir de la protéine de fusion de l'IL 10 par traitement au formol à 37°C suivi d'un traitement court à la glutaraldéhyde, conformément au protocole décrit pour l'immunogène p53. La protéine de fusion IL 10 a été produite chez E. Coli à partir d'un ADNc cloné dans le plasmide d'expression bactérien prSetA et purifié sous forme d'une protéine de fusion avec Tag His. Cette protéine de fusion purifiée est homogène en électrophorèse d'acrylamide et en Western blot.

Caractéristique de l'immunogène IL 10

L'antigénicité de la cytokine IL 10 traitée par rapport à celle de la protéine recombinante native a été mesurée à l'aide d'un test ELISA de R&D (D1000): Les cytokines IL 10 native et traitée présentent une antigénicité équivalente.

L'absence de toxicité in vitro est mesurée par un test de prolifération cellulaire. La cytokine IL 10 traitée utilisée à des doses 10 fois et 30 fois supérieures aux doses physiologiques ne modifie pas la prolifération des cellules mononucléées du sang périphérique humain activées par le SEB.

b) Immunogène plasmidique IL 10 pour vaccination d'ADN

L'immunogène plasmidique IL 10 est représenté par un ADNc de IL 10 cloné dans le plasmide d'expression bactérien prSetA.

25

Préparation 6 : Vaccin anti TNFα

a) Immunogène TNF α dérivé du TNF α par traitement chimique

L'immunogène dérivé du TNFα (Péprotech Inc., Rocky Hill) est obtenu par traitement au formol à 37°C suivi d'un traitement court à la glutaraldéhyde, conformément au protocole décrit pour l'immunogène p53.

Caractéristique du TNFa:

L'antigénicité de la cytokine TNF α traitée par rapport à celle de la protéine recombinante native a été mesurée à l'aide d'un test ELISA de R&D (DTA50) : Les cytokines TNF α native et traitée présentent une antigénicité équivalente.

L'absence de toxicité in vitro est mesurée par un test de prolifération cellulaire. La cytokine TNFα traitée utilisée à des doses 10 fois et 30 fois supérieures aux doses physiologiques ne modifie pas la prolifération des cellules mononucléées du sang périphérique humain activés par le SEB.

b) Immunogène plasmidique TNFα pour vaccination ADN

L'immunogène plasmidique TNF α est représenté par un ADNc de TNF α cloné dans le plasmide d'expression bactérien prSetA.

20

25

30

15

5

Préparation 7 : Immunogènes IFNy

a) L'immunogène IFNγ dérivé de l' IFNγ

Cet immunogène (Péprotech Inc., Rocky Hill) est obtenu par traitement au formol à 37 °C suivi d'un traitement court à la glutaraldéhyde, conformément au protocole décrit pour l'immunogène p53.

Caractéristique de l'immunogène :

L'antigénicité de la cytokine IFN_γ traitée par rapport à celle de la protéine recombinante native a été mesurée à l'aide d'un test ELISA de R&D (DTA50): Les cytokines IFN_γ native et traitée présentent une antigénicité équivalente.

L'absence de toxicité in vitro est mesurée par un test de prolifération cellulaire. La cytokine IFNγ traitée utilisée à des doses 10 fois et 30 fois supérieures aux doses physiologiques ne modifie pas la prolifération des cellules mononucléées du sang périphérique humain activés par le SEB.

5

15

20

b)Immunogène plasmidique IFNγ pour vaccination ADN

L'immunogène plasmidique IFN γ est représenté par un ADNc de l'IFN γ cloné

10 Préparation 8 : Immunogène KLH-SIAB-VEGF

Le couplage du VEGF à la protéine KLH, utilisée comme carrier a pour effet de potentialiser l'immunogénicité du VEGF.

Le couplage a été réalisé par réaction du VEGF réduit avec KLH activé par traitement par le sulfosuccinimidyl [4-iodoacétyl] aminobenzoate (appelé sulfo-SIAB).

Etape 1 : Réduction du VEGF par le DTT

1 mg de VEGF en solution dans 500 µl de PBS a été additionné de 40 µl d'une solution de DTT (Dithiotréitol) à 50 mg/ml. Le mélange a été conservé pendant 2 heures à température ambiante, à l'abri de la lumière, et le mélange réactionnel a été filtré à travers une colonne de Sephadex G25 (1 x 15 cm) équilibrée en PBS contenant EDTA-Na₂ 5 mM, pH 7,0.

Etape 2 : Traitement du KLH par le sulfo-SIAB

Le sulfo-SIAB est un bras écarteur qui permet de lier la protéine porteuse, ici KLH, avec l'immunogène VEGF pour faire un conjugué.

150 μl d'une solution de KLH à 20 mg/ml ont été additionnés de 50 μl de tampon borate 0,1 M – EDTA Na₂-5 mM, pH 8,5, suivi de l'addition de 20 μl d'une solution dans l'eau de sulfo-SIAB à 3,4 mg/ml, la réaction a eu lieu pendant 30 min. à température ambiante et à l'abri de la lumière, sous une barrière d'azote. Le mélange réactionnel a été alors filtré à travers une colonne de Sephadex G25 (1 x 11 cm) équilibrée avec le même tampon.

Etape 3 : Couplage du VEGF réduit à KLH-SIAB

1 ml de solution de VEGF réduit a été mélangé avec 500 μl de KLH-SIAB. Le mélange a été incubé, à l'abri de la lumière et à température ambiante, sous azote, pendant 1 heure, puis pendant 15 heures à 4° C.

Après que la réaction a été bloquée par addition de cystéine à concentration finale 5 mM, pendant 20 min., le mélange a été purifié par chromatographie d'exclusion.

10 Caractéristiques de l'immunogène KLH-SIAB-VEGF :

L'antigénicité du VEGF conjugué s'est révélée comparable à celle du VEGF isolé.

L'absence de toxicité in vitro a été mesurée par un test de prolifération cellulaire. Le conjugué KLH-SIAB-VEGF utilisé à des doses 10 fois et 30 fois supérieures aux doses physiologiques ne modifie pas la prolifération des cellules mononucléées du sang périphérique humain activés par le SEB.

Préparation 9 : Immunogène KLH-SMCC-VEGF

Le couplage du VEGF à la protéine KLH, utilisée comme carrier a 20 pour effet de potentialiser l'immunogénicité du VEGF.

Le couplage a été réalisé par réaction du VEGF réduit avec le KLH activé par traitement par le (sulfosuccinimidyl [4-N-maléimidométhyl]—cyclohexane-1-carboxylate) (sulfo-SMCC).

25 Etape 1 : Réduction du VEGF par le DTT

Le sulfo-SMCC est un bras écarteur qui permet de lier la protéine porteuse, ici KLH, avec le VEGF pour former un conjugué.

1 mg de VEGF en solution dans 500 μl de PBS a été additionné de 40 μl d'une solution de DTT à 50 mg/ml. Le mélange a été conservé pendant 2 heures à température ambiante, à l'abri de la lumière, et le mélange réactionnel a été filtré à travers une colonne de Sephadex G25 (1 x 15 cm) équilibrée en PBS contenant EDTA-Na₂ 5 mM, pH 7,0.

Etape 2 : Traitement du KLH par le sulfo-SMCC

150 µl d'une solution de KLH à 20 mg/ml ont été additionnés de 50 µl de tampon borate 0,1 M – EDTA Na₂-5 mM, pH 8,5, suivi de l'addition de 20 µl d'une solution dans l'eau de sulfo-SMCC à 3,4 mg/ml, la réaction a eu lieu pendant 30 min. à température ambiante et à l'abri de la lumière, sous une barrière d'azote. Le mélange réactionnel a été alors filtré à travers une colonne de Sephadex G25 (1 x 11 cm) équilibrée avec le même tampon.

10 Etape 3 : Couplage de VEGF réduit à KLH-SMCC

1 ml de solution de VEGF réduit a été mélangé avec 500 µl de KLH-SMCC. Le mélange a été incubé, à l'abri de la lumière et à température ambiante, sous azote, pendant 1 heure, puis pendant 15 heures à 4° C.

Après que la réaction a été bloquée par addition de cystéine à concentration finale 5 mM, pendant 20 min., le mélange a été purifié par chromatographie d'exclusion.

Caractéristique de l'immunogène KLH-SMCC-VEGF :

L'antigénicité de VEGF conjugué s'est révélée comparable à celle 20 du VEGF isolé.

L'absence de toxicité in vitro est mesurée par un test de prolifération cellulaire. le conjugué KLH-SMCC-VEGF utilisé à des doses 10 fois et 30 fois supérieures aux doses physiologiques ne modifie pas la prolifération des cellules mononucléées du sang périphérique humain activés par le SEB.

25

Préparation 10 : Immunogène KLH-glutaraldéhyde-VEGF

Le couplage a pour effet de potentialiser l'immunogénicité de la protéine VEGF.

Le couplage a été réalisé par réaction de la molécule VEGF avec 30 KLH activé par la glutaraldéhyde.

1 ml de solution de KLH à 10 mg/ml dans PBS a été activé par dialyse contre 100 ml d'une solution de glutaraldéhyde à 0,2 % dans PBS,

pendant une nuit, à 4° C. L'excès de glutaraldéhyde a été éliminé par dialyse de la protéine activée contre 3 changements de 200 ml de PBS de 2 heures chacun.

A 400 µl de KLH activé (4 mg) sont ajoutés 1 mg d'une solution à 1 mg/ml de la protéine VEGF dans PBS et le mélange réactionnel est agité, pendant 1 nuit, à 4° C. Les groupements aldéhydiques libres sont alors bloqués par réaction pendant 1 heure avec 100 µl de glycine 2.5 M et le mélange est purifié par chromatographie d'exclusion. L'antigénicité de la protéine VEGF dans le conjugué s'est révélée légèrement supérieure à celle de VEGF isolé.

10

15

Préparation 11 : Immunogène KLH- glutaraldéhyde -E7

Le couplage a pour effet de potentialiser l'immunogénicité de la protéine E7.

Le couplage a été réalisé par réaction de la molécule E7 avec KLH activé par la glutaraldéhyde à partir d'1 ml de solution de KLH à 10 mg/ml dans du PBS selon le même protocole que celui décrit pour la préparation 10.

L'antigénicité de la protéine E7 dans le conjugué s'est révélée légèrement supérieure à celle de E7 isolé.

20 Préparation 12 : KLH- glutaraldéhyde -IFNα

L'IFNα a été conjugué au KLH dans les mêmes conditions que celles décrites dans la préparation 11 pour la protéine E7.

L'antigénicité de l'IFN α conjugué s'est révélée légèrement supérieure à celle de l'IFN α traité au glutaraldéhyde seul.

25

Etude pharmacologique

A - Présence dans le milieu extracellulaire de tumeurs malignes, de molécules participant à l'immunosuppression, l'apoptose ou l'angiogénèse du micro environnement des cellules cancéreuses.

Expérimentation A1:

La protéine p53 qui s'accumule dans les tumeurs malignes et est présente dans les milieux extracellulaires dont le sérum (Zusman I, Sandler B, Gurevich P, Zusman R, Smirnoff P, Tendler Y, Bass D, Shani A, Idelevich E, Pfefferman R, Davidovich B, Huszar M, Glick J. Comparative study of the role of serum levels of p53 antigen and its tumor cell concentration in colon cancer detection. Hum Antibodies Hybridomas. (1996) :123-8), active la surproduction par les APC d'IFN α , médiateur de l'immunosuppression, et de TNF α , cytokine participant à l'expression des molécules d'adhérence des cellules endothéliales et à l'apoptose des cellules immunitaires.

Protocole expérimental

10

15

20

30

Des macrophages, qui proviennent de la différentiation de monocytes élutriés cultivés pendant 5 jours dans des poches de téflon en présence de GMC-SF (F. Sallusto et al, Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med (1994) 179, 1109), sont activés avec du LPS pendant 16 heures. Ces macrophages ainsi activés sont ensuite cultivés en présence de doses croissantes (0 – 10 μg/ml) de la protéine recombinante p53 native (sc-4246, Santa Cruz) et de protéine contrôle) dans du milieu sans sérum pendant 24 heures. La protéine contrôle a été la protéine recombinante p24 (protéine du HIV-1, origine ANRS)

25 Résultats:

La mesure de la surproduction APC d'IFN α et de TNF α dans les surnageants (SN) de culture des APCs s'effectue respectivement par le test biologique standard de l'IFN α , utilisant la lyse des cellules MDBK par le VSV (S. Rubinstein et al, Convenient assay for interferons. J. Virol (1981) 37, 755) et par un test ELISA de R&D (DTA50, R&D).

Le titre d'IFN α dans les surnageant correspond à l'inverse de la plus forte dilution des surnageants induisant 50 % de protection des cellules

contre l'effet cytopathique du VSV. La mesure de TNF α dans les surnageants est réalisée en suivant le protocole décrit par le producteur et est exprimée en pg/ml. Les résultats sont représentés dans le tableau suivant

p53 expérimental	Titre d'IFNα (dilution ⁻¹)	TNFα (pg/ml)
10 μg/ml	128	8700
3 μg/ml	64	6200
1 μg/ml	32	5600
0,3 µg/ml	12	2600
0,1 μg/ml	6	1300
00 μg/ml	2	200

5

p24 contrôle	Titre d'IFNα (dilution ⁻¹)	TNFα (pg/ml)
10 μg/ml	2	250
3 μg/ml	2	200
1 μg/ml	2	200
0,3 μg/ml	2	200
0,1 μg/ml	2	200
00 μg/ml	. 2	200

La protéine recombinante p53 native induit la surproduction d'IFN α et de TNF α , alors que la protéine recombinante p24 utilisée dans les contrôles n'induit aucune synthèse.

Un lysat de culture de cellules d'insectes à baculovirus exprimant la protéine p53 a donné des résultats similaires à ceux décrits pour la protéine recombinante p53 produite chez E. Coli.

Expérimentation A2:

15

. 10

La cytokine TGF β , relâchée dans le milieu extracellulaire par des cellules cancéreuses inhibe la prolifération de cellules T et active la production par les macrophages de l'IFN α , cytokine immunosuppressive majeure.

Protocole expérimental

Des cellules mononucléées du sang périphérique humain, isolées sur gradient de Ficoll à partir du sang périphérique de sujet sain, sont cultivés en présence de l'anticorps anti-CD3 et en présence de doses croissantes (0–30 ng/ml) de la protéine recombinante TGFβ active (240-B-002, R&D) et de doses croissantes (0-30 ng/ml) d'une protéine contrôle, la protéine recombinante p24.

L'inhibition de la prolifération des cellules T est mesurée à l'aide d'un test de prolifération cellulaire (Lachgar A., Bernard J., Bizzini B., Astgen A., Le Coq H., Fouchard M., Chams V., Feldman M., Richardson M., Rappaport J., Burny A. & J.F. Zagury: Repair of the in vitro HIV-1-induced immunosuppression and blockade of the generation of functional suppressive CD8 cells by anti-alpha interferon and anti-Tat antibodies. Biomed & Pharmacother. (1996) 50:13-18).

L'activation de la production d'IFNα par les macrophages est mesurée selon le protocole décrit dans l'expérimentation A1. Les macrophages activés sont cultivés en présence de doses croissantes (0–1 μg/ml) de la protéine recombinante TGFβ active et d'une protéine contrôle, la protéine recombinante p24, dans du milieu sans sérum pendant 24 heures.

20 Résultats:

25

Inhibition de la prolifération cellulaire par le TGFß:

La prolifération cellulaire est exprimée en % de prolifération cellulaire ((cpm contrôle / cpm échantillon) x 100) à trois concentrations (30, 10 et 3 ng/ml) de TGFβ et de protéine p24. Le contrôle correspond à une concentration de protéine recombinante utilisée égale à 0. Les résultats sont présentés dans la figure 1 :

Ces résultats montrent que la prolifération cellulaire est diminuée de manière dose dépendante par le TGFβ actif, alors qu'elle ne l'est pas par la p24.

Activation par le TGF β de la surproduction d'IFN α par les macrophages.

Le titre d'IFN α dans les surnageants correspond à l'inverse de la

plus forte dilution des surnageants induisant 50 % de protection contre l'effet cytopathique du VSV. Les résultats sont présentés dans le tableau suivant :

TGFβ expérimental	Titre d'IFNα
1 μg/ml	16
300 ng/ml	8
100 ng/ml	4
30 ng/ml	2
00 ng/ml	0

P24 contrôle	Titre d'IFNα
1 µg/ml	. 0
300 ng/ml	0
100 ng/ml	0
30 ng/ml	0
00 ng/ml	0

5

La protéine recombinante TGF β active induit la surproduction d'IFN α , alors que la protéine recombinante p24 n'induit aucune synthèse.

Expérience de vaccination 1 :

10

20

Vaccination anti-IL 10 de la souris pour l'induction d'une immunité systémique et mucosale avec formation préférentielle d'anticorps spécifiques de classes IgG et IgA.

Protocole d'immunisation

- 15 Jour 0 : Injection IM d'une suspension d'immunogène plasmidique exprimant l'IL 10 (100 μg) dans 0,2 ml de PBS préparée à l'exemple 2.
 - Jour 7, jour 8, jour 9: Administration par gavage de suspensions aqueuses de micro sphères (PLGA) incluant l'immunogène IL 10 (100 μg/dose) et l'adjuvant LTμ (5 μg/dose).

Les souris contrôles reçoivent les mêmes préparations sans

immunogène.

Suivi:

On sacrifie les animaux 15 jours après la dernière immunisation et on constate l'absence de toxicité (mesurée par l'absence de signes cliniques (comportement; poils; poids) et par examen anatomique après autopsie.

Réaction immunitaire testée par la présence dans le sérum d'anticorps de type IgG et IgA, mesurée par ELISA et exprimée par la densité optique 15 jours après le dernier gavage.

10

15

	Souris contrôle (D.O)	Souris immunisées (D.O)
Ac anti IL 10 classe IgG	0,2	0,920
Ac anti IL 10 classe IgA	0,1	0,780

Résultats:

Innocuité clinique et absence de lésions anatomiques.

Présence d'anticorps (Ac) anti IL 10 de type IgG et de type IgA dans le sérum

Expérience de vaccination 2 :

Vaccination anti-VEGF de la souris par l'induction d'une immunité systémique et mucosale avec formation préférentielle d'anticorps spécifique de classe IgG et IgA.

Protocole d'immunisation

- Jour 0 : Injection IM d'une suspension d'immunogène VEGF (20 μg) dans l'ISA 51 préparée à l'exemple 1.
- Jour 7, jour 14, jour 21 : Administration intranasale à l'aide de pipette Hamilton de 10 μl d'une suspension aqueuse contenant 20 μg d'immunogène et 5 μg de LTμ enchâssés dans un gel de phosphate de calcium.

Les souris contrôles reçoivent les mêmes préparations sans immunogène

Suivi:

On sacrifie les animaux 15 jours après la dernière immunisation et on constate l'absence de toxicité (mesurée par l'absence de signes cliniques (comportement ; poils ; poids) et par examen anatomique après autopsie.

Réaction immunitaire testée par la présence dans le sérum d'anticorps de type IgG et IgA, mesurée par ELISA et exprimée par la densité optique 15 jours après la dernière instillation.

·	Souris contrôle (D.O)	Souris immunisées (D.O)
Ac anti VEGF classe IgG	0,27	1,64
Ac anti VEGF classe IgA	0,15	1,118

10

5

Résultats:

Innocuité clinique et absence de lésions anatomiques.

Présence d'anticorps anti VEGF de type IgG et de type IgA dans

le sérum.

15

Expérience de vaccination 3:

Vaccination anti p53 de la souris par l'induction d'une immunité systémique et mucosale avec formation préférentielle d'anticorps spécifique de classe IgG et IgA.

20

Protocole d'immunisation

- Jour 0 : Injection IM d'une suspension d'immunogène p53 (20 μg) dans l'ISA
 51 préparée comme à l'exemple 1.
- Jour 7, jour 14, jour 21: Administration intra nasale à l'aide de pipette
 Hamilton de 10 μl d'une suspension aqueuse contenant 20 μg d'immunogène et 5 μg de LTμ enchâssés dans un gel de phosphate de calcium.

Les souris contrôles reçoivent les mêmes préparations sans immunogène

Suivi:

On sacrifie les animaux 15 jours après la dernière immunisation et on constate l'absence de toxicité (mesurée par l'absence de signes cliniques (comportement ; poils ; poids) et par examen anatomique après autopsie.

Réaction immunitaire testée par la présence dans le sérum et dans la salive d'anticorps de type IgG et IgA, mesurée par ELISA et exprimée par la densité optique 15 jours après la dernière instillation.

Résultats:

10

5

Innocuité clinique et absence de lésions anatomiques.

Présence d'anticorps anti p53 de type IgG et de type IgA dans le sérum et dans la salive.

sérum	Souris contrôle (D.O)	Souris immunisées (D.O)
Ac anti p53 classe IgG	0,184	1,492
Ac anti p53 classe IgA	0,208	1,071

salive	Souris contrôle (D.O)	Souris immunisées (D.O)
Ac anti p53 classe IgG	0,184	1,5
Ac anti p53 classe IgA	0,208	0,980

15

25

Expérience de vaccination 4 :

Vaccination anti IL 6 de la souris pour l'induction d'une immunité systémique avec formation d'anticorps spécifiques de classe IgG

20 Protocole d'immunisation

- Jour 0 : Injection IM d'une suspension d'immunogène IL 6 (20 μg) dans l'ISA
 51 préparée comme à l'exemple 1.
- Jour 21 : Rappel par voie IM d'une émulsion d'IL 6 (5 μg) dans l'ISA 51 Les souris contrôles reçoivent les mêmes préparations sans immunogène

Suivi:

5

On sacrifie les animaux 15 jours après le rappel et on constate l'absence de toxicité (mesurée par l'absence de signes cliniques (comportement ; poils ; poids) et par examen anatomique après autopsie.

Réaction immunitaire testée par la présence dans le sérum d'anticorps de type IgG et IgA, mesurée par ELISA et exprimée par la densité optique 7 jours après le rappel.

	Souris contrôle (D.O)	Souris immunisées (D.O)
Ac anti IL 6 classe IgG	0,280	2,356
Ac anti IL 6 classe IgA	0,230	0,320

10 Résultats :

Innocuité clinique et absence de lésions anatomiques.

Présence d'anticorps anti IL 6 de type IgG dans le sérum.

Expérience de vaccination 5 :

Vaccination anti IL 6 de la souris par l'induction d'une immunité systémique et mucosale avec formation préférentielle d'anticorps spécifique de classe IgG et IgA.

Protocole d'immunisation

- Jour 0 : Injection IM d'une suspension d'immunogène IL 6 (20 μg) dans l'ISA
 51 préparée comme à l'exemple 1.
 - Jour 7, jour 8, jour 9 : Administration par gavage de micro sphères de PLG contenant l'immunogène (100 μg/dose) et l'adjuvant LTμ (5 μg/dose).

Les souris contrôles reçoivent les mêmes préparations sans 25 immunogène

Suivi :

On sacrifie les animaux 15 jours après le dernier gavage et on constate l'absence de toxicité (mesurée par l'absence de signes cliniques

(comportement ; poils ; poids) et par examen anatomique après autopsie.

Réaction immunitaire testée par la présence dans le sérum d'anticorps de type IgG et IgA, mesurée par ELISA et exprimée par la densité optique 15 jours après le dernier gavage.

5

	Souris contrôle (D.O)	Souris immunisées (D.O)
Ac anti IL 6 classe IgG	0,250	1,400
Ac anti IL 6 classe IgA	0,175	1,62

Résultats:

Innocuité clinique et absence de lésions anatomiques.

Présence d'anticorps anti IL 6 de type IgG et de type IgA dans le

10 sérum.

20

Exemple de vaccination 6 : vaccination anti-VEGF par le conjugué KLH-SIAB-VEGF.

L'activité immunogénique (humorale) du conjugué KLH-SIAB-15 VEGF par rapport à celle du VEGF natif a été étudiée chez la souris balb c de 18-20 g.

Au jour J 0, un groupe de 3 souris reçoit une injection de 0,2 ml (50 μg) d'une émulsion en adjuvant complet de Freund par voie intramusculaire. Une injection de rappel de 5 μg en adjuvant incomplet de Freund est donnée à J 21 et J 60.

Un prélèvement sanguin au niveau rétro-orbital est effectué sur chaque souris avant la première injection à J -2

- 3 souris contrôles reçoivent les mêmes préparations sans immunogène.
- 3 souris reçoivent 100 μg de la préparation et l'absence de symptômes de maladie est étudiée pendant les 7 jours suivant l'injection.

Les souris sont sacrifiées 12 jours après la dernière immunisation.

L'absence de toxicité est mesurée par l'absence de signes cliniques : (comportement, poils, poids) et par examen anatomique après

autopsie.

Résultats:

Aucune des 3 souris immunisées avec 100 µg de la préparation 5 ne manifeste de symptômes de maladie pendant les 7 jours suivant l'injection.

Les souris immunisées aussi bien par le conjugué KLH-SIAB-VEGF que par le VEGF uniquement ne présentent aucun signe clinique et aucune lésions anatomiques.

La réaction immunitaire est mesurée par :

10 a) la présence dans le sérum d'anticorps de type IgG dirigés contre la protéine recombinante VEGF native, mesurée par ELISA et exprimée en titre (inverse de la dilution donnant une densité optique supérieure à 0.3)

Titre		
J -2	J 72	
<500 ⁻¹	<500 ⁻¹	
<500 ⁻¹	<500-1	
<500 ⁻¹	<500 ⁻¹	
Souris immunisées avec le VEGF :		
<500 ⁻¹	500 ⁻¹	
<500-1	1000-1	
<500 ⁻¹	750 ⁻¹	
Souris immunisées avec le conjugué KLH-SIAB-VEGF :		
<500 ⁻¹	>64000-1	
<500 ⁻¹	>64000-1	
<500-1	>64000-1	
	J-2	

Les souris immunisées avec le conjugué KLH-SIAB-VEGF présentent des titres d'anticorps de type IgG anti-VEGF plus importants que ceux des souris immunisées avec le VEGF uniquement.

15

Exemple 7 : comparaison des activités neutralisantes des sérums de souris immunisées par le conjugué KLH-SIAB-VEGF ou par du VEGF natif.

L'activité neutralisante de ces anticorps a été mesurée à l'aide du test biologique standard de l'activité du VEGF. Différentes dilutions de sérums (1/100 - 1/800) prélevés à J -2 et J 72 sont incubées pendant 2 heures avec 10 ng/ml de VEGF natif. Ces dilutions sont ensuite déposées sur des cellules endothéliales (HUVEC) cultivées dans des puits à fond plat d'une plaque de micro-culture à raison de 3000 cellules/puits. La culture cellulaire est poursuivie à 37 °C en atmosphère humide chargée à 5 % de CO₂ pendant 6 jours. 18 heures avant la fin de l'incubation, 0.5 μCi de thymidine tritiée / puits sont ajoutés.

Les résultats sont donnés en % de neutralisation.

		% de neutralisation				
	•	1/100	1/200	1/400	1/800	
Souris imm	nunisées av	ec le VEGF:	<u> </u>	<u> </u>	<u> </u>	
souris 4	J -2	0	0	0	0	
	J 72	15	0	0	0	
souris 5	J -2	0	0	0	0	
	J 72	20	0	0	0	
souris 6	J -2	0	0	0	0	
	J 72	15	0	0	0	
Souris imm	unisées ave	ec le KLH-V	EGF		•	
souris 7	J -2	0	0	. 0	0	
×	J 72	100	100	100	100	
souris 8	J -2	0	0	0	0	
	J 72	100	100	100	100	
souris 9	J -2	0	0	0 .	0	
	J 72	100	100	100	100	

Les anticorps induits par le conjugué KLH-VEGF ont un pouvoir neutralisant plus important que celui des anticorps induits par le VEGF.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

OTHER: _

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

inis Page Blank (uspto)