

13-52-20

Title: QMA6100P Preliminary Datasheet

Rev: A1

9.2 Register Definition

Register 0x00 (CHIP ID)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
CHIP_ID<7:0	>							RW	0x90

This register is used to identify the device

Register 0x01 ~ 0x02 (DXL, DXM)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
DX<5:0>							NEWDATA	R	0x00
							_X		
DX<13:6>					•			R	0x00

DX: 14bits acceleration data of x-channel. This data is in two's complement.

NEWDATA_X: 1, acceleration data of x-channel has been updated since last reading 0, acceleration data of x-channel has not been updated since last reading

Register 0x03 ~ 0x04 (DYL, DYM)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
DY<5:0>							NEWDATA	R	0x00
							_Y		
DY<13:6>								R	0x00

DY: 14bits acceleration data of y-channel. This data is in two's complement.

NEWDATA_Y: 1, acceleration data of y-channel has been updated since last reading

0, acceleration data of y-channel has not been updated since last reading

Register 0x05 ~ 0x06 (DZL, DZM)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
DZ<5:0>							NEWDATA	R	0x00
							_Z		
DZ<13:6>								R	0x00

DZ: 14bits acceleration data of z-channel. This data is in two's complement.

NEWDATA_Z: 1, acceleration data of z-channel has been updated since last reading

0, acceleration data of z-channel has not been updated since last reading

Register 0x07 ~ 0x08 (STEP_CNT)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_CNT<7:	:0>							R	0x00
STEP_CNT<1	5:8>						•	R	0x00

STEP_CNT<15:0>: 16 bits of step counter, out of total 24bits data. The MSB data are in 0x0e

Register 0x09 (INT_ST0)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
NO_MOT	STEP_FLAG			ANY_MOT	ANY_MOT	ANY_MOT	ANY_MOT	R	0x00
				SIGN	FIRST Z	FIRST Y	FIRST X		

NO_MOT: 1, no_motion interrupt active

0, no motion interrupt inactive

STEP_FLAG: 1, STEP detected

0, STEP not detected

ANY_MOT_SIGN: 1, sign of any_motion triggering signal is negative

0, sign of any_motion triggering signal is positive 1, any_motion interrupt is triggered by Z axis

0, any_motion interrupt is not triggered by Z axis
ANY_MOT_FIRST_Y: 1, any_motion interrupt is triggered by Y axis

0, any_motion interrupt is not triggered by Y axis

ANY_MOT_FIRST_X: 1, any_motion interrupt is triggered by X axis

0, any_motion interrupt is not triggered by X axis

Register 0x0a (INT_ST1)

ANY_MOT_FIRST_Z:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
S_TAP_INT	SIG_STEP	D_TAP_INT	T_TAP_INT	STEP_INT	HD_INT	RAISE_INT	SIG_MOT_I	R	0x00
							NT		

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

13-52-20

Title: QMA6100P Preliminary Datasheet

Rev: A1

1, single tap is active S_TAP_INT:

0, single tap is inactive

SIG_STEP: 1, significant step is active

0, significant step is inactive

D_TAP_INT: 1, double tap is active

0, double tap is inactive

STEP_INT: 1, step valid interrupt is active

0, step quit interrupt is inactive

T_TAP_INT: 1, triple tap is active

0, triple tap is inactive

HD_INT: 1, hand down interrupt is active

0, hand down interrupt is inactive

RAISE_INT: 1, raise hand interrupt is active 0, raise hand interrupt is inactive

SIG_MOT_INT: 1, significant interrupt is active

0, significant interrupt is inactive

Register 0x0b (INT_ST2)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
FIFO_OR	FIFO_WM_	FIFO_FULL	DATA_INT			EARIN_FLA	Q_TAP_INT	R	0x00
	INT	INT				G			

FIFO_OR: 1, FIFO Over-Run occurred

0, FIFO Over-Run not occurred

FIFO_WM_INT: 1, FIFO watermark interrupt is active

0, FIFO watermark interrupt is inactive

FIFO_FULL_INT: 1, FIFO full interrupt is active

0, FIFO full interrupt is inactive

DATA_INT: 1, data ready interrupt active

0, data ready interrupt inactive 1, ear-in interrupt is active

EARIN_FLAG: 0, ear-in interrupt is inactive

1, quad tap is active

Q_TAP_INT: 0, quad tap is inactive

Register 0x0c (INT_ST3)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
TAP_SIGN								R	0x00

TAP_SIGN:

1, tap sign is along with positive direction 0, tap sign is along with negative direction

Register 0x0d (INT_ST4)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_CNT<23:1	6>							R	0x00

STEP_CNT<23:16>: 8bit MSB data of step counter, out of total 24bits data. The LSB data are in 0x07 and 0x08

Register 0x0e (FIFO_ST)

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
Ī	FIFO_FRAME_COUNTER<7:0> R								R	0x00

FIFO_FRAME_COUNTER<7:0>: Fill level of FIFO buffer. An empty FIFO corresponds to 0x00. The frame counter can be cleared by reading out all of the frames, or by writing register 0x3e (FIFO_CFG1) or 0x31.

Register 0x0f (FSR)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	LPF HPF			RANGE<3:0>				RW	0x00

RANGE<3:0>: set the full scale of the accelerometer. Setting as following

RANGE<3:0>	Acceleration range	Resolution
0001	2g	244ug/LSB
0010	4g	488g/LSB
0100	8g	977ug/LSB
1000	16g	1.95mg/LSB
1111	32g	3.91mg/LSB
Others	2g	244ug/LSB

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

13-52-20

Title: QMA6100P Preliminary Datasheet

Rev: A1

Register 0x10 (BW)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
HPF[2]	2] NLPF<1:0>		BW<4:0>					RW	0xE0

NLPF<1:0>: 00: no LPF.

01: NLPF=2. 10: NLPF=4. 11: NLPF=8

BW<4:0>: bandwidth setting, as following

Register 0x11 (PM)

-0									
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
MODE BIT		T RSTB SINC	SEL<1:0>	MCLK SEL<3:	:0>	•		RW	0x00

MODE_BIT: 1, set device into active mode

0, set device into standby mode

T_RSTB_SINC_SEL<1:0>: Reset clock setting. The preset time is reserved for CIC filter in digital

MCLK_SEL<3:0>: set the master clock to digital

Register 0x12 (STEP_CONF0)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP EN	STEP SAMPL	E CNT<6:0>						RW	0x14

STEP_EN: enable step counter, this bit should be set 1 when using step counter

STEP_SAMPLE_CNT: sample count setting to renew dynamic threshold. The actual value is STEP_SAMPLE_CNT<6:0>*8, default is 0xC, 96 sample count

Register 0x13 (STEP_CONF1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_CLR	STEP_PRECIS	ION<6:0>						RW	0x7F

STEP_CLR: clear step count in register 0x0D ,0x08 and 0x07

STEP_PRECISION<6:0>: algorithm setting

Register 0x14 (STEP_CONF2)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_TIME_LOW<7:0>						RW	0x19		

STEP_TIME_LOW<7:0>: algorithm setting

Register 0x15 (STEP_CONF3)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default	ĺ
STEP_TIME_U	JP<7:0>							RW	0x00	İ

STEP_TIME_UP<7:0>: algorithm setting

Register 0x16 (INT_EN0)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
S_TAP_EN	SIG_STEP_I	D_TAP_EN	T_TAP_EN	STEP_IEN	HD_EN	RAISE_EN	Q_TAP_EN	RW	0x00
	EN								

S_TAP_EN: 1, enable single tap

0, disable single tap

SIG_STEP_IEN: 1, enable significant step interrupt

0, disable significant step interrupt

D_TAP_EN: 1, enable double tap 0, disable double tap T_TAP_EN: 1, enable triple tap

0, disable triple tap

STEP_IEN: 1, enable step valid interrupt

0, disable step valid interrupt HD_EN: 1, enable hand-down interrupt

0, disable hand-down interrupt RAISE_EN: 1, enable raise-hand interrupt

0, disable raise-hand interrupt Q_TAP_EN: 1, enable quad tap

0, disable quad tap

Register 0x17 (INT_EN1)

The information contained herein is the exclusive property of QST, and shall not be distributed,	30 / 37
reproduced, or disclosed in whole or in part without prior written permission of QST.	

13-52-20

Title: QMA6100P Preliminary Datasheet

Rev: A1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	INT_FWM_	INT_FFULL	INT_DATA					RW	0x00
	EN	_INT	_EN						

INT_FWM_EN: 1, enable FIFO watermark interrupt

0, disable FIFO watermark interrupt

INT_FFULL_EN: 1, enable FIFO full interrupt

0, disable FIFO full interrupt 1, enable data ready interrupt

INT DATA EN: 0, disable data ready interrupt

Register 0x18 (INT EN2)

NO_MOT_EN_Y:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
NO_MOT_	NO_MOT_	NO_MOT_			ANY_MOT	ANY_MOT	ANY_MOT	RW	0x00
EN Z	EN Y	EN X			EN Z	EN Y	EN X		

NO_MOT_EN_Z: 1, enable no_motion interrupt on Z axis

0, disable no motion interrupt on Z axis 1, enable no_motion interrupt on Y axis 0, disable no_motion interrupt on Y axis

NO_MOT_EN_X: 1, enable no motion interrupt on X axis 0, disable no_motion interrupt on X axis

ANY_MOT_EN_Z: 1, enable any_motion interrupt on Z axis 0, disable any motion interrupt on Z axis

ANY_MOT_EN_Y: 1, enable any motion interrupt on Y axis 0, disable any_motion interrupt on Y axis

ANY_MOT_EN_X: 1, enable any_motion interrupt on X axis

0, disable any motion interrupt on X axis

Register 0x19 (INT_MAP0)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
INT1_S_TA	INT1_SIG_	INT1_D_TA	INT1_T_TA	INT1_STEP	INT1_HD	INT1_RAIS	INT1_SIG_	RW	0x00
Р	STEP	Р	Р			F	MOT		

INT1_S_TAP: 1, map single tap interrupt to INT1 pin 0, not map single tap interrupt to INT1 pin

INT1_SIG_STEP: 1, map significant step interrupt to INT1 pin

0, not map significant step interrupt to INT1 pin INT1_D_TAP: 1, map double tap interrupt to INT1 pin

0, not map double tap interrupt to INT1 pin INT1_T_TAP: 1, map triple tap interrupt to INT1 pin

0, not map triple tap interrupt to INT1 pin 1, map step valid interrupt to INT1 pin

INT1_STEP: 0, not map step valid interrupt to INT1 pin

1, map hand down interrupt to INT1 pin

INT1_HD: 0, not map hand down interrupt to INT1 pin

INT1_RAISE: 1, map raise hand interrupt to INT1 pin

0, not map raise hand interrupt to INT1 pin

INT1_SIG_MOT: 1, map significant interrupt to INT1 pin

0, not map significant interrupt to INT1 pin

Register 0x1a (INT_MAP1)

INT1_FWM:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
INT1_NO_	INT1_FWM	INT1_FFUL	INT1_DAT			INT1_Q_TA	INT1_ANY_	RW	0x00
MOT		L	Α			Р	MOT		

INT1_NO_MOT: 1, map no_motion interrupt to INT1 pin

> 0, not map no motion interrupt to INT1 pin 1, map FIFO watermark interrupt to INT1 pin

0, not map FIFO watermark interrupt to INT1 pin

INT1_FFULL: 1, map FIFO full interrupt to INT1 pin

0, not map FIFO full interrupt to INT1 pin 1, map data ready interrupt to INT1 pin

INT1_DATA: 0, not map data ready interrupt to INT1 pin

INT1 Q TAP: 1, map quad tap interrupt to INT1 pin

0, not map quad tap interrupt to INT1 pin

INT1 ANY MOT: 1, map any motion interrupt to INT1 pin

> The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

13-52-20

Title: QMA6100P Preliminary Datasheet

Rev: A1

0, not map any motion interrupt to INT1 pin

Register 0x1b (INT_MAP2)

INT2_SIG_STEP:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
INT2_S_TAP	INT2_SIG_S	INT2_D_	INT2_T_TA	INT2_STEP	INT2_HD	INT2_RAISE	INT2_SI	RW	0x00
	TEP	TAP	Р				G_MOT		

INT2_S_TAP: 1, map single tap interrupt to INT2 pin

0, not map single tap interrupt to INT2 pin

1, map significant step interrupt to INT2 pin 0, not map significant step interrupt to INT2 pin

INT2_D_TAP: 1, map double tap interrupt to INT2 pin

0, not map double tap interrupt to INT2 pin 1, map triple tap interrupt to INT2 pin

INT2_T_TAP: 1, map triple tap interrupt to INT2 pin 0, not map triple tap interrupt to INT2 pin

INT2_STEP: 1, map step valid interrupt to INT2 pin 0, not map step valid interrupt to INT2 pin

INT2_HD: 1, map hand down interrupt to INT2 pin

0, not map hand down interrupt to INT2 pin INT2_RAISE: 1, map raise hand interrupt to INT2 pin

0, not map raise hand interrupt to INT2 pin

INT2_SIG_MOT: 1, map significant interrupt to INT2 pin

0, not map significant interrupt to INT2 pin

Register 0x1c (INT_MAP3)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
INT2_NO_	INT2_FWM	INT2_FFUL	INT2_DAT			INT2_Q_TA	INT2_ANY_	RW	0x00
MOT		L	Α			Р	MOT		

INT2 NO MOT: 1, map no motion interrupt to INT2 pin

0, not map no_motion interrupt to INT2 pin

INT2_FWM: 1, map FIFO watermark interrupt to INT2 pin

0, not map FIFO watermark interrupt to INT2 pin

INT2_FFULL: 1, map FIFO full interrupt to INT2 pin

0, not map FIFO full interrupt to INT2 pin

INT2_DATA: 1, map register data ready interrupt to INT2 pin

0, not map register data ready interrupt to INT2 pin INT2_Q_TAP: 1, map quad tap interrupt to INT2 pin

0, not map quad tap interrupt to INT2 pin

INT2_ANY_MOT: 1, map any motion interrupt to INT2 pin

0, not map any motion interrupt to INT2 pin

Register 0x1d (STEP_CFG0)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_INTERV	AL<7:0>							RW	0x00

STEP_INTERVAL <7:0>: algorithm setting

Register 0x1e (STEP_CFG1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	1:0>	TAP_QUIET<	5:0>					RW	0x08

NLPF_STEP<1:0>: Moving Average of Step: 1/2/4/8

TAP_QUIET_TH<5:0>: Tap quiet threshold selection, LSB of TAP_QUIET_TH<5:0> is 31.25mg in all full scale.

Register 0x1f

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_START_	_CNT<2:0>		STEP_COUNT	_PEAK<1:0>	STEP_COUNT	_P2P<2:0>		RW	0xA9

STEP_START_CNT<2:0>: algorithm setting STEP_COUNT_PEAK<2:0>: algorithm setting step_COUNT_P2P<2:0>: algorithm setting algorithm setting

Register 0x20 (INTPIN CONF)

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
ĺ	DIS_PU_SE	DIS_IE_AD	EN_SPI3W	STEP_COU	INT2_OD	INT2_LVL	INT1_OD	INT1_LVL	RW	0x05
	NB	0		NT_PEAK<						
				2>						

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

13-52-20 Title: QMA6100P Preliminary Datasheet

Rev: A1

DIS_PU_SENB: 1, disable pull-up resistor of PIN_SENB

0, enable pull-up resistor of PIN_SENB

DIS_IE_AD0: 1, disable input of AD0

0, not disable input of AD0

EN_SPI3W: 1, enable 3W SPI

0, 4W SPI

STEP_COUNT_PEAK<2>: Definition in 0x1F<4:3>

INT2_OD: 1, open-drain for INT2 pin

0, push-pull for INT2 pin

INT2_LVL: 1, logic high as active level for INT2 pin

0, logic low as active level for INT2 pin

INT1_OD: 1, open-drain for INT1 pin 0, push-pull for INT1 pin

INT1_LVL: 1, logic high as active level for INT1 pin

0, logic low as active level for INT1 pin

Register 0x21 (INT_CFG)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
INT_RD_CL	SHADOW_	DIS_I2C				LATCH_INT	LATCH_INT	RW	0x0C
R	DIS					STEP			

INT RD CLR: 1, clear all the interrupts in latched-mode, when any read operation to any of registers from 0x09 to 0x0D

0, clear the related interrupts, only when read the register INT_ST (0x09 to 0x0D),

no matter the interrupts in latched-mode, or in non-latched-mode.

Reading 0x09 will clear the register 0x09 only and the others keep the status

SHADOW_DIS: 1, disable the shadowing function for the acceleration data

0, enable the shadowing function for the acceleration data.

When shadowing is enabled, the MSB of the acceleration data is locked,

when corresponding LSB of the data is reading.

This can ensure the integrity of the acceleration data during the reading.

The MSB will be unlocked when the MSB is read.

DIS_I2C: 1: disable I2C. Setting this bit to 1 in SPI mode is recommended

0: enable I2C

LATCH_INT_STEP: 1, step related interrupt is in latch mode

0, step related interrupt is in non-latch mode

LATCH_INT: 1, interrupt is in latch mode

0, interrupt is in non-latch mode

Register 0x22

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
RAISE_WAKE_I	DIFF_TH<1:0>	RAISE_WAKE_S	SUM_TH<5:0>					RW	0xD8

RAISE_WAKE_DIFF_TH<1:0>: Threshold = 0 ~ 31.5 (LSB 0.5)

RAISE_WAKE_SUM_TH<5:0>:

0	0.2
1	0.3
2	0.4
3	0.5
4	0.6
5	0.7
6	0.8
7	0.9
8	1.0
9	1.1
10	1.2
default	0.2

Register 0x23

-0										
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default	
HD Z TH<2:0>		HD X TH<2:0>	•		RAISE WAKE DIFF TH<3:2>		RW	0x7C		

HD Z TH<2:0>: hand down z threshold, 0~7 HD X TH<2:0>: hand down x threshold, 0~7

RAISE_WAKE_DIFF_TH<3:2>: Threshold = $0 \sim 31.5$ (LSB 0.5)

Register 0x24

The information contained herein is the exclusive property of QST, and shall not be distributed,	33 / 37
reproduced, or disclosed in whole or in part without prior written permission of QST.	

13-52-20

Title: QMA6100P Preliminary Datasheet

Rev: A1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
RAISE_WAKE_T	RAISE WAKE TIMEOUT TH<7:0>						RW	0x00	

RAISE_WAKE_TIMEOUT_TH<7:0>: Raise_wake_timeout_th[11:0] * ODR period = timeout count

Register 0x25

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
RAISE_WAKE_F	RAISE WAKE PERIOD<7:0>						RW	0x00	

RAISE_WAKE_PERIOD<7:0>: Raise_wake_period[10:0] * ODR period = wake count

Register 0x26

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
RAISE_MODE	RAISE_WAKE_	RAISE_WAKE_PERIOD<10:8>			TIMEOUT_TH<11	:8>		RW	0x02

RAISE_MODE: 0:raise wake function, 1:ear-in function

RAISE_WAKE_PERIOD<10:8>: Raise_wake_period[10:0] * ODR period = wake count RAISE WAKE TIMEOUT TH<11:8>: Raise wake timeout th[11:0] * ODR period = timeout count

Register 0x27 (OS CUST X)

-0	· · · <u> </u>								
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
OS CUST X<	7:0>							RW	0x00

OS CUST X<7:0>: offset calibration of X axis for user, the LSB depends on full-scale of the device which is 3.9mg in 2g range,

7.8mg in 4g range, 15.6mg in 8g range, 31.2mg in 16g, and 62.5mg in 32g

Register 0x28 (OS CUST Y)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
OS CUST Y<								RW	0x00

OS_CUST_Y<7:0>: offset calibration of Y axis for user, the LSB depends on full-scale of the device which is 3.9mg in 2g range, 7.8 mg in 4 g range, 15.6 mg in 8 g range, 31.2 mg in 16 g, and 62.5 mg in 32 g

Register 0x29 (OS_CUST_Z)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
OS CUST Z<	7:0>							RW	0x00

OS_CUST_Z<7:0>: offset calibration of Z axis for user, the LSB depends on full-scale of the device which is 3.9mg in 2g range,

7.8mg in 4g range, 15.6mg in 8g range, 31.2mg in 16g, and 62.5mg in 32g

Register 0x2a (RAISE_WAKE_SUM_TH RAISE_WAKE_DIFF_TH)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
TAP_QUIET	TAP_SHOC	TAP_DELA	TAP_EARIN		TAP_DUR<2:0>		RW	0x05	
	К	Υ							

TAP_QUIET: 1: Tap quiet time = 30ms 0: Tap quiet time = 20ms TAP_SHOCK: 1: Tap shock time = 50ms 0: Tap shock time = 75ms

TAP_DELAY_Y: 0: Triple tap interrupt would not wait for quadruple tap result.

1: Triple tap interrupt would wait for quadruple tap result.

If quadruple tap is not toggle, triple tap would toggle after tap duration time finish.

TAP_EARIN: 1: Tap enable would be related with EARIN_FLAG (reg 0x0B<1>).

If EARIN_FLAG is low, tap detection will be disabled.

If EARIN_FLAG is high, tap detection is enabled by reg 0x16.

0: Tap detection is enabled by reg 0x16.

TAP_DUR<2:0>: Tap duration time selection

000: 100mS 001: 150mS 010: 200mS 011: 250mS 100: 300mS 101: 400mS 110: 500mS 111: 700mS

Register 0x2b (RAISE WAKE DIFF TH HD X TH HD Z TH)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
TAP_IN_SEL<	:1:0>	TAP_SHOCK_	TH<5:0>	1	•		•	RW	0xCD

TAP_IN_SEL<1:0>: Tap Detector Input Selection

reproduced, or disclosed in whole or in part without prior written permission of QST.	The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	34 / 37
---	--	---------

Document #: 13-52-20

Title: QMA6100P Preliminary Datasheet

Rev: A1

0 : X-axis 1 : Y-axis 2 : Z-axis

3: (X^2 + Y^2 + Z^2)^0.5

TAP_SHOCK_TH: Tap shock threshold selection, LSB of TAP_SHOCK_TH<5:0> is 31.25mg in all full scale.

Register 0x2c (MOT_CONF0)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
NO_MOT_D	NO MOT DUR<5:0>					ANY_MOT_D	UR<1:0>	RW	0x00

NO_MOT_DUR<5:0>: no motion interrupt will be triggered when slope < NO_MOT_TH for the times which defined by NO_MOT_DUR<5:0>

Duration = (NO_MOT_DUR<3:0> + 1) * 1s, if NO_MOT_DUR<5:4> =b00
Duration = (NO_MOT_DUR<3:0> + 4) * 5s, if NO_MOT_DUR<5:4> =b01
Duration = (NO_MOT_DUR<3:0> + 10) * 10s, if NO_MOT_DUR<5:4> =b1x

ANY_MOT_DUR<1:0>: any motion interrupt will be triggered when slope > ANY_MOT_TH for (ANY_MOT_DUR<1:0> + 1) samples

Register 0x2d (MOT CONF1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
NO_MOT_TH	I<7:0>							RW	0x00

NO_MOT_TH<7:0>: Th

Threshold of no-motion interrupt. The threshold definition is as following

TH= NO_MOT_TH<7:0> * 16 * LSB

Register 0x2e (MOT CONF2)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
ANY MO	T TH<7:0>							RW	0x00

ANY_MOT_TH<7:0>:

Threshold of any motion interrupt. The threshold definition is as following

ANY_MOT_IN_SEL = 0 : Threshold = ANY_MOT_TH<7:0> * 16LSB ANY_MOT_IN_SEL = 1 : Threshold = ANY_MOT_TH<7:0> * 32LSB

ANT_MOT_IN_SEL is 0x2F<6>.

Register 0x2f (MOT_CONF3)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
RFF_BP_LP	ANY_MOT	SIG_MOT_TP	ROOF<1:0>	SIG_MOT_TS	KIP<1:0>		SIG_MOT_	RW	0x00
F	_IN_SEL						SEL		

RFF_BP_LP: 1: Data of register acceleration XYZ (0x01 ~ 0x06) and FIFO (0x3F) would bypass LPF.

0: Data of register file acceleration XYZ (0x01 ~ 0x06) and FIFO (0x3F) would be filtered by LPF.

ANY_MOT_IN_SEL:

0: Any-motion Input is Slope.

1: Any-motion Input is Acceleration, it could detect high-g.

SIG_MOT_TPROOF<1:0>:

SIG_MOT_TSKIP<1:0>:

00, T_PROOF=0.25s 01, T_PROOF=0.5s 10, T_PROOF=1s 11, T_PROOF=2s 00, T_SKIP=1.5s 01, T_SKIP=3s

10, T_SKIP=3s 10, T_SKIP=6s 11, T_SKIP=12s

SIG_MOT_SEL: 1, select significant motion interrupt

0, select any motion interrupt

Register 0x30

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
MO_BP_LP	STEP_BP_L	TAP_RST_			NO_MOT_	SIG_MOT_	ANY_MOT	RW	0x1F
F	PF	N			RST_N	RST_N	_RST_N		

MO_BP_LPF: 1: Input of any motion, sig motion and no motion would bypass LPF.

0: Input of any motion, significant motion and no motion would be filtered by LPF.

STEP_BP_LPF: 1: Input of step counter, raise wake, and tap detector would bypass LPF.

0: Input of step counter, raise wake, and tap detector would be filtered by LPF. TAP_RST_N: 0, Reset tap detector. After reset, user should write 1 back.

NO MOT RST N: 0, Reset no motion detector. After reset, user should write 1 back.

SIG_MOT_RST_N: 0, Reset significant motion detector. After reset, user should write 1 back.

 ${\bf ANY_MOT_RST_N: 0, Reset\ any\ motion\ detector.\ After\ reset,\ user\ should\ write\ 1\ back.}$

Register 0x31

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
								•	
FIFO WTMK	LVL<7:0>								0x00

FIFO_WTMK_LVL<7:0>: defines FIFO water mark level. Interrupt will be generated, when the number of entries in the FIFO exceeds FIFO_WTMK_LVL<7:0>.

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

13-52-20 Title: QMA6100P Preliminary Datasheet

Rev: A1

When the value of this register is changed, the FIFO_FRAME_COUNTER in 0x0E is reset to 0.

Register 0x32 (ST)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
SELFTEST_					SELFTEST_	STEP_BP_AXI	S<1:0>	RW	0x00
BIT					SIGN				

SELFTEST_BIT:

1, self-test enabled. When self-test enabled, a delay of 3ms is necessary for the value settling.

SELFTEST_SIGN:

1, set self-test excitation positive 0, set self-test excitation negative

STEP_BP_AXIS<1:0>:

11, bypass Z axis, use only X and Y axes data for step counter algorithm 10, bypass Y axis, use only X and Z axes data for step counter algorithm 01, bypass X axis, use only Y and Z axes data for step counter algorithm

00, use all of 3 axes data for step counter algorithm

Register 0x34 (Y TH YZ TH SEL)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
YZ_TH_SEL<2	2:0>		Y_TH<4:0>	/_TH<4:0>				RW	0x9D

Y_TH: -16 ~ 15 (m/s2)

YZ_TH_SEL<2:0>	UNIT (m/s2)
0	7.0
1	7.5
2	8.0
3	8.5
4	9.0
5	9.5
6	10.0
7	10.5

Register 0x35 (RAISE WAKE PERIOD)

ĺ	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	Z TH<3:0>		X TH<3:0>				RW	0x66		

X_TH[3:0]: 0 ~ 7.5 Z_TH[3:0]:-8~7

Register 0x36 (SR)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
SOFT_RESET								RW	0x00

SOFT_RESET: 0xB6, soft reset all of the registers. After soft-reset, user should write 0x00 back

Register 0x3e (FIFO_CFG0)

 -8.212. 21.22	· · · · - <u>-</u> - · · · · · ,								
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
FIFO_MODE<	:1:0>	RAISE_XYZ_SW<2:0>		FIFO_EN_Z	FIFO_EN_Y	FIFO_EN_X	RW	0x07	

FIFO MODE<1:0>: FIFO MODE<1:0>: FIFO MODE defines FIFO mode of the device. Settings as following

FIFO_MODE<1:0>	MODE
11	FIFO
10	STREAM
01	FIFO
00	BYPASS

RAISE XYZ SW<2:0> is x/y/z axis switcher, default setting is "0: XYZ" and below is the detail configuration. Both raise wake and ear in/out can use this function

NAISE_NTZ_SVV\Z.U> is x/y/Z axis switche	i, default setting is 0. ATZ and below is t	ne detail configuration. Both raise wake a	nu ear infout can use this function.
0x3E[5:3]	X	Υ	Z
0	X	Υ	Z
1	X	Z	Υ
2	Υ	X	Z
3	Υ	Z	X
4	Z	X	Υ
5	Z	Υ	X
6	X	Υ	Z
7	X	Υ	Z

0x3E[2:0]: User can select the acceleration data of which axis to be stored in the FIFO. This configuration can be done by setting FIFO_CH, where '111b' for x-, y-, and z-axis, '001b' for x-axis only, '010b' for y-axis only, '100b' for z-axis only.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	36 / 37
	1

13-52-20 **Title:** QMA6100P Preliminary Datasheet

Rev: A1

Register 0x3f (FIFO_DATA)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
FIFO_DATA<7:0>						R	0x00		

FIFO_DATA<7:0>: FIFO read out data. User can read out FIFO data through this register. Data format depends on the setting of FIFO_CH (0x3e<2:0>). When the FIFO data is the LSB part of acceleration data, and if FIFO is empty, then FIFO_DATA<0> is 0. Otherwise if FIFO is not empty and the data is effective, FIFO DATA<0> is 1 when reading LSB of acceleration.

ORDERING INFORMATION

Ordering Number	Temperature Range	Package	Packaging
QMA6100P	-40°C~85°C	LGA-12	Tape and Reel: 5k pieces/reel

Caution

This part is sensitive to damage by electrostatic discharge. Use ESD precautionary procedures when touching, removing or inserting.

CAUTION: ESDS CAT. 1B

For more information on QST's Accelerometer Sensors contact us at 86-21-69517300.

The application circuits herein constitute typical usage and interface of QST product. QST does not provide warranty or assume liability of customer-designed circuits derived from this description or depiction.

QST reserves the right to make changes to improve reliability, function or design. QST does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

ISO9001: 2015

China Patents 201510000399.8, 201510000425.7, 201310426346.3, 201310426677.7, 201310426729.0, 201210585811.3 and 201210553014.7 apply to the technology described.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

37 / 37