WALLABY Pilot Survey Data Release 1: Description of Kinematic Parameters and Data Products

Nathan Deg¹*

¹Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, ON, K7L 3N6, Canada

November 11, 2022

1 Overview

This document describes the kinematic model parameters and data products that are contained in the first WALLABY Pilot Data Release (PDR1). A full description of the sources is found in the (Westmeier et al. 2022) and a more complete description of the kinematic modelling is found in (Deg et al. 2022)

2 Kinematic Model Parameters

The kinematic models are generated through the WALLABY Kinematic Analysis Proto-Pipeline (WKAPP). This pipeline utilizes the 3D kinematic modelling codes FAT¹ (Fully Automated TiRiFiC) and 3DBAROLO² (3D-Based Analysis of Rotating Objects From Line Observations) as well as MCG-Suite³ (Mock Cube Generator Suite) to fit the observed cubes and construct an average model.

In brief, sources in WALLABY PDR1 are modelled using both FAT and 3DBAROLO. The two fits are visually inspected and, if both are of sufficient quality, WKAPP constructs an optimized model by averaging the two fits and producing model data products using MCGSuite.

2.1 List of Kinematic Model Parameters

A full list of the kinematic model specific parameters is contained in Table 1. These are not the complete set of parameters contained in the kinematic model catalogue. The extra set of parameters are from the source catalogue and allow for cross-matching between the two sets of parameters.

Going through the additional parameters that appear in the catalogue:

- name The official WALLABY source name, which is the form "WALLABY Jhhmmss±ddmmss" in accordance with the official IAU naming scheme.
- ra and dec The right ascension and declination in degrees from the source catalogue.
- freq The central frequency of the galaxy in Hz from the source catalogue.
- team_release The name of a set of sources from each source finding run.
- team_release_kin The name of a set of kinematic models corresponding to the sources found in the run.

^{*}E-mail: nathan.deg@queensu.ca

¹Kamphuis et al. 2015

²Di Teodora et al. 2015

³Spekkens et al., in prep

Name	Type	Unit	Description
X_model	double	px	x-coordinate of the kinematic center [†]
e_X_model	double	px	Uncertainty in X_model [†]
Y_model	double	px	y-coordinate of the kinematic center. [†]
e_Y_model	double	px	Uncertainty in Y_model [†]
RA_model	double	deg	Right ascension (J2000) of the kinematic center
e_RA_model	double	deg	Uncertainty in RA_model [†]
DEC_model	double	deg	Declination (J2000) of the kinematic center
e_DEC_model	double	deg	Uncertainty in DEC_model [†]
Vsys_model	double	$\rm km~s^{-1}$	Heliocentric systemic velocity
e_Vsys_model	double	$\rm km~s^{-1}$	Uncertainty in Vsys_model
Inc_model	double	deg	Inclination
e_Inc_model	double	deg	Uncertainty in Inc_model
PA_model	double	deg	Position angle in pixel coordinates
			(counterclockwise from $x=0$) [†]
e_PA_model	double	deg	Uncertainty in PA_model [†]
PA_model_g	double	deg	Position angle in equatorial coordinates (East of North)
e_PA_model_g	double	deg	Uncertainty in PA_model_g
Rad	double	arcsec	Radial grid for Vrot_model
	array		<u> </u>
	array		
Vrot_model	double	$\rm km~s^{-1}$	Rotation curve
	array		
e_Vrot_model	double	$\rm km~s^{-1}$	Uncertainty in Vrot_model from the averaging
	array		process
e_Vrot_model_	inadouble	$\rm km~s^{-1}$	Uncertainty in Vrot_model due to e_Inc_model
	array		
Rad_SD	double	arcsec	Radial grid for SD_model and SD_FO_model
	array		
SD_model	double	$ m M_{\odot} m pc^{-2}$	Projected surface density profile
	array	$ m pc^{-2}$	
e_SD_model	double	${ m M}_{\odot}$	Uncertainty in SD_model
	array	pc^{-2}	
SD_FO_model	double	${ m M}_{\odot}$	Deprojected surface density profile using a
	array	$ m pc^{-2}$	$\cos({ t Inc_model})$ correction
e_SD_FO_model	_in d ouble	M_{\odot}	The uncertainty in SD_FO_model due to
	array	pc^{-2}	e_Inc_model
QFlag_model	integer		Kinematic model quality flag

[†] In pixel coordinates relative to the preprocessed cubelet, which starts from the point (1,1).

Table 1: WKAPP model parameters.

File suffix	Type	Description
_AvgMod.txt	ascii file	Model parameters
_DiagnosticPlot.png	PNG file	Model summary plot
_ProcData.fits	FITS cube	Pre-processed cubelet
_ModCube.fits	FITS cube	Model realization with pre-processed
		cubelet properties
_DiffCube.fits	FITS cube	Data - model cube with pre-processed
		cubelet properties
_ModRotCurve.fits	FITS binary	Table containing the model rotation curve
	table	parameters
_ModSurfDens.fits	FITS binary	Table containing the model surface density
	table	parameters
_ModGeo.fits	FITS binary	Table containing the model geometry
	table	parameters
_FullResProcData.fits	FITS cube	Full spectral resolution cubelet with
		velocity units
_FullResModelCube.fit	s FITS cube	Model realization with full resolution
		cubelet properties
_FATInput.txt	ascii file	The input file of the FAT run
_FATMod.txt	ascii file	The results of the FAT run
_BaroloInput.txt	ascii file	The input file of the 3DBAROLO run
_BaroloMod.txt	ascii file	The geometry and rotation curve results of
		the 3DBAROLO run
_BaroloSurfDens.txt	ascii file	The surface density results of the
		3DBarolo run

Table 2: WKAPP data products available for each successfullly modelled PDR1 source.

3 Kinematic Model Data Products

There are a number of data products that may be downloaded for each kinematic model. These are available on both CASDA and CADC. Table 2 lists the various data products. It should be noted that only FITS format products are currently available from CASDA.