STA 4320 CHAP 6.1.2, 6.1.3

Prof. He Jiang

```
require(ISLR2) # Hitters dataset

## Loading required package: ISLR2
require(leaps) # subset selection

## Loading required package: leaps
```

Hitters dataset and NA terms

The Hitters dataset consists of Major League Baseball data from the 1986 and 1987 seasons.

We remove the NA terms.

```
dat = na.omit(Hitters)
any(is.na(dat))
```

[1] FALSE

6.1.2 Stepwise selection

Forward stepwise selection.

```
# regsubsets is from the leaps package
regfit_fwd = regsubsets(Salary ~ ., data = dat, nvmax = 19, method = "forward")
summary(regfit_fwd)
## Subset selection object
## Call: regsubsets.formula(Salary ~ ., data = dat, nvmax = 19, method = "forward")
## 19 Variables (and intercept)
##
              Forced in Forced out
                  FALSE
## AtBat
                             FALSE
## Hits
                  FALSE
                             FALSE
## HmRun
                  FALSE
                             FALSE
## Runs
                             FALSE
                  FALSE
## RBI
                  FALSE
                             FALSE
## Walks
                  FALSE
                             FALSE
## Years
                  FALSE
                             FALSE
## CAtBat
                  FALSE
                             FALSE
                  FALSE
## CHits
                             FALSE
## CHmRun
                  FALSE
                             FALSE
## CRuns
                  FALSE
                             FALSE
## CRBI
                  FALSE
                             FALSE
## CWalks
                  FALSE
                             FALSE
## LeagueN
                  FALSE
                             FALSE
## DivisionW
                             FALSE
                  FALSE
```

```
## PutOuts
                      FALSE
                                    FALSE
## Assists
                      FALSE
                                    FALSE
## Errors
                      FALSE
                                    FALSE
                                    FALSE
## NewLeagueN
                      FALSE
## 1 subsets of each size up to 19
## Selection Algorithm: forward
                AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits CHmRun CRuns CRBI
       (1)
                                                                                                "*"
## 1
                                            11 11
                                                                                11 11
                                                                                         11 11
##
   2
       (1)
                       "*"
                              11 11
                                     11 11
                                                        11 11
                                                               11 11
                                                                                                "*"
                                              11
                                                                                         11 11
## 3
       (1)
                       "*"
                                                                                                "*"
                              11 11
                                     11 11
                                                        11 11
                                                                                11
                                                                                         11 11
                                                                                                "*"
## 4
       (1)
                11 11
                       "*"
                                                11
                                                                                         .. ..
## 5
                "*"
                       "*"
                                                                                                "*"
       (1)
                                                                                11 11
                "*"
                       "*"
                              11 11
                                     11 11
                                              11
                                                        11 11
                                                                  11
                                                                        11 11
                                                                                         11 11
                                                                                                "*"
## 6
       (1
            )
                       "*"
                                                                                                "*"
                "*"
## 7
       ( 1
            )
## 8
       (1)
                       "*"
                              11 11
                                     11 11
                                                        . .
                                                                        11 11
                                                                                                "*"
                "*"
                                                               11 🕌 11
                                                                                         "*"
                                                                                                "*"
## 9
       (1
            )
## 10
        (1)
                "*"
                       "*"
                              11 11
                                     11 11
                                              "
                                                                        11 11
                                                                                11 11
                                                                                         "*"
                                                                                                "*"
                       "*"
                              11 11
                                     11 11
                                              11
                                                        11 11
                                                                        11 11
                                                                                11 11
                                                                                         "*"
                                                                                                "*"
                "*"
                                                               اليواا
##
   11
        ( 1
             )
                       "*"
                              11 11
                                     "*"
                                              11
                                                        11 11
                                                               "*"
                                                                        11 11
                                                                                11 11
                                                                                         "*"
                                                                                                "*"
## 12
        (1)
                "*"
                                     "*"
                                                                                11 11
                              11 11
                                              11
                                                        11 11
                                                                        11 11
                                                                                         "*"
                                                                                                "*"
                "*"
                       11 * 11
                                                               11 * 11
## 13
        ( 1
             )
                       "*"
                              "*"
                                     "*"
                                              11
                                                        11 11
                                                                        11 11
                                                                                11 11
                                                                                         "*"
                                                                                                "*"
##
   14
        ( 1
             )
                "*"
## 15
        (1)
                "*"
                       "*"
                              "*"
                                     "*"
                                                        11 11
                                                               11 * 11
                                                                        11 * 11
                                                                                11 11
                                                                                         11 * 11
                                                                                                "*"
        ( 1
                "*"
                        "*"
                              "*"
                                     "*"
                                                                "*"
                                                                        "*"
                                                                                         "*"
                                                                                                "*"
## 16
             )
                                                                                11 11
                                                                                         "*"
## 17
        (1
             )
                "*"
                       "*"
                              "*"
                                     "*"
                                                                "*"
                                                                        "*"
                                                                                                "*"
                                                        "*"
               "*"
                       "*"
                              "*"
                                     "*"
                                            "*"
                                                               "*"
                                                                        "*"
                                                                                         "*"
                                                                                                "*"
## 18
        (1)
   19
        (1)
               "*"
                       "*"
                              "*"
                                     "*"
                                            "*" "*"
                                                        "*"
                                                               "*"
                                                                        "*"
                                                                                "*"
                                                                                                "*"
##
                CWalks LeagueN DivisionW PutOuts Assists Errors NewLeagueN
                11 11
                         11 11
                                   11 11
                                               11 11
                                                         11 11
                                                                   11 11
                                                                            11 11
## 1
       (1)
                         11 11
                                   11 11
                                               11 11
                                                         .. ..
                                                                            "
## 2
       (1)
                                   11 11
                                                         11 11
                11 11
                         11 11
                                               "*"
                                                                   11
## 3
       ( 1
                                   "*"
                                               "*"
## 4
       (1
            )
                                                         11 11
## 5
       (1
            )
                11 11
                         11 11
                                   "*"
                                               "*"
## 6
                ......
                                   "*"
                                               11 🕌 11
       (1)
                "*"
                         11 11
                                   "*"
                                               "*"
                                                         .. ..
## 7
       (1)
                         11 11
                                                         11 11
                                   11 🕌 11
                                               11 🕌 11
                "*"
## 8
       ( 1
            )
                         11 11
                                   "*"
                                               "*"
                                                         11 11
                                                                            11 11
## 9
       (1)
                         11 11
                                   11 * 11
                                                         11 * 11
## 10
        (1)
               "*"
                                               "*"
                         "*"
## 11
        (1)
                "*"
                                   "*"
                                               "*"
                                                         "*"
                "*"
                         11 * 11
                                   "*"
                                               11 * 11
                                                         11 * 11
                                                                            11 11
## 12
        (
          1
             )
                                   "*"
        (1)
               "*"
                         "*"
                                               "*"
                                                         "*"
## 13
                                   "*"
                                                                            11 11
## 14
        (1)
               "*"
                         "*"
                                               "*"
                                                         "*"
                         "*"
                                   "*"
                                               "*"
                                                         "*"
                                                                   "*"
## 15
        (1)
               "*"
##
   16
             )
                         "*"
                                   "*"
                                               "*"
                                                         "*"
                                                                            11 11
        ( 1
## 17
                "*"
                         "*"
                                               "*"
                                                         "*"
        ( 1
             )
                                   "*"
                                               "*"
        (1)"*"
                         "*"
                                                         "*"
                                                                   "*"
                                                                            "*"
## 18
        (1)"*"
                         "*"
                                   "*"
                                               "*"
                                                         "*"
                                                                   "*"
                                                                            "*"
## 19
Backward stepwise selection.
regfit_bwd = regsubsets(Salary ~ ., data = dat, nvmax = 19, method = "backward")
summary(regfit_bwd)
## Subset selection object
## Call: regsubsets.formula(Salary ~ ., data = dat, nvmax = 19, method = "backward")
## 19 Variables (and intercept)
```

```
## AtBat
                      FALSE
                                   FALSE
                                   FALSE
## Hits
                      FALSE
## HmRun
                      FALSE
                                   FALSE
## Runs
                      FALSE
                                   FALSE
## RBI
                      FALSE
                                   FALSE
## Walks
                      FALSE
                                   FALSE
## Years
                      FALSE
                                   FALSE
## CAtBat
                      FALSE
                                   FALSE
## CHits
                      FALSE
                                   FALSE
## CHmRun
                      FALSE
                                   FALSE
## CRuns
                      FALSE
                                   FALSE
## CRBI
                                   FALSE
                      FALSE
## CWalks
                      FALSE
                                   FALSE
## LeagueN
                      FALSE
                                   FALSE
## DivisionW
                      FALSE
                                   FALSE
## PutOuts
                      FALSE
                                   FALSE
## Assists
                      FALSE
                                   FALSE
## Errors
                      FALSE
                                   FALSE
## NewLeagueN
                      FALSE
                                   FALSE
## 1 subsets of each size up to 19
## Selection Algorithm: backward
##
                AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits CHmRun CRuns CRBI
                                                       11 11
                                                                              11 11
                                                                                              .. ..
                             11 11
                                    11 11
                                           11 11 11 11
                                                              11 11
                                                                       11 11
                                                                                       "*"
## 1
      (1)
                       "*"
## 2 (1)
                                                                                       "*"
                                                                                               11 11
                                               11
                                                                               11 11
                                                                                       "*"
## 3
      (1)
               11 11
                                                                                       "*"
## 4
      (1)
                "*"
                       "*"
                                                                                       "*"
## 5
       ( 1
           )
                "*"
                       "*"
                             11 11
                                     11 11
                                             11 11 411
                                                       . .
                                                                               11 11
                                                                                               .. ..
                "*"
                                                                                       "*"
                                                                                               .. ..
## 6
      (1)
                             11 11
                                     11 11
                                                       . .
                                                                                               .. ..
      (1)
                       "*"
                                                                                       "*"
                                                                                               "*"
      (1)
                "*"
## 8
                                     11 11
                                                                       11 11
                                                                               11 11
## 9
       (1
           )
                "*"
                       "*"
                             11 11
                                           11 11
                                                       11 11
                                                              "*"
                                                                                       "*"
                                                                                               "*"
## 10
               "*"
                       "*"
                                                              "*"
                                                                                       "*"
                                                                                               "*"
        (1)
               "*"
                             11 11
                                     11 11
                                           اايداا اا اا
                                                       . .
                                                                       .. ..
                                                                               .. ..
                                                                                               "*"
## 11
        (1)
                                                       11 11
                                                                                       "*"
                                                                                               "*"
                       "*"
                                     11 4 11
                                                              11 🕌 11
        (1)
               "*"
## 12
                "*"
                       "*"
                             11 11
                                     "*"
                                           11
                                             11 11 11 11
                                                       11 11
                                                              "*"
                                                                       11 11
                                                                               11 11
                                                                                       "*"
                                                                                               "*"
## 13
        (1)
                                                       11 11
                                     11 * 11
                                                              11 * 11
                                                                                       11 * 11
                                                                                               11 * 11
## 14
        (1)
               "*"
                             11 * 11
## 15
        (1)
               "*"
                             "*"
                                     "*"
                                                       11 11
                                                               "*"
                                                                                       "*"
                                                                                               "*"
                "*"
                             11 * 11
                                     11 * 11
                                                       .. ..
                                                              11 * 11
                                                                       11 * 11
                                                                                       "*"
                                                                                               "*"
## 16
        (1)
                             "*"
                                     "*"
                                                               "*"
                                                                                       "*"
                                                                                               "*"
## 17
        (1)
               "*"
                                           "*" "*"
                       "*"
                             "*"
                                     "*"
                                                       || *||
                                                              11 * 11
                                                                       11 * 11
                                                                               11 11
                                                                                       "*"
                                                                                               "*"
## 18
        (1) "*"
        (1)"*"
                                     "*"
                                           "*" "*"
                       "*"
                             "*"
                                                       "*"
                                                              "*"
                                                                       "*"
                                                                               "*"
                                                                                       "*"
                                                                                               "*"
##
   19
               CWalks LeagueN DivisionW PutOuts Assists Errors NewLeagueN
## 1
                                              11 11
                                                        11 11
      (1)
                11 11
                        11 11
                                              11 11
                                                        11 11
                                                                  11
## 2
      (1)
                                               "*"
       (1)
## 3
                                  .. ..
                                                        .. ..
                        11 11
                                              "*"
## 4
       (1
           )
## 5
                                              "*"
      (1)
               11 11
                        11 11
                                  "*"
                                              "*"
## 6
      (1)
                                  "*"
                                               "*"
## 7
       (1)
                "*"
                                                        .. ..
                        11 11
                                  "*"
                                               "*"
## 8
      (1
            )
                                  "*"
                                              "*"
                11 * 11
## 9
       (1)
                        11 11
                                  "*"
                                               "*"
                                                                           11 11
## 10
       (1)
                                  "*"
                                              "*"
                                                        "*"
## 11 ( 1 ) "*"
                        11 * 11
```

Forced in Forced out

##

```
"*"
                              11 🕌 11
                                          11 4 11
                                                  "*"
                                                           11 11
## 12
       (1)"*"
                      "*"
                              "*"
                                          "*"
                                                  "*"
## 13
       (1)
             "*"
                      "*"
                              "*"
                                         "*"
                                                  "*"
## 14
           )
             "*"
              "*"
                      "*"
                               "*"
                                          "*"
                                                  "*"
## 15
       (1
                               11 * 11
                                          11 * 11
                                                  11 * 11
## 16
                      11 * 11
## 17
              "*"
                                                  "*"
## 18
                      "*"
                               "*"
                                          "*"
                                                  "*"
## 19
                      "*"
                               "*"
                                          "*"
                                                  "*"
       (1)
              "*"
                                                           "*"
Best subset selection (as reference).
regfit_best = regsubsets(Salary ~ ., data = dat, nvmax = 19)
Compare a 7 component model for forward, backward stepwise selection, and best subset selection.
coef(regfit_best, 7)
##
    (Intercept)
                          Hits
                                       Walks
                                                    CAtBat
                                                                    CHits
                                                                                 CHmRun
                                   3.2274264
##
     79.4509472
                    1.2833513
                                                -0.3752350
                                                               1.4957073
                                                                              1.4420538
##
      DivisionW
                       PutOuts
## -129.9866432
                    0.2366813
coef(regfit_fwd, 7)
##
    (Intercept)
                         AtBat
                                        Hits
                                                     Walks
                                                                     CRBI
                                                                                 CWalks
                                                                             -0.3053070
##
    109.7873062
                   -1.9588851
                                   7.4498772
                                                 4.9131401
                                                               0.8537622
##
      DivisionW
                       PutOuts
## -127.1223928
                    0.2533404
coef(regfit_bwd, 7)
##
    (Intercept)
                                                     Walks
                                                                    CRuns
                                                                                 CWalks
                         AtBat
                                        Hits
    105.6487488
                                   6.7574914
                                                 6.0558691
                                                               1.1293095
##
                   -1.9762838
                                                                             -0.7163346
##
      DivisionW
                       PutOuts
## -116.1692169
                    0.3028847
Selecting the resulting model based on a criteria (here BIC).
num_bic_fwd = which.min( summary(regfit_fwd)$bic )
num_bic_bwd = which.min( summary(regfit_bwd)$bic )
num_bic_best = which.min( summary(regfit_best)$bic )
paste("Forward stepwise selection: ", num_bic_fwd)
## [1] "Forward stepwise selection: 6"
paste("Back stepwise selection: ", num_bic_bwd)
## [1] "Back stepwise selection: 8"
paste("Best subset selection: ", num_bic_best)
## [1] "Best subset selection: 6"
In addition, we have the model selection plots.
\#par(mfrow = c(1, 2))
plot(regfit_fwd, scale = "bic")
```


The coefficients should represent the same variables as the best row in the previous pictures.

coef(regfit_fwd, num_bic_fwd) ## (Intercept) AtBat Hits Walks CRBI DivisionW ## 91.5117981 -1.8685892 7.6043976 3.6976468 0.6430169 -122.9515338 ## PutOuts 0.2643076 coef(regfit_bwd, num_bic_bwd) CRBI ## (Intercept) AtBat Hits Walks **CRuns** ## 117.1520434 -2.0339209 6.8549136 6.4406642 0.7045391 0.5273238 ## **CWalks** DivisionW PutOuts ## -0.8066062 -123.7798366 0.2753892

As before, we can also see the plots (using adjusted R2 as an example).

Forward stepwise selection

As before, we can also see the plots (using adjusted R2 as an example).

Backward stepwise selection

the above plot is slightly different than the forward stepwise one.

Validation set approach

Separation of the entire data into two parts

```
set.seed(1)
train = sample(c(TRUE, FALSE), nrow(dat), replace = TRUE)
test = (!train)
```

Note

Apply the regsubsets command to the training set

```
regfit_best = regsubsets(Salary ~ ., data = dat[train, ], nvmax = 19)
```

There is no "predict" command to regsubsets, so we have to write the functions by hand.

```
test_mat = model.matrix(Salary ~ ., data = dat[test, ])
head(test_mat)
```

```
##
                       (Intercept) AtBat Hits HmRun Runs RBI Walks Years CAtBat
## -Alvin Davis
                                      479
                                            130
                                                    18
                                                         66
                                                              72
                                                                     76
                                                                            3
                                                                                 1624
                                  1
## -Alfredo Griffin
                                      594
                                            169
                                                     4
                                                         74
                                                                     35
                                                                                 4408
                                  1
                                                              51
                                                                           11
## -Andre Thornton
                                  1
                                      401
                                             92
                                                    17
                                                         49
                                                              66
                                                                     65
                                                                           13
                                                                                 5206
## -Alan Trammell
                                  1
                                      574
                                            159
                                                    21
                                                        107
                                                              75
                                                                     59
                                                                           10
                                                                                 4631
                                                     2
## -Buddy Biancalana
                                  1
                                      190
                                             46
                                                         24
                                                               8
                                                                     15
                                                                            5
                                                                                  479
## -Bruce Bochy
                                  1
                                      127
                                             32
                                                     8
                                                         16
                                                              22
                                                                     14
                                                                            8
                                                                                  727
##
                       CHits CHmRun CRuns CRBI CWalks LeagueN DivisionW PutOuts
                         457
                                                                0
## -Alvin Davis
                                  63
                                        224
                                             266
                                                     263
                                                                           1
                                                                                  880
## -Alfredo Griffin
                        1133
                                  19
                                        501
                                             336
                                                     194
                                                                0
                                                                           1
                                                                                  282
## -Andre Thornton
                                 253
                                        784
                                             890
                                                     866
                                                                0
                                                                           0
                                                                                    0
                        1332
## -Alan Trammell
                        1300
                                  90
                                        702
                                             504
                                                     488
                                                                0
                                                                           0
                                                                                  238
                                                                0
                                                                                  102
## -Buddy Biancalana
                         102
                                   5
                                         65
                                              23
                                                      39
                                                                           1
```

```
## -Bruce Bochy
                        180
                                 24
                                        67
                                                     56
                                                                         1
                                                                                202
##
                      Assists Errors NewLeagueN
## -Alvin Davis
                           82
                                   14
                                                0
## -Alfredo Griffin
                          421
                                   25
## -Andre Thornton
                            0
                                    0
                                                0
## -Alan Trammell
                                   22
                                                0
                           445
## -Buddy Biancalana
                                                0
                           177
                                   16
                                    2
## -Bruce Bochy
                            22
                                                1
```

Compute the validation errors for best subset selection.

```
p = ncol(test_mat) - 1
val_errors = numeric(p)

for (i in 1:p){
   coef_i = coef(regfit_best, id = i)
   pred = test_mat[, names(coef_i)] %*% coef_i
   val_errors[i] = mean( (dat$Salary[test] - pred)^2 )
}
```

To avoid having to retype all of the above, the textbook provided a function. This function returns the predicted values.

```
predict.regsubsets = function(object, newdata, id){
  form = as.formula(object$call[[2]])
  mat = model.matrix(form, newdata)
  coef_i = coef(object, id = id)
  xvars = names(coef_i)
  return(mat[, xvars] %*% coef_i)
}
```

The model with the lowest best subset selection validation error.

```
val_errors
```

```
## [1] 164377.3 144405.5 152175.7 145198.4 137902.1 139175.7 126849.0 136191.4

## [9] 132889.6 135434.9 136963.3 140694.9 140690.9 141951.2 141508.2 142164.4

## [17] 141767.4 142339.6 142238.2

which.min(val_errors)
```

[1] 7

```
# We can see the best 7 component model on the training set.
coef(regfit_best, 7)
```

```
##
    (Intercept)
                        AtBat
                                       Hits
                                                     Walks
                                                                   CRuns
                                                                                CWalks
                   -2.1462987
                                  7.0149547
                                                8.0716640
                                                              1.2425113
                                                                           -0.8337844
##
     67.1085369
                      PutOuts
      DivisionW
## -118.4364998
                    0.2526925
```

Now we determined that the "best" model from best subset selection is a 7 component model, we next select the 7 component model based on the full data set.

Note that the 7 variables from the entire dataset is different to the 7 variables from only the training set.

```
regfit_best = regsubsets(Salary ~ ., data = dat, nvmax = 19)
coef(regfit_best, 7)
```

(Intercept) Hits Walks CAtBat CHits CHmRun

```
## 79.4509472 1.2833513 3.2274264 -0.3752350 1.4957073 1.4420538
## DivisionW PutOuts
## -129.9866432 0.2366813
```

With the same idea, we can compute the validation errors for forward stepwise selection.

```
regfit_fwd = regsubsets(Salary ~ ., data = dat[train, ], nvmax = 19, method = "forward")

p = ncol(test_mat) - 1
val_errors = numeric(p)

for (i in 1:p){
   coef_i = coef(regfit_fwd, id = i)
    pred = test_mat[, names(coef_i)] %*% coef_i
   val_errors[i] = mean( (dat$Salary[test] - pred)^2 )
}
```

The model with the lowest forward stepwise selection validation error.

```
val_errors
##
    [1] 164377.3 144405.5 144024.6 139228.7 131529.4 130853.9 126849.0 136191.4
   [9] 132889.6 134277.2 137267.1 138348.9 141538.4 141951.2 141508.2 142102.1
## [17] 141767.4 142339.6 142238.2
which.min(val errors)
## [1] 7
# We can see the best 7 component model on the training set.
coef(regfit best, 7)
                                     Walks
##
    (Intercept)
                         Hits
                                                 CAtBat
                                                                CHits
                                                                             CHmRun
     79.4509472
                                 3.2274264
                                             -0.3752350
                                                            1.4957073
                                                                         1.4420538
##
                   1.2833513
##
      DivisionW
                     PutOuts
## -129.9866432
                   0.2366813
```

Now we determined that the "best" model from forward stepwise selection is a 7 component model, we next select the 7 component model based on the full data set.

Note that the 7 variables from the entire dataset might be different to the 7 variables from only the training set.

Here, even though we selected the best model using forward stepwise selection, we can acquire the best 7 component model on the entire dataset using best subset selection (due to p=19).

If p is too large, we can use forward stepwise selection on the entire dataset.

```
regfit_fwd = regsubsets(Salary ~ ., data = dat, nvmax = 19)
coef(regfit_fwd, 7)
##
    (Intercept)
                         Hits
                                      Walks
                                                  CAtBat
                                                                 CHits
                                                                              CHmRun
##
     79.4509472
                    1.2833513
                                 3.2274264
                                              -0.3752350
                                                             1.4957073
                                                                           1.4420538
      DivisionW
                      PutOuts
## -129.9866432
                    0.2366813
```

Cross validation

We must perform best subset selection within each of the k training sets.

We first separate the data into k folds.

Each column represent a fold. Each row represent increasing the number of components from 1 to 19. The (j, i)-th element corresponds to the test MSE, using the j-th fold as the validation fold and using the remaining folds as training folds, while getting the best i-component model.

```
for (j in 1:k){
  best_fit = regsubsets(Salary ~ ., data = dat[folds != j, ], nvmax = 19)
  for (i in 1:19) {
    pred = predict(best_fit, dat[folds == j, ], id = i)
        cv_errors[j, i] = mean( (dat$Salary[folds == j] - pred)^2 )
  }
}
```

We then average over each column, to obtain the cross validation errors for each i-component model.

```
mean_cv_errors = apply(cv_errors, 2, mean)
# 2 indicates columns
# mean is the function to be taken
mean_cv_errors
                             3
                                                                           8
##
          1
                   2
                                      4
                                               5
                                                         6
                                                                  7
## 143439.8 126817.0 134214.2 131782.9 130765.6 120382.9 121443.1 114363.7
##
                  10
                           11
                                     12
                                              13
                                                        14
## 115163.1 109366.0 112738.5 113616.5 115557.6 115853.3 115630.6 116050.0
         17
                  18
## 116117.0 116419.3 116299.1
Plot of CV errors vs the number of components.
which.min( as.numeric(mean_cv_errors) )
## [1] 10
plot(mean_cv_errors, type = "1")
points(10, mean_cv_errors[10], col = "red", cex = 2, pch = 20)
```


Finally, we fit a 10 component model on the entire dataset.

```
reg_best = regsubsets(Salary ~ ., data = dat, nvmax = 19)
coef(reg_best, 10)
##
    (Intercept)
                       AtBat
                                                  Walks
                                                               CAtBat
                                                                              CRuns
                                      Hits
    162.5354420
                                                                         1.4082490
##
                  -2.1686501
                                 6.9180175
                                              5.7732246
                                                           -0.1300798
##
           CRBI
                      CWalks
                                 DivisionW
                                                PutOuts
                                                              Assists
      0.7743122
                                                            0.2831680
##
                  -0.8308264 -112.3800575
                                              0.2973726
```