Foglio di Esercizi 11 - Studio applicazioni lineari con determinante e teorema orlati

Si raccomanda di risolvere i seguenti esercizi con il solo ausilio della funzione determinante ed eventualmente con il teorema degli orlati.

Esercizio 1. Sia $T: \mathbb{R}^4 \to \mathbb{R}^3$ l'applicazione lineare definita dalla seguente matrice (rispetto alle basi canoniche):

$$A = \begin{pmatrix} k & 0 & 1 & 1 \\ k - 1 & -1 & 0 & 1 \\ 2k & 0 & 2 & 1 \end{pmatrix}$$

Stabilire per quali $k \in \mathbb{R}$ l'applicazione T é

- iniettiva;
- suriettiva;
- invertibile;
- tale che la dimensione di ker(T) sia uno.

Esercizio 2. Sia $T: \mathbb{R}^4 \to \mathbb{R}^3$ l'applicazione lineare definita dalla seguente matrice (rispetto alle basi canoniche):

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & 2 & 1 \\ -1 & -3 & -1 & 1 \end{pmatrix}$$

Si richiede di:

- scrivere la legge esplicita T(x, y, z, w);
- determinare dimensione ed una base di Ker(T) .

Esercizio 3. Sia $T: \mathbb{R}^3 \to \mathbb{R}^2$ l'applicazione lineare definita dalla seguente matrice (rispetto alle basi canoniche):

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 3 & -1 & 2 \end{pmatrix}$$

Dato il vettore $u=(1,-2)\in\mathbb{R}^2$, determinare $T^{-1}(u)$. L'applicazione T é invertibile?

Esercizio 4. Si consideri, al variare di $\alpha \in \mathbb{R}$ l'applicazione lineare $T_{\alpha}: \mathbb{R}^3 \to \mathbb{R}^3$ tale che

$$T_{\alpha} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x + (2 - \alpha)y + z \\ x - y + z \\ x - y + (4 - \alpha)z \end{pmatrix}$$

- ullet Scrivere la matrice A_{lpha} associata a T_{lpha} rispetto alla base canonica
- Determinare per quali $\alpha \in \mathbb{R}$ l'applicazione T_{α} è iniettiva.
- Determinare per quali $\alpha \in \mathbb{R}$ l'applicazione T_{α} è suriettiva.
- ullet Determinare per quali $lpha\in\mathbb{R}$ il vettore $\left(egin{array}{c}1\\1\\1\end{array}
 ight)\in Im(T_lpha)$.
- Determinare $Ker(T_1)$.