Spherically Inward Propagating Flame of Type Ia Supernova

- 1. Introduction
- 2. Basic Equations
 - 2.1 Planar flame
 - 2.2 Spherical flame
 - 2.3 Parameters for $H_2 ext{-}O_2$ flame
- 3. Dimensionless Equations
 - 3.1 References variables
 - 3.2 Dimensionless parameters
- 4. Numerical methods
- 5. Results

Appendix

A1. Speed of sound

A2. Eigenvector of Jacobian

Reference

1. Introduction

Supernova represent the catastrophic explosions that mark the end of the life of some stars. The ejected mass is of order 1 to 10 solar masses with bulk velocities ranging from a few thousand to a few tens of thousands of km/s. ¹ The traditional single Chandrasekhar mass C–O White Dwarf burning is still considered to be responsible for a large population of type Ia supernova (SN Ia). Specifically, one of the key issues in its modeling is related to the flame acceleration and deflagration-detonation transition (DDT), with flame front instabilities being considered as a possible mechanism in driving the acceleration. The perspective of this proposal is to give a set of solutions of this problem. The milestones of this project are planed to be:

- (a) Complete a set of code that can solve the 1D H_2 - O_2 flame.
- (b) Complete a set of code that can solve the simplest reacting flow in SN Ia conditions.
- (c) Try to observe spherical flame acceleration with large Lewis number curvature effect.
- (d) Try to observe pulsation in Xing & Zhao's case.
- (e) Try to observe deflagration-detonation transition (DDT) in (d).

2. Basic Equations

2.1 Planar flame

• Governing equations for 1-dimensional, Cartesian coordinates, compressible and non-viscous reacting flow are:

$$\frac{\partial \boldsymbol{U}}{\partial t} + \frac{\partial \boldsymbol{F}(\boldsymbol{U})}{\partial x} = \frac{\partial \boldsymbol{D}(\boldsymbol{U})}{\partial x} + \boldsymbol{S}$$

where $m{U}$ is the conserved variables vector, $m{F}$ is the flux vector, $m{D}$ is the diffusion flux, and $m{S}$ is the source term vector. The vectors are given by:

$$egin{aligned} oldsymbol{U} &= egin{bmatrix}
ho \
ho u \
ho E \
ho E \
ho Y \end{bmatrix}, \quad oldsymbol{F}(oldsymbol{U}) &= egin{bmatrix}
ho u \
ho u \
ho E \
ho u \
ho u Y \end{bmatrix}, \quad oldsymbol{D}(oldsymbol{U}) &= egin{bmatrix} 0 \ 0 \ 0 \ rac{\mu C_p}{Pr} rac{\partial T}{\partial x} + rac{\mu Q}{Sc} rac{\partial Y}{\partial x} \ rac{\partial Y}{\partial x} \ \end{pmatrix}, \quad oldsymbol{S} &= egin{bmatrix} 0 \ 0 \ 0 \
ho \omega \end{bmatrix} \end{aligned}$$

Here ρ is density, u is velocity, E is the total energy per unit mass and Y is the reactant mass fraction, respectively. The total energy is consisted by internal energy, kinetic energy and the "chemical" energy in reactant:

$$\rho E = \rho e + \frac{1}{2}\rho u^2 + \rho QY$$

The viscosity $\mu = \rho \nu$

The Schmidt number $Sc = \nu/D = \mu/\rho D$

The Prandtl number $Pr=
u/lpha=\mu c_p/\lambda$

The enthalpy per unit mass H=E+p/
ho

The heat value part might need to be put in internal energy part

• In the scenario of methane flame, the internal energy per unit mass is given by:

$$e = \frac{p}{\rho(\gamma - 1)} = \frac{R_u T}{\gamma - 1}$$

and the reaction rate is

$$\omega = -KY \exp\left(-E_a/R_u T\right)$$

• **In the scenario of supernova flame**, the internal energy is described by the equation of state of the relativistic degenerate electron gas ²:

$$e(
ho,T)=rac{3}{4
ho}(3\pi^2)^{rac{1}{3}}\hbar c_1(
ho N)^{rac{4}{3}}+rac{1}{2}Nrac{(3\pi^2)^{rac{2}{3}}}{3\hbar c_1}igg(rac{1}{
ho N}igg)^{rac{1}{3}}(kT)^2$$

With pressure being p=
ho e/3, one can get the form as: (constant $\gamma=4/3$)

$$e = \frac{p}{\rho(4/3 - 1)} = \frac{p}{\rho(\gamma - 1)}$$

The reaction rate is adopted from the rate of Carbon-Carbon nuclear reaction 3 :

$$\omega = AY^2 \exp\left(-E_a/T_9^{rac{1}{3}}
ight)$$

where $T_9=T/10^9$ and $E_a=84.165$ for C12-C12 reaction.

N is Carbon's electron density c_1 is the light speed in vacuum \hbar is the reduced Plank constant

2.2 Spherical flame

• In spherical coordinates, the governing equations change to be:

$$rac{\partial oldsymbol{U}}{\partial t} + rac{1}{r^2}rac{\partial r^2oldsymbol{F}(oldsymbol{U})}{\partial r} = rac{1}{r^2}rac{\partial r^2oldsymbol{D}(oldsymbol{U})}{\partial r} + oldsymbol{S}$$

or in the expanded form:

$$rac{\partial oldsymbol{U}}{\partial t} + rac{\partial oldsymbol{F}(oldsymbol{U})}{\partial r} + rac{2}{r}oldsymbol{F}(oldsymbol{U}) = rac{oldsymbol{D}(oldsymbol{U})}{\partial r} + rac{2}{r}oldsymbol{D}(oldsymbol{U}) + oldsymbol{S}$$

with the vectors being:

$$egin{aligned} oldsymbol{U} &= egin{bmatrix}
ho \
ho u \
ho E \
ho Y \end{bmatrix}, \quad oldsymbol{F}(oldsymbol{U}) &= egin{bmatrix}
ho u \
ho u \
ho U \end{pmatrix}, \quad oldsymbol{D}(oldsymbol{U}) &= egin{bmatrix} 0 \ 0 \ 0 \ \lambda rac{\partial T}{\partial r} +
ho Q D rac{\partial Y}{\partial r} \
ho D rac{\partial Y}{\partial r} \end{bmatrix}, \quad oldsymbol{S} &= egin{bmatrix} 0 \ rac{2p}{r} \ 0 \
ho \omega \end{bmatrix} \end{aligned}$$

2.3 Parameters for $H_2 ext{-}O_2$ flame

- Reference state ($H_2: O_2 = 2:1$), examined in tools/test h2o2 flame.py
 - \circ pressure $p_0=1.013 imes 10^5$ [Pa]
 - $\circ~$ specific gas constant $R_u=692.25~[J/kg/K]$
 - \circ temperature $T_0 = 300$ [K]
 - \circ density $ho_0 = p_0/R_u T_0 = 0.4879 \, [kg/m^3]$
 - \circ heat capacity ratio $\gamma=1.4$
 - $\circ~$ velocity $u_0 = \sqrt{R_u T_0} = 455.7 m/s$ ($S_L pprox 10 m/s$)
 - \circ flame thickness $\delta_f pprox 1mm = 1 imes 10^{-3} m$
 - time scale $t_0 = \delta_f/u_0 = 1.1 \times 10^{-6} \, [s]$
 - \circ heat value $Qpprox 36R_uT_0$ [J/kg] (300K->3076K)
 - \circ thermal conductivity $\lambda pprox 0.3\, \mathrm{[}W/m/K\mathrm{]}$
 - \circ thermal diffusivity $lpha pprox 1.5 imes 10^{-3} \, [m^2/s]$
 - $\circ~$ Lewis number Lepprox 1.2
 - \circ activation energy $Ea \approx 27 R_u T_0$
 - pre-exponential factor $A \approx 2 \times 10^7$?

3. Dimensionless Equations

3.1 References variables

Dimensionless variables	Reference values
$\hat{ ho}=rac{ ho}{ ho_0}$	$ ho_0=3.5 imes10^{10}kg/m^3$
$\hat{u}=rac{u}{u_0}$	$u_0 = 7.871 imes 10^6 m/s, S_L = 466 m/s$ (laminar flame speed)
$r=rac{\hat{r}}{\hat{r_0}}$	$r_0 = \delta_f = rac{\lambda}{ ho_0 C_p S_t} = 9 imes 10^{-4} m$
$\hat{t}=rac{t}{t_0}$	$t_0 = rac{r_0}{u_0} = 1.143 imes 10^{-10} s$
$\hat{T}=rac{T}{T_b-T_0}$	$T_0 = 1 imes 10^8 K; T_b = 3.2 imes 10^9 K$
$\hat{p}=rac{p}{p_0}$	$p_0=\rho_0 u_0^2$
$\hat{E}=rac{E}{p_0/ ho_0}=rac{E}{u_0^2}$	$e(ho_0, T_b) = 6.1952 imes 10^{13} J/kg$
$\hat{Y}=rac{Y}{Y_0}$	$Y_0=1$
$\hat{\omega}=rac{\omega}{\omega_0}$	$ ho_0\omega_0\delta_f= ho_0Y_0S_t$, $\omega_0=rac{Y_0u_0}{r_0}rac{S_t}{u_0}$
<pre>\$ \hat \alpha = \frac{\alpha}{u_0 r_0} \$</pre>	$\hat{D}=rac{\hat{lpha}}{Le}=rac{2}{3}rac{1}{Le}$
$\hat{Q}=rac{Q}{u_0^2}$	$\hat{Q}=0.904$
$\hat{\lambda} = \lambda/(rac{ ho_0 r_0 u_0^3}{T_b - T_0})$	$\hat{\lambda} = rac{S_t}{u_0} rac{C_p(T_b - T_0)}{u_0^2} = 0.14541$

Laminar flame speed: $S_L=466m/s$

Turbulent flame speed: S_t , assumed to be equal to the speed of sound at burnt state

Therefore, the dimensionless equation can be obtained from: (use planar equation for demonstration)

$$\begin{split} \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho u) &= 0\\ \frac{\partial (\rho u)}{\partial t} + \frac{\partial}{\partial x}(\rho u^2 + p) &= 0\\ \frac{\partial \rho E}{\partial t} + \frac{\partial}{\partial x}(\rho u E + u p) &= \lambda \frac{\partial^2 T}{\partial x^2} + \rho Q D \frac{\partial^2 Y}{\partial x^2}\\ \frac{\partial \rho Y}{\partial t} + \frac{\partial}{\partial x}(\rho u Y) &= \rho D \frac{\partial^2 Y}{\partial x^2} + \rho \omega \end{split}$$

 \Rightarrow

$$\begin{split} \frac{\rho_0}{t_0} \left[\frac{\partial \hat{\rho}}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} (\hat{\rho} \hat{u}) \right] &= 0 \\ \frac{\rho_0 u_0}{t_0} \left[\frac{\partial (\hat{\rho} \hat{u})}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} (\hat{\rho} \hat{u}^2 + \hat{p}) \right] &= 0 \\ \frac{\rho_0 u_0^2}{t_0} \left[\frac{\partial \hat{\rho} \hat{E}}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} (\hat{\rho} \hat{u} \hat{E} + \hat{u} \hat{p}) \right] &= \frac{\rho_0 u_0^3 r_0 (T_b - T_0)}{r_0^2 (T_b - T_0)} \left[\hat{\lambda} \frac{\partial^2 \hat{T}}{\partial \hat{x}^2} \right] + \frac{\rho_0 u_0^2 u_0 r_0 Y_0}{r_0^2} \left[\hat{\rho} \hat{Q} \hat{D} \frac{\partial^2 \hat{Y}}{\partial \hat{x}^2} \right] \\ \frac{\rho_0 Y_0}{t_0} \left[\frac{\partial \hat{\rho} \hat{Y}}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} (\hat{\rho} \hat{u} \hat{Y}) \right] &= \frac{\rho_0 u_0 r_0 Y_0}{r_0^2} \left[\hat{\rho} \hat{D} \frac{\partial^2 \hat{Y}}{\partial \hat{x}^2} \right] + \frac{\rho_0 u_0 Y_0}{r_0} \frac{S_t}{u_0} [\hat{\rho} \hat{\omega}] \end{split}$$

$$\begin{split} \frac{\partial \hat{\rho}}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} (\hat{\rho} \hat{u}) &= 0\\ \frac{\partial (\hat{\rho} \hat{u})}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} (\hat{\rho} \hat{u}^2 + \hat{p}) &= 0\\ \frac{\partial \hat{\rho} \hat{E}}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} (\hat{\rho} \hat{u} \hat{H}) &= \hat{\lambda} \frac{\partial^2 \hat{T}}{\partial \hat{x}^2} + \hat{\rho} \hat{Q} \hat{D} \frac{\partial^2 \hat{Y}}{\partial \hat{x}^2} \\ \frac{\partial \hat{\rho} \hat{Y}}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} (\hat{\rho} \hat{u} \hat{Y}) &= \hat{\rho} \hat{D} \frac{\partial^2 \hat{Y}}{\partial \hat{x}^2} + \frac{S_t}{u_0} \hat{\rho} \hat{\omega} \end{split}$$

3.2 Dimensionless parameters

• Reference velocity u_0 :

For simplification, the largest internal energy is normalized to be $\hat{e}(\rho,T_b)=e(\rho_0,T_b)/u_0^2=1.$ Therefore, one has

$$u_0 = \sqrt{e(
ho_0, T_b)} = \sqrt{6.1952 \times 10^{13}} = 7.871 \times 10^6 m/s$$

- Reference length scale $r_0 = 9 imes 10^{-4} m$
- ullet Reference time scale $t_0=r_0/u_0=1.143 imes 10^{-10} s$
- Speed of sound at the burnt state $c=\sqrt{\gamma p/
 ho}=\sqrt{\gamma(\gamma-1)e(
 ho_0,T_b)}=5.247 imes10^6 m/s$
- ullet Heat value $\hat{Q}=Q/u_0^2$, with data from Fowler 1975, for $C^{12}+C^{12} o Mg^{24}$, Q=13.931 MeV , thus

$$\begin{split} \hat{Q} &= \frac{13.931 MeV \times (1.6022 \times 10^{-13} J/MeV) \times (6.022 \times 10^{23} mol^{-1})/(0.024 kg/mol)}{u_0^2} \\ &= \frac{5.6 \times 10^{13} J/kg}{6.1952 \times 10^{13} J/kg} = 0.904 \end{split}$$

- The speed ratio $S_t/u_0=2/3$
- Thermal conductivity $\hat{\lambda}$ is related to C_p , while the heat release is related to internal energy:

$$ilde{C}_p(T_b-T_0) = \int_{T_0}^{T_b} C_p dT = e(
ho_0,T_b) - e(
ho_0,T_0) \ \hat{\lambda} = rac{S_t}{u_0} rac{ ilde{C}_p(T_b-T_0)}{u_0^2} = 0.14541$$

ullet The diffusivity D is described by Lewis number $D=lpha/Le=\lambda/
ho C_p Le$, therefore

$$\hat{D} = rac{\lambda}{
ho C_{v} Le} rac{1}{u_{0} r_{0}} = rac{1}{Le} rac{S_{t}}{u_{0}} rac{\delta_{f}}{r_{0}} = rac{2}{3} rac{1}{Le}$$

• The total energy form keeps the same in dimensionless form:

$$\hat{E} = \hat{e} + rac{1}{2}\hat{u}^2 + \hat{Q}\hat{Y},\, \hat{e} = rac{\hat{p}}{\hat{
ho}(\gamma-1)}$$

with the equation of state as:

$$egin{aligned} p &=
ho e(\gamma - 1) = rac{3}{4}(\gamma - 1)(3\pi^2)^{rac{1}{3}}\hbar c_1(
ho N)^{rac{4}{3}} + rac{1}{2}(\gamma - 1)Nrac{(3\pi^2)^{rac{2}{3}}}{3\hbar c_1}igg(rac{
ho^2}{N}igg)^{rac{1}{3}}(kT)^2 \ \hat{p} &= rac{3}{4}rac{1}{
ho_0 u_0^2}(\gamma - 1)(3\pi^2)^{rac{1}{3}}\hbar c_1(
ho_0 N)^{rac{4}{3}}\hat{
ho}^{rac{4}{3}} + rac{1}{2}(\gamma - 1)Nrac{(3\pi^2)^{rac{2}{3}}}{3\hbar c_1}igg(rac{
ho_0^2}{N}igg)^{rac{1}{3}}k^2(T_b - T_0)^2\hat{
ho}^{rac{2}{3}}\hat{T}^2 \ &= C_1\hat{
ho}^{4/3} + C_2\hat{
ho}^{2/3}\hat{T}^2 \end{aligned}$$

with $C_1 = 2.60559 imes 10^{-1}$, $C_2 = 6.82973 imes 10^{-2}$

• The source term equation:

$$\omega_0 = rac{Y_0 u_0}{r_0} rac{S_t}{u_0} pprox A Y_0^2 \exp\left(-E_a/T_{b9}^{rac{1}{3}}
ight) \ \hat{\omega} = rac{\omega}{\omega_0} = \hat{Y}^2 \exp\left(-Ea/T_9^{rac{1}{3}} + Ea/T_{9b}^{rac{1}{3}}
ight) = \hat{Y}^2 \exp\left(-Ea\left(rac{T_b - T_0}{10^9}
ight)^{-rac{1}{3}} \left(\hat{T}^{-rac{1}{3}} - \hat{T}_b^{-rac{1}{3}}
ight)
ight)$$

to reduce the term S_t/u_0 in previous equation along with $\hat{\omega}$, denoting

$$egin{aligned} \widehat{Ea} &= -Eaigg(rac{T_b - T_0}{10^9}igg)^{-rac{1}{3}} = 57.7224 \ \hat{A} &= rac{S_t}{u_0} \mathrm{exp}\left(Eaigg(rac{T_b - T_0}{10^9}igg)^{-rac{1}{3}} \hat{T}_b^{-rac{1}{3}}
ight) = 4.25133 imes 10^{24} \end{aligned}$$

then the source term keeps the same in dimensionless form:

$$\hat{\omega} = \hat{A}\hat{Y}^2 \exp\left(-\widehat{Ea}/\hat{T}^{rac{1}{3}}
ight)$$

• And the final dimensionless equations are:

$$\begin{split} \frac{\partial \hat{\rho}}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} (\hat{\rho} \hat{u}) &= 0 \\ \frac{\partial (\hat{\rho} \hat{u})}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} (\hat{\rho} \hat{u}^2 + \hat{p}) &= 0 \\ \frac{\partial \hat{\rho} \hat{E}}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} (\hat{\rho} \hat{u} \hat{H}) &= \hat{\lambda} \frac{\partial^2 \hat{T}}{\partial \hat{x}^2} + \hat{\rho} \hat{Q} \hat{D} \frac{\partial^2 \hat{Y}}{\partial \hat{x}^2} \\ \frac{\partial \hat{\rho} \hat{Y}}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} (\hat{\rho} \hat{u} \hat{Y}) &= \hat{\rho} \hat{D} \frac{\partial^2 \hat{Y}}{\partial \hat{x}^2} + \hat{\rho} \hat{\omega} \\ \hat{E} &= \hat{e} + \frac{1}{2} \hat{u}^2 + \hat{Q} \hat{Y} \\ \hat{e} &= \frac{\hat{p}}{\hat{\rho} (\gamma - 1)} \\ \hat{p} &= C_1 \hat{\rho}^{4/3} + C_2 \hat{\rho}^{2/3} \hat{T}^2 \\ \hat{\omega} &= \hat{A} \hat{Y}^2 \exp\left(-\hat{E} a/\hat{T}^{\frac{1}{3}}\right) \end{split}$$

4. Numerical methods

- Discrete methods:
 - o Time evolution: 3 order TVD Runge-Kutta

$$egin{align} U^{(1)} &= U_n + L(U_n) \Delta t \ U^{(2)} &= rac{3}{4} U_n + rac{1}{4} (U^{(1)} + L(U^{(1)}) \Delta t) \ U_{n+1} &= rac{1}{3} U_n + rac{2}{3} (U^{(2)} + L(U^{(2)}) \Delta t) \ \end{pmatrix}$$

o Convection term:

Roe method: solve convection flux by eigen vector

o Diffusion term: 7 order central difference

$$\frac{\partial m_i}{\partial x} = \frac{1}{\Delta x} \left(\frac{1}{60} m_{i+3} - \frac{9}{60} m_{i+2} + \frac{45}{60} m_{i+1} - \frac{45}{60} m_{i-1} + \frac{9}{60} m_{i-2} - \frac{1}{60} m_{i-3} \right)$$

- Initial conditions:
 - \circ Pressure: whole field the same pressure $\hat{P}(
 ho_0,T_0)/\hat{P}_0$
 - $\circ \ \ {\rm Velocity:} \ u=0$
 - \circ Concentration: $Y_0 = 1$
 - \circ Temperature: $T_0 o T_b$, anh(x) profile for about 1 flame thickness area
- Boundary conditions: (cartesian coordinates)
 - Inner boundary conditions: opening / freeflow / inletOutlet
 - Outlet boundary conditions: opening / freeflow / inletOutlet
- Boundary conditions: (spherical coordinates)

0

5. Results

Appendix

A1. Speed of sound

• Pressure from equation of state:

$$egin{align} p &=
ho e(\gamma - 1) = rac{3}{4} (\gamma - 1) (3\pi^2)^{rac{1}{3}} \hbar c_1 (
ho N)^{rac{4}{3}} + rac{1}{2} (\gamma - 1) N rac{(3\pi^2)^{rac{2}{3}}}{3 \hbar c_1} igg(rac{
ho^2}{N}igg)^{rac{1}{3}} (kT)^2 \ &= C_1
ho^{rac{4}{3}} + C_2
ho^{rac{2}{3}} \end{split}$$

• The theoretical speed of sound is obtained by:

$$c = \sqrt{\left(rac{\partial p}{\partial
ho}
ight)_s} = \sqrt{rac{4}{3}C_1
ho^{rac{1}{3}} + rac{2}{3}C_2
ho^{-rac{1}{3}}} pprox \sqrt{\gammarac{p}{
ho}}$$

A2. Eigenvector of Jacobian

• Eigen vector for Roe method:

$$U=[
ho,
ho u,
ho E,
ho Y]=[m_1,m_2,m_3,m_4] \ F=[
ho u,
ho u^2+p,
ho u E+u p,
ho u Y]=[m_2,m_2^2/m_1+p$$
 , $(m_3+p)m_2/m_1,m_4m_2/m_1] \ ext{where } p=(\gamma-1)
ho(E-rac{1}{2}u^2-QY)$

Solve by Matlab symbolic calculation:

```
% definition
syms m1 m2 m3 m4 real
syms Q gamma real
syms m1 m3 m4 gamma Q positive

% declaration
rho = m1;
u = m2/m1;
E = m3/m1;
Y = m4/m1;
e = E-1/2*u*u-Q*Y
```

```
p = (gamma-1)*rho*e;
Um = [m1 m2 m3 m4];
Fm = [rho*u, rho*u*u+p; rho*u*E+u*p; rho*u*Y];
% solve
J = jacobian(Fm,Um);
[RM,RD] = eig(J);
[LM,LD] = eig(J');
```

• The Jacobian matrix is:

$$m{J} = egin{bmatrix} 0 & 1 & 0 & 0 \ -u^2 + K_1 & 2u + K_2 & K_3 & K_4 \ -uH + uK_1 & H + uK_2 & u(1 + K_3) & uK_4 \ -uY & Y & 0 & u \end{bmatrix}$$

where
$$K_1=(\gamma-1)u^2/2,\ K_2=(\gamma-1)(-u),\ K_3=(\gamma-1),\ K_4=(\gamma-1)(-Q)$$

 \circ Eigenvalue Λ is:

$$oldsymbol{\Lambda} = egin{bmatrix} u - c & & & & \ & u & & & \ & & u & & \ & & u & & \ & & u + c \end{bmatrix}$$

where c is the numerical speed of sound:

$$c=rac{2}{3}\sqrt{E-rac{1}{2}u^2-QY}=rac{2}{3}\sqrt{rac{p}{
ho}rac{1}{\gamma-1}}=\sqrt{\gamma p/
ho}$$

 \circ Right eigen matrix $m{R}$ is: (each column is an eigenvector)

$$m{R} = egin{bmatrix} 1 & 1 & 0 & 1 \ u-c & u & 0 & u+c \ H-uc & m{u^2/2} & Q & H+uc \ Y & 0 & 1 & Y \end{bmatrix}$$

 \circ Left eigen matrix $m{L}$ is: (each row is an eigenvector)

$$m{L} = egin{bmatrix} -rac{u}{2c} - rac{K_1}{2c^2} & rac{1}{2c} + rac{uK_3}{2c^2} & -rac{K_3}{2c^2} & -rac{K_4}{2c^2} \ -rac{1}{2} + rac{K_1}{2c^2} & -rac{uK_3}{2c^2} & rac{K_3}{2c^2} & rac{K_4}{2c^2} \ -Y & 0 & 0 & 1 \ -rac{u}{2c} + rac{K_1}{2c^2} & rac{1}{2c} - rac{uK_3}{2c^2} & rac{K_3}{2c^2} & rac{K_4}{2c^2} \ \end{pmatrix}$$

o To meet the eigen-decomposition criteria and to be used in the eigen-space projection, reprojection step, one can get the eigen-space as: (let $\gamma_1\equiv\gamma-1$, then $K_1=\gamma_1u^2/2$, $K_3=\gamma_1, K_4=-\gamma_1Q$)

$$\boldsymbol{R_F} = \begin{bmatrix} \frac{1}{c} & \frac{1}{c} & 0 & \frac{1}{c} \\ \frac{u}{c} - 1 & \frac{u}{c} & 0 & \frac{u}{c} + 1 \\ \frac{H}{c} - u & \frac{u^2}{2c} & \frac{Q}{c} & \frac{H}{c} + u \\ \frac{Y}{c} & 0 & \frac{1}{c} & \frac{Y}{c} \end{bmatrix}, \ \boldsymbol{R_F^{-1}} = \begin{bmatrix} \frac{u}{2} + \frac{\gamma_1 u^2}{4c} & -\frac{1}{2} - \frac{\gamma_1 u}{2c} & \frac{\gamma_1}{2c} & -\frac{\gamma_1 Q}{2c} \\ c - \frac{\gamma_1 u^2}{2c} & \frac{\gamma_1 u}{c} & -\frac{\gamma_1 u}{c} & -\frac{\gamma_1 Q}{c} & \frac{\gamma_1 Q}{c} \\ -\frac{\gamma_1 u^2 Y}{2c} & \frac{\gamma_1 u Y}{c} & -\frac{\gamma_1 u Y}{c} & -\frac{\gamma_1 Q}{c} & -\frac{\gamma_1 Q}{2c} \end{bmatrix}^T$$

which satisfies $oldsymbol{R}_{oldsymbol{F}}oldsymbol{R}_{oldsymbol{F}}^{-1}=oldsymbol{I}$ and $oldsymbol{R}_{oldsymbol{F}}oldsymbol{\Lambda}oldsymbol{R}_{oldsymbol{F}}^{-1}=J.$

• This has been validated in Matlab code:

```
syms u real
syms rho E Y real positive
syms Q gamma real positive
e = (E - 1/2*u*u - Q*Y);
p = (gamma-1)*rho*e;
c = sqrt(gamma*p/rho);
H = E + p/rho;
K1 = (gamma-1)*u*u/2;
K2 = (gamma-1)*(-u);
K3 = (gamma-1);
K4 = (gamma-1)*(-Q);
J = [
[ 0, 1, 0, 0];
[ -u*u+K1, 2*u+K2, K3, K4]
[-u^*H+u^*K1, H+u^*K2, u^*(1+K3), u^*K4]
[ -u*Y, Y,
                        0, u];
];
D = [
[u-c, 0, 0, 0];
[ 0, u, 0, 0];
 [ 0, 0, u, 0];
[ 0, 0, 0, u+c];
];
RF = [
[1/c, 1/c,
[u/c-1, u/c,
                    0, 1/c];
                   0, u/c+1];
[H/c-u, u*u/2/c, Q/c, H/c+u];
[Y/c, 0, 1/c, Y/c];
];
g1 = gamma-1;
c2 = 2*c;
c4 = 4*c;
LF = [
[ c-g1*u*u/c2, g1*u/c, -g1/c, g1*Q/c ];
[ -Y*g1*u*u/c2, Y*g1*u/c, -Y*g1/c, c+Y*g1*Q/c ];
[-u/2+g1*u*u/c4, 1/2-g1*u/c2, g1/c2, -g1*Q/c2];
]';
simplify(RF*LF')
                    % output is [ 1, 0, 0, 0]
                      % [ 0, 1, 0, 0]
                                [ 0, 0, 1, 0]
                      %
                      %
                                 [ 0, 0, 0, 1]
simplify(RF^*D^*LF' \ - \ J) \quad \% \ output \ is \ [\ 0,\ 0,\ 0,\ 0]
                      %
                           [ 0, 0, 0, 0]
                                [0, 0, 0, 0]
                                  [0, 0, 0, 0]
```

Reference

- [3] https://en.wikipedia.org/wiki/Divergence#Spherical coordinates
- [4] Landau L D , Lifshitz E M . Statistical Physics, Part 1[J]. Physics Today, 1980.
- [5] Woosely. 2011. FLAMES IN TYPE IA SUPERNOVA: DEFLAGRATION-DETONATION TRANSITION IN THE OXYGEN-BURNING FLAME
- [6] http://www.astrophysicsspectator.org/topics/stars/FusionCarbonOxygen.html
- 1. Wheeler J C, Harkness R P, Rep. Prog. Phys. 1990, 53:1467-1557 <u>←</u>
- 2. G. Xing, Y. Zhao, et al., Astro. J., 2017, 841:21 <u></u>
- 3. Fowler, W. A., Caughlan, G. R., & Zimmerman, B. A. 1975, ARA&A, 13, 69 👱