Solving TSP using Ant Colony Optimization

CORTAL Gustave (ID: F10815023)

18 juin 2020

Introduction

- The travelling salesman problem (TSP) is a NP-hard problem \rightarrow find the shortest possible route between a list of cities knowing that we have distance between each pairs of cities.
- ACO algorithms try to mimic biological behaviors of ants in their colony → through iterations, an optimal solution has to emerge from different solutions proposed by ants.

FIGURE 1 – Emergence of a solution through iterations

A randomized algorithm : concept

```
procedure ACOBasic
Set parameters, initialize pheromone trails
while (termination condition not met) do
ConstructAntsSolutions
DaemonActions % optional
UpdatePheromones
end
end
```


FIGURE 2 – ACO algorithm skeleton and ant choice

A randomized algorithm : probabilistic action choice rule

The probability with which ant k, currently at city i, chooses to go to city j is :

$$\rho_{ij}^{k} = \frac{[\tau_{ij}]^{\alpha} [\eta_{ij}]^{\beta}}{\sum_{l \in \mathcal{N}_{i}^{k}} [\tau_{il}]^{\alpha} [\eta_{il}]^{\beta}}, ifj \in \mathcal{N}_{i}^{k}$$

$$\tag{1}$$

 $\eta_{ij}=1/d_{ij}$: heuristic desirability of visiting city j directly after city i τ_{ij} : pheromone desirability of visiting city j directly after city i α and β : the relative influence of the pheromone trail and the heuristic information

 N_i^k : the set of cities that ant k has not visited yet

A randomized algorithm : update of pheromone trails

The pheromone evaporation :

$$\tau_{ij} \leftarrow (1 - \rho)\tau_{ij}, \forall (i,j) \in L$$
 (2)

All ants deposit pheromone on the arcs they have crossed :

$$\tau_{ij} \leftarrow \tau_{ij} + \sum_{k=1}^{m} \Delta \tau_{ij}^{k}, \forall (i,j) \in L$$
 (3)

ho : evaporation rate $(\in [0,1])$

 Δau^k_{ij} : the amount of pheromone ant k deposits on the arcs it has visited. $\Delta au^k_{ij} = 1/C^k$ if arc (i,j) belongs to T^k where C^k , the length of the tour T^k built by the k-th ant.

A randomized algorithm : improvements

Elitist Ant System:

$$au_{ij} \leftarrow au_{ij} + \sum_{k=1}^{m} \Delta au_{ij}^{k} + e \Delta au_{ij}^{bs}, \forall (i,j) \in L$$
 (4)

Where, $\Delta \tau^{bs}_{ij} = 1/C^{bs}$ if arc (i,j) belongs to T^{bs} where C^{bs} is the length of the best-so-far tour T^{bs} .

Initialize pheromone matrix :

$$\tau_0 = m/C^{nn} \tag{5}$$

$$\tau_0 = (e+m)/\rho C^{nn} \tag{6}$$

Where C^{nn} is the tour length found by applying nearest neighbor (NN) algorithm at a random node.

A randomized algorithm : detect stagnation

- Standard deviation σ_L of the length of the tours the ants construct after every iteration (or compute variation coefficient).
- Shannon entropy \to the average $\overline{\varepsilon} = \sum_{i=1}^n \varepsilon_i/n$ of the entropy ε_i of the selection probabilities at each node :

$$\varepsilon_{i} = -\sum_{j=1}^{l} p_{ij} \log(p_{ij}) \tag{7}$$

Where p_{ij} is the probability of choosing arc (i,j) when being in node i, and l, $1 \le l \le n-1$, is the number of possibles choices.

A randomized algorithm : detect stagnation

FIGURE 3 – Pheromone matrix heatmap after 100 and 300 iterations (ASE)

A neural network idea : dropout

FIGURE 4 – Example of dropout in a neural network

New daemon action \rightarrow randomly vanish some interesting arcs

FIGURE 5 – Cut some arcs during the construction procedure

A neural network idea : dropout

$$\tau_{ij} \leftarrow \tau_{ij} + \sum_{k=1}^{m} \Delta \tau_{ij}^{k} + e \Delta \tau_{ij}^{bs} * B_{ij}^{bs}, \forall (i,j) \in L$$
 (8)

Where $B_{ij}^{bs} \sim Bernoulli(p)$. p is a new parameter to tune which decides whether or not we add pheromones to a specific arc $(B_{ij}^{bs} = 1 \text{ or } 0)$.

$$\tau_{ij} \leftarrow \tau_{ij} + \sum_{k=1}^{m} \Delta \tau_{ij}^{k} + e \Delta \tau_{ij}^{bs} * N_{ij}^{bs}, \forall (i,j) \in L$$
 (9)

Where $N_{ij}^{bs} \sim N(1, \sigma^2)$. The mean is set to 1 and σ , the standard deviation, is a new parameter to tune which decides the amount of noises we want around the best iteration tour.

A neural network idea : dropout

FIGURE 6 - Shannon index analysis on ASE and ASE+Drop

Experimental results

$$\alpha = 1$$
, $\beta = 3.5$, $\rho = 0.5$, $m = n$.

 $\mathsf{Gap}\;\mathsf{error}:(\mathit{Avg}-\mathit{opt})/\mathit{opt}*100$

TSP (opt)	Algorithm	Best	Worst	Avg	Std	Gap
eil51 (426)	ASE+Drop	430.35	437.60	433.66	2.07	1.79%
	ASE	432.33	440.83	435.74	3.12	2.29%
	AS	443.35	455.26	450.76	3.39	5.81%
	NN+2-opt	438.72	514.62	476.61	22.57	11.89%
berlin52 (7542)	ASE+Drop	7544.37	7544.66	7544.46	0.14	0.03%
	ASE	7544.37	7663.21	7558.22	36.96	0.22%
	AS	7549.29	7677.12	7622.91	53.62	1.07%
	NN+2-opt	8042.95	8894.5	8448.54	326.69	12.02%
eil76 (538)	ASE+Drop	546.19	555.90	550.89	3.49	2.39%
	ASE	547.33	558.25	551.96	3.41	2.59%
	AS	558.17	570.54	565.45	3.81	5.10%
	NN+2-opt	568.46	630.15	597.18	22.26	11.00%

FIGURE 7 – Experimental results on three different benchmarks

A practical problem : Youbike stations

- Taipei Youbike stations dataset provided by Taipei City.
- ullet Get the distance matrix between the stations o Google Maps API.

FIGURE 8 – Youbike stations in Google Maps

A practical problem : Youbike Stations

FIGURE 9 - Youbike stations (blue nodes) in Google Maps

A practical problem : results

FIGURE 10 - Youbike stations (blue nodes) with best found tour in Google Maps

References

- M. Dorigo, *Optimization, Learning and Natural Algorithms*, PhD thesis, Politecnico di Milano, Italy, 1992.
- M. Dorigo, T.Stützle, Ant Colony Optimization, MIT Press, 2005.
- S. Mateusz, K.Michał, B.Aleksander, B.Indurkhya, K.Marek, S.Dana, L.Tom, *Multi-pheromone ant Colony Optimization for Socio-cognitive Simulation Purposes*, Procedia Computer Science, Volume 51, 2015, Pages 954-963.
 - S. Nitish, C.G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: A Simple Way to Prevent Neural Networks from overfitting, Journal of Machine Learning Research, 2014.
- L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, R. Fergus, *Regularization of Neural Networks using DropConnect*, Proceedings of the 30th International Conference on Machine Learning, 2013.