1 Коллоквиум 1

1.1 Задача 1

Условие

Верно ли, что любые три различные прямые на аффинной плоскости можно перевести аффинным преобразованием в любые три другие различные параллельные прямые? Если да - докажите, если нет - приведите контрпример.

Решение

Проведем прямую, пересекающую три данные в трех точках. аффинное преобразование сохраняет отношение отрезков, значит, в любом случае обязательно, чтобы оно было равным для двух троек параллельных прямых. если это не выполняется, невозможно будет перевести одну тройку в другую.

1.2 Задача 2

Условие

Нетождественное аффинное преобразование коммутирует со всеми сдвигами. Верно ли, что и оно само - сдвиг?

Решение

Пусть аффинное преобразование задается уравнениями:

$$\begin{cases} x' = \alpha_1 x + \beta_1 y + \gamma_1 \\ y' = \alpha_2 x + \beta_2 y + \gamma_2 \end{cases}$$

Тогда по условию для любого сдвига на вектор (v_1, v_2) верно следующее: если сначала мы к какой - то точке применим сначала аффинное преобразование, а потом сдвиг, мы получим тот же результат, как в случае, если бы мы сначала применили сдвиг, а потом аффинное преобразование. Если сначала мы применяем аффинное преобразование, мы получим:

$$\begin{cases} x' = \alpha_1 x + \beta_1 y + \gamma_1 + v_1 \\ y' = \alpha_2 x + \beta_2 y + \gamma_2 + v_2 \end{cases}$$

Во втором же случае:

$$\begin{cases} x' = \alpha_1(x+v_1) + \beta_1(y+v_2) + \gamma_1 \\ y' = \alpha_2(x+v_1) + \beta_2(y+v_2) + \gamma_2 \end{cases} \rightarrow \begin{cases} x' = \alpha_1x + \alpha_1v_1 + \beta_1y + \beta_1v_2 + \gamma_1 \\ y' = \alpha_2x + \alpha_2v_1 + \beta_2y + \beta_2v_2 + \gamma_2 \end{cases}$$

Приравняем значения полученных координат:

$$\begin{cases} \alpha_1 x + \beta_1 y + \gamma_1 + v_1 = \alpha_1 x + \alpha_1 v_1 + \beta_1 y + \beta_1 v_2 + \gamma_1 \\ \alpha_2 x + \beta_2 y + \gamma_2 + v_2 = \alpha_2 x + \alpha_2 v_1 + \beta_2 y + \beta_2 v_2 + \gamma_2 \end{cases} \rightarrow \begin{cases} v_1(\alpha_1 - 1) + v_2 \beta_1 = 0 \\ v_1 \alpha_2 + v_2(\beta_2 - 1) = 0 \end{cases}$$

Очевидно, что если нужно, чтобы для любых (v_1, v_2) было выполнено это условие, нужно, чтобы $\alpha_1 = \beta_2 = 1$ и $\beta_1 = \alpha_2 = 0$. Тогда наше итоговое аффинное преобразование имеет вид:

$$\begin{cases} x' = x + \gamma_1 \\ y' = y + \gamma_2 \end{cases}$$

Такое преобразование задает сдвиг, значит, утверждение задачи верно.

1.3 Задача 3

Условие

Верно ли, что биективное аффинное преобразование, дифференциал которого не имеет ненулевых неподвижных векторов, обязательно имеет неподвижную точку?

1

Решение

Пусть аффинное преобразование задается системой уравнений:

$$\begin{cases} \alpha_1 x_1 + \beta_1 x_2 + \gamma_1 = 0 \\ \alpha_2 x_1 + \beta_2 x_2 + \gamma_2 = 0 \end{cases}$$

Запишем условие на то, что в дифференциале имеется неподвижный ненулевой вектор:

$$\begin{cases} x_2 - x_1 = \alpha_1 x_2 + \beta_1 y_2 + \gamma_1 - \alpha_1 x_1 - \beta_1 y_1 - \gamma_1 \\ y_2 - y_1 = \alpha_2 x_2 + \beta_2 y_2 + \gamma_2 - \alpha_2 x_1 - \beta_2 y_1 - \gamma_2 \end{cases} \Rightarrow \begin{cases} x_2 - x_1 = \alpha_1 (x_2 - x_1) + \beta_1 (y_2 - y_1) \\ y_2 - y_1 = \alpha_2 (x_2 - x_1) + \beta_2 (y_2 - y_1) \end{cases}$$

$$\begin{cases} (x_2 - x_1)(1 - \alpha_1) = \beta_1(y_2 - y_1) \\ (y_2 - y_1)(1 - \beta_2) = \alpha_2(x_2 - x_1) \end{cases} \Rightarrow \begin{cases} \frac{x_2 - x_1}{y_2 - y_1} = \frac{\beta_1}{1 - \alpha_1} \\ \frac{x_2 - x_1}{y_2 - y_1} = \frac{1 - \beta_2}{\alpha_2} \end{cases} \Rightarrow \begin{cases} \beta_1 \alpha_2 = (1 - \alpha_1)(1 - \beta_2) \end{cases}$$

Если (p,q) - неподвижная точка, то:

$$\begin{cases} p = \alpha_1 p + \beta_1 q + \gamma_1 \\ q = \alpha_2 p + \beta_2 q + \gamma_2 \end{cases}$$

Если в отображении нет неподвижной точки, тогда такая система не имеет решений. Единственный возможный случай, когда это верно - если пропорциональны коэффициенты при p и q, при этом свободные члены непропорциональны. Запишем пропорциональность уравнений:

$$\frac{\alpha_1 - 1}{\alpha_2} = \frac{\beta_1}{\beta_2 - 1}$$

Несложно заметить, что данное условие полностью эквивалентно тому, что в дифференциале присутствует неподвижный ненулевой вектор. Значит, оно не может быть выполнено, если такого вектора там нет, то есть в отображении обязательно будет хотя бы одна неподвижная точка.

1.4 Задача 4

Условие

Пусть аффинное преобразование $\phi: \mathbb{R}^n \to \mathbb{R}^n$ таково, что $\phi^m = Id$ для некоторого $m \in \mathbb{N}$. Докажите, что ϕ имеет неподвижную точку.

Решение

Рассмотрим в пространстве произвольную точку p. Если $\phi(p)=p$, то она и есть неподвижная, иначе в какой - то раз, когда мы применяем преобразование, встретится точка p (по крайней мере, на m-ый раз). Если она встретилась на n - той позиции, тогда можно рассмотреть точку O такую, что она равна $\frac{1}{n}p+\frac{1}{n}\phi(p)+\ldots+\frac{1}{n}\phi^{(n-1)}(p)$ - барицентрическая комбинация. Тогда рассмотрим $\phi(o)=\frac{1}{n}\phi(p)+\ldots+\frac{1}{n}\phi^n(p)$. Последняя комбинация - это точка O, значит, она неподвижная.

1.5 Задача 5*

1.6 Задача 6

Условие

Напишите направляющие векторы биссектрис углов, возникающих при пересечении прямых 2x-y=5 и x+3y=2 на евклидовой координатной плоскости $\mathbb R$.

Решение

Существует 2 биссектрисы, одна внутреннего, а другая - внешнего угла.

$$\frac{2x - y - 5}{\sqrt{5}} = \pm \frac{x + 3y - 2}{\sqrt{10}}$$
$$2\sqrt{2}x - \sqrt{2}y - 5\sqrt{2} = \pm (x + 3y - 2)$$
$$x(2\sqrt{2} \pm 1) - y(\sqrt{2} \pm 3) \pm 2 - 5\sqrt{2} = 0$$

Найдем направляющие векторы двух этих прямых:

$$(\sqrt{2} \pm 3, 2\sqrt{2} \pm 1)$$

1.7 Задача 7

Условие

Напишите уравнение прямой, симметричной прямой 2x-y=5 относительно прямой x+3y=2 на евклидовой координатной плоскости $\mathbb R$.

Решение

Заметим, что, во - первых, наша новая отраженная прямая будет проходить через точку пересечения данных прямых, а, во - вторых, расстояние от любой точке на данной прямой до прямой отражения равно расстоянию от образа этой точки до прямой отражения. Найдем точку пересечения:

$$\begin{cases} 2x - y = 5\\ x + 3y = 2 \end{cases}$$

Значит: $y = 2x - 5 \Rightarrow x + 6x - 15 = 2 \Rightarrow x = \frac{17}{7} \Rightarrow y = -\frac{1}{7}$

Теперь нужно найти произвольную точку, лежащую на прямой 2x-y=5. Несложно заметить, что нам вполне подойдет точка (5,5). Запишем уравнение прямой, перпендикулярной прямой отражения и проходящую через точку (5,5):

$$-3x_1 + x_2 = -15 + 5 = -10 \Rightarrow x_2 - 3x_1 + 10 = 0$$

Эта прямая пересекает прямую отражения в ортогональной проекции точки (5,5), которая имеет координаты $(\frac{16}{5},-\frac{2}{5})$. (Прим. проверьте сами, системы уравнений как будто решать не умеете, из определителя все видно). Тогда точка, противоположная (5,5) относительно данной прямой - $(2 \cdot \frac{16}{5} - 5, 2 \cdot -\frac{2}{5} - 5) = (\frac{7}{5}, -\frac{29}{5})$ Осталось только построить прямую по 2 точкам. Очевидно, что ее направляющий вектор будет равен $(\frac{17}{7} - \frac{7}{5}, -\frac{1}{7} + \frac{29}{5}) = (\frac{36}{35}, \frac{198}{35})$. Запишем уравнение прямой с таким вектором скорости, проходящей через одну из найденных точек:

$$-\frac{198}{35}x_1 + \frac{36}{35}x_2 = -\frac{3366}{245} - \frac{36}{245}$$

$$\frac{11}{35}x_1 - \frac{2}{35}x_2 = \frac{189}{245}$$

$$11x_1 - 2x_2 = 27$$

1.8 Задача 8

Условие а)

Выразите через длины сторон треугольника ABC барицентрические координаты центра его вписанной окружности, а ее радиус - через площадь треугольника и длины его сторон

Решение а)

Пусть проекция точки пересечения биссектрис на сторону AC делит ее на две части c_a и c_b .

$$\begin{aligned} \frac{c_a}{c_b} &= \frac{\gamma}{\alpha} = \frac{a}{b} \\ \alpha + \beta + \gamma &= 1 \\ \frac{\beta}{\alpha + \gamma} &= \frac{c_a}{a} = \frac{c_b}{b} \\ \frac{1 - \alpha - \gamma}{\alpha + \gamma} &= \frac{c_a}{a} = \frac{c_b}{b} \to \frac{c - c_b}{a} = \frac{c_b}{b} \to cb - c_bb = c_ba \to c_b = \frac{cb}{a + b} \end{aligned}$$

Составим систему уравнений:

$$\begin{cases} \frac{\gamma}{\alpha} = \frac{a}{b} \\ \frac{1 - \alpha - \gamma}{\alpha + \gamma} = \frac{c}{a + b} \end{cases}$$

Системы уравнений мы решать умеем, ответ:

$$\begin{cases} \alpha = \frac{b}{a+b+c} \\ \beta = \frac{c}{a+b+c} \\ \gamma = \frac{a}{a+b+c} \end{cases}$$

Радиус: $r = \frac{S}{p}$

Условие б)

То же самое, что и в пункте а), но для описанной окружности.

Решение б)

См. стр. 21 в учебнике города по геометрии.

Ответ: радиус = $\frac{abc}{4S}$, координаты: $A=a^2(b^2+c^2-a^2), B=b^2(a^2+c^2-b^2), C=c^2(a^2+b^2-c^2)$

1.9 Задача 9

Условие

Покажите, что множество 2^M всех подмножеств данного множества M образует векторное пространство над полем $\mathbb{F}_2 = \mathbb{Z}/(2) = (0,1)$ относительно операций:

$$X + Y = X \triangle Y$$
$$1 \cdot X = X$$
$$0 \cdot X = \emptyset$$

В предположении, что множество M конечно, постройте в нем какой - нибудь базис и определите размерность пространства. Всякое ли семейство таких подмножеств X_i , каждое из которых содержит хотя бы один элемент, не принадлежащий объединению остальных подмножеств, является линейно - независимым?

Решение

Проверим свойства векторного пространства:

$$\begin{split} X \bigtriangleup Y &= Y \bigtriangleup X \\ (X \bigtriangleup Y) \bigtriangleup Z &= X \bigtriangleup (Y \bigtriangleup Z) \\ X \bigtriangleup \oslash &= X \\ X - X &= X + X = X \bigtriangleup X = \varnothing \\ \lambda(\mu X) &= (\lambda \mu) X (\lambda, \mu \in (0,1)) \\ (\lambda + \mu) X &= \lambda X + \mu X (\lambda, \mu \in (0,1)) \\ \lambda(X + Y) &= \lambda X + \lambda Y (\lambda \in (0,1)) \\ 1 \cdot X &= X \end{split}$$

Базис: все подмножества из одного элемента. Тогда каждое подмножество можно однозначно задать линейной комбинацией базисных подмножеств (0 - не входит, 1 - входит). Очевидно, что тогда размерность векторного пространства V равна мощности M.

Покажем, что все такие семейства, какие требуются в условии, линейно независимы. Рассмотрим произвольное подмножество X_i из какого - то семейства. По условию в нем есть элемент, который не входит в объединение оставшихся подмножеств. Если семейство линейно зависимо, значит, каждый такой X_i можно выразить через другие X. В данном случае из - за того, что у каждого X есть уникальный элемент, мы никогда не сможем выразить одно подмножество через другие.

1.10 Задача 10

Условие

Во время своего нашумевшего тура по Зазеркалью Алиса совершила экскурсию по трёхмерной поверхности четырёхмерного куба, в ходе которой покидала каждую комнату через лаз в (а) полу (б) в противоположной стене к той, через которую проникла в эту комнату. В скольких комнатах она в итоге побывала?

Решение

- (a) Рассмотрим случай, когда Алиса начинает с верхней правой "торчащей" грани развертки. Пройдя через пол, она попадет во второй снизу кубик, оттуда в первый снизу, а далее эта грань "приклеивается" обратно к изначальной. Значит, Алиса будет в 3 комнатах.
- (b) Рассмотрим ее хождение в проекции на двумерную плоскость для большей наглядности. Пусть она начинает с одной из боковых граней и из нее идет в другую боковую грань. Несложно догадаться, что таким образом на каждом своем шаге она будет попадать в боковую грань, а значит, всего побывает в 4 комнатах.

1.11 Задача 11

Условие

В четырехмерном аффинном пространстве заданы непересекающиеся двумерная плоскость \prod и прямая l с вектором скорости v. Заметают ли прямые (ab) при $a \in l, b \in \prod$ все пространство?

Решение

Проведем через l плоскость, которая будет параллельна плоскости \prod . Тогда очевидно, что любая прямая, проведенная через нашу проведенную плоскость, не будет заметаться (ab), ведь точки этой прямой могут не принадлежать l и, соответственно, как бы мы ни проводили прямые, на них мы не попадем.

1.12 Задача 12

Условие

Обозначим через $A,\,B,\,C,\,D$ и E концы стандартных базисных векторов в \mathbb{R}^5 , а через X - середину отрезка, соединяющего центры треугольников ABC и CDE. Проходящая через X прямая YZ имеет точку Y на прямой AE, а точку Z - в плоскости BCD. Найдите $\overline{XY}:\overline{YZ}$

Решение

Очевидно, что базисные векторы имеют координаты $A=(1,0,0,0,0),\ B=(0,1,0,0,0),\ C=(0,0,1,0,0),\ D=(0,0,0,1,0)$ и E=(0,0,0,0,1). Запишем координаты центров O_1 и O_2 треугольников ABC и CDE:

$$O_1 = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, 0\right)$$
$$O_2 = \left(0, 0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

Тогда середина вектора $\overline{O_1O_2}$, очевидно, имеет координату $(\frac{1}{6},\frac{1}{6},\frac{1}{3},\frac{1}{6},\frac{1}{6})$. Несложно заметить, что точка Y=(a,0,0,0,1-a), а Z=(0,b,c,d,0), где сумма b+c+d равна единице. Прямая XY проходит через Z, что возможно лишь в одном случае: когда $a=1-a\Rightarrow a=\frac{1}{2}$. Запишем точку Z через барицентрические координаты:

$$Z = \alpha Y + (1 - \alpha)Z \Rightarrow \frac{1}{2}\alpha = (\alpha - 1)\frac{1}{6}$$

$$\Rightarrow \frac{1}{3}\alpha = -\frac{1}{6}$$

$$\Rightarrow \alpha = -\frac{1}{2}$$

$$\Rightarrow Z = \left(0, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, 0\right)$$

Так как $\alpha = -\frac{1}{2}, XY : YZ = 1 : 2$

- 1.13 Задача 13
- 1.14 Задача 14

1.15 Задача 15

Условие

Сколько прямых в n - мерном аффинном пространстве над полем из q элементов? А сколько (невырожденных) треугольников на плоскости? А сколько плоскостей в m - мерном аффинном пространстве?

Решение

Всего в таком пространстве будет q^n точек. Через каждую точку проходит $\frac{q^n-1}{q-1}$ прямая, каждая точка лежит на q прямых. Тогда если мы умножим количество точек на количество прямых, на которых она лежит, и потом разделим на количество точек, лежащих на одной прямой. Получим формулу: $\frac{q^n \frac{q^n-1}{q-1}}{q} = q^{(n-1)} \frac{q^n-1}{q-1}$. Вудем выбирать треугольники на плоскости. Первую точку в q - элементном аффинной плоскости можно выбрать q^2 способами. Вторую можно взять любую, кроме уже выбранной, то есть q^2-1 способами. Третья точка не должна лежать с этими двумя на одной прямой или совпадать, так как треугольник невырожденный, значит, ее можно выбрать q^2-q способами. Каждый треугольник мы посчитаем 3! раз, потому что всего существует столько перестановок трех точек. Итоговая формула: $\frac{q^2(q^2-1)(q^2-q)}{6}$.

Рассмотрим количество способов выбрать три неколлинеарные точки в конечном аффинном пространстве: если оно порядка q, то количество способов: $q^m(q^m-1)(q^m-q)$. Некоторые плоскости мы посчитали несколько раз, поэтому надо еще разделить на $q^{m-1}(q^{m-1}-1)(q^{m-1}-q)$. Итоговая формула: $q^{\frac{q^m-1}{q^{m-2}-1}}$.

1.16 Задача 16

Условие

Может ли поле из 16 элементов содержать подполе из 8 элементов?

Решение

Пусть какое - то поле A является подполем 16 - элементного поля B. Тогда B - векторное пространство над A, из чего следует, что количество элементов в поле B - это какая - то степень количества элементов поля A. В данном случае это не выполнено, значит, такого не может быть (16 не является степенью 8).

1.17 Задача 17

Условие

Может ли двумерное векторное пространство над бесконечным полем оказаться объединением конечного числа прямых? Другие варианты этой же задачи: может ли векторное пространство над бесконечным полем оказаться объединением конечного числа векторных подпространств коразмерности 1? А конечного числа подпространств произвольных положительных коразмерностей?

Решение

Пусть имеется N прямых. Тогда всего точек, у которых координаты целые и лежат в пределах от α до $\alpha+N+1$ - $(N+1)^2$. Можно выбрать α так, чтобы не было прямых вида x=c. Каждая прямая содержит не более, чем N+1 точку, при этом прямых - N, значит, точек, принадлежащих им, не более, чем $N^2+N<(N+1)^2$. Значит, это невозможно.

Пусть есть N подпространств, у каждого из которых размерность k. Рассмотрим все точки с целыми координатами от 0 до N+1. Аналогично решению выше, таких точек всего не менее, чем $(N+1)^{k+1}$. Все подпространства либо содержат среди своих координат 0, либо по одной из координат можно точно определить все остальные, значит, точек всего $N(N+1)^k < (N+1)^{k+1}$

1.18 Задача 18

Условие

Векторное подпространство $V \in \mathbb{K}[x]$ содержит многочлены всех степеней от нуля до m. Верно ли, что оно содержит все многочлены степени $\leqslant m$?

Решение

Если в подпространстве есть многочлены всех степеней до m, значит, базис этого подпространства также содержит все многочлены степени от 0 до m, иначе невозможно было бы выразить через него какие - то из многочленов, которые есть в условии. Тогда рассмотрим произвольный многочлен степени $\leq m$. Так как в базисе есть многочлен такой степени, и находимся мы над полем $\mathbb{K}[x]$, то можно домножить многочлен из базиса на какое - то число так, чтобы коэффициент при старшей степени совпадал с коэффициентом выбранного нами произвольного многочлена. Далее такую же операцию можно провести со следующей за старшей степенью и т. д. Таким образом, через базис можно выразить многочлен любой степени, меньшей либо равной m.

1.19 Задача 19

Условие

Пусть $\mathbb{K} \subset \mathbb{F}$ - два поля, и \mathbb{F} - конечномерно как векторное пространство над \mathbb{K} . Верно ли, что любой элемент поля \mathbb{F} корнем некоторого многочлена из $\mathbb{K}[x]$?

Решение

Пусть $\dim(\mathbb{F}) = m$. Тогда рассмотрим в это поле точку a и отображение f: каждому многочлену из $\mathbb{K}[x]$, $\deg \leqslant m$ сопоставляет его значение в точке a. Оба множества - векторные пространства над \mathbb{K} . Это отображение линейно, в этом легко убедиться. Размерность пространства многочленов равна m+1, а пространства \mathbb{F} - m. Как известно, $\dim(V) = \dim(\ker(f)) + \dim(\inf(f))$. В силу того, что размерность ядра ≥ 1 , можно сказать, что \exists ненулевой многочлен, зануляющийся в точке a.

1.21 Задача 21

Условие

Покажите, что для любых пяти различных точек на координатной плоскости \mathbb{K}^2 существует кривая второй степени, проходящая через эти пять точек.

Решение

Рассмотрим какие - то 5 различных точек с координатами (x_i, y_i) , где $i \in [1, 5], i \in \mathbb{N}$:

$$\begin{cases} ax_1^2 + by_1^2 + cx_1 + dy_1 + e = 0 \\ ax_2^2 + by_2^2 + cx_2 + dy_2 + e = 0 \\ ax_3^2 + by_3^2 + cx_3 + dy_3 + e = 0 \\ ax_4^2 + by_4^2 + cx_4 + dy_4 + e = 0 \\ ax_5^2 + by_5^2 + cx_5 + dy_5 + e = 0 \end{cases}$$

Это линейная система из 5 уравнений с 5 неизвестными. Она имеет единственное решение, если никакие два уравнения в ней непропорциональны. Несложно заметить, что если какие - то числа пропорциональны, то и их квадраты тоже, поэтому достаточно будет рассматривать только последние три коэффициента. Рассмотрим их для двух произвольных уравнений и посмотрим, в каких случаях они пропорциональны:

$$\frac{x_i}{x_j} = \frac{y_i}{y_j} = \frac{1}{1} = 1 \to x_i = x_j, \quad y_i = y_j$$

То есть если какие - то два уравнения пропорциональны, то какие - то две из рассматриваемых нами точек совпадают, что противоречит условию. Значит, наше уравнение имеет единственное решение и для всех таких точек задает однозначно кривую второго порядка.

1.22 Задача 22*

Условие

Покажите, что в счётномерном пространстве всякое подпространство конечномерно или счётномерно, а всякое несчётное множество векторов линейно зависимо.

Решение

Размерность подпространства всегда меньше либо равна размерности пространства (базис пространства - порождающий для подпространства). Мощность, меньшая либо равная счетной - счетная либо конечная, значит, линейно - независимое подпространство имеет базис именно таких мощностей. Если базис подпространства несчетный, то он больше базиса пространства, это противоречит нашему условию, значит, это не базис и в нем есть линейно зависимые векторы.

1.23 Задача 23*

1.24 Задача 24

Условие

Квадратная вещественная матрица называется бистохастической, если сумма элементов в каждой ее строке и в каждом ее столбце равна единице. Верно ли, что произведение бистохастических матриц всегда является

Решение

Попробуем разобраться, что получится в i-ой строке (в j-ом столбце аналогично) после перемножения матриц с элементами x_{ij} и y_{ij} . Для i-ой строки на каком - то месте ik (сначала всегда номер строки) стоит сумма произведений i-ой строки с k-ым столбцом (по правилу умножения матриц). Посмотрим, чему равна сумма всех элементов этой строки. Это все попарные произведения со всеми столбцами. Если записывать это в терминах x и y, несложно заметить, что сумма i-ой строки равна:

$$S = (x_{i1}y_{11} + x_{i2}y_{21} + \dots + x_{in}y_{n1} + x_{i1}y_{12} + x_{i2}y_{22} + \dots + x_{in}y_{n2} + \dots + x_{i1}y_{1n} + x_{i2}y_{2n} + \dots + x_{in}y_{nn}) =$$

$$= x_{i1}(y_{11} + y_{12} + \dots + y_{1n}) + x_{i2}(y_{21} + y_{22} + \dots + y_{2n}) + \dots + x_{in}(y_{n1} + y_{n2} + \dots + y_{nn})$$

Заметим, что все суммы в скобках - по условию единицы, так как это суммы всех элементов строк второй матрицы. Тогда наше выражение примет вид:

$$S = x_{i1} + x_{i2} + \ldots + x_{in} = 1$$

Это выражение - сумма і - той строки первой матрицы, она тоже равна единице. Таким образом, в каждой строке и в каждом столбце получившейся после умножения матрицы сумма элементов равна 1. значит, она также является бистохастической.

1.25 Задача 25

Условие

Покажите, что если у матрицы A все строки пропорциональны друг другу, то матрица A^2 пропорциональна A.

Решение

Так как строки матрицы пропорциональны, в каждой строке все элементы x_i домножаются на одно и то же число, а каждый столбец состоит из чисел вида a_jx_i , где i - номер столбца, j - номер строки, причем x_i одинаковый во всех столбцах. Значит, построчно у нас сохраняются значения коэффициента, а по столбцам значения элемента, который мы на коэффициент домножаем. При возведении матрицы в квадрат в каждую ячейку записывается произведение i - ого столбца и j - той строки, каждое из которых представляется в виде суммы попарных произведений элементов. Можно для каждой такой ячейки вынести за скобку значение элемента и значение коэффициента, которые сохраняются по нашим предыдущим наблюдениям в столбцах и строках соответственно, и получить в скобках для всех ячеек одинаковые суммы вида a_ix_i . Очевидно, что если у всех элементов есть такой множитель, его можно вынести и получить нашу изначальную матрицу, умноженную на сумму чисел вида a_ix_i .

Приложение с реального коллоквиума

1.26 Про матрицы

Условие

Сколько существует матриц 3×3 над $\mathbb F$ из q элементов таких, что их строки порождают двумерное подпространство $\mathbb F_{\sigma^3}$?

Решение

Случай 1: Первый вектор - нулевой, второй - любой ненулевой, третий - любой, непропорциональный второму. Всего вариантов: $1 \cdot (q^3 - 1) \cdot (q^3 - q)$.

Случай 2: Первый вектор - ненулевой, второй пропорционален первому, всего вариантов: $(q^3-1)\cdot q\cdot (q^3-q)$ Случай 3: Первые два - непропорциональны, третий выражается через них: $(q^3-1)\cdot (q^3-q)\cdot q^2$ Итог: $(q^3-1)\cdot (q^3-q)\cdot (1+q+q^2)$

1.27 Про базис

Условие

Если e_1, e_2, e_3 - базис, u_1, u_2 - непропорциональны, e_1, u_2, e_3 - базис, u_1, e_2, e_3 - тоже базис. Всегда ли u_1, u_2, e_3 - базис?

Решение

Нет, не всегда, если $e_1=(1,0,0),\ e_2=(0,1,0),\ e_3=(0,0,1),\ u_1=(1,1,0),\ u_2=(1,1,1),$ то это не базис.