Priporočilni sistemi

Karmen Gostiša (63130057)

6. januar 2018

1 Uvod

Cilj naloge je na podlagi podatkov zgraditi priporočilni sistem, s katerim poslušalcu na podlagi njegovega profila rangiramo oziroma priporočamo glasbene izvajalce.

2 Opis metod

Pri vseh metodah sem uporabila enak način priprave podatkov in sicer podatke iz datotek user_artists_training.dat ter user_artists_test.dat sem naložila v strukturi dataframe knjižnice Pandas.

- MF V tem pristopu sem zgradila priporočilni sistem z uporabo matričnega razcepa (slika 1). Matriki P in Q sem v Pythonu predstavila s slovarjema. Vse parametre sem določila eksperimentalno glede na izračunani RMSE. V algoritmu sem iterirala čez posamezni učni primer in popravljala vrednosti v matrikah P in Q. Po zaključenem sprehodu čez učne primere sem izračunala RMSE. V kolikor se je napaka zmanjšala za manj kot 0,0001, sem s celotnim postopkom zaključila, sicer ponovila od začetka.
- **MF**+**B** Vse popolnoma enako kot pri zgornji metodi MF, le da sem upoštevala še pristranskost uporabnikov in izvajalcev ter globalno pristranskost.
- **B** V tej metodi sem upoštevala le pristranskost, ki sem jo izračunala kot povprečje ocen uporabnika in povprečje ocen izvajalca.

Slika 1: Razcep matrike R na manjši matriki P in Q.

3 Rezultati

Ime metode	Oddaja	Ocena s pre- verjanjem na učnih podatkih	Ocena na tekmo- valnem strežniku
MF		2,63341	2,66759
$\mathrm{MF}{+}\mathrm{B}$		1,84716	1,94942
В	*	1,67988	1,90378

Tabela 1: Rezultati razvitih priporočilnih sistemov.

Izkazalo se je, da metoda B, ki upošteva le pristranskost uporabnika ter popularnost izvajalcev, deluje najbolje. Tej metodi se zelo približa metoda MF+B, a rezultatov matrični razcep ne izboljša, kar je zelo zanimiva ugotovitev.

Za tretji del naloge sem na konec datoteke user_artists_training.dat dodala svojih 20 ocen za izvajalce (datoteka user_artists_training_my_ratings.dat) in sicer:

1. Uriah Heep: 9	8. Twisted Sister: 8	15. Eric Clapton: 6
2. Bonnie Tyler: 9	9. Skid Row: 10	16. Tokio Hotel: 9
3. Slash: 10	10. Joe Satriani: 7	17. Ke\$ha: 0
4. Justin Bieber: 0	11. ABBA: 8	
5. Selena Gomez: 0	12. Bruno Mars: 4	18. Sea Wolf: 8
6. Coldplay: 5	13. AC/DC: 8	19. Nickelback: 1
7. Lady Gaga: 7	14. Dire Straits: 9	20. Boney M: 7

Z uporabo metode MF+B sem naučila model in dobila naslednja priporočila izvajalcev s pripadajočo napovedano oceno:

Rezultati priporočanih izvajalcev so nekoliko čudni, saj mi te izvajalci niso poznani. Glede na to, da sem visoke ocene podelila znanim rock izvajalcem, bi pričakovala, da mi bo v seznamu

^{5.} Matell: 6,675 10. Blood Ruby: 6,622

priporočil prikazal vsaj kakšnega, ki je tudi precej poznan. Vseeno pa so dobljeni rezultati dobri za širjenje obzorja in dajanje priložnosti novim izvajalcem, ki mi bodo morda všeč.

4 Izjava o izdelavi domače naloge

Domačo nalogo in pripadajoče programe sem izdelala sama.