Curso de Data Science

Prof. MSc. Eng. Marcelo Bianchi

Trabalho 1

Grupo 4

In [2]:

Integrantes: Daniel Moreira, Lia Morimoto, Raphael Bezerra, Thainan Abreu

Parte 2: Regressão Linear Múltipla

Predição: Preço das casas

Importando as bibliotecas

df2 = pd.read_csv('dataset2.csv')

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
```

1) Importar o Dataset e aplicar a técnica Missing Data

```
      df2.head()

      Out[2]:
      bedrooms
      bathrooms
      floors
      condition
      grade
      yr_built
      yr_renovated
      zipcode
      Location
      House price

      0
      3
      1
      1
      3
      7
      1955
      0
      98178
      Paulista
      221900

      1
      3
      225
      2
      3
      7
      1951
      1991
      98125
      Aclimação
      538000
```

4	3	2	1	3	8	1987	0	98074	Paulista	510000
3	4	3	1	5	7	1965	0	98136	Mooca	604000
2	2	1	1	3	6	1933	0	98028	Campo Belo	180000

```
In [3]: # renomeando as colunas para português
df2.columns = ["quartos", 'banheiros', "andares", "condicao", "avaliacao", "construcao", "ano_reforma", "CEP", "local", "preco"]
df2.head()
```

	preco	local	CEP	ano_reforma	construcao	avaliacao	condicao	andares	banneiros	quartos		Out[3]:
)	221900	Paulista	98178	0	1955	7	3	1	1	3	0	
1	538000	Aclimação	98125	1991	1951	7	3	2	225	3	1	
)	180000	Campo Belo	98028	0	1933	6	3	1	1	2	2	
1	604000	Mooca	98136	0	1965	7	5	1	3	4	3	
)	510000	Paulista	98074	0	1987	8	3	1	2	3	4	

3) Aplicar Feature Scaling (Se for aplicável, se não for então justificar)

```
# Ajustando a escala da variável dependente por um fator de 10.000
# por simplicidade e para manter a coerencia entre ordens de grandeza das variáveis independentes e da saída
df2["preco"] = df2["preco"]/10000
df2 = df2.rename(columns={"preco":"preco(*10k)"})
df2.head()
```

Out[4]:		quartos	banheiros	andares	condicao	avaliacao	construcao	ano_reforma	CEP	local	preco(*10k)
	0	3	1	1	3	7	1955	0	98178	Paulista	22.19
	1	3	225	2	3	7	1951	1991	98125	Aclimação	53.80
	2	2	1	1	3	6	1933	0	98028	Campo Belo	18.00
	3	4	3	1	5	7	1965	0	98136	Mooca	60.40
	4	3	2	1	3	8	1987	0	98074	Paulista	51.00

```
In [5]: #descartando os dois valores extremos na variável dependente

df2_precos_out = df2[df2['preco(*10k)'] > 100 ]
    df2 = df2.drop(df2_precos_out.index, axis=0)
```

A coluna CEP não traz a princípio nenhuma informação extra e seu tratamento como variável categórica geraria diversas outras dummy variables. Logo sera dropada.

```
In [6]:
    df2.drop(columns = ['CEP'], inplace = True)
    df2.head()
```

ut[6]:		quartos	banheiros	andares	condicao	avaliacao	construcao	ano_reforma	local	preco(*10k)
	0	3	1	1	3	7	1955	0	Paulista	22.19
	1	3	225	2	3	7	1951	1991	Aclimação	53.80
	2	2	1	1	3	6	1933	0	Campo Belo	18.00
	3	4	3	1	5	7	1965	0	Mooca	60.40
	4	3	2	1	3	8	1987	0	Paulista	51.00

A coluna "ano_reforma" não oferece, a princípio, nenhuma informação útil. Dessa forma, propõe-se um indicador "anos_sem_reforma" tomando como base nosso ano atual (2021) e o ano da última reforma ou, caso não haja, o ano de contrução

```
In [7]:
    df2["ano_reforma"] = 2021- (df2[["ano_reforma", "construcao"]].max(axis=1))
    df2["ano_reforma"].head()
```

Out[7]: 0 66 1 30 2 88 3 56 4 34

Out[8]

Name: ano_reforma, dtype: int64

O indicador "anos_sem_reforma" substitui a coluna "ano_reforma"

```
In [8]:
    df2 = df2.rename(columns={"ano_reforma":"anos_sem_reforma"})
    df2.head()
    ## construção do indicador relativo ao número de anos desde a última reforma
```

]:		quartos	banheiros	andares	condicao	avaliacao	construcao	anos_sem_reforma	local	preco(*10k)
	0	3	1	1	3	7	1955	66	Paulista	22.19
	1	3	225	2	3	7	1951	30	Aclimação	53.80
	2	2	1	1	3	6	1933	88	Campo Belo	18.00
	3	4	3	1	5	7	1965	56	Mooca	60.40
	4	3	2	1	3	8	1987	34	Paulista	51.00

```
In [9]: X = df2.iloc[:, :-1] #variáveis independentes
y = df2.iloc[:, 8] # variável dependente
```

In [10]: X.head()

Out[10]: quartos banheiros andares condição avaliação construção anos sem reforma local 0 1 3 1955 Paulista 225 1951 30 Aclimação 2 2 1 3 6 1 1933 88 Campo Belo 3 1965 56 Mooca 3 2 3 1987 Paulista

4) Aplicar Dummy Variable (Se for aplicável, se não for então justificar)

```
In [11]: # codificando a variável categórica 'local'

from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.compose import ColumnTransformer
ct = ColumnTransformer([("Location",OneHotEncoder(),[7])], remainder = 'passthrough')
X = ct.fit_transform(X)

# Avoiding the Dummy Variable Trap
X = X[:, 1:]
```

2) Dividir o dataset entre o Training Set e o Test Set

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
```

5) Aplicar a Multiple Linear Regression

coef std err

t P>|t|

[0.025

0.975]

```
In [13]:
            # Construindo o modelo ótimo para a regressão múltipla usando eliminação retroativa
            # import statsmodels.formula.api as sm
            import statsmodels.regression.linear_model as sm
            X= np.append(arr = np.ones((26,1)).astype(int), values = X, axis =1)
            X_{\text{opt}} = X[:,[0,1,2,3,4,5,7,8,9,10]]
            X_opt = np.array(X_opt, dtype=float)
            regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit()
            regressor_OLS.summary()
            #Eliminar o maior P-valor do sumário a cada etapa até restar o index e a coluna de interesse (index+1) em X
                               OLS Regression Results
Out[13]:
               Dep. Variable:
                                  preco(*10k)
                                                                  0.564
                                                    R-squared:
                     Model
                                         OLS
                                                Adi. R-squared:
                                                                  0.319
                    Method
                                Least Squares
                                                     F-statistic:
                                                                  2.300
                      Date:
                             Tue, 16 Mar 2021 Prob (F-statistic):
                                                                 0.0701
                      Time:
                                     18:52:14
                                                Log-Likelihood:
                                                                -101.94
           No. Observations:
                                                          AIC:
                                                                  223.9
                                          26
                Df Residuals
                                          16
                                                           BIC:
                                                                  2365
                  Df Model:
                                           9
            Covariance Type:
                                   nonrobust
                                                              0.9751
                      coef
                           std err
                                         t P>|t|
                                                     [0.025
           const 421.4887 307.228
                                     1.372 0.189
                                                   -229.806 1072.783
                    2.6982
                                     0.203 0.842
                                                    -25.467
                                                              30.863
                             13.286
                    -7.7939
                             12.753
                                    -0.611 0.550
                                                    -34.829
                                                              19.241
              x2
                                    -0.334 0.743
                                                    -30.556
                                                              22.245
              х3
                   -4.1555
                             12.453
              х4
                   -1.3162
                             11.236
                                     -0.117 0.908
                                                    -25.135
                                                              22.502
                    4.1977
                              5.388
                                     0.779 0.447
                                                     -7.225
                                                              15.620
                    -0.2337
                              0.918
                                     -0.255 0.802
                                                     -2.180
                                                               1.713
              х6
              х7
                    1.4377
                              5.253
                                     0.274 0.788
                                                     -9.698
                                                              12.574
              х8
                   17.0969
                              5.891
                                     2.902 0.010
                                                      4.609
                                                              29.585
                    -0.2653
                              0.156
                                     -1.697 0.109
                                                     -0.597
                                                                0.066
                                                        2.061
                 Omnibus: 0.214
                                   Durbin-Watson:
           Prob(Omnibus): 0.899
                                  Jarque-Bera (JB):
                                                        0.059
                    Skew: 0.101
                                         Prob(JB):
                                                        0.971
                  Kurtosis: 2.885
                                         Cond. No. 1.97e+05
          Notes:
          [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
          [2] The condition number is large, 1.97e+05. This might indicate that there are
          strong multicollinearity or other numerical problems.
In [14]:
            #Eliminada a coluna 4
            X_{\text{opt}} = X[:,[0,1,2,3,5,7,8,9,10]]
            X_{opt} = np.array(X_{opt}, dtype=float)
            regressor_OLS = sm_OLS(endog = y, exog = X_opt).fit()
            regressor_OLS.summary()
                               OLS Regression Results
Out[14]:
               Dep. Variable:
                                  preco(*10k)
                                                    R-squared:
                                                                  0.564
                     Model:
                                         OLS
                                                Adj. R-squared:
                                                                  0.358
                                                     F-statistic:
                                                                  2.745
                    Method:
                                Least Squares
                      Date:
                             Tue, 16 Mar 2021 Prob (F-statistic):
                                                                 0.0381
                      Time
                                     18:52:14
                                                Log-Likelihood:
                                                                -101.95
           No. Observations:
                                          26
                                                          AIC:
                                                                  221.9
                Df Residuals:
                                          17
                                                           BIC:
                                                                  233.2
                  Df Model:
                                           8
            Covariance Type:
                                   nonrobust
```

```
const 416.3096 295.079
                           1.411 0.176
                                         -206.253
                                                  1038.873
         3.7040
                   9.840
                           0.376 0.711
                                          -17.057
                                                     24.465
         -6.9128
                   9.995
                          -0.692 0.499
                                           -28.001
                                                     14.175
                                                     17.742
  хЗ
        -3.3342
                   9.990
                          -0.334 0.743
                                          -24.410
  x4
         4.2962
                   5.166
                           0.832 0.417
                                            -6.602
                                                     15.195
  х5
         -0.2223
                   0.886
                          -0.251 0.805
                                            -2.092
                                                       1.647
  х6
         1.3393
                   5.033
                           0.266 0.793
                                            -9.279
                                                     11.958
        17.0983
                                            5.035
  x7
                   5.718
                           2.991 0.008
                                                     29.161
  х8
         -0.2631
                   0.151
                          -1.747 0.099
                                            -0 581
                                                       0.055
      Omnibus: 0.190
                                              2.072
                         Durbin-Watson:
Prob(Omnibus): 0.909
                                              0.039
                        Jarque-Bera (JB):
         Skew: 0.076
                               Prob(JB):
                                              0.981
       Kurtosis: 2.887
                               Cond. No. 1.95e+05
```

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.95e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [15]:
             #Eliminada a coluna 7
             X_{\text{opt}} = X[:,[0,1,2,3,5,8,9,10]]
             X_opt = np.array(X_opt, dtype=float)
regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit()
             regressor_OLS.summary()
                                 OLS Regression Results
Out[15]:
                                     preco(*10k)
                Dep. Variable:
                                                        R-squared:
                                                                       0.562
                       Model:
                                            OLS
                                                    Adj. R-squared:
                                                                       0.392
                     Method:
                                   Least Squares
                                                         F-statistic:
                                                                       3.300
                        Date:
                               Tue, 16 Mar 2021 Prob (F-statistic):
                                                                      0.0194
                        Time:
                                        18:52:14
                                                   Log-Likelihood:
                                                                     -102.00
            No. Observations:
                                             26
                                                               AIC:
                                                                       220.0
                 Df Residuals:
                                              18
                                                               BIC:
                                                                       230.1
                    Df Model:
                                      nonrobust
             Covariance Type:
                                            t P>|t|
                                                         [0.025
                                                                  0.975]
                        coef
                              std err
            const 377.6323 244.957
                                        1.542 0.141
                                                       -137.002 892.267
               х1
                      3.1639
                                        0.338 0.739
                                                        -16.477
                                                                  22.804
                                9.348
               x2
                     -7.9269
                                8.900
                                       -0.891 0.385
                                                        -26.625
                                                                  10.771
               хЗ
                     -3.9968
                                9.380
                                       -0.426 0.675
                                                        -23.703
                                                                  15.710
                      3.9720
                                4.869
                                        0.816 0.425
                                                         -6.258
                                                                  14.202
               х4
                      0.9979
                                        0.212 0.835
                                                         -8.913
                                                                  10.909
               x5
                                4.718
               х6
                     16.9909
                                5.551
                                        3.061 0.007
                                                          5.329
                                                                  28.653
                     -0.2420
                                0.122
                                       -1.989 0.062
                                                         -0.498
                                                                   0.014
                  Omnibus: 0.455
                                      Durbin-Watson:
                                                            2.120
            Prob(Omnibus): 0.797
                                    Jarque-Bera (JB):
                                                            0.146
                      Skew: 0.183
                                             Prob(JB):
                                                            0.930
                                            Cond. No. 1.66e+05
                   Kurtosis: 2.967
```

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.66e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [16]: #Eliminada a coluna 1
X_opt = X[:,[0,2,3,5,8,9,10]]
X_opt = np.array(X_opt, dtype=float)
regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit()
regressor_OLS.summary()
```

Out[16]:

	Model	:	Ol	LS A	Adj. R-squared: 0.42			
	Method	: Le	ast Square	es	F-statis	tic: 4	.018	
	Date	: Tue, 1	6 Mar 202	21 Pro l	b (F-statist	ic): 0.00	913	
	Time	:	18:52:1	14 L o	g-Likeliho	od: -10	2.08	
No. Ob	oservations	:	2	26	А	. IC : 2	18.2	
D	f Residuals	:	1	19	В	IC: 2	27.0	
	Df Model	:		6				
Covar	riance Type	:	nonrobu	st				
	coef	std err	t	P> t	[0.025	0.975]		
const	389.7734	236.602	1.647	0.116	-105.440	884.987		
х1	-8.9494	8.174	-1.095	0.287	-26.058	8.159		
х2	-4.6361	8.971	-0.517	0.611	-23.413	14.141		
х3	3.7066	4.692	0.790	0.439	-6.115	13.528		
х4	1.1937	4.572	0.261	0.797	-8.375	10.762		
х5	16.7093	5.359	3.118	0.006	5.493	27.926		
х6	-0.2467	0.118	-2.090	0.050	-0.494	0.000		
	Omnibus:	0.234	Durbin-	Watson	: 2.039	9		
Prob(C	Omnibus):	0.890	Jarque-B	era (JB):	: 0.023	3		
	Skew:	0.065	Р	rob(JB):	: 0.989	Ð		
	Kurtosis:	2.934	Co	nd. No	. 1.65e+05	5		

preco(*10k)

R-squared:

0.559

Dep. Variable:

Notes

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.65e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [17]: #ELiminada a coluna 8
    X_opt = X[:,[0,2,3,5,9,10]]
    X_opt = np.array(X_opt, dtype=float)
    regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit()
    regressor_OLS.summary()
Out[17]: OLS Regression Results
```

Dep. Variable: preco(*10k) 0.558 R-squared: Model: OLS Adj. R-squared: 0.447 Method: Least Squares F-statistic: 5.043 Tue, 16 Mar 2021 **Prob (F-statistic):** 0.00377 Date: Log-Likelihood: Time: 18:52:14 -102.13 No. Observations: 26 AIC: 216.3 **Df Residuals:** 20 223.8 Df Model: 5

nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	418.9774	203.580	2.058	0.053	-5.684	843.639
х1	-8.7708	7.953	-1.103	0.283	-25.361	7.820
х2	-3.9597	8.386	-0.472	0.642	-21.454	13.534
хЗ	3.5584	4.548	0.782	0.443	-5.929	13.046
х4	16.6311	5.224	3.183	0.005	5.733	27.529
х5	-0.2590	0.106	-2.452	0.024	-0.479	-0.039

 Omnibus:
 0.184
 Durbin-Watson:
 2.037

 Prob(Omnibus):
 0.912
 Jarque-Bera (JB):
 0.026

 Skew:
 0.057
 Prob(JB):
 0.987

 Kurtosis:
 2.896
 Cond. No.
 1.45e+05

Notes:

Covariance Type:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 1.45e+05. This might indicate that there are strong multicollinearity or other numerical problems. In [18]: #Eliminada a coluna 3 $X_{opt} = X[:,[0,2,5,9,10]]$ X_opt = np.array(X_opt, dtype=float)
regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit() regressor_OLS.summary() **OLS Regression Results** Out[18]: preco(*10k) 0.553 Dep. Variable: R-squared: Model: OLS Adj. R-squared: 0.468 Method: Least Squares F-statistic: 6.487 Tue, 16 Mar 2021 **Prob (F-statistic):** 0.00146 Date: 18:52:14 Log-Likelihood: -102 27 Time No. Observations: 26 AIC: 214.5 Df Residuals: 21 220.8 Df Model: 4 **Covariance Type:** nonrobust

coef std err t P>|t| [0.025 0.975] const 453.4832 186.462 2.432 0.024 65.715 841.252 -7 3035 x1 7 184 -1.017 0.321 -22 244 7.637 x2 2.4646 3.841 0.642 0.528 -5.523 10.452 17.3287 4.918 3.524 0.002 7.102 27.555 -0.2781 0.096 -2.904 0.008 -0.477 -0.079

Omnibus: 0.073 **Durbin-Watson:** 2.054 Prob(Omnibus): 0.964 Jarque-Bera (JB): 0.042 **Skew:** 0.001 Prob(JB): 0.979 Kurtosis: 2.802 Cond. No. 1.35e+05

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 1.35e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [19]:
          #Eliminada a coluna 5
          X_{opt} = X[:,[0,2,9,10]]
          X_opt = np.array(X_opt, dtype=float)
          regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit()
          regressor_OLS.summary()
```

OLS Regression Results Out[19]:

Dep. Variable: preco(*10k) 0.544 R-squared: 0.482 Model: OLS Adj. R-squared: F-statistic: Method Least Squares 8.747 Date: Tue, 16 Mar 2021 **Prob (F-statistic):** 0.000524 18:52:14 Log-Likelihood: Time: -102.52 AIC: No. Observations: 26 213.0 **Df Residuals:** 22 BIC: 2181 Df Model:

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.9751 const 456.8788 183.878 2.485 0.021 75.540 838.218 -6.1352 6.856 -0.895 0.381 -20.354 8.084 x2 18.5605 4.466 4.156 0.000 9.298 27.823 хЗ -0.2806 0.094 -2.972 0.007 -0.476-0.085 Omnibus: 0.222 **Durbin-Watson:** 2.080

Prob(Omnibus): 0.004 0.895 Jarque-Bera (JB): -0.008 Prob(JB): 0.998 Skew: **Kurtosis:** 2.945 Cond. No. 1.35e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.35e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [20]: #Eliminada a coluna 2
X_opt = X[:,[0,9,10]]
X_opt = np.array(X_opt, dtype=float)
regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit()
regressor_OLS.summary()
```

Out[20]:

OLS Regression Results

Dep. Variable:	preco(*10k)	R-squared:	0.527
Model:	OLS	Adj. R-squared:	0.486
Method:	Least Squares	F-statistic:	12.83
Date:	Tue, 16 Mar 2021	Prob (F-statistic):	0.000181
Time:	18:52:15	Log-Likelihood:	-102.99
No. Observations:	26	AIC:	212.0
Df Residuals:	23	BIC:	215.8
Df Model:	2		
Covariance Type:	nonrobust		

 const
 413.6313
 176.642
 2.342
 0.028
 48.219
 779.044

 x1
 19.7819
 4.234
 4.672
 0.000
 11.022
 28.541

 x2
 -0.2637
 0.092
 -2.863
 0.009
 -0.454
 -0.073

 Omnibus:
 0.379
 Durbin-Watson:
 2.005

 Prob(Omnibus):
 0.827
 Jarque-Bera (JB):
 0.258

 Skew:
 0.224
 Prob(JB):
 0.879

 Kurtosis:
 2.805
 Cond. No.
 1.30e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.3e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [21]: #Eliminada a coluna 10

X_opt = X[:,[0,9]]
X_opt = np.array(X_opt, dtype=float)
regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit()
regressor_OLS.summary()
```

Out[21]:

OLS Regression Results

Dep. Variable:	preco(*10k)	R-squared:	0.359
Model:	OLS	Adj. R-squared:	0.332
Method:	Least Squares	F-statistic:	13.44
Date:	Tue, 16 Mar 2021	Prob (F-statistic):	0.00122
Time:	18:52:15	Log-Likelihood:	-106.95
No. Observations:	26	AIC:	217.9
Df Residuals:	24	BIC:	220.4
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-84.6800	34.319	-2.467	0.021	-155.511	-13.849
х1	17.3302	4.728	3.666	0.001	7.572	27.088

 Omnibus:
 2.454
 Durbin-Watson:
 1.607

 Prob(Omnibus):
 0.293
 Jarque-Bera (JB):
 1.497

 Skew:
 0.583
 Prob(JB):
 0.473

 Kurtosis:
 3.141
 Cond. No.
 84.0

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
A coluna 9 corresponde à coluna de X relativa às "avaliacoes": X_test[:,8] e X_train[:,8]
```

```
In [22]: # Após a Backward Elimination, o modelo se reduz a uma regressão linear simples onde a variável independente foi a selecionada anteriormente
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train[:,8].reshape(-1,1), y_train)

# Predicting the Test set results
y_pred = regressor.predict(X_test[:,8].reshape(-1,1))
```

6) Construir o Gráfico (Scatter Plot)

```
In [23]:
# visualização exploratória das relações entre as variáveis independentes e o preço
import seaborn as sns

sns.regplot(x="quartos", y="preco(*10k)", data=df2)
plt.ylim(0,)
```

```
Out[23]: (0.0, 97.485)
```



```
In [24]:
    sns.regplot(x="banheiros", y="preco(*10k)", data=df2)
    plt.ylim(0,)
```

```
Out[24]: (0.0, 97.485)
```



```
In [25]:
    sns.regplot(x="andares", y="preco(*10k)", data=df2)
    plt.ylim(0,)
```

Out[25]: (0.0, 97.485)


```
In [26]:
    sns.regplot(x="condicao", y="preco(*10k)", data=df2)
    plt.ylim(0,)
```

Out[26]: (0.0, 97.485)

```
80 - (2) 60 - (2) 40 40 4.25 4.50 4.75 5.00 Condicate
```

```
In [27]:
    sns.regplot(x="avaliacao", y="preco(*10k)", data=df2)
    plt.ylim(0,)
```

Out[27]: (0.0, 98.97129444071706)

"avaliacao" confirma-se um bom candidato à variável de interesse para o modelo de regressão

```
In [28]:
    sns.regplot(x="construcao", y="preco(*10k)", data=df2)
    plt.ylim(0,)
```

```
Out[28]: (0.0, 97.485)
```



```
In [29]:
    sns.regplot(x="anos_sem_reforma", y="preco(*10k)", data=df2)
    plt.ylim(0,)
```

Out[29]: (0.0, 97.485)


```
In [30]: # Visualising the Training set results
plt.scatter(X_train[:,8], y_train, color = 'red')
plt.plot(X_train[:,8], regressor.predict(X_train[:,8].reshape(-1,1)), color = 'blue')
plt.xlim(0, 10)
plt.title('Avaliacao vs Preco (Training set)')
plt.xlabel('avaliacao')

plt.ylim(0, 100)
plt.ylabel('Preco')
plt.show()
```

```
Avaliacao vs Preco (Training set)

80 - 60 - 60 - 20 - 2 4 6 8 10

avaliacao
```

```
In [31]: # Visualising the Test set results
    plt.scatter(X_test[:,8], y_test, color = 'red')
    plt.plot(X_train[:,8], regressor.predict(X_train[:,8].reshape(-1,1)), color = 'blue')
    plt.xlim(0, 10)
    plt.title('Avaliacao vs Preco (Test set)')
    plt.xlabel('avaliacao')

plt.ylim(0, 100)
    plt.ylabel('preco')

plt.show()
```


7) Criar a tabela no banco de dados SQLite

```
import sqlite3 as sq3

In [33]: connection = sq3.connect('database2.db')

In [34]: df2.to_sql(name = 'precos', con = connection, if_exists = 'append', index = False)
```

8) Aplicar uma consulta em linguagem SQL que irá trazer uma listagem da tabela

In [35]: pd.read_sql('select * from precos', connection)

[35]:		quartos	banheiros	andares	condicao	avaliacao	construcao	anos_sem_reforma	local	preco(*10k)
	0	3	1	1	3	7	1955	66	Paulista	22.190
	1	3	225	2	3	7	1951	30	Aclimação	53.800
	2	2	1	1	3	6	1933	88	Campo Belo	18.000
	3	4	3	1	5	7	1965	56	Mooca	60.400
	4	3	2	1	3	8	1987	34	Paulista	51.000
	5	3	225	2	3	7	1995	26	Mooca	25.750
	6	3	15	1	3	7	1963	58	Aclimação	29.185
	7	3	1	1	3	7	1960	61	Centro	22.950
	8	3	25	2	3	7	2003	18	Mooca	32.300
	9	3	25	1	3	8	1965	56	Paulista	66.250
	10	2	1	1	4	7	1942	79	Campo Belo	46.800
	11	3	1	15	4	7	1927	94	Centro	31.000
	12	3	175	1	4	7	1977	44	Paulista	40.000
	13	5	2	15	3	7	1900	121	Centro	53.000
	14	4	3	2	3	9	1979	42	Aclimação	65.000

	quartos	banheiros	andares	condicao	avaliacao	construcao	anos_sem_reforma	local	preco(*10k)
15	3	2	2	3	7	1994	27	Campo Belo	39.500
16	i 4	1	15	4	7	1916	105	Mooca	48.500
17	2	1	1	4	7	1921	100	Paulista	18.900
18	3	1	1	4	7	1969	52	Paulista	23.000
19	4	175	1	4	7	1947	74	Centro	38.500
20	5	25	2	3	8	1995	26	Mooca	28.500
21	2	15	1	3	7	1985	36	Centro	25.270
22	2 3	225	2	4	8	1985	36	Mooca	32.900
23	3	2	15	5	6	1941	80	Centro	23.300
24	3	175	2	3	8	1915	106	Paulista	93.700
25	3	1	15	5	8	1909	112	Campo Belo	66.700