Capítulo 7

Polinomio de Taylor

El objetivo de este capítulo es llegar a aproximar una función dada mediante polinomios alrededor de un punto en el que conocemos el valor de la función, y el de sus derivadas.

7.1. Aproximación polinómica de funciones derivables. Polinomio de Taylor

Definición 7.1.1. Sea I un intervalo abierto de \mathbb{R} y sea $a \in I$. Sea $n \in \mathbb{N}$ y sea $f : I \longrightarrow \mathbb{R}$ una función n veces derivable en a. Se define el polinomio de Taylor de grado n de f (centrado) en a, y se denota por $P_{f,n,a}(x)$, como

$$P_{f,n,a}(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$

Teorema 7.1.2. (Teorema de Taylor). Sea I un intervalo abierto de \mathbb{R} y sea $n \in \mathbb{N}$. Sea $f: I \longrightarrow \mathbb{R}$ una función n+1 veces derivable en I y sea $a \in I$. Entonces, para cada $x_0 \in I$, existe $c \in (a, x_0)$ o $c \in (x_0, a)$ (c está entre a y x_0) tal que

$$f(x_0) = P_{f,n,a}(x_0) + \frac{f^{n+1}(c)}{(n+1)!}(x_0 - a)^{n+1}.$$

A la expresión $\frac{f^{n+1}(c)}{(n+1)!}(x_0-a)^{n+1}$ se le denomina resto de Lagrange de orden n (en x_0), y se le denota por $R_{f,n,a}(x_0)$.

Observación 7.1.3. El resto de Lagrange nos da el error cometido al aproximar la función f por el polinomio de Taylor $P_{f,n,a}$. Además, se verifica que

$$\lim_{x \to a} R_{f,n,a}(x) = \lim_{x \to a} \frac{f^{n+1}(c)}{(n+1)!} (x-a)^{n+1} = 0.$$

7.2. Aplicaciones del teorema de Taylor

1. Aproximar el número e con un error menor que 10^{-5} . Consideremos la función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = e^x$ para todo $x \in \mathbb{R}$. Así, para $x_0 = 1$, tenemos que $f(x_0) = e$, que es el valor que queremos aproximar. Tomemos a=0, ya que conocemos el valor de todas las derivadas de f en 0, al ser $f^{(n)}(x)=e^x$ para todo $x \in \mathbb{R}$ y para todo $n \in \mathbb{N}$, con lo que $f^{(n)}(0)=1$, para todo $n \in \mathbb{N}$.

Como queremos obtener una aproximación de f(1) = e con un error menor que 10^{-5} , aplicando el teorema de Taylor tenemos que existe $c \in (0,1)$ tal que

$$f(1) - P_{f,n,0}(1) = \frac{f^{n+1}(c)}{(n+1)!} (1-0)^{n+1} = \frac{f^{n+1}(c)}{(n+1)!} < 10^{-5},$$

con lo que

$$R_{f,n,0}(1) = \frac{e^c}{(n+1)!}.$$

Como $c \in (0,1)$ y queremos que el error sea menor que 10^{-5} , entonces

$$\frac{e^c}{(n+1)!} < \frac{e}{(n+1)!} < \frac{3}{(n+1)!} < 10^{-5}$$

y, por tanto, basta tomar n = 8, ya que

$$\frac{3}{(8+1)!} = \frac{3}{9!} < 10^{-5}.$$

Sea $n \in \mathbb{N}$. Vamos a obtener el polinomio de Taylor de grado n de f en 0, $P_{f,n,0}(x)$. Si $x \in \mathbb{R}$, entonces

$$P_{f,n,0}(x) = f(0) + f'(0)(x - 0) + \frac{f''(0)}{2}(x - 0)^2 + \dots + \frac{f^{n}(0)}{n!}(x - 0)^n = 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!}.$$

Luego

$$e \approx P_{f,8,0}(1) = 1 + 1 + \frac{1}{2} + \dots + \frac{1}{8!} \approx 2,71828.$$

2. Calcular $\lim_{x\to 0} \frac{\operatorname{sen}(x^3) - \operatorname{tg}(x^3)}{x^9}$.

Sean $f, g: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \longrightarrow \mathbb{R}$ definidas por $f(x) = \operatorname{sen}(x)$ para todo $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ y $g(x) = \operatorname{tg}(x)$ para todo $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Por una parte, como f es una función 4 veces derivable en $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ entonces, por el teorema de Taylor, para cada $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, existe c entre 0 y x tal que

$$f(x) = P_{f,3,0}(x) + \frac{f^{4}(c)}{4!}(x-0)^4 = 0 + x + \frac{0}{2}x^2 + \frac{-1}{3!}x^3 + \frac{f^{4}(c)}{4!}x^4 = x - \frac{x^3}{6} + \frac{f^{4}(c)}{4!}x^4,$$

ya que $f'(x) = \cos(x)$, $f''(x) = -\sin(x)$ y $f^{(3)}(x) = -\cos(x)$, con lo que f'(0) = 1, f''(0) = 0 y $f^{(3)}(0) = -1$.

Ahora bien, como $sen(x) = x - \frac{x^3}{6} + \frac{f^{4)}(c)}{4!}x^4$ para todo $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, entonces $sen(x^3) = x^3 - \frac{x^9}{6} + \frac{f^{4)}(c)}{4!}x^{12}$ para todo $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Análogamente, como g es 4 veces derivable en $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ entonces, por el teorema de Taylor, para cada $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, existe c' entre 0 y x tal que

$$g(x) = P_{g,3,0}(x) + \frac{g^{4}(c')}{4!}(x-0)^4 = 0 + x + \frac{0}{2}x^2 + \frac{2}{3!}x^3 + \frac{g^{4}(c')}{4!}x^4 = x + \frac{x^3}{3} + \frac{g^{4}(c')}{4!}x^4,$$

ya que $g'(x) = \frac{1}{\cos^2(x)}$, $g''(x) = \frac{2\sin(x)}{\cos^3(x)}$ y $g^{(3)}(x) = \frac{2+4\sin^2(x)}{\cos^4(x)}$, con lo que g'(0) = 1, g''(0) = 0 y $g^{(3)}(0) = 2$.

Ahora bien, como $\operatorname{tg}(x) = x + \frac{x^3}{3} + \frac{g^{4)}(c')}{4!} x^4$ para todo $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, entonces $\operatorname{tg}(x^3) = x^3 + \frac{x^9}{3} + \frac{g^{4)}(c')}{4!} x^{12}$ para todo $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Luego

$$\lim_{x \to 0} \frac{\sin(x^3) - \operatorname{tg}(x^3)}{x^9} = \lim_{x \to 0} \frac{x^3 - \frac{x^9}{6} + \frac{f^{4)}(c)}{4!} x^{12} - \left(x^3 + \frac{x^9}{3} + \frac{g^{4)}(c')}{4!} x^{12}\right)}{x^9} = \lim_{x \to 0} \frac{x^3 - \frac{x^9}{6} + \frac{f^{4)}(c)}{4!} x^{12} - x^3 - \frac{x^9}{3} - \frac{g^{4)}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{3x^9}{6} + \frac{f^{4)}(c) - g^{4)}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4)}(c) - g^{4)}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4)}(c) - g^{4)}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4)}(c) - g^{4)}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4)}(c) - g^{4)}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4)}(c) - g^{4)}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4)}(c) - g^{4)}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4)}(c) - g^{4)}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4)}(c) - g^{4}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4)}(c) - g^{4}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4)}(c) - g^{4}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4}(c) - g^{4}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4}(c) - g^{4}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4}(c) - g^{4}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4}(c) - g^{4}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4}(c) - g^{4}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4}(c) - g^{4}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4}(c) - g^{4}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4}(c) - g^{4}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4}(c) - g^{4}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4}(c) - g^{4}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4}(c) - g^{4}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4}(c) - g^{4}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4}(c) - g^{4}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4}(c) - g^{4}(c')}{4!} x^{12}}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{6} + \frac{f^{4}(c) - g^{4}(c')}{4!} x^{12}}{x^9}$$

Ejercicios

- 1. Escribir la función $f(x) = x^2 4x 9$ como combinación lineal de potencias de x 3.
- 2. Obtener el polinomio de Taylor de la función $f(x) = \operatorname{sen}(x)$ de grado 2n en $a = \frac{\pi}{2}$.
- 3. Calcular el número \sqrt{e} con dos decimales exactos justificando la acotación del error.
- 4. Demostrar que $1+x+\frac{x^2}{2}+\frac{x^3}{6}< e^x$ para todo x>0.
- 5. Calcular los siguientes límites utilizando desarrollos de Taylor:
 - $a) \lim_{x \to 0} \frac{x \operatorname{tg}(x) \operatorname{tg}^2(x)}{\operatorname{sen}^2(x) x \operatorname{sen}(x)}.$
 - b) $\lim_{x\to 0} \frac{\arctan(x) 2\operatorname{sen}(x) + x}{x(x^2 \log(1 + x^2))}$.
- 6. Dada la función $f(x) = \frac{1}{\sqrt{(1-x)^5}}$, se pide:
 - a) Obtener el polinomio de Taylor de grado 4 de f en el origen.
 - b) Utilizar el polinomio de Taylor de grado 2 de f para calcular una aproximación de $\frac{1}{\sqrt{0.9}^5}$.
 - c) Calcular el error cometido en la anterior aproximación.
 - d) ¿Se puede obtener el polinomio de Taylor de f centrado en a=2?
- 7. Obtener el polinomio de Taylor de la función $f(x) = \cos(x)$ de menor grado que aproxime el valor de $\cos\left(\frac{\pi}{30}\right)$ con un error menor que 0,0005. Calcular un valor aproximado de $\cos\left(\frac{\pi}{30}\right)$ con el error permitido.