schedules and anomalies

T1: R(x), R(Y), W(x)

T1: R(x), R(Y), W(Y), R(x), R(Y), W(X), R(Z), W(Z)

A)	τ,	T ₂		
		K(x)		
		K(Y)		
write -read		w(Y)		
conflict	R(x)			
S	R(Y)			
	~ (x) [⁻]			
		K(x)	write - read	conflict
		R(Y)		
		w(x)		
		R(5)		
		W(2)		

This is not conflict serializable since we have a cycle between T_1 and T_2 with 2 write-read conflicts on object Y and X

B) We need a transaction for a single thery like R(x), consider T2 has a M(x) before the single thery R(x), and after this R(x) being executed. T2 about the transaction. In this case, R(x) reads a mong value, which is caused by a dirty read. Thus, we need a transaction for this single there are to avoid conflicts, and need a lock to block this R(x) and unlock it after the transaction T2 being committed or aborted.