

Linux containers & Devops

Maciej Lasyk

Atmosphere Shuttle #02 – Wrocław

2015-04-17

Join Fedora Infrastructure!

- learn Ansible
- learn Docker with Fedora Dockerfiles

http://fedoraproject.org/en/join-fedora

How many of you...

How many of you...

→ Knows what Docker is?

How many of you...

- → Knows what Docker is?
- → Played with Docker?

How many of you...

- → Knows what Docker is?
- → Played with Docker?
- → Runs it on production?

With Docker we can solve many problems

→ "it works on my machine"

- → "it works on my machine"
- → reducing build & deploy time

- → "it works on my machine"
- → reducing build & deploy time
- → Infrastructure configuration spaghetti automation!

- → "it works on my machine"
- → reducing build & deploy time
- → Infrastructure configuration spaghetti automation!
- → Libs dependency hell

- → "it works on my machine"
- → reducing build & deploy time
- → Infrastructure configuration spaghetti automation!
- → Libs dependency hell
- → Cost control and granularity

"automates the deployment of any application as a lightweight, portable, self-sufficient container that will run virtually anywhere"

Java's promise: Write Once. Run Anywhere.

Java's promise: Write Once. Run Anywhere.

Even on Windows now!

https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/

Is Docker is lightweight?

Is Docker is lightweight?

=======================================						
Package	Arch	Version	Repository	Size		
====== Installing:	=======	=========	========	======		
docker-io	x86_64	1.3.0-1.fc20	updates	4.3 M		

Is Docker is lightweight?

====== Package	Arch	Version	Repository	size
====== Installing: docker-io	×86_64	1.3.0-1.fc20	updates	4.3 M
====== Package =======	Arch	======================================	======================================	====== Size =======
Installing: docker-io	x86_64	1.5.0-2.fc21	updates	26 M

VMs vs. Containers

http://sattia.blogspot.com/2014/05/docker-lightweight-linux-containers-for.html

→ LXC & libcontainer

- → LXC & libcontainer
- → control groups

- → LXC & libcontainer
- → control groups
- → kernel namespaces

- → LXC & libcontainer
- → control groups
- → kernel namespaces
- → layered filesystem
 - → devmapper thin provisioning & loopback mounts
 - → no more AUFS (perf sucks)
 - → OverlayFS!

control groups (cgroups)

Control Groups provide a mechanism for aggregating/partitioning sets of tasks, and all their future children, into hierarchical groups with specialized behavior

control groups (cgroups)

Control Groups provide a mechanism for aggregating/partitioning sets of tasks, and all their future children, into hierarchical groups with specialized behavior

- → grouping processes
- → allocating resources to particular groups
 - → memory
 - → network
 - → CPU
 - → storage bandwidth (I/O throttling)
 - → device whitelisting

control groups (cgroups)

little demo #1

Providing a unique views of the system for processes.

→ PID – PIDs isolation

- → PID PIDs isolation
- → NET network isolation (via virt-ifaces; demo)

- → PID PIDs isolation
- → NET network isolation (via virt-ifaces; demo)
- → IPC won't user this

- → PID PIDs isolation
- → NET network isolation (via virt-ifaces; demo)
- → IPC won't user this
- → MNT chroot like; deals w/mountpoints

- → PID PIDs isolation
- → NET network isolation (via virt-ifaces; demo)
- → IPC won't user this
- → MNT chroot like; deals w/mountpoints
- → UTS deals w/hostname

little demo #2

OverlayFS

+ hell fast (you'll see)

- + hell fast (you'll see)
- + page cache sharing

- + hell fast (you'll see)
- + page cache sharing
- + finally in upstream kernel (in rhel from 7.2, 3.18)

- + hell fast (you'll see)
- + page cache sharing
- + finally in upstream kernel (in rhel from 7.2, 3.18)
- + finally supported by docker (-s overlay)

- + hell fast (you'll see)
- + page cache sharing
- + finally in upstream kernel (in rhel from 7.2, 3.18)
- + finally supported by docker (-s overlay)
- SELinux not there yet (but will be)

Container Create/Destroy Times

Docker Page Cache Usage Test

docker-1.1 + 3.17-rc1

Docker Page Cache Usage Test

docker-1.1 + 3.17 - rc1

let's demo again

Linux containers equation

Linux Containers = namespaces + cgroups + storage

- → images
 - → read only
 - → act as templates

- → images
 - → read only
 - → act as templates
- → Dockerfile
 - → like a makefile
 - → commands order & cache'ing
 - → extends the base image
 - → results in a new image

- → images
 - → read only
 - → act as templates
- → Dockerfile
 - → like a makefile
 - → commands order & cache'ing
 - → extends the base image
 - → results in a new image
- → Containers: instances running apps

- → images
 - → read only
 - → act as templates
- → Dockerfile
 - → like a makefile
 - → commands order & cache'ing
 - → extends the base image
 - → results in a new image
- → Containers: instances running apps

dockerfile + base image = docker container

Dockerfile

FROM fedora
MAINTAINER scollier < scollier@redhat.com>

RUN yum -y update && yum clean all RUN yum -y install nginx && yum clean all RUN echo "daemon off;" >> /etc/nginx/nginx.conf RUN echo "nginx on Fedora" > /srv/www/index.html

EXPOSE 80

CMD ["/usr/sbin/nginx"]

Docker - registry

Docker - registry

- → git like semantics
- → pull, push, commit
- → private and public registry
- → https://github.com/dotcloud/docker-registry
- → yum install docker-registry
 - \$ docker pull
 - \$ docker push
 - \$ docker commit

http://blog.octo.com/en/docker-registry-first-steps/

Docker - images hierarchy

base image

- -> child image
 - -> grandchild image

Docker - images hierarchy

base image
-> child image
-> grandchild image

Git's promise: Tiny footprint with lightning fast performance

Docker - security

- → Isolation via kernel namespaces
- → Additional layer of security: SELinux / AppArmor / GRSEC
- → Each container gets own network stack
- → control groups for resources limiting

```
f20 policy: https://git.fedorahosted.org/cgit/selinux-policy.git/tree/docker.te?h=f20-contrib
What's there?
seinfo -t -x | grep docker
sesearch -A -s docker_t (and the rest)
```

or just unpack docker.pp with semodule_unpackage

Docker - security

Docker has changed its security status to It's complicated

Docker – security

Docker – use cases

Sample Docker Workflow

http://sattia.blogspot.com/2014/05/docker-lightweight-linux-containers-for.html

Docker - use cases

Continuous Integration

- → local dev
 - → with Docker it's easy to standardize envs
- → deployment
 - → rolling updates (e.g. w/Ansible)
- → testing
 - → unit testing of any commit on dedicated env
 - → don't worry about cleaning up after testing
 - → parrarelized tests across any machines

Docker - use cases

- → version control system for apps
- → microservices
 - → Docker embraces granularity
 - → Services can be deployed independently and faster
 - → parallelized tests across any machines
- → continuous delivery
- → PaaS

This might be a little problem

	Big Data	Cloud Platform	laaS	Data Center OS	Docker OS	Docker Mgmt.	PaaS	Orch. Config Mgmt.
Ansible & Docker								х
Amazon EC2 & Docker		x						
Apache Brooklyn & Docker								x
Apache Hadoop & Docker	x							
Apache Storm & Docker	x							
AppScale & Docker							X	
Atomic Hosts & Docker					x			
Chef & Docker								x
Clocker & Docker								x
Cloud Foundry & Docker	x						X	
CloudStack & Docker			x					
CoreOS & Docker					x			
Deis & Docker							X	
Decker & Docker							X	
Docker & Docker			х		x	x	X	x
Dokku & Docker							X	
Eucalyptus & Docker			х					
Flynn & Docker							X	
Google Compute Platform & Docker		x						
IBM Bluemix & Docker	x						X	
Kubernetes & Docker			x			x	X	x
Mesos, Mesosphere & Docker	x			x		x	X	x
Microsoft Azure & Docker		x						
OpenCamp & Docker		x	x			x	X	
OpenShift & Docker							X	
OpenStack & Docker			x					
Panamax & Docker						x		
Puppet & Docker								x
SaltStack & Docker							X	x
Shipyard & Docker						x		
Stackato & Docker							х	
Tsuru & Docker							х	
VMware & Docker			x					

Ansible + Docker

&

Docker + Ansible

Ansible docker core module: http://docs.ansible.com/docker_module.html

```
- hosts: web
 sudo: yes
 tasks:
 - name: run httpd servers
  docker: >
      image=centos
      command="service httpd start"
      ports=8080
      count=5
      memory limit=32MB
      link=mysql
      expose=8080
      registry=...
      volume=...
```

Building image with Ansible:

FROM ansible/centos7-ansible:stable ADD ansible /srv/example WORKDIR /srv/example RUN ansible-playbook web.yml -c local EXPOSE 80 CMD ["/usr/sbin/nginx"]

Building image with Ansible:

FROM ansible/centos7-ansible:stable ADD ansible /srv/example WORKDIR /srv/example RUN ansible-playbook web.yml -c local EXPOSE 80 CMD ["/usr/sbin/nginx"]

ansible/web.yml:

- name: Install webserver

hosts: localhost

tasks:

- yum: pkg=nginx state=latest
- shell: echo "ansible" > /usr/share/nginx/html/index.html

Yet another demo?

SmartStack

- → automated service discovery and registration framework
- → ideal for SOA architectures
- → ideal for continuous integration & delivery
- → solves "works on my machine" problem

- → automated service discovery and registration framework
- → ideal for SOA architectures
- → ideal for continuous integration & delivery
- → solves "works on my machine" problem

haproxy + nerve + synapse + zookeper = smartstack

Synapse

- → discovery service (via zookeeper or etcd)
- → installed on every node
- → writes haproxy configuration
- → application doesn't have to be aware of this
- → works same on bare / VM / docker
- → https://github.com/airbnb/nerve

Nerve

- → health checks (pluggable)
- → register service info to zookeper (or etcd)
- → https://github.com/airbnb/synapse

Smartstack + Docker = <3

Smartstack + Docker = <3

but also remember about Consul (come to #dockerkrk 2 meetup!)

Wanna learn Docker?

http://dockerbook.com/

Freenode #docker #KrkDocker meetups (http://www.meetup.com/Docker-Krakow-Poland/) https://github.com/docker/docker

sources?

- → docker.io documentation
- → dockerbook.com
- → slideshare!
- → zounds of blogposts (urls provided)
- → and some experience;)

Looking for a job?

- Software Engineer (java)
- Information Security Manager
- Product Analyst

Catch me: maciek@lasyk.info

Linux containers & Devops

Maciej Lasyk

Atmosphere Shuttle #02 – Wrocław

2015-04-17