Industrielles de l'Ingénieur

Chapitre 3 - Cinétique et application du Principe Fondamental de la

Dynamique

Application 3

Application – Pompe à plateau

C. Gamelon & P. Dubois

Savoirs et compétences :

Considérons le mécanisme de pompe représenté sur la figure ci-dessous.

L'arbre excentrique (1), animé d'un mouvement de rotation autour de l'axe $(O, \overrightarrow{x_0})$ horizontal, agit sur le piston (2) en liaison pivot glissant d'axe $(O, \overrightarrow{z_0})$ avec le bâti (0). Pendant la phase de descente du piston (2), le contact ponctuel en I avec l'excentrique est maintenu par un ressort (r).

Paramétrage

Le repère $(O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ lié au bâti (0) est supposé galiléen. Le repère $(O; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ est lié à l'arbre excentrique (1). On a de plus :

- $(\overrightarrow{y_0}, \overrightarrow{y_1}) = (\overrightarrow{z_0}, \overrightarrow{z_1}) = \theta$;
- $\overrightarrow{OB} = e \overrightarrow{z_1}$; $\overrightarrow{BI} = R \overrightarrow{z_0}$;
- $\overrightarrow{OA} = z \overrightarrow{z_0}$.

1

Les liaisons pivot entre (0) et (1), ponctuelle entre (1) et (2), et pivot glissant entre (0) et (2) sont supposées sans frottement. Le solide (1) possède un moment d'inertie I_1 par rapport à l'axe $(O, \overrightarrow{x_0})$. Le piston (2) possède une masse m_2 . Le ressort ($\hat{\mathbf{r}}$), de raideur k, est toujours comprimé. Pour $\theta = \pm \frac{\pi}{2}$, l'effort de compression est égal à $\overrightarrow{F_0} = -F_0 \overrightarrow{z_0}$. Un moteur exerce un couple connu de moment $\overrightarrow{C_m} = C_m \overrightarrow{x_0}$ sur l'arbre (1). Le fluide exerce sur le piston une action connue, représentée par un glisseur d'axe $(O, \overrightarrow{z_0})$ et de résultante $\overrightarrow{F_h} = -F_h \overrightarrow{z_0}$.

Question 1 Déterminer avec le PFD l'équation différentielle du mouvement, relative au paramètre θ .

Question 2 En considérant un frottement sec au niveau de la liaison ponctuelle entre (1) et (2), déterminer l'équation différentielle du mouvement.

On isole le solide (1).

On réalise le bilan des actions mécaniques

• Liaison pivot:
$$\{\mathscr{T}(0 \to 1)\} = \left\{ \begin{array}{c} X_{01} \overrightarrow{x} + Y_{01} \overrightarrow{y} + Z_{01} \overrightarrow{z} \\ M_{01} \overrightarrow{y} + N_{01} \overrightarrow{z} \end{array} \right\}_{O} = \left\{ \begin{array}{c} Y_{01} \overrightarrow{y} + Z_{01} \overrightarrow{z} \\ \overrightarrow{0} \end{array} \right\}_{O}.$$

• Liaison pivot :
$$\{\mathcal{T}(0 \to 1)\} = \begin{cases} X_{01} \overrightarrow{x} + Y_{01} \overrightarrow{y} + Z_{01} \overrightarrow{z} \\ M_{01} \overrightarrow{y} + N_{01} \overrightarrow{z} \end{cases} \Big\}_O = \begin{cases} Y_{01} \overrightarrow{y} + Z_{01} \overrightarrow{z} \\ \overrightarrow{0} \end{cases} \Big\}_O.$$
• Liaison ponctuelle : $\{\mathcal{T}(2 \to 1)\} = \begin{cases} Y_{21} \overrightarrow{y_0} + Z_{21} \overrightarrow{z_0} \\ \overrightarrow{0} \end{cases} \Big\}_I$. On a $Z_{21} < 0$, $Y_{21} > 0$ et à la limite du glissement, $Y_{21} = \frac{-fZ_{21}}{M(O,2 \to 1)} = \overline{M(I,2 \to 1)} + \overrightarrow{OI} \wedge \overline{R(2 \to 1)} = \left(e \overrightarrow{z_1} + R \overrightarrow{z_0}\right) \wedge \left(Y_{21} \overrightarrow{y_0} + Z_{21} \overrightarrow{z_0}\right) = -e Y_{21} \cos\theta \overrightarrow{x_0} - e Z_{21} \sin\theta \overrightarrow{x_0} - R Y_{21} \overrightarrow{x_0} = -((e \cos\theta + R) Y_{21} + e Z_{21} \sin\theta) \overrightarrow{x_0}.$
• couple moteur : $\{\mathcal{T}(\text{Moteur} \to 1)\} = \begin{cases} \overline{0} \\ C_m \overrightarrow{x_0} \end{cases} \Big\}_O.$
Calcul de $\overline{\delta}(O, 1/\overline{0}) \cdot \overrightarrow{x_0}$.

Calcul de $\overrightarrow{\delta}(O, 1/0) \cdot \overrightarrow{x_0}$.

O est un point fixe et I_1 moment d'inertie par rapport à $(O, \overrightarrow{x_0})$ on a donc : $\overrightarrow{\delta(O, 1/0)} \cdot \overrightarrow{x_0} = \left| \frac{d\sigma(O, 1/0)}{dt} \right| \overrightarrow{x_0} = \left| \frac{d\sigma(O, 1/0)}{dt} \right|$

$$\left[\frac{\overrightarrow{\mathrm{d}\sigma(O,1/0)}\cdot\overrightarrow{x_0}}{\mathrm{d}t}\right]_{\mathscr{R}_0} = \left[\frac{\overrightarrow{\mathrm{d}I_O(1)}\overline{\Omega(1/0)}\cdot\overrightarrow{x_0}}{\mathrm{d}t}\right]_{\mathscr{R}_0} = \left[\frac{\overrightarrow{\mathrm{d}I_1}\dot{\theta}\,\overrightarrow{x_0}\cdot\overrightarrow{x_0}}{\mathrm{d}t}\right]_{\mathscr{R}_0} = I_1\ddot{\theta}.$$

Application du théorème du moment dynamique en projection sur $\overrightarrow{x_0}$

$$C_m - ((e\cos\theta + R)Y_{21} + eZ_{21}\sin\theta) = I_1\ddot{\theta}$$

On isole le solide (1).

On réalise le bilan des actions mécaniq

• Liaison pivot :
$$\{\mathcal{T}(0 \to 1)\} = \left\{ \begin{array}{c} X_{01} \overrightarrow{x} + Y_{01} \overrightarrow{y} + Z_{01} \overrightarrow{z} \\ M_{01} \overrightarrow{y} + N_{01} \overrightarrow{z} \end{array} \right\}_{C} = \left\{ \begin{array}{c} Y_{01} \overrightarrow{y} + Z_{01} \overrightarrow{z} \\ \overrightarrow{0} \end{array} \right\}_{C}$$

• Liaison pivot :
$$\{\mathcal{T}(0 \to 1)\} = \begin{cases} X_{01} \overrightarrow{x} + Y_{01} \overrightarrow{y} + Z_{01} \overrightarrow{z} \\ M_{01} \overrightarrow{y} + N_{01} \overrightarrow{z} \end{cases} \Big\}_O = \begin{cases} Y_{01} \overrightarrow{y} + Z_{01} \overrightarrow{z} \\ \overrightarrow{0} \end{cases} \Big\}_O$$
.

• Liaison ponctuelle : $\{\mathcal{T}(2 \to 1)\} = \begin{cases} Y_{21} \overrightarrow{y_0} + Z_{21} \overrightarrow{z_0} \\ \overrightarrow{0} \end{cases} \Big\}_I$. On a $Z_{21} < 0$, $Y_{21} > 0$ et à la limite du glissement, $Y_{21} = \frac{-fZ_{21}}{\mathcal{M}(0,2 \to 1)} = \overline{\mathcal{M}(1,2 \to 1)} + \overline{OI} \wedge \overline{R(2 \to 1)} = \left(e\overrightarrow{z_1} + R\overrightarrow{z_0}\right) \wedge \left(Y_{21} \overrightarrow{y_0} + Z_{21} \overrightarrow{z_0}\right) = -eY_{21} \cos\theta \overrightarrow{x_0} - eZ_{21} \sin\theta \overrightarrow{x_0} - RY_{21} \overrightarrow{x_0} = -((e\cos\theta + R)Y_{21} + eZ_{21} \sin\theta) \overrightarrow{x_0}.$

• couple moteur :
$$\{\mathcal{T}(\text{Moteur} \to 1)\} = \left\{\begin{array}{c} \overbrace{0} \\ C_m \overrightarrow{x_0} \end{array}\right\}_O$$
.

Calcul de $\overrightarrow{\delta}(O, 1/0) \cdot \overrightarrow{x_0}$.

O est un point fixe et I_1 moment d'inertie par rapport à $(O, \overrightarrow{x_0})$ on a donc : $\overrightarrow{\delta(O, 1/0)} \cdot \overrightarrow{x_0} = \left| \frac{d\sigma(O, 1/0)}{dt} \right| \overrightarrow{x_0} = \left| \frac{d\sigma(O, 1/0)}{dt} \right|$

$$\left[\frac{\overrightarrow{\mathrm{d}\sigma(O,1/0)}\cdot\overrightarrow{x_0}}{\mathrm{d}t}\right]_{\mathcal{R}_0} = \left[\frac{\overrightarrow{\mathrm{d}I_O(1)}\overline{\Omega(1/0)}\cdot\overrightarrow{x_0}}{\mathrm{d}t}\right]_{\mathcal{R}_0} = \left[\frac{\overrightarrow{\mathrm{d}I_1}\dot{\theta}\,\overrightarrow{x_0}\cdot\overrightarrow{x_0}}{\mathrm{d}t}\right]_{\mathcal{R}_0} = I_1\ddot{\theta}.$$

Application du théorème du moment dynamique en projection sur $\overrightarrow{x_0}$

$$C_m - ((e\cos\theta + R)Y_{21} + eZ_{21}\sin\theta) = I_1\ddot{\theta}.$$