A Corrosion-Resistant Metal Made Sensor for Fluid and

A Fluid Supply Device for which The Sensor Is Employed

[0000] This is a National Phase Application in the United States of International Patent Application No. PCT/JP2005/000266 filed January 13, 2005, which claims priority on Japanese Patent Application No. 2004-047701, filed February 24, 2004. The entire disclosures of the above patent applications are hereby incorporated by reference.

Field of the Invention

[0001] The present invention is employed mainly for detecting a mass flow rate and/or pressure in a gas supply line, and the like, employed inwith semiconductor manufacturing facilities, concerned and is with corrosion-resistant metal made sensor for fluid, and a fluid supply device for which the sensor is employed, inef which all of the gas contacting faces are formed of corrosion-resistant metals, such as stainless steel (SUS316L) and the like, having excellent corrosion resistance even to highly corrosive fluids. T_{τ} thus, the corrosion-resistant metal made sensor can be madeenabling to achieve to make it particle-free and leak-free, and further to enhanced with respect to the detecting accuracy.

Background of the Invention

[0002] Conventionally, a capillary thermal_type mass flow rate sensor, or a silicon-made ultra-small sized thermal_type mass flow rate sensor, for which micro-machine technologies have been employed, has been widely used to measure a mass flow rate of fluid in <u>various technologies</u>the technical fields, such as <u>inthe</u> chemical analysis equipment and the like.__

The former, or the capillary thermal-type mass flow rate sensor, is characterized by the fact that the sensor has allows its gas contacting faces of the sensor to

4

be made of stainless steel <u>due to because of its structure</u>, <u>which thus enabling to enhances theits corrosion resistance of the sensor</u> to fluids <u>that it be measures</u> at ease.

[0003] Also However, the capillary thermal—type mass flow sensor mustis required to be equipped with a resistance wire for a heater that isto be wound to heat a capillary tube, which causes—thus causing a problem that leadsmight lead to unevenness in property among he-products.

———Another problem <u>ismay</u> be that the response speed of <u>thea</u> mass flow rate sensor <u>isbecomes</u> slow due to the relatively large heat capacities of the capillary tube and the resistance wire for<u>ming thea</u> heater.

[0004] On the other hand, along with the development in recent years of the so-called "micro-machine" technologies—in recent years, the development and utilization of the latter, or of a silicon-made ultra-small sized thermal—type mass flow rate sensor, have been widely under way. It has become popular, not only in the chemical-related fields, but also in the industrial manufacturing fields such

as <u>thean</u> automobile industry and the like, <u>becausedue to the reason that</u> a silicon-made ultra-small sized thermal—type mass flow rate sensor can be manufactured <u>byunder</u> a single processing, thus reducing unevenness in properties among the products. <u>Furthermore</u>, and achieving the extremely fast response speed as a sensor <u>can be achieved</u> by making heat capacities small by downsizing the sensor, all of which are regarded as <u>desired</u>excellent characteristics of <u>athe</u> sensor.

[0005] However, it is noted that there exist many problems to be solved with said—silicon-made ultra-small sized thermal—type mass flow rate sensors. Among other things, corrosion resistance is one problem that is urgently needed to be solved urgently.—

-2-

That is, a silicon-made ultra-small sized mass flow rate sensor employs silicon as a constituent component to form gas contacting faces. Therefore, a fundamental difficulty encountered with conventional sensors is that these silicone gas contacting faces to can be easily corroded by fluids of the halogen family and the like.

[0006] Furthermore, organic materials such as an-epoxy resin, an O-ring and the like, are used as sealing materials for the mass flow rate sensor, thus making the emission of particles, or the occurrence of anthe outside leak, unavoidable.

Consequently, such sensors cannot be employed Accordingly, it becomes unable that the sensor is applied for the gas supply line, and the like, in semiconductor manufacturing facilities.

[0007] Furthermore, there exists another problem exits with the mass flow rate

sensor, <u>namelythat</u> is, fluctuation in detecting values of the mass flow rate sensor occurs when the pressure of the fluid to be measured changes, or the<u>re</u> may be distortion of the sensor itself caused by <u>athe</u> mechanical tightening force (or thrust) <u>that</u> occurs when <u>thea</u> mass flow rate sensor is fitted to the gas supply line. <u>These problems</u>, which will be the cause of unevenness in the detecting values of the mass flow rate sensor.

[0008] So far, v\arious techniques have been developed so far to solve these difficulties with the afore-mentioned silicon-made ultra-small sized thermal_type mass flow rate sensor.__

For example, with the <u>devices of TOKU-KAI No. 2001-141540</u> and the TOKU-KAI No. 2001-141541 and the like, there is provided a temperature resistance layer E₆ on the outermost layer of a film E₁ formed on the upper face of the frame D made from a silicon substrate A₂ as shown in Figure 20, to enhance stability of the film E. <u>As shown in With Figure 20, E₁ to ~E₃ designate a silicon oxide layer forming to form a film_-</u>

E, E₄ <u>designates</u> a silicon nitride layer, E₅ <u>designates</u> a platinum layer, and C <u>designates</u> a lead connecting hardware.

-3-

[0009] As stated above, with the afore-mentioned silicon-made ultra-small sized thermal_-type mass flow rate sensor, as shown in Figure 20, there is formed a silicon nitride layer E₄ on the lower face side of the frame D, or a temperature resistant layer E₆ consistinged of a silicon nitride layer, to enhance the-water resistance and moisture resistance of the film E.

[0010] Patent Document 1: TOKU-KAI No.2001-141540 Public Bulletin

Patent Document 2: TOKU-KAI No.2001-141541 Public Bulletin

Disclosure of the Invention

Objects of the Invention

[0011] The present invention is to-solves the afore-mentioned problems with the-conventional mass flow rate sensors, such as (1) ene-that unevenness in property among products is caused and the response speed is becomes low when with a capillary thermal type mass flow rate sensor is used, and (2) the ether-that the emission of -particles, the occurrence of outside leaks, and the like, cannot be avoided when with a silicon-made ultra-small sized thermal-type mass flow rate sensor is used because such sensors are in addition that it is less corrosion-resistant, and also because that unevenness in detecting values of the mass flow rate occurs due to changes in the pressure of the fluid to be measured or changes in the fitting mechanism of the sensor. It is a primary object of the present invention to provide a corrosion-resistant metal made sensor for fluid and a fluid supply device for which the sensor is employed, and (a) to make it possible that ultra-small sized products with the uniform quality can be is manufactured.

-4-

by using micro-machine technologies; (b) further, to make it possible that unevenness caused by changes in the detecting values of the fluid pressure is automatically adjusted; (c) to make a sensor of the invention; equipped with excellent corrosion resistance; (d) to make it possible that a sensor, in accordance with the invention; achieves the high response speed and to make the sensor; particle-free; (e) to make the sensor; outside-leakless; and (f) to

make <u>it</u>lt possible that both mass flow rate and fluid pressure are detected <u>by the sensor</u>.

Means to Solve the Objects

[0012] Inventors of the present invention have <u>realized</u>come to an idea that by employing micro-machine technologies to form 2 resistance thermometer sensors, a heater, a lead wire to connect elements, and the like, required for a mass flow rate sensor part and a strain sensor element, a lead wire and the like, required for a pressure sensor part by using a thin film body on <u>athe</u> substrate made of corrosion-resistant metal, such as stainless steel and the like, <u>can be made</u> so that (a) unevenness in quality of the sensor for fluid is prevented and corrosion resistance and responsivity are enhanced, (b) <u>abeing</u> particle-free and outside leakless <u>sensor isare</u> achieved, (c) unevenness caused by changes in the detecting values of the fluid pressure is automatically adjusted, and (d) the fluid pressure can be monitored through the pressure sensor part. <u>A</u>, and a prototype of a sensor for fluid, equipped with the mass flow rate sensor part and the pressure sensor part, in accordance with the present invention, has been built and the operation tests have been <u>performed thereonrepeated based on said-idea</u>.

[0013] The present invention has been created based on the afore-mentioned idea and the results of various tests. The present invention, in accordance with a first embodiment as claimed in

-5-

Claim 1, is characterized by a corrosion-resistant metal made sensor constructed sothat it is so constituted that the mass flow rate and pressure of

fluid are measured by its being equipped with a mass flow rate sensor part 3 comprising a corrosion-resistant substrate 2, and a thin film forming a temperature sensor 3a, and a heater 3b installed on the back face side of the fluid contacting surface of thesaid corrosion-resistant substrate 2—, and a pressure sensor part 4 comprising a thin film forming a strain sensor element 4a mounted on the back face side of the fluid contacting surface of the metal substrate 2.

[0014] The present invention, in accordance with a second embodiment, modifies the first embodiment as claimed in Claim 2 according to the invention as claimed in Claim 1 is so constituted so that a corrosion-resistant metal substrate 2 is fitted into the mounting groove 10a of a corrosion-resistant metal made sensor base 10 in a state in which its fluid contacting surface is exposed outwardly, and the peripheral edge of the corrosion-resistant metal substrate 2 is hermetically welded to the sensor base 10.

[0015] The present invention, in accordance with a third embodiment, modifies the first and second embodiments as claimed in Claim 3 according to the invention as claimed in Claim 1 or Claim 2 is so made so that the output drift to the pressure of the mass flow rate sensor part 3 is corrected by the output of the pressure sensor part 4.

[0016] The present invention, in accordance with a fourth embodiment, as elaimed in Claim 4 is so-made so that a thin film F in accordance with the first, second or third embodiments Claim 1, Claim 2 or Claim 3, is provided constituted with an insulating film 5 formed on the back side of the fluid contacting surface of the corrosion-resistant metal substrate 2, a metal film M that which forms a

temperature sensor 3a, a heater 3b and a strain sensor element 4a thereupon, and a protection film 6 to cover the insulating film 5 and the metal film M.

[0017] The present invention, in accordance with a fifth embodimentas claimed in Claim 5, is so made so that a corrosion-resistant metal made sensor for fluid, in accordance with one of the first four embodiments, stipulated in one of Claims 1 to 4 is mounted on a fluid controller in order that the flow rate and pressure can be appropriately checked at the time of the fluid control.

[0018] The present invention, in accordance with a sixth embodimentas claimed in Claim in Claim 6, is so constituted constructed so that a sensor base 10 of the corrosion-resistant metal made sensor S for fluid, in accordance with the second embodiment, stipulated in Claim 2 is positioned inside the fluid passage 21b of a body 21 equipped with the afore-mentioned fluid passage 21b for communicating between the flow-in inlet 21a for the fluid G and the flow-out outlet 21c for the fluid by installing a metal gasket 27, in order that hermeticity between the body 21 and the sensor base 10 is held by thrusting the metal gasket 27 through the mediation of the afore-mentioned sensor base 10, and at the same time stiffness of the structural component directly above the metal gasket 27 is relatively raised to hold the afore-mentioned hermeticity is relatively raised, thus suppressing the-strain of the mass flow rate sensor part 3 and the pressure sensor part 4 caused by thrusting thesaid metal gasket 27.

Effects of the Invention

[0019] In accordance with the present invention, a mass flow rate sensor is

manufactured by applying micro-machine technologies, as in the case of <u>athe</u> conventional silicon made ultra-small sized mass flow rate sensor, thus <u>reducingenabling to reduce</u> unevenness in quality among products to a minimum. In addition, a corrosion-resistant metal substrate, for example, the substrate made with the SUS316L used for the sensor substrate, is processed to make <u>the substrate</u>; a thin plate, and __

-7-

a resistance wire and the like are made to be thin films so as, to make the heat capacity of the sensor part extremely small, thus increasing the response speed of the sensor remarkably.

[0020] Also, in accordance with the present invention, all the gas contacting faces are constituted of a corrosion-resistant metal, and the sensor part and the sensor base are assembled by welding, and a metal gasket sealing is employed to mount the gas contacting faces and sensor part and sensor basethem on a valve body and the like, thus making the sensorenabling to achieve to make it corrosion-free, particle free and outside leak-free.

[0021] In addition, in accordance with the present invention, aq mass flow rate sensor and a pressure sensor part are concurrently formed on the corrosion-resistant metal substrate, thus making it possible to adjust the amount of changes (the drift amount) of the mass flow rate due to changes of the fluid pressure, by using the detecting values in the pressure sensor part, to allow accurate detection of the mass flow rate and also enable to output the detected values of the pressure to the outside, when necessary.

Brief Description of the Drawings

[0022] Figure 1 is a plan schematic view of <u>athe</u> sensor part of a corrosion-resistant metal made thermal_-type mass flow rate sensor according to the present invention.

Figure 2 is a cross-sectional schematic view taken <u>along</u> line A-A of Figure 1.

Figure 3 is an explanatory drawing of the operating principle of a corrosion-resistant metal made thermal_-type mass flow rate sensor, according to the present invention.

-8-

Figure 4 <u>includes</u>is explanatory drawings <u>illustrating</u>to <u>illustrate</u> the manufacturing process of a sensor part, where (a) <u>pertains to</u>is the preparation process of a stainless steel thin plate, (b) <u>pertains to</u>is the formation process of an insulation film 5, (c) <u>pertains to</u>is the formation process of a Cr/Pt/Cr film (a metal film M), (d) <u>pertains to</u>is the formation process of a protection film 6, (e) <u>pertains to</u>is the formation process of an electrode insertion hole, (f) <u>pertains to</u>is the etching process of the back side of <u>the</u>a stainless steel thin plate, and (g) <u>pertains to</u>is the separation etching process of a sensor part 1.

Figure 5 is a sectional schematic view <u>illustratingto illustrate</u> an example of a corrosion-resistant metal made fluid sensor-for fluid.

Figure 6 is a block diagram of a signal detecting circuit, for detecting the mass flow rate of a sensor for fluid, according to the present invention.

Figure 7 is a graph illustratingdiagram to illustrate the relationship between the fluid pressure and the fluid sensor output/the bridge circuit output of

the temperature sensor.

Figure 8 includes graphs illustrating a diagram to illustrate various characteristics of a sensor part, according to the present invention, where (a) shows the relationship between the temperature of a heater and the resistance value of the temperature detecting resistance, (b) shows the relationship between the current of thea heater and the resistance value of the temperature detecting resistance, and (c) shows the relationship between the gas flow rate and the sensor output.

Figure 9 is a graph illustratinga diagram to illustrate the flow rate characteristics of a sensor when the compensation is performed against the pressure changes by using a pressure sensor part 4.

-9-

Figure 10 is a diagram <u>illustrating</u>to <u>illustrate</u> one example of a flow rate response characteristics of a sensor for fluid, <u>in accordance with</u>with regard to the present invention.

Figure 11 is a flow block diagram of a measuring circuit used for measuring the flow rate characteristics of a sensor S for fluid, in accordance with with regard to the present invention.

Figure 12 is a flow block diagram of a measuring circuit used for measuring_the_flow rate characteristics to the_supply pressure changes of a sensor S for fluid, in accordance with with regard to the present invention.

Figure 13 is a diagram illustrating illustrates the flow rate characteristics, at the time of the supply pressure changes, of a sensor S for fluid in accordance

with according to the present invention as measured using with the measuring circuit of in Figure 12.

Figure 14 is a cross-sectional view <u>illustratingto illustrate</u> an example of <u>anthe</u> assembly drawing of a sensor for fluid, according to the present invention.

Figure 15 is a cross-sectional view <u>illustrating another</u>to <u>illustrate the</u> ether example of <u>an the</u>

assembly drawing of a sensor for fluid, according to the present invention.

Figure 16 is a cross-sectional view <u>illustrating the assembly drawing of yet</u>to <u>illustrate</u> another example of the <u>assembly drawing of a sensor for fluid according to the present invention.</u>

Figure 17 is a plan view <u>illustrating another</u>to <u>illustrate the other</u> example of <u>anthe</u> assembly of a sensor for fluid, according to the present invention.

Figure 18 is a cross-sectional view taken along line B-B of Figure 17.

Figure 19 is a side view of the assembly of Figure 17.

Figure 20 is a cross-sectional view <u>illustrating</u>to illustrate the outline of <u>athe</u> conventional silicon made ultra-small sized thermal_-type mass flow rate sensor.

-10-

List of Reference Characters and Numerals

[0023] S Corrosion-resistant metal made sensor for fluid

F Thin film

M₁ Metal film that which forms a mass flow rate sensor part

M₂ Metal film thatwhich forms a pressure sensor part

- W Corrosion-resistant metal material
- G Gas to be measured
- 1 Sensor part
- 2 Corrosion-resistant metal substrate
- 3 Mass flow rate sensor part
- 3a Temperature sensor
- 3a₁, 3a₂ Temperature detecting resistances
- 3b Heater
- 4 Pressure sensor part
- 4a Strain sensor element
- 5 Insulation film
- 6 Protection film
- 6a Protection film for the mass flow rate sensor part
- 6b Protection film for the strain sensor part
- 7 Electrode insertion hole
- 9a · 9b Resists
- 10 Sensor base
- 10a Mounting groove

-11-

- 11 Heater driving circuit
- 12a Pressure offset adjustment circuit
- 12b Mass flow rate offset adjustment circuit
- 13 Offset adjustment circuit (for fine tuning)
- 14 Gain adjustment circuit

15a,15b Differential amplifying circuits				
16	Mass flow rate output terminal			
17	Fluid pressure output terminal			
4a ₁ · 4a ₂ Strain sensor elements				
18	Signal treatment circuit			
19	Multiplying treatment circuit			
20	Joint part			
21	Body			
22	Sensor base presser			
23	Wiring substrate presser			
24	Wiring substrate			
25 •	26 Guide pins			
27	Metal gasket			
28	Rubber sheet			
29	Lead pin			
30	Lead wire (a gold wire)			
31	Body			
32	Pressure detector			
33	Control Valve			
34	Piezo-electric valve driving device			
35	Orifice			
36	Filter			
37	Relay substrate			

-12-

	40	He gas source
	41	Pressure adjuster
	42	Pressure type flow rate controller
	43	Diaphragm vacuum pump
	44	Driving circuit for the sensor S for fluid
	45	Oscilloscope
	46	Signal transmitter
	47	3-way switching valve
	48	Mass flow meter
	P ₁ ·	P ₂ Pressure gages
	49	Secondary side pipe passage of the pressure type flow rate
		controller (inner capacity of 15cc or 50cc)
	50	Pressure adjusting valve
	S ₀	Flow rate output of the sensor S for fluid
	F ₀	Flow rate output of the pressure type flow rate controller
	Mo	Flow rate output of the mass flow meter
-13-		
	PT	Output of the secondary side pressure gauge
	51	Fluid flow-in inlet
	52	Fluid flow-out outlet
	Bes	t Mode of Carrying Out the Invention
	Deta	iled Description of the Invention

38 Bearing

39 Fixture screw hole

[0024] [Preferred Embodiment 1 of the Corrosion-Resistant Metal Made Sensor for Fluid]

AnThe embodiment in accordance with the present invention is				
described as followshereunder with reference to the drawings				
Figure 1 is a plan schematic view of the sensor part 1, which is an				
essential part of a corrosion-resistant metal made thermaltype mass flow rate				
sensor according to the present invention. Figure 2 is a cross-sectional				
schematic view taken on line A-A of Figure 1.				
[0025] Said sensor part 1 comprises a thin corrosion-resistant metal substrate				
2, an insulation film 5 formed on the upper face of the substrate_2, a mass flow				
rate sensor part 3 and a pressure sensor part 4 formed on the upper face of the				
insulation film 5, and a protection film 6, and the like, formed on the mass flow				
rate sensor part 3, the pressure sensor part 4, and the like				
Also, the afore-mentioned mass flow rate sensor part 3 comprises a				
temperature sensor 3a, a heater 3b and the like, and the afore-mentioned				
pressure sensor part 4 comprises a strain sensor element 4a, and the like,				
pressure sensor part 4 comprises a strain sensor element 4a, and the like,				
pressure sensor part 4 comprises a strain sensor element 4a, and the like, respectively				
respectively				
respectively Furthermore, <u>as shown in Figure 2,</u> a thin film F is formed with a metal				
respectively ——Furthermore, <u>as shown in Figure 2</u> , a thin film F is formed with a metal film M <u>thatwhich</u> forms an insulation film 5, <u>and with temperature detecting</u>				
respectively ——Furthermore, <u>as shown in Figure 2</u> , a thin film F is formed with a metal film M <u>thatwhich</u> forms an insulation film 5, <u>and with temperature</u> detecting resistances 3a ₁ , 3a ₂ of the temperature				
respectively ——Furthermore, <u>as shown in Figure 2</u> , a thin film F is formed with a metal film M <u>thatwhich</u> forms an insulation film 5, <u>and with temperature</u> detecting resistances 3a ₁ , 3a ₂ of the temperature				

metal substrate <u>2</u>. And, an electrode insertion hole 7, with an approximate size, is formed on the afore-mentioned protection film 6 by <u>an</u>the etching process.

[0026] A gas G to be measured flows in the direction of the arrow, <u>shown</u> in Figure 2, along the corrosion-resistant metal substrate 2 on the under face side (or the surface side of the fluid contacting surface) of the sensor part 1 as shown in Figure 2 and Figure 3. When this happens, some of the heat <u>ofquantity</u> contained with the gas G is given to the corrosion-resistant metal substrate 2, thus resulting in <u>shifting ofthat</u> the temperature distribution Tt of the corrosion-resistant metal substrate 2 shifts-from the temperature distribution To, where there is no flow of the gas G, to the temperature distribution Tt as shown in Figure 3.

[0027] As stated above, changes in the temperature distribution of a corrosion-resistant metal substrate 2 caused by the flow of the gas G are presented as changes in the voltage values at the both ends of the temperature detecting resistances 3a₁, 3a₂ through the mediation of changes in the resistance values of the temperature detecting resistances 3a₁, 3a₂, which form the temperature sensor 3. Thus, the mass flow rate of the gas G can be known by detecting the changes in the voltage values as a differential output.

The above stated operating principle of the thermal type mass flow rate sensor is identical <u>towith</u> that of the publicly known silicon made thermal_type mass flow rate sensors. Therefore, <u>athe explanation in detailed explanation</u> is omitted herewith.

-15-

[0028] Similarly, the pressure of the gas G, to be measured, is continuously

detected through the mediation of the output of the strain sensor element 4a, and the pressure changes of the gas G are detected as the output changes of the strain sensor element 4a.__

As described later, <u>because</u>since the output of the mass flow rate sensor part 3 changes roughly in proportion to the pressure of the gas G to be measured, <u>a</u>the detection value of the detected mass flow rate at the mass flow rate sensor part 3 is corrected by using <u>a</u>the detected pressure value at <u>thesaid</u> pressure sensor part 4.

[0029] The response speed and sensor sensitivity of the mass flow rate sensor part 3 are affected by the corrosion-resistant metal material W_{\star} which forms the afore-mentioned sensor part 1_{\star} because the thermal capacity of the sensor part 1_{\star} changes changed with its thickness. Referring to Figure 1 and Figure 2, in accordance with the present embodiment, a stainless steel thin plate (SUS316L) of less than $150~\mu$ m thick is used. It is possible to raise that the response speed and sensor sensitivity are raised by making the thickness less than $150~\mu$ m, thus the heat capacity of the sensor part 1 is also being smaller. However, it goes without saying there is no need to say that the thickness could be more than $150~\mu$ m if the sufficient response speed and sensor sensitivity are assured.

[0030] As described later, the afore-mentioned insulation film 5 is an oxidized film having awith thickness of 1.2 μ m to ~1.8 μ m, formed by the so-called "CVD method" (Chemical Vapor Deposition method). In accordance with this With the present embodiment, a 1.5 μ m thick SiO₂ film, formed by the CVD (Chemical Vapor Deposition) method, has been used for thee insulation film 5.–

-16-

[0031] The afore-mentioned temperature detecting resistances 3a₁, 3a₂ and heater 3b are made from a metal film M₁ formed by using athe mask pattern (not illustrated) for the mass flow rate sensor on the afore-mentioned insulation film 5. In accordance with With the present embodiment, the temperature detecting resistances 3a₁, 3a₂, and heater 3b, and the like, are made from a metal film formed by a Cr/Pt/Cr film (with thickness of $10/100/10 \mu$ m, respectively) that is being laminated, in order, by the vapor deposition method.

[0032] Similarly, a strain sensor element 4a is made from a metal film M2 formed by using athe mask pattern (not illustrated) for the strain sensor part on the afore-mentioned insulation film 5. In accordance with With the present embodiment, the strain sensor element 4a, and the like, are made from a metal film M2 formed by Cr/Cr-Ni/Cr film (with thickness of $10/100/10 \mu$ m, respectively) that is being laminated, in order by, the vapor deposition method.

[0033] The afore-mentioned protection film 6 is a film body to cover the upper part of the temperature detecting resistances $3a_{1}$, $3a_{2}$, the heater 3b, the strain sensor element 4a, and the like. In accordance with With the present embodiment, the 0.4 to $\approx 0.7 \,\mu$ m thick SiO₂ film (the mass flow rate sensor part 3 and the pressure sensor part 4), formed by the CVD method, ishas been used. Also, thesaid protection film 6 is provided with a suitably shaped

electrode insertion hole 7, made by <u>athe</u> plasma etching method, to draw out an electrode rod, and the like, through <u>thesaid</u> electrode insertion hole 7.

[0034] The back face side of <u>thea</u> corrosion-resistant metal substrate 2, which forms a-sensor part 1, is finished with a thickness of less than 150 μ m.__

The sensor part 1 is eventually separated from the corrosion-resistant metal material W by athe method of the so-called "through-etching processing." As described later, the separately formed sensor part 1 is hermetically fixed to the corrosion-resistant metal made flow rate sensor base 10 by the laser welding, or the like, so that the corrosion-resistant metal made sensor S for fluid, according to the present invention, havingwith the structure as shown in Figure 5 is so constituted. In Figure 5 Here, 10a is a mounting groove provided on the sensor base 10.

[Work Process of the Sensor Part]

asfor the corrosion-resistant metal material W.

[0035] Next, <u>athe</u> manufacturing work process of the mass flow rate sensor part 3, which forms the afore-mentioned sensor part 1, is explained <u>as</u> <u>follows</u>hereunder.___

Figure 4 <u>provides</u>is explanatory drawings <u>showingto</u> show the manufacturing process of the mass flow rate sensor part 3, and pressure sensor part 4, which form the sensor part 1 <u>in accordance</u> with the present invention. [0036] First, <u>as shown in Figure 4(a)</u>, a stainless steel made thin plate (SUS316L) with appropriate dimensions, for example, of the diameter of 70 to \approx 150mm ϕ and <u>athe</u> thickness of less than 150 μ m, is prepared for the corrosion-resistant metal material. It goes without saying (Figure 4(a)) There is no need to say that a thin metal plate (for example, π an austenitic steel plate

[0037] Then, as shown in Figure 4(b), a SiO₂ film 5 (an insulation film) with a thickness of approximately 1.5 μ m is formed on the outer back face of the

made of a Cr-Ni alloy) other than a thin stainless steel plate can be employed

afore-mentioned prepared stainless steel thin plate by a plasma CVD device (Plasma-Enhanced Chemical Vapor Deposition Device) for which the TEOS (Tetrra-Ethoxy-Silane) is used.—

-18-

(Figure 4(b))

[0038] After that, <u>as shown in Figure 4(c)</u>, there are formed patterns of temperature detecting resistances $3a_1$, $3a_2$, a heater $3b_1$ and the like, made from a metal film M₁ formed by <u>athe Cr/Pt/Cr film</u> (with thickness of $10/100/10 \mu$ m, respectively) by employing an electronic beam heating—type vapor deposition device and a-photo-mask patterns (not illustrated) for forming a mass flow rate sensor part <u>3</u> on the afore-mentioned SiO₂ film 5.—(Figure 4(c))

[0039] After thea metal film M₁, which forms the afore-mentioned mass flow rate sensor part 3, hashaving been formed, then patterns of a strain sensor element 4a, and the like, made from athe Cr/Cr-Ni alloy/Cr film (with thickness of $10/100/10 \,\mu$ m, respectively) are made on the SiO₂ film 5, as shown by Figure 4(d), with a metal film M₂ by using the photo-mask patterns (not illustrated) for forming the pressure sensor part 4 instead of the photo-mask patterns for forming the mass flow rate sensor part 3. (Figure 4(d))

[0040] And then, a SiO₂ film (a protection film) 6, of thickness of approximately $0.5 \,\mu$ m, is formed on the temperature detecting resistances 3a₁, 3a₂ and heater 3b, which form the mass flow rate sensor part 3, and on the strain sensor element 4a, which forms the pressure sensor part 4. The protection film 6 is made through the processes of the afore-mentioned Figure 4(c) and Figure 4(d), which utilizewith the plasma CVD device for which the afore-mentioned TEOS is

employed in accordance with . (Figure 4(e).)

[0041] Then, on the afore-mentioned protection film 6, there are made an electrode takeout hole (an electrode insertion hole 7) with a bore of 200 μ m that isto be used for the temperature detecting resistances 3a₁, 3a₂ and a-heater 3b, and_-

-19-

also an electrode takeout hole (not illustrated), with a bore of approximately 100 μ m, that isto be used for the strain sensor element 4a. The electrode takeout holes are made by using the photo-mask patterns (not illustrated) to make an electrode insertion hole, in accordance with Figure 4(f), employingwith the plasma etching device that uses for which the CF4 gas is used. (Figure 4(f)) [0042] Because Due to the reason that the SUS316L or Cr has a high tolerance to the plasma of by the CF4 gas, etching in progress stops automatically upon completion of etching of the SiO2 film 6-being completed. Accordingly, there is no danger at all that of the so-called "over-etching" may occurbeing caused at all. [0043] Lastly, after resists 9a, 9b have been being coated, a-sensor part 1 is detached from the material W by cutting through, in a circular shape, with the etching treatment using the ferric chloride solution (FeCl3 · 40wt%).

[0044] The circular shaped sensor part 1, once separated from the material W, is fitted into the mounting groove 10a of the sensor base 10, formed in the shape as shown in Figure 5, and is welded and fixed hermetically to the sensor base 10 at by the outer periphery part that is being laser-welded. Thus, a corrosion-resistant metal made sensor S for fluid according to the present invention is constructed constituted.

[0045] Figure 6 is a block diagram of a signal detecting circuit for detecting a mass flow rate of the <u>fluid</u> sensor S, <u>for fluid</u>-according to the present invention. <u>TheSaid</u> signal detecting circuit comprises a sensor part 1 formed by a mass flow rate sensor part 3 and a pressure sensor part 4, a heater driving circuit 11, a pressure offset adjustment circuit 12a, a mass flow rate offset adjustment circuit 12b, an offset adjustment circuit (for fine tuning) 13, a gain adjustment circuit 14, differential amplifying circuits 15a, 15b, a mass flow rate output terminal 16, a_-

fluid pressure output terminal 17, a signal treatment circuit 18, a multiplying treatment circuit 19, and the like. As shown in With Figure 6, 3a₁ and 3a₂ are temperature sensor elements, and 4a₁ and 4a₂ are strain sensor elements.

[0046] Referring to Figure 6, thea mass flow rate sensor part 3 is heated by the operation of thea heater driving circuit 11. When resistance values change with the temperature changes of the upstream side temperature detecting resistance 3a1 and the downstream side temperature detecting resistance 3a2, which form the temperature sensor element 3a of the mass flow rate sensor part 3, while the gas G to be measured passes through, these changes are inputted to the differential amplifying circuit 15b as the changes of voltage, and the differential amplifying output is outputted to the mass flow rate output terminal 16 through the mediation of the mass flow rate offset adjustment circuit 12b, the offset adjustment circuit 13, and the multiplying treatment circuit 19.

[0047] <u>BecauseDue to the reason that</u> the corrosion-resistant metal substrate 2, which forms a sensor part 1 of the present invention, is made to be a thin film, the sensor part 1 strains with the gas pressure <u>whenwhile the</u> gas G passes

through, thus resulting in changes of resistance values of <u>the</u> temperature detecting resistances 3a₁, 3a₂ of the temperature sensor 3a, <u>so as</u> to make the bridge output of the temperature sensor 3a changed.

[0048] Figure 7 shows the relationship between the fluid pressure when there is made no adjustment is made with the pressure sensor part 4 (namely, the gain adjustment with the pressure offset adjustment circuit 12a, the adjustment with the offset adjustment circuit 13 by the output from the signal treatment circuit 18, -21-

and the gain adjustment with the gain adjustment circuit 14), and the mass flow rate output (the output mV of the output terminal 16) with the <u>fluid</u> sensor S for <u>fluid</u> according to the present invention. <u>CThe curves A</u>, B and C show the measured values (in <u>the case</u> of a current value of 5mA to the temperature detecting resistances 3a₁, 3a₂) with three samples.

[0049] In either case of when the heater 3b is operated or the heater 3b is not operated, experimentation has confirmed it has been confirmed with the experiment that the output of the sensor S changes with the changes of the fluid pressure. Or, or even with the same heater operating current, experimentation has confirmed that the amount of the change in the resistance values, due to the fluid pressure P of the upstream side temperature detecting resistance 3a1 and the downstream side temperature detecting resistance 3a2, differ.

[0050] As stated above, when an ordinary resistance bridge circuit is employed, there occurs a problem occurs in that the output of the sensor part 1 changes with the generation of strain. However, using with the signal detecting circuit according to the present invention, the sensor Sit is se-constituted so that the

rate of amplification of voltage values, outputted from the upstream side temperature detecting resistance 3a1 and the downstream side temperature detecting resistance 3a2 and the offset, are fine-tuned through the mediation of the strain sensor elements 4a1, 4a2, the pressure offset adjustment circuit 12a, the signal treatment circuit 18, and the like, with the output from the pressure sensor part 4. Thus, thus changes in the output voltage values of the temperature detecting resistances 3a1, 3a2, produced by the application of the fluid pressure P, is being cancelled out by adjusting the afore-mentioned amplification rate and the offset.

-22-

As a result, it <u>has becomes</u> possible that output changes of the sensor part 1, by the gas pressure, <u>areis</u> perfectly constrained, thus making it possible <u>to accurately detected</u>.

[0051] Figure 8 illustrates characteristics of a sensor S for fluid according to the present invention. Figure 8(a) shows the relationship between the temperature of a-heater 3b and the resistance value, Figure 8(b) shows the relationship between the current value of the heater 3b and the resistance value, and Figure 8(c) shows the relationship between the gas flow rate (SCCM) and the detected output value (V), respectively.

[0052] The resistance value of the heater 3b of the temperature sensor $3a_1$ used to measure various characteristics in Figure 8_2 is approximately $2.4k\Omega$, and the resistance values of the temperature detecting resistances $3a_1$, $3a_2$ are $each\ 2.0k\Omega$ (both having identical values). 10mA current was passed to the heater 3b, and 1.2mA current was passed to the temperature detecting

resistances 3a₁, 3a₂. Also, the fluid pressure <u>wasis</u> kept at a specific value of 100kPaG.

[0053] Furthermore, the changes in the output value of the sensor part 1 werewas approximately 1.0V when the gas flow rate was made to changed in the range of 0 to ~100SCCM. (However, the output value was amplified 500 times with the OP amplifier.)

[0054] In addition, because the output value of the sensor part 1 depends on the clearance (the height of the flow passage) between the flow rate sensor base 10 of the <u>fluid</u> sensor S <u>for fluid</u> and the fluid passage shown in Figure_14, as described -later, the range capable <u>for measuringto measure a</u> flow rate can be appropriately switched by adjusting the afore-mentioned height of the flow passage.

-23-

[0055] Figure 9 illustrates the relationship between the-fluid flow rate and the sensor output at athe time when the pressure sensor part 4 is operated and the adjustment is performed by the pressure sensor part 4 as shown inin the afore-shown Figure 6. As shown in With Figure 9, Curve A1 shows the case when the pressure sensor part 4 is not operated with athe fluid pressure of 100KPaG (namely, Curve C as shown in the afore-shown Figure 8). ___, Curve A2 shows the case when the fluid pressure is raised to 150KPaG (namely, the pressure sensor part 4 not being operated, and other conditions for experiments are same as those of Curve A1). __, and Curve A3 shows the case when the pressure sensor part 4 is operated with fluid pressure of 150KPaG (other conditions for experiments are same as those of Curve A1) respectively. In

accordance wWith the sensor S for fluid, according to the present invention, testingit has been confirmesd that even when the fluid pressure changes from 100KPaG to 150KPaG, the changes in the flow rate-output characteristics are completely prevented by operating the pressure sensor part 4.

[0056] Figure 10 shows one example of the flow rate response characteristics of the sensor S for fluid, and also shows characteristics in the case when the gas flow rate is set at 0 to ~100SCCM. As shown by

— With Figure 10, Curve SA <u>demonstrates</u> the flow rate response characteristics of the sensor S for fluid according to the present invention, and the lateral axis is graduated in 250msec_blocks. Curve SF illustrates the flow rate response characteristics under the same conditions as those of the mass flow rate sensor with <u>athe</u> conventional pressure type flow rate controller.__

-----Figure 11 is a flow block diagram of the measuring circuit used for_-

measuring the relationship, shown in (Figure 9), between the gas flow rate (SCCM) and the detected output value (V) of the afore-mentioned <u>fluid</u> sensor S for <u>fluid</u> according to the present invention. He<u>lium (He)</u> gas is supplied from the He gas source 40 to the pressure type flow rate controller 42 through the pressure adjuster 41, and the exhausted flow rate is measured with the pressure type flow rate controller 42 while <u>He</u>it is exhausted by the diaphragm vacuum pump 43.

[0058] The sensor S for fluid, according to the present invention, which is a sensor to be tested e-measured, is fitted to the primary side flow passage of the pressure type flow rate controller 42.__

As shown in With Figure 11, 44 designates a driving circuit for the			
sensor S for fluid (a flow rate sensor), 45 designates an oscilloscope, and 46			
designates a signal transmitter The flow rate output So of the sensor S for fluid			
is inputted to the oscilloscope 45, and is contrasted put in a contrast with the flow			
rate measurement value F₀ <u>from</u> by the pressure type flow rate controller 42.			
[0059] Figure 12 is a flow block diagram of the measuring circuit <u>used</u> when			
the supply pressure of the afore-mentioned sensor S for fluid, according to the			
present invention, changes. As shown in			
With Figure 12, 47 designates a 3-way switching valve, 48 designates a			
mass flow meter, 49 designates the secondary side pipe passage (with the inner			
capacity of 15cc or 50cc), 50 designates a pressure adjusting valve (the degree			
of opening so adjusted that P2 becomes 100Torr at the He flow rate of 20SCCM),			
and P ₁ , P ₂ designate pressure gages.			
[0060] When the measurement is conducted, the pressure of the He gas			
supplied to the mass flow meter 48, and to the sensor S for fluid (a product of the			
-25-			
present invention \cdot a sensor to be measured) and $\underline{\text{to}}$ the pressure type flow rate			
controller 42 is made to changed by opening/closing thea 3-way switching valve			
47			
The secondary pipe passage 49, of the pressure type flow rate			
controller 42, is so-set so that its inner capacity is 15cc (or 50cc). And, the			
secondary side Pressure P2 is so-adjusted by the pressure adjusting valve 50 \underline{so}			
that the pressure P_2 <u>isbecomes</u> 100Torr when the He gas flow rate is 20SCCM			
during the full load operation of the vacuum pump 43.			

The detected flow rate S₀ of the sensor S-for-fluid, the detected flow rate M₀ of the mass flow meter 48, the detected flow rate F₀ of the pressure type flow rate controller 42, and the pressure measurement values P₁, P₂, respectively, are inputted to and recorded by respectively to the oscilloscope. [0061] Figure 13 shows—the—measurement results obtained with the afore-mentioned measurement circuit shown in Figure 12. The state of changes in the detected values F₀, P₂, S₀, M₀ is shown at the time when the supply pressure is made to changed from 200KPa · abs to 150KPa · abs. It is revealed, from Figure 13, that when the detected value S₀ of the flow rate of the sensor S for fluid, according to the present invention, is compared with the detected value M₀ of the flow rate of the mass flow meter 48, both detected values S₀ and M₀ of the flow rate (flow rate signals) keep up with the changes inef the supply pressure

[Embodiment 1 of the Fluid Supplier]

[0062] Figure 14 shows one example of <u>a</u>the fluid supplier equipped with a sensor S for fluid, according to the present invention. _It also shows a state of the sensor S for fluid <u>that is being</u> fitted to the joint part 20 mounted on the gas flow_-

-26-

passage. As shown in With Figure 14, 21 designates a body of the joint part 20, 22 designates a sensor base presser, 23 designates a wiring substrate presser, 24 designates a wiring substrate, 25 designates a guide pin, 26 designates a guide pin, 27 designates a metal gasket, 28 designates a rubber sheet, 29 designates a lead pin, and 30 designates a lead wire (a gold wire).

The afore-mentioned guide pins 25, 26 are used for positioning the mass flow rate sensor S when it is fitted to the inside of the body 21.

Hermeticityeremeticity between the sensor base 10 and the body 21 is maintained bywith the metal gasket 27.

[0063] While the fluid gas G flowesd in from the fluid flow-in inlet 21a and passes through a fluid passage 21b, theits mass flow rate of gas G is detected bywith the sensor part 1, and the fluid gas G flows outside viafrom the fluid flow-out outlet 21c.__

In accordance wWith the present invention, there is no risk at all that the substrate 2 is corroded bywith the gas G₁ as occurs with the case of the conventional silicon made substrate, because the gas to be measured passes through sensor S while contacting with the SUS316L made substrate 2.

[Embodiment 2]

[0064] Figure 15 shows the case wherethat the sensor S for fluid, according to the present invention, is fitted to the main body part of the pressure type flow rate controller. As shown in With Figure 15, S designates a fluid sensor-for fluid, 31 designates a body, 32 designates a pressure detector, 33 designates a control valve, 34 designates a Piezo-electric valve driving device, 35 designates an orifice and 36 designates a filter.

[Embodiment 3]

[0065] Figure 16 shows <u>an alternate</u>the <u>altered</u> fitting position of the sensor S for fluid –

-27-

according to the present invention. However, it is substantially the same as that

in Figure 15.___

——Since the <u>structure</u>constitutions of a pressure type flow rate controller and its main parts have been disclosed by, for example, <u>Japanese</u> Patent No.3291161, the TOKU-KAI-HEI No.11-345027 and others, <u>the explanation of this structure</u> is omitted herewith. The method of fitting a sensor S for fluid is <u>the same in the embodiment of Figure 16</u> as that in Figure 14. Therefore, the <u>above explanation is not repeated omitted herewith</u>.

[Embodiment 4]

[0066] Figure 17 to Figure 19 show <u>another the other</u> example in which a sensor S for fluid, according to the present invention, is fitted to a structural component, which constitutes a fluid controller. Figure 17 is a plan view, Figure 18 is a cross-sectional view, and Figure 19 is a side view.___

As shown by With Figure 17 to Figure 19, 37 designates a relay substrate, 38 designates a bearing, 39 designated a fixture screw hole for the sensor S, 51 designates a fluid flow-in inlet, and 52 designates a fluid flow-out outlet. The method of fitting a sensor S for fluid is the same as those described in Figure 14 and Figure 16. Therefore, anthe explanation of the fitting method described above is not repeated here is omitted herewith.

Feasibility of Industrial Use

[0067] The present invention is mainly used for detecting the-mass flow rate and/or the-pressure in the-gas supply lines of with semiconductor manufacturing facilities, various kinds of chemical product manufacturing equipment, and the like. However, the present invention to can be also utilized for detecting the-mass flow rate and pressure of a gas in the gas supply lines in many industrial fields.—