Solutions to Exercise Set 2.

- 3.2. (a) The moment generating function of $X \in \mathcal{N}(0,1)$ is easy to compute: $M_X(z) = \mathrm{E}e^{zX} = (1/\sqrt{2\pi}) \int_{-\infty}^{\infty} e^{zx} e^{-x^2/2} dx = (1/\sqrt{2\pi}) \int_{-\infty}^{\infty} e^{(x-z)^2} dx e^{z^2/2} = e^{z^2/2}$. Its value on the pure imaginary line, z = it, is the characteristic function, $\varphi_X(t) = e^{(it)^2/2} = e^{-t^2/2}$.
- the pure imaginary line, z = it, is the characteristic function, $\varphi_X(t) = e^{(it)^2/2} = e^{-t^2/2}$. (b) If $X \in \mathcal{P}(\lambda)$, then $\varphi_X(t) = \mathbf{E}e^{itX} = \sum_{x=0}^{\infty} e^{itx}e^{-\lambda}\lambda^x/x! = e^{-\lambda}\sum_{x=0}^{\infty} (\lambda e^{it})^x/x! = e^{-\lambda}e^{\lambda e^{it}} = e^{-\lambda(1-e^{it})}$.
 - (c) $\varphi_{a+bX}(t) = \mathbf{E}e^{it(a+bX)} = e^{iat}\mathbf{E}e^{ibtX} = e^{iat}\varphi_X(bt)$.
- (d) $\varphi_Y(t) = \varphi_{(X-\lambda)\sqrt{\lambda}}(t) = e^{-i\sqrt{\lambda}t}\varphi_X(t/\sqrt{\lambda}) = e^{-i\sqrt{\lambda}t}\exp\{-\lambda(1-e^{-it/\sqrt{\lambda}})\} = \exp\{-\lambda(1+(it/\sqrt{\lambda})-e^{-it/\sqrt{\lambda}})\}$. Now expand $e^{-it/\sqrt{\lambda}}$ in a power series, and note that the first two terms cancel exactly, leaving

$$\begin{split} \varphi_Y(t) &= \exp\{-\lambda(-\frac{1}{2}(\frac{-it}{\sqrt{\lambda}})^2 - O(1/\lambda^{3/2})\} \\ &= \exp\{-\frac{1}{2}t^2 + O(1/\sqrt{\lambda})\} \to \exp\{-\frac{1}{2}t^2\} \end{split}$$

- (e) We may conclude that the Poisson distribution with large parameter λ is approximately normal with mean λ and variance λ . More precisely, $(X \lambda)/\sqrt{\lambda} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$ as $\lambda \to \infty$.
- 3.4. (a) Since $\sum_{0}^{\infty} {r+x-1 \choose x} (1-p)^r p^x = 1$, we have $\sum_{0}^{\infty} {r+x-1 \choose x} p^x = (1-p)^{-r}$, for all p. Therefore,

$$\varphi(t) = \mathbf{E}e^{itX} = \sum_{x=0}^{\infty} e^{itx} \binom{r+x-1}{x} (1-p)^r p^x$$
$$= (1-p)^r \sum_{x=0}^{\infty} \binom{r+x-1}{x} (pe^{it})^x = \frac{(1-p)^r}{(1-pe^{it})^r}.$$

- (b) If $r \to \infty$ and $p \to 0$ in such a way that $rp \to \lambda$, then $(1-p)^r \to e^{-\lambda}$ and $(1-pe^{it})^r \to e^{-\lambda e^{it}}$. Therefore, $\varphi(t) \to e^{\lambda(e^{it}-1)}$. Since this is the characteristic function of the Poisson distribution, $\mathcal{P}(\lambda)$, we have $X \xrightarrow{\mathcal{L}} \mathcal{P}(\lambda)$.
- 4.1. (a) The least squares estimate of λ is that value of λ that minimizes $\sum_{1}^{n}(X_{i}-\lambda z_{i})^{2}$. Taking a derivative of this sum with respect to λ , setting to zero and solving gives $\hat{\lambda}_{LS} = \sum_{1}^{n}X_{i}z_{i}/\sum_{1}^{n}z_{i}^{2}$. The weighted least squares estimate of λ is that value of λ that minimizes $\sum_{1}^{n}(X_{i}-\lambda z_{i})^{2}/z_{i}$. Similarly, we find $\hat{\lambda}_{W} = \sum_{1}^{n}X_{i}/\sum_{1}^{n}z_{i}$.
- (b) Since $E\hat{\lambda}_{LS} = \lambda$, it is sufficient to find for what values of the z_i we have $Var(\hat{\lambda}_{LS}) \to 0$ as $n \to \infty$ (see Exercise 1.5). But

$$\operatorname{Var} \hat{\lambda}_{LS} = \operatorname{Var} \frac{\sum_{1}^{n} X_{i} z_{i}}{\sum_{1}^{n} z_{i}^{2}} = \frac{\operatorname{Var} \sum_{1}^{n} X_{i} z_{i}}{(\sum_{1}^{n} z_{i}^{2})^{2}} = \frac{\sum_{1}^{n} z_{i}^{2} \operatorname{Var} X_{i}}{(\sum_{1}^{n} z_{i}^{2})^{2}} = \frac{\lambda \sum_{1}^{n} z_{i}^{3}}{(\sum_{1}^{n} z_{i}^{2})^{2}}$$

Therefore, λ_{LS} is consistent in quadratic mean if and only if $\sum_{i=1}^{n} z_i^3/(\sum_{i=1}^{n} z_i^2)^2 \to 0$ as $n \to \infty$.

- (c) $\hat{\lambda}_W$ is also unbiased, and $\operatorname{Var}(\hat{\lambda}_W) = \lambda \sum_{i=1}^n z_i / (\sum_{i=1}^n z_i)^2 = \lambda / \sum_{i=1}^n z_i$. So $\hat{\lambda}_W$ is consistent in quadratic mean if and only if $\sum_{i=1}^n z_i \to \infty$ as $n \to \infty$.
- (d) If $\hat{\lambda}_W$ is not consistent in quadratic mean, i.e. if $\sum_1^{\infty} z_i < \infty$, then both $\sum_1^{\infty} z_i^2 < \infty$ and $\sum_1^{\infty} z_i^3 < \infty$, so $\hat{\lambda}_{LS}$ is not consistent either. However if $z_i = 1/i$, then $\sum_1^{\infty} z_i = \infty$ so that $\hat{\lambda}_W$ is consistent in quadratic mean, but $\sum_1^{\infty} z_i^2 < \infty$ and $\sum_1^{\infty} z_i^3 < \infty$ so that $\hat{\lambda}_{LS}$ is not consistent.