Pre-processing Titanic

November 3, 2021

```
[1]: # Import necessary package
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

0.0.1 Step 1: Load the dataset

```
[2]: # Load the dataset into pandas dataframe

df = pd.read_csv("E:\\MY LECTURES\\8.2021-09-03 DATA SCIENCE (KNU)\\3.

→Programs\\dataset\\titanic.csv")

# Change this location based on the location of dataset in your machine
```

```
[3]: df.head()
```

```
PassengerId Survived Pclass
[3]:
                                    3
                 2
    1
                           1
                                    1
     2
                 3
                           1
                                    3
                 4
                            1
                                    1
     3
     4
                 5
                           0
                                    3
```

	Name Sex Age	SibSp \
0	Braund, Mr. Owen Harris male 22.0	1
1	Cumings, Mrs. John Bradley (Florence Briggs Th female 38.0	1
2	Heikkinen, Miss. Laina female 26.0	0
3	Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0	1
4	Allen, Mr. William Henry male 35.0	0

i	Embarked	Cabin	Fare	Ticket	Parch	
3	5	NaN	7.2500	A/5 21171	0	0
;	C	C85	71.2833	PC 17599	0	1
3	5	NaN	7.9250	STON/02. 3101282	0	2
3	5	C123	53.1000	113803	0	3
3	ç	NaN	8.0500	373450	0	4

[4]: df.shape

[4]: (891, 12)

0.0.2 Step 2: Apply EDA

Column information in the dataset

[5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtypes: float64(2), int64(5), object(5)			
momomit 1150 mo. 92 71 MD			

memory usage: 83.7+ KB

How many survived and lost life?

[6]: # 0 indicates passenger did not survive and 1 indicates passenger survived
sns.countplot(x="Survived", data=df)
plt.show()

How many men and women survived and lost life?

```
[7]: # Majority of male did not survive and majority of female survived sns.countplot(x="Survived", hue="Sex", data=df) plt.show()
```


How many survived and lost life based on passenger class?

```
[8]: # Majority of third class passengers did not survive
sns.countplot(x="Survived", hue="Pclass", data=df)
plt.show()
```


Age distribution of passengers travelled in Titanic

[9]: # age 20 to 40 are the majority of the passengers df['Age'].plot.hist()

[9]: <AxesSubplot:ylabel='Frequency'>

Fare distribution

```
[10]: df['Fare'].plot.hist(bins=15,figsize=(8,4))
```

[10]: <AxesSubplot:ylabel='Frequency'>

Passengers number of siblings boarded on the ship

```
[11]: # Majority are singles
sns.countplot(x="SibSp", data=df)
```

[11]: <AxesSubplot:xlabel='SibSp', ylabel='count'>

Scatter plot

```
[12]: sns.set_style(style='white')
fig = plt.figure(figsize=(22,7))
plt.scatter(df["Age"],df["Survived"],color="brown")
plt.grid(b=None)
plt.xlabel("TV budget")
plt.ylabel("Sales")
plt.title("TV budget vs Sales")
plt.show()
```


0.0.3 Step 3. Pre-process and extract the features

Cleaning null values

[13]:	df.isnull().s	um()
[13]:	PassengerId	0
	Survived	0
	Pclass	0
	Name	0
	Sex	0
	Age	177
	SibSp	0
	Parch	0
	Ticket	0
	Fare	0
	Cabin	687
	Embarked	2
	dtype: int64	
[14]:		plays the missing values (yellow color) in the respective column
	sns.heatmap(d	f.isnull(), yticklabels=False, cmap="viridis")

[14]: <AxesSubplot:>

[15]: # You can fill dummy values or mean or suitable value or drop the column/record

→ that contains missing (NaN) values

df.drop("Cabin",axis=1,inplace=True)

[16]: # Value distribution in Age feature
sns.boxplot(x="Pclass", y="Age",data=df)

[16]: <AxesSubplot:xlabel='Pclass', ylabel='Age'>

[17]: # dropping recrods that contain NaN values
df.dropna(inplace=True)

[18]: # Value distribution in Age feature
sns.boxplot(x="Pclass", y="Age",data=df)

[18]: <AxesSubplot:xlabel='Pclass', ylabel='Age'>


```
[19]: # Heatmap displays no missing (NaN) values sns.heatmap(df.isnull(), yticklabels=False, cmap="viridis")
```

[19]: <AxesSubplot:>


```
[20]: df.isnull().sum()
[20]: PassengerId
                      0
      Survived
                      0
      Pclass
                      0
      Name
                      0
      Sex
                      0
      Age
                      0
      SibSp
                      0
      Parch
                      0
      Ticket
                      0
      Fare
                      0
      Embarked
                      0
      dtype: int64
[21]: df.shape
[21]: (712, 11)
```