LOGISTIC REGRESSION

PROBLEM STATEMENT: TO PREDICT ANDANALYZE WHICH GENDER HAS A HIGH CHANCE OF SURVIVAL AT THE TIME OF DISASTER#

IMPORT DATASETS, PYTHON PACKAGES AND LIBRARIES

```
In [1]: import numpy as np
import pandas as pd
from sklearn import preprocessing
import matplotlib.pyplot as plt
# plt.rc("font", size=14)
import seaborn as sns
sns.set(style="white") #white background style for seaborn plots
sns.set(style="whitegrid", color_codes=True)
import warnings
warnings.simplefilter(action='ignore')
```

Out[2]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

891 rows × 12 columns

In [3]: test_df = pd.read_csv(r"C:\Users\Dell\Downloads\test.gender_submission.csv")
test_df

Out[3]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S
	•••		•••					***			•••
413	1305	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236	8.0500	NaN	S
414	1306	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108.9000	C105	С
415	1307	3	Saether, Mr. Simon Sivertsen	male	38.5	0	0	SOTON/O.Q. 3101262	7.2500	NaN	S
416	1308	3	Ware, Mr. Frederick	male	NaN	0	0	359309	8.0500	NaN	S
417	1309	3	Peter, Master. Michael J	male	NaN	1	1	2668	22.3583	NaN	С

418 rows × 11 columns

In [4]: train_df.shape

Out[4]: (891, 12)

In [5]: test_df.shape

Out[5]: (418, 11)

```
In [6]: train_df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 891 entries, 0 to 890
        Data columns (total 12 columns):
             Column
                          Non-Null Count
                                          Dtype
             ____
                          _____
        - - -
         0
             PassengerId 891 non-null
                                          int64
         1
             Survived
                          891 non-null
                                          int64
         2
             Pclass
                          891 non-null
                                          int64
         3
             Name
                          891 non-null
                                          object
         4
             Sex
                          891 non-null
                                          object
         5
                          714 non-null
                                          float64
             Age
         6
             SibSp
                          891 non-null
                                          int64
                          891 non-null
                                          int64
         7
             Parch
         8
             Ticket
                          891 non-null
                                          object
         9
             Fare
                          891 non-null
                                          float64
         10 Cabin
                          204 non-null
                                          object
                          889 non-null
         11 Embarked
                                          object
        dtypes: float64(2), int64(5), object(5)
        memory usage: 83.7+ KB
```

In [7]: test_df.info()

```
RangeIndex: 418 entries, 0 to 417
Data columns (total 11 columns):
                 Non-Null Count Dtype
#
    Column
                  -----
0
    PassengerId 418 non-null
                                 int64
1
    Pclass
                 418 non-null
                                 int64
2
                 418 non-null
    Name
                                 object
 3
    Sex
                 418 non-null
                                 object
                 332 non-null
 4
    Age
                                 float64
5
                                 int64
    SibSp
                 418 non-null
 6
                                 int64
    Parch
                 418 non-null
 7
    Ticket
                 418 non-null
                                 object
8
                 417 non-null
    Fare
                                 float64
9
    Cabin
                 91 non-null
                                 object
10 Embarked
                 418 non-null
                                 object
dtypes: float64(2), int64(4), object(5)
```

<class 'pandas.core.frame.DataFrame'>

To find missing values

memory usage: 36.0+ KB

```
In [8]: train_df.isnull().sum()
Out[8]: PassengerId
                          0
         Survived
                          0
                          0
         Pclass
         Name
                          0
         Sex
                          0
                        177
         Age
         SibSp
                          0
         Parch
                          0
         Ticket
                          0
         Fare
                          0
         Cabin
                        687
         Embarked
                          2
         dtype: int64
In [9]: test_df.isnull().sum()
Out[9]: PassengerId
                          0
         Pclass
                          0
                          0
         Name
         Sex
                          0
         Age
                         86
         SibSp
                          0
         Parch
                          0
         Ticket
                          0
         Fare
                          1
         Cabin
                        327
         Embarked
                          0
         dtype: int64
```



```
In [11]: print(train_df["Age"].mean(skipna=True))
    print(train_df["Age"].median(skipna=True))
```

29.69911764705882 28.0

```
In [12]: print((train_df['Cabin'].isnull().sum()/train_df.shape[0])*100)
```

77.10437710437711

```
In [13]: print((train_df['Embarked'].isnull().sum()/train_df.shape[0])*100)
```

0.22446689113355783

```
In [14]: print('Boarded passengers grouped by port of embarkation (C = Cherbourg, Q = Queenstown,S=s(
    print(train_df['Embarked'].value_counts())
    sns.countplot(x='Embarked', data=train_df, palette='Set2')
    plt.show()
```

Boarded passengers grouped by port of embarkation (C = Cherbourg, Q = Queenstown, S=southam pton):

S 644 C 168

77

Q

Name: Embarked, dtype: int64


```
In [15]: print(train_df['Embarked'].value_counts().idxmax())
```

S

```
In [16]: train_data = train_df.copy()
    train_data["Age"].fillna(train_df["Age"].median(skipna=True), inplace=True)
    train_data["Embarked"].fillna(train_df['Embarked'].value_counts().idxmax(), inplace=True)
    train_data.drop('Cabin', axis=1, inplace=True)
```

In [17]: train_data.isnull().sum()

Out[17]: PassengerId 0 Survived 0 0 Pclass 0 Name Sex 0 0 Age SibSp 0 0 Parch Ticket 0 Fare 0

> Embarked dtype: int64

0

In [18]: train_data.head()

Out[18]:

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	S

```
In [19]: plt.figure(figsize=(15,8))
    ax = train_df["Age"].hist(bins=15, density=True, stacked=True, color='teal', alpha=0.6)
    train_df["Age"].plot(kind='density', color='teal')
    ax = train_data["Age"].hist(bins=15, density=True, stacked=True, color='orange', alpha=0.5)
    train_data["Age"].plot(kind='density', color='orange')
    ax.legend(['Raw Age', 'Adjusted Age'])
    ax.set(xlabel='Age')
    plt.xlim(-10,85)
    plt.show()
```



```
In [20]: ## Create categorical variable for traveling alone
    train_data['TravelAlone']=np.where((train_data["SibSp"]+train_data["Parch"])>0, 0,1)
    train_data.drop('SibSp', axis=1, inplace=True)
    train_data.drop('Parch', axis=1, inplace=True)
```

```
In [21]: #create categorical variables and drop some variables
    training=pd.get_dummies(train_data, columns=["Pclass","Embarked","Sex"])
    training.drop('Sex_female', axis=1, inplace=True)
    training.drop('PassengerId', axis=1, inplace=True)
    training.drop('Name', axis=1, inplace=True)
    training.drop('Ticket', axis=1, inplace=True)
    final_train = training
    final_train.head()
```

Out[21]:

	Survived	Age	Fare	TravelAlone	Pclass_1	Pclass_2	Pclass_3	Embarked_C	Embarked_Q	Embarked_S
0	0	22.0	7.2500	0	0	0	1	0	0	1
1	1	38.0	71.2833	0	1	0	0	1	0	0
2	1	26.0	7.9250	1	0	0	1	0	0	1
3	1	35.0	53.1000	0	1	0	0	0	0	1
4	0	35.0	8.0500	1	0	0	1	0	0	1
4		_								

```
In [22]: test_df.isnull().sum()
Out[22]: PassengerId
                          0
         Pclass
                          0
         Name
                          0
         Sex
                          0
         Age
                         86
         SibSp
         Parch
                          0
         Ticket
                          0
         Fare
                          1
         Cabin
                        327
         Embarked
         dtype: int64
In [23]: test data = test df.copy()
         test_data["Age"].fillna(train_df["Age"].median(skipna=True), inplace=True)
         test_data["Fare"].fillna(train_df["Fare"].median(skipna=True), inplace=True)
         test_data.drop('Cabin', axis=1, inplace=True)
         test_data['TravelAlone']=np.where((test_data["SibSp"]+test_data["Parch"])>0, 0, 1)
         test_data.drop('SibSp', axis=1, inplace=True)
         test data.drop('Parch', axis=1, inplace=True)
         testing = pd.get_dummies(test_data, columns=["Pclass","Embarked","Sex"])
         testing.drop('Sex_female', axis=1, inplace=True)
         testing.drop('PassengerId', axis=1, inplace=True)
         testing.drop('Name', axis=1, inplace=True)
         testing.drop('Ticket', axis=1, inplace=True)
         final test = testing
         final_test.head()
Out[23]:
```

	Age	Fare	TravelAlone	Pclass_1	Pclass_2	Pclass_3	Embarked_C	Embarked_Q	Embarked_S	Sex_male
0	34.5	7.8292	1	0	0	1	0	1	0	1
1	47.0	7.0000	0	0	0	1	0	0	1	0
2	62.0	9.6875	1	0	1	0	0	1	0	1
3	27.0	8.6625	1	0	0	1	0	0	1	1
4	22.0	12.2875	0	0	0	1	0	0	1	0
4										

EXPLORATORY DATA ANALYSIS

```
In [24]: plt.figure(figsize=(15,8))
    ax = sns.kdeplot(final_train["Age"][final_train.Survived == 1], color="green", shade=True)
    sns.kdeplot(final_train["Age"][final_train.Survived == 0], color="lightcoral", shade=True)
    plt.legend(['Survived', 'Died'])
    plt.title('Density Plot of Age for Surviving Population and Deceased Population')
    ax.set(xlabel='Age')
    plt.xlim(-10,85)
    plt.show()
```



```
In [26]: final_train['IsMinor']=np.where(final_train['Age']<=16, 1, 0)</pre>
          print(final_train['IsMinor'])
          0
                  0
          1
                  0
          2
                  0
          3
                  0
                  0
          4
          886
                 0
          887
          888
                  0
          889
          890
          Name: IsMinor, Length: 891, dtype: int32
In [27]: final_test['IsMinor']=np.where(final_test['Age']<=16, 1, 0)</pre>
          print(final_test['IsMinor'])
          0
                  0
          1
                  0
          2
                  0
          3
                  0
          4
                  0
          413
                 0
          414
                  0
          415
          416
                  0
          417
          Name: IsMinor, Length: 418, dtype: int32
```



```
import seaborn as sns
import matplotlib.pyplot as plt

# Assuming 'train_df' is your DataFrame containing the data
sns.barplot(x='Sex', y='Survived', data=train_df, color='aquamarine')
plt.show()
```


In []: