МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по домашнему заданию №3 по дисциплине «Элементы функционального анализа»

Студент гр. 8382	Мирончик П.Д.
Преподаватель	- Коточигов А.М.

Санкт-Петербург 2021

ЗАДАНИЕ

$$L \subset R^4, L = \{(x_1, x_2, x_3, x_4) : a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 = 0\}$$
 $a_1 = 8, a_2 = 2, a_3 = -1, a_4 = 8$ $g - функционал на $L : y \in L, g(y) = y_1 + y_2 + y_3 + y_4$ $K = \{y \in L : g(y) = 0\} - ядро функционала g $g^{(0)} \in L, g^{(0)} \perp K, \left| \left| g^{(0)} \right| \right| = 1$ * найти $g^{(0)}$ * верно ли: $\left| \left| g \right| \right| = \left| \left(g, g^{(0)} \right) \right|$ $g^{(0)}, g^{(1)}, g^{(2)}$ — ортонормированный базис в L * найти $g^{(1)}, g^{(2)} \in L$ * найти $g^{(3)} \perp L$ $f \sim (f_1, f_2, f_3, f_4) : f(g^{(0)}) = g(g^{(0)}), f(g^{(k)}) = 0, k = 1,2,3$ $f(y) = g(y), y \in L, \left| \left| f \right| = \left| \left| g \right| \right|$ * найти $f_k$$$

ХОД РАБОТЫ

Пинейный функционал - линейное отображение линейного пространства в множество вещественных или комплексных чисел.

Однородная гиперплоскость - замкнутое линейное пространство Y, содержащееся в банаховом пространстве X, причем не существует линейного пространства Z такого, что $Z \neq X$ и $Z \neq Y$ и $Y \subset Z \subset X$.

Норма функционала:
$$||f|| = \sup_{||x||=1} |f(x)|$$
.

Ядро функционала: $\ker f = \{x \in X : f(x) = 0\}.$

Базис ядра *K*. Пусть $g' = y_1 + y_2 + y_3 + y_4$ - линейный функционал на R^4 и ядро $K' = \{y \in R^4 : g'(y) = 0\}$. Очевидно, что ядром K функционала g будет пересечение гиперплоскостей K'и L:

$$\begin{cases} 8x_1 + 2x_2 - x_3 + 8x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

Построим базис ядра K:

доказать.

$$\left(0,1,-\frac{2}{3},-\frac{1}{3}\right)^T$$
, $(1,0,0,-1)^T$

Поиск ортонормированного базиса L. Известно, что $g^{(0)} \in L$ и $g^{(0)} \perp K$, составим СЛУ для нахождения $g^{(0)}$:

$$\begin{cases} x_2 - \frac{2}{3}x_3 - \frac{1}{3}x_4 = 0 \\ x_1 - x_4 = 0 \\ 8x_1 + 2x_2 - x_3 + 8x_4 = 0 \end{cases}$$

Решив СЛУ, получили вектор $g^{(0)}=(1,-33,-50,1)^T$. Нормируем его: $g^{(0)}=(0,016;-0,55;\;-0,83;0,016)^T$.

Заметим, что набор из базисных векторов K и вектор $g^{(0)}$ образуют базис пространства L. Запишем его:

$$(0,016;-0,55;-0,83;0,016)^T, (0,1,-\frac{2}{3},-\frac{1}{3})^T, (1,0,0,-1)^T$$

Этот базис не является ортонормированным, поэтому применим метод ортогонализации Грамма-Шмидта и получим результат:

$$(0.016; -0.55; -0.83; 0.016)^T$$
, $(0, 0.8, -0.53, -0.27)^T$, $(0.72, -0.15, 0.1, -0.66)^T$

Данный набор векторов является ортонормированным базисом L и является искомыми значениями $g^{(0)}$, $g^{(1)}$ и $g^{(2)}$.

Проверка $||g|| = |(g, g^{(0)})|$. По свойству аддитивности разложим g(x): $x \in L$ на базисные вектора:

$$g(x) = ag(g^{(0)}) + bg(g^{(1)}) + cg(g^{(2)})$$

Заметим, что $bg(g^{(1)})+cg(g^{(2)})=0$, т.к. $g^{(1)}$ и $g^{(2)}$ - базисные вектора ядра K. Значит, |g(x)|: ||x||=1 будет максимальным, если составляющие b и c разложения x будут равны нулю, и $x=ag^{(0)}$: ||x||=1. Т.к. $||g^{(0)}||=1$, $\sup_{||x||=1}|g(x)|=|g(g^{(0)})|=||g(x)||$, что и требовалось

Поиск $g^{(3)} \perp L$. Найдем далее вектор $g^{(3)} \perp L$. L - гиперплоскость, и вектор нормали к ней будет иметь коэффициенты $(a_1, a_2, a_3, a_4)^T = (8, 3, -1, 8)^T$ - это и есть искомый вектор $g^{(3)}$.

Поиск коэффициентов f. Рассмотрим линейный функционал f на R^4 , заданный следующими условиями:

$$f(g^{(0)}) = g(g^{(0)}), f(g^{(k)}) = 0, k = 1,2,3$$

Из условия видно, что ядром функционала f будет гиперплоскость с базисными векторами $g^{(k)}$: k=1,2,3. Вектор $g^{(0)}$ ортогонален этому базису и значит является вектором нормали к ядру функционала.

$$f_1 = 0.016 * \lambda, f_2 = -0.55 * \lambda, f_3 = -0.83 * \lambda, f_4 = 0.016 * \lambda$$

Подберем коэффициент λ таким образом, чтобы выполнялось условие $f(g^{(0)}) = g(g^{(0)})$:

$$((f_1, f_2, f_3, f_4)^T, g^{(0)}) = g(g^{(0)}) \rightarrow \lambda = -1.36$$

 $f_1 = -0.02, f_2 = 0.75, f_3 = 1.13, f_4 = -0.02$

Итак, известно, что вектора $g^{(0)}$, $g^{(1)}$ и $g^{(2)}$ - базис пространства L. Любой вектор пространства L можно разложить в виде суммы базисных. В тоже время известно, что функционал обладает свойством аддитивности. В результате мы получаем:

$$fig(g^{(0)}ig) = gig(g^{(0)}ig)$$
 по условию, $fig(g^{(1)}ig) = gig(g^{(1)}ig) = 0,$ $fig(g^{(2)}ig) = gig(g^{(2)}ig) = 0$ $x \in L, a, b, c \in R o f(x) = afig(g^{(0)}ig) + bfig(g^{(1)}ig) + cfig(g^{(2)}ig) = g(x)$

Т.е. $f(y) = g(y) \mid y \in L$. Отсюда логично предположить, что нормы f и g на L совпадают.