You must show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided. Illegible work falls under the *Intended Purpose* policy.

You must upload any digital submission as a SINGLE PDF DOCUMENT. Multiple file submissions or files of any other type will not be accepted.

This assignment is worth $10/60 \ (\approx 17\%)$ of Assignment points

Name:	
Name:	

- 1. Convert the following as indicated: (2 points)
 - (a) 00101001_2 to a decimal integer,

Answer:	1.0
	1()

(b) 10101010_2 to a hexadecimal integer,

Answer:______16

(c) $D4_{16}$ to an 8-bit unsigned binary integer, and

Answer:_____

(d) 178_{10} to an 8-bit unsigned binary integer.

Answer:______2

2.	Compute the 4-bit binary sum of the following 4-bit unsigned binary integers. Provide the base-10
	result as well. Do allow values to overflow—that is do not add bits in excess of the 4 bits. Additionally,
	provide decimal(base ₁₀) integer values 1 : (2 points)

(a) 0110 + 1000

Answer:	
1110 01	2

Answer:_______10

(b) 1001 + 0111

Answer:______2

Answer:_______10

 $^{^{1}}$ Take into account overflow. Do not tell me that $15_{10}+15_{10}=30_{10}$. I know you know that. In 4-bit, it would be 0_{10}

3. Convert the following to **8-bit two's complement-encoded binary** integers and perform the indicated operations. You must show all conversions into and out of two's complement encoding. Provide your results in 8-bit two's complement binary and base-10 or base-16, as requested: (2 points)

(a) $27_{10} - 15_{10}$

Answer:	a
	\mathcal{L}

Answer:_

10

(b) $-2F_{16} - 4E_{16}$

Answer:		

⁻16

- 4. For each of the following, show their conversion to binary coded decimals (BCD) as $8421\text{-code}\colon$ (2 points)
 - (a) 1473_{10}

Answer:____

(b) 476₈

Answer:____

5. Decode the two following 8-bit binary **strings** into ASCII characters² characters: (2 points) ${\rm (a)}\ \ 01110100\ 01111001\ 01110110\ 01101101$ $\hbox{(b)} \ \ 01110100 \ \ 01111000 \ \ 01110100 \ \ 00110010 \ \ 01100010 \ \ 01101001$

Answer:_

 $^{^2}$ You may use the 7-bit ASCII from the book, but do keep in mind ASCII values, like all values in a computer, are at least 8-bits in size.