Learning Half spaces Definitions

$$C_{n,3} = \{x \in \{0, 1, -1\}^n \mid |\{i \mid x_i \neq 0\}| \leq 3\}$$

$$\mathcal{H}_{n,3} = \{h_{w,b} : C_{n,3} \mapsto \{\pm 1\} \mid h_{w,b}(x) = sign(\langle w, x \rangle + b), w \in R^n, b \in R\}$$

$$Err_D(h) = Pr_{(x,y) \sim D}(h(x) \neq y)$$

$$Err_D(\mathcal{H}) = \min_{b \in \mathcal{H}} Err_D(h)$$

Learning algorithm (for half-spaces):

A learning algoritm L maps samples to hypothesis. In the context of this paper the learning algorithm L, maps training sets/samples as follows:

$$L: (C_{n,3} \times \{\pm 1\})^m \mapsto \mathcal{H}_{n,3}$$

Notice that the output L(S) of the learning algorithm is a hypothesis $\mathcal{H}_{n,3}$, i.e:

$$L(S) \in \mathcal{H}_{n,3}$$

We say L learns $\mathcal{H}_{n,3}$ if for every distribution D on $C_{n,3} \times \{\pm 1\}$ and samples S of more than $m(n,\epsilon)$ i.i.d. examples from from D:

$$Pr_S[Err_D(L(S) > Err_D(\mathcal{H}_{n,3}) + \epsilon] < \frac{1}{10}$$

We say that the learning algorithm is efficient if L returns a hypothesis in $poly(m(n, \epsilon))$ and the hypothesis can be evaluated in polynomial time.

A n-variable 3CNF clause is a boolean formula of the form:

$$C(x) = (-1)^{j_1} x_{i_1} \vee (-1)^{j_2} x_{i_2} \vee (-1)^{j_3} x_{i_3}$$

A 3CNF formula is a boolean formula of the form:

$$\phi(x) = \wedge_{i=1}^{m} C_i(x)$$

To denote this we use $3CNF_{n,m}$ when it has n variables and m clauses.

Let $Val(\phi)$ denote the maximal fraction of clauses that can be simultaneously satisfied.

If $Val(\phi) = 1$ then we say that ϕ is satisfiable.

Boolean formulas can be trivially transformed to formulas with $\{\pm\}$ instead of $\{0,1\}$ and majority operations. First the majority function defined as follows:

$$\forall (x_1, x_2, x_3) \in \{\pm 1\}^3, MAJ(x_1, x_2, x_3) := sign(x_1 + x_2 + x_3)$$

An n-variable 3CNF clauses C can be mapped to 3 majority (3MAJ) clauses using the formula:

$$C(x) = MAJ((-1)^{j_1}x_{i_1}, (-1)^{j_2}x_{i_2}, (-1)^{j_3}x_{i_3})$$

An n-variable 3CNF formulas ϕ can be equivalently be expressed using 3MAJ formulas as follow:

$$\phi(x) = \bigwedge_{i=1}^{m} C_i(x) = \prod_{i=1}^{m} C_i(x)$$

To denote this we use $3MAJ_{n,m}$ when it has n variables and m clauses.

Conjecture 2.2: $(\mu$ -R3SAT hardness assumption) $\forall \epsilon > 0, \forall \Delta > \Delta_o(\epsilon)$, there exists no efficient algorithm that ϵ -refutes random 3CNF with ratio $\Delta \cdot n^{\mu}$

Theorem 3.1: Let $0 \le \mu \le 0.5$. If the μ -R3SAT hardness assumption (conjecture 2.2) is true, then there exists no efficient learning algorithm that learns the class $\mathcal{H}_{n,3}$ using $O\left(\frac{n^{1+\mu}}{\epsilon^2}\right)$ examples. To prove theorem 3.1 we will prove a stronger version of it. For that we

will need to define:

$$\mathcal{H}_{n,m}^d = \{h_{w,0} : C_{n,3} \mapsto \{\pm 1\} \mid h_{w,0}(x) = \langle w, x \rangle, w \in \mathbb{R}^n, b = 0\}$$

Notice $\mathcal{H}_{n,m}^d \subset \mathcal{H}_{n,m}$, this fact is what makes theorem 3.2 stronger (and hence imply theorem 3.1):

Theorem 3.2: Under μ -R3SAT hardness assumption, it is impossible to efficiently learn this subclass $\mathcal{H}_{n,m}^d$, using only $O\left(\frac{n^{1+\mu}}{\epsilon^2}\right)$. To do this we will show that its impossible to ϵ -refute 3MAJ formulas

(using the above number of samples) by reducing the task of refuting random 3MAJ formulas with linear number of clauses to the task of learning $\mathcal{H}_{n,m}^d$. For this reduction, we will map every 3MAJ clause to two examples in $C_{n,3}$ × $\{\pm 1\}$. For every clause 3MAJ clause $C(x) = MAJ((-1)^{j_1}x_{i_1}, (-1)^{j_2}x_{i_2}, (-1)^{j_3}x_{i_3})$ one can map it to an example $(x_k, y_k) \in C_{n,3} \times \{\pm 1\}$ by choosing $b \in \{\pm 1\}$ at random and letting:

$$(x_k, y_k) = b(\sum_{l=1}^{3} (-1)^{j_l} e_{i_l}, 1) \in (C_{n,3} \times \{\pm 1\})$$

where e_i are the usual standard basis vectors. Conceptually, we are simply using the indices of the boolean vector take part of the current 3MAJ formula to denote the non-zero relevant entries in the vector x_k . The vector y_k is intended to indicate if the current clause is satisfied or not. Note that there is a bijection with vectors $w \in \{\pm 1\}^n$ to hyperplanes in $\mathcal{H}_{n,m}^d$. Hence, we will also map each vector $w \in \mathcal{H}_{n,m}^d$ to every possible assignment ψ to the 3MAJ formula $\phi(x)$.