12123028998

HEDMANCOSTIGAN RECEIVED CENTRAL FAX CENTER

MAR 0 5 2009

Application Number: 10/573,052 Examiner: HAVLIN, ROBERT H PAGE 03

IN THE CLAIMS

Please amend the claims of the present application under the provisions of 37 C.F.R. §1.121(c), as indicated below:

- 1. (Cancelled):
- (Previously presented). The derivatives according to claim 17, characterized in that the compound having formula (I) are present as tautomeric forms, pure or as blends of tautomeric forms, in any proportion whatsoever
- 3-12 (Cancelled):
- 13. (Currently amended): Herbicidal compositions containing, one or more compounds having general formula (I):

wherein A, B and R have the meanings according to claim [[18]] 17, possibly also as a blend of tautomers.

- 14. (Currently amended): The herbicidal compositions according to claim 13, including other herbicides, fungicides, insecticides, acaricides, fertilizers, compatible with the compounds having general formula (f).
- 15. (Original): The herbicidal compositions according to claim 14, characterized in that the additional herbicides are selected from: acetochlor, acifluorfen, aclonifen, AKH-7088, alachlor, alloxydim, ametryn, amicarbazone, amidosulfuron, amitrole, anilofos, asulam, atrazine, azafenidin,

azimsulfuron, aziprotryne, BAS 670 H, BAY MKH 6561, beflubutamid, benazolin, benfluralin, benfuresate, bensulfuron, bensulide, bentazone, benzfendizone, benzobicyclon, benzofenap, benzthiazuron, bifenox, bilanafos, bispyribac-sodium, bromacil, bromobutide, bromofenoxim, bromoxynil, butachlor, butafenacil, butamifos, butenachlor, butralin, butroxydim, butylate, cafenstrole, carbetamide, carfentrazone-ethyl, chlomethoxyfen, chloramben, chlorbromuron, chlorbufam. chlortlurenol, chloridazon, chlorimuron, chlornitrofen, chlorotoluron, chloroxuron, chlorpropham, chlorsulfuron, chlorthal, chlorthiamid, cinidon ethyl, cinmethylin, cinosulfuron, clethodim, clodinafop, clomazone, clomeprop, clopyralid, cloransulammethyl, cumyluron (IC-940), cyanazine, cycloate, cyclosulfamuron, cycloxydim, cyhalofop-butyl, 2,4-D, 2,4-DB, daimuron, dalapon, desmedinham, desmetryn, dicamba, dichlobenil, dichlorprop, dichlorprop-P, diclofop, diclosulam, dicthatyl, difenoxuron, difenzoquat, diflufenican, diflufenzopyr, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dinitramine, dinosseb, dinoseb acetate, dinoterb. diphenamid, dipropetryn, diquat, dithiopyr, 1-diuron, eglinazine, endothal, EPTC, espropearb, ethalfluralin, ethametsulfuron-methyl, ethidimuron, ethiozin (SMY 1500), ethofumesate, ethoxyfen-ethyl (HC-252), ethoxysulfuron, etobenzanid (HW 52), fenoxaprop, fenoxaprop-P, fentrazamide, fenuron, flamprop, flamprop-M. flazasulfuron, florasulam, fluazifop, fluazifop-P, fluazolate (JV 485), flucarbazonesodium, fluchloralin, flufenacet, flufenpyr ethyl, flumctsulam, flumiclorac-pentyl, flumioxazin, flumipropin, fluometuron, fluoroglycofen, fluoronitrofen, flupoxam, fluproanate, flupyrsulfuron, flurenol, fluridone, flurochloridone, fluroxypyr, flurtamone, fluthiacet-methyl, fomesafen, foramsulfuron, fosamine, furyloxyfen, glufosinate, glyphosate, halosulfuron-methyl, haloxyfop, haloxyfop-P-methyl, hexazinone, imazamethabenz, imazamox, imazapic, imazapyr, imazaguin. imazethapyr, imazosulfuron, indanofan, iodosulfuron, ioxynil, isopropalin, isoproturon, isouron, isoxaben, isoxachlortole, isoxaflutole, isoxapyrifop, KPP-421, lactofen, lenacil, linuron, LS830556, MCPA, MCPA-thioethyl, MCPB, mecoprop. mecoprop-P, mefenacet, mesosulfuror, mesotrione, metamitron, metazachlor,

05

Application Number: 10/573,052 Examiner: HAVLIN, ROBERT H

methabenzthiazuron, methazole, methoprotryne, methyldymron, metobenzuron, metobromuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, molinate, monalide, monolinuron, naproanilide, napropamide, naptalam, NC-330, neburon, nicosulfuron, nipyraclofen, norflurazon, orbencarb, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefone, oxyfluorfen, paraquat, pebulate, pendimethalin, penoxsulam, pentanochlor, pentoxazone, pethoxamid, phenmedipham, picloram, picolinafen, piperophos, pretilachlor, primisulfuron, prodiamine, profluazol, proglinazine, prometon, prometryne, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufen-ethyl, pyrazogyl (HAS-961), pyrazolynate, pyrazosulfuron, pyrazoxyfen, pyribenzoxim, pyributicarb, pyridafol, pyridate, pyriftalid, pyriminobacmethyl, pyrithiobac-sodium, quinclorac, quimmerac, quizalofop, quizalofop-P, rimsulfuron, sethoxydim, siduron, simazinc, simetryn, sulcotrione, sulfentrazone, sulfometuron-methyl, sulfosulfuron, 2,3,6-TBA, TCA-sodium, tebuthiuron, tepraloxydim, terbacil, terbumeton, terbuthyl-azine, terbutryn, thenylchlor, thiazafluron, thiazopyr, thidiazimin, thifensulfuron-methyl, thiobencarb, tiocarbazil, tioclorim, tralkoxydim, tri-allate, triasulfuron, triaziflam, tribenuron, triclopyr, trietazine, trifloxysulfuron, trifluralin, triflusulfuron-methyl, tritosulfuron, LIBI-C4874, vernolate.

- 16. (Orignal): The compositions according to any of the claims 13-15, characterized in that the concentration of active substance ranges from 1 to 90%.
- 17. (Currently amended): Derivatives of 1,3-diones having general formula (I):

(1)

wherein:

A represents:

an aryl group optionally substituted by one or more substituents selected from halogen; NO2; CN; CHO; OH; linear or branched C1-C6 alkyl; linear or branched C1-C6 haloalkyl; linear or branched C1-C6 alkoxyl; linear or branched C1-C6 haloalkoxyl; C1-C6 cyanoalkyl; C2-C6 alkoxyalkyl; C2-C6 alkylthioalkyl; C2-C6 alkylsulfinylalkyl; C2-C6 alkylsulfonylalkyl; C2-C6 haloalkoxyalkyl; C2-C6 haloalkylthioalkyl; C2-C6 haloalkylsulfinylalkyl; C2-C6 haloalkylsulfonylalkyl; C2-C6 alkoxyalkoxyl or C2-C6 haloalkoxyalkoxyl optionally substituted with a group selected from C1-C4 alkoxyl or C1-C4 haloalkoxyl; C2-C6 alkylthioalkoxyl; C2-C6 haloalkylthioalkoxyl; C3-C12 dialkoxyalkyl; C3-C12 dialkylthioalkyl; C3-C12 dialkylthioalkoxyl; C3-C12 diałkoxyalkoxyl; C2-C6 haloalkoxyhaloalkoxyl; C3-C10 alkoxyalkoxyalkyl; C2-C6 alkenyl; C2-C6 haloalkenyl; C2-C6 alkenyloxy; C2-C6 haloalkenyloxy; C1-C8 alkenyloxyalkoxyl; C3-C8 haloalkenyloxyalkoxyl; C2-C6 alkynyl; C2-C6 haloalkynyl; C2-C6 alkynyloxy; C2-C6 haloalkynyloxy; C3-C8 alkynyloxyalkoxyl; C3-C8 haloalkynyloxyalkoxyl; C3-C12 acylaminoalkoxy; C2-C8 alkoxyiminoalkyl; C2-C8 haloalkoxyiminoalkyl; C3-C8 alkenyloxyiminoalkyl; C3-C8 haloalkenyloxyiminoalkyl; C3-C8 alkynyloxyiminoalkyl; C3-C8 haloalkynyloxyiminoalkyl; C5-C10 alkoxyalkynyloxyl; C6-C12 cycloalkylideneiminooxyalkyl; C6-C12 dialkylideneiminooxyalkyl; -S(O)mR1; -OS(O)rR1; -SO2NR2R3; -CO2R4; - COR_5 ; — $CONR_6R_7$; — $CSNR_8R_9$; — $NR_{10}R_{11}$; — $NR_{12}COR_{13}$; — $NR_{14}CO_2R_{15}$; — $NR_{16}CONR_{17}R_{18}$, $-PO(R_{19})_2$; -Q; $-ZQ_1$; $-(CR_{20}R_{21})pQ_2$; $-Z(CR_{22}R_{23})pQ_3$; - $(CR_{24}R_{25})pZQ_4;$ $-(CR_{26}R_{27})pZ(CR_{28}R_{29})qQ5;$ $-(CR_{10}R_{11})pZ(CR_{27}R_{21})qZ_1Q_6;$ - $Z_2(CR_{34}R_{35})p(C=Y)T$; $-Z_3(CR_{36}R_{32})v(CR_{38}R_{39}=CR_{40}R_{41})(C=Y)T$:

or it represents a heterocyclic group selected from pyridyl; pyrimidyl; quinolinyl; pyrazolyl; thiazolyl; oxazolyl; thienyl; furyl; benzothienyl; dihydrobenzothienyl;

benzofuranyl; dihydrobenzofuranyl; benzoxazolyl; benzoxazolonyl; benzothiazolyl; benzothiazolonyl; benzoimidazolyl; benzoimidazolonyl; benzotriazolyl; chromanonyl; chromanyl; thiochromanonyl; thiochromanyl; 3a,4-dihydro-3H-indeno[1,2-c]isoxazolyl, 3a,4-dihydro-3H-chromeno[4, 3c]isoxazolyl, 5,5-dioxide-3a,4-dihydro-3H-thiochromeno[4,3-c]isoxazolyl, 2,3,3a,4tetrahydrochromeno[4,3-c]pyrazolyl, 6,6-dioxide-2,3-dihydro-5H-[1,4]dithiino[2,3c]thiochromenyl, 5,5-dioxide-2,3,3a,4-tetrahydrothiochromeno[4,3-c]pyrazolyl, 1',1'dioxide-2',3'-dihydrospiro[1,3-dioxolano-2,4'-thiochromen]-yl, 1,1,4,4-tetraoxide-2,3dihydro-1,4-benzodithiin-6-yl, 4,4-dioxide-2,3-dihydro-1,4-benzoxathiin-7-yl, 1,1dioxide-3-oxo-2,3-dihydro-1,2-benzoisothiazol-5-yl, 4-(alkoxyimino)-1,1-dioxide-3,4-dihydro-2H-thiochromen-6-yl, 1,1-dioxide-4-oxo-3,4-dihydro-2H-thiochromen-6yl, 2,3-dihydro-1,4-benzoxathiin-7-yl, with said heterocyclic groups optionally substituted by one or more substituents selected from halogen; NO2; CN; CHO, OH; linear or branched C1-C6 alkyl; linear or branched C1-C6 haloalkyl; linear or branched C1-C6 alkoxyl; linear or branched C1-C6 haloalkoxyl; C1-C6 cyanoalkyl; C2-C6 alkoxyalkyl; C2-C6 alkylthioalkyl; C2-C6 alkyl sulfinylalkyl; C2-C6 alkylsulfonylalkyl; C2-C6 haloalkoxvalkyl; C2-C6 haloalkylthioalkyl; C2-C6 haloalkylsulfinylalkyl; C2-C6 haloalkylsulfonylalkyl; C2-C6 alkoxyalkoxyl or C2-C6 haloalkoxyalkoxyl optionally substituted with a group selected from C1-C4 alkoxyl or C1-C4 haloalkoxyl; C2-C6 alkylthioalkoxyl; C2-C6 haloalkylthioalkoxyl; C3-C12 dialkoxyalkyl; C3-C12 dialkylthioalkyl; C1-C12 dialkylthioalkoxyl; C1-C12 dialkoxyalkoxyl; C2-C6 haloalkoxyhaloalkoxyl; C3-C10 alkoxyalkoxyalkyl; C2-C6 alkenyl; C2-C6 haloalkenyl; C2-C6 alkenyloxy; C2-C6 haloalkenyloxy; C1-C8 alkenyloxyalkoxyl; C1-C6 haloalkenyloxyalkoxyl; C2-C6 alkynyl; C2-C6 haloalkynyl; C2-C6 alkynyloxy; C2-C6 haloalkynyloxy; C3-C8 alkynyloxyalkoxyl; C3-C8 haloalkynyloxyalkoxyl; C3-C12 acylaminoalkoxy; C2-C8 alkoxyiminoalkyl; C2-C8 haloalkoxyiminoalkyl; C3-C8 alkenyloxyiminoalkyl; C3-C8 haloalkenyloxyiminoalkyl; C3-C8 alkynyloxyiminoalkyl; C3-C8 haloalkynyloxyiminoalkyl; C5-C36 alkoxyalkynyloxyl; C6-C12 cycloalkyl ideneiminooxyalkyl; C6-C12 dialkylideneiminooxyalkyl; --S(O)mR1; --OS(O)R1; --

$$\begin{split} &SO_2NR_2R_3; -CO_2R_4; -COR_3; -CONR_6R_7; -CSNR_8R_9; -NR_{10}R_{11}; -NR_{10}COR_{11}; -NR_{10}COR_{11}; -NR_{10}COR_{11}; -NR_{10}COR_{12}; -R_{10}; -NR_{10}COR_{12}; -R_{10}; -R_{10}(R_{10})_{23}; -Q_1^2; -Z_{11}; -(CR_{20}R_{21})_{0}Q_2; -C(CR_{20}R_{22})_{0}Q_3; -(CR_{20}R_{22})_{0}Q_3; -(CR_{20}R_{22})_{0}Z(CR_{20}R_{22})_{0}Q_3; -(CR_{20}R_{21})_{0}Z(CR_{20}R_{22})_{0}Q_3; -(CR_{20}R_{21})_{0}Z(CR_{20}R_{23})_{0}Q_3; -(CR_{20}R_{20}R_{20})_{0}Z(CR_{20}R_{22})_{0}Q_3; -(CR_{20}R_{2$$

-B represents a D-(Rx)n group;

- -R represents a hydrogen atom; a linear or branched C_1 - C_6 alkyl group; a linear or branched C_1 - C_6 haloalkyl group; a C_3 - C_6 cycloalkyl or C_4 - C_{12} cyclo-alkyl alkyl group optionally substituted with halogen atoms or C_1 - C_6 alkyl or C_1 - C_6 thicalkyl or C_1 - C_6 alkoxyl or C_2 - C_6 alkxynyl groups; C_2 - C_6 alkxynyl groups; C_2 - C_6 alkxynyl groups; the latter two groups; in turn; optionally substituted with halogen atoms; a C_3 - C_6 cycloalkenyl group optionally substituted with halogen atoms or C_1 - C_6 alkyl groups; an anyl or arylalkyl group optionally substituted,
- -R₁ and R₁, represent a C₁-C₆ alkyl group or a C₁-C₆ haloalkyl group, a C₂-C₆ cycloalkyl group; an anyl group optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, tincar or branched C₃-C₆ haloalkyl, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxycarbonyl;
- -m is equal to 0, 1 or 2;
- -t is equal to 1 or 2;
- -R₂, R₃, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₇ and R₁₈, the same or different, represent a hydrogen atom; a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms; a C₁-C₆ alkoxyl group; a C₃-C₆ cycloalkyl group; an arylaikyl

group or an aryl group; said arylalkyl and aryl groups also optionally substituted by one or more substitutents selected from halogen, NO₂, CN, CHO, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ haloalkyl, C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxycarbonyl, or, together with the group bonded to the same N atom, they jointly represent a C₂-C₅ alkylene group;

-Ra, R3 and Ra2 represent a hydrogen atom; a linear or branched C1-C6 alkyl group in turn optionally substituted with halogen atoms; a C3-C6 alkenyl group in turn optionally substituted with halogen atoms; a Q7 group, an arylalkyl group optionally substituted with halogen atoms; a Q7 group, an arylalkyl group optionally substituted by one or more substituteds selected from halogen, NO2, CN, CHO, linear or branched C1-C6 alkyl, linear or branc

 $-R_{12}$, R_{14} and R_{16} represent a hydrogen atom; a linear or branched C_1 - C_6 alkyl group in turn optionally substituted with halogen atoms; a C_1 - C_6 cycloalkyl group; a C_1 - C_6 alkoxyl group; a C_1 - C_6 haloalkoxyl group;

-R₁₉ and R₁₅ represent a hydrogen atom; a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms; a C₂-C₅ alkenyl group in turn optionally substituted with halogen atoms; a Q₇, NH₂, NHCN, NHNH₃, NHOH group, an arylalkyl group optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C₃-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ alkoxyl, C₂-C₆ alkylsulfonyl, C₂-C₆ alkoxycarbonyl;

 $R_{20},\,R_{21},\,R_{22},\,R_{23},\,R_{24},\,R_{25},\,R_{26},\,R_{27},\,R_{28},\,R_{10},\,R_{30},\,R_{31},\,R_{32},\,R_{33},\,R_{34},\,R_{35},\,R_{36},\,R_{37},\,R_{38},\,R_{39},\,R_{40}\,$ and $R_{41},\,$ the same or different, represent: a hydrogen atom; a linear or

03/04/2008 15:43

Application Number: 10/573,052 Examiner: HAVLIN, ROBERT II

branched C1-C6 alkyl group in turn optionally substituted with halogen atoms; a C1-C6 alkoxyl group; or the two groups attached to the same carbon atom can be joined to each other by C2-C5 alkylene groups, the alkylene groups can in turn be substituted with Ci-C3 alkyl groups;

-Q, Q1, Q2, Q3, Q4, Q5, Q6 and Q7 represent an aryl group; a C3-C6 cycloalkyl group; a C3-C6 cycloalkenyl group; a heterocyclic group selected from triazolyl; triazolonyl; pyrazolyl; imidazolyl; imidazolidinonyl; tetrazolyl; tetrazolonyl; isoxazolyl; furyl; thienyl; pyrrolyl; pyrrolidinyl; pyrrolidinonyl; pyridyl; pyrimidinyl; pyrimidinonyl; pyrazinyl; pyridazinyl; oxazolyl; thiazolyl; oxadiazolyl; thiadiazolyl; isothiazolyl; benzoxazolyl; benzothiazolyl; isoxazolinyl; 1,3-dioxanyl; 1,4-dioxanyl; 1,3dioxolanyl; tetrahydropyranyl; oxethanyl; oxyranyl; thiazolidinyl; oxazolidinyl; piperidinyl; piperidinonyl; piperazinyl; morpholinyl; thiazinyl; tetrahydrofuranyl; dioxazolyl; tetrahydrofuroisoxazolyl; 2-oxa-3-azabicyclo[3.1.0]hex-3-enyl; said groups optionally substituted by one or more substituents selected from halogen: NO2: OH; CN; CHO; linear or branched C1-C6 alkyl; linear or branched C1-C6 haloalkyl; linear or branched C1-C6 alkoxyl; linear or branched C1-C6 haloalkoxyl; C1-C6 cyanoalkyl; C2-C6 alkoxyalkyl; C2-C6 alkylthioalkyl; C2-C6 alkylsulfinylalkyl; C2-C6 alkylsulfonylalkyl; C2-C6 haloalkoxyalkyl; C2-C6 haloalkylthioalkyl; C2-C6 haloalkylsulfinylalkyl; C2-C6 haloalkylsulfonylalkyl; C2-C6 alkoxyalkoxyl or C2-C6 haloalkoxyalkoxyl optionally substituted with a group selected from C1-C4 alkoxyl or C1-C4 haloalkoxyl; C2-C6 alkylthioalkoxyl; C2-C6 haloalkylthioalkoxyl; C3-C12 dialkoxyalkyl; C3-C12 dialkylthioalkyl; C3-C12 dialkylthioalkoxyl; C3-C12 dialkoxyalkoxyl; C2-C6 haloalkoxyhaloalkoxyl; C3-C10 alkoxyalkoxyalkyl; C2-C6 alkenyl; C2-C6 haloalkenyl; C2-C6 alkenyloxy; C2-C6 haloalkenyloxy; C3-C8 alkenyloxyalkoxyl; C3-C8 haloalkenyloxyalkoxyl; C2-C6 alkynyl; C2-C6 haloalkynyl; C2-C6 alkynyloxy; C2-C6 baloalkynyloxy; C3-C8 alkynyloxyalkoxyl; C3-C8 haloalkynyloxyalkoxyl; C3-C12 acylaminoalkoxy, C2-C8 alkoxyiminoalkyl; C2-C8 haloalkoxyiminoalkyl; C3-C8 alkenyloxyiminoalkyl; C3-C8 haloalkenyloxyiminoalkyl;

$$\begin{split} &C_3\text{-}C_8 \text{ alkynyloxyiminoalkyl; } C_3\text{-}C_8 \text{ haloalkynyloxyiminoalkyl; } C_5\text{-}C_{10} \\ &\text{alkoxyalkynyloxyl; } C_6\text{-}C_{12} \text{ cycloalkylideneiminooxyalkyl; } C_6\text{-}C_{12} \\ &\text{dialkylideneiminooxyalkyl; aryl optionally substituted; } -S(O)_mR_1; -OS(O)_kR_1; -SO_2NR_2R_3; -CO_2R_4; -COR_5; -CONR_6R_7; -CSNR_6R_6; -NR_10R_{11}; -NR_{12}\text{-}COR_{13}; -NR_14\text{-}CO_3R_{15}; -NR_16\text{-}CONR_{17}R_{18}; -PO(R_{19})_{2;} -Z_2(CR_{24}R_{25})_{2i}(C=Y)T; -Z_2(CR_{36}R_37)_{4}(CR_{28}R_{29}=CR_40R_4)_{4}(C=Y)T; \end{split}$$

 $Z_1, Z_2=0, S(0)_i$

Y=0, S;

r is equal to 0, 1 or 2;

p, q are equal to 1, 2, 3 or 4;

v is equal to 0 or 1;

Z₁=O, S or a direct bond;

T represents: a hydrogen atom; a Z_4R_2 group; a $-NR_4R_{44}$ group; an aryl group or a heterocyclic group selected from triazolyl; triazolonyl; pyrrazolyl; imidazolyl; imidazolidinonyl; tetrazolyl; tetrazolonyl; pyrrolyl; pyrrolidinyl; pyrrolidinoyl; pyrrolidinyl; piperidinyl; piperidinyl; piperazinyl; morpholinyl; said aryl and hetrocyclic groups optionally substituted by one or more substituents selected from halogen; NO₂; OH; CN; CHO; linear or branched C_1 - C_6 alkyl; linear or branched C_1 - C_6 alkoxyl; linear or branched C_1 - C_6 alkylsulfinylalkyl; C_2 - C_6 alkylsulfonylalkyl; C_2 - C_6

 C_2 - C_6 haloalkylsulfinylalkyl; C_2 - C_6 haloalkylsulfinylalkyl; C_2 - C_6 haloalkylsulfinylalkyl; C_2 - C_6 haloalkylsulfonylalkyl; $(C_2$ - (C_6) haloalkylsulfonylalkyl; $(C_2$ - (C_6)

Z₄=O, S or a direct bond;

R43 and R44, the same or different, represent: a hydrogen atom; a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms; a C₂-C₆ alkenyl group in turn optionally substituted with halogen atoms; a Q₂ group; an arylalkyl group optionally substituted by one or more substituents selected from halogen, NO₂; CN; CHO; linear or branched C₁-C₆ alkyl; linear or branched C₁-C₆ alkyl; linear or branched C₁-C₆ alkoxyl; (inear or branched C₁-C₆ alkoxyl; linear or branched C₁-C₆ alkoxyl; (inear or branched C₁-C₆ alkoxyl; C₂-C₆ alkoxycarbonyl; or they jointly represent a C₂-C₅ alkylene chain;

D represents: a heterocyclic group of the heteroaryl or heterocyclic type, in all the above cases the heterocycle can be mono or polycyclic and can be connected to the rest of the structure either through one of its earbon atoms or, when possible, through one of its nitrogen atoms; or it represents a mono or polycyclic acyl group, in this lattice case, the group can also be partially saturated;

R₄ represents a substituent selected from: hydrogen; halogen; NO₂; CN; CHO; OH; linear or branched C₁-C₆ alkyl; linear or branched C₁-C₆ haloalkyl; linear or branched C₁-C₆ haloalkyl; C₁-C₆ expanoalkyl; C₂-C₆ calkylsulfinylalkyl; C₂-C₆ expanoalkyl; C₂-C₆ alkylsulfinylalkyl; C₂-C₆ alkylsulfinylalkyl; C₂-C₆ haloalkoxyalkyl; C₂-C₆ haloalkoxyalkyl; C₂-C₆ haloalkylsulfinylalkyl; C₂-C₆ haloalkylsulfinyl; C₃-C₁₂ dialkoxyalkyl; C₃-C₁₂ dialkylsulfinylsulfixyl; C₃-C₁₂ dialkylsulfinyl; C₃-C₁₆ haloalkoxylkoxylcy; C₃-C₁₆ alkoxyalkyl; C₃-C₆ haloalkoxylkyl; C₃-C₆ alkenyl; C₃-C₆ haloalkoxylkyl; C₃-C₆ alkenylcy; C₃-C₆ haloalkylyl; C₃-C₆ haloalkyylkyl; C₃-C₆ alkenylcy; C₃-C₆ haloalkylyl; C₃-C₆ haloalkylyli; C₃-C₆ haloalkylyli; C₃-C₆ haloalkylyli; C₃-C₆ haloalkylyl; C₃-C₆ haloalkylyl; C₃-C₆ haloalkylyli; C₃-C₆ haloalkyli; C₃-C₆ h

if several Rx groups are present, these can be the same or different;

n=1-9;

excluding the following compounds having general formula (I) wherein A, B and R have the following meanings: A=4-chlorophenyl, B=1-methylimidazol-2-yl, R=H; A=4-nitrophenyl, B=1-(2-hydroxyethyl)-5-nitrolimidazol-2-yl, R=H; A=phenyl, B=1H-benzimidazol-2-yl, R=C₂H₃; A=phenyl, B=4H-1-benzimidazol-2-yl, R=C₂H₃; A=phenyl, B=4-chloro-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-yl, R=CH₃; A=phenyl, B=2-acetyl-1,2,3,4-tetrahydroisoquinolin-1-yl, R=C₂H₃; A=2-hydroxy-4-methoxyphenyl, B=2-hiazol-4-yl, R=CH₃; A=phenyl, B=2,5-diphenyl-1,3-oxathiol-2-yl, R=CH₃; A=phenyl, B=4-hidroxy-1, R=CH₃; A=phenyl, B=1,3-dithian-2-yl, R=CH₃; A=phenyl, B=4-chlorothien-2-yl, R=H; A=phenyl, B=5-methylinen-2-yl, R=H₃; A=phenyl, B=5-methylinen-2-yl, R=CH₃; A=phenyl, B=5-methylinen-2-yl, R=H₃; A=phenyl, B=5-methylinen-2-yl, R=CH₃; A=phenyl, B=2-phenylihiazol-4-yl, R=CH₃; A=phenyl, B=5-methylinen-2-yl, R=CH₃; A=phenyl, B=5-methylinen-2-yl, R=CH₃; A=phenyl, B=5-methylinen-2-yl, R=CH₃; A=phenyl, B=2-phenylihiazol-4-yl, R=CH₃; A=phenylihiazol-4-yl, R=CH₃; A=phenylihiazol-4-y

vl. R=CH3; A=phenyl, B=5-methylfuran-2-yl, R=CH3; A=phenyl, B=3-(4methylphenyl)-1,2,4-oxadiazol-5-yl, R=CH3; A=phenyl, B=tetrahydrofuran-2-yl, R=CH₃; A=phenyl, B=2,3-dihydro-3-hydroxy-2-oxo-1H-indol-3-yl, R=CH₃, A=phenyl, B=4-chloro-1-methyl-2,5-dioxo-2,5-dihydro-pyrrol-3-yl, R=CH₃; A=phenyl, B=22-trifluoroacetyl-1,2,3,4-tetrahydroiso-quinolin-1-vl, R=C-Hs: A=phenyl, B=2-acetyl-1,2,3,4-tetrahydroisoquinolin-1-yl, R=CH3; A=4-nitrophenyl, B=2-(4-nitrophenyl)-3.5.6-triphenyl-pyridin-4-yl, R= CH₂: A=phenyl, B=4,6-bis (dimethylamino)-1,3,5-triazin-2-yl, R= CH₁; A=phenyl, B=4-methoxy-5-tert-butoxycarbonyl-1H-pyrro-2-yl, R=CH₃; A=phenyl, B=1,3-dihydro-3-oxo-isobenzofuran-1-yl, R= CH₃; A=phenyl, B=(5methoxycarbonylmethyl)thien-2-yl, R=H; A=phenyl, B=4-methylthien-2-yl, R=H; A=phenyl, B=1,4-dihydro-1-methyl-3-nitroquinolin-4-yl, R=H; A=phenyl, B=thion-2-yl, R=H; A=phenyl, B=6-methylbenzothiazol-2-yl, R=CH₃; A=2methoxycarbonylphonyl, B=phenyl, R= CH3; A=2-benzyloxy-4-methoxyphonyl, B=2,3,4-trimethoxyphenyl, R=H; A=4,5-dimethoxy-2-nitrophenyl, B=3,4dimethoxyphenyl, R=H:A=2-nitrophenyl, B=phenyl, R=H: A=2.4.5trimethoxyphenyl, B=4-methoxyphenyl, R=H; A=4-bromophenyl, B=phenyl, R=H; A=4-bromophenyl, B=2,4-dinitrophenyl, R= CH₁; A=4-chlorophenyl, B=phenyl, R=H:A=2,4-dibenzyloxy-5-methoxyphenyl, B=1,3-benzodioxol-5-yl, R=H: A=2,4-dibenzyloxyphenyl, B=1,3-bcnzodioxol-5-yl, R=H;A=4-methoxyphenyl, B=2carboxyphenyl, R=H; A=4-methylphenyl, B=2,4-dinitrophenyl, R= CH₁; A=4hydroxy-3-methoxyphenyl, B=4-hydroxy-3-methoxyphenyl, R=H; A=2-nitrophenyl, B=4-methylphenyl, R=H:A=4-chlorophenyl, B=4-chlorophenyl, R=H: A=2.4diacetoxyphenyl, B=phenyl, R=CH3; A=3-methoxyphenyl, B=phenyl, R=C2R5; A=4-nitrophenyl, B=phenyl, R=H;A=2-nitrophenyl, B=4-n-butoxyphenyl, R=H; A=2-nitro-4-chlorophenyl, B=4-methylphenyl, R=H; A=phenyl, B=8carboxynaphthalenyl, R= CH3; A=2,5-dimethoxyphenyl, B=2-hydroxyphenyl, R=C₂R₅; A=4-fluorophenyl, B=2-nitro-4-trifluoromethylphenyl, R= CH₃;

A=3-chloro-4-methylphenyl, B=2,4-dinitrophenyl, R= CH3; A=2-nitro-4chlorophenyl, B=phenyl, R=H;A=4,5-dimethoxy-2-nitrophenyl, B=4-methylphenyl, R=H; A=2-carboxy-6-nitrophenyl, B=phenyl, R= CH3; A=2,4,5-trimethoxyphenyl, B=3-methoxyphenyl, R=H; A=phenyl, B=4-bromophenyl, R=H; A=6-benzyloxy-2,3,4-trimethoxyphenyl, B=1,3-benzodioxol-5-yl, R=H; A=4,5-dimethoxy-2nitrophenyl, B=4-methoxyphenyl, R=H; A=4,5-dimethoxy-2-nitrophenyl, B=4chlorophenyl, R=H; A=2.4-dibenzyloxyphenyl, B=4-methoxyphenyl, R=H; A=4-methylphenyl, B=4-methylphenyl, R=H; A=4-dimethylaminophenyl, B=phenyl, R=H; A=4-methoxyphenyl, B=phenyl, R=H; A=4.5-dichloro-2-nitrophenyl, B=4chlorophenyl, R=H; A=2-nitrophenyl, B=4-methoxyphenyl, R=H; A=phenyl, B=2,5dimethoxycarbonylaminophenyl, R= CH3; A=4-hydroxy-4-methoxyphenyl, B=2methoxyphenyl, R=H; A=phenyl, B=4-methylphenyl, R=H; A=2-nitrophenyl, B=4-ethoxyphenyl, R=H; A=2-nitro-4-chlorophenyl, B=4methoxyphenyl, R=H; A=4-chlorophenyl, B=phenyl, R=C2H5; A=2-tbutoxycarbonyl-5-ethyl-4-methoxyphenyl, B=2.3-dihydro-7-methyl-1.4-benzodioxin-6-yl, R=t-butyl; A=phenyl, B=2-nitro-4-trifluoromethylphenyl, R= CH3; A=3,4-dichlorophenyl, B=2,4-dinitrophenyl, R= CH₃;A=4,5-dichloro-2-nitrophenyl, B=4-methoxyphenyl, R=H; A=4-methoxy-2-nitrophenyl, B=4-methylphenyl, R=H; A=phenyl, B=anthracene-9-vl, R= CH₃:A=phenvl, B=4-methoxyphenvl, R=H; A=2.4.5-trimethoxyphenyl, B=phenyl, R=H:A=2.4-diacetoxyphenyl, B=2.4.5trimethoxyphenyl, R=CH3; A=2-hydroxyphenyl, B=phenyl, R=H; A=4-methoxy-2-nitrophenyl, B=phenyl, R=H; A=4,5-dimethoxy-2-nitrophenyl, Bphenyl, R=H;A=2,4-dinitrophenyl, B=phenyl, R= CH3; A=phenyl, B=phenyl, R= CH₃; A=phenyl, B=4-dimethylaminophenyl, R=H; A=phenyl, B=2.4-dinitrophenyl, R= CH₃; A=4,5-dichloro-2-nitrophenyl, B=4-methylphenyl, R=H; A=4-bromophenyl, B=phenyl, R= CH₃; A=2-(4-methylphenylsulfonyloxy)-6methoxyphenyl, B=phenyl, R=H; A=4-methylsulfonylphenyl, B=2-methoxyphenyl, R=CH₃; A=4-methoxyphenyl, B=4-methoxyphenyl, R=CH₃;

A-phenyl, B=4-chlorophenyl, R=H; A=2-nitrophenyl, B=4-nitrophenyl, R=H; A=phenyl, B=phenyl, R=H; A=2,4-dimethoxyphenyl, B=4-methoxyphenyl, R=H; A=2-nitrophenyl, B=4-n-hexyloxyphenyl, R=H; A=4-methoxy-2-nitrophenyl, B=4methoxyphenyl, R=H; A=phenyl, B=9-carboxyphenanthren-10-yl, R=CH3: A=phenyl, B=phenyl, R=CH3; A=3,4-dimethoxyphenyl, B=3,4-dimethoxyphenyl, R=H; A=2,4-dimethoxyphenyl, B=phenyl, R=H; A=phenyl, B=2-hydroxy-3,4,6trimethyl-5-methoxyphenyl, R= CH3; A=4-chloro-2-nitrophenyl, B=4-chlorophenyl, R=H; A=2-nitrophenyl, B=4-chlorophenyl, R=H; A=2,4,5-trimethoxyphenyl, B=3,4dimethoxyphenyl, R=H; A=4-chlorophenyl, B=2,4-dinitrophenyl, R= CH; A=4,5-dichloro-2-nitrophenyl, B=phenyl, R=H; A=4-methoxyphenyl, B=phenyl, R= CH3; A=2,4-dibenzyloxyphenyl, B=3,4-dimethoxyphenyl, R=H: A=4methylthiophenyl, B=4-methoxyphenyl, R= CH3; A=phenyl, B=phenyl, R=C2H3; A=4-methoxyphenyl, B=2,4-dinitrophenyl, R= CH₃; A=2-nitrophenyl, B=3chlorophenyl, R=H; A=2-nitrophenyl, B==3,4-dimethoxyphenyl, R=H; A=4-methoxyphenyl, B=4-methoxyphenyl, R=H; A=2-hydroxyphenyl, B=4methoxyphenyl, R=H; A=phenyl, B=2,5-bis(phenacylamino)phenyl, R=CH3; A=4-nitrophenyl, B=4-methylphenyl, R=H; A=2-nitrophenyl, B=4-npentyloxyphenyl, R=H; A=4-methoxy-2-nitrophenyl, B=4-chlorophenyl, R=H; A=phenyl, B=2-carboxynaphthalen-1-yl, R= CH3.

18 (Canceled):