Comparaison et combinaisons de méthode de sélection d'attributs (pour l'analyse du transcriptome)

Antoine Cornuéjols¹

J-P. Comet³, M. Dutreix², Ch. Froidevaux¹
J. Mary¹, G. Mercier²

```
<sup>1</sup>LRI (Orsay) - <sup>2</sup> Institut Curie (Orsay) - <sup>3</sup> LAMI (Evry)

antoine@lri.fr, http://www.lri.fr/~antoine
```


- Illustration
- Le pb de la sélection d'attributs
- Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- 1- Illustration
- 2- Le problème de la sélection d'attributs
- 3- L'approche classique
- 4- Combiner des méthodes
- 5- Comparaison
- 6- Combinaison
- **7-** Conclusion

Illustration : un pb d'analyse du transcriptome

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- Projet INRS, Bioingéniérie 2001
- **[2001-2004]**

Étude de l'effet des très faibles radiations

Etude des radiations

- Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

 Danger indiscutable dans certains cas. En particulier pour les fortes doses d'irradiation.

- Quel impact des faibles doses ?
- Biologiquement aucun détecté
- Y a-t-il des effets au niveau des gènes ?

Protocole expérimental

- · Illustration
- Le pb de la sélection d'attributs
- Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- S. Cerevisiae en croissance exponentielle (séquencée complètement et eucaryote avec peu de gènes).
- Six cultures (Irradiées I) exposées pendant 20 heures entre 15 et 30 mGy/h
- Douze cultures non exposées (Non Irradiées NI)
- Mesure effectuées sur puce Corning où l'hybridation a été faite avec double marquage fluorescent (Cy3 pour les cADN contrôles et Cy5 pour les cADN étudiés).

Questions des biologistes

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- L'irradiation à de faibles doses est-elle détectable ?
- Nombre de gènes impliqués dans la réponse à une irradiation à faible dose ?
- Groupes de gènes impliqués dans la réponse à l'irradiation et de quelle manière ?

- Est-il possible de deviner le traitement subi par une levure en regardant l'expression de son génome ?
- Peut-on généraliser cette approche à d'autres types de traitements (pollutions, cancer, ...)

« Précarité » des données

· Illustration

· Le pb de la sélection d'attributs

- Méthode standarc

- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

Extrêmement peu de données / dimension

(12 - (non irradiées) & 6 + (irradiées) vs. 6135 gènes)

- Données imparfaites
 - Bruit expérimental
 - Irradiation
 - Puces à ADN
 - Prétraitement et normalisation
- Pas idéales :
 - Déséquilibre des classes + et -
 - Absence d'indépendance conditionnelle entre les gènes

Le problème de la sélection d'attributs

Mais a priori plus simple que celui de la classification

Problème NP-difficile

• Illustration

· Le pb de la sélection d'attributs

Méthode standa

- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

a1	a2	a3	XOR
0	0	0	-
0	0	1	+
0	1	0	+
0	1	1	-
1	0	0	-
1	0	1	+
1	1	0	+
1	1	1	-

$$2^{2^3} = 2^8 = 256$$

fonctions possibles

Mais seulement: 10 tris possibles sur les attributs (e.g. (a1,a2,a3))

Le problème de la sélection d'attributs (2)

Illustration

sélection d'attributs

- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- Pourtant il manque une théorie fournissant des garanties sur la qualité des classements (analogue à théorie statistique de l'apprentissage)
 - Pas d'équivalent du risque empirique
 - Tâche non supervisée

Méthodes (essentiellement) de nature heuristique

Définitions de la « pertinence »

[Blum & Langley, 97], [Bell & Wang, 00]

· Illustration

• Le pb de la sélection d'attributs

- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

Pas de définition unique car dépend du domaine

- Par rapport à la cible
 - d_i est pertinent si \exists une paire d'exemples ne différant qu'en d_i et de classes différentes
- Idem par rapport à la distribution (ou à l'échantillon)
 - Idem, sauf que la paire d'exemples peut être tirée avec une probabilité non nulle (ou appartient à l'échantillon)
- Faible pertinence
 - Si pertinent quand on retire un sous-ensemble des attributs
- **...**
 - Pertinent si **permet une meilleure classification**
 - ... si permet de comprendre mieux

Les approches

[Blum & Langley, 97] [Guyon & Elisseeff, 03]

· Illustration

• Le pb de la sélection d'attributs

- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

1. Approche directe (« embedded »)

2. « Wrapper methods »

- Utilisent la performance en aval pour sélectionner les attributs
- Deux stratégies
 - Ascendante (« forward selection »)
 - Par ajouts successifs d'attributs
 - Descendante (« backward selection »)
 - Par retraits successifs d'attributs

3. « Filter methods »

Indépendantes des traitements aval

· Illustration

• Le pb de la sélection d'attributs • Méthode standard

- · Combiner des méthodes
- · Comparaison
- · Combinaison
- Conclusion

« Filter methods »

Peu coûteuses

- « Wrapper methods »
 - Coûteuses
 - Plus précises ?

Evaluation des attributs

Hypothèse de linéarité

[Guyon & Elisseeff, 03]

· Illustration

Le pb de la sélection d'attributs

- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

Critères de performance

- Mesurer la corrélation entre un attribut et la classe
 - Corrélation de Pearson (Critère de Fisher, T-test, ...)
 - Détecte uniquement les dépendances linéaires entre variables

$$\mathcal{R}_i = \frac{cov(X_i, Y)}{\sqrt{var(X_i)var(Y)}}$$

- Puissance prédictive de l'attribut
- Marge liée à chaque attribut
- Critères liés à la théorie de l'information
 - E.g. évaluation empirique de l'estimation mutuelle entre variables

$$\mathcal{I}_{i} = \int_{x_{i}} \int_{y} p(x_{i}, y) \log \frac{p(x_{i}, y)}{p(x_{i}) \cdot p(y)} dxdy$$

· Illustration

Le pb de la sélection d'attributs

Méthode standard

- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

Evaluation en-dessous d'un certain seuil

- Méthode par « témoin »
 - Inclure des attributs aléatoires
 - Ne pas retenir les attributs dont l'évaluation est en-dessous

La sélection d'attributs en pratique

- Recours à des méthodes d'évaluation raisonnables
 - Hypothèse d'indépendance des attributs (*linéarité*)
 - On peut les évaluer indépendamment
 - Spectre large de régularités détectables
- Utilisation de connaissances a priori
 - E.g.: Groupement de gènes *a priori* (réseaux de régulation)
- Méthode de filtrage (« filter »)
 - E.g.: SAM, ANOVA, RELIEF
- Estimation
 - On ordonne les attributs en fonction d'un critère de performance
 - → Quel seuil (choisi globalement)?
 - **→** Quelle confiance ?

- · Illustration
- Le pb de la sélection d'attributs
- Méthode standard
- Combiner des
- · Comparaison
- · Combinaison
- · Conclusion

Critères de performance

- · Illustration
- Le pb de la sélection d'attributs
- Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- Hypothèse de distribution paramétrique $\mathcal{N}(\mu, \sigma)$
 - Comparaison à hypothèse nulle locale : ANOVA
 - Idem (mais différent) : SAM

- Méthodes non paramétriques
 - Critère heuristique : RELIEF

Utilisation d'ANOVA

- · Illustration
- Le pb de la sélection d'attributs
- Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- Deux classes (Irradiée / Non Irradiée)
- $\mathcal{N}(\mu_1, \sigma)$ et $\mathcal{N}(\mu_2, \sigma)$
- Comparaison
 - Variance intra-classe
 - Variance inter-classes
- Hypothèse nulle $\mathcal{H}_0: \mu_1 = \mu_2$
- Rejet si

$$\frac{V_{\text{inter}}}{V_{\text{intra}}}$$

significativement trop grand par rapport aux quantiles de la foi $\mathcal{F}(k-1,n-k)$

SAM (Significance Analysis of Microarrays)

- · Illustration
- Le pb de la sélection d'attributs
- Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

Pour chaque gène :

$$d(i) = \frac{X_I(i) - X_{NI}(i)}{S(i) + S_0}$$

déviation standard Constante > 0

- Gènes potentiellement significatifs: gènes dont le score d(g) est supérieur au score moyen du gène obtenu après permutations des classes, de plus d'un certain seuil Δ
- Calcul du nombre de gènes *faussement significatifs* : nombre moyen de gènes faussement significatifs pour chaque permutation
- Taux de fausse découverte (FDR)

- · Illustration
- Le pb de la sélection d'attributs
- Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- [Kira & Rendell,92], [Kononenko,94]
 - Les attributs les plus pertinents sont ceux qui varient plus lorsque l'exemple (lame) considéré change de classe que lorsqu'il ne change pas

- Complexité faible
- Grande résistance au bruit

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- · Illustration
- Le pb de la sélection d'attributs
- Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- Une lame L est vue comme un point dans un espace à p = 6157 dimensions
 - > On cherche ses *k* plus proches voisins dans la même classe et on note *H* (nearest Hit) leur *barycentre*.
 - > On calcule ses k plus proches voisins dans l'autre classe et on note M (nearest Miss) leur *barycentre*.

$$\operatorname{poid}(\operatorname{spen}(E)) = \frac{1}{m} \sum_{L=1}^{m} \left\{ \left[\exp \mathsf{r}_{\operatorname{gene}}(L) - \exp \mathsf{r}_{\operatorname{gene}}(M) \right] - \left[\exp \mathsf{r}_{\operatorname{gene}}(L) - \exp \mathsf{r}_{\operatorname{gene}}(H) \right] \right\}$$

- où $\exp_{q \in n}(X)$ est la projection selon gène du point x, et m est le nombre total de lames.
- Le poids calculé pour chaque gène gène est ainsi une approximation de la différence de deux probabilités comme suit :

Poids $(g\grave{e}ne)$ = P $(g\grave{e}ne)$ a une valeur différente / k plus proches voisins dans une classe différente) - P $(g\grave{e}ne)$ a une valeur différente / k plus proches voisins dans la même classe)

- \rightarrow Algorithme polynomial: $\Theta(pm^2)$
- \rightarrow Rôle de k: prise en compte du bruit

Sélection des attributs

- · Illustration
- Le pb de la sélection d'attributs
- Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- Conclusion

Y a-t-il vraiment de l'information dans les données ?

Quels gènes retenir ?

Avec quelle confiance ?

Hypothèse nulle globale

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

Nombre de gènes dont le poids dépasse la valeur repérée en abscisse

rouge : Avec les classes réelles ;

bleu : Courbe moyenne obtenue avec des classes aléatoires

Nombre de gènes dont le poids dépasse la valeur repérée en abscisse

rouge : Avec les classes réelles ;

bleu : Courbe moyenne obtenue avec des classes aléatoires

Précision ou rappel : choix d'un seuil

Il faut choisir entre :

- Une liste contenant presque tous les gènes impliqués mais comportant des faux-positifs
- Une liste de gènes impliquées de manière quasi-certaine dans la réponse à l'Irradiation (quitte à ne pas avoir tous les gènes impliqués)

Problème du seuil

· Illustration

 Le pb de la sélection d'attributs

Méthode standard

Combiner des méthodes

- · Comparaison
- · Combinaison
- · Conclusion

Combinaison de méthodes ?

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

Peut-on faire mieux avec deux méthodes ?

■ Est-ce mieux de prendre l'intersection de leurs sélections ?

Doit-on avoir plus de confiance dans la valeur du résultat ainsi obtenu ?

Pour les 500 meilleurs gènes de chaque technique (poids 0.2) :

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des
- · Comparaison
- · Combinaison
- · Conclusion

ANOVA
409
SAM

Pour les 35 meilleurs (poids 0.5):

Intersections (2)

Est-ce que ces intersections sont significatives?

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des
- · Comparaison
- · Combinaison
- · Conclusion

Problème :

Étant données 2 méthodes sélectionnant au hasard chacune n gènes parmi N gènes, quelle est la probabilité que ces deux paquets de n gènes aient une intersection de cardinal supérieur ou égal à k?

= = > loi hypergéométrique H(n, N-n, k)

avec N = 6157:

- > n = 500: P (taille intersection ≥ 257) = 10^{-169}
- > n = 35: P (taille intersection ≥ 8) = 10^{-12}
 - Le biologiste est satisfait!

Répartition des meilleurs gènes

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

function of 91 induced genes/171	number of ORFs	% in this list	% total ORFS	(61:5 8)ep
unknown	38	41,8	50,4	0,8
oxidative stress response	4	4,4	0,3	14,3
oxidative phosphorylation	9	9,9	0,3	30,5
transport	4	4,4	2,2	2,0
gluconeogenesis	1	1,1	0,1	16,9
protein processing & synthesis	3	3,3	2,0	1,6
ATP synthesis	7	7,7	0,4	20,6
glucose repression	1	1,1	0,2	4,8
respiration	2	2,2	0,1	22,0
function of 80 repressed genes/171	number of ORFs	% in this list	% total ORFS	sur-rep
unknown	45	56,3	50,4	1,1
stress response (putative)	1	1,3	0,2	7,0
glycerol metabolism	2	2,5	0,1	30,8
protein processing & synthesis	3	3,8	2,0	1,9
secretion	2	2,5	2,0	1,3
transport	4	5,0	2,2	2,3
glycolysis	2	2,5	1,0	2,5
glycolysis	2	2,5	1,0	

Interprétation biologique

-			
	lust	not	OB

Le pb de la sélection d'attributs

· Méthode standard

 Combiner des méthodes

- · Comparaison
- · Combinaison
- · Conclusion

Cytochrome bc1

Cyt1	
QCR7	7
QCR1	0

Cytochrome oxidase

COX5A
COX6
COX4
COX 13
COX12
COX7
COX8
COX20

ATP synthase

<u>P Synthas</u>
ATP3
ATP5
ATP16
ATP15
ATP7
ATP17
ATP18
ATP19
ATP20
TIM11

Comparaison de méthodes de sélection

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

Comparaison de méthodes de sélection (2)

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- Causes possibles de l'intersection :
 - Information dans les données que les deux méthodes parviennent à détecter
 - Corrélation a priori des méthodes

- Exemple
 - 278 gènes dans (RELIEF ∩ ANOVA)₅₀₀
 - 40 attendus par simple chance (loi hypergéométrique)
 - **238**?
 - Information?
 - Corrélation *a priori* ?

Mesure de la corrélation a priori

Nouvelle hypothèse nulle

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- Pour toutes les permutations de 6 + & 12 sur les données
- Calculer : $(RELIEF \cap ANOVA)_{500}$
- Faire la moyenne

Intersection due à la corrélation a priori des méthodes

Comment l'interpréter ?

■ Si (RELIEF \cap ANOVA)₅₀₀ =

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- **0** :?
- **40** :?
- **278**:?
- **500**:?

Ici: 170

Mesure de corrélation

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- Conclusion

Combinaison de méthodes

Peut-on tirer de l'information de la combinaison de deux méthodes ?

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- Conclusion

On dispose de la **loi empirique** de

$$k = (RELIEF \cap ANOVA)_n$$

en fonction de *n* (intersection des « top_n »)

→ Peut-on la comparer à une **courbe théorique** paramétrée et trouver les paramètres maximisant la vraisemblance ?

Combinaison de méthodes

- 1. Construction d'un « modèle génératif »
 - On suppose deux méthodes M_1 et M_2 d'évaluation d'attributs telles que:
 - $(M_1 \cap M_2)_n = k$
 - M_1 retourne p_1 attributs pertinents dans n
 - M_2 retourne p_2 attributs pertinents dans n
 - On suppose *p* vrais attributs pertinents sur *d* attributs en tout
 - On calcule la loi:

$$k = \text{fct}(d, n, k_{corr}, p, p_1, p_2)$$

- 2. Principe de maximum de vraisemblance
 - On retient (p, p_1, p_2) maximisant la vraisemblance par rapport à la courbe observée

- Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- Conclusion

Combinaison de méthodes

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- Conclusion

Combien parmi les k sont positifs?

Formules

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- Conclusion

$$p_1 \leq n \leq p_2 \leq p$$

$$p(\cap = k | d, p, n_1 = n_2 = n, k_C) = \frac{\binom{d-n}{n-k} \binom{n}{k} \binom{p}{n}}{\binom{d}{n}^2} / \sum_{j=k_C}^n \frac{\binom{d-n}{n-j} \binom{n}{j} \binom{p}{n}}{\binom{d}{n}^2}$$

 $p(\cap = k | d, p, n_1 = n_2 = n, k_C) = \binom{n}{k} \binom{p-n}{n-k} / \sum_{i=h}^{n} \binom{n}{i} \binom{p-n}{n-i}$

 $p_1 \leq p_2 \leq n$

· Illustration

- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- Conclusion

Pour

- *d*:6135
- n:500
- $k_{corr}: 170$

Le maximum de vraisemblance est obtenu pour :

- p ≈ 410
- $p_1 = p_2 \approx 330$

Conclusion

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- Conclusion

On peut tirer de l'information de l'utilisation de plusieurs méthodes

Pas de travaux connus dans ce domaine

Propositions

- Méthode de mesure de corrélation *a priori* des méthodes
- Méthode de maximum de vraisemblance pour suggérer le nombre d'attributs pertinents à partir de deux méthodes

Références

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- Conclusion

- Bell, D., & Wang, H. (2000). A formalism for relevance and its application in feature subset selection. *Machine Learning Journal*, 41, 175-195.
- Blum, A., & Langley, P. (1997). Selection of relevant features and examples in machine learning. *Artificial Intelligence journal*(97), 245-271.
- Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. *Journal of Machine Learning Research*, *3*, 1157-1182.
- Liu, H., & Motoda, H. (1998). Feature selection for knowledge discovery & data mining: Kluwer Academic Publisher.
- Mercier, G., Berthault, N., Mary, J., Antoniadis, A., Comet, J.-P., Cornuéjols, A., Froidevaux, C.,
 & Dutreix, M. (2004). Biological detection of low radiation by combining results of two analysis methods. *Nucleic Acids Research (NAR)*, 32(1), 1-8.

- Les données reflètent-elles la présence de l'irradiation?
- Le pb de la sélection d'attributs
- Méthode standard Combien de gènes sont-ils impliqués ? Plus de 100
- Combiner des méthodes
- · Comparaison
- · Combinaison Y a-t-il des groupes de gènes impliqués et lesquels?
- · Conclusion

Oui: ATP synthesis, oxidative phosphorylation et oxidative stress response

■ Est-il possible de déterminer si une levure est irradiée en regardant son transcriptome ?

Oui et il suffit de ne regarder qu'un petit nombre de gènes

Tâche de classification

Plusieurs techniques ont été utilisées

- · Illustration
- → Vote « d' experts »
- Le pb de la sélection d'attributs
- → Technique du maximum de vraisemblance
- · Méthode standard

K plus proches voisins

- · Combiner des méthodes
- · Comparaison Essai de classification en aveugle sur six nouvelles lames :
- · Combinaison
- · Conclusion

		Avec sélection d'un seul		Avec les gènes		Avec les gènes	
		gène (1575)		sélectionnés par ANOVA		sélectionné	<mark>s par REL</mark>
Traitement	Dose	Sain	Irradié	Sain	Irradié	Sain	Irradié
Irradiation	0.003 mGy/	h 0,95	0,04	0,53	0,47	1	0
Irradiation	0.007 mGy/	h 0,35	0,65	0,46	0,54	0,01	0,9
Irradiation	0.1 mGy/h	0,02	0,97	0,5	0,5	0	1
Irradiation	1.1 mGy/h	0,15	0,84	0,47	0,53	0	1
Formaldehyd	0.07 mM	1	0	0,65	0,35	1	0
aucun	0	0,82	0,17	0,55	0,44	1	0

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- Conclusion

- Publication des résultats biologiques obtenus
- Le pb de la sélection d'attributs Étude sur d'autres données (Cancer de la vessie avec Curie,
- · Méthode standard
- · Combiner Lesaris)
- · Comparaison
- Mise au point d'une méthode de classification avec peu de
- · Conclusion gènes
 - Étude du critère de RELIEF
 - Quelles propriétés ?
 - Exploitation de multiples méthodes de sélection d'attributs

Normalisation des données

- La normalisation a été réalisée par LOWESS (LOcally WEighted Scatterplot Smoothing), Julie PEYRE & Anestis ANTONIADIS (IMAG)
- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes

· Comparaison
$$A = \frac{1}{2} \log_2(R * G)$$

· Conclusion

$$M = \log_2(\frac{R}{G})$$

Où R et G sont les niveaux d'intensité de Rouge et de Vert.

Normalisation par lowess.

Les sources de problèmes

Présence de bruit dans les données à deux niveaux :

- · Illustration
- Le pb de la sélection d'attributs

 Imprécision de la mesure : bruit classique supposé gaussien, bruit qui est très élevé pour certains gènes (cf doubles mesures)
- · Méthode standard
- · Combiner des méthodes Présence de valeurs aberrantes dues
- · Comparaison à un problème lors de l'hybridation
- · Combinaison
- · Conclusion

- Nombreux attributs : 6157 gènes
- Très faible nombre d'instances : 12 cultures non-traitées, 6 irradiées
- Classes déséquilibrées (elles ne contiennent pas le même nombre d'éléments)
- Absence d'indépendance conditionnelle probabiliste entre les gènes

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

 Trop peu de garantie sur chaque corrélation détectée (attribut)

- Comparaison à hypothèse nulle globale
- Interprétation / confirmation par les biologistes

Utilisation d'ANOVA (suite)

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

On peut aussi calculer la *p-value* pour chaque gène et ordonner les gènes

Probabilité que le test rejette l'hypothèse \mathcal{H}_0 à tort

$$p(t) = \min\{F_0(t), 1 - F_0(t)\}$$

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

