Seminários II

Metaheurísticas para o Problema da Seleção de Atributos em Bases de Dados, Modelado como Empacotamento de Conjuntos

Aluno: Bruno C. do Nascimento

Orientador: Marcos Henrique Fonseca Ribeiro

Sumário

- O Problema
- Por que reduzir a dimensão dos dados?
- Como reduzir a dimensão dos dados?
- Modelagem do Problema
- Métrica da Silhueta
- Aplicação do trabalho
- O que já foi feito e o que está sendo feito
- O que será feito
- Cronograma
- Dúvidas e sugestões

Problema

 Utilizar busca heurística para a seleção dos melhores atributos de uma base de dados com a finalidade de reduzir a sua dimensão.

Por que reduzir a dimensão dos dados?

A maldição da dimensionalidade

A maldição da dimensionalidade

- Alto custo computacional
- Atributos redundantes (possuem alta correlação)
- Problemas com a eficácia das métricas de distância

Ex: Atrapalha o agrupamento realizado por algoritmos de clusterização

Como reduzir a dimensão dos dados?

- PCA (Principal Component Analysis)
- Busca Heurística (Presente trabalho)

Modelagem do problema

- O problema foi modelado como Set Packing Problem.
- Set Packing Problem é NP-Completo
- Encontrar c ⊂ S que maximize a silhueta, onde S é o conjunto com todos atributos da base.
- É informado os valores tam_min e tam_max
 - Onde tam_min ≤ |c| ≤ tam_max

Restrição do problema

 Se dois atributos a₁ e a₂ ∈ S possuem módulo da correlação acima de de um limiar th, eles não podem aparecer juntos em c. Por terem uma alta correlação, eles representam informações muito parecidas, e isso causa redundância.

Avaliação do subconjunto de atributos

K-Means

Como avaliar um bom agrupamento?

- Coeficiente de silhueta
 - Esse coeficiente varia entre [-1.0, 1.0], e valores mais próximos de
 1.0 indicam um bom agrupamento.

Coeficiente de silhueta

https://scikit-plot.readthedocs.io/en/stable/metrics.html

acessado em 04/09/2018

Função de avaliação

- C_{sol} (c) = silhueta(k-means(c)) penalidade(c))
 - o penalidade(c) = log(1 + NV(c))
 - NV(c): restrições violadas

Aplicação do trabalho

- Pré-processamento dos dados
 - Algoritmos de clusterização, classificação e etc.

O que já foi e o que está sendo feito

- GRASP (Greedy Randomized Adaptive Search Procedure)
- ILS (Iterated Local Search)
- Comparação do resultado gerado pelo GRASP com método exato

O que será feito

- VNS (Variable Neighbourhood Search)
- GA (Genetic Algorithm)

Cronograma

Mês / Metas	А	В	С	D	E
Agosto	х				
Setembro	х	х	х	х	
Outubro				x	х
Novembro					x

- A GRASP e primeiras comparações
- B Implementação do ILS
- C Implementação do VNS
- D Implementação do GA
- E Comparação dos resultados e redigir artigo

Dúvidas

Contato:

Bruno Conceição do Nascimento

Email: <u>bcnbruno17@gmail.com</u> / <u>b_cnbruno@hotmail.com</u>

Github: github.com/bcnbruno/brunotcc

Possíveis dúvidas

- Custo de inserção
 - \circ C_{ins} (a) = 10 · var(a) / 1 + NR(a)

Possíveis dúvidas

- Coeficiente de silhueta
 - o (b a) / max(a, b)