Задача 11-1. Проводящие и диэлектрические сферы

- 1. Три концентрические сферы имеют радиусы R_1 = R, R_2 =2R, R_3 =4R и заряды q_1 = q, q_2 = 4q, и q_3 = -2q соответственно.
 - 1.1. Определите потенциалы и напряжённости на внешних поверхностях данных сфер и в точке посередине между второй и третьей сферой считая от центра сфер.
 - 1.2. Вторую и третью сферу соединяют проводником. Определите установившиеся заряды сфер $q_1^{'}$, $q_2^{'}$, $q_3^{'}$.
 - 1.3. Вторую и третью сферу заземляют (соединительный проводник остаётся). Какой заряд пройдёт по заземляющему проводнику?
- 2. Две тонкие проводящие концентрические сферы радиусами $R_1 = R$ и $R_2 = 3R$ имеют заряды $q_1 = q$ и $q_2 = 3q$ соответственно. Пространство между сферами заполнено диэлектриком с проницаемостью ε .
 - 2.1. Определите величину связных зарядов q_{c1} и q_{c2} на внутренней и внешней поверхностях диэлектрического слоя.
 - 2.2. Определите потенциал электростатического поля на расстоянии R, 2R и 3R от центра сфер.
 - 2.3. Внутреннюю сферу заземлили. Определите величину связных зарядов q'_{c1} и q'_{c2} на внутренней и внешней поверхностях диэлектрического слоя в данном случае.

Примечание. В уравнениях используйте обозначение $k=rac{1}{4\piarepsilon_0}$. В п.2.3. не

задумывайтесь над технической стороной вопроса: «Как заземлить внутреннюю сферу?». Просто примите как факт, что внутренняя сфера заземлена, а внешняя — нет. Заряд внешней сферы не изменяется и равен 3q.