

SEM 0564 - DESENHO TÉCNICO MECÂNICO I

Notas de Aulas v.2016

Aula 11 – Componentes de transmissão e união II: engrenagens, pinos, cavilhas.

Prof. Assoc. Carlos Alberto Fortulan

Departamento de Engenharia Mecânica Escola de Engenharia de São Carlos Universidade de São Paulo

Engrenagens

São elementos de máquinas cilíndricos (engrenagem cilíndrica), cônicos (engrenagem cônica) ou planas (cremalheira), dotadas de dentes externos ou internos que transmitem ou recebem movimentos.

Tipos de corpos de engrenagem:

Engrenagens cilíndricas com dentes retos:

- normal

- simplificada

esquemática

Engrenagens cilíndricas com dentes helicoidais:

- normal

- simplificada

- esquemática

Simbologia dos dentes de engrenagens helicoidais:

Engrenagens cônicas com dentes retos:

Coroa

Pinhão

normal - simplificada

esquemática

Engrenagens com dentes côncavos e roscas sem-fim:

- normal

Pinhão

- simplificada

- esquemática

Exemplos de engrenagens

a) cilíndrica de dentes retos

b) cilíndrica interna

c) cilíndrica com cremalheira

j) cônicas descentradas (hipóides)

I) parafuso sem fim

k) helicoidais

i) cônica de dentes curvos

d) cilíndrica dentes inclinados

g) cônica de dentes retos

h) cônica de dentes inclinados

f) cilíndrica dentes em V

Características do dentes das engrenagens:

- **p** (passo): é a distancia circunferencial entre dois dentes consecutivos, medida na circunferência primitiva da engrenagem;
- e (espessura): é a medida do arco limitado pelo dente na circunferência primitiva;
- c (cabeça): é a parte do dente que fica entre o diâmetro primitivo e o diâmetro externo;
- v (vão): é o vazio que fica entre dois dentes consecutivos;
- h (altura): corresponde à soma da altura da cabeça mais a altura do pé do dente;
- f (pé): é a parte do dente que fica entre o diâmetro primitivo e o diâmetro interna

Características e cotagem de engrenagens:

De: diâmetro externo;

Dp: diâmetro primitivo;

Di: diâmetro interno;

L: largura;

N: número de dentes;

M: módulo (o número do módulo serve de base para calcular as dimensões dos dentes.

Cotagem

Engrenagem cilíndrica

de dentes retos

Engrenagens cilíndricas com dentes helicoidais

Entrosamento externo de engrenagens cilíndricas

BS 308 : Part 1 : 1984

Engrenagens helicoidal com dentes côncavos

Características particulares:

- diâmetro máximo = 133,8
- ângulo de hélice = 16º
- ângulo de chanfro = 60º
- raio da superfície côncava = 13,3

Engrenagens cônicas com dentes retos

Características particulares:

- ângulo externo = 29º
- ângulo primitivo = 26º
- ângulo interno = 23º
- largura do dente = 24
- altura dos dentes = 6,4
- rebaixo do disco = 4
- ângulo do cone complementar = 64º

Entrosamento de engrenagens cônicas

BS 308 : Part 1 : 1984

Fórmula e traçado de dentes de engrenagem

EE maria	A Mecal	
$\mathbf{Dp} = \mathbf{M} \times \mathbf{N}$	e = M x 1,49	$d = {}^{Dp}/_{60}$
S = M	v = M x 1,65	K = F x 2
t = M x 1,166	$r_f = M \times 0.1 \text{ a } 0.3$	De = M (N+2)
H = M x 2,166	$\mathbf{G} = P/2$	Di = M (N - 2,33)
$P = M \times \pi (3,14)$	L = 6 a 8 x M	$\mathbf{M} = {}^{\mathrm{De}}/_{(\mathrm{N}+2)}$

Nota - Para as engrenagens fresadas, a espessura e o vão dos dentes são divididas por 2 (P/2). Porém, nas engrenagens fundidas, a espessura é: e = 19/40 x P; o vão: v = 21/40 x P.

ODONTÓGRAFO DE GRANT								
Número de dentes	R = AxM	r = BxM	Número de dentes	R = AxM	r = BxM	Número de dentes	R = AxM	r = BxM
enhant N	Anica A	B	N _{ia Me} c	Α	В	denhis N	Zani A	В
10	2,28	0,69	22	3,49	2,06	34	4,33	3,09
-11 _{enha}	2,4	0,83	23	3,57	2,15	35	4,39	3,16
12	2,51	0,96	24	3,64	2,24	36	4,45	3,23
13	2,62	1,09	25	3,71	2,33	37 a 40	Engen -	4,2
14	2,72	1,22	26	3,78	2,42	41 a 45		4,63
15	2,82	1,34	27	3,85	2,5	46 a 51	Engl	5,06
16	2,92	1,46	28	3,92	2,59	52 a 60		5,74
17	3,02	1,58	29	3,99	2,69	61 a 70	c* - ((6,52
18,100	3,12	1,69	Zinarii 30	4,06	2,76	71 a 90	40	7,72
19	3,22	1,79	31	4,13	2,85	91 a 120	15 anica	9,78
20	3,32	1,89	32,,,,,,	4,2	2,93	121 a 180	aria Me-	13,38
21	3,41	1,98	33	4,27	3,01	181 a 360	- 1	21,62

Engrenagens à envolvente aproximada - Traçada com arcos de círculo

Para engrenagens com menos de 55 dentes

A = centro da engrenagem

CB = Dp/4

R1 = distância CB

R2 = distância CD

Para engrenagens com mais de 55 dentes

grande.

Cremalheira

Cremalheira é uma barra dentada que entrosa com um pinhão (engrenagem). Pode ser considerada parte de uma engrenagem cilíndrica, cujo diâmetro é infinitamente

FÓRMULAS				
$G = M \times 1,75$	$P = M \times \pi$			
$t = M \times 1,17$	e = P/ ₂			
S = M	V = P/2			

Cremalheira - entrosamento

BS 308 : Part 1 : 1984

Engrenagem cilíndrica helicoidal (fórmulas e traçados)

A roda cilíndrica helicoidal distingue-se por sua grande resistência e marcha silenciosa. Essa engrenagem pode ser empregada tanto para eixos paralelos quanto cruzados. Os demais são traçados à envolvente de círculo e sua construção é igual à dos dentes retos.

	l (fórmulas e traçados)						
	Nomenclatura	Símbolo	Fórmulas				
à	Diâmetro primitivo	D p	$McN = \frac{Pc.N}{\pi} = \frac{M.N}{\cos \beta}$				
aric	Diâmetro externo	De De	Dp + 2.Mn = $\binom{N}{\cos \beta}$ +2).Mn				
	Diâmetro interno	Di Nec ^{ar}	Dp - 2,5.Mn				
1	Macami	dia	dp/ ₆₀				
	Passo normal	Enge Pn	$Mn.\pi = Pc.cos \beta$				
8	Espessura do dente	e	narica US arica				
	Intervalo entre dentes	V Eng	CL is Mecco				
1	Altura do pé do dente	+	1,25.Mn				
-8	Altura da cabeça do dente	S die	1.Mn				
	Altura do dente	15Hanica	2,25.Mn				
	Módulo circunferencial	Мс	$Dp/N = Pc/\pi = Mn/\cos \beta$				
Me	Passo aparente	Pc - Pt	$^{\mathrm{Dp.\pi}/}_{\mathrm{N}} = \mathrm{Mc.\pi}$				
	Furo	F					
	Número de dentes	Nann	$^{\mathrm{Dp}}/_{\mathrm{Mc}} = ^{\mathrm{Dp.cos} \beta}/_{\mathrm{Mn}}$				
	Módulo Normal	Mn	$Dp.\cos\beta/_{N} = Pn/_{\pi}$				
	Ângulo de inclinação	β					

Referências

- Niemann G. Elementos de Máquinas, vol. 2, Editora Edgard Blucher, 1991.
- BS 308 : Part 1 : 1984.

20		100
	Coroa	Pinhão
	N=24 dentes	N=8 dentes
ica	Dp = 144mm	Dp=
	M=6	M=
(Largura (L) =30mm	L=30mm
·	De=	ne De=
lusi,	Di=	Di=
	Dim. chaveta	Dim. Chaveta
	Editaria ISP ica	Eng L Mec

Exercício 1- Desenhe o par de engrenagens (entrosado) em duas vistas, aplicando a forma simplificada (vista frontal e lateral esquerda em corte). Faça a cotagem no conjunto (excepcionalmente) de ambas. Calcular demais valores.