MDI0001 MATEMÁTICA DISCRETA

UDESC - Centro de Ciências Tecnológicas Bacharelado em Ciência da Computação

Exercícios Álgebras e Homomorfismos

1. Considere a álgebra (\mathbb{R}, \odot) sendo a operação \odot definida por

$$x \odot y = x - y + 3$$
.

Mostre que $\langle \mathbb{R}, \odot \rangle$ não é grupo.

2. Dado o conjunto $IR = \{[a,b] \mid a,b \in \mathbb{R} \land a \leq b\}$ e a operação $\oplus : IR \times IR \to IR$ definida a seguir para $x = [a_1,b_1]$ e $y = [a_2,b_2]$:

$$x \oplus y = [a_1 + a_2, b_1 + b_2]$$

Mostre que $\langle IR, \oplus \rangle$ é monóide. Por que IR não é grupo?

- 3. O monóide apresentado na questão anterior é abeliano (comutativo)? Justifique.
- 4. Seja A um conjunto finito e S o conjunto de todas as funções totais $f:A\to A$. Prove que $\langle S,\circ,\iota_A\rangle$, onde \circ é a composição de funções com $g\circ f(x)=g(f(x))$ e ι_A é a função identidade $\iota_A(x)=x$, é um monóide.
- 5. Mostre que o morfismo $f: \langle \mathbb{Z}, *, 1 \rangle \to \langle \mathbb{Z}, *, 1 \rangle$, onde $f(x) = x^2$ e * é a operação de multiplicação de inteiros, é um homomorfismo de monóides.
- 6. Dado $h:\langle A, \oplus \rangle \to \langle B, \otimes \rangle$ um homomorfismo de álgebras, mostre que se $\langle A, \oplus \rangle$ for uma álgebra abeliana então h preserva comutatividade.
- 7. Dado $h: \langle A, \oplus \rangle \to \langle B, \otimes \rangle$ um homomorfismo de álgebras, mostre que se $\langle B, \otimes \rangle$ for uma álgebra abeliana então h preserva comutatividade.
- 8. A composição de homomorfismos de álgebras é dada pela composição das funções sobre os conjuntos suporte das álgebras. Ou seja, se $f: \langle A, \oplus \rangle \to \langle B, \otimes \rangle$ e $g: \langle B, \otimes \rangle \to \langle C, \nabla \rangle$ são homomorfismos de álgebras sendo $f: A \to B$ e $g: B \to C$ as funções sobre os conjuntos suportes, a função $g \circ f: A \to C$ define o homomorfismo de álgebras $g \circ f: \langle A, \oplus \rangle \to \langle C, \nabla \rangle$. Generalizando esta definição para homomorfismos de monóides, prove que a composição

de homomorfismos de monóides também é um homomorfismo de monóide.