Introduction to FEM

X

- Finite Element Method:
- $-d^2u(x)/d^2x = f(x), 0 < x < 1$
- u(0)=u(1)=0
- Variation formulation:
- Min $\frac{1}{2}\int v'.v' dx \int f.v dx$
- $\nabla V(x) = \sum_i \eta_i \phi_i(x)$
 - where η_i are the unknowns, and φ_i(x) the socalled basis functions
- $\sum \eta_i \int \phi_i' \phi_j' dx = \int f \phi_j dx, j=1,...,N$
 - With a(i,j)= ∫ φ_i'φ_j' dx !=0 if node i and j are in the same element, otherwise =0 (I and j not in the same element)

- $\rightarrow A\underline{\eta} = \underline{b}$
 - With a(i,j)= ∫ φ_i' φ_j' dx !=0 if node i and j are in the same element, otherwise =0 (i and j not in the same element)
- Comparison of matrix structure:
 - ◆ 1-D --- both FD and FE: tri-diagonal
 - ◆ 2-D --- FD: pental-diagonal, FE: less structured sparse matrix

A grid with traingular elements

FEM exercise 2

Two programs: GridDist.c and MPI_Fempois.c

- Partition&Distribution: GridDist.c
 - ◆ Generate a FE mesh (triangular elements, grid.c)
 - Divide in subdomains
- OUTPUT:
 - ◆ file inputX_Y.dat (X=#grid points, Y=process/subdomain number)
 - file mappingP.dat: topology between the processes (connectivity between subdomains)

- Format of "inputX_Y.dat":
 - List of elements in subdomain
 - #neighboring subdomains: 2
 - ◆ From 2: 2550 2551
 - ◆ To 2: 2499 2500
 - ◆ From 1: 50 101 152
 - ◆ To 1: 49 100 151

MPI Fempois.c: the parallel FEM solver

Communication:

- Point-to-point: between neighbors defined in inputX_Y.dat
- Global: MPI_Allreduce for computing the inproduct