

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2002117750 A

(43) Date of publication of application: 19.04.02

(51) Int. CI

H01H 25/04

G05G 9/047

G06F 3/033

H01C 10/10

H01C 10/16

H01C 10/36

H04M 1/23

// A63F 13/06

(21) Application number: 2000305824

(22) Date of filing: 05.10.00

(71) Applicant:

MATSUSHITA ELECTRIC IND CO

LTD

(72) Inventor:

INOUE HIROTO

YAMAMOTO TAMOTSU SAWADA MASAKI **NISHIONO HIROAKI**

(54) MULTIDIRECTIONAL INPUT DEVICE AND **ELECTRONIC APPARATUS USING IT**

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a multidirectional input device used for input operation of various kinds of electronic apparatuses and an electronic apparatus using it each of which have a small size and high resolution in the input direction.

SOLUTION: This multidirectional input device comprises a circular ring-like upper resistance layer 16 on the undersurface of a flexible base material 15, a lower resistance layer 17 of a lower conductive layer facing to it, and an elastic driving body 13 for pressing the upper surface of the flexible base material 15 with an elastic pressing part 13B to bring them in contact with each other, and when the elastic driving body 13 is inclined, the inclination angle is recognized in addition to the angular direction for inclining the elastic driving body 13 by using a microcomputer or the like from information of respective led-out parts when the upper resistance layer 16 is partially brought in contact with the lower resistance layer 17, so that the multidirectional input device and the electronic apparatus using it can be realized each of which have a small size and high resolution in the input direction.

COPYRIGHT: (C)2002,JPO

11 上ケース

13E 中心突部

11A 円形乳

13F 玉汰状部

12 配線基板

14A,14B スペーサ

/3 弹性驱動体

15 可挠性絶觸基板

134 弹柱薄肉円筒部 13B 弹性押圧部

16 上部抵抗層 16A,16B 導出部

130段部

17 下部抵抗層

130 円形段部

19 駆動用) プ部

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-117750 (P2002-117750A)

(43)公開日 平成14年4月19日(2002.4.19)

(51)Int.Cl. ⁷		識別記号		FΙ				รี	テーマコード(参考)			
H01H	25/04			H 0	1 H	25/04		D	2 C 0 0 1			
G 0 5 G	9/047			G 0	5 G	9/047			3 J O 7 O			
G06F	3/033	3 3 0		G 0	6 F	3/033		330A	5B087			
H01C	10/10			H 0	1 C	10/10		Z	5 E O 3 O			
	10/16					10/16		Z	5 K O 2 3			
			審査請求	未請求	校簡	≷項の数13	OL	(全 20 頁)	最終頁に続く			
(21)出願番号		特顧2000-305824(P2000-305824)		(71)出願人 0000058 松下電								
(22)出顧日		平成12年10月5日(2000.10.5)				大阪府	門真市	大字門真1006	番地			
				(72)発明者 井上 浩人 大阪府門真市大字門真1006番地 松下電器 産業株式会社内								
		•		(70)	Ve 110 -			M				
				(12)	発明			.L. #### 1000	70. LA			
				1		大阪 府	門具市	大字門真1006	番地 松下電器			

最終頁に続く

(54) 【発明の名称】 多方向入力装置およびこれを用いた電子機器

(57)【要約】

【課題】 各種電子機器の入力操作用に使用される多方 向入力装置およびこれを用いた電子機器に関し、小型で しかも入力方向の分解能が高いものの提供を目的とす る。

【解決手段】 可撓性絶縁基板15下面の円形リング状の上部抵抗層16とこれに対向する下部導電層である下部抵抗層17、および可撓性絶縁基板15上面を弾性押圧部13Bで押して両者を接触させる弾性駆動体13からなり、弾性駆動体13を傾倒させる際に、上部抵抗層16が下部抵抗層17に部分接触した時の各導出部の情報から、マイクロコンピュータ等を用いて、弾性駆動体13が傾倒した角度方向に加えて傾倒した角度量を認識する多方向入力装置およびこれを用いた電子機器とすることにより、小型でしかも入力方向の分解能の高いものが実現できる。

11 上ケース 13E 中心突部 11A 円形乳 BF 球状部 12 配線基板 141,14B スペーサ /3 彈性驱動体 15 可提性肥陽基板 134 弹性薄肉円筒部 16 上部抵抗層 138 弹性押圧部 16A,16B 導出部 130段都 17 下部抵抗層 130 円形段部 19 駆動用) プ部

弁理士 岩橋 文雄 (外2名)

産業株式会社内

(74)代理人 100097445

【特許請求の範囲】

【請求項1】 可撓性絶縁基板の下面に所定幅の円形リ ング状に形成され、内周および外周それぞれの全周と導 通した二つの導出部を有する上部抵抗層と、この上部抵 抗層と所定の絶縁ギャップを空けて対向するように平面 基板上に円形リング状に配設され、所定の導出部を有す る下部導電体層と、上記可撓性絶縁基板の上方に位置す るように外周の弾性薄肉筒状部および中心突部により支 持され、上記上部抵抗層の裏面に対し所定の間隔を空け て対峙する、外周端が尖った段部である円板状の弾性押 圧部を下面に有すると共に、上記平面基板と結合された 上蓋の円形孔に回動可能に係合した球状部およびその中 央の駆動用ノブ部を上面に有する弾性駆動体、からなる 入力用電子部品に対し、上記駆動用ノブ部の先端を斜め 下方に押して上記弾性駆動体を所望の角度方向に所望の 角度量だけ傾斜させることにより、傾倒方向下方の上記 弾性押圧部が上記可撓性絶縁基板を部分的に下方に撓ま せ、その下面の上記上部抵抗層を上記下部導電体層に部 分接触させた状態において、マイクロコンピュータ等を 用い、上記上部抵抗層および上記下部導電体層の導出部 の情報から上記弾性駆動体が傾倒した角度方向を認識す ると共に、上記上部抵抗層の二つの導出部間に所定の直 流電圧を印加した時の、上記下部導電体層の導出部にお ける出力電圧を測定して演算処理することにより、上記 弾性駆動体が傾倒した角度量を認識する多方向入力装 置。

【請求項2】 下部導電体層が、所定の間隔を空けて少なくとも三ヶ所以上の導出部を有した円形リング状の下部抵抗層で、駆動用ノブ部の先端を斜め下方に押して弾性駆動体を所望の角度方向に所望の角度量だけ傾倒させ、可撓性絶縁基板下面の上部抵抗層を上記下部抵抗層に部分接触させた状態において、マイクロコンピュータ等を用い、上記下部抵抗層の所定の二つの導出部間に順次所定の直流電圧を短い周期で切り換えて印加し、その周期と同期した上記上部抵抗層の導出部における出力電圧を組み合せて演算処理することにより、上記弾性駆動体を傾倒させた角度方向を認識する請求項1記載の多方向入力装置。

【請求項3】 下部導電体層が、円形リング状の抵抗層を所定の間隔を空けて二分割し、それぞれの端部に導出部を設けた下部抵抗層であり、駆動用ノブ部の先端を斜め下方に押して弾性駆動体を所望の角度方向に所望の角度量だけ傾倒させ、可撓性絶縁基板下面の上部抵抗層を上記下部抵抗層に部分接触させた状態において、マイクロコンピュータ等を用い、上記の二分割された各下部抵抗層両端の導出部間に短い周期で切り換えて所定の直流電圧を印加し、その周期と同期した上記上部抵抗層の導出部における出力電圧を読み取ることにより、上記弾性駆動体を傾倒させた角度方向を認識する請求項1記載の多方向入力装置。

【請求項4】 下部導電体層が、円形リング状の導電体層を所定の角度方向に分割して形成され、分割された各 導電体層が導出部を有している請求項1記載の多方向入 力装置。

【請求項5】 対向して配設された円形リング状の上部抵抗層と下部導電体層の間の絶縁ギャップ部に、厚さ方向に押圧されることにより、押圧された位置の上下面間が導通する感圧導電体からなる平板状の導通板を介在させた請求項1記載の多方向入力装置。

【請求項6】 下部導電体層が上部抵抗層よりも小さい 比抵抗である請求項1記載の多方向入力装置。

【請求項7】 上部抵抗層の代わりに、下部導電体層と同等の導電体層を可撓性絶縁基板の下面に設けると共に、下部導電体層の代わりに、上部抵抗層と同等の抵抗層を絶縁基板上に設けた請求項1記載の多方向入力装置。

【請求項8】 マイクロコンピュータ等を用い、上部抵抗層および下部導電体層の導出部における出力電圧を演算処理して弾性駆動体が傾倒した角度方向または角度量を認識する際に、出力電圧が所定の電圧以上となった時点で、上記演算処理を行なう請求項1記載の多方向入力装置。

【請求項9】 駆動用ノブ部の先端を斜め下方に押して 弾性駆動体を傾倒させる角度量を大きくすると、上記弾 性駆動体の弾性押圧部が可撓性絶縁基板を押して、その 下面の円形リング状の上部抵抗層を下部導電体層に部分 接触させる面積が、上記弾性押圧部の外周端の弾接位置 から中心方向へ増大すると共に、上記弾性駆動体の傾倒 した角度量を認識するために、上記上部抵抗層の二つの 導出部間に印加する直流電圧の方向を、上記上部抵抗層 の外周側の導出部を低電位側とする請求項1記載の多方 向入力装置。

【請求項10】 可撓性絶縁基板の上方において、上部抵抗層の裏面に対し所定の間隔を空けて対峙するように、外周の弾性薄肉筒状部および中心突部により支持され、外周端が尖った段部となった円板状の弾性押圧部を下面に有すると共に、平板状上面の中央に柱状部を有する弾性駆動体に対して、上記柱状部に中央穴部が結合保持されると共に、上記弾性押圧部と略同外径の平板状の下面が、上記平板状上面に対し所定半径位置から外周端にかけて次第に浮き上がって当接している剛体材料からなる操作つまみを装着した請求項9記載の多方向入力装置

【請求項11】 弾性駆動体の駆動用ノブ部下方の、可 撓性絶縁基板上に載せられた弾性金属薄板製の円形ドー ム体と、上記可撓製絶縁基板または平面基板の中央に、 円形リング状の上部抵抗層および下部導電体層と電気的 に独立して設けられ、上記円形ドーム体が弾性反転する ことにより短絡される外側固定接点と中央固定接点から なり、上記駆動用ノブ部を下方に押し下げることにより

30

動作する自力復帰型の押圧スイッチ部を付加した請求項 1記載の多方向入力装置。

【請求項12】 電子機器本体の平面状の配線基板上に 形成した下部導電体層の上方に、上部抵抗層を形成した 可撓性絶縁基板を配設すると共に、上記電子機器の上ケ ースの円形孔に弾性駆動体の球状部が係合した、請求項 1記載の多方向入力装置を用いた電子機器。

【請求項13】 電子機器本体の平面状の配線基板上に 重ねて配設した可撓性配線基板に上部抵抗層を形成した 請求項12記載の電子機器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、携帯電話、情報端末、ゲーム機器およびリモートコントローラ等の各種電子機器の入力操作用に使用される多方向入力装置およびこれを用いた電子機器に関するものである。

[0002]

【従来の技術】従来のこの種の多方向入力装置としては、特開平10-125180号公報に記載された多方向操作スイッチを用いたものが知られており、その内容 20 について、図27~図29を用いて説明する。

【0003】図27は従来の多方向入力装置に使用される多方向入力用電子部品としての、多方向操作スイッチの断面図、図28は同分解斜視図である。

【0004】同図において、1は中心位置に弾性金属薄板製のドーム状可動接点2を収容した絶縁樹脂製の箱形ケースで、その内底面には、互いに導通した四つの外側固定接点3が端部に配設されて、ドーム状可動接点2の外周下端部が載り、これより内側でドーム状可動接点2の中心から等距離で等角度の位置に、それぞれ独立した 30複数個(四個)の内側固定接点4(4A~4D)が配設されると共に、各固定接点と導通した出力端子(図示せず)が外部に導出され、箱形ケース1の上面の開口部はカバー5で覆われている。

【0005】そして6は、軸部6Aとその下端に一体に形成されたフランジ部6Bからなる操作体で、軸部6Aがカバー5中央の貫通孔5Aから突出し、フランジ部6Bの外周が箱形ケース1の内壁1Aにより回転はしないが傾倒可能に嵌合支持されると共に、箱形ケース1内底面の四個の内側固定接点4(4A~4D)にそれぞれ対 40応したフランジ部6B下面の四個の押圧部7(7A~7D、但し7Dは図示せず)がドーム状可動接点2の上面に当接することにより、フランジ部6Bの上面がカバー5の裏面に押し付けられて、全体として垂直中立位置に保たれている。

【0006】このように構成された多方向スイッチにおいて、図29の断面図に矢印で示すように、操作体6の軸部6Aに装着されたつまみ8上面の、所望の角度方向である左上面を下方に押すと、操作体6は図27に示す垂直中立位置からフランジ部6Bの右側の上面を支点と

して傾倒し、下面の押圧部7Aがドーム状可動接点2を押して部分弾性反転させて、押圧部7Aと対応する内側固定接点4Aに接触させ、外側固定接点3と内側固定接点4Aの間を短絡してON状態とし、その電気信号をそれぞれの出力端子を通して外部へ発し、つまみ8に加える押し力を除くと、ドーム状可動接点2の弾性復元力によって操作体6は元の垂直中立位置に戻り、外側固定接点3と内側固定接点4Aの間もOFF状態に戻るものであった。

10 【0007】そして、この多方向操作スイッチを使用する多方向操作装置においては、上記の多方向操作スイッチの外側固定接点3が複数個(四個)の内側固定接点4の何れと接触したかの電気信号によって入力された角度方向をマイクロコンピュータにより認識し、その信号を発するものであった。

[8000]

【発明が解決しようとする課題】しかしながら上記従来の多方向入力用電子部品としての多方向操作スイッチにおいて、入力できる方向の数すなわち入力方向の分解能は、つまみ8を介して操作体6が傾倒した時にドーム状可動接点2が部分弾性反転して接触する内側固定接点4の数によって決まるものであるが、近年の小型化された電子機器に使用できる電子部品の大きさにおいて、この多方向操作スイッチが安定した動作をするためには、内側固定接点4の数を上記の四個よりも多くすることは難しいという課題があった。

【0009】そして、この多方向操作スイッチを使用する多方向入力装置において、多方向操作スイッチの操作体6を隣り合う内側固定接点4の中間方向に傾倒させて、隣り合う二つの内側固定接点4が所定の時間内に両方共ON状態となれば同時ONと認定するスイッチング認識手段をマイクロコンピュータにより構成し、四個の個別の内側固定接点4がON状態となった時とは異なる他の信号として処理することにより、八つの角度方向の入力ができるようにするのが限界と考えられていた。

【0010】本発明はこのような従来の課題を解決するものであり、近年の小型化された電子機器に使用できる大きさであって、しかも入力できる方向の数を多くできる、すなわち入力方向の分解能が高い多方向入力装置およびこれを用いた電子機器を提供することを目的とする。

[0011]

【課題を解決するための手段】上記目的を達成するため に本発明は、以下の構成を有するものである。

【0012】本発明の請求項1に記載の発明は、可撓性 絶縁基板の下面に所定幅の円形リング状に形成され、内 周および外周それぞれの全周と導通した二つの導出部を 有する上部抵抗層と、この上部抵抗層と所定の絶縁ギャ ップを空けて対向するように平面基板上に円形リング状 50 に配設され、所定の導出部を有する下部導電体層と、可

(4)

10

撓性絶縁基板の上方に位置するように外周の弾性薄肉筒 状部および中心突部により支持され、上部抵抗層の裏面 に対し所定の間隔を空けて対峙する、外周端が尖った段 部である円板状の弾性押圧部を下面に有すると共に、上 蓋の円形孔に回動可能に係合した球状部および中央の駆 動用ノブ部を上面に有する弾性駆動体からなる入力用電 子部品に対し、駆動用ノブ部の先端を斜め下方に押して 弾性駆動体を傾斜させることにより、傾倒方向下方の弾 性押圧部が可撓性絶縁基板を部分的に下方に撓ませて下 面の上部抵抗層を下部導電体層に部分接触させた状態に おいて、マイクロコンピュータ等を用い、上部抵抗層お よび下部導電体層の導出部の情報から弾性駆動体が傾倒 した角度方向を認識すると共に、上部抵抗層の二つの導 出部間に所定の直流電圧を印加した時の、下部導電体層 の導出部における出力電圧を測定して演算処理すること により、弾性駆動体が傾倒した角度量を認識する多方向 入力装置としたものであり、多方向入力用電子部品の構 成が、円形リング状の上部抵抗層とこれに対向する下部 導電体層およびこれらを接触させる弾性駆動体からなる 簡単なものであるから、小型化が容易であると共に、駆 20 動用ノブ部を斜め下方に押して弾性駆動体を傾倒させる 際に、上部抵抗層が下部導電体層に部分接触した時の各 導出部の情報から、マイクロコンピュータ等を用いて、 弾性駆動体が傾倒した角度方向および角度量を認識する ものであるから、駆動用ノブ部を押して弾性駆動体を傾 倒させる角度方向の分解能を高くすることが容易である ことに加えて、弾性駆動体を傾倒させる角度量によって も入力方向の区分ができる、すなわち入力方向の分解能 が非常に高い多方向入力装置を実現できるという作用効 果が得られる。

【0013】本発明の請求項2に記載の発明は、請求項 1 記載の発明において、特に、下部導電体層が、所定の 間隔を空けて少なくとも三ヶ所以上の導出部を有した円 形リング状の下部抵抗層で、駆動用ノブ部の先端を斜め 下方に押して弾性駆動体を傾倒させ、可撓性絶縁基板下 面の上部抵抗層を下部抵抗層に部分接触させた状態にお いて、マイクロコンピュータ等を用い、下部抵抗層の所 定の二つの導出部間に順次所定の直流電圧を短い周期で 切り換えて印加し、その周期と同期した上部抵抗層の導 出部における出力電圧を組み合せて演算処理することに より、弾性駆動体を傾倒させた角度方向を認識するもの であり、各導出部で取得された複数のデータに対して所 定の演算処理を行なうことにより、弾性駆動体を傾倒さ せる角度方向を高い分解能で認識することができる多方 向入力装置を実現できるという作用効果が得られる。

【0014】本発明の請求項3に記載の発明は、請求項 1 記載の発明において、特に、下部導電体層が、円形リ ング状の抵抗層を所定の間隔を空けて二分割し、それぞ れの端部に導出部を設けた下部抵抗層であり、駆動用ノ ブ部の先端を斜め下方に押して弾性駆動体を傾倒させ、

可撓性絶縁基板下面の上部抵抗層を下部抵抗層に部分接 触させた状態において、マイクロコンピュータ等を用 い、二分割された各下部抵抗層両端の導出部間に短い周 期で切り換えて所定の直流電圧を印加し、その周期と同 期した上部抵抗層の導出部における出力電圧を読み取っ て処理をすることにより、弾性駆動体を傾倒させた角度 方向を認識するものであり、簡単な処理で弾性駆動体を 傾倒させる角度方向を高い分解能で認識することができ る多方向入力装置を実現できるという作用効果が得られ る。

【0015】本発明の請求項4に記載の発明は、請求項 1 記載の発明において、特に、下部導電体層が、円形リ ング状の導電体層を所定の角度方向に分割して形成され て、分割された各導電体層が導出部を有しているもので あり、マイクロコンピュータへの接続数が所定の角度方 向の数だけ必要であるが、特別な処理をしないでも、弾 性駆動体を傾倒させる角度方向を所定の分解能で高精度 に認識することができる多方向入力装置を実現できると いう作用効果が得られる。

【0016】本発明の請求項5に記載の発明は、請求項 1記載の発明において、特に、対向して配設された円形 リング状の上部抵抗層と下部導電体層の間の絶縁ギャッ プ部に、厚さ方向に押圧されることにより、押圧された 位置の上下面間が導通する感圧導電体からなる平板状の 導通板を介在させたものであり、上部抵抗層と下部導電 体層の間に確実に所定の絶縁ギャップを確保することが できると共に、上部抵抗層裏面の押圧位置にかかわらず 押圧された位置の上下間が導通するので、上部抵抗層お よびこれを挟む、弾性駆動体の弾性押圧部と下部導電体 層を小さくして小型の多方向入力装置を実現できるとい 30 う作用効果が得られる。

【0017】本発明の請求項6に記載の発明は、請求項 1記載の発明において、特に、下部導電体層が上部抵抗 層よりも小さい比抵抗であるものであり、弾性駆動体を 傾倒させて上部抵抗層を下部導電体層に部分接触させた 状態において、所定の導出部間に直流電圧を印加した時 の出力電圧により弾性駆動体が傾倒した角度方向または 角度量を認識する際に、角度方向または角度量の変化に 対する出力電圧の変化量が大きく、正確に認識すること ができる多方向入力装置を実現できるという作用効果が 得られる。

【0018】本発明の請求項7に記載の発明は、請求項 1記載の発明において、特に、下部導電体層と同等の導 電体層を可撓性絶縁基板の下面に設けると共に、これに 対峙するよう上部抵抗層と同等の抵抗層を絶縁基板上に 設けたものであり、抵抗層の内周と導通した導出部を絶 縁基板のスルーホールを用いて導出することにより、抵 抗層面の表面を平滑にできるため、操作時における導電 体層と抵抗層との接触位置の出力精度のよい多方向入力 50 装置を実現できるという作用効果が得られる。

40

【0019】本発明の請求項8に記載の発明は、請求項1記載の発明において、特に、マイクロコンピュータ等を用い、上部抵抗層および下部導電体層の導出部における出力電圧を演算処理して弾性駆動体が傾倒した角度方向または角度量を認識する際に、出力電圧が所定の電圧以上となった時点で、演算処理を行なうようにしたものであり、操作ノブ部を押して弾性駆動体を傾倒させ、上部抵抗層を下部導電体層に部分接触させる際に、両者の接触が安定した状態において演算処理をし、弾性駆動体が傾倒した角度方向または角度量を正確に認識することができる多方向入力装置を実現できるという作用効果が得られる。

【0020】本発明の請求項9に記載の発明は、請求項 1 記載の発明において、特に、駆動用ノブ部の先端を斜 め下方に押して弾性駆動体を傾倒させる角度量を大きく すると、弾性押圧部が可撓性絶縁基板を押して上部抵抗 層を下部導電体層に部分接触させる面積が、弾性押圧部 の外周端の弾接位置から中心方向へ増大すると共に、弾 性駆動体の傾倒した角度量を認識するために、上部抵抗 層の二つの導出部間に印加する直流電圧の方向を、上部 20 抵抗層の外周側の導出部を低電位側とするものであり、 弾性駆動体を傾倒させて上部抵抗層を下部導電体層に部 分接触させる際に、傾倒角度量が小さく両者の接触が不 安定な状態における出力電圧を小さくすることができる ので、不安定領域を除いて、安定した時点における出力 電圧を測定して演算処理することにより、弾性駆動体の 傾倒した角度量を認識することができる多方向入力装置 を実現できるという作用効果が得られる。

【0021】本発明の請求項10に記載の発明は、請求 項9記載の発明において、特に、可撓性絶縁基板の上方 において、上部抵抗層の裏面に対し所定の間隔を空けて 対峙するように、外周の弾性薄肉筒状部および中心突部 により支持され、外周端が尖った段部となった円板状の 弾性押圧部を下面に有すると共に、平板状上面の中央に 柱状部を有する弾性駆動体に対して、柱状部に中央穴部 が結合保持されると共に、弾性押圧部と略同外径の平板 状の下面が、平板状上面に対し所定半径位置から外周端 にかけて次第に浮き上がって当接している剛体材料から なる操作つまみを装着したものであり、剛体材料からな る操作つまみの先端を斜め下方に押す際に、その下面が 40 弾性駆動体の平板状上面を押すことによって、下面の弾 性押圧部が可撓性絶縁基板を押して上部抵抗層を下部導 電体層に部分接触させる面積を、弾性押圧部の外周端か ら中心方向へと確実に増大させることができると共に、 操作部の色を変えたり、操作内容を表示することが容易 な多方向入力装置を実現できるという作用効果が得られ る。

【0022】本発明の請求項11に記載の発明は、請求項1記載の発明において、特に、弾性駆動体の駆動用ノブ部下方の、可撓性絶縁基板上に載せられた弾性金属薄 50

板製の円形ドーム体と、可撓性絶縁基板または平面基板の中央に、円形リング状の上部抵抗層および下部導電体層と電気的に独立して設けられ、円形ドーム体が弾性反転することにより短絡される外側固定接点と中央固定接点からなり、駆動用ノブ部を下方に押し下げることにより動作する自力復帰型の押圧スイッチ部を付加したものであり、駆動用ノブ部を斜め下方に押して弾性駆動体を傾倒させる際の、弾性駆動体が傾倒した角度方向および角度量による入力方向の区分に加えて、駆動用ノブ部を押圧することにより節度感を伴って別の信号を発することができる多方向入力装置を実現できるという作用効果が得られる。

【0023】本発明の請求項12に記載の発明は、電子機器本体の平面状の配線基板上に形成した下部導電体層の上方に、上部抵抗層を形成した可撓性絶縁基板を配設すると共に、電子機器の上ケースの円形孔に弾性駆動体の球状部が係合した、請求項1記載の多方向入力装置を用いた電子機器としたものであり、多方向入力装置を用いた電子機器全体としての構成部材数および組立工数が少なく、高さ寸法が小さいと共に、下部導電体層の導出部からの配線も容易であり、安価な多方向入力装置を用いた電子機器を実現できるという作用効果が得られる。

【0024】本発明の請求項13に記載の発明は、請求項12記載の発明において、特に、電子機器本体の平面状の配線基板上に重ねて配設した可撓性配線基板に上部抵抗層を形成したものであり、多方向入力装置を用いた電子機器全体としての構成部材数および組立て工数が更に少なく、上部抵抗層の導出部からの配線も容易であり、更に安価な多方向入力装置を用いた電子機器を実現できるという作用効果が得られる。

[0025]

【発明の実施の形態】以下、本発明の実施の形態について、図1~図26を用いて説明する。

【0026】 (実施の形態1) 実施の形態1を用いて、本発明の特に請求項1,2,5,6,8~10,12および13に記載の発明について説明する。

【0027】図1は本発明の第1の実施の形態による多方向入力装置を用いた電子機器の要部断面図、図2は同多方向入力装置部分の分解斜視図、図3は同多方向入力装置の構成を説明する概念図である。

【0028】同図において、11は電子機器の上ケース、12は平面状の配線基板であり、上ケース11は上面が操作面となっていて、その中央の円形孔11Aには多方向入力用電子部品の弾性駆動体13の球状部13Fが係合すると共に駆動用ノブ部19が突出しており、配線基板12の上部には、スペーサ14Aを挟んで所定の絶縁ギャップを空けて可撓性絶縁基板15が配設されている。

【0029】この可撓性絶縁基板15の下面には、所定幅の一様な比抵抗の円形リング状で内周および外周それ

ぞれの全周と導通した二つの導出部16A,16Bを有する上部抵抗層16が印刷形成されていると共に、配線基板12上のこれと対向した位置には下部導電体層として、上部抵抗層16とほぼ同じ径および幅で、上部抵抗層16の比抵抗よりも小さい一様な比抵抗の円形リング状の下部抵抗層17が印刷形成され、そのほぼ等角度間隔の三ヶ所に導出部17A,17B,17Cが設けられている。

【0030】そして、図3に示すように、上部抵抗層16の二つの導出部16A,16Bおよび下部抵抗層17の三つの導出部17A,17B,17Cはそれぞれの配線部を介して、この電子機器に装着されたマイクロコンピュータ18(以下、マイコン18と表わす)に接続されている。

【0031】また、可撓性絶縁基板15の上部には、上記の弾性駆動体13が載せられて、その周囲の弾性薄肉円筒部13Aおよび中心突部13Eに支持された円板状の弾性押圧部13Bが上部抵抗層16の裏面に対して所定の間隔を空けて対峙している。

【0032】この弾性押圧部13Bは外周端が尖った段 20 部13Cである円板状で、その外径は上部抵抗層16の幅の中心部の径よりも大きくて外径よりも小さくなっていると共に、上部抵抗層16の内径よりも少し内側は、この面よりも下方に突出した円形段部13Dとなり、中心部は更に下方に突出した中心突部13Eとなっていて、弾性駆動体13の下面は三段の同心円板状となっている。

【0033】そして、弾性駆動体13の上部は弾性押圧部13Bの上面全体を覆った球状部13Fとなって、上蓋としての上ケース11の円形孔11Aに係合しており、その中央には円柱状の駆動用ノブ部19が設けられている。

【0034】なお、可撓用絶縁基板15の上部抵抗層16と配線基板12の下部抵抗層17の内側部分にも、剛体のスペーサ14Bが配されている。

【0035】本実施の形態による多方向入力装置を用いた電子機器の、多方向入力装置部分は以上のように構成されている。

【0036】次に、以上のように構成される多方向入力 装置に対して入力操作する場合の動作について説明する。

【0037】図1に示した通常状態から、図4の動作状態を説明する要部断面図に矢印で示すように、弾性駆動体13の駆動用ノブ部19の先端を斜め下方に押すと、弾性駆動体13は中心突部13Eを支点として、球状部13Fが上ケース11の円形孔11Aの縁に沿って回動し、弾性薄肉円筒部13Aが弾性変形しながら所望の角度力に所望の角度量だけ傾倒する。

【0038】これにより、傾倒方向下面の弾性押圧部1 3Bが下方に動いて、その外周端の尖った段部13Cが 50

可撓性絶縁基板15を押して部分的に下方に撓ませ、その下面の上部抵抗層16の一部を接触点20として下部抵抗層17に部分接触させる。

【0039】この状態において、円形段部13Dの外周もスペーサ14B上の可撓性絶縁基板15に当たり、弾性駆動体13を傾倒させるために駆動用ノブ部19に加える押し力は、この位置において大きくなる。

【0040】この状態における認識方法を説明する概念図が図5であり、同図において、マイコン18により、まず第一の認識条件として、下部抵抗層17の導出部17Aをアース(0ボルト)にして、導出部17Bに直流電圧(例えば5ボルト)を印加し、導出部17Cをオープン状態とした時に、上部抵抗層16の導出部16A(または16B)に出力される電圧を読み取り、あらかじめ記憶されているデータと照合し演算することによって、接触点20の位置は導出部17Aと17Bの間の、導出部17Cとは反対側の点21Aであるか、導出部17C側の点21Bであるという第一のデータが得られる。

【0041】次に、第二の認識条件として、導出部17 Bをアース(0ボルト)にして、導出部17Cに所定の 直流電圧(例えば5ボルト)を印加し、導出部17Aを オープン状態とした時に、導出部16A(または16 B)に出力される電圧を読み取り、あらかじめ記憶され ているデータと照合し演算することによって、接触点2 0の位置は導出部17Bと17Cの間の、導出部17A とは反対側の点21Cであるか、導出部17A側の点2 1Aであるという第二のデータが得られる。

【0042】そして、マイコン18において、第一のデ 30 ータと第二のデータを比較して、一致する点21Aが傾 倒操作した角度方向であると認識して、その信号を発す るものである。

【0043】次に、上記の図4および図5に示す状態において、上記とは異なる認識条件として、マイコン18により、上部抵抗層16の内外周の導出部16A,16Bに対し、外周の導出部16Bをアース(0ボルト)にして内周の導出部16Aに直流電圧を印加し、下部抵抗層17の導出部の一つ(例えば、接触点20に最も近い導出部17B)に出力される電圧を読み取り、あらかじめ記憶されているデータと照合し演算することによって、弾性押圧部13Bが可撓性絶縁基板15を押している圧力、すなわち弾性駆動体13が傾倒している角度量のデータが得られる。

【0044】そして、図4に示した状態から、更に駆動用ノブ部19の先端を強く押すことにより、弾性駆動体13がより大きく傾倒して下面が弾性変形し、弾性押圧部13Bが可撓性絶縁基板15を押す部分の面積が増大した状態を示すのが、図6の要部断面図である。

【0045】同図に示すように、弾性駆動体13の弾性 の 押圧部13Bが可撓性絶縁基板15を押す部分の面積

2

は、弾性押圧部13B外周端の尖った段部13Cから中心方向に向けて増大しており、上部抵抗層16が下部抵抗層17に接触する部分の面積も、最初に接触した接触点20から中心方向に広がっている。

【0046】この状態において、上記と同様に、マイコン18により、上部抵抗層16の内外周の導出部16A、16Bに対し、外周の導出部16Bをアース(0ボルト)にして内周の導出部16Aに直流電圧を印加し、下部抵抗層17の導出部の一つ(17B)に出力される電圧を読み取り、あらかじめ記憶されているデータと照合し演算することによって、弾性押圧部13Bが可撓性絶縁基板15を強く押している圧力、すなわち弾性駆動体13が大きく傾倒している角度量のデータが得られる。

【0047】そして、上記の場合よりも接触点20を含む接触部分の面積が大きくなっている、すなわち比抵抗の大きい上部抵抗層16が比抵抗の小さい下部抵抗層17に接触する面積が大きくなった分だけ、下部抵抗層17の導出部の一つ(17B)に出力される電圧が上がっていることになり、得られたデータの値は弾性駆動体13の大きな傾倒の角度量に対応したものとなっている。

【0048】なお、この駆動用ノブ19の先端を強く押して弾性駆動体13を大きく傾倒させる際に、弾性駆動体13は上面の球状部13Fが上ケース11の円形孔11Aに係合しているので横方向にずれることはなく、また、上部抵抗層16が下部抵抗層17に接触する部分の面積は円弧方向にも広がるが、上部抵抗層16の比抵抗が下部抵抗層17の比抵抗よりも大きいから、接触点20が広がった円弧状のほぼ中心にあれば、下部抵抗層17の導出部の一つ(例えば、17B)に出力される電圧 30に対する、接触面積が円弧方向に広がったことによる影響は少ない。

【0049】更に、上記の弾性駆動体13が傾倒している角度量の認識方法において、上部抵抗層16の外周の導出部16Bをアース(0ボルト)にして内周の導出部16Aに直流電圧を印加する理由は、弾性駆動体13を傾倒する角度量を大きくすることによって、上部抵抗層16が下部抵抗層17に部分接触する面積が上部抵抗層16の外周側から内周側に向けて増大するので、直流電圧を上記のように印加することによって、傾倒角度量が小さく両者の接触が不安定な状態における出力電圧を小さくすることができ、不安定領域を除いて、安定した時点における大きな出力電圧を測定・演算処理して、弾性駆動体13の傾倒した角度量を認識することができるからである。

【0050】そして、これらのデータの取得および演算処理は、出力電圧が所定の電圧以上となった時点で行われると共に、高速で繰り返し行われるので、正確に認識することができるものである。

【0051】以上のようにして入力操作を行なった後、

駆動用ノブ部19の先端に加える押し力を除くと、弾性 駆動体13は自身の弾性復元力により弾性薄肉円筒部1 3Aが元の形状に復帰することによって元の図1の状態 に戻り、可撓性絶縁基板15が元の平面状に復帰することにより、上部抵抗層16と下部抵抗層17は対向した 状態に戻る。

【0052】更に、上記の説明では、配線基板12上に 印刷形成された下部抵抗層17のほぼ等角度間隔に三ヶ 所の導出部17A,17B,17Cが設けられている場 合について説明したが、図7の概念図に示すように、下 部抵抗層22のほぼ等角度間隔に四つの導出部22A, 22B,22C,22Dを設ける場合の入力操作につい て、次に説明する。

【0053】弾性駆動体13の駆動用ノブ部19の先端を斜め下方に押して、上部抵抗層16の一部の接触点23を下部抵抗層22に部分接触させることは、上記の場合と同じである。

【0054】そして、図7において、マイコン24により、まず第一の認識条件として、下部抵抗層22の導出部22A、22Cをオープン状態とし、導出部22Bをアース(0ボルト)にして、導出部22Dに直流電圧を印加した時に、上部抵抗層16の導出部16A(または16B)に出力される電圧を読み取り演算することによって、接触点23のX座標が第一のデータとして得られる。

【0055】次に、第二の認識条件として、導出部22 B,22Dをオープン状態とし、導出部22Cをアース にして、導出部22Aに直流電圧を印加して、上部抵抗 層16の導出部16A(または16B)に出力される電 圧を読み取り演算することによって、接触点23のY座 標が第二のデータとして得られる。

【0056】そして、マイコン24において、第一のデータと第二のデータを組み合せて得られる接触点のX、 Y座標が、傾倒操作した方向であると認識して、その信号を発するものである。

【0057】このような構成の多方向入力装置であれば、比較的簡単な演算処理を行うことによって、高い分解能で認識して多くの方向の入力をすることができる。

【0058】以上のように、本実施の形態による多方向入力装置は、多方向入力用電子部品の弾性駆動体13の傾倒操作時に複数の認識条件下で得られた複数のデータである各導出部の出力電圧により、弾性駆動体13を傾倒操作した角度方向および角度量を認識するものであるから、高い分解能で多くの方向に入力できる傾倒角度方向に加えて、傾倒した角度量によっても幾つかの方向に入力することができるので、両者を合わせると非常に多くの方向で入力できる、すなわち入力方向の分解能が非常に高い多方向入力装置およびこれを用いた電子機器を実現することができるものである。

50 【0059】なお、以上の説明では、可撓性絶縁基板1

Dがケース11の貫通孔11Aの縁に接すると共に、中 央上部には円柱状の駆動用ノブ部28が設けられてい

5下面の上部抵抗層16と配線基板12上の下部抵抗層 17は、通常状態において、スペーサ14Aを挟んで所 定のギャップを空けて対向しているとして説明したが、 これを、図8の多方向入力装置の要部断面図に示すよう に、両者の間に導通板25を挟み込む構成としてもよ い。

【0068】以上のように構成される多方向入力装置に 対して入力操作する場合の動作について説明すると、図 11の要部断面図に矢印で示すように、この多方向入力 装置の操作つまみ27の駆動用ノブ部28の先端を斜め 下方に押すと、操作つまみ27は球状部27Dが上ケー ス11の円形孔11Aの縁に沿って回動しながら傾倒す ると共に、柱状部26Dを介して弾性駆動体26の弾性 薄肉円筒部26Aを弾性変形させながら、弾性駆動体2 6を中心突部26Eを支点として所望の方向に所望の角 度量だけ傾倒させる。

【0060】この導通板25は、厚さ方向に押圧される ことによって、押圧された位置の上下間が導通する感圧 導電体からなる平板状であって、上部抵抗層16と下部 抵抗層17の間およびその周囲に挟まれている。

> 【0069】これにより、傾倒方向下面の弾性押圧部2 6B外周端の尖った段部26Fが可撓性絶縁基板15を 押して部分的に下方へ撓ませ、その下面の上部抵抗層1 6の一部を接触点20として下部抵抗層17に部分接触 させること、および複数の条件下において得られた上部 抵抗層16と下部抵抗層17の各導出部の出力電圧によ り、操作つまみ27を傾倒させた角度方向および角度量 を認識できることは、上記の場合と同様である。

【0061】この多方向入力装置の上部抵抗層16と下 部抵抗層17の内側部分に剛体のスペーサ14Bが配さ れていること等、その他の部分の構成は上記の場合と同 じである。

> 【0070】そして、この弾性駆動体26が傾倒する時 に、その平板状上面26Cを下方に押して、弾性押圧部 26B外周端の尖った段部26Fを可撓性絶縁基板15 に押し付けるのは、操作つまみ27下面の所定半径位置 の角度27℃であり、これよりも外周の部分は浮き上が っていて、弾性駆動体26の平板状上面26Cを押さな い。

【0062】そして、図9の要部断面図に矢印で示すよ うに、この多方向入力装置の弾性駆動体13の駆動用ノ ブ部19の先端を斜め下方に押すと弾性駆動体13が傾 倒し、複数の検知条件下において得られた上部抵抗層1 6および下部抵抗層17の各導出部の出力電圧により、 弾性操作体13を傾倒した角度方向および角度量を認識 20 できることは上記の場合と同様である。

> 【0071】また、図11に示した位置から、更に駆動 用ノブ部28の先端を強く押すことにより操作つまみ2 7および弾性駆動体26がより大きく傾倒して、弾性駆 動体26の平板状上面26Cおよびその下面が弾性変形 し、操作つまみ27下面の所定半径位置の角部27Cの 下方において、弾性押圧部26Bの外周部分から中心方 向にかけて押し縮められて、弾性押圧部26Bが可撓性 絶縁基板 1 5 を押す部分の面積が増大した状況を示すの が図12の要部断面図である。

【0063】このような導通板25を使用した構成とす ることにより、上部抵抗層16と下部抵抗層17の間に 確実に所定の絶縁ギャップを確保することができると共 に、上部抵抗層16裏面の押圧位置にかかわらず押圧さ れた位置の上下間が導通するので、これを挟む上部抵抗 層16と下部抵抗層17、および弾性駆動体13の弾性 押圧部13Bの直径や幅を小さくして小型の多方向入力 装置とすることができる。

> 【0072】同図に示すように、弾性駆動体26の弾性 押圧部26日が可撓性絶縁基板15を押す部分の面積が 弾性押圧部26 Bの外周端から中央方向に向けて増大 し、上部抵抗層16が下部抵抗層17に接触する部分の 面積が最初に接触した接触点20から中心方向に広がっ ていることは、上記の場合と同様である。

【0064】また、以上の説明では、弾性駆動体13に 30 は駆動用ノブ部19が一体に設けられているとして説明 したが、これを別体として、弾性駆動体26の上部に操 作つまみ27を装着した多方向入力装置の要部断面図が 図10である。

> 【0073】このような、剛体材料からなる操作つまみ 27を使用する構成とすることにより、操作つまみ27 の先端を斜め下方に押す際に、弾性駆動体26が可撓性 絶縁基板15を押して上部抵抗層16を下部抵抗層17 に部分接触させる面積を、弾性押圧部26Bの外周端か ら中心方向へと確実に増大させることができると共に、 50 操作つまみ27の色を変えたり、操作内容を表示するこ

【0065】すなわち、弾性駆動体26が、上部抵抗層 16裏面の可撓性絶縁基板15に対して所定の間隔を空 けて対峙するように、外周の弾性薄肉円周部26Aおよ び中心突部26 Eにより支持された円板状の弾性押圧部 26Bを下面に有していることは上記の場合と同じであ るが、平板状上面26Cの中央に柱状部26Dを有して 40 おり、この柱状部26Dに操作つまみ27が結合保持さ れている。

【0066】この操作つまみ27は剛体材料からなり、

下面の中央孔27Aが上述のように、弾性駆動体26の

柱状部26Dと結合すると共に、その周囲の下面は弾性

駆動体26の弾性押圧部26Bとほぼ同外径の円板部で

あって、その中央平板部27Bは弾性駆動体26の平板

状上面26 Cに当接しているが、所定半径位置の角部2

7 Cから外周端にかけて次第に浮き上がっている。

【0067】そして、操作つまみ27上部の球状部27

(9)

とが容易である。

【0074】更に、以上の説明では、多方向入力用電子 部品の下部抵抗層17は電子機器の配線基板12上に印 刷形成されており、これと対向した上部抵抗層16は多 方向入力用電子部品の可撓性絶縁基板15の下面に印刷 形成されているものとしているが、上部抵抗層16も電 子機器の配線基板12に重ねて配設された可撓性配線基 板29の下面に形成した場合の、電子機器の多方向入力 装置部分の分解斜視図が図13である。

【0075】このような構成とすることにより、多方向 入力装置を用いた電子機器全体としての構成部材数およ び組立て工数が少なくなり、上部抵抗層16の導出部か らの配線も容易であり、安価な多方向入力装置を用いた 電子機器とすることができる。

【0076】(実施の形態2)実施の形態2を用いて、 本発明の特に請求項3に記載の発明について説明する。

【0077】図14は本発明の第2の実施の形態による 多方向入力装置を用いた電子機器の多方向入力装置部分 の分解斜視図、図15は同動作状態における認識方法を 説明する概念図である。

【0078】同図に示すように、本実施の形態による多 方向入力装置は前記の実施の形態1によるものにおい て、電子機器の配線基板30上に印刷形成された下部導 電体層が、円形リング状の抵抗層を所定の間隔を空けて 二分割した第一抵抗層31と第二抵抗層32からなり、 それぞれの端部に導出部31A, 31Bおよび32A, 32Bを有しているものであって、その他の部分の構成 は、図2に示した実施の形態1によるものと同じであ る。

【0079】この多方向入力装置に対して入力操作する 場合の動作について説明すると、図14および図15に おいて、駆動用ノブ部19の先端を押して弾性駆動体1 3を所望の角度方向に所望の角度量だけ傾倒させると、 傾倒方向下面の弾性押圧部13Bの外周端が可撓性絶縁 基板15を押して部分的に下方へ撓ませ、その下面の上 部抵抗層16の一部を接触点33として下方の、例え ば、第一抵抗層31に部分接触させる。

【0080】そして、この状態における認識方法は、図 15において、まず第一の認識条件として、第一抵抗層 31の端部の導出部31A, 31B間に、導出部31A 40 をアース(Oボルト)にして導出部31Bに所定の直流 電圧 (例えば5ボルト) を印加すると、導出部31Aと 接触点33の間の抵抗値により、接触位置に対応した電 圧が上記抵抗層16の導出部16A(または16B)に 出力されマイクロコンピュータ34(以下、マイコン3 4と表わす)に伝達される。

【0081】次に、第二の認識条件として、短い周期で 切り換えて、第二抵抗部32の端部の導出部32A,3 2 B間に所定の直流電圧を印加しても、上部抵抗層16 は第二抵抗層32と接触していないので、上部抵抗層1

6の導出部16Aに電圧は出力されない。

【0082】同様にして、弾性駆動体13を上記とは反 対の方向へ傾倒させると、上部抵抗層16は第二抵抗層 32と部分接触して、その導出部32A, 32B間に所

定の直流電圧を印加した時に、上部抵抗層16の導出部 16A(または16B)に電圧が出力される。

【0083】このように、駆動用ノブ部19を押して弾 性駆動体13を傾倒させた角度方向に対応した下部導電 体層としての第一抵抗層31または第二抵抗層32に直 流電圧を印加した時にのみ、上部抵抗層16から出力電 圧を取り出すことができるので、直流電圧を印加した導 出部の位置と出力電圧をマイコン34で処理することに より、傾倒操作した角度方向を認識することができる。 【0084】また、マイコン34により、弾性駆動体1 3が傾倒した角度量を認識する方法は、実施の形態1の 場合と同じであるので、その説明を省略する。

【0085】以上のように、本実施の形態による多方向 入力装置は、簡単な処理で弾性駆動体13を傾倒させる 角度方向を高い分解能で認識することができる多方向入 力装置およびこれを用いた電子機器を実現するものであ 20

【0086】(実施の形態3)実施の形態3を用いて、 本発明の特に請求項4に記載の発明について説明する。 【0087】図16は本発明の第3の実施の形態による 多方向入力装置を用いた電子機器の多方向入力装置部分 の分解斜視図である。

【0088】同図に示すように、本実施の形態による多 方向入力装置は前記の実施の形態1によるものにおい て、電子機器の配線基板35上に印刷形成された下部導 電体層36が、円形リング状の導電体層を所定の角度方 向に分割して形成されて、分割された各個別の導電体層 36A, 36B, …がそれぞれ導出部37A, 37B, …を有しているものであり、各導出部37A, 37B, …は、それぞれマイクロコンピュータ(図16に示さ ず。以下、マイコンと表わす。)に接続されている。 【0089】そして、その他の部分の構成は、図2に示 した実施の形態1によるものと同じである。

【0090】この多方向入力装置に対して入力操作する 場合の動作について説明すると、駆動用ノブ部19の先 端を押して弾性駆動体13を傾倒させると、傾倒方向下 面の弾性押圧部13B(図16に示さず)の外周端が可 撓性絶縁基板15を押して部分的に下方へ撓ませ、その 下面の上部抵抗層16の一部を下方の下部導電体層36 の、例えば、導電体層36Aに接触させる。

【0091】そして、導電体層36Aの角度位置はあら かじめマイコンに記載されているので、弾性駆動体13 が傾倒した角度位置は、マイコンで特別な処理をしない でも、容易に認識される。

【0092】なお、マイコンにより、弾性駆動体13が 50 傾倒した角度量を認識する方法は、実施の形態1の場合

と同じであるので、その説明を省略する。

【0093】以上のように、本実施の形態による多方向 入力装置は、マイコンへの接続数が所定の角度方向の数 だけ必要であるが、特別な処理をしないでも、弾性駆動 体13を傾倒させる角度方向を所定の分解能で高精度に 認識することができる多方向入力装置を実現するもので ある。

【0094】(実施の形態4)実施の形態4を用いて、本発明の特に請求項11に記載の発明について説明する。

【0095】図17は本発明の第4の実施の形態による 多方向入力装置を用いた電子機器の要部断面図、図18 は同多方向入力装置部分の分解斜視図である。

【0096】同図に示すように、本実施の形態による多方向入力装置は前記の実施の形態1によるものに対して、弾性駆動体13の駆動用ノブ部19を下方に押し下げることにより動作する自力復帰型の押圧スイッチ部38を付加したものである。

【0097】押圧スイッチ部38の構成は、弾性駆動体13の駆動用ノブ部19下方の可撓性絶縁基板39の上20面に、外側接点40Aと中央接点40Bからなるスイッチ固定接点40を印刷等により形成し、その上部に弾性金属薄板製で円形ドーム形状の可動接点41を、外周下端部が外側接点40A上に載り、中央のドーム部41A下面が中央接点40Bと所定の間隔を空けて対峙するように載せて、可撓性の粘着材付テープ42で貼り付けたものであり、可動接点41のドーム部41Aの上面は、弾性駆動体13下面中心部の中心突部13Eと対向している。

【0098】そして、可撓性絶縁基板39の下面には円 30 形リング状の上部抵抗層16が印刷形成され、これと対向した下部抵抗層17が配線基板12上に印刷形成されると共に、これらの内側の部分すなわち可撓性絶縁基板39のスイッチ固定接点40の下面に剛体のスペーサ14Bが配されている等、その他の部分の構成は、図1および図2に示した実施の形態1によるものと同じである。

【0099】以上のように構成されるこの多方向入力装置に対し、弾性駆動体13を傾倒させて入力操作する場合の動作を説明するのが図19の要部断面図であり、同40図に矢印で示すように、駆動用ノブ部19を斜め下方に押して弾性駆動体13を傾倒させて、傾倒方向下面の可撓性絶縁基板39を押して部分的に下方へ撓ませ、上部抵抗層16の一部を下部抵抗層17に部分接触させること、およびその時の弾性駆動体13が傾倒した角度方向および角度量の認識方法は、実施の形態1と同じであるので、その説明を省略する。

【0100】なお、この動作時に押圧スイッチ部38が動作しないように、円形ドーム状の可動接点41の弾性 反転力は設定されている。 【0101】次に、弾性駆動体13を押し下げて押圧スイッチ部38を動作させる場合の状態を示すのが図20の断面図であり、同図に矢印に示すように、図17の状態から駆動用ノブ部19を下方に押し下げると、弾性駆動体13は弾性薄肉円筒部13Aが全周に亘り弾性変形して、球状部13Fが上ケース11から離れて中央部分全体が下方に動き、下面中心部の中心突部13Eが粘着材付テープ42を介して可動接点41のドーム部41Aの上面を下方に押す。

10 【0102】押された可動接点41のドーム部41Aは 節度感を伴いながら弾性反転し、ドーム部41Aの下面 が中央接点40Bと接触して、外側接点40Aと中央接 点40Bの間すなわちスイッチ固定接点40を短絡状態 とする。

【0103】そして、駆動用ノブ部19に加える押し力を除くと、弾性駆動体13は自身の弾性復元力により弾性薄肉円筒部13Aが元の形状に復帰することによって図17の状態に戻り、押圧スイッチ部38の可動接点41のドーム部41Aもその弾性復元力によって反転状態から元の円形ドーム形状に復帰し、スイッチ固定接点40の外側接点40Aと中央接点40Bの間もオープン状態に戻る。

【0104】なお、この押圧スイッチ部38の動作時に、弾性駆動体13下面の弾性押圧部13Bが可撓性絶縁基板39を押して上部抵抗層16と下部抵抗層17が接触することがないように、弾性駆動体13下面の弾性押圧部13Bと中心突部13Eの寸法は設定されている。

【0105】以上のように、本実施の形態による多方向入力装置は、駆動用ノブ部19を押圧することによって、駆動用ノブ部19すなわち弾性駆動体13を傾倒操作した方向の入力を決定する等の別の信号を、節度感を伴って発することがきる多方向入力装置を実現するものである。

【0106】なお、上記の説明では、押圧スイッチ部38は可撓性絶縁基板39の上面に配設されるものとして説明したが、これは、可撓性絶縁基板39と配線基板12の間のスペーサ14Bの中央部等に配設してもよいものである。

【0107】(実施の形態5)実施の形態5を用いて、 本発明の特に請求項1,2,7~9、および12に記載の発明について説明する。

【0108】なお、本実施の形態によるものは、実施の 形態1によるものに対して配線基板12および可撓性絶 縁基板15に形成されるそれぞれの機能層を互いに逆転 させて形成したものである。

【0109】図21は本発明の第5の実施の形態による 多方向入力装置を用いた電子機器の要部断面図、図22 は同多方向入力装置部分の分解斜視図、図23は同多方 の入力装置の構成を説明する概念図である。

(11)

20

【0110】同図において、11は電子機器の上ケース、12は平面状の配線基板であり、上ケース11は上面が操作面となっていて、その中央の円形孔11Aには多方向入力用電子部品の弾性駆動体13の球状部13Fが係合すると共に駆動用ノブ部19が突出しており、配線基板12の上部には、スペーサ14Aを挟んで所定の絶縁ギャップを空けて可撓性絶縁基板15が配設されている。

19

【0111】この可撓性絶縁基板15の下面には、所定幅の一様な比抵抗の円形リング状の上部抵抗層116が印刷形成され、そのほぼ等角度間隔の三ヶ所に導出部116A,116B,116Cが設けられていると共に、配線基板12上のこれと対向した位置には下部導電体層として、上部抵抗層116とほぼ同じ径および幅で、一様な比抵抗の円形リング状の下部抵抗層117が印刷形成され、その内周および外周それぞれの全周と導通した二つの導出部117A,117Bが設けられている。

【0112】なお、この下部抵抗層117の内周と導通した導出部117Aをスルーホールを用いて配線基板12の裏面または下層に引き出すようにすると、より簡素な構成とすることができ、さらなる小形化並びにその出力の高精度化に対応できるようになる。

【0113】そして、図23に示すように、下部抵抗層117の二つの導出部117A,117Bおよび上部抵抗層116の三つの導出部116A,116B,116Cはそれぞれの配線部を介して、この電子機器に装着されたマイクロコンピュータ18(以下、マイコン18と表わす)に接続されている。

【0114】また、可撓性絶縁基板15の上部には、上記の弾性駆動体13が載せられて、その周囲の弾性薄肉 30円筒部13Aおよび中心突部13Eに支持された円板状の弾性押圧部13Bが上部抵抗層116の裏面に対して所定の間隔を空けて対峙している。

【0115】この弾性押圧部13Bは外周端が尖った段部13Cである円板状で、その外径は上部抵抗層116の幅の中心部の径よりも大きくて外径よりも小さくなっていると共に、上部抵抗層116の内径よりも少し内側は、この面よりも下方に突出した円形段部13Dとなり、中心部は更に下方に突出した中心突部13Eとなっていて、弾性駆動体13の下面は三段の同心円板状とな40っている。

【0116】そして、弾性駆動体13の上部は弾性押圧部13Bの上面全体を覆った球状部13Fとなって、上蓋としての上ケース11の円形孔11Aに係合しており、その中央には円柱状の駆動用ノブ部19が設けられている。

【0117】なお、可撓性絶縁基板15の上部抵抗層1 16と配線基板12の下部抵抗層117の内側部分に も、剛体のスペーサ14Bが配されている。

【0118】本実施の形態による多方向入力装置を用い 50 18により、下部抵抗層117の内外周の導出部117

た電子機器の、多方向入力装置部分は以上のように構成 されている。

【0119】次に、以上のように構成される多方向入力 装置に対して入力操作する場合の動作について説明する。

【0120】図21に示した通常状態から、図24の動作状態を説明する要部断面図に矢印で示すように、弾性駆動体13の駆動用ノブ部19の先端を斜め下方に押すと、弾性駆動体13は中心突部13Eを支点として、球状部13Fが上ケース11の円形孔11Aの縁に沿って回動し、弾性薄肉円筒部13Aが弾性変形しながら所望の角度方向に所望の角度量だけ傾倒する。

【0121】これにより、傾倒方向下面の弾性押圧部13Bが下方に動いて、その外周端の尖った段部13Cが可撓性絶縁基板15を押して部分的に下方へ撓ませ、その下面の上部抵抗層116の一部を下部抵抗層117の接触点20に部分接触させる。

【0122】この状態において、円形段部13Dの外周 もスペーサ14B上の可撓性絶縁基板15に当たり、弾 性駆動体13を傾倒させるために駆動用ノブ部19に加 える押し力は、この位置において大きくなる。

【0123】この状態における認識方法を説明する概念図が図25であり、同図において、マイコン18により、まず第一の認識条件として、上部抵抗層116の導出部116Aをアース(0ボルト)にして、導出部116Eに直流電圧(例えば5ボルト)を印加し、導出部116Cをオープン状態とした時に、下部抵抗層117の導出部117A(または117B)に出力される電圧を読み取り、あらかじめ記憶されているデータと照合し演算することによって、上部抵抗層が部分接触した位置は導出部116Aと116Bの間の、導出部116Cとは反対側の点21Aであるか、導出部116C側の点21Bであるという第一のデータが得られる。

【0124】次に、第二の認識条件として、導出部116Bをアース(0ボルト)にして、導出部116Cに所定の直流電圧(例えば5ボルト)を印加し、導出部116Aをオープン状態とした時に、導出部117A(または117B)に出力される電圧を読み取り、あらかじめ記憶されているデータと照合し演算することによって、上部抵抗層が部分接触した位置は導出部116Bと116Cの間の、導出部116Aとは反対側の点21Cであるか、導出部116A側の点21Aであるという第二のデータが得られる。

【0125】そして、マイコン18において、第一のデータと第二のデータを比較して、一致する点21Aが傾倒操作した角度方向であると認識して、その信号を発するものである。

【0126】次に、上記の図24および図25に示す状態において、上記とは異なる認識条件として、マイコン18により 下部抵抗層117の内外周の適出部117

22

21

A, 117Bに対し、外周の導出部117Bをアース (0ボルト)にして内周の導出部117Aに直流電圧を 印加し、上部抵抗層116の導出部の一つ (例えば、接触点20に最も近い導出部116B)に出力される電圧 を読み取り、あらかじめ記憶されているデータと照合し 演算することによって、弾性押圧部13Bが可撓性絶縁 基板15を押している圧力、すなわち弾性駆動体13が 傾倒している角度量のデータが得られる。

【0127】そして、図24に示した状態から、更に駆動用ノブ部19の先端を強く押すことにより、弾性駆動体13がより大きく傾倒して下面が弾性変形し、弾性押圧部13Bが可撓性絶縁基板15を押す部分の面積が増大した状態を示すのが、図26の要部断面図である。

【0128】同図に示すように、弾性駆動体13の弾性 押圧部13Bが可撓性絶縁基板15を押す部分の面積 は、弾性押圧部13B外周端の尖った段部13Cから中 心方向に向けて増大しており、上部抵抗層116が下部 抵抗層117に接触する部分の面積も、最初に接触した 接触点20から中心方向に広がっている。

【0129】この状態において、上記と同様に、マイコ 20 ン18により、下部抵抗層117の内外周の導出部117A、117Bに対し、外周の導出部117Bをアース (0ボルト)にして内周の導出部117Aに直流電圧を印加し、上部抵抗層116の導出部の一つ (116B)に出力される電圧を読み取り、あらかじめ記憶されているデータと照合し演算することによって、弾性押圧部13Bが可撓性絶縁基板15を強く押している圧力、すなわち弾性駆動体13が大きく傾倒している角度量のデータが得られる。

【0130】そして、上記の場合よりも接触点20を含む接触部分の面積が大きくなっている分だけ、上部抵抗層116の導出部の一つ(116B)に出力される電圧が上がっていることになり、得られたデータの値は弾性駆動体13の大きな傾倒の角度量に対応したものとなっている。

【0131】更に、上記の弾性駆動体13が傾倒している角度量の認識方法において、下部抵抗層117の外周の導出部117Bをアース(0ボルト)にして内周の導出部117Aに直流電圧を印加する理由は、弾性駆動体13を傾倒する角度量を大きくすることによって、上部40抵抗層116が下部抵抗層117に部分接触する面積が上部抵抗層116の外周側から内周側に向けて増大するので、直流電圧を上記のように印加することによって、傾倒角度量が小さく両者の接触が不安定な状態における出力電圧を小さくすることができ、不安定領域を除いて、安定した時点における大きな出力電圧を測定・演算処理して、弾性駆動体13の傾倒した角度量を認識することができるからである。

【0132】そして、これらのデータの取得および演算 処理は、出力電圧が所定の電圧以上となった時点で行わ 50

れると共に、高速で繰り返し行われるので、正確に認識することができるものである。

【0133】以上のようにして入力操作を行なった後、駆動用ノブ部19の先端に加える押し力を除くと、弾性駆動体13は自身の弾性復元力により弾性薄肉円筒部13Aが元の形状に復帰することによって元の図21の状態に戻り、可撓性絶縁基板15が元の平面状に復帰することにより、上部抵抗層116と下部抵抗層117は対向した状態に戻る。

【0134】以上のように、本実施の形態による多方向入力装置は、多方向入力用電子部品の弾性駆動体13の傾倒操作時に複数の認識条件下で得られた複数のデータである各導出部の出力電圧により、弾性駆動体13を傾倒操作した角度方向および角度量を認識するものであるから、高い分解能で多くの方向に入力できる傾倒角度方向に加えて、傾倒した角度量によっても幾つかの方向に入力することができるので、両者を合わせると非常に多くの方向で入力できる、すなわち入力方向の分解能が非常に高い多方向入力装置およびこれを用いた電子機器を実現することができるものである。

[0135]

【発明の効果】以上のように本発明によれば、多方向入力用電子部品の構成が、対向する円形リング状の上部抵抗層と下部導電体層およびこれらを接触させる弾性駆動体からなる簡単なものであるから、小形化が容易であると共に、駆動用ノブ部を斜め下方に押して弾性駆動体を傾倒させる際に、上部抵抗層が下部導電体層に部分接触した時の各導出部の情報から、マイクロコンピュータ等を用いて、弾性駆動体が傾倒した角度方向および角度量を認識するものであるから、弾性駆動体を傾倒させる角度方向の分解能を高くすることが容易であることに加えて、弾性駆動体を傾倒させる角度量によっても入力方向の区分ができる、すなわち入力方向の分解能が非常に高い多方向入力装置を実現できるという有利な効果が得られる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態による多方向入力装置を用いた電子機器の要部断面図

【図2】同多方向入力装置部分の分解斜視図

【図3】同多方向入力装置の構成を説明する概念図

【図4】同弾性駆動体を傾倒させた動作状態を説明する 要部断面図

【図5】同動作状態における認識方法を説明する概念図 【図6】同弾性駆動体を更に傾倒させた動作状態を説明

する要部断面図

【図7】同他の構成による多方向入力装置の概念図

【図8】同上部抵抗層と下部抵抗層の間に導通板を介在 させた多方向入力装置の要部断面図

【図9】同弾性駆動体を傾倒させた動作状態を説明する 要部断面図

【図10】同弾性駆動体に操作つまみを装着した多方向 入力装置の要部断面図

【図11】同弾性駆動体を傾倒させた動作状態を説明す る要部断面図

【図12】同弾性駆動体を更に傾倒させた動作状態を説 明する要部断面図

【図13】同他の形態の多方向入力装置を用いた電子機 器の多方向入力装置部分の分解斜視図

【図14】本発明の第2の実施の形態の多方向入力装置 を用いた電子機器の多方向入力装置部分の分解斜視図

【図15】同動作状態における認識方法を説明する概念 図

【図16】本発明の第3の実施の形態の多方向入力装置 を用いた電子機器の多方向入力装置部分の分解斜視図

【図17】本発明の第4の実施の形態による多方向入力 装置を用いた電子機器の要部断面図

【図18】同多方向入力装置部分の分解斜視図

【図19】同弾性駆動体を傾倒させた動作状態を説明す る要部断面図

【図20】同弾性駆動体を押し下げた動作状態を説明す 20 25 導通板 る要部断面図

【図21】本発明の第5の実施の形態による多方向入力 装置を用いた電子機器の要部断面図

【図22】同多方向入力装置部分の分解斜視図

【図23】同多方向入力装置の構成を説明する概念図

【図24】同弾性駆動体を傾倒させた動作状態を説明す る要部断面図

【図25】同動作状態における認識方法を説明する概念

【図26】同弾性駆動体を更に傾倒させた動作状態を説 30 明する要部断面図

【図27】従来の多方向入力装置に使用される多方向入 力用電子部品としての多方向操作スイッチの断面図

【図28】同分解斜視図

【図29】同操作体を傾倒させた状態の断面図 【符号の説明】

11 上ケース

11A 円形孔

12, 30, 35 配線基板

13,26 弹性駆動体

13A, 26A 弹性薄肉円筒部

13B, 26B 弹性押圧部

13C, 26F 段部

13D 円形段部

13E, 26E 中心突部

13F, 27D 球状部

14A, 14B スペーサ

15、39 可撓性絶縁基板 10

16,116 上部抵抗層

16A, 16B, 17A~17C, 22A~22D, 3

1A, 31B, 32A, 32B, 37A, 37B, ...,

116A~116C, 117A, 117B 導出部

17, 22, 117 下部抵抗層

18, 24, 34 マイクロコンピュータ

19,28 駆動用ノブ部

20, 23, 33 接触点

21A, 21B, 21C 点

26C 平板状上面

26D 柱状部

27 操作つまみ

27A 中央孔

27B 中央平板部

27C 角部

29 可撓性配線基板

31 第一抵抗層

32 第二抵抗層

36 下部導電体層

36A, 36B, … 導電体層

38 押圧スイッチ部

40 スイッチ固定接点

40A 外側接点

40B 中央接点

41 可動接点

41A ドーム部

42 粘着材付テープ

17 下部抵抗層

19 駆動用) プ部

【図1】

11 上ケース 13F 中心突部 11A 円形孔 13F 球状部 12 配線基板 14A,14B スペーサ 13 弾性駆動体 15 可撓性絶縁基板 13A 弾性薄肉円筒部 16 上部抵抗層 13B 弾性押圧部 16A,16B 導出部

13C 段 部

130 円形段部

13A 13C 13B I3F 13D 13E 19

148

【図3】

【図4】

17Á

<u>18</u>

【図·10】

【図11】

【図12】

【図13】

【図23】

【図20】

【図19】

【図21】

【図24】

【図25】

【図26】

[図28]

5K023 AA07 BB03 GG08 RR08

【図29】

フロントページの続き

(51) Int. CI.	7 識別記号		FΙ					テーマコート	・(参考)
H 0 1 C	10/36		H 0 1 C	10/36					
H 0 4 M	1/23		H 0 4 M	1/23			D		
// A63F	13/06		A 6 3 F	13/06					
(72)発明者	, 		Fターム(参考)	2C001	CA00	CAO1 CAO	6 CB01	
	大阪府門真市大字門真1006番地 産業株式会社内	松下電器			3J070	AA04 DA61	BA34 BA7 EA12	'1 CD12	DA46
(72)発明者	西小野 博昭				5B087	BC02	BC11		
		松下電器			5E030		BAO4 CAC	4 CB04	CC09
	産業株式会社内					EA02	GA02		