Semântica do Cálculo de Predicados **5.**

- **5.1** Considere o tipo de linguagem $L = L_{Arit}$ e a estrutura $E_{Arit} = (\mathbb{N}_0, \overline{})$ (a estrutura usual de tipo L). Sejam a_1 e a_2 atribuições em E_{Arit} tais que $a_1(x_i) = 0$ e $a_2(x_i) = i$, para todo $i \in \mathbb{N}_0$.
 - a) Para cada um dos termos t de tipo L que se seguem, determine $t[a_1]$ e $t[a_2]$.
 - i) 0.

- iii) $s(0) + x_5$.
- **iv)** $(s(0) + x_5) \times s(x_1 + x_2)$.
- b) Para cada uma das fórmulas φ de tipo L que se seguem, calcule $\varphi[a_1]$ e $\varphi[a_2]$.
 - i) $x_1 = x_2$.
- ii) $\neg (x_1 = x_2)$.
- **iii)** $s(x_1) < (x_1 + 0)$. **iv)** $(x_1 < x_2) \rightarrow (s(x_1) < s(x_2))$.
- c) Para cada uma das fórmulas φ da alínea anterior, determine

$$(\forall x_1 \varphi)[a_1]$$
 e $(\exists x_1 \varphi)[a_1]$.

- d) Indique se alguma das fórmulas da alínea b) é válida na estrutura E_{Arit} .
- e) Indique se alguma das fórmulas da alínea b) é universalmente válida.
- **5.2** Repita o exercício anterior, considerando a estrutura $E = (D, \overline{\ })$, de tipo L, com $D = \overline{\ }$ $\{d_1, d_2\}$, e as atribuições a_1 e a_2 em E a seguir definidas:

$$\overline{0} = d_1 \qquad \qquad \equiv \subseteq D^2 \qquad \equiv = \{(d_1, d_1), (d_2, d_2)\}$$

$$\overline{s} : D \to D \qquad \overline{s}(x) = x \qquad \qquad \overline{\leq} D^2 \qquad \overline{\leq} = \{(d_1, d_2)\}$$

$$\overline{+}:D^2\to D$$
 $\overline{+}(x,y)=d_2$ $a_1:\mathcal{V}\to D$ $a_1(x)=d_2$

- $\overline{\times}: D^2 \to D$ $\overline{\times}(x,y) = d_1 \text{ sse } x = y \quad a_2: \mathcal{V} \to D$ $a_2(x_i) = d_2 \text{ sse } i \text{ \'e par.}$
- **5.3** Seja $L = L_{Arit}$.
 - a) Quantas estruturas de tipo L existem com domínio $\{0\}$? E domínio $\{0,1,2\}$?
 - b) Defina uma estrutura de tipo L com domínio $\{0, 1, 2\}$.
- **5.4** Seja L um tipo de linguagem e sejam x, y variáveis e φ, ψ fórmulas de tipo L. Mostre que:
 - a) $\models (\forall x \varphi \lor \forall x \psi) \to \forall x (\varphi \lor \psi).$
 - **b)** $\not\vDash \forall x(\varphi \lor \psi) \to (\forall x\varphi \lor \forall x\psi).$
 - c) $\models \exists x (\varphi \land \psi) \rightarrow (\exists x \varphi \land \exists x \psi).$
 - **d)** $\not\vdash (\exists x \varphi \land \exists x \psi) \rightarrow \exists x (\varphi \land \psi).$
 - e) $\models \exists x \forall y \varphi \rightarrow \forall y \exists x \varphi$.
 - **f)** $\not\vDash \forall x \exists y \varphi \rightarrow \exists y \forall x \varphi$.

- **5.5** Sejam L um tipo de linguagem, φ, ψ fórmulas de tipo $L, Q \in \{\forall, \exists\} \in \Box \in \{\lor, \land\}$. Mostre que: se $x \notin LIV(\psi)$, então $(Qx\varphi)\Box\psi \Leftrightarrow Qx(\varphi\Box\psi)$.
- **5.6** Seja L um tipo de linguagem.
 - a) Mostre que, para todo $\varphi, \psi \in \mathcal{F}_L$ tais que $x \notin LIV(\psi)$, se tem:

i)
$$\models \exists x(\varphi \to \psi) \leftrightarrow (\forall x\varphi \to \psi).$$

ii)
$$\models \forall x(\varphi \to \psi) \leftrightarrow (\exists x\varphi \to \psi).$$

- b) Mostre que, na alínea anterior, a condição $x \notin LIV(\psi)$ é necessária.
- c) Conclua que, para toda a fórmula φ de tipo L, $\models \exists x(\varphi \to \forall x\varphi)$. (Como curiosidade, pense no caso particular de φ representar a condição "x é aprovado a Lógica".)
- **5.7** Considere o tipo de linguagem $L = L_{Arit}$ e considere as seguintes fórmulas de tipo L: $\varphi_1 = (x_1 < x_0); \quad \varphi_2 = \neg(x_1 < x_0); \quad \varphi_3 = \exists x_1 \neg (x_1 < x_0); \quad \varphi_4 = \forall x_1 \neg (x_1 < x_0).$ Indique quais dos seguintes conjuntos são consistentes:
 - a) $\{\varphi_1, \varphi_2\}.$
 - **b)** $\{\varphi_1, \varphi_3\}.$
 - **c)** $\{\varphi_1, \varphi_4\}.$
 - **d**) $\{\varphi_3, \varphi_4\}$.
- **5.8** Suponha que L tem um símbolo de relação binário R. Seja $\Gamma = \{\varphi_1, \varphi_2, \varphi_3\}$, onde

$$\varphi_{1} = \forall x_{0} R(x_{0}, x_{0})
\varphi_{2} = \forall x_{0} \forall x_{1} (R(x_{0}, x_{1}) \rightarrow R(x_{1}, x_{0}))
\varphi_{3} = \forall x_{0} \forall x_{1} \forall x_{2} ((R(x_{0}, x_{1}) \land R(x_{1}, x_{2})) \rightarrow R(x_{0}, x_{2}))$$

- a) Seja $E=(D,\overline{\ })$ uma L-estrutura tal que \overline{R} é uma relação de equivalência em D. Verifique que E é modelo de Γ .
- b) Suponha que L tem também duas constantes c_1 e c_2 . Mostre que existem modelos quer de $\Gamma \cup \{\neg R(c_1, c_2)\}$, quer de $\Gamma \cup \{R(c_1, c_2)\}$.
- **5.9** Seja L um tipo de linguagem. Mostre que as seguintes afirmações são verdadeiras para todos φ , ψ e σ fórmulas de tipo L e todo $x \in \mathcal{V}$.

(Curiosidade: estas afirmações correspondem a alguns silogismos aristotélicos, cujos nomes medievais estão indicados.)

- a) Barbara $\forall x(\psi \to \varphi), \forall x(\sigma \to \psi) \models \forall x(\sigma \to \varphi).$
- **b)** Darii $\forall x(\psi \to \varphi), \exists x(\sigma \land \psi) \models \exists x(\sigma \land \varphi).$
- c) Cesare $\forall x(\psi \to \neg \varphi), \forall x(\sigma \to \varphi) \models \forall x(\sigma \to \neg \psi).$
- **d)** Festino $\forall x(\psi \to \neg \varphi), \exists x(\sigma \land \varphi) \models \exists x(\sigma \land \neg \psi).$