Práctica 2:

Conductores, Capacidad, Condensadores, Dieléctricos, Polarización, Campos E y D

Problema 1.

Dentro de un conductor hueco de forma arbitraria, se encuentra alojado un segundo conductor. Se carga a uno de ellos con carga Q y al otro con carga Q'. ¿Sobre cuáles superficies se distribuyen las cargas? ¿Qué ocurre si ambos conductores se tocan? Muestre que si Q' = -Q, entonces el campo exterior es nulo.

Problema 2.

Un conductor esférico, hueco y sin cargas tiene un radio interior a y otro exterior b. En el centro de la esfera se encuentra una carga puntual +q. ¿Cómo es la distribución de cargas? Calcule y grafique el campo eléctrico y el potencial en todos los puntos del espacio.

Problema 3.

Calcular la capacidad de las siguientes configuraciones de conductores:

- (a) una esfera de radio R en el vacío; determinar el valor de R que haga C=1 pF.
- (b) un condensador esférico de radio interior a y exterior b. Comparar con el resultado anterior para b muy grande.
- (c) por unidad de longitud, para un condensador cilíndrico infinito de radios R_1 y R_2 .
- (d) por unidad de área, para un condensador plano infinito; si la separación entre placas es de 1 mm, dar el valor del área para que C = 1F.

Problema 4.

Una esfera conductora de radio a está rodeada por un casquete esférico, también conductor, de radio interior b y exterior c. Ambos conductores se encuentran unidos por un cable y su carga total es Q. En el espacio entre ambos se encuentra una superficie esférica de radio d (a < d < b), cargada con una densidad superficial de carga σ . Calcule el campo eléctrico en todo el espacio (considere que el cable no rompe la simetría esférica del problema).

Problema 5.

Un condensador de 1 μ F soporta tensiones no mayores de 6 kV, y otro de 2 μ F, no superiores a 4 kV. ¿Qué tensión soportan si se los conecta en serie?

Problema 6.

Cuatro capacitores idénticos están conectados a una batería V_0 como se muestra en la figura. Al comenzar, la llave 1 está cerrada y la llave 2 está abierta. Luego de un tiempo muy largo se abre la llave 1 y se cierra la llave 2. ¿Cuál será la diferencia de potencial final entre los capacitores si la batería es de 9V?

Problema 7.

En el circuito de la figura:

- (a) Calcule la capacidad equivalente que se observa desde la batería.
- (b) Encuentre las cargas de cada condensador y calcule la energía del sistema.
- (c) Se desconecta la batería. ¿Se redistribuyen las cargas?
- (d) Si ahora agregamos un dieléctrico lineal de permitividad ε en el condensador C_1 , ¿cómo se redistribuyen las cargas? ¿Cuál es la energía del sistema? ¿Dónde está la energía que falta?

Problema 8.

Entre las placas de un capacitor plano de sección A se coloca un dieléctrico como muestra la figura de arriba. Posteriormente se carga hasta que adquiere una carga Q y se lo desconecta de la fuente.

- (a) Determine el valor de la capacidad del sistema, la diferencia de potencial entre las placas y la energía acumulada en el capacitor.
- (b) ¿Qué sucederá con la carga, la diferencia de potencial y la energía si se le retira el dieléctrico? ¿Y si no se hubiese desconectado la fuente?
- (c) Repita los cálculos anteriores para el caso en que el dieléctrico se coloca como muestra la figura de abajo.

Problema 9.

Entre las placas de un capacitor plano se colocan dos materiales dieléctricos de constantes ε_1 y ε_2 como se muestra en la figura. Halle la capacidad, considerando que no existen cargas libres en la interface entre los dieléctricos.

Problema 10.

Una esfera cargada uniformemente con carga Q fue instalada en el seno de un dieléctrico de constante dieléctrica ε . Determine la carga de polarización en la interface entre el dieléctrico y la esfera.