Лабораторная работа

Тема: Определение свойств канала передачи данных.

Понятия пропускной способности и латентности

Предположим, что на двух процессорах (узлах) вычислительной системы работают два процесса, между которыми с помощью сети (другой коммуникационной среды) пересылаются сообщения. В передаче информации, помимо аппаратных устройств, участвует и программное обеспечение, например протокольный стэк (встроенный в ОС) и реализация интерфейса передачи сообщений МРІ. Какими характеристиками определяется эффективность передачи информации между процессами параллельного приложения?

Основными характеристиками быстродействия сети являются латентность (latency) и пропускная способность (bandwidth).

Латентностью (задержкой) называется время, затрачиваемое программным обеспечением и устройствами сети на подготовку к передаче информации по данному каналу. Полная латентность складывается из программной и аппаратной составляющих.

Под пропускной способностью R сети будем понимать количество информации, передаваемой между узлами сети в единицу времени (байт в секунду). Очевидно, что реальная пропускная способность снижается программным обеспечением за счет передачи разного рода служебной информации.

Различают следующие виды пропускной способности сети:

- пропускная способность однонаправленных пересылок ("точка-точка", **uni-directional** bandwidth), равная максимальной скорости, с которой процесс на одном узле может передавать данные другому процессу на другом узле.
- пропускная способность двунаправленных пересылок (**bi-directional** bandwidth), равная максимальной скорости, с которой два процесса могут одновременно обмениваться данными по сети.

В чем измеряются эти величины?

Значения пропускной способности будем выражать в мегабайтах в секунду (MB/sec), значения латентности - в микросекундах (usec = 10^{-6} sec).

Из чего складывается время на пересылку сообщения?

Время T(L), необходимое на передачу сообщения длины L, можно определить следующим образом: T(L)=s+L/R, где s - латентность, а R - пропускная способность.

Как связаны эффективность пересылок и эффективность параллельных программ?

Для приложений с тонкой параллельной структурой (fine-grained parallelism), какими, как правило, являются вычислительные программы, крайне важны малые величины латентности; тогда как для приложений, использующих большие объемы пересылок (а это, как правило, коммерческие приложения БД), более важно максимальное увеличение пропускной способности.

Методика измерения латентности

Латентность измеряется как время, необходимое на передачу *сигнала*, или сообщения нулевой длины. При этом, для снижения влияния погрешности и низкого разрешения системного таймера, важно повторить операцию посылки сигнала и получения ответа большое число N раз. Таким образом, если время на N итераций пересылки сообщений нулевой длины туда и обратно составило T сек., то латентность измеряется как s=T/(2N).

Методика измерения пропускной способности

Для измерения пропускной способности "точка-точка" используется следующая методика. Процесс с номером 0 посылает процессу с номером 1 сообщение длины L байт. Процесс 1, приняв сообщение от процесса 0, посылает ему ответное сообщение той же длины. Используются блокирующие (blocking) вызовы MPI (MPI_Send, MPI_Recv). Эти действия повторяются N раз с целью минимизировать погрешность за счет усреднения. Процесс 0 измеряет время T, затраченное на все эти обмены. Пропускная способность R определяется по формуле R=2NL/(T-2*N*s).

Пропускная способность двунаправленных обменов определяется по формуле **R=2NL/(T-N*s)**. В этом случае используются неблокирующие (non-blocking) вызовы MPI (MPI_Isend, MPI_Irecv). При этом производится измерение времени, затраченного процессом 0 на передачу сообщения процессу 1 и прием ответа от него, при условии, что процессы начинают передачу информации одновременно после точки синхронизации.

ЗАДАНИЕ

Написать 3 программы, которые реализуют методики:

- измерения латентности;
- измерения пропускной способности "точка-точка";
- измерения пропускной способности двунаправленных обменов.

На вход программе поступает массив чисел, которые задают значения объема передаваемого сообщения (L). (Рекомендация: считывать из файла input).

На выходе программа сохраняет значения пропускуой способности(R)/латентности (s), , соответствующие размерам передаваемых сообщений L. (Рекомендация: записывать в файл output).

Рекомендуемые значения для $L = \{1,2,2^2,2^3,2^4,...2^10,...,2^20,2^21,2^22\}.$

После этого надо построить 6 графиков для измерения значений:

- S (значения латентности) в зависимости от k (L=2^k) (то есть k=0,1,2, ...22).
- R_pp (значения пропускной способности "точка-точка") в зависимости от k (L=2 k) (то есть k=0,1,2, ...22);
- R_d (значения пропускной способности двунаправленных обменов) в зависимости от k (L=2 k) (то есть k=0,1,2, ...22).

Для первых трех графиков предполагается, что обмен происходит между ядрами одного процессора (host файл должен содержать одну запись). Последующие три графика для этих же величин, только с обменами между mpi-процессами находящимися на разных процессорах/вычислительных машинах (host файл должен содержать две записи).