UNA INTRODUCCIÓN A LA TEORÍA DE CATEGORÍAS

ALEJANDRO VÁZQUEZ ACEVES, JUAN CARLOS MONTER CORTÉS, MAURICIO MEDINA BARCENA Y LUIS ÁNGEL ZALDÍVAR CORICHI

Resumen. PENDIENTE
Abstract. PENDIENTE

Introducción

PENDIENTE

Índice

1. Conceptos básicos

Definición 1.1 (Categoría). Una categoría & consiste de los siguientes datos:

- 1. Una colección de *objetos*, que denotaremos por $Obj(\mathscr{C})$.
- 2. Una colección de *flechas* ó *morfismos* entre objetos. Cada flecha f tiene un objeto de salida $Dom(f) \in Obj(\mathscr{C})^1$, que llamamos *dominio de f*, y un objeto de llegada $Cod(f) \in Obj(\mathscr{C})$, que llamamos *codominio de f*. Toda la información que carga una flecha se condensa en la notación $f:Dom(f) \to Cod(f)^2$.

²⁰⁰⁰ Mathematics Subject Classification. 82B44.

Palabras Claves. Cristales de spin. Medida de Gibbs.

¹Aunque la colección de objetos no forme un conjunto, usamos la notación conjuntista de elemento, para decir que el dominio de f es uno de los objetos determinados en el punto 1

²Aunque la notación sugiere que f es una función, en general no lo es. Además podemos usar la notación de diagrama $A \xrightarrow{f} B$

A la colección de flechas de la categoría la denotaremos por Fle(\mathscr{C}). Y a la colección de flechas con dominio A y codominio B la denotaremos por $\mathscr{C}(A, B)$.

- 3. Una regla de composicion de flechas. Lo que significa que a cada par de flechas $f, g \in \text{Fle}(\mathscr{C})$, tales que Cod(f) = Dom(g), le asigna una flecha $g \circ f : \text{Dom}(f) \rightarrow \text{Cod}(g)$, llamada composición de g con f, y es tal que:
 - Para cualesquiera objetos $A, B, C, D \in \text{Obj}(\mathcal{C})$, y flechas $f: A \to B, g: B \to C$ y $h: C \to D$, se tiene que:

$$h \circ (g \circ f) = (h \circ g) \circ f$$
.

■ Para todo objeto $A \in \text{Obj}(\mathscr{C})$, existe $\text{id}_A \in \text{Hom}_{\mathscr{C}}(A, A)$ tal que cualquier objeto $B \in \text{Obj}(\mathscr{C})$ y flechas $g \in \text{Hom}_{\mathscr{C}}(A, B)$, $h \in \text{Hom}_{\mathscr{C}}(B, A)$ satisfacen:

$$g \circ id_A = g y id_A \circ h = h$$
.

Para simplificar la notación, cuando nos refiramos a un objeto o flecha de una categoría \mathscr{C} , escribiremos $A \in \mathscr{C}$ o $f \in \mathscr{C}$; y en caso de que sea ambigua usaremos la notación $A \in \mathrm{Obj}(\mathscr{C})$ o $f \in \mathrm{Fle}(\mathscr{C})$. También al hablar de una flecha en una categoría, podríamos usar una notación de diagrama como sigue

$$A \xrightarrow{f} B \in \mathcal{C}$$

lo que significa que la flecha f está en la categoría $\mathscr C$ y tiene dominio A y codominio B. De forma similar, podemos denotar que todas las flechas de un diagrama estén en una categoría $\mathscr C$, y al mismo tiempo decir sus dominios y codominios como sea conveniente. Como por ejemplo

$$A \xrightarrow{f} B \xrightarrow{g} C \in \mathcal{C}, f \downarrow \qquad \qquad f \xrightarrow{g} B \in \mathcal{C}$$

$$C$$

Hay que decir que las flechas en $\mathcal{C}(A, A)$ reciben el nombre de *endomorfismos*, por lo que denotaremos a tal colección como End(A), y de haber alguna duda de la categoría en discusión, usaremos la notación End $_{\mathcal{C}}(A)$.

Por último hay que mencionar que en un diagrama como el siguiente

$$\begin{array}{c}
A \xrightarrow{g} B \\
f \downarrow & \downarrow h \\
C
\end{array}$$

donde es posible componer la flecha h con g y tener una flecha con mismo dominio y codominio que f, es equivalente decir que $h \circ g = f$ a que el diagrama conmuta. En general decir que un diagrama conmuta es equivalente a decir que cualesquiera dos "caminos" que tengan mismos dominios y codominios, respectivamente, son iguales. De esta manera a través de un diagrama conmutativo, podemos expresar varias ecuaciones de composiciones de flechas. Por ejemplo, que el siguiente diagrama conmute

$$A \xrightarrow{f} C \xrightarrow{g} D$$

$$\downarrow A \downarrow A \downarrow e$$

$$\downarrow A \downarrow A \downarrow e$$

condensa varias ecuaciones, como $f = d \circ h$, $e = g \circ d$, $e \circ h = g \circ f$, y algunas otras redundantes.

Definición 1.2 (Isomorfismo). Sea $\mathscr C$ una categoría y una flecha $A \xrightarrow{f} B \in \mathscr C$. Decimos que f es un *isomorfismo* si existe una flecha $B \xrightarrow{g} A \in \mathscr C$ tal que

$$g \circ f = \mathrm{id}_A \ y \ f \circ g = \mathrm{id}_B$$

En este caso, decimos que A y B son objetos *isomorfos* en $\mathscr C$ y denotamos $A\cong_{\mathscr C} B$.

En general si no hay ambigüedad de la categoría en la que dos objetos son isomorfos, entonces podemos omitir especificarla, y en la notación simplemente escribir $A \cong B$. Como curiosidad acerca de diagramas conmutativos, sería bueno hacer notar que una flecha $A \xrightarrow{f} B \in \mathscr{C}$ es un isomorfismo si y solo si existe una flecha $B \xrightarrow{g} A \in \mathscr{C}$ tal que el siguiente diagrama

$$A \xrightarrow{\mathrm{id}_A} A \xrightarrow{f} B$$

$$f \xrightarrow{g} \operatorname{id}_B$$

conmuta.

Proposición 1.3. Sea \mathscr{C} una categoría y $A \xrightarrow{f} B \in \mathscr{C}$ un isomorfismo, entonces existe una única flecha $B \xrightarrow{g} A \in \mathscr{C}$ tal que $g \circ f = \mathrm{id}_A$ y $f \circ g = \mathrm{id}_B$.

Demostración. Supongamos que existen dos flechas $B \stackrel{g_1}{\Longrightarrow} A \in \mathcal{C}$ tales que los diagramas

conmutan. Entonces

$$g_1 = g_1 \circ id_B = g_1 \circ (f \circ g_2) = (g_1 \circ f) \circ g_2 = id_A \circ g_2 = g_2.$$

De lo anterior queda claro que el inverso de un isomorfismo f es único, por lo que lo de notaremos como f^{-1} .

Lema 1.4.

- 1. Para todo objeto $A \in \mathcal{C}$, id_A es un isomorfismo.
- 2. Si $f \in \mathcal{C}$ es un isomorfismo, entonces f^{-1} es un isomorfismo.
- 3. Si $A \xrightarrow{f} B \xrightarrow{g} C \in \mathscr{C}$ son isomorfismos, entonces $g \circ f$ es un isomorfismo.

Demostración.

- 1. Es consecuencia directa de que $id_A \circ id_A = id_A$.
- 2. Por definición de isomorfismo, existe $B \xrightarrow{f^{-1}} A$ tal que $f \circ f^{-1} = \mathrm{id}_B$ y $f^{-1} \circ f = \mathrm{id}_A$.
- 3. Por definición de isomorfismo, existen $B \xrightarrow{f^{-1}} A$ y $C \xrightarrow{g^{-1}} B$ tales que $f \circ f^{-1} = \mathrm{id}_B$, $f^{-1} \circ f = \mathrm{id}_A$, $g \circ g^{-1} = \mathrm{id}_C$ y $g^{-1} \circ g = \mathrm{id}_B$. Entonces

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ (f \circ f^{-1}) \circ g^{-1} = g \circ id_B \circ g^{-1} = g \circ g^{-1} = id_C$$

y

$$(f^{-1}\circ g^{-1})\circ (g\circ f)=f^{-1}\circ (g^{-1}\circ g)\circ f=f^{-1}\circ \mathrm{id}_B\circ f=f^{-1}\circ f=\mathrm{id}_A.$$

Consideremos un objeto A en una categoría arbitraria \mathscr{C} . Si la colección $\operatorname{End}(A)$ forma un conjunto, entonces este conjunto forma un monoide con la composición de flechas de \mathscr{C} . Cuando un endomorfismo es un isomorfismo, lo llamamos *automorfismo* y por lo tanto podemos definir la subcolección

$$Aut(A) := \{ f \in End(A) \mid f \text{ es un isomorfismo} \}$$

П

Teorema 1.5. Sea $\mathscr C$ una categoría y $A \in \mathscr C$ un objeto tal que $\operatorname{Aut}(A)$ es un conjunto. Entonces $\operatorname{Aut}(A)$ es un grupo con la composición de flechas de $\mathscr C$.

Demostración. Es consecuencia directa del lema ??

Definición 1.6 (Monomorfismos y epimorfismos). Sea $\mathscr C$ una categoría y $A \xrightarrow{f} B \in \mathscr C$ una flecha.

- 1. Decimos que f es un *monomorfismo* si para cualquier objeto X y flechas $X \stackrel{\alpha}{\Longrightarrow} A$ tales que $f \circ \alpha = f \circ \beta$, entonces $\alpha = \beta$.
- 2. Decimos que f es un *epimorfismo* si para cualquier objeto Y y flechas $B \stackrel{\alpha}{\Longrightarrow} Y$ tales que $\alpha \circ f = \beta \circ f$, entonces $\alpha = \beta$.

Hay que hacer énfasis en que básicamente una flecha es monomorfismo (epimorfismo) si es cancelable por la izquierda (derecha). Sin embargo esto no implica que exista una flecha tal que la composición (en alguna dirección) sea igual a la identidad, pero puede existir, y por eso introducimos la siguiente definición

Definición 1.7 (Secciones y retractos). Sea $\mathscr C$ una categoría y $A \xrightarrow{f} B \in \mathscr C$ una flecha.

- 1. Decimos que f es una sección si existe $B \xrightarrow{g} A \in \mathscr{C}$ tal que $g \circ f = \mathrm{id}_A$.
- 2. Decimos que f es un *retracto* si existe $B \xrightarrow{g} A \in \mathscr{C}$ tal que $f \circ g = \mathrm{id}_B$.

Observemos que toda sección (retracto) es un monomorfismo (epimorfismo). Y notemos que, para un flecha en una categoría, aunque no es suficiente ser monomorfismo y epimorfismo para ser isomorfismo, si es suficiente que sea sección y retracto (Demostración como ejercicio para el lector).

Ejemplos de categorías, en cada ejemplo decir que son Isos, monos, epis, secciones y retractos...

Ahora queremos abordar dos conceptos importantes, el de "propiedad universal" y el de "dualidad". Empezaremos por el concepto de "dualidad", ya que de cierta forma lo hemos mencionado anteriormente. Resulta que los conceptos de monomorfismo y epimorfismo son conceptos duales; así como el de sección y retracto. Para ver esto hay que notar que esencialmente la diferencia entre los dos conceptos (monomorfismos y epimorfismos, ó, secciones y retractos, respectivamente) solo está en la dirección de las flechas. Definamos lo que es la categorías dual de una categoría.

Definición 1.8 (Categoría opuesta o dual). Sea $\mathscr C$ una categoría. Denotaremos como $\mathscr C^{op}$ (o $\mathscr C^*$) a la categoría *opuesta o dual* de $\mathscr C$, la cual está determinada de la siguiente manera:

- Los objetos de \mathscr{C}^{op} son los mismos que los de \mathscr{C} . Obj $(\mathscr{C}^{op}) = \text{Obj}(\mathscr{C})$.
- Los morfismos de \mathscr{C}^{op} son "casi"los mismos que \mathscr{C} , en el sentido de que para cualesquiera objetos $A, B \in \mathscr{C}^{op}$ definimos $\mathscr{C}^{op}(A, B) := \mathscr{C}(B, A)$. Se puede decir simplemente que cada flecha en \mathscr{C} toma la 'dirección opuesta".
- La regla de composición la definimos en base a la regla de composición de \mathscr{C} de tal manera que dadas dos flechas $A \xrightarrow{f} B \xrightarrow{g} C \in \mathscr{C}^{op}$ entonces:

$$g \circ_{op} f := f \circ g$$

Un buen ejercicio para el lector sería comprobar que la categoría dual definida anteriormente siempre satisface los axiomas de una categoría. Solo restaría comprobar que la regla de composición definida es asociativa y que cada objeto tiene su flecha identidad.

En general diremos que una propiedad P es dual a una propiedad Q si es equivalente que se satisfaga P en una categoría \mathcal{C} a que se satisfaga Q en la respectiva categoría dual \mathcal{C}^{op} . Por esta razón muchas definiciones vienen en pares, porque para cada propiedad está la propiedad dual, por ejemplo los monomorfismos y las secciones son duales a los epimorfismos y los retractos, respectivamente. Mostraremos la afirmación de que los monomorfismos son duales a los epimorfismos, y recomendamos probar de ejercicio la dualidad entre sección y retracto.

Proposición 1.9. Sea $\mathscr C$ una categoría. Una flecha $A \xrightarrow{f} B \in \mathscr C$ es un monomorfismo (epimorfismo) si y solo si $B \xrightarrow{f} A \in \mathscr C^{\mathrm{op}}$ es un epimorfismo (monomorfismo).

Demostración. Pendiente

Una propiedad universal es...

Definición 1.10 (Objeto inicial y final). Sea \mathscr{C} una categoría y $A \in \mathscr{C}$.

- 1. Decimos que A es un *objeto inicial* si para cualquier objeto X existe exactamente una flecha $A \xrightarrow{!_X} X \in \mathscr{C}$.
- 2. Decimos que *A* es un *objeto final* si para cualquier objeto *X* existe exactamente una flecha $X \xrightarrow{!^X} A \in \mathscr{C}$.

Ejemplos... En el ejemplo de grupos mencionar la definición de *objeto cero*

Definición 1.11 (Producto). Sea \mathscr{C} una categoría y sean $A, B \in \mathscr{C}$ dos objetos. El *producto* $\pi_B \in \mathscr{C}$ tal que para cualquier otro diagrade A con B es un diagrama

 $\in \mathscr{C}$ existe una única flecha $X \xrightarrow{(\alpha,\beta)} P \in \mathscr{C}$ tal que el siguiente diagrama conmuta:

Definición 1.12 (Coproducto). Sea $\mathscr C$ una categoría y sean $A,B\in\mathscr C$ dos objetos. El coproducto de A con B es un diagrama

 $\in \mathscr{C}$ existe una única flecha $C \xrightarrow{\langle \alpha, \beta \rangle} X \in \mathscr{C}$ tal que el siguiente diagrama conmuta:

Ejemplos... En ejemplo de espacios vectoriales hacer notar que un mismo objeto puede ser producto o coproducto dependiendo de los morfismos a los que esté asociado

Definición 1.13 ((Co)Igualador). Sea \mathscr{C} una categoría y sean dos flechas $A \stackrel{f}{\underset{g}{\longrightarrow}} B \in \mathscr{C}$.

1. El *igualador* de f y g es un diagrama $I \xrightarrow{e_{f,g}} A \xrightarrow{f} B \in \mathscr{C}$ tal que $f \circ e_{f,g} = g \circ e_{f,g}$ y para cualquier otro diagrama $X \xrightarrow{h} A \xrightarrow{f} B \in \mathscr{C}$ tal que $f \circ h = g \circ h$, existe una única flecha $X \xrightarrow{h_{f,g}} I \in \mathscr{C}$ tal que el siguiente diagrama conmuta:

$$X \\ h_{f,g} \downarrow \qquad h \\ I \xrightarrow{e_{f,g}} A$$

2. El *coigualador* de f y g es un diagrama $A \xrightarrow{f} B \xrightarrow{c_{f,g}} CoI \in \mathscr{C}$ tal que $c_{f,g} \circ f = c_{f,g} \circ g$ y para cualquier otro diagrama $A \xrightarrow{f} B \xrightarrow{h} X \in \mathscr{C}$ tal que $h \circ f = h \circ g$, existe una única flecha $CoI \xrightarrow{h^{f,g}} X \in \mathscr{C}$ tal que el siguiente diagrama conmuta:

$$B \xrightarrow[c_{f,g}]{h} CoI$$

Definición 1.14 ((Co)Producto fibrado). Sea $\mathscr C$ una categoría.

$$\begin{array}{ccc} X & \stackrel{\alpha}{\longrightarrow} & A \\ \beta \downarrow & & \downarrow_f \in \mathscr{C}, \text{ existe una única flecha } X \xrightarrow{(\alpha,\beta)_Z} P_{f,g} \in \mathscr{C} \text{ tal que el siguiente} \\ B & \stackrel{g}{\longrightarrow} & Z \end{array}$$

diagrama conmuta:

2. Sean dos flechas

$$A$$

$$\uparrow_f \in \mathscr{C}. \text{ El } coproducto fibrado de f y g es un diagrama$$

diagrama conmuta:

Ejemplos de productos, igualadores y productos fibrados, dejar como ejercicio buscar la construcción dual de cada ejemplo dado.

Teorema 1.15. Sea $\mathscr C$ una categoría con productos e igualadores. Entonces $\mathscr C$ tiene productos fibrados.

Demostración. PENDIENTE

Ejercicio enunciar y demostrar el teorema dual.

Funtores

Ahora que entendemos que es una categoría. Usemos el mismo espíritu de la teoría de categorías para estudiar objetos, y pensar en las categorías como objetos matemáticos. Lo que queremos decir es que para estudiar categorías con ese mismo espíritu, sería necesario definir alguna noción de flechas entre categorías. Eso es justamente un funtor.

Definición 2.1. Sean \mathscr{A} y \mathscr{B} dos categorías. Definimos un *funtor* $F : \mathscr{A} \to \mathscr{B}$ como una regla de asignación entre \mathscr{A} y \mathscr{B} , de tal forma que:

- 1. A cada objeto $X \in \mathcal{A}$ le corresponde un solo objeto $F(X) \in \mathcal{B}$.
- 2. A cada flecha $X \xrightarrow{f} Y \in \mathscr{A}$ le corresponde una sola flecha $F(X) \xrightarrow{F(f)} F(Y) \in \mathscr{B}$ tal que:
 - $F(id_X) = id_{F(X)}$ para todo objeto $X \in \mathcal{A}$.
 - $F(g \circ f) = F(g) \circ F(f)$ para toda flecha $Y \xrightarrow{g} Z \in \mathcal{A}$.

Consideremos dos categorías \mathscr{A} y \mathscr{B} y un funtor $F: \mathscr{A}^{\mathrm{op}} \to \mathscr{B}$. Notemos que la regla de asignación de F también es una regla de asignación entre \mathscr{A} y \mathscr{B} , pues a cada objeto $A \in \mathrm{Obj}(\mathscr{A}) = \mathrm{Obj}(\mathscr{A}^{\mathrm{op}})$ le corresponde el objeto $F(A) \in \mathscr{B}$, y cada flecha $A \xrightarrow{f} B \in \mathscr{A}$ es una flecha $B \xrightarrow{f} A \in \mathscr{A}^{\mathrm{op}}$ que le corresponde la flecha $F(B) \xrightarrow{F(f)} F(A) \in \mathscr{B}$. De esta manera F casi es un funtor de A a B, con la única diferencia de que cambia la dirección de las flechas. En este sentido podemos decir que es otro tipo de funtor:

Definición 2.2 (Funtor contravariante). Sean \mathscr{A} y \mathscr{B} dos categorías. Definimos un *funtor contravariante* $F: \mathscr{A} \to \mathscr{B}$ como una regla de asignación entre \mathscr{A} y \mathscr{B} , de tal forma que:

- 1. A cada objeto $X \in \mathcal{A}$ le corresponde un solo objeto $F(X) \in \mathcal{B}$.
- 2. A cada flecha $X \xrightarrow{f} Y \in \mathscr{A}$ le corresponde una sola flecha $F(Y) \xrightarrow{F(f)} F(X) \in \mathscr{B}$ tal que:
 - $F(id_X) = id_{F(X)}$ para todo objeto $X \in \mathcal{A}$.

■
$$F(g \circ f) = F(f) \circ F(g)$$
 para toda flecha $Y \xrightarrow{g} Z \in \mathcal{A}$.

Por lo comentado previo a la definición anterior, queda claro que es equivalente tener un funtor $F: \mathscr{A}^{\mathrm{op}} \to \mathscr{B}$ a tener un funtor contravariante $F: \mathscr{A} \to \mathscr{B}$. Dejamos como ejercicio al lector hacer la prueba de que también es equivalente tener un funtor $F: \mathscr{A} \to \mathscr{B}^{\mathrm{op}}$ a tener un funtor contravariante $F: \mathscr{A} \to \mathscr{B}$.

Ejemplos de funtores... entre ellos la identidad. Funtores de olvido Dar definición de funtor fiel y pleno. Funtores "libres", Funtores Homs, Funtor de abiertos, Morfismos de copos, morfismos de grupos. Y quiero dar un contra ejemplo que la conclusión es que sacar el centro de un grupo y verlo como un funtor de **Grp** a **Ab**

Proposición 2.3. Sean dos funtores $\mathscr{A} \xrightarrow{F} \mathscr{B} \xrightarrow{G} \mathscr{C}$, entonces la regla de asignación $G \circ F : \mathscr{A} \to \mathscr{C}$ definida como $G \circ F(X \xrightarrow{f} Y) = G(F(X)) \xrightarrow{G(F(f))} G(F(Y))$ para toda flecha $X \xrightarrow{f} Y \in \mathscr{A}$, es un funtor.

La proposición anterior nos dice como está definida la composición de funtores. Dejamos para el lector el ejercicio de probar que para cualquier funtor $\mathscr{A} \xrightarrow{F} \mathscr{B}$, se tiene que $F \circ \mathrm{id}_{\mathscr{A}} = \mathrm{id}_{\mathscr{B}} \circ F$. Veamos ahora que la composición es asociativa.

Proposición 2.4. Sean tres funtores $\mathscr{A} \xrightarrow{F} \mathscr{B} \xrightarrow{G} \mathscr{C} \xrightarrow{H} \mathscr{D}$. Entonces

$$H \circ (G \circ F) = (H \circ G) \circ F.$$

Demostración, PENDIENTE

Hemos probado que los funtores y su regla de composición satisfacen de cierta forma lo que pedimos para las flechas de una categoría, por lo que es natural preguntarse ¿Es posible hablar de la categoría de categorías?. No como tal, hay algunos detalles técnicos fundacionales por los que no es tan simple hablar de algo tan inmenso. Una manera de tratar con este problema está en el libro Abstract and Concrete Categories The Joy of Cats escrito por Jiˇr´iAd´amek, Horst Herrlich y George E. Strecker, donde se define la *quasicategoría* CAT cuyos objetos son todas las categorías y las flechas son los funtores. No es nuestra intensión abordar este tema a fondo, solo dar una fuente para que el lector pueda investigar un poco más a fondo el tema. Sin embargo queremos hacer notar que de igual forma podemos hablar de categorías que satisfacen propiedades universales (inicial, final, productos, coproductos, etc...) e isomorfismos de categorías.

Transformaciones naturales

Al haber introducido este nuevo objeto de funtor, de nuevo es natural pensar si podemos tener flechas entre funtores. Y esto es posible siempre que los funtores compartan dominio y codominio.

Definición 3.1. Sean \mathscr{A},\mathscr{B} dos categorías y $\mathscr{A} \overset{F}{\underset{G}{\Longrightarrow}} \mathscr{B}$ dos funtores. Una transformación natural de F a G es una colección de flechas $\alpha = \{F(A) \xrightarrow{\alpha_A} G(A) \mid A \in \mathrm{Obj}(\mathscr{A})\} \subseteq \mathscr{B}$ tal que para cada flecha $A \xrightarrow{f} B \in \mathscr{A}$ el siguiente diagrama conmuta

$$F(A) \xrightarrow{\alpha_A} G(A)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(B) \xrightarrow{\alpha_B} G(B)$$

Cada flecha α_A se llama componente en A de α .

En general usaremos la notación $\alpha: F \Rightarrow G$ para referirnos a una transformación natural α de F a G. Para la notación de diagrama tenemos, además de la natural $F \stackrel{\alpha}{\Rightarrow} G$, una notación que deja ver también las categorías involucradas entre los funtores:

$$\mathscr{A} \xrightarrow{\frac{F}{a\vee}} \mathscr{B}$$

Ejemplos...

Veamos ahora que como es la composición de transformaciones naturales.

Proposición 3.2. Sean
$$\mathscr{A} \xrightarrow{\underset{H}{\underbrace{\mathbb{F}}}} \mathscr{F}$$

funtores y transformaciones naturales. Entonces la familia de morfismos $\beta \circ \alpha := \{F(A) \xrightarrow{\beta_A \circ \alpha_A} H(A) \mid A \in \text{Obj}(\mathscr{A})\} \subseteq \mathscr{B}$ es una transformación natural de F a H

Notemos que las componentes de una composición son exactamente la composición de las componentes. Dejamos al lector verificar que la composición es además asociativa ya que basta verificar que componente a componente lo es, y como cada componente es una flecha en una categoría, debe ser asociativa. Todo esto lo mencionamos para definir la categoría de funtores entre dos categorías $[\mathscr{A},\mathscr{B}]$, donde los objetos son funtores de \mathscr{A} a

 \mathscr{B} y las flechas son transformaciones naturales. Más adelante, en la sección del lema de Yoneda, veremos detalles sobre la categoría de funtores $[\mathscr{A}, \mathbf{Con}]$ donde \mathscr{A} es localmente pequeña.

4. Límites y colímites

Definición 4.1 (Diagrama). Sean \mathscr{C} , I dos categorías, con I una categoría pequeña. Un diagrama en \mathscr{C} de forma I es simplemente un funtor $D: I \to \mathscr{C}$.

Definición 4.2. Sea $D: I \to \mathscr{C}$ un diagrama en \mathscr{C} . Un *cono* de D consta de un objeto $X \in \mathscr{C}$, al que llamamos *vértice del cono*, junto a una familia de flechas $\{X \xrightarrow{f_i} D(i) \mid i \in \text{Obj}(I)\} \subseteq \mathscr{C}$ tales que para cada flecha $i \xrightarrow{u} j \in I$ el siguiente diagrama conmuta

Definición 4.3. Sea $D: I \to \mathscr{C}$ un diagrama en \mathscr{C} . Un *límite* de D es un cono $(L \xrightarrow{l_i} D(i))_{i \in I}$ tal que para cualquier otro cono $(X \xrightarrow{f_i} D(i))_{i \in I}$ existe una única flecha $X \xrightarrow{h} L \in \mathscr{C}$ tal que el siguiente diagrama conmuta

para todo $i \in I$

Si el límite de un diagrama D existe, normalmente denotamos al vértice de su cono límite con Lim(D).

Conceptos duales...

Observaciones entre las propiedades universales mencionadas antes, límites colímites...

Definición 4.4. Decimos que una categoría $\mathscr C$ es completa, si para cada categoría pequeña I, todo diagrama $D:I\to\mathscr C$ tiene límite en $\mathscr C$

Teorema 4.5. Sean A y C dos categorías. Si C es completa, entonces [A,C] es completa

Demostración. PENDIENTE □

5. Lema de Yoneda

Introducción sobre el lema de Yoneda, mención y demostración... o solo un sketch suficientemente convincente de que funciona la prueba

Adjunctiones

Definición 6.1. Sean F y G dos funtores

6.1. Monadas una pequeña introducción. Esta mini sección tiene el objetivo de introducir otra faceta de las adjunciones, empecemos con una situación de abstracta sin sentido.

Dado un funtor $T: \mathcal{C} \to \mathcal{C}$ quisiéramos (por que no) factorizarlo es decir, queremos encontrar una categoría \mathcal{D} y funtores $F: \mathcal{C} \to \mathcal{D}$, y $G: \mathcal{D} \to \mathcal{C}$ tal que:

$$T = GF \quad F \dashv G$$
.

Esta factorización nos da una *presentación universal de T* donde universal quiere decir *libre* para hallar tal descomposición universal necesitamos desarrollar un poco mas de teoría, primero algunos ejemplos de posibles funtores a factorizar:

(1) Sea $M: \mathbf{Con} \to \mathbf{Con}$ el funtor que asigna a cada conjunto A su conjunto de todas las posibles palabras que se pueden formar con A, es decir que tiene como alfabeto a A, M es flechas esta dado en *generadores* es decir, dad cualquier función $f: A \to B$ sea $Mf: MA \to MB$ dada por

$$Mf(a_1...a_n) = f(a_1)...f(a_n).$$

Casos interesantes para este M es cuando M es un tipo de monoide.

- (2) Sea **Pos** la categoría de conjuntos parcialmente ordenados, denotemos por $\mathscr{P}_{fin}(A, \leq)$ = { subconjuntos finitos de A} entonces para cualesquiera $C, D \in \mathscr{P}_{fin}(A, \leq)$ denotemos:
 - (i) $C \leq D$ si y solo si $\downarrow C \subseteq \downarrow D$.
 - (ii) $C \leq D$ si y solo si $\uparrow C \supseteq \uparrow D$.
 - (iii) $C \leq D$ si y solo si $\downarrow C \subseteq \downarrow D$ y $\uparrow C \supseteq \uparrow D$.

Esto da lugar a tres funtores $\mathscr{P}_{fin}(\underline{\ })$: **Pos** \rightarrow **Pos** con cada una de las decoraciones anteriores, es decir con cada uno de los ordenes parciales.

- (3) Denotemos por $\mathscr{D}\mathscr{C}$ **Pos** la categoría de *conjuntos parcialmente ordenados comple*tamente dirigidos, es decir, $A \in \mathscr{D}$ **Pos** si:
 - (i) A es un conjunto parcialmente ordenado.
 - (ii) Cada subconjunto $D \subseteq A$ dirigido tiene supremo en A.

Fabricamos el siguiente funtor, (_) $_{\perp}$: $\mathscr{D}\mathscr{C}\mathbf{Pos} \to \mathscr{D}\mathscr{C}\mathbf{Pos}$ donde el .elemento" \perp esta fijo, entonces este funtor manda a cada copo directamente completo digamos,

D a este mismo solo que se adjunta \bot como elemento menor, la acción en flechas es la obvia, $f: A \rightarrow B$ entonces

$$\begin{cases} f_{\perp}(a)a & a \in D \hookrightarrow D_{\perp} \\ \perp & a = \perp \end{cases}$$

(4) (a) Consideremos una de nuestras categorías favoritas, Top la categoría de espacios topológicos junto con funciones continuas, fijemos nuestra atención en la subcategoría reflexiva de espacios topológicos T_0 , denotemos por Top_0 a esta subcategoría plena, Para cada $S \in Top_0$ sea $\mathscr{C}S$ los cerrados de S y consideramos los siguientes conjuntos

$$\Diamond U = \{ X \in \mathscr{C}S \mid X \cap U \neq \emptyset \}$$

sea

$$\Omega S^{\Diamond} = \langle \Diamond U \mid U \in \Omega S \rangle$$

la topología generada por estos conjuntos, entonces tenemos el funtor (_) $^{\Diamond}$: $Top_0 \rightarrow Top_0$ que manda a cada espacio a ($\mathscr{C}S, \Omega S^{\Diamond}$) y en cada función continua, digamos $f: S \rightarrow T$ sea

$$f^{\diamond}: (\mathscr{C}S, \Omega S^{\diamond}) \to (\mathscr{C}T, \Omega T^{\diamond})$$

la función continua dada por

$$f^{\Diamond}(X) = f[\bar{X}]$$

Este ejemplos tiene algo que ver con el hiperespacio de Vietoris y la monada diamante potencia.

(b) En esta misma digamos, vertiente denotemos por STop la categoría de espacios sobrios localmente compactos junto con funciones continuas como nuestras flechas, sea $\mathscr{K}S = \{$ compactos de $S\}$ topologizamos este conjunto con:

$$\Box U = \{ X \in \mathscr{C}S \mid X \subseteq U \}$$

y tomamos la topología generada por estos;

$$\Omega S^{\square} = \langle \square U \mid U \in \Omega S \rangle$$

de manera análoga a la anterior tenemos un funtor (_) $^\square$: $STop \to STop$ solo que en flechas se calcula como

$$f^{\square}(X) = f[X]$$

7. Monadas

De acuerdo con nuestros problemas sin sentido, es decir, la factorización que queremos construir para $T: \mathscr{C} \to \mathscr{C}$, necesitamos que exista una adjunción \mathscr{D} y funtores $F: \mathscr{C} \to \mathscr{D}$, y $G: \mathscr{D} \to \mathscr{C}$ tal que:

$$T = GF \quad F \dashv G$$
.

, entonces tenemos que asegurar que existan flechas

$$\eta: id \ \mathscr{C} \to GF \ y \ \epsilon: FG \to id_{\mathscr{D}}$$

de tal manera que para todo $A \in \mathcal{C}$ y para todo $D \in \mathcal{D}$ los triángulos:

conmutan.

En nuestro supuesto si tenemos que T=GF entonces podemos asumir que tenemos una transformación natural $\eta: id_{\mathscr{C}} \to T$ ahora no podemos hablar de la transformación natural ϵ ya que no tenemos forma de hablar de FG si solo tenemos la información T=GF, pero podemos hacer lo siguiente:

$$G \in F : GFGF = TT \rightarrow GF = T$$

que se puede derivar directamente del triangulo

$$FA \xrightarrow{F\eta_A} FGFA$$

$$\downarrow_{\varepsilon F_A} \text{ y as i podemos exigir la existencia de una transformación}$$

natural

$$\mu: T^2 \to T$$

Entonces para tener una definición adecuada de lo que es la factorización necesitamos tener una terna (T, η, μ) . Es instructivo para el lector (neurótico) calcular η y μ de nuestros ejemplos clave.

Sin embargo necesitamos aun mas información para tener una definición adecuada de lo que será nuestra monada.

Usando la supuesta adjunción de nuestro endofuntor $T: \mathscr{C} \to \mathscr{C}$ aplicando G al triangulo

$$FA \xrightarrow{F\eta_A} FGFA$$
 con cateto obtenemos

$$TA = GFA \xrightarrow{T\eta_A = GF\eta_A} T^2A = GFGFA$$

$$\downarrow^{\mu_A = G\varepsilon F_A}$$

$$GFA = TA$$

Y si en el triangulo para G tomamos la componente con D = FA uno obtiene:

$$TA = GFA \xrightarrow{\eta_{TA} = \eta GFA} T^2 A = GFGFA$$

$$\downarrow^{\mu_A = G\varepsilon_{FA}}$$

$$TA = GFA$$

es decir,

$$id_{TA} = \mu_A T \eta_A y id_{TA} = \mu_A \eta_{TA}.$$

es decir tenemos un tipo de *conmutatividad* entre $T\eta_A$ y η_{TA} y estas identidades son las mas cercanas a nuestro caso original (recuerden que empezamos con una factorización chida).

Pero aun no tenemos todo lo que necesitamos, algo nos esta faltando, tenemos dos maneras naturales de ir desde T^3A a TA, como el siguiente cuadro indica:

$$T^{3}A = GFGFGFA \xrightarrow{T\mu_{A} = GFG\epsilon_{FA}} T^{2}A$$

$$\mu_{TA} = G\epsilon_{F}GFA \xrightarrow{\mu_{A} = G\epsilon_{FA}} TA = GFA$$

$$T^{2}A = GFGFA \xrightarrow{\mu_{A} = G\epsilon_{FA}} TA = GFA$$

este debemos demandar que conmute para cada A.

Todas las consideraciones anteriores siempre y cuando exista tal factorización codifican la siguiente definición:

Definición 7.1. Una monada (T, η, μ) en una categoría \mathscr{C} consiste de los siguientes datos:

(i) Un funtor $T: \mathscr{C} \to \mathscr{C}$.

(ii) transformaciones naturales

$$\eta: id_{\mathscr{C}} \to T \ \text{y} \ \mu: T^2 \to T.$$

tales que:

$$\mu_A T \eta_A = i d_{TA} = \mu_A \eta_{TA} \vee \mu_A T \mu_A = \mu_A \mu_{TA}$$
.

- (i) Un ejemplo de lo anterior es considerar un conjunto parcialmente ordenado *A* pensado como categoría tenemos que una monada sobre *A* es un operador cerradura.
- (ii) Algo mas elaborado es considerar para una categoría & digamos esencialmente pequeña, su categoría de endofuntores [&, &], esta categoría es estrictamente monoidal cerrada ya que tiene un tensor, este dado por la composición de funtores, una monada para & no es nada mas que un monoide respecto a este tensor.

Todas las observaciones anteriores dan lugar a la siguiente:

Proposición 7.2. Si (F, G, η, ϵ) son datos de una adjunción con $F: \mathscr{C} \to \mathscr{D}$ entonces la terna $(GF, \eta, G \in F)$ define una monada en \mathscr{C} .

Resulta (o debería de ser) que esta definición es suficiente para tener la factorización dada, para realmente justificar esto necesitamos un poco mas de trabajo.

8. Ternas de Kleisli

La definición de monada que dimos \ref{Monage} se derivo de la definición de adjunción dada por las identidad triangulares, pero como sabemos existen tres formas clásicas de definir adjunción veamos que sucede con la dada por flechas universales. requiere la existencia de un funtor $G: \mathscr{D} \to \mathscr{C}$ y una asignación (no se requiere funtorialidad) F que solo actúe en objetos de \mathscr{C} a objetos de \mathscr{D} , pero esto esta subyugado al hecho de que para cada objeto $A \in \mathscr{C}$ y cada flecha $\eta_A: A \to GFA$ tal que para todo

$$f: A \to GD$$

con D cualquier objeto de \mathcal{D} exista una única flecha

$$f^+: FA \to D$$

de tal manera que

$$f = Gf^+\eta_A$$
.

, es decir tenemos una función

$$(_)^+$$
: $\mathscr{C}(A, GD) \to \mathscr{D}(FA, D)$.

en un dibujo:

Esto en \mathscr{C}

D

Esto otro en \mathscr{D} .

Como antes queremos dado T encontrar F y G de tal manera que hagan la gracia de arriba y factoricen a T, la ventaja de esta definición es que no siendo F un funtor a priori, podemos entonces empezar T mandando objetos en objetos.

, y así se debe de pedir, que para cada objeto A en \mathscr{C} exista una flecha $\eta_A \colon A \to TA$. En este caso el operador de flechas $(_)^+$ esta descrito como sigue: Si

$$f: A \rightarrow GFB$$

entonces

$$Gf^+: GFA \rightarrow GFB$$

y aquí se demanda que para toda

$$f: A \to TB$$

exista una flecha

$$f^*: TA \to TB$$

, En otras palabras el operador esta definido :

$$\mathscr{C}(A, TB) \to \mathscr{C}(TA, TB)$$

ahora desglosemos las ecuaciones que ligan la receta de $(T, \eta, (_)^*)$. Imitando un poco la universalidad de la flecha que nos da la definición de adjunción tenemos que pedir:

$$f^*\eta_A = f$$
.

Y entonces si $\eta_A: A \to GFA$ y por la propiedad universal debemos tener :

$$Gid_{FA} \circ \eta_A = \eta_A = G\eta_A^+ \circ \eta_A$$

y por unicidad entonces obtenemos

$$\eta_A^+ = i d_{FA}$$

con esto debemos exigir a nuestra terna que

$$\eta_A^* = i d_{FA}$$
.

Y por último que sucede con la propiedad universal en este caso, veamos, sea

$$f: A \rightarrow GFB \ y \ g: B \rightarrow GFC$$

entonces

$$\begin{array}{ccc}
A & \xrightarrow{f^+} & GFB \\
 & \downarrow^{Gg^+} \\
GFA & \xrightarrow{Gf^+} & GFC
\end{array}$$

Que por unicidad debemos de tener

$$(Gg^+ \circ f)^+ = g^+ \circ f^+$$

y así

$$G(Gg^+ \circ f)^+ = Gg^+ \circ Gf^+.$$

Entonces requerimos para nuestro operador (_)* lo análogo, es decir,

$$(g^* \circ f)^* = g^* \circ f^*$$

con esto cocinado tenemos nuestra definición:

Definición 8.1. Una monada de Kleisli en una categoría & consiste de los siguientes datos:

- (i) Un operador T de objetos de \mathscr{C} en objetos de \mathscr{C} .
- (ii) Para cada A una flecha distinguida η_A .
- (iii) Para todo $A, B \in \mathcal{C}$ una función (_)*: $\mathcal{C}(A, TB) \to \mathcal{C}(TA, TB)$ sujeto a las siguientes ecuaciones

$$f^* \circ \eta_A = f \quad \eta_A^* = i \, d_{TA} \quad (g^* \circ f)^* = g^* \circ f^*$$

Y así hablaremos de la monada de Kleisli como la terna $(T, \eta, (_)^*)$.

Y claro tenemos la proposición correspondiente con la definición de adjunción mediante flechas universales.

Proposición 8.2. Si $(F, G, \eta, (_)^+)$ describe una adjunción en \mathscr{C} con F una asignación de objetos de \mathscr{C} en objetos de \mathscr{D} entonces $(GF, \eta, G(_)^+)$ define una monada de Kleisli en \mathscr{C} .

El lector perspicaz notara que debe de haber una relación entre la definición ?? y la definición ??, pues lo esperado sucede:

Proposición 8.3. Las nociones de monada y monada de Kleisli son equivalentes.

Demostración. Empecemos con una monada de Kleisli digamos $(T, \eta, (_)^*)$ en \mathbb{C} , entonces veamos como hacer que T sea un funtor de carne y hueso, tomemos $f: A \to B$ en \mathbb{C} y sea su correspondiente $Tf: Ta \to TB$ dado:

$$Tf = (\eta_B \circ f)^*$$

esto lo hace funtorial ya que para todo $A \in \mathcal{C}$ se tiene:

$$Tid_A = (\eta_A \circ id_A)^* = \eta_A^* = id_{TA}.$$

y para flechas

$$A \xrightarrow{f} B \xrightarrow{g} C$$

tenemos que:

$$Tg \circ Tf = (\eta_C \circ g)^* \circ (\eta_B \circ f)^*$$

$$= ((\eta_C \circ g)^* \circ \eta_B \circ f)^*$$

$$= (\eta_C \circ g \circ f)^*$$

$$= T(g \circ f),$$

Ahora en efecto η es una transformación natural, es decir para cualquier flecha $f: A \to B$ en \mathcal{C} tenemos:

$$\eta_R \circ f = T f \circ \eta_A$$
.

Calculamos:

$$T f \circ \eta_A = (\eta_B \circ f)^* \circ \eta_A = \eta_B \circ f.$$

es decir es natural.

Ahora nos falta calcular el otro dato de monada, la multiplicación, $\mu\colon T^2\to T$ esta la damos como:

$$\mu_A = i d_{TA}^* \colon T^2 A \to TA.$$

Y esto en efecto es natural, es decir para cualquier $f: A \rightarrow B$ tenemos que:

$$\mu_{B} \circ T^{2} f = i d_{TB}^{*} \circ (\eta_{TB} \circ T f)^{*}$$

$$= (i d_{TB}^{*} \circ \eta_{TB} \circ T f)^{*}$$

$$= (i d_{TB} \circ T f)^{*}$$

$$= (T f)^{*}$$

$$= (\eta_{B} \circ f)^{**}$$

$$= ((\eta_{B} \circ f)^{*} \circ i d_{TA}^{*})^{*}$$

$$= (\eta_{B} \circ f)^{*} \circ i d_{TA}^{*}$$

$$= T f \circ \mu_{A},$$

Solo resta calcular las tres ecuaciones, entonces calculamos:

$$\mu_A \circ \eta_{TA} = i d_{TA}^* = i d_{TA}.$$

y

$$\mu_{A} \circ T \eta_{A} = i d_{TA}^{*} \circ (\eta_{TA} \circ \eta_{A})^{*} = (i d_{TA}^{*} \circ \eta_{TA} \circ \eta_{A})^{*} = (i d_{TA} \circ \eta_{A})^{*} = \eta_{A}^{*} = i d_{TA}.$$

Finalmente el cuadrado adecuado conmuta:

$$\begin{split} \mu_{A} \circ T \mu_{A} &= i \, d_{TA}^{*} \circ (\eta_{TA} \circ i \, d_{TA}^{*})^{*} \\ &= (i \, d_{TA}^{*} \circ \eta_{TA} \circ i \, d_{TA}^{*})^{*} \\ &= (i \, d_{TA} \circ i \, d_{TA}^{*})^{*} \\ &= i \, d_{TA}^{**} \\ &= (i \, d_{TA}^{*} \circ i \, d_{T^{2}A}^{*})^{*} \\ &= i \, d_{TA}^{*} \circ i \, d_{T^{2}A}^{*} \\ &= \mu_{A} \circ \mu_{TA}, \end{split}$$

Y así (T, η, μ) define una monada en \mathbb{C} .

Recíprocamente, si comenzamos con los datos de una monada (T, η, μ) en \mathbb{C} ., claro casi tautológicamente tenemos que T y η satisfacen las condiciones de la definición $\ref{finition}$, resta ver que el operador de conjuntos de funciones $(_)^*$ cumple lo requerido, sea entonces $f: A \to TB$ en \mathbb{C} pongamos f^* que sea la flecha

$$TA \xrightarrow{Tf} T^2B \xrightarrow{\mu_B} TB$$

resta ver que se cumplen las ecuaciones de Kleisli, para esto tomemos cualquier $f: A \rightarrow TB$, entonces

$$f^* \circ \eta_A = \mu_B \circ T f \circ \eta_A = \mu_B \circ \eta_{TB} f = i d_{TB} \circ f = f.$$

de aquí

$$\eta_A^* = \mu_A \circ T \eta_A = i d_{TA}$$
.

como se pedía. Ahora para f como antes tenemos con $g \in C(A, TB)$, entonces calculamos usando la funtorialidad de T:

$$g^* \circ f^* = \mu_C \circ Tg \circ \mu_B \circ Tf$$

$$= \mu_C \circ \mu_{TC} \circ T^2 g \circ Tf$$

$$= \mu_C \circ T\mu_C \circ T^* g \circ Tf$$

$$= \mu_C \circ T(\mu_C \circ Tg \circ f)$$

$$= (g^* \circ f)^*,$$

y así los datos $(T, \eta, (_)^*)$ define una monada de Kleisli.

Ahora en efecto si denotamos por $\mathcal{M}(\mathcal{C}) = \{ \text{ monadas en } \mathcal{C} \}$ y por $\mathcal{K}\mathcal{M}(\mathcal{C}) = \{ \text{ monadas de Kleisli en } \mathcal{C} \}$ Tenemos entonces dos asignaciones

$$\mathcal{M}(\mathcal{C}) \to \mathcal{K} \mathcal{M}(\mathcal{C})$$

y

$$\mathcal{K}\mathcal{M}(\mathcal{C}) \to \mathcal{M}(\mathcal{C})$$

dadas por $(T, \eta, (_)^*) \leadsto (T, \eta, \mu)$ y viceversa forman una biyección, en efecto si empezamos con una de Kleisli $(T, \eta, (_)^*) \leadsto (T, \eta, \mu)$ y su monada construida como antes, entonces para cualquier flecha $f: A \to TB$ y entonces

$$\mu_{B} \circ Tf = id_{TA}^{*} \circ (\eta_{B} \circ f)^{*} = (id_{TA}^{*} \circ \eta_{B} \circ f)^{*} = (id_{TA} \circ f)^{*} = f^{*}.$$

y así obtenemos la monada de Kleisli original. Y viceversa si empezamos con una monada usual (T, η, μ) con su Kleisli y de allí obtenemos la monada dada por esta entonces con los cálculos que tenemos hechos

$$id_{TA}^* = \mu_{TA} \circ Tid_{TA} = \mu_{TA} \circ id_{T^2A} = \mu_{TA}.$$

y así recuperamos la monada con la que empezamos.

Esto esta bien, ya tener dos opciones para cocinar la factorización que estamos buscando, pero aún así necesitamos una solución *universal*.

Solución de Kleisli

La solución que describiremos aquí es debida a Kleisli en su celebra artículo Every standard construction is induced by a pair of adjoint functors (habrá que ponerlo en la biblio) Esta construcción empieza con una adjunción FG donde ya esta tenemos a la categoría $\mathcal D$ que soluciona el problema de factorización, es decir tenemos:

$$\mathcal{D}(FA, FB) \cong \mathcal{C}(A, GFB) \cong \mathcal{C}(A, TB).$$

Definición 9.1. La *categoría de Kleisli* \mathcal{C}_T de una monada de Kleisli $(T, \eta, (_)^*)$ en una categoría \mathcal{C} consiste de los siguientes datos:

- (i) Los objetos son los mismos que los de C.
- (ii) Las flechas $A \rightarrow B$ están dadas por $A \rightarrow TB$;
- (iii) Las identidades para cada A están dadas por η_A .
- (iv) La composición esta dada, $f: A \rightarrow B$ y $g: B \rightarrow C$ en \mathcal{C}_T :

$$A \xrightarrow{f} TB \xrightarrow{g^*} TC$$

Formalmente deberíamos distinguir entre las composición en \mathcal{C} y la de \mathcal{C}_T para esto digamos que el símbolo $g \bullet f$ representa la composición en \mathcal{C}_T .

También nos falta verificar que en efecto los datos de ?? constituyen una categoría, para esto si $f: A \rightarrow B$ en \mathcal{C}_T tenemos que la composición con la identidad esta dada como

$$f^* \circ \eta_A = f$$
.

Y pos-componiendo (si es que dicha palabra existe) con la identidad B tenemos:

$$\eta_B^* \circ f = i d_B \circ f = f.$$

Por otro lado sea f como antes y tomemos dos flechas que se pueden componer en \mathcal{C}_T digamos $g: B \to C$ y $h: C \to D$, entonces

$$h \bullet (g \bullet f) = h^* \circ (g^* \circ f) = (h^* \circ g^*) \circ f = (h^* \circ g)^* \circ f = (h \bullet g) \bullet f.$$

Y por lo tanto:

Proposición 9.2. Con la notación de la definición $\ref{eq:proposition}$ se tiene que $\ref{eq:proposition}$ es una categoría.

Existe una comparación directa entre objetos de \mathcal{C} y \mathcal{C}_T , $F_T \colon Obj\mathcal{C} \to Obj\mathcal{C}_T$ esta asignación no hace nada perse, también podemos comparar con un funtor $G_T \colon \mathcal{C}_T \to \mathcal{C}$ como sigue, en cada objeto $C \in \mathcal{C}_T$ entonces $G_T(C) = TC$ y en cada morfismo $f \colon A \to B$ en \mathcal{C}_T lo mandamos a $f^* \colon TA \to TB$ en \mathcal{C} , esto en efecto define un funtor ya que en

identidades tenemos que η_A lo manda a $\eta_A^* = id_{TA}$, si $f: A \to B$ y $g: b \to C$ en \mathcal{C}_T . entonces:

$$G_{Tg} \circ G_{Tf} = g^* \circ f^* = (g^* \circ f)^* = G_T(g \bullet f).$$

y así G_T preserva las composiciones y por lo tanto es un funtor. Ahora claramente tenemos:

$$T = G_T F_T$$

en objetos, queremos estatar una propiedad universal para esta construcción. Para este fin, tomemos un $f: A \to G_T B$ con $A \in \mathcal{C}$ y $B \in \mathcal{C}_T$. necesitamos construir una flecha única $f^+: F_T A \to B$ en \mathcal{C}_T tal que:

$$G_T f^+ \circ \eta_A = f$$
.

esto es justamente lo que hace nuestra construcción hace que $f: A \to G_T B = TB$ es un morfismo en la categoría \mathcal{D} , y así, $G_T f^+ = f^*$ y calculando

$$G_T f^+ \circ \eta_A = f^* \circ \eta_A = f$$

como se requería. Ahora para la unicidad, si $g: F_TA \to B$ en \mathcal{C}_T dado por una flecha $g: A \to TB$ en \mathcal{C} entonces

$$G_{Tg} \circ \eta_A = g^* \circ \eta_A = g$$
,

entonces tenemos que g = f, por lo tanto hemos encontrado una adjunción con las propiedades deseadas, por último cabe notar que aunque no se pidió, es claro que F_T es un funtor, el problema con el es que no es muy interesante a diferencia de G_T .

Es un ejercicio que el lector calcule la categoría de Kleisli de los ejemplos que hemos dejado al principio de esta sección.

Vale la pena en este punto (supongo) poner un poco de contexto aún mas abstracto sin-sentido, sea (T, η, μ) una monada en una categoría \mathcal{C} . denotemos por Ad \mathcal{C} a la categoría de todas las adjunciones (F, G, η, ϵ) : $\mathcal{C} \to \mathcal{A}$ tales que definen a (T, η, μ) y las flechas de Ad \mathcal{C} están dadas como sigue, si

$$(F,G,\eta,\epsilon)$$
: $\mathcal{C}\mathcal{A}$

y

$$(F', G', \eta', \epsilon')$$
: \mathcal{CA}'

son adjunciones sobre C, un morfismo entre estas

$$(F,G,\eta,\epsilon) \rightarrow (F',G',\eta',\epsilon')$$

es un par de funtores $K: A \to A'$ y L: CC tal que los siguientes diagramas conmutan:

$$\begin{array}{ccc}
A & \xrightarrow{G} & X \\
\downarrow K & & \downarrow L \\
A' & \xrightarrow{G'} & X'
\end{array}$$

$$\begin{array}{ccc}
A & \xrightarrow{F} & X \\
\downarrow K & & \downarrow L \\
A' & \xrightarrow{F'} & X'
\end{array}$$

Hemos así probado dos hechos destacables:

Teorema 9.3. (Comparación de Kleisli) Dada una adjunción (F, G, η, ϵ) en una categoría \mathcal{C} , y sea $T = (GF, \eta, G \epsilon F)$ la monada que esta define, entonces existe un único funtor $L: \mathcal{C}_T \to \mathcal{A}$ con $GL = G_T$ y $LF_T = F$.

Teorema 9.4. Dada una monada (T, η, μ) en una categoría \mathcal{C} ,

En la práctica ya que estamos hablando de objetos en la categoría de adjunciones de una categoría agradable, podríamos preguntarnos si tal categoría tiene objeto final.

10. La solución de Eilenberg y Moore

En efecto construyamos el objeto final en la categoría de posibles adjunciones que factoricen una monada dada.

11. La adjunción entre **Frm** y **Top**

Esta sección está dedica a desglosar varias de las cosas que presentamos en estas notas aterrizándolas en dos categorías especificas (**Frm** y **Top**).

Uno de los primeros ejemplos de marcos, y de hecho, la motivación para la definición, fue que los abiertos de un espacio topológico S forman un marco $\mathcal{O}S$. Aquí desarrollaremos más a fondo la relación entre marcos y espacios topológicos. No es complicado verificar que la asignación $S \mapsto \mathcal{O}S$ es un funtor contra variante $\mathcal{O}: \mathbf{Top} \to \mathbf{Frm}$. La asignación en objetos está dado por la topología del espacio y la asignación en flechas a través de la preimagen de las funciones continuas (estas resultan ser un morfismo de marcos por las

propiedades de la preimagen). Para detalles más específicos consultar [?] o [?].

Ahora la tarea es construir un funtor de regreso pt: $\mathbf{Frm} \to \mathbf{Top}$ y probaremos que ambos funtores forman una adjunción.

Antes de continuar, vale la pena mencionar que todos nuestros espacios (de carne y hueso) serán al menos T_0 . Recordemos que un espacio T_0 es un espacio donde cada par de puntos se pueden separar por al menos un abierto. Más aún:

Teorema 11.1. La categoría **Top**₀ de espacios topológicos T_0 es reflexiva en **Top**. Es decir, el funtor de inclusión **Top**₀ \rightarrow **Top** tiene un adjunto izquierdo.

Demostración. Es un ejercicio sencillo.

La razón de esta decisión es que, en un espacio que no es T_0 , hay pares de puntos que tienen exactamente las mismas vecindades de abiertos, así que no tienen mucha esperanza de ser caracterizados por sus marcos de abiertos. Otro ejercicio sencillo que ayuda a familiarizarse con los espacios T_0 es el siguiente. En cualquier espacio topológico, los puntos tienen un preorden (es decir, una relación reflexiva y transitiva) dado por

$$q \sqsubseteq p \iff \overline{q} \subseteq \overline{p}$$

Este se llama preorden de especialización.

11.1. El espacio de puntos. Dado un espacio con un punto $\{*\}$, el conjunto de puntos de S está en biyección con las funciones continuas $\{*\} \rightarrow S$:

$$S \simeq \mathbf{Top}(\{*\}, S)$$

donde cada punto $s \in S$ está asociado a la función $* \mapsto s$. Así, si 2 es el marco de dos elementos $2 = \{0 < 1\}$, cada de estas funciones $s : \{*\} \to S$ induce un morfismo de marcos $\chi_s : \mathscr{O}S \to \mathscr{O}\{*\} \simeq 2$ dado como

$$\chi_s(u) = \begin{cases} 1, & s \in u \\ 0, & s \notin u \end{cases}.$$

Así, para cada marco A, tiene sentido definir los puntos de A como morfismos Frm(A,2). En efecto, más adelante consideraremos esta construcción. Sin embargo, primero consideraremos otra construcción equivalente: representaremos cada morfismo $\chi: A \to 2$ con un elemento de A de manera canónica: el elemento

$$p = \bigvee \{ x \in A \mid \chi(x) = 0 \}$$

es el único elemento de A que cumple

$$x \le p$$
 si, y solo si $\chi(x) = 0$.

En particular, dado que $\chi(1) = 1$, tenemos $p \neq 1$. Por otro lado, para cualesquiera $x, y \in A$ con $x \land y \leq p$, tenemos

$$\gamma(x) \wedge \gamma(y) = \gamma(x \wedge y) = 0$$
,

así que $\chi(x) = 0$ o bien $\chi(x) = 0$, pues χ toma valores en el marco 2. es decir: $x \le p$ o bien $y \le p$.

Definición 11.2. Sea $A \in \mathbf{Frm}$. Un punto o elemento \wedge -irreducible de A es un elemento $p \in A$ con $p \ne 1$ tal que si $x \wedge y \le p$, entonces $x \le p$ o $y \le p$. Denotamos por ptA al conjunto de todos los puntos de A.

Lema 11.3. Sea $A \in Frm$.

- Cada máximo de A es ∧-irreducible.
- Si A es booleano, entonces todo elemento \land —irreducible de A es máximo.
- Si A es una cadena, entonces cada elemento propio de A es \land —irreducible.

Demostración.

■ Sea $p \in A$ máximo, entonces p < 1. Si $x \land y \le p$ y suponiendo que $x \not\le p$, entonces $p < x \lor p$ y, por la maximalidad de p, tenemos que $p \lor x = 1$. Similarmente, $y \not\le p$ implica $p \lor y = 1$. Si $x \not\le p$ y $y \not\le p$, se tiene que

$$p = p \lor (x \land y) = (p \lor x) \land (p \lor y) = 1.$$

Esto es una contradicción ya que p < 1.

- Supongamos que A es booleano. Sean $p \in \operatorname{pt} A$ y $x, y \in A$ con p < x y $y = \neg x$. Tenemos que $x \land y = 0 \le p$, entonces $x \le p$ ó $y \le p$ ya que p es \land —irreducible. Además $y \le p < x$ puesto que p < x. En consecuencia, $x \lor y = 1 = x$, así, p es máximo.
- Supongamos que A es una cadena. Para cualesquiera $x, y \in A$, tenemos que $x \le y$ ó $y \le x$, es decir, $x \land y \le x$ ó $x \land y \le y$. Sea $p \in A$ con p < 1. Si $x \land y \le p$, entonces $x \le p$ ó $y \le p$.

Sean $A \in \mathbf{Frm}$ y $a \in A$. Decimos que un punto $p \in \mathsf{pt}A$ está en $U_A(a) \subseteq \mathsf{pt}A$ si, y sólo si $a \nleq p$.

Lema 11.4. Sean $A \in \text{Frm } y \ a, b \in A$.

- $U_A(1) = ptA$.
- $U_A(0) = \emptyset$.
- $U_A(a \wedge b) = U_A(a) \cap U_A(b)$.
- $U_A(\bigvee X) = \bigcup \{U_A(x) | x \in X\}, \ \forall X \subseteq A.$

Demostración. Sean $A \in \mathbf{Frm} \ y \ a, b \in A$.

- Por definición $U_A(1) \subseteq \operatorname{pt} A$. Sea $p \in \operatorname{pt} A$, entonces $p \neq 1$. Además $1 \nleq p$, por lo que $p \in U_A(1)$. Así, $U_A(1) = \operatorname{pt} A$.
- Supongamos que $U_A(0) \neq \emptyset$. Sea $p \in U_A(0)$. Por definición, $0 \nleq p$ pero $0 \le a$, $\forall a \in A$. Por lo tanto, $U_A(0) = \emptyset$.
- Sea $p \in ptA$. Tenemos que

$$p \in U_A(a \land b) \iff a \land b \nleq p$$

$$\iff a \nleq p \quad y \quad b \nleq p$$

$$\iff p \in U_A(a) \quad y \quad p \in U_A(b)$$

$$\iff p \in U_A(a) \cap U_A(b).$$

Por lo que $U_A(a \wedge b) = U_A(a) \cap U_A(b)$.

■ Sea $X \subseteq A$ y notemos que si $X = \emptyset$, entonces ocurre el segundo punto. En caso contrario,

$$p \in U_A(\bigvee X) \Rightarrow \bigvee X \nleq p$$

$$\Rightarrow existe \ x \in X \ tal \ que \ x \nleq p$$

$$\Rightarrow p \in U_A(x)$$

$$\Rightarrow p \in \bigcup \{U_A(x) \mid x \in X\}.$$

Además.

$$p \in \bigcup \{U_A(x) \mid x \in X\} \Rightarrow p \in U_A(x) \text{ para algún } x \in X$$
$$\Rightarrow x \nleq p$$
$$\Rightarrow \bigvee X \nleq p$$
$$\Rightarrow p \in U_A(\bigvee X).$$

Por lo tanto, $U_A(\bigvee x) = \bigcup \{U_A(x) | x \in X\}, \forall X \subseteq A.$

Se sigue que $U_A(A) = \{U_A(a) \mid a \in A\}$ es una topología en pt*A*. Al espacio topológico (pt*A*, $U_A(A)$) lo llamamos el *espacio de puntos* de *A*. Dado que la topología de pt*A* es \mathcal{O} pt*A* = $U_A(A)$, se sigue que $U_A : A \to \mathcal{O}$ pt*A* es un morfismo suprayectivo de marcos, al cual llamamos la *reflexión espacial* de *A*. Si U_A es inyectivo (y, por lo tanto, un isomorfismo) decimos que el marco *A* es *espacial*.

Observación 11.5.

 (La reflexión espacial como un cociente) Como U_A: A → Øpt es suprayectivo, el marco ØptA es el cociente de A (por definición de cocientes en Frm) bajo el núcleo de U_A: el núcleo S ∈ NA dado como

$$x < S(a) \iff U(x) \subseteq U(a)$$

(los núcleos son cierto tipo de funciones definidas en los marcos y estos están en correspondencia biyectiva con los cocientes. Para un marco *A*, *NA* denota el conjunto de todos sus núcleos).

2. Además, por el lema adecuado, el núcleo S de U_A admite la descripción

$$S(a) = \bigwedge \{ p \in ptA | a \le p \}.$$

3. Dados dos puntos $p, q \in ptA$, se cumple

$$q \sqsubseteq p \iff \overline{q} \subseteq \overline{p}$$

$$\iff (\forall x \in A)[q \in U(x) \Rightarrow p \in U(x)]$$

$$\iff (\forall x \in A)[x \le p \Rightarrow x \le q]$$

$$\iff p \le q.$$

Es decir, el preorden de especialización del espacio de puntos es el orden opuesto al orden heredado del marco:

$$(ptA, \sqsubseteq) = (ptA, \leq)^{op}$$
.

En particular, ya que su preorden de especialización es un orden parcial, esto prueba que el espacio de puntos es T_0 .

11.2. Funtorialidad y naturalidad. Queremos ver que la asignación $A \mapsto ptA$ es un funtor y que la reflexión espacial $U_A : A \to \mathcal{O}ptA$ es una transformación natural

$$U_{\bullet}$$
: $id_{Frm} \rightarrow \mathcal{O}pt(\underline{\ })$.

Lo primero es verificar que, dado un morfismo de marcos $f: A \to B$, obtenemos una función continua pt $f: ptB \to ptA$ entre los espacios de puntos. De hecho, ptf será la restricción del adjunto derecho $f_*: B \to A$ a los puntos de B, pero hay que verificar que f_* manda puntos a puntos.

Si p es un punto de ptB, veamos que f_*p es un punto de A. Primero, f_*p no puede ser 1, ya que en ese caso $1 \le f_*(p)$ implicaría $f(1) \le p$ por la adjunción, pero esto es imposible ya que $p \ne 1$. Ahora veamos que f_*p es \land -irreducible. Si $x, y \in A$ son tales que $x \land y \le f_*(p)$, por adjunción tenemos $f(x) \land f(y) \le p$. En consecuencia, $f(x) \le p$ ó $f(y) \le p$, i.e., $x \le f_*(p)$ o $y \le f_*(p)$. Por lo tanto, $f_*(p) \in ptA$.

En resumen, dado un morfismo de marcos $f: A \to B$, obtenemos una función $\operatorname{pt} f: \operatorname{pt} B \to \operatorname{pt} A$ dada por la restricción de $f_*: B \to A$.

Observemos que, para todo $p \in ptB$, tenemos

$$p \in (\operatorname{pt} f)^{-1}(U_A(a)) \iff f_*(p) \in U_A(a)$$

$$\iff a \nleq f_*(p)$$

$$\iff f(a) \nleq p$$

$$\iff p \in U_B(f(a)).$$

Por lo tanto pt f: pt $B \to ptA$ es continua. Es fácil ver que, dados morfismos $k: C \to B$ y $h: B \to A$, se satisface $(hk)_* = k_*h_*$. Además, el adjunto derecho de id: $A \to A$ también es la identidad de A. De estas observaciones se sigue que la asignación pt es un funtor (contravariante) pt: **Frm** \to **Top**.

Además, en el párrafo anterior probamos que

$$\mathcal{O}(\operatorname{pt} f)(U_A(a)) = U_B(f(a))$$

para todo $a \in A$. Es decir: el diagrama

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
U_A \downarrow & & \downarrow U_B \\
\mathscr{O}ptA & \xrightarrow{\mathscr{O}ptf} & \mathscr{O}ptB
\end{array}$$

conmuta, así $U_{\bullet} = (U_A \mid A \in \mathbf{Frm})$ es una transformación natural $U_{\bullet} : \mathrm{id}_{\mathbf{Frm}} \to \mathscr{O}\mathrm{pt}$.

11.3. El espacio de puntos del marco de abiertos. ¿Qué tanta información acerca de un espacio topológico se puede recuperar a través de su marco de abiertos? Comenzaremos preguntándonos cómo se relacionan los puntos de un espacio S con los puntos de ptOS. Como dijimos al principio, un punto $S \in S$ se puede ver como una función continua $S \in S$, la cual induce un morfismo $S \in S$ como

(1)
$$\chi_s(u) = \begin{cases} 1, & s \in u \\ 0, & s \notin u. \end{cases}$$

Por lo tanto, el \land -irreducible que le corresponde a s es

(2)
$$\Phi_{S}(s) = \bigvee \{ u \in \mathscr{O}S \mid \chi_{s}(u) = 0 \} \in \mathsf{pt}\mathscr{O}S.$$

Esto nos da una función $\Phi_S: S \to \operatorname{pt} \mathscr{O} S$. Esta descripción se puede simplificar. Notemos que, dados $s \in S$ y $u \in \mathscr{O} S$, tenemos

$$\gamma_s(u) = 0 \iff s \notin u \iff s \in u' \iff \overline{s} \subseteq u' \iff u \subseteq \overline{s}'.$$

Luego,

(3)
$$\Phi_{S}(s) = \bigvee \{ u \in \mathscr{O}S \mid u \subseteq \overline{s}' \} = \overline{s}' \in \operatorname{pt}\mathscr{O}S.$$

Ahora, recordemos que un abierto de ptOS es de la forma

$$U_{\mathscr{O}S}(u) = \{ p \in \mathsf{pt}\mathscr{O}S \mid u \not\subseteq p \}.$$

Tenemos

$$s \in (\Phi_S)^{-1}(U_{\mathscr{O}S}(u)) \iff \Phi_S(s) \in U_{\mathscr{O}S}(u)$$

$$\iff \overline{s}' \in U_{\mathscr{O}S}(u)$$

$$\iff u \not\subseteq \overline{s}'$$

$$\iff s \in u.$$

Es decir,

$$(\Phi_S)^{-1}(U_{\partial S}(u)) = u.$$

En particular, $(\Phi_S)^{-1}$ manda abiertos de pt $\mathscr{O}S$ en abiertos de S, así que la función $\Phi_S: S \to \operatorname{pt}\mathscr{O}S$ es continua. Por último, observemos que, dada una función continua $\psi: S \to T$, las

funciones $\Phi_S : S \to pt \mathscr{O}S$ hacen conmutar el diagrama

$$\begin{array}{ccc} S & \xrightarrow{& \psi & & T \\ & \Phi_{s} \downarrow & & & \downarrow \Phi_{T} \\ & \text{pt} \mathscr{O} S & \xrightarrow{\text{pt} \mathscr{O} \psi} & \text{pt} \mathscr{O} T \end{array}$$

En efecto, para todo $v \in \mathcal{O}T$, tenemos

$$v \subseteq (\operatorname{pt}\mathscr{O}\psi)(\Phi_{S}(s)) \iff v \subseteq (\mathscr{O}\psi)_{*}(\Phi_{S}(s))$$

$$\iff (\mathscr{O}\psi)(v) \subseteq \Phi_{S}(s)$$

$$\iff \psi^{-1}(v) \subseteq \overline{s}'$$

$$\iff s \notin \psi^{-1}(v)$$

$$\iff \psi(s) \notin v$$

$$\iff v \subseteq \overline{\psi(s)}'$$

$$\iff v \subseteq \Phi_{T}(\psi(s)),$$

por lo cual $(\operatorname{pt} \mathscr{O} \psi)(\Phi_S(s)) = \Phi_T(\psi(s))$. Luego, la familia de funciones continuas

$$\Phi_{\bullet} = (\Phi_S : S \to pt \mathscr{O} S \mid S \in \mathbf{Top})$$

es una transformación natural

$$\Phi_{\bullet}$$
: $id_{Top} \rightarrow pt \mathcal{O}$.

11.4. La adjunción. En la primera parte, vimos que todo morfismo de marcos $f:A \to B$ induce una función continua pt $f: \operatorname{pt} B \to \operatorname{pt} A$ dada como la restricción del adjunto derecho $f_*: B \to A$ de f y probamos que esta asignación es un funtor $\operatorname{pt}: \operatorname{Frm} \to \operatorname{Top}$. Ahora veremos que pt y el funtor de abiertos $\mathscr{O}: \operatorname{Top} \to \operatorname{Frm}$ son las mitades de una adjunción contravariante entre Top y Frm . En particular, construiremos un isomorfismo

(4)
$$\mathbf{Frm}(A, \mathcal{O}S) \simeq \mathbf{Top}(S, \mathsf{pt}A)$$

natural en A y en S.

Cuando aprendimos sobre adjunciones, vimos el caso covariante, en el cual el isomorfismo de adjunción es equivalente a la existencia de dos transformaciones naturales que satisfacen las identidades triangulares.

Ahora veremos que, en el caso contravariante, tenemos el resultado análogo: las identidades triangulares adecuadas implican el isomorfismo natural.

Recordemos que las transformaciones naturales $U_{\bullet}: \mathrm{id}_{\mathbf{Frm}} \to \mathscr{O}\mathrm{pt} \ \mathrm{y} \ \Phi_{\bullet}: \mathrm{id}_{\mathbf{Top}} \to \mathrm{pt}\mathscr{O}$ tienen componentes dadas como

$$U_A: A \to \mathcal{O} \operatorname{pt} A$$

$$a \mapsto U_A(a) = \{ p \in \operatorname{pt} A \mid a \nleq p \},$$

$$\Phi_S: S \to \operatorname{pt} \mathcal{O} S$$

$$s \mapsto \Phi_S(s) = \overline{s}'.$$

Primero veremos que se cumplen las identidades triangulares

En efecto, usando las equivalencias

$$u \subseteq \Phi_S(s)$$
 si, y solo si $s \notin u$,
 $x \in U_A(a)$ si, y solo si $a \nleq x$,

tenemos

$$x \in (\mathscr{O}\Phi_S)(U_{\mathscr{O}S}(u)) \iff \Phi_S(x) \in U_{\mathscr{O}S}(u)$$

$$\iff u \nleq \Phi_S(x)$$

$$\iff x \in u,$$

$$a \leq (\operatorname{pt}U_A)(\Phi_{\operatorname{pt}A}(x)) \iff U_A(a) \leq \Phi_{\operatorname{pt}A}(x)$$

$$\iff x \notin U_A(a)$$

$$\iff a \leq x.$$

Es decir, $(\mathcal{O}\Phi_S)(U_{\mathcal{O}S}(u)) = u$ y $(\operatorname{pt}U_A)(\Phi_{\operatorname{pt}A}(x)) = x$, como se quería. Ahora, afirmamos que las funciones

Frm(
$$A$$
, $\mathscr{O}S$) \rightarrow Top(S , pt A)
 $f \mapsto \bar{f} = (\operatorname{pt} f)\Phi_S$,
Frm(A , $\mathscr{O}S$) \leftarrow Top(S , pt A)
($\mathscr{O}\varphi$) $U_A = \varphi \mapsto \bar{\varphi}$.

conforman una biyección. En efecto, la naturalidad de Φ_{\bullet} , U_{\bullet} y las identidades triangulares implican la conmutatividad de los diagramas

por lo cual tenemos

emos
$$\bar{\bar{f}} = \overline{(\operatorname{pt} f)\Phi_S} \qquad \qquad \bar{\bar{\varphi}} = \overline{(\mathscr{O}\varphi)U_A} \\ = \mathscr{O}((\operatorname{pt} f)\Phi_S)U_A \qquad \qquad = \operatorname{pt}((\mathscr{O}\varphi)U_A)\Phi_S \\ = (\mathscr{O}\Phi_S)(\mathscr{O}\operatorname{pt} f)U_A \qquad \qquad = (\operatorname{pt} U_A)(\operatorname{pt}\mathscr{O}\varphi)\Phi_S \\ = f, \qquad \qquad = \varphi.$$

Esto nos da la biyección mencionada al inicio de esta subsección. De manera explícita, la biyección está dada como $\mathbf{Frm}(A, \mathcal{O}S) \ni f \longleftrightarrow \varphi \in \mathbf{Top}(S, \mathsf{pt}A)$, donde

$$s \in f(a)$$
 si, y solo si $a \nleq \varphi(s)$

para cualesquiera $s \in S$, $a \in A$, puesto que

$$s \in f(a) \iff f(a) \nleq \Phi_{S}(s)$$

$$\iff a \nleq (\operatorname{pt} f)(\Phi_{S}(s)) = \bar{f}(s),$$

$$a \nleq \varphi(s) \iff \varphi(s) \in U_{A}(a)$$

$$\iff s \in (\mathcal{O}\varphi)(U_{A}(a)) = \bar{\varphi}(a).$$

Finalmente, veamos que la biyección es natural en A y en S. Dado un morfismo de marcos $g: A \rightarrow B$, el diagrama

$$\mathbf{Frm}(B, \mathscr{O}S) \xrightarrow{f \to \tilde{f}} \mathbf{Top}(S, \operatorname{pt}B)
\xrightarrow{-\operatorname{og}} \qquad \qquad \downarrow \operatorname{ptg} \circ -$$

$$\mathbf{Frm}(A, \mathscr{O}S) \xrightarrow[h \to \tilde{h}]{} \mathbf{Top}(S, \operatorname{pt}A)$$

es conmutativo:

$$\overline{fg} = \operatorname{pt}(fg)\Phi_S$$
$$= (\operatorname{pt}g)(\operatorname{pt}f)\Phi_S$$
$$= (\operatorname{pt}g)\bar{f}.$$

Similarmente, dada una función continua $\psi: S \to T$, el diagrama

$$\begin{array}{ccc} \mathbf{Frm}(A,\mathscr{O}T) & \stackrel{\tilde{\varphi}\varphi}{\longleftarrow} & \mathbf{Top}(T,\mathrm{pt}A) \\ \mathscr{O}\psi \circ - & & & \downarrow - \circ \psi \\ \mathbf{Frm}(A,\mathscr{O}S) & \stackrel{\tilde{\xi}\xi}{\longleftarrow} & \mathbf{Top}(S,\mathrm{pt}A) \end{array}$$

es conmutativo:

$$\overline{\varphi\psi} = \mathcal{O}(\varphi\psi)U_A
= (\mathcal{O}\psi)(\mathcal{O}\varphi)U_A
= (\mathcal{O}\psi)\bar{\varphi}.$$

11.5. La propiedad universal de las reflexiones. Para esta subsección veremos que las biyecciones dadas por la adjunción revelan las propiedades universales del espacio de puntos y el marco de abiertos. La biyección

Frm
$$(A, \mathscr{O}S) \simeq$$
 Top $(S, \operatorname{pt}A)$

$$f \mapsto \bar{f} = (\operatorname{pt}f)\Phi_S$$

$$(\mathscr{O}\varphi)U_A = \bar{\varphi}\varphi.$$

se puede leer como sigue: dado un morfismo $f:A\to \mathcal{O}S$, existe una única función continua $\varphi:S\to \operatorname{pt} A$ tal que el diagrama

$$\begin{array}{ccc}
A & \xrightarrow{f} \mathscr{O}S \\
U_A \downarrow & & & & & & & & & & \\
\mathscr{O}ptA & & & & & & & & & & \\
\end{array}$$

conmuta. Similarmente, dada una función continua $\varphi: S \to \operatorname{pt} A$, existe un único morfismo $f: A \to \mathcal{O} S$ tal que el diagrama

$$S \xrightarrow{\varphi} ptA$$

$$\Phi_{S} \downarrow ptf$$

$$ptOS$$

conmuta.

12. Álgebras para la adjunción spec ∃ Ø

En esta sección usaremos lo aprendido en las sección ?? y la sección anterior,

Primero trabajaremos con una extensión de la adjunción entre **Frm** y **Top**, para esto consideremos la categoría de retículas distributivas

$$\mathfrak{D}L_1$$

esta categoría tiene como subcategoría ala categoría de marcos, lo interesante es que podemos definir un funtor

$$spec: \mathcal{D}Lt \rightarrow \mathbf{Top}$$

que a cada retícula distributiva le asocia su espacio espectral, es decir, su espectro (ideales primos), teniendo esto en mente, veremos que tenemos una adjunción:

Top
$$0 \downarrow \neg \uparrow spec$$

$$DLt^{op}$$

que como se espera esta se restringe a una equivalencia, que se le conoce como la equivalencia de Stone entre retículas distributivas y espacios coherentes (espectrales).

Referencias

- C. H. Dowker; D. Strauss, Separation axioms for frames, Topics in Topology, pp. 223–240. Proc. Colloq., Keszthely, 1972. Colloq. Math. Soc. Janos Bolyai, vol. 8, North-Holland, Amsterdam, 1974.
- [2] J. R. Isbell, Atomless parts of spaces, Math. Scand. 31 (1972) 5–32.
- [3] P. T. Johnstone, Stone spaces, Cambridge Studies in Advanced Mathematics, vol. 3, Cambridge University Press, Cambridge, 1982. MR 698074

- [4] P. T. Johnstone; S.-H. Sun, Weak products and Hausdorff locales, Categorical Algebra and its Applications, pp. 173–193. Lecture Notes in Mathematics, vol. 1348. Springer-Verlag, Berlin, 1988.
- [5] J. Monter; A. Zaldívar, *El enfoque locálico de las reflexiones booleanas: un análisis en la categoría de marcos* [tesis de maestría], 2022. Universidad de Guadalajara.
- [6] J. Paseka; B. Šmarda, T2-frames and almost compact frames, Czechoslovak Math. J. 42 (1992) 297–313.
- [7] J. Picado and A. Pultr, *Frames and locales: Topology without points*, Frontiers in Mathematics, Springer Basel, 2012.
- [8] J. Picado and A. Pultr, Separation in point-free topology, Springer, 2021.
- [9] J. Rosický; B. Šmarda, T1-locales, Math. Proc. Cambridge Philos. Soc. 98 (1985) 81–86.
- [10] RA. Sexton, A point free and point-sensitive analysis of the patch assembly, The University of Manchester (United Kingdom), 2003.
- [11] RA. Sexton and H. Simmons, *Point-sensitive and point-free patch constructions*, Journal of Pure and Applied Algebra **207** (2006), no. 2, 433-468.
- [12] H. Simmons, *The assembly of a frame*, University of Manchester (2006).
- [13] H. Wallman, Lattices and topological spaces, Ann. Math. 39 (1938) 112–126.
- [14] A. Zaldívar, Introducción a la teoría de marcos [notas curso], 2024. Universidad de Guadalajara.

Centro Universitario de Ciencias Exactas e Ingenieria, Universidad de Guadalajara, Blvd Gral. Marcelino García Barragán 1421, Olimpica, 44430 Guadalajara, Jalisco

E-mail address: luis.zaldivar@academicos.udg.mx

Centro Universitario de Ciencias Exactas e Ingenieria, Universidad de Guadalajara, Blvd Gral. Marcelino García Barragán 1421, Olimpica, 44430 Guadalajara, Jalisco

E-mail address: juan.monter2902@alumnos.udg.mx