

Data Warehouse

——A Multi-dimensional data model——

徐华

清华大学 计算机系 智能技术与系统国家重点实验室 xuhua@tsinghua.edu.cn

1

Data Model

- Review the basic concepts of database
- What is a data warehouse?
- A multi-dimensional data model
- Data warehouse architecture
- Data warehouse implementation
- From data warehousing to data mining

Data Cube (1)

- A data warehouse is based on a multidimensional data model which views data in the form of a data cube
- A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions
 - ◆ Dimension tables (维表), such as item (item_name, brand, type), or time(day, week, month, quarter, year)
 - ◆ Fact table (事实表) contains measures (such as dollars_sold) and keys to each of the related dimension tables
- In data warehousing literature, an n-D base cube is called a base cuboid(基本方体).
 The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid(顶端方体).
 The lattice of cuboids forms a data cube.

Data Cube (3)

- Dimension and Dimension table
 - Dimension: is the perspectives or entities with respect to which an organization wants to keep records.
 - Dimension table: is a set of properties to further describes a dimension.
- Each dimension may be associated with a dimension table.

Time, item, location, provider

- Fact and fact table
 - ◆ Fact: the measure of a theme
 - Fact table: the representation of the fact. It contains the names of the facts, keys to each of the related dimension tables. Facts are numerical, sales amount

5

Data Cube (4)

Dimension number of data cube

The number of dimensions to be viewed.

Sales (item time location dollars_sold)

Base cuboid: the cube which contains all dimensions that can be viewed in data warehousing.

Apex cuboid: the cube which contain no dimension.

Data Cube: is the all cuboids in a multi dimensional data model.

(

Data Cube — **One Example(1)**

ALLElectronics sales

dimension: time, item, location, brand

dimension table:

time(time_key day day_of_week month quarter year)
item(item_key item_name brand type supplier_key)

fact table: (time_key item_key brand_key location_key dollars_sold units_sold)

7

Data Cube — One Example(2)

≥ 2-dimension data cube:

location=" Vancouver"

	item(type)		
Time(quarter)	entertainment	computer	security
Q1	605	825	400
Q2	680	920	512
Q3	781	1026	501
Q4	824	1120	580

8 L

Conceptual Modeling of Data Warehouses

- Modeling data warehouses: dimensions & measures
 - Star schema: A fact table in the middle connected to a set of dimension tables
 - ◆ <u>Snowflake schema</u>: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake
 - ◆ <u>Fact constellations (事实星座)</u>: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called <u>galaxy schema</u> or fact constellation

Cube Definition Syntax (BNF) in DMQL

- Cube Definition (Fact Table)
 define cube <cube name> [<dimension list>]: <measure list>
- Dimension Definition (Dimension Table)
 define dimension <dimension_name> as (<attribute_or_subdimension_list>)
- Special Case (Shared Dimension Tables)
 - First time as "cube definition"
 - define dimension < dimension_name > as < dimension_name_first_time > in cube < cube_name_first_time >

15

Defining Star Schema in DMQL

define cube sales_star [time, item, branch, location]:

dollars_sold = sum(sales_in_dollars), avg_sales = avg(sales_in_dollars), units_sold = count(*)
define dimension time as (time_key, day, day_of_week, month, quarter, year)

define dimension item as (item_key, item_name, brand, type, supplier_type)

define dimension branch as (branch_key, branch_name, branch_type)

define dimension location as (location_key, street, city, province_or_state, country)

Defining Snowflake Schema in DMQL

17

Defining Fact Constellation in DMQL

A Concept Hierarchy: Dimension

- A concept hierarchy defines a sequence of mappings from a set of low-level concepts to higher-level, more general concepts.
 - categories:
 - · the hierarchy of property: location, province, country
 - the hierarchy or grouping of property value
- For a given dimension, there may be more than one concept hierarchy.

Typical OLAP Operations

- Roll up (drill-up): summarize data
 - by climbing up hierarchy or by dimension reduction
- Drill down (roll down): reverse of roll-up
 - from higher level summary to lower level summary or detailed data, or introducing new dimensions
- Slice and dice: project and select on one or more dimensions
- Pivot (rotate):
 - reorient the cube, visualization, 3D to series of 2D planes
- Other operations
 - ♦ drill across: involving (across) more than one fact table
 - drill through: through the bottom level of the cube to its back-end relational tables (using SQL)

