Transformation! -

object on display is known as transformation.

Basic Transfermation

- . The basic transformation includes three transformations. Translation, Rotation & Scaling.
- These three transformations are known as basic transformation because with combination of these three transformations we can obtain any transformation.

Translation was no to transper alle mos

mathematical metation of the constraint of the c

- · It is a transformation that used to reposition the object along the straight line path from one co-ordinate location to another.
- · It is rigid bood transformation so we need to translate whole object.

· we translate two dimensional point by adding translation distance to and ty to the original co-ordinate position (a,y) to move at new position (ai, y') as:

n'= x+ta & y'= y+ty

- · Translation distance pour (tr.ty) is called Translation vector or shift vector.
- · Me can represent it in now vector single matrin equation in column vector ces

a wive transparations we aut 1959 any $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t \alpha \\ t y \end{bmatrix}$

· The can also represent it in now vector form as: [a'y']=[a y]+[ta ty].

4. Steinmakin

. Since column vector representation is standard mathematical notation and since many graphics package l'he CIKS & PHIGS uses column vector we will also follow column vector representati

It is a transformation small weed to reposition

Example: -Manslate the traingle A (10,10) 13(15,15) ((20,10) 2 unit in a direction and I unit in y direction we know that relieves my probe together and i.e. $\begin{bmatrix} \alpha' \\ y \end{bmatrix} = \begin{bmatrix} \alpha \\ y \end{bmatrix} + \begin{bmatrix} t \\ t \\ y \end{bmatrix}$ For point (10, 20) for point (15,15) $A' = \begin{bmatrix} 10 \\ 10 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ $= \begin{bmatrix} 127 \\ 127 \end{bmatrix}$ $= \begin{bmatrix} 127 \\ 117 \end{bmatrix}$ $= \begin{bmatrix} 127 \\ 167 \end{bmatrix}$ $= \begin{bmatrix} 177 \\$ For point (20,10) sussala es miles signar constitutos use first find his educings $C' = \begin{bmatrix} 20 \\ 10 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ = \[\frac{22}{11} \] Final co-ordinate after tran