Scheda di controllo per mano robotica

Paolo Scaramuzza (1105663)

Contenuti

- 1 Obiettivi di progetto
- 2 Architettura generale
- 3 Servomotori: funzionamento e modifica
- 4 Connettività
- 5 Architettura software
- 6 Considerazioni finali

Obiettivi di progetto

- Controllo di angolo, velocità e forza di 5 servomotori
- Rate di aggiornamento $\geq 100Hz$
- Alimentazione a batteria
- Controllo WiFi e USB
- Facilità d'uso e programmazione

Architettura generale

Servomotori - Funzionamento

- Sistema in feedback
- Facile controllo
- Non conosco l'angolo effettivo
- Non conosco la corrente assorbita (sforzo)

Servomotori - Lettura dell'angolo

IDEA: loop di controllo esterno (microcontrollore)

$$V_{ADC} = V_A \cdot \frac{10k}{10k + 15k} = \frac{\alpha}{180^{\circ}}$$

Non assorbire corrente dal potenziometro!

Servomotori - Lettura della corrente

IDEA: loop di controllo esterno (microcontrollore)

$$V_{ADC} = 16 \cdot 0.24 \cdot I_s \approx \frac{1V}{256} \cdot I_s^{(mA)}$$

Errore sistematico (correggibile) pari all'1,54%

ESP8266

- Prodotta da Espressif (Shanghai)
- Molto diffusa tra i *makers*
- IEEE 802.11 b/g/n Wi-Fi con stack TCP/IP completo
- 80 MHz 32bit RISC CPU (Tensilica Xtensa LX106)

ESP8266 - Funzionamento e comandi

- Alimentazione: 2,5 3,3V 150mA ($\approx 0,5W$)
- Interfaccia seriale 115200baud (modificabile)
- Set di comandi Hayes (AT attention)
- AT+<comando><CR><LF>

Function	AT Command	Response
Working	AT	OK
Restart	AT+RST	OK [System Ready, Vendor:www.ai-thinker.com]
Firmware version	AT+GMR	AT+GMR 0018000902 OK
List Access Points	AT+CWLAP	AT+CWLAP +CWLAP:(4,"RochefortSurLac",- 38,"70:62:b8:6f:6d:58",1) +CWLAP:(4,"LiliPad2.4",-83,"f8:7b:8c:1e:7c:6d",1) OK
Join Access Point	AT+CWJAP? AT+CWJAP="SSID","Password"	Query AT+CWJAP? +CWJAP:"RochefortSurLac" OK

Adattatore seriale USB

- Pochi componenti esterni (capacità di *bypass*)
- Alimentazione: 1,8 5V 8mA ($\approx 40mW$)
- Da 300 a 3M baud con o senza parità
- USB product name e manufacturer configurabili

Scheda elettrica

Architettura software

esp_driver

- Ponte tra comandi AT e movimento
- Inizializzazione del modulo ESP8266
- Parsing AT e accumulo comandi in buffer circolari

esp_driver - Comandi

■ via TCP (server: 192.168.4.1:333)

■ 16bit lunghezza fissa

■ ACK livello applicazione (Stop-and-wait ARQ)

serio_driver

- Debug e configurazione
- Buffer circolari
- Supporto a printf() e scanf()

battery_driver

- Gestione alimentazione e potenza
- Indicazione livello batteria

adc_driver

ADC getServoAngle(servo num)

- Acquisizione dati (*sweep*)
- Conversione di grandezze

servo_driver

- Loop di controllo esterno
- Sincronizzato con il segnale PWM

servo_driver - Modalità operative

■ Singolo motore: Forza (corrente), velocità e angolo

■ Globalmente:

- FOLLOW → "mano morta"
- ANGLE → raggiunge una posizione con velocità imposta
- HOLD → stringe oggetti con forza nota

Conclusioni

- Da mano motorizzata a sensorizzata
- Portable
- ROS friendly
- Estendibile (Open Source e Open Hardware)
- Sviluppi futuri
 - Scrittura di un pacchetto ROS (già stand-alone)
 - Miglioramento letture ADC
 - Bootloader tramite USART (AVR911)
 - Prompt su USART