Chapitre 3 Arbre de couverture optimal

Présenté par : H. BENKAOUHA

Bureau 222, Faculté d'Informatique, USTHB haroun.benkaouha@usthb.edu.dz haroun.benkaouha@gmail.com

Définition d'un arbre

- Soit G=(X,U) un graphe orienté d'ordre $n \ge 2$. Gest un arbre si l'une des six (6) propriétés suivantes est vérifiée :
- 1. G est connexe et sans cycles.
- 2. G est sans cycles et admet n-1 arcs ou arêtes.
- 3. G est connexe et admet n-1 arcs ou arêtes.
- 4. *G* est <u>sans cycle maximal</u> (tout arc ou arête supplémentaire créé un cycle dans G).

Définition d'un arbre

- 5. *G* est <u>connexe minimal</u> (la suppression d'un arc ou arête quelconque le rend non connexe).
- 6. Pour toute paire de sommets $(x, y \in X, x \neq y)$ Il existe dans G une chaîne et une seule joignant xàv.
- Les 6 caractéristiques (propriétés) ci-dessus (propres aux arbres) sont équivalentes.

Arbre - Exemple • Un arbre de : -8 sommets 7 arêtes - Connexe - Pas de cycles Supprimer 1 arête : déconnexion - Rajouter 1 arête : cycle (8 - 1 seule chaîne entre 2 sommets qcq

Codage de Prufer – algorithme de codage

P ← vide; Tant que |X|>2 Choisir x dans X tel que $d_{G}(x)=1$ et x minimal; // feuille de numéro minimal $P \leftarrow P$. Adjacent(x); // Rajouter le sommet adjacent à x dans la liste ordonnée P $X \leftarrow X - \{x\}$; // Supprimer le sommet x $E \leftarrow E - \{x, Adjacent(x)\};$ // Supprimer l'arête incidente à x Fait

-P:3

-478

- Min: 4

- Voisin de 4:3

- Rajouter 3 dans P

• Sommets de degré 1 :

Enseignant: Dr. H. BENKAOUHA (haroun.benkaouha@usthb.edu.dz)

Arbre de couverture d'un graphe

- Soit G=(X,U) un graphe orienté d'ordre $n \ge 2$.
- On appelle <u>arbre dans *G*</u> un sous-graphe partiel de *G*, *H*=(*Y*, *V*) connexe et sans cycles.
- Un arbre est maximal dans G s'il contient le maximum possible de sommets de G (c'est-àdire Y=X si G est connexe).

nseignant : Dr. H. BENKAOUHA

Graphe pondéré (valué)

- · Poids d'un arc
 - Soit G=(X,U) un graphe orienté,
 - − On définit $p:U\rightarrow \mathcal{H}$ une application
 - associe pour chaque arc $u \in U$ de G une valeur réelle p(u)
 - appelée <u>poids</u> de l'arc *u*.
- Un tel graphe est appelé:
 - graphe pondéré, graphe valué ou réseau.
 - Noté G=(X,U,p)

Identification du problème

- Soit G=(X,U) un graphe orienté connexe muni d'une application poids p.
- La recherche dans *G* d'un arbre de poids optimal revient à :
 - trouver un graphe partiel G'=(X,U') de G qui soit un arbre maximal
 - et pour lequel la somme des poids des arcs de G' soit optimale (maximale ou minimale selon la situation).

Algorithme de Kruksal

```
V = tri poids croissant(U,p);
                                              j ← 1;
H \leftarrow \{V[1]\};
                          i \leftarrow 1;
Tant que (j < n-1)
Faire
  i \leftarrow i+1; u \leftarrow V[i];
  Si (H \cup \{u\} \text{ ne contient pas de cycle})
     Alors H \leftarrow H \cup \{u\}; j \leftarrow j+1;
      // L'arc sélectionné ne doit pas créer de cycle
  fSi
Fait
```

Algorithme de Kruksal - Exemple

Algorithme de Kruksal - Exemple

· Classer les arêtes dans un ordre croissant des poids.

Arête	Poids
{1,6}	1
{5,8}	1
{2,3}	2
{4,8}	2
{3,6}	3
{4,5}	3
{1,2}	4
(2.7)	

Arête	Poids
{5,7}	5
{2,4}	6
{5,6}	7
{6,7}	8
{4,6}	9
{1,7}	10
{3,4}	12

