

LA COMETE DE HALLEY

Des lois de Kepler à la Gravitation universelle de Newton

Mini-Projet de Physique PH121

Table des matières :

> Introduction à la mécanique céleste

•	Histoire de la mécanique céleste	P.3
•	Les précurseurs de la mécanique céleste	P.4
•	La comète de Halley	P.5
•	Objectif du Mini-Projet	P.6

≻ Les lois de Kepler

- Première loi de Kepler : la loi des orbites (1609) P.7
- Deuxième loi de Kepler : la loi des aires (1609) P.11
- Troisième loi de Kepler : la loi des périodes (1619) P.12

➤ <u>La loi de la gravitation universelle</u>

•	Force attractive 1/r ²	P.16
•	Conservation du moment cinétique	P.19
•	Conservation de l'énergie mécanique	P.20

Conclusion

> Annexes

•	Tableau 1	P.23
•	Tableau 2	P.24
•	Aires balayées	P.24
•	Vecteurs	P.25

INTRODUCTION A LA MECANIQUE CELESTE

Histoire de la mécanique céleste

La mécanique céleste permet de décrire les mouvements d'objets astronomique comme les étoiles, les planètes ou encore les comètes par exemple. Ces mouvements sont décrits grâce à des théories scientifiques du domaine de la physique et des mathématiques

L'objectif de la mécanique céleste est de prévoir, de manière précise, dans le passé ou le futur, la position des astres dans l'univers.

Le champ d'étude de la mécanique céleste vise particulièrement les corps du système solaire. Cette même mécanique s'appuie sur plusieurs principes établit par Galilée et Newton :

- L'espace est euclidien à trois dimensions, et le temps est un paramètre variant de moins l'infini à plus l'infini, indépendant du système de référence spatial envisagé.
- Il existe une infinité de repères fondamentaux, appelés repères inertiels, qui sont tous animés d'un mouvement de translation rectiligne uniforme les uns par rapport aux autres et qui sont tels que tout point matériel qui n'est soumis à aucune force est soit au repos dans l'un de ces repères, soit animé d'un mouvement rectiligne uniforme.
- Dans un repère inertiel, un point de masse m soumis à une force représentée par le vecteur \vec{F} prend une accélération représentée par le vecteur $\vec{\gamma}$, liée à \vec{F} par la relation :

$$\vec{F}=m\vec{\gamma}$$

On supposera alors que l'on est capable de prévoir à coup sûr toutes les actions physiques agissant sur un même point matériel et à les représenter sous la forme d'un vecteur \vec{F} , fonction de la position du point, de sa vitesse et d'autre paramètres, de telle sorte que l'accélération soit donnée par la formule ci-dessus. Si elle ne l'est pas, alors le référentiel n'est pas galiléen et on doit alors considérer des forces fictives appelées force d'inertie d'entrainement et force complémentaire de Coriolis.

• Si un point matériel A exerce sur un point B une force représentée par le vecteur $\overrightarrow{F_{AB}}$ alors le point B exerce une force $\overrightarrow{F_{BA}}$ sur le point A telle que $\overrightarrow{F_{AB}} = -\overrightarrow{F_{BA}}$

Les précurseurs de la mécanique céleste

Depuis l'aube de l'humanité, l'homme n'a cessé de regarder vers le ciel. Regarder vers ce ciel pour le comprendre. S'agit-il de dieux, du vide, d'un plafond ? Nul ne savait décrire cette voute au-dessus de leur tête. C'est ainsi qu'est née l'astronomie. L'astronomie désigne la science de l'observation des astres pour en déduire leur origine, leur évolution et les changements qu'ils effectuent sur notre monde.

L'astronomie joue un rôle important dans l'apparition de la mécanique céleste. En effet, au début du XVIe siècle, Copernic, un astronome polonais, réussi a démontrer l'héliocentrisme (ce n'est pas le Soleil qui tourne autour de la Terre mais la Terre qui tourne autour du Soleil). De part cette découverte, de nombreux hommes vont se pencher sur l'étude physique des corps céleste, c'est la révolution copernicienne.

Tycho Brahe, astronome danois, décide alors de se pencher sur les travaux de Copernic pour réussir à cataloguer différentes étoiles et produire un modèle d'univers cherchant à garder le système géocentrique de Ptolémée et le système héliocentrique de Copernic. Il effectuera ses travaux, jusqu'à sa mort, assisté par Johannes Kepler qui reprendra ses données astronomiques pour établir trois lois du mouvement des planètes.

Johannes Kepler est un des grands précurseurs de la mécanique céleste. Par ses théories et observations, il a réussi à établir que les planètes ne forment pas une trajectoire parfaitement circulaire autours du soleil. Selon lui, il s'agirait davantage d'une orbite elliptique dont le Soleil serait l'un des deux foyers.

En parallèle des travaux de Kepler, Galilée, mathématicien, physicien et astronome italien, réussi à démontrer la chute des corps. En parallèle de cela, il développe la lunette astronomique lui permettant d'étudier la surface de la Lune avec précision ainsi que de découvrir les lunes d'autres planètes comme Callisto, Io, Europe et Ganymède, 4 lunes de Jupiter.

Au XVIIe siècle, Isaac Newton, mathématicien et physicien anglais, fonde les bases de la mécanique classique. Ses travaux très poussés mathématiquement lui ont permis d'établir de nombreuses lois régissant les corps terrestres. Par ces calculs, il réussit également à prouver que les corps célestes sont soumis aux mêmes lois et c'est grâce à cette observation, ainsi qu'aux nombreux travaux de ses prédécesseurs dont Kepler, que Newton réussi à établir la loi universelle de la gravitation créant ainsi cette branche de l'astronomie : la mécanique céleste.

La Comète de Halley

Edmond Halley est un astronome et ingénieur britannique. Après son observation d'une comète, il cherche à déterminer sa périodicité et après plusieurs recherches, en 1682, il détermine alors que la comète devrait repasser proche de la Terre dans 76 ans. En 1578, la comète est baptisée « Comète de Halley ».

Cependant, ce n'était pas la première fois que la comète fut aperçue par des hommes. En effet, déjà en 611, 467 et 240 avant J.C., la comète avait été aperçue en Chine. De même en 837 où elle est aperçue en Chine, au Japon et en Europe. On a également retrouvé une tapisserie faisant écho au passage de la comète en 1066.

Depuis l'élaboration précise de la périodicité de la comète, on observe bien celle-ci tous les 76 ans : en 1835, 1910 et 1986. Le prochain passage de la comète serait donc en 2062.

Objectif du Mini-Projet

Ce mini-projet a pour objectif d'exploiter les données de la trajectoire de la comète de Halley pour retrouver dans un premier temps, les trois lois de Kepler (loi des orbites, lois des aires, lois des périodes). Dans un deuxième temps, nous chercherons à retrouver la loi de la gravitation universelle de Newton. Enfin, nous vérifierons la conservation du moment cinétique et de l'énergie mécanique.

L'ensemble de ce mini-projet nous permettra également de nous familiariser avec les outils du pack Office et notamment les logiciels EXCEL et WORD afin de traiter correctement les données du sujet.

Nous tracerons également les vitesses et les accélérations a différents points pour vérifier la trajectoire de la comète de Halley.

PARTIE 1: LES LOIS DE KEPLER

Première loi de Kepler : La loi des orbites (1609)

On notera:

- A : aphélie, le point le plus éloigné du soleil sur l'orbite elliptique
- P: périhélie ; le point le plus proche du soleil sur l'ellipse
- O : le centre de l'ellipse.
- a: le demi grand axe.
- b : le demi petit axe
- F_1 ; F_2 : Foyers de l'ellipse

Question 1:

On cherche dans un premier temps à mesurer les coordonnées x et y de la comète sur la feuille fournie durant le Mini-Projet. On rentre ainsi les valeurs obtenues dans un tableau EXCEL. On doit cependant convertir les données, mesurées en centimètre, en unités astronomique (u.a.). Ainsi on multiplie chaque valeur en centimètre obtenue par 1.053 pour obtenir la valeur exacte en unité astronomique. Nous traçons ensuite le nuage de point suivant (Annexe1) :

Question 2:

On cherche maintenant à démontrer que la trajectoire de la comète est une ellipse. Pour cela, on va mesurer la distance MF₁ et MF₂ pour chaque position de M afin de vérifier la propriété :

Une ellipse de foyer F1 et F2 est définie par un ensemble de points M vérifiant :

$$MF_1 + MF_2 = constante = 2.a$$

où a est le demi grand axe de l'ellipse

- ➤ On relève comme coordonnées pour F₁ (0,-34.4331) et pour F₂ (0,0)
- ► On calcule MF₁ et MF₂ en faisant : $MF = \sqrt{(x_F x_M)^2 + (y_F y_M)^2}$
- Avec le tableau EXCEL, on calcule la somme : MF₁ + MF₂ est on prend une valeur moyenne. On obtient ainsi une valeur moyenne de 35.62077 u.a.
- On divise par deux et on obtient a_{théo} = 17.810385 u.a.
- ➤ Par mesure, on obtient a_{mesuré} = 17.901
- ightarrow On calcul l'écart relatif $\frac{|a_{th\acute{e}o}-a_{mesur\acute{e}}|}{a_{th\acute{e}o}}*100=0.5\%$

On sait que:

e :excentricité de l'ellipse,
$$e=\frac{F_1F_1}{2*a}=\frac{34.4331}{2*17.810385}=0.9666$$
 p :paramètre focale de l'ellipse, $p=a*(1-e^2)=17.810385*(1-(0.9666)^2)=1.168$

Question 3:

On cherche maintenant à calculer, à l'aide du solveur EXCEL, les valeurs de p et e. On calcule alors les coordonnées polaires de la comète de Halley à l'aide des formules suivante :

Formules de passage :

$$\begin{cases} r = \sqrt{x^2 + y^2} \\ \cos \theta = \frac{x}{r} ; \sin \theta = \frac{y}{r} \end{cases}$$

On choisit ensuite une valeur e = 0.5 et p = 0.7. Cela nous permettra de calculer $r_{th\acute{e}orique}(\theta) = \frac{p}{1+ecos(\theta)}$ en fonction des valeurs de et et p.

Pour lancer le solveur EXCEL, il faut dans un premier temps calculer l'écart au carré :

$$E^2 = (r_{th\acute{e}o} - r_{mesur\acute{e}})^2$$

On calcule le carré pour se focaliser sur la valeur de l'écart et non le signe de celui-ci. Ensuite, on calcule la somme de tous ces écarts.

Nous pouvons désormais utiliser le solveur EXCEL afin de réduire au maximum la somme des écarts au carré en modifiant les valeurs de e et de p.

Puis on conserve les données obtenues

Fauquembergue Vincent; Jeannot Lucas;1PX

On obtient ainsi le tableau suivant :

	Solveur	Mesurée	% erreur
е	0,96638172	0,96665795	0,028583686
р	1,17806927	1,1678699	0,86576958

On peut observer que le pourcentage d'erreur est extrêmement faible donc les valeurs du solveur vérifient les calculs et relations obtenues précédemment.

EXCEL ne pouvant pas tracer en coordonnées polaires, nous repassons en coordonnées cartésiennes pour tracer la trajectoire théorique de la comète de Halley :

Deuxième loi de Kepler : La loi des aires (1609)

Question 1:

On représente sur la feuille de la trajectoire de la comète de Halley, les aires balayées par le rayon vecteur entre le :

- > 01/01/1974 et 01/01/1978
- > 01/01/1980 et 01/01/1984
- > 01/01/2000 et 01/01/2004

Question 2:

Nous allons ensuite faire une approximation de cette surface en l'approximant à un triangle. On mesure alors à l'aide d'une règle, la base ainsi que la hauteur de ce triangle pour calculer son aire :

$$Aire = \frac{base * hauteur}{2}$$

On peut ainsi calculer la vitesse aréolaire (en u.a.²/an) :

				Hauteur		Vitesse aréolaire
Cas		Dates	Base (ua)	(u.a)	Aire (u.a²)	(ua²/an)
1	1	1974 - 1978	4,95357882	5,6862	14,08352	3,520879989
2	2	1980 - 1984	8,24640867	3,2643	13,4593759	3,364843978
3	3	2000 - 2004	3,31527815	8,47665	14,0512263	3,512806566
Période		73,62178486	/	/	255,186126	3,466176844

On en déduit donc que la constante des aires est de :

$$C = 2 * Vitesse \ ar\'eolaire = 2 * 3.4662 = 6.9324 \ ua^2/an$$

On calcule la surface totale de l'orbite elliptique S :

$$S = \pi * a * b = 255.18613 ua^2$$

Où a est le demi grand-axe et b est le demi petit-axe

On peut ensuite calculer la période en notant que :

$$\frac{Aire}{4 \ ans} = \frac{Surface}{Periode} \leftrightarrow Vitesse \ ar\'eolaire = \frac{Surface}{Periode}$$
$$\leftrightarrow Periode = \frac{Surface}{Vitesse \ ar\'eolaire} \approx 73.62 \ ans$$

On sait que la période la comète de Halley est de 76.09 ans. On peut donc calculer l'écart relatif pour vérifier si nos résultats sont corrects :

$$\frac{\left|P_{th\acute{e}o}P_{exp}\right|}{P_{th\acute{e}o}} * 100 = 3.25\%$$

L'écart trouvé est assez faible ce qui peut nous conforter dans nos résultats.

Troisième loi de Kepler : La loi des aires (1619)

Question 1:

On cherche à calculer a³/T² pour chaque planète du système solaire et les différentes comètes pour vérifier la troisième loi de Kepler.

Avec les données fournis et les recherches effectuées, on obtient :

Planete	a (ua)	T (an)	a^3	T^2	a^3/T^2
Mercure	0,3871	0,2408	0,05800555	0,05798464	1,00036053
Venus	0,7233	0,6152	0,37840372	0,37847104	0,99982212
Terre	1	1	1	1	1
Mars	1,5237	1,8808	3,53751592	3,53740864	1,00003033
Jupiter	5,2026	11,862	140,819017	140,707044	1,00079579
Halley	17,81	76	5649,26254	5776	0,97805792
Encke	2,2145	3,3	10,8599307	10,89	0,99723882
Biela	3,5346	6,62	44,1591616	43,8244	1,0076387
Faye	3,84	7,52	56,623104	56,5504	1,00128565
Brorsen	3,1	5,46	29,791	29,8116	0,99930899
D'Arrest	3,496	6,51	42,7281679	42,3801	1,008213
Pons-					
Winnecke	3,434	6,37	40,4949505	40,5769	0,99798039
Tuttle	5,7017	13,5	185,358748	182,25	1,0170576
Tempel 1	3,071	5,51	28,9627269	30,3601	0,95397337
Tempel 2	3,071	5,47	28,9627269	29,9209	0,96797646
Saturne	9,5547	29,457	872,270463	867,714849	1,00525013
Uranus	19,218	84,02	7097,81323	7059,3604	1,00544707
Neptune	30,109	164,77	27295,3706	27149,1529	1,00538572

On remarque que la valeur de la constante est proche de 1 pour chaque astre en orbite autour du Soleil.

Question 2:

On trace alors la valeur du demi grand-axe au cube en fonction de la période au carré :

On remarque un lien de proportionnalité entre a^3 et T^2 ce qui confirme l'existence d'une constante

Question 3

On représente maintenant l'évolution de a en fonction de T sur une échelle logarithmique :

En échelle logarithmique, on observe que a en fonction de T est quasiment parfaitement linéaire.

Cette échelle nous permet de mettre en évidence les planètes et les comètes que l'on ne pouvait pas apercevoir distinctement sur la première échelle.

Question 4

On fait de même avec Jupiter et ses lunes :

Planet	a (ua)	T (an)	a (km)	T (jours)
Jupiter	5,2026	11,862	/	/
Métis	0,00085561	0,00079411	128000	0,29
Adrastée	0,0008623	0,00082149	129000	0,3
Amalthée	0,00120321	0,00136915	180000	0,5
Thébé	0,00148396	0,00183466	222000	0,67
lo	0,00282086	0,00484679	422000	1,77
Europe	0,00448529	0,00972097	671000	3,55
Ganymède	0,00715241	0,01960623	1070000	7,16
Callisto	0,0125869	0,04572962	1883000	16,7
Léda	0,07415775	0,65445385	11094000	239
Himalia	0,07673797	0,68731345	11480000	251
Lysithéa	0,07834225	0,70921986	11720000	259
Elara	0,07847594	0,71195816	11740000	260
Anankè	0,14171123	1,72786769	21200000	631
Carme	0,15106952	1,89490402	22600000	692
Pasiphaé	0,15708556	2,01265095	23500000	735
Sinope	0,15842246	2,07563186	23700000	758

On ajoute alors la série a en fonction de T pour l'échelle logarithmique dans le même graphique que les autres planètes :

Question 5:

Grâce à nos calculs et nos représentations graphiques sur une échelle logarithmique pour a en fonction de T ou par échelle classique pour a^3 en fonction de T^2 , on observe dans chaque cas l'apparition d'une constante pour $\frac{a^3}{T^2}$. On peut donc en conclure que la troisième loi de Kepler est bien vérifiée.

La troisième loi de Kepler est donc applicable à tous les éléments du système solaire, pour les comètes, planètes et même leurs propres satellites.

PARTIE 2: LOI DE LA GRAVITATION UNIVERSELLE

Les lois de Kepler ne fournissent aucun renseignement sur la cause des mouvements observés et c'est Isaac Newton qui fournit la réponse à ces questions.

Newton publie sa théorie en 1687 et montre qu'une loi d'attraction en $1/r^2$ permet d'expliquer les orbites elliptiques des planètes. Grâce à la loi de la gravitation universelle, une nouvelle branche de l'astronomie vit le jour : la mécanique céleste, l'étude du mouvement des astres sous l'effet de la gravitation.

Force attractive en 1/r²

Dans cette partie, nous allons utiliser la deuxième feuille d'annexe qui prend la position de la comète de Halley du 10 décembre 1985 jusqu'au 10 mars 1986 (dans la zone de la périhélie). On cherche à montrer que l'accélération en chaque point est orientée vers le foyer. On cherche également à déterminer la force qui s'exerce sur la comète.

Question 1:

On relève toutes les coordonnées de la trajectoire :

Dates	x (cm)	y (cm)	x (ua)	y (ua)
10/12/1985	-1,55	10,65	-0,16315789	1,30674847
16/12/1985	-0,75	10,05	-0,07894737	1,23312883
21/12/1985	0	9,45	0	1,1595092
25/12/1985	0,65	8,85	0,06842105	1,08588957
29/12/1985	1,25	8,35	0,13157895	1,02453988
05/01/1986	2,2	7,35	0,23157895	0,90184049
10/01/1986	2,95	6,45	0,31052632	0,79141104
15/01/1986	3,6	5,65	0,37894737	0,69325153
20/01/1986	4,35	4,5	0,45789474	0,55214724
25/01/1986	4,85	3,45	0,51052632	0,42331288
30/01/1986	5,25	2,45	0,55263158	0,3006135
05/02/1986	5,55	0,9	0,58421053	0,11042945
09/02/1986	5,6	0	0,58947368	0
15/02/1986	5,45	-1,5	0,57368421	-0,18404908
20/02/1986	5,15	-2,8	0,54210526	-0,34355828
26/02/1986	4,5	-4,1	0,47368421	-0,50306748
01/03/1986	4,1	-4,85	0,43157895	-0,59509202
05/03/1986	3,6	-5,65	0,37894737	-0,69325153
10/03/1985	3	-6,5	0,31578947	-0,79754601

Question 2:

On cherche maintenant à déterminer les vecteurs vitesses et accélérations. Pour les vecteurs vitesses, on convertit les valeurs, en ua, en kilomètre et le temps en secondes pour obtenir une vitesse en km/s :

Fauquembergue Vincent; Jeannot Lucas;1PX

Pour obtenir les vitesses, on fait les calculs suivants :

$$\begin{cases} v_{x2} = \frac{x_3 - x_1}{\Delta t} \\ v_{y2} = \frac{y_3 - y_1}{\Delta t} \\ \|\overrightarrow{v_2}\| = \sqrt{v_{x2}^2 + v_{y2}^2} \end{cases}$$

On obtient le tableau suivant :

x(km)	y(km)	Durée	vitesse	vitesse v (km/s)		
-24408421,1	195358896	/	vx	vy	/	
-11810526,3	184352761	950400	25,6822612	-23,1610584	34,5834233	
0	173346626	777600	28,3517436	-28,3079603	40,0644728	
10235789,5	162340491	691200	28,4783138	-29,1925841	40,7826106	
19684210,5	153168712	950400	25,6822612	-28,951323	38,700874	
34644210,5	134825153	1036800	25,8203379	-33,6157029	42,387561	
46454736,8	118315951	864000	25,5165692	-36,0926494	44,2015231	
56690526,3	103641104	864000	25,5165692	-41,400392	48,6321679	
68501052,6	82546012,3	864000	22,7826511	-46,7081345	51,9682501	
76374736,8	63285276,1	864000	16,4035088	-43,523489	46,5120328	
82673684,2	44941717,8	950400	11,5984405	-49,2172492	50,5654174	
87397894,7	16509202,5	864000	6,3791423	-52,0158771	52,405581	
88185263,2	0	864000	-1,82261209	-50,9543286	50,9869151	
85823157,9	-27515337,4	950400	-7,45614035	-54,0424697	54,5544	
81098947,4	-51361963,2	950400	-15,7407407	-50,1822933	52,5930934	
70863157,9	-75208589	777600	-21,2638077	-48,3594322	52,8278733	
64564210,5	-88966257,7	604800	-23,433584	-47,0114341	52,5281619	
56690526,3	-103641104	777600	-22,2763699	-38,9234454	44,847199	
47242105,3	-119233129	/	/	/	/	

On fait de même pour l'accélération :

Pour obtenir les accélérations, on fait les calculs suivants :

$$\begin{cases} a_{x3} = \frac{v_{x4} - v_{x2}}{\Delta t} \\ a_{y3} = \frac{v_{y4} - v_{y2}}{\Delta t} \\ \|\overrightarrow{a_3}\| = \sqrt{a_{x3}^2 + a_{y3}^2} \end{cases}$$

On obtient le tableau suivant :

vitesse v (ua/jour)		Norme de v	Acceleration (km/s²)		Norme de a
VX	vy	/	ax	ay	/
25,6822612	-23,1610584	34,5834233	/		/
28,3517436	-28,3079603	40,0644728	3,59575E-06	-7,7566E-06	8,5495E-06
28,4783138	-29,1925841	40,7826106	-3,8621E-06	-9,3079E-07	3,9727E-06
25,6822612	-28,951323	38,700874	-2,79669E-06	-4,654E-06	5,4296E-06
25,8203379	-33,6157029	42,387561	-1,59811E-07	-6,8879E-06	6,8897E-06
25,5165692	-36,0926494	44,2015231	-3,51584E-07	-9,0101E-06	9,0169E-06
25,5165692	-41,400392	48,6321679	-3,16426E-06	-1,2286E-05	1,2687E-05
22,7826511	-46,7081345	51,9682501	-1,05475E-05	-2,4573E-06	1,083E-05
16,4035088	-43,523489	46,5120328	-1,29447E-05	-2,9041E-06	1,3266E-05
11,5984405	-49,2172492	50,5654174	-1,05475E-05	-8,9356E-06	1,3824E-05
6,3791423	-52,0158771	52,405581	-1,55336E-05	-2,0105E-06	1,5663E-05
-1,82261209	-50,9543286	50,9869151	-1,60131E-05	-2,3456E-06	1,6184E-05
-7,45614035	-54,0424697	54,5544	-1,46445E-05	8,1233E-07	1,4667E-05
-15,7407407	-50,1822933	52,5930934	-1,45283E-05	5,9796E-06	1,5711E-05
-21,2638077	-48,3594322	52,8278733	-9,89306E-06	4,0778E-06	1,07E-05
-23,433584	-47,0114341	52,5281619	-1,67421E-06	1,5602E-05	1,5691E-05
-22,2763699	-38,9234454	44,847199	/		/
/	/	/	/		/

On obtient une accélération moyenne de 1.15.10⁻⁵ km/s²

Question 4:

On relève une valeur de la vitesse au périhélie comme étant environ de 50,98 km/s

Question 6:

On remarque que le graphique admet une situation de proportionnalité (malgré un R^2 = 0.777) où on peut négliger le $3*10^{-6}$. Ainsi on observe bien une situation de proportionnalité de coefficient directeur 1.10^{11}

Question 8:

On part de l'expression de la force d'attraction gravitationnelle exercée par le Soleil de masse M sur la comète de masse m.

$$\vec{F} = -G * \frac{M * m}{r^2} * \overrightarrow{u_r}$$

D'après la deuxième loi de Newton,

$$\vec{F} = m\vec{a}$$

$$\leftrightarrow m\vec{a} = -G * \frac{M * m}{r^2} * \overrightarrow{u_r}$$

$$\leftrightarrow \vec{a} = -G * \frac{M}{r^2} * \overrightarrow{u_r}$$

$$M = \frac{a * r^2}{G} = \frac{5.42 * 10^{-3} * (1.54 * 10^{11})^2}{6.67 * 10^{-11}} = 1.927 * 10^{30}$$

On calcule l'écart relatif pour vérifier nos résultats. On sait que la masse du Soleil est de 1.989.10³⁰ kg

$$\frac{|M_{th\acute{e}o} - M_{msur\acute{e}}|}{M_{th\acute{e}o}} * 100 = 3\%$$

Nous avons un écart de 3% ce qui nous rassure dans nos résultats.

Conservation du moment cinétique

Question 1:

On sait que la force exercée sur la comète est une force centrale. On sait que dans le cas d'une force centrale, le moment de force est nul :

$$\overrightarrow{M_0} = \overrightarrow{r} \wedge \overrightarrow{F} = r\overrightarrow{u_r} \wedge F\overrightarrow{u_r} = \overrightarrow{0}$$

Question 2:

On pose $\overrightarrow{L_0}=\vec{r} \wedge \vec{p}$ le moment cinétique avec \vec{r} le rayon-vecteur et $\vec{p}=m\vec{v}$ la quantité de mouvement.

On dérive le moment cinétique et on obtient :

Fauquembergue Vincent; Jeannot Lucas; 1PX

$$\frac{d\overrightarrow{L_0}}{dt} = \frac{d\overrightarrow{r}}{dt} \wedge m\overrightarrow{v} + \overrightarrow{r} \wedge m\frac{d\overrightarrow{v}}{dt} = \overrightarrow{v} \wedge m\overrightarrow{v} + \overrightarrow{r} \wedge m\overrightarrow{a} = \overrightarrow{0} + \overrightarrow{r} \wedge \overrightarrow{F} = \overrightarrow{M_0} = \overrightarrow{0}$$
 Donc, dans le cas d'une force centrale, le moment cinétique se conserve.

Question 3:

On sait que : $dS = \frac{1}{2} || \vec{r} \wedge d\vec{r} ||$

Donc,

$$\frac{dS}{dt} = \frac{1}{2} \left\| \vec{r} \wedge \frac{d\vec{r}}{dt} \right\| = \frac{1}{2} \left\| \vec{r} \wedge \vec{v} \right\| = \frac{\left\| \overrightarrow{L_0} \right\|}{2m} = \frac{\left\| r \overrightarrow{u_r} \wedge m \overrightarrow{v} \right\|}{2m} = \frac{\left\| r \overrightarrow{u_r} \wedge \overrightarrow{v} \right\|}{2} = \frac{1}{2} \left\| r \overrightarrow{u_r} \wedge \overrightarrow{v} \right\| + r \dot{\theta} \overrightarrow{u_{\theta}} \right) \right\|$$

Soit,

$$\frac{dS}{dt} = \frac{1}{2} \left\| r^2 \dot{\theta} \overrightarrow{u_z} \right\| = \frac{1}{2} r^2 |\dot{\theta}|$$

On pose $C = r^2 |\dot{\theta}|$, la constante des aires On a donc,

$$C = 2 * \frac{ds}{dt} = 2 * 3.47 = 6.94 ua^2/an$$

Question 4:

$$\frac{dS}{dt} = \frac{\|L_0\|}{2m} = \frac{m\|\vec{r}\| \|\vec{v}\| \sin(\theta)}{2m} = \frac{\|\vec{r}\| \|\vec{v}\| \sin\theta}{2} \leftrightarrow C = \|\vec{r}\| \|\vec{v}\| \sin\theta \leftrightarrow v = \frac{C}{r\sin(\theta)}$$

A l'aphélie, on a $\theta = 90$ donc $v_a = \frac{c}{r} = \frac{6.94}{34.331} = 0.20$ ua/an = 968.9 m/s

Conservation de l'énergie mécanique

Question 1:

La comète est soumise à la force gravitationnelle qui est une force conservative donc :

$$W_{A\to B} = E_p^A - E_p^B$$

De plus, d'après le théorème de l'énergie cinétique, on a :

$$W_{A\to B}=E_c^B-E_c^A$$

Soit:

$$\begin{split} E_c^B - E_c^A &= E_p^A - E_p^B \\ E_c^B + E_p^B &= E_p^A + E_c^A \\ E_m^B &= E_m^A \end{split}$$

Donc l'énergie mécanique se conserve

Question 2:

En partant de l'expression de la gravitation universelle, on trouve l'énergie potentielle :

$$\vec{F} = -G * \frac{Mm}{r^2} \overrightarrow{u_r}$$

$$\vec{F} = -\vec{\nabla} E_p = -G * \frac{Mm}{r^2} \overrightarrow{u_r} = -\frac{d}{dr} E_p \overrightarrow{u_r}$$

$$\leftrightarrow -G * \frac{Mm}{r^2} = -\frac{d}{dr} E_p$$

$$\leftrightarrow G * \frac{Mm}{r^2} dr = dE_p$$

$$\leftrightarrow \int G * \frac{Mm}{r^2} dr = E_p$$

$$\leftrightarrow -G * \frac{Mm}{r} = E_p$$

Question 3:

On représente le tableau demandé :

Dates	x(km)	y(km)	r (km)	Durée	vitesse	v (km/s)	Norme de v	Norme de v Ec/m		Em/m
10/12/1985	-24408421,1	195358895,7	196877803							
16/12/1985	-11810526,3	184352760,7	184730693	950400	25,6822612	-23,1610584	34,5834233	598006584,4	-695774470,1	-97767885,7
21/12/1985	0	173346625,8	173346626	777600	28,3517436	-28,3079603	40,0644728	802580989,9	-741467562,1	61113427,79
25/12/1985	10235789,5	162340490,8	162662861	691200	28,4783138	-29,1925841	40,7826106	831610662	-790167461,9	41443200,07
29/12/1985	19684210,5	153168711,7	154428373	950400	25,6822612	-28,951323	38,700874	748878823,5	-832301069,7	-83422246,2
05/01/1986	34644210,5	134825153,4	139205041	1036800	25,8203379	-33,6157029	42,387561	898352663,9	-923320732,7	-24968068,75
10/01/1986	46454736,8	118315950,9	127109035	864000	25,5165692	-36,0926494	44,2015231	976887322,2	-1011186182	-34298860,2
15/01/1986	56690526,3	103641104,3	118132528	864000	25,5165692	-41,400392	48,6321679	1182543879	-1088022932	94520946,51
20/01/1986	68501052,6	82546012,27	107267135	864000	22,7826511	-46,7081345	51,9682501	1350349510	-1198231867	152117643
25/01/1986	76374736,8	63285276,07	99187330,8	864000	16,4035088	-43,523489	46,5120328	1081684597	-1295839891	-214155294,9
30/01/1986	82673684,2	44941717,79	94099394,6	950400	11,5984405	-49,2172492	50,5654174	1278430720	-1365905706	-87474986,31
05/02/1986	87397894,7	16509202,45	88943497,6	864000	6,3791423	-52,0158771	52,405581	1373172462	-1445084840	-71912377,48
09/02/1986	88185263,2	0	88185263,2	864000	-1,82261209	-50,9543286	50,9869151	1299832757	-1457509967	-157677210,1
15/02/1986	85823157,9	-27515337,4	90126068,5	950400	-7,45614035	-54,0424697	54,5544	1488091279	-1426123453	61967826,66
20/02/1986	81098947,4	-51361963,2	95995263	950400	-15,7407407	-50,1822933	52,5930934	1383016739	-1338929609	44087130,12
26/02/1986	70863157,9	-75208589	103334017	777600	-21,2638077	-48,3594322	52,8278733	1395392100	-1243839194	151552905,6
01/03/1986	64564210,5	-88966257,7	109925121	604800	-23,433584	-47,0114341	52,5281619	1379603896	-1169258660	210345236,1
05/03/1986	56690526,3	-103641104	118132528	777600	-22,2763699	-38,9234454	44,847199	1005635631	-1088022932	-82387301,62
10/03/1985	47242105,3	-119233129	128251142	/	/	/	/		Moyenne =	-2171524,44

Question 5:

On peut remarquer que l'énergie mécanique n'est pas parfaitement constante due aux imprécisions des méthodes de calcul et de la vitesse.

Cependant, en calculant la moyenne de l'énergie mécanique (par unité de masse), on remarque que celle-ci est négative. Or la masse de la comète est strictement positive donc l'énergie mécanique est négative. On peut donc en conclure que la comète est dans un état lié et qu'elle est en orbite autour du Soleil.

CONCLUSION

Grâce à ce mini-projet, nous avons pu expérimenter nos calculs pour en déduire les lois fondamentales de Newton et de Kepler. Au travers de ce mini-projet, nous avons rencontré de nombreux obstacle, aussi bien d'un point de vue mathématiques que d'un point vue logique. Néanmoins, nous avons réussi à répondre à chaque problème en utilisant le maximum de nos compétences. De ce mini-projet, nous ressortons avec davantage de connaissance et de maîtrise concernant le pack Office.

Annexes des Tableaux

x (cm)	y (cm)	x (ua)	y (ua)	Nom	MF1	MF2	MF1+MF2	r (ua)	Θ (rad)	r (théo)	Ecart (2)	xth (ua)	yth (ua)
-33,2	0,3	-34,9596	0,3159	01/01/1950	34,9610272	0,61399923	35,5750265	34,96102723	3,132556755	35,00144623	0,001633696	-35,0000173	0,3159
-32,5	1,1	-34,2225	1,1583	01/01/1955	34,2420964	1,17728979	35,4193862	34,24209639	3,107759415	34,4753705	0,05441681	-34,4556406	1,1583
-31,3 -28,9	3	-32,9589 -30,4317	2,106 3,159	01/01/1960 01/01/1965		2,57070061 5,09808621	35,5968164 35,6933088	33,02611581 30,5952226	3,077781641 3,038156896	33,1056977 30,37567592	0,006333278	-33,0383199 -30,2133267	2,106 3,159
-25,7	3,7	-27,0621	3,8961	01/01/1903		8.33733988	35,67846		2,998606275	27,09429252	0,060923886	-26,8177913	3,8961
-24	3,9	-25,272	4,1067	01/01/1972	25,6034952	10,0394591	35,6429543	25,60349525	2,980500749	25,53787336	0,004306232	-25,2072277	4,1067
-22,2	4,1	-23,3766	4,3173	01/01/1974	-,	11,8695102	35,641437	23,77192686	2,958965785	23,70876052	0,003989987	-23,3144841	4,3173
-20 -17,5	4,2 4,3	-21,06 -18,4275	4,4226 4,5279	01/01/1976 01/01/1978	_	14,0854249 16,6337341	35,6047881 35,6093667	21,51936316 18,97563266	2,934600459 2,900651654	21,71670308 19,14522786	0,038943044	-21,2531274 -18,5921963	4,4226 4,5279
-17,5	4,3	-15,4791	4,5279	01/01/19/8	16,127753	19,4873291	35,615082	16,12775295	2,85701505	16,25240621	0,028702333	-15,5987398	4,5279
-11,3	4,1	-11,8989	4,3173	01/01/1982	12,6579185	22,944046	35,6019645	12,65791849	2,793532382	12,86574842	0,043193281	-12,0942676	4,3173
-9,3	4	-9,7929	4,212	01/01/1983		24,9976079	35,6579003		2,735403851	10,49509257	0,02729099		4,212
-6,9 -5,8	3,6	-7,2657 -6,1074	3,7908 3,5802	01/01/1984 01/06/1984	8,19515473 7,07941854	27,4305995	35,6257542	8,195154735 7,079418535	2,660705373 2,611376881	8,225556733 7.083810757	0,000924281 1,92916E-05	-7,29265395	3,7908 3,5802
-5,6	3,4	-4,212	3,159	01/00/1984	5,265	28,5510615 30,385756	35,63048 35,650756	5,265	2,498091545	5.192142697	0.005308187	-6,11118916 -4,15371416	3,159
-3,8	2,9	-4,0014	3,0537	01/02/1985	5,03351623	30,5845296	35,6180458		2,489723539	5,082843876	0,002433217	-4,04061307	3,0537
-3,5	2,8	-3,6855	2,9484	01/03/1985		30,8886382	35,6083811	4,719742875	2,466851711	4,800947549	0,006594199	-3,7489102	2,9484
-3,2	2,7	-3,3696	2,8431	01/04/1985	4,40878915	31,1933366	35,6021258	4,40878915	2,440738246	4,506722187	0,00959088	-3,44444939	2,8431
-2,9 -2,6	2,6 2,5	-3,0537 -2,7378	2,7378 2,6325	01/05/1985 01/06/1985	4,10129645 3,79810546	31,4986078 31,8044352	35,5999042 35,6025407	4,101296445 3,798105461	2,410685946 2,375799821	4,200463918 3,88289013	0,009834188	-3,12753707 -2,79891559	2,7378 2,6325
-2,3	2,4	-2,4219	2,5272	01/07/1985		32,1108029	35,6111371	3,500334191	2,334921104	3,555305279	0,00302182	-2,45993479	2,5272
-1,9	2,3	-2,0007	2,4219	01/08/1985	_	32,5227024	35,6641033	3,141400977	2,261242784	3,063664908	0,006042896	-1,95119134	2,4219
-1,5	2,1	-1,5795	2,2113	01/09/1985		32,9279347	35,6454092		2,191045813	2,68780241	0,000880436	-	2,2113
-1,2 -0,8	1,9 1,7	-1,2636 -0,8424	2,0007 1,7901	01/10/1985 01/11/1985	2,36632319 1,97840738	33,2297838 33.6383648	35,596107 35,6167722	2,366323192 1.978407382	2,134112588 2.01063891	2,434233942 2.001757313	0,00461187	-1,29986386 -0,85234233	2,0007 1,7901
-0,6	1,6	-0,6318	1,6848	08/11/1985		33,8432627	35,6426299	1,799367189	1,929566997	1,783114326	0,000343213	-	1,6848
-0,2	1,3	-0,2106	1,3689	01/12/1985	1,38500526	34,2498671	35,6348723	1,38500526	1,723445655	1,381000822	1,60355E-05	-0,2099911	1,3689
0,1	0,9	0,1053	0,9477	01/01/1986		34,5513995	35,5049316	0,953532055	1,460139106	1,064470075	0,012307244	0,11755105	0,9477
0,5 0,5	0,2	0,5265 0,5265	0,2106 0	01/02/1986 09/02/1986	0,56705785 0,5265	34,9602343 34,9596	35,5272922 35,4861	0,567057854 0,5265	0,380506377	0,620930955 0,599105074	0,002902311 0,005271497	0,57651992 0,59910507	0,2106 0
0,55	-0,2	0,57915	-0,2106	15/02/1986		35,0128834	35,6291358	0,61625245	-0,348771004	0,617372271	1,254E-06	0,5802024	-0,2106
0,45	-0,55	0,47385	-0,57915	01/03/1986	0,7482971	34,9117541	35,6600512	0,748297097	-0,885066816	0,730835129	0,00030492	0,46279242	-0,57915
0,3	-0,75	0,3159	-0,78975	10/03/1986		34,7579733	35,6085601	0,850586781	-1,19028995	0,866925301	0,000266947	0,32196797	-0,78975
0,25 -0,05	-0,85 -1,15	0,26325 -0,05265	-0,89505 -1,21095	15/03/1986 01/04/1986		34,7078927 34,4017695	35,6408531 35,6138635	0,932960377 1,212094025	-1,284744885 -1,614247222	0,925659958 1.229687795	5,32961E-05 0.000309541	0,26119007 -0,05341422	-0,89505 -1,21095
-0,5	-1,15	-0,5265	-1,5795	01/05/1986	_	33,9433697	35,6083088	1,664939188	-1,892546881	1,696520336	0,000303341	-0,53648684	-1,5795
-0,95	-1,8	-1,00035	-1,8954	01/06/1986		33,4864348	35,6296196		-2,05641842	2,146107558	8,54225E-06	-1,0017142	-1,8954
-1,35	-2	-1,42155	-2,106	01/07/1986	2,54087394	33,0786588	35,6195328	2,540873945	-2,164545994	2,56472416	0,000568833	-1,43489355	-2,106
-1,75 -2,1	-2,15 -2,3	-1,84275 -2,2113	-2,26395 -2,4219	01/08/1986 01/09/1986		32,6688901 32,3126909	35,5879991 35,5922408	2,919108968 3,279549862	-2,253987772 -2,310771211	3,021071076 3,381385286	0,010396272 0,010370454	-1,90711576 -2,27996451	-2,26395 -2,4219
-2,1	-2,3 -2,45	-2,2113	-2,4219	01/09/1986		32,0100309	35,6214525	3,611421585	-2,345885577	3,638873893	0,010370434	-2,54641057	-2,4219
-2,75	-2,55	-2,89575	-2,68515	01/11/1986		31,651453	35,600554	3,949100984	-2,393912443	4,043025959	0,008821901	-2,96462219	-2,68515
-3,05	-2,7	-3,21165	-2,8431	01/12/1986		31,3506325	35,6399114	4,289278883	-2,416989046	4,262037574	0,000742089	-3,19125274	-2,8431
-3,35	-2,8	-3,52755	-2,9484	01/01/1987	4,5974636	31,0458706	35,6433342	4,597463601	-2,445388103	4,55710005	0,001629216	-	-2,9484
-3,65 -3,9	-2,85 -2,95	-3,84345 -4,1067	-3,00105 -3,10635	01/02/1987 01/03/1987	4,876311 5,14921307	30,736509 30,4850775	35,61282 35,6342905	4,876311004 5,149213067	-2,478655548 -2,494001588	4,943442544 5,138291599	0,004506644	-3,89636228 -4,0979897	-3,00105 -3,10635
-4,15	-3	-4,36995	-3,159	01/04/1987	5,39219288	30,2286663	35,6208592	5,392192875	-2,51566786	5,433314779	0,001691011	-4,40327608	-3,159
-4,45	-3,1	-4,68585	-3,2643	01/05/1987		29,9258172	35,6365829	5,710765685	-2,533132546	5,689628183	0,000446794	-4,66850606	-3,2643
-4,7	-3,15	-4,9491	-3,31695	01/06/1987	5,95783082	29,6699918	35,6278226	5,957830823	-2,551139075	5,972829005	0,000224945	-4,96155881	-3,31695
-4,95 -5,2	-3,2 -3,25	-5,21235 -5,4756	-3,3696 -3,42225	01/07/1987 01/08/1987	6,20667356 6,45708839	29,4143916 29,1590226	35,6210652 35,616111	6,20667356 6,457088386	-2,567706759 -2,582993338	6,251864041 6,526340112	0,00204218	-5,25030086 -5,53432535	-3,3696 -3,42225
-5,45	-3,35	-5,73885	-3,52755	01/09/1987	6,73632009	28,9102679	35,646588	6,736320088	-2,590449704	6,666540065	0,004753002	-5,67940255	-3,52755
-5,7	-3,4	-6,0021	-3,5802	01/10/1987	6,98877932	28,6555334	35,6443127	6,988779325	-2,603757127	6,927678567	0,003733303	-5,94962548	-3,5802
-5,95	-3,45	-6,26535	-3,63285	01/11/1987	7,24238978	28,4010517	35,6434415	7,242389781	-2,61613463	7,18384424	0,00342758	-6,21470259	-3,63285
-6,15 -6,35	-3,5 -3,55	-6,47595 -6,68655	-3,6855 -3,73815	01/12/1987 01/01/1988	7,45123068 7,66052977	28,1990274 27,9972285	35,6502581 35,6577582	7,45123068 7,660529768	-2,624199386 -2,631823929	7,358032031 7,528244854	0,008685988	-6,39494999 -6,57108414	-3,6855 -3,73815
-8,8	-3,9	-9,2664	-4,1067	01/01/1989									-4,1067
-10,9	-4,1	-11,4777	-4,3173	01/01/1990	12,2628168	23,3578567	35,6206735	12,26281683	-2,781816959	12,33708531	0,005515807	-11,5472135	-4,3173
-12,75	-4,25	-13,42575	-4,47525	01/01/1991		21,478748		14,1519831	-2,819842099	14,15781826			-4,47525
-14,4 -15,9	-4,35 -4,35	-15,1632 -16,7427	-4,58055 -4,58055	01/01/1992 01/01/1993		19,8068292 18,2737979	35,646781 35,6317771	15,83995178 17,35797919	-2,848225642 -2,87454252	15,72723468 17,35693749			-4,58055 -4,58055
-17,25	-4,35	-18,16425	-4,58055	01/01/1993			35,6342847			18,71338671			-4,58055
-18,55	-4,3	-19,53315	-4,5279	01/01/1995	20,0510805	15,5727451	35,6238255	20,05108045	-2,913809748	20,11027947	0,003504523	-19,5908199	-4,5279
-19,75	-4,25	-20,79675	-4,47525	01/01/1996		14,3519303		21,27281535	-2,929635016	21,32445705	0,002666864	-20,847236	-4,47525
-20,9 -21,95	-4,2 -4,1	-22,0077 -23,11335	-4,4226 -4,3173	01/01/1997 01/01/1998		13,1890089 12,1151071	35,636687 35,6282104	22,44767805 23,51310332	-2,943277131 -2,956932461	22,41400553 23,53877619	0,001133839		-4,4226 -4,3173
-21,95	-4,1 -4,05	-23,11335	-4,3173 -4,26465	01/01/1998		11,165897	35,6282104		-2,956932461	24,34732261	0,000659096	-23,1385864	-4,3173 -4,26465
-23,85	-3,95	-25,11405	-4,15935	01/01/2000		10,2051401	35,6612926		-2,977464037	25,27753802	0,031903132	-24,9378359	-4,15935
-25,5	-3,7	-26,8515	-3,8961	01/01/2002		8,52409841	35,6567844			26,99934858	0,017778856		-3,8961
-26,95	-3,4	-28,37835	-3,5802	01/01/2004	_	7,03404788	35,6373446		-3,016096107	28,58124991	0,00048606	-28,3564766	-3,5802
-28,25 -29,35	-3,1 -2,75	-29,74725 -30,90555	-3,2643 -2,89575	01/01/2006		5,71076569 4,56387742	35,6365829 35,6047922	29,92581723 31,04091476	-3,032295447 -3,048168646	29,91186894 31,13905979	0,000194555 0,009632447	-29,7333849 -31,003267	-3,2643 -2,89575
-30,3	-2,45	-31,9059	-2,57985	01/01/2008		3,61142158				32,04585171		-31,9416042	-2,57985
-31,15	-2,15	-32,80095	-2,26395	01/01/2012		2,79094665	35,6699337	32,87898707	-3,072681077	32,80437891	0,005566376		-2,26395
-31,8	-1,75	-33,4854	-1,84275	01/01/2014		2,07216381	35,6082301	33,53606627	-3,08661666	33,58400026		-33,5332616	-1,84275
-33,05 -33,25	-0,7 0	-34,80165 -35,01225	-0,7371 0	01/01/2020 08/10/2023	34,809455 35,01225	0,82410285 0,57915	35,6335579 35,5914		-3,12041579 -3,14	34,8181036 35,0412429	7,47978E-05 0,000840588		-0,7371 -0,055762362
33,23		-3,01223		10, 20, 2023	33,01223	0,57313	33,3314	33,01223	3,14	23,0.12723	0,61551186	22,0.21505	-,-33.02302
			x (ua)	y (ua)	a (ua)				b (ua)				
		F1	24 4221		17,8103848	e	0,96638172		4,560724975				
		F2	-34,4331	0		h	1,17806927	1,177379911					

Fauquembergue Vincent; Jeannot Lucas;1PX

Tableau 2

Dates	x (cm)	y (cm)	x(km)	y(km)	Durée	vitesse v	(ua/jour)	Norme de v	Acceleration (km/s²)		Norme de a	r	r^2	1/r^2
10/12/1985	-1,55	10,65	-24408421,1	195358896	/	vx	vy	/	ax	ay	/	196877803	3,87609E+16	2,57992E-17
16/12/1985	-0,75	10,05	-11810526,3	184352761	950400	25,6822612	-23,1610584	34,58342332	/		/	184730693	3,41254E+16	2,93037E-17
21/12/1985	0	9,45	0	173346626	777600	28,3517436	-28,3079603	40,06447279	3,59575E-06	-7,75659E-06	8,54951E-06	173346626	3,00491E+16	3,32789E-17
25/12/1985	0,65	8,85	10235789,5	162340491	691200	28,4783138	-29,1925841	40,78261056	-3,8621E-06	-9,30791E-07	3,97268E-06	162662861	2,64592E+16	3,7794E-17
29/12/1985	1,25	8,35	19684210,5	153168712	950400	25,6822612	-28,951323	38,70087398	-2,79669E-06	-4,65395E-06	5,42962E-06	154428373	2,38481E+16	4,1932E-17
05/01/1986	2,2	7,35	34644210,5	134825153	1036800	25,8203379	-33,6157029	42,387561	-1,59811E-07	-6,88785E-06	6,88971E-06	139205041	1,9378E+16	5,16048E-17
10/01/1986	2,95	6,45	46454736,8	118315951	864000	25,5165692	-36,0926494	44,2015231	-3,51584E-07	-9,01006E-06	9,01691E-06	127109035	1,61567E+16	6,18938E-17
15/01/1986	3,6	5,65	56690526,3	103641104	864000	25,5165692	-41,400392	48,63216793	-3,16426E-06	-1,22864E-05	1,26874E-05	118132528	1,39553E+16	7,16574E-17
20/01/1986	4,35	4,5	68501052,6	82546012,3	864000	22,7826511	-46,7081345	51,96825011	-1,05475E-05	-2,45729E-06	1,083E-05	107267135	1,15062E+16	8,69094E-17
25/01/1986	4,85	3,45	76374736,8	63285276,1	864000	16,4035088	-43,523489	46,51203278	-1,29447E-05	-2,90407E-06	1,32664E-05	99187330,8	9,83813E+15	1,01645E-16
30/01/1986	5,25	2,45	82673684,2	44941717,8	950400	11,5984405	-49,2172492	50,56541743	-1,05475E-05	-8,93559E-06	1,38237E-05	94099394,6	8,8547E+15	1,12934E-16
05/02/1986	5,55	0,9	87397894,7	16509202,5	864000	6,3791423	-52,0158771	52,40558104	-1,55336E-05	-2,01051E-06	1,56632E-05	88943497,6	7,91095E+15	1,26407E-16
09/02/1986	5,6	0	88185263,2	0	864000	-1,82261209	-50,9543286	50,98691513	-1,60131E-05	-2,34559E-06	1,61839E-05	88185263,2	7,77664E+15	1,2859E-16
15/02/1986	5,45	-1,5	85823157,9	-27515337,4	950400	-7,45614035	-54,0424697	54,55439999	-1,46445E-05	8,12327E-07	1,4667E-05	90126068,5	8,12271E+15	1,23112E-16
20/02/1986	5,15	-2,8	81098947,4	-51361963,2	950400	-15,7407407	-50,1822933	52,59309344	-1,45283E-05	5,97963E-06	1,57107E-05	95995263	9,21509E+15	1,08518E-16
26/02/1986	4,5	-4,1	70863157,9	-75208589	777600	-21,2638077	-48,3594322	52,82787332	-9,89306E-06	4,07775E-06	1,07005E-05	103334017	1,06779E+16	9,36512E-17
01/03/1986	4,1	-4,85	64564210,5	-88966257,7	604800	-23,433584	-47,0114341	52,5281619	-1,67421E-06	1,56018E-05	1,56914E-05	109925121	1,20835E+16	8,27573E-17
05/03/1986	3,6	-5,65	56690526,3	-103641104	777600	-22,2763699	-38,9234454	44,84719904	/		/	118132528	1,39553E+16	7,16574E-17
10/03/1985	3	-6,5	47242105,3	-119233129	/	/	/	/	/		/	128251142	1,64484E+16	6,07964E-17

Aires balayées

Vecteurs

1cm = 7 km/s $1cm = 2.10^{-5} \text{ km/s}^2$