

COSTROLIC COSTROLIC

,	~	7	М	4	വ	9	7	∞	თ
Name of ASO	i	ı	0796	2755	1906	2350	3004	3208	3466
Motif containing	1	I	0 N	YES	YES	YES	YES	YES	YES
LPS stimulation	<u>0</u>	YES	YES	YES	YES	YES	YES	YES	YES
TNF $-lpha$ inhibition	1	ł	48%	92%	80%	18%	77%	8%	0 Z
TNF−α mRNA				\$					
18S rRNA									

rig. 3

acccagcctt	accc	tcaacggact		gttttga	tggcccag	gatgc	gacagaag	gga	ataaaggcag	ccagctaa	atcccctg	ccctctctcc	ggccgaggag	Ct Ct	ctttggagtg	()	tgcgctga	agatgtg	acatggaagg	atat	aacaagtgat	gagagatggg	GGAaagag	cacctcag		tcagccctct
ctgctacccc	CCC	tttctctccc	tcctgcatcc	tggaggcaat	atc	gaggggtatc	gaagaaaccg	ttctccac	ccaGGGAcat	acagcagagg	tcagacgcca	cacggcttca		gtgcttgt	ctgct	tcatccactc	ggtgaaagat	GAtgcagaaa	gatgtctggc	aatgaacaag	GGAag	cagctaagga	aagacactca	agaaaaccag	taagggt	Q
caggcttgtc	gctc	tccaacccgt	tctatctttt	ccaaaagaaa	tcctacacac	tgGGGAgtgt	ccgcgatgga	gctcatg	tcctctcgcc	ctcagcaagg	aaaacaaccc	catactgacc	atgatccGGG	ggctccaggc	gctctt	tggccagcct	gatGG	gaaagacgGG	ga	tgaatgaatg	agaagagaga	GGAaatatga	tggcacacag	ď	S	ccccaGGGAc
cccggctgtc	aag	agcttttccc	cagttctagt	gacctggtcc	gcctccaggg	caGGGAgg	atccccgccc	cctccagatg	ttccccgccc	cagacgctcc	acccccctg	cttcctctca	cactgaaagc	ggggccccag	aggcgccacc	ggtgagtgcc	agaGGGAgag	aaaacatgga	agagaaagat	agtgaatgaa	gtggggtgtg		ď	atacacagat	aggcagccag	cccaacagtt
tgatttcact	tcaagcctgc	gactcaacac	aagcccctcc	acagaccaca	Acggggttca	cggaatcgga	aactttccaa	ccgct	aat	acccagccag	gcaactacag	ggcaggttct	acaccatgag	gaaga	ப	agaGGGAaga	gagacgcaag	gagagagaa	Aagaga	gtgtgtatgg	gag	atggtgagac	gagaagaa	gaaggt	aggcca	tataatta <u>ta</u>
aattccgg	agg	gcctca	agctt	gga	atggg	gacccc	gtgtccc	gcagggcc	ccgctggt	gttggca	GGGA	aagctgcc	cctggaaagg	tacaa	tataat	tcggcc	Ul	GGGAGGG	gagatgG	gctcacta	ataagata	tgaataaa	gagata	ttgaatg	ctaag	gttaacca
\vdash	61	$^{\circ}$	∞	4	0	9	\sim	∞	4	\circ	9	$^{\circ}$	∞	4	0	96	02	80	1141	20	26	32	33	44	50	56

HELLE TO THE CAR FINE

	tcatggcc gcagagct	coctetetes y ecgggeeaat y ateagaggee	cacccatgt	caagccctg	ctttGGGA	gaattggg cannot	ttcaaac	cctagaaa	ttga	gaccgggg	gaaaacggag tgattatgtt
attctgggtt aaagttttgg gtttaagggt gagtgacaag	gagaagga ctcagaac gtggggtg	actctcctct ggctgaaccg tggtggtgcc	tgcccct	gctgagg ggtgacc	gcaggtct	tcaaaaag ccaccact	cactaaga	gaagacctca	ccagacttcc qtttqcactt	tatttGGG	tgcttcttt
ctctttccta gGGGAaattt tttctaggaa ctcgaaccc	gagacaa tagtGGG ggaaccg	ggccacactg cagctccagt gataaccagc	agggcca tctccta	accccagagg	gccgagtctg cttcccaaac	ctcttctg	ctggca	aggactt	ccagatgttt ctctatttat	tgaatgta	gyctcagaca ctggcctctg
gtctccaaac ggaagcagtg aggggggtat ggatcatctt	gcagaact gcacaggc agagagaga	D	ggtcctcttc ccgcatcgcc	gaGG ggtc	a act	caccctca tagaactt	agt	agaatgct agaatgct	cttcctctct agccagctcc	tattt	gtagece
gtcagtaagt gtaccggtat aggtgaaagt ctcctcttca	ctgatggt tggaggaa GAtgacag	tgtggagagt caaaccctca ccaatggcgt	tctactccca acaccatcag	agagcccctg tctatctGGG	ggcccgacta gaggaggacg	ctccttca	gtgtggc	gttctgg	C T	d d	gctgttc
ggcccaggca ggtagggtta ggatggatgg tcttttctct	ותושוטי	agggccagga ctccctccag gccctcctgg	tgtacctc tcctcacc	a Ct	agatcaat ttgccctg	ttattacc ttagggtc	attcagg acctcca	GGGAgcct	acacaagt agcccagc	ttattt	gaacaat
1621 1681 1741 1801	000°	2 H H	Ω & ∞ 4.	4.4 0.6	50 20	64 70	76	8 8	40	9 0	8

Fig. 4B

ccaactgtca actattcagt ttaattctgc aggctttaag acataaacaa ttacctctcc gatttggtga cttcttggaa ctctctccac ctgaacctaa tggagaccct taatcgccct aaacaatgct acatggtctc aaacaagagc gttgtgtctg tccctaagtc cctagggccc attc taagttgtct ccccagGGGA tagaaaagaa GGGAagaagc tccttagact atcccccagg aactctGGGA tttatctgat tcttgtgggt cccagtccca aatattccc GGGAatttcc agcctctgct aaagtttgct ttttaaaata ctcattgctg atccctcgga ggcgagaat agcccaacag ctcagggcat atctgcctct 3241 3301 3361 3421 3481 3541 3601

Fig. 4C

Cumulative Ethanol Consumption (g/kg)

11 / 16

FIGURE 9

H4-II-E-C3 TRANSDUCTION

GCTTTATCTG	CTAAGCTCCG	CTCAGTTCAG	CATGCTGCGC
GCCGCACTCA	GCACCGCCCG	CCGTGGGCCA	CGCCTGAGCC
GCCTGCTGTC	CGCCGCCGCC	ACCAGCGCGG	TGCCAGCCCC
CAACCAGCAG	CCCGAGGTCT	TCTGCAACCA	GATCTTCATT
AACAATGAGT	GGCATGATGC	TGTCAGCAAG	AAAACATTCC
CCACCGTCAA	CCCTTCCACG	GGGGAGGTCA	TCTGCCAGGT
AGCCGAAGGG	AACAAGGAGG	ACGTAGACAA	GGCAGTGAAG
GCCGCTCAGG	CAGCCTTCCA	GCTGGGCTCG	CCCTGGCGCC
GCATGGATGC	ATCTGACAGG	GGCCGGCTGT	TGTACCGATT
GGCTGATCTC	ATCGAACGGG	ACCGGACCTA	CCTGGCGGCC
TTGGAGACCC	TGGACAACGG	CAAGCCTTAT	GTCATCTCCT
ACCTGGTGGA	TTTGGACATG	GTTCTGAAAT	GTCTCCGCTA
TTATGCTGGC	TGGGCTGACA	AGTACCACGG	GAAAACCATT
CCCATCGATG	GCGACTTCTT	CAGCTACACC	CGCCACGAGC
CTGTGGGCGT	GTGTGGACAG	ATCATTCCGT	GGAACTTCCC
GCTCCTGATG	CAAGCCTGGA	AGCTGGGCCC	TGCCTTGGCA
ACTGGAAACG	TGGTGGTGAT	GAAAGTGGCC	GAGCAGACAC
CGCTCACTGC	ACTCTACGTG	GCCAACTTGA	TCAAGGAGGC
AGGCTTCCCC	${\tt CCTGGTGTGG}$	TCAATATTGT	TCCTGGATTC
GGCCCTACCG	CCGGGGCTGC	CATCGCGTCC	CACGAGGATG
TGGACAAAGT	GGCCTTCACA	GGTTCCACTG	AGGTTGGTCA
CCTAATCCAG	GTTGCCGCCG	GGAGCAGCAA	TCTCAAGAGA
GTAACCCTGG	AACTGGGGGG	AAAGAGCCCC	AATATCATCA
TGTCAGACGC	TGACATGGAC	TGGGCTGTGG	AACAGGCCCA
CTTTGCCCTG	TTCTTCAACC	AGGGCCAGTG	CTGTTGTGCG
GGCTCCCGGA	CCTTCGTGCA	GGAGGATGTG	TATGATGAAT
TCGTGGAACG	CAGTGTGGCC	CGGGCCAAGT	CTCGGGTGGT
CGGGAACCCT	TTCGACAGCC	GGACGGAGCA	GGGGCCGCAG
GTGGATGAGA	CTCAGTTTAA	GAAGATCCTG	GGCTATATCA
	ACAAGAAGGG	GCGAAGCTGC	TGTGCGGTGG
	GCAGACCGTG	GTTACTTCAT	CCAGCCCACC
	ACGTCAAAGA	TGGCATGACC	ATCGCCAAGG
	CGGACCAGTG	ATGCAGATCC	TCAAATTCAA
	GAGGTTGTGG	GGCGAGCCAA	TAATTCCAAG
	CTGCCGCTGT	CTTCACAAAG	GACCTGGACA
	CCTGTCCCAA	GCTCTGCAGG	CTGGGACTGT
	TGCTACGATG	TGTTTGGGGC	CCAGTCCCCA
	ATAAGATGTC	GGGGAGCGGC	AGGGAGCTGG
	CCTGCAGGCC	TACACGGAAG	TGAAGACGGT
CACCGTCAAA	GTGCCACAGA	AGAACTCGTA	AAGTGGCGTG

Fig. 11A

CAGGCTTCCT	CAGCCAGCGC	CCAAAAACCC	AACAAGATCC
TGAGAAAAGC	CACCACCAAG	CACACTGCGC	CTGCCAAGAG
AAAACCCCTT	CACCAAAGCG	TCTTGGGCCA	AGAAAGTCAG
GATTTGATAA	ACAGGGCAGG	GTTGGTGGGC	GGTGTGTGGG
	GTAAACTGGG		
	CGCACGCACA		
GTGCTGGATG	CTGGTTCCAC	CCTCAGTGCT	TAAACAAATG
AGCAATAAA			

Fig. 11B

GCTCTCGGTC	CGCTCGCTGT	CCGCTAGCCC	GCTGCGATGT
TGCGCGCTGC	CGCCGCTCGG	GCCCCGCCTG	GCCGCCGCCT
CTTGTCAGCC	GCCGCCACCC	AGGCCGTGCC	TGCCCCCAAC
CAGCAGCCCG	AGGTCTTCTG	CAACCAGATT	TTCATAAACA
ATGAATGGCA	CGATGCCGTC	AGCAGGAAAA	CATTCCCCAC
CGTCAATCCG	TCCACTGGAG	AGGTCATCTG	TCAGGTAGCT
GAAGGGGACA	AGGAAGATGT	GGACAAGGCA	CGTGAAGGCC
GCCCGGGCGC	CTTCCAGCTG	GGCTCACCTT	GGCGCCGCAT
GGACGCATCA	CACAGCGGCC	GGCTGCTGAA	CCGCCTGGCC
GATCTGATCG	AGCGGGACCG	GACCTACCTG	GCGGCCTTGG
AGACCCTGGA	CAATGGCAAG	CCCTATGTCA	TCTCCTACCT
GGTGGATTTG	GACATGGTCC	TCAAATGTCT	CCGGTATTAT
GCCGGCTGGG	CTGATAAGTA	CCACGGGAAA	ACCATCCCCA
TTGACGGAGA	CTTCTTCAGC	TACACACGCC	ATGAACCTGT
GGGGGTGTGC	GGGCAGATCA	TTCCGTGGAA	TTTCCCGCTC
CTGATGCAAG	CATGGAAGCT	GGGCCCAGCC	TTGGCAACTG
GAAACGTGGT	TGTGATGAAG	GTAGCTGAGC	AGACACCCCT
CACCGCCCTC	TATGTGGCCA	ACCTGATCAA	GGAGGCTGGC
TTTCCCCCTG	GTGTGGTCAA	CATTGTGCCT	GGATTTGGCC
CCACGGCTGG	GGCCGCCATT	GCCTCCCATG	AGGATGTGGA
CAAAGTGGCA	TTCACAGGCT	CCACTGAGAT	TGGCCGCGTA
ATCCAGGTTG	CTGCTGGGAG	CAGCAACCTC	AAGAGAGTGA
CCTTGGAGCT	GGGGGGAAG	AGCCCCAACA	TCATCATGTC
AGATGCCGAT	ATGGATTGGG	CCGTGGAACA	GGCCCACTTC
GCCCTGTTCT	TCAACCAGGG	CCAGTGCTGC	TGTGCCGGCT
CCCGGACCTT	CGTGCAGGAG	GACATCTATG	ATGAGTTTGT
GGTGCGGAGC	GTTGCCCGGG	CCAAGTCTCG	GGTGGTCGGG
AACCCCTTTG	ATAGCAAGAC	CGAGCAGGGG	CCGCAGGTGG
ATGAAACTCA	GTTTAAGAAG	ATCCTCGGCT	ACATCAACAC
GGGGAAGCAA	GAGGGGGCGA	AGCTGCTGTG	TGGTGGGGGC
ATTGCTGCTG	ACCGTGGTTA	CTTCATCCAG	CCCACTGTGT
TTGGAGATGT	GCAGGATGGC	ATGACCATCG	CCAAGGAGGA
GATCTTCGGG	CCAGTGATGC	AGATCCTGAA	GTTCAAGACC
ATAGAGGAGG	TTGTTGGGAG	AGCCAACAAT	TCCACGTACG
GGCTGGCCGC	AGCTGTCTTC	ACAAAGGATT	TGGACAAGGC
CAATTACCTG	TCCCAGGCCC	TCCAGGCGGG	CACTGTGTGG
GTCAACTGCT	ATGATGTGTT	TGGAGCCCAG	TCACCCTTTG
GTGGCTACAA	GATGTCGGGG	AGTGGCCGGG	AGTTGGGCGA
GTACGGGCTG	CAGGCATACA	CTGAAGTGAA	AACTGTCACA
GTCAAAGTGC	CTCAGAAGAA	CTCATAAGAA	TCATGCAAGC

Fig. 12A

16/16

TTCCTCCCTC	AGCCATTGAT	GGAAAGTTCA	GCAAGATCAG
CAACAAAACC	AAGAAAAATG	ATCCTTGCGT	GCTGAATATC
TGAAAAGAGA	AATTTTTCCT	ACAAAATCTC	TTGGGTCAAG
AAAGTTCTAG	AATTTGAATT	GATAAACATG	GTGGGTTGGC
TGAGGGTAAG	AGTATATGAG	GAACCTTTTA	AACGACAACA
ATACTGCTAG	CTTTCAGGAT	GATTTTTAAA	AAATAGATTC
AAATGTGTTA	TCCTCTCTCT	GAAACGCTTC	CTATAACTCG
AGTTTATAGG	GGAAGAAAA	GCTATTGTTT	ACAATTATAT
CACCATTAAG	GCAACTGCTA	CACCCTGCTT	TGTATTCTGG
GCTAAGATTC	ATTAAAAACT	AGCTGCTCT	

Fig. 12B