A CFG is in Chomsky Normal Form if the Productions are in the following forms –

- $\bullet A \rightarrow a$
- $\bullet A \rightarrow BC$
- $\bullet S \rightarrow \epsilon$

where A, B, and C are non-terminals and **a** is terminal.

- Purpose: a simplified form of grammars
- Every rule must be either

$$A \rightarrow BC$$

or

$$A \rightarrow a$$

- B, C are not start variables
- $a \in \Sigma$ so

$$A \rightarrow \epsilon$$

is not allowed.

However,

$$S \rightarrow \epsilon$$

is allowed, where S is the start variable

- This form is useful later (but not in this chapter)
- To convert a CFG to a CNF, let's show an example first

The original CFG

$$S
ightarrow ASA \mid aB$$

 $A
ightarrow B \mid S$
 $B
ightarrow b \mid \epsilon$

Add

$$S_0 \rightarrow S$$

because the start variable cannot be on the right

$$S_0
ightarrow S$$

 $S
ightarrow ASA \mid aB$
 $A
ightarrow B \mid S$
 $B
ightarrow b \mid \epsilon$

Remove

$$B \rightarrow \epsilon$$

because ϵ cannot be on the right

$$S_0 o S$$

 $S o ASA \mid aB \mid a$
 $A o B \mid \epsilon \mid S$
 $B o b$

• Remove $A \rightarrow \epsilon$

$$S_0 o S$$

 $S o ASA \mid aB \mid a \mid AS \mid SA \mid S$
 $A o B \mid S$
 $B o b$

What if

$$B \to \epsilon$$

appears again? An infinite loop? We will discuss this issue later

• Remove $S \rightarrow S$ because the right-hand side cannot be a single variable

$$S_0 o S$$

 $S o ASA \mid aB \mid a \mid AS \mid SA$
 $A o B \mid S$
 $B o b$

• Remove $S_0 \rightarrow S$

$$S_0
ightarrow ASA \mid aB \mid a \mid AS \mid SA$$

 $S
ightarrow ASA \mid aB \mid a \mid AS \mid SA$
 $A
ightarrow B \mid S$
 $B
ightarrow b$

• Remove $A \rightarrow B, A \rightarrow S$

$$S_0
ightarrow ASA \mid aB \mid a \mid AS \mid SA$$

 $S
ightarrow ASA \mid aB \mid a \mid AS \mid SA$
 $A
ightarrow b \mid ASA \mid aB \mid a \mid AS \mid SA$
 $B
ightarrow b$

Finally

$$S_0
ightarrow AA_1 \mid UB \mid a \mid AS \mid SA$$

 $S
ightarrow AA_1 \mid UB \mid a \mid AS \mid SA$
 $A
ightarrow b \mid AA_1 \mid UB \mid a \mid AS \mid SA$
 $A_1
ightarrow SA$
 $U
ightarrow a$
 $B
ightarrow b$

A procedure to summarize what we have done in the example

Add

$$S_0 \rightarrow S$$

So start state not on the right

• Remove $A \to \epsilon$, where A is not the start state:

For any rule of

$$\cdots \rightarrow uAv$$

add

$$\cdots \rightarrow uv$$

We discuss the issue of a possible infinite loop later

Remove

$$A \rightarrow B$$

because the right hand cannot have a single variable. For any

 $B \rightarrow u$, where u is a string of variables and terminals

we

remove $A \rightarrow B$ and $B \rightarrow u$, and add $A \rightarrow u$

unless $A \rightarrow u$ is a unit rule previously removed (this setting avoids the possible infinite loop)

After this, we have either

$$A \rightarrow u_1 \cdots u_k, u_i \in V \text{ or } \Sigma$$
;

and

if
$$k = 1$$
, then $u_i \in \Sigma$

Replace the right side with

$$A \rightarrow u_1 A_1$$

 $A_1 \rightarrow u_2 A_2$

- Replace any u_i in the above rules with U_i
- Add

$$U_i \rightarrow u_i$$
 if $u_i \in \Sigma$

Infinite Loop

Original rules

$$S \rightarrow B \mid \epsilon$$

 $B \rightarrow S \mid \epsilon$

• Add *S*₀

$$S_0 \rightarrow S$$

 $S \rightarrow B \mid \epsilon$
 $B \rightarrow S \mid \epsilon$

Infinite Loop

• Remove $S \to \epsilon$

$$S_0 o S \mid \epsilon$$
 $S o B$
 $B o S \mid \epsilon$

• Remove $B \to \epsilon$

$$S_0 o S \mid \epsilon$$
 $S o B \mid \epsilon$
 $B o S$

Infinite Loop

- No need to add $S \rightarrow \epsilon$
- Reason: $S \rightarrow \epsilon$ has been handled; see line -8 of p109 in the textbook.

Problem
Convert the following CFG into CNF

 $S \rightarrow a B c C$

Problem

Convert the following CFG into CNF

$$S \rightarrow a B c C$$

CFG IN Chomsky normal form.

$$S -> H_1 H_0$$

$$H_0 -> C$$

$$H_1 -> H_3 H_2$$

$$H_2 -> c$$

$$H_3 -> H_4 H_5$$

$$H_4 -> a$$

$$H_5 \rightarrow B$$

Problem
Convert the following CFG into CNF

CFG S->aBBB|bAAA

Problem

Convert the following CFG into CNF

CFG

 $S \rightarrow a B B B | b A A A$

CFG IN Chomsky normal form

$$S \rightarrow H_1 H_0 | H_3 H_2$$

$$H_0 \rightarrow B$$

$$H_1 -> H_4 H_0$$

$$H_2 \rightarrow A$$

$$H_3 -> H_5 H_2$$

$$H_4 -> H_6 H_0$$

$$H_5 -> H_7 H_2$$

$$H_6 -> a$$

$$H_7 -> b$$

Problem
Convert the following CFG into CNF

CFG S->bAA

Problem

Convert the following CFG into CNF

CFG

$$S \rightarrow b A A$$

CFG IN Chomsky normal form.

$$S -> H_1 H_0$$

$$H_0 \rightarrow \bar{A}$$

$$H_1 -> H_2 H_0$$

$$H_2 -> b$$

Problem
Convert the following CFG into CNF

CFG S->CbADA

Problem

Convert the following CFG into CNF

CFG

CFG IN Chomsky normal form.

$$S -> H_1 H_0$$

$$H_0 \rightarrow A$$

$$H_1 -> H_3 H_2$$

$$H_2 \rightarrow D$$

$$H_3 -> H_4 H_0$$

$$H_4 -> H_5 H_6$$

$$H_5 \rightarrow C$$

$$H_6 \rightarrow b$$