

BATCH

Batch 85

LESSON

Kubernetes-3

DATE

11.11.2022

SUBJECT: Kubernetes Networking

techproeducation

techproeducation

techproeducation

techproeducation

techproedu

Kubernetes Networking

Cluster Networking

Service Types

NETWORKING

There are 4 distinct networking problems to address:

◆ Container-to-container communications:

◆ Pod-to-Pod communications:

- ◆ Pod-to-Service communications: this is covered by services.
- ◆ External-to-Service communications: this is covered by services.

Container to ContainerUsing "localhost:port"

Pod to PodUsing networking plugins

- Pod to PodUsing networking plugins
 - CNI (Container Network Interface)

It is a framework for dynamically configuring networking resources.

Some common plugins:

Calico, Flannel

Thanks to plugins, pods can communicate over IP addresses, however ..

Pods are not reliable

Services

- → A Service offers a single DNS entry for a containerized application managed by the Kubernetes cluster
- → The Service is associated with the Pods, and provides them with a stable IP, DNS and port. It also loadbalances requests across the Pods.
- → Service logically groups Pods and defines a policy to access them. This grouping is achieved via Labels and Selectors.

Services

Kubernetes Service

A service allows you to dynamically access a group of replica pods.

- → Kubernetes Services enable communication between various components within and outside of the application.
- → Kubernetes Services helps us connect applications together with other applications or users

kube-proxy

Each cluster node runs a daemon called kube-proxy

- → kube-proxy is responsible for implementing the Service configuration on behalf of an administrator or developer
- → For each new Service, on each node, kube-proxy configures iptables rules to capture the traffic for its ClusterIP and forwards it to one of the Service's endpoints.
- →When the Service is removed, kube-proxy removes the corresponding iptables rules on all nodes as well.
- If **kube-proxy fails** the node goes into **Not Ready** state

Service Discovery

Kubernetes has an add-on for DNS, which creates a DNS record for each Service and its format is

web-svc.my-namespace.svc.cluster.local.

If we add a Service redis-master in my-ns Namespace, all Pods in the same my-ns Namespace lookup the Service just by its name, redis-master.

my-ns

test-ns

To connect to the "Game pod" and "db pod":

From "web pod" --> "Game pod" ---> hostname: game-sevice.my-ns:port game-service:port

From "web pod" -> "db pod ---> hostname: db-service.test-ns.svc.cluster.local:port

Service Types

There are 4 major service types:

- → ClusterIP (default)
 - Network inside cluster
- → NodePort
 - Network coming from Internet, usually for Frontend
- → LoadBalancer
 - Used by cloud provider
- → ExternalName

Service Types

Services

ClusterIP Service

```
apiVersion: v1
kind: Service
metadata:
  name: example-prod
spec:
  selector:
    app: nginx
    env: prod
  ports:
  - protocol: TCP
    port: 80
    targetPort: 80
```

→ ClusterIP services exposes a service on a strictly cluster internal virtual IP.

Cluster IP Service

Name: example-prod

Selector: app=nginx,env=prod

Type: ClusterIP 10.96.28.176

Port: <unset> 80/TCP

TargetPort: 80/TCP

Endpoints: 10.255.16.3:80,

10.255.16.4:80

/ # nslookup example-prod.default.svc.cluster.local

Name: example-prod.default.svc.cluster.local

Address 1: 10.96.28.176 example-prod.default.svc.cluster.local

NodePort Service

```
apiVersion: v1
kind: Service
metadata:
  name: example-prod
spec:
  type: NodePort
  selector:
    app: nginx
    env: prod
  ports:
  - nodePort: 32410
    protocol: TCP
    port: 80
    targetPort: 80
```

- NodePort services extend the ClusterIP service.
- Exposes a port on every node's IP.
- Port can either be statically defined, or dynamically taken from a range between 30000-32767.

NodePort Service

LoadBalancer Service

```
apiVersion: v1
kind: Service
metadata:
  name: example-prod
spec:
  type: LoadBalancer
  selector:
    app: nginx
    env: prod
  ports:
    protocol: TCP
    port: 80
    targetPort: 80
```

- LoadBalancer services extend NodePort.
- → Works in conjunction with an external system (cloud providers) to map a cluster external IP to the exposed service.

LoadBalancer Service

ExternalName Service

- → ExternalName is used to reference endpoints OUTSIDE the cluster.
- → Creates an internal **CNAME** DNS entry that aliases another.

```
apiVersion: v1
kind: Service
metadata:
   name: example-prod
spec:
   type: ExternalName
spec:
   externalName: example.com
```


Labels and loose coupling

- → Labels and Selectors use a key/value pair format.
- → Pods and Services are loosely coupled via labels and label selectors.
- → For a Service to match a set of Pods, and therefore provide stable networking and load-balance, it only needs to match some of the Pods labels.
- → However, for a Pod to match a Service, the Pod must match all of the values in the Service's label selector.

Labels and loose coupling

Do you have any questions?

Send it to us! We hope you learned something new.