- 1) Considere a sequência depinida indutivamente por $x_1=1$, $x_{n+1}=\frac{1}{1+x_n}$. Seja c>o t.q. $c=\frac{1}{1+c}$
 - (a) mostre que 1xn+1-c1 < 1/2 1xn-1-c1.
 - (b) conclua dai que 1×2×11-c1 < 1/2 1×1-c1
 1×2×-c1 < 1/2 1×2-c1

para keIN.

- (C) concluia que Xn C.
- ② Seja $a \in \mathbb{R}$ número irracional positivo $e \frac{p_n}{q_n} \rightarrow a$, onde $\frac{p_n}{q_n} \in \mathbb{Q}$. Mostre que $q_n \rightarrow \infty$ (suponha $p_n > 0$, $q_n > 0$).
- 3 Considere dades 0<a, <a2, e a portir dai defina $a_{n+1} = \frac{a_n + a_{n-1}}{2}$ para $n \ge 3$.
 - (a) mostre que a requincia é convergente
 - (b) prove que 2 antz + ant = 2 ant + an para todo NEN, e conclua que 2 antz + ant = 2 az + a1.
 - (c) calcule lu an.