UTS PEMBELAJARAN MESIN

Mujahid Ansori Majid 1197050093 D

Topik Mini Riset

Studi kasus yang saya bawakan merupakan Campus recrutment dalam mini riset kali ini akan mengetahui faktor apa saja yang menyebabkan students itu dapat ditempatkan

Data Understanding

Campus recruitment merupakan sebuah strategi untuk menempatkan young talent baik untuk magang atau entry-level position

The dataset includes:

1.sl_no: Serial Number

2.ssc_p: Secondary Education Percentage

3.ssc_b: Board of Secondary Education

4.hsc_p: Higher Secondary Education Percentage

5.hsc_b: Board of Higher Secondary Education

6.hsc_s: Specialisation in Higher Secondary Education

7.degree_p: Degree Percentage

8.degree_t: Field of Degree Education

9.workex: Work Experience

10.etest_p: Employability Test Percentage

11.specialisation: MBA Specialisation

12.mba_p: MBA Percentage

13.status: Status of Placement

Data Preparation

import pandas as pd
import numpy as np
from sklearn import linear_model
from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt

%matplotlib inline import seaborn as sns

df=pd.read_csv("/content/drive/MyDrive/dataset/Placement_Data_Full_Class.csv")

df.head()

	sl_no	gender	ssc_p	ssc_b	hsc_p	hsc_b	hsc_s	degree_p	degree_t	wor
0	1	М	67.00	Others	91.00	Others	Commerce	58.00	Sci&Tech	
1	2	М	79.33	Central	78.33	Others	Science	77.48	Sci&Tech	
2	3	М	65.00	Central	68.00	Central	Arts	64.00	Comm&Mgmt	
3	4	M	56.00	Central	52.00	Central	Science	52.00	Sci&Tech	
4	5	М	85.80	Central	73.60	Central	Commerce	73.30	Comm&Mgmt	
7	†									

df.shape

(215, 15)

df.info()

hanya terdapat 67 data yang null pada kolom salary

<class 'pandas.core.frame.DataFrame'> RangeIndex: 215 entries, 0 to 214 Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	sl_no	215 non-null	int64
1	gender	215 non-null	object
2	ssc_p	215 non-null	float64
3	ssc_b	215 non-null	object
4	hsc_p	215 non-null	float64
5	hsc_b	215 non-null	object
6	hsc_s	215 non-null	object
7	degree_p	215 non-null	float64
8	degree_t	215 non-null	object
9	workex	215 non-null	object
10	etest_p	215 non-null	float64
11	specialisation	215 non-null	object
12	mba_p	215 non-null	float64
13	status	215 non-null	object
14 salary		148 non-null	float64
<pre>dtypes: float64(6),</pre>		<pre>int64(1), object</pre>	(8)

memory usage: 25.3+ KB

[#] untuk memperjelas

df.isnull().sum()

0
0
0
0
0
0
0
0
0
0
0
0
0
0
67

kita memiliki 215 kandidat dengan kolom yang beragam. kita kehilangan beberapa value dari salary, kenapa karena angka demikian merupakan student yang tidak ditempatkan atau gagal.

df1=df.drop(['sl_no','ssc_b','hsc_b','salary','hsc_s','ssc_p','hsc_p'],axis='columns')
df1

	gender	degree_p	degree_t	workex	etest_p	specialisation	mba_p	status
0	M	58.00	Sci&Tech	No	55.0	Mkt&HR	58.80	Placed
1	M	77.48	Sci&Tech	Yes	86.5	Mkt&Fin	66.28	Placed
2	M	64.00	Comm&Mgmt	No	75.0	Mkt&Fin	57.80	Placed
3	M	52.00	Sci&Tech	No	66.0	Mkt&HR	59.43	Not Placed
4	M	73.30	Comm&Mgmt	No	96.8	Mkt&Fin	55.50	Placed
210	M	77.60	Comm&Mgmt	No	91.0	Mkt&Fin	74.49	Placed
211	M	72.00	Sci&Tech	No	74.0	Mkt&Fin	53.62	Placed
212	M	73.00	Comm&Mgmt	Yes	59.0	Mkt&Fin	69.72	Placed
213	F	58.00	Comm&Mgmt	No	70.0	Mkt&HR	60.23	Placed
214	М	53.00	Comm&Mgmt	No	89.0	Mkt&HR	60.22	Not Placed

```
array(['Mkt&HR', 'Mkt&Fin'], dtype=object)
df1['status'].value_counts()
```

Placed 148 Not Placed 67

Name: status, dtype: int64

Terbukti bahwa 148 orang tersalurkan atau dapat ditempatkan, sedangkan sisanya tidak ditempatkan

```
sns.countplot(df1['status'])
plt.title('Number of students placed',fontsize=15)
plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

df1.groupby(['degree_t'])['status'].value_counts()

```
degree_t
           status
Comm&Mgmt
           Placed
                          102
           Not Placed
                           43
           Not Placed
Others
                            6
           Placed
                            5
Sci&Tech
           Placed
                           41
           Not Placed
```

Name: status, dtype: int64

```
sns.countplot(x=df1['degree_t'],hue=df1['status'])
plt.show()
```


melihat dari jurusannya commerce dan management, pun science dan teknologi. menduduki kursi yang signifikan untuk tersalurkan

~g.~_

42

Not Placed

Name: status, dtype: int64

sns.countplot(x=df1['specialisation'],hue=df1['status'])
plt.show()

Sekitar 79,16% dan 55,78% siswa masing-masing ditempatkan dari aliran pasar & keuangan dan pasar & SDM. Dari sini kita dapat menyimpulkan bahwa siswa yang memiliki pasar & keuangan sebagai spesialisasi mereka memiliki lebih banyak kesempatan untuk ditempatkan.

df1.groupby(['workex'])['status'].value_counts()

workex status
No Placed 84
Not Placed 57
Yes Placed 64

```
Not Placed 10
Name: status dtvne: int64
sns.countplot(x=df1['workex'],hue=df1['status'])
plt.show()
```


86,48% siswa yang memiliki pengalaman kerja yang diterima bekerja sementara hanya 59,57% siswa yang tidak memiliki pengalaman kerja yang diterima. Oleh karena itu pengalaman kerja mempengaruhi proses perekrutan.

```
df1.groupby(['gender'])['status'].value_counts()
```

gender	r status	
F	Placed	48
	Not Placed	28
Μ	Placed	100
	Not Placed	39
Name:	status, dtype:	int64

```
sns.countplot(x=df1['gender'],hue=df1['status'])
plt.show()
```


63,16% perempuan dan 71,94% laki-laki mendapat tempat. Laki-laki memiliki lebih banyak kesempatan untuk ditempatkan.

```
sns.displot(x=df1['degree_p'],hue=df1['status'],multiple='dodge')
sns.displot(x=df1['mba_p'],hue=df1['status'],multiple='dodge')
sns.displot(x=df1['etest_p'],hue=df1['status'],multiple='dodge')
```

<seaborn.axisgrid.FacetGrid at 0x7f8b37667050>

Dari representasi di atas dapat dipahami bahw persentase gelar meningkat, peluang untuk dit bahwa ketika persentase gelar meningkat, meningkat tetapi ketika mempertimbangkan pers persentase tes kerja, siswa dengan persentasé ditempatkan

Dari representasi di atas dapat dipahami peluang untuk diterima juga meningkat tetapi ketika mempertimbangkan persentase MBA dan persentase tes kerja, siswa dengan persentase rata-rata ditempatkan

- Building Model

```
₹ 15 -l
                                                     ctatue
le_degree_t=LabelEncoder()
le_specialisation=LabelEncoder()
le_workex=LabelEncoder()
le_status=LabelEncoder()
le_gender=LabelEncoder()
          df1['degree t n']=le degree t.fit transform(df1['degree t'])
df1['specialisation_n']=le_specialisation.fit_transform(df1['specialisation'])
df1['workex_n']=le_workex.fit_transform(df1['workex'])
df1['status_n']=le_status.fit_transform(df1['status'])
df1['gender_n']=le_gender.fit_transform(df1['gender'])
df1.head()
```

	gender	degree_p	degree_t	workex	etest_p	specialisation	mba_p	status	de
0	M	58.00	Sci&Tech	No	55.0	Mkt&HR	58.80	Placed	
4	В. Л	77 40	O-:0TL	\/	00 5	N A1 - 1 O T:	00.00	Diana	

df2=df1.drop(['degree_t','specialisation','workex','status','gender'],axis='columns')
df2.head()

	degree_p	etest_p	mba_p	degree_t_n	specialisation_n	workex_n	status_n	gender
0	58.00	55.0	58.80	2	1	0	1	
1	77.48	86.5	66.28	2	0	1	1	
2	64.00	75.0	57.80	0	0	0	1	
3	52.00	66.0	59.43	2	1	0	0	
4	73.30	96.8	55.50	0	0	0	1	
4								

df2.astype(int)

	degree_p	etest_p	mba_p	degree_t_n	specialisation_n	workex_n	status_n	geno
0	58	55	58	2	1	0	1	
1	77	86	66	2	0	1	1	
2	64	75	57	0	0	0	1	
3	52	66	59	2	1	0	0	
4	73	96	55	0	0	0	1	
210	77	91	74	0	0	0	1	
211	72	74	53	2	0	0	1	
212	73	59	69	0	0	1	1	
213	58	70	60	0	1	0	1	
214	53	89	60	0	1	0	0	
0.45								

215 rows × 8 columns

df2.info()

4

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 215 entries, 0 to 214

Data columns (total 8 columns):

Data	COTUMNIS (COCAT 6	COTUMNIS).	
#	Column	Non-Null Count	Dtype
0	degree_p	215 non-null	float64
1	etest_p	215 non-null	float64
2	mba_p	215 non-null	float64
3	degree_t_n	215 non-null	int64

```
specialisation_n 215 non-null
                                          int64
     5
         workex_n
                          215 non-null
                                          int64
                           215 non-null
         status n
                                          int64
                          215 non-null
                                          int64
     7
         gender n
    dtypes: float64(3), int64(5)
    memory usage: 13.6 KB
X=df2.drop(['status_n'],axis='columns')
y=df2['status_n']
```

Logistic Regression

X_test

	degree_p	etest_p	mba_p	degree_t_n	specialisation_n	workex_n
96	76.00	66.00	64.44	0	0	1
197	91.00	59.32	69.71	2	1	0
37	65.60	58.00	55.47	2	1	0
64	75.00	61.00	58.78	0	0	0
101	68.00	78.00	60.44	0	1	0
4	73.30	96.80	55.50	0	0	0
107	83.00	80.00	73.52	0	1	0
192	64.80	93.40	57.34	0	0	1
214	53.00	89.00	60.22	0	1	0
82	74.00	82.00	60.44	0	0	0
109	65.00	86.00	56.09	2	1	1
136	64.00	78.00	61.58	0	0	0
51	56.20	67.00	62.65	0	1	0
211	72.00	74.00	53.62	2	0	0
142	73.43	60.00	61.29	2	0	1
182	57.00	75.00	59.81	1	0	1
145	71.25	72.00	63.23	2	1	0
131	62.00	80.00	60.78	1	0	1
122	69.30	80.40	71.00	0	0	1
121	69.60	55.67	71.49	2	1	1
173	55.00	67.00	59.32	2	1	0
133	77.00	65.00	60.98	0	1	1
206	60.00	97.00	53.39	0	0	0
111	61.00	60.00	60.64	2	1	0
198	65.00	88.00	71.96	1	1	0
39	64.00	93.00	62.56	2	0	0
30	73.00	52.00	56.70	0	1	0
167	67.00	58.10	75.71	2	0	1
22	72.23	55.53	68.81	2	1	0
23	64.74	92.00	63.62	2	0	1
166	60.00	63.00	52.38	0	1	1
71	71.00	95.00	66.94	0	0	0

```
clf.predict(X_test)
```

```
y_test
     96
     197
            1
     37
            1
     64
            1
     101
            1
            1
     107
            1
     192
            1
     214
            0
     82
            0
     109
            0
     136
            0
     51
            0
     211
            1
     142
            1
     182
            0
     145
            1
     131
            1
     122
            1
     121
            1
     173
            0
     133
            1
     206
            0
     111
            0
     198
            0
     39
            1
     30
            1
     167
            0
     22
            1
     23
            1
     166
            1
     71
            1
     137
            1
     103
            1
     178
            1
     88
            1
     44
            1
            1
     11
     17
            0
     85
            1
     185
            1
     204
            1
     110
            1
     Name: status_n, dtype: int64
```

clf.score(X_test,y_test)

0.813953488372093

Decision Tree Algorithm

```
from sklearn import tree
model_2 = tree.DecisionTreeClassifier(criterion='entropy')
model_2.fit(X_train, y_train)

DecisionTreeClassifier(criterion='entropy')

model_2.score(X_train,y_train)

1.0
```

Random Forest Classifier

```
from sklearn.ensemble import RandomForestClassifier
model_3 = RandomForestClassifier(n_estimators=100)
model_3.fit(X_train, y_train)

RandomForestClassifier()

model_3.score(X_test, y_test)

0.7209302325581395
```

X