Mid Term Exam

* Ind	dicates required question
1.	Email *
The	re are 2 parts in the exam.
	1 contains 13 questions.
•	2 contains 5 questions.
Hov	need to answer any 12 out of these 18 questions. vever you may answer more than 12 questions as well, in which case best 12 will be nted.
	h question carries 1 mark.
2.	Enter your CSE230 section number *
3.	Enter your student ID *

Read the instructions carefully.

There are 3 types of questions -- MCQ, MSQ & NV.

For Multiple **choice** Questions (MCQ)

Each question should have exactly one correct answer.

If you select the correct answer, you will get 1 mark.

Otherwise you will get 0 mark.

For Multiple **selection** Questions (**MSQ**)

Each question may have one or multiple correct answer(s). Say, we have t correct answers.

If you select any of the incorrect answers, you will get 0 mark.

Otherwise your mark will be p/t upon selecting p correct answers.

For Numerical Value questions (NVQ)

There might be multiple correct answers, however you **must** submit exactly one of them.

If your answer is correct, you will get 1.

Otherwise you will get 0.

Each question, be it MCQ, MSQ or NVQ, carries 1 mark.

4. MCQ

Let p, q be two propositions. Then find the truth value in "??".

p∨q	$p \wedge q$	$p \oplus q$
Т	F	??

Mark	only	one	oval.
------	------	-----	-------

True
False
Insufficient information is given

_	B 4		$\overline{}$
5 .	IV	IS	IJ

6.

Let x, y, z be the last three digits of your Student ID. [For example, if your student ID is 12345678, then x = 6, y = 7, z = 8] Also consider the following propositions: p: (y + z) is even q: $(y \times z)$ is odd Which of the following proposition(s) is/are true? Check all that apply. $p \rightarrow q$ converse of $p \rightarrow q$ contrapositive of $p \rightarrow q$ inverse of $p \rightarrow q$ MSQ Let the domain of x consists of all the people in the world. Consider the following predicates: P(x): x is miser $\mathbf{Q}(x)$: x is rich Which of the following statements represent the **negation** of: "Every rich person is miser"? Check all that apply. $\neg \forall x (P(x) \land Q(x))$ $\neg \forall x (P(x) \rightarrow Q(x))$ $\neg \exists x (P(x) \land Q(x))$ $\exists x (P(x) \land Q(x))$ $\exists x (P(x) \land \neg Q(x))$

7. NVQ

How many values amount to False (F) in the last column of the following truth table?

p	q	r	$(p \rightarrow (r \bigoplus q))$
F	F	F	
F	F	T	
F	Т	F	
F	Т	Т	
Т	F	F	
Т	F	Т	
Т	Т	F	
Т	Т	Т	

8. NVQ

Let x, y, z be the last three digits of your Student ID. [For example, if your student ID is 12345678, then x = 6, y = 7, z = 8] Let $w = 100 \times x + 10 \times y + z + 999$ $(w)_{230} = (?)_{10}$

9. NVQ

The following information is given about three integers p, q and t:

- GCD(p,q) = 12
- GCD(q,t) = 16
- LCM(p,q) = 336
- LCM(q,t) = 240
- $p \times t = 6720$

Find the value of q.

Let x, y, z be the last three digits of your Student ID.

[For example, if your student ID is 12345678, then x = 6, y = 7, z = 8]

Let a, b, c be three positive integers and let a|b and b|c. Then which of the following is/are true?

- a. $a \mid ax by + cz$
- b. $a^2 \mid bc$
- c. $ab \mid 3c^2 bcy$
- d. $c^2 | ax + by + cz$

Check all that apply.

- (a)
- (b)
- (c)
- (d)

11. NVQ

Let x, y, z be the last three digits of your Student ID.

[For example, if your student ID is 12345678, then x = 6, y = 7, z = 8]

Let v = 40 + z

Then find the value of $11^{v} \pmod{13}$.

12. MSQ

Let x, y, z be the last three digits of your Student ID.

[For example, if your student ID is 12345678, then x = 6, y = 7, z = 8] Let $w = 10 \times y + z + 99$

What is/are the possible remainder(s) when $(w^{300} - w^{100} + w)$ is divided by 3?

Check all that apply.

- ____0
- ____2
- 3

Let x, y, z be the last three digits of your Student ID.

[For example, if your student ID is 12345678, then x = 6, y = 7, z = 8] What is the degree of the following recurrence relation?

$$5a_{n+x+1} + 6a_{n+y} = 3a_n$$

14. MSQ

Which of the following recurrence relations is/are equivalent to $a_n = a_{n-1} + 2^n$?

a.
$$a_n = a_{n-2} + 2^{n+1}$$

b.
$$a_n = a_{n-2} + 2^n$$

c.
$$a_n = a_{n-2} + 2^{n-1}$$

d.
$$a_n = a_{n-2} + 2^n + 2^{n-1}$$

Check all that apply.

- (a)
- (b)
- (c)
- (d)

Let x, y, z be the last three digits of your Student ID.

[For example, if your student ID is 12345678, then x = 6, y = 7, z = 8] Which statement(s) is/are correct about the following recurrence relation?

$$12a_{n+4} + 2a_{n+2} - z \times n^{y} = 12a_{n+1} - 38a_{n+3}$$

- a. The relation is non-homogeneous
- b. The relation is non-linear
- Homogeneous part of the relation has 3 characteristics roots
- d. 3 is a characteristics root of the homogeneous part of the relation

Check all that apply.

_	_	
		(a)

16. NVQ

Let x, y, z be the last three digits of your Student ID.

[For example, if your student ID is 12345678, then x = 6, y = 7, z = 8]

Let
$$a_n = 2a_{n-1} + 3$$
 and $a_0 = 3$

Find the value of a_{z+17}

Read the instructions carefully.

There are 3 types of questions -- MCQ, MSQ & NV.

For multiple **choice** questions (MCQ)

Each question should have exactly one correct answer.

If you select the correct answer, you will get 1 mark.

Otherwise you will get 0 mark.

For multiple **selection** questions (MSQ)

Each question may have one or multiple correct answer(s). Say, we have t correct answers.

If you select any of the incorrect answers, you will get 0 mark.

Otherwise your mark will be p/t upon selecting p correct answers.

For numerical value questions (NVQ)

There might be multiple correct answers, however you **must** submit exactly one of them.

If your answer is correct, you will get 1.

Otherwise you will get 0.

Each question, be it MCQ, MSQ or NVQ, carries 1 mark.

17. MSQ

In the Basis step, There is/are error(s) in:

Prove by induction that,

$$P(n): 1 \times 2^{1} + 2 \times 2^{2} + 3 \times 2^{3} + \dots + n \times 2^{n} = 2 + (n-1) \times 2^{n+1}$$

Proof:

Basis Step:

To prove the base, we should start with n = 2 (Line 1)

for
$$n = 2$$
, L.H.S of $P(n = 2) = 2 \times 2^2 = 8$ _____(Line 2)

for
$$n = 2$$
, R.H.S of $P(n = 2) = (2 - 1) \times 2^{2+1} = 8$ _____(Line 3) $\Rightarrow P(n = 2)$ is true.

Inductive Step:

Let's assume that, P(n = m) is true for some $m \in R$ (Line 4)

$$\Rightarrow$$
 1 \times 2¹ + 2 \times 2² + 3 \times 2³ + ... + $m \times$ 2 ^{m} = 2 + (m - 1) \times 2 ^{m +1}(i)

Using (i), we have to show that ,
$$p(n = m + \square)$$
 is also true _____(Line 5

$$\Rightarrow 1 \times 2^{1} + 2 \times 2^{2} + 3 \times 2^{3} + \dots + m \times 2^{m} + (m+1) \times 2^{m+1} = 2 + (m+1) \times 2^{m+2} + \dots + (ii)$$
 (Line 6)

Now,

L.H.S of (ii) =
$$1 \times 2^1 + 2 \times 2^2 + 3 \times 2^3 + \dots + m \times 2^m + (m+1) \times 2^{m+1}$$

L.H.S of (ii) = 2 +
$$(m-1) \times 2^{m+1} + (m+1) \times 2^{m+1}$$
 [from (i)] _____(Line 7)

L.H.S of (ii) =
$$2 + 2^{m+1}(m-1+m+1)$$
 _____(Line 8)

L.H.S of (ii) = 2 +
$$(m + 1) \times 2^{m+2}$$
 (Line 9)

 $L.H.S {of} {(ii)} = R.H.S {of} {(ii)}$

So, Our claim is true for all positive integers n.

Check all that apply.

	 •		-
	 in	\sim	1
	 	_	

Line 2

Line 3

18. NVQ

In line 5, determine the numerical value in the empty box.

Prove by induction that,

$$P(n): 1 \times 2^{1} + 2 \times 2^{2} + 3 \times 2^{3} + \dots + n \times 2^{n} = 2 + (n-1) \times 2^{n+1}$$

Proof:

Basis Step:

To prove the base, we should start with n = 2 (Line 1)

for
$$n = 2$$
, L.H.S of $P(n = 2) = 2 \times 2^2 = 8$ _____(Line 2)

for
$$n = 2$$
, R.H.S of $P(n = 2) = (2 - 1) \times 2^{2+1} = 8$ _____(Line 3) $\Rightarrow P(n = 2)$ is true.

Inductive Step:

Let's assume that, P(n = m) is true for some $m \in R$ (Line 4)

$$\Rightarrow$$
 1 \times 2¹ + 2 \times 2² + 3 \times 2³ + ... + $m \times$ 2 ^{m} = 2 + (m - 1) \times 2 ^{m +1}(i)

Using (i), we have to show that , $p(n = m + \square)$ is also true _____(Line 5)

$$\Rightarrow 1 \times 2^{1} + 2 \times 2^{2} + 3 \times 2^{3} + \dots + m \times 2^{m} + (m+1) \times 2^{m+1} = 2 + (m+1) \times 2^{m+2} + \dots + (ii)$$
 (Line 6)

Now,

L.H.S of (ii) =
$$1 \times 2^1 + 2 \times 2^2 + 3 \times 2^3 + \dots + m \times 2^m + (m+1) \times 2^{m+1}$$

L.H.S of (ii) = 2 +
$$(m-1) \times 2^{m+1} + (m+1) \times 2^{m+1}$$
 [from (i)] _____(Line 7)

L.H.S of (ii) =
$$2 + 2^{m+1}(m-1+m+1)$$
 _____(Line 8)

L.H.S of (ii) = 2 +
$$(m + 1) \times 2^{m+2}$$
 _____(Line 9)

 $L.H.S ext{ of (ii)} = R.H.S ext{ of (ii)}$

So, Our claim is true for all positive integers n.

19. MCQ

In the Inductive step, between Line 4 and Line 6:

Prove by induction that,

$$P(n): 1 \times 2^{1} + 2 \times 2^{2} + 3 \times 2^{3} + \dots + n \times 2^{n} = 2 + (n-1) \times 2^{n+1}$$

Proof:

Basis Step:

To prove the base, we should start with n = 2 (Line 1)

for
$$n = 2$$
, L.H.S of $P(n = 2) = 2 \times 2^2 = 8$ _____(Line 2)

for
$$n = 2$$
, R.H.S of $P(n = 2) = (2 - 1) \times 2^{2+1} = 8$ _____(Line 3) $\Rightarrow P(n = 2)$ is true.

Inductive Step:

Let's assume that, P(n = m) is true for some $m \in R$ (Line 4)

$$\Rightarrow$$
 1 \times 2¹ + 2 \times 2² + 3 \times 2³ + ... + $m \times$ 2 ^{m} = 2 + (m - 1) \times 2 ^{m +1}(i)

Using (i), we have to show that ,
$$p(n = m + \square)$$
 is also true _____(Line 5)

$$\Rightarrow 1 \times 2^{1} + 2 \times 2^{2} + 3 \times 2^{3} + \dots + m \times 2^{m} + (m+1) \times 2^{m+1} = 2 + (m+1) \times 2^{m+2} + \dots + (ii)$$
 (Line 6)

Now,

L.H.S of (ii) =
$$1 \times 2^1 + 2 \times 2^2 + 3 \times 2^3 + \dots + m \times 2^m + (m+1) \times 2^{m+1}$$

L.H.S of (ii) = 2 +
$$(m-1) \times 2^{m+1} + (m+1) \times 2^{m+1}$$
 [from (i)] _____(Line 7)

L.H.S of (ii) =
$$2 + 2^{m+1}(m-1+m+1)$$
 _____(Line 8)

L.H.S of (ii) = 2 +
$$(m + 1) \times 2^{m+2}$$
 (Line 9)

$$L.H.S {of} {(ii)} = R.H.S {of} {(ii)}$$

So, Our claim is true for all positive integers n.

Mark only one oval.

- Line 4 has error, Line 6 does not
- Line 6 has error, Line 4 does not
- Both Line 4 and Line 6 have errors
- Both Line 4 and Line 6 are correct

20. MCQ

Is there any error in Line 7?

Prove by induction that,

$$P(n): 1 \times 2^{1} + 2 \times 2^{2} + 3 \times 2^{3} + \dots + n \times 2^{n} = 2 + (n-1) \times 2^{n+1}$$

Proof:

Basis Step:

To prove the base, we should start with n = 2 (Line 1)

for
$$n = 2$$
, L.H.S of $P(n = 2) = 2 \times 2^2 = 8$ _____(Line 2)

for
$$n = 2$$
, R.H.S of $P(n = 2) = (2 - 1) \times 2^{2+1} = 8$ _____(Line 3) $\Rightarrow P(n = 2)$ is true.

Inductive Step:

Let's assume that, P(n = m) is true for some $m \in R$ (Line 4)

$$\Rightarrow$$
 1 \times 2¹ + 2 \times 2² + 3 \times 2³ + ... + $m \times$ 2 ^{m} = 2 + (m - 1) \times 2 ^{m +1}(i)

Using (i), we have to show that , $p(n = m + \square)$ is also true _____(Line 5)

$$\Rightarrow 1 \times 2^{1} + 2 \times 2^{2} + 3 \times 2^{3} + \dots + m \times 2^{m} + (m+1) \times 2^{m+1} = 2 + (m+1) \times 2^{m+2} + \dots + (ii)$$
 (Line 6)

Now,

L.H.S of (ii) =
$$1 \times 2^1 + 2 \times 2^2 + 3 \times 2^3 + \dots + m \times 2^m + (m+1) \times 2^{m+1}$$

L.H.S of (ii) = 2 +
$$(m-1) \times 2^{m+1} + (m+1) \times 2^{m+1}$$
 [from (i)] _____(Line 7)

L.H.S of (ii) =
$$2 + 2^{m+1}(m-1+m+1)$$
 _____(Line 8)

L.H.S of (ii) = 2 +
$$(m + 1) \times 2^{m+2}$$
 (Line 9)

 $L.H.S {of} {(ii)} = R.H.S {of} {(ii)}$

So, Our claim is true for all positive integers n.

Mark only one oval.

Yes

()No

21. MCQ

Choose the correct answer after comparing the right hand sides of Line 8 and Line 9:

Prove by induction that, $P(n): 1 \times 2^{1} + 2 \times 2^{2} + 3 \times 2^{3} + \dots + n \times 2^{n} = 2 + (n-1) \times 2^{n+1}$ Proof: Basis Step: To prove the base, we should start with n = 2(Line 1) for n = 2, L.H.S of $P(n = 2) = 2 \times 2^2 = 8$ (Line 2) for n = 2, R.H.S of $P(n = 2) = (2 - 1) \times 2^{2+1} = 8$ (Line 3) $\Rightarrow P(n=2)$ is true. Inductive Step: Let's assume that, P(n = m) is true for some $m \in R$ \Rightarrow 1 \times 2¹ + 2 \times 2² + 3 \times 2³ + ... + $m \times$ 2^m = 2 + (m - 1) \times 2^{m+1}(i) Using (i), we have to show that , $p(n = m + \square)$ is also true \Rightarrow 1 × 2¹ + 2 × 2² + 3 × 2³ +..... + m × 2^m + (m + 1) × 2^{m+1} = 2 + (m + 1) × 2^{m+2}(ii) _(Line 6) Now. L.H.S of (ii) = $1 \times 2^1 + 2 \times 2^2 + 3 \times 2^3 + \dots + m \times 2^m + (m+1) \times 2^{m+1}$ L.H.S of (ii) = 2 + $(m-1) \times 2^{m+1} + (m+1) \times 2^{m+1}$ [from (i)] (Line 7) L.H.S of (ii) = $2 + 2^{m+1}(m-1+m+1)$ (Line 8) L.H.S of (ii) = 2 + $(m + 1) \times 2^{m+2}$ (Line 9) $L.H.S {of} {(ii)} = R.H.S {of} {(ii)}$ So, Our claim is true for all positive integers n. Mark only one oval. (R.H.S. of Line 8) > (R.H.S. of Line 9) (R.H.S. of Line 8) = (R.H.S. of Line 9) $(R.H.S. of Line 8) \ge (R.H.S. of Line 9)$

This content is neither created nor endorsed by Google.

(R.H.S. of Line 8) < (R.H.S. of Line 9)