Conditional Probability

Formulas

Joint and Marginal Probabilities

Conditional Probabilities

Probability of Defaulting, Given the person is married:

$$P(D \, | \, M) = \frac{P(D \cap M)}{P(M)} = \frac{0.2633}{0.4766} = 0.5524$$

Probability of Defaulting, Given the person is single:

$$P(D \,|\, S) = \frac{P(D \cap S)}{P(S)} = \frac{0.1367}{0.5234} = 0.2611$$

Conditional Probability

Multiplication Law:

- ☐ Multiplication law can be used to calculate the probability of the intersection of two events.
- ☐ Based on the definition of conditional probability.
 - ☐ Rearrange formula to solve for P(A n B)

MULTIPLICATION LAW $P(A\cap B)=P(B)P(A\mid B) \tag{4.7}$ or $P(A\cap B)=P(A)P(B\mid A) \tag{4.8}$

Example:

$$P(D \mid M) = \frac{P(D \cap M)}{P(M)} = \frac{0.2633}{0.4766} = 0.5524$$

$$P(D\cap M) = P(M)P(D\,|\,M) = (0.4766)(0.5524) = 0.2633$$

Conditional Probability

- \square Special case in which events A and B are independent.
- □ To compute the probability of the intersection of two independent events
 - □ Simply multiply the probabilities of each event.

MULTIPLICATION LAW FOR INDEPENDENT EVENTS

$$P(A \cap B) = P(A)P(B) \tag{4.9}$$

Conditional Probability

Bayes' Theorem:

- ☐ Way to update probabilities when we learn new information
- ☐ Example: A manufacturing firm receives shipments of parts from two different suppliers:
 - □ 65% of the parts purchased from supplier 1.
 - $\ \square$ 35% of the parts purchased from supplier 2.
- ☐ These are called **Prior Probabilities**
 - estimates for specific events of interest

Conditional Probability

Historical data suggest the quality ratings of the two suppliers:

	% Good Parts	% Bad Parts
Advance Auto (A1)	98	2
Auto Zone (A2)	95	5

- ☐ This new information allows us to update the prior probabilities.
- ☐ To do so, we calculate conditional probabilities

$$P(G|A_1) = 0.98$$
 $P(B|A_1) = 0.02$

$$P(G|A_2) = 0.95$$
 $P(B|A_2) = 0.05$

Conditional Probability Diagram for Two-Supplier Example $P(A_1)$ $P(A_1,G)$ $P(G|A_1)$ ☐ There are 4 possible outcomes: Step 1 Step 2 Supplier Condition Outcome ☐ Each outcome is the intersection of 2 events (A_1,G) G☐ Example: Probability of getting a Bgood part from Advanced Auto (A_1, B) $P(A_1,G) = P(A_1 \cap G) = P(A_1)P(G|A_1)$ A_2 G (A_2,G) ☐ We use the multiplication rule to Bcalculate (A_2, B) Note: Step 1 shows that the part comes from one of two suppliers and Step 2 shows whether the part is good or bad.

Conditional Probability

- □ Suppose the parts from the two suppliers are used in the firm's manufacturing process and a machine breaks while attempting the process using a bad part:
 - ☐ Given the information that the part is bad, what is the probability that it came from supplier 1 and what is the probability that it came from supplier 2?
 - ☐ That is: What is
 - \Box P(A1|B) = ?
 - \square P(A2|B) = ?
 - □ Using the prior probabilities and the conditional probabilities to update them, we can use Bayes Rule to calculate P(A1|B) and P(A2|B)
 - ☐ Known as Posterior Probabilities

Conditional Probability

BAYES' THEOREM (TWO-EVENT CASE)

$$P(A_1 \mid B) = \frac{P(A_1)P(B \mid A_1)}{P(A_1)P(B \mid A_1) + P(A_2)P(B \mid A_2)}$$
(4.10)

$$P(A_2 \mid B) = \frac{P(A_2)P(B \mid A_2)}{P(A_1)P(B \mid A_1) + P(A_2)P(B \mid A_2)}$$
(4.11)

BAYES' THEOREM

$$P(A_i \mid B) = \frac{P(A_i)P(B \mid A_i)}{P(A_1)P(B \mid A_1) + P(A_2)P(B \mid A_2) + \dots + P(A_n)P(B \mid A_n)}$$
(4.12)

☐ Bayes' theorem is applicable when are mutually exclusive and their union is the entire sample space.

Bayes Theorem

$$P(A_1|B) = \frac{P(A_1)P(B|A_1)}{P(A_1)P(B|A_1) + P(A_2)P(B|A_2)}$$

$$= \frac{(0.65)(0.02)}{(0.65)(0.02) + (0.35)(0.05)} = \frac{0.0130}{0.0130 + 0.0175}$$

$$= \frac{0.0130}{0.0305} = 0.4262$$

$$P(A_2|B) = \frac{P(A_2)P(B|A_2)}{P(A_2)P(B|A_1) + P(A_2)P(B|A_2)}$$

$$= \frac{(0.35)(0.05)}{(0.65)(0.02) + (0.35)(0.05)} = \frac{0.0175}{0.0130 + 0.0175}$$

$$= \frac{0.0175}{0.0305} = 0.5738$$

Random Variables Discrete Random Variables Continuous Random Variables

Random Variable | a random variable | | is a numerical description of the outcome of a random experiment. | Random variables are quantities whose values are not known with certainty. | A random variable can be classified as being either: | Discrete. | | Continuous.

Random Variables

Table 4.7: Examples of Discrete Random Variables - only take on specified discreet values

Random Experiment	Random Variable (x)	Possible Values for the Random Variable
Flip a coin	Face of a coin showing	1 if heads; 0 if tails
Roll a die	Number of dots showing on top of die	1, 2, 3, 4, 5, 6
Contact five customers	Number of customers who place an order	0, 1, 2, 3, 4, 5
Operate a health care clinic for one day	Number of patients who arrive	0, 1, 2, 3,
Offer a customer the choice of two products	Product chosen by customer	0 if none; 1 if choose product A; 2 if choose product B

Random Variables

- □ Lancaster Savings and Loan Example
 - \square Random Variable x = 1 for Default on Mortgage or x = 0 for No Default
 - \square Random Variable y = 1 for Married or y = 0 for Single
 - ☐ Random Variable z = number of payments per year (= 12 for 12 months)

Table 4.8: Joint Probability Table for Customer Mortgage Prepayments

	No Default ($x = 0$)	Default ($x = 1$)	f(y)
Married $(y = 1)$	0.2133	0.2633	0.4766
Single $(y = 0)$	0.3867	0.1367	0.5234
f(x)	0.6000	0.4000	1.0000

Random Variables

Continuous Random Variables:

- □ A random variable that may assume any numerical value in an interval or collection of intervals
 - ☐ Relatively few random variables are truly continuous
 - ☐ Many discrete random variables have a large number of potential outcomes
 - ☐ can be effectively modeled as continuous random variables.

Random Experiment

Customer visits a web page Fill a soft drink can (max capacity =

12.1 ounces)

Test a new chemical process

Random Variable (x)

Time customer spends on web page in minutes

Number of ounces

Temperature when the desired reaction takes place (min temperature = 150°F; max temperature = 212°F)

Invest \$10,000 in the stock market Value of investment after one year

Possible Values for the Random Variable

 $x \ge 0$

 $0 \le x \le 12.1$

 $150 \le x \le 212$

 $x \ge 0$

Discrete Probability Distributions

Custom Discrete Probability Distribution

Expected Value and Variance

Discrete Uniform Probability Distribution

Binomial Probability Distribution

Poisson Probability Distribution

- ☐ The **probability distribution** for a random variable
 - describes the range and relative likelihood of possible values for a random variable.
- \Box For a discrete random variable x, the probability distribution is defined by the **probability mass** function, denoted by f(x).
- ☐ The probability mass function provides the probability for each value of the random variable.

Probability Distribution for Whether a Customer Defaults on a Mortgage

- \Box f(0) = .6
- \Box f(1) = .4

Requirements:

- $f(x) \ge 0$
- $\square \quad \sum f(x) = 1$

Discrete Probability Distributions

- □ Empirical Probability Distribution
 - ☐ A probability that is generated from observations
 - is considered a custom discrete probability distribution if:
 - ☐ it is discrete
 - ☐ the possible values of the random variable have different values:

Useful for describing different possible scenarios that have different probabilities.

- ☐ Example: Lancaster Savings and Loan Example
 - ☐ The random variable describing the number of mortgage payments made per year by randomly chosen customers.

Table 4.10: Summary Table of Number of Payments Made per Year

	Number of Payments Made per Year			
	x = 4	x = 12	x = 24	Total
Number of observations	45	180	75	300
f(x)	0.15	0.60	0.25	

Discrete Probability Distributions

Expected Value and Variance:

- ☐ The **expected value**, or mean, of a random variable
 - $\hfill \square$ is a measure of the central location for the random variable.
 - ☐ The weighted average of the values of the random variable, where weights are probabilities

EXPECTED VALUE OF A DISCRETE RANDOM VARIABLE

$$E(x) = \mu = \sum x f(x) \tag{4.13}$$

Expected Value for Number of Payments Made per Year by a Lancaster Savings and Loan Mortgage Customer

X	f(x)	xf(x)	,
4	0.15	(4)(0.15) = 0.6	
12	0.60	(12)(0.60) = 7.2	
24	0.25	(24)(0.25) = 6.0	
		13.8	$ E(x) = \mu = \sum x f(x)$

If Lancaster Savings and Loan signs a new mortgage customer, the expected number of payments per year for this customer is 13.8.

Discrete Probability Distributions

Figure 4.10: Excel PivotTable for Number of Payments Made per Year

☐ **Variance** is a measure of variability in the values of a random variable:

VARIANCE OF A DISCRETE RANDOM VARIABLE

$$Var(x) = \sigma^2 = \sum (x - \mu)^2 f(x)$$
 (4.14)

- \square An essential part of the variance formula is the deviation, $x \mu$,
 - \Box which measures how far a particular value of the random variable is from the expected value, or mean, μ .

Discrete Probability Distributions

Calculation of the Variance for Number of Payments Made per Year by a Lancaster Savings and Loan Mortgage Customer

- The standard deviation, σ , is defined as the positive square root of the variance.
- The standard deviation for the payments made per year by a mortgage customer is $\sqrt{42.360} = 6.508$.

Figure 4.13: Excel Calculation of the Variance for Number of Payments Made per Year by a Lancaster Savings and Loan Mortgage Customer

