Package 'TestCor'

October 12, 2022

·
Title FWER and FDR Controlling Procedures for Multiple Correlation Tests
Version 0.0.2.2
Date 2020-09-18
Maintainer Gannaz Irene <irene.gannaz@insa-lyon.fr></irene.gannaz@insa-lyon.fr>
Description Different multiple testing procedures for correlation tests are implemented. These procedures were shown to theoretically control asymptotically the Family Wise Error Rate (Roux (2018) https://tel.archives-ouvertes.fr/tel-01971574v1) or the False Discovery Rate (Cai & Liu (2016) doi:10.1080/01621459.2014.999157). The package gather four test statistics used in correlation testing, four FWER procedures with either single step or stepdown versions, and four FDR procedures.
Depends R (>= 3.4)
Encoding UTF-8
License GPL (>= 2)
Imports Rcpp, MASS, stats
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.1.1
NeedsCompilation yes
Author Gannaz Irene [aut, cre]
Repository CRAN
Date/Publication 2020-10-15 08:50:02 UTC
R topics documented:
TestCor-package 2 ApplyFdrCor 2 ApplyFwerCor 6 ApplyFwerCor_oracle 8 BHBootCor 10 BHCor 11

2 TestCor-package

BonferroniCor	13
BonferroniCor_SD	14
BootRWCor	16
BootRWCor_SD	17
covD2nd	19
covDcor	20
covDcorNorm	21
eval_stat	21
LCTboot	22
LCTnorm	23
maxTinftyCor	25
maxTinftyCor_SD	26
SidakCor	28
SidakCor_SD	30
SimuFdr	31
SimuFwer	33
SimuFwer_oracle	34
UncorrectedCor	36
unvectorize	37
vectorize	38
whichCor	38
	40
	BonferroniCor_SD BootRWCor BootRWCor_SD covD2nd covDcor covDcorNorm eval_stat LCTboot LCTnorm maxTinftyCor maxTinftyCor_SD SidakCor SidakCor_SD SimuFdr SimuFwer SimuFwer SimuFwer_oracle UncorrectedCor unvectorize vectorize whichCor

TestCor-package

FWER and FDR controlling procedures for multiple correlation tests

Description

The package compiles some multiple testing procedures which theoretically control asymptotically the FWER in the framework of correlation testing. Four tests statistics can be considered: the empirical correlation, the Student statistics, the Fisher's z-transform and the usual Gaussian statistics considering random variables $(X_i - mean(X_i))(X_j - mean(X_j))$. Four methods are implemented: Bonferroni (1935)'s, Šidák (1967)'s, Romano & Wolf (2005)'s bootstrap and (Drton & Perlman (2007)'s procedure based on the asymptotic distributions of the test statistics, called Max-Tinfty. The package also includes some multiple testing procedures which are related to the control of the FDR: Cai & Liu (2016)'s procedures called LCT-N and LCT-B -which have been proven to control the FDR for correlation tests- and Benjamini & Hochberg (1995)'s -which has no theoretical results in correlation testing.

Details

Consider $\{X_{\ell} = (X_{1\ell}, \dots X_{p\ell}), \ \ell = 1, \dots, n\}$ a set of n independent and identically distributed R^p -valued random variables. Denote data the array containing $\{X_{\ell}, \ \ell = 1, \dots, n\}$, with observation indexes l in row. The aim is to test simultaneously

$$(H_{0ij})$$
 $Cor(X_i, X_j) = 0$ against (H_{1ij}) $Cor(X_i, X_j) \neq 0$, $i, j = 1, ..., p$, $i < j$.

TestCor-package 3

Four tests statistics are implemented: the empirical correlation, the Student statistics, the Fisher's z-transform and the usual test statistics on expectancy considering the product of random variables. They are available in function eval_stat. Next, two main types of procedures are available:

Asymptotically FWER controlling procedures: Bonferroni (1935)'s method, Šidák (1967)'s procedure, Romano & Wolf (2005)'s bootstrap procedure and Drton & Perlman (2007)'s procedure. A description of these methods can be found in Chapter 5 of Roux (2018). To apply these procedures, function ApplyFwerCor can be used as follows:

ApplyFwerCor(data,alpha,stat_test,method), with alpha the desired level of control for FDR and stat_test, method respectively the kind of test statistic and the FDR controlling method. The function returns the list of indexes $\{(i,j),i< j\}$ for which null hypothesis (H_{0ij}) is rejected.

Asymptotically FDR controlling procedures: Cai & Liu(2016)'s two procedures and Benjamini & Hochberg (1995)'s procedure (with no theoretical proof for the latest). To apply these procedures, use function ApplyFdrCor as follows: ApplyFdrCor(data,alpha,stat_test,method) with alpha the desired level of control for FWER and stat_test, method respectively the kind of test statistic and the FDR controlling method. The function returns the list of indexes $\{(i,j),i< j\}$ for which null hypothesis (H_{0ij}) is rejected.

Functions SimuFwer and SimuFdr provide simulations of Gaussian random variables for a given correlation matrix and return estimated FWER, FDR, Power and true discovery rate obtained applying one of the procedure above. Some example of results obtained can be found in Chapter 6 of Roux (2018).

Author(s)

Irene Gannaz

Maintainer: Irene Gannaz <irene.gannaz@insa-lyon.fr>

References

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the royal statistical society. Series B (Methodological), 289-300, https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

Bonferroni, C. E. (1935). Il calcolo delle assicurazioni su gruppi di teste. Studi in onore del professore salvatore ortu carboni, 13-60.

Cai, T. T., & Liu, W. (2016). Large-scale multiple testing of correlations. Journal of the American Statistical Association, 111(513), 229-240, https://doi.org/10.1080/01621459.2014.999157.

Drton, M., & Perlman, M. D. (2007). Multiple testing and error control in Gaussian graphical model selection. Statistical Science, 22(3), 430-449, https://doi.org/10.1214/088342307000000113.

Romano, J. P., & Wolf, M. (2005). Exact and approximate stepdown methods for multiple hypothesis testing. Journal of the American Statistical Association, 100(469), 94-108, https://doi.org/10.1198/016214504000000539.

Roux, M. (2018). Graph inference by multiple testing with application to Neuroimaging, Ph.D., Université Grenoble Alpes, France, https://tel.archives-ouvertes.fr/tel-01971574v1.

Šidák, Z. (1967). Rectangular confidence regions for the means of multivariate normal distributions. Journal of the American Statistical Association, 62(318), 626-633.

4 ApplyFdrCor

Examples

```
# Parameters for simulations
Nsimu <- 100
                             # number of Monte-Carlo simulations
seqn <- seq(100,400,100) # sample sizes
       <- 10
                              # number of random variables considered
       <- 0.3
                              # value of non-zero correlations
rho
     <- 156724
seed
corr_theo <- diag(1,p)</pre>
                              # the correlation matrix
corr_theo[1,2:p] <- rho
corr_theo[2:p,1] <- rho</pre>
# Parameters for multiple testing procedure
stat_test <- 'empirical'</pre>
                             # test statistics for correlation tests
method <- 'BootRW'
                             # FWER controlling procedure
SD <- FALSE
                             # logical determining if stepdown is applied
alpha <- 0.05
                             # FWER threshold
Nboot <- 100
                             # number of bootstrap or simulated samples
# Simulations and application of the chosen procedure
res <- matrix(0,nrow=length(seqn),ncol=5)</pre>
for(i in 1:length(seqn)){
    temp <- SimuFwer(corr_theo,n=seqn[i],Nsimu=Nsimu,alpha=alpha,stat_test_stat_test,</pre>
           method='BootRW', Nboot=Nboot, stepdown=SD, seed=seed)
    res[i,] <- temp</pre>
}
rownames(res) <- seqn
colnames(res) <- names(temp)</pre>
# Display results
par(mfrow=c(1,2))
plot(seqn,res[,'fwer'],type='b',ylim=c(0,max(alpha*1.1,max(res[,'fwer']))),
    main='FWER',ylab='fwer',xlab='number of observations')
plot(seqn,res[,'sensitivity'],type='b',ylim=c(0,1.1),
    main='Power',ylab='sensitivity',xlab='number of observations')
```

ApplyFdrCor

Applies multiple testing procedures built to control (asymptotically) the FDR for correlation testing.

Description

Applies multiple testing procedures built to control (asymptotically) the FDR for correlation testing. Some have no theoretical proofs for tests on a correlation matrix.

ApplyFdrCor 5

Usage

```
ApplyFdrCor(
  data,
  alpha = 0.05,
  stat_test = "empirical",
  method = "LCTnorm",
  Nboot = 1000,
  vect = FALSE,
  arr.ind = FALSE
)
```

Arguments

data	matrix of observations
alpha	level of multiple testing
stat_test	'empirical' $\sqrt{n}*abs(corr)$ 'fisher' $\sqrt{n-3}*1/2*\log((1+corr)/(1-corr))$ 'student' $\sqrt{n-2}*abs(corr)/\sqrt{(1-corr^2)}$ '2nd.order' $\sqrt{n}*mean(Y)/sd(Y)$ with $Y=(X_i-mean(X_i))(X_j-mean(X_j))$
method	choice between 'LCTnorm' and 'LCTboot' developped by Cai & Liu (2016), 'BH', traditional Benjamini-Hochberg's procedure Benjamini & Hochberg (1995)'s and 'BHboot', Benjamini-Hochberg (1995)'s procedure with bootstrap evaluation of p-values
Nboot	number of iterations for bootstrap p-values evaluation
vect	if TRUE returns a vector of TRUE/FALSE values, corresponding to vectorize(cor(data)); if FALSE, returns an array containing rows and columns of significant correlations
arr.ind	if TRUE, returns the indexes of the significant correlations, with repspect to level alpha

Value

Returns either

- logicals indicating if the corresponding correlation is significant, as a vector or a matrix depending on vect,
- an array containing indexes $\{(i,j),\,i< j\}$ for which correlation between variables i and j is significant, if arr.ind=TRUE.

References

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the royal statistical society. Series B (Methodological), 289-300.

Cai, T. T., & Liu, W. (2016). Large-scale multiple testing of correlations. Journal of the American Statistical Association, 111(513), 229-240.

ApplyFwerCor

Roux, M. (2018). Graph inference by multiple testing with application to Neuroimaging, Ph.D., Université Grenoble Alpes, France, https://tel.archives-ouvertes.fr/tel-01971574v1.

See Also

```
ApplyFwerCor
LCTnorm, LCTboot, BHCor, BHBootCor
```

Examples

```
n <- 100
p <- 10
corr_theo <- diag(1,p)
corr_theo[1,3] <- 0.5
corr_theo[3,1] <- 0.5
data <- MASS::mvrnorm(n,rep(0,p),corr_theo)
res <- ApplyFdrCor(data,stat_test='empirical',method='LCTnorm')
# significant correlations, level alpha:
alpha <- 0.05
whichCor(res<alpha)</pre>
```

ApplyFwerCor

Applies multiple testing procedures controlling (asymptotically) the FWER for tests on a correlation matrix.

Description

Applies multiple testing procedures controlling (asymptotically) the FWER for tests on a correlation matrix. Methods are described in Chapter 5 of *Roux* (2018).

Usage

```
ApplyFwerCor(
  data,
  alpha = NULL,
  stat_test = "empirical",
  method = "Sidak",
  Nboot = 1000,
  stepdown = TRUE,
  vect = FALSE,
  logical = stepdown,
  arr.ind = FALSE
)
```

ApplyFwerCor 7

Arguments

data matrix of observations

alpha level of multiple testing (used if logical=TRUE)

 $\textbf{stat_test} \qquad \quad \textbf{'empirical'} \ \sqrt{n}*abs(corr)$

'fisher' $\sqrt{n-3} * 1/2 * \log((1+corr)/(1-corr))$

'student' $\sqrt{n-2}*abs(corr)/\sqrt{(1-corr^2)}$

'2nd.order' $\sqrt{n}*mean(Y)/sd(Y)$ with $Y = (X_i - mean(X_i))(X_i - mean(X_i))$

method choice between 'Bonferroni', 'Sidak', 'BootRW', 'MaxTinfty'

Nboot number of iterations for Monte-Carlo of bootstrap quantile evaluation

stepdown logical, if TRUE a stepdown procedure is applied

vect if TRUE returns a vector of adjusted p-values, corresponding to vectorize(cor(data));

if FALSE, returns an array containing the adjusted p-values for each entry of the

correlation matrix

logical if TRUE, returns either a vector or a matrix where each element is equal to

TRUE if the corresponding null hypothesis is rejected, and to FALSE if it is not rejected if stepdown=TRUE and logical=FALSE, returns a list of successive

p-values.

arr.ind if TRUE, returns the indexes of the significant correlations, with repspect to

level alpha

Value

Returns either

- the adjusted p-values, as a vector or a matrix, depending on vect
- logicals indicating if the corresponding correlation is significant if logical=TRUE, as a vector
 or a matrix depending on vect,
- an array containing indexes $\{(i,j), i < j\}$ for which correlation between variables i and j is significant, if arr.ind=TRUE.

References

Bonferroni, C. E. (1935). Il calcolo delle assicurazioni su gruppi di teste. Studi in onore del professore salvatore ortu carboni, 13-60.

Drton, M., & Perlman, M. D. (2007). Multiple testing and error control in Gaussian graphical model selection. Statistical Science, 22(3), 430-449.

Romano, J. P., & Wolf, M. (2005). Exact and approximate stepdown methods for multiple hypothesis testing. Journal of the American Statistical Association, 100(469), 94-108.

Roux, M. (2018). Graph inference by multiple testing with application to Neuroimaging, Ph.D., Université Grenoble Alpes, France, https://tel.archives-ouvertes.fr/tel-01971574v1.

Šidák, Z. (1967). Rectangular confidence regions for the means of multivariate normal distributions. Journal of the American Statistical Association, 62(318), 626-633.

See Also

```
ApplyFwerCor_SD, ApplyFdrCor
BonferroniCor, SidakCor, BootRWCor, maxTinftyCor
BonferroniCor_SD, SidakCor_SD, BootRWCor_SD, maxTinftyCor_SD
```

Examples

```
n <- 100
p <- 10
corr_theo <- diag(1,p)
corr_theo[1,3] <- 0.5
corr_theo[3,1] <- 0.5
data <- MASS::mvrnorm(n,rep(0,p),corr_theo)
# adjusted p-values
(res <- ApplyFwerCor(data,stat_test='empirical',method='Bonferroni',stepdown=FALSE))
# significant correlations, level alpha:
alpha <- 0.05
whichCor(res<alpha)</pre>
```

ApplyFwerCor_oracle

Applies an oracle version of MaxTinfty procedure described in Drton & Perlman (2007) for correlation testing.

Description

Applies oracle MaxTinfty procedure described in Drton & Perlman (2007) which controls asymptotically the FWER for tests on a correlation matrix. It needs the true correlation matrix.

Usage

```
ApplyFwerCor_oracle(
  data,
  corr_theo,
  alpha = c(),
  stat_test = "empirical",
  method = "MaxTinfty",
  Nboot = 1000,
  stepdown = TRUE,
  vect = FALSE,
  logical = stepdown,
  arr.ind = FALSE
)
```

ApplyFwerCor_oracle 9

Arguments

data matrix of observations corr_theo true matrix of correlations alpha level of multiple testing (used if logical=TRUE) 'empirical' $\sqrt{n} * abs(corr)$ stat_test 'fisher' $\sqrt{n-3}*1/2*\log((1+corr)/(1-corr))$ 'student' $\sqrt{n-2}*abs(corr)/\sqrt{(1-corr^2)}$ **'2nd.order'** $\sqrt{n}*mean(Y)/sd(Y)$ with $Y = (X_i - mean(X_i))(X_i - mean(X_i))$ only 'MaxTinfty' implemented method number of iterations for Monte-Carlo of bootstrap quantile evaluation Nboot stepdown logical, if TRUE a stepdown procedure is applied if TRUE returns a vector of adjusted p-values, corresponding to vectorize(cor(data)); vect if FALSE, returns an array containing the adjusted p-values for each entry of the correlation matrix logical if TRUE, returns either a vector or a matrix where each element is equal to TRUE if the corresponding null hypothesis is rejected, and to FALSE if it is not rejected if stepdown=TRUE and logical=FALSE, returns a list of successive p-values. arr.ind if TRUE, returns the indexes of the significant correlations, with repspect to level alpha

Value

Returns either

- the adjusted p-values, as a vector or a matrix, depending on vect (unavailable with stepdown)
- logicals indicating if the corresponding correlation is significant if logical=TRUE, as a vector or a matrix depending on vect,
- an array containing indexes $\{(i,j), i < j\}$ for which correlation between variables i and j is significant, if arr.ind=TRUE.

Oracle estimation of the quantile is used, based on the true correlation matrix

References

Drton, M., & Perlman, M. D. (2007). Multiple testing and error control in Gaussian graphical model selection. Statistical Science, 22(3), 430-449.

Roux, M. (2018). Graph inference by multiple testing with application to Neuroimaging, Ph.D., Université Grenoble Alpes, France, https://tel.archives-ouvertes.fr/tel-01971574v1.

See Also

ApplyFwerCor maxTinftyCor_SD

10 BHBootCor

Examples

```
n <- 100
p <- 10
corr_theo <- diag(1,p)
corr_theo[1,3] <- 0.5
corr_theo[3,1] <- 0.5
data <- MASS::mvrnorm(n,rep(0,p),corr_theo)
# adjusted p-values:
(res <- ApplyFwerCor_oracle(data,corr_theo,stat_test='empirical',Nboot=1000,stepdown=FALSE))
# significant correlations, level alpha:
alpha <- 0.05
whichCor(res<alpha)</pre>
```

BHBootCor

Benjamini & Hochberg (1995)'s procedure for correlation testing with bootstrap evaluation of p-values.

Description

Benjamini & Hochberg (1995)'s procedure on the correlation matrix entries with bootstrap evaluation of p-values (no theoretical proof of control).

Usage

```
BHBootCor(
  data,
  alpha = 0.05,
  stat_test = "2nd.order",
  Nboot = 100,
  vect = FALSE,
  arr.ind = FALSE
)
```

Arguments

```
data
                   matrix of observations
                   level of multiple testing
alpha
                   'empirical' \sqrt{n} * abs(corr)
stat_test
                   'fisher' \sqrt{n-3}*1/2*\log((1+corr)/(1-corr))
                   'student' \sqrt{n-2}*abs(corr)/\sqrt{(1-corr^2)}
                   '2nd.order' \sqrt{n}*mean(Y)/sd(Y) with Y = (X_i - mean(X_i))(X_j - mean(X_j))
                   number of iterations for bootstrap quantile evaluation
Nboot
vect
                   if \ TRUE \ returns \ a \ vector \ of \ TRUE/FALSE \ values, corresponding \ to \ vectorize (cor(data));
                   if FALSE, returns an array containing TRUE/FALSE values for each entry of the
                   correlation matrix
arr.ind
                   if TRUE, returns the indexes of the significant correlations, with respect to level
                   alpha
```

BHCor 11

Value

Returns

• a vector or a matrix of logicals, equal to TRUE if the corresponding element of the statistic vector is rejected, if arr.ind=FALSE,

• an array containing indexes $\{(i,j), i < j\}$ for which correlation between variables i and j is significant, if arr.ind=TRUE.

References

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the royal statistical society. Series B (Methodological), 289-300.

See Also

ApplyFdrCor, BHCor

Examples

```
n <- 100
p <- 10
corr_theo <- diag(1,p)
corr_theo[1,3] <- 0.5
corr_theo[3,1] <- 0.5
data <- MASS::mvrnorm(n,rep(0,p),corr_theo)
alpha <- 0.05
# significant correlations:
BHBootCor(data,alpha,stat_test='empirical',arr.ind=TRUE)</pre>
```

BHCor

Benjamini & Hochberg (1995)'s procedure for correlation testing.

Description

Benjamini & Hochberg (1995)'s procedure on the correlation matrix entries (no theoretical proof of control).

Usage

```
BHCor(
  data,
  alpha = 0.05,
  stat_test = "2nd.order",
  vect = FALSE,
  arr.ind = FALSE
)
```

12 BHCor

Arguments

data	matrix of observations
alpha	level of multiple testing
stat_test	'empirical' $\sqrt{n}*abs(corr)$
	'fisher' $\sqrt{n-3}*1/2*\log((1+corr)/(1-corr))$
	'student' $\sqrt{n-2}*abs(corr)/\sqrt{(1-corr^2)}$
	'2nd.order' $\sqrt{n}*mean(Y)/sd(Y)$ with $Y = (X_i - mean(X_i))(X_j - mean(X_j))$
vect	if TRUE returns a vector of TRUE/FALSE values, corresponding to vectorize(cor(data)) if FALSE, returns an array containing TRUE/FALSE values for each entry of the correlation matrix
arr.ind	if TRUE, returns the indexes of the significant correlations, with respect to level alpha

Value

Returns

- logicals, equal to TRUE if the corresponding element of the statistic vector is rejected, as a vector or a matrix depending of the value of vect,
- an array containing indexes $\{(i,j), i < j\}$ for which correlation between variables i and j is significant, if arr.ind=TRUE.

References

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the royal statistical society. Series B (Methodological), 289-300.

See Also

ApplyFdrCor, BHBootCor

```
n <- 100
p <- 10
corr_theo <- diag(1,p)
corr_theo[1,3] <- 0.5
corr_theo[3,1] <- 0.5
data <- MASS::mvrnorm(n,rep(0,p),corr_theo)
alpha <- 0.05
# significant correlations:
BHCor(data,alpha,stat_test='empirical',arr.ind=TRUE)</pre>
```

BonferroniCor 13

_	•			_
RAI	n t 🛆	rro	nп	ľOr

Bonferroni multiple testing procedure for correlations.

Description

Bonferroni multiple testing procedure for correlations.

Usage

```
BonferroniCor(
  data,
  alpha = 0.05,
  stat_test = "empirical",
  vect = FALSE,
  logical = FALSE,
  arr.ind = FALSE
)
```

Arguments

data	matrix of observations
alpha	level of multiple testing (used if logical=TRUE)
stat_test	'empirical' $\sqrt{n}*abs(corr)$
	'fisher' $\sqrt{n-3}*1/2*\log((1+corr)/(1-corr))$
	'student' $\sqrt{n-2}*abs(corr)/\sqrt{(1-corr^2)}$
	'2nd.order' $\sqrt{n}*mean(Y)/sd(Y)$ with $Y = (X_i - mean(X_i))(X_j - mean(X_j))$
vect	if TRUE returns a vector of adjusted p-values, corresponding to vectorize(cor(data)); if FALSE, returns an array containing the adjusted p-values for each entry of the correlation matrix
logical	if TRUE, returns either a vector or a matrix where each element is equal to TRUE if the corresponding null hypothesis is rejected, and to FALSE if it is not rejected
arr.ind	if TRUE, returns the indexes of the significant correlations, with respect to level alpha

Value

Returns

- the adjusted p-values, as a vector or a matrix depending of the value of vect,
- an array containing indexes $\{(i,j), i < j\}$ for which correlation between variables i and j is significant, if arr.ind=TRUE.

14 BonferroniCor_SD

References

Bonferroni, C. E. (1935). Il calcolo delle assicurazioni su gruppi di teste. Studi in onore del professore salvatore ortu carboni, 13-60.

Roux, M. (2018). Graph inference by multiple testing with application to Neuroimaging, Ph.D., Université Grenoble Alpes, France, https://tel.archives-ouvertes.fr/tel-01971574v1.

See Also

ApplyFwerCor, BonferroniCor_SD

Examples

```
n <- 100
p <- 10
corr_theo <- diag(1,p)
corr_theo[1,3] <- 0.5
corr_theo[3,1] <- 0.5
corr_theo <- diag(1,p)
data <- MASS::mvrnorm(n,rep(0,p),corr_theo)
# adjusted p-values
res <- BonferroniCor(data,stat_test='empirical')
round(res,2)
# significant correlations with level alpha:
alpha <- 0.05
whichCor(res<alpha)
# directly
BonferroniCor(data,alpha,stat_test='empirical',arr.ind=TRUE)</pre>
```

BonferroniCor_SD

Bonferroni multiple testing method for correlations with stepdown procedure.

Description

Bonferroni multiple testing method for correlations with stepdown procedure.

Usage

```
BonferroniCor_SD(
  data,
  alpha = 0.05,
  stat_test = "empirical",
  vect = FALSE,
  logical = TRUE,
  arr.ind = FALSE
)
```

BonferroniCor_SD 15

Arguments

data matrix of observations alpha level of multiple testing 4 test statistics are available: stat_test 'empirical' $\sqrt{n} * abs(corr)$ 'fisher' $\sqrt{n-3} * 1/2 * \log((1+corr)/(1-corr))$ 'student' $\sqrt{n-2}*abs(corr)/\sqrt{(1-corr^2)}$ **'2nd.order'** $\sqrt{n}*mean(Y)/sd(Y)$ with $Y = (X_i - mean(X_i))(X_j - mean(X_j))$ if TRUE returns a vector of TRUE/FALSE values, corresponding to vectorize(cor(data)); vect if FALSE, returns an array containing TRUE/FALSE values for each entry of the correlation matrix logical if TRUE, returns either a vector or a matrix where each element is equal to TRUE if the corresponding null hypothesis is rejected, and to FALSE if it is not rejected if FALSE, returns a list of successive p-values: element [[i+1]] of the list giving the p-values evaluated on the non-rejected hypothesis at step [[i]]; p-values are either as a vector or a list depending on vect if TRUE, returns the indexes of the significant correlations, with respect to level arr.ind alpha

Value

Returns

- logicals, equal to TRUE if the corresponding element of the statistic vector is rejected, as a vector or a matrix depending of the value of vect,
- an array containing indexes $\{(i,j), i < j\}$ for which correlation between variables i and j is significant, if arr.ind=TRUE.

References

Bonferroni, C. E. (1935). Il calcolo delle assicurazioni su gruppi di teste. Studi in onore del professore salvatore ortu carboni, 13-60.

Roux, M. (2018). Graph inference by multiple testing with application to Neuroimaging, Ph.D., Université Grenoble Alpes, France, https://tel.archives-ouvertes.fr/tel-01971574v1.

See Also

ApplyFwerCor, BonferroniCor

```
n <- 100
p <- 10
corr_theo <- diag(1,p)
corr_theo[1,3] <- 0.5
corr_theo[3,1] <- 0.5</pre>
```

16 BootRWCor

```
data <- MASS::mvrnorm(n,rep(0,p),corr_theo)
alpha <- 0.05
# significant correlations:
BonferroniCor_SD(data,alpha,stat_test='empirical', arr.ind=TRUE)
# successive p-values
res <- BonferroniCor_SD(data,stat_test='empirical', logical=FALSE)
lapply(res,FUN=function(x){round(x,2)})
# succesive rejections
lapply(res,FUN=function(x){whichCor(x<alpha)})</pre>
```

BootRWCor

Bootstrap multiple testing method of Romano & Wolf (2005) for correlations.

Description

Multiple testing method based on the evaluation of quantile by bootstrap in the initial dataset (Romano & Wolf (2005)).

Usage

```
BootRWCor(
  data,
  alpha = 0.05,
  stat_test = "empirical",
  Nboot = 1000,
  vect = FALSE,
  logical = FALSE,
  arr.ind = FALSE
)
```

Arguments

data	matrix of observations
alpha	level of multiple testing (used if logical=TRUE)
stat_test	'empirical' $\sqrt{n}*abs(corr)$
	'fisher' $\sqrt{n-3}*1/2*\log((1+corr)/(1-corr))$
	'student' $\sqrt{n-2}*abs(corr)/\sqrt{(1-corr^2)}$
	'2nd.order' $\sqrt{n}*mean(Y)/sd(Y)$ with $Y = (X_i - mean(X_i))(X_j - mean(X_j))$
Nboot	number of iterations for Monte-Carlo quantile evaluation
vect	if TRUE returns a vector of adjusted p-values, corresponding to vectorize(cor(data)); if FALSE, returns an array containing the adjusted p-values for each entry of the correlation matrix
logical	if TRUE, returns either a vector or a matrix where each element is equal to TRUE if the corresponding null hypothesis is rejected, and to FALSE if it is not rejected
arr.ind	if TRUE, returns the indexes of the significant correlations, with respect to level alpha

BootRWCor_SD 17

Value

Returns

• the adjusted p-values, as a vector or a matrix depending of the value of vect,

• an array containing indexes $\{(i,j), i < j\}$ for which correlation between variables i and j is significant, if arr.ind=TRUE.

References

Romano, J. P., & Wolf, M. (2005). Exact and approximate stepdown methods for multiple hypothesis testing. Journal of the American Statistical Association, 100(469), 94-108.

Roux, M. (2018). Graph inference by multiple testing with application to Neuroimaging, Ph.D., Université Grenoble Alpes, France, https://tel.archives-ouvertes.fr/tel-01971574v1.

See Also

ApplyFwerCor, BootRWCor_SD

Examples

```
n <- 100
p <- 10
corr_theo <- diag(1,p)
corr_theo[1,3] <- 0.5
corr_theo[3,1] <- 0.5
data <- MASS::mvrnorm(n,rep(0,p),corr_theo)
# adjusted p-values
res <- BootRWCor(data,stat_test='empirical',Nboot=1000)
round(res,2)
# significant correlations with level alpha:
alpha <- 0.05
whichCor(res<alpha)
# directly
BootRWCor(data,alpha,stat_test='empirical',Nboot=1000,arr.ind=TRUE)</pre>
```

BootRWCor_SD

Boootstrap multiple testing method of Romano & Wolf (2005) for correlations, with stepdown procedure.

Description

Multiple testing method based on the evaluation of quantile by bootstrap in the initial dataset (Romano & Wolf (2005)), with stepdown procedure.

18 BootRWCor_SD

Usage

```
BootRWCor_SD(
  data,
  alpha = 0.05,
  stat_test = "empirical",
  Nboot = 1000,
  vect = FALSE,
  logical = TRUE,
  arr.ind = FALSE
)
```

Arguments

data	matrix of observations
alpha	level of multiple testing
stat_test	4 test statistics are available:
	'empirical' $\sqrt{n}*abs(corr)$
	'fisher' $\sqrt{n-3}*1/2*\log((1+corr)/(1-corr))$
	'student' $\sqrt{n-2}*abs(corr)/\sqrt{(1-corr^2)}$
	'2nd.order' $\sqrt{n}*mean(Y)/sd(Y)$ with $Y = (X_i - mean(X_i))(X_j - mean(X_j))$
Nboot	number of iterations for Bootstrap quantile evaluation
vect	if TRUE returns a vector of TRUE/FALSE values, corresponding to vectorize(cor(data));
	if FALSE, returns an array containing TRUE/FALSE values for each entry of the correlation matrix
logical	if TRUE, returns either a vector or a matrix where each element is equal to
G	TRUE if the corresponding null hypothesis is rejected, and to FALSE if it is not
	rejected if FALSE, returns a list of successive p-values : element [[i+1]] of the
	list giving the p-values evaluated on the non-rejected hypothesis at step [[i]];
	p-values are either as a vector or a list depending on vect
arr.ind	if TRUE, returns the indexes of the significant correlations, with respect to level
	alpha

Value

Returns

- logicals, equal to TRUE if the corresponding element of the statistic vector is rejected, as a vector or a matrix depending of the value of vect,
- an array containing indexes $\{(i,j),\,i< j\}$ for which correlation between variables i and j is significant, if arr.ind=TRUE.

References

Romano, J. P., & Wolf, M. (2005). Exact and approximate stepdown methods for multiple hypothesis testing. Journal of the American Statistical Association, 100(469), 94-108.

Roux, M. (2018). Graph inference by multiple testing with application to Neuroimaging, Ph.D., Université Grenoble Alpes, France, https://tel.archives-ouvertes.fr/tel-01971574v1.

covD2nd 19

See Also

ApplyFwerCor, BootRWCor

Examples

```
n <- 100
p <- 10
corr_theo <- diag(1,p)
corr_theo[1,3] <- 0.5
corr_theo[3,1] <- 0.5
data <- MASS::mvrnorm(n,rep(0,p),corr_theo)
alpha <- 0.05
# significant correlations:
BootRWCor_SD(data,alpha,stat_test='empirical', arr.ind=TRUE)
# successive p-values
res <- BootRWCor_SD(data,stat_test='empirical', logical=FALSE)
lapply(res,FUN=function(x){round(x,2)})
# succesive rejections
lapply(res,FUN=function(x){whichCor(x<alpha)})</pre>
```

covD2nd

Returns the theoretical covariance of empirical correlations.

Description

Returns the theoretical covariance of empirical correlations.

Usage

```
covD2nd(r)
```

Arguments

r

a correlation matrix

Value

```
Returns the theoretical covariance of 2nd order statistics, \sqrt{n} * mean(Y)/sd(Y) with Y = (X_i - mean(X_i))(X_j - mean(X_j)).
```

See Also

covDcor

20 covDcor

Examples

```
p <- 10
corr_theo <- diag(1,p)
corr_theo[2:p,] <- 0.3
corr_theo[,2:p] <- 0.3
covD2nd(corr_theo)</pre>
```

covDcor

Returns the theoretical covariance of empirical correlations.

Description

Returns the theoretical covariance of empirical correlations.

Usage

```
covDcor(r)
```

Arguments

r

a correlation matrix

Value

Returns the theoretical covariance of empirical correlations.

References

Aitkin, M. A. (1969). Some tests for correlation matrices. Biometrika, 443-446.

See Also

covDcorNorm

```
p <- 10
corr_theo <- diag(1,p)
corr_theo[2:p,] <- 0.3
corr_theo[,2:p] <- 0.3
covDcor(corr_theo)</pre>
```

covDcorNorm 21

covDcorNorm	Returns the theoretical covariance of test statistics for correlation test-
	ing.

Description

Returns the theoretical covariance of test statistics for correlation testing.

Usage

```
covDcorNorm(cor_mat, stat_test = "empirical")
```

Arguments

Value

Returns the theoretical covariance of the test statistics.

See Also

```
covDcor, covD2nd, eval_stat
```

Examples

```
p <- 10
corr_theo <- diag(1,p)
corr_theo[2:p,] <- 0.3
corr_theo[,2:p] <- 0.3
covDcorNorm(corr_theo,stat_test='student')</pre>
```

eval_stat

Evaluates the test statistics for tests on correlation matrix entries.

Description

Evaluates the test statistics for tests on correlation matrix entries.

Usage

```
eval_stat(data, type = "empirical")
```

LCTboot

Arguments

Value

Returns the test statistics for correlation testing.

Examples

```
n <- 100
p <- 10
corr_theo <- diag(1,p)
data <- MASS::mvrnorm(n,rep(0,p),corr_theo)
stat <- eval_stat(data,'fisher')</pre>
```

LCTboot

Bootstrap procedure LCT-B proposed by Cai & Liu (2016) for correlation testing.

Description

Bootstrap procedure LCT-B proposed by Cai & Liu (2016) for correlation testing.

Usage

```
LCTboot(
  data,
  alpha = 0.05,
  stat_test = "2nd.order",
  Nboot = 100,
  vect = FALSE,
  arr.ind = FALSE
)
```

Arguments

LCTnorm 23

Nboot	number of iterations for bootstrap quantile evaluation
vect	if TRUE returns a vector of TRUE/FALSE values, corresponding to vectorize(cor(data)); if FALSE, returns an array containing TRUE/FALSE values for each entry of the correlation matrix
arr.ind	if TRUE, returns the indexes of the significant correlations, with respect to level alpha

Value

Returns

- logicals, equal to TRUE if the corresponding element of the statistic vector is rejected, as a vector or a matrix depending of the value of vect,
- an array containing indexes $\{(i,j), i < j\}$ for which correlation between variables i and j is significant, if arr.ind=TRUE.

References

Cai, T. T., & Liu, W. (2016). Large-scale multiple testing of correlations. Journal of the American Statistical Association, 111(513), 229-240.

See Also

ApplyFdrCor, LCTNorm

Examples

```
n <- 100
p <- 10
corr_theo <- diag(1,p)
corr_theo[1,3] <- 0.5
corr_theo[3,1] <- 0.5
data <- MASS::mvrnorm(n,rep(0,p),corr_theo)
alpha <- 0.05
# significant correlations:
LCTboot(data,alpha,stat_test='empirical',Nboot=100,arr.ind=TRUE)</pre>
```

LCTnorm

Procedure LCT-N proposed by Cai & Liu (2016) for correlation testing.

Description

Procedure LCT-N proposed by Cai & Liu (2016) for correlation testing.

24 LCTnorm

Usage

```
LCTnorm(
  data,
  alpha = 0.05,
  stat_test = "2nd.order",
  vect = FALSE,
  arr.ind = FALSE
)
```

Arguments

```
data
                   matrix of observations
                   level of multiple testing
alpha
                   'empirical' \sqrt{n}*abs(corr)
stat_test
                   'fisher' \sqrt{n-3} * 1/2 * \log((1+corr)/(1-corr))
                   'student' \sqrt{n-2}*abs(corr)/\sqrt{(1-corr^2)}
                   '2nd.order' \sqrt{n}*mean(Y)/sd(Y) with Y = (X_i - mean(X_i))(X_i - mean(X_i))
vect
                   if \ TRUE \ returns \ a \ vector \ of \ TRUE/FALSE \ values, corresponding \ to \ vectorize (cor(data));
                   if FALSE, returns an array containing TRUE/FALSE values for each entry of the
                   correlation matrix
arr.ind
                   if TRUE, returns the indexes of the significant correlations, with respect to level
                   alpha
```

Value

Returns

- logicals, equal to TRUE if the corresponding element of the statistic vector is rejected, as a vector or a matrix depending of the value of vect,
- an array containing indexes $\{(i,j), i < j\}$ for which correlation between variables i and j is significant, if arr.ind=TRUE.

References

Cai, T. T., & Liu, W. (2016). Large-scale multiple testing of correlations. Journal of the American Statistical Association, 111(513), 229-240.

See Also

ApplyFdrCor, LCTboot

```
n <- 100
p <- 10
corr_theo <- diag(1,p)
corr_theo[1,3] <- 0.5</pre>
```

maxTinftyCor 25

```
corr_theo[3,1] <- 0.5
data <- MASS::mvrnorm(n,rep(0,p),corr_theo)
alpha <- 0.05
# significant correlations:
LCTnorm(data,alpha,stat_test='empirical',arr.ind=TRUE)</pre>
```

 ${\tt maxTinftyCor}$

Multiple testing method of Drton & Perlman (2007) for correlations.

Description

Multiple testing method based on the evaluation of quantile by simulation of observations from the asymptotic distribution (Drton & Perlman (2007)).

Usage

```
maxTinftyCor(
  data,
  alpha = 0.05,
  stat_test = "empirical",
  Nboot = 1000,
  OmegaChap = covDcorNorm(cor(data), stat_test),
  vect = FALSE,
  logical = FALSE,
  arr.ind = FALSE
)
```

Arguments

data	matrix of observations
alpha	level of multiple testing (used if logical=TRUE)
stat_test	'empirical' $\sqrt{n}*abs(corr)$
	'fisher' $\sqrt{n-3}*1/2*\log((1+corr)/(1-corr))$
	'student' $\sqrt{n-2}*abs(corr)/\sqrt{(1-corr^2)}$
	'2nd.order' $\sqrt{n}*mean(Y)/sd(Y)$ with $Y = (X_i - mean(X_i))(X_j - mean(X_j))$
Nboot	number of iterations for Monte-Carlo quantile evaluation
OmegaChap	matrix of covariance of empirical correlations used for quantile evaluation; optional, useful for oracle estimation and step-down
vect	if TRUE returns a vector of adjusted p-values, corresponding to vectorize(cor(data)); if FALSE, returns an array containing the adjusted p-values for each entry of the correlation matrix
logical	if TRUE, returns either a vector or a matrix where each element is equal to TRUE if the corresponding null hypothesis is rejected, and to FALSE if it is not rejected
arr.ind	if TRUE, returns the indexes of the significant correlations, with respect to level alpha

26 maxTinftyCor_SD

Value

Returns

• the adjusted p-values, as a vector or a matrix depending of the value of vect,

• an array containing indexes $\{(i,j), i < j\}$ for which correlation between variables i and j is significant, if arr.ind=TRUE.

References

Drton, M., & Perlman, M. D. (2007). Multiple testing and error control in Gaussian graphical model selection. Statistical Science, 22(3), 430-449.

Roux, M. (2018). Graph inference by multiple testing with application to Neuroimaging, Ph.D., Université Grenoble Alpes, France, https://tel.archives-ouvertes.fr/tel-01971574v1.

See Also

ApplyFwerCor, maxTinftyCor_SD

Examples

```
n <- 100
p <- 10
corr_theo <- diag(1,p)
corr_theo[1,3] <- 0.5
corr_theo[3,1] <- 0.5
data <- MASS::mvrnorm(n,rep(0,p),corr_theo)
# adjusted p-values
res <- maxTinftyCor(data,stat_test='empirical',Nboot=1000)
round(res,2)
# significant correlations with level alpha:
alpha <- 0.05
whichCor(res<alpha)
# directly
res <- maxTinftyCor(data,alpha,stat_test='empirical',Nboot=1000,arr.ind=TRUE)</pre>
```

maxTinftyCor_SD

Multiple testing method of Drton & Perlman (2007) for correlations, with stepdown procedure.

Description

Multiple testing method based on the evaluation of quantile by simulation of observations from the asymptotic distribution (Drton & Perlman (2007)), with stepdown procedure.

maxTinftyCor_SD 27

Usage

```
maxTinftyCor_SD(
  data,
  alpha = 0.05,
  stat_test = "empirical",
  Nboot = 1000,
  OmegaChap = covDcorNorm(cor(data), stat_test),
  vect = FALSE,
  logical = TRUE,
  arr.ind = FALSE
)
```

Arguments

data	matrix of observations
alpha	level of multiple testing
stat_test	4 test statistics are available:
	'empirical' $\sqrt{n}*abs(corr)$
	'fisher' $\sqrt{n-3}*1/2*\log((1+corr)/(1-corr))$
	'student' $\sqrt{n-2}*abs(corr)/\sqrt{(1-corr^2)}$
	'2nd.order' $\sqrt{n}*mean(Y)/sd(Y)$ with $Y = (X_i - mean(X_i))(X_j - mean(X_j))$
Nboot	number of iterations for Monte-Carlo quantile evaluation
OmegaChap	matrix of covariance of test statistics; optional, useful for oracle estimation and step-down
vect	if TRUE returns a vector of TRUE/FALSE values, corresponding to vectorize(cor(data)); if FALSE, returns an array containing TRUE/FALSE values for each entry of the correlation matrix
logical	if TRUE, returns either a vector or a matrix where each element is equal to TRUE if the corresponding null hypothesis is rejected, and to FALSE if it is not rejected if FALSE, returns a list of successive p-values: element [[i+1]] of the list giving the p-values evaluated on the non-rejected hypothesis at step [[i]]; p-values are either as a vector or a list depending on vect
arr.ind	if TRUE, returns the indexes of the significant correlations, with respect to level alpha

Value

Returns

- logicals, equal to TRUE if the corresponding element of the statistic vector is rejected, as a vector or a matrix depending of the value of vect,
- an array containing indexes $\{(i,j), i < j\}$ for which correlation between variables i and j is significant, if arr.ind=TRUE.

28 SidakCor

References

Drton, M., & Perlman, M. D. (2007). Multiple testing and error control in Gaussian graphical model selection. Statistical Science, 22(3), 430-449.

Roux, M. (2018). Graph inference by multiple testing with application to Neuroimaging, Ph.D., Université Grenoble Alpes, France, https://tel.archives-ouvertes.fr/tel-01971574v1.

See Also

ApplyFwerCor, maxTinftyCor

Examples

```
n <- 100
p <- 10
corr_theo <- diag(1,p)
corr_theo[1,3] <- 0.5
corr_theo[3,1] <- 0.5
data <- MASS::mvrnorm(n,rep(0,p),corr_theo)
alpha <- 0.05
# significant correlations:
maxTinftyCor_SD(data,alpha,stat_test='empirical', arr.ind=TRUE)
# successive p-values
res <- maxTinftyCor_SD(data,stat_test='empirical', logical=FALSE)
lapply(res,FUN=function(x){round(x,2)})
# succesive rejections
lapply(res,FUN=function(x){whichCor(x<alpha)})</pre>
```

SidakCor

Sidak multiple testing procedure for correlations.

Description

Sidak multiple testing procedure for correlations.

Usage

```
SidakCor(
  data,
  alpha = 0.05,
  stat_test = "empirical",
  vect = FALSE,
  logical = FALSE,
  arr.ind = FALSE
)
```

SidakCor 29

Arguments

data	matrix of observations	
alpha	level of multiple testing (used if logical=TRUE)	
stat_test	'empirical' $\sqrt{n}*abs(corr)$	
	'fisher' $\sqrt{n-3}*1/2*\log((1+corr)/(1-corr))$	
	'student' $\sqrt{n-2}*abs(corr)/\sqrt(1-corr^2)$	
	'2nd.order' $\sqrt{n}*mean(Y)/sd(Y)$ with $Y = (X_i - mean(X_i))(X_j - mean(X_j))$	
vect	if TRUE returns a vector of adjusted p-values, corresponding to vectorize(cor(data)); if FALSE, returns an array containing the adjusted p-values for each entry of the correlation matrix	
logical	if TRUE, returns either a vector or a matrix where each element is equal to TRUE if the corresponding null hypothesis is rejected, and to FALSE if it is not rejected	
arr.ind	if TRUE, returns the indexes of the significant correlations, with respect to level alpha	

Value

Returns

- the adjusted p-values, as a vector or a matrix depending of the value of vect,
- an array containing indexes $\{(i,j), i < j\}$ for which correlation between variables i and j is significant, if arr.ind=TRUE.

References

Roux, M. (2018). Graph inference by multiple testing with application to Neuroimaging, Ph.D., Université Grenoble Alpes, France, https://tel.archives-ouvertes.fr/tel-01971574v1.

Šidák, Z. (1967). Rectangular confidence regions for the means of multivariate normal distributions. Journal of the American Statistical Association, 62(318), 626-633.

See Also

ApplyFwerCor, SidakCor_SD

```
n <- 100
p <- 10
corr_theo <- diag(1,p)
corr_theo[1,3] <- 0.5
corr_theo[3,1] <- 0.5
data <- MASS::mvrnorm(n,rep(0,p),corr_theo)
# adjusted p-values
res <- SidakCor(data,stat_test='empirical')
round(res,2)</pre>
```

30 SidakCor_SD

```
# significant correlations with level alpha:
alpha <- 0.05
whichCor(res<alpha)
# directly
SidakCor(data,alpha,stat_test='empirical',arr.ind=TRUE)</pre>
```

SidakCor_SD

Sidak multiple testing method for correlations with stepdown procedure.

Description

Sidak multiple testing method for correlations with stepdown procedure.

Usage

```
SidakCor_SD(
  data,
  alpha = 0.05,
  stat_test = "empirical",
  vect = FALSE,
  logical = TRUE,
  arr.ind = FALSE
)
```

Arguments

data matrix of observations alpha level of multiple testing stat_test 4 test statistics are available: 'empirical' $\sqrt{n} * abs(corr)$ 'fisher' $\sqrt{n-3}*1/2*\log((1+corr)/(1-corr))$ 'student' $\sqrt{n-2}*abs(corr)/\sqrt{(1-corr^2)}$ **'2nd.order'** $\sqrt{n}*mean(Y)/sd(Y)$ with $Y = (X_i - mean(X_i))(X_j - mean(X_j))$ if TRUE returns a vector of TRUE/FALSE values, corresponding to vectorize(cor(data)); vect if FALSE, returns an array containing TRUE/FALSE values for each entry of the correlation matrix if TRUE, returns either a vector or a matrix where each element is equal to logical TRUE if the corresponding null hypothesis is rejected, and to FALSE if it is not rejected if FALSE, returns a list of successive p-values: element [[i+1]] of the list giving the p-values evaluated on the non-rejected hypothesis at step [[i]]; p-values are either as a vector or a list depending on vect arr.ind if TRUE, returns the indexes of the significant correlations, with respect to level alpha

SimuFdr 31

Value

Returns

• logicals, equal to TRUE if the corresponding element of the statistic vector is rejected, as a vector or a matrix depending of the value of vect,

• an array containing indexes $\{(i,j), i < j\}$ for which correlation between variables i and j is significant, if arr.ind=TRUE.

References

Roux, M. (2018). Graph inference by multiple testing with application to Neuroimaging, Ph.D., Université Grenoble Alpes, France, https://tel.archives-ouvertes.fr/tel-01971574v1.

Šidák, Z. (1967). Rectangular confidence regions for the means of multivariate normal distributions. Journal of the American Statistical Association, 62(318), 626-633.

See Also

ApplyFwerCor, SidakCor

Examples

```
n <- 100
p <- 10
corr_theo <- diag(1,p)
corr_theo[1,3] <- 0.5
corr_theo[3,1] <- 0.5
data <- MASS::mvrnorm(n,rep(0,p),corr_theo)
alpha <- 0.05
# significant correlations:
SidakCor_SD(data,alpha,stat_test='empirical', arr.ind=TRUE)
# successive p-values
res <- SidakCor_SD(data,stat_test='empirical', logical=FALSE)
lapply(res,FUN=function(x){round(x,2)})
# successive rejections
lapply(res,FUN=function(x){whichCor(x<alpha)})</pre>
```

SimuFdr

Simulates Gaussian data with a given correlation matrix and applies a FDR controlling procedure on the correlations.

Description

Simulates Gaussian data with a given correlation matrix and applies a FDR controlling procedure on the correlations.

32 SimuFdr

Usage

```
SimuFdr(
  corr_theo,
  n = 100,
  Nsimu = 1,
  alpha = 0.05,
  stat_test = "empirical",
  method = "LCTnorm",
  Nboot = 1000,
  seed = NULL
)
```

Arguments

corr_theo the correlation matrix of Gaussien data simulated sample size Nsimu number of simulations level of multiple testing alpha 'empirical' $\sqrt{n} * abs(corr)$ stat_test 'fisher' $\sqrt{n-3}*1/2*\log((1+corr)/(1-corr))$ 'student' $\sqrt{n-2}*abs(corr)/\sqrt{(1-corr^2)}$ 'gaussian' $\sqrt{n}*mean(Y)/sd(Y)$ with $Y = (X_i - mean(X_i))(X_j - mean(X_j))$ method choice between 'LCTnorm' and 'LCTboot', developped by Cai & Liu (2016), 'BH', traditional Benjamini-Hochberg (1995)'s procedure, and 'BHboot', Benjamini-Hochberg (1995)'s procedure with bootstrap evaluation of pvalues number of iterations for Monte-Carlo of bootstrap quantile evaluation Nboot

Value

Returns a line vector containing estimated values for fwer, fdr, sensitivity, specificity and accuracy.

seed for the Gaussian simulations

References

seed

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the royal statistical society. Series B (Methodological), 289-300.

Cai, T. T., & Liu, W. (2016). Large-scale multiple testing of correlations. Journal of the American Statistical Association, 111(513), 229-240.

Roux, M. (2018). Graph inference by multiple testing with application to Neuroimaging, Ph.D., Université Grenoble Alpes, France, https://tel.archives-ouvertes.fr/tel-01971574v1.

See Also

ApplyFdrCor, SimuFwer

SimuFwer 33

Examples

```
Nsimu <- 1000
n <- 100
p <- 10

corr_theo <- diag(1,p)

corr_theo[1,3] <- 0.5

corr_theo[3,1] <- 0.5
alpha <- 0.05

SimuFdr(corr_theo,n,Nsimu,alpha,stat_test='empirical',method='LCTnorm')</pre>
```

SimuFwer

Simulates Gaussian data with a given correlation matrix and applies a FWER controlling procedure on the correlations.

Description

Simulates Gaussian data with a given correlation matrix and applies a FWER controlling procedure on the correlations.

Usage

```
SimuFwer(
  corr_theo,
  n = 100,
  Nsimu = 1,
  alpha = 0.05,
  stat_test = "empirical",
  method = "Sidak",
  Nboot = 1000,
  stepdown = TRUE,
  seed = NULL
)
```

Arguments

```
the correlation matrix of Gaussien data simulated
corr_theo
                   sample size
Nsimu
                  number of simulations
                  level of multiple testing
alpha
stat_test
                   'empirical' \sqrt{n} * abs(corr)
                   'fisher' \sqrt{n-3} * 1/2 * \log((1+corr)/(1-corr))
                   'student' \sqrt{n-2}*abs(corr)/\sqrt(1-corr^2)
                   'gaussian' \sqrt{n}*mean(Y)/sd(Y) with Y = (X_i - mean(X_i))(X_j - mean(X_j))
method
                  choice between 'Bonferroni', 'Sidak', 'BootRW', 'MaxTinfty'
Nboot
                   number of iterations for Monte-Carlo of bootstrap quantile evaluation
stepdown
                  logical, if TRUE a stepdown procedure is applied
                   seed for the Gaussian simulations
seed
```

34 SimuFwer_oracle

Value

Returns a line vector containing estimated values for fwer, fdr, sensitivity, specificity and accuracy.

References

Bonferroni, C. E. (1935). Il calcolo delle assicurazioni su gruppi di teste. Studi in onore del professore salvatore ortu carboni, 13-60.

Drton, M., & Perlman, M. D. (2007). Multiple testing and error control in Gaussian graphical model selection. Statistical Science, 22(3), 430-449.

Romano, J. P., & Wolf, M. (2005). Exact and approximate stepdown methods for multiple hypothesis testing. Journal of the American Statistical Association, 100(469), 94-108.

Roux, M. (2018). Graph inference by multiple testing with application to Neuroimaging, Ph.D., Université Grenoble Alpes, France, https://tel.archives-ouvertes.fr/tel-01971574v1.

Westfall, P.H. & Young, S. (1993) Resampling-based multiple testing: Examples and methods for p-value adjustment, John Wiley & Sons, vol. 279.

See Also

ApplyFwerCor, SimuFwer_oracle, SimuFdr

Examples

```
Nsimu <- 1000
n <- 100
p <- 10
corr_theo <- diag(1,p)
corr_theo[1,3] <- 0.5
corr_theo[3,1] <- 0.5
alpha <- 0.05
SimuFwer(corr_theo,n,Nsimu,alpha,stat_test='empirical',method='Bonferroni',stepdown=FALSE)</pre>
```

SimuFwer_oracle

Simulates Gaussian data with a given correlation matrix and applies oracle MaxTinfty on the correlations.

Description

Simulates Gaussian data with a given correlation matrix and applies oracle MaxTinfty (i.e. Drton & Perlman (2007)'s procedure with the true correlation matrix) on the correlations.

Usage

```
SimuFwer_oracle(
  corr_theo,
  n = 100,
  Nsimu = 1,
```

SimuFwer_oracle 35

```
alpha = 0.05,
stat_test = "empirical",
method = "MaxTinfty",
Nboot = 1000,
stepdown = TRUE,
seed = NULL
)
```

Arguments

```
the correlation matrix of Gaussien data simulated
corr_theo
                  sample size
Nsimu
                  number of simulations
                  level of multiple testing
alpha
stat_test
                   'empirical' \sqrt{n} * abs(corr)
                   'fisher' \sqrt{n-3} * 1/2 * \log((1+corr)/(1-corr))
                   'student' \sqrt{n-2}*abs(corr)/\sqrt{(1-corr^2)}
                   'gaussian' \sqrt{n}*mean(Y)/sd(Y) with Y = (X_i - mean(X_i))(X_j - mean(X_j))
                  only 'MaxTinfty' available
method
                  number of iterations for Monte-Carlo of bootstrap quantile evaluation
Nboot
                  logical, if TRUE a stepdown procedure is applied
stepdown
                  seed for the Gaussian simulations
seed
```

Value

Returns a line vector containing estimated values for fwer, fdr, sensitivity, specificity and accuracy.

References

Drton, M., & Perlman, M. D. (2007). Multiple testing and error control in Gaussian graphical model selection. Statistical Science, 22(3), 430-449.

Roux, M. (2018). Graph inference by multiple testing with application to Neuroimaging, Ph.D., Université Grenoble Alpes, France, https://tel.archives-ouvertes.fr/tel-01971574v1.

See Also

ApplyFwerCor_Oracle, SimuFwer

```
Nsimu <- 1000
n <- 50
p <- 10
corr_theo <- diag(1,p)
corr_theo[1,3] <- 0.5
corr_theo[3,1] <- 0.5
alpha <- 0.05
SimuFwer_oracle(corr_theo,n,Nsimu,alpha,stat_test='empirical',stepdown=FALSE,Nboot=100)</pre>
```

36 UncorrectedCor

UncorrectedCor

Uncorrected testing procedure for correlations.

Description

Uncorrected testing procedure for correlations.

Usage

```
UncorrectedCor(
  data,
  alpha = 0.05,
  stat_test = "empirical",
  vect = FALSE,
  logical = FALSE,
  arr.ind = FALSE
)
```

Arguments

data	matrix of observations	
alpha	level of multiple testing (used if logical=TRUE)	
stat_test	stat_test 'empirical' $\sqrt{n}*abs(corr)$	
	'fisher' $\sqrt{n-3}*1/2*\log((1+corr)/(1-corr))$	
'student' $\sqrt{n-2}*abs(corr)/\sqrt{(1-corr^2)}$		
	'2nd.order' $\sqrt{n}*mean(Y)/sd(Y)$ with $Y = (X_i - mean(X_i))(X_j - mean(X_j))$	
vect	if TRUE returns a vector of adjusted p-values, corresponding to vectorize(cor(data)); if FALSE, returns an array containing the adjusted p-values for each entry of the correlation matrix	
logical	if TRUE, returns either a vector or a matrix where each element is equal to TRUE if the corresponding null hypothesis is rejected, and to FALSE if it is not rejected	
arr.ind	if TRUE, returns the indexes of the significant correlations, with respect to level alpha	

Value

Returns

- the non-adjusted p-values, as a vector or a matrix depending of the value of vect,
- an array containing indexes $\{(i,j), i < j\}$ for which correlation between variables i and j is significant, if arr.ind=TRUE.

unvectorize 37

Examples

```
n <- 100
p <- 10
corr_theo <- diag(1,p)
corr_theo[1,3] <- 0.5
corr_theo[3,1] <- 0.5
data <- MASS::mvrnorm(n,rep(0,p),corr_theo)
# p-values
res <- UncorrectedCor(data,stat_test='empirical')
round(res,2)
# significant correlations with level alpha:
alpha <- 0.05
whichCor(res<alpha)
# directly
UncorrectedCor(data,alpha,stat_test='empirical',arr.ind=TRUE)</pre>
```

unvectorize

Returns an upper-triangle matrix, without the diagonal, containing the elements of a given vector.

Description

Returns an upper-triangle matrix, without the diagonal, containing the elements of a given vector.

Usage

```
unvectorize(vect)
```

Arguments

vect

A vector containing the upper triangle of a matrix, without the diagonal

Value

Returns an upper-triangle matrix where each entry is given by the vector containing the upper triangle of a matrix, without the diagonal.

See Also

vectorize

```
unvectorize(1:10)
```

38 whichCor

vectorize

Returns a vector containing the upper triangle of a matrix, without the diagonal.

Description

Returns a vector containing the upper triangle of a matrix, without the diagonal.

Usage

```
vectorize(mat)
```

Arguments

mat

a square matrix

Value

Returns a vector containing the upper triangle of a matrix, without the diagonal.

See Also

unvectorize

Examples

```
vectorize(matrix(1:9,3,3))
```

whichCor

Returns the indexes of an upper triangular matrix with logical entries.

Description

Returns the indexes of an upper triangular matrix with logical entries.

Usage

```
whichCor(mat)
```

Arguments

mat

A matrix with logical entries in the upper triangular part

Value

Returns the indexes of the upper triangular part where the entries are TRUE

whichCor 39

```
n <- 100
p <- 10
corr_theo <- diag(1,p)
corr_theo[1,3] <- 0.5
corr_theo[3,1] <- 0.5
data <- MASS::mvrnorm(n,rep(0,p),corr_theo)
res <- ApplyFwerCor(data,stat_test='empirical',method='Bonferroni',stepdown=FALSE)
# significant correlations, level alpha:
alpha <- 0.05
whichCor(res<alpha)</pre>
```

Index

* FDR	TestCor-package, 2
TestCor-package, 2	
* FWER	UncorrectedCor, 36
TestCor-package, 2	unvectorize, 37
* correlation testing	
TestCor-package, 2	vectorize, 38
* graph inference	a lata la Cara 20
TestCor-package, 2	whichCor, 38
* multiple testing	
TestCor-package, 2	
ApplyFdrCor,4	
ApplyFwerCor, 6	
ApplyFwerCor_oracle,8	
BHBootCor, 10	
BHCor, 11	
BonferroniCor, 13	
BonferroniCor_SD, 14	
BootRWCor, 16	
BootRWCor_SD, 17	
covD2nd, 19	
covDcor, 20	
covDcorNorm, 21	
eval_stat, 21	
LCTboot, 22	
LCTnorm, 23	
maxTinftyCor, 25	
maxTinftyCor_SD, 26	
SidakCor, 28	
SidakCor_SD, 30	
SimuFdr, 31	
SimuFwer, 33	
SimuFwer_oracle, 34	
TestCor (TestCor-package), 2	
restcor (restcor-package), 2	