6

Production 14B03/REZ

Nombre de cibles Cal le: 09.02.14 12:00 1 Echantillon BA

1 Acidification

Ech 1:

Volume total:

Mesures CQ:

Poids échantillon (g):

Volume échantillon (mL):

Facteur de dilution (mL):

6 750 mL

1.216 1.084

0.399 MBq/mL

0.001 MBq/mL

0.320 MBq/mL

1.040

1.022 64 862 762

Ech 2: Volume total:

Poids échantillon (g) :

mL

Volume échantillon (mL): Facteur de dilution (mL):

Mesures CQ:

⁹⁹Mo:

MBq/ml.

¹³⁷Cs:

MBq/mL

¹³¹I:

MBq/mL

Act. totale dans l'acidificateur :

⁹⁹Mo: ¹³⁷Cs:

⁹⁹Mo:

¹³⁷Cs:

¹³¹I:

¹³¹I:

25 880 GBq 65 GBq

20 756 GBq

Act. totale dans l'acidificateur :

⁹⁹Mo: GBq ¹³⁷Cs:

GBq

¹³¹1:

GBq

Nbre de cibles :

6

Nbre de cibles :

t^{ère} Filtration

Cible(s) position différente	Cible	Poids 235U (g)	Réacteur	Positi.	Act ⁹⁹ Mo (mes)	Act ¹³⁷ Cs (mes)	Act ¹³¹ I (mes)	Act SR 99 Mo	Act SR ¹³⁷ Cs	Act SR 131	Flux ⁹⁹ Mo n.cm ⁻² .s ⁻¹	Flux ¹³⁷ Cs n.cm ⁻² .s ⁻¹	Flux ¹³¹ I n.cm ⁻² .s ⁻¹	Flux moy.	Ecart rel.
	L6975	3.860	LVR-15 REZ	D5/1	4 302 GBq	10.78 GBq	3 450 GBq	28 340 GBq	10.79 GBq	6 575 GBq	1.015E+14	7.753E+13	9.565E+13	1.015E+14	
	L6976	3.890	LVR-15 REZ	D5/1	4 336 GBq	10.87 GBq	3 477 GBq	28 561 GBq	10.87 GBq	6 626 GBq	1.015E+14	7.753E+13	9.565E+13	1.015E+14	
	L6977	3.880	LVR-15 REZ	D5/1	4 325 GBq	10.84 GBq	3 468 GBq	28 487 GBq	10.84 GBq	6 609 GBq	1.015E+14	7.753E+13	9.565E+13	1.015E+14	
	L6979	3.870	LVR-15 REZ	D5/2	4 313 GBq	10.81 GBq	3 459 GBq	28 414 GBq	10.82 GBq	6 592 GBq	1.015E+14	7.753E+13	9.565E+13	1.015E+14	
	L6980	3.860	LVR-15 REZ	D5/2	4 302 GBq	10.78 GBq	3 450 GBq	28 340 GBq	10.79 GBq	6 575 GBq	1.015E+14	7.753E+13	9.565E+13	1.015E+14	
	L6981	3.860	LVR-15 REZ	D5/2	4 302 GBq	10.78 GBq	3 450 GBq	28 340 GBq	10.79 GBq	6 575 GBq	1.015E+14	7.753E+13	9.565E+13	1.015E+14	
	6				25 880 GBq	64.86 GBq	20 756 GBq	170 482 GBq	64.89 GBq	39 553 GBq					

2^{ème} Filtration

Cible(s) position différente	Cible	Poids 235U (g)	Réacteur	Positi.	Act ⁹⁹ Mo (mes)	Act ¹³⁷ Cs (mes)	Act ¹³¹ I (mes)	Act SR 99Mo	Act SR ¹³⁷ Cs	Act SR 131 I	Flux ⁹⁹ Mo n.cm ⁻² .s ⁻¹	Flux ¹³⁷ Cs n.cm ⁻² .s ⁻¹	Flux ¹³¹ I n.cm ⁻² .s ⁻¹	Flux moy.	Ecart rel.
							Assessment of the second					100			-