Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

✓ Congratulations! You passed!

Next Item

size of the hidden layers $n^{[l]}$

Correct

Correct

Key concepts on Deep Neural Networks 10/10 points (100%) Quiz, 10 questions number of iterations Correct learning rate lphaCorrect weight matrices $W^{[l]}$ **Un-selected is correct** activation values $a^{[l]}$ **Un-selected is correct** bias vectors $b^{[l]}$ **Un-selected is correct** 1/1 points Which of the following statements is true? The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers. Correct The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers. 1/1 points 4.

Vectorization allows you to compute forward propagation in an L-layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers l=1, 2,

Key concepts one Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

True

O

False

Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines $(a^{[2]}=g^{[2]}(z^{[2]})$, $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$, ...) in a deeper network, we cannot avoid a for loop iterating over the layers: $(a^{[l]}=g^{[l]}(z^{[l]}), z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$, ...).

1/1 points

5.

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = [n_x , 4,3,2,1]. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

```
1 for(i in range(1, len(layer_dims)/2)):
2    parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
3    parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims)/2)):
2  parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i-1], 1) * 0.01
```

```
for(i in range(1, len(layer_dims))):
parameter['W' + str(i)] = np.random.randn(layers[i-1], layers[i])) * 0.01
parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
for(i in range(1, len(layer_dims))):
    parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
    parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

Correct

1/1 points

6.

Consider the following neural network.

8.

There are certain functions with the following properties:

Key concepts conclude in Neutral Line two recuit, you will need a large 10/10 points (100%)

Quiz, 10 questions

network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?

0	

True

Correct

- (

False

1/1 points

9.

Consider the following 2 hidden layer neural network:

Which of the following statements are True? (Check all that apply).

 $W^{\left[1
ight]}$ will have shape (4, 4)

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $b^{[1]}$ will have shape (4, 1)

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

 $W^{[1]}$ will have shape (3, 4)

Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

$b^{[1]}$ will have shape (3, 1)
Un-selected is correct
$W^{[2]}$ will have shape (3, 4)
Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]}).$
$b^{[2]}$ will have shape (1, 1)
Un-selected is correct
$W^{[2]}$ will have shape (3, 1)
Un-selected is correct
$b^{[2]}$ will have shape (3, 1)
Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.
$W^{[3]}$ will have shape (3, 1)
Un-selected is correct
$b^{[3]}$ will have shape (1, 1)
Correct
Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.
$W^{[3]}$ will have shape (1, 3)
Correct
Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]}).$
$b^{[3]}$ will have shape (3, 1)

Un-selected is correct

Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

1/1 points

10.

Whereas the previous question used a specific network, in the general case what is the dimension of W $\{[l]\}$, the weight matrix associated with layer l?

- $igcup W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$
- $igcup W^{[l]}$ has shape $(n^{[l+1]},n^{[l]})$
- $igcup W^{[l]}$ has shape $(n^{[l-1]},n^{[l]})$
- $igcup W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$

Correct

True

