pymrio-tutorial-for-wiod

October 23, 2018

Quick Start Pymrio Tutorial using WIOD

This notebook contains the interactive version of the quick start given in the Pymrio article (Stadler et al 2018 sub).

Pymrio requires a Python version >= 3.5. If you don't have Python installed, I recommend to use the Anaconda Scientific Python package.

Pymrio is available on the Python Package Index PyPI and on the Anaconda Cloud. Thus, two possibilities exist to install Pymrio and all required packages.

For using the version on PyPI use:

```
pip install pymrio --upgrade
```

To install from the Anaconda Cloud do:

```
conda install -c konstantinstadler pymrio
```

You can than import the Pymrio package with

```
In [1]: import pymrio
```

In this example here, we will use the WIOD MRIO database.

First, the Pymrio MRIO download function is used to get the WIOD MRIO database with:

```
In [2]: raw_wiod_path = '/tmp/wiod/raw'
        pymrio.download_wiod2013(storage_folder=raw_wiod_path,
                                 years=[2008])
```

```
Out[2]: Description: WIOD metadata file for pymrio
```

MRIO Name: WIOD System: ixi Version: data13

File: /tmp/wiod/raw/metadata.json

History:

```
20181023 11:50:53 - FILEIO - Downloaded http://www.wiod.org/protected3/data13/water/wa
20181023 11:50:52 - FILEIO - Downloaded http://www.wiod.org/protected3/data13/materia
```

20181023 11:50:52 - FILEIO - Downloaded http://www.wiod.org/protected3/data13/AIR/AIR 20181023 11:50:51 - FILEIO - Downloaded http://www.wiod.org/protected3/data13/C02/C02

```
20181023 11:50:50 - FILEIO - Downloaded http://www.wiod.org/protected3/data13/EM/EM_max 20181023 11:50:49 - FILEIO - Downloaded http://www.wiod.org/protected3/data13/EU/EU_max 20181023 11:50:48 - FILEIO - Downloaded http://www.wiod.org/protected3/data13/SEA/WIOI 20181023 11:50:48 - FILEIO - Downloaded http://www.wiod.org/protected3/data13/update_s
```

This downloads the 2008 MRIO table from WIOD. Omitting the year parameter would result getting all years. The function returns a Pymrio meta data object, which gives information about the WIOD version, system (in this case industry by industry) and records about from where the data was received.

```
To parse the database into a Pymrio object use:
In [3]: wiod = pymrio.parse_wiod(raw_wiod_path, year=2008)
   The available data can be explored by for example:
In [4]: wiod.get_sectors()
Out[4]: Index(['AtB', 'C', '15t16', '17t18', '19', '20', '21t22', '23', '24', '25',
                '26', '27t28', '29', '30t33', '34t35', '36t37', 'E', 'F', '50', '51',
               '52', 'H', '60', '61', '62', '63', '64', 'J', '70', '71t74', 'L', 'M',
                'N', 'O', 'P'],
              dtype='object', name='sector')
   or
In [5]: wiod.get_regions()
Out[5]: Index(['AUS', 'AUT', 'BEL', 'BGR', 'BRA', 'CAN', 'CHN', 'CYP', 'CZE', 'DEU',
                'DNK', 'ESP', 'EST', 'FIN', 'FRA', 'GBR', 'GRC', 'HUN', 'IDN', 'IND',
                'IRL', 'ITA', 'JPN', 'KOR', 'LTU', 'LUX', 'LVA', 'MEX', 'MLT', 'NLD',
                'POL', 'PRT', 'ROU', 'RUS', 'SVK', 'SVN', 'SWE', 'TUR', 'TWN', 'USA',
               'RoW'],
              dtype='object', name='region')
In [6]: wiod.Z
Out[6]: region
                                AUS
        sector
                                AtB
                                                C
                                                          15t16
                                                                       17t18
                                                                                       19
        region sector
        AUS
               AtB
                        4445.324330
                                       41.919400
                                                   15625.681890
                                                                  536.968630
                                                                              154.395870
                                                                                3.253063
                                     3838.070873
                                                     189.934275
                                                                   11.313686
                          16.277934
               15t16
                        1049.495726
                                      100.611347
                                                    6754.110522
                                                                   68.387761
                                                                               19.663697
               17t18
                          36.908420
                                       43.779214
                                                     108.986668
                                                                  355.675875
                                                                              102.268333
               19
                           9.518107
                                       11.289978
                                                      28.105965
                                                                   91.723266
                                                                               26.373410
               20
                          36.819811
                                       47.491171
                                                      33.027878
                                                                    7.296923
                                                                                2.098101
               21t22
                         115.900527
                                      153.248506
                                                    1246.425549
                                                                   52.200097
                                                                               15.009220
               23
                         490.156419
                                     1026.213186
                                                     158.889100
                                                                    9.179523
                                                                                2.639409
```

395.338597

189.301500

254.521411

747.545652

58.428801

34.083913

16.800175

9.800233

24

25

1025.411077

79.516332

	26	38.658080	105.010424	262.224086	5.283083	1.519054
	27t28	212.089806	1310.988269	836.157336	42.125453	12.112433
	29	168.914698	614.130627	121.573026	9.601957	2.760879
	30t33	100.297729	364.656884	72.187314	5.701425	1.639347
	34t35	94.161797	279.637968	68.165787	8.294429	2.384917
	36t37	52.529450	213.596124	135.683995	26.057759	7.492447
	E	698.423156	1719.046355	885.618629	86.361355	24.831684
	F	633.714316	4242.094785	376.754403	28.695921	8.251007
	50	1132.348543	2138.419658	1023.262884	159.073383	45.738761
	51	1394.463193	1572.454263	4088.518869	419.871502	120.726663
	52	1445.528277	1659.816747	3579.884070	371.567853	106.837791
	52 H	140.934734	216.771700	561.956674	27.457908	7.895041
	п 60	476.976916	3184.818553	1993.405269	126.355111	36.331187
	61	9.552743		31.177072		1.326064
		6.869618	170.427724 20.121560		4.611883	
	62 63			11.067713	1.786162	0.513581
	63	297.699414	738.735542	1195.706686	45.976713	13.219798
	64	223.155110	423.626089	355.814018	35.236625	10.131668
	J	1299.842059	4293.057285	967.646850	59.138767	17.004318
	70	551.797175	1786.808419	797.474903	32.553813	9.360274
	71t74	1180.063104	5310.446524	3035.907428	368.573815	105.976926
· · ·	00					
RoW	20	1.635056	2.013566	0.820348	0.216980	0.062394
	21t22	7.724918	13.129569	217.877677	2.003884	0.576182
	23	388.152158	836.374409	81.538931	2.390291	0.687287
	24	365.270981	132.696731	32.705396	14.943534	4.296752
	25	8.286214	22.575945	90.951788	2.964467	0.852379
	26	1.956064	6.043732	11.152563	0.099052	0.028483
	27t28	9.581514	191.520139	34.196454	2.872105	0.825822
	29	35.895862	148.406916	4.062407	0.206493	0.059371
	30t33	5.438695	14.663099	4.288701	0.942037	0.270862
	34t35	3.580771	6.292762	1.143145	0.089681	0.025786
	36t37	1.423158	15.919915	2.520675	0.997691	0.286871
	E	0.802647	18.560578	1.105187	0.052474	0.015090
	F	0.690587	4.550382	0.398577	0.018475	0.005314
	50	0.055638	0.158419	0.091477	0.004071	0.001171
	51	2.752223	189.554149	11.612952	0.481597	0.138475
	52	1.031890	1.526614	3.043862	0.176287	0.050688
	H	0.783462	1.108244	3.597303	0.117633	0.033825
	60	0.680310	190.942239	7.225673	0.281982	0.081079
	61	0.085508	0.190833	0.040526	0.003698	0.001063
	62	7.703932	22.053451	12.157162	2.137970	0.614733
	63	0.308886	0.802305	0.698779	0.064745	0.018614
	64	0.166596	0.499486	0.348924	0.032884	0.009460
	J	4.774312	8.175419	8.364439	0.128402	0.036924
	70	7.339967	23.635663	8.385978	0.273455	0.078627
	71t74	3.657849	17.761648	9.827292	1.145630	0.329414
	L	0.547432	0.780406	1.176073	0.200903	0.057766
	M	1.319036	9.927575	11.742183	2.639874	0.759049

	N	7.894845	0.291041	11.603507	7 2.279403	0.655404	
	0	1.244926	3.686620	4.381357	7 0.155217	0.044633	
	P	0.001018	0.000104	0.003666	0.000135	0.000039	
region							١
sector		20	21t22	23	24	25	
	sector						
AUS	AtB	936.835140	273.018600	0.000000	215.708440	93.909230	
	C	14.271582	58.136067	4424.333299	193.328895	20.968263	
	15t16	14.570366	49.431980	36.266290	835.587643	54.070009	
	17t18	18.335691	50.188234	15.538649	45.917943	45.612614	
	19	4.728489	12.942764	4.007176	11.841522	11.762783	
	20	931.529917	29.447854	10.273590	19.271625	19.486462	
	21t22	90.326674	2821.000424	23.198240	363.916574	142.223056	
	23	35.551012	77.346703	518.540713	250.877221	41.087803	
	23 24	134.600162	414.014715	254.533734	1940.073909	858.289530	
					356.994995		
	25	36.346518	308.640250	35.017383		269.405154	
	26	40.469744	29.765072	8.536396	105.011698	39.029102	
	27t28	307.140650	183.821644	39.748282	376.009535	192.166872	
	29	22.279107	45.205836	36.726841	49.857619	28.242531	
	30t33	13.228830	26.842204	21.807568	29.604327	16.769776	
	34t35	8.080558	19.639293	18.150425	25.406816	11.405865	
	36t37	110.342068	35.268883	21.252913	64.355459	29.135448	
	Е	143.282141	356.331393	124.990480	359.975571	187.401518	
	F	109.473492	151.285346	935.469320	167.746506	93.523215	
	50	230.146065	723.933947	115.779055	392.670136	231.061142	
	51	276.108617	963.440976	976.941746	1308.409695	535.714326	
	52	289.884901	858.592422	1003.348917	1302.437162	535.855098	
	H	23.433113	167.690188	103.972792	168.583295	31.931233	
	60	218.706857	510.934567	264.079532	529.984384	320.186820	
	61	3.898249	15.919886	15.316702	13.456574	5.596796	
	62	1.669552	11.293316	2.145138	6.468971	1.904794	
	63	325.523642	634.162539	98.547353	630.174898	72.132960	
	64	74.415816	321.615785	114.934853	143.609205	71.615890	
	J	111.468536	441.552736	97.016295	296.043420	121.990028	
	70	300.402024	541.707671	186.950544	98.494018	50.868687	
	71t74	557.009305	2787.056493	1262.566488	2654.652613	1383.027258	
RoW	20	59.254639	1.921591	0.293189	0.419081	0.896964	
	21t22	10.939833	305.243836	2.718898	43.005354	12.827419	
	23	25.409174	52.937556	426.332774	189.227887	25.663685	
	24	45.776375	137.849053	88.781323	694.935609	304.297810	
	25	4.080999	38.578026	4.433015	43.078751	33.263153	
	26	1.540591	0.842093	0.991921	5.264341	1.845787	
	20 27t28	19.202156	17.107983	2.899187	23.417741	40.398734	
	29	4.226874	5.044632	4.710717	6.153871	1.448788	
	30t33	0.581584	5.573272	0.601050	3.175119	2.472000	
	34t35	0.295067	0.589052	0.144417	0.873163	0.518826	

	36t37	1.144750	1.872070	0.537275	2.212297	1.106440
	E	0.173761	0.567528	20.428639	0.819155	0.253561
	F	0.228649	0.150437	0.984623	0.227128	0.110467
	50	0.012600	0.039960	0.049854	0.052195	0.025508
	51	0.853480	4.639344	230.537056	6.007003	1.436657
	52	0.267343	1.589181	0.516815	1.104595	0.320696
	Н	0.112285	0.844576	0.471689	0.894151	0.123268
	60	0.435869	2.825101	234.376543	3.367219	0.414917
	61	0.008164	0.032342	0.082525	0.046836	0.007787
	62	1.580617	13.245788	2.369183	7.540798	2.183210
	63	0.151014	0.529874	0.096219	0.398736	0.083757
	64	0.065116	0.304461	0.102210	0.231570	0.101406
	J	0.501054	3.041203	0.527920	1.128715	0.542113
	70	3.690224	5.954991	2.422823	0.176277	0.184588
	71t74	1.860358	9.415961	4.389323	8.278023	4.489652
	L	0.248589	0.636937	0.238198	1.078893	0.160527
	M	1.003295	4.474255	4.120725	4.517280	1.687657
	N	1.749095	6.793279	0.164896	18.550374	0.174962
	0	0.562692	2.533730	0.758305	2.141030	0.484539
	P	0.000031	0.000096	0.000021	0.000116	0.000052
regio	n		RoW			\
secto	r		63	64	J	
regio	n sector					
AUS	AtB		19.761917	0.001627	0.140044	
	C		0.211888	0.034300	0.005817	
	15t16		1.621756	1.588110	3.701685	
	17t18		0.401032	0.181367	1.492579	
	19		0.039708	0.017958	0.147786	
	20		0.027123	0.082776	0.063378	
	21t22		2.204172	10.102687	15.418063	
	23		59.028995	4.487274	11.189084	
	24		2.603711	1.444149	1.194342	
	25		0.973279	2.427753	0.704863	
	26		0.186875	0.421755	0.195426	
	27t28		15.617744	7.959440	2.380652	
	29		3.642359	30.309729	6.825963	
	30t33		2.002236	16.661519	3.752291	
	34t35		12.703247	8.769379	12.768384	
	36t37		0.226041	1.816351	1.501001	
	E		0.158169	0.222314	0.298537	
	F		0.967638	3.020002	6.822620	
	50		0.542576	1.055301	1.163450	
	51		0.822974	0.880188	2.617088	
	52		3.508417	8.412820	2.943161	
	H		13.417060	5.803010	31.833836	
	60		24.160506	27.963040	34.284311	
	61		2.683645	27.565014	25.181994	

		62		56	.890998	228	.034250	187	.103415		
		63		23	.523008	76	.260841	59	.942885		
		64		0	. 183698	3	.195211	4	.168414		
		J		10	.691209	38	.702169	87	.947969		
		70			.371040		.154968		.222023		
		71t74	• • •		.609769		.055788		.840096		
		11014	• • •	10		11		110			
	-11	20	• • •	90	000170	20	240066	10	070027		
n	οW	20	• • •		.089178		.342266		.072937		
		21t22	• • •		.505474		.580816		.918929		
		23	• • •		. 236675		.091828		.913923		
		24	• • •		.001665		.217475		.520415		
		25		1122	.804886	762	.399457	140	. 149436		
		26		119	.947154	60	.337788	18	.657645		
		27t28		1298	. 244145	315	.873918	171	.199863		
		29		697	.828174	319	.985813	314	.995799		
		30t33		818	.546621	8308	.403067	731	.275786		
		34t35		1252	.400960	1279	.511149	517	.703475		
		36t37		103	.922288	113	.850921	471	.973179		
		E			.709269		.310696	5072	.978446		
		F	• • •		.318867		.910054		.713588		
		50	• • •		.931361		.953802		.712735		
			• • •								
		51	• • •		.981195		.086914		.802019		
		52	• • •		.648191		.751467		.609268		
		H	• • •		.775736		.164612		.073416		
		60	• • •	7703	.649094	5140	.042568	7039	.531612		
		61		319	.845929	351	.739712	393	.717271		
		62		532	.908584	1341	.365292	1312	.401998		
		63		3504	. 280492	1807	.314685	1701	.271137		
		64		2172	.194846	20440	.020040	11710	.122737		
		J		7415	.709712	8091	.081325	38655	.926218		
		70		1727	.970393	5199	.410339	7493	.075988		
		71t74		6246	. 240339	12482	.298686	24886	.499828		
		L		608	.700335		.004146		.531658		
		M			.678620		.402398		.804212		
		N	• • •		.843405		.735687		.274672		
		0	• • •		.944076		.240663		.525102		
			• • •				.244611				
		P	• • •	1	.324062	U	.244011	1	.104726		
											,
	egion							_			\
	ector			70	711	:74		L		M	
	_	sector									
A	US	AtB	0.04	3667	11.6800	006	3.1138	27	61.7116	87	
		C	0.08	88101	14.4188	332	0.3158	09	0.1821	57	
		15t16	2.74	3954	27.6652	274	14.8655	83	86.0967	98	
		17t18	0.63	32427	1.4927	750	6.5505	54	0.8787	64	
		19	0.06	2619	0.1478	303	0.6485	94	0.0870	10	
		20		5954	0.7905		2.3531		2.5541		
		21t22		5107	48.5968		56.8904		21.9138		
			0.10						5 - 5 0		

	23	11.512628	36.303514	27.566443	17.222495
	24	9.237368	19.609616	28.268265	42.763999
	25	3.349751	6.259412	2.576908	3.199048
	26	0.657503	1.604297	1.160610	1.514350
	27t28	18.293034	25.094179	4.177664	5.533838
	29	28.606393	41.232405	7.775303	17.255305
	30t33	15.725181	22.665809	4.274151	9.485390
	34t35	12.610675	64.711016	21.845125	12.221815
	36t37	0.734132	5.457432	3.653690	3.040151
	E	1.804297	0.696923	0.819074	0.433625
	F	4.445031	6.978164	3.820432	4.213175
	50	0.619550	0.820108	3.190926	0.401245
	51	1.334045	8.044024	8.112138	13.165919
	52	4.183650	25.137596	9.350485	9.915846
	H	6.093826	44.016163	31.470631	22.222129
	60	29.296585	51.018691	66.987976	39.638572
	61	128.915922	66.003832	27.081238	6.700347
	62	40.923609	416.402802	518.481234	387.002863
	63	23.682097	132.257649	162.850890	120.792474
	64	0.398777	1.136361	4.488764	2.069959
	J	49.862781	73.172178	17.970300	40.594369
	70	81.507135	1.324506	14.642011	7.911327
	71t74	45.926864	97.594121	30.529568	59.538339
			•••		
RoW	20	26.345271	629.084892	1884.054328	2120.766430
	21t22	1128.083167	26948.165198	16081.684247	9758.327387
	23	129.072765	789.857491	574.234856	141.229352
	24	172.206457	1469.037784	568.857200	464.549470
	25	493.458933	3238.293742	384.585818	748.594202
	26	135.596128	389.433240	439.866913	502.917719
	27t28	733.140609	4511.622232	548.761711	543.615393
	29	181.223515	1068.322357	753.097670	271.294575
	30t33	808.302796	21372.986647	1858.083732	2393.918095
	34t35	418.842054	6459.762846	2627.353449	1120.680148
	36t37	181.271520	482.787859	773.675064	852.380832
	E	5141.941351	12517.586986	15224.240044	12110.158949
	F	7483.145885	5407.731676	10000.889751	6437.551020
	50	225.393607	984.574183	1437.815851	342.158934
	51	2056.102533	13468.319458	8755.578709	4942.954370
	52	1022.444732	6822.892202	4692.901833	2286.924606
	32 H	1565.207855	12160.455853	16699.714473	7750.382855
	60	1167.017249	10630.975028	10255.302827	4952.250191
	61	249.455177	1314.984794	916.026979	435.280134
	62	197.515757	2930.795161	3507.522443	2074.276308
	63	373.643784	3223.972374	4095.498850	1417.898957
	64	1468.996337	9246.282287	15881.469928	6012.447058
	J 70	5758.940639	19989.913847	23896.327061	9546.835763
	70	2705.769797	9495.163791	8103.153981	5036.228134

	71t74	6015.478162	70478.453504	20430.836359	13305.638974
	L	620.253937	1194.982705	4557.146576	518.488155
	M	212.193133	1571.999239	7706.676330	5223.189539
	N	70.364956	895.599603	1415.975389	840.530518
	0	2897.014578	14958.970521	15443.391745	7897.357003
	P	1.141934	50.552086	0.000000	1.089908
region					
sector		N	0	P	
_	sector				
AUS	AtB	9.898359	10.256983		
	C	0.273387			
	15t16	46.736852			
	17t18	2.252624			
	19	0.223040			
	20	1.827102			
	21t22	17.326665			
	23	18.549700			
	24	112.870262			
	25	4.867827			
	26	1.381380			
	27t28	4.012130			
	29	6.985789			
	30t33	3.840148			
	34t35	5.288575	124.684698	0.005111	
	36t37	2.261301			
	E	0.588291	0.542892		
	F	4.269064			
	50	0.715443			
	51	10.882036			
	52	14.368875			
	H	15.193905			
	60	6.561055	44.037984	0.014616	
	61	2.041265	17.273710	0.000000	
	62	28.960407	154.036071	0.000035	
	63	9.267663	53.423142	0.000042	
	64	1.476196	0.879504	0.000243	
	J	12.824709	34.707057	0.069814	
	70	0.554078	15.369971	0.000000	
	71t74	18.124551	33.468160	0.097561	
		• • •			
RoW	20	1932.161785	914.755872	0.019687	
	21t22	6011.875100	10934.428273	2.548514	
	23	242.320646	423.896780	0.056465	
	24	10243.419875	1465.864732	0.523719	
	25	2193.842232	2876.932893	0.139278	
	26	1116.624356	400.017883	0.111932	
	27t28	931.955552	1147.905601	0.648180	

29	3154.318917	314.337084	0.227289
30t33	2193.940291	4724.352592	1.743540
34t35	392.761307	7211.302026	0.984097
36t37	323.697939	504.572681	0.169314
E	12791.419341	10535.612431	4.831273
F	11354.319342	3839.537017	22.570339
50	1088.152585	555.415078	0.513696
51	19728.444632	9261.002711	4.393748
52	8058.010782	4256.950765	6.790453
H	5346.893566	4441.279950	1.070657
60	6210.736712	5982.700080	13.287645
61	803.452478	647.422802	0.257212
62	875.609110	1119.259998	0.346236
63	2264.941271	2108.901331	0.387366
64	7642.069297	4260.482612	8.457208
J	3563.218290	8195.767795	54.664765
70	6230.303094	7501.857446	0.007471
71t74	15560.647836	12040.071161	83.100716
L	921.621306	901.624286	0.00000
M	1488.980938	527.910083	0.001030
N	3513.234966	395.244668	0.000020
0	8895.570576	16565.733127	44.703532
P	4.570108	41.517464	3.460032

[1435 rows x 1435 columns]

WIOD includes several satellite accounts, which are stored as child objects in Pymrio. For example, in order to see the AIR emissions provided by WIOD:

In [7]: wiod.AIR.F

Out[7]:	region	AUS				\
	sector	AtB	C	15t16	17t18	
	stressor					
	C02	6.471152e+03	2.331841e+04	3256.861259	392.819896	
	CH4	3.226169e+06	1.370016e+06	1221.450093	41.723574	
	N20	6.527106e+04	1.243851e+02	527.652440	10.773378	
	NOX	2.000881e+05	1.709849e+05	70375.533177	3875.234721	
	SOX	1.976645e+04	4.713841e+04	45815.675397	1068.354291	
	CO	1.496859e+06	7.159254e+05	227663.413138	16225.875707	
	NMVOC	3.824729e+05	2.409498e+05	141642.740887	5460.933412	
	NH3	4.049434e+05	4.575323e+02	112.157985	4.313657	
	region					\
	sector	19	20	21t22	23	
	stressor					
	C02	91.570641	147.075293	2100.167306	7928.850694	
	CH4	6.112471	64.722688	189.787544	33785.867211	

N2O NOX SOX CO NMVOC NH3		14.793543 9146.373832 2521.542160 38296.499606 12888.958231 13.342974	36269 26680 82187 28691	.445075 1 .571692	146.523 18894.321 50018.069 56833.653 65893.299 4.143	1469 9958 3485 9291	
region					RoW		\
sector	24	25			63	64	
stressor							
C02	8832.607331	82.623337		4.530961e	+04 238	343.716275	
CH4	768.018325	22.631731		2.031444e	+04 24	130.969769	
N20	10421.185919	6.723839		7.185897e	+02 3	320.774141	
NOX	34546.808023	663.707765		1.419601e	+05 874	111.639720	
SOX	91733.983039	182.976023		6.973313e	+04 429	938.026115	
CO	393632.686253	2778.990301		1.385415e	+06 8530	066.323392	
NMVOC	105133.073315	935.288872		3.377663e		978.880902	
NH3	366.328954	4.740067		4.569925e	+02 3	324.340516	
						,	
region	-		7.0	74.74		,	
sector	J		70	71t74		L	
stressor	17504 617416	11774 7600	70 F	707074 - 104	1 11061	10-105	
CO2	17594.617416	11774.7698		787274e+04			
CH4 N20	3979.962245 342.725185	5525.3202 215.4780		617241e+04			
	68809.569199	60385.6014		228492e+03 027940e+05			
NOX SOX	33800.385037	29662.3943		027940e+05 961571e+04			
CO	671525.284261	589314.2280		961571e+04 979104e+06			
NMVOC	163718.896513	143675.7146		825085e+05			
NH3	229.110878	244.6634		643215e+03			
WIIO	223.110070	241.0004	50 1.	0402106:00	1.00740	000100	
region							
sector	M	1	N	0	P		
stressor							
C02	25382.470248	4.575128e+0	4 4.8	51286e+04	0.0		
CH4	5001.012041	1.394311e+0		60473e+07	0.0		
N20	272.108324	7.680525e+0	3 9.1	70715e+04	0.0		
NOX	99579.016981	1.666314e+0	5 1.5	65510e+05	0.0		
SOX	48914.840693	8.185206e+0	4 7.6	90040e+04	0.0		
CO	971810.003503	1.626186e+0	6 1.5	27810e+06	0.0		
NMVOC	236928.772636	3.964667e+0	5 3.7	24824e+05	0.0		
NH3	113.829614	6.203676e+0	2 4.9	65187e+03	0.0		

[8 rows x 1435 columns]

WIOD, however, does neither provide any normalized data (A-matrix, satellite account coefficient data) nor any consumption based accounts (footprints).

In order to calculate them, one could go through all the missing data and compute each ac-

count. Pymrio provides the required function, for example to calculate the A-matrix:

```
In [8]: x = pymrio.calc_x(Z=wiod.Z, Y=wiod.Y)
        A = pymrio.calc_A(Z=wiod.Z, x=x)
In [9]: A.head()
Out[9]: region
                            AUS
                                                                                     \
        sector
                            AtB
                                        С
                                               15t16
                                                         17t18
                                                                      19
                                                                                 20
        region sector
        AUS
                                                      0.086780
               AtB
                       0.095452
                                 0.000346 0.220811
                                                                0.096757
                                                                          0.093637
               C
                       0.000350
                                 0.031718
                                           0.002684
                                                      0.001828
                                                                0.002039
                                                                          0.001426
               15t16
                       0.022535
                                 0.000831
                                           0.095444
                                                      0.011052
                                                                0.012323
                                                                          0.001456
               17t18
                       0.000793
                                 0.000362
                                           0.001540
                                                      0.057481
                                                                0.064090
                                                                          0.001833
               19
                       0.000204
                                 0.000093
                                           0.000397
                                                      0.014824
                                                                0.016528
                                                                          0.000473
        region
                                       23
                                                  24
                                                            25
        sector
                          21t22
        region sector
        AUS
               AtB
                                 0.000000
                                           0.008643
                                                      0.008967
                       0.009559
               C
                       0.002035
                                 0.220910
                                           0.007746
                                                      0.002002
               15t16
                       0.001731
                                 0.001811
                                           0.033481
                                                      0.005163
               17t18
                       0.001757
                                 0.000776
                                           0.001840
                                                      0.004355
               19
                       0.000453
                                 0.000200
                                           0.000474
                                                      0.001123
                                                                    . . .
        region
                                RoW
        sector
                                 63
                                                64
                                                               J
                                                                            70
        region sector
        AUS
               AtB
                       1.143737e-04 5.153717e-09 2.285107e-07
                                                                  7.786856e-08
               С
                       1.226316e-06 1.086802e-07 9.492337e-09
                                                                  1.571046e-07
                       9.386042e-06 5.031958e-06
               15t16
                                                    6.040074e-06
                                                                  4.893121e-06
               17t18
                       2.321002e-06 5.746660e-07
                                                    2.435455e-06
                                                                  1.127767e-06
               19
                       2.298108e-07 5.689976e-08
                                                  2.411432e-07
                                                                  1.116643e-07
        region
        sector
                              71t74
                                                 L
                                                               М
                                                                             N
        region sector
        AUS
               AtB
                       1.517644e-05 4.463792e-06 1.377724e-04
                                                                  2.552552e-05
               C
                       1.873514e-05 4.527246e-07 4.066696e-07
                                                                  7.050016e-07
               15t16
                       3.594692e-05 2.131039e-05
                                                   1.922126e-04
                                                                  1.205233e-04
               17t18
                       1.939607e-06 9.390472e-06
                                                    1.961856e-06
                                                                  5.808983e-06
                                                                  5.751684e-07
               19
                       1.920475e-07 9.297846e-07
                                                    1.942504e-07
        region
        sector
                                  0
                                                 Ρ
        region sector
        AUS
                       2.604967e-05
                                     6.252650e-09
               AtB
               С
                       1.253368e-06
                                     1.432423e-07
```

```
15t16 2.022545e-04 1.013494e-06
17t18 6.168260e-06 1.759452e-07
19 6.107418e-07 1.742097e-08
```

[5 rows x 1435 columns]

Alternatively, Pymrio provides a function which iterates through all missing accounts and calculates them:

```
In [10]: wiod.calc_all()
Out[10]: <pymrio.core.mriosystem.IOSystem at 0x7fdeec1827b8>
```

At this point, a basic EE MRIO analysis is accomplished. For example, the regional consumption based accounts of the AIR emissions are now given by:

In [11]: wiod.AIR.D_cba_reg

Out[11]:	_	AUS	AUT	BEL	BGR	\
	stressor					
	CO2	4.404070e+05	1.022100e+05	1.586176e+05	42924.986975	
	CH4	4.275465e+06	7.599975e+05	1.030354e+06	464018.748607	
	N20	9.588178e+04	3.086814e+04	4.609171e+04	13203.713081	
	NOX	2.359815e+06	3.324339e+05	4.508892e+05	142917.818720	
	SOX	2.399335e+06	1.983047e+05	3.702525e+05	400357.951750	
	CO	2.173900e+07	1.371366e+06	2.167114e+06	703172.284772	
	NMVOC	3.101630e+06	3.582680e+05	5.920832e+05	190582.650539	
	NH3	3.851776e+05	9.254548e+04	1.245648e+05	45897.394639	
	region	BRA	CAN	CHN	СҮР	\
	stressor					
	C02	4.059629e+05	5.659664e+05	5.031700e+06	13943.187686	
	CH4	1.352464e+07	4.068558e+06	5.433871e+07	157009.091900	
	N20	5.899229e+05	1.634371e+05	1.831795e+06	3200.309665	
	NOX	2.786076e+06	1.904551e+06	1.925370e+07	35972.513098	
	SOX	1.699074e+06	2.088103e+06	3.245490e+07	43500.967386	
	CO	2.681292e+07	7.525147e+06	9.904520e+07	144686.477852	
	NMVOC	5.323333e+06	2.131757e+06	2.016103e+07	43518.270216	
	NH3	1.345046e+06	4.204562e+05	6.415339e+06	8931.594745	
	region	CZE	DEU		PRT	\
	stressor					
	C02	108758.745642	1.054136e+06		7.658922e+04	
	CH4	780222.089424	6.668537e+06		8.948877e+05	
	N20	27441.728571	2.914646e+05		3.091511e+04	
	NOX	292246.717821	2.701648e+06		3.025544e+05	
	SOX	225907.785277	1.951840e+06		1.918064e+05	
	CO	829881.093571	1.099191e+07		1.194956e+06	
	NMVOC	273912.655126	2.923060e+06		4.003833e+05	

NH3	67224.140441	8.505438e+05		8.987684e+04	
region stressor	ROU	RUS	SVK	SV	1 /
C02	1.173831e+05	1.311461e+06	40459.233377	24251.72834	1
CH4	1.344168e+06	1.532052e+07	411099.098085	182504.00455	1
N20	5.163863e+04	4.422776e+05	13658.674182	7011.74146	3
NOX	3.380263e+05	4.444685e+06	125333.624730	73379.18259	7
SOX	4.979996e+05	1.398364e+06	103186.610826	48180.22836	5
CO	2.055640e+06	2.165403e+07	455232.910264	580264.68107	1
NMVOC	6.065405e+05	4.179851e+06	138654.031320	142881.84164	2
NH3	1.911781e+05	7.889417e+05	35515.968170	23476.63333	9
region	SWE	TUR	TWN	USA	RoW
stressor					
C02	9.434506e+04	3.494179e+05	2.246294e+05	6.210161e+06	5.620778e+06
CH4	7.352664e+05	3.652537e+06	1.104729e+06	3.917121e+07	7.560548e+07
N20	3.576881e+04	9.538255e+04	3.551477e+04	1.182906e+06	3.590470e+06
NOX	3.524920e+05	1.797639e+06	8.632669e+05	1.845556e+07	3.504645e+07
SOX	2.078760e+05	1.548830e+06	1.075249e+06	1.523013e+07	2.860410e+07
CO	2.048666e+06	4.860666e+06	4.927789e+06	1.005814e+08	3.566157e+08
NMVOC	5.666544e+05	1.738178e+06	1.095519e+06	2.095710e+07	4.208942e+07
NH3	8.488958e+04	5.979386e+05	1.032068e+05	3.090159e+06	8.572543e+06

[8 rows x 41 columns]

In [12]: wiod.AIR.unit

Out[12]:	unit	unit
	stressor	
	C02	Gg
	CH4	t
	N20	t
	NOX	undef
	SOX	undef
	CO	t
	NMVOC	t
	NH3	t

Pymrio can be linked with the country converter coco to ease the aggregation of MRIO and results into different classifications. Using the country converter, WIOD can be aggregated into EU and non-EU countries with singling out Germany by:

```
Out[13]: <pymrio.core.mriosystem.IOSystem at 0x7fdeec1827b8>
```

We rename the EU account to reflect that is does not include Germany:

```
In [14]: wiod.rename_regions({'EU':'Rest of EU'})
```

Out[14]: <pymrio.core.mriosystem.IOSystem at 0x7fdeec1827b8>

The regional footprint account are now:

In [15]: wiod.AIR.D_cba_reg

Out[15]:	region	Other	Rest of EU	DEU	GBR
	stressor				
	C02	2.436179e+07	3.472823e+06	1.054136e+06	7.397044e+05
	CH4	2.540661e+08	2.711250e+07	6.668537e+06	5.235498e+06
	N20	9.705186e+06	1.128531e+06	2.914646e+05	2.118832e+05
	NOX	1.043111e+08	1.093267e+07	2.701648e+06	2.164933e+06
	SOX	1.037493e+08	8.344435e+06	1.951840e+06	1.421854e+06
	CO	7.661455e+08	5.466639e+07	1.099191e+07	1.068169e+07
	NMVOC	1.280392e+08	1.577316e+07	2.923060e+06	2.986943e+06
	NH3	2.672782e+07	3.493227e+06	8.505438e+05	5.900984e+05

To visualize for example the CH4 accounts:

To calculate the source (in terms of regions and sectors) of a certain stressor or impact driven by consumption, one needs to diagonalize this stressor/impact. This can be done with Pymrio by:

```
In [17]: diag_CH4 = wiod.AIR.diag_stressor('CH4')
and be reassigned to the aggregated WIOD system:
```

```
In [18]: wiod.CH4_source = diag_CH4
```

In the next step the automatic calculation routine of Pymrio is called again to compute the missing accounts in this new extension: and be reassigned to the aggregated WIOD system:

```
In [19]: wiod.calc_all()
Out[19]: <pymrio.core.mriosystem.IOSystem at 0x7fdeec1827b8>
```

The diagonalized CH4 data now shows the source and destination of the specified stressor (CH4):

In [20]: wiod.CH4_source.D_cba.head()

Out[20]:	region		Other				\
	sector		AtB	C	15t16	17t18	
	_	sector	6 100041-107	0 455024-104	2 650411-107	0.000410-106	
	Other	AtB	6.120041e+07	8.455234e+04	3.658411e+07	2.988418e+06	
		C	1.008359e+06	6.714292e+06	2.047332e+06	6.420307e+05	
		15t16	3.968202e+03	6.218228e+01	8.736127e+04	5.178453e+02	
		17t18	9.369869e+01	2.287802e+01	2.464623e+02	1.185856e+04	
		19	5.587156e+00	1.040420e+00	1.268140e+01	1.252185e+02	
							\
region			10	0.	0.4+	-00	١,
	sector		19	20	0 21t	522 2	23
		sector					_
	Other	AtB	867172.684194	230646.60253			
		C	117665.005135	33160.71462			
		15t16	639.802755	24.29804	8 128.9459	944 1.099366e+0	2
		17t18	200.126039	4.50021	19 68.017013 3.330082e+01		1
		19	1231.987687	0.34456	8 4.2052	279 1.580128e+0	0
						(DD)	
	region		2.4	0.5	• • •	GBR \	
	sector		24	25	• • •	63	
	_	sector			• • •		
	Other	AtB	6.045454e+05	197135.975631		69.903691	
		C	1.564758e+06	231675.430540	14	105.758158	
		15t16	4.216024e+02	83.091425		0.460965	
		17t18	7.862589e+01	59.680321		0.093075	
		19	4.194052e+00	3.043624		0.008632	

```
region
                                                                        \
                                                      70
sector
                         64
                                         J
                                                                 71t74
region sector
                              8805.678036
Other AtB
               3406.973739
                                             6656.233633
                                                          4123.121986
               9357.742729 20287.540899
                                           18680.219527
                                                          8586.783042
       15t16
                   3.215184
                                 8.818689
                                                5.805941
                                                              3.871073
       17t18
                   0.848278
                                 1.738428
                                                1.444981
                                                              0.919367
       19
                   0.117312
                                 0.225215
                                                0.171093
                                                              0.106037
                                                                           \
region
                                                                       0
sector
                           L
                                          Μ
                                                        N
region sector
                               9398.054711
                                             44359.672517
Other
      AtB
               19984.727842
                                                           12305.895420
               49408.298618
                              15853.401016
                                             93562.146555
                                                           23512.720979
       15t16
                   18.671491
                                  8.695184
                                                44.370659
                                                               11.707402
       17t18
                    6.608830
                                  2.031215
                                                12.658218
                                                                3.765588
       19
                    1.104701
                                  0.343349
                                                 1.430827
                                                                0.646012
region
sector
                       Ρ
region sector
Other AtB
               3.055303
               4.041194
       15t16
               0.001748
       17t18
               0.001256
       19
               0.000075
[5 rows x 140 columns]
```

In this square footprint matrix, every column represents the amount of stressor occurring in each region - sector driven by the consumption stated in the column header. Conversly, each row states where the stressor impacts occurring in the row are distributed due (from where they are driven).

```
In [21]: CH4_source_reg = wiod.CH4_source.D_cba.groupby(
             level='region', axis=0).sum().groupby(
            level='region', axis=1).sum()
In [22]: CH4_source_reg
Out[22]: region
                             DEU
                                           GBR.
                                                       Other
                                                                Rest of EU
        region
        DEU
                     1.485343e+06 4.634238e+04 2.892830e+05 3.819713e+05
        GBR
                     5.139252e+04 1.833541e+06 2.112405e+05 1.879226e+05
                     3.696832e+06 2.711860e+06 2.457410e+08 1.317725e+07
        Rest of EU 7.402886e+05 4.186665e+05 1.756700e+06 1.128755e+07
In [23]: import seaborn as sns
         CH4_source_reg.columns.name = 'Receiving region'
```


Storing the MRIO database can be done with

Out[24]: <pymrio.core.mriosystem.IOSystem at 0x7fdeec1827b8>

From where it can be received subsequently by:

```
In [25]: wiod = pymrio.load_all(storage_path)
```

The meta attribute of Pymrio mentioned at the beginning kept track of all modifications of the system. This can be shown with:

In [26]: wiod.meta

Out[26]: Description: WIOD metadata file for pymrio

MRIO Name: WIOD

System: industry-by-industry

```
Version: data13
File: /tmp/wiod/aly/metadata.json
History:
20181023 11:51:34 - FILEIO -
                              Added satellite account from /tmp/wiod/aly/factor_input
                              Added satellite account from /tmp/wiod/aly/SEA
20181023 11:51:34 - FILEIO -
                              Added satellite account from /tmp/wiod/aly/AIR
20181023 11:51:34 - FILEIO -
20181023 11:51:33 - FILEIO -
                              Added satellite account from /tmp/wiod/aly/CO2
20181023 11:51:33 - FILEIO -
                              Added satellite account from /tmp/wiod/aly/EM
                              Added satellite account from /tmp/wiod/aly/EU
20181023 11:51:33 - FILEIO -
20181023 11:51:33 - FILEIO -
                              Added satellite account from /tmp/wiod/aly/lan
20181023 11:51:33 - FILEIO -
                              Added satellite account from /tmp/wiod/aly/mat
20181023 11:51:33 - FILEIO -
                              Added satellite account from /tmp/wiod/aly/wat
20181023 11:51:33 - FILEIO -
                              Added satellite account from /tmp/wiod/aly/CH4_source
 ... (more lines in history)
```

Custom notes can be added to the meta with:

'20181023 11:51:21 - FILEIO -

'20181023 11:51:19 - FILEIO -

'20181023 11:51:13 - FILEIO -

'20181023 11:50:53 - FILEIO -

'20181023 11:50:52 - FILEIO - '20181023 11:50:52 - FILEIO -

```
In [27]: wiod.meta.note("Custom note")
```

The history of the meta data can be filtered for specific entries like:

```
In [28]: wiod.meta.file_io_history
Out[28]: ['20181023 11:51:34 - FILEIO - Added satellite account from /tmp/wiod/aly/factor_inp
          '20181023 11:51:34 - FILEIO -
                                         Added satellite account from /tmp/wiod/aly/SEA',
          '20181023 11:51:34 - FILEIO -
                                         Added satellite account from /tmp/wiod/aly/AIR',
          '20181023 11:51:33 - FILEIO -
                                         Added satellite account from /tmp/wiod/aly/CO2',
          '20181023 11:51:33 - FILEIO -
                                         Added satellite account from /tmp/wiod/aly/EM',
          '20181023 11:51:33 - FILEIO -
                                         Added satellite account from /tmp/wiod/aly/EU',
          '20181023 11:51:33 - FILEIO -
                                         Added satellite account from /tmp/wiod/aly/lan',
                                         Added satellite account from /tmp/wiod/aly/mat',
          '20181023 11:51:33 - FILEIO -
                                         Added satellite account from /tmp/wiod/aly/wat',
          '20181023 11:51:33 - FILEIO -
          '20181023 11:51:33 - FILEIO -
                                         Added satellite account from /tmp/wiod/aly/CH4_source
          '20181023 11:51:33 - FILEIO -
                                         Loaded IO system from /tmp/wiod/aly',
          '20181023 11:51:32 - FILEIO -
                                         Saved WIOD to /tmp/wiod/aly',
                                         Extension wat parsed from /tmp/wiod/raw',
          '20181023 11:51:28 - FILEIO -
          '20181023 11:51:27 - FILEIO -
                                         Extension mat parsed from /tmp/wiod/raw',
                                         Extension lan parsed from /tmp/wiod/raw',
          '20181023 11:51:26 - FILEIO -
                                         Extension EU parsed from /tmp/wiod/raw',
          '20181023 11:51:26 - FILEIO -
          '20181023 11:51:24 - FILEIO -
                                         Extension EM parsed from /tmp/wiod/raw',
                                         Extension CO2 parsed from /tmp/wiod/raw',
          '20181023 11:51:22 - FILEIO -
```

Extension AIR parsed from /tmp/wiod/raw',
SEA file extension parsed from /tmp/wiod/raw',

'20181023 11:50:52 - FILEIO - Downloaded http://www.wiod.org/protected3/data13/AIR/ '20181023 11:50:51 - FILEIO - Downloaded http://www.wiod.org/protected3/data13/CO2/

WIOD data parsed from /tmp/wiod/raw/wiot08_row_sep12.

Downloaded http://www.wiod.org/protected3/data13/wates

Downloaded http://www.wiod.org/protected3/data13/mate

Downloaded http://www.wiod.org/protected3/data13/land

```
'20181023 11:50:50 - FILEIO - Downloaded http://www.wiod.org/protected3/data13/EM/E/
'20181023 11:50:49 - FILEIO - Downloaded http://www.wiod.org/protected3/data13/EU/E/
'20181023 11:50:48 - FILEIO - Downloaded http://www.wiod.org/protected3/data13/SEA/Wiley 11:50:48 - FILEIO - Downloaded http://www.wiod.org/protected3/data13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13/updata13
```

This tutorial gave a short overview about the basic functionality of Pymrio. For more information about the capabilities of pymrio check the online documentation.