Particle spectrograph

Wave operator and propagator

Multiplicities	1	3	3	е	10																								
	$\partial_{\beta}\partial_{\alpha}t^{\alpha\beta}=0$	$\partial_{\lambda}\partial_{\beta}\partial^{\alpha} t^{\beta\chi} := \dot{Q}\partial^{\chi}\partial_{\beta} t^{\alpha\beta} + 2 \ \partial_{\delta}\partial^{\sigma}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}t^{\beta\chi}:=\dot{q}\partial^{\chi}\partial_{\beta}t^{\beta\alpha}$	$\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} ==$			$\begin{split} \mathcal{S} = & = \iiint (f^{\alpha\beta} \ \tau_{\alpha\beta} + \mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} - \frac{1}{2} \alpha_0 (\mathcal{A}_{\alpha\chi\beta} \ \mathcal{A}^{\alpha\beta\chi} + \mathcal{A}^{\alpha\beta}_{\alpha} \ \mathcal{A}^{\chi}_{\beta\chi} + \\ & 2 f^{\alpha\beta} \ \partial_{\beta}\mathcal{A}^{\chi}_{\alpha\chi} - 2 \partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha} - 2 f^{\alpha\beta} \ \partial_{\chi}\mathcal{A}^{\chi}_{\alpha\beta} + 2 f^{\alpha}_{\alpha} \partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta}) + \\ & 2 \alpha_1 (4 \partial_{\beta}\mathcal{A}_{\alpha\chi\delta} - 2 \partial_{\beta}\mathcal{A}_{\alpha\delta\chi} + 2 \partial_{\beta}\mathcal{A}_{\chi\delta\alpha} - \partial_{\chi}\mathcal{A}_{\alpha\beta\delta} + \partial_{\delta}\mathcal{A}_{\alpha\beta\chi} - 2 \partial_{\delta}\mathcal{A}_{\alpha\chi\beta}) \\ & \partial^{\delta}\mathcal{A}^{\alpha\beta\chi})[t, x, y, z] d z d y d x d t \end{split}$										#1 2 ⁺ σ†			$\frac{1}{t} \tau \alpha \beta$ $\frac{2 i \sqrt{2}}{\alpha_0 k}$	#1 2 σαβχ								
y form Covariant form				$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \delta$ $+ 2 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta}$		$^{#2}_{1^-\tau\alpha}$	0	0	0	$-\frac{4i k}{\alpha_0 + 2 \alpha_0 k^2}$	$\frac{2i\sqrt{2}k}{\alpha_0(1+2k^2)^2}$	0	$-\frac{4k^2}{\alpha_0(1+2k^2)^2}$		#1 2 ⁺	#1 2 ⁺ f αβ	#1 2 <i>Άαβ</i> ,	<u>«</u>				$2^{+1} \tau + \frac{2^{1}}{2} \sigma + \alpha$	- 0	$ \begin{array}{c c} \sqrt{2} \\ v_0 k \\ \end{array} $	$\frac{2}{\alpha_0 k^2}$	$-\frac{4}{\alpha_0}$			
				$\begin{array}{c} 2 \ \partial_{\delta} \partial_{\chi} \partial \\ +2 \ \partial_{\delta} \partial \end{array}$		$^{\#1}_{1}$ $ au_{lpha}$				0	0		0	^{#1} ₂ + <i>Α</i> (†		$\frac{i \ \alpha_0 k}{2 \sqrt{2}}$	0					#1 0- 0	0 0		2	$a_0+12a_1k^2$			
				$\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 2$ + $\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$		$^{\#2}_{1}\sigma_{lpha}$	0 0	0 0	0 0	$-\frac{2\sqrt{2}}{\alpha_0+2\alpha_0k^2}$	$-\frac{2}{\alpha_0 (1+2k^2)^2}$	0 0	$\frac{2i\sqrt{2}k}{\alpha_0(1+2k^2)^2}$	$ \begin{array}{c} $	$-\frac{i \alpha_0 k}{2 \sqrt{2}}$	0	$-\frac{\alpha_0}{4}$					1		0)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
				$+ \partial_{\chi} \partial^{\beta} t^{\chi \alpha} + d^{\beta} t^{\alpha} + d^{\beta} t^{\alpha}$		1^* σ_{lpha}	0	0	0	0	$\frac{2\sqrt{2}}{\alpha_0 + 2\alpha_0 k^2}$	0	$\frac{4i k}{\alpha_0 + 2 \alpha_0 k^2}$		$\overset{\sharp 1}{1^+}\mathcal{F}\!\!/\!\!\!/lphaeta$		$1^{+1}f \alpha \beta$	$\overset{\sharp 1}{1}\mathcal{F}_{lpha}$	$\overset{\#2}{1}\mathcal{F}\!\!/_{lpha}$	$\overset{\#1}{1}f_{\alpha}$	$\frac{^{#2}}{1}f_{\alpha}$	σ 0 ⁺ τ		10 k α0 k 2		0			
				$\partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} + \partial_{\chi} i$ $\partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} + i$	Total expected gauge generators:	$1^{+1}_{+}\tau\alpha\beta$	$\frac{2i\sqrt{2}k}{\alpha_0 + \alpha_0 k^2}$	$-\frac{2i k}{\alpha_0 (1+k^2)^2}$	$-\frac{2k^2}{\alpha_0(1+k^2)^2}$		•			$1^+\mathcal{R}$ $+^{\alpha\beta}$ $1^+\mathcal{R}$ $+^{\alpha\beta}$	$\frac{\alpha_0}{4}$ $\frac{\alpha_0}{2\sqrt{2}}$	$\frac{\alpha_0}{2\sqrt{2}}$	$\frac{i \ a_0 k}{2 \sqrt{2}}$	0	0	0	0	#1 0+ #1	0 ⁺ σ†	+1 +1 0+ 0+ 0+	0+ r+ #1	+ b			
		$i k_1^{\#2} \sigma == 0 \hat{c}$		$k_1^{\#_2^2} \alpha^\beta == 0$	$k_1^{\#_2}\sigma^{\alpha\beta}==0$	$k_1^{\#2}\sigma^{\beta}=0$	$k_1^{\#_2}\sigma^{\alpha\beta}==0$	ange ge	$^{#2}_{1}$ $\sigma_{\alpha\beta}$	$\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2}$	$\frac{2}{\alpha_0 \left(1 + k^2\right)^2}$	$\frac{2i\;k}{\alpha_0(1+k^2)^2}$	0 0	0 0	0 0	0 0	$ \begin{array}{c} \sharp^1 \\ 1^+ f \\ \dagger^1 \\ - \end{array} $	$-\frac{i \alpha_0 k}{2 \sqrt{2}}$	0 0	0 ($\frac{\alpha_0}{4}$	$-\frac{\alpha_0}{2\sqrt{2}}$	0	0 $-\frac{1}{2} i \ a_0 k$	#1 0 ⁺ A †	_	$0^+ f$ $-\frac{i \ a_0 k}{\sqrt{2}}$	0+ f 0	0° A 0
								k_1^{*2}	ected ga	$1^+ \sigma_{\alpha\beta}$		$\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2} - \frac{1}{\alpha_0}$			0	0	0	$1 \mathcal{A}^{\dagger}$ $^{\#^2}$ $1 \mathcal{A}^{\dagger}$	0	0 0		$-\frac{\alpha_0}{2\sqrt{2}}$	2 √2 0	0	0	#1 0 ⁺ f †		0	0
Spin-parity	0==	α +2 /	α == 0	$a^{\beta} + i$	elexpe	1#	αβ	θη	βι	+α	+α	+α	r † α	$ \stackrel{\#_1}{1} f \uparrow^{\alpha} $	0	0	0 0		0	0	0	^{#2} 0 ⁺ f†	0	0	0	0			
Spir	#5 0+ t	$\frac{#2}{1}$ α	$\frac{\#1}{1}\alpha$	1 + 1	Tota		1^{+1}	$^{#2}_{1}^{\circ}$	1+1+	$\frac{*1}{1}\sigma$	$^{#2}_{1^-\sigma}$	$\frac{#1}{1}r^{\alpha}$	$\frac{#2}{1}$	$1^{2}f^{\alpha}$	0	0 0)	$\frac{i \cdot q_0 k}{2}$	0	0	0	^{#1} <i>A</i> †	0	0 0		$\frac{\alpha_0}{2} + 6 \alpha_1 k^2$			

Massive and massless spectra

Pole residue: $-\frac{1}{6\alpha_1} > 0$ Square mass: $-\frac{\alpha_0}{12\alpha_1} > 0$ Spin: 0 Parity: Odd	Massive particle	? $J^{P} = 0$? $k^{\mu} = (\mathcal{E}, 0, 0, p)$?	Polarisations: 2	Poleresidue: $\frac{1}{\alpha} > 0$	Massless particle	$? \qquad \qquad k^{\mu} = (p, 0, 0, p)$ $?$
---	------------------	--	------------------	-------------------------------------	-------------------	--

Unitarity conditions