Глава 1 Выбор субоптимальной структуры модели

В данной главе рассматривается задача выбора структуры модели глубокого обучения. Предлагается ввести вероятностные предположения о распределениях параметров и структуры модели. Проводится градиентная оптимизация параметров и гиперпараметров модели на основе байесовского вариационного вывода. В качестве оптимизируемой функции для гиперпараметров модели предлагается обобщенная функция обоснованности. Показано, что данная функция позволяет проводить оптимизацию, соответствующую нескольким критериям выбора структуры модели: методу максимального правдоподобия, последовательному увеличению и снижению сложности модели, полному перебору структуры модели, а также получению максимума вариационной оценки обоснованности модели. Решается двухуровневая задача оптимизации: на первом уровне проводится оптимизация нижней оценки обоснованности модели по вариационным параметрам модели. На втором уровне проводится оптимизация гиперпараметров модели.

1.1. Вероятностная модель

Определим априорные распределения параметров и структуры модели следующим образом. Пусть параметры модели распределены нормально с нулевым средним:

 $\mathbf{w}_k^{i,j} \sim \mathcal{N}(\mathbf{0}, \gamma_k^{i,j}(\mathbf{A}_k^{i,j})^{-1}),$

где $(\mathbf{A}_k^{i,j})^{-1}$ — диагональная матрица. Апирорное распределение $p(\mathbf{w}|\mathbf{\Gamma},\mathbf{h})$ параметров $\mathbf{w}_k^{i,j}$ зависит не только от гиперпараметров $\mathbf{A}_k^{i,j}$, но и от структурного параметра $\gamma_k^{i,j}$.

В качестве априорного распределения для структуры Γ предлагается использовать произведение распределений Gumbel-Softmax [?]:

$$p(\mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) = \prod_{(j,k) \in E} p(\boldsymbol{\gamma}^{j,k}|\mathbf{s}, \lambda_{\mathrm{temp}}),$$

где для каждого структурного параметра γ с количеством базовых функций K вероятность $p(\gamma|\mathbf{s}, \lambda_{\text{temp}})$ определна следующим образом:

$$p(\boldsymbol{\gamma}|\mathbf{s}, \lambda_{\text{temp}}) = (K-1)! \lambda_{\text{temp}}^{K-1} \prod_{p=1}^{K} s_p \gamma_p^{-\lambda_{\text{temp}}-1} \left(\sum_{p=1}^{K} s_p \gamma_p^{-\lambda_{\text{temp}}} \right)^{-K},$$

где $\mathbf{s} \in (0,\infty)^K$ — гиперпараметр, отвечающий за смещенность плотности распределения относительно точек симплекса на K вершинах, λ_{temp} — метапараметр температуры, отвечающий за концентрацию плотности вблизи вершин симплекса или в центре симплекса.

Перечислим свойства, которыми обладает распределение Gumbel-Softmax:

1. Реализацию $\hat{\gamma}_p$, т.е. *p*-й компоненты случайной величины γ можно породить следующим образом:

$$\hat{\gamma}_p = \frac{\exp(\log s_p + \hat{g}_p)/\lambda_{\text{temp}}}{\sum_{p'=1}^K \exp(\log s_{p'} + \hat{g}_{p'})/\lambda_{\text{temp}}},$$

- где $\hat{\mathbf{g}} \sim -\log(-\log \mathcal{U}(0,1)^K)$. 2. Свойство округления: $p(\gamma_{p_1} > \gamma_{p_2}, p_1 \neq p_2) = \frac{s_p}{\sum_{p'} s_{p'}}$.
- 3. При устремлении температуры к нулю реализация случайной величины концентрируется на вершинах симплекса:

$$p(\lim_{\lambda_{\text{temp}}\to 0} \gamma_p = 1) = \frac{s_p}{\sum_{p'} s_{p'}}.$$

4. При устремлении температуры к бесконечности плотность распределения концентрируется в центре симплекса:

$$\lim_{\lambda_{\text{temp}}\to\infty} p(\boldsymbol{\gamma}|\mathbf{h}) = \begin{cases} \infty, \boldsymbol{\gamma}_p = \frac{1}{K}, p \in \{1, \dots, K\}, \\ 0, \text{ иначе.} \end{cases}$$
 (1.1)

Доказательства первых трех утверждений приведены в [?]. Докажем утверждение 4.

Доказательство. Формула плотности записывается следующим образом с точностью до множителя:

$$\frac{\lambda_{\text{temp}}^{K-1}}{\left(\sum_{p=1}^{K} s_p \gamma_p^{-\frac{-K-1}{K} \lambda_{\text{temp}}} \sum_{p'=1}^{K} [p \neq p'] s_p \gamma_p^{-\frac{1}{K} \lambda_{\text{temp}}}\right)^K}$$

Заметим, что числитель $\lambda_{\mathrm{temp}}^{K-1}$ имеет меньшую скорость сходимости, чем знаменатель. Знаменатель является суммой слагаемых вида:

$$\left(\frac{\prod_{p'\neq p} \gamma_{p'}^{\frac{1}{K}}}{\gamma_p^{\frac{K-1}{K}}}\right)^{\lambda_{\text{temp}}}.$$
(1.2)

Пусть хотя бы для одного p: $\gamma_p \neq \frac{1}{K}$. Пусть p' соответствует индексу максимальной компоненты вектора γ . Для p=p' предел выражения (1.2) при λ_{temp} стремится к бесконечности. Для $p \neq p'$ предел выражения (1.2) при λ_{temp} стремится к нулю. Возводя сумму пределов в степень -K получаем предел плотности, равный нулю.

Пусть $\gamma = \frac{1}{K}$. Тогда выражение с точностью до множителя упрощается до λ^{K-1} . Предел данного выражения стремится к бесконечности. Таким образом, предел плотности Gumbel-Softmax равен выражению (1.1), что и требовалось доказать.

Рис. 1.1. Пример распределения Gumbel-Softmax при различных значениях параметров: а) $\lambda_{temp} \to 0$, б) $\lambda_{temp} = 1$, $\mathbf{s} = [1, 1, 1]$, в) $\lambda_{temp} = 5$, $\mathbf{s} = [1, 1, 1]$, г) $\lambda_{temp} = 5$, $\mathbf{s} = [10, 0.1, 0.1]$.

 (Γ)

Первое свойство Gumbel-Softmax распределения позволяет использовать репараметризацию при вычислении градиента в вариационном выводе (англ. reparametrization trick). Данный подход позволяет значительно повысить точность вычисления градиента от функций, зависящих от случайных величин [?]. Пример распределения Gumbel-Softmax при различных параметрах представлен на Рис. 1.1. В качестве альтернативы для априорного распределения на структуре выступает распределение Дирихле и равномерное распределение. Выбор в качестве распределения на структуре произведения Gumbel-Softmax распределения обоснован выбором этого же распределения в качестве вариационного. ТОВО: подробнее.

Заметим, что предлагаемое априорное распределение неоднозначно: одно и то же распределение можно получить с различными значениями гиперпарамета $\mathbf{A}_k^{i,j}$ и структурного параметра $\gamma_k^{i,j}$. В качестве регуляризатора для матрицы $(\mathbf{A}_k^{i,j})^{-1}$ предлагается использовать обратное гамма-распределение:

$$(\mathbf{A}_k^{i,j})^{-1} \sim \text{inv-gamma}(\lambda_1, \lambda_2),$$

где $\lambda_1, \lambda_2 \in \mathbf{\lambda}$ — метапараметры оптимизации. Использование обратного гаммараспределения в качестве распределения гиперпараметров можно найти в [?, ?]. В данной работе обратное распределение выступает как регуляризатор гиперпараметров. Калибруя метапарамы λ_1, λ_2 можно получить более сильную или более слабую регуляризацию [?]. Пример распределений inv-gamma(λ_1, λ_2) для разных значений метапараметров λ_1, λ_2 изображен на Puc. 1.2.

Таким образом, предлагаемая вероятностная модель содержит следующие компоненты:

- 1. Параметры ${\bf w}$ модели, распределенные нормально.
- 2. Структура модели Γ распределены по распределению Gumbel-Softmax.
- 3. Гиперпараметры: $\mathbf{h} = [\operatorname{diag}(\mathbf{A}), \mathbf{s}]$, где \mathbf{A} конкатенация матриц $\mathbf{A}^{j,k}, (j,k) \in E$, \mathbf{s} конкатенация параметров Gumbel-Softmax распределений $\mathbf{s}^{j,k}, (j,k) \in E$, где E множество ребер, соответствующих графу рассматриваемого параметрического семейства.
- 4. Метапараметры: $\lambda = [\lambda_1, \lambda_2]$.

Рис. 1.2. Графики обратных гамма распределений для различных значений метапараметров.

График вероятностной модели в формате плоских нотаций представлен на Рис. 1.3.

1.2. Вариационная оценка для обоснованности вероятностной модели

В качестве критерия выбора структуры модели предлагается использовать апостериорную вероятность гиперпараметров:

$$p(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\lambda}) \propto p(\mathbf{y}|\mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})p(\mathbf{h}|\boldsymbol{\lambda}) \to \max_{\mathbf{h} \in \mathbb{H}},$$
 (1.3)

Рис. 1.3. График предлагаемой вероятностной модели в формате плоских нотаций. Переменные обозначены белыми и серыми кругами, константы обозначены обведенными черными кругами. Наблюдаемые переменные обозначены серыми кругами.

где структура модели и параметры модели выбираются на основе полученных значений гиперпараметров:

$$\begin{split} \mathbf{\Gamma}^* &= \argmax_{\mathbf{\Gamma} \in \mathbb{\Gamma}} p(\mathbf{\Gamma}|\mathbf{y}, \mathbf{X}, \mathbf{h}^*), \\ \mathbf{w}^* &= \argmax_{\mathbf{w} \in \mathbb{W}} p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \mathbf{\Gamma}^*, \mathbf{h}^*), \end{split}$$

где \mathbf{h}^* — решение задачи оптимизации (1.3).

Для вычисления обоснованности

$$p(\mathbf{y}|\mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \iint_{\boldsymbol{\Gamma}, \mathbf{w}} p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}, \boldsymbol{\lambda}) p(\mathbf{w}|\boldsymbol{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}) p(\boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) d\boldsymbol{\Gamma} d\mathbf{w}$$

из (1.3) предлагается использовать вариационную оценку обоснованности. **Теорема 1.** Пусть $q = q_{\mathbf{w}}q_{\Gamma}$ — вариационное распределение с параметрами $\boldsymbol{\theta}$, аппроксимирующее апостериорное распределение структуры и параметров:

$$q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}) \approx p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}),$$
$$q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\theta}_{\mathbf{w}}, \mathbf{\Gamma}) \approx p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}),$$
$$q_{\mathbf{\Gamma}}(\mathbf{\Gamma}|\boldsymbol{\theta}_{\mathbf{\Gamma}}) \approx p(\mathbf{\Gamma}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}).$$

Тогда справедлива следующая оценка:

$$\log p(\mathbf{y}|\mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) \ge \tag{1.4}$$

 $\mathsf{E}_{\mathbf{\Gamma} \sim q_{\mathbf{\Gamma}}} \mathsf{E}_{\mathbf{w} \sim q_{\mathbf{w}}} \mathrm{log} p(\mathbf{y}|\mathbf{w}, \mathbf{\Gamma}, \mathbf{X}) - D_{\mathrm{KL}} \left(q_{\mathbf{\Gamma}}(\mathbf{\Gamma}|\boldsymbol{\theta}_{\mathbf{\Gamma}}) | p(\mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) \right) - D_{\mathrm{KL}} \left(q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\theta}_{\mathbf{w}}, \mathbf{\Gamma}) | p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}) \right)$ где $D_{\mathrm{KL}} \left(q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\theta}_{\mathbf{w}}, \mathbf{\Gamma}) | p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}) \right)$ вычисляется по формуле условной дивергенции [?]:

$$D_{\mathrm{KL}}\left(q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\theta}_{\mathbf{w}},\boldsymbol{\Gamma})|p(\mathbf{w}|\boldsymbol{\Gamma},\mathbf{h})\right) = \mathsf{E}_{\boldsymbol{\Gamma} \sim q_{\boldsymbol{\Gamma}}} \mathsf{E}_{\mathbf{w} \sim q_{\mathbf{w}}} \frac{\log q(\mathbf{w}|\boldsymbol{\Gamma})}{\log p(\mathbf{w}|\mathbf{h},\boldsymbol{\Gamma})}.$$

Доказательство. Используя неравенство Йенсена получим

$$\log p(\mathbf{y}|\mathbf{X},\mathbf{h},\boldsymbol{\lambda}) \geq$$

$$\mathsf{E}_q \mathsf{log} p(\mathbf{y}|\mathbf{w}, \boldsymbol{\Gamma}, \mathbf{X}) - D_{\mathsf{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})|p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h})).$$

Декомпозируем распределение q по свойству условной дивергенции:

$$D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})|p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h})) = D_{\mathrm{KL}}(q_{\mathbf{\Gamma}}(\mathbf{\Gamma}|\boldsymbol{\theta}_{\mathbf{\Gamma}})|p(\mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})) + D_{\mathrm{KL}}(q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\theta}_{\mathbf{w}}, \mathbf{\Gamma})|p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h})).$$

Рис. 1.4. График предлагаемой вероятностной вариационной модели в формате плоских нотаций. Переменные обозначены белыми и серыми кругами, константы обозначены обведенными черными кругами. Вариационное распределение обозначено черным кругом. Наблюдаемые переменные обозначены серыми кругами.

В качестве вариационного распределения $q_{\mathbf{w}}$ предлагается использовать нормальное распределение, не зависящее от структуры модели Γ :

$$q_{\mathbf{w}} = \mathcal{N}(\boldsymbol{\mu}, \mathbf{A}_q),$$

где \mathbf{A}_q — диагональная матрица с диагональю $\boldsymbol{\alpha}_q$.

В качестве вариационного распределения q_{Γ} предлагается использовать произведение распределений Gumbel-Softmax. Конкатенацию параметров концентрации распределений обозначим как \mathbf{s}_q . Температуру вариационного распределения на структуре Γ обозначим как θ_{temp} .

Вариационными параметрами распределения q являются параметры распределений $q_{\mathbf{w}}, q_{\Gamma}$:

$$oldsymbol{ heta} = [oldsymbol{\mu}, oldsymbol{lpha}_q, \mathbf{s}_q, heta_{ ext{temp}}].$$

График вероятностной вариационной модели в формате плоских нотаций представлен на Рис. 1.4.

Для вычисления приближенного значения вариационной оценки обоснованности (1.4) предлагается использовать приближение методом Монте-Каарло с порождением R реализаций величин $\mathbf{w}, \mathbf{\Gamma}$:

$$\sum_{r=1}^{R} \log p(\mathbf{y}|\boldsymbol{\mu} + \boldsymbol{\alpha}_{q} \circ \hat{\epsilon}_{r}, \hat{\boldsymbol{\Gamma}}_{r}, \mathbf{X}) - \sum_{r=1}^{R} \left(\log q_{\boldsymbol{\Gamma}}(\hat{\boldsymbol{\Gamma}}_{r}|\boldsymbol{\theta}_{\boldsymbol{\Gamma}})) - p(\hat{\boldsymbol{\Gamma}}|\mathbf{h}, \boldsymbol{\lambda}) \right) - \sum_{r=1}^{K} \sum_{k=1}^{K_{i,j}} \hat{D}_{KL} \left(q_{\mathbf{w}}(\mathbf{w}_{k}^{i,j}|\boldsymbol{\theta}_{\mathbf{w}}, \boldsymbol{\Gamma}) | p(\mathbf{w}_{k}^{i,j}|\boldsymbol{\Gamma}, \mathbf{h}) \right),$$

где

$$\hat{D}_{\mathrm{KL}}\left(q_{\mathbf{w}}(\mathbf{w}_{k}^{i,j}|\boldsymbol{\theta}_{\mathbf{w}},\boldsymbol{\Gamma})|p(\mathbf{w}_{k}^{i,j}|\boldsymbol{\Gamma},\mathbf{h})\right) =$$

$$= \sum_{r=1}^{R} \frac{1}{2} \left(\left(\hat{\gamma}_r^{i,j}[k] \right)^{-1} \operatorname{tr}(\mathbf{A}_q \mathbf{A}^{-1}) + \boldsymbol{\mu}^\mathsf{T} \hat{\gamma}_r^{i,j}[k]^{-1} \mathbf{A}^{-1} \boldsymbol{\mu} - |\mathbf{W}| + \log \frac{|\hat{\gamma}^{i,j}[r]_k \mathbf{A}|}{|\mathbf{A}_q|} \right),$$

где R — количество реализаций случайных величин, по котором вычисляется значения вариационной оценки обоснованности, $\hat{\epsilon}_r \sim \mathcal{N}(0,1), \hat{\Gamma}_r = [\boldsymbol{\gamma}_r^{j,k}, (j,k) \in E]$ — реализация случайной величины, соответствующей структуре Γ .

Для анализа сложности полученной модели введем понятие *параметрической сложности*.

Определение 1. Параметрической сложностью $C_p(\theta)$ модели с вариационными параметрами θ на множестве $U_{\mathbf{h}} \subset \mathbb{H}$ назовем минимальную дивергенцию между вариационным и априорным распределением:

$$C_p(\boldsymbol{\theta}|U_{\mathbf{h}}) = \inf_{\mathbf{h} \in U_{\mathbf{h}}} D_{\mathrm{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})|p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h})).$$

Параметрическая сложность модели соответствует ожидаемой длине описания параметров модели при условии заданного параметрического априорного распределения [?].

Одним из критериев удаления неинформативных параметров в вероятностных моделях является отношение вариационной плотности параметров в моде распределения к вариационной плотности параметра в нуле [?]:

$$\frac{q_{\mathbf{w}}(\mu|\boldsymbol{\theta}_{\mathbf{w}})}{q(0|\boldsymbol{\theta}_{\mathbf{w}})} = \exp\left(-\frac{2\alpha_q^2}{\mu^2}\right),$$

где $q_{\mathbf{w}}(w|\boldsymbol{\theta}_{\mathbf{w}}) \sim \mathcal{N}(\mu, \alpha_q)$.

Обобщим понятие относительной вариационной плотности на случай произвольных распределений.

Определение 2. Относительной вариационной плотностью параметра $w \in \mathbf{w}$ при условии структуры Γ и гиперпараметров \mathbf{h} назовем отношение моды вариационного распределения параметра к моде априорного распределению параметра:

$$\rho(w|\Gamma, \boldsymbol{\theta}_{\mathbf{w}}, \mathbf{h}, \boldsymbol{\lambda}) = \frac{q(\text{mode } q(w|\Gamma, \boldsymbol{\theta}_{\mathbf{w}}) | \Gamma, \boldsymbol{\theta}_{\mathbf{w}})}{q(\text{mode } p(w|\Gamma, \mathbf{h}, \boldsymbol{\lambda}) | \Gamma, \boldsymbol{\theta}_{\mathbf{w}})},$$
$$\rho(\mathbf{w}|\Gamma, \boldsymbol{\theta}_{\mathbf{w}}, \mathbf{h}, \boldsymbol{\lambda}) = \prod_{w \in \mathbf{w}} \rho(w|\Gamma, \boldsymbol{\theta}_{\mathbf{w}}, \mathbf{h}, \boldsymbol{\lambda}).$$

Сформулируем и докажеми теорему о связи относительной плотности и параметрической сложности модели:

Теорема 2. Пусть мода априорного распределения $p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h})$) не зависит от гиперпараметров \mathbf{h} . Пусть вариационное распределение $q_{\mathbf{w}}$ и априорное распределение $p(w|\mathbf{\Gamma}, \mathbf{h})$) являются унимодальными с ограниченным вторым моментом и свойством:

$$\text{mode } q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\theta}_{\mathbf{w}}, \boldsymbol{\Gamma}) = \mathsf{E}_{q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\theta}_{\mathbf{w}}, \boldsymbol{\Gamma})}\mathbf{w}, \quad \text{mode } p(\mathbf{w}|\boldsymbol{\Gamma}, \mathbf{h}) = \mathsf{E}_{p(\mathbf{w}|\boldsymbol{\Gamma}))}\mathbf{w}.$$

Пусть также $\theta_1, \theta_2, \ldots$ — бесконечная последовательность векторов вариационных параметров, такая что $\lim_{i\to\infty} C_p(\theta_i|\mathbb{H}) = 0$. Тогда вариационная плотность данной последовательности стремится к единице почти наверно по вероятностной мере q_{Γ} :

$$\prod_{w \in \mathbf{w}} \frac{q\left(\mathsf{E}_{q_{\mathbf{w}}}(\mathbf{w}|\boldsymbol{\theta}_{\mathbf{w}}, \boldsymbol{\Gamma}))|\boldsymbol{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}\right)}{q\left(\mathsf{E}_{p(\mathbf{w}|\boldsymbol{\Gamma}))}\mathbf{w}|\boldsymbol{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}\right)} \xrightarrow{\text{II.H. IIO} \ q_{\boldsymbol{\Gamma}}} 1.$$

где $\mathbf{h}_i = \arg\min_{\mathbf{h} \in \mathbb{H}} \mathrm{D}_{\mathrm{KL}}\left(q(\mathbf{w}, \mathbf{\Gamma} | \boldsymbol{\theta}) | p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h})\right)$

Доказательство. Предел параметрической сложности перепишем как

$$\lim_{i \to \infty} \inf_{h} D_{\mathrm{KL}} \left(q_{\Gamma}(\Gamma | \boldsymbol{\theta}_{\Gamma}) | p(\Gamma | \mathbf{h}, \boldsymbol{\lambda}) \right) + D_{\mathrm{KL}} \left(q_{\mathbf{w}}(\mathbf{w} | \boldsymbol{\theta}_{\mathbf{w}}, \boldsymbol{\Gamma}) | p(\mathbf{w} | \boldsymbol{\Gamma}, \mathbf{h}) \right)$$

Т.к. параметрическая сложность состоит из двух неотрицательных слагаемых, то в пределе оба слагаемых достигают нуля. Рассмотрим второе слагаемое:

$$D_{\mathrm{KL}}\left(q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\theta}_{\mathbf{w}},\boldsymbol{\Gamma})|p(\mathbf{w}|\boldsymbol{\Gamma},\mathbf{h})\right) = \int_{\boldsymbol{\Gamma}} \mathsf{E}_{q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\theta}_{\mathbf{w}},\boldsymbol{\Gamma})} \log \left(\frac{q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\theta}_{\mathbf{w}},\boldsymbol{\Gamma})}{p(\mathbf{w}|\boldsymbol{\Gamma},\mathbf{h})}\right)$$

Т.к. предел равен нулю, то для множества событий меры 1 по q_{Γ} выполняется:

$$\hat{D}_{\mathrm{KL}}\left(q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\theta}_{\mathbf{w}}, \boldsymbol{\Gamma})|p(\mathbf{w}|\boldsymbol{\Gamma}, \mathbf{h})\right) = 0,$$

где $\hat{D}_{\mathrm{KL}}\left(q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\theta}_{\mathbf{w}},\boldsymbol{\Gamma})|p(\mathbf{w}|\boldsymbol{\Gamma},\mathbf{h})\right)$ — дивергенция при фиксированном значении переменной $\boldsymbol{\Gamma}$. Для каждого значения $\boldsymbol{\Gamma}$ за исключением счетного множества значений по неравенству Пинскера следует:

$$||F_q - F_p|| \to 0,$$

где F_q, F_p — функции распределения для $q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\theta}_{\mathbf{w}}, \boldsymbol{\Gamma}), p(\mathbf{w}|\boldsymbol{\Gamma}, \mathbf{h})$. Из теоремы Шеффе следует, что $q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\theta}_{\mathbf{w}}, \boldsymbol{\Gamma}) - p(\mathbf{w}|\boldsymbol{\Gamma}, \mathbf{h})$ сходится слабо к нулю. Т.к. второй момент параметров конечен, то последовательность равномерно интегрируема:

$$\lim_{i \to \infty} (\text{mode} q_{\mathbf{w}}(\mathbf{w} | \boldsymbol{\theta}_{\mathbf{w}}, \boldsymbol{\Gamma}) - \text{mode} p(\mathbf{w} | \boldsymbol{\Gamma}, \mathbf{h})) =$$

$$= \lim_{i \to \infty} \mathsf{E}_{q_{\mathbf{w}}(\mathbf{w} | \boldsymbol{\theta}_{\mathbf{w}}, \boldsymbol{\Gamma})} \mathbf{w} - \mathsf{E}_{p(\mathbf{w} | \boldsymbol{\Gamma}, \mathbf{h}))} \mathbf{w} = 0.$$

В пределе мода распределения $q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\theta}_{\mathbf{w}}, \boldsymbol{\Gamma})$ совпадает с модой априорного распределения, отсюда относительная плотность стремится к единице почти всюду.

Теорема утверждает, что при устремлении параметрической сложности модели к нулю, параметры модели станоятся неинформативными и подлежащими удалению.

1.3. Обобщающая задача

Рассмотрим основные критерии выбора вероятностных моделей.

1. Критерий максимального правдоподобия:

$$\log p(\mathbf{y}|\mathbf{X}, \mathbf{w}) \to \max_{\mathbf{w} \in \mathbb{W}}.$$

Метод заключается в максимизации правдоподобия обучающей выборки и подвержен переобучению. Для использования данного метода в качестве задачи выбора модели предлагается следующее обобщение:

$$L = \mathsf{E}_q \log \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}). \tag{1.5}$$

Данное обобщение эквивалентно методу правдоподобия при выборе в качестве q эмпирического распределения парамтетров и структуры. Метод не предполагает оптимизации гиперпараметров. Для формального соответствия данной задачи задаче выбора положим L=Q.

2. Метод максимальной апостериорной вероятности.

$$\log p(\mathbf{y}, \mathbf{w} | \mathbf{X}, \mathbf{h}) \to \max_{\mathbf{w} \in \mathbb{W}}.$$

Аналогично предыдущему методу сформулируем вариационное обобщение данной задачи:

$$L = Q = \mathsf{E}_q \log \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}) + \log p(\mathbf{w}|\boldsymbol{\lambda}) + \log p(\boldsymbol{\gamma}|\mathbf{X}, \mathbf{w}). \tag{1.6}$$

В рамках данной задачи оптимизации параметры априорных распределений \mathbf{A}, \mathbf{s} выступают в качестве метапараметров и не подлежат оптимизации.

3. Перебор структуры:

$$L = Q = \mathsf{E}_q \log p(\mathbf{y}, \mathbf{w} | \mathbf{X}) [q_{\Gamma} = p']$$
 (1.7)

где p' — некоторое распределение на структуре, выступающее в качестве метапараметра.

4. Критерий Акаике:

$$Q = \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}) - |\mathbf{W}|.$$

Заметим, что в условия выбора модели на параметрическом множестве моделей данный критерий не имеет смысла, т.к. количество параметров для каждой модели одинаково. Предлагается следующая переформулировка:

$$L = Q = \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}) - |\{w : C_p(\theta|U_{\mathbf{h}}) < \lambda\}|, \tag{1.8}$$

где λ — метапараметр алгоритма, $U_{\mathbf{h}} \subset \mathbb{H}$ — область определения задачи по гиперпараметрам.

5. Информационный критерий Шварца:

$$\log p(\mathbf{y}|\mathbf{X}, \mathbf{w}) - 0.5\log(m)|\{w : C_p(\theta|U_{\mathbf{h}}) < \lambda\}|.$$

Переформулируем данный критерий аналогично критерию AIC:

$$L = Q = BIC_{\lambda} = \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}) - \log(m)|\{w : C_p(w) < \lambda\}|.$$
 (1.9)

6. Метод вариационной оценки обоснованности.

$$L = Q = \mathsf{E}_q \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}) - D_{\mathrm{KL}}(q|p). \tag{1.10}$$

7. Hold-out кросс-валидация.

$$L = \mathsf{E}_q \log p(\mathbf{y}, \mathbf{w} | \mathbf{X}, \mathbf{h}), \tag{1.11}$$

$$Q = \mathsf{E}_q \mathsf{log} p(\mathbf{y}|\mathbf{X}, \mathbf{w}).$$

Каждый из рассмотренных критерии удовлетворяет хотя бы одному из перечисленных свойтсв:

- 1. Модель, оптимизируемая согласно критерию, доставляет максимум правдоподобия выборки;
- 2. Модель, оптимизируемая согласно критерию, доставляет максимум оценки обоснованности;
- 3. Для моделей, доставляющих сопоставимые значения правдоподобия выборки, выбирается модель с меньшим количеством информативных параметров.
- 4. Критерий позволяет производить перебор структур для отбора наилучших модели.

Формализуем рассмотренные критерии. Оптимизационную задачу, которая удовлетворяет всем перечисленным свойствам, будет называть обобщающей.

Определение 3. Двухуровневую задачу оптимизации будем называть *обобщающей* на области $U \subset \mathbb{O} \times \mathbb{H} \times \mathbb{A}$, если она удовлетворяет следующим свойствам:

- 1. Для каждого значения гиперпараметров \mathbf{h} оптимальное решение нижней задачи оптимизации $\boldsymbol{\theta}^*$ определено однозначно.
- 2. Свойство максимизации правдоподобия выборки: существует $\lambda \in U_{\lambda}$ и $K_1 \in \mathbb{R}_+$, такие что для любых векторов гиперпараметров, удовлетворяющих неравенству $\mathbf{h}_1, \mathbf{h}_2 \in U_h, Q(\mathbf{h}_1) Q(\mathbf{h}_2) > K_1$, выполняется неравенство $\mathsf{E}_q \log p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}_1, \lambda_{\mathrm{temp}}, \mathbf{f}) > \log \mathsf{E}_q \ p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}_2, \lambda_{\mathrm{temp}}, \mathbf{f})$.
- 3. Свойство минимизации параметрической сложности: существует $\lambda \in U_{\lambda}$ и $K_2 \in \mathbb{R}_+$, такие что для любых векторов гиперпараметров $\mathbf{h}_1, \mathbf{h}_2 \in U_h$, удовлетворяющих неравенству $Q(\mathbf{h}_1) Q(\mathbf{h}_2) > K_2$ и при этом имеющие равенство ожидаемых правдоподобий выборок $\mathsf{E}_q \log p(\mathbf{y}|\boldsymbol{\theta}_1, \lambda_{\mathrm{temp}}, \mathbf{f}) = \log \mathsf{E}_q \ p(\mathbf{y}|\boldsymbol{\theta}_2, \lambda_{\mathrm{temp}}, \mathbf{f})$, параметрическая сложность первой модели меньше, чем второй: $C_p(\boldsymbol{\theta}^*(\mathbf{h}_1)|U_\mathbf{h}) < C_p(\boldsymbol{\theta}^*(\mathbf{h}_2|U_\mathbf{h})$.

- 4. Свойства приближения оценки обоснованности: существует значение гиперпараметров λ , такое что оптимизация задачи эквивалента оптимизации вариационной оценки обоснованности модели $\arg\max_{\mathbf{h}\in U_h}Q(\arg\max_{\boldsymbol{\theta}}\in U_{\boldsymbol{\theta}}L)\approx \arg\max_{\mathbf{h}\in U_h}\mathsf{E}_q p(\mathbf{y}|\mathbf{w},\mathbf{X})-D_{KL}(q|p).$
- 5. Свйоство перебора структур: существует константа K_3 , такая что для любых двух векторов $\mathbf{h}_1, \mathbf{h}_2$ и соответствующих векторов $\boldsymbol{\theta}_1^*, \boldsymbol{\theta}_2^*$: $D_{\mathrm{KL}}(q_{\Gamma_2}, q_{\Gamma_1}) > K_3, D_{\mathrm{KL}}(q_{\Gamma_1}, q_{\Gamma_2}) > K_3$ существуют значения гиперпараметров $\boldsymbol{\lambda}_1, \boldsymbol{\lambda}_2$, такие что $Q(\mathbf{h}_1, \lambda_1) > Q(\mathbf{h}_2, \lambda_1), Q(\mathbf{h}_1, \lambda_1) < Q(\mathbf{h}_2, \lambda_2)$.
- 6. Свойство нерперывности: $\mathbf{h}^*, \boldsymbol{\theta}^*$ непрерывны по метапараметрам.

Первое свойство говорит о том, что решение первого и второго уровня должны быть согласованы и определены однозначно. Свойства 2-4 определяют возможные критерии оптимизации, которые должны приближаться обобщающей задачей. Свойство 5 говорит о возможности перехода между различными структурами модели. Отметим, что данное условие крайне важно в условиях оптимизации моделей глубокого обучения, которые отличаются многоэкстремальностью. Последнее свойство говорит о том, что обобщающая задача должна позволять производить переход между различными критериями выбора параметров и структуры модели непрерывно.

Теорема 3. Рассмотренные задачи (1.5),(1.6),(1.7),(1.8),(1.9),(1.10),(1.11) не являются обобщающими.

Теорема 4. Пусть задано непустое множество непрерывных по параметрам распределний на структуре \mathbf{P} . Пусть функции потерь и валидации L,Q являются непрерывно-дифференцируемыми на некоторой области $U \subset \mathbb{O} \times \mathbb{H} \times \mathbb{A}$, где параметры распределений $\mathbf{P} \in \mathbb{A}$. Тогда следующая задача является обобщающей на U.

$$\mathbf{h}^* = \underset{\mathbf{h}}{\operatorname{arg max}} Q = \tag{Q^*}$$

$$= \lambda_{\text{likelihood}}^{\text{Q}} \mathsf{E}_{q^*} \log p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \mathbf{\Gamma}, \mathbf{h}, \lambda_{\text{temp}}, \mathbf{f}) -$$

$$- \lambda_{\text{Q}}^{\text{prior}} D_{KL} (q^*(\mathbf{w}, \mathbf{\Gamma}) || p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}, \lambda_{\text{temp}}, \mathbf{f})) -$$

$$- \sum_{p' \in \mathbf{P}, \lambda \in \boldsymbol{\lambda}_{\text{Q}}^{\text{struct}}} \lambda D_{KL} (\mathbf{\Gamma} | p') + \log p(\mathbf{h} | \mathbf{f}),$$

где

$$q^* = \underset{q}{\operatorname{arg max}} L = \mathsf{E}_q \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}, \mathbf{h}, \lambda_{\text{temp}}, \mathbf{f})$$

$$-\lambda_{\text{L}}^{\text{prior}} D_{KL}(q^*(\mathbf{w}, \mathbf{\Gamma})||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \lambda_{\text{temp}}, \mathbf{f})).$$

$$(L^*)$$

Доказательство. ТООО

Метапараметрами данной задачи являются коэффициенты $\lambda_{\rm Q}^{\rm prior}$, $\lambda_{\rm L}^{\rm prior}$, отвечающие за регуляризацию верхней и нижней задачи оптимизации, коэффициент $\lambda_{\rm likelihood}^{\rm Q}$ за максимизацию правдоподобия, а также параметры распрделений ${\bf P}$ и вектор коэффициентов перед ними ${\bf \lambda}_{\rm Q}^{\rm struct}$.

В предельном случае, когда множество температура λ_{temp} близка к нулю, а множество **P** состоит из распределений, близких к дискретным, и соответствующих всем возможным структурам, калибровка $\lambda_{\text{Q}}^{\text{struct}}$ порождает последовательность задач оптимизаций, схожую с перебором структур.

TODO

Обобщающая задача: переформулировка через градиент

Обобщающая задача: адекватность задачи

Обобщающая задача: свойства коэффициентов

Решение задачи

Эксперимент: пример 1 Эксперимент: пример 2