

Übung 2

Aufgabe 1: Wie man aus einer Fliege einen Elefanten macht!

Wir beweisen folgende Aussage durch Induktion über *n*:

Ist von n Tieren eines ein Elefant, dann sind alle diese Tiere Elefanten.

Induktionsanfang n = 1: Hat man nur ein Tier und ist dieses ein Elefant, so sind alle diese Tiere Elefanten. Induktionsschritt $n \to n+1$: Gegeben seien also n+1 Tiere T_1, \ldots, T_{n+1} , von denen das erste ein Elefant sei. Wenden wir die Induktionsvoraussetzung auf die ersten n dieser Tiere an, so erhalten wir, dass T_1, \ldots, T_n Elefanten sind. Nun nehmen wir T_{n+1} , dies sei die Fliege, hinzu und lassen eines der anderen Tiere weg. Nach Induktionsvoraussetzung können wir schließen, dass auch diese Tiere alle Elefanten sind. Also sind alle T_1, \ldots, T_{n+1} , auch die Fliege, Elefanten. Oder etwa nicht? Wo liegt der Fehler?

Aufgabe 2:

- (a) Seien A und B Mengen. B^A bezeichne die Menge aller Funktionen von A nach B. Geben Sie eine "natürliche Bijektion" zwischen $\{0,1\}^A$, also der Menge aller Funktionen von A nach $\{0,1\}$, und 2^A , also der Potenzmenge von A, an.
- (b) Erläutern Sie folgende Fußnote aus dem Buch Elements of the Theory of Computation:

True fundamentalists would see the ordered pair (a,b) not as a new kind of object, but as identical to $\{a,\{a,b\}\}$.

Aufgabe 3:

- (a) Geben Sie eine Relation an, die reflexiv und symmetrisch ist, aber nicht transitiv.
- (b) Geben Sie eine Relation an, die reflexiv und transitiv ist, aber nicht symmetrisch.
- (c) Geben Sie eine Relation an, die symmetrisch und transitiv ist, aber nicht reflexiv.
- (d) Bestimmen Sie die reflexive transitive Hülle R^* der Relation $R = \{(a,b), (a,c), (a,d), (d,c), (d,e)\}$. Zeichnen Sie die Darstellung von R als gerichteter Graph. Ebenso für R^* .

Aufgabe 4: Sei *A* eine endliche Menge. Zeigen Sie $|2^A| = 2^{|A|}$.

Aufgabe 5: Beweisen oder widerlegen Sie: $\forall L_1, L_2 : (L_1L_2 \cup L_1)^* = L_1(L_2L_1 \cup L_1)^*$

Aufgabe 6:

- (a) Beweisen Sie, dass die Menge der Wörter über einem Alphabet abzählbar unendlich ist.
- (b) Beweisen Sie, dass die Menge der Sprachen über einem Alphabet überabzählbar unendlich ist.

Aufgabe 7: Sei $\Sigma = \{a, b\}$ und sei L induktiv wie folgt definiert:

- (1) ε gehört zu L.
- (2) Falls $x \in L$ ist, dann gehört auch axb zu L.
- (3) Falls $x \in L$ ist, dann gehört auch bxa zu L.
- (4) Falls $x \in L$ und $y \in L$, dann gehört auch xy zu L.

Zeigen Sie, dass alle Wörter in L gleichviele a and b enthalten.

Aufgabe 8:

Beweisen Sie: Jeder ungerichtete Graph mit mehr als einem Knoten besitzt zwei Knoten vom gleichen Grad.