The simplest epicyclic curve is the *cardioid* ("heart-shape"), which results from a circle rolling on a fixed circle of the same size.

Exercise 1 (2.5.4). Show that if both circles have radius 1, and we follow the point on the rolling circle initially at (1,0), then the cardioid it traces out has parametric equations

$$x = 2\cos\theta - \cos 2\theta,$$

$$y = 2\sin\theta - \sin 2\theta.$$

The cardioid is an algebraic curve. Its cartesian equation may be hard to dis-cover, but it is easy to verify, especially if one has a computer algebra system.

Exercise 2 (2.5.5). Check that the point (x, y) on the cardioid satisfies

$$(x^2 + y^2 - 1)^2 = 4((x - 1)^2 + y^2).$$

Exercise 3 (3.2.3). Show that the kth pentagonal number is $(3k^2 - k)/2$.

Exercise 4 (3.2.4). *Show that each square is the sum of two consecutive triangular numbers.*

Euclid's theorem about perfect numbers depends on the prime divisor property, which will be proved in the next section. Assuming this for the moment, it follows that if $2^n - 1$ is a prime p, then the proper divisors of $2^{n-1}p$ (those unequal to $2^{n-1}p$ itself) are

$$1, 2, 2^2, \dots, 2^{n-1}$$
 and $p, 2p, 2^2p, \dots, 2^{n-2}p$.

Exercise 5 (3.2.5). Given that the divisors of $2^{n-1}p$ are those just listed, show that $2^{n-1}p$ is perfect when $p = 2^n - 1$ is prime.