Оглавление

1	Интерполяция функции 1 переменной		
	1.1	Линейная интерполяция	2
	1.2	Полиномиальная интерполяция	4
	1.3	Кубический сплайн	٦
	1.4	В-сплайн	7

1 Интерполяция функции 1 переменной

Рассмотрим набор попарно различных точек $\{x_i\}_{i=0}^n, x_i \in [a,b]$. Пусть $\{y_i\}_{i=0}^n$ - значения некоторой функции $f \colon [a,b] \to \mathbb{R}$: в этих точках: $y_i = f(x_i)$. Предполагается, что сама функция f не известна, а известны только её значения в точках x_i . Задача интерполяции функции 1 переменной - построить функцию $\varphi \colon [a,b] \to \mathbb{R}$, такую что выполняются следующие условия: $\varphi(x_i) = y_i$. Т.е. построенная функция φ должна совпадать с неизвестной функцией f в заданном наборе узлов. Далее будут рассмотрены 3 способа построения функции φ : линейный, полиномиальный и кубическая интерполяция. Также будут рассмотрены В-сплайны, которые не интерполируют функцию, а приближают её.

1.1 Линейная интерполяция

Линейная интерполяция - наиболее простой способ интерполяция, при котором φ является кусочно-линейной функцией. При таком способе интерполяции соседние узлы соединены прямой линией. Интерполирующая функция φ имеет следующий вид:

$$\varphi(x) = y_i + (y_{i+1} - y_i) \frac{x - x_i}{x_{i+1} - x_i}, x \in [x_i, x_{i+1}]$$
(1)

Преимущества:

- простота реализации;
- высокая скорость построения φ ;
- высокая скорость вычисления $\varphi(x)$;

Недостатки:

• φ не является непрерывно-дифферецируемой;

Временная сложность метода:

Построение φ : $O(n \log n)$ - требуется отсортировать все узлы.

Вычисление $\varphi(x)$: $O(\log n)$ - поиск соответствующего узла.

Пример:

```
; define points
(def points [[0 0] [1 3] [2 0] [5 2] [6 1] [8 2] [11 1]])
; build interpolation function
(def lin (interpolate points :linear))
; view plot on [0, 11]
(view (function-plot lin 0 11))
```


1.2 Полиномиальная интерполяция

В данном способе интерполяции φ является многочленом степени n. Для построение φ используется формула Ньютона с разделёнными разностями. Вычисления производятся по следующим формулам:

$$\varphi(x) = \sum_{i=0}^{n} f[x_0, \dots, x_i] \omega_i(x)$$

$$\omega_i(x) = (x - x_0)(x - x_1) \dots (x - x_i)$$

$$f[x_0, \dots, x_i] = \frac{f[x_1, \dots, x_i] - f[x_0, \dots, x_{i-1}]}{x_i - x_0}, \forall i \ge 1$$

$$f[x_j] = f(x_j), \forall j$$
(2)

Преимущества:

• φ имеет производную любого порядка;

Недостатки:

- при больших n интерполяционный многочлен будет иметь большую погрешность интерполирования;
- низкая скорость построенире φ ;
- низкая скорость вычисления $\varphi(x)$;

Временная сложность метода:

Построение φ : $O(n^2)$ Вычисление $\varphi(x)$: O(n)

Пример:

```
; define points
(def points [[0 0] [1 3] [2 0] [5 2] [6 1] [8 2] [11 1]])
; build interpolation function
(def polynom (interpolate points :polynomial))
```

; view plot on [0, 11]
(view (function-plot polynom 0 11))

1.3 Кубический сплайн

Функция φ является кусочной и на каждом отрезке $[x_{i-1}, x_i], i = \overline{1, n}$ задаётся отдельным кубическим многочленом:

$$\varphi(x) = s_i(x) = \alpha_i + \beta_i(x - x_i) + \frac{\delta_i}{2}(x - x_i)^2 + \frac{\delta_i}{6}(x - x_i)^3, x \in [x_{i-1}, x_i]$$
 (3)

Также накладываются требования наличия непрерывной первой и второй производной φ , из чего получаем дополнительные условия:

$$s'_{i-1}(x_{i-1}) = s'_{i}(x_{i-1}), i = \overline{2, n}$$

$$s''_{i-1}(x_{i-1}) = s''_{i}(x_{i-1}), i = \overline{2, n}$$
(4)

Используя эти условия и условия интерполяции получаем следующие формулы для вычисления коэффициентов $\{\alpha_i\}, \{\beta_i\}, \{\delta_i\}$:

$$h_{i} = x_{i} - x_{i-1}, i = \overline{1, n}$$

$$\alpha_{i} = y_{i}, i = \overline{0, n}$$

$$\beta_{i} = \frac{y_{i} - y_{i-1}}{h_{i}} + \frac{2\gamma_{i} + \gamma_{i-1}}{6}, i = \overline{1, n}$$

$$\delta_{i} = \frac{\gamma_{i} - \gamma_{i-1}}{h_{i}}, i = \overline{2, n}$$

$$(5)$$

Коэффициенты $\{\delta_i\}$ можно получить, решив следующую 3-диагональную систему линейных уравненией:

$$h_i \gamma_{i-1} + 2(h_i + h_{i+1})\gamma_i + h_{i+1} \gamma_{i+1} = 6\left(\frac{y_{i+1} - y_i}{h_{i-1}} - \frac{y_i - y_{i-1}}{h_i}\right), i = \overline{i, n-1}$$
 (6)

Данная система имеет n-2 уравнений и n неизвестных. Задавая различные граничные условия можно получить недостающие уравнения и решить систему, тем самым получая коэффициенты для кубического сплайна. Были реализованы 2 вида граничных условий:

- 1. Естественные граничные условия. Полагают $\varphi''(x_0) = \varphi''(x_n) = 0$.
- 2. Периодические (замкнутые) граничные условия. Полагают $\varphi'(x_0) = \varphi'(x_n), \ \varphi''(x_0) = \varphi''(x_n).$

Временная сложность метода:

Построение φ : O(n)

Вычисление $\varphi(x)$: $O(\log n)$ - поиск соответствующего промежутка.

Пример:

; define points
(def points [[0 0] [1 3] [2 0] [5 2] [6 1] [8 2] [11 1]])

; build interpolation function $% \left(\frac{1}{2}\right) =\left(\frac{1}{2}\right) \left(\frac{1}{$

(def cubic (interpolate points :cubic-spline :boundaries :closed))

; view plot on [0, 11]
(view (function-plot cubic 0 11))

1.4 В-сплайн

В-сплайны не интерполируют узлы, как ранее расмотренные методы, а приближают их. При построении В-сплайновой кривой узлы $\{x_i\}$ обычно не задаются, они вычисляются в процессе построения кривой. Задаются только значения $\{y_i\}$.

Временная сложность метода:

Построение φ : O(n)

Вычисление $\varphi(t)$: $O(d^2)$, где d - степень сплайна

```
; define points
(def points [[0 0] [1 3] [2 0] [5 2] [6 1] [8 2] [11 1]])

; build approximation function
(def b-spline (approximate points :degree 3))

; view plot on [0, 1]
(view (parametric-plot cubic 0 1))
```

