Entwicklung einer neue Messungmethode für Schneefeuchtichkeit

Bachelorarbeit Bachelor für Maschinentechnik | Innovation

> Betreuung: Albert Loichinger

Unterstützung Team IPEK: (Christian Locher)

FS 2024 Abgabedatum: 2024.

Autor: Peter Kuhn

Abstract

problem vorstudien ergebniss von Funktionsmuster

Beschreibung der Abkürzungen

Schneefeuchtigkeit Liquid Water Conten, LWC IPEK Institut SLF BA

Inhaltsverzeichnis

1	Ein	leitung 1					
	1.1	Lawinen in der Schweiz					
	1.2	Entstehung der Gleitlawine					
	1.3	Endziel des Arbeit					
	1.4	User Story					
	1.5	Anforderungen					
	1.6	Planung der Arbeit					
2	Liq	uid Water Content					
	2.1	Physicalische Prinzipien					
	2.2	Kommerzielle Produkte					
	2.3	Publizierte Methoden					
3	Vorstudie 2						
	3.1	3M 5559 Water Indikator Tape					
	3.2	Voltcraft					
	3.3	Laser Refraktion, Reflezion					
	3.4	Vibration					
	3.5	Diffusion von Flüssigkeit					
4	Fun	ktionsmuster					
	4.1	Funktionsweise					
	4.2	Bildverarbeitung					
	4.3	Extrahieren von Informationen aus Daten					
		4.3.1 Anforderungsanalyse					
		4.3.2 Konzeptueller DB Entwurf					
		4.3.3 Logischer DB Entwurf					
		4.3.4 Ansichten für den Analysten					
		4.3.5 Physischer Entwurf					

	4.3.6 Python-Interaktion mit der Datenbank	11 11 21
	4.5 Wiederstand gegen Umwelteinflüsse	
	0	
	0	
	4.9 Verbesserungsmöglichkeiten des Funktionsmusters	21
5	5 Ausblick	
	5.1 Presönliche Erfahrunng	22
	5.2 Fazit	22
	5.3 Ausblick	22
6	6 Literaturverzeichnis	
7	7 Erklärung zur Urheberschaft 2	

1 Einleitung

bachelorarbeit produktentwicklung grundlagenforschung seit 40 jahren forschungsgebiet, da für simulation wichtig. fail ist ein gutes ergebniss

1.1 Lawinen in der Schweiz

jedes jahr 10 Tote. 8 schneebrettlawine. 2 Gleitlawinen.

mit Klimawandel änders sich Gleitlawinien. nicht preventiv mit einer Detonation auslösbar. nicht zeitlich vorhersagbar.

1.2 Entstehung der Gleitlawine

feuchtigkeit sammelt sich zwischen den Eiskristallen an.

feuchtichkeit kommt durch schmelzenden schnee, primär Radiation und sekundär radiation.

Regen auf schnee

feuchtigkeit aus dem Boden. wasserführende schichten.

1.3 Endziel des Arbeit

verringerung des Schadens durch Gleitlawinen

1.4 User Story

Bob sitzt an seimem Computer und shiet eine Warung aufleuchten. Er ruft sofor bei der Ratischen Bahn an und kann den Zug so stoppen vewor er von der Lawine erfasst wird.

1.5 Anforderungen

Die Methode soll einn anzeige haben, die Feststellen kann wann eine Gleitlawine bevorsteht.

Die Methode soll unabhängig von der Dichte des Schness funktionieren.

die methode soll den messbereich des LWC von 1 % bis 7 % abdecken.

die methode soll für einen Hang in der Schweiz einsetzbar sein.

1.6 Planung der Arbeit

Die Arbeit wird in drei Teile aufgegliedert.

in einer Vorstudie werden unterschidilche physikalische Prinzipien zur messung des LWC theoritisch und praktisch mit eineander verglichen.

bau den Funktionsmusters. hier wird ein vielversprechendes physikalisches prinzip ausgewählt und ein Funktionsmuster gebaut.

Validierung und Dokumentation der Ergebnisse. Doku schreiben.

2 Liquid Water Content

- 2.1 Physicalische Prinzipien
- 2.2 Kommerzielle Produkte
- 2.3 Publizierte Methoden
- 3 Vorstudie

3.1 3M 5559 Water Indikator Tape

herkunft: Aus dem Elektronik bereich. zum beispiel in handys, wenn das tape rot geworden ist, ist wasser eingedrungen und der Hersteller kann eine garatieleistung ablehnen.

Funktionsweise: das papier basierte klebeband wird nass, die rote Farbe auf der Unterseite des Klebebands blutet durch das weisse obere Papier, die Roten Teile zeiget dann permanet wasser an.

Auswahl von 5559: der Hersteller 3M hat mehrere Produkte zu Water Indikator. 5559 zeichnet sich durch die dünnere Dicke und somit durch die schneller Anzeigegeschwindigkeit aus.

5559i ist auf einem transparenten substrat, was fraktisch für die optische auswertung wäre. Die Produkte sind in europa nur teilweise erhältlich. 3M verkauft nur Rollen mit 160 m. Zum testen wurde eine kleine rolle von einem Elektronikkomponenten Vertreiber gekauft.

Bei der Recherche zu LWC wurde keine verwendung von Water indicator tapes bemerkt. somit neuartig.

kostengünstig

zeitspanne pro messung weniger als 60 sek.

Dichte des Schnees muss seperat gemessen werden. 5559 zeigt nur das flüssige wasser in einer schicht an.

Testaufbau: 5559 auf etwas rund 200 g schweres kleben. neue Oberfläche von schnee mit Messer abschneiden/freilegen. 5559 auf schnee legen und 10, 30 60, 120 sek warten. foto von klebeband machen. mit python rote vs. weise fläche berechnen. oder nur optisch beurteilen.

3.2 Voltcraft

die gaphit sonden, zwischen denen die spanung aufgebaut und der wiederstand gemessen wird sind im messkopf zu gut geschützt. daher kann keine Messung gemacht werden wenn die Probe in schnee gedrückt wird.

Mögliche lösung: Verlängerung der Graphit proben mit stahlplatten

Verbindung des Graphits mit der Platte: kleben oder konstant drückne oder verschrauben.

in gaphit spahnend zu arbeiten ist anspruchsvoll und dreckig. konstant drücknen ist fehleranfällig Kleben: herstellen von leitfähigem Klebstoff:

test graphit
pluver: 66 % gewichtsprozent Graphit
pulver, 33 % Ergo 7410 Epoxy Klebstoff

test Aluminium
pulver: 66 % gewichtsprozent Aluminium
pulver, 33 % Ergo 7410 Epoxy Klebstoff

Ergebniss: nach 24 h, sodass der ergo 7410 aushärten konnte. Alle Klebestellen sind angeschliffen worden als oberflächenvorbereitung

Wiederstand zwischen Punkt A B 2.6

wiederstand ziwschen Punkt A C 0.2

Wiederstand zwischen Punkt A D keine verbindung

Mechanische stabilität von Test Aluminiumpluver nicht so gut

Ist es möglich auf die stahlplatte zu verzichten und die Verlängerung mit der Graphit Epoxy mischung zu machen?

zwisched die beiden grafit stäbe ist eine PAAM Platte geklebt. alle offenen stellen des Epoxy/grafits ist mit reinem epoxy überzogen um kriechspannungen durch wasser zu verhindern.

Arbeitsschutzt, erklären

Schnee ist wasser das vom Boden verdampft, sich dann in der Atmosspäre an einem Nukleus kondesiert oder resubliemiert und dann auf den Boden zurück fällt.

Im Alltag weiss man, dass man mit den Harrfön nicht in die Dusche gehen darf, da Wasser elektrisch leitend ist. Diese Schlussfolgerung ist nicht sehr prezise. denn reines Wasser ist nicht leitend, sonder die Ione (Salze) die im 'normalen' Wasser gelöst sind. Auf sehr geringem Niveu ist auch reines Wasser leitend, da sich spontan $1*10~^7MHydroniumionen(H_3O^+)bildenunddenpHWert7bilden.$

Die Hypotese ist, dass sowohl die Verunreinigungen durch die Nuklei und die Hydroniuminonen genügend leitfägkeit bilden um einen Messwert im $\mu S(Siemens = 1/)Bereichzumessen$.

Im Feldversuch konntekeine Leitfähigkeit gemessen werden.

EIne erweiterung dieser Messung ist, einen stoff zum schnee dazu zu geben, der gut leitfähig ist. dann wird der Versuchsaufbaumehr in die richtung ?? wo die

Ausbreitung eines Stoffes im Schnee beobachtet wird, hier wäre diese beobachtung dann über die Leitfähigkeit und nicht wie in ?? optisch.

3.3 Laser Refraktion, Reflezion

Titel: Laser Refraktion und Reflezion

Fuktionsweise Mit einem Laser wird der Schnee sowohl durchleuchtet für die Refraxion als auch angeleuchtet für die Reflexion. Flüssiges Wasser bildet wegen seiner Oberflächenspannung konkave linsen auf den Prismen des Eis kristalle. Die grösse und damit die Brennweite ändert sich, je nach dem wieviel Volumen Wasser auf den Eiskristallen ist. Die Effekte der Linsen sollten in der Refraxion sichtbar werden, i

In der Reflexion andert sich mit änderndem LWC auch die Oberfläche an der das licht gespiegelt wird.

Der TRL für Refraxion und Reflexion ist bei 2.

Beispiele in anderen Sektoren Refraxion wird in der Kristalografie angewant.

und Reflexion wird bei einem auflicht mirkoskop immer angeendet.

Die reflexion von wasser an einer Glasscheibe wird genutzt um bei Autos niederschlag auf der windschutztscheibe zu messen.

in beiden Flällen ist hier das TRL 9.

Literatur zu Reflexion Reflexion von IR In 20XX hat Herr XX die Reflexion von IR genutzt um den LWC von Schnee zu bestimmen. Die Ergebnisse wurden im Journal XX veröffentilcht.

benutzte Mittel für den Versuchsaufbau Als Laserquelle wurde ein grüner Bosch Quingo Kreuzlaser genutzt.

Um sowohl die Reflexion als auch die Refraxion gleichzeitig zu sehen, wurde die Schneeprobe auf einen Mikroskopier Objekt träger plaziert.

die Ergebnisse des Lasers wurden jeweils auf weissem Druckpapier dargestellt. Die Refraxion wird auf dem Papier an der Unterseite der Holzplatte dargestellt.

mit dem Fairphone 3 wurde eine Video aufnahme gemacht, wie sich die Ergebinnse des Lasers verändern.

mit einem Kosmetik Spiegel wurde sowohl die reflexion unten als auch die Refraxion oben gleichzeitig in einem Bild dargestellt.

Um alle Teile in fixen relationen zu halten wurde Stativmaterial genutzt.

In Bild ?? ist die Anordnung der Verschieden Teile auf den Stativmaterial zu sehen.

Funktionsweise des Versuchsaufbaus Der schnee wird in trockenem Zustand bei -10 gard aus dem Gefrieschrank auf den gekühlten Objektträger gelegt. dann wird beobachet wie sich die Ergebnisse ändern wenn der schnee an der Raumtemperatur Luft schmiltzt. Dieser Schmelzvorgang hat rund 5 min gedauert.

der laser scheint durch den Objektievtrager und den schnee durch. dann wird das Lich auf den Papier erneut in die Kamera reflektiert.

die reflexion geschiet zum einen direkt am objektträger, als auch danach im schnee. dieser Aufbau ist suboptimal, denn die konstante reflexion des Objetträgers muss aus dem Laser Ergebniss rausgerechnet werden.

Um Störlicht zu minimieren wurde zuerst eine Einhausung geplant, der durchgeführte verusch hat dann aber einfach in einenm abgedunkelten Raum statt gefunden.

Messgrössen die Anhäufungen von Licht, und die Intesität wird begutachtet. Versuchsergebnisse

Im bild ?? ist die Reflexion und refraxion des Objektträges sichtbar. diese konstanten werte müssen von allen Ergebissen subrtahiert werden

Aussagekraft der Ergebnisse über den LWC Die Ergebnisse werden direkt von Wasser beeinflusst. Um den Gewichts LWC zu erhalten, ist aber die geometier der Eiskristalle von extermer Entscheidung. daher ist das Ergebniss nicht direkt mit den LWC überzuführen. Mit der 3D geometire der kristalle wäre ist die Aussagekraft gut.

Reflexion zum Versuchsaufbau da zwei techniken gleichzeitig gemessen wurden, war der Versuchsaufbau nicht optimal für beide Messgrössen.

Mit den ergebnissen der refraxion bin ich sehr zu frienedn.

Verbesserungen des Versuchsaufbaus um besser Reflexionsergebnisse zu bekommen keinen Objektrager nutzte, sondern direkt auf schnee.

Für eine statische Messung einer schneeprobe muss die Luft um den schnee herum gekühlt sein. ein Ansatz dafür wird im Vorversuch ?? umgestetzt.

Mit dem Laser wird Energie in den Schnee eingebracht. um das schmelzen und damit verfälschen des LWC zu minimiren sollte ein möglichst schwacher Laser eingesetzt werden.

weiterverfolgung der physikarischen methoden Das Ergebniss der Refraxion zeigt, dass diese Moethode umgesetzt werden könnte. Um vergleichbare werte zu bekommen ist die kristallgeometrie abre von bedeutung, die messung der geometier übersteigt das ausmass der BA. Um eine Messung durchzuführen muss eine sChneeprobe durchleuchtet werden, um das zu erreichen muss der schnee physikalisch aus der schneedecke extrahiert werden, das ist aufwendig, daher wird die Refraxion nicht weiter verfolgt.

das Ergebniss der reflexion ist schwer zu beurteilen. in ?? ist die reflexion von EM Wellen bereits untersucht worden. daher wird die Reflexion nicht weiter untersucht.

3.4 Vibration

avanode vibriert. wenn kurz vor gleitlawine wird der schnee zur flüssigkeit. der avanode sinkt auf grund der hohen dichte und verändert dabei die position.

vibraNode

Die Form wird von dem AvaNode übernommen. Um eine hohe formfreiheit und eine hohe dichte zu ereichen wird der VibraNode aus Ton gebaut. Der ungebrannte Ton wird durch Epoxy harz und Acryl Farbe vor Wasser geschützt.

der erste test hat nicht funktioniert. Ich stand auf dem schnee, neben dem Virbanode, ich habe rund die vierfache auflagefläche, aber das 60 fache gewicht. das heisst der schnee war ungeeignet und nicht kurz vor einer gleitschneelanwine. zumindest an der Oberfläche.

mit dem virbanode ist es sicher nicht mögliche den LWC fest zu stellen. auch nachdem der schnee mit wasser übergossen worden ist, ist der VurbaNode nicht eingesunken.

ist der LWC die einscheidende grösse für gleitschneelawinen?

3.5 Diffusion von Flüssigkeit

mit handy und stereoskop aufbau.

schnee gekühlt, durch Eisring und eisunterlage.

gekühlt ist fast noch besser als perfekt isoliert.

das obere abdeckflas wurde weggelassen, da optisch nicht klar genug.

polarisation von Lichtquelle, oder des reflektierten Lichts hat keinen Erkennbaren effekt auf die speckels in der Videoaufnahme.

4 Funktionsmuster

4.1 Funktionsweise

4.2 Bildverarbeitung

Funktionsweise der Bildverarbeitung

Abbildung 1: Bildverarbeitnugskonzpet

4.3 Extrahieren von Informationen aus Daten

Um aus den Bilddaten, die während Feldversuchen gesammelt werden, sinnvolle Erkenntnisse zu gewinnen, ist es entscheidend, die Daten effektiv zu strukturieren. Dies erleichtert die effiziente Speicherung und ermöglicht leistungsstarke Datenabfragefunktionen, wie z. B. das patter matching, die für eine umfassende Analyse wichtig sind. Hierfür ist der Einsatz eines Datenbanksystems sinnvol.

Die im Feld gesammelten Daten werden zunächst in der Datenbank gespeichert und zu einem späteren Zeitpunkt analysiert.

Im Folgenden werden die Schritte zur Auslegung der Datenbank dargestellt. Der Code ist in refsect:code

4.3.1 Anforderungsanalyse

Die Anforderungen ergeben sich aus der Funktionsweise des Messaufbaus.

Die Datenbank in dieser Bachelorarbeit wird relativ klein sein, da die Feldversuche zeitintensiv sind. Es wird vermutet, dass maximal 1000 Messungen mit jeweils 3 Taps und je 100 Kreisen durchgeführt werden.

Die Datenbank ist grösser angelegt, als sie für die Vorversuche in der Bachelorarbeit benötigt wird.

Es gibt vier Benutzer, die mit der Datenbank interagieren:

- 1. Die beiden angemeldeten Endbenutzer: Die Kamera, die die Bilder der Taps macht und auswertet, muss die Auswertungen in die Datenbank schreiben.
- 2. Der Versuchsdurchführende gibt zusätzliche Informationen über den Versuch an, die er ebenfalls in die Datenbank schreiben muss.
- 3. Der Experte-Endbenutzer: Der Analyst wird die Daten abfragen und hoffentlich Informationen daraus gewinnen.
- 4. Der Datenbankadministrator wird im Normalbetrieb nicht benötigt, sollte jedoch berücksichtigt werden.

Die Anforderungen an die Datenbank und ihre Benutzer werden entsprechend den Anforderungen des Messaufbaus und den Bedürfnissen der Benutzer festgelegt. 1

4.3.2 Konzeptueller DB Entwurf

Mit der Unified Modeling Language (UML) wird die Struktur der Datenbank dargestellt. Diese Darstellung ist noch lösungsunabhängig.

Peter Kuhn

Bachelorarbeit FS 2024

Abbildung 2: UML-Diagramm des konzeptuellen DB-Entwurfs

4.3.3 Logischer DB Entwurf

Um die Datenbank zu implementieren, wurde PostgreSQL gewählt. Es ist ein Free und Open-Source-System, das neue Features wie zum Beispiel JSON-Datentypen unterstützt.

Der folgende SQL-Code initialisiert die Datenbank: 2

4.3.4 Ansichten für den Analysten

Das Endziel besteht darin, eine Regression aus den Messungen und Taps zu erstellen, um den 'LWC Denoth' zu bestimmen. Für diese Aufgabe sind nur bestimmte Angaben aus der Datenbank erforderlich.

Hier werden zwei Ansichten erstellt: Der erste ist ein minimalistischer Ansatz, mit dem direkt weitergearbeitet werden kann. Die zweite Ansicht dient dazu, genauer zu verstehen, was in der ersten Ansicht dargestellt ist.

Da die Ansichten für den read only Analysten bestimmt sind, muss keine aktualisierbare Ansicht verwendet werden.

3

4.3.5 Physischer Entwurf

Für die Beispieldaten wurden Daten aus der Vorstudie ?? für eine Messung verwendet.

Die Datenbank wird anfangs viele NULL-Werte enthalten, da beispielsweise die Wetterdaten nicht von einer API gefüllt werden. Das ist auch in Ordnung, da die fehlenden Werte mit 0 aufgefüllt werden.

Die Transaktionen sind in dieser Anwendung unproblematisch, da der Benutzer, der die Inserts durchführt (Raspberry, Feldforscher), zu einem früheren Zeitpunkt arbeitet als der Analyst.

Falls die Datenbank von meinem Laptop auf einen Server ausgelagert wird, werden die folgenden Tools zur Sicherheitsprüfung verwendet: www.owasp.org und http://sqlmap.org/.

4.3.6 Python-Interaktion mit der Datenbank

Für die Interaktion mit der Datenbank werden verschiedene Python-Skripte verwendet, die je nach Benutzer unterschiedliche Aufgaben erfüllen.

Das folgende Python-Skript ist dazu da Bilder von Taps zu analysieren und die daraus gewonnenen Daten in die Datenbank einzufügen. 5

Das nächste Python-Skript wird interaktiv vom Versuchsleiter verwendet. Zur Zeit ruft das Skript die Bildanalyse auf. 6

4.3.7 Nächste Schritte

Die Python-Programme sollten weiterentwickelt werden, um sämtliche verfügbaren Daten in der Datenbank zu nutzen und um die Funktionalität zu verbessern.

Aktuell läuft die Datenbank mit dem Benutzer "Postgresäuf einem Laptop. Eine Auslagerung auf einen Server ist derzeit keine Priorität, da dies mit Sicherheitsrisiken verbunden ist. Das Hauptziel dieser Produktentwicklungs Bachelorarbeit besteht darin, das Verhalten des Taps zu verstehen. Sobald dieses Ziel erreicht ist, können weitere Schritte zur Optimierung und Sicherung der Datenbankinfrastruktur unternommen werden.

4.3.8 Code

```
Listing 1: SQL-Code für die Benutzerinitialisierung
-- Prevent default role PUBLIC from creating tables:
REVOKE CREATE ON SCHEMA public FROM PUBLIC;
CREATE USER RaspberryKamera WITH PASSWORD 'abscaaksd.tt33' NOINHERIT;
-- Grant insert and update permissions on specific tables
GRANT INSERT ON TABLE Kreis TO RaspberryKamera;
GRANT INSERT ON TABLE Messung TO RaspberryKamera;
GRANT INSERT, SELECT ON TABLE Tape TO RaspberryKamera;
CREATE USER Feldversuch WITH PASSWORD 'bsacauxiaxbc222/', NOINHERIT;
-- Grant insert permissions on specific tables
GRANT INSERT, SELECT ON TABLE Messung TO Feldversuch;
GRANT INSERT ON TABLE Messreihe TO Feldversuch;
GRANT INSERT ON TABLE Messort TO Feldversuch;
CREATE USER Analyst WITH PASSWORD 'rabgkkaadggg221!' NOINHERIT;
GRANT SELECT ON ALL TABLES IN SCHEMA public TO Analyst;
CREATE USER admin WITH PASSWORD 'sgintyiijyj77(';
GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA public TO admin WITH GRANT OPTION;
GRANT ALL PRIVILEGES ON ALL SEQUENCES IN SCHEMA public TO admin WITH GRANT OPTION
GRANT ALL PRIVILEGES ON SCHEMA public TO admin WITH GRANT OPTION;
              Listing 2: SQL-Code für die DBinitialisierung
CREATE DATABASE TapeMessungenBAKuhn;
```

```
CREATE TABLE MessOrt (
    id SERIAL PRIMARY KEY,
    nameOrt VARCHAR (255) NOT NULL,
    koordinateN FLOAT,
```



```
koordinateE FLOAT
);
CREATE TABLE MessReihe (
    id SERIAL PRIMARY KEY,
    datum TIMESTAMP WITH TIME ZONE NOT NULL,
    schneeKategorie VARCHAR (255),
    temperatur FLOAT,
   niederschlag INT,
    luftfeuchtigkeit FLOAT,
    -- Foreign Key reference to MessOrt
    messOrt_id INT REFERENCES MessOrt(id)
);
CREATE TABLE Messung (
    id SERIAL PRIMARY KEY,
   lwcDenothMeter FLOAT,
   dichte FLOAT,
    tiefeUnterSchnee INT NOT NULL,
   bildname VARCHAR (255) NOT NULL,
    -- Foreign Key reference to MessReihe
   messReihe_id INT REFERENCES MessReihe(id)
);
CREATE TABLE Tape (
    id SERIAL PRIMARY KEY,
    rotVsWeiss FLOAT NOT NULL,
    radiusMittelwert FLOAT NOT NULL,
   radiusSD FLOAT NOT NULL,
   xAxeMittelwert FLOAT NOT NULL,
   xAxeSD FLOAT NOT NULL,
   yAxesMittelwert FLOAT NOT NULL,
   yAxeSD FLOAT NOT NULL,
   rundheit FLOAT NOT NULL,
    -- Foreign Key reference to Messung
   messung_id INT REFERENCES Messung(id)
);
CREATE TABLE Kreis (
    id SERIAL PRIMARY KEY,
    Radius FLOAT NOT NULL,
    xKooridnate INT NOT NULL,
    yKooridnate INT NOT NULL,
    -- Foreign Key reference to Tape
    tape_id INT REFERENCES Tape(id)
);
                   Listing 3: SQL-Code für die Views
CREATE VIEW Minimal_Messung_Tape_View AS
```



```
SELECT m.lwcDenothMeter, t.rotVsWeiss, t.radiusMittelwert
FROM Messung m
JOIN Tape t ON m.id = t.messung_id;
CREATE VIEW Full_Measurement_View AS
SELECT mo.id AS messort_id, mo.nameOrt, mo.koordinateN, mo.koordinateE,
      mr.id AS messreihe_id, mr.datum, mr.schneeKategorie, mr.temperatur, mr.nie
      m.id AS messung_id, m.lwcDenothMeter, m.dichte, m.tiefeUnterSchnee, m.bild
      t.id AS tape_id, t.rotVsWeiss, t.radiusMittelwert, t.radiusSD, t.xAxeMitte
FROM MessOrt mo
JOIN MessReihe mr ON mo.id = mr.messOrt_id
JOIN Messung m ON mr.id = m.messReihe_id
JOIN Tape t ON m.id = t.messung_id;
                 Listing 4: SQL-Code für Beispiel Daten
INSERT INTO MessOrt (nameOrt, koordinateN, koordinateE)
VALUES ('Rothenthrm', 47.1, 8.683333);
INSERT INTO MessReihe (datum, schneeKategorie, temperatur, niederschlag, luftfeuc
VALUES ('2024-03-10T15:02:08', 'schnee_beregnte', 6, 2, 100, 1);
INSERT INTO Messung (lwcDenothMeter, dichte, tiefeUnterSchnee, bildname, messReih
VALUES (NULL, NULL, 30, 'bild1.jpg', 1);
               Listing 5: Bilderkennung und verarbeitung
#!/usr/bin/python
import psycopg2
from config import config
import cv2
import numpy as np
import pandas as pd
def do_image(image_name, messung_id): # Accept tape_id as a parameter
    Process an image to detect circles, calculate statistics, and insert do
    Args:
        image_name (str): The filename of the image to process.
        messung_id (int): The ID of the Messung associated with the circles
        float: The mean radius of the detected circles.
```



```
df = process_image(image_name)
    mean_radius = perform_statistics(df, messung_id)
    tape_id = get_last_tape_id()
    for index, row in df.iterrows():
        insert_data_kreis(row['Radius'], row['X-coordinate'], row['Y-coordi
# Pass tape_id to insert_data
    #print(df)
    return mean_radius
# Function to perform statistics on a DataFrame
def perform_statistics(df, messung_id):
    Calculate statistics on a DataFrame containing circle data and insert t
    Args:
        df (pandas.DataFrame): DataFrame containing circle data.
        messung_id (int): The ID of the Messung associated with the circle
        float: The mean radius of the detected circles.
    # Calculate mean and standard deviation
    mean_radius = df['Radius'].mean()
    mean_x_coordinate = df['X-coordinate'].mean()
   mean_y_coordinate = df['Y-coordinate'].mean()
    std_radius = df['Radius'].std()
    std_x_coordinate = df['X-coordinate'].std()
    std_y_coordinate = df['Y-coordinate'].std()
    # Insert statistics into the database
    insert_data_tape(mean_radius, mean_x_coordinate, mean_y_coordinate, std
    return mean_radius
def insert_data_tape(mean_radius, mean_x_coordinate, mean_y_coordinate, std
    Insert statistics into the database.
    Args:
```



```
mean\_x\_coordinate (float): Mean x\_coordinate of detected circles.
        mean\_y\_coordinate (float): Mean\ y\_coordinate of detected circles.
        std_radius (float): Standard deviation of radius of detected circle
        std_x_coordinate (float): Standard deviation of x-coordinate of det
        std\_y\_coordinate (float): Standard deviation of y-coordinate of det
        messung_id (int): The ID of the Messung associated with the statist
    Returns:
        None
    sql = """INSERT INTO tape (radiusmittelwert, xaxemittelwert, yaxesmitte
             VALUES (%s, %s, %s, %s, %s);"""
    try:
        # Read database configuration
        params = config()
        # Connect to the PostgreSQL database
        conn = psycopg2.connect(**params)
        # Create a new cursor
        cur = conn.cursor()
        # Execute the INSERT statement
        cur.execute(sql, (mean_radius, mean_x_coordinate, mean_y_coordinate
        # Commit the changes to the database
        conn.commit()
        print("Statistics_inserted_into_the_database.")
        # Close communication with the database
        cur.close()
    except (Exception, psycopg2.DatabaseError) as error:
        print(error)
    finally:
        if conn is not None:
            conn.close()
# Function to retrieve the last inserted tape_id
def get_last_tape_id():
    Retrieve the ID of the last inserted tape from the database.
    Returns:
        int: The ID of the last inserted tape.
            # Read database configuration
    params = config()
```

mean_radius (float): Mean radius of detected circles.


```
# Connect to the PostgreSQL database
    conn = psycopg2.connect(**params)
        # Create a new cursor
    cur = conn.cursor()
    \texttt{cur.execute("SELECT_id_FROM_tape")}
    last_tape_id = cur.fetchone()
    if last_tape_id:
        return last_tape_id[0]
    else:
        return 1
def show_image_progsess(df, image, contours, radii_list, x_coords_list, y_c
    Display the processed image with circles and contours.
    Args:
        df (pandas.DataFrame): DataFrame containing circle data.
        image (numpy.ndarray): Original image.
        contours (list): List of contours detected in the image.
        radii_list (list): List of radii of detected circles.
        x\_coords\_list (list): List of x\_coordinates of detected circles.
        y\_coords\_list (list): List of y\_coordinates of detected circles.
    Returns:
        None
    # Display DataFrame
    print(df)
    # Display the original image
    cv2.imshow('Original_Image', cv2.imread(image_name))
    # Display the image with contours
    image_with_contours = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
    for contour in contours:
        cv2.drawContours(image_with_contours, [contour], 0, (0, 255, 0), 2)
    cv2.imshow('Image_{\square}with_{\square}Contours', image_with_contours)
    # Display the image with contours and circles
    # Create a copy of the original image for drawing circles
```



```
image_with_circles = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
    for x, y, r in zip(x_coords_list, y_coords_list, radii_list):
        cv2.circle(image_with_circles, (x, y), r, (0, 0, 255), cv2.FILLED)
    cv2.imshow('Image_with_Circles', image_with_circles)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
def insert_data_kreis(radius, x_coordinate, y_coordinate, tape_id):
    Insert circle data into the database.
    Args:
        radius (int): Radius of the circle.
        x_{-}coordinate (int): X-coordinate of the circle.
        y_{-}coordinate (int): Y-coordinate of the circle.
        tape_id (int): The ID of the tape associated with the circle.
    Returns:
        None
    ,, ,, ,,
    sql = """INSERT INTO kreis (radius, xkooridnate, ykooridnate, tape_id)
    conn = None
    try:
        # Read database configuration
        params = config()
        # Connect to the PostgreSQL database
        conn = psycopg2.connect(**params)
        # Create a new cursor
        cur = conn.cursor()
        # Convert NumPy integers to Python integers
        radius = int(radius)
        x_coord = int(x_coordinate)
        y_coord = int(y_coordinate)
        # Execute the INSERT statement
        cur.execute(sql, (radius, x_coord, y_coord, tape_id))
        # Commit the changes to the database
        conn.commit()
        # Close communication with the database
        cur.close()
    except (Exception, psycopg2.DatabaseError) as error:
```



```
print(error)
    finally:
        if conn is not None:
            conn.close()
def process_image(image_name):
    Process an image to detect circles and return a DataFrame containing ci
        image_name (str): The filename of the image to process.
    Returns:
        pandas.DataFrame: DataFrame containing circle data.
    # Load the image
    image = cv2.imread(image_name, cv2.IMREAD_GRAYSCALE)
    # Invert the image (since blobs are black on a white background)
    image = cv2.bitwise_not(image)
    # Find contours
    contours, _ = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPR
    # Lists to store radius, x-coordinate, and y-coordinate
    radii_list = []
    x_coords_list = []
    y_coords_list = []
    # Iterate through each contour
    for contour in contours:
        # Calculate the center of gravity (centroid) and area of the contou
        M = cv2.moments(contour)
        if M["m00"] != 0:
            cx = int(M["m10"] / M["m00"])
            cv = int(M["m01"] / M["m00"])
            area = cv2.contourArea(contour)
            # Calculate the radius of the circle using the area
            radius = int(np.sqrt(area / np.pi))
            \# Append radius, x-coordinate, and y-coordinate to respective l
```



```
radii_list.append(radius)
            x_coords_list.append(cx)
            y_coords_list.append(cy)
    # Create DataFrame
    data = {'Radius': radii_list, 'X-coordinate': x_coords_list, 'Y-coordin
    df = pd.DataFrame(data)
    if __name__ == '__main__':
        show_image_progsess(df, image, contours, radii_list, x_coords_list,
    return df
if __name__ == '__main__':
    image_name = 'bild1.png'
    do_image(image_name)
               Listing 6: Bilderkennung und verarbeitung
#!/usr/bin/python
import psycopg2
from config import config
import cv2
import numpy as np
import pandas as pd
from imageToCircle3 import do_image
# Function to retrieve the last inserted tape_id
def get_last_messung_id(cur):
    11 11 11
    Retrieve the last inserted messung_id from the database.
    Args:
        cur (psycopg2.cursor): Cursor object for database interaction.
    Returns:
        int: The last inserted messung_id incremented by 1.
    cur.execute("SELECT_id_FROM_messung")
    last_messung_id = cur.fetchone()
```



```
if last_messung_id:
        return last_messung_id[0] + 1
    else:
        return 1
def insert_data(messreihe_id):
    Insert a new messung entry into the database.
        messreihe_id (int): The ID of the messreihe associated with the mes
    Returns:
        None
    11 11 11
    sql = """INSERT INTO messung (messreihe_id)
             VALUES (%s);"""
    conn = None
    try:
        # Read database configuration
        params = config()
        # Connect to the PostgreSQL database
        conn = psycopg2.connect(**params)
        # Create a new cursor
        cur = conn.cursor()
        # Execute the INSERT statement
        cur.execute(sql, (messreihe_id))
        # Commit the changes to the database
        conn.commit()
        print("Messung inserted into the database.")
        # Close communication with the database
        cur.close()
    except (Exception, psycopg2.DatabaseError) as error:
        print(error)
    finally:
        if conn is not None:
            conn.close()
# Main function
def main():
    11 11 11
    Main function to execute the program.
    Prompts the user for a messungReihe ID input, processes a list of image
```



```
\# Prompt user for messung_id input
    messung_id = input("Enter_MessungReihe_ID:_")
    # List of image names
    image_names = ['bild1.png', 'bild2.png', 'bild3.png']
    try:
                    # Read database configuration
        params = config()
        # Connect to the PostgreSQL database
        conn = psycopg2.connect(**params)
        # Create a new cursor
        cur = conn.cursor()
        # Retrieve the last inserted tape_id
        messung_id = get_last_messung_id(cur)
        print("Next_messung_id:", messung_id)
        avg_mean_radius = 0
        # Process each image
        for idx, image_name in enumerate(image_names):
            # Process the image
            avg_mean_radius += do_image(image_name, messung_id)
        avg_mean_radius = avg_mean_radius / 3
        # Commit the transaction
        conn.commit()
    except (Exception, psycopg2.DatabaseError) as error:
        print(error)
    finally:
        # Close cursor and connection
        if cur is not None:
            cur.close()
        if conn is not None:
            conn.close()
# Entry point of the program
if __name__ == "__main__":
```


main()

- 4.4 Testkriterien
- 4.5 Wiederstand gegen Umwelteinflüsse
- 4.6 Montage des Funktionsmusters
- 4.7 Ergebnisse der Versuche
- 4.8 Vergleich der Ergebnisse mit Denometer
- 4.9 Verbesserungsmöglichkeiten des Funktionsmusters

5 Ausblick

- 5.1 Presönliche Erfahrunng
- 5.2 Fazit
- 5.3 Ausblick

methode weiter verfolgen, good stuff

6 Literaturverzeichnis

7 Erklärung zur Urheberschaft

Ich erkläre hiermit, dass ich die vorliegende Arbeit ohne Hilfe Dritter angefertigt habe. Ich habe nur die Hilfsmittel benutzt, die ich angegeben habe. Gedanken, die ich aus fremden Quellen direkt oder indirekt übernommen habe, sind kenntlich gemacht. Die Arbeit wurde bisher keiner anderen Prü- fungsbehörde vorgelegt und auch noch nicht veröffentlicht.

KI-Einsatz ohne Kennzeichnungspflicht

Ich bin mir bewusst, dass die Nutzung maschinell generierter Texte keine Garantie für die Qualität von Inhalten und Text gewährleistet. Ich versichere daher, dass ich mich textgenerierender KI-Tools lediglich als Hilfsmittel bedient habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Ich verantworte die Übernahme jeglicher von mir verwendeter maschinell generierter Textpassagen vollumfänglich selbst. Ich versichere, dass ich keine KI-Schreibwerkzeuge verwendet habe, deren Nutzung der Prüfer / die Prüferin explizit schriftlich ausgeschlossen hat.

Ort/Datum: Rapperswil, 2024

Unterschrift: Peter Kuhn

A 1 1 •	1 7	• 1	•
Abbi.	${f ldungsverz}$	zeichi	\mathbf{n}

1	Bildverarbeitnugskonzpet	7
2	UML-Diagramm des konzeptuellen DB-Entwurfs	Ć

Tabellenverzeichnis

8 Digitaler Anhang

Lebenslauf

Personalien

Peter Kuhn Webergasse 16 8640 Rapperswil 078 707 12 46 (Mobil) 043 268 55 87 (Festnetz) peter.jo.kuhn@gmail.com

Bildung

1998.06.17	geboren
2005 - 2011	Primarschule
2011 - 2013	Langzeit Gymnasium Kantonsschule Zürcher Oberland
2013 - 2017	Kurzzeit Gymnasium Math. Naturwiss. Gym. Rämibühl
2017 - 2018	Zivildienst
2018 - 2020	Mathematik Studium ETH Zürich
2021 - jetzt	Maschienentechnik und Inovation Studium an der OST
Maturarbeit	

Sprachen

- Deutsch (Muttersprache)
- Englisch (sehr gut schriftlich und mündlich)
- Italienisch (gut mündlich)

Programmiersprachen

C++, Java, Python, JavaScript, Bash, Matlab, html/css, Mysql, Exel

Fähigkeiten

Führerausweis Kat. B Aktives Mitglied von Velove, einer von Studenten geleiteten Velo Werkstatt

Sport

Mountainbike Rennvelo Schwimmen