Aula 18 Campos Vetoriais e Integrais de Linha

MA211 - Cálculo II

Marcos Eduardo Valle

Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

Campo Vetorial

Definição 1 (Campo Vetorial)

Um *campo vetorial* é uma função $\mathbf{F}: D \to \mathbb{R}^m$, com $D \subseteq \mathbb{R}^n$, que associa a cada ponto \mathbf{x} em D um vetor $\mathbf{F}(\mathbf{x})$ em \mathbb{R}^m .

Exemplo 2 (Campo Vetorial em \mathbb{R}^2)

Um campo vetorial em \mathbb{R}^2 é uma função $\mathbf{F}: D \to \mathbb{R}^2$, $D \in \mathbb{R}^2$. Neste caso, o campo vetorial pode ser escrito em termos de suas componentes P e Q da seguinte forma:

$$F(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j} = (P(x,y), Q(x,y)).$$

Observe que P e Q são campos escalares, ou seja, funções de duas variáveis.

Considere o campo vetorial em \mathbb{R}^2 é definido por

$$\mathbf{F}(x,y) = -y\mathbf{i} + x\mathbf{j}.$$

A figura abaixo mostra **F** aplicado em alguns pontos.

Exemplo 4 (Campo Vetorial em \mathbb{R}^3)

Um campo vetorial em \mathbb{R}^3 é uma função $\mathbf{F}: D \to \mathbb{R}^3$, $D \in \mathbb{R}^3$. Neste caso, o campo vetorial pode ser escrito em termos de suas componentes P, Q e R da seguinte forma:

$$F(x,y,z) = P(x,y,z)\mathbf{i} + Q(x,y,z)\mathbf{j} + R(x,y,z)\mathbf{k}$$

= $(P(x,y,z), Q(x,y,z), R(x,y,z)).$

Observe que *P*, *Q* e *R* são campos escalares, ou seja, funções de três variáveis.

Continuidade de Campos Vetoriais

Dizemos que um campo vetorial $\mathbf{F}: D \to \mathbb{R}^m, D \subseteq \mathbb{R}^n$, é contínuo se suas componentes forem contínuas!

Considere o campo vetorial em \mathbb{R}^3 é definido por

$$\mathbf{F}(x,y) = y\mathbf{i} + z\mathbf{j} + x\mathbf{k}.$$

A figura abaixo mostra **F** aplicado em alguns pontos.

(Figura extraída do livro de James Stewart, Calculus, 5 edição.)

Exemplo 6 (Campo de Velocidade)

Imagine um líquido escoando uniformemente em um cano e seja $\mathbf{V}(x,y,z)$ o vetor velocidade em um ponto (x,y,z). Observe que \mathbf{V} associa um vetor a cada ponto (x,y,z) de um certo domínio E, que representa o interior do cano. Dessa forma, \mathbf{V} é um campo vetorial em \mathbb{R}^3 , chamado *campo de velocidade*. A figura abaixo ilustra um campo de velocidade. A velocidade escalar é indicada pelo comprimento da seta.

(Figura extraída do livro de James Stewart, Calculus, 5 edição.)

Exemplo 7 (Campo Gravitacional)

A Lei da Gravitação de Newton afirma que a intensidade da força gravitacional entre dois objetos com massas $m \in M$ é

$$|\mathbf{F}| = \frac{mMG}{r^2},$$

em que r é a distância entre os objetos e G é a constante gravitacional. Suponha que um objeto de massa M está localizado na origem em \mathbb{R}^3 . Seja $\mathbf{x}=(x,y,z)$ a posição do objeto de massa m. Nesse caso, $r=|\mathbf{x}|$ e $r^2=|\mathbf{x}|^2$. A força gravitacional exercida nesse segundo objeto age em direção a origem e o vetor unitário em sua direção é $-\mathbf{x}/|\mathbf{x}|$. Portanto, a força gravitacional agindo no objeto em $\mathbf{x}=(x,y,z)$ é

$$\mathbf{F}(\mathbf{x}) = -\frac{mMG}{|\mathbf{x}|^3}\mathbf{x}.$$

A função acima é chamada campo gravitacional.

Campos Gradiente

Definição 8 (Campo Gradiente)

O gradiente ∇f de uma função escalar $f: \mathbb{R}^n \to \mathbb{R}$ é um campo vetorial chamado *campo gradiente*.

Exemplo 9

O campo vetorial gradiente de

$$f(x,y)=x^2y-y^3,$$

é o campo vetorial dado por

$$\nabla f(x,y) = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} = 2xy\mathbf{i} + (x^2 - 3y^2)\mathbf{j}.$$

Campo Vetorial Conservativo

Definição 10 (Campo Vetorial Conservativo)

Um campo vetorial \mathbf{F} é chamado *campo vetorial conservativo* se ele for o gradiente de alguma função escalar, ou seja, se existir f tal que $\mathbf{F} = \nabla f$. Neste caso, f é denominada *função potencial* de \mathbf{F} .

Exemplo 11

O campo gravitacional é um campo vetorial conservativo. A função potencial é

$$f(x, y, z) = \frac{mMG}{\sqrt{x^2 + y^2 + z^2}}.$$

Verifique que
$$\nabla f = -\frac{mMG}{|\mathbf{x}|^3}\mathbf{x}!$$

Integral de Linha de Campos Vetoriais

Podemos definir integrais de linhas de campos vetoriais. Tais integrais são usadas, por exemplo, para determinar o trabalho exercido ao mover uma partícula ao longo de uma curva lisa C.

Definição 12 (Integral de Linha de um Campo Vetorial F)

Seja **F** é um campo vetorial contínuo definido sobre uma curva lisa C dada pela função vetorial $\mathbf{r}(t),\ a \leq t \leq b$, então a **integral de linha de F ao longo de** C é

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt.$$

Lembre-se que:

- ▶ $\mathbf{F}(\mathbf{r}(t)) = \mathbf{F}(x(t), y(t))$ para campos vetoriais em \mathbb{R}^2 e
- ▶ $\mathbf{F}(\mathbf{r}(t)) = \mathbf{F}(x(t), y(t), z(t))$ para campos vetoriais em \mathbb{R}^3 .

Integrais de Linha com Respeito a x, y e z

Considere um caminho liso C descrito por

$$\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}, \quad a \le t \le b,$$

e suponha que

$$\mathbf{F}(x,y,z) = P(x,y,z)\mathbf{i} + Q(x,y,z)\mathbf{j} + R(x,y,z)\mathbf{k}.$$

A integral de linha do campo vetorial **F** pode ser escrita como

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz,$$

em que

$$\int_C P(x,y,z)dx, \quad \int_C Q(x,y,z)dy \quad \text{e} \quad \int_C R(x,y,z)dz,$$

são chamadas **integrais de linha ao longo do caminho** *C* **com relação a** *x*, *y* **e** *z*, respectivamente.

Determine o trabalho feito pelo campo de força $\mathbf{F}(x,y)=x^2\mathbf{i}-xy\mathbf{j}$ ao se mover uma partícula ao longo de um quarto de círculo $\mathbf{r}(t)=\cos t\mathbf{i}+\sin t\mathbf{j},\ 0\leq t\leq 2\pi.$

Determine o trabalho feito pelo campo de força $\mathbf{F}(x,y)=x^2\mathbf{i}-xy\mathbf{j}$ ao se mover uma partícula ao longo de um quarto de círculo $\mathbf{r}(t)=\cos t\mathbf{i}+\sin t\mathbf{j},\ 0\leq t\leq 2\pi.$

Resposta:

$$\int_C \mathbf{F} d\mathbf{r} = -\frac{2}{3}.$$

Calcule
$$\int_C y^2 dx + x dy$$
 em que

- a) $C = C_1$ é o segmento de reta de (-5, -3) a (0, 2),
- b) $C = C_2$ é o arco de parábola $x = 4 y^2$ de (-5, -3) a (0, 2).

Calcule
$$\int_C y^2 dx + x dy$$
 em que

- a) $C = C_1$ é o segmento de reta de (-5, -3) a (0, 2),
- b) $C = C_2$ é o arco de parábola $x = 4 y^2$ de (-5, -3) a (0, 2).

Resposta:

a)
$$\int_{C_1} y^2 dx + x dy = -\frac{5}{8}$$
.

b)
$$\int_{C_1} y^2 dx + x dy = 40 \frac{5}{6}$$
.

Observe que as respostas são diferentes, apesar das duas curvas terem a mesmas extremidades!

APÊNDICE

Dedução da integral de um campo vetorial (Trabalho realizado para mover uma partícula sobre uma curva) Considere um campo de força **F** contínuo e uma curva lisa *C*.

Primeiramente, dividimos o intervalo [a, b] em n subintervalos $[t_{i-1}, t_i]$ de tamanho igual Δt e tomamos $x_i = x(t_i)$ e $y_i = y(t_i)$. Desta forma, os pontos $P_i = (x_i, y_i)$ dividem o caminho C em n subarcos de comprimento $\Delta s_1, \ldots, \Delta s_n$.

Observe que o vetor que liga os pontos P_{i-1} e P_i é dado pela diferença $\mathbf{r}(t_i) - \mathbf{r}(t_{i-1})$. Pelo teorema do valor médio, existe $t_i^* \in [t_{i-1}, t_i]$ tal que

$$\mathbf{r}'(t_i^*)\Delta t = \mathbf{r}(t_i) - \mathbf{r}(t_{i-1}).$$

O trabalho realizado pela força \mathbf{F} para mover a particular de P_{i-1} para P_i é aproximadamente

$$\mathbf{F}(\mathbf{r}(t_i^*)) \cdot \mathbf{r}'(t_i^*) \Delta t$$
.

O trabalho total executado é aproximadamente

$$W \approx \sum_{i=1}^{n} \mathbf{F}(\mathbf{r}(t_i^*)) \cdot \mathbf{r}'(t_i^*) \Delta t.$$

Intuitivamente, essas aproximações melhoram quando n aumenta. Portanto, definimos o trabalho feito por um campo de força ${\bf F}$ como o limite da soma de Riemann acima, ou seja,

$$W = \lim_{n \to \infty} \sum_{i=1}^{n} \mathbf{F}(\mathbf{r}(t_{i}^{*})) \cdot \mathbf{r}'(t_{i}^{*}) \Delta t = \int_{C} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_{C} \mathbf{F} \cdot d\mathbf{r}.$$