

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS FM03

(9665/FM03) Unit FP2 Pure Mathematics

Mark scheme

January 2024

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaga.com

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

M Mark is for method

m Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy

B Mark is independent of M or m marks and is for method and accuracy

E Mark is for explanation

√or ft Follow through from previous incorrect result

CAO Correct answer only

CSO Correct solution only

AWFW Anything which falls within

AWRT Anything which rounds to

ACF Any correct form

AG Answer given

SC Special case

oe Or equivalent

A2, 1 2 or 1 (or 0) accuracy marks

–x EE Deduct x marks for each error

NMS No method shown

PI Possibly implied

SCA Substantially correct approach

sf Significant figure(s)

dp Decimal place(s)

ISW Ignore subsequent working

Q	Answer	Marks	Comments
1	(2t+1, 5t+4, 2t+1.5)	В1	Correct general point on <i>L</i> seen or used PI by a correct linear equation in a single variable
	2t+1+2(5t+4)+3(2t+1.5)=18 $18t=4.5 t=0.25$	M1	Substituting their general point into the equation for Π to obtain an equation in a single variable and obtaining a value for the variable
	A(1.5, 5.25, 2)	A 1	Correct coordinates ACF Do not condone answer given as a vector

|--|

Q	Answer	Marks	Comments
2(a)	$\left[\tan\theta = -\frac{1}{\sqrt{3}}\right]$		
	$\left[-2\sqrt{3}+2i=\right] 4e^{i\frac{5\pi}{6}}$	B1 B1	B1 for $r=4$ B1 for $\theta = \frac{5\pi}{6}$
		2	

Q	Answer	Marks	Comments
2(b)	$z^4 = 4e^{i\left(\frac{5\pi}{6} + 2n\pi\right)}$		
	$z = \sqrt[4]{4} e^{i\left(\frac{5\pi}{24}\left[+\frac{2n\pi}{4}\right]\right)}$	B1ft M1	B1ft : $r = \sqrt[4]{4}$ oe ft the fourth root of their value for r in part (a) M1 : $z = \sqrt[4]{4} e^{i\left(\frac{5\pi}{24}\right)}$ Divides their θ in part (a) by 4 to get their θ in (b)
	$z = \sqrt{2} e^{i\left(\frac{5\pi}{24}\right)}, z = \sqrt{2} e^{i\left(\frac{17\pi}{24}\right)},$	M1	Obtains at least three of the first four positive correct angles $\mathbf{ft} \ \frac{their \ \theta \ in \left(\mathbf{a}\right)}{4} + \frac{n\pi}{2}$
	$z = \sqrt{2} e^{i\left(\frac{29\pi}{24}\right)}, z = \sqrt{2} e^{i\left(\frac{41\pi}{24}\right)}$	A 1	CAO
		4	

Question 2 Total 6

Q	Answer	Marks	Comments
3(a)(i)	$y = \tanh^{-1} x$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 - x^2}$		
	[When $x = 0$] $\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = 1$	B1	B0 if incorrect $\frac{\mathrm{d}y}{\mathrm{d}x}$ used
		1	

Q	Answer	Marks	Comments
3(a)(ii)		В1	Correct shaped graph with a positive gradient at the origin and asymptotic behaviour at $x = -1$ and $x = 1$
		1	

Q	Answer	Marks	Comments
3(b)	$\tanh^{-1}\left(\frac{1+x}{2}\right) = \frac{1}{2}\ln\left(\frac{3+x}{1-x}\right)$ $\tanh^{-1}\left(\frac{1-x}{2}\right) = \frac{1}{2}\ln\left(\frac{3-x}{1+x}\right)$	M1	$\tanh^{-1} X = \frac{1}{2} \ln \left(\frac{1+X}{1-X} \right)$ used at least once
	$\tanh^{-1}\left(\frac{1+x}{2}\right) + \tanh^{-1}\left(\frac{1-x}{2}\right)$ $= \frac{1}{2}\ln\left(\frac{(3+x)(3-x)}{(1-x)(1+x)}\right)$	A 1	$\frac{1}{2} \ln \left(\frac{(3+x)(3-x)}{(1-x)(1+x)} \right)$ oe single logarithmic term
	$\frac{3}{2}\ln 3 - \frac{1}{2}\ln 2 = \frac{1}{2}\ln \frac{27}{2}$	B1	$\frac{3}{2}\ln 3 - \frac{1}{2}\ln 2 = \frac{1}{2}\ln \frac{27}{2} \text{ seen or used}$
	$\frac{\left(9-x^2\right)}{\left(1-x^2\right)} = \frac{27}{2} \Rightarrow 18-2x^2 = 27-27x^2$ $\Rightarrow 25x^2 = 9$	M1	Elimination of logs to obtain a single quadratic equation in \boldsymbol{x}
	$\Rightarrow x = \pm \frac{3}{5}$	A 1	$[x=]\pm \frac{3}{5}$ oe
		5	

Question 3 Tota	I 7	
-----------------	-----	--

Q	Answer	Marks	Comments
4	$\frac{r^2 + r + 1}{r(r+1)} = 1 + \frac{1}{r(r+1)}$	B1	$A = 1$ or $\frac{r^2 + r + 1}{r(r+1)} = 1 + \frac{1}{r(r+1)}$
	$\frac{1}{r(r+1)} = \frac{B}{r} + \frac{C}{r+1} \Rightarrow 1 = B(r+1) + Cr$	M1	PI by either $B=1$ or $C=-1$
	$\frac{r^2 + r + 1}{r(r+1)} = 1 + \frac{1}{r} - \frac{1}{r+1}$	A 1	$1 + \frac{1}{r} - \frac{1}{r+1}$
	$\sum_{r=1}^{n} \frac{r^2 + r + 1}{r(r+1)} = \sum_{r=1}^{n} 1 + \sum_{r=1}^{n} \left(\frac{1}{r} - \frac{1}{r+1} \right)$		
	$= n + \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots$	В1	$\sum_{r=1}^{n} 1 = n \text{seen or used}$
	$+\left(\frac{1}{n-1}-\frac{1}{n}\right)+\left(\frac{1}{n}-\frac{1}{n+1}\right)$	М1	Method of differences shown with at least the first two and last two terms of $\sum_{r=1}^{n} \left(\frac{1}{r} - \frac{1}{r+1} \right)$ seen
	$\sum_{r=1}^{n} \frac{r^2 + r + 1}{r(r+1)} = 1 + n - \frac{1}{n+1}$	A 1	AG Must be convincingly shown, including evidence of cancelling

Question 4 Total	6	
------------------	---	--

Q	Answer	Marks	Comments
5	$\cos x \frac{dy}{dx} + y = \cos^2 x + \sin x$ $\Rightarrow \frac{dy}{dx} + y \sec x = \cos x + \tan x$		
	I.F. is $e^{\int \sec x dx}$	M1	$e^{\int \sec x dx}$
	I.F. $= e^{\ln(\sec x + \tan x)} = \sec x + \tan x$	A 1	I.F. = $\sec x + \tan x$ or $\tan \left(\frac{x}{2} + \frac{\pi}{4} \right)$
	$\frac{d}{dx}(y(\sec x + \tan x))$ $= (\cos x + \tan x)(\sec x + \tan x)$ $y(\sec x + \tan x)$ $= \int (\cos x + \tan x)(\sec x + \tan x) dx$ $y(\sec x + \tan x)$ $= \int (1 + \tan^2 x + \sin x + \sec x \tan x) dx$ $y(\sec x + \tan x) = \tan x - \cos x + \sec x [+A]$ $y = 1 + \frac{A - \cos x}{\sec x + \tan x}$	M1 A1	Multiplying both sides of the rearranged DE by their I.F. and integrating LHS to get $y \times I.F$.
	when $x = \frac{\pi}{3}$, $y = 1 \implies A = \frac{1}{2}$	A1ft	
	$y = 1 + \frac{0.5 - \cos x}{\sec x + \tan x}$	A 1	y = f(x) with ACF for $f(x)eg y = \sin(x) - \frac{1}{2}\tan(x) + \frac{1}{2}\sec(x)$

Question 5 Total 6	
--------------------	--

Q	Answer	Marks	Comments
6(a)	$\cos 2x = 1 - 2x^2 + \frac{2}{3}x^4$	B1	
		1	

Q	Answer	Marks	Comments
6(b)	$e^{\cos(2x)-1} = e^{-2x^2 + \frac{2}{3}x^4} = e^{-2x^2}e^{\frac{2}{3}x^4}$		
	$= \left(1 + \left(-2x^2\right) + \frac{\left(-2x^2\right)^2}{2} + \dots\right) \left(1 + \frac{2}{3}x^4 + \dots\right)$	M1	ft their $1 + ax^2 + bx^4$ in part (a) oe eg $e^{\cos(2x)-1} = e^{-2x^2 + \frac{2}{3}x^4}$
	$= \left(1 - 2x^2 + 2x^4 + \dots\right) \left(1 + \frac{2}{3}x^4 + \dots\right)$		$= 1 + \left(-2x^2 + \frac{2}{3}x^4\right) + \frac{1}{2}(4x^4 +)$
	$=1-2x^2+\frac{8}{3}x^4+$	A 1	$1-2x^2+\frac{8}{3}x^4$
		2	

Q	Answer	Marks	Comments
6(c)	$e^{\cos(2x)} = e\left(1 - 2x^2 + \frac{8}{3}x^4 +\right)$	B1ft	ft their $1 + px^2 + qx^4$ in part (b)
	$\lim_{x \to 0} \left(\frac{e - e^{\cos(2x)}}{x^2} \right) = \lim_{x \to 0} \left(\frac{e - e\left(1 - 2x^2 + \frac{8}{3}x^4 + \dots\right)}{x^2} \right)$ $= \lim_{x \to 0} \left(\frac{2ex^2 - \frac{8}{3}ex^4 + \dots}{x^2} \right) = \lim_{x \to 0} \left(2e - \frac{8}{3}ex^2 + \dots \right)$	M1	Substitutes series expansion and divides numerator and denominator by x^2 to reach the form $\lim_{x\to 0} \left[P+O\left(x^2\right)\right]$
	$\lim_{x \to 0} \left(\frac{e - e^{\cos(2x)}}{x^2} \right) = 2e$	A 1	A0 if not from $\lim_{x\to 0} \left(2e - \frac{8}{3}ex^2\right)$
		3	

Question 6 To	6
---------------	---

Q	Answer	Marks	Comments
7(a)	The interval of integration is infinite	E1	oe
		1	

Q	Answer	Marks	Comments
7(b)	[I =] $\int \frac{x-3}{e^x} dx = \int (x-3)e^{-x} dx$		
	$u = x - 3$, $\frac{\mathrm{d}v}{\mathrm{d}x} = \mathrm{e}^{-x}$		
	[I=] = -(x-3)e ^{-x} - $\int -e^{-x} (dx)$	M1	$\frac{\mathrm{d}u}{\mathrm{d}x}$ = 1 , $v = \pm \mathrm{e}^{-x}$ used in correct integration by parts formula PI by correct integration
	$=-(x-3)e^{-x}-e^{-x}$ [+c]	A 1	oe $-xe^{-x} + 2e^{-x}$
	$\int_{3}^{\infty} \frac{x-3}{e^{x}} dx = \lim_{a \to \infty} \int_{3}^{a} (x-3)e^{-x} dx$ $= \lim_{a \to \infty} \left(-(a-3)e^{-a} - e^{-a} \right) - \left(-e^{-3} \right)$	M1	Evidence of limit ∞ having been replaced by a (oe) at any stage and $\lim_{a\to\infty}$ seen or taken at any stage with no remaining lim relating to 3
	$\left[= \lim_{a \to \infty} \left(-ae^{-a} + 2e^{-a} \right) - \left(-e^{-3} \right) \right]$		
	$\lim_{a\to\infty} \left(a e^{-a} \right) = 0$	E1	Must be explicitly stated Accept if stated in the more general format
	$\int_3^\infty \frac{x-3}{e^x} dx = e^{-3}$	A 1	First 3 marks must have been scored but can be awarded even if previous E1 not awarded provided limits clearly substituted and no errors seen
		5	

Question 7 Tota	6	
-----------------	---	--

Q	Answer	Marks	Comments
8(a)	For $n = 1$, $\sum_{r=1}^{n} (r^3 + 3r^5) = 1^3 + 3 \times 1^5 = 1 + 3 = 4$ and $\frac{1}{2}n^3(n+1)^3 = \frac{1}{2} \times 1 \times 2^3 = \frac{1}{2} \times 8 = 4$	В1	Correct values to show formula true for $n = 1$ Must see 4 preceded by a relevant unsimplified numerical expression for both the LHS and the RHS
	Assume formula true for $n = k$ (*), so		
	$\sum_{r=1}^{k+1} (r^3 + 3r^5) = \sum_{r=1}^{k} (r^3 + 3r^5) + (k+1)^3 + 3(k+1)^5$		Assumes formula true for $n = k$ and $k+1$
	$= \frac{1}{2}k^{3}(k+1)^{3} + (k+1)^{3} + 3(k+1)^{3}(k+1)^{2}$	M1	considers $\sum_{r=1}^{k+1} \left(r^3 + 3r^5 \right)$
	$= \frac{1}{2}(k+1)^{3}(k^{3}+2+6(k+1)^{2})$	A 1	
	$= \frac{1}{2}(k+1)^3(k^3+6k^2+12k+8)$		
	$= \frac{1}{2}(k+1)^{3}(k+2)(k^{2}+4k+4) = \frac{1}{2}(k+1)^{3}(k+2)^{3}$	A 1	Must be convincingly shown
	Hence formula is true for $n = k + 1$ (**) and since true for $n = 1$ (***), formula		
	$\sum_{r=1}^{n} (r^3 + 3r^5) = \frac{1}{2} n^3 (n+1)^3$ is true for		
	$n = 1, 2, 3, \dots$ by induction (****)	E1	Must have (*), (**), (***), present, previous 4 marks scored and a final statement (****) clearly indicating that it relates to positive integers
		5	

Q	Answer	Marks	Comments
8(b)	$\frac{n^2}{4}(n+1)^2 + \sum_{r=1}^n 3r^5 = \frac{1}{2}n^3(n+1)^3$	M1	Splits the LHS of formula and uses the formula for sum of cubes given in the formulae booklet
	$\frac{(3N)^2}{4}(3N+1)^2 + 3\sum_{r=1}^{3N} r^5 = \frac{1}{2}(3N)^3(3N+1)^3$	m1	Replaces n by $3N$ (condone $3n$ for $3N$)
	$\sum_{r=1}^{3N} r^5 = \frac{1}{6} (3N)^3 (3N+1)^3 - \frac{(3N)^2}{12} (3N+1)^2$ $= N^2 (3N+1)^2 \left(\frac{9}{2} N (3N+1) - \frac{3}{4} \right)$ $= \frac{3}{4} N^2 (3N+1)^2 \left(6N (3N+1) - 1 \right)$		$\sum_{r=1}^{n} r^5 = \frac{1}{12} n^2 (n+1)^2 (2n^2 + 2n - 1)$ may be obtained after the M1 line before replacing n by $3N$
	$= \frac{1}{4}N^{2}(3N+1)^{2}(6N(3N+1)-1)$ $= \frac{3}{4}N^{2}(3N+1)^{2}(18N^{2}+6N-1)$	A 1	AG Must be convincingly shown Condone if N is written as n
		3	

Question 8 Total	8	
Quodion o Total	•	

Q	Answer	Marks	Comments
9(a)(i)	$\begin{bmatrix} -1 & 4 & k \\ 2 & 3 & 6 \\ 1 & 3 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ $\Rightarrow \begin{bmatrix} -x + 4y + kz \\ 2x + 3y + 6z \\ x + 3y - 2z \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$	M1	Use of $\mathbf{M}\mathbf{v} = \mathbf{v}$ with at least two rows of $\mathbf{M}\mathbf{v}$ correct $\begin{vmatrix} -2 & 4 & k \\ 2 & 2 & 6 \\ 1 & 3 & -3 \end{vmatrix} = 0$
	$-2x + 4y + kz = 0; x + 3y - 3z = 0$ $2x + 2y + 6z = 0 \implies x + y + 3z = 0;$	A 1	oe eg correct unsimplified expansion of determinant
	$\Rightarrow 2x + 4y = 0 \Rightarrow x = -2y$ $\Rightarrow 8y + kz = 0 \text{and} y = 3z \Rightarrow k = -24$	A 1	k = -24
		3	

Q	Answer	Marks	Comments
9(a)(ii)	$\frac{x}{-6} = \frac{y}{3} = z$	M1 A1	M1: Either a general point on the line or a direction vector $\lambda \begin{bmatrix} -6 \\ 3 \\ 1 \end{bmatrix}$ PI A1: Correct Cartesian equations Accept eg $-x = 2y = 6z$
		2	

Q	Answer	Marks	Comments
9(b)	$\det \mathbf{M} = 3k + 64$	B1	Correct expression for det M
	Cofactor matrix		
	$\begin{bmatrix} -24 & 10 & 3 \\ 3k+8 & 2-k & 7 \\ 24-3k & 2k+6 & -11 \end{bmatrix}$	M1	One complete row or column or diagonal correct
	$\begin{bmatrix} 3k+6 & 2 & k \\ 24-3k & 2k+6 & -11 \end{bmatrix}$	A2	All nine entries correct else A1 for at least six entries correct
	Inverse matrix \mathbf{M}^{-1} $= \frac{1}{3k+64} \begin{bmatrix} -24 & 3k+8 & 24-3k \\ 10 & 2-k & 2k+6 \\ 3 & 7 & -11 \end{bmatrix}$	M1	Transpose of their cofactors with no more than one further error and division by their det \mathbf{M} (\neq 0)
	$\begin{bmatrix} 3\kappa + 64 \\ 3 \end{bmatrix}$ 7 -11	A 1	Correct M ⁻¹ scores 6 marks
		6	

Question 9 Total	11
------------------	----

Q	Answer	Marks	Comments
10(a)	Aux. equation $m^2 + 2m + 1 = 0$; $m = -1, -1$	M1	Forming and solving the correct aux. equation. PI by correct value(s) of <i>m</i> seen/used
	$y_{CF} = (Ax + B)e^{-x}$	A 1	Correct CF
	$y_{PI} = a \sin 4x + b \cos 4x$	M1	$y_{PI} = a \sin 4x + b \cos 4x$ seen or used
	$y_{Pl}' = 4a \cos 4x - 4b \sin 4x$ $y_{Pl}'' = -16a \sin 4x - 16b \cos 4x$ $16a \sin 4x - 16b \cos 4x + 8a \cos 4x - 8b \sin 4x$ $+a \sin 4x + b \cos 4x = \sin 4x + 38 \cos 4x$	M1	$y_{\rm Pl}$ and $y_{\rm Pl}$ both of the form $\pm c \sin 4x \pm d \cos 4x$ and substitution into the differential equation
	$-15a - 8b = 1; -15b + 8a = 38 \implies a = 1, b = -2$ $y_{PI} = \sin 4x - 2\cos 4x$	A 1	Correct particular integral
	$[y_{GS} =] (Ax+B)e^{-x} + \sin 4x - 2\cos 4x$	B1ft	Their CF + their PI with exactly two arbitrary constants
		6	

Q	Answer	Marks	Comments
10(b)	When $x=0$, $y=4$ $\Rightarrow B-2=4$, $B=6$ When $x=0$, $\frac{\mathrm{d}y}{\mathrm{d}x}=0$ $\Rightarrow A-B+4=0$, $A=2$	М1	f(0) = 4 or $f'(0) = 0$ or $f''(0) = 34$ or series expansions used with their GS as far as finding a value for one of the arbitrary constants
	When $x = 0$ $\frac{d^2y}{dx^2} = 34 \Rightarrow -2A + B + 32 = 34$, $A = 2$	M1	f(0)=4 or $f'(0)=0$ or $f''(0)=34$ or series expansions used with their GS as far as finding a value for the remaining arbitrary constant
	$[y = f(x) =] (2x+6)e^{-x} + \sin 4x - 2\cos 4x$	A 1	$(2x+6)e^{-x} + \sin 4x - 2\cos 4x \text{ oe}$ PI by the correct $f\left(\frac{\pi}{16}\right)$
	$\left[f\left(\frac{\pi}{16}\right)=\right]\left(\frac{\pi}{8}+6\right)e^{-\frac{\pi}{16}}-\frac{1}{\sqrt{2}}$	A 1	ACF but must be exact with no trigonometric functions
		4	

Question 10 Total 10

Q	Answer	Marks	Comments
11(a)	Direction of normal to Π_1 is	M1	Forming correct cross product. PI by a correct direction vector
	$\begin{bmatrix} -1 \\ 1 \\ 4 \end{bmatrix} \times \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix} = \begin{bmatrix} 16 \\ 8 \\ 2 \end{bmatrix}$	A 1	ое
	Magnitude of $\begin{bmatrix} 16 \\ 8 \\ 2 \end{bmatrix} = \sqrt{16^2 + 8^2 + 2^2} = \sqrt{324}$	B1ft	ft their direction vector
	Direction cosines $\frac{16}{\sqrt{324}}$, $\frac{8}{\sqrt{324}}$, $\frac{2}{\sqrt{324}}$	M1	ft
	Required sum = $\frac{16}{18} + \frac{8}{18} + \frac{2}{18} = \frac{26}{18} = \frac{13}{9}$	A1ft	oe $-\frac{13}{9}$ ft one incorrect element in the direction vector for the normal
		5	

Q	Answer	Marks	Comments
11(b)	Direction of L is $\begin{bmatrix} 16 \\ 8 \\ 2 \end{bmatrix} \times \begin{bmatrix} 6 \\ c \\ 2 \end{bmatrix}$	M1	or $\begin{bmatrix} 2 \\ -5 \\ 4 \end{bmatrix} \bullet \begin{bmatrix} 6 \\ c \\ 2 \end{bmatrix} = 0$
	$\begin{bmatrix} 16 - 2c \\ -20 \\ 16c - 48 \end{bmatrix} = t \begin{bmatrix} 2 \\ -5 \\ 4 \end{bmatrix}$	M1	or $12-5c+8=0$
	$\begin{bmatrix} t=4 \implies \end{bmatrix} c=4$	A 1	
	Equation of Π_1 is $\mathbf{r} \bullet \begin{bmatrix} 16 \\ 8 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \bullet \begin{bmatrix} 16 \\ 8 \\ 2 \end{bmatrix} = 38$	B1ft	oe ft their direction vector. If using the given equation for Π_1 , award this mark for $\lambda=-2$, $\mu=3$
	(p,q,7) lies in both planes so $16p+8q+14=38$ and $6p+qc+14=14$	M1	Substitutes $\left(p,q,7\right)$ into their equations of Π_{1} and Π_{2}
	$\Rightarrow p = 6$, $q = -9$	A 1	p=6 and $q=-9$
		6	

Question 11 Total	11	
-------------------	----	--

Q	Answer	Marks	Comments
12(a)	$(\cos\theta + i\sin\theta)^5 = \cos 5\theta + i\sin 5\theta$	B1	or $\cos 5\theta = \text{Re}\left(\left(\cos \theta + i \sin \theta\right)^5\right)$
	$\cos 5\theta$ $= \cos^5 \theta + 10\cos^3 \theta (i\sin \theta)^2 + 5\cos \theta (i\sin \theta)^4$	M1	
	$= \cos^{5}\theta + 10i^{2}\cos^{3}\theta \left(1 - \cos^{2}\theta\right)$ $+ 5i^{4}\cos\theta \left(1 - \cos^{2}\theta\right)^{2}$	M1	Replacing $\sin^2\theta$ with $\left(1-\cos^2\theta\right)$
	$= \cos^{5}\theta - 10\cos^{3}\theta \left(1 - \cos^{2}\theta\right)$ $+ 5\cos\theta \left(1 - 2\cos^{2}\theta + \cos^{4}\theta\right)$ $= \cos^{5}\theta - 10\cos^{3}\theta + 10\cos^{5}\theta + 5\cos\theta$ $- 10\cos^{3}\theta + 5\cos^{5}\theta$	A 1	
	$\cos 5\theta = 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta$	A 1	
		5	

Q	Answer	Marks	Comments
12(b)	Roots of $\cos 5\theta = 1$ are $\theta = \begin{bmatrix} 0, \end{bmatrix} \frac{2\pi}{5}, \frac{4\pi}{5}, \frac{6\pi}{5}, \frac{8\pi}{5}$	M1	
	So roots of $16x^5 - 20x^3 + 5x - 1 = 0$ are $\left[\cos (=1), \right] \cos \frac{2\pi}{5}, \cos \frac{4\pi}{5}, \cos \frac{6\pi}{5}, \cos \frac{8\pi}{5}$	M1	
	$16x^{5} - 20x^{3} + 5x - 1 = 0$ $(x-1)(16x^{4} + 16x^{3} - 4x^{2} - 4x + 1) = 0$	M1	$ \begin{vmatrix} 16x^5 - 20x^3 + 5x - 1 \\ = (x - 1)(16x^4 + 16x^3 - 4x^2 - 4x + 1) \end{vmatrix} $
	The quartic equation whose roots are $\cos \frac{2\pi}{5}$, $\cos \frac{4\pi}{5}$, $\cos \frac{6\pi}{5}$, $\cos \frac{8\pi}{5}$ is $16x^4 + 16x^3 - 4x^2 - 4x + 1 = 0$	A1	
		4	

Q	Answer	Marks	Comments
12(c)	[Since $\cos(2\pi - \alpha) = \cos \alpha$] $\cos \frac{4\pi}{5} = \cos \frac{6\pi}{5}; \cos \frac{8\pi}{5} = \cos \frac{2\pi}{5}$	M1	Both results seen or used
	For the quartic equation in part (b) $\operatorname{Sum of root} = 2 \cos \frac{2\pi}{5} + 2 \cos \frac{6\pi}{5} = -\frac{16}{16} = -1$ $\operatorname{Product of roots} = \cos^2 \frac{2\pi}{5} \cos^2 \frac{6\pi}{5} = \frac{1}{16}$ $\operatorname{Since } \cos \frac{2\pi}{5} > 0 \text{and} \cos \frac{6\pi}{5} < 0,$ $\cos \frac{2\pi}{5} \cos \frac{6\pi}{5} = -\frac{1}{4}$	m1 E1	Uses sum of roots $= 2\cos\frac{2\pi}{5} + 2\cos\frac{6\pi}{5} = -\frac{16}{16} \text{ and}$ Product of roots $= \cos^2\frac{2\pi}{5}\cos^2\frac{6\pi}{5} = \frac{1}{16}$
	$x^{2} - \left(-\frac{1}{2}\right)x + \left(-\frac{1}{4}\right) = 0$ The quadratic equation with integer coefficients whose roots are $\cos \frac{2\pi}{5}$ and $\cos \frac{6\pi}{5}$ is $4x^{2} + 2x - 1 = 0$	A1 4	

Question 12 Total	13	
-------------------	----	--

Q	Answer	Marks	Comments
13(a)(i)	$\frac{\mathrm{d}y}{\mathrm{d}t} = -\left(\cosh t\right)^{-2} \sinh t = -\tanh t \operatorname{sech} t$	M1	Either form, condone sign error
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \mathrm{sech}^2 t$	A 1	Both derivatives correct
	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = \mathrm{sech}^4 t + \tanh^2 t \mathrm{sech}^2 t$	M1	Squaring and adding their derivatives
	$= \operatorname{sech}^2 t \left(\operatorname{sech}^2 t + \tanh^2 t \right) = \operatorname{sech}^2 t$	A 1	
	$s = \int_{-1}^{1} \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2} \mathrm{d}t = \int_{-1}^{1} \operatorname{sech} t \mathrm{d}t$	A 1	AG Must be convincingly shown
		5	

Q	Answer	Marks	Comments
13(a)(ii)	$s = \int_{-1}^{1} \frac{2}{e^t + e^{-t}} dt$	B1	$\operatorname{sech} t = \frac{2}{\operatorname{e}^t + \operatorname{e}^{-t}} \text{ or } \operatorname{sech} t = \frac{\cosh t}{1 + \sinh^2 t}$ or PI
	$s = \int_{-1}^{1} \frac{2e^{t}}{e^{2t} + 1} dt = \int_{e^{-1}}^{e} \frac{2}{u^{2} + 1} du$	M1	Valid substitution seen or PI
	$s = \left[2 \tan^{-1} u\right]_{e^{-1}}^{e}$	M1	$k \tan^{-1} u$ or $k \tan^{-1} (\sinh t)$ oe
	$s = 2 \tan^{-1}(e) - 2 \tan^{-1}(e^{-1})$	A 1	oe eg condone 4 $tan^{-1}(e) - \pi$
		4	

Q	Answer	Marks	Comments
13(b)	$y = \operatorname{sech} t$, $\tanh^2 t + \operatorname{sech}^2 t = 1$		
	$x^2 + y^2 = 1$	B1	
	[Possible values of x] $-1 < x < 1$	B1	
	[Possible values of y] $0 < y \le 1$	B1	
		3	

Question 13 Total	12
-------------------	----

Q	Answer	Marks	Comments
14(a)	$9(x^2 + y^2) = 36 - 24x + 4x^2$	M1	$x^2 + y^2 = r^2$ or $y = r \sin \theta$ used
	$9r^2 = (6-2x)^2$; $9r^2 = (6-2r\cos\theta)^2$	M1	$x = r \cos \theta$ used
	$\pm 3r = (6 - 2r\cos\theta)$	A 1	Condone missing ±
	$\frac{6}{r}$ = 2 cos θ ± 3 ; Since r ≥ 0 , take + sign		
	$\frac{6}{r} = 2\cos\theta + 3 \implies r = \frac{6}{3 + 2\cos\theta}$	A 1	AG Must be convincingly shown
		4	

Q	Answer	Marks	Comments
14(b)	$5+4\cos\theta = \frac{6}{3+2\cos\theta}$		
	$8\cos^{2}\theta + 22\cos\theta + 9 = 0$ $\Rightarrow \cos\theta = -0.5 \text{ [only as } \cos\theta \neq -2.25\text{]}$	M1 A1	M1 : Forms a quadratic equation in $\cos\theta$ and solves to find a value for $\cos\theta$ A1 : Correct value of $\cos\theta$
	When $\cos \theta = -0.5$, $r = 3$; $P\left(3, \frac{2\pi}{3}\right)$, $Q\left(3, -\frac{2\pi}{3}\right)$, $\angle POQ = \frac{2\pi}{3}$	A 1	Either correct coordinates of P and Q or $r = 3$ and $\angle POQ = \frac{2\pi}{3}$ seen/used
	area of triangle OPQ $= \frac{1}{2} (3)^2 \sin\left(\frac{2\pi}{3}\right) = \frac{9}{2} \left(\frac{\sqrt{3}}{2}\right) = \frac{9\sqrt{3}}{4}$	A 1	AG Must be convincingly shown
		4	

Q	Answer	Marks	Comments
14(c)	Equation of PQ is $r \cos \theta = -1.5$	B1ft	ft their values for r and $\cos heta$
	$(5+4\cos\theta)\cos\theta = -1.5$ $8\cos^2\theta + 10\cos\theta + 3 = 0$ $\cos\theta = -\frac{1}{2} [P \text{ and } Q]; \cos\theta = -\frac{3}{4} [S \text{ and } T]$	M1	Solving their $r\cos\theta=-k$ with $r=5+4\cos\theta$ to obtain two possible values of either $\cos\theta$ or r
	when $\cos\theta=-\frac{3}{4},\ r=2$ coordinates of S and T are $(2,\ \pi-\alpha)$ and $(2,\ -\pi+\alpha)$ where $\cos\alpha=\frac{3}{4}$	A 1	Correct polar coordinates of <i>S</i> and <i>T</i> PI by the correct area of <i>SOT</i>
	required area = $0.5(2)(2)\sin 2\alpha - 2(0.5)\int_{\pi-\alpha}^{\pi} (5+4\cos\theta)^2 d\theta$	M1	oe Representing the required area in any correct mathematical form
	2./7	B1	B1 for correct exact value for area of triangle <i>SOT</i>
	$= \frac{3\sqrt{7}}{4} - \left[33\theta + 40\sin\theta + 4\sin2\theta\right]_{\pi - \alpha}^{\pi}$	B1	B1 for correct integration of $(5+4\cos\theta)^2$
	$=\frac{3\sqrt{7}}{4}-\left\{-\left(-33\alpha+40\sin\alpha-4\sin2\alpha\right)\right\}$		
	$= \frac{3\sqrt{7}}{4} - 33\cos^{-1}\left(\frac{3}{4}\right) + 40\frac{\sqrt{7}}{4} - 8\frac{\sqrt{7}}{4}\frac{3}{4}$		
	$= \frac{37}{4} \sqrt{7} - 33 \cos^{-1} \left(\frac{3}{4} \right)$	A 1	
		7	

Question 14 Total	15	