МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Параллельные алгоритмы»

Тема: Реализация параллельной структуры данных с тонкой блокировкой.

Студент гр. 9304	Боблаков Д.С
Преподаватель	Сергеева Е.И.

Санкт-Петербург

Цель работы.

Реализовать параллельную структуры данных с тонкой блокировкой (или же с lock-free алгоритмом). Сравнить производительность с вариантом, реализованным с помощью условных переменных.

Задание.

Обеспечить структуру данных из лаб.2 как минимум тонкой блокировкой (*сделать lock-free). Протестировать доступ в случае нескольких потоковпроизводителей и потребителей. Сравнить производительность со структурой с грубой синхронизацией (т.е. с лаб.2).

В отчёте сформулировать инвариант структуры данных.

Выполнение работы.

Для реализации поставленной задачи был создан класс CustomStack, который является свободной от блокировок структурой. Внутри данного класса описаны методы push() и pop(), основанные на CAS-операциях.

Push:

- 1. Создаем новый узел.
- 2. Создаем указатель на узел tmp.
- 3. Цикл
 - 1. Сохраняем текущую голову.
 - 2. Подставляем её в указатель next нового узла.
 - 3. С помощью CAS-операции пытаемся в голову записать новый узел.
- 4. Повторяем, пока CAS-операция не завершится успешно.

Pop:

- 1. Цикл
 - 1. Сохраняем голову, пытаемся.
 - 2. Записываем узел next головы в голову.

2. Делаем предыдущие два пункта пока CAS-операция не завершится успешно или пока не получим, что голова пуста.

Исследование зависимости между количеством потоком, размерами входных данных и параметрами вычислительной системы.

Исследование для одного потребителя и производителя.

Таблица 1 - Сравнение размера входных данных и времени вычисления для одного потока потребителя и производителя при грубой синхронизации структуры:

Время вычисления, сек.	Размер входных данных	
0.338938	1000 x 1000	
16.6471	5000 x 5000	
61.8379	10000 x 10000	

Таблица 2 - Сравнение размера входных данных и времени вычисления для одного потока при тонкой синхронизации структуры:

Время вычисления, сек.	Размер входных данных	
0.407082	1000 x 1000	
16.5724	5000 x 5000	
64.6805	10000 x 10000	

Исследование для нескольких потребителей и производителей.

Было проведено исследование, где сравнивались структуры из второй и третье лабораторной работы по данной дисциплине. Были проведены тесты для

следующих конфигураций потребителей и производителей: 2/2, 4/4, 10/10. Брался средний результат из 3 попыток. Складывались матрицы 1000x1000.

Результат представлен в таблице 3.

Таблица 3: несколько потребителей и производителей

Тип	Потоков	Потоков	Потоков
блокировки	Производитель	Производитель/П	Производитель/Потре
	/Потребитель:	отребитель:	битель:
	2/2	4/4	10/10
Толстая	0.709559	1.23321	4.60462
блокировка			
Lock-free	1.56795	2.21708	7.4223
структура			

Выводы.

В ходе выполнения лабораторной работы была реализована программа на языке программировании C++ для попарного сложения матриц, использующая в качестве структуры данных *lock-free* стек.