```
Architetture dei Sistemi di Elaborazione 02GOLOV GRB-ZZZ Delivery date:

Laboratory

3

Expected delivery of lab 03.zip must include:

- program_1_a.s, program_1_b.s

and program_1_c.s

- this file compiled and if possible in pdf format.
```

Please, configure the winMIPS64 simulator with the *Base Configuration* provided in the following:

- Code address bus: 12
- Data address bus: 12
- Pipelined FP arithmetic unit (latency): 6 stages
- Pipelined multiplier unit (latency): 8 stages
- Divider unit (latency): not pipelined unit, 24 clock cycles
- Forwarding is enabled
- Branch prediction is disabled
- Branch delay slot is disabled
- Integer ALU: 1 clock cycle
- Data memory: 1 clock cycle
- Branch delay slot: 1 clock cycle.



1) Starting from the assembly program you created in the previous lab called program\_1.s:

```
for (i = 0; i < 60; i++){
	v5[i] = ((v1[i]+v2[i]) * v3[i])+v4[i];
	v6[i] = v5[i]/(v4[i]*v1[i]);
	v7[i] = v6[i]*(v2[i]+v3[i]);
}
```

- a. Detect manually the different data, structural and control hazards that provoke a pipeline stall
- b. Optimize the program by re-scheduling the program instructions in order to eliminate as many hazards as possible. Compute manually the number of clock cycles the new program (**program\_1\_a.s**) requires to execute, and compare the obtained results with the ones obtained by the simulator.
- c. Starting from <a href="mailto:program\_1\_a.s">program\_1\_a.s</a>, enable the branch delay slot and re-schedule some instructions in order to improve the previous program execution time. Compute manually the number of clock cycles the new program (<a href="mailto:program\_1\_b.s">program\_1\_b.s</a>) requires to execute, and compare the obtained results with the ones obtained by the simulator.
- d. Unroll 3 times the program (**program\_1\_b.s**), if necessary re-schedule some instructions and increase the number of used registers. Compute

manually the number of clock cycles the new program (program\_1\_c.s) requires to execute, and compare the obtained results with the ones obtained by the simulator.

## Complete the following table with the obtained results:

| Program                 | program_1.s | program_1_a.s | program_1_b.s | program_1_c.s |
|-------------------------|-------------|---------------|---------------|---------------|
| Clock cycle computation |             |               |               |               |
| By hand                 | <u>3905</u> | 3360          | 3360          | <u>2645</u>   |
| By simulation           | 4029        | 3726          | 3607          | 2747          |

Compare the results obtained in point 1, and provide some explanation in the case the results are different.

| Eventual explanation:                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The main difference between the computation by hand and by simulation is that during the simulation on winmips, when a stall occurs, the following instruction will stall in a different part of the pipeline. In particular if a floating point instruction doesn't have the required operands, the instruction enter in the execution stage and then stalls. |
| Otherwise, when we simulate the execution by hand, usualy stall the instruction in the previously stage of the pipeline.                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                |