Number Theory Final Exam

RDB

August 18, 2021

INSTRUCTIONS No outside materials (notes, textbook, internet) or resources (calculators). Leave your webcam on until you submit and I confirm that I have your exam. Good luck!

Problem 1 How many positive integers less than 21000 are relatively prime to 21000?

Problem 2 Give the general solution to the congruence equation

$$7x \equiv 1 \pmod{11}$$
,

if any solutions exist.

Problem 3 Prove that $3^{(p-1)/2} \equiv \pm 1 \pmod{p}$ if p > 3 is prime.

Problem 4 Using the Euclidean algorithm, find the greatest common divisor of 138 and 52.

Problem 5 Using the Euclidean algorithm, find integers x and y such that

$$17x + 93y = 1$$
,

if any such x and y exist.

Problem 6

- (a) Prove that gcd(a, b) = gcd(a b, b) for all integers a and b.
- (b) Prove that $gcd(F_{n+1}, F_n) = 1$ for $n \ge 1$, where F_n is the *n*th Fibonacci number.

Problem 7 How many primitive roots are there mod 127? [Hint: 127 is prime.]

Problem 8 Let a be an integer relatively prime to the positive integer n. Prove that $|a|_n$, the multiplicative order of $a \mod n$, divides $\phi(n)$.

Problem 9

- (a) Why is $f(n) = \sum_{d|n} \mu(d)$ multiplicative?
- (b) Prove that f(1) = 1 and f(n) = 0 if n > 1. [Hint: Prove that $f(p^k) = 0$ if $k \ge 1$, then apply multiplicativity.]

Problem 10

- (a) State Euler's theorem.
- (b) What is the remainder of 3^{702} when divided by 11?

Problem 11 How many mutually incongruent solutions does $100x \equiv 7 \pmod{200}$ have?

Problem 12 Prove that $2^n \equiv -1 \pmod{3}$ if n is odd.

Problem 13 Using Euler's criterion, prove that -1 is not a quadratic residue mod 11.

Problem 14 Prove or disprove the following statement: For every integer m, there exists exactly one integer $0 \le x < m$ such that $x^2 \equiv 0 \pmod{m}$.

Problem 15 Using the Chinese Remainder Theorem (with the formula for a particular solution!), find the smallest positive solution x to the following system of equations, if any solutions exist:

$$x = 2 \pmod{5}$$
$$x = 1 \pmod{6}.$$

Problem 16 Let f be a multiplicative function. Prove that f(n) = 1 for all positive integers n iff $f(p^k) = 1$ for all primes p and nonnegative integers k.

Problem 17 Suppose that

$$ax + by = 1$$
,

where a, b, x, and y are all integers. Prove that gcd(a, b) = 1.

Problem 18 Write 64 in base 2, base 3, and base 5.

Problem 19

- (a) State Euclid's lemma.
- (b) Prove, using Euclid's lemma, that $ax \equiv bx \pmod{p}$ implies $a \equiv b \pmod{p}$ if p does not divide x.

Problem 20 Using the Chinese Remainder Theorem (with the formula for a particular solution!), find the smallest positive integer x such that x is divisible by 10 and x+1 is divisible by 9.