2014 TAIWAN

International Olympiad in Informatics 2014

13-20th July 2014 Taipei, Taiwan Day-1 tasks

wall

Language: fa-IRN

Wall

Jian-Jia is building a wall by stacking bricks of the same size together. This wall consists of n columns of bricks, which are numbered 0 to n-1 from left to right. The columns may have different heights. The height of a column is the number of bricks in it.

Jian-Jia builds the wall as follows. Initially there are no bricks in any column. Then, Jian-Jia goes through k phases of *adding* or *removing* bricks. The building process completes when all k phases are finished. In each phase Jian-Jia is given a range of consecutive brick columns and a height k, and he does the following procedure:

- In an *adding* phase, Jian-Jia adds bricks to those columns in the given range that have less than *h* bricks, so that they have exactly *h* bricks. He does nothing on the columns having *h* or more bricks.
- In a *removing* phase, Jian-Jia removes bricks from those columns in the given range that have more than *h* bricks, so that they have exactly *h* bricks. He does nothing on the columns having *h* bricks or less.

Your task is to determine the final shape of the wall.

Example

We assume that there are 10 brick columns and 6 wall building phases. All ranges in the following table are inclusive. Diagrams of the wall after each phase are shown below.

phase	type	range	height
0	add	columns 1 to 8	4
1	remove	columns 4 to 9	1
2	remove	columns 3 to 6	5
3	add	columns 0 to 5	3
4	add	column 2	5
5	remove	columns 6 to 7	0

Since all columns are initially empty, after phase 0 each of the columns 1 to 8 will have 4 bricks. Columns 0 and 9 remain empty. In phase 1, the bricks are removed from columns 4 to 8 until each of them has 1 brick, and column 9 remains empty. Columns 0 to 3, which are out of the given range, remain unchanged. Phase 2 makes no change since columns 3 to 6 do not have more than 5 bricks. After phase 3 the numbers of bricks in columns 0, 4, and 5 increase to 3. There are 5 bricks in column 2 after phase 4. Phase 5 removes all bricks from columns 6 and 7.

Task

Given the description of the k phases, please calculate the number of bricks in each column after all phases are finished. You need to implement the function buildWall.

- buildWall(n, k, op, left, right, height, finalHeight)
 - n: the number of columns of the wall.
 - k: the number of phases.
 - op: array of length k; op [i] is the type of phase i: 1 for an adding phase and 2 for a removing phase, for $0 \le i \le k-1$.
 - left and right: arrays of length k; the range of columns in phase i starts with column left[i] and ends with column right[i] (including both endpoints left[i] and right[i]), for $0 \le i \le k-1$. You will always have left[i] \le right[i].
 - height: array of length k; height[i] is the height parameter of phase i, for $0 \le i \le k-1$.
 - finalHeight: array of length n; you should return your results by placing the final number of bricks in column i into finalHeight[i], for $0 \le i \le n-1$.

Subtasks

For all subtasks the height parameters of all phases are nonnegative integers less or equal to 100,000

subtask	points	$m{n}$	$oldsymbol{k}$	note
1	8	$1 \leq n \leq 10,000$	$1 \leq k \leq 5,000$	no additional limits
2	24	$1 \leq n \leq 100,000$	$1 \leq k \leq 500,000$	all adding phases are before all removing phases
3	29	$1 \leq n \leq 100,000$	$1 \leq k \leq 500,000$	no additional limits
4	39	$1\leq n\leq 2,000,000$	$1 \leq k \leq 500,000$	no additional limits

Implementation details

You have to submit exactly one file, called wall.c, wall.cpp or wall.pas. This file implements the subprogram described above using the following signatures. You also need to include a header file wall.h for C/C++ program.

C/C++ program

```
void buildWall(int n, int k, int op[], int left[], int right[],
int height[], int finalHeight[]);
```

Pascal program

```
procedure buildWall(n, k : longint; op, left, right, height :
array of longint; var finalHeight : array of longint);
```

Sample grader

The sample grader reads the input in the following format:

- line 1: n, k.
- line 2 + i ($0 \le i \le k 1$): op[i], left[i], right[i], height[i].