PSALTer results panel

 $S = \\ \iiint \left(\frac{1}{6} \left(6t_{1} \mathcal{A}^{\alpha_{i}} \mathcal{A}^{\theta}_{, \theta} + 6 \mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + 6 f^{\alpha\beta} \tau \left(\Delta + \mathcal{K}\right)_{\alpha\beta} - 12t_{1} \mathcal{A}^{\theta}_{, \theta} \partial_{i}f^{\alpha_{i}} + 12t_{1} \mathcal{A}^{\theta}_{, \theta} \partial_{i}f^{\alpha_{i}} - 6t_{1} \partial_{i}f^{\theta}_{, \theta} \partial_{i}f^{\alpha_{i}} - 6t_{1} \partial_{i}f^{\alpha_{i}} \partial_{\theta}f_{\alpha}^{\theta} + 12t_{1} \partial_{i}f_{\alpha} \partial_{\theta}f_{\alpha}^{\theta} + 8r_{1} \partial_{\beta}\mathcal{A}_{\alpha\theta_{i}} \partial_{\theta}\mathcal{A}^{\alpha\beta_{i}} - 4r_{1} \partial_{\beta}\mathcal{A}_{\alpha\theta_{i}} \partial_{\theta}\mathcal{A}^{\alpha\beta_{i}} + 4r_{1} \partial_{\beta}\mathcal{A}_{\alpha\beta_{i}} \partial_{\theta}\mathcal{A}^{\alpha\beta_{i}} + 2r_{1} \partial_{\alpha}\mathcal{A}_{\alpha\beta_{i}} \partial_{\theta}\mathcal{A}^{\alpha\beta_{i}} + 4r_{1} \partial_{\alpha}\mathcal{A}^{\theta}\mathcal{A}^{\beta_{i}} - 4r_{1} \partial_{\alpha}\mathcal{A}^{\beta_{i}} \partial_{\alpha}\mathcal{A}^{\beta_{i}} \partial_{\alpha}\mathcal{A}^{\beta_{i}} - 4r_{1} \partial_{\alpha}\mathcal{A}^{\beta_{i}} \partial_{\alpha}\mathcal{A}^{\beta_{i}} - 4r_{1} \partial_{\alpha$

Wave operator

	${}^{0,^{+}}\mathcal{F}^{\parallel}$		$0.^{+}f^{\perp}$	${}^{0}\mathcal{F}^{\parallel}$										
^{0,+} <i>Я</i> ∥†	-t. 1	$i \sqrt{2} kt$	0	0										
0.+ <i>f</i> †	$-i\sqrt{2} kt$	$-2 k^2 t$.	0	0										
$0.^{+}f^{\perp}$ †	0	0	0	0										
^{0.} A∥ †	0	0	0	$k^2 r_1 + t_2$	${}^{1,^{+}}\mathcal{F}^{\parallel}{}_{\alpha\beta}$	$^{1^{+}}_{\cdot}\mathcal{F}\!\!/^{\perp}_{\alpha\beta}$	$1.^+f^{\parallel}_{lphaeta}$	$^{1}\mathcal{H}^{\parallel}{}_{\alpha}$	$^1\cdot\mathcal{A}^{\scriptscriptstyle\perp}{}_{\scriptscriptstylelpha}$	$ f _{\alpha}$	$^{1}f_{\alpha}^{\perp}$			
				$^{1.^{+}}\mathcal{A}^{\parallel}\dagger^{^{lphaeta}}$	$\frac{1}{6} \left(6 k^2 r. + t. + 4 t. \right)$	$-\frac{t2t.}{3\sqrt{2}}$	$-\frac{i k (t2 t.)}{3 \sqrt{2}}$	0	0	0	0			
				$^{1.}^{+}\mathcal{A}^{\perp}\dagger^{lphaeta}$	$-\frac{t2t.}{\frac{1}{3}\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$\frac{1}{3}ik(t_1+t_2)$	0	0	0	0			
				$1.^+f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i k (t2 t.)}{3 \sqrt{2}}$	$-\frac{1}{3}ik(t_1+t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0			
				$^{1}\mathcal{H}^{\parallel}$ † lpha	0	0	0	$k^2 r_{.5} - \frac{t_{.1}}{2}$	$\frac{t_1}{\sqrt{2}}$	0	ī k t . 1			
				$^{1}\mathcal{H}^{\perp}\dagger^{lpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0			
				$^{1}f^{\parallel}\dagger^{\alpha}$	0	0	0	0	0	0	0			
				$f^{\perp}f^{\perp}$	0	0	0	-ī k t . 1	0	0	0	$2^+_{\cdot}\mathcal{A}^{\parallel}_{\alpha\beta}$	$2^+f^{\parallel}_{\alpha\beta}$	$2^{-}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$
											$^{2.}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$\frac{t}{2}$	$-\frac{i k t}{\sqrt{2}}$	0
											$2.^+f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i k t}{\sqrt{2}}$	$k^2 t$.	0
										:	$\mathcal{L}^{\mathcal{A}^{\parallel}}$ † $^{\alpha\beta\chi}$	0	0	$\frac{t}{2}$

Saturated propagator

Source constraints

1			
Spin-parity form	Covariant form	Multiplicities	
$0^{+}_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1	
$-2 \bar{i} k^{0^+} \sigma^{\parallel} + {}^{0^+} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1	
$2 i k \frac{1}{2} \sigma^{\perp}^{\alpha} + \frac{1}{2} \tau^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3	
1 τ" α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3	
$\bar{i} k \stackrel{1^+}{\cdot} \sigma^{\perp}{}^{\alpha\beta} + \stackrel{1^+}{\cdot} \tau^{\parallel}{}^{\alpha\beta} = 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3	
$-2 i k ^{2^{+}} \sigma^{\parallel^{\alpha\beta}} + 2^{+} \tau^{\parallel^{\alpha\beta}} == 0$	$-i\left(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\delta}+2\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi}{}_{\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left$	5	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{\delta} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta\beta\epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta\alpha\epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha\beta\delta} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta\alpha\delta} + 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta} = 0$		
Total expected gauge generators:			

.

Pole residue: $-\frac{1}{r_2} > 0$ Square mass: $-\frac{2}{r_2} > 0$ Spin: 0

Massive particle						
Pole residue:	$\frac{{}^{-3}t_{1}t_{2}(t_{1}+t_{2})+3r_{5}(t_{1}^{2}+2t_{2}^{2})}{r_{5}(t_{1}+t_{2})(-3t_{1}t_{2}+2r_{5}(t_{1}+t_{2}))}>0$					
Square mass:	$-\frac{\frac{3t.t.}{12}}{\frac{2r.t.+2r.t.}{51} + \frac{2r.t.}{52}} > 0$					
Spin:	1					
Parity:	Even					

Massless spectrum

(No particles)

Parity:

Unitarity conditions

r. < 0 && t. > 0 && r. > 0 && -t. < t. < 0

Odd