Description of the code for simulating gamma oscillations

The code is driven by the script in gamma_simulator.m. To run the program, go to the directory containing gamma_simulator.m on your computer, and type gamma_simulator at the Matlab prompt.

Input parameters are defined in params.m, which is the only file that a user will likely want to modify. Six sample files params.m, corresponding to the six panels of Figure 1, can be found in the directory EXAMPLES. The version of params.m that you want to use must be placed in the directory containing gamma_simulator.m.

A Matlab script generate_Figure_1.m that generates the entire Figure 1 is also included.

List of parameters defined in params.m:

- num_e and num_i are the numbers of pyramidal cells (E-cells) and basket cells (I-cells), respectively (N_E and N_I in Appendix 2).
- p_ee, p_ei, p_ie, and p_ii are parameters defining the density of synaptic connectivity (p_{EE} , p_{EI} , p_{IE} , and p_{II} in Appendix 2).
- tau_r_e, tau_d_e, tau_r_i, and tau_d_i are the rise and decay time constants $(\tau_R \text{ and } \tau_D \text{ in the notation of Appendix 1})$ of excitatory and inhibitory synapses, respectively, measured in ms. These constants are allowed to depend on the presynaptic neuron; therefore tau_r_e and tau_d_e are vectors of length num_e, and similarly tau_r_i and tau_d_i are vectors of length num_i.
- v_{rev_e} , v_{rev_i} are the reversal potentials (V_{rev} in Appendix 1) of excitatory and inhibitory synapses, respectively, measured in mV.
- The simulated time interval is [0,t_final].
- The differential equations are solved using the midpoint method with time step dt $(\Delta t \text{ in Appendix 2})$.
- g_hat_ie is the expected value of the total inhibitory synaptic conductance affecting each E-cell (\hat{g}_{IE} in the notation of Appendix 2). g_hat_ei, g_hat_ii, and g_hat_ee are defined similarly (\hat{g}_{EI} , \hat{g}_{II} , and \hat{g}_{EE} in Appendix 2).
- I_e and I_i are deterministic external drives to the E- and I-cells, respectively (I_E and I_I in Appendix 2). These are functions of time t, and they are vectors of lengths num_e and num_i; thus heterogeneity in deterministic external drives is allowed.

• In addition to the deterministic external drives I_e and I_i, each cell also receives stochastic external excitatory synaptic drive of the form

$$-s(t)v \times \begin{cases} \text{g_stoch_e} & \text{for E-cells}, \\ \text{g_stoch_i} & \text{for I-cells}. \end{cases}$$

Here g_stoch_e and g_stoch_i are the maximal conductances associated with the stochastic synaptic input (g_{stoch} in Appendix 2), and the gating variable s(t) decays exponentially with time constant tau_d_stoch_e for the E-cells and tau_d_stoch_i for the I-cells ($\tau_{D,stoch}$ in Appendix 2) during each time step. At the end of each time step, s jumps to 1 with probability

$$dt/1000 \times \begin{cases} f_{stoch_e} & \text{for E-cells,} \\ f_{stoch_i} & \text{for I-cells.} \end{cases}$$

This simulates the arrival of external synaptic input pulses. The expected number of input pulses per second is f_stoch_e for E-cells, and f_stoch_i for I-cells (f_{stoch} in Appendix 2). Different cells receive independent stochastic input.