Национальный исследовательский университет «Высшая школа экономики» Факультет компьютерных наук Образовательная программа: Программная инженерия

Отчет по Домашнему заданию №1 «Пространственные данные» по майнору «Прикладной статистический анализ»

«Статистическое исследование количества зарегистрированных преступлений в субъектах Российской Федерации»

Работу выполнил: студент 2 курса Артемьев Александр Вячеславович Преподаватель: Грачёва Светлана Сергеевна

Содержание

Оглавление

1.	Ввес	Эение	3
	1.1	Актуальность темы исследования	3
	1.2	Цели исследования	3
	1.3	Задачи исследования	3
	1.4	Гипотезы	3
2.	Исп	ользуемые показатели для анализа	4
3.	Исс	ледование выбранных данных на выбросы	4
4.	Посі	троение интервального вариационного ряда	7
5.	Посі	троение графиков распределения признака в вариационном ряду	8
6.	Расч	иёт показателей центра распределения1	1
	6.1	Дискретный ряд1	1
	6.2	Интервальный ряд1	1
7.	Расч	иет показателей вариации 13	3
	7.1	Дискретный ряд1	3
	7.2	Интервальный ряд14	4
8.	Пок	азатели дифференциации10	6
	8.1	Дискретный ряд10	6
	8.2	Интервальный ряд	7
9.	Анал	лиз временных данных19	9
	9.1	Используемый показатель для анализа19	9
	9.2	Анализ на выбросы19	9
	9.3 9.3.1 9.3.2 9.3.3 9.3.4	Базисные показатели	1 1 2
	9.5.4	Построение линии тренда2	
1(бщие выводы по работе20	
11			
		тисок литературы	
12		спользуемые информационные источники20	
13	3. Π	риложения 20	0

1. Введение

1.1 Актуальность темы исследования

С течением времени изменяется уровень преступности и появляются новые виды правонарушений, что оказывает огромное влияние на различные сферы общества:

- Заболеваемость и смертность населения
- Экономические кризисы и спад производства
- Материальный и моральный вред, причиненный обществу
- Падение качества жизни населения

Анализ количества преступлений является актуальным и необходимым, ведь нахождение факторов, объясняющих целую структуру правонарушений, поможет снизить уровень преступности. Что напрямую окажет положительное влияние на все общество в целом.

1.2 Цели исследования

- Изучить в каких регионах страны зарегистрировано больше/меньше всего преступлений.
- Определить факторы, которые влияют на уровень преступности в регионах.
- Изучить распределение субъектов по уровню преступности.
- Изучить уровень преступности в Москве с 2009 по 2022 год, и спрогнозировать уровень преступности на 2023 год.

1.3 Задачи исследования

- Выбрать актуальные данные по уровню преступности в субъектах РФ
- Найти аномальные значения в выбранных данных
- Построить интервальный вариационный ряд
- Найти показатели центра распределения, вариации, дифференциации и проанализировать найденные значения как для дискретного, так и для интервального вариационного ряда.
- Найти данные по уровню преступности в Москве с 2009 по 2022 год и показатели рядов динамики для прогноза на 2023 год.

1.4 Гипотезы

- Наиболее высокий уровень преступности, будет достигаться в крупнейших регионах РФ, наименьший уровень соответственно в самых маленьких по численности регионах
- За исключением крупнейших городов, в исследуемых данных будет равномерное распределение регионов по размаху вариации.
- Уровень преступности в Москве, вероятно снизился по сравнению с 2009 годом, но устойчиво растет более 5 лет, из-за большого роста населения в Москве.

2. Используемые показатели для анализа

Выбранный показатель – уровень преступности.

- Показатель характеризует количество документально зарегистрированных преступлений в данном субъекте РФ.
- Единица измерения количество преступлений.
- Количественные дискретные данные.

Было принято решение использовать именно этот показатель для исследования уровня преступности, а не количество преступлений относительно населения субъекта РФ. Во-первых, этот показатель иллюстрирует абсолютные данные, а не относительные. Во-вторых, в дальнейшем планируется исследование зависимости уровня преступности от населения субъекта РФ (один из факторов, который косвенно влияет на уровень преступности).

3. Исследование выбранных данных на выбросы

Данные по уровню преступности были взяты с официального сайта Генеральной прокуратуры Российской Федерации, и сформированы в таблицу (Приложение 1). Первым этапом исследования было построение точечной диаграммы и гистограммы для исходного (рис. 1 и рис. 2) и ранжированного по возрастанию рядов данных (рис. 3 и рис 4).

Рисунок 1. Точечная диаграмма распределения субъектов РФ по количеству преступлений

Рисунок 2. Гистограмма распределения субъектов РФ по количеству преступлений

Рисунок 3. Точечная диаграмма субъектов РФ по количеству преступлений (данные ранжированы по возрастанию)

Рисунок 4. Гистограмма субъектов РФ по количеству преступлений (данные ранжированы по возрастанию)

Визуализируя исходные данные в виде диаграмм, становится легче их анализировать. Исследуя рис. 1 и рис. 2, можно заметить, что в рассматриваемой выборке преобладают субъекты с уровнем преступности, не превышающим 40 000 единиц. Также на первом рисунке отчетливо видны выбросы, это 5 точек со значением показателя более 60 000. Эти же выбросы можно заметить на графиках, изображенных на 3 и 4 рисунках. Также из гистограммы (рис. 4), можно определить субъект с наименьшим количеством преступлений – Ненецкий автономный округ (686), и с наибольшим - Москва (138180). На данном этапе рано делать утверждения о всех выбросах, но то, что аномальные значения присутствуют становится очевидным. Поэтому следующим этапом было построение "Ящика с усами" (рис. 5)

Рисунок 5. Диаграмма размаха, субъектов РФ по уровню преступности.

Теория о том, что есть выбросы подтвердилась, на диаграмме отмечены 5 точек которые не попадают в интерквартильный размах, а именно: Москва (138180), Краснодарский край (77125), Московская область (74054), Санкт Петербург (62971), Челябинская область (62844).

Далее будем исследовать новый набор данных (Приложение 2), исключая аномальные наблюдения, которые могут непредвиденным образом влиять на результаты исследования и искажать истинный результат.

Ниже представлена точечная диаграмма для новой выборки (рис. 6).

Рисунок 6. Точечная диаграмма субъектов РФ по количеству преступлений (данные ранжированы по возрастанию, исключая выбросы)

4. Построение интервального вариационного ряда

Для построение интервального вариационного ряда, необходимо найти все величины, отображаемые на рис. 7(Где указаны необходимые формулы для поиска величин). С помощью построенной точечной диаграммы (рис. 6), можем определить минимальное и максимальное значения уровня преступности, которые равны соответственно 686 (Ненецкий автономный округ) и 57246(Ростовская область).

Тогда размах вариации = 56560(разница максимального и минимального значений). Следующий этап состоял в нахождении количества интервалов разбиения. Было принято решение воспользоваться эмпирическим правилом Стёрджеса — определения оптимального количества интервалов, которое находится по формуле:

$$n = \lfloor 1 + \log_2 N \rfloor$$

Где n — количество интервалов, N — количество наблюдений. То есть n = 7. Следовательно ширина интервала h = 8080(формула указана в рис. 7). Зная ширину интервалов и их количество, однозначно определяются границы интервалов (рис. 7, аі — левая граница і интервала и bi — правая граница і интервала). После определения всех границ, были

найдены середины интервалов, как среднее арифметическое границ интервала. Последним этап построения интервального ряда, состоял в нахождении частот, количества субъектов РФ, имеющие значение из рассматриваемого интервала, и накопленных частот. Результаты вычисления отображены ниже, в таблице 1.

Минимальное значение данных	X_{min}	686				
Максимальное значение данных	X_{max}	57246				
Размах вариации	$R = X_n$	$_{max}-X_{min}$	56560			
Количество наблюдений	N	80				
Количество интервалов	n = [1]	+ log ₂ N]	7			
Ширина интервала	$h = \frac{R}{n}$	8080				
Границы интервалов	$b_i =$	$a_i + h$	<i>a</i> ₁ =	= X _{min}	a_{i+1}	$= b_i$
Середина интервала	$X_{cpi} =$	$=\frac{(a_i+b_i)}{2}$				

Рисунок 7. Величины необходимые для построения интервального вариационного ряда.

Таблица 1. Интервальный вариационный ряд

Интервал	Нижняя граница	Верхняя граница	Середина интервала	Частота	Накопленная Частота
1	686	8766	4726	22	22
2	8766	16846	12806	26	48
3	16846	24926	20886	14	62
4	24926	33006	28966	3	65
5	33006	41086	37046	7	72
6	41086	49166	45126	4	76
7	49166 57246		53206	4	80

5. Построение графиков распределения признака в вариационном ряду

Для дальнейшего анализа, построенного в предыдущем разделе ряда, было принято решение построить графическое представление статистических данных. Далее представлены: гистограмма (рис. 8), полигон (рис. 9) для распределения признака

по частотам (из табл. 1) и кумулята (рис. 10), огива (рис. 11) для распределения признака по накопленным частотам (из табл. 1).

Рисунок 8. Гистограмма интервального ряда распределения субъектов РФ по уровню преступности

Рисунок 9. Полигон интервального ряда распределения субъектов РФ по уровню преступности

Рисунок 10. Кумулята интервального ряда распределения субъектов РФ по уровню преступности

Рисунок 11. Огива интервального ряда распределения субъектов РФ по уровню преступности

Исследования построенных графиков, точнее раскрывают устройство данных и позволяют сделать несколько выводов:

• На предыдущих этапах был сделан вывод что более половины субъектов имеют значение показателя менее 40000. Из гистограммы, можно усилить данную оценку: >50 % (48) выборки имеют значение не более чем 12806. Что говорит о

- среднем уровне преступности по всей стране: преобладают города с низким уровнем преступности.
- На полигоне (рис. 9) стоит отметить резкое снижение значения частоты, после 2 интервала. В результате подтверждаем предыдущий вывод раздела.
- Анализируя огиву, стоит отметить выпуклую форму графика (огива почти на всем размахе вариации выпукла), как следствие, это говорит о низком росте накопленной частоты для значений>20000. Рассматривая участок размаха вариации 20000 – 53206, где накопленная частота увеличивается на 3 – 5 единиц, можно сделать вывод, 20 - 25 % субъектов равномерно распределены на этом интервале.

6. Расчёт показателей центра распределения

Следующий этап состоит из расчета средних величин для дискретного и интервального рядов. В этом разделе мы найдем среднее арифметическое, моду и медиану ряда.

6.1 Дискретный ряд

• Среднее арифметическое рассчитывается по следующей формуле:

$$X$$
cp. $=\frac{\sum x_i}{N}$

Достаточно сложить все значения(xi) и поделить на количество наблюдений N = 80.

Медиана определяется по следующей формуле:

49166

57246

Me =
$$\frac{Xn_{/2} + Xn_{/2} + 1}{2}$$

Поскольку у нас четное количество наблюдений (N = 80), медиана определяется как среднее арифметическое двух значений, расположенных в центре ряда =(x40+x41)/2

• Мода - значение признака, которое наиболее часто встречается в совокупности. В исследуемой выборке, все значения уникальны. В данном случае моды нет, иными словами, все варианты одинаково модальны.

Интервальный ряд

Для нахождения среднего арифметического интервального ряда, к таблице 1, был добавлен столбец, где записан результат умножение середины интервала на частоту (табл. 2).

4

76

80

180504

212824

	Гаолица 2. Интервальныи вариационныи ряд распределения							
	Нижняя		Середина	Частота,	Накопленная			
Интервал	граница	Верхняя граница	интервала, Хср.і	fi	частота	Xcp.i *fi		
1	686	8766	4726	22	22	103972		
2	8766	16846	12806	26	48	332956		
3	16846	24926	20886	14	62	292404		
4	24926	33006	28966	3	65	86898		
5	33006	41086	37046	7	72	259322		

45126

53206

41086

49166

6

7

Рисунок 12, содержит подробный алгоритм вычисления средних для ряда.

	, , , , , ,	т подробный алг	OPMIN B	ычислепия ср	сдпил для ря	да.	
а) Среднее для интервального	о ряда						
	⊥ интервалами средне	 е вычисляется по след	⊥ цующей ф	ормуле:			
, , , , , , , , , , , , , , , , , , , ,		,	1,7 1,7 1,7 1,7				
	хі - середина і интер	вала					
$Xcp. = \frac{\sum x_i f_i}{N}$	fi - частота і интерва						
$Xcp. = \frac{-ist}{N}$						Von -	10261
N	N - количество набл	юдений				Хср. =	18361
) Медиана интервального ря	 нда						
Σ	f	X н - нижняя граница	а медианн	ого интервала			
2	$F-F_{Me-1}$	h - длина медианног	о интерва	ла			
$Me = x_{\rm H} + h * \frac{\sum_{\rm I}}{2}$	<u> </u>	F _{Me-1} - накопленная ч	астота пр	едмедианного ин	нтервала		
**	<i>Т</i> ме	f _{ме} - частота медианн	ого интер	вала			
Сначала найдем медианн	ый интервал, накопл	енная частота которо	го первой	і превышает	Хн	8766	
половину сумм всех частот. І	Первый такой интерв	ал с накоп. частотой :	>40 являе	тся 2 интервал.	h	8080	
Следовательно Хн = 8766. Д				-	FMe-1	22	
		•		•	fMe	26	
рассматриваем группир					N/2	40	
наблюдений N = 80. Накпо	оленная частота пред	медианного интерва.	ла(первог	о) = частоте 1			
интерв	ала = 22. Частота мед	ианного интервала =	26.				
	80						
Me = 8766 + 8080	$\frac{-}{2}$ - 22						
Me = 8766 + 8080) * 26						
	26					Me=	14359,84
:) Мода интервального ряда							
. ($f_2 - f_1$	X н - нижняя граница	а модальн	ого интервала	Хн	8766	
$Mo = x_{H} + h * \frac{(f_{2} - f_{2})^{2}}{(f_{2} - f_{2})^{2}}$	$\frac{f}{f} \perp f = f$	h - длина модальног	о интерва	ла	h	8080	
$U_2 - U_2$	$J_1 + J_2 - J_3$	f1 - частота предмод	ального и	интервала	f1	22	
Сначала находим модальный				f2	26		
с наибольшей частотой. Наибольшая частота		f3 - частота послемо	дального	интервала	f3	14	
достигается во 2 интерв	але, 1ый и 3ий						
предмодальный и послемод	дальный интервалы						
соответствен	іно.						
	(26 – 22)						
$Mo = 8766 + 8080 * {(26 - }$	$\frac{(20-2L)}{22+26-14}$						
(26 -	- 22 T 20 - 14)					Mo =	10786

Рисунок 12. Алгоритм нахождения средних для интервального ряда

В результате получаем следующие значения средних, отображенные в таблице 3. При переходе к интервальному ряду, вместо рассмотрения 80 объектов, используем только 7 интервалов с соответствующими частотами, из-за чего уменьшается точность вычислений (Результаты вычислений среднего и медианы для рядов отличаются <на 3%). В данном случае, при исследовании мы получили значения среднего и медианы меньшие чем для дискретного ряда.

Таблица 3. Сравнение показателей центра распределения

	Дискретный	Интервальный	
ряд		ряд	
Хср.	18798,34	18361	
Me	14472,5	14359,846	
Мо Моды нет		10786	

После сравнения найденных средних, можно сделать определенные выводы:

- Моду для дискретного ряда найти не удалось, так как все значения в выборке уникальны. То есть нет двух субъектов с одинаковым уровнем преступности.
- Стоит отметить, поскольку большинство значений сгруппированы в первых двух интервалах, мода и медиана тоже попадают в эту область (второй интервал). Можно сделать вывод, что почти 60 % регионов имеют количество преступлений <35 % от максимума (57246).
- Среднее арифметическое> Медиана> Мода, следовательно они представляют положительную или правостороннюю асимметрию. То есть для нашего ряда характерен удлиненный "хвост" справа, который также проявляется при исследовании огивы.

7. Расчет показателей вариации

В данном разделе, рассчитаны такие показатели как: дисперсия, среднее квадратическое отклонение, среднее линейное отклонение, коэффициент осцилляции, коэффициент линейной вариации, коэффициент вариации. Для этого были построены вспомогательные таблицы для дискретного (Приложение 3) и интервального вариационного ряда (Приложение 4).

7.1 Дискретный ряд

Далее на рисунке 14 изображены формулы, по которым были вычислены все величины. На рисунке 13, пояснение обозначений. При последовательном вычислении коэффициентов, на каждом шаге нам известны все значения для применения формулы.

 x_i - i значение ряда

 \bar{x} — среднее арифметическое

N - количество наблюдений

D - дисперсия

S - среднее квадратическое отклонение

 \bar{d} — среднее линейное отклонение

R - размах вариации

VR - коэффициент осцилляции

Vd - коэффициент линейной вариации

V - коэффициент вариации

	Используя встроенную функцию, рассчитывается с помощью формулы: $D_1 = \mathcal{L}$ ИСПР([Xi])				
Дисперсия	$D_2 = \overline{x^2} - \bar{x}^2$ $D_3 = \frac{\sum (x_i - \bar{x})^2}{N}$				
Среднее	Вычисляется как корень из значения дисперсии				
квадратическое отклонение	$S = \sqrt{D}$				
Среднее	Средняя арифметическая из абсолютных отклонений значений признака от средней.				
линейное отклонение	$\bar{d} = \frac{\sum x_i - \bar{x} }{N}$				
Коэффициент	Характеризует размах колебаний крайних значений признака вокруг средней арифметической				
осцилляции	$V_R = \frac{R}{\bar{x}} 100\%$				
Коэффициент	Отношение среднего линейного отклонения к средней величине				
линейной вариации	$V_{\bar{d}} = \frac{\bar{d}}{\bar{x}} 100\%$				
	Относительная мера среднего разброса значений в				
Коэффициент	статистической совокупности				
вариации	$V = \frac{s}{\bar{x}} 100\%$				

Рисунок 14. Формулы для вычисления коэффициентов вариации дискретного ряда

7.2 Интервальный ряд

Аналогичным образом вычисляются коэффициенты для интервального ряда (рис. 15) Результаты вычислений занесены в таблицу 4.

	едний квадрат отклонений средней величины	
Дисперсия	$D_1 = \frac{\sum (x_i - \bar{x})^2 f_i}{N}$	$D_2 = \overline{x^2} - \bar{x}^2$
Среднее	Вычисляется как корень из значения дисперсии	
квадратическое	$S = \sqrt{D}$	
отклонение	$S = \sqrt{D}$	
	Средняя арифметическая из абсолютных отклонений	
Среднее	значений признака от средней.	
линейное	$\nabla x_i - \bar{x} f$	
отклонение	$\bar{d} = \frac{\sum x_i - \bar{x} f_i}{N}$	
	N	
	Характеризует размах колебаний крайних значений	
Коэффициент	признака вокруг средней арифметической	
осцилляции	$V_R = \frac{R}{\bar{x}} 100\%$	
	Отношение среднего линейного	
Коэффициент	отклонения к средней величине	
линейной	ā	
вариации	$V_{\bar{d}} = \frac{d}{\bar{x}} 100\%$	
	x x	
	Относительная мера среднего разброса значений в	
Коэффициент	статистической совокупности	
вариации	$V = \frac{s}{\bar{x}} 100\%$	
Puchuo	45 4 3	<u> </u>

Рисунок 15. Формулы для вычисления коэффициентов вариации интервального ряда

Таблица 4. Сводная таблица для сравнения и интерпретации результатов

	Ряд исходных данных	Интервальный ряд
Среднее арифметическое (Хср.)	18798,3375	18361
Дисперсия (S^2)	195797372,6	193563975
Среднее квадратическое отклонение (S)	13992,76143	13912,72709
Среднее линейное отклонение (d)	10966,21375	11110
Размах (R)	56560	56560
Коэффициент осцилляции (Vr), %	301%	308%
К-т лин. вариации (Vd), %	58%	61%
К-т вариации (V), %	74%	76%

После вычисления показателей вариации можно сделать несколько выводов об устройстве данных:

- Среднее квадратическое отклонение почти на 50 % больше, чем R/6 (одно из эмпирических соотношений для проверки однородности). Также стоит заметить, что коэффициент вариации 74 и 76 % соответственно при двух расчетах. Такой коэффициент вариации превышает более чем в 2 раза допустимое значение для нормальных данных (<33 %). Поэтому я сделаю предположение о неоднородности информации и необходимости исключения самых больших значений.
- Коэффициент осцилляции> 300 %, что говорит о большом размахе крайних значений по отношению к среднему. Действительно, в исследуемых данных> 50 % значений сгруппированы в первых двух интервалах, иными словами, самые большие значения увеличивают размах колебаний не пропорционально количеству наблюдений.

8. Показатели дифференциации

В данном разделе рассчитываются квартили, интерквартильный размах, коэффициент асимметрии и коэффициент эксцесса. Обозначения сохраняются с рис. 13.

8.1 Дискретный ряд

Далее на рисунках 16 и 17 соответственно предоставлены алгоритмы по расчёту квартилей и характеристик форм распределения.

	Используя в	строенную функц	цию, расчитывается с	помощью фо	рмулы =КВАРТІ	иль.искл(с7:с	86;1)
Нижний квартиль	$Q_1 = X_{\frac{N+}{4}}$	$\frac{1}{4} = X_{20} + \frac{1}{4}(X_{20} + X_{20} + X_{20} + X_{20})$	$(X_{21} - X_{20})$	которого на	ие ранжирован іходиться 25% є одиться между	всех наблюден	ий. Для N = 80,
B	Используя в	строенную функц	цию, расчитывается с	помощью фо	рмулы =КВАРТІ	иль.искл(с7:с	86;2)
Второй квартиль (Медиана)	$Q_2 = I$	$= Me = \frac{Xn_{/2} + Xn_{/2+1}}{2}$		Значение ранжированного ряда данных, левее которого находиться 50% всех наблюдений, является медианой исследуемого ряда.			
	Используя в	строенную функц	цию, расчитывается с	помощью фо	рмулы =КВАРТІ	иль.искл(с7:с	86;3)
Верхний квартиль	$Q_3 = X_{\frac{3(N+4)}{4}}$	$_{1)} = X_{60} + \frac{3}{4}$	$(X_{61}-X_{60})$	которого на	ие ранжирован ходиться 75% в одиться между	всех наблюден	ий. Для N = 80,
Интерквартильный размах	$IQR = Q_3 - Q_1$	Показывает разб	брос средней половин нижнего квартил				сть верхнего и

Рисунок 16. Алгоритм нахождение квартилей и интерквартильного размаха

Рисунок 17. Алгоритм нахождение коэффициентов эксцесса и асимметрии

8.2 Интервальный ряд

На рисунке 18 изображена общая формула определения квартилей по интервальному ряду распределения. На рисунках 19 и 20 соответственно предоставлены алгоритмы по расчёту квартилей и характеристик форм распределения. Результаты в таблице 5.

Общая формула определения квартилей по интервальному ряду распределения				
	a_{Q_i}	Нижняя граница интервала, содержащего і квартиль		
$Q_i = a_{Q_i} + hrac{rac{i}{4}\sum m_j - m_{Q_i-1}^{\scriptscriptstyle\mathrm{H}}}{m_{Q_i}}$	h	Величина интервала		
	$m_{Q_{\dot{t}}}$	Частота интервала, содержащего і квартиль		
	$m_{Q_{i}}^{\scriptscriptstyle\mathrm{H}}$	Накопленная частота интервала, предшествующего интервалу, содержащему і квартиль		
	$\sum m_j$	Сумма всех частот		

Рисунок 18.Общая формула для определения квартилей по интервальному ряду распределения

Нижний квартиль	$Q_1 = 686$	$Q_1 = 686 + 8080 \frac{1}{4} * 80$ 25% от всех наблюдений = 20, то есть первый интервал бу, содержать первый квартиль,отсюда находим нижнюю грав интервала = 686 и частоту данного интервала = 22, получае накполенная частота перед ним = 0. h фиксированна и равна				
Второй квартиль (Медиана)	$Q_2 = 8766 + 8080 \frac{\frac{1}{2} * 80 - 22}{26}$		₹80 − 22 26	50% от всех наблюдений = 40, то есть второй интервал будет содержать медиану,отсюда находим нижнюю границу интервала = 8766 и частоту данного интервала = 26, получается накполенная частота перед ним = 22. h = 8080		
Верхний квартиль	$Q_2 = 16846 + 8080 \frac{\frac{3}{4} * 80 - 48}{14}$		* 80 – 48 14	75% от всех наблюдений = 60, то есть третий интервал будет содержать верхний квартиль,отсюда находим нижнюю границу интервала = 16846 и частоту данного интервала = 14, получается накопленная частота перед ним = 48. h = 8080		
Интерквартильный размах	$\overline{IQR} = Q_3 - Q_1$	Показывает разброс средней половины набора данных, определяется как разность верхнего и нижнего квартилей				

Рисунок 19.Алгоритм расчета квартилей для интервального ряда

Рисунок 20. Алгоритм расчета коэффициента асимметрии и коэффициента эксцесса

Таблица 5. Сводная таблица для сравнения и интерпретации полученных результатов

	Ряд исходных данных	Интервальный ряд
Нижний квартиль (Q1)	8310	8031,455
Второй квартиль (Q2)	14472,5	14359,846
Верхний квартиль (Q3)	23461,75	23771,714
Интерквартильный размах	15151,75	15740,260
Коэффициент асимметрии	1,070	1,092
Коэффициент эксцесса	0,244	0,212

Измеряя показатели дифференциации и характеристики формы распределения для дискретного и интервального рядов мы получили схожие результаты по каждому показателю, отличия есть из-за погрешности при переходе от дискретного к интервальному ряду. Можно сделать следующие выводы:

- 3 квартиля лежат в первых 3 интервалах, следовательно в нашей выборке преобладает количество городов с низким уровнем преступности, в сравнении с размахом выборки.
- 3 квартиля почти пропорциональны друг другу, то есть они разбивают 75% данных на 3 равные части, и из пропорциональности можно судить о равномерном росте значений в этом интервале, дискретной непрерывности.
- As > 1, распределение несимметрично, правосторонняя асимметрия, причем существенная.

- Ek>0, в изучаемом распределении означает, что в совокупности есть сформировавшееся ядро, т.е. большинство значений показателя находятся вокруг среднего. График распределения с выраженным пиком.
- В целом получаем следующие представление данных: большинство регионов имеет значение уровня преступности около среднего, но часть регионов(< 20 %) имеет аномальный уровень преступности, которые в точечной диаграмме отображены в удлиненном правом "хвосте"

9. Анализ временных данных

Было принято решение для анализа уровня преступности выбрать Москву, так как она является крупнейшим субъектом РФ, не рассматривалась в основном исследовании, и информация по количеству преступлений в таком регионе будет актуальна. Исследование уровня преступности будет затрагивать промежуток времени с 2009 года по 2022 год

9.1 Используемый показатель для анализа

Показатель для каждого года остался такой же: обработав информацию с официального сайта Государственной прокуратуры Российской Федерации, составил таблицу 6 с уровнем преступности в Москве с 2009 по 2022 год.

Nº	Год	Зарегистрировано преступлений,шт
1	2009	212050
2	2010	185911
3	2011	173628
4	2012	180240
5	2013	174990
6	2014	182873
7	2015	195239
8	2016	173898
9	2017	140134
10	2018	140542
11	2019	142081
12	2020	146559
13	2021	143564

Таблица 6. Динамика уровня преступности в Москве с 2009 по 2022 год

9.2 Анализ на выбросы

Для нахождения аномальных значений, было принято решение построить диаграмму размаха (рис. 21) и точечную диаграмму (рис. 22). После анализа которых, выбросы не были обнаружены, и я решил продолжать исследование с этим же набором данных.

2022

14

138180

Рисунок 21. Ящик с усами для динамики уровня преступности в Москве с 2009 по 2022 год

Рисунок 22. Динамика уровня преступности в Москве с 2009 по 2022 год

9.3 Расчет показателей рядов динамики

В этом разделе рассчитываются цепные и базисные показатели динамики, а именно: абсолютный прирост, темп прироста и темп роста. Показатели относительные, поэтому 2009 год был принят за базисный и расчеты проводились относительного него. Далее в работе за Yk будем обозначать уровень преступности за k год.

9.3.1 Цепные показатели

Абсолютный прирост за k год = насколько изменилось количество преступлений по сравнению с предыдущим годом, то есть = Yk – Yk-1.

Темп роста за k год вычисляется аналогично, только он равен показателю: во сколько раз в процентах изменился уровень преступности = (Yk/Yk-1) *100%

Темп прироста показывает, насколько процентов изменился уровень преступности по сравнению с предыдущим годом то есть= темп роста за k год - 100.

Выполнив расчеты по описанным формулам показатели были занесены в таблицу 7.

Цепные показатели динамики Дата Темп Количество преступлений, шт. Абсолютный прирост, шт. Темп прироста,% роста,% 2009 212050 2010 185911 -26139 87,67 -12,33 2011 173628 -12283 93,39 -6,61 2012 180240 6612 103,81 3,81 2013 174990 -5250 97,09 -2,91 2014 182873 7883 104,50 4,50 2015 195239 12366 106,76 6,76 173898 -21341 2016 89,07 -10,93 2017 140134 -33764 80,58 -19,42 2018 140542 408 100,29 0,29 2019 142081 101,10 1539 1,10 2020 146559 4478 103,15 3,15 2021 143564 -2995 97,96 -2,04 2022 138180 -5384 96,25 -3,75

Таблица 7. Цепные показатели динамики

9.3.2 Базисные показатели

Абсолютный показатель показывает прирост количества преступлений относительно базисного года = Yk-Y1

Темп роста показывает процентный прирост количества преступлений относительно базисного года = (Yk/Y1) * 100

Темп прироста рассчитывается аналогично как цепной показатель.

Рассчитанные показатели были занесены в таблицу 8.

Таблица 8. Базисные показатели динамики

	Базисные показатели динамики				
Дата	Количество преступлений, шт.	Абсолютный прирост, шт.	Темп роста,%	Темп прироста,%	
2009	212050				
2010	185911	-26139	87,67	-12,33	
2011	173628	-38422	81,88	-18,12	
2012	180240	-31810	85,00	-15,00	
2013	174990	-37060	82,52	-17,48	
2014	182873	-29177	86,24	-13,76	
2015	195239	-16811	92,07	-7,93	
2016	173898	-38152	82,01	-17,99	
2017	140134	-71916	66,09	-33,91	
2018	140542	-71508	66,28	-33,72	
2019	142081	-69969	67,00	-33,00	
2020	146559	-65491	69,12	-30,88	
2021	143564	-68486	67,70	-32,30	
2022	138180	-73870	65,16	-34,84	

9.3.3 Анализ показателей

После составления таблиц с показателями динамики, было принято решение построить графическое представление базисного (рис. 23) и цепного темпа прироста (рис. 24).

Рисунок 23. Цепной темп прироста уровня преступности

Рисунок 24. Базисный темп прироста уровня преступности

Анализируя табл. 7, табл. 8 и рис. 23, рис. 24 можно сделать следующие выводы:

- Наибольший уровень преступности наблюдается в 2009 году (212050), а наименьший в 2017 (140134)
- После чего на протяжении 14 лет уровень преступности не поднимался до такого высокого значения, а к 2022 году он упал почти на 35%
- Анализируя рис. 23, когда уровень преступности начинал расти он достигал пика в 3 точках 2012, 2015, 2020 годах.
- Стоит отметить, что рост и спад уровня преступности происходит хотя бы в течении 2ух лет(кроме перемены в 2012 2013 годах), то есть если уровень преступности начал расти в каком то году, то в следующем году он тоже будет расти, аналогично для снижения количества преступлений.
- Также можно заметить, рост уровня преступности в пике увеличивается <10 %, а при снижении уровня преступности: он мог упасть почти на 20%

9.3.4 Прогноз уровня преступности в Москве на 2023 год

После анализа 14 уровней количества преступлений в Москве, следующий этап заключался в прогнозе показателя на 2023 год. Прогноз осуществлялся с помощью 2 методов: среднего абсолютного прироста и среднего темпа роста. Расчеты представлены на рисунке 25.

Рисунок 25. Прогноз уровня преступности в Москве на 2023 год

После чего были построены точечные диаграммы для 2ух прогнозов (рис. 26 и рис. 27)

Рисунок 26. Прогноз с помощью метода среднего абсолютного прироста

Рисунок 27. Прогноз с помощью метода среднего темпа роста

Исследуя построенные графики, можно прийти к следующим выводу, что в 2023 году уровень преступности будет продолжать уменьшаться.

9.4 Построение линии тренда

Последний этап был построение линии тренда. Для этого я построил таблицу 9. Алгоритм построения: сначала заполнили известные данные: это год и соответственно количество

преступлений. После чего заполняем t и t^2 начиная с середины данных. Далее заполняем столбец уt умножая количество преступлений на соответствующие t.После чего необходимо найти уравнение линейного тренда y = a1*t + a0. a0 = cymma всех значений количества преступлений деленое на количество наблюдений, таким образом a0 = 166420,64. Старший коэффициент = $(cymma\ yt)/(cymma\ t^2) = -9931,92$. То есть прямая линии тренда задается уравнением y = -9931*t + 166420. После чего в это уравнение подставляем все значения t и находим столбец Утренд, подставив t = 7, найдем прогноз значения на 2023 год = 96 897. Построим линию тренда (рис. 28)

Таблица 9. Построение линии тренда

Год	Количество преступлений, шт.	t	t^2	Yt	Үтренд
2009	212050	-7	49	-1484350	235944,10
2010	185911	-6	36	-1115466	226012,18
2011	173628	-5	25	-868140	216080,25
2012	180240	-4	16	-720960	206148,33
2013	174990	-3	9	-524970	196216,41
2014	182873	-2	4	-365746	186284,49
2015	195239	-1	1	-195239	176352,56
2016	173898	0	0	0	166420,64
2017	140134	1	1	140134	156488,72
2018	140542	2	4	281084	146556,80
2019	142081	3	9	426243	136624,88
2020	146559	4	16	586236	126692,95
2021	143564	5	25	717820	116761,03
2022	138180	6	36	829080	106829,11
Сумма	2329889		231	-2294274	

Рисунок 28. Линия тренда

Анализируя линию тренда, можно сделать выводы:

• Можно заметить резкое снижение уровня преступности по линии тренда, которое на самом деле падает гораздо медленнее

• В целом линия тренда показывает, что уровень преступности будет снижаться. Но рассчитанные прогнозы выше, показывают снижение примерно на 5000, а не на 30000, как показывает линия тренда

10. Общие выводы по работе

Выбрав актуальные данные и убрав из них аномальные значения, я построил точечные диаграммы, гистограммы, кумуляту, огиву, наше показатели центра распределения и показатели вариации. После чего были найдены показатели дифференциации и рядов динамики. Проанализировав найденные показатели, можно сделать несколько выводов по поставленным гипотезам и устройству ряда данных:

- Наиболее высокий уровень преступности действительно у крупнейших городов таких как Москва и Санкт Петербург, но далее по уровню преступности идут Челябинская и Ростовская области, население в которых не самое высокое(за исключением Москвы и Санкт Петербурга), то есть уровень преступности зависит от размера рассматриваемого региона, но косвенно, следовательно существуют множество других существенных факторов, от которых зависит количество преступлений
- Гипотеза о равномерном распределении городов оказалась не верной, устройство данных можно представить следующим образом: сформировано ядро, вокруг которого сформировалось большинство городов с не большим уровнем преступности, и <20% городов имеют более высокий уровень преступности, которые можно видеть в правом "хвосте". Распределение данных несимметрично, неоднородно, правая асимметрия
- В Москве уровень преступности действительно снизился, и снижается, но не монотонно, в некоторых годах он не существенно растет. По прогнозу на 2023 год уровень преступности упадет еще сильнее.

11. Список литературы

12. Используемые информационные источники

Сайт Государственной прокуратуры Российской Федерации: https://epp.genproc.gov.ru/web/gprf/activity/crimestat

13. Приложения

Приложение 1

Таблица 10. Количество зарегистрированных преступлений по субъектам РФ аз 2022 год

Nº	Регион	Зарегистрировано преступлений,шт
1	Москва	138180
2	Санкт Петербург	62971
3	Севастополь	6269

4	Амурская область	16253
5	Архангельская область	16786
6	Астраханская область	13062
7	Белгородская область	14588
8	Брянская область	13549
9	Челябинская область	62844
10	Воронежская область	30460
11	Иркутская область	37867
12	Ивановская область	11791
13	Калининградская область	12645
14	Калужская область	14656
15	Кемеровская область	47071
16	Кировская область	18519
17	Костромская область	8188
18	Курганская область	13456
19	Курская область	13448
20	Ленинградская область	28569
21	Липецкая область	13940
22	Магаданская область	2386
23	Московская область	74054
24	Мурманская область	12075
25	Нижегородская область	39404
26	Новгородская область	10615
27	Новосибирская область	46814
28	Омская область	23074
29	Оренбургская область	21742
30	Орловская область	8243
31	Пензенская область	13274
32	Псковская область	8714
33	Ростовская область	57250
34	Рязанская область	9154
35	Сахалинская область	8511
36	Самарская область	47060
37	Саратовская область	29200
38	Смоленская область	14611
39	Свердловская область	51822
40	Тамбовская область	13799
41	Томская область	18578
42	Тверская область	21352

43	Тульская область	15826		
44	Тюменская область			
45	Ульяновская область	12159		
46	Владимирская область	16254		
47	Волгоградская область	36031		
48	Вологодская область	17411		
49	Ярославская область	18368		
50	Республика Адыгея	4388		
51	Республика Алтай	4586		
52	Республика Башкортостан	50751		
53	Республика Бурятия	19955		
	D	14057		
54	Республика Дагестан	14357		
55	Республика Ингушетия	2233		
56	Кабардино-Балкарская Республика	7416		
57	Республика Калмыкия	2693		
- 07	Карачаево-Черкесская			
58	Республика	4436		
59	Республика Карелия	11850		
60	Республика Коми	14797		
61	Республика Крым	20779		
62	Республика Марий Эл	7741		
63	Республика Мордовия	8107		
64	Республика Саха (Якутия)	13000		
	Республика Северная			
65	Осетия-Алания	8065		
66	Республика Татарстан	52189		
67	Республика Тыва	6619		
68	Удмуртская Республика	24583		
69	Республика Хакасия	9493		
70	Чеченская Республика	2416		
71	Чувашская Республика	12730		
72	Алтайский край	39177		
73	Камчатский край	5450		
74	Хабаровский край	21312		
75	Краснодарский край	77125		
76	Красноярский край	45561		
77	Пермский край	41027		
78	Приморский край	33604		
79	Ставропольский край	33569		
80	Забайкальский край	20816		
81	Ненецкий автономный округ	686		

82	Ханты-Мансийский автономный округ	20376
83	Чукотский автономный округ	853
84	Ямало-Ненецкий автономный округ	6657
85	Еврейская автономная область	3164

Приложение 2 Таблица 11. Количество зарегистрированных преступлений по субъектам РФ за 2022 год(исключая выбросы ранжированные значения)

Nº	Регион	Зарегистрировано преступлений,шт
81	Ненецкий автономный округ	686
83	Чукотский автономный округ	853
55	Республика Ингушетия	2233
22	Магаданская область	2386
70	Чеченская Республика	2416
57	Республика Калмыкия	2693
85	Еврейская автономная область	3164
50	Республика Адыгея	4388
58	Карачаево-Черкесская Республика	4436
51	Республика Алтай	4586
73	Камчатский край	5450
3	Севастополь	6269
67	Республика Тыва	6619
84	Ямало-Ненецкий автономный округ	6657
56	Кабардино-Балкарская Республика	7416
62	Республика Марий Эл	7741
65	Республика Северная Осетия-Алания	8065
63	Республика Мордовия	8107
17	Костромская область	8188
30	Орловская область	8243
35	Сахалинская область	8511
32	Псковская область	8714
34	Рязанская область	9154
69	Республика Хакасия	9493
26	Новгородская область	10615
12	Ивановская область	11791
59	Республика Карелия	11850

24	Мурманская область	12075			
45	Ульяновская область				
13	Калининградская область	12159 12645			
71	Чувашская Республика	12730			
64	Республика Саха (Якутия)				
6	Астраханская область	13000 13062			
31	Пензенская область				
19	Курская область				
18	Курганская область	13456			
8	Брянская область	13549			
40	Тамбовская область	13799			
21	Липецкая область	13940			
54	Республика Дагестан	14357			
7	Белгородская область	14588			
38	Смоленская область	14611			
14	Калужская область	14656			
60	Республика Коми	14797			
43	Тульская область	15826			
4	Амурская область	16253			
46	Владимирская область				
5	Архангельская область	16786			
48	Вологодская область	17411			
49	Ярославская область	18368			
16	Кировская область	18519			
41	Томская область	18578			
53	Республика Бурятия	19955			
	Ханты-Мансийский автономный				
82	округ	20376			
61	Республика Крым	20779			
80	Забайкальский край	20816			
74	Хабаровский край	21312			
40	T	21352			
42	Тверская область	21742			
29	Оренбургская область	23074			
28 44	Омская область	23591			
	Тюменская область	24583			
68 20	Удмуртская Республика	28569			
37	Ленинградская область				
31	Саратовская область	29200			
10	Воронежская область	30460			
79	Ставропольский край				
78	Приморский край	33604			

47	Волгоградская область	36031
11	Иркутская область	37867
72	Алтайский край	39177
25	Нижегородская область	39404
77	Пермский край	41027
76	Красноярский край	45561
27	Новосибирская область	46814
36	Самарская область	47060
15	Кемеровская область	47071
52	Республика Башкортостан	50751
39	Свердловская область	51822
66	Республика Татарстан	52189
33	Ростовская область	57246

Таблица 12. Вспомогательные данные для дискретного ряда

Приложение 3

Xi ²	Xi-Xcp.	Xi- Xcp.	(Xi-Xcp.)2	(Xi-Xcp.)3	(Xi-Xcp.)4
470596	- 18112,34	18112,34	328056769,7	-5941874932218,05	107621244155123000,00
727609	- 17945,34	17945,34	322035138	-5779029238070,00	103706630099534000,00
4986289	- 16565,34	16565,34	274410406,5	-4545700997000,92	75301071189406800,00
5692996	- 16412,34	16412,34	269364822,2	-4420906372802,13	72557407446329300,00
5837056	- 16382,34	16382,34	268380982	-4396707825114,13	72028351479910600,00
7252249	- 16105,34	16105,34	259381896	-4177432976291,23	67278967966799800,00
10010896	- 15634,34	15634,34	244432509,1	-3821540342676,92	59747251487276600,00
19254544	- 14410,34	14410,34	207657826,9	-2992419369625,46	43121773057840100,00
19678096	- 14362,34	14362,34	206276738,5	-2962616136217,85	42550092831306800,00
21031396	- 14212,34	14212,34	201990537,2	-2870757686690,35	40800177123962500,00
29702500	- 13348,34	13348,34	178178114	-2378381600971,10	31747440313552600,00
39300361	- 12529,34	12529,34	156984298,2	-1966909254209,45	24644069877863400,00
43811161	- 12179,34	12179,34	148336261,9	-1806637397642,34	22003646606007800,00
44315649	- 12141,34	12141,34	147412076,3	-1789779769799,36	21730320235806300,00

	_					
54997056	54997056 11382,34 11		129557607	-1474668408155,53	16785173522214000,00	
59923081	11057,34	11057,34	122264712,6	2,6 -1351922191436,04	14948659944447900,00	
65044225	- 10733,34	10733,34	115204533,9	-1236529143759,82	13272084628560200,00	
65723449	- 10691,34	10691,34	114304697,5	-1222070099223,87	13065563879460800,00	
67043344	- 10610,34	10610,34	112579261,9	-1194503963876,92	12674090201822000,00	
67947049	- 10555,34	10555,34	111415149,7	-1176024508107,19	12413335591342900,00	
72437121	- 10287,34	10287,34	105829312,8	-1088701858566,91	11199843455955100,00	
75933796	- 10084,34	10084,34	101693862,8	-1025515234294,13	10341641734013600,00	
83795716	-9644,34	9644,34	93013245,81	-897051134599,78	8651463896838150,00	
90117049	-9305,34	9305,34	86589305,99	-805742716117,54	7497707911640440,00	
112678225	-8183,34	8183,34	66967012,64	-548013665790,94	4484580781779430,00	
139027681	-7007,34	7007,34	49102778,84	-344079743512,07	2411082889702540,00	
140422500	-6948,34	6948,34	48279394,01	-335461523904,10	2330899886350010,00	
145805625	-6723,34	6723,34	45203267,14	-303916821077,53	2043335360031320,00	
147841281	-6639,34	6639,34	44080802,44	-292667324662,72	1943117143657880,00	
159896025	-6153,34 6153,34	37863562,39	-232987278331,25	1433649356778600,00		
162052900	-6068,34	6068,34	36824720,01	-223464829387,39	1356060004102590,00	
169000000	-5798,34	5798,34	33620717,76	-194944268587,37	1130352662960240,00	
170615844	-5736,34	5736,34	32905567,91	-188757443183,34	1082776399736700,00	
176199076	-5524,34	5524,34	30518304,81	-168593415719,89	931366928714494,00	
180848704	704 -5350,34 5350,		28626111,36	-153159357109,48	819454251818763,00	
181063936	-5342,34	5342,34	28540569,96	-152473357189,55	814564133864628,00	
183575401			, i	-144648351443,73	759308015546766,00	
190412401				-124950319083,30	624668815830123,00	
194323600	-4858,34	4858,34	23603443,26	-114673493538,16	557122533912442,00	
206123449	-4441,34	4441,34	19725478,79	-87607508650,62	389094513451591,00	
		4210,34	17726941,86	-74636408089,92	314244467846312,00	
213481321	-4187,34	4187,34	17533795,34	-73419918739,93	307433978986651,00	
214798336	-4142,34	4142,34	17158959,96	-71078203319,49	294429907042938,00	
218951209	-4001,34	4001,34	16010701,79	-64064221469,27	256342571773286,00	
250462276	-2972,34	2972,34	8834790,214	-26259978257,43	78053518123733,80	
264160009	-2545,34	2545,34	6478742,989	-16490587482,53	41974110716302,00	
264192516	-2544,34	2544,34	6473653,314	-16471158888,57	41908187228649,50	

_		-				
281769796	281769796 -2012,34 2012,34 4049502,214 -8148965161,38 16.			16398468180431,70		
303142921 -1387,34 1387,34		1924705,339	-2670215893,11	3704490641614,24		
337383424 -430,34 430,34		185190,3639	-79694358,23	34295470883,73		
342953361	1 -279,34 279,34		78029,43891	-21796548,39	6088593336,02	
345142084	-220,34 220,34		48548,61391	-10697080,22	2356967912,22	
	3/2					
398202025	98202025 1156,66 1156,66		1337868,139 1547461906,22		1789891157100,46	
415181376	1577,66 1577,66		2489018,964	3926831881,14	6195215402684,92	
431766841	1980,66	1980,66	3923023,939	7770186402,39	15390116825231,50	
433305856	2017,66	2017,66	4070961,964	8213827293,50	16572731311571,40	
454201344	2513,66	2513,66	6318499,164	15882574404,59	39923431684283,90	
455907904	2553,66	2553,66	6521192,164	16652923884,26	42525947238592,20	
472714564	2943,66	2943,66	8665148,914	25507273914,78	75084805700170,50	
532409476	4275,66	4275,66	18281289,81	78164625308,95	334205557260032,00	
556535281	4792,66	1792,66 4792,66	22969613,84	110085606885,21	527603159908473,00	
		·				
604323889	5784,66	5784,66	33462320,24	193568229048,99	1119726875771110,00	
816187761	816187761 9770,66		95465845,69 932764558503,38 9		9113727693098050,00	
852640000	10401,66	10401,66	108194582,8	1125403534238,47	11706067739455800,00	
927811600	11661,66	11661,66	135994372,3	1585920471241,03	18494469287453900,00	
1126877761	14770,66	14770,66	218172470,7	3222551931336,98	47599226966501600,00	
		·	-	.,		
1129228816	14805,66	14805,66	219207642,1	3245514365819,00	48051990339217600,00	
1298232961	17232,66	17232,66	296964656,8	5117491705733,19	88188007411449300,00	
1433909689	19068,66	19068,66	363613889,5	6933630539929,68	132215060665612000,00	
1534837329	20378,66	20378,66	415289885,3	8463052411966,33	172465688823273000,00	
1552675216	20605,66	20605,66	424593327,1	8749026797230,97	180279493387197000,00	
1683214729	22228,66	22228,66	494113436,5	10983480817538,50	244148088168288000,00	
2075804721	26762,66	26762,66	716240104,1	19168492174696,30	512999886705287000,00	
2191550596			784877345,3	21988858810210,40	616032447187005000,00	
	,	,	,	,	,	
2214643600	28261,66	28261,66	798721567,3	22573199365483,60	637956142012511000,00	
2215679041	28272,66	28272,66	799343444,8	22599567437517,80	638949942806930000,00	
	,	,		•	·	
2575664001	31952,66	31952,66	1020972641	32622794214459,30	1042385133341570000,00	
2685519684	33023,66	33023,66	1090562285	36014360832225,70	1189326097276640000,00	
2723691721	33390,66	33390,66	1114936342	37228463111014,30	1243083047133580000,00	
	-					

3277104516	38447,66	38447,66	1478222752	56834209457717,60	2185142503684630000,00
					Приложение 4

Таблица 13. Вспомогательные данные для интервального ряда

|Xcp.-Xi|*fi

Xcp.i *fi	(Xi-Xcp.) ² *fi	(Xi-Xcp.) ³ *fi	(Xi-Xcp.) ^{4*} fi	Xi ² *fi	Xcp Xi *fi
103972	4090090950	- 5,57684E+13	7,60402E+17	491371672	299970
332956	802308650	- 4,45682E+12	2,47577E+16	4263834536	144430
292404	89258750	2,25378E+11	5,6908E+14	6107149944	35350
86898	337398075	3,57811E+12	3,79458E+16	2517087468	31815
259322	2443904575	4,56644E+13	8,53239E+17	9606842812	130795
180504	2865460900	7,66941E+13	2,05272E+18	8145423504	107060
212824	4856696100	1,69232E+14	5,89687E+18	11323513744	139380