

Analysis of RL Algorithms for a Simulated Hill Climb Racing Agent

July 28, 2025

- 1 Problem Definition
- 2 Deep Q-Network
- 3 Expected SARSA
- 4 Proximal Policy Optimization
- 6 Results

- 2 Deep Q-Network
- 3 Expected SARSA
- 4 Proximal Policy Optimization
- 6 Results

Markov Decision Process

A MDP is a stochastic model for sequential decision making defined by a tuple:

$$(\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma)$$

State Space (S)

Action Space (A)

Event	Value
Forward Progress (per meter)	+5.0
Coin Collection	+20.0
Air Time (per second)	+5.0
Time Penalty (per step)	-0.1
Crash (Episode End)	-50.0

Discount Factor (γ)

Problem Definition occoooo•

policy (π)

Problem Definition Deep Q-Network Expected SARSA Proximal Policy Optimization R
000000000 000 0000 0000 0000

Problem Classification

Apriori Knowledge

Observability

- 1 Problem Definition
- 2 Deep Q-Network
- 3 Expected SARSA
- 4 Proximal Policy Optimization
- 6 Results

Characteristics of DQN

DQN combines the principles of deep neural networks with Q-learning.

- Off-policy: learning from actions taken by different policies.
- Offline: it collects a batch of experiences.

DQN Training

0000

$$L(\theta) = \left(\underbrace{r + \gamma \max_{a'} Q(s', a'; \theta)}_{\text{Target}} - \underbrace{Q(s, a; \theta)}_{\text{Prediction}}\right)^{2}$$

DQN Algorithm

- 1 Problem Definition
- 2 Deep Q-Network
- 3 Expected SARSA
- 4 Proximal Policy Optimization
- 6 Results

$$(s,a,r,s^\prime,a^\prime)$$

- On-policy: the update is based on the expected value according to the policy being followed.
- Online: An update after each single step.

SARSA

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[r + \gamma Q(s', a') - Q(s, a) \right]$$

Expected SARSA

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[r + \gamma \mathbb{E}[Q(s', a')] - Q(s, a) \right]$$

$$= \sum_{a' \in \mathcal{A}} \pi(a'|s')Q(s', a')$$

Expected value over all possible next actions

Loss

$$L(\theta) = \left(\underbrace{\left(r + \gamma \sum_{a' \in \mathcal{A}} \pi(a'|s') Q(s', a'; \theta^{-})\right)}_{\text{Target}} - \underbrace{Q(s, a; \theta)}_{\text{Prediction}}\right)^{2}$$

- 2 Deep Q-Network
- 3 Expected SARSA
- 4 Proximal Policy Optimization
- 6 Results

- 1 Problem Definition
- 2 Deep Q-Network
- 3 Expected SARSA
- 4 Proximal Policy Optimization
- 6 Results

Thank you!

