Geometria e algebra lineare, novembre 2020, parte A

Ogni domanda ha un'unica risposta corretta.

-	This form will record your name, please fill your name.
1.	(1 Point) La matrice $ \begin{pmatrix} 3 & 1 & 2 & 4 \\ 0 & -1 & 2 & 6 \\ 6 & 2 & 4 & 8 \\ 0 & 1 & -2 & -6 \end{pmatrix} $
	ha rango 2 ha rango 3 ha rango 1 ha rango 4
2.	(1 Point) Dati $(x, y, z) \in \mathbb{R}^3$, il sistema lineare $\begin{cases} hx + y + z = h \\ hz = 1 \\ y + z = 0 \end{cases}$ on non ammette mai soluzione ammette soluzione per ogni $h \in \mathbb{R}$ ammette soluzione in quanto è un sistema omogeneo se $h = 1$ ha soluzione $(1, -1, 1)^T$
3.	(1 Point) La matrice $\begin{pmatrix} 0 & a & 0 \\ b & 0 & c \\ 0 & d & 0 \end{pmatrix}$ con $a,b,c,d \in \mathbb{R}$ \Diamond è invertibile perché ha rango massimo nessuna delle altre risposte è corretta \Diamond è invertibile se $a \neq d$ \Diamond è invertibile se a,b,c,d non sono nulli
4	(1 Point) Il rango r di una matrice A di tipo 3×4 soddisfa: $0 \le r \le 3$ $1 \le r \le 3$ $r = 4$ se e solo se i vettori riga di A sono linearmente indipendenti $r = 0$ se e solo se i vettori colonna di A sono linearmente dipendenti
5.	(1 Point) Sia V lo spazio vettoriale delle matrici simmetriche di ordine 4. La dimensione di V è 4 10 6 16

6.
(1 Point)
Se V è lo spazio vettoriale dei polinomi di $\mathbb{R}[x]$ di grado minore o uguale a tre, allora
$\bigcirc \{x, x^2, x^3\}$ è un insieme di generatori di V
$\{3, x, x^2, x^3 - x^2\}$ è una base di <i>V</i>
\bigcirc {3,x,x ² ,x ³ } è un insieme di generatori di V , ma non è una base
$\bigcirc \{1,x,x^2,x^3\}$ non è una base di V
7.
(1 Point)
Data la base B = $\{1, x + x^2, x - x^2\}$ dello spazio $\mathbb{R}[x]_2$ dei polinomi di grado minore o uguale a due
nessuna delle altre risposte è corretta
il polinomio $p(x) = 1 + 2x$ ha coordinate $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ rispetto a B
il polinomio nullo non ha coordinate
O the alternation $\sigma(x) = 1 + x + x^2 \ln x + x^$
il polinomio $p(x) = 1 + x + x^2$ ha coordinate $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ rispetto a B
8.
(1 Point)
Sia W l'insieme delle matrici quadrate di ordine 2 con rango uguale a 2.
Wè uno spazio vettoriale di dimensione 3
W non è uno spazio vettoriale
○ <i>W</i> è uno spazio vettoriale di dimensione 4
○ Wè l'insieme vuoto
9. (1 Point) La funzione $f: \mathbb{R}^2 \to \mathbb{R}$ definita da $f(x,y) = x + kxy + (k-1)y - k$ è lineare per: nessun valore di k
ogni valore di k
nessuna delle altre risposte è corretta
un solo valore di k
10.
(1 Point) Sia $f: \mathbb{R}^2 \to \mathbb{R}^3$ tale che $f((x,y)) = (x+y, x-y, 2x)^T$. La matrice che rappresenta l'applicazione lineare rispetto alle basi canoniche è
$ \bigcirc \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 0 \end{bmatrix} $
$\bigcirc \begin{bmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
$\bigcirc \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$
$ \bullet \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 2 & 0 \end{bmatrix} $
$\bigcirc \begin{bmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \end{bmatrix}$
11.
(1 Point)
Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare rappresentata, rispetto alla base canonica, dalla matrice
$\begin{pmatrix} 1 & 0 & 2 \\ 2 & 0 & 4 \end{pmatrix}$
(3 0 6)
$\bigcap f$ è iniettiva, ma non suriettiva
$\bigcap f$ è iniettiva e suriettiva
f non è ne iniettiva, ne suriettiva
$\bigcap f$ è suriettiva, ma non iniettiva

12.	(1 Point)
	Le rette r, s di \mathbb{R}^3 definite da $r: \begin{cases} x=1 \\ y=2 \end{cases}$, $s: \begin{cases} x=1 \\ z=3 \end{cases}$
	osono sghembe
	si intersecano nel punto $(1,2,3)$
	osono parallele
	\bigcirc si intersecano nel punto $(1,0,0)$
13.	
13.	(1 Point)
	Sia k un parametro reale. In \mathbb{R}^3 consideriamo la retta r : $\begin{cases} x=k-t \\ y=2 \\ z=1-kt \end{cases}$
	\bigcirc esistono valori di k per i quali la retta interseca il piano $y = 0$
	esistono valori di k per i quali la retta è parallela al vettore $(2,0,2)$
	\bigcirc esistono valori di k per i quali la retta passa per l'origine
	$\bigcirc \text{ per } k = 0, \text{ passa per il punto } (1,0,1)$
14.	Domanda (1 Point)
	In \mathbb{R}^3 consideriamo il punto $P = (1,2,3)$. Possiamo affermare che:
	nessuna delle altre risposte è corretta
	onon esistono piani contenenti <i>P</i> e l'asse delle <i>y</i>

 \bigcirc esiste un unico piano passante per P e parallelo all'asse delle y \bigcirc esistono infinite rette passanti per P e parallele all'asse delle y

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms

2021-01-21 Geometria parte A

di ƒ

6.

(1 Point)

La distanza tra il punto (1,0,1) ed il piano x + y - z = 5 è

- 5/ $\sqrt{3}$.
- O 5/3.
- O.
- nessuna delle altre.

7

(1 Point)

In \mathbb{R}^3 con il prodotto scalare standard, dato $U = \left(\begin{array}{c} 1 \\ 0 \\ 1 \end{array} \right)$, quale delle seguenti

affermazioni è corretta?

- Il complemento ortogonale U^{\perp} è il sottospazio generato da $(1,1,-1)^t$ e $(-1,1,1)^t$.
- $\bigcirc \quad \begin{array}{l} \text{Il complemento ortogonale } U^{\perp} \ \text{\`e il sottospazio} \\ \text{generato da } (1,1,-1)^t. \end{array}$
- $\bigcirc \text{ La proiezione ortogoale su } U \text{ di } (x,y,z) \text{ è}$ $P_U(x,y,z) = (x+z,0,x+z).$
- O Nessuna delle altre.

8.

(1 Point)

In V uno spazio Euclideo dotato di un prodotto scalare $\langle\cdot,\cdot\rangle$ siano $v,w\in V$ due vettori non nulli e perpendicolari tra loro; quale delle seguenti affermazioni è sicuramente corretta?

- $\langle v+w,v-w\rangle = \|v\|^2 \|w\|^2.$
- $\bigcirc \langle v+w,v-w\rangle = \|v\|^2 + \|w\|^2.$
- $\bigcirc \ \langle v+w,v-w\rangle = \|w\|^2 \|v\|^2.$
- $\bigcirc \langle v+w,v-w\rangle =0.$

9.

(1 Point)

Sia A una matrice 3×3 simmetrica con autovalori 1 e 2, se l'autospazio V_2 relativo all'autovalore 2 è dato dal piano $\pi: x+y-2z=0$ allora l'autospazio V_1 è dato da:

- Non ci sono abbastanza informazioni per ricavarlo.
- $\bigcirc Span \left\{ \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \right\}.$
- $\bigcirc Span \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\2\\1 \end{pmatrix} \right\}.$

10.

(1 Point)

Si considerino le matrici $A_k \in M_{3,3}(\mathbb{R})$ dipendenti dal parametro k: $\begin{pmatrix} 1 & k^2 & 1 \\ -k+2 & 0 & -2 \\ 1 & -2 & 3 \end{pmatrix}$

Allora A_k è ortogonalmente diagonalizzabile per

- k = 1, -2.
- \bigcirc solo per k = 1.
- $\bigcirc k = 1, 2.$
- \bigcirc solo per k = -2.

11. (1 Point)

La matrice simmetrica associata alla forma quadratica: $q(x,y,z) = 2x^2 - 3y^2 - 4xy - 6zx$, è:

- $\begin{pmatrix}
 2 & -2 & -3 \\
 -2 & -3 & 0 \\
 -3 & 0 & 0
 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} 2 & -4 & -6 \\ -4 & -3 & 0 \\ -6 & 0 & 0 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} 2 & -4 \\ -4 & -3 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} 2 & -4 & -6 \\ 0 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

12.

(1 Point)

Sia $q_k(x)=x'A_kx$ la forma quadratica di \mathbb{R}^3 dipendente dal parametro $k\in\mathbb{R}$ con matrice associata

$$A_k = \begin{pmatrix} k - 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}.$$
 Allora $q_k(x)$ ha segnatura (2,1,0) per

- k = 1.
- $\bigcirc k = 3.$
- $\bigcirc k = 2.$
- \bigcirc per nessun k.

13.

(1 Point)

La quadrica di equazione: $x^2 - y^2 - 3z^2 + xy = 1$

- ha centro nell'origine.
- onon è a centro.
- O ha centro diverso dall'origine.
- è degenere (e cioè la forma quadratica definita dalla matrice completa è degenere).

14.

La direzione di uno degli assi di simmetria per la conica $3x^2 + 3y^2 + 4xy - 1 = 0$ è

- igodots $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$
- $\bigcirc \binom{1}{0}$
- $\bigcirc \binom{0}{1}$.
- O Nessuna delle altre risposte è corretta

2021-02 Geometria A

* This form will record your name, please fill your name.
mis form will record your name, please mi your name.
1.
(1 Point)
Quale di questi endomorfismi di \mathbb{R}^2 non è diagonalizzabile?
la riflessione ortogonale rispetto ad una retta
l'identità
\bigcirc la rotazione di π
la rotazione di $\pi/2$
2. (1 Point)
(1 Point) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è la proiezione ortogonale su un piano H passante per l'origine, allora:
nessuna delle altre
\bigcirc il nucleo di f è contenuto in H
$\bigcirc f$ ha rango l
il nucleo di f è ortogonale ad H
3. (1 Point)
Sia $Ax = b$ un sistema lineare in cui il numero delle incognite è uguale al rango di A . Possiamo affermare che il sistema ammette:
una e una sola soluzione
nessuna soluzione
almeno una soluzione
al più una soluzione
4. (1 Point)
Una forma quadratica $q: \mathbb{R}^3 \to \mathbb{R}$ ha determinante negativo e $q(v) > 0$ per un vettore $v \in \mathbb{R}^3$. Allora la matrice di q ha:
tre autovalori negativi
tre autovalori positivi
due autovalori negativi e uno positivo
due autovalori positivi e uno negativo
5.
(1 Point) Sia $V = \mathbb{R}_{\leq 2}[x]$ lo spazio dei polinomi a coefficienti reali di grado minore o uguale a 2.
Consideriamo la base
$\mathbf{B} = \{1 - x^2, 1 + x - x^2, 1 + x^2\}$
e un generico $p(x) \in V$. Quale delle seguenti affermazione è corretta?
Nessuna delle altre.
Se le coordinate di $p(x)$ rispetto a B sono $(0,1,1)$, allora $p(x)$ ha grado esattamente 2.
Se le coordinate di $p(x)$ rispetto a B sono $(1,0,1)$, allora $p(x)$ ha grado esattamente 2.
Se le coordinate di $p(x)$ rispetto a B sono $(1,1,1)$, allora $p(x)$ ha grado esattamente 2.

(1 Point)

Sia $T:\mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare lineare tale che

$$T(e_1) = e_2$$
 $T(e_2) = e_3 + e_1$ $T(e_3) = e_1 + e_2 + e_3$

Qual è la matrice associata a T rispetto alla base canonica $\{e_1, e_2, e_3\}$?

- $\bigcirc \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
- O Non ci sono abbastanza informazioni per determinarla univocamente.

7. (1 Point)

Per quali $k \in \mathbb{R}$ la funzione $T : \mathbb{R}^2 \to \mathbb{R}^2$ definita dalla formula

$$T\left(\frac{x}{y}\right) = \left(\frac{kx - k}{x(kx + 2)}\right)$$

- Solo per k = -2
- Solo per k = 0
- $\bigcirc\,$ Per infiniti valori di k
- \bigcirc Solo per k = 1

8.

(1 Point)

Determinare la distanza fra le rette

$$r: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix},$$

$$s: \begin{cases} y = 0 \\ z = 1 \end{cases}$$

- $\bigcirc \sqrt{2}$

9.

(1 Point)

Determinare molteplicità algebrica e geometrica di 0 come autovalore della matrice

- $\bigcirc \ a_0=4, \qquad g_0=3$
- $g_0 = 2$
- $a_0 = 4$, $g_0 = 2$
- $\bigcirc a_0 = 3$, $g_0 = 3$

10.

(1 Point)

Sia $V=\mathbb{R}_{\leq 4}[x]$ lo spazio vettoriale dei polinomi a coefficienti reali di grado minore o uguale a 4 e sia

$$W=\{p(x)\in V\ :\ p(1)=p(0)=p(-1)=0\}.$$

Allora

- \bigcirc W è un sottospazio vettoriale di V e dim W=3
- \bigcirc W è un sottospazio vettoriale di V e dim W=1
- Wè un sottospazio vettoriale di Ve dim W=2
- $\bigcirc \ W$ non è un sottospazio vettoriale di V.

11.	
(1 Point)	
Determinare l'angolo tra i vettori $(2,1,2)^T$ e $(4,-1,1)^T$.	
\bigcirc $\pi/2$	
σ $\pi/4$	
\bigcirc $\pi/3$	
Nessuna delle precedenti	
12.	
(1 Point)	
Si consideri il sottospazio U di \mathbb{R}^3 descritto dall'equazione $x-y-z=0$. Quale delle seguenti affermazioni è corretta?	
$\bigcirc \left\{ egin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, egin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} ight\}$ è una base ortogonale di U^\perp	
\bigcirc Il vettore $(1,-1,-1)^T$ è generatore di U	
Il vettore $(-1,1,1)^T$ è un generatore di U^{\perp}	
$\bigcirc \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\} \ \text{\`e} \ \text{una base ortogonale di} \ U$	
13.	
(1 Point) Sia $T: \mathbb{R}^4 \to \mathbb{R}^3$ un'applicazione lineare. Quale delle seguenti affermazioni è sicuramente vera?	
\bigcirc T non è suriettiva.	
\bigcirc <i>T</i> è iniettiva.	
\bigcirc <i>T</i> è suriettiva.	
T non è iniettiva.	
14.	
(1 Point)	
Si consideri la quadrica di equazione	
$x^2 + 2y^2 + 3z^2 = 1.$	
Quale affermazione è corretta?	
È un ellissoide.	
Non ha centro.	
○ \$È di rotazione.\$	
Oun suo piano di simmetria è parallelo a $y + 2z = 0$.	

2021-06 Geometria A

Per ogni domanda esiste un'unica risposta corretta. Per inviare il test è obbligatorio rispondere a tutte le domande. Tempo di svolgimento 30 minuti.

* This form will record your name, please fill your name.

1.

(1 Point)

Siano A, B matrici quadrate dello stesso ordine invertibili, e sia C = AB. Allora:

- $\bigcirc C^{-1} = A^T B^{-1}$
- $C^{-1} = A^{-1}B^{-1}$
- $C^{-1} = A^{-1} + B^{-1}$

2. *

(1 Point)

Si considerino i seguenti sottospazi di \mathbb{R}^3 :

$$V_1 = \mathrm{Span}((1,1,0),(2,1,1),(3,2,1))$$

$$V_2 = \{(a, b, a + b) \mid a, b \in \mathbb{R}\}\$$

$$V_3 = \{(x, y, z) \mid x - y - z = 0\}.$$

Allora:

- \bigcirc dim $(V_1) = 3$, dim $(V_2) = 2$, dim $(V_3) = 1$
- \bigcirc V_1 è un sottospazio proprio di V_3
- $\dim(V_1) = \dim(V_2) = \dim(V_3) = 2$
- $\bigcirc \dim(V_1) = \dim(V_2) = 2$, $\dim(V_3) = 1$

3. *

(1 Point)

Si consideri lo spazio vettoriale $\mathbb{R}[x]_2$ dei polinomi di grado al più 2, e sia $B = \{x^2 + 2x, 1 - x, 2\}$ una base. Le coordinate del polinomio $2x^2 + 5x + 1$ rispetto alla base B sono

- $\bigcirc \begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$
- $\left(\begin{array}{c}2\\-1\\1\end{array}\right)$

4. *

(1 Point)

Sia $\{e_1,e_2,e_3\}$ la base canonica di \mathbb{R}^3 , e sia $f:\mathbb{R}^3\to\mathbb{R}^3$ l'applicazione lineare definita da

$$\begin{cases} f(\mathbf{e}_1) = 2\mathbf{e}_1 - 3\mathbf{e}_2 \\ f(\mathbf{e}_2) = \mathbf{e}_1 + \mathbf{e}_2 - \mathbf{e}_3 \\ f(\mathbf{e}_3) = -\mathbf{e}_1 + 2\mathbf{e}_2 + 2\mathbf{e}_3 \end{cases}$$

Allora

f((1,1,1)) = (2,0,1)

 \bigcirc (1,1,1) è un autovettore

 $\bigcap f((1,1,1)) = (1,0,1)$

 $\bigcirc (1,1,1) \in \ker(f)$

5. *

(1 Point)

 $\operatorname{Sia} f: V \to W$ una applicazione lineare e sia

$$F = \begin{pmatrix} 3 & 1 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

la matrice rappresentativa rispetto alla basi B di V e B' di W. Allora:

 \bigcirc dim(W) = 3

 \bigcirc dim(F(V)) = 1

nessuna delle altre risposte è corretta

6. *

(1 Point)

Consideriamo la matrice $A = \begin{pmatrix} k & 1 \\ 0 & k \end{pmatrix}$. Allora:

la matrice non è diagonalizzabile per nessun $k \in \mathbb{R}$

 \bigcirc la matrice è diagonalizzabile per ogni $k \in \mathbb{R}$

onessuna delle altre risposte è corretta

 \bigcirc la matrice è diagonalizzabile per infiniti $k \in \mathbb{R}$ ma non per tutti

7. *

(1 Point)

Sia f un endomorfismo di \mathbb{R}^3 avente $\mathbf{v_1}=(1,-1,0),\ \mathbf{v_2}=(1,0,-1)$ e $\mathbf{v_3}=(0,1,-1)$ come autovettori. Allora:

nessuna delle altre risposte è corretta

 $\bigcirc f$ non può essere l'applicazione identità

 \bigcirc f è ortogonalmente diagonalizzabile

∫ f è diagonalizzabile

8. *

(1 Point)

Nello spazio \mathbb{R}^3 si considerino i seguenti tre piani dipendenti dai parametri $h, k \in \mathbb{R}$:

$$\pi_1: x - y + hz = 1,$$

$$\pi_2$$
: $2x - 2y + (h+k)z = 2$,

$$\pi_3$$
: $4x - 4y + 4kz = 4$.

Allora questi si intersecano in una stessa retta se:

$h \neq k$

$$\bigcap$$
 $h = 2, k = 1$

$$\bigcap h = k$$

$$\bigcap h + k = 0$$

9. *

(1 Point)

Nello spazio $V = \mathbb{R}^3$ con prodotto scalare euclideo, una base ortonormale di U = Span((1,0,1), (1,-1,1)) è:

B =
$$\left\{ \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right), (0, -1, 0) \right\}$$

$$\bigcirc \ B = \left\{ \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \right\}$$

$$\bigcirc B = \left\{ \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right), \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}} \right) \right\}$$

$$\bigcirc \ \ B = \left\{ \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right) \right\}$$

10. *

(1 Point)

La matrice

$$A = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 0 \end{bmatrix}$$

- ha tre autospazi distinti ed ortogonali tra loro
- onn è diagonalizzabile sul campo reale
- \bigcirc rispetto ad una base ortonormale di \mathbb{R}^3 rappresenta una rotazione di un angolo π
-) è simile alla matrice identità.

11. *

Sia $T: \mathbb{R}^4 \to \mathbb{R}^4$ una funzione lineare e sia

$$V_2: x + y + 3z - w = 0$$

l'autospazio relativo all'autovalore 2. Quale delle seguenti affermazioni è sicuramente vera:

$$T(1,1,0,2) = (2,2,0,4)$$

Tè sicuramente diagonalizzabile

$$\bigcap T(1,1,1,1) = (4,4,4,4)$$

$$\bigcap T(1,1,0,2) = (1,1,0,2)$$

	* (1 Point) La distanza della retta $r: (x, y, z) = (-1, 0, 0) + t \cdot (1, 1, 1)$ dal punto $P = (0, 1, 1)$ è:
	\bigcirc 1
	\bigcirc $\sqrt{2}$
	\bigcirc $\sqrt{6}$
13.	*
	(1 Point)
	La forma quadratica definita dalla matrice $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ è
	definita positiva
	semidefinita positiva
	O definita negativa
	O non classificabile, in quanto dipende dalla base rispetto a cui è associata la matrice
14.	
	(1 Point) Sia γ_k la conica di equazione $x^2 + kxy + x = 0$, in funzione di $k \in \mathbb{R}$. Allora
	$\bigcirc \gamma_k$ è un'iperbole per infiniti valori di k
	$\bigcirc \gamma_k$ ha solo punti immaginari per almeno un valore di k
	$\bigcirc \gamma_k$ non si spezza mai in due rette parallele.

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms

2021-07 Geometria A

۱ ۱	his form will record your name, please fill your name.
1.	(1 Point) Se $f: \mathbb{R}^n \to \mathbb{R}^n$ è un endomorfismo e $v, w \in \mathbb{R}^n$ sono tali che $f(v) = 3w$ ed $f(w) = 3v$, allora è sempre vero che v, w sono autovettori. $v - 3w$ è autovettore.
	v - w è autovettore.
	3v - w è autovettore.
2.	(1 Point) Le matrici $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ e $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$
	Hanno gli stessi autovalori ma non sono simili.
	Sono simili.
	Sono diagonalizzabili ma non sono simili.
	Non hanno gli stessi autovalori ma sono simili.
3.	(1 Point) Sia q la forma quadratica su \mathbb{R}^3 indotta dalla matrice $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$ La segnatura di q (nell'ordine positivo, negativo, nullo) è: (2,1,0) (1,2,0) (1,1,1)
4.	(1 Point) In \mathbb{R}^3 , sia U il sottospazio generato dal vettore $[1,-1,3]^t$. Allora: L'insieme $\mathbf{B}=\{[1,1,0]^t,[-3,0,1]^t\}$ è una base di U^\perp . U^\perp è generato dai vettori $[3,0,-1]^t$ e $[1,1,1]^t$. U è un piano ed U^\perp è una retta. U^\perp ha equazione $3x+y-z=0$.
5.	(1 Point) La quadrica Q di equazione $y^2 + 3z^2 - 2x = 0$: \hat{c} degenere
	è un paraboloide iperbolico.
	è un parabolide ellittico.
	ha un centro di simmetria.

6.	
(1 Point) In \mathbb{R}^3 con il prodotto scalare canonico, si considerino	
il sottospazio U generato da $u = [1,2,3]^t$ e il punto $A = (1,0,0)$.	
\bigcirc Esiste un unico piano passante per A e parallelo ad u .	
Il piano passante per A e perpendicolare a u ha equazione $x + 2y + 3z = 0$.	
$igcup$ La distanza di A da U^\perp è uguale a $rac{1}{\sqrt{14}}.$	
\bigcirc La distanza di A da U è maggiore di 1.	
7.	
(1 Point)	
Sia C una parabola che ha come asse di simmetria la retta $2x + y + 1 = 0$ e sia A la matrice associata alla parte quadratica di C . Quale delle rette seguenti è l'autospazio E_0 di A ?	
y = 2x	
x = -2y	
y = -2x	
x = 2y	
8. (1 Point)	
Se $f: \mathbb{R}^5 \to \mathbb{R}^5$ è la proiezione ortogonale su un sottospazio di dimensione 2, allora:	
$\bigcirc \dim(\operatorname{im} f) = 3$	
$\bigcirc \dim(\ker f) = \dim(\operatorname{im} f)$	
$\bigcirc \dim(\ker f) = 2$	
9.	
(1 Point) Se $Ax = B$ è un sistema lineare non omogeneo che ammette soluzioni distinte $v \in w$, allora	
v + w è ancora soluzione del sistema.	
○ II sistema non ha soluzioni.	
v - w è ancora soluzione del sistema.	
v - w è soluzione del sistema $Ax = 0$.	
10	
10. (1 Point)	
Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita dalle formule $f(e_1) = e_3, \qquad f(e_3) = e_1 - e_2 + e_3, \qquad f(e_2) = 0.$	
La matrice rappresentativa di f rispetto alla base canonica è:	
$\bigcirc \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix}.$	
$\bigcirc \begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \\ 1 & 1 & 0 \end{pmatrix}.$	
$ \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & -1 \\ 1 & 0 & 1 \end{pmatrix}. $	
$\bigcirc \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$	
44	
11. (1 Point)	
Siano $f:\mathbb{R}^2 \to \mathbb{R}^3$ e $g:\mathbb{R}^3 \to \mathbb{R}^2$ due funzioni lineari.	
\bigcirc La matrice associata ad $f\circ g$ ha tre righe e due colonne.	
La matrice associata a $g \circ f$ ha due righe e due colonne.	
\bigcirc La matrice associata ad $f\circ g$ ha due righe e tre colonne.	
\bigcirc La matrice associata a $g \circ f$ ha tre righe e tre colonne.	

1	1
-1	_

(1 Point)

Sia
$$V$$
 lo spazio delle matrici reali 2×3 , e sia
$$W = \left\{ \begin{bmatrix} x & 0 & 0 \\ 0 & x & y \end{bmatrix} \in V: x, y \in \mathbb{R} \right\}.$$

- $\bigcirc W$ è un sottospazio vettoriale di V e dim W=1.
- $\bigcirc\ W$ non è un sottos pazio vettoriale di V.
- \bigcirc W è un sottospazio vettoriale di V e dim W=3.
- igcup W è un sottospazio vettoriale di V e dim W=2.

13.

(1 Point)

Sia A una matrice con determinante uguale a 2. Allora $\det(AA^tA^{-2})$ è uguale a

- $\bigcirc \det A^t$
- O 2
- O 0

(1 Point)

Sia $C=\{\nu_1,\nu_2,\nu_3\}$ una base di \mathbb{R}^3 . Si considerino le matrici $A=[\nu_1|\nu_2|\nu_3]$ e $B=[\nu_3|\nu_1|\nu_2]$. Allora è sicuramente vero che

- $\bigcirc \det(A) = \det(B) = 1$
- $\bigcirc \det(A) = -\det(B)$
- $\bigcirc \det(A) = \det(B) = 0$

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms

2021-09 Geometria A

* Required
* This form will record your name, please fill your name.
1. Domanda * (1 Point)
Data la matrice $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, risulta:
$ AA^T = I $
$\bigcirc AA^T = A$
$\bigcirc A^{-1} = A$
$\bigcirc A^2 = A$
2. * (1 Point)
Sia A una matrice quadrata, quale delle seguenti matrici può non essere simmetrica?
$\bigcirc (A + A^T)^T$
$ A - A^T $
$\bigcirc AA^T$
$\bigcirc A + A^T$
3. * (1 Point)
La conica di equazione $2yx - 2y + x - 1 = 0$
è degenere e rappresenta una coppia di rette incidenti.
onn è degenere e rappresenta un'iperbole.
○ è degenere e rappresenta una coppia di rette parallele.
on non ha punti reali.
4. Domanda * (1 Point)
Sia k un parametro reale. L'insieme di vettori $\left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ k \\ 0 \end{pmatrix} \right\}$ è una base di \mathbb{R}^3 se e solo se:
<i>k</i> ≠ −1
○ <i>k</i> ≠ 1
\bigcirc per tutti i valori di $k \in \mathbb{R}$
○ k = -1
5. Domanda * (1 Point)
Sia A una matrice 3×3 reale con autospazio V_1 , relativo all'autovalore 1, di dimensione $\dim(V_1)=2$. Possiamo affermare che:
se $\det A = 0$, allora A è diagonalizzabile.
\bigcirc se det $A \neq 0$, allora A è diagonalizzabile.
\bigcirc se det $A = 0$, allora A non è diagonalizzabile.
\bigcirc se det $A \neq 0$, allora A non è diagonalizzabile.

6. Domanda * (1 Point) Siano U, V due sottospazi di \mathbb{R}^7 tali che $\dim(U)=4$ e $\dim(V)=5$ allora è sempre vero che $\dim(U \cap V) \ge 2$ $\bigcirc \dim(U+V)=7$ $\bigcirc \ \dim(U\cap V) \leq 2$ \bigcirc dim $(U \cap V) = 2$ 7. Domanda * (1 Point) Sia B = $\{\mathbf{u},\,\mathbf{v},\,\mathbf{w}\}$ una base di uno spazio vettoriale V. Sia $f:V\to V$ l'applicazione lineare definita da $f(\mathbf{u}) = \mathbf{u}, f(\mathbf{v}) = \mathbf{v}, f(\mathbf{w}) = \mathbf{u} + \mathbf{v}.$ Possiamo affermare che: ∫ f è iniettiva. $\mathbf{u} + \mathbf{v} - \mathbf{w} \in \ker(f)$ \bigcirc **u** - **v** + **w** \in ker(f) f è suriettiva. 8. Domanda * (1 Point) Il sottospazio $V_1:=\{(x,y,z)\in\mathbb{R}^3:2x+y-3z=0\}$ è l'autospazio associato all'autovalore 1 della matrice simmetrica $A \in M_3(\mathbb{R})$. Possiamo affermare che: \bigcirc non è possibile stabilire se A ammetta un altro autovalore. A ammette un altro autovalore il cui autospazio è $\begin{pmatrix} 2\\1\\-3 \end{pmatrix}$ A non ammette un altro autovalore. \bigcirc A ammette un altro autovalore il cui autospazio è $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\-2\\0 \end{pmatrix}$. 9. Domanda * (1 Point)

Il polinomio caratteristico di una matrice simmetrica $A\in M_3(\mathbb{R})$ è $p_A(\lambda)=\lambda^3-2\lambda^2-\lambda+2$, dunque la segnatura di A è

- $\sigma(A) = (2, 1, 0).$
- $\bigcirc \ \sigma(A)=(1,\,2,\,0).$
- $\bigcirc \ \sigma(A) = (1, 1, 1).$
- $\bigcirc \ \sigma(A)=(0,\,1,\,2).$

10. Domanda *

(1 Point)

Sia V uno spazio vettoriale, $\mathbf{B}=(\mathbf{v_1},\,\mathbf{v_2},\mathbf{v_3})$ una sua base di V e $f:V\to V$ un endomorfismo. Sapendo che la matrice rappresentativa di f rispetto alla base \mathbf{B} , scelta sia per il dominio che per

il codominio, è $\begin{pmatrix} 2 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix}$, possiamo dire che

- $f(\mathbf{v}_1) = 2\mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3$
- $\bigcirc f(\mathbf{v}_1) = \mathbf{v}_1 + \mathbf{v}_2 + 2\mathbf{v}_3$
- $\bigcirc f(\mathbf{v}_1) = -\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3$
- $\bigcirc f(\mathbf{v}_1) = 2\mathbf{v}_1 + \mathbf{v}_2$

11. Domanda *

(1 Point)

Sia A una matrice 2×3 reale. Se il sistema lineare non omogeneo $A\mathbf{x} = \mathbf{b}$ ammette almeno una soluzione, allora

- $\bigcirc \ \mathbf{r}(A) \neq \mathbf{r}([A|\mathbf{b}]).$
- il sistema ammette infinite soluzioni.
- il sistema ammette un'unica soluzione.
- non ci sono abbastanza informazioni per stabilire se ci sono infinite oppure un'unica soluzione.

12. Domanda * (1 Point)

Sia $V:=\left(\begin{pmatrix}1\\1\\1\end{pmatrix},\begin{pmatrix}1\\0\\-1\end{pmatrix}\right)\subseteq\mathbb{R}^3$. La proiezione ortogonale del vettore $\begin{pmatrix}1\\3\\-1\end{pmatrix}$ sul sottospazio V è:

- $\bigcirc \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

13. Domanda *

(1 Point)

La conica di equazione $x^2 + 2y^2 + 6xy - 1 = 0$ è:

- una iperbole.
- O una ellisse immaginaria.
- una ellisse reale.
- O una parabola.

14. Domanda *

(1 Point)

Le due rette di \mathbb{R}^3 rappresentate parametricamente da

$$r:\begin{cases} x=1\\ y=t\\ z=t \end{cases}, \qquad s:\begin{cases} x=s\\ y=1+s \end{cases} \quad (t,s\in\mathbb{R})$$

risultano essere:

- $\bigcirc \ \ \text{sghembe}.$
- incidenti (in un solo punto).
- O sovrapposte.
- o parallele e distinte.

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms

2022-01-18 Geometria / parte A

* 7	This form will record your name, please fill your name.
1.	(1 Point)
	Per quali $k \in \mathbb{R}$ la matrice seguente è diagonalizzabile ortogonalmente?
	$\begin{pmatrix} k & k & 0 \\ 2 - k & 1 & k^2 \\ 0 & 1 & 3 \end{pmatrix}$
	\bigcirc Solo per $k=0$.
	\bigcirc Per $k = 0, 1$.
	$\bigcirc \text{ Per } k = \pm 1.$
	Solo per $k = 1$.
2.	(1 Point)
	Supponiamo che A sia una matrice simmetrica di ordine 3 con autovalori 0 e 1 Se l'autospazio E_0 è il piano $x + y - 2z = 0$, allora l'autospazio E_1
	O Non ci sono abbastanza informazioni per determinarlo.
	\bigcirc È generato da $(-1,-1,1)^T$.
	\bigcirc È generato da $(1,1,1)^T$ e da $(0,2,1)^T$.
3.	(1 Point)
	Per quali valori di $k\in\mathbb{R}$ la forma quadratica rappresentata dalla matrice seguente ha segnatura $(2,1,0)?$
	$\begin{pmatrix} k-2 & 0 & 0 \\ 0 & 1-k & 1 \\ 0 & 1 & 2 \end{pmatrix}$
	• Per $k < \frac{1}{2}$ e $k > 2$.
	$\bigcirc \text{ Solo per } k = \frac{1}{2} \text{ o } k = 2.$
	\bigcirc Per $\frac{1}{2} < k < 2$
	$\bigcirc \text{ Per } \frac{1}{2} \le k \le 2.$
4.	(1 Point)
	Un sistema lineare di tre equazioni in due incognite:
	Può ammettere infinite soluzioni
	Ammette una e una sola soluzione
	Non ammette mai soluzione
	Ammette sempre infinite soluzioni
5.	(1 Point)
	La matrice a coefficienti reali
	$\begin{pmatrix} 1 & k & k \\ 0 & k & 1 \\ 0 & 0 & k \end{pmatrix}$
	\bigcirc Non è invertibile quando $k = 0$ e $k = 1$.
	\bigcirc Ha rango 2 se $k = 1$
	○ Non ha mai rango 3
	Non à invertibile se $k=0$

6.	
(1 Point)	no u u varoni esto con eli fre lese (u . u . 0)
Quale delle uguaglianze seguer	no v , w versori ortogonali fra loro $(v \cdot w = 0)$. ti è vera?
$\bigcirc (v+w)\cdot (v-w)=2$	
$\bigcirc \ (v-w)\cdot (v-w)=0$	
$\bigcirc \ (v+w)\cdot (v-w)=1$	
$ (2v+w)\cdot (v-3w)=-1$	
7.	
(1 Point)	
La quadrica di equazione x^2 -	$y^2 - 3z^2 = 0$
C E' un ellissoide immagina	rio.
E' l'unione di due piani re	ali.
E' un cono.	
E' un paraboloide iperboli	co.
0	
8. (1 Point)	
	inomio caratteristico $p(t) = -t + 2t^2 - t^3$, allora ebrica e geometrica dell'autovalore t)
Nessuna delle altre afferma	zioni e vera
$\bigcirc g_1 = a_1$	
A ammette autovalore 0 e g	₀ ≠ 1.
A ammette autovalore 1 e g	$_{1}\leq2.$
9.	
(1 Point)	di \mathbb{R}^3 . Se $f:\mathbb{R}^3 o \mathbb{R}^3$ è la funzione lineare definita dalle formule
	diff. Se $f: \mathbb{R} \to \mathbb{R}$ e la funzione inneare definita danie formule $e_1, f(e_3) = 2e_1 - e_2 + e_3$
allora $f((1,2,3)^T)$ è il vettore	61, 163,7 = 261 62 163
$\bigcirc (4, -3, 8)^T$	
$(-3,8,4)^T$	
$\bigcirc (4,8,-3)^T$	
$(8, -3, 4)^T$	
10. (1 Point)	
Se	
$v = (1, 0, 0, 1)^T, \qquad u =$	$=(0,0,1,0)^T,$
quali delle seguenti sono equaz	ioni cartesiane per il sottospazio di \mathbb{R}^4 generato da v e u ?
$\bigcirc \begin{cases} x_2 = x_3 \\ x_4 = 0 \end{cases}$	
$\begin{cases} x_1 = x_4 \\ x_2 = 0 \end{cases}$	
$\int x_1 = 1$	
$ \bigcirc \begin{cases} x_1 = 1 \\ x_2 = 0 \\ x_4 = 1 \end{cases} $	
$\bigcirc \begin{cases} x_1 = x_3 \\ x_2 = x_4 \end{cases}$	
$(x_2 = x_4)$	
11. (1 Point)	
Se $U \subseteq \mathbb{R}^3$ è il sottospazio gen	erato da $(1,2,3)^T$, allora
$\bigcup U^{\perp}$ è generato da $(-1, -2,$	
	$\mathbf{i} x \in \mathbb{R}^3 \text{ su } U \ \& \ (x_1 + x_3, 0, x_1 + x_3)^T.$
Nessuna delle altre affern	
• Wessula delle after after U^{\perp} è generato da $(1, 1, -1)$	
■ 0 c generato da (1, 1, −1)	V (2, U, 1) .

12.

(1 Point)

Le rette di \mathbb{R}^3 di equazioni

$\int x = 1$	- t	$\int x = 1$
$\begin{cases} y = t \\ z = 2 \end{cases}$		$\begin{cases} x = 1 \\ y = 3 \end{cases}$
7 - 2		y = 3

O Sono incidenti.

 $\bigcirc\,$ Non sono ortogonali.

Sono ortogonali e sghembe.

O Sono ortogonali e incidenti.

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms

* This form will be seen a long fill
* This form will record your name, please fill your name.
1.
(1 Point) Determinare la dimensione del nucleo della matrice
Determinare la dimensione del nucleo della matrice
$\begin{pmatrix} 1 & -1 & 3 \\ 4 & -2 & 6 \end{pmatrix}$
4 -2 6 6 -3 9 8 -4 12
○ 2
\bigcirc 0
○ 3
● 1
2. (1 Point)
Se il sistema lineare $Ax = b$ di 3 equazioni in 2 incognite ha una sola soluzione, allora:
$\bigcirc \det(A) \neq 0$
$\bigcirc \ker(A) \neq 0$
\bigcap rk(A) = 3
3. (1 Point)
Se V è uno spazio vettoriale di dimensione 8
e $U,U'\subseteq V$ sono sottospazi di dimensione 4 e 5 rispettivamente, allora:
$\bigcirc U + U' = V$
$\bigcirc U \subseteq U'$
$ U \cap U' \neq 0 $
$\bigcirc \dim(U \cap U') = 1$
4. (1 Point)
Quale delle funzioni seguenti è lineare?
$(\mathbf{R}[x]_n \ \dot{\mathbf{e}}\ $ lo spazio dei polinomi di grado minore di $n \ \mathbf{e}\ p'(x) \ \dot{\mathbf{e}}\ $ il derivato di $p(x))$
$\bigcirc \begin{array}{ccc} \operatorname{Mat}_2(\mathbf{R}) & \to & \operatorname{Mat}_2(\mathbf{R}) \\ M & \mapsto & M^T + I \end{array}$
\bigcap Mat ₂ (R) \rightarrow R
$M \mapsto \det(M)$
$ \bigcirc \mathbf{R}[x]_3 \rightarrow \mathbf{R}[x]_3 p(x) \mapsto x + p'(x) $
$\mathbf{R}[x]_3 \rightarrow \mathbf{R}^2$
$p(x) \mapsto (p(1), p(2))$
5. (1 Point)
La funzione lineare associata alla matrice
$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$
nessuna delle altre
è un isomorfismo
è iniettiva ma non suriettiva
è suriettiva ma non iniettiva
6. (1 Point)
Se $A \in \text{Mat}_3(\mathbf{R})$ ha polinomio caratteristico $p(x) = -x(x+1)^2$, allora
det(A) = 0
\bigcirc A è necessariamente diagonalizzabile
O 43.5 (49.9)

 $\bigcirc \ -1$ è un autovalore di A con molteplicità geometrica 2

Quale delle matrici seguenti è simile a

$$\begin{pmatrix} 1 & -2 \\ -1 & 2 \end{pmatrix} \quad ?$$

$$\bigcirc \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

$$\bigcirc \begin{pmatrix} 0 & 0 \\ 3 & 3 \end{pmatrix}$$

$$\bigcirc \begin{pmatrix} 2 & -4 \\ -2 & 4 \end{pmatrix}$$

$$\bigcirc \begin{pmatrix} 1 & 2 \\ -1 & 2 \end{pmatrix}$$

(1 Point)

Trovare l'angolo formato dai vettori $(1,-1,1,-1)^T$, $(0,2,-2,0)^T \in \mathbf{R}^4$.

- $\bigcirc \frac{1}{3}\pi$
- $\bigcirc \frac{2}{3}\pi$
- $\frac{3}{4}\pi$
- $\bigcirc \frac{1}{4}\pi$

9. (1 Point)

Trovare il complemento ortogonale in ${\bf R}^4$ del sottospazio

$$U = \langle (1,0,1,0)^T, \quad (1,-1,0,0)^T, \quad (0,-1,-1,0)^T \rangle$$

$$\bigcirc \ U^{\perp} = \langle (1,1,-1,0)^T \rangle$$

$$\bigcirc \ U^{\perp} = \langle (1,0,-1,0)^T, \quad (0,1,-1,0)^T, \quad (1,1,0,0)^T \rangle$$

$$\bigcirc \ U^{\perp} = \langle (1,0,-1,0)^T \rangle$$

10. (1 Point)

Quale delle forme quadratiche seguenti ha la stessa segnatura di

$$x_1^2 + x_2x_3$$
?

- $x_1^2 + x_2^2 x_3^2$
- $\bigcirc x_1^2 + x_2^2 + x_3^2$

11. (1 Point)

In \mathbb{R}^3 si considerino la retta L e il piano H di equazioni

$$L: \begin{cases} x = t + 1 \\ y = -t + 1 \\ z = -t + 2 \end{cases} \qquad H: 2x - y + 3z = 6.$$

- $\bigcirc L \subseteq H$
- L e H sono incidenti ma non ortogonali
- \bigcirc L e H sono paralleli
- \bigcirc L e H sono ortogonali

(1 Point)

La quadrica $Q \subseteq \mathbf{R}^3$ di equazione 2xy + 2yz - 6 = 0 è:

- \bigcirc un iperboloide iperbolico
- O un cilindro ellittico
- un cilindro iperbolico
- O un iperboloide ellittico

2022-06 Geometria A Hi, Luca. When you submit this form, the owner will see your name and email address. (1 Point) Si consideri il sistema lineare $Ax = b \operatorname{con} A \in \operatorname{Mat}_n(k)$ e $b \in k^n$ $\bigcap Ax = b$ ha soluzioni se e solo se rk(A) = n $\bigcirc Ax = b$ ha un'unica soluzione se e solo se $\operatorname{rk}(A|b) = n + 1$ \bigcirc L'insieme delle soluzioni del sistema è un sottospazio di k^n (1 Point) $\operatorname{Sia} A \in \operatorname{Mat}_4(\mathbf{R})$ una matrice triangolare alta. O La molteplicità algebrica e geometrica di ogni autovalore di A coincidono ∧ è invertibile La somma delle molteplicità algebriche degli autovalori di A è 4 (1 Point) In ${f R}^3$ si considerino i vettori $v_1=\begin{pmatrix}2\\-1\\0\end{pmatrix}, \qquad v_2=\begin{pmatrix}1\\1\\-1\end{pmatrix}, \qquad v_3=\begin{pmatrix}0\\3\\-2\end{pmatrix}, \qquad v_4=\begin{pmatrix}3\\0\\-1\end{pmatrix},$ \bigcirc Esiste un'unica scelta dei coefficienti c_i tale che $\sum_{i=1}^4 c_i v_i = 0$ v_1, v_2, v_3 formano una base di \mathbb{R}^3 \bigcirc Il polinomio caratteristico di f è $p = -x^3 + x^2 + 2x + 3$ \bigcirc dimim(f) = 2Sia $A \in Mat_2(\mathbf{R})$ una matrice con polinomio caratteristico $p = x^2 + 2x + 3$. $\bigcap \operatorname{tr}(A) = 3$

\bigcirc I vettori v_i sono ortogonali a due	a due
4	
(1 Point)	
Stabilire per quali valori di k	è lineare la funzione $f: \mathbf{R}^2 o \mathbf{R}^2$ definita dalla formula
	$f\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_2 + k + 1 \\ (k-1)x_1 \end{pmatrix}.$
	(x_2) $(k-1)x_1$
○ Nessun $k \in \mathbf{R}$	
○ k = 1	
k = -1	
$\bigcirc k = 1, -1$	
_	
5	
(1 Point)	
Determinare la dimension	e del complemento ortogonale del sottospazio di ${f R}^3$
	$H = \langle (1,1,1)^{t}, (1,0,1)^{t}, (1,1,0)^{t}, (0,1,1)^{t} \rangle$
$\dim H^{\perp} = 0$	
\bigcirc dim $H^{\perp} = 2$	
\bigcirc dim $H^{\perp} = 1$	
\bigcirc dim $H^{\perp} = 3$	
6	
(1 Point)	
Sia $f: \mathbf{R}^3 \to \mathbf{R}^3$ un endor	morfismo e siano $v_1,v_2,v_3\in\mathbf{R}^3$ vettori non nulli tali che
	$f(v_1)=v_1, f(v_2)=2v_2, f(v_3)=3v_3.$
Allora	
$ v_1 + v_2 - v_3 \in \ker(f) $	

2022-07 Geometria A Hi, Luca. When you submit this form, the owner will see your name and email address. (1 Point) Qual è il rango della matrice A? $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 4 & 1 \\ 0 & 1 & 0 & 1 \\ 2 & 3 & 0 & 2 \end{pmatrix}$ O 2 4 O 1 O 3 Se $A \in \operatorname{Mat}_{m \times n}(\mathbf{R}), \ b \in \mathbf{R}^m$ e il sistema lineare Ax = b ammette infinite soluzioni, allora $\bigcap m \leq n$ $\bigcirc \ m \geq n$

	smo con polinomio caratteristico $p=x^2(1-x^2)$. Se $\mathrm{im}(f)=\{x\in\mathbf{R}^4:x_1-x_3=0,\ x_2-x_4=0\}$
(1 Point) $Sia\ f:\mathbf{R}^4\to\mathbf{R}^4\ un\ endomorfis$	
(1 Point) $Sia\ f:\mathbf{R}^4\to\mathbf{R}^4\ un\ endomorfis$	
(1 Point) $Sia\ f:\mathbf{R}^4\to\mathbf{R}^4\ un\ endomorfis$	
Sia $f: \mathbf{R}^4 o \mathbf{R}^4$ un endomorfis	
i	
	$\mathrm{im}(f) = \left\{ x \in \mathbf{R}^4 : x_1 - x_3 = 0, \ x_2 - x_4 = 0 \right\}$
allora	
$\bigcirc (1,1,1,1)^T$ è un autovettore	
$\bigcirc \ker(f) = (\operatorname{im}(f))^{\perp}$	
f è diagonalizzabile	
☐ l'autospazio E ₁ ha dimensione 2	
7 (1 Point)	
Sia $A \in \operatorname{Mat}_4(\mathbf{R})$ una matrice simmet dai vettori	rica con due solo autovalori distinti. Se un autospazio di A è generato
($(3,2,1,0)^{t},$ $(0,1,1,1)^{t},$
allora le equazioni cartesiane dell'altro a	autospazio sono
3x + 2y + z = y + z + w = 0	
2x + 2y + z = x + z + w = 0	
z-1=x+y-1=0	
$\bigcirc 2y = 3x + y - z = 0$	
8	
(1 Point)	
Qual è la distanza del punto	P=(1,1,1) dalla retta r ?
	$r: \begin{cases} x = 1 + t \\ y = 0 \\ z = 2t \end{cases}$
○ √3 <u>72</u>	

II vettore $(1,0,1)^{\mathsf{t}}$ ha coordinate $(1,2,3)^{\mathsf{t}}$ rispetto alla base $B=(v_1,v_2,v_3)$. Se $v_1=(1,1,1)^{\mathsf{t}}$ e $v_2=(1,0,0)^{\mathsf{t}}$, allora: $\bigcirc v_3 = (-2/3, 0, -1/3)^T$ $\bigcirc \ v_3 = (-1/3, -2/3, 0)^T$ $\bigcirc v_3 = (0, -2/3, -1/3)^T$ $v_3 = (-2/3, -1/3, 0)^T$ (1 Point) Se $f: \mathbf{R}^3 \to \mathbf{R}^2$ è la funzione lineare $f\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ x_1 - x_3 \end{pmatrix}.$ allora l'immagine diretta del sottospazio $U=\langle (1,1,1)^{\mathsf{t}},\ (2,0,1)^{\mathsf{t}} \rangle \subseteq \mathbf{R}^3$ lungo f è: $\bigcirc R^2$ $\bigcirc \ \langle (2,1,0)^T \rangle$ O 0 (1 Point) Se l'immagine della funzione lineare $f: \mathbf{R}^4 o \mathbf{R}^4$ è generata dai vettori $\begin{pmatrix} 1\\0\\1\\1 \end{pmatrix}, \quad \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \quad \begin{pmatrix} -1\\-3\\2\\2 \end{pmatrix}$ allora la dimensione del nucleo di f è: O 3 O 0 2 O 1

 $\bigcirc \sqrt{2/5}$ 9 Il piano contenente la retta di equazioni x+y=z=1 e il punto P=(-1,-1,-1) ha equazione $\bigcirc x - z + 1 = 0$ $\bigcirc x + y + z + 3 = 0$ Determinare i valori di $k \in \mathbf{R}$ per cui la forma quadratica $p = kx^2 + 2xz - 4yz$ è indefinita. Per tutti i valori di k $\bigcirc k \ge 0$ $\bigcirc k \le 0$ Quante matrici ortogonali di ordine 2 ci sono che hanno $(1/\sqrt{5}, 2/\sqrt{5})^T$ come prima colonna? O infinite 2 \bigcirc 1 La conica di equazione $y^2 - xy + x - 2y + 1 = 0$ è una coppia di rette incidenti

O un'iperbole
O una coppia di rette parallele
○ un'ellisse
Send me an email receipt of my responses
Submit
This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the privacy or security practices of its customers, including those of this form owner. Never give out your password.
Powered by Microsoft Forms <u>Privacy and cookies</u> <u>Terms of use</u>

2022-09 Geometria A

• • •

Hi, Luca. When you submit this form, the owner will see your name and email address.

1

(1 Point)

Se $A \in \mathrm{Mat}_{3 \times 4}(\mathbf{R})$ e $b \in \mathrm{Mat}_{3 \times 1}(\mathbf{R})$, allora il sistema lineare Ax = b:

- O Non ammette mai soluzioni
- Ammette sempre infinite soluzioni
- Non ammette mai un'unica soluzione
- Ammette sempre al più una soluzione

2

(1 Point)

Date tre matrici $A,B,C\in \mathrm{Mat}_n(\mathbf{R})$, la matrice $(A+BC)^T$ è uguale a

- $\bigcirc A^T + B^T C^T$
- $A^T + C^T B^T$
- $\bigcirc B^T C^T + A^T$
- $\bigcirc A + C^T B^T$

3

(1 Point)

I vettori di \mathbb{R}^3 : $(1, 2, 0)^T$, $(1, 0, 1)^T$, $(8, 6, 5)^T$:

 \bigcirc Formano un insieme di generatori per $\langle (1,2,0)^T \rangle$

_				
	Formano 1	ına hase	· di	R

- Formano un insieme di generatori per $\langle (1,2,0)^T, (0,0,1)^T \rangle$
- Formano un insieme di generatori per $\langle (1,0,1)^T, (7,4,5)^T \rangle$

(1 Point)

La funzione lineare $f: \mathbf{R}^4 \to \mathbf{R}^3$ indotta dalla matrice

$$\begin{pmatrix} 1 & 1 & 2 & 1 \\ 6 & 4 & 10 & 4 \\ 2 & 1 & 3 & 1 \end{pmatrix}$$

- È un isomorfismo
- È iniettiva
- Non è né iniettiva né suriettiva
- () È suriettiva

(1 Point)

Sia $V = \{ p \in \mathbf{R}[x] : \deg p \leq 2 \}$ lo spazio dei polinomi di grado minore o uguale a 2. Se $f: V \to V$ è la funzione lineare definita dalle formule

$$f(1) = 1 + x,$$

$$f(x) = 1 - x,$$

$$f(1) = 1 + x, \qquad f(x) = 1 - x, \qquad f(x^2) = 2x^2 + 1,$$

allora $f(3x^2 + x + 2)$ è il polinomio

$$\bigcirc 6x^2 - x + 4$$

$$6x^2 + x + 6$$

- \bigcirc 2
- $\bigcirc 6x^2 + 2x + 5$

(1 Point)

Per quali valori di $t \in \mathbf{R}$ la matrice s	seguente è diagonaizzabile?

$\begin{pmatrix} t \\ 2 \end{pmatrix}$	$\begin{pmatrix} 1 \\ t \end{pmatrix}$

- \bigcirc Solo se t = 0
- \bigcirc Solo se $t \ge 0$
- Per nessun valore di t
- Per tutti i valori di t

(1 Point)

Sia f un endomorfismo di ${\bf R}^4$ per cui la cui somma delle molteplicità geometriche degli autovalori è 3. Se f ammette un autovalore di molteplicità algebrica 2 allora:

- \bigcirc f ha 3 autovalori distinti
- f ha 2 autovalori distinti
- f ha 4 autovalori distinti
- lacksquare non è possibile stabilire il numero di autovalori distinti di f

8

(1 Point)

Cosa si può dire di una matrice $A\in \mathrm{Mat}_3(\mathbf{R})$ cha ha due autovalori distinti con autospazi

$$E_1 = \langle (1,1,0)^{\mathsf{t}}, \ (1,2,1)^{\mathsf{t}} \rangle, \qquad E_2 = \langle (1,-1,1)^{\mathsf{t}} \rangle?$$

- A non è diagonalizzabile
- A è ortogonalmente diagonalizzabile
- O Non si può stabilire se A è diagonalizzabile o ortogonalmente diagonalizzabile
- *A* è diagonalizzabile ma non ortogonalmente

9

(1 Point)

Se $P \in \operatorname{Mat}_3(\mathbf{R})$ è la matrice della proiezione ortogonale sul sottospazio

$$H = \langle (2, 2, 1)^{t}, (1, 3, 1)^{t} \rangle$$

allora

- $\bigcirc \ker(P) = \langle (3, -1, 0)^T \rangle$
- $\bigcirc \ker(P) = \langle (1, -1, 0)^T, (3, -1, 0)^T \rangle$
- $\bigcirc \ker(P) = \langle (1, -1, 0)^T \rangle$

10

(1 Point)

Quali dei seguenti sistemi lineari rappresenta una retta passante per $P=(2,-2,2)^{\rm t}$ e perpendicolare alla retta

$$\begin{cases} x+y=0\\ 2x+3y+z=0. \end{cases}$$

- $\bigcirc y + 2 = z x = 0$
- y-x+4=z-2=0
- $\bigcirc y + x = z x = 0$
- $\bigcirc 2x + y z = x + 2y + 3z + 1 = 0$

11

(1 Point)

Le matrici

$$\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \quad e \quad \begin{pmatrix} -1 & 1 \\ 1 & 2 \end{pmatrix}$$

- O Sono simili e congruenti
- Sono simili ma non congruenti
- Non sono né simili né congruenti
- Sono congruenti ma non simili

12

(1 Point)

La conica di equazione $4x^2+y^2-4xy-14x-8y+11=0$

- \bigcirc è una parabola con asse di simmetria di direzione $(-2, 1)^T$
- \bigcirc è un'ellisse con asse di simmetria di direzione $(-2, 1)^T$
- lacktriangle è una parabola con asse di simmetria di direzione $(1,2)^T$
- \bigcirc è un'ellisse con asse di simmetria di direzione $(1,2)^T$
- ☐ Send me an email receipt of my responses

Submit

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the privacy or security practices of its customers, including those of this form owner. Never give out your password.

Powered by Microsoft Forms | Privacy and cookies | Terms of use