

#### UNIVERSITÀ DI PARMA Dipartimento di Ingegneria e Architettura

# Cryptography: Symmetric Key Establishment

#### Luca Veltri

(mail.to: luca.veltri@unipr.it)

Course of Cybersecurity, 2022/2023 http://netsec.unipr.it/veltri

## Key management

- In a secured communication, users must setup the details of the cryptography
  - In some cases this may require sharing a symmetric key
  - > In others it may require obtaining the other party's public key
- In both cases, an issue is how to securely distribute these keys
  - > in case of symmetric key
    - must be exchanged over a secure communication channel
      - both confidentiality and data authentication must be guaranteed
  - > in case of public key
    - keys can be openly exchanged (authenticated) over an insecure communications channel
      - only message authentication must be guaranteed
        - » the exchange is less troublesome
        - » for example, by using digital certificates
- Often secure systems fail due to a break in the key distribution

### Long-term vs Short-term Keys

- Cryptographic system and protocols usually deal with two types of keys with two different lifetimes:
  - > short-term keys
    - also called as <u>session keys</u>
    - used to secure a communication
      - data confidentiality
      - data authentication and integrity
    - used only for a limited interval of time
    - setup through a proper KE protocol
  - long-term keys
    - also referred to as <u>long-term secrets</u>
    - can be used for
      - peer authentication
      - securing key exchanges

### (Secret) Key establishment

- Secret key establishment is a process or protocol whereby a shared secret becomes available to two or more parties, for subsequent cryptographic use
- Two approaches are possible:
  - > Key pre-distribution
    - key establishment schemes whereby the resulting established keys are completely determined "a priori" by initial keying material
      - used mainly only for long-term secret keys
  - > Dynamic key establishment (or key exchange)
    - those schemes whereby the key established by a pair (or group) of users varies on subsequent executions
    - subdivided into (see later):
      - key transport
      - key agreement

### Key establishment (cont.)

- Dynamic key establishment may be broadly subdivided into:
  - > key transport
    - A key transport protocol or mechanism is a key establishment technique where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)

#### > key agreement

- A key agreement protocol or mechanism is a key establishment technique in which a shared secret is derived by two (or more) parties as a function of information contributed by, or associated with, each of these, (ideally) such that no party can predetermine the resulting value
- Additional variations exist, including various forms of key derivation and key update

### Use of trusted servers

- Some key establishment protocols involve a centralized or trusted party, for either or both:
  - > initial system setup
  - on-line actions (involving real-time participation)
- This party is referred to by a variety of names depending on the role played
  - generically called as trusted third party or trusted server
- E.g.
  - > authentication server
  - key distribution center (KDC)
  - certification authority (CA)

### Properties of key establishment

- Properties that a KE protocol may satisfy:
  - Entity authentication
    - a party in a key establishment protocol is able to determine the true identity of the other(s) which could possibly gain access to the resulting key
  - Implicit Key authentication
    - is the property whereby one party is assured that no other party aside from a specifically identified second party (and possibly additional identified trusted parties) may gain access to a particular secret key
      - the other protocol participant is the only other party that could possibly be in possession of the correct established key
  - > Key confirmation
    - is the property whereby one party is assured that a second (possibly unidentified) party actually has possession of a particular secret key
  - Explicit key authentication
    - both implicit key authentication and key confirmation hold
      - an identified party is known to actually possess a specified key
- A KE protocol is usually called "Authenticated Key Exchange" (AKE) if both entity authentication and explicit key authentication are provided
- In addition:
  - Key freshness assurance
    - · assurance that the exchanged key is new

### Forward secrecy and known-key attacks

- It is important to consider the potential impact of compromise of various types of keying material
  - > even if such compromise is not normally expected
- In particular, the effect of the following is often considered:
  - > compromise of past session (established) keys
  - compromise of long-term secret (symmetric or asymmetric) keys
- A protocol is said to be "resistant to a known-key attack" if compromise of past session keys doesn't allow an adversary to compromise future session key exchanges
- A protocol is said to have "(perfect) forward secrecy" if compromise of long-term keys does not compromise past session keys
  - example: Diffie-Hellman key agreement, in some cases, may provide forward secrecy

# Key transport and derivation using symmetric cryptography

### Point-to-point key transport and key derivation

- Key transport or derivation based on a long-term symmetric key K<sub>ab</sub> shared "a priori" by two parties A and B
  - the long-term key must be initially distributed over a secure channel or resulting from a key pre-distribution mechanism
  - the long-term key is used to establish new session keys K<sub>s</sub>
    - KE protocol (transport/derivation): K<sub>AB</sub> → K<sub>S</sub>
- Possible techniques:
  - key transport based on symmetric encryption
  - key derivation based on non-reversible functions
- Variants:
  - key transport with one pass
  - key transport with challenge-response

### Key transport

Key transport with one pass:

$$A \rightarrow B : E_{Kab}(K_S)$$

- both A and B obtain implicit key authentication
- > susceptible to known-key attacks through replay attack
- Additional optional fields might be transferred in the encrypted portion:

$$A \rightarrow B : E_{Kab}(K_S, t_A^*, B^*)$$

- field containing redundancy provides explicit key authentication to B and facilitates message modification detection
- timestamp (or sequence number) provides a sort of freshness guarantee to B
  - avoids replay attacks
- a destination identifier prevents message replay back on A
  - if a timestamp is present it provides also entity authentication to B

### Key transport (cont.)

- Key transport with challenge-response:
  - ➢ If anti-replay, explicit key authentication, and entity authentication are desired for B but reliance on timestamps added by A is not, a random value or sequence number n<sub>B</sub> may be used
  - > the cost is an additional message

$$A \leftarrow B : n_B$$
  
 $A \rightarrow B : E_{Kab}(K_S, n_B, B^*)$ 

 If it is required that the session key K<sub>s</sub> be a function of inputs from both parties and <u>mutual authentication</u>:

$$A \leftarrow B : n_B$$
  
 $A \rightarrow B : E_{Kab}(k_1, n_A, n_B, B^*)$   
 $A \leftarrow B : E_{Kab}(k_2, n_B, n_A, A^*)$ 

$$\succ$$
 K<sub>S</sub> = f(k<sub>1</sub>, k<sub>2</sub>)

### Key transport (cont.)

- Vulnerabilities:
  - > Any previous exchange does not offer forward secrecy
    - they fail if the long-term key K<sub>ab</sub> is compromised
    - for this reason they may be inappropriate for many applications
- Note:
  - Authentication protocols which employ encryption, including the above key exchange schemes, may require that the encryption function has a built-in data integrity mechanism to detect message modification
    - i.e. Authenticated Encryption (AE)

### Key derivation

 Key exchange may be achieved also by dynamic key derivation where the derived session key is based on per-session random input provided by one party

$$A \rightarrow B : r_A$$

- > single message
- $\rightarrow$  the session key is computed as  $K_S = f_{Kab}(r_A)$ 
  - where f is a cryptographic function, like E<sub>K</sub>() or MAC<sub>K</sub>()
- > provides to both A and B implicit key authentication
- susceptible to known-key attacks through replay attack
- The random number r<sub>A</sub> here may be replaced by other timevariant parameters
  - > e.g. a timestamp t<sub>A</sub>, provides an implicit key freshness property
    - avoids replay attack to B
    - avoids A can force a given key X

### Key derivation (cont.)

- In general is preferred a keyed one-way function (like MAC<sub>K</sub>()) for f<sub>K</sub>(), in place of an encryption function E<sub>K</sub>()
  - A cannot control the value of K<sub>s</sub>
- The simple key derivation scheme can be further extended with two or three passes in order to provide:
  - contribution of B to the creation of K<sub>s</sub>
  - > mutual entity authentication

## Example of authenticated key derivation protocol

- Authenticated Key Exchange Protocol AKEP2
  - provides mutual entity authentication, key freshness guarantee, and implicit key authentication
  - > A and B exchange 3 messages
- Setup:
  - ➤ A and B share long-term symmetric keys K<sub>ab</sub>

 $A \rightarrow B$ :  $r_A$   $A \leftarrow B$ :  $X_B = \{B, A, r_A, r_B\}$ ,  $MAC_{Kab}(X_B)$  $A \rightarrow B$ :  $X_\Delta = \{A, r_B\}$ ,  $MAC_{Kab}(X_\Delta)$ 

- $\rightarrow$  K<sub>S</sub> = f<sub>K'</sub>(r<sub>B</sub>)
  - where f<sub>k</sub>() is a keyed one-way function or encryption function
  - K' is the key used to derive Ks, usually obtained from K<sub>ab</sub>

# Key transport using asymmetric cryptography

### Key transport based on public-key encryption

 One party may choose a symmetric key and transfer it to a second, using that party's encryption public key

$$A \rightarrow B : \{ K_S \} KU_B$$

- > this provides (implicit) key authentication to the originator (A)
  - only the intended recipient has the private key allowing decryption
  - the originator (A) obtains neither entity authentication nor key confirmation
- the second party (B) has no assurances regarding the source of the key and the timeliness
  - even if A sends to B: {K<sub>s</sub>,A,T<sub>A</sub>}KU<sub>B</sub>, since KU<sub>B</sub> is public
- > such additional assurances may be obtained through use of further techniques including:
  - additional messages, with public-key encryption
    - using challenge-response like key transport based on symmetric key
  - digital signature

# Key transport using public-key encryption and signature

- Encryption and signature primitives may be used to provide respectively:
  - privacy of keying material
  - source authentication
- Some possible approaches:
  - > sign the key and separately public-key encrypt the (unsigned) key
  - > sign the key, then public-key encrypt the signed key
  - public-key encrypt the key, then sign the encrypted key

# Key transport using public-key encryption and signature in one-pass

- Encrypting and signing separately:
  - > An option is to sign the key and encrypt the key:

$$A \rightarrow B$$
: {A, K<sub>s</sub>, t<sub>A</sub>\*}KU<sub>B</sub>, Sign<sub>A</sub>(B, K<sub>s</sub>, t<sub>A</sub>\*)

- Encrypting signed keys:
  - > A variation is to encrypt signed blocks:

$$A \rightarrow B$$
: {A, K<sub>s</sub>, t<sub>A</sub>\*, Sign<sub>A</sub>(B, K<sub>s</sub>, t<sub>A</sub>\*)}KU<sub>B</sub>

- Signing encrypted keys:
  - In contrast to encrypting signed keys, one may sign encrypted keys

$$A \rightarrow B$$
:  $t_A^*$ , Q,  $Sign_A(B, t_A^*, Q)$   
where Q={A, K<sub>s</sub>}KU<sub>B</sub>

# Key agreement using asymmetric cryptography

### Diffie-Hellman key exchange

 The first publicly known public-key agreement protocol was the Diffie-Hellman exponential key exchange



### **DH** modes

- Different ways of using DH:
  - > Fixed Diffie-Hellman
    - each party already has the public part (DH public key) of the other entity
  - Anonymous Diffie-Hellman
    - DH exchange
    - susceptible to Man-in-the-Middle attacks
  - > Ephemeral Diffie-Hellman (EDH)
    - authenticated DH exchange
- Elliptic Curve variant:
  - Elliptic Curve DH (ECDH) uses elliptic curves instead of the multiplicative group of integers modulo p

### Diffie-Hellman Vulnerability (MITM attack)

- Anonymous Diffie-Hellman key exchange, does not provide authentication of the parties, and is thus vulnerable to Man-inthe-middle attacks
  - a third party C may run two separate exchanges with A and B, convincing the two peers that the exchange ended successfully between them



### Authenticated DH Exchange

- A wide variety of schemes and protocols have been developed to provide authenticated DH key agreement to prevent man-in-themiddle and related attacks
- These methods generally use:
  - Public/private key pairs
  - Shared secrets

### Authenticated DH Exchange (cont.)

 The simplest way to authenticate the DH exchange could be to sign the DH exponentials



- > It does not guarantee implicit key authentication nor confirmation
  - the authenticated entity may be different from the peer that exchanged the secret key
    - a third party C can convince B that the exchange was run with C, by simply replacing the third message with:

$$C$$
, sign<sub>C</sub>(g<sup>Xa</sup>||g<sup>Xb</sup>)

- this attack does not result in a breach of secrecy of the key

### Authenticated DH Exchange (cont.)

- Solution: uses signature and Enc
  - > variant of Station-to-Station (STS) protocol

```
A \rightarrow B: g^{Xa}
```

$$A \leftarrow B: g^{Xb}, E_{Ks}(B \parallel Sign_B(g^{Xa} \parallel g^{Xb}))$$

$$A \rightarrow B$$
:  $E_{Ks}(A \parallel Sign_A(g^{Xa} \parallel g^{Xb}))$ 

- Solution: uses signature and MAC
  - > SIGMA Protocol:
    - signatures authenticate the DH exponentials
    - MACs bind the key to identities
      - MAC is performed with a key K<sub>m</sub> derived by K<sub>S</sub>=g<sup>XaXb</sup>

$$A \rightarrow B$$
:  $g^{Xa}$ 

$$A \leftarrow B$$
: B,  $g^{Xb}$ ,  $Sign_B(g^{Xa} || g^{Xb})$ ,  $MAC_{Km}(B)$ 

$$A \rightarrow B$$
: A, Sign<sub>A</sub>( $g^{Xa} \parallel g^{Xb}$ ), MAC<sub>Km</sub>(A)

## Server-based Key Distribution

#### Direct trust vs. Trusted intermediaries

 With N nodes, each node must authenticate each other.. N-1 keys maintained by each node



- Possible solution: Trusted intermediate party
  - > Key Distribution Center (KDC) or Key Translation Center (KTC)
  - > similar to CAs for public-key cryptography



### Key distribution with a trusted intermediary



## Key distribution with multiple trusted intermediaries



### Key Distribution in practice

Key Distribution in theory (Client-Server)



- Key Distribution in practice (Client-Server)
  - > e.g. used by Kerberos protocol

