

Continuità

Sia f:X o R e $x_0\in X$

- Se x_0 è un punto ISOLATO f è continua in x_0 in quanto una funzione è continua in ogni punto isolato
- Se x_0 è un punto di ACCUMULAZIONE, f è continua in x_0 SE e SOLO SE $\exists \lim_{x o x_0} f(x) = l \wedge l = f(x_0)$

Si dice che una funzione $f:X \to R$ è continua in tutto X se è continua in ogni punto di X

Le funzioni elementari sono continue in tutto il loro dominio in quanto è possibile trovare per ogni punto x_0 un intorno nel dominio.

TIPI DI DISCONTINUITA'

- Discontinuità di I specie (salto): $\lim_{x\to x_0^-}f(x)=L\wedge\lim_{x\to x_0^+}f(x)=L'\wedge L
 eq L'\wedge L, L'\in R$ la distanza tra L ed L' è detta SALTO di f in x_0
- Discontinuità di II specie: almeno uno dei due limite non esiste o è infinito.

• Discontinuità di III specie (eliminabile): $\lim_{x\to x_0^+}f(x)=\lim_{x\to x_0^-}f(x)\neq f(x_0)$. Si chiama eliminabile perché basta definire $f(x)_0=\lim_{x\to x_0^-}f(x)$ e la discontinuità è risolta

osservazione

Una funzione può essere resa continua in x_0 assegnandogli il valore del suo limite.

PROPRIETA' DELLE FUNZIONI CONTINUE

• OPERAZIONI ALGEBRICHE

siano f(x), g(x) continue su R: allora sono continue anche $f(x) \pm g(x)$ $f(x) \cdot g(x)$ $f(x) \cdot g(x)$ $\frac{f(x)}{g(x)} g(x) \neq 0$ $g(x) \circ f(x) \text{ (se è lecito comporle)}$

PERMANANEZA DEL SEGNO

Se $f:X o R, x_0\in X$ e x_0 di accumulo, SE f(x) è continua in X e $f(x_0)>0$ ALLORA

$$\exists r>0, f(x) orall x\in X\subset (x_0-r,x_0+r)$$