Instructor: James R. Lee

1 Quantum probability theory

The fundamental objects in discrete probability theory are distributions, which we can represent as nonnegative vectors $p \in \mathbb{R}^n_+$ with $\sum_{i=1}^n p_i = 1$. One can think of p as describing the state of a statistical system with n possible basic deterministic states. When we observe the system (i.e., sample from p), we obtain outcome $i \in \{1, 2, ..., n\}$ with probability p_i .

Observations of the system described by p correspond to measurable events in the probability space. In the discrete case, these are particularly easy to describe: Consider a partition of the outcomes into m sets:

$$\{1, 2, \dots, n\} = W_1 \cup W_2 \cup \dots \cup W_m. \tag{1.1}$$

Then we obtain outcome W_i with probability $p(W_i) := \sum_{x \in W_i} p(x)$ and, upon observing that the outcome is i, the state of the system is described by the corresponding conditional probability distribution:

$$p(x \mid W_i) = \frac{p(x)\mathbf{1}_{W_i}(x)}{p(W_i)}.$$

Density matrices. The analogous concept in "quantum probability" is that of a *density matrix*: $\rho \in \mathbb{M}_n(\mathbb{C})$ satisfying $\rho \geq 0$ and $\text{Tr}(\rho) = 1$. In this case, the classical distribution p might correspond to a diagonal matrix $\rho = \text{diag}(p)$.

Measurements. To observe the system described by ρ , one makes a *measurement* which is specified by a decomposition of the identity (compare (1.1)):

$$\sum_{i=1}^m U_i^* U_i = I.$$

This measurement has m outcomes, and outcome $i \in \{1, 2, ..., m\}$ occurs with probability $\text{Tr}(U_i \rho U_i^*)$. Conditioned on outcome i, the resulting state of the system is described by the density matrix

$$\frac{U_i\rho U_i^*}{\operatorname{Tr}(U_i\rho U_i^*)}.$$

Pure states. The set $\mathcal{D} \subseteq \mathbf{H}_n$ of all density matrices is a convex set. The extreme points are called *pure states*. These are precisely the rank-1 matrices uu^* with $u \in \mathbb{C}^n$ and $||u||_2 = 1$. Thus density matrices describe mixtures of pure states; the decomposition of a mixed state into pure states is not unique.

It is typical to specify a quantum system by starting with a Hilbert space $\mathcal{H} = \mathbb{C}^n$ of pure states (this is the analog of the set $\{1, 2, ..., n\}$ in the classical case), and then considering the set of mixed states over \mathcal{H} , which are precisely the linear operators on \mathcal{H} that are positive semidefinite and have unit trace. Define $\mathcal{D}(\mathcal{H}) := \{\rho : \mathcal{H} \to \mathcal{H} | \text{linear} : \rho \geq 0, \text{Tr}(\rho) = 1\}$.

Composite systems. Consider two classical statistical systems S_1 and S_2 with m and n outcomes, respectively. We can describe the state of S_1 by $p_1 \in \mathbb{R}^m$ and the state of S_2 by $p_2 \in \mathbb{R}^n$. The joint statistical state is *not* described by the pair $(p_1, p_2) \in \mathbb{R}^m \times \mathbb{R}^n$, unless the systems are independent. Instead, the joint state is given by $q \in \mathbb{R}^m \otimes \mathbb{R}^n$ since we need to assign a probability to all mn pairs of outcomes. If the systems are independent, their state is given by $p_1 \otimes p_2$.

Similarly, if $\mathcal{H}_A = \mathbb{C}^m$ and $\mathcal{H}_B = \mathbb{C}^n$ are two Hilbert spaces, the composite Hilbert space is $\mathcal{H}_A \otimes \mathcal{H}_B$, and the set of mixed states over the composite system is $\mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B) \subseteq \mathbb{M}_{mn}(\mathbb{C})$. If the two systems are independent and described by $\rho^A \in \mathcal{D}(\mathcal{H}_A)$ and $\rho^B \in \mathcal{D}(\mathcal{H}_B)$, then the joint state is given by $\rho^{AB} = \rho^A \otimes \rho^B$.

Marginal distributions and the partial trace. If $q \in \mathbb{R}^m \otimes \mathbb{R}^n$ describes a joint probability distribution on the space of outcomes $[m] \times [n]$, then we can consider the marginal distributions q_1 and q_2 induced when we consider only the first or second system, e.g.,

$$q_1(x) = \sum_{y \in [n]} q(x, y).$$

In the quantum setting, there is a similar operation called the *partial trace*. Given a density $\rho \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$, the corresponding marginal density $\rho^A \in \mathcal{D}(\mathcal{H}_A)$ should yield the same outcome for all measurements on the joint system $\mathcal{H}_A \otimes \mathcal{H}_B$ that ignore the B component, i.e.,

$$\operatorname{Tr}\left((U\otimes I)\rho\right)=\operatorname{Tr}\left(U\rho^A\right)$$
,

and similarly for the marginal density on the *B*-component:

$$\operatorname{Tr}\left((I\otimes V)\rho\right)=\operatorname{Tr}\left(V\rho^{B}\right).$$

Let us define partial trace operators $\operatorname{Tr}_A : \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B) \to \mathcal{D}(\mathcal{H}_B)$ and $\operatorname{Tr}_B : \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B) \to \mathcal{D}(\mathcal{H}_A)$ that "trace out" the corresponding component so that $\rho^A = \operatorname{Tr}_B(\rho)$ and $\rho^B = \operatorname{Tr}_A(\rho)$. These should satisfy: For all U, V:

$$\operatorname{Tr}_{B}(U \otimes V) = U\operatorname{Tr}(V), \quad \operatorname{Tr}_{A}(U \otimes V) = \operatorname{Tr}(U)V.$$

The name "partial trace" comes from thinking of an element $\rho \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$ as a block matrix. Let us use greek letters α , β to index the A-system and arabic letters i, j for the B-system. Then it is possible to think of ρ as an $m \times m$ block matrix where $\rho_{\alpha\beta} \in \mathcal{D}(\mathcal{H}_B)$ for α , $\beta \in [m]$. In this case,

$$\operatorname{Tr}_{A}(\rho) = \sum_{\alpha=1}^{m} \rho_{\alpha\alpha} \in \mathcal{D}(\mathcal{H}_{B}).$$

Note that

$$\operatorname{Tr}(\operatorname{Tr}_{A}(\rho)) = \sum_{i=1}^{n} \left(\operatorname{Tr}_{A}(\rho)\right)_{ii} = \sum_{i=1}^{n} \left(\sum_{\alpha=1}^{n} (\rho_{\alpha\alpha})_{ii}\right) = \operatorname{Tr}(\rho).$$

If we instead represent ρ as a block matrix where $\rho_{ij} \in \mathcal{D}(\mathcal{H}_A)$ for each $i, j \in [n]$, then

$$\operatorname{Tr}_B(\rho) = \sum_{i=1}^n \rho_{ii}.$$

Entanglement. A classical probability distribution on $[m] \times [n]$ is independent between the two subsystems if the joint distribution is a tensor: $q = p_1 \otimes p_2$. Equivalently, if $q(x, y) = p_1(x)p_2(y)$ for all $x \in [m]$, $y \in [n]$. One can easily check that the set of probability distributions on $[m] \times [n]$ is precisely the convex hull of the set of independent distributions $p_1 \otimes p_2$ as p_1 and p_2 range over distribution on [m] and [n], respectively.

Similarly, we can consider the collection $\mathcal{S} \subseteq \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$ of operators of the form $\sum_i \lambda_i(U_i \otimes V_i)$ where $\lambda_i \geqslant 0$, $\sum_i \lambda_i = 1$, and $U_i \in \mathcal{D}(\mathcal{H}_A)$, $V_i \in \mathcal{D}(\mathcal{H}_B)$ for all i. These are called *separable states*, and they represent states that are *classically* correlated across the A-B partition.

The biggest novelty of quantum information is that there are states whose correlations on non-classical: The elements of $\mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B) \setminus \mathcal{F}$ are called *entangled states*. As a simple example, consider the unit vector $v \in \mathbb{C}^2 \otimes \mathbb{C}^2$ given by

$$v = \frac{1}{\sqrt{2}} \left(e_1 \otimes e_2 - e_2 \otimes e_1 \right),$$

and the corresponding density matrix $\rho = vv^*$. (This is a pure entangled state.) Another example of a *maximally entangled state* in $\mathcal{D}(\mathbb{C}^n \otimes \mathbb{C}^n)$:

$$\rho = \frac{1}{n^2} \sum_{i,j=1}^n e_{ij} \otimes e_{ij}.$$

State transformations. Suppose we have a density $\rho \in \mathcal{D}(\mathcal{H})$ for some Hilbert space \mathcal{H} . This state could then be made to interact with some external system that is itself represented by a density $\rho^{\text{env}} \in \mathcal{D}(\mathcal{H}_{\text{env}})$. Quantum dynamics are described by unitary matrices, hence the joint state after interaction and "processing" will be of the form

$$U(\rho \otimes \rho^{\text{env}})U^*$$
,

for some unitary U acting on $\mathcal{H} \otimes \mathcal{H}_{env}$. Finally, we can look at the marginal state of our system after this, which corresponds to tracing out the environment

$$\tilde{\rho} = \text{Tr}_{\text{env}}(U(\rho \otimes \rho^{\text{env}})U^*) \in \mathcal{D}(\mathcal{H}).$$

This is called a "state transformation."

Let us examine the general form of such a transformation. Suppose that $\mathcal{H} = \mathbb{C}^n$ and $\mathcal{H}_{env} = \mathbb{C}^m$. Since the mapping $\rho \mapsto \tilde{\rho}$ is linear in ρ^{env} , we can assume that $\rho^{env} = zz^*$ for some unit vector $z \in \mathbb{C}^m$. Let us write the unitary U in block matrix form where $U_{ij} \in \mathbb{M}_n(\mathbb{C})$. (We will write all operators on $\mathbb{C}^n \otimes \mathbb{C}^m$ in this form.) Then we have:

$$\begin{split} \tilde{\rho} &= \mathrm{Tr}_{\mathrm{env}} \left(U(\rho^{\mathrm{env}} \otimes \rho) U^* \right) = \sum_{i} \left(U(\rho \otimes \rho^{\mathrm{env}}) U^* \right)_{ii} \\ &= \sum_{i,k,\ell} U_{ik} (\rho \otimes \rho^{\mathrm{env}})_{k\ell} (U^*)_{\ell i} = \sum_{i,k,\ell} U_{ik} (z_k \bar{z}_\ell) \rho (U_{i\ell})^* = \sum_{i} \left(\sum_{k} z_k U_{ik} \right) \rho \left(\sum_{\ell} z_\ell U_{i\ell} \right)^*. \end{split}$$

If we denote $A_i := \sum_k z_k U_{ik}$, then we have written

$$\tilde{\rho} = \sum_{i} A_{i} \rho A_{i}^{*},$$

and these operators satisfy

$$\sum_{i} A_{i}^{*} A_{i} = \sum_{i,k,\ell} \bar{z}_{k} z_{\ell} U_{ik}^{*} U_{i\ell} = \sum_{k,\ell} \bar{z}_{k} z_{\ell} \sum_{i} U_{ik}^{*} U_{i\ell} = \sum_{k,\ell} \bar{z}_{k} z_{\ell} \mathbf{1}_{\{k=\ell\}} I_{n} = \left(\sum_{k} |z_{k}|^{2}\right) I_{n} = I_{n},$$

where we used the fact that U is unitary so that $U^*U = I$, hence

$$\sum_{i} U_{ik}^* U_{i\ell} = \sum_{i} (U_{ki})^* U_{i\ell} = (U^* U)_{k\ell} = \begin{cases} I_n & k = \ell, \\ 0 & \text{otherwise.} \end{cases}$$

We have thus proved the difficult part of the next theorem; we leave the converse as an exercise.

Theorem 1.1. Every state transformation $\rho \mapsto \mathcal{E}(\rho)$ as above can be written as

$$\mathcal{E}(\rho) = \sum_{i} A_{i} \rho A_{i}^{*}$$

with $\sum_i A_i^* A_i = I$. And, conversely, all such \mathcal{E} are state transformations.

1.1 The von Neumann entropy

The von Neumann entropy of a density $\rho \in \mathcal{D}(\mathbb{C}^n)$ is defined as

$$S(\rho) = -\text{Tr}(\rho \log \rho).$$

This is precisely the Shannon entropy of the eigenvalues $\lambda_1, \ldots, \lambda_n$ of ρ :

$$H(\lambda_1,\ldots,\lambda_n)=\sum_{i=1}^n\lambda_i\log\frac{1}{\lambda_i},$$

with our standard convention that $0 \log 0 = 0$. It is straightforward to verify that H is nonnegative and strongly concave, with the unique maximum occurring at the uniform distribution $H(\frac{1}{n}, \frac{1}{n}, \cdots, \frac{1}{n}) = \log n$.

Purification and monotonicity of entropy. In the classical world, we have monotonicity of entropy: Suppose that $q \in \mathbb{R}^m \otimes \mathbb{R}^n$ is a joint distribution on $[m] \times [n]$ and that q_1 and q_2 are the marginals. Then:

$$H(q_1) \le H(q). \tag{1.2}$$

To see this, let us define the conditional distribution q_2^x on [n] by

$$q_2^x(y) = \frac{q(x,y)}{\sum_{y \in [n]} q(x,y)}.$$

One first verifies the chain rule:

$$H(q) = H(q_1) + \sum_{x \in [m]} q_1(x)H(q_2^x), \tag{1.3}$$

and then uses that all the terms in the latter sum are nonnegative, yielding (1.2). Note that (1.3) is usually written more simply as

$$H(X,Y) = H(X) + H(Y \mid X),$$

where X, Y are random variables on [m] and [n], respectively.

This monotonicity property fails resoundingly in the quantum setting. Note that if $\rho = uu^*$ is a pure state, then $S(\rho) = 0$. On the other hand, one has the following fact.

Lemma 1.2 (Purification). For every state $\rho^A \in \mathcal{D}(\mathcal{H}_A)$, there is a Hilbert space \mathcal{H}_B and a pure state $\rho^{AB} \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$ such that $\rho^A = \text{Tr}_B(\rho^{AB})$.

In other words, every state is the partial trace (the "marginal") of a pure state. In particular the analogous monotonicity $S(\rho^A) \leq S(\rho^{AB})$ fails to hold.

To construct the purification, decompose $\rho = \sum_{i=1}^{n} \lambda_i v_i v_i^*$ in its eigenbasis, and let \mathcal{H}_B be the Hilbert space spanned by an orthonormal basis $\{e_1, \ldots, e_n\}$. Define

$$u^{AB} := \sum_i \sqrt{\lambda_i} v_i \otimes e_i, \qquad \rho^{AB} = u^{AB} (u^{AB})^* = \sum_{i,j} \sqrt{\lambda_i \lambda_j} (v_i \otimes e_i) (v_j \otimes e_j)^*.$$

Note that ρ^{AB} can be interpreted as a block matrix where ρ^{AB}_{ij} is the marix $\sqrt{\lambda_i \lambda_j} v_i v_j^*$. Therefore we have

$$\operatorname{Tr}_B(\rho_{AB}) = \sum_i (\rho^{AB})_{ii} = \sum_i \lambda_i v_i v_i^* = \rho.$$