Classification Models Training and Testing Methodology

K-fold cross validation

• Why K-fold cross validation?

- Avoid inappropriate random [train, test, split] division. Cross-validation can let each sample appear at least once in the validation set
- Through multiple fold divisions, it will provide us the sensitivity information of our model to the training set (worst/best-case performance)
- Higher data utilization

Evaluation Metrics

How to measure model performance?

- Let's look at an example:
 - 8 instances, 4 positive, 4 negative
 - 2 positives classified correctly: True Positives (TP),
 - 3 negatives classified correctly True Negatives (TN),
 - 2 negatives classified as positives: False Positives (FP),
 - 1 positive classified as negative: False Negative (FN).

Instance	Target	Classified
1	Good	Good
2	Good	Good
3	Good	Bad
4	Bad	Bad
5	Bad	Good
6	Bad	Good
7	Bad	Bad
8	bad	Bad

Evaluation Metrics cont.

 This can be shown as a matrix, called confusion matrix or contingency table.

		True values		
		Positives Negative		
Predicted values	Positives	TP=2	FP=2	
Predicte	Negatives	FN=1	TN=3	

Instan ce	Target	Classifie d	
1	Good	Good	TP
2	Good	Good	TP
3	Good	Bad	FN
4	Bad	Bad	TN
5	Bad	Good	FP
6	Bad	Good	FP
7	Bad	Bad	TN
8	bad	Bad	TN

What error types (Type I, Type II) these correspond to?

Evaluation Metrics cont.

		True values	
		Positives Negatives	
l values Positives	TP=2	FP=2 Type II error	
Predicted values	Negatives	FN=1 Type I error	TN=3

Instan ce	Target	Classifie d	
1	Good	Good	TP
2	Good	Good	TP
3	Good	Bad	FN
4	Bad	Bad	TN
5	Bad	Good	FP
6	Bad	Good	FP
7	Bad	Bad	TN
8	bad	Bad	TN

Evaluation Metrics cont.

 The following metrics are derived from the confusion matrix:

Recall or Sensitivity or True Positive Rate:

$$TPR = TP/(TP + FN)$$

Precision or Positive Predictive Value:

$$PPV = TP/(TP + FP)$$

F1 score or harmonic mean of TPR and PPV:

$$F1 = 2 * TPR * \frac{PPV}{TPR + PPV}$$

False Positive Rate:

$$FPR = FP/(FP + TN)$$

		True values		
		Positives Negatives		
l values Positives	Positives	TP=2	FP=2	
Predicted values	Negatives	FN=1	TN=3	

Multi class classification

- So far: single class, or binary classification.
- Set of classes may contain more than two, then it is multi-class classification
 - E.g. news articles: Politics, Finance, Sport, each article is classified into ONE of the three.
- It is also possible that an article is classified into more than one category, then it is multi-label categorisation.
 - E.g. news articles: Politics, Finance, Sport, an article is classified into Politics and Finance.

Multi-class Metrics

- How to calculate metrics in this case?
- There are two type of metrics
- 1) Calculate metrics for each class, then average each metric over all classes. This is macro-metrics calculation. E.g., $TPR = \frac{1}{K} \sum_{i \in K} \frac{TP_i}{TP_i + FN_i}$

• 2) Add up values for all classes, creating a new confusion matrix 2 x 2, then calculate all metrics as usual. This is called micro-metrics calculation. E.g.,

TP = TP =	$=\sum_{i\in I}$	TP_i
	i∈k	

Metric Interpretation

- How to choose and explain measurement results?
- Consider two scenarios:
 - 1) A journalist J is looking for articles on a rare topic among thousands. J can view many articles but does not want to miss any important. ML model presents a number of articles. Which metric we should apply? **Recall or TPV** is relevant here, since it measures proportion of good instances currently classified.
 - 2) An investment manager M is looking for a good stock to invest. ML model delivers recommended stocks. Which metric to apply? Here is better to have fewer good stocks rather than many bad. Therefore, **Precision or PPV** is the right metric.

Methodology: Training/Validation

Model complexity grows with more training examples or more complex layout

