(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 12 July 2001 (12.07.2001)

PCT

(10) International Publication Number WO 01/49728 A2

(51) International Patent Classification7: C07K 14/435

(21) International Application Number: PCT/JP00/09359

(22) International Filing Date:

28 December 2000 (28.12.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

 2000-585
 6 January 2000 (06.01.2000)
 JP

 2000-588
 6 January 2000 (06.01.2000)
 JP

 2000-2299
 11 January 2000 (11.01.2000)
 JP

 2000-26862
 3 February 2000 (03.02.2000)
 JP

 2000-58367
 3 March 2000 (03.03.2000)
 JP

(71) Applicants (for all designated States except US): PROTEGENE INC. [JP/JP]: 2-20-3, Naka-cho, Meguro-ku, Tokyo 153-0065 (JP). SAGAMI CHEMICAL RESEARCH CENTER [JP/JP]; 4-1, Nishi-Ohnuma 4-chome, Sagamihara-shi, Kanagawa 229-0012 (JP).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KATO, Seishi [JP/JP]; 3-46-50, Wakamatsu, Sagamihara-shi, Kanagawa

229-0014 (JP). KIMURA, Tomoko [JP/JP]; 715, 2-9-1, Kohoku, Tsuchiura-shi, Ibaraki 300-0032 (JP).

- (74) Agents: AOYAMA, Tamotsu et al.; AOYAMA & PART-NERS, IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-shi, Osaka 540-0001 (JP).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

1/49728 A2

(54) Title: HUMAN PROTEINS HAVING HYDROPHOBIC DOMAINS AND DNAs ENCODING THESE PROTEINS

(57) Abstract: The present invention provides human proteins having hydrophobic domains, DNAs encoding these proteins, expression vectors for these DNAs, transformed eukaryotic cells expressing these DNAs and antibodies directed to these proteins.

DESCRIPTION

Human Proteins Having Hydrophobic Domains and DNAs Encoding These Proteins

5

10

15

20

TECHNICAL FIELD

The present invention relates to human proteins having hydrophobic domains, DNAs encoding these proteins, expression vectors for these DNAs, eukaryotic cells expressing these DNAs and antibodies directed to these proteins. The proteins of the present invention can be employed as pharmaceuticals or as antigens for preparing antibodies directed to these proteins. The human cDNAs of the present invention can be utilized as probes for genetic diagnosis and gene sources for gene therapy. Furthermore, the cDNAs can be utilized as gene sources for producing the proteins encoded by these cDNAs in large quantities. Cells into which these genes are introduced to express secretory proteins or membrane proteins in large quantities can be utilized for detection of the corresponding receptors or ligands, screening of novel small molecule pharmaceuticals and the like. The antibodies of the present invention can be utilized for the detection, quantification, purification and the like of the proteins of the present invention.

PCT/JP00/09359

BACKGROUND ART

5

10

15

20

25

Cells secrete many proteins extracellularly. These secretory proteins play important roles in the proliferation control, the differentiation induction, the material transport, the biophylaxis, and the like of the cells. Unlike intracellular proteins, the secretory proteins exert their actions outside the cells. Therefore, they can be administered in the intracorporeal manner such as the drip, and they possess hidden the injection or potentialities as pharmaceuticals. In fact, a number of human secretory proteins such as interferons, interleukins, erythropoietin, thrombolytic agents and the like are pharmaceuticals. addition, currently employed as In secretory proteins other than those described above are undergoing clinical trials for developing their use as pharmaceuticals. It is believed that the human cells produce many unknown secretory proteins. Availability of these secretory proteins as well as genes encoding them is expected to lead to development of novel pharmaceuticals utilizing them.

On the other hand, membrane proteins play important roles, as signal receptors, ion channels, transporters and the like, in the material transport and the signal transduction through the cell membrane. Examples thereof include receptors for various cytokines, ion

3

channels for the sodium ion, the potassium ion, the chloride ion and the like, transporters for saccharides, amino acids and the like. The genes for many of them have already been cloned. It has been clarified that abnormalities in these membrane proteins are involved in a number of previously cryptogenic diseases. Therefore, discovery of a new membrane protein is expected to lead to elucidation of the causes of many diseases, and isolation of new genes encoding the membrane proteins has been desired.

.5

10

15

20

25

Heretofore, due to difficulty in the purification from human cells, many of these secretory proteins and membrane proteins have been isolated by genetic approaches. A general method is the so-called expression cloning method, in which a cDNA library is introduced into eukaryotic cells to express cDNAs, and the cells secreting, or expressing on the surface of membrane, the protein having the activity of interest are then screened. However, only genes for proteins with known functions can be cloned by using this method.

In general, a secretory protein or a membrane protein possesses at least one hydrophobic domain within the protein. After synthesis on ribosomes, such domain works as a secretory signal or remains in the phospholipid membrane to be entrapped in the membrane. Accordingly, if the existence of a highly hydrophobic domain is observed in the amino acid sequence of a protein encoded by a cDNA when the

whole base sequence of the full-length cDNA is determined, it is considered that the cDNA encodes a secretory protein or a membrane protein.

5 OBJECTS OF INVENTION

10

15

20

25

The main object of the present invention is to provide novel human proteins having hydrophobic domains, DNAs coding for these proteins, expression vectors for these DNAs, transformed eucaryotic cells that are capable of expressing these DNAs and antibodies directed to these proteins.

SUMMARY OF INVENTION

As the result of intensive studies, the present inventors have successfully cloned cDNAs encoding proteins having hydrophobic domains from the human full-length cDNA bank, thereby completing the present invention. Thus, the present invention provides a human protein having hydrophobic domain(s), namely a protein comprising any one of amino acid sequences selected from the group consisting of SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130. Moreover, the present invention provides a DNA encoding said protein, exemplified by a cDNA comprising any one of base sequences selected from the group consisting of SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120 and 131

to 150, an expression vector that is capable of expressing said DNA by in vitro translation or in eukaryotic cells, a transformed eukaryotic cell that is capable of expressing said DNA and of producing said protein, and an antibody directed to said protein.

This object as well as other objects and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the accompanying drawings.

10

20

5

BRIEF DESCRIPTION OF DRAWINGS

Figure 1: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03613.

15 Figure 2: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03700.

Figure 3: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03935.

Figure 4: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10755.

Figure 5: A figure depicting the 25 hydrophobicity/hydrophilicity profile of the protein

10

15

25

encoded by clone HP10760.

Figure 6: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10764.

Figure 7: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10768.

Figure 8: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10769.

Figure 9: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10784.

Figure 10:A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10786.

Figure 11:A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03727.

20 Figure 12:A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03801.

Figure 13:A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03883.

figure depicting the Figure 14: A hydrophobicity/hydrophilicity profile of protein the encoded by clone HP03913. figure depicting the Figure 15: A hydrophobicity/hydrophilicity profile of the protein 5 encoded by clone HP10753. depicting the Figure 16: A figure hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10758. figure depicting the o Figure 17: A 10 hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10771. depicting the figure Figure 18: A hydrophobicity/hydrophilicity profile of protein the encoded by clone HP10778. 15 depicting the figure Figure 19: A hydrophobicity/hydrophilicity profile of the encoded by clone HP10781. depicting figure the Figure 20:A hydrophobicity/hydrophilicity profile of the protein 20 encoded by clone HP10785. figure . depicting the Figure 21:A hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03878. the figure depicting Figure 22:A 25

20

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03884.

Figure 23:A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03934.

Figure 24: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03949.

Figure 25: A figure depicting the

10 hydrophobicity/hydrophilicity profile of the protein
encoded by clone HP03959.

Figure 26: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03983.

15 Figure 27: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10745.

Figure 28: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10775.

Figure 29: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10782.

Figure 30:A figure depicting the hydrophobicity/hydrophilicity profile of the protein.

10

15

20

25

figure depicting Figure 31:A the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03977. figure depicting the Figure 32:A hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10649. Figure 33:A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10779. Figure 34: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10790. figure depicting Figure 35: A the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10793. figure depicting the Figure 36: A hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10794. Figure 37: A figure depicting hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10797. Figure 38: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10798.

figure

Figure 39: A

depicting

the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10800.

Figure 40:A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10801.

5

10

20

Figure 41:A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03596.

Figure 42:A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03882.

Figure 43:A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03903.

15 Figure 44: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03974.

Figure 45: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03978.

Figure 46: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10735.

Figure 47: A figure depicting the 25 hydrophobicity/hydrophilicity profile of the protein

encoded by clone HP10750.

5

10

15

20

25

Figure 48: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10777.

11

Figure 49: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10780.

Figure 50:A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10795.

DETAILED DESCRIPTION OF THE INVENTION

obtained, for example, by a method for isolating proteins from human organs, cell lines or the like, a method for preparing peptides by the chemical synthesis based on the amino acid sequence of the present invention, or a method for producing proteins by the recombinant DNA technology using the DNAs encoding the hydrophobic domains of the present invention. Among these, the method for producing proteins by the recombinant DNA technology is preferably employed. For example, the proteins can be expressed in vitro by preparing an RNA by in vitro transcription from a vector having the cDNA of the present invention, and then carrying out in vitro translation using this RNA as a

10

15

20

25

template. Alternatively, incorporation of the translated region into a suitable expression vector by the method known in the art may lead to expression of the encoded protein in large quantities in prokaryotic cells such as *Escherichia coli* and *Bacillus subtilis*, or eukaryotic cells such as yeasts, insect cells and mammalian cells.

In the case where the protein of the present invention is produced by expressing the DNA by in vitro translation, the protein of the present invention can be produced in vitro by incorporating the translated region of this cDNA into a vector having an RNA polymerase promoter, and then adding the vector to an in vitro translation system such as a rabbit reticulocyte lysate or a wheat germ extract, which contains an RNA polymerase corresponding to the promoter. The RNA polymerase promoters are exemplified by T7, T3, SP6 and the like. The vectors containing promoters for these RNA polymerases are exemplified by pKA1, pCDM8, pT3/T7 18, pT7/3 19, pBluescript II and the like. Furthermore, the protein of the present invention can be expressed in the secreted form or the form incorporated in the microsome membrane when a canine pancreas microsome or the like is added to the reaction system.

In the case where the protein of the present invention is produced by expressing the DNA in a microorganism such as *Escherichia coli*, a recombinant

10

15

20

25

expression vector in which the translated region of the cDNA of the present invention is incorporated into an expression vector having an origin which is capable of replicating in the microorganism, a promoter, a ribosome-binding site, a cDNA-cloning site, a terminator and the like is constructed. After transformation of the host cells with this expression vector, the resulting transformant is cultured. Thus, the protein encoded by the cDNA can be produced in large quantities in the microorganism. In this case, a protein adding an initiation codon and a termination codon in front of and behind the selected translated region and expressing the protein. Alternatively, the protein can be expressed as a fusion protein with another protein. Only the portion of the protein encoded by the cDNA can be obtained by cleaving this fusion protein with a suitable protease. The expression vectors for Escherichia coli are exemplified by the pUC series, pBluescript II, the pET expression system, the pGEX expression system and the like.

In the case where the protein of the present invention is produced by expressing the DNA in eukaryotic cells, the protein of the present invention can be produced as a secretory protein, or as a membrane protein on the surface of cell membrane, by incorporating the translated region of the cDNA into an expression vector for eukaryotic

10

1.5

20

25

14

cells that has a promoter, a splicing region, a poly(A) addition site and the like, and then introducing the vector into the eukaryotic cells. The expression vectors are exemplified by pKA1, pED6dpc2, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vectors, pRS, pYES2 and the like. Examples of eukaryotic cells to be used in general include mammalian cultured cells such as monkey kidney COS7 cells and Chinese hamster ovary CHO cells, budding yeasts, fission yeasts, silkworm cells, and Xenopus oocytes. Any eukaryotic cells may be used as long as they are capable of expressing the proteins of the present invention. The expression vector can be introduced into the eukaryotic cells by using a method known in the art such as the electroporation method, the calcium phosphate method, the liposome method and the DEAE-dextran method.

After the protein of the present invention is expressed in prokaryotic cells or eukaryotic cells, the protein of interest can be isolated and purified from the culture by a combination of separation procedures known in the art. Examples of the separation procedures include treatment with a denaturing agent such as urea or a detergent, sonication, enzymatic digestion, salting-out or dialysis, precipitation, centrifugation, solvent ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, ion-exchange chromatography, hydrophobic

10

15

20

25

chromatography, affinity chromatography and reverse phase chromatography.

The proteins of the present invention also include peptide fragments (of 5 amino acid residues or more) containing any partial amino acid sequences in the amino acid sequences represented by SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130. These peptide fragments can be utilized as antigens for preparation of antibodies. Among the proteins of the present invention, those having the signal sequences are secreted in the form of mature proteins after the signal sequences are removed. Therefore, these mature proteins shall come within the scope of the protein of the present invention. The N-terminal amino acid sequences of the mature proteins can be easily determined by using the method for the determination of cleavage site of a signal sequence [JP-A 8-187100]. Furthermore, some membrane proteins undergo the processing on the cell surface to be converted to the secreted forms. Such proteins or peptides in the secreted forms shall also come within the scope of the protein of the present invention. In the case where sugar chain-binding sites are present in the amino acid sequences of the proteins, expression of the proteins in appropriate eukaryotic cells affords the proteins to which sugar chains are added. Accordingly, such proteins or peptides to which sugar chains are added shall also come . 5

10

15

20

25

PCT/JP00/09359

within the scope of the protein of the present invention.

The DNAs of the present invention include all the DNAs encoding the above-mentioned proteins. These DNAs can be obtained by using a method for chemical synthesis, a method for cDNA cloning and the like.

The cDNAs of the present invention can be cloned, for example, from cDNA libraries derived from the human cells. The cDNAs are synthesized by using poly(A) + RNAs extracted from human cells as templates. The human cells may be cells delivered from the human body, for example, by the operation or may be the cultured cells. The cDNAs can be synthesized by using any method such as the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-170 (1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J., Gene 25: 263-269 (1983)] and the like. However, it is desirable to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)], as exemplified in Examples, in order to obtain a full-length clone in an effective manner. In addition, commercially available human cDNA libraries can be utilized. The cDNAs of the present invention can be from the CDNA libraries by synthesizing cloned oligonucleotide on the basis of base sequences of any portion in the cDNA of the present invention and screening the cDNA libraries using this oligonucleotide as a probe for colony or plaque hybridization according to a method known

17

in the art. In addition, the cDNA fragments of the present invention can be prepared from an mRNA isolated from human cells by the RT-PCR method in which oligonucleotides which hybridize with both termini of the cDNA fragment of interest are synthesized, which are then used as the primers.

5

10

15

The cDNAs of the present invention are characterized in that they comprise any one of the base sequences represented by SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110 and 131 to 140 or the base sequences represented by SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120 and 141 to 150. Table 1 summarizes the clone number (HP number), the cells from which the cDNA clone was obtained, the total number of bases of the cDNA, and the number of the amino acid residues of the encoded protein, for each of the cDNAs.

Table 1

.:. Sequence		No.	HP No.	Cell	Number	Number of
					of	amino
					bases	acids
1,	11,	21	HP03613	Kidney	2865	578
2,	12,	22	HP03700	Kidney	3323	243
3,	13,	23	нр03935	Kidney	1585	461
4,	14,	24	HP10755	Kidney	2122	647
5,	15,	25	HP10760	Kidney	1775	446
6,	16,	26	HP10764	Kidney	1372	197
7,	17,	27	HP10768	Kidney	2074	540
8,	18,	28	HP10769	Kidney	2252	442
9,	19,	29	HP10784	Kidney	1461	262
10,	20,	30	HP10786	Kidney	1122	152
31,	41,	51	HP03727	Kidney	1617	335
32,	42,	52	HP03801	Umbilical cord blood	1749	208
33,	43,	53	HP03883	Kidney	1402	406
34,	44,	54	HP03913	Kidney	2474	618
35,	45,	55	HP10753	Umbilical cord blood	3296	208
36,	46,	56	HP10758	Kidney	1818	502
37,	47,	57	HP10771	Kidney	1646	336
38,	48,	58	HP10778	Kidney	1416	340
39,	49,	. 59	HP10781	Kidney	1927	223
40,	50,	60	HP10785	Kidney	1419	309
61,	71,	81	HP03878	Kidney	2016	599 .
62,	72,	82	HP03884	Kidney	1446	81
63,	73,	83	HP03934	Kidney	2467	654
64,	74,	84	HP03949	Kidney	1450	390
65,	75,	85	HP03959	Kidney	1897	452

Table 1 (continued)

Somiongo No	UD No	Coll	NY1		
Sequence No	. HP No.	Cell	Number	Number of	
			of	amino	
 -		· · · · · · · · · · · · · · · · · · ·	bases	acids	
66, 76, 8	6 HP03983	Kidney	1856	490	
67, 77., 8	7 HP10745	Umbilical cord blood	2173	392	
68, 78, 88	3 HP10775	Kidney	1934	538	
69, 79, 89	9 HP10782	Kidney	1880	102	
70, 80, 90	HP10787	Kidney	2295	442	
91, 101, 113	L HP03977	Kidney	1894	227	
92, 102, 112	P10649	KB	2413	352	
93, 103, 113	B HP10779	Kidney .	2376	130	,
94, 104, 114	HP10790	Kidney	1155	330	
95, 105, 115	HP10793	Kidney	1329	350	
96, 106, 116	HP10794	Kidney	1387	113	
97, 107, 117	HP10797	Kidney	1158	189	
98, 108, 118	HP10798	Kidney	1106	277	
99, 109, 119	HP10800	Kidney	1907	274	
100, 110, 120	HP10801	Kidney	1816	390	
121, 131, 141	HP03696	Umbilical cord blood	1961	395	
122, 132, 142	P03882	Kidney	2194	550	
123, 133, 143	нр03903	Kidney	2753	218	
124, 134, 144	HP03974	Kidney	2085	596 .	
125, 135, 145	нр03978	Kidney	2208	467	•
126, 136, 146	HP10735	Umbilical cord blood	2044	476	
127, 137, 147	HP10750	Umbilical cord blood	2176	449	
128, 138, 148	HP10777	Kidney	1363	105	
129, 139, 149	HP10780	Kidney	1043	81	
130, 140, 150	HP10795	Kidney	2435	552	

The same clones as the cDNAs of the present

invention can be easily obtained by screening the cDNA libraries constructed from the human cell lines or human tissues utilized in the present invention using an oligonucleotide probe synthesized on the basis of the base sequence of the cDNA provided in any one of SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120 and 131 to 150.

5

10

15

20

25

In general, the polymorphism due to the individual differences is frequently observed in human genes. Accordingly, any cDNA in which one or plural nucleotides are added, deleted and/or substituted with other nucleotides in SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120 and 131 to 150 shall come within the scope of the present invention.

Similarly, any protein in which one or plural amino acids are added, deleted and/or substituted with other amino acids resulting from the above-mentioned changes shall come within the scope of the present invention, as long as the protein possesses the activity of the protein having any one of the amino acid sequences represented by SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130.

The cDNAs of the present invention also include cDNA fragments (of 10 bp or more) containing any partial base sequence in the base sequences represented by SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110 and 131 to 140 or in the base sequences represented by SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120 and 141 to 150. Also, DNA

10

15

20

25

fragments each consisting of a sense strand and an antisense strand shall come within this scope. These DNA fragments can be utilized as the probes for the genetic diagnosis.

The antibody of the present invention can be obtained from a serum after immunizing an animal using the protein of the present invention as an antigen. A peptide that is chemically synthesized based on the amino acid sequence of the present invention and a protein expressed in eukaryotic or prokaryotic cells can be used as an antigen. Alternatively, an antibody can be prepared by introducing the above-mentioned expression vector for eukaryotic cells into the muscle or the skin of an animal by injection or by using a gene gun and then collecting a serum therefrom [JP-A 7-313187]. Animals that can be used include a mouse, a rat, a rabbit, a goat, a chicken and the like. A monoclonal antibody directed to the protein of the present invention can be produced by fusing B cells collected from the spleen of the immunized animal with myelomas to generate hybridomas.

In addition to the activities and uses described above, the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by

and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

5

10

15

20

25

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for highthroughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction.

10

20

25

Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

15 <u>Nutritional Uses</u>

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or

25

polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

Cytokine and Cell Proliferation/Differentiation Activity

5

10

15

20

25

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In

Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., J. Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol. 152: 1756-1761, 1994.

5

10

15

20

25

Assays for cytokine production and/or spleen cells, lymph node cells or proliferation of thymocytes include, without limitation, those described in: 4 Polyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon y, Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988;

15

20

25

Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6-Nordan, R. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 -Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, 10 J., Clark, S.C. and Turner, K.J. In Current Protocols. in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J.

11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

Immune Stimulating or Suppressing Activity

5

10

15

20

25

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp. and various fungal infections such malaria candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a

10

15

20

25

PCT/JP00/09359

protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic rheumatoid arthritis, autoimmune lupus erythematosus, pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia autoimmune gravis, graft-versus-host disease and inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. Other immune is suppression desired in which conditions, (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be possible to immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an response already in progress or may preventing the induction of immune response. an functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable WO 01/49728

5

10

15

20

25

30

PCT/JP00/09359

from immunosuppression in that it is generally antigenspecific and persists after exposure to the tolerizing agent
has ceased. Operationally, tolerance can be demonstrated by
the lack of a T cell response upon reexposure to specific
antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as , for example, B7)), e.g.; preventing high level lymphokine synthesis by activated T cells, will situations of tissue, skin and organ useful in be transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. rejection of the transplants, tissue Typically, in transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding

costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

10

15

20

25

Blocking antigen function mav also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor: ligand interactions of B lymphocyte antigens can be 3 used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating useful in therapy. also beresponses, may immune Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

5

10

15

20

25

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and

thereby activate, T cells in vivo.

5

10

15

20

25

regulation application, up oranother enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. For example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II

10

15

20

25

molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I lphachain protein and β , microglobulin protein or an MHC class II α chain protein and an MHC class II β chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated invariant chain, can also such as the protein, cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan,

25

A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et 5 al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 10 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J. Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994. 15

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will

identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

5

10

15

25

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of 20 Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which

will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

5

10

15

20

25

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

0

Hematopoiesis Regulating Activity

A protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby

indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation granulocytes and such as myeloid cells 5 of traditional activity) monocytes/macrophages (i.e., CSF useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting megakaryocytes proliferation of and the consequently of platelets thereby allowing prevention or 10 disorders such platelet various treatment of thrombocytopenia, and generally for use in place of or complementary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-15 mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without anemia and paroxysmal nocturnal aplastic limitation, hemoglobinuria), as well as in repopulating the stem cell 20 compartment post irradiation/chemotherapy, either in-vivo or conjunction with bone ex-vivo (i.e., in progenitor cell with peripheral transplantation or transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy. 25

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

5

10

15

20

25

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M.G. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay,

Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, NY. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

5

10

15

20

25

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial

defects, and also is useful in cosmetic plastic surgery.

5

10

15

20

25

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo

WO 01/49728

5

10

15

20

25

PCT/JP00/09359

tissue formation induced by tendon/ligament-like composition of the present invention contributes to the repair of congenital, trauma induced; or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, differentiation of progenitors of tendoninduce ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel or ligament defects. The and other tendon syndrome compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be for proliferation of neural cells useful regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral injuries, peripheral nerve nervous system, such as

peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, spinal cord disorders, head trauma such as cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

5

10

15

20

25

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A

10

15

20

protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. W095/16035 (bone, cartilage, tendon); International Patent Publication No. W095/05846 (nerve, neuronal); International Patent Publication No. W091/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

10

15

20

25

A protein of the present invention may also exhibit activin- or inhibin-related activities. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin α family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin- β group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for activin/inhibin activity include,

10

15

20

25

without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, and/or endothelial epithelial eosinophils, Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction lymphocytes, of monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells.

15

20

Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

5 The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a

10

15

protein is expected to be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke)).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Receptor/Ligand Activity

demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions.

Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptor phosphatases and their ligands, receptor phosphatases and their

their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

5

10

15

20

10

15

20

WO 01/49728 PCT/JP00/09359

51

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cellcell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, hyperacute rejection, nephritis, complement-mediated cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

Tumor Inhibition Activity

In addition to the activities described above for immunological treatment or prevention of tumors, a protein

of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth.

Other Activities

5

10

15

20

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or cardiac cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization,

storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), 5 depression (including depressive disorders) and violent $^{\circ}$ behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of 10 enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulinlike activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an 15 antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

Examples

20 The present invention is specifically illustrated in more detail by the following Examples, but Examples are not intended to restrict the present invention. The basic procedures with regard to the recombinant DNA and the enzymatic reactions were carried out according to the

10

15

20

25

literature ["Molecular Cloning. A Laboratory Manual", Cold Spring Harbor Laboratory, 1989]. Unless otherwise stated, restriction enzymes and various modifying enzymes to be used were those available from Takara Shuzo. The buffer compositions and the reaction conditions for each of the enzyme reactions were as described in the attached instructions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: 243-250 (1994)].

(1) Selection of cDNAs Encoding Proteins Having Hydrophobic Domains

The cDNA library of epidermoid carcinoma cell line KB (WO98/11217), and the cDNA libraries constructed from human kidney mRNA (Clontech) and human umbilical cord blood mRNA were used as cDNA libraries.

Full-length cDNA clones were selected from the respective libraries and the whole base sequences thereof were determined to construct a homo-protein cDNA bank consisting of the full-length cDNA clones. The hydrophobicity/hydrophilicity profiles were determined for the proteins encoded by the full-length cDNA clones registered in the homo-protein cDNA bank by the Kyte-Doolittle method [Kyte, J. & Doolittle, R. F., J. Mol. Biol. 157: 105-132 (1982)] to examine the presence or absence of a hydrophobic domain. A clone that has a hydrophobic region

10

15

20

25

being assumed as a secretory signal or a transmembrane domain in the amino acid sequence of the encoded protein was selected as a clone candidate.

(2) Protein Synthesis by In Vitro Translation

The plasmid vector bearing the cDNA of the present invention was used for in vitro transcription/translation with a $T_{\text{\tiny N}}T$ rabbit reticulocyte lysate kit (Promega). In this case, [35]methionine was added to label the expression product with a radioisotope. Each of the reactions was carried out according to the protocols attached to the kit. Two micrograms of the plasmid was subjected to the reaction at 30°C for 90 minutes in the reaction solution of a total volume of 25 μ l containing 12.5 μ l μ of T_NT rabbit reticulocyte lysate, 0.5 µl of a buffer solution (attached to the kit), 2 µl of an amino acid mixture (without methionine), $2 \mu l$ of [35S]methionine (Amersham) (0.37 MBq/ μl), 0.5 µl of T7 RNA polymerase, and 20 U of RNasin. The experiment in the presence of a membrane system was carried out by adding 2.5 µl of a canine pancreas microsome fraction (Promega) to the reaction system. 2 µl of the SDS sampling buffer (125 mM Tris-hydrochloride buffer, pH 6.8, 120 mM 2mercaptoethanol, 2% SDS solution, 0.025% Bromophenol Blue and 20% glycerol) was added to 3 µl of the reaction solution. The resulting mixture was heated at 95°C for 3 minutes and then subjected to SDS-polyacrylamide gel electrophoresis.

The molecular weight of the translation product was determined by carrying out the autoradiography.

(3) Expression in COS7

5

10

15

20

25

vector for the protein of the present invention were cultured at 37°C for 2 hours in 2 ml of the 2 x YT culture medium containing 100 μ g/ml of ampicillin, the helper phage M13K07 (50 μ 1) was added thereto, and the cells were then cultured at 37°C overnight. Single-stranded phage particles were obtained by polyethylene glycol precipitation from a supernatant separated by centrifugation. The particles were suspended in 100 μ l of 1 mM Tris-0.1 mM EDTA, pH 8 (TE).

The cultured cells derived from monkey kidney, COS7, were cultured at 37°C in the presence of 5% CO₂ in the Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal calf serum. 1 x 10⁵ COS7 cells were inoculated into a 6-well plate (Nunc, well diameter: 3 cm) and cultured at 37°C for 22 hours in the presence of 5% CO₂. After the medium was removed, the cell surface was washed with a phosphate buffer solution followed by DMEM containing 50 mM Trishydrochloride (pH 7.5) (TDMEM). A suspension containing 1 µl of the single-stranded phage suspension, 0.6 ml of the DMEM medium and 3 µl of TRANSFECTAMTM (IBF) was added to the cells and the cells were cultured at 37°C for 3 hours in the presence of 5% CO₂. After the sample solution was removed,

10

15

20

25

PCT/JP00/09359

the cell surface was washed with TDMEM, 2 ml per well of DMEM containing 10% fetal calf serum was added, and the cells were cultured at 37°C for 2 days in the presence of 5% CO₂. After the medium was exchanged for a medium containing [35S]cysteine or [35S]methionine, the cells were cultured for one hour. After the medium and the cells were separated each other by centrifugation, proteins in the medium fraction and the cell membrane fraction were subjected to SDS-PAGE.

(4) Preparation of Antibodies

A plasmid vector containing the cDNA of the present invention was dissolved in a phosphate buffer solution (PBS: 145 mM NaCl, 2.68 mM KCl, 8.09 mM Na, HPO,, 2 mM KH,PO4, pH 7.2) at a concentration of 2 μ g/ μ l. 25 μ l each (a total of 50 µl) of the thus prepared plasmid solution in PBS was injected into the right and left musculi quadriceps femoris of three mice (ICR line) using a 26 guage needle. After similar injections were repeated for one month at intervals of one week, blood was collected. The collected blood was stored at 4°C overnight to coagulate the blood, and then centrifuged at 8,000 x g for five minutes to obtain a supernatant. NaN, was added to the supernatant to a concentration of 0.01% and the mixture was then stored at 4°C. The generation of an antibody was confirmed by immunostaining of COS7 cells into which the corresponding vector had been introduced, or by Western blotting using a

10

15

20

25

cell lysate or a secreted product.

(5) Clone Examples

<HP03613> (SEQ ID NOS: 1, 11, and 21)

Determination of the whole base sequence of the cDNA insert of clone HP03613 obtained from cDNA library of human kidney revealed the structure consisting of a 337-bp 5'-untranslated region, a 1737-bp ORF, and a 791-bp 3'untranslated region. The ORF encodes a protein consisting of 578 amino acid residues and there existed eleven putative the 1 depicts Figure domains. transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse organic cation transporter-like protein (Accession No. BAA23875). Table 2 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse organic cation transporter-like protein (MT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology

of 70.4% in the entire region.

Table 2

20

- HP ASILGSLSPEALLAISIPPGPNQRPHQCRRFRQPQWQLLDPNATATSWSEADTEPCVDGW

 *** *.*. *** **** **** ******** .. ***** *** ***

 MT ASIPGDLGPDVLLAVSIPPGPDQQPHQCLRFRQPQWQLTESNATATNWSDAATEPCEDGW
- - MT LLVSVSGTAAAFMPTFPLYCLFRFLLASAVAGVMMNTAS----

25 HP SWWLAESARWLLTTGRLDWGLQELWRVAAINGKGAVQDTLTPEVLLSAMREELSMGQPPA

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI792236). However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10

15

20

25

<HP03700> (SEQ ID NOS: 2, 12, and 22)

Determination of the whole base sequence of the cDNA insert of clone HP03700 obtained from cDNA library of human kidney revealed the structure consisting of a 45-bp 5'-untranslated region, a 732-bp ORF, and a 2546-bp 3'untranslated region. The ORF encodes a protein consisting of 243 amino acid residues and there existed three putative transmembrane 2 depicts domains. Figure hydrophobicity/hydrophilicity profile, obtained by the Kyteof the present protein. Doolittle method, translation resulted in formation of a translation product of 27 kDa that was somewhat larger than the molecular weight of 25,561 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse yolk sac permease-like molecule 1 (Accession No. AAA92292). Table 3 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse yolk sac permease-like molecule 1 (MY). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 74.5% in the N-terminal region of 231 amino acid residues.

Table 3

5

10

15

20 HP SGGVWGD

MY LGSCQIPLCSWRPSSTSTHICIPVFRLLSVLAPVACVWFISAFVGTSVIPLQLSEPSDAP

The search of the GenBank using the base sequences
of the present cDNA has revealed the registration of

10

15

20

25

sequences that shared a homology of 90% or more (for example, Accession No. AW167520). However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03935> (SEQ ID NOS: 3, 13, and 23)

Determination of the whole base sequence of the cDNA insert of clone HP03935 obtained from cDNA library of human kidney revealed the structure consisting of a 72-bp 5'-untranslated region, a 1386-bp ORF, and a 127-bp 3'untranslated region. The ORF encodes a protein consisting of 461 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 3 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 56 kDa that was somewhat larger than the molecular weight of 52,052 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 61 kDa. In addition, there exists in the amino acid sequence of this protein two sites at which N-glycosylation may occur (Asn-Ser-Ser at position 193 and Asn-Ser-Thr at position 236). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from histidine at position 32.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Arabidopsis thaliana hypothetical protein (Accession No. CAB41318). Table 4 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Arabidopsis thaliana hypothetical protein (AT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 30.8% in the intermediate region of 214 amino acid residues.

15 Table 4

HP MAPQSLPSSRMAPLGMLLGLLMAACFTFCLSHQNLKEFALTNPEKSSTKETERKETKAEE

HP ELDAEVLEVFHPTHEWQALQPGQAVPAGSHVRLNLQTGEREAKLQYEDKFRNNLKGKRLD

20

10

AT MPTIFFFRYVFLLVVISLVGFSIAEKVNSSGGMVWSSVRDEAELVEDSGVVIGEQDQ

 $HP \quad INTNTYTSQDLKSALAKFKEGAEMESSKEDKARQAEVKRLFRPIEELKKDFDELNVVIET$

. *.... .* * .. ***. ..*. . .

25 AT IDGGFSSLDGMLHWAIGHSDPATLKEAAKDAEKMS-LDELQKRQLELKELVEKLK--MPS

:	HP	${\tt DMQIMVRLINKFNSSSSSLEEKIAALFDLEYYVHQMDNAQDLLSFGGLQVVINGLNSTEP}$
	•	* * * ** *** * * *** * ** **
	AT	${\tt NAKLMQIAIDDLNNSSLSLEDRHRALQELLILVEPIDNANDLSKSGGLRVVAGELNHDDT}$
5		
	НР	$\verb LVKEYAAFVLGAAFSSNPKVQVEAIEGGALQKLLVILATEQPLTAKKKVLFALCSLLRHF $
		* **. *** * . ** ** * *** . *
	AT	EVRKLAAWVLGKASQNNPFVQEQVLELGALTT-LIKMVNSSSTEEAVKALFAVSALIRNN
10	НР	PYAQRQFLKLGGLQVLRTLVQEKGTEV-LAVRVVTLLYDLVTEKMFAEEEAELTQEMSPE
		.* *. * .** ** ****.
	AT	IAGQDLFFAAHGYIMLRDVMNNGSLDMKLRRKAVFLVGDLAESQLQNTEKDELPIFKDRL
	НР	KLQQYRQVHLLPGLWEQGWCEITAHLLALPEHDAREKVLQTLGVLLTTCRDRYRQDPQLG
15		
	ΑT	FLKSVVDLIVVLDLDLQEKALTAIQTLLQLKSIEPQVLKESCGLEEALERMKLQLEESMA
	HP	RTLASLQAEYQVLASLELQDGEDEGYFQELLGSVNSLLKELR
20	AT	DEYKRDYAADVESIRGEVELIFRQKLGLL

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AW025017) among ESTs. However, since they are

10

15

20

25

partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10755> (SEQ ID NOS: 4, 14, and 24)

Determination of the whole base sequence of the cDNA insert of clone HP10755 obtained from cDNA library of human kidney revealed the structure consisting of a 55-bp 5'-untranslated region, a 1944-bp ORF, and a 123-bp 3'-untranslated region. The ORF encodes a protein consisting of 647 amino acid residues and there existed eight putative transmembrane domains. Figure 4 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human hypothetical protein KIAA0062 (Accession No. BAA06685). Table 5 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human hypothetical protein KIAA0062 (KI). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention,

respectively. The both proteins shared a homology of 30.6% in the C-terminal region of 408 amino acid residues.

Table 5

5

- HP MASLVSLELGLLLAVLVVTATASPPAGLLSLLTSGQGALDQEALGGLLNTLADRVHCTNG
- HP PCGKCLSVEDALGLGEPEGSGLPPGPVLEARYVARLSAAAVLYLSNPEGTCEDTRAGLWA
- 10 HP SHADHLLALLESPKALTPGLSWLLQRMQARAAGQTPKTACVDIPQLLEEAVGAGAPGSAG
 - KI RVYADAPAKLLLPPPAAWDLAVRLRGAEAASERQVYSVTM
 - HP GVLAALLDHVRSGSCFHALPSPQYFVDFVFQQHSSEVPMTLAELSALMQRLGVGREAHSD

15

- KI KLLLLHPAFQSCLLLTLLGLWRTTPEAHASSLGAPAISAASFLQDLIHRYGEGDSLTLQQ
- HP HSHRHRGASSRDPVPLISSSNSSSVWDTVCLSARDVMAAYGLSEQAGVTPEAWAQLSPAL
- ..*.*. *...***.*..
- 20 KI LKALLNHLDVGVGRGNVTQHVQGHRNLSTCFSSGDLFTAHNFSEQSRIGSSELQEFCPTI

 - KI LQQLDSRACTSENQENEENEQTEEGRPSAVEVWGYGLLCVTVISLCSLLGASVVPFMK-K

	P GVAHYILQTFLSLAVGALTGDAVLHLTPKVLGLHTHSEEGLSPQPTWRLLAMLAGLYAFF	
	* * **. * *	
	I TFYKRLLLYFIALAIGTLYSNALFQLIPEAFGFNPL-EDYYVSKSAVVFGGFYLFF	
5	P LFENLFNLLL-PRDPEDLEDGPCGHSS-HSHGGHSHGVSLQLAPSELRQPKPPHEG	
	. **** .***.	
	I FTEKILKILLKQKNEHHHGHSHYASESLPSKKDQEEGVMEKLQNGDLDHMIPQHCSSELD	
	P SRADLVAEESPELLNPEPRRLS-PELRLLPYMITLGDAVHNFADGLAV	
10	.,*.*.** ******.*.***	
	I GKAPMVDEKVIVGSLSVQDLQASQSACYWLKGVRYSDIGTLAWMITLSDGLHNFIDGLAI	
	P GAAFASSWKTGLATSLAVFCHELPHELGDFAALLHAGLSVRQALLLNLASALTAFAGLYV	
	. *. * * **. * *. ***** **. **.	
15	I GASFTVSVFQGISTSVAILCEEFPHELGDFVILLNAGMSIQQALFFNFLSACCCYLGLAF	
	IP ALAVGVSEESEAWILAVATGLFLYVALCDMLPAMLKVRDPRPWLLFLLHNVGLLG	
	* *. *. **. *. * ***. * **. * . * .	
	I GILAG-SHFSANWIFALAGGMFLYISLADMFPEMNEVCQEDERKGSILIPFIIQNLGLLT	
20		
	IP GWTVLLLLSLYEDDITF	
	*. * * *	
	I GFTIMVVLTMYSGQIQIG	

10

15

20

25

base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA42490) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10760> (SEQ ID NOS: 5, 15, and 25)

Determination of the whole base sequence of the cDNA insert of clone HP10760 obtained from cDNA library of human kidney revealed the structure consisting of a 61-bp 5'-untranslated region, a 1341-bp ORF, and a 373-bp 3'untranslated region. The ORF encodes a protein consisting of 446 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 5 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 48 kDa that was somewhat smaller than the molecular weight of 49,468 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 50 kDa. In addition, there exists in the amino acid sequence of this protein two sites at which N-glycosylation may occur (Asn-Ala-Thr at position 144 and Asn-Ile-Ser at position 243). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal

WO 01/49728 PCT/JP00/09359

70

sequence, allows to expect that the mature protein starts from glutamic acid at position 27.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human 25 kDa trypsin inhibitor (Accession No. BAA25066). Table 6 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human 25 kDa trypsin inhibitor (TI). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 33.5% in the intermediate region of 185 amino acid residues.

15

10

5

Table 6

HP

MLHPETSPGRGHLLAVLLALLGTAWAEVWPPQLQEQAPMAG

20 TI MIAISAVSSALLFSLLCEASTVVLLNSTDSSPPTNNFTDIEAALKAQLDSADIPKARRKR

HP ALNRKESFLLLSLHNRLRSWVQPPAADMRRLDWSDSLAQLAQARAALCGIPTPSLASGLW
.....*.**.*.*.**.**.*.**.***

TI YISQNDMIAILDYHNQVRGKVFPPAANMEYMVWDENLAKSAEAWAATC-IWDHG-PSYLL

20

25

- HP RTLQVGWNMQLLPAGLASFVEVVSLWFAEGQRYSHA-AGEC-----AR-NATCTHYTQL

 **...*.*.*.*.*.*

 TI RFLGQN-LSVRTGRYRSILQLVKPWYDEVKDYAFPYPQDCNPRCPMRCFGPMCTHYTQM
- 5 HP VWATSSQLGCGRHLCSAGQA—AI——EAF~VCAYSPGGNWEVNGKTIIPYKKGAWCSLC

 *****...**. * * **.** * *... *** *... *** *... *** *

 TI VWATSNRIGCAIHTCQNMNVWGSVWRRAVYLVCNYAPKGNW—IGEA—PYKVGVPCSSC
- HP TASVSGCFKAWDHAGGLCEVPRNPCRMSCQNHGRLNISTCHCHCPPGYTGRYCQVRCSLQ

 10 ..*.*

TI PPSYGGSCTDNLCFPGVTSNYLYWFK

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI792411) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10764> (SEQ ID NOS: 6, 16, and 26)

Determination of the whole base sequence of the CDNA insert of clone HP10764 obtained from cDNA library of human kidney revealed the structure consisting of a 326-bp 5'-untranslated region, a 594-bp ORF, and a 452-bp 3'-untranslated region. The ORF encodes a protein consisting of

10

20

25

197 amino acid residues and there existed two putative transmembrane domains. Figure 6 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 25 kDa that was somewhat larger than the molecular weight of 21,508 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H45965) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

15 <HP10768> (SEQ ID NOS: 7, 17, and 27)

Determination of the whole base sequence of the cDNA insert of clone HP10768 obtained from cDNA library of human kidney revealed the structure consisting of a 100-bp 5'-untranslated region, a 1623-bp ORF, and a 351-bp 3'untranslated region. The ORF encodes a protein consisting of 540 amino acid residues and there existed nine putative depicts the domains. Figure transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kytethe present protein. In Doolittle method, of translation resulted in formation of a translation product of high molecular weight.

5

10

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA459236) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10769> (SEQ ID NOS: 8, 18, and 28)

Determination of the whole base sequence of the cDNA insert of clone HP10769 obtained from cDNA library of human kidney revealed the structure consisting of a 11-bp 5'-untranslated region, a 1329-bp ORF, and a 912-bp 3'untranslated region. The ORF encodes a protein consisting of 442 amino acid residues and there existed two putative Figure 8 depicts the transmembrane domains. hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 52 kDa that was somewhat larger than the molecular weight of 49,101 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI625881) among ESTs. However, since they are

partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10784> (SEQ ID NOS: 9, 19, and 29)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10784 obtained from cDNA library of human kidney revealed the structure consisting of a 60-bp 5'-untranslated region, a 789-bp ORF, and a 612-bp 3'-untranslated region. The ORF encodes a protein consisting of 262 amino acid residues and there existed six putative transmembrane domains. Figure 9 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 28 kDa that was almost identical with the molecular weight of 27,551 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to rice (Oryza sativa) hypothetical protein (Accession No. AAD39600). Table 7 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and rice hypothetical protein (OS). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that

of the protein of the present invention, respectively. The both proteins shared a homology of 40.0% in the intermediate region of 195 amino acid residues.

5 Table 7

HP

MTPEDPEETQPLLGPPGGSAPRGR

OS MSFRGEESGGEDGGRTASASDLRKPFLHTGSWYKMSSAGGGGGMGSRLGSSAYSLRDSSV

10

- HP RVFLAAFAAALGPLSFGFALGYSSPAIPSLQRAAPPAPRLDDAAASWFGAVVTLGAAAGG
- OS SAVLCTLIVALGPIQFGFTCGFSSPTQDAI----ISDLGLTLSEFSLFGSLSNVGAMVGA
- 15 HP VLGGWLVDRAGRKLSLLLCSVPFVAGFAVITAAQDVWMLLGGRLLTGLACGVASLVAPVY

. .* ... *** **.. ..* . *. .*. *. .*. ****.*.. ** * *.***

- OS IASGQIAEYIGRKGSLMIAAIPNIIGWLAISFAKDSSFLFMGRLLEGFGVGVISYVVPVY
- HP ISEIAYPAVRGLLGSCVQLMVVVGILLAYLAGWVLEWRWLAVLGCVPPSLMLLLMCFMPE

20 *.*** ... ** *** ** *... ** ** * . ** *... . *.**

- OS IAEIAPQTMRGALGSVNQLSVTIGILLAYLLGMFVPWRILSVLGILPCSILIPGLFFIPE
- HP TPRFLLTQHRRQEAAPGLVRCGHGVQHECLRRLLQADPGWPWQLLARGHLGACLCTAC

.**.* *

OS SPRWLAKMGKMEDFESSLQVLRGFETDIAVEVNEIKRSVQSSRRRTTIRFADIKQKRYSV

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AW028826) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP10786> (SEQ ID NOS: 10, 20, and 30)

Determination of the whole base sequence of the CDNA insert of clone HP10786 obtained from cDNA library of human kidney revealed the structure consisting of a 78-bp 5'-untranslated region, a 459-bp ORF, and a 585-bp 3'-untranslated region. The ORF encodes a protein consisting of 152 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 10 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 17 kDa that was almost identical with the molecular weight of 16,904 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AW052022) among ESTs.

However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03727> (SEQ ID NOS: 31, 41, and 51)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP03727 obtained from cDNA library of human kidney revealed the structure consisting of a 254-bp 5'-untranslated region, a 1008-bp ORF, and a 355-bp 3'untranslated region. The ORF encodes a protein consisting of 335 amino acid residues and there existed one putative domain. Figure 11 depicts the transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kytethe present protein. Doolittle method, of translation resulted in formation of a translation product of 41 kDa that was somewhat larger than the molecular weight of 37,999 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to protein MG87 from diabetic rat kidney (Accession No. AAC64190). Table 8 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and protein MG87 from diabetic rat kidney (RD). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue

similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 74.2% in the entire region.

5 Table 8

- RD MGSSSSTALARLGLPGQPRSTWLGVAALGLAAVALGTVAWRRARPRRRRQLQQVGTVSKV

- RD WIYPIKSCKGVSVCETECTDMGLRCGKVRDRFWMVVKEDGHMITARQEPRLVLVTITLEN
- - RD NYLMLEAPGMEPIVLPIKLPSSNKIHDCRLFGLDIKGRDCGDEVARWFTSYLKTQAYRLV
- - HP NIVVTGCDAFEEDTWDELLIGSVEVKKVMACPRCILTTVDPDTGVIDRKQPLDTLKSYRL

79

HP CDPSERELYKLSPLFGIYYSVEKIGSLRVGDPVYRMV

**** ** *** ******

RD CDPSVKSLYQSSPLFGMYFSVEKIGSLRVGDPVYRMVD

5

10

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI912794) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03801> (SEQ ID NOS: 32, 42, and 52)

Determination of the whole base sequence of the CDNA insert of clone HP03801 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 158-bp 5'-untranslated region, a 627-bp ORF, and a 964-bp 3'-untranslated region. The ORF encodes a protein consisting of 208 amino acid residues and there existed six putative transmembrane domains. Figure 12 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 23 kDa that was almost identical with the molecular weight of 22,526 predicted from the ORF.

10

20

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human hypothetical protein CGI-15 (Accession No. AAD27724). Table 9 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human hypothetical protein CGI-15 (CP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The amino acid sequences of the two proteins were completely different each other in the N-terminal, intermediate and C-terminal regions although partial match was observed.

15 Table 9

- CP VLFILIFSLIFKLEELRAALVLVVLLIAGGLFMFTYKSTQFNVEGFAWCWGPRSSVAFAG
- - CP PSPRCSCRRLNSASRIPSTPCSTCSHSCSWGLFPLFAVFEGLHLSTSEKIFRFQDTGLLL
- 25 HP RVLGSLFLGGILAFGLGFSEFLLVSRTSSLTLSIAGIFKEVCTLLLAAHLLGDQISLLNW

81

- CP RVLGSLFLGGILAFGLGFSEFLLVSRTSSLTLSIAGIFKEVCTLLLAAHLLGDQISLLNW
- HP LGFALCLSGISLHVALKALHSRGNPESLPEASVFCSSPCDS
- 5 ****

10

20

25

CP LGFASASREYPSTLPSKPCIPEVMVAPRP

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI741613) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

15 < HP03883> (SEQ ID NOS: 33, 43, and 53)

Determination of the whole base sequence of the cDNA insert of clone HP03883 obtained from cDNA library of human kidney revealed the structure consisting of a 59-bp 5'-untranslated region, a 1221-bp ORF, and a 122-bp 3'untranslated region. The ORF encodes a protein consisting of 406 amino acid residues and there existed eight putative Figure 13 depicts the domains. transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product

10

15

of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the choline/ethanolamine to human similar protein was phosphotransferase (Accession No. NP_006081). Table 10 shows the comparison between amino acid sequences of the human invention present (HP) and of the choline/ethanolamine phosphotransferase (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 66.8% in the entire region. addition, the amino acid sequence from position 70 to position 311 of the present protein shared a homology of 98.3% with human AAPT1-like protein (Accession No. AAD44019).

Table 10

20 HP

25

MAAGAGAGSAPRWLRALSEPLSAAQLRRLEEHRYSAAG

*** ** *****

CE MSGHRSTRKRCGDSHPESPVGFGHMSTTGCVLNKLFQLPTPPLSRHQLKRLEEHRYQSAG

CE	RSLIEPI MOGYWEWLVRRYPSWIAPNI	ITIIGLSINICTTILLVFYCPTATEQAPLW	AYI
L JE.	LOUGH CHEMOUS RESERVATIONS OF THE STATES	111100011.201110011 101 11110414	

- 5 CE ACACGLFIYQSLDAIDGKQARRTNSSSPLGELFDHGCDSLSTVFVVLGTCIAVQLGTNPD

- HP QYFNNFIDEYVVLWMAMVISSFDMVIYFSALCLQISRHLHLNIFKTACHQAPEQVQVLSS

 ****. ****. * **. * * ... * ... * ... *..
 - CE QYFNSFIDEYIVLWIALVFSFFDLIRYCVSVCNQIASHLHIHVFRIKVSTAHSNHH

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example,

10

15

20

25

Accession No. AI816449) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03913> (SEQ ID NOS: 34, 44, and 54)

Determination of the whole base sequence of the cDNA insert of clone HP03913 obtained from cDNA library of human kidney revealed the structure consisting of a 344-bp 5'-untranslated region, a 1857-bp ORF, and a 273-bp 3'untranslated region. The ORF encodes a protein consisting of 618 amino acid residues and there existed thirteen putative Figure 14 depicts domains. transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kytethe present protein. In vitro Doolittle method, of translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human solute carrier family 5 (Accession No. NP_000444). Table 11 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human solute carrier family 5 (SC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that

of the protein of the present invention, respectively. The both proteins shared a homology of 48.3% in the entire region.

5 Table 11

10

- HP MEVKNFAVWDYVVFAALFFISSGIGVFFAIKERKKATSREFLVGGRQMSFGPVG * .*.*** *** *... *** *** *** *** SC MEAVETGERPTFGAWDYGVFALMLLVSTGIGLWVGLARGGQRSAEDFFTGGRRLAALPVG

	HP LIMYSHFKDCDPWTSGIISAPDQLMPYFVMEIFATMPGLPGLFVACAFSGTLSTVASSIN	
	***** * ****** ** .*****.***.*****	
	SC IVMFVFYTDCDPLLLGRISAPDQYMPLLVLDIFEDLPGVPGLFLACAYSGTLSTASTSIN	
5		
	HP ALATVTFEDFVKSCFPHLSDKLSTWISKGLCLLFGVMCTSMAVAASVM-GGVVQASLSIH	
	..** *** * *****.** *** ***.*	
	SC AMAAVTVEDLIKPRLRSLAPRKLVIISKGLSLIYGSACLTVAALSSLLGGGVLQGSFTVM	
10	HP GMCGGPMLGLFSLGIVFPFVNWKGALGGLLTGITLSFWVAIGAFIYPAPASKTWPLPLST	C
	***. ** * ** * * *. *. **. **. **	
	SC GVISGPLLGAFILGMFLPACNTPGVLAGLGAGLALSLWVALGATLYPPSEQTMRVLPSSA	
	HP DQCIKSNVTATGPPVLSSRPGIADTWYSISYLYYSAVGCLGCI	
15	**.*. ** .*****.****.	
	SC ARCVALSVNASGLLDPALLPANDSSRAPSSGMDASRPALADSFYAISYLYYGALGTLTTV	
	HP VAGVIISLITGRQRGEDIQPLLIRPVCNLFCFWSKKYKTLCWCGVQHDSGTEQENLENGS	
	. *** .*** *	
20	SC LCGALISCLTGPTKRSTLAPGLLWWDLARQTASVAPKEEVAILDDNLVKGPEELPTGNKK	
	HP ARKQGAESVLQNGLRRESLVHVPGYDPKDKSYNNMAFETTHF	
	SC PPGFLPTNEDRLFFLGQKELEGAGSWTPCVGHDGGRDQQETNL	
	·	

10

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI733508) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10753> (SEQ ID NOS: 35, 45, and 55)

Determination of the whole base sequence of the cDNA insert of clone HP10753 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 141-bp 5'-untranslated region, a 627-bp ORF, and a 2528-bp 3'-untranslated region. The ORF encodes a protein consisting of 208 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 15 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 28 kDa that was somewhat larger than the molecular weight of 21,518 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from methionine at position 32.

10

15

20

25

PCT/JP00/09359

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AW162064) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10758> (SEQ ID NOS: 36, 46, and 56)

Determination of the whole base sequence of the cDNA insert of clone HP10758 obtained from cDNA library of human kidney revealed the structure consisting of a 25-bp 5'-untranslated region, a 1509-bp ORF, and a 284-bp 3'untranslated region. The ORF encodes a protein consisting of 502 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 16 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 60 kDa that was somewhat larger than the molecular weight of 55,848 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 66 kDa. In addition, there exists in the amino acid sequence of this protein six sites at which N-glycosylation may occur (Asn-Val-Ser at position 67, Asn-Tyr-Thr at position 103, AsnWO 01/49728

5

10

15

20

25

Phe-Thr at position 156, Asn-Ile-Thr at position 183, Asn-Phe-Thr at position 197 and Asn-Lys-Ser at position 283). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from alanine at position 15.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T96740) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10771> (SEQ ID NOS: 37, 47, and 57)

Determination of the whole base sequence of the cDNA insert of clone HP10771 obtained from cDNA library of human kidney revealed the structure consisting of a 36-bp 5'-untranslated region, a 1011-bp ORF, and a 599-bp 3'-untranslated region. The ORF encodes a protein consisting of 336 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 17 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 41 kDa that was somewhat larger than the molecular weight

of 37,924 predicted from the ORF.

5

10

15

20

25

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human interferon- α induced protein (Accession No. AR053364). The C-terminal portion downstream from methionine at position 51 of the protein of the present invention matched with the C-terminal portion downstream from methionine at position 12 of human interferon- α induced protein. However, the putative transmembrane domain at the N-terminus observed for the protein of the present invention was not present in human interferon- α induced protein.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA452543) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10778> (SEQ ID NOS: 38, 48, and 58)

Determination of the whole base sequence of the cDNA insert of clone HP10778 obtained from cDNA library of human kidney revealed the structure consisting of a 173-bp 5'-untranslated region, a 1023-bp ORF, and a 220-bp 3'-untranslated region. The ORF encodes a protein consisting of 340 amino acid residues and there existed six putative

10

15

20

25

transmembrane domains. Figure 18 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA429745) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10781> (SEQ ID NOS: 39, 49, and 59)

Determination of the whole base sequence of the CDNA insert of clone HP10781 obtained from cDNA library of human kidney revealed the structure consisting of a 88-bp 5'-untranslated region, a 672-bp ORF, and a 1167-bp 3'-untranslated region. The ORF encodes a protein consisting of 223 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 19 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 31 kDa that was larger than the molecular weight of 24,239 predicted from the ORF. In this case, the addition of

10

15

20

25

a microsome led to the formation of a product of 33 kDa. In addition, there exists in the amino acid sequence of this protein two sites at which N-glycosylation may occur (Asn-Asn-Thr at position 70 and Asn-Thr-Ser at position 71). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from gluthamine at position 23.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA334609) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10785> (SEQ ID NOS: 40, 50, and 60)

Determination of the whole base sequence of the cDNA insert of clone HP10785 obtained from cDNA library of human kidney revealed the structure consisting of a 171-bp 5'-untranslated region, a 930-bp ORF, and a 318-bp 3'-untranslated region. The ORF encodes a protein consisting of 309 amino acid residues and there existed six putative transmembrane domains. Figure 20 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro

10

15

20

25

translation resulted in formation of a translation product of high molecular weight.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI822041) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03878> (SEQ ID NOS: 61, 71, and 81)

Determination of the whole base sequence of the cDNA insert of clone HP03878 obtained from cDNA library of human kidney revealed the structure consisting of a 77-bp 5'-untranslated region, a 1800-bp ORF, and a 139-bp 3'untranslated region. The ORF encodes a protein consisting of 599 amino acid residues and there existed ten putative Figure 21 depicts the transmembrane domains. hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to flounder (Pseudopleuronectes americanus) Na/Pi cotransport system protein (Accession No.

94

AAB16821). Table 12 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and flounder Na/Pi cotransport system protein (PN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 57.1% in the region of 545 amino acid residues other than the N-terminal and C-terminal regions.

5

Table 12

* *. ***. *. * *	*. **
PN MAPRQKVGTNSSPKPALDDDAPVGNIPPAYSTLDLVSDDPDADPWNAPELIDNGVF	KWSEL
HP RVAGRLRRVAGSVLKACGLLGSLYFFICSLDVLSSAFQLLGSKVAGDIFKDNVVLS	SNPVA
. ***** .** ********************	****
PN DTKGKMMRVLTGLLKLVALLGLLYFFICSLDVLSSAFQLVGGKAAGDIFKDNAVL	HINLAH
HP GLVIGVLVTALVQSSSTSSSIVVSMVAAKLLTVRVSVPIIMGVNVGTSITSTLVS	MAQSG
***************************************	* *. *
PN GLVIGVLVTVMVQSSSTSSSIVVSMVSSGLLDVQSAVPIIMGANIGTSVTNTIVA	MMQAG
HP DRDEFQRAFSGSAVHGIFNWLTVLVLLPLESATALLERLSELALGAASLTPRAQA	PDILK
. **. *. * ** ***. **. **** ** *	* *. *.
PN DRNEFRRAFAGATVHDFFNWLAVLILLPLEVATGVLYKLTHLIIESFNIQGGEDA	PDLLN
·	
HP VLTKPLTHLIVQLDSDMI—MSSATGNATNSSLIKHWCGTTGQPT——QENSSCG	AFGPC
*, *, ***, *****, * *, * ****, ** * * *	* . *
PN VITDPLTDSIVQLDKNVISLIATNDEAAVNMSLIKEWCKTKTNVTFWNATVENCT	AGALC
HP TEKNSTAPADRLPCRHLFAGTELTDLAYGCILLAGSLLVLCGCLVLI	VKLLN
*	****
PN WEEGNLTWTMLNKTWIINQERCKHIFANTTLPDLAYGLILLALSLFYLCTCLILI	VKLLN

- HP SVLRGRVAQVVRTVINADFPFPLGWLGGYLAVLAGAGLTFALQSSSVFTAAVVPLMGVGV

 *. *. *. ** *. ***. ***** *. . ***. ** . ***. ** . ***
 PN SMLKGQVAVVIKRVINTDFPFPFCWVTGYIAIFVGAGMTFIVQSSSVFTSAITPLVGIGV
- HP ISLDRAYPLLLGSNIGTTTTALLAALASPADRMLSALQVALIHFFFNLAGILLWYLVPAL
- PN ISLERAYPLTLGSNIGTTTTAILAAMASPAEKLKESLQIALCHFFFNVMGILLFYPIPFT

- PN RVP I RLARGLGNHTAKYRWFAGLYLVLCFLVFPLTVFGLSMAGWQVLVGVGVPFVVL I VF
- HP VILVTVLQRRRPAWLPVRLRSWAWLPVWLHSLEPWDRLVTRCCPCNVCSPPKATTKEAYC
- PN VIVVNVMQSRCPRFLPKVLQDWDFLPRPLHSMAPWDTVVTSALGFCGKYCCCCKCCKKT
- HP YENPEILASQQL
- PN EDENMKNNTKSLEMYDNPSMLKDEDTKEASKATHL

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI792826) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP03884> (SEQ ID NOS: 62, 72, and 82)

Determination of the whole base sequence of the cDNA insert of clone HP03884 obtained from cDNA library of human kidney revealed the structure consisting of a 336-bp 5'-untranslated region, a 246-bp ORF, and a 864-bp 3'untranslated region. The ORF encodes a protein consisting of 81 amino acid residues and there existed one putative Figure 22 depicts the domain. transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 10 kDa that was almost identical with the molecular weight of 8,928 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to rat cortexin (Accession No. P41237). Table 13 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and rat

cortexin (RC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 47.9% in the entire region.

Table 13

5

10

20

- - RC MSAPWTLSPEPLPPSTGPPVGAGLDVEQRTVFAFVLCLLVVLVLLMVRCVRILLDPYSRM
- RC PASSWTDHKEALERGQFDYALV

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI791379) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03934> (SEQ ID NOS: 63, 73, and 83)

25 Determination of the whole base sequence of the

cDNA insert of clone HP03934 obtained from cDNA library of human kidney revealed the structure consisting of a 39-bp 5'-untranslated region, a 1965-bp ORF, and a 463-bp 3'-untranslated region. The ORF encodes a protein consisting of 654 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 23 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 80 kDa that was larger than the molecular weight of 74,110 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from arginine at position 28.

5

10

15

20

25

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human β -galactosidase (Accession No. AAC12775). Table 14 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human β -galactosidase (BG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 54.6% in the entire region.

Table 14

Die 14	
MAPKKLSCLRSLLLPLSLTLLLPQADTRSFVVDRGHDRFLLDGAPFRYVSGSLHY	
MPGFLVRILLLLVLLLLGPTRGLRNATQRMFEIDYSRDSFLKDGQPFRYISGSIHY	
FRVPRVLWADRLLKMRWSGLNAIQFYVPWNYHEPQPGVYNFNGSRDLIAFLNEAALANLI	
**** * ****** ****** *****. *** ** *. *.	
P VILRPGPYICAEWEMGGLPSWLLRKPEIHLRTSDPDFLAAVDSWFKVLLPKIYPWLYHN	
***** <u>*</u> ******************	ŧ
G VILRPGPYICAEWEMGGLPAWLLEKESILLRSSDPDYLAAVDKWLGVLLPKMKPLLYQN	Ĵ
P GNIISIQVENEYGSYRACDFSYMRHLAGLFRALLGEKILLFTTDGPE—GLKCGSLRGL	
* .******* **** **** *. ** ** ******	*
G GPVITVQVENEYGSYFACDFDYLRFLQKRFRHHLGDDVVLFTTDGAHKTFLKCGALQGL	Y
IP TTVDFGPADNMTKIFTLLRKYEPHGPLVNSEYYTGWLDYWGQNHSTRSVSAVTKGLENM	L
*******. *. * **. **. ***. ****. *** ***	‡
BG TTVDFGTGSNITDAFLSQRKCEPKGPLINSEFYTGWLDHWGQPHSTIKTEAVASSLYDI	L
HP KLGASVNMYMFHGGTNFGYWNGADKKGRFLPITTSYDYDAPISEAGDPTPKLFALRDVI	S
*****. *** *****. ***** *******	ř

BG ARGASVNLYMFIGGTNFAYWNGAN—SPYAAQPTSYDYDAPLSEAGDLTEKYFALRNIIQ

HP	KFQEVPLGPLPPPSPKMMLGPVTLHLVGHLLAFLDLLCPRGPIHSILPMTFEAVKQDHGF
	**** **.****.
BG	KFEKVPEGPIPPSTPKFAYGKVTLEKLKTVGAALDILCPSGPIKSLYPLTFIQVKQHYGF
HP	MLYRTYMTHTIFEPTPFWVPNNGVHDRAYYMVDGVFQGVVERNMRDKLFLTGKLGSKLDI
	. * * * *
BG	VLYRTTLPQDCSNPAPLSSPLNGVHDRAYVAVDGIPQGVLERNNVITLNITGKAGATLDL
НP	LVENMGRLSFGSNSSDFKGLLKPPILGQTILTQWMMFPLKIDNLVKWW-FPLQ
	********* ****** * ***. *
BG	LVENMGRVNYGAYINDFKGLVSNLTLSSNILTDWTIFPLDTEDAVRSHLGGWGHRDSGHH
HP	LPKWPYPQAP-SGPTFYSKTFPILGSVGDTFLYLPGWTKGQVWINGFNLGRYWTKQ
	* *.** .*. * *****************
BG	DEAWAHNSSNYTLPAFYMGNFSIPSGIPDLPQDTFIQFPGWTKGQVWINGFNLGRYWPAR
HP	GPQQTLYVPRFLLFPRGALNKITLLELE——DVPLQPQVQFLDKPILNSTSTLHRTH
	*** **. ** * *. **. ***
BG	G GPQLTLFVPQHILMTSAP-NTITVLELEWAPCSSDDPELCAVTFVDRPVIGSSVTYDHPS
HI	PINSLSADTLSASEPMELSGH

BG KPVEKRLMPPPPQKNKDSWLDHV

WO 01/49728

5

10

15

20

25

102

PCT/JP00/09359

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI907720) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03949> (SEQ ID NOS: 64, 74, and 84)

Determination of the whole base sequence of the cDNA insert of clone HP03949 obtained from cDNA library of 👵 human kidney revealed the structure consisting of a 244-bp 5'-untranslated region, a 1173-bp ORF, and a 33-bp 3'untranslated region. The ORF encodes a protein consisting of 390 amino acid residues and there existed ten putative transmembrane domains. Figure 24 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human solute carrier family 16 (Accession No. NM_004696). Table 15 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human solute carrier family 16

103

(HS). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 98.7% in the region other than the N-terminal and C-terminal regions.

Table	15
HP	MGMDDCDSFFPGPLVAIICDILGEKTTSILGAFVVTGGYLISSWATSIPFLCVTMGLL
	* . ***********************************
HS	WIGSIMSSLRFCAGPLVAIICDILGEKTTSILGAFVVTGGYLISSWATSIPFLCVTMGLL
HP	PGLGSAFLYQVAAVVTTKYFKKRLALSTAIARSGMGLTFLLAPFTKFLIDLYDWTGALIL

HS	PGLGSAFLYQVAAVVTTKYFKKRLALSTAIARSGMGLTFLLAPFTKFLIDLYDWTGALIL
HP	FGAIALNLVPSSMLLRPIHIKSENNSGIKDKGSSLSAHGPEAHATETHCHETEESTIKDS
•	***************************************
·HS	${\tt FGAIALNLVPSSMLLRPIHIKSENNSGIKDKGSSLSAHGPEAHATETHCHETEESTIKDS}$
٠	
HP	TTQKAGLPSKNLTVSQNQSEEFYNGPNRNRLLLKSDEESDKVISWSCKQLFDISLFRNPF

HS	TTQKAGLPSKNLTVSQNQSEEFYNGPNRNRLLLKSDEESDKVISWSCKQLFDISLFRNPF
HP	FYIFTWSFLLSQLAYFIPTFHLVARAKTLGIDIMDASYLVSVAGILETVSQIISGWVADQ

HS	FYIFTWSFLLSQLAYFIPTFHLVARAKTLGIDIMDASYLVSVAGILETVSQIISGWYADQ
HP	NWIKKYHYHKSYLILCGITNLLAPLATTFPLLMTYTICFAIFAGGYLALILPYLYDLCRN

HS	NWIKKYHYHKSYLILCGITNLLAPLATTFPLLMTYTICFAIFAGGYLALILPYLVDLCRN
HP	STVNRFLGLASFFAGMAVLSGPPIAGNTFTTF
	******* .
HS	STVNRFLGLASFFAGMAVLSGPP I AGWLYDYTQTYNGSFYFSGICYLLSSVSFFFVPLAE

105

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AW239415) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP03959> (SEQ ID NOS: 65, 75, and 85)

Determination of the whole base sequence of the cDNA insert of clone HP03959 obtained from cDNA library of human kidney revealed the structure consisting of a 7-bp 5'untranslated region, a 1359-bp ORF, and a 531-bp 3'untranslated region. The ORF encodes a protein consisting of 452 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 25 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 53 kDa that was somewhat larger than the molecular weight of 50,798 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 55 kDa. In addition, there exists in the amino acid sequence of this protein three sites at which N-glycosylation may occur (Asn-Phe-Ser at position 64, Asn-Gly-Ser at position 126 and Asn-Val-Thr at position 362). Application of the (-3,-1) rule, a

106

method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from alanine at position 27.

5

10

15

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Arabidopsis thaliana putative carboxypeptidase (Accession No. AAD21510). Table 16 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Arabidopsis thaliana putative carboxypeptidase (AC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 44.3% in the region of 323 amino acid residues other than the N-terminal and C-terminal regions.

Table	e 16
HP	${\tt MELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATM}$
AC	MDPKLGDTSKLDQHTCFGG I IKV
HP	${\tt SCKNFSELPLVMWLQGGPGGSSTGFGNFEE}{\tt I}{\tt GPLDSDLKPRKTTWLQAASLLFVDNPVGTAASLTAASLTAASLLFVDNPVGTAASLTAASLTAASLTAASLTAASLTAASLTAASLTAAS$
	*. *.**.***.*. **** ****. *. ***
AC	HIELKILPSHGLSSSGSKGASGVGIGNFQEVGPLDTFLKPRNSTWLKKADLLFVDSPVGA
HP	GFSYVNGS-GAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGI
	*. *. *. *. . . *. *. . * *. . *. . * * . *
. AC	GYSFVEGNQKDLYVKSDEEAAQDLTKLLQQLFNKNQTLNQSPLFIVAESYGGKIAVKLGI
HP	ELYKA I QRGT I KCNF AGVALGDSW I SPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVL
	*. *. * * * * * * * * * *
AC	SVIDAVQSGKLKLHLGGVILGDSWISPEDFVFSWGPLLKHVSRLDDNGLDSSNSLAEKIK
HP	NAVNKGLYREATELWGKAEMI IEQNTDGVNFYN-ILTKSTPTSTMESSLEFTQSHLV
	* * . **. * . * . *. *. *. *. *
AC	TQIKNGEYVGATQTWMDLENLISSKSNFVDFYNFLLDTGMDPVSLTTSLKIKKEEKIKKY
HP	CLCQ-RHVRHLQRDALSQLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPV
	. * . *
AC	SRYLNDMRSLSDVEDVEGDLDKLMNGVIKKKLKIIPNDLIWGNNSDDVFTAMEAAFMKPY
	·
HP	ISIVDELLEAGINVTVYNGQLDLIVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPKSI
	*. ********.******.*.*.*
AC	IEDVDELLATGVDVTIYNGQLDVICSTSGTEAWVHKLR

108

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T59065) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP03983> (SEQ ID NOS: 66, 76, and 86)

Determination of the whole base sequence of the cDNA insert of clone HP03983 obtained from cDNA library of human kidney revealed the structure consisting of a 42-bp 5'-untranslated region, a 1473-bp ORF, and a 341-bp 3'-untranslated region. The ORF encodes a protein consisting of 490 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain at the C-terminus. Figure 26 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamic acid at position 22.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human ClqR protein (Accession No. AAB53110). Table 17 shows the comparison between amino acid

109

sequences of the human protein of the present invention (HP) and human ClqR protein (HC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 25.8% in the N-terminal region of 310 amino acid residues. Since the positions of 17 cysteine residues are conserved, in particular, the two proteins are considered to assume similar higher-order structures.

5

Table 17

HP	MRPAFALCLLWQALWPGPGGGEHPTADRAGCSASGACYSLHHATMKRQAAEEACILRGG
	* * **
HC	MATSMGLLLLLLLLTQPGAGTGADTEAVVC-VGTACYTAHSGKLSAAEAQNHCNQNGGI
HP	LSTVRAGAELRAVLALLRAGPGPGGGSKDLLFWVALERRRSHCTLENEPLRGFSWLSS
	*. ** *
HC	LATVKSKEEAQHVQRVLAQLLRREAALTARMSKFWIGLQREKGKCLDPSLPLKGFSWV-
HP	DPGGLESDTLQWVEEPQRSCTARRC—AVLQATGGVEP—AGWKEMRC—HLRAN ** * . * * * * *
HC	-GGGEDTPYSNWHKELRNSCISKRCVSLLLDLSQPLLPNRLPKWSEGPCGSPGSPGSNIE
HP	GYLCKYQFEVLCPAPRPGAASNLSYRAPFQLHSAALDFSPPGTEVSALCRGQLP1S
	***. * * * * * *
HC	GFYCKFSFKGMCRPLALGGPGQVTYTTPFQTTSSSLEAVPFASAANVACGEGDKDETQSH
HP	-VTCIADEIGA-RWDKLSGDVLCPCPGRYLRAGKCAELPNCLD-DLGGFACECATGFE
	* *. *. **. * * * * *. * * *. *
HC	YFLCKEKAPDVFDWGSSGPLCVSPKYGCNFNNGGCHQDCFEGGDGSFLCGCRPGFR

WO 01/49728

- HP LGKDGRSCVTSGEGQPTLGGTGVPTRRPPATATSPVPQRTWPIRVDEKLGETPLVPEQDN

 * . * . *.
 - ${\tt HC-LLDDLVTCASRNPCSSSPCRGGATCVLGPHGKNYTCRCPQGYQLDSSQLDCVDVDECQDS}$
 - HP SVTSIPEIPRWGSQSTMSTLQMSLQAESKATITPSGSVISKFNSTTSSATPQAFDSSSAV
 - HC PCAQECVNTPGGFRCECWVGYEPGGPGEGACQDVDECALGRSPCAQGCTNTDGSFHCSCE
 - ${\tt HP} \quad {\tt VFIFVSTAVVVLVILTMTVLGLVKLCFHESPSSQPRKESMGPPGLESDPEPAALGSSSAH}$
 - HC EGYVLAGEDGTQCQDVDECVGPGGPLCDSLCFNTQGSFHCGCLPGWVLAPNGVSCTMGPV
 - HP CTNNGVKVGDCDLRDRAEGALLAESPLGSSDA
 - HC SLGPPSGPPDEEDKGEKEGSTVPRAATASPTRGPEGTPKATPTTSRPSLSSDAPITSAPL

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R51653) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10745> (SEQ ID NOS: 67, 77, and 87)

Determination of the whole base sequence of the cDNA insert of clone HP10745 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 261-bp 5'-untranslated region, a 1179-bp ORF, and a 733-bp 3'-untranslated region. The ORF encodes a protein consisting of 392 amino acid residues and there existed nine putative transmembrane domains. Figure 27 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R59881) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

5

10

15

20

113

Determination of the whole base sequence of the cDNA insert of clone HP10775 obtained from cDNA library of human kidney revealed the structure consisting of a 30-bp 5'-untranslated region, a 1617-bp ORF, and a 287-bp 3'untranslated region. The ORF encodes a protein consisting of 538 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 28 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 66 kDa that was larger than the molecular weight of 55,133 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from serine at position 23.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA366320) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10782> (SEQ ID NOS: 69, 79, and 89)

Determination of the whole base sequence of the cDNA insert of clone HP10782 obtained from cDNA library of 25

114

human kidney revealed the structure consisting of a 70-bp 5'-untranslated region, a 309-bp ORF, and a 1501-bp 3'-untranslated region. The ORF encodes a protein consisting of 102 amino acid residues and there existed three putative transmembrane domains. Figure 29 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

5

10

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI815463) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10787> (SEQ ID NOS: 70, 80, and 90)

Determination of the whole base sequence of the cDNA insert of clone HP10787 obtained from cDNA library of human kidney revealed the structure consisting of a 54-bp 5'-untranslated region, a 1329-bp ORF, and a 912-bp 3'-untranslated region. The ORF encodes a protein consisting of 442 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 30 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product

of 50 kDa that was almost identical with the molecular weight of 50,562 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 56 kDa. In addition, there exists in the amino acid sequence of this protein four sites at which N-glycosylation may occur (Asn-Leu-Thr at position 83, Asn-Phe-Thr at position 89, Asn-Ala-Ser at position 113 and Asn-Lys-Ser at position 151).

acid sequence of the present protein revealed that the protein was similar to rat PV-1 (Accession No. AAD41524).

Table 18 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and rat PV-1 (RP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 61.1% in the entire region.

Tab	ole 18
HP	MGLAMEHGGSYARAGGSSRGCWYYLRYFFLFVSLIQFLIILGLVLFMVYGNVHVSTESNL
	. * *. *. *. *. *************
RP	MGLSMDR-SPYSRTGDRDRGCWYYLRYFFLFVSLIQFLIILGLVLFMIYGNVHATTESSL
HP	QATERRAEGLYSQLLGLTASQSNLTKELNFTTRAKDAIMQMWLNARRDLDRINASFRQCQ
	. *** ** **** **. *. *. **. * . ** * . ** * . ** * * ******
RP	RATEIRADNLYSQVVGLSAAQANLSKQLNISTLVKDTVMQQLLTTRREVERINASFRQCQ
HP	GDRVIYTNNQRYMAAIILSEKQCRDQFKDMNKSCDALLFMLNQKVKTLEVEIAKEKTICT
	** . * . * . * . ********** . * . * . *
חמ	GDLITYINYNRFIAAIILSEKQCQEQLKEGNKTCEALLFKLGEKVKTLEMEVVKEKAVCS
RP.	GDF1111M14KL14411F2EV606F6FVFGWF1CFVFFFVFCFWF1AFFWF1AFFWF1A
HP	KDKESYLLNKRVAEEQLVECYKTRELQHQERQLAKEQLQKVQALCLPLDKDKFEMDLRNL
	, *, * . ** ** * . * *. ** *. * ***, ***, ****. **.
RP	KDKDSLLAGKRQAEMQQEACGKAREQQKQDQQVTEEQLRKVQSLCLPLDQEKFQADVLNV
HP	WRDSIIPRSLDNLGYNLYHPLGSELASIRRACDHMPSLMSSKVEELARSLRADIERVARE
	****. *****. * . * . * . * . * . * . *
RP	WRDSLVYRSLDNIGYH-Y-SLMPEFSSLRRTCESLPGIMTTKVEELARGLRAGIERVTRE
HP	NSDLQRQKLEAQQGLRASQEAKQKVEKEAQAREAKLQAECSRQTQLALEEKAVLRKERDN
	.*** ** *******
RP	
-14	
HP	LAKELEEKKREAEQLRMELAIRNSALDTCIKTKSQPMMPVSRPMGPVPNPQPIDPASLEE
111	* ** *** **** * * ******* * * ** *
RP	LERQLEARKRELEQLRTEVDVRISALDTCVKAKSLPAIQ-PRLPGPPPNPPPIDPASLEE

117

HP FKRKILESQRPPAGIPVAPSSG

. ***** *. . *. **

RP FKKRILESQRPPLVNPAVPPSG

5

10

15

20

25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AL041217) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03977> (SEQ ID NOS: 91, 101, and 111)

Determination of the whole base sequence of the CDNA insert of clone HP03977 obtained from cDNA library of human kidney revealed the structure consisting of a 35-bp 5'-untranslated region, a 684-bp ORF, and a 1175-bp 3'-untranslated region. The ORF encodes a protein consisting of 227 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain at the C-terminus. Figure 31 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 29 kDa that was larger than the molecular weight of 25,926 predicted from the ORF. Application of the (-3,-1)

118

rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from leucine at position 30.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human gp25L2 (Accession No. CAA62380). Table 19 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human gp25L2 (GP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 78.5% in the region other than the N-terminal region.

10

Table 19 .

HP	MAGYGAGPLRAMGRQALLLLALCATGAQGLYFHIGETEKRCFIEEIPDETMVIGNYRTQM
	* **, * * . * **********************
GP	MRTLLLVLWLATRGS-ALYFHIGETEKKCFIEEIPDETMVIGNYRTQL
HP	WDKQKEVFLPSTPGLGMHVEVKDPDGKVVLSRQYGSEGRFTFTSHTPGDHQICLHSNSTR
	. ***. * . *. *** ** ****** . **. *. *.
GP	YDKQREEYQPATPGFGMCVEVKDPEDKVILAREYGSEGRFTFTSHTPGEHQICLHSNSTK
HP	MALFAGGKLRYHLDIQVGEHANNYPEIAAKDKLTELQLRARQLLDQVEQIQKEQDYQRYR
	******. **************. * *****. ****. *** ******
GP	FSLFAGGMLRVHLDIQVGEHANDYAEIPAKDKLSELQLRVRQLVEQVEQIQKEQNYQRWR
HP	EERFRLTSESTNQRVLWWS1AQTV1L1LTG1WQMRHLKSFFEAKKLV
	***** ********* **. ***. **********
GP	EERFRQTSESTNQRVLWWSILQTLILVAIGVWQMRHLKSFFEAKKLV

120

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AR052481, U.S. Patent No. 5831052) in patent data. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP10649> (SEQ ID NOS: 92, 102, and 112)

Determination of the whole base sequence of the cDNA insert of clone HP10649 obtained from cDNA library of the human epidermoid carcinoma cell line KB revealed the structure consisting of a 114-bp 5'-untranslated region, a 1059-bp ORF, and a 1240-bp 3'-untranslated region. The ORF encodes a protein consisting of 352 amino acid residues and there existed one putative transmembrane domain. Figure 32 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 40 kDa that was almost identical with the molecular weight of 39,774 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Epiphyas postvittana nucleopolyhedrovirus apoptosis inhibitor iap-1 (Accession No. AAD19698). Table 20 shows the comparison between amino

121

acid sequences of the human protein of the present invention (HP) and Epiphyas postvittana nucleopolyhedrovirus apoptosis inhibitor iap-1 (EP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 40.8% in the C-terminal region of 49 amino acid residues.

Table 20

HP MESGGRPSLCQFILLGTTSVVTAALYSVYRQKARVSQELKGAKKVHLGEDLKSILSEAPG HP KCVPYAVIEGAVRSVKETLNSQFVENCKGVIQRLTLQEHKMVWNRTTHLWNDCSKIIHQR MSATSPLY I INVCENAHEVSAEHVFNVL I ERHNSFENYP I DNVAFVNSL I INGF EP HP TNTVPFDLVPHEDGVDVAVRVLKPLDSVDLGLETVYEKFHPSIQSFTDVIGHYISGERPK EP RYQNYDDAVMCEYCSAVIKNWHEDDCVEFVHATLSPYCYYANKIAQNENFANNLSTNAFL HP GIQETEEMLKVGATLTGVGELVLDNNSVRLQPPKQGMQYYLSSQDFDSLLQRQESSVKLW EP VTPGKPICVYSRLTHTNARKSTFEDYWPAALQHLVANISEAGMFHTKLGDETACFFCDCR HP KYLALYFGFATCATLFFILRKQYLQRQERLRLKQMQEEFQEHEAQLLSRAKPEDRESLKS EP VRDWLPNDDPWQRHAIANPQCYFVVCIKGDEFCNAVRQRDELAPLQSVVALEHVSNDENM HP ACVVCLSSFKSCVFLECGHVCSCTECYRALPEPKKCPICRQAITRVIPLYNS * , **. . . *, * * * * . ** ** . ***. * . . . EP ECKICLERQRDTVLLPCRHFCVCMQCYFAL-DNKCPTCRQDVTDFVKIFVV

123

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T50032) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP10779> (SEQ ID NOS: 93, 103, and 113)

Determination of the whole base sequence of the cDNA insert of clone HP10779 obtained from cDNA library of human kidney revealed the structure consisting of a 34-bp 5'-untranslated region, a 393-bp ORF, and a 1949-bp 3'-untranslated region. The ORF encodes a protein consisting of 130 amino acid residues and there existed two putative transmembrane domains. Figure 33 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AL042495) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention. In addition, this gene was mapped on chromosome 9q34 (Accession No. AC001644).

5

10

15

20

25

<HP10790> (SEQ ID NOS: 94, 104, and 114)

Determination of the whole base sequence of the cDNA insert of clone HP10790 obtained from cDNA library of human kidney revealed the structure consisting of a 109-bp 5'-untranslated region, a 993-bp ORF, and a 53-bp 3'untranslated region. The ORF encodes a protein consisting of 330 amino acid residues and there existed one putative transmembrane domain. Figure 34 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 34 kDa that was smaller than the molecular weight of 36,642 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AW241940) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10793> (SEQ ID NOS: 95, 105, and 115)

Determination of the whole base sequence of the cDNA insert of clone HP10793 obtained from cDNA library of human kidney revealed the structure consisting of a 70-bp 5'-untranslated region, a 1053-bp ORF, and a 206-bp 3'-

5

10

15

20

25

untranslated region. The ORF encodes a protein consisting of 350 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 35 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 40 kDa that was somewhat larger than the molecular weight of 37,134 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glycine at position 25.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA326569) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10794> (SEQ ID NOS: 96, 106, and 116)

Determination of the whole base sequence of the cDNA insert of clone HP10794 obtained from cDNA library of human kidney revealed the structure consisting of a 146-bp 5'-untranslated region, a 342-bp ORF, and a 899-bp 3'-untranslated region. The ORF encodes a protein consisting of

WO 01/49728

5

10

15

20

25

126

PCT/JP00/09359

113 amino acid residues and there existed one putative transmembrane domain. Figure 36 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 14 kDa that was almost identical with the molecular weight of 12,017 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, accession No. AI346561) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10797> (SEQ ID NOS: 97, 107, and 117)

Determination of the whole base sequence of the cDNA insert of clone HP10797 obtained from cDNA library of human kidney revealed the structure consisting of a 129-bp 5'-untranslated region, a 570-bp ORF, and a 459-bp 3'-untranslated region. The ORF encodes a protein consisting of 189 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 37 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product

WO 01/49728

5

10

15

20

25

of 22 kDa that was almost identical with the molecular weight of 21,053 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamine at position 23.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA356938) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention. In addition, this gene was mapped on chromosome 4 (Accession No. AC004067).

<HP10798> (SEQ ID NOS: 98, 108, and 118)

Determination of the whole base sequence of the cDNA insert of clone HP10798 obtained from cDNA library of human kidney revealed the structure consisting of a 25-bp 5'-untranslated region, a 834-bp ORF, and a 247-bp 3'untranslated region. The ORF encodes a protein consisting of 277 amino acid residues and there existed seven putative domains. Figure 38 depicts the transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 27 kDa that was smaller than the molecular weight of

128

30,685 predicted from the ORF.

5

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H92084) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10800> (SEQ ID NOS: 99, 109, and 119)

10 Determination of the whole base sequence of the cDNA insert of clone HP10800 obtained from cDNA library of human kidney revealed the structure consisting of a 158-bp 5'-untranslated region, a 825-bp ORF, and a 924-bp 3'untranslated region. The ORF encodes a protein consisting of 274 amino acid residues and there existed one putative 15 transmembrane domain. Figure 39 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product 20 of 33 kDa that was somewhat larger than the molecular weight of 31,108 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 45 kDa. In addition, there exists in the amino acid sequence of this protein five sites at which N-glycosylation may occur (Asn-25 Ile-Thr at position 145, Asn-Ile-Thr at position 151, Asn-

129

Ile-Thr at position 164, Asn-Ile-Thr at position 183, and Asn-Thr-Thr at position 256).

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA729308) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10 <HP10801> (SEQ ID NOS: 100, 110, and 120)

5

15

20

25

Determination of the whole base sequence of the CDNA insert of clone HP10801 obtained from cDNA library of human kidney revealed the structure consisting of a 133-bp 5'-untranslated region, a 1173-bp ORF, and a 510-bp 3'-untranslated region. The ORF encodes a protein consisting of 390 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 40 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation with the addition of microsome resulted in formation of a product of 50 kDa that was larger than the molecular weight of 41,097 predicted from the ORF. In addition, there exists in the amino acid sequence of this protein five sites at which N-glycosylation may occur (Asn-

130

Leu-Ser at position 108, Asn-Val-Thr at position 169, Asn-Leu-Ser at position 213, Asn-Val-Thr at position 236 and Asn-Gly-Thr at position 307). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamine at position 30.

5

10

15

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human A33 antigen (Accession No. NP_005805). Table 21 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human A33 antigen (HA). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 28.7% in the intermediate region of 265 amino acod residues.

Table 21

НР	MISLPGPLYTNLLRFLFLGLSALAPPSRAQLQLHLPANRLQAVEGGEVVLPAWY-TLHGE
HA	MVGKMWPVLWTLCAVRVTVDAISVETPQDVLRASQGKSVTLPCTYHTSTSS
HP	VSSSQPWEVPFVMWFFKQKEKEDQVLSYINGVTTSKPGVSLVYSMPSRNLSLRLEGLQEK
HA	** REGLIQWDKLLLTHTERVVIWPFSNKNYIHG-ELYKNRVSISNNAEQSDASITIDQLTMA
HP	DSGPYSCSVNVQDKQGKSRGHSIKTLELNVLVPPAPPSCRLQGVPHVGANVTLSCQSPRS
НА	*. *. *. ***
HP	KPAVQYQWDRQLPSFQTFFAPALDVIRGSLSLTNLSSSMAGVYVCKAHNEVGTAQCNVTL
НА	. *. ** *. * * * * * * * * * * * * * * *
•	EV-STGPGAAVVAGAVVGTLVGLGLLAGLVLLYHCRGKALEEPANDIKEDAIAPRTLPWP
	. * * * * *
НР	KSSDTISKNGTLSSVTSARALRPPHGPPRPGALTPTPSLSSQALPSPRLPTTDGAHPQPI
HA	PPEQLRELSREREEEDDYRQEEQRSTGRESPDHLDQ

132

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R33685) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03696> (SEQ ID NOS: 121, 131, and 141)

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP03696 obtained from cDNA library of thuman umbilical cord blood revealed the structure consisting of a 184-bp 5'-untranslated region, a 1188-bp ORF, and a 589-bp 3'-untranslated region. The ORF encodes a protein consisting of 395 amino acid residues and there existed one putative transmembrane domain. Figure 41 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to rat cell surface glycoprotein GP42 (Accession No. P23505). Table 22 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and rat cell surface glycoprotein GP42 (RC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of

133

the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 46.1% in the intermediate region of amino acid residues 62-280.

Table 22

HP	${\tt MSGMEEYTTVSGEVLQRWKIPSFKENQTLSMGAATVQSRGQYSCSGQVMYIPQTFTQTSHEART SIGNATURE of the content o$
RC	WLLWMATITO

- RC VSMTEAQELFQDPYLSRLNSSETSD---LLLKCTTKVDPNKPASELFYSFYKDNHIIQNR
- RC SHNPLFFISEANEENSGLYQCVVDAKDGTIQKKSDYLDIDLCTSVSQPVLTLQHEATNLA
- RC EGDKVKPLCETQLGSLP1LYSFYMDGE1LGEPLAPSGRAASLL1SVKAEWSGKNYSCQAE
- HP NSVSRERSEPKKLSLKGSQVLFTPASNWLVPWLPAS-LLGLMVIAAALLVYVRSWRKAGP

 *. ***. ****. * * * ***. * . . .
- RC NKVSRDISEPKKFPLVVSGTASMKSTT-VVIWLPVSCLVGWPWLLRF

PCT/JP00/09359

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA446524) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03882> (SEQ ID NOS: 122, 132, and 142)

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP03882 obtained from cDNA library of human kidney revealed the structure consisting of a 57-bp 5'-untranslated region, a 1653-bp ORF, and a 484-bp 3'untranslated region. The ORF encodes a protein consisting of 550 amino acid residues and there existed ten putative transmembrane domains. Figure 42 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse solute carrier family 22 (cation transporter)-like protein (Accession No. NP_033229). Table 23 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse

136

solute carrier family 22 (cation transporter)-like protein (MS). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 48.9% in the entire region.

Tak	ole 23
ΗР	MAFSKLLEQAGGYGLFQTLQVLTFILPCLMIPSQMLLENFSAAIPGHRCWTHMLDNG
	******* ** .* * * *******
MS	MAFPELLDRYGGLGRFQLFQTVALVTPILWVTTQNMLENFSAAVPHHRCWVPLLDNSTSQ
	SAVSTNMTPKALLTISIPPGPNQGPHQCRRFRQPQWQLLDPNATATSWSEADTEPCVDGW
MS	ASIPGDLGPDVLLAVSIPPGPDQQPHQCLRFRQPQWQLTESNATATWWSDAATEPCEDGW
HP	${\tt VYDRSVFTSTIVAKWDLVCSSQGLKPLSQSIFMSGILVGSFIWGLLSYRFGRKPMLSWCC}$
	. *. * * *****. **. * ***** * * **** * . * . * * * *
MS	VYDHSTFRSTIVTTWDLVCNSQALRPMAQSIFLAGILVGAAVCGHASDRFGRRRVLTWSY
מנו	LQLAVAGTSTIFAPTFVIYCGLRFVAAFGMAGIFLSSLTLMVEWTTTSRRAVTMTVVGCA
ш	* * . * * * * . * . *
MS	LLVSVSGTAAAFMPTFPLYCLFRFLLASAVAGVMMNTASLLMEWTSAQGSPLVMTLNALG
HP	FSAGQAALGGLAFALRDWRTLQLAASVPFFAISLISWWLPESARWLIIKGKPDQALQELR
	** **.
MS	FSFGQVLTGSVAYGVRSWRMLQLAVSAPFFLFFVYSWWLPESARWLITVGKLDQGLQELQ
HP	KVARINGHK-EAKNLTIEVLMSSVKEEVASAKEPRSVLDLFCVPVLRWRSCAMLVVNFSL
	. ** . * . * * **. ** * * * * * * * *
MS	RVAAVNRRKAEGDTLTMEVLRSAMEEEPSRDKAGASLGTLLHTPGLRHRTIISMLCWFAF
•••	A A A ANTON A DO A GODA TO A A A ECANDRI CDATTALLI CRI CRRTINACCOANACI A I
H	LISYYGLVFDLQSLGRDIFLLQALFGAVDFLGRATTALLLSFLGRRTIQAGSQAMAGLAI
	. ***. **. **** * *** **. * **** * ** *
1/0	crtevel aldioal centri i oal i givdfpyktgslll i srlgrrlcovsflylpglci

138

HP LANMLVPQDLQTLRVVFAVLGKGCFGISLTCLTIYKAELFPTPVRMTADGILHTVGRLGA

*. *. ***.... ** ... ***. **... ***... ***** *.... ***

MS LSNILVPHGMGVLRSALAVLGLGCLGGAFTCITIFSSELFPTVIRMTAVGLCQVAARGGA

HP GNRQEAVTVESTSL

. **.*

MS HDTPDGSILMSTRL

15

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI242210) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

(2

<HP03903> (SEQ ID NOS: 123, 133, and 143)

Determination of the whole base sequence of the cDNA insert of clone HP03903 obtained from cDNA library of human kidney revealed the structure consisting of a 108-bp 5'-untranslated region, a 657-bp ORF, and a 1988-bp 3'-untranslated region. The ORF encodes a protein consisting of 218 amino acid residues and there existed three putative

139

transmembrane domains. Figure 43 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 26 kDa that was somewhat larger than the molecular weight of 23,487 predicted from the ORF.

5

10

15

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse prominin (Accession No. NP_032961). Table 24 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse prominin (MP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 27.6% in the region other than the N-terminal and C-terminal regions.

Tal	ole 24
ΗР	MKHTLALLAPLLGLGLGLALSQLAAGATDCKFLGPAEHLTFTPAARARWLAPRVRAPGLL
	.* * *.* *
MP	MALYFSALLLLGLCGKISSEGQPAFHNTPGAMNYELPT-TKYETQDTFNAGIV
HP	DSLYGTVRRFLSVVQLNPFPSELVKALLNELA-SVKVNEVVRYEAGYVVCAVIAGLYL
	** *. **. *** * ** . *. * *
MP	GPLYKMYHIFLNYVQPNDFPLDLIKKLIQNKNFDISVDSKEIALYEIGVLICAILGLLFI
HP	${\tt LLVPTAGLCFCCCRCHRRCGGRVKTEHK-ALACERAALMVFLLLTTLLLLIGVVCAFVTN}$
	.*.*.* ** *** *** **
МP	${\tt ILMPLYGCFFCMCRCCNKCGGEMHQRQKQNAPCRRKCLGLSLLYICLLMSLGIIYGFVAN}$
HP	QRTHEQMGPSIEAMPETLLSLWGLVSDVPQVSTVTPHPHVPL
	* . * * * .
MP	QQTRTRIKGTQKLAKSNFRDFQTLLTETPKQIDYVVEQYTNTKNKAFSDLDGIGSVLGGR

5

10

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI792608) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03974> (SEQ ID NOS: 124, 134, and 144)

Determination of the whole base sequence of the cDNA insert of clone HP03974 obtained from cDNA library of human kidney revealed the structure consisting of a 41-bp 5'-untranslated region, a 1791-bp ORF, and a 253-bp 3'untranslated region. The ORF encodes a protein consisting of 596 amino acid residues and there existed twelve putative domains. 44 transmembrane Figure depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to rabbit (Oryctolagus cuniculus) sodium/glucose cotransporter protein (Accession No. AAA66065). Table 25 shows the comparison between amino acid sequences of the human protein of the present invention (HP)

142

and rabbit sodium/glucose cotransporter protein (OC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 89.1% in the entire region.

Table 25

HP	M-AANSTSDLHTPGTQLSVADIIVITVYFALNVAVGIWSSCRASRNTVNGYFLAGRDMTW
	* *. ***** *. **. ***. **. ************
00	MVADNSTSDPHAPGPQLSVTDIVVITVYFALNVAVGIWSSCRASRNTVSGYFLAGRDMTW
HP	WPIGASLFASSEGSGLFIGLAGSGAAGGLAVAGFEWNATYVLLALAWVFVPIYISSEIVT
	******** . ***************** . ********
00	WPIGASLFGSSEGSGLFIGLAGSGAAGGLAVAGFDWNATYVLLALAWVFGAIYISSEIVT
HP	LPEYIQKRYGGQRIRMYLSVLSLLLSVFTKISLDLYAGALFVHICLGWNFYLSTILTLGI
	*. ******. ****************************
OC	LAEYIQKRFGGQRIRMYLSVLSLLLSVFTKISLDLYAGALFVHICLGWNFYLSTILTLTI
•	
HP	TALYTIAGGLAAVIYTDALQTLIMVVGAVILTIKAFDQIGGYGQLEAAYAQAIPSRTIAN
	******. ***. ********************. ****. **. ****. *****. *****. **
00	TALYTITGGLVAVIYTDALQTLIMVVGAVILAIKAFHQIDGYGQMEAAYARAIPSRTVAN

WO 01/49728

P	TTCHLPRTDAMHMFRDPHTGDLPWIGNIFGLIIMAIWIWCIDQVIVQKSLSAKDLNHAKA
	******, ********, *********************
DC.	TTCHLPRADAMHMFRDPYTGDLPWTGMTFGLTIMATWYWCTDQVIVQRSLSARNLNHAKA
HP	GSILASYLKMLPMGLIIMPGMISRALFPDDVGCVVPSECLRACGAEVGCSNIAYPKLVME

0C	GSILASYLKMLPMGLMIMPGMISRALFPDEVGCVVPSECLRACGAEIGCSNIAYPKLVME
HP	$LMP\ I\ GLRGLM\ I\ AVMLAALMSSLTS\ I\ FNSSSTLFTMD\ I\ WRRLRPRSGERELLL\ VGRLV\ I\ VARAMAR ARBOR ARBOR.$
	, *******, . ******, ************
0C	LMPVGLRGLMIAVMMPALMSSLSSIFNSSSTLFTMDIWRRLRPCASERELLLVGRLVIVVILLVGRLVGRLVIVVILLVGRLVIVVILLVGRLVGRLVGRLVGRLVGRLVGRLVGRLVGRLVGRLVG
HP	$\verb Ligvsvawipvlqdsnsgqlfiymqsvtsslappvtavfvlgvfwrraneqgafwgliace $

0C	$\verb Ligvsyawipvlqgsnggqlfiymqsytsslappvtavftlgifwqraneqgafwgllamed and the statement of the$
HP	LVVGATRLVLEFLNPAPPCGEPDTRPAVLGSIHYLHFAVALFALSGAVVVAGSLLTPPPC
	*, ********* *, ******, . ******* ********
0C	LAYGATRLVLEFLHPAPPCGAADTRPAVLSQLHYLHFAVALFVLTGAVAVGGSLLTPPP
HP	SVQIENLTWWTLAQDVPLGTKAGDGQTPQKHAFWARVCGFNAILLMCVNIFFYAYFA
	. ********** * **. ******** ******
0C	RHQIENLTWWTLTRDLSLGAKAGDGQTPQRYTFWARVCGFNAILLMCVNIFFYAYFA

145

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI793336) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP03978> (SEQ ID NOS: 125, 135, and 145)

Determination of the whole base sequence of the cDNA insert of clone HP03978 obtained from cDNA library of human kidney revealed the structure consisting of a 99-bp 5'-untranslated region, a 1404-bp ORF, and a 705-bp 3'untranslated region. The ORF encodes a protein consisting of 467 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 45 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 55 kDa that was somewhat larger than the molecular weight of 52,352 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 57 kDa. In addition, there exists in the amino acid sequence of this protein two sites at which N-glycosylation may occur (Asn-Arg-Thr at position 78 and Asn-His-Ser at position 161). Application of the (-3,-1) rule, a method for predicting the

146

cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from alanine at position 22.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human tubulo-interstitial nephritis antigen (Accession No. BAA84949). Table 26 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human tubulo-interstitial nephritis antigen (TA). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 50.0% in the region other than the N-terminal region.

5

10

15

	ble 26
HP	MWRCPLGLLLLLPLAGHLALGAQQGRGRRELAPGLHLRGIRDAGGRYCQEQ * **
TA	MWTGYKILIFSYLTTEIWMEKQYLSQREVDLEAYFTRNHTVLQGTRFKRAIFQGQYCRNF
HP	DLCCRGRADDCALP-YLG-AICYCDLFCNRTVSDCCPDFWDFCLGVPPPFPPIQG
	. ** . *. *. * . *. **** **. * . *** ** *
TA	$\hbox{$\tt G-CCEDRDDGCVTEFYAANALCYCDKFCDRENSDCCPDYKSFCREEKEWPPHTQPWYPEG}$
ΗР	CMHGGRIYPVLGTYWDNCNRCTCQENRQWQCDQEPCLVDPDMIKAINQGNYGWQAGNHSA
	**. *
TA	CFKDGQHYEEGSVIKENCNSCTC-SGQQWKCSQHVCLVRPELIEQVNKGDYGWTAQNYSQ
HP	FWGMTLDEGIRYRLGTIRPSSSVMNMHEIYTVLNPGEVLPTAFEASEKWPNLIHEPLDQG
	******. * ****. ** * **. * ** *
TA	FWGMTLEDGFKFRLGTLPPSLMLLSMNEMTASLPATTDLPEFFVASYKWPGWTHGPLDQK
HP	NCAGSWAFSTAAVASDRVSIHSLGHMTPVLSPQNLLSCDTHQQQGCRGGRLDGAWWFLRR
•	***. *******. **. ** *. *. ******. ** ** * . * ***. **.
TA	NCAASWAFSTASVAADRIAIQSKGRYTANLSPQNLISCCAKNRHGCNSGSIDRAWWYLRK
HP	RGVVSDHCYPFSGRERDEAGPAPPCMMHSRAMGRGKRQATAHCPNSYVNNNDIYQVTPVY
	. **. *
TA	RGLVSHACYPLF—KDQNATNNGCAMASRSDGRGKRHATKPCPNNVEKSNR I YQCSPPY
HP	RLGSNDKEIMKELMENGPVQALMEVHEDFFLYKGGIYSHTPVSLGRPERYRRHGTHSVKI
	*********.*.******* **.***.*

TA RVSSNETEIMKEIMQNGPVQAIMQVHEDFFHYKTGIYRHVTSTNKESEKYRKLQTHAVKL

148

HP TGWGEETLPDGRTLKYWTAANSWGPAWGERGHFRIVRGVNECDIESFVLGVWGRVGMEDM

****. . . *. *. ****** . ***. ****. . . *

TA TGWGTLRGAQGQKEKFWIAANSWGKSWGENGYFRILRGVNESDIEKLIIAAWGQLTSSDE

HP GHH

5

10

15

20

TA P

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R48402) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10735> (SEQ ID NOS: 126, 136, and 146)

Determination of the whole base sequence of the cDNA insert of clone HP10735 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 370-bp 5'-untranslated region, a 1431-bp ORF, and a 243-bp 3'-untranslated region. The ORF encodes a protein consisting of 476 amino acid residues and there existed ten putative transmembrane domains. Figure 46 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein database using the amino

149

acid sequence of the present protein revealed that the protein was similar to Caenorhabditis elegans tetracycline resistance protein-like protein (Accession No. CAA94337).

Table 27 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and C. elegans tetracycline resistance protein-like protein (CP).

Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 51.5% in the intermediate region of 196 amino acid residues.

10

Ø

Ta	ble 27
HP	MAGSDTAPFLSQADDPDDGPVPGTPGLPGSTGNPKSEEPEVPDQEGLQRITGLSPGRSAL
CP	MVNSQQDYI
HP	IVAVLCYINLLNYMDRFTVAGVLPDIEQFFNIGDSSSGLIQTVFISSYMVLAPVFGYLGD
	* * . *****. **. ****** **. ** . ******
CP	SYTALFYVNLLNYYDRYTVAGYLTQVQTYYNISDSLGGLIQTVFLISFMVFSPVCGYLGD
HP	RYNRKYLMCGGIAFWSLVTLGSSFIPGEHFWLLLLTRGLVGVGEASYSTIAPTLIADLFV
	*. *** * * * *****. * ****. *.
CP	RFNRKWIMIIGVGIWLGAVLGSSFVPANHFWLFLVLRSFVGIGEASYSNVAPSLISDMFN
HP	ADQRSRMLSIFYFAIPVGSGLGYIAGSKVKDMAGDWHWALRYTPGLGVVAVLLLFLVVRE
	** *********** *, **, * *, *, * * . *
CP	GQKRSTVFMIFYFAIPVGSGLGFIVGSNVATLTGHWQWGIRVSAIAGLIVMIALVLFTYE
HP	PPRGAVERHSDLPPLNPTSWWADLRALARNLIFGLITCLTGVLGVGLGVEISRRLRHSNP * ***
CP	PERGAADKAMGESKDVVVTTNTTYLEDLVILLKTPTLVACTWGYTALVFVSGTLSWWEPT
HP	RADPLVCATGLLGSAPFLFLSLACARGSIVATYIFIFIGETLLSMNWAIVADILLYVVIP
CP	VIQHLTAWHQGLNDTKDLASTDKDRVALYFGAITTAGGLIGVIFGSMLSKWLVAGWGPFR
HP	TRRSTAEAFQIVLSHLLGDAGSPYLIGLISDRLRRNWPPSFLSEFRALQFSLMLCAFVGA
CP	RLQTDRAQPLYAGGGALLAAPFLLIGMIFGDKSLYLLYIMIFPGITPMCRNWGINIDMIT

WO 01/49728

5

10

15

20

25

PCT/JP00/09359

HP LGGAAFLGTAIFIEADRRRAQLHVQGLLHEAGSTDDRIVVPQRGRSTRVPVASVLI

CP TVIHPNRRSTAFSYFVLVSHLFGDASGPYLIGLISDAIRHGSTYPKDQYHSLVSATYCCV

151

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA460778) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention. Furthermore, the search has revealed the registration of sequences that shared a homology of 90% or more (Accession No. E12646) in patent data. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10750> (SEQ ID NOS: 127, 137, and 147)

Determination of the whole base sequence of the cDNA insert of clone HP10750 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 262-bp 5'-untranslated region, a 1350-bp ORF, and a 564-bp 3'-untranslated region. The ORF encodes a protein consisting of 449 amino acid residues and there existed four putative transmembrane domains. Figure 47 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-

Doolittle method, of the present protein.

5

10

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AW304031) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10777> (SEQ ID NOS: 128, 138, and 148)

Determination of the whole base sequence of the cDNA insert of clone HP10777 obtained from cDNA library of human kidney revealed the structure consisting of a 15-bp 5'-untranslated region, a 318-bp ORF, and a 1030-bp 3'untranslated region. The ORF encodes a protein consisting of 105 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 48 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 14 kDa that was somewhat larger than the molecular weight of 11,603 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glycine at position 30.

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10780 obtained from cDNA library of human kidney revealed the structure consisting of a 226-bp 5'-untranslated region, a 246-bp ORF, and a 571-bp 3'untranslated region. The ORF encodes a protein consisting of 81 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 49 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 10 kDa that was somewhat larger than the molecular weight of 8,533 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 6 kDa. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glycine at position 25.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA658245) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

WO 01/49728

5

10

15

20

25

154

PCT/JP00/09359

Determination of the whole base sequence of the cDNA insert of clone HP10795 obtained from cDNA library of human kidney revealed the structure consisting of a 356-bp 5'-untranslated region, a 1659-bp ORF, and a 420-bp 3'untranslated region. The ORF encodes a protein consisting of 552 amino acid residues and there existed one transmembrane N-terminus. Figure 50 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 65 kDa that was almost identical with the molecular weight of 64,280 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human UDP-N-acetyl- α -Dgalactosamine:polypeptide N-acetylgalactosaminyltransferase 2 (Accession No. NP 004472). Table 28 shows the comparison between amino acid sequences of the human protein of the human UDP-N-acetyl-α-D-(HP) and invention galactosamine:polypeptide N-acetylgalactosaminyltransferase 2 (GA). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 49.9% in the entire region other than the N-terminal region.

Tabl	.e 28
HP	MRRLTRRLVLPVFGVLWITVLLFFWVTKRKLEVPT
	**.
GA	MRRRSRMLLCFAFLWVLGIAYYMYSGGGSALAGGAGGGAGRKEDWNEIDPIKKKDLHHSN
HP	GPEVQTPKPSDADWDDLWDQFDERRYLNAKKWRVGDDPYKLYAFNQRESERISSNRAIPD
	* * * . * * * . *
GA	GEEKAQSMETLPPGKVRWPDFNQEAYVGGTMVRSGQDPYARNKFNQVESDKLRMDRAIPD
HР	TRHLRCTLLVYCTDLPPTSIIITFHNEARSTLLRTIRSVLNRTPTHLIREIILVDDFSND *** . * ***. ** ****. ****. *** ***. ***. ***. ***
GA	TRHDQCQRKQWRVDLPATSVVITFHNEARSALLRTVVSVLKKSPPHLIKEIILVDDYSND
НР	PDDCKQLIKLPKVKCLRNNERQGLVRSRIRGADIAQGTTLTFLDSHCEVNRDWLQPLLHR *. * * * * * * * * * * * * * * * * * *
GA	PEDGALLGKIEKVRVLRNDRREGLMRSRVRGADAAQAKVLTFLDSHCECNEHWLEPLLER
HP	VKEDYTRVVCPVIDIINLDTFTYIESASELRGGFDWSLHFQWEQLSPEQ-KARRLDPTEP
	* ** **** * ** ** * * * * * * * * * * *
GA	VAEDRTRVVSPIIDVINMDNFQYVGASADLKGGFDWNLVFKWDYMTPEQRRSRQGNPVAP
н	PIRTPIIAGGLFVIDKAWFDYLGKYDMDMDIWGGENFEISFRVWMCGGSLEIVPCSRVGHV
	*, **, ******, ** . *, ****** **, ****** ****** ******, ******
G	A IKTPMIAGGLFVMDKFYFEELGKYDMMMDVWGGENLEISFRVWQCGGSLEIIPCSRVGHV

156

	HP FRKKHPYVFPDGNANTYIKNTKRTAEVWMDEYKQYYYAARPFALERPFGNVESRLDLRKN
	, ***, **, * , **, *, ****** . **** * * . *, **, *
	GA FRKQHPYTFPGGSGTVFARNTRRAAEVWMDEYKNFYYAAVPSARNVPYGNIQSRLELRKK
	HP LRCQSFKWYLENIYPELSIPKESSIQKGNIRQRQKCLESQRQNNQETPNLKLSPCAKVKG
5	*. * ****** * . ***
	GA LSCKPFKWYLENVYPELRVPDHQDIAFGALQQGTNCLDTLGHFADGVVGVYECH
	HP EDAKSQVWAFTYTQQILQEELCLSVITLFPGAPVVLVLCKNGDDRQQWTKTGSHIEHI
	* **. * ***. * * * *. *
10	GA NAGGNQEWALTKEKSVKHMDLCLTVVDRAPGSLIKLQGCRENDSRQKWEQIEGNSKLRHV

 $HP\ ASHLCLDTDMFGDGTENGKEIVVNPCESSLMSQHWDMVSS$

GA GSNLCLDS---R-TAKSGGLSVEVCGPAL-SQQWKFTLNLQQ

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA160076) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

INDUSTRIAL APPLICABILITY

The present invention provides human proteins

25 having hydrophobic domains, DNAs encoding these proteins,

5

10

15

20

25

expression vectors for these DNAs and eukaryotic cells expressing these DNAs. Since all of the proteins of the present invention are secreted or exist in the cell membrane, they are considered to be proteins controlling the proliferation and/or the differentiation of the cells. Accordingly, the proteins of the present invention can be employed as pharmaceuticals such as carcinostatic agents which act to control the proliferation and/or differentiation of the cells, or as antigens for preparing antibodies against these proteins. The DNAs of the present invention can be utilized as probes for the genetic diagnosis and gene sources for the gene therapy. Furthermore, the DNAs can be utilized for expressing these proteins in large quantities. Cells into which these genes are introduced to express these proteins can be utilized for detection of the corresponding receptors or ligands, screening of novel small molecule pharmaceuticals and the like. The antibody of the present invention can be utilized for the detection, quantification, purification and the like of the protein of the present invention.

The present invention also provides genes corresponding to the polynucleotide sequences disclosed herein. "Corresponding genes" are the regions of the genome that are transcribed to produce the mRNAs from which cDNA polynucleotide sequences are derived and may include

5

10

15

20

25

contiguous regions of the genome necessary for the regulated expression of such genes. Corresponding genes may therefore include but are not limited to coding sequences, 5' and 3' untranslated regions, alternatively spliced exons, introns, promoters, enhancers, and silencer or suppressor elements. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or sequence information from the disclosed identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. An "isolated gene" is a gene that has been separated from the adjacent coding sequences, if any, present in the genome of the organism from which the gene was isolated.

Organisms that have enhanced, reduced, or modified of expression the gene(s) corresponding to the polynucleotide sequences disclosed herein are provided. The desired change in gene expression can be achieved through the use of antisense polynucleotides or ribozymes that bind and/or cleave the mRNA transcribed from the gene (Albert and Morris, 1994, Trends Pharmacol. Sci. 15(7): 250-254; Lavarosky et al., 1997, Biochem. Mol. Med. 62(1): 11-22; and Hampel, 1998, Prog. Nucleic Acid Res. Mol. Biol. 58: 1-39; all of which are incorporated by reference herein). Transgenic animals that have multiple copies of the gene(s)

WO 01/49728

5

10

15

20

25

PCT/JP00/09359

corresponding to the polynucleotide sequences disclosed herein, preferably produced by transformation of cells with genetic constructs that are stably maintained within the their transformed cells and progeny, are provided. Transgenic animals that have modified genetic control regions that increase or reduce gene expression levels, or that change temporal or spatial patterns of gene expression, are also provided (see European Patent No. 0 649 464 B1, incorporated by reference herein). In addition, organisms are provided in which the gene(s) corresponding to the polynucleotide sequences disclosed herein have partially or completely inactivated, through insertion of extraneous sequences into the corresponding gene(s) or through deletion of all or part of the corresponding gene(s). Partial or complete gene inactivation can be accomplished through insertion, preferably followed by imprecise excision, of transposable elements (Plasterk, 1992, Bioessays 14(9): 629-633; Zwaal et al., 1993, Proc. Natl. Acad. Sci. USA 90(16): 7431-7435; Clark et al., 1994, Proc. Natl. Acad. Sci. USA 91(2): 719-722; all of which are incorporated by reference herein), or through homologous recombination, preferably detected by positive/negative genetic selection strategies (Mansour et al., 1988, Nature 336: 348-352; U.S. Patent Nos. 5,464,764; 5,487,992; 5,627,059; 5,631,153; 5,614, 396; 5,616,491; and 5,679,523; all of which are

160

incorporated by reference herein). These organisms with altered gene expression are preferably eukaryotes and more preferably are mammals. Such organisms are useful for the development of non-human models for the study of disorders involving the corresponding gene(s), and for the development of assay systems for the identification of molecules that interact with the protein product(s) of the corresponding gene(s).

5

10

15

Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such protein. In such forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. The intracellular and transmembrane domains of proteins of the invention can be identified in accordance with known techniques for determination of such domains from sequence information.

invention include proteins with amino acid sequence lengths that are at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of a disclosed protein and have at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with that disclosed protein, where

161

sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. Also included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, most preferably 30 or more) contiguous amino acids that shares at least 75% sequence identity (more preferably, at least 85% identity; most preferably at least 95% identity) with any such segment of any of the disclosed proteins.

5

10

15

20

25

Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention. As used herein, a "species homologue" is a protein or polynucleotide with a different species of origin from that of a given protein or polynucleotide, but with significant sequence similarity to the given protein or polynucleotide, as determined by those of skill in the art. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous, or related to that encoded by the

162

polynucleotides.

5

The invention also includes polynucleotides with sequences complementary to those of the polynucleotides disclosed herein.

The present invention also includes polynucleotides capable of hybridizing under reduced stringency conditions, more preferably stringent conditions, and most preferably highly stringent conditions, to polynucleotides described herein. Examples of stringency conditions are shown in the table below: highly stringent & 10 conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R. 15

Table 29

Stringency	Poly-	Hybrid	Hybridization Temperature	Wash
Condition	nucleotide	Length	and Buffer [†]	Temperature
	Hybrid '	(bp) *	·	and Buffer
A	DNA: DNA	≥50	65°C; 1×SSC -or-	65°C; ·
			42°C; 1×SSC,50%	0.3×SSC
			formamide	
В	DNA: DNA	<50	T _B *; 1×SSC	T _B *; 1×SSC
С	DNA: RNA	≥50	67°C; 1×SSC -or-	67°C;
			45°C; 1×SSC,50%	0.3×SSC
			formamide	
D	DNA: RNA	<50	T _D *; 1×SSC	Tp*; 1×SSC
E	RNA: RNA	≥50	70°C; 1×SSC -or-	70°C;
1			50°C; 1×SSC,50%	0.3×SSC
			formamide	
F	RNA: RNA	<50	T _F *; 1×SSC	Tr*; 1×SSC
G	DNA: DNA	≥50	65°C; 4×SSC -or-	65°C; 1×SSC
			42°C; 4×SSC,50%	
4			formamide	
Н	DNA: DNA	<50	T _H *; 4×SSC	T _H *; 4×SSC
I	DNA: RNA	≥50	67°C; 4×SSC -or-	67°C; 1×SSC
			45°C; 4×SSC,50%	
			formamide	•
J	DNA: RNA	<50	T _J *; 4×SSC	T _J *; 4×SSC
K	RNA: RNA	≥50	70°C; 4×SSC -or-	67°C; 1×SSC
			50°C; 4×SSC,50%	
			formamide	
L	RNA: RNA	<50	T _L *; 2×SSC	T _L *; 2×SSC
М	DNA : DNA	≥50	50°C; 4×SSC -or-	50°C; 2×SSC
			40°C; 6×SSC,50%	
			formamide	
N	DNA: DNA	<50	T _N *; 6×SSC	T _N *; 6×SSC
0	DNA: RNA	≥50	55°C; 4×SSC -or-	55°C; 2×SSC
			42°C; 6×SSC,50%	
			formamide	
P	DNA: RNA	<50	Tp*; 6×SSC	Tp*; 6×SSC
Q	RNA: RNA	≥50	60°C; 4×SSC -or-	60°C; 2×SSC
			45°C; 6×SSC,50%	
			formamide	
R	RNA: RNA	<50	T _R *; 4×SSC	T _R *; 4×SSC

5

- ‡: The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides.

 When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.
- t: SSPE (1×SSPE is 0.15M NaCl, 10mM NaH₂PO₄, and 1.25mM EDTA, pH7.4) can be substituted for SSC (1×SSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete.
- *T_B T_R: The hybridization temperature for hybrids
 anticipated to be less than 50 base pairs in length should
 be 5-10°C less than the melting temperature (T_m) of the
 hybrid, where T_m is determined according to the following
 equations. For hybrids less than 18 base pairs in length,

 T_m(°C)=2(#of A + T bases) + 4(# of G + C bases). For hybrids
 between 18 and 49 base pairs in length, T_m(°C)=81.5 +
 16.6(log₁₀[Na⁺]) + 0.41 (%G+C) (600/N), where N is the
 number of bases in the hybrid, and [Na⁺] is the concentration
 of sodium ions in the hybridization buffer ([Na⁺] for
 1×SSC=0.165M).

Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F.M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.

Preferably, each such hybridizing polynucleotide has a length that is at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of the polynucleotide of the present invention to which it hybridizes, and has at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with the polynucleotide of the present invention to which it hybridizes, where sequence identity is determined by comparing the sequences of the hybridizing polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

166

CLAIMS

1. A protein comprising any one of amino acid sequences selected from the group consisting of SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130.

5

10

20

- 2. An isolated DNA encoding the protein according to Claim 1.
- 3. An isolated cDNA comprising any one of base sequences selected from the group consisting of SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110 and 131 to 140.
 - 4. The cDNA according to Claim 3 consisting of any one of base sequences selected from the group consisting of SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120 and 141 to 150.
- 5. An expression vector that is capable of expressing the DNA according to any one of Claim 2 to Claim 4 by in vitro translation or in eukaryotic cells.
 - 6. A transformed eukaryotic cell that is capable of expressing the DNA according to any one of Claim 2 to Claim 4 and of producing the protein according to Claim 1.
 - 7. An antibody directed to the protein according to Claim 1.

Amino Acid Residue Number

Hydrophilicity/Hydrophobicity

(P)

2/50

Hydrophilicity/Hydrophobicity

3/50

Amino Acid Residue Number

Hydrophilicity/Hydrophobicity

Hydrophilicity/Hydrophobicity

Amino Acid Residue Number

۲--

Hydrophilicity/Hydrophobicity

Hydrophilicity/Hydrophobicity

ю ю

Amino Acid Residue Number

ò

6

Hydrophilicity/Hydrophobicity

Hydrophilicity/Hydrophobicity

.

9

Fig.

Amino Acid Residue Number

Hydrophilicity/Hydrophobicity

Amino Acid Residue Number

0

Hydrophilicity/Hydrophobicity

Fig. 14

Hydrophilicity/Hydrophobicity

Hydrophilicity/Hydrophobicity

 $H \lambda d rophilicit y/H y d rophobicit y$

ΗλακορμίΙισιτη/Ηγακορμορίσιτη

Hydrophilicity/Hydrophobicity

 ${\it H} \lambda {\it q} Lobhilicity/{\it H} \lambda {\it d} Lobhobicity$

Hydrophilicity/Hydrophobicity

Hydrophilicity/Hydrophobicity

Hydrophilicity/Hydrophobicity

Amino Acid Residue Number

25

Hydrophilicity/Hydrophobicity

Fig. 28

Hydrophilicity/Hydrophobicity

 ${\tt H} \lambda {\tt qtob} {\tt licit} \lambda \backslash {\tt H} \lambda {\tt qtob} {\tt loif} \lambda$

Fig. 30

Amino Acid Residue Number

 $H\lambda drophilicity/Hy drophobicity$

Amino Acid Residue Number

Hydrophilicity/Hydrophobicity

·ig. 33

Amino Acid Residue Number

Hydrophilicity/Hydrophobicity

Hydrophilicity/Hydrophobicity

Amino Acid Residue Number

Amino Acid Residue Number

39/50

Hydrophilicity/Hydrophobicity

Amino Acid Residue Number

 $H\lambda drophilicity/Hydrophobicity\\$

Fig 42

6

Amino Acid Residue Number

Amino Acid Residue Number

Amino Acid Residue Number

ig. 45

Amino Acid Residue Number Fig. 46

 ${\tt H} \lambda {\tt q} \kappa {\tt obpilicity} {\tt H} \lambda {\tt q} \kappa {\tt obpopicity}$

Amino Acid Residue Number

Amino Acid Residue Number Fig. 48

Amino Acid Residue Number

Amino Acid Residue Number

1 /346

SEQUENCE LISTING

<110> Protegene Inc.,

Sagami Chemical Research Center

5

<120> Human proteins having hydrophobic domains and DNAs encoding these proteins

<130> 662248

10

<150> JP 2000-585

<151> 2000-01-06

<150> JP 2000-588

15 <151> 2000-01-06

<150> JP 2000-2299

<151> 1999-01-11

20 <150> JP 2000-26862

<151> 2000-02-03

<150> JP 2000-58367

<151> 2000-03-03

25

2 /346

<160> 150

<210> 1

<211> 578

5 <212> PRT

<213> Homo sapiens

<400> i

1

Met Ala Phe Ser Glu Leu Leu Asp Leu Val Gly Gly Leu Gly Arg Phe

5

15

10 Gln Val Leu Gln Thr Met Ala Leu Met Val Ser Ile Met Trp Leu Cys

20 25 3

10

Thr Gln Ser Met Leu Glu Asn Phe Ser Ala Ala Val Pro Ser His Arg

35 40 45

Cys Trp Ala Pro Leu Leu Asp Asn Ser Thr Ala Gln Ala Ser Ile Leu

15 50 55 60

Gly Ser Leu Ser Pro Glu Ala Leu Leu Ala Ile Ser Ile Pro Pro Gly

65 70 75 80

Pro Asn Gln Arg Pro His Gln Cys Arg Arg Phe Arg Gln Pro Gln Trp

85 90 95

20 Gln Leu Leu Asp Pro Asn Ala Thr Ala Thr Ser Trp Ser Glu Ala Asp

100 105 110

Thr Glu Pro Cys Val Asp Gly Trp Val Tyr Asp Arg Ser Ile Phe Thr

115 120 125

Ser Thr Ile Val Ala Lys Trp Asn Leu Val Cys Asp Ser His Ala Leu

25 130 135 140

	Lys	Pro	Met	Ala	Gln	Ser	Ile	Tyr	Leu	Ala	Gly	Ile	Leu	Val	Gly	Ala
	145					150					155					160
	Ala	Ala	Cys	Gly	Pro	Ala	Ser	Asp	Arg	Phe	Gly	Arg	Arg	Leu	Val	Leu
					165					170					175	
5	Thr	Trp	Ser	Tyr	Leu	Gln	Met	Ala	Val	Met	Gly	Thr	Ala	Ala	Ala	Phe
				180					185					190		
	Ala	Pro	Ala	Phe	Pro	Val	Tyr	Cys	Leu	Phe	Arg	Phe	Leu	Leu	Ala	Phe
			195					200					205			
	Ala	Val	Ala	Gly	Val	Met	Met	Asn	Thr	Gļy	Thr	Leu	Arg	Arg	Ser	Leu
LO		210					215					220				
	Thr	Trp	Arg	His	Ala	Gly	Gly	Leu	His	Ala	Gly	Ser	Arg	Ala	Glu	Pro
	225					230					235					240
	Leu	Gly	Leu	Leu	Ala	Val	Met	Glu	Trp	Thr	Ala	Ala	Arg	Ala	Arg	Pro
					245					250					255	
.5	Leu	Val	Met	Thr	Leu	Asn	Ser	Leu	Gly	Phe	Ser	Phe	Gly	His	Gly	Leu
				260					265					270		
	Thr	Ala	Ala	Val	Ala	Tyr	Gly	Val	Arg	Asp	Trp	Thr	Leu	Leu	Gln	Leu
			275					280					285			
	Val	Val	Ser	۷al	Pro	Phe	Phe	Leu	Cys	Phe	Leu	Tyr	Ser	Trp	Trp	Leu
20		290					295					300				
	Ala	Glu	Ser	Ala	Arg	Trp	Leu	Leu	Thr	Thr	Gly	Arg	Leu	Asp	Trp	Gly
	305					310					315					320
	Leu	Gln	Glu	Leu	Trp	Arg	Val	Ala	Ala	Ile	Asn	Gly	Lys	Gly	Ala	Val
					325					330					335	
25	Gln	Asp	Thr	Leu	Thr	Pro	Glu	Val	Leu	Leu	Ser	Ala	Met	Ara	Glu	Glu

4 /346

Gi

				340					345					350		
	Leu	Ser	Met	Gly	Gln	Pro	Pro	Ala	Ser	Leu	Gly	Thr	Leu	Leu	Arg	Met
			355					360					365			
	Pro	Gly	Leu	Arg	Phe	Arg	Thr	Cys	Ile	Ser	Thr	Leu	Cys	Trp	Phe	Ala
5		370					375					380				
	Phe	Gly	Phe	Thr	Phe	Phe	Gly	Leu	Ala	Leu	Asp	Leu	Gln	Ala	Leu	Gly
	385					390					395					400
	Ser	Asn	Ile	Phe	Leu	Leu	Gln	Met	Phe	Ile	Gly	Val	Val	Asp	Ile	Pro
					405					410					415	
10	Ala	Lys	Met	Gly	Ala	Leu	Leu	Leu	Leu	Ser	His	Leu	Gly	Arg	Arg	Pro
				420					425					430		
	Thr	Leu	Ala	Ala	Ser	Leu	Leu	Leu	Ala	Gly	Leu	Cys	Ile	Leu	Ala	Asn
			435					440					445			
	Thr	Leu	Val	Pro	His	Glu	Met	Gly	Ala	Leu	Arg	Ser	Ala	Leu	Ala	Val
15		450					455					460				
	Leu	Gly	Leu	Gly	Gly	Val	Gly	Ala	Ala	Phe	Thr	Cys	Ile	Thr	Ile	Tyr
	465					470					475					480
	Ser	Ser	Glu	Leu	Phe	Pro	Thr	Val	Leu	Arg	Met	Thr	Ala	Val	Gly	Leu
					485					490					495	
20	Gly	Gln	Met	Ala	Ala	Arg	Gly	Gly	Ala	Ile	Leu	Gly	Pro	Leu	Val	Arq
				500		•	_	_	505			-		510		
	Leu	Leu	Glv	Val	His	Glv	Pro	Tro	Leu	Pro	Leu	Leu	Val			Thr
			515					520					525	-1-	- _1	
	Val	Pro		Leu	Ser	Glv	T'611		Ala],en	Len	Ten		Gl 11	ሞኮ~	מנט
25		530		204		1	535				204	540	110	GIU	***	0111

	ser	ren	Pro	Leu	Pro	Asp	Thr	тте	GIN	Asp	Val	GIn	Asn	GIn	Ala	Val
	545					550					555					560
	Lys	Lys	Ala	Thr	His	Gly	Thr	Leu	Gly	Asn	Ser	Val	Leu	Lys	Ser	Thr
					565					570					575	
5	Gln	Phe														
	<210	0> 2														
	<21	1> 24	43													
	<212	2> PI	RT													
10	<213	3> Ho	omo s	sapie	ens											
	<400)> 2														
	Met	Ser	Arg	Ser	Pro	Leu	Asn	Pro	Ser	Gln	Leu	Arg	Ser	Val	Gly	Ser
	1				5					10			-		15	
	Gln	Asp	Ala	Leu	Ala	Pro	Leu	Pro	Pro	Pro	Ala	Pro	Gln	Asn	Pro	Ser
15				20					25					30		-
	Thr	His	Ser	Trp	Asp	Pro	Leu	Суз	Gly	Ser	Leu	Pro	Trp	Gly	Leu	Ser
			35					40					45			
	Cys	Leu	Leu	Ala	Leu	Gln	His	Val	Leu	Val	Met	Ala	Ser	Leu	Leu	Cys
		50					55					60				
20	Val	Ser	His	Leu	Leu	Leu	Leu	Cys	Ser	Leu	Ser	Pro	Gly	Gly	Leu	Ser
	65					70					75					80
	Tyr	Ser	Pro	Ser	Gln	Leu	Leu	Ala	Ser	Ser	Phe	Phe	Ser	Cys	Gly	Met
					85					90					95	
	Ser	Thr	Ile	Leu	Gln	Thr	Trp	Met	Gly	Ser	Arg	Leu	Pro	Leu	Val	Gln
25				100					105					110		

	Ala	Pro	Ser	Leu	Glu	Phe	Leu	Ile	Pro	Ala	Leu	Val	Leu	Thr	Ser	Gln
			115		•			120					125			
	Lys	Leu	Pro	Arg	Ala	Ile	Gln	Thr	Pro	Gly	Asn	Ser	Ser	Leu	Met	Leu
		130					135					140				
5	His	Leu	Cys	Arg	Gly	Pro	Ser	Cys	His	Gly	Leu	Gly	His	Trp	Asn	Thr
	145					150					155					160
	Ser	Leu	Gln	Glu	Val	Ser	Gly	Ala	Val	Val	Val	Ser	Gly	Leu	Leu	Gln
					165					170					175	
	Gly	Met	Met	Gly	Leu	Leu	Gly	Ser	Pro	Gly	His	Val	Phe	Pro	His	Cys
10				180					185					190		
	Gly	Pro	Leu	Val	Leu	Ala	Pro	Ser	Leu	Val	Val	Ala	Gly	Leu	Ser	Ala
			195					200					205			
	His	Arg	Glu	Val	Ala	Gln	Phe	Cys	Phe	Thr	His	Trp	Gly	Leu	Ala	Leu
		210					215					220				
15	Leu	Tyr	Val	Ser	Pro	Glu	Arg	Arg	Gly	Met	Val	Pro	Ser	Gly	Gly	Val
	225					230					235					240
	Trp	Gly	Asp													
	<210)> 3														
20	<213	1> 46	51													
	<212	2> PF	T													
	<213	3> нс	mo s	sapie	ens											
	<400)> 3														
	Met	Ala	Pro	Gln	Ser	Leu	Pro	Ser	Ser	Arg	Met	Ala	Pro	Leu	Gly	Met
25	1				5					10					15	

	Leu	Leu	Gly	Leu	Leu	Met	Ala	Ala	Cys	Phe	Thr	Phe	Cys	Leu	Ser	His
				20					25					30		
	Gln	Asn	Leu	Lys	Glu	Phe	Ala	Leu	Thr	Asn	Pro	Glu	Lys	Ser	Ser	Thi
			35					40					45			
5	Lys	Glu	Thr	Glu	Arg	Lys	Glu	Thr	Lys	Ala	Glu	Glu	Glu	Leu	Asp	Ala
		50					55					60				
	Glu	Val	Leu	Glu	Val	Phe	His	Pro	Thr	His	Glu	Trp	Gln	Ala	Leu	Glı
	65					70					75					80
	Pro	Gly	Gln	Ala	Val	Pro	Ala	Gly	Ser	His	Val	Arg	Leu	Asn	Leu	Glr
10					85					90					95	
	Thr	Gly	Glu	Arg	Glu	Ala	Lys	Leu	Gln	Tyr	Glu	Asp	Lys	Phe	Arg	Ası
				100					105					110		
	Asn	Leu	Lys	Gly	Lys	Arg	Leu	Asp	Ile	Asn	Thr	Asn	Thr	Tyr	Thr	Ser
			115					120					125			
15	Gln	Asp	Leu	Lys	Ser	Ala	Leu	Ala	Lys	Phe	Lys	Glu	Gly	Ala	Glu	Met
		130					135					140				
	Glu	Ser	Ser	Lys	Glu	Asp	Lys	Ala	Arg	Gln	Ala	Glu	Val	Lys	Arg	Let
	145					150					155					160
	Phe	Arg	Pro	Ile	Glu	Glu	Leu	Lys	Lys	Asp	Phe	Asp	Glu	Leu	Asn	Va]
20					165					170					175	
	Val	Ile	Glu	Thr	Asp	Met	Gln	Ile	Met	Val	Arg	Leu	Ile	Asn	Lys	Phe
				180					185					190		
	Asn	Ser	Ser	Ser	Ser	Ser	Leu	Glu	Glu	Lys	Ile	Ala	Ala	Leu	Phe	Asp
			195					200					205			
25	Leu	Glu	Tyr	Tyr	Val	His	Gln	Met	Asp	Asn	Ala	Gln	Asp	Leu	Leu	Ser

		210					215					220				
	Phe	Gly	Gly	Leu	Gln	Val	Val	Ile	Asn	Gly	Leu	Asn	Ser	Thr	Glu	Pro
	225					230					235					240
	Leu	Val	Lys	Glu	Tyr	Ala	Ala	Phe	Val	Leu	Gly	Ala	Ala	Phe	Ser	Ser
5					245					250					255	
	Asn	Pro	Lys	Val	Gln	Val	Glu	Ala	Ile	Glu	Gly	Gly	Ala	Leu	Gln	Lys
				260					265					270		
	Leu	Leu	Val	Ile	Leu	Ala	Thr	Glu	Gln	Pro	Leu	Thr	Ala	Lys	Lys	Lys
			275					280					285			
10	Val	Leu	Phe	Ala	Leu	Cys	Ser	Leu	Leu	Arg	His	Phe	Pro	Tyr	Ala	Glr
		290					295					300				
	Arg	Gln	Phe	Leu	Lys	Leu	Gly	Gly	Leu	Gln	Val	Leu	Arg	Thr	Leu	Val
	305					310					315					320
	Gln	Glu	Lys	Gly	Thr	Glu	Val	Leu	Ala	Val	Arg	Val	Val	Thr	Leu	Let
15					325					330					335	
	Tyr	Asp	Leu	Val	Thr	Glu	Lys	М́еt	Phe	Ala	Glu	Glu	Glu	Ala	Glu	Let
				340					345					350		
	Thr	Gln	Glu	Met	Ser	Pro	Glu	Lys	Leu	Gln	Gln	Tyr	Arg	Gln	Val	His
			355					360					365			
20	Leu	Leu	Pro	Gly	Leu	Trp	Glu	Gln	Gly	Trp	Cys	Glu	Ile	Thr	Ala	His
		370					375					380				
	Leu	Leu	Ala	Leu	Pro	Glu	His	Asp	Ala	Arg	Glu	Lys	Val	Leu	Gln	Thi
	385					390					395					400
	Leu	Gly	Val	Leu	Leu	Thr	Thr	Cys	Arg	Asp	Arg	Tyr	Arg	Gln	Asp	Pro
25					405					410					415	

9 /346

Gln Leu Gly Arg Thr Leu Ala Ser Leu Gln Ala Glu Tyr Gln Val Leu Ala Ser Leu Glu Leu Gln Asp Gly Glu Asp Glu Gly Tyr Phe Gln Glu Leu Leu Gly Ser Val Asn Ser Leu Leu Lys Glu Leu Arg <210> 4 <211> 647 <212> PRT <213> Homo sapiens <400> 4 Met Ala Ser Leu Val Ser Leu Glu Leu Gly Leu Leu Leu Ala Val Leu Val Val Thr Ala Thr Ala Ser Pro Pro Ala Gly Leu Leu Ser Leu Leu Thr Ser Gly Gln Gly Ala Leu Asp Gln Glu Ala Leu Gly Gly Leu Leu Asn Thr Leu Ala Asp Arg Val His Cys Thr Asn Gly Pro Cys Gly Lys Cys Leu Ser Val Glu Asp Ala Leu Gly Leu Gly Glu Pro Glu Gly Ser Gly Leu Pro Pro Gly Pro Val Leu Glu Ala Arg Tyr Val Ala Arg Leu Ser Ala Ala Ala Val Leu Tyr Leu Ser Asn Pro Glu Gly Thr Cys Glu

				100					105					110		
	Asp	Thr	Arg	Ala	Gly	Leu	Trp	Ala	Ser	His	Ala	Asp	His	Leu	Leu	Ala
			115					120					125			
	Leu	Leu	Glu	Ser	Pro	Lys	Ala	Leu	Thr	Pro	Gly	Leu	Ser	Trp	Leu	Leu
5		130					135					140				
	Gln	Arg	Met	Gln	Ala	Arg	Ala	Ala	Gly	Gln	Thr	Pro	Lys	Thr	Ala	Cys
	145					150					155					160
	Val	Asp	Ile	Pro	Gln	Leu	Leu	Glu	Glu	Ala	Val	Gly	Ala	Gly	Ala	Pro
					165					170					175	
10	Gly	Ser	Ala	Gly	Gly	Val	Leu	Ala	Ala	Leu	Leu	Asp	His	Val	Arg	Ser
				180					185					190		
	Gly	Ser	Суз	Phe	His	Ala	Leu	Pro	Ser	Pro	Gln	Tyr	Phe	Val	Asp	Phe
			195					200					205			
	Val	Phe	Gln	Gln	His	Ser	Ser	Glu	Val	Pro	Met	Thr	Leu	Ala	Glu	Leu
15		210					215					220				
	Ser	Ala	Leu	Met	Gln	Arg	Leu	Gly	Val	Gly	Arg	Glu	Ala	His	Ser	Asp
	225					230					235					240
	His	Ser	His	Arg	His	Arg	Gly	Ala	Ser	Ser	Arg	Asp	Pro	Val	Pro	Leu
					245					250					255	
20	Ile	Ser	Ser	Ser	Asn	Ser	Ser	Ser	Val	Trp	Asp	Thr	Val	Cys	Leu	Ser
				260					265					270		
	Ala	Arg	Asp	Val	Met	Ala	Ala	Tyr	Gly	Leu	Ser	Glu	Gln	Ala	Gly	Val
			275					280					285			
	Thr	Pro	Glu	Ala	Trp	Ala	Gln	Leu	Ser	Pro	Ala	Leu	Leu	Gln	Gln	Gln
2.5		290					205					300				

	Leu	Ser	Gly	Ala	Cys	Thr	ser	Gln	Ser	Arg	Pro	Pro	Val	Gln	Asp	Gln
	305					310					315					320
	Leu	Ser	Gln	Ser	Glu	Arg	Tyr	Leu	Tyr	Gly	Ser	Leu	Ala	Thr	Leu	Leu
					325					330					335	
5	Ile	Cys	Leu	Cys	Ala	Val	Phe	Gly	Leu	Leu	Leu	Leu	Thr	Cys	Thr	Gly
				340					345					350		
	Cys	Arg	Gly	Val	Ala	His	Tyr	Ile	Leu	Gln	Thr	Phe	Leu	Ser	Leu	Ala
			355					360					365			
	Val	Gly	Ala	Leu	Thr	Gly	Asp	Ala	Val	Leu	His	Leu	Thr	Pro	Lys	Val
10		370					375					380			•	
	Leu	Gly	Leu	His	Thr	His	Ser	Glu	Glu	Gly	Leu	Ser	Pro	Gln	Pro	Thr
	385		•			390					395					400
	Trp	Arg	Leu	Leu	Ala	Met	Leu	Ala	Gly	Leu	Tyr	Ala	Phe	Phe	Leu	Phe
					405					410					415	
15	Glu	Asn	Leu	Phe	Asn	Leu	Leu	Leu	Pro	Arg	Asp	Pro	Glu	Asp	Leu	Glu
				420					425					430		
	Asp	Gly	Pro	Cys	Gly	His	Ser	Ser	His	Ser	His	Gly	Gly	His	Ser	His
			435					440					445			
	Gly	Val	Ser	Leu	Gln	Leu	Ala	Pro	Ser	Glu	Leu	Arg	Gln	Pro	Lys	Pro
20		450					455					460				
	Pro	His	Glu	Gly	Ser	Arg	Ala	Asp	Leu	Val	Ala	Glu	Glu	Ser	Pro	Glu
	465					470					475					480
	Leu	Leu	Asn	Pro	Glu	Pro	Arg	Arg	Leu	Ser	Pro	Glu	Leu	Arg	Leu	Leu
					485					490	4				495	
25	Pro	Tyr	Met	Ile	Thr	Leu	Gly	Asp	Ala	Val	His	Asn	Phe	Ala	Asp	Gly

				500					505					510		
	Leu	Ala	Val	Gly	Ala	Ala	Phe	Ala	Ser	Ser	Trp	Lys	Thr	Gly	Leu	Ala
			515					520					525			
	Thr	Ser	Leu	Ala	Val	Phe	Cys	His	Glu	Leu	Pro	His	Glu	Leu	Gly	Asp
5		530					535					540				
	Phe	Ala	Ala	Leu	Leu	His	Ala	Gly	Leu	Ser	Val	Arg	Gln	Ala	Leu	Let
	545					550					555					560
	Leu	Asn	Leu	Ala	Ser	Ala	Leu	Thr	Ala	Phe	Ala	Gly	Leu	Tyr	Val	Ala
					565					570					575	
10	Leu	Ala	Val	Gly	Val	Ser	Glu	Glu	Ser	Glu	Ala	Trp	Ile	Leu	Ala	Val
				580					585					590		
	Ala	Thr	Gly	Leu	Phe	Leu	Tyr	Val	Ala	Leu	Cys	Asp	Met	Leu	Pro	Ala
	•		595					600					605			
	Met	Leu	Lys	Val	Arg	Asp	Pro	Arg	Pro	Trp	Leu	Leu	Phe	Leu	Leu	His
15		610					615					620				
	Asn	Val	Gly	Leu	Leu	Gly	Gly	Trp	Thr	Val	Leu	Leu	Leu	Leu	Ser	Leu
	625					630					635					640
	Tyr	Glu	Asp	Asp	Ile	Thr	Phe									
					645											
20																
	<21	0> 5														
	<21	1> 44	16													
	<21	2> PI	RT													
	<21	3> но	omo :	sapie	ens											
25	<40	0> 5														

	Met	Leu	His	Pro	Glu	Thr	Ser	Pro	Gly	Arg	Gly	His	Leu	Leu	Ala	Va.
	1				5					10					15	
	Leu	Leu	Ala	Leu	Leu	Gly	Thr	Ala	Trp	Ala	Glu	Val	Trp	Pro	Pro	Glr
				20					25					30		
5	Leu	Gln	Glu	Gln	Ala	Pro	Met	Ala	Gly	Ala	Leu	Asn	Arg	Lys	Glu	Ser
			35					40					45			
	Phe	Leu	Leu	Leu	Ser	Leu	His	Asn	Arg	Leu	Arg	Ser	Trp	Val	Gln	Pro
		50					55					60				
	Pro	Ala	Ala	Asp	Met	Arg	Arg	Leu	Asp	Trp	Ser	Asp	Ser	Leu	Ala	Glr
10	65					70					75		•			80
	Leu	Ala	Gln	Ala	Arg	Ala	Ala	Leu	Cys	Gly	Ile	Pro	Thr	Pro	Ser	Ler
					85					90		•			95	
	Ala	Ser	Gly	Leu	Trp	Arg	Thr	Leu	Gln	Val	Gly	Trp	Asn	Met	Gln	Leu
				100					105					110		
15	Leu	Pro	Ala	Gly	Leu	Ala	Ser	Phe	Val	Glu	Val	Val	Ser	Leu	Trp	Phe
			115					120					125			
	Ala	Glu	Gly	Gln	Arg	Tyr	Ser	His	Ala	Ala	Gly	Glu	Cys	Ala	Arg	Asn
		130					135					140				
	Ala	Thr	Суѕ	Thr	His	Tyr	Thr	Gln	Leu	Val	Trp	Ala	Thr	Ser	Ser	Gln
20	145					150					155					160
	Leu	Gly	Cys	Gly	Arg	His	Leu	Cys	Ser	Ala	Gly	Gln	Ala	Ala	Ile	Glu
					165					170					175	
	Ala	Phe	Val	Cys	Ala	Tyr	Ser	Pro	Gly	Gly	Asn	Trp	Glu	Val	Asn	Gly
				180					185					190		
25	Lvs	Thr	Tle	Tle	Pro	Tur	Lve	Tare	G1 v	71 a	Пrr	Cur	Com	T	C++0	mb~

			195					200					205			
	Ala	Ser	Val	Ser	Gly	Cys	Phe	Lys	Ala	Trp	Asp	His	Ala	Gly	Gly	Leu
		210					215				٥	220				
	Cys	Glu	Val	Pro	Arg	Asn	Pro	Cys	Arg	Met	Ser	Cys	Gln	Asn	His	Gly
5	225					230					235					240
	Arg	Leu	Asn	Ile	Ser	Thr	Cys	His	Cys	His	Cys	Pro	Pro	Gly	Tyr	Thr
					245					250					255	
	Gly	Arg	Tyr	Суѕ	Gln	Val	Arg	Cys	Ser	Leu	Gln	Cys	Val	His	Gly	Arg
				260					265					270		
10	Phe	Arġ	Glu	Glu	Glu	Cys	Ser	Суз	Val	Cys	Asp	Ile	Gly	Tyr	Gly	Gly
			275					280					285			
	Ala	Gln	Cys	Ala	Thr	Lys	Val	His	Phe	Pro	Phe	His	Thr	Cys	Asp	Leu
		290					295					300				
	Arg	Ile	Asp	Gly	Asp	Cys	Phe	Met	Val	Ser	Ser	Glu	Ala	Asp	Thr	Tyr
15	305					310					315					320
	Tyr	Arg	Ala	Arg	Met	Lys	Cys	Gln	Arg	Lys	Gly	Gly	Val	Leu	Ala	Gln
					325					330					335	
	Ile	Lys	Ser	Gln	Lys	Val	Gln	Asp	Ile	Leu	Ala	Phe	Tyr	Leu	Gly	Arg
				340					345					350		
20	Leu	Glu	Thr	Thr	Asn	Glu	Val	Ile	Asp	Ser	Asp	Phe	Glu	Thr	Arg	Asn
			355					360					365			
	Phe	Trp	Ile	Gly	Leu	Thr	Tyr	Lys	Thr	Ala	Lys	Asp	Ser	Phe	Arg	Trp
		370					375					380				
	Ala	Thr	Gly	Glu	His	Gln	Ala	Phe	Thr	Ser	Phe	Ala	Phe	Gly	Gln	Pro
25	385					390	ŕ				395					400

15/346

Asp Asn His Gly Phe Gly Asn Cys Val Glu Leu Gln Ala Ser Ala Ala Phe Asn Trp Asn Asn Gln Arg Cys Lys Thr Arg Asn Arg Tyr Ile Cys Gln Phe Ala Gln Glu His Ile Ser Arg Trp Gly Pro Gly Ser <210> 6 <211> 197 <212> PRT <213> Homo sapiens <400> 6 Met Pro Pro Ala Gly Leu Arg Arg Ala Ala Pro Leu Thr Ala Ile Ala Leu Leu Val Leu Gly Ala Pro Leu Val Leu Ala Gly Glu Asp Cys Leu Trp Tyr Leu Asp Arg Asn Gly Ser Trp His Pro Gly Phe Asn Cys Glu Phe Phe Thr Phe Cys Cys Gly Thr Cys Tyr His Arg Tyr Cys Cys Arg Asp Leu Thr Leu Leu Ile Thr Glu Arg Gln Gln Lys His Cys Leu Ala Phe Ser Pro Lys Thr Ile Ala Gly Ile Ala Ser Ala Val Ile Leu Phe Val Ala Val Val Ala Thr Thr Ile Cys Cys Phe Leu Cys Ser Cys Cys

16/346

1

			100					105					110		
	Tyr Leu	Tyr	Arg	Arg	Arg	Gln	Gln	Leu	Gln	Ser	Pro	Phe	Glu	Gly	Gln
		115					120					125			
	Glu Ile	Pro	Met	Thr	Gly	Ile	Pro	Val	Gln	Pro	Val	Tyr	Pro	Tyr	Pro
5	130					135					140				
	Gln Asp	Pro	Lys	Ala	Gly	Pro	Ala	Pro	Pro	Gln	Pro	Gly	Phe	Ile	Tyr
	145				150					155					160
	Pro Pro	Ser	Gly	Pro	Ala	Pro	Gln	Tyr	Pro	Leu	Tyr	Pro	Ala	Gly	Pro
				165					170					175	
10	Pro Val	Tyr	Asn	Pro	Ala	Ala	Pro	Pro	Pro	Tyr	Met	Pro	Pro	Gln	Pro
			180				•	185					190		
	Ser Tyr	Pro	Gly	Ala											
		195													
													•		
15	<210> 7														
	<211> 5	40													
	<212> P	RT													
	<213> H	omo s	sapi	ens											
	<400> 7														
20	Met Ala	Thr	Ser	Gly	Ala	Ala	Ser	Ala	Glu	Leu	Val	Ile	Gly	Trp	Cys
	1			5					10					15	
	Ile Phe	Gly	Leu	Leu	Leu	Leu	Ala	Ile	Leu	Ala	Phe	Суз	Trp	Ile	Tyr
			20					25					30		
	Val Arg	Lys	Tyr	Gln	Ser	Arg	Arg	Glu	Ser	Glu	Val	Val	Ser	Thr	Ile
25		35					40					45			

	Thr	Ala	Ile	Phe	Ser	Leu	Ala	Ile	Ala	Leu	Ile	Thr	Ser	Ala	Leu	Leu
		50					55					60				
	Pro	Val	Asp	Ile	Phe	Leu	Val	Ser	Tyr	Met	Lys	Asn	Gln	Asn	Gly	Thr
	65					70					75					80
5	Phe	Lys	Asp	Trp	Ala	Asn	Ala	Asn	Val	Ser	Arg	Gln	Ile	Glu	Asp	Thr
					85					90					95	
	Val	Leu	Tyr	Gly	Tyr	Tyr	Thr	Leu	Tyr	Ser	Val	Ile	Leu	Phe	Cys	Val
				100					105					110		
	Phe	Phe	Trp	Ile	Pro	Phe	Val	Tyr	Phe	Tyr	Tyr	Glu	Glù	Lys	Asp	Asp
LO			115					120					125			
	Asp	Asp	Thr	Ser	Lys	Cys	Thr	Gln	Ile	Lys	Thr	Ala	Leu	Lys	Tyr	Thr
		130					135					140				
	Leu	Gly	Phe	Val	Val	Ile	Суѕ	Ala	Leu	Leu	Leu	Leu	Val	Gly	Ala	Phe
	145					150					155					160
15	Val	Pro	Leu	Asn	Val	Pro	Asn	Asn	Lys	Asn	Ser	Thr	Glu	Trp	Glu	Lys
				•	165					170					175	
	Val	Lys	Ser	Leu	Phe	Glu	Glu	Leu	Gly	Ser	Ser	His	Gly	Leu	Ala	Ala
				180					185					190		
	Leu	Ser	Phe	Ser	Ile	Ser	Ser	Leu	Thr	Leu	Ile	Gly	Met	Leu	Ala	Ala
20			195					200					205			
	Ile	Thr	Tyr	Thr	Ala	Tyr	Gly	Met	Ser	Ala	Leu	Pro	Leu	Asn	Leu	Ile
		210					215					220				
	Lys	Gly	Thr	Arg	Ser	Ala	Ala	Tyr	Glu	Arg	Leu	Glu	Asn	Thr	Glu	Asp
	225					230					235					240
25	Ile	Glu	Glu	Val	Glu	Gln	His	Ile	Gln	Thr	Ile	Lvs	Ser	Lvs	Ser	Lvs

					245					250					255	
	Asp	Gly	Arg	Pro	Leu	Pro	Ala	Arg	Asp	Lys	Arg	Ala	Ĺeu	Lys	Gln	Phe
				260					265					270		
	Glu	Glu	Arg	Leu	Arg	Thr	Leu	Lys	Lys	Arg	Glu	Arg	His	Leu	Gl u	Phe
5			275					280					285			
	Ile	Glu	Asn	Ser	Trp	Trp	Thr	Lys	Phe	Cys	Gly	Ala	Leu	Arg	Pro	Let
		290					295				,	300				
	Lys	Ile	Val	Trp	Gly	Ile	Phe	Phe	Ile	Leu	Val	Ala	Leu	Leu	Phe	۷al
	305					310					315					320
10	Ile	Ser	Leu	Phe	Leu	Ser	Asn	Leu	Asp	Lys	Ala	Leu	His	Ser	Ala	Gl
					325					330					335	
	Ile	Asp	Ser	Gly	Phe	Ile	Ile	Phe	Gly	Ala	Asn	Leu	Ser	Asn	Pro	Let
				340					345					350		
	Asn	Met	Leu	Leu	Pro	Leu	Leu	Gln	Thr	Val	Phe	Pro	Leu	Asp	Tyr	Ile
15			355					360					365			
	Leu	Ile	Thr	Ile	Ile	Ile	Met	Tyr	Phe	Ile	Phe	Thr	Ser	Met	Ala	Gly
		370					375					380				
	Ile	Arg	Asn	Ile	Gly	Ile	Trp	Phe	Phe	Trp	Ile	Arg	Leu	Tyr	Lys	Ile
	385					390					395					400
20	Arg	Arg	Gly	Arg	Thr	Arg	Pro	Gln	Ala	Leu	Leu	Phe	Leu	Cys	Met	Ile
					405					410					415	
	Leu	Leu	Leu	Ile	Val	Leu	His	Thr	Ser	Tyr	Met	Ile	Tyr	Ser	Leu	Ala
				420					425					430		
	Pro	Gln	Tyr	Val	Met	Tyr	Gly	Ser	Gln	Asn	Tyr	Leu	Ile	Glu	Thr	Asn
25			435					440					445			

19 /346

Ile Thr Ser Asp Asn His Lys Gly Asn Ser Thr Leu Ser Val Pro Lys Arg Cys Asp Ala Asp Ala Pro Glu Asp Gln Cys Thr Val Thr Arg Thr Tyr Leu Phe Leu His Lys Phe Trp Phe Phe Ser Ala Ala Tyr Tyr Phe Gly Asn Trp Ala Phe Leu Gly Val Phe Leu Ile Gly Leu Ile Val Ser Cys Cys Lys Gly Lys Lys Ser Val Ile Glu Gly Val Asp Glu Asp Ser Asp Ile Ser Asp Asp Glu Pro Ser Val Tyr Ser Ala <210> 8 <211> 442 <212> PRT <213> Homo sapiens <400> 8 Met Ala Leu Pro Ser Arg Ile Leu Leu Trp Lys Leu Val Leu Leu Gln Ser Ser Ala Val Leu Leu His Ser Gly Ser Ser Val Pro Ala Ala Ala Gly Ser Ser Val Val Ser Glu Ser Ala Val Ser Trp Glu Ala Gly Ala Arg Ala Val Leu Arg Cys Gln Ser Pro Arg Met Val Trp Thr Gln Asp

		50					55					60				
	Arg	Leu	His	Asp	Arg	Gln	Arg	Val	Leu	His	Trp	Asp	Leu	Arg	Gly	Pro
	65					70					75					80
	Gly	Gly	Gly	Pro	Ala	Arg	Arg	Leu	Leu	Asp	Leu	Tyr	Ser	Ala	Gly	Glu
5					85		٥			90					95	
	Gln	Arg	Val	Tyr	Glu	Ala	Arg	Asp	Arg	Gly	Arg	Leu	Glu	Leu	Ser	Ala
				100					105					110		
	Ser	Ala	Phe	Asp	Asp	Gly	Asn	Phe	Ser	Leu	Leu	Ile	Arg	Ala	Val	Glu
			115					120			•		125	,	5	
LO	Glu	Thr	Asp	Ala	Gly	Leu	Tyr	Thr	Cys	Asn	Leu	His	His	His	Tyr	Cys
		130					135					140				
	His	Leu	Tyr	Glu	Ser	Leu	Ala	Val	Arg	Leu	Glu	Val	Thr	Asp	Gly	Pro
	145					150					155					160
	Pro	Ala	Thr	Pro	Ala	Tyr	Trp	Asp	Gly	Glu	Lys	Glu	Val	Leu	Ala	Val
L5					165					170					175	
	Ala	Arg	Gly	Ala	Pro	Ala	Leu	Leu	Thr	Cys	Val	Asn	Arg	Gly	His	Val
				180					185					190		
	Trp	Thr	Asp	Arg	His	Val	Glu	Glu	Ala	Gln	Gln	Val	Val	His	Trp	Asp
			195					200					205			
20	Arg	Gln	Pro	Pro	Gly	Val	Pro	His	Asp	Arg	Ala	Asp	Arg	Leu	Leu	Asp
		210					215					220				
	Leu	Tyr	Ala	Ser	Gly	Glu	Arg	Arg	Ala	Tyr	Gly	Pro	Leu	Phe	Leu	Arg
	225					230					235					240
	Asp	Arg	Val	Ala	Val	Gly	Ala	Asp	Ala	Phe	Glu	Arg	Gly	Asp	Phe	Ser
25					245					250					255	

	Leu	Arg	Ile	Glu	Pro	Leu	Glu	Val	Ala	Asp	Glu	Gly	Thr	Tyr	Ser	Суѕ
				260					265					270		
	His	Leu	His	His	His	Tyr	Cys	Gly.	Leu	His	Glu	Arg	Arg	Val	Phe	His
			275					280					285			
5	Leu	Thr	Val	Ala	Glu	Pro	His	Ala	Glu	Pro	Pro	Pro	Ara	Glv	Ser	Pro
		290					295					300			,	
		230					233					300				•
	Gly	Asn	Gly	Ser	Ser	His	Ser	Gly	Ala	Pro	Gly	Pro	⁄Asp	Pro	Thr	Leu
-	305					310					315					320
	Ala	Arg	Gly	His	Asn	Val	Ile	Asn	Val	Ile	Val	Pro	Glu	Ser	Arg	Ala
10					325					330					335	
	ui a	Dha	Dha	C1 -	C1-	۲	C3	m	**- 1	.		~ 1	_	_	_	
	ഹ	Phe	rne	GTII	GIII	ьeu	стХ	ryr	vaı	ьеи	ATA	Thr	Leu	Leu	Leu	Phe
				340					345					350		
	Ile	Leu	Leu	Leu	Val	Thr	Val	Leu	Leu	Ala	Ala	Arg	Arg	Arg	Arg	Gly
			355					360					365			
15	Gly	Tyr	Glu	Tyr	Ser	Asp	Gln	Lys	Ser	Gly	Lys	Ser	Lys	Gly	Lys	Asp
		370					375					380				
	Val	Asn	Leu	Ala	Glu	Phe	Ala	Val	Ala	Ala	Gly	Asp	Gln	Met	Leu	Tyr
	385					390					395					400
	Arg	Ser	Glu	Asp	Ile	Gln	Leu	Asp	Tyr	Lys	Asn	Asn	Ile	Leu	Lys	Glu
20					405					410					415	
	Arg	Ala	Glu	Leu	Ala	His	Ser	Pro	Leu	Prò	Ala	Lys	Tyr	Ile	Asp	Leu
				420					425					430		
	7\ ~~	T	C1	nh -	7	T	~1 · ·	7	٥.	-						
	wsb	Lys		rue	Arg	тЛЗ	GIU		cys	тЛ̂г						
			435					440								

	<210)> 9													•	
	<211	L> 26	52													
	<212	?> PF	T?				43									
	<213	3> Ho	omo s	apie	ens		•									
5	<400)> 9												•		
	Met	Thr	Pro	Glu	Asp	Pro	Glu	Glu	Thr	Gln	Pro	Leu	Leu	Gly	Pro	Pro
	1				5					10					15	
	Gly	Gly	Ser	Ala	Pro	Arg	Gly	Arg	Arg	Val	Phe	Leu	Ala	Ala	Phe	Ala
				20					25					30		
LO	Ala	Ala	Leu	Gly	Pro	Leu	Ser	Phe	Gly	Phe	Ala	Leu	Gly	Tyr	Ser	Ser
			35					40					45			
	Pro	Ala	Ile	Pro	Ser	Leu	Gln	Arg	Ala	Ala	Pro	Pro	Ala	Pro	Arg	Let
		-50					55					60	•			
	Asp	Asp	Ala	Ala	Ala	Ser	Trp	Phe	Gly	Ala	Val	Val	Thr	Leu	Gly	Ala
L 5	65					70					75					80
	Ala	Ala	Gly	Gly	Val	Leu	Gly	Gly	Trp	Leu	Val	Asp	Arg	Ala	Gly	Arg
					85					90					95	
	Lys	Leu	Ser	Leu	Leu	Leu	Cys	Ser	Val	Pro	Phe	Val	Ala	Gly	Phe	Ala
				100					105					110		
20	Val	Ile	Thr	Ala	Ala	Gln	Asp	Val	Trp	Met	Leu	Leu	Gly	Gly	Arg	Leu
			115					120					125			
	Leu	Thr	Gly	Leu	Ala	Cys	Gly	Val	Ala	Ser	Leu	Val	Ala	Pro	Val	Туг
		130					135					140				
	Ile	Ser	Glu	Ile	Ala	Tyr	Pro	Ala	Val	Arg	Gly	Leu	Leu	Gly	Ser	Cys
25	145					150					155					160

	Val	Gln	Leu	Met	Val	Val	Val	Gly	Ile	Leu	Leu	Ala	Tyr	Leu	Ala	Gly
					165					170					175	
	Trp	Val	Leu	Glu	Trp	Arg	Trp	Leu	Ala	Val	Leu	Gly	Cys	Val	Pro	Pro
				180					185					190		
5	Ser	Leu	Met	Leu	Leu	Leu	Met	Cys	Phe	Met	Pro	Glu	Thr	Pro	Arg	Phe
			195					200					205			
	Leu	Leu	Thr	Gln	His	Arg	Arg	Gln	Glu	Ala	Ala	Pro	Gly	Leu	Val	Arg
		210					215					220				
	Cys	Gly	His	Gly	Val	Gln	His	Glu	Cys	Leu	Arg	Arg	Leu	Leu	Gln	Ala
LO	225					230					235	•				240
	Asp	Pro	Gly	Trp	Pro	Trp	Gln	Leu	Leu	Ala	Arg	Gly	His	Leu	Gly	Ala
					245	•				250					255	
	Cys	Leu	Суѕ	Thr	Ala	Cys										
				260												
15																
	<210)> 10)													
	<211	i> 15	52											•		
	<212	2> PF	RT													
	<213	3> Ho	omo s	sapie	ens											
20	<400)> 10)													
	Met	Arg	Gly	Pro	Gly	His	Pro	Leu	Leu	Leu	Gly	Leu	Leu	Leu	Val	Leu
	1				5					10					15	
	Gly	Ala	Ala	Gly	Arg	Gly	Arg	Gly	Gly	Ala	Glu	Pro	Arg	Glu	Pro	Ala
				20					25					30		
25	Asp	Gly	Gln	Ala	Leu	Leu	Arg	Leu	Val	Val	Glu	Leu	Val	Gln	Glu	Leu

24 /346

Arg Lys His His Ser Ala Glu His Lys Gly Leu Gln Leu Leu Gly Arg Asp Cys Ala Leu Gly Arg Ala Glu Ala Ala Gly Leu Gly Pro Ser Pro Glu Gln Arg Val Glu Ile Val Pro Arg Asp Leu Arg Met Lys Asp Lys Phe Leu Lys His Leu Thr Gly Pro Leu Tyr Phe Ser Pro Lys Cys Ser Lys His Phe His Arg Leu Tyr His Asn Thr Arg Asp Cys Thr Ile Pro Ala Tyr Tyr Lys Arg Cys Ala Arg Leu Leu Thr Arg Leu Ala Val Ser Pro Val Cys Met Glu Asp Lys Gln <210> 11 <211> 1737 <212> DNA <213> Homo sapiens <400> 11 atggcatttt ctgaactcct ggacctcgtg ggtggcctgg gcaggttcca ggttctccag 60 acgatggctc tgatggtctc catcatgtgg ctgtgtaccc agagcatgct ggagaacttc 120

teggeegeeg tgeccageca eegetgetgg geaceeetee tggacaacag caeggeteag 180

gccagcatcc tagggagctt gagtcctgag gccctcctgg ctatttccat cccgccgggc 240

5

10

15

20

25

cccaaccaga ggccccacca gtgccgccgc ttccgccagc cacagtggca gctcttggac 300 eccaatgeca eggecaceag etggagegag geegaeaegg ageegtgtgt ggatggetgg 360 gtctatgacc gcagcatctt cacctccaca atcgtggcca agtggaacct cgtgtgtgac 420 teteatgete tgaageeeat ggeeeagtee atetaeetgg etgggattet ggtgggaget 480 gctgcgtgcg gccctgcctc agacaggttt gggcgcaggc tggtgctaac ctggagctac 540 cttcagatgg ctgtgatggg tacggcaget gccttcgccc ctgccttccc cgtgtactgc 600 ctgttccgct tcctgttggc ctttgccgtg gcaggcgtca tgatgaacac gggcactctc 660 cgtaggtete tgacetggeg ceatgeaggg gggetecatg caggetecag ggetgaacca 720 ctcggtctcc ttgcagtgat ggagtggacg gcggcacggg cccgaccctt ggtgatgacc 780 ttgaactctc tgggcttcag cttcggccat ggcctgacag ctgcagtggc ctacggtgtg 840 cgggactgga cactgctgca gctggtggtc tcggtcccct tcttcctctg ctttttgtac 900 tcctggtggc tggcagagtc ggcacgatgg ctcctcacca caggcaggct ggattggggc 960 ctgcaggagc tgtggagggt ggctgccatc aacggaaagg gggcagtgca ggacaccctq 1020 accectgagg tettgettte agecatgegg gaggagetga geatgggeea geeteetgee 1080 agcetgggea ccetgeteeg catgecegga etgegettee ggacetgtat etceaegttg 1140 tgctggttcg cctttggctt caccttcttc ggcctggccc tggacctgca ggccctgggc 1200 agcaacatct tcctgctcca aatgttcatt ggtgtcgtgg acatcccagc caagatgggc 1260 gccctgctgc tgctgagcca cctgggccgc cgccccacgc tggccgcatc cctgttgctg 1320 gcggggctct gcattctggc caacacgctg gtgccccacg aaatgggggc tctgcgctca 1380 gccctggccg tgctggggct gggcggggtg ggggctgcct tcacctgcat caccatctac 1440 agcagcgagc tettecccac tgtgetcagg atgacggcag tgggettggg ccagatggca 1500 gcccgtggag gagccatcct ggggcctctg gtccggctgc tgggtgtcca tggcccctgg 1560 ctgcccttgc tggtgtatgg gacggtgcca gtgctgagtg gcctggccgc actgcttctg 1620 cccgagaccc agagcttgcc gctgcccgac accatccaag atgtgcagaa ccaggcagta 1680 aagaaggcaa cacatggcac gctggggaac tctgtcctaa aatccacaca gttttag 1737

26/346

<210> 12

<211> 732

<212> DNA

5 <213> Homo sapiens

<400> 12

atgagecgat caccecteaa teecagecaa eteegateag tgggeteeca ggatgeeetg 60 geceeettge eteecageat teeceagaat eeeteeacee actettggga eeetttgtgt 120 ggatetetge ettggggeet cagetgeett etggetetge ageatgeett ggteatgget 180 teeteegete gtgteeea eetgeteetg etttgeagte teeteecagg aggaeteteet 240 taeteeett eteageteet ggeeteeage teettteat gtggtatgte taecateetg 300 caaacttgga tgggeageag getgeeteet gteecaggete eateettaga gtteettate 360 eetgeteetgg tgetgaceag eeagaageta eeegggeea teeagaeaee tggaaactee 420 teeteetaga tgeacetttg taggggaeet agetgeeatg geetggggaa etggaacaet 480 eetgetgggga aggtgeegg ggeagtggta gtatetggge tgetgeaggg catgatgggg 540 eetggtggga gteeeggeea eggtteeee eactggtggga eeggtgggg 660 gggttggeet tgetgaacgt gagteeegg gagttgeee aggteeeagg tggtgeeegg tggggggtga 720 tggggggaet ag

20

10

15

<210> 13

<211> 1386

<212> DNA

<213> Homo sapiens

25 <400> 13

5

10

15

27 /346

atggeteece agageetgee tteatetagg atggeteete tgggeatget gettgggetg 60 ctgatggccg cctgcttcac cttctgcctc agtcatcaga acctgaagga gtttgccctg 120 accaacccag agaagagcag caccaaagaa acagagagaa aagaaaccaa agccgaggag 180 gagetggatg cegaagteet ggaggtgtte caccegaege atgagtggea ggeeetteag 240 ccagggcagg ctgtccctgc aggatcccac gtacggctga atcttcagac tggggaaaga 300 gaggcaaaac tccaatatga ggacaagttc cgaaataatt tgaaaggcaa aaggctggat 360 atcaacacca acacctacac atctcaggat ctcaagagtg cactggcaaa attcaaggag 420 ttccgcccca ttgaggaact gaagaaagac tttgatgagc tgaatgttgt cattgagact 540 gacatgcaga tcatggtacg gctgatcaac aagttcaata gttccagctc cagtttggaa 600 gagaagattg ctgcgctctt tgatcttgaa tattatgtcc atcagatgga caatgcgcag 660 gacctgettt cetttggtgg tetteaagtg gtgateaatg ggetgaacaq cacagageee 720 ctcgtgaagg agtatgctgc gtttgtgctg ggcgctgcct tttccagcaa ccccaaggtc 780 caggtggagg ccatcgaagg gggagccctg cagaagctgc tggtcatcct ggccacggag 840 cagoogotca otgoaaagaa gaaggtootg titigoactgt gotcootgot gogocactto 900 ccctatgccc agcggcagtt cctgaagctc ggggggctgc aggtcctgag gaccctggtg 960 caggagaagg gcacggaggt gctcgccgtg cgcgtggtca cactgctcta cgacctggtc 1020 acggagaaga tgttcgccga ggaggaggct gagctgaccc aggagatgtc cccagagaag 1080 ctgcagcagt atcgccaggt acacctcctg ccaggcctgt gggaacaggg ctggtgcgag 1140 atcacggccc acctcctggc gctgcccgag catgatgccc gtgagaaggt gctgcagaca 1200 ctgggcgtcc tcctgaccac ctgccgggac cgctaccgtc aggaccccca gctcggcagg 1260 acactggcca gcctgcaggc tgagtaccag gtgctggcca gcctggagct gcaggatggt 1320 gaggacgagg gctacttcca ggagctgctg ggctctgtca acagcttgct gaaggagctg 1380 agatga 1386

20

28 /346

<210> 14

<211> 1944

<212> DNA

<213> Homo sapiens

5 <400> 14

10

15

20

25

atggcgtccc tggtctcgct ggagctgggg ctgcttctgg ctgtgctggt ggtgacggcg 60 acggcgtccc cgcctgctgg tctgctgagc ctgctcacct ctqqccaqqq cqctctqqat 120 caagaggete tgggeggeet gttaaatacg etggeggaee gtgtgeaetg caecaacggg 180 ccgtgtggaa agtgcctgtc tgtggaggac gccctgggcc tgggcgagcc tgaggggtca 240 gggctgcccc cgggcccggt cctggaggcc aggtacgtcg cccgcctcag tgccqccqcc 300 gtcctgtacc tcagcaaccc cgagggcacc tgtgaggaca ctcgggctgg cctctgggcc 360 teteatgeag accaecteet ggeeetgete gagageeeca aggeeetgae eeegggeetg 420 agetggetge tgcagaggat gcaggecegg getgeeggee agaeeeecaa gaeggeetge 480 gtagatatec eteagetget ggaggaggeg gtgggggggg gggeteeggg eagtgetgge 540 ggcgtcctgg ctgccctgct ggaccatgtc aggagcgggt cttgcttcca cgccttgccg 600 ageceteagt acttegtgga etttgtgtte eageageaca geagegaggt ecetatgaeg 660 ctggccgagc tgtcagcctt gatgcagcgc ctgggggtgg gcagggaggc ccacaqtgac 720 cacagtcatc ggcacagggg agccagcagc cgggaccctq tqcccctcat caqctccaqc 780 aacagctcca gtgtgtggga cacggtatgc ctgagtgcca gggacgtgat ggctgcatat 840 ggactgtegg aacaggetgg ggtgaccccg gaggectggg cccaactgag ccctgccctg 900 ctccaacagc agetgagtgg agectgcacc teccagteca ggeececcqt ccaggaccag 960 ctcagccagt cagagaggta tctgtacggc tccctggcca cgctgctcat ctgcctctgc 1020 geggtetttg gecteetget getgaeetge actggetgea ggggggtege ceaetacate 1080 ctgcagacct tcctgagcct ggcagtgggt gcactcactg gggacgctgt cctgcatctg 1140 acgcccaagg tgctggggct gcatacacac agcgaagagg gcctcagccc acagcccacc 1200

29 /346

	tggcgcctcc	tggctatgct	ggccgggctc	tacgccttct	tcctgtttga	gaacctcttc	1260
	aatctcctgc	tgcccaggga	cccggaggac	ctggaggacg	ggccctgcgg	ccacagcagc	1320
	catagccacg	ggggccacag	ccacggtgtg	tccctgcagc	tggcacccag	cgagctccgg	1380
	cagcccaagc	cccccacga	gggetecege	gcagacctgg	tggcggagga	gagcccggag	1440
5	ctgctgaacc	ctgagcccag	gagactgagc	ccagagttga	ggctactgcc	ctatatgatc	1500
	actctgggcg	acgccgtgca	caacttcgcc	gacgggctgg	ccgtgggcgc	cgccttcgcg	1560
	tcctcctgga	agaccgggct	ggccacctcg	ctggccgtgt	tctgccacga	gttgccacac	1620
	gagctggggg	acttcgccgc	cttgctgcac	gcggggctgt	ccgtgcgcca	agcactgctg	1680
	ctgaacctgg	cctccgcgct	cacggccttc	gctggtctct	acgtggcact	cgcggttgga	1740
10	gtcagcgagg	agagcgaggc	ctggatcctg	gcagtggcca	ccggcctgtt	cctctacgta	1800
	gcactctgcg	acatgctccc	ggcgatgttg	aaagtacggg	acccgcggcc	ctggctcctc	1860
	ttcctgctgc	acaacgtggg	cctgctgggc	ggctggaccg	tcctgctgct	gctgtccctg	1920
	tacgaggatg	acatcacctt	ctga				1944

15 <210> 15

<211> 1341

<212> DNA

<213> Homo sapiens

<400> 15

atgetgeate cagagacete ecetggeegg gggeatetee tggetgtget eetggeeete 60
ettggeaceg cetgggeaga ggtgtggeea eeceagetge aggageagge teegatggee 120
ggageeetga acaggaagga gagtttettg eteeteteee tgeacaaceg eetggeage 180
tgggteeage eecetgegge tgacatgegg aggetggaet ggagtgacag eetggeeeaa 240
etggeteaag eeagggeage eetetgtgga ateecaacee egageetgge gteeggeetg 300

25 tggegeacee tgeaagtggg etggaacatg eagetgetge eegegggett ggegteettt 360

30 /346

	gttgaagtgg	tcagcctatg	gtttgcagag	gggcagcggt	acagccacgc	ggcaggagag	420
	tgtgctcgca	acgccacctg	cacccactac	acgcagctcg	tgtgggccac	ctcaagccag	480
	ctgggctgtg	ggcggcacct	gtgctctgca	ggccaggcag	cgatagaagc	ctttgtctgt	540
	gcctactccc	ccggaggcaa	ctgggaggtc	aacgggaaga	caatcatccc	ctataagaag	600
5	ggtgcctggt	gttcgctctg	cacagccagt	gtctcaggct	gcttcaaagc	ctgggaccat	660
	gcagggggc	tctgtgaggt	ccccaggaat	ccttgtcgca	tgagctgcca	gaaccatgga	720
	cgtctcaaca	tcagcacctg	ccactgccac	tgtccccctg	gctacacggg	cagatactgc	780
	caagtgaggt	gcagcctgca	gtgtgtgcac	ggccggttcc	gggaggagga	gtgctcgtgc	840
	gtctgtgaca	tcggctacgg	gggagcccag	tgtgccacca	aggtgcattt	tcccttccac	900
10	acctgtgacc	tgaggatcga	cggagactgc	ttcatggtgt	cttcagaggc	agacacctat	960
	tacagagcca	ggatgaaatg	tcagaggaaa	ggcggggtgc	tggcccagat	caagagccag	1020
	aaagtgcagg	acatcctcgc	cttctatctg	ggccgcctgg	agaccaccaa	cgaggtgatt	1080
	gacagtgact	tcgagaccag	gaacttctgg	atcgggctca	cctacaagac	cgccaaggac	1140
	teetteeget	gggccacagg	ggagcaccag	gccttcacca	gttttgcctt	tgggcagcct	1200
15	gacaaccacg	ggtttggcaa	ctgcgtggag	ctgcaggctt	cagctgcctt	caactggaac	1260
	aaccagcgct	gcaaaacccg	aaaccgttac	atctgccagt	ttgcccagga	gcacatctcc	1320
	cggtggggcc	cagggtcctg	a	•			1341

<210> 16

20 <211> 594

25

<212> DNA

<213> Homo sapiens

<400> 16

atgccacccg eggggeteeg eegggeegeg eegeteaccg caategetet gttggtgetg 60 ggggeteece tggtgetgge eggegaggae tgeetgtggt acetggaceg gaatggetee 120

31 /346

tggcatccgg ggtttaactg cgagttette accttetget gegggacetg etaceategg 180
tactgetgea gggacetgae ettgettate acegagagge agcagaagea etgeetggee 240
tteagececa agaceatage aggeategee teagetgtga teetetttgt tgetgtggtt 300
gecaceacea tetgetgett cetetgttee tgttgetace tgtacegeeg gegeeageag 360
etecagagee catttgaagg ecaggagatt ecaatgacag geateceagt geageeagta 420
taceeatace eceaggacee eaaagetgge eetgeaceee eacageetgg etteatatae 480
ecacetagtg gteetgetee ecaatateea etetaceeag etgggeeeee agtetacaae 540
eetgeagete eteeteeta tatgeeacea eageeetett aceegggage etga 594

10 <210> 17

5

<211> 1623

<212> DNA

<213> Homo sapiens

<400> 17

atggcgactt ctggcgggc ctcggcggag ctggtgatcg gctggtgcat attcggcctc 60
ttactactgg ctattttggc attctgctgg atatatgttc gtaaatacca aagtcggcgg 120
gaaagtgaag ttgtctccac cataacagca atttttctc tagcaattgc acttatcaca 180
tcagcacttc taccagtgga tatatttttg gttcttaca tgaaaaatca aaatggtaca 240
tttaaggact gggctaatgc taatgtcagc agacagattg aggacactgt attatacggt 300
tactatactt tatattctgt tatattgttc tgtgtgttct tctggatccc ttttgtctac 360
ttctattatg aagaaaagga tgatgatgat actagtaaat gtactcaaat taaaacggca 420
ctcaagtata ctttgggatt tgttgtgatt tgtgcactgc ttcttttagt tggtgccttt 480
gttccattga atgtcccaa taacaaaaat tctacagagt gggaaaaagt gaagtcccta 540
tttgaagaac ttggaagtag tcatggtta gctgcattgt cattttctat cagttctctg 600
accttgattg gaatgttggc agctataact tacacagcct atggcatgtc tgcgttacct 660

ttaaatctga taaaaggcac tagaagcgct gcttatgaac gtttggaaaa cactgaagac 720 attgaagaag tagaacaaca cattcaaacg attaaatcaa aaagcaaaga tggtcgacct 780 ttgccagcaa gggataaacg cgccttaaaa caatttgaag aaaggttacg aacacttaag 840 aagagagaga ggcatttaga attcattgaa aacagctggt ggacaaaatt ttgtggcgct 900 5 ctgcgtcccc tgaagatcgt ctggggaata tttttcatct tagttgcatt gctgtttqta 960 atttctctct tcttgtcaaa tttagataaa gctcttcatt cagctggaat agattctggt 1020 ttcataattt ttggagctaa cctgagtaat ccactgaata tgcttttgcc tttactacaa 1080 acagttttcc ctcttgatta tattcttata acaattatta ttatgtactt tatttttact 1140 tcaatggcag gaattcgaaa tattggcata tggttctttt ggattagatt atataaaatc 1200 10 agaagaggta gaaccaggcc ccaagcactc ctttttctct gcatgatact tctgcttatt 1260 gtccttcaca ctagctacat gatttatagt cttgctcccc aatatgttat gtatggaage 1320 caaaattact taatagagac taatataact tctgataatc ataaaggcaa ttcaaccctt 1380 tctgtgccaa agagatgtga tgcagatgct cctgaagatc agtgtactgt tacccggaca 1440 tacctattcc ttcacaagtt ctggttcttc agtgctgctt actattttgg taactgggcc 1500 15 tttcttgggg tatttttgat tggattaatt gtatcctgtt gtaaagggaa gaaatcggtt 1560 attgaaggag tagatgaaga ttcagacata agtgatgatg agccctctgt ctattctgct 1620 tga 1623

<210> 18

20 <211> 1329

25

<212> DNA

<213> Homo sapiens

<400> 18

atggcgctgc catcccgaat cctgctttgg aaacttgtgc ttctgcagag ctctgctgtt 60 ctcctgcact cagggtcctc ggtacccgcc gctgctggca gctccgtggt gtccgagtcc 120

33 /346

	gcggtgagct	gggaggcggg	cgcccgggcg	gtgctgcgct	gccagagccc	gcgcatggtg	180
	tggacccagg	accggctgca	cgaccgccag	cgcgtgctcc	actgggacct	gegeggeeee	240
	gggggtggcc	ccgcgcggcg	cctgctggaç	ttgtactcgg	cgggcgagca	gcgcgtgtac	300
	gaggcgcggg	accgcggccg	cctggagctc	tcggcctcgg	ccttcgacga	cggcaacttc	360
5	tcgctgctca	tccgcgcggt	ggaggagacg	gacgcggggc	tgtacacctg	caacctgcac	420
	catcactact	gccacctcta	cgagagcctg	gccgtccgcc	tggaggtcac	cgacggcccc	480
	ccggccaccc	ccgcctactg	ggacggcgag	aaggaggtgc	tggcggtggc	gcgcggcgca	540
	cccgcgcttc	tgacctgcgt	gaaccgcggg	cacgtgtgga	ccgaccggca	cgtggaggag	600
	gctcaacagg	tggtgcactg	ggaccggcag	ccgcccgggg	tcccgcacga	ccgcgcggac	660
.0	cgcctgctgg	acctctacgc	gtcgggcgag	cgccgcgcct	acgggcccct	ttttctgcgc	720
	gaccgcgtgg	ctgtgggcgc	ggatgccttt	gagcgcggtg	acttctcact	gcgtatcgag	780
	ccgctggagg	tcgccgacga	gggcacctac	tectgecace	tgcaccacca	ttactgtggc	840
	ctgcacgaac	gccgcgtctt	ccacctgacg	gtcgccgaac	cccacgcgga	gccgccccc	900
	cggggctctc	cgggcaacgg	ctccagccac	agcggcgccc	caggcccaga	cccacactg	960
.5	gcgcgcggcc	acaacgtcat	caatgtcatc	gtccccgaga	gccgagccca	cttcttccag	1020
	cagctgggct	acgtgctggc	cacgctgctg	ctcttcatcc	tgctactggt	cactgtcctc	1080
	ctggccgccc	gcaggcgccg	cggaggctac	gaatactcgg	accagaagtc	gggaaagtca	1140
	aaggggaagg	atgttaactt	ggcggagttc	gctgtggctg	caggggacca	gatgctttac	1200
	aggagtgagg	acatccagct	agattacaaa	aacaacatcc	tgaaggagag	ggcggagctg	1260
20	gcccacagcc	ccctgcctgc	caagtacatc	gacctagaca	aagggttccg	gaaggagaac	1320
	tgcaaatag						1329

<210> 19

<211> 789

25 <212> DNA

10

15

20

34 /346

<213> Homo sapiens

<400> 19

5

10

15

25

atgacgcceg aggacccaga ggaaacccag cegettetgg ggeeteetgg eggeagegeg 60 ceeegggee geeggtett eeteeggee teeggeege teeggeege atecetagee tgeagegege eggeeceeg 180 geeeeggee teggeagege egeegeetee tggttegggg etgtegtgae eetgggtgee 240 geggeggggg gagtgetggg eggetggetg gtggaeeggg eegggegaa getgageete 300 ttggetgget eegggeette egggeegge tttgeeggg eegggegaa getgageete 300 ttggetggte eegggeette egtggeegge tttgeeggea teaceeggge eeaggaegtg 360 tggatgetge tgggggggeeg eeteeteace ggeetggeet geggtgttge eteectagtg 420 geeeeggtet acateteega aategeetae eeggeetgeet gggggttget eggeteetgt 480 gtgeagetaa tggtegtegt eggeateete etggeetaee tggeaggetg ggtgetggag 540 tggeeggeet tggeetgge tggeetgget gggetgetge eeteetagtg 600 tteatgeeg agaceeegg etteetgetg acteageaea ggegeeagga ggetgeteet 660 ggtettgtea ggtgtggaa acteeteega eeggggeet teeggegeet actteaaget 720 gaeceagggt ggeeetggea acteetegaa acteetegaa eggggeeate teeggegeet teetegaaa 780 geetgttga

<210> 20

<211> 459

20 <212> DNA

<213> Homo sapiens

<400> 20

atgegeggae eegggeaeee eeteeteetg gggetgetge tggtgetggg ggeggegggg 60 eggggeeggg ggggeegga geeeegggag eeggeggaeg gacaggeget getgeggetg 120 gtggtggaae tegteeagga getgeggaag eaceaetegg eggageaeaa gggeetgeag 180

35 /346

ctcctcggc gggactgcgc cctgggccgc gcggaggcgg cggggctggg gccttcgccg 240
gagcagcgag tggaaattgt tcctcgagat ctgaggatga aggacaagtt tctaaaacac 300
cttacaggcc ctctttattt tagtccaaag tgcagcaaac acttccatag actttatcac 360
aacaccagag actgcaccat tcctgcatac tataaaagat gcgccaggct tcttacccgg 420
ctggctgtca gtccagtgtg catggaggat aagcagtga 459

<210> 21

5

<211> 2865

<212> DNA

10 <213> Homo sapiens

<220>

<221> CDS

<222> (338)..(2074)

<400> 21

agtctaaaat taaagtcttc agtctccaca ttccctactt tccaaattca gctttcccgg 60
gaggtctgga gcagctgcct ctctggggag atgctggagg tctcggaatc acctcacgcg 120
gcctcagggc ccagttggag ccaccccaag tgacaccagc aggcagatga ccagagagcc 180
tgagcctccg gccccgagtc tgtgaagcct agccgctggg ctggagaagc cactgtgggc 240
accaccgtgg gggaaacagg cccgttgccc tggcctcttt gccctgggcc agcctttgtg 300
20 aagtgggccc ctcttctggg ccccttgagt aggttcc atg gca ttt tct gaa ctc 355
Met Ala Phe Ser Glu Leu

5

ctg gac ctc gtg ggt ggc ctg ggc agg ttc cag gtt ctc cag acg atg 403 Leu Asp Leu Val Gly Gly Leu Gly Arg Phe Gln Val Leu Gln Thr Met

25 10 15 20

	gct	ctg	atg	gtc	tcc	atc	atg	tgg	ctg	tgt	acc	cag	agc	atg	ctg	gag	451
	Ala	Leu	Met	Val	Ser	Ile	Met	Trp	Leu	Cys	Thr	Gln	Ser	Met	Leu	Glu	
			25					30					35				
	aac	ttc	tcg	gcc	gcc	gtg	ccc	agc	cac	cgc	tgc	tgg	gca	ccc	ctc	ctg	499
5	Asn	Phe	Ser	Ala	Ala	Val	Pro	Ser	His	Arg	Cys	Trp	Ala	Pro	Leu	Leu	
		40					45					50					
	gac	aac	agc	acg	gct	cag	gcc	agc	atc	cta	ggg	agc	ttg	agt	cct	gag	547
	Asp	Asn	Ser	Thr	Ala	Gln	Ala	Ser	Ile	Leu	Gly	Ser	Leu	Ser	Pro	Glu	
	55					60					65					70	
10	gcc	ctc	ctg	gct	att	tcc	atc	ccg	ccg	ggc	ccc	aac	cag	agg	ccc	cac	595
	Ala	Leu	Leu	Ala	Ile	Ser	Ile	Pro	Pro	Gly	Pro	Asn	Gln	Arg	Pro	His	
					. 75					80					85		
	cag	tgc	cgc	cgc	ttc	cgc	cag	cca	cag	tgg	cag	ctc	ttg	gac	ccc	aat	643
	Gln	Cys	Arg	Arg	Phe	Arg	Gln	Pro	Gln	Trp	Gln	Leu	Leu	Asp	Pro	Asn	
15				90					95					100			
	gcc	acg	gcc	acc	agc	tgg	agc	gag	gcc	gac	acg	gag	ccg	tgt	gtg	gat	691
	Ala	Thr	Ala	Thr	Ser	Trp	Ser	Glu	Ala	Asp	Thr	Glu	Pro	Cys	Val	Asp	
			105					110					115				
	ggc	tgg	gtc	tat	gac	cgc	agc	atc	ttc	acc	tcc	aca	atc	gtg	gcc	aag	739
20	Gly	Trp	Val	Tyr	Asp	Arg	Ser	Ile	Phe	Thr	Ser	Thr	Ile	Val	Ala	Lys	
		120					125					130					
	tgg	aac	ctc	gtg	tgt	gac	tct	cat	gct	ctg	aag	ccc	atg	gcc	cag	tcc	787
	Trp	Asn	Leu	Val	Cys	Asp	Ser	His	Ala	Leu	Lys	Pro	Met	Ala	Gln	Ser	
	135					140					145					150	
25	atc	tac	ctg	gct	ggg	att	ctg	gtg	gga	gct	gct	gcg	tgc	ggc	cct	gcc	835

	Ile	Tyr	Leu	Ala	Gly	Ile	Leu	Val	Gly	Ala	Ala	Ala	Cys	Gly	Pro	Ala	
					155					160					165		
	tca	gac	agg	ttt	ggg	cgc	agg	ctg	gtg	cta	acc	tgg	agc	tac	ctt	cag	883
	Ser	Asp	Arg	Phe	Gly	Arg	Arg	Leu	Val	Leu	Thr	Trp	Ser	Tyr	Leu	Gln	
5		•		170					175			•		180			
	atg	gct	gtg	atg	ggt	acg	gca	gct	gcc	ttc	gcc	cct	gcc	ttc	ccc	gtg	931
	Met	Ala	Val	Met	Gly	Thr	Ala	Ala	Ala	Phe	Ala	Pro	Ala	Phe	Pro	Val	
			185					190					195				
	tac	tgc	ctg	ttc	cgc	ttc	ctg	ttg	gcc	ttt	gcc	gtg	gca	ggc	gtc	atg	979
10	Tyr	Cys	Leu	Phe	Arg	Phe	Leu	Leu	Ala	Phe	Ala	Val	Ala	Gly	Val	Met	
		200			•		205				•	210					
	atg	aac	acg	ggc	act	ctc	cgt	agg	tct	ctg	acc	tgg	cgc	cat	gca	ggg	1027
•	Met	Asn	Thr	Gly	Thr	Leu	Arg	Arg	Ser	Leu	Thr	Trp	Arg	His	Ala	Gly	
	215					220					225					230	
15	ggg	ctc	cat	gca	ggc	tcc	agg	gct	gaa	cca	ctc	ggt	ctc	ctt	gca	gtg	1075
	Gly	Leu	His	Ala	Gly	Ser	Arg	Ala	Glu	Pro	Leu	Gly	Leu	Leu	Ala	Val	
					235					240					245		
	atg	gag	tgg	acg	gcg	gca	cgg	gcc	cga	ccc	ttg	gtg	atg	acc	ttg	aac	1123
	Met	Glu	Trp	Thr	Ala	Ala	Arg	Ala	Arg	Pro	Leu	Val	Met	Thr	Leu	Asn	
20				250					255					260			
	tct	ctg	ggc	ttc	agc	ttc	ggc	cat	ggc	ctg	aca	gct	gca	gtg	gcc	tac	1171
	Ser	Leu	Gly	Phe	Ser	Phe	Gly	His	Gly	Leu	Thr	Ala	Ala	Val	Ala	Tyr	
			265					270					275				
	ggt	gtg	cgg	gac	tgg	aca	ctg	ctg	cag	ctg	gtg	gtc	tcg	gtc	ccc	ttc	1219
25	Gly	Val	Arg	Asp	Trp	Thr	Leu	Leu	Gln	Leu	Val	Val	Ser	Val	Pro	Phe	

		280					285					290					
	ttc	ctc	tgc	ttt	ttg	tac	tcc	tgg	tgg	ctg	gca	gag	tcg	gca	cga	tgg	1267
	Phe	Leu	Cys	Phe	Leu	Tyr	Ser	Trp	Trp	Leu	Ala	Glu	Ser	Ala	Arg	Trp	
	295					300					305					310	
5	ctc	ctc	acc	aca	ggc	agg	ctg	gat	tgg	ggc	ctg	cag	gag	ctg	tgg	agg	1315
	Leu	Leu	Thr	Thr	Gly	Arg	Leu	Asp	Trp	Gly	Leu	Gln	Glu	Leu	Trp	Arg	
					315					320					325		
	gtg	gct	gcc	atc	aac	gga	aag	ggg	gca	gtg	cag	gac	acc	ctg	acc	cct	1363
	Val	Ala	Ala	Ile	Asn	Gly	Lys	Gly	Ala	Val	Gln	Asp	Thr	Leu	Thr	Pro	
10				330					335					340			
	gag	gtc	ttg	ctt	tca	gcc	atg	cgg	gag	gag	ctg	agc	atg	ggc	cag	cct	1411
٠	Glu	Val	Leu	Leu	Ser	Ala	Met	Arg	Glu	Glu	Leu	Ser	Met	Gly	Gln	Pro	
			345					350					355				
	cct	gcc	agc	ctg	ggc	acc	ctg	ctc	cgc	atg	ccc	gga	ctg	cgc	ttc	cgg	1459
15	Pro	Ala	Ser	Leu	Gly	Thr	Leu	Leu	Arg	Met	Pro	Gly	Leu	Arg	Phe	Arg	
		360					365					370					
	acc	tgt	atc	tcc	acg	ttg	tgc	tgg	ttc	gcc	ttt	ggc	ttc	acc	ttc	ttc	1507
	Thr	Cys	Ile	Ser	Thr	Leu	Cys	Trp	Phe	Ala	Phe	Gly	Phe	Thr	Phe	Phe	
•	375					380					385					390	
20	ggc	ctg	gcc	ctg	gac	ctg	cag	gcc	ctg	ggc	agc	aac	atc	ttc	ctg	ctc	1555
	Gly	Leu	Ala	Leu	Asp	Leu	Gln	Ala	Leu	Gly	Ser	Asn	Ile	Phe	Leu	Leu	
					395					400					405		
				att													1603
	Gln	Met	Phe	Ile	Gly	Val	Val	Asp		Pro	Ala	Lys	Met	Gly	Ala	Leu	
25				410					415					420			

	ctg	ctg	ctg	agc	cac	ctg	ggc	cgc	cgc	CCC	acg	ctg	gcc	gca	tcc	ctg	1651
	Leu	Leu	Leu	Ser	His	Leu	Gly	Arg	Arg	Pro	Thr	Leu	Ala	Ala	Ser	Leu	
			425					430					435				
	ttg	ctg	gcg	ggg	ctc	tgc	att	ctg	gcc	aac	acg	ctg	gtg	ccc	cac	gaa	1699
5	Leu	Leu	Ala	Gly	Leu	Cys	Ile	Leu	Ala	Asn	Thr	Leu	Val	Pro	Hĭs	Glu	
		440					445					450					
	atg	ggg	gct	ctg	cgc	tca	gcc	ctg	gcc	gtg	ctg	ggg	ctg	ggc	ggg	gtg	1747
	Met	Gly	Ala	Leu	Arg	Ser	Ala	Leu	Ala	Val	Leu	Gly	Leu	Gly	Gly	Val	
	455					460			•		465					470	
10	ggg	gct	gcc	ttc	acc	tgc	atc	acc	atc	tac	agc	agc	gag	ctc	ttc	ccc	1795
	Gly	Ala	Ala	Phe	Thr	Cys	Ile	Thr	Ile	Tyr	Ser	Ser	Glu	Leu	Phe	Pro	
					475					480					485		
	act	gtg	ctc	agg	atg	acg	gca	gtg	ggc	ttg	ggc	cag	atg	gca	gcc	cgt	1843
	Thr	Val	Leu	Arg	Met	Thr	Ala	Val	Gly	Leu	Gly	Gln	Met	Ala	Ala	Arg	
15				490					495					500			
	gga	gga	gcc	atc	ctg	ggg	cct	ctg	gtc	cgg	ctg	ctg	ggt	gtc	cat	ggc	1891
	Gly	Gly	Ala	Ile	Leu	Gly	Pro	Leu	Val	Arg	Leu	Leu	Gly	Val	His	Gly	
			505					510					515				
	ccc	tgg	ctg	ccc	ttg	ctg	gtg	tat	ggg	acg	gtg	cca	gtg	ctg	agt	ggc	1939
20	Pro	Trp	Leu	Pro	Leu	Leu	Val	Tyr	Gly	Thr	Val	Pro	Val	Leu	Ser	Gly	
		520					525					530					
	ctg	gcc	gca	ctg	ctt	ctg	ccc	gag	acc	cag	agc	ttg	ccg	ctg	ccc	gac	1987
	Leu	Ala	Ala	Leu	Leu	Leu	Pro	Glu	Thr	Gln	Ser	Leu	Pro	Leu	Pro	Asp	
	535					540					545					550	
25	acc	atc	caa	gat	gtg	cag	aac	cag	gca	gta	aag	aag	gca	aca	cat	ggc	2035

40 /346

Thr Ile Gln Asp Val Gln Asn Gln Ala Val Lys Lys Ala Thr His Gly

555 560 565

acg ctg ggg aac tct gtc cta aaa tcc aca cag ttt tagcctcctg 2081

Thr Leu Gly Asn Ser Val Leu Lys Ser Thr Gln Phe

5 570 575

gggaacctgc gatggacgg teagaggaag agaettette tgttetetgg agaaggeagg 2141
aggaaagcaa agaeeteeat tteeagagge eeagaggetg eeetetgagg teeceaetet 2201
ceeceaggge tgeeceteea ggtgageeet geeeetetea eagteeaagg ggeeeeette 2261
aataetgaag gggaaaagga eagtttgatt ggeaggaggt gaeeeagtge aceateaeee 2321
tgeeetgeee tegtggette ggagageaga ggggteagge eeaggggaae gagetggeet 2381
tgeeaaceet etgettgaet eegeactgee acttgteeee eeaggggaae gagetggeet 2441
agageteaga getaaceaee ateeatggte aagaeetete etageteeae acaageagta 2501
gagteteage teeacagett taeeeagaag eeetgtaage etggeeeetg geeeeteeee 2561
atgteectee aggeeteage eacetgeeeg eeacateete tgeetgetg eeeetteee 2621
eeeteateee tgaeegaete eacttaaeee eeaaaceeag eeeeeettee aggggteeag 2681
ggeeageetg agatgeeegt gaaacteeta eeeacagtta eageeacaag eetgeeteet 2741
eeeaceetge eageetatga gtteeeagag ggttggggea gteeeatgae eeeatgteee 2801
aggeteecace aeageettg geeagaaggg eattggtgg agggattgaa taaagaaaca 2861

2865

20

10

15

<210> 22

aatg

<211> 3323

<212> DNA

<213> Homo sapiens

25 <220>

	<22	1> CI	DS														
	<22	2> (-	46).	. (77	7)												
	<40	0> 22	2														
	aac	tctg	gtc (ccgg	gcago	cc aa	agac	aaago	c gaa	aaggo	caag	gca	gc a	tg a	gc c	ga tca	57
5													M	et S	er A	rg Ser	
														1			
	ccc	ctc	aat	ccc	agc	caa	ctc	cga	tca	gtg	ggc	tcc	cag	gat	gcc	ctg	105
	Pro	Leu	Asn	Pro	Ser	Gln	Leu	Arg	Ser	Val	Gly	Ser	Gln	Asp	Ala	Leu	
	5					10					15					20	
10	gcc	ccc	ttg	cct	сса	cct	gct	ccc	cag	aat	ccc	tcc	acc	cac	tct	tgg	153
	Ala	Pro	Leu	Pro	Pro	Pro	Ala	Pro	Gln	Asn	Pro	Ser	Thr	His	Ser	Trp	
					25					30					35		
	gac	cct	ttg	tgt	gga	tct	ctg	cct	tgg	ggc	ctc	agc	tgt	ctt	ctg	gct	201
	Asp	Pro	Leu	Cys	Gly	Ser	Leu	Pro	Trp	Gly	Leu	Ser	Cys	Leu	Leu	Ala	
15			-	40					45					50			
	ctg	cag	cat	gtc	ttg	gtc	atg	gct	tct	ctg	ctc	tgt	gtc	tcc	cac	ctg	249
	Leu	Gln	His	Val	Leu	Val	Met	Ala	Ser	Leu	Leu	Cys	Val	Ser	His	Leu	
			55					60					65				
	ctc	ctg	ctt	tgc	agt	ctc	tcc	cca	gga	gga	ctc	tct	tac	tcc	cct	tct	297
20	Leu	Leu	Leu	Cys	Ser	Leu	Ser	Pro	Gly	Gly	Leu	Ser	Tyr	Ser	Pro	Ser	
		70					75					80					
	cag	ctc	ctg	gcc	tcc	agc	ttc	ttt	tca	tgt	ggt	atg	tct	acc	atc	ctg	345
	Gln	Leu	Leu	Ala	Ser	Ser	Phe	Phe	Ser	Cys	Gly	Met	Ser	Thr	Ile	Leu	
	85					90					95					100	
25	caa	act	tgg	atg	ggc	agc	agg	ctg	cct	ctt	gtc	cag	gct	cca	tcc	tta	393

	Gln	Thr	Trp	Met	Gly	Ser	Arg	Leu	Pro	Leu	Val	Gln	Ala	Pro	Ser	Leu	
					105					110					115		
	gag	ttc	ctt	atc	cct	gct	ctg	gtg	ctg	acc	agc	cag	aag	cta	ccc	cgg	441
	Glu	Phe	Leu	Ile	Pro	Ala	Leu	Val	Leu	Thr	Ser	Gln	Lys	Leu	Pro	Arg	
5				120					125					130			
	gcc	atc	cag	aca	cct	gga	aac	tcc	tcc	ctc	atg	ctg	cac	ctt	tgt	agg	489
	Ala	Ile	Gln	Thr	Pro	Gly	Asn	Ser	Ser	Leu	Met	Leu	His	Leu	Cys	Arg	
			135					140					145				
	gga	cct	agc	tgc	cat	ggc	ctg	ggg	cac	tgg	aac	act	tct	ctc	cag	gag	537
10	Gly	Pro	Ser	Cys	His	Gly	Leu	Gly	His	Trp	Asn	Thr	Ser	Leu	Gln	Glu	
		150					155					160					
	gtg	tcc	ggg	gca	gtg	gta	gta	tct	ggg	ctg	ctg	cag	ggc	atg	atg	ggg	585
	Val	Ser	Gly	Ala	Val	Val	Val	Ser	Gly	Leu	Leu	Gln	Gly	Met	Met	Gly	
	165					170					175					180	
15	ctg	ctg	ggg	agt	ccc	ggc	cac	gtg	ttc	ccc	cac	tgt	ggg	ccc	ctg	gtg	633
	Leu	Leu	Gly	Ser	Pro	Gly	His	Val	Phe	Pro	His	Cys	Gly	Pro	Leu	Val	
					185					190					195		
	ctg	gct	ccc	agc	ctg	gtt	gtg	gca	ggg	ctc	tct	gcc	cac	agg	gag	gta	681
	Leu	Ala	Pro	Ser	Leu	Val	Val	Ala	Gly	Leu	Ser	Ala	His	Arg	Glu	Val	
20				200					205					210			
	gcc	cag	ttc	tgc	ttc	aca	cac	tgg	ggg	ttg	gcc	ttg	ctg	tac	gtg	agt	729
	Ala	Gln	Phe	Cys	Phe	Thr	His	Trp	Gly	Leu	Ala	Leu	Leu	Tyr	Val	Ser	
			215					220					225				
	cct	gag	agg	cgt	ggg	atg	gtg	ccc	agt	aaa	ggt	gta	tgg	ggg	gac		774
25	Pro	Glu	Arg	Arg	Gly	Met	Val	Pro	Ser	Glv	Glv	Va]	Tro	Glv	Asp		

230 235 240

5

10

15

20

25

taggggaggg cagaactgct ggtcctatca gattcagcag cgactggaat agggacatat 834 tttatatttg gaatccaaga cttttccttg attcatctgg tctccttgaa tttcacactg 894 ttttctgctg tcccccaagg tcacttccta ttccttccat gggagtttcc ttctctggta 954 tcaccccccg ctcttatgat attctgccca ctcccacctc ctttcccatc cctcaggata 1014 cccactgcct cttgctccta aagccttctg tctcctaggg ttatcctgct catggtggtc 1074 tgttctcagc acctgggctc ctgccagttt catgtgtgcc cctggaggcg agcttcaacg 1134 tcatcaactc acactcctct ccctgtcttc cggctccttt cggtgctgat cccagtggcc 1194 tgtgtgtgga ttgtttctgc ctttgtggga ttcagtgtta tcccccagga actgtctgcc 1254 cccaccaagg caccatggat ttggctgcct cacccaggtg agtggaattg gcctttgctg 1314 acgcccagag ctctggctgc aggcatctcc atggccttgg cagcctccac cagttccctg 1374 ggctgctatg ccctgtgtgg ccggctgctg catttgcctc ccccacctcc acatgcctgc 1434 agtcgagggc tgagcctgga ggggctgggc agtgtgctgg ccgggctgct gggaagcccc 1494 atgggcactg catccagctt ccccaacgtg ggcaaagtgg gtcttatcca ggctggatct 1554 cagcaagtgg ctcacttagt ggggctactc tgcgtggggc ttggactctc ccccaggttg 1614 gctcagctcc tcaccaccat cccactgcct gttgttggtg gggtgctggg ggtgacccag 1674 gctgtggttt tgtctgctgg attctccagc ttctacctgg ctgacataga ctctgggcga 1734 aatatettea ttgtgggett etecatette atggeettge tgetgeeaag atggtttegg 1794 gaagccccag teetgttcag cacaggetgg agccccttgg atgtattact geactcactg 1854 ctgacacage ceatetteet ggetggacte teaggettee tactagagaa eacgatteet 1914 ggcacacage ttgagegagg cetaggtcaa gggctaccat eteettteae tgcccaagag 1974 gctcgaatgc ctcagaagcc cagggagaag gctgctcaag tatggaagaa ctggagcaag 2034 gcctgttgat gcagccatgg gcgtggctac agcttgcaga gaactccctc ttggccaagg 2094 tttttatcac caagcagggc tatgccttgt tggtttcaga tcttcaacag gtgtggcatg 2154 aacaggtgga cactagtgtg gtcagccagc gagccaagga gctgaacaag cggctcactg 2214

44 /346

ctcctcctgc	agctttcctc	tgtcatttgg	ataatctcct	tcgcccattg	ttgaaggacg	2274
ctgctcaccc	tagcgaagct	accttctcct	gtgattgtgt	ggcagatgca	ctgattctac	2334
gggtgcgaag	tgagctctct	ggcctcccct	tctattggaa	tttccactgc	atgctagcta	2394
gtccttccct	ggtctcccaa	catttgattc	gtcctctgat	gggcatgagt	ctggcattac	2454
agtgccaagt	gagggagcta	gcaacgttac	ttcatatgaa	agacctagag	atccaagact	2514
accaggagag	tggggctacg	ctgattcgag	atcgattgaa	gacagaacca	tttgaagaaa	2574
attecttett	ggaacaattt	atgatagaga	aactgccaga	ggcatgcagc	attggtgatg	2634
gaaagccctt	tgtcatgaat	ctgcaggatc	tgtatatggc	agtcaccaca	caagaggtcc	2694
aagtgggaca	gaagcatcaa	ggcgctggag	atcctcatac	ctcaaacagt	gcttccctgc	2754
aaggaatcga	tagccaatgt	gtaaaccagc	cagaacaact	ggtctcctca	gccccaaccc	2814
tctcagcacc	tgagaaagag	tecaegggta	cttcaggccc	tctgcagaga	cctcagctgt	2874
caaaggtcaa	gaggaagaag	ccaaggggtc	tcttcagtta	atctgttgtg	gcctcagctg	2934
ctgaggatgg	acttggagaa	tagcttccaa	gcttcacctt	gaaagaagct	tacatggcag	2994
caatatttct	aaaatagtga	tacagtcaga	ggcctcctgt	aagggcgaga	gaactgaagt	3054
tgatgttgac	aggcccacag	ggaattggcc	ttccctgttc	aagtggaagc	cagtctctga	3114
gaatcccgtg	ctctcctctc	ttttggtgga	ggttctgtag	gttcaggttt	ctaccatgga	3174
ctttaggtat	atagggcaag	tcagcaagaa	agcaccacac	actcaggaag	ccttgtctac	3234
ctttccctag	cgtctctagc	cagccagccc	cagatactcc	tcagagaccc	acttctctct	3294
tttgcatgga	ataaaaagca	ctcacagtc				3323

20

15

5

10

<210> 23

<211> 1585

<212> DNA

<213> Homo sapiens

25 <220>

45 /346

	<221> CDS					
•	<222> (73)(1458)				
	<400> 23					
	aaaaaaaaa aa	aaaaaaaa aa	aaaaaagt t	gtgtctgcc actcg	getge eggaggeega	60
5	aggtccctga ct	atg gct co	c cag agc	ctg cct tca tct	agg atg gct cct	111
		Met Ala Pr	o Gln Ser	Leu Pro Ser Ser	Arg Met Ala Pro	•
		1	5		10	
	ctg ggc atg	ctg ctt ggg	ctg ctg a	tg gcc gcc tgc t	tc acc ttc tgc	159
	Leu Gly Met 1	Leu Leu Gly	Leu Leu M	et Ala Ala Cys P	he Thr Phe Cys	
10	15		20	25		
	ctc agt cat	cag aac ctg	aag gag t	tt gcc ctg acc a	ac cca gag aag	207
	Leu Ser His	Gln Asn Leu	Lys Glu P	he Ala Leu Thr A	sn Pro Glu Lys	
	30	35		40	45	
	agc agc acc	aaa gaa aca	gag aga a	aa gaa acc aaa g	JCC gag gag gag	255
15	Ser Ser Thr	Lys Glu Thr	Glu Arg I	ys Glu Thr Lys A	Ala Glu Glu Glu	
		50		55	60	
	ctg gat gcc	gaa gtc ctg	gag gtg t	tc cac ccg acg	cat gag tgg cag	303
	Leu Asp Ala	Glu Val Leu	Glu Val H	Phe His Pro Thr	His Glu Trp Gln	
		65		70	75	
20	gcc ctt cag	cca ggg cag	gct gtc	ect gca gga tec	cac gta cgg ctg	351
	Ala Leu Gln	Pro Gly Gln	Ala Val	Pro Ala Gly Ser	His Val Arg Leu	
	80		85		90	
	aat ctt cag	act ggg gaa	aga gag	gca aaa ctc caa	tat gag gac aag	399
	Asn Leu Gln	Thr Gly Glu	Arg Glu	Ala Lys Leu Gln	Tyr Glu Asp Lys	

	ttc	cga	aat	aat	ttg	aaa	ggc	aaa	agg	ctg	gat	atc	aac	acc	aac	acc	447
	Phe	Arg	Asn	Asn	Leu	Lys	Gly	Lys	Arg	Leu	Asp	Ile	Asn	Thr	Asn	Thr	
	110					115					120					125	
	tac	aca	tct	cag	gat	ctc	aag	agt	gca	ctg	gca	aaa	ttc	aag	gag	ggg	495
5	Tyr	Thr	Ser	Gln	Asp	Leu	Lys	Ser	Ala	Leu	Ala	Lys	Phe	Lys	Glu	Gly	
					130					135					140		
	gca	gag	atg	gag	agt	tca	aag	gaa	gac	aag	gca	agg	cag	gct	gag	gta	543
	Ala	Glu	Met	Glu	Ser	Ser	Lys	Glu	Asp	Lys	Ala	Arg	Gln	Ala	Glu	Val	
				145					150					155			
10	aag	cgg	ctc	ttc	cgc	ccc	att	gag	gaa	ctg	aag	aaa	gac	ttt	gat	gag	591
	Lys	Arg	Leu	Phe	Arg	Pro	Ile	Glu	Glu	Leu	Lys	Lys	Asp	Phe	Asp	Glu	
			160					165					170				
	ctg	aat	gtt	gtc	att	gag	act	gac	atg	cag	atc	atg	gta	cgg	ctg	atc	639
	Leu	Asn	Val	Val	Ile	Glu	Thr	Asp	Met	Gln	Ile	Met	Val	Arg	Leu	Ile	
15		175					180					185					
	aac	aag	ttc	aat	agt	tcc	agc	tcc	agt	ttg	gaa	gag	aag	att	gct	gcg	687
	Asn	Lys	Phe	Asn	Ser	Ser	Ser	Ser	Ser	Leu	Glu	Glu	Lys	Ile	Ala	Ala	
	190					195					200					205	
	ctc	ttt	gat	ctt	gaa	tat	tat	gtc	cat	cag	atg	gac	aat	gcg	cag	gac	735
20	Leu	Phe	Asp	Leu	Glu	Tyr	Tyr	Val	His	Gln	Met	Asp	Asn	Ala	Gln	Asp	
					210					215					220		
	ctg	ctt	tcc	ttt	ggt	ggt	ctt	caa	gtg	gtg	atc	aat	ggg	ctg	aac	agc	783
	Leu	Leu	Ser	Phe	Gly	Gly	Leu	Gln	Val	Val	Ile	Asn	Gly	Leu	Asn	Ser	
				225					230					235			
25	aca	gag	ccc	ctc	gtg	aag	gag	tat	gct	gcg	ttt	gtg	ctg	ggc	gct	gcc	831

	Thr	Glu	Pro	Leu	Val	Lys	Glu	Tyr	Ala	Ala	Phe	Val	Leu	Gly	Ala	Ala	
			240					245					250				
	ttt	tcc	agc	aac	ccc	aag	gtc	cag	gtg	gag	gcc	atc	gaa	ggg	gga	gcc	879
	Phe	Ser	Ser	Asn	Pro	Lys	Val	Gln	Val	Glu	Ala	Ile	Glu	Gly	Gly	Ala	
5		255					260				•	265					
	ctg	cag	aag	ctg	ctg	gtc	atc	ctg	gcc	acg	gag	cag	ccg	ctc	act	gca	927
	Leu	Gln	Lys	Leu	Leu	Val	Ile	Leu	Ala	Thr	Glu	Gln	Pro	Leu	Thr	Ala	
	270					275					280					285	
	aag	aag	aag	gtc	ctg	ttt	gca	ctg	tgc	tcc	ctg	ctg	cgc	cac	ttc	ccc	975
10	Lys	Lys	Lys	Val	Leu	Phe	Ala	Leu	Суз	Ser	Leu	Leu	Arg	His	Phe	Pro	
					290					295					300		
	tat	gcc	cag	cgg	cag	ttc	ctg	aag	ctc	ggg	ggg	ctg	cag	gtc	ctg	agg	1023
	Tyr	Ala	Gln	Arg	Gln	Phe	Leu	Lys	Leu	Gly	Gly	Leu	Gln	Val	Leu	Arg	
				305					310					315			
15	acc	ctg	gtg	cag	gag	aag	ggc	acg	gag	gtg	ctc	gcc	gtg	cgc	gtg	gtc	1071
	Thr	Leu	Val	Gln	Glu	Lys	Gly	Thr	Glu	Val	Leu	Ala	Val	Arg	Val	Val	
			320					325					330				
	aca	ctg	ctc	tac	gac	ctg	gtc	acg	gag	aag	atg	ttc	gcc	gag	gag	gag	1119
	Thr	Leu	Leu	Tyr	Asp	Leu	Val	Thr	Glu	Lys	Met	Phe	Ala	Glu	Glu	Glu	
20		335					340					345					
	gct	gag	ctg	acc	cag	gag	atg	tcc	cca	gag	aag	ctg	cag	cag	tat	cgc	1167
•	Ala	Glu	Leu	Thr	Gln	Glu	Met	Ser	Pro	Glu	Lys	Leu	Gln	Gln	Tyr	Arg	
	350					355					360					365	
	cag	gta	cac	ctc	ctg	cca	ggc	ctg	tgg	gaa	cag	ggc	tgg	tgc	gag	atc	1215
25	Gln	Val	His	Leu	Leu	Pro	Gly	Leu	Trp	Glu	Gln	Gly	Trp	Cys	Glu	Ile	

					370					375					380		
	acg	gcc	cac	ctc	ctg	gcg	ctg	ccc	gag	cat	gat	gcc	cgt	gag	aag	gtg	1263
	Thr	Ala	His	Leu	Leu	Ala	Leu	Pro	Glu	His	Asp	Ala	Arg	Glu	Lys	Val	
				385					390					395			
5	ctg	cag	aca	ctg	ggc	gtc	ctc	ctg	acc	acc	tgc	cgg	gac	cgc	tac	cgt	1311
	Leu	Gln	Thr	Leu	Gly	Val	Leu	Leu	Thr	Thr	Cys	Arg	Asp	Arg	Tyr	Arg	
			400					405					410				
	cag	gac	ccc	cag	ctc	ggc	agg	aca	ctg	gcc	agc	ctg	cag	gct	gag	tac	1359
	Gln	Asp	Pro	Gln	Leu	Gly	Arg	Thr	Leu	Ala	Ser	Leu	Gln	Ala	Glu	Tyr	
10		415					420					425					
	cag	gtg	ctg	gcc	agc	ctg	gag	ctg	cag	gat	ggt	gag	gac	gag	ggc	tac	1407
	Gln	Val	Leu	Ala	Ser	Leu	Glu	Leu	Gln	Asp	Gly	Glu	Asp	Glu	Gly	Tyr	
	430					435					440					445	
	ttc	cag	gag	ctg	ctg	ggc	tct	gtc	aac	agc	ttg	ctg	aag	gag	ctg	aga	1455
L5	Phe	Gln	Glu	Leu	Leu	Gly	Ser	Val	Asn	Ser	Leu	Leu	Lys	Glu	Leu	Arg	
					450					455					460		
	tgaç	gcco	cca c	cacca	aggad	et g	gacto	gggat	gco	egcta	agtg	aggo	ctgag	ggg (gtgco	cagcgt	1515
	gggt	gggd	ett o	ctcag	gcag	gg ag	gaca	atctt	ggo	cagto	gctg	gctt	ggcc	cat 1	caaat	ggaaa	1575
	ccto	gaagg	jcc														1585
20																	
	<210)> 24	l														
	<211	> 21	.22														
	<212	?> D1	IA														
	<213	3> Hc	omo s	sapie	ens												
25	<220	15															

	\ 22	1> 0	טט														
	<22	2> (56).	. (19	99)												
	<40	0> 2	4														
	aga	agca	ctg (ggcc	ttgg	cc a	cago	aaca	c cc	actg	agca	cgc	tggg	agc	tgag	t atg	58
5																Met	
																1	
	gcg	tcc	ctg	gtc	tcg	ctg	gag	ctg	ggg	ctg	ctt	ctg	gct	gtg	ctg		106
	Ala	Ser	Leu	Val	Ser	Leu	Glu	Leu	Gly	Leu	Leu	Leu	Ala	Val	Leu	Val	
				5					10					15			
10	gtg	acg	gcg	acg	gcg	tcc	ccg	cct	gct	ggt	ctg	ctg	agc	ctg	ctc	acc	154
	Val	Thr	Ala	Thr	Ala	Ser	Pro	Pro	Ala	Gly	Leu	Leu	Ser	Leu	Leu	Thr	
			20					25					30				
	tct	ggc	cag	ggc	gct	ctg	gat	caa	gag	gct	ctg	ggc	ggc	ctg	tta	aat	202
	Ser	Gly	Gln	Gly	Ala	Leu	Asp	Gln	Glu	Ala	Leu	Gly	Gly	Leu	Leu	Asn	
15		35					40			•		45					
	acg	ctg	gcg	gac	cgt	gtg	cac	tgc	acc	aac	ggg	ccg	tgt	gga	aag	tgc	250
	Thr	Leu	Ala	Asp	Arg	Val	His	Cys	Thr	Asn	Gly	Pro	Cys	Gly	Lys	Cys	
	50					55					60					65	
	ctg	tct	gtg	gag	gac	gcc	ctg	ggc	ctg	ggc	gag	cct	gag	ggg	tca	ggg	298
20	Leu	Ser	Val	Glu	Asp	Ala	Leu	Gly	Leu	Gly	Glu	Pro	Glu	Gly	Ser	Gly	
					70					75					80		
	ctg	ccc	ccg	ggc	ccg	gtc	ctg	gag	gcc	agg	tac	gtc	gcc	cgc	ctc	agt	346
	Leu	Pro	Pro	Gly	Pro	Val	Leu	Glu	Ala	Arg	Tyr	Val	Ala	Arg	Leu	Ser	
				85					90					95			
25	gcc	gcc	gcc	gtc	ctg	tac	ctc	agc	aac	ccc	gag	ggc	acc	tgt	gag	gac	394

	Ala	Ala	Ala	Val	Leu	Tyr	Leu	Ser	Asn	Pro	Glu	Gly	Thr	Суѕ	Glu	Asp	
			100					105					110				
	act	cgg	gct	ggc	ctc	tgg	gcc	tct	cat	gca	gac	cac	ctc	ctg	gcc	ctg	442
	Thr	Arg	Ala	Gly	Leu	Trp	Ala	Ser	His	Ala	Asp	His	Leu	Leu	Ala	Leu	
5		115					120					125					
	ctc	gag	agc	ccc	aag	gcc	ctg	acc	ccg	ggc	ctg	agc	tgg	ctg	ctg	cag	490
	Leu	Glu	Ser	Pro	Lys	Ala	Leu	Thr	Pro	Gly	Leu	Ser	Trp	Leu	Leu	Gln	
	130					135					140					145	
	agg	atg	cag	gcc	cgg	gct	gcc	ggc	cag	acc	ccc	aag	acg	gcc	tgc	gta	538
10	Arg	Met	Gln	Ala	Arg	Ala	Ala	Gly	Gln	Thr	Pro	Lys	Thr	Ala	Cys	Val	
					150					155					160		
	gat	atc	cct	cag	ctg	ctg	gag	gag	gcg	gtg	ggg	gcg	ggg	gct	ccg	ggc	586
	Asp	Ile	Pro	Gln	Leu	Leu	Glu	Glu	Ala	Val	Gly	Ala	Gly	Ala	Pro	Gly	
				165					170		•			175			
15	agt	gct	ggc	ggc	gtc	ctg	gct	gcc	ctg	ctg	gac	cat	gtc	agg	agc	ggg	634
	Ser	Ala	Gly	Gly	Val	Leu	Ala	Ala	Leu	Leu	Asp	His	Val	Arg	Ser	Gly	
			180					185					190				
	tct	tgc	ttc	cac	gcc	ttg	ccg	agc	cct	cag	tac	ttc	gtg	gac	ttt	gtg	682
	Ser	Cys	Phe	His	Ala	Leu	Pro	Ser	Pro	Gln	Tyr	Phe	Val	Asp	Phe	Val	
20		195					200					205					
	ttc	cag	cag	cac	agc	agc	gag	gtc	cct	atg	acg	ctg	gcc	gag	ctg	tca	730
	Phe	Gln	Gln	His	Ser	Ser	Glu	Val	Pro	Met	Thr	Leu	Ala	Glu	Leu	Ser	
	210					215					220					225	
	gcc	ttg	atg	cag	cgc	ctg	ggg	gtg	ggc	agg	gag	gcc	cac	agt	gac	cac	778
25	Ala	Leu	Met	Gln	Arg	Leu	Gly	Val	Gly	Arg	Glu	Ala	His	Ser	Asp	His	

					230					235					240		
	agt	cat	cgg	cac	agg	gga	gcc	agc	agc	cgg	gac	cct	gtg	ccc	ctc	atc	826
	Ser	His	Arg	His	Arg	Gly	Ala	Ser	Ser	Arg	Asp	Pro	Val	Pro	Leu	Ile	
				245					250					255			
5	agc	tcc	agc	aac	agc	tcc	agt	gtg	tgg	gac	acg	gta	tgc	ctg	agt	gcc	874
	Ser	Ser	Ser	Asn	Ser	Ser	Ser	Val	Trp	Asp	Thr	Val	Cys	Leu	Ser	Ala	
			260					265					270				
	agg	gac	gtg	atg	gct	gca	tat	gga	ctg	tcg	gaa	cag	gct	ggg	gtg	acc	922
	Arg	Asp	Val	Met	Ala	Ala	Tyr	Gly	Leu	Ser	Glu	Gln	Ala	Gly	Val	Thr	
10		275					280					285					
	ccg	gag	gcc	tgg	gcc	caa	ctg	agc	cct	gcc	ctg	ctc	caa	cag	cag	ctg	970
	Pro	Glu	Ala	Trp	Ala	Gln	Leu	Ser	Pro	Ala	Leu	Leu	Gln	Gln	Gln	Leu	
	290					295					300					305	
	agt	gga	gcc	tgc	acc	tcc	cag	tcč	agg	ccc	ccc	gtc	cag	gac	cag	ctc ·	1018
15	Ser	Gly	Ala	Cys	Thr	Ser	Gln	Ser	Arg	Pro	Pro	Val	Gln	Asp	Gln	Leu	
					310					315					320		
	agc	cag	tca	gag	agg	tat	ctg	tac	ggc	tcc	ctg	gcc	acg	ctg	ctc	atc	1066
	Ser	Gln	Ser	Glu	Arg	Tyr	Leu	Tyr	Gly	Ser	Leu	Ala	Thr	Leu	Leu	Ile	
				325					330					335			
20	tgc	ctc	tgc	gcg	gtc	ttt	ggc	ctc	ctg	ctg	ctg	acc	tgc	act	ggc	tgc	1114
	Cys	Leu	Cys	Ala	Val	Phe	Gly	Leu	Leu	Leu	Leu	Thr	Cys	Thr	Gly	Cys	
			340					345					350				
	agg	ggg	gtc	gcc	cac	tac	atc	ctg	cag	acc	ttc	ctg	agc	ctg	gca	gtg	1162
	Arg	Gly	Val	Ala	His	Tyr	Ile	Leu	Gln	Thr	Phe	Leu	Ser	Leu	Ala	Val	
25		355					360					365					

	ggt	gca	ctc	act	ggg	gac	gct	gtc	ctg	cat	ctg	acg	ccc	aag	gtg	ctg	1210
	Gly	Ala	Leu	Thr	Gly	Asp	Ala	Val	Leu	His	Leu	Thr	Pro	Lys	Val	Leu	
	370					375					380					385	
	ggg	ctg	cat	aca	cac	agc	gaa	gag	ggc	ctc	agc	cca	cag	ccc	acc	tgg	1258
5	Gly	Leu	His	Thr	His	Ser	Glu	Glu	Gly	Leu	Ser	Pro	Gln	Pro	Thr	Trp	
					390					395					400		
	cgc	ctc	ctg	gct	atg	ctg	gcc	ggg	ctc	tac	gcc	ttc	ttc	ctg	ttt	gag	1306
	Arg	Leu	Leu	Ala	Met	Leu	Ala	Gly	Leu	Tyr	Ala	Phe	Phe	Leu	Phe	Glu	
				405					410					415			
10	aac	ctc	ttc	aat	ctc	ctg	ctg	ccc	agg	gac	ccg	gag	gac	ctg	gag	gac	1354
	Asn	Leu	Phe	Asn	Leu	Leu	Leu	Pro	Arg	Asp	Pro	Glu	Asp	Leu	Glu	Asp	
			420					425					430				
	ggg	ccc	tgc	ggc	cac	agc	agc	cat	agc	cac	ggg	ggc	cac	agc	cac	ggt	1402
	Gly	Pro	Cys	Gly	His	Ser	Ser	His	Ser	His	Gly	Gly	His	Ser	His	Gly	
15		435					440					445					
	gtg	tcc	ctg	cag	ctg	gca	ccc	agc	gag	ctc	cgg	cag	ccc	aag	ccc	ccc	1450
	Val	Ser	Leu	Gln	Leu	Ala	Pro	Ser	Glu	Leu	Arg	Gln	Pro	Lys	Pro	Pro	
	450					455					460					465	
	cac	gag	ggc	tcc	cgc	gca	gac	ctg	gtg	gcg	gag	gag	agc	ccg	gag	ctg	1498
20	His	Glu	Gly	Ser	Arg	Ala	Asp	Leu	Val	Ala	Glu	Glu	Ser	Pro	Glu	Leu	
					470					475					480		
	ctg	aac	cct	gag	ccc	agg	aga	ctg	agc	cca	gag	ttg	agg	cta	ctg	ccc	1546
	Leu	Asn	Pro	Glu	Pro	Arg	Arg	Leu	Ser	Pro	Glu	Leu	Arg	Leu	Leu	Pro	
				485					490					495			
25	tat	atg	atc	act	ctg	ggc	gac	gcc	gtg	cac	aac	ttc	gcc	gac	ggg	ctg	1594

0

	Tyr	Met	Ile	Thr	Leu	Gly	Asp	Ala	Val	His	Asn	Phe	Ala	Asp	Gly	Leu	
			500					505					510				
	gcc	gtg	ggc	gcc	gcc	ttc	gcg	tcc	tcc	tgg	aag	acc	ggg	ctg	gcc	acc	1642
	Ala	Val	Gly	Ala	Ala	Phe	Ala	Ser	Ser	Trp	Lys	Thr	Gly	Leu	Ala	Thr	
5		515					520					525					٠
	tcg	ctg	gcc	gtg	ttc	tgc	cac	gag	ttg	cca	cac	gag	ctg	ggg	gac	ttc	1690
	Ser	Leu	Ala	Val	Phe	Cys	His	Glu	Leu	Pro	His	Glu	Leu	Gly	Asp	Phe	
	530					535					540					545	
	gcc	gcc	ttg	ctg	cac	gcg	ggg	ctg	tcc	gtg	cgc	caa	gca	ctg	ctg	ctg	1738
10	Ala	Ala	Leu	Leu	His	Ala	Gly	Leu	Ser	Val	Arg	Gln	Ala	Leu	Leu	Leu	
					550					555					560		
	aac	ctg	gcc	tcc	gcg	ctc	acg	gcc	ttc	gct	ggt	ctc	tac	gtg	gca	ctc	1786
	Asn	Leu	Ala	Ser	Ala	Leu	Thr	Ala	Phe	Ala	Gly	Leu	Tyr	Val	Ala	Leu	
				565			•		570					575			
15	gcg	gtt	gga	gtc	agc	gag	gag	agc	gag	gcc	tgg	atc	ctg	gca	gtg	gcc	1834
	Ala	Val	Gly	Val	Ser	Glu	Glu	Ser	Glu	Ala	Trp	Ile	Leu	Ala	Val	Ala	
			580					585					590				
	acc	ggc	ctg	ttc	ctc	tac	gta	gca	ctc	tgc	gac	atg	ctc	ccg	gcg	atg	1882
	Thr	Gly	Leu	Phe	Leu	Tyr	Val	Ala	Leu	Cys	Asp	Met	Leu	Pro	Ala	Met	
20		595					600					605					
	ttg	aaa	gta	cgg	gac	ccg	cgg	ccc	tgg	ctc	ctc	ttc	ctg	ctg	cac	aac	1930
	Leu	Lys	Val	Arg	Asp	Pro	Arg	Pro	Trp	Leu	Leu	Phe	Leu	Leu	His	Asn	
	610					615					620					625	
	gtg	ggc	ctg	ctg	ggc	ggc	tgg	acc	gtc	ctg	ctg	ctg	ctg	tcc	ctg	tac	1978
25	Val	Gly	Leu	Leu	Gly	Gly	Trp	Thr	Val	Leu	Leu	Leu	Leu	Ser	Leu	Tvr	

54 /346

630 635 640 gag gat gac atc acc ttc tgataccctg ccctagtccc ccacctttga 2026 Glu Asp Asp Ile Thr Phe 645 5 cttaagatcc cacacctcac aaacctacag cccagaaacc agaagcccct atagaggecc 2086 cagteccaac tecagtaaag acactettgt cettgg 2122 <210> 25 <211> 1775 10 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (62)..(1402) 15 <400> 25 aaaacaagcc gggtggctga gccaggctgt gcacggagtg cctgacgggc ccaacagacc 60 c atg ctg cat cca gag acc tcc cct ggc cgg ggg cat ctc ctg gct gtg 109 Met Leu His Pro Glu Thr Ser Pro Gly Arg Gly His Leu Leu Ala Val 1 5 10 15

ctg cag gag cag gct ccg atg gcc gga gcc ctg aac agg aag gag agt 205
Leu Gln Glu Gln Ala Pro Met Ala Gly Ala Leu Asn Arg Lys Glu Ser

ctc ctg gcc ctc ctt ggc acc gcc tgg gca gag gtg tgg cca ccc cag

Leu Leu Ala Leu Leu Gly Thr Ala Trp Ala Glu Val Trp Pro Pro Gln

157

25 35 40 45

20

	ttc	ttg	ctc	ctc	tcc	ctg	cac	aac	cgc	ctg	cgc	agc	tgg	gtc	cag	ccc	253
	Phe	Leu	Leu	Leu	Ser	Leu	His	Asn	Arg	Leu	Arg	Ser	Trp	Val	Gln	Pro	
		50					55					60					
	cct	gcg	gct	gac	atg	cgg	agg	ctg	gac	tgg	agt	gac	agc	ctg	gcc	caa	301
5	Pro	Ala	Ala	Asp	Met	Arg	Arg	Leu	Asp	Trp	Ser	Asp	Ser	Leu	Ala	Gln	
	65					70					75					80	
	ctg	gct	caa	gcc	agg	gca	gcc	ctc	tgt	gga	atc	cca	acc	ccg	agc	ctg	349
	Leu	Ala	Gln	Ala	Arg	Ala	Ala	Leu	Cys	Gly	Ile	Pro	Thr	Pro	Ser	Leu	
					85					90					95	•	
10	gcg	tcc	ggc	ctg	tgg	cgc	acc	ctg	caa	gtg	ggc	tgg	aac	atg	cag	ctg	397
	Ala	Ser	Gly	Leu	Trp	Arg	Thr	Leu	Gln	Val	Gly	Trp	Asn	Met	Gln	Leu	
				100					105					110			
	ctg	ccc	gcg	ggc	ttg	gcg	tcc	ttt	gtt	gaa	gtg	gtc	agc	cta	tgg	ttt	445
	Leu	Pro	Ala	Gly	Leu	Ala	Ser	Phe	Val	Glu	Val	Val	Ser	Leu	Trp	Phe	
15			115					120					125				
	gca	gag	ggg	cag	cgg	tac	agc	cac	gcg	gca	gga	gag	tgt	gct	cgc	aac	493
	Ala	Glu	Gly	Gln	Arg	Tyr	Ser	His	Ala	Ala	Gly	Glu	Cys	Ala	Arg	Asn	
		130					135					140					
	gcc	acc	tgc	acc	cac	tac	acg	cag	ctc	gtg	tgg	gcc	acc	tca	agc	cag	541
20	Ala	Thr	Cys	Thr	His	Tyr	Thr	Gln	Leu	Val	Trp	Ala	Thr	Ser	Ser	Gln	
•	145					150					155					160	
	ctg	ggc	tgt	ggg	cgg	cac	ctg	tgc	tct	gca	ggc	cag	gca	gcg	ata	gaa	589
	Leu	Gly	Cys	Gly	Arg	His	Leu	Cys	Ser	Ala	Gly	Gln	Ala	Ala	Ile	Glu	
					165					170					175		
25	gcc	ttt	qtc	tat	acc	tac	tcc	ccc	ασa	aac	aac	t.aa	πασ	atc	aac	aaa	637

	Ala	Phe	Val	Cys	Ala	Tyr	Ser	Pro	Gly	Gly	Asn	Trp	Glu	Val	Asn	Gly	
				180					185					190			
	aag	aca	atc	atc	ccc	tat	aag	aag	ggt	gcc	tgg	tgt	tcg	ctc	tgc	aca ,	685
	Lys	Thr	Ile	Ile	Pro	Tyr	Lys	Lys	Gly	Ala	Trp	Cys	Ser	Leu	Cys	Thr	
5			195					200					205				
	gcc	agt	gtc	tca	ggc	tgc	ttc	aaa	gcc	tgg	gac	cat	gca	ggg	ggg	ctc	733
	Ala	Ser	Val	Ser	Gly	Cys	Phe	Lys	Ala	Trp	Asp	His	Ala	Gly	Gly	Leu	
		210					215					220					
	tgt	gag	gtc	ccc	agg	aat	cct	tgt	cgc	atg	agc	tgc	cag	aac	cat	gga	781
10	Cys	Glu	Val	Pro	Arg	Asn	Pro	Cys	Arg	Met	Ser	Cys	Gln	Asn	His	Gly	
	225					230					235					240	
	cgt	ctc	aac	atc	agc	acc	tgc	cac	tgc	cac	tgt	ccc	cct	ggc	tac	acg	829
	Arg	Leu	Asn	Ile	Ser	Thr	Cys	His	Cys	His	Cys	Pro	Pro	Gly	Tyr	Thr	
					245					250					255		
15	ggc	aga	tac	tgc	caa	gtg	agg	tgc	agc	ctg	cag	tgt	gtg	cac	ggc	cgg	877
	Gly	Arg	Tyr	Cys	Gln	Val	Arg	Cys	Ser	Leu	Gln	Cys	Val	His	Gly	Arg	
				260					265					270			
	ttc	cgg	gag	gag	gag	tgc	tcg	tgc	gtc	tgt	gac	atc	ggc	tac	ggg	gga	925
	Phe	Arg	Glu	Glu	Glu	Cys	Ser	Cys	Val	Cys	Asp	Ile	Gly	Tyr	Gly	Gly	
20			275					280					285				
	gcc	cag	tgt	gcc	acc	aag	gtg	cat	ttt	ccc	ttc	cac	acc	tgt	gac	ctg	973
	Ala	Gln	Cys	Ala	Thr	Lys	Val	His	Phe	Pro	Phe	His	Thr	Cys	Asp	Leu	
•		290					295					300					
	agg	atc	gac	gga	gac	tgc	ttc	atg	gtg	tct	tca	gag	gca	gac	acc	tat	1021
25	Arg	Ile	Asp	Gly	Asp	Суз	Phe	Met	Val	Ser	Ser	Glu	Ala	Asp	Thr	Tyr	

	305					310					315					320	
	tac	aga	gcc	agg	atg	aaa	tgt	cag	agg	aaa	ggc	ggg	gtg	ctg	gcc	cag	1069
	Tyr	Arg	Ala	Arg	Met	Lys	Cys	Gln	Arg	Lys	Gly	Gly	Val	Leu	Ala	Gln	
					325					330					335		
5	atc	aag	agc	cag	aaa	gtg	cag	gac	atc	ctc	gcc	ttc	tat	ctg	ggc	cgc	1117
	Ile	Lys	Ser	Gln	Lys	Val	Gln	Asp	Ile	Leu	Ala	Phe	Tyr	Leu	Gly	Arg	
				340					345					350			
	ctg	gag	acc	acc	aac	gag	gtg	att	gac	agt	gac	ttc	gag	acc	agg	aac	1165
	Leu	Glu	Thr	Thr	Asn	Glu	Val	Ile	Asp	Ser	Asp	Phe	Glu	Thr	Arg	Asn	
10			355					360				٠	365				
	ttc	tgg	atc	ggg	ctc	acc	tac	aag	acc	gcc	aag	gac	tcc	ttc	cgc	tgg	1213
	Phe	Trp	Ile	Gly	Leu	Thr	Tyr	Lys	Thr	Ala	Lys	Asp	Ser	Phe	Arg	Trp	
		370					375					380					
	gcc	aca	ggg	gag	cac	cag	gcc	ttc	acc	agt	ttt	gcc	ttt	ggg	cag	cct	1261
15	Ala	Thr	Gly	Glu	His	Gln	Ala	Phe	Thr	Ser	Phe	Ala	Phe	Gly	Gln	Pro	
	385					390					395			•		400	
	gac	aac	cac	ggg	ttt	ggc	aac	tgc	gtg	gag	ctg	cag	gct	tca	gct	gcc	1309
	Asp	Asn	His	Gly	Phe	Gly	Asn	Cys	Val	Glu	Leu	Gln	Ala	Ser	Ala	Ala	
					405		•			410					415		
20	ttc	aac	tgg	aac	aac	cag	cgc	tgc	aaa	acc	cga	aac	cgt	tac	atc	tgc	1357
	Phe	Asn	Trp	Asn	Asn	Gln	Arg	Cys	Lys	Thr	Arg	Asn	Arg	Tyr	Ile	Cys	
				420					425					430			
	cag	ttt	gcc	cag	gag	cac	atc	tcc	cgg	tgg	ggc	cca	ggg	tcc			1399
	Gln	Phe	Ala	Gln	Glu	His	Ile	Ser	Arg	Trp	Gly	Pro	Gly	Ser			
25			435					440					445				

58 /346

tgaggcetga ccacatgget ccctcgcctg ccctgggage accggctctg cttacctgte 1459
cgcccacctg tctggaacaa gggccaggtt aagaccacat gcctcatgtc caaagaggtc 1519
tcagaccttg cacaatgcca gaagttggge agagaggge agggaggcca gtgagggcca 1579
gggagtgagt gttagaagaa gctggggcce ttcgcctgct tttgattggg aagatgggct 1639
tcaattagat ggcaaaggag aggacaccge cagtggtcca aaaaggctge tctctccac 1699
ctggcccaga ccctgtgggg cagcggaget tccctgtgge atgaacccca cagggtatta 1759
aattatgaat cagctg

0

<210> 26

10 <211> 1372

5

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

15 <222> (327)..(920)

<400> 26

20

aactgecege agtgeceatg gtggetegga tgggaggaac cacegeggag eeggggacag 60
ggggagcagg geagtgetet getgggtgag gggeaceeag etecagagge taggtgggeg 120
tegetggtgg gtggacteet gggegetgeg eggageegeg eeggetgggt tagegeggge 180
ggggegetta gteceaceec cagaggagge ggaagaggag eeegageetg geegeggget 240
gggeeeegee geageteeag etggeegget tggteetgeg gteeettete tgggaggeec 300
gaceeeggee gegeeeagee eeeace atg eea eee geg ggg ete ege egg gee 353
Met Pro Pro Ala Gly Leu Arg Arg Ala

1 5

gcg ccg ctc acc gca atc gct ctg ttg gtg ctg ggg gct ccc ctg gtg 401

	Ala	Pro	Leu	Thr	Ala	Ile	Ala	Leu	Leu	Val	Leu	Gly	Ala	Pro	Leu	Val	
	10					15					20					25	
	ctg	gcc	ggc	gag	gac	tgc	ctg	tgg	tac	ctg	gac	cgg	aat	ggc	tcc	tgg	449
	Leu	Ala	Gly	Glu	Asp	Cys	Leu	Trp	Tyr	Leu	Asp	Arg	Asn	Gly	Ser	Trp	
5					30					35					40		
	cat	ccg	ggg	ttt	aac	tgc	gag	ttc	ttc	acc	ttc	tgc	tgc	ggg	acc	tgc	497
	His	Pro	Gly	Phe	Asn	Суѕ	Glu	Phe	Phe	Thr	Phe	Cys	Cys	Gly	Thr	Cys	
				45					50					55			
	tac	cat	cgg	tac	tgc	tgc	agg	gac	ctg	acc	ttg	ctt	atc	acc	gag	agg	545
10	Tyr	His	Arg	Tyr	Cys	Суѕ	Arg	Asp	Leu	Thr	Leu	Leu	Ile	Thr	Glu	Arg	
			60					65					70				
	cag	cag	aag	cac	tgc	ctg	gcc	ttc	agc	ccc	aag	acc	ata	gca	ggc	atc	593 [°]
	Gln	Gln	Lys	His	Cys	Leu	Ala	Phe	Ser	Pro	Lys	Thr	Ile	Ala	Gly	Ile	
		75					80					85					
15				gtg													641
		Ser	Ala	Val	Ile	Leu	Phe	Val	Ala	Val	Val	Ala	Thr	Thr	Ile	Суѕ	
	90					95					100					105	
		•		tgt													689
	Cys	Phe	Leu	Cys		Cys	Cys	Tyr	Leu	Tyr	Arg	Arg	Arg	Gln	Gln	Leu	
20					110					115					120		
				ttt													737
	Gln	Ser	Pro	Phe	Glu	Gly	Gln	Glu		Pro	Met	Thr	Gly	Ile	Pro	Val	
				125					130					135			
25				tac													785
25	Gin	Pro	val	Tyr	Pro	Tyr	Pro	Gln	asA	Pro	Lvs	Ala	Glv	Pro	Ala	Pro	

60 /346

	14	0		1.45		150		
	14.	U		145		150		
	cca cag cc	t ggc ttc	ata tac	cca cct	agt ggt	cct gct ccc	caa tat	833
	Pro Gln Pro	o Gly Phe	Ile Tyr	Pro Pro	Ser Gly	Pro Ala Pro	Gln Tyr	
	155		160			165		
5 _.	cca ctc ta	c cca gct	ggg ccc	cca gtc	tac aac	cct gca gct	cct cct	881
	Pro Leu Ty	r Pro Ala	Gly Pro	Pro Val	Tyr Asn	Pro Ala Ala	Pro Pro	
	170		175		180		185	
	ccc tat at	g cca cca	cag ccc	tct tac	ccg gga	gcc tgaggaa	.cca	927
	Pro Tyr Me	t Pro Pro	Gln Pro	Ser Tyr	Pro Gly	Ala		
10		190			195			
	gccatgtctc	tgctgccc	ct tcagto	gatge caa	accttggg	agatgccctc	atcctgtacc	987
	tgcatctggt	cctggggg	tg gcagga	agtcc tc	cagecace	aggccccaga	ccaagccaag	1047
	ccctgggccc	tactgggg	ac agagco	cccag gga	agtggaa	caggagetga	actagaacta	1107
	tgaggggttg	gggggagg	gc ttggaa	attat ggg	gctatttt	tactgggggc	aagggaggga	1167
15	gatgacagcc	tgggtcaca	ag tgcctg	gtttt caa	atagtcc	ctctgctccc	aagatcccag	1227
	ccaggaaggc	tggggccct	a ctgttt	tgtcc cct	ctgggct	ggggtggggg	gagggaggag	1287
	gttccgtcag	cagetgge	ag tagcco	ctcct ctc	tggctgc	cccactggcc	acatctctgg	1347
	cctgctagat	taaagctgl	a aagac					1372
20	<210> 27							
	<211> 2074							
	<212> DNA	•						
	<213> Homo	sapiens						
	<220>							

25

<221> CDS

	<22	2> (101)	(1	723)												
	<40	0> 2	7														
	ctt	tagg	gtg (cgcg	ggtg	ca g	tata [.]	tctc	g cg	ctct	ctcc	cct	ttcc	ccc i	tccc	ctttcc	60
	cca	cccc	ggg (eget	caggi	tt g	gtct	ggac	c gga	aagc	gaag	atg	gcg	act	tct	ggc	115
5												Met	Ala	Thr	Ser	Gly	
												1				5	
	gcg	gcc	tcg	gcg	gag	ctg	gtg	atc	ggc	tgg	tgc	ata	ttc	ggc	ctc	tta	163
	Ala	Ala	Ser	Ala	Glu	Leu	Val	Ile	Gly	Trp	Cys	Ile	Phe	Gly	Leu	Leu	
			-		10					15					20		
10	cta	ctg	gct	att	ttg	gca	ttc	tgc	tgg	ata	tat	gtt	cgt	aaa	tac	caa	211
	Leu	Leu	Ala	Ile	Leu	Ala	Phe	Cys	Trp	Ile	Tyr	Val	Arg	Lys	Tyr	Gln	
				25					30					35			
	agt	cgg	cgg	gaa	agt	gaa	gtt	gtc	tcc	acc	ata	aca	gca	att	ttt	tct	259
	Ser	Arg	Arg	Glu	Ser	Glu	Val	Val	Ser	Thr	Ile	Thr	Ala	Ile	Phe	Ser	
15			40	•				45					50				
	cta	gca	att	gca	ctt	atc	aca	tca	gca	ctt	cta	cca	gtg	gat	ata	ttt	307
	Leu	Ala	Ile	Ala	Leu	Ile	Thr	Ser	Ala	Leu	Leu	Pro	Val	Asp	Ile	Phe	
		55					60					65					
	ttg	gtt	tct	tac	atg	aaa	aat	caa	aat	ggt	aca	ttt	aag	gac	tgg	gct	355
20	Leu	Val	Ser	Tyr	Met	Lys	Asn	Gln	Asn	Gly	Thr	Phe	Lys	Asp	Trp	Ala	
	70					75					80					85	
	aat	gct	aat	gtc	agc	aga	cag	att	gag	gac	act	gta	tta	tac	ggt	tac	403
	Asn	Ala	Asn	Val	Ser	Arg	Gln	Ile	Glu	Asp	Thr	Val	Leu	Tyr	Gly	Tyr	
					90					95					100		
25	tat	act	tta	tat	tct	gtt	ata	ttg	ttc	tgt	gtg	ttc	ttc	tgg	atc	cct	451

	Tyr	Thr	Leu	Tyr	Ser	Val	Ile	Leu	Phe	Cys	Val	Phe	Phe	Trp	Ile	Pro	
				105					110					115			
	ttt	gtc	tac	ttc	tat	tat	gaa	gaa	aag	gat	gat	gat	gat	act	agt	aaa	499
	Phe	Val	Tyr	Phe	Tyr	Tyr	Glu	Glu	Lys	Asp	Asp	Asp	Asp	Thr	Ser	Lys	
5			120					125					130				
	tgt	act	caa	att	aaa	acg	gca	ctc	aag	tat	act	ttg	gga	ttt	gtt	gtg	547
	Cys	Thr	Gln	Ile	Lys	Thr	Ala	Leu	Lys	Tyr	Thr	Leu	Gly	Phe	Val	Val	
		135					140					145					
	att	tgt	gca	ctg	ctt	ctt	tta	gtt	ggt	gcc	ttt	gtt	cca	ťtg	aat	gtt	595
10	Ile	Суз	Ala	Leu	Leu	Leu	Leu	Val	Gly	Ala	Phe	Val	Pro	Leu	Asn	Val	
	150	•				155					160				•	165	
	CCC	aat	aac	aaa	aat	tct	aca	gag	tgg	gaa	aaa	gtg	aag	tcc	cta	ttt	643
	Pro	Asn	Asn	Lys	Asn	Ser	Thr	Glu	Trp	Glu	Lys	Val	Lys	Ser	Leu	Phe	
					170					175					180		
15	gaa	gaa	ctt	gga	agt	agt	cat	ggt	tta	gct	gca	ttg	tca	ttt	tct	atc	691
	Glu	Glu	Leu	Gly	Ser	Ser	His	Gly	Leu	Ala	Ala	Leu	Ser	Phe	Ser	Ile	
				185					190					195			
	agt	tct	ctg	acc	ttg	att	gga	atg	ttg	gca	gct	ata	act	tac	aca	gcc	739
	Ser	Ser	Leu	Thr	Leu	Ile	Gly	Met	Leu	Ala	Ala	Ile	Thr	Tyr	Thr	Ala	
20			200					205					210				
	tat	ggc	atg	tct	gcg	tta	cct	tta	aat	ctg	ata	aaa	ggc	act	aga	agc	787
	Tyr	Gly	Met	Ser	Ala	Leu	Pro	Leu	Asn	Leu	Ile	Lys	Gly	Thr	Arg	Ser	
		215					220					225					
	gct	gct	tat	gaa	cgt	ttg	gaa	aac	act	gaa	gac	att	gaa	gaa	gta	gaa	835
25	Ala	Ala	Tyr	Glu	Arg	Leu	Glu	Asn	Thr	Glu	Asp	Ile	Glu	Glu	Val	Glu	

	230					235					240					245	
	caa	cac	att	caa	acg	att	aaa	tca	aaa	agc	aaa	gat	ggt	cga	cct	ttg	883
	Gln	His	Ile	Gln	Thr	Ile	Lys	Ser	Lys	Ser	Lys	Asp	Gly	Arg	Pro	Leu	
					250					255					260		
5	cca	gca	agg	gat	aaa	cgc	gcc	tta	aaa	caa	ttt	gaa	gaa	agg	tta	cga	931
	Pro	Ala	Arg	Asp	Lys	Arg	Ala	Leu	Lys	Gln	Phe	Glu	Glu	Arg	Leu	Arg	
				265					270					275			
	aca	ctt	aag	aag	aga	gag	agg	cat	tta	gaa	ttc	att	gaa	aac	agc	tgg	979
	Thr	Leu	Lys	Lys	Arg	Glu	Arg	His	Leu	Glu	Phe	Ile	Glu	Asn	Ser	Trp	
10			280					285					290				
	tgg	aca	aaa	ţtt	tgt	ggc	gct	ctg	cgt	ccc	ctg	aag	atc	gtc	tgg	gga	1027
	Trp	Thr	Lys	Phe	Cys	Gly	Ala	Leu	Arg	Pro	Leu	Lys	Ile	Val	Trp	Gly	
		295					300					305					
	ata	ttt	ttc	atc	tta	gtt	gca	ttg	ctg	ttt	gta	att	tct	ctc	ttc	ttg	1075
15	Ile	Phe	Phe	Ile	Leu	Val	Ala	Leu	Leu	Phe	Val	Ile	Ser	Leu	Phe	Leu	
	310					315	,				320					325	
	tca	aat	tta	gat	aaa	gct	ctt	cat	tca	gct	gga	ata	gat	tct	ggt	ttc	1123
	Ser	Asn	Leu	Asp	Lys	Ala	Leu	His	Ser	Ala	Gly	Ile	Asp	Ser	Gly	Phe	
					330					335					340		
20	ata	att	ttt	gga	gct	aac	ctg	agt	aat	cca	ctg	aat	atg	ctt	ttg	cct	1171
	Ile	Ile	Phe	Gly	Ala	Asn	Leu	Ser	Asn	Pro	Leu	Asn	Met	Leu	Leu	Pro	
				345					350					355			
	tta	cta	caa	aca	gtt	ttc	cct	ctt	gat	tat	att	ctt	ata	aca	att	att	1219
	Leu	Leu	Gln	Thr	Val	Phe	Pro	Leu	Asp	Tyr	Ile	Leu	Ile	Thr	Ile	Ile	
25			360					365					370				

	att	atg	tac	ttt	att	ttt	act	tca	atg	gca	gga	att	cga	aat	att	ggc	1267
	Ile	Met	Tyr	Phe	Ile	Phe	Thr	Ser	Met	Ala	Gly	Ile	Arg	Asn	Ile	Gly	
		375					380					385					
	ata	tgg	ttc	ttt	tgg	att	aga	tta	tat	aaa	atc	aga	aga	ggt	aga	acc	1315
5	Ile	Trp	Phe	Phe	Trp	Ile	Arg	Leu	Tyr	Lys	Ile	Arg	Arg	Gly	Arg	Thr	
	390					395					400					405	
	agg	ccc	caa	gca	ctc	ctt	ttt	ctc	tgc	atg	ata	ctt	ctg	ctt	att	gtc	1363
	Arg	Pro	Gln	Ala	Leu	Leu	Phe	Leu	Cys	Met	Ile	Leu	Leu	Leu	Ile	Val	
					410					415					420		
10	ctt	cac	act	agc	tac	atg	att	tat	agt	ctt	gct	ccc	caa	tat	gtt	atg	1411
	Leu	His	Thr	Ser	Tyr	Met	Ile	Tyr	Ser	Leu	Ala	Pro	Gln	Tyr	Val	Met	
				425					430					435			
	tat	gga	agc	caa	aat	tac	tta	ata	gag	act	aat	ata	act	tct	gat	aat	1459
	Tyr	Gly	Ser	Gln	Asn	Tyr	Leu	Ile	Glu	Thr	Asn	Ile	Thr	Ser	Asp	Asn	
15			440					445					450				
	cat	aaa	ggc	aat	tca	acc	ctt	tct	gtg	cca	aag	aga	tgt	gat	gca	gat	1507
	His	Lys	Gly	Asn	Ser	Thr	Leu	Ser	Val	Pro	Lys	Arg	Cys	Asp	Ala	Asp	
		455					460					465		,			
	gct	cct	gaa	gat	cag	tgt	act	gtt	acc	cgg	aca	tac	cta	ttc	ctt	cac	1555
20	Ala	Pro	Glu	Asp	Gln	Cys	Thr	Val	Thr	Arg	Thr	Tyr	Leu	Phe	Leu	His	
	470					475					480					485	
	aag	ttc	tgg	ttc	ttc	agt	gct	gct	tac	tat	ttt	ggt	aac	tgg	gcc	ttt	1603
	Lys	Phe	Trp	Phe	Phe	Ser	Ala	Ala	Tyr	Tyr	Phe	Gly	Asn	Trp	Ala	Phe	
					490					495					500		
25	ctt	ggg	gta	ttt	ttg	att	gga	tta	att	gta	tcc	tgt	tgt	aaa	ggg	aag	1651

0

65 / 346

Leu Gly Val Phe Leu Ile Gly Leu Ile Val Ser Cys Cys Lys Gly Lys 505 510 515 aaa tog gtt att gaa gga gta gat gaa gat toa gac ata agt gat gat 1699 Lys Ser Val Ile Glu Gly Val Asp Glu Asp Ser Asp Ile Ser Asp Asp 5 520 525 530 gag ccc tct gtc tat tct gct tgacagcctt ctgtcttaaa ggttttataa 1750 Glu Pro Ser Val Tyr Ser Ala 535 540 tgctgactga atatctgtta tgcattttta aagtattaaa ctaacattag gatttgctaa 1810 10 ctagctttca tcaaaaatgg gagcatggct ataagacaac tatattttat tatatgtttt 1870 ctgaagtaac attgtatcat agattaacat tttaaattac cataatcatg ctatgtaaat 1930 ataagactac tggctttgtg agggaatgtt tgtgcaaaat tttttcctct aatgtataat 1990 agtgttaaat tgattaaaaa tcttccagaa ttaatattcc cttttgtcac tttttgaaaa 2050 cataataaat catctgtatc tgtg 2074 15 <210> 28 <211> 2252 <212> DNA <213> Homo sapiens 20 <220> <221> CDS <222> (12)..(1340) <400> 28 gggcgggggc c atg gcg ctg cca tcc cga atc ctg ctt tgg aaa ctt gtg 50

Met Ala Leu Pro Ser Arg Ile Leu Leu Trp Lys Leu Val

25

			1						ţ	5								
		ctt	ctg	cag	agc	tct	gct	gtt	ctc	ctg	cac	tca	ggg	tcc	tcg	gta	ccc	98
		Leu	Leu	Gln	Ser	Ser	Ala	Val	Leu	Leu	His	Ser	Gly	Ser	Ser	Val	Pro	
			15					20					25					
	5	gcc	gct	gct	ggc	agc	tcc	gtg	gtg	tcc	gag	tcc	gcg	gtg	agc	tgg	gag	146
		Ala	Ala	Ala	Gly	Ser	Ser	Val	Val	Ser	Glu	Ser	Ala	Val	Ser	Trp	Glu	
		30					35					40					45	
		gcg	ggc	gcc	cgg	gcg	gtg	ctg	cgc	tgc	cag	agc	ccg	cgc	atg	gtg	tgg	194
		Ala	Gly	Ala	Arg	Ala	Val	Leu	Arg	Cys	Gln	Ser	Pro	Arg	Met	Val	Trp	
•	10					50					55					60		
		acc	cag	gac	cgg	ctg	cac	gaç	cgc	cag	cgc	gtg	ctc	cac	tgg	gac	ctg	242
		Thr	Gln	Asp	Arg	Leu	His	Asp	Arg	Gln	Arg	Val	Leu	His	Trp	Asp	Leu	
					65					70					75			
		cgc	ggc	ccc	ggg	ggt	ggc	ccc	gcg	cgg	cgc	ctg	ctg	gac	ttg	tac	tcg	290
	15	Arg	Gly	Pro	Gly	Gly	Gly	Pro	Ala	Arg	Arg	Leu	Leu	Asp	Leu	Tyr	Ser	
				80					85					90				
		gcg	ggc	gag	cag	cgc	gtg	tac	gag	gcg	cgg	gac	cgc	ggc	cgc	ctg	gag	338
		Ala	Gly	Glu	Gln	Arg	Val	Tyr	Glu	Ala	Arg	Asp	Arg	Gly	Arg	Leu	Glu	
			95					100					105					
	20	ctc	tcg	gcc	tcg	gcc	ttc	gac	gac	ggc	aac	ttc	tcg	ctg	ctc	atc	cgc ·	386
		Leu	Ser	Ala	Ser	Ala	Phe	Asp	Asp	Gly	Asn	Phe	Ser	Leu	Leu	Ile	Arg	
		110					115					120					125	
		gcg	gtg	gag	gag	acg	gac	gcg	ggg	ctg	tac	acc	tgc	aac	ctg	cac	cat .	434
		Ala	Val	Glu	Glu	Thr	Asp	Ala	Gly	Leu	Tyr	Thr	Суз	Asn	Leu	His	His	
	25			•		130					135					140		

	cac	tac	tgc	cac	ctc	tac	gag	agc	ctg	gcc	gtc	cgc	ctg	gag	gtc	acc	482
	His	Tyr	Cys	His	Leu	Tyr	Glu	Ser	Leu	Ala	Val	Arg	Leu	Glu	Val	Thr	
				145					150					155			
	gac	ggc	ccc	ccg	gcc	acc	ccc	gcc	tac	tgg	gac	ggc	gag	aag	gag	gtg	530
5	Asp	Gly	Pro	Pro	Ala	Thr	Pro	Ala	Tyr	Trp	Asp	Gly	Glu	Lys	Glu	Val	
			160					165					170				
	ctg	gcg	gtg	gcg	cgc	ggc	gca	ccc	gcg	ctt	ctg	acc	tgc	gtg	aac	cgc	578
	Leu	Ala	Val	Ala	Arg	Gly	Ala	Pro	Ala	Leu	Leu	Thr	Cys	Val	Asn	Arg	
		175					180					185					
10	ggg	cac	gtg	tgg	acc	gac	cgg	cac	gtg	gag	gag	gct	caa	cag	gtg	gtg	626
	Gly	His	Val	Trp	Thr	Asp	Arg	His	Val	Glu	Glu	Ala	Gln	Gln	Val	Val	
	190					195					200					205	
	cac	tgg	gac	cgg	cag	ccg	ccc	ggg	gtc	ccg	cac	gac	cgc	gcg	gac	cgc	674
	His	Trp	Asp	Arg	Gln	Pro	Pro	Gly	Val	Pro	His	Asp	Arg	Ala	Asp	Arg	
15					210					215					220		
	ctg	ctg	gac	ctc	tac	gcg	tcg	ggc	gag	cgc	cgc	gcc	tac	ggg	ccc	ctt	722
	Leu	Leu	Asp	Leu	Tyr	Ala	Ser	Gly	Glu	Arg	Arg	Ala	Tyr	Gly	Pro	Leu	
				225					230					235			
	ttt	ctg	cgc	gac	cgc	gtg	gct	gtg	ggc	gcg	gat	gcc	ttt	gag	cgc	ggt	770
20	Phe	Leu	Arg	Asp	Arg	Val	Ala	Val	Gly	Ala	Asp	Ala	Phe	Glu	Arg	Gly	
			240					245					250				
	gac	ttc	tca	ctg	cgt	atc	gag	ccg	ctg	gag	gtc	gcc	gac	gag	ggc	acc	818
	Asp	Phe	Ser	Leu	Arg	Ile	Glu	Pro	Leu	Glu	Val	Ala	Asp	Glu	Gly	Thr	
		255					260					265					
25	tac	tcc	tgc	cac	ctg	cac	cac	cat	tac	tgt	ggc	ctg	cac	gaa	cgc	cgc	866

	Tyr	Ser	Cys	His	Leu	His	His	His	Tyr	Суѕ	Gly	Leu	His	Glu	Arg	Arg	
	270					275					280					285	
	gtc	ttc	cac	ctg	acg	gtc	gcc	gaa	ccc	cac	gcg	gag	ccg	ccc	ccc	cgg	914
	Val	Phe	His	Leu	Thr	Val	Ala	Glu	Pro	His	Ala	Glu	Pro	Pro	Pro	Arg	
5					290					295					300		
	ggc	tct	ccg	ggc	aac	ggc	tcc	agc	cac	agc	ggc	gcc	cca	ggc	cca	gac	962
	Gly	Ser	Pro	Gly	Asn	Gly	Ser	Ser	His	Ser	Gly	Ala	Pro	Gly	Pro	Asp	
				305					310					315			
	ccc	aca	ctg	gcg	cgc	ggc	cac	aac	gtc	atc	aat	gtc	atc	gtc	ccc	gag	1010
10	Pro	Thr	Leu	Ala	Arg	Gly	His	Asn	Val	Ile	Asn	Val	Ile	Val	Pro	Glu	
			320					325					330				
	agc	cga	gcc	cac	ttc	ttc	cag	cag	ctg	ggc	tac	gtg	ctg	gcc ·	acg	ctg	1058
	Ser	Arg	Ala	His	Phe	Phe	Gln	Gln	Leu	Gly	Tyr	Val	Leu	Ala	Thr	Leu	
		335					340					345					
15	ctg	ctc	ttc	atc	ctg	cta	ctg	gtc	act	gtc	ctc	ctg	gcc	gcc	cgc	agg	1106
	Leu	Leu	Phe	Ile	Leu	Leu	Leu	Val	Thr	Val	Leu	Leu	Ala	Ala	Arg	Arg	
	350					355					360					365	
	cgc	cgc	gga	ggc	tac	gaa	tac	tcg	gac	cag	aag	tcg	gga	aag	tca	aag	1154
	Arg	Arg	Gly	Gly	Tyr	Glu	Tyr	Ser	Asp	Gln	Lys	Ser	Gly	Lys	Ser	Lys	
20					370					375		•			380		
	ggg	aag	gat	gtt	aac	ttg	gcg	gag	ttc	gct	gtg	gct	gca	ggg	gac	cag	1202
	Gly	Lys	Asp	Val	Asn	Leu	Ala	Glu	Phe	Ala	Val	Ala	Ala	Gly	Asp	Gln	
				385				•	390					395			
	atg	ctt	tac	agg	agt	gag	gac	atc	cag	cta	gat	tac	aaa	aac	aac	atc	1250
25	Met	Leu	Tyr	Arg	Ser	Glu	Asp	Ile	Gln	Leu	Asp	Tyr	Lys	Asn	Asn	Ile	

	40	00	405		410		
•	ctg aag ga	ng agg gcg g	ag ctg gcc	cac agc ccc	ctg cct gcc	aag tac 129	98
	Leu Lys Gl	u Arg Ala G	lu Leu Ala	His Ser Pro	Leu Pro Ala	Lys Tyr	
	415		420		425		
5	atc gac ct	a gac aaa g	gg ttc cgg	aag gag aac	tgc aaa tag	ggaggcc 134	47
	Ile Asp Le	eu Asp Lys G	Ly Phe Arg	Lys Glu Asn	Cys Lys		
	430	4:	35	440			
	ctgggctcct	ggctgggcca	gcagctgcac	ctctcctgtc	tgtgctcctc	ggggcatctc 140)7
	ctgatgctcc	ggggctcacc	ccccttccag	cggctggtcc	cgctttcctg	gaatttggcc 146	57
10	tgggcgtatg	cagaggccgc	ctccacaccc	ctccccagg	ggcttggtgg	cagcatagec 152	27
	cccacccctg	cggcctttgc	tcacgggtgg	ccctgcccac	ccctggcaca a	accaaaatcc 158	37
	cactgatgcc	catcatgccc	tcagaccctt	ctgggctctg	cccgctgggg (gcctgaagac 164	17
	attcctggag	gacactccca	tcagaacctg	gcagccccaa	aactggggtc a	agcctcaggg 170)7
	caggagtccc	actcctccag	ggctctgctc	gtccggggct	gggagatgtt (ectggaggag 176	57
15	gacactccca	tcagaacttg	gcagccttga	agttggggtc	agcctcggca (ggagtcccac 182	?7
	tecteetggg	gtgctgcctg	ccaccaagag	ctccccacc	tgtaccacca 1	gtgggactc.188	37
	caggcaccat	ctgttctccc	cagggacctg	ctgacttgaa	tgccagccct t	gctcctctg 194	17
	tgttgctttg	ggccacctgg	ggctgcaccc	cctgcccttt	ctctgcccca t	ecctaccct 200)7
	agccttgctc	tcagccacct	tgatagtcac	tgggctccct	gtgacttctg a	accctgacac 206	; 7
20	ccctcccttg	gactctgcct	gggctggagt	ctagggctgg	ggctacattt q	gcttctgta 212	:7
	ctggctgagg	acaggggagg	gagtgaagtt	ggtttggggt	ggcctgtgtt o	gccactctca 218	17
		tttgcatctg	ctggtggacc	tgccaccatc	acaataaagt (ecccatctga 224	7
	ttttt					225	2

70 /346

<211> 1461 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (61)..(849) <400> 29 actegeaggg ceegtggegg tteaggegee agagetggee gateggegtt ggeegeegae 60 atg acg ccc gag gac cca gag gaa acc cag ccg ctt ctg ggg cct cct 10 Met Thr Pro Glu Asp Pro Glu Glu Thr Gln Pro Leu Leu Gly Pro Pro 10 Gly Gly Ser Ala Pro Arg Gly Arg Arg Val Phe Leu Ala Ala Phe Ala 20 25 · 30 15 get gee etg gge eea etc age tte gge tte geg etc gge tac age tee 204 Ala Ala Leu Gly Pro Leu Ser Phe Gly Phe Ala Leu Gly Tyr Ser Ser 35 40 45 ccg gcc atc cct age ctg cag cgc gcc gcg ccc ccg gcc ccg cqc ctg 252 Pro Ala Ile Pro Ser Leu Gln Arg Ala Ala Pro Pro Ala Pro Arg Leu 20 50 55 gac gac gcc gcc tcc tgg ttc ggg gct gtc gtg acc ctg ggt gcc Asp Asp Ala Ala Ala Ser Trp Phe Gly Ala Val Val Thr Leu Gly Ala 65 70 75 80 gcg gcg ggg gga gtg ctg ggc tgg ctg gtg gac cgc gcc ggg cgc 25 Ala Ala Gly Gly Val Leu Gly Gly Trp Leu Val Asp Arg Ala Gly Arg

					85					90					95		
	aag	ctg	agc	ctc	ttg	ctg	tgc	tcc	gtg	ccc	ttc	gtg	gcc	ggc	ttt	gcc	396
	Lys	Leu	Ser	Leu	Leu	Leu	Cys	Ser	Val	Pro	Phe	Val	Ala	Gly	Phe	Ala	
				100					105					110			
5	gtc	atc	acc	gcg	gcc	cag	gac	gtg	tgg	atg	ctg	ctg	ggg	ggc	cgc	ctc	444
	Val	Ile	Thr	Ala	Ala	Gln	Asp	Val	Trp	Met	Leu	Leu	Gly	Gly	Arg	Leu	
			115					120					125				
	ctc	acc	ggc	ctg	gcc	tgc	ggt	gtt	gcc	tcc	cta	gtg	gcc	ccg	gtc	tac	492
	Leu	Thr	Gly	Leu	Ala	Cys	Gly	Val	Ala	Ser	Leu	Val	Ala	Pro	Val	Tyr	
10		130					135					140					
	atc	tcc	gaa	atc	gcc	tac	cca	gca	gtc	cgg	ggg	ttg	ctc	ggc	tcc	tgt	540
	Ile	Ser	Glu	Ile	Ala	Tyr	Pro	Ala	Val	Arg	Gly	Leu	Leu	Gly	Ser	Cys	
	145					150					155					160	
	gtg	cag	cta	atg	gtc	gtc	gtc	ggc	atc	ctc	ctg	gcc	tac	ctg	gca	ggc	588
15	Val	Gln	Leu	Met	Val	Val	Val	Gly	Ile	Leu	Leu	Ala	Tyr	Leu	Ala	Gly	
					165					170					175		
	tgg	gtg	ctg	gag	tgg	cgc	tgg	ctg	gct	gtg	ctg	ggc	tgc	gtg	ccc	ccc	636
	Trp	Val	Leu	Glu	Trp	Arg	Trp	Leu	Ala	Val	Leu	Gly	Cys	Val	Pro	Pro	
				180					185					190			
20	tcc	ctc	atg	ctg	ctt	ctc	atg	tgc	ttc	atg	ccc	gag	acc	ccg	cgc	ttc	684
	Ser	Leu	Met	Leu	Leu	Leu	Met	Cys	Phe	Met	Pro	Glu	Thr	Pro	Arg	Phe	
			195					200					205				
	ctg	ctg	act	cag	cac	agg	cgc	cag	gag	gct	gct	cct	ggt	ctt	gtc	agg	732
	Leu	Leu	Thr	Gln	His	Arg	Arg	Gln	Glu	Ala	Ala	Pro	Gly	Leu	Val	Arg	
25		210					215					220					

72 /346

	tgt gg	t cat	ggt	gtt	cag	cac	gag	tgc	ctt	cgg	cgc	cta	ctt	caa	gct	780
	Cys Gly	y His	Gly	Val	Gln	His	Glu	Cys	Leu	Arg	Arg	Leu	Leu	Gln	Ala	
	225				230					235					240	
	gac cca	a ggg	tgg	ccc	tgg	caa	ctc	ctc	gca	cgt	ggc	cat	ctc	ggc	gcc	828
5	Asp Pro	o Gly	Trp	Pro	Trp	Gln	Leu	Leu	Ala	Arg	Gly	His	Leu	Gly	Ala	
		•		245					250					255		
	tgt cto	c tgc	aca	gcc	tgt	tgat	tgcca	igc d	gtggg	gcto	gg co	tggc	ctgg	2		876
	Cys Le	ı Cys	Thr	Ala	Cys											
			260													
10	cgtggg	cage a	atgto	cctc	et to	catc	gccgg	g agg	gtcct	cag	gcco	tato	gga (gcctt	ctggc	936
	ttgcctd	ccgc 1	tttct	gcat	c ti	tcagt	gtco	: ttt	tcac	ttt	gtto	tgtç	gtc (cctga	aacta	996
	aaggaaa	agac i	tctgg	jaaca	a at	tcaca	agcco	att	ttga	aggg	gcga	tgad	cag d	ccact	cacta	1056
	ggggat	ggag (caago	ctgt	g ad	eteca	agct	ggg	jecea	agc	ccag	agco	ccc 1	tgcct	gccc	1116
	aggggag	gcca (gaato	cago	c c	cttg	gagco	: ttg	gtct	gca	gggt	ccct	cc t	ttcct	gtcat	1176
15	gctccct	tcca (gccca	tgac	c c	gggg	ctagg	g ago	gctca	ctg	ccto	ctgt	tc d	cagct	cctgc	1236
	tgctgct	tctg a	aggac	tcag	g aa	acaco	cttcg	ago	tttç	gcag	acct	gcgg	gtc a	agccc	tccat	1296
	gcgcaaq	gact a	aaago	agcg	g aa	agag	gaggt	ggg	jecto	ctag	gato	tttg	jtc 1	ttctg	ıgctgg	1356
	aggtgct	tttt	ggagg	jttgg	g to	gctg	ggcat	tca	igtc	gctc	ctct	caco	aca d	gctgc	cttat	1416
	cgggaag	ggaa	atttg	ıtttg	jc ca	aaata	aaaga	cto	gacad	caga	aaat	c				1461
20																
	<210> 3	30														
	<211> :	1122														
	<212> I	ONA														

25 <220>

<213> Homo sapiens

	<22	1> C	DS														
	<222	2> (79).	. (53	7)												
	<400)> 3(0			÷											
	tgtt	cct	cgg (ggtc	cgcg	ga go	cgago	ccca	g cto	eteg	gege	gtgi	tegga	agt (ctcc	cagccc	60
5	cgcg	ggcco	ccg a	agcg	cacg	atg	cgc	gga	ccc	ggg	cac	ccc	ctc	ctc	ctg	ggg	111
						Met	Arg	Gly	Pro	Gly	His	Pro	Leu	Leu	Leu	Gly	
						1				5					10		
	ctg	ctg	ctg	gtg	ctg	ggg	gcg	gcg	ggg	cgc	ggc	cgg	ggg	ggc	gcg	gag	159
	Leu	J.eu	Leu	Val	Leu	Gly	Ala	Ala	Gly	Arg	Gly	Arg	Gly	Gly	Ala	Glu	
10				15					20					25			
	ccc	cgg	gag	ccg	gcg	gac	gga	cag	gcg	ctg	ctg	cgg	ctg	gtg	gtg	gaa	207
	Pro	Arg	Glu	Pro	Ala	Asp	Gly	Gln	Ala	Leu	Leu	Arg	Leu	Val	Val	Glu	
			30			•		35					40				
	ctc	gtc	cag	gag	ctg	cgg	aag	cac	cac	tcg	gcg	gag	cac	aag	ggc	ctg	255
15	Leu	Val	Gln	Glu	Leu	Arg	Lys	His	His	Ser	Ala	Glu	His	Lys	Gly	Leu	
		45					50					55					
	cag	ctc	ctc	ggg	cgg	gac	tgc	gcc	ctg	ggc	cgc	gcg	gag	gcg	gcg	ggg	303
	Gln	Leu	Leu	Gly	Arg	Asp	Cys	Ala	Leu	Gly	Arg	Ala	Glu	Ala	Ala	Gly	
	60					65					70					75	
20	ctg	ggg	cct	tcg	ccg	gag	cag	cga	gtg	gaa	att	gtt	cct	cga	gat	ctg	351
•	Leu	Gly	Pro	Ser	Pro	Glu	Gln	Arg	Val	Glu	Ile	Val	Pro	Arg	Asp	Leu	
					80					85					90		
	agg	atg	aag	gac	aag	ttt	cta	aaa	cac	ctt	aca	ggc	cct	ctt	tat	ttt	399
	Arg	Met	Lys	Asp	Lys	Phe	Leu	Lys	His	Leu	Thr	Gly	Pro	Leu	Tyr	Phe	
25				95					100					105			

74 /346

	agt	cca	aag	tgc	agc	aaa	cac	ttc	cat	aga	ctt	tat	cac	aac	acc	aga	447
	Ser	Pro	Lys	Cys	Ser	Lys	His	Phe	His	Arg	Leu	Tyr	His	Asn	Thr	Arg	
			110					115					120				
	gac	tgc	acc	att	cct	gca	tac	tat	aaa	aga	tgc	gcc	agg	ctt	ctt	acc	495
5	Asp	Cys	Thr	Ile	Pro	Ala	Tyr	Tyr	Lys	Arg	Cys	Ala	Arg	Leu	Leu	Thr	
		125					130					135					
	cgg	ctg	gct	gtc	agt	cca	gtg	tgc	atg	gag	gat	aag	cag	tga	gcaga	acc	544
	Arg	Leu	Ala	Val	Ser	Pro	Val	Cys	Met	Glu	Asp	Lys	Gln				
	140					145			•		150						
10	gtad	cagga	agc a	agcad	cacca	ag ga	agcca	atgag	g aag	gtgco	ttg	gaaa	accaa	aca (gggaa	aacaga	604
	acta	tctt	ta 1	tacad	catco	cc ct	cate	ggaca	a aga	agatt	tat	ttt	tgcag	gac i	agact	cttcc	664
	ataa	gtec	ctt t	cgagt	tttc	gt at	gtto	gttga	a caç	gtttg	gcag	atat	tatat	tc	gataa	atcag	724
	tgta	cttg	jac a	agtgt	tato	ct gt	cact	tatt	taa	aaaa	aaa	acad	caaaa	agg a	aatgo	ctccac	784
	attt	gaçç	gtg t	tagto	gctat	a aa	acao	cagaa	a tat	ttca	attg	tctt	catt	ag (gtgaa	atcgc	844
15	aaaa	aata	itt t	cttt	agaa	ia ca	ıtaaç	gcaga	ato	cttaa	agt	atat	tttc	cat a	ataac	ataat	904
	ttga	tatt	ct g	gtatt	actt	t ca	ctgt	taaa	tto	ctcag	gagt	atta	atttg	gga a	acggo	atgaa	964
	aaat	taaa	at t	tcgg	tcat	g tt	ttag	gagad	agt	ggaç	rtgt	aaat	ctgt	.gg (ctaat	tctgt	1024
	tggt	cgtt	tg t	atta	ataaa	ıt gt	aaaa	ıtagt	att	ccag	ıcta	ttgt	gcaa	ata 1	tgtaa	atagt	1084
	gtaa	ataa	ac a	acaag	rtaat	a aa	itgaa	gtgt	ttg	tttt	:t						1122
20																	
	<210	> 31															

<211> 335

<212> PRT

<213> Homo sapiens

25 <400> 31

	Met	Gly	Ala	Ser	Ser	Ser	Ser	Ala	Leu	Ala	Arg	Leu	Gly	Leu	Pro	Ala
	1				5					10					15	
	Arg	Pro	Trp	Pro	Arg	Trp	Leu	Gly	Val	Ala	Ala	Leu	Gly	Leu	Ala	Ala
				20					25					30		
5	Val	Ala	Leu	Gly	Thr	Val	Ala	Trp	Arg	Arg	Ala	Trp	Pro	Arg	Arg	Arg
			35					40					45			
	Arg	Arg	Leu	Gln	Gln	Val	Gly	Thr	Val	Ala	Lys	Leu	Trp	Ile	Tyr	Pro
		50					5 5					60				
	Val	Lys	Ser	Cys	Lys	Gly	Val	Pro	Val	Ser	Glu	Ala	Glu	Cys	Thr	Ala
10	65					70					75					80
	Met	Gly	Leu	Arg	Ser	Gly	Asn	Leu	Arg	Asp	Arg	Phe	Trp	Leu	Val	Ile
					85					90					95	
	Lys	Glu	Asp	Gly	His	Met	Val	Thr	Ala	Arg	Gln	Glu	Pro	Arg	Leu	Val
				100					105					110		
15	Leu	Ile	Ser	Ile	Ile	Tyr	Glu	Asn	Asn	Cys	Leu	Ile	Phe	Arg	Ala	Pro
			115					120					125			
	Asp	Met	Asp	Gln	Leu	Val	Leu	Pro	Ser	Lys	Gln	Pro	Ser	Ser	Asn	Lys
		130					135					140				
	Leu	His	Asn	Cys	Arg	Ile	Phe	Gly	Leu	Asp	Ile	Lys	Gly	Arg	Asp	Cys
20	145					150					155					160
	Gly	Asn	Glu	Ala	Ala	Lys	Trp	Phe	Thr	Asn	Phe	Leu	Lys	Thr	Glu	Ala
					165					170	ı				175	
	Tyr	Arg	Leu	Val	Gln	Phe	Glu	Thr	Asn	Met	Lys	Gly	Arg	Thr	Ser	Arg
				180	ı				185					190)	
25	Lys	Leu	Leu	Pro	Thr	Leu	Asp	Gln	Asn	Phe	Gln	. Val	Ala	Tyr	Pro	Asp

76 /346

Tyr Cys Pro Leu Leu Ile Met Thr Asp Ala Ser Leu Val Asp Leu Asn Thr Arg Met Glu Lys Lys Met Lys Met Glu Asn Phe Arg Pro Asn Ile Val Val Thr Gly Cys Asp Ala Phe Glu Glu Asp Thr Trp Asp Glu Leu Leu Ile Gly Ser Val Glu Val Lys Lys Val Met Ala Cys Pro Arg Cys Ile Leu Thr Thr Val Asp Pro Asp Thr Gly Val Ile Asp Arg Lys Gln Pro Leu Asp Thr Leu Lys Ser Tyr Arg Leu Cys Asp Pro Ser Glu Arg Glu Leu Tyr Lys Leu Ser Pro Leu Phe Gly Ile Tyr Tyr Ser Val Glu Lys Ile Gly Ser Leu Arg Val Gly Asp Pro Val Tyr Arg Met Val <210> 32 <211> 208 <212> PRT <213> Homo sapiens <400> 32 Met Glu Leu Arg Ala Ala Leu Val Leu Val Leu Leu Ile Ala Gly

77 /346

	Gly	Leu	Phe	Met	Phe	Thr	Tyr	Lys	Ser	Thr	Gln	Phe	Asn	Val	Glu	Gly
				20					25					30		
	Phe	Ala	Leu	Val	Leu	Gly	Ala	Ser	Phe	Ile	Gly	Gly	Ile	Arg	Trp	Thr
			35					40					45			
5	Leu	Thr	Gln	Met	Leu	Leu	Gln	Lys	Ala	Glu	Leu	Gly	Leu	Gln	Asn	Pro
		50			•		55					60				
	Ile	Asp	Thr	Met	Phe	His	Leu	Gln	Pro	Leu	Met	Phe	Leu	Gly	Leu	Phe
	65					70					75					80
	Pro	Leu	Phe	Ala	Val	Phe	Glu	Gly	Leu	His	Leu	Ser	Thr	Ser	Glu	Lys
10					85					90					95	
	Ile	Phe	Arg	Phe	Gln	Asp	Thr	Gly	Leu	Leu	Leu	Arg	Val	Leu	Gly	Ser
				100					105					110		
	Leu	Phe	Leu	Gly	Gly	Ile	Leu	Ala	Phe	Gly	Leu	Gly	Phe	Ser	Glu	Phe
			115					120					125			
15	Leu	Leu	Val	Ser	Arg	Thr	Ser	Ser	Leu	Thr	Leu	Ser	Ile	Ala	Gly	Ile
		130					135					140				
	Phe	Lys	Glu	Val	Cys	Thr	Leu	Leu	Leu	Ala	Ala	His	Leu	Leu	Gly	Asp
	145					150					155					160
	Gln	Ile	Ser	Leu	Leu	Asn	Trp	Leu	Gly	Phe	Ala	Leu	Cys	Leu	Ser	Gly
20					165					170					175	
	Ile	Ser	Leu	His	Val	Ala	Leu	Lys	Ala	Leu	His	Ser	Arg	Gly	Asn	Pro
				180					185					190		
	Glu	Ser	Leu	Pro	Glu	Ala	Ser	Val	Phe	Cys	Ser	Ser	Pro	Суз	Asp	Ser
			195					200					205	•		

25

	<210	<i>></i> 33	•													
	<211	> 40	6													
	<212	> PR	T													
	<213	> Ho	mo s	apie	ens											
5	<400	> 33	1													
	Met	Ala	Ala	Gly	Ala	Gly	Ala	Gly	Ser	Ala	Pro	Arg	Trp	Leu	Arg	Ala
	1				5					10					15	
	Leu	Ser	Glu	Pro	Leu	Ser	Ala	Ala	Gln	Leu	Arg	Arg	Leu	Glu	Glu	His
				20					25					30		
10	Arg	Tyr	Ser	Ala	Ala	Gly	Val	Ser	Leu	Leu	Glu	Pro	Pro	Leu	Gln	Leu
			35					40					45			
	Tyr	Trp	Thr	Trp	Leu	Leu	Gln	Trp	Ile	Pro	Leu	Trp	Met	Ala	Pro	Asn
		50					55					60				
	Ser	Ile	Thr	Leu	Leu	Gly	Leu	Ala	Val _.	Asn	۷al	Val	Thr	Thr	Leu	Val
15	65					70					75					80
	Leu	Ile	Ser	Tyr	Cys	Pro	Thr	Ala	Thr	Glu	Glu	Ala	Pro	Tyr	Trp	Thr
					85					90					95	
	Tyr	Leu	Leu	Cys	Ala	Leu	Gly	Leu	Phe	Ile	Tyr	Gln	Ser	Leu	Asp	Ala
				100					105					110	•	•
20	Ile	Asp	Gly	Lys	Gln	Ala	Arg	Arg	Thr	Asn	Ser	Cys	Ser	Pro	Leu	Gly
			115					120					125			
	Glu	Leu	Phe	Asp	His	Gly	Cys	Asp	Ser	Leu	Ser	Thr	Val	Phe	Met	Ala
		130					135					140			•	
	Val	Gly	Ala	Ser	Ile	Ala	Ala	Arg	Leu	Gly	Thr	Tyr	Pro	Asp	Trp	Phe
25	145					150					155					160

	Phe	Phe	Cys	Ser	Phe	Ile	Gly	Met	Phe	Val	Phe	Tyr	Cys	Ala	His	Tr
					165					170					175	
	Gln	Thr	Tyr	Val	Ser	Gly	Met	Leu	Arg	Phe	Gly	Lys	Val	Asp	Val	Thi
				180					185					190		
5	Glu	Ile	Gln	Ile	Ala	Leu	Val	Ile	Val	Phe	Val	Leu	Ser	Ala	Phe	Gl
			195					200					205			
	Gly	Ala	Thr	Met	Trp	Asp	Tyr	Thr	Ile	Pro	Ile	Leu	Glu	Ile	Lys	Leu
		210					215					220				
	Lys	Ile	Leu	Pro	Val	Leu	Gly	Phe	Leu	Gly	Gly	Val	Ile	Phe	Ser	Cys
10	225					230					235					240
	Ser	Asn	Tyr	Phe	His	Val	Ile	Leu	His	Gly	Gly	Val	Gly	Lys	Asn	Gly
					245					250					255	
	Ser	Thr	Ile	Ala	Gly	Thr	Ser	Val	Leu	Ser	Pro	Gly	Leu	His	Ile	Gly
				260					265					270		
15	Leu	Ile	Ile	Ile	Leu	Ala	Ile	Met	Ile	Tyr	Lys	Lys	Ser	Ala	Thr	Asp
			275					280					285			
	Val	Phe	Glu	Lys	His	Pro	Cys	Leu	Tyr	Ile	Leu	Met	Phe	Gly	Cys	Val
		290					295					300				
	Phe	Ala	Lys	Val	Ser	Gln	Lys	Leu	Val	Val	Ala	His	Met	Thr	Lys	Ser
20	305					310					315					320
	Glu	Leu	Tyr	Leu	Gln	Asp	Thr	Val	Phe	Leu	Gly	Pro	Gly	Leu	Leu	Phe
					325					330					335	
	Leu	Asp	Gln	Tyr	Phe	Asn	Asn	Phe	Ile	Asp	Glu	Tyr	Val	Val	Leu	Trp
				340					345					350		
25	Met	Ala	Met	Val	Ile	Ser	Ser	Phe	Asp	·Met	Val	Tle	ጥህጕ	Phe	Ser	Δla

80 /346

Leu Cys Leu Gln Ile Ser Arg His Leu His Leu Asn Ile Phe Lys Thr Ala Cys His Gln Ala Pro Glu Gln Val Gln Val Leu Ser Ser Lys Ser His Gln Asn Asn Met Asp <210> 34 <211> 618 <212> PRT <213> Homo sapiens <400> 34 Met Glu Val Lys Asn Phe Ala Val Trp Asp Tyr Val Val Phe Ala Ala Leu Phe Phe Ile Ser Ser Gly Ile Gly Val Phe Phe Ala Ile Lys Glu Arg Lys Lys Ala Thr Ser Arg Glu Phe Leu Val Gly Gly Arg Gln Met Ser Phe Gly Pro Val Gly Leu Ser Leu Thr Ala Ser Phe Met Ser Ala Val Thr Val Leu Gly Thr Pro Ser Glu Val Tyr Arg Phe Gly Ala Ser Phe Leu Val Phe Phe Ile Ala Tyr Leu Phe Val Ile Leu Leu Thr Ser

	Glu	Leu	Phe	Leu	Pro	Val	Phe	Tyr	Arg	Ser	Gly	Ile	Thr	Ser	Thr	Туз
				100					105					110		
	Glu	Tyr	Leu	Gln	Leu	Arg	Phe	Asn	Lys	Pro	Val	Arg	Tyr	Ala	Ala	Thi
	•		115					120					125			
5	Val	Ile	Tyr	Ile	Val	Gln	Thr	Ile	Leu	Tyr	Thr	Gly	Val	Val	Val	Туз
		130					135					140				
	Ala	Pro	Ala	Leu	Ala	Leu	Asn	Gln	Val	Thr	Gly	Phe	Asp	Leu	Trp	Gl
	145					150					155					160
	Ser	Val	Phe	Ala	Thr	Gly	Ile	Val	Cys	Thr	Phe	Tyr	Cys	Thr	Leu	Gly
10					165					170					175	
	Gly	Leu	Lys	Ala	Val	Val	Trp	Thr	Asp	Ala	Phe	Gln	Met	Val	Val	Met
				180					185					190		
	Ile	Val	Gly	Phe	Leu	Thr	Val	Leu	Ile	Gln	Gly	Ser	Thr	His	Ala	Gly
			195				•	200					205			
15	Gly	Phe	His	Asn	Val	Leu	Glu	Gln	Ser	Thr	Asn	Gly	Ser	Arg	Leu	His
		210					215					220				
	Ile	Phe	Asp	Phe	Asp	Val	Asp	Pro	Leu	Arg	Arg	His	Thr	Phe	Trp	Thr
	225					230					235					240
	Ile	Thr	Val	Gly	Gly	Thr	Phe	Thr	Trp	Leu	Gly	Ile	Tyr	Gly	Val	Asn
20					245					250					255	
	Gln	Ser	Thr	Ile	Gln	Arg	Cys	Ile	Ser	Cys	Lys	Thr	Glu	Lys	His	Ala
				260					265					270		
	Lys	Leu	Ala	Leu	Tyr	Phe	Asn	Leu	Leu	Gly	Leu	Trp	Ile	Ile	Leu	Val
			275					280					285			
25	Cys	Ala	Val	Phe	Ser	Gly	Leu	Ile	Met	Tvr	Ser	His	Phe	Ľvs	asA	Cvs

		290					295					300				
	Asp	Pro	Trp	Thr	Ser	Gly	Ile	Ile	Ser	Ala	Pro	Asp	Gln	Leu	Met	Pro
	305					310					315					320
	Tyr	Phe	Val	Met	Glu	Ile	Phe	Ala	Thr	Met	Pro	Gly	Leu	Pro	Gly	Leu
5					325					330					335	
	Phe	Val	Ala	Cys	Ala	Phe	Ser	Gly	Thr	Leu	Ser	Thr	Val	Ala	Ser	Ser
				340			•		345					350		
	Ile	Asn	Ala	Leu	Ala	Thr	Val	Thr	Phe	Glu	Asp	Phe	Val	Lys	Ser	Cys
			355					360					365			
10	Phe	Pro	His	Leu	Ser	Asp	Lys	Leu	Ser	Thr	Trp	Ile	Ser	Ĺys	Gly	Leu
		370					375					380			•	
	Cys	Leu	Leu	Phe	Gly	Val	Met	Cys	Thr	Ser	Met	Ala	Val	Ala	Ala	Ser
	385					390					395					400
	Val	Met	Gly	Gly	Val	Val	Gln	Ala	Ser	Leu	Ser	Ile	His	Gly	Met	Cys
15					405					410					415	
	Gly	Gly	Pro	Met	Leu	Gly	Leu	Phe	Ser	Leu	Gly	Ile	Val	Phe	Pro	Phe
				420					425					430	•	
	Val	Asn	Trp	Lys	Gly	Ala	Leu	Gly	Gly	Leu	Leu	Thr	Gly	Ile	Thr	Leu
			435					440	1				445			
20	Ser	Phe	Trp	Val	Ala	Ile	Gly	Ala	Phe	Ile	Tyr	Pro	Ala	Pro	Ala	Ser
		450					455					460	ı			
	Lys	Thr	Trp	Pro	Leu	Pro	Leu	Ser	Thr	Asp	Gln	Cys	Ile	Lys	s Ser	Asn
	465	i				470	ı				475	•				480
	Val	Thr	Ala	Thr	Gly	Pro	Pro	Val	. Leu	Ser	Ser	Arg	Pro	Gly	/ Ile	. Ala
25					485					490)				495	i

	Asp	Thr	Trp	Tyr	Ser	Ile	Ser	Tyr	Leu	Tyr	Tyr	Ser	Ala	Val	Gly	Cys
				500					505					510		
	Leu	Gly	Cys	Ile	Val	Ala	Gly	Val	Ile	Ile	Ser	Leu	Ile	Thr	Gly	Arg
			515					520					525			
5	Gln	Arg	Gly	Glu	Asp	Ile	Gln	Pro	Leu	Leu	Ile	Arg	Pro	Val	Cys	Asn
		530					535					540				
	Leu	Phe	Cys	Phe	Trp	Ser	Lys	Lys	Tyr	Lys	Thr	Leu	Cys	Trp	Cys	Gly
	545					550					555					560
	Val	Gln	His	Asp	Ser	Gly	Thr	Glu	Gln	Glu	Asn	Leu	Glu	Asn	Gly	Ser
10					565					570					575	
	Ala	Arg	Lys	Gln	Gly	Ala	Glu	Ser	Val	Leu	Gln	Asn	Gly	Leu	Arg	Arg
				580					585					590		
	Glu	Ser	Leu	Val	His	Val	Pro	Gly	Tyr	Asp	Pro	Lys	Asp	Lys	Ser	Tyr
			595					600					605			
15	Asn	Asn	Met	Ala	Phe	Glu	Thr	Thr	His	Phe	•					
		610					615									
	<21	0> 3	5													
	<21	1> 2	08													
20	<21	2> P	RT													
	<21	3> н	ото	sapi	ens											
	<40	0> 3	5													
	Met	Glý	Leu	Gly	Ala	Arg	Gly	Ala	Trp	Ala	Ala	Leu	Leu	Leu	Gly	Thr
	1				5					10					15	
25	Leu	Gln	Val	Leu	Ala	Leu	Leu	Gly	Ala	Ala	His	Glu	Ser	Ala	Ala	Met

84 /346

				20					25					30		
	Ala	Ala	Ser	Ala	Asn	Ile	Glu	Asn	Ser	Gly	Leu	Pro	His	Asn	Ser	Ser
			35					40					45			
	Ala	Asn	Ser	Thr	Glu	Thr	Leu	Gln	His	Val	Pro	Ser	Asp	His	Thr	Asn
5		50					55					60				
	Glu	Thr	Ser	Asn	Ser	Thr	Val	Lys	Pro	Pro	Thr	Ser	Val	Ala	Ser	Asp
	65					70					75					80
	Ser	Ser	Asn	Thr	Thr	۷al	Thr	Thr	Met	Lys	Pro	Thr	Ala	Ala	Ser	Asn
					85					90					95	
LO	Thr	Thr	Thr	Pro	Gly	Met	Val	Ser	Thr	Asn	Met	Thr	Ser	Thr	Thr	Leu
				100					105					110		
	Lys	Ser	Thr	Pro	Lys	Thr	Thr	Ser	Val	Ser	Gln	Asn	Thr	Ser	Gln	Ile
			115					120					125			
	Ser	Thr	Ser	Thr	Met	Thr	Val	Thr	His	Asn	Ser	Ser	Val	Thr	Ser	Ala
15		130					135					140				
	Ala	Ser	Ser	Val	Thr	Ile	Thr	Thr	Thr	Met	His	Ser	Glu	Ala	Lys	Lys
	145					150					155			•		160
	Gly	Ser	Lys	Phe	Asp	Thr	Gly	Ser	Phe	Val	Gly	Gly	Ile	Val	Leu	Thr
					165					170					175	
20	Leu	Gly	Val	Leu	Ser	Ile	Leu	Tyr	Ile	Gly	Cys	Lys	Met	Tyr	Tyr	Ser
				180					185					190		
	Arg	Arg	Gly	Ile	Arg	Tyr	Arg	Thr	Ile	Asp	Glu	His	Asp	Ala	Ile	Ile
			195					200			,		205			

25 <210> 36

	<21	1> 5	02													
	<21	2> PI	RT													
	<21	3> H	omo :	sapi	ens											
	<40	0> 3	6													
5	Met	Ser	Leu	Val	Leu	Leu	Ser	Leu	Ala	Ala	Leu	Cys	Arg	Ser	Ala	Va]
	1				5					10					15	
	Pro	Arg	Glu	Pro	Thr	Val	Gln	Cys	Gly	Ser	Glu	Thr	Gly	Pro	Ser	Pro
				20					25					30		
	Glu	Trp	Met	Leu	Gln	His	Asp	Leu	Ile	Pro	Gly	Asp	Leu	Arg	Asp	Let
10			35					40					45			
	Arg	Val	Glu	Pro	Val	Thr	Thr	Ser	Val	Ala	Thr	Gly	Asp	Tyr	Ser	Ile
		50	٠				55					60				
	Leu	Met	Asn	Val	Ser	Trp	Val	Leu	Arg	Ala	Asp	Ala	Ser	Ile	Arg	Let
	65					70					75					80
15	Leu	Lys	Ala	Thr	Lys	Ile	Cys	Val	Thr	Gly	Lys	Ser	Asn	Phe	Gln	Sea
					85					90					95	
	Tyr	Ser	Cys	Val	Arg	Cys	Asn	Tyr	Thr	Glu	Ala	Phe	Gln	Thr	Gln	Thi
				100					105					110		
	Arg	Pro	Ser	Gly	Gly	Lys	Trp	Thr	Phe	Ser	Tyr	Ile	Gly	Phe	Pro	Val
20			115					120					125			
	Glu	Leu	Asn	Thr	Val	Tyr	Phe	Ile	Gly	Ala	His	Asn	Ile	Pro	Asn	Ala
		130					135					140				
	Asn	Met	Asn	Glu	Asp	Gly	Pro	Ser	Met	Ser	Val	Asn	Phe	Thr	Ser	Pro
	145					150					155					160
25	Gly	Cys	Leu	Asp	His	Ile	Met	Lys	Tyr	Lvs	Lvs	Lvs	Cys	Val	Lys	Ala

					165					170					175	
	Gly	Ser	Leu	Trp	Asp	Pro	Asn	Ile	Thr	Ala	Cys	Lys	Lys	Asn	Glu	Glu
				180					185					190		
	Thr	Val	Glu	Val	Asn	Phe	Thr	Thr	Thr	Pro	Leu	Gly	Asn	Arg	Tyr	Met
5			195					200					205			
	Ala	Leu	Ile	Gln	His	Ser	Thr	Ile	Ile	Gly	Phe	Ser	Gln	Val	Phe	Glu
		210					215					220				
	Pro	His	Gln	Lys	Lys	Gln	Thr	Arg	Ala	Ser	Val	Val	Ile	Pro	Val	Thr
	225					230					235					240
10	Gly	Asp	Ser	Glu	Gly	Ala	Thr	Val	Gln	Leu	Thr	Pro	Tyr	Phe	Pro	Thr
					245					250					255	
	Cys	Gly	Ser	Asp	Cys	Ile	Arg	His	Lys	Gly	Thr	Val	Val	Leu	Cys	Pro
				260					265					270		
	Gln	Thr	Gly	Val	Pro	Phe	Pro	Leu	Asp	Asn	Asn	Lys	Ser	Lys	Pro	Gly
15			275					280					285			
	Gly	Trp	Leu	Pro	Leu	Leu	Leu	Leu	Ser	Leu	Leu	Val	Ala	Thr	Trp	Val
		290					295	•				300				
	Leu	Val	Ala	Gly	Ile	Tyr	Leu	Met	Trp	Arg	His	Glu	Arg	Ile	Lys	Lys
	305					310	ı				315					320
20	Thr	Ser	Phe	Ser	Thr	Thr	Thr	Leu	Leu	Pro	Pro	Ile	Lys	Val	Leu	Val
					325					330					335	
	Val	Tyr	Pro	Ser	Glu	Ile	Cys	Phe	His	His	Thr	Ile	Cys	Tyr	Phe	Thr
				340)				345	;				350		
	Glu	. Phe	Leu	ı Glr	Asn	His	S Cys	Arg	Ser	Glu	\Val	. Ile	e Leu	Glu	Lys	Trp
25			355	5				360)				365	,		

	Gln	Lys	Lys	Lys	Ile	Ala	Glu	Met	Gly	Pro	Val	Gln	Trp	Leu	Ala	Thr
		370					375					380				
	Gln	Lys	Lys	Ala	Ala	Asp	Lys	Val	Val	Phe	Leu	Leu	Ser	Asn	Asp	Val
	385					390					395					400
5	Asn	Ser	Val	Cys	Asp	Gly	Thr	Cys	Gly	Lys	Ser	Glu	Gly	Ser	Pro	Ser
					405					410					415	
	Glu	Asn	Ser	Gln	Asp	Leu	Phe	Pro	Leu	Ala	Phe	Asn	Leu	Phe	Cys	Ser
				420					425					430		
	Asp	Leu	Arg	Ser	Gln	Ile	His	Leu	His	Lys	Tyr	Val	Val	Val	Tyr	Phe
10			435					440					445			
	Arg	Glu	Ile	Asp	Thr	Lys	Asp	Asp	Tyr	Asn	Ala	Leu	Ser	Val	Cys	Pro
		450					455					460				
	Lys	Tyr	His	Leu	Met	Lys	Asp	Ala	Thr	Ala	Phe	Cys	Ala	Glu	Leu	Leu
	465					470					475					480
15	His	Val	Lys	Gln	Gln	Val	Ser	Ala	Gly	Lys	Arg	Ser	Gln	Ala	Cys	His
					485					490					495	
	Asp	Gly	Cys	Cys	Ser	Leu										
				500												
20	<21	0> 3	7													
	<21	1> 33	36													
	<21	2> PI	RT													
	<21:	3> H	omo :	sapie	ens							•				
	<400	0> 3	7													
25	Met	Arg	Ala	Pro	Ser	Met	Asp	Arg	Ala	Ala	Val	Ala	Arg	Val	Gly	Ala

	1				5					. 10					15	
	Val	Ala	Ser	Ala	Ser	Val	Cys	Ala	Leu	Val	Ala	Gly	Val	Val	Leu	Ala
				20					25					30		
	Gln	Tyr	Ile	Phe	Thr	Leu	Lys	Arg	Lys	Thr	Gly	Arg	Lys	Thr	Lys	Ile
5			35					40					45			
	Ile	Glu	Met	Met	Pro	Glu	Phe	Gln	Lvs	Ser	Ser	Val	Arg	Ile	Lvs	Asn
		50					55		•			60				
	Dro		7.~~	17-1	C1	C1		Tla	C	C1	T a		T	C1	C1	71-
		TIIT	Arg	Val	GIU		TTE	TTE	cys	стА		116	ήλε	сту	GTÀ	
	65					70					75					80
10	Ala	Lys	Leu	Gln	Ile	Ile	Thr	Asp	Phe	Asp	Met	Thr	Leu	Ser	Arg	Phe
					85					90					95	
•	Ser	Tyr	Lys	Gly	Lys	Arg	Cys	Pro	Thr	Cys	His	Asn	Ile	Ile	Asp	Asn
				100					105					110		
	Cys	Lys	Leu	Val	Thr	Asp	Glu	Cys	Arg	Lys	Lys	Leu	Leu	Gln	Leu	Lys
15			115					120					125			
	Glu	Lys	Tyr	Tyr	Ala	Ile	Glu	Val	Asp	Pro	Val	Leu	Thr	Val	Glu	Glu
		130					135					140				
	Lys	Tyr	Prø	Tyr	Met	Val	Glu	Trp	Tyr	Thr	Lys	Ser	His	Gly	Leu	Leu
	145					150					155					160
20	Val	Gln	Gln	Ala	Leu	Pro	Lys	Ala	Lvs	Leu	Lys	Glu	Ile	Val	Ala	Glu
					165		•		•	170	•				175	
	Sor	Asn	Wal	Mat		T.ve	C1.,	C1++	Tres		7 cn	Dho	Dha	Nam		7.00
•	Ser	waħ	vaı	Met		пуз	GIU	GIĀ		GIU	ASII	FILE	PHE		пÃ2	Leu
	<u>.</u>		4.0	180					185					190		
	Gln	Gln	His	Ser	Ile	Pro	Val	Phe	Ile	Phe	Ser	Ala	Gly	Ile	Gly	Asp
25			195					200					205			

	Val	Leu	Glu	Glu	Val	Ile	Arg	Gln	Ala	Gly	Val	Tyr	His	Pro	Asn	Val
		210					215					220				
	Lys	Val	Val	Ser	Asn	Phe	Met	Asp	Phe	Asp	Glu	Thr	Gly	Val	Leu	Lys
	225					230					235					240
5	Gly	Phe	Lys	Gly	Glu	Leu	Ile	His	Val	Phe	Asn	Lys	His	Asp	Gly	Ala
					245					250					255	
	Leu	Arg	Asn	Thr	Glu	Tyr	Phe	Asn	Gln	Leu	Lys	Asp	Asn	Ser	Asn	Ile
				260					265					270		
	Ile	Leu	Leu	Gly	Asp	Ser	Gln	Gly	Asp	Leu	Arg	Met	Ala	Asp	Gly	Val
10			275					280					285			
	Ala	Asn	Val	Glu	His	Ile	Leu	Lys	Ile	Gly	Tyr	Leu	Asn	Asp	Arg	Val
		290					295					300				
	Asp	Glu	Leu	Leu	Glu	Lys	Tyr	Met	Asp	Ser	Tyr	Asp	Ile	Val	Leu	Val
	305					310					315		·			320
15	Gln	Asp	Glu	Ser	Leu	Glu	Val	Ala	Asn	Ser	Ile	Leu	Gln	Lys	Ile	Leu
					325					330					335	
	<210)> 38	3													
	<213	L> 34	10													
20	<212	2> PF	T													
	<213	3> Ho	omo s	sapie	ens											
	<400)> 38	3													
	Met	Glu	Pro	Gly	Arg	Thr	Gln	Ile	Lys	Leu	Asp	Pro	Arg	Tyr	Thr	Ala
	1				5			•		10					15	
25	Asp	Leu	Leu	Glu	Val	Leu	Lys	Thr	Asn	Tyr	Gly	Ile	Pro	Ser	Ala	Cys

				20					25					30		
	Phe	Ser	Gln	Pro	Pro	Thr	Ala	Ala	Gln	Leu	Leu	Arg	Ala	Leu	Gly	Pro
			35					40					45			
	Val	Glu	Leu	Ala	Leu	Thr	Ser	Ile	Leu	Thr	Leu	Leu	Ala	Leu	Gly	Ser
5		50					55					60				
	Ile	Ala	Ile	Phe	Leu	Glu	Asp	Ala	Val	Tyr	Leu	Tyr	Lys	Asn	Thr	Leu
	65					70					75					80
	Cys	Pro	Ile	Lys	Arg	Arg	Thr	Leu	Leu	Trp	Lys	Ser	Ser	Ala	Pro	Thr
					85					90					95	
10	Val	Val	Ser	Val	Leu	Cys	Cys	Phe	Gly	Leu	Trp	Ile	Pro	Arg	Ser	Leu
				100					105					110		
	Val	Leu	Val	Glu	Met	Thr	Ile	Thr	Ser	Phe	Tyr	Ala	Val	Cys	Phe	Tyr
			115					120					125			
	Leu	Leu	Met	Leu	Val	Met	Val	Glu	Gly	Phe	Gly	Gly	Lys	Glu	Ala	Val
15		130					135					140				
	Leu	Arg	Thr	Leu	Arg	Asp	Thr	Pro	Met	Met	Val	His	Thr	Gly	Pro	Суз
	145					150					155					160
	Cys	Cys	Суз	Cys	Pro	Cys	Cys	Pro	Arg	Leu	Leu	Leu	Thr	Arg	Lys	Lys
					165					170					175	
20	Leu	Gln	Leu	Leu	Met	Leu	Gly	Pro	Phe	Gln	Tyr	Ala	Phe	Leu	Lys	Ile
				180					185					190		
	Thr	Leu	Thr	Leu	Val	Gly	Leu	Phe	Leu	Ile	Pro	Asp	Gly	Ile	Tyr	Asp
			195					200					205			
	Pro	Ala	Asp	Ile	Ser	Glu	Gly	Ser	Thr	Ala	Leu	Trp	Ile	Asn	Thr	Phe
25		210					215					220				

	Leu	Gly	Val	Ser	Thr	Leu	Leu	Ala	Leu	Trp	Thr	Leu	Gly	Ile	Ile	Ser
	225					230		,			235					240
	Arg	Gln	Ala	Arg	Leu	His	Leu	Gly	Glu	Gln	Asn	Met	Gly	Ala	Lys	Phe
					245					250					255	
5	Ala	Leu	Phe	Gln	Val	Leu	Leu	Ile	Leu	Thr	Ala	Leu	Gln	Pro	Ser	Ile
				260					265					270		
	Phe	Ser	Val	Leu	Ala	Asn	Gly	Gly	Gln	Ile	Ala	Cys	Ser	Pro	Pro	Туг
			275					280	•				285			
	Ser	Ser	Lys	Thr	Arg	Ser	Gln	Val	Met	Asn	Cys ·	His	Leu	Leu	Ile	Leu
10		290			•		295					300				
	Glu	Thr	Phe	Leu	Met	Thr	Val	Leu	Thr	Arg	Met	Tyr	Tyr	Arg	Arg	Lys
	305					310					315					320
	Asp	His	Lys	Val	Gly	Tyr	Glu	Thr	Phe	Ser	Ser	Pro	Asp	Leu	Asp	Leu
					325					330					335	
15	Asn	Leu	Lys	Ala												
				340												
	<210	O> 39	9													
	<21	1> 22	23		,											
20	<212	2> PI	RT													
	<21	3> Ho	omo :	sapi	ens											
	<400)> 39	9													
	Met	Leu	Trp	Arg	Gln	Leu	Ile	Tyr	Trp	Gln	Leu	Leu	Ala	Leu	Phe	Phe
	1				5					10					15	
25	Leu	Pro	Phe	Cys	Leu	Cys	Gln	Asp	Glu	Tyr	Met	Glu	Val	Ser	Glv	Arc

					20					25					30		
		Thr	Asn	Lys	Val	Val	Ala	Arg	Ile	Val	Gln	Ser	His	Gln	Gln	Thr	Gly
				35					40				٠	45			
		Arg	Ser	Gly	Ser	Arg	Arg	Glu	Lys	Val	Arg	Glu	Arg	Ser	His	Pro	Lys
	5		50					55					60				
		Thr	Gly	Thr	Val	Asp	Asn	Asn	Thr	Ser	Thr	Asp	Leu	Lys	Ser	Leu	Arg
		65					70					75					80
		Pro	Asp	Glu	Leu	Pro	His	Pro	Glu	Val	Asp	Asp	Leu	Ala	Gln	Ile	Thr
						85					90					95	
1	.0	Thr	Phe	Trp	Gly	Gln	Ser	Pro	Gln	Thr	Gly	Gly	Leu	Pro	Pro	Asp	Cys
					100					105					110		
		Ser	Lys	Cys	Cys	His	Gly	Asp	Tyr	Ser	Phe	Arg	Gly	Tyr	Gln	Gly	Pro
				115					120					125			
		Pro	Gly	Pro	Pro	Gly	Pro	Pro	Gly	Ile	Pro	Gly	Asn	His	Gly	Asn	Asn
. 1	.5		130	•				135					140				
		Gly	Asn	Asn	Gly	Ala	Thr	Gly	His	Glu	Gly	Ala	Lys	Gly	Glu	Lys	Gly
		145					150					155					160
		Asp	Lys	Gly	Asp	Leu	Gly	Pro	Arg	Gly	Glu	Arg	Gly	Gln	His	Gly	Pro
						165					170	•				175	
2	:0 ·	Lys	Gly	Glu	Lys	Gly	Tyr	Pro	Gly	Ile	Pro	Pro	Glu	Leu	Gln	Ile	Ala
					180					185					190		
		Phe	Met	Ala	Ser	Leu	Ala	Thr	His	Phe	Ser	Asn	Gln	Asn	Ser	Gly	Ile
				195					200					205			
		Ile	Phe	Ser	Ser	Val	Glu	Thr	Asn	Ile	Gly	Asn	Phe	Leu	Met	Ser	
2	25		210					215					220				

	<21	0> 4	0													
	<21	1> 3	09													
	<21	2> PI	RT													
5	<21	3> H	omo :	sapi	ens											
	<40	0> 40	0													
	Met	Ala	Thr	Leu	Ser	Val	Ile	Gly	Ser	Ser	Ser	Leu	Ile	Ala	Tyr	Ala
	1				5					10					15	
	Val	Phe	His	Asn	Ile	Gln	Lys	Ser	Pro	Glu	Ile	Arg	Pro	Leu	Phe	Ty:
10				20					25					30		
	Leu	Ser	Phe	Cys	Asp	Leu	Leu	Leu	Gly	Leu	Cys	Trp	Leu	Thr	Glu	Th:
			35					40					45			
	Leu	Leu	Tyr	Gly	Ala	Ser	Val	Ala	Asn	Lys	Asp	Ile	Ile	Cys	Tyr	Ası
		50					55					60				
15	Leu	Gln	Ala	Val	Gly	Gln	Ile	Phe	Tyr	Ile	Ser	Ser	Phe	Leu	Tyr	Tha
	65					70					75					80
	Val	Asn	Tyr	Ile	Trp	Tyr	Leu	Tyr	Thr	Glu	Leu	Arg	Met	Lys	His	Thi
					85					90					95	
	Gln	Ser	Gly	Gln	Ser	Thr	Ser	Pro	Leu	Val	Ile	Asp	Tyr	Thr	Cys	Arç
20				100					105					110		
	Val	Cys	Gln	Met	Ala	Phe	Val	Phe	Ser	Arg	Cys	Ile	Leu	Met	His	Sei
			115					120					125			
	Pro	Pro	Ser	Ala	Met	Ala	Glu	Leu	Pro	Pro	Ser	Ala	Asn	Thr	Ser	Va]
		130					135					140				
25	Cvs	Ser	Thr	Leu	Tvr	Phe	Tvr	Glv	Tle	בומ	Tle	Phe	T.es:	Glv	Sar	Dha

	145					150					155					160
	Val	Leu	Ser	Leu	Leu	Thr	Ile	Met	Val	Leu	Leu	Ile	Arg	Ala	Gln	Thr
					165					170					175	
	Leu	Tyr	Lys	Lys	Phe	Val	Lys	Ser	Thr	Gly	Phe	Leu	Gly	Ser	Glu	Gln
5				180					185					190		
	Trp	Ala	Val	Ile	His	Ile	Val	Asp	Gln	Arg	Val	Arg	Phe	Tyr	Pro	Val
			195					200					205			
	Ala	Phe	Phe	Cys	Cvs	Trp	Glv	Pro	Ala	Val	Ile	Leu	Met	Ile	Ile	Lys
		210		•	•	•	215					220				•
10	T.011		Luc	Pro	Gln	Δen		Lve	T.011	Hie	Met		T.O.1	Tur	Val	T.e.11
10		1111	Lys	110	· · · · ·	-	****	2,0	200					-1-	·	240
	225					230					235					
	Gln	Ala	Leu	Thr	Ala	Thr	Ser	Gln	Gly	Leu	Leu	Asn	Cys	Gly	Val	Tyr
					245					250					255	
	Gly	Trp	Thr	Gln	His	Lys	Phe	His	Gln	Leu	Lys	Gln	Glu	Ala	Arg	Arg
15				260					265					270		
	Asp	Ala	Asp	Thr	Gln	Thr	Pro	Leu	Leu	Cys	Ser	Gln	Lys	Arg	Phe	Tyr
			275					280					285			
	Ser	Arg	Gly	Leu	Asn	Ser	Leu	Glu	Ser	Thr	Leu	Thr	Phe	Pro	Ala	Ser
		290					295					300				
20	Thr	Ser	Thr	Ile	Phe											
	305															
										•						
	<21	0> 4	1													
٥٢		1> 1														
25	<21	2> D	NA													

95 / 346

<213> Homo sapiens .

<400> 41

5

10

15

atgggcgctt ccagctcctc cgcgctggcc cgcctcggcc tcccagcccg gccctqqccc 60 aggtggeteg gggtegeege getaggaetg geegeegtgg eeetggggae tgtegeetgg 120 cgccgcgcat ggcccaggcg gcgccggcgg ctgcagcagg tgggcaccgt ggcgaagctc 180 tggatctacc cggtgaaatc ctgcaaaggg gtgccggtga gcgaggctga gtgcacggcc 240 atggggctgc gcagcggcaa cctgcgggac aggttttggc tggtgattaa ggaagatgga 300 cacatggtca ctgcccgaca ggagcctcgc ctcgtgctca tctccatcat ttatgagaat 360 aactgcctga tcttcagggc tccagacatg gaccagctgg ttttgcctag caagcagcct 420 tecteaaaca aacteeacaa etgeaggata tttggeettg acattaaagg cagagaetgt 480 ggcaatgagg cagctaagtg gttcaccaac ttcttgaaaa ctgaagcgta tagattggtt 540 caatttgaga caaacatgaa gggaagaaca tcaagaaaac ttctccccac tcttgatcag 600 aatttccagg tggcctaccc agactactgc ccgctcctga tcatgacaga tgcctccctg 660 gtagatttga ataccaggat ggagaagaaa atgaaaatgg agaatttcag gccaaatatt 720 gtggtgaccg gctgtgatgc ttttgaggag gatacctggg atgaactcct aattggtagt 780 gtagaagtga aaaaggtaat ggcatgcccc aggtgtattt tgacaacggt ggacccagac 840 actggagtca tagacaggaa acagccactg gacaccctga agagctaccg cctgtgtgat 900 ccttctgaga gggaattgta caagttgtct ccactttttg ggatctatta ttcagtggaa 960 aaaattggaa geetgagagt tggtgaeeet gtgtategga tggtgtag 1008

20

<210> 42

<211> 627

<212> DNA

<213> Homo sapiens

25 <400> 42

96/346

atggagctgc	gcgcggcact	ggtcctggtg	gtcctcctca	tcgccggggg	tctcttcatg	60
ttcacctaca	agtccacaca	gttcaacgtg	gagggcttcg	ccttggtgct	gggggcctcg	120
ttcatcggtg	gcattcgctg	gaccctcacc	cagatgctcc	tgcagaaggc	tgaactcggc	180
ctccagaatc	ccatcgacac	catgttccac	ctgcagccac	tcatgttcct	ggggctcttc	240
cctctctttg	ctgtatttga	aggtctccat	ttgtccacat	ctgagaaaat	cttccgtttc	300
caggacacag	ggctgctcct	gcgggtactt	gggagcctct	tccttggcgg	gattctcgcc	360
tttggtttgg	gcttctctga	gttcctcctg	gtctccagaa	cctccagcct	cactctctcc	420
attgccggca	tttttaagga	agtctgcact	ttgctgttgg	cagctcatct	gctgggcgat	480
cagatcagcc	tcctgaactg	gctgggcttc	gccctctgcc	tctcgggaat	atccctccac	540
gttgccctca	aagccctgca	ttccagaggt	aacccagagt	cccttccaga	agcctctgtt	600
ttctgttctt	ctccctgtga	ctcttag				627

<210> 43

15 <211> 1221

5

10

20

25

<212> DNA

<213> Homo sapiens

<400> 43

atggcggcag gcgccgggc cgggtccgcg ccgcgctggc tgagggcgct gagcgagccg 60 ctgagcgcgg cgcagctgcg gcgactggag gagcaccgct acagcgcggc gggcgtctcg 120 ctgctcgagc cgccgctgca gctctactgg acctggctgc tccagtggat cccgctctgg 180 atggccccca actccatcac cctgctgggg ctcgccgtca acgtggtcac cacgctcgtg 240 ctcatctcct actgtcccac ggccaccgaa gaggcaccat actggacata ccttttatgt 300 gcactgggac tttttattta ccagtcactg gatgctattg atgggaaaca agccagaaga 360 acaaactctt gttcccttt aggggagctc tttgaccatg gctgtgactc tcttccaca 420

97 /346

gtatttatgg cagtgggagc ttcaattgcc gctcgcttag gaacttatcc tgactggttt 480 tttttctgct cttttattgg gatgtttgtg ttttattgcg ctcattggca gacttatgtt 540 tcaggcatgt tgagatttgg aaaagtggat gtaactgaaa ttcagatagc tttagtgatt 600 gtctttgtgt tgtctgcatt tggaggagca acaatgtggg actatacgat tcctattcta 660 5 gaaataaaat tgaagatcct tccagttctt ggatttctag gtggagtaat attttcctgt 720 tcaaattatt tccatgttat cctccatggt ggtgttggca agaatggatc cactatagca 780 ggcaccagtg tettgtcacc tggactccac ataggactaa ttattatact qqcaataatq 840 atctataaaa agtcagcaac tgatgtgttt gaaaagcatc cttgtcttta tatcctaatg 900 tttggatgtg tctttgctaa agtctcacaa aaattagtgg tagctcacat gaccaaaagt 960 10 gaactatatc ttcaagacac tgtctttttg gggccaggtc ttttgttttt agaccagtac 1020 tttaataact ttatagacga atatgttgtt ctatggatgg caatggtgat ttcttcattt 1080 gatatggtga tatactttag tgctttgtgc ctgcaaattt caagacacct tcatctaaat 1140 atattcaaga ctgcatgtca tcaagcacct gaacaggttc aagttctttc ttcaaagagt 1200 catcagaata acatggattg a 1221

15

25

<210> 44

<211> 1857

<212> DNA

<213> Homo sapiens

20 <400> 44

atggaggtga agaactttgc agtttgggat tatgttgtat ttgcagccct cttttcatt 60 tcctctggaa ttggggtgtt ctttgccatt aaggaggaga aaaaggcaac ttcccgagag 120 ttcctggttg ggggaaggca aatgagcttt ggccctgtcg gcttgtctct gacagccagc 180 ttcatgtcag ctgtcacggt cctggggacc ccttctgaag tctaccgctt tggggcatcc 240 ttcctagtct tcttcattgc ttacctattt gtcatcctct taacatcaga gctctttctc 300

5

10

15

20

25

98 /346

cctgtgttct acagatctgg tatcaccagc acttatgagt acttacaact acgattcaac 360 aaaccagttc gctatgctgc cacagtcatc tacattgtac agacgattct ctacacagga 420 gtggtggtgt atgctcctgc cctggcactc aatcaagtga ctgggtttga tctctggggc 480 tctgtgtttg caacaggaat tgtttgcaca ttctactgta ccctgggagg attaaaagca 540 gtggtgtgga cagatgcatt tcagatggtt gtcatgattg tgggcttctt aacggttctc 600 attcaaggat caactcatgc tgggggattc cacaatgtat tagagcaatc aacaaatgga 660 tctcgactac atatatttga ctttgatgta gatcctctca ggcgacacac tttttggact 720 atcacagtgg gaggaacttt tacttggctc ggaatctatg gggtcaatca atcaactatt 780 caqcqatqca tctcttqcaa aacagaaaag catgctaagc ttgccttgta ttttaacttg 840 ctqqqtctct ggatcattct ggtgtgtgct gtcttctctg gcttaatcat gtactctcac 900 tttaaagact gtgacccttg gacttctggc atcatctcag caccagacca gctgatgccg 960 tactttgtca tggagatatt tgccacaatg ccaggactgc caggactttt tgtggcttgt 1020 qccttcaqtq qaactctgag caccgtggct tccagcatca atgccttggc aacagtgacc 1080 tttgaggatt ttgtcaagag ctgttttcct catctctccg acaagctgag cacctggatc 1140 agtaaagget tatgtetett atttggegtg atgtgtacet etatggetgt ggetgeatet 1200 gtcatgggag gtgttgtgca ggcttccctc agcattcacg gcatgtgtgg aggaccaatg 1260 ctgggcttat tctccctggg aatcgtgttc ccttttgtga actggaaggg tgcactagga 1320 qqtcttctta ctqqaatcac cttqtcattt tqqqtqqcca ttqqqqqcctt catttaccct 1380 gtgacagcaa cagggcctcc agtactatcc agcagacctg gaatagctga tacctggtac 1500 tegateteet acetttaeta cagtgeagtg ggetgettag gatgeattgt tgctggagta 1560 atcatcagcc tcataacagg tcgccaaaga ggtgaggata ttcaaccact gttaattaga 1620 ccagtttgta atttattttg cttttggtct aagaagtaca aaacactatg ctggtgcgga 1680 gttcagcatg acagtgggac agagcaggaa aaccttgaga atggcagtgc ccggaaacag 1740 ggggctgaat ctgtcttaca gaacggactc agaagagaaa gcctggtaca tgttccaggc 1800

99/346

tatgatccta aggacaaaag ctacaacaat atggcatttg agactaccca tttctaa 1857

<210> 45

<211> 627

5 <212> DNA

10

15

<213> Homo sapiens

<400> 45

atgggactcg gcgcgcgagg tgcttgggcc gcgctgctcc tggggacgct gcaggtgcta 60 gcgctgctgg gggccgccca tgaaagcgca gccatggcgg catctgcaaa catagagaat 120 tctgggcttc cacacaactc cagtgctaac tcaacagaga ctctccaaca tgtgccttct 180 gaccatacaa atgaaacttc caacagtact gtgaaaccac caacttcagt tgcctcagac 240 tccagtaata caacggtcac caccatgaaa cctacagcgg catctaatac aacaacacca 300 gggatggtct caacaaatat gacttctacc accttaaagt ctacacccaa aacaacaca 360 gtttcacaga acacatctca gatatcaaca tccacaatga ccgtaaccca caatagttca 420 gtgacatctg ctgcttcatc agtaacaatc acaacaacta tgcattctga agcaaagaaa 480 ggatcaaaaat ttgatactgg gagctttgt ggtggtattg tattaacgct gggagtttta 540 tctattcttt acattggatg caaaatgtat tactcaagaa gaggcattcg gtatcgaacc 600 atagatgaac atgatgccat catttaa

20 <210> 46

<211> 1509

<212> DNA

<213> Homo sapiens

<400> 46

25 atgtcgctcg tgctgctaag cctggccgcg ctgtgcagga gcgccgtacc ccgagagccg 60

5

10

15

20

25

100/346

accgttcaat gtggctctga aactgggcca tctccagagt ggatgctaca acatgatcta 120 atccegggag acttgaggga cctccgagta gaacctgtta caactagtgt tgcaacaggg 180 gactattcaa ttttgatgaa tgtaagctgg gtactccggg cagatgccag catccgcttg 240 ttgaaggcca ccaagatttg tgtgacggc aaaagcaact tccagtccta cagctgtgtg 300 ttttcctaca tcggcttccc tgtagagctg aacacagtct atttcattgg ggcccataat 420 attoctaatg caaatatgaa tgaagatggc cottocatgt ctqtqaattt cacctcacca 480 ggctgcctag accacataat gaaatataaa aaaaagtgtg tcaaggccgg aagcctgtgg 540 gatccgaaca tcactgcttg taagaagaat gaggagacag tagaagtgaa cttcacaacc 600 actoccotgg gaaacagata catggotott atocaacaca gcactatoat cggqttttot 660 caggtgtttg agccacacca gaagaaacaa acgcgagctt cagtggtgat tccagtgact 720 ggggatagtg aaggtgctac ggtgcagctg actccatatt ttcctacttg tqqcaqcqac 780 tgcatccgac ataaaggaac agttgtgctc tgcccacaaa caggcqtccc tttccctctg 840 gataacaaca aaagcaagcc gggaggctgg ctqcctctcc tcctqctqtc tctqctqqtq 900 gccacatggg tgctggtggc agggatctat ctaatgtgga ggcacqaaaq qatcaaqaaq 960 acttectttt ctaccaccac actactgeec eccattaagg ttettgtggt ttacccatet 1020 gaaatatgtt tccatcacac aatttgttac ttcactgaat ttcttcaaaa ccattgcaga 1080 agtgaggtca tccttgaaaa gtggcagaaa aagaaaatag cagagatqqq tccaqtqcaq 1140 tggcttgcca ctcaaaagaa ggcagcagac aaagtcgtct tccttctttc caatgacgtc 1200 aacagtgtgt gcgatggtac ctgtggcaag agcgagggca gtcccagtga gaactctcaa 1260 gacctettee ceettgeett taacetttte tgeagtgate taagaageea gatteatetg 1320 cacaaatacg tggtggtcta ctttagagag attgatacaa aagacgatta caatgctctc 1380 agtgtctgcc ccaagtacca cctcatgaag gatgccactg ctttctgtgc agaacttctc 1440 catgtcaagc agcaggtgtc agcaggaaaa agatcacaag cctgccacga tggctgctgc 1500 tccttgtag 1509

101/346

<210> 47

<211> 1011

<212> DNA

5 <213> Homo sapiens

<400> 47

10

15

20

atgagggeec egtecatgga eegegegee gtggegaggg tgggegeggt agegagegee 60 agcgtgtgcg ccctggtggc gggggtggtg ctggctcagt acatattcac cttgaagagg 120 aagacggggc ggaagaccaa gatcatcgag atgatgccag aattccagaa aagttcagtt 180 cgaatcaaga accctacaag agtagaagaa attatctgtg gtcttatcaa aggaggagct 240 gccaaacttc agataataac ggactttgat atgacactca gtagattttc atataaaggg 300 aaaagatgcc caacatgtca taatatcatt gacaactgta agctggttac agatgaatgt 360 agaaaaaagt tattgcaact aaaggaaaaa tattacgcta ttgaagttga tcctgttctt 420 actgtagaag agaagtaccc ttatatggtg gaatggtata ctaaatcaca tggtttgctt 480 gttcagcaag ctttaccaaa agctaaactt aaagaaattg tggcagaatc tgacqttatg 540 ctcaaagaag gatatgagaa tttctttgat aagctccaac aacatagcat ccccgtgttc 600 atattttegg etggaategg egatgtaeta gaqqaaqtta tteqteaaqe tqqtqtttat 660 catcccaatg tcaaagttgt gtccaatttt atggattttg atgaaactgg ggtgctcaaa 720 ggatttaaag gagaactaat tcatgtattt aacaaacatg atggtgcctt gaggaataca 780 gaatatttca atcaactaaa agacaatagt aacataattc ttctgggaga ctcccaagga 840 gacttaagaa tggcagatgg agtggccaat gttgagcaca ttctgaaaat tggatatcta 900 aatgatagag tggatgagct tttagaaaag tacatggact cttatgatat tgttttagta 960 caagatgaat cattagaagt agccaactct attttacaga agattctata a 1011

PCT/JP00/09359 WO 01/49728

102/346

<211> 1023

<212> DNA

<213> Homo sapiens

<400> 48

5

15

20

atggageegg geaggaceea gataaagett gaceeeaggt acacageaga tettetggag 60 gtgctgaaga ccaattacgg catcccctcc gcctgcttct ctcagcctcc cacagcagcc 120 caactcctga gagccctggg ccctgtggaa cttgccctca ctagcatcct gaccttgctg 180 gcgctgggct ccattgccat cttcctggag gatgccgtct acctgtacaa gaacaccctt 240 tgccccatca agaggcggac tctgctctgg aagagctcgg cacccacqqt gqtqtctqtg 300 10 ctgtgctgct ttggtctctg gatccctcgt tccctggtgc tggtggaaat gaccatcacc 360 tegttttatg cegtgtgett ttacetgetg atgetggtea tggtggaagg etttgggggg 420 aaggaggcag tgctgaggac gctgagggac accccgatga tggtccacac aggcccctgc 480 tgctgctgct gcccctgctg tccacggctg ctgctcacca ggaagaagct tcagctgctg 540 atgttgggcc ctttccaata cgccttcttg aagataacgc tgaccctggt gggcctgttt 600 ctcatccccg acggcatcta tgacccagca gacatttctg aggggagcac agctctatgg 660 atcaacactt teettggegt gteeacactg etggetetet ggaceetggg catcatttee 720 cgtcaagcca ggctacacct gggtgagcag aacatgggag ccaaatttgc tctgttccag 780 gtteteetea teetgaetge eetacageee teeatettet eagtettgge caacggtggg 840 cagattgett gttcgcctcc ctattcctct aaaaccaggt ctcaagtgat gaattgccac 900 ctcctcatac tggagacttt tctaatgact gtgctgacac gaatgtacta ccgaaggaaa 960 gaccacaagg ttgggtatga aactttctct tctccagacc tggacttgaa cctcaaagcc 1020 taa 1023

<210> 49

25 <211> 672

103/346

<212> DNA

<213> Homo sapiens

<400> 49

atgetttgga ggeageteat etattggeaa etgetggett tgttttteet ecetttttge 60 5 ctgtgtcaag atgaatacat ggaggtgagc ggaagaacta ataaagtggt ggcaagaata 120 gtgcaaagcc accagcagac tggccgtagc ggctccagga gggagaaagt gagagagcgg 180 agccatccta aaactgggac tgtggataat aacacttcta cagacctaaa atccctgaga 240 ccagatgage taccgcacce egaggtagat gacctagece agateaceae attetgggge 300 cagtetecae aaaceggagg actaececea gaetgeagta agtgttgtea tggagaetae 360 10 agctttcgag gctaccaagg cccccctggg ccaccgggcc ctcctggcat tccaggaaac 420 catggaaaca atggcaacaa tggagccact ggtcatgaag gagccaaagg tgagaagggc 480 gacaaaggtg acctggggcc tcgaggggag cgggggcagc atggccccaa aggagagaag 540 ggctacccgg ggattccacc agaacttcag attgcattca tggcttctct ggcaacccac 600 ttcagcaatc agaacagtgg gattatcttc agcagtgttg agaccaacat tggaaacttc 660 15 ttgatgtcat ga 672

<210> 50

<211> 930

<212> DNA

20 <213> Homo sapiens

<400> 50

25

atgetacte tgagtgttat aggttcaagt teacttattg cetatgetgt attecataat 60 atacagaaat etecagagat aagaceaett ttttatetga gettetgtga eetgeteetg 120 ggaetttget ggetcaegga gaeaettete tatggagett eagtageaaa taaggaeate 180 atetgetata acetacaage agttggaeag atattetaca ttteeteatt teetacaee 240

104/346

gtcaattaca totggtattt gtacacagag ctgaggatga aacacaccca gagtggacag 300
agcacatctc cactggtgat agattatact tgtcgagttt gtcaaatggc ctttgttttc 360
tcaaggtgta tottgatgca otcaccacca tcagccatgg otgaacttcc accttctgcc 420
aacacatctg totgtagcac actttattt tatggtatcg ccattttcct gggcagcttt 480
gtactcagcc toottaccat tatggtotta ottatccgag occagacatt gtataagaag 540
tttgtgaagt caactggott totggggagt gaacagtggg cagtgattca cattgtggac 600
caacgggtgc gottotaccc agtggoottc tittgctgct ggggcccage tgtcattcta 660
atgatcataa agctgactaa gccacaggac accaagcttc acatggccot ttatgttctc 720
caggototaa oggcaacatc tcagggtota otcaactgtg gagtatatgg otggacgcag 780
cacaaattcc accaactaaa gcaggaggct oggcgtgatg cagataccca gacaccatta 840
ttatgotoac gtacttotac catttttga

<210> 51

15 <211> 1617

5

10

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

20 <222> (255)..(1262)

<400> 51

25

cacggegece agggtacce egeogetgte tgeetgtett eetecattae egegeagget 60 tggteacege attaaggeat teeegetete egeggaactg etetgeegte teggeggtga 120 aagtgtgaga gggteegtag ttgggteaac tttgaeteet etegeetgee eggateetta 180 agggeeteet egteeteeg gteteeggte getgeegggt etgtgegeeg gteegegee 240

	gccctcgc	tc tgc	c atg	ggc	gct	tcc	agc	tcc	tcc	gcg	ctg	gcc	cgc	CTC	290
			Met	Gly	Ala	Ser	Ser	Ser	Ser	Ala	Leu	Ala	Arg	Leu	
			1				5					10			
	ggc ctc	cca go	c cgg	ccc	tgg	ccc	agg	tgg	ctc	ggg	gtc	gcc	gcg	cta	338
5	Gly Leu	Pro Al	a Arg	Pro	Trp	Pro	Arg	Trp	Leu	Gly	Val	Ala	Ala	Leu	
		15				20					25				
	gga ctg	gcc gc	c gtg	gcc	ctg	ggg	act	gtc	gcc	tgg	cgc	cgc	gca	tgg	386
	Gly Leu	Ala Al	a Val	Ala	Leu	Gly	Thr	Val	Ala	Trp	Arg	Arg	Ala	Trp	
	30				35					40					
10	ccc agg	cgg cg	c cgg	cgg	ctg	cag	cag	gtg	ggc	acc	gtg	gcg	aag	ctc	434
	Pro Arg	Arg Ar	g Arg	Arg	Leu	Gln	Gln	Val	Gly	Thr	Val	Ala	Lys	Leu	
	45			50					55					60	
	tgg atc	tac co	g gtg	aaa	tcc	tgc	aaa	ggg	gtg	ccg	gtg	agc	gag	gct	482
	Trp Ile	Tyr Pi	o Val	Lys	Ser	Cys	Lys	Gly	Val	Pro	Val	Ser	Glu	Ala	
15			65					70					75		
	gag tgc	acg go	c atg	ggg	ctg	cgc	agc	ggc	aac	ctg	cgg	gac	agg	ttt	530
	Glu Cys	Thr A	a Met	Gly	Leu	Arg	Ser	Gly	Asn	Leu	Arg	Asp	Arg	Phe	
			30				85					90			
	tgg ctg	gtg a	t aag	gaa	gat	gga	cac	atg	gtc	act	gcc	cga	cag	gag	578
20	Trp Leu	Val I	le Lys	Glu	Asp	Gly	His	Met	Val	Thr	Ala	Arg	Gln	Glu	
		95				100					105				
	cct cgc	ctc g	tg cto	ato	tcc	atc	att	tat	gag	aat	aac	tgc	ctg	atc	626
	Pro Arg	Leu V	al Leu	ılle	Ser	Ile	Ile	Tyr	Glu	Așn	Asn	Cys	Leu	Ile	
	110				115					120)				
25	ttc agg	gct c	ca gad	ato	gac	cag	ctg	gtt	ttg	cct	ago	aag	cag	cct	674

	Phe	Arg	Ala	Pro	Asp	Met	Asp	Gln	Leu	Val	Leu	Pro	Ser	Lys	Gln	Pro	
	125					130					135					140	
	tcc	tca	aac	aaa	ctc	cac	aac	tgc	agg	ata	ttt	ggc	ctt	gac	att	aaa	722
	Ser	Ser	Asn	Lys	Leu	His	Asn	Cys	Arg	Ile	Phe	Gly	Leu	Asp	Ile	Lys	
5					145					150					155		
	ggc	aga	gac	tgt	ggc	aat	gag	gca	gct	aag	tgg	ttc	acc	aac	ttc	ttg	770
	Gly	Arg	Asp	Cys	Gly	Asn	Glu	Ala	Ala	Lys	Trp	Phe	Thr	Asn	Phe	Leu	
				160					165					170			
	aaa	act	gaa	gcg	tat	aga	ttg	gtt	caa	ttt	gag	aca	aac	atg	aag	gga	818
10	Lys	Thr	Glu	Ala	Tyr	Arg	Leu	Val	Gln	Phe	Glu	Thr	Asn	Met	Lys	Gly	
			175					180				•	185			•	
	aga	aca	tca	aga	aaa	ctt	ctc	ccc	act	ctt	gat	cag	aat	ttc	cag	gtg	866
	Arg	Thr	Ser	Arg	Lys	Leu	Leu	Pro	Thr	Leu	Asp	Gln	Asn	Phe	Gln	Val	
		190					195					200				•	
15	gcc	tac	cca	gac	tac	tgc	ccg	ctc	ctg	atc	atg	aca	gat	gcc	tcc	ctg	914
	Ala	Tyr	Pro	Asp	Tyr	Суѕ	Pro	Leu	Leu	Ile	Met	Thr	Asp	Ala	Ser	Leu	
	205					210	•				215					220	
	gta	gat	ttg	aat	acc	agg	atg	gag	aag	aaa	atg	aaa	atg	gag	aat	ttc	962
	Val	Asp	Leu	Asn	Thr	Arg	Met	Glu	Lys	Lys	Met	Lys	Met	Glu	Asn	Phe	
20					225					230					235		
																acc	1010
	Arg	Pro	Asn	Ile	· Val	. Val	Thr	Gly	Cys	Asp	Ala	Phe	Glu			Thr	
				240					245					250			
			gaa														1058
25	Trp	Asp	Glu	Lev	ı Lev	ı Ile	e Gly	ser,	: Val	. Glu	. Val	. Lys	Lys	: Val	. Met	Ala	

107/346

			255					260					265				
	tgc	CCC	agg	tgt	att	ttg	aca	acg	gtg	gac	cca	gac	act	gga	gtc	ata	1106
	Cys	Pro	Arg	Cys	Ile	Leu	Thr	Thr	Val	Asp	Pro	Asp	Thr	Gly	Val	Ile	
		270					275					280					
5	gac	agg	aaa	cag	cca	ctg	gac	acc	ctg	aag	agc	tac	cgc	ctg	tgt	gat	1154
	Asp	Arg	Lys	Gln		Leu	Asp	Thr	Leu	Lys	Ser	Tyr	Arg	Leu	Cys	Asp	
	285				c	290.					295					300	
	cct	tct	gag	agg	gaa	ttg	tac	aag	ttg	tct	cca	ctt	ttt	ggg	atc	tat	1202
~	Pro	Ser	Glu	Arg	Glu	Leu	Tyr	Lys	Leu	Ser	Pro	Leu	Phe	Gly	Ile	Tyr	
10					305					310					315		
	tat	tca	gtg	gaa	aaa	att	gga	agc	ctg	aga	gtt	ggt	gac	cct	gtg	tat	1250
	Tyr	Ser	Val	Glu	Lys	Ile	Gly	Ser	Leu	Arg	Val	Gly	Asp	Pro	Val	Tyr	
				320					325					330			
	cgg	atg	gtg	tagt	gato	gag t	gato	gato	cc ac	tago	gtga	a tat	ggct	tca			1299
15	Arg	Met	Val														
			335														
	gcaa	accag	gga ç	ggat	tgad	et ga	gato	ettaa	a caa	cago	agc	aacq	gatac	cat o	cagca	aatcc	1359
	ttat	tato	ca g	gcctt	caac	ct at	cttt	acco	tgc	jaaaa	ıcaa	tcto	gatt	tt 1	tgact	tttca	1419
	aagt	tgtg	gta t	gcto	ccago	jt ta	atgo	aagg	j aaa	igtat	tag	aggg	ggga	aat a	atgaa	agtat	1479
20	atat	cataa	at t	ttag	ggtac	et ga	aggo	ttta	a aaa	ataa	atta	agat	cato	caa a	aaato	ctatt	1539
	ttga	atgt	ta t	cato	ggcta	it ta	cact	ttta	ctt	ccto	act	ttaa	tatt	ga 1	cgaat	aaagc	1599
	aagt	ttaa	atg a	aatca	act												1617

<210> 52

25 <211> 1749

	<21	2> D	NA														
	<213> Homo sapiens																
	<22	0>															
	<22	1> C	DS														
5	<22	2> (159)	(7	85)												
	<40	0> 5	2														
	gca	cttc	cgg	tggg	gagai	tt c	cggc	ctgg	a gc	tccc	aggg	ccg	agca	gac (cttg	ggacct	60
	gtg	agcg	ctg	catc	caati	ta a	ccat	ggga	a gg	gtca	gcac	cag	ccac	cag (ccc	ttaggt	120
	gag	gact	ctc	cctg	gggct	tc to	gctg	atgg	t tc	cgaat	tc at	tg ga	ag c	tg c	gc go	cg gca	176
10											Me	et G	lu L	eu A	rg A	la Ala	
												1				5	
	ctg	gtc	ctg	gtg	gtc	ctc	ctc	atc	gcc	ggg	ggt	ctc	ttc	atg	ttc	acc	224
	Leu	Val	Leu	Val	Val	Leu	Leu	Ile	Ala	Gly	Gly	Leu	Phe	Met	Phe	Thr	
				10					15					20			
15	tac	aag	tcc	aca	cag	ttc	aac	gtg	gag	ggc	ttc	gcc	ttg	gtg	ctg	ggg	272
	Tyr	Lys	Ser	Thr	Gln	Phe	Asn	Val	Glu	Gly	Phe	Ala	Leu	Val	Leu	Gly	
			25					30					35				
	gcc	tcg	ttc	atc	ggt	ggc	att	cgc	tgg	acc	ctc	acc	cag	atg	ctc	ctg	320
	Ala	Ser	Phe	Ile	Gly	Gly	Ile	Arg	Trp	Thr	Leu	Thr	Gln	Met	Leu	Leu	
20		40					45					50					
	cag	aag	gct	gaa	ctc	ggc	ctc	cag	aat	ccc	atc	gac	acc	atg	ttc	cac	368
		Lys	Ala	Glu	Leu	Gly	Leu	Gln	Asn	Pro	Ile	Asp	Thr	Met	Phe	His	
	55					60					65					70	
0.5					atg												416
25	Leu	Gln	Pro	Leu	Met	Phe	Leu	Gly	Leu	Phe	Pro	Leu	Phe	Ala	Val	Phe	

					75					80					85		
	gaa	ggt	ctc	cat	ttg	tcc	aca	tct	gag	aaa	atc	ttc	cgt	ttc	cag	gac	464
	Glu	Gly	Leu	His	Leu	Ser	Thr	Ser	Glu	Lys	Ile	Phe	Arg	Phe	Gln	Asp	
				90					95					100			
5	aca	ggg	ctg	ctc	ctg	cgg	gta	ctt	ggg	agc	ctc	ttc	ctt	ggc	ggg	att	512
	Thr	Gly	Leu	Leu	Leu	Arg	Val	Leu	Gly	Ser	Leu	Phe	Leu	Gly	Gly	Ile	
			105					110					115		,		
	ctc	gcc	ttt	ggt	ttg	ggc	ttc	tct	gag	ttc	ctc	ctg	gtc	tcc	aga	acc	560
	Leu	Ala	Phe	Gly	Leu	Gly	Phe	Ser	Glu	Phe	Leu	Leu	Val	Ser	Arg	Thr	
LO		120					125					130					
	tcc	agc	ctc	act	ctc	tcc	att	gcc	ggc	att	ttt	aag	gaa	gtc	tgc	act	608
	Ser	Ser	Leu	Thr	Leu	Ser	Ile	Ala	Gly	Ile	Phe	Lys	Glu	Val	Cys	Thr	
	135					140					145					150 .	
	ttg	ctg	ttg	gca	gct	cat	ctg	ctg	ggc	gat	cag	atc	agc	ctc	ctg	aac	656
15	Leu	Leu	Leu	Ala	Ala	His	Leu	Leu	Gly	Asp	Gln	Ile	Ser	Leu	Leu	Asn	
	•				155					160					165		
	tgg	ctg	ggc	ttc	gcc	ctc	tgc	ctc	tcg	gga	ata	tcc	ctc	cac	gtt	gcc	704
	Trp	Leu	Gly	Phe	Ala	Leu	Cys	Leu	Ser	Gly	Ile	Ser	Leu	His	Val	Ala	
				170					175					180			
20	ctc	aaa	gcc	ctg	cat	tcc	aga	ggt	aac	cca	gag	tcc	ctt	cca	gaa	gcc	752
	Leu	Lys	Ala	Leu	His	Ser	Arg	Gly	Asn	Pro	Glu	Ser	Leu	Pro	Glu	Ala	
			185					190					195				
	tct	gtt	ttc	tgt	tct	tct	ccc	tgt	gac	tct	tag	tgat	tct	gatg	cagg	aa	802
	Ser	Val	Phe	Cys	Ser	Ser	Pro	Cys ,	Asp	Ser							
25		200					205										

110/346

	gtgtgcccgg	tggctctgct	gccgtcactc	ctctaggaag	atgtgggggt	catctccaga	862
	gtgggtgggt	ggggcctggg	tgactcagca	cacatgcaaa	tcagagcaaa	ccaagaaaac	922
	cacgactggg	cctgtaactg	tggtctctct	ctatcccaag	gtgatggtgg	ccccaaggcc	982
	ttgaaggggc	tgggctccag	ccccgacctg	gagctgctgc	tccggagcag	ccagcgggag	1042
5	gaaggtgaca	atgaggagga	ggagtacttt	gtggcccagg	ggcagcagtg	accagccagg	1102
	gcaaatggct	tagaagcagg	ccactcccca	gcctgctgcc	agcactcact	gtgctcaagc	1162
	cgccagggct	catcatggta	gctgggagct	gtggacggga	gtcaccaggt	ggtggggcca	1222
	agccagggac	tcatgacttt	tgcccctccc	ttcagagcct	ggtcacacaa	ggggcgagca	1282
	ccaggccagc	ctgggactgg	ccagagctgg	gcccaagctg	cgctggaatc	gcagcaggag	1342
10	aggggagtgg	gctggttctt	cccaccactt	cccaggctct	gacagccgag	actcatttcc	1402
	aaggcacagc	agctttctaa	agggactgag	tttggactgg	gttttggacc	tccaggggct	1462
	ggagcttcat	cacctgggca	gtgtcttttc	tcagagagca	ggtttcttta	tagtttggaa	1522
	ataaatġgtt	cacggtccac	tggccgcctt	gtgttgctgg	agacgtgggg	gcagggaggg	1582
	gacagtgtgg	gcctggcctc	tcctttcctt	tccctgcctg	gagccttctt	caaatgtctg	1642
15	gtcttaagcc	aggcctcctt	cattttctcg	ctcctgttag	aacaccagtc	ccctccccag	1702
	tggggcccca	ctgcacctgc	tggcaggaaa	taaatgaatg	tttactg		1749

· (p

<210> 53

<211> 1402

20 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (60)..(1280)

25 <400> 53

	tgc	cccc	agc (gcca	ggcg	cg g	gctg	cgct	c gg	tggc	ggcg	gcg	gggc	cct	cagg	cggcc	59
	atg	gcg	gca	ggc	gcc	ggg	gcc	ggg	tcc	gcg	ccg	cgc	tgg	ctg	agg	gcg	107
	Met	Ala	Ala	Gly	Ala	Gly	Ala	Gly	Ser	Ala	Pro	Arg	Trp	Leu	Arg	Ala	
	1				5					10					15		
5	ctg	agc	gag	ccg	ctg	agc	gcg	gcg	cag	ctg	cgg	cga	ctg	gag	gag	cac	155
	Leu	Ser	Glu	Pro	Leu	Ser	Ala	Ala	Gln	Leu	Arg	Arg	Leu	Glu	Glu	His	
				20					25					30			
	cgc	tac	agc	gcg	gcg	ggc	gtc	tcg	ctg	ctc	gag	ccg	ccg	ctg	cag	ctc	203
	Arg	Tyr	Ser	Ala	Ala	Gly	Val	Ser	Leu	Leu	Glu	Pro	Pro	Leu	Gln	Leu	
10			35					40					45				
	tac	tgg	acc	tgg	ctg	ctc	cag	tgg	atc	ccg	ctc	tgg	atg	gcc	ccc	aac	251
	Tyr	Trp	Thr	Trp	Leu	Leu	Gln	Trp	Ile	Pro	Leu	Trp	Met	Ala	Pro	Asn	
		50					55					60					
	tcc	atc	acc	ctg	ctg	ggg	ctc	gcc	gtc	aac	gtg	gtc	acc	acg	ctc	gtg	299
15	Ser	Ile	Thr	Leu	Leu	Gly	Leu	Ala	Val	Asn	Val	Val	Thr	Thr	Leu	Val	
	65					70					75					80	
	ctc	atc	tcc	tac	tgt	ccc	acg	gcc	acc	gaa	gag	gca	cca	tac	tgg	aca	347
	Leu	Ile	Ser	Tyr	Cys	Pro	Thr	Ala	Thr	Glu	Glu	Ala	Pro	Tyr	Trp	Thr	
					85				•	90				•	95		
20	tac	ctt	tta	tgt	gca	ctg	gga	ctt	ttt	att	tac	cag	tca	ctg	gat	gct	395
	Tyr	Leu	Leu	Cys	Ala	Leu	Gly	Leu	Phe	Ile	Tyr	Gln	Ser	Leu	Asp	Ala	
				100					105					110			
	att	gat	ggg	aaa	caa	gcc	aga	aga	aca	aac	tct	tgt	tcc	cct	tta	ggg	443
	Ile	Asp	Gly	Lys	Gln	Ala	Arg	Arg	Thr	Asn	Ser	Cys	Ser	Pro	Leu	Gly	
25			115					120					125				

	gag	ctc	ttt	gac	cat	ggc	tgt	gac	tct	ctt	tcc	aca	gta	ttt	atg	gca	491
	Glu	Leu	Phe	Asp	His	Gly	Cys	Asp	Ser	Leu	Ser	Thr	Val	Phe	Met	Ala	
		130					135					140					
	gtg	gga	gct	tca	att	gcc	gct	cgc	tta	gga	act	tat	cct	gac	tgg	ttt	539
5	Val	Gly	Ala	Ser	Ile	Ala	Ala	Arg	Leu	Gly	Thr	Tyr	Pro	Asp	Trp	Phe	
	145					150					155					160	
	ttt	ttc	tgc	tct	ttt	att	ggg	atg	ttt	gtg	ttt	tat	tgc	gct	cat	tgg	587
	Phe	Phe	Cys	Ser	Phe	Ile	Gly	Met	Phe	Val	Phe	Tyr	Cys	Ala	His	Trp	
					165				*	170					175		
10	cag	act	tat	gtt	tca	ggc	atg	ttg	aga	ttt	gga	aaa	gtg	gat	gta	act	635
	Gln	Thr	Tyr	Val	Ser	Gly	Met	Leu	Arg	Phe	Gly	Lys	Val	Asp	Val	Thr	
				180					185			·;		190			
	gaa	att	cag	ata	gct	tta	gtg	att	gtc	ttt	gtg	ttg	tct	gca	ttt	gga	683
	Glu	Ile	Gln	Ile	Ala	Leu	Val	Ile	Val	Phe	Val	Leu	Ser	Ala	Phe	Gly	
15			195					200					205				
	gga	gca	aca	atg	tgg	gac	tat	acg	att	cct	att	cta	gaa	ata	aaa	ttg	7 31
	Gly	Ala	Thr	Met	Trp	Asp	Tyr	Thr	Ile	Pro	Ile	Leu	Glu	Ile	Lys	Leu	
		210					215					220					
	aag	atc	ctt	сса	gtt	ctt	gga	ttt	cta	ggt	gga	gta	ata	ttt	tcc	tgt	779
20	Lys	Ile	Leu	Pro	Val	Leu	Gly	Phe	Leu	Gly	Gly	Val	Ile	Phe	Ser	Cys	
	225					230					235					240	
	tca	aat	tat	ttc	cat	gtt	atc	ctc	cat	ggt	ggt	gtt	ggc	aag	aat	gga	827
	Ser	Asn	Tyr	Phe	His	Val	Ile	Leu	His	Gly	Gly	Val	Gly	Lys	Asn	Gly	
					245					250					255		
25	tcc	act	ata	gca	ggc	acc	agt	gtc	ttg	tca	cct	gga	ctc	cac	ata	gga	875

	Ser	Thr	Ile	Ala	Gly	Thr	Ser	Val	Leu	Ser	Pro	Gly	Leu	His	Ile	Gly	
				260					265					270			
	cta	att	att	ata	ctg	gca	ata	atg	atc	tat	aaa	aag	tca	gca	act	gat	923
	Leu	Ile	Ile	Ile	Leu	Ala	Ile	Met	Ile	Tyr	Lys	Lys	Ser	Ala	Thr	Asp	
5			275					280					285				
	gtg	ttt	gaa	aag	cat	cct	tgt	ctt	tat	atc	cta	atg	ttt	gga	tgt	gtc	971
	Val	Phe	Glu	Lys	His	Pro	Cys	Leu	Tyr	Ile	Leu	Met	Phe	Gly	Cys	Val	
		290					295					300					
	ttt	gct	aaa	gtc	tca	caa	aaa	tta	gtg	gta	gct	cac	atg	acc	aaa	agt	1019
10	Phe	Ala	Lys	Val	Ser	Gln	Lys	Leu	Val	Val	Ala	His	Met	Thr	Lys	Ser	
	305					310					315					320	
	gaa	cta	tat	ctt	caa	gac	act	gtc	ttt	ttg	ggg	cca	ggt	ctt	ttg	ttt	1067
	Glu	Leu	Tyr	Leu	Gln	Asp	Thr	Val	Phe	Leu	Gly	Pro	Gly	Leu	Leu	Phe	
					325					330					335		
15	tta	gac	cag	tac	ttt	aat	aac	ttt	ata	gac	gaa	tat	gtt	gtt	cta	tgg	1115
	Leu	Asp	Gln	Tyr	Phe	Asn	Asn	Phe	Ile	Asp	Glu	Tyr	Val	Val	Leu	Trp	
				340					345					350			
	atg	gca	atg	gtg	att	tct	tca	ttt	gat	atg	gtg	ata	tac	ttt	agt	gct	1163
	Met	Ala	Met	. Val	Ile	Ser	Ser	Phe	Asp	Met	Val	. Ile	Tyr	Phe	Ser	Ala	
20			355	•				360					365	1			
	ttg	tgc	ctg	caa	att	. tca	aga	cac	ctt	cat	cta	aat	ata	ttc	aag	act	1211
	Leu	Cys	Leu	ı Gln	Ile	Ser	Arg	His	Leu	His	Let	ı Asn	Ile	Phe	Lys	Thr	
		370)				375					380)				
	gca	tgt	cat	caa	gca	cct	gaa	cag	gtt	caa	gtt	ctt	tct	tca	aag	agt	1259
25	Ala	Cys	His	Glr	n Ala	Pro	Glu	Gln	. Val	. Glm	va.	Let	ı Sei	: Ser	Lys	Ser	

114/346

385 390 395 400

cat cag aat aac atg gat tgaagagact tccgaacact tgctatctct 1307 His Gln Asn Asn Met Asp

405

5 tgctgctgct gtttcatgga aggagatatt aaacatttgt ttaattttta tttaagtgtt 1367 atacctattt cagcaaataa aatatttcat tgctt 1402

<210> 54

<211> 2474

10 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (345)..(2201)

15 <400> 54

20

tccacccca gtggttatta atttcagaac acatctgaat tccttctctg tggcatatgc 60
tttaggagag gagcagacag ctcttagcta gggtcagatt tcaaattctc atctcttggt 120
gccaatacca ccaccagatt cttcttgaa gtcaactttt gagatcttca ctaagtacac 180
gttggtgtct gaagattcac acgagtgcct ctggtaatca ttttcttcag ggaatcacag 240
tctctcctct cagcaaagca tccactgtac tgaactttgc ttttggaaac atcttctcc 300
tgagacctcg ttgaaagaaa ctctctggtg tcatactttc caat atg gag gtg aag 356
Met Glu Val Lys

1

aac ttt gca gtt tgg gat tat gtt gta ttt gca gcc ctc ttt ttc att 404

25 Asn Phe Ala Val Trp Asp Tyr Val Val Phe Ala Ala Leu Phe Phe Ile

	5					10					15					20	
	tcc	tct	gga	att	ggg	gtg	ttc	ttt	gcc	att	aag	gag	aga	aaa	aag	gca	452
	Ser	Ser	Gly	Ile	Gly	Val	Phe	Phe	Ala	Ile	Lys	Glu	Arg	Lys	Lys	Ala	
		•			25					30					35		
5	act	tcc	cga	gag	ttc	ctg	gtt	ggg	gga	agg	caa	atg	agc	ttt	ggc	cct	500
	Thr	Ser	Arg	Glu	Phe	Leu	Val	Gly	Gly	Arg	Gln	Met	Ser	Phe	Gly	Pro	
				40					45					50			
	gtc	ggc	ttg	tct	ctg	aca	gcc	agc	ttc	atg	tca	gct	gtc	acg	gtc	ctg	548
	Val	Gly	Leu	Ser	Leu	Thr	Ala	Ser	Phe	Met	Ser	Ala	Val	Thr	Val	Leu	
10			55					60					65				
	ggg	acc	cct	tct	gaa	gtc	tac	cgc	ttt	ggg	gca	tcc	ttc	cta	gtc	ttc	596
	Gly	Thr	Pro	Ser	Glu	Val	Tyr	Arg	Phe	Gly	Ala	Ser	Phe	Leu	Val	Phe	
		70					75					80					
	ttc	att	gct	tac	cta	ttt	gtc	atc	ctc	tta	aca	tca	gag	ctc	ttt	ctc	644
15	Phe	Ile	Ala	Tyr	Leu	Phe	Val	Ile	Leu	Leu	Thr	Ser	Glu	Leu	Phe	Leu	
	85					90					95					100	
	cct	gtg	ttc	tac	aga	tct	ggt	atc	acc	agc	act	tat	gag	tac	tta	caa	692
	Pro	Val	Phe	Tyr	Arg	Ser	Gly	Ile	Thr	Ser	Thr	Tyr	Glu	Tyr	Leu	Gln	
					105					110					115		
20	cta	cga	ttc	aac	aaa	cca	gtt	cgc	tat	gct	gcc	aca	gtc	atc	tac	att	740
	Leu	Arg	Phe	Asn	Lys	Pro	Val	Arg	Tyr	Ala	Ala	Thr	Val	Ile	Tyr	Ile	
				120					125					130			
	gta	cag	acg	att	ctc	tac	aca	gga	gtg	gtg	gtg	tat	gct	cct	gcc	ctg	788
	Val	Gln	Thr	Ile	Leu	Tyr	Thr	Gly	۷al	Val	Val	Tyr	Ala	Pro	Ala	Leu	
25			135					140					145				

	gca	ctc	aat	caa	gtg	act	ggg	ttt	gat	ctc	tgg	ggc	tct	gtg	ttt	gca	836	
	Ala	Leu	Asn	Gln	Val	Thr	Gly	Phe	Asp	Leu	Trp	Gly	Ser	Val	Phe	Ala		
		150					155					160						
	aca	gga	att	gtt	tgc	aca	ttc	tac	tgt	acc	ctg	gga	gga	tta	aaa	gca	884	
5	Thr	Gly	Ile	Val	Cys	Thr	Phe	Tyr	Cys	Thr	Leu	Gly	Gly	Leu	Lys	Ala		
	165					170					175					180		
	gtg	gtg	tgg	aca	gat	gca	ttt	cag	atg	gtt	gtc	atg	att	gtg	ggc	ttc	932	
	Val	Val	Trp	Thr	Asp	Ala	Phe	Gln	Met	Val	Val	Met	Ile	Val	Gly	Phe		
					185					190	•				195			
10	tta	acg	gtt	ctc	att	caa	gga	tca	act	cat	gct	ggg	gga	ttc	cac	aat	980	3
	Leu	Thr	Val	Leu	Ile	Gln	Gly	Ser	Thr	His	Ala	Gly	Gly	Phe	His	Asn		4
				200					205					210				
	gta	tta	gag	caa	tca	aca	aat	gga	tct	cga	cta	cat	ata	ttt	gac	ttt	1028	
	Val	Leu	Glu	Gln	Ser	Thr	Asn	Gly	Ser	Arg	Leu	His	Ile	Phe	Asp	Phe		
15			215					220				•	225					
	gat	gta	gat	cct	ctc	agg	cga	cac	act	ttt	tgg	act	atc	aca	gtg	gga	1076	
	Asp	Val	Asp	Pro	Leu	Arg	Arg	His	Thr	Phe	Trp	Thr	Ile	Thr	Val	Gly		
		230					235					240						
	gga	act	ttt	act	tgg	ctc	gga	atc	tat	ggg	gtc	aat	caa	tca	act	att	1124	
20	Gly	Thr	Phe	Thr	Trp	Leu	Gly	Ile	Tyr	Gly	Val	Asn	Gln	Ser	Thr	Ile		
	245					250					255					260		
	cag	cga	tgc	atc	tct	tgc	aaa	aca	gaa	aag	cat	gct	aag	ctt	gcc	ttg	1172	
	Gln	Arg	Cys	Ile	Ser	Cys	Lys	Thr	Glu	Lys	His	Ala	Lys	Leu	Ala	Leu		
					265					270					275			
25	tat	ttt	aac	ttg	ctg	ggt	ctc	tgg	atc	att	ctg	gtg	tgt	gct	gtc	ttc	1220	

	Tyr	Phe	Asn	Leu	Leu	Gly	Leu	Trp	Ile	Ile	Leu	Val	Cys	Ala	Val	Phe	
				280					285					290			
	tct	ggc	tta	atc	atg	tac	tct	cac	ttt	aaa	gac	tgt	gac	cct	tgg	act	1268
	Ser	Gly	Leu	Ile	Met	Tyr	Ser	His	Phe	Lys	Asp	Cys	Asp	Pro	Trp	Thr	
5			295					300					305				
	tct	ggc	atc	atc	tca	gca	cca	gac	cag	ctg	atg	ccg	tac	ttt	gtc	atg	1316
	Ser	Gly	Ile	Ile	Ser	Ala	Pro	Asp	Gln	Leu	Met	Pro	Tyr	Phe	Val	Met	
		310					315					320				٠	
	gag	ata	ttt	gcc	aca	atg	cca	gga	ctg	cca	gga	ctt	ttt	gtg	gct	tgt	1364
10	Glu	Ile	Phe	Ala	Thr	Met	Pro	Gly	Leu	Pro	Gly	Leu	Phe	Val	Ala	Cys	
	325					330					335					340	
	gcc	ttc	agt	gga	act	ctg	agc	acc	gtg	gct	tcc	agc	atc	aat	gcc	ttg	1412
	Ala	Phe	Ser	Gly	Thr	Leu	Ser	Thr	Val	Ala	Ser	Ser	Ile	Asn	Ala	Leu	
					345					350					355		
15	gca	aca	gtg	acc	ttt	gag	gat	ttt	gtc	aag	agc	tgt	ttt	cct	cat	ctc	1460
	Ala	Thr	Val	Thr	Phe	Glu	Asp	Phe	Val	Lys	Ser	Cys	Phe	Pro	His	Leu	
				360					365					370			
	tcc	gac	aag	ctg	agc	acc	tgg	atc	agt	aaa	ggc	tta	tgt	ctc	tta	ttt	1508
	Ser	Asp	Lys	Leu	Ser	Thr	Trp	Ile	Ser	Lys	Gly	Leu	Cys	Leu	Leu	Phe	
20			375					380					385				
	ggc	gtg	atg	tgt	acc	tct	atg	gct	gtg	gct	gca	tct	gtc	atg	gga	ggt	1556
	Gly	Val	Met	Cys	Thr	Ser	Met	Ala	Val	Ala	Ala	Ser	Val	Met	Gly	Gly	
		390					395					400					
	gtt	gtg	cag	gct	tcc	ctc	agc	att	cac	ggc	atg	tgt	gga	gga	cca	atg	1604
25	Val	Val	Gln	Ala	Ser	Leu	Ser	Ile	His	Gly	Met	Cys	Gly	Gly	Pro	Met	

	405					410					415					420	
	ctg	ggc	tta	ttc	tcc	ctg	gga	atc	gtg	ttc	cct	ttt	gtg	aac	tgg	aag	1652
	Leu	Gly	Leu	Phe	Ser	Leu	Gly	Ile	Val	Phe	Pro	Phe	Val	Asn	Trp	Lys	
					425					430					435		
5	ggt	gca	cta	gga	ggt	ctt	ctt	act	gga	atc	acc	ttg	tca	ttt	tgg	gtg	1700
	Gly	Ala	Leu	Gly	Gly	Leu	Leu	Thr	Gly	Ile	Thr	Leu	Ser	Phe	Trp	Val	
				440					445					450			
	gcc	att	ggg	gcc	ttc	att	tac	cct	gca	cca	gcc	tct	aag	aca	tgg	cct	1748
	Ala	Ile	Gly	Ala	Phe	Ile	Tyr	Pro	Ala	Pro	Ala	Ser	Lys	Thr	Trp	Pro	
10			455					460					465				
	ttg	cct	cta	tca	aca	gac	caa	tgt	atc	aaa	tca	aat	gtg	aca	gca	aca	1796
	Leu	Pro	Leu	Ser	Thr	Asp	Gln	Cys	Ile	Lys	Ser	Asn	Val	Thr	Ala	Thr	
		470					475					480					
	ggg	cct	cca	gta	cta	tcc	agc ·	aga	cct	gga	ata	gct	gat	acc	tgg	tac	1844
15	Gly	Pro	Pro	Val	Leu	Ser	Ser	Arg	Pro	Gly	Ile	Ala	Asp	Thr	Trp	Tyr	
	485					490					495					500	
	tcg	atc	tcc	tac	ctt	tac	tac	agt	gca	gtg	ggc	tgc	tta	gga	tgc	att	1892
	Ser	Ile	Ser	Tyr	Leu	Tyr	Tyr	Ser	Ala	Val	Gly	Cys	Leu	Gly	Cys	Ile	
					505					510					515		
20	gtt	gct	gga	gta	atc	atc	agc	ctc	ata	aca	ggt	cgc	caa	aga	ggt	gag	1940
	Val	Ala	Gly	Val	Ile	Ile	Ser	Leu	Ile	Thr	Gly	Arg	Gln	Arg	Gly	Glu	
				520					525					530			
								_		_						ttt	1988
	Asp	Ile	Gln	Pro	Leu	Leu	Ile		Pro	Val	Cys	Aşn		Phe	Cys	Phe	
25			535					540					545				

119/346

	tgg	tct	aag	aag	tac	aaa	aca	cta	tgc	tgg	tgc	gga	gtt	cag	cat	gac	2036
	Trp	Ser	Lys	Lys	Tyr	Lys	Thr	Leu	Cys	Trp	Cys	Gly	Val	Gln	His	Asp	
		550					555					560					
	agt	ggg	aca	gag	cag	gaa	aac	ctt	gag	aat	ggc	agt	gcc	cgg	aaa	cag	2084
5	Ser	Gly	Thr	Glu	Gln	Glu	Asn	Leu	Glu	Asn	Gly	Ser	Ala	Arg	Lys	Gln	
	565					570					575					580	
	ggg	gct	gaa	tct	gtc	tta	cag	aac	gga	ctc	aga	aga	gaa	agc	ctg	gta	2132
	Gly	Ala	Glu	Ser	Val	Leu	Gln	Asn	Gly	Leu	Arg	Arg	Glu	Ser	Leu	Val	
		•			585					590					595		
10	cat	gtt	cca	ggc	tat	gat	cct	aag	gac	aaa	agc	tac	aac	aat	atg	gca	2180
	His	۷al	Pro	Gly	Tyr	Asp	Pro	Lys	Asp	Lys	Ser	Tyr	Asn	Asn	Met	Ala	
				600					605					610			
	ttt	gag	act	acc	cat	ttc	taaq	ggcaa	ata d	cctgt	atga	aa t	gcac	acac	a		2228
	Phe	Glu	Thr	Thr	His	Phe											
15			615														
	cac	gtgca	aat a	acaca	acaca	ac ac	caca	caaa	e te	cacat	cact	tcti	tgcci	tac 1	ttgti	tagtag	2288
	atat	tgtat	tag t	ttgc	catto	gc ta	agaaq	gaca	g gga	atgto	ctgg	tgc	ctati	ttc 1	tact	tattta	2348
	taad	ctaca	atg (caaa	atgad	ct gi	tctc	tcgg	g ata	attc	tttg	aaa	gact	cca a	actt [.]	tcacag	2408
	agaa	aaago	cca a	acct	gctc	ca aa	atgc	cctt	g act	tacti	tcct	tct	tgaa [.]	taa i	atta	gggctg	2468
20	gati	ttc															2474
	<210	0> 5	5														
	<21	1> 32	296														
	<212	2> Di	NA.														

25 <213> Homo sapiens

120/346

	<220	>															
	<221	.> CE	os														
	<222	!> (1	.42).	. (76	58)												
	<400	> 55	5														
5	ttcg	ıgggg	ggc a	agco	gege	gg ag	gggga	aaacg	g tgo	gegg	jccg	aagg	ggaa	igc g	ggago	ccggcg	60
	ccgç	ctgo	cgc a	ıgagç	gaged	cg ct	ctc	geege	c cgc	caco	ctcg	gcto	ggaç	icc o	cacga	aggctg	120
	ccgc	atco	ctg c	ccto	ggaa	ac a	atg	gga	ctc	ggc	gcg	cga	ggt	gct	tgg	gcc	171
							Met	Gly	Leu	Gly	Ala	Arg	Gly	Ala	Trp	Ala	
							1				5					10	
10	gcg	ctg	ctc	ctg	ggg	acg	ctg	cag	gtg	cta	gcg	ctg	ctg	ggg	gcc	gcc	219
	Ala	Leu	Leu	Leu	Gly	Thr	Leu	Gln	Val	Leu	Ala	Leu	Leu	Gly	Ala	Ala	
					15					20					25		
	cat	gaa	agc	gca	gcc	atg	gcg	gca	tct	gca	aac	ata	gag	aat	tct	ggg	26
	His	Glu	Ser	Ala	Ala	Met	Ala	Ala	Ser	Ala	Asn	Ile	Glu	Asn	Ser	Gly	
15		•		30					35					40			
	ctt	cca	cac	aac	tcc	agt	gct	aac	tca	aca	gag	act	ctc	caa	cat	gtg	315
	Leu	Pro	His	Asn	Ser	Ser	Ala	Asn	Ser	Thr	Glu	Thr	Leu	Gln	His	Val	
			45					50					55				
	cct	tct	gac	cat	aca	aat	gaa	act	tcc	aac	agt	act	gtg	aaa	cca	cca	363
20	Pro	Ser	Asp	His	Thr	Asn	Glu	Thr	Ser	Asn	Ser	Thr	Val	Lys	Pro	Pro	
		60					65					70					
	act	tca	gtt	gcc	tca	gac	tcc	agt	aat	aca	acg	gtc	acc	acc	atg	aaa	41
	Thr	Ser	Val	Ala	Ser	Asp	Ser	Ser	Asn	Thr	Thr	Val	Thr	Thr	Met	Lys	
	75					80					85					90	

cct aca gcg gca tct aat aca aca aca cca ggg atg gtc tca aca aat 459

25

	Pro	Thr	Ala	Ala	Ser	Asn	Thr	Thr	Thr	Pro	Gly	Met	Val	Ser	Thr	Asn	
					95					100					105		
	atg	act	tct	acc	acc	tta	aag	tct	aca [.]	ccc	aaa	aca	aca	agt	gtt	tca	507
	Met	Thr	Ser	Thr	Thr	Leu	Lys	Ser	Thr	Pro	Lys	Thr	Thr	Ser	Val	Ser	
5				110					115					120			
	cag	aac	aca	tct	cag	ata	tca	aca	tcc	aca	atg	acc	gta	acc	cac	aat	555
	Gln	Asn	Thr	Ser	Gln	Ile	Ser	Thr	Ser	Thr	Met	Thr	Val	Thr	His	Asn	
			125					130					135				
	agt	tca	gtg	aca	tct	gct	gct	tca	tca	gta	aca	atc	aca	aca	act	atg	603
10	Ser	Ser	Val	Thr	Ser	Ala	Ala	Ser	Ser	Val	Thr	Ile	Thr	Thr	Thr	Met	
		140					145					150					
	cat	tct	gaa	gca	aag	aaa	gga	tca	aaa	ttt	gat	act	ggg	agc	ttt	gtt	651
	His	Ser	Glu	Ala	Lys	Lys	Gly	Ser	Lys	Phe	Asp	Thr	Gly	Ser	Phe	Val	
	155					160					165					170	
15	ggt	ggt	att	gta	tta	acg	ctg	gga	gtt	tta	tct	att	ctt	tac	att	gga	699
	Gly	Gly	Ile	Val	Leu	Thr	Leu	Gly	Val	Leu	Ser	Ile	Leu	Tyr	Ile	Gly	
					175					180					185		
	tgc	aaa	atg	tat	tac	tca	aga	aga	ggc	att	cgg	tat	cga	acc	ata	gat	747
	Cys	Lys	Met	Tyr	Tyr	Ser	Arg	Arg	Gly	Ile	Arg	Tyr	Arg	Thr	Ile	Asp	
20				190					195					200			
	gaa	cat	gat	gcc	atc	att	taaq	ggaaa	atc o	catg	gacc	aa g	gatg	gaat	ā		795
	Glu	His	Asp	Ala	Ile	Ile											
			205														
	caga	attga	atg (ctgc	cctai	cc aa	atta	attti	t gg1	ttai	ttaa	tag	ttta	aaa (caata	attctc	855
25	ttt	ttgaa	aaa 1	tagta	ataaa	ac a	ggcca	atgc	a tai	taat	gtac	agt	gtati	tac (gtaaa	atatgt	915

5

10

15

20

25

122/346

aaagattett caaggtaaca agggtttggg ttttgaaata aacatetgga tettatagae 975 cgttcataca atggttttag caagttcata gtaagacaaa caagtcctat ctttttttt 1035 ggctggggtg ggggcattgg tcacatatga ccagtaattg aaagacgtca tcactgaaag 1095 acagaatgcc atctgggcat acaaataaga agtttgtcac agcactcagg attttgggta 1155 tettttgtag etcacataaa gaactteagt getttteaga getggatata tettaattae 1215 taatgccaca cagaaattat acaatcaaac tagatctgaa gcataattta agaaaaacat 1275 caacattttt tgtgctttaa actgtagtag ttggtctaga aacaaaatac tccaagaaaa 1335 agaaaatttt caaataaaac ccaaaataat agctttgctt agccctgtta gggatccatt 1395 ggagcattaa ggagcacata tttttattaa cttcttttga qctttcaatq ttqatqtaat 1455 ttttgttctc tgtgtaattt aggtaaactg cagtgtttaa cataataatg ttttaaagac 1515 ttagttgtca gtattaaata atcctggcat tatagggaaa aaacctccta gaaqttagat 1575 tatttgctac tgtgagaata ttgtcaccac tggaagttac tttagttcat ttaattttaa 1635 ttttatattt tgtgaatatt ttaagaactg tagagctgct ttcaatatct agaaattttt 1695 aattgagtgt aaacacacct aactttaaga aaaagaaccg cttgtatgat tttcaaaaga 1755 acatttagaa ttctatagag tcaaaactat agcgtaatgc tgtgtttatt aagccaggga 1815 ttgtgggact tcccccaggc aactaaacct gcaggatgaa aatgctatat tttctttcat 1875 gcactgtcga tattactcag atttggggaa atgacatttt tatactaaaa caaacaccaa 1935 aatattttag aataaattct tagaaagttt tgagaggaat ttttagagag gacatttcct 1995 cettectgat ttggatatte ceteaaatee eteetettae teeatgetga aggagaagta 2055 ctctcagatg cattatgtta atggagagaa aaagcacagt attgtagaga caccaatatt 2115 agctaatgta ttttggagtg ttttccattt tacagtttat attccagcac tcaaaactca 2175 gggtcaagtt ttaacaaaag aggtatgtag tcacagtaaa tactaagatg gcatttctat 2235 ctcagagggc caaagtgaat cacaccagtt tctgaaggtc ctaaaaatag ctcagatgtc 2295 ctaatgaaca tgcacctaca tttaatagga gtacaataaa actgttgtca gcttttgttt 2355 tacagagaac gctagatatt aagaattttq aaatqqatca tttctacttq ctqtqcattt 2415

123/346

taaccaataa totgatgaat atagaaaaaa atgatccaaa atatggatat gattggatgt 2475 atgtaacaca tacatggagt atggaggaaa ttttctgaaa aatacattta gattaqttta 2535 gtttgaagga gaggtgggct gatggctgag ttgtatgtta ctaacttqqc cctqactqqt 2595 tgtgcaacca ttgcttcatt tctttgcaaa atgtagttaa gatatacttt attctaatga 2655 5 aggiorttta aattigtooa otgoattott ggtatttoac tacttoaagt cagtoagaac 2715 ttcgtagacc gacctgaagt ttctttttga atacttgttt ctttagcact ttgaagatag 2775 aaaaaccact ttttaagtac taagtcatca tttgccttga aagtttcctc tgcattgggt 2835 ttgaagtagt ttagttatgt ctttttctct gtatgtaagt agtataattt gttactttca 2895 aatacccgta ctttgaatgt aggttttttt gttgttgtta tctataaaaa ttgagggaaa 2955 10 tggttatgca aaaaaatatt ttgctttgga ccatatttct taagcataaa aaaaatgctc 3015 agttttgctt gcattccttg agaatgtatt tatctgaaga tcaaaacaaa caatccagat 3075 gtataagtac taggcagaag ccaattttaa aattteettq aataateeat qaaaggaata 3135 attcaaatac agataaacag agttggcagt atattatagt gataattttg tattttcaca 3195 aaaaaaaagt taaactcttc ttttcttttt attataatga ccagcttttg gtatttcatt 3255 15 gttaccaagt tctattttta gaataaaatt gttctccttc t 3296

<210> 56

<211> 1818

<212> DNA

20 <213> Homo sapiens

<220>

<221> CDS

<222> (26)..(1534)

<400> 56

25 aaaaaacccg cgcagtggcc cggcg atg tcg ctc gtg ctg cta agc ctg gcc

124/346

								Met	Ser	Leu	Val	Leu	Leu	Ser	Leu	Ala	
								1				5					
	gcg	ctg	tgc	agg	agc	gcc	gta	ccc	cga	gag	ccg	acc	gtt	caa	tgt	ggc	100
	Ala	Leu	Cys	Arg	Ser	Ala	Val	Pro	Arg	Glu	Pro	Thr	Val	Gln	Cys	Gly	٠.
5	10					15					20					25	
	tct	gaa	act	ggg	cca	tct	cca	gag	tgg	atg	cta	caa	cat	gat	cta	atc	148
	Ser	Glu	Thr	Gly	Pro	Ser	Pro	Glu	Trp	Met	Leu	Gln	His	Asp	Leu	Ile	
					30					35					40		
	ccg	gga	gac	ttg	agg	gac	ctc	cga	gta	gaa	cct	gtt	aca	act	agt	gtt	196
10	Pro	Gly	Asp	Leu	Arg	Asp	Leu	Arg	Val	Glu	Pro	Val	Thr	Thr	Ser	Val	
				45					50					55			
	gca	aca	ggg	gac	tat	tca	att	ttg	atg	aat	gta	agc	tgg	gta	ctc	cgg	244
	Ala	Thr	Gly	Asp	Tyr	Ser	Ile	Leu	Met	Asn	Val	Ser	Trp	Val	Leu	Arg	
			60					65					70				
15	gca	gat	gcc	agc	atc	cgc	ttg	ttg	aag	gcc	acc	aag	att	tgt	gtg	acg	292
	Ala	Asp	Ala	Ser	Ile	Arg	Leu	Leu	Lys	Ala	Thr	Lys	Ile	Cys	Val	Thr	
		75					80					85					
	ggc	aaa	agc	aac	ttc	cag	tcc	tac	agc	tgt	gtg	agg	tgc	aat	tac	aca	340
	Gly	Lys	Ser	Asn	Phe	Gln	Ser	Tyr	Ser	Cys	Val	Arg	Cys	Asn	Tyr	Thr	
20	90					95					100					105	
	gag	gcc	ttc	cag	act	cag	acc	aga	ccc	tct	ggt	ggt	aaa	tgg	aca	ttt	388
	Glu	Ala	Phe	Gln	Thr	Gln	Thr	Arg	Pro	Ser	Gly	Gly	Lys	Trp	Thr	Phe	
					110					115					120		
	tcc	tac	atc	ggc	ttc	cct	gta	gag	ctg	aac	aca	gtc	tat	ttc	att	ggg	436

Ser Tyr Ile Gly Phe Pro Val Glu Leu Asn Thr Val Tyr Phe Ile Gly

25

				125					130					135			
	gcc	cat	aat	att	cct	aat	gca	aat	atg	aat	gaa	gat	ggc	cct	tcc	atg	484
	Ala	His	Asn	Ile	Pro	Asn	Ala	Asn	Met	Asn	Glu	Asp	Gly	Pro	Ser	Met	
			140					145					150				
5	tct	gtg	aat	ttc	acc	tca	cca	ggc	tgc	cta	gac	cac	ata	atg	aaa	tat	532
	Ser	Val	Asn	Phe	Thr	Ser	Pro	Gly	Cys	Leu	Asp	His	Ile	Met	Lys	Tyr	
		155					160					165					
	aaa	aaa	aag	tgt	gtc	aag	gcc	gga	agc	ctg	tgg	gat	ccg	aac	atc	act	580
	Lys	Lys	Lys	Cys	Val	Lys	Ala	Gly	Ser	Leu	Trp	Asp	Pro	Asn	Ile	Thr	
10	170					175					180					185	
	gct	tgt	aag	aag	aat	gag	gag	aca	gta	gaa	gtg	aac	ttc	aca	acc	act	628
	Ala	Cys	Lys	Lys	Asn	Glu	Glu	Thr	Val	Glu	Val	Asn	Phe	Thr	Thr	Thr	
					190					195					200		
	ccc	ctg	gga	aac	aga	tac	atg	gct	ctt	atc	caa	cac	agc	act	atc	atc	676
15	Pro	Leu	Gly	Asn	Arg	Tyr	Met	Ala	Leu	Ile	Gln	His	Ser	Thr	Ile	Ile	
				205					210					215			
	ggg	ttt	tct	cag	gtg	ttt	gag	cca	cac	cag	aag	aaa	caa	acg	cga	gct	724
	Gly	Phe	Ser	Gln	Val	Phe	Glu	Pro	His	Gln	Lys	Lys	Gln	Thr	Arg	Ala	
			220					225					230				
20	tca	gtg	gtg	att	cca	gtg	act	ggg	gat	agt	gaa	ggt	gct	acg	gtg	cag	772
	Ser	Val	Val	Ile	Pro	Val	Thr	Gly	Asp	Ser	Glu	Gly	Ala	Thr	Val	Gln	
		235				,	240					245					
	ctg	act	cca	tat	ttt	cct	act	tgt	ggc	agc	gac	tgc	atc	cga	cat	aaa	820
	Leu	Thr	Pro	Tyr	Phe	Pro	Thr	Cys	Gly	Ser	Asp	Cys	Ile	Arg	His	Lys	
25	250					255					260					265	

	gga	aca	gtt	gtg	ctc	tgc	cca	caa	aca	ggc	gtc	cct	ttc	cct	ctg	gat	868
	Gly	Thr	Val	Val	Leu	Cys	Pro	Gln	Thr	Gly	Val	Pro	Phe	Pro	Leu	Asp	
					270					275					280		
	aac	aac	aaa	agc	aag	ccg	gga	ggc	tgg	ctg	cct	ctc	ctc	ctg	ctg	tct	916
5	Asn	Asn	Lys	Ser	Lys	Pro	Gly	Gly	Trp	Leu	Pro	Leu	Leu	Leu	Leu	Ser	
				285					290					295			
	ctg	ctg	gtg	gcc	aca	tgg	gtg	ctg	gtg	gca	ggg	atc	tat	cta	atg	tgg	964
	Leu	Leu	Val	Ala	Thr	Trp	Val	Leu	Val	Ala	Gly	Ile	Tyr	Leu	Met	Trp	
			300					305					310				
10	agg	cac	gaa	agg	atc	aag	aag	act	tcc	ttt	tct	acc	acc	aca	cta	ctg	1012
	Arg	His	Glu	Arg	Ile	Lys	Lys	Thr	Ser	Phe	Ser	Thr	Thr	Thr	Leu	Leu	
		315					320					325					
	ccc	ccc	att	aag	gtt	ctt	gtg	gtt	tac	cca	tct	gaa	ata	tgt	ttc	cat	1060
	Pro	Pro	Ile	Lys	Val	Leu	Val	Val	Tyr	Pro	Ser	Glu	Ile	Cys	Phe	His	
15	330					335					340					345	
	cac	aca	att	tgt	tac	ttc	act	gaa	ttt	ctt	caa	aac	cat	tgc	aga	agt	1108
	His	Thr	Ile	Cys	Tyr	Phe	Thr	Glu	Phe	Leu	Gln	Asn	His	Cys	Arg	Ser	
					350					355					360		
	gag	gtc	atc	ctt	gaa	aag	tgg	cag	aaa	aag	aaa	ata	gca	gag	atg	ggt	1156
20	Glu	Val	Ile	Leu	Glu	Lys	Trp	Gln	Lys	Lys	Lys	Ile	Ala	Glu	Met	Gly	
				365					370					375			
	cca	gtg	cag	tgg	ctt	gcc	act	caa	aag	aag	gca	gca	gac	aaa	gtc	gtc	1204
	Pro	Val	Gln	Trp	Leu	Ala	Thr	Gln	Lys	Lys	Ala	Ala	Asp	Lys	Val	Val	
			380					385					390				
25	ttc	ctt	ctt	tcc	aat	gac	gtc	aac	agt	gtg	tgc	gat	ggt	acc	tgt	ggc	1252

	Phe	Leu	Leu	Ser	Asn	Asp	Val	Asn	Ser	Val	Cys	Asp	Gly	Thr	Cys	Gly	
		395					400					405					
	aag	agc	gag	ggc	agt	ccc	agt	gag	aac	tct	caa	gac	ctc	ttc	ccc	ctt	1300
	Lys	Ser	Glu	Gly	Ser	Pro	Ser	Glu	Asn	Ser	Gln	Asp	Leu	Phe	Pro	Leu	
5	410					415					420					425	
	gcc	ttt	aac	ctt	ttc	tgc	agt	gat	cta	aga	agc	cag	att	cat	ctg	cac	1348
	Ala	Phe	Asn	Leu	Phe	Cys	Ser	Asp	Leu	Arg	Ser	Gln	Ile	His	Leu	His	
					430					435					440		
	aaa	tac	gtg	gtg	gtc	tac	ttt	aga	gag	att	gat	aca	aaa	gac	gat	tac	1396
10	Lys	Tyr	Val	Val	Val	Tyr	Phe	Arg	Glu	Ile	Asp	Thr	Lys	Asp	Asp	Tyr	
				445					450					455			
	aat	gct	ctc	agt	gtc	tgc	ccc	aag	tac	cac	ctc	atg	aag	gat	gcc	act	1444
	Asn	Ala	Leu	Ser	Val	Суѕ	Pro	Lys	Tyr	His	Leu	Met	Lys	Asp	Ala	Thr	
			460					465					470				
15	gct	ttc	tgt	gca	gaa	ctt	ctc	cat	gtc	aag	cag	cag	gtg	tca	gca	gga	1492
	Ala	Phe	Cys	Ala	Glu	Leu	Leu	His	Val	Lys	Gln	Gln	Val	Ser	Ala	Gly	
		475					480					485					
	aaa	aga	tca	caa	gcc	tgc	cac	gat	ggc	tgc	tgc	tcc	ttg	tago	ccad	ccc	1541
	Lys	Arg	Ser	Gln	Ala	Cys	His	Asp	Gly	Cys	Cys	Ser	Leu				
20	490					495					500						
	atga	agaag	gca a	agaga	acctt	a aa	aggct	tcct	ato	ccad	caa	ttad	cagg	gaa a	aaaa	gtgtg	1601
	atga	atcct	iga a	agctt	acta	at go	cagco	ctaca	aac	cagco	tta	gtaa	attaa	aaa d	catti	tatac	1661
	caat	caaaa	att t	tcaa	aatat	t go	ctaac	ctaat	gta	agcat	taa	ctaa	acgat	tg q	gaaad	ctacat	1721
	ttad	caact	ctc a	aaago	ctgtt	t ta	ataca	ataga	a aat	caat	tac	agti	ttaa	att 9	gaaaa	ectata	1781
25	acca	attt	ga t	aato	gcaad	a at	aaaq	gcato	: tto	agco	:						1818

	<210	> 57															
	<211	> 16	46														
	<212	> DN	A														
5	<213	> Ho	mo s	apie	ens												
	<220	>															
	<221	> CD	S														
	<222	> (3	37)	(104	17)						•						
	<400	> 57	,														
LO	acgo	gago	tg d	ctgt	tttt	t to	ctgo	ttgg	acg	cgc	atg	agg	gcc	ccg	tcc	atg	54
											Met	Arg	Ala	Pro	Ser	Met	
											1				5		
	gac	cgc	gcg	gcc	gtg	gcg	agg	gtg	ggc	gcg	gta	gcg	agc	gcc	agc	gtg	102
	Asp	Arg	Ala	Ala	Val	Ala	Arg	Val	Gly	Ala	Val	Ala	Ser	Ala	Ser	Val	
15				10					15					20			
·	tgc	gcc	ctg	gtg	gcg	ggg	gtg	gtg	ctg	gct	cag	tac	ata	ttc	acc	ttg	150
	Cys	Ala	Leu	Val	Ala	Gly	Val	Val	Leu	Ala	Gln	Tyr	Ile	Phe	Thr	Leu	
			25					30					35				
	aag	agg	aag	acg	ggg	cgg	aag	acc	aag	atc	atc	gag	atg	atg	cca	gaa	198
20	Lys	Arg	Lys	Thr	Gly	Arg	Lys	Thr	Lys	Ile	Ile	Glu	Met	Met	Pro	Glu	
		40					45					50					
	ttc	cag	aaa	agt	tca	gtt	cga	atc	aag	aac	cct	aca	aga	gta	gaa	gaa	246
	Phe	Gln	Lys	Ser	Ser	Val	Arg	Ile	Lys	Asn	Pro	Thr	Arg	Val	Glu	Glu	
	55					60					65					70	
25	a++	atc	tat	aat	ctt	atc	222	aaa	aas	act	acc	222	ctt	сап	ata	ata	294

	Ile	Ile	Суѕ	Gly	Leu	Ile	Lys	Gly	Gly	Ala	Ala	Lys	Leu	Gln	Ile	Ile	
					75					80					85		
	acg	gac	ttt	gat	atg	aca	ctc	agt	aga	ttt	tca	tat	aaa	ggg	aaa	aga	342
	Thr	Asp	Phe	Asp	Met	Thr	Leu	Ser	Arg	Phe	Ser	Tyr	Lys	Gly	Lys	Arg	
5				90					95					100			
	tgc	cca	aca	tgt	cat	aat	atc	att	gac	aac	tgt	aag	ctg	gtt	aca	gat	390
	Cys	Pro	Thr	Cys	His	Asn	Ile	Ile	Asp	Asn	Cys	Lys	Leu	Val	Thr	Asp	
		•	105			•		110					115				
	gaa	tgt	aga	aaa	aag	tta	ttg	caa	cta	aag	gaa	aaa	tat	tac	gct	att	438
10	Glu	Cys	Arg	Lys	Lys	Leu	Leu	Gln	Leu	Lys	Glu	Lys	Tyr	Tyr	Ala	Ile	
		120					125					130					
	gaa	gtt	gat	cct	gtt	ctt	act	gta	gaa	gag	aag	tac	cct	tat	atg	gtg	486
	Glu	Val	Asp	Pro	Val	Leu	Thr	Val	Glu	Glu	Lys	Tyr	Pro	Tyr	Met	Val	
	135					140					145					150	
15	gaa	tgg	tat	act	aaa	tca	cat	ggt	ttg	ctt	gtt	cag	caa	gct	tta	cca	534
	Glu	Trp	Tyr	Thr	Lys	Ser	His	Gly	Leu	Leu	Val	Gln	Gln	Ala	Leu	Pro	
					155					160					165		
	aaa	gct	aaa	ctt	aaa	gaa	att	gtg	gca	gaa	tct	gac	gtt	atg	ctc	aaa	582
	Lys	Ala	Lys	Leu	Lys	Glu	Ile	Val	Ala	Glu	Ser	Asp	Val	Met	Leu	Lys	
20				170					175					180			
	gaa	gga	tat	gag	aat	ttc	ttt	gat	aag	ctc	caa	caa	cat	agc	atc	ccc	630
	Glu	Gly	Tyr	Glu	Asn	Phe	Phe	Asp	Lys	Leu	Gln	Gln	His	Ser	Ile	Pro	
			185					190					195				
	gtg	ttc	ata	ttt	tcg	gct	gga	atc	ggc	gat	gta	cta	gag	gaa	gtt	att	678
25	Val	Phe	Ile	Phe	Ser	Ala	Gly	Ile	Gly	Asp	Val	Leu	Glu	Glu	Val	Ile	

	200			205		210			
	cgt caa	gct ggt	gtt tat	cat ccc	aat gtc	aaa gtt	gtg tcc	aat ttt	726
	Arg Gln	Ala Gly	Val Tyr	His Pro	Asn Val	Lys Val	Val Ser	Asn Phe	
	215		220			225		230	
5	atg gat	ttt gat	gaa act	ggg gtg	ctc aaa	gga ttt	aaa gga	gaa cta	774
	Met Asp	Phe Asp	Glu Thr	Gly Val	Leu Lys	Gly Phe	Lys Gly	Glu Leu	
			235		240		:	245	
	att cat	gta ttt	aac aaa	cat gat	ggt gcc	ttg agg	aat aca	gaa tat	822
	Ile His	Val Phe	Asn Lys	His Asp	Gly Ala	Leu Arg	Asn Thr	Glu Tyr	
10	•	250			255		260		
	ttc aat	caa cta	aaa gac	aat agt	aac ata	att ctt	ctg gga g	gac tcc	870
	Phe Asn	Gln Leu	Lys Asp	Asn Ser	Asn Ile	Ile Leu	Leu Gly I	Asp Ser	
		265		270			275		
							gtt gag (918
15		Asp Leu	Arg Met		Gly Val	Ala Asn	Val Glu I	His Ile	
	280			285		290			
							ctt tta (966
		Ile Gly		Asn Asp	Arg Val		Leu Leu (_	
20	295		300			305		310	
20							gaa tca 1		1014
	Tyr Met	Asp Ser		Ile Val		Gln Asp	Glu Ser		
	ata		315		320			325	
						taaacaag	rca ttctco	caaga	1064
25	vat Ata		Ile Leu	сти гАЗ					
2,0		330			335				

131/346

agacetetet cetgtgggtg caattgaact gtteateegt teatettget gagagaetta 1124

tttataatat ateettaete tegaagtgtt eeetttgtat aactgaagta tttteagata 1184

tggtgaatge attgaetgga ageteetttt eteeacetet eteaacacae teeteacegt 1244

ateetttaac eeatttaaaa aaaaaaaaa getaaaatta gaaaaataae teeetaettt 1304

teeaaagtga attttgtagt ttaatgttat eatgeagett ttgaggagte ttttacactg 1364

ggaaagtttg tagaaatttt aaaataagtt ttatgaaatg gtgaaataat atgeatgatt 1424

ttaagtattg eeatttttgt aatttgggtt attatgetga tggtateace ateetetgaa 1484

attgtgttag gtttggttat tttgtetggg gaaaaaatat ttaetggaaa agactageag 1544 '

ttagtgttgg aaaaacetgg tggtgtttae aatgttgeta ateattacaa aacattetat 1604

attgaageae tgataataaa tatgaaatge aaaacetttt tt 1646

<210> 58

5

10

<211> 1416

<212> DNA

15 <213> Homo sapiens

<220>

<221> CDS

<222> (174)..(1196)

<400> 58

aaaagttggc ccgggaagct caaggaggga gagcggcaga ggggaagact ctgcaattct 60
gcttgcccc caccccggcc caggcaagcc accctgcccc cggccccac ctgcccgccc 120
cgcctgccct tcctcacccc ggtgcctgcg ggattgctgg agagaacgcg gcg atg 176
Met

1

25 gag ccg ggc agg acc cag ata aag ctt gac ccc agg tac aca gca gat 224

	Glu	Pro	Gly	Arg	Thr	Gln	Ile	Lys	Leu	Asp	Pro	Arg	Tyr	Thr	Ala	Asp	
				5					10					15			
	ctt	ctg	gag	gtg	ctg	aag	acc	aat	tac	ggc	atc	ccc	tcc	gcc	tgc	ttc	272
	Leu	Leu	Glu	Val	Leu	Lys	Thr	Asn	Tyr	Gly	Ile	Pro	Ser	Ala	Cys	Phe	
5			20					25					30				
	tct	cag	cct	ccc	aca	gca	gcc	caa	ctc	ctg	aga	gcc	ctg	ggc	cct	gtg	320
	Ser	Gln	Pro	Pro	Thr	Ala	Ala	Gln	Leu	Leu	Arg	Ala	Leu	Gly	Pro	Val	
		35					40					45					
	gaa	ctt	gcc	ctc	act	agc	atc	ctg	acc	ttg	ctg	gcg	ctg	ggc	tcc	att	368
10	Glu	Leu	Ala	Leu	Thr	Ser	Ile	Leu	Thr	Leu	Leu	Ala	Leu	Gly	Ser	Ile	
	50					55					60					65	
	gcc	atc	ttc	ctg	gag	gat	gcc	gtc	tac	ctg	tac	aag	aac	acc	ctt	tgc	416
	Ala	Ile	Phe	Leu	Glu	Asp	Ala	Val	Tyr	Leu	Tyr	Lys	Asn	Thr	Leu	Cys	
					70					75					80		
15	ccc	atc	aag	agg	cgg	act	ctg	ctc	tgg	aag	agc	tcg	gca	ccc	acg	gtg	464
	Pro	Ile	Lys	Arg	Arg	Thr	Leu	Leu	Trp	Lys	Ser	Ser	Ala	Pro	Thr	Val	
				85					90					95			
	gtg	tct	gtg	ctg	tgc	tgc	ttt	ggt	ctc	tgg	atc	cct	cgt	tcc	ctg	gtg	512
	Val	Ser	Val	Leu	Cys	Cys	Phe	Gly	Leu	Trp	Ile	Pro	Arg	Ser	Leu	Val	
20			100					105					110				
	ctg	gtg	gaa	atg	acc	atc	acc	tcg	ttt	tat	gcc	gtg	tgc	ttt	tac	ctg	560
	Leu	Val	Glu	Met	Thr	Ile	Thr	Ser	Phe	Tyr	Ala	Val	Cys	Phe	Tyr	Leu	
		115					120					125					
	ctg	atg	ctg	gtc	atg	gtg	gaa	ggc	ttt _.	ggg	ggg	aag	gag	gca	gtg	ctg	608
25	Leu	Met	Leu	Val	Met	Val	Glu	Gly	Phe	Glv	Gly	Lys	Glu	Ala	Val	Leu	

	130					135					140					145	
	agg	acg	ctg	agg	gac	acc	ccg	atg	atg	gtc	cac	aca	ggc	ccc	tgc	tgc	656
	Arg	Thr	Leu	Arg	Asp	Thr	Pro	Met	Met	Val	His	Thr	Gly	Pro	Cys	Cys	
					150					155					160		
5	tgc	tgc	tgc	ccc	tgc	tgt	cca	cgg	ctg	ctg	ctc	acc	agg	aag	aag	ctt	704
	Cys	Cys	Cys	Pro	Cys	Cys	Pro	Arg	Leu	Leu	Leu	Thr	Arg	Lys	Lys	Leu	
				165					170					175			
	cag	ctg	ctg	atg	ttg	ggc	cct	ttc	caa	tac	gcc	ttc	ttg	aag	ata	acg	752
	Gln	Leu	Leu	Met	Leu	Gly	Pro	Phe	Gln	Tyr	Ala	Phe	Leu	Lys	Ile	Thr	
10			180					185					190				
	ctg	acc	ctg	gtg	ggc	ctg	ttt	ctc	atc	ccc	gac	ggc	atc	tat	gac	cca	800
	Leu	Thr	Leu	Val	Gly	Leu	Phe	Leu	Ile	Pro	Asp	Gly	Ile	Tyr	Asp	Pro	
		195					200					205					
	gca	gac	att	tct	gag	ggg	agc	aca	gct	cta	tgg	atc	aac	act	ttc	ctt	848
15	Ala	Asp	Ile	Ser	Glu	Gly	Ser	Thr	Ala	Leu	Trp	Ile	Asn	Thr	Phe	Leu	
	210					215					220					225	
	ggc	gtg	tcc	aca	ctg	ctg	gct	ctc	tgg	acc	ctg	ggc	atc	att	tcc	cgt	896
	Gly	Val	Ser	Thr	Leu	Leu	Ala	Leu	Trp	Thr	Leu	Gly	Ile	Ile	Ser	Arg	
					230					235					240		
20	caa	gcc	agg	cta	cac	ctg	g gt	gag	cag	aac	atg	gga	gcc	aaa	ttt	gct	944
	Gln	Ala	Arg	Leu	His	Leu	Gly	Glu	Gln	Asn	Met	Gly	Ala	Lys	Phe	Ala	
,				245					250					255			
	ctg	ttc	cag	gtt	ctc	ctc	atc	ctg	act	gcc	cta	cag	ccc	tcc	atc	ttc	992
	Leu	Phe	Gln	Val	Leu	Leu	Ile	Leu	Thr	Ala	Leu	Gln	Pro	Ser	Ile	Phe	
25			260					265					270				

134/346

	tca gtc ttg gcc aac ggt ggg cag att gct tgt tcg cct ccc tat tcc	1040
	Ser Val Leu Ala Asn Gly Gly Gln Ile Ala Cys Ser Pro Pro Tyr Ser	
	275 280 285	
	tct aaa acc agg tct caa gtg atg aat tgc cac ctc ctc ata ctg gag	1088
5	Ser Lys Thr Arg Ser Gln Val Met Asn Cys His Leu Leu Ile Leu Glu	
	290 295 300 305	
	act ttt cta atg act gtg ctg aca cga atg tac tac cga agg aaa gac	1136
	Thr Phe Leu Met Thr Val Leu Thr Arg Met Tyr Tyr Arg Arg Lys Asp	
	310 315 320	
10	cac aag gtt ggg tat gaa act ttc tct tct cca gac ctg gac ttg aac	1184
	His Lys Val Gly Tyr Glu Thr Phe Ser Ser Pro Asp Leu Asp Leu Asn	
	325 330 335	
	ctc aaa gcc taaggtggat ggcttggaca atgaaaggat gctgtactca	1233
	Leu Lys Ala	
15	340	
	ttagaataca agatteettt aetgteeete aacettgace aaatgggaag catteeecet 1	L293
	tgtcaacaca agctggcaga tacatttgac tctacagatg aaggtgaaca atgttagaat 1	L353
	aaaattgctt tggatcttgc ctggaaggtg ttttaagttt tgtaataaac aagatgatgt 1	L413
	ctg	1416
20	•	
	<210> 59	
	<211> 1927	
	<212> DNA	
	<213> Homo sapiens	
25	<220>	

©

	<22.	I> CI	JS														
	<22	2> (8	39).	. (76	0)												
	<400	O> 59	9							•							
	agct	tcca	gtc (ctgg	catct	tg co	ccga	ggaga	a cca	acgct	tcct	gga	gctc	tgc 1	tgtc	ttctca	60
·5	ggga	agact	ct (gaggo	ctct	gt to	gagaa	atc a	atg d	ctt 1	tgg a	agg (cag (ctc a	atc 1	tat	112
								ı	let 1	Leu :	Frp /	Arg (Gln 1	Leu :	Ile :	fyr	
									1				5				
	tgg	caa	ctg	ctg	gct	ttg	ttt	ttc	ctc	cct	ttt	tgc	ctg	tgt	caa	gat	160
	Trp	Gln	Leu	Leu	Ala	Leu	Phe	Phe	Leu	Pro	Phe	Cys	Leu	Cys	Gln	Asp	
10		10			•		15		•			20					
	gaa	tac	atg	gag	gtg	agc	gga	aga	act	aat	aaa	gtg	gtg	gca	aga	ata	208
	Glu	Tyr	Met	Glu	Val	Ser	Gly	Arg	Thr	Asn	Lys	Val	Val	Ala	Arg	Ile	
	25					30					35				_	40	
	gtg	caa	agc	cac	cag	cag	act	ggc	cgt	agc	ggc	tcc	agg	agg	gag	aaa	256
15				His													
					45			-	_	50				_	55	•	
	gtg	aga	gag	cgg	agc	cat	cct	aaa	act	aaa	act	ata	σat	aat	aac	act.	304
				Arg													
		_		60				•	65	•				70			
20	tct	aca	gac	cta	aaa	tcc	cta	aga		gat	gag	cta	cca		CCC	gag	352
				Leu													332
			75		-2-			80					85			CIU	
	αta	nat		cta	acc	can	atc		202	++~	taa	000		tat	000	422	400
				Leu													400
25	, u.	90	rup)	ಎರಡ	VT.0	111ج	95	1117.	TIIT.	FIIG	ıτħ	100	GTII	SGI	LTO	GTII	
		20					20					TUU					

136/346

	acc	gga	gga	cta	ccc	cca	gac	tgc	agt	aag	tgt	tgt	cat	gga	gac	tac	448
	Thr	Gly	Gly	Leu	Pro	Pro	Asp	Cys	Ser	Lys	Cys	Cys	His	Gly	Asp	Tyr	
	105					110					115					120	
	agc	ttt	cga	ggc	tac	caa	ggc	ccc	cct	ggg	cca	ccg	ggc	cct	cct	ggc	496
5	Ser	Phe	Arg	Gly	Tyr	Gln	Gly	Pro	Pro	Gly	Pro	Pro	Gly	Pro	Pro	Gly	
					125					130					135		
	att	cca	gga	aac	cat	gga	aac	aat	ggc	aac	aat	gga	gcc	act	ggt	cat	544
	Ile	Pro	Gly	Asn	His	Gly	Asn	Asn	Gly	Asn	Asn	Gly	Ala	Thr	Gly	His	
				140					145					150			
10																cga	592
	Glu	Gly	Ala	Lys	Gly	Glu	Lys		Asp	Lys	Gly	Asp		Gly	Pro	Arg	
•			155					160					165				
																ggg	640
	Gly		Arg	Gly	Gln	His	_	Pro	Lys	GIY	Glu			Tyr	Pro	Gly	
15	_ 1. 1.	170					175		***			180		~~~	200		600
			Pro									•				cac Wie	688
	185	PIO	PLO	GIU	Ten	190		мта	FILE	Mec	195		шеu	Ala	1111	200	
•		age	aat	cad	220			att	atc	ttc			att	nan	acc	aac	736
20			Asn														
					205		2			210					215		
	att	gga	aac	ttc			tca	tga	ctgg			gggg	cc c	cagt	atca	g	78
			Asn							_							
		_		220													

gtgtgtattt cttcaccttc agcatgatga agcatgagga tgttgaggaa gtgtatgtgt 847

25

137/346

accttatgca caatggcaac acagtcttca gcatgtacag ctatgaaatg aagggcaaat 907 cagatacatc cagcaatcat gctgtgctga agctagccaa aggggatgag gtttggctgc 967 gaatgggcaa tggcgctctc catggggacc accaacgctt ctccaccttt gcaqqattcc 1027 tgctctttga aactaagtaa atatatgact agaatagctc cactttgggg aagacttgta 1087 gctgagctga tttgttacga tctgaggaac attaaagttg agggttttac attgctgtat 1147 tcaaaaaatt attggttgca atgttgttca cgctacaggt acaccaataa tgttggacaa 1207 ttcaggggct cagaagaatc aaccacaaaa tagtcttctc agatgacctt gactaatata 1267 ctcagcatct ttatcactct ttccttggca cctaaaagat aattctcctc tgacgcaggt 1327 tggaaatatt tttttctatc acagaagtca tttgcaaaga attttgacta ctctgctttt 1387 aatttaatac cagttttcag gaacccctga agttttaagt tcattattct ttataacatt 1447 tgagagaatc ggatgtagtg atatgacagg gctggggcaa gaacaggggc actagctgcc 1507 ttattagcta atttagtgcc ctccgtgttc agcttagcct ttgacccttt ccttttgatc 1567 cacaaaatac attaaaactc tgaattcaca tacaatgcta ttttaaagtc aatagatttt 1627 agctataaag tgcttgacca gtaatgtggt tgtaattttg tgtatgttcc cccacatcgc 1687 ccccaacttc ggatgtgggg tcaggaggtt gaggttcact attaacaaat gtcataaata 1747 tctcatagag gtacagtgcc aatagatatt caaatgttgc atgttgacca gagggatttt 1807 atatctgaag aacatacact attaataaat accttagaga aagattttga cctggcttta 1867 gataaaactg tggcaagaaa aatgtaatga gcaatatatg gaaataaaca cacctttgtt 1927

20 <210> 60

5

10

15

<211> 1419

<212> DNA

<213> Homo sapiens

<220>

25 <221> CDS

	<222> (1	72)(1101)				
	<400> 60	ı				
	gaagcgcc	aa gtgcgcatg	g ggacgctata	gcaattcgtt tgc	etgteett ceteteette	60
	gaagatga	ca aggcctaco	a togtttotto	ctgcctttgg gcd	egtcagge agttggttgg	120
5	gacccgct	cc aaccctcg	t tottootgos	atacagtgga tad	caatttgt c atg gct	177
					Met Ala	
				•	1	
	act ctg	agt gtt ata	ggt tca agt	tca ctt att gco	c tat gct gta ttc	225
	Thr Leu	Ser Val Ile	Gly Ser Ser	Ser Leu Ile Ala	a Tyr Ala Val Phe	
10		5	10		15	
	cat aat	ata cag aaa	tct cca gag	ata aga cca ctt	t ttt tat ctg agc	273
	His Asn	Ile Gln Lys	Ser Pro Glu	Ile Arg Pro Leu	ı Phe Tyr Leu Ser	
	20		25	30)	
	ttc tgt	gac ctg ctc	ctg gga ctt	tgc tgg ctc acq	g gag aca ctt ctc	321
15	Phe Cys	Asp Leu Leu	Leu Gly Leu	Cys Trp Leu Thi	r Glu Thr Leu Leu	
	35		40 .	45	50	
					c tat aac cta caa	369
	Tyr Gly		Ala Asn Lys		s Tyr Asn Leu Gln	
0.0		55		60	65	
20					tac acc gtc aat	417
	Ala Val		Phe Tyr Ile		ı Tyr Thr Val Asn	
	L-	70		75 ·	80	
					a cac acc cag agt	465
25	-Ar 116	85	90	ned wid mee ply	s His Thr Gln Ser 95	

	gga	cag	agc	aca	tct	cca	ctg	gtg	ata	gat	tat	act	tgt	cga	gtt	tgt	513
	Gly	Gln	Ser	Thr	Ser	Pro	Leu	Val	Ile	Asp	Tyr	Thr	Cys	Arg	Val	Cys	
		100					105					110					
	caa	atg	gcc	ttt	gtt	ttc	tca	agg	tgt	atc	ttg	atg	cac	tca	cca	cca	561
5	Gln	Met	Ala	Phe	Val	Phe	Ser	Arg	Cys	Ile	Leu	Met	His	Ser	Pro	Pro	
	115					120					125					130	
	tca	gcc	atg	gct	gaa	ctt	cca	cct	tct	gcc	aac	aca	tct	gtc	tgt	agc	609
	Ser	Ala	Met	Ala	Glu	Leu	Pro	Pro	Ser	Ala	Asn	Thr	Ser	Val	Cys	Ser	
					135				-	140					145		
10	aca	ctt	tat	ttt	tat	ggt	atc	gcc	att	ttc	ctg	ggc	agc	ttt	gta	ctc	657
	Thr	Leu	Tyr	Phe	Tyr	Gly	Ile	Ala	Ile	Phe	Leu	Gly	Ser	Phe	Val	Leu	
				150					155					160			
	agc	ctc	ctt	acc	att	atg	gtc	tta	ctt	atc	cga	gcc	cag	aca	ttg	tat	705
	Ser	Leu	Leu	Thr	Ile	Met	Val	Leu	Leu	Ile	Arg	Ala	Gln	Thr	Leu	Tyr	
15	-		165					170					175				
	aag	aag	ttt	gtg	aag	tca	act	ggc	ttt	ctg	ggg	agt	gaa	cag	tgg	gca	753
	Lys	Lys	Phe	Val	Lys	Ser	Thr	Gly	Phe	Leu	Gly	Ser	Glu	Gln	Trp	Ala	
		180					185					190					
	gtg	att	cac	att	gtg	gac	caa	cgg	gtg	cgc	ttc	tac	cca	gtg	gcc	ttc	801
20	Val	Ile	His	Ile	Val	Asp	Gln	Arg	Val	Arg	Phe	Tyr	Pro	Val	Ala	Phe	
	195					200					205					210	
	ttt	tgc	tgc	tgg	ggc	cca	gct	gtc	att	cta	atg	atc	ata	aag	ctg	act	849
	Phe	Cys	Cys	Trp	Gly	Pro	Ala	Val	Ile	Leu	Met	Ile	Ile	Lys	Leu	Thr	
					215					220					225		
25	aag	cca	cag	gac	acc	aag	ctt	cac	atg	gcc	ctt	tat	gtt	ctc	cag	gct	891

140/346

	Lys	Pro	Gln	Asp	Thr	Lys	Leu	His	Met	Ala	Leu	Tyr	Val	Leu	Gln	Ala	
				230					235					240			
	cta	acg	gca	aca	tct	cag	ggt	cta	ctc	aac	tgt	gga	gta	tat	ggc	tgg	945
	Leu	Thr	Ala	Thr	Ser	Gln	Gly	Leu	Leu	Asn	Суѕ	Gly	Val	Tyr	Gly	Trp	
5			245					250					255				
	acg	cag	cac	aaa	ttc	cac	caa	cta	aag	cag	gag	gct	cgg	cgt	gat	gca	993
	Thr	Gln	His	Lys	Phe	His	Gln	Leu	Lys	Gln	Glu	Ala	Arg	Arg	Asp	Ala	
		260					265					270					
	gat	acc	cag	aca	cca	tta	tta	tgc	tca	cag	aag	aga	ttc	tat	agc	agg	1041
10	Asp	Thr	Gln	Thr	Pro	Leu	Leu	Cys	Ser	Gln	Lys	Arg	Phe	Tyr	Ser	Arg	
	275					280					285					290	
	ggc	tta	aat	tca	ctg	gaa	tcc	acc	ctg	act	ttt	cct	gcc	agt	act	tct	1089
	Gly	Leu	Asn	Ser	Leu	Glu	Ser	Thr	Leu	Thr	Phe	Pro	Ala	Ser	Thr	Ser	
					295					300					305		
15	acc	att	ttt	tgaa	acta	aca a	atact	ggaa	ac at	ccaç	gaad	tgg	gagtt	att			1138
	Thr	Ile	Phe											•			
	ctac	gcta	at g	gatt	ggaa	aa ga	aatgt	tgg	g aaa	aggad	catc	ttaa	atct	tt t	tctaa	ctatg	1198
	ccct	aaac	tg o	agaa	actca	aa ag	ggaaa	atata	a gto	gccat	tgt	tagt	agto	cat t	tctag	gatgaa	1258
	ttgg	gagt	at o	ctctc	cagt	t at	tcc	cagat	t tca	actag	gtga	tcct	taaa	agt d	ctcta	attcag	1318
20	ggag	gagga	ag a	cact	ttco	ca to	ctcag	gagat	aga	actc	gtgt	taco	ettga	atg g	gatat	tggat	1378
	ttgt	ctaa	igt d	tctt	ctag	ga aa	aaat	aaat	tet	agat	tat	t					1419
	<210)> 61															
	<211	.> 59	9														
25	<212	?> PF	T														

Ç:

141/346

<213> Homo sapiens

<1	^	^	61
< 1	11	115	h i

	<400)> 6.	L					•								
	Met	Pro	Ser	Ser	Leu	Pro	Gly	Ser	Gln	Val	Pro	His	Pro	Thr	Leu	Asp
5	1				5					10			•		15	
	Ala	Val	Asp	Leu	Val	Glu	Lys	Thr	Leu	Arg	Asn	Glu	Gly	Thr	Ser	Ser
				20					25					30		
	Ser	Ala	Pro	Val	Leu	Glu	Glu	Gly	Asp	Thr	Asp	Pro	Trp	Thr	Leu	Pro
			35					40					45			
10	Gln	Leu	Lys	Asp	Thr	Ser	Gln	Pro	Trp	Lys	Glu	Leu	Arg	Val	Ala	Gly
		50					55					60				
	Arg	Leu	Arg	Arg	Val	Ala	Gly	Ser	Val	Leu	Lys	Ala	Cys	Gly	Leu	Leu
	65					70					75					80
	Gly	Ser	Leu	Tyr	Phe	Phe	Ile	Cys	Ser	Leu	Asp	Val	Leu	Ser	Ser	Ala
15					85					90					95	
	Phe	Gln	Leu	Leu	Gly	Ser	Lys	Val	Ala	Gly	Asp	Ile	Phe	Lys	Asp	Asn
				100					105					110		
	Val	Val	Leu	Ser	Asn	Pro	Val	Ala	Gly	Leu	Val	Ile	Gly	Val	Leu	Val
			115					120					125			
20	Thr	Ala	Leu	Val	Gln	Ser	Ser	Ser	Thr	Ser	Ser	Ser	Ile	Val	Val	Ser
		130					135					140				
	Met	Val	Ala	Ala	Lys	Leu	Leu	Thr	Val	Arg	Val	Ser	Val	Pro	Ile	Ile
	145					150					155					160
	Met	Gly	Val	Asn	Val	Gly	Thr	Ser	Ile	Thr	Ser	Thr	Leu	Val	Ser	Met
25					165					170					175	

	Ala	Gln	Ser	Gly	Asp	Arg	Asp	Glu	Phe	Gln	Arg	Ala	Phe	Ser	Gly	Ser
				180					185					190		
	Ala	Val	His	Gly	Ile	Phe	Asn	Trp	Leu	Thr	Val	Leu	Val	Leu	Leu	Pro
			195					200					205			
5	Leu	Glu	Ser	Ala	Thr	Ala	Leu	Leu	Glu	Arg	Leu	Ser	Glu	Leu	Ala	Leu
		210					215					220				
	Gly	Ala	Ala	Ser	Leu	Thr	Pro	Arg	Ala	Gln	Ala	Pro	Asp	Ile	Leu	Lys
	225					230					235					240
	Val	Leu	Thr	Lys	Pro	Leu	Thr	His	Leu	Ile	Val	Gln	Leu	Asp	Ser	Asp
10					245					250					255	
	Met	Ile	Met	Ser	Ser	Ala	Thr	Gly	Asn	Ala	Thr	Asn	Ser	Ser	Leu	Ile
				260					265					270		
	Lys	His	Trp	Cys	Gly	Thr	Thr	Gly	Gln	Pro	Thr	Gln	Glu	Asn	Ser	Ser
			275					280					285			
15	Cys	Gly	Ala	Phe	Gly	Pro	Cys	Thr	Glu	Lys	Asn	Ser	Thr	Ala	Pro	Ala
		290					295					300				
	Asp	Arg	Leu	Pro	Cys	Arg	His	Leu	Phe	Ala	Gly	Thr	Glu	Leu	Thr	Asp
	305					310					315					320
	Leu	Ala	Val	Gly	Cys	Ile	Leu	Leu	Ala	Gly	Ser	Leu	Leu	Val	Leu	Cys
20					325					330					335	
	Gly	Cys	Leu	Val	Leu	Ile	Val	Lys	Leu	Leu	Asn	Ser	Val	Leu	Arg	Gly
				340					345					350		
	Arg	Val	Ala	Gln	Val	Val	Arg	Thr	Val	Ile	Asn	Ala	Asp	Phe	Pro	Phe
			355					360					365			
25	Pro	Leu	Gly	Trp	Leu	Gly	Gly	Tyr	Leu	Ala	Val	Leu	Ala	Gly	Ala	Gly

			370					375					380				
		Leu	Thr	Phe	Ala	Leu	Gln	Ser	Ser	Ser	Val	Phe	Thr	Ala	Ala	Val	Val
		385					390					395					400
		Pro	Leu	Met	Gly	Val	Gly	Val	Ile	Ser	Leu	Asp	Arg	Ala	Tyr	Pro	Leu
!	5					405					410					415	
		Leu	Leu	Gly	Ser	Asn	Ile	Gly	Thr	Thr	Thr	Thr	Ala	Leu	Leu	Ala	Ala
					420					425					430		
		Leu	Ala	Ser	Pro	Ala	Asp	Arg	Met	Leu	Ser	Ala	Leu	Gln	Val	Ala	Leu
				435					440					445			
1	0	Ile	His	Phe	Phe	Phe	Asn	Leu	Ala	Gly	Ile	Leu	Leu	Trp	Tyr	Leu	Val
			450					455					460				
		Pro	Ala	Leu	Arg	Leu	Pro	Ile	Pro	Leu	Ala	Arg	His	Phe	Gly	Val	Val
		465					470					475					480
		Thr	Ala	Arg	Tyr	Arg	Trp	Val	Ala	Gly	Val	Tyr	Leu	Leu	Leu	Gly	Phe
1	5					485					490					495	
		Leu	Leu	Leu	Pro	Leu	Ala	Ala	Phe	Gly	Leu	Ser	Leu	Ala	Gly	Gly	Met
					500					505					510		
		Val	Leu		Ala	Val	Gly	Gly		Leu	Val	Gly	Leu		Leu	Leu	Val
	_			515					520					525			
2	0	Ile			Thr	Val	Leu		Arg	Arg	Arg	Pro		_	Leu	Pro	Val
			530					535	_				540				
			Leu	Arg	Ser	Trp		Trp	Leu	Pro	Val			His	Ser	Leu	
		545		_	_		550			_		555		_		0	560
2	5	Pro	тrр	Asp	Arg	Leu 565		rnr	Arg	cys	Cys 570		cys	Asn	vaı	Cys 575	
	:)					לחכ					5/11					212	

144/346

Pro Pro Lys Ala Thr Thr Lys Glu Ala Tyr Cys Tyr Glu Asn Pro Glu 580 585 585 590

Ile Leu Ala Ser Gln Gln Leu

595

5

<210> 62

<211> 81

<212> PRT

<213> Homo sapiens

A.

<400> 62

10

Met Asp Gly Gl
n Pro Ile Pro Ser Ser Leu Val Pro Leu Gly Asn $\,$

1 5 10 15

Glu Ser Ala Asp Ser Ser Met Ser Leu Glu Gln Lys Met Thr Phe Val

15 20 25 30

Phe Val Ile Leu Leu Phe Ile Phe Leu Gly Ile Leu Ile Val Arg Cys

35 40 45

Phe Arg Ile Leu Leu Asp Pro Tyr Arg Ser Met Pro Thr Ser Thr Trp

50 55 60

20 Ala Asp Gly Leu Glu Gly Leu Glu Lys Gly Gln Phe Asp His Ala Leu

65 70 75 80

Ala

25 <210> 63

145/346

<211> 654 <212> PRT <213> Homo sapiens <400> 63 Met Ala Pro Lys Lys Leu Ser Cys Leu Arg Ser Leu Leu Leu Pro Leu Ser Leu Thr Leu Leu Pro Gln Ala Asp Thr Arg Ser Phe Val Val Asp Arg Gly His Asp Arg Phe Leu Leu Asp Gly Ala Pro Phe Arg Tyr Val Ser Gly Ser Leu His Tyr Phe Arg Val Pro Arg Val Leu Trp Ala Asp Arg Leu Leu Lys Met Arg Trp Ser Gly Leu Asn Ala Ile Gln Phe Tyr Val Pro Trp Asn Tyr His Glu Pro Gln Pro Gly Val Tyr Asn Phe Asn Gly Ser Arg Asp Leu Ile Ala Phe Leu Asn Glu Ala Ala Leu Ala Asn Leu Leu Val Ile Leu Arg Pro Gly Pro Tyr Ile Cys Ala Glu Trp Glu Met Gly Gly Leu Pro Ser Trp Leu Leu Arg Lys Pro Glu Ile His

Leu Arg Thr Ser Asp Pro Asp Phe Leu Ala Ala Val Asp Ser Trp Phe

	Lys	Val	Leu	Leu	Pro	Lys	Ile	Tyr	Pro	Trp	Leu	Tyr	His	Asn	Gly	Gly
					165					170					175	
	Asn	Ile	Ile	Ser	Ile	Gln	Val	Glu	Asn	Glu	Tyr	Gly	Ser	Tyr	Arg	Ala
				180					185					190		
5	Cys	Asp	Phe	Ser	Tyr	Met	Arg	His	Leu	Ala	Gly	Leu	Phe	Arg	Ala	Leu
			195					200					205			
	Leu	Gly	Glu	Lys	Ile	Leu	Leu	Phe	Thr	Thr	Asp	Gly	Pro	Glu	Gly	Leu
•		210					215					220				
	Lys	Cys	Gly	Ser	Leu	Arg	Gly	Leu	Tyr	Thr	Thr	Val	Asp	Phe	Gly	Pro
10	225					230					235					240
	Ala	Asp	Asn	Met	Thr	Lys	Ile	Phe	Thr	Leu	Leu	Arg	Lys	Tyr	Glu	Pro
					245					250	,				255	
	His	Gly	Pro	Leu	Val	Asn	Ser	Glu	Tyr	Tyr	Thr	Gly	Trp	Leu	Asp	Tyr
				260					265					270		
15	Trp	Gly	Gln	Asn	His	Ser	Thr	Arg	Ser	Val	Ser	Ala	Val	Thr	Lys	Gly
			275					280					285			
	Leu	Glu	Asn	Met	Leu	Lys	Leu	Gly	Ala	Ser	Val	Asn	Met	Tyr	Met	Phe
		290					295					300				
	His	Gly	Gly	Thr	Asn	Phe	Gly	Tyr	Trp	Asn	Gly	Ala	Asp	Lys	Lys	Gly
20	305					310					315					320
	Arg	Phe	Leu	Pro	Ile	Thr	Thr	Ser	Tyr	Asp	Tyr	Asp	Ala	Pro	Ile	Ser
					325					330					335	
	Glu	Ala	Gly	Asp	Pro	Thr	Pro	Lys	Leu	Phe	Ala	Leu	Arg	Asp	Val	Ile
				340					345					350		
25	Ser	Lys	Phe	Gln	Glu	Val	Pro	Leu	Gly	Pro	Leu	Pro	Pro	Pro	Ser	Pro

			355					360					365			
	Lys	Met	Met	Leu	Gly	Pro	Val	Thr	Leu	His	Leu	Val	Gly	His	Leu	Leu
		370					375					380				
	Ala	Phe	Leu	Asp	Leu	Leu	Cys	Pro	Arg	Gly	Pro	Ile	His	Ser	Ile	Leu
5	385					390					395					400
	Pro	Met	Thr	Phe	Glu	Ala	Val	Lys	Gln	Asp	His	Gly	Phe	Met	Leu	Tyr
					405					410					415	
	Arg	Thr	Tyr	Met	Thr	His	Thr	Ile	Phe	Glu	Pro	Thr	Pro	Phe	Trp	Val
				420					425					430		
10	Pro	Asn	Asn	Gly	Val	His	Asp	Arg	Ala	Tyr	Val	Met	Val	Asp	Gly	Val
			435					440					445			
	Phe	Gln	Gly	Val	Val	Glu	Arg	Asn	Met	Arg	Asp	Lys	Leu	Phe	Leu	Thr
		450					455					460				
	Gly	Lys	Leu	Gly	Ser	Lys	Leu	Asp	Ile	Leu	Val	Glu	Asn	Met	Gly	Arg
15	465					470					475					480
	Leu	Ser	Phe	Gly	Ser	Asn	Ser	Ser	Asp	Phe	Lys	Gly	Leu	Leu	Lys	Pro
					485					490					495	
	Pro	Ile	Leu	Gly	Gln	Thr	Ile	Leu	Thr	Gln	Trp	Met	Met	Phe	Pro	Leu
				500					505					510		
20	Lys	Ile	Asp	Asn	Leu	Val	Lys	Trp	Trp	Phe	Pro	Leu	Gln	Leu	Pro	Lys
			515					520					525			
	Trp	Pro	Tyr	Pro	Gln	Ala	Pro	Ser	Gly	Pro	Thr	Phe	Tyr	Ser	Lys	Thr
		530					535					540				
	Phe	Pro	Ile	Leu	Gly	Ser	Val	Gly	Asp	Thr	Phe	Leu	Tyr	Leu	Pro	Gly
25	545					550					555					560

	Trp	Thr	Lys	Gly	Gln	Val	Trp	Ile	Asn	Gly	Phe	Asn	Leu	Gly	Arg	Tyr
					565					570					575	
	Trp	Thr	Lys	Gln	Gly	Pro	Gln	Gln	Thr	Leu	Tyr	Val	Pro	Arg	Phe	Leu
				580					585					590		
5	Leu	Phe	Pro	Arg	Gly	Ala	Leu	Asn	Lys	Ile	Thr	Leu	Leu	Glu	Leu	Glu
			595					600					605			
	Asp	Val	Pro	Leu	Gln	Pro	Gln	Val	Gln	Phe	Leu	Asp	Lys	Pro	Ile	Leu
		610					615					620				
	Asn	Ser	Thr	Ser	Thr	Leu	His	Arg	Thr	His	Ile	Asn	Ser	Leu	Ser	Ala
10 .	625					630					635					640
	Asp	Thr	Leu	Ser	Ala	Ser	Glu	Pro	Met	Glu	Leu	Ser	Gly	His		
					645					650						
	<210)> 64	1						-					٠		
15	<211	L> 39	90													
	<212	?> PF	RT													
	<213	3> нс	omo s	sapie	ens											
	<400)> 64	1													
20	Met	Gly	Met	Asp	Asp	Cys	Asp	Ser	Phe	Phe	Pro	Gly	Pro	Leu	Val	Ala
	1				5					10					15	
	Ile	Ile	Cys	Asp	Ile	Leu	Gly	Glu	Lys	Thr	Thr	Ser	Ile	Leu	Gly	Ala
				20					25					30		
	Phe	Val	Val	Thr	Gly	Gly	Tyr	Leu	Ile	Ser	Ser	Trp	Ala	Thr	Ser	Ile
25			35					40		•			45			

	Pro	Phe	Leu	Cys	Val	Thr	Met	Gly	Leu	Leu	Pro	Gly	Leu	Gly	Ser	Ala
		50					55					60				
	Phe	Leu	Tyr	Gln	Val	Ala	Ala	Val	Val	Thr	Thr	Lys	Tyr	Phe	Lys	Lys
	65					70					75		•			80
5	Arg	Leu	Ala	Leu	Ser	Thr	Ala	Ile	Ala	Arg	Ser	Gly	Met	Gly	Leu	Thr
					85		•			90			•		95	
	Phe	Leu	Leu	Ala	Pro	Phe	Thr	Lys	Phe	Leu	Ile	Asp	Leu	Tyr	Asp	Trp
				100					105					110		
	Thr	Gly	Ala	Leù	Ile	Leu	Phe	Gly	Ala	Ile	Ala	Leu	Asn	Leu	Val	Pro
10			115					120					125			
	Ser	Ser	Met	Leu	Leu	Arg	Pro	Ile	His	Ile	Lys	Ser	Glu	Asn	Asn	Ser
		130					135					140				
	Gly	Ile	Lys	Asp	Lys	Gly	Ser	Ser	Leu	Ser	Ala	His	Gly	Pro	Glu	Ala
	145					150					155					160
15	His	Alạ	Thr	Glu	Thr	His	Суз	His	Glu	Thr	Glu	Glu	Ser	Thr	Ile	Lys
					165					170					175	
	Asp	Ser	Thr	Thr	Gln	Lys	Ala	Gly	Leu	Pro	Ser	Lys	Asn	Leu	Thr	Val
				180					185					190		
	Ser	Gln	Asn	Gln	Ser	Glu	Glu	Phe	Tyr	Asn	Gly	Pro	Asn	Arg	Asn	Arg
20			195			•		200					205			
	Leu	Leu	Leu	Lys	Ser	Asp	Glu	Glu	Ser	Asp	Lys	Val	'Ile	Ser	Trp	Ser
		210					215					220				
	Cys	Lys	Gln	Leu	Phe	Asp	Ile	Ser	Leu	Phe	Arg	Asn	Pro	Phe	Phe	Tyr
	225					230					235					240
25	Ile	Phe	Thr	Trp	Ser	Phe	Leu	Leu	Ser	Gln	Leu	Ala	Tyr	Phe	Ile	Pro

					245					250					255	
	Thr	Phe	His	Leu	Val	Ala	Arg	Ala	Lys	Thr	Leu	Gly	Ile	Asp	Ile	Met
				260					265					270		
	Asp	Ala	Ser	Tyr	Leu	Val	Ser	Val	Ala	Gly	Ile	Leu	Glu	Thr	Val	Sei
5			275					280					285			
	Gln	Ile	Ile	Ser	Gly	Trp	Val	Ala	Asp	Gln	Asn	Trp	Ile	Lys	Lys	Туг
		290					295					300				
	His	Tyr	His	Lys	Ser	Tyr	Leu	Ile	Leu	Cys	Gly	Ile	Thr	Asn	Leu	Let
	305					310					315					320
10	Ala	Pro	Leu	Ala	Thr	Thr	Phe	Pro	Leu	Leu	Met	Thr	Tyr	Thr	Ile	Cys
					325					330					335	
	Phe	Ala	Ile	Phe	Ala	Gly	Gly	Tyr	Leu	Ala	Leu	Ile	Leu	Pro	Val	Leu
				340					345		•			350		
	Val	Asp	Leu	Cys	Arg	Asn	Ser	Thr	Val	Asn	Arg	Phe	Leu	Gly	Leu	Ala
15			355					360					365			
	Ser	Phe	Phe	Ala	Gly	Met	Ala	Val	Leu	Ser	Gly	Pro	Pro	Ile	Ala	Gly
		370		4			375					380				
	Asn	Thr	Phe	Thr	Thr	Phe										
	385					390										
20																
	<210)> 65	5													
	<211	L> 45	52													
	<212	?> PF	RT.													
	<213	3> Ho	omo s	sapie	ens .											
25																

	<400)> 65	•													
	Met	Glu	Leu	Ala	Leu	Arg	Arg	Ser	Pro	Val	Pro	Arg	Trp	Leu	Leu	Leu
	1				5					10					15	
	Leu	Pro	Leu	Leu	Leu	Gly	Leu	Asn	Ala	Gly	Ala	Val	Ile	Asp	Trp	Pro
5				20					25					30		
	Thr	Glu	Glu	Gly	Lys	Glu	Val	Trp	Asp	Tyr	Val	Thr	Val	Arg	Lys	Asp
			35					40					45			
	Ala	Tyr	Met	Phe	Trp	Trp	Leu	Tyr	Tyr	Ala	Thr	Asn	Ser	Cys	Lys	Asn
		50					55					60				
10	Phe	Ser	Glu	Leu	Pro	Leu	Val	Met	Trp	Leu	Gln	Gly	Gly	Pro	Gly	Gly
	65					70					75		,			80
	Ser	Ser	Thr	Gly	Phe	Gly	Asn	Phe	Glu.	Glu	Ile	Gly	Pro	Leu	Asp	Ser
					85					90					95	
	Asp	Leu	Lys	Pro	Arg	Lys	Thr	Thr	Trp	Leu	Gln	Ala	Ala	Ser	Leu	Leu
15				100					105					110		
	Phe	Val	Asp	Asn	Pro	Val	Gly	Thr	Gly	Phe	Ser	Tyr	Val	Asn	Gly	Ser
			115					120					125			
	Gly	Ala	Tyr	Ala	Lys	Asp	Leu	Ala	Met	Val	Ala	Ser	Asp	Met	Met	Val
		130					135					140				
20	Leu	Lev	Lys	Thr	Phe	Phe	Ser	Cys	His	Lys	Glu	Phe	Gln	Thr	Val	Pro
	145					150					155					160
	Phe	Tyr	: Ile	Phe	Ser	Glu	ser Ser	Tyr	Gly	Gly	Lys	Met	Ala	Ala		Ile
					165					170					175	
	Gl	/ Let	ı Glu	ı Lev	1 Туі	Lys	s Ala	ı Ile	Gln	Arg	Gly	Thr	: Ile			Asn
2.5				100	,				105					190		

	Phe	Ala	Gly	Val	Ala	Leu	Gly	Asp	Ser	Trp	Ile	Ser	Pro	Val	Asp	Ser
			195					200					205			
	Val	Leu	Ser	Trp	Gly	Pro	Tyr	Leu	Tyr	Ser	Met	Ser	Leu	Leu	Glu	Asp
		210					215					220				
5	Lys	Gly	Leu	Ala	Glu	Val	Ser	Lys	Val	Ala	Glu	Gln	Val	Leu	Asn	Ala
	225					230					235					240
	Val	Asn	Lys	Gly	Leu	Tyr	Arg	Glu	Ala	Thr	Glu	Leu	Trp	Gly	Lys	Ala
					245					250					255	
	Glu	Met	Ile	Ile	Glu	Gln	Asn	Thr	Asp	Gly	Val	Asn	Phe	Tyr	Asn	Ile
10				260					265		٠			270		
	Leu	Thr	Lys	Ser	Thr	Pro	Thr	Ser	Thr	Met	Glu	Ser	Ser	Leu	Glu	Phe
			275					280					285			
	Thr	Gln	Ser	His	Leu	Val	Суз	Leu	Cys	Gln	Arg	His	Val	Arg	His	Leu
		290					295					300				
15	Gln	Arg	Asp	Ala	Leu	Ser	Gln	Leu	Met	Asn	Gly	Pro	Ile	Arg	Lys	Lys
	305					310					315			,		320
	Leu	Lys	Ile	Ile	Pro	Glu	Asp	Gln	Ser	Trp	Gly	Gly	Gln	Ala	Thr	Asn
					325					330					335	
	Val	Phe	Val	Asn	Met	Glu	Glu	Asp	Phe	Met	Lys	Pro	Val	Ile	Ser	Ile
20				340					345					350		
	Val	Asp	Glu	Leu	Leu	Glu	Ala	Gly	Ile	Asn	Val	Thr	Val	Tyr	Asn	Gly
			355					360					365			
	Gln	Leu	Asp	Leu	Ile	Val	Asp	Thr	Met	Gly	Gln	Glu	Ala	Trp	Val	Arg
		370					375					380				
25	Lys	Leu	Lys	Trp	Pro	Glu	Leu	Pro	Lys	Phe	Ser	Gln	Leu	Lys	Trp	Lys

153/346

Ala Leu Tyr Ser Asp Pro Lys Ser Leu Glu Thr Ser Ala Phe Val Lys Ser Tyr Lys Asn Leu Ala Phe Tyr Trp Ile Leu Lys Ala Gly His Met Val Pro Ser Asp Gln Gly Asp Met Ala Leu Lys Met Met Arg Leu Val Thr Gln Gln Glu <210> 66 <211> 490 <212> PRT <213> Homo sapiens <400> 66 Met Arg Pro Ala Phe Ala Leu Cys Leu Leu Trp Gln Ala Leu Trp Pro Gly Pro Gly Gly Glu His Pro Thr Ala Asp Arg Ala Gly Cys Ser Ala Ser Gly Ala Cys Tyr Ser Leu His His Ala Thr Met Lys Arg Gln Ala Ala Glu Glu Ala Cys Ile Leu Arg Gly Gly Ala Leu Ser Thr Val Arg Ala Gly Ala Glu Leu Arg Ala Val Leu Ala Leu Leu Arg Ala Gly

	65					70					75					80
	Pro	Gly	Pro	Gly	Gly	Gly	Ser	Lys	Asp	Leu	Leu	Phe	Trp	Val	Ala	Leu
					85					90					95	
	Glu	Arg	Arg	Arg	Ser	His	Cys	Thr	Leu	Glu	Asn	Glu	Pro	Leu	Arg	Gly
5				100					105					110		
	Phe	Ser	Trp	Leu	Ser	Ser	Asp	Pro	Gly	Gly	Leu	Glu	Ser	Asp	Thr	Leu
			115					120					125			
	Gln	Trp	Val	Glu	Glu	Pro	Gln	Arg	Ser	Cys	Thr	Ala	Arg	Arg	Cys	Ala
		130					135					140				
10	·Val	Leu	Gln	Ala	Thr	Gly	Gly	Val	Glu	Pro	Ala	Gly	Trp	Lys	Glu	Met
	145					150					155					160
	Arg	Cys	His	Leu	Arg	Ala	Asn	Gly	Tyr	Leu	Суз	Lys	Tyr	Gln	Phe	Glu
					165					170					175	
	Val	Leu	Cys	Pro	Ala	Pro	Arg	Pro	Gly	Ala	Ala	Ser	Asn	Leu	Ser	Tyr
15				180					185					190		
	Arg	Ala	Pro	Phe	Gln	Leu	His	Ser	Ala	Ala	Leu	Asp	Phe	Ser	Pro	Pro
			195					200					205			
	Gly	Thr	Glu	Val	Ser	Ala	Leu	Cys	Arg	Gly	Gln	Leu	Pro	Ile	Ser	Val
		210					215					220				
20	Thr	Cys	Ile	Ala	Asp	Glu	Ile	Gly	Ala	Arg	Trp	Asp	Lys	Leu	Ser	Gly
	225					230					235					240
	Asp	Val	Leu	Cys	Pro	Cys	Pro	Gly	Arg	Tyr	Leu	Arg	Ala	Gly	Lys	Cys
					245					250					255	
	Ala	Glu	Leu	Pro	Asn	Cys	Leu	Asp	Asp	Leu	Gly	Gly	Phe	Ala	Cys	Glu
25				260					265					270		

	Суѕ	Ala	Thr	Gly	Phe	Glu	Leu	Gly	Lys	Asp	Gly	Arg	Ser	Cys	Val	Thr
			275					280					285			
	Ser	Gly	Glu	Gly	Gln	Pro	Thr	Leu	Gly	Gly	Thr	Gly	Val	Pro	Thr	Arg
		290					295					300				
5	Arg	Pro	Pro	Ala	Thr	Ala	Thr	Ser	Pro	Val	Pro	Gln	Arg	Thr	Trp	Pro
	305					310					315					320
	Ile	Arg	Val	Asp	Glu	Lys	Leu	Gly	Gļu	Thr	Pro	Leu	Val	Pro	Glu	Gln
					325					330					335	
	Asp	Asn	Ser	Val	Thr	Ser	Ile	Pro	Glu	Ile	Pro	Arg	Trp	Gly	Ser	Gln
10				340				,	345					350		•
•	Ser	Thr	Met	Ser	Thr	Leu	Gln	Met	Ser	Leu	Gln	Ala	Glu	Ser	Lys	Ala
			355					360					365			
	Thr	Ile	Thr	Pro	Ser	Gly	Ser	Val	Ile	Ser	Lys	Phe	Asn	Ser	Thr	Thr
		370					375					380				
15	Ser	Ser	Ala	Thr	Pro	Gln	Ala	Phe	Asp	Ser	Ser	Ser	Ala	Val	Val	Phe
	385					390					395					400
	Ile	Phe	Val	Ser	Thr	Ala	Val	Val	Val	Leu	Val	Íle	Leu	Thr	Met	Thr
					405					410					415	
	Val	Leu	Gly	Leu	Val	Lys	Leu	Cys	Phe	His	Glu	Ser	Pro	Ser	Ser	Gln
20				420					425					430		
	Pro	Arg	Lys	Glu	Ser	Met	Gly	Pro	Pro	Gly	Leu	Glu	Ser	Asp	Pro	Glu
			435					440					445			
	Pro	Ala	Ala	Leu	Gly	Ser	Ser	Ser	Ala	His	Суз	Thr	Asn	Asn	Gly	Val
		450					455					460				
25	Lys	Val	Gly	Asp	Cys	Asp	Leu	Arg	Asp	Arg	Ala	Glu	Gly	Ala	Leu	Leu

156/346

Ala Glu Ser Pro Leu Gly Ser Ser Asp Ala .490 <210> 67 <211> 392 <212> PRT <213> Homo sapiens <400> 67 Met Gln Val Asn Thr Thr Lys Phe Met Leu Leu Tyr Ala Trp Tyr Ser Trp Pro Asn Val Val Leu Cys Phe Phe Gly Gly Phe Leu Ile Asp Arg Val Phe Gly Ile Arg Trp Gly Thr Ile Ile Phe Ser Cys Phe Val Cys Ile Gly Gln Val Val Phe Ala Leu Gly Gly Ile Phe Asn Ala Phe Trp Leu Met Glu Phe Gly Arg Phe Val Phe Gly Ile Gly Gly Glu Ser Leu Ala Val Ala Gln Asn Thr Tyr Ala Val Ser Trp Phe Lys Gly Lys Glu Leu Asn Leu Val Phe Gly Leu Gln Leu Ser Met Ala Arg Ile Gly Ser Thr Val Asn Met Asn Leu Met Gly Trp Leu Tyr Ser Lys Ile Glu Ala

			115					120					125			
	Leu	Leu	Gly	Ser	Ala	Gly	His	Thr	Thr	Leu	Gly	Ile	Thr	Leu	Met	Ile
		130					135					140				
	Gly	Gly	Ile	Thr	Cys	Ile	Leu	Ser	Leu	Ile	Cys	Ala	Leu	Ala	Leu	Ala
5	145					150					155					160
	Tyr	Leu	Asp	Gln	Arg	Ala	Glu	Arg	Ile	Leu	His	Lys	Glu	Gln	Gly	Lys
					165					170					175	
	Thr	Gly	Glu	Val	Ile	Lys	Leu	Thr	Asp	Val	Lys	Asp	Phe	Ser	Leu	Pro
				180					185					190		
10	Leu	Trp	Leu	Ile	Phe	Ile	Ile	Cys	Val	Cys	Tyr	Tyr	Val	Ala	Val	Phe
			195					200					205			
	Pro	Phe	Ile	Gly	Leu	Gly	Lys	Val	Phe	Phe	Thr	Glu	Lys	Phe	Gly	Phe
		210					215					220				
	Ser	Ser	Gln	 Ala	Ala	Ser	Ala	Ile	Asn	Ser	Val	Val	Tyr	Val	Ile	Ser
15	225					230					235					240
	Ala	Pro	Met	Ser	Pro	Val	Phe	Gly	Leu	Leu	Val	Asp	Lys	Thr	Gly	Lys
					245					250					255	
	Asn	Ile	Ile	Trp	Val	Leu	Cys	Ala	Val	Ala	Ala	Thr	Leu	Val	Ser	His
				260					265					270		
20	Met	Met	Leu	Ala	Phe	Thr	Met	Trp	Asn	Pro	Trp	Ile	Ala	Met	Cys	Leu
			275					280					285			
	Leu	Gly	Leu	Ser	Tyr	Ser	Leu	Leu	Ala	Cys	Ala	Leu	Trp	Pro	Met	Val
		290					295					300				
	Ala	Phe	Val	Val	Pro	Glu	His	Gln	Leu	Gly	Thr	Ala	Tyr	Gly	Phe	Met
25	305					310					315					320

158/346

Gln Ser Ile Gln Asn Leu Gly Leu Ala Ile Ile Ser Ile Ile Ala Gly Met Ile Leu Asp Ser Arg Gly Tyr Leu Phe Leu Glu Val Phe Phe Ile Ala Cys Val Ser Leu Ser Leu Leu Ser Val Val Leu Leu Tyr Leu Val Asn Arg Ala Gln Gly Gly Asn Leu Asn Tyr Ser Ala Arg Gln Arg Glu Glu Ile Lys Phe Ser His Thr Glu <210> 68 <211> 538 <212> PRT <213> Homo sapiens <400> 68 Met Gly Cys Leu Trp Gly Leu Ala Leu Pro Leu Phe Phe Phe Cys Trp Glu Val Gly Val Ser Gly Ser Ser Ala Gly Pro Ser Thr Arg Arg Ala Asp Thr Ala Met Thr Thr Asp Asp Thr Glu Val Pro Ala Met Thr Leu Ala Pro Gly His Ala Ala Leu Glu Thr Gln Thr Leu Ser Ala Glu Thr

	Ser	Ser	Arg	Ala	Ser	Thr	Pro	Ala	Gly	Pro	Ile	Pro	Glu	Ala	Glu	Thr
	65					70					75					80
	Arg	Gly	Ala	Lys	Arg	Ile	Ser	Pro	Ala	Arg	Glu	Thr	Arg	Ser	Phe	Thr
					85					90					95	
5	Lys	Thr	Ser	Pro	Asn	Phe	Met	Val	Leu	Ile	Ala	Thr	Ser	Val	Glu	Thr
				100					105					110		
	Ser	Ala	Ala	Ser	Gly	Ser	Pro	Glu	Gly ·	Ala	Gly	Met	Thr	Thr	Val	Gln
			115					120					125			
	Thr	lle	Thr	Gly	Ser	Asp	Pro	Glu	Glu	Ala	Ile	Phe	Asp	Thr	Leu	Cys
10		130					135					140				
	Thr	Asp	Asp	Ser	Ser	Glu	Glu	Ala	Lys	Thr	Leu	Thr	Met	Asp	Ile	Leu
	145					150					155					160
	Thr	Leu	Ala	His	Thr	Ser	Thr	Glu	Ala	Lys	Gly	Leu	Ser	Ser	Glu	Ser
					165					170					175	
15	Ser	Ala	Ser	Ser	Asp	Gly	Pro	His	Pro	Val	Ile	Thr	Pro	Ser	Arg	Ala
				180					185					190		
	Ser	Glu	Ser	Ser	Ala	Ser	Ser	Asp	Gly	Pro	His	Pro	Val	Ile	Thr	Pro
			195					200					205			
	Ser	Arg	Ala	Ser	Glu	Ser	Ser	Ala	Ser	Ser	Asp	Gly	Pro	His	Pro	۷al
20		210					215					220				
	Ile	Thr	Pro	Ser	Trp	Ser	Pro	Gly	Ser	Asp	Val	Thr	Leu	Leu	Ala	Glu
	225					230					235					240
	Ala	Leu	Val	Thr	Val	Thr	Asn	Ile	Glu	Val	Ile	Asn	Cys	Ser	Ile	Thr
					245					250					255	
25	Glu	Ile	Glu	Thr	Thr	Thr	Ser	Ser	Ile	Pro	Gly	Ala	Ser	Asp	Ile	Asp

				260					265					270		
	Leu	Ile	Pro	Thr	Glu	Gly	Val	Lys	Ala	Ser	Ser	Thr	Ser	Asp	Pro	Pro
			275					280					285			
	Ala	Leu	Pro	Asp	Ser	Thr	Glu	Ala	Lys	Pro	His	Ile	Thr	Glu	Val	Thr
5		290					295					300				
	Ala	Ser	Ala	Glu	Thr	Leu	Ser	Thr	Ala	Gly	Thr	Thr	Glu	Ser	Ala	Ala
	305					310					315					320
	Pro	His	Ala	Thr	Val	Gly	Thr	Pro	Leu	Pro	Thr	Asn	Ser	Ala	Thr	Glu
					325					330					335	
10	Arg	Glu	Val	Thr	Ala	Pro	Gly	Ala	Thr	Thr	Leu	Ser	Gly	Ala	Leu	Val
				340					345					350		
	Thr	Val	Ser	Arg	Asn	Pro	Leu	Glu	Glu	Thr	Ser	Ala	Leu	Ser	Val	Glu
			355					360					365			
	Thr	Pro	Ser	Tyr	Val	Lys	Val	Ser	Gly	Ala	Ala	Pro	Val	Ser	Ile	Glu
15		370					375					380				
	Ala	Gly	Ser	Ala	Val	Gly	Lys	Thr	Thr	Ser	Phe	Ala	Gly	Ser	Ser	Ala
	385					390					395					400
	Ser	Ser	Tyr	Ser	Pro	Ser	Glu	Ala	Ala	Leu	Lys	Asn	Phe	Thr	Pro	Ser
					405					410					415	
20	Glu	Thr	Pro	Thr	Met	Asp	Ile	Ala	Thr	Lys	Gly	Pro	Phe	Pro	Thr	Ser
				420					425					430		
	Arg	Asp	Pro	Leu	Pro	Ser	Val	Pro	Pro	Thr	Thr	Thr	Asn	Ser	Ser	Arg
			435					440					445			
	Gly	Thr	Asn	Ser	Thr	Leu	Ala	Lys	Ile	Thr	Thr	Ser	Ala	Lys	Thr	Thr
25		450					455					460				

161/346

Met Lys Pro Pro Thr Ala Thr Pro Thr Thr Ala Arg Thr Arg Pro Thr Thr Asp Val Ser Ala Gly Glu Asn Gly Gly Phe Leu Leu Leu Arg Leu Ser Val Ala Ser Pro Glu Asp Leu Thr Asp Pro Arg Val Ala Glu Arg Leu Met Gln Gln Leu His Arg Glu Leu His Ala His Ala Pro His Phe Gln Val Ser Leu Leu Arg Val Arg Arg Gly <210> 69 <211> 102 <212> PRT <213> Homo sapiens <400> 69 Met Glu Ala Ala Leu Leu Gly Leu Cys Asn Trp Ser Thr Leu Gly Val Cys Ala Ala Leu Lys Leu Pro Gln Ile Ser Ala Val Leu Ala Ala Arg Ser Ala Arg Gly Leu Ser Leu Pro Ser Leu Leu Leu Glu Leu Ala Gly Phe Leu Val Phe Leu Arg Tyr Gln Cys Tyr Tyr Gly Tyr Pro Pro Leu

162/346

Thr Tyr Leu Glu Tyr Pro Ile Leu Ile Ala Gln Asp Val Ile Leu Leu Leu Cys Ile Phe His Phe Asn Gly Asn Val Lys Gln Ala Thr Pro Tyr Ile Ala Val Tyr Pro Phe <210> 70 <211> 442 <212> PRT <213> Homo sapiens <400> 70 Met Gly Leu Ala Met Glu His Gly Gly Ser Tyr Ala Arg Ala Gly Gly Ser Ser Arg Gly Cys Trp Tyr Tyr Leu Arg Tyr Phe Phe Leu Phe Val Ser Leu Ile Gln Phe Leu Ile Ile Leu Gly Leu Val Leu Phe Met Val Tyr Gly Asn Val His Val Ser Thr Glu Ser Asn Leu Gln Ala Thr Glu Arg Arg Ala Glu Gly Leu Tyr Ser Gln Leu Leu Gly Leu Thr Ala Ser Gln Ser Asn Leu Thr Lys Glu Leu Asn Phe Thr Thr Arg Ala Lys Asp

	Ala	Ile	Met	Gln	Met	Trp	Leu	Asn	Ala	Arg	Arg	Asp	Leu	Asp	Arg	Ile
				100					105					110		
	Asn	Ala	Ser	Phe	Arg	Gln	Cys	Gln	Gly	Asp	Arg	Val	Ile	Tyr	Thr	Asr
			115					120					125			
5	Asn	Gln	Arg	Tyr	Met	Ala	Ala	Ile	Ile	Leu	Ser	Glu	Lys	Gln	Cys	Arc
		130					135					140				
	Asp	Gln	Phe	Lys	Asp	Met	Asn	Lys	Ser	Cys	Asp	Ala	Leu	Leu	Phe	Met
	145					150					155					160
	Leu	Asn	Gln	Lys	۷al	Lys	Thr	Leu	Glu	Val	Glu	Ile	Ala	Lys	Glu	Lys
10					165					170					175	
	Thr	Ile	Cys	Thr	Lys	Asp	Lys	Glu	Ser	Val	Leu	Leu	Asn	Lys	Arg	۷a۱
				180					185					190		
	Ala	Glu	Glu	Gln	Leu	Val	Glu	Cys	Val	Lys	Thr	Arg	Glu	Leu	Gln	His
			195					200					205			
15	Gln	Glu	Arg	Gln	Leu	Ala	Lys	Glu	Gln	Leu	Gln	Lys	Val	Gln	Ala	Let
		210					215					220				
	Cys	Leu	Pro	Leu	Asp	Lys	Asp	Lys	Phe	Glu	Met	Asp	Leu	Arg	Asn	Lev
	225					230					235					240
	Trp	Arg	Asp	Ser	Ile	Ile	Pro	Arg	Ser	Leu	Asp	Asn	Leu	Gly	Tyr	Asr
20					245					250					255	
	Leu	Tyr	His	Pro	Leu	Gly	Ser	Glu	Leu	Ala	Ser	Ile	Arg	Arg	Ala	Cys
				260					265					270		
	Asp	His	Met	Pro	Ser	Leu	Met	Ser	Ser	Lys	Val	Glu	Glu	Leu	Ala	Arg
			275					280					285			
25	Ser	Leu	Arg	Ala	Asp	Ile	Glu	Arg	Val	Ala	Arg	Glu	Asn	Ser	Asp	Leu

164/346

G

Gln Arg Gln Lys Leu Glu Ala Gln Gln Gly Leu Arg Ala Ser Gln Glu Ala Lys Gln Lys Val Glu Lys Glu Ala Gln Ala Arg Glu Ala Lys Leu Gln Ala Glu Cys Ser Arg Gln Thr Gln Leu Ala Leu Glu Glu Lys Ala Val Leu Arg Lys Glu Arg Asp Asn Leu Ala Lys Glu Leu Glu Glu Lys Lys Arg Glu Ala Glu Gln Leu Arg Met Glu Leu Ala Ile Arg Asn Ser Ala Leu Asp Thr Cys Ile Lys Thr Lys Ser Gln Pro Met Met Pro Val Ser Arg Pro Met Gly Pro Val Pro Asn Pro Gln Pro Ile Asp Pro Ala Ser Leu Glu Glu Phe Lys Arg Lys Ile Leu Glu Ser Gln Arg Pro Pro Ala Gly Ile Pro Val Ala Pro Ser Ser Gly <210> 71 <211> 1800 <212> DNA

<213> Homo sapiens

165/346

<400> 71

5

10

15

20

25

atgccgagtt cccttcccgg cagccaggtc ccccaccca ctctggacgc qqttqaccta 60 gtggaaaaga ctctgaggaa tgaagggacc tccagttctg ctccagtctt qqaqqaaqqq 120 gacacagacc cctggaccct ccctcagctg aaggacacaa gccagccctg gaaagagctc 180 cgcgtggccg gcaggctgcg ccgcgtggcc ggcagcgtcc tcaaggcctg cqqqctcctc 240 ggcagcctgt acttetteat etgetetetg gacgteetea geteegeett ecagetgetg 300 ggcagcaaag tggccggaga catcttcaag gacaacgtgg tgctgtccaa ccctgtqgct 360 ggactggtca ttggcgtgct ggtcacagcc ctggtgcaga gttccagcac gtcctcctcc 420 ategtggtca gcatggtggc tgctaagctg ctgactgtcc gggtgtctgt gcccatcatc 480 atgggtgtca acgtaggcac atccatcacc agcaccctgg tctcaatggc gcagtcaggg 540 gaccgggatg aatttcagag ggctttcagc ggctcggcgg tgcacgggat cttcaactgg 600 ctcacagtgc tggtcctgct gccactggag agcgccacgg ccctgctgga qaqqctaagt 660 gagetagece tgggtgeege cageetgaca eccagggege aggegeeega cateeteaag 720 gtgctgacga agccgctcac acacctcatc gtgcagctgg actccgacat gatcatgagc 780 agtgccacag gcaacgccac taacagcagt ctcattaagc actggtgcgg caccacgggg 840 cagccgaccc aggagaacag cagctgtggc gccttcggcc cgtgcacaga gaagaacagc 900 acageceegg eggacagget geeetgeege cacetgtttg egggeaegga geteaeggae 960 etggeegtgg getgeateet getggeegge teeetgetgg tgetetgegg etgeetgqte 1020 ctcatagtca agctgctcaa ctctgtgctg cgcggccgcg tggcccaggt cgtgaggaca 1080 gtcatcaatg cggacttccc cttcccgctg ggctggctcg gcggctacct ggccgtcctc 1140 gcgggcgccg gcctgacctt cgcactgcag agcagcagcg tcttcacggc ggccgtcgtg 1200 cccctcatgg gggtcggggt gatcagtctg gaccgggcgt accccctctt actgggctcc 1260 aacatcggca ccactaccac agccctgctg gctgccctgg ccagccccgc agacaggatg 1320 ctcagcgccc tgcaggtcgc cctcatccac ttcttcttca acctggccgg catcctqctq 1380 tggtacctgg tgcctgcact gcggctgccc atcccgctgg ccaggcactt cggggtggtg 1440

166/346

accepted acceptaged georgogy taccetaged teggatect georgece 1500 ctggegget tegggetete cetggeaggg ggeatggtee teggegetet egggggteee 1560 ctggtgggge teggtgeteet egteateetg gttactgtee tegageggeg eeggeeggee 1620 teggetgeetg teeggeetge eteetgggee teggeteee tetggeteea teetgggge 1680 ceetgggaee geetggtgae eegetgetge eeetgeaaeg tetgeageee eeeggagee 1740 accaecaaag aggeetaetg etaegagaae eetgagatet teggeteeea geagttgtga 1800

<210> 72

<211> 246

10 <212> DNA

5

<213> Homo sapiens

<400> 72

atggatggag gacagcccat cccctcatcc ctagtgcccc ttgggaacga atcagcagat 60

tctagcatgt ccctggagca gaaaatgaca tttgtttttg tgattctgtt gtttattttc 120

ttgggcattc tcattgtccg gtgcttccgg attcttttgg atccatatcg aagcatgcca 180

acctctacct gggctgatgg acttgaaggc ctggagaaag ggcagttcga ccatgccctt 240

gcttag 246

20 <210> 73

<211> 1965

<212> DNA

<213> Homo sapiens

25 <400> 73

5

10

15

20

25

167/346

atggctccca agaagctgtc ctgccttcgt tccctgctgc tgccgctcag cctgacgcta 60 ctgctgcccc aggcagacac tcggtcgttc gtagtggata ggggtcatga ccggtttctc 120 ctagacqqqq ccccqttccq ctatqtqtct ggcaqcctqc actactttcq ggtaccqcqq 180 gtgctttggg ccgaccggct tttgaagatg cgatggagcg gcctcaacgc catacagttt 240 tatgtgccct ggaactacca cgagccacag cctggggtct ataactttaa tggcagccgg 300 gacctcattg cctttctgaa tgaggcagct ctagcgaacc tgttggtcat actgagacca 360 ggaccttaca tctgtgcaga gtgggagatg gggggtctcc catcctggtt gcttcgaaaa 420 cctgaaattc atctaagaac ctcagatcca gacttccttg ccgcagtgga ctcctggttc 480 aaggtettge tgeccaagat atatecatgg etttateaca atgggggeaa eateattage 540 attcaggtgg agaatgaata tggtagctac agagcctgtg acttcagcta catgaggcac 600 ttggctgggc tcttccgtgc actgctagga gaaaagatct tgctcttcac cacagatggg 660 cctgaaggac tcaagtgtgg ctccctccgg ggactctata ccactgtaga ttttggccca 720 gctgacaaca tgaccaaaat ctttaccctg cttcggaagt atgaacccca tgggccattg 780 gtaaactctg agtactacac aggetggetg gattactggg gccagaatca ctccacacgg 840 tctgtgtcag ctgtaaccaa aggactagag aacatgctca agttgggagc cagtgtgaac 900 atgtacatgt tccatggagg taccaacttt ggatattgga atggtgccga taagaaggga 960 cgcttccttc cgattactac cagctatgac tatgatgcac ctatatctga agcaggggac 1020 cccacaccta agetttttgc tettegagat gtcatcagca agttecagga agtteetttg 1080 ggacctttac ctcccccgag ccccaagatg atgcttggac ctgtgactct gcacctggtt 1140 gggcatttac tggctttcct agacttgctt tgcccccgtg ggcccattca ttcaatcttg 1200 ccaatgacct ttgaggctgt caagcaggac catggcttca tgttgtaccg aacctatatg 1260 acccatacca tttttgagcc aacaccattc tgggtgccaa ataatggagt ccatgaccgt 1320 gcctatgtga tggtggatgg ggtgttccag ggtgttgtgg agcgaaatat gagagacaaa 1380 ctatttttga cggggaaact ggggtccaaa ctggatatct tggtggagaa catggggagg 1440 ctcagctttg ggtctaacag cagtgacttc aagggcctgt tgaagccacc aattctgggg 1500

168/346

caaacaatce ttacccagtg gatgatgtte cetetgaaaa ttgataacet tgtgaagtgg 1560
tggttteece teeagttgee aaaatggeea tateeteaag eteettetgg eeceacatte 1620
tactecaaaa cattteeaat tttaggetea gttggggaca catttetata tetacetgga 1680
tggaccaagg geeaagtetg gateaatggg tttaaettgg geeggtaetg gacaaageag 1740
gggeeacaac agacceteta egtgeeaaga tteetgetgt tteetagggg ageeeteaac 1800
aaaattacat tgetggaact agaagatgta eeteteeage eecaagteea attttggat 1860
aageetatee teaatageae tagtaetttg eacaggacae atateaatte eettteaget 1920
gatacactga gtgeetetga accaatggag ttaagtggge actga 1965

10 <210> 74

5

<211> 1173

<212> DNA

<213> Homo sapiens

15 <400> 74

20

25

atggggatgg atgattgtga theattith ectggteece tggttgetat tatttgtgae 60 ataettggag agaaaactae etecattett ggggettttg ttgttactgg tggatatetg 120 ateageaget gggeeacaag tatteettt etttgtgtga etatgggaet tetaeceggt 180 ttgggttetg etttettata ecaagtgget getgtggtaa etaecaaata etteaaaaaa 240 egattggete tttetaeage tattgeeegt tetgggatgg gaetgaettt tetttggea 300 ecetttaeaa aatteetgat agatetgat gaetggaeag gageeettat attattgga 360 getategeat tgaatttggt geettetagt atgetettaa gaeeeateea tateaaaagt 420 gagaacaatt etggtattaa agataaagge ageagtttgt etgeacatgg teeagaggea 480 eatgeaacag aaacacactg eeatgagaea gaagagteta eeateaagga eagtaetaeg 540 eagaaggetg gaetaectag caaaaattta aeagteteac aaaateaaag tgaagagtte 600

169/346

tacaatgggc ctaacaggaa cagactgtta ttaaagagtg atgaagaaag tgataaggtt 660
atttegtgga getgeaaaca actgtttgac attteteet ttagaaatee tttettetac 720
atatttactt ggtetttet ceteagteag ttageatact teatecetae ettteacetg 780
gtageeagag ccaaaacact ggggattgac ateatggatg cetettacet tgtttetgta 840

geaggtatee ttgagaeggt cagteagat atttetggat gggttgetga teaaaactgg 900
attaagaagt ateattacea caagtettae eteateetet geggeateae taacetgett 960
geteetttag ceaceacatt teeactaett atgaeetaea eeatetgett tgeeatettt 1020
getggtggtt acetggeatt gatactgeet gtaetggttg atetggtag gaattetaca 1080
gtaaacaggt ttttgggaet tgeeagtte tttgetgga tggetgteet ttetggaeca 1140

cetatageag gtaacacett caceacatte tga 1173

<210> 75

<211> 1359

<212> DNA

15 <213> Homo sapiens

<400> 75

20

25

atggagetgg cactgeggg etetecegte eegeggtggt tgetgetget geegetgetg 60 ctgggeetga acgeaggage tgteattgae tggeecacag aggagggeaa ggaagtatgg 120 gattatgtga eggteegaa ggatgeetae atgttetggt ggetetatta tgeeaceaac 180 teetgeaaga actteteaga actgeecetg gteatgtgge tteagggegg teeaggeggt 240 tetageactg gatttggaaa etttgaggaa attgggeece ttgacagtga teteaaacea 300 eggaaaacea eetggeteea ggetgeeagt eteetatttg tggataatee egtgggeact 360 gggtteagtt atgtgaatgg tagtggtgee tatgeeaagg acetggetat ggtggettea 420 gacatgatgg tteteetgaa gacettette agttgeeaca aagaatteea gacagtteea 480

170/346

ttctacattt tctcagagtc ctatggagga aaaatggcag ctggcattgg tctagagctt 540 tataaggcca ttcagcgagg gaccatcaag tgcaactttg cgggggttgc cttgggtgat 600 tectggatet eccetgttga tteggtgete teetggggae ettacetgta eageatgtet 660 cttctcgaag acaaaggtct ggcagaggtg tctaaggttg cagagcaagt actgaatgcc 720 gtaaataagg ggctctacag agaggccaca gagctgtggg ggaaagcaga aatgatcatt 780 gaacagaaca cagatggggt gaacttctat aacatcttaa ctaaaagcac tcccacgtct 840 acaatggagt cgagtctaga attcacacag agccacctag tttgtctttg tcagcgccac 900 gtgagacacc tacaacgaga tgccttaagc cagctcatga atggccccat cagaaagaag 960 ctcaaaaatta ttcctgagga tcaatcctgg ggaggccagg ctaccaacgt ctttgtgaac 1020 atggaggagg acttcatgaa gccagtcatt agcattgtgg acgagttgct ggaggcaggg 1080 atcaacgtga cggtgtataa tggacagctg gatctcatcg tagataccat gggtcaggag 1140 gcctgggtgc ggaaactgaa gtggccagaa ctgcctaaat tcagtcagct gaagtggaag 1200 gecetgtaca gtgacectaa atetetggaa acatetgett ttgtcaagte etacaagaac 1260 cttgctttct actggattct gaaagctggt catatggttc cttctgacca aggggacatg 1320 gctctgaaga tgatgagact ggtgactcag caagaatag 1359

<210> 76

5

10

15

25

<211> 1473

<212> DNA

20 <213> Homo sapiens

<400> 76

atgaggeegg egttegeett gtgeeteete tggeaggege tetggeeegg geegggegge 60
ggegaaèaee eeaetgeega eegtgetgge tgeteggeet egggggeetg etaeageetg 120
caccaegeta eeatgaageg geaggeggee gaggaggeet geateetgeg aggtggggeg 180

171/346

	ctcagcaccg	tgcgtgcggg	cgccgagctg	cgcgctgtgc	tcgcgctcct	gcgggcaggc	240
	ccagggcccg	gagggggctc	caaagacctg	ctgttctggg	tcgcactgga	gcgcaggcgt	300
	tcccactgca	ccctggagaa	cgagcctttg	cggggtttct	cctggctgtc	ctccgacccc	360
	ggcggtctcg	aaagcgacac	gctgcagtgg	gtggaggagc	cccaacgctc	ctgcaccgcg	420
5	cggagatgcg	cggtactcca	ggccaccggt	ggggtcgagc	ccgcaggctg	gaaggagatg	480
	cgatgccacc	tgcgcgccaa	cggctacctg	tgcaagtacc	agtttgaggt	cttgtgtcct	540
	gegeegegee	ceggggeege	ctctaacttg	agctatcgcg	cgcccttcca	gctgcacagc	600
	gccgctctgg	acttcagtcc	acctgggacc	gaggtgagtg	cgctctgccg	gggacagctc	660
	ccgatctcag	ttacttgcat	cgcggacgaa	atcggcgctc	gctgggacaa	actctcgggc	720
10	gatgtgttgt	gtccctgccc	cgggaggtac	ctccgtgctg	gcaaatgcgc	agageteect	780
	aactgcctag	acgacttggg	aggctttgcc	tgcgaatgtg	ctacgggctt	cgagctgggg	840
	aaggacggcc	gctcttgtgt	gaccagtggg	gaaggacagc	cgacccttgg	ggggaccggg	900
	gtgcccacca	ggcgcccgcc	ggccactgca	accagccccg	tgccgcagag	aacatggcca	960
	atcagggtcg	acgagaagct	gggagagaca	ccacttgtcc	ctgaacaaga	caattcagta	1020
15	acatctattc	ctgagattcc	tcgatgggga	tcacagagca	cgatgtctac	ccttcaaatg	1080
	tcccttcaag	ccgagtcaaa	ggccactatc	accccatcag	ggagcgtgat	ttccaagttt	1140
	aattctacga	cttcctctgc	cactcctcag	gctttcgact	cctcctctgc	cgtggtcttc	1200
	atatttgtga	gcacagcagt	agtagtgttg	gtgatcttga	ccatgacagt	actggggctt	1260
	gtcaagctct	gctttcacga	aagcccctct	tcccagccaa	ggaaggagtc	tatgggcccg	1320
20	ccgggcctgg	agagtgatcc	tgagcccgct	gctttgggct	ccagttctgc	acattgcaca	1380
	aacaatgggg	tgaaagtcgg	ggactgtgat	ctgcgggaca	gagcagaggg	tgccttgctg	1440
	gcggagtccc	ctcttggctc	tagtgatgca	tag			1473

<210> 77

25 <211> 1179

172/346

<212> DNA

<213> Homo sapiens

<400> 77

5

10

15

atgcaagtga ataccacgaa attcatgctg ctgtatgcct ggtattcttg gcccaatgta 60 gttttgtgtt tctttggtgg ctttttgata gaccgagtat ttggaatacg atggggcaca 120 atcattttta gctgctttgt ttgcattgga caggttgttt ttgccctqqq tqqaatattt 180 aatgcttttt ggctgatgga atttggaaga tttgtatttg ggattggtgg cgagtcctta 240 gcagttgccc agaatacata tgctgtgagc tggtttaaag gcaaagaatt aaacctggtg 300 tttggacttc aacttagcat ggctagaatt ggaagtacag taaacatgaa cctcatggga 360 tggctgtatt ctaagattga agctttgtta ggttctgctg gtcacacaac cctcgggatc 420 acacttatga ttgggggtat aacgtgtatt ctttcactaa tctgtgcctt ggctcttgcc 480 tacttggatc agagagcaga gagaatcctt cataaagaac aaggaaaaac aggtgaagtt 540 attaaattaa ctgatgtaaa ggacttctcc ttacccctgt ggcttatatt tatcatctgt 600 gtctgctatt atgttgctgt gttccctttt attggacttg ggaaagtttt ctttacagag 660 aaatttggat tttcttccca ggcagcaagt gcaattaaca gtgttgtata tgtcatatca 720 gctcccatgt ccccggtgtt tgggctcctg gtggataaaa cagggaagaa catcatctgg 780 gttctttgcg cagtagcagc cactcttgtg tcccacatga tgctggcctt tacgatgtgg 840 aaccettgga ttgctatgtg tettetggga etetectact cattgettge etgtgcattg 900 tggccaatgg tggcatttgt agttcctgaa catcagctgg gaactgcata tggcttcatg 960 cagtccattc agaatcttgg gttggccatc atttccatca ttgctggtat gatactggat 1020 tctcgggggt atttgttttt ggaagtgttc ttcattgcct gtgtttcttt gtcactttta 1080 tctgtggtct tactctattt ggtgaatcgt gcccagggtg ggaacctaaa ttattctgca 1140 agacaaaggg aagaaataaa attttcccat actgaatga 1179

20

173/346

<210> 78

<211> 1617

<212> DNA

<213> Homo sapiens

5

10

15

20

25

<400> 78

atgggetgte tetggggtet ggetetgeee ettttettet tetgetggga ggttggggte 60 tctgggagct ctgcaggccc cagcacccgc agagcagaca ctgcgatgac aacggacgac 120 acagaagtgc ccgctatgac tctagcaccg ggccacgccg ctctggaaac tcaaacgctg 180 agogotgaga cotottotag ggootcaaco coagooggoo coattocaga agoagagaco 240 aggggagcca agagaatttc ccctgcaaga gagaccagga gtttcacaaa aacatctccc 300 aacttcatgg tgctgatcgc cacctccgtg gagacatcag ccqccaqtgg caqccccqaq 360 ggagctggaa tgaccacagt tcagaccatc acaggcagtg atcccgagga agccatcttt 420 gacacccttt gcaccgatga cagctctgaa gaggcaaaga cactcacaat ggacatattg 480 acattggctc acacetecac agaagetaag ggcctgtect cagagageag tgcctettec 540 gacggccccc atccagtcat caccccgtca cgggcctcag agagcagcgc ctcttccgac 600 ggcccccatc cagtcatcac cccgtcacgg gcctcagaga gcagcgcctc ttccgacggc 660 coccatocag toatcacccc ctcatggtcc ccgggatctg atgtcactct cctcgctgaa 720 gccctggtga ctgtcacaaa catcgaggtt attaattgca gcatcacaga aatagaaaca 780 acaacttcca gcatccctgg ggcctcagac ataqatctca tccccacqga aqqqqtqaaq 840 gcctegteca ceteegatee accagetetq cetqaeteca etqaaqeaaa accaeaate 900 actgaggtca cagectetge egagaceetg tecacageeg geaceacaga gteagetgea 960 cctcatgcca cggttgggac cccactcccc actaacagcg ccacagaaag agaagtgaca 1020 gcacccgggg ccacgacct cagtggagct ctggtcacag ttagcaggaa tcccctqqaa 1080 gaaacctcag ccctctctgt tgagacacca agttacgtca aagtctcagg agcagctccg 1140

174/346

gtetecatag aggetgggte ageagtggge aaaacaactt cetttgetgg gagetetget 1200
teetectaca geeeetegga ageegeeete aagaacttea eeeetteaga gacacegace 1260
atggacateg caaccaaggg geeetteeee accageaggg accetettee ttetgteeet 1320
cegactacaa eeaacageag eegagggaeg aacageacet tageeaagat cacaacetea 1380
gegaagacea egatgaagee eeeaacagee acgeeeacga etgeeeggae gaggeegaee 1440
acagaegtga gtgeaggtga aaatggaggt tteeteetee tgeggetgag tgtggettee 1500
ceggaagace teaetgaeee eagagtggea gaaaggetga tgeageaget eeacegggaa 1560
cteeaegeee acgegeetea etteeaggte teettaetge gtgteaggag aggetaa 1617

10 <210> 79

5

<211> 309

<212> DNA

<213> Homo sapiens

15 <400> 79

20

atggagggg cgctgctggg gctgtgtaac tggagcacgc tgggggtgt cgccgcgctg 60
aagctgccgc agatctccgc tgtgctagcg gcgcgcagcg cgcggggcct cagccttccg 120
agtttacttc tggagctggc aggatcctg gtgtttctgc ggtaccagtg ttactatggg 180
tatccgccgc tgacctacct ggagtacccc atcctcatcg cgcaagatgt catcctcctg 240
ctctgtatct ttcattttaa cgggaacgtg aagcaggcca ctccttacat cgctgtgtat 300
cctttctga 309

<210> 80

<211> 1329

25 <212> DNA

175/346

<213> Homo sapiens

<400> 80

5

10

15

20

25

atgggtctgg ccatggagca cggagggtcc tacgctcggg cggggggcag ctctcggggc 60 tgctggtatt acctgcgcta cttcttcctc ttcgtctccc tcatccaatt cctcatcatc 120 ctggggctcg tgctcttcat ggtctatggc aacgtgcacg tgagcacaga gtccaacctg 180 caggccaccg agcgccgagc cgagggccta tacagtcagc tcctagggct cacggcctcc 240 cagtecaact tgaccaagga geteaactte accaeeegeg ceaaggatge cateatgeag 300 atgtggctga atgctcgccg cgacctggac cgcatcaatg ccagcttccg ccagtgccag 360 ggtgaccggg tcatctacac gaacaatcag aggtacatgg ctgccatcat cttgagtgag 420 aagcaatgca gagatcaatt caaggacatg aacaagagct gcgatgcctt gctcttcatg 480 ctgaatcaga aggtgaagac gctggaggtg gagatagcca aggagaagac catttgcact 540 aaggataagg aaagcgtgct gctgaacaaa cgcgtggcgg aggaacagct ggttgaatgc 600 gtgaaaaccc gggagctgca gcaccaagag cgccagctgg ccaaggagca actgcaaaag 660 gtgcaagece tetgeetgee eetggacaag gacaagtttg agatggacet tegtaacetg 720 tggagggact ccattatccc acgcagcctg gacaacctgg gttacaacct ctaccatccc 780 ctgggctcgg aattggcctc catccgcaga gcctgcgacc acatgcccag cctcatgagc 840 tccaaggtgg aggagctggc ccggagcctc cgggcggata tcgaacgcgt ggcccgcgag 900 aactcagacc tccaacgcca gaagctggaa gcccagcagg gcctgcgggc cagtcaggag 960 gcgaaacaga aggtggagaa ggaggctcag gcccgggagg ccaagctcca agctgaatgc 1020 tcccggcaga cccagctagc gctggaggag aaggcggtgc tgcggaagga acgagacaac 1080 ctggccaagg agctggaaga gaagaagagg gaggcggagc agctcaggat ggagctggcc 1140 atcagaaact cagccctgga cacctgcatc aagaccaagt cgcagccgat gatgccagtg 1200 tcaaggccca tgggccctgt ccccaaccc cagcccatcg acccagctag cctggaggag 1260 ttcaagagga agateetgga gteecaqaqq eeceetqeaq qeateeetqt ageeceatee 1320

176/346

agtggctga 1329

<210> 81

<211> 2016

5 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

10 <222> (78)..(1877)

<400> 81

gtccctgccc tgcaggtgcc ccctcaccac ccacacagat ctagacctgg gcctgggtct 60 gtccctgccc gaaatcc atg ccg agt tcc ctt ccc ggc agc cag gtc ccc 110

Met Pro Ser Ser Leu Pro Gly Ser Gln Val Pro

1 5 10

1

cac ccc act ctg gac gcg gtt gac cta gtg gaa aag act ctg agg aat 158
His Pro Thr Leu Asp Ala Val Asp Leu Val Glu Lys Thr Leu Arg Asn

15 20 25

gaa ggg acc tcc agt tct gct cca gtc ttg gag gaa ggg gac aca gac 206
Glu Gly Thr Ser Ser Ser Ala Pro Val Leu Glu Gly Asp Thr Asp

30 35 4

ccc tgg acc ctc cct cag ctg aag gac aca agc cag ccc tgg aaa gag 254
Pro Trp Thr Leu Pro Gln Leu Lys Asp Thr Ser Gln Pro Trp Lys Glu

25 45 50 55

	ctc	cgc	gtg	gcc	ggc	agg	ctg	cgc	cgc	gtg	gcc	ggc	agc	gtc	ctc	aag	302
	Leu	Arg	Val	Ala	Gly	Arg	Leu	Arg	Arg	Val	Ala	Gly	Ser	Val	Leu	Lys	
	60			٠		65					70					75	
	gcc	tgc	ggg	ctc	ctc	ggc	agc	ctg	tac	ttc	ttc	atc	tgc	tct	ctg	gac	350
5	Ala	Cys	Gly	Leu	Leu	Gly	Ser	Leu	Tyr	Phe	Phe	Ile	Cys	Ser	Leu	Asp	
					80					85					90		
	gtc	ctc	agc	tcc	gcc	ttc	cag	ctg	ctg	ggc	agc	aaa	gtg	gcc	gga	gac	398
	Val	Leu	Ser	Ser	Ala	Phe	Gln	Leu	Leu	Gly	Ser	Lys	Val	Ala	Gly	Asp	
				95					100					105			
10	atc	ttc	aag	gac	aac	gtg	gtg	ctg	tcc	aac	cct	gtg	gct	gga	ctg	gtc	. 446
	Ile	Phe	Lys	Asp	Asn	Val	Val	Leu	Ser	Asn	Pro	Val	Ala	Gly	Leu	Val	
			110					115					120				
	att	ggc	gtg	ctg	gtc	aca	gcc	ctg	gtg	cag	agt	tcc	agc	acg	tcc	tcc	494
	Ile	Gly	Val	Leu	Val	Thr	Ala	Leu	Val	Gln	Ser	Ser	Ser	Thr	Ser	Ser	
15		125					130					135					
	tcc	atc	gtg	gtc	agc	atg	gtg	gct	gct	aag	ctg	ctg	act	gtc	cgg	gtg	542
	Ser	Ile	Val	Val	Ser	Met	Val	Ala	Ala	Lys	Leu	Leu	Thr	Val	Arg	Val	
	140	٠				145					150					155	
	tct	gtg	ccc	atc	atc	atg	ggt	gtc	aac	gta	ggc	aca	tcc	atc	acc	agc	590
20	Ser	Val	Pro	Ile	Ile	Met	Gly	Val	Asn	'Val	Gly	Thr	Ser	Ile	Thr	Ser	
					160					165					170		
	acc	ctg	gto	tca	atg	gcg	cag	tca	ggg	gac	cgg	gat	gaa	ttt	cag	agg	638
	Thr	Leu	Val	Ser	Met	Ala	Gln	Ser	Gly	Asp	Arg	Asp	Glu	Phe	Gln	Arg	
				175	•				180					185			
25	gct	tto	ago	ggc	: tcg	gcg	gtg	cac	ggg	ato	ttc	aac	tgg	ctc	aca	gtg	686

	Ala	Phe	Ser	Gly	Ser	Ala	Val	His	Gly	Ile	Phe	Asn	Trp	Leu	Thr	Val	
			190					195					200				
	ctg	gtc	ctg	ctg	cca	ctg	gag	agc	gcc	acg	gcc	ctg	ctg	gag	agg	cta	734
	Leu	Val	Leu	Leu	Pro	Leu	Glu	Ser	Ala	Thr	Ala	Leu	Leu	Glu	Arg	Leu	
5		205					210					215					
	agt	gag	cta	gcc	ctg	ggt	gcc	gcc	agc	ctg	aca	ccc	agg	gcg	cag	gcg	782
	Ser	Glu	Lẹu	Ala	Leu	Gly	Ala	Ala	Ser	Leu	Thr	Pro	Arg	Ala	Gln	Ala	
	220					225					230					235	
	ccc	gac	atc	ctc	aag	gtg	ctg	acg	aag	ccg	ctc	aca	cac	ctc	atc	gtg	830
10	Pro	Asp	Ile	Leu	Lys	Val	Leu	Thr	Lys	Pro	Leu	Thr	His	Leu	Ile	Val	
					240					245					250		
	cag	ctg	gac	tcc	gac	atg	atc	atg	agc	agt	gcc	aca	ggc	aac	gcc	act	878
	Gln	Leu	Asp	Ser	Asp	Met	Ile	Met	Ser	Ser	Ala	Thr	Gly	Asn	Ala	Thr	
				255					260					265			
15	aac	agc	agt	ctc	att	aag	cac	tgg	tgc	ggc	acc	acg	äää	cag	ccg	acc	926
	Asn	Ser	Ser	Leu	Ile	Lys	His	Trp	Cys	Gly	Thr	Thr	Gly	Gln	Pro	Thr	4
`			270					275					280				
	cag	gag	aac	agc	agc	tgt	ggc	gcc	ttc	ggc	ccg	tgc	aca	gag	aag	aac	974
	Gln	Glu	Asn	Ser	Ser	Cys	Gly	Ala	Phe	Gly	Pro	Cys	Thr	Glu	Lys	Asn	
20		285					290					295					
	agc	aca	gcc	ccg	gcg	gac	agg	ctg	ccc	tgc	cgc	cac	ctg	ttt	gcg	ggc	1022
	Ser	Thr	Ala	Pro	Ala	Asp	Arg	Leu	Pro	Cys	Arg	His	Leu	Phe	Ala	Gly	
	300					305					310					315	
	acg	gag	ctc	acg	gac	ctg	gcc	gtg	ggc	tgc	atc	ctg	ctg	gcc	ggc	tcc .	1070
25	Thr	Glu	Leu	Thr	Asp	Leu	Ala	Val	Gly	Cys	Ile	Leu	Leu	Ala	Gly	Ser	

		•			320					325					330		
	ctg	ctg	gtg	ctc	tgc	ggc	tgc	ctg	gtc	ctc	ata	gtc	aag	ctg	ctc	aac	1118
	Leu	Leu	Val	Leu	Cys	Gly	Cys	Leu	Val	Leu	Ile	Val	Lys	Leu	Leu	Asn	
				335					340					345			
5	tct	gtg	ctg	cgc	ggc	cgc	gtg	gcc	cag	gtc	gtg	agg	aca	gtc	atc	aat	1166
	Ser	Val	Leu	Arg	Gly	Arg	Val	Ala	Gln	Val	Val	Arg	Thr	Val	Ile	Asn	
			350					355					360				
	gcg	gac	ttc	ccc	ttc	ccg	ctg	ggc	tgg	ctc	ggc	ggc	tac	ctg	gcc	gtc	1214
	Ala	Asp	Phe	Pro	Phe	Pro	Leu	Gly	Trp	Leu	Gly	Gly	Tyr	Leu	Ala	Val	
10		365					370					375					
	ctc	gcg	ggc	gcc	ggc	ctg	acc	ttc	gca	ctg	cag	agc	agc	agc	gtc	ttc	1262
	Leu	Ala	Gly	Ala	Gly	Leu	Thr	Phe	Ala	Leu	Gln	Ser	Ser	Ser	Val	Phe	
	380					385					390					395	
	acg	gcg	gcc	gtc	gtg	ccc	ctc	atg	ggg	gtc	ggg	gtg	atc	agt	ctg	gac	1310
15	Thr	Ala	Ala	Val	Val	Pro	Leu	Met	Gly	Val	Gly	Val	Ile	Ser	Leu	Asp	
					400					405					410		
	cgg	gcg	tac	ccc	ctc	tta	ctg	ggc	tcc	aac	atc	ggc	acc	act	acc	aca	1358
	Arg	Ala	Tyr	Pro	Leu	Leu	Leu	Gly	Ser	Asn	Ile	Gly	Thr	Thr	Thr	Thr	
				415					420					425			
20	gcc	ctg	ctg	gct	gcc	ctg	gcc	agc	ccc	gca	gac	agg	atg	ctc	agc	gcc	1406
	Ala	Leu	Leu	Ala	Ala	Leu	Ala	Ser	Pro	Ala	Asp	Arg	Met	Leu	Ser	Ala	
			430					435					440				
	ctg	cag	gtc	gcc	ctc	atc	cac	ttc	ttc	ttc	aac	ctg	gcc	ggc	atc	ctg	1454
	Leu	Gln	Val	Ala	Leu	Ile	His	Phe	Phe	Phe	Asn	Leu	Ala	Gly	Ile	Leu	
25		445					450					455					

	ctg	tgg	tac	ctg	gtg	cct	gca	ctg	cgg	ctg	ccc	atc	ccg	ctg	gcc	agg	1502
	Leu	Trp	Tyr	Leu	Val	Pro	Ala	Leu	Arg	Leu	Pro	Ile	Pro	Leu	Ala	Arg	
	460					465					470					475	
	cac	ttc	ggg	gtg	gtg	acc	gcc	cgt	tac	cgc	tgg	gtg	gct	ggg	gtc	tac	1550
5	His	Phe	Gly	Val	Val	Thr	Ala	Arg	Tyr	Arg	Trp	Val	Ala	Gly	Ϋal	Tyr	
					480					485					490		
	ctg	ctg	ctc	gga	ttc	ctg	ctg	ctg	ccc	ctg	gcg	gcc	ttc	ggg	ctc	tcc	1598
	Leu	Leu	Leu	Gly	Phe	Leu	Leu	Leu	Pro	Leu	Ala	Ala	Phe	Gly	Leu	Ser	
				495					500					505			
10	ctg	gca	ggg	ggc	atg	gtg	ctg	gcc	gct	gtc	ggg	ggt	ccc	ctg	gtg	ggg	1646
	Leu	Ala	Gly	Gly	Met	Val	Leu	Ala	Ala	Val	Gly	Gly	Pro	Leu	Val	Gly	
			510					515					520				
	ctg	gtg	ctc	ctc	gtc	atc	ctg	gtt	act	gtc	ctg	cag	cgg	cgc	cgg	ccg	1694
	Leu	Val	Leu	Leu	Val	Ile	Leu	Val	Thr	Val	Leu	Gln	Arg	Arg	Arg	Pro	•
15		525					530	•				535					
	gcc	tgg	ctg	cct	gtc	cgc	ctg	cgc	tcc	tgg	gcc	tgg	ctc	ccc	gtc	tgg	1742
	Ala	Trp	Leu	Pro	Val	Arg	Leu	Arg	Ser	Trp	Ala	Trp	Leu	Pro	Val	Trp	
	540					545					550					555	
	ctc	cat	tct	ctg	gag	ccc	tgg	gac	cgc	ctg	gtg	acc	cgc	tgc	tgc	ccc	1790
20	Leu	His	Ser	Leu	Glu	Pro	Trp	Asp	Arg	Leu	Val	Thr	Arg	Cys	Cys	Pro	
					560					565					570		
	tgc	aac	gtc	tgc	agc	ccc	ccg	aag	gcc	acc	acc	aaa	gag	gcc	tac	tgc	1838
	Cys	Asn	Val	Cys	Ser	Pro	Pro	Lys	Ala	Thr	Thr	Lys	Glu	Ala	Tyr	Cys	
				575					580					585			
25	tac	gag	aac	cct	gag	atc	ttg	gcc	tcc	caq	caq	tta	tga	caad	gcagt	tq	1887

181/346

Tyr Glu Asn Pro Glu Ile Leu Ala Ser Gln Gln Leu

590 595 600

ctgcgcagac cgccccaccc tccccggctg ggagggctct ggagggccct ggagggggg 1947 tccccgcggc agctgacctc cggtcacctg cttccccttc tgtgcaaata aaccaggctg 2007

5 ttatctggg 2016

<210> 82

<211> 1446

<212> DNA

<213> Homo sapiens

10

20

<220>

<221> CDS

<222> (337)..(582)

15 <400> 82

gaatcgagat gcagtgtgta ggaagcatgg gcaagggatg aggaacgcca ctttgaaaat 60
tactaaaact aaagcaagtg actaagagtg tgaatgaccc tggctgcaat gactacgcct 120
gctgggcttc tattaaaatt agactctatt tcctgagcac ccacaaatgg acctgacaaa 180
gggaagacac agatgtactg cgtgatgagg aaagcctatc aggattaaaa tatggctata 240
actcagcctc tccagagtgc agccaccatg acctccgcag attgatgatg gaagaaaaga 300
aaaccaggat atcctgtgct ctggcttccc tggacc atg gat gga gga cag ccc 354
Met Asp Gly Gly Gln Pro

. 5

atc ccc tca tcc cta gtg ccc ctt ggg aac gaa tca gca gat tct agc 402

25 Ile Pro Ser Ser Leu Val Pro Leu Gly Asn Glu Ser Ala Asp Ser Ser

182/346

atg tcc ctg gag cag aaa atg aca ttt gtt ttt gtg att ctg ttg ttt Met Ser Leu Glu Gln Lys Met Thr Phe Val Phe Val Ile Leu Leu Phe att ttc ttg ggc att ctc att gtc cgg tgc ttc cgg att ctt ttg gat Ile Phe Leu Gly Ile Leu Ile Val Arg Cys Phe Arg Ile Leu Leu Asp cca tat cga agc atg cca acc tct acc tgg gct gat gga ctt gaa ggc Pro Tyr Arg Ser Met Pro Thr Ser Thr Trp Ala Asp Gly Leu Glu Gly () · ctg gag aaa ggg cag ttc gac cat gcc ctt gct tag gagggatggt Leu Glu Lys Gly Gln Phe Asp His Ala Leu Ala

183/346

taggttgcaa	gtgcagctta	aagtttttt	tcaatgaaaa	gttaattgtt	tagaggagaa	1372
gacttttata	gtcttcagag	gaatgtgtat	ttatgattgt	atatagtcac	caaataaaac	1432
ttttcaagaa	acag					1446

5 <210> 83

<211> 2467

<212> DNA

<213> Homo sapiens

10 <220>

<221> CDS

<222> (40)..(2004)

<400> 83

15 ctgtccgccg tctcagacta gaggagcgct gtaaacgcc atg gct ccc aag aag 54

Met Ala Pro Lys Lys

1 5

ctg tcc tgc ctt cgt tcc ctg ctg ctg ccg ctc agc ctg acg cta ctg 102
Leu Ser Cys Leu Arg Ser Leu Leu Pro Leu Ser Leu Thr Leu Leu

20 10 15 20

ctg ccc cag gca gac act cgg tcg ttc gta gtg gat agg ggt cat gac 150
Leu Pro Gln Ala Asp Thr Arg Ser Phe Val Val Asp Arg Gly His Asp

25 30 35

cgg ttt ctc cta gac ggg gcc ccg ttc cgc tat gtg tct ggc agc ctg 198

25 Arg Phe Leu Leu Asp Gly Ala Pro Phe Arg Tyr Val Ser Gly Ser Leu

			40					45					50				
	cac	tac	ttt	cgg	gta	ccg	cgg	gtg	ctt	tgg	gcc	gac	cgg	ctt	ttg	aag	246
	His	Tyr	Phe	Arg	Val	Pro	Arg	Val	Leu	Trp	Ala	Asp	Arg	Leu	Leu	Lys	
		55					60					65					
5	atg	cga	tgg	agc	ggc	ctc	aac	gcc	ata	cag	ttt	tat	gtg	ccc	tgg	aac	294
	Met	Arg	Trp	Ser	Gly	Leu	Asn	Ala	Ile	Gln	Phe	Tyr	Val	Pro	Trp	Asn	
•	70					75					80					85	
	tac	cac	gag	cca	cag	cct	ggg	gtc	tat.	aac	ttt	aat	ggc	agc	cgg	gac	342
	Tyr	His	Glu	Pro	Gln	Pro	Gly	Val	Tyr	Asn	Phe	Asn	Gly	Ser	Arg	Asp	
10					90					95					100	-	
	ctc	att	gcc	ttt	ctg	aat	gag	gca	gct	cta	gcg	aac	ctg	ttg	gtc	ata	390
	Leu	Ile	Ala	Phe	Leu	Asn	Glu	Ala	Ala	Leu	Ala	Asn	Leu	Leu	Val	Ile	
				105					110					115			
	ctg	aga	cca	gga	cct	tac	atc	tgt	gca	gag	tgg	gag	atg	ggg	ggt	ctc	438
15	Leu	Arg	Pro	Gly	Pro	Tyr	Ile	Cys	Ala	Glu	Trp	Glu	Met	Gly	Gly	Leu	
			120					125					130				•
	cca	tcc	tgg	ttg	ctt	cga	aaa	cct	gaa	att	cat	cta	aga	acc	tca	gat	486
	Pro	Ser	Trp	Leu	Leu	Arg	Lys	Pro	Glu	Ile	His	Leu	Arg	Thr	Ser	Asp	
		135					140					145					
20	cca	gac	ttc	ctt	gcc	gca	gtg	gac	tcc	tgg	ttc	aag	gtc	ttg	ctg	ccc	534
	Pro	Asp	Phe	Leu	Ala	Ala	Val	Asp	Ser	Trp	Phe	Lys	Val	Leu	Leu	Pro	
	150					155					160					165	
	aag	ata	tat	cca	tgg	ctt	tat	cac	aat	ggg	ggc	aac	atc	att	agc	att	582
	Lys	Ile	Tyr	Pro	Trp	Leu	Tyr	His	Asn	Gly	Gly	Asn	Ile	Ile	Ser	Ile	
25					170					175					180		

	cag	gtg	gag	aat	gaa	tat	ggt	agc	tac	aga	gcc	tgt	gac	ttc	agc	tac	630
	Gln	Val	Glu	Asn	Glu	Tyr	Gly	Ser	Tyr	Arg	Ala	Cys	Asp	Phe	Ser	Tyr	
				185					190					195			
	atg	agg	cac	ttg	gct	ggg	ctc	ttc	cgt	gca	ctg	cta	gga	gaa	aag	atc	678
5	Met	Arg	His	Leu	Ala	Gly	Leu	Phe	Arg	Ala	Leu	Leu	Gly	Glu	Lys	Ile	
			200					205					210				
	ttg	ctc	ttc	acc	aca	gat	ggg	cct	gaa	gga	ctc	aag	tgt	ggc	tcc	ctc	726
	Leu	Leu	Phe	Thr	Thr	Asp	Gly	Pro	Glu	Gly	Leu	Lys	Cys	Gly	Ser	Leu	
		215					220					225					
10	cgg	gga	ctc	tat	acc	act	gta	gat	ttt	ggc	cca	gct	gac	aac	atg	acc	774
	Arg	Gly	Leu	Tyr	Thr	Thr	Val	Asp	Phe	Gly	Pro	Ala	Asp	Asn	Met	Thr	
	230					235					240					245	
	aaa	atc	ttt	acc	ctg	ctt	cgg	aag	tat	gaa	ccc	cat	ggg	cca	ttg	gta	822
	Lys	Ile	Phe	Thr	Leu	Leu	Arg	Lys	Tyr	Glu	Pro	His	Gly	Pro	Leu	Val	
15					250					255					260		
	aac	tct	gag	tac	tac	aca	ggc	tgg	ctg	gat	tac	tgg	ggc	cag	aat	cac	870
	Asn	Ser	Glu	Tyr	Tyr	Thr	Gly	Trp	Leu	Asp	Tyr	Trp	Gly	Gln	Asn	His	
				265					270 [.]					275			
	tcc	aca	cgg	tct	gtg	tca	gct	gta	acc	aaa	gga	cta	gag	aac	atg	ctc	918
20	Ser	Thr	Arg	Ser	Val	Ser	Ala	Val	Thr	Lys	Gly	Leu	Glu	Asn	Met	Leu	
			280					285					290				
	aag	ttg	gga	gcc	agt	gtg	aac	atg	tac	atg	ttc	cat	gga	ggt	acc	aac	966
	Lys	Leu	Gly	Ala	Ser	Val	Asn	Met	Tyr	Met	Phe	His	Gly	Gly	Thr	Asn	
		295					300					305					
25	ttt	gga	tat	tgg	aat	ggt	gcc	gat	aag	aag	gga	cgc	ttc	ctt	ccg	att	1014

	Phe	Gly	Tyr	Trp	Asn	Gly	Ala	Asp	Lys	Lys	Gly	Arg	Phe	Leu	Pro	Ile	
	310					315					320					325	
	act	acc	agc	tat	gac	tat	gat	gca	cct	ata	tct	gaa	gca	ggg	gac	ccc	1062
	Thr	Thr	Ser	Tyr	Asp	Tyr	Asp	Ala	Pro	Ile	Ser	Glu	Ala	Gly	Asp	Pro	
5					330					335					340		
	aca	cct	aag	ctt	ttt	gct	ctt	cga	gat	gtc	atc	agc	aag	ttc	cag	gaa	1110
	Thr	Pro	Lys	Leu	Phe	Ala	Leu	Arg	Asp	Val	Ile	Ser	Lys	Phe	Gln	Glu	
				345					350					355			
	gtt	cct	ttg	gga	cct	tta	cct	ccc	ccg	agc	ccc	aag	atg	atg	ctt	gga	1158
10	۷al	Pro	Leu	Gly	Pro	Leu	Pro	Pro	Pro	Ser	Pro	Lys	Met	Met	Leu	Gly	
			360					365					370				
	cct	gtg	act	ctg	cac	ctg	gtt	ggg	cat	tta	ctg	gct	ttc	cta	gac	ttg	1206
	Pro	Val	Thr	Leu	His	Leu	Val	Gly	His	Leu	Leu	Ala	Phe	Leu	Asp	Leu	•
		375				•	380					385					
15	ctt	tgc	ccc	cgt	ggg	ccc	att	cat	tca	atc	ttg	cca	atg	acc	ttt	gag	1254
	Leu	Cys	Pro	Arg	Gly	Pro	Ile	His	Ser	Ile	Leu	Pro	Met	Thr	Phe	Glu	
	390					395					400					405	
	gct	gţc	aag	cag	gac	cat	ggc	ttc	atg	ttg	tac	cga	acc	tat	atg	acc	1302
	Ala	Val	Lys	Gln	Asp	His	Gly	Phe	Met	Leu	Tyr	Arg	Thr	Tyr	Met	Thr	
20					410					415					420		
•			att														1350
	His	Thr	Ile	Phe	Glu	Pro	Thr	Pro	Phe	Trp	Val	Pro	Asn	Asn	Gly	Val	
	•			425					430					435			
			cgt							•							1398
25	His	Asp	Arg	Ala	Tyr	Val	Met	Val	Asp	Gly	Val	Phe	Gln	Gly	Val	Val	

			440					445					450				
	gag	cga	aat	atg	aga	gac	aaa	cta	ttt	ttg	acg	ggg	aaa	ctg	ggg	tcc	1446
	Glu	Arg	Asn	Met	Arg	Asp	Lys	Leu	Phe	Leu	Thr	Gly	Lys	Leu	Gly	Ser	
		455					460					465					
5	aaa	ctg	gat	atc	ttg	gtg	gag	aac	atg	ggg	agg	ctc	agc	ttt	ggg	tct	1494
	Lys	Leu	Asp	Ile	Leu	Val	Glu	Asn	Met	Gly	Arg	Leu	Ser	Phe	Gly	Ser	
	470					475					480					485	
	aac	agc	agt	gac	ttc	aag	ggc	ctg	ttg	aag	cca	cca	att	ctg	ggg	caa	1542
	Asn	Ser	Ser	Asp	Phe	Lys	Gly	Leu	Leu	Lys	Pro	Pro	Ile	Leu	Gly	Gln	
10					490					495					500		
	aca	atc	ctt	acc	cag	tgg	atg	atg	ttc	cct	ctg	aaa	att	gat	aac	ctt	1590
	Thr	Ile	Leu	Thr	Gln	Trp	Met	Met	Phe	Pro	Leu	Lys	Ile	Asp	Asn	Leu	
				505					510					515			
	gtg	aag	tgg	tgg	ttt	ccc	ctc	cag	ttg	cca	aaa	tgg	cca	tat	cct	caa	1638
15	Val	Lys	Trp	Trp	Phe	Pro	Leu	Gln	Leu	Pro	Lys	Trp	Pro	Tyr	Pro	Gln	
			520					525					530		•		
	gct	cct	tct	ggc	ccc	aca	ttc	tac	tcc	aaa	aca	ttt	cca	att	tta	ggc	1686
	Ala	Pro	Ser	Gly	Pro	Thr	Phe	Tyr	Ser	Lys	Thr	Phe	Pro	Ile	Leu	Gly	
		535					540					545					
20	tca	gtt	ggg	gac	aca	ttt	cta	tat	cţa	cct	gga	tgg	acc	aag	ggc	caa .	1734
	Ser	Val	Gly	Asp	Thr	Phe	Leu	Tyr	Leu	Pro	Gly	Trp	Thr	Lys	Gly	Gln	
	550					555					560				,	565	
	gtc	tgg	atc	aat	ggg	ttt	aac	ttg	ggc	cgg	tac	tgg	aca	aag	cag	ggg	1782
	Val	Trp	Ile	Asn	Gly	Phe	Asn	Leu	Gly	Arg	Tyr	Trp	Thr	Ĺуs	Gln	Gly	
25					570					575					580		

188/346

	cca	caa	cag	acc	ctc	tac	gtg	cca	aga	ttc	ctg	ctg	ttt	cct	agg	gga	1830	
	Pro	Gln	Gln	Thr	Leu	Tyr	Val	Pro	Arg	Phe	Leu	Leu	Phe	Pro	Arg	Gly		
				585					590					595				
	gcc	ctc	aac	aaa	att	aca	ttg	ctg	gaa	cta	gaa	gat	gta	cct	ctc	cag	1878	
5	Ala	Leu	Asn	Lys	Ile	Thr	Leu	Leu	Glu	Leu	Glu	Asp	Val	Pro	Leu	Gln		
			600					605					610					
	ccc	caa	gtc	caa	ttt	ttg	gat	aag	cct	atc	ctc	aat	agc	act	agt	act	1926	
	Pro	Gln	Val	Gln	Phe	Leu	Asp	Lys	Pro	Ile	Leu	Asn	Ser	Thr	Ser	Thr		
		615					620					625						
10	ttg	caċ	agg	aca	cat	atc	aat	tcc	ctt	tca	gct	gat	aca	ctg	agt	gcc	1974	0
	Leu	His	Arg	Thr	His	Ile	Asn	Ser	Leu	Ser	Ala	Asp	Thr	Leu	Ser	Ala		v
•	630					635					640					645		
	tct	gaa	cca	atg	gag	tta	agt	ggg	cac	tga	aagg	gtago	icc č	ggc	atggt	:g	2024	
	Ser	Glu	Pro	Met	Glu	Leu	Ser	Gly	His									
L5					650					655								
	gcto	atgo	ct o	taat	ccca	ag ca	acttt	ggga	a ggo	ctgag	gacg	ggto	gatt	cac	ctgag	ggtcag	2084	
	gact	tcaa	iga d	cago	ctg	jc ca	acat	ggtg	j aaa	accc	gtc	tcca	ctaa	aaa a	ataca	aaaat	2144	
	tago	cggg	gcg t	gato	gtgg	gg ca	accto	ctaat	ccc	cagct	act	tggg	gaggo	etg a	agggo	aggag	2204	
	aatt	gctt	ga a	tcca	aggag	g ca	gago	jttgo	agt	gagt	gga	ggtt	gtac	cca (ctgca	ectcca	2264	
20	gcct	.ggct	ga c	agto	gagad	a ct	ccat	ctca	aaa	aaaa	aaaa	aaaa	aaaa	aaa a	aagta	accct	2324	
	tgga	eccto	igg a	cato	gagt	g gg	gcago	gatco	ctt	ggto	jctg	gcca	acggt	ga (cccta	aggaa	2384	
	ctaa	aggo	ca c	agto	ccto	et ga	atgt	aagt	aca	agta	ıcac	atto	ctto	jcc (aaact	ttatt	2444	
	gtga	ttaa	aa t	tcca	agaga	ac ag	ŗt										2467	

25 <210> 84

189/346

<211> 1450

<212> DNA

<213> Homo sapiens

5 <220>

<221> CDS

<222> (245)..(1417)

<400> 84

tgagccctcc ttggctctta caatgctcac ttgttttcac aatgcagcaa aatgaaatgc 60 cttagaaaaa gagtaacatt ccagaaaacg gtgtaattta tttttcttcc ttaattgccc 120 catctgtgga ggatttcttt gctgaacacc acatcaaagg gatcttctgc atttaaaata 180 gaagaggcat catgctgaag agggagggga aggtccaacc ttacactaaa accctggatg 240 gagg atg ggg atg gat gat tgt gat tca ttt ttt cct ggt ccc ctg gtt 289

15 Met Gly Met Asp Asp Cys Asp Ser Phe Phe Pro Gly Pro Leu Val

1 5 10 15

gct att att tgt gac ata ctt gga gag aaa act acc tcc att ctt ggg 337
Ala Ile Ile Cys Asp Ile Leu Gly Glu Lys Thr Thr Ser Ile Leu Gly

20 25 30

20 gct ttt gtt gtt act ggt gga tat ctg atc agc agc tgg gcc aca agt 385
Ala Phe Val Val Thr Gly Gly Tyr Leu Ile Ser Ser Trp Ala Thr Ser

35 40 45

att cct ttt ctt tgt gtg act atg gga ctt cta ccc ggt ttg ggt tct 433

Ile Pro Phe Leu Cys Val Thr Met Gly Leu Leu Pro Gly Leu Gly Ser

25 50 55 60

	gct	ttc	tta	tac	caa	gtg	gct	gct	gtg	gta	act	acc	aaa	tac	ttc	aaa	481
	Ala	Phe	Leu	Tyr	Gln	Val	Ala	Ala	Val	Val	Thr	Thr	Lys	Tyr	Phe	Lys	
		65					70					75					
	aaa	cga	ttg	gct	ctt	tct	aca	gct	att	gcc	cgt	tct	ggg	atg	gga	ctg	529
5	Lys	Arg	Leu	Ala	Leu	Ser	Thr	Ala	Ile	Ala	Arg	Ser	Gly	Met	Gly	Leu	
	80					85					90					95	
	act	ttt	ctt	ttg	gca	ccc	ttt	aca	aaa	ttc	ctg	ata	gat	ctg	tat	gac	577
	Thr	Phe	Leu	Leu	Ala	Pro	Phe	Thr	Lys	Phe	Leu	Ile	Asp	Leu	Tyr	Asp	
					100					105					110		
10	tgg	aca	gga	gcc	ctt	ata	tta	ttt	gga	gct	atc	gca	ttg	aat	ttg	gtg	625
	Trp	Thr	Gly	Ala	Leu	Ile	Leu	Phe	Gly	Ala	Ile	Ala	Leu	Asn	Leu	Val	
				115					120					125			
	cct	tct	agt	atg	ctc	tta	aga	ccc	atc	cat	atc	aaa	agt	gag	aac	aat	673
	Pro	Ser	Ser	Met	Leu	Leu	Arg	Pro	Ile	His	Ile	Lys	Ser	Glu	Asn	Asn	
15			130					135					140			•	
	tct	ggt	att	aaa	gat	aaa	ggc	agc	agt	ttg	tct	gca	cat	ggt	cca	gag	721
	Ser	Gly	Ile	Lys	Asp	Lys	Gly	Ser	Ser	Leu	Ser	Ala	His	Gly	Pro	Glu	
		145					150		•			155					
	gca	cat	gca	aca	gaa	aca	Cac	tgc	cat	gag	aca	gaa	gag	tct	acc	atc	769
20	Ala	His	Ala	Thr	Glu	Thr	His	Cys	His	Glu	Thr	Glu	Glu	Ser	Thr	Ile	
	160					165					170					175	
	aag	gac	agt	act	acg	cag	aag	gct	gga	cta	cct	agc	aaa	aat	tta	aca	817
	Lys	Asp	Ser	Thr	Thr	Gln	Lys	Ala	Gly	Leu	Pro	Ser	Lys	Asn	Leu	Thr	
					180					185					190		
25	gtc	tca	caa	aat	caa	agt	gaa	gag	ttc	tac	aat	ggg	cct	aac	agg	aac	865

	Val	Ser	Gln	Asn	Gln	Ser	Glu	Glu	Phe	Tyr	Asn	Gly	Pro	Asn	Arg	Asn	
				195					200					205			
	aga	ctg	tta	tta	aag	agt	gat	gaa	gaa	agt	gat	aag	gtt	att	tcg	tgg	913
	Arg	Leu	Leu	Leu	Lys	Ser	Asp	Glu	Glu	Ser	Asp	Lys	Val	Ile	Ser	Trp	
5			210					215					220				
	agc	tgc	aaa	caa	ctg	ttt	gac	att	tct	ctc	ttt	aga	aat	cct	ttc	ttc	961
	Ser	Cys	Lys	Gln	Leu	Phe	Asp	Ile	Ser	Leu	Phe	Arg	Asn	Pro	Phe	Phe	
		225					230					235					
	tac	ata	ttt	act	tgg	tct	ttt	ctc	ctc	agt	cag	tta	gca	tac	ttc	atc	1009
10	Tyr	Ile	Phe	Thr	Trp	Ser	Phe	Leu	Leu	Ser	Gln	Leu	Ala	Tyr	Phe	Ile	
	240					245					250					255	
	cct	acc	ttt	cac	ctg	gta	gcc	aga	gcc	aaa	aca	ctg	ggg	att	gac	atc	1057
	Pro	Thr	Phe	His	Leu	Val	Ala	Arg	Ala	Lys	Thr	Leu	Gly	Ile	Asp	Ile	
					260					265					270		
15	atg	gat	gcc	tct	tac	ctt	gtt	tct	gta	gca	ggt	atc	ctt	gag	acg	gtc	1105
	Met	Asp	Ala	Ser	Tyr	Leu	Val	Ser	Val	Ala	Gly	Ile	Leu	Glu	Thr	Val	
				275					280					285			
	agt	cag	att	att	tct	gga	tgg	gtt	gct	gat	caa	aac	tgg	att	aag	aag	1153
	Ser	Gln	Ile	Ile	Ser	Gly	Trp	Val	Ala	Asp	Gln	Asn	Trp	Ile	Lys	Lys	
20			290					295					300				
	taț	cat	tac	cac	aag	tct	tac	ctc	atc	ctc	tgc	ggc	atc	act	aac	ctg	1201
	Tyr	His	Tyr	His	Lys	Ser	Tyr	Leu	Ile	Leu	Cys	Gly	Ile	Thr	Asn	Leu	
		305					310		•			315					
	ctt	gct	cct	tta	gcc	acc	aca	ttt	cca	cta	ctt	atg	acc	tac	acc	atc	1249
25	Leu	Ala	Pro	Leu	Ala	Thr	Thr	Phe	Pro	Leu	Leu	Met	Thr	Tyr	Thr	Ile	

192/346

320 325 330 335 tgc ttt gcc atc ttt gct ggt ggt tac ctg gca ttg ata ctg cct gta 1297 Cys Phe Ala Ile Phe Ala Gly Gly Tyr Leu Ala Leu Ile Leu Pro Val 340 345 350 5 ctg gtt gat ctg tgt agg aat tct aca gta aac agg ttt ttg gga ctt 1345 Leu Val Asp Leu Cys Arg Asn Ser Thr Val Asn Arg Phe Leu Gly Leu 355 360 365 gcc agt ttc ttt gct ggg atg gct gtc ctt tct gga cca cct ata gca Ala Ser Phe Phe Ala Gly Met Ala Val Leu Ser Gly Pro Pro Ile Ala 10 370 375 380 ggt aac acc ttc acc aca ttc tga acaaatttca atagcaataa aagagaaaaa 1447 Gly Asn Thr Phe Thr Thr Phe 385 390 ctg 1450 15 <210> 85 <211> 1897 <212> DNA <213> Homo sapiens 20 <220> <221> CDS <222> (8)..(1366)

25

<400> 85

	actt	tgtc	atg	gag	ctg	gca	ctg	cgg	cgc	tct	CCC	gtc	ccg	cgg	tgg •	ttg	49
			Met	Glu	Leu	Ala	Leu	Arg	Arg	Ser	Pro	Val	Pro	Arg	Trp	Leu	
			1				5					10					
	ctg	ctg	ctg	ccg	ctg	ctg	ctg	ggc	ctg	aac	gca	gga	gct	gtc	att	gac	97
5	Leu	Leu	Leu	Pro	Leu	Leu	Leu	Gly	Leu	Asn	Ala	Gly	Ala	Val	Ile	Asp	
	15					20					25					30	
	tgg	ccc	aca	gag	gag	ggc	aag	gaa	gta	tgg	gat	tat	gtg	acg	gtc	cgc	145
	Trp	Pro	Thr	Glu	Glu	Gly	Lys	Glu	Val	Trp	Asp	Tyr	Val	Thr	Val	Arg	
					35					40					45		
10	aag	gat	gcc	tac	atg	ttc	tgg	tgg	ctc	tat	tat	gcc	acc	aac	tcc	tgc	193
	Lys	Asp	Ala	Tyr	Met	Phe	Trp	Trp	Leu	Tyr	Tyr	Ala	Thr	Asn	Ser	Cys	
				50					55				,	60			
	aag	aac	ttc	tca	gaa	ctg	ccc	ctg	gtc	atg	tgg	ctt	cag	ggc	ggt	cca	241
	Lys	Asn	Phe	Ser	Glu	Leu	Pro	Leu	Val	Met	Trp	Leu	Gln	Gly	Gly	Pro	
15			65					70					75				
	ggc	ggt	tct	agc	act	gga	ttt	gga	aac	ttt	gag	gaa	att	ggg	ccc	ctt	289
	Gly	Gly	Ser	Ser	Thr	Gly	Phe	Gly	Asn	Phe	Glu	Glu	Ile	Gly	Pro	Leu	
		80					85					90					
	gac	agt	gat	ctc	aaa	cca	cgg	aaa	acc	acc	tgg	ctc	cag	gct	gcc	agt	337
20	Asp	Ser	Asp	Leu	Lys	Pro	Arg	Lys	Thr	Thr	Trp	Leu	Gln	Ala	Ala	Ser	
	95					100	•				105					110	
	ctc	cta	ttt	gtg	gat	aat	ccc	gtg	agc	act	aga	ttc	agt	tat	ata	aat	385
			Phe										_				
					115					120	2			- 4 -	125		
25	aat	aat	ggt	acc		acc	220	usc.	cta		2+~	ata	act	tca		ato	422
	220	~gc	990	900	Cuc	guu	aay	gac	cug	gul	aly	grg	gut	LUA	yac	acy	433

	Gly	Ser	Gly	Ala	Tyr	Ala	Lys	Asp	Leu	Ala	Met	Val	Ala	Ser	Asp	Met		
				130					135					140				
	atg	gtt	ctc	ctg	aag	acc	ttc	ttc	agt	tgc	cac	aaa	gaa	ttc	cag	aca	481	
	Met	Val	Leu	Leu	Lys	Thr	Phe	Phe	Ser	Суѕ	His	Lys	Glu	Phe	Gln	Thr		
5			145					150					155					
	gtt	cca	ttc	tac	att	ttc	tca	gag	tcc	tat	gga	gga	aaa	atg	gca	gct	529	
	Val	Pro	Phe	Tyr	Ile	Phe	Ser	Glu	Ser	Tyr	Gly	Gly	Lys	Met	Ala	Ala		
		160					165					170						
	ggc	att	ggt	cta	gag	ctt	tat	aag	gcc	att	cag	cga	ggg	acc	atc	aag	577	
10	Gly	Ile	Gly	Leu	Glu	Leu	Tyr	Lys	Ala	Ile	Gln	Arg	Gly	Thr	Ile	Lys		· .
	175					180					185					190		
	tgc	aac	ttt	gcg	ggg	gtt	gcc	ttg	ggt	gat	tcc	tgg	atc	tcc	cct	gtt	625	
	Cys	Asn	Phe	Ala	Gly	Val	Ala	Leu	Gly	Asp	Ser	Trp	Ile	Ser	Pro	Val		
					195					200					205			
15	gat	tcg	gtg	ctc	tcc	tgg	gga	cct	tac	ctg	tac	agc	atg	tct	ctt	ctc	673	
	Asp	Ser	Val	Leu	Ser	Trp	Gly	Pro	Tyr	Leu	Tyr	Ser	Met	Ser	Leu	Leu		
				210					215					220				
	gaa	gac	aaa	ggt	ctg	gca	gag	gtg	tct	aag	gtt	gca	gag	caa	gta	ctg	721	
	Glu	Asp	Lys	Gly	Leu	Ala	Glu	Val	Ser	Lys	Val	Ala	Glu	Gln	Val	Leu		
20			225					230					235					
	aat	gcc	gta	aat	aag	ggg	ctc	tac	aga	gag	gcc	aca	gag	ctg	tgg	ggg	769	
	Asn	Ala	Val	Asn	Lys	Gly	Leu	Tyr	Arg	Glu	Ala	Thr	Glu	Leu	Trp	Gly		
		240					245					250		•				
	aaa	gca	gaa	atg	atc	att	gaa	cag	aac	aca	gat	ggg	gtg	aac	ttc	tat	817	
25	Lys	Ala	Glu	Met	Ile	Ile	Glu	Gln	Asn	Thr	Asp	Gly	Val	Asn	Phe	Tyr		

	255					260					265					270	
	aac	atc	tta	act	aaa	agc	act	ccc	acg	tct	aca	atg	gag	tcg	agt	cta	865
	Asn	Ile	Leu	Thr	Lys	Ser	Thr	Pro	Thr	Ser	Thr	Met	Glu	Ser	Ser	Leu	
					275					280					285		
5	gaa	ttc	aca	cag	agc	cac	cta	gtt	tgt	ctt	tgt	cag	cgc	cac	gtg	aga	913
	Glu	Phe	Thr	Gln	Ser	His	Leu	Val	Cys	Leu	Cys	Gln	Arg	His	Val	Arg	
				290					295					300			
	cac	cta	caa	cga	gat	gcc	tta	agc	cag	ctc	atg	aat	ggc	ccc	atc	aga	961
	His	Leu	Gln	Arg	Asp	Ala	Leu	Ser	Gln	Leu	Met	Asn	Gly	Pro	Ile	Arg	
10			305					310					315				
	aag	aag	ctc	aaa	att	att	cct	gag	gat	caa	tcc	tgg	gga	ggc	cag	gct	1009
	Lys	Lys	Leu	Lys	Ile	Ile	Pro	Glu	Asp	Gln	Ser	Trp	Gly	Gly	Gln	Ala	
		320					325					330					
	acc	aac	gtc	ttt	gtg	aac	atg	gag	gag	gac	ttc	atg	aag	cca	gtc	att	1057
15	Thr	Asn	Val	Phe	Val	Asn	Met	Glu	Glu	Asp	Phe	Met	Lys	Pro	Val	Ile	
	335					340					345					350	
	agc	att	gtg	gac	gag	ttg	ctg	gag	gca	ggg	atc	aac	gtg	acg	gtg	tat	1105
	Ser	Ile	Val	Asp	Glu	Leu	Leu	Glu	Ala	Gly	Ile	Asn	Val	Thr	Val	Tyr	
					355					360					365		
20	aat	gga	cag	ctg	gat	ctc	atc	gta	gat	acc	atg	ggt	cag	gag	gcc	tgg	1153
	Asn	Gly	Gln	Leu	Asp	Leu	Ile	Val	Asp	Thr	Met	Gly	Gln	Glu	Ala	Trp	
				370					375					380			
	gtg	cgg	aaa	ctg	aag	tgģ	cca	gaa	ctg	cct	aaa	ttc	agt	cag	ctg	aag	1201
	Val	Arg	Lys	Leu	Lys	Trp	Pro	Glu	Leu	Pro	Lys	Phe	Ser	Gln	Leu	Lys	
25			385					390					395				

196/346

	tgg	aag	gcc	ctg	tac	agt	gac	cct	aaa	tct	ctg	gaa	aca	tct	gct	ttt	1249
	Trp	Lys	Ala	Leu	Tyr	Ser	Asp	Pro	Lys	Ser	Leu	Glu	Thr	Ser	Ala	Phe	
		400					405					410			•		
	gtc	aag	tcc	tac	aag	aac	ctt	gct	ttc	tac	tgg	att	ctg	aaa	gct	ggt	1297
5	Val	Lys	Ser	Tyr	Lys	Asn	Leu	Ala	Phe	Tyr	Trp	Ile	Leu	Lys	Ala	Gly	
	415					420					425					430	
	cat	atg	gtt	cct	tct	gac	caa	ggg	gac	atg	gct	ctg	aag	atg	atg	aga	1345
	His	Met	Val	Pro	Ser	Asp	Gln	Gly	Asp	Met	Ala	Leu	Lys	Met	Met	Arg	
					435					440					445		
10	ctg	gtg	act	cag	caa	gaa	ţag	gate	ggato	ggg g	gctg	gagat	tg ag	gctg	gttt	J	1396
	Leu	۷al	Thr	Gln	Gln	Glu											
				450													
	gcct	tgg	ggc a	acaga	agcto	ga go	ctgag	ggcc	g cto	gaago	ctgt	agga	aagc	gcc a	attci	ttccct	1456
										•						aatca	
15					•											tttta	
															_	ttatga	
				_	_				_			_				gtaaat	
																gtcctt	
																actcta	
20																caataa	
20							acat	accd	y La	Late	Lyaa	aca			acyc	-aalad	
	acy	المانانا	tct	uldā	اعددا	LL C											1897

<210> 86

<211> 1856

25 <212> DNA

197/346

<213> Homo sapiens

<220>

<221> CDS

5 <222> (43)..(1515)

<400> 86

agatccaagt tgggagcagc tctgcgtgcg gggcctcaga ga atg agg ccg gcg 54

Met Arg Pro Ala

10 . 1

25

ttc gcc ctg tgc ctc ctc tgg cag gcg ctc tgg ccc ggg ccg ggc ggc 102
Phe Ala Leu Cys Leu Leu Trp Gln Ala Leu Trp Pro Gly Pro Gly Gly

5 10 15 20

ggc gaa cac ccc act gcc gac cgt gct ggc tgc tcg gcc tcg ggg gcc 150

Gly Glu His Pro Thr Ala Asp Arg Ala Gly Cys Ser Ala Ser Gly Ala

tgc tac agc ctg cac cac gct acc atg aag cgg cag gcg gcc gag gag 198 Cys Tyr Ser Leu His His Ala Thr Met Lys Arg Gln Ala Ala Glu Glu

30

35

40 45 50

20 gcc tgc atc ctg cga ggt ggg gcg ctc agc acc gtg cgt gcg ggc gcc 246
Ala Cys Ile Leu Arg Gly Gly Ala Leu Ser Thr Val Arg Ala Gly Ala

55 60 65

gag ctg cgc gct gtg ctc gcg ctc ctg cgg gca ggc cca ggg ccc gga 294 Glu Leu Arg Ala Val Leu Ala Leu Leu Arg Ala Gly Pro Gly Pro Gly

25 70 75 80

	ggg	ggc	tcc	aaa	gac	ctg	ctg	ttc	tgg	gtc	gca	ctg	gag	cgc	agg	cgt	342
	Gly	Gly	Ser	Lys	Asp	Leu	Leu	Phe	Trp	Val	Ala	Leu	Glu	Arg	Arg	Arg	
	85					90				Ī	95					100	
	tcc	cac	tgc	acc	ctg	gag	aac	gag	cct	ttg	cgg	ggt	ttc	tcc	tgg	ctg	390
5	Ser	His	Cys	Thr	Leu	Glu	Asn	Glu	Pro	Leu	Arg	Gly	Phe	Ser	Trp	Leu	
					105					110					115		
	tcc	tcc	gac	ccc	ggc	ggt	ctc	gaa	agc	gac	acg	ctg	cag	tgg	gtg	gag	438
	Ser	Ser	Asp	Pro	Gly	Gly	Leu	Glu	Ser	Asp	Thr	Leu	Gln	Trp	Val	Glu	
				120					125					130			
10	gag	ccc	caa	cgc	tcc	tgc	acc	gcg	cgg	aga	tgc	gcg	gta	ctc	cag	gcc	486
	Glu	Pro	Gln	Arg	Ser	Cys	Thr	Ala	Arg	Arg	Cys	Ala	Val	Leu	Gln	Ala	
			135					140					145				
	acc	ggt	ggg	gtc	gag	ccc	gca	ggc	tgg	aag	gag	atg	cga	tgc	cac	ctg	534
	Thr	Gly	Gly	Val	Glu	Pro	Ala	Gly	Trp	Lys	Glu	Met	Arg	Cys	His	Leu	
15		150					155					160				٠	
	cgc	gcc	aac	ggc	tac	ctg	tgc	aag	tac	cag	ttt	gag	gtc	ttg	tgt	cct	582
	Arg	Ala	Asn	Gly	Tyr	Leu	Cys	Lys	Tyr	Gln	Phe	Glu	Val	Leu	Суз	Pro	
	165					170					175					180	
	gcg	ccg	cgc	CCC	ggg	gcc	gʻcc	tct	aac	ttg	agc	tat	cgc	gcg	ccc	ttc	630
20	Ala	Pro	Arg	Pro	Gly	Ala	Ala	Ser	Asn	Leu	Ser	Tyr	Arg	Ala	Pro	Phe	
					185					190					195		
	cag	ctg	cac	agc	gcc	gct	ctg	gac	ttc	agt	cca	cct	ggg	acc	gag	gtg	678
	Gln	Leu	His	Ser	Ala	Ala	Leu	Asp	Phe	Ser	Pro	Pro	Gly	Thr	Glu	Val	
				200					205					210			
25	agt	gcg	ctc	tgc	cgg	qqa	caq	ctc	cca	atc	tca	att	act	tac	atc	aca	726

	Ser	Ala	Leu	Cys	Arg	Gly	Gln	Leu	Pro	Ile	Ser	Val	Thr	Cys	Ile	Ala	
			215					220					225				
	gac	gaa	atc	ggc	gct	cgc	tgg	gac	aaa	ctc	tcg	ggc	gat	gtg	ttg	tgt	774
	Asp	Glu	Ile	Gly	Ala	Arg	Trp	Asp	Lys	Leu	Ser	Gly	Asp	Val	Leu	Cys	
5		230					235					240					
	ccc	tgc	ccc	gġg	agg	tac	ctc	cgt	gct	ggc	aaa	tgc	gca	gag	ctc	cct	822
	Pro	Cys	Pro	Gly	Arg	Tyr	Leu	Arg	Ala	Gly	Lys	Cys	Ala	Glu	Leu	Pro	
	245					250					255					260	
	aac	tgc	cta	gac	gac	ttg	gga	ggc	ttt	gcc	tgc	gaa	tgt	gct	acg	ggc	870
10	Asn	Cys	Leu	Asp	Asp	Leu	Gly	Gly	Phe	Ala	Cys	Glu	Cys	Ala	Thr	Gly	
					265					270					275		
	ttc	gag	ctg	ggg	aag	gac	ggc	cgc	tct	tgt	gtg	acc	agt	ggg	gaa	gga	918
•	Phe	Glu	Leu	Gly	Lys	Asp	Gly	Arg	Ser	Cys	Val	Thr	Ser	Gly	Glu	Gly	
				280					285					290			
15	cag	ccg	acc	ctt	ggg	ggg	acc	ggg	gtg	ccc	acc	agg	cgc	ccg	ccg	gcc	966
	Gln	Pro	Thr	Leu	Gly	Gly	Thr	Gly	Val	Pro	Thr	Arg	Arg	Pro	Pro	Ala	
			295					300					305				
	act	gca	acc	agc	ccc	gtg	ccg	cag	aga	aca	tgg	cca	atc	agg	gtc	gac	1014
	Thr	Ala	Thr	Ser	Pro	Val	Pro	Gln	Arg	Thr	Trp	Pro	Ile	Arg	Val	Asp	
20		310					315					320					
	gag	aag	ctg	gga	gag	aca	cca	ctt	gtc	cct	gaa	caa	gac	aat	tca	gta	1062
	Glu	Lys	Leu	Gly	Glu	Thr	Pro	Leu	Val	Pro	Glu	Gln	Asp	Asn	Ser	Val	
	325					330					335					340	
	aca	tct	att	cct	gag	att	cct	cga	tgg	gga	tca	cag	agc	acg	atg	tct	1110
25	Thr	Ser	Ile	Pro	Glu	Ile	Pro	Arg	Trp	Gly	Ser	Gln	Ser	Thr	Met	Ser	

200/346

					345					350					355		
	acc	ctt	caa	atg	tcc	ctt	caa	gcc	gag	tca	aag	gcc	act	atc	acc	cca	1158
	Thr	Leu	Gln	Met	Ser	Leu	Gln	Ala	Glu	Ser	Lys	Ala	Thr	Ile	Thr	Pro	
				360					365					370			
5	tca	ggg	agc	gtg	att	tcc	aag	ttt	aat	tct	acg	act	tcc	tct	gcc	act	1206
	Ser	Gly	Ser	Val	Ile	Ser	Lys	Phe	Asn	Ser	Thr	Thr	Ser	Ser	Ala	Thr	
			375					380					385				
	cct	cag	gct	ttc	gac	tcc	tcc	tct	gcc	gtg	gtc	ttc	ata	ttt	gtg	agc	1254
	Pro	Gln	Ala	Phe	Asp	Ser	Ser	Ser	Ala	Val	Val	Phe	Ile	Phe	Val	Ser	
10		390					395					400					
	aca	gca	gta	gta	gtg	ttg	gtg	atc	ttg	acc	atg	aca	gta	ctg	ggg	ctt	1302
	Thr	Ala	Val	Val	Val	Leu	Val	Ile	Leu	Thr	Met	Thr	Val	Leu	Gly	Leu	
	405					410					415					420	
	.gtc	aag	ctc	tgc	ttt	cac	gaa	agc	ccc	tct	tcc	cag	cca	agg	aag	gag	1350
15	Val	Lys	Leu	Cys	Phe	His	Glu	Ser	Pro	Ser	Ser	Gln	Pro	Arg	Lys	Glu	
					425					430					435		
	tct	atg	ggc	ccg	ccg	ggc	ctg	gag	agt	gat	cct	gag =	ccc	gct	gct	ttg	1398
	Ser	Met	Gly	Pro	Pro	Gly	Leu	Glu	Ser	Asp	Pro	Glu	Pro	Ala	Ala	Leu	
				440					445					450			
20	ggc	tcc	agt	tct	gca	cat	tgc	aca	aac	aat	ggg	gtg	aaa	gtc	ggg	gac	1446
	Gly	Ser	Ser	Ser	Ala	His	Cys	Thr	Asn	Asn	Gly	Val	Lys	Val	Gly	Asp	
			455					460					465				
	tgt	gat	ctg	cgg	gac	aga	gca	gag	ggt	gcc	ttg	ctg	gcg	gag	tcc	cct	1494
	Суз	Asp	Leu	Arg	Asp	Arg	Ala	Glu	Gly	Ala	Leu	Leu	Ala	Glu	Ser	Pro	
25		470					475					480					

\$

201/346

ctt ggc tct agt gat gca tag ggaaacaggg gacatgggca ctcctgtgaa 1545 Leu Gly Ser Ser Asp Ala 485 490 cagtttttca cttttgatga aacggggaac caagaggaac ttacttgtgt aactgacaat 1605 5 ttctgcagaa atcccccttc ctctaaattc cctttactcc actgaggagc taaatcagaa 1665 ctgcacactc cttccctgat gatagaggaa gtggaagtgc ctttaggatg gtgatactqg 1725 gggaccgggt agtgctgggg agagatattt tcttatgttt attcggagaa tttggagaag 1785 tgattgaact tttcaagaca ttggaaacaa atagaacaca atataattta cattaaaaaa 1845 taatttctac c 1856 . 10 <210> 87 <211> 2173 <212> DNA <213> Homo sapiens 15 <220> <221> CDS <222> (262)..(1440) 20 <400> 87 gtttggagtt gtcaccactt tcccctctcc gtctcctgcg ggcgcaatgg aggaggagga 60 tgaqgaagcg cgggcgctcc tggcaggcgg ccctgacgag gccgacagag gtgccccggc 120 cgcccctgga gccctgccgg ccctctgcga ccccagtcgc ctggcgcacc ggcttttggt 180 gctgttactg atgtgcttcc ttggctttgc tatttttgct atgataatcc tgctgccctt 240

cagactcaag ttaaacgaga t atg caa gtg aat acc acg aaa ttc atg ctg 291

25

Į.	Leu	Met	Phe	Lys	Thr	Thr	Asn	Val	Gln	Met							
	10					5				1							
. 339	ggt	ttt	ttc	tgt	ttg	gtt	gta	aat	ccc	tgg	tct	tat	tgg	gcc	tat	ctg	
,	Gly	Phe	Phe	Cys	Leu	Val	Val	Asn	Pro	Trp	Ser	Tyr	Trp	Ala	Tyr	Leu	
		25					20					15					5
387	att	atc	aca	ggc	tgg	cga	ata	gga	ttt	gta	cga	gac	ata	ttg	ttt	ggc	
	Ile	Ile	Thr	Gly	Trp	Arg	Ile	Gly	Phe	Val	Arg	Asp	Ile	Leu	Phe	Gly	
			40					35					30				
435	gga	ggt	ctg	gcc	ttt	gtt	gtt	cag	gga	att	tgc	gtt	ttt	tgc	agc	ttt	
	Gly	Gly	Leu	Ala	Phe	Val	Val	Gln	Gly	Ile	Cys	Val	Phe	Cys	Ser	Phe	10
				55					50					45			
483	ggg	ttt	gta	ttt	aga	gga	ttt	gaa	atg	ctg	tgg	ttt	gct	aat	ttt	ata	
	Gly	Phe	Val	Phe	Arg	Gly	Phe	Glu	Met	Leu	Trp	Phe	Ala	Asn	Phe	Ile	
					70					65					60		
														ggc			15
	Ser	Val	Ala	Tyr	Thr	Asn	Gln	Ala	Val	Ala		Ser	Glu	Gly	Gly		
	90					85					80					75	
														aaa			
	Ser	Leu	Gln	Leu	Gly	Phe	Val	Leu	Asn	Leu	Glu		Gly	Lys	Phe	Trp	0.0
		105					100					95					20
	ctg																
	Leu	Trp	_	Met	Leu	Asn	Met		Val	Thr	Ser	Gly		Arg	Ala	Met	
			120					115					110				
	ctc																25
	Leu	Thr	Thr	HlS	GLV	Ala	Ser	GLV	ьеп	ьeu	мта	GIU	тте	пAg	ser	Tyr	ر ب

			125					130					135				
	ggg	atc	aca	ctt	atg	att	ggg	ggt	ata	acg	tgt	att	ctt	tca	cta	atc	723
	Gly	Ile	Thr	Leu	Met	Ile	Gly	Gly	Ile	Thr	Суѕ	Ile	Leu	Ser	Leu	Ile	
		140					145					150					
5	tgt	gcc	ttg	gct	ctt	gcc	tac	ttg	gat	cag	aga	gca	gag	aga	atc	ctt	771
	Cys	Ala	Leu	Ala	Leu	Ala	Tyr	Leu	Asp	Gln	Arg	Ala	Glu	Arg	Ile	Leu	
	155					160					165					170	
	cat	aaa	gaa	caa	gga	aaa	aca	ggt	gaa	gtt	att	aaa	tta	act	gat	gta	819
	His	Lys	Glu	Gln	Gly	Lys	Thr	Gly	Glu	Val	Ile	Lys	Leu	Thr	Asp	Val	
LO					175					180					185		
	aag	gac	ttc	tcc	tta	ccc	ctg	tgg	ctt	ata	ttt	atc	atc	tgt	gtc	tgc	867
	Lys	Asp	Phe	Ser	Leu	Pro	Leu	Trp	Leu	Ile	Phe	Ile	Ile	Cys	Val	Cys	
				190					195					200		•	
	tat	tat	gtt	gct	gtg	ttc	cct	ttt	att	gga	ctt	ggg	aaa	gtt	ttc	ttt	915
15	Tyr	Tyr	Val	Ala	Val	Phe	Pro	Phe	Ile	Gly	Leu	Gly	Lys	Val	Phe	Phe	
			205					210					215				
	aca	gag	aaa	ttt	gga	ttt	tct	tcc	cag	gca	gca	agt	gca	att	aac	agt	963
	Thr	Glu	Lys	Phe	Gly	Phe	Ser	Ser	Gln	Ala	Ala	Ser	Ala	Ile	Asn	Ser	
		220					225					230					
20	gtt	gta	tat	gtc	ata	tca	gct	ccc	atg	tcc	ccg	gtg	ttt	ggg	ctc	ctg	1011
	Val	Val	Tyr	Val	Ile	Ser	Ala	Pro	Met	Ser	Pro	Val	Phe	Gly	Leu	Leu	
	235					240					245					250	
	gtg	gat	aaa	aca	ggg	aag	aac	atc	atc	tgg	gtt	ctt	tgc	gca	gta	gca	1059
	Val	Asp	Lys	Thr	Gly	Lys	Asn	Ile	Ile	Trp	Val	Leu	Суѕ	Ala	Val	Ala	
25					255					260					265		

	gcc	act	ctt	gtg	tcc	cac	atg	atg	ctg	gcc	ttt	acg	atg	tgg	aac	cct	1107
	Ala	Thr	Leu	Val	Ser	His	Met	Met	Leu	Ala	Phe	Thr	Met	Trp	Asn	Pro	
				270					275					280			
	tgg	att	gct	atg	tgt	ctt	ctg	gga	ctc	tcc	tac	tca	ttg	ctt	gcc	tgt	1155
5	Trp	Ile	Ala	Met	Cys	Leu	Leu	Gly	Leu	Ser	Tyr	Ser	Leu	Leu	Ala	Cys	
			285					290					295				
	gca	ttg	tgg	cca	atg	gtg	gca	ttt	gta	gtt	cct	gaa	cat	cag	ctg	gga	1203
	Ala	Leu	Trp	Pro	Met	Val	Ala	Phe	Val	Val	Pro	Glu	His	Gln	Leu	Gly	
		300					305					310					
10	act	gca	tat	ggc	ttc	atg	cag	tcc	att	cag	aat	ctt	ggg	ttg	gcc	atc	1251
	Thr	Ala	Tyr	Gly	Phe	Met	Gln	Ser	Ile	Gln	Asn	Leu	Gly	Leu	Ala	Ile	
	315					320					325					330	
	att	tcc	atc	att	gct	ggt	atg	ata	ctg	gat	tct	cgg	ggg	tat	ttg	ttt	1299
	Ile	Ser	Ile	Ile	Ala	Gly	Met	Ile	Leu	Asp	Ser	Arg	Gly	Tyr	Leu	Phe	
15					335					340					345		
	ttg	gaa	gtg	ttc	ttc	att	gcc	tgt	gtt	tct	ttg	tca	ctt	tta	tct	gtg	1347
	Leu	Glu	Val	Phe	Phe	Ile	Ala	Cys	Val	Ser	Leu	Ser	Leu	Leu	Ser	Val	
				350					355					360			
	gtc	tta	ctc	tat	ttg	gtg	aat	cgt	gcc	cag	ggt	ggg	aac	cta	aat	tat	1395
20	Val	Leu	Leu	Tyr	Leu	Val	Asn	Arg	Ala	Gln	Gly	Gly	Asn	Leu	Asn	Tyr	
			365					370					375				
	tct	gca	aga	caa	agg	gaa	gaa	ata	aaa	ttt	tcc	cat	act	gaa	tga		1440
	Ser	Ala	Arg	Gln	Arg	Glu	Glu	Ile	ГÀг	Phe	Ser	His	Thr	Glu	l		
		380					385					390					
25	gaa	gtta	aaa	tgaa	tgtg	tc a	tgag	aatg	g gc	ttaa	caca	tcg	ttgg	ttt	gaaa	acttcc	1500

atttttaaaa atttagagtt tagtcattag aaaaaataat ggactggaaa gttatattta 1560 tatccaaata tacctatttc aaagtgtatt tgtgaggcct gttttagcct gtgtcttttg 1620 tattgtgtgt tgctaaagaa ttctactttt agtaggctaa tcaacaatga aagggttaga 1680 aaattgctgt ggaacatcca ggtgaacttc aggaaagaca gtgaaaaatg gaaaacgttg 1740 gagettetgt tgagataate tteattaggt atatatetta gggatacage etttetta 1800 tettatagea ggaaaaaaaa aettttgagg gaaatagaag ggetgegtta cacaaaataa 1860 acaatggcat tgtcataggc cttcctttta ctagtagggc ataatgctag ggaatatgtg 1920 aagatgtttt tatgaagtct ctttctgatc acgaacaata gcttgcgctc tactctgtag 1980 ttatgtggat tgccgagcaa tgaccctttt caatttctta tttctgtgtt actgaggacc 2040 10 ctaatcactt agggatgtaa ttttatagta taaactttct gtacagtttt tcttatagtc 2100 taataagtaa aaagtgtcct tcaaattatg ataattgcct atgtacatgg ataaattaaa 2160 acactgcaca cgg 2173

<210> 88

15 <211> 1934

5

<212> DNA

<213> Homo sapiens

<220>

20 <221> CDS

<222> (31)..(1647)

<400> 88

agttctgtgg agcagcggtg gccggctagg atg ggc tgt ctc tgg ggt ctg gct 54 25 Met Gly Cys Leu Trp Gly Leu Ala

									1	Ĺ			;	5			
	ctg	ccc	ctt	ttc	ttc	ttc	tgc	tgg	gag	gtt	ggg	gtc	tct	ggg	agc	tct	102
	Leu	Pro	Leu	Phe	Phe	Phe	Cys	Trp	Glu	Val	Gly	Val	Ser	Gly	Ser	Ser	
		10					15					20					
5	gca	ggc	ccc	agc	acc	cgc	aga	gca	gac	act	gcg	atg	aca	acg	gac	gac	150
	Ala	Gly	Pro	Ser	Thr	Arg	Arg	Ala	Asp	Thr	Ala	Met	Thr	Thr	Asp	Asp	
	25					30					35					40	
	aca	gaa	gtg	ccc	gct	atg	act	cta	gca	ccg	ggc	cac	gcc	gct	ctg	gaa	198
	Thr	Glu	Val	Pro	Ala	Met	Thr	Leu	Ala	Pro	Gly	His	Ala	Ala	Leu	Glu	
10					45					50					55		
	act	caa	acg	ctg	agc	gct	gag	acc	tct	tct	agg	gcc	tca	acc	cca	gcc	246
	Thr	Gln	Thr	Leu	Ser	Ala	Glu	Thr	Ser	Ser	Arg	Ala	Ser	Thr	Pro	Ala	
•				60					65					70			
	ggc	ccc	att	cca	gaa	gca	gag	acc	agg	gga	gcc	aag	aga	att	tcc	cct	294
15	Gly	Pro	Ile	Pro	Glu	Ala	Glu	Thr	Arg	Gly	Ala	Lys	Arg	Ile	Ser	Pro	
			75					80					85				
	gca	aga	gag	acc	agg	agt	ttc	aca	aaa	aca	tct	ccc	aac	ttc	atg	gtg	342
	Ala	Arg	Glu	Thr	Arg	Ser	Phe	Thr	Lys	Thr	Ser	Pro	Asn	Phe	Met	Val	
		90					95					100					
20	ctg	atc	gcc	acc	tcc	gtg	gag	aca	tca	gcc	gcc	agt	ggc	agc	ccc	gag	390
	Leu	Ile	Ala	Thr	Ser	Val	Glu	Thr	Ser	Ala	Ala	Ser	Gly	Ser	Pro	Glu	
	105					110					115					120	
	gga	gct	gga	atg	acc	a.ca	gtt	cag	acc	atc	aca	ggc	agt	gat	ccc	gag	438
	Gly	Ala	Gly	Met	Thr	Thr	Val	Gln	Thr	Ile	Thr	Gly	Ser	Asp	Pro	Glu	
25					125					130					135		

	gaa	gcc	atc	ttt	gac	acc	ctt	tgc	acc	gat	gac	agc	tct	gaa	gag	gca	486
	Glu	Ala	Ile	Phe	Asp	Thr	Leu	Cys	Thr	Asp	Asp	Ser	Ser	Glu	Glu	Ala	
				140					145					150			
	aag	aca	ctc	aca	atg	gac	ata	ttg	aca	ttg	gct	cac	acc	tcc	aca	gaa	534
5	Lys	Thr	Leu	Thr	Met	Asp	Ile	Leu	Thr	Leu	Ala	His	Thr	Ser	Thr	Glu	
			155					160					165				
	gct	aag	ggc	ctg	tcc	tca	gag	agc	agt	gcc	tct	tcc	gac	ggc	ccc	cat	582
	Ala	Lys	Gly	Leu	Ser	Ser	Glu	Ser	Ser	Ala	Ser	Ser	Asp	Gly	Pro	His	
		170					175					180					
10	cca	gtc	atc	acc	ccg	tca	cgg	gcc	tca	gag	agc	agc	gcc	tct	tcc	gac	630
	Pro	Val	Ile	Thr	Pro	Ser	Arg	Ala	Ser	Glu	Ser	Ser	Ala	Ser	Ser	Asp	
	185					190					195					200	
	ggc	ccc	cat	сса	gtc	atc	acc	ccg	tca	cgg	gcc	tca	gag	agc	agc	gcc	678
	Gly	Pro	His	Pro	Val	Ile	Thr	Pro	Ser	Arg	Ala	Ser	Glu	Ser	Ser	Ala	
15		•			205					210					215		
	tct	tcc	gac	ggc	ccc	cat	cca	gtc	atc	acc	ccc	tca	tgg	tcc	ccg	gga	726
	Ser	Ser	Asp	Gly	Pro	His	Pro	Val	Ile	Thr	Pro	Ser	Trp	Ser	Pro	Gly	
				220					225					230		•	
	tct	gat	gtc	act	ctc	ctc	gct	gaa	gcc	ctg	gtg	act	gtc	aca	aac	atc	774
20	Ser	Asp	Val	Thr	Leu	Leu	Ala	Glu	Ala	Leu	Val	Thr	Val	Thr	Asn	Ile	
			235					240					245				
	gag	gtt	att	aat	tgc	agc	atc	aca	gaa	ata	gaa	aca	aca	act	tcc	agc	822
	Glu	Val	Ile	Asn	Cys	Ser	Ile	Thr	Glu	Ile	Glu	Thr	Thr	Thr	Ser	Ser	
		250					255					260					
25	atc	cct	ggg	gcc	tca	gac	ata	gat	ctc	atc	ccc	acg	gaa	ggg	gtg	aag	870

	Ile	Pro	Gly	Ala	Ser	Asp	Ile	Asp	Leu	Ile	Pro	Thr	Glu	Gly	Val	Lys	
	265					270					275					280	
	gcc	tcg	tcc	acc	tcc	gat	cca	cca	gct	ctg	cct	gac	tcc	act	gaa	gca	918
	Ala	Ser	Ser	Thr	Ser	Asp	Pro	Pro	Ala	Leu	Pro	Asp	Ser	Thr	Glu	Ala	
5					285					290					295		
	aaa	cca	cac	atc	act	gag	gtc	aca	gcc	tct	gcc	gag	acc	ctg	tcc	aca	966
	Lys	Pro	His	Ile	Thr	Glu	Val	Thr	Ala	Ser	Ala	Glu	Thr	Leu	Ser	Thr	
				300					305					310			
	gcc	ggc	acc	aca	gag	tca	gct	gca	cct	cat	gcc	acg	gtt	ggg	acc	cca	1014
10	Ala	Gly	Thr	Thr	Glu	Ser	Ala	Ala	Pro	His	Ala	Thr	Val	Gly	Thr	Pro	
			315					320		٥			325				
	ctc	ccc	act	aac	agc	gcc	aca	gaa	aga	gaa	gtg	aca	gca	ccc	ggg	gcc	1062
	Leu	Pro	Thr	Asn	Ser	Ala	Thr	Glu	Arg	Glu	Val	Thr	Ala	Pro	Gly	Ala	
		330					335					340					
15	acg	acc	ctc	agt	gga	gct	ctg	gtc	aca	gtt	agc	agg	aat	ccc	ctg	gaa	1110
	Thr	Thr	Leu	Ser	Gly	Ala	Leu	Val	Thr	Val	Ser	Arg	Asn	Pro	Leu	Glu	
	345					350					355					360	
	gaa	acc	tca	gcc	ctc	tct	gtt	gag	aca	cca	agt	tac	gtc	aaa	gtc	tca	1158
	Glu	Thr	Ser	Ala	Leu	Ser	Val	Glu	Thr	Pro	Ser	Tyr	Val	Lys	Val	Ser	
20					365					370					375		
	gga	gca	gct	ccg	gtc	tcc	ata	gag	gct	ggg	tca	gca	gtg	ggc	aaa	aca	1206
	Gly	Ala	Ala	Pro	Val	Ser	Ile	Glu	Ala	Gly	Ser	Ala	Val	Gly	Lys	Thr .	
				380					385					390			
	act	tcc	ttt	gct	ggg	agc	tct	gct	tcc	tcc	tac	agc	ccc	tcg	gaa	gcc	1254
25	Thr	Ser	Phe	Ala	Gly	Ser	Ser	Ala	Ser	Ser	Tyr	Ser	Pro	Ser	Glu	Ala	

			395					400					405				
	gcc	ctc	aag	aac	ttc	acc	cct	tca	gag	aca	ccg	acc	atg	gac	atc	gca	1302
	Ala	Leu	Lys	Asn	Phe	Thr	Pro	Ser	Glu	Thr	Pro	Thr	Met	Asp	Ile	Ala	
		410					415					420					
5	acc	aag	ggg	ccc	ttc	ccc	acc	agc	agg	gac	cct	ctt	cct	tct	gtc	cct	1350
	Thr	Lys	Gly	Pro	Phe	Pro	Thr	Ser	Arg	Asp	Pro	Leu	Pro	Ser	Val	Pro	
	425					430					435					440	
	ccg	act	aca	acc	aac	agc	agc	cga	ggg	acg	aac	agc	acc	tta	gcc	aag	1398
	Pro	Thr	Thr	Thr	Asn	Ser	Ser	Arg	Gly	Thr	Asn	Ser	Thr	Leu	Ala	Lys	
10					445					450					455		
	atc	aca	acc	tca	gcg	aag	acc	acg	atg	aag	ccc	cca	aca	gcc	acg	ccc	1446
	Ile	Thr	Thr	Ser	Ala	Lys	Thr	Thr	Met	Lys	Pro	Pro	Thr	Ala	Thr	Pro	
				460					465					470			
	acg	act	gcc	cgg	acg	agg	ccg	acc	aca	gac	gtg	agt	gca	ggt	gaa	aat	1494
15	Thr	Thr	Ala	Arg	Thr	Arg	Pro	Thr	Thr	Asp	Val	Ser	Ala	Gly	Glu	Asn	
			475					480					485				
	gga	ggt	ttc	ctc	ctc	ctg	cgg	ctg	agt	gtg	gct	tcc	ccg	gaa	gac	ctc	1542
	Gly	Gly	Phe	Leu	Leu	Leu	Arg	Leu	Ser	Val	Ala	Ser	Pro	Glu	Asp	Leu	
		490					495					500					
20	act	gac	ccc	aga	gtg	gca	gaa	agg	ctg	atg	cag	cag	ctc	cac	cgg	gaa	1590
	Thr	Asp	Pro	Arg	Val	Ala	Glu	Arg	Leu	Met	Gln	Gln	Leu	His	Arg	Glu	
	505					510					515					520	
	ctc	cac	gcc	cac	gcg	cct	cac	ttc	cag	gtc	tcc	tta	ctg	cgt	gtc	agg	1638
	Leu	His	Ala	His	Ala	Pro	His	Phe	Gln	Val	Ser	Leu	L u	Arg	Val	Arg	
25					525					530					535		

210/346

aga ggc taa cggacatcag ctgcagccag gcatgtcccg tatgccaaaa 1687
Arg Gly
gagggtgctg cccctagcct gggcccccac cgacagactg cagctgcgtt actgtgctga 1747
gaggtaccca gaaggttccc atgacgggca gcatgtccaa gcccctaacc ccagatgtgg 1807
caacaggacc ctcgctcaca tccaccggag tgtatgtatg gggaggggct tcacctgttc 1867
ccagaggtgt ccttggactc accttggcac atgttctgtg tttcagtaaa gagagacctg 1927

1934

<210> 89

atcaccc

10 <211> 1880

5

<212> DNA

<213> Homo sapiens

<220>

15 <221> CDS

<222> (71)..(379)

<400> 89

agagetgege egeegagget gageggteee ttetegetge ggeegeeag gtgeeegege 60

20 cegtggeget atg gag geg geg etg etg ggg etg tgt aac tgg age acg 109

Met Glu Ala Ala Leu Leu Gly Leu Cys Asn Trp Ser Thr

1 5 10

ctg ggc gtg tgc gcc gcg ctg aag ctg ccg cag atc tcc gct gtg cta 157 Leu Gly Val Cys Ala Ala Leu Lys Leu Pro Gln Ile Ser Ala Val Leu

25 15 20 25

	gcg	gcg	cgc	agc	gcg	cgg	ggc	ctc	agc	ctt	ccg	agt	tta	ctt	ctg	gag	205
	Ala	Ala	Arg	Ser	Ala	Arg	Gly	Leu	Ser	Leu	Pro	Ser	Leu	Leu	Leu	Glu	
	30					35					40					45	
	ctg	gca	gga	ttc	ctg	gtg	ttt	ctg	cgg	tac	cag	tgt	tac	tat	ggg	tat	253
5	Leu	Ala	Gly	Phe	Leu	Val	Phe	Leu	Arg	Tyr	Gln	Cys	Tyr	Tyr	Gly	Tyr	
					50					55					60		
	ccg	ccg	ctg	acc	tac	ctg	gag	tac	ccc	atc	ctc	atc	gcg	caa	gat	gtc	301
	Pro	Pro	Leu	Thr	Tyr	Leu	Glu	Tyr	Pro	Ile	Leu	Ile	Ala	Gln	Asp	Val	
				65					70					75			
10	atc	ctc	ctg	ctc	tgt	atc	ttt	cat	ttt	aac	ggg	aac	gtg	aag	cag	gcc	349
	Ile	Leu	Leu	Leu	Cys	Ile	Phe	His	Phe	Asn	Gly	Asn	Val	Lys	Gln	Ala	
			80					85					90				
	act	cct	tac	atc	gct	gtg	tat	cct	ttc	tga	atct	gago	cca q	gaag	tggga	aa	399
	Thr	Pro	Tyr	Ile	Ala	Val	Tyr	Pro	Phe								
15		95					100										
	cggg	ggato	gtt a	attt	gcgaa	at gt	agag	gacgo	g tgt	ttc	geeg	tgci	tggc	cag (gatgo	gtctcg	459
	atct	tect	gac d	ctcat	gato	ct go	cctgo	ctc	g gcd	ctcc	cagg	gtg	ctgga	aat 1	tacag	ggtgtg	519
	agco	cacc	gca (cctg	geete	ct tt	tgct	tttt	taa	acaa	atcg	acto	cgtga	act '	ttcto	cacatt	579
	ttat	tctg	caa a	acaga	atct	a to	gtact	ttca	a tca	agcgo	cggc	cagi	taagt	tt	gcaca	agctcc	639
20	agto	gtct	gtg (gaaga	acgag	ga ga	actca	aggaa	a cto	gtgag	gtgc	gct	gacti	tgg a	agcct	tctctt	699
	ccta	atac	ctg 1	tgcaa	acaaç	ga at	caato	cacaa	a cct	taat	tgac	cac	caat	gat '	tttad	caattc	759
	ttc	tacgi	ttt 1	tgtga	atcat	g ct	cggct	ttaa	a ata	atato	gggt	aaca	agtga	aca (gtact	ttcgct	819
	acc	ggaa	gac (cgcta	ataaa	ag go	ctgaa	atgat	gga	ataca	atta	ttc	cttca	aca	cagt	ggattt	879
	tga	gtaad	ctg a	aacca	aaago	ga aa	aaaga	agct	ctt	tgcl	taaa	ttaa	aggto	ctt	ttata	aaattt	939
25	agta	aaato	cag 1	tttai	taato	t tt	taaaq	gccaa	a ago	tttt	tttt	agad	cttga	aaa (gaaaq	gagcca	999

212/346

cttaaattct tgtttaaaaa taccaatttg cctcctcctt cctcacttcg ttaggttatg 1059 gtagtgctca gacatctgca gtgttgaggc cagtcactgt tggaagtcat ccaagaagcc 1119 cattttgagg ccattttgag ccttactctt aagttctcta tgaagaacta cattgatttq 1179 ttggctttca gaatctttta ggaaataaat cctctccagg acaaaaatga acatgaatgg 1239 agtggcattt tgttccaagt cagaggtggg cacctataat aaatgactag ggttcacttt 1299 ctgggactga tgtttaattg taacacagat acaacagggt ggccttgttg tgtataatac 1359 ggtattatac ctgcatgtgc tctagcaagg ataccaaggc aagcatacat gtagctggct 1419 tgagtttgta ccaaaacagt ccttcaactt tgcactgtgc cttaagtaat tactaacaaa 1479 aggtactagg attagetgca atetetaett tegatgagga aateecagta agetttetga 1539 ttcaagtaca atgctgccat tttttaaagg gccacaacta tagaattacc actgttggaa 1599 tttggtacaa aatatgtttt gtctattgaa aacatacacg gtaaatggtg ttgttaggta 1659 ggttctgtcc agttcttagg gacttttttc acattatagc atttttaccc taaacatgat 1719 gttgagatta ttatatactg tattttcttc taaattaacc ctaatgttta aaaactcact 1779 ttcccccttt aattgaaggc attgttttgt tagatgcagt aatgatgttt accagagatt 1839 attgtttcct atgcaaaata aattttcata ttttgaattc t 1880

<210> 90

<211> 2295

<212> DNA

20 <213> Homo sapiens

<220>

<221> CDS

<222> (55)..(1383)

5

10

15

<4	n	n	>	9	n

		_	-														
	aga	gcag	gcc	tggt	ggtg	ag ca	aggg	acgg	t gc	accg	gacg	gcg	ggat	cga	gcaa	atg	57
																Met	
																1	
5	ggt	ctg	gcc	atg	gag	cac	gga	ggg	tcc	tac	gct	cgg	gcg	ggg	ggc	agc	105
	Gly	Leu	Ala	Met	Glu	His	Gly	Gly	Ser	Tyr	Ala	Arg	Ala	Gly	Gly	Ser	
				5					10					15			
	tct	cgg	ggc	tgc	tgg	tat	tac	ctg	cgc	tac	ttc	ttc	ctc	ttc	gtc	tcc	153
	Ser	Arg	Gly	Cys	Trp	Tyr	Tyr	Leu	Arg	Tyr	Phe	Phe	Leu	Phe	Val	Ser	
10			20					25					30				
	ctc	atc	caa	ttc	ctc	atc	atc	ctg	ggg	ctc	gtg	ctc	ttc	atg	gtc	tat	201
	Leu	Ile	Gln	Phe	Leu	Ile	Ile	Leu	Gly	Leu	Val	Leu	Phe	Met	Val	Tyr	
		35					40					45					
	ggc	aac	gtg	cac	gtg	agc	aca	gag	tcc	aac	ctg	cag	gcc	acc	gag	cgc .	249
15	Gly	Asn	Val	His	Val	Ser	Thr	Glu	Ser	Asn	Leu	Gln	Ala	Thr	Glu	Arg	
	50					55					60					65	
	cga	gcc	gag	ggc	cta	tac	agt	cag	ctc	cta	ggg	ctc	acg	gcc	tcc	cag	297
	Arg	Ala	Glu	Gly	Leu	Tyr	Ser	Gln	Leu	Leu	Gly	Leu	Thr	Ala	Ser	Gln	
					70					75					80		
20	tcc	aac	ttg	acc	aag	gag	ctc	aac	ttc	acc	acc	cgc	gcc	aag	gat	gcc	345
	Seŗ	Asn	Leu	Thr	Lys	Glu	Leu	Asn	Phe	Thr	Thr	Arg	Ala	Lys	Asp	Ala	
				85					90	•				95			
	atc	atg	cag	atg	tgg	ctg	aat	gct	cgc	cgc	gac	ctg	gac	cgc	atc	aat	393
	Ile	Met	Gln	Met	Trp	Leu	Asn	Ala	Arg	Arg	Asp	Leu	Asp	Arg	Ile	Asn	
25			100					105					110				

	gcc	agc	ttc	cgc	cag	tgc	cag	ggt	gac	cgg	gtc	atc	tac	acg	aac	aat	441
	Ala	Ser	Phe	Arg	Gln	Cys	Gln	Gly	Asp	Arg	Val	Ile	Tyr	Thr	Asn	Asn	
		115				•	120					125					
	cag	agg	tac	atg	gct	gcc	atc	atc	ttg	agt	gag	aag	caa	tgc	aga	gat	489
5	Gln	Arg	Tyr	Met	Ala	Ala	Ile	Ile	Leu	Ser	Glu	Lys	Gln	Cys	Arg	Asp	
	130					135					140					145	
	caa	ttc	aag	gac	atg	aac	aag	agc	tgc	gat	gcc	ttg	ctc	ttc	atg	ctg	537
	Gln	Phe	Lys	Asp	Met	Asn	Lys	Ser	Cys	Asp	Ala	Leu	Leu	Phe	Met	Leu	
					150					155					160		
10	aat	cag	aag	gtg	aag	acg	ctg	gag	gtg	gag	ata	gcc	aag	gag	aag	acc	585
	Asn	Gln	Lys	Val	Lys	Thr	Leu	Glu	Val	Glu	Ile	Ala	Lys	Glu	Lys	Thr	
				165					170					175			
	att	tgc	act	aag	gat	aag	gaa	agc	gtg	ctg	ctg	aac	aaa	cgc	gtg	gcg	633
	Ile	Cys	Thr	Lys	Asp	Lys	Glu	Ser	Val	Leu	Leu	Asn	Lys	Arg	Val	Ala	
15			180					185					190				
	gag	gaa	cag	ctg	gtt	gaa	tgc	gtg	aaa	acc	cgg	gag	ctg	cag	cac	caa	681
	Glu	Glu	Gln	Leu	Val	Glu	Cys	Val	Lys	Thr	Arg	Glu	Leu	Gln	His	Gln	•
		195					200					205					
	gag	cgc	cag	ctg	gcc	aag	gag	caa	ctg	caa	aag	gtg	caa	gcc	ctc	tgc	729
20	Glu	Arg	Gln	Leu	Ala	Lys	Glu	Gln	Leu	Gln	Lys	Val	Gln	Ala	Leu	Cys	
	210					215					220					225	
	ctg	ccc	ctg	gac	aag	gac	aag	ttt	gag	atg	gac	ctt	cgt	aac	ctg	tgg	777
	Leu	Pro	Leu	Asp	Lys	Asp	Lys	Phe	Glu	Met	Asp	Leu	Arg	Asn	Leu	Trp	
					230					235					240		
25	agg	gac	tcc	att	atc	cca	cgc	agc	ctg	gac	aac	ctg	ggt	tac	aac	ctc	825

	Arg	Asp	Ser	Ile	Ile	Pro	Arg	Ser	Leu	Asp	Asn	Leu	Gly	Tyr	Asn	Leu	
				245					250					255			
	tac	cat	ccc	ctg	ggc	tcg	gaa	ttg	gcc	tcc	atc	cgc	aga	gcc	tgc	gac	873
	Tyr	His	Pro	Leu	Gly	Ser	Glu	Leu	Ala	Ser	Ile	Arg	Arg	Ala	Cys	Asp	
5			260					265					270				
	cac	atg	ccc	agc	ctc	atg	agc	tcc	aag	gtg	gag	gag	ctg	gcc	cgg	agc	921
	His	Met	Pro	Ser	Leu	Met	Ser	Ser	Lys	Val	Glu	Glu	Leu	Ala	Arg	Ser	
		275					280					285					
	ctc	cgg	gcg	gat	atc	gaa	cgc	gtg	gcc	cgc	gag	aac	tca	gac	ctc	caa	969
10	Leu	Arg	Ala	Asp	Ile	Glu	Arg	Val	Ala	Arg	Glu	Asn	Ser	Asp	Leu	Gln	
	290					295					300					305	
	cgc	cag	aag	ctg	gaa	gcc	cag	cag	ggc	ctg	cgg	gcc	agt	cag	gag	gcg	1017
	Arg	Gln	Lys	Leu	Glu	Ala	Gln	Gln	Gly	Lęu	Arg	Ala	Ser	Gln	Glu	Ala	
					310					315					320		
15	aaa	cag	aag	gtg	gag	aag	gag	gct	cag	gcc	cgg	gag	gcc	aag	ctc	caa	1065
	Lys	Gln	Lys	Val	Glu	Lys	Glu	Ala	Gln	Ala	Arg	Glu	Ala	Lys	Leu	Gln	
				325					330					335			
	gct	gaa	tgc	tcc	cgg	cag	acc	cag	cta	gcg	ctg	gag	gag	aag	gcg	gtg	1113
	Ala	Glu	Cys	Ser	Arg	Gln	Thr	Gln	Leu	Ala	Leu	Glu	Glu	Lys	Ala	Val	
20			340					345				•	350				
	ctg	cgg	aag	gaa	cga	gac	aac	ctg	gcc	aag	gag	ctg	gaa	gag	aag	aag	1161
	Leu	Arg	Lys	Glu	Arg	Asp	Asn	Leu	Ala	Lys	Glu	Leu	Glu	Glu	Lys	Lys	
		355					360					365					
	agg	gag	gcg	gag	cag	ctc	agg	atg	gag	ctg	gcc	ato	aga	aac	tca	gcc	1209
25	Arg	Glu	Ala	Glu	Gln	Leu	Arg	Met	Glu	Leu	Ala	lle	Arg	Asn	Ser	Ala	

	370		375	380		385
	ctg gac a	acc tgc atc	aag acc aag	tcg cag ccg	atg atg cca gtg	tca 1257
	Leu Asp T	Thr Cys Ile	Lys Thr Lys	Ser Gln Pro	Met Met Pro Val	Ser
		390		395	400	
5	agg ccc a	atg ggc cct	gtc ccc aac	ccc cag ccc	atc gac cca gct	agc 1305
	Arg Pro M	Met Gly Pro	Val Pro Asn	Pro Gln Pro	Ile Asp Pro Ala	Ser
		405		410	415	
	ctg gag g	gag ttc aag	agg aag atc	ctg gag tcc	cag agg ccc cct	gca 1353
	Leu Glu G	Glu Phe Lys	Arg Lys Ile	Leu Glu Ser	Gln Arg Pro Pro	Ala
10	4	420	425		430	
	ggc atc c	ect gta gec	cca tcc agt	ggc tga ggag	gctcca ggcctgag	ga 1403
	Gly Ile E	Pro Val Ala	Pro Ser Ser	Gly		
	435		440	•		
	ccaagggat	tg gcccgacto	g geggtttgeg	gaģgatgcag	ggatatgctc acag	cgcccg 1463
15	acacaacco	cc ctcccgccg	c ccccaaccac	ccagggccac	catcagacaa ctcc	ctgcat 1523
	gcaaaccc	ct agtacccto	t cacacccgca	cccgcgcctc	acgatecete acce	agagca 1583
	cacggccgc	cg gagatgacg	rt cacgcaagca	acggcgctga	cgtcacatat cacc	gtggtg 1643
	atggcgtca	ac gtggccato	rt agacgtcacg	aagagatata	gcgatggcgt cgtg	cagatg 1703
	cagcacgto	cg cacacagad	a tggggaactt	ggcatgacgt	cacaccgaga tgca	gcaacg 1763
20	acgtcacgg	gg ccatgtcga	c gtcacacata	ttaatgtcac	acagacgcgg cgat	ggcatc 1823
	acacagaco	gg tgatgatgt	c acacacagad	: acagtgacaa	cacacaccat gaca	acgaca 1883
	cctatagat	ta tggcaccaa	c atcacatgca	cgcatgccct	ttcacacaca cttt	ctaccc 1943
	aattctcac	cc tagtgtcad	g ttccccgad	cctggcacac	gggccaaggt accc	acagga 2003
	tcccatcc	cc tcccgcaca	g ccctgggcc	cagcacctcc	cctcctccag cttc	ctggcc 2063
25	tcccagcca	ac ttcctcaco	c ccagtgcctg	gacccggagg	tgagaacagg aagc	cattca 2123

217/346

cetecgetee ttgagegtga gtgttteeag gaeeeeeteg gggeeetgag eeggggtga 2183
gggteacetg ttgtegggag gggageeact cetteteece caacteeeag eeetgeetgt 2243
ggeeegttga aatgttggtg geacttaata aatattagta aateetteaa ag 2295

5 <210> 91

<211> 227

<212> PRT

<213> Homo sapiens

10 <400> 91

Met Ala Gly Val Gly Ala Gly Pro Leu Arg Ala Met Gly Arg Gln Ala

5 10 15

Leu Leu Leu Ala Leu Cys Ala Thr Gly Ala Gln Gly Leu Tyr Phe

20 25 30

15 His Ile Gly Glu Thr Glu Lys Arg Cys Phe Ile Glu Glu Ile Pro Asp

35 40 45

Glu Thr Met Val Ile Gly Asn Tyr Arg Thr Gln Met Trp Asp Lys Gln
50 55 60

Lys Glu Val Phe Leu Pro Ser Thr Pro Gly Leu Gly Met His Val Glu

20 65 70 75 80

Val Lys Asp Pro Asp Gly Lys Val Val Leu Ser Arg Gln Tyr Gly Ser

85 90 95

Glu Gly Arg Phe Thr Phe Thr Ser His Thr Pro Gly Asp His Gln Ile

100 105 110

25 Cys Leu His Ser Asn Ser Thr Arg Met Ala Leu Phe Ala Gly Gly Lys

218/346

Leu Arg Val His Leu Asp Ile Gln Val Gly Glu His Ala Asn Asn Tyr Pro Glu Ile Ala Ala Lys Asp Lys Leu Thr Glu Leu Gln Leu Arg Ala Arg Gln Leu Leu Asp Gln Val Glu Gln Ile Gln Lys Glu Gln Asp Tyr Gln Arg Tyr Arg Glu Glu Arg Phe Arg Leu Thr Ser Glu Ser Thr Asn Gln Arg Val Leu Trp Trp Ser Ile Ala Gln Thr Val Ile Leu Ile Leu G. Thr Gly Ile Trp Gln Met Arg His Leu Lys Ser Phe Phe Glu Ala Lys Lys Leu Val <210> 92 <211> 352 <212> PRT <213> Homo sapiens <400> 92 Met Glu Ser Gly Gly Arg Pro Ser Leu Cys Gln Phe Ile Leu Leu Gly Thr Thr Ser Val Val Thr Ala Ala Leu Tyr Ser Val Tyr Arg Gln Lys

				20					25					30		
	Ala	Arg	Val	Ser	Gln	Glu	Leu	Lys	Gly	Ala	Lys	Lys	۷al	His	Leu	Gl
			35					40				•	45			
	Glu	Asp	Leu	Lys	Ser	Ile	Leu	Ser	Glu	Ala	Pro	Gly	Lys	Cys	Val	Pro
5		50					55					60				
	Tyr	Ala	Val	Ile	Glu	Gly	Ala	Val	Arg	Ser	Val	Lys	Glu	Thr	Leu	Asr
	65					70					75					80
	Ser	Gln	Phe	Val	Glu	Asn	Cys	Lys	Gly	Val	Ile	Gln	Arg	Leu	Thr	Leu
					85					90					95	
10	Gln	Glu	His	Lys	Met	Val	Trp	Asn	Arg	Thr	Thr	His	Leu	Trp	Asn	Asp
				100					105					110		
	Cys	Ser	Lys	Ile	Ile	His	Gln	Arg	Thr	Asn	Thr	Val	Pro	Phe	Asp	Leu
			115			•		120					125			
	Val	Pro	His	Glu	Asp	Gly	Val	Asp	Val	Ala	Val	Arg	Val	Leu	Lys	Pro
15		130					135					140				
	Leu	Asp	Ser	Val	Asp	Leu	Gly	Leu	Glu	Thr	Val	Tyr	Glu	Ьуs	Phe	His
	145					150					155					160
	Pro	Ser	Ile	Gln	Ser	Phe	Thr	Asp	Val	Ile	Gly	His	Tyr	Ile	Ser	Gly
					165					170					175	
20	Glu	Arg	Pro	Lys	Gly	Ile	Gln	Glu	Thr	Glu	Glu	Met	Leu	Lys	Val	Gly
				180					185					190		
	Ala	Thr	Leu	Thr	Gly	Val	Gly	Glu	Leu	Val	Leu	Asp	Asn	Asn	Ser	Val
			195					200					205			
	Arg	Leu	Gln	Pro	Pro	Lys	Gln	Gly	Met	Gln	Tyr	Tyr	Leu	Ser	Ser	Gln
25		210					215					220				

220/346

Asp Phe Asp Ser Leu Leu Gln Arg Gln Glu Ser Ser Val Arg Leu Trp Lys Val Leu Ala Leu Val Phe Gly Phe Ala Thr Cys Ala Thr Leu Phe Phe Ile Leu Arg Lys Gln Tyr Leu Gln Arg Gln Glu Arg Leu Arg Leu Lys Gln Met Gln Glu Glu Phe Gln Glu His Glu Ala Gln Leu Leu Ser Arg Ala Lys Pro Glu Asp Arg Glu Ser Leu Lys Ser Ala Cys Val Val Cys Leu Ser Ser Phe Lys Ser Cys Val Phe Leu Glu Cys Gly His Val Cys Ser Cys Thr Glu Cys Tyr Arg Ala Leu Pro Glu Pro Lys Lys Cys Pro Ile Cys Arg Gln Ala Ile Thr Arg Val Ile Pro Leu Tyr Asn Ser

<210> 93

20 <211> 130

<212> PRT

<213> Homo sapiens

<400> 93

25 Met Ser Ser Ser Gly Gly Ala Pro Gly Ala Ser Ala Ser Ser Ala Pro

221/346

Pro Ala Gln Glu Glu Met Thr Trp Trp Tyr Arg Trp Leu Cys Arg Leu Ser Gly Val Leu Gly Ala Val Ser Cys Ala Ile Ser Gly Leu Phe Asn Cys Ile Thr Ile His Pro Leu Asn Ile Ala Ala Gly Val Trp Met Met Met Ala Val Val Pro Ile Val Ile Ser Leu Thr Leu Thr Thr Leu Leu Gly Asn Ala Ile Ala Phe Ala Thr Gly Val Leu Tyr Gly Leu Ser Ala Leu Gly Lys Lys Gly Asp Ala Ile Ser Tyr Ala Arg Ile Gln Gln Gln Arg Gln Gln Ala Asp Glu Glu Lys Leu Ala Glu Thr Leu Glu Gly Glu Leu <210> 94 <211> 330 <212> PRT <213> Homo sapiens <400> 94

Met Ser Arg Cys Ala Gln Ala Ala Glu Val Ala Ala Thr Val Pro Gly

. 25

	1				5					10					12	
	Ala	Gly	Val	Gly	Asn	Val	Gly	Leu	Arg	Pro	Pro	Met	Val	Pro	Arg	Gln
				20					25					30		
	Ala	Ser	Phe	Phe	Pro	Pro	Pro	Val	Pro	Asn	Pro	Phe	Val	Gln	Gln	Thr
5			35					40					45			
	Gln	Ile	Gly	Ser	Ala	Arg	Arg	Val	Gln	Ile	Val	Leu	Leu	Gly	Ile	Ile
		50					55					60				
	Leu	Leu	Pro	Ile	Arg	Val	Leu	Leu	Val	Ala	Leu	Ile	Leu	Leu	Leu	Ala
	65					70					75					80
10	Trp	Pro	Phe	Ala	Ala	Ile	Ser	Thr	Val	Cys	Cys	Pro	Glu	Lys	Leu	Thr
					85					90					95	
	His	Pro	Ile	Thr	Gly	Trp	Arg	Arg	Lys	Ile	Thr	Gln	Thr	Ala	Leu	Lys
				100					105					110		
	Phe	Leu	Gly	Arg	Ala	Met	Phe	Phe	Ser	Met	Gly	Phe	Ile	Val	Ala	Val
15			115					120					125			
	Lys	Gly	Lys	Ile	Ala	Ser	Pro	Leu	Glu	Ala	Pro	Val	Phe	Val	Ala	Ala
		130					135					140				
	Pro	His	Ser	Thr	Phe	Phe	Asp	Gly	Ile	Ala	Cys	Val	Val	Ala	Gly	
	145					150					155					160
20	Pro	Ser	Ile	Val			Asn	Glu	Asn			Val	Pro	Leu		Gly
					165					170					175	
	Arg	Leu	Leu			Val	. Gln	Pro			Val	Ser	Arg			Pro
				180					185			_	_	190		0 -
25	Asp	Ser	Arg		Asn	Thr	: Ile	Asn 200		ı Ile	Ile	. Lys	Arg		rnr	ser
/ ¬			1 45					700					ンロラ			

223/346

Gly Gly Glu Trp Pro Gln Ile Leu Val Phe Pro Glu Gly Thr Cys Thr Asn Arg Ser Cys Leu Ile Thr Phe Lys Pro Gly Ala Phe Ile Pro Gly Val Pro Val Gln Pro Val Leu Leu Arg Tyr Pro Asn Lys Leu Asp Thr Val Thr Trp Thr Trp Gln Gly Tyr Thr Phe Ile Gln Leu Cys Met Leu Thr Phe Cys Gln Leu Phe Thr Lys Val Glu Val Glu Met Phe Leu Phe Phe Trp Glu Gly Ser Ser Lys His Cys Leu Lys Ile Ser Ser Phe Phe Cys Ile Phe Ser Leu Arg Arg Phe Lys Arg Arg Ile Thr Gln Arg Thr Arg Thr Ala His Leu Leu Arg Leu Ser Phe <210> 95 <211> 350 <212> PRT <213> Homo sapiens <400> 95 Met Ala Leu Pro Pro Gly Pro Ala Ala Leu Arg His Thr Leu Leu Leu · 5

225/346

Ala Cys Leu Val Cys Arg Lys Glu Lys Lys Thr Lys Gly Pro Ser Arg His Pro Ser Leu Ile Ser Ser Asp Ser Asn Asn Leu Lys Leu Asn Asn Val Arg Leu Pro Arg Glu Asn Met Ser Leu Pro Ser Asn Leu Gln Leu Asn Asp Leu Thr Pro Asp Ser Arg Ala Val Lys Pro Ala Asp Arg Gln Met Ala Gln Asn Asn Ser Arg Pro Glu Leu Leu Asp Pro Glu Pro Gly Gly Leu Leu Thr Ser Gln Ala Cys Leu Leu His His Gly Thr Pro Ala Leu Thr Asn Pro Trp Leu Pro His Gln Glu Gly Ala Leu Pro Gly Gly Trp Ser Pro Gln Ala His Asn Ser Thr Val Trp Lys Leu

<210> 96

20 <211> 113

<212> PRT

<213> Homo sapiens

<400> 96

25 Met Asn Glu Thr Asn Lys Thr Leu Val Gly Pro Ser Glu Leu Pro Thr

	1				5					10					15	
	Ala	Ser	Ala	Val	Ala	Pro	Gly	Pro	Gly	Thr	Gly	Ala	Arg	Ala	Trp	Pro
				20					25					30		
	Val	Leu	Val	Gly	Phe	Val	Leu	Gly	Ala	Val	Val	Leu	Ser	Leu	Leu	Ile
5			35					40					45			
	Ala	Leu	Ala	Ala	Lys	Cys	His	Leu	Cys	Arg	Arg	Tyr	His	Ala	Ser	Tyr
		50					55					60				
	Arg	His	Arg	Pro	Leu	Pro	Glu	Thr	Gly	Arg	Gly	Gly	Arg	Pro	Gln	Val
	65					70					75					80
10	Ala	Glu	Asp	Glu	Asp	Asp	Asp	Gly	Phe	Ile	Glu	Asp	Asn	Tyr	Ile	Gln
					85					90					95	
	Pro	Gly	Thr	Gly	Glu	Leu	Gly	Thr	Glu	Gly	Ser	Arg	Asp	His	Phe	Ser
				100					105					110		
	Leu															
15																
	<210)> 97	7													
	<21	1> 18	39													
	<212	2> PI	RT													
20	<213	3> Ho	omo s	sapie	ens											
	<400	0> 9	7													
	Met	Ala	Leu	Leu	Ser	Arg	Pro	Ala	Leu	Thr	Leu	Leu	Leu	Leu	Leu	Met
	1				5					10					15	
25	Ala	Ala	Val	Val	Arg	Cys	Gln	Glu	Gln	Ala	Gln	Thr	Thr	Asp	Trp	Arg

227/346

				20					25					30		
	Ala	Thr	Leu	Lys	Thr	Ile	Arg	Asn	Gly	Val	His	Lys	Ile	Asp	Thr	Tyr
			35					40					45			
	Leu	Asn	Ala	Ala	Leu	Asp	Leu	Leu	Gly	Gly	Glu	Asp	Gly	Leu	Cys	Gln
5		50					55					60				
	Tyr	Lys	Суѕ	Ser	Asp	Gly	Ser	Lys	Pro	Phe	Pro	Arg	Tyr	Gly	Tyr	Lys
	65					70					75					80
	Pro	Ser	Pro	Pro	Asn	Gly	Cys	Gly	Ser	Pro	Leu	Phe	Gly	Val	His	Leu
					85					90					95	
10	Asn	Ile	Gly	Ile	Pro	Ser	Leu	Thr	Lys	Cys	Cys	Asn	Gln	His	Asp	Arg
				100					105					110		
	Cys	Tyr	Glu	Thr	Cys	Gly	Lys	Ser	Lys	Asn	Asp	Cys	Asp	Glu	Glu	Phe
			115					120					125			
	Gln	Tyr	Cys	Leu	Ser	Lys	Ile	Cys	Arg	Asp	Val	Gln	Lys	Thr	Leu	Gly
15		130					135					140				
	Leu	Thr	Gln	His	Val	Gln	Ala	Cys	Glu	Thr	Thr	Val	Glu	Leu	Leu	Phe
	145					150					155					160
	Asp	Ser	Val	Ile	His	Leu	Gly	Cys	Lys	Pro	Tyr	Leu	Asp	Ser	Gln	Arg
					165					170					175	
20	Ala	Ala	Cys	Arg	Cys	His	Tyr	Glu	Glu	Lys	Thr	Asp	Leu			
				180					185							

<210> 98

<211> 277

<212> PRT

25

228/346

<213> Homo sapiens

	_		~ ~
<4	Ð	(1)	98

	1400	0/ 5														
	Met	Ser	Pro	Leu	Leu	Gly	Leu	Arg	Ser	Glu	Leu	Gln	Asp	Thr	Суѕ	Thr
5	1				5					10					15	
	Ser	Leu	Gly	Leu	Met	Leu	Ser	Val	Val	Leu	Leu	Met	Gly	Leu	Ala	Arg
				20					25					30		
	Val	Val	Ala	Arg	Gln	Gln	Leu	His	Arg	Pro	Val	Ala	His	Ala	Phe	Val
			35					40					45			
10	Leu	Glu	Phe	Leu	Ala	Thr	Phe	Gln	Leu	Cys	Суѕ	Суѕ	Thr	His	Glu	Leu
		50					55					60				
	Gln	Leu	Leu	Ser	Glu	Gln	His	Pro	Ala	His	Pro	Thr	Trp	Thr	Leu	Thr
	65					70					75					80
	Leu	Val	Tyr	Phe	Phe	Ser	Leu	Val	His	Gly	Leu	Thr	Leu	Val	Gly	Thr
15					85					90					95	
	Ser	Ser	Asn	Pro	Cys	Gly	Val	Met	Met	Gln	Met	Met	Leu	Gly	Gly	Met
				100					105					110		
	Ser	Pro	Glu	Thr	Gly	Ala	Val	Arg	Leu	Leu	Ala	Gln	Leu	Val	Ser	Ala
		*	115					120					125			
20	Leu	Cys	Ser	Arg	Tyr	Cys	Thr	Ser	Ala	Leu	Trp	Ser	Leu	Gly	Leu	Thr
		130					135					140				
	Gln	Tyr	His	Val	Ser	Glu	Arg	Ser	Phe	Ala	Cys	Lys	Asn	Pro	Ile	Arg
	145					150					155					160
	Val	Asp	Leu	Leu	Lys	Ala	Val	Ile	Thr	Glu	Ala	Val	Cys	Ser	Phe	Leu
25					165					170					175	

229/346

.-**@**

	Phe	His	Ser	Ala	Leu	Leu	His	Phe	Gln	Glu	Val	Arg	Thr	Lys	Leu	Arg
				180					185					190		
	Ile	His	Leu	Leu	Ala	Ala	Leu	Ile	Thr	Phe	Leu	Val	Tyr	Ala	Gly	Gly
			195					200					205			
5	Ser	Leu	Thr	Gly	Ala	Val	Phe	Asn	Pro	Ala	Leu	Ala	Leu	Ser	Leu	His
		210					215					220				
	Phe	Met	Cys	Phe	Asp	Glu	Ala	Phe	Pro	Gln	Phe	Phe	Ile	Val	Tyr	Trp
	225					230					235					240
	Leu	Ala	Pro	Ser	Leu	Gly	Ile	Leu	Leu	Met	Ile	Leu	Met	Phe	Ser	Phe
10					245					250					255	
	Phe	His	Gly	Cys	Ile	Thr	Thr	Ile	Gln	Leu	Ile	Lys	Arg	Asn	Asn	Суз
				260					265					270		
	Ser	Lys	Asp	Ser	Asp											
			275													
15						•										
	<210	> 99														
	<211	.> 27	74													
	<212	!> PF	RT													
	<213	> Ho	omo s	apie	ens											
20																
	<400	> 99)													
	Met	Gly	Lys	Ser	Leu	Ser	His	Leu	Pro	Leu	His	Ser	Ser	Lys	Glu	Asp
	1				5					10					15	
	Ala	Tyr	Asp	Gly	Val	Thr	Ser	Glu	Asn	Met	Arg	Asn	Gly	Leu	Val	Asn
25				20					25					30		

	Ser	Glu	Val	His	Àsn	Glu	Asp	Gly	Arg	Asn	Gly	Asp	Val	Ser	Gln	Phe
			35					40					45			
	Pro	Tyr	Val	Glu	Phe	Thr	Gly	Arg	Asp	Ser	Val	Thr	Cys	Pro	Thr	Cys
	1	50					55			-		60				
5	Gln	Gly	Thr	Gly	Arg	Ile	Pro	Arg	Gly	Gln	Glu	Asn	Gln	Leu	Val	Ala
	65					70					75					80
	Leu	Ile	Pro	Tyr	Ser	Asp	Gln	Arg	Leu	Arg	Pro	Arg	Arg	Thr	Lys	Leu
					85					90					95	
	Tyr	Val	Met	Ala	Ser	Val	Phe	Val	Cys	Leu	Leu	Leu	Ser	Gly	Leu	Ala
10				100					105					110		
	Val	Phe	Phe	Leu	Phe	Pro	Arg	Ser	Ile	Asp	Val	Lys	Tyr	Ile	Gly	Val
			115					120					125			
	Lys	Ser	Ala	Tyr	Val	Ser	Tyr	Asp	Val	Gln	Lys	Arg	Thr	Ile	Tyr	Leu
		130					135					140				
15	Asn	Ile	Thr	Asn	Thr	Leu	Asn	Ile	Thr	Asn	Asn	Asn	Tyr	Tyr	Ser	Val
	145					150					155					160
	Glu	Val	Glu	Asn	Ile	Thr	Ala	Gln	Val ·	Gln	Phe	Ser	Lys	Thr	Val	Ile
					165					170					175	
	Gly	Lys	Ala	Arg	Leu	Asn	Asn	Ile	Thr	Ile	Ile	Gly	Pro	Leu	Asp	Met
20				180					185					190		
	Lys	Gln	Ile	Asp	Tyr	Thr	Val	Pro	Thr	Val	Ile	Ala	Glu	Glu	Met	Ser
			195					200					205			
	Tyr		Tyr	Asp	Phe	Cys	Thr	Leu	Ile	Ser	Ile	Lys	Val	His	Asn	Ile
		210					215					220				
25	Val	Leu	Met	Met	Gln	Val	Thr	Val	Thr	Thr	Thr	Tvr	Phe	Gly	His	Ser

231/346

Glu Gln Ile Ser Gln Glu Arg Tyr Gln Tyr Val Asp Cys Gly Arg Asn Thr Thr Tyr Gln Leu Gly Gln Ser Glu Tyr Leu Asn Val Leu Gln Pro Gln Gln <210> 100 <211> 390 <212> PRT <213> Homo sapiens <400> 100 Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Leu Arg Phe Leu Phe Leu Gly Leu Ser Ala Leu Ala Pro Pro Ser Arg Ala Gln Leu Gln Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu Gly Gly Glu Val Val Leu Pro Ala Trp Tyr Thr Leu His Gly Glu Val Ser Ser Ser Gln Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe Lys Gln Lys Glu Lys Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly Val Thr Thr Ser Lys Pro

					85					90					95	
	Gly	Val	Ser	Leu	Val	Tyr	Ser	Met	Pro	Ser	Arg	Asn	Leu	Ser	Leu	Arg
				100					105					110		
	Leu	Glu	Gly	Leu	Gln	Glu	Lys	Asp	Ser	Gly	Pro	Tyr	Ser	Cys	Ser	Val
5			115					120					125			
	Asn	Val	Gln	Asp	Lys	Gln	Gly	Lys	Ser	Arg	Gly	His	Ser	Ile	Lys	Thr
		130					135					140				
	Leu	Glu	Leu	Asn	Val	Leu	Val	Pro	Pro	Ala	Pro	Pro	Ser	Cys	Arg	Leu
	145					150					155					160
LO	Gln	Gly	Val	Pro	His	Val	Gly	Ala	Asn	Val	Thr	Leu	Ser	Cys	Gln	Ser
					165					170					175	
	Pro	Arg	Ser	Lys	Pro	Ala	۷al	Gln	Tyr	Gln	Trp	Asp	Arg	Gln	Leu	Pro
				180					185					190		
	Ser	Phe	Gln	Thr	Phe	Phe	Ala	Pro	Ala	Leu	Asp	Val	Ile		Glv	Ser
L5			195					200			-		205	•	-	
	Leu	Ser	Leu	Thr	Asn	Leu	Ser	Ser	Ser	Met	Ala	Glv		Tvr	Val	Cvs
		210					215					220		-3		-2-
	Lvs		His	Asn	Glu	Val		Thr	Ala	Gln	Cvs		Val	Thr	T.e.11	Glu
	225					230	023		1114	OIII	235	non	Val	1111	Deu	240
20		Sor	ሞኮድ	G) w	Pro	Gly	מות	71-	Wal	ซอโ		C1	71-	***	77-1	
-0	Val	DCI	1111	GIĀ		GLY	ма	ALA	val		ATG	GIY	ATa	Val		GTÀ
	Mla sa	7	*7- 7	01	245	~ 1	_			250	_	•	_	_	255	
	Tnr	Leu	val		Leu	Gly	Leu	Leu		Gly	Leu	Val	Leu		Tyr	His
				260					265					270		
	Cys	Arg		Lys	Ala	Leu	Glu	Glu	Pro	.Ala	Asn	Asp	Ile	Lys	Glu	Asp
25			275					280					285			

233/346

Ala Ile Ala Pro Arg Thr Leu Pro Trp Pro Lys Ser Ser Asp Thr Ile 290 295 300 Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg Ala Leu Arg 305 310 315 320 5 Pro Pro His Gly Pro Pro Arg Pro Gly Ala Leu Thr Pro Thr Pro Ser 325 330 335 Leu Ser Ser Gln Ala Leu Pro Ser Pro Arg Leu Pro Thr Thr Asp Gly 340 345 350 Ala His Pro Gln Pro Ile Ser Pro Ile Pro Gly Gly Val Ser Ser Ser 10 355 360 365 Gly Leu Ser Arg Met Gly Ala Val Pro Val Met Val Pro Ala Gln Ser 370 375 380 Gln Ala Gly Ser Leu Val 385 390 15 <210> 101 <211> 684 <212> DNA <213> Homo sapiens 20 <400> 101 atggcaggtg tcggggctgg gcctctgcgg gcgatggggc ggcaggccct gctgcttctc 60 gcgctgtgcg ccacaggcgc ccaggggctc tacttccaca tcggcgagac cgagaagcgc 120 tgtttcatcg aggaaatccc cgacgagacc atggtcatcg gcaactatcg tacccagatg 180 25

tgggataagc agaaggaggt cttcctgccc tcgacccctg gcctgggcat gcacgtggaa 240

234/346

gtgaaggace ccgacggcaa ggtggtgctg tcccggcagt acggctcgga gggccgcttc 300
acgttcacct cccacacgce cggtgaccat caaatctgte tgcactccaa ttctaccagg 360
atggctctct tcgctggtgg caaactgcgg gtgcatctcg acatccaggt tggggagcat 420
gccaacaact accctgagat tgctgcaaaa gataagctga cggagctaca gctccgcgcc 480
cgccagttgc ttgatcaggt ggaacagatt cagaaggagc aggattacca aaggtatcgt 540
gaagagcgct tccgactgac gagcgagagc accaaccaga gggtcctatg gtggtccatt 600
gctcagactg tcatcctcat cctcactggc atctggcaga tgcgtcacct caagagcttc 660
tttgaggcca agaagctggt gtag 684

10 <210> 102

5

<211> 1059

<212> DNA

<213> Homo sapiens

15 <400> 102

20

25

atggagageg gagggeggee etegetgtee cagtteatee teetgggeae cacetetgtg 60 gteacegeeg ecetgtactee egtgtacegg cagaaggeee gggteteeca agageteaag 120 ggagetaaaa aagtteattt gggtgaagat ttaaagagta ttettteaga ageteeagga 180 aaatgegtge ettatgetgt tatagaagga getgtgeggt etgttaaaga aacgettaace 240 agecagtttg tggaaaactg caagggggta atteagegge tgacaettea ggageacaag 300 atggtgtgga ategaaceae ecacetttgg aatgattget caaagateat teateagagg 360 accaacacag tgeeetttga eetggtgeee eaegaggatg gegtggatgt ggetgtgega 420 gtgetgaage ecetggactee agtggatetg ggetagaga etgtgtatga gaagtteeae 480 ecetegatte agteetteae egatgetaaa gtgggggeea eeeteacagg ggttggegaa 600 ggeatecaag agaeegagga gatgetgaag gtgggggeea eeeteacagg ggttggegaa 600

235/346

ctggtcctgg acaacaacte tgtccgcctg cagccgcca aacaaggcat gcagtactat 660 ctaagcagcc aggacttcga cagcctgctg cagaggcagg agtcgagcgt caggctctgg 720 aaggtgctgg cgctggtttt tggctttgcc acatgtgcca ccctcttctt cattctccgg 780 aagcagtatc tgcagcggca ggagcgcctg cgcctcaagc agatgcagga ggagttccag 840 gagcatgagg cccagctgct gagccgagcc aagcctgagg acagggagag tctgaagagc 900 gcctgtgtag tgtgtctgag cagcttcaag tcctgcgtct ttctggagtg tgggcacgtt 960 tgttcctgca ccgagtgcta ccgcgccttg ccagagccca agaagtgccc tatctgcaga 1020 caggcgatca cccgggtgat acccctgtac aacagctaa

10 <210> 103

5

<211> 393

<212> DNA

<213> Homo sapiens

15 <400> 103

20

atgageaget caggtggge geeeggggeg teegeeaget etgegeegee egegeaggaa 60 gagggeatga egtggtgta eegetggetg tgtegeetgt etggggtget ggggggagte 120 teettgegea teetetggeet etteaactge ateaceatee accetetgaa eategeggee 180 ggegtgtgga tgatgatgge ggtegtteee ategteatea geetgaeeet gaceaegetg 240 etgggeaaeg eeategeett tgetaegggg gtgetgtaeg gaetetetge tetgggeaaa 300 aagggegatg egateteeta tgeeaggate eageageaga ggeageagge ggatgaggag 360 aagetegegg agaeeetgga gggggagetg tga

<210> 104

25 <211> 993

236/346

<212> DNA

<213> Homo sapiens

<400> 104

5 atgageeggt gegeecagge ggeggaagtg geggeeacag tgeeaggtge eggegteggg 60 aacgtggggc tgcggccgcc catggtgccc cgtcaggcgt ccttcttccc gccgccggtg 120 ccgaacccct tcgtgcagca gacgcagatc ggctccgcga ggcgggtcca gattgtcctt 180 cttgggatta tcttgcttcc aattcgtgtc ttattggttg cgttaatttt attacttgca 240 tggccatttg ctgcaatttc aacagtatgc tgtcctgaaa agctgaccca cccaataact 300 10 ggttggagga ggaaaattac tcaaacagct ttgaaatttc tgggtcgtgc tatgttcttt 360 tcaatgggat ttatagttgc tgtaaaagga aagattgcaa gtcctttgga agcaccagtt 420 tttgttgctg cccctcattc aacattcttt gatggaattg cctgtgttgt agctgggtta 480 ccttctatag tatctcgaaa tgagaatgca caagtccctc tgattggcag actgttacgg 540 gctgtgcaac cagttttggt gtcccgtgta gatccggatt cccgaaaaaa cacaataaat 600 15 gaaataataa agcgaacaac atcaggagga gaatggcccc agatactagt tttcccagaa 660 ggtacttgta ctaatcgttc ctgtttgatt acttttaaac caggagcctt cattccagga 720 gttccagtgc agccagtcct cctcagatac ccaaacaagc tggatactgt gacctggaca 780 tggcaaggat atacattcat tcagctttqt atqcttactt tctqccaqct cttcacaaaq 840 gtagaagttg agatgtttct gttcttttgg gaaggaagca gcaagcattg tttaaaaata 900 20 tetteettet tittgeattit tietettega agattiaaaa gaagaattae acaaagaact 960 agaactgcac atttgttaag attgtccttt taa 993

<210> 105

<211> 1053

25 <212> DNA

237/346

<213> Homo sapiens

<400> 105

atggcgctgc ctccaggccc agccgccctc cggcacacac tgctgctcct gccagccctt 60 ctgagctcag gtgggcctgg cacccccaga ttggcctggt atctggatgg acagctgcag 120 5 accttcactg tcactgccca tcgggcccag catgagctca actgctctct gcaggacccc 240 agaagtggcc gatcagccaa cgcctctgtc atccttaatg tgcaattcaa gccagagatt 300 gcccaagtcg gcgccaagta ccaggaagct cagggcccag gcctcctggt tgtcctgttt 360 gccctggtgc gtgccaaccc gccggccaat gtcacctgga tcgaccagga tgggccagtg 420 10 actgtcaaca cctctgactt cctggtgctg gatgcgcaga actacccctg gctcaccaac 480 cacacggtgc agctgcagct ccgcagcctg gcacacaacc tctcggtggt ggccaccaat 540 gacgtgggtg teaceagtge gtegetteea geeceaggge ttetggetae eegggtggaa 600 gtgccactgc tgggcattgt tgtggctgct gggcttgcac tgggcaccct cgtggggttc 660 agcaccttgg tggcctgcct ggtctgcaga aaagagaaga aaaccaaagg cccctcccgg 720 15 cacccatctc tgatatcaag tgactccaac aacctaaaac tcaacaacgt gcgcctgcca 780 egggagaaca tgteecteec gteeaacett cageteaatg aceteactec agatteeaga 840 gcagtgaaac cagcagaccg gcagatggct cagaacaaca gccggccaga gcttctggac 900 ccqqaqcccq qcqqcctcct caccagccaa gcatgtctcc tccaccacgg gaccccagcc 960 ctgaccaacc catggttgcc tcatcagcag gaaggtgccc ttcctggagg atggtcgcca 1020 20 1053 caggcacata attcaacagt gtggaagctt tag

<210> 106

<211> 342

25 <212> DNA

238/346

<213> Homo sapiens

<400> 106

atgaatgaga caaacaaaac acttgttggg ccttcggagc tccccacagc gtctgctgtg 60 gcccctggcc caggcactgg ggctcgggca tggcctgtgc tggtaggatt tgtgctgggg 120 gctgtggtcc tctcgctcct cattgcactt gctgccaaat gccacctctg ccgccgatac 180 catgccagct accggcaccg cccactgcct gagacaggaa ggggaggccg cccacaggtg 240 gctgaagatg aggatgatga tggcttcatc gaggacaatt acattcagcc tgggactggc 300 gagctggga cagagggtag cagggaccac ttctccctct ga 342

10

5

<210> 107

<211> 570

<212> DNA

<213> Homo sapiens

15

20

25

<400> 107

atggccctgc tetegegece egegeteace etectgetec teeteatgge egetgttgte 60
aggtgccagg agcaggecca gaccacegae tggagageca ecetgaagae cateeggaae 120
ggcgttcata agatagacae gtacctgaae geegeettgg accteetggg aggegaggae 180
ggtetetgec agtataaatg cagtgacgga tetaageett teecacgtta tggttataaa 240
ecetececae egaatggatg tggeteteca etgtttggtg tteatettaa eattggtate 300
eetteeetga caaagtgttg caaccaacae gacaggtget atgaaacetg tggeaaaage 360
aagaatgaet gtgatgaaga attecagtat tgeeteteca agatetgeeg agatgtacag 420
aaaacactag gactaactea geatgtteag geatgtgaaa caacagtgga getettgttt 480
gacagtgtta tacatttagg ttgtaaacca tatetggaca gecaacgage egeatgeagg 540

239/346

tgtcattatg aagaaaaac tgatctttaa 570

<210> 108

<211> 834

5 <212> DNA

10

15

20

<213> Homo sapiens

<400> 108

atgetgeege tgetgggget ceggteegag etgeaggaca cetgeacete getgggaetg 60
atgetgtegg tggtgetget catggggetg gecegegtag tegeceggea geagetgeae 120
aggeeggtgg cecaegeett egteetggag tttetageea cetteeaget etgetgetge 180
acceaegage tgeaactget gagegaacag caceeegege acceeacetg gaegetgaeg 240
etegtetaet tetteteget tgtgeatgge etgaetetgg tgggeaegte cageaaceeg 300
tgeggegtga tgatgeagat gatgetgggg ggeatgteee eegagaeggg tgeggtgagg 360
etattggete agetggttag tgeeetgtge ageaggtaet geacaagege ettgtggage 420
ttgggtetga eccagtatea egteagegag aggagetteg ettgeaagaa teceateega 480
gtegaettge teaaageggt eateacagag geegtetget eettetett eeacageget 540
etgetgeaet teeaggaagt eegaaceaag ettegtatee acetgetgge tgeaeteate 600
acettttgg tetatgeagg aggaagteta acaggagetg tatttaatee agetttggea 660
etttegetae attteatgtg ttttgatgaa geatteeete agtttttat agtataetgg 720
etggeteett etttaggtat attgttgatg attttgatgt teagetttt ceatggetge 780
ataacaacea tacaattaat aaaaaggaat aactgtteea aagaeteaga etaa 834

<210> 109

25 <211> 825

240/346

<212> DNA

<213> Homo sapiens

<400> 109

5 atgggaaagt ctctttctca tttgcctttg cattcaagca aagaagatgc ttatgatgga 60 gtcacatctg aaaacatgag gaatggactg gttaatagtg aagtccataa tgaagatgga 120 agaaatggag atgtctctca gtttccatat gtggaattta caggaagaga tagtgtcacc 180 tgccctactt gtcagggaac aggaagaatt cctagggggc aagaaaacca actggtggca 240 ttgattccat atagtgatca gagattaagg ccaagaagaa caaagctgta tgtgatggct 300 10 tetgtgtttg tetgtetaet cetttetgga ttggetgtgt tttteetttt eeetegetet 360 atcgacgtga aatacattgg tgtaaaatca gcctatgtca gttatgatgt tcagaagcgt 420 acaatttatt taaatatcac aaacacacta aatataacaa acaataacta ttactctgtc 480 gaagttgaaa acatcactgc ccaagttcaa ttttcaaaaa cagttattgg aaaggcacgc 540 ttaaacaaca taaccattat tggtccactt gatatgaaac aaattgatta cacagtacct 600 15 accepttatag cagaggaaat gagttatatg tatgatttet gtactetgat atccatcaaa 660 gtgcataaca tagtactcat gatgcaagtt actgtgacaa caacatactt tggccactct 720 gaacagatat cccaggagag gtatcagtat gtcgactgtg gaagaaacac aacttatcag 780 ttggggcagt ctgaatattt aaatgtactt cagccacaac agtaa 825

20 <210> 110

<211> 1173

<212> DNA

<213> Homo sapiens

25 <400> 110

241/346

atgatttccc	teceggggee	cctggtgacc	aacttgctgc	ggtttttgtt	cctggggctg	60
agtgccctcg	cgccccctc	gcgggcccag	ctgcaactgc	acttgcccgc	caaccggttg	120
caggcggtgg	agggagggga	agtggtgctt	ccagcgtggt	acaccttgca	cggggaggtg	180
tcttcatccc	agccatggga	ggtgcccttt	gtgatgtggt	tcttcaaaca	gaaagaaaag	240
gaggatcagg	tgttgtccta	catcaatggg	gtcacaacaa	gcaaacctgg	agtatccttg	300
gtctactcca	tgccctcccg	gaacctgtcc	ctgcggctgg	agggtctcca	ggagaaagac	360
tctggcccct	acagctgctc	cgtgaatgtg	caagacaaac	aaggcaaatc	taggggccac	420
agcatcaaaa	ccttagaact	caatgtactg	gttcctccag	ctcctccatc	ctgccgtctc	480
cagggtgtgc	cccatgtggg	ggcaaacgtg	accctgagct	gccagtctcc	aaggagtaag	540
cccgctgtcc	aataccagtg	ggatcggcag	cttccatcct	tccagacttt	ctttgcacca	600
gcattagatg	tcatccgtgg	gtctttaagc	ctcaccaacc	tttcgtcttc	catggctgga	660
gtctatgtct	gcaaggccca	caatgaggtg	ggcactgccc	aatgtaatgt	gacgctggaa	720
gtgagcacag	ggcctggagc	tgcagtggtt	gctggagctg	ttgtgggtac	cctggttgga	780
ctggggttgc	tggctgggct	ggtcctcttg	taccactgcc	ggggcaaggc	cctggaggag	840
ccagccaatg	atatcaagga	ggatgccatt	gctccccgga	ccctgccctg	gcccaagagc	900
tcagacacaa	tctccaagaa	tgggaccctt	tcctctgtca	cctccgcacg	agccctccgg	960
ccaccccatg	gccctcccag	gcctggtgca	ttgaccccca	cgcccagtct	ctccagccag	1020
gccctgccct	caccaagact	gcccacgaca	gatggggccc	accctcaacc	aatatcccc	1080
atccctggtg	gggtttcttc	ctctggcttg	agccgcatgg	gtgctgtgcc	tgtgatggtg	1140
cctgcccaga	gtcaagctgg	ctctctggta	tga			1173

0

<210> 111

5

10

15

20

<211> 1894

<212> DNA

25 <213> Homo sapiens

	<22	0>															
	<22	1> C	DS														
	<22	2> (36).	. (71	9)												
5																	
	<400	0> 1:	1,1														
	gcaa	aatg	tgc (gcag	geget	tt a	gggg	ctga	g gc	gcg a	atg	gca	ggt	gtc	ggg	gct	53
										1	Met .	Ala	Gly	Val (Gly .	Ala	
											1				5		
10	ggg	cct	ctg	cgg	gcg	atg	ggg	cgg	cag	gcc	ctg	ctg	ctt	ctc	gcg	ctg	101
	Gly	Pro	Leu	Arg	Ala	Met	Gly	Arg	Gln	Ala	Leu	Leu	Leu	Leu	Ala	Leu	
				10					15					20			
	tgc	gcc	aca	ggc	gcc	cag	ggg	ctc	tac	ttc	cac	atc	ggc	gag	acc	gag	149
-	Cys	Ala	Thr	Gly	Ala	Gln	Gly	Leu	Tyr	Phe	His	Ile	Gly	Glu	Thr	Glu	
15	•		25					30					35				
	aag	cgc	tgt	ttc	atc	gag	gaa	atc	ccc	gac	gag	acc	atg	gtc	atc	ggc	197
	Lys	Arg	Cys	Phe	Ile	Glu	Glu	Ile	Pro	Asp	Glu	Thr	Met	Val	Ile	Gly	
		40					45					50					
	aac	tat	cgt	acc	cag	atg	tgg	gat	aag	cag	aag	gag	gtc	ttc	ctg	ccc	245
20	Asn	Tyr	Arg	Thr	Gln	Met	Trp	Asp	Lys	Gln	Lys	Glu	Val	Phe	Leu	Pro	
	55					60					65					70	
	tcg	acc	cct	ggc	ctg	ggc	atg	cac	gtg	gaa	gtg	aag	gac	ccc	gac	ggc	293
	Ser	Thr	Pro	Gly	Leu	Gly	Met	His	Val	Glu	Val	Lys	Asp	Pro	Asp	Gly	
					75					80					85		
25	aag	gtg	gtg	ctg	tcc	cgg	cag	tac	ggc	tcg	gag	ggc	cgc	ttc	acg	ttc	341

	Lys Val Val	l Leu Ser Arg	Gln Tyr Gl	y Ser Glu Gly	Arg Phe T	nr Phe
		90	9	5	100	
	acc tcc cad	c acg ccc ggt	gac cat ca	a atc tgt ctg	cac tcc as	at tct 389
	Thr Ser His	s Thr Pro Gly	Asp His Gl	n Ile Cys Leu	His Ser As	sn Ser
5	105	5	110		115	
	acc agg ato	g gct ctc ttc	gct ggt gg	c aaa ctg cgg	gtg cat c	tc gac 437
	Thr Arg Met	t Ala Leu Phe	Ala Gly Gl	y Lys Leu Arg	Val His Le	eu Asp
	120		125	130		
	atc cag gtt	t ggg gag cat	gcc aac aa	c tac cct gag	att gct g	ca aaa 485
10	Ile Gln Val	l Gly Glu His	Ala Asn As	n Tyr Pro Glu	Ile Ala Al	la Lys
	135	140		145		150
	gat aag cto	g acg gag cta	cag ctc cg	c gcc cgc cag	ttg ctt ga	at cag 533
	Asp Lys Leu	ı Thr Glu Leu	Gln Leu Ar	g Ala Arg Gln	Leu Leu As	sp Gln
		155		160	16	55
15	gtg gaa cag	g att cag aag	gag cag ga	t tac caa agg	tat cgt ga	aa gag 581
	Val Glu Glr	n Ile Gln Lys	Glu Gln As	p Tyr Gln Arg	Tyr Arg G	lu Glu
		170	17	5	180	
	cgc ttc cga	a ctg acg agc	gag agc ac	c aac cag agg	gtc cta to	gg tgg 629
	Arg Phe Arg	g Leu Thr Ser	Glu Ser Th	r Asn Gln Arg	Val Leu Tr	p Trp
20	185	5	190		195	
	tcc att gct	cag act gtc	atc ctc at	c ctc act ggc	atc tgg ca	ng atg 677
	Ser Ile Ala	a Gln Thr Val	Ile Leu Il	e Leu Thr Gly	Ile Trp Gl	n Met
	200		205	210		
	cgt cac ctc	aag agc ttc	ttt gag gc	c aag aag ctg	gtg tag	719
25	Arg His Lev	Lys Ser Phe	Phe Glu Ala	a Lys Lys Leu	Val	

244/346

215 220 225

tgccctcttt gtatgaccct tcctttttac ctcatttatt tggtactttc cccacacagt 779 cctttatcca cctggatttt tagggaaaaa aatgaaaaag aataagtcac attggttcca 839 tggccacaaa ccattcagat cagccacttg ctgaccctgg ttcttaagga cacatgacat 899 tagtccaatc tttcaaaatc ttgtcttagg gcttgtgagg aatcagaact aacccaggac 959 tcaqtcctqc ttcttttqcc tcqaqtqatt ttcctctqtt tttcactaaa taaqcaaatq 1019 aaaactctct ccattacctt ctgctttctc tttgtccact tacgcagtag gtgactggca 1079 tgtgccacag agcaggccct gcctcactgt ctgctggtca gttctgggtt cacttaatgg 1139 ctttgtgaat gtaaataagg ggcaggtctt ggccctagag gattgagatg tttttctaaa 1199 tettagaact attitiggat aaattatata titteettee tagtagaagt gitaetgeet 1259 ttttttttt ttttttgag ttttgctctt gtcgcccagg ctggagtgca atggcgtgat 1379 ctcageteac tggcaacate tgectecegg gttcaaatga ttetcetgee tcagteteet 1439 gagtagctgg gattacaggt gcccgccacc acgctcagct aatttttgta tttttagtag 1499 agatggggtt ttaccatgtt ggccaggctg gtcttagact cctgacctca gttgatccac 1559 . ctgcctcagc ctctgcattc agtttattca catatttttg gtaactccca tggcagctcc 1619 taggatttca gcggtctgtg ggccagaaag caggcaccag ggctgacctc aaggccgtat 1679 cagagggcca agcagagttc ttttggatac ctgcttttca tcccacaggg ccttagagtc 1739 agaggtaagg tagcaacaga gctagaatgg ggcaatgcac tcttaccctc cttctcaact 1799 tttatttaag ctgtgctaaa tgttttcttc aagggaacca gatttagttc tttacagaat 1859 tttccagtga aataaactct catgttattg ttccc 1894

<210> 112

<211> 2413

25 <212> DNA

5

10

15

20

245/346

<213> Homo sapiens

<220>

<221> CDS

5 <222> (115)..(1173)

<400> 112

tttccggtca ggttaggccg ggggggtgcg gtcctggtcg gaaggaggtg gagagtcggg 60 ggtcaccagg cctatccttg gcgccacagt cggccaccgg ggctcgccgc cgtc atg 11

. 10 Met

1

gag agc gga ggg cgg ccc tcg ctg tgc cag ttc atc ctc ctg ggc acc 165 Glu Ser Gly Gly Arg Pro Ser Leu Cys Gln Phe Ile Leu Leu Gly Thr

5 10 15

acc tct gtg gtc acc gcc gcc ctg tac tcc gtg tac cgg cag aag gcc 213

Thr Ser Val Val Thr Ala Ala Leu Tyr Ser Val Tyr Arg Gln Lys Ala

20 25 30

cgg gtc tcc caa gag ctc aag gga gct aaa aaa gtt cat ttg ggt gaa 261
Arg Val Ser Gln Glu Leu Lys Gly Ala Lys Lys Val His Leu Gly Glu

20 35 40 45

gat tta aag agt att ctt tca gaa gct cca gga aaa tgc gtg cct tat 309
Asp Leu Lys Ser Ile Leu Ser Glu Ala Pro Gly Lys Cys Val Pro Tyr

50 55 60 65

gct gtt ata gaa gga gct gtg cgg tct gtt aaa gaa acg ctt aac agc 357 . 25 Ala Val Ile Glu Gly Ala Val Arg Ser Val Lys Glu Thr Leu Asn Ser

					70					75					80		
	cag	ttt	gtg	gaa	aac	tgc	aag	ggg	gta	att	cag	cgg	ctg	aca	ctt	cag	405
	Gln	Phe	Val	Glu	Asn	Cys	Lys	Gly	Val	Ile	Gln	Arg	Leu	Thr	Leu	Gln	
				85					90					95			
5	gag	cac	aag	atg	gtg	tgg	aat	cga	acc	acc	cac	ctt	tgg	aat	gat	tgc	453
	Glu	His	Lys	Met	Val	Trp	Asn	Arg	Thr	Thr	His	Leu	Trp	Asn	Asp	Cys	.)
			100					105					110				
	tca	aag	atc	att	cat	cag	agg	acc	aac	aca	gtg	ccc	ttt	gac	ctg	gtg	501
	Ser	Lys	Ile	Ile	His	Gln	Arg	Thr	Asn	Thr	Val	Pro	Phe	Asp	Leu	Val	
LO		115					120					125					
	ccc	cac	gag	gat	ggc	gtg	gat	gtg	gct	gtg	cga	gtg	ctg	aag	ccc	ctg	549
	Pro	His	Glu	Asp	Gly	Val	Asp	Val	Ala	Val	Arg	Val	Leu	Lys	Pro	Leu	
	130					135					140					145	
•	gac	tca	gtg	gat	ctg	ggt	cta	gag	act	gtg	tat	gag	aag	ttc	cac	ccc	597
L5	Asp	Ser	Val	Asp	Leu	Gly	Leu	Glu	Thr	Val	Tyr	Glu	Lys	Phe	His	Pro	
					150					155					160		
	tcg	att	cag	tcc	ttc	acc	gat	gtc	atc	ggc	cac	tac	atc	agc	ggt	gag	645
	Ser	Ile	Gln	Ser	Phe	Thr	Asp	Val	Ile	Gly	His	Tyr	Ile	Ser	Gly	Glu	
				165					170					175			
20	cgg	ccc	aaa	ggc	atc	caa	gag	acc	gag	gag	atg	ctg	aag	gtg	ggg	gcc	693
	Arg	Pro	Lys	Gly	Ile	Gln	Glu	Thr	Glu	Glu	Met	Leu	Lys	Val	Gly	Ala	
			180					185					190			•	
	acc	ctc	aca	ggg	gtt	ggc	gaa	ctg	gtc	ctg	gac	aac	aac	tct	gtc	cgc	741
	Thr	Leu	Thr	Gly	Val	Gly	Glu	Leu	Val	Leu	Asp	Asn	Asn	Ser	Val	Arg	
25		195					200					205					

247/346

	ctg	cag	ccg	CCC	aaa	caa	ggc	atg	cag	tac	tat	cta	agc	agc	cag	gac	789
	Leu	Gln	Pro	Pro	Lys	Gln	Gly	Met	Gln	Tyr	Tyr	Leu	Ser	Ser	Gln	Asp	
	210					215					220					225	
	ttc	gac	agc	ctg	ctg	cag	agg	cag	gag	tcg	agc	gtc	agg	ctc	tgg	aag	837
5	Phe	Asp	Ser	Leu	Leu	Gln	Arg	Gln	Glu	Ser	Ser	Val	Arg	Leu	Trp	Lys	
					230					235					240		
	gtg	ctg	gcg	ctg	gtt	ttt	ggc	ttt	gcc	aca	tgt	gcc	acc	ctc	ttc	ttc	885
	Val	Leu	Ala	Leu	Val	Phe	Gly	Phe	Ala	Thr	Cys	Ala	Thr	Leu	Phe	Phe	
				245					250					255			
10	att	ctc	cgg	aag	cag	tat	ctg	cag	cgg	cag	gag	cgc	ctg	cgc	ctc	aag	933
	Ile	Leu	Arg	Lys	Gln	Tyr	Leu	Gln	Arg	Gln	Glu	Arg	Leu	Arg	Leu	Lys	
			260					265					270				
	cag	atg	cag	gag	gag	ttc	cag	gag	cat	gag	gcc	cag	ctg	ctg	agc	cga	981
	Gln	Met	Gln	Glu	Glu	Phe	Gln	Glu	His	Glu	Ala	Gln	Leu	Leu	Ser	Arg	
15		275					280					285					
	gcc	aag	cct	gag	gac	agg	gag	agt	ctg	aag	agc	gcc	tgt	gta	gtg	tgt	1029
	Ala	Lys	Pro	Glu	Asp	Arg	Glu	Ser	Leu	Lys	Ser	Ala	Cys	Val	Val	Cys	
	290					295					300					305	
	ctg	agc	agc	ttc	aag	tcc	tgc	gtc	ttt	ctg	gag	tgt	ggg	cac	gtt	tgt	1077
20	Leu	Ser	Ser	Phe	Lys	Ser	Cys	Val	Phe	Leu	Glu	Cys	Gly	His	Val	Cys	
					310					315					320		
	tcc	tgc	acc	gag	tgc	tac	cgc	gcc	ttg	cca	gag	ccc	aag	aag	tgc	cct	1125
	Ser	Cys	Thr	Glu	Cys	Tyr	Arg	Ala	Leu	Pro	Glu	Pro	Lys	Lys	Cys	Pro	
				325					330					335			
25	atc	tgc	aga	cag	gcg	atc	acc	cgg	gtg	ata	ccc	ctg	tac	aac	agc	taa	1173

9

248/346

Ile Cys Arg Gln Ala Ile Thr Arg Val Ile Pro Leu Tyr Asn Ser

340 345 350

tagtttggaa gccgcacagc ttgacctgga agcacccctg ccccttttc agggattttt 1233 atctcgaggc ctttggagga gcagtggtgg gggtagctgt cacctccagg tatgattgag 1293 ggaggaattg ggtagaaact ctccagaccc atgcctccaa tggcaggatg ctgcctttcc 1353 cacctgagag gggaccctgt ccatgtgcag cctcatcaga gcctcaccct gggaggatgc 1413 cgtggcgtct cctcccagga gccagatcag tgcgagtgtg actgaaaatg cctcatcact 1473 taagcaccaa agccagtgat cagcagctct tctgttcctg tgtcttctgt ttttttctgg 1533 tgaatcgttg cttgctgtgg acttggtgga ggactcagag gggaggaaag gctgggccc 1593 gagtacaacg gatgccttgg gtgctgcctc cgaagaqact ctqccqcaqc ttttcttctt 1653 tttcctcatg ccccgggaaa cagtctttct tcagaattgt caggctgggc aggtcaactt 1713 gtgttccttt cccctcacct gcttgcctcc ttaacgcctg cacgtgtgtg tagaggacaa 1773 aagaaagtga agtcagcaca tccgcttctg cccagatggt tggggccccg ggcaacagat 1833 tgaagagaga tcatgtgaag ggcagttggt caggcaggcc tcctggtttc gccactggcc 1893 ctgatttgaa ctcctgccac ttgggagagc tcggggtggt ccctggtttt ccctcctgga 1953 gaatgaggeg cagaggeete geeteetgaa ggacqeaqtq tqqatqeeac tqqeetaqtq 2013 tectggeete acagetteet tgcaaggetg teacaaggaa aagcageegg etggeaceet 2073 gagcatatgc cctcttgggg ctccctcatc cagcccgtcg cagctttgac atcttggtgt 2133 acteatgteg etteteettg tgttaceece teecagtatt accatttgee ecteacetge 2193 ccttggtgag ccttttagtg caagacagat ggggctgttt tcccccacct ctgagtagtt 2253 ggaggtcaca tacacagete ttttttatt geeettttet geetetgaat gtteatetet 2313 cgtcctcctt tgtgcaggcg aggaaggggt gccctcaggg qccqacacta gtatgatqca 2373 gtgtccagtg tgaacagcag aaattaaaca tgttgcaacc 2413

25 <210> 113

5

10

15

20

249/346

<211> 2376

<212> DNA

<213> Homo sapiens

5 <220>

20

<221> CDS

<222> (35)..(427)

<400> 113

10 gtgagggetg tgagetgege etgaeggtgg cace atg age age tea ggt ggg geg 55

Met Ser Ser Ser Gly Gly Ala

L 5

ccc ggg gcg tcc gcc agc tct gcg ccg ccc gcg cag gaa gag ggc atg 103
Pro Gly Ala Ser Ala Ser Ser Ala Pro Pro Ala Gln Glu Glu Gly Met

15 10 15 20

60

acg tgg tgg tac cgc tgg ctg tgt cgc ctg tct ggg gtg ctg ggg gca 151
Thr Trp Trp Tyr Arg Trp Leu Cys Arg Leu Ser Gly Val Leu Gly Ala

25 30 35

gtc tct tgc gcg atc tct ggc ctc ttc aac tgc atc acc atc cac cct 199

Val Ser Cys Ala Ile Ser Gly Leu Phe Asn Cys Ile Thr Ile His Pro
40 45 50 55

ctg aac atc gcg gcc ggc gtg tgg atg atg atg gcg gtc gtt ccc atc 247
Leu Asn Ile Ala Ala Gly Val Trp Met Met Ala Val Val Pro Ile

65 70

gtc atc agc ctg acc ctg acc acg ctg ctg ggc aac gcc atc gcc ttt 295

	Val	Ile	Ser	Leu	Thr	Leu	Thr	Thr	Leu	Leu	Gly	Asn	Ala	Ile	Ala	Phe	
				75					80					85			
	gct	acg	ggg	gtg	ctg	tac	gga	ctc	tct	gct	ctg	ggc	aaa	aag	ggc	gat	343
	Ala	Thr	Gly	Val	Leu	Tyr	Gly	Leu	Ser	Ala	Leu	Gly	Lys	Lys	Gly	Asp	
5			90					95					100				
	gcg	atc	tcc	tat	gcc	agg	atc	cag	cag	cag	agg	cag	cag	gcg	gat	gag	391
	Ala	Ile	Ser	Tyr	Ala	Arg	Ile	Gln	Gln	Gln	Arg	Gln	Gln	Ala	Asp	Glu	
		105					110					115					
	gag	aag	ctc	gcg	gag	acc	ctg	gag	ggg	gag	ctg	tga	agg	gctg	ggc		437
10	Glu	Lys	Leu	Ala	Glu	Thr	Leu	Glu	Gly	Glu	Leu						
	120					125					130						
	gcc	cctc	cct	ccct	gtcc	cc to	cttc	tggct	t cto	gtgt	gggt	cca	agtg	agg	cctg	gactgt	497
	ccad	cgcto	gag	gcac	agcct	tg ga	agag	gggc	c ttt	gca	cgtg	tcc	ctaca	acc	tgga	gtcctc	557
	tgcl	cct	ttc	tcca	gact	gg ct	ttaa	gcca	g gag	gcca	ctgg	ctg	ctggi	tgt	gagg	gtctgg	617
15	gct	gctg	gac	ttga	ggca	ga go	cctg	cagca	a gct	tgtgi	tgga	cact	tacc	cag	ccct	actcct	677
	ctg	ctgg	gtg	ggtc	tgcaq	ga to	ctca	cacca	a caq	gaca	gggc	tgc	ctgt	gac	ctgc	tgtgac	737
	ctg	ggago	cag	cttc	cct	gg aq	gatg	ctggi	cct	egget	ttga	ggg	gagg	ggc	aagt	gggacc	797
	ctg	ccac	ctg	ggca	ctga	gc aq	gagg	gacci	t cc	cca	gctc	tct	tagc	agg	tgga	gcccca	857
	gggd	cctg	gga	cagc	ctgc	eg et	tgcc	agcaa	a cci	ccca	actg	ctg	ccta	3 33	tgca	gcgccc	917
20	acto	gtca	ccc	tgcci	ttct	ga aq	gaag	ccca	c ag	ggct	ccta	agg	tgca	ccc	cggt	acctgg	977
	aact	tgca	gcc	ttgg	cagt	ga ci	tgga	cagci	t ggg	gtgg	ggga	tgc	tccc	tgc	tggc	cctggg	103
																ctgggg	
																ctcagg	
0.5																gctgtc	
25	CCC	acta		tagg	tacc	24 44	ctat	~~~~	. ~~	2200	ant a	000	~~~	~~~	atro	2020	127

251/346

	ctggtgccca	ggatgtgcac	ccccatattc	cctctgccct	gtggcctcag	cccgctggcc	1337
	tctctgaccg	tgaggctggc	tctcagccat	cgggcaggtg	cctggtcggg	cctggcttag	1397
	cccaggtggg	gcttggcaga	agcgggcggg	tgtggaagat	attccatctg	gggccaaccc	1457
	caggctgggc	ctgcgctgag	cttctggagc	gcaggtactg	ggtcttgcta	agtgaactgt	1517
5	ttcccaggaa	cacctctcgg	gcccatctgc	gtctgaggct	gggagtggca	tctgaggccg	1577
	ggagtggcat	ctgaggccag	gagtggcagg	ctggtgggct	gggcgtgggg	ttttctgggc	1637
	cctgcccagt	actgccctgg	ggacttggtg	ggctcctggg	tcagcagcat	cccacccctg	1697
	ggagtctggc	cagctgagcc	ccagggtggc	aggggcatta	tagcctggtg	gacatgtgcc	1757
	ttcagggttc	ctccggggcc	accttcctca	ggccagtgct	gggttcaaag	ggctgtgtgt	1817
10	gtgtgtgtgt	gtgtgtgtgt	gtatgtatat	gtgtgtgggt	gcacacatct	gtcccatgta	1877
	tgcagtgaga	cctgtctacc	tcccacaagg	agcaagggct	ctgcccgccc	tctgctcatt	1937
	cctacccagg	tagtgggacc	ccgggccccc	ttctgcctgg	cttgcctgct	tctgcccttt	1997
	ccagaggggt	ctcactgaca	gccagagaca	gcaggagaag	ggttggctgt	ggatcaagga	2057
	aggctgcccc	tgtaccctgt	ggggaaatgg	tgggtgcatg	gctggatgca	gaggtggaag	2117
15	gccctgggcc	acaggcgaga	gtgggcgtgt	cacctgtccc	aggttcccag	caagtctgca	2177
	gctgtgcagt	cctggggtcc	ctgaccctgt	cgcccagggg	gcgtgctgtc	cagcaggggc	2237
	cctgccttgc	aaggaacgtc	tetteeggeg	gctgggccgc	tcctgcctgg	tctgggctgt	2297
	gtgtggcgcc	ctttcctcct	tgtttgttcc	tctgtgttct	gtgtgcgtct	taagcaataa	2357
	agcgtggccg	tggctcgcg					2376

20

<210> 114

<211> 1155

<212> DNA

<213> Homo sapiens

252/346

<220>

<221> CDS

<222> (110)..(1102)

5 <400> 114

5

20

gaggeteece agegtegeee taggetggga etetagtagg tetteggete agttttgget 60
geagegeeeg egtagatege tteggeeggg ttetaegeee ggeteaact atg age egg 118
Met Ser Arg

1

tgc gcc cag gcg gcg gaa gtg gcg gcc aca gtg cca ggt gcc ggc gtc 166
Cys Ala Gln Ala Ala Glu Val Ala Ala Thr Val Pro Gly Ala Gly Val

10 15

ggg aac gtg ggg ctg cgg ccc ccc atg gtg ccc cgt cag gcg tcc ttc 214
Gly Asn Val Gly Leu Arg Pro Pro Met Val Pro Arg Gln Ala Ser Phe

15 20 25 30 35

ttc ccg ccg ccg gtg ccg aac ccc ttc gtg cag cag acg cag atc ggc 262
Phe Pro Pro Pro Val Pro Asn Pro Phe Val Gln Gln Thr Gln Ile Gly

40 45 50

tcc gcg agg cgg gtc cag att gtc ctt ctt ggg att atc ttg ctt cca 310

Ser Ala Arg Arg Val Gln Ile Val Leu Leu Gly Ile Ile Leu Leu Pro

55 60 65

att cgt gtc tta ttg gtt gcg tta att tta tta ctt gca tgg cca ttt 358

Ile Arg Val Leu Leu Val Ala Leu Ile Leu Leu Leu Ala Trp Pro Phe

70 75 80

gct gca att tca aca gta tgc tgt cct gaa aag ctg acc cac cca ata 406

253/346

	Ala	Ala	Ile	Ser	Thr	Val	Cys	Cys	Pro	Glu	Lys	Leu	Thr	His	Pro	Ile	
		85					90					95					
	act	ggt	tgg	agg	agg	aaa	att	act	caa	aca	gct	ttg	aaa	ttt	ctg	ggt	454
	Thr	Gly	Trp	Arg	Arg	Lys	Ile	Thr	Gln	Thr	Ala	Leu	Lys	Phe	Leu	Gly	
5	100					105					110					115	
	cgt	gct	atg	ttc	ttt	tca	atg	gga	ttt	ata	gtt	gct	gta	aaa	gga	aag	502
	Arg	Ala	Met	Phe	Phe	Ser	Met	Gly	Phe	Ile	Val	Ala	Val	Lys	Gly	Lys	
					120					125					130		
	att	gca	agt	cct	ttg	gaa	gca	cca	gtt	ttt	gtt	gct	gcc	cct	cat	tca	550
10	Ile	Ala	Ser	Pro	Leu	Glu	Ala	Pro	Val	Phe	Val	Ala	Ala	Pro	His	Ser	
				135					140					145			
	aca	ttc	ttt	gat	gga	att	gcc	tgt	gtt	gta	gct	ggg	tta	cct	tct	ata	598
	Thr	Phe	Phe	Asp	Gly	Ile	Ala	Cys	Val	Val	Ala	Gly	Leu	Pro	Ser	Ile	
			150					155					160			•	•
15							gca										646
	Val		Arg	Asn	Glu	Asn	Ala	Gln	Val	Pro	Leu	Ile	Gly	Arg	Leu	Leu	
		165					170					175					
							ttg									_	694
		Ala	Val	Gln	Pro	Val	Leu	Val	Ser	Arg	Val	Asp	Pro	Asp	Ser	Arg	
20	180					185					190					195	
							ata										742
	Lys	Asn	Thr	Ile		Glu	Ile	Ile	Lys	Arg	Thr	Thr	Ser	Gly	Gly	Glu	
					200					205					210		
25							ttc										790
25	Trp	Pro	Gln	Ile	Leu	Val	Phe	Pro	Glu	Glv	Thr	Cvs	Thr	Asn	Arσ	Ser	

4

				215					220					225			
	tgt	ttg	att	act	ttt	aaa	cca	gga	gcc	ttc	att	cca	gga	gtt	cca	gtg	838
	Cys	Leu	Ile	Thr	Phe	Lys	Pro	Gly	Ala	Phe	Ile	Pro	Gly	Val	Pro	Val	
			230					235					240				
5	cag	cca	gtc	ctc	ctc	aga	tac	cca	aac	aag	ctg	gat	act	gtg	acc	tgg	886
	Gln	Pro	Val	Leu	Leu	Arg	Tyr	Pro	Asn	Lys	Leu	Asp	Thr	Val	Thr	Trp	
		245					250					255					
	aca	tgg	caa	gga	tat	aca	ttc	att	cag	ctt	tgt	atg	ctt	act	ttc	tgc	934
	Thr	Trp	Gln	Gly	Tyr	Thr	Phe	Ile	Gln	Leu	Cys	Met	Leu	Thr	Phe	Cys	
10	260					265	•				270					275	
	cag	ctc	ttc	aca	aag	gta	gaa	gtt	gag	atg	ttt	ctg	ttc	ttt	tgg	gaa	982
	Gln	Leu	Phe	Thr	Lys	Val	Glu	Val	Glu	Met	Phe	Leu	Phe	Phe	Trp	Glu	
					28.0					285					290		
	gga	agc	agc	aag	cat	tgt	tta	aaa	ata	tct	tcc	ttc	ttt	tgc	att	ttt	1030
L5	Gly	Ser	Ser	Lys	His	Cys	Leu	Lys	Ile	Ser	Ser	Phe	Phe	Cys	Ile	Phe	
				295					300					305			
	tct	ctt	cga	aga	ttt	aaa	aga	aga	att	aca	caa	aga	act	aga	act	gca	1078
	Ser	Leu	Arg	Arg	Phe	Lys	Arg	Arg	Ile	Thr	Gln	Arg	Thr	Arg	Thr	Ala	
			310					315					320				
20	cat	ttg	tta	aga	ttg	tcc	ttt	taa	aatt	attt	tc t	gtta	caag	gg aa	aaaa	taaa	1132
	His	Leu	Leu	Arg	Leu	Ser	Phe										
		325					330										
	agat	tgat	ta t	agto	tcat	a at	:t										1155

255/346

<211> 1329

<212> DNA

<213> Homo sapiens

5 <220>

<221> CDS

<222> (71)..(1123)

<400> 115

agacctgage agttgeteeg geggegeteg gggagggage cageageeta gggeetagge 60 cegggeeace atg geg etg eet eea gee ee ete egg eac aca 109

Met Ala Leu Pro Pro Gly Pro Ala Ala Leu Arg His Thr

1 5 10

ctg ctg ctc ctg cca gcc ctt ctg agc tca ggt ggg cct ggc acc ccc 157

Leu Leu Leu Pro Ala Leu Leu Ser Ser Gly Gly Pro Gly Thr Pro

15 20 25

aga ttg gcc tgg tat ctg gat gga cag ctg cag gag gcc agc acc tca 205

Arg Leu Ala Trp Tyr Leu Asp Gly Gln Leu Gln Glu Ala Ser Thr Ser

30 35 40 45

20 aga ctg ctg agc gtg gga ggg gag gcc ttc tct gga ggc acc agc acc 253

Arg Leu Leu Ser Val Gly Gly Glu Ala Phe Ser Gly Gly Thr Ser Thr

50 55 60

ttc act gtc act gcc cat cgg gcc cag cat gag ctc aac tgc tct ctg 301
Phe Thr Val Thr Ala His Arg Ala Gln His Glu Leu Asn Cys Ser Leu

25 65 70 75

	cag	gac	CCC	aga	agt	ggc	cga	tca	gcc	aac	gcc	tct	gtc	atc	ctt	aat	349
	Gln	Asp	Pro	Arg	Ser	Gly	Arg	Ser	Ala	Asn	Ala	Ser	Val	Ile	Leu	Asn	
			80					85					90				
	gtg	caa	ttc	aag	cca	gag	att	gcc	caa	gtc	ggc	gcc	aag	tac	cag	gaa	397
5	Val	Gln	Phe	Lys	Pro	Glu	Ile	Ala	Gln	Val	Gly	Ala	Lys	Tyr	Gln	Glu	
		95					100					105					
	gct	cag	ggc	cca	ggc	ctc	ctg	gtt	gtc	ctg	ttt	gcc	ctg	gtg	cgt	gcc	445
	Ala	Gln	Gly	Pro	Gly	Leu	Leu	Val	Val	Leu	Phe	Ala	Leu	Val	Arg	Ala	
	110					115					120					125	
10	aac	ccg	ccg	gcc	aat	gtc	acc	tgg	atc	gac	cag	gat	ggg	cca	gtg	act	493
	Asn	Pro	Pro	Ala	Asn	Val	Thr	Trp	Ile	Asp	Gln	Asp	Gly	Pro	Val	Thr	
					130					135					140		
	gtc	aac	acc	tct	gac	ttc	ctg	gtg	ctg	gat	gcg	cag	aac	tac	ccc	tgg	543
	Val	Asn	Thr	Ser	Asp	Phe	Leu	Val	Leu	Asp	Ala	Gln	Asn	Tyr	Pro	Trp	
15				145					150					155			
	ctc	acc	aac	cac	acg	gtg	cag	ctg	cag	ctc	cgc	agc	ctg	gca	cac	aac	589
	Leu	Thr	Asn	His	Thr	Val	Gln	Leu	Gln	Leu	Arg	Ser	Leu	Ala	His	Asn	
			160					165					170				
	ctc	tcg	gtg	gtg	gcc	acc	aat	gac	gtg	ggt	gtc	acc	agt	gcg	tcg	ctt	637
20	Leu	Ser	Val	Val	Ala	Thr	Asn	Asp	Val	Gly	Val	Thr	Ser	Ala	Ser	Leu	
		175					180					185					
	cca	gcc	cca	ggg	ctt	ctg	gct	acc	cgg	gtg	gaa	gtg	cca	ctg	ctg	ggc	685
	Pro	Ala	Pro	Gly	Leu	Leu	Ala	Thr	Arg	Val	Glu	Val	Pro	Leu	Leu	Gly	
	190					195					200					205	
25	att	gtt	gtg	gct	gct	ggg	ctt	gca	ctg	ggc	acc	ctc	gtg	ggg	ttc	agc	733

	Ile	Val	Val	Ala	Ala	Gly	Leu	Ala	Leu	Gly	Thr	Leu	Val	Gly	Phe	Ser	
					210					215					220		
	acc	ttg	gtg	gcc	tgc	ctg	gtc	tgc	aga	aaa	gag	aag	aaa	acc	aaa	ggc	781
	Thr	Leu	Val	Ala	Cys	Leu	Val	Cys	Arg	Lys	Glu	Lys	Lys	Thr	Lys	Gly	
5				225					230					235			
	ccc	tcc	cgg	cac	cca	tct	ctg	ata	tca	agt	gac	tcc	aac	aac	cta	aaa	829
	Pro	Ser	Arg	His	Pro	Ser	Leu	Ile	Ser	Ser	Asp	Ser	Asn	Asn	Leu	Lys	
			240					245					250				
	ctc	aac	aac	gtg	cgc	ctg	cca	cgg	gag	aac	atg	tcc	ctc	ccg	tcc	aac	877
10	Leu	Asn	Asn	Val	Arg	Leu	Pro	Arg	Glu	Asn	Met	Ser	Leu	Pro	Ser	Asn	,
		255					260					265					
	ctt	cag	ctc	aat	gac	ctc	act	cca	gat	tcc	aga	gca	gtg	aaa	cca	gca	925
	Leu	Gln	Leu	Asn	Asp	Leu	Thr	Pro	Asp	Ser	Arg	Ala	Val	Lys	Pro	Ala	
	270					275					280					285	
15	gac	cgg	cag	atg	gct	cag	aac	aac	agc	cgg	cca	gag	ctt	ctg	gac	ccg	973
	Asp	Arg	Gln	Met	Ala	Gln	Asn	Asn	Ser	Arg	Pro	Glu	Leu	Leu	Asp	Pro	
					290					295					300		
	gag	ccc	ggc	ggc	ctc	ctc	acc	agc	caa	gca	tgt	ctc	ctc	cac	cac	ggg	1021
	Glu	Pro	Gly	Gly	Leu	Leu	Thr	Ser	Gln	Ala	Cys	Leu	Leu	His	His	Gly	
20				305					310					315			
	acc	cca	gcc	ctg	acc	aac	cca	tgg	ttg	cct	cat	cag	cag	gaa	ggt	gcc	1069
	Thr	Pro	Ala	Leu	Thr	Asn	Pro	Trp	Leu	Pro	His	Gln	Gln	Glu	Gly	Ala	
			320					325					330				
	ctt	cct	gga	. gga	tgg	tcg	cca	cag	gca	cat	aat	tca	aca	gtg	tgg	aag	1117
25	Leu	Pro	Gly	Gly	Trp	Ser	Pro	Gln	Ala	His	Asn	Ser	Thr	val	Trp	Lys	

258/346

335 340 345

ctt tag gggaacatgg agaaagaagg agaccacata ccccaaagtg acctaagaac 1173

350

actttaaaaa gcaacatgta aatgattgga aattaatata gtacagaata tattttccc 1233
ttgttgagat cttcttttgt aatgtttttc atgttactgc ctagggcggt gctgagcaca 1293
cagcaagttt aataaacttg actgaattca tttaat 1329

<210> 116

10 <211> 1387

<212> DNA

<213> Homo sapiens

<220>

15 <221> CDS

20

<222> (147)..(488)

<400> 116

cccaaggggc ttctggcagc aggaaggaag ctacacatca gagttgggga cttgtgcct 60
ggggctgcct ggcatctggg ggcctcctca gagccagggc tctttctggt tgaggctgag 120
actcactggt gtcatcaggc ccctcc atg aat gag aca aac aaa aca ctt gtt 173
Met Asn Glu Thr Asn Lys Thr Leu Val

5

ggg cct tcg gag ctc ccc aca gcg tct gct gtg gcc cct ggc cca ggc 221

25 Gly Pro Ser Glu Leu Pro Thr Ala Ser Ala Val Ala Pro Gly Pro Gly

	10					15					20					25	
	act	ggg	gct	cgg	gca	tgg	cct	gtg	ctg	gta	gga	ttt	gtg	ctg	ggg	gct	269
	Thr	Gly	Ala	Arg	Ala	Trp	Pro	Val	Leu	Val	Gly	Phe	Val	Leu	Gly	Ala	
					30					35					40		
5	gtg	gtc	ctc	tcg	ctc	ctc	att	gca	ctt	gct	gcc	aaa	tgc	cac	ctc	tgc	317
	Val	Val	Leu	Ser	Leu	Leu	Ile	Ala	Leu	Ala	Ala	Lys	Cys	His	Leu	Cys	
				45					50					55			
	cgc	cga	tac	cat	gcc	agc	tac	cgg	cac	cgc	cca	ctg	cct	gag	aca	gga	365
	Arg	Arg	Tyr	His	Ala	Ser	Tyr	Arg	His	Arg	Pro	Leu	Pro	Glu	Thr	Gly	
10			60					65					70				•
	agg	gga	ggc	cgc	cca	cag	gtg	gct	gaa	gat	gag	gat	gat	gat	ggc	ttc	413
	Arg	Gly	Gly	Arg	Pro	Gln	Val	Ala	Glu	Asp	Glu	Asp	Asp	Asp	Gly	Phe	
		75					80					85					
	atc	gag	gac	aat	tac	att	cag	cct	ggg	act	ggc	gag	ctg	ggg	aca	gag	461
15	Ile	Glu	Asp	Asn	Tyr	Ile	Gln	Pro	Gly	Thr	Gly	Glu	Leu	Gly	Thr	Glu	
	90					95					100					105	
	ggt	ago	agg	gac	cac	ttc	tcc	ctc	tga	gct	.ccca	tct	ttag	acco	tc		508
	Gly	Ser	Arg	Asp	His	Phe	Ser	Leu									
					110)											
20	ccc	acto	cct	ccat	.gcct	ga c	agct	taag	g ac	agtg	gtta	tga	cato	199 9	gcct	tgaacc	: 568
	tca	ıggga	cag	aggt	.ggct	gg g	gctt	aaag	g tt	.ggcc	aggg	ato	gagt	caaa	ccc	acttcc	628
	cto	jacac	tag	ccaç	caaa	agt g	jacaa	tgac	c ct	ctct	tgct	caa	ataad	ctct	caad	tgttcc	688
	cto	gctgt	tct	cago	gataa	aag d	caaa	ıcaaa	ıg go	ttga	agtgt	gga	acata	aagg	ccct	ctgtga	748
	tca	atgco	ctct	cggd	ctcl	tg q	tttc	tttt	c ti	gcct	tcc	c cta	actti	tact	gtc	gaaatca	a 808
25	ato	rctat	tct	ccct	ccc	acc a	actto	ccat	g ca	agtti	ccc	age	gcac	cttt	gct	cacatto	868

260/346

gtcccctgc ctacgctact cttcccctaa atcctctatg actgtgatgg cctgcctacc 928
tgccagcatt tcaaatatgc ccagatggta acatttgtgc aggtgaaaac cagtgccaag 988
cttccttttt ttttttttt cctgagacgg agtctcactc tgttgcccag gctggagtgc 1048
aatggcacat cttggctcac tgcaacctcc gcctcctggg ttcaagcgat tctcctgctt 1108
cagcctcctg agtagctggg attacaggca tccgccacca cgcccagcta atttttatat 1168
ttttagtaga gacgaggttt cgccatattg gccaggatgg tctcgaactc ttgacctcag 1228
gtagtccgcc ttcctcggcc tcccaaagtg ctgggattac aggcgtgagc caccatgccc 1288
ggccagcttc ttaatgaaat attttcctat aaataaagtg ggtaatccgg ttataatatg 1348
tttttcacag gaattaataa atctatttc attttgaat 1387

10

5

<210> 117

<211> 1158

<212> DNA

<213> Homo sapiens

15

<220>

<221> CDS

<222> (130)..(699)

20 <400> 117

aagetgtgga tatggagetg getgetgeea agteegggge eegegeeget geetagegeg 60 teetggggae tetgtgggga egegeeege geegeggete ggggaeeegt agageeegge 120 getgegege atg gee etg etc teg ege eee geg etc acc etc etg etc etc 171

Met Ala Leu Leu Ser Arg Pro Ala Leu Thr Leu Leu Leu

25

1

5

10

	ctc	atg	gcc	gct	gtt	gtc	agg	tgc	cag	gag	cag	gcc	cag	acc	acc	gac	219
	Leu	Met	Ala	Ala	Val	Val	Arg	Cys	Gln	Glu	Gln	Ala	Gln	Thr	Thr	Asp	
	15					20					25		,			30	
	tgg	aga	gcc	acc	ctg	aag	acc	atc	cgg	aac	ggc	gtt	cat	aag	ata	gac	267
5	Trp	Arg	Ala	Thr	Leu	Lys	Thr	Ile	Arg	Asn	Gly	Val	His	Lys	Ile	Asp	
					35					40	٠				45		
	acg	tac	ctg	aac	gcc	gcc	ttg	gac	ctc	ctg	gga	ggc	gag	gac	ggt	ctc	315
	Thr	Tyr	Leu	Asn	Ala	Ala	Leu	Asp	Leu	Leu	Gly	Gly	Glu	Asp	Gly	Leu	
				50					55					60			
10	tgc	cag	tat	aaa	tgc	agt	gac	gga	tct	aag	cct	ttc	cca	cgt	tat	ggt	363
	Cys	Gln	Tyr	Lys	Cys	Ser	Asp	Gly	Ser	Lys	Pro	Phe	Pro	Arg	Tyr	Gly	
			65					70					75				
	tat	aaa	ccc	tcc	cca	ccg	aat	gga	tgt	ggc	tct	cca	ctg	ttt	ggt	gtt	411
	Tyr	Lys	Pro	Ser	Pro	Pro	Asn	Gly	Cys	Gly	Ser	Pro	Leu	Phe	Gly	Val	
15		80					85					90					
	cat	ctt	aac	att	ggt	atc	cct	tcc	ctg	aca	aag	tgt	tgc	aac	caa	cac	459
	His	Leu	Asn	Ile	Gly	Ile	Pro	Ser	Leu	Thr	Lys	Cys	Cys	Asn	Gln	His	
	95					100					105					110	
	gac	agg	tgc	tat	gaa	acc	tgt	ggc	aaa	agc	aag	aat	gac	tgt	gat	gaa	507
20	Asp	Arg	Cys	Tyr	Glu	Thr	Cys	Gly	Lys	Ser	Lys	Asn	Asp	Сув	Asp	Glu	
					115					120					125		
	gaa	ttc	cag	tat	tgc	ctc	tcc	aag	atc	tgc	cga	gat	gta	cag	aaa	aca	555
	Glu	Phe	Gln	Tyr	Cys	Leu	Ser	Lys	Ile	Cys	Arg	Asp	Val	Gln	Lys	Thr	
				130					135					140			
25	cta	gga	cta	act	cag	cat	gtt	cag	gca	tgt	gaa	aca	aca	gtg	gag	ctc	603

262/346

	Leu	Gly	Leu	Thr	Gln	His	Val	Gln	Ala	Суѕ	Glu	Thr	Thr	Val	Glu	Leu	
			145					150					155				
	ttg	ttt	gac	agt	gtt	ata	cat	tta	ggt	tgt	aaa	cca	tat	ctg	gac	agc	651
	Leu	Phe	Asp	Ser	Val	Ile	His	Leu	Gly	Cys	Lys	Pro	Tyr	Leu	Asp	Ser	
5		160					165					170					
	caa	cga	gcc	gca	tgc	agg	tgt	cat	tat	gaa	gaa	aaa	act	gat	ctt	taa	699
	Gln	Arg	Ala	Ala	Cys	Arg	Cys	His	Tyr	Glu	Glu	Lys	Thr	Asp	Leu		
	175					180					185					190	
	agga	agato	jec d	jaca	gctag	gt ga	acaga	atgaa	a gat	ggaa	agaa	cata	acct	ttt	gacaa	aataac	759
10	taat	gttt	tt a	caa	cataa	aa ad	ctgto	cttat	: ttt	tgto	gaaa	ggat	tati	ttt	gagad	ccttaa	819
	aata	attt	at a	tctt	gato	yt ta	aaaa	cctca	aag	rcaaa	aaa	agto	gaggg	gag .	atagi	gaggg	879
	gago	gcac	cgc t	tgto	cttct	c ag	gtat	ctto	ccc	agca	attg	ctc	ctta	act	tagta	atgcca	939
	aato	tctt	ga d	caat	catca	aa aa	acaa	agtgo	tt:	ıttta	agcg	gaga	attt	ttg :	aaaa	gaggaa	999
	tata	ataac	etc a	attt	tcac	a ad	caca	attta	a cca	aaaa	aag	agat	caaa	ata ·	taaaa	attcat	1059
15	cata	atgt	ct g	jttca	acat	t at	ctta	atttg	g gaa	aato	iggg	aaat	tato	cac f	ttaca	agtat	1119
	ttgt	ttac	cta t	gaaa	atttt	a aa	ataca	catt	: tat	gcct	ag						1158
					•												
	<210	> 11	B						•								

<211> 1106

20 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

25 <222> (26)..(859)

PCT/JP00/09359 WO 01/49728

263/346

<400> 118 aacccgctca ggcggcgacg gagcc atg tcg ccg ctg ctg ggg ctc cgg tcc

Met Ser Pro Leu Leu Gly Leu Arg Ser

gag ctg cag gac acc tgc acc tcg ctg gga ctg atg ctg tcg gtg gtg Glu Leu Gln Asp Thr Cys Thr Ser Leu Gly Leu Met Leu Ser Val Val

ctg ctc atg ggg ctg gcc cgc gta gtc gcc cgg cag cag ctg cac agg Leu Leu Met Gly Leu Ala Arg Val Val Ala Arg Gln Gln Leu His Arg

ccq qtq gcc cac gcc ttc gtc ctg gag ttt cta gcc acc ttc cag ctc Pro Val Ala His Ala Phe Val Leu Glu Phe Leu Ala Thr Phe Gln Leu

tgc tgc tgc acc cac gag ctg caa ctg ctg agc gaa cag cac ccc gcg Cys Cys Cys Thr His Glu Leu Gln Leu Ser Glu Gln His Pro Ala

cac ccc acc tgg acg ctg acg ctc gtc tac ttc ttc tcg ctt gtg cat His Pro Thr Trp Thr Leu Thr Leu Val Tyr Phe Phe Ser Leu Val His

> ggc ctg act ctg gtg ggc acg tcc agc aac ccg tgc ggc gtg atg atg Gly Leu Thr Leu Val Gly Thr Ser Ser Asn Pro Cys Gly Val Met Met

> cag atg atg ctg ggg ggc atg tcc ccc gag acg ggt gcg gtg agg cta Gln Met Met Leu Gly Gly Met Ser Pro Glu Thr Gly Ala Val Arg Leu

					110					115					120		
	ttg	gct	cag	ctg	gtt	agt	gcc	ctg	tgc	agc	agg	tac	tgc	aca	agc	gcc	436
	Leu	Ala	Gln	Leu	Val	Ser	Ala	Leu	Cys	Ser	Arg	Tyr	Cys	Thr	Ser	Ala	
				125					130					135			
5	ttg	tgg	agc	ttg	ggt	ctg	acc	cag	tat	cac	gtc	agc	gag	agg	agc	ttc	484
	Leu	Trp	Ser	Leu	Gly	Leu	Thr	Gln	Tyr	His	Val	Ser	Glu	Arg	Ser	Phe	
			140					145					150				
	gct	tgc	aag	aat	ccc	atc	cga	gtc	gac	ttg	ctc	aaa	gcg	gtc	atc	aca	532
	Ala	Cys	Lys	Asn	Pro	Ile	Arg	Val	Asp	Leu	Leu	Lys	Ala	Val	Ile	Thr	
10		155					160					165	Ē				
	gag	gcc	gtc	tgc	tcc	ttt	ctc	ttc	cac	agc	gct	ctg	ctg	cac	ttc	cag	580
	Glu	Ala	Val	Cys	Ser	Phe	Leu	Phe	His	Ser	Ala	Leu	Leu	His	Phe	Gln	
	170					175					180					185	
	gaa	gtc	cga	acc	aag	ctt	cgt	atc	cac	ctg	ctg	gct	gca	ctc	atc	acc	628
15	Glu	Val	Arg	Thr	Lys	Leu	Arg	Ile	His	Leu	Leu	Ala	Ala	Leu	Ile	Thr	
					190					195					200		
	ttt	ttg	gtc	tat	gca	gga	gga	agt	cta	aca	gga	gct	gta	ttt	aat	cca	676
	Phe	Leu	Val	Tyr	Ala	Gly	Gly	Ser	Leu	Thr	Gly	Ala	Val	Phe	Asn	Pro	
				205					210					215			
20	gct	ttg	gca	ctt	tcg	cta	cat	ttc	atg	tgt	ttt	gat	gaa	gca	ttc	cct	724
	Ala	Leu	Ala	Leu	Ser	Leu	His	Phe	Met	Cys	Phe	Asp	Glu	Ala	Phe	Pro	
			220					225					230				
	cag	ttt	ttt	ata	gta	tac	tgg	ctg	gct	cct	tct	tta	ggt	ata	ttg	ttg	772
	Gln	Phe	Phe	Ile	Val	Tyr	Trp	Leu	Ala	Pro	Ser	Leu	Gly	Ile	Leu	Leu	
25		235					240					245					

265/346

atg att ttg atg ttc agc ttt ttc cat ggc tgc ata aca acc ata caa 820

Met Ile Leu Met Phe Ser Phe Phe His Gly Cys Ile Thr Thr Ile Gln

250 255 260 265

tta ata aaa agg aat aac tgt tcc aaa gac tca gac taa catacaggac 869
Leu Ile Lys Arg Asn Asn Cys Ser Lys Asp Ser Asp

270 275

agtccagctg gatgtgataa agattttatc acctcatatg gaaaacaccg gctgcactgg 929
attcatcagt gttaacttcc tttgaggaag ctgccttata gttttcatca ctgggacttt 989
aaaaaaaaat tactgtgaaa atgaggtatt ctgtacttct cagttaagac ttgttctttg 1049
agtgatgtat taaatgctgc tagaaaagcc tcattacatt aaatataaat caatctt 1106

<210> 119

<211> 1907

<212> DNA

15 <213> Homo sapiens

<220>

<221> CDS

<222> (159)..(983)

20

5

10

<400> 119

gttatectae eceteceeg teccagetet aeggeggeeg egegeteeag geeggteget 60 ecaeceeeg geteeegga etgtggaete eaegaeeetg tecteggeee tgteegegee 120 gaageageee gggaetgege agegeeeege gtgeegae atg gga aag tet ett tet 176

25

Met Gly Lys Ser Leu Ser

												1				5	
	cat	ttg	cct	ttg	cat	tca	agc	aaa	gaa	gat	gct	tat	gat	gga	gtc	aca	224
	Hiș	Leu	Pro	Leu	His	Ser	Ser	Lys	Glu	Asp	Ala	Tyr	Asp	Gly	Val	Thr	
				10					15					20			
5	tct	gaa	aac	atg	agg	aat	gga	ctg	gtt	aat	agt	gaa	gtc	cat	aat	gaa	272
	Ser	Glu	Asn	Met	Arg	Asn	Gly	Leu	Val	Asn	Ser	Glu	Val	His	Asn	Glu	
			25					30					35				
	gat	gga	aga	aat	gga	gat	gtc	tct	cag	ttt	cca	tat	gtg	gaa	ttt	aca	320
	Asp	Gly	Arg	Asn	Gly	Asp	Val	Ser	Gln	Phe	Pro	Tyr	Val	Glu	Phe	Thr	
10		40					45					50					
	gga	aga ·	gat	agt	gtc	acc	tgc	cct	act	tgt	cag	gga	aca	gga	aga	att	368
	Gly	Arg	Asp	Ser	Val	Thr	Cys	Pro	Thr	Cys	Gln	Gly	Thr	Gly	Arg	Ile	
	55					60					65					70	
	cct	agg	ggg	caa	gaa	aac	caa	ctg	gtg	gca	ttg	att	cca	tat	agt	gat	416
15	Pro	Arg	Gly	Gln	Glu	Asn	Gln	Leu	Val	Ala	Leu	Ile	Pro	Tyr	Ser	Asp	
					75					80					85		
	cag	aga	tta	agg	cca	aga	aga	aca	aag	ctg	tat	gtg	atg	gct	tct	gtg	464
	Gln	Arg	Leu	Arg	Pro	Arg	Arg	Thr	Lys	Leu	Tyr	Val	Met	Ala	Ser	Val	
				90					95					100			
20	ttt	gtc	tgt	cta	ctc	ctt	tct	gga	ttg	gct	gtg	ttt	ttc	ctt	ttc	cct	512
	Phe	Val	Cys	Leu	Leu	Leu	Ser	Gly	Leu	Ala	Val	Phe	Phe	Leu	Phe	Pro	
			105					110					115				
	cgc	tct	atc	gac	gtg	aaa	tac	att	ggt	gta	aaa	tca	gcc	tat	gtc	agt	560
	Arg	Ser	Ile	Asp	Val	Lys	Tyr	Ile	Gly	Val	Lys	Ser	Ala	Tyr	Val	Ser	
25		120					125					130					

	tat	gat	gtt	cag	aag	cgt	aca	att	tat	tta	aat	atc	aca	aac	aca	cta	608
	Tyr	Asp	Val	Gln	Lys	Arg	Thr	Ile	Tyr	Leu	Asn	Ile	Thr	Asn	Thr	Leu	
	135					140					145					150	
	aat	ata	aca	aac	aat	aac	tat	tac	tct	gtc	gaa	gtt	gaa	aac	atc	act	656
5	Asn	Ile	Thr	Asn	Asn	Asn	Tyr	Tyr	Ser	Val	Glu	Val	Glu	Asn	Ile	Thr	
					155					160					165		
	gcc	caa	gtt	caa	ttt	tca	aaa	aca	gtt	att	gga	aag	gca	cgc	tta	aac	704
	Ala	Gln	Val	Gln	Phe	Ser	Lys	Thr	Val	Ile	Gly	Lys	Ala	Arg	Leu	Asn	
				170					175					180			
10	aac	ata	acc	att	att	ggt	cca	ctt	gat	atg	aaa	caa	att	gat	tac	aca	752
	Asn	Ile	Thr	Ile	Ile	Gly	Pro	Leu	Asp	Met	Lys	Gln	Ile	Asp	Tyr	Thr	
			185					190					195				
	gta	cct	acc	gtt	ata	gca	gag	gaa	atg	agt	tat	atg	tat	gat	ttc	tgt	800
	Val	Pro	Thr	Val	Ile	Ala	Glu	Glu	Met	Ser	Tyr	Met	Tyr	Asp	Phe	Cys	
15		200					205					210					
	act	ctg	ata	tcc	atc	aaa	gtg	cat	aac	ata	gta	ctc	atg	atg	caa	gtt	848
	Thr	Leu	Ile	Ser	Ile	Lys	Val	His	Asn	Ile	Val	Leu	Met	Met	Gln	Val	
	215	,				220					225					230	
	act	gtg	aca	aca	aca	tac	ttt	ggc	cac	tct	gaa	cag	ata	tcc	cag	gag	896
20	Thr	: Val	Thr	Thr	Thr	Tyr	Phe	Gly	His	Ser	Glu	Gln	Ile	Ser	Gln	Glu	
					235	,				240					245		
	agg	tat	cag	tat	gto	gac	tgt	gga	aga	aac	aca	act	tat	cag	ttg	ggg	944
	Arg	Tyr	Gln	Tyr	Val	. Asp	Cys	Gly	Arg	Asn	Thr	Thr	Tyr	Glr	Leu	Gly	
				250					255	,				260)		
25	cag	, tct	gaa	tat	tta	a 'aat	gta	ctt	cag	r cca	caa	cag	taa	aaa	ctgg	aag	993

268/346

Gln Ser Glu Tyr Leu Asn Val Leu Gln Pro Gln Gln

265 270 275

agatggattt aaagaagaaa tatctattga tatttcctat actctcaatg aagaggtatt 1053 tcctaatagg agaccttaaa ttgaacaaac ctaaagttta cacttctaag agtacagtta 1113 aaagtatgtg gacctgcagt tcttgtaact ctccactctg tgttaatgat atatttgtac 1173 taggatettt taettgaate taaatttaet ggttgattte etteteeage etateeeeta 1233 cagggaaaag ctgatacttc ccctatagta caataaataa ttatttaaaa qtcataqctc 1293 cagtcactac tgaaaacata attttggtga taaaataatt tgagaaactt aatttctgaa 1353 tgtttttata gaaaattact gaaagtctat tactcatgga agacttttaa agaataacct 1413 tttttcctgt tttataaatt cccattgtta tatggtagta tttcagctac acaatatttt 1473 agcttttagc tagacattta tagcttttca tttgttgaaa tggtaatcat ctgcatgttt 1533 ttgtcactta tttcaggtta gtgattgcct aacacttata agccaaaata atctttgcaa 1593 aattccatac ctaaaatttt gaaagcccct aatgttttca cacatctttc tgtattagtt 1653 atagtittgt gaaatctttg tgtgatcttc aaacattatc atttaatgta caatactgta 1713 aataaactgt gcatggcttt tatacagctt tagtaaatgt caaataaagt ggtacagact 1773 cattacaaca agtttctcat aaaaaatacaa taaataggaa aatgaaattc agaaacccat 1833 agactgggaa taggttccag ttacagcttg gatctggcat aaaataaatt tgaaataaaa 1893 tattttgatg ctcc 1907

20 <210> 120

5

10

15

<211> 1816

<212> DNA

<213> Homo sapiens

25 <220>

269/346

<221> CDS

<222> (134)..(1306)

15

80

<400> 120

5 cttgggctgg agccgcctg ggtgtcagcg gctcggctcc cgcgcacgct ccggccqtcq 60 cgcagcctcg gcacctgcag gtccgtgcgt cccgcggctg gcgcccctga ctccqtcccg 120 gccagggagg gcc atg att tcc ctc ccg ggg ccc ctg gtg acc aac ttg 169 Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu 1 ctg cgg ttt ttg ttc ctq ggg ctg agt gcc ctc gcg ccc ccc tcq cqq 217

10 Leu Arg Phe Leu Phe Leu Gly Leu Ser Ala Leu Ala Pro Pro Ser Arg

> 20 25

gcc cag ctg caa ctg cac ttg ccc gcc aac cgg ttg cag gcg gtg gag 265 Ala Gln Leu Gln Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu

15 30 35 40

> gga ggg gaa gtg gtg ctt cca gcg tgg tac acc ttg cac ggg gag gtg 313 Gly Gly Glu Val Val Leu Pro Ala Trp Tyr Thr Leu His Gly Glu Val

45 50 55 60

tct tca tcc cag cca tgg gag gtg ccc ttt gtg atg tgg ttc ttc aaa 361 20 Ser Ser Ser Gln Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe Lys

> 65 70 75

cag aaa gaa aag gag gat cag gtg ttg tcc tac atc aat ggg gtc aca 409 Gln Lys Glu Lys Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly Val Thr

90

85

25 aca age aaa cet gga gta tee ttg gte tae tee atg eec tee egg aac

	Thr	Ser	Lys	Pro	Gly	Val	Ser	Leu	Val	Tyr	Ser	Met	Pro	Ser	Arg	Asn	
			95					100					105				
	ctg	tcc	ctg	cgg	ctg	gag	ggt	ctc	cag	gag	aaa	gac	tcţ	ggc	ccc	tac	505
	Leu	Ser	Leu	Arg	Leu	Glu	Gly	Leu	Gln	Glu	Lys	Asp	Ser	Gly	Pro	Tyr	
5		110					115					120					
	agc	tgc	tcc	gtg	aat	gtg	caa	gac	aaa	caa	ggc	aaa	tct	agg	ggc	cac	553
	Ser	Cys	Ser	Val	Asn	Val	Gln	Asp	Lys	Gln	Gly	Lys	Ser	Arg	Gly	His	
	125					130					135					140	
	agc	atc	aaa	acc	tta	gaa	ctc	aat	gta	ctg	gtt	cct	cca	gct	cct	cca	601
10	Ser	Ile	Lys	Thr	Leu	Glu	Leu	Asn	Val	Leu	Val	Pro	Pro	Ala	Pro	Pro	
					145					150					155		
	tcc	tgc	cgt	ctc	cag	ggt	gtg	ccc	cat	gtg	ggg	gca	aac	gtg	acc	ctg	649
	Ser	Cys	Arg	Leu	Gln	Gly	Val	Pro	His	Val	Gly	Ala	Asn	Val	Thr	Leu	
				160					165					170			
15	agc	tgc	cag	tct	cca	agg	agt	aag	ccc	gct	gtc	caa	tac	cag	tgg	gat	697
	Ser	Cys	Gln	Ser	Pro	Arg	Ser	Lys	Pro	Ala	Val	Gln	Tyr	Gln	Trp	Asp	
			175					180					185				
	cgg	cag	ctt	cca	tcc	ttc	cag	act	ttc	ttt	gca	cca	gca	tta	gat	gtc	745
	Arg	Gln	Leu	Pro	Ser	Phe	Gln	Thr	Phe	Phe	Ala	Pro	Ala	Leu	Asp	Val	
20		190					195					200					
	atc	cgt	ggg	tct	tta	agc	ctc	acc	aac	ctt	tcg	tct	tcc	atg	gct	gga	793
	Ile	Arg	Gly	Ser	Leu	Ser	Leu	Thr	Asn	Leu	Ser	Ser	Ser	Met	Ala	Gly	
	205					210					215					220	
	gtc	tat	gtc	tgc	aag	gcc	cac	aat	gag	gtg	ggc	act	gcc	caa	tgt	aat	841
25	Val	Tyr	Val	Cys	Lys	Ala	His	Asn	Glu	Val	Gly	Thr	Ala	Gln	Cys	Asn	•

					225					230					235		
	gtg	acg	ctg	gaa	gtg	agc	aca	ggg	cct	gga	gct	gca	gtg	gtt	gct	gga	889
	Val	Thr	Leu	Glu	Val	Ser	Thr	Gly	Pro	Gly	Ala	Ala	Val	Val	Ala	Gly	
				240					245					250			
5	gct	gtt	gtg	ggt	acc	ctg	gtt	gga	ctg	ggg	ttg	ctg	gct	ggg	ctg	gtc	937
	Ala	Val	Val	Gly	Thr	Leu	Val	Gly	Leu	Gly	Leu	Leu	Ala	Gly	Leu	Val	
		•	255					260					265				
	ctc	ttg	tac	cac	tgc	cgg	ggc	aag	gcc	ctg	gag	gag	cca	gcc	aat	gat	985
	Leu	Leu	Tyr	His	Cys	Arg	Gly	Lys	Ala	Leu	Glu	Glu	Pro	Ala	Asn	Asp	
10		270					275					280					
	atc	aag	gag	gat	gcc	att	gct	ccc	cgg	acc	ctg	ccc	tgg	ccc	aag	agc	1033
	Ile	Lys	Glu	Asp	Ala	Ile	Ala	Pro	Arg	Thr	Leu	Pro	Trp	Pro	Lys	Ser	
	285					290					295					300	
	tca	gac	aca	atc	tcc	aag	aat	ggg	acc	ctt	tcc	tct	gtc	acc	tcc	gca	1081
15	Ser	Asp	Thr	Ile	Ser	Lys	Asn	Gly	Thr	Leu	Ser	Ser	Val	Thr	Ser	Ala	
					305					310					315		
	cga	gcc	ctc	cgg	cca	ccc	cat	ggc	cct	ccc	agg	cct	ggt	gca	ttg	acc	1129
	Arg	Ala	Leu	Arg	Pro	Pro	His	Gly	Pro	Pro	Arg	Pro	Gly	Ala	Leu	Thr	
				320					325					330			
20	ccc	acg	ccc	agt	ctc	tcc	agc	cag	gcc	ctg	ccc	tca	cca	aga	ctg	ccc	1177
	Pro	Thr	Pro	Ser	Leu	Ser	Ser	Gln	Ala	Leu	Pro	Ser	Pro	Arg	Leu	Pro	
			335					340					345				
	acg	aca	gat	ggg	gcc	cac	cct	caa	cca	ata	tcc	ccc	atc	cct	ggt	ggg	1225
	Thr	Thr	Asp	Gly	Ala	His	Pro	Gln	Pro	Ile	Ser	Pro	Ile	Pro	Gly	Gly	
25		350					355					360					

272/346

gtt tct tcc tct ggc ttg agc cgc atg ggt gct gtg cct gtg atg gtg 1273

Val Ser Ser Ser Gly Leu Ser Arg Met Gly Ala Val Pro Val Met Val

365 370 375 380

cct gcc cag agt caa gct ggc tct ctg gta tga tgaccccacc actcattggc 1326

Pro Ala Gln Ser Gln Ala Gly Ser Leu Val

385 390

taaaagattt ggggtetete etteetatag gggteacete tageacagag geetgagtea 1386
tgggaaagag teacacteet gaceettagt actetgeece cacetetett tactgtggga 1446
aaaceatete agtaagacet aagtgteeag gagacagaag gagaagagga agtggatetg 1506
gaattgggag gageeteeae eeaceeetga eteeteetta tgaageeage tgetgaaatt 1566
agetacteae caagagtgag gggeagagae tteeagteae tgagteteee aggeeeett 1626
gatetgtace eeaceeetat etaacaceae eettggetee eacteeaget eeetgtattg 1686
atataacetg teaggetgge ttggttaggt tttactgggg eagaggatag ggaatetett 1746
attaaaacta acatgaaata tgtgttgttt teatttgeaa atttaaataa agatacataa 1806
tgtttgtatg

<210> 121

5

10

15

<211> 395

<212> PRT

20 <213> Homo sapiens

<400> 121

Met Ser Gly Met Glu Glu Tyr Thr Thr Val Ser Gly Glu Val Leu Gln

1 5 10 15

25 Arg Trp Lys Ile Pro Ser Phe Lys Glu Asn Gln Thr Leu Ser Met Gly

				20					25					30		
	Ala	Ala	Thr	Val	Gln	Ser	Arg	Gly	Gln	Tyr	Ser	Cys	Ser	Gly	Gln	Val
			35					40					45			
	Met	Tyr	Ile	Pro	Gln	Thr	Phe	Thr	Gln	Thr	Ser	Glu	Thr	Ala	Met	Val
5		50					55					60				
	Gln	Val	Gln	Glu	Leu	Phe	Pro	Pro	Pro	Val	Leu	Ser	Ala	Ile	Pro	Ser
	65					70					75					80
	Pro	Glu	Pro	Arg	Glu	Gly	Ser	Leu	Val	Thr	Leu	Arg	Cys	Gln	Thr	Lys
					85					90					95	
10	Leu	His	Pro	Leu	Arg	Ser	Ala	Leu	Arg	Leu	Leu	Phe	Ser	Phe	His	Lys
				100					105					110		ė
	Asp	Gly	His	Thr	Leu	Gln	Asp	Arg	Gly	Pro	His	Pro	Glu	Leu	Cys	Ile
			115					120					125			
	Pro	Gly	Ala	Lys	Glu	Gly	Asp	Ser	Gly	Leu	Tyr	Trp	Cys	Glu	Val	Ala
15		130					135					140				
	Pro	Glu	Gly	Gly	Gln	Val	Gln	Lys	Gln	Ser	Pro	Gln	Leu	Glu	Val	Arg
	145					150					155					160
	Val	Gln	Ala	Pro	Val	Ser	Arg	Pro	Val	Leu	Thr	Leu	His	His	Gly	Pro
					165					170					175	
20	Ala	Asp	Pro	Ala	Val	Gly	Asp	Met	Val	Gln	Leu	Leu	Cys	Glu	Ala	Gln
				180					185					190		
	Arg	Gly	Ser	Pro	Pro	Ile	Leu	Tyr	Ser	Phe	Tyr	Leu	Asp	Glu	Lys	Ile
			195					200					205			
	Val	Gly	Asn	His	Ser	Ala	Pro	Cys	Gly	Gly	Thr	Thr	Ser	Leu	Leu	Phe
25		210					215					220				

274/346

	Pro	Val	Lys	Ser	Glu	Gln	Asp	Ala	Gly	Asn	Tyr	Ser	Cys	Glu	Ala	Glu
	225					230					235					240
	Asn	Ser	۷al	Ser	Arg	Glu	Arg	Ser	Glu	Pro	Lys	Lys	Leu	Ser	Leu	Lys
					245					250					255	
5	Gly	Ser	Gln	Val	Leu	Phe	Thr	Pro	Ala	Ser	Asn	Trp	Leu	Val	Pro	Trp
				260					265					270		
	Leu	Pro	Ala	Ser	Leu	Leu	Gly	Leu	Met	Val	Ile	Ala	Ala	Ala	Leu	Leu
			275					280					285			
	Val	Tyr	Val	Arg	Ser	Trp	Arg	Lys	Ala	Gly	Pro	Leu	Pro	Ser	Gln	Ile
10		290					295					300				
	Pro	Pro	Thr	Ala	Pro	Gly	Gly	Glu	Gln	Cys	Pro	Leu	Tyr	Ala	Asn	Val
	305					310			•		315					320
	His	His	Gln	Lys	Gly	Lys	Asp	Glu	Gly	Val	Val	Tyr	Ser	Val	Val	His
					325					330					335	
15	Arg	Thr	Ser	Lys	Arg	Ser	Glu	Ala	Arg	Ser	Ala	Glu	Phe	Thr	Val	Gly
		•		340					345			•		350		
	Arg	Lys	Asp	Ser	Ser	Ile	Ile	Cys	Ala	Glu	Val	Arg	Cys	Leu	Gln	Pro
			355					360		•			365			
	Ser	Glu	Val	Ser	Ser	Thr	Glu	Val	Asn	Met	Arg	Ser	Arg	Thr	Leu	Gln
20		370	•				375					380				
	Glu	Pro	Leu	Ser	Asp	Cys	Glu	Glu	Val	Leu	Cys					
	385					390					395					

<210> 122

25 <211> 550

275/346

<212> PRT

<213> Homo sapiens

	<400	0> 12	22													
5	Met	Ala	Phe	Ser	Lys	Leu	Leu	Glu	Gln	Ala	Gly	Gly	Val	Gly	Leu	Phe
	1				5					10					15	
	Gln	Thr	Leu	Gln	Val	Leu	Thr	Phe	Ile	Leu	Pro	Cys	Leu	Met	Ile	Pro
				20					25					30		
	Ser	Gln	Met	Leu	Leu	Glu	Asn	Phe	Ser	Ala	Ala	Ile	Pro	Gly	His	Arg
10			35					40					45			
	Cys	Trp	Thr	His	Met	Leu	Asp	Asn	Gly	Ser	Ala	Val	Ser	Thr	Asn	Met
		50					55					60				
	Thr	Pro	Lys	Ala	Leu	Leu	Thr	Ile	Ser	Ile	Pro	Pro	Gly	Pro	Asn	Gln
	65					70					75					80
15	Gly	Pro	His	Gln	Cys	Arg	Arg	Phe	Arg	Gln	Pro	Gln	Trp	Gln	Leu	Leu
					85					90					95	
	Asp	Pro	Asn	Ala	Thr	Ala	Thr	Ser	Trp	Ser	Glu	Ala	Asp	Thr	Glu	Pro
				100					105					110		
	Cys	Val	Asp	Gly	Trp	Val	Tyr	Asp	Arg	Ser	Val	Phe	Thr	Ser	Thr	Ile
20			115					120					125			
	Val	Ala	Lys	Trp	Asp	Leu	Val	Cys	Ser	Ser	Gln	Gly	Leu	Lys	Pro	Leu
		130					135					140				
	Ser	Gln	Ser	Ile	Phe	Met	Ser	Gly	Ile	Leu	Val.	Gly	Ser	Phe	Ile	Trp
	145					150					155					160
25	Gly	Leu	Leu	Ser	Tyr	Arg	Phe	Gly	Arg	Lys	Pro	Met	Leu	ser	Trp	Cys

					165					170					175	
	Cys	Leu	Gln	Leu	Ala	Val	Ala	Gly	Thr	Ser	Thr	Ile	Phe	Ala	Pro	Thr
				180					185					190		
	Phe	Val	Ile	Tyr	Суѕ	Gly	Leu	Arg	Phe	Val	Ala	Ala	Phe	Gly	Met	Ala
5			195					200					205			
	Gly	Ile	Phe	Leu	Ser	Ser	Leu	Thr	Leu	Met	Val	Glu	Trp	Thr	Thr	Thr
		210					215					220				
	Ser	Arg	Arg	Ala	Val	Thr	Met	Thr	Val	Val	Gly	Cys	Ala	Phe	Ser	Ala
	225					230					235					240
10	Gly	Gln	Ala	Ala	Leu	Gly	Gly	Leu	Ala	Phe	Ala	Leu	Arg	Asp	Trp	Arg
					245					250					255	
	Thr	Leu	Gln	Leu	Ala	Ala	Ser	Val	Pro	Phe	Phe	Ala	Ile	Ser	Leu	Ile
				260					265					270		
	Ser	Trp	Trp	Leu	Pro	Glu	Ser	Ala	Arg	Trp	Leu	Ile	Ile	Lys	Gly	Lys
15			275					280					285			
	Pro	Asp	Gln	Ala	Leu	Gln	Glu	Leu	Arg	Lys	Val	Ala	Arg	Ile	Asn	Gly
		290					295					300				
	His	Lys	Glu	Ala	Lys	Asn	Leu	Thr	Ile	Glu	Val	Leu	Met	Ser	Ser	Val
	305					310					315					320
20	Lys	Glu	Glu	Val	Ala	Ser	Ala	Lys	Glu	Pro	Arg	Ser	Val	Leu	Asp	Leu
					325					330					335	
	Phe	Cys	Val	Pro	Val	Leu	Arg	Trp	Arg	Ser	Cys	Ala	Met	Leu	Val	Val
				340					345					350		
	Asn	Phe	Ser	Leu	Leu	Ile	Ser	Tyr	Tyr	Gly	Leu	Val	Phe	Asp	Leu	Gln
25			355					360		-			365			

277/346

	Ser	Leu	Gly	Arg	Asp	Ile	Phe	Leu	Leu	Gln	Ala	Leu	Phe	Gly	Ala	Val
		370					375					380				
	Asp	Phe	Leu	Gly	Arg	Ala	Thr	Thr	Ala	Leu	Leu	Leu	Ser	Phe	Leu	Gly
	385					390					395					400
5	Arg	Arg	Thr	Ile	Gln	Ala	Gly	Ser	Gln	Ala	Met	Ala	Gly	Leu	Ala	Ile
					405					410					415	
	Leu	Ala	Asn	Met	Leu	Val	Pro	Gln	Asp	Leu	Gln	Thr	Leu	Arg	Val	Val
				420					425					430		
	Phe	Ala	Val	Leu	Gly	Lys	Gly	Cys	Phe	Gly	Ile	Ser	Leu	Thr	Cys	Leu
10			435					440					445			
	Thr	Ile	Tyr	Lys	Ala	Glu	Leu	Phe	Pro	Thr	Pro	Val	Arg	Met	Thr	Ala
		450					455					460				
							•									
	Asp	Gly	Ile	Leu	His	Thr	Val	Gly	Arg	Leu	Gly	Ala	Met	Met	Gly	Pro
	465					470					475					480
15	Leu	Ile	Leu	Met	Ser	Arg	Gln	Ala	Leu	Pro	Leu	Leu	Pro	Pro	Leu	Leu
					485					490					495	
	Tyr	Gly	Val	Ile	Ser	Ile	Ala	Ser	Ser	Leu	Val	Val	Leu	Phe	Phe	Leu
				500					505					510		
	Pro	Glu	Thr	Gln	Gly	Leu	Pro	Leu	Pro	Asp	Thr	Ile	Gln	Asp	Leu	Glu
20			515					520					525			
	Ser	Gln	Lys	Ser	Thr	Ala	Ala	Gln	Gly	Asn	Arg	Gln	Glu	Ala	Val	Thr
		530					535					540				
	Val	Glu	Ser	Thr	Ser	Leu										
	545					550										

25

WO 01/49728

	<21	0> 1	23													
	<21	1> 2	18							,						
	<21	2> P	RT													
	<21	3> H	omo :	sapi	ens											
5																
	<40	0> 1:	23													
	Met	Lys	His	Thr	Leu	Ala	Leu	Leu	Ala	Pro	Leu	Leu	Gly	Leu	Gly	Let
	1				5					10					15	
	Gly	Leu	Ala	Leu	Ser	Gln	Leu	Ala	Ala	Gly	Ala	Thr	Asp	Cys	Lys	Phe
10				20					25					30		
	Leu	Gly	Pro	Ala	Glu	His	Leu	Thr	Phe	Thr	Pro	Ala	Ala	Arg	Ala	Arg
			35					40					45			
	Trp	Leu	Ala	Pro	Arg	Val	Arg	Ala	Pro	Gly	Leu	Leu	Asp	Ser	Leu	Tvr
		50					55			_		60	•			-3-
15	Gly	Thr	Val	Ara	Ara	Phe		Ser	Val	Val	Gln		Asn	Pro	Phe	Pro
	65				5	70				,,,,	75	acu.	11011	110	THE	
		Glu	Len	T-V	Luc		Ton	Tou	700	C1		N1 -	0	** - 1	•	80
	DCI	JIU	Leu	VAI		AIa	пеп	теп	ASII		ьeu	AIa	ser	vaı	-	vaı
•		21	1		85					90					95	
	Asn	GIU	Val		Arg	Tyr	Glu	Ala	Gly	Tyr	Val	Val	Cys	Ala	Val	Ile
20				100					105					110		
	Ala	Gly	Leu	Tyr	Leu	Leu	Leu	Val	Pro	Thr	Ala	Gly	Leu	Cys	Phe	Cys
			115					120					125			
	Cys	Cys	Arg	Cys	His	Arg	Arg	Cys	Gly	Gly	Arg	Val	Lys	Thr	Gļu	His
		130					135					140				
25	Lys	Ala	Leu	Ala	Cys	Glu	Arg	Ala	Ala	Leu	Met	Val	Phe	Leu	Leu	Leu

	145					150					155					160
	Thr	Thr	Leu	Leu	Leu	Leu	Ile	Gly	Val	Val	Cys	Ala	Phe	Val	Thr	Asn
					165					170					175	
	Gln	Arg	Thr	His	Glu	Gln	Met	Gly	Pro	Ser	Ile	Glu	Ala	Met	Pro	Glu
5				180					185					190		
	Thr	Leu	Leu	Ser	Leu	Trp	Gly	Leu	Val	Ser	Asp	Val	Pro	Gln	Val	Ser
			195					200					205			
	Thr	Val	Thr	Pro	His	Pro	His	Val	Pro	Leu						
		210					215									
10																
	<21	0> 1:	24													
	<21	1> 5	96													
	<21	2> P	RT													
	<21	3> H	omo	sapi	ens											
15																
	<40	0> 1	24				•									
	Met	Ala	Ala	Asn	Ser	Thr	Ser	Asp	Leu	His	Thr	Pro	Gly	Thr	Gln	Leu
	1				5					10					15	
	Ser	· Val	Ala	Asp	Ile	Ile	val	Ile	Thr	Val	. Tyr	Phe	Ala	Leu	Asn	Val
20				20					25					30		
	Ala	val	. Gly	7 Ile	Trp	Ser	Ser	Cys	Arg	Ala	Ser	Arg	Asr	1 Thr	· Val	Asr
			35					40					45			
	Gly	у Туг	Phe	e Leu	ı Ala	Gly			Met	Thi	: Trp) Ile	: Gl	Ala
		50					55					60				
25	Sei	Let	ı Phe	e Ala	a Sei	: Sei	c Gli	ı Gly	, Sei	Gly	y Lev	ı Phe	e Ile	e Gly	Let	ı Ala

	65					70					75					80
	Gly	Ser	Gly	Ala	Ala	Gly	Gly	Leu	Ala	Val	Ala	Gly	Phe	Glu	Trp	Asn
					85					90					95	
	Ala	Thr	Tyr	Val	Leu	Leu	Ala	Leu	Ala	Trp	Val	Phe	Val	Pro	Ile	Tyr
5				100					105					110		
	Ile	Ser	Ser	Glu	Ile	Val	Thr	Leu	Pro	Glu	Tyr	Ile	Gln	Lys	Arg	Tyr
			115					120					125			
	Gly	Gly	Gln	Arg	Ile	Arg	Met	Tyr	Leu	Ser	Val	Leu	Ser	Leu	Leu	Leu
		130					135					140				
10 ·	Ser	Val	Phe	Thr	Lys	Ile	Ser	Leu	Asp	Leu	Tyr	Ala	Gly	Ala	Leu	Phe
	145					150					155					160
	Val	His	Ile	Cys	Leu	Gly	Trp	Asn	Phe	Tyr	Leu	Ser	Thr	Ile	Leu	Thr
					165					170					175	
	Leu	Gly	Ile	Thr	Ala	Leu	Tyr	Thr	Ile	Ala	Gly	Gly	Leu	Ala	Ala	Val
15				180					185					190		
	Ile	Tyr	Thr	Asp	Ala	Leu	Gln	Thr	Leu	Ile	Met	Val	Val	Gly	Ala	Val
			195					200		•			205			
	Ile	Leu	Thr	Ile	Lys	Ala	Phe	Asp	Gln	Ile	Gly	Gly	Tyr	Gly	Gln	Leu
		210					215					220				
20	Glu	Ala	Ala	Tyr	Ala	Gln	Ala	Ile	Pro	Ser	Arg	Thr	Ile	Ala	Asn	Thr
	225					230					235					240
	Thr	Cys	His	Leu	Pro	Arg	Thr	Asp	Ala	Met	His	Met	Phe	Arg	Asp	Pro
					245				•	250					255	
	His	Thr	Gly	Asp	Leu	Pro	Trp	Thr	Gly	Met	Thr	Phe	Gly	Leu	Thr	Ile
25				260					265					270		

		Met	Ala	Thr	Trp	Tyr	Trp	Cys	Thr	Asp	Gln	Val	Ile	Val	Gln	Arg	Ser
				275					280					285			
		Leu	Ser	Ala	Arg	Asp	Leu	Asn	His	Ala	Lys	Ala	Gly	Ser	Ile	Leu	Ala
			290					295					300				
	5	Ser	Tyr	Leu	Lys	Met	Leu	Pro	Met	Gly	Leu	Ile	Ile	Met	Pro	Gly	Met
		305					310					315					320
		Ile	Ser	Arg	Ala	Leu	Phe	Pro	Asp	Asp	Val	Gly	Cys	Val	Val	Pro	Ser
						325					330					335	
		Glu	Cys	Leu	Arg	Ala	Cys	Gly	Ala	Glu	Val	Gly	Cys	Ser	Asn	Ile	Ala
1	.0				340					345	•				350		
		Tyr	Pro	Lys	Leu	Val	Met	Glu	Leu	Met	Pro	Ile	Gly	Leu	Arg	Gly	Leu
				355			٠		360					365			
		Met	Ile	Ala	Val	Met	Leu	Ala	Ala	Leu	Met	Ser	Ser	Leu	Thr	Ser	Ile
			370					375					380				
1	.5	Phe	Asn	Ser	Ser	Ser	Thr	Leu	Phe	Thr	Met	Asp	Ile	Trp	Arg	Arg	Leu
		385					390					395					400
		Arg	Pro	Arg	Ser	Gly	Glu	Arg	Glu	Leu	Leu	Leu	Val	Gly	Arg	Leu	Val
						405					410					415	_
		Ile	Val	Ala	Leu	Ile	Gly	Val	Ser	Val	Ala	Trp	Ile	Pro	Val	Leu	Gln
2	20				420					425					430		
		Asp	Ser	Asn	Ser	Gly	Gln	Leu	Phe	Ile	Tyr	Met	Gln	Ser	Val	Thr	Ser
				435					440					445			
		Ser	Leu	Ala	Pro	Pro	Val	Thr	Ala	Val	Phe	Val	Leu	Gly	Val	Phe	Trp
			450					455					460				
2	25	Arg	Arg	Ala	Asn	Glu	Gln	Gly	Ala	Phe	Trp	Gly	Leu	Ile	Ala	Gly	Leu

282/346

Val Val Gly Ala Thr Arg Leu Val Leu Glu Phe Leu Asn Pro Ala Pro Pro Cys Gly Glu Pro Asp Thr Arg Pro Ala Val Leu Gly Ser Ile His Tyr Leu His Phe Ala Val Ala Leu Phe Ala Leu Ser Gly Ala Val Val Val Ala Gly Ser Leu Leu Thr Pro Pro Pro Gln Ser Val Gln Ile Glu Asn Leu Thr Trp Trp Thr Leu Ala Gln Asp Val Pro Leu Gly Thr Lys Ala Gly Asp Gly Gln Thr Pro Gln Lys His Ala Phe Trp Ala Arg Val Cys Gly Phe Asn Ala Ile Leu Leu Met Cys Val Asn Ile Phe Tyr Ala Tyr Phe Ala <210> 125 <211> 467 <212> PRT <213> Homo sapiens <400> 125

Met Trp Arg Cys Pro Leu Gly Leu Leu Leu Leu Pro Leu Ala Gly

	1				5					10					15	
	His	Leu	Ala	Leu	Gly	Ala	Gln	Gln	Gly	Arg	Gly	Arg	Arg	Glu	Leu	Ala
				20					25					30		
	Pro	Gly	Leu	His	Leu	Arg	Gly	Ile	Arg	Asp	Ala	Gly	Gly	Arg	Tyr	Cys
5			35					40					45			
	Gln	Glu	Gln	Asp	Leu	Cys	Cys	Arg	Gly	Arg	Ala	Asp	Asp	Cys	Ala	Leu
		50					55					60				
	Pro	Tyr	Leu	Gly	Ala	Ile	Суѕ	Tyr	Cys	Asp	Leu	Phe	Cys	Asn	Arg	Thr
	65					70					75					80
LO	Val	Ser	Asp	Cys	Cys	Pro	Asp	Phe	Trp	Asp	Phe	Cys	Leu	Gly	Val	Pro
		•			85					90					95	
	Pro	Pro	Phe	Pro	Pro	Ile	Gln	Gly	Cys	Met	His	Gly	Gly	Arg	Ile	Tyr
				100					105					110		
	Pro	Val	Leu	Gly	Thr	Tyr	Trp	Asp	Asn	Cys	Asn	Arg	Cys	Thr	Cys	Gln
1.5			115					120					125			
	Glu	Asn	Arg	Gln	Trp	Gln	Cys	Asp	Gln	Glu	Pro	Cys	Leu	Val	Asp	Pro
		130					135					140				
	Asp	Met	Ile	Lys	Ala	Ile	Asn	Gln	Gly	Asn	Tyr	Gly	Trp	Gln	Ala	Gly
	145					150					155					160
20	Asn	His	Ser	Ala	Phe	Trp	Gly	Met	Thr	Leu	Asp	Glu	Gly	Ile	Arg	Tyr
					165					170					175	
	Arg	Leu	Gly	Thr	Ile	Arg	Pro	Ser	Ser	Ser	Val	Met	Asn	Met	His	Glu
				180					185					190		
	Ile	Tyr	Thr	Val	Leu	Asn	Pro	Gly	Glu	Val	Leu	Pro	Thr	Ala	Phe	Glu
25			195					200					205			

	Ala	Ser	Glu	Lys	Trp	Pro	Asn	Leu	Ile	His	Glu	Pro	Leu	Asp	Gln	Gly
		210					215					220				
	Asn	Cys	Ala	Gly	Ser	Trp	Ala	Phe	Ser	Thr	Ala	Ala	Val	Ala	Ser	Asp
	225					230					235					240
5	Arg	Val	Ser	Ile	His	Ser	Leu	Gly	His	Met	Thr	Pro	Val	Leu	Ser	Pro
					245					250					255	
	Gln	Asn	Leu	Leu	Ser	Cys	Asp	Thr	His	Gln	Gln	Gln	Gly	Cys	Arg	Gly
				260					265					270		
	Gly	Arg	Leu	Asp	Gly	Ala	Trp	Trp	Phe	Leu	Arg	Arg	Arg	Gly	Val	Val
10			275					280					285			
	Ser	Asp	His	Cys	Tyr	Pro	Phe	Ser	Gly	Arg	Glu	Arg	Asp	Glu	Ala	Gly
		290					295					300				
	Pro	Ala	Pro	Pro	Cys	Met	Met	His	Ser	Arg	Ala	Met	Gly	Arg	Gly	Lys
	305					310					315					320
15	Arg	Gln	Ala	Thr	Ala	His	Cys	Pro	Asn	Ser	Tyr	Val	Asn	Asn	Asn	Asp
			÷		325					330					335	
	Ile	Tyr	Gln	Val	Thr	Pro	Val	Tyr	Arg	Leu	Gly	Ser	Asn	Asp	Lys	Glu
				340					345					350		
	Ile	Met	Lys	Glu	Leu	Met	Glu	Asn	Gly	Pro	Val	Gln	Ala	Leu	Met	Glu
20			355					360					365			
	Val	His	Glu	Asp	Phe	Phe	Leu	Tyr	Lys	Gly	Gly	Ile	Tyr	Ser	His	Thr
		370					375					380				
	Pro	Val	Ser	Leu	Gly	Arg	Pro	Glu	Arg	Tyr	Arg	Arg	His	Gly	Thr	His
	385					390					395					400
25	Ser	Val	Lys	Ile	Thr	Gly	Trp	Glv	Glu	Glu	Thr	Leu	Pro	asp	Glv	Ara

285/346

Thr Leu Lys Tyr Trp Thr Ala Ala Asn Ser Trp Gly Pro Ala Trp Gly Glu Arg Gly His Phe Arg Ile Val Arg Gly Val Asn Glu Cys Asp Ile Glu Ser Phe Val Leu Gly Val Trp Gly Arg Val Gly Met Glu Asp Met Gly His His <210> 126 <211> 476 <212> PRT <213> Homo sapiens <400> 126 Met Ala Gly Ser Asp Thr Ala Pro Phe Leu Ser Gln Ala Asp Asp Pro Asp Asp Gly Pro Val Pro Gly Thr Pro Gly Leu Pro Gly Ser Thr Gly Asn Pro Lys Ser Glu Glu Pro Glu Val Pro Asp Gln Glu Gly Leu Gln Arg Ile Thr Gly Leu Ser Pro Gly Arg Ser Ala Leu Ile Val Ala Val Leu Cys Tyr Ile Asn Leu Leu Asn Tyr Met Asp Arg Phe Thr Val Ala

	65					70					75					80
	Gly	Val	Leu	Pro	Asp	Ile	Glu	Gln	Phe	Phe	Asn	Ile	Gly	Asp	Ser	Ser
					85					90					95	
	Ser	Gly	Leu	Ile	Gln	Thr	Val	Phe	Ile	Ser	Ser	Tyr	Met	Val	Leu	Ala
5				100					105					110		
	Pro	Val	Phe	Gly	Tyr	Leu	Gly	Asp	Arg	Tyr	Asn	Arg	Lys	Tyr	Leu	Met
			115					120					125			
	Cys	Gly	Gly	Ile	Ala	Phe	Trp	Ser	Leu	Val	Thr	Leu	Gly	Ser	Ser	Phe
		130					135					140				
10	Ile	Pro	Gly	Glu	His	Phe	Trp	Leu	Leu	Leu	Leu	Thr	Arg	Gly	Leu	Val
	145					150					155					160
	Gly	Val	Gly	Glu	Ala	Ser	Tyr	Ser	Thr	Ile	Ala	Pro	Thr	Leu	Ile	Ala
					165					170					175	
	Asp	Leu	Phe	Val	Ala	Asp	Gln	Arg	Ser	Arg	Met	Leu	Ser	Ile	Phe	Tyr
15				180					185					190		
	Phe	Ala	Ile	Pro	Val	Gly	Ser	Gly	Leu	Gly	Tyr	Ile	Ala	Gly	Ser	Lys
			195					200					205			
	Val	Lys	Asp	Met	Ala	Gly	Asp	Trp	His	Trp	Ala	Leu	Arg	Val	Thr	Pro
		210					215					220				
20	Gly	Leu	Gly	Val	Val	Ala	Val	Leu	Leu	Leu	Phe	Leu	Val	Val	Arg	Glu
	225					230				,	235					240
	Pro	Pro	Arg	Gly	Ala	Val	Glu	Arg	His	Ser	Asp	Leu	Pro	Pro	Leu	Asn
					245					250					255	
	Pro	Thr	Ser	Trp	Trp	Ala	Asp	Leu	Arg	Ala	Leu	Ala	Arg	Asn	Leu	Ile
25				260					265					270		

	Phe	Gly	Leu	Ile	Thr	Cys	Leu	Thr	Gly	Val	Leu	Gly	Val	Gly	Leu	Gl.
			275					280					285			
	Val	Glu	Ile	Ser	Arg	Arg	Leu	Arg	His	Ser	Asn	Pro	Arg	Ala	Asp	Pro
		290					295				•	300				
5	Leu	Val	Cys	Ala	Thr	Gly	Leu	Leu	Gly	Ser	Ala	Pro	Phe	Leu	Phe	Le
	305					310					315					320
	Ser	Leu	Ala	Cys	Ala	Arg	Gly	Ser	Ile	Val	Ala	Thr	Tyr	Ile	Phe	Ile
					325				•	330					335	
	Phe	Ile	Gly	Glu	Thr	Leu	Leu	Ser	Met	Asn	Trp	Ala	Ile	Val	Ala	Ası
10				340					345					350		
	Ile	Leu	Leu	Tyr	Val	Val	Ile	Pro	Thr	Arg	Arg	Ser	Thr	Ala	Glu	Ala
			355					360					365			
	Phe	Gln	Ile	Val	Leu	Ser	His	Leu	Leu	Gly	Asp	Ala	Gly	Ser	Pro	Туг
		370					375					380				
15	Leu	Ile	Gly	Leu	Ile	Ser	Asp	Arg	Leu	Arg	Arg	Asn	Trp	Pro	Pro	Ser
	385					390					395					400
	Phe	Leu	Ser	Glu	Phe	Arg	Ala	Leu	Gln	Phe	Ser	Leu	Met	Leu	Cys	Ala
					405					410					415	
	Phe	Val	Gly	Ala	Leu	Gly	Gly	Ala	Ala	Phe	Leu	Gly	Thr	Ala	Ile	Phe
20				420					425					430		
	Ile	Glu	Ala	Asp	Arg	Arg	Arg	Ala	Gln	Leu	His	Val	Gln	Gly	Leu	Leu
			435					440					445			
	His	Glu	Ala	Gly	Ser	Thr	Asp	Asp	Arg	Ile	Val	Val	Pro	Gln	Arg	Gly
		450					455					460				
25	Arg	Ser	Thr	Arg	Val	Pro	Val	Ala	Ser	Val	Leu	Ile				

288/346

<210> 127 <211> 449 <212> PRT <213> Homo sapiens <400> 127 Met Ser Asp Ile Arg His Ser Leu Leu Arg Arg Asp Ala Leu Ser Ala 5. Ala Lys Glu Val Leu Tyr His Leu Asp Ile Tyr Phe Ser Ser Gln Leu Gln Ser Ala Pro Leu Pro Ile Val Asp Lys Gly Pro Val Glu Leu Leu Glu Glu Phe Val Phe Gln Val Pro Lys Glu Arg Ser Ala Gln Pro Lys Arg Leu Asn Ser Leu Gln Glu Leu Gln Leu Leu Glu Ile Met Cys Asn Tyr Phe Gln Glu Gln Thr Lys Asp Ser Val Arg Gln Ile Ile Phe Ser Ser Leu Phe Ser Pro Gln Gly Asn Lys Ala Asp Asp Ser Arg Met Ser Leu Leu Gly Lys Leu Val Ser Met Ala Val Ala Val Cys Arg Ile Pro

Val Leu Glu Cys Ala Ala Ser Trp Leu Gln Arg Thr Pro Val Val Tyr

		130					135					140					
	Cys	Val	Arg	Leu	Ala	Lys	Ala	Leu	Val	Asp	Asp	Tyr	Cys	Cys	Leu	Val	
	145					150					155					160	
	Pro	Gly	Ser	Ile	Gln	Thr	Leu	Lys	Gln	Ile	Phe	Ser	Ala	Ser	Pro	Arg '	
5					165					170					175		
	Phe	Cys	Cys	Gln	Phe	Ile	Thr	Ser	Val	Thr	Ala	Leu	Tyr	Asp	Leu	Ser	
				180					185					190			
	Ser	Asp	Asp	Leu	Ile	Pro	Pro	Met	Asp	Leu	Leu	Glu	Met	Ile	Val	Thr	
			195					200					205				
10	Trp	Ile	Phe	Glu	Asp	Pro	Arg	Leu	Ile	Leu	Ile	Thr	Phe	Leu	Asn	Thr	
		210					215					220					
	Pro	Ile	Ala	Ala	Asn	Leu	Pro	Ile	Gly	Phe	Leu	Glu	Leu	Thr	Pro	Leu	
	225					230					235					240	
	Val	Gly	Leu	Ile	Arg	Trp	Cys	Val	Lys	Ala	Pro	Leu	Ala	Tyr	Lys	Arg	
15					245					250					255		
	Lys	Lys	Lys	Pro	Pro	Leu	Ser	Asn	Gly	His	Val	Ser	Asn	Lys	Val	Thr	
				260					265					270			
	Lys	Asp	Pro	Gly	Val	Gly	Met	Asp	Arg	Asp	Ser	His	Leu	Leu	Tyr	Ser	
			275					280					285				
20	Lys	Leu	His	Leu	Ser	Val	Leu	Gln	Val	Leu	Met	Thr	Leu	Gln	Leu	His	
		290					295					300					
	Leu	Thr	Glu	Lys	Asn	Leu	Tyr	Gly	Arg	Leu	Gly	Leu	Ile	Leu	Phe	Asp	
	305					310					315					320	
	His	Met	Val	Pro	Leu	Val	Glu	Glu	Ile	Asn	Arg	Leu	Ala	Asp	Glu	Leu	
25					325					330					225		

290/346

Asn Pro Leu Asn Ala Ser Gln Glu Ile Glu Leu Ser Leu Asp Arg Leu Ala Gin Ala Leu Gin Val Ala Met Ala Ser Gly Ala Leu Leu Cys Thr Arg Asp Asp Leu Arg Thr Leu Cys Ser Arg Leu Pro His Asn Asn Leu Leu Gln Leu Val Ile Ser Gly Pro Val Gln Gln Ser Pro His Ala Ala Leu Pro Pro Gly Phe Tyr Pro His Ile His Thr Pro Pro Leu Gly Tyr ` 410 Gly Ala Val Pro Ala His Pro Ala Ala His Pro Ala Leu Pro Thr His Pro Gly His Thr Phe Ile Ser Gly Val Thr Phe Pro Phe Arg Pro Ile Arg <210> 128 <211> 105 <212> PRT <213> Homo sapiens <400> 128 Met Arg Arg Ile Ser Leu Thr Ser Ser Pro Val Arg Leu Leu Leu Phe

	Leu	Leu	Leu	Leu	Leu	Ile	Ala	Leu	Glu	Ile	Met	Val	Gly	Gly	His	Ser
				20					25					30		
	Leu	Cys	Phe	Asn	Phe	Thr	Ile	Lys	Ser	Leu	Ser	Arg	Pro	Gly	Gln	Pro
			35					40					45			
5	Trp	Суз	Glu	Ala	Gln	Val	Phe	Leu	Asn	Lys	Asn	Leu	Phe	Leu	Gln	Tyr
		50					55					60				
	Asn	Ser	Asp	Asn	Asn	Met	Val	Lys	Pro	Leu	Gly	Leu	Leu	Gly	Lys	Lys
	65		,			70					75					80
	Val	Asn	Ala	Thr	Ser	Thr	Trp	Gly	Glu	Asn	Pro	Asn	Ala	Gly	Arg	Ser
10					85					90					95	
	Gly	Ala	Arg	Pro	Gln	Asp	Ala	Pro	Leu							
				100					105							
	<210)> 12	29													
15	<211	l> 81	L													
	<212	?> PF	T													
	<213	3> Ho	omo s	sapie	ens											
	<400)> 12	29													
20	Met	Ser	Pro	Asp	Val	Arg	Phe	Leu	Pro	Leu						
	1				5					10					15	
	Arg	Arg	Pro	Val	Pro	Val	Ala	Ala	Gly	Pro	Gly	Asp	Thr	Arg	Pro	Ala
				20					25					30		
	Leu	Leu	Ser	Phe	Glu	Ala	Pro	Val	Phe	Val	Pro	Thr	Leu	Thr	Pro	Gly
25			35					40					45			

292/346

Cys Leu Gln Gln Pro Arg Gly Arg Asn Gly Ala Ser Pro Arg Gly Leu Leu Pro Gln Pro Leu Asp Gly Thr Ala Ala Ser Pro Val Cys His His Val <210> 130 <211> 552 <212> PRT <213> Homo sapiens <400> 130 Met Arg Arg Leu Thr Arg Arg Leu Val Leu Pro Val Phe Gly Val Leu Trp Ile Thr Val Leu Leu Phe Phe Trp Val Thr Lys Arg Lys Leu Glu Val Pro Thr Gly Pro Glu Val Gln Thr Pro Lys Pro Ser Asp Ala Asp Trp Asp Asp Leu Trp Asp Gln Phe Asp Glu Arg Arg Tyr Leu Asn Ala Lys Lys Trp Arg Val Gly Asp Asp Pro Tyr Lys Leu Tyr Ala Phe Asn Gln Arg Glu Ser Glu Arg Ile Ser Ser Asn Arg Ala Ile Pro Asp Thr

	Arg	His	Leu	Arg	Cys	Thr	Leu	Leu	Val	Tyr	Cys	Thr	Asp	Leu	Pro	Pro
				100					105					110		
	Thr	Ser	Ile	Ile	Ile	Thr	Phe	His	Asn	Glu	Ala	Arg	Ser	Thr	Leu	Leu
			115					120					125			
5	Arg	Thr	Ile	Arg	Ser	Val	Leu	Asn	Arg	Thr	Pro	Thr	His	Leu	Ile	Arg
		130					135					140				
	Glu	Ile	Ile	Leu	Val	Asp	Asp	Phe	Ser	Asn	Asp	Pro	Asp	Asp	Cys	Lys
	145					150					155					160
	Gln	Leu	Ile	Lys	Leu	Pro	Lys	Val	Lys	Cys	Leu	Arg	Asn	Asn	Glu	Arg
10					165					170					175	
	Gln	Gly	Leu	Val	Arg	Ser	Arg	Ile	Arg	Gly	Ala	Asp	Ile	Ala	Gln	Gly
				180					185					190		
	Thr	Thr	Leu	Thr	Phe	Leu	Asp	Ser	His	Cys	Glu	Val	Asn	Arg	Asp	Trp
			195					200					205			
15	Leu	Gln	Pro	Leu	Leu	His	Arg	Val	Lys	Glu	Asp	Tyr	Thr	Arg	Val	Val
		210					215					220				
	Cys	Pro	Val	Ile	Asp	Ile	Ile	Asn	Leu	Asp	Thr	Phe	Thr	Tyr	Ile	Glu
	225					230					235					240
	Ser	Ala	Ser	Glu	Leu	Arg	Gly	Gly	Phe	Asp	Trp	Ser	Leu	His	Phe	Gln
20					245					250					255	
	Trp	Glu	Gln	Leu	Ser	Pro	Glu	Gln	Lys	Ala	Arg	Arg	Leu	Asp	Pro	Thr
				260					265					270		
	Glu	Pro	Ile	Arg	Thr	Pro	Ile	Ile	Ala	Gly	Gly	Leu	Phe	Val	Ile	Asp
			275					280					285			
25	Lys	Ala	Trp	Phe	Asp	Tyr	Leu	Gly	Lys	Tyr	Asp	Met	Asp	Met	Asp	Ile

		290					295					300				
	Trp	Gly	Gly	Glu	Asn	Phe	Glu	Ile	Ser	Phe	Arg	Val	Trp	Met	Суз	Gly
	305					310					315					320
	Gly	Ser	Leu	Glu	Ile	Val	Pro	Cys	Ser	Arg	Val	Gly	His	Val	Phe	Arg
5					325					330					335	
	Lys	Lys	His	Pro	Tyr	Val	Phe	Pro	Asp	Gly	Asn	Ala	Asn	Thr	Tyr	Ile
				340					345					350		
	Lys	Asn	Thr	Lys	Arg	Thr	Ala	Glu	Val	Trp	Met	Asp	Glu	Tyr	Lys	Gln
			355					360					365			
10	Tyr	Tyr	Tyr	Ala	Ala	Arg	Pro	Phe	Ala	Leu	Glu	Arg	Pro	Phe	Gly	Asn
		370					375					380				
	Val	Glu	Ser	Arg	Leu	Asp	Leu	Arg	Lys	Asn	Leu	Arg	Cys	Gln	Ser	Phe
	385					390					395					400
	Lys	Trp	Tyr	Leu	Glu	Asn	Ile	Tyr	Pro	Glu	Leu	Ser	Ile	Pro	Lys	Glu
15					405					410					415	
	Ser	Ser	Ile	Gln	Lys	Gly	Asn	Ile	Arg	Gln	Arg	Gln	Lys	Cys	Leu	Glu
				420					425					430		
	Ser	Gln	Arg	Gln	Asn	Asn	Gln	Glu	Thr	Pro	Asn	Leu	Lys	Leu	Ser	Pro
			435					440					445			
20	Cys	Ala	Lys	Val	Lys	Gly	Glu	Asp	Ala	Lys	Ser	Gln	Val	Trp	Ala	Phe
		450					455					460				
	Thr	Tyr	Thr	Gln	Gln	Ile	Leu	Gln	Glu	Glu	Leu	Cys	Leu	Ser	Val	Ile
	465					470					475					480
	Thr	Leu	Phe	Pro	Gly	Ala	Pro	Val	Val	Leu	Val	Leu	Cys	Lys	Asn	Gly
25					485					490					495	

295/346

(Đ

Asp Asp Arg Gln Gln Trp Thr Lys Thr Gly Ser His Ile Glu His Ile
500 505 510

Ala Ser His Leu Cys Leu Asp Thr Asp Met Phe Gly Asp Gly Thr Glu
515 520 525

5 Asn Gly Lys Glu Ile Val Val Asn Pro Cys Glu Ser Ser Leu Met Ser 530 535 540

Gln His Trp Asp Met Val Ser Ser

545 550

10 <210> 131

<211> 1188

<212> DNA

<213> Homo sapiens

15 <400> 131

20

25

atgtcagga tggaagaata caccactgtc tcaggtgaag ttctacagag atggaaaatt 60 ccttcattta aggaaaacca gactctgtcc atgggagcag caacagtgca gagccgtggc 120 cagtacagct gctctgggca ggtgatgtat attccacaga cattcacaca aacttcagag 180 actgccatgg ttcaagtcca agagctgttt ccacctcctg tgctgagtge catcccctct 240 cctgagccc gagagggtag cctggtgacc ctgagatgtc agacaaagct gcaccccctg 300 aggtcagcct tgaggetcct tttctccttc cacaaggacg gccacacctt gcaggacagg 360 ggccctcacc cagaactctg catcccggga gccaaaggag gagactctgg gctttactgg 420 tgtgaggtgg cccctgaggg tggccaggtc cagaagcaga gcccccagct ggaggtcaga 480 gtgcaggct ctgtatcccg tcctgtgct actctgcacc acgggcctgc tgaccctgct 540 gtgggggaca tggtcagct cctctgtag gcacaagagg gctcccctcc gatcctgtat 600

296/346

tecttetace ttgatgagaa gattgtgggg aaceaeteag etecetgtgg tggaaceaee 660

teceteetet teeeagtgaa gteagaacag gatgetggga aetaeteetg egaggetgag 720

aacagtgtet eeagagagag gagtgageee aagaagetgt etetgaaggg tteteaagte 780

ttgtteaete eegeeageaa etggetggtt eettggette etgegageet gettggeetg 840

atggttattg etgetgeaet tetggtttat gtgagateet ggagaaaage tgggeeeett 900

ceateeeaga taceaeeae ageteeaggt ggagageagt geeeaetata tgeeaaegtg 960

cateaeeaga aagggaaaga tgaaggtgtt gtetaeteetg tggtgeatag aaceteaaag 1020

aggagtgaag eeaggtetge tgagtteaee gtggggagaa aggaeagtte tateatetgt 1080

geggaggtga gatgeetgea geeeagtgag gttteateea eggaggtgaa tatgagaage 1140

aggaetetee aagaaeeeet tagegaetgt gaggaggtte tetgetag

<210> 132

5

10

20

25

<211> 1653

<212> DNA

15 <213> Homo sapiens

<400> 132

atggcgttet cgaagetett ggageaagee ggaggegtgg geetetteea gaceetgeag 60 gtgeteacet teateeteee etgeeteatg atacetteee agatgeteet ggagaactte 120 teageegeea teecaggeea eegatgetgg acacacatge tggacaatgg etetgeggtt 180 teecacaaaca tgaceeceaa ggeeettetg aceateteea teecgeeagg eeceaaceag 240 gggeeeceace agtgeegeeg etteegeeag eeacagtgge agetettgga eeceaatgee 300 aceggeeacea getggagega agetgacaeg gageegtgtg tggacggetg ggtetatgae 360 egeagegtet teaceteeae eategtggee aagtgggaee tggtgtgeag eteecaggge 420 ttgaageeee taageeagte eatetteatg teegggatee tggtgggete etttatetgg 480

ggcctcctct	cctaccggtt	tgggaggaag	ccgatgctga	gctggtgctg	cctgcagttg	540
gccgtggcgg	gcaccagcac	catcttcgcc	ccaacattcg	tcatctactg	cggcctgcgg	600
ttcgtggccg	cttttgggat	ggccggcatc	tttctgagtt	cactgacact	gatggtggag	660
tggaccacga	ccagcaggag	ggcggtcacc	atgacggtgg	tgggatgtgc	cttcagcgca	720
ggccaggcgg	cgctgggcgg	cctggccttt	gccctgcggg	actggaggac	tctccagctg	780
gcagcatcag	tgcccttctt	tgccatctcc	ctgatatcct	ggtggctgcc	agaatccgcc	840
cggtggctga	ttattaaggg	caaaccagac	caagcacttc	aggagctcag	aaaggtggcc	900
aggataaatg	gccacaagga	ggccaagaac	ctgaccatag	aggtgctgat	gtccagcgtg	960
aaggaggagg	tggcctctgc	aaaggagccg	cggtcggtgc	tggacctgtt	ctgcgtgccc	1020
gtgctccgct	ggaggagctg	cgccatgctg	gtggtgaatt	tctctctatt	gatctcctac	1080
tatgggctgg	tcttcgacct	gcagagcctg	ggccgtgaca	tcttcctcct	ccaggccctc	1140
ttcggggccg	tggacttcct	gggccgggcc	accactgccc	tcttgctcag	tttccttggc	1200
cgccgcacca	tccaggcggg	ttcccaggcc	atggccggcc	tcgccattct	agccaacatg	1260
ctggtgccgc	aagatttgca	gaccctgcgt	gtggtctttg	ctgtgctggg	aaagggatgt	1320
tttgggataa	gcctaacctg	cctcaccatc	tacaaggctg	aactctttcc	aacgccagtg	1380
cggatgacag	cagatggcat	tctgcataca	gtgggccggc	tgggggctat	gatgggtccc	1440
'ctgatcctga	tgagccgcca	agccctgccc	ctgctgcctc	ctctcctcta	tggcgttatc	1500
tccattgctt	ccagcctggt	tgtgctgttc	ttcctcccgg	agacccaggg	acttccgctc	1560
cctgacacta	tccaggacct	ggagagccag	aaatcaacag	cagcccaggg	caaccggcaa	1620
gaggccgtca	ctgtggaaag	tacctcgctc	tag			1653

<210> 133

5

10

15

20

<211> 657

<212> DNA

25 <213> Homo sapiens

298/346

<400> 133

5

10

atgaagcaca cactggctct gctggctccc ctgctgggcc tgggcctggg gctggccctg 60

agtcagctgg ctgcaggggc cacagactgc aagttccttg gcccggcaga gcacctgaca 120

ttcaccccag cagccagggc ccggtggctg gcccctcgag ttcgtgcgcc aggactcctg 180

gactccctct atggcaccgt gcgccgcttc ctctcggtgg tgcagctcaa tcctttccct 240

tcagagttgg taaaggccct actgaatgag ctggcctccg tgaaggtgaa tgaggtggtg 300

cggtacgagg cgggctacgt ggtatgcgct gtgatcgcgg gcctctacct gctgctggtg 360

cccactgccg ggctttgctt ctgctgctgc cgctgccacc ggcgctgcgg gggacgagtg 420

aagacagagc acaaggcgct ggcctgtgag cgcgcggccc tcatggtctt cctgctgctg 480

accaccctct tgctgctgat tggtgtggtc tgtgcctttg tcaccaacca gcgcacgcat 540

gaacagatgg gccccagcat cgaggccatg cctgagaccc tgctcagcct ctggggcctg 600

gtctctgatg tcccccaagt gagcactgtt acccctcacc ctcatgtgcc cctgtga 657

15 <210> 134

<211> 1791

<212> DNA

<213> Homo sapiens

20 <400> 134

25

atggccgcca actccaccag cgacctccac actcccggga cgcagctgag cgtggctgac 60 atcatcgtca tcactgtgta ttttgctctg aatgtggccg tgggcatatg gtcctcttgt 120 cgggccagta ggaacacggt gaatggctac ttcctggcag gccgggacat gacgtggtgg 180 ccgattggag cctcctctt cgccagcagc gagggctctg gcctcttcat tggactggcg 240 ggctcaggcg cggcaggagg tctggccgtg gcaggcttcg agtggaatgc cacgtacgtg 300

	ctgctggcac	tggcatgggt	gttcgtgccc	atctacatct	cctcagagat	cgtcacctta	360
	cctgagtaca	ttcagaagcg	ctacgggggc	cagcggatcc	gcatgtacct	gtctgtcctg	420
	tccctgctac	tgtctgtctt	caccaagata	tcgctggacc	tgṭacgcggg	ggctctgttt	480
	gtgcacatct	gcctgggctg	gaacttctac	ctctccacca	tcctcacgct	cggcatcaca	540
	gccctgtaca	ccatcgcagg	gggcctggct	gctgtaatct	acacggacgc	cctgcagacg	600
	ctcatcatgg	tggtggggc	tgtcatcctg	acaatcaaag	cttttgacca	gatcggtggt	660
	tacgggcagc	tggaggcagc	ctacgcccag	gccattccct	ccaggaccat	tgccaacacc	720
	acctgccacc	tgccacgtac	agacgccatg	cacatgtttc	gagaccccca	cacaggggac	780
	ctgccgtgga	ccgggatgac	ctttggcctg	accatcatgg	ccacctggta	ctggtgcacc	840
	gaccaggtca	tcgtgcagcg	atcactgtca	gcccgggacc	tgaaccatgc	caaggcgggc	900
	tccatcctgg	ccagctacct	caagatgctc	cccatgggcc	tgatcataat	gccgggcatg	960
	atcagccgcg	cattgttccc	agatgatgtg	ggctgcgtgg	tgccgtccga	gtgcctgcgg	1020
	gcctgcgggg	ccgaggtcgg	ctgctccaac	atcgcctacc	ccaagctggt	catggaactg	1080
	atgcccatcg	gtctgcgggg	gctgatgatc	gcagtgatgc	tggcggcgct	catgtcgtcg	1140
	ctgacctcca	tcttcaacag	cagcagcacc	ctcttcacta	tggacatctg	gaggcggctg	1200
٠	cgtccccgct	ccggcgagcg	ggagctcctg	ctggtgggac	ggctggtcat	agtggcactc	1260
	atcggcgtga	gtgtggcctg	gatccccgtc	ctgcaggact	ccaacagcgg	gcaactcttc	1320
	atctacatgc	agtcagtgac	cagctccctg	gccccaccag	tgactgcagt	ctttgtcctg	1380
	ggcgtcttct	ggcgacgtgc	caacgagcag	ggggccttct	ggggcctgat	agcagggctg	1440
	gtggtgggg	ccacgaggct	ggtcctggaa	ttcctgaacc	cagccccacc	gtgcggagag	1500
	ccagacacgc	ggccagccgt	cctggggagc	atccactacc	tgcacttcgc	tgtcgccctc	1560
	tttgcactca	gtggtgctgt	tgtggtggct	ggaagcctgc	tgaccccacc	cccacagagt	1620
	gtccagattg	agaaccttac	ctggtggacc	ctggctcagg	atgtgccctt	gggaactaaa	1680
	gcaggtgatg	gccaaacacc	ccagaaacac	gccttctggg	cccgtgtctg	tggcttcaat	1740
	gccatcctcc	tcatgtgtgt	caacatattc	ttttatgcct	acttcgcctg	a	1791

300/346

<210> 135

<211> 1404

<212> DNA

5 <213> Homo sapiens

<400> 135

10

15

20

25

atgtggcgat gtccactggg gctactgctg ttgctgccgc tggctggcca cttggctctg 60 ggtgcccagc agggtcgtgg gcgccgggag ctagcaccgg gtctgcacct gcggggcatc 120 cgggacgcgg gaggccggta ctgccaggag caggacctgt gctgccgcgg ccgtgccgac 180 gactgtgccc tgccctacct gggcgccatc tgttactgtg acctcttctg caaccgcacg 240 gteteegaet getgeeetga ettetgggae ttetgeeteg gegtgeeaec ecetttteee 300 ccgatccaag gatgtatgca tggaggtcgt atctatccag tcttgggaac gtactgggac 360 aactgtaacc gttgcacctg ccaggagaac aggcagtggc agtgtgacca agaaccatgc 420 ctggtggatc cagacatgat caaagccatc aaccagggca actatggctg gcaggctggg 480 aaccacageg cettetgggg catgaceetg gatgagggca ttegetaceg cetgggcace 540 atccgcccat cttcctcggt catgaacatg catgaaattt atacagtgct gaacccaggg 600 gaggtgette ceacageett egaggeetet gagaagtgge ceaacetgat teatgageet 660 cttgaccaag gcaactgtgc aggeteetgg gcetteteca cagcagetgt ggcatecgat 720 cgtgtctcaa tccattctct gggacacatg acgcctgtcc tgtcgcccca gaacctgctg 780 tettgtgaca cecaecagca geagggetge egeggtggge gtetegatgg tgeetggtgg 840 ttcctgcgtc gccgagggt ggtgtctgac cactgctacc ccttctcggg ccgtgaacga 900 gacgaggetg gecetgegee eccetgtatg atgeacagee gagecatggg teggggeaag 960 cgccaggcca ctgcccactg ccccaacagc tatgttaata acaatgacat ctaccaggtc 1020 actectgtet acegeetegg etecaaegae aaggagatea tgaaggaget gatggagaat 1080

301/346

ggccctgtcc aagccctcat ggaggtgcat gaggacttct tcctatacaa gggaggcatc 1140
tacagccaca cgccagtgag ccttgggagg ccagagagat accgccggca tgggacccac 1200
tcagtcaaga tcacaggatg gggagaggag acgctgccag atggaaggac gctcaaatac 1260
tggactgcgg ccaactcctg gggcccagcc tggggcgaga ggggccactt ccgcatcgtg 1320
cgcggcgtca atgagtgcga catcgagagc ttcgtgctgg gcgtctgggg ccgcgtgggc 1380
atggaggaca tgggtcatca ctga

<210> 136

<211> 1431

10 <212> DNA

5

15

20

25

<213> Homo sapiens

<400> 136

atggccgggt ccgacaccgc gcccttcctc agccaggcgg atgacccgga cgacgggcca 60 gtgcctggca ccccggggtt gccagggtcc acggggaacc cgaagtccga ggagcccgag 120 gtcccggacc aggagggct gcagcgcatc accggcctgt ctcccggccg ttcggctctc 180 atagtggcgg tgctgtgcta catcaatctc ctgaactaca tggaccgctt caccgtggct 240 ggcgtccttc ccgacatcga gcagttcttc aacatcgggg acagtagctc tgggctcatc 300 cagaccgtgt tcatctccag ttacatggtg ttggcacctg tgtttggcta cctgggtgac 360 aggtacaatc ggaagtact catggtggg ggcattgcct tctggtccct ggtgacactg 420 gggtcatcct tcatcccgg agagcattc tggctgctc tcctgacccg gggcctggtg 480 ggggtcgggg aggccagtta ttccaccatc gcgcccactc tcattgccga cctctttgtg 540 gccgaccagc ggagccggat gctcagcatc ttctactttg ccattccggt gggcagtggt 600 ctgggctaca ttgcaggctc caaagtgaag gatatggctg gagactggca ctgggctctg 660 agggtgacac cgggtctagg agtggtggcc gttctgctgc tgttcctggt agtgcggag 720

5

10

302/346

tgggcagate tgagggetet ggcaagaaat etcatetttg gacteateae etgeetgace 840
ggagteetgg gtgtgggeet gggtgtggag atcageegee ggeteegeea etceaaeeee 900
egggetgate ecctggtetg tgceaetgge etcetggget etgeaeeett ectetteetg 960
tecettgeet gegeeegtgg tageategtg gecaettata tttteatett eattggagag 1020
acceteetgt ecatgaaetg ggeeategtg geegaeatte tgetgtaegt ggtgateeet 1080
accegaeget ecaeegeega ggeetteeag ategtgetgt eccaeetget gggtgatget 1140
gggageeeet accteattgg ectgatetet gacegeetge geeggaaetg geeeeetee 1200
ttettgteeg agtteeggge tetgeagtte tegeteatge tetgegegtt tgttggggea 1260
etgggeggeg eageetteet gggeaeegee atetteattg aggeegaeeg eegggggea 1320
cagetgeaeg tgeagggeet getgeaegaa geagggteea eagaegaeeg gattgtggtg 1380
ecceageggg geegeteeae eegegtgeee gtggeeagtg tgeteatetg a 1431

<210> 137

15 <211> 1350

<212> DNA

<213> Homo sapiens

<400> 137

atgagegaca teegeeacte getgetgege egegatgege tgagegeege caaggaggtg 60

ttgtaceace tggacateta etteageage eagetgeaga gegegeeget geceategtg 120

gacaagggee cegtggaget getggaggag ttegtgttee aggtgeecaa ggagegeage 180

gegeageeca agagaetgaa tteeetteag gagetteaac ttettgaaat catgtgeaat 240

tatteeagg ageaaaceaa ggactetgtt eggeagatta ttttteate cettteage 300

25 ceteaaggga acaaageega tgacageegg atgagettgt tgggaaaact ggteteeatg 360

303/346

gcggtggctg	tgtgtcgaat	cccggtgttg	gagtgtgctg	cctcctggct	tcagcggacg	420
cccgtggttt	actgtgtgag	gttagccaag	gcccttgtag	atgactactg	ctgtttggtg	480
ccgggatcca	ttcagacgct	gaagcagata	ttcagtgcca	gcccgagatt	ctgctgccag	540
ttcatcacct	ccgttaccgc	gctctatgac	ctgtcatcag	atgacctcat	tccacctatg	600
gacttgcttg	aaatgattgt	cacctggatt	tttgaggacc	caaggttgat	tctcatcact	660
tttttaaata	ctccgattgc	ggccaatctg	ccaataggat	tcttagagct	caccccgctc	720
gttggattga	tccgctggtg	cgtgaaggca	cccctggctt	ataaaaggaa	aaagaagccc	780
cccttatcca	atggccatgt	cagcaacaag	gtcacaaagg	acccgggcgt	ggggatggac	840
agagactccc	acctcttgta	ctcaaaactc	cacctcagcg	tcctgcaagt	gctcatgacg	900
ctgcagctgc	acctgaccga	gaagaatctg	tatgggcgcc	tggggctgat	cctcttcgac	960
cacatggtcc	cgctggtaga	ggagatcaac	aggttggcgg	atgaactgaa	cccctcaac	1020
gcctcccagg	agattgagct	ctcgctggac	cggctggcgc	aggctctgca	ggtggccatg	1080
gcctcaggag	ctctgctgtg	cacgagagat	gacctgagaa	ccttgtgctc	caggetgeec	1140
cataataacc	tcctccagct	ggtgatctcg	ggtcccgtgc	agcagtcgcc	tcacgccgcg	1200
ctcccccgg	ggttctaccc	ccacatccac	acgcccccgc	tgggctacgg	ggctgtcccg	1260
gcccaccccg	ccgcccaccc	cgccctgccc	acgcaccccg	gccacacctt	catctccggc	1320
gtgacctttc	ccttcaggcc	catccgctag				1350

<210> 138

20 <211> 318

5

10

15

<212> DNA

<213> Homo sapiens

<400> 138

25 atgcgaagaa tatccctgac ttctagccct gtgcgccttc ttttgtttct gctgttgcta 60

304/346

	ctaatagcct	tggagatcat	ggttggtggt	cactctcttt	gcttcaactt	cactataaaa	120
	tcattgtcca	gacctggaca	gccctggtgt	gaagcgcagg	tcttcttgaa	taaaaatctt	180
	ttccttcagt	acaacagtga	caacaacatg	gtcaaacctc	tgggcctcct	ggggaagaag	240
	gtaaatgcca	ccagcacttg	gggagaaaac	ccaaacgctg	ggagaagtgg	ggcgagacct	300
5	caggatgete	ctttgtga					318
	<210> 139						
	<211> 246						
	<212> DNA						
10	<213> Homo	sapiens					
				•			
	<400> 139						
	atgagccctg	atgtgcgctt	tctgctcctg	ctcctgctcc	tgccccttcg	gaggcctgtg	60
	ccagtggcag	ctgggcccgg	agacaccagg	ccggcactgc	tctctttcga	ggcacccgtg	120
15	tttgtgccga	cgctgactcc	cggttgtctg	cagcagccac	gtggccgaaa	tggagcctct	180
	ccacgggggc	tccttcccca	gcccctggat	ggcacagcag	cctctcctgt	ctgtcaccac	240
	gtgtga						246
	<210> 140						
20	<211> 1659						
	<212> DNA						

<400> 140

<213> Homo sapiens

25 atgeggegec tgactegteg getggttetg ceagtetteg gggtgetetg gateaeggtg 60

5

10

15

20

25

305/346

ctgctgttct tctgggtaac caagaggaag ttggaggtgc cgacgggacc tgaagtgcag 120 acccctaage etteggaege tgaetgggae gaeetgtggg aeeagtttga tgageggegg 180 tatctgaatg ccaaaaagtg gcgcgttggt gacgacccct ataagctgta tgctttcaac 240 cagegggaga gtgageggat etceageaat egggeeatee eggaeaeteg eeatetgaga 300 tgcacactgc tggtgtattg cacggacctt ccacccacta gcatcatcat caccttccac 360 aacgaggccc gctccacgct gctcaggacc atccgcagtg tattaaaccg cacccctacg 420 catctgatcc gggaaatcat attagtggat gacttcagca atgaccctga tgactgtaaa 480 cageteatea agttgeecaa ggtgaaatge ttgegeaata atgaacggea aggtetggte 540 cggtcccgga ttcggggcgc tgacatcgcc cagggcacca ctctgacttt cctcgacagc 600 cactgtgagg tgaacaggga ctggctccag cctctgttgc acagggtcaa agaggactac 660 acgcgggtgg tgtgccctgt gatcgatatc attaacctgg acaccttcac ctacatcgag 720 tetgeetegg ageteagagg ggggtttgae tggageetee aetteeagtg ggageagete 780 tececagage agaaggeteg gegeetggae eecaeggage ceateaggae teetateata 840 gacatggaca tctggggtgg ggagaacttt gaaatctcct tccgagtgtg gatgtgcggg 960 ggcagcctag agatcgtccc ctgcagccga gtggggcacg tcttccggaa gaagcacccc 1020 tacgttttcc ctgatggaaa tgccaacacg tatataaaga acaccaagcg gacagctgaa 1080 gtgtggatgg atgaatacaa gcaatactat tacgctgccc ggccattcgc cctggagagg 1140 cccttcggga atgttgagag cagattggac ctgaggaaga atctgcgctg ccagagcttc 1200 aagtggtacc tggagaatat ctaccctgaa ctcagcatcc ccaaggagtc ctccatccag 1260 aagggcaata teegacagag acagaagtge etggaatete aaaggcagaa caaccaagaa 1320 accccaaacc taaagttgag cccctgtgcc aaggtcaaag gcgaagatgc aaagtcccag 1380 gtatgggcct tcacatacac ccagcagatc ctccaggagg agctgtgcct gtcagtcatc 1440 accttgttcc ctggcgcccc agtggttctt gtcctttgca agaatggaga tgaccgacag 1500 caatggacca aaactggttc ccacatcgag cacatagcat cccacctctg cctcgataca 1560

306/346

gatatgttcg gtgatggcac cgagaacggc aaggaaatcg tcgtcaaccc atgtgagtcc 1620 tcactcatga gccagcactg ggacatggtg agctcttga 1659

<210> 141

5 <211> 1961

<212> DNA

<213> Homo sapiens

<220>

10 <221> CDS

15

<222> (185)..(1372)

<400> 141

acacacccac aggacctgca gctgaacgaa gttgaagaca actcaggaga tctgttggaa 60
agagaacgat agaggaaaat atatgaatgt tgccatcttt agttccctgt gttgggaaaa 120
ctgtctggct gtacctccaa gcctggccaa accctgtgtt tgaaggagat gccctgactc 180
tgcg atg tca ggg atg gaa gaa tac acc act gtc tca ggt gaa gtt cta 229
Met Ser Gly Met Glu Glu Tyr Thr Thr Val Ser Gly Glu Val Leu

1 5 10 15

20 cag aga tgg aaa att cct tca ttt aag gaa aac cag act ctg tcc atg 277
Gln Arg Trp Lys Ile Pro Ser Phe Lys Glu Asn Gln Thr Leu Ser Met

20 25 30

gga gca gca aca gtg cag agc cgt ggc cag tac agc tgc tct ggg cag 325 Gly Ala Ala Thr Val Gln Ser Arg Gly Gln Tyr Ser Cys Ser Gly Gln

25 35 40 45

	gtg ato	, tat	att	cca	cag	aca	ttc	aca	caa	act	tca	gag	act	gcc	atg	373
	Val Met	Tyr	Ile	Pro	Gln	Thr	Phe	Thr	Gln	Thr	Ser	Glu	Thr	Ala	Met	
		50					55					60				
	gtt caa	gtc	caa	gag	ctg	ttt	cca	cct	cct	gtg	ctg	agt	gcc	atc	ccc	421
5	Val Glr	Val	Gln	Glu	Leu	Phe	Pro	Pro	Pro	Val	Leu	Ser	Ala	Ile	Pro	
	65					70					75					
	tct cct	gag	ccc	cga	gag	ggt	agc	ctg	gtg	acc	ctg	aga	tgt	cag	aca	469
	Ser Pro	Glu	Pro	Arg	Glu	Gly	Ser	Leu	Val	Thr	Leu	Arg	Cys	Gln	Thr	
	. 80				85					90					95	
10	aag ctg	cac	ccc	ctg	agg	tca	gcc	ttg	agg	ctc	ctt	ttc	tcc	ttc	cac	517
	Lys Leu	His	Pro	Leu	Arg	Ser	Ala	Leu	Arg	Leu	Leu	Phe	Ser	Phe	His	
				100					105					110		
•	aag gac	ggc	cac	acc	ttg	cag	gac	agg	ggc	cct	cac	cca	gaa	ctc	tgc	565
	Lys Asp	Gly	His	Thr	Leu	Gln	Asp	Arg	Gly	Pro	His	Pro	Glu	Leu	Cys	
15			115					120					125			
	atc ccg	gga	gcc	aag	gag	gga	gac	tct	ggg	ctt	tac	tgg	tgt	gag	gtg	613
	Ile Pro	Gly	Ala	Lys	Glu	Gly	Asp	Ser	Gly	Leu	Tyr	Trp	Cys	Glu	Val	
		130					135					140				
	gcc cct	gag	ggt	ggc	cag	gtc	cag	aag [.]	cag	agc	ccc	cag	ctg	gag	gtc	661
20	Ala Pro	Glu	Gly	Gly	Gln	Val	Gln	Lys	Gln	Ser	Pro	Gln	Leu	Glu	Val	
	145					150					155					
	aga gtg	cag	gct	cct	gta	tcc	cgt	cct	gtg	ctc	act	ctg	cac	cac	ggg	709
	Arg Val	Gln .	Ala	Pro	Val	Ser	Arg	Pro	Val	Leu	Thr	Leu	His	His	Gly	
	160				165					170					175	
25	cct gct	gac	cct	gct	gtg	ggg	gac	atgʻ	ata	caq	ctc	ctc	tat	σασ	αca	757

	Pr	0]	Ala	Asp	Pro	Ala	Val	Gly	Asp	Met	Val	Gln	Leu	Leu	Cys	Glu	Ala	
						180					185					190		•
	Ca	g a	agg	ggc	tcc	cct	ccg	atc	ctg	tat	tcc	ttc	tac	ctt	gat	gag	aag	805
	G1	n A	Arg	Gly	Ser	Pro	Pro	Ile	Leu	Tyr	Ser	Phe	Tyr	Leu	Asp	Glu	Lys	
5					195					200					205			
	at	to	gtg	ggg	aac	cac	tca	gct	ccc	tgt	ggt	gga	acc	acc	tcc	ctc	ctc	853
	Il	e V	/al	Gly	Asn	His	Ser	Ala	Pro	Cys	Gly	Gly	Thr	Thr	Ser	Leu	Leu	
				210					215					220				
	tt	CC	ca	gtg	aag	tca	gaa	cag	gat	gct	ggg	aac	tac	tcc	tgc	gag	gct	901
10	Ph	e E	Pro	Val	Lys	Ser	Glu	Gln	Asp	Ala	Gly	Asn	Tyr	Ser	Cys	Glu	Ala	
		2	225					230					235					
	ga	g a	ac	agt	gtc	tcc	aga	gag	agg	agt	gag	ccc	aag	aag	ctg	tct	ctg	949
	Gl	u A	lsn	Ser	Val	Ser	Arg	Glu	Arg	Ser	Glu	Pro	Lys	Lys	Leu	Ser	Leu	
	24	0					245					250					255	
15	aa	g g	ıgt	tct	caa	gtc	ttg	ttc	act	ccc	gcc	agc	aac	tgg	ctg	gtt	cct	997
	Ly	s G	ly	Ser	Gln	Val	Leu	Phe	Thr	Pro	Ala	Ser	Asn	Trp	Leu	Val	Pro	
			•			260					265					270		
	tg	gc	tt	cct	gcg	agc	ctg	ctt	ggc	ctg	atg	gtt	att	gct	gct	gca	ctt	1045
	Tr	ρL	eu	Pro	Ala	Ser	Leu	Leu	Gly	Leu	Met	Val	Ile	Ala	Ala	Ala	Leu	
· 20			,		275					280					285			
	ct	g g	tt	tat	gtg	aga	tcc	tgg	aga	aaa	gct	ggg	ccc	ctt	cca	tcc	cag	1093
	Le	ı V	al	Tyr	Val	Arg	Ser	Trp	Arg	Lys	Ala	Gly	Pro	Leu	Pro	Ser	Gln	
				290					295					300				
	at	a c	ca	ccc	aca	gct	cca	ggt	gga	gag	cag	tgc	cca	cta	tat	gcc	aac	1141
25	11	e P	ro	Pro	Thr	Ala	Pro	Gly	Gly	Glu	Gln	Cys	Pro	Leu	Tyr	Ala	Asn	

		305					310					315					
	gtg	cat	cac	cag	aaa	ggg	aaa	gat	gaa	ggt	gtt	gtc	tac	tct	gtg	gtg	1189
	Val	His	His	Gln	Lys	Gly	Lys	Asp	Glu	Gly	Val	Val	Tyr	Ser	Val	Val	
	320		•			325					330					335	
5	cat	aga	acc	tca	aag	agg	agt	gaa	gcc	agg	tct	gct	gag	ttc	acc	gtg	1237
	His	Arg	Thr	Ser	Lys	Arg	Ser	Glu	Ala	Arg	Ser	Ala	Glu	Phe	Thr	Val	
,					340					345					350		
	ggg	aga	aag	gac	agt	tct	atc	atc	tgt	gcg	gag	gtg	aga	tgc	ctg	cag	1285
	Gly	Arg	Lуs	Asp	Ser	Ser	Ile	Ile	Cys	Ala	Glu	Val	Arg	Суз	Leu	Gln	
10				355					360					365			
	ccc	agt	gag	gtt	tca	tcc	acg	gag	gtg	aat	atg	aga	agc	agg	act	ctc	1333
	Pro	Ser	Glu	Val	Ser	Ser	Thr	Glu	Val	Asn	Met	Arg	Ser	Arg	Thr	Leu	
			370					375					380				
	caa	gaa	ccc	ctt	agc	gac	tgt	gag	gag	gtt	ctc	tgc	tag	tgai	tggtg	jtt	1382
15	Gln	Glu	Pro	Leu	Ser	Asp	Cys	Glu	Glu	Val	Leu	Cys					
		385					390					395					
	ctc	ctato	caa d	cacao	egced	ca co	ccca	agtct	: cca	gtgo	ctcc	tcag	ggaag	gac a	agtgg	ggtcc	1442
	tcaa	actc	ttt d	ctgt	ggto	c tt	cagt	ctcc	c aag	jccca	agca	tcad	cagag	gcc (cct	gagece	1502
	ttgi	cct	ggt d	cagga	agcad	c to	gaaco	cctg	gtt	cttt	tct	tago	cagaa	aga d	ccaac	caatg	1562
20	gaat	ggga	aag g	ggaga	atgct	:c c	cacca	acac	c aca	cact	tag	gtto	caato	cag t	tgaca	ectgga	1622
	caca	taaq	gcc a	acaga	atgto	et to	ettte	cata	a caa	igcat	gtt	agtt	cgc	ccc a	aatat	acata	1682
	tata	atato	gaa a	atagt	cato	gt go	cgca	ataad	aac	attt	cag	tcag	gtgat	ag a	actgo	cataca	1742
	caad	cagto	ggt d	ccat	aaga	ac to	gtaat	ggag	; ttt	aaaa	aatt	ccta	actgo	cct a	agtga	atatca	1802
	tagi	tgc	ctt a	acat	cata	aa ca	acaad	cacat	tto	ctcac	cgcg	tttç	gtggt	ga 1	tgcto	gtaca	1862
25	aaca	aagct	tac a	agcgo	ccgct	a gt	cata	ataca	ı aat	atac	gcac	atao	caatt	at o	gtaca	agtaca	1922

	ctatacttga taatgataat aaacaactat gttactggt		1961
	<210> 142		
	<211> 2194		
5	<212> DNA		
	<213> Homo sapiens		
	<220>		
	<221> CDS		
10	<222> (58)(1710)		
	<400> 142		
	aatcggttcc aaacagcagt taggtcagca gtccgctcag ccgagg	agc tetgtte	57
	atg gcg ttc tcg aag ctc ttg gag caa gcc gga ggc gtg	g ggc ctc ttc	105
15	Met Ala Phe Ser Lys Leu Leu Glu Gln Ala Gly Gly Va	L Gly Leu Phe	
	1 5 10	15	
	cag acc ctg cag gtg ctc acc ttc atc ctc ccc tgc ctc	c atg ata cct	153
	Gln Thr Leu Gln Val Leu Thr Phe Ile Leu Pro Cys Le	u Met Ile Pro	
	20 25	30	
20	tcc cag atg ctc ctg gag aac ttc tca gcc gcc atc cc	a ggc cac cga	201
	Ser Gln Met Leu Leu Glu Asn Phe Ser Ala Ala Ile Pr	o Gly His Arg	
	35 40 4	5	
	tgc tgg aca cac atg ctg gac aat ggc tct gcg gtt tc	c aca aac atg	249
	Cys Trp Thr His Met Leu Asp Asn Gly Ser Ala Val Se	r Thr Asn Met	
25	50 55 60		

	acc	CCC	aag	gcc	ctt	ctg	acc	atc	tcc	atc	ccg	cca	ggc	CCC	aac	cag	297
	Thr	Pro	Lys	Ala	Leu	Leu	Thr	Ile	Ser	Ile	Pro	Pro	Gly	Pro	Așn	Gln	
	65					70					75					80	
	ggg	ccc	cac	cag	tgc	cgc	cgc	ttc	cgc	cag	cca	cag	tgg	cag	ctc	ttg	345
5	Gly	Pro	His	Gln	Cys	Arg	Arg	Phe	Arg	Gln	Pro	Gln	Trp	Gln	Leu	Leu	
					85					90					95		
	gac	ccc	aat	gcc	acg	gcc	acc	agc	tgg	agc	gaa	gct	gac	acg	gag	ccg	393
	Asp	Pro	Asn	Ala	Thr	Ala	Thr.	Ser	Trp	Ser	Glu	Ala	Asp	Thr	Glu	Pro	
				100					105					110			
10	tgt	gtg	gac	ggc	tgg	gtc	tat	gac	cgc	agc	gtc	ttc	acc	tcc	acc	atc	441
	Cys	Val	Asp	Gly	Trp	Val	Tyr	Asp	Arg	Ser	Val	Phe	Thr	Ser	Thr	Ile	
			115					120					125°				
	gtg	gcc	aag	tgg	gac	ctg	gtg	tgc	agc	tcc	cag	ggc	ttg	aag	ccc	cta	489
	Val	Ala	Lys	Trp	Asp	Leu	Val	Cys	Ser	Ser	Gln	Gly	Leu	Lys	Pro	Leu	
15		130					135					140					
	agc	cag	tcc	atc	ttc	atg	tcc	ggg	atc	ctg	gtg	ggc	tcc	ttt	atc	tgg	537
	Ser	Gln	Ser	Ile	Phe	Met	Ser	Gly	Ile	Leu	Val	Gly	Ser	Phe	Ile	Trp	
	145					150					155					160	
	ggc	ctc	ctc	tcc	tac	cgg	ttt	ggg	agg _.	aag	ccg	atg	ctg	agc	tgg	tgc	585
20	Gly	Leu	Leu	Ser	Tyr	Arg	Phe	Gly	Arg	Lys	Pro	Met	Leu	Ser	Trp	Cys	
					165					170					175		
	tgc	ctg	cag	ttg	gcc	gtg	gcg	ggc	acc	agc	acc	atc	ttc	gcc	cca	aca	633
	Суз	Leu	Gln	Leu	Ala	Val	Ala	Gly	Thr	Ser	Thr	Ile	Phe	Ala	Pro	Thr	
				180					185					190			
25	ttc	gtc	atc	tac	tgc	ggc	ctg	cgg	ttc	gtg	gcc	gct	ttt	ggg	atg	gcc	681

WO 01/49728 PCT/JP00/09359 ·

	Phe	Val	Ile	Tyr	Cys	Gly	Leu	Arg	Phe	Val	Ala	Ala	Phe	Gly	Met	Ala	
			195					200					205				
	ggc	atc	ttt	ctg	agt	tca	ctg	aca	ctg	atg	gtg	gag	tgg	acc	acg	acc	729
	Gly	Ile	Phe	Leu	Ser	Ser	Leu	Thr	Leu	Met	Val	Glu	Trp	Thr	Thr	Thr	
5		210					215					220					
	agc	agg	agg	gcg	gtc	acc	atg	acg	gtg	gtg	gga	tgt	gcc	ttc	agc	gca	777
	Ser	Arg	Arg	Ala	Val	Thr	Met	Thr	Val	Val	Gly	Cys	Ala	Phe	Ser	Ala	
	225					230					235					240	
	ggc	cag	gcg	gcg	ctg	ggc	ggc	ctg	gcc	ttt	gcc	ctg	cgg	gac	tgg	agg	825
10	Gly	Gln	Ala	Ala	Leu	Gly	Gly	Leu	Ala	Phe	Ala	Leu	Arg	Asp	Trp	Arg	
					245		•			250					255		
	act	ctc	cag	ctg	gca	gca	tca	gtg	CCC	ttc	ttt	gcc	atc	tcc	ctg	ata	873
	Thr	Leu	Gln	Leu	Ala	Ala	Ser	Val	Pro	Phe	Phe	Ala	Ile	Ser	Leu	Ile	
				260					265					270			
15	tcc	tgg	tgg	ctg	cca	gaa	tcc	gcc	cgg	tgg	ctg	att	att	aag	ggc	aaa	921
	Ser	Trp	Trp	Leu	Pro	Glu	Ser	Ala	Arg	Trp	Leu	Ile	Ile	Ъуs	Gly	Lys	
			275					280					285				
	cca	gac	caa	gca	ctt	cag	gag	ctc	aga	aag	gtg	gcc	agg	ata	aat	ggc	969
	Pro	Asp	Gln	Ala	Leu	Gln	Glu	Leu	Arg	Lys	Val	Ala	Arg	Ile	Asņ	Gly	
20		290					295					300					
	cac	aag	gag	gcc	aag	aac	ctg	acc	ata	gag	gtg	ctg	atg	tcc	agc	gtg	1017
	His	Lys	Glu	Ala	Lys	Asn	Leu	Thr	Ile	Glu	Val	Leu	Met	Ser	Ser	Val	
	305					310					315					320	
	aag	gag	gag	gtg	gcc	tct	gca	aag	gag	ccg	cgg	tcg	gtg	ctg	gac	ctg	1065
25	Lys	Glu	Glu	Val	Ala	Ser	Ala	Lys	Glu	Pro	Ara	Ser	Val	Leu	Asp	Leu	

					325					330					335		
	ttc	tgc	gtg	ccc	gtg	ctc	cgc	tgg	agg	agc	tgc	gcc	atg	ctg	gtg	gtg	1113
	Phe	Cys	Val	Pro	Val	Leu	Arg	Trp	Arg	Ser	Cys	Ala	Met	Leu	Val	Val	
				340					345					350			
5	aat	ttc	tct	cta	ttg	atc	tcc	tac	tat	ggg	ctg	gtc	ttc	gac	ctg	cag	1161
	Asn	Phe	Ser	Leu	Leu	Ile	Ser	Tyr	Tyr	Gly	Leu	Val	Phe	Asp	Leu	Gln	
		•	355					360					365				
	agc	ctg	ggc	cgt	gac	atc	ttc	ctc	ctc	cag	gcc	ctc	ttc	ggg	gcc	gtg	1209
	Ser	Leu	Gly	Arg	Asp	Ile	Phe	Leu	Leu	Gln	Ala	Leu	Phe	Gly	Ala	Val	
10		370			•		375					380					
	gac	ttc	ctg	ggc	cgg	gcc	acc	act	gcc	ctc	ttg	ctc	agt	ttc	ctt	ggc	1257
	Asp	Phe	Leu	Gly	Arg	Ala	Thr	Thr	Ala	Leu	Leu	Leu	Ser	Phe	Leu	Gly	
	385					390					395					400	
	cgc	cgc	acc	atc	cag	gcg	ggt	tec	cag	gcc	atg	gcc	ggc	ctc	gcc	att	1305
15	Arg	Arg	Thr	Ile	Gln	Ala	Gly	Ser	Gln	Ala	Met	Ala	Gly	Leu	Ala	Ile	•
					405												
					405					410					415		
	cta	gcc	aac	atg		gtg	ccg	caa	gat		cag	acc	ctg	cgt		gtc	1353
					ctg					ttg			-	cgt Arg	gtg		1353
					ctg					ttg			-	-	gtg		1353
. 20		Ala	Asn	Met 420	ctg Leu	Val	Pro	Gln	Asp 425	ttg Leu	Gln	Thr	Leu	Arg	gtg Val	Val	1353
20	Leu	Ala gct	Asn gtg	Met 420 ctg	ctg Leu gga	Val aag	Pro gga	Gln tgt	Asp 425 ttt	ttg Leu ggg	Gln	Thr	Leu cta	Arg	gtg Val tgc	Val ctc	
20	Leu	Ala gct	Asn gtg	Met 420 ctg	ctg Leu gga	Val aag	Pro gga	Gln tgt	Asp 425 ttt	ttg Leu ggg	Gln	Thr	Leu cta	Arg 430 acc	gtg Val tgc	Val ctc	
20	Leu ttt Phe	Ala gct Ala	Asn gtg Val 435	Met 420 ctg Leu	ctg Leu gga Gly	Val aag Lys	Pro gga Gly	Gln tgt Cys 440	Asp 425 ttt Phe	ttg Leu ggg Gly	Gln ata Ile	Thr agc Ser	Leu cta Leu 445	Arg 430 acc	gtg Val tgc Cys	Val ctc Leu	
20	Leu ttt Phe	Ala gct Ala atc	Asn gtg Val 435 tac	Met 420 ctg Leu	ctg Leu gga Gly gct	Val aag Lys gaa	Pro gga Gly	Gln tgt Cys 440 ttt	Asp 425 ttt Phe	ttg Leu ggg Gly	Gln ata Ile	Thr agc Ser	Leu cta Leu 445	Arg 430 acc Thr	gtg Val tgc Cys	Val ctc Leu	1401

	gat	ggc	att	ctg	cat	aca	gtg	ggc	cgg	ctg	ggg	gct	atg	atg	ggt	ccc	1497
	Asp	Gly	Ile	Leu	His	Thr	Val	Gly	Arg	Leu	Gly	Ala	Met	Met	Gly	Pro	•
	465					470				•	475					480	
	ctg	atc	ctg	atg	agc	cgc	caa	gcc	ctg	ccc	ctg	ctg	cct	cct	ctc	ctc	1545
5	Leu	Ile	Leu	Met	Ser	Arg	Gln	Ala	Leu	Pro	Leu	Leu	Pro	Pro	Leu	Leu	
					485					490					495		
	tat	ggc	gtt	atc	tcc	att	gct	tcc	agc	ctg	gtt	gtg	ctg	ttc	ttc	ctc	1593
	Tyr	Gly	Val	Ile	Ser	Ile	Ala	Ser	Ser	Leu	Val	Val	Leu	Phe	Phe	Leu	
				500					505					510			
10	ccg	gag	acc	cag	gga	ctt	ccg	ctc	cct	gac	act	atc	cag	gac	ctg	gag	1641
	Pro	Glu	Thr	Gln	Gly	Leu	Pro	Leu	Pro	Asp	Thr	Ile	Gln	Asp	Leu	Glu	
			515					520					525				
	agc	cag	aaa	tca	aca	gca	gcc	cag	ggc	aac	cgg	caa	gag	gcc	gtc	act	1689
	Ser	Gln	Lys	Ser	Thr	Ala	Ala	Gln	Gly	Asn	Arg	Gln	Glu	Ala	Val	Thr	
15		530					535					540					
	gtg	gaà	agt	acc	tcg	ctc	tag	aaat	tgtç	gcc t	gcat	ggag	jc co	cttt	cagto	:	1740
	Val	Glu	Ser	Thr	Ser	Leu											
	545					550											
	aaag	acto	cct o	ggaaa	ıggaç	ıt to	ccto	ettet	. cca	atca	ıgag	cgto	gagg	geg a	agtto	ggcga	1800
20	cttc	aagg	igc d	etggo	atgo	ıc aç	aggo	cago	cag	ccgt	ggc	cgaç	gtgga	ıca ç	gcgtg	gccgt	1860
	ctgo	etgtg	ggc t	gaag	gcag	jc tt	cca	cagct	cac	tcct	ctt	ctc	ctgo	ccc t	gato	agatt	1920
	cccc	acct	ta d	ccgg	gccc	t ac	agga	gcct	gto	caga	itgg	ccat	gccc	caa c	caat	aacga	1980
	gacg	gtto	cc c	ctccc	tttc	c ct	gcca	iggct	: cat	gtct	tta	caco	ettca	act o	cagco	acgcc	2040
	aacc	agag	jac t	gggt	teca	a to	tcac	ccca	cca	cata	cag	agco	ectca	atc t	gtga	aatga	2100
25	gaat	gato	ac g	gtgac	ccac	:c cc	ccag	iggca	ggt	atca	ıggg	tgaa	ectga	itc t	tago	accgg	2160

315/346

ccaaataaat ggaacctgct gagagagctg ccag 2194

<210> 143

<211> 2753

5 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

10 <222> (109)..(765)

<400> 143

aggittigag agctgtggag agagggacag aggctggaga aggatgtatg gcctgccctg 60 ggcttgtctg ttccctcctg agcctgagcc ccttaccttc ctgacccc atg aag cac 117

15 Met Lys His

1

aca ctg gct ctg gct ccc ctg ctg ggc ctg ggc ctg ggc ctg gcc 165
Thr Leu Ala Leu Leu Ala Pro Leu Leu Gly Leu Gly Leu Gly Leu Ala

5 10 15

20 ctg agt cag ctg gct gca ggg gcc aca gac tgc aag ttc ctt ggc ccg 213

Leu Ser Gln Leu Ala Ala Gly Ala Thr Asp Cys Lys Phe Leu Gly Pro

20 25 30 35

gca gag cac ctg aca ttc acc cca gca gcc agg gcc cgg tgg ctg gcc 261
Ala Glu His Leu Thr Phe Thr Pro Ala Ala Arg Ala Arg Trp Leu Ala

25 40 45 50

	CCT	cga	gtt	cgt	gcg	cca	gga	CTC	ctg	gac	tcc	CTC	tat	ggc	acc	gtg	305
	Pro	Arg	Val	Arg	Ala	Pro	Gly	Leu	Leu	Asp	Ser	Leu	Tyr	Gly	Thr	Val	
				55					60					65			
	cgc	cgc	ttc	ctc	tcg	gtg	gtg	cag	ctc	aat	cct	ttc	cct	tca	gag	ttg	357
5	Arg	Arg	Phe	Leu	Ser	Val	Val	Gln	Leu	Asn	Pro	Phe	Pro	Ser	Glu	Leu	
			70					75					80				
	gta	aag	gcc	cta	ctg	aat	gag	ctg	gcc	tcc	gtg	aag	gtg	aat	gag	gtg	405
	Val	Lys	Ala	Leu	Leu	Asn	Glu	Leu	Ala	Ser	Val	Lys	Val	Asn	Glu	Val	
		85					90					95					
10	gtg	cgg	tac	gag	gcg	ggc	tac	gtg	gta	tgc	gct	gtg	atc	gcg	ggc	ctc	453
	Val	Arg	Tyr	Glu	Ala	Gly	Tyr	Val	Val	Cys	Ala	Val	Ile	Ala	Gly	Leu	
	100					105					110					115	
	tac	ctg	ctg	ctg	gtg	ccc	act	gcc	ggg	ctt	tgc	ttc	tgc	tgc	tgc	cgc	501
	Tyr	Leu	Leu	Leu	Val	Pro	Thr	Ala	Gly	Leu	Cys	Phe	Cys	Cys	Суз	Arg	
15					120					125					130		
	tgc	cac	cgg	cgc	tgc	ggg	gga	cga	gtg	aag	aca	gag	cac	aag	gcg	ctg	549
	Cys	His	Arg	Arg	Cys	Gly	Gly	Arg	Val	Lys	Thr	Glu	His	Lys	Ala	Leu	
				135					140					145			
	gcc	tgt	gag	cgc	gcg	gcc	ctc	atg	gtc	ttc	ctg	ctg	ctg	acc	acc	ctc	597
20	Ala	Cys	Glu	Arg	Ala	Ala	Leu	Met	Val	Phe	Leu	Leu	Leu	Thr	Thr	Leu	
			150					155					160				
	ttg	ctg	ctg	att	ggt	gtg	gtc	tgt	gcc	ttt	gtc	acc	aac	cag	cgc	acg	645
	Leu	Leu	Leu	Ile	Gly	Val	Val	Cys	Ala	Phe	Val	Thr	Asn	Gln	Arg	Thr	
		165					170					175					
25	cat	gaa	caq	atg	ggc	CCC	agc	atc	σaσ	acc	atq	cct	gag	acc	cta	ctc	693

317/346

His Glu Gln Met Gly Pro Ser Ile Glu Ala Met Pro Glu Thr Leu Leu

180 185 190 195

agc ctc tgg ggc ctg gtc tct gat gtc ccc caa gtg agc act gtt acc 741

Ser Leu Trp Gly Leu Val Ser Asp Val Pro Gln Val Ser Thr Val Thr

5 200 205 210

cct cac cct cat gtg ccc ctg tga gcactgggcc cgggcaggac agagccgagt 795
Pro His Pro His Val Pro Leu

215

10

15

20

25

gggccctcga tggcccataa ccagcgcatc tgaaagccgc ctcctctccc gcccttgcct 855 gagagtegae cacceteagg gtggatgeea taggggeagg gaaggggeea gggagagaag 915 ggcgtaagga ctgtgggtga ccaggaaggg cagcctcagg gccttgtgtt tgcctaggag 975 ctgcaggccg tggcacagca attctccctg ccccaggagc aagtctcaga ggagctggat 1035 ggtgttggtg tgagcattgg gagcgcgatc cacactcagc tcaggagctc cgtgtacccc 1095 ttgctggcgg ccgtgggcag tttgggccag gtcctgcagg tctccgtgca ccacctgcaa 1155 accttgaatg ctacagtggt agagctgcaa gccgggcagc aggacctgga gccagccatc 1215 cgggaacacc gggaccgcct ccttgagctg ctgcaggagg ccaggtgcca gggagattgt 1275 gcaggggccc tgagctgggc ccgcaccctg gagctgggtg ctqacttcag ccagqtqccc 1335 tetgtggacc atgtcctgca ccagctaaaa ggtgtccccg aggccaactt ctccagcatg 1395 gtccaggagg agaacagcac cttcaacgcc cttccagccc tggctgccat gcagacatcc 1455 agcgtggtgc aagagctgaa gaaggcagtg gcccagcagc cggaaggggt gaggacactg 1515 gctgaagggt tcccgggctt ggaggcagct tcccgctggg cccaggcact gcaggaggtg 1575 gaggagagca geogececta cetgeaggag gtgcagagat acqaqaceta caggtggate 1635 gtgggctgcg tgctgtgctc cgtggtccta ttcgtggtgc tctgcaacct gctgggcctc 1695 aatctgggca tctggggcct gtctgccagg gacgacccca gccacccaga agccaagggc 1755 gaggetggag ceegetteet catggetata ceaacaaget aeggeaggag ttgeagagee 1815

5

10

15

318/346

tgaaagtaga cacacagagc ctggacctgc tgagctcagc cgcccgccgg gacctggagg 1875 ccctgcagag cagtgggctt cagcgcatcc actaccccga cttcctcgtt cagatccaga 1935 ggcccgtggt gaagaccagc atggagcagc tggcccagga gctgcaagga ctggcccagg 1995 cccaagacaa ttctgtgctg gggcagcggc tgcaggagga ggcccaagga ctcagaaacc 2055 ttcaccagga gaaggtcgtc ccccagcaga gccttgtggc aaagctcaac ctcagcgtca 2115 gggccctgga gtcctctgcc ccgaatctcc agctggagac ctcagatgtc ctagccaatg 2175 tcacctacct gaaaggagag ctgcctgcct gggcagccag gatcctgagg aatgtgagtg 2235 agtgtttcct ggcccgggag atgggctact tctcccagta cgtggcctgg gtgagagagg 2295 aggtgactca gcgcattgcc acctgccagc ccctctccgg agccctggac aacagccgtg 2355 tgatcctgtg tgacatgatg gctgacccct ggaatgcctt ctggttctgc ctggcatggt 2415 gcaccttctt cctgatcccc agcatcatct ttgccgtcaa gacctccaaa tacttccgtc 2475 ctatccggaa acgcctcagc tccaccagct ctgaggagac tcagctcttc cacatccccc 2535 gggttacctc cctgaagctg tagggccttg tgggagtgat ctggtggcca gaacaggatt 2595 ttgcacggcc cettttatec tgcgcatgtg gcctagggtc atccccagcc catccctgtg 2655 tcagccctga gtgctggaca ctgcgttcca gaaatgagga agaggagaga gaagagatgg 2715 acagacetea gatecattaa agtgttetea ettecetg 2753

<210> 144

<211> 2085

20 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

25 <222> (42)..(1832)

319/346

<400>	1	4	4
-------	---	---	---

	agt	ccct	cgg	gctc	atac	ct a	gtgc	ctgc	g gc	agga	cagc	c a	tg g	cc g	сс а	ac tcc	56
												Me	et A	la A	la A	sn Ser	
5													1			5	
	acc	agc	gac	ctc	cac	act	ccc	ggg	acg	cag	ctg	agc	gtg	gct	gac	atc	104
	Thr	Ser	Asp	Leu	His	Thr	Pro	Gly	Thr	Gln	Leu	Ser	Val	Ala	Asp	Ile	
					10					15					20		
	atc	gtc	atc	act	gtg	tat	ttt	gct	ctg	aat	gtg	gcc	gtg	ggc	ata	tgg	152
10	Ile	Val	Ile	Thr	Val	Tyr	Phe	Ala	Leu	Asn	Val	Ala	Val	Gly	Ile	Trp	
				25					30					35			
	tcc	tct	tgt	cgg	gcc	agt	agg	aac	acg	gtg	aat	ggc	tac	ttc	ctg	gca	200
	Ser	Ser	Cys	Arg	Ala	Ser	Arg	Asn	Thr	Val	Asn	Gly	Tyr	Phe	Leu	Ala	
			40					45					50				
15	ggc	cgg	gac	atg	acg	tgg	tgg	ccg	att	gga	gcc	tcc	ctc	ttc	gcc	agc	248
	Gly	Arg	Asp	Met	Thr	Trp	Trp	Pro	Ile	Gly	Ala	Ser	Leu	Phe	Ala	Ser	
		55					60					65					
	agc	gag	ggc	tct	ggc	ctc	ttc	att	gga	ctg	gcg	ggc	tca	ggc	gcg	gca	296
	Ser	Glu	Gly	Ser	Gly	Leu	Phe	Ile	Gly	Leu	Ala	Gly	Ser	Gly	Ala	Ala	
20	70					75					80					85	
	gga	ggt	ctg	gcc	gtg	gca	ggc	ttc	gag	tgg	aat	gcc	acg	tac	gtg	ctg	344
	Gly	Gly	Leu	Ala	Val	Ala	Gly	Phe	Glu	Trp	Asn	Ala	Thr	Tyr	Val	Leu	
					90				_	95					100		
	ctg	gca	ctg	gca	tgg	gtg	ttc	gtg	ccc	atc	tac	atc	tcc	tca	gag	atc	392
25	Leu	Ala	Leu	Ala	Trp	Val	Phe	Val	Pro	Ile	Tyr	Ile	Ser	Ser	Glu	Ile	

				105					110					115			
	gtc	acc	tta	cct	gag	tac	att	cag	aag	cgc	tac	ggg	ggc	cag	cgg	atc	440
	Val	Thr	Leu	Pro	Glu	Tyr	Ile	Gln	Lys	Arg	Tyr	Gly	Gly	Gln	Arg	Ile	
			120					125					130				
5	cgc	atg	tac	ctg	tct	gtc	ctg	tcc	ctg	cta	ctg	tct	gtc	ttc	acc	aag	488
	Arg	Met	Tyr	Leu	Ser	Val	Leu	Ser	Leu	Leu	Leu	Ser	Val	Phe	Thr	Lys	
		135					140					145					
	ata	tcg	ctg	gac	ctg	tac	gcg	ggg	gct	ctg	ttt	gtg	cac	atc	tgc	ctg	536
	Ile	Ser	Leu	Asp	Leu	Tyr	Ala	Gly	Ala	Leu	Phe	Val	His	Ile	Cys	Leu	
10	150			-		155					160					165	
	ggc	tgg	aac	ttc	tac	ctc	tcc	acc	atc	ctc	acg	ctc	ggc	atc	aca	gcc	584
	Gly	Trp	Asn	Phe	Tyr	Leu	Ser	Thr	Ile	Leu	Thr	Leu	Gly	Ile	Thr	Ala	
					170					175					180		
	ctg	tac	acc	atc	gca	ggg	ggc	ctg	gct	gct	gta	atc	tac	acg	gac	gcc	632
15	Leu	Tyr	Thr	Ile	Ala	Gly	Gly	Leu	Ala	Ala	Val	Ile	Tyr	Thr	Asp	Ala	
				185					190					195			
	ctg	cag	acg	ctc	atc	atg	gtg	gtg	ggg	gct	gtc	atc	ctg	aca	atc	aaa	680
	Leu	Gln	Thr	Leu-	Ile	Met	Val	Val	Gly	Ala	Val	Ile	Leu	Thr	Ile	Lys	
			200					205					210				
20	gct	ttt	gac	cag	atc	ggt	ggt	tac	ggg	cag	ctg	gag	gca	gcc	tac	gcc	728
	Ala	Phe	Asp	Gln	Ile	Gly	Gly	Tyr	Gly	Gln	Leu	Glu	Ala	Ala	Tyr	Ala	
		215					220					225					
	cag	gcc	att	ccc	tcc	agg	acc	att	gcc	aac	acc	acc	tgc	cac	ctg	cca	776
	Gln	Ala	Ile	Pro	Ser	Arg	Thr	Ile	Ala	Asn	Thr	Thr	Cys	His	Leu	Pro	
25	230					235					240					245	

	cgt	aca	gac	gcc	atg	cac	atg	ttt	cga	gac	ccc	cac	aça	ggg	gac	ctg	824
	Arg	Thr	Asp	Ala	Met	His	Met	Phe	Arg	Asp	Pro	His	Thr	Gly	Asp	Leu	
					250					255					260		
	ccg	tgg	acc	ggg	atg	acc	ttt	ggc	ctg	acc	atc	atg	gcc	acc	tgg	tac	872
5	Pro	Trp	Thr	Gly	Met	Thr	Phe	Gly	Leu	Thr	Ile	Met	Ala	Thr	Trp	Tyr	
				265					270					275			
	tgg	tgc	acc	gac	cag	gtc	atc	gtg	cag	cga	tca	ctg	tca	gcc	cgg	gac	920
	Trp	Cys	Thr	Asp	Gln	Val	Ile	Val	Gln	Arg	Ser	Leu	Ser	Ala	Arg	Asp	
			280					285					290				
10	ctg	aac	cat	gcc	aag	gcg	ggc	tcc	atc	ctg	gcc	agc	tac	ctc	aag	atg	968
	Leu	Asn	His	Ala	Lys	Ala	Gly	Ser	Ile	Leu	Ala	Ser	Tyr	Leu	Lys	Met	
		295					300					305					
	ctc	ccc	atg	ggc	ctg	atc	ata	atg	ccg	ggc	atg	atc	agc	cgc	gca	ttg	1016
	Leu	Pro	Met	Gly	Leu	Ile	Ile	Met	Pro	Gly	Met	Ile	Ser	Arg	Ala	Leu	
15	310					315					320					325	
	ttc	cca	gat	gat	gtg	ggc	tgc	gtg	gtg	ccg	tcc	gag	tgc	ctg	cgg	gcc	1064
	Phe	Pro	Asp	Asp	Val	Gly	Cys	Val	Val	Pro	Ser	Glu	Cys	Leu	Arg	Ala	,
					330					335					340		
	tgc	ggg	gcc	gag	gtc	ggc	tgc	tcc	aac	atc	gcc	tac	ccc	aag	ctg	gtc	1112
20	Cys	Gly	Ala	Glu	Val	Gly	Суз	Ser	Asn	Ile	Ala	Tyr	Pro	Lys	Leu	Val	
				345					350					355			
	atg	gaa	ctg	atg	ccc	atc	ggt	ctg	cgg	ggg	ctg	atg	atc	gca	gtg	atg	1160
	Met	Glu	Leu	Met	Pro	Ile	Gly	Leu	Arg	Gly	Leu	Met	Ile	Ala	Val	Met	
			360					365					370				
25	ctg	gcg	gcg	ctc	atg	tcg	tcg	ctg	acc	tcc	atc	ttc	aac	agc	agc	agc	1208

	Leu	Ala	Ala	Leu	Met	Ser	Ser	Leu	Thr	Ser	Ile	Phe	Asn	Ser	Ser	Ser	
		375					380					385					
	acc	ctc	ttc	act	atg	gac	atc	tgg	agg	cgg	ctg	cgt	ccc	cgc	tcc	ggc	1256
	Thr	Leu	Phe	Thr	Met	Asp	Ile	Trp	Arg	Arg	Leu	Arg	Pro	Arg	Ser	Gly	
5	390					395					400					405	
	gag	cgg	gag	ctc	ctg	ctg	gtg	gga	cgg	ctg	gtc	ata	gtg	gca	ctc	atc	1304
	Glu	Arg	Glu	Leu	Leu	Leu	Val	Gly	Arg	Leu	Val	Ile	Val	Ala	Leu	Ile	
					410					415					420		
	ggc	gtg	agt	gtg	gcc	tgg	atc	ccc	gtc	ctg	cag	gac	tcc	aac	agc	ggg	1352
10	Gly	Val	Ser	Val	Ala	Trp	Ile	Pro	Val	Leu	Gln	Asp	Ser	Asn	Ser	Gly	
				425					430					435			
	caa	ctc	ttc	atc	tac	atg	cag	tca	gtg	acc	agc	tcc	ctg	gcc	сса	cca	1400
	Gln	Leu	Phe	Ile	Tyr	Met	Gln	Ser	Val	Thr	Ser	Ser	Leu	Ala	Pro	Pro	
			440					445					450				
15	gtg	act	gca	gtc	ttt	gtc	ctg	ggc	gtc	ttc	tgg	cga	cgt	gcc	aac	gag	1448
	Val	Thr	Ala	Val	Phe	Val	Leu	Gly	Val	Phe	Trp	Arg	Arg	Ala	Asn	Glu	
		455	٠				460	>				465					
	cag	ggg	gcc	ttc	tgg	ggc	ctg	ata	gca	ggg	ctg	gtg	gtg	ggg	gcc	acg	1496
	Gln	Gly	Ala	Phe	Trp	Gly	Leu	Ile	Ala	Gly	Leu	Val	Val	Gly	Ala	Thr	
20	470					475					480					485	
	agg	ctg	gtc	ctg	gaa	ttc	ctg	aac	cca	gcc	cca	ccg	tgc	gga	gag	cca	1544
	Arg	Leu	Val	Leu	Glu	Phe	Leu	Asn	Pro	Ala	Pro	Pro	Cys	Gly	Glu	Pro	
					490					495					500		
	gac	acg	cgg	cca	gcc	gtc	ctg	ggg	agc	atc	cac	tac	ctg	cac	ttc	gct	1592
25	Asp	Thr	Ara	Pro	Ala	٧a٦	Ĭ.e.ıı	Glv	Ser	Tle	Hie	ጥህታ	T.e.r	His	Phe	Δla	

323/346

				505					510					515				
	gtc	gcc	ctc	ttt	gca	ctc	agt	ggt	gct	gtt	gtg	gtg	gct	gga	agc	ctg	1640	
	Val	Ala	Leu	Phe	Ala	Leu	Ser	Gly	Ala	Val	Val	Val	Ala	Gly	Ser	Leu		
			520					525					530					
5	ctg	acc	cca	ccc	cca	cag	agt	gtc	cag	att	gag	aac	ctt	acc	tgg	tgg	1688	
	Leu	Thr	Pro	Pro	Pro	Gln	Ser	Val	Gln	Ile	Glu	Asn	Leu	Thr	Trp	Trp		
		535					540					545						
	acc	ctg	gct	cag	gat	gtg	ccc	ttg	gga	act	aaa	gca	ggt	gat	ggc	caa	1736	
	Thr	Leu	Ala	Gln	Asp	Val	Pro	Leu	Gly	Thr	Lys	Ala	Gly	Asp	Gly	Gln		
10	550					555					560					565		
	aca	ccc	cag	aaa	cac	gcc	ttc	tgg	gcc	cgt	gtc	tgt	ggc	ttc	aat	gcc	1784	
	Thr	Pro	Gln	Lys	His	Ala	Phe	Trp	Ala	Arg	Val	Cys	Gly	Phe	Asn	Ala		
					570					575					580			
	atc	ctc	ctc	atg	tgt	gtc	aac	ata	ttc	ttt	tat	gcc	tac	ttc	gcc	tga	1832	
15	Ile	Leu	Leu	Met	Cys	Val	Asn	Ile	Phe	Phe	Tyr	Ala	Tyr	Phe	Ala			
				585					590					595				
	cact	gcca	tc c	tgga	caga	a ag	gcag	gago	tct:	gagt	cct	cagg	tcca	icc d	cattt	ccctc	1892	
	atgg	ggat	cc c	gaag	cccc	a ag	aggg	gcag	att	.cccc	tca	cagc	tgca	.ca ç	gcago	tcggt	1952	
	gccc	aaga	ac t	ggcc	aago	c ag	caaa	ıgcgg	gag	ccct	gaa	aaat	tagg	gg g	ggaaa	tggga	2012	
20	gaaa	ataa	tg t	gaca	tttc	a aa	aaca	gcac	caa	agca	gtc	agca	ttgg	aa g	gaaa	attag	2072	
	attt	ctga	cg g	ac													2085	

<210> 145

<211> 2208

25 <212> DNA

324/346

<213> Homo sapiens

<220>

<221> CDS

5 <222> (100)..(1503)

<400> 145

10

cttgactttg agcgtccggc ggtcgcagag ccaggaggcg gaggcgcgc ggccagcctg 60

ggccccagcc cacaccttca ccagggccca ggagccacc atg tgg cga tgt cca 114

Met Trp Arg Cys Pro

1 5

ctg ggg cta ctg ctg ttg ctg ccg ctg gct ggc cac ttg gct ctg ggt 162
Leu Gly Leu Leu Leu Leu Pro Leu Ala Gly His Leu Ala Leu Gly

10 15 20

gcc cag cag ggt cgt ggg cgc cgg gag cta gca ccg ggt ctg cac ctg 210

Ala Gln Gln Gly Arg Gly Arg Glu Leu Ala Pro Gly Leu His Leu

25 30 35

cgg ggc atc cgg gac gcg gga ggc cgg tac tgc cag gag cag gac ctg 258 Arg Gly Ile Arg Asp Ala Gly Gly Arg Tyr Cys Gln Glu Gln Asp Leu

20 40 45 50

tgc tgc cgc ggc cgt gcc gac gac tgt gcc ctg ccc tac ctg ggc gcc 306 Cys Cys Arg Gly Arg Ala Asp Asp Cys Ala Leu Pro Tyr Leu Gly Ala

55 60 65

atc tgt tac tgt gac ctc ttc tgc aac cgc acg gtc tcc gac tgc tgc 354

25 Ile Cys Tyr Cys Asp Leu Phe Cys Asn Arg Thr Val Ser Asp Cys Cys

	70					75					80					85		
	cct	gac	ttc	tgg	gac	ttc	tgc	ctc	ggc	gtg	cca	ccc	cct	ttt	ccc	ccg	402	
	Pro	Asp	Phe	Trp	Asp	Phe	Cys	Leu	Gly	Val	Pro	Pro	Pro	Phe	Pro	Pro		
					90					95					100			
5	atc	caa	gga	tgt	atg	cat	gga	ggt	cgt	atc	tat	cca	gtc	ttg	gga	acg	450	
	Ile	Gln	Gly	Cys	Met	His	Gly	Gly	Arg	Ile	Tyr	Pro	Val	Leu	Gly	Thr		
				105					110					115				
	tac	tgg	gac	aac	tgt	aac	cgt	tgc	acc	tgc	cag	gag	aac	agg	cag	tgg	498	
	Tyr	Trp	Asp	Asn	Суѕ	Asn	Arg	Cys	Thr	Суѕ	Gln	Glu	Asn	Arg	Gln	Trp		
10		-	120					125					130					Œ
	cag	tgt	gac	caa	gaa	cca	tgc	ctg	gtg	gat	cca	gac	atg	atc	aaa	gcc	546	\$
	Gln	Cys	Asp	Gln	Glu	Pro	Cys	Leu	Val	Asp	Pro	Asp	Met	Ile	Lys	Ala		
		135					140					145						
	atc	aac	cag	ggc	aac	tat	ggc	tgg	cag	gct	ggg	aac	cac	agc	gcc	ttc	594	
15	Ile	Asn	Gln	Gly	Asn	Tyr	Gly	Trp	Gln	Ala	Gly	Asn	His	Ser	Ala	Phe		
	150					155					160					165		
	tgg	ggc	atg	acc	ctg	gat	gag	ggc	att	cgc	tac	cgc	ctg	ggc	acc	atc	642	
	Trp	Gly	Met	Thr	Leu	Asp	Glu	Gly	Ile	Arg	Tyr	Arg	Leu	Gly	Thr	Ile		
					170					175					180			
20	cgc	cca	tct	tcc	tcg	gtc	atg	aac	atg	cat	gaa	att	tat	aca	gtg	ctg	690	
	Arg	Pro	Ser	Ser	Ser	Val	Met	Asn	Met	His	Glu	Ile	Tyr	Thr	Val	Leu		
				185					190					195				
				gag												_	738	
	Asn	Pro	Gly	Glu	Val	Leu	Pro	Thr	Ala	Phe	Glu	Ala	Ser	Glu	Lys	Trp		
25			200					205					210					

	ccc	aac	ctg	att	cat	gag	cct	ctt	gac	caa	ggc	aac	tgt	gca	ggc	tcc	786
	Pro	Asn	Leu	Ile	His	Glu	Pro	Leu	Asp	Gln	Gly	Asn	Cys	Ala	Gly	Ser	
		215					220					225					
	tgg	gcc	ttc	tcc	aca	gca	gct	gtg	gca	tcc	gat	cgt	gtc	tca	atc	cat	834
5	Trp	Ala	Phe	Ser	Thr	Ala	Ala	Val	Ala	Ser	Asp	Arg	Val	Ser	Ile	His	
	230					235					240					245	
	tct	ctg	gga	cac	atg	acg	cct	gtc	ctg	tcg	ccc	cag	aac	ctg	ctg	tct	882
	Şer	Leu	Gly	His	Met	Thr	Pro	Val	Leu	Ser	Pro	Gln	Asn	Leu	Leu	Ser	
					250					255					260		
10	tgt	gac	acc	cac	cag	cag	cag	ggc	tgc	cgc	ggt	ggg	cgt	ctc	gat	ggt	930
	Cys	Asp	Thr	His	Gln	Gln	Gln	Gly	Cys	Arg	Gly	Gly	Arg	Leu	Asp	Gly	
				265					270					275			
	gcc	: tgg	tgg	ttc	ctg	cgt	cgc	cga	ggg	gtg	gtg	tct	gac	cac	tgc	tac	978
	Ala	Trp	Trp	Phe	Leu	Arg	Arg	Arg	Gly	Val	Val	Ser	Asp	His	Cys	Tyr	
15			280					285					290				
	ccc	ttc	tcg	ggc	cgt	gaa	cga	gac	gag	gct	ggc	cct	gcg	ccc	ccc	tgt	1026
	Pro	Phe	Ser	Gly	Arg	Glu	Arg	Asp	Glu	Ala	Gly	Pro	Ala	Pro	Pro	Cys	
		295					300					305					
	atg	atg	cac	agc	cga	gcc	atg	ggt	cgg	ggc	aag	cgc	cag	gcc	act	gcc	1074
20	Met	Met	His	Ser	Arg	Ala	Met	Gly	Arg	Gly	Lys	Arg	Gln	Ala	Thr	Ala	
	310					315					320					325	
	cac	tgc	ccc	aac	agc	tat	gtt	aat	aac	aat	gac	atc	tac	cag	gtc	act	1122
	His	Cys	Pro	Asn	Ser	Tyr	Val	Asn	Asn	Asn	Asp	Ile	Tyr	Gln	Val	Thr	
					330					335	_		=		340		
25	cct	gtc	tac	cgc	ctc	ggc	tcc	aac	gac	aag	gag	atc	atg	aag	gag	ctg	1170
									-	_			_	_		_	-

	Pro	Val	Tyr	Arg	Leu	Gly	Ser	Asn	Asp	Lys	Glu	Ile	Met	Lys	Glu	Leu	
				345					350					355			
	atg	gag	aat	ggc	cct	gtc	caa	gcc	ctc	atg	gag	gtg	cat	gag	gac	ttc	1218
	Met	Glu	Asn	Gly	Pro	Val	Gln	Ala	Leu	Met	Glu	Val	His	Glu	Asp	Phe	
5			360					365					370				
	ttc	cta	tac	aag	gga	ggc	atc	tac	agc	cac	acg	cca	gtg	agc	ctt	ggg	1266
	Phe	Leu	Tyr	Lys	Gly	Gly	Ile	Tyr	Ser	His	Thr	Pro	Val	Ser	Leu	Gly	
		375					380					385					
	agg	cca	gag	aga	tac	cgc	cgg	cat	ggg	acc	cac	tca	gtc	aag	atc	aca	1314
10	Arg	Pro	Glu	Arg	Tyr	Arg	Arg	His	Gly	Thr	His	Ser	Val	Lys	Ile	Thr	
	390					395					400					405	
	gga	tgg	gga	gag	gag	acg	ctg	cca	gat	gga	agg	acg	ctc	aaa	tac	tgg	1362
	Gly	Trp	Gly	Glu	Glu	Thr	Leu	Pro	Asp	Gly	Arg	Thr	Leu	Lys	Tyr	Trp	
					410					415					420		
15	act	gcg	ġcc	aac	tcc	tgg	ggc	cca	gcc	tgg	ggc	gag	agg	ggc	cac	ttc	1410
	Thr	Ala	Ala	Asn	Ser	Trp	Gly	Pro	Ala	Trp	Gly	Glu	Arg	Gly	His	Phe	
				425					430					435			
	cgc	atc	gtg	cgc	ggc	gtc	aat	gag	tgc	gac	atc	gag	agc	ttc	gtg	ctg	1458
	Arg	Ile	Val	Arg	Gly	Val	Asn	Glu	Cys	Asp	Ile	Glu	Ser	Phe	Val	Leu	
20			440					445					450				
	ggc	gtc	tgg	ggc	cgc	gtg	ggc	atg	gag	gac	atg	ggt	cat	cac	tga		1503
	Gly	Val	Trp	Gly	Arg	Val	Gly	Met	Glu	Asp	Met	Gly	His	His			
		455					460				•	465					
	ggct	gege	gc a	accad	gege	ıg gt	ccgg	gcctg	g gga	tcca	ggc	taac	iggco	gg c	ggaa	gaggc	1563
25	ccca	atgo	igg d	ggtg	jacco	c ag	ccto	gcco	gac	agag	jccc	gggg	cgca	igg c	gggc	gccag	1623

328/346

ggcgctaatc ccggcgggg ttccgctgac gcagcgccc gcctgggagc cgcgggcagg 1683

cgagactggc ggagcccca gacctcccag tggggacggg gcagggcctg gcctgggaag 1743

agcacagctg cagatcccag gcctctggcg ccccactca agactaccaa agccaggaca 1803

cctcaagtct ccagcccac taccccacc cactcctgta ttctttttt ttttttta 1863

gacagggtct tgctccgttg cccaggttgg agtgcagtgg cccatcaggg ctcactgtaa 1923

cctccgactc ctgggttcaa gtgaccctcc cacctcagcc tctcaagtag ctgggactac 1983

aggtgcacca ccacacctgg ctaatttttg tatttttgt aaagaggggg gtctcactgt 2043

gttgcccagg ctggtctcga actcctgggc tcaagcggtc cacctgcctc cgcctcccaa 2103

agtgctggga ttgcaggcat gagccactgc acccagcct gtattcttat tcttcagata 2163

tttattttc ttttcactgt tttaaaataa aaccaaagta ttgat 2208

<210> 146

<211> 2044

<212> DNA

15 <213> Homo sapiens

<220>

<221> CDS

<222> (371)..(1801)

20

25

5

10

<400> 146

gaccggcttt aagcaacatg geggetgeeg tggtgeageg eeegggetga gegacageaa 60
gtgeageggg etectaceee gggtgagggg tggeeteege gtgggategt geeetettea 120
geeegeteet gteeeegaca teaegtgtat teegeaegte eeeteegege tgtgtgteta 180
etgagaeggg gaggegtgae agggeeeggg teeettetea gtggtgetet gtgetteagg 240

	gca	agct	ccc	cgtc	tccg	gg c	gcac	ttcc	c to	gcct	gtgt	tcg	gtcc	atc	ctcc	tttctc	300
	cag	cctc	ctc	ccct	cgca	gg t	ggga	tcgt	c gg	tggg	accg	gag	cgcg	ggc	gggc	geggee	360
	ccc	cggg	acc	atg (gcc	ggg	tcc	gac	acc	gcg	ccc	ttc	ctc	agc	cag	gcg	409
				Met 1	Ala	Gly	Ser	Asp '	Thr	Ala	Pro	Phe	Leu	Ser	Gln	Ala	
5				1				5					10				
	gat	gac	ccg	gac	gac	ggg	cca	gtg	cct	ggc	acc	ccg	ggg	ttg	cca	ggg	457
	Asp	Asp	Pro	Asp	Asp	Gly	Pro	Val	Pro	Gly	Thr	Pro	Gly	Leu	Pro	Gly	
		15					20					25					
	tcc	acg	ggg	aac	ccg	aag	tcc	gag	gag	ccc	gag	gto	ccg	gac	cag	gag	505
10	Ser	Thr	Gly	Asn	Pro	Lys	Ser	Glu	Glu	Pro	Glu	Val	Pro	Asp	Gln	Glu	
	30					35					40					45	
	ggg	ctg	cag	cgc	atc	acc	ggc	ctg	tct	ccc	ggc	cgt	tcg	gct	ctc	ata -	553
	Gly	Leu	Gln	Arg	Ile	Thr	Gly	Leu	Ser	Pro	Gly	Arg	Ser	Ala	Leu	Ile	
					50					55					60		
15	gtg	gcg	gtg	ctg	tgc	tac	atc	aat	ctc	ctg	aac	tac	atg	gac	cgc	ttc	601
	Val	Ala	Val	Leu	Cys	Tyr	Ile	Asn	Leu	Leu	Asn	Tyr	Met	Asp	Arg	Phe	
				65					70					75			
	acc	gtg	gct	ggc	gtc	ctt	ccc	gac	atc	gag	cag	ttc	ttc	aac	atc	ggg	649
	Thr	Val	Ala	Gly	Val	Leu	Pro	Asp	Ile	Glu	Gln	Phe	Phe	Asn	Ile	Gly	
20			80					85					90				
	gac	agt	agc	tct	ggg	ctc	atc	cag	acc	gtg	ttc	atc	tcc	agt	tac	atg	697
	Asp	Ser	Ser	Ser	Gly	Leu	Ile	Gln	Thr	Val	Phe	Ile	Ser	Ser	Tyr	Met	
		95					100					105					
	gtg	ttg	gca	cct	gtg	ttt	ggc	tac	ctg	ggt	gac	agg	tac	aat	cgg	aag	745
25	Val	Leu	Ala	Pro	Val	Phe	Gly	Tyr	Leu	Gly	Asp	Arg	Tyr	Asn	Arg	Lys	

	110					115					120					125	
	tat	ctc	atg	tgc	ggg	ggc	att	gcc	ttc	tgg	tcc	ctg	gtg	aca	ctg	ggg	793
	Tyr	Leu	Met	Cys	Gly	Gly	Ile	Ala	Phe	Trp	Ser	Leu	Val	Thr	Leu	Gly	
					130					135					140		
5	tca	tcc	ttc	atc	ccc	gga	gag	cat	ttc	tgg	ctg	ctc	ctc	ctg	acc	cgg	841
	Ser	Ser	Phe	Ile	Pro	Gly	Glu	His	Phe	Trp	Leu	Leu	Leu	Leu	Thr	Arg	
				145					150					155			
	ggc	ctg	gtg	ggg	gtc	ggg	gag	gcc	agt	tat	tcc	acc	atc	gcg	ccc	act	889
	Gly	Leu	Val	Gly	Val	Gly	Glu	Ala	Ser	Tyr	Ser	Thr	Ile	Ala	Pro	Thr	
10			160					165					170				
	ctc	att	gcc	gac	ctc	ttt	gtg	gcc	gac	cag	cgg	agc	cgg	atg	ctc	agc	937
	Leu	Ile	Ala	Asp	Leu	Phe	Val	Ala	Asp	Gln	Arg	Ser	Arg	Met	Leu	Ser	
		175					180					185				,	
	atc	ttc	tac	ttt	gcc	att	ccg	gtg	ggc	agt	ggt	ctg	ggc	tac	att	gca	985
15	Ile	Phe	Tyr	Phe	Ala	Ile	Pro	Val	Gly	Ser	Gly	Leu	Gly	Tyr	Ile	Ala	
	190					195					200					205	
	ggc	tcc	aaa	gtg	aag	gat	atg	gct	gga	gac	tgg	cac	tgg	gct	ctg	agg	1033
	Gly	Ser	Lys	Val	Lys	Asp	Met	Ala	Gly	Asp	Trp	His	Trp	Ala	Leu	Arg	
					210					215					220		
20	gtg	aca	ccg	ggt	cta	gga	gtg	gtg	gcc	gtt	ctg	ctg	ctg	ttc	ctg	gta	1081
	Val	Thr	Pro	Gly	Leu	Gly	Val	Val	Ala	Val	Leu	Leu	Leu	Phe	Leu	Val	
				225					230					235			
	gtg	cgg	gag	ccg	cca	agg	gga	gcc	gtg	gag	cgc	cac	tca	gat	ttg	cca	1129
	Val	Arg	Glu	Pro	Pro	Arg	Gly	Ala	Val	Glu	Arg	His	Ser	Asp	Leu	Pro	
25			240					245					250				

	ccc	ctg	aac	CCC	acc	tcg	tgg	tgg	gca	gat	ctg	agg	gct	ctg	gca	aga	1177
	Pro	Leu	Asn	Pro	Thr	Ser	Trp	Trp	Ala	Asp	Leu	Arg	Ala	Leu	Ala	Arg	
		255					260					265					
	aat	ctc	atc	ttt	gga	ctc	atc	acc	tgc	ctg	acc	gga	gtc	ctg	ggt	gtg	1225
5	Asn	Leu	Ile	Phe	Gly	Leu	Ile	Thr	Cys	Leu	Thr	Gly	Val	Leu	Gly	Val	
	270					275					280					285	
	ggc	ctg	ggt	gtg	gag	atc	agc	cgc	cgg	ctc	cgc	cac	tcc	aac	ccc	cgg	1273
	Gly	Leu	Gly	Val	Glu	Ile	Ser	Arg	Arg	Leu	Arg	His	Ser	Asn	Pro	Arg	
					290					295					300		
10	gct	gat	ccc	ctg	gtc	tgt	gcc	act	ggc	ctc	ctg	ggc	tct	gca	ccc	ttc	1321
	Ala	Asp	Pro	Leu	Val	Cys	Ala	Thr	Gly	Leu	Leu	Gly	Ser	Ala	Pro	Phe	
				305					310					315			
	ctc	ttc	ctg	tcc	ctt	gcc	tgc	gcc	cgt	ggt	agc	atc	gtg	gcc	act	tat	1369
	Leu	Phe	Leu	Ser	Leu	Ala	Cys	Ala	Arg	Gly	Ser	Ile	Val	Ala	Thr	Tyr	
15			320					325					330				
	att	ttc	atc	ttc	att	gga	gag	acc	ctc	ctg	tcc	atg	aac	tgg	gcc	atc	1417
	Ile	Phe	Ile	Phe	Ile	Gly	Glu	Thr	Leu	Leu	Ser	Met	Asn	Trp	Ala	Ile	
		335					340					345					
	gtg	gcc	gac	att	ctg	ctg	tac	gtg	gtg	atc	cct	acc	cga	cgc	tcc	acc	1465
20	Val	Ala	Asp	Ile	Leu	Leu	Tyr	Val	Val	Ile	Pro	Thr	Arg	Arg	Ser	Thr	
	350					355					360					365	
	gcc	gag	gcc	ttc	cag	atc	gtg	ctg	tcc	cac	ctg	ctg	ggt	gat	gct	ggg	1513
	Ala	Glu	Ala	Phe	Gln	Ile	Val	Leu	Ser	His	Leu	Leu	Gly	Asp	Ala	Gly	
					370					375					380		
25	agc	ccc	tac	ctc	att	ggc	ctg	atc	tct	gac	cgc	ctg	cgc	cgg	aac	tgg	1561

332/346

	Ser	Pro	Tyr	Leu	Ile	Gly	Leu	Ile	Ser	Asp	Arg	Leu	Arg	Arg	Asn	Trp	
				385					390					395			
	ccc	ccc	tcc	ttc	ttg	tcc	gag	ttc	cgg	gct	ctg	cag	ttc	tcg	ctc	atg	1609
	Pro	Pro	Ser	Phe	Leu	Ser	Glu	Phe	Arg	Ala	Leu	Gln	Phe	Ser	Leu	Met	
5			400					405					410				
	ctc	tgc	gcg	ttt	gtt	ggg	gca	ctg	ggc	ggc	gca	gcc	ttc	ctg	ggc	acc	1657
	Leu	Cys	Ala	Phe	Val	Gly	Ala	Leu	Gly	Gly	Ala	Ala	Phe	Leu	Gly	Thr	
		415					420					425					
	gcc	atc	ttc	att	gag	gcc	gac	cgc	cgg	cgg	gca	cag	ctg	cac	gtg	cag	1705
10	Ala	Ile	Phe	Ile	Glu	Ala	Asp	Arg	Arg	Arg	Ala	Gln	Leu	His	Val	Gln	
	430					435					440					445	
	ggc	ctg	ctg	cac	gaa	gca	ggg	tcc	aca	gac	gac	cgg	att	gtg	gtg	ccc	1753
	Gly	Leu	Leu	His	Glu	Ala	Gly	Ser	Thr	Asp	Asp	Arg	Ile	Val	Val	Pro	
					450					455					460		
15	cag	cgg	ggc	cgc	tcc	acc	cgc	gtg	ccc	gtg	gcc	agt	gtg	ctc	atc	tga	1801
	Gln	Arg	Gly	Arg	Ser	Thr	Arg	Val	Pro	Val	Ala	Ser	Val	Leu	Ile		
				465					470					475			
	gagg	ctgo	cg c	tcac	ctac	c to	rcaca	tctg	cca	cago	tgg:	ccct	gggc	cc a	cccc	acgaa	1861
	gggc	ctgg	ige c	taac	ccct	t gg	ccto	gccc	ago	ttcc	aga	ggga	ıccct	gg g	ccgt	gtgcc	1921
20	agct	ccca	iga c	acta	cato	ıg gt	agct	cago	gga	ggag	igtg	gggg	tcca	igg a	gggg	gatcc	1981
	ctct	ccac	ag g	ggca	gccc	c aa	ıgggc	tegg	, tgc	tatt	tgt	aacg	gaat	aa a	attt	gtagc	2041
	cag																2044

<210> 147

25 <211> 2176

333/346

<212> DNA

<213> Homo sapiens

<220>

5 <221> CDS

<222> (263)..(1612)

<400> 147

tteggeeget gtteggetge geggeggeag eteeeggegg eteetggegg egeegeagte 60

ggacettegg gegeetgetg geeggeggea geagegatgg eeeeetgage aggeagggag 120

caggeggegg caggegggea agegggeggg tgeegeagee eaggeeeggg tegegeetet 180

ttgttteeae gggtagegge geagteeegg geeeegggeg gaagtgagae gegeteggeg 240

cgggggeege ggeggeegea ee atg age gae ate ege eac teg etg ege 292

Met Ser Asp Ile Arg His Ser Leu Leu Arg

15 1 5 10

cgc gat gcg ctg agc gcc gcc aag gag gtg ttg tac cac ctg gac atc 340 Arg Asp Ala Leu Ser Ala Ala Lys Glu Val Leu Tyr His Leu Asp Ile

15 20 25

tac ttc agc agc cag ctg cag agc gcg ccg ctg ccc atc gtg gac aag 388

20 Tyr Phe Ser Ser Gln Leu Gln Ser Ala Pro Leu Pro Ile Val Asp Lys

30 35 40

ggc ccc gtg gag ctg ctg gag gag ttc gtg ttc cag gtg ccc aag gag 436 Gly Pro Val Glu Leu Leu Glu Glu Phe Val Phe Gln Val Pro Lys Glu

45 50 55

25 cgc agc gcg cag ccc aag aga ctg aat tcc ctt cag gag ctt caa ctt 484

	Arg	Ser	Ala	Gln	Pro	Ъуs	Arg	Leu	Asn	Ser	Leu	Gln	Glu	Leu	Gln	Leu	
		60					65					70					
	ctt	gaa	atc	atg	tgc	aat	tat	ttc	cag	gag	caa	acc	aag	gac	tct	gtt	532
	Leu	Glu	Ile	Met	Суз	Asn	Tyr	Phe	Gln	Glu	Gln	Thr	Lys	Asp	Ser	Val	
5	75					80					85					90	
	cgg	cag	att	att	ttt	tca	tcc	ctt	ttc	agc	cct	caa	ggg	aac	aaa	gcc	580
	Arg	Gln	Ile	Ile	Phe	Ser	Ser	Leu	Phe	Ser	Pro	Gln	Gly	Asn	Lys	Ala	
					95					100					105		
	gat	gac	agc	cgg	atg	agc	ttg	ttg	gga	aaa	ctg	gtc	tcc	atg	gcg	gtg	628
10	Asp	Asp	Ser	Arg	Met	Ser	Leu	Leu	Gly	Lys	Leu	Val	Ser	Met	Ala	Val	
				110					115					120			
	gct	gtg	tgt	cga	atc	ccg	gtg	ttg	gag	tgt	gct	gcc	tcc	tgg	ctt	cag	676
	Ala	Val	Cys	Arg	Ile	Pro	Val	Leu	Glu	Cys	Ala	Ala	Ser	Trp	Leu	Gln	
			125					130					135				
15	cgg	acg	ccc	gtg	gtt	tac	tgt	gtg	agg	tta	gcc	aag	gcc	ctt	gta	gat	724
	Arg	Thr	Pro	Val	Val	Tyr	Cys	Val	Arg	Leu	Ala	Lys	Ala	Leu	Val	Asp	
		140					145					150					
	gac	tac	tgc	tgt	ttg	gtg	ccg	gga	tcc	att	cag	acg	ctg	aag	cag	ata	772
	Asp	Tyr	Cys	Cys	Leu	Val	Pro	Gly	Ser	Ile	Gln	Thr	Leu	Lys	Gln	Ile	
20	155					160					165					170	
	ttc	agt	gcc	agc	ccg	aga	ttc	tgc	tgc	cag	ttc	atc	acc	tcc	gtt	acc	820
	Phe	Ser	Ala	Ser	Pro	Arg	Phe	Cys	Cys	Gln	Phe	Ile	Thr	Ser	Val	Thr	
					175					180					185		
	gcg	ctc	tat	gac	ctg	tca	tca	gat	gac	ctc	att	cca	cct	atg	gac	ttg	868
25	Ala	Leu	Tyr	Asp	Leu	Ser	Ser	Asp	Asp	Leu	Ile	Pro	Pro	Met	Asp	Leu	

				190					195					200			
	ctt	gaa	atg	att	gtc	acc	tgg	att	ttt	gag	gac	cca	agg	ttg	att	ctc	916
	Leu	Glu	Met	Ile	Val	Thr	Trp	Ile	Phe	Glu	Asp	Pro	Arg	Leu	Ile	Leu	
			205					210					215				
5	atc	act	ttt	tta	aat	act	ccg	att	gcg	gcc	aat	ctg	cca	ata	gga	ttc	964
	Ile	Thr	Phe	Leu	Asn	Thr	Pro	Ile	Ala	Ala	Asn	Leu	Pro	Ile	Gly	Phe	
		220					225					230					
	tta	gag	ctc	acc	ccg	ctc	gtt	gga	ttg	atc	cgc	tgg	tgc	gtg	aag	gca	1012
	Leu	Glu	Leu	Thr	Pro	Leu	Val	Gly	Leu	Ile	Arg	Trp	Cys	Val	Lys	Ala	
10	235					240					245					250	
	ccc	ctg	gct	tat	aaa	agg	aaa	aag	aag	ccc	ccc	tta	tcc	aat	ggc	cat	1060
	Pro	Leu	Ala	Tyr	Lys	Arg	Lys	Lys	Lys	Pro	Pro	Leu	Ser	Asn	Gly	His	
					255					260					265		
	gtc	agc	aac	aag	gtc	aca	aag	gac	ccg	ggc	gtg	ggg	atg	gac	aga	gac	1108
15	Val	Ser	Asn	Lys	Val	Thr	Lys	Asp	Pro	Gly	Val	Gly	Met	Asp	Arg	Asp	
				270					275					280			
	tcc	cac	ctc	ttg	tac	tca	aaa	ctc	cac	ctc	agc	gtc	ctg	caa	gtg	ctc	1156
	Ser	His	Leu	Leu	Tyr	Ser	Lys	Leu	His	Leu	Ser	Val	Leu	Gln	Val	Leu	
			285					290					295				
20	atg	acg	ctg	cag	ctg	cac	ctg	acc	gag	aag	aat	ctg	tat	ggg	cgc	ctg	1204
	Met	Thr	Leu	Gln	Leu	His	Leu	Thr	Glu	Lys	Asn	Leu	Tyr	Gly	Arg	Leu	
		300					305					310					
	ggg	ctg	atc	ctc	ttc	gac	cac	atg	gtc	ccg	ctg	gta	gag	gag	atc	aac	1252
	Gly	Leu	Ile	Leu	Phe	Asp	His	Met	Val	Pro	Leu	Val	Glu	Glu	Ile	Asn	
25	315					320					325					330	

	agg	ttg	gcg	gat	gaa	ctg	aac	ccc	ctc	aac	gcc	tcc	cag	gag	att	gag	1300
	Arg	Leu	Ala	Asp	Glu	Leu	Asn	Pro	Leu	Asn	Ala	Ser	Gln	Glu	Ile	Glu	
					335					340					345		
	ctc	tcg	ctg	gac	cgg	ctg	gcg	cag	gct	ctg	cag	gtg	gcc	atg	gcc	tca	1348
5	Leu	Ser	Leu	Asp	Arg	Leu	Ala	Gln	Ala	Leu	Gln	Val	Ala	Met	Ala	Ser	
				350					355					360			
	gga	gct	ctg	ctg	tgc	acg	aga	gat	gac	.ctg	aga	acc	ttg	tgc	tcc	agg	1396
	Gly	Ala	Leu	Leu	Cys	Thr	Arg	Asp	Asp	Leu	Arg	Thr	Leu	Cys	Ser	Arg	
			365					370					375				
10	ctg	ccc	cat	aat	aac	ctc	ctc	cag	ctg	gtg	atc	tcg	ggt	ccc	gtg	cag	1444
	Leu	Pro	His	Asn	Asn	Leu	Leu	Gln	Leu	Val	Ile	Ser	Gly	Pro	Val	Gln	
		380					385					390					
	cag	tcg	cct	cac	gcc	gcg	ctc	CCC	ccg	ggg	ttc	tac	ccc	cac	atc	cac	1492
	Gln	Ser	Pro	His	Ala	Ala	Leu	Pro	Pro	Gly	Phe	Tyr	Pro	His	Ile	His	
15	395					400					405					410	
	acg	ccc	ccg	ctg	ggc	tac	ggg	gct	gtc	ccg	gcc	cac	ccc	gcc	gcc	cac	1540
	Thr	Pro	Pro	Leu	Gly	Tyr	Gly	Ala	Val	Pro	Ala	His	Pro	Ala	Ala	His	
					415					420					425		
	ccc	gcc	ctg	ccc	acg	cac	ccc	ggc	cac	acc	ttc	atc	tcc	ggc	gtg	acc	1588
20	Pro	Ala	Leu	Pro	Thr	His	Pro	Gly	His	Thr	Phe	Ile	Ser	Gly	Val	Thr	
				430					435					440			
	ttt	ccc	ttc	agg	ccc	atc	cgc	tag	gcto	gcco	gt g	ıtgtg	cctt	c to	jeget	ctcg	1642
	Phe	Pro	Phe	Arg	Pro	Ile	Arg										
	٠		445					450									
25	ctgg	jacga	ag c	cttt	cgae	a to	gaac	gaat	: aac	caaa	ctc	ccad	aada	ıga a	ccto	aggga	1702

337/346

aggggteggg cagecetee cegeeggeag aacegtettg gtgteaegga gteeaggtge 1762
tteecaeeeg gtegeattet ttgacatgea gattggatgg tggagggaag agteeageet 1822
ctgeeggagg cetgetgegt geattttaa aagatgeega teetgggage etetgttete 1882
tgegeattte agacaeagee tgtgtggega ggagtgtgae ggeaggagee aegggtgeaa 1942
geeegtgtgt etggeetett teetegtgaa gaegatgtgt eeeegeeaga aaaagtggge 2002
teettetgea geeeegtgag etgageeeag getgegtagt gaeeaeaage ttatgtgeag 2062
caetgeteag ggaggetgte aggaatteee eteaeetegg aaaggaaeett eteagttta 2122
ttgggggtgt etaaatttee ttteatatgt teaaataaat ttttetaaae agte 2176

.

10 <210> 148

5

<211> 1363

<212> DNA

<213> Homo sapiens

15 <220>

<221> CDS

<222> (16)..(333)

<400> 148

20 gttactctcc acagt atg cga aga ata tcc ctg act tct agc cct gtg cgc 51

Met Arg Arg Ile Ser Leu Thr Ser Ser Pro Val Arg

1 5 10

ctt ctt ttg ttt ctg ctg ttg cta cta ata gcc ttg gag atc atg gtt 99
Leu Leu Leu Phe Leu Leu Leu Leu Ile Ala Leu Glu Ile Met Val

25 15 20 25

	ggt	ggt	cac	tct	ctt	tgc	ttc	aac	ttc	act	ata	aaa	tca	ttg	tcc	aga	147
	Gly	Gly	His	Ser	Leu	Cys	Phe	Asn	Phe	Thr	Ile	Lys	Ser	Leu	Ser	Arg	
		30					35					40					
	cct	gga	cag	ccc	tgg	tgt	gaa	gcg	cag	gtc	ttc	ttg	aat	aaa	aat	ctt	195
5	Pro	Gly	Gln	Pro	Trp	Cys	Glu	Ala	Gln	Val	Phe	Leu	Asn	Lys	Asn	Leu	
	45					50					55					60	
	ttc	ctt	cag	tac	aac	agt	gac	aac	aac	atg	gtc	aaa	cct	ctg	ggc	ctc	243
	Phe	Leu	Gln	Tyr	Asn	Ser	Asp	Asn	Asn	Met	Val	Lys	Pro	Leu	Gly	Leu	
					65					70					75		
10	ctg	ggg	aag	aag	gta	aat	gcc	acc	agc	act	tgg	gga	gaa	aac	сса	aac	291
	Leu	Gly	Lys	Lys	Val	Asn	Ala	Thr	Ser	Thr	Trp	Gly	Glu	Asn	Pro	Asn	
				80					85		·			90			
	gct	ggg	aga	agt	ggg	gcg	aga	cct	cag	gat	gct	cct	ttg	tga			333
•	Ala	Gly	Arg	Ser	Gly	Ala	Arg	Pro	Gln	Asp	Ala	Pro	Leu				
15			95					100					105				
	cato	caaac	ccc c	cagat	aaaç	ja co	cagto	gated	tto	cact	ctg	caag	gtcga	aga t	gttt	tgtca	393
	acgt	gaag	gca ç	gaac	gtg	ca ct	ggt	gcato	cto	gcag	gttc	gcca	accaa	atg (gagag	gaaatc	453
	cctc	ctct	tt g	gacgo	caato	ga ac	catga	accto	gac	agta	att	aato	catga	ag o	ccagt	aagat	513
	caag	gaga	aca t	ggaa	agaaa	ng ac	cagag	gggct	gga	aaag	gtat	ttca	aggaa	agc t	tctca	aaggg	573
20	agac	tgcg	gat c	cacto	gcto	a gg	ggaat	tctt	ago	gcac	etgg	gagg	gcaat	gc (cagaa	ccgac	633
	aggo	agaa	aga t	ccad	ctag	ga gg	gtgat	acca	cgç	cggc	gca	gagt	tgtt	ca o	cctgt	ggtcc	693
	tcga	tcgc	etg a	acago	ctto	g ct	ccca	actgo	: tgt	gtgt	tcc	ctga	agtca	ag t	ggag	gcgga	753
	gcct	gcaa	atg a	agcgg	gagat	c go	egect	ctgo	att	ccaç	gtct	tgg	caaca	aga 🤅	caac	jactcc	813
	gtct	caaa	aaa a	aaaa	attt	t tt	ttca	agtac	ata	tttt	tta	aaag	gatag	gg (ctggg	gcacag	873
25	cago	tcac	cat o	ctata	atco	c aa	acact	ttac	a aac	racct	aaa	cago	ragga	atc a	actto	agccc	933

aggaatetga agetgeagtg ageetttget egtgagattg tggaeetatg ateetaceae 993
cageecacet ggttetaaca ecceeteete tatgtgtgag agggagagaa gaaaagtgag 1053
ggagaaaaga gagataagea aagaacagag aggaaaaatg gaaaataaga ggaaattggg 1113
ggaattaaac agaggggagg geatggatee eegggagtta gaagagtage agettgtgga 1173
ttaetaegea gtggaggaag aagagttgtt ggaaattatt tgagaggtag tataateatt 1233
tgtgaggeag ttttetgeat teaceattte teacagaeta agttaeteat aageaaaegt 1293
geaatteaca ttaeaetgaa attetteeet aataeateat ttgeattgga ataaagtaeg 1353
gtttteaaae 1363

10 <210> 149

5

<211> 1043

<212> DNA

<213> Homo sapiens

15 <220>

<221> CDS

<222> (227)..(472)

<400> 149

20 cagtegtett cacaggegae catagaceae acatactaae agtegtette acaggegaee 60
gegeaceaea gatactaaea gtegtettea caggegaeeg tagaceaeae atactaaeag 120
tegtetteae aggegaeeae geaceaeaea cactaaeagt egtetteaea ggegaeegeg 180
caccacacae actaaeggae gtgeeegaea tetteaeagg cacage atg age cet 235

Met Ser Pro

	gat	gtg	cgc	ttt	ctg	ctc	ctg	ctc	ctg	ctc	ctg	CCC	ctt	cgg	agg	cct	283
	Asp	Val	Arg	Phe	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Pro	Leu	Arg	Arg	Pro	
		5					10					15					
	gtg	cca	gtg	gca	gct	ggg	ccc	gga	gac	acc	agg	ccg	gca	ctg	ctc	tct	331
5	Val	Pro	Val	Ala	Ala	Gly	Pro	Gly	Asp	Thr	Arg	Pro	Ala	Leu	Leu	Ser	
	20					25		•			30					35	
	ttc	gag	gca	ccc	gtg	ttt	gtg	ccg	acg	ctg	act	ccc	ggt	tgt	ctg	cag	379
	Phe	Glu	Ala	Pro	Val	Phe	Val	Pro	Thr	Leu	Thr	Pro	Gly	Cys	Leu	Gln	
					40					45					50		
10	cag	cca	cgt	ggc	cga	aat	gga	gcc	tct	cca	cgg	ggg	ctc	ctt	ccc	cag	427
	Gln	Pro	Arg	Gly	Arg	Asn	Gly	Ala	Ser	Pro	Arg	Gly	Leu	Leu	Pro	Gln	
				55					60					65			
	ccc	ctg	gat	ggc	aca	gca	gcc	tct	cct	gtc	tgt	cac	cac	gtg	tga		472
	Pro	Leu	Asp	Gly	Thr	Ala	Ala	Ser	Pro	Val	Cys	His	His	Val			
15			70					75					80				
	ccto	ctco	cct t	agto	ttca	ig co	gcto	catco	acg	rtctg	jcag	gggg	atct	aa (ctctg	ıtccca	532
	gggt	atco	cca ç	jacco	etgge	t ca	cgc	ccag	g gct	ctcc	att	cago	gctco	at (cgtcc	acctc	592
	agac	cato	ctc ç	ggtt	tgct	g gt	ctto	tgga	cta	gcgc	agc	caga	aaga	ac (ccagg	jaagga	652
	agoo	ctcac	gt d	ctgac	acaa	ıg aa	cctt	cggt	gct:	aacc	cga	gggd	ggta	ıtg '	tgcat	cctca	712
20	gcac	ctgo	cc a	atccg	gcac	c at	ccto	tgat	cca	ggga	ictg	tgaç	caac	ag	ggccc	cgtgg	772
	ccag	gaca	atc t	ctca	ıccct	c ca	igtta	aaat	cto	gcca	igtt	gagt	ctgo	cc i	atgaa	agtag	832
	gtgo	tgaa	act o	rcce	ataa	a to	caca	agta	aga	gttg	ıcaa	gaaç	gago	ca a	aaaag	ggctg	892
	agct	gaat	ga c	ctcat	atat	g aa	ataa	tttg	, ata	atta	ata	taaa	ıtagç	jaa a	attta	aagtc	952
	tcca	gctg	gag t	gaca	gaaa	a ca	cctt	aaaa	ago	tcaa	ıgag	agag	gaaa	igg a	aagaa	aataa	1012
25	acct	ataa	att c	gcaaa	ataa	a ag	catt	gaaa	g								1043

341/346

<210> 150

<211> 2435

<212> DNA

5 <213> Homo sapiens

<220>

<221> CDS

<222> (357)..(2015)

10

15

<400> 150

tagttteet ateggegea gegggeaagg eggegege ggeggegea geegeggtgg 60 eggegtgggg aacatetegg eagecacege getteteeeg etggageggg egteeagett 120 ggetgeeete ggteetteee tgeeaegtt egggtegeee tgeaeeeeee acceaggete 180 gettetette gaageggaa gggegeettg eaggateetg eegeeetee aaceggatee 240 tgggtetaga geteeeeag gegaggeget egeeaggaet eetgeeeege eaaeeetgae 300 egeegggggg tgeeeeggg aegtagegee geggagagga ageggeaaag gggaee atg 359

Met

1

20 cgg cgc ctg act cgt cgg ctg gtt ctg cca gtc ttc ggg gtg ctc tgg 407
Arg Arg Leu Thr Arg Arg Leu Val Leu Pro Val Phe Gly Val Leu Trp

10 15

atc acg gtg ctg ctg ttc ttc tgg gta acc aag agg aag ttg gag gtg 455

Ile Thr Val Leu Leu Phe Phe Trp Val Thr Lys Arg Lys Leu Glu Val

25 20 25 30

	ccg	acg	gga	cct	gaa	gtg	cag	acc	cct	aag	cct	tcg	gac	gct	gac	tgg	503
	Pro	Thr	Gly	Pro	Glu	Val	Gln	Thr	Pro	Lys	Pro	Ser	Asp	Ala	Asp	Trp.	
		35					40					45					
	gac	gac	ctg	tgg	gac	cag	ttt	gat	gag	cgg	cgg	tat	ctg	aat	gcc	aaa	551
5	Asp	Asp	Leu	Trp	Asp	Gln	Phe	Asp	Glu	Arg	Arg	Tyr	Leu	Asn	Ala	Lys	
	50					55					60		•			65	
	aag	tgg	cgc	gtt	ggt	gac	gac	ccc	tat	aag	ctg	tat	gct	ttc	aac	cag	599
	Lys	Trp	Arg	Val	Gly	Asp	Asp	Pro	Tyr	Lys	Leu	Tyr	Ala	Phe	Asn	Gln	
					70					75					80		
LO .	cgg	gag	agt	gag	cgg	atc	tcc	agc	aat	cgg	gcc	atc	ccg	gac	act	cgc	647
	Arg	Glu	Ser	Glu	Arg	Ile	Ser	Ser	Asn	Arg	Ala	Ile	Pro	Asp	Thr	Arg	
				85					90					95		4.	
	cat	ctg	aga	tgc	aca	ctg	ctg	gtg	tat	tgc	acg	gac	ctt	cca	ccc	act	695
	His	Leu	Arg	Cys	Thr	Leu	Leu	Val	Tyr	Cys	Thr	Asp	Leu	Pro	Pro	Thr	
15			100					105					110				
	agc	atc	atc	atc	acc	ttc	cac	aac	gag	gcc	cgc	tcc	acg	ctg	ctc	agg	743
	Ser	Ile	Ile	Ile	Thr	Phe	His	Asn	Glu	Ala	Arg	Ser	Thr	Leu	Leu	Arg	
		115					120					125					
	acc	atc	cgc	agt	gta	tta	aac	cgc	acc	cct	acg	cat	ctg	atc	cgg	gaa	791
20	Thr	Ile	Arg	Ser	Val	Leu	Asn	Arg	Thr.	Pro	Thr	His	Leu	Ile	Arg	Glu	
	130					135					140					145	
	atc	ata	tta	gtg	gat	gac	ttc	agc	aat	gac	cct	gat	gac	tgt	aaa	cag	839
	Ile	Ile	Leu	Val	Asp	Asp	Phe	Ser	Asn	Asp	Pro	Asp	Asp	Cys	Lys	Gln	
					150					155					160		
25	ctc	atc	aag	ttg	ccc	aag	gtg	aaa	tgc	ttg	cqc	aat	aat	gaa	cgg	caa	887

	Leu	Ile	Lys	Leu	Pro	Lys	Val	Lys	Cys	Leu	Arg	Asn	Asn	Glu	Arg	Gln	
				165					170					175			
	ggt	ctg	gtc	cgg	tcc	cgg	att	cgg	ggc	gct	gac	atc	gcc	cag	ggc	acc	935
	Gly	Leu	Val	Arg	Ser	Arg	Ile	Arg	Gly	Ala	Asp	Ile	Ala	Gln	Gly	Thr	
5			180					185					190				
	act	ctg	act	ttc	ctc	gac	agc	cac	tgt	gag	gtg	aac	agg	gac	tgg	ctc	983
	Thr	Leu	Thr	Phe	Leu	Asp	Ser	His	Cys	Glu	Val	Asn	Arg	Asp	Trp	Leu	
		195					200				•	205					
	cag	cct	ctg	ttg	cac	agg	gtc	aaa	gag	gac	tac	acg	cgg	gtg	gtg	tgc	1031
10	Gln	Pro	Leu	Leu	His	Arg	Val	Lys	Glu	Asp	Tyr	Thr	Arg	Val	Val	Суѕ	
•	210					215					220					225	
	cct	gtg	ato	gat	atc	att	aac	ctg	gac	acc	ttc	acc	tac	atc	gag	tct	1079
	Pro	Val	Ile	Asp	Ile	Ile	Asn	Leu	Asp	Thr	Phe	Thr	Tyr	Ile	Glu	Ser	
					230					235					240		
15	gcc	tcg	gag	ctc	aga	ggg	ggg	ttt	gac	tgg	ago	ctc	cac	ttc	cag	tgg	1127
	Ala	Ser	Glu	ı Leu	Arg	Gly	Gly	Phe	Asp	Trp	Ser	Leu	His	Phe	Gln	Trp	
				245					250					255	•		
	gag	cag	g cto	tcc	: сса	gag	cag	aag	gct	cgg	cgc	ctg	gac	ccc	acg	gag	1175
	Glu	Glr	n Lei	ı Ser	Pro	Glu	Gln	Lys	Ala	Arg	Arg	J Leu	a Asp	Pro	Thr	Glu	
20			260)				265	S				270)			
	ccc	ato	c agg	g act	cct	ato	ata	a gct	. gga	ggg	g cto	c tto	gtg	g ato	gad	aaa	1223
	Pro	Ile	e Ar	g Thi	rPro	Ile	e Ile	e Ala	a Gly	Gly	, Tei	ı Phe	e Val	l Ile	e Asp	. Lys	
		27	5				280)				285	5				
	gct	t tg	g tt	t gai	t tac	ct	g ggg	g aaa	a tat	gat	t at	g gad	c ato	g ga	c ato	c tgg	1271
25	Ala	a Tr	p Ph	e Ası	о Ту	r Lei	ı Gly	y Ly:	з Туз	: As	о Ме	t As	p Met	t As	p Ile	e Trp	

	290					295					300					305	
	ggt	ggg	gag	aac	ttt	gaa	atc	tcc	ttc	cga	gtg	tgg	atg	tgc	ggg	ggc	1319
	Gly	Gly	Glu	Asn	Phe	Glu	Ile	Ser	Phe	Arg	Val	Trp	Met	Суѕ	Gly	Gly	
					310					315					320		
5	agc	cta	gag	atc	gtc	ccc	tgc	agc	cga	gtg	ggg	cac	gtc	ttc	cgg	aag	1367
	Ser	Leu	Glu	Ile	Val	Pro	Cys	Ser	Arg	Val	Gly	His	Val	Phe	Arg	Lys	
		•		325	•				330					335	٠		
	aag	cac	ccc	tac	gtt	ttc	cct	gat	gga	aat	gcc	aac	acg	tat	ata	aag	1415
	Lys	His	Pro	Tyr	Val	Phe	Pro	Asp	Gly	Asn	Ala	Asn	Thr	Tyr	Ile	Lys	
10			340					345					350				
	aac	acc	aag	cgg	aca	gct	gaa	gtg	tgg	atg	gat	gaa	tac	aag	caa	tac	1463
	Asn	Thr	Lys	Arg	Thr	Ala	Glu	Val	Trp	Met	Asp	Glu	Tyr	Lys	Gln	Tyr	
		355					360					365					
	tat	tac	gct	gcc	cgg	cca	ttc	gcc	ctg	gag	agg	ccc	ttc	ggg	aat	gtt	1511
15	Tyr	Tyr	Ala	Ala	Arg	Pro	Phe	Ala	Leu	Glu	Arg	Pro	Phe	Gly	Asn	Val	
	370					375					380					385	
	gag	agc	aga	ttg	gac	ctg	agg	aag	aat	ctg	cgc	tgc	cag	agc	ttc	aag	1559
	Glu	Ser	Arg	Leu	Asp	Leu	Arg	Lys	Asn	Leu	Arg	Cys	Gln	Ser	Phe	Lys	
					390					395					400		
20	tgg	tac	ctg	gag	aat	atc	tac	cct	gaa	ctc	agc	atc	ccc	aag	gag	tcc	1607
	Trp	Tyr	Leu	Glu	Asn	Ile	Tyr	Pro	Glu	Leu	Ser	Ile	Pro	Lys	Glu	Ser	
				405					410					415			
	tcc	atc	cag	aag	ggc	aat	atc	cga	cag	aga	cag	aag	tgc	ctg	gaa	tct	1655
	Ser	Ile	Gln	Lys	Gly	Asn	Ile	Arg	Gln	Arg	Gln	Lys	Cys	Leu	Glu	Ser	
25			420					425					430				

	•	,														
	caa agg	cag	aac	aac	caa	gaa	acc	cca	aac	cta	aag	ttg	agc	ccc	tgt	1703
	Gln Arg	Gln	Asn	Asn	Gln	Glu	Thr	Pro	Asn	Leu	Lys	Leu	Ser	Pro	Cys	
	435					440					445					
	gcc aag	gtc	aaa	ggc	gaa	gat	gca	aag	tcc	cag	gta	tgg	gcc	ttc	aca	1751
5	Ala Lys	Val	Lys	Gly	Glu	Asp	Ala	Lys	Ser	Gln	Val	Trp	Ala	Phe	Thr	
	450				455					460					465	
	tac acc	cag	cag	atc	ctc	cag	gag	gag	ctg	tgc	ctg	tca	gtc	atc	acc	1799
	Tyr Thr	Gln	Gln	Ile	Leu	Gln	Glu	Glu	Leu	Cys	Leu	Ser	Val	Ile	Thr	
	-			470					475					480		
10	ttg ttc	cct	ggc	gcc	cca	gtg	gtt	ctt	gtc	ctt	tgc	aag	aat	gga	gat	1847
	Leu Phe	Pro	Gly	Ala	Pro	Val	Val	Leu	Val	Leu	Cys	Lys	Asn	Gly	Asp	
			485					490					495			
	gac cga	cag	caa	tgg	acc	aaa	act	ggt	tcc	cac	atc	gag	cac	ata	gca	1895
	Asp Arg	Gln	Gln	Trp	Thr	Lys	Thr	Gly	Ser	His	Ile	Glu	His	Ile	Ala	
15		500					505					510		•		
	tcc cac	ctc	tgc	ctc	gat	aca	gat	atg	ttc	ggt	gat	ggc	acc	gag	aac	1943
	Ser His	Leu	Cys	Leu	Asp	Thr	Asp	Met	Phe	Gly	Asp	Gly	Thr	Glu	Asn	
	515					520					525					
	ggc aag	gaa	atc	gtc	gtc	aac	сса	tgt	gag	tcc	tca	ctc	atg	agc	cag	1991
20	Gly Lys	Glu	Ile	Val	Val	Asn	Pro	Cys	Glu	Ser	Ser	Leu	Met	Ser	Gln	
	530				535					540					545	
	cac tgg	gac	atg	gtg	agc	tct	tga	ggad	ecct	ige d	cagaa	ıgcaç	jc aa	agggo	catq	2045
	His Trp															
				550												
25	gggtggt	gct t	ccct		c ac	gaaca	agact	. qqa	aact	agaa	caaa	aaaa	aq o	ctac	caacca	2105

5

cctcagacat	cctggactgg	gaggtggagg	cagagccccc	caggacagga	gcaactgtct	2165
cagggaggac	agaggaaaac	atcacaagcc	aatggggctc	aaagacaaat	cccacatgtt	2225
ctcaaggccg	ttaagttcca	gtcctggcca	gtcattccct	gattggtatc	tggagacaga	2285
aacctaatgg	gaagtgttta	ttgttccttt	tcctacaaag	gaagcagtct	ctggaggcca	2345
gaaagaaaag	ccttcttttt	cactaggcca	ggactacatt	gagagatgaa	gaatggaggt	2405
totttccaaa	agaaataaa	g agaaactta	ια			2435