Lei dos Grades Números e o Teorema do Limite Central

MAE0221 - Probabilidade I Aline Duarte

Tipo de Convergência

Convergência em probabilidade: $X_n \xrightarrow{P} X$

Dizemos que uma sequência $(X_n)_{n\geq 1}$ de v.a.'s converge em probabilidade para uma v.a. X, se para qualquer $\epsilon>0$, vale que

$$\lim_{n\to\infty} P(|X_n - X| > \epsilon) = 0$$

Note que para cada n, $P(|X_n-X|>\epsilon)=a_n\in[0,1]$, logo a definição afirma que $a_n\to 0$, quando $n\to\infty$

Tipo de Convergência

Convergência em probabilidade: $X_n \xrightarrow{P} X$

Dizemos que uma sequência $(X_n)_{n\geq 1}$ de v.a.'s converge em probabilidade para uma v.a. X, se para qualquer $\epsilon>0$, vale que

$$\lim_{n\to\infty} P(|X_n - X| > \epsilon) = 0$$

Note que para cada n, $P(|X_n-X|>\epsilon)=a_n\in[0,1]$, logo a definição afirma que $a_n\to 0$, quando $n\to\infty$

- 1. Se $X_n \sim Ber(p_n)$ com $p_n = (1/2)^n, \ n = 1, 2, ...,$ então $X_n \stackrel{P}{\longrightarrow} 0$.
- 2. Sejam $X_n \sim Exp(1), n=1,2,\ldots$ v.a.'s independentes e defina $Y_n = \frac{X_n}{\ln n}$. Mostre que $Y_n \stackrel{P}{\to} 0$.
- 3. Sejam $X_n \sim Unif(0,1), n = 1, 2, \dots$ v.a.'s independentes e defina $Y_n = min\{X_1, \dots, X_n\}$. Mostre que $Y_n \stackrel{P}{\longrightarrow} 0$.

Convergência quase certa: $X_n \xrightarrow{qc} X$

Dizemos que uma sequência $(X_n)_{n\geq 1}$ de v.a.'s converge quase certamente para uma v.a. X se

$$P\Big(\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\Big) = 1.$$

4 Seja $X \sim Unif(0,1)$ e defina

$$Y_n = \begin{cases} 1 & 0 \le X \le \frac{n+1}{2n} \\ 0 & c.c \end{cases}$$
 $e \quad Y = \begin{cases} 1 & 0 \le X \le \frac{1}{2} \\ 0 & c.c \end{cases}$

Mostre que $Y_n \xrightarrow{qc} Y$

Um sequência de eventos A_1, A_2, \ldots é dita monótona não-decrescente (resp. não-crescente) se $A_n \subset A_{n+1}$, (resp. $A_{n+1} \subset A_n$) $n = 1, 2, \ldots$, e denotamos por $A_n \uparrow$ (resp. $A_n \downarrow$)

O limite superior de uma sequência de eventos $\{A_n, n \geq 1\}$ é definido por

$$\limsup A_n = \overline{\lim} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k.$$

O limite inferior de uma sequência de eventos $\{A_n, n \geq 1\}$ é definido por

$$\lim\inf A_n = \underline{\lim} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k.$$

A sequência de eventos $\{A_n, n \ge 1\}$ tem *limite* se

$$\limsup A_n = \liminf A_n = \lim A_n$$

Proposição: continuidade da probabilidade

Sejam A, A_1, A_2, \ldots eventos em um mesmo espaço de probabilidade (Ω, \mathcal{F}, P) .

(i) Se $A_n \uparrow A$ (ou $A_n \downarrow A$) então

$$\lim_{n\to\infty}P(A_n)=P(A)$$

(ii) Se A_n é sequência convergente de eventos então

$$P(\lim_{n\to\infty}A_n)=\lim_{n\to\infty}P(A_n)$$

5. Seja A_1, A_2, \ldots uma sequência de eventos em um mesmo espaço de probabilidade (Ω, \mathcal{F}, P) . Então

$$P\Big(\cap_{n=1}^{\infty}A_n\Big)=1\Leftrightarrow P(A_n)=1,\forall n$$

Proposição

Se
$$X_n \xrightarrow{q.c.} X$$
 então $X_n \xrightarrow{P} X$.

6. Considere l_1, l_2, \ldots a seguinte sequência de intervalos,

$$I_{2^m+1}=\left[\frac{i}{2^m},\frac{(i+1)}{2^m}\right], m\geq 0, i=0,1,\ldots 2^m-1.$$

Seja $X \sim Unif(0,1)$ e defina $Y_m(\omega) = 1$ se $X(\omega) \in I_m$. Mostre que $Y_n \to 0$ em probabilidade mas não converge quase certamente.

Lema de Borel Cantelli

Seja A_1, A_2, \ldots uma sequência de eventos.

- (i) Se $\sum_{n=1^{\infty}} P(A_n) < \infty$, então $P(\limsup A_n) = 0$
- (ii) Se $\sum_{n=1^{\infty}} P(A_n) = \infty$ e os A_n 's são independentes, então $P(\limsup A_n) = 1$

Lema de Borel Cantelli

Seja A_1, A_2, \ldots uma sequência de eventos.

- (i) Se $\sum_{n=1^{\infty}} P(A_n) < \infty$, então $P(\limsup A_n) = 0$
- (ii) Se $\sum_{n=1^{\infty}} P(A_n) = \infty$ e os A_n 's são independentes, então $P(\limsup A_n) = 1$
- 7. A probabilidade de um macaco digitar um obra inteira de Shakespeare sem erros é igual a 1.
- 8. Considere $X \sim Unif(0,1)$ e defina $Y_n(\omega) = 2^n$ se $X(\omega) = [0,1/n)$. Mostre que $Y_n \to 0$ q.c.
- 9. Sejam $X_n \sim Exp(1), n = 1, 2, ...$ v.a.'s independentes e defina $Y_n = \frac{X_n}{\ln n}$. Mostre que $Y_n \nrightarrow 0$ q.c.

Convergência em distribuição: $X_n \xrightarrow{d} X$

Sejam X, X_1, X_2, \ldots v.a.'s no mesmo espaço amostral (Ω, \mathcal{F}, P) com funções de distribuições F e $F_n, n=1,2,\ldots$ respectivamente. Dizemos X_n converge em distribuição ou em lei para X, se todo ponto x em que F é contínua, vale que

$$\lim_{n\to\infty} F_n(x) = F(x).$$

- 10. Seja X_n , $n=1,2,\ldots$ uma sequência de v.a.'s independentes com distribuição uniforme em (0,b), b>0. Defina $Y_n=\max(X_1,X_2,\ldots,X_n)$ e Y=b. Mostre $Y_n\stackrel{d}{\to} Y$.
- 11. Seja X_n , $n=1,2,\ldots$ uma sequência de v.a.'s tais que $P(X_n=n)=1$. Verifique se X_n converge em distribuição.
- 12. Seja X_n , $n=1,2,\ldots$ uma sequência de v.a.'s tais que $P(X_n=\frac{1}{n})=1$. Verifique se X_n converge em distribuição.

Proposição

Se
$$X_n \xrightarrow{P} X$$
 então $X_n \xrightarrow{d} X$.

- 13. Sejam X, X_1, X_2, \ldots v.a. i.i.d. com distribuição Bernoulli e parâmetro 1/2. Mostre que $X_n \xrightarrow{d} X$ mas não vale a convergência em probabilidade.
- 14. Seja $X \sim Unif(0,1)$ e, para todo $n \geq 1$ defina $Y_{2n} = X$ e $Y_{2n-1} = 1 X$. Mostre que $Y_n \xrightarrow{d} X$ mas não converge em probabilidade.

Definição: Lei fraca dos grandes números

Sejam X_1, X_2, \ldots v.a.'s com $EX_k < \infty$, defina S_1, S_2, \ldots as somas parciais $S_n = \sum_{k=1}^n X_k$. Dizemos que X_1, X_2, \ldots satisfaz a Lei fraca dos grandes números se

$$\frac{S_n - ES_n}{n} to 0, \ n \to \infty.$$

Note: se $EX_k = \mu, k = 1, 2, ...$

$$\frac{1}{n}ES_n=\mu$$
, então

Lei (fraca) dos grandes números - caso $EX_k = \mu$

Sejam X_1, X_2, \ldots v.a.'s com $EX_k = \mu$, defina S_1, S_2, \ldots as somas parciais $S_n = \sum_{k=1}^n X_k$. Dizemos que a sequência X_1, X_2, \ldots satisfaz a Lei fraca dos grandes números se

$$\frac{S_n}{n} - \mu \to 0, \ n \to \infty.$$

Lei (fraca) dos Grandes Números de Chebyshev

Sejam X_1,X_2,\ldots v.a. 's **independentes**, com mesma média $EX_k=\mu<\infty$ e mesma **variância** $\sigma^2<\infty$. Então, isto é

$$\frac{S_n}{n} \xrightarrow{P} \mu, \ n \to \infty$$

► Em particular vale para v.a.'s i.i.d

Lei (fraca) dos Grandes Números de Chebyshev

Sejam X_1,X_2,\ldots v.a. 's **independentes**, com mesma média $EX_k=\mu<\infty$ e mesma **variância** $\sigma^2<\infty$. Então, isto é

$$\frac{S_n}{n} \xrightarrow{P} \mu, \ n \to \infty$$

► Em particular vale para v.a.'s i.i.d

Lei (fraca) dos Grandes Números de Khintchin

Sejam X_1, X_2, \ldots v.a. 's independentes e identicamente distribuídas, com média $EX_k = \mu < \infty$. Então,

$$\frac{S_n}{n} \xrightarrow{P} \mu$$
,

▶ Note que não há suposição sobre a variância das v.a.'s.

X1, ..., Xn i.i.d. com Ber(0,5)

X1, ..., Xn i.i.d. com Uni(5,20)

X1, ..., Xn i.i.d. com Exp(5)

X1, ..., Xn i.i.d. com N(30,1)

X1, ..., Xn i.i.d. com Poi(3)

- 15. Sejam X_1 e X_2 v.a.'s i.i.d. com distribuição Uniforme em [0,1]. Defina $S=\frac{X_1+X_2}{2}$ e compare $P(|X_1-EX_1|<0,1)$ e P(|S-ES|<0,1)
- 16. Sejam X_1, X_2, \ldots v.a.'s iid com distribuição Ber(p). Dado um $\delta \in (0,1)$, determine um n_0 tal que $\forall n \geq n_0$,

$$P\left(\left|\frac{S_n}{n} - p\right| > \varepsilon\right) < \delta$$

Lei forte dos Grandes Números

Caso i.i.d

Sejam X_1, X_2, \ldots v.a.'s independentes, identicamente distribuídas com $EX_k = \mu < \infty$ e $E[(X - \mu)^4] < \infty$. Então, $S_n/n \xrightarrow{\text{qc}} \mu$, isto é

$$P\Big(\lim_{n\to\infty}\frac{S_n}{n}=\mu\Big)=1$$

Nas verificações das hipóteses é útil notar que

$$E[(X-\mu)^4] = E(X^4) - 4\mu E(X^3) + 6\mu^2 E(X^2) - 4\mu^3 E(X) + \mu^4.$$

- 17. Sejam X_1, X_2 v.a.'s i.i.d. com distribuição uniforme em (0,1). Mostre que $S_n/n \xrightarrow{\operatorname{qc}} 1/2$.
- 18. Sejam X_1, X_2 v.a.'s i.i.d. com distribuição exponencial de parâmetro λ . Mostre que $S_n/n \xrightarrow{\operatorname{qc}} 1/\lambda$.

Primeira lei de Kolmogorov

Sejam X_1, X_2 v.a.'s independentes e com média finita (suponha $EX_k = \mu_k$)e suponha que

$$\sum_{n=1}^{\infty} \frac{Var(X_n)}{n^2} < \infty.$$

Então

$$\frac{S_n - \sum \mu_k}{n} \xrightarrow{\mathsf{qc}} 0 \ n \to \infty.$$

Lei forte de Kolmogorov

Sejam X_1, X_2 v.a.'s i.i.d com média finita μ , então

$$\frac{S_n}{n} \xrightarrow{\operatorname{qc}} 0, \ n \to \infty.$$

Teorema Central do Limite

TCL: caso i.i.d

Sejam X_1, X_2, \ldots v.a. 's i.i.d. com $EX_k = \mu$ e $Var(X_k) = \sigma^2 < \infty$.

$$\lim_{n\to\infty}P\Big(\frac{S_n-n\mu}{\sigma\sqrt{n}}\leq a\Big)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^a \mathrm{e}^{-x^2/2}dx=P(Z\leq a)=\Phi(a).$$

Isto é, $\frac{S_n - n\mu}{\sigma\sqrt{n}} \stackrel{d}{\to} Z$, as $n \to \infty$.

Teorema Central do Limite

TCL: caso i.i.d

Sejam X_1, X_2, \ldots v.a. 's i.i.d. com $EX_k = \mu$ e $Var(X_k) = \sigma^2 < \infty$.

$$\lim_{n\to\infty}P\Big(\frac{S_n-n\mu}{\sigma\sqrt{n}}\leq a\Big)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^a e^{-x^2/2}dx=P(Z\leq a)=\Phi(a).$$

Isto é, $\frac{S_n - n\mu}{\sigma\sqrt{n}} \stackrel{d}{\to} Z$, as $n \to \infty$.

Em outras palavras, "para n grande",

$$\frac{S_n}{n} \approx N(\mu, \frac{\sigma^2}{n}) \Longrightarrow \frac{S_n - n\mu}{\sigma\sqrt{n}} \approx N(0, 1)$$

Teorema Central do Limite

TCL: caso i.i.d

Sejam X_1, X_2, \ldots v.a. 's i.i.d. com $EX_k = \mu$ e $Var(X_k) = \sigma^2 < \infty$.

$$\lim_{n\to\infty}P\Big(\frac{S_n-n\mu}{\sigma\sqrt{n}}\leq a\Big)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^a e^{-x^2/2}dx=P(Z\leq a)=\Phi(a).$$

Isto é, $\frac{S_n - n\mu}{\sigma\sqrt{n}} \stackrel{d}{\to} Z$, as $n \to \infty$.

Em outras palavras, "para n grande",

$$\frac{S_n}{n} \approx N(\mu, \frac{\sigma^2}{n}) \Longrightarrow \frac{S_n - n\mu}{\sigma\sqrt{n}} \approx N(0, 1)$$

ightharpoonup Independente da distribuição específica de X_1, X_2, \dots

Histograma de $\frac{S_n}{n}$ com $X_1, \ldots, X_n \sim Unif(5, 20)$ indep.

Histograma de $\frac{S_n}{n}$ com $X_1, \dots, X_n \sim E \times p(5)$ indep.

Histograma de $\frac{S_n}{n}$ com $X_1, \ldots, X_n \sim Gama(2, 1)$ indep.

Histograma de $\frac{S_n}{n}$ com $X_1, \ldots, X_n \sim Poi(3)$ indep.

- 17. A capacidade máxima de um elevador é de 500 kg. Se a distribuição dos pesos dos usuários for tem média 70 e desvio padrão 10. Qual é a probabilidade de sete passageiros ultrapassarem esse limite? E seis passageiros
- 18. O número de estudantes que se matriculam em um curso de psicologia é uma variável aleatória de Poisson com média 100. O professor encarregado do curso decidiu que, se o número de matrículas for maior ou igual a 120, ele dará aulas para duas turmas separadas. Por outro lado, se esse número for menor que 120, ele dará as aulas para todos os estudantes juntos em uma única turma. Qual é a probabilidade de que o professor tenha que dar aulas para duas turmas?
- 19. Se 10 dados honestos são rolados, determine a probabilidade aproximada de que a soma obtida esteja entre 30 e 40 (inclusive).

Outros casos de TCL

TCL: caso só independente

Sejam X_1, X_2, \ldots v.a. 's independentes com $EX_k = \mu_k < \infty$ e $Var(X_k) = \sigma_k^2 < \infty$. Se as v.a.'s forem uniformemente limitadas $(\exists M > 0, \ tq \ P(|X_k| < M) = 1)$ e $\sum_{k=1}^{\infty} \sigma_k^2 = \infty$, então

$$\lim_{n\to\infty} P\left(\frac{\sum_{k=1}^n X_k - \sum_{k=1}^n \mu_k}{\sqrt{\sum_{k=1}^n \sigma_k^2}} \le a\right) = \Phi(a), \ n\to\infty$$