微分几何笔记

Gau Syu

2013年1月22日

Preface

这是 2012 年下半年南开大学数学科学学院黄利兵老师的研究生课程"微分几何"的笔记。

	· · —		•
0.1	主要	П	1
U.I	+ +	/ N	\rightarrow

- 1. 微分流形
 - (a) 向量场
 - (b) 张量场
 - (c) 切丛、余切丛
- 2. 外微分
 - (a) 活动标架法和李群
- 3. 主纤维丛上的联络

0.2 教材

陈省身,《微分几何讲义》

0.3 参考书

Kobayashi & Nomizu
 Foundations of Differential Geometry
 Vol.I Chapts 1-2

• M.Spivak

A Comprehensive Introduction to Differential Geometry Vol. II 1,Gauss's paper 2,Riemann's report 3, 联络概念的 5 个版本

• J.M.Lee, Introduction to Smooth Manifolds(GTM218)

Contents

\mathbf{P}_{1}	reface	1
	0.1 主要内容	1
	0.2 教材	
	0.3 参考书	1
1	微分流形	3
2	切空间和余切空间	5
3	子 <mark>流形</mark>	8
4	向量场和流	11
5	Frobenius 定理	14

6	外代数	19
7	外微分	20
8	外微分(续)	23
9	李群	28
10	李群(续)	30
	李氏变换群的应用 11.1 李型微分方程	33
12	习题一	36
13	习题二	42
Inc	dex	48

1 微分流形

2012-9-13

记号: \mathbb{R}^n 。

定义 1. n 元函数 $f: \mathbb{R}^n \to \mathbb{R}^n$,若 f 的任意 r 阶偏导数存在且连续,则称 f 为 C^r 的。

例 2. C^{∞} , 光滑函数。

 C^{ω} ,解析函数。

$$f(x) = f(x_0) + \sum_{i} \frac{\partial f}{\partial x_i}(x_0)(x_i - (x_0)_i) + \frac{1}{2} \sum_{i} \frac{\partial^2 f}{\partial x_i \partial x_j}(x_0)(x_i - (x_0)_i)(x_j - (x_0)_j) + \cdots$$

定义 3. 设 M 是 Hausdorff 空间,若对任意的 $x \in M$,存在 x 的领域 $U \subset M$ 使得存在同胚 $\varphi: U \to \mathbb{R}^n$, 1则称 M 为 $\binom{n}{4}$ 流形。 (φ, U) 称为 x 处的坐标系。

定义 4. 设 M 为 n 维流形,若坐标系的集合 $\mathscr{A} = \{(\varphi_i, U_i) \mid i \in I\}$ 使得

- 1) M 为 $\mathscr A$ 所覆盖,即 $M=\bigcup_{i\in I}U_i$ 。
- $2) \ \mathscr{A} \ \mathbb{E}^{C^r} \ \mathsf{相容} \ \mathsf{的}, \ \mathbb{D} \ \mathsf{ust} \ U_i \cap U_j = \varnothing, \ \ \mathsf{ust} \ \varphi_i \circ \varphi_j^{-1} \colon \varphi_j(U_i \cap U_j) \to \varphi_i(U_i \cap U_j) \ \mathbb{E} \ C^r \ \ \mathsf{ho}.$
- 3) $\mathscr A$ 具有极大性,即对任意坐标系 (φ,U) ,若其与任意 (φ_i,U_i) 是 C^r 相容的,则 $(\varphi,U) \in \mathscr A$ 。则称 $\mathscr A$ 为 M 上的一个 C^r 微分结构。赋予 C^r 微分结构的流形 M 称为一个 C^r 微分流形。

例 5. $M = \mathbb{R}^n$, 取 $\mathscr{A} = \{(\mathrm{id}, \mathbb{R}^n)\}$ 。

例 6. $M = S^n = \{(x_0, x_1, \cdots, x_n) \in \mathbb{R}^{n+1} \mid x_0^2 + x_1^2 + \cdots + x_n^2 = 1\}$, 取 $U_1 = S^n \setminus \{(-1, \vec{0})\}$, 则 $S^n = U_1 \cup U_2$ 。定义

$$\varphi_1 \colon U_1 \longrightarrow \mathbb{R}^n \qquad \qquad \varphi_2 \colon U_2 \longrightarrow \mathbb{R}^n \\
(x_0, \vec{x}) \mapsto \frac{\vec{x}}{1 + x_0} \qquad \qquad (x_0, \vec{x}) \mapsto \frac{\vec{x}}{1 - x_0}$$

则 (φ_1, U_1) 与 (φ_2, U_2) 是光滑相容的:

$$\varphi_1 \circ \varphi_2^{-1} \colon \mathbb{R}^n \setminus \{0\} \longrightarrow \mathbb{R}^n \setminus \{0\}$$

$$\vec{u} \mapsto \frac{\vec{u}}{|\vec{u}|^2}$$

证明.

$$\begin{cases} \frac{\vec{x}}{1 - x_0} = \vec{u} \\ x_0^2 + |\vec{x}|^2 = 1 \end{cases} \implies \begin{cases} \vec{x} = (1 - x_0)\vec{u} \\ x_0^2 + (1 - x_0)^2 |\vec{u}|^2 = 1 \end{cases}$$
$$\implies \varphi_2^{-1}(\vec{u}) = (\frac{|\vec{u}|^2 - 1}{|\vec{u}|^2 + 1}, \frac{2\vec{u}}{|\vec{u}|^2 + 1})$$
$$\implies \varphi_1 \circ \varphi_2^{-1}(\vec{u}) = \frac{\frac{2\vec{u}}{|\vec{u}|^2 + 1}}{\frac{2|\vec{u}|^2}{|\vec{u}|^2 + 1}} = \frac{\vec{u}}{|\vec{u}|^2}$$

¹每一处的维数相同。

例 7. $M = \mathbb{R}\mathbf{P}^n = (\mathbb{R}^{n+1}\setminus\{0\})/\sim$, 这里 $(x_0, x_1, \cdots, x_n) \sim (y_0, y_1, \cdots, y_n)$ 指 $\exists \lambda \in \mathbb{R}$, 使得 $x_i = \lambda y_i$ 。 令 $Z_i = \{(x_0, x_1, \cdots, x_n) \in \mathbb{R}^{n+1} \mid x_i \neq 0\}$, $U_i = Z_i/\sim$, 则 $\mathbb{R}\mathbf{P}^n = U_0 \cup U_1 \cup \cdots \cup U_n$ 。

定义 $\varphi_i([x_0,x_1,\cdots,x_n])=(\frac{x_0}{x_i},\frac{x_1}{x_i},\cdots,\frac{x_{i-1}}{x_i},\frac{x_{i+1}}{x_i},\cdots,\frac{x_n}{x_i})$,则任意 (φ_i,U_i) 与 (φ_j,U_j) 相容:

$$\begin{split} \varphi_{j}^{-1}(r_{1}, r_{2}, \cdots, r_{n}) &= [r_{1}, r_{2}, \cdots, r_{i}, 1, r_{j+1}, \cdots, r_{n}] \\ \varphi_{i} \circ \varphi_{j}^{-1}(r_{1}, r_{2}, \cdots, r_{n}) &= \varphi_{i}([r_{1}, r_{2}, \cdots, r_{i}, 1, r_{j+1}, \cdots, r_{n}]) \\ &= \begin{cases} \left(\frac{r_{1}}{r_{i}}, \frac{r_{2}}{r_{i}}, \cdots, \frac{r_{j}}{r_{i}}, \frac{1}{r_{i}}, \frac{r_{j+1}}{r_{i}}, \cdots, \frac{r_{i-1}}{r_{i}}, \frac{r_{i+1}}{r_{i}}, \cdots, \frac{r_{n}}{r_{i}}\right) & i > j \\ \left(\frac{r_{1}}{r_{i}}, \frac{r_{2}}{r_{i}}, \cdots, \frac{r_{i-1}}{r_{i}}, \frac{r_{i+1}}{r_{i}}, \cdots, \frac{r_{j}}{r_{i}}, \frac{1}{r_{i}}, \frac{r_{j+1}}{r_{i}}, \cdots, \frac{r_{n}}{r_{i}}\right) & i < j \end{cases} \end{split}$$

定义 8. 设 M、N 为光滑流形, $f: M \to N$ 是连续映射。对于 $x \in M$,若存在 x 处的坐标系 (φ, U) 和 f(x) 处的坐标系 (ψ, V) ,使得

$$\psi \circ f \circ \varphi^{-1} \colon \mathbb{R}^{\dim M} \longrightarrow \mathbb{R}^{\dim N}$$

是光滑映射,则称 $f \in x$ 处光滑。

若 $\forall x \in M$, f 在 x 处光滑, 则称 f 为光滑映射, 记作 $f \in C^{\infty}(M,N)$ 。

例 9. 光滑映射 $f: M \to \mathbb{R}$ 称为 M 上的光滑函数。M 上的光滑函数全体记为 $C^{\infty}(M)$ 。

例 10. 若 $f: M \to N$ 是同胚,且 $f \in C^{\infty}(M,N), f^{-1} \in C^{\infty}(N,M)$,则称 f 为光滑同胚。

例 11. 光环映射 $f: \mathbb{R} \to M$ 称为 M 上的光滑曲线。

例 12. 考虑 $f: S^3 \to S^2$, 其中

$$S^{3} = \{(z_{1}, z_{2}) \in \mathbb{C}^{2} \mid |z_{1}|^{2} + |z_{2}|^{2} = 1\}$$

$$S^{2} = \{(\alpha, \beta) \in \mathbb{R} \times \mathbb{C} \mid \alpha^{2} + |\beta|^{2} = 1\}$$

$$f(z_{1}, z_{2}) = (|z_{1}|^{2} - |z_{2}|^{2}, 2\overline{z_{1}}z_{2})$$

这个 f 称为Hopf fibration。

$$\mathbb{C}^{2} \xrightarrow{\widetilde{f}} \mathbb{R} \times \mathbb{C}$$

$$\downarrow i \qquad \qquad \downarrow i \qquad \qquad \downarrow i \qquad \qquad \downarrow i \qquad \qquad \downarrow$$

$$S^{3} \xrightarrow{f} S^{2}$$

对于 $\xi \in \mathbb{C}, |\xi| = 1, f(\xi z_1, \xi z_2) = f(z_1, z_2)$ 。也就是说, S^3 中的一个圆周被映射为 S^2 上的一个点。

定义 13. 设 M 和 N 为光滑流形, 微分结构分别为

$$\mathscr{A} = \{ (\varphi_i, U_i) \mid i \in A \}$$
$$\mathscr{B} = \{ (\psi_j, V_j) \mid j \in B \}$$

则

$$\mathscr{A} \times \mathscr{B} = \{ (\varphi_i \times \psi_i, U_i \times V_i) \mid i \in A, j \in B \}$$

定义 $M \times N$ 上微分结构, 使 $M \times N$ 成为一个光滑流形, 称为 M 和 N 的乘积流形。其中

$$(\varphi_i \times \psi_j)(x, y) = (\varphi_i(x), \psi_j(y)) \in \mathbb{R}^{\dim M} \times \mathbb{R}^{\dim N}$$

注. $S^3 \neq S^2 \times S^1$ 。

2 切空间和余切空间

2012-9-20

定义 14. 对于光滑曲线 $\gamma: (-\varepsilon, \varepsilon) \to M$,设 $\gamma(0) = p$,定义 γ 在 p 点的切向量 $X_p = \dot{\gamma}(0)$ 为映射

$$X_p \colon \left. C_p^{\infty} \longrightarrow \mathbb{R} \right.$$

$$\left. f \mapsto \frac{\mathrm{d}}{\mathrm{d} t} f(\gamma(t)) \right|_{t=0}$$

命题 15. 切向量 $X_p: C_p^{\infty} \to \mathbb{R}$ 是实线性映射,且满足Leibniz's Law

$$X_p(fg) = X_p(f)g(p) + X_p(g)f(p)$$

证明. 对任意的 $\lambda, \mu \in \mathbb{R}, f, g \in C_p^{\infty}$ 有

$$X_{p}(\lambda f + \mu g) = \frac{\mathrm{d}}{\mathrm{d} t} (\lambda f + \mu g)(\gamma(t)) \Big|_{t=0}$$

$$= \frac{\mathrm{d}}{\mathrm{d} t} (\lambda f(\gamma(t)) + \mu g(\gamma(t))) \Big|_{t=0}$$

$$= \lambda X_{p}(f) + \mu X_{p}(g)$$

$$X_{p}(fg) = \frac{\mathrm{d}}{\mathrm{d} t} (f(\gamma(t))g(\gamma(t))) \Big|_{t=0}$$

$$= \frac{\mathrm{d}}{\mathrm{d} t} f(\gamma(t)) \Big|_{t=0} g(p) + \frac{\mathrm{d}}{\mathrm{d} t} g(\gamma(t)) \Big|_{t=0} f(p)$$

$$= X_{p}(f)g(p) + X_{p}(g)f(p)$$

约定. 取 $p \in M$ 处的坐标系 (φ, U) , 设 $\varphi(p) = (x_0^1, x_0^2, \cdots, x_0^n)$, 考虑过 p 的曲线

$$\gamma_i(t) = \varphi^{-1}(x_0^1, x_0^2, \dots, x_0^i + t, \dots, x_0^n)$$

将它在 p 点的切向量记作 $\frac{\partial}{\partial x^i}|_{p}$

命题 16. 取定 $p \in M$ 处的坐标系 (x^i) ,则 p 点的任一切向量 X_p 可写为 $\frac{\partial}{\partial x^1}\Big|_p$, $\frac{\partial}{\partial x^2}\Big|_p$, \cdots , $\frac{\partial}{\partial x^n}\Big|_p$ 的线性组合。反之, $\forall \xi^i \in \mathbb{R}$, $\xi^i \frac{\partial}{\partial x^i}\Big|_p$ 必为切向量。

证明. 任一曲线 γ , 设 $\varphi(\gamma(t))=(\gamma^1(t),\gamma^2(t),\cdots,\gamma^n(t))$ 。则 γ 在 p 点的切向量 X_p 满足

$$\begin{split} X_p(f) &= \left. \frac{\mathrm{d}}{\mathrm{d}\,t}(f(\gamma(t))) \right|_{t=0} \\ &= \left. \frac{\mathrm{d}}{\mathrm{d}\,t}(f \circ \varphi^{-1} \circ \varphi \circ \gamma(t)) \right|_{t=0} \\ &= \left. \frac{\mathrm{d}}{\mathrm{d}\,t}(\widetilde{f}(\gamma^1(t), \gamma^2(t), \cdots, \gamma^n(t))) \right|_{t=0} \\ &= \left. \frac{\partial \widetilde{f}}{\partial x^i}(\gamma^1(0), \gamma^2(0), \cdots, \gamma^n(0)) \gamma^i(0) \right. \end{split}$$

下面说明它等于 $\left(\frac{\partial}{\partial x^i}\Big|_{p}\right)(f)\gamma^i(0)$:

$$\left(\frac{\partial}{\partial x^{i}}\Big|_{p}\right)(f) = \frac{\mathrm{d}}{\mathrm{d}t}f(\gamma_{i}(t))\Big|_{t=0}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t}f(\varphi^{-1}(x_{0}^{1}, x_{0}^{2}, \cdots, x_{0}^{i} + t, \cdots, x_{0}^{n}))\Big|_{t=0}$$

$$= \frac{\partial \widetilde{f}}{\partial x^{i}}(x_{0}^{1}, x_{0}^{2}, \cdots, x_{0}^{n})$$

这表明 X_p 与 $\dot{\gamma}^i(0)(\frac{\partial}{\partial x^i}\big|_p)$ 在任何 $f \in C_p^{\infty}$ 上的作用相等。所以 $X_p = \dot{\gamma}^i(0)(\frac{\partial}{\partial x^i}\big|_p)$ 。下面证明 $\frac{\partial}{\partial x^1}\big|_p$, $\frac{\partial}{\partial x^2}\big|_p$, \cdots , $\frac{\partial}{\partial x^n}\big|_p$ 线性无关: 若有 $\xi^i \in \mathbb{R}$ 使得 ξ^i $\frac{\partial}{\partial x^i}\big|_p = 0$,则

$$0 = (\xi^i \left. \frac{\partial}{\partial x^i} \right|_p)(x^j \circ \varphi) = \xi^i \delta_i^j = \xi^j$$

故 $\frac{\partial}{\partial x^1}\Big|_p$, $\frac{\partial}{\partial x^2}\Big|_p$, \cdots , $\frac{\partial}{\partial x^n}\Big|_p$ 线性无关。

定理 17. p 点的全体切向量构成 $n = \dim M$ 维线性空间,且任取 p 点的坐标系 (x^i) 则 $\left\{\frac{\partial}{\partial x^i}\Big|_p\right\}$ 构成它的一组基。将这个实线性空间称为 p 点的切空间,记作 T_pM 。

注. 切向量有局部性: $\forall f, g \in C_p^{\infty}$,若 $f|_U = g|_U$,则 $X_p(f) = X_p(g)$ 。等价地说, $\forall f \in C_p^{\infty}$,若 $f|_U = 0$,则 $X_p(f) = 0$ 。

定义 C_p^{∞} 之等价关系为 $f \sim g$ 当且仅当存在 p 的领域 U 使得 $f|_U = g|_U$ 。该关系下的等价类称为在 p 点的<mark>函数芽</mark>(germ)。

定义 18. T_pM 的对偶空间,称为 p 点的 $\frac{1}{2}$ 点的 $\frac{1}{2}$ 记作 $\frac{1}{2}$,其中元素称为 $\frac{1}{2}$ (也称为 $\frac{1}{2}$)。

定义 19. 对于
$$f \in C_p^{\infty}$$
 定义 f 在 p 点的 $^{\mathbf{2}}$ 微分 $^{\mathbf{d}}$ $f|_p$ 为这样一个余切向量:

$$(\operatorname{d} f|_p)(X_p) = X_p(f), \forall X_p \in T_pM$$

取 p 点的坐标系 (x^i) , 将 $d(x^i \circ \varphi)|_p$ 简写为 $dx^i|_p$, 则有:

命题 20. $\{d x^i|_p\}$ 构成 $T_n^* M$ 的一组基。

证明.

$$(\operatorname{d} x^{i}|_{p})(\frac{\partial}{\partial x^{j}}|_{p}) = (\frac{\partial}{\partial x^{j}}|_{p})(x^{i} \circ \varphi) = \delta^{i}_{j}$$

所以 $\{\operatorname{d} x^i|_p\}$ 与 $\{\frac{\partial}{\partial x^i}|_p\}$ 是对偶基。

例 21. 考虑 $M = O(n) = \{A \in \mathbb{R}^{n \times n} \mid A'A = I\}$,有 dim $M = \frac{n(n-1)}{2}$ 。

证明. 有 $I \in M$,下求 $T_I M$ 。

取曲线 A(t) 过 I,即 A(0) = I,则

$$A(t)^T A(t) = I$$

在 t=0 处求导得:

$$\dot{A}(t)^T A(t) + A(t)^T \dot{A}(t) = 0$$

取 t=0 得知切向量 $X=\dot{A}(0)$ 满足

$$X^T + X = 0$$

即 X 为反对称矩阵。所以 $T_IM \subset \{X \in \mathbb{R}^{n \times n} \mid X^T + X = 0\}$ 。

反之,对任何反对称矩阵 X,考虑曲线

$$A(t) = e^{tX} = I + tX + \frac{t^2}{2!}X^2 + \cdots$$

则 $A(t) \in O(n)$ 且 $\dot{A}(0) = X$,于是 $T_I M = \{X \in \mathbb{R}^{n \times n} \mid X^T + X = 0\}$ 。故 dim $M = \dim T_I M = \frac{n(n-1)}{2}$ 。

约定. 设 $f: M \to N$ 是光滑流形的光滑映射。对 M 上的任一曲线 $\gamma(t)$,设 $\gamma(0) = p, f(p) = q$,将曲线 $f(\gamma(t))$ 在 q 点的切向量记作 $f_{*p}(\dot{\gamma}(0))$ 。

命题 22. $f_{*p}: T_PM \to T_qN$ 是线性映射。

证明. 首先证明 f_{*p} well-defined,即,对任意两条过 p 的曲线 $\gamma(t)$ 和 $\widetilde{\gamma}(t)$, $\gamma(0) = \widetilde{\gamma}(0) = p$,若 $\dot{\gamma}(0) = \dot{\widetilde{\gamma}}(0) = q$,则 $f(\gamma(t))$ 和 $f(\widetilde{\gamma}(t))$ 在 q 点切向量相同。

为此,只需验证:

$$\forall g \in C_q^{\infty}, \frac{\mathrm{d}}{\mathrm{d}t} g(f(\gamma(t))) \Big|_{t=0} = \frac{\mathrm{d}}{\mathrm{d}t} g(f(\widetilde{\gamma}(t))) \Big|_{t=0}$$

令 $\widetilde{g} = g \circ f \in C_p^{\infty}$,则

$$\frac{\mathrm{d}}{\mathrm{d}t}g(f(\gamma(t)))\bigg|_{t=0} = \frac{\mathrm{d}}{\mathrm{d}t}\widetilde{g}(\gamma(t))\bigg|_{t=0} = \dot{\gamma}(0)(\widetilde{g})$$
$$\frac{\mathrm{d}}{\mathrm{d}t}g(f(\widetilde{\gamma}(t)))\bigg|_{t=0} = \dot{\widetilde{\gamma}}(0)(\widetilde{g})$$

再证 f_{*p} 是实线性映射,即

$$f_{*p}(X_p + \lambda Y_p) = f_{*p}X_p + \lambda f_{*p}Y_p$$

因为

$$f_{*p}(X_p)(g) = \frac{\mathrm{d}}{\mathrm{d}\,t}g(f(\gamma(t)))\Big|_{t=0} = X_p(g \circ f)$$

所以

$$(f_{*p}(X_p + \lambda Y_p))(g) = (X_p + \lambda Y_p)(g \circ f)$$
$$= X_p(g \circ f) + \lambda Y_p(g \circ f)$$
$$= (f_{*p}X_p)(g) + \lambda (f_{*p}Y_p)(g)$$

故 f_{*p} 是实线性映射。

定义 23. $f_{*p}: T_PM \to T_qN$ 称为 f 在 p 点的切映射。 $\operatorname{rank}_p f \stackrel{\text{def}}{=} \operatorname{rank} f_{*p}$ 称为 f 在 p 点的秩。

设 $f: M \to N, f(p) = q$, 分取 p,q 之坐标系 $(\varphi,U), (\psi,V)$ 使得 $f(U) \subset V$, 此时, f 有局部表达式:

$$\widetilde{f}(x^1,\cdots,x^m)=(f^1(x^1,\cdots,x^m),\cdots,f^n(x^1,\cdots,x^m))$$

即 $f = \psi^{-1} \circ \widetilde{f} \circ \varphi$ 。 $(f_{*p})(\frac{\partial}{\partial x^i}|_p)$ 就是曲线 $f(\gamma_i(t))$ 在 t = 0 处的切向量, 其中 $\gamma_i(t) = \varphi^{-1}(x_0^1, \dots, x_0^i + t, \dots, x_0^n)$ 。

$$f(\gamma_i(t)) = \varphi^{-1} \circ \widetilde{f}(x_0^1, \dots, x_0^i + t, \dots, x_0^n) \gamma^{\alpha}(t) = f^{\alpha}(x_0^1, \dots, x_0^i + t, \dots, x_0^n)$$

所以

$$\dot{\gamma}^{\alpha}(0) = \left. \frac{\partial f^{\alpha}}{\partial x^{i}}(\varphi(p)) \frac{\partial}{\partial y^{\alpha}} \right|_{q}$$

命题 24. $f_{*p}: T_pM \to T_pN$ 在基 $\left\{\frac{\partial}{\partial x^i}\Big|_p\right\}$ 和 $\left\{\frac{\partial}{\partial y^\alpha}\Big|_a\right\}$ 下的矩阵为 Jacobi 矩阵。

例 25. $M = \mathbb{R}^{n \times n}, N = \mathbb{R}, f(A) = \det(A)$ 。

证明. $f_{*I}(B)$ 是曲线 f(I+tB) 在 t=0 处的切向量。

$$f_{*I}(B) = \frac{\mathrm{d}}{\mathrm{d}t}|I + tB| \bigg|_{t=0}$$
$$\frac{\mathrm{d}}{\mathrm{d}t}|I + tB| = t^n|B + \frac{1}{t}I|$$

若 B 之特征多项式为 $F(\lambda)$,则

$$|I + tB| = (-t)^n F(\frac{1}{t})$$

由于

$$F(\lambda) = \lambda^n - (\lambda_1 + \dots + \lambda_n)\lambda^{n-1} + \dots$$

所以

$$|I + tB| = (-t)^n ((-\frac{1}{t})^n - \operatorname{tr}(B)(-\frac{1}{t})^{n-1} + \cdots)$$
$$= 1 + \operatorname{tr}(B)t + o(t)$$

所以 $f_{*I}(B) = \operatorname{tr}(B)$ 。

定义 26. 对于 $f \in C^{\infty}(M, N)$, 切映射 f_* 的共轭映射 $f^*: T_q^*N \to T_p^*M$ 称为<mark>拉回</mark>。

证明. (验证 well-define) $\forall \alpha \in T_q^*N, \forall X \in T_pM$,有

$$(f^*\alpha)(X) = \alpha(f_*X)$$
$$f^*(\mathrm{d}\, y^j) = \mathrm{d}\, f^j = \frac{\partial f^j}{\partial x^i} \, \mathrm{d}\, x^i \bigg|_{x}$$

3 子流形

2012-9-27

定义 27. 设 $f: M \to N$ 是光滑映射, $\forall p \in M$,定义 f 在 p 点的秩为 f_{*p} 的秩,记作 $\mathrm{rank}_p f = \mathrm{rank}\, f_{*p}$ 。

若 $\operatorname{rank}_p f = \dim M$,则称 $f \in p$ 点浸入 (immersion);

若 $\operatorname{rank}_{p} f = \dim N$,则称 f 在 p 点淹没 (submersion);

若f在每一点浸入(淹没),则称f是浸入(淹没)映射。

例 28.

$$\begin{split} f\colon \ (-\frac{\pi}{2},\frac{\pi}{2})\times (0,\pi) &\longrightarrow \mathbb{R}^3 \\ (u,v) &\mapsto (\cos u \cos v, \cos u \sin v, \sin u) \end{split}$$

定理 29 (浸入的局部典范表示). 设 $f: M \to N$ 是光滑映射且 f 在 $p \in M$ 上是浸入,则存在 p 的坐标系 (φ, U) 和 q = f(p) 的坐标系 (ψ, V) 使得

$$\psi \circ f \circ \varphi^{-1}(x^1, \cdots, x^m) = (x^1, \cdots, x^m, 0, \cdots, 0)$$

证明. 取 p 之坐标系 $(\widetilde{\varphi}, \widetilde{U})$ 和 q 之坐标系 $(\widetilde{\psi}, \widetilde{V})$, 设 f_{*p} 在 $\{\frac{\partial}{\partial \widehat{x}^i}|_p\}$ 和 $\{\frac{\partial}{\partial \widehat{y}^\alpha}|_q\}$ 的矩阵为

$$(\frac{\partial \widetilde{f}^{\alpha}}{\partial \widetilde{r}^{i}}) = (A|*)$$

由于 $\operatorname{rank}(\frac{\partial \tilde{f}^{\alpha}}{\partial \tilde{x}^{i}}) = \dim M(=m)$,不妨设 $A = (\frac{\partial \tilde{f}^{\alpha}}{\partial \tilde{x}^{i}})_{1 \leqslant i \leqslant m}^{1 \leqslant \alpha \leqslant m}$ 可逆。 定义映射

$$F: \ \widetilde{\varphi}(\widetilde{U}) \times \mathbb{R}^{n-m} \longrightarrow \mathbb{R}^n$$
$$(x,z) \mapsto \widetilde{\psi} \circ f \circ \widetilde{\varphi}^{-1}(x) + (0,z)$$

则 F 在 $(\widetilde{\varphi}(p), 0)$ 处的 Jacobi 为

$$\left(\begin{array}{cc}A & * \\ & I_{n-m}\end{array}\right)$$

这是可逆矩阵。

由反函数定理,存在 $(\widetilde{\varphi}(p),0)$ 之邻域 $U \times \widehat{U}$ 使 $F|_{U \times \widehat{U}}$ 可逆,将反函数记作 F^{-1} ,令 $\psi = F^{-1} \circ \widetilde{\psi} \colon F(U \times \widehat{U}) \cap V \to \mathbb{R}^n$,则 $(\widetilde{\varphi},U),(\psi,V)$ 满足定理要求:

$$\psi \circ f \circ \varphi^{-1}(x^1, \dots, x^m)$$

$$= F^{-1} \circ (\widetilde{\psi} \circ f \circ \widetilde{\psi}^{-1})(x^1, \dots, x^m)$$

$$= F^{-1}(F(x, 0)) = (x^1, \dots, x^m, 0, \dots, 0)$$

例 30. $f: \mathbb{R} \to \mathbb{R}^2$ 定义为

$$f(t) = (2\cos(t - \frac{\pi}{2}), \sin(2t - \pi))$$

= $(2\sin t, -\sin 2t)$

计算一下:

$$f'(t) = (2\cos t, -2\cos 2t)$$

= $(2\cos t, -2(2\cos^2 t - 1)) \neq 0$

可见 f 是浸入。然而 $f(\mathbb{R})$ 并不是流形!

定义 31. 设 $f: M \to N$ 是光滑映射且 f 在 $p \in M$ 上是浸入,则称 (M, f) 是 N 的浸入子流形。若 f 是 单射,则称 (M, f) 是 N 的嵌入子流形。

例 32. $f: \mathbb{R} \to \mathbb{R}^2$ 定义为

$$f(t) = (2\cos(2\arctan t + \frac{\pi}{2}), \sin 2(2\arctan t + \frac{\pi}{2}))$$

注意到 f(M) 与 M 同胚, 但在 0 点的拓扑与 \mathbb{R}^2 不同。

定义 33. 设 $f: M \to N$ 是嵌入映射,若 $f: M \to f(M)$ 是(微分)同胚(这里 f(M) 具有从 N 诱导的拓扑),则称 f 是正则子流形。

定义 34. 给定光滑流形 N, 设 $S \subset N$, 若 $\forall p \in S$, 存在 p 在 N 中的坐标系 (φ, U) 使得 $\varphi(S \cap U)$ 是由

$$x^{k+1} = c^1, x^{k+2} = c^2, \dots, x^n = c^{n-k}$$

定义的,则称 $S \in N$ 的一个 k 维闭子流形。

这里由 $x^{k+1}=c^1, x^{k+2}=c^2, \cdots, x^n=c^{n-k}$ 所定义的 \mathbb{R}^n 的子集称为 \mathbb{R}^n 上的 k 维<mark>切片</mark>(slice)。

定理 35. 对于 N 的任一正则子流形 $f: M \to N$, f(M) 是 N 的闭子流形。反之,对于 N 之任一闭子流形 $S, i: S \to N$ 是正则的嵌入。

证明, 前一部分, 用浸入的局部典范表示; 后一部分, 只需验证

$$i: (x^1, \dots, x^k) \to (x^1, \dots, x^k, c^1, \dots, c^{n-k})$$

是浸入。

定理 36. $f: M \to N$ 是淹没, 即

$$\operatorname{rank}_p f = \dim N, \forall p \in M$$

则 $\forall q \in N$, $f^{-1}(q)$ 是 M 的闭子流形。

证明. 先证, $\forall p \in M, f(p) = q$, 则存在 p 之坐标系 (φ, U) 和 q 之坐标系 (ψ, V) 使得

$$\psi \circ f \circ \varphi^{-1}(x^1, \cdots, x^m) = (x^1, \cdots, x^n)$$

为此,先取 $(\widetilde{\varphi},\widetilde{U})$ 和 $(\widetilde{\psi},\widetilde{V})$ 使 $\widetilde{\varphi}(p)=0$ 。设

$$\widetilde{\psi} \circ f \circ \widetilde{\varphi}^{-1}(x^1, \cdots, x^m) = (f^1(x), \cdots, f^n(x))$$

由于 $\operatorname{rank}(\frac{\partial \tilde{f}^{\alpha}}{\partial x^{i}}) = \dim N$,不妨设 $A = (\frac{\partial \tilde{f}^{\alpha}}{\partial x^{i}})_{1 \leqslant i \leqslant n}^{1 \leqslant \alpha \leqslant n}$ 可逆,于是映射

$$F: \mathbb{R}^r \longrightarrow \mathbb{R}^n$$

$$(x^1, \dots, x^n) \mapsto f^1(x^1, \dots, x^n, 0, \dots, 0), \dots, f^n(x^1, \dots, x^n, 0, \dots, 0)$$

在 0 点附近可逆。

令 $\psi = F^{-1} \circ \widetilde{\psi}$,则 $(\widetilde{\varphi}, U), (\psi, V)$ 满足要求。

再证: $\forall p \in f^{-1}(q)$,存在坐标系 (φ, U) ,使得 $\varphi(U \cap f^{-1}(q))$ 是 \mathbb{R}^m 的切片。

取上一步得到的坐标系,则 $\varphi(U\cap f^{-1}(q))=\{(x^1,\cdots,x^m)\in \varphi(U)\mid (x^1,\cdots,x^n)=\psi(q)\}$ 是切片。

例 37 (Hopf fibration).

$$f \colon S^3 \longrightarrow S^2$$

 $(z_1, z_2) \mapsto (|z_1|^2 - |z_2|^2, 2\overline{z_1}z_2)$

对于 $(x_1, x_2, x_3, x_4) \in S^3$, $(-x_2, x_1, -x_4, x_3), (-x_3, x_4, x_1, -x_2), (-x_4, -x_3, x_2, x_1)$ 是其切向量。

定义 38. 设 $f: M \to N$ 是光滑映射且 f 在 $p \in M$ 上是淹没,则称 p 是 f 的正则点。对于 $q \in N$,若 $\forall p \in f^{-1}(q)$ 都是正则点,则称 q 是 f 的正则值。

推论 39 (正则值原像定理). 设 $f: M \to N$ 是光滑映射, $q \in N$ 是 f 的正则值, 则 $f^{-1}(q)$ 是 M 的闭子流形。

例 40.
$$\begin{cases} x^2 + y^2 + z^2 + t^2 = 1 \\ xy - zt = 0 \end{cases}$$
 是否是闭子流形?

证明. 考虑映射

$$f: \mathbb{R}^4 \longrightarrow \mathbb{R}^2$$
$$(x, y, z, t) \mapsto (x^2 + y^2 + z^2 + t^2, xy - zt)$$

由于

$$\operatorname{rank}_{p} f = \operatorname{rank} \left(\begin{array}{ccc} 2x & 2y & 2z & 2t \\ y & x & -t & -z \end{array} \right) = 2$$

故 $f^{-1}(1,0)$ 是闭子流形。

定理 41 (H.Whitney 浸入定理). 设 M 是光滑流形, $n \ge 2\dim M$, 则 $\forall f \in C^{\infty}(M,\mathbb{R}^n), \varepsilon > 0$, 存在 $g \in C^{\infty}(M,\mathbb{R}^n)$ 使得

- 1) g 是浸入
- 2) $|f(p) g(p)| < \varepsilon, \forall p \in M$

证明. Step1, 局部上对 $f: U \to \mathbb{R}^n$ 作修改

$$g(x) = f(x) + Ax, A \in \mathbb{R}^{m \times m}$$

适当取 A 可使 q 是浸入且 $|Ax| < \varepsilon$;

Step2, 稳定;

Step3, 延拓。

4 向量场和流

2012-9-29

定义 42. M 上切向量的全体,记作 TM,即 $TM = \{u \in T_pM \mid p \in M\}$,称为 M 的<mark>切丛</mark>。

命题 43. 若 M 是 m 维光滑流形,则 TM 可赋予微分结构,成为 2m 维光滑流形。

证明. 设 $\{(\varphi_i, U_i) \mid i \in I\}$ 为 M 的微分结构。 $\forall p \in M$,设 $p \in U_i$ 的局部坐标为 (x^1, \cdots, x^m) , $\forall y \in T_p M$,可写成 $y = y^i \frac{\partial}{\partial x^i}|_{p}$,从而得到从 TM 之开集 $\hat{U}_i = \{y \in T_p M \mid p \in U_i\}$ 到 \mathbb{R}^{2m} 之映射:

$$\widehat{\varphi}_i \colon \widehat{U}_i \longrightarrow \mathbb{R}^m \times \mathbb{R}^m$$

$$y \mapsto (x^1, \cdots, x^m, y^1, \cdots, y^m)$$

于是:

- 1) $TM = \bigcup_{i \in I} \widehat{U}_i$
- 2) $(\widehat{U}_i,\widehat{\varphi}_i)$ 与 $(\widehat{U}_j,\widehat{\varphi}_j)$ 光滑相容:

$$\begin{aligned} &\widehat{\varphi}_{i} \circ \widehat{\varphi}_{j}^{-1}(\widetilde{x}^{1}, \cdots, \widetilde{x}^{m}, \widetilde{y}^{1}, \cdots, \widetilde{y}^{m}) \\ =& \widehat{\varphi}_{i}(\widetilde{y}^{i} \left. \frac{\partial}{\partial x^{i}} \right|_{p}) \\ =& (x^{1}, \cdots, x^{m}, \widetilde{y}^{i} \frac{\partial x^{1}}{\partial \widetilde{x}^{i}}, \cdots, \widetilde{y}^{i} \frac{\partial x^{m}}{\partial \widetilde{x}^{i}}) \end{aligned}$$

 $\widehat{U}_i \cap \widehat{U}_i \neq \emptyset \Longrightarrow U_i \cap U_i \neq \emptyset;$

定义 44. 若映射 $X: M \to TM$,满足 $^2\pi \circ X = \mathrm{id}: M \to M$,则称 $X \in M$ 上的向量场。若 X 光滑,则称为光滑向量场。

命题 45. X 是光滑向量场当且仅当 $\forall f \in C^{\infty}(M)$, X(f) 是光滑函数。这里 X(f)(p) = X(p)(f), $\forall p \in M$ 。证明. "⇒": $\forall p \in M$,取 p 点坐标系 (x^i) ,则可设 $X(p) = X^i(p) \frac{\partial}{\partial x^i} \Big|_p$,其中 X^i 是 M 上的函数,局部上:

$$\widehat{\varphi} \circ X \circ \varphi^{-1}(x^1, \cdots, x^m)$$
$$= (x^1, \cdots, x^m, X^1 \circ \varphi^{-1}, \cdots, X^m \circ \varphi^{-1})$$

于是 X 是光滑向量场 \Leftrightarrow 每个 $X^i \circ \varphi^{-1}$ 是光滑函数。 $\forall f \in C^{\infty}(M)$,

$$X(f)(p) = X_p(f)$$

$$= X^i(p) \left. \frac{\partial}{\partial x^i} \right|_p (f)$$

$$= (X^i \circ \varphi^{-1}) \frac{\partial f \circ \varphi^{-1}}{\partial x^i}$$

是光滑函数。

" \leftarrow ": 取 $f = x^i$,则 $X(x^i) = X^i$ 光滑,由前面讨论知 X 是光滑向量场。

注. 以后可将向量场 X 写成

$$X = X^i \frac{\partial}{\partial x^i}$$

约定. M 上的光滑向量场全体记作 $\mathfrak{X}(M)$ 。

定义 46. 给定光滑向量场 X,若有曲线 $\gamma: (-\varepsilon, \varepsilon) \to M$ 满足 $\dot{\gamma}(t) = X(\gamma(t))$,则称 γ 为 X 的一条积分 曲线。

命题 47. 若 $X \in \mathfrak{X}(M)$, 则存在唯一的过 p 的积分曲线 γ , 使得 $\gamma(0) = p$ 。

证明. 取 p 点的坐标系 (x^i) , 设

$$X = X^i \frac{\partial}{\partial x^i}$$

又设 $\gamma(t)=(\gamma^1(t),\cdots,\gamma^m(t))$,则 $\dot{\gamma}(t)=\dot{\gamma}^i(t)\frac{\partial}{\partial x^i}\big|_{t=0}$ 。要使 γ 是 X 的积分曲线,则 γ^i 满足

$$\dot{\gamma}^i(t) = X^i(\gamma(t))$$

由 ODE 理论,上述 ODEs 有解。

定义 48. 设 M 是光滑流形, 光滑映射 $\psi: (-\varepsilon, \varepsilon) \times M \to M$ 若满足:

- 1) $\psi_0 = \mathrm{id} \colon M \to M$
- 2) $\psi_s \circ \psi_t = \psi_{s+t}, \forall s, t, s+t \in (-\varepsilon, \varepsilon)$

其中 $\psi_t(p) = \psi(t, p), t \in (-\varepsilon, \varepsilon), p \in M$

则称 ψ 为 M 上的一个 (局部) 流 (flow)

 $^{^2}$ i.e. X is a section of π .

命题 **49.** $\forall X \in \mathfrak{X}(M)$,存在 M 上的一个流 ψ ,使得

$$X(p) = \frac{\mathrm{d}}{\mathrm{d}\,t} \psi_t(p) \bigg|_{t=0}$$

证明. 取过 p 的积分曲线 $\gamma(t)$, 使 $\gamma(0) = p$, 令 $\psi_t(p) = \gamma_p(t)$, 则

- 1) $\psi_0(p) = p$
- $2) \ \psi_s \circ \psi_t(q) = \psi_{s+t}(q)$

定理 50 (管状流定理(Flow Box)). 设 $X \in \mathfrak{X}(M)$, $X_p \neq 0$, 则存在 p 点的坐标系,使 $X = \frac{\partial}{\partial x^i}$ 证明. 先取坐标系 (y^i) 使 $X_p = \frac{\partial}{\partial y^i}\Big|_q$ 且 p 点的坐标为 $(0, \cdots, 0)$ 。设 X 生成的流为 ψ_t ,定义

$$\theta \colon \mathbb{R}^m \longrightarrow U$$

$$(y^1, \cdots, y^m) \mapsto \psi_{y^1}(0, y^2, \cdots, y^m)$$

则

$$\theta_{*0} \frac{\partial}{\partial y^1} \Big|_0 = X_p = \frac{\partial}{\partial y^1} \Big|_q$$

$$\theta_{*0} \frac{\partial}{\partial y^i} = \frac{\partial}{\partial y^i} \Big|_q$$

于是 θ_{*0} 可逆,由反函数定理,存在 0 和 p 的领域 \widetilde{U} ,使 θ 在 \widetilde{U} 上可逆。取 p 之坐标系 $(\widetilde{U}, \theta^{-1})$ 则

$$\theta_* \frac{\partial}{\partial y^1} = \frac{\mathrm{d}}{\mathrm{d} t} \psi_{y^1 + t}(0, y^2, \dots, y^m) \Big|_{t=0}$$
$$= X(\psi_{y^1}(0, y^2, \dots, y^m))$$

故 $\theta_*^{-1}X = \frac{\partial}{\partial u^1}$ 。

定义 51. 设 $X_1, X_2, \dots, X_s \in \mathfrak{X}(M)$,若 $\forall p \in M$, $\mathrm{rank}\{X_1(p), X_2(p), \dots, X_s(p)\} = k$ 为常数,则称 X_1, X_2, \dots, X_s 构成 M 上的 k 维切空间场。

定义 52. 给定 M 上的 k 维切子空间场 $\{X_1, X_2, \cdots, X_s\}$,若浸入 $f \colon N \to M$ 满足 $f_*(T_pN) \subset \text{span}\{X_1, X_2, \cdots, X_s\}_{f(p)}, \forall p \in M$ 则称 N 是上述切子空间场的积分子流形。

例 53. $M = \mathbb{R}^3 \setminus \{0\}$ 中定义

$$\begin{cases} X_1 = z \frac{\partial}{\partial z} - y \frac{\partial}{\partial y} \\ X_2 = y \frac{\partial}{\partial x} + x \frac{\partial}{\partial z} \\ X_3 = z \frac{\partial}{\partial x} + x \frac{\partial}{\partial y} \end{cases}$$

则

$$xX_1 - zX_2 + yX_3 = 0 \Rightarrow \text{rank}\{X_1, X_2, X_3\} = 2$$

因此 $\{X_1, X_2, X_3\}$ 是 2 维切子空间场,而且曲面 $N: \frac{1}{2}x^2 - yz = 1$ 是其积分子流形,(x, -z, -y) 是其法向量。对 $(2,1,1) \in N$ 有 $X_1 = (0,-1,1), X_2 = (1,0,2), X_3 = (1,2,0)$,法向量为 (2,-1,-1)。

总结

X 生成流 ψ_t

$$X(\psi_s(p)) = \frac{\mathrm{d}}{\mathrm{d}t}\psi_t(p)\Big|_{t=s}$$

流 ψ_t 固定一点变成积分曲线

$$\gamma(t) = \psi_t(p), X(\gamma(t)) = X(\psi_t(p)) = \dot{\gamma}(t)$$

 ψ_t 诱导向量场 X

$$\left. \frac{\mathrm{d}}{\mathrm{d}\,t} \psi_t(p) \right|_{t=0} = X(p)$$

Flow Box $X \in \mathfrak{X}(M), X(p) \neq 0$,则存在 p 点的坐标系 (x^i) 使得 $X = \frac{\partial}{\partial x^i}$ 。

5 Frobenius 定理

2012-10-11

例 54. 在 ℝ3 上定义

$$\begin{cases} X_1 = y \frac{\partial}{\partial x} + \frac{\partial}{\partial z} \\ X_2 = \frac{\partial}{\partial y} \end{cases}$$

 $E = \text{span}\{X - 1, X_2\}$ 是 2 维切子空间场, 然而:

1) E 没有 2 维积分子流形;

$$(2)$$
 E 有 1 维积分子流形
$$\begin{cases} x = c_1 \\ z = x_2 \end{cases}$$

定义 55. 对于 $X,Y \in \mathfrak{X}(M), [X,Y] \stackrel{\mathrm{def}}{=} X \circ Y - Y \circ X$ 也是 M 上的光滑向量场,称为 X 和 Y 的Lie 括号或Poisson 括号。

验证. 将 X 视为泛函 $C^{\infty}(M) \to C^{\infty}(M)$

$$X(f)(p) = X_p(f)$$

$$= X^i(p) \left. \frac{\partial}{\partial x^i} \right|_p (f)$$

故
$$X(f) = X^i \frac{\partial f}{\partial x^i}$$
。
设 $Y(f) = Y^j \frac{\partial f}{\partial x^j}$,则

$$\begin{split} [X,Y](f) &= X(Y(f)) - Y(X(f)) \\ &= X(Y^{j}\frac{\partial f}{\partial x^{j}}) - Y(X^{i}\frac{\partial f}{\partial x^{i}}) \\ &= X^{i}\frac{\partial}{\partial x^{i}}(Y^{j}\frac{\partial f}{\partial x^{j}}) - Y^{j}\frac{\partial}{\partial x^{j}}(X^{i}\frac{\partial f}{\partial x^{i}}) \\ &= X^{i}\frac{\partial Y^{j}}{\partial x^{i}}\frac{\partial f}{\partial x^{j}} - Y^{j}\frac{\partial X^{i}}{\partial x^{j}}\frac{\partial f}{\partial x^{i}} + X^{i}Y^{j}\frac{\partial^{2} f}{\partial x^{i}\partial x^{j}} - Y^{j}X^{i}\frac{\partial^{2} f}{\partial x^{j}\partial x^{i}} \\ &= (X^{i}\frac{\partial Y^{j}}{\partial x^{i}} - Y^{i}\frac{\partial X^{j}}{\partial x^{i}})\frac{\partial f}{\partial x^{j}} \end{split}$$

若令 $Z^j = X^i \frac{\partial Y^j}{\partial x^i} - Y^i \frac{\partial X^j}{\partial x^i}, Z = Z^j \frac{\partial}{\partial x^j}, 则$

$$[X,Y](f) = Z(f), \forall f \in C^{\infty}(M)$$

 $\mathbb{P}[X,Y] = Z \in \mathfrak{X}(M).$

定义 56. X 是向量场, $f: N \to M$ 为浸入,若 $\forall q \in N$, $X(f(q)) \in f_*(T_qN)$ 则称 X 与 f 相切。

例 57. 在 \mathbb{R}^3 中, $X=-y\frac{\partial}{\partial x}+x\frac{\partial}{\partial y}$ 与 S^2 相切。

命题 58. 若 $X,Y \in \mathfrak{X}(M)$ 都与某个浸入子流形 $f: N \to M$ 相切,则 [X,Y] 也与 f 相切。

证明. $\forall q \in N$, 取 q 点坐标系 (y^i) 及 f(q) 点坐标系 (x^i) 使得

$$f(y^1, y^2, \dots, y^n) = (x^1, x^2, \dots, x^n, 0, \dots, 0)$$

又设 $X = X^i \frac{\partial}{\partial x^i}, Y = Y^j \frac{\partial}{\partial x^j}$

$$f_*(T_qN) = \operatorname{span}\left\{\frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^n}\right\}_{f(q)}$$

由于 X, Y 与 f 相切, 故 $X^k(f(q)) = 0, Y^k(f(q)) = 0, n < k \leq m$

$$[X,Y] = (X^{i} \frac{\partial Y^{j}}{\partial x^{i}} - Y^{i} \frac{\partial X^{j}}{\partial x^{i}}) \frac{\partial}{\partial x^{j}}$$

由于

$$(X^{i}\frac{\partial Y^{k}}{\partial x^{i}} - Y^{i}\frac{\partial X^{k}}{\partial x^{i}})(f(q)) = 0, n < k \leqslant m$$

所以 [X,Y] 也与 f 相切。

命题 **59.** 若 $X,Y \in \mathfrak{X}(M)$ 且 X 生成的流为 ψt , 则

$$[X,Y] = \lim_{t \to 0} \frac{Y - \psi_{t*}Y}{t}$$

即

$$[X, Y]_p = \lim_{t \to 0} \frac{Y_p - \psi_{t*}(Y_{\psi_t(p)})}{t}$$

证明. $\forall f \in C_p^{\infty}$, 设

$$f(\psi_t(p)) = c_0(p) + c_1(p)t + c_2(p)t^2 + o(t^2)$$

于是

$$c_0(p) = f(p)$$

$$c_1(p) = \frac{\mathrm{d}}{\mathrm{d}t} f(\psi_t(p)) \Big|_{t=0}$$

$$= X_p(f) = X(f)(p)$$

$$\begin{split} &(Y_p - \psi_{t*}(Y_{\psi_t(p)}))(f) \\ = &Y_p(f) - Y_{\psi_t(p)}(f \circ \psi_t) \\ = &Y_p(f) - Y_{\psi_t(p)}(f + tX(f) + o(t)) \\ = &Y_p(f) - Y_{\psi_t(p)}(f) - tY_{\psi_t(p)}(X(f)) - Y_{\psi_t(p)}(o(t)) \end{split}$$

于是

$$\lim_{t \to 0} \frac{Y_p - \psi_{t*}(Y_{\psi_t(p)})}{t}(f)$$

$$= \lim_{t \to 0} \frac{Y(f)(p) - Y(f)(\psi_t(p))}{t} - Y_p(X(f))$$

$$= X_p(Y(f)) - Y_p(X(f))$$

$$= [X, Y]_p(f)$$

命题 60. 设 $X \in \mathfrak{X}(M)$ 生成的流为 ψ_t , $\varphi: M \to M$ 是光滑同胚, 则 φ_*X 生成的流是

$$\varphi \circ \psi_t \circ \varphi^{-1}$$

证明. 1) $\varphi \circ \psi_t \circ \varphi^{-1}$ 是流。

2) $\varphi \circ \psi_t \circ \varphi^{-1}$ 诱导的向量场是 $\varphi_* X$:

$$\frac{\mathrm{d}}{\mathrm{d}t}\varphi \circ \psi_t \circ \varphi^{-1}(p) \bigg|_{t=0}$$

$$= \varphi_* \left(\frac{\mathrm{d}}{\mathrm{d}t} \psi_t(\varphi^{-1}(p)) \bigg|_{t=0} \right)$$

$$= \varphi_* X_{\varphi^{-1}(p)}$$

推论 61. $\varphi_*X = X \Longleftrightarrow \varphi \circ \psi_t \circ \varphi^{-1} = \psi_t$

命题 62. 设 $X,Y\in\mathfrak{X}(M)$ 生成的流分别为 ψ_t,ϕ_t ,则 [X,Y]=0 的充要条件是 $\psi_t\circ\phi_t=\phi_t\circ\psi_t$ 。证明.

$$[X, Y] = 0 \iff \lim_{t \to 0} \frac{Y - \psi_{t*}Y}{t} = 0$$
$$\iff Y = \psi_{t*}Y$$
$$\iff \phi_s \circ \psi_t = \psi_t \circ \phi_s$$

命题 **63** (Lie 括号性质). 1) [X,Y] = -[Y,X];

2)
$$[X + Y, Z] = [X, Z] + [Y, Z];$$

3)
$$[X, fY] = X(f)Y + f[X, Y];$$

4)
$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]]$$

证明. 1) trivial;

2) trivial;

3)

$$\begin{split} [X, fY](g) &= X(fY(g)) - fY(X(g)) \\ &= X(f)Y(g) + fX(Y(g)) - fY(X(g)) \\ &= X(f)Y(g) + f[X, Y](g) \end{split}$$

4)

$$[X, [Y, Z]](f) = X([Y, Z](f)) - [Y, Z](Xf)$$

= XYZ(f) - XZY(f) - YZX(f) + ZYX(f)

定理 64 (同步管状流定理). $X_1, X_2, \cdots, X_r \in \mathfrak{X}(M)$,且 $\mathrm{rank}\{X_1, X_2, \cdots, X_r\} = r, [X_i, X_j] = 0$,则 $\forall p \in M$,存在坐标系 (x^i) ,使得 $X_i = \frac{\partial}{\partial x^i}, 1 \leqslant i \leqslant r$ 。

证明. 任取 p 点之坐标系 (u^i) 使 p 点坐标为 $(0,\dots,0)$ 。考虑

$$\theta \colon \mathbb{R}^m \longrightarrow U$$
$$(x^1, \cdots, x^m) \mapsto (\varphi_1)_{x^1} \circ (\varphi_2)_{x^2} \cdots \circ (\varphi_r)_{x^r} (0, \cdots, 0, x^{r+1}, \cdots, x^m)$$

其中 $(\varphi_i)_{t_i}$ 是 X_i 生成的流。

下面验证 $\theta_* \frac{\partial}{\partial x^i} = X_i$:

$$\theta_{*u} \frac{\partial}{\partial x^{i}} = \frac{\mathrm{d}}{\mathrm{d}t} \theta(x^{1}, \dots, x^{i} + t, \dots, x^{m}) \Big|_{t=0}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} (\varphi_{i})_{x^{i} + t} \circ (\varphi_{1})_{x^{1}} \circ \dots \circ \widehat{(\varphi_{i})_{x^{i}}} \dots \circ (\varphi_{r})_{x^{r}} \Big|_{t=0}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} (\varphi_{i})_{t} \circ (\varphi_{1})_{x^{1}} \circ (\varphi_{2})_{x^{2}} \dots \circ (\varphi_{r})_{x^{r}} \Big|_{t=0}$$

$$= X(\theta(u)), 1 \leqslant i \leqslant r$$

$$\theta_{*0} \frac{\partial}{\partial x^{k}} = \frac{\mathrm{d}}{\mathrm{d}t} \theta(0, \dots, \widehat{t}, \dots, 0)$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} (0, \dots, t, \dots, 0) \Big|_{t=0}$$

$$= \frac{\partial}{\partial u^{k}} \Big|_{p}, r < k \leqslant m$$

只要取 (U, u^i) s 使 $X_i|_p$, $\frac{\partial}{\partial u^i}|_p$ 线性无关即可。

定理 65. 设 $E = \text{span}\{X_1, \dots, X_r\}$ 是 M 上的 r 维子空间,且满足 Frobenius 条件

$$[X_i,X_j]_p \in E_p$$

则过任一点 $p \in M$,有唯一的极大积分子流形 $f: N \to M$,且 $\dim N = r$ 。

换言之, $\forall p \in M$, 存在坐标系 (x^i) 使得

$$E = \operatorname{span}\left\{\frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^r}\right\}$$

这时由 $x^{r+1} = c^{r+1}, \dots, x^m = c^m$ 所定义的闭子流形与 E 相切。

证明. 先取坐标系 (U,u^i) 设

$$X_{j} = X_{j}^{i} \frac{\partial}{\partial u^{i}}$$

$$\begin{pmatrix} X_{1}^{1} & \cdots & X_{1}^{m} \\ \cdots & \cdots & \cdots \\ X_{r}^{1} & \cdots & X_{r}^{m} \end{pmatrix} \stackrel{\text{defree}}{\Longrightarrow} \begin{pmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix} \bigstar$$

即可找到 $Y_1, \dots, Y_r \in \mathfrak{X}(M)$ 使得 $\operatorname{span}\{Y_1, \dots, Y_r\} = E$ 且 $Y_i = \frac{\partial}{\partial x^i} + Y_i^k \frac{\partial}{\partial x^k}, r+1 \leqslant k \leqslant m$ 。 这时

$$\begin{split} [Y_i,Y_j] &= [A_i^s X_s, A_j^t X_t] \\ &= A_i^s X_s (A_j^t) X_t - A_j^t X_t (A_i^s) X_s + A_i^s A_j^t [X_s,X_t] \in E \\ [\frac{\partial}{\partial x^i} + Y_i^k \frac{\partial}{\partial x^k}, \frac{\partial}{\partial x^j} + Y_j^l \frac{\partial}{\partial x^l}] &= Y_i (Y_j^l) \frac{\partial}{\partial x^l} - Y_j (Y_i^k) \frac{\partial}{\partial x^k} \in E \end{split}$$

故 $[Y_i, Y_j] = 0i, j \leqslant r$,故可用同步管状流。

向量场 $X: C^{\infty}(M) \to C^{\infty}(M)$

$$[X,Y] = X \circ Y - Y \circ X$$

X,Y 都与子流形 $N \subset M$ 相切,则 [X,Y] 与 N 相切。

$$[X,Y] = \lim_{t \to 0} \frac{Y - \varphi_{t*}Y}{t}$$

切子空间场 E

$$\pi \colon G_k(TM) = \{ P \subset T_xM \mid \dim P = k, x \in M \} \longrightarrow M$$
$$E \colon M \longrightarrow G_k(TM)$$

例 $66. S^2$ 上不存在 1 维切子空间场,即不存在处处非零的光滑向量场。

例 67 (Clifford 代数). 若 S^n 上存在 $1, 2, \dots, k$ 维光滑切子空间场, 求 k 的最大值。

$$2 \mid^{n} \Longrightarrow k = 0$$

$$n = 3 \Longrightarrow k = 3$$

$$n \equiv 3 \mod 4 \Longrightarrow k \geqslant 3$$

$$n = 7 \Longrightarrow k = 7$$

$$n = 5k = 1$$

具体的:

$$S^1 \rightsquigarrow 复数$$
 $S^3 \rightsquigarrow 四元数$
 $S^7 \rightsquigarrow 八元数$

定义 68 (Frobenius 条件).

$$\forall X, Y \in \mathfrak{X}(M), X_p, Y_p \in E_p(X, Y \in E) \Longrightarrow [X, Y] \in E$$

注. 等价于"取 E 的一组基 X_1, X_2, \cdots, X_k 时 $[X_i, X_j] \in E$ "。

证明. 设 X_1, \dots, X_k 是 E 的一组基,则

$$X_i = X_i^j \frac{\partial}{\partial x^i}$$

$$\begin{pmatrix} X_1^1 & \cdots & X_1^n \\ \cdots & \cdots & \cdots \\ X_k^1 & \cdots & X_k^n \end{pmatrix} \stackrel{\text{instity}}{\Longrightarrow} \begin{pmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix}$$

得到另一组基 $Y_i = \frac{\partial}{\partial u^i} + Y_i^\alpha \frac{\partial}{\partial u^\alpha}, k+1 \leqslant \alpha \leqslant n$

$$[Y_i, Y_j] = Y_i(Y_j^{beta}) \frac{\partial}{\partial u^{\beta}} - Y_j(Y_i^{\alpha}) \frac{\partial}{\partial u^{\alpha}}$$

由 Frobenius 条件,

$$\begin{split} [Y_i,Y_j] &= C_{ij}^l Y_l \\ &= C_{ij}^l (\frac{\partial}{\partial u^l} + Y_l^\gamma \frac{\partial}{\partial \gamma}) \end{split}$$

比较得 $C_{ij}^l = 0$,于是 $[Y_i, Y_j] = 0$ 。

由同步管状流,存在坐标系 (x^i) 使得

$$Y_i = \frac{\partial}{\partial x^i}$$

于是 Y_1, Y_2, \dots, Y_k 都与切片 $x^{k+1} = cst, \dots, x^n = cst$ 相切。

6 外代数

2012-10-18

定义 70. 设 V, W 是实线性空间, V^*, W^* 是其对偶空间。对于 $\alpha \in V^*, \beta \in W^*$, 定义

$$\alpha \otimes \beta \colon \ V \times W \longrightarrow \mathbb{R}$$

$$(v, w) \mapsto \alpha(v)\beta(w)$$

可见 $\alpha \otimes \beta$ 是双线性函数。

以 $V^* \otimes W^*$ 记所有形如 $\alpha \otimes \beta$ 所张成的线性空间, 称为 V^* 和 W^* 的<mark>张量积</mark>。

- 1) $V^* \otimes W^*$ 的元素就是 $V \times W$ 上的双线性函数;
- 2) 设 α^1,\cdots,α^m 和 β^1,\cdots,β^n 分别是 V^* 和 W^* 的一组基,则 $\{\alpha^i\otimes\beta^j\}$ 是 $V^*\otimes W^*$ 的一组基。同理可定义 $V\otimes W$ 。

定义 71. $T_s^r(V) = \underbrace{V \otimes \cdots \otimes V}_r \otimes \underbrace{V^* \otimes \cdots \otimes V^*}_s$ 中的元素称为(r,s) 型张量。

定义 72. 对于 (r,0) 型或 (0,s) 型张量 T,若

$$T(\theta^1, \cdots, \theta^r) = T(\theta^{\sigma(1)}, \cdots, \theta^{\sigma(r)})$$

则称 T 是对称的;

$$T(\theta^1, \dots, \theta^r) = \operatorname{sgn}(\sigma) T(\theta^{\sigma(1)}, \dots, \theta^{\sigma(r)})$$

则称 T 是反对称的。

$$V \otimes V^* \cong \operatorname{End}(V)$$

 $f = f_j^i v_i \otimes \alpha^j$
 $f(v_j) = f_j^j v_j$

约定. 记 $T_0^r(V)$ 中反对称张量全体为 $A^r(V)$ 。

定义 73. $\forall \xi \in A^k(V), \eta \in A^l(V)$, 外积定义为

$$\xi \wedge \eta \stackrel{\text{def}}{=} \frac{1}{(k+l)!} \sum_{\sigma} \operatorname{sgn}(\sigma) \sigma(\xi \otimes \eta)$$

命题 74. 外积满足以下运算律

1) 分配律

$$(\xi_1 + \xi_2) \wedge \eta = \xi_1 \wedge \eta + \xi_2 \wedge \eta$$
$$\xi \wedge (\eta_1 + \eta_2) = \xi \wedge \eta_1 + \xi \wedge \eta_2$$

2) 反交换律

$$\xi \wedge \eta = (-1)^{kl} \eta \wedge \xi$$

3) 结合律

$$(\xi \wedge \eta) \wedge \zeta = \xi \wedge (\eta \wedge \zeta)$$

定理 75. 矢量 $v_1, \dots, v_r \in V$ 线性相关的充要条件是 $v_1 \wedge \dots \wedge v_r = 0$ 。

定理 76 (Cartan 引理). 设 $v_1, \dots, v_r; w^1, \dots, w^r$ 是 V 中两组矢量, 使得

$$v_i \wedge w^i = 0$$

如果 v_1, \dots, v_r 线性无关,则存在满足 $h^{ij} = h^{ji}$ 的 h^{ij} 使得

$$w^j = h^{ij}v_i, 1 \leqslant j \leqslant r$$

7 外微分

2012-10-25

定义 77. $A^r(M) = \bigcup_{p \in M} A^r(T_p^*M)$ 称为 M 上的 r 次外形式丛。

 $\forall p \in M$,取坐标系 (x^i) , $\mathrm{d}\,x^1,\cdots,\mathrm{d}\,x^m$ 是 T_p^*M 的一组基,故 $\forall \omega \in A^r(T_p^*M)$ 可写为

$$\omega = \frac{1}{r!} \omega_{i_1 \cdots i_r} \, \mathrm{d} \, x^{i_1} \wedge \cdots \wedge \mathrm{d} \, x^{i_r}$$

其中 $\omega_{i_1\cdots i_r}$ 关于任意两个角标反对称。于是 $(x^i,\omega_{i_1\cdots i_r})$ 可构成 $A^r(M)$ 上的坐标系。容易验证,这些坐标系是光滑相容的,从而 $A^r(M)$ 关于这一微分结构成为光滑流形。

定义 78. 若 ω : $M \to A^r(M)$ 是光滑映射且满足 $\pi \circ \omega = \mathrm{id}$,这里 π : $A^r(M) \to M$ 是自然投影,则称 ω 是一个 r 次外微分式,也称为r 形式。

引理 79. 局部上, ω 是 r 形式等价于

$$\omega(p) = \frac{1}{r!} \omega_{i_1 \cdots i_r}(p) \, \mathrm{d} \, x^{i_1} \wedge \cdots \wedge \mathrm{d} \, x^{i_r}$$

其中系数 $\omega_{i_1\cdots i_r}$ 是光滑函数。

约定. 记 A(M) 为 M 上所有 0 形式、1 形式、 \dots 、m 形式的全体。

定理 80. 存在唯一的算子 $d: A(M) \to A(M)$, 满足

- 1) $d(A^{r}(M)) \subset A^{r+1}(M)$;
- 2) d 是实线性的;
- 3) 对任意 r 形式 ω_1 , k 形式 ω_2

$$d(\omega_1 \wedge \omega_2) = d\omega_1 \wedge \omega_2 + (-1)^r \omega_1 \wedge d\omega_2$$

4) 对 0 形式 $f \in C^{\infty}(M)$, df 是 f 的全微分且 d(df) = 0。

称 d 为外微分算子。

证明. 先证明这样的 d 若存在,则具有局部性,即

$$\omega_1|_U = \omega_2|_U \Longrightarrow \mathrm{d}\,\omega_1|_U = \mathrm{d}\,\omega_2|_U$$

由于 d 具有实线性, 只需证明 $\omega|_U = 0 \Rightarrow d\omega|_U$ 。

 $\forall p \in U$,取邻域 $\hat{U} \subset U$,并取光滑函数 f,使 $f|_{\hat{U}} = 1, f|_{M \setminus U} = 0$ 。则

$$f(\omega) = 0 \Longrightarrow d(f(\omega)) = 0$$

 $\Longrightarrow df \wedge (\omega) + f(d\omega) = 0$

由于在 p 点

$$d f|_p = 0, f|_p = 1$$

故 $d\omega|_p = 0$ 。

再证明局部存在唯一性

存在性: 对单项式 $\omega = f(x) dx^1 \wedge \cdots \wedge dx^r$, 规定 $d\omega = df \wedge dx^1 \wedge \cdots \wedge dx^r$ 。由实线性,得

$$\omega = \frac{1}{r!} \omega_{i_1 \cdots i_r} \, \mathrm{d} \, x^{i_1} \wedge \cdots \wedge \mathrm{d} \, x^{i_r}$$
$$\mathrm{d} \, \omega = \frac{1}{r!} \, \mathrm{d} \, \omega_{i_1 \cdots i_r} \wedge \mathrm{d} \, x^{i_1} \wedge \cdots \wedge \mathrm{d} \, x^{i_r}$$

验证 3):

$$\omega_1 = \frac{1}{r!} \omega_I \, \mathrm{d} \, x^I$$
$$\omega_2 = \frac{1}{k!} \eta_J \, \mathrm{d} \, x^J$$

$$\omega_1 \wedge \omega_2 = \frac{1}{r!} \frac{1}{k!} \omega_I \eta_J \, \mathrm{d} \, x^I \wedge \mathrm{d} \, x^J$$
$$\Longrightarrow \mathrm{d}(\omega_1 \wedge \omega_2) = \frac{1}{r!} \frac{1}{k!} \, \mathrm{d}(\omega_I \eta_J) \wedge \mathrm{d} \, x^I \wedge \mathrm{d} \, x^J$$

其中 $d(\omega_I \eta_J) = \omega_I d(\eta_J) + \eta_J d(\omega_I)$ 。 故

$$d(\omega_1 \wedge \omega_2) = \frac{1}{r!} \frac{1}{k!} (\omega_I d(\eta_J) \wedge dx^I \wedge dx^J + \eta_J d(\omega_I) \wedge dx^I \wedge dx^J)$$
$$= d\omega_1 \wedge \omega_2 + (-1)^r \omega_1 \wedge d\omega_2$$

验证 4):

$$d f = \frac{\partial f}{\partial x^i} d x^i$$

$$d(d f) = d(\frac{\partial f}{\partial x^i}) \wedge d x^i$$

$$= \frac{\partial^2 f}{\partial x^i \partial x^j} d x^j \wedge d x^i$$

$$= \sum_{j < i} (\frac{\partial^2 f}{\partial x^i \partial x^j} - \frac{\partial^2 f}{\partial x^j \partial x^i}) d x^j \wedge d x^i$$

$$= 0$$

唯一性:对 r 用数学归纳法证明 $d(dx^I) = 0$,于是

$$d(f d x^I) = d f \wedge d x^I + (-1)^0 f d(d x^I) = d f \wedge d x^I$$

最后证明整体的存在唯一性: $\forall p \in U \cap W$, 由于

$$d(\omega_U)|_{U\cap W} = d(\omega_{U\cap W}) = d(\omega_W)|_{U\cap W}$$

故 d 在 $U \cap W$ 上是一致的。

定理 81 (Poincáre 引理). 外微分算子 d 具有性质 $d \circ d = 0$ 。

证明. 由于实线性性质,只需证明对于单项式 $\omega = f \, \mathrm{d} x^I$ 有 $\mathrm{d}(\mathrm{d}\omega) = 0$ 即可。而

$$d(d\omega) = d(d f \wedge d x^{I})$$

$$= d(d f) \wedge d x^{I} - d f \wedge d(d x^{I})$$

$$= 0$$

例 82. 对于 $f \in C^{\infty}(\mathbb{R}^3)$

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz$$

 $\operatorname{grad} f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z})$ 通常称为 f 的梯度³。

例 83. 对于 1 形式

$$\begin{split} \omega &= P \, \mathrm{d}\, x + Q \, \mathrm{d}\, y + R \, \mathrm{d}\, z \\ \mathrm{d}\, \omega &= \mathrm{d}\, P \wedge \mathrm{d}\, x + \mathrm{d}\, Q \wedge \mathrm{d}\, y + \mathrm{d}\, R \wedge \mathrm{d}\, z \\ &= (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) \, \mathrm{d}\, x \wedge \mathrm{d}\, y \\ &+ (\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}) \, \mathrm{d}\, y \wedge \mathrm{d}\, z \\ &+ (\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}) \, \mathrm{d}\, z \wedge \mathrm{d}\, x \end{split}$$

例 84. 对于 2 形式

$$\omega = P \, \mathrm{d} \, y \wedge \mathrm{d} \, z + Q \, \mathrm{d} \, z \wedge \mathrm{d} \, x + R \, \mathrm{d} \, x \wedge \mathrm{d} \, y$$
$$\mathrm{d} \, \omega = \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) \, \mathrm{d} \, x \wedge$$
$$\wedge \, \mathrm{d} \, z$$

通常, 把 $\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$ 称为 X = (P, Q, R) 的散度, 记为 $\operatorname{div} X$ 。

由 Poincáre 引理,得

$$\operatorname{curl}(\operatorname{grad} f) = 0, \forall f \in C^{\infty}(\mathbb{R}^3)$$
$$\operatorname{div}(\operatorname{curl} X) = 0, \forall X \in \mathfrak{X}(\mathbb{R}^3)$$

定理 85 (外微分求值公式). 设 ω 是 1 形式, $X,Y \in \mathfrak{X}(M)$, 则

$$d \omega(X, Y) = X(\omega(Y)) - Y(\omega(X)) - \omega[X, Y]$$

证明.

$$\begin{aligned} \omega &= f \operatorname{d} g \\ \operatorname{d} \omega &= \operatorname{d} f \wedge \operatorname{d} g \\ \operatorname{d} \omega(X,Y) &= \left(\operatorname{d} f \wedge \operatorname{d} g\right)(X,Y) \\ &= \begin{vmatrix} \operatorname{d} f(X) & \operatorname{d} g(X) \\ \operatorname{d} f(Y) & \operatorname{d} g(Y) \end{vmatrix} \\ &= X(f)Y(g) - X(g)Y(f) \end{aligned}$$

另一方面,

$$\omega(Y) = f d g(Y) = fY(g)$$

$$\omega(X) = fX(g)$$

所以

$$\begin{split} X(\omega(Y)) - Y(\omega(X)) - \omega[X,Y] \\ = & X(fY(g)) - Y(fX(g)) - f(X(Y(g)) - Y(X(g))) \\ = & X(f)Y(g) - X(g)Y(f) \end{split}$$

8 外微分(续)

2012-11-1

引理 86. 设 $\{X_1,\cdots,X_m\}$ 是 m 维流形 M 上的一个局部标架场(自动满足 Frobenius 条件,即存在光 滑函数 C^i_{jk} ,使 $[X_j,X_k]=C^i_{jk}X_i$),又设 ω^1,\cdots,ω^m 是与 X_1,\cdots,X_m 对偶的余标架场,则

$$\mathrm{d}\,\omega^i = -\frac{1}{2}C^i_{jk}\omega^j \wedge \omega^k$$

证明. 一方面:

$$\begin{split} \operatorname{d}\omega^i(X_p,X_q) &= X_p(\omega^i(X_q)) - X_q(\omega^i(X_p)) - \omega^i[X_p,X_q] \\ &= -\omega^i[X_p,X_q] \\ &= -\omega^i(C^r_{pq}X_r) \\ &= -C^r_{pq}\omega^iX_r = -C^i_{pq} \end{split}$$

另一方面:

$$\begin{split} &-\frac{1}{2}C^i_{jk}\omega^j\wedge\omega^k(X_p,X_q)\\ &=-\frac{1}{2}C^i_{jk}\left| \overset{\mathrm{d}}{\mathrm{d}}\,\omega^j(X_p) &\overset{\mathrm{d}}{\mathrm{d}}\,\omega^k(X_p) \right|\\ &\overset{\mathrm{d}}{\mathrm{d}}\,\omega^j(X_q) &\overset{\mathrm{d}}{\mathrm{d}}\,\omega^k(X_q) \right|\\ &=-\frac{1}{2}C^i_{jk}(\delta^j_p\delta^k_q-\delta^k_p\delta^j_q)\\ &=-\frac{1}{2}(C^i_{pq}-C^i_{qp})=-C^i_{pq} \end{split}$$

定义 87. 设 $\{X_1, \dots, X_r\}$ 是 r 维切子空间场,将它扩充为一个局部标架场 X_1, \dots, X_m 并取与之对偶的 余标架场 $\omega^1, \dots, \omega^m$ 。若 1 形式 $\omega^{r+1}, \dots, \omega^m$ 线性无关,且对于 r 维子空间场 E,满足

$$\omega^{\alpha}(X) = 0, \forall X \in E$$

则称 $\omega^{r+1}, \dots, \omega^m$ 是 E 的定义方程 (零化子)。

定义 88. 线性无关的 1 形式 $\omega^{r+1}, \dots, \omega^m$ 若满足

$$d\omega^{\alpha} \equiv 0 \mod \omega^{r+1}, \cdots, \omega^m, \forall r+1 \leq \alpha \leq m$$

即存在 1 形式 θ_{β}^{α} 使得

$$d\,\omega^{\alpha} = \theta^{\alpha}_{\beta} \wedge \omega^{\beta}$$

则称 $\omega^{r+1}, \dots, \omega^m$ 满足*Frobenius* 条件。

定理 89 (Frobenius 定理). 设 r 维切子空间场 E 的定义方程 $\omega^{r+1}, \cdots, \omega^m$ 满足 Frobenius 条件,则 E 是完全可积的,即存在局部坐标系 (x^i) 使

$$E = \{ \frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^r} \}$$

或者写成外微分式:

$$\{\omega^{r+1}, \cdots, \omega^m\} = \{\operatorname{d} x^{r+1}, \cdots, \operatorname{d} x^m\}$$

证明. 不妨设 X_1, \dots, X_m 与 $\omega^{r+1}, \dots, \omega^m$ 对偶,只需验证 $E = \{X_1, \dots, X_m\}$ 满足(向量场版)Frobenius 条件。

设 $[X_a, X_b] = C_{ab}^i X_i$,则 Frobenius 条件等价于

$$C^{\alpha}_{jk} = 0, \forall r + 1 \leqslant \alpha \leqslant m, 1 \leqslant j, k \leqslant r$$

由引理86,

$$d\omega^c = -\frac{1}{2}C^c_{ab}\omega^a \wedge \omega^b, \forall a, b, c$$

于是

$$d\omega^{\alpha} = -\frac{1}{2}C_{ij}^{\alpha}\omega^{i} \wedge \omega^{j} - C_{\beta i}^{\alpha}\omega^{\beta} \wedge \omega^{i} - \frac{1}{2}C_{\beta\gamma}^{\alpha}\omega^{\beta} \wedge \omega^{\gamma}$$

与 Frobenius 条件比较,得

$$d\omega^{\alpha} = \theta^{\alpha}_{\beta} \wedge \omega^{\beta} = C^{\alpha}_{\beta i} \omega^{i} \wedge \omega^{\beta} + \frac{1}{2} C^{\alpha}_{\beta \gamma} \omega^{\gamma} \wedge \omega^{\beta}$$

于是 $C_{ij}^{\alpha} = 0$ 。

注. Frobenius 条件也可看作 $d\omega^{\alpha}|_{E}=0$ 。

定义 90. 设 $X \in \mathfrak{X}(M)$, 定义算子

$$i_X \colon A^k(M) \longrightarrow A^{k-1}(M)$$

 $(i_X\omega)(Y_1, \cdots, Y_{k-1}) = \omega(X, Y_1, \cdots, Y_{k-1})$

称为内置算子。

命题 91. 设 $\omega^{r+1}, \dots, \omega^m$ 是 r 维切子空间场 E 的定义方程, 则 Frobenius 条件等价于

$$i_X(\mathrm{d}\,\omega^\alpha)|_E = 0, \forall X \in E, r+1 \leqslant \alpha \leqslant m$$

证明. ⇒:

$$d\omega^{\alpha} = \theta^{\alpha}_{\beta} \wedge \omega^{\beta} = C^{\alpha}_{\beta i} \omega^{i} \wedge \omega^{\beta} + \frac{1}{2} C^{\alpha}_{\beta \gamma} \omega^{\gamma} \wedge \omega^{\beta}$$
$$(i_{X}(d\omega^{\alpha}))(Y) = d\omega^{\alpha}(X, Y)$$
$$= (\theta^{\alpha}_{\beta} \wedge \omega^{\beta})(X, Y)$$
$$= \begin{vmatrix} \theta^{\alpha}_{\beta}(X) & \theta^{\alpha}_{\beta}(Y) \\ \omega^{\beta}(X) & \omega^{\beta}(Y) \end{vmatrix} = 0$$

 $\Longleftrightarrow : i_X(\mathrm{d}\,\omega^\alpha)(Y) = 0 \ \mathrm{t}$,取 $X = X_i, Y = X_j$ 并将 $\mathrm{d}\,\omega^\alpha$ 代入得 $C^\alpha_{ij} = 0$ 。

定义 92. 设 $f: N \to M$ 是光滑映射,则如下定义的 $f^*: A^k(M) \to A^k(N)$ 称为拉回:

$$(f^*\omega)(Y_1,\cdots,Y_k)\stackrel{\text{def}}{=}\omega(f_*Y_1,\cdots,f_*Y_k)$$

定理 93. $f^* \circ d = d \circ f^*$

证明. 取 M,N 上的坐标系 $(x^i),(y^i)$,设 $f=(f^1,\cdots,f^m)$ 。对于 $\omega=\frac{1}{r!}\omega_I\,\mathrm{d}\,x^I$ 有

$$(f^*\omega)(\frac{\partial}{\partial y^{j_1}}, \cdots, \frac{\partial}{\partial y^{j_r}})$$

$$=\omega(f_*\frac{\partial}{\partial y^{j_1}}, \cdots, f_*\frac{\partial}{\partial y^{j_r}})$$

$$=\frac{\partial f^{i_1}}{\partial y^{j_1}}\cdots\frac{\partial f^{i_r}}{\partial y^{j_r}}\omega(\frac{\partial}{\partial x^{i_1}}, \cdots, \frac{\partial}{\partial x^{i_r}})$$

$$=\frac{1}{r!}\frac{\partial f^I}{\partial y^J}\omega_K dx^K(\frac{\partial}{\partial x^I})$$

$$=\frac{1}{r!}\omega_I(f(y)) df^I(\frac{\partial}{\partial y^J})$$

故

$$f^*\omega = \frac{1}{r!}\omega_I(f(y)) d f^I$$

于是对 $\eta \in A(M)$, 设 $\eta = \eta_I dx^I$, 则

$$f^*(d \eta) = f^*(d \eta_I \wedge d x^I)$$

$$= f^*(d \eta_I) \wedge f^*(d x^I)$$

$$= d(\eta_I \circ f) \wedge d f^I$$

$$= d((\eta_I \circ f) d f^I)$$

$$= d(f^* \eta)$$

注. $E \in M$ 上的 r 维切子空间场,其积分子流形是指浸入 $f: N \to M$ 满足:

$$f_*(T_pN) \subset E$$
 $\iff \omega^{\alpha}(f_*v) = 0, \forall v \in T_pN$
 $\iff f^*\omega^{\alpha} = 0$

Frobenius 定理说明:

$$\{\omega^{r+1},\cdots,\omega^m\}=\{\operatorname{d} x^{r+1},\cdots,\operatorname{d} x^m\}$$

于是

$$f^*(\mathrm{d} x^{r+1}) = \dots = f^*(\mathrm{d} x^m) = 0$$

即

$$d f^{r+1} = \dots = d f^m = 0$$

例 94. 求 f(x,y,z), 使得

$$\begin{cases} xf_x + f_y + x(1+y)f_z = 0 \\ f_x + yf_z = 0 \end{cases}$$

令

$$X_{1} = x \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + x(1+y) \frac{\partial}{\partial z}$$
$$X_{2} = \frac{\partial}{\partial x} + y \frac{\partial}{\partial z}$$

则

$$[X_1, X_2] = \frac{\partial}{\partial z} - \frac{\partial}{\partial x} - (1+y)\frac{\partial}{\partial z} = -X_2$$

故 $E = \text{span}\{X_1, X_2\}$ 满足 Frobenius 条件。

再取
$$X_3=rac{\partial}{\partial z}$$
 以及 X_1,X_2,X_3 的对偶 $\omega^1,\omega^2,\omega^3$,设

$$\omega^3 = P \, \mathrm{d} \, x + Q \, \mathrm{d} \, y + \mathrm{d} \, z$$

有

$$\begin{cases} xP + Q + x(1+y) = 0\\ P + y = 0 \end{cases}$$

故

$$\omega^3 = dz - y dx - x dy = d(z - xy)$$

可见 E 的积分子流形为

$$z - xy = cst$$

故
$$f(x,y,z) = q(z-xy)$$
, q 为任意函数、

例 95. 考虑 u = u(x, y) 的 *PDES*:

$$\begin{cases} u_x = \alpha(x, y, z) \\ u_y = \beta(x, y, z) \end{cases}$$

在 $\mathbb{R}^3 = \{(x, y, u)\}$ 中来看,相当于由

$$\omega = du - \alpha dx - \beta dy$$

定义的 2 维切子空间场的积分问题。

$$d\omega = \alpha_y dx \wedge dy - \alpha_u du \wedge dx - \beta_x dx \wedge dy + \beta_u dy \wedge du$$

$$(\because du \equiv \alpha dx + \beta dy \mod \omega)$$

$$\equiv (\alpha_y - \beta_x + \alpha_u \beta - \beta_u \alpha) dx \wedge dy \mod \omega$$

注意到 $dx \wedge dy \neq 0$, 故 $d\omega \equiv 0$ 等价于

$$\alpha_y - \beta_x + \alpha_u \beta - \beta_u \alpha = 0$$

即当上式成立时此 PDES 有解。

定义 96. 设 dim M=m, 若 M 上存在处处非零的 $\omega=f\,\mathrm{d}\,x^1\wedge\cdots\wedge\mathrm{d}\,x^m$, 则称 M可定向。

定理 97 (单位分解定理). 设 Σ 是光滑流形 M 的一个开覆盖,则 M 上存在一族光滑函数 $\{g_{\alpha}\}$ 满足:

- 1) 对每个 α , 有 $0 \leq g_{\alpha} \leq 1$, 支集 $\sup g_{\alpha}$ 紧, 且包含于某个 $U_i \in \Sigma$;
- 2) 对每点 p, 存在一个邻域 U, 它只与有限个支集 $\operatorname{supp} g_{\alpha}$ 相交;
- 3) $\sum_{\alpha} g_{\alpha} = 1$.

定义 98. 如下定义外微分式 ω 的积分

$$\int_{M} \omega = \sum_{i} \int_{U_{i}} g_{\alpha} \omega$$

定理 **99** (Stokes 公式).

$$\int_D d\omega = \int_{\partial D} \omega$$

定义 100. 外微分式 ω 称为闭的,如果 dω = 0,换而言之 $ω \in \ker d$; 称为恰当的,如果存在 θ 使得 ω = dθ,换而言之, $ω \in \operatorname{im} d$ 。

命题 101. ω 是闭的 1 形式, 当且仅当对于任意零伦闭路径 γ , 有

$$\int_{\gamma} \omega = 0$$

 ω 是恰当的 1 形式, 当且仅当对于任意闭路径 γ , 有

$$\int_{\Omega} \omega = 0$$

9 李群

2012-11-8

定义 102. 若群 G 赋予了一个光滑结构,使得群运算是光滑映射,则称为李群。

定义 103. 设 G 是李群, $\forall a \in G$, 定义

$$L_a \colon G \longrightarrow G$$
 $R_a \colon G \longrightarrow G$ $b \mapsto ab$ $b \mapsto ba$

则它们都是光滑同胚,分别称为左移动和右移动。

例 104. $(\mathbb{R}^n, +)$ 、 (S^1, \cdot) 是 abel 李群。

例 105. 若 G_1, G_2 是李群,则 $G_1 \times G_2$ 也是李群。特别地, $T^n = \underbrace{S^1 \times S^1 \times \cdots \times S^1}_{n \wedge n}$ 是 abel 李群,称为n 维环面。

例 106. $GL(n,\mathbb{R}) = \{A \in \mathbb{R}^{n \times n} \mid \det A \neq 0\}$ 称为 n 阶一般线性群。

例 107. $SL(n,\mathbb{R}) = \{A \in \mathbb{R}^{n \times n} \mid \det A = 1\}$ 称为 n 阶特殊线性群。

例 108. $O(n,\mathbb{R}) = \{A \in \mathbb{R}^{n \times n} \mid AA^T = I_n\}$ 称为 n 阶正交群。

例 109. $SO(n,\mathbb{R}) = SL(n,\mathbb{R}) \cap O(n,\mathbb{R})$ 称为 n 阶特殊正交群。

定义 110. 对李群 G,若其子群 H 同时也是 G 的闭子流形,则称 H 为 G 的李子群。

例 111. $G = T^2 = S^1 \times S^1$, 取 H < G 如下

$$H = \{ (e^{i\theta}, e^{ik\theta}) \mid \theta \in \mathbb{R} \}$$

其中 k 为给定实数。

当 $k \notin \mathbb{Q}$ 时, H 不是 G 的闭子流形 (事实上 H 稠于 G), 因此不是 G 的李子群。

定义 112. 设 $X \in \mathfrak{X}(G)$, 若 $\forall a \in G$,

$$(R_a)_*X = X$$

则称 $X \in G$ 上的 \overline{a} 上的 \overline{a} 上右不变向量场的全体,记作 \mathfrak{g} 。

命题 113. g 是 $\dim G$ 维的实线性空间, 且

$$X \mapsto X_1$$

给出 $g \to T_1G$ 的同构。

证明. $\forall v \in T_1G$, 可构造右不变向量场 V

$$V_a = (R_a)_* v$$

反之,右不变向量场 X 满足 $X_1 = v$,则

$$X_a = (R_a)_* X_1 = V_a$$

故任一右不变向量场由其在1的值唯一确定。

定理 114. $\forall X, Y \in \mathfrak{g}$, 有 $[X, Y] \in \mathfrak{g}$ 。

证明. $\forall a \in G$, $(R_a)_*[X,Y] = [(R_a)_*X, (R_a)_*Y] = [X,Y]_\circ$

定义 115. 称 $(\mathfrak{g},[,])$ 为李群 G 的李代数。

注. 有时也称 T_1G 为 G 的李代数。

对于 $v \in T_1G$, 将满足 $X_1 = v$ 的右不变向量场记作 \hat{v} , 并定义

$$[v, w] \stackrel{\text{def}}{=} [\widehat{v}, \widehat{w}]_1$$

定义 116. 取 T_1G 的一组基 v_1, \dots, v_n , 则可设

$$[v_i, v_j] = C_{ij}^k v_k$$

其中 C_{ij}^k 称为 G 的结构常数。

此时 $\hat{v}_1, \dots, \hat{v}_n$ 是 g 的一组基, 且

$$[\widehat{v}_i, \widehat{v}_j] = C_{ij}^k \widehat{v}_k$$

定理 117. 结构常数满足方程组:

$$\begin{cases} C^k_{ij} = -C^k_{ji} \\ C^i_{sj}C^s_{kl} + C^i_{sk}C^s_{lj} + C^i_{sl}C^s_{jk} = 0 \end{cases}$$

注. 反之,满足上述方程组的一组常数 C_{ij}^k 就定义了一个李代数 \mathfrak{g} ,并有一个局部李群 G 以 \mathfrak{g} 为李代数。

定义 118. 对于 $x \in G$, 定义

$$\alpha_r(a) = L_r R_{r-1}(a) = xax^{-1}$$

称为 G 的内自同构。此时,

$$(\alpha_x)_{*1}: T_1G \longrightarrow T_1G$$

是李代数的同构,记作 Adx。

Ad:
$$G \longrightarrow GL(T_1G) \cong GL(n, \mathbb{R})$$

 $x \mapsto \operatorname{Ad} x$

定义 119. $ad = Ad_{*1}: T_1G \to gl(n,\mathbb{R})$, 称为 G 的伴随表示。

定义 120. $\theta \in A^1(G)$, 若 $\forall a \in G, (R_a)^*\theta = \theta$, 则称 θ 为 G 上的右不变 1 形式。

注. 右不变 1 形式全体与 T_1^*G 同构,恰是 \mathfrak{g} 的对偶空间,记作 \mathfrak{g}^* 。

具体地,设 v_1, \cdots, v_n 是 T_1G 的一组基,则 $\widehat{v}_1, \cdots, \widehat{v}_n$ 是 \mathfrak{g} 的一组基,它们构成 G 的整体标架场。记它们的对偶为 $\omega^1, \cdots, \omega^n$,则

$$\mathrm{d}\,\omega^i = -\frac{1}{2}C^i_{jk}\omega^j \wedge \omega^k$$

定义 121. 形式地定义一个 T_1G 值 1 形式

$$\omega = v_i \omega^i$$

称为李群 G 的Maurer-Cartan 形式。

定理 122. 设 ω^i 是 \mathfrak{g}^* 的一组基,若 σ : $G \to G$ 满足 $\sigma^*\omega^i = \omega^i$,则 σ 是右移动。

 $Cartan\ graph\ technique.$ 考虑 $G \times G \perp n$ 维切子空间场 E,定义方程为

$$\theta^i = \pi_1^* \omega^i - \pi_2^* \omega^i$$

其中 π_1, π_2 是 $G \times G$ 到两个分量的技能。

由于

$$d\theta^{i} = \pi_{1}^{*} d\omega^{i} - \pi_{2}^{*} d\omega^{i}$$

$$= \pi_{1}^{*} \left(-\frac{1}{2} C_{jk}^{i} \omega^{j} \wedge \omega^{k}\right) - \pi_{2}^{*} \left(-\frac{1}{2} C_{jk}^{i} \omega^{j} \wedge \omega^{k}\right)$$

$$= -\frac{1}{2} C_{jk}^{i} \left(\pi_{1}^{*} \omega^{j} \wedge \pi_{1}^{*} \omega^{k} - \pi_{2}^{*} \omega^{j} \wedge \pi_{2}^{*} \omega^{k}\right)$$

$$\equiv 0 \mod \theta^{1}, \dots, \theta^{n}$$

可见 E 满足 Frobenius 条件,过 $G \times G$ 上任一点总存在唯一的极大积分子流形。 注意到 σ 之图像 $\{(x,\sigma(x)) \mid x \in G\}$ 恰是 E 的一个积分子流形

$$f: N \to G \times G \to \pi_1(G)$$

$$f^*\theta^i = f^*(\pi_1^*\omega^i) - f^*(\pi_2^*\omega^i)$$

$$\theta^i(Y) = \omega^i(\pi_{1*}Y) - \omega^i(\pi_{2*}Y)$$

$$= \omega^i(X) - \omega^i(\sigma_*X)$$

$$= \omega^i(X) - (\sigma^*\omega^i)(X) = 0$$

同理, $\forall a \in G$, R_a 的图像也是 E 的积分子流形。

取 $a = \sigma(1)$,则 σ 与 R_a 的图像都经过 (1,a),故 $\sigma = R_a$ 。

例 123. $GL(n,\mathbb{R})$ 之 Maurer-Cartan 形式为

$$\omega = (\mathrm{d}\,A)A^{-1}$$

10 李群(续)

2012-11-15

定义 124. 取 T_1G 的一组基 v_1, \dots, v_n ,并取 $\hat{v}_1, \dots, \hat{v}_n$ 的对偶 1 形式 $\omega^1, \dots, \omega^n \in A^1(G)$,形式地定义

$$\omega = v_i \omega^i$$

称为李群 G 的右基本微分式,或Maurer-Cartan 形式。

注.
$$\omega(\widehat{v}_i) = v_i$$
。

例 125. $G = GL(n, \mathbb{R})$ 的李代数与右基本微分式:

因为 G 中曲线 I+tA 在 t=0 处的切向量就是 $A \in \mathbb{R}^{n \times n}$, 所以

$$T_IG = \mathbb{R}^{n \times n}$$

取 $A \in T_IG$, 注意到这里的 $R_a x = xa$ 是线性变换, 故

$$\widetilde{A}_x = R_x A = Ax \in T_x G$$

$$\widehat{A}(f)(x) = \widehat{A}_x(f)$$

$$= \frac{\mathrm{d}}{\mathrm{d} t} f(x + tAx) \Big|_{t=0}$$

$$[\widehat{A}, \widehat{B}](f)(x) = \widehat{A}_x(\widehat{B}(f)) - \widehat{B}_x(\widehat{A}(f))$$

$$= \frac{\mathrm{d}}{\mathrm{d}t}\widehat{B}(f)(x + tAx) \Big|_{t=0} - \frac{\mathrm{d}}{\mathrm{d}s}\widehat{A}(f)(x + sBx) \Big|_{s=0}$$

$$= \frac{\partial^2}{\partial s \partial t} (f(x + tAx + s(Bx + tBAx)) - f(x + sBx + t(Ax + sABx))) \Big|_{t=s=0}$$

$$= \frac{\partial^2}{\partial s \partial t} (f(x + stBAx) - f(x + stABx)) \Big|_{t=s=0}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} (f(x + t(BA - AB)x)) \Big|_{t=0}$$

$$= (BA - AB)^{\wedge}(f)(x)$$

所以 $[\widehat{A}, \widehat{B}] = (BA - AB)^{\wedge}$ 。 换言之, T_IG 中的 [,] 运算由

$$[A, B] = BA - AB$$

给出。

右基本微分式为

$$\omega = \mathrm{d}\,x \cdot x^{-1}$$

其中 $x = (x_{ij}), dx = (dx_{ij}).$ 这是因为

$$\omega(\widehat{A}) = dx((Ax)_{ij} \frac{\partial}{\partial x_{ij}})x^{-1}$$
$$= (Ax)x^{-1} = A$$

定义 126. 对李群 G, 称李群同态 $\gamma: (\mathbb{R}.+) \to G$ 为 G 的一个单参数子群。

定理 127. 单参数子群 γ 由 $\dot{\gamma}(0) \in T_1G$ 唯一决定。

证明. 设 $v = \dot{\gamma}(0) \in T_1G$,考虑 \hat{v} 的流 θ_t ,则

$$\begin{cases} \theta_0 = \mathrm{id} \\ \theta_{t+s} = \theta_t \circ \theta_s \end{cases}$$

考虑 $\tilde{\gamma}(t) = \theta_t(1)$,则 $\tilde{\gamma}$ 是单参数子群。

$$\dot{\gamma}(t) = \frac{\mathrm{d}}{\mathrm{d} s} \gamma(t+s) \Big|_{s=0}$$

$$= \frac{\mathrm{d}}{\mathrm{d} s} (R_{\gamma(t)} \gamma(s)) \Big|_{s=0}$$

$$= (R_{\gamma(t)})_* \dot{\gamma}(0)$$

可见 $\gamma(t)$ 是右不变向量 \hat{v} 的积分曲线。

例 128. $G = S^1 = \{e^{it} \mid t \in \mathbb{R}\}$,固定 k, $\gamma(t) = e^{itk}$ 就是 S^1 的一个单参数子群, $\dot{\gamma}(0) = ik$ 。 定义 129. 对于 $v \in T_1G$,设 v 对应的单参数子群为 $\gamma(t)$,定义

exp:
$$T_1G \longrightarrow G$$

 $v \mapsto \gamma(1)$

称为指数映射。

注. $\exp(kv) = \gamma(k), \forall k \in \mathbb{R}$ 。

例 130. $G = GL(n, \mathbb{R})$

$$\exp(A) = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots$$

例 131. $G = S^1$

$$\exp(t) = e^{it}$$

定义 132. 对于李群 G 和流形 M,若光滑映射 $\sigma: G \times M \to M$ 满足:

- 1) $\sigma(1, x) = x$;
- 2) $\sigma(a, \sigma(b, c)) = \sigma(ab, c)$

则称之为 G 在 M 上的一个 (左) 作用。简记 $\sigma(a,x)$ 为 ax。

例 133. S^1 在 S^3 上的左作用

$$\sigma(z,(\xi,\eta)) = (z\xi,z\eta)$$

例 134. $SL(2,\mathbb{R})$ 在 $S^2 \cong \mathbb{C} \cup \{\infty\}$ 上的左作用:

$$\sigma\begin{pmatrix} a & b \\ c & d \end{pmatrix}, z) = \frac{az+b}{cz+d}$$

定义 135. 设李群 G 左作用在流形 M 上,

- 1) 若 $\forall a \in G, a \neq 1$, 存在 $x \in M$ 使得 $ax \neq x$, 则称为有效的;
- 2) 若 $\forall a \in G, a \neq 1, \forall x \in M$, 都有 $ax \neq x$, 则称为自由的。

定义 136. 设李群 G 左作用在流形 M 上,对 $v \in T_1G$,单参数子群 $\exp(tv)$ 在 M 上之作用形成一个流

$$\theta_t(x) = \exp(tv).x$$

将 θ_t 在 M 上生成的向量场记作 \tilde{v} , 称为 (相应于 v 的) 基本向量场。

定理 137. 设李群 G 左作用在流形 M 上,则 M 上的全体基本向量场构成一个李代数,且这个李代数是 T_1G 的同态像。进一步,若该作用有效,则这个李代数同构于 T_1G 。

证明. 在 $\sigma: G \times M \to M$ 中固定 $p \in M$,则得到

$$\sigma_p \colon \ G \longrightarrow M$$

$$a \mapsto a.p$$

此时 $(\sigma_p)_*$: $T_1G \to T_pM$ 满足 $(\sigma_p)_{*1}v = \widetilde{v}_p$ 。(因为 $\sigma_p(\exp(tv)) = \exp(tv)p = \theta_t(p)$,而流在 t = 0 处求导,即得 $(\sigma_p)_{*1}v = \widetilde{v}_p$ 。)

考虑 $(\sigma_p)_{*a}$: $T_aG \to T_{a,p}M$, \hat{v}_a 是 $\exp(tv)a$ 的切向量。

所以
$$(\sigma_p)_{*a}(\widehat{v}_a)$$
 是 $\sigma_p(\exp(tv)a)$ 之切向量。其中 $\exp(tv)a.p = \exp(tv).ap = \theta_t(ap) = \widetilde{v}_{ap}$ 。
可见 $(\sigma_p)_*\widehat{v} = \widetilde{v}$,故 $[\widetilde{v}, \widetilde{w}] = [\sigma_{p*}\widehat{v}, \sigma_{p*}\widehat{w}] = \sigma_{p*}[\widehat{v}, \widehat{w}]$ 。

例 138. $SL(2,\mathbb{R})$ 在 S^2 上的作用:

对于
$$v = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \in \mathfrak{sl}(2,\mathbb{R})$$
 有 $\exp(tv) = \begin{pmatrix} a(t) & b(t) \\ c(t) & d(t) \end{pmatrix}$, 其中
$$\begin{cases} a(0) = d(0) = 1 \\ b(0) = c(0) = 0 \end{cases} \begin{cases} \dot{a}(0) = a & \dot{b}(0) = b \\ \dot{c}(0) = c & \dot{d}(0) = -a \end{cases}$$

$$\begin{aligned} \widetilde{v}|_{z} &= \frac{\mathrm{d}}{\mathrm{d}\,t} \exp(tv).z \bigg|_{t=0} \\ &= \frac{\mathrm{d}}{\mathrm{d}\,t} \frac{a(t)z + b(t)}{c(t)z + d(t)} \bigg|_{t=0} \\ &= \dot{a}(0)z + \dot{b}(0) - (a(0)z + b(0))(\dot{c}(0)z + \dot{d}(0)) \\ &= az + b - z(cz - a) \\ &= -cz^{2} + 2az + b \end{aligned}$$

11 李氏变换群的应用

2012-11-22

11.1 李型微分方程

定义 139. 给定李群 G 在 M 上的一个左作用,设 $A: \mathbb{R} \to T_1G$ 是光滑曲线,称 M 上的常微分方程

$$\gamma't = \widetilde{A(t)}(\gamma(t))$$

为李型微分方程。

例 140 (Ricatti 方程).

$$x'(t) = a_0(t) + 2a_1(t)x(t) + a_2(t)x(t)^2$$

其中 a_0, a_1, a_2 已知。

证明. 考虑 $G = SL(2,\mathbb{R})$ 在 $\mathbb{R}\mathbf{P}^1$ 上的作用。此时,相应于 $v = \begin{pmatrix} a_1 & a_0 \\ -a_2 & -a_1 \end{pmatrix} \in \mathfrak{sl}(2,\mathbb{R})$ 的基本向量场为

$$\widetilde{v}(x) = a_0 + 2a_1 + a_2 x^2$$

取 T_1G 中的曲线 $A(t) = \begin{pmatrix} a_1(t) & a_0(t) \\ -a_2(t) & -a_1(t) \end{pmatrix}$ 则

$$\gamma'(t) = \widetilde{A(t)}(\gamma(t))$$
$$= a_0(t) + 2a_1(t)\gamma(t) + a_2(t)\gamma(t)^2$$

是李型微分方程。

例 141 (一阶线性微分方程).

$$x'(t) = a(t)x(t) + b(t)$$

这里 $x(t), b(t) \in \mathbb{R}^{n \times 1}, a(t) \in \mathbb{R}^{n \times n}$, 而 a(t), b(t) 已知。

证明. 考虑

$$G = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{(n+1)\times(n+1)} \middle| a \in GL(n, \mathbb{R}), b \in \mathbb{R}^{n\times 1} \right\}$$

G 在 \mathbb{R}^n 上的左作用 (仿射变换) 如下:

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} . x = ax + b$$

经计算得:

$$T_1G = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \in \mathbb{R}^{(n+1)\times(n+1)} \middle| a \in \mathbb{R}^{n\times n}, b \in \mathbb{R}^{n\times 1} \right\}$$

对应于 $A = \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$ 的基本向量场是

$$\widetilde{A}(x) = \frac{\mathrm{d}}{\mathrm{d}t} \exp(tA) \cdot x \Big|_{t=0}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} e^{tA} \cdot x \Big|_{t=0}$$

$$= ax + b$$

因此, 取 T_1G 中曲线 $A(t) = \begin{pmatrix} a(t) & b(t) \\ 0 & 0 \end{pmatrix}$, 则微分方程

$$\gamma'(t) = \widetilde{A(t)}(\gamma(t))$$
$$= a(t)\gamma(t) + b(t)$$

是李型微分方程。

定理 142. 给定李型微分方程

$$\gamma't = \widetilde{A(t)}(\gamma(t))$$

设 $S: \mathbb{R} \to G$ 是微分方程

$$S'(t) = (R_{s(t)})_* A(t)$$

的满足 S(0) = 1 的唯一解,则

$$\gamma't = \widetilde{A(t)}(\gamma(t))$$

的满足 $\gamma(0) = m \in M$ 的解是 $\gamma(t) = S(t).m$,称 S(t) 为李型微分方程的<mark>基解</mark>。

证明.

$$\sigma \colon G \times M \to M$$

$$\sigma_p(g) = g.p$$

$$(\sigma_p)_* \widehat{v}_a = \widetilde{v}_{a.p}$$

由

$$\gamma(t) = \sigma_m(S(t))$$

得

$$\gamma'(t) = (\sigma_m)_* S'(t)$$

$$= (\sigma_m)_* (R_{s(t)})_* A(t)$$

$$= \widetilde{A(t)}(S(t).m)$$

$$= \widetilde{A(t)}(\gamma(t))$$

例 143. x'(t) = a(t)x(t) + b(t) 的基解是 $S(t) = \begin{pmatrix} x(t) & y(t) \\ 0 & 1 \end{pmatrix}$

证明.

$$S'(t) = (R_{s(t)})_* A(t)$$

$$\begin{pmatrix} x'(t) & y(t) \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a(t) & b(t) \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x(t) & y(t) \\ 0 & 1 \end{pmatrix}$$

$$\implies \begin{cases} x'(t) = a(t)x(t) \\ x(0) = I \end{cases}$$

$$\implies \begin{cases} y'(t) = a(t)y(t) + b(t) \\ y(0) \end{cases}$$

Lie 的约化方法

(由 Ricatti 方程的研究得到)

假设已有李型微分方程 $\gamma't = \widetilde{A(t)}(\gamma(t))$ 的一个特解 $\gamma_0(t)$,且 $\gamma_0(0) = m$ 。可取 $g(t) \in G$,使 $\gamma_0(t) = g(t).m$,但 g(t) 一般不是基解。

设基解为 S(t)=g(t)h(t), 其中 $h(t)\in G_m\stackrel{\mathrm{def}}{=}\{g\in G\mid g.m=m\}$, 则 h(t) 需满足

$$(g(t)h(t))' = (R_{g(t)h(t)})_* A(t)$$

$$(L_{g(t)})_* h'(t) + (R_{h(t)})_* g'(t) = (R_{h(t)})_* (R_{g(t)})_* A(t)$$

$$\Longrightarrow h'(t) = (L_{g(t)})_*^{-1} (R_{h(t)})_* ((R_{g(t)})_* A(t) - g'(t))$$

$$= (R_{h(t)})_* (L_{g(t)})_*^{-1} ((R_{g(t)})_* A(t) - g'(t))$$

令 $B(t) = L_{g(t)*}^{-1}((R_{g(t)})_*A(t) - g'(t))$,则 $B(t) \in T_1G_m = \ker \sigma_{m*}$ 。 于是 h(t) 需满足

$$h'(t) = R_{h(t)*}B(t)$$

这是 G_m 上的一个基解方程。

例 144 (Ricatti 方程). 设 $x' = a_0 + 2a_1x + a_2x^2$ 有特解 $x_0(t)$, 取

$$g(t) = \begin{pmatrix} 1 & x_0(t) \\ 0 & 1 \end{pmatrix} \in SL(2, \mathbb{R})$$

则 $x_0(t) = g(t).0$ 。

$$G_0 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{R}) \middle| b = 0, d \neq 0 \right\}$$
$$= \left\{ \begin{pmatrix} u & 0 \\ v & u^{-1} \end{pmatrix} \middle| u \in \mathbb{R}^{\times}, v \in \mathbb{R} \right\}$$

设基解为
$$S(t) = g(t)h(t) = \begin{pmatrix} 1 & x_0(t) \\ 0 & 1 \end{pmatrix} \begin{pmatrix} u & 0 \\ v & u^{-1} \end{pmatrix}$$
,则

$$B(t) = L_{g(t)*}^{-1}(R_{g(t)*}A(t) - g'(t))$$

$$= \begin{pmatrix} 1 & -x_0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} a_1 & a_0 \\ -a_2 & -a_1 \end{pmatrix} \begin{pmatrix} 1 & x_0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & a_0 + 2a_1x_0 + a_2x_0^2 \\ 0 & 0 \end{pmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} a_1 + a_0x_0 & 0 \\ -a_2 & -(a_1 + a_2x_0) \end{pmatrix}$$

由 $h'(t) = R_{h(t)*}B(t)$ 得

$$\begin{cases} u'(t) = u(t)(a_1 + a_2x_0) \\ v'(t) = -a_2u - (a_1 + a_0x_0)v \end{cases}$$

可见 u, v 可积。

问题 求基解之难度?

例 145. G 是 abel 群,则

$$S'(t) = R_{s(t)*}A(t)$$
$$= A(t)$$

例 146. 由交换的矩阵构成的李群 G

$$S'(t) = A(t)S(t)$$

 $\Longrightarrow S(t) = \exp(\int A(t) dt)$

参考文献 Peter.J.Olver, Application of Lie groups to Differential Equations

12 习题一

习题 1. $f: M \to N, g: N \to K$ 都是光滑流形之间的光滑映射, 证明:

$$g_* \circ f_* = (g \circ f)_*$$

证明. 主要方法是取曲线并注意到切映射与曲线选取无关。

对于 $p \in M$,设 f(p) = q, g(q) = r, $\forall v \in T_p M$,设 $\gamma(t) \subset M$ 在 t = 0 处的切向量是 v,则有 $\widetilde{\gamma}(t) = f(\gamma(t)) \subset N$ 在 t = 0 处的切向量是 f_*v 。

于是 $g(f(\gamma(t))) \subset K$ 在 t = 0 处的切向量,一方面是 $(g \circ f)(\gamma(t))$ 的切向量,即 $(g \circ f)_*v$; 另一方面也是 $g(\tilde{\gamma})$ 的切向量,即 $g_*(f_*v)$ 。

于是
$$g_* \circ f_* = (g \circ f)_*$$
。

习题 2. $f: \mathbb{R}^{n \times n} \to \mathbb{R}$ 是行列式函数 $f(p) = \det(p), p \in GL(n, \mathbb{R}), e$ 是单位矩阵, 求

- 1) $\operatorname{rank}_{p} f$;
- 2) f_{*e} .

证明. 主要是注意到 $f_{*p}(v)$ 是 f(p+tv) 在 f(p) 点的切向量。

由于 $\dim \mathbb{R}=1$,所以 $\mathrm{rank}_p f \leqslant 1$,为使 $\mathrm{rank}_p f=1$,只须在每点 $p \in GL(n,\mathbb{R})$ 找到切向量 v,使 得 $f_{*p}(v) \neq 0$ 。

为此, 取 $v \in GL(n, \mathbb{R})$, 则

$$f(p+tv) = |v||pv^{-1} + te| = |v|P_{-pv^{-1}}(t)$$

其中 $P_{-pv^{-1}}(t)$ 是关于 $-pv^{-1}$ 的特征多项式。

特别地, 取 $v = p \in \mathbb{R}^{n \times n} \cong T_p \mathbb{R}^{n \times n}$, 有

$$f_{*p}(p) = \frac{d}{dt} f(p+tp) \Big|_{t=0}$$
$$= |p| (1+t)^n|_{t=0} \neq 0$$

这就证明了 $\operatorname{rank}_p f = 1$.

由于 $f_{*e}(v)$ 是曲线 f(e+tv) 在 t=0 处的切向量。

$$f_{*e}(v) = \frac{\mathrm{d}}{\mathrm{d}t}|e + tv| \bigg|_{t=0}$$
$$\frac{\mathrm{d}}{\mathrm{d}t}|e + tv| = (-t)^n|v - \frac{1}{t}e|$$

若 v 之特征多项式为 $F(\lambda)$,则

$$|e + tv| = (-t)^n F(\frac{1}{t})$$

由于

$$F(\lambda) = \lambda^n - (\lambda_1 + \dots + \lambda_n)\lambda^{n-1} + \dots$$

所以

$$|e + tv| = (-t)^n ((-\frac{1}{t})^n - \operatorname{tr}(v)(-\frac{1}{t})^{n-1} + \cdots)$$

= 1 + \text{tr}(v)t + o(t)

所以 $f_{*e}(v) = \operatorname{tr}(v)$ 。

习题 3. 证明 SU(2) 与 S^3 微分同胚。其中

$$SU(2) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{C}^{2 \times 2} \middle| |a|^2 + |b|^2 = 1, |c|^2 + |d|^2 = 1, ad - bc = 1, a\bar{c} + b\bar{d} = 0 \right\}$$

$$S^3 = \left\{ (z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + |z_2|^2 = 1 \right\}$$

证明. 先通过解方程化简 SU(2) 的表达式, 最后看出这个同胚来。

$$a\bar{c} + b\bar{d} = 0 \Longrightarrow ad|c|^2 + bc|d|^2 = 0$$

将之代入 ad - bc = 1 得

$$ad(1 + \frac{|c|^2}{|d|^2}) = 1$$

又 $|c|^2 + |d|^2 = 1$,故得

$$a = \frac{\bar{d}}{|c|^2 + |d|^2} = \bar{d}$$

同理可得 $b = -\bar{c}$ 。于是

$$SU(2) = \left\{ \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} \in \mathbb{C}^{2 \times 2} \middle| |a|^2 + |b|^2 = 1 \right\}$$

对应

$$\begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} \in SU(2) \longleftrightarrow (a,b) \in S^3$$

显然是光滑的双射,于是 $SU(2) \cong S^3$ 。

习题 4. 证明 $SL(n,\mathbb{R}), O(n,\mathbb{R})$ 是 $GL(n,\mathbb{R})$ 的闭子流形。

证明. 运用正则值原像定理(*39*)或者淹没原像定理(*36*)。 考虑

$$f: GL(n, \mathbb{R}) \longrightarrow \mathbb{R}$$

$$p \mapsto \det(p)$$

则由于 $\forall p \in GL(n,\mathbb{R})$, $\operatorname{rank}_p f = 1$,故 $\forall c \neq 0$, $f^{-1}(c)$ 是 $GL(n,\mathbb{R})$ 的闭子流形。特别地,取 c = 1,则 $SL(n,\mathbb{R})$ 是 $GL(n,\mathbb{R})$ 的闭子流形。

令 S 为实对称矩阵全体, 考虑

$$f: GL(n, \mathbb{R}) \longrightarrow S$$

$$A \mapsto A^T A$$

下证 $\forall p \in GL(n,\mathbb{R}), \operatorname{rank}_p f = \dim S$ 。注意到对 f(p) = q,有 $T_qS \cong S$,于是 $\forall v \in S$ 有

$$f_{*p}(v) = \frac{\mathrm{d}}{\mathrm{d}t}(p+tv)^{T}(p+tv)\Big|_{t=0}$$
$$= p^{T}v + v^{T}p$$

故 $\forall B \in S$,取 $v = \frac{1}{2}(p^{-1})^T B$,则 $f_{*p}(v) = B$ 。即 f_{*p} 是满射,故满秩。于是 $O(n,\mathbb{R}) = f^{-1}(I)$ 是 $GL(n,\mathbb{R})$ 的闭子流形。

习题 5. 证明下述 M 是 \mathbb{R}^{2n+2} 的闭子流形 (\mathbb{C}^{n+1} 与 \mathbb{R}^{2n+2} 视为等同)。

$$M = \{(z_0, z_1, \cdots, z_n) \in \mathbb{C}^{n+1} \mid z_0^2 + z_1^2 + \cdots + z_n^2 = 1\}$$

$$\begin{cases} \sum_{j} (x_j^2 - y_j^2) = 1\\ \sum_{j} x_j y_j = 0 \end{cases}$$

考虑

$$f \colon \mathbb{R}^{2n+2} \longrightarrow \mathbb{R}^2$$
$$(x_0, \dots, x_n, y_0, \dots, y_n) \mapsto (\sum (x_j^2 - y_j^2), \sum x_j y_j)$$

则

$$\operatorname{rank}_{p} f = \operatorname{rank} \begin{pmatrix} 2x_{0} & \cdots & 2x_{n} & -2y_{0} & \cdots & -2y_{n} \\ y_{0} & \cdots & y_{n} & x_{0} & \cdots & x_{n} \end{pmatrix} = 2$$

故 $M = f^{-1}(1,0)$ 是 \mathbb{R}^{2n+2} 的闭子流形。

习题 6. 证明上题中的 M 与 TS^n (即 S^n 的切丛) 微分同胚。

证明. 注意到:

$$TS^n = \{(x, y) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \mid |x| = 1, x \cdot y = 0\}$$

考虑

$$f \colon M \longrightarrow TS^n \qquad \qquad f^{-1} \colon TS^n \longrightarrow M$$

$$(x,y) \mapsto \left(\frac{x}{\sqrt{1+|y|^2}},y\right) \qquad \qquad (x,y) \mapsto (x(1+|y|^2)^{\frac{1}{2}},y)$$

则 f 为微分同胚。

习题 7. 设 $f: M \to N$ 是光滑映射, $X, Y \in \mathfrak{X}(M)$,如果 f_*X 和 f_*Y 是 N 上的向量场,证明: $f_*[X, Y]$ 也是 N 上的向量场,且 $f_*[X, Y] = [f_*X, f_*Y]$ 。

证明. 善用下面等式:

$$(f_*X)(g)(f(p)) = f_{*p}(X_p)(g) = \frac{\mathrm{d}}{\mathrm{d}\,t}g(f(\gamma(t)))\Big|_{t=0} = X_p(g \circ f)$$

由 Lie 括号的定义(55),由于 f_*X 和 f_*Y 是 N 上的向量场,故 $[f_*X,f_*Y]$ 也是 N 上的向量场。于是只须证 $f_*[X,Y]=[f_*X,f_*Y]$:

$$\begin{split} ([f_*X, f_*Y](g)) \circ f &= (f_*X(f_*Y(g))) \circ f - (f_*Y(f_*X(g))) \circ f \\ &= X(f_*Y(g) \circ f) - Y(f_*X(g) \circ f) \\ &= X(Y(g \circ f)) - (Y(X(g \circ f))) \\ &= [X, Y](g \circ f) \\ &= (f_*[X, Y](g)) \circ f \end{split}$$

习题 8. 在 \mathbb{R}^3 中,定义向量场 $X=y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}, Y=z\frac{\partial}{\partial x}-x\frac{\partial}{\partial z}$ 。请计算 Z=[X,Y],并证明 X,Y,Z 都与 \mathbb{R}^3 的子流形 S^2 相切。

证明. 通过证明 X,Y,Z 是 SO(3) 的基本向量场,而 S^2 又是 SO(3) 在 \mathbb{R}^3 上左作用的一个轨道,来证明 X,Y,Z 与 S^2 相切。

首先计算 Z = [X, Y]:

$$Z = [X, Y] = XY - YX = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}$$

考虑 SO(3) 的一组基

$$e_1 = \begin{pmatrix} 0 & & \\ & 0 & 1 \\ & -1 & 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 & & 1 \\ & 0 & \\ -1 & & 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 & 1 & \\ -1 & 0 & \\ & & 0 \end{pmatrix}$$

 $\forall p = (x, y, z)^T$, \overleftarrow{q}

$$\widetilde{e_1}(p) = \frac{\mathrm{d}}{\mathrm{d}t}(\exp(te_1).p)\Big|_{t=0}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} 1 & & \\ & \cos t & \sin t \\ & -\sin t & \cos t \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}\Big|_{t=0}$$

$$= \begin{pmatrix} 0 \\ z \\ -y \end{pmatrix} = z\frac{\partial}{\partial y} - y\frac{\partial}{\partial z}$$

所以 $\widetilde{e_1} = -X$ 同理可得 $\widetilde{e_2} = -Y, \widetilde{e_3} = -Z$ 。 取 SO(3) 在 \mathbb{R}^3 上的作用为:

$$\sigma(A, X) = AX, \forall A \in SO(3), X \in \mathbb{R}^3$$

则 S^2 是该作用的一个轨道,故 $\forall p \in S^2, X(f(p)) \in f_*(T_pS^2)$,其中 f 是嵌入,即 X,Y,Z 与 S^2 相切。

证明. 直接验证 X 与 S^2 相切, 余类似。

设 X 生成的流为 ϕ_t , 且

$$\phi_t(x, y, z) = (a, b, c)$$

由于

$$X(x, y, z) = (0, -z, y)$$

故

$$(\dot{a}, \dot{b}, \dot{c}) = (0, -c, b)$$

注意到 $\phi_0 = \mathrm{id}, \phi_{t+s} = \phi_t \circ \phi_s$,从而

$$\phi_t(x, y, z) = (x, y \cos t + z \sin t, y \sin t - z \cos t)$$

故 $\forall p \in S^2$, $\phi_t(p)$ 是 S^2 上的以 X_p 为切向量的曲线。

证明. 用 \mathbb{R}^3 的整体坐标, $S^2 = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$ 的法向量⁴表示为

而 X,Y,Z 则表示为

$$(0,-z,y),(z,0,-x),(y,-x,0)$$

易知 X, Y, Z 与 S^2 相切。

习题 9. 在 ℝ3 上定义向量场

$$X = -y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y} + (1+z^2)\frac{\partial}{\partial z}$$

试计算 X 生成的流。

⁴比如可以用梯度来求得。

证明.设

$$\phi_t(x, y, z) = (a, b, c)$$

由于

$$X(x, y, z) = (-y, x, 1 + z^2)$$

故

$$(\dot{a}, \dot{b}, \dot{c}) = (-b, a, 1 + c^2)$$

注意到 $\phi_0 = \mathrm{id}, \phi_{t+s} = \phi_t \circ \phi_s$,从而

$$\phi_t(x, y, z) = (x \cos t + y \sin t, x \sin t - y \cos t, \tan(t + \arctan z))$$

习题 10. 设向量场 $X \in \mathfrak{X}(M)$ 生成的流是 ϕ_t , $\psi: M \to M$ 是微分同胚, 求证: ψ_*X 生成的流是 $\psi \circ \phi_t \circ \psi^{-1}$ 。

证明. 1) $\psi \circ \phi_t \circ \psi^{-1}$ 是流。

2) $\psi \circ \phi_t \circ \psi^{-1}$ 诱导的向量场是 $\psi_* X$:

$$\frac{\mathrm{d}}{\mathrm{d}t}\psi \circ \phi_t \circ \psi^{-1}(p) \bigg|_{t=0}$$

$$= \psi_* \left(\frac{\mathrm{d}}{\mathrm{d}t} \phi_t(\psi^{-1}(p)) \bigg|_{t=0} \right)$$

$$= \psi_* X_{\psi^{-1}(p)}$$

习题 11. 定义变换 $\phi_t : \mathbb{R}^2 \to \mathbb{R}^2$ 如下:

$$\phi_t(x, y) = (x \cosh t + y \sinh t, x \sinh t + y \cosh t)$$

证明: ϕ_t 是 \mathbb{R}^2 上的流,并求其诱导的向量场 X。

证明. 首先证明 ϕ_t 是 \mathbb{R}^2 上的流。注意到

$$\phi_t(x,y) = \begin{pmatrix} \cosh t & \sinh t \\ \sinh t & \cosh t \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

故只须证

$$\begin{pmatrix} \cosh t & \sinh t \\ \sinh t & \cosh t \end{pmatrix} \begin{pmatrix} \cosh s & \sinh s \\ \sinh s & \cosh s \end{pmatrix} = \begin{pmatrix} \cosh(t+s) & \sinh(t+s) \\ \sinh(t+s) & \cosh(t+s) \end{pmatrix}$$

$$X(x,y) = \frac{\mathrm{d}}{\mathrm{d}t}\phi_t(x,y)\Big|_{t=0}$$

$$= (x\sinh t + y\cosh t, x\cosh t + y\sinh t)|_{t=0}$$

$$= (y,x)$$

习题 12. 在 $M := \mathbb{R}^3 \setminus \{0\}$ 上定义如下 3 个向量场:

$$X = 2y\frac{\partial}{\partial x} + z\frac{\partial}{\partial y}, Y = -2x\frac{\partial}{\partial x} + 2z\frac{\partial}{\partial z}, Z = x\frac{\partial}{\partial y} + 2y\frac{\partial}{\partial z}$$

证明 $span\{X,Y,Z\}$ 满足 Frobenius 条件, 并找出积分子流形。

证明. Frobenius 条件: 当 X_1, \dots, X_k 是 E 的一组基时, $[X_i, X_j] \in E$ 。 注意到 xX + yY = zZ,故 $\operatorname{span}\{X, Y, Z\} = \operatorname{span}\{X, Y\}$,而

$$[X,Y] = XY - YX = -4y\frac{\partial}{\partial x} - 2z\frac{\partial}{\partial y} = -2X$$

故 E 满足 Frobenius 条件。

将 X,Y 扩充为一组基并取其对偶 1 形式 $\omega^1,\omega^2,\omega^3=P\,\mathrm{d}\,x+Q\,\mathrm{d}\,y+R\,\mathrm{d}\,z$ 。则

$$\begin{cases} 2yP + zQ = 0\\ -2xP + 2zR = 0 \end{cases}$$

故

$$\omega^3 = z dx - 2y dy + x dz = d(xz - y^2)$$

即积分子流形为

$$xz - y^2 = cst$$

13 习题二

习题 13. 在向量空间 V 中, v_1, \dots, v_k 和 $\omega_1, \dots, \omega_k$ 分别是子空间 V_1 和 V_2 的一组基,证明: $V_1 = V_2$ 当且仅当存在非零实数 c. 使得

$$v_1 \wedge \cdots \wedge v_k = c\omega_1 \wedge \cdots \wedge \omega_k$$

证明. 当 $V_1 = V_2$ 时, $\omega_i = a_i^j v_i$,故

$$\omega_1 \wedge \dots \wedge \omega_k = a_1^{i_1} v_{i_1} \wedge a_2^{i_2} v_{i_2} \wedge \dots \wedge a_k^{i_k} v_{i_k}$$
$$= c v_1 \wedge \dots \wedge v_k$$

其中 $c = \sum \operatorname{sgn}(i_1 \cdots i_k) a_1^{i_1} \cdots a_k^{i_k} = \det(a_i^j)$,由于 (a_i^j) 是过度矩阵,故 $c \neq 0$ 。 反之,由于

$$\omega_i \wedge v_1 \wedge \cdots \wedge v_k = \omega_i \wedge c\omega_1 \wedge \cdots \wedge \omega_k = 0$$

故 $\omega_i \in V_1$, 余同理, 得 $V_2 \subset V_1$, 反之亦然, 故 $V_1 = V_2$ 。

习题 14. 在 \mathbb{R}^3 中定义 2 形式 $\omega = x \, \mathrm{d} y \wedge \mathrm{d} z + y \, \mathrm{d} z \wedge \mathrm{d} x + z \, \mathrm{d} x \wedge \mathrm{d} y$ 。设 $f \colon S^2 \to \mathbb{R}^3$ 是标准嵌入,求 $f^*\omega$,并证明 $f^*\omega$ 在 S^2 上处处非零。

证明. 将 S^2 用极坐标表示,则

$$f(\alpha, \beta) = (\cos \alpha \cos \beta, \cos \alpha \sin \beta, \sin \alpha)$$

故

$$f^*\omega = -\cos\alpha \,\mathrm{d}\,\alpha \wedge \mathrm{d}\,\beta, \alpha \in (-\frac{\pi}{2}, \frac{\pi}{2})$$

习题 15. 已知 α, β 为闭微分式,证明 $\alpha \wedge \beta$ 也是闭微分式;进一步地,若 β 还是恰当的,则 $\alpha \wedge \beta$ 也是恰当的。

证明. 因为 $d\alpha = d\beta = 0$,故

$$d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^{\deg \alpha} \alpha \wedge d\beta = 0$$

设 $\beta = d\omega$,则

$$d(\alpha \wedge \omega) = d\alpha \wedge \omega + (-1)^{\deg \alpha} \alpha \wedge d\omega = (-1)^{\deg \alpha} \alpha \wedge \beta$$

故
$$\alpha \wedge \beta = d((-1)^{\deg \alpha} \alpha \wedge \omega)$$
。

习题 16. 在 S^3 上构造三个整体定义的 1 形式 $\omega^1, \omega^2, \omega^3$, 使得

$$d\omega^1 = -\omega^2 \wedge \omega^3, d\omega^2 = -\omega^3 \wedge \omega^1, d\omega^3 = -\omega^1 \wedge \omega^2$$

证明. 首先求出

$$S^{3} = SU(2) = \left\{ \begin{pmatrix} z_{1} & z_{2} \\ -\bar{z_{2}} & \bar{z_{1}} \end{pmatrix} \middle| |z_{1}|^{2} + |z_{2}|^{2} = 1 \right\}$$

的李代数。为此取 I 处的曲线

$$\begin{cases} |z_1(t)|^2 + |z_2(t)|^2 = 1\\ z_1(0) = 1\\ z_2(0) = 0 \end{cases}$$

故求得李代数为

$$\mathfrak{su}(2) = \left\{ \begin{pmatrix} ki & a+bi \\ -a+bi & -ki \end{pmatrix} \middle| k^2 + a^2 + b^2 = 1 \right\}$$

其一组基为

$$v_1 = \begin{pmatrix} i \\ -i \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, v_3 = \begin{pmatrix} i \\ i \end{pmatrix}$$

它们对应的右不变向量场为 e_1, e_2, e_3 ,则

$$[e_1, e_2] = [v_1, v_2]^{\wedge}$$
$$= (v_2 v_1 - v_1 v_2)^{\wedge}$$
$$= (-2v_3)^{\wedge} = -2e_3$$

同理 $[e_2, e_3] = -2e_1, [e_3.e_1] = -2e_2$ 。 于是令 e_1, e_2, e_3 对偶的 1 形式是 $\omega^1, \omega^2, \omega^3$,则由

$$\mathrm{d}\,\omega^k = -\frac{1}{2}C^k_{ij}\omega^i \wedge \omega^j$$

得

$$d\omega^1 = 2\omega^2 \wedge \omega^3, d\omega^2 = 2\omega^3 \wedge \omega^1, d\omega^3 = 2\omega^1 \wedge \omega^2$$

令 $\tilde{\omega}^i = -2\omega^i$,则 $\tilde{\omega}^i$ 符合要求。

证明. 将 S^3 嵌入到 \mathbb{R}^4 , 并令

$$\begin{pmatrix} \theta^0 \\ \theta^1 \\ \theta^2 \\ \theta^3 \end{pmatrix} = \begin{pmatrix} x^1 & x^2 & x^3 & x^4 \\ -x^2 & x^1 & -x^4 & x^3 \\ -x^3 & x^4 & x^1 & -x^2 \\ -x^4 & -x^3 & x^2 & x^1 \end{pmatrix} \begin{pmatrix} \operatorname{d} x^1 \\ \operatorname{d} x^2 \\ \operatorname{d} x^3 \\ \operatorname{d} x^4 \end{pmatrix}$$

简记为 $\theta = A d X$ 。从而有

$$d\theta = dA \wedge dX = dA \wedge (A^{-1}\theta) = (dA)A^{-1} \wedge \theta$$

故

$$f^*\operatorname{d}\theta^1 = 2f^*\operatorname{d}\theta^2 \wedge f^*\operatorname{d}\theta^3, f^*\operatorname{d}\theta^2 = 2f^*\operatorname{d}\theta^3 \wedge f^*\operatorname{d}\theta^1, f^*\operatorname{d}\theta^3 = 2f^*\operatorname{d}\theta^1 \wedge f^*\operatorname{d}\theta^2$$

习题 17. 在 \mathbb{R}^5 中取坐标系 (x,y,u,p,q),并定义外微分式 $\theta^1=\mathrm{d} u-p\,\mathrm{d} x-q\,\mathrm{d} y, \theta^2=\mathrm{d} p\wedge\mathrm{d} q-\mathrm{d} x\wedge\mathrm{d} y$ 。 对于二元函数 z(x,y),考虑由 $f(x,y)=(x,y,z,z_x,z_y)$ 定义的浸入映射 $f\colon\mathbb{R}^2\to\mathbb{R}^5$ 。证明: 当且仅当 z 是方程 $z_{xx}z_{yy}-z_{xy}^2=1$ 的解时, $f^*\theta^1=0,f^*\theta^2=0$ 。

证明.

$$f^*\theta^1 = dz - z_x dx - z_y dy$$

$$f^*\theta^2 = dz_x \wedge dz_y - dx \wedge dy$$

$$= (z_{xx}z_{yy} - z_{xy}^2 - 1) dx \wedge dy$$

习题 18. 所设同上,定义 $\omega^1=\mathrm{d}\,u-p\,\mathrm{d}\,x-q\,\mathrm{d}\,y,$ $\omega^2=\mathrm{d}\,y\wedge\mathrm{d}\,p-\mathrm{d}\,x\wedge\mathrm{d}\,q$ 。证明: 当且仅当 z 是方程 $z_{xx}+z_{yy}=0$ 的解时, $f^*\omega^1=0,$ $f^*\omega^2=0$ 。

证明.

$$f^*\omega^1 = dz - z_x dx - z_y dy$$
$$f^*\omega^2 = dy \wedge dz_x - dx \wedge dz_y$$
$$= (z_{xx} + z_{yy}) dy \wedge dx$$

习题 19. 所设同上两题,考虑微分同胚 $\phi: \mathbb{R}^5 \to \mathbb{R}^5$ 如下

$$\phi(x, y, u, p, q) = (x, q, u - qy, p, -y)$$

证明: $\phi^*\theta^1 = \omega^1$, $\phi^*\theta^2 = \omega^2$ 。 这表明 Monge-Ampere 方程 $z_{xx}z_{yy} - z_{xy}^2 = 1$ 与 Laplace 方程 $z_{xx} + z_{yy} = 0$ 的解之间有怎样的联系。

证明.

$$\phi^* \theta^1 = d(u - qy) - p dx - (-y) dq$$

$$= du - y dq - q dy - p dx + y dq$$

$$= du - p dx - q dy = \omega^1$$

$$\phi^* \theta^2 = dp \wedge d(-y) - dx \wedge dq$$

$$= dy \wedge dp - dx \wedge dq = \omega^2$$

可见 Monge-Ampere 方程 $z_{xx}z_{yy}-z_{xy}^2=1$ 与 Laplace 方程 $z_{xx}+z_{yy}=0$ 的解一一对应。

习题 20. 设 $\omega \in A^1(M)$ 处处不为零。若有处处非零的函数 $\mu \in C^\infty(M)$ 使得 $\mu\omega$ 为恰当的 1 形式,则称 μ 为 ω 的一个积分因子。证明: ω 有积分因子的充要条件是 $d\omega \wedge \omega = 0$ 。

证明. 设 $\mu\omega = df$,则

$$\omega = \frac{1}{\mu} df$$

$$d\omega = d(\frac{1}{\mu}) \wedge df$$

$$= d(\frac{1}{\mu}) \wedge (\mu\omega)$$

$$\Longrightarrow d\omega \wedge \omega = 0$$

反之, $d\omega \wedge \omega = 0$ 说明存在光滑函数 μ ,使得 $d\omega = \mu\omega$ 。

习题 21. 李群 G 的任意右不变向量场 X 都是完备的,即它生成的流 $\varphi_t = L_{\exp(tX)}$ 对任意 $t \in \mathbb{R}$ 都有定义(请特别注意:右不变向量场生成的流是左移动)。

证明. 考虑 $v \in T_1G$ 对应的单参数子群 $\exp(tv)$ 。

则 $\varphi_t(a) = \exp(tv)a$ 相应的向量场为

$$X_{(a)} = \left. \frac{\mathrm{d}}{\mathrm{d} t} \varphi_t(a) \right|_{t=0} = R_{a*} v$$

故满足 $\dot{\gamma}(0)=X_1$ 的积分曲线 $\gamma(t)$ 存在,设它的最大存在区间为 $[0,\varepsilon)$,定义

$$\widetilde{\gamma} = \begin{cases} \gamma(t) & t \in [0, \varepsilon) \\ \gamma(t - \frac{\varepsilon}{2})\gamma(\frac{\varepsilon}{2}) & t \in [\varepsilon, \frac{3\varepsilon}{2}) \end{cases}$$

则 $\tilde{\gamma}(t)$ 也是 X 的积分曲线:

由

$$\dot{\widetilde{\gamma}}(t) = R_{\gamma(\frac{\varepsilon}{2})*}\dot{\gamma}(t - \frac{\varepsilon}{2}) = R_{\gamma(\frac{\varepsilon}{2})*}X(\gamma(t - \frac{\varepsilon}{2}))$$

及右不变性,得证。

习题 22. 证明李群 G 的指数映射 $\exp: T_1G \to G$ 是光滑映射。

证明. 只须证明存在 $T_1G \times G$ 上的向量场 Y,它的流为 $\phi_t(v,a) = (v,\exp(tv)a)$,从而 exp 可写成光滑映射的复合 $\pi_2(\phi_1(v,1))$ 。注意此时不能直接验证 ϕ 是流,因为还未证明指数映射是李群同态。

注意到 $\exp(tv) = \gamma(t)$, 其中 $\gamma(t)$ 是由 $\dot{\gamma}(0) = v$ 决定的单参数子群,于是

$$\frac{\mathrm{d}}{\mathrm{d}t}\phi_t(v,a)\Big|_{t=0} = \frac{\mathrm{d}}{\mathrm{d}t}(v,\exp(tv)a)\Big|_{t=0}$$

$$= (0, \frac{\mathrm{d}}{\mathrm{d}t}\exp(tv)a\Big|_{t=0})$$

$$= (0, R_{a*1}(\frac{\mathrm{d}}{\mathrm{d}t}\gamma(t)\Big|_{t=0}))$$

$$= (0, R_{a*1}v) \in T_v(T_1G) \times T_aG \cong T_{(v,a)}(T_1G \times G)$$

故令 $Y_{(v,a)} = (0, R_{a*1}v)$ 即可。

习题 23. 证明指数映射满足等式 $x \exp(v) x^{-1} = \exp(\mathrm{Ad}_x v), \forall v \in T_1 G, x \in G$, 并由此说明 $\operatorname{tr}(\exp(v)) \geqslant 2, \forall v \in \mathfrak{sl}(2,\mathbb{R})$ 。

提示. 考虑 $v \in \mathfrak{sl}(2,\mathbb{R})$ 的相似标准型。

证明. 设 $\gamma(t)=x\exp(tv)x^{-1},\widetilde{\gamma}(t)=\exp(\mathrm{Ad}_x(tv))$,则它们都是单参数子群。由于

$$\dot{\gamma}(0) = (L_x R_{x^{-1}})_{*1} v$$

$$\dot{\tilde{\gamma}}(0) = \frac{\mathrm{d}}{\mathrm{d} t} \exp((L_x R_{x^{-1}})_{*1} t v) \Big|_{t=0}$$

$$= (L_x R_{x^{-1}})_{*1} v$$

故 $\gamma(t) = \widetilde{\gamma}(t)$ 。

$$\mathfrak{sl}(2,\mathbb{R}) = \{ v \in \mathbb{R}^{2 \times 2} \mid \operatorname{tr}(v) = 0 \}$$
$$\operatorname{tr}(\exp(v)) = \operatorname{tr}(x \exp(v) x^{-1})$$
$$= \operatorname{tr}(\exp(\operatorname{Ad}_x v))$$
$$= \operatorname{tr}(\exp(xvx^{-1}))$$

特别地,可选取 x 使得 xvx^{-1} 化为相似下的标准型

$$\operatorname{tr}(\exp\begin{pmatrix}\lambda \\ -\lambda\end{pmatrix}) = \operatorname{tr}\begin{pmatrix}e^{\lambda} \\ e^{-\lambda}\end{pmatrix}) = 2\cosh\lambda \geqslant 2$$
$$\operatorname{tr}(\exp\begin{pmatrix}0 & \lambda \\ & 0\end{pmatrix}) = \operatorname{tr}\begin{pmatrix}1 & \lambda \\ & 1\end{pmatrix}) = 1 + 1 \geqslant 2$$

习题 24. 考虑 $SL(2,\mathbb{C})$ 中形如 $\begin{pmatrix} x \sec t & y \tan t \\ \bar{y} \tan t & \bar{x} \sec t \end{pmatrix}$ 的所有矩阵,其中 $t \in (0,\frac{\pi}{2}), x,y \in \mathbb{C}$,且 |x| = |y| = 1。证明这些矩阵构成一个李群 G,并求 T_1G 的一组基 e_1,e_2,e_3 。

证明. 只须证 G 对乘法封闭:

$$\begin{pmatrix} p & q \\ \bar{q} & \bar{p} \end{pmatrix} \begin{pmatrix} a & b \\ \bar{b} & \bar{a} \end{pmatrix} = \begin{pmatrix} pa + q\bar{b} & q\bar{a} + pb \\ \bar{q}a + \bar{p}\bar{b} & \bar{p}\bar{a} + \bar{q}b \end{pmatrix}$$

$$\Leftrightarrow x = y = 1, \quad \boxed{\square} \ e_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix};$$

$$t = 0, \quad \boxed{\square} \ e_2 = \begin{pmatrix} i \\ -i \end{pmatrix};$$

$$x = 1, t = \frac{\pi}{4}, \quad \boxed{\square} \ e_3 = \begin{pmatrix} i \\ -i \end{pmatrix}.$$

习题 25. 设 $D\stackrel{\mathrm{def}}{=}\{z\in\mathbb{C}\ |\ |z|<1\}$ 。考虑上题中的李群 G 在 D 上的左作用

$$\begin{pmatrix} x \sec t & y \tan t \\ \bar{y} \tan t & \bar{x} \sec t \end{pmatrix} . z \stackrel{\text{def}}{=} \frac{zx \sec t + y \tan t}{z\bar{y} \tan t + \bar{x} \sec t}$$

求相应于 e_1, e_2, e_3 的基本向量场。

证明. 设相应于 e_1, e_2, e_3 的基本向量场为 X, Y, Z,则

$$X(z) = \frac{d}{dt} \exp(te_1).z \Big|_{t=0}$$

$$= \frac{d}{dt} \frac{z \cosh t + \sinh t}{z \sinh t + \cosh t} \Big|_{t=0}$$

$$= \frac{(1 - z^2)e^t}{(z \sinh t + \cosh t)^2} \Big|_{t=0}$$

$$= 1 - z^2$$

$$Y(z) = \frac{d}{dt} \exp(te_2).z \Big|_{t=0}$$

$$= \frac{d}{dt} \frac{ze^{it}}{e^{-it}} \Big|_{t=0}$$

$$= -2z \sin 2t + 2zi \cos 2t \Big|_{t=0}$$

$$= 2zi$$

$$Z(z) = \frac{d}{dt} \exp(te_3).z \Big|_{t=0}$$

$$= \frac{d}{dt} \frac{z \cot t + i \sin t}{-zi \sin t + \cos t} \Big|_{t=0}$$

$$= \frac{i(1 - z^2)(\cos t^2 - \sin t^2)}{(-zi \sin t + \cos t)^2} \Big|_{t=0}$$

$$= i(1 - z^2)$$

注. 计算
$$\exp\begin{pmatrix} z \\ z \end{pmatrix}$$
。

$$\sum_{k=0}^{\infty} \frac{z^{2k}}{(2k)!} = \cosh z = \frac{e^z + e^{-z}}{2}$$
$$\sum_{k=0}^{\infty} \frac{z^{2k+1}}{(2k+1)!} = \sinh z = \frac{e^z - e^{-z}}{2}$$
$$\exp \begin{pmatrix} z \\ z \end{pmatrix} = \begin{pmatrix} \cosh z & \sinh z \\ \sinh z & \cosh z \end{pmatrix}$$

Index

(r,s) 型张量, 19 左移动, 28 1- 形式, 6 旋度, 22 C^r 函数, 3 C^r 微分流形, 3 淹没, 8 r 形式, 20 对称张量, 19 Cartan graph technique, 30 函数芽,6 Cartan 引理, 20 管状流定理,13 Flow Box, 13 flow, 12 坐标系,3 Frobenius 条件, 17, 18, 24 闭子流形,9 Frobenius 定理, 18, 24 闭形式, 27 germ, 6 可定向, 27 反对称张量,19 H.Whitney 浸入定理, 11 右不变 1 形式, 29 Hopf fibration, 4 右不变向量场,28 immersion, 8 右基本微分式,30 右移动, 28 Leibniz's Law, 5 Lie 括号, 14 余切空间,6 余切向量,6 Maurer-Cartan 形式, 29 作用, 32 Poincáre 引理, 22 微分结构,3 Poisson 括号, 14 特殊正交群,28 Ricatti 方程, 33 特殊线性群,28 slice, 9 一般线性群, 28 Stokes 公式, 27 一阶线性微分方程,33 submersion, 8 指数映射,32 局部流, 12 有效作用,32 零化子, 24 张量积, 19 乘积流形,4 拉回, 8, 25 外积, 20 伴随表示, 29 外形式丛, 20 嵌入子流形,9 外微分算子,21 外微分式, 20 解析函数,3 外微分式的积分,27 自由作用,32 外微分求值公式,23

基本向量场, 32

基解, 34

水平集, 22

切向量,5

切映射,7

切丛, 11

切空间,6

切空间场,13

切片, 9

李群, 28

李代数, 29

李子群, 28

李型微分方程,33

正交群, 28

正则值, 10

正则值原像定理, 10

正则点, 10

正则子流形,9

相容, 3

相切, 15

散度, 23

单参数子群,31

单位分解定理,27

恰当形式,27

内自同构,29

内置算子, 25

全微分,6

光滑函数, 3, 4

光滑映射,4

光滑曲线,4

光滑同胚, 4

光滑向量场,12

仿射变换, 34

浸入,8

浸入(淹没)映射,8

浸入的局部典范表示,8

浸入子流形,9

流形, 3

同步管状流定理,17

向量场, 12

完备向量场,45

定义方程, 24

秩, 7

积分因子, 44

积分曲线, 12

积分子流形,13

梯度, 22

结构常数, 29