Brief Notes #11 Linear Regression

(a) Simple Linear Regression

- Model: $Y = \beta_0 + \beta_1 g(X) + \epsilon$, with $\epsilon \sim (0, \sigma^2)$ $\Rightarrow Y = \beta_0 + \beta_1 X + \epsilon$
- Data: (X_i, Y_i) , with i = 1, ..., n $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$

• Least Squares Estimation of (β_0, β_1)

Find $(\hat{\beta}_0, \hat{\beta}_1)$ such that $\sum_i (Y_i - \hat{Y}_i)^2 = \min$, where $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$.

Solution

$$\begin{split} \hat{\beta}_0 &= \overline{Y} - \hat{\beta}_1 \overline{X} = \overline{Y} - \frac{S_{XY}}{S_{XX}} \overline{X} \,, \qquad \hat{\beta}_1 = \frac{S_{XY}}{S_{XX}} \,, \\ \text{where} \quad \overline{X} &= \frac{1}{n} \sum_i X_i \,\,, \qquad \overline{Y} = \frac{1}{n} \sum_i Y_i \,, \\ S_{XX} &= \sum_i (X_i - \overline{X})^2 \,\,, \qquad S_{XY} = \sum_i (X_i - \overline{X})(Y_i - \overline{Y}) \,. \end{split}$$

• Properties of $\begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix}$ for $\epsilon_i \sim iid\ N(0,\,\sigma^2)$

$$\begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix} \sim N \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}, \ \sigma^2 \begin{bmatrix} \left(\frac{1}{n} + \frac{\overline{X}^2}{S_{XX}}\right) & \left(-\frac{\overline{X}}{S_{XX}}\right) \\ \left(-\frac{\overline{X}}{S_{XX}}\right) & \left(\frac{1}{S_{XX}}\right) \end{bmatrix} \end{bmatrix}$$

• Properties of Residuals, $e_i = Y_i - \hat{Y}_i$

-
$$\sum_{i} e_i = \sum_{i} e_i X_i = \sum_{i} e_i Y_i = 0$$

- $SS_e = \sum_i (Y_i - \hat{Y}_i)^2$ = the residual sum of squares.

$$\frac{SS_e}{\sigma^2} \sim \chi_{n-2}^2$$
, $E[SS_e] = \sigma^2(n-2)$

$$\Rightarrow \hat{\sigma}^2 = SS_e / (n-2) = MS_e \text{ (mean square error)}$$

$$\hat{\sigma} = \sqrt{MS_e} = \text{"standard error of regression"}$$

• Significance of Regression

Let
$$S_{YY} = \sum_{i} (Y_i - \overline{Y})^2 = \underline{\text{total sum of squares}}$$
.

Property:
$$S_{YY} = SS_e + SS_R$$

where
$$SS_e = \sum_i (Y_i - \hat{Y}_i)^2 = \underline{\text{residual sum of squares}},$$

$$SS_R = \sum_i (\hat{Y}_i - \overline{Y})^2 = \underline{\text{sum of squares explained by the regression}}.$$

Also SS_e and SS_R are statistically independent.

Notice: if
$$\beta_1 = 0$$
, then $\frac{SS_R}{\sigma^2} \sim \chi_1^2$

Definition:

$$R^2 = \frac{SS_R}{S_{yy}} = 1 - \frac{SS_e}{S_{yy}}$$
, coefficient of determination of the regression.

• Hypothesis Testing for the Slope β₁

1.
$$H_0$$
: $\beta_1 = \beta_{l_0}$ against H_1 : $\beta_1 \neq \beta_{l_0}$ (t-test)

Property:
$$t(\beta_1) = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{MS_e / S_{XX}}} \sim t_{n-2}$$

 \Rightarrow Accept H₀ at confidence level α if:

$$|t(\beta_{1_0})| < t_{n-2,\alpha/2}$$

2.
$$H_0$$
: $\beta_1 = 0$ against H_1 : $\beta_1 \neq 0$ (F-test)

From distributional properties and independence of SS_R and SS_e, and under H₀,

$$F = \frac{SS_{_R} / 1}{SS_{_e} / (n-2)} \sim F_{_{1,n-2}}$$

$$\Rightarrow$$
 Accept H_0 if $F < F_{1, n-2, \alpha}$

Notice that for H_0 : $\beta_1 = 0$, the t-test and the F-test are equivalent.

(b) Multiple Linear Regression

• Model: $Y = \beta_0 + \sum_{j=1}^k \beta_j g_j(\underline{X}) + \epsilon$, with $\epsilon \sim (0, \sigma^2)$

$$\Rightarrow Y = \beta_0 + \sum_{i=1}^k \beta_j X_j + \epsilon$$

• **Data:** (Y_i, \underline{X}_i) , with i = 1, ..., n

$$Y = \beta_0 + \sum_{j=1}^k \beta_j X_{ij} + \epsilon_i$$
 , with $i=1,\,\dots$, n

$$\text{Let } \underline{Y} = \begin{bmatrix} Y_1 \\ M \\ Y_n \end{bmatrix}, \qquad \underline{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ M \\ \beta_1 \end{bmatrix}, \qquad \underline{\epsilon} = \begin{bmatrix} \epsilon_1 \\ M \\ \epsilon_n \end{bmatrix}, \qquad \underline{\underline{H}} = \begin{bmatrix} 1 & X_{11} & X_{12} & \Lambda & X_{1k} \\ M & M & M & M & M \\ 1 & X_{n1} & X_{n2} & \Lambda & X_{nk} \end{bmatrix}$$

$$\Rightarrow \underline{\mathbf{Y}} = \underline{\mathbf{H}} \underline{\mathbf{\beta}} + \underline{\mathbf{\epsilon}}$$

• Least Squares Estimation

$$\boldsymbol{e}_{_{i}} = \boldsymbol{Y}_{_{i}} - \boldsymbol{\hat{Y}}_{_{i}} = \boldsymbol{Y}_{_{i}} - \boldsymbol{\hat{\beta}}_{_{0}} - \sum_{_{j=1}}^{k} \boldsymbol{\hat{\beta}}_{_{j}} \boldsymbol{X}_{_{ij}}$$

$$\underline{e} = \begin{bmatrix} e_1 \\ M \\ e_n \end{bmatrix} = \underline{Y} - \underline{H} \hat{\underline{\beta}}$$

$$SS_{e} = \sum_{i} e_{i}^{2} = \sum_{i} \underline{e}^{T} \underline{e} = (\underline{Y} - \underline{H} \underline{\hat{\beta}})^{T} (\underline{Y} - \underline{H} \underline{\hat{\beta}}) = \underline{Y} \underline{Y}^{T} - 2 \underline{Y}^{T} \underline{H} \underline{\hat{\beta}} + \underline{\hat{\beta}}^{T} \underline{H}^{T} \underline{H} \underline{\hat{\beta}}$$

$$\frac{dSS_{e}(\underline{\beta})}{d\beta} = \underline{0} \qquad \Rightarrow \qquad \underline{\hat{\beta}} = (\underline{H}^{T}\underline{H})^{-1}\underline{H}^{T}\underline{Y}$$

• Properties of $\hat{\beta}$ (if $\epsilon_i \sim iid \ N(0, \sigma^2)$)

$$\underline{\hat{\boldsymbol{\beta}}} \sim N(\underline{\boldsymbol{\beta}}, \sigma^2(\underline{\boldsymbol{H}}^T \underline{\boldsymbol{H}})^{-1})$$

• Properties of Residuals

$$\frac{SS_e}{\sigma^2} \sim \chi^2_{n-k-1}$$

$$\Rightarrow \quad \hat{\sigma}^2 = \frac{SS_e}{n-k-1} = MS_e$$

$$S_{YY} = SS_e + SS_R$$

$$R^2 = 1 - \frac{SS_e}{S_{YY}}$$

• Hypothesis Testing

Let $\underline{\beta} = \begin{bmatrix} \underline{\beta}_1 \\ \underline{\beta}_2 \end{bmatrix}$, where $\underline{\beta}_1$ has τ_1 components and $\underline{\beta}_2$ has $\tau_2 = k - \tau_1$ components. We

want to test H_0 : $\underline{\beta}_2 = \underline{0}$ against H_1 : $\underline{\beta}_2 \neq \underline{0}$ (at least one component of $\underline{\beta}_2$ is non-zero).

The procedure is as follows:

- Fit the complete regression model and calculate SS_R and SS_e ;
- Fit the reduced model with $\underline{\beta}_2 = \underline{0}$, and calculate SS_{R_1} ;
- Let $SS_{2|1} = SS_R SS_{R_1} =$ extra sum of squares due to $\underline{\beta}_2$ when $\underline{\beta}_1$ is in the regression.
- Distributional property of $SS_{2|1}$. Under H_0 ,

$$\frac{SS_{2|l}}{\sigma^2} \sim \chi_{\tau_2}^2$$

Also, SS_{2|1} and SS_e are independent. Therefore,

$$F = \frac{SS_{2|l} / \tau_2}{SS_e / (n - k - 1)} \sim F_{\tau_2, n - k - 1}$$

 $\Rightarrow Accept \; H_0 \; if \; F < F_{\tau_2, n-k-l, \alpha}$