

Pr. Ibrahim ASSABANE

2021-2022

COURS DE MICRO ET MACRO-ÉCONOMIE

Première partie

Le comportement économique du consommateur

CHAPITRE INTRODUCTIF

CHAPITRE 1: LA THÉORIE DE L'UTILITÉ

Chapitre 2: Les courbes d'indifférence, TMS et contrainte

BUDGÉTAIRE

Chapitre 3: Le choix optimal du consommateur

LE COMPORTEMENT ÉCONOMIQUE DU CONSOMMATEUR (52)

Chapitre 3: Le choix optimal du consommateur

- La stratégie du consommateur est de rechercher, parmi les paniers accessibles par son revenu, celui qui lui procure la plus grande satisfaction
- Le problème du consommateur s'écrit algébriquement par un programme de maximisation sous contrainte

$$\max_{x_1,x_2} U(x_1,x_2)$$
 sous contrainte $R = P_1.x_1 + P_2.x_2$

- Comme le *revenu* et les *prix* des biens sont des valeurs <u>connues</u>, le consommateur va <u>chercher</u> les **quantités** (x₁, x₂) qui maximisent la fonction d'utilité sous contrainte de budget
- Le problème du consommateur peut être résolu de façon graphique ou algébrique

LE COMPORTEMENT ÉCONOMIQUE DU CONSOMMATEUR (53) Chapitre 3: Le choix optimal du consommateur

1. <u>Résolution graphique du problème du consommateur</u>

- Le consommateur *rationnel* doit *choisir*, parmi l'ensemble des paniers de biens qui se présentent à lui, *celui* qui lui procure un *maximum* de *satisfaction* compte tenu de son *budget*
- Pour déterminer graphiquement l'optimum du consommateur, on représente sur un *même graphique* les *préférences* du consommateur (carte d'indifférence) et sa *contrainte* budgétaire (droite de budget)
- → Le *panier* de consommation <u>optimal</u> sera celui qui permet au consommateur *d'être sur la CI la plus éloignée de l'origine <u>et</u> d'être sur la droite de budget*

LE COMPORTEMENT ÉCONOMIQUE DU CONSOMMATEUR (54)

Chapitre 3: Le choix optimal du consommateur

- Le panier A est situé sur la CI la + éloignée de l'origine, il est donc préféré à tous les autres paniers
 - A n'est pas accessible par le revenu du consommateur
- B est accessible mais il n'épuise pas tout le revenu du consommateur
- o C et D sont accessibles et épuisent tout le revenu du consommateur
 - Ils sont situés sur une CI plus basse que le panier E
- E est préféré aux paniers C et D et permet de dépenser tout le revenu du consommateur
 - E représente le panier optimal du consommateur: il est situé sur la DB et sur la CL la plus éloignée de l'origine

LE COMPORTEMENT ÉCONOMIQUE DU CONSOMMATEUR (55)

Chapitre 3: Le choix optimal du consommateur

- Le point E est appelé « panier optimal » ou « panier d'équilibre » du consommateur
- <u>Géométriquement</u>, le panier E est le point où la droite de budget est tangente à la courbe d'indifférence
- Au point de tangence, la CI et la droite de budget ont la même pente
 - La pente de la CI au point E est égale à la pente de la droite tangente à la CI en ce point, c'est-à-dire au TMS : $-\frac{dx_2}{dx_1}$
 - La pente de la droite de budget est (en valeur absolue): $\frac{P}{P}$
- $\$ Au panier optimal du consommateur (x_1, x_2) , la CI et la droite budgétaire ont la même pente, donc :

$$\frac{P_1}{P_2} = -\frac{dx_2}{dx_1} = \frac{Um_1}{Um_2} = TMS$$

LE COMPORTEMENT ÉCONOMIQUE DU CONSOMMATEUR (56)

CHAPITRE 3: LE CHOIX OPTIMAL DU CONSOMMATEUR

- o Cette égalité donne *les deux conditions* du choix optimal du consommateur
 - a. <u>1ère condition d'optimalité</u> : égalité du TMS et du rapport des prix

$$TMS = \frac{P_1}{P_2}$$

- → À l'optimum du consommateur,
- → Quelle est l'interprétation économique de cette 1ère condition d'optimalité?
- ⇒ *Le TMS* est un taux d'échange <u>subjectif</u> selon lequel le consommateur échange le bien 2 contre le bien 1 pour que sa satisfaction reste inchangée
- ⇒ Le rapport des prix est un taux d'échange <u>objectif</u> entre les deux biens pour une dépense constante

$$\frac{P_1}{P} = 3$$

- $\mathbf{E}\mathbf{x}$: si P_2 , une unité de bien 1 sur le marché vaut 3 unités de bien 2
- Si le consommateur achète une unité supplémentaire de B1, il doit baisser sa consommation de B2 de 3 unités pour que sa dépense reste constante

LE COMPORTEMENT ÉCONOMIQUE DU CONSOMMATEUR (57) Chapitre 3: Le choix optimal du consommateur

• A l'optimum du consommateur, les quantités consommées des biens 1 et 2 (x_1^*, x_2^*) doivent donc être telles que le <u>taux d'échange subjectif</u> (TMS), soit égal au <u>taux objectif</u> <u>du marché</u> (P_1/P_2)

LE COMPORTEMENT ÉCONOMIQUE DU CONSOMMATEUR (58)

CHAPITRE 3: LE CHOIX OPTIMAL DU CONSOMMATEUR

- b. <u>2^{ème} condition d'optimalité</u> : égalité des Um de chacun des biens divisées par leur prix respectifs
- \rightarrow À l'optimum du consommateur, nous savons que : $TMS = -\frac{dx_2}{dx_1} = \frac{P_1}{P_2} = \frac{Um_1}{Um_2}$
- ightharpoonup Nous pouvons donc dire qu'à l'optimum, $label{eq:P1} rac{P_1}{P_2} = rac{Um_1}{Um_2}$
- → Ou encore, à l'optimum $\frac{Um_1}{P_1} = \frac{Um_2}{P_2}$
- ♥ C'est la deuxième condition d'optimum du consommateur : à l'optimum du consommateur (aux quantités optimales de consommation), il y a égalité des Um de chacun des biens pondérées (divisées) par leur prix respectifs
- C'est aussi la deuxième loi de GOSSEN : le consommateur atteint son équilibre avec le panier de biens qui égalise les utilités marginales pondérées par les prix des différents biens

LE COMPORTEMENT ÉCONOMIQUE DU CONSOMMATEUR (59) CHAPITRE 3: LE CHOIX OPTIMAL DU CONSOMMATEUR

2. <u>Résolution algébrique du problème du consommateur</u>

- → Le problème du choix du consommateur est un problème de *maximisation sous contrainte* dont les variables sont x₁, x₂
- Te problème peut être résolu par *la méthode de « substitution »* ou par *la méthode de « Lagrange* »

a. La méthode de Lagrange

- → La méthode de Lagrange permet de résoudre les programmes <u>d'optimisation</u> à contrainte «égalités» comme c'est le cas pour le problème du consommateur
 - Cette méthode est également appelée *méthode du lagrangien* ou encore *méthode du multiplicateur de Lagrange* noté

LE COMPORTEMENT ÉCONOMIQUE DU CONSOMMATEUR (60)

Chapitre 3: Le choix optimal du consommateur

La méthode de Lagrange consiste à former, à partir de la fonction objectif $U(x_1,x_2)$ et de la contrainte budgétaire $R=P_1.x_1+P_2.x_2$, la fonction de Lagrange $L(x_1,x_2,\lambda)$ telle que :

$$L(x_1,x_2,\lambda)=U(x_1,x_2)+\lambda(R-P_1.x_1-P_2.x_2)$$

→ Le théorème de Lagrange dit qu'un choix est optimal s'il respecte les trois conditions de premier ordre suivantes :

(1)
$$\frac{\partial L}{\partial x_1} = \frac{\partial U}{\partial x_1} - \lambda . P_1 = Um_1 - \lambda . P_1 = 0 \implies \lambda = \frac{Um_1}{P_1}$$

(2)
$$\frac{\partial L}{\partial x_2} = \frac{\partial U}{\partial x_2} - \lambda . P_2 = Um_2 - \lambda . P_2 = 0 \implies \lambda = \frac{Um_2}{P_2}$$

(3)
$$\frac{\partial L}{\partial \lambda} = R - P_{1} \cdot x_{1} - P_{2} \cdot x_{2} = 0 \implies R = P_{1} \cdot x_{1} + P_{2} \cdot x_{2}$$

LE COMPORTEMENT ÉCONOMIQUE DU CONSOMMATEUR (61) Chapitre 3: Le choix optimal du consommateur

• En considérant (1) et (2), nous obtenons :

$$\lambda = \frac{Um_1}{P_1} = \frac{Um_2}{P_2} \implies \frac{Um_1}{P_1} = \frac{Um_2}{P_2} \implies \frac{Um_1}{Um_2} = \frac{P_1}{P_2}$$

→ On peut donc dire qu'à l'équilibre du consommateur, le TMS entre les deux biens est égal au rapport des utilités marginales et au rapport des prix

Remarque

 \rightarrow Les conditions du premier ordre définissent un **extremum**. Pour qu'il soit un **maximum** il faut que les conditions du **deuxième ordre** soient respectées, c'est-à-dire : $d^2L < 0$

Exemple d'application

LE COMPORTEMENT ÉCONOMIQUE DU CONSOMMATEUR (62)

Chapitre 3: Le choix optimal du consommateur

- b. La méthode de substitution
- → Nous savons que le problème du consommateur peut s'écrire :

$$\begin{cases} \underset{x_1, x_2}{\text{Max } U(x_1, x_2)} \\ \text{sous contrainte } R = P_1 \cdot x_1 + P_2 \cdot x_2 \end{cases} \implies \begin{cases} \underset{x_1, x_2}{\text{Max } U(x_1, x_2)} \\ x_2 = \frac{R}{P_2} - x_1 \cdot \frac{P_1}{P_2} \end{cases}$$

 \rightarrow En remplaçant x_2 dans la fonction d'utilité, nous obtenons:

$$\max_{x_1,x_2} U\left(x_1,\frac{R}{P_2}-x_1,\frac{P_1}{P_2}\right)$$

→ Pour maximiser la fonction d'utilité, deux conditions sont nécessaires

$$\begin{cases} 1^{\grave{e}re} \ condition \ U'(x_1) = 0 \\ 2^{\grave{e}me} \ condition \ U''(x_1) < 0 \end{cases} \implies \text{Ce qui permet de déterminer } \mathbf{x}_1 \ puis \ \mathbf{x}_2 \end{cases}$$

Exemple d'application

LE COMPORTEMENT ÉCONOMIQUE DU CONSOMMATEUR (63)

Chapitre 3: Le choix optimal du consommateur

- Le choix optimal du consommateur peut évoluer suite à une <u>variation du revenu</u> ou <u>des prix des biens</u>
 - 1ère situation: Choix optimal et variation du revenu
 - <u>2^{ème} situation</u>: Choix optimal et variation des prix

1. Choix optimal du consommateur et variation du revenu

→ Supposons que le revenu du consommateur augmente de R à R' puis à R" (les prix restent constants)

R < R' < R''

- → Quelles en sont les conséquences sur l'équilibre du consommateur ?
- Le panier optimal du consommateur va donc changer

LE COMPORTEMENT ÉCONOMIQUE DU CONSOMMATEUR (64)

Chapitre 3: Le choix optimal du consommateur

a. La courbe de consommation-revenu

- Avec un revenu initial $R=P_1.x_1+P_2.x_2$, le panier optimal est $E=(x_1,x_2)$
- Lorsque le revenu passe de R à R', tel que $R'=P_1.x_1+P_2.x_2$, la droite de budget se déplace vers le haut, un nouvel optimum est défini $E'=(x'_1,x'_2)$
 - La satisfaction du consommateur a augmenté
- Idem lorsque l'on passe de R' à R"
- Les paniers *E*, *E*' et *E*" correspondent à 3 niveaux de revenu *R*, *R*' et *R*"
- Si on étend le raisonnement à tous les niveaux de revenu possibles, on obtient un infinité de paniers optimaux
 - Si on joint ces paniers optimaux par une courbe, on obtient *la courbe consommation-revenu* ou *sentier d'expansion du revenu*

LE COMPORTEMENT ÉCONOMIQUE DU CONSOMMATEUR (65)

MODIFICATION DU CHOIX OPTIMAL DU CONSOMMATEUR

Sentier d'expansion du revenu ou courbe consommation-revenu

La courbe de consommation-revenu ou sentier d'expansion du revenu est donc le lieu géométrique des différents <u>équilibres du consommateur</u> pour un niveau de <u>revenu variable</u> et un rapport des <u>prix fixes</u>

LE COMPORTEMENT ÉCONOMIQUE DU CONSOMMATEUR (66)

MODIFICATION DU CHOIX OPTIMAL DU CONSOMMATEUR

b. Courbe de consommation-revenu, courbe d'Engel et nature des biens

 À partir de la courbe de consommation-revenu, on peut déduire une relation entre la consommation optimale de l'un des deux biens et le revenu du consommateur

→ Pour le bien 1 :

- 7 lorsque le revenu est R, la consommation optimale du bien 1 est égale à x_1
- 7 Lorsque le revenu passe à R', la consommation optimale du bien 1 est de x',
- Interval Lorsque le revenu passe à R, la consommation optimale du bien 1 est de x_1

Courbe d'Engel du bien 1

Remarque: la forme de la courbe d'Engel dépend de la nature des biens

LE COMPORTEMENT ÉCONOMIQUE DU CONSOMMATEUR (67)

MODIFICATION DU CHOIX OPTIMAL DU CONSOMMATEUR

- 2. Choix optimal du consommateur et variation des prix
- \rightarrow Supposons que seul le prix du bien 1 augmente de P_1 à P_1 , le prix du bien 2 et le revenu du consommateur restent constants
- → La contrainte budgétaire est:

$$R = P_1'.x_1 + P_2.x_2$$
 $R = P_1'$

- → L'équation de la droite de budget est:
- $x_2 = \frac{R}{P_2} \frac{P_1'}{P_2} \cdot x_1$
- \rightarrow La pente de la droite de budget est passée de P_1/P_2 à P_1'/P_2
- $\$ Graphiquement, la droite de budget va pivoter vers le bas par rapport à l'ordonnée à l'origine R/P_2
- 🖖 Un nouvel optimum va donc être défini

LE COMPORTEMENT ÉCONOMIQUE DU CONSOMMATEUR (68)

MODIFICATION DU CHOIX OPTIMAL DU CONSOMMATEUR

- Avec un prix initial P_I , le panier optimal est $E=(x_I,x_2)$
- L'augmentation du prix du bien 1 a réduit l'ensemble des paniers accessibles car la droite de budget pivote vers le bas
 - le panier E ne peut plus être atteint
 - Un nouveau panier optimal est défini : $E'=(x_1', x_2')$
 - Le consommateur demande moins de bien 1 et de bien 2 avec l'augmentation du prix du bien 1
- Idem si le prix augmente de P_1 ' à P_1 ": un nouvel équilibre sera défini au panier E"= $(x_1$ ", x_2 ")

Les paniers d'équilibre E, E', E" correspondent à trois niveaux de prix P_1 , P_1 ', P_1 "

- La courbe qui lie ces paniers optimaux est appelée courbe consommation-prix
- Si on étend le raisonnement à tous les niveaux de prix possibles, on obtient un infinité de paniers optimaux

LE COMPORTEMENT ÉCONOMIQUE DU CONSOMMATEUR (69)

MODIFICATION DU CHOIX OPTIMAL DU CONSOMMATEUR

- La courbe consommation-prix est le lieu géométrique des différents équilibres du consommateur lorsque le prix d'un bien varie, le prix de l'autre bien et le revenu du consommateur étant maintenus constants
- A partir de la courbe consommation-prix, on peut obtenir une relation entre le prix d'un bien et la quantité optimale de ce bien

• La représentation graphique de cette relation entre les différents niveaux de prix possibles d'un bien et les quantités optimales correspondantes est <u>la courbe de demande du consommateur pour</u>

<u>ce bien</u>

- 7 Le bien 1 est donc un bien normal

LE COMPORTEMENT ÉCONOMIQUE DU CONSOMMATEUR (70)

Conclusion