E9 241 Time Frequency Analysis Assignment 1

September 14, 2025

Dwaipayan Haldar

1. Fundamentals of Fourier

Ans:	
1110.	

2. Simulation of Plots

Figure 1: Time Domain and Frequency Domain representation of $\operatorname{sinc}(2\pi t)$

Figure 2: Time Domain and Frequency Domain representation of $(\delta(t-1)+\delta(t+1))*e^{-at^2}$

Figure 3: Time Domain and Frequency Domain representation of $(\delta(t-1)+\delta(t+1))\times e^{-at^2}$

Figure 4: Time Domain and Frequency Domain representation of $e^{-at^2}\cos(\omega_0 t)u(t)$, for $a>0, a\in\mathbb{R}$

3. Discrete Fourier Transform(DFT)

Ans:

Figure 5: Fourier Transform of $\delta[n]$ with myDFT function and comparison with fft library function

Figure 6: Fourier Transform of box[n] with myDFT function and comparison with fft library function

Figure 7: Fourier Transform of $2^{-|n|}$ with myDFT function and comparison with fft library function

4. Learning Learning

Ans:

- Cauchy Density forms a Fourier pair with $e^{-|t|}$.
- In practical cases, we would never get a perfect box function from the *sinc*. It will have the Gibbs Phenomenon.
- The DFT of the box function will not give the sinc function. It is give something like |sinc| function.