1

GATE - EC 27

EE23BTECH11215 - Penmetsa Srikar Varma

QUESTION

Q27) Let m(t) be a strictly band-limited signal with bandwidth B and energy E. Assuming $\omega_0 = 10$ B, the energy in the signal m(t) cos (ω_0 t)

- (A) $\frac{E}{4}$
- (B) $\frac{E}{2}$
- (C) E
- (D) 2E

(GATE EC 2023)

SOLUTION

Variables	Conditions
A	amplitude of signal $M(\omega)$
ω_0	angular frequency
y(t)	$y(t)=m(t)\cos(\omega_0 t)$
$M(\omega)$	fourier transform of m(t)
Υ(ω)	fourier transform of y(t)
E_1	energy of y(t)

Table of Parameters

Energy (E) of the signal m(t) is given by,

$$E = \int_{-\infty}^{\infty} |m(t)|^2 dt$$
 (1)

According to Parvesal's theorem,

$$E = \int_{-\infty}^{\infty} |m(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |M(\omega)|^2 d\omega \propto A^2$$
 (2)

Fourier transform of y(t) is given by,

$$Y(\omega) = \int_{-\infty}^{\infty} m(t) \cos(\omega_0 t) e^{j\omega t} dt$$
 (3)

$$Y(\omega) = \frac{1}{2} \int_{-\infty}^{\infty} m(t) \left(e^{j(\omega + \omega_0)t} + e^{j(\omega - \omega_0)t} \right) dt$$
 (5)

We have $\omega_0 = 10B$,

$$Y(\omega) = \frac{1}{2} (M(\omega + \omega_0) + M(\omega - \omega_0))$$
 (6)

Energy (E_1) of the signal y(t) is given by sum of Energies of individual bandwidth signals,

$$E_1 \propto \left(\frac{A}{2}\right)^2 + \left(\frac{A}{2}\right)^2 = \frac{A^2}{2}$$

from (2),

$$E_1 = \frac{E}{2}$$

So, option B is correct