Các Khái Niệm Cơ Bản về Ma Trận

1. Minor (Phần phụ)

Cho ma trận vuông $A = [a_{ij}] \in \mathbb{R}^{n \times n}$.

Minor của phần tử a_{ij} là định thức của ma trận con $A_{(i,j)}$ được tạo bằng cách loại bỏ hàng i và cột j khỏi A:

$$M_{ij} = \det(A_{(i,j)})$$

2. Cofactor (Phần bù đại số)

Cofactor của phần tử a_{ij} được định nghĩa bởi:

$$C_{ij} = (-1)^{i+j} \cdot M_{ij}$$

Tập hợp tất cả các C_{ij} tạo thành ma trận cofactor.

3. Determinant (Định thức)

Định thức của ma trận A được tính bằng khai triển Laplace theo hàng đầu (hoặc hàng bất kỳ):

$$\det(A) = \sum_{j=1}^{n} a_{1j} \cdot C_{1j} = \sum_{j=1}^{n} a_{1j} \cdot (-1)^{1+j} \cdot \det(A_{(1,j)})$$

Lưu ý: Định thức chỉ xác định cho ma trận vuông và là điều kiện để ma trận khả nghịch.

4. Adjugate Matrix (Ma trận phụ hợp)

Ma trận phụ hợp (adjugate) của A là chuyển vị của ma trận cofactor:

$$\operatorname{adj}(A) = \left[C_{ij}\right]^{\top}$$

5. Matrix Inverse (Ma trận nghịch đảo)

Ma trận A^{-1} tồn tại khi và chỉ khi $\det(A) \neq 0$. Công thức tính:

$$A^{-1} = \frac{1}{\det(A)} \cdot \operatorname{adj}(A)$$

Điều kiện: $\det(A) \neq 0.$ Nếu không, ma trận không khả nghịch.

6. Tóm tắt quy trình tính A^{-1}

- 1. Tính det(A). Nếu det(A) = 0 thì dừng lại.
- 2. Với mỗi phần tử a_{ij} , tính minor M_{ij} và cofactor C_{ij} .
- 3. Lập ma trận co
factor $\boldsymbol{C} = [C_{ij}].$
- 4. Tính ma trận phụ hợp $\operatorname{adj}(A) = C^{\top}$.
- 5. Tính ma trận nghịch đảo:

$$A^{-1} = \frac{1}{\det(A)} \cdot \operatorname{adj}(A)$$