	No:		***********	**********							
								as an important		, ,	
19-16											
	2 a] verify ¬(pvq) v (¬pAq) = ¬p										
	using truth table;										
		P	2	pvq	7(pVa)	79	-p/q	7(pVq) V (7pAc	2)		
		T	T	T	F	U.F.	F	F			
		T	F	T	F	F	F	F			
	100	F	T	T B	F	The	T	T	A ()]		
		F	F	F	T	T	F	T			
				* -	(PV4) V	'mp 1q) = ¬p ((proven).			
	- his dis						1/00				
	using logic property law;										
	¬ (pvq) v (¬p∧q) = (¬p∧¬q) v (¬p∧q) → de morgan										
	= ¬P ^ (¬q ∨ v) → distributive hous										
	= -P 1 -> negation laws										
	$\equiv \neg p \rightarrow identity laws$										
	$\neg (P \lor Q) \lor (\neg P \land Q) \equiv \neg P (pvoven).$										
	$b] i - p(n) \rightarrow (r(n) \land q(n))$										
	$ii - \neg (r(n) \lor q(n)) \longrightarrow \neg p(n)$										
87 49	$iii - \neg p(n) \leftrightarrow (r(n) \lor q(n))$										
					A.			N = 0 - 10 -			
	c) given \n(n2 + 2n - 3 = 0) write negation;										
	$\neg \forall n \ (n^2 + 2n - 3 = 0)$										
	In - (n2 + 2n - 3 = 0) - Proves this										
1	could also J. written as assume 70=2										
	$\exists n (n^2 + 2n - 3 \neq 0) \qquad (2)^2 + 2(2) - 3 = 0$								5.45 E		
					4,2			5 ≠ O			
	. the statement is true.										
							0.131	Carried May			
					4-115					September 1	
					The state of						
					198						
						1 1 200 7	2-1-1-1				

No:

Date:

	No: Date:								
	d] use predicates quantifier } logical connective								
	[domain of discourse is all students]								
	Township of Mistourise 1/8 Mil Students								
	i-there is a student of your school who can speak Russian but doesn't know (++.								
	$P(n) = \kappa \text{ is a student at the school}$								
	$Q(n) = 2c \ can \ speak \ Russian \qquad \exists n \ (s(n) \to (Q(n) \land R(n)) $								
	$R(n) = n \ cloesn't \ know \ C+t$								
	ii- every student at your school either can speak Russian or knows C++.								
	$\forall n (Q(n) \lor \neg R(n))$								
0	iii-no student at your school can speak Russlan or knows C++.								
1223	$\forall n \neg (B(n) \lor \neg R(n))$ or $\neg (\exists n (B(n) \lor \neg R(n)) \leftarrow$								
	$\forall n \neg (G(n) \lor \neg R(n)) $ $(\exists n \mid \neg \neg$								
	indicate and								
	3 domain of discourse is all integers, using indirect proof;								
	if a2-3b is even then a is even and b is even.								
	$P(a): a^2 - 3b$, $Q(a): a$ is even, $R(b): b$ is even.								
	$\forall a P(a) \rightarrow [Q(a) \land R(b)]$								
	contradiction 2								
	$\neg \left[Q(a) \land R(b)\right] = \neg P(a)$								
0	assume - P(d) is true show - [Q(d) A R(b)] is true too.								
	(c1 = 2k +1 7 odd								
	b = 2k+1 S definition)								
	Jubs into Pla)								
	$=(2k+1)^2-3(2k+1)$								
	= 4k ² + 4k +1 - 6k -3								
	$=4k^2-2k-2$								
	$= 2 (2 k^2 - k - 1)$								
	La assume 2k2-k-1=+								
	= 24 -> even definition								
	His shown that P(u) is an even number P(a) is true.								
	/								