Examenul de bacalaureat național 2018 Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$0.1(6) = \frac{15}{90} = \frac{1}{6}$	3р
	$2 \cdot \left(\frac{1}{6} + \frac{1}{3}\right) = 2 \cdot \frac{1}{2} = 1$	2p
2.	f(a) = 2a - 2	2p
	$2a-2=a \Leftrightarrow a=2$	3 p
3.	$x^2 + 6 = 5x \Leftrightarrow x^2 - 5x + 6 = 0$	3p
	x=2 sau $x=3$	2p
4.	După prima ieftinire cu 10%, prețul obiectului este 900-10% · 900 = 810 lei	3 p
	După a doua ieftinire cu 10%, prețul obiectului este $810-10\% \cdot 810=729$ de lei	2p
5.	$AB = \sqrt{10}$, $AC = \sqrt{10}$, deci triunghiul ABC este isoscel	3p
	$BC = \sqrt{20}$, și cum $(\sqrt{20})^2 = (\sqrt{10})^2 + (\sqrt{10})^2$, obținem că triunghiul ABC este dreptunghic	2p
6.	$\sin 30^\circ = \frac{1}{2}$, $\sin 45^\circ = \frac{\sqrt{2}}{2}$, $\sin 60^\circ = \frac{\sqrt{3}}{2}$	3 p
	$\sin^2 30^\circ + \sin^2 45^\circ + \sin^2 60^\circ = \frac{1}{4} + \frac{2}{4} + \frac{3}{4} = \frac{6}{4} = \frac{3}{2}$	2p

1.	$0*(-2) = 2(0+(-2))+0\cdot(-2)+2=$	3p
	=-4+2=-2	2 p
2.	x * y = xy + 2x + 2y + 4 - 2 =	2p
	= x(y+2)+2(y+2)-2=(x+2)(y+2)-2, pentru orice numere reale x şi y	3 p
3.	x*(-1)=(x+2)(-1+2)-2=x+2-2=x	2p
	(-1)*x = (-1+2)(x+2)-2 = x+2-2 = x = x*(-1), pentru orice număr real x , deci $e = -1$ este elementul neutru al legii de compoziție ,,*"	3 p
4.	$(x+3)(x+3)-2=2 \Leftrightarrow x^2+6x+5=0$	3 p
	x = -5 sau $x = -1$	2p
5.	$(\lg x + 2)(\lg(2x) + 2) - 2 = -2 \Rightarrow \lg x + 2 = 0 \text{ sau } \lg(2x) + 2 = 0$	3 p
	$x = \frac{1}{100}$ sau $x = \frac{1}{200}$, care convin	2p
6.	$a*b \in \mathbb{Z} \Leftrightarrow (a+2)(b+2) \in \mathbb{Z}$	2p
	De exemplu, pentru $a+2=\frac{2}{3} \Leftrightarrow a=-\frac{4}{3} \in \mathbb{Q} \setminus \mathbb{Z}$ și $b+2=\frac{3}{2} \Leftrightarrow b=-\frac{1}{2} \in \mathbb{Q} \setminus \mathbb{Z}$, obținem	3 p
	a*b=-1, care este număr întreg	

SUBIECTUL al III-lea (30 de punc		uncte)
1.	$A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \Rightarrow \det A = \begin{vmatrix} 1 & 1 \\ 0 & 2 \end{vmatrix} = 1 \cdot 2 - 0 \cdot 1 =$	3p 2p
2.	$= 2 - 0 = 2$ $M(a) = a \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a+1 & a \\ 0 & 2a+1 \end{pmatrix}$	3p
	$\det(M(a)) = \begin{vmatrix} a+1 & a \\ 0 & 2a+1 \end{vmatrix} = (a+1)(2a+1), \text{ pentru orice număr real } a$	2 p
3.	$M(-2) = \begin{pmatrix} -1 & -2 \\ 0 & -3 \end{pmatrix} \Rightarrow \det(M(-2)) = 3$	2p
	$M^{-1}(-2) = \begin{pmatrix} -1 & \frac{2}{3} \\ 0 & -\frac{1}{3} \end{pmatrix}$	3р
4.	$M(1) \cdot M(2) = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} 6 & 9 \\ 0 & 15 \end{pmatrix} = 3 \begin{pmatrix} 2 & 3 \\ 0 & 5 \end{pmatrix}$	3р
	$A \cdot A + I_2 = \begin{pmatrix} 1 & 3 \\ 0 & 4 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 0 & 5 \end{pmatrix}, \operatorname{deci} M(1) \cdot M(2) = 3(A \cdot A + I_2)$	2p
5.	$M(a) - 2aA = I_2 - aA = M(-a) \Rightarrow \det(M(a) - 2aA) = (1-a)(1-2a)$	2p
	$(1-a)(1-2a)=1 \Leftrightarrow 2a^2-3a+1=1 \Leftrightarrow a(2a-3)=0$, ceea ce este imposibil dacă a este număr întreg nenul, deci $\det(M(a)-2aA)\neq 1$, pentru orice număr întreg nenul a	3 p
6.	$ \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ -4 \end{pmatrix} \Leftrightarrow \begin{cases} x + y = 0 \\ 2y = -4 \end{cases} $	2p
	$x=2$ și $y=-2$, deci $X=\begin{pmatrix} 2\\ -2 \end{pmatrix}$	3р

Examenul de bacalaureat național 2018 Proba E. c)

Matematică *M_pedagogic*

Varianta 2

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $2 \cdot \left(0,1(6) + \frac{1}{3}\right) = 1$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x 2. Determinați numărul real a pentru care f(a) = a.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $5^{x^2+6} = 5^{5x}$.
- **5p 4.** Prețul unui obiect este 900 de lei. Determinați prețul obiectului după ce acesta se ieftinește de două ori, succesiv, cu câte 10%.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(2,-1), B(1,2) și C(-1,-2). Demonstrați că triunghiul ABC este dreptunghic isoscel.
- **5p 6.** Arătați că $\sin^2 30^\circ + \sin^2 45^\circ + \sin^2 60^\circ = \frac{3}{2}$.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție x * y = 2(x + y) + xy + 2.

- **5p 1.** Arătați că 0*(-2) = -2.
- **5p 2.** Demonstrați că x * y = (x+2)(y+2)-2, pentru orice numere reale x și y.
- **5p** 3. Verificați dacă e = -1 este elementul neutru al legii de compoziție "*".
- **5p 4.** Determinați numerele reale x, știind că (x+1)*(x+1)=2.
- **5p 5.** Determinați numerele $x \in (0, +\infty)$ pentru care $\lg x * \lg(2x) = -2$.
- **5p 6.** Dați exemplu de numere raționale a și b, care nu sunt întregi, pentru care numărul a*b este întreg.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $M(a) = aA + I_2$, unde a este număr real.

- **5p 1.** Arătați că det A = 2.
- **5p 2.** Demonstrați că $\det(M(a)) = (a+1)(2a+1)$, pentru orice număr real a.
- **5p 3.** Determinați inversa matricei M(-2).
- **5p 4.** Arătați că $M(1) \cdot M(2) = 3(A \cdot A + I_2)$.
- **5p** | **5.** Demonstrați că det $(M(a) 2aA) \neq 1$, pentru orice număr întreg nenul a.
- **5p 6.** Determinați matricea $X \in \mathcal{M}_{2,1}(\mathbb{R})$ pentru care $A \cdot X = \begin{pmatrix} 0 \\ -4 \end{pmatrix}$.

Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 9

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(\sqrt{3}+1)(\sqrt{3}-1)-(\sqrt{2}+1)(\sqrt{2}-1)=(3-1)-(2-1)=$	3 p
	=2-1=1	2 p
2.	$3x-2 < 4 \Leftrightarrow 3x < 6$	3 p
	$x \in (-\infty, 2)$	2p
3.	$x^3 + 3 = 30 \Rightarrow x^3 - 27 = 0$	3 p
	x = 3, care convine	2 p
4.	Cifra unităților poate fi aleasă în 5 moduri	2p
	Cum cifrele sunt distincte, pentru fiecare alegere a cifrei unităților, cifra zecilor poate fi aleasă în 4 moduri, iar apoi cifra sutelor poate fi aleasă în 3 moduri, deci se pot forma $5 \cdot 4 \cdot 3 = 60$ de numere	3 p
5.	Punctul <i>M</i> este mijlocul segmentului $NP \Rightarrow 2 = \frac{-1 + x_P}{2}$, de unde obținem $x_P = 5$	3 p
	$3 = \frac{4 + y_P}{2}$, de unde obținem $y_P = 2$	2p
6.	$\sin C = \frac{AB}{BC} \Leftrightarrow \frac{1}{2} = \frac{8}{BC}$	3 p
	BC = 16	2p

1.	$1*2=1\cdot 2-2(1+2)+6=$	3p
	=2-6+6=2	2 p
2.	x * y = xy - 2x - 2y + 4 + 2 =	2 p
	= x(y-2)-2(y-2)+2=(x-2)(y-2)+2, pentru orice numere reale x şi y	3 p
3.	x*3=(x-2)(3-2)+2=x-2+2=x, pentru orice număr real x	2 p
	3*x = (3-2)(x-2) + 2 = x-2+2 = x = x*3, pentru orice număr real x , deci $e=3$ este elementul neutru al legii de compoziție ,,*"	3p
4.	$(n-2)(n-2) + 2 \le n \Leftrightarrow (n-2)(n-3) \le 0$	3p
	Cum n este număr natural, obținem $n = 2$ sau $n = 3$	2p
5.	$2^{x} * 2^{x} = (2^{x} - 2)^{2} + 2, (2^{x} * 2^{x}) * 2^{x} = (2^{x} - 2)^{3} + 2$	3p
	$(2^{x}-2)^{3}+2=10 \Leftrightarrow 2^{x}-2=2 \Leftrightarrow x=2$	2 p
6.	$\frac{2}{\sqrt{3}-1} * \frac{2}{\sqrt{3}-1} = \left(\frac{2}{\sqrt{3}-1} - 2\right)^2 + 2 = \left(\sqrt{3}-1\right)^2 + 2 = 6 - 2\sqrt{3}$	3p
	$6-2\sqrt{3}=p+q\sqrt{3}$, de unde obţinem $p=6$ şi $q=-2$	2p

1.	$\det A = \begin{vmatrix} -2 & 4 \\ -1 & 2 \end{vmatrix} = (-2) \cdot 2 - (-1) \cdot 4 =$	3p
	=-4+4=0	2 p
2.	$A \cdot A = \begin{pmatrix} (-2)(-2) + 4 \cdot (-1) & (-2) \cdot 4 + 4 \cdot 2 \\ (-1)(-2) + 2 \cdot (-1) & (-1) \cdot 4 + 2 \cdot 2 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 4-4 & -8+8 \\ 2-2 & -4+4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2$	2p
3.	$M(a) \cdot M(b) = (I_2 + aA)(I_2 + bA) = I_2 + aA + bA + abA \cdot A =$	3p
	= $I_2 + (a+b)A + abO_2 = I_2 + (a+b)A = M(a+b)$, pentru orice numere reale a și b	2 p
4.	$M(t) \cdot M(t^2) = M(t + t^2)$	2p
	$M(t+t^2) = M(90) \Rightarrow t^2 + t - 90 = 0$, de unde obţinem $t = -10$ sau $t = 9$	3p
5.	$(I_2 + A)(I_2 - A) = I_2 - A + A - A \cdot A = I_2$	2p
	$(I_2 - A)(I_2 + A) = I_2 + A - A - A \cdot A = I_2$, deci matricea $I_2 - A$ este inversa matricei $I_2 + A$	3 p
6.	$X = \left(I_2 + A\right)^{-1} \cdot \left(A - I_2\right)$	2p
	$X = 2A - I_2 \Rightarrow X = \begin{pmatrix} -5 & 8 \\ -2 & 3 \end{pmatrix}$	3p

Proba E. c) Matematică *M_pedagogic*

Varianta 9

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $(\sqrt{3}+1)(\sqrt{3}-1)-(\sqrt{2}+1)(\sqrt{2}-1)=1$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x 2. Rezolvați în mulțimea numerelor reale inecuația f(x) < 4.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_2(x^3 + 3) = \log_2 30$.
- **5p 4.** Determinați câte numere naturale de trei cifre distincte se pot forma cu cifrele 1, 2, 3, 4 și 5.
- **5p 5.** În reperul cartezian xOy se consideră punctele M(2,3) și N(-1,4). Determinați coordonatele punctului P, simetricul punctului N față de punctul M.
- **5p** | **6.** Calculați lungimea laturii BC a triunghiului ABC dreptunghic în A, știind că AB = 8 și $m(\lt C) = 30^{\circ}$.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție x * y = xy - 2(x + y) + 6.

- **5p 1.** Arătați că 1*2=2.
- **5p 2.** Demonstrați că x * y = (x-2)(y-2) + 2, pentru orice numere reale $x \neq y = (x-2)(y-2) + 2$
- **5p** | **3.** Arătați că e = 3 este elementul neutru al legii de compoziție "*".
- **5p** | **4.** Determinați numerele naturale n pentru care $n * n \le n$.
- **5p 5.** Determinați numărul real x pentru care $(2^x * 2^x) * 2^x = 10$.
- **5p 6.** Determinați numerele raționale p și q, știind că $\frac{2}{\sqrt{3}-1}*\frac{2}{\sqrt{3}-1}=p+q\sqrt{3}$.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $A = \begin{pmatrix} -2 & 4 \\ -1 & 2 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $M(a) = I_2 + aA$, unde a este număr real.

- **5p 1.** Arătați că det A = 0.
- **5p 2.** Arătați că $A \cdot A = O_2$, unde $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
- **5p** | **3.** Demonstrați că $M(a) \cdot M(b) = M(a+b)$, pentru orice numere reale $a \neq b$.
- **5p 4.** Determinați numerele reale t, știind că $M(t) \cdot M(t^2) = M(90)$.
- **5p 5.** Arătați că inversa matricei $I_2 + A$ este matricea $I_2 A$.
- **5p 6.** Rezolvați în $\mathcal{M}_2(\mathbb{R})$ ecuația $(I_2 + A) \cdot X = A I_2$.

Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{20} = 2\sqrt{5}$	2p
	$6 - 2\sqrt{5} + 2\sqrt{5} = 6$	3 p
2.	$f(0) = a - 2$ $a - 2 = 0 \Leftrightarrow a = 2$	2p
	$a-2=0 \Leftrightarrow a=2$	3 p
3.	$7 - x = 1^3$	3 p
	x = 6, care convine	2p
4.	Prețul după prima ieftinire este $p - \frac{50}{100} \cdot p = \frac{p}{2}$, unde p este prețul inițial al tricoului	2p
	Prețul după a doua ieftinire este $\frac{p}{2} - \frac{50}{100} \cdot \frac{p}{2} = \frac{p}{4}$, de unde obținem $p = 40$ de lei	3p
5.	$MN = \sqrt{(0-2)^2 + (3-3)^2} =$	3 p
	= 2	2p
6.	$\sin C = \frac{AB}{BC} \Rightarrow \frac{3}{5} = \frac{AB}{15}$	3p
	AB = 9	2p

1.	3*(-4) = 3+(-4)-3 =	3p
	=(-1)-3=-4	2p
2.	(x*y)*z = (x+y-3)*z = (x+y-3)+z-3 = x+y+z-6	2p
	x*(y*z) = x*(y+z-3) = x+(y+z-3)-3 = x+y+z-6 = (x*y)*z, pentru orice numere reale x , y și z , deci legea de compoziție "*" este asociativă	3 p
3.		2p
	3*x=3+x-3=x=x*3, pentru orice număr real x , deci $e=3$ este elementul neutru al legii de compoziție ,,*"	3p
4.	(a+1010)*(1010-a)=(a+1010)+(1010-a)-3=1010+1010-3=	3p
	= $1010*1010$, pentru orice număr real a	2p
5.	$9^x = 3^x + 9 - 3 \Leftrightarrow (3^x + 2)(3^x - 3) = 0$	3p
	Cum $3^x > 0$, obţinem $x = 1$	2p
6.	$n+(n+1)-3 \le 2 \Leftrightarrow n \le 2$	2p
	Cum n este număr natural, obținem $n = 0$, $n = 1$ sau $n = 2$	3 p

1.	$\det M = \begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix} = 1 \cdot 4 - 2 \cdot 3 =$	3p
	=4-6=-2	2p
2.	$A(2017) = 2017I_2 + M = \begin{pmatrix} 2018 & 3\\ 2 & 2021 \end{pmatrix}$	3р
	Suma elementelor matricei $A(2017)$ este egală cu 4044	2p
3.	$M \cdot M = \begin{pmatrix} 7 & 15 \\ 10 & 22 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 5 & 15 \\ 10 & 20 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = 5 \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} + 2I_2 = 5M + 2I_2$	2p
4.	$A(1) \cdot \begin{pmatrix} \frac{5}{4} & -\frac{3}{4} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 2 & 5 \end{pmatrix} \cdot \begin{pmatrix} \frac{5}{4} & -\frac{3}{4} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{5}{2} - \frac{3}{2} & -\frac{3}{2} + \frac{3}{2} \\ \frac{5}{2} - \frac{5}{2} & -\frac{3}{2} + \frac{5}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	2p
	$\begin{pmatrix} \frac{5}{4} & -\frac{3}{4} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} \cdot A(1) = \begin{pmatrix} \frac{5}{2} - \frac{3}{2} & \frac{15}{4} - \frac{15}{4} \\ -1 + 1 & -\frac{3}{2} + \frac{5}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2, \text{ deci matricea} \begin{pmatrix} \frac{5}{4} & -\frac{3}{4} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} \text{ este inversa}$ matricei $A(1)$	3р
5.	$A(a) \cdot A(a) = a^2 I_2 + 2aM + M \cdot M$	2p
	$a^{2}I_{2} + 2aM + M \cdot M = a^{2}I_{2} + M + M \cdot M \Leftrightarrow a = \frac{1}{2}$	3 p
6.	$\det(A(m)) = \begin{vmatrix} m+1 & 3 \\ 2 & m+4 \end{vmatrix} = m^2 + 5m - 2$	2p
	$m^2 + 5m - 2 < 4 \Leftrightarrow m^2 + 5m - 6 < 0$ şi, cum m este număr natural, obținem $m = 0$	3p

Proba E. c)

Matematică *M_pedagogic*

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $2(3-\sqrt{5})+\sqrt{20}=6$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^2 + a 2$. Determinați numărul real a, pentru care f(0) = 0.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt[3]{7-x} = 1$.
- **5p 4.** După două ieftiniri succesive cu câte 50%, un tricou costă 10 lei. Calculați prețul inițial al tricoului.
- **5p 5.** În reperul cartezian xOy se consideră punctele M(2,3) și N(0,3). Calculați lungimea segmentului MN.
- **5p 6.** Calculați lungimea laturii AB a triunghiului ABC dreptunghic în A, știind că BC = 15 și $\sin C = \frac{3}{5}$.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție x * y = x + y - 3.

- **5p 1.** Arătați că 3*(-4) = -4.
- **5p 2.** Arătați că legea de compoziție "*" este asociativă.
- **5p 3.** Verificați dacă e = 3 este elementul neutru al legii de compoziție "*".
- **5p 4.** Demonstrați că (a+1010)*(1010-a)=1010*1010, pentru orice număr real a.
- **5p 5.** Determinați numărul real x pentru care $9^x = 3^x * 9$.
- **5p 6.** Determinați numerele naturale *n* pentru care $n*(n+1) \le 2$.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $M = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $A(a) = aI_2 + M$, unde a este număr real.

- **5p 1.** Arătați că $\det M = -2$.
- **5p 2.** Calculați suma elementelor matricei A(2017).
- **5p 3.** Arătați că $M \cdot M = 5M + 2I_2$.
- **5p 4.** Arătați că inversa matricei A(1) este matricea $\begin{pmatrix} \frac{5}{4} & -\frac{3}{4} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$.
- **5p 5.** Determinați numerele reale a pentru care $A(a) \cdot A(a) = A(a^2) + M \cdot M$.
- **5p 6.** Determinați numărul natural m pentru care $\det(A(m)) < 4$.

Proba E. c)

Matematică *M_pedagogic*

Clasa a XII-a

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	40	
1.	$\frac{40}{11} = 3,(63)$	3p
	A 2018-a zecimală este 3	2p
2.	$\Delta = 1$	2p
	Valoarea minimă a funcției este $-\frac{\Delta}{4a} = -\frac{1}{4}$	3p
3.	$4^{x} - 2^{x} - 12 = 0 \Leftrightarrow (2^{x} - 4)(2^{x} + 3) = 0$	3p
	x=2	2 p
4.	$\left(x + \frac{10}{100} \cdot x\right) - \frac{10}{100} \cdot \left(x + \frac{10}{100} \cdot x\right) = 990, \text{ unde } x \text{ este prețul inițial al televizorului}$	3р
	x = 1000 de lei	2 p
5.	$\overrightarrow{AD} = (a-1)\overrightarrow{i} + 2\overrightarrow{j}, \ \overrightarrow{CB} = 2\overrightarrow{i} + \overrightarrow{j}$	2p
	$\frac{a-1}{2} = \frac{2}{1} \iff a = 5$	3 p
6.	$BC^2 = AB^2 + AC^2 \Rightarrow \Delta ABC$ este dreptunghic în A	2p
	$R = \frac{BC}{2} = 13$	3 p

		_
1.	2*3=6-8-12+20=	3р
	= 6	2p
2.	x * y = xy - 4x - 4y + 16 + 4 =	3 p
	= x(y-4)-4(y-4)+4=(x-4)(y-4)+4, pentru orice numere reale x şi y	2p
3.	(x*y)*z = ((x-4)(y-4)+4)*z = (x-4)(y-4)(z-4)+4	2 p
	x*(y*z) = x*((y-4)(z-4)+4) = (x-4)(y-4)(z-4)+4 = (x*y)*z, pentru orice numere	3p
	reale x , y și z , deci legea "*" este asociativă	ър
4.	$(x-4)(x-3)+4=6 \Leftrightarrow x^2-7x+10=0$	3 p
	x=2 sau $x=5$	2p
5.	$\left(x-4\right)^2 + 4 \le 8 \Longleftrightarrow \left(x-4\right)^2 \le 4$	2p
	$(x-2)(x-6) \le 0 \Leftrightarrow x \in [2,6]$	3 p
6.	x*4=4 și $4*y=4$, pentru x și y numere reale	2p
	$2^{0} * 2^{1} * 2^{2} * \dots * 2^{2018} = ((2^{0} * 2^{1}) * 4) * (2^{3} * 2^{4} * \dots * 2^{2018}) = 4 * (2^{3} * 2^{4} * \dots * 2^{2018}) = 4$	3 p

	•	
1.	$A(1,1) = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \Rightarrow \det(A(1,1)) = \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} = 1 - (-1) =$	3p
	= 2	2p
2.		3 p
	x = 4 si y = 2	2p
3.	$6A(3,1) - A(3,1) \cdot A(3,1) = \begin{pmatrix} 18 & 6 \\ -6 & 18 \end{pmatrix} - \begin{pmatrix} 8 & 6 \\ -6 & 8 \end{pmatrix} = \begin{pmatrix} 10 & 0 \\ 0 & 10 \end{pmatrix} =$	3 p
	$=10\begin{pmatrix}1&0\\0&1\end{pmatrix}=10A(1,0)$	2p
4.	$\det(A(a,b)) = \begin{vmatrix} a & b \\ -b & a \end{vmatrix} = a^2 + b^2$	3 p
	Cum a şi b sunt numere reale, $a^2 + b^2 = 0 \Leftrightarrow a = 0$ şi $b = 0$	2p
5.	$\det(A(1,1)) \neq 0 \Rightarrow (A(1,1))^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$	2p
	$X = (A(1,1))^{-1} \cdot A(1,0) \Leftrightarrow X = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$	3 p
6.	$A(m,-n)A(m,n) = A(m,n)A(m,-n) = I_2$, deci $m^2 + n^2 = 1$	3p
	Cum m și n sunt numere naturale, obținem $(0,1)$ și $(1,0)$	2p

Proba E. c) Matematică *M_pedagogic*

Clasa a XII-a

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați a 2018-a zecimală a numărului $\frac{40}{11}$
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 3x + 2$. Determinați valoarea minimă a funcției f.
- **5p** 3. Rezolvati în multimea numerelor reale ecuatia $4^x 2^x = 12$.
- **5p 4.** După o majorare cu 10%, urmată de o reducere cu 10%, prețul unui televizor este 990 de lei. Calculați prețul inițial al televizorului.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,2), B(-1,5), C(-3,4) și D(a,4). Determinați numărul real a, știind că vectorii \overrightarrow{AD} și \overrightarrow{CB} sunt coliniari.
- **5p** | **6.** Calculați raza cercului circumscris triunghiului ABC cu AB = 10, AC = 24 și BC = 26.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție x * y = xy - 4x - 4y + 20.

- **5p 1.** Calculați 2*3.
- **5p** 2. Demonstrați că x * y = (x-4)(y-4)+4, pentru orice numere reale $x ext{ si } y$.
- **5p 3.** Demonstrați că legea de compoziție "*" este asociativă.
- **5p 4.** Determinați numerele reale x pentru care x*(x+1)=6.
- **5p 5.** Determinați valorile reale x pentru care $x * x \le 8$.
- **5p 6.** Calculați $2^0 * 2^1 * 2^2 * ... * 2^{2018}$

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricea $A(a,b) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, unde a și b sunt numere reale.

- **5p 1.** Calculați $\det(A(1,1))$.
- **5p** 2. Determinați numerele reale x și y, știind că A(x,y) A(3,1) = A(1,1).
- **5p 3.** Arătați că $6A(3,1) A(3,1) \cdot A(3,1) = 10A(1,0)$.
- **5p 4.** Determinați numerele reale a și b, știind că $\det(A(a,b)) = 0$.
- **5p 5.** Rezolvați ecuația matriceală $A(1,1) \cdot X = A(1,0)$.
- **5p 6.** Determinați perechile de numere naturale (m,n), știind că matricea A(m,-n) este inversa matricei A(m,n).

Proba E. c)

Matematică *M_pedagogic*

Clasa a XI-a

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

	(- · · · · I · ·	,
1.	$\frac{(2a_1+9r)\cdot 10}{2} = 150 \Leftrightarrow 2a_1+18=30$	3p
	$a_1 = 6$	2p
2.	$A(2a,a) \in G_f \iff f(2a) = a$	2p
	$2a-1=a \Leftrightarrow a=1$, deci $A(2,1)$	3 p
3.	$x^2 + 1 = 2x$	2p
	$(x-1)^2 = 0 \Rightarrow x = 1$, care verifică ecuația	3 p
4.	Mulțimea H are 5 elemente, deci sunt 5 cazuri posibile	1p
	În mulțimea H sunt 2 numere care verifică egalitatea dată, deci sunt 2 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{2}{5}$	2p
5.	$MN = 3$, $NP = 3$, $MP = 3\sqrt{2}$	3p
	Cum triunghiul <i>MNP</i> este dreptunghic în <i>N</i> , lungimea înălțimii din <i>N</i> este egală cu $\frac{3\sqrt{2}}{2}$	2p
6.	AC = 2DE = 2	2p
	Triunghiul <i>ABC</i> este dreptunghic și $\sin B = \frac{AC}{BC} = \frac{1}{2}$, deci $m(< B) = 30^{\circ}$	3p

1.	1*3=6-6-18+21=	3 p
	= 3	2p
2.	x * y = 2xy - 6x - 6y + 18 + 3 =	3 p
	=2x(y-3)-6(y-3)+3=2(x-3)(y-3)+3, pentru orice numere reale x şi y	2p
3.	(x*y)*z = (2(x-3)(y-3)+3)*z = 4(x-3)(y-3)(z-3)+3	2p
	x*(y*z) = x*(2(y-3)(z-3)+3) = 4(x-3)(y-3)(z-3)+3 = (x*y)*z, pentru orice x, y	3p
	și z numere reale, deci legea "*" este asociativă	
4.	$2(x-3)(x-3)+3=21 \Leftrightarrow 2(x-3)^2=18$	3 p
	x = 0 sau $x = 6$	2p
5.	x*3=3 şi $3*y=3$, pentru x şi y numere reale	2p
	$\sqrt{1} * \sqrt{2} * \sqrt{3} * \dots * \sqrt{2018} = ((\sqrt{1} * \sqrt{2} * \dots * \sqrt{8}) * 3) * (\sqrt{10} * \sqrt{11} * \dots * \sqrt{2018}) =$	3р
	$= 3 * \left(\sqrt{10} * \sqrt{11} * \dots * \sqrt{2018}\right) = 3$	P
6.	$2(a-3)(b-3)+3=5 \Rightarrow (a-3)(b-3)=1$	3p
	De exemplu, $a = \frac{11}{3}$ și $b = \frac{9}{2}$	2p

Ministerul Educației Naționale Centrul Național de Evaluare și Examinare

SUBIECTUL al III-lea		(30 de puncte)	
1.	$\hat{1} + \hat{3} + \hat{5} + \hat{7} + \hat{9} = (\hat{1} + \hat{9}) + (\hat{3} + \hat{7}) + \hat{5} = \hat{0} + \hat{0} + \hat{5} =$	3p	
	$=\hat{5}$	2 p	
2.	$2 \cdot 8 = 16$	3p	
	$\hat{2} \cdot \hat{8} = \hat{6}$	2 p	
3.	$\hat{3} \cdot \mathbf{x} = \hat{5} \iff \mathbf{x} = \hat{3}^{-1} \cdot \hat{5}$	2p	
	$x = \hat{7} \cdot \hat{5} \Rightarrow x = \hat{5}$	3 p	
4.	$\hat{4} + \hat{6} = \hat{0}$	2p	
	$\hat{6} + \hat{4} = \hat{0} \Rightarrow \hat{6}$ este simetricul elementului $\hat{4}$ în raport cu adunarea în \mathbb{Z}_{10}	3 p	
5.	\hat{a} este element simetrizabil în raport cu înmulțirea în $\mathbb{Z}_{10} \Leftrightarrow (a,10)=1$	3p	
	Elementele simetrizabile sunt $\hat{1}$, $\hat{3}$, $\hat{7}$ și $\hat{9}$	2p	
6.	$x^2 \in \{\hat{0}, \hat{1}, \hat{4}, \hat{5}, \hat{6}, \hat{9}\}$ pentru orice $x \in \mathbb{Z}_{10}$	3p	
	$x^2 + \hat{3} = \hat{0} \Rightarrow x^2 = \hat{7}$ şi, cum $\hat{7} \notin \{\hat{0}, \hat{1}, \hat{4}, \hat{5}, \hat{6}, \hat{9}\}$, obţinem $M = \emptyset$	2 p	

Proba E. c)

Matematică M pedagogic

Clasa a XI-a

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Se consideră o progresie aritmetică $(a_n)_{n\geq 1}$ de rație 2 și care are suma primilor 10 termeni egală cu 150. Determinați a_1 .
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = x 1. Determinați coordonatele punctului situat pe graficul funcției f și care are abscisa egală cu dublul ordonatei.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $x + \frac{1}{x} = 2$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr n din mulțimea $H = \{0,1,2,3,4\}$, acesta să verifice egalitatea $2^n + 5^n = 3^n + 4^n$.
- **5p 5.** În reperul cartezian xOy se consideră punctele M(-1,1), N(2,1) și P(2,4). Determinați lungimea înălțimii din N a triunghiului MNP.
- **5p 6.** Se consideră triunghiul dreptunghic ABC cu ipotenuza BC = 4, punctele D și E, mijloacele laturilor AB, respectiv BC. Știind că DE = 1, calculați $m(\prec B)$.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție x * y = 2xy - 6x - 6y + 21.

- **5p 1.** Calculati 1*3.
- **5p** 2. Demonstrați că x * y = 2(x-3)(y-3)+3, pentru orice numere reale x și y.
- **5p** | **3.** Demonstrați că legea de compoziție "*" este asociativă.
- **5p** | **4.** Determinați numerele reale x pentru care x * x = 21.
- **5p 5.** Calculați $\sqrt{1} * \sqrt{2} * \sqrt{3} * ... * \sqrt{2018}$.
- **5p** | **6.** Dați exemplu de numere $a, b \in \mathbb{Q} \setminus \mathbb{Z}$ astfel încât a * b = 5.

SUBIECTUL al III-lea (30 de puncte)

Se consideră $\mathbb{Z}_{10} = \left\{\hat{0}, \hat{1}, \hat{2}, \hat{3}, \hat{4}, \hat{5}, \hat{6}, \hat{7}, \hat{8}, \hat{9}\right\}$, mulțimea claselor de resturi modulo 10.

- **5p 1.** Calculati $\hat{1} + \hat{3} + \hat{5} + \hat{7} + \hat{9}$ în \mathbb{Z}_{10} .
- **5p 2.** Calculați $\hat{2} \cdot \hat{8}$ în \mathbb{Z}_{10} .
- **5p 3.** Rezolvați în \mathbb{Z}_{10} ecuația $\hat{3} \cdot x + \hat{2} = \hat{7}$.
- **5p** | **4.** Determinați simetricul elementului $\hat{4}$ în raport cu operația de adunare în \mathbb{Z}_{10} .
- **5p 5.** Determinați elementele simetrizabile în raport cu operația de înmulțire în \mathbb{Z}_{10} .
- **5p 6.** Determinați mulțimea $M = \left\{ x \in \mathbb{Z}_{10} \middle| x^2 + \hat{3} = \hat{0} \right\}$.