Today in Cryptography (5830)

Digital signatures RSA signatures and full domain hash Schnorr signatures, DSA PKI

Pick random Nc.

TLS handshake for RSA transport

Check CERT using CA public verification key

Check random PMS C <- E(pk,PMS)

Cert = (pk of bank, signature over it)

ChangeCipherSpec, { Finished, PRF(MS, "Client finished" | | H(transcript)) }

ChangeCipherSpec,

ClientHello, MaxVer, Nc, Ciphers/CompMethods

Bracket notation means contents encrypted

MS <- PRF(PMS, "master secret" | Nc | Ns)

{ Finished, PRF(MS, "Server finished" | | H(transcript')) }

Digital signatures

Two algorithms:

- (1) Key generation outputs (pk,sk)
- (2) Sign (sk, Msg) outputs a signature S (may be randomized)
- (3) Verify(pk,Msg,S) outputs 0/1 (invalid / valid)

Correctness: Verify(pk,Msg,Sign(sk,Msg)) = 1 always

Security: No computationally efficient attacker can forge signatures for a new message even when attacker gets

$$(Msg_1, S_1), (Msg_2, S_2), ..., (Msg_q, S_q)$$

for messages of his choosing and reasonably large q.

Digital signatures

Anyone with public key can verify a signature Only holder of secret key should be able to generate a signature

Digital signatures

"Raw" RSA as a signature scheme:

Key generation gives (N,e), (N,d) Sign((N,d),M) = M^d mod N Verify((N,e),M,S) checks if S^e mod N = M

Secure? No!

PKCS #1 RSA signing

Kg outputs (N,e), (N,d) where $|N|_8 = n$ Let B = $\{0,1\}^8 / \{00\}$ be set of all bytes except 00 Want to encrypt messages of length $|M|_8 = m$


```
Sign((N,d), M, R)

pad = first n - m - 2 bytes from R that

are in B

Y = 00 || 01 || pad || 00 || H(M)

Return Y<sup>d</sup> mod N
```

```
Verify((N,e), M, S)

Y = Ce mod N ; aa||bb||w = Y

If (aa ≠ 00) or (bb ≠ 01) or (00\notin w)

Return error

pad || 00 || h = w

Return H(M) = h
```

Digital signature security

 Padding oracle attacks that work against RSA PKCS#1 v1.5 decryption work against similar implementations of signing

Full Domain Hash RSA

Kg outputs pk = (N,e), sk = (N,d)

H is a hash function

X = 00 || H(1||M) || ... || H(k||M)

 $S = X^d \mod N$

Return S


```
Ver((N,e), M, S)
```

 $X = S^e \mod N$

 $X' = 00 \mid | H(1||M) \mid | ... \mid | H(k||M)$

If X = X' then

Return 1

Return 0

Schnorr signatures

Choose prime q and we'll work in multiplicative group \mathbf{Z}_{q}^{*} sk = k chosen in \mathbf{Z}_{q} pk = g^k

```
\frac{Sign(k, M)}{R = g^r}; e = H(M \mid\mid R); s = r - xe
Return(s,e)
```

```
\frac{\text{Ver}(pk = g^k, M, (s,e))}{R_v = g^s * pk^e ; e_v = H(M \mid \mid R_v)}
If e_v = e then Return 1
Return 0
```

DSA (digital signature algorithm)

Choose prime q and p s.t. p-1 | q . Set $g = h^{(p-1)/q} \mod p$ sk = k chosen in \mathbf{Z}_q pk = g^k

```
Sign(k, M)

r <- $ \mathbf{Z}_q until R = (g^r \mod p) mod q \neq 0

s <- k^{-1}(H(M) + k R) \mod q (start over if s = 0)

Return (R,s)
```

```
\begin{split} & \underline{\text{Ver}(pk = g^k, M, (R,s))} \\ & \text{If R,s not in } \textbf{Z}_q \\ & \text{w} <- s^{-1} \text{ mod } q \; ; \; \text{u1} = \text{H(m)} * \text{w mod } q \\ & \text{u2} = \text{R*w mod } q \; ; \; \text{v} = (g^{u1} \, \text{pk}^{u2} \, \text{mod p}) \, \text{mod } q \\ & \text{If v} = \text{R then Return 1} \\ & \text{Return 0} \end{split}
```


TLS handshake for RSA transport

Pick random Ns

 $PMS \leftarrow D(sk,C)$

Pick random Nc

ClientHello, MaxVer, Nc, Ciphers/CompMethods

ServerHello, Ver, Ns, SessionID, Cipher/CompMethod

CERT = (pk of server, signature over it)

Check CERT using CA public verification key

Pick random PMS C <- E(pk,PMS)

Bracket notation means contents encrypted

C

ChangeCipherSpec,
{ Finished, PRF(MS, "Client finished" || H(transcript)) }

ChangeCipherSpec, { Finished, PRF(MS, "Server finished" || H(transcript')) }

MS <- PRF(PMS, "master secret" || Nc || Ns)

Certificate Authorities and Public-key Infrastructure

M = (pk', data)

S = Sign(sk,M)

Give me a certificate for pk', please

http://amazon.com

pk', data, S

M = (pk',data)

If Ver(pk,M,S) then

trust pk'

(pk',sk')

This prevents man-in-the-middle (MitM) attacks

```
Certificate:
  Data:
      Version: 1 (0x0)
       Serial Number: 7829 (0x1e95)
      Signature Algorithm: md5WithRSAEncryption
       Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc,
               OU=Certification Services Division,
              CN=Thawte Server CA/emailAddress=server-certs@thawte.com
      Validity
          Not Before: Jul 9 16:04:02 1998 GMT
          Not After: Jul 9 16:04:02 1999 GMT
       Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala,
               OU=FreeSoft, CN=www.freesoft.org/emailAddress=baccala@freesoft.org
       Subject Public Key Info:
          Public Key Algorithm: rsaEncryption
          RSA Public Key: (1024 bit)
               Modulus (1024 bit):
                   00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:
                   33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1:
                   66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66:
                   70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17:
                   16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:
                  c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77:
                   8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3:
                   d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8:
                  e8:35:1c:9e:27:52:7e:41:8f
               Exponent: 65537 (0x10001)
  Signature Algorithm: md5WithRSAEncryption
       93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d:
       92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92:
       ab:2f:4b:cf:0a:13:90:ee:2c:0e:43:03:be:f6:ea:8e:9c:67:
       d0:a2:40:03:f7:ef:6a:15:09:79:a9:46:ed:b7:16:1b:41:72:
       0d:19:aa:ad:dd:9a:df:ab:97:50:65:f5:5e:85:a6:ef:19:d1:
       5a:de:9d:ea:63:cd:cb:cc:6d:5d:01:85:b5:6d:c8:f3:d9:f7:
       8f:0e:fc:ba:1f:34:e9:96:6e:6c:cf:f2:ef:9b:bf:de:b5:22:
       68:9f
```

Free CAs

Revocation

Certificates must often be revoked

Short expirations

– CRLs (Certificate revocation lists)

OCSP (online certificate status protocol)

The Web PKI Ecosystem

 http://conferences.sigcomm.org/imc/2013/ papers/imc257-durumericAemb.pdf

 ~1800 CAs that can sign any domain controlled by 683 organizations

SSL Certificates

Signing Service

SIM-ID

DocProof

Cooperation Dutch government

> DigiNotar reports security incident

Read the press release >>

Read the press release >>

DigiNotar focuses on ensuring the integrity of

information exchange. More information >>

information flow, and legal guarantees for all online