

Sequence Listing

<110> Genentech, Inc.
Ashkenazi, Avi J.
Fong, Sherman
Goddard, Audrey
Gurney, Austin L.
Napier, Mary A.
Tumas, Daniel
Wood, William I.

<120> COMPOUNDS, COMPOSITIONS AND METHODS FOR THE TREATMENT OF DISEASES CHARACTERIZED BY A33- RELATED ANTIGENS

<130> P1216R1PCT

<140> US 09/254,465
<141> 1999-03-05

<150> PCT/US98/24855
<151> 1998-11-20

<150> US 60/066,364
<151> 1997-11-21

<150> US 60/078,936
<151> 1998-03-20

<150> PCT/US98/19437
<151> 1998-09-17

<160> 30

<210> 1
<211> 299
<212> PRT
<213> Homo sapiens

<400> 1
Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Leu Cys Leu Phe
1 5 10 15
Ile Leu Ala Ile Leu Leu Cys Ser Leu Ala Leu Gly Ser Val Thr
20 25 30
Val His Ser Ser Glu Pro Glu Val Arg Ile Pro Glu Asn Asn Pro
35 40 45
Val Lys Leu Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val
50 55 60
Glu Trp Lys Phe Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr
65 70 75
Asn Asn Lys Ile Thr Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu
80 85 90
Pro Thr Gly Ile Thr Phe Lys Ser Val Thr Arg Glu Asp Thr Gly
95 100 105
Thr Tyr Thr Cys Met Val Ser Glu Glu Gly Gly Asn Ser Tyr Gly
110 115 120

Glu Val Lys Val Lys Leu Ile Val Leu Val Pro Pro Ser Lys Pro
 125 130 135
 Thr Val Asn Ile Pro Ser Ser Ala Thr Ile Gly Asn Arg Ala Val
 140 145 150
 Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro Pro Ser Glu Tyr Thr
 155 160 165
 Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn Pro Lys Ser Thr
 170 175 180
 Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro Thr Thr Gly
 185 190 195
 Glu Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly Glu Tyr
 200 205 210
 Ser Cys Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser Asn
 215 220 225
 Ala Val Arg Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val
 230 235 240
 Ala Ala Val Leu Val Thr Leu Ile Leu Leu Gly Ile Leu Val Phe
 245 250 255
 Gly Ile Trp Phe Ala Tyr Ser Arg Gly His Phe Asp Arg Thr Lys
 260 265 270
 Lys Gly Thr Ser Ser Lys Lys Val Ile Tyr Ser Gln Pro Ser Ala
 275 280 285
 Arg Ser Glu Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val
 290 295
 <210> 2
 <211> 321
 <212> PRT
 <213> Homo sapiens
 <400> 2
 Met Gly Ile Leu Leu Gly Leu Leu Leu Leu Gly His Leu Thr Val
 1 5 10 15
 Asp Thr Tyr Gly Arg Pro Ile Leu Glu Val Pro Glu Ser Val Thr
 20 25 30
 Gly Pro Trp Lys Gly Asp Val Asn Leu Pro Cys Thr Tyr Asp Pro
 35 40 45
 Leu Gln Gly Tyr Thr Gln Val Leu Val Lys Trp Leu Val Gln Arg
 50 55 60
 Gly Ser Asp Pro Val Thr Ile Phe Leu Arg Asp Ser Ser Gly Asp
 65 70 75
 His Ile Gln Gln Ala Lys Tyr Gln Gly Arg Leu His Val Ser His
 80 85 90
 Lys Val Pro Gly Asp Val Ser Leu Gln Leu Ser Thr Leu Glu Met
 95 100 105

Asp	Asp	Arg	Ser	His	Tyr	Thr	Cys	Glu	Val	Thr	Trp	Gln	Thr	Pro
				110				115				120		
Asp	Gly	Asn	Gln	Val	Val	Arg	Asp	Lys	Ile	Thr	Glu	Leu	Arg	Val
				125				130				135		
Gln	Lys	Leu	Ser	Val	Ser	Lys	Pro	Thr	Val	Thr	Thr	Gly	Ser	Gly
				140				145				150		
Tyr	Gly	Phe	Thr	Val	Pro	Gln	Gly	Met	Arg	Ile	Ser	Leu	Gln	Cys
				155				160				165		
Gln	Ala	Arg	Gly	Ser	Pro	Pro	Ile	Ser	Tyr	Ile	Trp	Tyr	Lys	Gln
				170				175				180		
Gln	Thr	Asn	Asn	Gln	Glu	Pro	Ile	Lys	Val	Ala	Thr	Leu	Ser	Thr
				185				190				195		
Leu	Leu	Phe	Lys	Pro	Ala	Val	Ile	Ala	Asp	Ser	Gly	Ser	Tyr	Phe
				200				205				210		
Cys	Thr	Ala	Lys	Gly	Gln	Val	Gly	Ser	Glu	Gln	His	Ser	Asp	Ile
				215				220				225		
Val	Lys	Phe	Val	Val	Lys	Asp	Ser	Ser	Lys	Leu	Leu	Lys	Thr	Lys
				230				235				240		
Thr	Glu	Ala	Pro	Thr	Thr	Met	Thr	Tyr	Pro	Leu	Lys	Ala	Thr	Ser
				245				250				255		
Thr	Val	Lys	Gln	Ser	Trp	Asp	Trp	Thr	Thr	Asp	Met	Asp	Gly	Tyr
				260				265				270		
Leu	Gly	Glu	Thr	Ser	Ala	Gly	Pro	Gly	Lys	Ser	Leu	Pro	Val	Phe
				275				280				285		
Ala	Ile	Ile	Leu	Ile	Ile	Ser	Leu	Cys	Cys	Met	Val	Val	Phe	Thr
				290				295				300		
Met	Ala	Tyr	Ile	Met	Leu	Cys	Arg	Lys	Thr	Ser	Gln	Gln	Glu	His
				305				310				315		
Val	Tyr	Glu	Ala	Ala	Arg									
				320										

<210> 3
 <211> 390
 <212> DNA
 <213> artificial

<220>
 <221> artificial sequence
 <222> 1-390
 <223> artificial sequence

<400> 3
 cttcttgcca actggtatca ctttcaagtc cgtgacacgg gaagacactg 50
 ggacatacac ttgtatggtc tctgaggaag gcggcaacag ctatggggag 100
 gtcaagggtca agctcatcgt gcttgcct ccattccaagc ctacagttaa 150
 catccccctcc tctgccacca ttgggaaccg ggcagtgctg acatgctcag 200

aacaagatgg ttccccacct tctgaataca cctggttcaa agatggata 250
gtgatgccta cgaatcccaa aagcacccgt gccttcagca actcttccta 300
tgtcctgaat cccacaacag gagagctggt ctttgatccc ctgtcagcct 350
ctgatactgg agaatacagc tgtgaggcac ggaatgggta 390

<210> 4
<211> 726
<212> DNA
<213> artificial

<220>
<221> artificial sequence
<222> 1-726
<223> artificial sequence

<400> 4
tctcagtccc ctcgctgtag tcgcggagct gtgttctgtt tcccaggagt 50
ccttcggcgg ctgttgtgct caggtgcgcc tgatcgcat ggggacaaag 100
gcgcaagctc gagagggaaac tgggtgtcct cttcatattg ggcgcctgt 150
tgtgctccct ggcattgggc agtgttacag ttgcactctt ctgaacctga 200
agtcagaatt cctgagaata atcctgtgaa gttgtcctgt gcctactcgg 250
gctttcttc tccccgtgtg gagtggaagt ttgaccaagg agacaccacc 300
agactcggtt gctataataa caagatcaca gcttcctatg aggaccgggt 350
gacttcttg ccaactggta tcaccttcaa gtccgtgaca cgggaagaca 400
ctgggacata cacttgtatg gtctctgagg aaggcggcaa cagctatggg 450
gaggtaagg tcaagctcat cgtgcttgcgt cctccatcca agcctacagt 500
taacatcccc tcctctgcca ccattggaa ccgggcagtg ctgacatgct 550
cagaacaaga tggttccca ccttctgaat acacctggtt caaagatggg 600
atagtgtatgc ctacgaatcc caaaagcacc cgtgccttca gcaactcttc 650
ctatgtcctg aatcccacaa caggagagct ggtctttgat cccctgtcag 700
cctctgatac tggagaatac agctgt 726

<210> 5
<211> 1503
<212> DNA
<213> artificial

<220>
<221> artificial sequence
<222> 1-1503
<223> artificial sequence

<400> 5
gcaggcaaag taccagggcc gcctgcgtgt gagccacaag gttccaggag 50
atgtatccct ccaattgagc accctggaga tggatgaccg gagccactac 100

acgtgtgaag tcacctggca gactcctgat ggcaaccaag tcgtgagaga 150
taagattact gagctccgtg tccagaaact ctctgtctcc aagcccacag 200
tgacaactgg cagcggttat ggcttcacgg tgccccaggg aatgaggatt 250
agccttcaat gccagggttc ggggttctcc tcccatcagt tatatttgg 300
ataagcaaca gactaataac cagggAACCC atcaaagttag caaccctaag 350
taccttactc ttcaaggcctg cggtgatagc cgactcaggg tcctatttct 400
gcactgcca gggccaggtt ggctctgagc agcacagcga cattgtgaag 450
tttgtgtca aagactcctc aaagctactc aagaccaaga ctgaggcacc 500
tacaaccatg acataccct tgaaagcaac atctacagtg aagcagtcc 550
gggactggac cactgacatg gatggctacc ttggagagac cagtgtggg 600
ccagggaaaga gcctgcctgt ctttgccatc atcctcatca ttccttgc 650
ctgtatggtg gttttacca tggcctatat catgctctgt cggaagacat 700
cccaacaaga gcatgtctac gaagcagcca gggcacatgc cagagaggcc 750
aacgactctg gagaaaccat gagggtggcc atcttcgcaa gtggctgctc 800
cagtgtatgag ccaacttccc agaatctggg gcaacaacta ctctgtatgag 850
ccctgcata gacaggagta ccagatcatc gcccagatca atggcaacta 900
cgccccctg ctggacacag ttccctctgga ttatgagttt ctggccactg 950
agggcaaaag tgtctgttaa aaatgccccca ttaggccagg atctgtgac 1000
ataattgcct agtcagtcc tgccttgc atggccttct tccctgtac 1050
ctctcttcct ggatagcccc aagtgtccgc ctaccaacac tggagccgct 1100
gggagtcact ggcttgccc tggaaatttgc cagatgcata tcaagtaagc 1150
cagctgtgg atttggctct gggcccttct agtatctctg ccgggggctt 1200
ctggtaactcc tctctaaata ccagagggaa gatgcccata gcactaggac 1250
ttggtcatca tgcctacaga cactattcaa ctttggcatc ttgccaccag 1300
aagacccgag gggaggctca gctctgccag ctcagaggac cagctataatc 1350
caggatcatt tctctttctt cagggccaga cagctttaa ttgaaattgt 1400
tatttcacag gccagggttc agttctgctc ctccactata agtctaattgt 1450
tctgactctc tcctgggtct caataaataat ctaatcataa cagcaaaaaa 1500

aaa 1503

<210> 6
<211> 319
<212> PRT
<213> Homo sapiens

<400> 6

Met	Val	Gly	Lys	Met	Trp	Pro	Val	Leu	Trp	Thr	Leu	Cys	Ala	Val
1				5					10					15
Arg	Val	Thr	Val	Asp	Ala	Ile	Ser	Val	Glu	Thr	Pro	Gln	Asp	Val
	20								25					30
Leu	Arg	Ala	Ser	Gln	Gly	Lys	Ser	Val	Thr	Leu	Pro	Cys	Thr	Tyr
				35					40					45
His	Thr	Ser	Thr	Ser	Ser	Arg	Glu	Gly	Leu	Ile	Gln	Trp	Asp	Lys
					50				55					60
Leu	Leu	Leu	Thr	His	Thr	Glu	Arg	Val	Val	Ile	Trp	Pro	Phe	Ser
					65				70					75
Asn	Lys	Asn	Tyr	Ile	His	Gly	Glu	Leu	Tyr	Lys	Asn	Arg	Val	Ser
					80				85					90
Ile	Ser	Asn	Asn	Ala	Glu	Gln	Ser	Asp	Ala	Ser	Ile	Thr	Ile	Asp
					95				100					105
Gln	Leu	Thr	Met	Ala	Asp	Asn	Gly	Thr	Tyr	Glu	Cys	Ser	Val	Ser
					110				115					120
Leu	Met	Ser	Asp	Leu	Glu	Gly	Asn	Thr	Lys	Ser	Arg	Val	Arg	Leu
					125				130					135
Leu	Val	Leu	Val	Pro	Pro	Ser	Lys	Pro	Glu	Cys	Gly	Ile	Glu	Gly
					140				145					150
Glu	Thr	Ile	Ile	Gly	Asn	Asn	Ile	Gln	Leu	Thr	Cys	Gln	Ser	Lys
					155				160					165
Glu	Gly	Ser	Pro	Thr	Pro	Gln	Tyr	Ser	Trp	Lys	Arg	Tyr	Asn	Ile
					170				175					180
Leu	Asn	Gln	Glu	Gln	Pro	Leu	Ala	Gln	Pro	Ala	Ser	Gly	Gln	Pro
					185				190					195
Val	Ser	Leu	Lys	Asn	Ile	Ser	Thr	Asp	Thr	Ser	Gly	Tyr	Tyr	Ile
					200				205					210
Cys	Thr	Ser	Ser	Asn	Glu	Glu	Gly	Thr	Gln	Phe	Cys	Asn	Ile	Thr
					215				220					225
Val	Ala	Val	Arg	Ser	Pro	Ser	Met	Asn	Val	Ala	Leu	Tyr	Val	Gly
					230				235					240
Ile	Ala	Val	Gly	Val	Val	Ala	Ala	Leu	Ile	Ile	Ile	Gly	Ile	Ile
					245				250					255
Ile	Tyr	Cys	Cys	Cys	Cys	Arg	Gly	Lys	Asp	Asp	Asn	Thr	Glu	Asp
					260				265					270
Lys	Glu	Asp	Ala	Arg	Pro	Asn	Arg	Glu	Ala	Tyr	Glu	Glu	Pro	Pro
					275				280					285
Glu	Gln	Leu	Arg	Glu	Leu	Ser	Arg	Glu	Arg	Glu	Glu	Asp	Asp	
					290				295					300
Tyr	Arg	Gln	Glu	Glu	Gln	Arg	Ser	Thr	Gly	Arg	Glu	Ser	Pro	Asp
					305				310					315

His Leu Asp Gln

<210> 7
<211> 2181
<212> DNA
<213> Homo sapiens

<400> 7
cccacgcgtc cgccccacgacg tccgcccacg ggtccggccca cgcgtccggg 50
ccaccagaag tttgagcctc tttggtagca ggaggctgga agaaaggaca 100
gaagtagctc tggctgtat gggatctta ctgggcctgc tactcctggg 150
gcacctaaca gtggacactt atggccgtcc catcctggaa gtgccagaga 200
gtgtaacagg accttgaaa gggatgtga atcttcctg cacctatgac 250
cccctgcaag gctacaccca agtcttggtg aagtggctgg tacaacgtgg 300
ctcagaccct gtcaccatct ttctacgtga ctcttctgga gaccatatcc 350
agcaggcaaa gtaccaggc cgcctgcatt tgagccacaa gttccagga 400
gatgtatccc tccaatttagag caccctggag atggatgacc ggagccacta 450
cacgtgtgaa gtcacactggc agactcctga tggcaaccaa gtcgtgagag 500
ataagattac tgagctccgt gtccagaaac tctctgtctc caagccaca 550
gtgacaactg gcagcggtta tggcttacg gtgcggcagg gaatgaggat 600
tagcattcaa tgcaggcctc ggggttctcc tcccatcagt tatatttgt 650
ataagcaaca gactaataac caggaaccca tcaaagttagc aaccctaagt 700
accttactct tcaaggcctgc ggtgatagcc gactcaggct cctatttctg 750
caactgccaag ggccagggttg gctctgagca gcacagcgac attgtgaagt 800
ttgtggtcaa agactcctca aagctactca agaccaagac tgaggcacct 850
acaaccatga cataccctt gaaagcaaca tctacagtga agcagtcctg 900
ggactggacc actgacatgg atggctacct tggagagacc agtgctggc 950
cagggaaagag cctgcctgtc tttgccatca tcctcatcat ctccctgtgc 1000
tgtatggtgg ttttaccat ggcctatatac atgctctgtc ggaagacatc 1050
ccaacaagag catgtctacg aagcagccag gtaagaaagt ctctcctctt 1100
ccatTTTGA ccccgccctt gccctcaatt ttgattactg gcaggaaatg 1150
tggaggaagg ggggtgtggc acagacccaa tcctaaggcc ggaggccttc 1200
agggtcagga catagctgcc ttccctctct cagggcacctt ctgaggttgt 1250
tttggccctc tgaacacaaa ggataattta gatccatctg cttctgctt 1300
ccagaatccc tgggtggtag gatcctgata attaattggc aagaatttag 1350

gcagaagggt gggaaaccag gaccacagcc ccaagtccct tcttatgggt 1400
ggtgggctct tggccatag ggcacatgcc agagaggcca acgactctgg 1450
agaaaaccatg agggtggcca tcttcgcaag tggctgctcc agtgatgagc 1500
caacttccca gaatctggc aacaactact ctgatgagcc ctgcata tagga 1550
caggagtacc agatcatcgcc agatcaat ggcaactacg cccgcctgct 1600
ggacacagtt cctctggatt atgagttct gcccactgag ggcaaaagtg 1650
tctgttaaaa atgccccatt aggccaggat ctgctgacat aattgcctag 1700
tcagtccttg cttctgcatt ggccttcttc cctgctaccc ctcttcctgg 1750
atagcccaa gtgtccgcct accaacactg gagccgctgg gagtcactgg 1800
cttgccttg gaatttgcca gatgcatttc aagtaagcca gctgctggat 1850
ttggctctgg gcccttcttag tatctctgcc gggggcttct ggtactcctc 1900
tctaaatacc agagggaaaga tgcccatagc actaggactt ggtcatcatg 1950
cctacagaca ctattcaact ttggcatctt gccaccagaa gacccgaggg 2000
aggctcagct ctgcccagctc agaggaccag ctatatccag gatcatttct 2050
ctttcttcag ggccagacag ctttaattt aaattgttat ttcacaggcc 2100
agggttcagt tctgctcctc cactataagt ctaatgttct gactctctcc 2150
tggtgctcaa taaatatcta atcataacag c 2181

<210> 8
<211> 1295
<212> DNA
<213> Homo sapiens

<400> 8
cccagaaggtaaaggcccc cggcctcctg cgctcctgcc gcccggaccc 50
tcgacctcct cagagcagcc ggctgcggcc cgggaagat ggcgaggagg 100
agccgcccacc gcctcctct gctgctgctg cgctacctgg tggtcgcct 150
ggctatcat aaggcctatg gttttctgc cccaaaagac caacaagtag 200
tcacagcagt agagtaccaa gaggctattt tagcctgcaa aaccccaaag 250
aagactgttt cctccagatt agagtggaaag aaactgggtc ggagtgtctc 300
cttgcgttac tatcaacaga ctcttcaagg tgattttaaa aatcgagctg 350
agatgataga tttcaatatac cggatcaaaa atgtgacaag aagtgtatgc 400
ggaaatatac gttgtgaagt tagtgccca tctgagcaag gccaaaacct 450
ggaagaggat acagtcactc tggaagtatt agtggctcca gcagttccat 500
catgtgaagt acccttcttct gctctgagtg gaactgtggt agagctacga 550
tgtcaagaca aagaaggaa tccagctcct gaatacacat ggtttaagga 600

tggcatccgt ttgctagaaa atcccagact tggctcccaa agcaccaaca 650
gctcatacac aatgaataca aaaactggaa ctctgcaatt taatactgtt 700
tccaaactgg acactggaga atattcctgt gaagcccgca attctgttgg 750
atatcgagg tgtcctggga aacgaatgca agtagatgtat ctcacataa 800
gtggcatcat agcagccgta gtagttgtgg ccttagtgtat ttccgtttgt 850
ggccttggtg tatgctatgc tcagaggaaa ggctactttt caaaagaaaac 900
ctccttccag aagagtaatt ctcatctaa agccacgaca atgagtgaaa 950
atgtgcagtg gctcacgcct gtaatcccag cactttggaa ggccgcggcg 1000
ggcggatcac gaggtcagga gttctagacc agtctggcca atatggtcaa 1050
accccatctc tactaaaata caaaaattag ctggcatgg tggcatgtgc 1100
ctgcagttcc agctgcttgg gagacaggag aatcacttga acccgggagg 1150
cggaggttgc agttagctga gatcacgcca ctgcagtccttgc gcctgggtaa 1200
cagagcaaga ttccatctca aaaaataaaa taaataaata aataaataact 1250
gtttttacc tgtagaattc ttacaataaa tatacgcttga tattc 1295

<210> 9
<211> 312
<212> PRT
<213> Homo sapiens

<400> 9
Met Ala Arg Arg Ser Arg His Arg Leu Leu Leu Leu Leu Arg
1 5 10 15
Tyr Leu Val Val Ala Leu Gly Tyr His Lys Ala Tyr Gly Phe Ser
20 25 30
Ala Pro Lys Asp Gln Gln Val Val Thr Ala Val Glu Tyr Gln Glu
35 40 45
Ala Ile Leu Ala Cys Lys Thr Pro Lys Lys Thr Val Ser Ser Arg
50 55 60
Leu Glu Trp Lys Lys Leu Gly Arg Ser Val Ser Phe Val Tyr Tyr
65 70 75
Gln Gln Thr Leu Gln Gly Asp Phe Lys Asn Arg Ala Glu Met Ile
80 85 90
Asp Phe Asn Ile Arg Ile Lys Asn Val Thr Arg Ser Asp Ala Gly
95 100 105
Lys Tyr Arg Cys Glu Val Ser Ala Pro Ser Glu Gln Gly Gln Asn
110 115 120
Leu Glu Glu Asp Thr Val Thr Leu Glu Val Leu Val Ala Pro Ala
125 130 135
Val Pro Ser Cys Glu Val Pro Ser Ser Ala Leu Ser Gly Thr Val
140 145 150

Val Glu Leu Arg Cys Gln Asp Lys Glu Gly Asn Pro Ala Pro Glu
 155 160 165
 Tyr Thr Trp Phe Lys Asp Gly Ile Arg Leu Leu Glu Asn Pro Arg
 170 175 180
 Leu Gly Ser Gln Ser Thr Asn Ser Ser Tyr Thr Met Asn Thr Lys
 185 190 195
 Thr Gly Thr Leu Gln Phe Asn Thr Val Ser Lys Leu Asp Thr Gly
 200 205 210
 Glu Tyr Ser Cys Glu Ala Arg Asn Ser Val Gly Tyr Arg Arg Cys
 215 220 225
 Pro Gly Lys Arg Met Gln Val Asp Asp Leu Asn Ile Ser Gly Ile
 230 235 240
 Ile Ala Ala Val Val Val Ala Leu Val Ile Ser Val Cys Gly
 245 250 255
 Leu Gly Val Cys Tyr Ala Gln Arg Lys Gly Tyr Phe Ser Lys Glu
 260 265 270
 Thr Ser Phe Gln Lys Ser Asn Ser Ser Lys Ala Thr Thr Met
 275 280 285
 Ser Glu Asn Val Gln Trp Leu Thr Pro Val Ile Pro Ala Leu Trp
 290 295 300
 Lys Ala Ala Ala Gly Gly Ser Arg Gly Gln Glu Phe
 305 310

<210> 10
 <211> 300
 <212> PRT
 <213> Mus musculus

<400> 10
 Met Gly Thr Glu Gly Lys Ala Gly Arg Lys Leu Leu Phe Leu Phe
 1 5 10 15
 Thr Ser Met Ile Leu Gly Ser Leu Val Gln Gly Lys Gly Ser Val
 20 25 30
 Tyr Thr Ala Gln Ser Asp Val Gln Val Pro Glu Asn Glu Ser Ile
 35 40 45
 Lys Leu Thr Cys Thr Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu
 50 55 60
 Trp Lys Phe Val Gln Gly Ser Thr Thr Ala Leu Val Cys Tyr Asn
 65 70 75
 Ser Gln Ile Thr Ala Pro Tyr Ala Asp Arg Val Thr Phe Ser Ser
 80 85 90
 Ser Gly Ile Thr Phe Ser Ser Val Thr Arg Lys Asp Asn Gly Glu
 95 100 105
 Tyr Thr Cys Met Val Ser Glu Glu Gly Gln Asn Tyr Gly Glu
 110 115 120

Val	Ser	Ile	His	Leu	Thr	Val	Leu	Val	Pro	Pro	Ser	Lys	Pro	Thr
				125					130				135	
Ile	Ser	Val	Pro	Ser	Ser	Val	Thr	Ile	Gly	Asn	Arg	Ala	Val	Leu
				140				145					150	
Thr	Cys	Ser	Glu	His	Asp	Gly	Ser	Pro	Pro	Ser	Glu	Tyr	Ser	Trp
				155				160					165	
Phe	Lys	Asp	Gly	Ile	Ser	Met	Leu	Thr	Ala	Asp	Ala	Lys	Lys	Thr
				170				175					180	
Arg	Ala	Phe	Met	Asn	Ser	Ser	Phe	Thr	Ile	Asp	Pro	Lys	Ser	Gly
				185				190					195	
Asp	Leu	Ile	Phe	Asp	Pro	Val	Thr	Ala	Phe	Asp	Ser	Gly	Glu	Tyr
				200				205					210	
Tyr	Cys	Gln	Ala	Gln	Asn	Gly	Tyr	Gly	Thr	Ala	Met	Arg	Ser	Glu
				215				220					225	
Ala	Ala	His	Met	Asp	Ala	Val	Glu	Leu	Asn	Val	Gly	Gly	Ile	Val
				230				235					240	
Ala	Ala	Val	Leu	Val	Thr	Leu	Ile	Leu	Leu	Gly	Leu	Leu	Ile	Phe
				245				250					255	
Gly	Val	Trp	Phe	Ala	Tyr	Ser	Arg	Gly	Tyr	Phe	Glu	Thr	Thr	Lys
				260				265					270	
Lys	Gly	Thr	Ala	Pro	Gly	Lys	Lys	Val	Ile	Tyr	Ser	Gln	Pro	Ser
				275				280					285	
Thr	Arg	Ser	Glu	Gly	Glu	Phe	Lys	Gln	Thr	Ser	Ser	Phe	Leu	Val
				290				295					300	

<210> 11
<211> 2181
<212> DNA
<213> Homo sapiens

<400> 11
cccacgcgtc cggccacgctc tccgcccacg ggtccgccccca cgcgtccggg 50
ccaccagaag tttgaggcctc tttggtagca ggaggctgga agaaaggaca 100
gaagtagctc tggctgtat gggatctta ctgggcctgc tactcctggg 150
gcacctaaca gtggacactt atggccgtcc catcctggaa gtgccagaga 200
gtgtaacagg accttggaaa gggatgtga atcttccctg cacctatgac 250
cccctgcaag gtcacaccca agtcttggtg aagtggctgg tacaacgtgg 300
ctcagaccct gtcaccatct ttctacgtga ctcttctggaa gaccatatcc 350
agcaggcaaa gtaccaggc cgcctgcatg tgagccacaa ggttccagga 400
gatgtatccc tccaatttag caccctggag atggatgacc ggagccacta 450
cacgtgtgaa gtcacctggc agactcctga tggcaaccaa gtcgtgagag 500
ataagattac tgagctccgt gtccagaaac tctctgtctc caagcccaca 550

gtgacaactg gcagcggta tggcttcacg gtgcaggagg gaatgaggat 600
tagcattcaa tgccaggctc ggggtctcc tcccatcagt tatatttgt 650
ataagcaaca gactaataac caggaaccca tcaaagtgc aaccctaagt 700
accttactct tcaagcctgc ggtgatagcc gactcaggct cctattctg 750
caactgccaag ggccaggttg gctctgagca gcacagcgac attgtgaagt 800
ttgtggtcaa agactcctca aagctactca agaccaagac tgaggcacct 850
acaaccatga cataccctt gaaagcaaca tctacagtga agcagtcctg 900
ggactggacc actgacatgg atggctacct tggagagacc agtgctggc 950
cagggaaagag cctgcctgtc tttgccatca tcctcatcat ctccctgtgc 1000
tgtatggtgg ttttaccat ggcctataatc atgctctgtc ggaagacatc 1050
ccaacaagag catgtctacg aagcagccag gtaagaaaagt ctctcctctt 1100
ccatfffftga ccccgccct gccctcaatt ttgattactg gcagggaaatg 1150
tggaggaagg ggggtgtggc acagacccaa tcctaaggcc ggaggccttc 1200
agggtcagga catacgctgcc ttcccctctc caggcacctt ctgaggttgt 1250
tttggccctc tgaacacaaa ggataattt gatccatctg cttctgctt 1300
ccagaatccc tgggtggtag gatcctgata attaattggc aagaatttag 1350
gcagaagggt gggaaaccag gaccacagcc ccaagtcctc tcttatgggt 1400
ggtgggctct tggccatag ggcacatgcc agagaggcca acgactctgg 1450
agaaaccatg agggtggcca tcttcgcaag tggctgctcc agtgatgagc 1500
caactccccca gaatctggc aacaactact ctgatgagcc ctgcatacg 1550
caggagtacc agatcatcgc ccagatcaat ggcaactacg cccgcctgct 1600
ggacacagtt cctctggatt atgagttct ggcactgag ggcaaaagt 1650
tctgttaaaa atgccccatt aggccaggat ctgctgacat aattgcctag 1700
tcagtccttgc cttctgcat ggccttcttc cctgctacct ctcttcctgg 1750
atagccccaaa gtgtccgcct accaacactg gagccgctgg gagtcactgg 1800
ctttggccctg gaatttgcct gatgcatttc aagtaagccca gctgctggat 1850
ttggctctgg gcccttcttag tatctctgccc gggggcttct ggtactcctc 1900
tctaaatacc agagggaaaga tgcccatagc actaggactt ggtcatcatg 1950
cctacagaca ctattcaact ttggcatctt gccaccagaa gacccgaggg 2000
aggctcagct ctgccagctc agaggaccag ctatatccag gatcatttct 2050
ctttcttcag ggccagacag ctttaattt gaaattgttat ttcacaggcc 2100
agggttcagt tctgctcctc cactataagt ctaatgttct gactctctcc 2150

tggtgctcaa taaatatcta atcataacag c 2181

<210> 12
<211> 24
<212> DNA
<213> artificial sequence

<220>
<223> artificial sequence

<400> 12
tcgcggagct gtgttctgtt tccc 24

<210> 13
<211> 50
<212> DNA
<213> artificial sequence

<220>
<223> artificial sequence

<400> 13
tgatcgcat gggcacaaag gcgcaagctc gagaggaaac tgttgtgcct 50

<210> 14
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> artificial sequence

<400> 14
acacctggtt caaagatggg 20

<210> 15
<211> 24
<212> DNA
<213> artificial sequence

<220>
<223> artificial sequence

<400> 15
taggaagagt tgctgaaggc acgg 24

<210> 16
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> artificial sequence

<400> 16
ttgccttact caggtgctac 20

<210> 17
<211> 20
<212> DNA
<213> artificial sequence

<220>

<223> artificial sequence

<400> 17
actcagcagt ggttaggaaag 20

<210> 18
<211> 24
<212> DNA
<213> artificial sequence

<220>

<223> artificial sequence

<400> 18
tatccctcca attgagcacc ctgg 24

<210> 19
<211> 21
<212> DNA
<213> artificial sequence

<220>

<223> artificial sequence

<400> 19
gtcggaaagac atcccaacaa g 21

<210> 20
<211> 24
<212> DNA
<213> artificial sequence

<220>

<223> artificial sequence

<400> 20
cttcacaatg tcgctgtgct gctc 24

<210> 21
<211> 24
<212> DNA
<213> artificial sequence

<220>

<223> artificial sequence

<400> 21
agccaaatcc agcagctggc ttac 24

<210> 22
<211> 50
<212> DNA
<213> artificial sequence

<220>

<223> artificial sequence

<400> 22
tggatgacccg gagccactac acgtgtgaag tcacctggca gactcctgat 50

<210> 23
<211> 260
<212> PRT

<213> Homo sapiens

<400> 23

Leu	Ala	Leu	Gly	Ser	Val	Thr	Val	His	Ser	Ser	Glu	Pro	Glu	Val
1					5				10					15
Arg	Ile	Pro	Glu	Asn	Asn	Pro	Val	Lys	Leu	Ser	Cys	Ala	Tyr	Ser
					20				25					30
Gly	Phe	Ser	Ser	Pro	Arg	Val	Glu	Trp	Lys	Phe	Asp	Gln	Gly	Asp
					35				40					45
Thr	Thr	Arg	Leu	Val	Cys	Tyr	Asn	Asn	Lys	Ile	Thr	Ala	Ser	Tyr
					50				55					60
Glu	Asp	Arg	Val	Thr	Phe	Leu	Pro	Thr	Gly	Ile	Thr	Phe	Lys	Ser
					65				70					75
Val	Thr	Arg	Glu	Asp	Thr	Gly	Thr	Tyr	Thr	Cys	Met	Val	Ser	Glu
					80				85					90
Glu	Gly	Gly	Asn	Ser	Tyr	Gly	Glu	Val	Lys	Val	Lys	Leu	Ile	Val
					95				100					105
Leu	Val	Pro	Pro	Ser	Lys	Pro	Thr	Val	Asn	Ile	Pro	Ser	Ser	Ala
					110				115					120
Thr	Ile	Gly	Asn	Arg	Ala	Val	Leu	Thr	Cys	Ser	Glu	Gln	Asp	Gly
					125				130					135
Ser	Pro	Pro	Ser	Glu	Tyr	Thr	Trp	Phe	Lys	Asp	Gly	Ile	Val	Met
					140				145					150
Pro	Thr	Asn	Pro	Lys	Ser	Thr	Arg	Ala	Phe	Ser	Asn	Ser	Ser	Tyr
					155				160					165
Val	Leu	Asn	Pro	Thr	Thr	Gly	Glu	Leu	Val	Phe	Asp	Pro	Leu	Ser
					170				175					180
Ala	Ser	Asp	Thr	Gly	Glu	Tyr	Ser	Cys	Glu	Ala	Arg	Asn	Gly	Tyr
					185				190					195
Gly	Thr	Pro	Met	Thr	Ser	Asn	Ala	Val	Arg	Met	Glu	Ala	Val	Glu
					200				205					210
Arg	Asn	Val	Gly	Val	Ile	Val	Ala	Ala	Val	Leu	Val	Thr	Leu	Ile
					215				220					225
Leu	Leu	Gly	Ile	Leu	Val	Phe	Gly	Ile	Trp	Phe	Ala	Tyr	Ser	Arg
					230				235					240
Gly	His	Phe	Asp	Arg	Thr	Lys	Lys	Gly	Thr	Ser	Ser	Lys	Lys	Val
					245				250					255
Ile	Tyr	Ser	Gln	Pro										
					260									

<210> 24

<211> 270

<212> PRT

<213> Homo sapiens

<400> 24

Val	Arg	Val	Thr	Val	Asp	Ala	Ile	Ser	Val	Glu	Thr	Pro	Gln	Asp
1				5					10				15	
Val	Leu	Arg	Ala	Ser	Gln	Gly	Lys	Ser	Val	Thr	Leu	Pro	Cys	Thr
	20								25				30	
Tyr	His	Thr	Ser	Thr	Ser	Ser	Arg	Glu	Gly	Leu	Ile	Gln	Trp	Asp
	35							40					45	
Lys	Leu	Leu	Leu	Thr	His	Thr	Glu	Arg	Val	Val	Ile	Trp	Pro	Phe
	50							55					60	
Ser	Asn	Lys	Asn	Tyr	Ile	His	Gly	Glu	Leu	Tyr	Lys	Asn	Arg	Val
	65							70					75	
Ser	Ile	Ser	Asn	Asn	Ala	Glu	Gln	Ser	Asp	Ala	Ser	Ile	Thr	Ile
	80							85					90	
Asp	Gln	Leu	Thr	Met	Ala	Asp	Asn	Gly	Thr	Tyr	Glu	Cys	Ser	Val
	95								100				105	
Ser	Leu	Met	Ser	Asp	Leu	Glu	Gly	Asn	Thr	Lys	Ser	Arg	Val	Arg
	110							115					120	
Leu	Leu	Val	Leu	Val	Pro	Pro	Ser	Lys	Pro	Glu	Cys	Gly	Ile	Glu
	125							130					135	
Gly	Glu	Thr	Ile	Ile	Gly	Asn	Asn	Ile	Gln	Leu	Thr	Cys	Gln	Ser
	140							145					150	
Lys	Glu	Gly	Ser	Pro	Thr	Pro	Gln	Tyr	Ser	Trp	Lys	Arg	Tyr	Asn
	155							160					165	
Ile	Leu	Asn	Gln	Glu	Gln	Pro	Leu	Ala	Gln	Pro	Ala	Ser	Gly	Gln
	170							175					180	
Pro	Val	Ser	Leu	Lys	Asn	Ile	Ser	Thr	Asp	Thr	Ser	Gly	Tyr	Tyr
	185							190					195	
Ile	Cys	Thr	Ser	Ser	Asn	Glu	Gly	Thr	Gln	Phe	Cys	Asn	Ile	
	200							205					210	
Thr	Val	Ala	Val	Arg	Ser	Pro	Ser	Met	Asn	Val	Ala	Leu	Tyr	Val
	215							220					225	
Gly	Ile	Ala	Val	Gly	Val	Val	Ala	Ala	Leu	Ile	Ile	Ile	Gly	Ile
	230							235					240	
Ile	Ile	Tyr	Cys	Cys	Cys	Cys	Arg	Gly	Lys	Asp	Asp	Asn	Thr	Glu
	245							250					255	
Asp	Lys	Glu	Asp	Ala	Arg	Pro	Asn	Arg	Glu	Ala	Tyr	Glu	Glu	Pro
	260							265					270	
<210>	25													
<211>	263													
<212>	PRT													
<213>	Homo sapiens													
<400>	25													
Leu	Cys	Ser	Leu	Ala	Leu	Gly	Ser	Val	Thr	Val	His	Ser	Ser	Glu
1					5				10				15	

Pro Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu Ser Cys
 20 25 30
 Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe Asp
 35 40 45
 Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr
 50 55 60
 Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr
 65 70 75
 Phe Lys Ser Val Thr Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met
 80 85 90
 Val Ser Glu Glu Gly Gly Asn Ser Tyr Gly Glu Val Lys Val Lys
 95 100 105
 Leu Ile Val Leu Val Pro Pro Ser Lys Pro Thr Val Asn Ile Pro
 110 115 120
 Ser Ser Ala Thr Ile Gly Asn Arg Ala Val Leu Thr Cys Ser Glu
 125 130 135
 Gln Asp Gly Ser Pro Pro Ser Glu Tyr Thr Trp Phe Lys Asp Gly
 140 145 150
 Ile Val Met Pro Thr Asn Pro Lys Ser Thr Arg Ala Phe Ser Asn
 155 160 165
 Ser Ser Tyr Val Leu Asn Pro Thr Thr Gly Glu Leu Val Phe Asp
 170 175 180
 Pro Leu Ser Ala Ser Asp Thr Gly Glu Tyr Ser Cys Glu Ala Arg
 185 190 195
 Asn Gly Tyr Gly Thr Pro Met Thr Ser Asn Ala Val Arg Met Glu
 200 205 210
 Ala Val Glu Arg Asn Val Gly Val Ile Val Ala Ala Val Leu Val
 215 220 225
 Thr Leu Ile Leu Leu Gly Ile Leu Val Phe Gly Ile Trp Phe Ala
 230 235 240
 Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys Gly Thr Ser Ser
 245 250 255
 Lys Lys Val Ile Tyr Ser Gln Pro
 260
<210> 26
<211> 273
<212> PRT
<213> Homo sapiens

<400> 26
Leu Cys Ala Val Arg Val Thr Val Asp Ala Ile Ser Val Glu Thr
 1 5 10 15
Pro Gln Asp Val Leu Arg Ala Ser Gln Gly Lys Ser Val Thr Leu
 20 25 30

Pro Cys Thr Tyr His Thr Ser Thr Ser Ser Arg Glu Gly Leu Ile
 35 40 45
 Gln Trp Asp Lys Leu Leu Leu Thr His Thr Glu Arg Val Val Ile
 50 55 60
 Trp Pro Phe Ser Asn Lys Asn Tyr Ile His Gly Glu Leu Tyr Lys
 65 70 75
 Asn Arg Val Ser Ile Ser Asn Asn Ala Glu Gln Ser Asp Ala Ser
 80 85 90
 Ile Thr Ile Asp Gln Leu Thr Met Ala Asp Asn Gly Thr Tyr Glu
 95 100 105
 Cys Ser Val Ser Leu Met Ser Asp Leu Glu Gly Asn Thr Lys Ser
 110 115 120
 Arg Val Arg Leu Leu Val Leu Val Pro Pro Ser Lys Pro Glu Cys
 125 130 135
 Gly Ile Glu Gly Glu Thr Ile Ile Gly Asn Asn Ile Gln Leu Thr
 140 145 150
 Cys Gln Ser Lys Glu Gly Ser Pro Thr Pro Gln Tyr Ser Trp Lys
 155 160 165
 Arg Tyr Asn Ile Leu Asn Gln Glu Gln Pro Leu Ala Gln Pro Ala
 170 175 180
 Ser Gly Gln Pro Val Ser Leu Lys Asn Ile Ser Thr Asp Thr Ser
 185 190 195
 Gly Tyr Tyr Ile Cys Thr Ser Ser Asn Glu Glu Gly Thr Gln Phe
 200 205 210
 Cys Asn Ile Thr Val Ala Val Arg Ser Pro Ser Met Asn Val Ala
 215 220 225
 Leu Tyr Val Gly Ile Ala Val Gly Val Val Ala Ala Leu Ile Ile
 230 235 240
 Ile Gly Ile Ile Ile Tyr Cys Cys Cys Cys Arg Gly Lys Asp Asp
 245 250 255
 Asn Thr Glu Asp Lys Glu Asp Ala Arg Pro Asn Arg Glu Ala Tyr
 260 265 270
 Glu Glu Pro

<210> 27
 <211> 413
 <212> DNA
 <213> artificial sequence

<220>
 <223> artificial sequence

<400> 27
 ctcgagccgc tcgagccgtg cggggaaaata tcgttgtgaa gtttagtgccc 50
 catctgagca aggccaaaac ctggaagagg atacagtcac tctgaaagta 100

ttagtggctc cagcagttcc atcatgtgaa gtacccttctt ctgctctgag 150
tggaactgtg gtagagctac gatgtcaaga caaagaaggg aatccagctc 200
ctgaatacac atggtttaag gatggcatcc gtttgctaga aaatcccaga 250
cttggctccc aaagcaccaa cagctcatac acaatgaata caaaaactgg 300
aactctgcaa tttaataactg tttccaaact ggacactgga gaatattcct 350
gtgaagcccc caattctgtt ggatatcgca ggtgtcctgg ggaaacgaat 400
gcaaggtagat gat 413

<210> 28
<211> 22
<212> DNA
<213> artificial sequence

<220>
<223> artificial sequence

<400> 28
atcgttgtga agtttagtgcc cc 22

<210> 29
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> artificial sequence

<400> 29
acctgcgata tccaaacagaa ttg 23

<210> 30
<211> 48
<212> DNA
<213> artificial sequence

<220>
<223> artificial sequence

<400> 30
ggaaagaggat acagtcactc tggaagtatt agtggctcca gcagttcc 48