Multiple Qubit Quantum States

Marcio Woitek

Problem 1

$$\begin{array}{l} \rhd \ \frac{1}{\sqrt{2}} \left| 0 \right\rangle \otimes \left| 1 \right\rangle - \frac{1}{\sqrt{2}} \left| 1 \right\rangle \otimes \left| 1 \right\rangle \\ \rhd \ \frac{1}{\sqrt{2}} \left| 01 \right\rangle - \frac{1}{\sqrt{2}} \left| 11 \right\rangle \end{array}$$

Problem 2

Answer: The superposition collapses to one of the pure states $|00\rangle$, $|01\rangle$, $|10\rangle$ with equal probability $\frac{1}{3}$.

Problem 3

Answer: After measurement, the first qubit will be in state $|0\rangle$ whereas the second qubit will be in the state $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle).$

Problem 4

Answer: After measurement, the first qubit will be in state $|1\rangle$ whereas the second qubit will be in the state $|0\rangle$.

Problem 5

$$ightharpoonup \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\Rightarrow \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$$

$$\begin{array}{l} \rhd \ \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ \rhd \ \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle) \\ \rhd \ \frac{1}{\sqrt{3}}(|00\rangle + |01\rangle + |11\rangle) \end{array}$$