Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization

P. N. Suganthan¹, N. Hansen², J. J. Liang¹, K. Deb³, Y. -P. Chen⁴, A. Auger², S. Tiwari³

¹School of EEE, Nanyang Technological University, Singapore, 639798

²(ETH) Z^{*}urich, Switzerland

³Kanpur Genetic Algorithms Laboratory (KanGAL), Indian Institute of Technology, Kanpur, PIN 208 016, India

⁴Natural Computing Laboratory, Department of Computer Science, National Chiao Tung University, Taiwan

<u>epnsugan@ntu.edu.sg</u>, <u>Nikolaus.Hansen@inf.ethz.ch</u>, <u>liangjing@pmail.ntu.edu.sg</u>, <u>deb@iitk.ac.in</u>, <u>ypchen@csie.nctu.edu.tw</u>, <u>Anne.Auger@inf.ethz.ch</u>, <u>tiwaris@iitk.ac.in</u>

Technical Report, Nanyang Technological University, Singapore And

KanGAL Report Number 2005005 (Kanpur Genetic Algorithms Laboratory, IIT Kanpur)

May 2005

Acknowledgement: We also acknowledge the contributions by Drs / Professors Maurice Clerc (Maurice.Clerc@WriteMe.com), Bogdan Filipic (bogdan.filipic@ijs.si), William Hart (wehart@sandia.gov), Marc Schoenauer (Marc.Schoenauer@lri.fr), Hans-Paul Schwefel (hans-paul.schwefel@cs.uni-dortmund.de), Aristin Pedro Ballester (p.ballester@imperial.ac.uk) and Darrell Whitley (whitley@CS.ColoState.EDU) .

Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization

In the past two decades, different kinds of optimization algorithms have been designed and applied to solve real-parameter function optimization problems. Some of the popular approaches are real-parameter EAs, evolution strategies (ES), differential evolution (DE), particle swarm optimization (PSO), evolutionary programming (EP), classical methods such as quasi-Newton method (QN), hybrid evolutionary-classical methods, other non-evolutionary methods such as simulated annealing (SA), tabu search (TS) and others. Under each category, there exist many different methods varying in their operators and working principles, such as correlated ES and CMA-ES. In most such studies, a subset of the standard test problems (Sphere, Schwefel's, Rosenbrock's, Rastrigin's, etc.) is considered. Although some comparisons are made in some research studies, often they are confusing and limited to the test problems used in the study. In some occasions, the test problem and chosen algorithm are complementary to each other and the same algorithm may not work in other problems that well. There is definitely a need of evaluating these methods in a more systematic manner by specifying a common termination criterion, size of problems, initialization scheme, linkages/rotation, etc. There is also a need to perform a scalability study demonstrating how the running time/evaluations increase with an increase in the problem size. We would also like to include some real world problems in our standard test suite with codes/executables.

In this report, 25 benchmark functions are given and experiments are conducted on some real-parameter optimization algorithms. The codes in Matlab, C and Java for them could be found at http://www.ntu.edu.sg/home/EPNSugan/. The mathematical formulas and properties of these functions are described in Section 2. In Section 3, the evaluation criteria are given. Some notes are given in Section 4.

1. Summary of the 25 CEC'05 Test Functions

• Unimodal Functions (5):

- \triangleright F_1 : Shifted Sphere Function
- \triangleright F_2 : Shifted Schwefel's Problem 1.2
- \triangleright F_3 : Shifted Rotated High Conditioned Elliptic Function
- \triangleright F_4 : Shifted Schwefel's Problem 1.2 with Noise in Fitness
- \triangleright F_5 : Schwefel's Problem 2.6 with Global Optimum on Bounds

• Multimodal Functions (20):

- **Basic Functions** (7):
 - \diamond F_6 : Shifted Rosenbrock's Function
 - \Leftrightarrow F_7 : Shifted Rotated Griewank's Function without Bounds
 - \Rightarrow F_8 : Shifted Rotated Ackley's Function with Global Optimum on Bounds
 - \Leftrightarrow F_9 : Shifted Rastrigin's Function
 - \Rightarrow F_{10} : Shifted Rotated Rastrigin's Function
 - $ightharpoonup F_{11}$: Shifted Rotated Weierstrass Function
 - $ightharpoonup F_{12}$: Schwefel's Problem 2.13
- **Expanded Functions** (2):

- \Leftrightarrow F_{13} : Expanded Extended Griewank's plus Rosenbrock's Function (F8F2)
- \Rightarrow F_{14} : Shifted Rotated Expanded Scaffer's F6

Hybrid Composition Functions (11):

- $ightharpoonup F_{15}$: Hybrid Composition Function
- $ightharpoonup F_{16}$: Rotated Hybrid Composition Function
- \Leftrightarrow F_{17} : Rotated Hybrid Composition Function with Noise in Fitness
- \Leftrightarrow F_{18} : Rotated Hybrid Composition Function
- \Leftrightarrow F_{19} : Rotated Hybrid Composition Function with a Narrow Basin for the Global Optimum
- \Leftrightarrow F_{20} : Rotated Hybrid Composition Function with the Global Optimum on the Bounds
- \Rightarrow F_{21} : Rotated Hybrid Composition Function
- \Leftrightarrow F_{22} : Rotated Hybrid Composition Function with High Condition Number Matrix
- \Leftrightarrow F_{23} : Non-Continuous Rotated Hybrid Composition Function
- $ightharpoonup F_{24}$: Rotated Hybrid Composition Function
- \Leftrightarrow F_{25} : Rotated Hybrid Composition Function without Bounds

> Pseudo-Real Problems: Available from

http://www.cs.colostate.edu/~genitor/functions.html. If you have any queries on these problems, please contact Professor Darrell Whitley. Email: whitley@CS.ColoState.EDU

2. Definitions of the 25 CEC'05 Test Functions

2.1 Unimodal Functions:

2.1.1. F_1 : Shifted Sphere Function

$$F_1(\mathbf{x}) = \sum_{i=1}^{D} z_i^2 + f_bias_1, \mathbf{z} = \mathbf{x} - \mathbf{o}, \mathbf{x} = [x_1, x_2, ..., x_D]$$

D: dimensions. $\mathbf{o} = [o_1, o_2, ..., o_D]$: the shifted global optimum.

Figure 2-1 3-D map for 2-D function

Properties:

- ➤ Unimodal
- > Shifted
- > Separable
- > Scalable
- $\mathbf{x} \in [-100, 100]^D$, Global optimum: $\mathbf{x}^* = \mathbf{0}$, $F_1(\mathbf{x}^*) = f_bias_1 = -450$

Associated Data files:

Name: sphere_func_data.mat

sphere_func_data.txt

Variable: **o** 1*100 vector the shifted global optimum

When using, cut $\mathbf{o} = \mathbf{o}(1:D)$

Name: fbias_data.mat

fbias data.txt

Variable: \mathbf{f} _bias 1*25 vector, record all the 25 function's f_bias_i

2.1.2. F_2 : Shifted Schwefel's Problem 1.2

$$F_2(\mathbf{x}) = \sum_{i=1}^{D} \left(\sum_{j=1}^{i} z_j\right)^2 + f _bias_2, \ \mathbf{z} = \mathbf{x} - \mathbf{o}, \mathbf{x} = [x_1, x_2, ..., x_D]$$

D: dimensions

 $\mathbf{o} = [o_1, o_2, ..., o_D]$: the shifted global optimum

Figure 2-2 3-D map for 2-D function

Properties:

- ➤ Unimodal
- > Shifted
- ➤ Non-separable
- > Scalable
- $\mathbf{x} \in [-100, 100]^D$, Global optimum $\mathbf{x}^* = \mathbf{0}$, $F_2(\mathbf{x}^*) = f_bias_2 = -450$

Associated Data files:

Name: schwefel_102_data.mat

schwefel_102_data.txt

Variable: **o** 1*100 vector the shifted global optimum

2.1.3. F_3 : Shifted Rotated High Conditioned Elliptic Function

$$F_3(\mathbf{x}) = \sum_{i=1}^{D} (10^6)^{\frac{i-1}{D-1}} z_i^2 + f_bias_3, \ \mathbf{z} = (\mathbf{x} - \mathbf{o}) * \mathbf{M}, \mathbf{x} = [x_1, x_2, ..., x_D]$$

D: dimensions

 $\mathbf{o} = [o_1, o_2, ..., o_D]$: the shifted global optimum

M: orthogonal matrix

Figure 2-3 3-D map for 2-D function

Properties:

- Unimodal
- > Shifted
- > Rotated
- ➤ Non-separable
- > Scalable
- $\mathbf{x} \in [-100, 100]^D$, Global optimum $\mathbf{x}^* = \mathbf{0}$, $F_3(\mathbf{x}^*) = f_bias_3 = -450$

Associated Data files:

Name: high_cond_elliptic_rot_data.mat

high_cond_elliptic_rot_data.txt

Variable: **o** 1*100 vector the shifted global optimum

When using, cut $\mathbf{o} = \mathbf{o}(1:D)$

Name: elliptic_M_D10 .mat elliptic_M_D10 .txt

Variable: **M** 10*10 matrix

Name: elliptic_M_D30 .mat elliptic_M_D30 .txt

Variable: **M** 30*30 matrix

Name: elliptic_M_D50 .mat elliptic_M_D50 .txt

2.1.4. F₄: Shifted Schwefel's Problem 1.2 with Noise in Fitness

$$F_4(\mathbf{x}) = \left(\sum_{i=1}^{D} \left(\sum_{j=1}^{i} z_j\right)^2\right) * (1 + 0.4 |N(0,1)|) + f _bias_4, \ \mathbf{z} = \mathbf{x} - \mathbf{o}, \mathbf{x} = [x_1, x_2, ..., x_D]$$

D: dimensions

 $\mathbf{o} = [o_1, o_2, ..., o_D]$: the shifted global optimum

Figure 2-4 3-*D* map for 2-*D* function

Properties:

- Unimodal
- > Shifted
- ➤ Non-separable
- > Scalable
- ➤ Noise in fitness
- $\mathbf{x} \in [-100, 100]^D$, Global optimum $\mathbf{x}^* = \mathbf{0}$, $F_4(\mathbf{x}^*) = f_bias_4 = -450$

Associated Data file:

Name: schwefel_102_data.mat

schwefel 102 data.txt

Variable: **o** 1*100 vector the shifted global optimum

2.1.5. *F*₅: *Schwefel's Problem 2.6 with Global Optimum on Bounds*

$$f(\mathbf{x}) = \max\{|x_1 + 2x_2 - 7|, |2x_1 + x_2 - 5|\}, i = 1, ..., n, \mathbf{x}^* = [1, 3], f(\mathbf{x}^*) = 0$$

Extend to *D* dimensions:

$$F_5(\mathbf{x}) = \max\{|\mathbf{A}_i\mathbf{x} - \mathbf{B}_i|\} + f_bias_5, i = 1,..., D, \mathbf{x} = [x_1, x_2, ..., x_D]$$

D: dimensions

A is a D*D matrix, a_{ij} are integer random numbers in the range [-500, 500], $\det(\mathbf{A}) \neq 0$, \mathbf{A}_i is the i^{th} row of **A**.

 $\mathbf{B}_i = \mathbf{A}_i * \mathbf{o}$, \mathbf{o} is a D*1 vector, o_i are random number in the range [-100,100]

After load the data file, set $o_i = -100$, for $i = 1, 2, ..., \lceil D/4 \rceil$, $o_i = 100$, for i = |3D/4|, ..., D

Figure 2-5 3-*D* map for 2-*D* function

Properties:

- > Unimodal
- ➤ Non-separable
- > Scalable
- ➤ If the initialization procedure initializes the population at the bounds, this problem will be solved easily.
- $\mathbf{x} \in [-100, 100]^D$, Global optimum $\mathbf{x}^* = \mathbf{0}$, $F_5(\mathbf{x}^*) = f_bias_5 = -310$

Associated Data file:

Name: schwefel_206_data.mat

schwefel_206_data.txt

Variable: **o** 1*100 vector the shifted global optimum

A 100*100 matrix

When using, cut $\mathbf{o} = \mathbf{o}(1:D)$ $\mathbf{A} = \mathbf{A}(1:D,1:D)$

In schwefel_206_data.txt ,the first line is o (1*100 vector),and line2-line101 is

A(100*100 matrix)

2.2 Basic Multimodal Functions

2.2.1. F_6 : Shifted Rosenbrock's Function

$$F_6(\mathbf{x}) = \sum_{i=1}^{D-1} (100(z_i^2 - z_{i+1})^2 + (z_i - 1)^2) + f_bias_6, \ \mathbf{z} = \mathbf{x} - \mathbf{o} + 1, \ \mathbf{x} = [x_1, x_2, ..., x_D]$$

D: dimensions

 $\mathbf{o} = [o_1, o_2, ..., o_D]$: the shifted global optimum

Figure 2-6 3-*D* map for 2-*D* function

Properties:

- ➤ Multi-modal
- > Shifted
- ➤ Non-separable
- > Scalable
- ➤ Having a very narrow valley from local optimum to global optimum
- $\mathbf{x} \in [-100, 100]^D$, Global optimum $\mathbf{x}^* = \mathbf{0}$, $F_6(\mathbf{x}^*) = f_bias_6 = 390$

Associated Data file:

Name: rosenbrock_func_data.mat

rosenbrock func data.txt

Variable: **o** 1*100 vector the shifted global optimum

2.2.2. *F*₇: *Shifted Rotated Griewank's Function without Bounds*

$$F_{7}(\mathbf{x}) = \sum_{i=1}^{D} \frac{z_{i}^{2}}{4000} - \prod_{i=1}^{D} \cos(\frac{z_{i}}{\sqrt{i}}) + 1 + f_{bias_{7}}, \ \mathbf{z} = (\mathbf{x} - \mathbf{o}) * \mathbf{M}, \ \mathbf{x} = [x_{1}, x_{2}, ..., x_{D}]$$

D: dimensions

 $\mathbf{o} = [o_1, o_2, ..., o_D]$: the shifted global optimum

M': linear transformation matrix, condition number=3

 $\mathbf{M} = \mathbf{M'}(1+0.3|\mathbf{N}(0,1)|)$

Figure 2-7 3-*D* map for 2-*D* function

Properties:

- > Multi-modal
- > Rotated
- > Shifted
- ➤ Non-separable
- > Scalable
- \triangleright No bounds for variables x
- ➤ Initialize population in $[0,600]^D$, Global optimum $\mathbf{x}^* = \mathbf{o}$ is outside of the initialization range, $F_7(\mathbf{x}^*) = f_bias_7 = -180$

Associated Data file:

Name: griewank_func_data.mat griewank_func_data.txt
Variable: o 1*100 vector the shifted global optimum

When using, cut $\mathbf{o} = \mathbf{o}(1:D)$

Name: griewank_M_D10 .mat griewank_M_D10 .txt

Variable: **M** 10*10 matrix

Name: griewank_M_D30 .mat griewank_M_D30 .txt

Variable: **M** 30*30 matrix

Name: griewank_M_D50 .mat griewank_M_D50 .txt

2.2.3. F₈: Shifted Rotated Ackley's Function with Global Optimum on Bounds

$$F_{8}(\mathbf{x}) = -20 \exp(-0.2 \sqrt{\frac{1}{D} \sum_{i=1}^{D} z_{i}^{2}}) - \exp(\frac{1}{D} \sum_{i=1}^{D} \cos(2\pi z_{i})) + 20 + e + f _bias_{8}, \ \mathbf{z} = (\mathbf{x} - \mathbf{o}) * \mathbf{M},$$

 $\mathbf{x} = [x_1, x_2, ..., x_D]$, D: dimensions

 $\mathbf{o} = [o_1, o_2, ..., o_D]$: the shifted global optimum;

After load the data file, set $o_{2j-1} = -32 \ o_{2j}$ are randomly distributed in the search range, for $j = 1, 2, ..., \lfloor D/2 \rfloor$

M: linear transformation matrix, condition number=100

Figure 2-8 3-D map for 2-D function

Properties:

- Multi-modal
- > Rotated
- > Shifted
- ➤ Non-separable
- Scalable
- \triangleright **A**'s condition number Cond(**A**) increases with the number of variables as $O(D^2)$
- > Global optimum on the bound
- > If the initialization procedure initializes the population at the bounds, this problem will be solved easily.
- $\mathbf{x} \in [-32, 32]^D$, Global optimum $\mathbf{x}^* = \mathbf{0}$, $F_8(\mathbf{x}^*) = f_bias_8 = -140$

Associated Data file:

Name: ackley_func_data.mat ackley_func_data.txt
Variable: o 1*100 vector the shifted global optimum

When using, cut $\mathbf{o} = \mathbf{o}(1:D)$

Name: ackley_M_D10 .mat ackley_M_D10 .txt

Variable: **M** 10*10 matrix

Name: ackley_M_D30 .mat ackley_M_D30 .txt

Variable: **M** 30*30 matrix

Name: ackley_M_D50 .mat ackley_M_D50 .txt

2.2.4. F₉: Shifted Rastrigin's Function

$$F_9(\mathbf{x}) = \sum_{i=1}^{D} (z_i^2 - 10\cos(2\pi z_i) + 10) + f_bias_9, \ \mathbf{z} = \mathbf{x} - \mathbf{o}, \ \mathbf{x} = [x_1, x_2, ..., x_D]$$

D: dimensions

 $o = [o_1, o_2, ..., o_D]$: the shifted global optimum

Figure 2-9 3-*D* map for 2-*D* function

Properties:

- ➤ Multi-modal
- > Shifted
- > Separable
- > Scalable
- > Local optima's number is huge
- $\mathbf{x} \in [-5,5]^D$, Global optimum $\mathbf{x}^* = \mathbf{0}$, $F_9(\mathbf{x}^*) = f_bias_9 = -330$

Associated Data file:

Name: rastrigin_func_data.mat

rastrigin_func_data.txt

Variable: **o** 1*100 vector the shifted global optimum

2.2.5. F_{10} : Shifted Rotated Rastrigin's Function

$$F_{10}(\mathbf{x}) = \sum_{i=1}^{D} (z_i^2 - 10\cos(2\pi z_i) + 10) + f _bias_{10}, \ \mathbf{z} = (\mathbf{x} - \mathbf{o}) * \mathbf{M}, \ \mathbf{x} = [x_1, x_2, ..., x_D]$$

D: dimensions

 $\mathbf{o} = [o_1, o_2, ..., o_D]$: the shifted global optimum

M: linear transformation matrix, condition number=2

Figure 2-10 3-*D* map for 2-*D* function

Properties:

- ➤ Multi-modal
- > Shifted
- > Rotated
- ➤ Non-separable
- > Scalable
- ➤ Local optima's number is huge
- $\mathbf{x} \in [-5,5]^D$, Global optimum $\mathbf{x}^* = \mathbf{0}$, $F_{10}(\mathbf{x}^*) = f_bias_{10} = -330$

Associated Data file:

Name: rastrigin_func_data.mat

rastrigin_func_data.txt

Variable: **o** 1*100 vector the shifted global optimum

When using, cut $\mathbf{o} = \mathbf{o}(1:D)$

Name: rastrigin_M_D10 .mat rastrigin_M_D10 .txt

Variable: **M** 10*10 matrix

Name: rastrigin_M_D30 .mat rastrigin_M_D30 .txt

Variable: **M** 30*30 matrix

Name: rastrigin_M_D50 .mat rastrigin_M_D50 .txt