1. Maseni protok zraka mjeri se preko razlike temperature uzrokovane grijačem između dva mjerna mjesta. Temperatura zraka prije grijača iznosi 300 K, a temperatura iza grijača 304 K. Koliki je maseni protok zraka ako se za 1 sat na grijanje utroši 2,02 kW·hr energije? Specifični toplinski kapacitet pri konstantnom tlaku iznosi 1010 J/kg·K?

$$m = 500 \text{ g/s}$$

Grupa: A/B

2. Hladnjak snage 1,5 kW radi otvorenih vrata u toplinski izoliranoj sobi. Tijekom 30 minuta hladnjak ohladi 5300 kJ i oslobodi 8000 kJ topline. Koliko se promjeni unutrašnja energija sobe?

 $\Delta U = 2700 \text{ kJ}$

3. Dva Carnotova toplinska stroja rade u nizu između temperature 500 K i 300 K. Toplina odvedena iz prvog stroja dovodi se drugom stroju. Ukoliko drugi toplinski stroj ima 25% veču efikasnost od prvoga kolika je vrijednost međutemperature.

 $T_{\rm m} = 400 \ {\rm K}$

4. Odrediti snage derivacijske hidroelektrane pri maksimalnom i minimalnom protoku. Ukupni stupanj djelovanja iznosi 85%, instalirani protok (jednak prosječnom) iznosi 175 m³/s, zahvat je na 500 m n.v., a turbina na 400 m n.v. Vjerojatnosna krivulja protoka ima oblik $Q(t)=300+(50-Q_{sr})*t/6 [m³/s]$, (t u mjesecima), a konsumpciona krivulje na zahvatu $H_z=10+Q/8$ (Q u [m³/s] a visina u metrima).

 $P_{max} = 215 MW$

 $P_{min} = 48 MW$

5. Za krivulju trajanja dnevnog opterećenja, aproksimiranu s tri pravca, poznato je da varijabilno opterećenje traje 18 sati, faktor α =1, faktor β =0, varijabilna snaga iznosi 460 MW. Konstantnu energiju 8,16 GWh proizvode hidroelektrane ukupne snage 300 MW i tehnički minimumi termoelektrana ukupne snage 40 MW. Varijabilnu energiju proizvode termoelektrane ukupne nazivne snage 600 MW. Odrediti koliko el. energije tijekom dana proizvedu termoelektrane.

W_{TE ukupno} = 5,1 GWh

- **6.** Trofazni sinkroni generator 1000kVA, 10000V, 50Hz, cosω=0,8 spojen je u zvijezdu, a na njega je priključena simetrična trofazna peć snage 900 kW spojena u trokut. Skicirajte spoj i izračunajte:
 - a) Kada bi prespojili peć u zvijezdu i priključili na isti generator, kolikom bi ukupnom snagom peć opterećivala generator?
 - b) Kolikom bi snagom peć opterećivala generator ako u jednoj fazi peći spojene u zvijezdu pregori osigurač, a zvijezdišta generatora i peći su spojena?
- **7.** Jezgra A i jezgra B su napravljene iz mekog magnetskog materijala, imaju jednaki namot i magnetski krug s jedinom razlikom u veličini zračnog raspora. Raspor jezgre A iznosi 1 mm, a raspor jezgre B iznosi 1,3 mm. Jezgre su priključene na izmjenični napon 380V, 50Hz. Kolika bi bila indukcija u zračnom rasporu jezgre B, ako je u rasporu jezgre A 0,9T? Pretpostavite da je relativna permeabilnost magnetskog materijala beskonačno velika. Rješenje treba obrazložiti.
- **8.** Dvofazni namot prema slici sadrži 2 potpuno jednaka i međusobno prostorno okomita namota projtecana strujama $i_A=10\sin\omega t$ $_{\rm i}$ $i_B=12\sin(\omega t+150^\circ)$

Koliki je omjer amplituda direktnog i inverznog okretnog protjecanja? Pretpostavite da je prostorna raspodjela sinusna.

- **9.** Na slici je prikazana momentna karakteristika kaveznog asinkronog motora za nazivni napon 380V i frekvenciju 50Hz uz broj pari polova 2p=4. U isti dijagram skicirajte karakteristike:
 - a) za slučaj da se i napon i frekvencija smanje na 50% nazivnih iznosa.
 - b) za slučaj da se frekvencija poveća na dvostruku vrijednost, tj. na 100 Hz, a napon ostane nepromijenjen, tj. 380V.
- **10.** Na slici je shema spoja jednofaznog punovalnog upravljivog tiristorskog ispravljača kojemu je na istosmjernoj strani priključen radni otpor R=10 Ω . Napon sekundara jednofaznog transformatora je $u_s=314\sin\omega t$, a kut upravljanja tiristora $\alpha=\pi/4$.
 - a) Skicirajte vremenski oblik napona na trošilu U_{d} i izračunajte njegovu srednju vrijednost,
 - b) Skicirajte vremenski oblik struje kroz tiristor T3,
- c) Kolika je maksimalna vrijednost struje kroz otpor R? Padovi napona na tiristoru i induktivni otpor u cijelom strujnom krugu mogu se zanemariti.

- a) P=300 kW
- b) P=200 kW

$$B_{\delta 2} = B_{\delta 1}$$

Zbog povećanja zračnog raspora povećava se i struja, jer se pokušava zadržati tok u zračnom rasporu. Pošto je tok isti onda je i indukcija ista.

$$\frac{\Theta_d}{\Theta_i} = 0.584$$

0.5ns

Πs

2ns