Ex.No:10 **Name:** Ganga Suresh Kumar Nair

Date: 19-04-2021 **Reg.No:** 18BCN7014

Secure Coding

Lab experiment - Working with the memory vulnerabilities - Part IV

Task

- Download Frigate3_Pro_v36 from teams (check folder named 19.04.2021).
- Deploy a virtual windows 7 instance and copy the Frigate3_Pro_v36 into it.
- Install Immunity debugger or ollydbg in windows7
- Install Frigate3_Pro_v36 and Run the same
- Download and install python 2.7.* or 3.5.*
- Run the exploit script II (exploit2.py- check today's folder) to generate the payload

Analysis

- Try to crash the Frigate3_Pro_v36 and exploit it.
- Change the default trigger from cmd.exe to calc.exe (Use msfvenom in Kali linux).

Example:

msfvenom -a x86 --platform windows -p windows/exec CMD=calc -e x86/alpha_mixed -b "\x00\x14\x09\x0a\xod" -f python

- Attach the debugger (immunity debugger or ollydbg) and analyse the address of various registers listed below
- Check for EIP address
- Verify the starting and ending addresses of stack frame
- Verify the SEH chain and report the dll loaded along with the addresses. For viewing SEH chain, goto view à SEH

Frigate 3

Immunity debugger

Getting shell code for exploit from msfvenom kali

After running exploit2.py, payload is generated

Crashing frigate using the payload generated

App crashes and calc is triggered

Immunity debugger

Addresses of various registers

EIP- Instruction pointer Address is 00401000

```
EDI 00000000
EIP 00401000 Frigate3.<ModuleEntryPoint>
```

Base pointer of stack frame is 0012FF94 and stack pointer is 0012FF8C

SEH chain, we can see the dll loaded is ntdll

