

A classification task: the XOR dataset

Linear models

Principles of learning

Trees and ensembling

Neural networks

Risk optimizatior

Decision trees

Consider a classification task on an artificial dataset replicating

the XNOR function

A	В	XNOR
True	True	True
True	False	False
False	True	False
False	False	True

- Data are n = 500 couples $(x^{(i)}, y^{(i)}) \Rightarrow$ Supervised learning
- The target variable $y \in \{-1,1\}$ is discrete \Rightarrow **Classification**
- A linear classification would not be able to learn such a function*
- **Decision trees** to the rescue!

^{*}In fact, an alternative (not discussed here) would be to use **kernels** to find a higher dimensional embedding ϕ that makes the classes linearly separable and then use a linear classifier.

Intuition behind decision trees

Linear models

Principles of learnin

Trees and ensembling

Neural networks

Risk optimizatior

Decision trees

 Decision trees incrementally ask questions about the features to split the problem into smaller, simpler (binary) decisions

 All root and inner nodes question the value of a feature, and branches split the dataset into different regions to which a datapoint can belong uniquely

Noisy XNOR dataset

A more formal view of decision trees

Linear models

Principles of learning

Trees and ensembling

Neural networks

Risk optimizatior

Decision trees

• More formally, at a given node in parent region R_i asking a question about the j^{th} feature, we create two regions:

$$R_{i1} = \{x \mid x_j < \alpha_i^j, x \in R_i\}$$

$$R_{i2} = \{x \mid x_i \ge \alpha_i^j, x \in R_i\}$$

- The parameters $\boldsymbol{\theta}$ of decision trees are the threshold values at each nodes (the sequence of α)
- Decision tree minimise a criterion at each node of the tree

Impurity measures in decision trees

Trees and ensembling

Decision trees

- To find the best possible parameters, decision trees minimize a cost function through a measure of "impurity" at each node until a stopping criterion is met (depth of the tree, minimum number of samples in nodes)
- For instance, popular measures are the **cross-entropy** (for classification) or the **squared error** (for regression)

Classification

$$\ell(R_i) = -\sum_{k=1}^q \rho_k^i \log_2 \rho_k^i,$$

$$\ell(R_i) = -\sum_{k=1}^q \rho_k^i \log_2 \rho_k^i, \qquad \qquad \rho_k^i = \frac{\left|\left\{x^{(j)} \mid x^{(j)} \in R_i, \ y^{(j)} = k\right\}\right|}{\left|\left\{x^{(j)} \mid x^{(j)} \in R_i\right\}\right|} \quad \text{Proportion of points in class } k$$

 \rightarrow If the node is *pure*, $\rho_k^i = 1$ for a single class giving an entropy of 0, if the node is mixed with several classes, then entropy is large

Regression

$$\ell(R_i) = \frac{1}{N} \sum_{j=1}^{N} (y_i - m)^2$$
,

$$m = \frac{1}{N} \sum_{x^{(j)} \in R_i}^{N} y^{(j)}$$

Average value in the region

→ Takes the value in the region that minimizes the average squared error

Criterions and pros/cons of decision trees

Trees and ensembling

Decision trees

Classification

$$\ell(R_i) = -\sum_{k=1}^q \rho_k^i \log_2 \rho_k^i,$$

$$\rho_k^i = \frac{\left|\left\{\boldsymbol{x}^{(j)} \mid \boldsymbol{x}^{(j)} \in R_i, \ \boldsymbol{y}^{(j)} = k\right\}\right|}{\left|\left\{\boldsymbol{x}^{(j)} \mid \boldsymbol{x}^{(j)} \in R_i\right\}\right|} \quad \text{Proportion of points in class } k$$
 at node i

Regression

$$\ell(R_i) = \frac{1}{N} \sum_{j=1}^{N} (y_i - m)^2$$
,

$$m = \frac{1}{N} \sum_{\chi^{(j)} \in R_i}^{N} y^{(j)}$$

Average value in the region

At each node, we look for the split into left/right regions maximizing the **gain**

$$G_i(\alpha_t^j) = \ell(R_i) - \left(\frac{N_L}{N}\ell(R_{i1}) + \frac{N_R}{N}\ell(R_{i2})\right)$$

 N_L , N_R : number of datapoints in left/right regions

- can handle categorical values, easy to interpret, fast to compute, both regression and classification
- Shallow trees: high bias estimators (underfit), deep trees: high variance estimators (overfit)

Simple examples

Linear models

Principles of learning

Trees and ensembling

Neural networks

Risk optimization

Decision trees

Classification
Noisy XNOR dataset

Ensembling methods: bagging

Linear models

Principles of learnin

Trees and ensembling

Neural networks

Risk optimizatior

• To circumvent the problems that can have weak learners like decision trees, **ensembling methods** were proposed

• To reduce the variance, models need to be **uncorrelated**: this is achieved by using **random sampling of the dataset**

Ensembling methods: random forest

More expansive to compute (need to train *B* trees instead of one), harder to interpret

Ensembling methods: boosting

Linear models

Principles of learning

Trees and ensembling

Neural networks

Risk optimization

• While bagging trains high-variance models in parallel to reduce the variance of the combined estimate, **boosting trains high-bias**models sequentially to reduce the overall bias

Boosting

- Successive learners f_i are fed by data X_i , a weighted version of the initial dataset X, giving more weights to the errors committed by the previous model f_{i-1}
- The output is, as in bagging, a linear combination of all the learners weighted by the contribution of each tree
- The choice of weighting and training depends on the algorithm and context (see Adaboost or gradient boosting)

Ensembling methods: boosted trees

Linear models

Principles of learnin

Trees and ensembling

Neural networks

Risk optimization

Boosting

Boosted trees

= Boosting of decision trees

- Both regression and classification (residuals or weighted classification error), reduced bias, good performances
- More expansive to compute, increased variance, subject to overfitting

Illustrative comparison

Linear models

Principles of learning

Trees and ensembling

Neural networks

Risk optimizatio

Comparison on our regression problem

