Blockchain – A Hands-on Introduction

Author: Zigtur

Twitter: Zigtur GitHub: Zigtur

INTRODUCTION

Blockchain

Peer-to-peer decentralized payment system

2009 : Bitcoin (whitepaper here)

2014: Ethereum (whitepaper <u>here</u>)

- Use cases have then evolved!
 - Voting systems
 - On-chain DNS (e.g. ENS)
 - File transfer services (e.g. IPFS)
 - Traceability
 - Games

An end-user only needs:

An internet connection

A wallet application (optional), such as Metamask

A cryptographic keypair, for digital signatures

END-USERS

Demo time!

Presentation of a software wallet: Metamask

More wallets...

Keeping crypto on a centralized exchange

Keeping your digital assets secure with a Ledger Nano There are a lot of software wallets...

But hardware wallet should be used!

NODES

NODES

NODES

BLOCKS

BLOCKS

CONSENSUS

CONSENSUS

Consensus mechanism:

- Used to achieve a distributed agreement between all nodes
- There are two main mechanisms :
 - Proof-of-Work
 - Block hash must respect defined rules (like X first bits must be value 0)
 - First node that finds the right hash will broadcast it
 - A reward transaction is added in the block for the miner (the node)
 - Other nodes verify the hash of the block, and accept it if it respects the rules
 - Proof-of-Stake
 - Nodes lock a big amount of cryptocurrency to prove they have an interest in the network
 - The more you lock, the more you will verify
 - Rewards and penalty mechanisms

DEMONSTRATION

Ethereum time!

Demonstration of a transaction

Details of a block

Consensus informations

Smart Contracts

- A contract is a program, on-chain
- Defines its own rules to use the blockchain storage
- A lot of use-cases!
 - Decentralized Finance DeFi
 - Games
 - Voting
 - And more...

DNS use-case

Register a domain name

DNS use-case

Read a domain name

Ethereum time!

- Introduction to Solidity
- DNS Example: <u>Ethereum Name Service</u>
- NFT Example: Bored Ape Yacht Club
- Game Example: Axie Infinity

More details...

- Build a 100% decentralized website with IPFS and ENS
- Web3 hacks explained
- Solidity programming course: <u>CryptoZombies</u>
- Ethereum Layer 2

ZERO KNOWLEDGE

Zero Knowledge Proofs

Prove a statement, without telling how it is true

Prover can't create fake proofs

Verifier can't retrieve additional informations than the fact that it is true

ZERO KNOWLEDGE

Zero Knowledge Proofs

How does it work - Hash function example

Zero Knowledge Proofs

How does it work - Hash function example

Proof generation

Create proof of computation with R1CS

Zero Knowledge Proofs

How does it work - Hash function example

I know a file **F** such that **SHA-256(F) = H**, here is the proof **P**

I know you know a file F such that SHA-256(F) = H

H Bob

Bob learns **H**, **P** but doesn't know **F**

ZERO KNOWLEDGE

Zero Knowledge Proofs

- Use-cases
 - Private transactions for blockchains and banks
 - Proof of Identity
 - Proof of Passwords
 - And more...

