Canadian Math Olympiad 2013 — P1/5

Jonathan Kasongo

July 13, 2025

Canadian Math Olympiad 2013 — P1/5

Determine all polynomials P(x) with real coefficients such that

$$(x+1)P(x-1) - (x-1)P(x)$$

is a constant polynomial.

Solution

The answer is $P(x) = c \in \mathbb{R}$. One can easily check that this works. Assume for the sake of contradiction that $n := \deg P > 0$, then one can write $P(x) = ax^n + bx^{n-1} + O(x^{n-2})$ for some real $a \ne 0$, b. Substituting this defintion into the given equation yields

$$= (x+1) \left[a(x-1)^n + b(x-1)^{n-1} + O(x^{n-2}) \right] - (x-1) \left[ax^n + bx^{n-1} + O(x^{n-2}) \right]$$

$$= \left[ax^{n+1} + bx^n + (b-a)x^{n-1} + O(x^{n-2}) \right] - \left[ax^{n+1} + (b-a)x^n - bx^{n-1} + O(x^{n-2}) \right]$$

$$= ax^n + (2b-a)x^{n-1} + O(x^{n-2})$$

But that is a polynomial of degree n so we have to have n = 0, contradiction.