1. izpit iz Uvoda v geometrijsko topologijo

22. 6. 2018

1. naloga (10 točk)

Za vsako od spodnjih trditev v pripadajoči kvadratek čitljivo označi, če je trditev pravilna \bigcap oz. napačna \bigcap Če ne veš, pusti kvadratek prazen, ker se nepravilni odgovor šteje negativno!

Za vsako zvezno funkcijo $f: \mathbb{R} \to \mathbb{R}$ obstaja polinom p, da je $|f(x) - p(x)| < \frac{1}{10}$ za vse $x \in [-1,1]$.

Topologija konvergence po točkah na $\mathcal{C}(X,Y)$ je močnejša od kompaktno odprte topologije.

Vsaka odprta surjektivna preslikava je kvocientna.

Prostor $\{x \in \mathbb{R}^3 \mid ||x|| \ge 1\}$ je retrakt evklidskega prostora \mathbb{R}^3 .

Kvocient Hausdorffovega prostora je Hausdorffov prostor.

Preslikava $f: (0,1)^2 \to \mathbb{R}^2$, podana s predpisom $f(x,y) = (\log x, x + \sin y)$, je odprta.

Če je $f: \mathbb{B}^n \to \mathbb{R}^m$ zvezna in n < m, je $\mathbb{R}^m \setminus f(\mathbb{B}^n)$ povezana.

Če sta $M, N \subset \mathbb{R}^n$ mnogoterosti iste dimenzije in je njun presek neprazen, je $M \cap N$ mnogoterost.

Kvocientna preslikava $\mathbb{S}^2 \to \mathbb{R}P^2$ je odprta..

3. naloga (20 točk)

Naj bo $X = \mathbb{R} \times [-1, 1]$ in $Y = \mathbb{R}^2$.

1. Naj bo $A = \mathbb{R} \times \{-1,1\} \subset X$ in f(x,y) = (x,0). Poišči podprostor kakega evklidskega prostora, ki je homeomorfen zlepku $X \coprod_f Y$.

Če je A=X in $f\colon A\to Y$ injektivna, je zlepek $X\coprod_f Y$ homeomorfen prostoruY.

2. Naj bo $A=(-\infty,0]\times[-1,1]\subset X$ in f(x,y)=(x,0). Poišči podprostor kakega evklidskega prostora, ki je homeomorfen zlepku $X\coprod_f Y.$

4. naloga (20 točk)

Za vsak $a\in\mathbb{R}$ naj bo $X_a=\{(x,y,z)\in\mathbb{R}^3\mid z=x^2+y^2\leq 1\}\cup(\mathbb{B}^2\times\{a\}).$

- 1. Poišči potreben in zadosten pogoj (na a), da bo X_a mnogoterost.
- 2. Poišči potreben in zadosten pogoj (na a), da bo X_a retrakt prostora \mathbb{R}^3 .

5. naloga (20 točk)

Klasificiraj ploskev, podano z besedo $abcdefe^{-1}gc^{-1}f^{-1}gb^{-1}$, in spodnjo ploskev:

