NJU 数学分析 A 期中考试

2011.11.13

- 一、叙述题 $(2 \times 5 = 10 \text{ })$
- 1. 叙述 Cauchy 列的定义.
- 2. 给出数列 $\{a_n\}$ 不发散到 $-\infty$ 的定义.
- 二、简答题 (回答问题并简要说明理由)
- 1.(5 分) 能否按照从大到小的次序将 [0,1] 中的有理数排成一列?
- $2.(5 \, \boldsymbol{\beta})$ 设数列 $\{a_n\}$ 满足条件 $\lim_{n\to\infty} |a_{n+p}-a_n|=0, \ \forall p\geq 1.$ 则 $\{a_n\}$ 是否 为 Cauchy 列?
- 3.(10 分) 设 $\delta > 0$, 函数 f(x) 在 $(x_0, x_0 + \delta)$ 中有定义. 如果对每一个单调 递减趋于 x_0 的数列 $\{x_n\}$, $\{f(x_n)\}$ 均收敛, 则 f 在 x_0 处是否存在右极限? 三、计算题 (共 44 分)
- 1.(12 分) 设 $a_1 \in \mathbb{R}.a_{n+1} = \frac{1}{2}(a_n + \sin a_n)$. 说明 $\{a_n\}$ 收敛并求极限;
- 2.(10 分) 设 $x \in \mathbb{R}$. 求数列极限 $\lim_{n \to \infty} (1 + \frac{x}{n})^n$;
- 3.(10 分) 设 a, b > 0. 求极限 $\lim_{x \to \infty} (a^x + b^x)^{\frac{1}{x}}$;
 4.(12 分) 设 $a \in \mathbb{R}$, 求极限 $\lim_{x \to 0} \frac{1 \cos^n x}{\sin^2 x}$.
- 四、(10 分) 设数列 $\{a_n\}$ 收敛于 $a, \{b_n\}$ 收敛于 b. 记 $c_n = \max\{a_n, b_n\}$, 证明数列 $\{c_n\}$ 收敛于 $\max\{a,b\}$.
- 五、(12 分) 设 $0 \le q < 1$, 数列 $\{a_n\}$ 满足条件 $\lim_{n \to \infty} (a_{n+1} + qa_n) = 0$, 证明 $\{a_n\}$ 也收敛于 0.
- 六、(12 分) 设 A 为非空数集, 有上界, 令 $B = \{x \in \mathbb{R} \mid x \text{ 为 } A \text{ 的上界 } \}$, 证明 B 是有下界的闭集.
- 七、(12 分) 设函数 $f: \mathbb{R} \to \mathbb{R}$ 在每一点 $x_0 \in \mathbb{R}$ 处的极限均存在并且为正 实数, 证明: (1) $C = \{x \in \mathbb{R} \mid f(x) \le 0\}$ 为至多可数集; (2) 存在闭区间 I 及 正数 ϵ , 使得 $f(x) \geq \epsilon, \forall x \in I$.