

LAUREA MAGISTRALE IN FISICA

Particle Tracking through Machine Learning

Supervisor: prof. Tessera Daniele Co-supervisor: prof. Borgonovi Fausto

> Nicola Vanoli A.A. 2019/2020

Outline

- Introduction and Motivation
- The ATLAS experiment at CERN
- Deep Neural Network's architecture
- Results and Discussion
- Conclusion

Introduction and Motivation

Large Hadron Collider (LHC)

Huge amount of data

The tracking problem

 A Machine Learning approach

The Standard Model

- It describes three of the four fundamental forces
- It classifies all known elementary particles
- Protons and neutrons are made up of up and down quarks
- It does not explain gravity and dark matter

Proton-Proton Collision

 Protons accelerate through the LHC

 After colliding many different particles are generated

 Particles pull away from the centre

ATLAS

 Protons collide in the middle

- Pixel detectors record the passage of particles
- Pixel detectors
 record the amount
 of energy lost by the
 particle

Track Particle

Input: dataset recorded by detectors

Output: predicted trajectories by the DNN

Neural Network

hidden layer 1 hidden layer 2

Flow of activation

Training Process

Target Function

$$y = f^*(\underline{x}), \ \underline{x} \in \mathbb{R}^d$$

Loss Function

$$L(\underline{x}^{(i)}, y^{(i)}) := (\tilde{y}(\underline{x}^{(i)}) - y^{(i)})^2$$

Approximating Function

$$\tilde{y}(\underline{x}) = \underline{w} \cdot \underline{x} + b , \underline{w} \in \mathbb{R}^d , b \in \mathbb{R}$$

Best Parameters

$$\theta^* := argmin_{\Theta} L(D, \theta)$$

Training vs Validation

Validation set is often used to estimate how well the model has been trained

Tracking Particles' Neural Network

• Input: couple of points

• Number of neurons: 2200

• Number of layers: 5

 Output: 1 if points belong to the same trajectory, 0 otherwise

Points are gathered in lists

Each list describes a TRAJECTORY

Error Measure

How do we determine if the predicted trajectory is good?

ERROR = sum of all minimum distances between reconstructed points and real trajectory

PERCENTAGE ERROR =
$$\frac{ERROR}{LENGTH \ OF \ TRAJECTORY}$$

Reconstructed vs Real trajectory

Models

Name	Event A (%)	Event B (%)	Event C (%)	Event D (%)	Average (%)
basic10	31,19	29,02	24,03	22,52	26,69
100ev_32k	4,79	12,24	7,29	5,79	7,52
100ev_2k	5,56	11,11	8,62	5,09	7,59
best80	2,99	4,49	6,88	1,86	4,05

4 different model applied to 4 different collisions' events produce the above results

Models

Name	Event A (%)	Event B (%)	Event C (%)	Event D (%)	Average (%)
basic10	31,19	29,02	24,03	22,52	26,69
100ev_32k	4,79	12,24	7,29	5,79	7,52
100ev_2k	5,56	11,11	8,62	5,09	7,59
best80	2,99	4,49	6,88	1,86	4,05

Why is this the best model?

Difficult to answer; unbalanced dataset could be an explanation

Which one has the lowest error?

ORANGE = real

Average error is 4,05%

ORANGE = real

Model's predictions

Corner points should not be observed in real trajectories

Conclusion & Future Works

We demonstrated how DNN can be useful for particles tracking problems, with errors lower than 5%.

Next Steps are:

- Prevent the neural network from violating physical laws
- Assert that each prediction does not violate any conservation law
- Try to estimate the charge of the particles