

Grundbegriffe der Informatik Tutorium 33

Lukas Bach, lukas.bach@student.kit.edu | 1.12.2016

Anmerkungen zum letzten Übungsblatt

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Anmerkungen zum letzten Übungsblatt

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

Was ist sind die folgenden Mengen?

MIMA

Maschinenbefehle

Anmerkungen zum letzten Übungsblatt

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

Was ist sind die folgenden Mengen?

MIMA

Maschinenbefehle

Anmerkungen zum letzten Übungsblatt

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

Was ist sind die folgenden Mengen?

■ \mathbb{N} = Menge der natürlichen Zahlen (1, 2, 3, ...)

MIMA

Maschinenbefehle

Anmerkungen zum letzten Übungsblatt

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Was ist sind die folgenden Mengen?

■ \mathbb{N} = Menge der natürlichen Zahlen (1, 2, 3, ...)

lacksquare \mathbb{N}_0

Anmerkungen zum letzten Übungsblatt

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Was ist sind die folgenden Mengen?

■ \mathbb{N} = Menge der natürlichen Zahlen (1, 2, 3, ...)

 $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$

Anmerkungen zum letzten Übungsblatt

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Was ist sind die folgenden Mengen?

■ N = Menge der natürlichen Zahlen (1, 2, 3, ...)

 $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$

 \blacksquare \mathbb{R}

Anmerkungen zum letzten Übungsblatt

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehl

Aufgaben

Was ist sind die folgenden Mengen?

■ N = Menge der natürlichen Zahlen (1, 2, 3, ...)

 $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$

 $ightharpoonup \mathbb{R}$ = Menge der Reellen Zahlen

Anmerkungen zum letzten Übungsblatt

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Was ist sind die folgenden Mengen?

■ N = Menge der natürlichen Zahlen (1, 2, 3, ...)

 $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$

 $ightharpoonup \mathbb{R}$ = Menge der Reellen Zahlen

■ R+

Anmerkungen zum letzten Übungsblatt

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehl

Aufgaben

Was ist sind die folgenden Mengen?

■ N = Menge der natürlichen Zahlen (1, 2, 3, ...)

 $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$

lacktriangle = Menge der Reellen Zahlen

 $ightharpoonup \mathbb{R}^+$ = Menge der positiven reellen Zahlen

Anmerkungen zum letzten Übungsblatt

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Was ist sind die folgenden Mengen?

■ N = Menge der natürlichen Zahlen (1, 2, 3, ...)

 $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$

 $ightharpoonup \mathbb{R}$ = Menge der Reellen Zahlen

Arr = Menge der positiven reellen Zahlen

 \mathbb{R}_0

Anmerkungen zum letzten Übungsblatt

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Was ist sind die folgenden Mengen?

■ N = Menge der natürlichen Zahlen (1, 2, 3, ...)

 $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$

 $ightharpoonup \mathbb{R}$ = Menge der Reellen Zahlen

 \blacksquare \mathbb{R}^+ = Menge der positiven reellen Zahlen

lacksquare \mathbb{R}_0 gibt es nicht! 0 ist auch so schon in \mathbb{R}

Anmerkungen zum letzten Übungsblatt

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Was ist sind die folgenden Mengen?

■ N = Menge der natürlichen Zahlen (1, 2, 3, ...)

 $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$

 $ightharpoonup \mathbb{R}$ = Menge der Reellen Zahlen

Arr = Menge der positiven reellen Zahlen

lacksquare \mathbb{R}_0 gibt es nicht! 0 ist auch so schon in \mathbb{R}

 $ightharpoonup \mathbb{R}_0^+$ genauso nicht!

Anmerkungen zum letzten Übungsblatt

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehl

Aufgaben

Was ist sind die folgenden Mengen?

■ N = Menge der natürlichen Zahlen (1, 2, 3, ...)

 $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$

 $ightharpoonup \mathbb{R}$ = Menge der Reellen Zahlen

Arr = Menge der positiven reellen Zahlen

 $\ \ \mathbb{R}_0$ gibt es nicht! 0 ist auch so schon in \mathbb{R}

 \blacksquare \mathbb{R}_0^+ genauso nicht!

• Aufgabe: $R: A^* \rightarrow A^*$

• $R(\varepsilon) = \varepsilon$

 $\forall x \in A : R(x) = x$

 $\forall w \in A^* \forall x \in A \forall y \in A : R(xwy) = yR(w)x$

■ Zeige: $\forall n \in \mathbb{N}_0 : \forall w \in A^n : |R(w)| = |w|$

Was ist die MIMA?

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Was ist die MIMA?

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

Theoretischer, idealisierter Prozessor

MIMA

Maschinenbefehle

Was ist die MIMA?

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

- Theoretischer, idealisierter Prozessor
- Funktioniert wie ein echter Prozessor, ist aber simpler

MIMA

Maschinenbefehle

Was ist die MIMA?

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Theoretischer, idealisierter Prozessor

Funktioniert wie ein echter Prozessor, ist aber simpler

Nah an Technischer Informatik

Was ist die MIMA?

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Theoretischer, idealisierter Prozessor

Funktioniert wie ein echter Prozessor, ist aber simpler

Nah an Technischer Informatik

Grundaufbau:

Was ist die MIMA?

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Theoretischer, idealisierter Prozessor

Funktioniert wie ein echter Prozessor, ist aber simpler

Nah an Technischer Informatik

Grundaufbau:

Adressen als 20bit Datenwort

Was ist die MIMA?

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Theoretischer, idealisierter Prozessor

- Funktioniert wie ein echter Prozessor, ist aber simpler
- Nah an Technischer Informatik

Grundaufbau:

- Adressen als 20bit Datenwort
- Speicherworte als 24bit Datenwort

Was ist die MIMA?

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehl

Aufgaben

Theoretischer, idealisierter Prozessor

- Funktioniert wie ein echter Prozessor, ist aber simpler
- Nah an Technischer Informatik

Grundaufbau:

- Adressen als 20bit Datenwort
- Speicherworte als 24bit Datenwort
- Maschinenbefehle als...
 - 4bit Befehl und 20bit Adresse
 - oder 8bit Befehl und unwichtigem Rest

Aufbau der MIMA: Steuerwerk

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufbau der MIMA: Steuerwerk

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Steuerwerk

Aufbau der MIMA: Steuerwerk

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Steuerwerk

 Instruction Register (IR) enthält den nächsten auszuführenden Befehl

Aufbau der MIMA: Steuerwerk

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehl

Aufgaben

Steuerwerk

- Instruction Register (IR) enthält den nächsten auszuführenden Befehl
- Instruction Adress Register (IAR) enthält die Adresse des nächsten Befehls

Aufbau der MIMA: Steuerwerk

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Steuerwerk

- Instruction Register (IR) enthält den nächsten auszuführenden Befehl
- Instruction Adress Register (IAR) enthält die Adresse des nächsten Befehls

 Takt bestimmt die "Tickrate", also die Geschwindigkeit

Aufbau der MIMA: Steuerwerk

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehl

Aufgaben

Steuerwerk

- Instruction Register (IR) enthält den nächsten auszuführenden Befehl
- Instruction Adress Register (IAR) enthält die Adresse des nächsten Befehls

- Takt bestimmt die "Tickrate", also die Geschwindigkeit
- Steuerwerk interpretiert alle Befehle und führt sie aus

Aufbau der MIMA: Steuerwerk

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Steuerwerk

- Instruction Register (IR) enthält den nächsten auszuführenden Befehl
- Instruction Adress Register (IAR) enthält die Adresse des nächsten Befehls

- Takt bestimmt die "Tickrate", also die Geschwindigkeit
- Steuerwerk interpretiert alle Befehle und führt sie aus
- Welche Befehle es gibt: Siehe später

Aufbau der MIMA: Akku und Eins

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufbau der MIMA: Akku und Eins

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Akku und Eins

Aufbau der MIMA: Akku und Eins

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Akku und Eins

 Akku dient als Zwischenspeicher für Datenworte

Aufbau der MIMA: Akku und Eins

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehl

Aufgaben

Akku und Eins

- Akku dient als Zwischenspeicher für Datenworte
- Hält maximal ein Wort

Aufbau der MIMA: Akku und Eins

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Akku und Eins

- Akku dient als Zwischenspeicher für Datenworte
- Hält maximal ein Wort

 Eins liefert die Konstante 1, hält also Strom

Aufbau der MIMA: Akku und Eins

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Akku und Eins

- Akku dient als Zwischenspeicher für Datenworte
- Hält maximal ein Wort

- Eins liefert die Konstante 1, hält also Strom
- z.B. erhöhen des IAR

Aufbau der MIMA: ALU

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufbau der MIMA: ALU

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Arithmetic Logic Unit (ALU) / Rechenwerk

Aufbau der MIMA: ALU

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Arithmetic Logic Unit (ALU) / Rechenwerk

Durchführt arithmetische Operationen

Aufbau der MIMA: ALU

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehl

Aufgaben

Arithmetic Logic Unit (ALU) / Rechenwerk

- Durchführt arithmetische Operationen
- **mod** , **div** ,+,-,..., bitweises OR/AND/...

Aufbau der MIMA: ALU

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehl

Aufgaben

Arithmetic Logic Unit (ALU) / Rechenwerk

Durchführt arithmetische Operationen

- X und Y sind Eingaberegister
- **mod** , **div** , + , , ..., bitweises OR/AND/...

Aufbau der MIMA: ALU

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehl

Aufgaben

Arithmetic Logic Unit (ALU) / Rechenwerk

- Durchführt arithmetische Operationen
- **mod** , **div** , +, -, ..., bitweises OR/AND/...
- X und Y sind Eingaberegister
- Z ist Ausgaberegister

Aufbau der MIMA: ALU

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufbau der MIMA: ALU

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Speicher(werk)

Speicher selbst speichert Befehle und Daten.

Aufbau der MIMA: ALU

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Speicher(werk)

Speicher selbst speichert Befehle und Daten. Speicherwerk besteht aus:

Aufbau der MIMA: ALU

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehl

Aufgaben

Speicher(werk)

Speicher selbst speichert Befehle und Daten. Speicherwerk besteht aus:

 Speicheradressregister (SAR) ist die Adresse, bei der im Speicher gespeichert/gelesen werden soll

Aufbau der MIMA: ALU

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Speicher(werk)

Speicher selbst speichert Befehle und Daten. Speicherwerk besteht aus:

 Speicheradressregister (SAR) ist die Adresse, bei der im Speicher gespeichert/gelesen werden soll Speicherdatenregister (SDR) Datum, das bei der Adresse gespeichert werden soll/ gelesen wurde.

Aufbau der MIMA: ALU

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufbau der MIMA: ALU

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Busse

Aufbau der MIMA: ALU

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Busse

"Kabel" zwischen den Verbindungen

Aufbau der MIMA: ALU

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Busse

- "Kabel" zwischen den Verbindungen
- Ein kompletter Bus überträgt entweder 1, 0, oder nichts

Aufbau der MIMA: ALU

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Busse

- "Kabel" zwischen den Verbindungen
- Ein kompletter Bus überträgt entweder 1, 0, oder nichts

 Kann nur eine einzige Information auf einmal übertragen

Konventionen zu MIMA Programmen

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Um MIMA Programme und dazugehörige Definitionen verständlicher zu machen, vereinbaren wir folgende Konventionen:

Konventionen zu MIMA Programmen

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Um MIMA Programme und dazugehörige Definitionen verständlicher zu machen, vereinbaren wir folgende Konventionen:

 Befehle (eigentlich Bitfolge) schreiben wir als Befehlname und Adresse

Konventionen zu MIMA Programmen

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Um MIMA Programme und dazugehörige Definitionen verständlicher zu machen, vereinbaren wir folgende Konventionen:

- Befehle (eigentlich Bitfolge) schreiben wir als Befehlname und Adresse
 - \bullet 00100000000000000101010 \equiv STV 42

Konventionen zu MIMA Programmen

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Um MIMA Programme und dazugehörige Definitionen verständlicher zu machen, vereinbaren wir folgende Konventionen:

- Befehle (eigentlich Bitfolge) schreiben wir als Befehlname und Adresse
 - lacktriangle 0010000000000000000101010 \equiv STV 42
- X ← Y ≡ "Der Variable X wird der Wert Y zugewiesen"

MIMA Befehle

Lukas Bach, lukas.bach@student.kit.edu Eine MIMA-Maschine beherrscht folgende Maschinenbefehle:

Befehlssyntax

Formel

Bedeutung

Zum Übungsblatt

MIMA

Maschinenbefehle

MIMA Befehle

Lukas Bach, lukas.bach@student.kit.edu Eine MIMA-Maschine beherrscht folgende Maschinenbefehle:

Zum Übungsblatt

Befehlssyntax LDC const Formel Bedeutung $Akku \leftarrow const$ Lade eine k

Lade eine Konstate *const* in den Akku

MIMA

Maschinenbefehle

MIMA Befehle

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Befehlssyntax	Formel	Bedeutung
LDC const	Akku ← const	Lade eine Konstate <i>const</i> in den Akku
LDV adr	Akku ← M(adr)	Lade einen Wert vom Speicher bei Adresse <i>adr</i> in den Akku

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

MIMA Befehle

Befehlssyntax	Formel	Bedeutung
LDC const	Akku ← const	Lade eine Konstate <i>const</i> in den Akku
LDV adr	Akku ← M(adr)	Lade einen Wert vom Speicher bei Adresse <i>adr</i> in den Akku
STV adr	M(adr) ← Akku	Lade Speichere den Wert aus dem Akku im Speicher bei Adresse <i>adr</i>

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

MIMA Befehle

	Befehlssyntax	Formel	Bedeutung
t	LDC const	Akku ← const	Lade eine Konstate const in den
			Akku
	LDV adr	$Akku \leftarrow M(adr)$	Lade einen Wert vom Speicher
			bei Adresse adr in den Akku
	STV adr	$M(adr) \leftarrow Akku$	Lade Speichere den Wert aus
			dem Akku im Speicher bei
			Adresse adr
	LDIV adr	$Akku \leftarrow M(M(adr))$	Lade einen Wert vom Speicher
			bei der Adresse, die bei adr ge-
			speichert ist, und lade den Wert
			in den Akku
		·	

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

MIMA Befehle

	Befehlssyntax	Formel	Bedeutung
t	LDC const	Akku ← const	Lade eine Konstate <i>const</i> in den
			Akku
	LDV adr	$Akku \leftarrow M(adr)$	Lade einen Wert vom Speicher
			bei Adresse adr in den Akku
	STV adr	$M(adr) \leftarrow Akku$	Lade Speichere den Wert aus
			dem Akku im Speicher bei
			Adresse adr
	LDIV adr	$Akku \leftarrow M(M(adr))$	Lade einen Wert vom Speicher
			bei der Adresse, die bei adr ge-
			speichert ist, und lade den Wert
			in den Akku
	STIV adr	$M(M(adr)) \leftarrow Akku$	Speichere den Wert im Akku bei
			der Adresse, die in adr gespei-
			chert ist.

MIMA Befehle (2)

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

Maschinenbefehle

Eine MIMA-Maschine beherrscht folgende Maschinenbefehle:

MIMA

Befehlssyntax

Formel

Bedeutung

MIMA Befehle (2)

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

Eine MIMA-Maschine beherrscht folgende Maschinenbefehle:

MIMA

Maschinenbefehle

Befehlssyntax	Formel	Bedeutung
ADD adr	Akku ← Akku + M(adr)	Addiere den Wert bei <i>adr</i> zum Akku dazu.

MIMA Befehle (2)

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

Eine MIMA-Maschine beherrscht folgende Maschinenbefehle:

MIMA

Maschinenbefehle

Befehlssyntax	Formel	Bedeutung
ADD adr	$Akku \leftarrow Akku + M(adr)$	Addiere den Wert
		bei <i>adr</i> zum Akku
		dazu.
"OP" adr	Akku"OP"M(adr)	Wende bitweise
		Operation auf
		Akku mit Wert
		bei <i>adr</i> an. $\mathit{Op} \in$
		$\{AND, OR, XOR\}.$

MIMA Befehle (3)

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

Eine MIMA-Maschine beherrscht folgende Maschinenbefehle:

MIMA

Befehlssyntax | Bedeutung

Maschinenbefehle

MIMA Befehle (3)

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

Eine MIMA-Maschine beherrscht folgende Maschinenbefehle:

MIMA

Maschinenbefehle

Aufgaben

Befehlssyntax	Bedeutun	g				
NOT	Bitweise	Invertierung	aller	Bits	des	Akku-
	Datenwortes					

MIMA Befehle (3)

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

Eine MIMA-Maschine beherrscht folgende Maschinenbefehle:

MIMA

Maschinenbefehle

Aufgaben

Befehlssyntax	Bedeutun	g				
NOT	Bitweise	Invertierung	aller	Bits	des	Akku-
	Datenwor	tes				
RAR	Rotiere al	le Akku-Bits ei	ns nacl	n recht	S	

MIMA Befehle (3)

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

Eine MIMA-Maschine beherrscht folgende Maschinenbefehle:

MIMA

Maschinenbefehle

Befehlssyntax	Bedeutung		
NOT	Bitweise Invertierung aller Bits des Akku-		
	Datenwortes		
RAR	Rotiere alle Akku-Bits eins nach rechts		
EQL adr	Setze Akku auf 11 · · · 11, falls Wert bei adr gleich		
	Akku-Wert, setze Akku auf 00 ⋅ ⋅ ⋅ 00 sonst.		

MIMA Befehle (3)

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

Eine MIMA-Maschine beherrscht folgende Maschinenbefehle:

MIMA

Maschinenbefehle

vertierung	aller	Bits	des	Akku-
Rotiere alle Akku-Bits eins nach rechts				
Setze Akku auf 11 · · · 11, falls Wert bei adr gleich				
Akku-Wert, setze Akku auf 00 · · · 00 sonst.				
Springe zu Befehlsadresse adr				
	Akku-Bits ei auf 11 · · · 1 etze Akku a	Akku-Bits eins nach auf 11 · · · 11, falls etze Akku auf 00 ·	Akku-Bits eins nach recht auf 11 · · · 11, falls Wert k etze Akku auf 00 · · · 00 s	Akku-Bits eins nach rechts auf 11 · · · 11, falls Wert bei <i>adı</i> etze Akku auf 00 · · · 00 sonst.

MIMA Befehle (3)

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

Eine MIMA-Maschine beherrscht folgende Maschinenbefehle:

MIMA

Maschinenbefehle

Befehlssyntax	Bedeutung		
NOT	Bitweise Invertierung aller Bits des Akku-		
	Datenwortes		
RAR	Rotiere alle Akku-Bits eins nach rechts		
EQL adr	Setze Akku auf 11 · · · 11, falls Wert bei adr gleich		
	Akku-Wert, setze Akku auf 00 · · · 00 sonst.		
JMP adr	Springe zu Befehlsadresse adr		
JMN adr	Springe zu Befehlsadresse adr, falls Akku negativ		
	(also erstes $Bit = 1$), sonst fahre normal fort.		

MIMA Befehle: Sichern und Laden

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

MIMA Befehle: Sichern und Laden

Lukas Bach, lukas.bach@student.kit.edu

Befehle zum laden und Speichern in den Speicher

Zum Übungsblatt

MIMA

Maschinenbefehle

MIMA Befehle: Sichern und Laden

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Befehle zum laden und Speichern in den Speicher

 LDV um Daten vom Speicher zu laden, STV um Daten in den Speicher zu schreiben

MIMA Befehle: Sichern und Laden

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Befehle zum laden und Speichern in den Speicher

- LDV um Daten vom Speicher zu laden, STV um Daten in den Speicher zu schreiben
- LDC um eine Konstante zu laden

MIMA Befehle: Sichern und Laden

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Befehle zum laden und Speichern in den Speicher

- LDV um Daten vom Speicher zu laden, STV um Daten in den Speicher zu schreiben
- LDC um eine Konstante zu laden
- Daten werden in einem Zwischenspeicher gelagert, der nur ein Datenwort hält

MIMA Befehle: Sichern und Laden

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

- Befehle zum laden und Speichern in den Speicher
- LDV um Daten vom Speicher zu laden, STV um Daten in den Speicher zu schreiben
- LDC um eine Konstante zu laden
- Daten werden in einem Zwischenspeicher gelagert, der nur ein Datenwort hält: Akku.

MIMA Befehle: Sichern und Laden

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

- Befehle zum laden und Speichern in den Speicher
- LDV um Daten vom Speicher zu laden, STV um Daten in den Speicher zu schreiben
- LDC um eine Konstante zu laden
- Daten werden in einem Zwischenspeicher gelagert, der nur ein Datenwort hält: Akku.

Beispiele:

MIMA Befehle: Sichern und Laden

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

- Befehle zum laden und Speichern in den Speicher
- LDV um Daten vom Speicher zu laden, STV um Daten in den Speicher zu schreiben
- LDC um eine Konstante zu laden
- Daten werden in einem Zwischenspeicher gelagert, der nur ein Datenwort hält: Akku.

Beispiele:

LDV 9 lädt das Datum, das im Speicher bei Adresse 9 liegt, in den Akku.

MIMA Befehle: Sichern und Laden

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

- Befehle zum laden und Speichern in den Speicher
- LDV um Daten vom Speicher zu laden, STV um Daten in den Speicher zu schreiben
- LDC um eine Konstante zu laden
- Daten werden in einem Zwischenspeicher gelagert, der nur ein Datenwort hält: Akku.

Beispiele:

- LDV 9 lädt das Datum, das im Speicher bei Adresse 9 liegt, in den Akku.
- STV 9 speichert das Datum, das im Akku liegt, in den Speicher an Adresse 9.

MIMA Befehle: Sichern und Laden

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Befehle zum laden und Speichern in den Speicher

- LDV um Daten vom Speicher zu laden, STV um Daten in den Speicher zu schreiben
- LDC um eine Konstante zu laden
- Daten werden in einem Zwischenspeicher gelagert, der nur ein Datenwort hält: Akku.

Beispiele:

- LDV 9 lädt das Datum, das im Speicher bei Adresse 9 liegt, in den Akku.
- STV 9 speichert das Datum, das im Akku liegt, in den Speicher an Adresse 9.
- LDC 4 lädt die Zahl 4 in den Akku (also kein Speicherzugriff).

MIMA Befehle: Sichern und Laden

Lukas Bach, lu- kas.bach@student.kit.edu	Befehlssyntax	Formel	Bedeutung
nadibading diadoniminoda	LDC const	Akku ← const	Lade eine Konstate <i>const</i> in den
Zum Übungsblatt			Akku
N 41N 4 A	LDV adr	$Akku \leftarrow M(adr)$	Lade einen Wert vom Speicher
MIMA			bei Adresse adr in den Akku
Maschinenbefehle	STV adr	$M(adr) \leftarrow Akku$	Lade Speichere den Wert aus
Aufgaben			dem Akku im Speicher bei
			Adresse adr

MIMA Befehle: Sichern und Laden

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

	Befehlssyntax	Formel	Bedeutung
-	LDC const	Akku ← const	Lade eine Konstate <i>const</i> in den
			Akku
_	LDV adr	$Akku \leftarrow M(adr)$	Lade einen Wert vom Speicher
			bei Adresse adr in den Akku
	STV adr	$M(adr) \leftarrow Akku$	Lade Speichere den Wert aus
			dem Akku im Speicher bei
_			Adresse adr

Beispielprogramm mit initialem Speicherabbild

LDC 5 STV a ₁	:	Adresse	Wert
LDC 7	LDV <i>a</i> ₁	a ₁	0
STV a ₂	STV <i>a</i> ₃	<i>a</i> ₂	0
:	HALT	a ₃	0

MIMA Befehle: Indirektes Sichern und Laden

Lukas Bach, lu- kas.bach@student.kit.edu	Befehlssyntax	Formel	Bedeutung
Zum Übungsblatt MIMA Maschinenbefehle	LDIV adr	$Akku \leftarrow M(M(adr))$	Lade einen Wert vom Speicher bei der Adresse, die bei <i>adr</i> ge- speichert ist, und lade den Wert in den Akku
Aufgaben	STIV adr	$M(M(adr)) \leftarrow Akku$	Speichere den Wert im Akku bei der Adresse, die in <i>adr</i> gespeichert ist.

MIMA Befehle: Indirektes Sichern und Laden

Lukas Bach, lu-	
kas.bach@student.kit.e	30

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

	Befehlssyntax	Formel	Bedeutung
-	LDIV adr	Akku ← M(M(adr))	Lade einen Wert vom Speicher bei der Adresse, die bei <i>adr</i> ge- speichert ist, und lade den Wert in den Akku
	STIV adr	$M(M(adr)) \leftarrow Akku$	Speichere den Wert im Akku bei der Adresse, die in <i>adr</i> gespeichert ist.

Beispielprogramm mit initialem Speicherabbild

LDIV 4	Adresse	Wert
STV 5	4	6
LDIV 5	5	0
STIV 4	6	7
HALT	7	2

MIMA Befehle: Eins plus Eins

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

MIMA Befehle: Eins plus Eins

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

Befehle zu arithmetischen Operationen

MIMA

Maschinenbefehle

MIMA Befehle: Eins plus Eins

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Befehle zu arithmetischen Operationen

Eine ALU-Operation, angewandt auf dem Wert des Akkus und dem Wert an gegebener Adresse

MIMA Befehle: Eins plus Eins

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Befehle zu arithmetischen Operationen

- Eine ALU-Operation, angewandt auf dem Wert des Akkus und dem Wert an gegebener Adresse
- Beispiele:

MIMA Befehle: Eins plus Eins

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

- Befehle zu arithmetischen Operationen
- Eine ALU-Operation, angewandt auf dem Wert des Akkus und dem Wert an gegebener Adresse
- Beispiele:
 - ADD 4 addiert den Wert im Akku mit dem Wert aus dem Speicher an Adresse 4 und legt das Resultat im Akku ab

MIMA Befehle: Eins plus Eins

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

- Befehle zu arithmetischen Operationen
- Eine ALU-Operation, angewandt auf dem Wert des Akkus und dem Wert an gegebener Adresse
- Beispiele:
 - ADD 4 addiert den Wert im Akku mit dem Wert aus dem Speicher an Adresse 4 und legt das Resultat im Akku ab. Achtung: Addition nicht mit dem Wert 4!

MIMA Befehle: Eins plus Eins

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Befehle zu arithmetischen Operationen

- Eine ALU-Operation, angewandt auf dem Wert des Akkus und dem Wert an gegebener Adresse
- Beispiele:
 - ADD 4 addiert den Wert im Akku mit dem Wert aus dem Speicher an Adresse 4 und legt das Resultat im Akku ab. Achtung: Addition nicht mit dem Wert 4!
 - AND 3 führt bitweise Verundung zwischen dem Wert im Akku und dem Wert aus dem Speicher an Adresse 4 durch und legt das Resultat im Akku ab.

MIMA Befehle: Eins plus Eins

Lukas Bach, lu- kas.bach@student.kit.edu	Befehlssyntax	Formel	Bedeutung
	ADD adr	$Akku \leftarrow Akku + M(adr)$	Addiere den Wert bei adr zum
Zum Übungsblatt			Akku dazu.
MIMA	"OP" adr	Akku"OP"M(adr)	Wende bitweise Operation auf
Manadalanadadala			Akku mit Wert bei adr an. $Op \in$
Maschinenbefehle			$\{AND, OR, XOR\}.$
Aufgaben		'	

MIMA Befehle: Eins plus Eins

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Befehlssyntax	Formel	Bedeutung
ADD adr	$Akku \leftarrow Akku + M(adr)$	Addiere den Wert bei adr zum
		Akku dazu.
"OP" adr	Akku"OP"M(adr)	Wende bitweise Operation auf
		Akku mit Wert bei adr an. $Op \in$
		$\{AND, OR, XOR\}.$

Beispielprogramm mit initialem Speicherabbild

LDC 5
ADD 3
AND 4
STV 5
LDC 12
XOR 5
HALT

Adresse	Wert
3	3
4	8
5	17

MIMA Befehle: Bits und Bytes

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

MIMA Befehle: Bits und Bytes

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

NOT invertiert alle Bits des Datums im Akku.

MIMA Befehle: Bits und Bytes

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

NOT invertiert alle Bits des Datums im Akku. Beispiel NOT mit 5 im Akku, angenommen der Akku speichert bis zu 8 bits

MIMA Befehle: Bits und Bytes

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

NOT invertiert alle Bits des Datums im Akku. Beispiel NOT mit 5 im Akku, angenommen der Akku speichert bis zu 8 bits:
 5₁₀ = 00000101₂, nach der Invertierung: 11111010₂.

MIMA Befehle: Bits und Bytes

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

 NOT invertiert alle Bits des Datums im Akku. Beispiel NOT mit 5 im Akku, angenommen der Akku speichert bis zu 8 bits:
 5₁₀ = 00000101₂, nach der Invertierung: 11111010₂.

RAR rotiert alle Bits des Datums im Akku um eine Stelle nach rechts.

MIMA Befehle: Bits und Bytes

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

NOT invertiert alle Bits des Datums im Akku. Beispiel NOT mit 5 im Akku, angenommen der Akku speichert bis zu 8 bits:
 5₁₀ = 00000101₂, nach der Invertierung: 11111010₂.

■ *RAR* rotiert alle Bits des Datums im Akku um eine Stelle nach rechts. Beispiel mit 5 im Akku: 00000101₂ wird zu 10000010₂.

MIMA Befehle: Bits und Bytes

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

NOT invertiert alle Bits des Datums im Akku. Beispiel NOT mit 5 im Akku, angenommen der Akku speichert bis zu 8 bits:
 5₁₀ = 00000101₂, nach der Invertierung: 11111010₂.

- RAR rotiert alle Bits des Datums im Akku um eine Stelle nach rechts. Beispiel mit 5 im Akku: 000001012 wird zu 100000102.
- EQL adr vergleicht den Wert im Akku mit dem Wert bei addr.

MIMA Befehle: Bits und Bytes

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

NOT invertiert alle Bits des Datums im Akku. Beispiel NOT mit 5 im Akku, angenommen der Akku speichert bis zu 8 bits:
 5₁₀ = 00000101₂, nach der Invertierung: 11111010₂.

- RAR rotiert alle Bits des Datums im Akku um eine Stelle nach rechts. Beispiel mit 5 im Akku: 00000101₂ wird zu 10000010₂.
- EQL adr vergleicht den Wert im Akku mit dem Wert bei addr.
 - Setzt Akku = $11 \cdots 11$ falls Werte gleich sind.

MIMA Befehle: Bits und Bytes

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

 NOT invertiert alle Bits des Datums im Akku. Beispiel NOT mit 5 im Akku, angenommen der Akku speichert bis zu 8 bits:
 5₁₀ = 00000101₂, nach der Invertierung: 11111010₂.

- RAR rotiert alle Bits des Datums im Akku um eine Stelle nach rechts. Beispiel mit 5 im Akku: 000001012 wird zu 100000102.
- EQL adr vergleicht den Wert im Akku mit dem Wert bei addr.
 - Setzt Akku = 11 · · · 11 falls Werte gleich sind.
 - Setzt Akku = $00 \cdots 00$ falls Werte nicht gleich sind.

MIMA Befehle: Bits und Bytes

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt
MIMA
Maschinenbefehle

Befehlssyntax	Bedeutung	
NOT	Bitweise Invertierung aller Bits des Akku-	
	Datenwortes	
RAR	Rotiere alle Akku-Bits eins nach rechts	
EQL adr	Setze Akku auf 11 · · · 11, falls Wert bei adr gleich	
	Akku-Wert, setze Akku auf 00 · · · 00 sonst.	

MIMA Befehle: Bits und Bytes

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Befehlssyntax	Bedeutung	
NOT	Bitweise Invertierung aller Bits des Akku-	
	Datenwortes	
RAR	Rotiere alle Akku-Bits eins nach rechts	
EQL adr	Setze Akku auf 11 · · · 11, falls Wert bei adr gleich	
	Akku-Wert, setze Akku auf 00 · · · 00 sonst.	

Beispielprogramm mit initialem Speicherabbild

LDC 5

NOT

RAR RAR
NOT EQL 15
RAR EQL 0

HALT

MIMA Befehle: Springen

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

MIMA Befehle: Springen

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

 Normalerweise wird die Instruktionsadresse nach jedem Befehl um eins erh\u00f6ht

MIMA Befehle: Springen

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

 Normalerweise wird die Instruktionsadresse nach jedem Befehl um eins erhöht

Also Befehle werden von oben nach unten abgearbeitet

MIMA Befehle: Springen

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

 Normalerweise wird die Instruktionsadresse nach jedem Befehl um eins erhöht

- Also Befehle werden von oben nach unten abgearbeitet
- Mit Sprüngen kann man die MIMA zwingen, zu definiertem Befehl zu springen und damit die Vorgehensreihenfolge zu beeinflussen

MIMA Befehle: Springen

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Normalerweise wird die Instruktionsadresse nach jedem Befehl um eins erhöht

- Also Befehle werden von oben nach unten abgearbeitet
- Mit Sprüngen kann man die MIMA zwingen, zu definiertem Befehl zu springen und damit die Vorgehensreihenfolge zu beeinflussen
- JMP adr führt als nächsten Befehl den an Adresse adr aus.

MIMA Befehle: Springen

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

 Normalerweise wird die Instruktionsadresse nach jedem Befehl um eins erhöht

- Also Befehle werden von oben nach unten abgearbeitet
- Mit Sprüngen kann man die MIMA zwingen, zu definiertem Befehl zu springen und damit die Vorgehensreihenfolge zu beeinflussen
- JMP adr führt als nächsten Befehl den an Adresse adr aus.
- JMN adr führt als nächsten Befehl den an Adresse adr aus, falls der Akku negativ ist.

MIMA Befehle: Springen

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

- Normalerweise wird die Instruktionsadresse nach jedem Befehl um eins erhöht
- Also Befehle werden von oben nach unten abgearbeitet
- Mit Sprüngen kann man die MIMA zwingen, zu definiertem Befehl zu springen und damit die Vorgehensreihenfolge zu beeinflussen
- JMP adr führt als nächsten Befehl den an Adresse adr aus.
- JMN adr führt als nächsten Befehl den an Adresse adr aus, falls der Akku negativ ist.
 - Also wenn das erste Bit im Akku negativ ist.

MIMA Befehle: Springen

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

- Normalerweise wird die Instruktionsadresse nach jedem Befehl um eins erhöht
- Also Befehle werden von oben nach unten abgearbeitet
- Mit Sprüngen kann man die MIMA zwingen, zu definiertem Befehl zu springen und damit die Vorgehensreihenfolge zu beeinflussen
- JMP adr führt als nächsten Befehl den an Adresse adr aus.
- JMN adr führt als nächsten Befehl den an Adresse adr aus, falls der Akku negativ ist.
 - Also wenn das erste Bit im Akku negativ ist.
 - Wenn vorher ein *EQL* erfolgreich verglichen hat, wird also gesprungen.

MIMA Befehle: Springen

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

- Normalerweise wird die Instruktionsadresse nach jedem Befehl um eins erhöht
- Also Befehle werden von oben nach unten abgearbeitet
- Mit Sprüngen kann man die MIMA zwingen, zu definiertem Befehl zu springen und damit die Vorgehensreihenfolge zu beeinflussen
- JMP adr führt als nächsten Befehl den an Adresse adr aus.
- JMN adr führt als nächsten Befehl den an Adresse adr aus, falls der Akku negativ ist.
 - Also wenn das erste Bit im Akku negativ ist.
 - Wenn vorher ein *EQL* erfolgreich verglichen hat, wird also gesprungen.
 - Wenn der Akku positiv ist, werden die Befehle nach JMN normal weiter abgearbeitet.

MIMA Befehle: Springen

Bedeutung

Lukas Bach, lu- kas.bach@student.kit.edu
Zum Übungsbla
MIMA

Maschinenbefehle

Befehlssyntax EQL adr Setze Akku auf 11 · · · 11, falls Wert bei adr gleich Akku-Wert, setze Akku auf 00 · · · 00 sonst. JMP adr Springe zu Befehlsadresse adr JMN adr Springe zu Befehlsadresse adr, falls Akku negativ (also erstes Bit = 1), sonst fahre normal fort.

MIMA Befehle: Springen

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

Bedeutung
Setze Akku auf 11 · · · 11, falls Wert bei adr gleich
Akku-Wert, setze Akku auf 00 · · · 00 sonst.
Springe zu Befehlsadresse adr
Springe zu Befehlsadresse adr, falls Akku negativ
Springe zu Befehlsadresse adr , falls Akku negativ (also erstes Bit = 1), sonst fahre normal fort.

Beispielprogramm mit initialem Speicherabbild

	LDC 5		:		
a ₁ :	JMN a ₂		NOT	Adresse	Wert
	EQL 1	a ₂ :	JMP a ₃	1	5
	JMN a ₁		NOT		
	:	a ₃ :	HALT		

Aufgaben

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehl

Aufgaben

MIMA-Programm schreiben

Schreibe ein MIMA-Programm:

- Eingabe: Adresse *a*₁ einer positiven Zahl *x*.
- Ausgabe: Speichert 3 · x in a₁.

Aufgaben

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehl

Aufgaben

MIMA-Programm schreiben

Schreibe ein MIMA-Programm:

- Eingabe: Adresse *a*₁ einer positiven Zahl *x*.
- Ausgabe: Speichert 3 · x in a₁.

Lösung:

LDV a₁

ADD a₁

ADD a₁

STV a₁

HALT

Aufgaben

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA-Programm schreiben

MIMA

Schreibe ein MIMA-Programm: Eingabe: Adresse a_1 einer positiven Zahl x.

Maschinenbefehle

Ausgabe: Speichert x mod 2 in a₁.

Aufgaben

←□ → ←□ → ←□ → □ → へ ○ ○

Aufgaben

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

Aufgaben

MIMA-Programm schreiben

Schreibe ein MIMA-Programm:

- Eingabe: Adresse *a*₁ einer positiven Zahl *x*.
- Ausgabe: Speichert x mod 2 in a₁.

Lösung:

AND a₁ STV a₁ HALT

Aufgaben

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehl

Aufgaben

MIMA-Programm schreiben

Schreibe ein MIMA-Programm:

- Eingabe: Adresse *a*₁ einer positiven Zahl *x*.
- Ausgabe: Speichert x div 2 in a₁.

Aufgaben

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Schreibe ein MIMA-Programm:

- Eingabe: Adresse *a*₁ einer positiven Zahl *x*.
- Ausgabe: Speichert x div 2 in a₁.

```
Lösung:
LDC<sub>1</sub>
NOT
AND a₁
            // Setze "rechtestes" Bit auf 0
RAR
STV a<sub>1</sub>
HALT
```

Lukas Bach, lukas.bach@student.kit.edu

Zum Übungsblatt

MIMA

Maschinenbefehle

