北京邮电大学 2019--2020 学年第 2 学期

《概率论与数理统计》试题(B卷,经管院,4学分)

考试注意事项:学生必须将答题内容做在试题答题纸上,做在试题纸上一律无效.

 填空题与选择题	(每小题 4 分)	#40	(分)
		フマせい	, ,, ,

- 1. 设事件 A 和 B 相互独立,且 P(A) = 0.8, P(B) = 0.4,则事件 A 和 B 中恰有一个发生的概率为______.
- 2. 有两箱同类型的零件,每箱都装有10个零件,第一箱有8个一等品,第二箱有6个一等品,现从两箱中任选一箱,然后从该箱中有放回地取零件两次,每次取一个,在第一次取到一等品的条件下第二次取到一等品的条件概率为
- 3. 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} a(1-x^2), -1 < x < 1, \\ 0, 其他, \end{cases}$$

则 $D(X) = ____.$ (先确定常数 a,再计算 D(X))

- 4. 设 (X,Y) 服从二维正态分布 $N(0,-1,1,9,\frac{-2}{3})$,则 D(2X+Y+1)=_____.
- 5. 设随机变量 X 和 Y 相互独立, X 服从均值为 1 的指数分布, $Y \sim U(0,1)$,令 $Z = \min\{X,Y\}, 则 Z 的分布函数为 F_Z(z) = _____.$
- 6.设随机变量 $X \sim N(-2,2)$,则 $Y = \frac{1}{2}X + 1$ 服从正态分布
- (A) N(0,1) (B) $N(0,\frac{1}{2})$ (C) N(-1,2) (D) $N(-1,\frac{3}{2})$
- 7.从正态总体 $N(\mu,\sigma^2)$ 中抽取容量为n的样本,样本均值和样本标准差分别为

 \bar{x} , s, 则 μ 的置信度为 $1-\alpha$ 的置信区间为

$$(A)(\overline{x} - \frac{s}{\sqrt{n}}t_{\alpha/2}(n-1), \overline{x} + \frac{s}{\sqrt{n}}t_{\alpha/2}(n-1)) \qquad (B)(\overline{x} - \frac{s}{\sqrt{n}}t_{\alpha/2}(n), \overline{x} + \frac{s}{\sqrt{n}}t_{\alpha/2}(n))$$

(B)
$$(\overline{x} - \frac{s}{\sqrt{n}}t_{\alpha/2}(n), \overline{x} + \frac{s}{\sqrt{n}}t_{\alpha/2}(n))$$

$$(C)(\overline{x} - \frac{s}{n}t_{\alpha/2}(n-1), \overline{x} + \frac{s}{n}t_{\alpha/2}(n-1)) \qquad (D)(\overline{x} - \frac{s}{n}t_{\alpha/2}(n), \overline{x} + \frac{s}{n}t_{\alpha/2}(n))$$

(D)
$$(\overline{x} - \frac{s}{n}t_{\alpha/2}(n), \overline{x} + \frac{s}{n}t_{\alpha/2}(n))$$

8. 设 $X_1, X_2, X_3, X_4, X_5, X_6$ 为来自总体 $N(0, \sigma^2)$ 的样本, 令 $T = \frac{X_1 + X_2}{\sqrt{\sum_{i=1}^{6} X_i^2}}$.若 aT 服

从t分布,则a=

(A)
$$\frac{\sqrt{2}}{2}$$
 (B) 1 (C) $\sqrt{2}$

- (D) 2

9. 设 X_1, X_2, X_3 为 来 自 总 体 $N(\mu, \sigma^2)$ 的 样 本 , $T = (X_1 - X_2)^2 + (X_1 - X_3)^2 + (X_2 - X_3)^2$,若 aT 为 σ^2 的无偏估计,则 a =

- (B) $\frac{1}{2}$ (C) $\frac{1}{6}$ (D) $\frac{1}{9}$

10. 设 X_1, X_2, \cdots, X_n 为来自参数为 λ 的泊松分布总体的样本,则由中心极限定理,

当样本量n充分大时,样本均值 \bar{X} 近似服从正态分布

- (A) $N(\lambda, \lambda)$ (B) $N(\frac{\lambda}{n}, \lambda)$ (C) $N(\frac{\lambda}{n}, \frac{\lambda}{n})$ (D) $N(\lambda, \frac{\lambda}{n})$

二(10 分) 设随机变量 X 的分布函数为

- (1)求 X 的概率密度及 X 的数学期望;
- (2) 若对 X 作 3 次独立重复观察, 记 Y 表示 3 次观察中事件 $\{X > 1\}$ 发生的次数, 求P{Y ≥ 1},及D(Y).

三(10 分)将 2 个球随机地放入 4 个盒子中,4 个盒子分别编号为 1, 2, 3, 4. 令 X, Y 分别表示 1 号盒子和 2 号盒子中球的数目,求 (1) (X, Y) 的分布律; (2) X 与 Y 的相关系数.

 $\mathbf{U}(12 \, \mathbf{f})$ 设(X,Y)的概率密度为

$$f(x,y) = \begin{cases} x + y, 0 < x < 1, 0 < y < 1, \\ 0,$$
 其他,

求(1) $P{Y < X^2}$;

- (2)在X = x(0 < x < 1)条件下,Y的条件概率密度;
- (3)Z = X + Y的概率密度.

 $\mathbf{\Delta}(\mathbf{10}\,\mathbf{\mathcal{G}})$ 设总体 X 的分布函数为

$$F(x;\theta) = \begin{cases} 1 - e^{-(\frac{x}{\theta})^2}, x \ge 0, \\ 0, 其他 \end{cases}$$

 $\theta \in (0,+\infty)$ 为未知参数, X_1, X_2, \dots, X_n 为来自该总体的样本.

- (1) 设 s>0, t>0 , 求 $P\{X>t\}$, $P\{X>s+t\,|\,X>s\}$, 并 比 较 $P\{X>t\}$ 与 $P\{X>s+t\,|\,X>s\}$ 的大小;
- (2) 求 θ 的最大似然估计.
- 六(10 分) 甲、乙两车间生产同一种产品,为了比较两车间生产的产品的质量有无差异,现从两车间生产的产品中各抽取 8 件,检测其质量指标,并得样本均值和样本方差如下:

甲车间:
$$\bar{x} = 246$$
, $s_1^2 = 46$,

乙车间:
$$\bar{y} = 234$$
, $s_2^2 = 26$,

设甲、乙两车间生产的产品的质量指标分别服从正态分布 $N(\mu_1,\sigma_1^2)$ 和

 $N(\mu_2,\sigma_2^2)$,

- (1) 试检验假设: $H_0: \sigma_1 = \sigma$, $H_1: \sigma_1 \neq \sigma$, (显著性水平取 $\alpha = 0.1$);
- (2) 在显著水平 $\alpha = 0.05$ 下,能否认为两车间生产的产品的质量指标的均值有显著差异?

$$(t_{0.025}(14) = 2.1448, F_{0.05}(7,7) = 3.79)$$

七(8分) 在钢线碳含量x(单位:%)对于电阻y(单位: $\mu\Omega$)的效应的研究中,安排了8次试验,得到数据 $(x_i,y_i)(i=1,2,\cdots,8)$,并计算得

$$\sum_{i=1}^{8} x_i = 3.6, \sum_{i=1}^{8} y_i = 161, S_{xx} = \sum_{i=1}^{8} (x_i - \overline{x})^2 = 0.42, S_{xy} = \sum_{i=1}^{8} (x_i - \overline{x})(y_i - \overline{y}) = 6.51,$$

$$S_{yy} = \sum_{i=1}^{8} (y_i - \overline{y})^2 = 120.975$$
,

- (1)求线性回归方程 $\hat{y} = \hat{a} + \hat{b}x$;
- (2)在显著水平 $\alpha = 0.01$ 下,检验回归方程的显著性,即检验假设 $H_0: b=0$, $H_1: b\neq 0$.

$$(F_{0.01}(1,6) = 13.75)$$