Efficient Range Proofs with Transparent Setup from Bounded Integer Commitments

authors

- * Geoffroy Couteau (IRIF CNRS)
- * Michael Klooß (KIT)
- * Huang Lin (Mercury's Wing Suterusu)
- * Michael Reichle (ENS CNRS PSL University Inria)

on: June 10, 2021

Construction

DLOG

ittices

ass Groups

References

» Application

Construction

LOG

tices

ss Groups

Reference

» Application

» Application

Construction

DLOG

ettices

iss Groups

Reference

» Application

onstruction

DLOG

tices

iss Groups

Reference

Application

» Application

Commitments

$$c = x; r \xrightarrow{x,r} Verify(c, x, r) = 1$$

» Commitments

$$c = x; r \xrightarrow{x,r} \frac{x,r}{open} Verify(c, x, r) = 1$$

Propertie:

- * **Hiding**: The commitment does not reveal x.
- * **Binding**: The commitment can not be opened to something else than x.

» Commitments

$$c = x; r \xrightarrow{x,r} \xrightarrow{open} Verify(c, x, r) = 1$$

Propertie

- * **Hiding**: The commitment does not reveal x.
- * **Binding**: The commitment can not be opened to something else than x.
- * Msg Space: $x \in \mathbb{Z}_q$

» Commitments

$$c = x; r \xrightarrow{x,r} \frac{x,r}{open} Verify(c, x, r) = 1$$

Properties

- * **Hiding**: The commitment does not reveal x.
- * **Binding**: The commitment can not be opened to something else than x.
- * Msg Space: $x \in \mathbb{Z}_q$
- * Homomorphy:
 - * Additive: $x_0; r_0 + x_1; r_1 = x_0 + x_1; r_0 + r_1$
 - * Scalar: $n \cdot x; r = n \cdot x; n \cdot r$

Σ -Protocols

» Σ -Protocols

Properties

- * **Zero-Knowledge**: Transcripts can be simulated without *w*.
- * **Soundness**: A witness *w* can be extracted from accepted transcripts.

Protocol

Protocol

Protocol

Extraction

Reminder

- * Statement: c = x; r
- * Honest transcript: d = m; s, γ , $z = m + \gamma x$, $t = s + \gamma r$

Extraction

Reminder

- * Statement: c = x ; r
- * Honest transcript: d = m; s, γ , $z = m + \gamma x$, $t = s + \gamma r$

Assume A can output accepting transcripts

$$tr_0 = [d, \gamma_0, z_0, t_0]$$
 and $tr_1 = [d, \gamma_1, z_1, t_1]$

Extraction

Reminder

- * Statement: c = x ; r
- * Honest transcript: d = m; s, γ , $z = m + \gamma x$, $t = s + \gamma r$

Assume A can output accepting transcripts

$$tr_0 = [d, \gamma_0, z_0, t_0]$$
 and $tr_1 = [d, \gamma_1, z_1, t_1]$

$$d + \gamma_0 c = z_0 ; t_0 \land d + \gamma_1 c = z_1 ; t_1$$

Extraction

Reminder

- * Statement: c = x ; r
- * Honest transcript: d = m; s, γ , $z = m + \gamma x$, $t = s + \gamma r$

Assume A can output accepting transcripts

$$tr_0 = [d, \gamma_0, z_0, t_0]$$
 and $tr_1 = [d, \gamma_1, z_1, t_1]$

$$d+\gamma_0 c= \boxed{z_0 ; t_0} \wedge d + \gamma_1 c = \boxed{z_1 ; t_1}$$

$$\Rightarrow (\gamma_0-\gamma_1) c = |z_0-z_1|; t_0-t_1|$$

Extraction

Reminder

- * Statement: c = x ; r
- * Honest transcript: d = m; s, γ , $z = m + \gamma x$, $t = s + \gamma r$

Assume A can output accepting transcripts

$$tr_0 = [d, \gamma_0, z_0, t_0]$$
 and $tr_1 = [d, \gamma_1, z_1, t_1]$

Extraction

Reminder

- * Statement: c = x; r
- * Honest transcript: d = m; s, γ , $z = m + \gamma x$, $t = s + \gamma r$

Assume A can output accepting transcripts

$$tr_0 = [d, \gamma_0, z_0, t_0]$$
 and $tr_1 = [d, \gamma_1, z_1, t_1]$

$$egin{aligned} d + \gamma_0 c &= egin{aligned} z_0 \ ; t_0 \ \land d + \gamma_1 c &= egin{aligned} z_1 \ ; t_1 \ \end{aligned} \ &\Rightarrow (\gamma_0 - \gamma_1) c &= egin{aligned} z_0 - z_1 \ ; t_0 - t_1 \ \end{aligned} \ &\Rightarrow c &= egin{aligned} (z_0 - z_1)/(\gamma_0 - \gamma_1) \ ; (t_0 - t_1)/(\gamma_0 - \gamma_1) \ \end{aligned}$$

In total:
$$\mathbf{x} = (\mathbf{z}_0 - \mathbf{z}_1)/(\gamma_0 - \gamma_1)$$
 in \mathbb{Z}_q

Definition

Zero-knowledge proof for $R = \{((x, r), (x; r, a, b)) \mid x \in [a, b]\}$

Approach

Zero-knowledge proof for
$$R = \{((x, r), (x; r, a, b)) \mid x \in [a, b]\}$$

$$\mathbf{x} \in [0, 2^{\ell}) \iff \mathbf{x} = \sum_{i=0..\ell-1} \mathbf{x}_i 2^i \text{ and } \mathbf{x}_i \in \{0, 1\}$$

Approaches

- * Binary Decomposition:
 - * commit to the decomposition
 - * prove that $x_i \in \{0, 1\}$
 - * most common approach (Lattice, DLOG, ..)

Approach

Zero-knowledge proof for R =
$$\{((x, r), (x; r, a, b)) \mid x \in [a, b]\}$$

 $x \in [a, b] \iff x - a, b - x \ge 0$

Approaches

- * Integer Commitments:
 - * prove that $(b-x)(x-a) = \sum_{i=1}^{n} x_i^2$
 - * $x \in \mathbb{Z}$
 - * require trusted setup, large parameters

Decomposition

Simplification for
$$B = b - a$$

$$\mathbf{x} \in [a, b] \iff \mathbf{x} - \mathbf{a} \in [0, b - a] \iff \mathbf{x}(\mathbf{B} - \mathbf{x}) = \sum_{i=1, a} \mathbf{x}_i^2$$

Decomposition

Simplification for B = b - a

$$\mathbf{x} \in [\mathbf{a}, \mathbf{b}] \iff \mathbf{x} - \mathbf{a} \in [0, \mathbf{b} - \mathbf{a}] \iff \mathbf{x}(\mathbf{B} - \mathbf{x}) = \sum_{i=1}^{n} \mathbf{x}_{i}^{2}$$

Optimization [Groo5]

$$\mathbf{x} \in [0, \mathbf{B}] \iff 1 + 4\mathbf{x}(\mathbf{B} - \mathbf{x}) = \sum_{i=1,3} \mathbf{x}_i^2$$

» Setting

Range Proof

- * (generic) commitment: $c_0 = x_0 \mod q$; r_0
- * avoid trusted setup
- * optimize efficiency

Idea

$$1 + 4x_0(B-x_0) = \sum_{i=1..3} x_i^2$$

Approach I

Idea

$$1 + 4x_0(B-x_0) = \sum_{i=1...3} x_i^2$$

Approach I

Idea

$$1 + 4x_0(B-x_0) = \sum_{i=1...3} x_i^2$$

» Approach I

Idea

$$1 + 4x_0(B-x_0) = \sum_{i=1...3} x_i^2$$

Approach I

Idea

$$1 + 4x_0(B-x_0) = \sum_{i=1...3} x_i^2$$

» Approach I

Idea

$$1 + 4x_0(B-x_0) = \sum_{i=1...3} x_i^2$$

» Approach I

Problem

3 square decomposition in \mathbb{Z}_q does not imply positivity

Idea

Avoid overflows by ensuring short witnesses

Problem

Extracted
$$x_0 = \frac{z_0 - z_0'}{\gamma - \gamma'} \mod q$$
 not short

Example

Problem

 $\frac{1}{2}=3057\mod 6113$ is large

Example

Problem

$$rac{1}{2}=3057\mod 6113$$
 is large

Idea

Map fractions in \mathbb{Z}_q to integers via division in \mathbb{Q}

Example

Problem

$$\frac{1}{2}=3057\mod 6113$$
 is large

Idea

Map fractions in \mathbb{Z}_q to integers via division in \mathbb{Q}

Encoding

$$\left| rac{1}{2}
ight| = 1$$
 is small

Relax commitment scheme:

$$z \cdot \gamma^{-1} \mod q$$
 commits to $x = \left\lfloor \frac{z}{\gamma} \right\rfloor \in \mathbb{Z}$

Relax commitment scheme:

$$oxed{z\cdot \gamma^{-1} \mod q}$$
 commits to $oldsymbol{x} = egin{bmatrix} oxed{z} \ \gamma \end{bmatrix} \in \mathbb{Z}$

Properties

* binding if \mathbf{z}, γ short

Relax commitment scheme:

$$z \cdot \gamma^{-1} \mod q$$
 commits to $x = \left\lfloor \frac{z}{\gamma} \right\rfloor \in \mathbb{Z}$

- * binding if z, γ short
- * retains (restricted) homomorphic properties

Relax commitment scheme:

$$z \cdot \gamma^{-1} \mod q$$
 commits to $x = \left\lfloor \frac{z}{\gamma} \right\rfloor \in \mathbb{Z}$

- * binding if z, γ short
- * retains (restricted) homomorphic properties
- * retains shortness

Relax commitment scheme:

$$z \cdot \gamma^{-1} \mod q$$
 commits to $x = \left\lfloor \frac{z}{\gamma} \right\rfloor \in \mathbb{Z}$

- * binding if z, γ short
- retains (restricted) homomorphic properties
- * retains shortness
- * honest commitment unchanged

Relax commitment scheme:

$$z \cdot \gamma^{-1} \mod q$$
 commits to $x = \left\lfloor \frac{z}{\gamma} \right\rfloor \in \mathbb{Z}$

- * binding if z, γ short
- * retains (restricted) homomorphic properties
- * retains shortness
- * honest commitment unchanged
- \rightarrow Bounded integer commitment scheme

Relaxed commitment scheme:

$$oxed{z\cdot \gamma^{-1} \mod q}$$
 commits to $oldsymbol{x} = egin{bmatrix} oxed{z} \ \gamma \end{bmatrix} \in \mathbb{Z}$

Binding Proof

Receive $z_0\cdot\gamma_0^{-1}\mod q$ and $z_1\cdot\gamma_1^{-1}\mod q$

Relaxed commitment scheme:

$$oxed{z\cdot \gamma^{-1} \mod q}$$
 commits to $oldsymbol{x} = egin{bmatrix} oxed{z} \ rac{z}{\gamma} \end{bmatrix} \in \mathbb{Z}$

Binding Proof

Receive $z_0\cdot\gamma_0^{-1}\mod q$ and $z_1\cdot\gamma_1^{-1}\mod q$

* Binding \Rightarrow $\pmb{z}_0 \cdot \gamma_0^{-1} = \pmb{z}_1 \cdot \gamma_1^{-1} \mod \pmb{q}$

Relaxed commitment scheme:

$$z \cdot \gamma^{-1} \mod q$$
 commits to $x = \left\lfloor \frac{z}{\gamma} \right\rfloor \in \mathbb{Z}$

Binding Proof

Receive $z_0 \cdot \gamma_0^{-1} \mod q$ and $z_1 \cdot \gamma_1^{-1} \mod q$

* Binding
$$\Rightarrow z_0 \cdot \gamma_0^{-1} = z_1 \cdot \gamma_1^{-1} \mod q$$

 $\Rightarrow z_0 \cdot \gamma_1 = z_1 \cdot \gamma_0 \mod q$

Relaxed commitment scheme:

$$z \cdot \gamma^{-1} \mod q$$
 commits to $x = \left\lfloor \frac{z}{\gamma} \right\rceil \in \mathbb{Z}$

Binding Proof

Receive $z_0\cdot\gamma_0^{-1}\mod q$ and $z_1\cdot\gamma_1^{-1}\mod q$

- * Binding $\Rightarrow z_0 \cdot \gamma_0^{-1} = z_1 \cdot \gamma_1^{-1} \mod q$ $\Rightarrow z_0 \cdot \gamma_1 = z_1 \cdot \gamma_0 \mod q$
- * Shortness $\Rightarrow z_0 \gamma_1 = z_1 \gamma_0$ over $\mathbb Q$

Relaxed commitment scheme:

$$z \cdot \gamma^{-1} \mod q$$
 commits to $x = \left\lfloor \frac{z}{\gamma} \right\rceil \in \mathbb{Z}$

Binding Proof

Receive $z_0 \cdot \gamma_0^{-1} \mod q$ and $z_1 \cdot \gamma_1^{-1} \mod q$

- * Binding $\Rightarrow z_0 \cdot \gamma_0^{-1} = z_1 \cdot \gamma_1^{-1} \mod q$ $\Rightarrow z_0 \cdot \gamma_1 = z_1 \cdot \gamma_0 \mod q$
- * Shortness $\Rightarrow z_0 \gamma_1 = z_1 \gamma_0$ over \mathbb{Q} $\Rightarrow \frac{z_0}{\gamma_0} = \frac{z_1}{\gamma_1}$ over \mathbb{Q}

Relaxed commitment scheme:

$$z \cdot \gamma^{-1} \mod q$$
 commits to $x = \left\lfloor \frac{z}{\gamma} \right\rfloor \in \mathbb{Z}$

Binding Proof

Receive $z_0\cdot\gamma_0^{-1}\mod q$ and $z_1\cdot\gamma_1^{-1}\mod q$

- * Binding $\Rightarrow z_0 \cdot \gamma_0^{-1} = z_1 \cdot \gamma_1^{-1} \mod q$ $\Rightarrow z_0 \cdot \gamma_1 = z_1 \cdot \gamma_0 \mod q$
- $\begin{array}{l} * \ \, \mathsf{Shortness} \ \Rightarrow \ \, z_0 \gamma_1 = z_1 \gamma_0 \quad \mathsf{over} \, \mathbb{Q} \\ \ \, \Rightarrow \ \, \frac{z_0}{\gamma_0} = \frac{z_1}{\gamma_1} \quad \mathsf{over} \, \mathbb{Q} \\ \ \, \Rightarrow \ \, \left\lfloor \frac{z_0}{\gamma_0} \right\rfloor = \left\lfloor \frac{z_1}{\gamma_1} \right\rfloor \quad \mathsf{over} \, \mathbb{Q} \end{array}$

Obtain range proof for relaxed committed value

Extraction

$$\dfrac{z-z'}{\gamma-\gamma'}\in\mathbb{Z}_q\mapsto \left\lfloor\dfrac{z-z'}{\gamma-\gamma'}
ight
ceil\in\mathbb{Z}$$
 short

» Showing the Decomposition

Requires sending additional group elements and integers.

- * Commitments c_1, c_2, c_3 to decomposition x_1, x_2, x_3
- * Proof of openings of c_1, c_2, c_3
- * Additional mask (DLOG, Lattice, Class Groups)
- * Additional commitments (Lattice)

$$z \cdot \gamma^{-1}$$
; r commits to $x = \lfloor z/\gamma \rceil \in \mathbb{Z}$

* Honest:
$$x_0 ; r + x_1 ; s = x_0 + x_1 ; r + s$$

$$oxed{z\cdot \gamma^{-1} \; ; r}$$
 commits to $oldsymbol{x} = ig\lfloor z/\gamma ig
ceil \in \mathbb{Z}$

- * Honest: $x_0 ; r + x_1 ; s = x_0 + x_1 ; r + s$
- * Small Constants:
 - * $z \cdot \gamma^{-1} ; r + a ; 0 = (z + \gamma a) \cdot \gamma^{-1} ; r$
 - * $\overline{\text{commits to } x + a} = |z/\gamma| + a$

$$z\cdot \gamma^{-1}\;;r\;$$
 commits to $\mathit{x}=\left\lfloor z/\gamma
ight
ceil\in\mathbb{Z}$

- * Honest: $x_0 ; r + x_1 ; s = x_0 + x_1 ; r + s$
- * Small Constants:
 - * $z \cdot \gamma^{-1}$; r + a; $0 = (z + \gamma a) \cdot \gamma^{-1}$; r
 - * commits to $x + a = \lfloor \overline{z/\gamma} \rfloor + a$
- * Dishonest:
 - * $|z_0 \cdot \gamma^{-1}; r| + |z_1 \cdot \gamma^{-1}; s| = |(z_0 + z_1) \cdot \gamma^{-1}; r + s|$
 - * commits to $|z_0/\gamma| + |z_1/\gamma| + \{0,1\}$
 - * worse for non-equal denominator

$$oxed{z\cdot \gamma^{-1} \; ; r}$$
 commits to $oldsymbol{x} = ig\lfloor z/\gamma ig
ceil \in \mathbb{Z}$

- * Honest: $x_0 ; r + x_1 ; s = x_0 + x_1 ; r + s$
- * Small Constants:

*
$$z \cdot \gamma^{-1}$$
; $r + a$; $0 = (z + \gamma a) \cdot \gamma^{-1}$; r

- * commits to $x + a = \lfloor \overline{z/\gamma} \rfloor + a$
- * Dishonest:

*
$$|z_0 \cdot \gamma^{-1}; r| + |z_1 \cdot \gamma^{-1}; s| = |(z_0 + z_1) \cdot \gamma^{-1}; r + s|$$

- * commits to $|z_0/\gamma| + |z_1/\gamma| + \{0,1\}$
- * worse for non-equal denominator
- \rightarrow ensure that committed integers are small enough
- \rightarrow be careful about guarantees

» Limitations - Group Size

Need to ensure no overflow in square decomposition:

$$1 + 4x_0(B-x_0) = \sum_{i=1..3} x_i^2$$

» Limitations - Group Size

Need to ensure no overflow in square decomposition:

$$1 + 4x_0(B-x_0) = \sum_{i=1,3} x_i^2$$

Can only check size of z_i :

$$1 + 4z_0(B-z_0) = \sum_{i=1..3} z_i^2$$

» Limitations - Group Size

Need to ensure no overflow in square decomposition:

$$1 + 4x_0(B-x_0) = \sum_{i=1..3} x_i^2$$

Can only check size of z_i :

$$1 + 4z_0(B-z_0) = \sum_{i=1..3} z_i^2$$

- \rightarrow ensure that both sides are smaller than the modulus q
- ightarrow leads to large group size

Optimizations

$$z_i = m_i + \gamma x_i$$

 $* \ \textbf{Rejection Sampling} : \ \textbf{shorter masks} \rightarrow \textbf{smaller modulus}$

» Optimizations

$$z_i = m_i + \gamma x_i$$

- * Rejection Sampling: shorter masks → smaller modulus
- * **Repetitions**: shorter challenge \rightarrow smaller modulus

Optimizations

$$z_i = m_i + \gamma x_i$$

- * Rejection Sampling: shorter masks → smaller modulus
- * **Repetitions**: shorter challenge \rightarrow smaller modulus
- * Fiat-Shamir: non-interactive range proof

- * **DLOG**: improves on Bulletproofs [BBB⁺18]
- * Lattice: efficient for large batches
- * Class Groups: first concretely efficient unbounded integer commitment scheme without trusted setup

Pedersen Commitments

- $* \mathbb{G}$: group with prime order q
- * $g,h \in \mathbb{G}$: generators
- * $\mathbf{x} \in \mathbf{Z}_{q}, \mathbf{r} \leftarrow [0, 2^{2\lambda}]$

$$x; r = g^x h^r$$

* based on DLSE assumption

Pedersen Commitments

- $* \mathbb{G}$: group with prime order q
- * $g,h \in \mathbb{G}$: generators
- * $\mathbf{x} \in \mathbf{Z}_{q}, \mathbf{r} \leftarrow [0, 2^{2\lambda}]$

$$[x;r]=g^xh^r$$

- based on DLSE assumption
- * Decomposition: use (honest) homomorphic properties
- * Efficient range proofs for single x

Security Parameter	80	128
Range	B = 32	
Proof size	88%	81%
Prover's work	12%	11%
Range	B=64	
Proof size	89%	80%
Prover's work	6%	6%

Our work compared to Bulletproofs [BBB $^+$ 18]. Prover's work compared in group multiplications.

» Lattices

[BDL+18] commitments

- $* q \in \mathbb{N}$ prime
- * $\vec{x} \in \mathbb{Z}_q^n, \vec{r} \leftarrow D_{\sigma}^{l1+n+l2}$

$$\vec{\pmb{x}} : \vec{\pmb{r}} = \pmb{A} \cdot \vec{\pmb{r}} + (\vec{0} \parallel \vec{\pmb{x}})$$

- * based on SIS and LWE assumption
- * Decomposition with polynomial trick
- * Perform range proof for each component
- Amortized proofs more efficient than the state of the art in standard lattice setting

» Class Groups

Pedersen Commitments

- * Groups G with hidden order
- * based on ORD and SI assumption
- * extraction differs:

$$\mathbf{x} = \frac{\mathbf{z}}{2}$$

» Class Groups

Pedersen Commitments

- * Groups G with hidden order
- * based on ORD and SI assumption
- * extraction differs:

$$\mathbf{x} = \frac{\mathbf{z}}{2^{k}}$$

- * Same structure as DLOG version
- * Larger group elements
- * No bounds on the committed values

References

- B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on Security and Privacy, pages 315–334, San Francisco, CA, USA, May 21–23, 2018. IEEE Computer Society Press.
- C. Baum, I. Damgård, V. Lyubashevsky, S. Oechsner, and C. Peikert.

 More efficient commitments from structured lattice assumptions.

 In SCN 18: 11th International Conference on Security in Communication

 Networks, Lecture Notes in Computer Science 11035, pages 368–385, Amalfi,

 Italy, September 5–7, 2018. Springer, Heidelberg, Germany.
- J. Groth.
 Non-interactive zero-knowledge arguments for voting.
 In ACNS 05: 3rd International Conference on Applied Cryptography and Network Security, Lecture Notes in Computer Science 3531, pages 467–482, New York, NY, USA, June 7–10, 2005. Springer, Heidelberg, Germany.