Exploiting While Exploring: Effective Bug Discovery in Unit-Level Verification

Hongsup Shin Arm, Ltd.

Author bio

- Hongsup Shin
- Data scientist / ML Researcher at Arm (3 years)
- Developing ML applications for verification
- PhD in neuroscience

Simulation-based hardware verification

- 60-70% of the cycle dedicated to verification
- Exhaustiveness doesn't scale well with design complexity
- Random-constraint simulation: possible to direct tests with constraints but still non-deterministic
- Simulation stimuli examples
 - Binary on/off switch of a setting
 - Probabilistic definition of numerical constraints (ranges)
- Previously-simulated tests are not well utilized by verification engineers.

Failures in unit-level verification and ML

- Can we use previously run tests to predict which tests will fail in advance?
- Failures (=bugs): with a set of given input settings, HDL-level simulations produce undesirable outputs
- ML approaches in literature suggest exploratory algorithms (e.g., reinforcement learning, evolutionary algorithms)
- Lack of concrete examples especially that address the details of ML engineering in deployment
- General ML engineering challenges
 - Stochastic nature of test bench
 - Frequent changes to the design and test bench
 - Class imbalance
 - Fast inference time

Our approach: tagging bug-prone tests w/ ML

- Train the ML models based on previously simulated tests
- Use the existing testbench infrastructure to generate a large set test candidates (e.g., input settings)
- The trained models make a binary prediction for each candidate (pass or fail)
- Only the candidates that are flagged as failure are simulated.

Overview of the bug-hunting application

Training data

- 100k simulated tests (2-week worth)
- From a specific unit of a microprocessor with a specific test scenario
- Several hundreds of input settings (features)
- Target: <u>binary pass/fail</u> and fail signatures (hash function output from failure logs)
- Extensive and semi-automated data preprocessing

Metrics

- Unique failure signature (UFS) recovery rate
 - Similar to recall
 - Ratio between the no. of UFS found and the no. of total UFS in the validation set
 - Higher the better
 - 1 = the models recovered all UFS
- Efficiency
 - How efficient the ML flow is compared to the baseline (the random flow)
 - E.g., efficiency of 2 = the models can capture x2 failures compared to the baseline when the same number of tests are run
 - Higher the better

Models and deployment

- An ensemble of supervised and unsupervised models
 - Supervised: identify failures similar to the previous ones (gradient boosting)
 - Unsupervised: find novel candidates based on the input-setting combinations (isolation forest)
 - Union of the two models as prediction to maximize the bug capture
 - 80% UFS recovered by running about 60% of the tests.
- Deployment
 - Python application in HPC
 - Complementary flow
 - Daily batch simulation

Post deployment treatment

- Continuous monitoring and periodic retraining (weekly)
- Optimizing the training window and applying recency effect
- Applying performance-weights to determine the size of candidate pools from each model
- Using ranking based on prediction probability instead of binary labels
- Preventing information leakage with time-sensitive cross-validation

Unique failure signature discovery rate (per test)

Efficiency (x times more efficient than the default)

- Tests were not run on most days.
- Model performance is less stable.

Challenges and future steps

Challenges	Future steps
Reduced stability in model performance towards the end of projects	 Automated feature engineering Flexible and adaptive retraining Surgical approach to target specific signatures
Stochasticity in test bench design + lack of systematic approach towards input settings	Automated feature assessmentCounterfactuals
Debugging model performance especially regarding design and testbench changes	Identify key input settingsIdentify critical fail signaturesQuantify design and testbench changes
Efficient feedback loop between ML engineers and verification engineers	 Engineering platform to capture debugging process

Questions

