Assignment 4

Foodies with hoodies

Contents

1	Question																									2
	1.1 (i)																									2
	1.2 (ii)																									2
	1.3 (iii)																									2
2	Question 2																									
	2.1 (i)																									2
	2.2 (ii)																									
3	Question 3																									
	3.1 (i)																									3
	3.2 (ii)																									4
	3.3 (iii)																									6
	3.4 (iv)																									
	3.5 (v)																									7
	3.6 (vi)																									
	3.7 (vii)																									۶

1 Question 1

Judge	Jor	nes	Smith					
Sentences	Prison	Other	Prison	Other				
Cases	70%	30%	40%	60%				
Future arrests	40%	60%	20%	50%				

1.1 (i)

We can treat the following problem as follows: Y_i is the outcome of whether an individual is arrested later. The instrument variable Z_i is which judge they are assigned to in the first case and D_i is the treatment whether the individual is sentenced to prison or not in the first case. Then the Wald estimator can be calculated by:

$$\delta_{Wald} = \frac{E[Y_i|Z_i=1] - E[Y_i|Z_i=0]}{Pr(D_i=1|Z_i=1) - Pr(D_i=1|Z_i=0)} \tag{1} \label{eq:delta_Wald}$$

- 1.2 (ii)
- 1.3 (iii)

2 Question 2

2.1 (i)

From what is given, we have MDE=0.1, the power p=0.7, the proportion of students in control group is p=0.5. The variance of the binomial variable is $\sigma^2=p(1-p)=0.25$ To get the number of students the teacher should include in the experiment, we use the following formula:

$$n = \left(\frac{t_{1-\alpha/2} - t_{1-q}}{MDE}\right)^2 \frac{\sigma^2}{p(1-p)}$$

$$= \left(\frac{1.960 + 0.524}{0.1}\right)^2 \frac{0.25}{0.5(1-0.5)}$$

$$\approx 617$$
(2)

Thus, the teacher should include at least 617 students in the experiment.

2.2 (ii)

This will change the proportion of students in treatment to $p=0.5\times 20\%=0.1$, using the formula in Equation (2), the number of students required to participate in the experiment is:

$$n = \left(\frac{1.960 + 0.524}{0.1}\right)^2 \frac{0.25}{0.1(1 - 0.1)}$$

$$\approx 1713$$
(3)

Thus, the number of students required to participate in the experiment increases by 6856-2468=4388 students.

3 Question 3

3.1 (i)

```
# Load data
dfData = read.csv("AngristEvans80.csv")
attach(dfData)

# Fraction of girls among the first born child
count_girl1 = table(dfData$SEXK)
fraction_girl1= count_girl1[[2]]/(count_girl1[[1]]+count_girl1[[2]])

# Fraction of girls among the second born child
```

Fraction of girls among the first born child is: 0.4876463 Fraction of girls among the second born child is: 0.4884266

```
#Regress gender of second child on gender of first child
lm_second_first = lm(SEX2ND~SEXK, data = dfData)
summary(lm_second_first)
```

```
Call:
```

lm(formula = SEX2ND ~ SEXK, data = dfData)

Residuals:

Min 1Q Median 3Q Max -0.4908 -0.4862 -0.4862 0.5092 0.5138

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.4861744 0.0008672 560.626 <2e-16 ***
SEXK 0.0046185 0.0012418 3.719 2e-04 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4999 on 648470 degrees of freedom Multiple R-squared: 2.133e-05, Adjusted R-squared: 1.979e-05

F-statistic: 13.83 on 1 and 648470 DF, $\,$ p-value: 2e-04 $\,$

3.2 (ii)

```
# First stage regression
lm_first_stage = lm(CHILD3 ~ SAMESEX, data= dfData)
summary(lm_first_stage)
```

```
Call:
lm(formula = CHILD3 ~ SAMESEX, data = dfData)
Residuals:
   Min
            1Q Median 3Q
                                  Max
-0.4093 -0.4093 -0.3552 0.5907 0.6448
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3552366 0.0008544 415.79 <2e-16 ***
SAMESEX
         0.0540534 0.0012051
                               44.85 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4852 on 648470 degrees of freedom
Multiple R-squared: 0.003093, Adjusted R-squared: 0.003091
F-statistic: 2012 on 1 and 648470 DF, p-value: < 2.2e-16
Is the instrumental variable sufficiently strong? => yes
  # Regress number of children on whether the first two children have the

ightarrow same gender
  lm_total = lm(KIDCOUNT ~ SAMESEX, data= dfData)
  summary(lm_total)
Call:
lm(formula = KIDCOUNT ~ SAMESEX, data = dfData)
Residuals:
            1Q Median
                           3Q
                                  Max
-0.5752 -0.5752 -0.5040 0.4248 9.4960
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
SAMESEX
         0.071200 0.002057 34.61
                                       <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.8283 on 648470 degrees of freedom Multiple R-squared: 0.001844, Adjusted R-squared: 0.001842 F-statistic: 1198 on 1 and 648470 DF, p-value: < 2.2e-16

3.3 (iii)

In this study, the treatment group includes those who have a third child and the control group includes those who have two children or less. The variables that affect decision for mothers to be assigned into treatment or control group is Z = SAMESEX, indicating whether the first two child are of the same sex or not.

The always takers are those who have a third child regardless of whether the first two children is of the same sex or not.

```
df_always = dfData[dfData$CHILD3 == 1 & dfData$SAMESEX == 0,]
cat("The share of always takers is: ", nrow(df_always)/nrow(dfData))
```

The share of always takers is: 0.1766969

The compliers are those who only have a third child if the first two kids are of the same sex.

The share of compliers is: 0.5264159

The never takers are those who will never have the third child regardless of whether the first two chidren are of the same sex or not.

```
df_never = dfData[dfData$CHILD3 == 0 & dfData$SAMESEX == 1,]
cat("The share of never takers is: ", nrow(df_never)/nrow(dfData))
```

The share of never takers is: 0.2968871

Lastly, the defiers are those who will have a third child if the first two kids are of different sexes and will not have a third child if the first two kids are of the same sex. We cannot observe this as they are divided among the always taker and never taker's group.

3.4 (iv)

. . .

```
_____
           Dependent variable:
           HOURSM
                  INCOME1M
           (1) (2)
         -3.585*** -786.830***
CHILD3
          (0.864)
                    (244.939)
         t = -4.150 t = -3.212
         p = 0.00004 p = 0.002
Constant
         20.304*** 3,825.464***
          (0.331) (93.899)

t = 61.311 t = 40.740
          p = 0.000
                   p = 0.000
                  648,472
Observations 648,472
Adjusted R2 0.007 0.008
_____
      *p<0.1; **p<0.05; ***p<0.01
Note:
```

3.5 (v)

```
# Subgroup 1: Always taker
hour1=mean(df_always$HOURSM)
income1=mean(df_always$INCOME1M)
```

```
cat("The mean working hour of always takers is: ", hour1, ", the mean of always takers is: ",income1)
```

The mean working hour of always takers is: 17.04711 , the mean income of always takers is:

```
# Subgroup 2: never takers
hour2=mean(df_never$HOURSM)
income2=mean(df_never$INCOME1M)
cat("The mean working hour of never takers is: ", hour2, ", the mean
    income of never takers is: ",income2)
```

The mean working hour of never takers is: 20.20379, the mean income of never takers is: 3

```
# Subgroup 3: complier 1
hour3=mean(df_compliers1$HOURSM)
income3=mean(df_compliers1$INCOME1M)
cat("The mean working hour of complier in treatment group is: ", hour3,

", the mean income of this group is: ",income3)
```

The mean working hour of complier in treatment group is: 16.8629, the mean income of this

```
# Subgroup 4: complier 0
hour4=mean(df_compliers0$HOURSM)
income4=mean(df_compliers0$INCOME1M)
cat("The mean working hour of complier in control group is: ", hour4, ",

the mean income of this group is: ",income4)
```

The mean working hour of complier in control group is: 20.12279, the mean income of this g

To-dos: USE these means to say something about the preference of having a third child

3.6 (vi)

3.7 (vii)

First, we stratify the sample by gender of the first child:

```
df_first_girl = dfData[dfData$SEXK == 1,]
df_first_boy = dfData[dfData$SEXK == 0,]
```

(But they ask to use the first stage result?) I try to to it manually below:

. . .

	Dependent variable:									
	CHILD3									
	(1)	(2)								
SAMESEX	0.063***	0.046***								
	(0.002)	(0.002)								
	t = 36.381	t = 27.351								
	p = 0.000	p = 0.000								
Constant	0.355***	0.356***								
	(0.001)	(0.001)								
	t = 293.159	t = 294.887								
	p = 0.000	p = 0.000								
Observations	316,225	332,247								
Adjusted R2	0.004 =======	0.002								
Note:	*p<0.1; **p<	0.05; ***p<0.01								

If the first child is a girl and first two children are of the same sex, one is more likely to have a third child.

Then, we perform instrumental variable regressions:

. . .

		Dependen	t variable:	
	HOURSM (1)	INCOME1M (2)	HOURSM (3)	INCOME1M (4)
CHILD3	-1.104 (1.064) t = -1.037 p = 0.300	(303.245)	(1.425) t = -4.698	-1,320.535*** (400.868) t = -3.294 p = 0.001
Constant		3,676.891*** (117.357) t = 31.331 p = 0.000	(0.541) t = 39.567	
Observations Adjusted R2	316,225 0.004	316,225 0.005	332,247 -0.001	332,247 0.007
Note:		*	 p<0.1; **p<0	.05; ***p<0.01

Here we see that if the first child is a girl, having a third child does not significantly influence the hour and income.