18) Capital Asset Pricing Model

Vitor Kamada

July 2018

1/13

Vitor Kamada ECO 6100 Econometrics July 2018

Reference

Tables, Graphics, and Figures from

https://www.quantopian.com/lectures

Lecture 30 The Capital Asset Pricing Model

Capital Asset Pricing Model (CAPM)

- Idiosyncratic Risk: firm-specific, diversified away
- Systematic Risk: affects all market participants

E[Return] = Risk-Free Rate of Return + Risk Premium

Risk Premium of Asset = β (Market Risk Premium)

$$E[R_i] = R_F + \beta (E[R_M] - R_F)$$

Vitor Kamada ECO 6100 Econometrics July 2018

CAPM Assumptions

Investors are:

- able to trade without delay or cost and that everyone is able to borrow or lend money at the risk free rate
- "mean-variance optimizers"

Mean and Standard Deviation of Returns

Sharpe Ratio derived in 1966 by William Sharpe, Nobel Prize in 1990

Sharpe Ratio =
$$\frac{E(R_i) - R_F}{\sigma_i}$$

 R_i : return of asset i

 R_F : return of a risk-free security

 σ_i : standard deviation of R_i

Vitor Kamada ECO 6100 Econometrics

July 2018

Capital Market Line (CAL)

$$E(R_p) = R_F + \left[\frac{E(R_M) - R_F}{\sigma_M}\right] \sigma_p$$

 R_p : return of portfolio p

 R_M : return of a market portfolio

 σ_M : standard deviation of R_M

 σ_p : standard deviation of R_p

Slope of Capital Allocations Line = Sharpe Ratio

Security Markets Line: $E[R_i] = R_F + \beta_i (E[R_M] - R_F)$

9/13

Vitor Kamada ECO 6100 Econometrics July 2018

$E[R_i] = R_F + \beta(E[R_M] - R_F)$

```
start date = '2014-01-01'
end date = '2014-12-31'
# choose stock
R = get pricing('AAPL', fields='price',
                start date=start date, end date=end date).pct change()[1:]
# risk-free proxy
R F = get pricing('BIL', fields='price',
                start date=start date, end date=end date).pct change()[1:]
# find it's beta against market
M = get pricing('SPY', start date=start date,
                end date=end date, fields='price').pct change()[1:]
AAPL results = regression.linear model.OLS(R-R F, sm.add constant(M)).fit()
AAPL beta = AAPL results.params[1]
M.plot()
R.plot()
R F.plot()
plt.xlabel('Time')
plt.ylabel('Daily Percent Return')
plt.legend();
```

Daily Percent Return

AAPL_results.summary()

Dep. Variable:	у	R-squared:	0.192
Model:	OLS	Adj. R-squared:	0.189
Method:	Least Squares	F-statistic:	59.35
Date:	Mon, 28 Aug 2017	Prob (F-statistic):	3.12e-13
Time:	19:11:42	Log-Likelihood:	749.29
No. Observations:	251	AIC:	-1495.
Df Residuals:	249	BIC:	-1488.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
const	0.0010	0.001	1.331	0.185	-0.000 0.003
Equity(8554 [SPY])	0.8438	0.110	7.704	0.000	0.628 1.059

predictions = $R_F + AAPL_beta*(M - R_F)$

```
predictions.plot()
R.plot(color='Y')
plt.legend(['Prediction', 'Actual Return'])
plt.xlabel('Time')
plt.ylabel('Daily Percent Return');
```

