

Data Mining

Chapter 7: Clustering

Yunming Ye, Baoquan Zhang
School of Computer Science
Harbin Institute of Technology, Shenzhen

Agenda

- Introduction to Cluster Analysis
- Distance Metrics of Different Data

- Basic Clustering Algorithms
- Clustering with Deep Learning

7.1 Introduction to Cluster Analysis

What is Cluster Analysis?

• Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

General Applications of Clustering

Business Intelligence

- Cluster analysis of data
- Customer segmentation
- Fraud detection
- Missing value prediction

WWW Applications

- Document classification
- Cluster Weblog data to discover groups of similar access patterns
- Pattern Recognition
- Spatial Data Analysis

Functions of Cluster Analysis

Understanding

Summarization

Reduce the size of large data sets

Preprocessing

A preprocessing step for other data mining algorithms

	Discovered Clusters	Industry Group		
1	Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, Sun-DOWN	Technology1-DOWN		
2	Apple-Comp-DOWN, Autodesk-DOWN, DEC-DOWN, ADV-Micro-Device-DOWN, Andrew-Corp-DOWN, Computer-Assoc-DOWN, Circuit-City-DOWN, Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, Motorola-DOWN, Microsoft-DOWN, Scientific-Atl-DOWN	Technology2-DOWN		
3	Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, MBNA-Corp-DOWN,Morgan-Stanley-DOWN	Financial-DOWN		
4	Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, Schlumberger-UP	Oil-UP		

Cluster Definition

Cluster Definition

A cluster is a subset of objects in data which are similar to each other in the cluster according to some similarity measure and dissimilar to other objects outside of the cluster.

Some concepts:

- Cluster center
- Cluster size
- Cluster density
- Cluster descriptions

Notion of a Cluster can be Ambiguous

Clustering Methods

Clustering Methods

7.2 Distance Metrics of Different Data

Data Structures

Data matrix

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

Dissimilarity matrix

$$\begin{bmatrix} 0 & & & & & \\ d(2,1) & 0 & & & & \\ d(3,1) & d(3,2) & 0 & & & \\ \vdots & \vdots & \vdots & & \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

Type of Data in Clustering Analysis

- Interval-scaled variables:
- Binary variables:
- Nominal, ordinal, and ratio variables:
- Variables of mixed types:

Interval-valued Variables

- Continuous measurements of a roughly linear scale
 - > Weight, height, latitude and longitude coordinates, temperature, etc.
- Effect of measurement units in attributes
 - ➤ Smaller unit → larger variable range → larger effect to the result
 - Standardization + background knowledge

Similarity and Dissimilarity Between Objects

- Distances are normally used measures
- Minkowski distance: a generalization

$$d(i,j) = \sqrt{|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + ... + |x_{ip} - x_{jp}|^q} \quad (q > 0)$$

- If q = 2, d is Euclidean distance
- If q = 1, d is Manhattan distance
- Weighed distance

$$d(i,j) = \sqrt{w_1 |x_{i_1} - x_{j_1}|^q + w_2 |x_{i_2} - x_{j_2}|^q + ... + w_p |x_{i_p} - x_{j_p}|^q)} \quad (q > 0)$$

Binary Variables

Object i

Object j									
	1	0	Sum						
1	q	r	q+r						
0	S	t	s+t						
Sum	q+s	r+t	р						

- A contingency table for binary data
- Symmetric variable: each state carries the same weight
 - Invariant dissimilarity

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

- Asymmetric variable: the positive value carries more weight
 - Noninvariant dissimilarity (Jacard)

$$d(i,j) = \frac{r+s}{q+r+s}$$

Noninvariant Dissimilarity between Binary Variables

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

Nominal Variables

- A generalization of the binary variable in that it can take more than 2 states,
 e.g., Red, yellow, blue, green
- Method 1: simple matching
 - > m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: use a large number of binary variables
 - Creating a new binary variable for each of the M nominal states

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
 - \triangleright Replace x_{if} by their rank

$$r_{if} \in \{1, ..., M_f\}$$

> Map the range of each variable onto [0, 1] by replacing i-th object in the f-th variable by $\nu = 1$

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

Compute the dissimilarity using methods for interval-scaled variables

Ratio-scaled Variables

- Ratio-scaled variable: a positive measurement on a nonlinear scale
 - \triangleright E.g., approximately at exponential scale, such as Ae^{Bt}
- Treat them like interval-scaled variables?
 - Not a good choice: the scale can be distorted!
- Apply logarithmic transformation, $y_{if} = log(x_{if})$
- Treat them as continuous ordinal data, treat their rank as interval-scaled

Variables of Mixed Types

- A database may contain all the six types of variables
 - > Symmetric binary, asymmetric binary, nominal, ordinal, interval and ratio
- One may use a weighted formula to combine their effects

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

7.3 Basic Clustering Algorithms

Partitional Clustering

Partitioning Algorithms: Basic Concepts

- Partition n objects into k clusters
 - Optimize the chosen partitioning criterion
- Global optimal: examine all possible partitions
 - \rightarrow (kⁿ-(k-1)ⁿ-...-1) possible partitions, too expensive!
- Heuristic methods: k-means
 - > K-means: a cluster is represented by the center

K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple
 - 1: Select K points as the initial centroids.
 - 2: repeat
 - 3: Form K clusters by assigning all points to the closest centroid.
 - 4: Recompute the centroid of each cluster.
 - 5: **until** The centroids don't change

K-Means: Example

K-means: A Mathematical Programming Problem

Minimize

$$P(W,Q) = \sum_{l=1}^{k} \sum_{i=1}^{n} W_{i,l} d(X_i, Q_l)$$

• Subject to

$$\sum_{l=1}^{k} W_{i,\,l} = 1 \qquad \qquad 1 \leq i \leq n$$

$$w_{i,l} \in \{0,1\}$$

1≤i≤n, 1≤l≤k

An Iterative Solution

 Problem P can be solved by iteratively solving the following two sub problems:

• **Problem** *P*1:

Fix $Q = \hat{Q}$ and solve the reduced problem

$$P(W,\hat{Q})$$

• **Problem** *P*2:

Fix $W = \hat{W}$ and solve the reduced problem

$$P(\hat{W},Q)$$

Sub Problem Solutions

Minimize:
$$P(W,Q) = \sum_{l=1}^{k} \sum_{i=1}^{n} W_{i,l} d(X_i, Q_l)$$

Solution to P1:

1.
$$W_{i,l} = 1$$
 If $d(X_i, Q_l) \le d(X_i, Q_t)$, for $1 \le t \le k$

2.
$$W_{i, l} = 0$$
 for $t \neq l$

Solution to P2:

$$q_{l,i} = \frac{\sum_{i=1}^{n} W_{i,l} X_{i,j}}{\sum_{i=1}^{n} W_{i,l}}$$
 for $1 \le l \le k$, $1 \le j \le m$

Derivation of Solution to P2

Minimize:
$$P(W,Q) = \sum_{l=1}^{k} \sum_{i=1}^{n} W_{i,l} d(X_i, Q_l)$$

$$\frac{\partial P(W,Q)}{\partial Q_l} = \frac{\partial}{\partial Q_l} \left(\sum_{l=1}^{k} \sum_{i=1}^{n} w_{i,l} \ d(X_i,Q_l) \right)$$

$$= \sum_{l=1}^{k} \sum_{i=1}^{n} w_{i,l} \frac{\partial}{\partial Q_l} (Q_l - X_i)^2 = \sum_{l=1}^{k} \sum_{i=1}^{n} w_{i,l} 2 * (Q_l - X_i) = 0$$

$$\Rightarrow \sum_{X_i \in C_l} 2*(Q_l - X_i) = 0$$

$$C_{I}$$
 — a cluster I

$$\Rightarrow m_l Q_l = \sum_{X_i \in C_l} X_i \Rightarrow Q_l = \frac{1}{m_l} \sum_{X_i \in C_l} X_i$$

$$m_l^{}$$
 — size of cluster $\it I$

Properties of K-means Algorithm

- Efficient in clustering large data
- Solution depends on initial means
- Sensitive to outliers
- Spherical clusters
- Numeric data

Comments on the *K-Means* Method

Strength

- > Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.
- Often terminates at a local optimum. The global optimum may be found using techniques such as: deterministic annealing and genetic algorithms

Weakness

- Sensitive to initial centroids
- \triangleright Need to specify k_r the *number* of clusters, in advance
- Unable to handle noisy data and outliers
- Not suitable to discover clusters with non-convex shapes

Limitations of K-means: Non-globular Shapes

Original Points

K-means (2 Clusters)

Problems of Selecting Initial Centers in *k-means* Clustering

Bisecting K-means

Density-Based Clustering: Definitions

• Two parameters:

- > Eps: Maximum radius of the neighborhood
- > MinPts: Minimum number of points in an Eps-neighborhood of that point
- N_{Eps}(p):{q belongs to D / dist(p,q) <= Eps}

Density-Based Clustering: Definitions

- <u>Directly density-reachable</u>: A point p is directly density-reachable from a point q wrt. Eps, MinPts if
 - \triangleright 1) p belongs to $N_{Eps}(q)$
 - \triangleright 2) core point condition: $|N_{EDS}(q)| \ge MinPts$

Density-Based Clustering: Definitions

Density-reachable:

A point p is density-reachable from a point q wrt. *Eps, MinPts* if there is a chain of points $p_1, \ldots, p_n, p_1 = q, p_n = p$ such that p_{i+1} is directly density-reachable from p_i

Density-connected:

A point *p* is density-connected to a point *q* wrt. *Eps, MinPts* if there is a point *o* such that both, *p* and *q* are density-reachable from *o* wrt. *Eps* and *MinPts*.

Density Based Cluster: Definition

- Relies on a density-based notion of cluster:
 - > A *cluster* is defined as a maximal set of density-connected points
- A <u>cluster</u> C is a subset of D satisfying
 - > For all p,q if p is in C, and q is density reachable from p, then q is also in C
 - For all p,q in C: p is density connected to q

Density Based Cluster: Definition

- **Lemma 1**: If *p* is a core point, and *O* is the set of points density reachable from *p*, then *O* is a cluster
- **Lemma 2**: Let *C* be a cluster and *p* be any core point of *C*, then *C* equals the set of density reachable points from p
- **Implication:** Finding density reachable point of an arbitrary point generates a cluster. A cluster is unique determined by *any* of its core points

DBSCAN Algorithm

- Arbitrary select a point p
- \triangleright Retrieve all points density-reachable from p wrt Eps and MinPts.
- If p is a core point, a cluster is formed.
- ▶ If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.

Problems of DBSCAN

Different clusters may have very different densities

Neighborhood-Based Clustering (NBC)

Density-based clustering algorithms

- DBSCAN: Not very effective to discover clusters of different local-densities and multi-granularities
- Neighborhood-Based Clustering (NBC)
 - Automatically discover clusters of arbitrary distributions

e.g., in this dataset,
DBSCAN puts clusters C3, C4,
C5 into one cluster
NBC discovers all of the five
clusters

• K Neighborhood:

Reverse K Neighborhood:

Neighborhood-based Density Factor (NDF)

$$NDF(p) = \frac{|R - kNB(p)|}{|kNB(p)|}$$

Fig. 1. An illustration of NDF

Define local density for one point

- Local Dense Point (DP)
 - \rightarrow NDF(p) > 1
- Local Sparse Point (SP)
 - \rightarrow NDF(p) < 1
- Local Even Point (EP)
 - NDF(p) is equal (or approximately equal) to 1

 Directly Neighborhood-based density reachable (directly ND-reachable)

p is directly ND - reachable from q iff

- (a) q is a DP or EP, and
- (b) $p \in kNB(q)$

ND-reachable

```
p is ND - reachable from q, iff
there is a chain of objects p_i, ..., p_n, p_1 = p, p_n = q,
p_i is directly ND - reachable from p_{i+1}
```

ND-connected

p and q are ND - connected if p and q are both ND - reachable from a third object o

Neighborhood-based cluster

Given a dataset D,

a cluster C is a non-empty subset of D such that

- (a) for two objects p and q in C, p and q are ND connected
- (b) if $p \in C$ and q is ND connected from p, then $q \in C$

The NBC Algorithm

Evaluating NDF values

- Using VA-file to support high-dimensional access
- Search kNB and R-kNB for each object
- Calculate NDF

Clustering the dataset

- Fetch a new DP or EP
- Create a new cluster
- Extend the cluster (find all ND-connected objects)

Performance Evaluation

Discover clusters of arbitrary shapes

Fig. 3. Discoverying clusters of arbitrary shape

Performance Evaluation

Discover clusters of different densities

Fig. 4. Discoverying clusters of different densities (NBC vs. DBCSAN)

7.4 Clustering with Deep Learning

Representation Learning+clustering

Self-supervised Learning

- Supervised learning learning with labeled data
- Unsupervised learning learning with unlabeled data
- Self-supervised learning representation learning with unlabeled data
 - Learn useful feature representations from unlabeled data through pretext tasks
 - > The term "self-supervised" refers to creating its own supervision (without supervision&labels)
 - Self-supervised learning is one category of unsupervised learning

Self-Supervised Learning: an example

Deep Clustering

Deep clustering for unsupervised learning of visual features. In Proceedings of the European Conference on Computer Vision (ECCV), 2018.

Acknowledgements

- Some text, figures and formulations are from WWW. Thanks for their sharing. If you have copyright claim please contact with me at yym@hit.edu.cn.
- This lecture is distributed for nonprofit purpose.

Thank You for Your Attention

Contact me at: yym@hit.edu.cn

Tel: 26033008, 13760196623

Address: Rm.1402, H# Building