# CS2040S Data Structures and Algorithms

(e-learning edition)

All about minimum spanning trees...

### Roadmap

#### Last time: Minimum Spanning Trees

- Prim's Algorithm
- Kruskal's Algorithm
- Boruvka's Algorithm

#### **Today: Variations**

- Constant weight edges
- Bounded integer edge weights
- Directed graphs
- Maximum Spanning Tree
- Steiner Tree

### Minimum Spanning Tree

Definition: a spanning tree with minimum weight



Property 1: No cycles



Property 2: If you cut an MST, the two pieces are both MSTs.



Property 3: Cycle property

For every cycle, the maximum weight edge is *not* in the MST.



Property 4: Cut property

For every cut D, the minimum weight edge that crosses the cut *is* in the MST.



### Generic MST Algorithm

#### **Red** rule:

If C is a cycle with no red arcs, then color the max-weight edge in C red.



#### **Blue** rule:

If D is a cut with no blue arcs, then color the min-weight edge in D blue.



### Generic MST Algorithm

#### **Greedy Algorithm:**

Repeat:

Apply red rule or blue rule to an arbitrary edge.

until no more edges can be colored.





### Prim's Algorithm

Prim's Algorithm.(Jarnik 1930, Dijkstra 1957, Prim 1959)

#### Basic idea:

- S : set of nodes connected by blue edges.
- Initially:  $S = \{A\}$
- Repeat:
  - Identify cut: {S, V–S}
  - Find minimum weight edge on cut.
  - Add new node to S.

#### **Analysis:**

Running time: O(E log V).



### Kruskal's Algorithm

#### Kruskal's Algorithm. (Kruskal 1956)

#### Basic idea:

- Sort edges by weight.
- Consider edges in ascending order:
  - If both endpoints are in the **same** blue tree, then color the edge red.
  - Otherwise, color the edge blue.

#### Performance:

- Sorting:  $O(E \log E) = O(E \log V)$
- For E edges:
  - Find:  $O(\alpha(n))$  or  $O(\log V)$
  - Union: O(α(n)) or O(log V)



### Boruvka's Algorithm

#### Boruvka's Algorithm

#### Initially:

 Create n connected components, one for each node in the graph.

#### Repeat "Boruvka" Steps:

- For each connected component, search for the minimum weight outgoing edge.
- Add selected edges.
- Merge connected components.



### Roadmap

#### Last time: Minimum Spanning Trees

- Prim's Algorithm
- Kruskal's Algorithm
- Boruvka's Algorithm

#### **Today: Variations**

- Constant weight edges
- Bounded integer edge weights
- Directed graphs
- Maximum Spanning Tree
- Steiner Tree

### **MST Variants**

What if all the edges have the same weight?

#### How fast can you find an MST?

- 1. O(V)
- **✓**2. O(E)
  - 3. O(E log V)
  - 4. O(V log E)
  - 5. O(VE)

### **MST Variants**

What if all the edges have the same weight?

Depth-First-Search or Breadth-First-Search

## If all edge-weights are 2, what is the **cost** of a MST?

- 1. V-1
- 2. V
- **✓**3. 2(V-1)
  - 4. 2V
  - 5. E-V
  - 6. E

#### **MST Variants**

#### What if all the edges have the same weight?

- Depth-First-Search or Breadth-First-Search
- An MST contains exactly (V-1) edges.
- Every spanning tree contains (V-1) edges!
- Thus, any spanning tree you find with DFS/BFS is a minimum spanning tree.

### Kruskal's Variants

What if all the edges have weights from {1..10}?

### Kruskal's Variants

What if all the edges have weights from {1..10}?

Idea: Use an array of size 10



slot A[j] holds a linked list of edges of weight j

### Kruskal's Variants

What if all the edges have weights from {1..10}?

Idea: Use an array of size 10

- Putting edges in array of linked lists: O(E)
- Iterating over all edges in ascending order: O(E)
- Checking whether to add an edge:  $O(\alpha)$
- Union two components:  $O(\alpha)$

Total:  $O(\alpha E)$ 

What is the running time of (modified) Prim's if all the edge weights are in {1..10}?

- 1. O(V)
- **✓**2. O(E)
  - 3. O(E log V)
  - 4. O(V log E)
  - 5. O(EV)

What if all the edges have weights from {1..10}?

Idea: Use an array of size 10 as a Priority Queue



slot A[j] holds a linked list of nodes of weight j

What if all the edges have weights from {1..10}?

Idea: Use an array of size 10 as a Priority Queue



decreaseKey: move node to new linked list

What if all the edges have weights from {1..10}?

#### Implement Priority Queue:

- Use an array of size 10 to implement
- Insert: put node in correct list
- Remove: lookup node (e.g., in hash table) and remove from liked list.
- ExtractMin: Remove from the minimum bucket.
- DecreaseKey: lookup node (e.g., in hash table)
   and move to correct liked list.

What if all the edges have weights from {1..10}?

Idea: Use an array of size 10

- Inserting/Removing nodes from PQ: O(V)
- decreaseKey: O(E)

Total: O(V + E) = O(E)

What if all the edges have weights from {1..10}?

Implement Priority Queue....

Why does this fail for Dijkstra's Algorithm?

### Roadmap

#### Today: Minimum Spanning Trees

- Prim's Algorithm
- Kruskal's Algorithm
- Boruvka's Algorithm

#### Variations:

- Constant weight edges
- Bounded integer edge weights
- Directed graphs
- Maximum Spanning Tree
- Steiner Tree

What if the edges are directed?



#### A rooted spanning tree:



Every node is reachable on a path from the root.

No cycles.

#### Harder problem:

- Cut property does not hold.
- Cycle property does not hold.
- Generic MST algorithm does not work.

Prim's, Kruskal's, Boruvka's do not work.

See CS3230 / CS4234 for more details...

#### For a directed acyclic graph with one "root":

For every node except the root: add minimum weight incoming edge.



#### For a directed acyclic graph with one "root":

For every node except the root: add minimum weight incoming edge.

#### **Observations:**

- No cycles (since acyclic graph).
- Each edge is chosen only once.

#### Tree

V nodes

V-1 edges

No cycles

#### For a directed acyclic graph with one "root":

For every node except the root: add minimum weight incoming edge.

#### **Observations:**

- No cycles (since acyclic graph).
- Each edge is chosen only once.

V nodes V – 1 edges No cycles

Tree:

 Every node has to have at least one incoming edge in the MST, so this is the minimum spanning tree.

For a directed acyclic graph with one "root":

For every node except the root: add minimum weight incoming edge.

Conclusion: Minimum Spanning Tree

O(E) time



### Roadmap

#### Today: Minimum Spanning Trees

- Prim's Algorithm
- Kruskal's Algorithm
- Boruvka's Algorithm

#### Variations:

- Constant weight edges
- Bounded integer edge weights
- Directed graphs
- Maximum Spanning Tree
- Steiner Tree

A MaxST is a spanning tree of maximum weight.

How do you find a MaxST?

#### Reweighting a spanning tree:

– What happens if you add a constant k to the weight of every edge?

# Kruskal's Algorithm

#### Kruskal's Algorithm. (Kruskal 1956)

#### Basic idea:

- Sort edges by weight.
- Consider edges in ascending order:
  - If both endpoints are in the **same** blue tree, then color the edge red.
  - Otherwise, color the edge blue.

#### What matters?

- Relative edge weights.
- Absolute edge weights have no impact.



## Generic MST Algorithm

#### **Red** rule:

If C is a cycle with no red arcs, then color the max-weight edge in C red.



#### **Blue** rule:

If D is a cut with no blue arcs, then color the min-weight edge in D blue.



#### Reweighting a spanning tree:

– What happens if you add a constant k to the weight of every edge?

#### No change!

We can add or subtract weights without effecting the MST.

(Very different from shortest paths...)

MST with negative weights?

MST with negative weights?

#### No problem!

1. Reweight MST by adding a big enough value to each edge so that it is positive.

2. Actually, no need to reweight. Only relative edge weights matter, so negative weights have no bad impact.

A MaxST is a spanning tree of maximum weight.

How do you find a MaxST?

#### Easy!

- 1. Multiply each edge weight by -1.
- 2. Run MST algorithm.
- 3. MST that is "most negative" is the maximum.

## Roadmap

#### Last time: Minimum Spanning Trees

- Prim's Algorithm
- Kruskal's Algorithm
- Boruvka's Algorithm

#### **Today: Variations**

- Constant weight edges
- Bounded integer edge weights
- Directed graphs
- Maximum Spanning Tree
- Steiner Tree

What if I want a minimum spanning tree of a subset of the vertices?



What if I want a minimum spanning tree of a subset of the vertices?

1. Just use the sub-graph.



weight = 27

What if I want a minimum spanning tree of a subset of the vertices?

- 1. Just use the sub-graph.
- 2. Use other nodes.

H 3 12 10 5 9 9 6 1 11 11 11 E 13 13 15 C

weight = 15

What is the minimum spanning tree of a subset of the vertices?

Steiner nodes

Required nodes

Find spanning tree of required vertices.
You may include
Steiner vertices,
optionally.



Just calculate MST doesn't work:

1. Calculate MST with no Steiner nodes.



Just calculate MST doesn't work:

2. Calculate MST with all Steiner nodes.



What is the minimum spanning tree of a subset of the vertices?

**Bad News: NP-Hard** 

No efficient (polynomial) time algorithm

(unless P = NP).



What is the minimum spanning tree of a subset of the vertices?

Good News: Efficient approximation algorithms

#### Algorithm SteinerMST guarantees:

- OPT(G) = minimum cost Steiner Tree
- -T = output of SteinerMST
- -T < 2\*OPT(G)

#### Algorithm SteinerMST guarantees:

- OPT(G) = minimum cost Steiner Tree
- -T = output of SteinerMST
- -T < 2\*OPT(G)

#### Example:

- Optimal Steiner Tree has cost 50.
- Our algorithm always outputs a solution with cost < 100.</li>

- 1. For every pair of required vertices (v,w), calculate the shortest path from (v to w).
  - Use Dijkstra V times.
  - Or wait until we cover All-Pairs-Shortest-Paths next time.

Example: Step 1

#### **Shortest Paths:**

$$(A,H) = 2$$

$$(A,D) = 7$$

$$(A,E) = 9$$

$$(H,D) = 9$$

$$(H,E) = 11$$

$$(D,E) = 10$$



- 1. For every required vertex (v,w), calculate the shortest path from (v to w).
- 2. Construct new graph on required nodes.
  - V = required nodes
  - E = shortest path distances

Example: Step 2

#### **Shortest Paths:**

$$(A,H) = 2$$

$$(A,D)=7$$

$$(A,E) = 9$$

$$(H,D) = 9$$

$$(H,E) = 11$$

$$(D,E) = 10$$







- 1. For every required vertex (v,w), calculate the shortest path from (v to w).
- 2. Construct new graph on required nodes.
- 3. Run MST on new graph.
  - Use Prim's or Kruskal's or Boruvka's
  - MST gives edges on new graph

Example: Step 3

#### **Shortest Paths:**

$$(A,H) = 2$$

$$(A,D)=7$$

$$(A,E) = 9$$

$$(H,D) = 9$$

$$(H,E) = 11$$

$$(D,E) = 10$$





- 1. For every required vertex (v,w), calculate the shortest path from (v to w).
- 2. Construct new graph on required nodes.
- 3. Run MST on new graph.
- 4. Map new edges back to original graph.
  - Use shortest path discovered in Step 1.
  - Add these edges to Steiner MST.
  - Remove duplicates.

Example: Step 4

#### **Shortest Paths:**

$$(A,H) = 2$$

$$(A,D)=7$$

$$(A,E) = 9$$

$$(H,D) = 9$$

$$(H,E) = 11$$

$$(D,E) = 10$$



#### Algorithm SteinerMST:

- 1. For every required vertex (v,w), calculate the shortest path from (v to w).
- 2. Construct new graph on required nodes.
- 3. Run MST on new graph.
- 4. Map new edges back to original graph.

Note: Does NOT guarantee optimal Steiner tree.

#### Example:

#### **Shortest Paths:**

$$(D,H) = 19$$

$$(D,E) = 19$$

$$(E,H) = 19$$



#### Example:

#### **Shortest Paths:**

$$(D,H) = 19$$

$$(D,E) = 19$$

$$(E,H) = 19$$



#### Example:

#### **Shortest Paths:**

$$(D,H) = 19$$

$$(D,E) = 19$$

$$(E,H) = 19$$

Cost = 38:

OPT Steiner = 30

Challenge: bigger gap!



#### Algorithm SteinerMST:

- 1. For every required vertex (v,w), calculate the shortest path from (v to w).
- 2. Construct new graph on required nodes.
- 3. Run MST on new graph.
- 4. Map new edges back to original graph.

Note: Does NOT guarantee optimal Steiner tree.

#### Algorithm SteinerMST:

1. Let O be OPT tree.

Let T be SteinerMST tree.

#### Algorithm SteinerMST:

- Let O be OPT (Steiner) tree.
   Let T be SteinerMST tree.
- 2. Let D = DFS on O. cost(D) = 2\*OPT.



Traverse each edge exactly twice!

Example: Step 3

#### **Shortest Paths:**

$$(A,H) = 2$$

$$(A,D)=7$$

$$(A,E) = 9$$

$$(H,D) = 9$$

$$(H,E) = 11$$

$$(D,E) = 10$$



- 1. Let O be OPT tree.
  - Let T be SteinerMST tree.
- 2. Let D = DFS on O. cost(D) = 2\*OPT.
- 3.  $D = \{H, A, G, D, G, E, G, A, H\}$

- 1. Let O be OPT tree.
  - Let T be SteinerMST tree.
- 2. Let D = DFS on O. cost(D) = 2\*OPT.
- 3.  $D = \{H, A, G, D, G, E, G, A, H\}$
- 4. cost(D) = w(H,A) + w(A,G) + ... + w(A,H)

- 1. Let O be OPT tree.
  - Let T be SteinerMST tree.
- 2. Let D = DFS on O. cost(D) = 2\*OPT.
- 3.  $D = \{H, A, G, D, G, E, G, A, H\}$
- 4. cost(D) = w(H,A) + w(A,G) + ... + w(A,H)
- 5. Skip Steiner Nodes:  $D' = \{H, A, D, E, A, H\}$

 $D' = \{H, A, D, E, A, H\}$ 

D' = set of edges on shortest path graph

D' = spanning subgraph of shortest path graph



$$D' = \{H, A, D, E, A, H\}$$

D' = set of edges on shortest path graph



D' = spanning subgraph of shortest path graph

cost(D') = cost of traversing shortest paths <= cost(D) <= 2\*OPT

- 6. cost(D') = cost of traversing shortest paths <= cost(D) <= 2\*OPT.
- 7. D' spans shortest path graph
- 8. cost(T) = cost(MST) < cost(D') <= 2\*OPT



#### Algorithm SteinerMST:

- 1. For every required vertex (v,w), calculate the shortest path from (v to w).
- 2. Construct new graph on required nodes.
- 3. Run MST on new graph.
- 4. Map new edges back to original graph.

Note: Does NOT guarantee optimal Steiner tree. Best known approximation: 1.55

## Roadmap

#### Last time: Minimum Spanning Trees

- Prim's Algorithm
- Kruskal's Algorithm
- Boruvka's Algorithm

#### **Today: Variations:**

- Constant weight edges
- Bounded integer edge weights
- Directed graphs
- Maximum Spanning Tree
- Steiner Tree