CCM0118 -Computação I Bacharelado em Ciências Moleculares Segundo Semestre de 2016

Terceiro Exercício-Programa 3 (EP3)

Professor: André Fujita

Data de entrega: até 23:55 do dia 30 de outubro de 2016.

Números aleatórios e Correlação

Neste exercício-programa, o problema consiste em implementar a geração de números aleatórios que seguem uma certa distribuição de probabilidade e uma medida de cálculo de correlação entre variáveis aleatórias.

Para o desenvolvimento deste EP, siga o roteiro abaixo:

1. Implemente a geração de números aleatórios a partir de uma distribuição normal com média μ e variância σ^2 :

http://pt.wikipedia.org/wiki/Distribui%C3%A7%C3%A3o_normal

Para isso, use o método da função inversa. Uma apresentação do método será feito em aula. Para maiores detalhes, estude o material do link: http://www.pucrs.br/famat/viali/especializa/mia_ima_fafis/material/ead/outros/Geracao_de_numeros_e_variaveis_aleatorias.pdf

Após estudar o método da função inversa, você notará que será necessário calcular a área abaixo da curva da função de densidade de probabilidade. Para isso, usaremos simplesmente uma soma de Riemann média descrito no link:

http://pt.wikipedia.org/wiki/Soma_de_Riemann

Você também notará que será necessário gerar números aleatórios entre 0 e 1. Para isso, você poderá usar o método das congruências lineares visto no EP1.

- 2. Gere um conjunto $X = (x_1, ..., x_n)$ com n números aleatórios usando o método descrito em (1). Em seguida, gere um segundo conjunto onde os elementos são da seguinte forma $Y = (k \times x_1 + \varepsilon_1, ..., k \times x_n + \varepsilon_n)$, onde $\varepsilon_i \sim N(\mu, \sigma^2)$ para i = 1, ..., n e k é uma constante.
- 3. Calcule o coeficiente correlação de Pearson entre *X* e *Y*. A correlação de Pearson é dada no link:
 - http://pt.wikipedia.org/wiki/Coeficiente_de_correla%C3%A7%C3%A3o_de_Pearson
- 4. Repita os passos 2 e 3, *N* vezes e guarde os valores dos coeficientes de correlação de Pearson.
- 5. Imprima na tela o primeiro, segundo e terceiro quartis. Aqui você poderá usar algum algoritmo de ordenação visto em aula.

Seu programa deve ler do teclado um real μ , um real σ (tome cuidado que NÃO é a variância, é o desvio padrão), um inteiro n, um real $k \in [-1, +1]$ e um inteiro N. Para a implementação do método das congruências lineares, faça como no EP1 (inclusive com os mesmos parâmetros).

Brinque com seu EP3 variando os parâmetros. Veja como mudam os resultados (não é necessário enviar um relatório).

Observações:

• O cabeçalho do EP 3 deve ser:

- EPs que não compilam receberão nota ZERO. O comando a ser usado na compilação do monitor será: gcc -Wall -ansi -pedantic -02 -o ep3 ep3.c
 Certifique-se que seu EP compila no sistema operacional Linux com o comando acima. Mensagens de "warnings" serão penalizados na nota.
- Não serão aceitos EPs atrasados. Será considerado como EP não entregue.
- Você deve entregar somente o arquivo contendo o código fonte: *.c
 Outros arquivos que não sejam .c entregues "por engano" receberão nota ZERO.
- Seu programa NÃO precisa checar consistência de dados.
- O EP deve ser feito de forma INDIVIDUAL. Você pode conversar e discutir a solução com seus colegas, mas em hipótese alguma você deve mostrar e/ou ver o código dos outros. Qualquer problema com o código do EP deve ser tratado com o monitor da disciplina.
- EPs copiados parcialmente ou totalmente da internet ou de qualquer outra fonte será considerado plágio. EPs que tentem "mascarar" a cópia também serão considerados plágio.
- EPs com plágio receberão nota ZERO, o aluno será REPROVADO e seu nome será encaminhado a Comissão de Graduação.