Lecture 12

- Covariance (协方差)
- Correlation Coefficient (相关系数)
- Moment (矩统计量)

Covariance (协方差)

The covariance between *X* and *Y* is defined by

$$Cov(X, Y) = E\{[X - E(X)][Y - E(Y)]\}$$

Two ways to calculate covariance:

1.
$$Cov(X,Y) = E\{XY - E[X]Y - XE[Y] + E[X]E[Y]\}$$

= $E[XY] - E[X]E[Y] - E[X]E[Y] + E[X]E[Y]$
= $E[XY] - E[X]E[Y]$

2.
$$D(X + Y) = D(X) + D(Y) + 2 \cdot Cov(X, Y)$$

 $\Rightarrow Cov(X, Y) = \frac{1}{2} [D(X + Y) - D(X) - D(Y)]$

Covariance explained

$$Cov(X,Y)$$

$$= E\{[X - E(X)][Y - E(Y)]\}$$

$$= E(XY) - E(X)E(Y)$$

- Blue point: C[E(X), E(Y)]
- Sample point: P(X,Y)
- Edge of square: X E(X) & Y E(Y)
- Area of square: |[X E(X)][Y E(Y)]|
- Color of square: sign of [X - E(X)][Y - E(Y)]
- ⇒ Covariance: Cov(X, Y)= $E\{[X - E(X)][Y - E(Y)]\}$ = $\frac{green area - red area}{\# data point}$

Quick test

$$Cov(X,Y)$$
= $E\{[X - E(X)][Y - E(Y)]\}$

Is the covariance positive, negative, or zero?

Properties of covariance

$$Cov(X,Y)$$

$$= E\{[X - E(X)][Y - E(Y)]\}$$

$$= E(XY) - E(X)E(Y)$$

- 1. Cov(X,Y) = Cov(Y,X), exchangeable, symmetry
- 2. Cov(X,X) = D(X), reduced to variance
- 3. $Cov(aX, Y) = a \cdot Cov(X, Y)$ multiplicative rule $Cov(aX + b, Y) = a \cdot Cov(X, Y)$, non-linearity
- 4. $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$, summation
- 5. If *X* and *Y* are independent,

$$Cov(X,Y) = E(XY) - E(X)E(Y) = 0$$

Ex. Given R.V.s (X,Y) follows joint PDF

$$f(x,y) = \begin{cases} 8xy, & 0 \le x \le y \le 1, \\ 0, & \text{otherwise} \end{cases}$$

Find
$$Cov(X, Y)$$
.

Find
$$Cov(X, Y)$$
. Hint: $Cov(X, Y) = E(XY) - E(X)E(Y)$.

Ex. Given R.V.s (X,Y) follows joint PDF

$$f(x,y) = \begin{cases} 8xy, & 0 \le x \le y \le 1, \\ 0, & \text{otherwise} \end{cases}$$

Find Cov(X, Y). Hint: Cov(X, Y) = E(XY) - E(X)E(Y).

Sol.

$$E(X) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf(x,y)dxdy = \int_{0}^{1} dx \int_{x}^{1} x \cdot 8xydy = \frac{8}{15}$$

$$E(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf(x,y)dxdy = \int_{0}^{1} dx \int_{x}^{1} y \cdot 8xydy = \frac{4}{5}$$

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf(x,y)dxdy = \int_{0}^{1} dx \int_{x}^{1} xy \cdot 8xydy = \frac{4}{9}$$

$$Cov(X,Y) = E(XY) - E(X)E(Y) = \frac{4}{9} - \frac{4}{5} \cdot \frac{8}{15} = \frac{4}{225}$$

Zero covariance does not imply independence

Let X take on values $\{-1, 0, 1\}$ with equal probability 1/3.

Define
$$Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}$$

Marginal PMF of X, $p_X(x)$

Show that
$$Cov(X, Y) = 0$$

but
 $P\{Y = y_0 | X = x_0\} \neq P(Y = y_0)$

$$E[X] = \frac{1}{3} \times (-1 + 0 + 1) = 0$$

$$E[Y] = \frac{1}{3} \times 1 + \frac{2}{3} \times 0 = \frac{1}{3}$$

$$E[XY] = \frac{1}{3} \times (-1 \cdot 0 + 0 \cdot 1 + 1 \cdot 0) = 0$$

$$Cov(X, Y) = E[XY] - E[X]E[Y] = 0$$

 \Rightarrow X, Y are with zero covariance.

$$P{Y = 0 | X = 1} = 1, P{Y = 0 | X = 0} = 0$$
 \neq
 $P(Y = 0) = 2/3$

 \Rightarrow X, Y are not independent.

Covariance matrix

Def. The covariance matrix of a n-dimensional R.V. $(X_1, X_2, ..., X_n)$ can be written as

$$\boldsymbol{C} = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{pmatrix}$$

where
$$c_{ij} = \text{Cov}(X_i, X_j) = E\{[X_i - E(X_i)][X_j - E(X_j)]\},\ i, j = 1, 2, ..., n.$$

The element $c_{ij} = c_{ji}$ indicates the covariance between the i-th and j-th dimensions of $(X_1, X_2, ..., X_n)$.

Lecture 12

- Covariance (协方差)
- Correlation Coefficient (相关系数)
- Moment (矩统计量)

Correlation Coefficient (相关系数)

The correlation coefficient between *X* and *Y* is defined by

$$\rho_{XY} = \frac{\text{Cov}(X, Y)}{\sqrt{D(X)}\sqrt{D(Y)}} = \frac{E\{[X - E(X)][Y - E(Y)]\}}{\sqrt{D(X)}\sqrt{D(Y)}}$$

where D(X) > 0, D(Y) > 0.

Note:

- 1. ρ_{XY} only measures the linear correlation;
- 2. $-1 \le \rho_{XY} \le 1$;
- 3. $|\rho_{xy}| = 1 \Leftrightarrow P\{Y = a + bX\} = 1;$
- 4. X and Y are independent \Rightarrow X, Y are uncorrelated ($\rho_{XY} = 0$);
- 5. X, Y are uncorrelated $(\rho_{XY} = 0) \Leftrightarrow Cov(X, Y) = 0$ $\Leftrightarrow E(XY) = E(X)E(Y)$ $\Leftrightarrow D(X + Y) = D(X) + D(Y)$

Correlation Coefficient explained

$$\rho_{XY} = \frac{\text{Cov}(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$
 (Given $D(X) = \sigma_X$, $D(Y) = \sigma_Y$ are known constant.)

$$= \frac{E\{[X-E(X)][Y-E(Y)]\}}{\sigma_X \sigma_Y} = E\left\{\left[\frac{X-E(X)}{\sigma_X}\right]\left[\frac{Y-E(Y)}{\sigma_Y}\right]\right\} = \text{Cov}(X^*, Y^*)$$

(The covariance of normalized variable X^* and Y^*)

Moreover:

$$\rho_{XY} = \frac{E\{[X - E(X)][Y - E(Y)]\}}{\sqrt{E\{[X - E(X)]^2\}}\sqrt{E\{[Y - E(Y)]^2\}}} = \pm \sqrt{\frac{E\{[X - E(X)][Y - E(Y)]\}^2}{E\{[X - E(X)]^2\}E\{[Y - E(Y)]^2\}}}$$

If X - E(X) and Y - E(Y) are with the same sign, $\rho_{XY} = 1$;

If X - E(X) and E(Y) - Y are with the opposite sign, $\rho_{XY} = -1$;

Otherwise, $-1 < \rho_{XY} < 1$.

Covariance vs. Correlation

	Covariance	Correlation
Definition	Measure of linear correlation	Scaled version of covariance
Values	$(-\infty, +\infty)$	[-1, 1]
Change in scale	Affects covariance	Does not affect correlation
Unit-free measure	No	Yes

Differ only in scale!

https://www.wallstreetmojo.com/correlation-vs-covariance/

Quick test

What is the correlation coefficient ρ_{XY} ?

A. $\rho_{XY} = 1$

B. $\rho_{XY} = -1$

C. $\rho_{XY} = 0$

D. Other

3

2

C

nonlinearly related even $\rho_{XY} = 0$.

$$Cov(X,Y) = E[XY] - E[X]E[Y]$$

= $E[X^3] - E[X]E[X^2] = 0 - 0 \cdot E[X^2] = 0$.

Beware Spurious Correlations

https://hbr.org/2015/06/beware-spurious-correlations

Ex. Given $X \sim \mathcal{N}(1, 3^2)$, $Y \sim \mathcal{N}(0, 4^2)$, $\rho_{XY} = -\frac{1}{2}$, and $Z = \frac{X}{3} - \frac{Y}{2}$, find D(Z), ρ_{XZ} .

$$D(Z) = D\left(\frac{X}{3} - \frac{Y}{2}\right) = D\left(\frac{X}{3}\right) - 2\operatorname{Cov}\left(\frac{X}{3}, \frac{Y}{2}\right) + D\left(\frac{Y}{2}\right)$$

$$\rho_{XZ} = \frac{\text{Cov}(X, Z)}{\sqrt{D(X)}\sqrt{D(Z)}}$$

Ex. If $\rho_{XY} = 0.5$, E(X) = E(Y) = 0, $E(X^2) = E(Y^2) = 2$, find $E[(X + Y)^2]$.

$$E[(X + Y)^2] = E(X^2) + E(Y^2) + 2E(XY)$$

Ex. Given $X \sim \mathcal{N}(1, 3^2)$, $Y \sim \mathcal{N}(0, 4^2)$, $\rho_{XY} = -\frac{1}{2}$, and $Z = \frac{X}{3} - \frac{Y}{2}$, find D(Z), ρ_{XZ} .

Sol.

$$D(Z) = D\left(\frac{X}{3} - \frac{Y}{2}\right) = D\left(\frac{X}{3}\right) - 2\operatorname{Cov}\left(\frac{X}{3}, \frac{Y}{2}\right) + D\left(\frac{Y}{2}\right)$$

$$= \frac{1}{9}D(X) - 2 \cdot \frac{1}{2} \cdot \frac{1}{3}\operatorname{Cov}(X, Y) + \frac{1}{4}D(Y)$$

$$= \frac{1}{9}D(X) - \frac{1}{3}\rho_{XY}\sqrt{D(X)}\sqrt{D(Y)} + \frac{1}{4}D(Y)$$

$$= \frac{1}{9} \cdot 9 - \frac{1}{3}\left(-\frac{1}{2}\right)\sqrt{9}\sqrt{16} + \frac{1}{4} \cdot 16 = 7$$

$$\begin{split} & \rho_{XZ} = \frac{\text{Cov}(X,Z)}{\sqrt{D(X)}\sqrt{D(Z)}} = \frac{1}{3 \cdot \sqrt{7}} \text{Cov}\left(X, \frac{X}{3} - \frac{Y}{2}\right) \\ & = \frac{1}{3 \cdot \sqrt{7}} \left[\text{Cov}\left(X, \frac{X}{3}\right) - \text{Cov}\left(X, \frac{Y}{2}\right) \right] = \frac{1}{3 \cdot \sqrt{7}} \left[\frac{1}{3} \text{Cov}(X,X) - \frac{1}{2} \text{Cov}(X,Y) \right] \\ & = \frac{1}{3 \cdot \sqrt{7}} \left[\frac{1}{3} \cdot 9 - \frac{1}{2} \left(-\frac{1}{2} \right) \cdot 3 \cdot 4 \right] = \frac{2}{\sqrt{7}} \end{split}$$

Ex. If
$$\rho_{XY} = 0.5$$
, $E(X) = E(Y) = 0$, $E(X^2) = E(Y^2) = 2$, find $E[(X + Y)^2]$.

$$E[(X + Y)^{2}] = E(X^{2}) + E(Y^{2}) + 2E(XY)$$

Sol.
$$D(X) = E(X^2) - E(X)^2 = 2$$
.

Similarly, D(Y) = 2.

$$\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sqrt{D(X) \cdot D(Y)}} = \frac{E(XY) - E(X)E(Y)}{\sqrt{D(X) \cdot D(Y)}} = \frac{E(XY)}{2} = 0.5$$

$$\Rightarrow E(XY) = 1$$

$$E[(X + Y)^2] = E(X^2) + E(Y^2) + 2E(XY) = 2 + 2 + 2 = 6$$

Uncorrelated but not independent

X and *Y* are independent \Rightarrow *X*, *Y* are uncorrelated ($\rho_{XY} = 0$) *X* and *Y* are independent \notin *X*, *Y* are uncorrelated ($\rho_{XY} = 0$)

Is this possible?

Ex. Let (X, Y) follow joint uniform distribution in a circle with radius R and center (0,0). Show that X and Y are uncorrelated, but X and Y are not independent.

Sol.

$$f(x,y) = \begin{cases} \frac{1}{\pi R^2}, & x^2 + y^2 \le R^2 \\ 0, & \text{otherwise} \end{cases}$$

1. Show that X, Y are uncorrelated, i.e., $\rho_{XY} = 0$

$$E(X) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f(x, y) dx dy = \int_{-R}^{+R} dy \int_{-\sqrt{R^2 - y^2}}^{\sqrt{R^2 - y^2}} x \frac{1}{\pi R^2} dx = 0$$

$$E(Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y f(x, y) dx dy = \int_{-R}^{+R} dx \int_{-\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} y \frac{1}{\pi R^2} dy = 0$$

$$E(XY) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy \cdot f(x, y) dx dy = \int_{-R}^{+R} dx \int_{-\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} xy \cdot \frac{1}{\pi R^2} dy = 0$$

$$Cov(X,Y) = E(XY) - E(X)E(Y) = 0 \Rightarrow \rho_{XY} = 0$$

 \Rightarrow X, Y are uncorrelated.

2. Show that X, Y are not independent, i.e., $f(x, y) \neq f_X(x) f_Y(y)$

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy = \begin{cases} \frac{2\sqrt{R^2 - x^2}}{\pi R^2} &, -R \le x \le R \\ 0 &, \text{ otherwise} \end{cases}$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \frac{2\sqrt{R^2 - y^2}}{\pi R^2} &, -R \le y \le R \\ 0 &, \text{ otherwise} \end{cases}$$

 $\Rightarrow f(x,y) \neq f_X(x)f_Y(y) \Rightarrow X,Y$ are not independent

Lecture 12

- Covariance (协方差)
- Correlation Coefficient (相关系数)
- Moment (矩统计量)

Moment (矩)

Def. Let X, Y be two R.V.s, and k, l be two positive integers,

```
E(X^k) the k-th order raw moment (原点矩) E\{[X-E(X)]^k\} the k-th order central moment (中心矩) E(X^kY^l) the k-th order mixed (混合) raw moment E\{[X-E(X)]^k[Y-E(Y)]^l\} the k+l-th order mixed central moment
```

- 1. E(X) is the first order raw moment of X.
- 2. D(X) is the second order central moment.
- 3. Cov(X, Y) is the second order mixed moment of X and Y.
- 4. useful in moment estimator (to be covered in a few weeks).

Moment in a digital image

Moment	Moment		
ordinal	Raw	Central	Standardized
1	Mean	0	0
2	_	Variance	1
3	_	_	Skewness
4	_	_	(Non-excess or historical) kurtosis
5	_	_	Hyperskewness
6	_	_	Hypertailedness
7+	_	_	_

Significance of moments, Wikipedia

Skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean.

Skewness, Wikipedia

$$Kurt(X) = E\left[\left(\frac{X - \mu}{\sigma}\right)^4\right]$$

Kurtosis is a measure of the **tailedness** of the prob. distribution of a real-valued random variable.

- D: **Laplace distribution**, also known as the double exponential distribution, red curve (two straight lines in the log-scale plot), excess kurtosis = 3
- S: hyperbolic secant distribution, orange curve, excess kurtosis = 2
- L: logistic distribution, green curve, excess kurtosis = 1.2
- N: normal distribution, black curve (inverted parabola in the log-scale plot), excess kurtosis = 0
- C: raised cosine distribution, cyan curve, excess kurtosis = −0.593762...
- W: Wigner semicircle distribution, blue curve, excess kurtosis = −1
- U: uniform distribution, magenta curve (shown for clarity as a rectangle in both images),
 excess kurtosis = −1.2.