Chapter 4

Determinants

Eigenvalue Problem: given $A_{n\times n}$, solve (λ, \vec{x}) such that

$$A\vec{x} = \lambda \vec{x}$$
, where $\lambda \in \mathbb{R}, \vec{x} \in \mathbb{R}^n$.

This helps to understand the effect of matrix A/ the matrix transformation defined by A via decomposition:

Learning Objectives

Determinants: their computations and properties.

• determinant of a square matrix A is a number det(A), i.e., determinant is a function:

 \det : square matrix $A \mapsto \det(A) \in \mathbb{R}$.

• it is computational expensive: $det(A_{10\times 10})$ can take 10^7 summand.

4.1 Determinants: Definition + 4.3 Determinants and Volumes

Learning Objectives

- learn definition of the determinant;
- understand properties of determinants;
- compute determinants using row and **column** operations.
- geometric interpretation as volumes.

Definition 4.1. Determinant, denoted as det, is a function:

$$\det : \{ \text{square matrices} \} \to \mathbb{R}$$
$$A_{n \times n} \mapsto \det(A)$$

with the following properties

- (1) if $A \to B$ by row replacement, then $\det(B) = \det(A)$;
- (2) if $A \to B$ by scaling a row by c, then $\det(B) = c \det(A)$; \leftarrow
- (3) if $A \to B$ by swapping two rows, then det(B) = -det(A);
- (4) $\det(I_n) = 1$.

Compute det(A) using the definition of determinants.

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 5 & 1 & 0 \end{pmatrix}.$$

dut (--) = - dut (A)

$$\frac{R_3 = \frac{1}{2}R_3}{\binom{2}{2}} \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) = I_3.$$

dut (...) = 1. - dut(A) = dut(Zs)=1

If $A_{n\times n}$ has zero rows/columns, then $\det(A)=0$.

Eg. dut
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = 0$$

$$Z_{2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \xrightarrow{R_{2} = 0 \cdot R_{2}} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$dut (Z_{2}) = 1 \xrightarrow{(2)^{n} C = 0} dut \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = 0 \cdot dut (Z_{2}) = 0.$$

Example

If $A_{n \times n}$ is non-invertible, then det(A) = 0.

$$A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \xrightarrow{k_2 = R_2 - 2R_1} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = B.$$

If $A_{n\times n}$ is lower-triangular/upper triangular, i.e.,

$$A = \begin{pmatrix} * & 0 & 0 & \cdots & 0 \\ * & * & 0 & \cdots & 0 \\ * & * & * & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ * & * & * & \cdots & * \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} * & * & * & \cdots & * \\ 0 & * & * & \cdots & * \\ 0 & 0 & * & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & * \end{pmatrix},$$

then

 $\det(A_{n\times n})$ = product of diagonal entries = $a_{11}a_{22}\cdots a_{nn}$.

Eg. $dut\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} = abc.$

- 1) if one of a,b, (is zero, then clot(~)=0;
- @ if a,b,c+o, then

$$\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 = \frac{1}{\alpha}R_1} \xrightarrow{R_2 = \frac{1}{\alpha}R_2} \xrightarrow{R_3 = \frac{1}{\alpha}R_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

du . \frac{1}{a} \cdot \frac{1}{c} = det(73) = 1.

General Recipe for det(A):

First apply row operations to A,

$$A_{n \times n} \longrightarrow B_{n \times n}$$
 (in REF, hence upper triangular).

Then

$$det(A) = (-1)^r \cdot \frac{\text{product of diagonals in } B}{\text{product of scaling parameters used in row operations}}$$
 with r being the number of row swaps applied in the row operations.

Example

Determinants of $A_{2\times 2} := \begin{pmatrix} a & b \\ c & d \end{pmatrix}$,

$$\det(A) = \det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$$

(1) if
$$a = 0$$
, then $det(A) = -bc$.

$$dut\begin{pmatrix} 0 & b \\ (c & d) \end{pmatrix} = -bc$$

(2) if
$$a \neq 0$$
, then $det(A) = ad - bc$.

(2) If
$$a \neq 0$$
, then $\det(A) = aa - bc$.

(2) If $a \neq 0$, then $\det(A) = aa - bc$.

(3) $b = a \neq 0$, then $\det(A) = aa - bc$.

(4) $c = a \neq 0$, then $\det(A) = aa - bc$.

(5) $c = a \neq 0$, then $\det(A) = aa - bc$.

(6) $c = a \neq 0$, then $\det(A) = aa - bc$.

(7) $c = a \neq 0$, then $\det(A) = aa - bc$.

(8) $c = aa + bc$.

(9) $c = aa + bc$.

(1) $c = aa + bc$.

$$dut(\stackrel{ab}{ca}) = (-1)^{o} \cdot \underbrace{\frac{1 \cdot (d - \frac{b}{a} \cdot c)}{a}} = ad - bc.$$

More properties of det(A):

- (1) (Existence property) According to the definition, det(A) is unique.
- (2) (Invertibility property) A is invertible $\iff \det(A) \neq 0$,
- (3) (Multiplicativity property) det(AB) = det(A) det(B).

det
$$(AA^{-1})$$
:
$$= det(A) \cdot det(A^{-1})$$

$$= det(In) = 1$$

(4) (Transpose property) $det(A^{\dagger}) = det(A)$

$$A = \begin{pmatrix} -\overrightarrow{v_1} - \\ -\overrightarrow{v_2} - \\ \vdots \\ -\overrightarrow{v_n} - \end{pmatrix} , A^T = \begin{pmatrix} 1 & 1 & 1 \\ \overrightarrow{v_1} & \overrightarrow{v_2} & \cdots & \overrightarrow{v_n} \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

If we want to compute det(A), we can do it using column operations.

Geometric interpretation as volumes:

Let $A_{n\times n}$ has row/column vectors $\{\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_n\}$. Absolute value of $\det(A)$, $|\det(A)|$, computes the volume of an object P, parallelepiped:

$$P = \{a_1 \vec{v}_1 + a_2 \vec{v}_2 + \cdots \vec{v}_n \mid 0 \le a_1, a_2, \cdots, a_n \le 1\}$$

Relation to Transition of Volumes:

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be the linear transformation with standard matrix $A_{n \times n}$. Then

$$Vol(T(S)) = |\det(A)| Vol(S)$$
, for any subset S in \mathbb{R}^n .

Example

 $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation with standard matrix

$$A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

4.2 Cofactor Expansion

Learning Objectives

- learn to compute determinants using cofactor expansions
- \bullet Recipes: the determinants of 3×3 matrices via cofactor expansion
- learn to compute determinants using combination of existing methods

What is cofactor expansion?

It is a recursive formula of computing determinants of $n \times n$ matrices:

$$n \times n \to (n-1) \times (n-1) \to \cdots \to 2 \times 2 \to 1 \times 1$$

Example

$$(2 \times 2 \to 1 \times 1)$$
 Cofactor expansion of $\det(A)$ with $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$.

$$(3 \times 3 \to 2 \times 2)$$
 Cofactor expansion of $\det(A)$ with $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$.

Recipe for $det(A_{3\times 3})$:

For
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
,

$$\det(A) = \underbrace{a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}}_{\text{diagonal direction}} - \underbrace{a_{11}a_{32}a_{23} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}}_{\text{anti-diagonal direction}}$$

Example

$$\det \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$

=

_

Recipe for cofactor expansion: $n \times n \rightarrow (n-1) \times (n-1)$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

Define

- (1) (i, j) minor of A, denoted as A_{ij} , is the $(n 1) \times (n 1)$ matrix from deleting the i^{th} row and j^{th} column in A.
- (2) (i, j) cofactor of A, denoted as C_{ij} is defined as

$$C_{ij} = (-1)^{i+j} \det(A_{ij})$$

sign pattern:

$$\begin{pmatrix} + & - & + & - & \cdots \\ - & + & - & + & \cdots \\ + & - & + & - & \cdots \\ - & + & - & + & \cdots \\ \vdots & \vdots & \vdots & \vdots & \end{pmatrix}$$

Then the cofactor expansion of det(A) can be written as

$$\det(A)$$

$$= a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n}, \qquad \text{(expansion along the 1st row)}$$

$$= a_{11}C_{11} + a_{21}C_{21} + \dots + a_{n1}C_{n1}, \qquad \text{(expansion along the 1st column)}$$

$$= a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}, \qquad \text{(expansion along the ith row)}$$

$$= a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}, \qquad \text{(expansion along the ith row)}$$

$$= a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}, \qquad \text{(expansion along the ith row)}$$

Trick: expand row/column with most zeros.

Compute

$$\det \begin{pmatrix} 3 & 8 & 7 & 9 & 6 \\ 0 & 5 & 2 & 7 & 3 \\ 0 & 1 & 0 & 5 & 0 \\ 0 & 2 & 0 & 4 & 1 \\ 0 & 0 & 0 & 2 & 0 \end{pmatrix}$$

Pick/combine existing methods:

- (1) Row/column operations
- (2) Recipe for $\det(A_{2\times 2})$, $\det(A_{3\times 3})$, upper/lower triangular matrix or matrix with zero rows/columns
- (3) Cofactor expansion

Example

Compute

$$\det \begin{pmatrix} 1 & -1 & 1 & 2 \\ -2 & 2 & -1 & -4 \\ 1 & 1 & 3 & 5 \\ -1 & 0 & -1 & 2 \end{pmatrix}$$