සියලුම හිමිකම් ඇවරුණ ලැසුව පැමිරුත්කයකුකු All Rights Reserved

දකුණු පළාත් අධාාපන දෙපාර්තමේන්තුව

පළමු වාර පරීකෂණය - 2020

11 - ශේුණිය

ගණිතය - I

නම/විභාග අංකය :- කාලය: පැය 02 යි.

සැලකිය යුතුයි:

- සියලුම පුශ්න වලට පිළිතුරු මෙම පතුයේම සපයන්න.
- A කොටසෙහි සියලුම පුශ්නවලට නිවැරදි පිළිතුර සඳහා ලකුණු 02 බැගින් ද, **B** කොටසෙහි එක් පුශ්නයකට නිවැරදි පිළිතුරු සඳහා ලකුණු 10 බැගින් ද හිමි වේ.

A කොටස

- (01) සෘජුකෝණාසුාකාර ආස්තරයක දිග 10cm ද පරිමිතිය 56cm ද වේ. සෘජුකෝණාසුයේ පළල සොයන්න.
- (02) $(x^2)^{-3} \times x^5$ සුළුකර ධන දර්ශක සහිතව දක්වන්න.
- (03) $\log_2 \sqrt{8}$ හි අගය සොයන්න.
- (04) $2^x = 64$ නම් x හි අගය සොයන්න.
- (05) $A' \cap B$ කුලකය අවයව සහිතව ලියා දක්වන්න.

(06) $4a^2b$, $6ab^2$ වීජීය පදවල කුඩාම පොදු ගුණාකාරය සොයන්න.

- (07) $4\sqrt{32} \div 2\sqrt{2}$ සුළු කරන්න.
- (08) සෘජු උස $7 {
 m cm}$ වූ ඝණ සිලිංඩරයක පරිමාව $550 {
 m cm}^3$ සිලින්ඩරයේ පතුලේ අරය සොයන්න. (පතුලේ අරය r ද උස h ද වන සිලින්ඩරයක පරිමාව $\pi r^2 h$ ලෙස ගන්න.)
- $(09)\frac{8}{\sqrt{2}}$ හරය පරිමේය කොට සුළු කරන්න.
- (10) $(3x 2y)^2$ පුසාරනය කර සුළු කර දක්වන්න.
- (11) කුමාර තම පා පැදියෙන් ගමනක් ගොස් අතර මගදී මිනිත්තු 20ක් නතර වී නැවත නිවසට ආපසු පැමිණීම දක්වෙන දුර කාල පුස්තාරයක් රූපයේ දක්වේ. ඔශුගේ මධාක වේගය කොපමණ ද?

- (12) $x^2 13x 48$ සාධකවලට වෙන් කරන්න.
- (13)

රූපයේ දී ඇති තොරතුරු අනුව x හි අගය සොයන්න.

$$(14)$$
 $\frac{(3x-6)}{2x} \times \frac{1}{(x-2)}$ සුළු කරන්න.

- (15) $2x^2 18 = 0$ විසඳන්න.
- (16) පතුලේ අරය 5 cm වන සෘජු ඝණ කේතුවක පරිමාව $550 cm^2$ ද නම් කේතුවේ සෘජු උස සොයන්න. (පතුලේ අරය r ද උස h ද වන ඝණ කේතුවක පරිමාව $\frac{1}{3}\pi r^2 h$ ලෙස ගන්න)
- (17) $2x 1 \le 5$ අසමානතාවය විසඳා x ට ගත හැකි පූර්ණ සංඛාාමය විසඳුම් කුලකය ලියන්න.
- (18) රූපයේ AC = CD = BC වන අතර $ADC = 70^{\circ}$ ක් වේ. ABC හි අගය සොයන්න.

(19) $\frac{1}{3x} + \frac{1}{6x}$ සුළු කරන්න.

රූපයේ දක්වෙන්නේ අරය 7 cm වන කුහර ගෝලයකින් කොටසක් කපා ඉවත් කර සාදාගත් පාතු හැඩති භාජනයකි. මෙම භාජනයේ පිටත පෘෂ්ඨයේ වර්ගඵලය සොයන්න.

O කේන්දුය වූ වෘත්තයේ AB ජාහයේ දිග 24cm ද O සිට ABට ඇඳි ලම්බකයේ දිග $8 \mathrm{cm}$ වේ. X යනු AC හි මධාලක්ෂා නම් OX හි දිග සොයන්න.

(23)

වෘත්තයේ කේන්දුය 0 වන අතර $\stackrel{\bigstar}{\mathrm{OB}} = 120^\circ$ ද $\stackrel{\bigstar}{\mathrm{CAO}} = 40^\circ$ ද වේ. $\stackrel{\bigstar}{\mathrm{OBC}}$ හි අගය සොයන්න.

(24) පෙට්ටියක පුමාණයෙන් සමාන අංක 1 සිට 6 තෙක් අංකනය කර ඇති රතු පබළු 6 ක් ද අංක 1 සිට 4 තෙක් අංකනය කරන ලද සුදු පබළු 4ක් ද ඇත. අහඹු ලෙස පෙට්ටියෙන් පබළුවක් ගනු ලැබේ. පබළුව රතු පාට ඉරට්ටේ සංඛ්‍යාවක් වීමේ සම්භාවිතාව සොයන්න.

(25)

AB හා AC රේඛා දෙකට සමදුරින් B සිට 5cm දුරින් ද වූ X ලක්ෂයක් ලකුණු කරන්න.

B - කොටස

- (01) සුරේඛා තම ඉඩමෙන් $\frac{1}{2}$ පුතාට ද $\frac{2}{5}$ ක් දුවට ද බෙදා දෙන ලදී.
 - (i) දෙදෙනාට ලබා දුන් මුළු කොටස මුළු ඉඩමෙන් කවර පංගුවක් ද?
 - (ii) සුරේඛාට ඉතිරි වූ කොටස මුළු ඉඩමෙන් කවර පංගුවක් ද?
 - (iii) පසුව දුව විසින් තම සොහොයුරාගෙන් ඔහුට අයිති කොටසින් $\frac{1}{5}$ ක් ලබාගත්තේ නම් නම් දුවට අයිති මුළු කොටස මුළු ඉඩමෙන් කවර පංගුවක් ද?
 - (iv) පුතාට අවසානයේ ඉතිරි වූ කොටස පර්චස් 96 ක් නම් මුළු ඉඩම පර්චස් කීය ද?
- (02) රූපයේ දැක්වෙන්නේ දිග හා පළල 20cm, 14cm වන සෘජුකෝණාසුාකාර තඹ තහඩුවක එක් කෙලවරකින් අර්ධ වෘත්තාකාර කොටසක් ඉවත් කර ඇති ආකාරයයි.
 - (i) තහඩුවේ පරිමිතිය සොයන්න.

- (ii) තහඩුවේ වර්ගඵලය සොයන්න.
- (iii) මෙම තහඩුව වටේට 2cm පරතරය ඇතිව ඇත ඇල්ලීමෙන් මෙම තහඩුව ලැල්ලකට සම්බන්ධ කරයි නම් අවශා ඇත ගණන කොපමණ ද?
- (iv) තහඩුවේ වර්ගඵලය වර්ග මීටර වලින් සොයන්න.

(03) පාසල් ශිෂායකු වන දබිල සතියේ දිනක පැය 24 ගත කල ආකාරය පිළිබඳව තොරතුරු දී ඇති වට පුස්තාරයේ දක්වේ.

(i) කීඩා සඳහා අදාල කේන්දික ඛණ්ඩයේ කෝණය 15° ක් නම් කීඩා සඳහා වෙන් කල පැය ගණන කීය ද?

(ii) කීඩා සඳහා වෙන් කල කාලය මෙන් දෙගුනයක් වෙනත් කටයුතු සඳහා ද, නිදා ගැනීම සඳහා වෙන් කල කාලය මෙන් දෙගුනයක් ඉගෙනුම සඳහා ද ගත කල නම් ඉතිරි කේන්දු ඛණ්ඩවල කේන්දුික කෝණයන් සොයා වට පුස්තාරයේ දක්වන්න.

(iii) එම දිනයේ දී දඛිල ඉගෙනුම සඳහා වෙන්කල කාලය කොපමණ ද?

(iv) එදින දඛිල පෙ.ව. 5.00ට අවදි වී දහවල් කාලයේ ද පැයක් නිදා ගැනීම සඳහා වෙන් කලානම් ඔහු රාතී නින්දට ගිය වේලාව කීය ද?

-06-

(04)		සහනදායි පොළිය යටතේ රු. 5,00,000 ක් 6%ක වාර්ෂික සුළු පොළියට රාජා බැංකුවකින් ලබාගෙන ද කඩ කාමරයක් කුලියට ගෙන වාහපාරයක් ආරම්භ කරයි.
	(i)	ඔහු ලබාගත් ණය මුදල සඳහා වාර්ෂික සුළු පොලිය කොපමණ ද?
	(ii)	කඩ කාමරයේ නඩත්තු කටයුතු සඳහා ණයට ගත් මුදලින් 2¾ක් වෙන් කලේ නම් ඒ සඳහා වියදම් වු මුදල කොපමණ ද?
	(iii)	කඩ කාමරය සඳහා පුාදේශිය සභාව රු. 20,000ක තක්සේරුවක් කල අතර 4%ක වරිපනම් ගාස්තු අය කලේ නම් වාර්ෂික වරිපනම් ගාස්තුව කොපමණ ද?
	(iv)	වර්ෂය අවසානයේ බැංකු පොළි, නඩත්තු, වරිපනම් ගාස්තු හා කඩ කාමර කුලිය වශයෙන් රු. 76,800ක් ගෙවා තිබුණි නම් මාසික කඩ කාමර කුලිය කොපමණ ද?

- (05) පෙට්ටියක් තුල සර්වසම රතුපාට පබළු 3ක් ද නිල්පාට පබළු 2ක් ද ඇත. එම පබළු R_1 , R_2 , R_3 , B_1 , B_2 ලෙස අංකනය කර ඇත. පෙට්ටියෙන් අහඹු ලෙස පබළුවක් ගෙන එහි වර්නය හා අංකය සටහන් කර ගෙන ආපසු දමා පෙට්ටියෙන් නැවතත් පබළුවක් ගෙන එහි වර්ණය හා අංකය සටහන් කර ගනු ලබයි.
 - (i) අදාල නියැදි අවකාශය දී ඇති කොටු දල තුල ''x '' ලකුණ යොදා ගනිමින් දක්වන්න.
 - (ii) අවස්ථා දෙකේදීම එකම අංකය සමග එකම වර්ණය සහිත පබළුවක් ගැනීමේ සිද්ධිය කොටු දල තුල වට කොට දක්වා එහි සම්භාවිතාව ලියා දක්වන්න.

(iii) මෙම සසම්භාවී පරීක්ෂණයට අදාල පහත දක්වෙන රුක් සටහන සම්පූර්ණ කරන්න.

මෙහි x යනු ඉරට්ටේ සංඛාාවක් සහිත පබළුවක් ගැනීමේ සිද්ධියද Yයනු ඔත්තේ සංඛාාවක් සහිත පබළුවක් ගැනීමේ සිද්ධිය ද වේ.

(iv) රුක්සටහන ඇසුරෙන් අඩුම වශයෙන් එක් අවස්ථාවකදී වත් ඉරට්ටේ සංඛ්‍යාවක් සහිත පබළුවක් ලැබීමේ සම්භාවිතාව සොයන්න. සියලුම හිමිකම් ඇවරුණ *ලැසර පත්රදන්කයෙකු.* All Rights Reserved

දකුණු පළාත් අධාාපන දෙපාර්තමේන්තුව

පළමු වාර පරීකුුණය - 2020

11 - ශුේණිය

ගණිතය - II

නම/විතාග අංකය :- කාලය: පැය 03 යි.

සැලකිය යුතුයි:

- Aකොටසින් පුශ්න 5ක් ද B කොටසින් පුශ්න 5ක් ද බැගින් තෝරාගෙන පුශ්න 10කට පිළිතුරු සපයන්න.
- සෑම පුශ්නයකටම නිවැරදි පිළිතුර සඳහා ලකුණු 10 බැගින් හිමි වේ.

A කොටස

- (01) (i) $2\sqrt{3} + \sqrt{75}$ සුළු කරන්න.
 - (ii) $2 \lg 5 + \lg 5 = 3 \lg x$ විසඳන්න.
 - (iii) $\left(3\sqrt{8x^3}\right)^{-2}$ සුළුකර ධන දර්ශක සහිතව දක්වන්න.
 - (iv) $8 \times 2^{3x-1} = 4^x$ විසඳන්න.
- (02) (i) අරය 3r වූ වෘත්තාකාර තහඩුවකින් අරය r වන වෘත්තාකාර තහඩුවක් කපා වෙන් කර ගත් පසු ඉතිරි කොටසේ වර්ගඵලය $320 {
 m cm}^2$ නම් r හි අගය $r\!=\!2\,\sqrt{rac{10}{\pi}}$ මගින් ලැබෙන බව පෙන්වන්න.
 - $\pi = 3.141$ ලෙස ගෙන ලසුගණක වගු භාවිත කර r හි අගය ආසන්න පළමු දශමස්ථානයට සොයන්න.
- (03) ස්වයං රැකියාවක යෙදෙන රනිල් ඇළුමිනියම් තහඩු යොදාගෙන කේතු සැදීමේ වහාපාරයක් අරඹයි. මේ සඳහා අරය $21 {
 m cm}$ ද කේන්දික ඛණ්ඩයේ කේන්දු කෝණය 240° වූ කේන්දික ඛණ්ඩ පළමුව කපා ගනී.

- (i) කපාගත් කේන්දික ඛණ්ඩයක චාප දිග සොයන්න.
- (ii) සාදාගත් කේතුවක වෘත්තාකාර ආධාරකයේ අරය සොයන්න.
- (iii) කේතුවක සෘජු උස h නම් h හි අගය සොයන්න. $(\sqrt{5} = 2.23 \, \text{ලෙස ගන්න})$
- (iv) මෙවැනි කේන්දුික ඛණ්ඩ 8ක් තහඩුවක් ආධාරයෙන් කපා ගනී නම් ද එවිට අපතේ යන ඉතිරි කේන්දුික ඛණ්ඩවලින් ද, මෙවැනි කේතු සාදාගත හැකි බව රනිල් පුකාශකරයිනම් එම පුකාශය නිවැරදි දැයි හේතු දක්වන්න.

- (04) (a) $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ පුතිඵලය භාවිත කොට
 - (i) $(a-2)^3$ පුසාරණය කරන්න.
 - (ii) 98³ හි අගය ලබා ගන්න.
 - (b) (i) $6x^3 x^2 x$ සාධකවලට වෙන් කරන්න.
 - (ii) $\frac{2}{(x-4)^2} \frac{3}{(4-x)}$ සුළු කරන්න.
- (05) $y=x^2-3$ ශිතයේ පුස්තාරය ඇඳීම සඳහා සකස්කරන ලද අසම්පූර්ණ අගය වගුවක් පහත දැක්වේ.

Х	-3	- 2	- 1	0	1	2	3
у	6	1	- 2		- 2	1	6

- (i) x = 0 වන විට y හි අගය කීය ද?
- (ii) x අක්ෂය දිගේ කුඩා බෙදුම් 10 කින් ඒකක 1ක් ද y අක්ෂය දිගේ කුඩා බෙදුම් 10 කින් ඒකක 1ක් ද නිරූපණය වන සේ පරිමාණය යොදා ගනිමින් පුස්ථාර කඩදාසියක ඉහත ශුිතයේ පුස්ථාරය අඳින්න.
- (iii) ශීතයේ අවම අගය කීය ද?
- (iv) y ≤ -1 වන x හි අගය පරාසය ලියන්න.
- $({
 m v})$ පුස්තාරය ඇසුරෙන් $\sqrt{3}$ හි අගය පළමු දශමස්ථානයට සොයන්න.
- (06) වාහනයක් ආනයනය කිරීමේ දී 50%ක තීරු බදු ගෙවිය යුතු වේ. තවද පුවාහන හා ගොඩබෑම් වෙනුවෙන් රු. 25000ක මුදලක් ගෙවිය යුතු ය. වාහනය විකිණීමේ දී 20%ක ලාභයක් ලැබිය යුතු අතර 10%ක VAT (එකතු කල අගය මත බද්ද) බදු මුදලක් එහි විකුණුම් මිලට ගෙවිය යුතුය. වාහනය VAT සහිත විකුණුම් මිල රු. 3993000 නම් වාහනය ආනයනය කිරීමට ගෙවන ලද තීරු බදු රහිත මිල කොපමණ ද?

B කොටස

(07) එක්තරා දිස්තිුක්කයක ගණිත ගුරු මහත්ම මහත්මින් 180 කගේ සේවා කාලය පිළිබඳ තොරතුරු පහත සංඛාන වාහප්තියෙන් දක්වේ.

සේවා කාලය (අවු)	0 - 4	4 - 8	8 - 12	12 - 16	16 - 20	20 - 24
ගුරු සංඛපාව	45	27	50	32	18	08

- (0 4 යනු 0 ට වැඩි 4 හෝ ඊට අඩු යන්නයි)
- (i) සංඛාහ වනාප්තියේ මාත පන්තිය ලියා දක්වන්න.
- (ii) මාත පන්තියේ මධා අගය උපකල්පිත මධානාය ලෙස ගෙන හෝ අන්කුමයකින් හෝ ගුරුවරුන්ගේ මධානාය සේවා කාලය සොයන්න.
- (iii) සතියක ගුරු පුහුණුවක් සඳහා අඩුම සේවා කාලය සහිත 40% වෙන් කිරීමට අදහස් කරයි නම් ඒ සඳහා අවුරුදු කීයකට අඩු සේවාකාලයක් තෝරාගත යුතු ද?

- (08) රවි සැරසිල්ලක් සඳහා දිග 2cm, 5cm, 8cm යනාදී පිළිවෙළට පීත්ත පටි කැබැලි කීපයක් ඒවායේ දිගින් දක්වෙන සංඛාහ සමාන්තර ශේඨයක පද පිහිටන ආකාරයට කපා ගන්නා ලදී.
 - (i) ඔහු කැපූ දිගම පීත්ත පටි කැබැල්ලේ දිග 56cm නම් කපන ලද පීත්ත පටි කැබලි ගණන සොයන්න.
 - (ii) කපාගත් පීත්ත පටි කැබැලිවල මුළු දිග සොයන්න.
 - (iii) මෙවැනි සැරසිලි හතරක් සඳහා අවශා පීත්ත පටි කැබැලි වල මුළු දිග මීටර වලින් සොයන්න.
 - (iv) ඔහු පීත්ත පටි කැබැලි වල දිග 3cm, 6cm, 9cm ආකාරයට එක් සැරසිල්ලක් සඳහා කපා ගත්තේ නම් පීත්ත පටි කැබැලිවල මුළු දිග නිමානය කරන්න.
- (09) පහත සඳහන් නිර්මාණය සඳහා cm/mm පරිමාණය සහිත සරල දාරයක් සහ කවකටුවක් පමණක් භාවිත කරන්න.
 - (i) AB = 4.5 cm, $ABC = 60^{\circ}$ BC = 5 cm, වන ABC තිකෝණය නිර්මාණය කරන්න.
 - (ii) BC හා AC හි ලම්බ සමච්ඡේදක ඇඳ ඒවා හමුවන ලක්ෂාය 0 ලෙස නම් කරන්න.
 - (iii) 0 කේන්දුය වූද OC අරයද ගෙන වෘත්තයක් අඳින්න.
 - (iv) වෘත්තයේ අරය මැන ලියා දක්වන්න.
 - (v) AC හි ලම්බ සමච්ඡේදකය වෘත්තය හා හමුවන ලක්ෂා D ලෙස නම්කර AD හා DC යා කර $\stackrel{\wedge}{ADC}$ හි අගය මැන ලියා දක්වන්න.

රූපයේ PQ හා SR ජාායයන් දික් කලවිට T හිදී හමුවේ. QT = TR වන අතර PRS = x වේ. හේතු දක්වමින්

- (i) PQS හි අගය X ඇසුරෙන් ලියන්න.
- (ii) $PRT \Delta \equiv SQT \Delta$ බවද පෙන්වන්න.
- (iii) PR = RT නම් හා QST = y ලෙස ගෙන PQS හි අගය y ඇසුරෙන් ලියන්න.

- (11) රූපයේ AB , CD හා EF රේඛා එකිනෙකට සමාන්තර වේ. C යනු AE මධා ලක්ෂායයි. AE//BF ද AE=AF ද වේ.
 - (i) $ACG \Delta \equiv GDF \Delta$ බව පෙන්වන්න.
 - (ii) AFB සම ද්වීපාද තුිකෝණයක් බව පෙන්වන්න.
 - (iii) $\stackrel{f A}{AEF}=60^\circ$ නම් $\stackrel{f ABFE}{ABFE}$ චතුරසුයට දිය හැකි උචිතම නම හේතු දක්වමින් ලියා දක්වන්න.

- (12) චාරිකාවකට සහභාගී වූ ළමුන්ගෙන් 50කට හිස්වැසුම් තිබුණි.
 40 දෙනෙකු ගැහැණුය, හිස්වැසුම් ඇති ගැහැනු සංඛ්‍යාව
 15කි. හිස්වැසුම් නැති පිරිමි සංඛ්‍යාව 5කි.
 - (i) දී ඇති දත්ත, දී ඇති වෙන් රූපසටහන පිටපත්කරගෙන අදාල පුදේශවල දක්වන්න.
 - (ii) හිස්වැසුම් පැළඳ සිටි පිරිමි ළමුන් ගණන කොපමණ ද?
 - (iii) හිස්වැසුම් නැති ගැහැණු ළමුන් ගණන කොපමණ ද?
 - (iv) චාරිකාවට සහභාගී වූ මුළු ළමුන් ගණන කොපමණ ද?
 - (v) අතර මගදී හිස්වැසුම් නොතිබූ ගැහැනු ළමුන් සියලු දෙනාම හිස්වැසුම් ලබා ගත්තේ නම් වෙනස් වූ දත්ත සලකා වෙනත් වෙන් රූප සටහනක් ඇඳ දත්ත ලකුණු කරන්න.

සියලුම හිමිකම් ඇවිරිණි අහස් පණ්සේකාකය සේ

Southern Provincial Department of Education

First Term Test - 2020

Grade 11 Mathematics Answer Guide

Paper I

Part A

(08)
$$\frac{22}{7} \times r^2 \times 7 = 550$$
 1) $r^2 = 25$

r = 5cm

(10)
$$9x^2 - 2 \times 3x \times 2y + 4y$$

 $9x^2 - 12xy + 4y^2$
 2

$$\begin{pmatrix} (11) & \frac{30}{90} \text{ km (min)}^{-1} \text{ or } & \frac{30}{\frac{40}{60}} \text{ kmh}^{-1} & ---- \end{pmatrix}$$

$$\frac{1}{3}$$
 km (min)⁻¹ or 20 kmh⁻¹

(12)
$$x^2 - 16x + 3x - 48$$

 $x(x-16) + 3(x-16)$

$$(x+3)(x-16)$$
 2

(13)
$$x + x + 10 + 70^{\circ} = 180^{\circ}$$

$$x = 50^{\circ}$$
 2

(14)
$$\frac{3(x-2)}{2x} \times \frac{1}{(x-2)}$$
 1 1

(15)
$$2(x^2 - 9) = 0$$
 1
 $2(x - 3)(x + 3) = 0$

(16)
$$\frac{1}{3} \times \frac{22}{7} \times 5 \times 5 \times h = 550$$

h = 21cm

(17)
$$2x \le 6$$

 $x \le 3$ 1
 $\{3, 2, 1, 0\}$ 2

$$x = 20^{\circ}$$

$$\begin{array}{ccc}
(19) & \frac{2+1}{6x} & & & \\
& & \frac{1}{6x} & & \\
\end{array}$$

(20)	BEC Δ	-
------	--------------	---

- $(21) 2 \times \frac{22}{7} \times 7 \times 11 \text{cm}^2$
- (22) XC = 6cm $x^2 = 6^2 + 8^2$
- x = 10cm
- (23) $x + 40 + 60 + 240^{\circ} = 360^{\circ}$ 1 $x = 20^{\circ}$ 1

Part B

- (01) (i) $\frac{1}{2} + \frac{2}{5}$
 - $\frac{5+4}{10}$ $\frac{9}{10}$
 - (ii) $\frac{1}{10}$
 - (iii) $\frac{2}{5} + \frac{1}{2}$ $\Rightarrow \frac{1}{5}$ $\frac{2}{5} + \frac{1}{10}$ $\frac{1}{2}$
 - (iv) $\frac{2}{5}$ of land $\rightarrow 96$

Area of total land = $\frac{96 \times 5}{2}$ = 240

- (02) (i) $\frac{1}{2} \times 2 \times \frac{22}{7} \times 7 + 20 + 20 + 14$
 - = 76
 - (ii) $14 \times 20 \frac{1}{2} \times \frac{22}{7} \times 7 \times 7$

 \bigcirc

1 + 1

1

1+1

- = 203 cm^2 (iii) $\frac{76}{2} = 38$
 - $\frac{203}{100 \times 100} = m^2$ $= 0.0203 \text{ m}^2$
- (03) (i) $\frac{24}{360^{\circ}} \times 15^{\circ}$ 1hour
 - (ii) other $\rightarrow 30^{\circ}$ If time allocated for sleeping $x + 2x + 15 + 30 = 360^{\circ}$ $x = 105^{\circ}$ $2x = 210^{\circ}$
 - (iii) $\frac{210^{\circ}}{15^{\circ}}$ 14 hours
 - (iv) 23:00 or 11.00 p.m.
- (04) (i) Rs. 500,000 $\times \frac{6}{100}$
 - Rs. 30,000
 - (ii) Rs. 500,000 $\times \frac{2}{100}$ Rs. 10,000
 - (iii) Rs. $20,000 \times \frac{4}{100}$ Rs. 800
 - (iv) Anual rental for the shop = 76,800 - 40,800 Rs. 36 000

Monthly rental = $\frac{36000}{12}$ Rs. 3 000

10

(1)

 \bigcirc

 \bigcirc

 $1 \mid 3$

(05)(i)	Marking	using	X.
_ / \ /	\mathcal{L}		

(ii) enclosing the diagonal

$$\frac{5}{25}$$

Naming the axes.

(iii)

(iv) $\frac{2}{5} + \frac{3}{5} \times \frac{2}{5} = \frac{16}{25}$

or
$$1 - \frac{3}{5} \times \frac{3}{5}$$
 $\frac{16}{25}$

Part - A

(01) (i)
$$2\sqrt{3} + 5\sqrt{3}$$

$$7\sqrt{3}$$

(ii) $\lg 5^2 + \lg 5 = \lg x^3$

$$\lg 5^2 \times 5 = \lg x^3$$

$$5 = x$$

(iii) $\left[\left(2^3 \times 3 \right)^{\frac{1}{3}} \right]^{-2}$

$$(2x)^{-2}$$

$$\frac{1}{4x^2}$$

(iv)
$$2^3 \times 2^{3x-1} = 2^{2x}$$

$$3 + 3x - 1 = 2x$$

$$x = -2$$

(2) (02) (i)
$$\pi (3r)^2 - \pi r^2 = 320$$

$$8\pi r^2 = 320$$

$$r^2 = \frac{40}{\pi}$$

$$r = 2\sqrt{\frac{10}{\pi}}$$

(ii)
$$\lg r = \lg 2 + \frac{1}{2} \left[\lg (10) - \lg 3.141 \right]$$

1

1

(1)

(3)

$$= 0.3010 + \frac{1}{2} [1.000 - 0.4970]$$

$$= 0.3010 + 0.2515$$

$$=0.5525$$

1+1+1

1 + 1

1+1(2)

 \bigcirc

1|2

$$r = ant lg 0.5525$$

$$= 3.569 cm$$

3.6cm

(03) (i)
$$\frac{240}{360} \times 2 \times \frac{22}{7} \times 21$$

88cm

(ii)
$$2 \times \frac{22}{7} \times r = 88$$

$$r = 14cm$$

(iii)
$$h^2 + 14^2 = 21^2$$

$$h^2 = 7^2 \times 5$$

$$h = 7\sqrt{5}$$

$$= 7 \times 2.2^{3}$$

Correct using the remaining parts a cones can be made.

(04) (i)
$$(a-2)^3 = a^3 - 3a^2 \times 2 + 3a \times 2^2 - 2^3$$

= $a^3 - 6a^2 + 12a - 8$

(ii)
$$98^3 = (100 - 2)^3$$

$$= 100^3 - 6 \times 100^2 + 12 \times 100 - 8$$

(iii)
$$x(6x^2 - x - 1)$$

$$x(6x^2 - 3x + 2x - 1)$$

$$x(3x [2x - 1) + 1 (2x - 1)]$$

$$x(2x-1)(3x+1)$$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(04) (iv) 2 3				Maan - 10 (-100)		
The process of the	(04) (iv) $\frac{2}{(x-4)^2} + \frac{3}{x-4}$				Mean = $10 + \frac{(-100)}{180}$		
Sax - 10	$\frac{2+3x-12}{(x-4)^2}$			(1)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	()				For correct mid value		
To formula of mean dividing by 180 10 10 10 10 10 10 10	$\frac{3x}{(x-4)^2}$			\bigcirc		$ 2\rangle$	
(05) (i) $x = 0 \otimes y = -3$ (ii) correct axes correct 6 point smooth corve (iii) -3 (iv) $-1.4 \le x \le 1.4 \pm 0.2$ (v) $y = 0 \ \xi x^2 - 3 = 0$ $y = 0 \ \xi x = \sqrt{3}$ (i) $-3 = 1.7, \pm 0.1$ (ii) $-3 = -1.7, \pm 0.1$ (iii) $-3 = -1.7, \pm 0.1$ (iv) $-1.4 \le x \le 1.4 \pm 0.2$ (iv) $-1.4 \le 1.4 \pm 0.2$ (iv) $-1.4 \le 1.4 \pm 0.2$ (iv) $-1.4 \le 1.4 \pm 0.2$ (iv)				10	_	1	
(iii) Correct 6 point smooth corve (iii) -3 (iv) -1.4 $\leq x \leq 1.4 \pm 0.2$ (v) $y = 0 \ \xi \ x = \sqrt{3}$ (v	(05) (i) $x = 0$ විට $y = -3$		1				
correct 6 point smooth corve (iii) -3 (iv) $-1.4 \le x \le 1.4 \pm 0.2$ (v) $y = 0 \notin x^2 - 3 = 0$ $y = 0 \notin x = \sqrt{3}$ (iv) $-3 = 1.7, \pm 0.1$	(ii) correct axes			(1)	9.4 or 9∂		$ \gamma $
smooth corve (iii) -3 (iv) $-1.4 \le x \le 1.4 \pm 0.2$ (v) $y = 0 \notin x^2 - 3 = 0$ $y = 0 \notin x = \sqrt{3}$ (06) selling price without VAT= Rs.3993000 $\times \frac{100}{110}$ = Rs. 3630000 Price before selling = Rs. 3630000 $\times \frac{100}{120}$ = Rs. 3025000 Price without duty = Rs. 3025000 $\times \frac{100}{150}$ = Rs. 3000000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 36300000 $\times \frac{100}{120}$ Res. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 3000000 $\times \frac{100}{150}$ = Rs. 200,000 Price without duty = Rs. 30000000 $\times \frac{100}{150}$ = Rs. 200,000 Price witho				(1)	(iii) $180 \times \frac{40}{100} = 72$		
(iii) -3 (iv) $-1.4 \le x \le 1.4 \pm 0.2$ (v) $y = 0 \ \xi x^2 - 3 = 0$ $y = 0 \ \xi x = \sqrt{3}$ (06) selling price without VAT= Rs.3993000× $\frac{100}{110}$ = Rs. 3630000 Price before selling $= Rs. 3630000 \times \frac{100}{120}$ = Rs. 3025000 Price without duty $= Rs. 3025000 \times \frac{100}{120}$ = Rs. 3000000 Price without duty $= Rs. 3025000 \times \frac{100}{150}$ $= Rs. 3000000 \times \frac{100}{150}$ = Rs. 200,000 Price without duty $= Rs. 3000000 \times \frac{100}{150}$ = Rs. 200,000 10 (ii) $= Rs. 3000000 \times \frac{100}{100}$ $= Rs. 3000000 \times \frac{100}{100}$ = Rs. 200,000 10 (iii) $= Rs. 3000000 \times \frac{100}{100}$ $= Rs. 3000000 \times \frac{100}{$	_			(1)	100		
(iv) $-1.4 \le x \le 1.4 \pm 0.2$ (v) $y = 0 \notin x^2 - 3 = 0$ $y = 0 \notin x = \sqrt{3}$ $\sqrt{3} = 1.7, \pm 0.1$ (ii) $Sn = \frac{n}{2} \{a + 1\}$ $= \frac{19}{2} (2 + 56)$ = Rs. 3630000 Price before selling $= Rs. 3630000 \times \frac{100}{120}$ = Rs. 3025000 Price without duty $= Rs. 3025000 \times \frac{100}{120}$ = Rs. 3000000 Price without duty $= Rs. 3025000 \times \frac{100}{150}$ = Rs. 3000000 Price without duty $= Rs. 3000000 \times \frac{100}{150}$ = Rs. 200,000 Price without duty $= Rs. 3000000 \times \frac{100}{150}$ = Rs. 200,000 (ii) $= Rs. 3000000 \times \frac{100}{150}$ = Rs. 3000000 Price without duty $= Rs. 3000000 \times \frac{100}{150}$ = Rs. 3000000 Price without duty $= Rs. 3000000 \times \frac{100}{150}$ = Rs. 3000000 = Rs. 3000000 Price without duty $= Rs. 3000000 \times \frac{100}{150}$ = Rs. 3000000 = Rs. 300000	(iii) - 3				o yours or ress than c		\vdash
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2		2			10
$y = 0 \ \xi \ x = \sqrt{3}$ $\sqrt{3} = 1.7, \pm 0.1$ 10 $06) selling price without VAT= Rs.3993000 \(\frac{100}{110} \) = Rs. 3630000 \times \frac{100}{120} = Rs. 3030000 \times \frac{100}{120} = Rs. 3025000 - 25000 = Rs. 3000000 \times \frac{100}{150} = Rs. 200,000 \) Price without duty = Rs. 3000000 \(\text{100} \) = Rs. 200,000 \times \frac{100}{100} = Rs. 200,000 \times \frac{100}{100} = Rs. 200,000 \) Paper - II Part B (07) \ (i) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	(v) $y = 0 \ \mbox{?} \ x^2 - 3 = 0$			(1)	l ` ' ''		
	$v = 0 \ $ 8 $x = \sqrt{3}$				\		
(10) Siling price without VAT= Rs.3993000× $\frac{100}{110}$							
	√3 − 1.7, ± 0.1				<u> </u>		
Price before selling = Rs. $3630000 \times \frac{100}{120}$				10	$=\frac{19}{2}(2+56)$	(1)	
Price before selling the vehicle $= Rs. 3630000 \times \frac{100}{120}$ $= Rs. 3025000$ $= Rs. 3025000$ $= Rs. 3000000$ $= Rs. 3000000$ $= Rs. 3000000$ $= Rs. 200,000$	(06) selling price without VAT=	Rs.39930	$000 \times \frac{100}{110}$	22	= 551cm	1	3
Rs. 3025000 The entire continuous of the entire continuous co					(iii) 551 × 4 multiply by 4	1	
Rs. 3025000 The entire continuous of the entire continuous co	Price before selling = Rs	s. 36300	$000 \times \frac{100}{120}$	2	22.04m	1	2
Price without duty = Rs. $3025000 - 25000$	the veniere		120		(iv) 551 + 19 Adding 19		
Price without duty = Rs. $3000000 \times \frac{100}{150}$ = Rs. $200,000 \times$	Price without duty = R_{S} .	3025000	25000	_ _	570	(1)	2
Price without duty = Rs. $3000000 \times \frac{100}{150}$			- 1	\tilde{a}			10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						1	
Paper - II Part B (07) (i) model class = $(8 - 12)$ (ii) Class Mid-value deviation Frequency fd (ii) Passes through A,B,C (iii) Passes through A,B,C (iv) 2.8cm \pm 0.2 (iv) 2.8cm \pm 0.2 (v) For D (v) (v) (v) (v) (v)				~ 1		(1)	
Paper - II Part B (07) (i) model class = $(8 - 12)$ (ii) Class Mid-value deviation Frequency fd (iii) Passes through A,B,C (iii) Class Mid-value deviation Frequency fd (iii) Passes through A,B,C (iv) $2.8 \text{cm} \pm 0.2$ (v) For D 1 1 1 1 1 1 1 1 1 1	- KS. 2	200,000	' l	<u> </u>	AĜC	$\overline{1}$	
(ii) model class = $(8 - 12)$ (iii) Class Mid-value deviation Frequency interval (x) (d) Frequency (x) (d) Frequency (x) (iii) Passes through A,B,C (iv) 2.8cm \pm 0.2 (v) For D 12 - 16	D II D (D			10	BC		$ \Im $
(ii) Class interval (x) Mid-value deviation Frequency (x) (iii) Passes through A,B,C 1 0 - 4 2 -8 45 - 360 4 - 8 6 -4 27 - 108 8 - 12 10 0 50 0 12 - 16 14 4 32 128 16 - 20 18 8 18 144 20 - 24 22 12 08 96 (iii) Passes through A,B,C (iv) $2.8 \text{cm} \pm 0.2$ (v) For D $ADC = 120 \pm 2$	Paper - II Part B				(ii) per pending bisector	1+1	
interval (x) (d) (f) Id (iii) Tasses through A,B,C (1) (1) (1) $0-4$ 2 -8 45 -360 4 -8 6 -4 27 -108 (iv) $2.8 \text{cm} \pm 0.2$ (1) (1) $1 - 10 + 10 + 10 + 10 + 10 + 10 + 10 + 1$	(07) (i) model class = (8 - 12	2)			Marking the point O.	1	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(ii) Class Mid-value de interval (x)			fd	(iii) Passes through A,B,C	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 - 4 2	-8	45	- 360			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		- 1			(iv) $2.8 \text{cm} \pm 0.2$	U	벳
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 1 1	- 1			(v) For D		
20 - 24 22 12 08 96 100 100	1 1 1 1						
$\Sigma f = 180 - 100$	1 1 1 1	12	08	96	120 - 2	U	
			$\Sigma f = 180$	- 100			10
.04- 11 ලේණිය - ගණිතය ට්ලිතූරු - දකුණු පළා	1			-	 	 z - දකුණ	ූ පළාත

