

EEE 6212 Semiconductor Materials

Lecture 17: carrier lifetime and recombination

EEE 6212 - Semiconductor Materials

2

Lecture 17: carrier lifetime & recombination

- carrier lifetime in classical mobility model
- Debye length
- Fermi's golden rule
- radiative vs. Auger transitions
- · carrier lifetime model in semiconductors:
 - A) non-radiative contributions by defects
 - B) radiative recombination
 - C) Auger recombination

EEE 6212 - Semiconductor Materials

3

classical model of a charge carrier in an electric field

consider differential equation for drift velocity \underline{v}_d of an electron of mass m and charge -e in an electric field $\underline{\underline{E}}$ with 'friction' b:

$$m \partial v_{d} / \partial t + b v_{d} = F = -eE$$

- -> $v_d + \tau \partial v_d / \partial t = -eE\tau / m$ with relaxation time $\tau = m/b$
- -> $v_d = v_{d,\infty} [1 \exp(-t/\tau)]$ with $v_{d,\infty} = -eE\tau/m = -\mu E$ for mobility μ

 $\ln \mu$ $\mu \propto T^{+3/2} \mu \propto T^{-3/2}$ impurities thonons

-> mobility: $\mu = |\underline{\mathbf{v}}_{d,\infty}| / |\underline{\mathbf{E}}|$

lifetime of individual electron in CB: $\tau = \mu$ m/e =10⁻¹⁴-10⁻¹³s

EEE 6212 - Semiconductor Materials

4

alternative model

consider time during which a discontinuity in space charge is dissipated by electrical conductance, e.g. injection of Δn electrons (of charge density $\rho=-e\,\Delta n$):

$$\begin{array}{c} \operatorname{div} \underline{\boldsymbol{D}} = \rho = -\operatorname{e} \Delta n \\ \underline{\boldsymbol{D}} = \varepsilon_0 \varepsilon_r \underline{\boldsymbol{E}} \\ \underline{\boldsymbol{j}} = \sigma \underline{\boldsymbol{E}} \\ \operatorname{div} \underline{\boldsymbol{j}} = -\partial \rho / \partial t \end{array}$$

$$\frac{\partial \rho / \partial t = -\sigma / (\varepsilon_0 \varepsilon_r) \rho \rightarrow \rho \propto \exp(-t / \tau) \\ \operatorname{with} \tau = \varepsilon_0 \varepsilon_r / \sigma$$

2

Debye length

consider current density through electrodes into semiconductor when electrical current $\underline{\textbf{\textit{i}}}$ due to $\text{div}\underline{\textbf{\textit{E}}}=\rho /\!(\varepsilon_0 \varepsilon_{\!\scriptscriptstyle \Gamma})$ compensates the diffusion current due to the concentration gradient

$$\sigma \underline{E} + eD_n \operatorname{grad} \Delta n = 0$$
 with $D_n = \mu_n kT/e$

- -> $\sigma(\varepsilon_0 \varepsilon_r) \Delta n(x) = D_n \partial^2 \Delta n \partial x^2$
- -> $\Delta n = \Delta n_0 \exp(-x/L)$ with Debye length $L = \sqrt{(D_n \tau)}$ and $\partial \Delta n / \partial t = -1/\tau \Delta n$ -> $\Delta n \propto \exp(-t/\tau)$ where $\tau = 10^{-10}$ s (doped Si) 10^{-3} s (pure Si) for space charges

EEE 6212 - Semiconductor Materials

۶

recombination probabilities

consider dependence of carrier lifetime on the minority charge carrier density *n*:

decay probability $\propto 1/\tau = A + Bn + Cn^2$ with some constants A,B,C

non-radiative contributions due to defects, e.g. dislocations (L11, p23)

radiative recombinations of electrons and holes across band-gap, produces light (or X-rays)

non-radiative Auger recombination (3 electron process), produces free electrons