FORMULARIO CALCOLO NUMERICO ED ELEMENTI DI ANALISI

Concetti principali

$\epsilon_M = \beta^{1-t}$
$\frac{ x - fl(x) }{ x } \le \frac{1}{2} \epsilon_M$
$\ e^{(k)}\ \le (\rho(B))^k$ $\lim_{k \to \infty} e^{(k)} = 0 \Leftrightarrow \rho(B) < 1$
$e_{rel} = \frac{\ x - \hat{x}\ }{\ x\ } = K(A)r_{rel}$
$r_{rel} = \frac{\ oldsymbol{b} - A\widehat{\mathbf{x}}\ }{\ oldsymbol{b}\ }$
λ (max), μ (min)
$\left \lambda_1(A) - \lambda_1^{(k)}\right \le C \left \frac{\lambda_2(A)}{\lambda_1(A)}\right ^{2k}$
$\rho = \max \lambda_i $
$k_P(A) = A _P A^{-1} _P$
$k(A) = \rho(A)\rho(A^{-1})$ $k(A) = \frac{\max \lambda_i(A) }{\min \lambda_i(A) }$
$ x _A = \sqrt{x^T A x}$ $ A _F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij} ^2}$

Se
$$p = 1$$
 $e^{(k+1)} = Ce^{(k)}$

Se
$$p = 2$$
 $e^{(k+1)} \approx \frac{1}{2} \left| \frac{f''(\alpha)}{f'(\alpha)} \right| \left(e^{(k)} \right)^2$

Funzioni

[M,I] = min(vettore) trova il valore minimo del vettore e il suo indice R = chol(A) implementa il metodo di Cholesky

Risoluzione di sistemi lineari

Metodi diretti: la soluzione del sistema è ottenuta in un numero finito di passi.

- A è triangolare inferiore (A=L): algoritmo delle **sostituzioni in avanti** (n^2) ;
- A è triangolare superiore (A=U): algoritmo delle **sostituzioni indietro** (n^2) ;
- A è fattorizzabile: metodo di **fattorizzazione LU** $(\frac{2}{3}n^3$ per trovare LU più $2n^2$ per risolvere LUx = b) più MEG:

$$A = LU$$
 $Ax = b$
$$\begin{cases} Ly = b \\ Ux = y \end{cases}$$

[condizione necessaria e sufficiente per la fattorizzazione LU: data A invertibile, la sua fattorizzazione LU esiste ed è unica se e solo se ogni sua sottomatrice è invertibile;

condizioni sufficienti per la fattorizzazione LU: A è simmetrica e

A è simmetrica e definita positiva;

A è a dominanza diagonale stretta per righe;

A è a dominanza diagonale stretta per colonne.]

• A è invertibile: tecnica del **pivoting per righe**:

$$PA = LU$$
 $PAx = Pb$
$$\begin{cases} Ly = Pb \\ Ux = y \end{cases}$$

• A è invertibile: tecnica del **pivoting totale**:

$$PAQ = LU$$
 $PAQQ^{-1}x = Pb$
$$\begin{cases} x^* = Q^{-1}x \\ y^* = Ux^* \end{cases}$$

$$\begin{cases} Ly^* = Pb \\ Ux^* = y^* \\ x = Qx^* \end{cases}$$

- A è invertibile e tridiagonale: algoritmo di **Thomas** (8n-7);
- A è simmetrica e definita positiva: fattorizzazione di **Cholesky** $(\frac{1}{3}n^3)$:

$$A = R^T R \qquad A \mathbf{x} = \mathbf{b} \qquad \begin{cases} R^T \mathbf{y} = \mathbf{b} \\ R \mathbf{x} = \mathbf{y} \end{cases}$$

Su matlab: R = chol(A)

• A non è quadrata ($A \in \mathbb{R}^{m \times n}$, sistema sovradeterminato): **fattorizzazione QR**:

$$A = QR$$

con $Q \in \mathbb{R}^{m \times m}$ sottomatrice quadrata ortogonale

 $R \in \mathbb{R}^{m \times n}$ matrice rettangolare con gli elementi sotto la diagonale principale nulli

Metodi iterativi:
$$x = \lim_{k \to +\infty} x^{(k)}$$
 in generale: $x^{(k+1)} = Bx^{(k)} + g$

se
$$\rho(B) < 1$$
 il metodo converge

• A è sparsa e diagonale dominante: decomposizione additiva (o splitting):

$$B = I - P^{-1}A$$

• A ha elementi diagonali non nulli: **Jacobi**:

$$P = diag(A)$$

$$P^{-1} = diag(1./diag(A))$$

• A ha elementi diagonali non nulli: Gauss-Seidel:

$$P = tril(A)$$

Se A è SDA, Gauss-Seidel e Jacobi convergono ad x per ogni $x^{(0)}$.

Se A è a dominanza diagonale stretta per riga e non-singolare, allora sia Jacobi, che Gauss-Seidel convergono ad x per ogni $x^{(0)}$.

Se A è non-singolare e tridiagonale (con tutti gli elementi diagonali non nulli), allora sia Jacobi, che Gauss-Seidel divergono, oppure convergono ad x (in tal caso G-S converge più velocemente di Jacobi).

• A è ben condizionata e diagonale dominante: Richardson precondizionato:

$$B_{\alpha} = I - \alpha P^{-1}A$$

Dove, se α è fisso: Richardson stazionario; se non è costante durante le iterazioni: Richardson dinamico. Se A e P sono non-singolari, Richardson converge ad x per ogni $x^{(0)}$ se: $\alpha |\lambda_i(P^{-1}A)^2| < 2Re\{\lambda_i(P^{-1}A)\}$ Più il numero di condizionamento è vicino ad 1, più la convergenza del metodo di Richardson stazionario è rapida.

• A è SDA: metodo del gradiente: metodo di Richardson dinamico senza precondizionamento con:

$$\alpha_k = \frac{r^{(k)T}r^{(k)}}{r^{(k)T}Ar^{(k)}}$$

Uguale al metodo del gradiente precondizionato, ma P=Id.

• A è SDA: metodo del **gradiente precondizionato**: metodo di Richardson precondizionato dinamico con:

$$\alpha_k = \frac{z^{(k)T} z^{(k)}}{z^{(k)T} A z^{(k)}}$$

Dove z è il residuo precondizionato di P.

Se A e P sono SDA, il metodo del gradiente precondizionato converge ad x per ogni $x^{(0)}$.

• A è SDA: metodo del **gradiente coniugato**:

Ad ogni iterazione è necessario determinare il valore di α_k e β_k per calcolare la direzione di discesa di $p^{(k)}$. Se A e P sono SDA, il metodo del gradiente precondizionato converge ad x per ogni $x^{(0)}$. In aritmetica esatta, il metodo converge in al più in n iterazioni ($A \in \mathbb{R}^{n \times n}$)

Autovalori ed autovettori

Per una matrice $A \in \mathbb{C}^{nxn}$ vi sono n autovalori e n autovettori corrispondenti.

Se $A = VDV^{-1}$ con D diagonale e V base di autovettori, allora A è diagonalizzabile.

Ogni matrice $A \in \mathbb{C}^{n \times n}$ diagonalizzabile ammette n autovettori linearmente indipendenti ed n autovalori, che si presentano come coppie di complessi coniugati.

Se A è simmetria è garantito che gli autovalori siano reali.

Se A è SDA è garantito che tutti i suoi autovalori siano positivi.

Se A è triangolare, gli autovalori sono gli elementi sulla diagonale.

Data $A \in \mathbb{C}^{n \times n}$ il problema agli autovalori di A è:

$$Ax_i = \lambda_i x_i$$

Il quoziente di Rayleigh riferito ad un vettore x_i di A è un'approssimazione di un autovalore λ_i di A, specialmente se x_i è vicino ad un autovettore:

$$R = \frac{x_i^H A x_i}{x_i^H x_i}$$

Se x_i è esattamente un autovettore di A, R è esattamente un autovalore di A.

• $A \in \mathbb{C}^{nxn}$ e i due autovalori di modulo maggiore sono distinti: $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|$ Metodo delle potenze: trova λ

Il metodo converge se $|\lambda_1| \gg |\lambda_2|$.

- $A \in \mathbb{C}^{n \times n}$ e i due autovalori di modulo minore sono distinti: $|\lambda_1| \geq |\lambda_2| \geq |\lambda_3| \geq \cdots > |\lambda_n|$ **Metodo delle potenze inverse**: trova μ Il metodo converge se $|\lambda_{n-1}| \gg |\lambda_n|$.
- Metodo delle potenze inverse con shift: trova l'autovalore più vicino ad un valore dato

$$A_s = A - sI$$

s è un numero complesso, diverso dagli autovalori di A, che fornisce una stima dell'autovalore da calcolare:

$$\lambda_i(A_s) = \lambda_i(A) - s$$

• $A \in \mathbb{R}^{n \times n}$ e i suoi autovalori sono reali e distinti in modulo: $|\lambda_1| > |\lambda_2| > |\lambda_3| > \dots > |\lambda_n|$ **Metodo delle iterazioni QR**: trova tutti gli autovalori di A (no autovettori):

$$A_k = Q_k R_k \qquad \qquad A_{k+1} = R_k Q_k$$

Il metodo converge velocemente se gli autovalori sono lontani in modulo tra loro.

- Criteri di Greshgorin: individua l'area dove certamente si trovano gli autovalori (utile per la scelta dello shift);
- **Decomposizione ai valori singolari** di una matrice: Tecnica di diagonalizzazione di una matrice generica. Utile per problemi di regressione, riduzione dimensionale e compressione.

Equazioni non lineari

L'obiettivo è quello di approssimare lo zero $\alpha \in \mathbb{R}$ di una funzione f(x) nell'intervallo $I=(a,b)\subseteq \mathbb{R}$.

La molteplicità m di uno zero α coincide con il grado della prima derivata non nulla di f(x).

• Se f(x) è continua in (a,b) e f(a)f(b) < 0: Metodo di bisezione

$$x^{(k)} = \frac{a^{(k)} + b^{(k)}}{2}$$

Il metodo è sempre convergente (ma lento) e garantisce la riduzione dell'intervallo a ogni iterazione.

• Se f(x) è differenziabile in (a, b): Metodo di Newton:

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}$$

Se lo zero α è multiplo, il metodo converge linearmente.

Se lo zero α è semplice, $x^{(0)}$ è sufficientemente vicino (per assicurarmene posso fare qualche iterata con il metodo di bisezione, per trovare un $x^{(0)}$ adatto) e $f \in C^2(I_\alpha)$ il metodo converge quadraticamente.

• Se il metodo di Newton converge troppo lentamente o è instabile: Metodo di Newton modificato:

$$x^{(k+1)} = x^{(k)} - m \frac{f(x^{(k)})}{f'(x^{(k)})}$$

$$m^{(k)} = \frac{x^{(k-1)} - x^{(k-2)}}{2x^{(k-1)} - x^{(k)} - x^{(k-2)}}$$
è la molteplicità di α

Se $x^{(0)}$ è sufficientemente vicino e $f \in C^2(I_\alpha) \cap C^m(I_\alpha)$ il metodo converge quadraticamente.

• Metodi di quasi-Newton:

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{q^{(k)}}$$

Dove la scelta di $q^{(k)}$ determina il metodo:

 \circ Metodo delle corde: $q^{(k)} = \frac{f(b) - f(a)}{b - a}$

Se lo zero α è semplice, il metodo converge linearmente.

Se lo zero α è multiplo, il metodo può convergere o non convergere.

 $\circ \operatorname{Metodo delle secanti:} \qquad q^{(k)} = \frac{f(x^{(k)}) - f(x^{(k-1)})}{x^{(k)} - x^{(k-1)}}$

Se lo zero α è semplice, il metodo converge con ordine $\simeq 1,6$.

Se lo zero α è multiplo, il metodo converge linearmente.

• Iterazioni di punto fisso

Data Φ : $[a, b] \subseteq \mathbb{R} \to \mathbb{R}$, α è un punto fisso se e solo se $\Phi(\alpha) = \alpha$.

Per la ricerca degli zeri pongo:

$$\Phi(x) = x + F(f(x))$$
 oppure $\Phi(x) = x - \frac{f(x)}{f'(x)}$

Se $\Phi \in C^0([a, b])$ esiste almeno un punto fisso $\alpha \in [a, b]$.

Se, inoltre, esiste una costante L tale che $|\Phi(x_1) - \Phi(x_2)| \le L|x_1 - x_2| \quad \forall \ x_1 e \ x_2 \in [a,b]$, allora α è unico in [a,b] e l'algoritmo converge per ogni $x^{(0)} \in [a,b]$.

Più derivate di $\Phi(x)$ si annullano, maggiore è l'ordine di convergenza. In particolar modo, l'ordine di convergenza è pari all'ordine della prima derivata non nulla.

SISTEMI DI EQUAZIONI NON LINEARI

Si usa il metodo di newton oppure la funzione bfgs

Se $\det(J(F)) \neq 0$ il metodo converge quadraticamente.

Ottimizzazione numerica

Il problema di minimo non vincolato consiste nel trovare $x \in \mathbb{R}$ tale che $\Phi(x) \leq \Phi(y) \ \forall y \in \mathbb{R}^n$, ovvero risolvere $\min_{x \in \mathbb{R}^n} \Phi(x)$.

- Metodi derivative free:
- o Metodo della sezione aurea:

Il metodo è sempre convergente.

- O Metodo di interpolazione quadratica:
- Metodi di discesa/line-search: le iterazioni si muovono nella direzione che riduce maggiormente il valore della funzione; viene quindi scelta una direzione d e una lunghezza del passo α_k :

$$x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}$$

 \circ **Algoritmo di backtracking**: determina un valore adatto di α_k :

$$\alpha_k = \rho \alpha_k$$
 dove $\rho \in \left[\frac{1}{10}, \frac{1}{2}\right]$

o Metodo del gradiente:

$$d^{(k)} = -\nabla \Phi(x^{(k)})$$

Il metodo converge linearmente.

o Metodo del gradiente coniugato:

$$d^{(k+1)} = -\nabla \Phi \left(x^{(k+1)} \right) + \beta_k d^{(k)}$$
 dove β_k può assumere diversi valori (vedi pag 109-110) Il metodo converge super linearmente (1 < p < 2).

• Metodo di Newton:

$$d^{(k+1)} = -\left(H_{\Phi}(x^{(k)})\right)^{-1} - \nabla \Phi(x^{(k)})$$

Se Φ è sufficientemente regolare, $x^{(0)}$ è sufficientemente vicino a x e $det\left(H_{\Phi}(x^{(k)})\right) \neq 0$, il metodo converge quadraticamente.

• Metodi di quasi-Newton: Metodo BFGS:

$$d^{(k)} = -B^{(k)} \nabla \Phi \left(x^{(k)} \right)$$

Dove B è un'approssimazione dell'inversa dell'hessiana.

Il metodo converge super linearmente.

Per verificare che A sia SDA:

```
if isequal(A,A')
 disp('A è simmetrica');
 na = size(A,1);
 %calcolo det sottomatrici (criterio di Sylvester)
 for i = 1:na
   if (det(A(1:i,1:i)) > 0)
     if(i == na)
       disp('A è DP')
     end
   else
     error('A non è DP')
   end
 end
else
 disp('A non è simmetrica');
end
```