Method of Variation of Parameters

This method is derived by mathematician **Lagrange** by evolving the P.I. from its C.F.only by assuming temporarily the constants some variable functions.

Due to this assumptions this method is called Variation of Parameters or Variation of constants

Concept

Consider a second order non homogeneous equation with constant coefficients

$$\frac{d^2y}{d^2x} + P(x)\frac{dy}{dx} + Q(x)y = X.....(1)$$

Let y_1 and y_2 be the solution of corresponding Homogeneous equation

$$\frac{d^2y}{d^2x} + P(x)\frac{dy}{dx} + Q(x)y = 0.....(2)$$

then complimentary function is given by

$$y_c = c_1 \ y_1 + c_2 \ y_2$$

Suppose Particular Integral is obtained by above C.F. by considering c_1 and c_2 as variable functions say $v_1(x)$ and $v_2(x)$ and is given by

$$y_p = v_1 \ y_1 + v_2 \ y_2$$

Goal:To determine v_1 and v_2

Now

$$y_p = v_1 \ y_1 + v_2 \ y_2$$

$$y'_p = v'_1 \ y_1 + v_1 \ y'_1 + v'_2 \ y_2 + v_2 \ y'_2$$

$$y''_p = v''_1 \ y_1 + v'_1 \ y'_1 + v'_1 \ y'_1 + v_1 \ y''_1 + v''_2 \ y_2 + v'_2 \ y'_2 + v'_2 \ y'_2 + v_2 \ y''_2$$

$$= v''_1 \ y_1 + 2v'_1 \ y'_1 + v_1 \ y''_1 + v''_2 \ y_2 + 2v'_2 \ y'_2 + v_2 \ y''_2$$

if y_p is particular solution of (1), it must satisfy the equation

$$\frac{d^2y}{d^2x} + P(x)\frac{dy}{dx} + Q(x)y = X$$

$$\frac{d^2y_p}{d^2x} + P(x)\frac{dy_p}{dx} + Q(x)y_p = X$$

$$[v_1'' \ y_1 + 2v_1' \ y_1' + v_1 \ y_1'' + v_2'' \ y_2 + 2v_2' \ y_2' + v_2 \ y_2'']$$

+P(x)[v_1' \ y_1 + v_1 \ y_1' + v_2' \ y_2 + v_2 \ y_2'] + Q(x)[v_1 \ y_1 + v_2 \ y_2] = X

$$v_1 [y_1'' + P(x)y_1' + Q(x)y_1] + v_2 [y_2'' + P(x)y_2' + Q(x)y_2]$$

+ $v_1'' y_1 + 2v_1' y_1' + v_2'' y_2 + 2v_2' y_2' + P(x)[v_1' y_1 + v_2' y_2] = X$

Hence, by (2)

$$v_1[0] + v_2[0] + v_1'' \ y_1 + 2v_1' \ y_1' + v_2'' \ y_2 + 2v_2' \ y_2' + P(x)[v_1' \ y_1 + v_2' \ y_2] = X$$

$$v_1'' \ y_1 + 2v_1' \ y_1' + v_2'' \ y_2 + 2v_2' \ y_2' + P(x)[v_1' \ y_1 + v_2' \ y_2] = X$$

Now

$$\frac{d}{dx}[v_1' \ y_1 + v_2' \ y_2] = v_1'' \ y_1 + v_1' \ y_1' + v_2'' \ y_2 + v_2' \ y_2'$$

Using in last expression we have

$$\frac{d}{dx}[v_1' \ y_1 + v_2' \ y_2] + v_1' \ y_1' + v_2' \ y_2' + P(x)[v_1' \ y_1 + v_2' \ y_2] = X$$

Hence assumption for P.I. holds true if v_1 and v_2 satisfies

$$v_1' y_1 + v_2' y_2 = 0$$

and

$$v_1' \ y_1' + v_2' \ y_2' = X$$

which are two linear equation with two unknowns v'_1 and v'_2 and can be easily determined by various solution methods.

Working Rule (Second order)

(1) For given second order non homogeneous equation, if y_1 and y_2 are solutions of corresponding homogeneous equations then write C.F. as

$$y_c = c_1 y_1 + c_2 y_2$$

(2) From C.F. assume P.I. as

$$y_p = v_1 y_1 + v_2 y_2$$

satisfying

$$v_1' y_1 + v_2' y_2 = 0$$

and

$$v_1' \ y_1' + v_2' \ y_2' = X$$

(3) Solve above equation in v_1' and v_2' by either Cramer's Rule and determine v_1 and v_2

where
$$W = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} \neq 0$$
; $W_1 = \begin{vmatrix} 0 & y_2 \\ X & y'_2 \end{vmatrix}$ and $W_2 = \begin{vmatrix} y_1 & 0 \\ y'_1 & X \end{vmatrix}$

which gives gives
$$v_1' = \frac{W_1}{W}$$
 and $v_2' = \frac{W_2}{W}$

Hence
$$v_1 = \int v_1' dx$$
 and $v_2 = \int v_2' dx$

or determine v_1 and v_2 by the formula

$$v_1 = \int \frac{-y_2 X}{W} dx \quad , \quad v_2 = \int \frac{y_1 X}{W} dx$$

where
$$W = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} \neq 0$$

Note(Third Order)

For given third order non homogeneous equation , if y_1 , y_2 and y_3 are solutions of corresponding homogeneous equations then write C.F. as

$$y_c = c_1 y_1 + c_2 y_2 + c_3 y_3$$

From C.F. assume P.I. as

$$y_p = v_1 y_1 + v_2 y_2 + v_3 y_3$$

satisfying

$$v_1' y_1 + v_2' y_2 + v_3' y_3 = 0$$

$$v_1' y_1' + v_2' y_2' + v_3' y_3' = 0$$

and

$$v_1' y_1'' + v_2' y_2'' + v_3' y_3'' = X$$

Solve above equation in v_1^\prime, v_2^\prime and v_3^\prime by either Cramer's Rule and determine v_1 , v_2 and v_3

Solve by Method of Variation of parameter

$$(1) \frac{d^2y}{dx^2} + y = xsinx$$

(2)
$$[(D^2 - 4D + 4)]y = e^{2x}sec^2x$$

$$(3) \frac{d^2y}{dx^2} + y = \sec x \tan x$$

Answers

(1)
$$y = c_1 \cos x + c_2 \sin x + \frac{x}{2} \sin x - \frac{x^2}{4} \cos 3x$$

(2)
$$y = [(c_1x + c_2 + log(secx))]e^{2x}$$

(3)
$$y = c_1 cos x + c_2 sin x + x cos x - sin x + sin x log(secx)$$