ASKJOMAT WYBORU I KOLEDZY

AC - aksjomat wyboru (w wersji z selektorem lub z funkcja wyboru)

WO - zasada dobrego uporzadkowania - kazdy zbior mozna dobrze uporzadkowac

LKZ - Lemat Kuratowskieg-Zorna - jesli $\langle X, \leq
angle$ jest zbiorem czesciowo uporzadkowanym, w ktoym kazdy lancuch ma ograniczenie gorne, to w \boldsymbol{X} istnieje element maksymalny

Twierdzenie $AC \iff WO \iff LKZ$

DOWOD:

1) $WO \implies AC$

Niech ${\mathcal A}$ bedzie rozlaczna rodzina zbiorow niepustych. Chcemy pokazac, ze ta rodzina ma selektor.

Niech \leq bedzie dobrym porzadkiem na $\bigcup \mathcal{A}$.

Jesli wszystko jest uporzadkowane, to w kazdym z tych zbiorow mozemy wziac element najmniejszy i to bedzie naszym selektorem

Niech $S = \{x \in \bigcup \mathcal{A} : \exists a \in \mathcal{A} \ x \ jest \ elementem \ min \ \mathcal{A}\}$. Wtedy S jest selektorem rodziny \mathcal{A} . Trzeba pokazac, ze ${ t z}$ kazdym ${ t z}$ elementow rodziny A selektor ma jednoelementowy przekroj. Ale jesl iwezme dowolny element rodziny A, to to jest niepusty podzbior sumy i i on ma element najmniejszy. W Zwiazku z tym przekros S z A jest niepusty i jednoelementowy, bo w kazdym elemencie z A mamy jeden element najmniejszy.

2) $LKZ \implies AC$

Niehc A bedzie rozlaczna rodzina zbiorow niepustych.

Niech $\mathcal{T}=\{T\subseteq\bigcup\mathcal{A}\ :\ orall\ A\in\mathcal{A}\ |T\cap A|\le 1\}$ - czyli \mathcal{T} jest zbiorem czesciowych sleketorow

Rozwazmy zbior up $\langle \mathcal{T}, \subseteq \rangle$. Tezn zbior spelnia LKZ

Nich $\mathcal{L}\subseteq\mathcal{T}$ nendzie lacuchem. Niech $L=\bigcup\mathcal{L}.$ Wtedy L ogranicza od gory $\mathcal{L}.$ Trzeba pokazac, ze $L\in\mathcal{T}.$

Chcemy pby dla kazdego $A\in\mathcal{A}$ miec $|A\cap L|\leq 1$. Przypuscmy nie wprost, ze istnieje $A\in\mathcal{A}$ takie, ze $|A\cap L|\geq 2$. To znaczy, ze istnieja x_1,x_2 takie, ze $x_1 \neq x_2$ i $x_1.x_2 \in A \cap L$. Wtedy $x_1,x_2 \in \bigcup \mathcal{L}$, czyli istnieja L_1,L_2 takie, ze $x_1 \in L_1$ o $x+2 \in L_2$, ale L jest lancuchem , wiec bez straty ogolnosci moge zalozyc, ze $L_1 \subseteq L_2$, ale wted y $x_1,x_2\in L_2$, czyli $|A\cap L_2|\geq 2$, ale to jest sprzeczne bo $L_2\in \mathcal{T}$.

Wobec tego na mocy LKZ w $\mathcal T$ istnieje element maksymalny S. Pozostaje zauwazyc, ze S jest selektorem rodziny \mathcal{A} .