

CHEAPAMP

 $\begin{array}{c} \textbf{Low-cost low component count class-D audio} \\ \textbf{amplifier} \end{array}$

Features

Stereo 15W / Mono 30W output Up to 88% efficiency No heatsinking required, even for continuous operation Single-ended supply, 7-20V Reverse polarity and overvoltage protection Low cost, \approx 13\$ BOM cost 0.04% THD @ 4W 96dB SNR

Description

The Cheapamp amplifier is a compact general-purpose — though audio-oriented — class-D power amplifier with analog volume controls and a pinheader for full digital control. It is based on the $\rm MAX9736A/B^a$ monolithic amplifier.

The board design is heavily centered around the filterless recommended design shown in the datasheet, and is configurable for either mono (bridged) or stereo applications.

Overview

 $[^]a {\rm http://www.maxim\text{-}ic.com/datasheet/index.mvp/id/5688}$

Contents

Assembly	3
Pin Description	5
Usage	7
Bill of materials	8
Mechanical Description	10
Electrical Characteristics	12
Operation	13

Copyright Notice

This entire work is copyright 2013 by Jonathan Lock and released under the terms of the Creative Commons Attribution-ShareAlike 3.0 Unported License.

https://creativecommons.org/licenses/by-sa/3.0/. Some Rights Reserved.

Hardware Revision History

- **1.0** Initial version.
- 1.1 Reduced noise with long potentiometer cable with capacitive buffer, added constant volume mode.
- 1.2 Further reduced output noise with added input filter. Component count reduced.

Documentation Revision History

- **1.0** Initial version, applies to hardware revision 1.0.
- 1.0.1 BOM restructured, title page document ID syntax updated.
- 1.0.2 PCB manufacturing requirements (table 3) added.
- **1.1.0** Initial version for hardware revision 1.1.
- **1.1.1** Updated erronous component placement details in figure 1.
- **1.2.0** Initial version for hardware revision 1.2.

Absolute Maximum Ratings

Parameter	Rating
Power input voltage	$-30\mathrm{V}$ to $+20/+30\mathrm{V}^a$
Signal input voltage	$\pm 10 \mathrm{V}$ or $\pm 10 \mathrm{mA}$, whichever occurs first
Output short circuit	${\bf Indefinite}$

^aNote: Tolerated input voltage range depends on choice of overvoltage protection. See Assembly.

Assembly

Cheapamp consists of mostly surface mount components with a few hole-mounted supporting components. The most difficult component to mount is the MAX9736 amplifier, which is in a TQFN package with exposed center pad. This must be done using a reflow oven, hotplate, or equivalent to ensure the center pad establishes a good thermal connection to the PCB for cooling purposes. All other components are relatively simple, being mostly SO8, 0603, and 1206 packages.

For operation as an audio amplifier, mount components matching the values shown in Bill of materials at the locations shown in figure 4, following the pin usage in Pin Description. For other uses see Operation.

There is an optional overvoltage protection function that can be disabled by not mounting D2. In this case input voltages of up to 30V can be tolerated, otherwise the input voltage should be limited to 20V (and not exceeding 21V during normal use).

The board can be mounted in either a stereo or mono configuration. Some components are only needed in stereo mode, these are marked with a line grouping them together and noted with the text "Stereo mode" (these components are R1, R2, C21, C22, R15, C23, C25, R16, IC4).

Additionally, the board can either be mounted for use with volume-adjusting potentiometer(s) (one potentiometer when mounted in mono configuration, two when mounted in stereo configuration) or in a constant-volume mode. If there is no need for adjusting the volume the device may be mounted in constant volume mode; in which case the screw terminal X1 is not mounted and the resistors R11 and R15 are mounted. Note that assembling for constant-volume mode will result in high speaker volume levels for moderate inputs!

There are solder bridges on the bottom of the PCB that **must** be programmed before use as follows;

Mono mode Activate all mono mode solder bridges (short JP2,JP3,JP4,JP9 and enable JP7) if the device is to run in mono mode (one output). The left volume potentiometer controls the system gain and the speaker should connect to the left outputs. The left and right inputs are mixed equally. If a mono input signal is used connect it to either the left or right input and leave the other floating (unconnected). Leave the right potentiometer terminal connections floating.

- Constant volume mode Short JP8 and JP10 (in addition to leaving X1 unmounted and mounting R11 and R15) to bring the device into constant volume mode. This will give a fixed output volume. Leave JP8 and JP10 unshorted, R11 and R15 unmounted, and mount X1 for normal, adjustable volume, mode.
- Spread spectrum (recommended: ON) Activate JP6 to enable, this should typically be enabled unless additional external inductive filters are used. This is at slight cost of efficiency, but keeps EMI below EN55022B EMC radiation limits when used without external filters and a cable below 1m in length. Note that is is possible to run the amplifier using a traditional LC filter on the output, if so do not mount L2, L3, L4, L5, C9, C13, C15, C16 and place an LC filter as described in the datasheet directly after the output(s).
- Internal regulator (recommended: OFF) Activate JP5 and short JP1 to enable. This enables the internal 5V regulator and may be used only if the LM317 regulator is not mounted. As the MAX9736 IC does not specify the allowed load on it's 5V output and the operational amplifiers are powered by the 5V rail this feature has not been tested. Use with caution!

Note; there are two types of solder jumpers; jumpers with two conductors are shorted by soldering both together, while jumpers with three conductors are programmed to one of two states by shorting the center conductor to either one of the two outer conductors. Never short all three conductors as this may potentially destroy the device on power-up!

Pin Description

For the most basic use, all connections are made through the terminal blocks around the device. Where more fine-grained control is required, additional functions can be accessed on the 2.54mm pitch header (Header D) on one side¹. Connections are as follows;

HEADER	Pin	Description
	GND	Power ground connection.
	PWR SUP	Power positive voltage input.
Header A	OUTL+/MONO+	Positive left / mono output, connect one
Headel A		$ m terminal\ of\ the\ left\ /\ mono\ load\ here.$
	OUTL-/MONO-	Negative left / mono output, connect the other terminal of the left / mono load here.
	OUTR+	Positive right output, connect one terminal of the right load here (if in stereo mode), leave unconnected in mono mode.
	OUTR-	Negative right output, connect the other terminal of the right load here (if in stereo mode), leave unconnected in mono mode.
Header B	AGND	Analog ground for input signal. Connected to GND_IN on one point on the board via a trace.
	INL/MONO	AC coupled input for left/mono.
	INR/MONO2	AC coupled input for right (mixed equally with left input when in mono mode, may be left unconnected).
Header C	POTL/MONO+	Left/mono potentiometer positive terminal (if the wiper is placed close to this terminal the gain is maximized).
$Note;\ Header\ is$	POTL/MONOW	Left/mono potentiometer wiper terminal.
not mounted in constant volume mode.	POTL/MONO-	Left/mono potentiometer negative terminal (if the wiper is placed close to this terminal the gain is $0 \ (-\infty \ dB)$).
	POTR+	Right potentiometer positive terminal (if the wiper is placed close to this terminal the gain is maximized). Leave unconnected in mono mode.

 $^{^{1}}$ This header is intended to be used as an expansion port, for example with a microprocessor and DAC as an embedded audio player .

Header	Pin	DESCRIPTION				
	POTRW	Right potentiometer wiper terminal.				
	POIRW	Leave unconnected in mono mode.				
		Right potentiometer negative terminal (if				
	POTR-	the wiper is placed close to this terminal				
	10111-	the gain is $(-\infty dB)$). Leave				
		unconnected in mono mode.				
	Note; Use a logari	thmic potentiometer somewhere in				
	the r	range of $10 - 100k\Omega$.				
	Connected to the main input vo					
	PWR SUP	after the reverse polarity, overvoltage and				
		fuse protection section.				
	GND	System ground.				
		Internally generated 5V output. Current				
Header D		availability limited by the power				
	$5\mathrm{V}$	dissipation of the LM317 regulator, which				
	J •	depends on the input voltage. Generally				
		this is moderate, in the range of				
		30-100mA or so (untested!). Input to amplifier, bring low to shut				
		Input to amplifier, bring low to shut				
		down the amplifier (and reduce quiescent				
	$\overline{ m SHDN}$	current). Note there is a 1uF capacitive				
		load on this line. Leave unconnected or				
		connect to 5V to turn on.				
	- (T.100)	Input to amplifier, bring low to mute the				
	$\overline{ ext{MUTE}}$	amplifier. Leave unconnected or connect				
		to 5V to unmute.				
	ACNE	Analog input ground (connected to				
	AGND	system ground at one point on the				
	INIT /MONO	board).				
	INL/MONO INR	Identical to INL on header B. Identical to INR on header B.				
	INK					
	${ m POTL}+{ m through}$	Identical to the equivalent pins on header				
	POTR-	C, do not connect to when in constant				
		volume mode.				

Usage

Cheapamp aims to be simple to use, mount components and program the device with the solder-bridges as described in Assembly and Pin Description. Power should be delivered with some type of DC power supply (with voltage as per Electrical Characteristics). Connect the speaker(s) to the output headers, keeping the cable to the speakers as short as possible. To stay within EN55022B EMC limits keep the cable below one meter in length. Be sure to use wire with a conductor cross-section of $\geq 1 \text{mm}^2$, both for input DC power as well as to the speaker(s). Use shielded cables (such as a shielded microphone cable) for the input signal and potentiometer connections. Try to keep the cables connecting Cheapamp to the speaker(s) as far away as possible from the input signal and potentiometer cables – the switching noise in the output signal will otherwise couple to the low-level input signals and raise the noise level and amount of distorsion.

Cheapamp is designed to be able to achieve full volume when driven by line-level signals of approximately 1Vpp, while tolerating signals of up to ± 10 V, and contains both input DC and RF blocking filters.

For other uses of Cheapamp such as; a general-purpose DC-coupled amplifier; an amplifier whose volume, mute/standby functionality is controlled by external circuitry; a low-EMI amplifier; and so on, see Operation.

Bill of materials

Note; A value of 4n7 corresponds to a value of 4.7m, and in the case of a capacitor corresponds to 4.7mF. The suggested part under value, rating, and type. 2-way jumpers are referred to as "short on" to activate, while 3-way jumpers are referred to as number is only that — a suggestion — and may be replaced with any other equivalent matching the specifications listed "set on" or "set off" – short the center pad to either the "on" or "off" side pad to enable/disable a function. Components within paranthesis, eg. (C23) are only mounted in stereo mode.

Suggested Part No.	rid 50ZLH100MEFC8X11.5	MCCA000529	12063D106KAT2A	MCCA001280	G MCCA000331	GRM188R61H105KAALD	G MCCA000339	SSC53L-E3/57T	3.0SMCJ20A-13	1812L110/33MR	LM317MDT	$ \mathrm{MAX9736AETJ} +$	ADA4692-2ARZ	Short for internal 5V reg	Short for mono mode	Set on for internal 5V reg	Set on for spread spectrum	. Set on for mono mode	Set on for constant-volume mode	der Generic pinheader
TYPE	8mm can, 3.5mm pin grid	SMD 0603, X5R	SMD 1206, $X5R$	SMD 0805, X5R	SMD 0805, NP0 or C0G	SMD 0603 , X5R	SMD 0805, NP0 or C0G	SMD SMC package	SMD SMC package	SMD 1812	DPAK package	SMD TQFN	8-OS QWS	Programming jumper	Programming jumper	Programming jumper	Programming jumper	Programming jumper	Programming jumper	2.54mm x 14-way pinheader
RATING	50V	16V	25V	50V	50V	50V	50V	30V, 5A	20V, 3000W TVS zener diode	1.1A PTC fuse	LM317	30W audio amplifier	Rail-to-rail audio op-amp	2-way jumper	2-way jumper	3-way jumper	3-way jumper	3-way jumper	2-way jumper	
VALUE	100uF	luF	$10 \mathrm{uF}$	4n7	120p	$1 \mathrm{uF}$	$330 \mathrm{pF}$	Schottky diode	SMCJ20A	$1812 L110/33 \mathrm{MR}$	LM317MABDT	${\rm MAX9736AETJ} +$	ADA4692-2R							
Component name	C1	C10,C12,C14,C19,C20,(C23)	C17,(C21)	C18,(C22)	C24,(C25)	C2,C3,C4,C5,C7,C8	C9,C13,C15,C16	D1	D2	F1,F2	IC1	IC2	IC3,(IC4)	JP1	JP2,JP3,JP4,JP9	$_{ m JP5}$	$^{ m JP6}$	JP7	$_{ m JP8,JP10}$	JP11

COMPONENT NAME	VALUE	Rating	TYPE	SUGGESTED PART NO.
L1,L2,L3,L4,L5	BLM18SG221TN1D	2.5A, 220Ω	SMD 0603	BLM18SG221TN1D
LED1	20mA LED	Chip LED	SMD 1206	KPT-3216YC
(R1),R3,R5,R6,R10,R13	1k	1%, 0.1W	SMD 0603, thick-film resistor	CRCW06031K00FKEA
R12, (R16)	100R	1%, 0.1W	SMD 0603, thick-film resistor	${\rm CRCW0603100RFKEA}$
(R2), R4, R11, (R15)	10k	1%, 0.1W	SMD 0603, thick-film resistor	${ m CRCW060310K0FKEA}$
RGND	(Do not mount)	N/A	N/A	Internally shorted on PCB
R7	2k7	1%, 0.1W	SMD 0603, thick-film resistor	CRCW06032K70FKEA
R8,R9	100k	1%, 0.1W	SMD 0603, thick-film resistor	ERJ3GEYJ104V
X1,X3			5mm x 6-way terminal	m CTB5202/6
X2			5mm x 3-way terminal	m CTB5202/3

Mechanical Description

Cheapamp is mechanically quite small, with a size of 50mm by 50mm and a build height of 16mm (controlled by power decoupling capacitor C1 choice). Mounting holes are listed in table 4 following the coordinate system in figure 1. PCB manufacturing requirements are shown in table 3, and should generally be achievable at any PCB house. Be sure to use plastic isolation washers or plastic screws when using the two holes closest to the 14-way header!

Снеарамр

Connections for most use-situations are available through the terminal blocks on the sides, as shown in figure 3, with additional parameters controllable through a 14-way 2.54mm pin header. Input and output power connections should be made with wires whose inner conductor is at least 1mm². No components require heatsinking, however the device must be allowed some passive convective cooling — do not cover the board with sound-damping foam or similar.

Table 5. I CB manarace	arms requirements.	
Parameter	REQUIREMENT	Unit
PCB thickness	Any (nominal 1.6)	mm
PCB layers	2	-
Copper fill thickness/density (tested)	35/1	$\mu m / oz/ft^2$
Trace isolation (minimum)	0.2032/8	m mm/mil
Trace width (minimum)	0.254/10	m mm/mil
Trace to board edge (minimum)	0.25	$_{ m mm}$
Drill to board edge (minimum)	0.4532	$_{ m mm}$
Drill diameter (minimum)	0.3	mm
Via annular ring (minimum)	0.2032/8	m mm/mil

Table 3: PCB manufacturing requirements.

Table 4:	Mount	ing hole	locations.

HOLE DIAMETER [mm]	Position X [mm]	Position Y [mm]
4.1	5	5
4.1	5	45
4.1	45	5
4.1	45	45

Figure 1: Coordinate system for mounting holes.

Electrical Characteristics

 $V_{in}=18\mathrm{V},\,R_{load}=4\Omega,\,R_{potentiometer}=20\mathrm{k}\Omega$ unless otherwise specified. In general, see MAX9736 datasheet for more extensive parameters. (Performance is for the most part limited by the MAX9736 IC).

Parameter	Symbol	Test Conditions/Comments	Min	Түр	Max	Unit
Input Characteristics						
Power Input voltage	V_{in}	Input overvoltage diode mounted	8		20	V
		Input overvoltage diode not mounted	8		28	V
AC Input impedance,	R_{in}	$f_{in} = 1kHz$		21		kΩ
adjustable-volume mode 2						
AC input impedance,				11		$k\Omega$
constant-volume mode						
DC Input impedance			10			ΜΩ
Quiescent supply current,		Both for stereo and mono mode		50		mA
amplfier active						
Quiescent supply current,		Both for stereo and mono mode		10		mA
amplifier in shutdown						
Quiescent supply current,		Mono mode		400		μ A
amplifier in shutdown, $5V$						
source externally generated						
(IC1, LED1 not mounted)						
		Stereo mode		800		μ A
Output Characteristics						
Output power, THD+N = 1%	P_{out}	Spread spectrum mode enabled		27		W
THD plus noise		$P_{out} = 4$ W, $f = 1$ kHz, $R_{load} = 8\Omega$		0.06		%
Dynamic behavior						
DC cutoff frequency		-3dB point, single pole filter		15		Hz
HF cutoff frequency		-3dB point, single pole filter		28		kHz
Efficiency		$P_{out} = 8W, V_{in} = 12V, R_{load} = 8\Omega$		88		%

The total input impedance is typically $R_{in}=1\mathrm{k}\Omega+R_{potentiometer}$

Operation

Cheapamp is, from a functionality perspective, essentially a break-out board for the MAX9736 with various supporting components. As such, the vast majority of functionality is embedded within the MAX9736 unit, making the operational description very simple. See figure 2 for a full schematic of the device, figure 3 for the PCB artwork, and figure 4 for the component placement.

The power generation section shown in the schematic in figure 2 consists of D1 acting as a reverse polarity protection diode; F2 and F3 acting as input protection fuses in the event of some over-current or overvoltage situation; D2 acting as an overvoltage protection (which starts conducting above 22V, leading to F2 and F3 triggering³); and C1, the primary decoupling capacitor. A 5V supply is generated by IC1,R5,R7 and C10, which is used to power some operational amplifiers as well as circuitry internal to the MAX9736. LED1 and R2 act as an optional power indicator. L1 reduces the amount of RF switching noise the MAX9736 IC generates from its 5V supply that enters the external operational amplifiers.

The prefilter section consists of two identical input channels (one in mono mode) which apply a high-pass and low-pass filter (R10,C17,C18 and R13,C21,C22) to remove any DC offset or RF noise respectively from the source. C20,C23,C24,C25,C18,C22 act as low-pass filters that reduce the level of capacitively coupled interference to the relatively sensitive input from the "noisy" switching output. There is also a potentiometer connection to allow for adjusting the volume (typically a logarithmic potentiometer is used). In constant voltage mode the potentiometer is replaced with a potentiometer-equivalent — a solder bridge (JP8 and JP10) and a resistor (R11 and R15) — effectively acting as a potentiometer at maximum gain.

The core of Cheapamp consists of the MAX9736 circuit along with passive components. The input signal is first amplified with the use of the internal operational amplifier and R1/R2,R3/R4, leading to a voltage gain of 10. As the MAX9736 amplifies this signal internally with a voltage gain of approximately 7 the minimum input signal amplitude to achieve full power output becomes approximately

$$V_{sig,min} = \frac{2 \cdot V_{supply}}{70} \approx \underbrace{0.5 V_{pp}}_{V_{supply} = 20 V}$$

which is less than the typical line-level amplitude of $1V_{pp}$. Other components consist primarily of decoupling capacitors, output filtering ferrite beads and capacitors, as well as a start-up click-reduction filter consisting of R8 and C14, which powers down the amplifier for approximately $R_8C_{14}\approx 100 \text{ms}$ during startup to ensure that all other voltages have stabilized. Keep in mind that should \overline{SHDN} be driven from an external source that it presents a very capacitive load (assuming C14 is mounted).

³Depending on the level of overvoltage; low levels are triggered by the power dissipation in D2 conducting to F2 and F3 while high levels through ohmic resistance in the fuses.

Figure 2: Cheapamp schematic..

(a) Complete top layer as seen from above.

(b) Complete bottom layer as seen from below.

Figure 3: Cheapamp PCB details.

(a) Top layer component outline as seen from above.

(b) Bottom layer component outline as seen from below.

Figure 4: Cheapamp component placement details.