Tugas Mandiri - 6

Pengantar Sistem Digital Semester Ganjil 2022/2023

Petunjuk pengerjaan:

- Kerjakan dengan tulisan tangan atau diketik.
- Tuliskan Nama, Kelas, dan NPM pada setiap lembar jawaban.
- Tuliskan penjelasan dari cara mendapatkan jawaban tersebut.
- Apabila ditulis tangan, hasil pekerjaan di scan / foto dan dimasukan ke dalam satu file berformat .pdf.
- Format nama file (tanpa tanda kurung): [KodeAsdos]_TM6_[Nama]_[NPM].pdf
 dan [KodeAsdos]_TM6_[Nama]_[NPM].circ (dikumpulkan 2 file).
- Tugas mandiri dikumpulkan Jumat, 18 November 2022 pukul 17.00 pada slot yang sudah disediakan di SCELE.
- Jika mengumpulkan telat di atas 10 menit tetapi sebelum pukul 23:59 pada hari yang sama, akan dikenakan penalti sebesar 50 poin. Terlebih dari waktu tersebut, tugas mandiri tidak akan dinilai
- 1. (10 poin) Buatlah state table dari fungsi berikut:

$$A(t + 1) = (x(t) \odot A(t)) \cdot B(t)$$

 $B(t + 1) = (A(t) \oplus B(t)) \cdot x(t))'$
 $Y(t) = (x(t)' + (A(t) \cdot B(t)))'$

Buatlah dua state table: state table satu dimensi dan state table dua dimensi.

State Table Dua Dimensi (Moore)

Drocon	Next State Present State				put
Presen	t State	x(t) = 0 x(t) = 1		x(t) = 0	x(t) = 1
A(t)	B(t)	A(t+1)B(t+1)	A(t+1)B(t+1)	Y(t)	Y(t)
0	0	01	01	0	1
0	1	11	00	0	1
1	0	01	00	0	1
1	1	01	11	0	0

State Table Satu Dimensi (Mealy)

Presen	t State	Input	Next	State	Output
A(t)	B(t)	x(t)	A(t+1)	B(t+1)	Y(t)
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	1	1	0
0	1	1	0	0	1
1	0	0	0	1	0
1	0	1	0	0	1
1	1	0	0	1	0
1	1	1	1	1	0

Untuk soal nomor 2 dan 3, kumpulkan juga circuitnya dalam satu file .circ yang sama.

- (50 poin) Diketahui ada sebuah sequential circuit yang menerima 1 buah input dan 1 buah output. Circuit tersebut merupakan sequence recognizer yang dapat mengenali input "0011" dan "1100". Bila circuit menerima salah satu sequence input tersebut, maka circuit akan menghasilkan output 1 (selain itu outputnya 0).
 - a. Buatlah state diagramnya (Mealy model)
 - b. Buatlah state tablenya
 - c. Buatlah gambar rangkaiannya dengan menggunakan gerbang AND, OR, NOT dan D Flip Flop saja. Tuliskan langkah-langkah design procedurenya (kecuali tahap verification)

Catatan: untuk tahap state assignment, gunakan counting order assignment.

a. State Diagram

b. State Table

Present State	Input (X)	Next State	Output (Y)
А	0	В	0
А	1	С	0
В	0	D	0
В	1	С	0
С	0	В	0
С	1	E	0
D	0	D	0
D	1	F	0
Е	0	G	0
E	1	E	0
F	0	В	0
F	1	E	1
G	0	D	1
G	1	С	0

c. Design Procedure

Specification:

Membuat sebuah sequence recognizer yang dapat mengenali "0011" dan "1100".

Output akan bernilai 1 jika menerima salah satu sequence input tersebut. State menggunakan 3 bit binary.

Input = X

Output = Y

Formulation:

State Diagram dan State Table terlampir di bagian 2a) dan 2b).

State Assignment:

- ta to 7 to 0.9							
Encoding (S2 : S0)							
000							
001							
010							
011							
100							
101							
110							

Pi	resent Sta	te	Input		Next State	•	Output
S2	S1	S0	х	S2+	S1+	S0+	Y
0	0	0	0	0	0	1	0
0	0	0	1	0	1	0	0
0	0	1	0	0	1	1	0
0	0	1	1	0	1	0	0
0	1	0	0	0	0	1	0
0	1	0	1	1	0	0	0
0	1	1	0	0	1	1	0
0	1	1	1	1	0	1	0
1	0	0	0	1	1	0	0
1	0	0	1	1	0	0	0
1	0	1	0	0	0	1	0
1	0	1	1	1	0	0	1
1	1	0	0	0	1	1	1
1	1	0	1	0	1	0	0
1	1	1	0	х	х	х	х
1	1	1	1	х	х	х	х

Persamaan Flip-Flop dan Output serta Optimization

S2+:

S2+ = S2' S1 X + S2 S1' S0' + S2 S1' X

S1+:

S1+ = S2' S1' X + S2' S0 X' + S2 S0' X' + S2 S1

S0+:

$$S0+ = S2'X' + S0X' + S1X' + S1S0$$

Y:

		S0, X								
		00	01	11	10					
		0			0					
S1	01	0	0	0	0					
S2 ,	11	1	0	x	X					
	10	0	0	1	0					
9	52 S	0 X	+ S2	2 S1	\overline{x}					

Y = S2 S0 X + S2 S1 X'

Technology Mapping

- 3. (40 poin) Diketahui ada sebuah sequential circuit yang menerima 1 buah input dan 1 buah output. Circuit tersebut merupakan sequence recognizer yang dapat mengenali input yang mengandung substring "0010" non-overlap berjumlah ganjil (contoh: 0010, 001011, 001000100010, dan sebagainya). Bila circuit menerima input tersebut, maka circuit akan menghasilkan output 1 (selain itu outputnya 0).
 - a. Buatlah state diagramnya (Moore model)
 - b. Buatlah state tablenya
 - c. Buatlah gambar rangkaiannya dengan menggunakan gerbang AND, OR, NOT dan JK Flip Flop saja. Tuliskan langkah-langkah design procedurenya (kecuali tahap verification)

Catatan: untuk tahap state assignment, gunakan counting order assignment.

a. State Diagram

b. State Table

Present State	Input (X)	Next State	Output (Y)
А	0	В	0
А	1	А	0
В	0	С	0
В	1	Α	0
С	0	С	0
С	1	D	0
D	0	E	1
D	1	А	0
E	0	F	1
E	1	E	1
F	0	G	1
F	1	E	1
G	0	G	1
G	1	Н	1
Н	0	А	0
Н	1	E	1

c. Design Procedure

Specification:

Membuat sebuah sequence recognizer yang dapat mengenali input yang mengandung substring "0010" non-overlap berjumlah ganjil.

Bila circuit menerima input tersebut, maka circuit akan menghasilkan output 1 (selain itu outputnya 0).

Input = X

Output = Y

Formulation:

State Diagram dan State Table terlampir di bagian 2a) dan 2b).

State Assignment:

State	Encoding (S2 : S0)
А	000
В	001
С	010
D	011
E	100
F	101
G	110
Н	111

			_						
Present	Nex	t State	JK Flip-Flop						
State	State x(t) = 0		x(t) = 0				Output		
S2(t) S1(t) S0(t)	S2(t+1) S1(t+1) S0(+1)	S2(t + 1) S1(t+1) S0(t+1)	JS2 KS2	JS1 KS1	JSO KSO	JS2 KS2	JS1 KS1	JSO KSO	Y(t)
000	0 0 1	000	0 x	0 x	1x	0 x	0 x	0 x	0
0 0 1	010	000	0 x	1x	x1	0 x	0 x	x1	0
010	010	011	0 x	x 0	0 x	0 x	x 0	1x	0
011	100	000	1x	x1	x1	0 x	x1	x1	0
100	101	100	x 0	0 x	1x	x 0	0 x	0 x	1
101	110	100	x 0	1x	x1	x 0	0 x	x1	1
110	110	111	x 0	x 0	0 x	x 0	x 0	1x	1
111	000	100	x1	x1	×1	x 0	x1	x1	1

Mealy Version (Extra):

Pro	esent Sta	ate	Input	ı	Next Sta	te		ј к					Output
S2	S1	S0	х	S2+	S1+	S0+	J _{s2}	K _{s2}	J _{s1}	K _{s1}	J _{so}	K _{so}	Y
0	0	0	0	0	0	1	0	х	0	x	1	х	0
0	0	0	1	0	0	0	0	x	0	×	0	x	0
0	0	1	0	0	1	0	0	x	1	×	×	1	0
0	0	1	1	0	0	0	0	х	0	x	×	1	0
0	1	0	0	0	1	0	0	x	x	0	0	x	0
0	1	0	1	0	1	1	0	x	×	0	1	x	0
0	1	1	0	1	0	0	1	х	x	1	×	1	1
0	1	1	1	0	0	0	0	x	×	1	×	1	0
1	0	0	0	1	0	1	×	0	0	x	1	x	1
1	0	0	1	1	0	0	×	0	0	×	0	x	1
1	0	1	0	1	1	0	×	0	1	×	×	1	1
1	0	1	1	1	0	0	×	0	0	x	×	1	1
1	1	0	0	1	1	0	х	0	×	0	0	х	1
1	1	0	1	1	1	1	×	0	×	0	1	×	1
1	1	1	0	0	0	0	х	1	х	1	×	1	0
1	1	1	1	1	0	0	×	0	×	1	×	1	1

Persamaan Flip-Flop dan Output serta Optimization

JS2:

		S0, X								
		00	01	11	10					
	00	0	0	0	0					
S1	01		0		1					
S2 ,	11	x	x	x	\mathbf{x}					
	10	x	x	x	x					
	$S1 S0 \overline{X}$									

JS2 = S1 S0 X'

KS2:

		S0, X									
		00	01	11	10						
	00	x	x	x	X						
	01	x	x	x	X						
S2 ,	11	0	0	0	1						
	10	0	0	0	0						
	S1 S0 X										
		21	3U /	•							

KS2 = S1 S0 X'

JS1:

		S0, X							
		00	01	11	10				
S2, S1	00	0	0	0	1				
	01	x	x	x	x				
	11	x	x	x	x				
	10	0	0	0	1				
SO X									

JS1 = S0 X'

KS1:

		S0, X						
		00	01	11	10			
S2, S1	00	x	x	X	X			
	01	0	0	1	1			
	11	0	0	1	1			
	10	x	x	x	x			
SO								

KS1 = S0

JS0:

JS0 = S1' X' + S1 X

KS0:

KS0 = 1

Y:

Technology Mapping

