

FCC TEST REPORT

FCC 47 CFR Part 15C Industry Canada RSS-210

Digital transmission systems operating within the 2400 - 2483.5 MHz band

Report Reference No. G0M-1312-3474-TFC247ZC-V01

Testing Laboratory: Eurofins Product Service GmbH

Address: Storkower Str. 38c

15526 Reichenwalde

Germany

Accreditation:

A2LA Accredited Testing Laboratory, Certificate No.: 1983.01

FCC Filed Test Laboratory, Reg.-No.: 96970

IC OATS Filing assigned code: 3470A

Applicant's name: Atmel Automotive GmbH

Address: Koenigsbruecker Str. 61

01099 Dresden GERMANY

Test specification:

Standard.....: 47 CFR Part 15C

KDB Publication No. 558074 RSS-210, Issue 8, 2010-12 RSS-Gen, Issue 3, 2010-12

ANSI C63.4:2009

Equipment under test (EUT):

Product description REB233SMAD Evaluation Kit

Model No. ATREB233SMAD-EK

Hardware version v1.8.0

Firmware / Software version v0.6

FCC-ID: VNR-E33SD-X5B-00 IC: N/A

Test result Passed

P	neei	hla	tact	Casa	verdicts:
	USSI		rear	Lase	veruicia.

- neither assessed nor tested N/N

- required by standard but not appl. to test object......: N/A

- required by standard but not tested...... N/T

- not required by standard for the test object N/R

- test object does meet the requirement...... P (Pass)

- test object does not meet the requirement..... F (Fail)

Testina:

Compiled by Antje Bartusch

Tested by (+ signature).....:
(Responsible for Test)

Wilfried Treffke

Approved by (+ signature): Christian Weber

Date of issue 2014-02-17

Total number of pages : 47

General remarks:

The test results presented in this report relate only to the object tested.

The results contained in this report reflect the results for this particular model and serial number. It is the responsibility of the manufacturer to ensure that all production models meet the intent of the requirements detailed within this report.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

Additional comments:

Version History

Version	Issue Date	Remarks	Revised by
01	2014-02-17	Initial Release	

REPORT INDEX

1	EQUIPMENT (TEST ITEM) DESCRIPTION	5
1.1	Photos – Equipment External	6
1.2	Photos – Equipment internal	7
1.3	Photos – Test setup	10
1.4	Supporting Equipment Used During Testing	11
1.5	Test Modes	12
1.6	Test Equipment Used During Testing	13
1.7	Sample emission level calculation	14
2	RESULT SUMMARY	15
3	TEST CONDITIONS AND RESULTS	16
3.1	Test Conditions and Results – 6 dB Bandwidth	16
3.2	Test Conditions and Results – Maximum peak conducted power	19
3.3	Test Conditions and Results – Power spectral density	20
3.4	Test Conditions and Results – AC power line conducted emissions	23
3.5	Test Conditions and Results – Band edge compliance	26
3.6	Test Conditions and Results – Conducted spurious emissions	27
3.7	Test Conditions and Results – Transmitter radiated emissions	30
ANN	IEX A Transmitter radiated spurious emissions	32

1 Equipment (Test item) Description

Description	REB233SMAD I	Evaluation Kit	
Model	ATREB233SMA	D-EK	
Serial number	None		
Hardware version	v1.8.0		
Software / Firmware version	v0.6		
FCC-ID	VNR-E33SD-X5	B-00	
IC	N/A		
Equipment type	Radio module		
Radio type	Transceiver IEEE 802.15.4a Chirp Spread Spectrum (CSS)		
Radio technology			
Operating frequency range	Initiator 2402-2479 MHz Reflector 2404-2481 MHz		
Assigned frequency band	2400 - 2483.5 MHz		
Spreading	Chirp		
Modulations	DCCS		
Number of antennas	2		
	Туре	2 x external dedicated	
Antenna	Model	M35-S	
Antenna	Manufacturer	Tekfun	
	Gain	2dBi (declared by customer)	
Manufacturer	dresden elektron Enno-Heidebroe 01237 Dresden GERMANY	nik ingenieurtechnik gmbh ek-Straße 12	
	V _{NOM}	3.0 VDC	
Power supply	V _{MIN}	1.8 VDC	
	V _{MAX}	3.6 VDC	
	Model	N/A	
AC/DC-Adaptor	Vendor	N/A	
ACIDO-Adaptor	Input	N/A	
	Output	N/A	

1.1 Photos – Equipment External

1.2 Photos – Equipment internal

1.3 Photos - Test setup

1.4 Supporting Equipment Used During Testing

Produ Type	Device	Manufacturer	Model No.	Comments
AE	USB level shifter	dresden elektronik	BN-031648	

*Note: Use the following abbreviations:

AE: Auxiliary/Associated Equipment, or SIM: Simulator (Not Subjected to Test)

CABL: Connecting cables

1.5 Test Modes

Mode #		Description		
	General conditions:	EUT powered by battery		
Initiator	Radio conditions:	Mode = standalone transmit Spreading = Chirp Modulation = DCCS Duty cycle = 100 % Power level = Maximum		
	General conditions:	EUT powered by battery		
Reflector	Radio conditions:	Mode = standalone transmit Spreading = Chirp Modulation = DCCS Duty cycle = 100 % Power level = Maximum		
	General conditions:	EUT connected to notebook via usb, notebook powered by commercial AC/DC-Adapter		
AC-Powerline	Radio conditions:	Mode = standalone transmit Spreading = DSSS Power level = Maximum		

1.6 Test Equipment Used During Testing

6dB Bandwidth					
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
Spectrum Analyzer	R&S	FSP 30	EF00312	2014-02	2015-02

Maximum peak conducted power						
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due	
Spectrum Analyzer	R&S	FSP 30	EF00312	2014-02	2015-02	

Power spectral density					
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
Spectrum Analyzer	R&S	FSP 30	EF00312	2014-02	2015-02

Band edge compliance					
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
Spectrum Analyzer	R&S	FSP 30	EF00312	2014-02	2015-02

Conducted spurious emissions						
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due	
Spectrum Analyzer	R&S	FSP 30	EF00312	2014-02	2015-02	

Radiated spurious emissions							
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due		
Semi-anechoic chamber	Frankonia	AC 5	EF00395	calibration	calibration		
Spectrum Analyzer	R&S	FSIQ26	EF00242	2013-06	2014-06		
Biconical Antenna	R&S	HK 116	EF00012	2013-02	2016-02		
LPD antenna	R&S	HL 223	EF00187	2011-02	2014-02		
LPD Antenna	R&S	HL 025	EF00327	2013-02	2016-02		

AC powerline conducted emissions											
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due						
AMN	R&S	ESH2-Z5	EF00182	2012-10	2014-10						
AMN	R&S	ESH3-Z5	EF00036	2012-11	2014-11						
EMI Test Receiver	R&S	ESCS 30	EF00295	2013-10	2014-10						

1.7 Sample emission level calculation

The following is a description of terms and a sample calculation, as appears in the radiated emissions data table. The numbers used in the calculation are for example only. There is no direct correlation to the specific data taken for the product described in this document:

Reading:

This is the reading obtained on the spectrum analyzer in dBµV. Any external preamplifiers used are taken into account through internal analyzer settings.

A.F.:

This is the antenna factor for the receiving antenna. It is a conversion factor, which converts electric fields strengths to voltages, which can be measured directly on the spectrum analyzer. It is treated as a loss in dB. Cable losses have been included with the A.F. to simplify the calculations. The antenna factor is used in calculations as follows:

Reading on Analyzer ($dB\mu V$) + A.F. (dB) = Net field strength ($dB\mu V/m$)

Net:

This is the net field strength measurement (as shown above).

Limit:

This is the FCC Class B radiated emission limit (in units of $dB\mu V/m$). The FCC limits are given in units of $\mu V/m$. The following formula is used to convert the units of $\mu V/m$ to $dB\mu V/m$:

Limit (dB μ V/m) = 20*log (μ V/m)

Margin:

This is the margin of compliance below the FCC limit. The units are given in dB. A negative margin indicates the emission was below the limit. A positive margin indicates that the emission exceeds the limit.

Example only:

Reading + AF = Net Reading : Net reading - FCC limit = Margin 21.5 dB μ V + 26 dB = 47.5 dB μ V/m : 47.5 dB μ V/m - 57.0 dB μ V/m = -9.5 dB

2 Result Summary

FCC 47 CFR Part 15C, IC RSS-210									
Product Specific Standard Section	Requirement – Test	Reference Method	Result	Remarks					
RSS-Gen 4.6.1	Occupied Bandwidth	RSS-Gen 4.6.1	N/R						
FCC § 15.247(a)(2) IC RSS-210 § A8.2	6dB Bandwidth	KDB Publication No. 558074	PASS						
FCC § 15.247(b)(3) IC RSS-210 § A8.4	Maximum peak conducted power	KDB Publication No. 558074	PASS						
FCC § 15.247(e) IC RSS-210 § A8.2	Power spectral density	KDB Publication No. 558074	PASS						
47 CFR 15.207 RSS-Gen 7.2.4	AC power line conducted emissions	KDB Publication No. 558074 / ANSI C63.4	PASS						
FCC § 15.247(d) IC RSS-210 § A8.5	Band edge compliance	KDB Publication No. 558074	PASS						
FCC § 15.247(d) IC RSS-210 § A8.5	Conducted spurious emissions	KDB Publication No. 558074	PASS						
FCC § 15.247(d) FCC § 15.209 IC RSS-210 A8.5 IC RSS-Gen 4.9 IC RSS-Gen 7.2.5	Transmitter radiated spurious emissions	KDB Publication No. 558074 / ANSI C 63.4	PASS						
IC RSS-Gen 4.10 IC RSS-Gen 6.1	Receiver radiated spurious emissions	ANSI C 63.4	N/A						

3 Test Conditions and Results

3.1 Test Conditions and Results - 6 dB Bandwidth

- 1. EUT set to test mode
- 2. Span set to at least twice the emission spectrum
- 3. Detector set to peak and max hold and RBW is set to 100 kHz
- 4. Envelope peak value of emission spectrum is selected
- 5. Marker on envelope of spectrum is set to level of -6 dB to the left of the peak
- 6. Marker on envelope of spectrum is set to level of -6 dB to the right of the peak
- 7. 6 dB Bandwidth is determined by marker frequency separation

Test results - Initiator											
Channel	Channel Frequency [MHz] Mode 6 dB Bandwidth [kHz] Limit [kHz]										
F _{MID}	2402-2479	2402-2479 DCCS 77.652									
	Test results - Reflector										
Channel	Frequency [MHz]	Mode	6 dB Bandwidth [kHz]	Limit [kHz]	Result						
F _{MID}	2404 – 2481	DCCS	78.000	500	PASS						
Comments:											

6 dB Bandwidth - Chirp Initiator

FCC part 15.247 (a)2 Minimum 6 dB Bandwidth

EUT REB233SMAD Evaluation Kit

Model ATREB233SMAD-EK

Approval Holder Atmel Automotive GmbH / Ord.: G0M-1312-3474

Temperature / Voltage Tnom / Vnom

Test Site / Operator Eurofins Product Service GmbH / Mr. Treffke

Test Specification FCC part 15.247 (a)2
Comment 1 Minimum 6 dB Bandwidth
Comment 2 Initiator 2402-2479 MHz, DCCS

Comment 3 procedure 8.1 DTS BW (558074 D01 DTS)

6 dB Bandwidth - Chirp Reflector

FCC part 15.247 (a)2 Minimum 6 dB Bandwidth

EUT REB233SMAD Evaluation Kit

Model ATREB233SMAD-EK

Approval Holder Atmel Automotive GmbH / Ord.: G0M-1312-3474

Temperature / Voltage Tnom / Vnom

Test Site / Operator Eurofins Product Service GmbH / Mr. Treffke

Test Specification FCC part 15.247 (a)2
Comment 1 Minimum 6 dB Bandwidth

Comment 2 Reflector 2404-2481 MHz, DCCS

Comment 3 procedure 8.1 DTS BW (558074 D01 DTS)

3.2 Test Conditions and Results – Maximum peak conducted power

Maximum peak conducted power acc. FCC 15.247 / IC RSS-210 Verdict: PASS								
EUT requirement	Reference							
rule parts and clause	FCC 15.247(b)(3) / IC RSS-210 A8.4							
Test according to	Reference Method							
measurement reference	FCC KDB Publication No. 558074							
	Tested frequencies							
Test frequency range	Initiator: 2402 - 2479 MHz Reflector: 2404 – 2481 MHz							
Measurement mode	Peak							
Maximum antenna gain	2 dBi ⇒ Limit correction = 0 dB							
	Limits							
1 W (30 dBm)								
	I W (SU UDIII)							

The conducted output power limit specified above is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in the table, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test procedure

- 1. EUT set to test mode (Communication tester is used if needed)
- 2. Center frequency set to test channel center frequency
- 3. Span set to twice the 20 dB bandwidth and detector to peak and max hold
- 4. Resolution bandwidth is set to 3 MHz
- 5. Peak conducted power is determined from peak of spectrum envelope

Test results - Initiator											
Channel	Frequency [MHz]	Voltage [VDC]	Mode	Peak power [dbm]	Peak power [W]	Limit [dBm]	Margin [dB]				
F_{MID}	2402-2479	$V_{NOM} = 3.0$	DCCS	2.7	0.002	30	-27.30				
	Test results - Reflector										
Channel	Frequency [MHz]	Voltage [VDC]	Mode	Peak power [dbm]	Peak power [W]	Limit [dBm]	Margin [dB]				
F_{MID}	2404-2481	$V_{NOM} = 3.0$	DCCS	2.7	0.002	30	-27.30				
Comments:						•					

3.3 Test Conditions and Results – Power spectral density

Power sp	Power spectral density acc. FCC 15.247 / IC RSS-210 Verdict: PASS									
E	EUT requirement Reference									
	parts and clau			FCC 15.247(e) / IC	C RSS-210 A8.2					
T	est according t	0		Reference	Method					
	surement refer			FCC KDB Publica	tion No. 558074					
				Tested free	quencies					
Tes	t frequency rar	nge		Initiator: 2402 Reflector: 2404	-					
Ме	asurement mo	de		Pea	ık					
			Limi	ts						
			8 dBm /	3 kHz						
			Test se	etup						
			Spectrum Analyzer Test proc	EU						
1. EL	IT not to toot m	odo (Comr	nunication tester is							
		•	channel center fred	•						
3. Sp	an is set large	enough to	capture maximum of the common capture maximum of the common captures are captured to the captures are captures as a capture captures are captures are captures as a captures are cap	emissions in passt		to 3kHz				
			Test results	- Initiator						
Channel	Frequency [MHz]	Test mode	Peak frequency [MHz]	Peak power density [dBm]	Limit [dBm/3kHz]	Margin [dB]				
F_{MID}	2402 - 2479	DCCS	2467.000	2.62	8.0	-05.38				
			Test results -	Reflector						
Channel	Frequency [MHz]	Test mode	Peak frequency [MHz]	Peak power density [dBm]	Limit [dBm/3kHz]	Margin [dB]				
F_{MID}	2404 - 2481	DCCS	2478.160	2.42	8.0	-05.58				
Comments:										

Power Spectral Density - Initiator

FCC part 15.247 (d)

Power spectral density (PSD)

EUT REB233SMAD Evaluation Kit

Model ATREB233SMAD-EK

Approval Holder Atmel Automotive GmbH / Ord.: G0M-1312-3474

Temperature / Voltage Tnom / Vnom

Test Site / Operator Eurofins Product Service GmbH / Mr. Treffke

Test Specification FCC part 15.247 (d)

Comment 1 Power spectral density conducted Comment 2 Initiator 2402-2479 MHz, DCCS

Comment 3 Procedure 10.2 PKPSD (558074 D01 DTS Meas Guidance)

Comment: Maximum Power Spectral Density=2.62dBm

Comment: f=2.467GHz RBW= 100kHz , Limit <8dBm/3kHz

Date: 8.JAN.2014 09:40:08

Power Spectral Density - Reflector

FCC part 15.247 (d)

Power spectral density (PSD)

EUT REB233SMAD Evaluation Kit

Model ATREB233SMAD-EK

Approval Holder Atmel Automotive GmbH / Ord.: G0M-1312-3474

Temperature / Voltage Tnom / Vnom

Test Site / Operator Eurofins Product Service GmbH / Mr. Treffke

FCC part 15.247 (d) **Test Specification**

Comment 1 Power spectral density conducted Comment 2 Reflector 2404-2481 MHz, DCCS

Procedure 10.2 PKPSD (558074 D01 DTS Meas Guidance) Comment 3

*RBW 100 kHz Marker 1 [T1]

⋆VBW 300 kHz 2.42 dBm

2.478160000 GHz

9 MHz/

Span 90 MHz

Comment: Maximum Power Spectral Density=2.42dBm

Comment: f=2.47816GHz RBW= 100kHz , Limit <8dBm/3kHz

Date: 8.JAN.2014 10:15:06

3.4 Test Conditions and Results – AC power line conducted emissions

Power line conducte	Verdict: PASS						
Test according referenced			Reference Method				
standard	S			ANSI C63.4			
Fully configured sample	e scanned over		F	requency range			
the following freque	ency range		0.1	5 MHz to 30 MHz			
Points of Appli	f Application Application Interface						
AC Mains	S		LISN				
EUT test me	ode		AC-Powerline				
		Limits	s and results				
Frequency [MHz]	Quasi-Peak [dBµV]	Result	Average [dBµV]	Result		
0.15 to 5	66 to 56	*	PASS	56 to 46*	PASS		
0.5 to 5	56		PASS	46	PASS		
5 to 30	60 PASS 50				PASS		
Comments: * Limit decreases linearly w	vith the logarithm o	f the frequ	ency.				

Conducted Emissions

EMI voltage test in the ac-mains according to FCC Part 15b

Project number: G0M-1312-3474

Manufacturer: Atmel Automotive GmbH
EUT Name: REB233SMAD Evaluation Kit

Model: ATREB233SMAD-EK

Test Site: Eurofins Product Service GmbH

Operator: Mr. Zunke

Test Conditions: Tnom: 23°C, Unom: 2x1.5VDC battery AA

LISN: ESH2-Z5 N Mode: DCSS, max.power

OQPSK Test Date: 2014-02-11

Note:

Conducted Emissions

EMI voltage test in the ac-mains according to FCC Part 15b

Project number: G0M-1312-3474

Manufacturer: Atmel Automotive GmbH
EUT Name: REB233SMAD Evaluation Kit

Model: ATREB233SMAD-EK

Test Site: Eurofins Product Service GmbH

Operator: Mr. Zunke

Test Conditions: Tnom: 23°C, Unom: 2x1.5VDC battery AA

LISN: ESH2-Z5 L

Mode: DCSS, max.power

OQPSK

Test Date: 2014-02-11

Note:

3.5 Test Conditions and Results - Band edge compliance

and-edge compliance acc.	FCC 15.247	/ IC RSS-210		Verdict: PAS		
EUT requirement Reference						
rule parts and clause		FCC 15	5.247(d) / IC RSS-210 A	18.5		
Test according to			Reference Method			
measurement reference		FCC KI	DB Publication No. 5580	074		
			Tested frequencies			
Test frequency range			iator: 2402 - 2479 MHz ector: 2404 – 2481 MHz	7		
Measurement mode			Peak			
		Limits				
Limit			Condition			
≤ -20 dB / 100 k	кНz	Peak power measurement detector = Pea				
≤ -30 dB / 100 k	кНz	Peak power measurement detector = RMS				
		Test setup				
	Analyze					
4 FUT 1 (- (est procedure	I IV			
 EUT set to test mode (C Span set around lower b 			,			
3. Resolution bandwidth is						
4. Markers are set to peak5. Band edge attenuation is			-	ency band		
o. Bana bago anomadion is		sults - Initiator F				
Channel Frequency [MHz]	Mode	Level [dBc]	Limit [dBc]	Margin [dB]		
F _{LOW} 2402	DCCS	-40.16	-20	-20.16		
	Test res	sults – Initiator F	HIGH			
Channel Frequency [MHz]	Mode	Level [dBc]	Limit [dBc]	Margin [dB]		
F _{HIGH} 2481	DCCS	-41.81	-20	-21.81		
omments:						

3.6 Test Conditions and Results - Conducted spurious emissions

nducted spurious emissions acc	c. FCC 15.2	47 / IC RSS-210	Verdict: PASS	
EUT requirement		Reference	·	
rule parts and clause		FCC 15.247(d) / IC RSS-21	0 A8.5	
Test according to		Reference Method		
measurement reference		FCC KDB Publication No. 5	558074	
Testine		Tested frequencies		
Test frequency range		ic		
Measurement mode		Peak		
	Lin	nits		
Limit		Condition		
≤ -20 dB / 100 kHz		Peak power measurement detector = Peak		
≤ -30 dB /100 kHz		Peak power measuremer	nt detector = RMS	
	Test	setup		
	pectrum nalyzer	EUT		
	Test pro	ocedure		
 EUT set to test mode (Communic Span it set according to measure 		s used if needed)		

- 3. Resolution bandwidth is set to 100 kHz and detector to peak and max hold
- 4. Markers are set to peak emission levels within frequency band
- 5. Emission level is determined by second marker on emission peak
- 6. Attenuation is determined from level difference

	Test results - Initiator										
Channel	Frequency [MHz]	Mode	Emission [MHz]	Emission Level [dbm]	Peak power [dBm]	Limit [dBm]	Margin [dB]				
F _{MID}	2402 – 2479	DCCS	24765	-37.02	2.6	-17.4	-19.62				
	Test results - Reflector										
Channel	Frequency [MHz]	Mode	Emission [MHz]	Emission Level [dbm]	Peak power [dBm]	Limit [dBm]	Margin [dB]				
F _{MID}	2404 – 2481	DCCS	24803	-37.19	2.4	-17.6	-19.59				
Comments:											

Conducted spurious emissions - Initiator FCC part 15.247 (d) **Spurious Emissions EUT REB233SMAD Evaluation Kit** Model ATREB233SMAD-EK Approval Holder Atmel Automotive GmbH / Ord.: G0M-1312-3474 Temperature / Voltage Tnom / Vnom Test Site / Operator Eurofins Product Service GmbH / Mr. Treffke **Test Specification** FCC part 15.247 (d) Comment 1 Spurious Emissions conducted Comment 2 Initiator 2402-2479 MHz; DCCS Emissions in non-restricted frequency bands 558074 D01 Meas Guidance Comment 3 *RBW 100 kHz Marker 1 [T1] ⋆VBW 300 kHz 0.99 dBm 2.435530000 GHz Ref 10 dBm * Att 30 dB ★SWT 20 s A -17 dBm_ SGL SWF 1 0 - 8 0 Start 10 MHz 699 MHz/ Stop *RBW 100 kHz Marker 1 [T1] ★VBW 300 kHz -37.02 dBm Ref 11 dBm * Att 30 dB ★SWT 60 s 24.765000000 GHz в D2 -17 dBm SGL 1 AP VIEW

8.JAN.2014 10:09:29

SWE

Start 7 GHz

-80

Date:

1.9 GHz/

Stop 26 GHz

Conducted spurious emissions - Reflector

FCC part 15.247 (d) Spurious Emissions

EUT REB233SMAD Evaluation Kit

Model ATREB233SMAD-EK

Approval Holder Atmel Automotive GmbH / Ord.: G0M-1312-3474

Temperature / Voltage Tnom / Vnom

Test Site / Operator Eurofins Product Service GmbH / Mr. Treffke

Test Specification FCC part 15.247 (d)

Comment 1 Spurious Emissions conducted Comment 2 Reflector 2404-2481, DCCS

Comment 3 Emissions in non-restricted frequency bands 558074 D01 Meas Guidance

3.7 Test Conditions and Results - Transmitter radiated emissions

Transmitter radiated emissions acc. FCC 47 CFR 15.247 / IC RSS-210 Verdict: PASS									
Test according refe	Reference Method								
standards		FCC 15.2	47(d) / IC RS	SS-210 A8.5					
Test according	to	R	eference Me	thod					
measurement refe	rence	FCC KDB Public	ation No. 55	8074 / ANSI C63.4					
Took from you are ye		Te	sted frequer	ncies					
Test frequency ra	ange	30 MHz – 10 th Harmonic							
		Limits							
Frequency range [MHz]	Detector	Limit [µV/m]	Limit [dBµV/m]	Limit Distance [m]					
30 – 88	Quasi-Peak	100	40	3					
88 – 216	Quasi-Peak	150	43.5	3					
216 – 960	Quasi-Peak	200 46		3					
960 – 1000	500	500 54							
> 1000	Average	500	54	3					

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

When average radiated emission measurements are specified, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

Test procedure

- 1. EUT set to test mode (Communication tester is used if needed)
- 2. Span it set according to measurement range
- 3. Resolution bandwidth below 1 GHz is set according to CISPR 16 with peak/quasi-peak detector and RBW of 1 MHz with peak/average detector is used above 1 GHz
- 4. Markers are set to peak emission levels within restricted bands

	Test results										
Channel	Frequency [MHz]	Mode	Emission [MHz]	Level [dbµV/m]	Det.	Pol.	Limit [dbµV/m]	Limit dist. [m]*	Margin [dB]		
F _{MID}	2402-2481	DCSS	2390	59.33	pk	ver	74.00	3	-14.67		
F _{MID}	2402-2481	DCSS	2390	30.02	RMS	ver	54.00	3	-23.98		
F _{MID}	2402-2481	DCSS	2400	81.23	pk	ver	95.00	3	-13.77		
F _{MID}	2402-2481	DCSS	2483.5	66.20	pk	hor	74.00	3	-07.80		
F _{MID}	2402-2481	DCSS	2483.5	38.91	RMS	hor	54.00	3	-15.09		
F _{MID}	2402-2481	DCSS	2483.6	72.46	pk	ver	74.00	3	-01.54		
F _{MID}	2402-2481	DCSS	2483.6	45.01	RMS	ver	54.00	3	-08.99		
F _{MID}	2402-2481	DCSS	2500	49.23	pk	ver	74.00	3	-24.77		
F _{MID}	2402-2481	DCSS	2500	25.69	avg	ver	54.00	3	-28.31		
F _{MID}	2402-2481	DCSS	2533	82.39	pk	hor	95.00	3	-12.61		
F _{MID}	2402-2481	DCSS	2569	82.71	pk	ver	95.00	3	-12.29		
0	* Db :	4 l 4 1	FUT and an a								

Comments: * Physical distance between EUT and measurement antenna.

ANNEX A Transmitter radiated spurious emissions

Spurious emissions according to FCC 15.247

Project number: G0M-1312-3474

Manufacturer: Atmel Automotive GmbH
EUT Name: REB233SMAD Evaluation Kit

Model: ATREB233SMAD-EK

Test Site: Eurofins Product Service GmbH

Operator: Mr. Treffke

Test Conditions: Tnom: 25°C, Vnom: 3V DC (2x1.5 v battery)
Antenna: Rohde & Schwarz HK 116, Horizontal

Measurement distance: 3 m

Mode: TX; DCSS; ant.1; Pmax; Chirp

Test Date: 2014-01-14

Note:

Frequency (Hz)

160 M

180 M

200 M

Project number: G0M-1312-3474

Manufacturer: Atmel Automotive GmbH
EUT Name: REB233SMAD Evaluation Kit

Model: ATREB233SMAD-EK

Test Site: Eurofins Product Service GmbH

Operator: Mr. Treffke

Test Conditions: Tnom: 25°C, Vnom: 3V DC (2x1.5 v battery)

Antenna: Rohde & Schwarz HK 116, Vertical

Measurement distance: 3 n

Mode: TX; DCSS; ant.1; Pmax; Chirp

Test Date: 2014-01-14

Note:

Project number: G0M-1312-3474

Manufacturer: Atmel Automotive GmbH
EUT Name: REB233SMAD Evaluation Kit

Model: ATREB233SMAD-EK

Test Site: Eurofins Product Service GmbH

Operator: Mr. Treffke

Test Conditions: Tnom: 25°C, Vnom: 3V DC (2x1.5 v battery)

Antenna: Rohde & Schwarz HL 223, Horizontal

Measurement distance: 3 r

Mode: TX; DCSS; ant.1; Pmax; Chirp

Test Date: 2014-01-14

Note:

Project number: G0M-1312-3474

Manufacturer: Atmel Automotive GmbH
EUT Name: REB233SMAD Evaluation Kit

Model: ATREB233SMAD-EK

Test Site: Eurofins Product Service GmbH

Operator: Mr. Treffke

Test Conditions: Tnom: 25°C, Vnom: 3V DC (2x1.5 v battery)

Antenna: Rohde & Schwarz HL 223, Vertical

Measurement distance: 3 n

Mode: TX; DCSS; ant.1; Pmax; Chirp

Test Date: 2014-01-14

Note:

Project number: G0M-1312-3474

Manufacturer: Atmel Automotive GmbH
EUT Name: REB233SMAD Evaluation Kit

Model: ATREB233SMAD-EK

Test Site: Eurofins Product Service GmbH

Operator: Mr. Treffke

Test Conditions: Tnom: 25°C, Vnom: 3V DC (2x1.5 v battery)
Antenna: Schwarzbeck BBHA 9120D, Horizontal

Measurement distance: 3 m

Mode: TX; DCSS; ant.1; Pmax; Chirp

Test Date: 2014-01-14

Note:

Project number: G0M-1312-3474

Manufacturer: Atmel Automotive GmbH EUT Name: REB233SMAD Evaluation Kit

Model: ATREB233SMAD-EK

Test Site: Eurofins Product Service GmbH

Operator: Mr. Treffke

Test Conditions: Tnom: 25°C, Vnom: 3V DC (2x1.5 v battery)

Antenna: Schwarzbeck BBHA 9120D, Vertical

Measurement distance: 3 n

Mode: TX; DCSS; ant.1; Pmax; Chirp

Test Date: 2014-01-14

Note:

Project number: G0M-1312-3474

Manufacturer: Atmel Automotive GmbH EUT Name: REB233SMAD Evaluation Kit

Model: ATREB233SMAD-EK

Test Site: Eurofins Product Service GmbH

Operator: Mr. Treffke

Test Conditions: Tnom: 25°C, Vnom: 3V DC (2x1.5 v battery)
Antenna: Schwarzbeck BBHA 9120D, Horizontal

Measurement distance: 3 m

Mode: TX; DCSS; ant.1; Pmax; Chirp

Test Date: 2014-01-14

Note: lower bandedge; initiator mode

Project number: G0M-1312-3474

Manufacturer: Atmel Automotive GmbH EUT Name: REB233SMAD Evaluation Kit

Model: ATREB233SMAD-EK

Test Site: Eurofins Product Service GmbH

Operator: Mr. Treffke

Test Conditions: Tnom: 25°C, Vnom: 3V DC (2x1.5 v battery)

Antenna: Schwarzbeck BBHA 9120D, Vertical

Measurement distance: 3 n

Mode: TX; DCSS; ant.1; Pmax; Chirp

Test Date: 2014-01-14

Note: lower bandedge; initiator mode

Project number: G0M-1312-3474

Manufacturer: Atmel Automotive GmbH EUT Name: REB233SMAD Evaluation Kit

Model: ATREB233SMAD-EK

Test Site: Eurofins Product Service GmbH

Operator: Mr. Treffke

Test Conditions: Tnom: 25°C, Vnom: 3V DC (2x1.5 v battery)
Antenna: Schwarzbeck BBHA 9120D, Horizontal

Measurement distance: 3 m

Mode: TX; DCSS; ant.1; Pmax; Chirp

Test Date: 2014-01-14

Note: upper bandedge; reflector mode

Index 144

Frequency Peak Peak Limit Peak Difference Peak Status 2.4835 GHz 66.2 dBµV/m 74 dBµV/m -7.8 dB Pass **RMS** RMS Limit **RMS Difference RMS Status** Frequency 38.91 dBµV/m 54 dBµV/m -15.09 dB 2.4835 GHz Pass

Project number: G0M-1312-3474

Manufacturer: Atmel Automotive GmbH EUT Name: REB233SMAD Evaluation Kit

Model: ATREB233SMAD-EK

Test Site: Eurofins Product Service GmbH

Operator: Mr. Treffke

Test Conditions: Tnom: 25°C, Vnom: 3V DC (2x1.5 v battery)

Antenna: Schwarzbeck BBHA 9120D, Vertical

Measurement distance: 3 m

Mode: TX; DCSS; ant.1; Pmax; Chirp

Test Date: 2014-01-14

Note: upper bandedge; reflector mode

Index 143

Frequency Peak Peak Limit Peak Difference Peak Status 2.4836 GHz 72.46 dBµV/m 74 dBµV/m -1.54 dB Pass **RMS** RMS Limit **RMS Difference RMS Status** Frequency 45.01 dBµV/m 54 dBµV/m 2.4836 GHz -8.99 dB Pass

Project number: G0M-1312-3474

Manufacturer: Atmel Automotive GmbH
EUT Name: REB233SMAD Evaluation Kit

Model: ATREB233SMAD-EK

Test Site: Eurofins Product Service GmbH

Operator: Mr. Treffke

Test Conditions: Tnom: 25°C, Vnom: 3V DC (2x1.5 v battery)
Antenna: Schwarzbeck BBHA 9120D, Horizontal

Measurement distance: 3 n

Mode: TX; DCSS; ant.1; Pmax; Chirp

Test Date: 2014-01-14

Note:

Project number: G0M-1312-3474

Manufacturer: Atmel Automotive GmbH
EUT Name: REB233SMAD Evaluation Kit

Model: ATREB233SMAD-EK

Test Site: Eurofins Product Service GmbH

Operator: Mr. Treffke

Test Conditions: Tnom: 25°C, Vnom: 3V DC (2x1.5 v battery)

Antenna: Schwarzbeck BBHA 9120D, Vertical

Measurement distance: 3 m

Mode: TX; DCSS; ant.1; Pmax; Chirp

Test Date: 2014-01-14

Note:

Project number: G0M-1312-3474

Manufacturer: Atmel Automotive GmbH
EUT Name: REB233SMAD Evaluation Kit

Model: ATREB233SMAD-EK

Test Site: Eurofins Product Service GmbH

Operator: Mr. Treffke

Test Conditions: Tnom: 25°C, Vnom: 3V DC (2x1.5 v battery)
Antenna: Schwarzbeck BBHA 9120D, Horizontal

Measurement distance: 100 cm converted to 3m

Mode: TX; DCSS; ant.1; Pmax; Chirp

Test Date: 2014-01-14

Note:

Project number: G0M-1312-3474

Manufacturer: Atmel Automotive GmbH
EUT Name: REB233SMAD Evaluation Kit

Model: ATREB233SMAD-EK

Test Site: Eurofins Product Service GmbH

Operator: Mr. Treffke

Test Conditions: Tnom: 25°C, Vnom: 3V DC (2x1.5 v battery)

Antenna: Schwarzbeck BBHA 9120D, Vertical

Measurement distance: 100 cm converted to 3m

Mode: TX; DCSS; ant.1; Pmax; Chirp

Test Date: 2014-01-14

Note:

Project number: G0M-1312-3474

Manufacturer: Atmel Automotive GmbH EUT Name: REB233SMAD Evaluation Kit

Model: ATREB233SMAD-EK

Test Site: Eurofins Product Service GmbH

Operator: Mr. Treffke

Test Conditions: Tnom: 25°C, Vnom: 3V DC (2x1.5 v battery)
Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 100 cm

Mode: TX; DCSS; ant.1; Pmax; Chirp

Test Date: 2014-01-14

Note:

Project number: G0M-1312-3474

Manufacturer: Atmel Automotive GmbH EUT Name: REB233SMAD Evaluation Kit

Model: ATREB233SMAD-EK

Test Site: Eurofins Product Service GmbH

Operator: Mr. Treffke

Test Conditions: Tnom: 25°C, Vnom: 3V DC (2x1.5 v battery)

Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 100 cm

Mode: TX; DCSS; ant.1; Pmax; Chirp

Test Date: 2014-01-14

Note:

