§7.5 Jordan 标准形 作业参考答案

1. 已知矩阵 A 的初等因子组如下: 求矩阵 A 的 Jordan 标准形.

$$(1) \ (\lambda + 1)^2, \lambda - 2, (\lambda - 2)^3$$

(2)
$$(\lambda + \sqrt{2})^2, \lambda + 1, (\lambda + 1)^2, (\lambda + 1)^3$$

解: (1) A 的 Jordan 标准形为:

$$J = \left(\begin{array}{cccc} -1 & & & & \\ 1 & -1 & & & \\ & & 2 & & \\ & & & 2 & \\ & & & 1 & 2 \\ & & & & 1 & 2 \end{array}\right).$$

(2) A 的 Jordan 标准形为:

$$J = \left(\begin{array}{ccccc} -\sqrt{2} & & & & & & \\ 1 & -\sqrt{2} & & & & & & \\ & -1 & & & & & \\ & & -1 & & & & \\ & & & -1 & & & \\ & & & & 1 & -1 & \\ & & & & & & 1 & -1 \\ & & & & & & 1 & -1 \end{array} \right).$$

2. 求下列矩阵的 Jordan 标准形.

$$(1) \ A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{array} \right) \qquad (2) \ A = \left(\begin{array}{ccc} 4 & 5 & -2 \\ -2 & -2 & 1 \\ -6 & -1 & 1 \end{array} \right).$$

解: (1) 直接计算得 $f_A(\lambda)=(\lambda-2)^3$, 由 Cayley-Hamilton 定理,可知 $m_A(\lambda)|f_A(\lambda)$, 且在不考虑 根的重数情况下和 $f_A(\lambda)$ 有完全相同的根,因此只可能是下列三种形式之一: $\lambda-2$, $(\lambda-2)^2$, $(\lambda-2)^3$. 但 $A-2E\neq 0$, $(A-2E)^2=0$, 故 $m_A(\lambda)=(\lambda-2)^2$, 进而 A 的初等因子只能是 $(\lambda-2)^2$ 的因式,且至少有一个是 $(\lambda-2)^2$. 注意到 A 是三阶的,所以 A 的初等因子组为: $(\lambda-2)$, $(\lambda-2)^2$, 从而 A 的

且至少有一个是
$$(\lambda - 2)^2$$
. 注意到 A 是三 Jordan 标准形为: $J = \begin{pmatrix} 2 \\ 2 \\ 1 & 2 \end{pmatrix}$.

(2)(略)

3. 求下列矩阵的行列式因子,不变因子,初等因子组和 Jordan 标准形.

$$(1) \left(\begin{array}{cccc} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{array}\right) \qquad (2) \left(\begin{array}{cccc} 1 & -1 & 2 \\ 3 & -3 & 6 \\ 2 & -2 & 4 \end{array}\right).$$

解: (1) 直接计算得 $f_A(\lambda)=(\lambda+1)^3$, 由 Cayley-Hamilton 定理,可知 $m_A(\lambda)|f_A(\lambda)$, 且在不考 虑根的重数情况下和 $f_A(\lambda)$ 有完全相同的根,因此 $m_A(\lambda)$ 只可能是 $\lambda+1$, $(\lambda+1)^2$ 或 $(\lambda+1)^3$. 但 $A+E\neq 0$, $(A+E)^2=0$, 故 $m_A(\lambda)=(\lambda+1)^2$. 进而结合矩阵阶数得初等因子组为: $\lambda+1$, $(\lambda+1)^2$.

故 Jordan 标准形为: $\begin{pmatrix} -1 & & \\ & -1 & \\ & 1 & -1 \end{pmatrix}.$

(2) 直接计算得 $f_A(\lambda) = \lambda^2(\lambda-2), m_A'(\lambda)|f_A(\lambda),$ 且在不考虑根的重数情况下和 $f_A(\lambda)$ 有完全相同的根,因此 $m_A(\lambda)$ 只可能是 $\lambda(\lambda-2)$ 或 $\lambda^2(\lambda-2)$. 直接计算得 A(A-2E)=0,因此 $m_A(\lambda)=\lambda(\lambda-2)$, 进而初等因子为 $\lambda,\lambda-2$, 结合特征多项式即得 A 的初等因子组为: $\lambda,\lambda,\lambda-2$. 故 Jordan 标准形为: diag $\{0,0,2\}$.

4. 设
$$C$$
 上三阶矩阵 $A=\left(egin{array}{ccc}2&0&0\\a&2&0\\b&c&1\end{array}
ight).$

- (1) 求出 A 所有可能的 Jordan 标准形;
- (2) 给出 A 可对角化的充分必要条件.

解: (法一)

(1) 直接计算得 $f_A(\lambda) = (\lambda-2)^2(\lambda-1)$. 因此 A 可能的极小多项式为 $(\lambda-2)(\lambda-1)$ 或 $(\lambda-2)^2(\lambda-1)$. 若 $m_A(\lambda) = (\lambda-2)(\lambda-1)$, 则 A 的初等因子组为 $\lambda-2$, $\lambda-2$, $\lambda-1$, 从而 Jordan 标准形是 diag $\{2,2,1\}$.

若 $m_A(\lambda)=(\lambda-2)^2(\lambda-1),$ 则 A 的初等因子组为 $(\lambda-2)^2,$ $\lambda-1,$ 从而 Jordan 标准形是 $\begin{pmatrix}2\\1&2\\&1\end{pmatrix}$.

(2) A 可对角化的充分必要条件是 A 的每个特征值的代数重数等于几何重数. 这里只有特征值 2 是重根,因此仅考虑 3-r(A-2E) 何时为 2 即可. 直接计算可得 3-r(A-2E)=2 的充分必要条件是 a=0.

(法二)
$$\lambda E - A = \begin{pmatrix} \lambda - 2 & 0 & 0 \\ -a & \lambda - 2 & 0 \\ -b & -c & \lambda - 1 \end{pmatrix}$$
, 则 A 的行列式因子为:

 $D_1(\lambda) = 1,$

$$D_2(\lambda) = ((\lambda - 2)^2, 0, ac + b(\lambda - 2), (\lambda - 2)(\lambda - 1), a(\lambda - 1), c(\lambda - 2)),$$

 $D_3(\lambda) = (\lambda - 2)^2(\lambda - 1).$

若 a=0, 则 $D_2(\lambda)=\lambda-2,$ 此时初等因子组为: $\lambda-2,$ $\lambda-2,$ $\lambda-1,$ 从而 Jordan 标准形为: diag $\{2,2,1\}.$

 \ddot{a} $a \neq 0$, 则 $D_2(\lambda)=1$, 此时初等因子组为: $(\lambda-2)^2$, $\lambda-1$, 所以 Jordan 标准形为: $J=\begin{pmatrix} 2\\1&2\\1&1 \end{pmatrix}$

- (2) 由 (1) 可知 A 可对角化的充要条件是 a = 0.
- 5. 设 $a \neq 0$, 求 n 阶矩阵 A 的 Jordan 标准型:

$$A = \begin{pmatrix} a & 0 & 0 & \cdots & 0 \\ a & a & 0 & \cdots & 0 \\ a & a & a & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & a & a & \cdots & a \end{pmatrix}.$$

解: (法一) 依题意, A 的特征多项式 $f_A(\lambda)=(\lambda-a)^n$,由 Cayley-Hamilton 定理,可知 A 的极小多项式 $m_A(\lambda)|f_A(\lambda)$,故可设 $m_A(\lambda)=(\lambda-a)^r$,其中 $1\leq r\leq n$. 但 $(aI_n-A)^n=0$,而

$$(aI_n - A)^{n-1} = \begin{pmatrix} 0 & & & \\ 0 & 0 & & \\ \vdots & \vdots & \ddots & \\ 0 & 0 & \cdots & 0 \\ (-a)^{n-1} & 0 & \cdots & 0 & 0 \end{pmatrix} \neq 0,$$

故只能有 $m_A(\lambda)=(\lambda-a)^n$. 从而 A 的不变因子为: $1,1,\ldots,1,(\lambda-a)^n$, 进而初等因子组为 $(\lambda-a)^n$, 因此 A 的 Jordan 标准型为:

$$\begin{pmatrix}
 a & & & & \\
 1 & a & & & & \\
 & \ddots & \ddots & & & \\
 & & \ddots & a & & \\
 & & & 1 & a
\end{pmatrix}.$$

(法二) $\lambda E - A$ 有一个 n-1 阶子式为

$$g_1(\lambda) = \begin{vmatrix} \lambda - a \\ -a & \lambda - a \\ \vdots & \vdots & \ddots \\ -a & -a & \cdots & \lambda - a \end{vmatrix} = (\lambda - a)^{n-1},$$

还有一个 n-1 阶子式

$$g_2(\lambda) = \begin{vmatrix} -a & \lambda - a \\ -a & -a & \lambda - a \\ \vdots & \ddots & \ddots & \ddots \\ \vdots & \vdots & \ddots & \ddots & \lambda - a \\ -a & -a & \cdots & -a & -a \end{vmatrix}, g_2(a) \neq 0,$$

说明 $(g_1(\lambda),g_2(\lambda))=1$, 因此 $D_{n-1}(\lambda)=1$, 故 $m_A(\lambda)=f_A(\lambda)=(\lambda-a)^n$, 从而 A 的初等因子组为 $(\lambda-a)^n$, 进而得 Jordan 标准形:

$$\begin{pmatrix} a & & & & & \\ 1 & a & & & & \\ & \ddots & \ddots & & & \\ & & \ddots & a & & \\ & & & 1 & a \end{pmatrix}.$$

(李小凤解答)