G4	Sériový (R-L)-C obvod	3D2
8. 1. 2018		Meinlschmidt

ZADÁNÍ:

- Vysvětlete pojmy: elektrický odpor, indukčnost, kapacita, induktivní reaktance, kapacitní reaktance, impedance, fázový posun
- 2. Co je to rezonance střídavého obvodu, za jakých podmínek nastává?
- 3. U zadané skutečné cívky a kondenzátoru změřte přístrojem na měření RLC: ohmický odpor cívky *R*, indukčnost cívky *L* a kapacitu kondenzátoru *C*
- 4. Z naměřených hodnot vypočtěte rezonanční frekvenci sériového obvodu (R-L)-C
- 5. Změřte frekvenční charakteristiku obvodu zapojeného dle schématu. Hodnoty frekvencí volte tak, aby vypočtená rezonanční frekvence ležela přibližně uprostřed hodnot měřených frekvencí. Během měření udržujte konstantní hodnotu výstupního napětí generátoru
- 6. Vypočtěte zbylé hodnoty v tabulce dle vztahů pro střídavé elektrické obvody
- 7. Z naměřených a vypočtených hodnot sestrojte frekvenční charakteristiky: $I, XL, X_C = f(f)$ (vše do jednoho obrázku). V grafu vyznačte vypočtenou rezonanční frekvenci a porovnejte s frekvencí zjištěnou měřením (ta je dána průsečíkem grafů X_L a X_C)

ODPOVĚDI NA OTÁZKY:

Vysvětlení pojmů:

Elektrický odpor $R[\Omega]$ je skalární fyzikální veličina, která charakterizuje schopnost elektrických vodičů vést elektrický proud I.

Indukčnost L [H] je skalární fyzikální veličina, vyjadřující schopnost dané konfigurace elektricky vodivých těles, kterými protéká elektrický proud I, vytvářet ve svém okolí magnetické pole.

Kapacita C [F] je množství elektrického náboje Q ve vodiči s jednotkovým elektrickým potenciálem 1 V. Vyjadřuje schopnost vodiče uchovat elektrický náboj Q.

Induktivní reaktance $X_L[\Omega]$ je zdánlivý odpor součástky s vlastní indukčností L (ideálně cívky) proti průchodu střídavého elektrického proudu I.

Kapacitní reaktance X_C [Ω] je zdánlivý odpor součástky s kapacitou C (ideálně kondenzátoru) proti průchodu střídavého elektrického proudu I.

Impedance \bar{Z} [Ω] je fyzikální veličina vyjádřená komplexním číslem. Na jeho reálné ose se vyskytuje elektrický odpor R (je ve fázi s proudem; tj. $\varphi = 0$ °) a na imaginární se vyskytuje zdánlivý odpor – reaktance X (je posunutá oproti proudu; tj. $\varphi = \pm 90$ °). Reaktance X a tím pádem i celková impedance \bar{Z} je ve střídavých obvodech závislá na frekvenci f.

Fázový posun φ [°] je bezrozměrná veličina, která určuje vztah mezi elektrickým proudem I a elektrickým napětím U ve střídavých obvodech.

Rezonance střídavého obvodu:

Jak již bylo řečeno, reaktance je závislá na frekvenci. Induktivní reaktance s rostoucí frekvencí roste, naopak kapacitní reaktance s rostoucí frekvencí klesá. V obvodu, ve kterém se vyskytují kapacitní a induktivní prvky, může na určité frekvenci dojít k rezonanci.

Rezonance vzniká v bodě, kdy je velikost kapacitní a induktivní reaktance shodná, tudíž výsledná reaktance je nulová a velikost odporu v obvodu je nejmenší. S klesajícím odporem také vzrůstá velikost proudu.

Jelikož při dosažení rezonanční frekvence dochází k nulové reaktanci obvodu, výsledný fázový posun bude také nulový a projevovat se budou pouze činná složka.

TEORIE:

Rezonanční frekvence:

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{1}{L C}}$$

Výpočty v daném zapojení:

 U_1 se v měřeném obvodu skládá z cívky a rezistoru, proto impedance $\overline{Z_L}$.

$$\overline{Z_L} = \frac{U_1}{I}$$

$$X_L = \sqrt{\overline{Z_L}^2 - R^2}$$

$$X_C = \frac{U_2}{I}$$

$$X = X_L - X_C$$

$$\varphi = \arctan \frac{X}{R}$$

SCHÉMA ZAPOJENÍ:

POUŽITÉ PŘÍSTROJE A POMŮCKY:

Název	Typové označení	Inventární číslo
Generátor	UNI-T UTG9002C	947/20
Voltmetr	DM-1 MULTIMETR	4830/1
Voltmetr	DM-1 MULTIMETR	4830/2
Ampérmetr	HC-2030ET	506780/1
RLC meter	UNI-T UT603	816022246
Cívka		1513/4
Kondenzátor	PANEL 19	4813/4

POPIS PRÁCE:

Před samotným měřením jsme připravili potřebné pomůcky a součástky – například zdroj elektrické energie, cívku, voltmetr atd. Jejich typové značky, evidenční čísla a jiné nutné údaje jsme řádně zapsal do záznamu o měření.

Po zadání hodnot, které jsme dostali od pana učitele, bylo potřeba vypočítat rezonanční frekvenci f_0 dle vzorce. Elektrický odpor R cívky jsme změřili při stejnosměrném proudu.

Následně jsme zapojili součástky dle schématu. Pro rozdělení frekvencí f jsme se rozhodli libovolně, a to – vypočtenou rezonanční frekvenci f_0 umístit doprostřed měření a pokračovat lineárně až k minimální a maximální hodnotě frekvence f.

Na generátoru jsme vždy nastavili frekvenci f, změřili napětí U_1 na cívce, napětí na kondenzátoru U_2 a elektrický proud I. Po změření všech hodnot jsme dopočítali ostatní hodnoty.

Po dokončení měření bylo potřeba zjistit skutečnou rezonanční frekvenci f_0 . Tu lze zjistit pohledem, kde se přibližně protínají funkce X_L a X_C . Bohužel se na ose x dlouhé přibližně

8200 Hz tyto dva body nachází velmi blízko. Navíc s využitím logaritmické osy by bylo odečtení velmi nepřesné. Proto jsem se rozhodl využít jiný způsob.

Víme, že oba průběhy X_L a X_C nejsou v grafu nijak aproximovány, a proto jsou mezi jednotlivými body měření přímky, které lze jednoduše popsat lineární funkcí. Lze tak využít obecnou rovnici přímky a zjistit, kde se dvě přímky protínají. Tedy předpokladu, že se někdy protnou, což v tomto případě platí.

Ačkoliv nedokážeme pouhým pohledem přesně určit polohu protnutí, dokážeme určit mezi kterými body měření k protnutí dochází. Tyto čtyři body můžeme využít k popsání dvou přímek.

TABULKY:

R [Ω]	L [H]	C [F]	f ₀ [Hz]	U _G [V]
76,000	0,336	$0,939 \cdot 10^{-6}$	283,346	12,800

f [Hz]	I [mA]	U ₁ [V]	U ₂ [V]	$\mathbf{Z}_{\mathrm{L}}\left[\Omega ight]$	R [Ω]	X _L [Ω]	$X_{C}[\Omega]$	Χ [Ω]	φ [°]
28,600	1,000	0,599	4,500	599,000	76,000	594,159	4 500,000	-3 905,841	-88,885
39,120	1,313	0,798	4,380	607,768	76,000	602,998	3 335,872	-2 732,874	-88,407
52,010	1,575	0,990	4,180	628,571	76,000	623,960	2 653,968	-2 030,008	-87,856
67,350	1,938	1,220	3,850	629,515	76,000	624,910	1 986,584	-1 361,674	-86,805
99,300	2,532	1,550	3,270	612,164	76,000	607,428	1 291,469	-684,041	-83,660
104,400	2,829	1,590	3,190	562,036	76,000	556,874	1 127,607	-570,733	-82,415
170,900	2,977	1,990	2,270	668,458	76,000	664,124	762,513	-98,389	-52,316
283,000	3,125	2,380	1,450	761,600	76,000	757,798	464,000	293,798	75,497
489,900	2,977	2,940	0,797	987,571	76,000	984,643	267,719	716,924	83,949
617,600	2,829	3,240	0,594	1 145,281	76,000	1 142,757	209,968	932,788	85,342
815,300	2,532	3,590	0,402	1 417,852	76,000	1 415,813	158,768	1 257,045	86,540
1 245,000	1,938	4,120	0,205	2 125,903	76,000	2 124,544	105,779	2 018,765	87,844
1 686,000	1,575	4,360	0,122	2 768,254	76,000	2 767,211	77,460	2 689,750	88,382
2 126,000	1,313	4,490	0,780	3 419,650	76,000	3 418,805	594,059	2 824,746	88,459
2 820,000	0,925	4,630	0,044	5 005,405	76,000	5 004,828	47,568	4 957,261	89,122
4 518,000	0,250	4,730	0,016	18 920,000	76,000	18 919,847	64,000	18 855,847	89,769
8 250,000	0,125	4,790	0,003	38 320,000	76,000	38 319,925	24,000	38 295,925	89,886

^{*}tučně – $vypočtená rezonanční frekvence <math>f_0$

GRAF

Voltampérová charakteristika (R-L)-C obvodu

VÝPOČTY:

Výpočet rezonanční frekvence f_0 [Hz]:

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{1}{LC}}$$

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{1}{0,336 \cdot 9,939 \cdot 10^{-6}}}$$

$$f_0 = 283,346 \, Hz$$

Výpočet impedance cívky $\overline{Z_L}$ [Ω]:

$$\overline{Z_L} = \frac{U_1}{I}$$

$$\overline{Z_L} = \frac{0,599}{1 \cdot 10^{-3}}$$

$$\overline{Z_L} = 599,000 \Omega$$

Výpočet induktivní reaktance $X_L [\Omega]$ cívky:

$$X_{L} = \sqrt{\overline{Z_{L}}^{2} - R^{2}}$$

$$X_{L} = \sqrt{599,000^{2} - 76,000^{2}}$$

$$X_{L} = 594,159 \Omega$$

Výpočet kapacitní reaktance $X_{\mathcal{C}}[\Omega]$ kondenzátoru:

$$X_c = \frac{U_2}{I}$$
 $X_c = \frac{4,5}{1 \cdot 10^{-3}}$
 $X_c = 4500,000 \Omega$

Výpočet celkové reaktance $X [\Omega]$ obvodu:

$$X = X_L - X_C$$

 $X = 594,159 - 4500,000$
 $X = -3905,841 \Omega$

Při proudu 1 mA je reaktance kapacitního charakteru (napětí se zpožďuje za proudem).

Výpočet fázového posunu φ [°]:

$$\varphi = \arctan \frac{X}{R}$$

$$\varphi = \arctan \frac{-3905,841}{76,000}$$

$$\varphi = -88,885^{\circ}$$

Určení přímek $\leftrightarrow p_{XC}$ a $\leftrightarrow p_{XL}$ na kterých leží body měření, mezi kterými dochází k protnutí průběhů:

$$\leftrightarrow p_{XC} \ \epsilon \ [170,900; \ 762,513] \ \cap \ [283,000; 464,000]$$

 $\leftrightarrow p_{XL} \ \epsilon \ [170,900; \ 668,458] \ \cap \ [283,000; 757,798]$

Směrové vektory $\overrightarrow{u_{XC}}$ a $\overrightarrow{u_{XL}}$ přímek $\leftrightarrow p_{XC}$ a $\leftrightarrow p_{XL}$:

$$\overrightarrow{u_{XC}} = (112,100; -298,513)$$

 $\overrightarrow{u_{XL}} = (112,100; 89,341)$

Normálové vektory $\overrightarrow{n_{XC}}$ a $\overrightarrow{n_{XL}}$ přímek $\leftrightarrow p_{XC}$ a $\leftrightarrow p_{XL}$:

$$\overrightarrow{n_{XC}} = (-298,513; 112,100)$$

 $\overrightarrow{n_{XL}} = (89,341; -112,100)$

Obecná rovnice přímky $\leftrightarrow p_{XC}$:

$$ax + by + c = 0$$

$$-298,513x - 112,100y + c = 0$$

$$c = 298,513x + 112,100y$$

$$c = 298,513 \cdot 283,000 + 112,100 \cdot 464,000$$

$$c = 136493,465$$

$$-298,513x - 112,100y + 136493,465 = 0$$

Obecná rovnice přímky $\leftrightarrow p_{XL}$:

$$ax + by + c = 0$$

$$89,341x - 112,100y + c = 0$$

$$c = -89,341x \cdot 283,000 + 112,100 \cdot 761,600$$

$$c = 59 665,780$$

$$-89,341x - 112,100y + 59 665,780 = 0$$

Nalezení průniku obou rovnic pomocí soustavy dvou rovnic (řešeno sčítací metodou):

$$-298,513x - 112,100y + 136 493,465 = 0$$

$$89,341x - 112,100y + 59 665,780 = 0$$

$$-298,513x - 112,100y + 136 493,465 = 0$$

$$89,341x - 112,100y + 59 665,780 = 0 / \cdot (-1,000)$$

$$-298,513x - 112,100y + 136 493,465 = 0$$

$$-89,341x + 112,100y - 59 665,780 = 0$$

$$-387,853x - 0y + 76 827,685 = 0$$

$$-387,853x = -76 827,685$$

$$x = 198,084$$

$$298,513x - 112,100y + 136 493,465 = 0 / \cdot (0,299)$$

$$89,341x - 112,100y + 59 665,780 = 0$$

$$-89,341x - 33,550y + 40 850,632 = 0$$

$$89,341x - 112,100y + 59 665,780 = 0$$

$$0x - 145,650y + 100 516,412 = 0$$

$$-145,650y = -100 516,412$$

$$y = 690,123$$

K průniku obou rovnic dochází v bodě [198,084; 690,123]. K rezonanci obvodu tím pádem dochází při frekvenci f_0 přibližně 198 Hz. Což je absolutní chyba přibližně 85 Hz, relativní přibližně 30 %.

SPOLUPRACOVALI:

Kotek Lubomír

ZÁVĚR:

Všechny úkoly se zadání byly splněny, během měření jsem si nevšiml žádných chyb nebo logických nesrovnalostí. Při psaní protokolu jsem si všiml několik chyb měření, které se projevily "zubem" v grafu, ale naštěstí výrazně neovlivňují výpočet skutečné rezonanční frekvence.

Další nesrovnalosti, které jsem si všiml, byl vyšší elektrický odpor R cívky než celková impedance $\overline{Z_L}$ cívky. Což logicky není možné. Chyba byla ve špatných jednotkách (A místo mA). Příště bych volil více měření v oblasti rezonance, aby se povedlo zaznamenat napěťovou špičku a přesněji vypočítat skutečnou rezonanční frekvenci f_0 z grafu.

Ověřením rezonanční frekvence f_0 pomocí grafu jsem vypočetl hodnotu přibližně 198 Hz, která se liší přibližně o 85 Hz od vypočtené f_0 (relativní chyba přibližně 30 %).