WAL 3V VICTA

5

10

15

20

25

30

CLAIMS

- 1. (Device) for mode-locking a laser, in particular a laser of pulsed type, comprising a resonant cavity (20),
- delimited by a first mirror (1) and a second mirror (8), $\sqrt{}$
- provided with an active laser gain medium (5) for amplifying a laser radiation beam at the fundamental frequency $(\omega 1)$, and
- with a solid non-linear optical means (10) which comprises at least said second mirror (8), for reversible conversion of the radiation at the fundamental frequency (ω1) into radiation at a harmonic frequency (ω2), said non-linear optical means having a reflection coefficient which increases as the intensity of the radiation at the fundamental frequency increases,

said device further comprising, arranged in the resonant cavity (20), a solid intensity limiter (4) whose transmission coefficient of the laser radiation decreases as the intensity of said radiation increases, characterized in that said intensity limiter (4) comprises a GaAs, CdSe or InP plate.

- 2. Device according to Claim 1, characterized in that the non-linear optical means (10) comprises said second mirror (8) which corresponds to a dichroic mirror and a non-linear crystal (7) able to convert the radiation at the fundamental frequency into radiation at a harmonic frequency.
- 3. Device according to Claim 1, characterized in that the non-linear optical means (10) comprises said second mirror (8) which corresponds to a dichroic mirror, a non-linear crystal (7) able to convert the radiation at the fundamental frequency into radiation at a harmonic frequency, and at least one component for polarization selection and/or modification.

BEST AVAILABLE COPY

and the state of t

MARKED UP COPY OF CLAIMS

- 4. Device according to Claim 2[or 3], characterized in that said non-linear crystal is a

 BBO crystal.
- 6. Device according to [one of the preceding] C[e]laim[s] 1, characterized in that the intensity limiter (4) and the non-linear optical means (10) are placed on either side of the active gain medium (5).
- 7. Device according to [one of the preceding] C[c]laim[s] 1, characterized in that the intensity limiter (4) is placed between the non-linear optical means (10) and the active gain medium (5).
- 8. Device according to [one of the preceding] C[c]laim[s] 1, characterized in that the active gain medium is an Nd:YAG crystal.
- 9. Device according to [one of the preceding] C[c]laim[s] 1, characterized in that the non-linear optical means (10) has a reflection coefficient of the radiation at the second harmonic (ω2) which is greater than the reflection coefficient of the radiation at the fundamental frequency (ω1).

BEST AVAILABLE COPY

10

20

25

- 4. Device according to Claim 2 or 3, characterized in that said non-linear crystal is a BBO crystal.
- 5. Device according to Claim 1, characterized in that the non-linear optical means (10) comprises only the second mirror (8), said second mirror corresponding to a Fabry-Perot anti-resonant saturable absorber constructed from a superposition of dielectric or metallic semiconductor films.
- 6. Device according to one of the preceding claims, characterized in that the intensity limiter (4) and the non-linear optical means (10) are placed on either side of the active gain medium (5).
- 7. Device according to one of the preceding claims, characterized in that the intensity limiter (4) is placed between the non-linear optical means (10) and the active gain medium (5).
- 8. Device according to one of the preceding claims, characterized in that the active gain medium is an Nd:YAG crystal.
- 9. Device according to one of the preceding claims, characterized in that the non-linear optical means (10) has a reflection coefficient of the radiation at the second harmonic (ω 2) which is greater than the reflection coefficient of the radiation at the fundamental frequency (ω 1).
- Device for mode-locking a laser, in particular a laser of pulsed type, comprising a resonant cavity (20),
- delimited by a first mirror (1) and a second mirror (8),
 - provided with an active laser gain medium (5) for amplifying a laser radiation beam at the fundamental frequency $(\omega 1)$, and
- a solid non-linear optical means (10) which comprises at least said second mirror (8), for reversible conversion

BEST AVAILABLE COPY

5

10

15

20

of the radiation at the fundamental frequency $(\omega 1)$ into radiation at a harmonic frequency $(\omega 2)$, said non-linear optical means (10) having a reflection coefficient which increases as the intensity of the radiation at the fundamental frequency increases,

characterized in that said device is provided with an intensity limiter comprising a GaAs, CdSe or InP plate with a transmission coefficient which decreases as the intensity of the radiation at the fundamental frequency increases, so as to ensure, in combination with said non-linear optical means (10), both a positive feedback and a negative feedback on the quality factor of the resonant cavity (20).

particular a laser of pulsed type, characterized in that it comprises:

- emitting a laser radiation beam at the fundamental frequency $(\omega 1)$ by stimulating an active laser medium (5),
- converting the beam at the fundamental frequency $(\omega 1)$ into a beam at a harmonic frequency $(\omega 2)$,
- returning the beam at the harmonic frequency $(\omega 2)$ to the resonant cavity (20),
- reconverting the beam at the harmonic frequency ($\omega 2$) into a beam at the fundamental frequency ($\omega 1$), and
- limiting the intensity of the beam at the fundamental frequency $(\omega 1)$ inside the resonant cavity (20), by means of at least one GaAs, CdSe or InP plate.

BEST AVAILABLE COPY