Eulerian graph : contains cycle visiting all edges once. Every vertex degree is even Hamilton graph :

- contains cycle visiting all vertices once,
- Min vertex degree >= n/2 and order of graph n>=3
- $|G| \ge 3$ and (chromatic number)k(G) $\ge a(G)$ (biggest independent set of vertices)
- 4-connected planar graph
- For every set S => G-S has at most S components
- Tutte graph is not hamiltonian

1) Barbell graph

• the *n*-barbell graph is a special type of undirected graph consisting of two non-overlapping *n*-vertex cliques together with a single edge that has an endpoint in each clique

2) Lollipop graph

3) Tadpole graph

• the (*m,n*)-tadpole graph is a special type of graph consisting of a cycle graph on *m* (at least 3) vertices and a path graph on *n* vertices, connected with a bridge

Cubic graph = 3-regular graph

Diameter = longest path in graph, radius = min max distance from all vertices Center of graph and raduis of graph:

Integr Embedded => edge weight = real distance

Tutte => 3-regular

Bach Edge => edge from child to ancestor Cross edge => from child to cousin (not ancestor, not on the same branch)

DFS => back edge no cross edge, BFS=> cross edge(max one level difference) no back edge

Tree => connected, n vertices, n-1 edges jungle => graph with no cycles

DFS dont give shortest path

SCC (Strongly connected component) in directed graphs => exists path between every pair of vertices

Topological sort => reverse DFS

Topological Sorting Example

MST - Kruskal

Example of Kruskal's Algorithm

Partition-Based Implementation

- Partition-based version of Kruskal's Algorithm
 - Cluster merges as unions
 - Cluster locations as finds
- \square Running time $O((n+m) \log n)$
 - Priority Queue operations: $O(m \log n)$
 - Union-Find operations: $O(n \log n)$

Prim (MST) and Dikjstra (Min distance from a vertex) => only if smaller -> update not same

Baruvka

Connect components with smallest possible edges until obtain one component(first for each vertex then for each components)

Example of Baruvka's Algorithm (animated)

Slide by Matt Stallmann included with permission.

BFS => shortest distance from a vertex

Belman ford update each vertex distant value with min (its distance and its neighbor value + neighbor distance) O(VE)

```
Bellman-Ford(G,w, s) d[s] := 0; \text{ Set the others to } \infty Repeat |V| stages: for each edge (u,v) \in E[G] d[v] := \min\{ d[v], d[u] + w(u,v); \} \text{ //relax}(u,v)
```

At the end of the algorithm, can detect negative cycles by:

```
 \begin{array}{l} \text{for each edge } (u,v) \in E[G] \\ \text{if } d[v] > d[u] + w(u,v) \\ \text{Return Negative cycle} \end{array}
```

return No negative cycle

The Floyd-Warshall algorithm

A more clever dynamic programming algorithm

Before, $d_{i,j}^{(m)}$ = shortest paths of lengths $\leq m$

Next: d_{i,j}(m) = shortest paths from i to j such that all INTERMEDIATE vertices are ≤ m

$$\begin{split} d^{(0)} &= W \\ d^{(m)}{}_{i,j} &= & \begin{cases} w(i,j) \\ \min \ (d^{(m-1)}{}_{i,j} \ , \ d^{(m-1)}{}_{i,m} \ + d^{(m-1)}{}_{m,j} \) & \text{if} \ m \geq 1. \end{cases} \end{split}$$

```
Floyd-Warshall(W)
```

```
D^{(0)} := W;

for m = 1 to n
	for every i,j:
	d^{(m)}_{i,j} = min (d^{(m-1)}_{i,j}, d^{(m-1)}_{i,m} + d^{(m-1)}_{m,j})

Return D^{(n)}
```

Time $\Theta(|V|^3)$

Erdős-Rényi-Gilbert Model (continued)

Note: Assume that the nodes are numbered 1 through n.

Algorithm for ER model graph generation:

So, by linearity of expectation, E[Degree(v)] = p(n-1).

Let $\pi_k(v)$ denote the probability that node v has degree $= k \ (0 \le k \le n-1)$. Then,

$$\pi_k(v) = \binom{n-1}{k} p^k (1-p)^{n-1-k}.$$

This called the **binomial distribution**.

This is the same probability as getting k heads from n-1 tosses of a coin, where the probability of heads = p.

Some non-trivial properties: The following results due to Erdős and Rényi are **asymptotic** (i.e., they hold for large n).

Condition	Property of $G(n, p)$
p < 1/n	Almost surely has no connected component of size larger than $c_1 \log_2 n$ for some constant c_1 .
p=1/n	Almost surely has a giant component of size at least $c_2 n^{2/3}$ for some constant c_2 .
p > 1/n	Almost surely has a giant component of size at least αn for some constant α (0 < α < 1). All other components will almost surely have size $\leq \beta \log_2 n$ for some constant β .
p = 1/2	With high probability, the size of the largest clique is $\approx 2 \log_2 n$.

Note: Step of the algorithm implements the "rich get richer" idea.

Example:

- Let m = 1; that is, each new node will get one edge.
- There are 4 nodes (numbered 1, 2, 3 and 4) and the new one is node 5.
- Let the degrees of nodes 1, 2, 3 and 4 be 3, 3, 2 and 2 respectively.
- Current sum of degrees = 3 + 3 + 2 + 2 = 10.
- For node 5:
 - $\Pr{\text{Edge to node 1}} = 3/10.$
 - $\Pr{\text{Edge to node 2}}$ = 3/10.
 - $Pr\{Edge to node 3\} = 2/10.$
 - $Arr Pr\{Edge to node 4\} = 2/10.$

Watts-Strogatz Model (continued)

Inputs:

- The number of nodes: n.
- \blacksquare An even integer K, the average node degree in the resulting graph.
- The rewiring probability β .
- **Assumption:** $n \gg K \gg \ln n \gg 1$.

Output: An undirected graph with the following properties.

- The graph has n nodes and nK/2 edges. (Thus, the average node degree is K.)
- With high probability, the average distance between any pair of nodes is $\ln(n)/\ln(K)$.

Watts-Strogatz Model (continued)

Notes:

- If $\beta = 0$, there is no rewiring and the diameter remains large.
- If $\beta = 1$, every edge gets rewired; it is known that such graphs are similar to graphs under the ER model.
- If C(0) represents the average clustering coefficient of the initial graph, empirical evidence suggests that the average clustering coefficient $C(\beta)$ after rewiring is given by

$$C(\beta) = C(0) (1 - \beta)^3$$
.

If β is small, the clustering coefficient does not decrease much due to rewriting.

- Newman-Watts Model: Instead of rewiring, add edges between randomly chosen pairs of nodes with with probability = β .
 - This version is easier to implement.
 - The resulting model has properties similar to the Watts-Strogatz model.