Prof. Dr. Leif Kobbelt

Stefan Dollase, Ira Fesefeldt, Alexandra Heuschling, Gregor Kobsik

Lösung - Übung 9

Aufgabe 4 (Optimaler Suchbaum):

7 + 2 + 1 = 10 Punkte

Gegeben sind folgende Knoten mit dazugehörigen Zugriffswahrscheinlichkeiten:

Lehrstuhl für Informatik 8

Computergraphik und Multimedia

Knoten	10	N_1	11	N_2	12	N ₃	13	N_4	14	N_5	<i>I</i> ₅
Wert	$(-\infty,1)$	1	(1,2)	2	(2,3)	3	(3,4)	4	(4,5)	5	$(5,\infty)$
Wahrscheinlichkeiten	0.1	0.01	0.1	0.01	0.1	0.04	0.2	0.04	0.2	0.05	0.15

Konstruieren Sie einen optimalen Suchbaum wie folgt.

a) Füllen Sie untenstehende Tabellen für $W_{i,j}$ und $C_{i,j}$ nach dem Verfahren aus der Vorlesung aus. Geben Sie in $C_{i,j}$ ebenfalls **alle möglichen Wurzeln** des optimalen Suchbaums für $\{i, \ldots, j\}$ an.

.0	_		•		• ,	
$W_{i,j}$	0	1	2	3	4	5
1						
2	_					
3	_	_				
4	_	_	_			
5	_	_	_	_		
6	_	_	_	_	_	
$C_{i,j}(R_{i,j})$	0	1	2	3	4	5
1		()	()	()	()	()
2	_		()	()	()	()
3	_	_		()	()	()
4	_	_	_		()	()
5	_	_	_	_		()

- b) Geben Sie einen optimalen Suchbaum für die Knoten mit den gegebenen Zugriffswahrscheinlichkeiten und der gegebenen Reihenfolge der Knoten graphisch an.
- c) Ist der optimale Suchbaum für die Knoten mit den gegebenen Zugriffswahrscheinlichkeiten und der gegebenen Reihenfolge der Knoten eindeutig? Geben Sie dazu eine kurze Begründung an.

Lösun	ıg						
a)							
	$W_{i,j}$	0	1	2	3	4	5
ı	1	0.10	0.21	0.32	0.56	0.80	1.00
	2	_	0.10	0.21	0.45	0.69	0.89
	3	_		0.10	0.34	0.58	0.78
	4	_		_	0.20	0.44	0.64
	5	_		_	-	0.20	0.40
	6	_		_	_	_	0.15

$C_{i,j}(R_{i,j})$	0	1	2	3	4	5
1	0.10	0.41 (1)	0.83 (1, 2)	1.59 (3)	2.47 (3)	3.34 (4)
2	_	0.10	0.41 (2)	1.06 (3)	1.94 (3)	2.70 (4)
3	_	_	0.10	0.64 (3)	1.42 (4)	2.17 (4)
4	_	_	_	0.20	0.84 (4)	1.59 (4)
5	_	_	_	_	0.20	0.75 (5)
6	_	_	_	_	_	0.15

b) Die folgenden Lösungen sind korrekte optimale Suchbäume.

c) Der optimale Suchbaum ist nicht eindeutig, da wir aus der Tabelle zwei verschiedene optimale Suchbäume konstruieren konnten.

Aufgabe 5 (Union Find):

12 Punkte

Führen Sie die folgenden Operationen beginnend mit einer anfangs leeren Union-Find-Struktur aus und geben Sie die entstehende Union-Find-Struktur nach jeder MakeSet, Union und Find Operation an. Nutzen Sie dabei die beiden Laufzeitverbesserungen: Höhenbalencierung und Pfadkompression. Dabei soll die Union-Operation bei gleicher Höhe der Wurzeln immer die Wurzel des zweiten Parameters als neue Wurzel wählen. Es ist nicht notwendig die Höhe der Bäume zu notieren.

- 1. MakeSet(1)
- 2. MakeSet(2)
- 3. Union(1,2)
- 4. MakeSet(3)
- 5 Union(1,3)
- 6. MakeSet(4)
- 7. MakeSet(5)
- 8. Union(4,5)

- 9. Union(1,4)
- 10. MakeSet(6)
- 11 Union(3,6)
- 12. MakeSet(7)
- 13. MakeSet(8)
- 14. Union(7,8)
- 15. Union(2,7)
- 16. Find(7)

Lösung

1. MakeSet(1)

2. MakeSet(2)

- Find(1): unverändert
- Find(2): unverändert
- Union(1,2):

4. MakeSet(3)

- 5. Union(1,3)
 - Find(1): unverändert
 - Find(3): unverändert
 - Union(1,3):

7. MakeSet(5)

8. Union(4,5)

Find(4): unverändertFind(5): unverändert

• Union(4,5):

9. Union(1,4)

• Find(1): unverändert

• Find(4): unverändert

• Union(1,4):

10. MakeSet(6)

11. Union(3,6)

• Find(3):

- Find(6): unverändert
- Union(3,6):

12. MakeSet(7)

13. MakeSet(8)

- 14. Union(7,8)
 - Find(7): unverändert
 - Find(8): unverändert
 - Union(7,8):

- 15. Union(2,7)
 - Find(2): unverändert
 - Find(7): unverändert

• Union(2,7):

16. Find(7)

Aufgabe 6 (Graph Terminology):

2 + 2 + 2 + 2 + (4 * 0.5) = 10 Punkte

- a) Sei V eine feste Knotenmenge mit Größe $|V|=n\in\mathbb{N}$. Wie viele Kantenmengen E gibt es, sodass (V,E) ein *gerichteter* Graph ist? Begründen Sie Ihre Antwort kurz.
- **b)** Sei V eine feste Knotenmenge mit Größe $|V| = n \in \mathbb{N}$. Wie viele Kantenmengen E gibt es, sodass (V, E) ein *ungerichteter* Graph ist? Begründen Sie Ihre Antwort kurz.
- **c)** Wie viele einfache Weg der Länge genau $k \in \{0, 1, ..., n-1\}$ hat ein vollständiger ungerichteter Graph mit $n \in \mathbb{N}$ Knoten? Begründen Sie Ihre Antwort kurz.
- **d)** Ein einfacher Kreis $v_0 \dots v_{k-1} v_0$ ist ein Kreis, für den $v_0 \dots v_{k-1}$ einfach ist. Wie viele einfachen Kreise der Länge mindestens 3 hat ein vollständiger ungerichteter Graph mit $n \in \mathbb{N}$ Knoten? Begründen Sie Ihre Antwort kurz.
- e) Sei G = (V, E) ein gerichteter Graph. Wir definieren die Menge $E' = \{(i, j) \mid (j, i) \in E\}$. Betrachten Sie die Graphen $G^T = (V, E')$ und $\hat{G} = (V, \hat{E})$ mit $\hat{E} = E \cup E'$. Beweisen oder widerlegen Sie folgende Aussagen:
 - i) \hat{G} ist symmetrisch.
 - ii) Falls \hat{G} stark zusammenhängend ist, dann ist G oder G^T stark zusammenhängend.
 - iii) Falls G oder G^T stark zusammenhängend ist, dann ist auch \hat{G} stark zusammenhängend.
 - iv) G ist schwach zusammenhängend genau dann, wenn G^T schwach zusammenhängend ist.

Hinweise:

- Die Länge eines Kreises $v_0 \dots v_k$ ist k.
- ullet Sie dürfen die Anzahlen auch mit \sum und \prod Termen angeben.

Lösung

Sei n = |V|.

a) Es gibt $2^{|M|}$ viele Teilmengen einer endlichen Menge M. Für die Kanten eines gerichteten Graphen

$$G = (V, E)$$
 gilt, dass $E \subseteq V \times V = \{(u, v) \mid u, v \in V\}$. Mit $|V \times V| = |V| \cdot |V| = n^2$ folgt, dass es

Computergraphik und Multimedia

viele gerichtete Graphen mit n Knoten gibt.

b) Für die Kanten eines ungerichteten Graphen G = (V, E) gilt, dass wenn $(u, v) \in E$ dann auch $(v, u) \in E$. Daher können wir Paare auch als Mengen interpretieren und erhalten dadurch, dass in dieser alternativen Interpretation $E \subseteq \{\{u,v\} \subseteq V \mid u \neq v\} \cup \{\{u\} \mid u \in V\}$ gilt. Es gibt $\binom{m}{k}$ viele k-elementige Teilmengen einer m-elementigen Menge. Daher gibt es $\binom{n}{2}$ viele mögliche Kanten zwischen verschiedenen Knoten und $\binom{n}{1}$ viele mögliche Kanten zwischen gleichen Knoten. Es gibt insgesamt also

$$2\binom{n}{2} + \binom{n}{1} = 2^{\frac{n \cdot (n-1)}{2} + n} = 2^{\frac{n^2}{2} + \frac{n}{2}}$$

viele ungerichtete Graphen mit *n* Knoten.

Hinweise:

- Man kann bei a) und b) z.B. auch über die Anzahl verschiedener Adjazenzmatrizen argumentieren
- c) Bei einem vollständigen Graphen ist jede Folge von k+1 Knoten ein gültiger Pfad der Länge k. Die Anzahl der Folgen mit k+1 verschiedenen Knoten beträgt

$$\frac{n!}{(n-(k+1))!} = \frac{n!}{(n-k-1)!} = \prod_{i=n-k}^{n} i = \prod_{i=0}^{k} (n-i)$$

Hinweise:

- ullet Beachten Sie, dass für den Fall k>n das obige Produkt immer zu 0 auswertet, da einer der Faktoren 0 ist.
- d) In einem vollständigen Graphen gilt:

$$v_0v_1\dots v_k$$
 ist ein einfacher Pfad $\iff v_0v_1\dots v_kv_0$ ist ein einfacher Kreis

Wir können also jeden einfachen Pfad zu einem einfachen Kreis eindeutig zuordnen.

Maximal kann ein einfacher Kreis Länge *n* haben.

Aus c) folgt damit: Die Anzahl der Kreise der Länge mindestens 3 beträgt

$$\sum_{j=3}^{n} \prod_{i=0}^{j-1} (n-i)$$
Kreise der Länge genau

- i) Die Aussage ist wahr. Falls $(u, v) \in \hat{E}$ dann gibt es zwei Fälle:
 - Falls $(u, v) \in E$ ist nach Definition von E' auch $(v, u) \in E'$ und daher $(v, u) \in \hat{E}$.
 - Falls $(u, v) \in E'$ ist nach Definition von E' auch $(v, u) \in E$ und daher $(v, u) \in \hat{E}$.

In beiden Fällen folgt also $(v, u) \in \hat{E}$.

ii) Die Aussage ist falsch. Betrachten Sie das folgende Gegenbeispiel. Weder G noch G^T sind stark zusammenhängend, \hat{G} jedoch schon.

Lehrstuhl für Informatik 8

Computergraphik und Multimedia

- iii) Die Aussage ist wahr. Wir nehmen an, dass G stark zusammenhängend ist (der Fall dass $G^{\mathcal{T}}$ stark zusammenhängend ist, ist analog).
 - Damit \hat{G} stark zusammenhängend ist, muss es von jedem zwei Knoten $u, v \in V$ ein Pfad von unach v geben. Da G stark zusammenhängend ist, gibt es tatsächlich einen Pfad von u nach v. Da $\hat{E} \subseteq E$ gibt es diesen Pfad dann auch in \hat{G} . Damit ist \hat{G} stark zusammenhängend.
- iv) Die Aussage ist wahr. " \Longrightarrow ": Sei G schwach zusammenhängend und seien $v, u \in V$ zwei beliebige Knoten. Es gibt eine Folge $v_0v_1 \dots v_k$ mit $v_0 = v$, $v_k = u$ und für alle $i \in \{0, \dots, k-1\}$ gilt $(v_i, v_{i+1}) \in E$ oder $(v_{i+1}, v_i) \in E$. Nach Definition von E' gilt ebenfalls für alle $i \in \{0, ..., k-1\}$, dass $(v_{i+1}, v_i) \in E'$ oder $(v_i, v_{i+1}) \in E'$. Es folgt, dass u von v auch in G^T über einen (ungerichteten) Pfad erreichbar ist. G^T ist also schwach zusammenhängend.

 $" \Longleftarrow ": (analog)$

Aufgabe 7 (Zykel finden):

2 + 2 + 2 + 2 = 8 Punkte

Gegeben sei eine einfach verkettete Liste mit n Elementen, deren Länge Sie nicht kennen. Wir betrachten diese Liste im folgenden als gerichteten Graph.

- a) Entwerfen Sie einen Algorithmus, mit dem sich testen lässt, ob der Graph einen Zykel enthält.
- **b)** Zeigen Sie die Korrektheit Ihres Algorithmus.
- c) Wie ist seine Laufzeit? Begründe Sie Ihre Antwort.
- **d)** Ist dies auch in Zeit O(n) möglich? Begründe Sie Ihre Antwort.

Lösung

Eine Möglichkeit sieht so aus: Mit zwei Zeigern I1, I2 durchlaufen wir die Liste. In jedem Schritt wird, falls möglich, I_1 um ein Element weiterverschoben, I_2 um zwei Elemente. Wenn dies nicht möglich ist und das Ende der Liste erreicht ist, liegt offenbar kein Zykel vor. Wenn dieses möglich ist, wird verglichen, ob $I_1 = I_2$ ist, also l_1 und l_2 auf das gleiche Element zeigen. Wenn ja, wurde ein Zykel gefunden.

Zur Analyse: Falls die Liste keinen Zykel enthält, terminiert das Verfahren sobald das Ende der Liste erreicht wurde. Falls die Liste jedoch einen Zykel der Länge k enthält, dann ist nach höchstens n Iterationen die Abbruchbedingung $I_1 = I_2$ erfüllt: Nach höchstens n - k Schritten befinden sich beide Zeiger bereits im Zykel. Im Zykel angekommen reduziert sich die Distanz beider Zeiger nach jeder Iteration um genau eins. Nach höchstens k weiteren Schritten hat sich mindestens einmal die Situation ergeben, dass $l_1 = l_2$, denn irgendwann wird l_2 l_1 überholen. D.h., irgendwann wird die Situation entstehen, dass sie höchstens ein Feld weit auseinanderstehen, also $l_2 = l_1 - 1$. Dann gilt im nächsten Schritt aber $l_2 = l_1$.

Damit ist dann auch die Laufzeit in O(n).

Dieser Algorithmus ist unter dem Namen "Floyd's "tortoise and hare" cycle detection algorithm" bekannt.