

PDA - the automata for CFLs

- What is?
 - FA to Reg Lang, PDA is to CFL
- PDA == [ε-NFA + "a stack"]
- Why a stack?

Pushdown Automata - Definition

- A PDA P := $(Q, \sum, \Gamma, \delta, q_0, Z_0, F)$:
 - Q: states of the ε-NFA
 - ∑: input alphabet
 - Γ : stack symbols
 - δ: transition function
 - q₀: start state
 - Z₀: Initial stack top symbol
 - F: Final/accepting states

old state Stack top input symb. new state(s) new Stack top(s)

δ: $Q \times \Gamma \times \sum => Q \times \Gamma$

δ: The Transition Function

i)

ii)

iii)

$$\delta(q,a,X) = \{(p,Y), ...\}$$

state transition from q to p a is the next input symbol X is the current stack *top* symbol

Y is the replacement for X; it is in Γ^* (a string of stack symbols)

Set
$$Y = \varepsilon$$
 for: $Pop(X)$

If Y=X: stack top is unchanged

If $Y=Z_1Z_2...Z_k$: X is popped and is replaced by Y

in reverse order (i.e., Z₁ will be the

new stack top)

Y = ?	Action
Υ=ε	Pop(X)
Y=X	Pop(X) Push(X)
$Y=Z_1Z_2Z_k$	Pop(X) $Push(Z_k)$ $Push(Z_{k-1})$
	Push(Z_2) Push(Z_1)

4

Example

```
Let L_{wwr} = \{ww^{R} \mid w \text{ is in } (0+1)^{*}\}

• CFG for L_{wwr}: S=>0S0 \mid 1S1 \mid \epsilon

• PDA for L_{wwr}:

• P := (Q, \sum, \Gamma, \delta, q_{0}, Z_{0}, F)

= (\{q_{0}, q_{1}, q_{2}\}, \{0,1\}, \{0,1,Z_{0}\}, \delta, q_{0}, Z_{0}, \{q_{2}\})
```

Initial state of the PDA:

1.
$$\delta(q_0, 0, Z_0) = \{(q_0, 0Z_0)\}$$

2.
$$\delta(q_0, 1, Z_0) = \{(q_0, 1Z_0)\}$$

First symbol push on stack

3.
$$\delta(q_0, 0, 0) = \{(q_0, 00)\}$$

4.
$$\delta(q_0, 0, 1) = \{(q_0, 01)\}$$

5.
$$\delta(q_0, 1, 0) = \{(q_0, 10)\}$$

6.
$$\delta(q_0, 1, 1) = \{(q_0, 11)\}$$

$$\delta(q_0, ε, 0) = \{(q_1, 0)\}$$

8.
$$\delta(q_0, \epsilon, 1) = \{(q_1, 1)\}$$

9.
$$\delta(q_0, \, \epsilon, \, Z_0) = \{(q_1, \, Z_0)\}$$

10.
$$\delta(q_1, 0, 0) = \{(q_1, \varepsilon)\}$$

11.
$$\delta(q_1, 1, 1) = \{(q_1, \epsilon)\}$$

12.
$$\delta(q_1, \epsilon, Z_0) = \{(q_2, Z_0)\}$$

Grow the stack by pushing new symbols on top of old (w-part)

Switch to popping mode (boundary between w and w^R)

Shrink the stack by popping matching symbols (w^R-part)

Enter acceptance state

PDA as a state diagram

 $\delta(q_i, a, X) = \{(q_i, Y)\}$

4

PDA for L_{wwr}: Transition Diagram

Example 2: language of balanced paranthesis

Grow stack

Pop stack for matching symbols

$$\sum = \{ (,) \}$$

$$\Gamma = \{Z_0, (\}$$

$$Q = \{q_0, q_1, q_2\}$$

To allow adjacent blocks of nested paranthesis

Example 2: language of balanced paranthesis (another design)

PDA's Instantaneous Description (ID)

- A PDA has a configuration at any given instance: (q,w,y)
 - q current state
 - w remainder of the input (i.e., unconsumed part)
 - y current stack contents as a string from top to bottom of stack

If $\delta(q,a,X)=\{(p,A)\}\$ is a transition, then the following are also true:

- (q, a, X) |--- (p,ε,A)
- (q, aw, XB) |--- (p,w,AB)
- |--- sign is called a "turnstile notation" and represents one move
- |---* sign represents a sequence of moves

How does the PDA for L_{wwr} work on input "1111"?

There are two types of PDAs that one can design: those that accept by final state or by empty stack

Acceptance by...

- PDAs that accept by final state:
 - For a PDA P, the language accepted by P, denoted by L(P) by *final state*, is: Checklist:
 - $\{w \mid (q_0, w, Z_0) \mid ---^* (q, \varepsilon, A) \}, s.t., q \in F$

- input exhausted?
- in a final state?

- PDAs that accept by empty stack:
 - For a PDA P, the language accepted by P, denoted by N(P) by *empty stack*, is:
 - $\{w \mid (q_0, w, Z_0) \mid ---^* (q, \varepsilon, \varepsilon) \}$, for any $q \in Q$.
- Q) Does a PDA that accepts by empty stack need any final state specified in the design?

Checklist:

- input exhausted?
- is the stack empty?

4

Example: L of balanced parenthesis

PDA that accepts by final state

An equivalent PDA that accepts by empty stack

$$P_{N}$$
: $(Z_{0}/(Z_{0}))$ $(Z_{0}/(Z_{0}))$

start
$$\epsilon, Z_0/Z_0$$