AGA KHAN UNIVERSITY EXAMINATION BOARD HIGHER SECONDARY SCHOOL CERTIFICATE

CLASS XII

MODEL EXAMINATION PAPER 2023 AND ONWARDS

Mathematics Paper II

Time: 1 hour 30 minutes Marks: 50

INSTRUCTIONS

scarefully. Please read the following instructions carefully.

1. Check your name and school information. Sign if it is accurate.

I agree that this is my name and school. Candidate's Signature

RUBRIC

- 2. There are NINE questions. Answer ALL questions. Choices are specified inside the paper.
- 3. When answering the questions:

Read each question carefully.

Use black pointer to write your answers. DO NOT write your answers in pencil.

Use a black pencil for diagrams. DO NOT use coloured pencils.

DO NOT use staples, paper clips, glue, correcting fluid or ink erasers.

Complete your answer in the allocated space only. DO NOT write outside the answer box.

- 4. The marks for the questions are shown in brackets ().
- A formulae list is provided on page 2 and 3. You may refer to it during the paper, if you wish. 5.
- 6. You may use a scientific calculator if you wish.

Aga Khan University Examination Board List of Formulae for Mathematics XII

Note:

- All symbols used in the formulae have their usual meaning.
- The same formulae will be provided in the annual and re-sit examinations.

Functions and Limits

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

$$\lim_{x \to 0} \frac{\sqrt{x+a} - \sqrt{a}}{x} = \frac{1}{2\sqrt{a}}$$

$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$$

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} =$$

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \log_e a$$

$$\frac{\Delta y}{\Delta x} = \frac{f(x+h) - f(x)}{h}$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}x^n = nx^{n-1}$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{-}{dx}(\cot x) = -\csc x$$

$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e \qquad \lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^{x} = e \qquad \lim_{x \to 0} \frac{a^{x} - 1}{x} = \log_{e} a$$

$$\frac{\Delta y}{\Delta x} = \frac{f(x+h) - f(x)}{h} \qquad \frac{d}{dx} (\sec x) = \sec x \tan x \qquad \frac{d}{dx} x^{n} = nx^{n-1} \qquad \frac{d}{dx} (\sin x) = \cos x$$

$$\frac{d}{dx} (\cos x) = -\sin x \qquad \frac{d}{dx} (\tan x) = \sec^{2} x \qquad \frac{d}{dx} (\cot x) = -\csc^{2} x \qquad \frac{d}{dx} (\csc x) = -\csc x \cot x$$

$$\frac{d}{dx} \left[\sin^{-1} x\right] = \frac{1}{\sqrt{1 - x^{2}}}, \ x \in (-1, 1) \qquad \frac{d}{dx} \left[\cos^{-1} x\right] = -\frac{1}{\sqrt{1 - x^{2}}}, \ x \in (-1, 1) \qquad \frac{d}{dx} \left[\tan^{-1} x\right] = \frac{1}{x^{2} + 1}, \ x \in R \qquad \frac{d}{dx} \left[\sec^{-1} x\right] = \frac{1}{|x|\sqrt{x^{2} - 1}}, \ x \in [-1, 1]$$

$$\frac{d}{dx} \left[\cos^{-1} x \right] = -\frac{1}{\sqrt{1 - x^2}}, x \in (-1,$$

$$\frac{d}{dx}\left[\tan^{-1}x\right] = \frac{1}{x^2 + 1}, \ x \in R$$

$$\frac{dx}{dx} = \frac{1}{|x|} \sqrt{x^2 - 1}$$

$$\frac{d}{dx} = \frac{1}{1} = \frac{1}{1}$$

$$\frac{dx}{dx} = \frac{|x|\sqrt{x^2 - 1}}{|x|\sqrt{x^2 - 1}}, \quad \text{with} \quad x \in \mathbb{R}$$

$$\frac{d}{dx}\left[\cot^{-1}x\right] = -\frac{1}{1+x^2}, x \in I$$

$$\frac{d}{d}$$
 (tanh x) = sech²:

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cosh x) = \sinh x$$

$$\frac{d}{dx}(\tanh x) = \operatorname{sech}^2 x$$

$$\frac{d}{dx}(\operatorname{cosech} x) = -\coth x \operatorname{cosech} x$$

$$\frac{d}{dx}(\operatorname{sech}x) = -\tanh x \operatorname{sech}x$$

$$\frac{d}{dx}(\coth x) = -\operatorname{cosech}^2 x$$

$$\frac{d}{dx}[f(x) \times g(x)] = f(x)\frac{d}{dx}[g(x)] + g(x)\frac{d}{dx}[f(x)]$$

$$\frac{d}{dx}[\sin^{2}x] = \frac{1}{\sqrt{1-x^{2}}}, x \in (-1, 1) \qquad \frac{1}{dx}[\cos^{2}x] = -\frac{1}{\sqrt{1-x^{2}}}, x \in (-1, 1) \qquad \frac{1}{dx}[\tan^{2}x] = \frac{1}{x^{2}+1}, x \in R \qquad \frac{1}{dx}[\sec^{2}x] = \frac{1}{|x|\sqrt{x^{2}-1}},$$

$$\frac{d}{dx}[\csc^{-1}x] = -\frac{1}{|x|\sqrt{x^{2}-1}}, x \in [-1, 1] \qquad \frac{d}{dx}[\cot^{-1}x] = -\frac{1}{1+x^{2}}, x \in R \qquad \frac{d}{dx}(a^{x}) = a^{x} \ln a \qquad \frac{d}{dx}(\log_{a}x) = \frac{1}{x} \times \frac{1}{\ln a}$$

$$\frac{d}{dx}(\sinh x) = \cosh x \qquad \frac{d}{dx}(\cosh x) = \sinh x \qquad \frac{d}{dx}(\tanh x) = \operatorname{sech}^{2}x$$

$$\frac{d}{dx}(\cosh x) = -\coth x \operatorname{cosech} x \qquad \frac{d}{dx}(\operatorname{sech} x) = -\tanh x \operatorname{sech} x \qquad \frac{d}{dx}(\coth x) = -\operatorname{cosech}^{2}x$$

$$\frac{d}{dx}[f(x) \times g(x)] = f(x)\frac{d}{dx}[g(x)] + g(x)\frac{d}{dx}[f(x)] \qquad \frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)\frac{d}{dx}[f(x)] - f(x)\frac{d}{dx}[g(x)]}{[g(x)]^{2}}$$

Maclaurin Series $f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^n(0)}{n!}x^n + ...$

Taylor's Series
$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \frac{f^{iv}(a)}{4!}(x-a)^4 + \dots + \frac{f^n(a)}{n!}(x-a)^n + \dots$$

Integration

$$\int f'(x)dx = f(x) + c \qquad \int [f(x)]^n f'(x)dx = \frac{[f(x)]^{n+1}}{n+1} + c, \qquad (n \neq -1) \qquad \int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

$$\int \frac{f'(x)}{f(x)}dx = \ln f(x) + c \qquad \int \csc x \, dx = \ln|\csc x - \cot x| + c \qquad \int \sec x \, dx = \ln|\sec x + \tan x| + c$$

Plane Analytical Geometry (Straight Line)

$$d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

Page 3 of 24

Point of internal division

Point of external division

$$\left(\frac{k_1x_2 + k_2x_1}{k_1 + k_2}, \frac{k_1y_2 + k_2y_1}{k_1 + k_2}\right) \qquad \left(\frac{k_1x_2 - k_2x_1}{k_1 - k_2}, \frac{k_1y_2 - k_2y_1}{k_1 - k_2}\right)$$

$$\left(\frac{k_1x_2 - k_2x_1}{k_1 - k_2}, \frac{k_1y_2 - k_2y_1}{k_1 - k_2}\right)$$

$$\frac{x - x_1}{\cos \alpha} = \frac{y - y_1}{\sin \alpha} = r \text{ (say)}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad \frac{x}{a} + \frac{y}{b} = 1$$

$$\frac{x}{a} + \frac{y}{b} =$$

$$x\cos\alpha + y\sin\alpha = p$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$\theta = \tan^{-1} \left[\frac{m_2 - m_1}{1 + m_1 m_2} \right]$$

$$\theta = \tan^{-1} \left[\frac{2\sqrt{h^2 - ab}}{a + b} \right] \qquad \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$$

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$$

$$\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

Circles

$$(x-h)^2 + (y-k)^2 = r^2$$

$$x^2 + y^2 + 2gx + 2fy + c = 0$$

Equation of normal to a circle

$$(y-y_1)(x_1+g) = (x-x_1)(y_1+f)$$

$$xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$$

Length of tangent to a circle from a point (x_1, y_1) , $l = \sqrt{x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c}$

Parabola

$$x^2 = 4ay$$

$$(x-h)^2 = 4a(y-k)$$

$$y^2 = 4ax$$

$$(y-k)^2 = 4a(x-h)$$

$$x^{2} = 4ay$$
 $(x-h)^{2} = 4a(y-k)$
Ellipse $\frac{(x-h)^{2}}{a^{2}} + \frac{(y-k)^{2}}{b^{2}} = 1$, $a > b$ $b^{2} = a^{2}(1-e^{2})$
Hyperbola

$$b^2 = a^2 \left(1 - e^2\right)$$

$$c = ae$$

$$\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1, \ a > b$$

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$
 $b^2 = a^2(e^2 - 1)$

$$b^2 = a^2 \left(e^2 - 1 \right)$$

$$c = ae$$

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

Translation and Rotation

$$x = X + h$$
, $y = Y + k$

$$X = x\cos\theta + y\sin\theta$$
, $Y = y\cos\theta - x\sin\theta$

$$\tan 2\theta = \frac{2h}{a-h}$$

Vectors

$$\underline{u}.\underline{v} = |\underline{u}||\underline{v}|\cos\theta$$

Area of a triangle
$$=\frac{1}{2}|\underline{u} \times \underline{v}|$$
 $\underline{u} \times \underline{v} = (|\underline{u}||\underline{v}|\sin\theta)\hat{\underline{n}}$ $\underline{r} = \frac{q\underline{a} + p\underline{b}}{p+q}$

$$\underline{u} \times \underline{v} = \left(|\underline{u}| |\underline{v}| \sin \theta \right) \hat{\underline{n}}$$

$$\underline{r} = \frac{q\underline{a} + p\underline{b}}{p + q}$$

$$|\overrightarrow{P_1P_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

$$\frac{1}{6}(\underline{u} \times \underline{v}).\underline{w} = \frac{1}{6}[\underline{u} \ \underline{v} \ \underline{w}]$$

$$\underline{u}.(\underline{v} \times \underline{w}) = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

Some Trigonometric Identities

$$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta$$
$$\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta$$

$$\cos P + \cos Q = 2\cos\frac{P+Q}{2}\cos\frac{P-Q}{2}$$

$$\cos P - \cos Q = -2\sin\frac{P+Q}{2}\sin\frac{P-Q}{2}$$

$$\sin P + \sin Q = 2\sin \frac{P+Q}{2}\cos \frac{P-Q}{2}$$

$$\sin P - \sin Q = 2\cos\frac{P+Q}{2}\sin\frac{P-Q}{2}$$

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

PLEASE TURN OVER THE PAGE

Page 4 of 24	
Q.1. Evaluate $\lim_{x \to 3} \frac{(x^2 - 9)^2}{x^2 - 6x + 9}$.	(Total 3 Marks)
Model Paper Learning Holder Learning Holder Linds	

Page 5 of 24		
(ATTEMPT ANY TWO PARTS FROM a, b AND c OF Q.2.) Q.2.	(Total 10 Marks)	
i. If $y = e^{x + \tan x}$, then show that $\frac{dy}{dx} = 2y + y \tan^2 x$.	(3 Marks)	
LB 2023 100		
W 6.30 8 6.0		
ii. For $y = \sqrt{9x^2 - 4}$, show that $\frac{dy}{dx} = \frac{9x}{\sqrt{9x^2 - 4}}$.	(2 Marks)	
PLEASE TURN OVER THE PAGE		

Page	re 6 of 24	
	(ATTEMPT ANY TWO PARTS FROM a, b AND c OF Q.2.)	
b.	For $y = \ln\left(\frac{\sqrt{x\cos x}}{\sin x}\right)$, find $\frac{d^2y}{dx^2}$.	(5 Marks)
	Pt Sobolo	
	Mog Cylins	

Page 7 of 24		
	(ATTEMPT ANY TWO PARTS FROM a, b AND c OF Q.2.)	
c.	A water tank is cylindrical in shape. If the volume of the tank is 64 m³, then what would be the radius and height of the water tank to have the least surface area? Write you answer to two decimal places.	
	(Note : The volume of a cylinder is $V = \pi r^2 h$, surface area of a cylinder is $S = 2\pi r^2 + 2\pi rh$	
	and $h = \frac{64}{\pi r^2}$, where r is the radius of the cylinder and h is the height of the cylinder.)	
	(5 Marks)	
	Pt Pools	
	100 Kills	
	Mrs Sac	
	PLEASE TURN OVER THE PAGE	

Page 8 of 24	
(ATTEMPT ANY TWO PARTS FROM a, b AND c OF Q.3.) Q.3.	(Total 10 Marks)
a. Evaluate $\int \frac{xdx}{\sqrt{x^2 + 9}}$ by substituting $x = 3 \tan \theta$.	(5 Marks)
	<u> </u>
- 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Mo _o schi,	
40	

Page 9 of 24		
b.	(ATTEMPT ANY TWO PARTS FROM a, b AND c OF Q.3.) Evaluate the following indefinite integrals.	
0.		
	i. $\int \left\{ (2x^2 - 3)^2 \right\}^{\frac{3}{2}} x dx$	(2 Marks)
	33.00	
	t x	
	ii. $\int \frac{x}{(x+b)^2} dx$	(3 Marks)
	John Marine	
	Mode	
	PLEASE TURN OVER THE PAGE	

Page	e 10 of 24	
	(ATTEMPT ANY TWO PARTS FROM a, b AND c OF Q.3.)	
c.	Evaluate the following definite integrals by showing all the necessary steps.	(5 Marks)
	$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{1 + \cos x}$	
	(B, 2) (C)	
	77, 26, 160	
	Pi Po &	
	1000 Killing	

Page	e 11 of 24	
Q.4.		(Total 4 Marks)
i.	Convert the equation $x - \sqrt{3} y = 1$ into the symmetric form.	(3 Marks)
	OUA	
	00231109	
ii.	Find the equation of a straight line which passes through the point $(0, -1)$ and w (slope) is 1.	hose gradient (1 Mark)
	X Sign	
	40	
	PLEASE TURN OVER THE PAGE	

Page 12 of 24		
Q.5.		(Total 4 Marks)
A burger shop sell Rs 12 and Rs 10 re	Is chicken and beef burgers. The profit on the chicken burger and the bespectively.	peef burger is
Due to existing co	ooking facilities, it cannot cook	
• more than 2	00 chicken burgers. 50 beef burgers. re than 400 burgers altogether.	
For the given line	ar programming problem,	
i. state the con		(1 Mark)
ii. state the pro	ofit function.	(1 Mark)
	K 6.9.8	
	-00 miles	
iii. find any two	o of the corner points by drawing constraints on the given graph.	(2 Marks)

Page 13 of 24
Q.6. (Total 4 Marks) Find the centre of the circle passing through the points $(0, 0)$ and $(3, -2)$ and having centre at the line
3x + y = 10.
J.F. Oei eaith
Model Ling
Mocielli
kot e
DI EASE TUDN OVED THE DACE

Page 14 of 24	
(ATTEMPT ANY TWO PARTS FROM a, b AND c OF Q.7	7.)
Q.7.	(Total 8 Marks)
a. Find the focus and the vertex of the parabola $(x-7)^2 = 28(y+1)$.	(4 Marks)
	7/14
40080	
* O	

Page 15 of 24			
		(ATTEMPT ANY TWO PARTS FROM a, b AND c OF Q.7.)	
b.	An	ellipse with centre $(0, 0)$ has vertices $(\pm 5, 0)$ and foci $(\pm 4, 0)$. Find	
	i.	the equation of the ellipse.	(2 Marks)
	ii.	the eccentricity of the ellipse.	(1 Mark)
	iii.	the equations of the directrices of the ellipse.	(1 Mark)
		18 20 ²³ in 9	
		77) 00 8 1 e g	
		Ho Schrift	
		PLEASE TURN OVER THE PAGE	

Page 16 of 24				
(ATTEMPT ANY TWO PARTS FROM a, b AND c OF Q.7.)				
c. T	the vertices of a hyperbola are $(15, 1)$ and $(-1, 1)$. If the length of its conjugate axis is 12 units, ten find the equation of the hyperbola in standard form. (4 Marks)			
	N SO D			
	ole ving			
	Me Sc.			

Page 17 of 24	
	al 4 Marks)
A triangle ABC , located on the Cartesian plane, has vertices $A(0, 3)$, $B(-3, 0)$ and $C(3, -3)$. is translated through a distance of -3 units while there is no change in the y -axis.	The axis
i. Find the new vertices of the triangle ABC with respect to the translated axis.	(3 Marks)
ii. Using the given graph paper, draw the triangle ABC with its new vertices.	(1 Mark)
PLEASE TURN OVER THE PAGE	

Page 18 of 24			
(ATTEMPT EITHER PART a OR PART b OF Q.9.)			
Q.9. (Total 3 M	Marks)		
a. Three points P , Q and R form a straight line such that $\overrightarrow{PQ} = \overrightarrow{PR}$ and $\overrightarrow{OQ} = k(\mathbf{a} - \mathbf{b})$.			
	Marks)		
0)			
- S JOV GIRS			
ii. Hence, find the unit vector in the direction of <i>R</i> .			
11. Thence, find the difference of the differenc	Mark)		
- Jei vilo			

Page 19 of 24		
	(ATTEMPT EITHER PART a OR PART b OF Q.9.)	
b. It is given th	at $\underline{p} \times \underline{q} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 5 & -1 & 3 \\ 2 & -2 & m \end{vmatrix}$, $\underline{r} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}$ and $\underline{q} \bullet (\underline{r} \times \underline{p}) = 10$. Find the value of	т.
	(3 M	arks
	3 ONA	
	Model Ling Pearling Production of the Solid Control	
	"Of Supering the state of the s	

END OF PAPER

My Esching Pearing Outh

Model Figure & Learning Only Model Figure & Learning Only

My Eggining Pagining Only

Model Figure & Learning Only Model Figure & Learning Only

My Eggining Pagining Only