Phylogenetic trees

Neighbor joining

Outline

- The Neighbor joining algorithm for estimating a phylogenetic tree from pairwise distances
- Checking for additivity
- Rooting an unrooted tree

Overview of neighbor joining

- Motivation: the assumption about the ultrametric property is too strong
 - Most sequences diverge at different rates
- A more relaxed requirement is that of additivity
 - Distance between a pair of species/nodes is equal to the sum of the branch lengths
- Neighbor joining
 - Guaranteed to succeed if additivity property holds
 - Like UPGMA, consider pairs of nodes at each iteration and joins them
 - Produces unrooted trees

How to select nodes for joining?

- Given all pairwise distances for n taxa
- d_{ij} denote the distance between node i and j
- Should we select node pairs with the smallest d_{ij} ?

This will give us an incorrect tree

Selecting nodes to join

- Neighbor joining requires us to correct the distance to account for distances from all other nodes.
- ullet The corrected distance is denoted as D_{ii}

$$D_{ij} = d_{ij} - (r_i + r_j)$$

$$T_i = \frac{1}{L - 2} \sum_{1 \le k \le L} d_{ik}$$

L: number of leaves

 r_i : "Average" distance from all other leaves

Defining the distance to a new node

Given d_{ij} , d_{im} , d_{jm} , how to calculate distance of existing node m to new node k?

$$d_{km} = \frac{d_{im} + d_{jm} - d_{ij}}{2}$$

Updating Distances in Neighbor Joining

• can calculate the distance from a leaf to its parent node in the same way

e way
$$d_{ik} = \frac{1}{2}(d_{ij} + d_{im} - d_{jm})$$

$$d_{jk} = d_{ij} - d_{ik}$$

Updating Distances in Neighbor Joining

 we can generalize this so that we take into account the distance to all other leaves

$$d_{ik} = \frac{1}{2}(d_{ij} + r_i - r_j) \qquad (2)$$

where

$$r_i = \frac{1}{|L|-2} \sum_{m \in L} d_{im}$$

and L is the set of leaves

• this is more robust if data aren't strictly additive

Algorithm for NJ

- Inputs
 - Pairwise distance matrix entries: d_{ij}
- Initialization
 - T be set the of leaf nodes
 - -L=T
 - Compute r_i for all i in L
 - Compute D_{ij}
- Iteration
 - Pick a pair i, j from L such that D_{ij} is smallest
 - Define new node k
 - Compute d_{ik} , d_{ik} , add edge between k and i, and between k to j
 - Compute d_{km} for all other nodes m in L
 - Add k to L, remove i and j from L
 - (Re)compute D_{mn} for all nodes m, n in L
- Terminate
 - If L has two nodes, add the edge between these two.

Can we check for additivity?

Check for additivity: For four leaves, i,j,k,l and the distances $d_{ij},d_{ik},d_{il},d_{jk},d_{jl},d_{kl}$

The three sums of two distances

Should be such that two of these are equal, and larger than the third.

Comparing NJ and UPGMA

- Similarities
 - Input is pairwise distance matrix
 - Iteratively join nodes in greedy manner
- UPGMA
 - Rooted tree
 - Assumptions: Additivity and ultrametric (Molecular clock)
- NJ
 - Unrooted tree
 - Assumption: Additivity

Rooting a tree

- An unrooted tree can be converted to a rooted tree using an outgroup species
- Outgroup: a species known to be more distantly related to all the species than each of the species themselves
- Find the branch where the outgroup is selected to be added
- That gives the root

Summary

- Neighbor joining succeeds in reconstructing the correct tree with only the assumption of additivity
- Neighbor joining and UPGMA are both greedy iterative algorithms
- The algorithms differ in their choice of the pair of nodes that are to be joined at each step
- Although neighbor joining outputs an unrooted tree, outgroup information can be used to root it.