Рассмотрение возможных стратегий для получения оптимального распределения вероятностей в задаче о многоруких бандитах

Михаил Давыдов 8 апреля 2024 г.

1 Постановка задачи и метрики

Задача: мы имеем n рычагов, i-ый рычаг соответствует какому-то распределению со средним m_i и дисперсией σ_i^2 . Распределения изначально нам неизвестны. Каждый ход мы можем выбрать один из рычагов, при выборе i-го рычага мы получаем награду, сгенерированную из i-го распределения. После t-го шага у нас имеется вектор вероятностей $P_t = (p_t^1,...,p_t^n), \ \forall i \ p_i \geq 0, \$ и рычаг выбирается в соотвествии с этим вектором. Задача — за T шагов по получаемым наградам максимизировать $V = m_p - \lambda \cdot \sigma_p^2 = \sum_{i=1}^n p_i^T m_i - \lambda \sum_{i=1}^n (p_i^T)^2 \sigma_i^2$ — портфель. Если параметры распределений известны для нас (но не для алгоритма) в ходе тестирования,

Если параметры распределений известны для нас (но не для алгоритма) в ходе тестирования, то для измерения результата можно использовать 3 метрики. Каждая из наград считается по каждому шагу и усредняется по нескольким сгенерированным различным независимым задачам о многоруких бандитах.

- 1. Ожидаемый портфель $\mathrm{Portf}_t = m_{p_t} \lambda \sigma_{p_t}^2$. Метрика аналогична награде для обычной задачи о многоруких бандитах. В качестве альтернативы можно использовать сожаление $\mathrm{Regret}_t = \max_{\mathcal{P}} \left(m_p \lambda \sigma_p^2 \right) \mathrm{Portf}_t$
- 2. Так как мы хотим, чтобы вероятности сошлись к оптимальным как можно быстрее, то можно использовать усредненный по шагам портфель $\overline{\operatorname{Portf}_t} \frac{\sum_{k=1}^t m_{p^k} \lambda \sigma_{p^k}^2}{t}$ или усредненное сожаление $\overline{\operatorname{Regret}_t} = \max_p \left(m_p \lambda \sigma_p^2\right) \overline{\operatorname{Portf}_t}$.
- 3. Пусть вектор вероятностей, при котором достигается макисмальное значение $m_p \lambda \sigma_p^2$, равен $P = (p^1, ..., p^n)$. Зная m_i и σ_i^2 , его можно получить с помощью метода градиентного подъема (формулой воспользоваться не получится, так как вероятности в нашей задаче неотрицательны). Пусть также полученный вектор вероятностей в задаче о многоруких бандитах равен $B = (b_1, ..., b_n)$. Тогда метрика равна

$$\delta = 1 - \frac{1}{2} \sum_{i=1}^{n} |b_i - p_i|$$

Заметим, что в обычной задаче о многоруких бандитах P=(0,...,1,0,...,0), и новая метрика равна $1-\frac{1}{2}\left((1-b_k)+\sum_{i=1,i\neq k}^n b_i\right)=1-(1-b_k)=b_k$, то есть совпадает с процентом оптимальных действий, а это есть вторая метрика в обычной задаче о многоруких бандитах. Так как $\delta\in[min(p_i),1]$, то можно также ввести "растянутую" метрику $\hat{\delta}=(\delta-min(p_i))\cdot\frac{1}{1-min(p_i)}\in[0,1]$. Аналогично, можно считать "сожаление" и усредненное сожаление.

2 Подсчет матожидания и дисперсии

Пусть a-ый рычаг на t-ом шаге был выбран всего $N_t(a)$ раз. Обозначим $R_i(a) = R_i \cdot \mathbb{I}(A_i = a)$. Будем приближать матожидание и дисперсию с помощью выборочного матожидания и выборочной дисперсии:

- $Q_t(a) = \frac{\sum_{i=1}^{t-1} R_i(a)}{N_t(a)}$ выборочное матожидание так же, как и для обычной задачи о многоруких бандитах. Если $N_t(a)=0$ или t=1, то $Q_t(a)=0$
- $S_t(a) = \frac{1}{N_t(a)-1} \sum_{i=1}^{t-1} (R_i(a) Q_t(a))^2 = \frac{N_t(a)}{N_t(a)-1} (\overline{R_t^2(a)} Q_t(a)^2)$ выборочная дисперсия, где $\overline{R_t^2(a)} = \frac{\sum_{i=1}^{t-1} R_i^2(a)}{N_t(a)}$. Если $N_t(a) \leq 1$, будем считать, что $S_t(a) = 0$.

Заметим, что $\mathbb{E} Q_t(a) = m_a$, $\mathbb{E} S_t(a) = \sigma_a^2$ (за исключением холодного старта, то есть случая $N_t(a) \leq 1$), и такие приближения корректны. Кроме того:

- Для невыбранных на t-ом шаге рычагов обновления выборочного матожидания и дисперсии не происходит.
- $Q_{t+1}(A_t) = Q_t(A_t) + \frac{1}{N_t(A_t)+1}(R_t Q_t(A_t))$, поэтому обновление выборочного матожидания происходит за O(1).
- Для дисперсии:

$$S_{t+1}(A_t) = \frac{N_t(A_t) + 1}{N_t(A_t)} \left(\overline{R_{t+1}^2(A_t)} - Q_{t+1}^2(A_t) \right)$$

$$= \frac{N_t(A_t) + 1}{N_t(a)} \left(\overline{R_t^2(A_t)} \frac{N_t(A_t)}{N_t(A_t) + 1} + \frac{R_t^2}{N_t(A_t) + 1} - \overline{R_t^2(A_t)} \frac{N_t(A_t)}{(N_t(A_t) + 1)^2} - \frac{2Q_t(A_t)R_t \frac{N_t(A_t)}{(N_t(A_t) + 1)^2} - \frac{R_t^2}{(N_t(A_t) + 1)^2} \right)$$

$$= \frac{N_t(A_t)\overline{R_t^2(A_t)} - 2Q_t(A_t)R_t + R_t^2}{N_t(A_t) + 1}$$
(1)

Аналогично $Q_t(A_t)$, $\overline{R_{t+1}^2(A_t)} = \overline{R_t^2(A_t)} + \frac{1}{N_t(A_t)+1}(R_t - \overline{R_t^2(A_t)})$ – считается за O(1). Тогда и $S_{t+1}(A_t)$ можно по формуле (1) пересчитать за O(1).

3 Стратегии

В этой секции мы рассмотрим подходы для нахождения оптимального вектора вероятностей. Будут представлены аналоги greedy, ϵ -greedy, Optimistic стратегий, UCB, Gradient bandits а также сэмплирование Томпсона. Далее всегда будем считать, что в первый ход рычаг выбирается случайно, то есть $P_1 = \left(\frac{1}{n}, ..., \frac{1}{n}\right)$.

3.1 Greedy стратегии

3.1.1 Итеративные greedy стратегии

В отличие от обычной задачи о многоруких бандитах, в новой версии для greedy стратегий вектор вероятностей выбора P_t может быть не равен вектору (0,...,1,0,...,0). Каждый шаг будем менять вероятность выбора каждого рычага в соответствии с новой полученной наградой. "Жадность" будет выражаться в несколько другом смысле. Опишем сначала процесс изменения вероятностей для итеративных greedy-стратегий. Под итеративными стратегиями понимаются стратегии, которые при заданных матожиданиях и дисперсиях сходятся к оптимальному вектору вероятностей за k>1 проходов какого-то кода, но на каждом шаге производящих только один проход этого кола.

Пусть на t-ом шаге вектор вероятностей равен $P_t = (p_t^1, ..., p_t^n)$. Будем на каждом шаге изменять вероятности так, чтобы максимально увеличить $V = Q_{t,p} - \lambda S_{t,p}^2$, где $Q_{t,p} = \sum_{i=1}^n p_t^i Q_t(i)$, $S_{t,p}^2 = \sum_{i=1}^n (p_t^i)^2 S_t(i)^2$. Можно рассмотреть 2 подхода:

1. Каждый ход будем увеличивать одну из вероятностей p_i на $\Delta p \geq 0$, а другую вероятность p_j – уменьшать на Δp . Сумма вероятностей не изменилась. Будем искать такие $i, j, \Delta p$, что $p_i^{new} \leq 1, p_j^{new} \geq 0$ и увеличение $V \ (:= \Delta V)$ максимально. Заметим, что $p_i + \Delta p \leq 1 \Leftrightarrow$

 $\Delta p \leq 1 - p_i, \ p_j - \Delta p \geq 0 \Leftrightarrow \Delta p \leq p_j$ и $1 - p_j \geq p_i \Leftrightarrow p_i + p_j \leq 1$, поэтому условие $p_i^{new} \leq 1$ избыточно. После изменения соответствующих вероятностей получим:

$$\Delta V = \left[(p_i + \Delta p)Q_t(i) + (p_j - \Delta p)Q_t(j) - \lambda(p_i + \Delta p)^2 S_t^2(i) - \lambda(p_j - \Delta p)S_t^2(j) \right]
- \left[p_i Q_t(i) + p_j Q_t(j) - \lambda p_i^2 S_t^2(i) - \lambda p_j^2 S_t^2(j) \right]
= \Delta p(Q_t(i) - Q_t(j)) - 2\lambda \Delta p(p_i S_t^2(i) - p_j S_t^2(j)) - \lambda(\Delta p)^2 \left[S_t^2(i) + S_t^2(j) \right]
= \Delta p \left(\left[Q_t(i) - 2\lambda p_i S_t^2(i) \right] - \left[Q_t(j) - 2\lambda p_j S_t^2(j) \right] \right) - \lambda(\Delta p)^2 \left[S_t^2(i) + S_t^2(j) \right]
w_k := Q_t(k) - 2\lambda p_k S_t^2(k)
= (w_i - w_j) \Delta p - \lambda \left[S_t^2(i) + S_t^2(j) \right] (\Delta p)^2$$
(2)

Если $\lambda>0,\ S_t^2(i)\neq 0\lor S_t^2(j)\neq 0,$ то получили квадратный многочлен с отрицательным главным коэффициентом. Этот многочлен достигает максимума в точке $\Delta p=\frac{w_i-w_j}{2\lambda(S_t^2(i)+S_t^2(j))}$ и этот максимум равен $\frac{(w_i-w_j)^2}{4\lambda[S_t^2(i)+S_t^2(j)]}.$ Заметим, что $w_i-w_j=-(w_j-w_i)$ и поэтому при перестановке i и j значение Δp изменится на противоположное, поэтому $p_i+\Delta p$ и $p_j-\Delta p$ не изменятся, как и ограничения на них. Для удобства будем рассматривать только такие пары (i,j), что $w_i-w_j\geq 0.$ Так как отрезок $\left[0,\min\left(p_j,\frac{w_i-w_j}{2\lambda[S_t^2(i)+S_t^2(j)]}\right)\right]$ находится левее точки максимума, то при заданных ограничениях максимум ΔV достигается при $\Delta p=\min\left(p_j,\frac{w_i-w_j}{2\lambda[S_t^2(i)+S_t^2(j)]}\right).$ Посчитав ΔV для всех пар (i,j) с $w_i-w_j>0$, сможем найти оптимальные $i,j,\Delta V$.

Если $\lambda=0$, то задача сводится к обычной задаче о многоруких бандитах. Если же $S_t^2(i)=S_t^2(j)=0$, то многочлен равен $\Delta p(Q_t(i)-Q_t(j))$. Опять, можно считать, что $Q_t(i)\geq Q_t(j)$, так как иначе знак Δp меняется на противоположный, и максимальное значение ΔV не меняется. Тогда оптимальное $\Delta p=p_j$ и $\max \Delta V=(Q_t(i)-Q_t(j))p_j$. Тот факт, что $S_t^2(i)=0$, означает, что или количество нажатий на i-ый рычаг ≤ 1 , или i-ый рычаг всегда выдаёт одно и то же значение (то есть рычаг безрисковый), или распределение i-го рычага дискретное, но все полученные до этого значения при нажатии на i-ый рычаг были одинаковыми. В случае, когда оба рычага безрисковые, и эти 2 рычага были выбраны для изменения вероятностей, $p_j^{new}=0$, то есть безрисковый рычаг с меньшим значением больше не будет выбираться, как и в оптимальном векторе вероятностей.

Обратим внимание на проблему холодного старта: после первого шага, когда был выбран только один i-ый рычаг, может оказаться, что полученная награда >0, в то время как выборочные дисперсии всех рычагов и выборочное матожидание всех других рычагов нулевое. В таком случае наибольшая разница ΔV будет достигаться при увеличении вероятности выбранного рычага на $\frac{1}{n}$ и уменьшении вероятности какого-то другого рычага j до $p_j^{new}=0$. То есть j-ый рычаг больше не будет выбран, хотя он может быть "лучше" i-го рычага. Если же полученная награда <0, то тогда обнулится вероятность выбора i-го рычага, хотя нам могло просто не повезти с наградой. О том, как справляться с этой проблемой, мы поговорим позднее.

Кроме того, алгоритм каждый шаг меняет всего 2 вероятности, что медленно, а сам шаг совершается за $O(n^2)$ (в то время как greedy-стратегия в оюычной задаче о многоруких бандитах – за O(n)).

2. В качестве альтернативы можно пытаться за один шаг менять сразу все вероятности. Одна из вероятностей будет изменяться в одну сторону, а остальные – в другую. Отдельно будем рассматривать случаи с увеличением этой единственной вероятности и с ее уменьшением. Пусть на t-ом шаге ϕ_t рычагов с ненулевыми вероятностями выбора, то есть $|\{i: p_t^i \neq 0\}| = \phi_t$ и пусть $K_t := \{i: p_t^i \neq 0\}$. Вудем каждый ход увеличивать одну из вероятностей p_i на Δp_{\uparrow} , а все остальные ненулевые вероятности – уменьшать на $\frac{\Delta p_{\uparrow}}{\phi_{t,i}}$, где $\phi_{t,i} := \phi_t - \mathbb{I}_{p_i \neq 0}$. Сумма вероятностей не изменилась. Будем искать такие i, Δp_{\uparrow} , что $\forall j \hookrightarrow 1 \geq p_j^{new} \geq 0$ и значение ΔV_{\uparrow} максимально. Если $\phi_{t,i} = 0$, то $p_i = 1$, и $\Delta p_{\uparrow} = \Delta V_{\uparrow} = 0$. Иначе после изменения

соответствующих вероятностей получим:

$$\Delta V_{\uparrow} = \Delta p_{\uparrow} \left(Q_{t}(i) - \frac{\sum_{j \in K_{t}} Q_{t}(j)}{\phi_{t,i}} \right) - 2\lambda \Delta p_{\uparrow} \left(p_{i} S_{t}^{2}(i) - \frac{\sum_{j \in K_{t}} p_{j} S_{t}^{2}(j)}{\phi_{t,i}} \right)$$

$$- \lambda (\Delta p_{\uparrow})^{2} \left(S_{t}^{2}(i) + \frac{\sum_{j \in K_{t}} S_{t}^{2}(j)}{\phi_{t,i}^{2}} \right)$$

$$= \Delta p_{\uparrow} \left(w_{i} - \frac{\sum_{j \in K_{t}} w_{j}}{\phi_{t,i}} \right) - \lambda (\Delta p_{\uparrow})^{2} \left(S_{t}^{2}(i) + \frac{\sum_{j \in K_{t}} S_{t}^{2}(j)}{\phi_{t,i}^{2}} \right)$$

$$= \Delta p_{\uparrow} \frac{\sum_{j \in K_{t}} (w_{i} - w_{j})}{\phi_{t,i}} - \lambda (\Delta p_{\uparrow})^{2} \frac{\sum_{j \in K_{t}} (\phi_{t,i} S_{t}^{2}(i) + S_{t}^{2}(j))}{\phi_{t,i}^{2}}$$

$$= \Delta p_{\uparrow} \frac{\sum_{j \in K_{t}} (w_{i} - w_{j})}{\phi_{t,i}} - \lambda (\Delta p_{\uparrow})^{2} \frac{\sum_{j \in K_{t}} (\phi_{t,i} S_{t}^{2}(i) + S_{t}^{2}(j))}{\phi_{t,i}^{2}}$$

Если $\lambda \neq 0$ и $\exists j \in K_t \cup \{i\} \hookrightarrow S^2_t(j) \neq 0$, то получаем квадратный многочлен, максимум которого в точке

$$\Delta p_{\uparrow} = \frac{\phi_{t,i} \sum_{\substack{j \in K_t \\ j \neq i}} (w_i - w_j)}{2\lambda \sum_{\substack{j \in K_t \\ j \neq i}} (\phi_{t,i} S_t^2(i) + S_t^2(j))}$$

и в этой точке достигается значение

$$\Delta V_{\uparrow} = \frac{\left(\sum_{\substack{j \in K_t \\ j \neq i}} (w_i - w_j)\right)^2}{4\lambda \sum_{\substack{j \in K_t \\ j \neq i}} (\phi_{t,i} S_t^2(i) + S_t^2(j))}$$

Здесь уже может быть $\Delta p_{\uparrow} < 0$. Если $\Delta p_{\uparrow} \geq 0$, то налагаются дополнительные ограничения $p_i^{new} \leq 1 \Leftrightarrow \Delta p_{\uparrow} \leq 1 - p_i$ и $\forall j \in K_t \setminus \{i\} \hookrightarrow p_j^{new} \geq 0 \Leftrightarrow \Delta p_{\uparrow} \leq \phi_{t,i}p_j$. Если же $\Delta p_{\uparrow} < 0$, то налагаются ограничения $p_i^{new} \geq 0 \Leftrightarrow \Delta p_{\uparrow} \geq -p_i$ и $\forall j \in K_t \setminus \{i\} \hookrightarrow p_j^{new} \leq 1 \Leftrightarrow \Delta p_{\uparrow} \geq \phi_{t,i}(p_j-1)$. Итоговое Δp_{\uparrow} берется как минимум (при $\Delta p_{\uparrow} \geq 0$) или как максимум (при $\Delta p_{\uparrow} < 0$) от аргмаксимума функции и ограничений.

Если $\lambda=0$, то задача сводится к обычной задаче о многоруких бандитах. Если же $\forall j\in K_t\cup\{i\}\hookrightarrow S^2_t(j)=0$ (то есть безрисковые рычаги или $N_t(i)\leq 1$), то уравнение линейно или всегда равно 0 и достигает максимума в минимуме (если коээфициент ≥ 0) или максимуме (если ≤ 0) из ограничений.

Аналогично, можно пытаться уменьшить одну вероятность p_i на Δp_{\downarrow} , а все остальные, не равные 1 (пусть таких $\psi_{t,i}$) – увеличить на $\frac{\Delta p_{\downarrow}}{\psi_{t,i}}$. Пусть $K_t = \{j: j \land p_j \neq 1\}$. Проводя аналогичные вычисления, получим формулы:

$$\Delta p_{\downarrow} = \frac{-\psi_{t,i} \sum_{\substack{j \in K_t \\ j \neq i}} (w_i - w_j)}{2\lambda \sum_{\substack{j \in K_t \\ j \neq i}} (\psi_{t,i} S_t^2(i) + S_t^2(j))}, \ \Delta V_{\downarrow} = \frac{\left(\sum_{\substack{j \in K_t \\ j \neq i}} (w_i - w_j)\right)^2}{4\lambda \sum_{\substack{j \in K_t \\ j \neq i}} (\psi_{t,i} S_t^2(i) + S_t^2(j))}$$

На Δp_{\downarrow} накладываются аналогичные ограничения, аналогично в случае, когда многочлен линейный. Аналогично вычисляется оптимальное Δp .

Сравнивая все ΔV_{\uparrow} и ΔV_{\downarrow} , найдем оптимальные i, Δ_p и тип измененния (\uparrow или \downarrow).

Нам нужно проверить 2 различных варианта для каждого рычага. Каждая проверка проходит за O(n) (проверка на равенство 0 или 1, вычисление Δ_p и наложение не более n ограничений), поэтому шаг алгоритма работает за $O(n^2)$. При этом, так как в этом методе мы изменяем сразу все вероятности, а не две, то он сходится быстрее, чем второй метод п. 1. Однако этот алгоритм гораздо сильнее страдает от проблемы холодного старта: если после первого шага при нажатии i-го рычага мы получили награду, большую 0, то наибольшее изменение ΔV будет достигаться для тройки $(i,\uparrow,\frac{n-1}{n})$, и вся вероятность сконцентрируется в

 p_i . Если затем всегда будет $Q_t(i) - \lambda S_t^2(i) > 0$, что вполне реально, то алгоритм всегда будет нажимать на i-ый рычаг, в то время как могут быть рычаги с большим матожиданием или меньшей дисперсией, на которые никогда не нажмут.

3.1.2 Градиентный подъем

Теперь опишем метод градиентного подъема. На каждом шаге t рассмотрим функцию $Q_{t,p} - \lambda S_{t,p}^2 = \sum_{i=1}^n p_i Q_t(i) - \lambda \left(\sum_{i=1}^n p_i^2 S_t^2(i)\right)$. Заметим, что множество

$$Q = \begin{cases} 0 \le p_1 \le 1 \\ \dots \\ 0 \le p_n \le 1 \\ p_1 + \dots + p_n = 1 \end{cases}$$

есть n-мерный симплекс, а, значит, Q выпукло и замкнуто. Далее, V вогнута на \mathbb{R}^n , так как

$$\frac{\partial V}{\partial p_i} = Q_t(i) - 2\lambda p_i S_t^2(i), \ \frac{\partial^2 V}{\partial p_i^2} = -2\lambda S_t^2(i), \ \frac{\partial^2 V}{\partial p_i \partial p_i} = 0 \ (j \neq i)$$

и гессиан V равен

$$-2\lambda \begin{pmatrix} S_t^2(1) & & & \\ & S_t^2(2) & & 0 \\ 0 & & \ddots & \\ & & S_t^2(n) \end{pmatrix} \preceq 0$$

и, кроме того, V имеет липшицев градиент с параметром $2\lambda\sqrt{\max_i(S^2_t(i))}$, так как

$$\sqrt{\frac{\|\nabla V(p) - \nabla V(q)\|_{2}^{2}}{\|p - q\|_{2}^{2}}} = \sqrt{\frac{4\lambda^{2} \sum_{i=1}^{n} S_{t}^{2}(i)(p_{i} - q_{i})^{2}}{\sum_{i=1}^{n} (p_{i} - q_{i})^{2}}} \leq$$

$$\leq \sqrt{\frac{4\lambda^{2} \max_{i} (S_{t}^{2}(i)) \sum_{i=1}^{n} (p_{i} - q_{i})^{2}}{\sum_{i=1}^{n} (p_{i} - q_{i})^{2}}} = 2\lambda \sqrt{\max_{i} (S_{t}^{2}(i))} \quad (4)$$

Тогда метод градиентного отображения для функции V'=-V сойдется к глобальному минимуму на Q, а, значит, для функции V этот метод сойдется к глобальному максимуму на Q [E.10a]. В качестве альтернативы градиентному методу можно использовать проекцию градиента на симплекс [CY11], вычисление которого происходит за O(n), или Cauchy-Simplex метод [CV23], тоже сходящийся к глобальному максимуму и требующий на каждом шаге O(1) вычислений (однако серьезный минус заключается в очень медленной скорости сходимости $\|x^T-x^*\| \leq \frac{\log n}{T}$).

Базовый алгоритм будет состоять в следующем: на каждом шаге t выбираем рычаг согласно вероятностям P_t , обновляем выборочные дисперсии и матожидания, после чего с помощью градиентного подъема находим глобальный максимум $P_{t+1}=(p_{t+1}^1,...,p_{t+1}^n)$ на Q, после чего повторяем алгоритм для P_{t+1} . Если обозначить u-ое значение метода градиентного подъема в ходе проведения алгоритма на шаге t за P_t^u , а оптимальный вектор вероятностей на шаге t за P_t^* , то тогда каждый шаг алгоритма работает за не более чем $O(k_t^\Delta)$, где $k_t^\Delta = \max_{P \in Q} \min\{u: \|P_t^u - P_t^*\| \le \Delta\}$ для заданной погрешности Δ , так что шаг алгоритма может работать очень долго.

Кроме того, никуда не делась проблема холодного старта: аналогично второму алгоритму, после первого шага все вероятности, кроме одной p_t^i , могут занулиться, и далее при $Q_t(i)-S_t^2(i)>0$ вектор вероятностей не изменится.

Изложенный выше алгоритм чем-то похож на Generalized Policy Iteration: процессом градиентного подъема можно считать policy evaluation, а нажатием рычага согласно вероятностям – policy improvement [SB18a]. Однако здесь evaluation происходит одновременно еще и по матожиданию с дисперсией, и эти процессы друг с другом конфликтуют, что приводит к медленному или даже неверному приближению к ответу.

В заключение этого параграфа стоит заметить, что для обычной задачи о многоруком бандите все три алгоритма работают как обычные greedy-алгоритмы. Более того, все три алгоритма, как и стандартный greedy-алгоритм, страдают от проблемы холодного старта. Эти алгоритмы не единственны, для приближения вероятностей можно использовать метод Ньютона, метод штрафных функций, а также вместо одной или всех вероятностей пытаться за один ход изменять k вероятностей, где k=const.

3.1.3 Быстрый greedy алгоритм

Есть алгоритм, находящий за $O(n \log n)$ распределение вероятностей, максимизирующее $Q_{t,p} - \lambda S_{t,p}^2$. Далее для удобства вместо $Q_{t,p}$ будем писать m_p и вместо $S_{t,p}^2$ будем писать σ_p^2 . Тогда:

1. Пусть $i, j \in \{1, ..., n\}, i \neq j$. До этого мы рассматривали функцию $V(p_1, ..., p_n) = m_p - \lambda \sigma_p^2$. Рассмотрим функцию

$$V(p_1, ..., p_n, \alpha) = p_1 m_1 + ... + (p_i + \alpha) m_i + ... + (p_j - \alpha) m_j + ... + p_n m_n$$

$$- \lambda (p_1^2 \sigma_1^2 + ... + (p_i + \alpha)^2 \sigma_i^2 + ... + (p_j - \alpha)^2 \sigma_j^2 + ... + p_n^2 \sigma_n^2)$$
(5)

То есть $V(p_1,...,p_n,\alpha)=V(p_1,...,p_i+\alpha,...,p_j-\alpha,...,p_n)$. Возьмем точку $P^*\in Q$ (см. 3.1.2), в которой достигается максимум V на Q. Предположим, что $p_i^*\neq 1$ и $p_j^*\neq 0$. Тогда $\exists \delta>0: \ \forall \alpha: \ 0\leq \alpha<\delta\hookrightarrow P^*(\alpha)=(p_1^*,...,p_i^*+\alpha,...,p_j^*-\alpha,...,p_n^*)\in Q$, и потому функция $V(p_1,...,p_n,\alpha)$, определенная при $P\in Q, 0\leq \alpha\leq \delta$, дифференцируема в точке $(P^*,0)$ причем:

$$\frac{\partial V(p_1, \dots, p_n, \alpha)}{\partial \alpha} \Big|_{P = P^*, \alpha = 0} = \left(\left(m_i - 2\lambda p_i^* \sigma_i^2 - \alpha \lambda \sigma_i^2 \right) + \left(-m_j + 2\lambda p_j^* \sigma_j^2 - \alpha \lambda \sigma_j^2 \right) \right) \Big|_{\alpha = 0}$$

$$= \left(m_i - 2\lambda p_i^* \sigma_i^2 \right) - \left(m_j - 2\lambda p_j^* \sigma_j^2 \right)$$

$$= w_i(p_i^*) - w_j(p_j^*)$$
(6)

Если $\frac{\partial V}{\partial \alpha}\Big|_{P=P^*,\,\alpha=0}>0$, то ввиду непрерывности $V(\alpha)$ существует $0<\alpha<\delta$: $V(\alpha)>V(0)\wedge P(\alpha)\in Q$. Тогда максимум V на Q достигается не в P^* . Противоречие! $\Rightarrow \frac{\partial V}{\partial \alpha}\Big|_{\alpha=0}\leq 0\Rightarrow w_i(p_i^*)\leq w_j(p_i^*)$.

- 2. Пусть в точке оптиммума P^* верно, что $p_i^* \in (0,1) \land p_j^* \in (0,1)$. Тогда, подставив в предыдущий пункт сначала пару (i,j), а затем (j,i), получим $w_i(p_i^*) \leq w_j(p_j^*) \land w_j(p_j^*) \leq w_i(p_i^*)$, то есть $w_i(p_i^*) = w_j(p_j^*)$. Аналогично, если $p_i^* = 0 \land p_j^* \neq 0$ или $p_j^* = 1 \land p_i^* > 0$ получим $w_i(p_i^*) \leq w_j(p_j^*)$. Заметим, что если есть i с $p_i = 1$, то $\forall j \neq i \hookrightarrow p_j = 0$. Тогда, если $P^* -$ точка оптимума на Q, то $\forall i,j: i \neq j \hookrightarrow w_i(p_i^*) = w_j(p_j^*) = w$ и $\forall i,j: p_i^* = 0, p_j^* \neq 0 \hookrightarrow w_i(p_i^*) \leq w_j(p_j^*)$, причем $\forall i \hookrightarrow w_i = m_i \Leftrightarrow p_i = 0$.
- 3. Итак, мы получили необходимое условие для точки оптимума. Является ли оно достаточным? Да, этого условия достаточно. Действительно, заметим, что $\frac{\partial V}{\partial p_i} \bigg|_{P=P^*} = w_i(p_i^*)$. Кроме того, как мы уже показали, Q выпукло и замкнуто, а V нерперывно диффернцируема и вогнута на \mathbb{R}^n , и -V выпукла на \mathbb{R}^n . Тогда по теореме об эквивалентном условии локального минимума на выпуклом замкнутом множестве [E.10b] P^* является минимумом функции -V на Q тогда и только тогда, когда $\forall P \in Q \hookrightarrow \langle (-V)'(P^*), P P^* \rangle \geq 0 \Rightarrow P^*$ является максимумом на Q тогда и только тогда, когда

$$\forall P \in Q \hookrightarrow \langle V'(P^*), P - P^* \rangle \le 0$$

Подставим V' и P^* :

$$\langle V'(P^*), P - P^* \rangle = \sum_{i=1}^{n} (m_i - 2\lambda p_i^* \sigma_i^2) (p_i - p_i^*)$$

$$= \left(w \sum_{i:p_i^* \neq 0} p_i \right) + \left(\sum_{j:p_j^* = 0} m_j p_j \right) - \left(w \sum_{i:p_i^* \neq 0} p_i^* \right) - \left(\sum_{j:p_j^* = 0} m_j p_j^* \right)$$

$$= w \left(1 - \sum_{j:p_j^* = 0} p_j \right) + \left(\sum_{j:p_j^* = 0} m_j p_j \right) - w - 0$$

$$= \sum_{j:p_j^* = 0} (m_j - w) p_j$$

$$\stackrel{(*)}{\leq} 0$$
(7)

Последнее неравенство (*) верно, поскольку $\forall i, j: p_i = 0 \land p_j > 0 \hookrightarrow m_i = w_i \leq w_j = w$. Итак, неравенство выполнено, значит, в 2 описано эквивалентное условие глобального максимума на Q. Теперь перед описанием самого алгоритма осталось отметить пару деталей.

- 4. Пусть $m_i < m_j$. Тогда не может быть такого, что $p_i^* \neq 0 \land p_j^* = 0$. Действительно, если бы это было так, то $w_i(p_i^*) = m_i 2\lambda p_i^* \sigma_i^2 \leq m_i < m_j = w_j(p_j^*)$, то есть $\exists i,j: p_j^* = 0 \land p_i^* \neq 0 \land w_i(p_i^*) < w_j(p_j^*)$, то есть P^* не является точкой оптимума. Противоречие! $\Rightarrow p_i^* = 0 \lor p_j^* \neq 0$. Кроме того, если $m_i = m_j$, то $p_i^* \neq 0 \land p_j^* = 0$ возможно только в том случае, когда $\sigma_i^2 = 0$, то есть i-ый рычаг безрисоквый. Поэтому, если упорядочить все m_i по возрастанию и сопоставить каждому m_i свой p_i^* , то все нулевые вероятности будут находиться "не правее" ненулевых вероятностей, причем в какой-то точке могут находиться одновременно ненулевые и нулевые вероятности только в том случае, когда неулевым вероятностям соответствуют безрисковые рычаги.
- 5. Если $\forall i\sigma_i^2>0$ и $\exists i,\ j:m_i\neq m_j$, то существует метод нахождения $P^*=arg\ max(m_p-\lambda\sigma_p^2)$ на гиперплоскости $p_1+...+p_n=1$, и для P^* в таком случае верно, что $p_i^*=\frac{m_i}{2\lambda\sigma_i^2}+\frac{\lambda-\Sigma_1}{\lambda\Sigma_0}\cdot\frac{1}{2\sigma_i^2}$, где $\Sigma_0=\sum_{i=1}^n\frac{1}{2\sigma_i^2},\ \Sigma_1=\sum_{i=1}^n\frac{m_i}{2\sigma_i^2}$. Если $m_1=m_2=...=m_n=m$, то для решения P^* верно, что $p_i^*=\frac{1}{2\sigma_i^2\Sigma_0}$ (док-во вкратце: фиксируем $m_p=m$, с помощью лагранжиана находим решение вида $p_i^*=\frac{\xi m+\xi'}{2\sigma_i^2}$, через ограничения находим зависимость ξ и ξ' от m, подставляем вероятности в V при фиксированном $m_p=m$, получаем квадратное уравнение от m с отрицательным главным коэф-ом, находим оптимальное m, подставляем сначала в ξ и ξ' , а потом в p_i^*). Если же $\exists i:\sigma_i^2=0$, то есть существует безрисковый рычаг, то возьмем среди этих рычагов рычаг с наибольшим матожиданием m_0 . Заметим, что $\exists P^*:\forall i \hookrightarrow (m_i\leq m_0\Rightarrow p_i^*=0)$, так как можно "перекинуть" все такие вероятности в безрисковый рычаг, не уменьшив V. Если не существует рычага с матожиданием, большим m_0 , то оптимальным решением будет всегда нажимать на рычаг с m_0 , в противном случае существует метод нахождения $P^*=arg\ max(m_p-\lambda\sigma_p^2)$ на гиперплоскости $p_1+...+p_n=1$, и $p_i^*=\frac{1}{\lambda}\cdot\frac{m_i-m_0}{2\sigma_i^2}\cdot\left(1+m_0\frac{\Sigma_1'}{\Sigma_2'}\right)$, где $\Sigma_k'=\sum_{i=1}^n\frac{(m_i-m_0)^k}{2\sigma_i^2}$ и $i\neq 0$. То есть общее решение на гиперплоскости $p_1+...+p_n=1$ существует. Также заметим, что оба алгоритма работают за O(n) и что если в решении на этой гиперплоскости $\exists i:p_i\leq 0$, то в оптимальном решении на Q существует Q0 в в вриду вогнутости Q1.
- 6. Теперь алгоритм описывается крайне просто:
 - (а) Сортируем все m_i по убыванию, в случае равенства по возрастанию σ_i^2 . Работает за $O(n \log n)$.

- (b) С начала массива ищем безрисковый рычаг с наибольшим матожиданием. Если нашли (это первый рычаг с $\sigma_i^2 = 0$), то отбрасываем все рычаги правее найденного (O(n)).
- (c) Если отбросили все рычаги, кроме безрисокового, то вероятность выбора безрискового рычага равна 1, заканчиваем работу (O(1)).
- (d) Иначе проходимся бинпоиском по оставшемуся массиву и находим самое левое i=I такое, что в оптимальном решении с рычагами $\{1,...,i\}$ есть j с $p_j^* \leq 0$. Оптимальный вектор вероятностей находится с помощтю формул из предыдущего пункта. Каждый шаг бинпоиска работает за O(n), всего шагов $O(\log n)$, поэтому бинпоиск отработает за $O(n\log n)$.
- (e) Возвращаем $(p_1^*,...,p_{I-1}^*)$ для алгоритма от рычагов $\{1,...,I-1\}$. Отрабатывает за O(n).

Во-первых, заметим, что итоговый алгоритм работает за $O(n\log n)$. Во-вторых, уже после отбрасывания рычагов, не может быть такого, что оптимальный вектор вероятностей для рычагов $\{1,...,k\}$ выдает P_k^* , в котором $\exists i: p_i^*=0$, а оптимальный вектор вероятностей для рычагов $\{1,...,k\}$, k < l выдает P_l^* , в котором $\forall i \hookrightarrow p_i^* \neq 0$. Действительно, пусть для k вектор вероятностей $(p_1,...,p_{k-1},0)$ $(p_k=0)$, так как есть хотя бы одна нулевая вероятность и по 4), а для l вектор вероятностей $(q_1,...,q_l)$, . Тогда по $2: \forall i \leq k-1 \hookrightarrow m_i-2\lambda p_i\sigma_i^2 \geq m_k$ и $\forall i \leq k-1 \hookrightarrow m_i-2\lambda q_i\sigma_i^2 = m_k-2\lambda q_k\sigma_k^2$. Так как мы рассматриваем этап после отбрасывания рычагов и l>k, то $\sigma_k^2>0$. Тогда $m_i-2\lambda q_i\sigma_i^2 = m_k-2\lambda q_k\sigma_k^2 < m_k \leq m_i-2\lambda p_i\sigma_i^2 \Rightarrow p_i < q_i \Rightarrow \sum_{i=1}^{k-1} p_i = 1 < \sum_{i=1}^{k-1} q_i$. Противоречие! \Rightarrow если k < l, то либо среди p_i нет нулей, либо среди q_i есть нули. Тогда, если $A_k = \{1,...,k\}$, то индексы A_k для которых в оптимальном решении нет нулевых вероятностей, образуют отрезок $\overline{1,I-1}$, и оптимальное решение обрзовано одним из этих I-1 решений.

Но заметим, что $(p_1,...,p_k)=(p_1,...,p_k,0)$), поэтому для любого решения для k рычагов с $V=V_k$ и решения для k+1 рычагов с $V=V_{k+1}$ верно, что $V_k\leq V_{k+1}$. Тогда решение для первых I-1 рычагов – оптимальное.

7. Можно пойти дальше и сделать алгоритм еще быстрее, а именно, шаги (d) и (e) можно произвести за O(n). Для этого воспользуемся альтернативной формулировкой оптимума, данной в пунктах 2 и 3: достаточно найти такое распределение вероятностей $P=(p_1,...,p_n)$, что выполнено равенство 2. Пусть мы отсортировали все рычаги и отбросили все, что хуже наилучшего безрискового. Посколку решение для 2 дает глобальный максимум на Q, то достаточно найти такое t, что $\forall i$ либо $m_i \leq t \land p_i = 0$, либо $m_i > t \land w_i = t \Leftrightarrow p_i = \frac{m_i - t}{2\lambda \sigma_i^2}$ и $\sum_{i=1}^n p_i = \sum_{i=1}^n p_i(t) = 1$. Для каждого t однозначно определен набор тех i, для которых вероятности ненулевые, а именно такие i, что $m_i > t$. Кроме того, заметим, что при уменьшении t сумма вероятностей увеличивается, а при $t = m_{(j)}$ (то есть j-ая порядковая статистика) верно, что

$$\sum_{i=1}^{n} p_i(m_{(i)}) = \sum_{i=i+1}^{n} \frac{m_{(i)} - m_{(j)}}{2\lambda \sigma_{(i)}^2} = \sum_{i=i+1}^{n} \frac{m_{(i)}}{2\lambda \sigma_{(i)}^2} - m_{(j)} \sum_{i=i+1}^{n} \frac{1}{2\lambda \sigma_{(i)}^2}$$

Если обозначить $\sum_{i=j+1}^n \frac{m_{(i)}}{2\lambda\sigma_{(i)}^2}:=\Sigma_1(j+1),$ а $\sum_{i=j+1}^n \frac{1}{2\lambda\sigma_{(i)}^2}:=\Sigma_0(j+1),$ то

$$\sum_{i=1}^{n} p_i(m_{(j)}) = \Sigma_1(j+1) - m_{(j)}\Sigma_0(j+1)$$

причем $\Sigma_1(n+1) = \Sigma_0(n+1) = 0$ и

$$\Sigma_1(i) = \Sigma_1(i+1) + \frac{m_{(i)}}{2\lambda\sigma_{(i)}^2}, \ \Sigma_0(i) = \Sigma_0(i+1) + \frac{1}{2\lambda\sigma_{(i)}^2}$$

Ввиду увеличения суммы вероятностей оптимальное t либо лежит на полуинтервале $(m_{(i)},m_{(i+1)}]$ и $\sum_{j=1}^n p_j(m_{(i+1)}) \leq 1 < \sum_{j=1}^n p_j(m_{(i)})$, либо лежит на луче $(-\infty,m_{(1)})$ и $\sum_{j=1}^n p_j(m_{i+1}) \leq 1$. Во всех случаях мы можем вычислить p_i по формулам из пункта 5, учитывая только те i, для которых $m_{(i)} \geq t$, то есть все $m_{(i)}$ от конца интервала, где находится t, и до $m_{(n)}$. Итоговый алгоритм:

- (a) Сортируем все m_i по убыванию, в случае равенства по возрастанию σ_i^2 . Работает за $O(n \log n)$.
- (b) С начала массива ищем безрисковый рычаг с наибольшим матожиданием. Если нашли (это первый рычаг с $\sigma_i^2 = 0$), то отбрасываем все рычаги правее найденного (O(n)).
- (c) Если отбросили все рычаги, кроме безрисокового, то вероятность выбора безрискового рычага равна 1, заканчиваем работу (O(1)).
- (d) Иначе считаем $\Sigma_1(n+1) = \Sigma_0(n+1) = 0$, проходимся слева направо по $m_{(i)}$, пересчитывая за O(1) $\Sigma_1(i+1)$ и $\Sigma_0(i+1)$, вычисляя за O(1) по формуле 7 сумму вероятностей. Находим первое такое i, что $\sum_{i=1}^n p_i(m_{(i+1)}) \le 1$ и $\sum_{i=1}^n p_i(m_{(i+1)}) > 1$ (O(n)).
- (e) Если такое i нашлось, то p_j для $j \geq i+1$ вычисляются по формулам из пункта 5 а для $j \leq i \hookrightarrow p_j = 0$. Если же не нашлось, то у всех рычагов ненулевые вероятности, и, аналогично, по формулам из пункта 5 вычисляются все p_i (O(n)).

Алгоритм работает за $O(n\log n)$, но при этом быстрее, чем прошлый, так как часть после сортировки работает за O(n), а не за $O(n\log n)$. Интересно заметить, что мы ищем пераое такое t, что $\sum_{j=i+1}^n \frac{m_{(j)}-t}{2\lambda\sigma_{(j)}^2} = 1 \Leftrightarrow t = \frac{\Sigma_1(i+1)-1}{\Sigma_0(i+1)}$, а это похоже на формулы из статьи "Projection onto a simplex".

Вообще стоит указать, что нам не так важна максимизация $V=m_p-\lambda\sigma_p^2.$ Скорее, нам важна

величина $\frac{\partial V}{\partial p_i}\bigg|_{p_i=p_i^*}=w_i(p_i^*).$ Мы хотим найти такое распределение вероятностей, что

$$\forall i, j \hookrightarrow (p_i^* = 0 \land p_j^* \neq 0 \Rightarrow w_i(p_i^*) \leq w_j(p_j^*))$$

и что

$$\forall i, j \hookrightarrow (p_i^* \neq 0 \land p_j^* \neq 0 \Rightarrow w_i(p_i^*) = w_j(p_j^*))$$

Более того, в оригинальной задаче о многоруких бандитах требуется максимизировать $V=m_p$, что равносильно нахождению такого вектора вероятностей $(p_1^*,...,p_n^*)$, что

$$\forall i, j \hookrightarrow \left(p_i^* = 0 \land p_j^* \neq 0 \Rightarrow \frac{\partial V}{\partial p_i} \bigg|_{p_i = p_i^*} = m_i \leq m_j = \frac{\partial V}{\partial p_j} \bigg|_{p_j = p_j^*} \right)$$

и что

$$\forall i, j \hookrightarrow \left(p_i^* \neq 0 \land p_j^* \neq 0 \Rightarrow \frac{\partial V}{\partial p_i} \bigg|_{p_i = p_i^*} = m_i = m_j = \frac{\partial V}{\partial p_j} \bigg|_{p_j = p_j^*} \right)$$

(cm. 3)

3.1.4 Альтернативный подход к изменению вероятностей

Но также можно рассмотреть совсем другой подход: На t-ом шаге будем считать, что $p_t^i = \frac{N_t(i)}{t-1}$, таким образом, вероятности формируются в зависимости от того, насколько часто выбирали рычаг. Далее посчитать $V_i = Q_t(i) - 2\lambda p_i S_t^2(i)$ для каждого i и взять рычаг для нажатия, исходя из максимума V_i . По сути, нам необходимо найти такое распределение вероятностей, что для ненулевых ыероятностей $w_i = w_j$, а все остальные w_k не больше. Та же проблема холодного старта, но дополнительно на дальних шагах сложно изменить вероятности. Возможно, стоит отдавать большее "предпочтение" последним выборам рычагов (их вес больше веса других вероятностей). Или считать нажатия рычагов только в определенном окне (тогда снизится точность).

3.2 ϵ -greedy стратегии

3.2.1 Для градиентного подъема

- 1. На каждом шаге делать лишь k итераций градиентного подъема (или даже одну итерацию) value iteration.
- 2. После нахождения оптимума смещаться на случайный вектор, уменьшающийся по модулю со временем.

$$f(s, a, \sigma) = \begin{vmatrix} \frac{e^{\frac{Q_t(s, a)}{\sigma}}}{e^{\frac{Q_t(s, a)}{\sigma}} + e^{\frac{Q_{t+1}(s, a)}{\sigma}}} - \frac{e^{\frac{Q_{t+1}(s, a)}{\sigma}}}{e^{\frac{Q_t(s, a)}{\sigma}} + e^{\frac{Q_{t+1}(s, a)}{\sigma}}} \end{vmatrix}$$

$$= \frac{1 - e^{\frac{-|Q_{t+1}(s, a) - Q_t(s, a)|}{\sigma}}}{1 + e^{\frac{-|Q_{t+1}(s, a) - Q_t(s, a)|}{\sigma}}}$$

$$= \frac{1 - e^{\frac{-|Q_{t+1}(s, a) - Q_t(s, a)|}{\sigma}}}{1 + e^{\frac{-|\alpha \cdot \text{TD-Error}|}{\sigma}}}$$

$$\varepsilon_{t+1}(s) = \delta \cdot f(s_t, a_t, \sigma) + (1 - \delta) \cdot \varepsilon_t(s) ,$$

Рис. 1: На s можно не обращать внимания, a – выбранное на t-ом шаге действие, σ – температура: чем выше, тем ближе распределение к равномерному, чем меньше, тем ближе к жадному [Tok10]

3.2.2 Для итеративных методов

1. Для первого метода брать $\Delta p_{final} = \min(\frac{p_i}{2}, \Delta p)$. То есть не смещаться сразу к краю. Аналогично для второго метода.

3.2.3 Для всех

- 1. С вероятностью $1-\epsilon$ выбирать согласно P_t , а с вероятностью ϵ случайно. ϵ -greedy, по сути. Похоже на off-policy.
- 2. Сначала прожать на каждый рычаг определенное число раз, чтобы иметь приближения m_i и σ_i^2 . В крайних случаях нажать по разу или по 2 раза (чтобы посчитать дисперсию).
- 3. Можно использовать ϵ -greedy стратегии с уменьшающимся ϵ , а именно:
 - (a) Ha t-om mare $\epsilon_t = \frac{1}{t} \left[\check{\mathbf{S}} \mathbf{r} \mathbf{15} \right]$
 - (b) VDBE: см. рис. 1:
 - (c) Epsilon-BMC. Пока не разобрался.
 - В Википедии также описаны эти стратегии
- 4. Если знаем, какому семейству распределений принадлежат рычаги, то можно для матожиданий и дисперсии в первых двух алгоритмах использовать границы (например) 95%-го доверительного интервала.

3.3 Optimistic initialization

Можно инициализировать начальные значения всех рычагов большим положительным числом, как и в обычной оптимистичной инициализации. Изменять матожидание можно как среднее арифметическое, так и скользящим окном: $Q_{t+1}(a) = Q_t(a) + \alpha (R_t - Q_t(a))$.

Аналогично с
$$\overline{R_{t+1}^2(a)}$$
: $\overline{R_{t+1}^2(a)} = \overline{R_t^2(a)} + \alpha (R_t^2 - \overline{R_t^2(a)})$.

Выборочная дисперсия изменяется по формуле 1. Но думаю, что оптимистичная инициализация с const step-size будет работать плохо, как и в обычной задаче о многоруких бандитах.

3.4 UCB

Можно ввести UCB для приближения, которое строится, исходя из выбранных ранее рычагов (3.1.4). То есть, аналогично классическому UCB, $A_t = arg \max_a \left(Q_t(a) - 2\lambda p_a S_t^2(a) + c\sqrt{\frac{\ln t}{N_t(a)}}\right)$, где $p_a = \frac{N_t(a)}{t-1}$.

Можно еще пытаться что-то проделать с софтмаксом $(H_t(a)$ зависит от $Q_t(a)$, $S_t^2(a)$, t, $N_t(a)$, и $p_a = \frac{e^{H_t(a)}}{\sum_{i=1}^n e^{H_t(i)}}$). Но вот здесь уже меньше уверенности, что сработает.

3.5 Gradient bandits

Проводя аналогичные вычисления, что и в параграфе из книги "Reinforcement Learning: An Introduction" [SB18b], получаем:

$$H_{t+1}(a) = H_t(a) + \alpha \frac{\partial \mathbb{E}(Q_{t,p} - \lambda S_{t,p}^2)}{\partial H_t(a)}$$

$$\frac{\partial \mathbb{E}(m_{\pi} - \lambda \sigma_{\pi}^{2})}{\partial H_{t}(a)} = \sum_{x} \left(m_{x} - 2\pi_{t}(x)\sigma_{x}^{2} \right) \frac{\partial \pi_{t}(x)}{\partial H_{t}(a)}$$

$$= \mathbb{E}\left(\frac{m_{A_{t}}}{\pi_{t}(A_{t})} - 2\lambda \sigma_{A_{t}}^{2} - B_{t} \right) \frac{\partial \pi_{t}(A_{t})}{\partial H_{t}(a)}$$

$$= \mathbb{E}\left(m_{A_{t}} - 2\lambda \pi_{t}(A_{t})\sigma_{A_{t}}^{2} - B_{t} \right) \left(\mathbb{I}_{a=A_{t}} - \pi_{t}(a) \right)$$

$$= \mathbb{E}\left(R_{t} - 2\pi_{t}(A_{t})S_{t+1}^{2}(A_{t}) - B_{t} \right) \left(\mathbb{I}_{a=A_{t}} - \pi_{t}(a) \right)$$

$$= \mathbb{E}\left(R_{t} - 2\pi_{t}(A_{t})\frac{N_{t}(A_{t})\overline{R_{t}^{2}(A_{t})} - 2Q_{t}(A_{t})R_{t} + R_{t}^{2}}{N_{t}(A_{t}) + 1} - B_{t} \right) \left(\mathbb{I}_{a=A_{t}} - \pi_{t}(a) \right)$$

Осталось выбрать baseline. Пусть $\overline{R_t^k} = \frac{\sum_{i=1}^{t-1} R_i^k}{t-1}$, тогда возьмем

baseline =
$$\overline{R_t} - 2\pi_t(A_t) \frac{N_t(A_t)\overline{R_t^2(A_t)} - 2Q_t(A_t)\overline{R_t} + \overline{R_t^2}}{N_t(A_t) + 1}$$

так как $\forall k \ \mathbb{E} R_k^i = \mathbb{E} R_t^i$. Итоговая формула:

$$H_{t+1}(a) = H_{t}(a) + \alpha \left[R_{t} - 2\pi_{t}(A_{t}) \frac{N_{t}(A_{t}) \overline{R_{t}^{2}(A_{t})} - 2Q_{t}(A_{t})R_{t} + R_{t}^{2}}{N_{t}(A_{t}) + 1} - \overline{R_{t}} \right]$$

$$+ 2\pi_{t}(A_{t}) \frac{N_{t}(A_{t}) \overline{R_{t}^{2}(A_{t})} - 2Q_{t}(A_{t})\overline{R_{t}} + \overline{R_{t}^{2}}}{N_{t}(A_{t}) + 1} \left[(\mathbb{I}_{a=A_{t}} - \pi_{t}(a)) \right]$$

$$= H_{t}(a) + \alpha \left[\left(1 - \frac{4\pi_{t}(A_{t})Q_{t}(A_{t})}{N_{t}(A_{t}) + 1} \right) (R_{t} - \overline{R_{t}}) + \frac{2\pi_{t}(A_{t})}{N_{t}(A_{t}) + 1} (R_{t}^{2} - \overline{R_{t}^{2}}) \right] (\mathbb{I}_{a=A_{t}} - \pi_{t}(a))$$

$$= H_{t}(a) + \alpha \left[\left(1 - \frac{4\pi_{t}(A_{t})Q_{t}(A_{t})}{N_{t}(A_{t}) + 1} \right) (R_{t} - \overline{R_{t}}) + \frac{2\pi_{t}(A_{t})}{N_{t}(A_{t}) + 1} (R_{t}^{2} - \overline{R_{t}^{2}}) \right] (\mathbb{I}_{a=A_{t}} - \pi_{t}(a))$$

Подсчет суммарно всех $H_{t+1}(a)$ происходит за O(1), если знаем $Q_t(A_t)$ и $N_t(A_t)$.

3.6 Сэмплирование Томпсона

Если нам известно, из какого семейства распределений взяты распределения для рычагов (например, из распределения Стьюдента с 3 степенями свободы), то в некоторых случаях можно найти сопряженное семейство распределений. Тогда для обычной задачи о многоруких бандитах можно использовать алгоритм, известный как сэмплирование Томпсона [Sli19a]: можно считать, что параметры исходного семейства распределений были взяты, исходя из сопряженного семейства распределений. В таком случае, хоть нам и неизвестны исходные параметры, но мы можем оценить их апостериорную вероятность. Исходный алгоритм выглядит так:

- 1. Для каждого рычага сэмплируются матожидания в соответствии своим апостериорным вероятностям
- 2. Выбирается рычаг с максимальным сэмплированным матожиданием
- 3. Для выбранного рычага выдается награда и обновляются параметры для распределения из сопряженного семейства распределений, соответствующего этому рычагу. Тем самым изменяется представление о том, чему равно матожидание для выбранного рычага.

4. Возврат к шагу 1.

Сэмплирование Томпсона обладает весомым достоинством – оно очень быстро находит рычаг с наибольшим матожиданием. А именно: матожидание сожаления $\mathbb{E}[\overline{\text{Regret}}_T = O\left(\sqrt{n\frac{\log T}{T}}\right)]$. Это значительный результат, поскольку, например, для любой стратегии с неадаптивным (то есть не зависящим от истории наград) исследованием при фиксированных T,n существуют распределения на рычагах, при которых $\mathbb{E}[\overline{\text{Regret}}_T \geq \Omega\left(n^{1/3}T^{-1/3}\right)]$ [Sli19b].

Сэмплирование Томпосна можно обобщить для случаев, когда выбор рычага не детерминирован. Рассмотрим такую модификацию для нашей задачи:

- 1. Для каждого рычага сэмплируются матожидания и дисперсии в соответствии своим апостериорным вероятностям
- 2. С помощью градиентного подъема или алгоритма за $O(n\log n)$ для выбранных матожиданий и дисперсий находится $P^* = \underset{P \in Q}{arg\,max}(m_P \lambda \sigma_P^2)$
- 3. Выбирается рычаг в соответствии с P^* .
- 4. Для выбранного рычага выдается награда и обновляются параметры для распределения из сопряженного семейства распределений, соответствующего этому рычагу. Тем самым изменяется представление о том, чему равны матожидание и дсиперсия для выбранного рычага.
- 5. Возврат к шагу 1.

Возможно, это не будет работать, но попробовать стоит.

4 Гитхаб

Статью также можно найти в этом репозитории в папке "theoretical notes".

Список литературы

- [CV23] James Chok and Geoffrey M. Vasil. Convex Optimization Over a Probability Simplex. pages 1–6, 2023.
- [CY11] Yunmei Chen and Xiaojing Ye. Projection onto a simplex. pages 2–4, 2011.
- [SB18a] Richard S. Sutton and Andrew G. Barto. Reinforcemnt Learning: An Introduction, second edition. pages 74–82, 2018.
- [SB18b] Richard S. Sutton and Andrew G. Barto. Reinforcemnt Learning: An Introduction, second edition. pages 37–40, 2018.
- [Sli19a] Aleksandrs Slivkins. Introduction to Multi-Armed Bandits. pages 28–37, 2019.
- [Sli19b] Aleksandrs Slivkins. Introduction to Multi-Armed Bandits. pages 24–25, 2019.
- [Tok10] Michel Tokic. Adaptive ϵ -greedy exploration in reinforcement learning based on value differences, page 5, 2010.
- [Śr15] Marek Śrank. Portfolio Algorithms for Combinatorial Optimization. page 12, 2015.
- [Е.10а] Нестеров Ю. Е. Введение в выпуклую оптимизацию. радев 117–120, 2010.
- [Е.10b] Нестеров Ю. Е. Введение в выпуклую оптимизацию. радев 113–114, 2010.