

Semi-Supervised Classification with Graph Convolutional Networks

CIFAR CANADIAN INSTITUTE ADVANCED RESEARCH

Thomas N. Kipf¹ & Max Welling^{1,2}, ¹University of Amsterdam, ²CIFAR

End-to-end learning on graphs

Previous state-of-the-art for classification on graphs:

- Graph kernels/embeddings [1,2]: not trainable end to end
- Regularization-based methods [3-5]:

$$\mathcal{L}=\mathcal{L}_0+\lambda\mathcal{L}_{\mathrm{reg}}$$
 , with $\mathcal{L}_{\mathrm{reg}}=\sum_{i,j}A_{ij}\|f(X_i)-f(X_j)\|^2$ A : adjacency matrix of graph X : matrix of node feature vectors

Our approach:

Learn graph-based model f(X, A) end to end.

Fast graph convolutions

Graph convolution with signal $x \in \mathbb{R}^N$ and filter g_{θ} :

$$g_{\theta} \star x = U g_{\theta}(\Lambda) U^{\top} x$$

U: eigenvectors of graph Laplacian $L=I_N-D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ Comp. complexity: $\mathcal{O}(N^2)$

First-order approximation:

$$g_{\theta} \star x \approx \theta_0 x + \theta_1 D^{-\frac{1}{2}} A D^{-\frac{1}{2}} x$$

Single parameter and renormalization*:

$$g_{\theta} \star x \approx \theta \bar{D}^{-\frac{1}{2}} \bar{A} \bar{D}^{-\frac{1}{2}} x$$

New complexity: $\mathcal{O}(|\mathcal{E}|)$

$${}^*ar{A}=A+I_N$$
 , $ar{D}_{ii}=\sum_jar{A}_{ij}$

Message passing interpretation

Consider this graph:

Update node in red:

Graph convolutional networks

$$H^{l+1}=\sigma\left(\hat{A}H^lW^l
ight)$$
 , $\hat{A}=ar{D}^{-rac{1}{2}}ar{A}ar{D}^{-rac{1}{2}}$

Two-layer model: $Z = f(X, A) = \operatorname{softmax} \left(\hat{A} \operatorname{ReLU} \left(\hat{A} X W^0 \right) W^1 \right)$

Experiments

Goal: Classify all nodes given only a few labels (test set: 1000 nodes)

Dataset	Type	Nodes	Edges	Classes	Features	Label rate
Citeseer	Citation network	3,327	4,732	6	3,703	0.036
Cora	Citation network	2,708	5,429	7	1,433	0.052
Pubmed	Citation network	19,717	44,338	3	500	0.003
NELL	Knowledge graph	65,755	266,144	210	5,414	0.001

Graph dataset statistics

Graph embeddings

t-SNE embedding of hidden layer activations for Cora dataset (5% labels)

Node classification results

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [4]	60.1	59.5	70.7	21.8
SemiEmb [5]	59.6	59.0	71.1	26.7
LP [3]	45.3	68.0	63.0	26.5
DeepWalk [1]	43.2	67.2	65.3	58.1
Planetoid* [2]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (ours)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)
GCN (rand. splits)	67.9 ± 0.5	80.1 ± 0.5	78.9 ± 0.7	58.4 ± 1.7

Model comparison (classification accuracy)

Description	Propagation model	Citeseer	Cora	Pubmed
Chebyshev filter [6] $K = K = K$	$\sum_{k=0}^{K} T_k(\tilde{L}) X \Theta_k$	$69.8 \\ 69.6$	$79.5 \\ 81.2$	74.4 73.8
1 st -order model	$X\Theta_0 + D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta_1$	68.3	80.0	77.5
Single parameter	$(I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})X\Theta$	69.3	79.2	77.4
Renormalization trick	$\tilde{D}^{-rac{1}{2}} \tilde{A} \tilde{D}^{-rac{1}{2}} X \Theta$	70.3	81.5	79.0
1 st -order term only	$D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta$	68.7	80.5	77.8
Multi-layer perceptron	$X\Theta$	46.5	55.1	71.4

Comparison of graph propagation models

Wall-clock time per training epoch for random graphs

Performance vs. model depth

Conclusions

- End-to-end learning for node classification on graphs
- Scalable up to ~10M nodes/edges
- Future work: model variants (e.g. attention mechanism), edge features, scalability, unsupervised learning

Code: github.com/tkipf/gcn Paper: arxiv.org/abs/1609.02907

tkipf.github.io/graph-convolutional-networks

Update