1. Complete the following table of divided differences.

x	$\int f(x)$	1st DD	2nd DD	3rd DD
$\overline{-3}$	3			
		-2		
-1	-1			
		1		
0	0			
		19		
2	38			

2. Use the previous result to find the interpolating polynomial for the points (-3,3), (-1,-1), (0,0), (2,38) written in any form.

3. Make a table of divided differences to find the interpolating polynomial that passes through (-1,-6), (1,0), and (2,6).

4. Write your previous answer as a linear combination of the standard monomial basis polynomials by expanding.

5. Suppose that f is a function with values given in the table below. Use the method of divided differences to find an interpolating polynomial for f.