Новосибирская область

Всероссийский конкурс научно-технологических проектов «Большие вызовы»

Направление:

Нейротехнологии и природоподобные технологии

Тема проекта: «Стоп стресс!»

Автор проекта: Корецкий Алексей Олегович, 9 класс, МБОУ «Гимназия №16 «Французская»

Руководители:

Кузнецова Галина Вячеславовна,

учитель физики высшей квалификационной категории

Ткачева Наталья Анатольевна,

учитель биологии высшей квалификационной категории

Введение

Стресс является частью повседневной жизнью современного человека[1], т.к. мы живём в изменчивой городской среде, и организм вынужден все время адаптироваться к новым условиям. А Стресс негативно сказывается на качестве жизни.

Актуальность: стресс часто встречающаяся проблема в настоящем обществе.

Проблема: высокая стрессогенность среды, при которой человеку трудно приспосабливаться

Цель: разработать программно-аппаратное решение (ПАР), основанное на биологической обратной связи (БОС) для снижение уровня стресса.

Целевая аудитория: люди, испытывающие проблему стресса, психологопедагогические центры. ПАР предназначено для домашнего повседневного использования, в профилактических, медицинских, исследовательских целях.

Продуктом проекта является аппаратная часть, считывающая 2 биологических показателя, ПО для ПК, визуализирующая данные, проводящая тренинг с возможность индивидуальной настройки [4]. Система масштабируемая с возможностью замены биопараметров.

В ходе проекта будет проведена апробация (не менее 10-15 участников по 8-10 сеансов каждый) и психологический анализ результатов.

1. Анализ существующих решений

Чтобы подтвердить необходимость разработки данного проекта, был проведён анализ существующих аналогов.(Таблица 1) [5,6,7,8,9].

Таблица 1.

Критерии	Цена	Предназначение	Фиксируемые биопараметры	
предлагаемое решение	<4.500,00	Определение и снижение уровня стресса	Температура, ЭМГ	
BOSLAB Программно- аппаратный комплекс «БОС-ПУЛЬС»	10.500,00	диагностика стрессрезистентности, лечение и профилактика психосоматической патологии, повышение устойчивости к стрессу	Частота Сердечных Сокращений	
Беспроводной комплекс БОС Компании Нейротех	25.000,00	Аппаратный комплекс мониторинга здоровья - БОС	ЭЭГ, ЭМГ, ЭКГ, температура, дыхание	
Psyfactorplus «Реакор»	>35.000,00	Комплекс реабилитационный психофизиологический для тренинга с БОС	ЭМГ,ЭКГ, температура, электростимуляция	
Psyfactorplus БОС терапия	3.000,00	коррекции психологических нарушений вызванных стрессом	ЧСС,КГР,ЭКГ,ЭЭГ,ЭМГ,тем пература	

В результате выявлено, что предполагаемое решение отличается методом определения уровня стресса, а так же примитивностью устройства, вследствие чего низкая цена.

2. Описание проблемы и ресурсов

2.1. Исследование явления стресса и его физиологическое проявление.

Стресс чаше всего рассматривают как «адаптивную реакцию организма, развивающуюся в ответ на угрозу нарушения гомеостаза» [2]. Физиологические проявления связаны с активацией гипоталамуса, который повышает активность симпатической нервной системы, вызывает секрецию антистрессорных гормонов коры надпочечников. Это на начальных этапах стресса приводит к учащению частоты сердечных сокращений, дыхания, напряжению мышц, бледности. Если стресс-фактор продолжает воздействовать на организм, то наступает адаптация. Но, если стрессорный фактор действует на организм слишком долго, то физиологический стресс сменяется на патологический. Скорость перехода к дистрессу, как отмечал И. П. Павлов, зависит в том числе от врожденного типа ВНД человека. Многие факторы стресса в той или иной степени встречаются у студентов и школьников при подготовке и сдаче ими экзаменов. Это определило выбор участников для апробации ПАР-тренажёра - учащиеся 11-х классов МБОУ «Гимназия №16 «Французская».

2.2. Исследования возможностей тренингов для создания ПАР — тренажёра

На базе нашей гимназии с 2005 по 2016 год в сотрудничестве с СО РАМН по проблеме психофизиологической коррекции синдрома дефицита внимания и гиперактивности (СДВГ) был открыт Центр по работе с детьми с СДВГ, где использовался программно-аппаратный комплекс «БОСЛАБ» и лечебно-оздоровительные тренажеры БОС-ПУЛЬС. Анализ результатов подтверждает

эффективность данных тренажеров для раннего выявления и коррекции признаков СДВГ и для профилактики хронического стресса.

В процессе игрового биоуправления (игры «Вира», «Магические кубики», «Ралли») ребенок приобретает умение контролировать психоэмоциональное состояние. В этих играх используется датчик пульса. «Вира», «Гребной канал» и «Ралли» - это соревновательные игры, направленные на концентрацию внимания. «Камни на дороге» (элемент в «Ралли») помогает выявить склонность к сонливости в дневное время. «Магические кубики» - игра для младшего школьного возраста, не предполагает конкурентных отношений [15].

В настоящее время работа Центр не работает, но в планах работы социальнопсихолого-педагогического центра гимназии продолжить работу с использованием методов игрового биоуправления, в том числе с использованием авторских программных решений после проверки на объективность работы силами педагогов-психологов гимназии, прошедших обучение по Программе "Технология лечебно-реабилитационного биоуправления" (ООО «Компьютерные системы биоуправления»).

Ресурсы проекта. Разработка тренажера стала возможна в результате выигрыша в конкурсе на апробацию программно-аппаратного комплекса "Юный нейроисследователь" (ПАК ЮНИор, ответственный исполнитель проекта: ООО «КОМСИБ» и соисполнитель: НГУ). Также использованы условия задачи «Остров «Релакс» из 6-гоТурнира Юных Инженеров Исследователей.

Предполагаемые сроки реализации проекта (декабрь 2019 года – апрель 2020 года)

декабрь-январь — работа над идеей проекта, обучение с использованием вебинаров «Регистрация физиологических сигналов» из серии вебинаров "От Arduino к нейротехнологиям" https://www.youtube.com/watch? v=6KZEptfBTFI&t=2551s, https://www.youtube.com/watch? v=ObgrUNE0YoQ&t=3250s, получение и освоение набора с биодатчиками «ПАК – ЮНИОР»;

февраль – доработка ПАР и первый этап апробации;

март — анализ результатов первого этапа, доработка устройства в случае необходимости;

апрель – второй этап апробации и его анализ, разработка рекомендаций для использования системы в дальнейшем другими пользователями, формирования результата.

3. Разработка тренажера «Стоп стресс!»

Для достижения цели, был разработан поэтапный план реализации проекта.

3.1. Концептуальная схема.

На ресурсе Национального центра биотехнологической информации США опубликованы исследования[16], на основании которых можно сделать вывод, что температура кончиков пальцев, и напряжение лобных мышц могут быть использованы, как маркер, говорящий о некотором уровне стресса, оценивая который, можно визуализировать это пользователю и с помощью механизма БОС достигать понижения уровня стресса и достижения некоторого седативного эффекта.

3.2. Разработка концепта визуализации для тренинга

1. Определения тематики и объекта, визуализирующего физиологические параметры

Путём перебора различных вариантов, использования метода от общего к частному были виделены элементы, вошедшие в концепт визуализации:

«Пользователь плывёт на яхте и видит из иллюминатора берег, море и небо. На берегу меняется растительность (природные зоны) в зависимости от данных температурного датчика. Погода меняется в зависимости от мышечного напряжения (датчик ЭМГ).

2. Разработка концепта работы, математическое обоснование элементов визуализации

В сети интернет не удалось найти видео, демонстрирующие визуально смену природных зон. Моей целью является не получение реалистичного изображения на экране монитора, а достижение седативного эффекта, поэтому «не реализм» мне поможет.

ПОПЫТКА 1: я попробовал сразу писать код программы, но промежуточный результат не удовлетворил:

• демонстрация моря: https://drive.google.com/open?

<u>id=10ILOM_YbPLtBUxXhwugfbHD6G0E7zo-D</u>

• демонстрация облаков: https://drive.google.com/open?
id=1_sP19QG0rmq_0Je5zXx20wz37147mMer

Я не привожу методы реализации, привожу только исходный код (версия с объединением облаков и моря, и с управлением погодой - https://drive.google.com/open?id=1ib-x4L4GxwYGT4nLNXiHyy8AQs2kL9ZA) и краткое описание: для моря используются кубические кривые Безье. Изменение их формы и движение происходит за счет алгоритмизации. Для рисования облаков используется уравнение окружности и алгоритм.

Мною сделан упор на математическое моделирование.

ПОПЫТКА 2:

<u>МОРЕ</u>: Для достижения наилучшей визуализации я изучил информацию по моделированию воды [9], в результате чего пришел к уравнению Навье-Стокса ([10], следует просмотреть), описывающее движение вязкой ньютоновской жидкости.

В векторном виде для жидкости система:

$$rac{\partial ec{v}}{\partial t} = -(ec{v}\cdot
abla)ec{v} +
u\Deltaec{v} - rac{1}{
ho}
abla p + ec{f}\,,$$

Решением системы будет моделирование воды. Для этого нужны начальные производные для $\vec{v}(t)$ и для p(t)

Векторное поле сил \vec{f} я не учитываю. А из оператора Лапласа можно грубо приравнять скорость к давлению (мне не важно точное моделирование). В этом случае имеем:

$$\frac{\partial p}{\partial t} = \frac{1}{\rho} \Delta p + \nabla p$$

Коэффициент кинематической вязкости я принимаю как $1/\rho_{\text{жидкости}}$ (ещё одна грубость), т. к. я беру давление жидкости в заданных точках, вместо скорости.

Полученное уравнение не может использоваться для расчётов, прогнозирования, но оно достаточно правдоподобно, на мой взгляд, передаёт физику воды.

<u>ОБЛАКА</u>: для моделирования облаков использую шум Перлина[11]. Не расписываю его, т. к. никаких преобразования не делал. Я накладываю друг на друга сгенерированный с разными октавами шум и фильтрую по глубине (амплитуде). Шум Перлина, который я использую, имеет три оси измерения:

• Х и У — плоскости неба

• Z — время, для имитации изменения формы

 $\overline{\mathit{EEPE\Gamma}}$: Я не использовал готовых решений и формул, а на основе всего, что знал. Я не придумал нового, и «взял из воздуха уравнение», но формировал на основе простой логики.

Пусть есть некоторая функция h(t), определяющая изменение формы рельефа со временем.

Пусть конечная функция H(t) стремиться приблизиться к h(t), на основе собственного поведения, то есть на основе своей производной, тогда:

$$H'(t)=H'(t-1)+h'(t)+(h(t)-H(t-1))\cdot k$$

то есть производная сейчас = производная прошлая + производная функции к которой нам надо прийти + (значение к которому надо прийти - значение прошлого) * k

где k- коэффициент перехода, подбирается таким образом, чтобы добиться плавной интерполяции (у меня он равен 0.2)

для решения уравнения надо задать H_1 , H_2

Осталось определить функцию h(t). Для этого я использую алгоритм символьной регрессии. В моём случае это всего лишь инструмент, поэтому я не описываю его. Была нарисована от руки функция, после дискретизации и оцифровки данные были переданы алгоритму.

Результат:

<u>РАСТИТЕЛЬНОСТЬ и ОСАДКИ</u>: для построения использовался алгоритм (рекурсия — деревья).

Для отображения иллюминатора, использовался рендер тора и плоскости с имитацией металла и дерева соответственно. Рендеринг и моделирование производилось в Blender.

3. Разработка динамического параметрического изображения на экране монитора

В качестве языка ПО использовался язык Java (кроссплатформенность и опыт работы), а для отображения примитивов графики -Processing API [12].

- демонстрация: https://drive.google.com/open?id=1sbhLi2hZFS-6lq1Fo8c08y7DZXxERVq4,
- исходный код (с малой интеграцией с микроконтроллером): https://drive.google.com/open?id=19dewWYizncQd2gFZTKyGNzoQKS5-0Q4r

3.2. Разработка аппаратного комплекса и экономическое обоснование

Аппаратная часть - блок с датчиками, подключаемый к ПК. Для считывания сигналов, обработки и передачи на ПК использую микроконтроллер Ardiuno Pro Micro (цена, простота программирования, TTL — USB — VTTL и эмуляция HID устройства — альтернативный протокол передачи данных (избавит от проблем с драйверами)). Для считывания температуры использую подключённый через делитель напряжения термистор. Для считывания электропотенциалов мышц использую инструментальный усилитель INA128 [13], (+ он малый фильтр высоких частот).

Компоненты:

Arduino Pro Micro, INA128PA DIP-8, Resistor $10k\Omega$, Capacitor 25V $47\mu F$, Thermistor MF52AT $10k\Omega$, Doid Shotky 1N5819, Twisted Wire 2m, Device Body, Usb Cable, Electrod Cable.

Расчётная стоимость с учётом налогов, без учёта работы: 2299.98 руб.

3.3. Разработка модуля обработки сигналов физиологических параметров

В ходе тренинга будем использовать два сигнала: температура (термистор) и электрический сигнал мышц (электромиограмма (ЭМГ) поверхностными биполярными электродами). О работе с данными датчиками и обработке сигналов можно посмотреть https://www.youtube.com/watch?v=6KZEptfBTFI&t=2551s и https://www.youtube.com/watch?v=ObgrUNE0YoQ&t=3250s)

Работа с сигналом ЭМГ проходит в два этапа:

1. Метод «корень квадратный из среднего значения квадрата сигнала»

$$\frac{\sqrt{\int_{t}^{t+\Delta t} (s(t)^{2} dt}}{\sqrt{\Delta t}} = \sqrt{\frac{\sum_{i=1}^{N} s(t_{i})^{2}}{N-1}}$$

где s(t) — ЭМГ-сигнал, зарегистрированный с помощью АЦП в точках $s(t_i)$; Δt — период усреднения; N – количество отсчетов Δt .

2. Фильтрация и сглаживание сигнала.

$$s(t) = \frac{s'(t) - s(t-1)}{k}$$

s (t) — функция обработанного сигнала

s'(t) – функция результата первого этапа

k — уровень дискретицации t

Для обработки сигнала температурного датчика используется формула второго этапа обработки ЭМГ.

В ПО предусмотрена возможность установки пороговых значений.

Для передачи данных используется протокол COMM порта (виртуализация, на деле $TTL/UART \rightarrow USB \rightarrow virtual\ TTL/UART$) (в перспективе HID).

Данные передаются в простом виде: EMG temperature\n

В ПО реализована панель(по умолчанию скрыта) с отображением графика данных датчиков, ползунков для установки пороговых значений, списка доступных устройств и кнопка их подключения.

4. Апробация ПАР и его совершенствование

Для апробации разработанного «Стоп crpecc!» были тренажера сформированы две группы из учащихся 11-х классов. Они не имели опыта Главной особенностью лечебно-оздоровительного саморегуляции. основанного на технологии игрового биоуправления - соревновательный элемент. В ходе тренинга человек может просматривать в каком состоянии он находился в тоже время в прошлом сеансе. Выиграть можно научившись управлять собственными механизмами саморегуляции, используя методики мышечной релаксации в сочетании с высокой степенью контроля сознания, постоянным

сканированием внутренних ощущений и наблюдением за динамикой показателей на экране монитора. → Формируется модель эффективного поведения. [15].

Всем участникам предложены психологические тесты (опросник Айзенка, методика САН, опросник УСК). Далее они приступили к прохождению 7-10 сессий с перерывами между занятиями не более 2 дней. Продолжительность каждой сессии 20-30 минут (8-10 попыток).

На этапе апробации предполагаем возникновение проблем с обработкой сигналов, учетом границ допустимых значений сигналов, калибровкой, устойчивостью алгоритмов к нестандартным ситуациям и артефактам.

У каждого участника мы будем анализировать начальную и конечную сессии курса.

Гипотеза: если ПАР соответствует требованиям к тренажёрам с БОС, то все участники продемонстрируют способность произвольного расслабления мышц и регуляции температуры в конечных сеансах.

Качественным показателем будем считать достижение состояния «релакса» (спокойное море, тропический пляж).

Количественным показателем является разница между временем, необходимым для достижения спокойного тропического пейзажа на первом и последнем сеансе.

Предполагаем по успешности выполнения тренинга можно выделить две группы: с быстрым положительным приростом по результатам и с отрицательным приростом или его отсутствием, что связывают с индивидуальным типом ВНД.

Подробная психологическая диагностика будет проведена педагогом – психологом гимназии после окончания тренингов.

Результаты

Предполагаемым результатом является разработанное ПАР, основанное на технологии БОС для борьбы со стрессом. Решение является простым в использовании, экономически выгодным. При этом соответствует требованиям к тренингам по биоуправлению, как эффективного способа самопроизвольной корректировки состояния человека.

В случае успешной апробации данный тренажёр будет использован психологами гимназии, причём не только для борьбы со стрессом у обычных школьников, но и для работы с детьми с СДВГ и ОВЗ.

Устройство в макетном виде: и Устройство в собранном виде: https://drive.google.com/open?id=1DsrAamQgLB05uTUgrnYRuk16xxQEYY58

Тестовая апробация(х-время в секундах, у-условные единицы +-1):

Примечание на март-апрель 2020: в связи с пандемией COVID-19 апробация на группе школьников не состоялась.

Источники, замечания и литература.

1.	Распростран	нённость					стресса					
	https://www	ncbi.nlm.n	ih.gov/p	mc/article	s/PMC4377029/							
2.	Ганс Селье,	"Стресс жи	зни" htt	p://adapto	ometry.narod.ru/S	tressZhiz	ni.htm					
3.	74,59%	населения	В	РΦ	проживают	В	городах					
	https://showdata.gks.ru/report/278932/											
4.	идеология персонализированной медицины											
5.	http://boslab.ru/products/biofeedback_games/pulse_prof.php											
6.	https://fortis-med.ru/products/besprovodnoiy-kompleks-bos											
7.	https://www.psyfactorplus.com/about3											
8.	. https://www.psyfactorplus.com/slideshow-c24kp											
9.	основной информационный ресурс Wikipedia https://ru.wikipedia.org											
10.	Уравнения		Нав	вье	_		Стокса					
	https://ru.wikipedia.org/wiki/Уравнения_Навье_—_Стокса											
11.	11. Шум Перлина https://ru.wikipedia.org/wiki/Шум_Перлина											
12.	https://proc	essing.org/										
13.	3. DataSheet IN128 http://www.ti.com/lit/ds/symlink/ina128.pdf											
14.	ЭМГ — рег	истрация эл	ектриче	ской акти	вности мышц <u>htt</u> j	o://biosoft	video.ru/					
	myography/											
15.	Штарк	М.Б.	И	O.A.	Джафарова	соотве	тственно					
http://sibmed.net/archive/2004/3_2004_Оглавление-Contents.pdf												