CPSC 340 Tutorial

Week 1

September 13, 2021

• Define: \mathbb{R}^n , $x^\top A x$, ||x||, $\nabla f(x)$

- Define: \mathbb{R}^n , $x^\top A x$, ||x||, $\nabla f(x)$
- If $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, $A \in \mathbb{R}^{n \times m}$, find the dimensions of:

$$x^{\top}A$$
, $x^{\top}Ay$, xx^{\top}

- Define: \mathbb{R}^n , $x^\top Ax$, ||x||, $\nabla f(x)$
- If $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, $A \in \mathbb{R}^{n \times m}$, find the dimensions of:

$$x^{\top}A$$
, $x^{\top}Ay$, xx^{\top}

• If $a, x \in \mathbb{R}^n$, compute gradients of:

$$f(x) = a^{\top} x$$

$$f(x) = log(a^{\top} x)$$

- Define: \mathbb{R}^n , $x^\top A x$, ||x||, $\nabla f(x)$
- If $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, $A \in \mathbb{R}^{n \times m}$, find the dimensions of:

$$x^{\top}A$$
, $x^{\top}Ay$, xx^{\top}

• If $a, x \in \mathbb{R}^n$, compute gradients of:

$$f(x) = a^{\top} x$$
$$f(x) = log(a^{\top} x)$$

• Sanity check: If $x \in \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$, $\nabla f(x) \in \mathbb{R}^n$

Finite Difference Approximations

• Recall the definition of the derivative:

$$\frac{df}{dx} = \lim_{\epsilon \to 0} \frac{f(x + \epsilon) - f(x)}{\epsilon}$$

Finite Difference Approximations

• Recall the definition of the derivative:

$$\frac{df}{dx} = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon}$$

• We can approximate the derivative by choosing small ϵ (say $\epsilon=1e-4$) and ignoring the limit:

$$\frac{df}{dx} \approx \frac{f(x+\epsilon) - f(x)}{\epsilon}$$

Finite Difference Approximations

Recall the definition of the derivative:

$$\frac{df}{dx} = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon}$$

• We can approximate the derivative by choosing small ϵ (say $\epsilon=1e-4$) and ignoring the limit:

$$\frac{df}{dx} \approx \frac{f(x+\epsilon) - f(x)}{\epsilon}$$

• This can be extended to the gradient case by computing each element of the gradient as above. If $x \in \mathbb{R}^n$:

$$(\nabla f(x))_i \approx \frac{f(x_1,\ldots,x_i+\epsilon,\ldots,x_n)-f(x)}{\epsilon}$$

Python and Numpy Basics (Demo)