Production planning

Variables:

 x_{ij} the amount of product i in month j to be produced y_{ij} the amount of product i in month j to be sold t_{ij} the amount of product i in month j to be stored $a_{ij} = 1$ if product i in month j is produced (binary)

Objective:

$$\max \sum_{ij} (price_i y_{ij} - prodcost_i x_{ij} - storecost_i t_{ij} - actcost_i a_{ij})$$

Subject to:

$$\begin{aligned} x_{ij}, y_{ij}, t_{ij} &\geq 0 & \forall i, j \\ \sum_{i} \frac{x_{ij}}{maxquota_{i}} &\leq days_{j} & \forall j \\ \sum_{i} t_{ij} &\leq 800 & \forall j \\ y_{ij} &\leq demand_{ij} & \forall i, j \\ minbatch_{i}a_{ij} &\leq x_{ij} & \forall i, j \\ \frac{x_{ij}}{maxquota_{i}days_{j}} &\leq a_{ij} & \forall i, j \\ t_{i,j-1} + x_{ij} &= y_{ij} + t_{ij} & \forall i, j \\ t_{i0} &= 0 & \forall i \end{aligned}$$

The last two constraint can be written directly as

$$t_{ij} = \sum_{k=1}^{j} x_{ik} - y_{ik}$$