Homework 2

CS 189 Spring 2019 Introduction to Machine Learning

1 Identities with Expectation

Q₁

If u=u(x) and du=u'(x)dx, while v=v(x) and dv=v'(x)dx, then the integration by parts formula states that

$$\int u dv = uv - \int v du$$

Base case: $E[X^0]=1$. Inductive hypothesis: $E[X^k]=\frac{k!}{\lambda^k}$. Inductive step:

$$\begin{split} E[X^{k+1}] &= \int_0^\infty \lambda e^{-\lambda x} \cdot x^{k+1} \\ &= -e^{-\lambda x} \cdot x^{k+1} \Big|_0^\infty - \int_0^\infty -e^{-\lambda x} \cdot (k+1) x^k \\ &= \int_0^\infty e^{-\lambda x} \cdot (k+1) x^k \\ &= \frac{k+1}{\lambda} \int_0^\infty \lambda e^{-\lambda x} \cdot x^k \\ &= \frac{k+1}{\lambda} E[x^k] \\ &= \frac{(k+1)!}{\lambda^{k+1}} \end{split}$$

QED.

Q2

Since X is a non-negative real-valued random variable, we have

$$egin{aligned} E[X] &= E[\int_0^\infty \mathbf{1}\{X \geq t\}dt] \ &= \int_0^\infty \int_0^\infty \mathbf{1}\{x \geq t\}dt f(x)dx \ &= \int_0^\infty \int_0^\infty \mathbf{1}\{x \geq t\}f(x)dxdt \end{aligned}$$

Note that $\Pr(X \geq t) = E[\mathbf{1}\{X \geq t\}]$, so $E[X] = \int_0^\infty \Pr(X \geq t) dt$. **QED.**

Q3

Since $X \geq 0$, we have $X = X\mathbf{1}\{X > 0\}$. Now, we apply Cauchy-Schwarz inequality:

$$egin{aligned} (E[X])^2 &= (E[X\mathbf{1}\{X>0\}])^2 \ &\leq E[X^2]E[(\mathbf{1}\{X>0\})^2] \ &= E[X^2]E[\mathbf{1}\{X>0\}] \ &= E[X^2]\Pr(X>0) \end{aligned}$$

In conclusion, $\Pr(X>0) \geq rac{(E[X])^2}{E[X^2]}$. QED.

Q4

Use the fact that $t-X \leq (t-X)\mathbf{1}\{t-X>0\}$, and apply Cauchy-Schwarz inequality:

$$(E[t-X])^{2} \le (E[(t-X)\mathbf{1}\{t-X>0\}])^{2}$$

$$\le E[(t-X)^{2}]E[\mathbf{1}\{t-X>0\}]$$

Note that E[X]=0, so the LHS is t^2 , and the first expectation in the RHS is $t^2+E[X^2]$. The second one is $\Pr(t>X)$.

Therefore, we have $t^2 \leq (t^2 + E[X^2]) \Pr(t > X)$, which after some rearranging gives $\Pr(X \geq t) \leq \frac{E[X^2]}{E[X^2] + t^2}$, as desired. **QED.**

2 Properties of Gaussians

Q1

$$\begin{split} E[e^{\lambda X}] &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}} e^{\lambda x} dx \\ &= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} \exp\{-\frac{1}{2\sigma^2} (x - \sigma^2 \lambda)^2 + \frac{\sigma^2 \lambda^2}{2}\} dx \\ &= \frac{1}{\sqrt{2\pi}\sigma} \cdot e^{\sigma^2 \lambda^2 / 2} \int_{-\infty}^{\infty} \exp\{-\frac{(x - \sigma^2 \lambda)^2}{2\sigma^2}\} dx \\ &= \frac{1}{\sqrt{2\pi}\sigma} \cdot e^{\sigma^2 \lambda^2 / 2} \cdot \sqrt{2\pi}\sigma \\ &= e^{\sigma^2 \lambda^2 / 2} \end{split}$$

QED.

Q2

The **Chernoff bound** for a random variable X is obtained by applying Markov's inequality to $e^{\lambda X}$.

Markov's inequality If X is a nonnegative random variable and a>0, then the probability that X is at least a is at most the expectation of X divided by a. $\Pr(X\geq a)\leq \frac{E[X]}{a}$.

For any $\lambda>0$ and t>0, $\Pr(X\geq t)=\Pr(e^{\lambda X}\geq e^{\lambda t})\leq \frac{E[e^{\lambda X}]}{e^{\lambda t}}=e^{\sigma^2\lambda^2/2-\lambda t}$. Setting $\lambda=\frac{t}{\sigma^2}$ gives the result. Similar for $\lambda<0$. **QED.**

Q3

Let $X=\frac{1}{n}\sum_{i=1}^n X_i$. Since X_i s are independent randoms variables, we have $E[X]=\frac{1}{n}\sum_{i=1}^n E[X_i]=0$ and $\mathrm{Var}[X]=\sum_{i=1}^n \mathrm{Var}[\frac{X_i}{n}]=n\cdot\frac{1}{n^2}\sigma^2=\frac{\sigma^2}{n}$. Therefore, $X\sim N(0,\frac{\sigma^2}{n})$. $\mathrm{Pr}(X\geq t)\leq e^{-\frac{t^2n}{2\sigma^2}}$. If $n\to\infty$, then the probabilty of X being away from 0 goes to 0.

Q4

Let $X \sim N(0,1)$ and ξ be a random variable such that $\Pr(\xi=-1)=\Pr(\xi=1)=0.5$. Let $Y=\xi\cdot X$. Note that $Y\sim N(0,1)$. However, X+Y is not Gaussian.

$$E[u_x v_x] = E[(\sum_{i=1}^n u_i X_i)(\sum_{i=1}^n v_i X_i)]$$

Note that if $\mathbf{Cov}(X_iX_j)=0$ if $i\neq j$, which implies $E[X_iX_j]=E[X_i]E[X_j]=0$. Therefore, $E[u_xv_x]=\sum_{i=1}^n u_iv_iE[X_i^2]=\langle u_i,v_i\rangle=0$. Since Gaussian random variables are independent iff they are uncorrelated, we conclude that u_x and v_x are independent.

Q6

$$egin{aligned} \lambda E\left[\max_{i}|X_{i}|
ight] &= \log \exp\left\{E\left[\lambda \max_{i}|X_{i}|
ight]
ight\} \ &\leq \log E\left[\exp\left\{\lambda \max_{i}|X_{i}|
ight\}
ight] \ &\leq \log E\left[\sum_{i} \exp\left\{\lambda |X_{i}|
ight\}
ight] \ &\leq \log E\left[\sum_{i} \left(\exp\left\{\lambda X_{i}
ight\} + \exp\left\{-\lambda X_{i}
ight\}
ight)
ight] \ &= \log \sum_{i} \left(E[e^{\lambda X_{i}}] + E[e^{-\lambda X_{i}}]
ight) \ &= \log \sum_{i} (2e^{\sigma^{2}\lambda^{2}/2}) \ &= \log 2n + \sigma^{2}\lambda^{2}/2 \end{aligned}$$

Setting $\lambda = rac{\sqrt{\log 2n}}{\sigma}$ gives $E\left[\max_i |X_i|\right] \leq rac{3}{2}\sqrt{\log 2n}\sigma$. QED.

3 Linear Algebra Review

Q1

 $(a)\Rightarrow(b)$ For all the eigenvectors $v_i's$ of A with the corresponding eigenvalues $\lambda_i's$. We have $v_i^{\top}Av_i=\lambda_iv_i^{\top}v_i=\lambda_i||v_i||^2\geq 0$. Therefore, all the eigenvalues of A are non-negative.

Q2

Q3

4 Gradients and Norms

5 Covariance Practice