

第3部 RTシステム構築実習

宮本 信彦

国立研究開発法人産業技術総合研究所 ロボットイノベーション研究センター ロボットソフトウェアプラットフォーム研究チーム

資料

- USBメモリで配布
 - 「WEBページ」フォルダのHTMLファイルを開く
 - チュートリアル(RTM講習会、第3部) _ OpenRTM-aist.html
- もしくはRTミドルウェア講習会のページからリンクをクリック
 - チュートリアル(第3部)

プログラム(予定)

10:00 -10:50	第1部(その1): RTミドルウエア: OpenRTM-aist概要 - 担当: 安藤 慶昭(産総研) - 概要: RTミドルウエアはロボットシステムをコンボーネント指向で構築するソフトウエアブラットフォームです。RTミドルウエアを利用することで、既存のコンボーネントを再利用し、モジュール指向の柔軟なロボットシステムを構築することができます。 RTミドルウエアの産総研による実装であるOpenRTM-aistについてその概要について説明します。
11:00 -12:00	第1部(その2): インターネットを利用したロボットサービスとRSiの取り組み2019 - 担当:成田雅彦 氏(産業技術大学院大学)
12:00 -13:00	昼食
13:00 -14:30	第2部: RTコンボーネントの作成入門 - 担当: 宮本 信彦(産総研) - 概要: RTシステムを設計するツールRTSystemEditorおよびRTコンボーネントを作成するツールR TCBuilderの使用方法について解説するとともに、 移動ロボットのシミュレータを用いた実習によりRTCBuilder、 RTSystemEditorの利用法の学習します。 チュートリアル(第2部、Windows) チュートリアル(第2部、Ubuntu)
14:30 -15:30	第3部: RTシステム構築実習 - 担当: 宮本 信彦(産総研) - 概要: OpenRTM-aistを利用して移動ロボット実機を制御するプログラムを作成します。 チュートリアル(第3部)
15:30 -17:00	第4部: RTミドルウェア応用実習 - 担当: 宮本 信彦(産総研) - 概要: ボータブル板LibreOffice用RTCの利用方法について解説を行うとともに、表計算ソフトによるRTCのテストの実行についての実習を行います。 チュートリアル(第4部)

(AIST)

複数台のロボットが連携するシステムの構築

• アクセスポイントのRasperry PiにノートPCと LEGO Mindstroms EV3を接続する

2部の実習完了時点で、 Raspberry PiとノートPCが接続済み

アクセスポイントのRaspberry PiにEV3を接続する

EV3配布

• Raspberry Pi、EV3の番号を確認

2部で使用したRaspberry Piと同一番号のEV3を使う

Educator Vehicle組立て

- Educator Vehicleの組立て
 - EV3を本体に装着

EV3本体を土台に取り付ける

- EV3とLモーターをケーブルで接続
 - B → Lモーター(左)
 - C → Lモーター(右)

EV3の接続

- 電源投入
 - 中央のボタンを押す
 - 起動すると自動的にアクセスポイントに接続

- 起動しない場合はリセットを実行する

EV3の接続

- IPアドレスが192.168.11.xxxになっているかを確認する
 - 接続には多少時間が必要

画面上に表示されたIPアドレスを確認する

- スクリプトファイル実行(RTCの起動)
 - ボタン操作で「File Browser」→「scripts」→「start_rtcs.sh」を選択

EV3(2台目の接続)

- ネームサーバーの接続
 - EV3の画面上に表示されたIPアドレスを入力する

動作確認

- データポートの接続
 - EducatorVehicle0の現在の速度出力をRaspberryPiMouseRTC0の目標速度入力に接続する。
 - current_vel(EducatorVehicle0) → target_velocity_in(RaspberryPiMouseRTC0)

EducatorVehicle1のアウトポートを RaspberryPiMouseRTCのインポートと接続

動作確認

• RTCをアクティブ化する

