CSD1241 Tutorial 3

Problem 1. (Right-hand rule)

The xyz-space that we are familiar to uses the right-hand rule.

Let
$$\vec{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\vec{j} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{k} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ = unit vectors along x-axis, y-axis, z-axis. The following

equations were discussed in the lecture

$$\vec{i} \times \vec{j} = \vec{k}, \ \vec{j} \times \vec{k} = \vec{i}, \ \vec{k} \times \vec{i} = \vec{j}$$

Practice the right-hand rule for the above equation, that is, verify that $\vec{i} \times \vec{j}$ points to the same direction as \vec{k} , $\vec{j} \times \vec{k}$ points to the same direction as \vec{i} , and $\vec{k} \times \vec{i}$ points to the same direction as \vec{j} .

Problem 2. Find the area of the triangles with given vertices A, B, C.

- (a) A(2,6,1), B(1,1,1), C(-1,2,3).
- (b) A(2,0), B(3,5), C(-1,-2).

Problem 3. Find both the parametric equation and the general equation of the plane β containing three points P, Q, R in the following cases. Further, let A = (1, 2, 3). find the point B on β which is at the closest distance to A.

- (a) P(3,-1,4), Q(6,0,2), R(5,1,1).
- (b) P(2,1,3), Q(1,3,4), R(-2,-1,-5)

Problem 4. Find the intersection of the lines l_1 and l_2 (in \mathbb{R}^2) in following cases.

(a)
$$l_1: \begin{cases} x = -3 + t \\ y = 1 - t \end{cases}$$
 and $l_2: (x, y) = (7, 0) + s \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

- (b) $l_1: x + 4y = 13$ and $l_2:$ go through (4,0) and (5,-1).
- (c) $l_1: y-1=-(x+3)$ and $l_2:$ go through (4,0) and perpendicular to x+4y=13.

Problem 5. Find the relative position (intersecting, parallel, skew) and the intersections between any two of the three lines k, l, m (in \mathbb{R}^3)

$$k: \begin{cases} x = 1 + 2r \\ y = -1 + 2r \end{cases} \quad l: \begin{cases} x = -1 + 2t \\ y = t \end{cases} \quad m: (x, y, z) = (2, 0, 1) + s \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix}$$

Problem 6. Let l be the line going through P=(2,3,1) and Q=(5,-3,4). Let α be the plane going through (0,2,-1) with direction vectors $\vec{u}=\begin{bmatrix}1\\1\\0\end{bmatrix}$, $\vec{v}=\begin{bmatrix}-3\\-1\\1\end{bmatrix}$.

- (a) Find the intersection of l and α .
- (b) Find the intersection of α and the plane β : through (1,2,0) with normal $\vec{n} = \begin{bmatrix} 1 \\ -2 \\ 6 \end{bmatrix}$.