1 20-04-2018

1.1 Membranes

Remark 1. Consider the problem below with $\phi: \Omega \to \mathbb{R}$ unknown and given $f: \Omega \to \mathbb{R}$

$$\begin{cases} - \triangle \phi = f &, in \Omega \\ \frac{\partial \phi}{\partial n} = 0 &, on \Gamma \equiv \partial \Omega \end{cases}$$
 (1)

- 1. If ϕ is the solution of (1), then $\phi + c$ will be also a solution for $c \in \mathbb{R}$. So, there is no uniqueness of (1).
- 2. Condition for f

$$\int_{\Omega} f \ dx = \int_{\Omega} - \triangle \phi \ dx = \int_{\Omega} \nabla \cdot (-\nabla \phi) \ dx =$$