

2.1 Linear Classifiers

Machine Learning 1: Foundations

Marius Kloft (TUK)

Recap

Machine learning

 computers learning from data how to make accurate predictions

Formal problem setting and terminology

- ► Given training data =
 - ightharpoonup inputs $\mathbf{x}_1, \dots, \mathbf{x}_n$
 - ▶ labels $y_1, ..., y_n$
- Aim: to compute a function f (called classifier or predictor) predicting the unknown label y of a new input x)
- Example: *k*-nearest neighbor algorithm

Contents of this Class

Linear Classifiers

Math Notation & Recap

2 Linear Classifiers

Math Notation & Recap

2 Linear Classifiers

Math Notation

- ▶ Vectors $\mathbf{v} \in \mathbb{R}^d$ are thought of as column vectors and denoted with boldface letters.
- Scalars $s \in \mathbb{R}$ are denoted with normal letters.
- ▶ Matrices $M \in \mathbb{R}^{m \times n}$ have m rows and n columns and are denoted with normal letters.
- ▶ Greek letters can refer to both scalars and vectors, but they are boldfaced if they denote vectors ($\lambda \in \mathbb{R}^d$ vs. $\lambda \in \mathbb{R}$).
- ▶ **0** and **1** are vectors in \mathbb{R}^d with entries all zeros and ones, respectively.
- Transposition of a vector or matrix:
 - if **v** is a column vector, then v^{\top} is a row vector
 - ▶ if $M \in \mathbb{R}^{m \times n}$ then $M^{\top} \in \mathbb{R}^{n \times m}$.
- Scalar product of two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^d$: $\langle \mathbf{v}, \mathbf{w} \rangle := \mathbf{v}^\top \mathbf{w}$
- Norm of a vector: $\|\mathbf{v}\| := \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} = \sqrt{\mathbf{v}^{\top}}\mathbf{v}$
- ▶ $\mathbf{v} \le \mathbf{w}$ means $\forall i = 1, ..., d : v_i \le w_i$
- ▶ The cardinality of a set S is denoted |S|

Math Recap: Projections

Recall from linear algebra:

Definition

The scalar projection of a vector $\mathbf{v} \in \mathbb{R}^d$ onto a vector $\mathbf{w} \in \mathbb{R}^d$ is $\Pi_{\mathbf{w}} \mathbf{v} = \mathbf{v}^{\top} \frac{\mathbf{w}}{\|\mathbf{w}\|}$.

Math Recap: Hyperplanes and Distances

Definitions

- An (affine-)linear function is a function $f : \mathbb{R}^d \to \mathbb{R}$ of the form $f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} + b$, where $\mathbf{w} \in \mathbb{R}^d (\mathbf{w} \neq \mathbf{0})$ and $b \in \mathbb{R}$.
- ▶ A hyperplane is a subset $H \subset \mathbb{R}^d$ defined as $H := \{ \mathbf{x} \in \mathbb{R}^d : f(\mathbf{x}) = 0 \}.$

Proposition (properties of hyperplanes)

Let H be a hyperplane defined by the affine-linear function $f(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x} + b$.

- **1** The vector **w** is **orthogonal** to H, meaning that: for all $\mathbf{x}_1, \mathbf{x}_2 \in H$ it holds $\mathbf{w}^{\top}(\mathbf{x}_1 \mathbf{x}_2) = 0$.
- 2 The **signed distance** of a point **x** to *H* is given by $d(\mathbf{x}, H) \stackrel{\text{def.}}{:=} \pm \min_{\tilde{\mathbf{x}} \in H} \|\mathbf{x} \tilde{\mathbf{x}}\| \stackrel{!}{=} \frac{1}{\|\mathbf{w}\|} (\mathbf{w}^{\top} \mathbf{x} + b) .$

[presented at the board]

Prop1: $\forall \mathbf{x}_1, \mathbf{x}_2 \in H$ it holds $\mathbf{w}^{\top}(\mathbf{x}_1 - \mathbf{x}_2) = 0$.

Proof:

Let $x_1, x_2 \in H$. Then $\mathbf{w}^T x_1 + b = 0$ and $\mathbf{w}^T x_2 + b = 0$.

So:
$$\mathbf{w}^T \mathbf{v}_t \perp \mathbf{b} = \mathbf{v}$$

$$\mathbf{w}^T x_1 + b = \mathbf{w}^T x_2 + b$$

$$\Rightarrow \mathbf{w}^T (x_1 - x_2) = 0$$

Prop2:
$$d(\mathbf{x}, H) \stackrel{\text{def.}}{:=} \pm \min_{\tilde{x} \in H} \|x - \tilde{x}\| \stackrel{!}{=} \frac{1}{\|\mathbf{w}\|} (\mathbf{w}^{\top} \mathbf{x} + b)$$

Firstly we notice that $\pm \min_{\tilde{x} \in H} \|x - \tilde{x}\| = \Pi_w(x - x')$ for an arbitrary $x' \in H$.

Prop2:
$$d(\mathbf{x}, H) \stackrel{\text{def.}}{:=} \pm \min_{\tilde{\mathbf{x}} \in H} \|\mathbf{x} - \tilde{\mathbf{x}}\| \stackrel{!}{=} \frac{1}{\|\mathbf{w}\|} (\mathbf{w}^{\top} \mathbf{x} + b)$$

Proof:

$$d(\mathbf{x}, H) = \Pi_{w}(\mathbf{x} - \mathbf{x}') = \frac{\mathbf{w}^{T}(\mathbf{x} - \mathbf{x}')}{\|\mathbf{w}\|} = \frac{\mathbf{w}^{T}\mathbf{x} - \mathbf{w}^{T}\mathbf{x}'}{\|\mathbf{w}\|} \stackrel{*}{=} \frac{1}{\|\mathbf{w}\|} (\mathbf{w}^{T}\mathbf{x} + b)$$
Where (\star) :
$$\mathbf{x}' \in H \Rightarrow \mathbf{w}^{T}\mathbf{x}' + b = 0 \iff \mathbf{w}^{T}\mathbf{x}' = -b$$

Math Notation & Recap

2 Linear Classifiers

Linear Classifiers

Definition

A classifier of the form $f(\mathbf{x}) = \text{sign}(\mathbf{w}^{\top}\mathbf{x} + b)$ is called **linear** classifier.

What are advantages and disadvantages of linear classifiers?

Please **pause** your video here and think about this question for a few minutes...

Linear Classifiers

Definition

A classifier of the form $f(\mathbf{x}) = \text{sign}(\mathbf{w}^{\top}\mathbf{x} + b)$ is called **linear** classifier.

What are advantages and disadvantages of linear classifiers?

Advantages

- + Easy to interpret
- + In practice: work well surprisingly often
- + Fast

Disadvantages

- Suboptimal performance if true decision boundary is non-linear
 - Occurs for very complex problems such as recognition problems and many others

NCC is a Linear Classifier

Theorem

NCC is a linear classifier $f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x} + b)$ with $\mathbf{w} := 2(c_{+} - c_{-})$ and $b = \|c_{-}\|^{2} - \|c_{+}\|^{2}$.

Proof

The decision boundary is given by

$$H := \{x \in \mathbb{R}^d : \|x - c_-\| = \|x - c_+\|\}.$$

We have:

$$||x - c_{-}|| = ||x - c_{+}||$$

$$\iff ||x - c_{-}||^{2} = ||x - c_{+}^{2}||$$

$$\iff \sqrt{\sum_{i=1}^{d} (x_{i} - c_{-i})^{2}}^{2} = \sqrt{\sum_{i=1}^{d} (x_{i} - c_{+i})^{2}}^{2}$$

$$\iff ||x||^{2} - 2c_{-}^{T}x + ||c_{-}||^{2} = ||x||^{2} - 2c_{+}^{T}x + ||c_{+}||^{2}$$

$$\iff 2(c_{+} - c_{-})^{T}x + ||c_{-}||^{2} - ||c_{+}||^{2} = 0$$

$$\iff 2w^{T}x + b = 0.$$
Thus $H = \{x \in \mathbb{R}^{d} : 2w^{T}x + b = 0\}$

Conclusion

Linear Classifier: $f(\mathbf{x}) = \text{sign}(\mathbf{w}^{\top}\mathbf{x} + b)$

Fast and easy to understand

Example: NCC

 $f(\mathbf{x}) = \operatorname{arg\,min}_{y \in \{-,+\}} \|x - c_y\|$

