APUNTES DE ROBOTICA

MODELO CINEMÁTICO DE VELOCIDAD

Contents

1	Modelo cinemático de velocidad	2
	1.1 Matrices asimétricas	2

1 Modelo cinemático de velocidad

En esta sección se derivan las relaciones de velocidad, con respecto a las velocidades lineales y angulares del efector final. Las relaciones de velocidad se determinan por los Jacobianos de la cinemática directa.

Velocidad angular: Caso de eje fijo

donde $\dot{\theta}$ es la derivada con respecto al tiempo de θ , \vec{k} es un vector en dirección del eje de rotación y ω es la velocidad angular. Dada la velocidad angular del cuerpo, la velocidad lineal de cualquier punto en el cuerpo esta dada por:

$$\upsilon = \omega \times \vec{r}$$

donde \vec{r} es un vector desde el origen al punto dado. La velocidad angular ω es una propiedad de la trama anexa al cuerpo. La velocidad angular no es una propiedad de un punto particular. Así que v corresponde a la velocidad lineal de un punto mientras ω corresponde a la velocidad angular de una trama rotando.

1.1 Matrices asimétricas

Se dice que una matriz S es asimétrica si y sólo si:

$$S^T + S = 0$$

donde,

$$S = \begin{bmatrix} 0 & -s_3 & s_2 \\ s_3 & 0 & -s_1 \\ -s_2 & s_1 & 0 \end{bmatrix}$$

Por ejemplo: si se definen a los tres vectores unitarios de un sistema de coordenadas como \vec{i} , \vec{j} , \vec{k} , representados como:

$$\vec{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \vec{j} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \vec{k} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Entonces las matrices asimétricas $S(\vec{i}), S(\vec{j}), S(\vec{k})$ se definen como:

$$S(\vec{i}) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}, S(\vec{j}) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, S(\vec{k}) = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Derivada de una matriz de rotación:

$$R(\theta) \cdot R(\theta)^T = I$$

Obteniendo la derivada de la ecuación anterior se tiene:

$$\frac{dR}{d\theta} \cdot R(\theta)^T + R(\theta) \cdot \frac{dR^T}{d\theta} = 0$$

Se define a S como,

$$S := \frac{dR}{d\theta} \cdot R(\theta)^T$$

entonces, la transpuesta de S es,

$$S^T = \left(\frac{dR}{d\theta} \cdot R(\theta)^T\right)^T = R(\theta) \cdot \frac{dR^T}{d\theta}$$

Por lo que se cumple

$$S + S^T = 0$$

Demostración
$$S = \frac{dR}{d\theta} \cdot R(\theta)^T$$

$$\frac{dR}{d\theta} = \frac{S}{R(\theta)^T}$$

$$R(\theta)^T = R(\theta)^{-1} = \frac{1}{R(\theta)}$$

$$\frac{dR}{d\theta} = \frac{S}{\frac{1}{R(\theta)}}$$

$$\frac{dR}{d\theta} = S \cdot R(\theta)$$

En otras palabras la matriz S es una matriz asimétrica. Entonces,

$$S \cdot R(\theta) = \frac{dR}{d\theta} R(\theta) R(\theta)^T$$

$$\frac{dR}{d\theta} = SR(\theta) \qquad \dot{R}(\theta) = SR(\theta)$$

Ejemplo: Si $R=R_{\vec{x},\theta}$ donde $R_{\vec{x}}$ se refiere a la matriz de rotación básica que se gira sobre el eje x, entonces

$$S = \frac{dR}{d\theta}R^{T} = \frac{d}{d\theta} \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\theta & -s\theta \\ 0 & s\theta & c\theta \end{bmatrix} \right\} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\theta & -s\theta \\ 0 & s\theta & c\theta \end{bmatrix}^{T} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -s\theta & -c\theta \\ 0 & c\theta & -s\theta \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\theta & s\theta \\ 0 & -s\theta & c\theta \end{bmatrix}$$
$$S = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -s\theta + s\theta c\theta & -s^{2}\theta - c^{2}\theta \\ 0 & c^{2}\theta + s^{2}\theta & \underline{s\theta}c\theta - s\theta c\theta \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} = S(i)$$