

UNIVERSIDAD AUSTRAL DE CHILE FACULTAD DE CIENCIAS DE LA INGENIERÍA CENTRO DE DOCENCIA DE CIENCIAS BÁSICAS PARA INGENIERÍA.

BAIN036 ÁLGEBRA LINEAL PARA INGENIERÍA Prueba Parcial II

Martes 27 de Diciembre de 2011

Alumno(a):	CarreraGruj	90
 Debe responder una pregunta por hoja. 	,	,
■ Conteste en forma ordenada identificando la pregunta e item qu	1 (1,0) jue corresponde.) pts.)
■ No se permite el uso de CALCULADORA.		3 pts.)
 Cada solución debe llevar desarrollo y respuesta. 	3 (2,2	2 pts.)
 Debe justificar adecuadamente su respuesta. 	4(1,0) pts.)

- Tiempo: 90 minutos.
- 1. Dado:

$$W = \langle (1,0,1), (1,-1,1), (0,0,1), (2,-1,3) \rangle \leq \mathbb{R}^3$$

Encontrar una base de W e indicar su dimensión.

- 2. En el espacio vectorial $M_2(\mathbb{R})$, con producto interno dado por $\langle A, B \rangle = tr(B^t A)$, consideremos $S = \{A, B, C\} \subseteq M_2(\mathbb{R})$, donde $A = \begin{bmatrix} a & 1 \\ 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & a \\ a & 0 \end{bmatrix}$, $C = \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix}$.
 - a) Para que valor(es) de $a \in \mathbb{R}$ el conjunto S es linealmente dependiente.
 - b) Determinar a de modo que A y B sean ortogonales.
 - c) Dado $a = \frac{\sqrt{2}}{2}$, determinar el ángulo entre B y C.
- 3. Dada

$$T: \quad \mathbb{R}_2[x] \quad \to \quad M_2(\mathbb{R})$$
$$ax^2 + bx + c \quad \leadsto \quad \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

- a) Probar que T es una transformación lineal.
- b) Determinar el conjunto generador para Im(T) y Ker(T).
- c) ¿Es T invertible?. Justifique.
- 4. Determinar una transformación lineal T de \mathbb{R}^3 en \mathbb{R}^3 tal que $Im(T) = \langle (1,0,-1), (1,2,2) \rangle$