Exercicis

37. The magnitude of the gravitational force exerted by a body of mass M situated at the origin on a body of mass m located at the point (x, y, z) is given by the function

$$F(x, y, z) = \frac{GmM}{x^2 + y^2 + z^2}$$

where G is the universal gravitational constant. What are the level surfaces? What is the physical significance of these surfaces?

Les superfícies de força gravitatòria constant són superfícies esfèriques concèntriques, amb centre a l'origen:

$$\frac{GmM}{x^2 + y^2 + z^2} = c \implies x^2 + y^2 + z^2 = \frac{GmM}{c}$$

38. The strength E of an electric field at a point (x, y, z) due to an infinitely long charged wire lying along the y-axis is given by the function

$$E(x, y, z) = \frac{k}{\sqrt{x^2 + z^2}}$$

where k is a positive constant. Describe the level surfaces of E.

Són superfícies cilíndriques circulars al voltant de l'eix y:

$$x^2 + z^2 = \frac{k^2}{c^2}$$

- **39.** A metal solid occupies a region in three-space. The temperature T (in $^{\circ}$ C) at the point (x, y, z) in the solid is inversely proportional to its distance from the origin.
 - (a) Express T as a function of x, y, z.
 - (b) Describe the level surfaces and sketch a few of them. NOTE: The level surfaces of *T* are known as *isothermals*; at all points of an isothermal the temperature is the same.
 - (c) Suppose the temperature at the point (1, 2, 1) is 50° . What is the temperature at the point (4, 0, 3)?
- (a) $T(x, y, z) = \frac{k}{\sqrt{x^2 + y^2 + z^2}}$, where k is a constant.
- (b) $\frac{k}{\sqrt{x^2 + y^2 + z^2}} = c \implies x^2 + y^2 + z^2 = \frac{k^2}{c^2}$; the level surfaces are concentric spheres.

(c)
$$T(1,2,1) = \frac{k}{\sqrt{1^2 + 2^2 + 1^2}} = 50 \implies k = 50\sqrt{6} \implies T(x,y,z) = \frac{50\sqrt{6}}{\sqrt{x^2 + y^2 + z^2}}$$

Now, $T(4,0,3) = \frac{50\sqrt{6}}{\sqrt{3^2 + 4^2}} = 10\sqrt{6}$ degrees

- **46.** The surface $\mathbf{z} = \sqrt{4 x^2 y^2}$ is a hemisphere of radius 2 centered at the origin.
 - (a) The line l_1 is tangent at the point $(1, 1, \sqrt{2})$ to the curve in which the hemisphere intersects the plane x = 1. Find equations that specify l_1 .
 - (b) The line l_2 is tangent at the point $(1, 1, \sqrt{2})$ to the curve in which the hemisphere intersects the plane y = 1. Find equations that specify l_2 .
 - (c) The tangent lines l_1 and l_2 determine a plane. Find an equation for this plane. [This plane can be viewed as tangent to the surface at the point $(1, 1, \sqrt{2})$.]

$$f(x,y) = (4 - x^2 - y^2)^{1/2}, \quad f_x(x,y) = -x(4 - x^2 - y^2)^{-1/2}, \quad f_y(x,y) = -y(4 - x^2 - y^2)^{-1/2}$$
(a) $f_y(1,1) = -\frac{\sqrt{2}}{2} \implies x = 1, \ z - \sqrt{2} = -\frac{\sqrt{2}}{2}(y-1)$

(b)
$$f_x(1,1) = -\frac{\sqrt{2}}{2} \implies y = 1, \quad z - \sqrt{2} = -\frac{\sqrt{2}}{2}(x-1)$$

(c) l_1 and l_2 have direction vectors $\mathbf{j} - \frac{\sqrt{2}}{2}\mathbf{k}$, $\mathbf{i} - \frac{\sqrt{2}}{2}\mathbf{k}$ respectively. The normal to the plane is

$$\left(\mathbf{j} - \frac{\sqrt{2}}{2}\mathbf{k}\right) \times \left(\mathbf{i} - \frac{\sqrt{2}}{2}\mathbf{k}\right) = -\frac{\sqrt{2}}{2}\mathbf{i} - \frac{\sqrt{2}}{2}\mathbf{j} - \mathbf{k}, \text{ so the tangent plane is}$$
$$-\frac{\sqrt{2}}{2}(x-1) - \frac{\sqrt{2}}{2}(y-1) - (z-\sqrt{2}) = 0, \text{ or } (x-1) + (y-1) + \sqrt{2}(z-\sqrt{2}) = 0$$