

Rafbók

Rafeindafræði 15. hefti FET CD magnarar Sigurður Örn Kristjánsson Bergsteinn Baldursson

Þetta hefti er án endurgjalds á rafbókinni <u>www.rafbok.is</u>. Allir rafiðnaðarmenn og rafiðnaðarnemar geta fengið aðgang án endurgjalds að rafbókinni.

Heimilt er að afrita textann til fræðslu í skólum sem reknir eru fyrir opinbert fé án leyfis höfundar eða Fræðsluskrifstofu rafiðnaðarins. Hvers konar sala á textanum í heild eða að hluta til er óheimil nema að fengnu leyfi höfundar og Fræðsluskrifstofu rafiðnaðarins.

Höfundar eru Sigurður Örn Kristjánsson og Bergsteinn Baldursson. Umbrot í rafbók Bára Halldórsdóttir.

Vinsamlegast sendið leiðréttingar og athugasemdir til höfundar sigurdurorn@gmail.com eða til Báru Halldórsdóttur á netfangið bara@rafmennt.is

Efnisyfirlit

1. FET- magnarar	3
1.1 Common-Drain Amplifiers (Svelgartengdur magnari)	3
1.2 Spennumögnun	3
1.3 Inngangsmótstaða í <i>Drain</i> tengdum (CD) magnara	4
2. Mælingar	5
3. Jöfnur	8
4. Dæmi	9

1. FET- magnarar

1.1 Common-Drain Amplifiers (Svelgartengdur magnari)

Common drain (CD) FET magnari (Svelgar-tengdur magnari) samsvarar collector-tengdum magnara fyrir BJT transistora.

Eftir að hafa farið í gegnum þennan kafla átt þú að vera fær um

- ✓ skýra út *Common-drain FET amplifiers* (CD) (svelgartengdan FET magnara)
- ✓ reikna úr spennumögnun í *CD amplifier* (svelgartengdum FET magnara)
- ✓ Finna inngangsmótstöðu í CD amplifier (svelgartengdum FET magnara)

Common-drain JFET magnari er sýndur á mynd 1. Forspennun magnarans er með sjálfstilli aðferðinni (Self-biasing).

Ac-merkið sem sett er inn á magnarann fer í gegnum þéttinn C_1 inn á gáttina og útgangsmerkið fer út í gegnum þéttinn C_2 og er fellt yfir álagsmótstöðuna R_L . Það er engin *drain* (svelgar) mótstaða í rásinni.

Mynd 1a. Drain tengdur magnari. Mynd 1b. ac jafngildismynd CD magnara.

Mynd 1. JFET Drain tengdur magnari (CD-magnari).

1.2 Spennumögnun

Eins og í öðrum mögnurum er spennumögnun skilgreind sem $A_U=U_{\text{út}}/U_{\text{inn}}$. Fyrir *Drain* (svelgar) tengdan magnara, eins og á mynd 1, er spennumögnunin:

09.07.2019 www.rafbok.is

$$U_{inn} = U_{gs} + U_{s} = U_{gs} + I_{s} \cdot R_{s}$$

$$U_{\acute{u}t} = I_{s} \cdot (R_{S}//R_{L})$$

$$I_{s} = I_{d} = g_{m} \cdot U_{gs}$$

$$A_{U} = \frac{U_{\acute{u}t}}{U_{inn}} = \frac{I_{s} \cdot (R_{S}//R_{L})}{U_{gs} + I_{s} \cdot (R_{s}//R_{L})} = \frac{g_{m} \cdot U_{gs} \cdot (R_{S}//R_{L})}{U_{gs} + g_{m} \cdot U_{gs} \cdot (R_{s}//R_{L})}$$

$$\frac{g_{m} \cdot U_{gs} \cdot (R_{S}//R_{L})}{U_{gs} \cdot (R_{S}//R_{L})} = \frac{g_{m} \cdot (R_{S}//R_{L})}{1 + g_{m} \cdot (R_{S}//R_{L})}$$

$$Ef g_{m} \cdot (R_{S}//R_{L}) \gg 1 \Rightarrow$$

$$A_{U} = \frac{U_{\acute{u}t}}{U_{inn}} \cong 1$$

1.3 Inngangsmótstaða í *Drain* tengdum (CD) magnara

Par sem *Gate* (gáttin) er inngangur í *Drain* tengdum (CD) (svelgartengdum) magnara er inngangsmótstaðan mjög há, eða

$$R_{inn} = R_G / / \left| \frac{U_{GS}}{I_{GSS}} \right| ef \left| \frac{U_{GS}}{I_{GSS}} \right| \gg R_G \Rightarrow R_{inn} = R_G$$

U_{GS} og I_{GSS} má finna í datablöðum yfir viðkomandi transistor.

Sýnidæmi:

Reiknaðu spennumögnun og inngangsmótstöðu magnara sem sýndur er á mynd~2 ef $g_m = 1000 \mu S$ og $I_{GSS} = 5$ nA við $U_{GS} = 20 V$?

09.07.2019 www.rafbok.is

Lausn:

$$A_{U} = \frac{U_{\text{ú}t}}{U_{inn}} = \frac{g_{m} \cdot (R_{S}//R_{L})}{1 + g_{m} \cdot (R_{S}//R_{L})} = \frac{1000 \mu S \cdot (10k\Omega//10M\Omega)}{1 + 1000 \mu S \cdot (10k\Omega//10M\Omega)} = 0,909$$

$$R_{inn} = R_{G}//\left|\frac{U_{GS}}{I_{GSS}}\right| = 10M\Omega//\left|\frac{20V}{5nA}\right| = 10M\Omega$$

2. Mælingar

Tilgangur:

Að skoða magnarastig SD/CD tengingu með tilliti til að bera saman reiknaðar og mældar lykilstærðir kerfisins (spennufæðing *Self bias*).

Efni og búnaður:

Sveifluvaki, sveiflusjá, spennugjafi, spennumælir og íhlutir samkvæmt *mynd. 3*.

Tengimynd:

$$g_m = \left| Y_{fs} \right| = 1,7mS, I_d$$
 í rásinni er um 1mA.

Framkvæmd 1:

Tengið rásina og mælið jafnspennurnar $U_G,\,U_S$ og U_D

 $U_G =$

 $U_S =$

 $U_D =$

Reiknið til samanburðar jafnspennurnar U_G, U_S OG U_D (Sýnið útreikninga).

 $U_G =$

 $U_S =$

 $U_D =$

Framkvæmd 2:

Mælið jafnspennurnar UDS, UGS og UDG

 $U_{DS} =$

 $U_{GS} =$

 $U_{DG} =$

Reiknið til samanburðar jafnspennurnar U_{DS} , U_{GS} og U_{DG} . (Sýnið útreikninga).

 $U_{DS} =$

 $U_{GS} =$

 $U_{DG} =$

Framkvæmd 3:

Mælið spennumögnunina A_u við 1 kHz.

 $A_u =$

 $A_u(dB) =$

Reiknið til samanburðar spennumögnunina A_U. (Sýnið útreikninga).

 $A_u =$

 $A_u(dB) =$

Framkvæmd 4:

Finnið efri marktíðni f_e magnarastigsins með mælingum.

(Marktíðnin finnst þegar spennumögnunin hefur fallið um 3dB miðað við gildið sem fannst við 1 kHz)

$$f_e$$
 með $R_L =$
 f_e án $R_L =$

Framkvæmd 5:

Mælið hvert sé fasvik milli inn- og útmerkis magnarans við 1kHz?

 $\theta =$

Mælið hvert sé fasvik milli inn- og útmerkis magnarans við 100Hz?

 $\theta =$

Framkvæmd 6:

Mælið inngangsriðstraumsmótstöðu (inngangsimpedans) $Z_{inn} = R_{inn}$ magnarans.

 $Z_{INN} =$

Reiknið til samanburðar inngangsriðstraumsmótstöðu (inngangsimpedans).

 $Z_{inn} = R_{inn}$ magnarans.

 $Z_{INN} =$

Framkvæmd 7:

Mælið útgangsriðstraumsmótstöðu (útgangsimpedans) $Z_{\text{út}}\!\!=\!\!R_{\text{út}}$ magnarans.

 $Z_{ ext{UT}} =$

Reiknið til samanburðar útgangsriðstraumsmótstöðu (útgangsimpedans) $Z_{\text{út}} = R_{\text{út}}$ magnarans.

 $Z_{ ext{UT}} =$

3. Jöfnur

Jöfnur sem gilda fyrir SD/CD tengdan magnara tengdur í self bias.

DC jöfnur

ac jöfnur

$$U_G = 0 \Rightarrow U_S = I_D \cdot R_S = -U_{GS}$$
 $A_{U} =$

$$A_u = \frac{U_{\acute{\mathrm{u}}t}}{U_{\acute{\mathrm{u}}t}} \cong \frac{g_m \cdot (R_S//R_L)}{(1 + g_m \cdot R_S//R_L)}$$

$$U_D = U_{DD} - I_D \cdot R_D$$

$$A_u(dB) = 20log(A_u)$$

$$U_{DS} = U_D - U_S$$

$$R_{in} = Z_{in} = (R_G//R_{IN}) \cong R_{G (efR_{IN} \gg R_G)}$$

$$U_{GS} = U_G - U_S$$

$$R_{\text{\'ut}} = Z_{\text{\'ut}} \cong R_S / / \frac{1}{g_m}$$

$$U_{DG} = U_D - U_G$$

$$R_{IN} = \left| \frac{U_{GS}}{I_{DSS}} \right|$$

4. Dæmi

1. Finnið spennumögnun og inngangsmótstöðu fyrir magnarann á *mynd 4* ef $I_{GSS}=50 pA,~U_{GS}=15 V~og~gm=5500 \mu S,~U_{CC}=+9 V,~R_G=10 M \Omega,~RS=1,2k \Omega~og~R_L=1k \Omega.$

- 2. Fyrir magnarann í dæmi 1 er gm breytt í 3000µS. Hver er nú spennumögnun og inngangsmótstaða magnarans?
- 3. Finnið spennumögnun fyrir magnarann á *mynd 4* ef gm = 3000μ S, $U_{DD}=12V,\,R_G=4{,}7M\Omega,\,R_S=4{,}7k\Omega$ og $R_L=47k\Omega$.
- 4. Finnið mögnun magnaranna á *mynd 4* ef álagsmótstöðunni er breytt í 10kΩ. Notist við aðrar tölur úr dæmi 3.

09.07.2019 www.rafbok.is