Utilização de indicadores ambientais e epidemiológicos no estudo da dinâmica de doenças transmitidas por vetores

Raphael Felberg Levy

Fundação Getulio Vargas Escola de Matemática Aplicada

Orientador:

Flávio Codeço Coelho

Trabalho de Conclusão de Curso 12 de dezembro de 2023

Sumário

- Introdução
- Metodologia
 - SIR-SEI original
 - SIR-SEI modificado
- Resultados
- Referências

Raphael Felberg Levy 2/x

Introdução

Base de referência: Trajetórias – Base de referência para o TCC, elaborado por pesquisadores do Centro de Biodiversidade e Serviços Ecossistêmicos SinBiose/CNPq ¹. Inclui indicadores de diferentes dimensões para municípios da Amazônia Legal:

- Perda de biodiversidade: desmatamento, degradação florestal, queimadas, mineração
- Anomalias climáticas: precipitação, temperatura mínima
- Ocorrência de doenças: malária, doença de Chagas, leishmaniose, dengue

Objetivo: Estudo de dinâmicas da malária na região amazônica com base em fatores epidemiológicos, climáticos e ambientais.

Metodologia: Análise dos comportamentos da transmissão através de modelos SIR e SEI para populações de hospedeiros e vetores.

Raphael Felberg Levy 3/x

Introdução

Dados utilizados: com base no dataset do Trajetórias, foram selecionados dados da malária causada pelo *Plasmodium Vivax*, espécie responsável pelo maior número de casos no Brasil ², na zona rural de Manaus entre os anos de 2004 e 2008, devido ao seu valor de maior incidência, que foi de 184030,772087255. A incidência é calculada da seguinte maneira:

$$\operatorname{Inc}(d, m, z, t_1, t_2) = \frac{\operatorname{Casos}(d, m, z, t_1, t_2)}{\operatorname{Pop}(m, z, (t_1 + t_2)/2) \times 5 \text{ anos}} \times 10^5.$$

Tendo também o número de casos na municipalidade no período de 5 anos, que foi de 78745, foi possível estimar a população no meio do período como sendo de 8558 pessoas. Através do mesmo cálculo, utilizando casos de todo o município, foi possível estimar a população rural como sendo aproximadamente 0.5% da população total da cidade.

Raphael Felberg Levy 4/x

Introdução

Dados utilizados e teoria: utilizando o censo do IBGE ³, também estimei a população rural da cidade para cada ano do estudo, para que pudessem ser verificados em análises com dinâmicas demográficas.

Quanto aos fatores ambientais, foi decidido estudar impactos do desmatamento em geral, causado pela construção de estradas, assentamentos, práticas agrícolas e extrativistas, entre outras ⁴.

Foto 1: criadouros naturais do Anopheles ⁵

Foto 2: bordas florestais se tornam criadouros ideais ⁶

Ano	População rural estimada
2004	7717
2005	7889
2006	8061
2007	8233
2008	8492
2009	8751

Metodologia

Formulação original: elaborada por Paul E. Parham & Edwin Michael ⁷, com o objetivo de considerar como os efeitos da sazonalidade podem ser incorporados em modelos e podem impactar a dinâmica da população de vetores.

$$\begin{split} &\frac{\mathrm{d}S_{_{M}}}{\mathrm{d}t} = b - ab_{_{1}} \left(\frac{I_{_{H}}}{N}\right) S_{_{M}} - \mu S_{_{M}}, \\ &\frac{\mathrm{d}E_{_{M}}}{\mathrm{d}t} = ab_{_{1}} \left(\frac{I_{_{H}}}{N}\right) S_{_{M}} - \mu E_{_{M}} - ab_{_{1}} \left(\frac{I_{_{H}}(t - \tau_{_{M}})}{N}\right) S_{_{M}}(t - \tau_{_{M}}) l(\tau_{_{M}}), \\ &\frac{\mathrm{d}I_{_{M}}}{\mathrm{d}t} = ab_{_{1}} \left(\frac{I_{_{H}}(t - \tau_{_{M}})}{N}\right) S_{_{M}}(t - \tau_{_{M}}) l(\tau_{_{M}}) - \mu I_{_{M}}, \\ &\frac{\mathrm{d}S_{_{H}}}{\mathrm{d}t} = -ab_{_{2}} \left(\frac{I_{_{M}}}{N}\right) S_{_{H}}, \\ &\frac{\mathrm{d}I_{_{H}}}{\mathrm{d}t} = ab_{_{2}} \left(\frac{I_{_{M}}(t - \tau_{_{H}})}{N}\right) S_{_{H}}(t - \tau_{_{H}}) - \gamma I_{_{H}}, \end{split}$$

Raphael Felberg Levy 6/x

Metodologia

Funções e parâmetros utilizados:

Parâmetro	Definição	Cálculo
T(t)	Temperatura	$T_1(1+T_2\cos(\omega_1 t-\phi_1))$
R(t)	Precipitação	$R_1(1+R_2\cos(\omega_2 t-\phi_2))$
b(R,T)	Taxa de nascimento de mosquitos (/ dia)	$\frac{B_E p_E(R) p_L(R, T) p_P(R)}{(\tau_E + \tau_L(T) + \tau_P)}$
a(T)	Taxa de picadas (/dia)	$\frac{(T-T_1)}{D_1}$
$\mu(T)$	Taxa de mortalidade de mosquitos per capita (/ dia)	$-\log(p(T))$
$\tau_M(T)$	Duração do ciclo de esporozoitos (dias)	$\frac{DD}{(T - T_{min})}$
$\tau_L(T)$	Duração da fase de desenvolvimento das larvas (dias)	$\frac{1}{c_1T+c_2}$
p(T)	Taxa diária de sobrevivência dos mosquitos	$e^{(-1/(AT^2+BT+C))}$
$p_L(R)$	Probabilidade de sobrevivência das larvas de- pendente de chuva	$(\frac{4p_{ML}}{R_L^2})R(R_L - R)$
$p_L(T)$	Probabilidade de sobrevivência das larvas de- pendente de temperatura	$e^{-(c_1T+c_2)}$
$p_L(R,T)$	Probabilidade de sobrevivência das larvas de- pendente de temperatura e chuva	$p_L(R)p_L(T)$
$l(\tau_M)(T)$	Probabilidade de sobrevivência de mosquitos durante o ciclo de esporozoitos (/ dia)	$p(T)^{\tau_M(T)}$
M(t)	Número total de mosquitos	$S_M(t) + E_M(t) + I_M(t)$
N(t)	Número total de humanos	$S_H(t) + I_H(t) + R_H(t)$

Parâmetro	Definição
b_1	Proporção de picadas de mosquitos suscetíveis em humanos infectados que produzem infecção
b_2	Proporção de picadas de mosquitos infectados em humanos suscetíveis que produzem infecção
γ	$1/{\rm Duração}$ média da infecciosidade em humanos (dias $^{-1})$
T_1	Temperatura média na ausência de sazonalidade (°C)
T_2	Amplitude da variabilidade sazonal na temperatura
R_1	Precipitação mensal média na ausência de sazonalidade (mm)
R_2	Amplitude da variabilidade sazonal na precipitação
ω_1	Frequência angular das oscilações sazonais na temperatura (meses $^{-1}$)
ω_2	Frequência angular das oscilações sazonais na precipitação (meses $^{-1})$
ϕ_1	"Phase lag" da variabilidade da temperatura (defasagem de fase)
ϕ_2	"Phase lag" da variabilidade da precipitação (defasagem de fase)
B_E	Número de ovos colocados por adulto por oviposição
p_{ME}	Probabilidade máxima de sobrevivência dos ovos
p_{ML}	Probabilidade máxima de sobrevivência das larvas
p_{MP}	Probabilidade máxima de sobrevivência das pupas
$ au_E$	Duração da fase de desenvolvimento dos ovos (dias)
b_{3}^{*}	Taxa de infecção em mosquitos expostos $(1/\tau_M(T))$

Parâmetro	Definição
$ au_P$	Duração da fase de desenvolvimento das pupas (dias)
R_L	Chuva limite até que os sítios de reprodução sejam eliminados, removendo indivíduos de estágio imaturo (mm)
T_{min}	Temperatura mínima, abaixo dessa temperatura não há desenvolvimento do parasita: 14.5 (° $\!C\!$)
DD	"Degree days" para desenvolvimento do parasita. Número de graus em que a temperatura média diária excede a temperatura mínima de desenvolvimento. "Sum of heat" para maturação: $105~(^{\circ}C~{\rm dias})$
Λ	Parâmetro empírico de sensibilidade (° C^2 dias $^{-1}$)
В	Parâmetro empírico de sensibilidade (°C dias ⁻¹)
C	Parâmetro empírico de sensibilidade (dias ⁻¹)
D_1	Constante: 36.5 (°C dias)
c_1	Parâmetro empírico de sensibilidade (° C dias $^{-1}$)
c_2	Parâmetro empírico de sensibilidade (dias ⁻¹)
T'*	Parâmetro empírico de temperatura (° C)

Raphael Felberg Levy 7/x

Primeiros Resultados

Formulação original: utilizando os métodos como foram definidos pelos autores de referência, assim como os valores passados para os parâmetros, os resultados foram como a seguir:

Raphael Felberg Levy 8/x

Primeiros Resultados

Formulação original: utilizando os métodos como foram definidos pelos autores de referência, assim como os valores passados para os parâmetros, os resultados foram como a seguir:

Raphael Felberg Levy 8/x

Primeiros Resultados

Formulação original: utilizando os métodos como foram definidos pelos autores de referência, assim como os valores passados para os parâmetros, os resultados foram como a seguir:

Raphael Felberg Levy 8/x

Referências

- 1. Rorato, A.C., Dal'Asta, A.P., Lana, R.M. et al. Trajetorias: a dataset of environmental, epidemiological, and economic indicators for the Brazilian Amazon. Sci Data 10, 65 (2023). https://doi.org/10.1038/s41597-023-01962-1 (https://zenodo.org/records/7098053#.ZA-AP3bMKUI).
- 2. Oliveira-Ferreira, J., Lacerda, M.V., Brasil, P. et al. Malaria in Brazil: an overview. Malar J 9, 115 (2010). https://doi.org/10.1186/1475-2875-9-115.
- 3. Censo Séries históricas. Brasil / Amazonas / Manaus. https://cidades.ibge.gov.br/brasil/am/manaus/pesquisa/43/0?tipo=gráfico.
- 4. Silva-Nunes, M. Impacto de Alterações Ambientais na Transmissão da Malária e Perspectivas para o Controle da Doença em Áreas de Assentamento Rural da Amazônia Brasileira. https://revistas.ufrj.br/index.php/oa/article/view/7101/5685.
- 5. Sánchez-Ribas, J. et al. New classification of natural breeding habitats for Neotropical anophelines in the Yanomami Indian Reserve, Amazon Region, Brazil and a new larval sampling methodology. Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 110(6): 760-770, September 2015. https://www.scielo.br/j/mioc/a/HphVFKHGq65mVk4BxMPwwt5/?lang=en.
- 6. Study links malaria to deforestation in the Amazon. https://news.mongabay.com/2018/05/study-links-deforestation-and-malaria-in-the-amazon/.
- 7. Parham, P.E., Michael, E. (2010). Modelling Climate Change and Malaria Transmission. In: Michael, E., Spear, R.C. (eds) Modelling Parasite Transmission and Control. Advances in Experimental Medicine and Biology, vol 673. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6064-1 13.

Raphael Felberg Levy x/x