디지털 연합트윈 서비스 플랫폼

구조 설계서

연합 디지털트윈 사업 컨소시엄(3세부)

문서 개정 이력표

문서명 구조 설계서

버전	날짜	내용	부서	담당자	승인자
1.0	2023.12.08	초안 작성	기술연구소	여창훈	이재준
1.1	2023.12.21	양식 개선	기술연구소	여창훈	이재준

〈목 차〉

1. 시스템 개요	2
1.1 시스템 개발 목적	2
2. 시스템 구성	2
2.1 시스템 구성도	2
3. 시스템 기능	3
3.1 주요 기능	3
4. 개발 환경	4
4.1 S/W Architecture ·····	4
4.2 H/W Architecture	4
4.3 H/W 권장사양 ·····	5
5. 경량 3차원 표준 형식	6
5.1 3D 경량 파일 연결 구조	7
5.2 엔티티 설명	7

1. 시스템 개요

지능형 디지털 트윈 데이터를 자동으로 변환하고 IOT 데이터를 매핑하며 웹상에서 다양한 정보를 디지털 트윈 3D 모델과 함께 가시화할 수 있는 서비스 개발

1.1 시스템 개발 목적

- O 3D 가시화를 위한 형상 데이터를 표준 형식을 이용하여 웹 환경에 맞 게 자동 경량 변환하는 시스템 개발
- O 서비스를 위한 다양한 속성 정보를 3D 형상에 매핑하고 실시간으로 가시화하는 시스템 개발

2. 시스템 구성

2.1 시스템 구성도

경량화 [형상, 구조, 속성 구분 추출] 변환 3D 형상 NAS Batch Job 컴포넌트 CAD 파일 **VIZPub** 경량화 CAD 3D 중립 <u>포</u>멧 파일 모델 및 속성 추출 Web Server (IIS, Apache) 사용자

3. 시스템 기능

- O 3D 데이터 변환 및 전처리 (Open Toolkit)
 - 3D 데이터를 읽어 형상과 속성 데이터로 분리 처리
- 외관만을 가시화하는 경우와 내부를 가시화하는 경우를 나누어 구조 정보 재구성 및 형상정보 LOD 경량화
 - Lagecy 정보 연계를 위한 매핑 정보 생성
 - 중립 데이터 형식으로 변환
- O 3D 정보 가시화
 - 3D CAD 데이터 가시화
 - BIM 데이터 가시화
 - 속성 정보 가시화
 - 사용자 조회 편의를 위한 UX 기능 제공

3.1 주요 기능

기능 항목		기능 설명		
	3D CAD 데이터 인터페이스	■ CAD 모델, BIM 모델, 표준포맷, 모델링커널 포맷, 가 시화/디자인 포맷 등 산업계 대표적인 40여종 이상 3D 포맷에 대한 인터페이스		
3D	형상 경량화	■ 가용 리소스가 제한된 웹 브라우저 환경에서 대용량 3D 모델 데이터를 시각화하고 DT 가상화 모델의 사용성을 극대화하기 위한 LOD 모델 생성		
데이터	Lagecy 데이터 연계	■ IOT등 여러 외부데이터를 형상 또는 속성, 이벤트로 3D 데이터와 연결		
관리	중립 형식 입출력	■ 정의된 중립 형식 데이터의 읽기/쓰기 기능		
	데이터 조회 기능	■ 형상/구조/속성 정보 보회 기능		
3D 데이터 3D 데이터 가시화 가시화		■ 대용량 3D DT 데이터 가시화 기능		

웹 가시화 최적화	■ WebGL과 데이터 스트리밍, LOD셋을 이용한 웹 환경에 서의 3D 가시화 최적화
UI/UX 가시화	■ 사용자 인터페이스, 마크업, 측정, IOT 정보 등 UI/UX 가시화 기능
개발 API 제공	■ 모델 추가/삭제, 개체선택, 렌더링 모드 변경 등 개발 API를 사용한 서비스 확장 기능

4. 개발 환경

4.1 S/W Architecture

구분	플렛폼	SW List		
운영 서버 MS Windows Server 2008 SP2 이상		IIS.Net Framework 4.5		
Database 서버 DB 호환 OS		■ Database ■ Oracle DB 또는 MS SQL Server		
File 서버 NAS				
		 VIZPub Application 		
변환 MS Windows Server		.Net Framework 4.5		
서버(VIZPub)	2008 SP2 이상	■ MS Visualstudio 2015 재배포 패키지		

4.2 H/W Architecture

용도	기능 및 역할
운영 서버	■ 가시화 서비스를 위한 웹 서버
File 서버	■ 물리적인 파일 데이터(형상)를 관리하는 서버
Database 서버	■ 데이터를 저장하는 Database를 구동하는 서버

4.3 H/W 권장사양

8 -	Cores	CPU	Memory	Local	OS	
용도		Speed	(GB)	Disk(GB)		
					MS Windows	
운영 서버	4+	2.x Ghz	32+	250+	Server 2008 SP2	
					이상	
File 서버	4+	2.x Ghz	32+	4000+	NAS	
Database 서버	4+	2.x Ghz	32+	500+	DB 호환 OS	
					MS Windows	
변환 서버	4+ 2.>	2.x Ghz	128+	1000+	Server 2008 SP2	
					이상	

5. 경량 3차원 표준 형식

Hierarchical structure (Structure Block)

· 어생들리/파트의 상호 참조 관계

· 노드 속성 및 사용자 정의 속성 포함

Body geometries (Mesh Data Block)

· 경랑화된 형상 데이터

· 고속 렌더링에 최적화

· 고속 간섭검사를 위한 공간분활정보 내포

· Vizzard Manager에서 형상캐쉬로 사용

File metadata (File Metadata Block)

· 형상 정보 요약 (bounding box 등)

· 파일 작성자/시스템 등 요약 정보

· 저장소 파일 고속 검색 시 필요 정보

· 조건에 의한 파일 추출/결합 등 Legacy System 연계 기능 구현에 필요한 정보를

Extended data block(Binary Data Block)

· 사용자 요구 및 어플리케이션 필요에 따라
유동적으로 정의 및 저장 되는 데이터

구조	설명
Header	3D 경량 파일의 기본 정보 영역
Structure Block	모델의 트리 구조 정보
Mesh Data Block	모델의 형상 정보
File Metadata Block	메타데이터 정보
Binary Data Block	기타 부가적인 정보
Authority Data	권한 혹은 보안 정보
Block	
TOC	파일 데이터의 전체 구조 정보

5.1 3D 경량 파일 연결 구조

5.2 엔티티 설명

Header

Size	Type	Desc.
16 Byte	ASCII	파일 형식 이름
4 Byte	INT	LENGTH
4 Byte	INT	COUNT
8 Byte	LONG	POSITION
4096 Byte	BINARY	DUMMY

TOC(Table of Contents)

Size	Type	Desc.
8 Byte	LONG	Block Type
8 Byte	LONG	Block Position
4 Byte	INT	Block Size
4 Byte	INT	Block Compressed Size

Block Tyle

NO.	Name	Desc.
0	Structure	어셈블리/파트 등 구조 정보
1	Mesh Data	형상 데어터
2	File MetaData	파일 메타데이터
3	Property Table	노드 별 속성 정보
4	Property Table Index	노드 별 속성 인덱스

File Metadata

Size	Type	Desc.
4 Byte	INT	Property Count
4 Byte	FLOAT	BoundBox Min X
4 Byte	FLOAT	BoundBox Min Y
4 Byte	FLOAT	BoundBox Min Z
4 Byte	FLOAT	BoundBox Max X
4 Byte	FLOAT	BoundBox Max Y
4 Byte	FLOAT	BouncBox Max Z

Size	Type	Desc.
4 Byte	INT	문자열 길이
_	STRING	문자열
4 Byte	INT	문자열 길이
_	STRING	문자열

Node Property Table Index

Size	Туре	Desc.
4 Byte	INT	Property Table Count

Node Property Table Index Detail(반복)

Size	Type	Desc.
4 Byte	INT	TOC Index

Node Property Table

Size	Type	Desc.
4 Byte	INT	Node Count

Node Property Table Detail(반복)

Size	Type	Desc.
4 Byte	INT	Node ID
2 Byte	SHORT	Property Count

Node Property Table Data(반복)

Size	Type	Desc.
4 Byte	INT	Value Count
4 Byte	INT	Value

Structure

Size	Type	Desc.
4 Byte	INT	Entity Count

Structure Detail(반복)

Size	Туре	Desc.
4 Byte	INT	Entity ID
4 Byte	INT	Entity Type

Entity Type

ID	Type	Desc.
100	EntAssembly	Assemby
101	EntPart	Part
102	EntBody	Body
103	EntBinary	Binary

Node Entity

Size	Type	Desc.
4 Byte	INT	Node Name Length
_	STRING	Node 문자열
4 Byte	COLOR	Node Color
4 Byte	FLOAT	BoundBox Min X
4 Byte	FLOAT	BoundBox Min Y
4 Byte	FLOAT	BoundBox Min Z
4 Byte	FLOAT	BoundBox Max X
4 Byte	FLOAT	BoundBox Max Y
4 Byte	FLOAT	BouncBox Max Z

Body Entity

Size	Type	Desc.
4 Byte	INT	Body Name Length
_	STRING	Body 문자열
4 Byte	COLOR	Body Color
4 Byte	INT	TOC Index
4 Byte	FLOAT	BoundBox Min X
4 Byte	FLOAT	BoundBox Min Y
4 Byte	FLOAT	BoundBox Min Z
4 Byte	FLOAT	BoundBox Max X
4 Byte	FLOAT	BoundBox Max Y
4 Byte	FLOAT	BouncBox Max Z

Binary Block Entity

Size	Type	Desc.
4 Byte	INT	Block Unique ID
4 Byte	INT	Contents Size

Mesh Data Block

Size	Type	Desc.
4 Byte	INT	Table 집합 Count

Triangle 집합 형식

Size	Type	Desc.
4 Byte	INT	Vertex Count
4 Byte	INT	Index Count
Vertex Count * 20 Byte	FLOAT	Vertex/Normal
Index Count * 6	FLOAT	Index
Byte	1 20/11	HIGGA