Занятие 1

Тема: Кинематика прямолинейного и криволинейного движения.

Цель: Характеристики движения тел и частей тел в пространстве. Поступательное, возвратно-поступательное, вращательное и криволинейное движения. Мгновенная и средняя скорости, ускорение. Связь угловых и линейных характеристик движения.

Краткая теория

• Положение движущейся материальной точки в пространстве можно задать с помощью радиус-вектора, зависящего от времени:

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k} ,$$

где \vec{i} , \vec{j} , \vec{k} — единичные вектора, или орты, осей декартовой (прямоугольной) системы координат. Как любое векторное равенство, предыдущее выражение можно представить в виде трех скалярных равенств, описывающих движение материальной точки по каждой из трех осей: x = x(t),

y = y(t), z = z(t). Часто вместо декартовой системы координат используют другие системы, например, вводят координату, отсчитанную вдоль траектории. При движении конец радиус-вектора, задающий положение материальной точки в пространстве, описывает воображаемую линию, называемую **траекторией**, по которой материальная точка движется в пространстве. Уравнение траектории f(x, y, z) = 0 получается при исключении времени из трех приведенных выше равенств.

Вектор **перемещения** $\Delta \vec{r}$ материальной точки за некоторый промежуток времени Δt представляет собой разность радиус-векторов ее конечного \vec{r}_2 и начального \vec{r}_1 положений: $\Delta \vec{r} = \vec{r}_2 - \vec{r}_1$. Отсчитанное по прямой расстояние между начальным и конечным положениями с координатами (x_1, y_1, z_1) и (x_2, y_2, z_2) вычисляют согласно известной формуле:

$$\Delta r = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_2)^2} \ .$$

Длина участка траектории, пройденного материальной точкой при ее движении за время Δt , носит название **пути** Δs .

• **Мгновенной скоростью** \vec{v} материальной точки в данный момент времени называют предел отношения $\Delta \vec{r}$ к Δt (при Δt стремящемся к нулю), характеризующего скорость изменения радиус-вектора во времени. В математике эту величину называют производной и обозначают:

$$\begin{split} \vec{v} &= \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt} = \vec{r}' = \dot{\vec{r}} = \frac{dx}{dt} \vec{i} + \frac{dy}{dt} \vec{j} + \frac{dz}{dt} \vec{k} = x' \vec{i} + y' \vec{j} + z' \vec{k} = \\ &= v_x \vec{i} + v_y \vec{j} + v_z \vec{k} \quad . \end{split}$$

В этом выражении в правой части после знака предела указаны возможные формы записи этого предела, или производной $\frac{d\vec{r}}{dt}$ от радиус-вектора по времени.

Модуль вектора мгновенной скорости:
$$|\vec{v}| = v = \sqrt{v_x^2 + v_y^2 + v_z^2}$$
.

Обычно скорости определяют в системе координат, связанной с поверхностью земли. Если одно тело движется со скоростью \vec{v}_1 , а другое — со скоростью \vec{v}_2 , то скорость первого тела **относительно** второго находят как: $\vec{u} = \vec{v}_1 - \vec{v}_2$.

• Средняя скорость.

Средняя путевая скорость - отношение пути Δs ко времени

движения Δt : $v_{cp}^{nym} = \frac{\Delta s}{\Delta t}$, при этом Δt имеет конечное значение и не стремится к нулю.

Средний вектор скорости – отношение перемещения $\Delta \vec{r}$ к времени движения Δt : $\vec{v}_{cp} = \frac{\Delta \vec{r}}{\Delta t}$, здесь Δt также имеет конечное значение.

• **Мгновенное ускорение** \vec{a} характеризует скорость изменения во времени вектора мгновенной скорости:

$$\vec{a} = \frac{d\vec{v}}{dt} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k} = \frac{dv_x}{dt} \vec{i} + \frac{dv_y}{dt} \vec{j} + \frac{dv_z}{dt} \vec{k} = \ddot{x} \vec{i} + \ddot{y} \vec{j} + \ddot{z} \vec{k}$$

При криволинейном движении вектор ускорения материальной точки всегда можно разложить по двум взаимно перпендикулярным осям, а именно, по нормали, направленной к центру кривизны траектории, получив при этом **нормальное ускорение** $\vec{a}_n = a_n \vec{n}$, и вдоль

касательной к траектории, получив тангенциальное ускорение $\vec{a}_{\pmb{ au}} = a_{\pmb{ au}} \vec{\pmb{ au}}$, где \vec{n} и $\vec{\pmb{ au}}$ - единичные вектора, направленные по нормали и касательной к траектории соответственно.

Модуль **нормального ускорения**: $a_n = \frac{|v|^2}{R}$, модуль **тангенциального**

ускорения: $a_{\tau} = \frac{d|v|}{dt}$, где R - радиус кривизны траектории в рассматриваемой точке (под радиусом кривизны понимают радиус окружности, совпадающей с траекторией на ее бесконечно малом участке, то есть в точке).

ускорения $\vec{a} = a_n \vec{n} + a_{\tau} \vec{\tau}$, Вектор полного его модуль: $a = \sqrt{{a_n}^2 + {a_\tau}^2} \ .$

• Частный случай движения материальной точки - плоское движение по окружности. В этом случае положение точки задают радиусом окружности R и углом φ , отсчитываемым от некоторого положения, принятого за начальное (нулевое).

Угловая скорость:

$$\vec{\omega} = \frac{d\varphi}{dt}\vec{i}_{\varphi} = \dot{\varphi} \cdot \vec{i}_{\varphi}$$

угловое ускорение:
$$\vec{\epsilon} = \frac{d\omega}{dt}\vec{i}_{\phi} = \ddot{\phi} \cdot \vec{i}_{\phi}$$

В приведенных выше выражениях использован единичный вектор

направленный вдоль оси вращения, при этом его направление определяют по «правилу правого винта»: вращение головки винта в направлении вращения материальной точки определяет направление «ввинчивания» винта – именно в этом направлении ориентирован вектор $\vec{i}_{\pmb{\varphi}}$. Необходимо помнить, что угловая скорость и угловое ускорение являются «псевдовекторами», то есть величинами похожими на вектора, так как, в отличие от «настоящих» векторов, они могут быть направлены только либо вверх, либо вниз вдоль оси вращения.

• Связь угловых и линейных характеристик.

Путь s, пройденный материальной точкой, которая движется по окружности, связан с углом поворота φ : $s=\varphi\cdot R$, ее линейная скорость v-c угловой ω : $v=\omega\cdot R$, тангенциальное ускорение $a_\tau-c$ угловым ускорением ε : $a_\tau=\varepsilon\cdot R$, нормальное ускорение a_n-c угловой скоростью ω : $a_n=\omega^2\cdot R$. Те же соотношения в векторной форме принимают следующий вид:

 $\vec{v} = \vec{\omega} \times \vec{R}$, $\vec{a}_{\tau} = \vec{\varepsilon} \times \vec{R}$, $\vec{a}_{n} = -\omega^{2} \vec{R}$. Частота вращения точки n, т.е. количество совершаемых ею оборотов в единицу времени, связана с угловой скоростью ω и периодом обращения T: $\omega = 2\pi n = \frac{2\pi}{T}$.

Примеры решения задач

- 1-1. Автомобиль вначале покоился, а затем начал равноускоренное движение и достиг скорости *v*, после чего стал двигаться равнозамедленно до полной остановки. Какова средняя скорость автомобиля?
- Найдем $s_1 = a_1 t_1^2/2$ путь, пройденный автомобилем за время t_1 при движении с ускорением a_1 от нулевой начальной скорости до скорости $v = a_1 t_1$. Найдем $s_2 = a_2 t_2^2/2$ путь, пройденный автомобилем за время t_2 при движении с отрицательным ускорением a_2 от скорости v до полной остановки. Скорость v можно выразить через ускорение a_2 : $v = a_2 t_2$.

По определению средней путевой скорости она вычисляется как отношение пройденного пути к затраченному времени:

$$v_{cp} = \frac{s_1 + s_2}{t_1 + t_2} = \frac{a_1 t_1^2 + a_2 t_2^2}{2(t_1 + t_2)} = \frac{v t_1 + v t_2}{2(t_1 + t_2)} = \frac{v}{2}.$$

Ответ: $v_{cp} = v/2$.

1-2. На горизонтальной поверхности стола на расстоянии s от вертикальной стены расположен источник света. По столу от источника к стене с постоянной скоростью v начала движение непрозрачная вертикальная перегородка высотой l, отбрасывающая тень на стену. Определить с какой зависящей от времени скоростью движется по стене край тени.

 \bullet Горизонтальную ось x системы координат направим вдоль стола, а вертикальную ось y — вверх параллельно экрану. Начало системы координат поместим в точку расположения источника. Движение по

равномерное горизонтали описывается выражением x(t)= vt. $\exists To$ означает, времени моменту перегородка пройдет от начала координат расстояние x = x(t) и займет на горизонтальной оси указанной положение \mathbf{c} Найдем координатой. зависимость от времени y(t)координаты у. Для этого

введем угол $\alpha(t)$ между горизонталью и направлением на край тени. Из треугольника ОА'В': $tg\alpha(t) = y(t)/s$. Из треугольника ОАВ тот же тангенс: $tg\alpha(t) = l/x$. Приравнивая, получаем $y(t) = \frac{sl}{x(t)}$. Скорость перемещения края тени по экрану - ее мгновенная скорость v_y направленная вдоль оси y, т.е. производная $\frac{dy}{dt}$:

$$v_{y} = \frac{dy}{dt} = sl \frac{d}{dt} \left(\frac{1}{x}\right) = sl \cdot \left(-\frac{1}{x^{2}}\right) \cdot \frac{dx}{dt} = -\frac{sl}{\left(vt\right)^{2}} \cdot v = -\frac{sl}{vt^{2}}.$$

Вид функциональной зависимости $v_y(t)$ - квадратичная гипербола - показывает, что движение вдоль оси y не только не равномерное, но и не равноускоренное, т.к. производная $\frac{dv_y}{dt}$, дающая ускорение a_y , также зависит от времени. Ответ: $|v_y| = sl/vt^2$.

- 1-3. Две прямые дороги пересекаются под углом $\alpha = 60^{\circ}$. От перекрестка по этим дорогам удаляются машины: одна со скоростью $v_1 = 60$ км/час, другая со скоростью $v_2 = 80$ км/час. Машины начали движение одновременно. Определить относительную скорость u, с которой одна машина движется по отношению к другой. Рассмотреть два случая направления движения машин.
- \bullet Скорость вектор, а это означает, что необходимо определить его модуль (величину) и направление. Величины и направления v_1 и v_2

заданы относительно земли, следовательно, возможны два случая взаимного расположения этих векторов.

Относительную скорость $u_{1,2}$ находят как разность: $\vec{u}_{1,2} = \vec{v}_1 - \vec{v}_2$.

Направление вектора-разности определяют по правилу векторного вычитания, а его величину, модуль, – по теореме косинусов.

Для случая а):

$$u_1 = (v_1^2 + v_2^2 - 2v_1v_2\cos 60^\circ)^{1/2} = 72 \text{ км/час.}$$

Для случая б):

$$u_2 = (v_1^2 + v_2^2 - 2v_1v_2\cos(120^0))^{1/2} = (v_1^2 + v_2^2 + 2v_1v_2\cos(60^0))^{1/2} =$$

=122 км/час.

- 1-4. Точка движется по прямой согласно уравнению $x=at-bt^3$, где a=6 м/с, b=0,125 м/с². Определить среднюю скорость точки в промежутке времени от $t_1=2$ с до $t_2=6$ с.
- Считаем, что точка начинает двигаться в момент времени t=0 из положения с координатой x=0. Скорость движение вдоль оси x определяют дифференцированием по времени : $v_{x}=\frac{dx}{dt}=a-3bt^{2}$.

Скорость $v_{\rm x}$ уменьшается со временем и обращается в нуль в момент времени t_0 , определяемым уравнением $a-3bt_0^2=0$, т.е. для $t_0=(\frac{a}{3b})^{1/2}=4\,c$.

До момента t_0 точка движется в положительном направлении оси x, потом останавливается и начинает двигаться в обратную сторону. Следовательно, характер движения точки - возвратно-поступательный. Для вычисления пройденного точкой пути определим ее координаты x(t) в различные моменты времени.

Для t=2 c координата точки x=11 м, для t=4 c координата точки x=16 м, для t=6 c координата точки x=9 м. Пройденный точкой

путь за время от $t_1 = 2$ c до $t_2 = 6$ c (за $\Delta t = t_2 - t_1 = 4$ c) состоит из двух частей:

 $x(4\ c)$ - $x(2\ c)$ = 16 - 11 = 5 м в положительном направлении оси x и $x(4\ c)$ - $x(6\ c)$ = 16 - 9 = 7 м в отрицательном направлении.

Всего s = 12 м.

Согласно определению средняя скорость — это отношение пройденного пути к затраченному времени: $v_{cp} = s/\Delta t = 3$ м/с.

Ответ: $v_{cp} = 3 \text{ м/c}$

- 1-5. Движение материальной точки задано радиус-вектором $\vec{r} = a(\vec{i} \sin \omega t + \vec{j} \cos \omega t)$, где a постоянная. Найти модули векторов скорости и нормального ускорения.
- Сравнивая выражение радиус-вектора, данное в условии задачи, с его координатным представлением, находим, что $x=a \cdot sin\omega t$, $y=a \cdot cos\omega t$. Отметим, что подобная зависимость каждой из координат от времени описывает гармоническое колебание по каждой из осей. Компоненты скорости можно найти как:

$$v_x = \frac{dx}{dt} = a\omega\cos\omega t$$
, $v_y = \frac{dy}{dt} = -a\omega\sin\omega t$.

Компоненты ускорения:

$$a_x = \frac{dv_x}{dt} = -a\omega^2 \sin \omega t$$
, $a_y = \frac{dy}{dt} = -a\omega^2 \cos \omega t$.

Модуль вектора мгновенной скорости:

 $|v|=v=\sqrt{v_x^2+v_y^2}=a\omega(\sin^2\omega\,t+\cos^2\omega\,t)=a\omega$. Результат вычисления означает постоянство модуля во времени. Отсюда следует, что тангенциальное ускорение $a_{\tau}=\frac{d|v|}{dt}=0$, т.е. нормальное ускорение совпадает с полным ускорением. Модуль полного ускорения $a=\sqrt{a_x^2+a_y^2}=a\omega^2=a_n$ также постоянен. Постоянство скорости и нормального ускорения есть свидетельство постоянства радиуса кривизны R траектории движения. Движение по кривой с постоянным радиусом кривизны - это движение по окружности. Таким образом, участие точки в двух взаимно-перпендикулярных гармонических колебаниях приводит к движению по окружности. Ответ: $v=a\omega$, $a_n=a\omega^2$.

- 1-6. Диск радиусом R вращается вокруг оси, проходящей через его центр. Угол поворота φ зависит от времени как $\varphi = a bt + ct^3$. Определить тангенциальное, нормальное и полное ускорения точки на окружности диска для момента времени $t = t_0$.
- Угловая скорость определяется производной от угла поворота диска по времени: $\omega = \frac{d\varphi}{dt} = -b + 3ct^2$, вторая производная дает угловое ускорение: $\varepsilon = \frac{d\omega}{dt} = 6ct$. Согласно приведенной в краткой теории связи линейных и угловых характеристик движения, нормальное ускорение: $a_n = \omega^2 R = (3ct^2 b)^2 R$, тангенциальное ускорение: $a_{\tau} = \varepsilon r = 6ctR$, полное ускорение:

$$a = \sqrt{{a_{\tau}}^2 + {a_n}^2} = \left[(3ct^2 - b)^4 + 36c^2t^2 \right]^{1/2} R$$
 . Подстановка $t = t_0$ дает ответ.

- 1-7. Твердое тело вращается вокруг неподвижной оси так, что его угловая скорость зависит от угла поворота по закону $\omega = a \varphi$. В момент времени t=0 угол $\varphi=\varphi_0$. Найти зависимость от времени угла поворота φ и угловой скорости ω .
- Для угла φ можно получить простейшее дифференциальное уравнение: $\omega = \frac{d\varphi}{dt} = a\varphi$. Решение уравнения начинают с переноса φ и дифференциала $d\varphi$ в одну сторону уравнения, а дифференциала времени dt в другую: $\frac{d\varphi}{\varphi} = adt$. Это уравнение необходимо

проинтегрировать, чтобы найти такие функции φ и t, которые, будучи подставлены в правую и левую части уравнения, не нарушали бы имеющегося равенства: $\int \frac{d\varphi}{\varphi} = a \int dt$. Результат интегрирования:

 $\ln \varphi = at + C$, где C – постоянная интегрирования (ее производная равна нулю). После потенцирования получим $\varphi = C \cdot \exp(at)$. Подстановка начального условия

$$arphi(0)=arphi_0$$
 дает $arphi_0=C\cdot exp(0)=C$. Окончательно $arphi=arphi_0\exp(at)$, $\omega=rac{darphi}{dt}=arphi_0\,a\,\exp(at)$.

Otbet: $\varphi = \varphi_0 \exp(at)$, $\omega = \varphi_0 a \exp(at)$.

Задачи для самостоятельного решения

1-8. Движение материальной точки вдоль оси x задано уравнением $x = at - bt^2$. Определить какой путь прошла точка до остановки, если она начала двигаться в момент времени t = 0.

Other: $s = a^2/4b$.

1-9. Точка движется по плоскости согласно закону $x = a\sin(\omega t)$,

 $y = a(1 - \cos(\omega t))$, где a и ω - положительные постоянные. Определить скорость точки в момент времени $t = \tau$ и найти путь, пройденный ею к этому моменту.

Ответ: $v = a\omega\tau$.

1-10. Радиус-вектор материальной точки меняется по закону $\vec{r} = \vec{a}t(1-\alpha t)$, где \vec{a} и $\alpha > 0$ — постоянные. Определить промежуток времени Δt , по истечении которого точка вернется в исходную позицию и путь s, который она при этом пройдет.

Otbet: $\Delta t = 1/\alpha$; $s = a/(2\alpha)$.

1-11. Движение материальной точки задано радиус-вектором:

 $\vec{r} = \vec{i} (\alpha - bt^2) + \vec{j}ct$. Определить вектор мгновенной скорости $\vec{v}(t)$, его модуль, модули тангенциального, нормального и полного ускорений.

Otbet:
$$\vec{v} = -2bt\vec{i} + c\vec{j}$$
, $|v| = \sqrt{4b^2t^2 + c^2}$, $a_{\tau} = 4b^2t/\sqrt{4b^2t^2 + c^2}$, $a = 2b$, $a_n = 2bc/\sqrt{4b^2t^2 + c^2}$.

1-12. Камень брошен горизонтально со скоростью v_0 . Найти нормальное и тангенциальное ускорения камня через промежуток времени t после начала движения. Сопротивлением воздуха пренебречь.

Otbet:
$$a_{\tau} = \frac{g^2 t}{\sqrt{{v_0}^2 + g^2 t^2}}$$
, $a_n = \frac{gV_0}{\sqrt{{v_0}^2 + g^2 t^2}}$.

1-13. Камень брошен горизонтально со скоростью v_0 . Найти радиус кривизны траектории камня через промежуток времени t после начала движения. Сопротивлением воздуха пренебречь.

Otbet:
$$R = \frac{(v_0 + g^2 t^2)^{3/2}}{gv_0}$$

1-14. Движение точки по окружности радиуса R задано уравнением: $\xi = \alpha + bt + ct^2$, где ξ - координата, отсчитанная вдоль окружности. Найти скорость, тангенциальное, нормальное и полное ускорения точки для момента времени $t=t_0$.

Otbet: $v = b + 2ct_0$, $a_{\tau} = 2c$, $a_n = (b + 2ct_0)^2/R$.

1-15. Маховик начал вращаться равноускоренно и за промежуток времени Δt достиг частоты вращения n. Определить угловое ускорение маховика и полное количество оборотов, которое он сделал за это время.

Otbet: $\varepsilon = 2\pi n/\Delta t$, $N = n\Delta t/2$.

Контрольные задачи

- 1-16. Стержень длиной l упирается верхним концом в стену, а нижним в пол. Конец, упирающийся в стену, равномерно опускается вниз. Будет ли движение другого конца равномерным?
- 1-17. Прожектор установлен на расстоянии l от стены и высвечивает на стене светлое пятно. Прожектор вращается вокруг вертикальной оси, делая один оборот за время T таким образом, что светлое пятно движется по стене. Приняв за начало отсчета момент времени, когда пятно находится напротив прожектора, в течение первой четверти оборота определить скорость пятна на стене как функцию времени.
- 1-18. Три четверти пути автомобиль прошел со скоростью v_I , последнюю четверть со скоростью v_2 . Определить среднюю скорость автомобиля.
- 1-19. Из одной точки на оси x в момент $t = t_0$ начали двигаться два небольших тела, движение которых описывают уравнения:
- $x_1 = a + b_1 t + c t^2$, $x_2 = a + b_2 (t t_0) + c (t t_0)^2$. Определить момент времени, когда тела встретятся, и их скорости в этот момент.
- 1-20. Точка движется по плоскости согласно закону x = at,
- $y = at(1 \alpha t)$, где a и α положительные постоянные. Найти зависимость скорости и ускорения точки от времени.
- 1-21. Точка движется по окружности радиусом R=4 м. Начальная скорость точки равна $v_0=3$ м/с, тангенциальное ускорение $a_{\tau}=1$ м/с². Для момента времени t=2 с найти: 1) длину пути, пройденного точкой к этому моменту, 2) модуль вектора перемещения, 3) среднюю путевую скорость, 4) модуль вектора средней скорости.
- 1-22. Тело вращается вокруг неподвижной оси так, что угол поворота меняется в зависимости от времени по закону $\varphi = 2\pi(at bt^2/2)$, где a и b положительные постоянные. Найти момент времени τ , в который тело прекратит вращение, а также количество оборотов N тела до остановки.

- 1-23. На цилиндр радиусом r, который может вращаться вокруг горизонтальной оси, намотана нить. К концу нити прикрепили груз и предоставили ему возможность опускаться вниз. Двигаясь равноускоренно, груз за время t спустился на расстояние h. Определить угловое ускорение ε цилиндра.
- 1-24. Колесо вращается равноускоренно. Сделав N полных оборотов, оно изменило частоту вращения от n_1 до n_2 . Определить угловое ускорение ε колеса.
- 1-25. Твердое тело вращается вокруг неподвижной оси по закону $\varphi = at bt^2$. Найти средние значения угловых скорости и ускорения тела за промежуток времени от t = 0 до полной остановки.