Výroková logika

- Výrok = věta u které lze jednoznačně rozhodnout pravdivost
- Symboly jazyka výrazové logiky
 - Symboly pro proměnné
 - a, b, c, x, y, z, ...
 - Symboly pro logické konstanty
 - 1, 0, true, false, T, F
 - Symboly pro logické spojky
 - ¬, ∧, ∨, ⇒, ⇔
 - Pomocné symboly
 - Závorky
- Logické spojky

\neg	Negace	$\neg true$	\rightarrow	false
Λ	Konjunkce	$A \wedge B$	\longrightarrow	A a zároveň B
V	Disjunkce	$A \vee B$	\longrightarrow	A nebo B
\Rightarrow	Implikace	$A \Longrightarrow B$	\longrightarrow	Jestliže A, pak B
\Leftrightarrow	Ekvivalence	$A \Leftrightarrow B$	\longrightarrow	A právě tehdy když B

	p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Longrightarrow q$	$p \Leftrightarrow q$
	0	0	1	0	0	1	1
Ī	0	1	1	0	1	1	0
Ī	1	0	0	0	1	0	0
Ī	1	1	0	1	1	1	1

- Syntaktická pravidla (Atomická formule)
 - o Symboly pro proměnné a symboly pro logické konstanty
 - O Vytváříme z nich formule podle pravidel:
 - 1. Každá atomická formule je formulí
 - 2. Jsou-li A a B formule, potom $\neg A$, $A \land B$, ... jsou formule
 - 3. Všechny dobře utvořené formule jazyka jsou výsledkem konečného počtu aplikací pravidel 1. a 2.

p	Atomická formule
1	Atomická formule
$p \wedge q$	formule
рΛ	NENÍ formule

 $\circ \quad \mathsf{P\check{r}\mathsf{i}\mathsf{k}\mathsf{lad}} \colon (p \Leftrightarrow q) \Rightarrow (p \land q)$

p	q	$p \Leftrightarrow q$	$p \wedge q$	$(p \Leftrightarrow q) \Longrightarrow (p \land q)$	
0	0	1	0	0	← nepravdivá
0	1	0	0	1	← pravdivá
1	0	0	0	1	← pravdivá
1	1	1	0	1	← pravdivá

pravdivostní ohodnocení

- Formule je splnitelná, existuje-li alespoň jedno pravdivostní ohodnocení ve kterém je pravdivá
- o Formule je zvána TAUTOLOGIÍ, je-li pravdivá pro všechna pravdivostní ohodnocení
- Formule je zvána KONTRADIKCÍ, je-li nepravdivá pro všechna pravdivostní ohodnocení
- $\circ \quad \mathsf{P\check{r}\mathsf{i}\mathsf{k}\mathsf{lad}} \colon \big(p \Rightarrow (q \land \neg q)\big) \Rightarrow \neg p$

p	q	$\neg q$	$q \land \neg q$	$p \Rightarrow (q \land \neg q)$	$\neg p$	$(p \Rightarrow (q \land \neg q)) \Rightarrow \neg p$	
0	0	1	0	1	1	1	← pravdivá
0	1	0	0	1	1	1	← pravdivá
1	0	1	0	0	0	1	← pravdivá
1	1	0	0	0	0	1	← pravdivá
,						↑	•

tautologie

Užitečné tautologie

c taut	0.00.0	
1.	Identita	$p \Leftrightarrow p$
2.	Idempotence	$ (p \land p) \Leftrightarrow p $ $ (p \lor p) \Leftrightarrow p $
3.	Zákon dvojí negace	$\neg\neg p \Leftrightarrow p$
4.	Zákon vyloučeného třetího	$p \lor \neg p$
5.	De Morganova pravidla	$\neg (p \lor q) \Leftrightarrow (\neg p \land \neg q)$ $\neg (p \land q) \Leftrightarrow (\neg p \lor \neg q)$
6.	Zákon komutativity	$ \begin{array}{c} (p \land q) \Leftrightarrow (q \land p) \\ (p \lor q) \Leftrightarrow (q \lor p) \end{array} $
7.	Zákon asociativity	$ \begin{array}{c} p \land (q \land r) \Leftrightarrow (p \land q) \land r \\ p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r \end{array} $
8.	Distributivita	
9.	Absorpce	$ \begin{array}{c} (p \land (p \lor q)) \Leftrightarrow p \\ (p \lor (p \land q)) \Leftrightarrow p \end{array} $
10.	Obměna implikace	$(p \Rightarrow q) \Longleftrightarrow (\neg q \Rightarrow \neg p)$
11.	Negace implikace	$\neg(p \Rightarrow q) \Leftrightarrow (p \land \neg q)$ $(p \Rightarrow q) \Leftrightarrow \neg(p \land \neg q)$
12.		$(p \Leftrightarrow q) \Leftrightarrow ((p \Rightarrow q) \land (q \Rightarrow p))$

1) De Morganovo pravidlo

$$\neg (p \lor q) \Leftrightarrow (\neg p \land \neg q)$$

p	q	$p \lor q$	$\neg (p \lor q)$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg (p \lor q) \Leftrightarrow (\neg p \land \neg q)$
0	0	0	1	1	1	1	1
0	1	1	0	1	0	0	1
1	0	1	0	0	1	0	1
1	1	1	0	0	0	0	1

2) Zákon asociativity

$$p \wedge (q \wedge r) \Leftrightarrow (p \wedge q) \wedge r$$

p	q	r	q∧r	$p \wedge (q \wedge r)$	$p \wedge q$	$(p \wedge q) \wedge r$	$p \land (q \land r) \Leftrightarrow (p \land q) \land r$
0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	1
0	1	0	0	0	0	0	1
0	1	1	1	0	0	0	1
1	0	0	0	0	0	0	1
1	0	1	0	0	0	0	1
1	1	0	0	0	0	0	1
1	1	1	1	1	1	1	1

3) Distributivita

$$\big(p \land (q \lor r)\big) \Longleftrightarrow \big((p \land q) \lor (p \land r)\big)$$

p	q	r	q V r	$p \wedge (q \vee r)$	p∧q	p∧r	$(p \land q) \lor (p \land r)$	$(p \land (q \lor r)) \Leftrightarrow ((p \land q) \lor (p \land r))$
0	0	0	0	0	0	0	0	1
0	0	1	1	0	0	0	0	1
0	1	0	1	0	0	0	0	1
0	1	1	1	0	0	0	0	1
1	0	0	0	0	0	0	0	1
1	0	1	1	1	0	1	1	1
1	1	0	1	1	1	0	1	1
1	1	1	1	1	1	1	1	1

4) Absorpce

$$(p \land (p \lor q)) \Leftrightarrow p$$

p	q	$p \lor q$	$p \wedge (p \vee q)$	$(p \land (p \lor q)) \Leftrightarrow p$
0	0	0	0	1
0	1	1	0	1
1	0	1	1	1
1	1	1	1	1

5) Přepsat na formuli za použití pouze ¬, Λ, V a závorek

$$(x \Rightarrow y) \Rightarrow z$$

$$(\neg(x \land \neg y) \Rightarrow z)$$

$$\neg(\neg(x \land \neg y) \land \neg z)$$

$$\neg((\neg x \lor y) \land \neg z)$$

$$(\neg(\neg x \lor y) \lor z)$$

$$(x \land \neg y) \lor z$$

$$((x \Rightarrow y) \Rightarrow z) \Longleftrightarrow ((x \land \neg y) \lor z)$$

KMA/7USMA – Úvod do studia matematiky - Mgr. Ondřej Kolouch, Ph.D.

х	у	Z	$x \Rightarrow y$	$(x \Rightarrow y) \Rightarrow z$	$\neg y$	$x \land \neg y$	$(x \land \neg y) \lor z$
0	0	0	1	0	1	0	0
0	0	1	1	1	1	0	1
0	1	0	1	0	0	0	0
0	1	1	1	1	0	0	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	1	0	0	0	0
1	1	1	1	1	0	0	1

6) Přepsat na formuli za použití pouze ¬, ∧, ∨ a závorek

$$x \Rightarrow (y \lor z)$$

$$\neg \big(x \land \neg (y \lor z)\big)$$

$$\neg x \lor \neg \neg (y \lor z)$$

$$\neg x \lor (y \lor z)$$

$$(x \Rightarrow (y \lor z)) \Leftrightarrow (\neg x \lor (y \lor z))$$

х	у	Z	$y \lor z$	$x \Rightarrow (y \lor z)$	$y \lor z$	$\neg x$	$\neg x \lor (y \lor z)$
0	0	0	0	1	0	0	1
0	0	1	1	1	1	0	1
0	1	0	1	1	1	0	1
0	1	1	1	1	1	0	1
1	0	0	0	0	0	1	0
1	0	1	1	1	1	1	1
1	1	0	1	1	1	1	1
1	1	1	1	1	1	1	1