80

58

42

-32

38

44

35

11

V

V

V

V

Α

Α

Α

 $m\Omega$

Product Summary

V_{bb}-V_{OUT} Avalanche Clamp

V_{Load dump}

V_{bb} (operation)

V_{bb} (reverse)

Ron

I_L(SCp)

L(SCr)

IL(ISO)

Smart Highside Power Switch

Features

- Load dump and reverse battery protection¹⁾
- Clamp of negative voltage at output
- Short-circuit protection
- Current limitation
- Thermal shutdown
- Diagnostic feedback
- Open load detection in ON-state
- CMOS compatible input
- Electrostatic discharge (ESD) protection
- Loss of ground and loss of V_{bb} protection²⁾
- Overvoltage protection
- Undervoltage and overvoltage shutdown with auto-restart and hysteresis

Application

- μC compatible power switch with diagnostic feedback for 12 V and 24 V DC grounded loads
- All types of resistive, inductive and capacitve loads
- Replaces electromechanical relays and discrete circuits

55

General Description

N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, integrated in Smart SIPMOS® chip on chip technology. Fully protected by embedded protection functions.

¹⁾ No external components required, reverse load current limited by connected load.

²⁾ Additional external diode required for charged inductive loads

SIEMENS BTS 432 E2

Pin	Symbol		Function
1	GND	-	Logic ground
2	IN		Input, activates the power switch in case of logical high signal
3	Vbb	+	Positive power supply voltage, the tab is shorted to this pin
4	ST	S	Diagnostic feedback, low on failure
5	OUT (Load, L)	0	Output to the load

Maximum Ratings at $T_j = 25$ °C unless otherwise specified

Parameter	Symbol	Values	Unit
Supply voltage (overvoltage protection see page 3)	$V_{ m bb}$	63	V
Load dump protection $V_{\text{LoadDump}} = U_{\text{A}} + V_{\text{S}}$, $U_{\text{A}} = 13.5 \text{ V}$ $R_{\text{I}} = 2 \Omega$, $R_{\text{L}} = 1.1 \Omega$, $t_{\text{d}} = 200 \text{ ms}$, IN= low or high	$V_s^{3)}$	66.5	V
Load current (Short-circuit current, see page 4)	/ ∟	self-limited	Α
Operating temperature range	T _j	-40+150	°C
Storage temperature range	T_{stg}	-55+150	
Power dissipation (DC)	P _{tot}	125	W
Inductive load switch-off energy dissipation, single pulse $T_{j=150}$ °C:	E _{AS}	1.7	J
Electrostatic discharge capability (ESD) (Human Body Model)	V _{ESD}	2.0	kV
Input voltage (DC)	V _{IN}	-0.5 +6	V
Current through input pin (DC)	I _{IN}	±5.0	mA
Current through status pin (DC)	<i>I</i> _{ST}	±5.0	
see internal circuit diagrams page 6			
Thermal resistance chip - case:	R_{thJC}	≤ 1	K/W
junction - ambient (free air):	R_{thJA}	≤ 75	
SMD version, device on pcb ⁴):		≤ tbd	

_

 $^{^{3)}}$ V_S is setup without DUT connected to the generator per ISO 7637-1 and DIN 40839

⁴⁾ Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70μm thick) copper area for V_{bb} connection. PCB is vertical without blown air.

Electrical Characteristics

Parameter and Conditions		Symbol	Values			Unit
at T _j = 25 °C, V_{bb} = 12 V unless other	rwise specified		min	typ	max	
Load Switching Capabilities	and Characteristics					
On-state resistance (pin 3 to 5)	(
I _L = 2 A	<i>T</i> _i =25 °C:	Ron		30	38	mΩ
	<i>T</i> _i =150 °C:			55	70	
Nominal load current (pin 3 to		I _{L(ISO)}	9	11		Α
ISO Proposal: $V_{ON} = 0.5 \text{ V}$, 7	•	_(''')				
Output current (pin 5) while GN GND pulled up, V_{IN} = 0, see di T_{I} =-40+150°C	I _{L(GNDhigh)}			1	mA	
Turn-on time	to 90% V _{OUT} :	t _{on}	50	160	300	μs
Turn-off time	to 10% V _{OUT} :	$t_{ m off}$	10		80	
$R_{L} = 12 \Omega, T_{j} = -40 + 150 ^{\circ} C$						
Slew rate on		dV/dt _{on}	0.4		2.5	V/μs
10 to 30% V_{OUT} , R_{L} = 12 Ω , T_{j}	=-40+150°C					
Slew rate off 70 to 40% V_{OUT} , $R_L = 12 \Omega$, T_j	=-40+150°C	-d V/dt _{off}	1		5	V/µs
Operating Parameters Operating voltage 5)	<i>T</i> _i =-40+150°C:	V _{bb(on)}	4.5		42	V
Undervoltage shutdown	T _i =-40+150°C:	$V_{\rm bb(under)}$	2.4		4.5	V
Undervoltage restart	T _i =-40+150°C:	$V_{\rm bb(u\ rst)}$			4.5	V
Undervoltage restart of charge see diagram page 12	pump T _i =-40+150°C:	V _{bb(ucp)}		6.5	7.5	V
Undervoltage hysteresis $\Delta V_{\text{bb(under)}} = V_{\text{bb(u rst)}} - V_{\text{bb(under)}}$,	$\Delta V_{ m bb(under)}$		0.2		V
Overvoltage shutdown	<i>T</i> _j =-40+150°C:	$V_{ m bb(over)}$	42		52	V
Overvoltage restart	$T_{\rm j}$ =-40+150°C:	V _{bb(o rst)}	42			V
Overvoltage hysteresis	<i>T</i> _j =-40+150°C:	$\Delta V_{ m bb(over)}$		0.2		V
Overvoltage protection ⁶⁾	$T_{\rm j}$ =-40°C:	$V_{\mathrm{bb(AZ)}}$	60			V
l _{bb} =40 mA	$T_{\rm j}$ =25+150°C:		63	67		
Standby current (pin 3)	<i>T</i> _j =-40+25°C:	I _{bb(off)}		12	25	μΑ
V _{IN} =0	<i>T</i> _j =150°C:			18	60	
Leakage output current (include VIN=0	ed in I _{bb(off)})	I _{L(off)}		6		μΑ
0 1 (51 ()7) 1(1.	1			

Operating current (Pin 1)7), V_{IN}=5 V

*I*_{GND}

1.1

mΑ

⁵⁾ At supply voltage increase up to V_{bb} = 6.5 V typ without charge pump, $V_{OUT} \approx V_{bb}$ - 2 V

⁶⁾ see also $V_{\mathrm{ON(CL)}}$ in table of protection functions and circuit diagram page 7. Meassured without load.

⁷⁾ Add I_{ST} , if $I_{ST} > 0$, add I_{IN} , if $V_{IN} > 5.5 \text{ V}$

BTS 432 F2

<u> </u>			B15 43		
Parameter and Conditions	Symbol		Values	Unit	
at T _j = 25 °C, V_{bb} = 12 V unless otherwise specified		min	typ	max	
Protection Functions					
Initial peak short circuit current limit (pin 3 to 5)8), (max 400 µs if V _{ON} > V _{ON(SC)})	I _{L(SCp)}				
T _i =-40°C: T _i =25°C: T _j =+150°C:		 24	 44 	74 	Α
Repetitive short circuit current limit	I _{L(SCr)}				
$T_{\rm j} = T_{\rm jt}$ (see timing diagrams, page 10)		22	35		Α
Short circuit shutdown delay after input pos. slope $V_{\rm ON} > V_{\rm ON(SC)}$, $T_{\rm j} = -40+150 ^{\circ}{\rm C}$:	$t_{\sf d(SC)}$	80		400	μs
min value valid only, if input "low" time exceeds 30 μs					
Output clamp (inductive load switch off) at $V_{OUT} = V_{bb} - V_{ON(CL)}$, $I_{L} = 30 \text{ mA}$	$V_{ m ON(CL)}$		58		V
Short circuit shutdown detection voltage (pin 3 to 5)	$V_{ m ON(SC)}$		8.3		V
Thermal overload trip temperature	$T_{\rm jt}$	150			°C
Thermal hysteresis	$\Delta T_{\rm jt}$		10		K
Inductive load switch-off energy dissipation ⁹⁾ ,	E _{AS}			1.7	J
$T_{\rm j \; Start} = 150 \; ^{\circ}{\rm C}$, single pulse $V_{\rm bb} = 12 \; {\rm V}$:	E _{Load12}			1.3	
$V_{\rm bb} = 24 \ \rm V$:	E _{Load24}			1.0	
Reverse battery (pin 3 to 1) 10)	-V _{bb}			32	V
Integrated resistor in V _{bb} line	R _{bb}		120		Ω
Diagnostic Characteristics					
Diagnostic Characteristics Open load detection current (on-condition) $T_{j}=-40 ^{\circ}\text{C}$: $T_{i}=25150 ^{\circ}\text{C}$:	I _{L (OL)}	2 2		900 750	mA

Open load detection current (on-condition)	<i>T</i> _j =-40 °C: <i>T</i> _j =25150°C:	I _{L (OL)}	2 2	 900 750	mA

Short circuit current limit for max. duration of 400 μs, prior to shutdown (see t_{d(SC)} page 4)

While demagnetizing load inductance, dissipated energy in PROFET is $E_{AS} = \int V_{ON(CL)} * i_{L}(t) dt$, approx. $E_{AS} = \frac{1}{2} * L * I_L^2 * (\frac{V_{ON(CL)}}{V_{ON(CL)} - V_{bb}})$, see diagram page 8

¹⁰⁾ Reverse load current (through intrinsic drain-source diode) is normally limited by the connected load. Reverse current I_{GND} of ≈ 0.3 A at V_{bb} = -32 V through the logic heats up the device. Time allowed under these condition is dependent on the size of the heatsink. Reverse I_{GND} can be reduced by an additional external GND-resistor (150 Ω). Input and Status currents have to be limited (see max. ratings page 2 and circuit page 7).

Parameter and Conditions	Symbol	Values			Unit
at T _j = 25 °C, V_{bb} = 12 V unless otherwise specified		min	typ	max	
Input and Status Feedback ¹¹⁾					
Input turn-on threshold voltage $T_j = -40+150$ °C:	$V_{IN(T+)}$	1.5	1	2.4	V
Input turn-off threshold voltage $T_j = -40+150$ °C:	$V_{IN(T-)}$	1.0	-	-	V
Input threshold hysteresis	$\Delta V_{IN(T)}$		0.5		V
Off state input current (pin 2) $V_{IN} = 0.4 \text{ V}$:	I _{IN(off)}	1		30	μΑ
On state input current (pin 2) $V_{IN} = 3.5 \text{ V}$:	I _{IN(on)}	10	25	50	μΑ
Status invalid after positive input slope	t _{d(ST SC)}	80	200	400	μs
(short circuit) T_{j} =-40 +150°C:	, ,				
Status invalid after positive input slope	$t_{d(ST)}$	350		1600	μs
(open load)					
Status output (open drain)					
Zener limit voltage $T_j = -40 + 150$ °C, $I_{ST} = +1.6$ mA:	$V_{\rm ST(high)}$	5.4	6.1		V
ST low voltage $T_j = -40 + 150$ °C, $I_{ST} = +1.6$ mA:	$V_{\rm ST(low)}$			0.4	

BTS 432 E2

 $^{^{\}rm 11)}\,$ If a ground resistor $R_{\rm GND}$ is used, add the voltage drop across this resistor.

Truth Table

	Input-	Output	Status		
	level	level	432	432	432
			D2	E2/ F2	12
Normal	L	L	Н	Н	Н
operation	Н	Н	Н	Н	Н
Open load	L	12)	Н	Н	L
	Н	Н	L	L	Н
Short circuit	L	L	Н	Н	Н
to GND	Н	L	L	L	L
Short circuit	L	Н	Н	H	L
to V _{bb}	Н	Н	H (L ¹³⁾)	H (L ¹³⁾)	Н
Overtem-	L	L	L	Г	L
perature	Н	L	L	L	L
Under-	L	L	L ¹⁴⁾	Н	L ¹⁴⁾
voltage	Н	L	L ¹⁴⁾	Н	L ¹⁴⁾
Overvoltage	L	L	L	Н	L
•	Н	L	L	Н	L

L = "Low" Level H = "High" Level

Terms

Input circuit (ESD protection)

ZD_{I1} 6.1 V typ., ESD zener diodes are not designed for continuous current

Status output

ESD-Zener diode: 6.1 V typ., max 5 mA; $R_{ST(ON)}$ < 250 Ω at 1.6 mA, ESD zener diodes are not designed for continuous current

Short Circuit detection

Fault Condition: $V_{ON} > 8.3 \text{ V typ.}$; IN high

¹²⁾ Power Transistor off, high impedance

Low resistance short $V_{\rm bb}$ to output may be detected by no-load-detection No current sink capability during undervoltage shutdown

Inductive and overvoltage output clamp

V_{ON} clamped to 58 V typ.

Overvolt. and reverse batt. protection

 R_{bb} = 120 Ω typ., V_Z + R_{bb} *40 mA = 67 V typ., add R_{GND} , R_{IN} , R_{ST} for extended protection

Open-load detection

ON-state diagnostic condition: $V_{\rm ON}$ < R_{ON} * I_{L(OL)}; IN high

GND disconnect

Any kind of load. In case of Input=high is $V_{OUT} \approx V_{IN}$ - $V_{IN(T+)}$. Due to V_{GND} >0, no V_{ST} = low signal available.

GND disconnect with GND pull up

Any kind of load. If $V_{GND} > V_{IN}$ - $V_{IN(T+)}$ device stays off Due to $V_{GND} > 0$, no $V_{ST} =$ low signal available.

V_{bb} disconnect with charged inductive load

Inductive Load switch-off energy dissipation

 $E_{\text{Load}} < E_{\text{L}}, E_{\text{L}} = \frac{1}{2} * L * I_{\text{L}}^2$

Options Overview

all versions: High-side switch, Input protection, ESD protection, load dump and reverse battery protection, protection against loss of ground

Туре втѕ	432D2	432E2	432F2	43212
Logic version	D	Е	F	ı
Overtemperature protection				
$T_{\rm i}$ >150 °C, latch function ¹⁵⁾¹⁶⁾	X		Χ	Х
$T_{\rm j}$ >150 °C, with auto-restart on cooling		Х		
Short-circuit to GND protection				
switches off when $V_{\rm ON}>8.3$ V typ. ¹⁵⁾ (when first turned on after approx. 200 µs)	X	Х	Х	Х
Open load detection				
in OFF-state with sensing current 30 μA typ. in ON-state with sensing voltage drop across power transistor	X	x	Х	Х
Undervoltage shutdown with auto restart	Х	Х	Х	Х
Overvoltage shutdown with auto restart	Х	Х	Х	Х
Status feedback for				
overtemperature	X	Х	Х	Х
short circuit to GND	X	Х	Χ	Х
short to V _{bb}	_17)	_17)	_17)	Х
open load	X	Х	Χ	X
undervoltage	X	-	-	X
overvoltage	X	-	-	Х
Status output type				
CMOS	X			X
Open drain		Х	Χ	
Output negative voltage transient limit (fast inductive load switch off)				
to V _{bb} - VON(CL)	Х	Х	Х	Х
Load current limit				
high level (can handle loads with high inrush currents)	Х	Х		
medium level				Χ
low level (better protection of application)			Х	

-

Latch except when $V_{\rm bb}$ - $V_{\rm OUT}$ < $V_{\rm ON(SC)}$ after shutdown. In most cases $V_{\rm OUT}$ = 0 V after shutdown ($V_{\rm OUT}$ \neq 0 V only if forced externally). So the device remains latched unless $V_{\rm bb}$ < $V_{\rm ON(SC)}$ (see page 4). No latch between turn on and $t_{\rm d(SC)}$.

With latch function. Reseted by a) Input low, b) Undervoltage, c) Overvoltage

¹⁷⁾ Low resistance short $V_{\rm bb}$ to output may be detected by no-load-detection

Timing diagrams

Figure 1a: V_{bb} turn on:

Figure 2a: Switching a lamp,

Figure 2b: Switching an inductive load

*) if the time constant of load is too large, open-load-status may

Figure 3a: Turn on into short circuit,

Figure 3b: Turn on into overload,

Figure 3c: Short circuit while on:

Figure 4a: Overtemperature: Reset if $T_i < T_{it}$

Figure 5a: Open load: detection in ON-state, turn on/off to open load

V_{bb} [V]

SIEMENS

Figure 5b: Open load: detection in ON-state, open load occurs in on-state

Figure 6a: Undervoltage:

Figure 6b: Undervoltage restart of charge pump

Von [V]

Von

Von(CL)

off

Off

Vbb(over)

bb(u rst)

bb(u rst)

Vbb

Vbb

charge pump starts at V_{bb(ucp)} =6.5 V typ.

Figure 7a: Overvoltage:

Package and Ordering Code

All dimensions in mm

Standard TO-220AB/5

Ordering code

BTS 432 E2 Q67060-S6202-A2

TO-220AB/5, Option E3043 Ordering code

BTS 432 E2 E3043 Q67060-S6202-A4

- 2) dip tinning
- 3) max. 14.5 by dip tinning press burr max. 0.05

SMD TO-220AB/5, Opt. E3062 Ordering code

BTS432E2 E3062A T&R: Q67060-S6202-A6

