1. If (X, d) is a metric space show that then (X, ρ) is a metric space with $\rho = \frac{d}{1+d}$. Show that both metrics induce the same topology.

Proof that ρ is a metric:

- (a) We need to show $\rho(x,y)=0$ if and only if x=y. If $\rho(x,y)=0$ then $\frac{d(x,y)}{1+d(x,y)}=0$. As $1+d(x,y)\neq 0$ we may multiply both sides by 1+d(x,y). This gives us d(x,y)=0. Since d is a metric, x=y. For the converse, if x=y then d(x,y)=0. Thus $\rho(x,y)=0$.
- (b) We need to show if $x \neq y$ then $\rho\left(x,y\right) = \rho\left(y,x\right)$. If $x \neq y$ then $d\left(x,y\right) = d\left(y,x\right)$. Consequently,

$$\rho\left(x,y\right) = \frac{d\left(x,y\right)}{d\left(x,y\right) + 1} = \frac{d\left(y,x\right)}{d\left(y,x\right) + 1} = \rho\left(y,x\right).$$

(c) Finally, we need that for all $x, y, z \in X$, $\rho(x, z) \leq \rho(x, y) + \rho(y, z)$. Let A = d(x, y), B = d(y, z), C = d(x, z). Then,

$$\rho(x,y) + \rho(y,z) - \rho(x,z) = \frac{A}{A+1} + \frac{B}{B+1} - \frac{C}{C+1}$$
$$= \frac{A+B-C+AB[2+C]}{(A+1)(B+1)(C+1)}$$
$$\geq 0.$$

This is because $d\left(x,y\right)+d\left(y,z\right)\geq d\left(x,z\right)$. In terms of our substitution, $A+B-C\geq 0$. Thus ρ satisfies the triangle inequality.

Proof that d and ρ induce the same topology: It is enough to show that they have the same base. Let $B_d(x, \epsilon_d)$ be an open ball of radius ϵ_d in (X, d) and $B_\rho(x, \epsilon_\rho)$ be an open ball of radius ϵ_ρ in (X, ρ) . Then $B_d(x, \epsilon_d) = B_\rho\left(x, \frac{\epsilon_d}{\epsilon_d + 1}\right)$ and $B_\rho(x, \epsilon_\rho) = B_d\left(x, \frac{\epsilon_\rho}{1 - \epsilon_\rho}\right)$. We may achieve the latter as $\rho(x, y) < 1$ meaning that we only need to consider $0 \le \epsilon_\rho < 1$. Thus both topologies have the same base and are therefore equivalent.

2. Consider Cantor's Intersection Theorem from class. Show that if the condition that $d(F_n) \to 0$ is removed then $F = \bigcap_n F_n$ may be empty.

Cantor's Intersection Theorem:

Let (X,d) be a complete metric space and $\{F_n\}_n$ be a decreasing sequence of non-empty closed subsets of X such that $d(F_n) \to 0$ as $n \to \infty$. Then $F = \cap_n F_n$ contains exactly one point.

3. In a metric space (X, d), show that a set A is noowhere dense if and ony if its complement is everywhere dense.