| 题号 | 1 | 11 | Ш | 总分 | 阅卷人 |
|----|---|----|---|----|-----|
| 得分 |   |    |   |    |     |

| 得分 | 阅卷人 |  |  |
|----|-----|--|--|
|    |     |  |  |

一、选择题(每题3分,共30分)。

- 1. 下列说法正确的是()
- (A) 一物体具有加速度,速度不可能为零
- (B) 物体的加速度越大, 速度越大
- (C) 物体的加速度值很大, 而物体的速率可以不变
- (D) 物体作曲线运动时必有切向加速度
- 2. 质量为 m 的质点在外力的作用下,运动方程为:  $\vec{r} = A\cos(\omega t)\vec{i} + B\sin(\omega t)\vec{j}$ ,式中 A、
- B、ω都是正的常量,请问外力在 t=0 到 $t = \frac{\pi}{2\omega}$  这段时间内力所做的功为 ( )

(A) 
$$\frac{1}{2}m\omega^2(A^2 + B^2)$$
 (B)  $m\omega^2(A^2 + B^2)$  (C)  $\frac{1}{2}m\omega^2(A^2 - B^2)$  (D)  $\frac{1}{2}m\omega^2(B^2 - A^2)$ 

(B) 
$$m\omega^2(A^2 + B^2)$$

(C) 
$$\frac{1}{2}m\omega^2(A^2-B^2)$$

(D) 
$$\frac{1}{2}m\omega^2(B^2-A^2)$$

- 3. 一子弹以水平速度 1/2 射入一静止于光滑水平面上的木块后, 随木块一起运动。对于 这一过程正确的分析是()
- (A) 子弹、木块组成的系统机械能守恒
- (B) 子弹、木块组成的系统水平方向的动量守恒
- (C) 子弹所受的冲量等于木块所受的冲量
- (D) 子弹动能的减少等于木块动能的增加
- 4. 关于力矩有以下几种说法,其中正确的是 ( )
- (A) 内力矩会改变刚体对某个定轴的角动量
- (B) 作用力与反作用力对同一轴的力矩之和必为零
- (C) 角速度的方向一定与外力矩的方向相同
- (D) 质量相等、形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一 定相等
- 5. 有一个在水平面上匀速转动的圆盘, 若沿着如图所示的方

- 向,射入两颗质量相同,速度大小相同,但是方向相反的子弹,子弹射入后均留在盘内。 由于子弹的射入会使圆盘的角速度 ( )
- (A) 增大
- (B) 不变
- (C) 减小
- (D) 条件不全, 不能确定
- 6. 如图所示,对完全相同的两定滑轮(半径 R,转动惯量 J 均相同), 若分别用F的力和加重物重力mg =F时,所产生的角加速度分别  $为 \alpha_1 和 \alpha_2, 则 ( )$



- (A)  $\alpha_1 > \alpha_2$ ; (B)  $\alpha_1 = \alpha_2$ ;
- (C)  $\alpha_1 < \alpha_2$ ; (D) 不能确定。
- 7. 理想流体连续性方程的实质是在运动流体中应用()
- (A) 动量定理
- (B) 角动量定理
- (C) 能量守恒
- (D) 质量守恒
- 8. 在驻波中,两个相邻波节间各质点的振动(
- (A) 振幅相同,相位相同
- (B) 振幅不同, 相位相同
- (C) 振幅相同,相位不同
- (D) 振幅不同,相位不同
- 9. 如图,一平面简谐波以波速 u 沿 x 轴正方向传播,O 为坐标原点。已知 P 点的振动方

程为  $y = A\cos\omega t$ , 则: ( )

- (A) 0点的振动方程为  $y = A\cos\omega(t l/u)$
- (B) 波的表达式为  $y = A\cos\omega[t (l/u) (l/u)]$

- (C) 波的表达式为  $y = A\cos\omega[t + (l/u) (x/u)]$
- (D) C点的振动方程为  $y = A\cos\omega(t 3l/u)$
- 10. 在狭义相对论中,下列说法中哪些是正确的?
- (1) 一切运动物体相对于观察者的速度都不能大于真空中的光速
- (2) 质量、长度、时间的测量结果都随物体与观察者的相对运动状态而改变
- (3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时 发生的
- (4) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相

.....线...

き

**A**在

对静止的相同的时钟走得慢些

(A)(1), (3), (4)

(B) (1), (2), (4)

(C)(1), (2), (3)

(D) (2), (3), (4)

得分 阅卷人

## 二、简答题(每题4分,共20分)。

1. 有两个同样的物体处于同一位置,其中一个水平抛出,另一 个沿斜面无摩擦地自由滑下,问哪一个物体先到达地面?到达地面

时两者的速率是否相等?

2. 如图所示为人手持哑铃时的转动。双手持有哑铃 的人坐在转椅上并随着转椅一同旋转,当他手臂张 开和收拢时,能够看到他的转速的变化,忽略摩擦 力, 试着说明这一现象的道理。



3. 如图所示, 试着解释喷雾器的原理。



- (1) 在同一种介质中,哪些量是不变的?
- (2) 当波从一种介质进入另一种介质中时,哪些量是不变的?
- 5. 简单阐述狭义相对论的时空观。

得分 阅卷人

## 三、计算题。(每题 10 分, 共 50 分)

1. (10 分) 质量为 m 的子弹以速度 v<sub>0</sub>水平射入沙土中,设子弹所受

阻力与速度反向,大小与速度成正比,比例系数为 K,忽略子弹的重力,求:

- (1) 子弹射入沙土后,速度随时间变化的函数式;
- (2) 子弹进入沙土的最大深度。

2. (10分)有一个轻质弹簧,两端连接两滑块 A 和 B,质量依次为 m 和 M,放在光滑 水平桌面上, 开始时弹簧处于原长度。现滑块 A 被水平飞来的质量为 m'、速率为 v 的 子弹击中, 但没有穿出, 如图所示,

试求:

- (1) 子弹击中 A 的瞬间, A 和 B 的速度;
- (2) 以后运动过程中, 弹簧的最大弹性势能;
- (3) B 可获得的最大动能。
- 3. (10 分) 质量分别为 m 和 2m、半径分别为 r 和 2r 的两个均匀圆盘,同轴地粘在一 起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,圆盘总的 转动惯量为 9mr<sup>2</sup>/2, 大小圆盘边缘都绕有绳子, 绳子下端都挂一 质量为m的重物,如图所示。求盘的角加速度的大小。
- 4. (10 分)转动惯量为 20 kg·m<sup>2</sup>、直径为 50 cm 的飞轮以 105 rad·s<sup>-1</sup> 的角速度旋转。 现用闸瓦将其制动,闸瓦对飞轮的正压力为 400 N,闸瓦与飞轮之间的摩擦系数为 0.50。
  - (2) 从开始制动到停止,飞轮转过的转数和经历的时间;
  - (3) 摩擦力矩所作的功。

求: (1) 闸瓦作用于飞轮的摩擦力矩:

- 5.  $(10 \, \text{分})$  一平面简谐波沿 Ox 轴正方向传播,波的表达式为  $y = A\cos 2\pi (\nu x/\lambda)$ , 而另一平面简谐波沿 Ox 轴负方向传播,波的表达式为  $y = 2A\cos 2\pi(\nu t + x/\lambda)$ . 求.
  - (1)  $x = \lambda/4$  处介质质点的合振动方程;
  - (2)  $x = \lambda/4$  处介质质点的速度表达式。