# QMWS - Survival Analysis Cox proportional hazards model

Instructor: Kevin McGregor

York University
Department of Mathematics and Statistics

## Regression models

We've seen two kinds of regression models for survival data so far:

- Exponential regression
- Weibull regression

Each one assumes the underlying event times follow a particular distribution.

In this lecture, we will discuss the most important type of regression model in survival analysis: the **Cox proportional** hazards model.

## Exponential/Weibull regression

Recall the hazard model formulations:

#### **Exponential regression:**

$$\lambda_i(t, x_i) = \exp\{\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}\}\$$

#### Weibull regression:

$$\lambda_i(t,x_i) = \gamma(\lambda t)^{\gamma-1} \exp \left\{ \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} \right\},\,$$

# Exponential/Weibull regression

Also recall the hazard ratios in each case, where predictor  $x_{ij}$  differs by one unit between two individuals, other predictors are constant.

$$x_1 = (x_{11}, \dots, a, \dots, x_{1p})$$
 and  $x_2 = (x_{21}, \dots, a+1, \dots, x_{2p})$ ,  $x_{1k} = x_{2k}$  if  $k \neq j$ .

#### **Exponential regression:**

$$\frac{\lambda_2(t,x_2)}{\lambda_1(t,x_1)} =$$

#### Weibull regression:

$$\frac{\lambda_2(t,x_2)}{\lambda_1(t,x_1)} =$$

# Exponential/Weibull regression

Note that the part in front of the  $\exp(\beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip})$  term cancels out in both cases. This will clearly happen for any

hazard model with the following form:

$$\lambda_i(t,x_i) = \lambda_0(t) \exp\{\beta_1 x_{i1} + \dots + \beta_p x_{ip}\}\$$

#### Hazard ratio:

$$\frac{\lambda_2(t,x_2)}{\lambda_1(t,x_1)} =$$

## Cox proportional hazards model

Specifying the following hazard function is leads to the **Cox proportional hazards model**.

$$\lambda_i(t, x_i) = \lambda_0(t) \exp\{\beta_1 x_{i1} + \dots + \beta_p x_{ip}\}\$$

The model is named after **Sir David Cox**, one of the most influential statisticians of all time.

The idea here is that the term  $\lambda_0(t)$  remains **unspecified**. We call  $\lambda_0(t)$  the **baseline hazard**.

- Baseline hazard is the value of  $\lambda_i(t, x_i)$  when all covariates in  $x_i$  are equal to 0.
- $\lambda_0(t)$  is called a **nuisance parameter**.

# Cox proportional hazards model

$$\lambda_i(t, x_i) = \lambda_0(t) \exp\{\beta_1 x_{i1} + \dots + \beta_p x_{ip}\}\$$

Two important things:

- The hazard depends on time only through the baseline hazard  $\lambda_0(t)$ .
- The hazard depends on the predictors only through  $\exp{\{\beta_1 x_{i1} + \cdots + \beta_p x_{ip}\}}$ .
- There is no intercept term. E.g. no  $\beta_0$

The predictors are assumed to have a **multiplicative** effect on the hazard. This part of the model is **parametric**. The baseline hazard  $\lambda_0(t)$  is unspecified, and therefore, **non-parametric**.

 Combining these two terms means this model is semi-parametric.

Kevin McGregor QMWS - Survival Analysis 7 / 28

# Advantages/disadvantages

Advantages of the proportional hazards model:

- Don't have to specify the baseline hazard.
- Straightforward interpretation of parameters.
- Hazard function can differ with time, but we don't have to worry that part, since only the baseline hazard depends on time.

Disadvantages of the proportional hazards model:

- Since S(t) depends on  $\lambda_0(t)$ , which is unspecified, then we can't directly estimate survival.
  - Usually when we run the Cox model, we're interested in how the hazard changes with respect to covariates, not the survival function itself.
- The effect of the predictors x<sub>i</sub> can't depend on time. Luckily this can be changed, though it leads to a different kind of model. More on this later.

Kevin McGregor QMWS - Survival Analysis 8 / 28

## Parameter interpretations

How to interpret each slope parameter  $\beta_i$ ? Same as before:

When predictor j is increased by **one unit**, the hazard is multiplied by a factor of  $\exp\{\beta_i\}$ . This value is called the **hazard ratio**.

- Hazard ratio > 1 implies increasing predictor corresponds to increasing hazard.
- ullet Hazard ratio < 1 implies increasing predictor corresponds to decreasing hazard.

Remember, there is no intercept  $(\beta_0)$  in the Cox model.

The baseline hazard  $\lambda_0(t)$  is the hazard at time t when all predictors are equal to 0.

Kevin McGregor QMWS - Survival Analysis 9 / 28

## Proportional hazards assumption

What does proportional hazards mean?

Hazard ratio between two individuals with different predictors:

$$\frac{\lambda_2(t,x_2)}{\lambda_1(t,x_1)} = \frac{\exp\{\beta_1 x_{21} + \dots + \beta_p x_{2p}\}}{\exp\{\beta_1 x_{11} + \dots + \beta_p x_{1p}\}}$$

#### This does not depend on time.

By using this model, we are assuming that the ratio of hazards for two individuals with different predictor profiles remain proportional over time.

# Proportional hazard example 1



Kevin McGregor QMWS - Survival Analysis

# Proportional hazard example 2



Kevin McGregor QMWS - Survival Analysis

# NOT proportional hazard example



Kevin McGregor QMWS - Survival Analysis 13 / 28

## Veterans example

**Example:** Veteran lung cancer dataset. Outcome is death. Two covariates we'll use in the model are:

- age: Ranges from 34-81 years.
- karno: Karnofsky score. Higher value corresponds to higher ability for a patient to care for themselves. Very low score refers to hospitalization.

We'll fit a Cox proportional hazards model with age and karno as predictors. (We'll see how to do this in R)

#### Veterans example

# Hypothesis test: proportional hazards assumption

|        | chisq | df | р       |
|--------|-------|----|---------|
| age    | 2.13  | 1  | 0.14439 |
| karno  | 13.07 | 1  | 0.00030 |
| GLOBAL | 17.60 | 2  | 0.00015 |

Kevin McGregor QMWS - Survival Analysis 16 / 28

#### Testing proportional hazards assumption





# Proportional hazards discussion

A few points about proportional hazards models:

- We don't specify the baseline hazard. If we want to estimate the survival function itself S(t), then we need to specify a particular model for the baseline hazard  $\lambda_0(t)$ .
- We make the proportional hazards assumption. This is a fairly strong assumption.
- If we have a predictor that we don't think fulfills the proportional hazards assumption, we can do stratification.
- We can modify the model so that the predictor effects depend on time.
  - This is called an accelerated failure-time model. Not covered in this workshop.

Kevin McGregor QMWS - Survival Analysis 18 / 28

#### Stratification

In the Cox model, we have the **proportional hazards** assumption. What do we do if this assumption is not met for a particular predictor?

One way to deal with this is by **stratification**. This allows us to assume separate baseline hazards for different values of this predictor.

• We account for the effects of this predictor on the hazard, but there's no  $\beta$  parameter corresponding to that predictor.

**Note:** stratification can only be done for a **categorical** predictor variable.

#### Stratification

Suppose we have a predictor  $x_{ij}$ , where j denotes a categorical variable with J levels:

$$x_{ij} \in \{1, 2, \dots, J\}$$

This is called the **stratum** for individual *i*. The strata could represent different data centres, different hospitals, gender, etc.

We then assume that the following hazard for individual i who is in stratum j:

$$\lambda_{ij}(t) = \lambda_{0j}(t) \exp\{\beta_1 x_{i1} + \dots + \beta_p x_{ip}\}\$$

That is, we assume a distinct baseline hazard  $\lambda_{0j}(t)$  in each stratum j.

Kevin McGregor QMWS - Survival Analysis 20 / 28

#### Stratification: discussion

#### Advantage of stratification:

- Accounts for a variable that does not meet the proportional hazards assumption
- Relatively straightforward implementation.

#### Disadvantages of stratification:

- Can't estimate the effect of the stratified variable.
  - We only use stratification if we don't care about that effect.
- Over-stratification can lead to loss of efficiency of estimation for  $\beta$ .
- Cannot be used with a continuous predictor, unless it is first categorized.

Kevin McGregor QMWS - Survival Analysis 21 / 28

## Cox proportional hazards: likelihood

Reviewing notation in the Cox proportional hazards model:

We have *n* event times:

$$t_1, t_2, \ldots, t_n$$

Before, we assumed no ties. We can actually relax this assumption and assume that there are  $d_i$  events at each time  $t_i$ , for i = 1, ..., n.

Second, at each time point  $t_i$ , define the **risk set** to be the set of individuals in the study that have not yet had an event and have not yet been censored. Denote the risk set at time  $t_i$  by:

$$\mathcal{R}_i = \text{Risk set at time } t_i$$

#### Breslow estimator for cumulative hazard

In the basic Cox proportional hazards model, we can't estimate the survival curve, since we don't specify the baseline hazard  $\lambda_0(t)$ .

 To estimate survival, we first have to estimate the baseline hazard.

One possible estimator for baseline hazard:

$$d\widehat{\Lambda}_0(t_i) = rac{d_i}{\sum_{j \in \mathcal{R}_i} \exp\{\beta_1 x_{j1} + \dots + \beta_p x_{jp}\}}$$

This estimator is set to 0 between event times.

#### Breslow estimator for cumulative hazard

Estimator for cumulative baseline hazard:

$$\widehat{\Lambda}_0(t) = \sum_{i:t_i < t} \frac{d_i}{\sum_{j \in \mathcal{R}_i} \exp\{\beta_1 x_{j1} + \dots + \beta_p x_{jp}\}}$$

This is called the **Breslow estimator**.

We can then estimate the survival function from the model as:

$$\begin{split} \widehat{S}_{i}(t) &= \exp\left\{-\widehat{\Lambda}_{i}(t)\right\} \\ &= \exp\left\{-\widehat{\Lambda}_{0}(t) \exp\{\beta_{1}x_{j1} + \dots + \beta_{p}x_{jp}\}\right\} \end{split}$$

#### Breslow estimator for cumulative hazard

Breslow estimator: time to kidney infection



Kevin McGregor QMWS - Survival Analysis 25 / 28

## Log-log plots

A common way to check the proportional hazards assumption is using a **log-log** plot.

Consider two individuals with predictor profiles  $x_1$  and  $x_2$ . Their survival functions are  $S_1(t,x_1)$  and  $S_2(t,x_2)$ , respectively. Look at the following expressions:

$$-\log(-\log[S_1(t,x_1)])$$
 and  $-\log(-\log[S_2(t,x_2)])$ 

The **difference** between the transformed curves should not change with time. Thus, we look to see if the curves are **parallel**.

 To keep it simple, we usually just use Kaplan-Meier estimates of survival to create the log-log plot.

Kevin McGregor QMWS - Survival Analysis 26 / 28

# Log-log plot

Log-log plot: time to kidney infection. Two curves correspond to  $\mathsf{male}/\mathsf{female}.$ 



Kevin McGregor QMWS - Survival Analysis 27 / 28

#### Log-log plot

Log-log plot: time to kidney infection. Two curves correspond to age greater than or less than median age.



Kevin McGregor QMWS - Survival Analysis 28 / 28