DUSTING OF NI AND AUSTENITICS

David Young Lesson 3 Class 2

School of Materials Science & Engineering University of New South Wales Sydney, Australia

1

DUSTING REACTIONS

SOURCE OF CARBON

Supersaturated gas

$$CO + H_2 = H_2O + C(s)$$

$$2CO = CO_2 + C(s)$$

$$CH_4 = 2H_2 + C(s)$$

$$a_C > 1$$

5

CARBON DEPOSITION CATALYSED

- I. Gas + Fe, Ni \rightarrow Fe, Ni + \underline{C}
- II. Supersaturation relaxed by precipitation
 - (a) $\underline{C} + 3Fe \rightarrow Fe_3C(s)$
 - (b) $\underline{C} + Ni \rightarrow C(s) + Ni$

Metal Dusting of Nickel

 $CO + H_2 = H_2O + C$ $a_C > 1$ Reaction catalysed by Ni

Bright field

Dark field

Ni disintegrates into nanoparticles dispersed in coke

GAS-METAL INTERACTIONS: Austenite

Gas + γ -Ni = C(nanotubes) + Ni(particles)

Mitchell & Young, J.Mater.Sci.,29,4357(1994)

q

RATE CONTROL?

- Metal consumption
- Coke accumulation

RATE CONTROL?

- Metal consumption
- · Coke accumulation

NOTE: Concentration of Ni in coke approximately constant

11

- · C dissolves in Ni
- · Diffuses to favoured site
- Precipitates as graphite

Nanotube Growth Rate

$$\boldsymbol{J}_{C} = \frac{\boldsymbol{D}_{C}^{\gamma}(\boldsymbol{N}_{C}^{ss} - \boldsymbol{N}_{C}^{s})}{L}$$

PREDICTION: $v = 2 \text{ nm s}^{-1}$

CONCLUSION: Dissolved carbon dilates Ni
Dissolution precedes dusting

19

Effect of Alloying on Carbon Diffusion

$$J_{c} = \frac{D_{c}^{\gamma}(N_{c}^{ss} - N_{c}^{s})}{L} \longrightarrow J_{c} = \frac{D_{c}^{\gamma}}{\gamma L} (a_{c} - 1)$$

Assume constant
$$\gamma = \frac{1}{N_c^s}$$

$$J = const. D_C N_C^s$$

CONCLUSION: Austenite dusting controlled by C diffusion

21

Why Not Carbon Deposition on/at Surface

- Catalysis at surface produces <u>C</u>
- <u>C</u> diffuses to favourable site to nucleate C(gr)
- Nucleation process?

PHYSICAL SIGNIFICANCE OF CATALYTIC "ENSEMBLE"

GAS INTERACTIONS

 $CO + H_2 = C(ad) + H_2O$ $2CO = C (ad) + CO_2$ CANNOT INVOLVE 18 METAL ATOMS

29

PHYSICAL SIGNIFICANCE OF CATALYTIC "ENSEMBLE"

GAS INTERACTIONS $CO + H_2 = C(ad) + H_2O$ $2CO = C (ad) + CO_2$ CANNOT INVOLVE 18 METAL ATOMS

GRAPHITE NUCLEATION $xC(atom) = \frac{x}{6}C(gr)$

The epitaxial relationship: graphite (0002)/Ni (111)

Ni Dusting: Conclusions

- C diffusion in nanoparticles controls CNT growth
- · C diffusion into bulk Ni precedes dusting
- Changing D_CN_C changes rate
- Modifying nucleation sites changes rate
- Graphite grows along internal (111) Ni planes

