MATHEMATICAL PHYSICS 2 (LAB) ASSIGNMENT 5

NAME-ABDUL QADIR

ROLL NUMBER-245673982

COURSE- B.Sc. (H) PHYSICS

Question 1:

Given acceleration at equidistant time values, calculate position and velocity and plot them (Solve analytical and show final result). Use trapezoidal, Simpson's (1/3 & 3/8 rules) methods and compare the results.

PYTHON CODE -

```
import numpy as np import pandas as pd import matplotlib.pyplot as plt t = \text{np.array}([0,1,2,3,4,5,6,7,8,9,10]) a = \text{np.array}([5,15,20,25,30,35,40,45,55,60,70]) h = t[1] - t[0] \text{def trapezoidal}(y, h): \text{return } h * (y[0] + 2 * \text{sum}(y[1:-1]) + y[-1]) / 2 \text{def simpsons}_{1_3}(y, h): \text{if len}(y) \% 2 == 0: \text{return np.nan} \text{return } h / 3 * (y[0] + 4 * \text{sum}(y[1:-1:2]) + 2 * \text{sum}(y[2:-2:2]) + y[-1])
```

```
def simpsons 3 8(y, h):
  if (len(y) - 1) \% 3 != 0:
     return np.nan
  n = len(y) - 1
  return 3 * h / 8 * (y[0] + 3 * sum(y[i] for i in range(1, n) if i % <math>3 != 0) + 2 *
sum(y[i] \text{ for } i \text{ in } range(3, n, 3)) + y[-1])
def integrate method(a, h, method func):
  velocity = [0]
  for i in range(2, len(a) + 1):
     val = method func(a[:i], h)
     if np.isnan(val):
       velocity.append(velocity[-1])
     else:
       velocity.append(val)
  velocity = np.array(velocity)
  position = [0]
  for i in range(2, len(velocity) + 1):
     val = method func(velocity[:i], h)
     if np.isnan(val):
       position.append(position[-1])
     else:
       position.append(val)
  return velocity, np.array(position)
v trap, x trap = integrate method(a, h, trapezoidal)
v 13, x 13 = integrate method(a, h, simpsons 1 3)
v 38, x 38 = integrate method(a, h, simpsons 3 8)
df = pd.DataFrame({
  'Time (s)': t,
  'Acceleration': a,
  'Velocity (Trapezoid)': v trap,
  'Position (Trapezoid)': x trap,
  'Velocity (1/3)': v 13,
```

```
'Position (1/3)': x 13,
  'Velocity (3/8)': v_38,
  'Position (3/8)': x 38
})
methods = ['Trapezoid', '1/3', '3/8']
titles = ['Trapezoidal Rule', 'Simpson 1/3 Rule', 'Simpson 3/8 Rule']
fig, axs = plt.subplots(1, 3, figsize=(18, 5), sharex=True)
for i, method in enumerate(methods):
  axs[i].plot(t, a, label='Acceleration', color='blue', linestyle='--', marker='o')
  axs[i].plot(t, df[f'Velocity ({method})'], label='Velocity', color='orange', marker='s')
  axs[i].plot(t, df[f'Position ({method})'], label='Position', color='green', marker='^')
  axs[i].set title(titles[i])
  axs[i].set xlabel('Time (s)')
  axs[i].set ylabel('Magnitude')
  axs[i].legend()
  axs[i].grid(True)
plt.tight layout()
plt.show()
print(df.round(2))
```

OUTPUT -

Time (s)	Acceleration (m/s²)	Velocity (Trapezo	id) Position (Trape	zoid) \
0	0	5	0.0	0.00
1	1	15	10.0	5.00
2	2	20	27.5	23.75
3	3	25	50.0	62.50
4	4	30	77.5	126.25
5	5	35	110.0	220.00
6	6	40	147.5	348.75
7	7	45	190.0	517.50
8	8	55	240.0	732.50
9	9	60	297.5	1001.25
10	10	70	362.5	1331.25

	Velocity (1/3)	Position (1/3)	Velocity (3/8)	Position (3/8)
0	0.00	0.00	0.00	0.00
1	0.00	0.00	0.00	0.00
2	28.33	9.44	0.00	0.00
3	28.33	9.44	50.62	18.98
4	78.33	82.78	50.62	18.98
5	78.33	82.78	50.62	18.98
6	148.33	262.78	148.12	207.42
7	148.33	262.78	148.12	207.42
8	240.00	590.00	148.12	207.42
9	240.00	590.00	298.12	708.05
10	361.67	1110.56	298.12	708.05

Question 2:

Use integral definition of ln(x) to compute and plot ln(x) in a given range. Use trapezoidal, Simpson's (1/3 & 3/8 rules) methods and compare the results.

PYTHON CODE -

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
def f(t):
  return 1 / t
def trapezoidal(f, a, b, n):
  h = (b - a) / n
  result = f(a) + f(b)
  for i in range(1, n):
     result += 2 * f(a + i * h)
  return (h/2) * result
def simpson 1 3(f, a, b, n):
  if n % 2 != 0:
     n += 1
  h = (b - a) / n
  result = f(a) + f(b)
  for i in range(1, n):
     coeff = 4 if i % 2 != 0 else 2
     result += coeff * f(a + i * h)
  return (h/3) * result
def simpson 8(f, a, b, n):
  if n \% 3 != 0:
     n += 3 - (n \% 3)
  h = (b - a) / n
  result = f(a) + f(b)
  for i in range(1, n):
     coeff = 3 if i \% 3 != 0 else 2
```

```
result += coeff * f(a + i * h)
  return (3 * h / 8) * result
x vals = np.linspace(1.1, 5, 20)
ln trap = []
ln simp 1 3 = []
ln simp 3 8 = []
for x in x vals:
  In trap.append(trapezoidal(f, 1, x, 100))
  In simp 1 3.append(simpson1 3(f, 1, x, 100))
  In simp 3 8.append(simpson3 8(f, 1, x, 99))
\ln \arctan = np.\log(x \text{ vals})
data = \{ 'x' : x \ vals, 'Actual \ln(x)' : \ln actual, 'Trapezoidal' : \ln trap, \}
  "Simpson's 1/3": ln simp 1 3,"Simpson's 3/8": ln simp 3 8
df = pd.DataFrame(data)
print(df.head())
fig, axs = plt.subplots(2, 2, figsize=(12, 10))
axs[0, 0].plot(x vals, ln actual, 'k--', label='Actual ln(x)', linewidth=2)
axs[0, 0].plot(x vals, ln trap, 'bo-', label='Trapezoidal', markersize=4)
axs[0, 0].set title('Trapezoidal Rule')
axs[0, 0].legend()
axs[0, 0].grid(True)
axs[0, 1].plot(x vals, ln actual, 'k--', label='Actual ln(x)', linewidth=2)
axs[0, 1].plot(x vals, ln simp 1 3, 'gs--', label="Simpson's 1/3", markersize=4)
axs[0, 1].set_title("Simpson's 1/3 Rule")
axs[0, 1].legend()
axs[0, 1].grid(True)
```

```
axs[1, 0].plot(x vals, ln actual, 'k--', label='Actual ln(x)', linewidth=2)
axs[1, 0].plot(x_vals, ln_simp_3_8, 'r^-.', label="Simpson's 3/8", markersize=4)
axs[1, 0].set title("Simpson's 3/8 Rule")
axs[1, 0].legend()
axs[1, 0].grid(True)
axs[1, 1].plot(x vals, ln actual, 'k--', label='Actual ln(x)', linewidth=2)
axs[1, 1].plot(x vals, ln trap, 'bo-', label='Trapezoidal', markersize=4)
axs[1, 1].plot(x vals, ln simp 1 3, 'gs--', label="Simpson's 1/3", markersize=4)
axs[1, 1].plot(x vals, ln simp 3 8, 'r^-.', label="Simpson's 3/8", markersize=4)
axs[1, 1].set title('All Methods Comparison')
axs[1, 1].legend()
axs[1, 1].grid(True)
for ax in axs.flat:
  ax.set(xlabel='x', ylabel='ln(x)')
plt.tight layout()
plt.show()
```

OUTPUT -

	x	Actual ln(x)	Trapezoidal	Simpson's 1/3	Simpson's 3/8
0	1.100000	0.095310	0.095310	0.095310	0.095310
1	1.305263	0.266405	0.266405	0.266405	0.266405
2	1.510526	0.412458	0.412459	0.412458	0.412458
3	1.715789	0.539873	0.539876	0.539873	0.539873
4	1.921053	0.652873	0.652878	0.652873	0.652873

Question 3:

The work done by a constat temperature, pressure-volume thermodynamics process can be computed as

$$W = \int p \, dv$$

Where W is work, p is pressure and v is volume. Using a combination of the trapezoidal, Simpson's (1/3 & 3/8 rules) methods and compare the results.

Use the following data to compute the work done in kJ.

Pressure (kPa)	336	294.4	266.4	260.8	260.5	249.6	193.6	165.6
Volume (m ⁻³)	0.5	2	3	4	6	8	10	11

```
PYTHON CODE -
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
pressure = np.array([336, 294.4, 266.4, 260.8, 260.5, 249.6, 193.6, 165.6])
volume = np.array([0.5, 2, 3, 4, 6, 8, 10, 11])
def trapezoidal rule(x, y):
  integral = 0
  for i in range(len(x) - 1):
     integral += (x[i+1] - x[i]) * (y[i] + y[i+1]) / 2
  return integral
def simpsons1 3rule(x, y):
  if (len(x) - 1) \% 2 != 0:
     print("Simpson's 1/3 rule requires an even number of intervals. Using only valid
points.")
     x, y = x[:-1], y[:-1]
  n = len(x) - 1
  h = (x[-1] - x[0]) / n
  integral = y[0] + y[-1]
  for i in range(1, n, 2):
     integral += 4 * y[i]
  for i in range(2, n-1, 2):
     integral += 2 * y[i]
  return (h/3) * integral
def simpsons 3 8 rule(x, y):
  if (len(x) - 1) \% 3 != 0:
```

```
print("Simpson's 3/8 rule requires intervals in multiples of 3. Using only valid
points.")
     valid points = (len(x) - 1) - (len(x) - 1) \% 3
     x, y = x[:valid points + 1], y[:valid points + 1]
  n = len(x) - 1
  h = (x[-1] - x[0]) / n
  integral = y[0] + y[-1]
  for i in range(1, n):
     if i \% 3 == 0:
       integral += 2 * y[i]
     else:
       integral += 3 * y[i]
  return (3 * h / 8) * integral
work trap = trapezoidal rule(volume, pressure)
try:
  work simp 1 3 = simpsons1 3rule(volume, pressure)
except Exception as e:
  work simp 1 \ 3 = str(e)
try:
  work simp 3 8 = simpsons3 8rule(volume, pressure)
except Exception as e:
  work simp 3.8 = str(e)
results = pd.DataFrame({
  "Method": ["Trapezoidal", "Simpson's 1/3", "Simpson's 3/8"],
  "Work Done (kJ)": [work trap, work simp 1 3, work simp 3 8]
})
print(results)
```

```
plt.figure(figsize=(8, 6))
plt.plot(results["Method"], results["Work Done (kJ)"], marker='o', linestyle='-', color='purple')
plt.xlabel("Method")
plt.ylabel("Work Done (kJ)")
plt.title("Comparison of Numerical Integration Methods")
plt.grid(True)
plt.tight_layout()
plt.show()
```

OUTPUT -

```
Simpson's 1/3 rule requires an even number of intervals. Using only valid points.

Simpson's 3/8 rule requires intervals in multiples of 3. Using only valid points.

Method Work Done (kJ)

Trapezoidal 2671.000000

Simpson's 1/3 2534.705556

Simpson's 3/8 2531.690625
```

