210002 - Modelagem Dinâmica de Máquinas Elétricas - Trabalho 4

Prof. Marcelo A. Tomim Universidade Federal de Juiz de Fora 21/01/2022

Instruções

• Data de entrega: 30/01/2022

• Trabalho deve ser realizado individualmente.

• Resolução do trabalho deve ser submetido via *Google Classroom* até às 23h55 do dia da entrega.

• O documento a ser submetido consiste em uma apresentação que deverá ser defendida oralmente em data e horário posterior à data de entrega.

• O tempo estipulado para as apresentações será de 20 min.

• A data das apresentações será combinada posteriormente.

Modelagem Dinâmica de Máquinas Síncronas Seja o turbogerador de 835 MVA, 26 kV (linha), fator de potência nominal 0,85, 3600 rpm e parâmetros referidos ao estator dados abaixo, operando conectado a um barramento infinito com tensão nominal. Adicionalmente, a constante de inércia do conjunto turbina-gerador (*H*) corresponde a 5,6s.

$r_s=0,00243~\Omega$	$x_{ls} = 0.1538 \ \Omega$	$x_q = 1,457 \Omega$	$x_d = 1,457 \Omega$
$r_{kq1}'=0,\!00144\;\Omega$	$x'_{lkq1}=0,6578~\Omega$	$r_{kq2}'=0,\!00681~\Omega$	$x'_{lkq2} = 0.07602 \Omega$
$r'_{fd} = 0.00075 \ \Omega$	$x'_{lfd} = 0.1145 \ \Omega$	$r'_{kd} = 0.01080 \Omega$	$x'_{lkd} = 0.06577 \ \Omega$

(a) Desenvolva em Modelica o modelo matemático de uma máquina síncrona trifásica como apresentado nas aulas.

(b) Com o gerador conectado a um barramento infinito operando em vazio, com tensão nominal, analise o seu comportamento para o procedimento abaixo:

- Em t = 1s, tensão de campo ajustada em 80% do seu valor inicial;
- Em t = 6s, tensão de campo ajustada em 120% do seu valor inicial;

Como suporte para as análises, trace em uma única figura as variáveis: i_{as} , i'_{fd} , i'_{kd} , i'_{kq1} , i'_{kq2} . Em outra figura trace as seguintes variáveis: conjugado elétrico T_e , ângulo de carga δ , variação da velocidade do rotor $\Delta\omega_r$, potência ativa P_e e potência reativa Q_e .

- (c) Com o gerador operando em vazio, analise o comportamento do gerador frente a um degrau no conjugado mecânico da turbina de 50% do seu valor nominal no instante t=1s. Simule até t=10s. Trace em uma única figura as seguintes variáveis: i_{as} , T_e , ângulo de carga δ , a variação da velocidade do rotor $\Delta\omega_r$ e potência ativa P_e . Analise os transitórios observados. Qual seria a diferença se o degrau de conjugado mecânico fosse de 100% do valor nominal?
- (d) Com o gerador operando com 85% da sua potência nominal e fator de potência 0,92, simule um curto trifásico ocorrendo nos terminais do gerador no instante t=1s e com duração de 100ms. Após a eliminação do curto, reestabeleça a conexão com o barramento infinito de 26 kV (linha) e simule até o instante t=20s. Trace em uma única figura as seguintes variáveis: i_{as} , T_e , ângulo de carga δ e a variação da velocidade do rotor $\Delta \omega_r$. Analise os transitórios observados.
- (e) Como uma resistência de neutro poderia ser incluída na simulação anterior? Quais modificações deveriam ser introduzidas no modelo da máquina no referencial *qd*0?