Chapter 8 Analog-to-Digital Converter (ADC)

Why Analog-to-Digital Conversion?

- In the physical world, everything is analog (continuous).
- We need an analog-to-digital converter to translate analog signals to digital numbers so that the microcontroller can read and process them.

Example: 2-bit ADC

example 1

Vref + =
$$3V$$

Vref - $= 0V$

Analog

Voltage $3 - 3$

Output

 $2 - 2$
 $2 - 2$
 $3 - 1$
 $0 - 0$

example 2

Vref + $= 5V$

N = 2

Vref + $= 5V$

Analog

Voltage $5 - 3$

(v)

 $4 - 2$
 $3 - 1$
 $0 - 0$

xample 2

$$V \text{ ref} = 5V$$

 $V \text{ ref} = 2V$
Analog
 $V \text{ obtages} = 3$
 (V)

$$4 = 2$$

$$3 = 1$$

$$2 = 0$$

$$V_{R} = \left(\frac{3-0}{3}\right) R = R$$

$$V_{k} = 2 + \left(\frac{3-0}{3}\right) R$$

$$= 2 + R$$

n-resolution ADC

	Analog voltage (V)	Digital represen- tation
V_{REF}	0	0
V_{REF+}	V_{DD}	2 ⁿ -1
V _k i	$k\left(\frac{V_{DD}}{2^n-1}\right)$	k

Or in terms of V_{REF-}

& V_{REF+}:

$$V_k = V_{REF-} + k \left(\frac{V_{REF+} - V_{REF-}}{2^n - 1} \right)$$

Examples

e.g., $V_{REF} = 0$, $V_{REF} = 5V_{,} 10$ -bit resolution ADC. Suppose the ADC results are as follows. What are the corresponding voltages?

a.20

$$V_{20} = 20x5/(2^{10}-1) = 0.0977V$$

b.499

$$V_{499} = 499 \times 5/(2^{10} - 1) = 2.43 \text{V}$$

c.898

$$V_{898} = 898 \times 5/(2^{10} - 1) = 4.38 \text{V}$$

How can ADC be done?

Successive Approximation

Examples of Successive Approximation

- 2 bit representation → 4 Levels
- $V_{REF-} = V_0 \rightarrow 0 \text{ V}$ and $V_{REF+} = V_3 \rightarrow 3 \text{ V}$
- Example 1: Input Voltage 2.3V
 - 1st iteration: SAR = 10 \rightarrow 2.3 V > 2 V? Yes
 - 2nd iteration: SAR = 11 → 2.3 > 3 V? No → SAR[0] = 0 → Final SAR = 10
- Example 2: Input Voltage 1.7 V
 - 1st iteration: SAR = $10 \rightarrow 1.7 > 2 \text{ V? No} \rightarrow \text{SAR}[1] = 0 \text{ (i.e., SAR} = 00)$
 - 2nd iteration: SAR = 01 \rightarrow 1.7 > 1 V? Yes \rightarrow Final SAR = 01.

PIC18 ADC Module

- PIC18F4520 has 13 analog inputs channels. (Only one channel is used at any given time)
- Generates 10-bit binary results
- V_{REF-} & V_{REF+} are adjustable → Minimum resolution can be designed.
- Note: Minimum resolution

$$\frac{V_{REF+} - V_{REF-}}{2^n - 1}$$

Block Diagram of PIC18 ADC

SFR involving in ADC

- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)
- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)

- CHS3:CHS0: Analog Channel Select Bits
 - PIC18F4520 has only 1 Analog-to-Digital unit
 - Can only select 1 input from AN0:AN12 to be sampled and converted
- GO/DONE:
 - Setting this bit starts A/D conversion
 - Cleared when A/D conversion is done
- ADON:
 - Power up (1)/Shut off (0) the ADC module

			R/W (0)	Features					
ADCON1	-	-	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	Bit name
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	

Voltage Reference Configuration bits

VCFG1: V_{RFF} source

$$1 = V_{REF} (AN2)$$

$$0 = V_{SS}$$

VCFG0: V_{RFF+} source

$$1 = V_{RFF+} (AN3)$$

$$0 = V_{DD}$$

A/D Port Configuration bits

PCFG<3:0> – The input analog signal must be configured as an analog input.

ADCON1: A/D Port Configuration bits

PCFG3: PCFG0	AN12	AN11	AN10	AN9	AN8	AN7 ⁽²⁾	AN6 ⁽²⁾	AN5 ⁽²⁾	AN4	AN3	AN2	AN1	AN0
0000(1)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0001	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0010	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0011	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0100	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0101	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0110	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α
0111(1)	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α
1000	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α
1001	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α
1010	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α
1011	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α
1100	D	D	D	D	D	D	D	D	D	D	Α	Α	Α
1101	D	D	D	D	D	D	D	D	D	D	D	Α	Α
1110	D	D	D	D	D	D	D	D	D	D	D	D	Α
1111	D	D	D	D	D	D	D	D	D	D	D	D	D

A = Analog input

D = Digital I/O

ADCON1: A/D Port Configuration bits

Do the following two lines sound familiar?

movlw 0x0F movwf ADCON1

ADFM: A/D Result Format Select bit

A/D Conversion Time: T_{AD}

- T_{AD} = time required to complete 1-bit A/D conversion
- Time required for one full 10-bit A/D conversion is 11 to 12 T_{AD} <u>Successive</u> approximation
- From the PIC18F4520 specification, T_{AD} must be between 0.7 25 μs.
- T_{AD} can be specified from 2T_{osc} to 64T_{osc} by selecting the A/D Conversion Clock Select Bits (ADCS<0:2> in ADCON2).

How should T_{AD} be set?

• e.g., If a 4MHz clock is installed, $T_{osc} = 0.25\mu s$.

$$T_{AD} = kT_{osc} \ge 0.7\mu s$$

 $k \ge 0.7/0.25 = 2.8$

- The minimum T_{AD} that can be set is $4T_{osc}$.
- T_{AD} can be chosen from $4T_{osc}$ (1µs) to $64T_{osc}$ (16µs).

Sample-and-hold circuit

- The analog input voltage will charge up C_{HOLD} to a steady state before ADC begins.
- The time required to reach steady state depends on R_s, R_{IC,} R_{ss} and C_{HOLD.}

A/D Acquisition Time (ACQT)

- The minimum acquisition time (T_{ACQ}) for PIC18F4520 is 1.4µs.
- ADC module will insert an acquisition time between the GO/DONE bit is set and when the conversion starts.
- Suppose $T_{AD} = 1 \mu s$. $T_{ACQ} >= 2 T_{AD}$
- T_{ACQ} is set by setting ACQT<0:2> of ADCON2 (chosen as a multiple of T_{AD}).

A/D Conversion Process

- Set GO/DONE bit
- Wait T_{ACQ} to charge up C_{HOLD}
- 3. C_{HOLD} is disconnected and ADC begins
- 4. 11-12 T_{AD} is required for a 10-bit ADC
- 5. When finished:
 - ADRESH:ADRESL are loaded
 - GO/DONE bit is cleared
 - ADIF bit is set
 - C_{HOLD} is reconnected to the analog input

Example Use of the ADC

Main: movlw b'00001110'

movwf ADCON1

movlw b'00000001'

movwf ADCON0

movlw b'00010100'

movwf ADCON2

clrf TRISD

MainLoop: bsf ADCON0, GO

adc_wait: btfsc ADCON0, GO

bra adc_wait

movff ADRESH, PORTD

bra MainLoop

;Set RA0 Analog Port, others Digital I/O

;Select ADC Channel 0, Enable ADC

; ADFM Left justified, ACQT 4TAD,

FOSC/4

; set PORTD output

; start Conversion

; adc_wait; wait ADC to be done

;display Top 8 bit

Example

Assume $f_{OSC} = 4MHz$, write a few instructions to turn on and configure a PIC ADC with the following requirements:

- ADC converts the analog signal fed into Channel AN3.
- ADC result is left justified.
- Select V_{DD} and V_{SS} as reference voltages.
- T_{AD} must be at least 2.5 μs.
- T_{ACQ} must be at least 18 μs.

Example

$$T_{AD} = R_{Tosc} = R_{(0,25\mu o)} > 2.5\mu o$$

$$R > 10$$

$$Choose R = 16$$

$$T_{AD} = 4\mu o$$

TACQ =
$$kTAD = k(4\mu s) \ge 18\mu s$$

 $k \ge 4.5$
Choose $k = 6$
 $TAD = 24\mu s$

You should be able to ...

- Describe the roles of the following 5 registers: ADCON0, ADCON1, ADCON2, ADRESH and ADRESL in the A/D conversion. These registers specify the following options:
 - Which channel to convert?
 - Which channel should be set to accept analog input?
 - How to store the conversion result?
 - What is V_{ref+} and V_{ref-} ?
 - What is the conversion time (T_{AD}) ?
 - What is the acquisition time (T_{ACO}) ?

You should be able to ...

- Explain the process of sampling analog voltage before A/D conversion.
- Explain why an acquisition time is needed before A/D conversion.
- Describe the successive approximation algorithm.
- Describe the whole A/D conversion process.