# DATA SCIENCE COURSE

MACHINE LEARNING DAY 01



#### WHAT IS MACHINE LEARNING?





Experience

= Data





# **Splitting The Data**

# Model Evaluation and Validation

- How well is my model doing?
- is this model good or not?
- How do we improve it based on these metrics?











# WHICH MODEL IS BETTER?



# Evaluation Metrics



#### **Confusion Matrix**









SPAM

#### CONFUSION MATRIX



#### DIAGNOSIS

|         | Diagnosed<br>Sick      | Diagnosed<br>Healthy   |  |
|---------|------------------------|------------------------|--|
| Sick    | 1000<br>True Positives | 200<br>False Negatives |  |
| Healthy | 800<br>False Positives | 8000<br>True Negatives |  |

#### CONFUSION MATRIX



EMAIL

|          | Spam<br>Folder        | Inbox                  |
|----------|-----------------------|------------------------|
| Spam     | 100<br>True Positives | 170<br>False Negatives |
| Not Spam | 30<br>False Positives | 700<br>True Negatives  |

SPAM

1000 EMAILS

#### CONFUSION MATRIX



|          | Guessed<br>Positive         | Guessed<br>Negative        |  |
|----------|-----------------------------|----------------------------|--|
| Positive | 6<br>True Positives         | 1<br>False Negatives       |  |
| Negative | <b>2</b><br>False Positives | <b>5</b><br>True Negatives |  |





Out of all the patients, how many did we classify correctly?



Accuracy = 
$$\frac{100 + 700}{1,000} = 80\%$$

from sklearn.metrics import accuracy\_score
accuracy\_score (y\_true, y\_pred)



## When accuracy won't work

#### CREDIT CARD FRAUD



MODEL: ALL TRANSACTIONS ARE FRAUDULENT.

GREAT! NOW I'M CATCHING ALL OF THE FRAUDULENT TRANSACTIONS!

PROBLEM: I'M ACCIDENTALLY CATCHING ALL OF THE GOOD ONES!

Can you help me think of a model that has over 99 percent accuracy?

#### QUESTION 1 OF 2

**False Negative** 

• In the medical example, what is worse, a False Positive, or a False Negative?



#### QUESTION 2 OF 2

**False positive** 

In the spam detector example, what is worse, a False Positive, or a False Negative?





Medical Model

**FALSE POSITIVES OK** 

**FALSE NEGATIVES NOT OK** 

OK IF NOT ALL ARE SICK FIND ALL THE SICK PEOPLE



Spam Detector

**FALSE POSITIVES NOT OK** 

**FALSE NEGATIVES OK** 

DON'T NECESSARILY NEED TO FIND ALL THE SPAM

HIGH RECALL

**HIGH PRECISION** 

# PRECISION

#### **FOLDER**

|          | Sent to Spam Folder | Sent to Inbox |
|----------|---------------------|---------------|
| Spam     | 100                 | 170           |
| Not Spam | 30 🛇                | 700           |

#### OUT OF ALL THE E-MAILS SENT TO THE SPAM FOLDER, HOW MANY WERE ACTUALLY SPAM?

PRECISION = 
$$\frac{100}{100 + 30}$$
 = 76.9%

#### RECALL

#### **FOLDER**

|       |          | Sent to Spam Folder | Sent to Inbox |
|-------|----------|---------------------|---------------|
| EMAIL | Spam     | 100                 | 170           |
|       | Not Spam | 30 🛞                | 700           |

#### OUT OF ALL THE SPAM E-MAILS, HOW MANY WERE CORRECTLY SENT TO THE SPAM FOLDER?

Recall = 
$$\frac{100}{100 + 170}$$
 = 37%

#### PRECISION AND RECALL



ONE SCORE?

MEDICAL MODEL

PRECISION: 55.7%

RECALL: 83.3%

AVERAGE = 69.5%



SPAM DETECTOR

PRECISION: 76.9%

RECALL: 37%

AVERAGE = 56.95%



# F1 SCORE



Precision = 1 Precision = 0.2

Recall = 0 Recall = 0.8

Average = 0.5 Average = 0.5

Harmonic Mean = 0 Harmonic Mean = 0.32

Arithmetic Mean(Precision, Recall)

F1 score = Harmonic Mean(Precision, Recall)

#### CREDIT CARD FRAUD



MODEL: ALL TRANSACTIONS ARE GOOD.

PRECISION = 100%

F, SCORE = 0

RECALL = 0%



# F-BETA SCORE

- F0.5-Measure (beta=0.5): More weight on precision, less weight on recall
- F1-Measure (beta=1.0): Balance the weight on precision and recall.
- F2-Measure (beta=2.0): Less weight on precision, more weight on recall

$$beta = 1.0$$
Precision  $\leftarrow$  Recal beta = 0.5 F1 Score beta = 2



#### Boundaries in the F-beta score

Note that in the formula for  $F_{eta}$  score, if we set eta=0, we get

 $F_0 = (1 + 0^2) \cdot \frac{\text{Precision-Recall}}{0 \cdot \text{Precision+Recall}} = \frac{\text{Precision-Recall}}{\text{Recall}} = \text{Precision}$ . Therefore, the minimum value of  $\beta$  is zero, and at this value, we get the precision.

Now, notice that if N is really large, then

$$F_{\beta} = (1 + N^2) \cdot \frac{\text{Precision} \cdot \text{Recall}}{N^2 \cdot \text{Precision} + \text{Recall}} = \frac{\text{Precision} \cdot \text{Recall}}{\frac{N^2}{1 + N^2} \cdot \text{Precision} + \frac{1}{1 + N^2} \cdot \text{Recall}}.$$

As N goes to infinity, we can see that  $\frac{1}{1+N^2}$  goes to zero, and  $\frac{N^2}{1+N^2}$  goes to 1.

Therefore, if we take the limit, we have

$$\lim_{N\to\infty} F_N = \frac{\text{Precision-Recall}}{1 \cdot \text{Precision} + 0 \cdot \text{Recall}} = \text{Recall.}$$

Thus, to conclude, the boundaries of beta are between 0 and  $\infty$ .

- If  $\beta = 0$ , then we get **precision**.
- If  $\beta = \infty$ , then we get **recall**.
- For other values of  $\beta$ , if they are close to 0, we get something close to precision, if they are large numbers, then we get something close to recall, and if  $\beta=1$ , then we get the **harmonic mean** of precision and recall.



is a graph showing the performance of a classification model at all classification thresholds. This curve plots two parameters:

- True Positive Rate
- False Positive Rate



True Positive Rate (TPR) is a synonym for recall and is therefore defined as follows:

$$TPR = rac{TP}{TP + FN}$$

False Positive Rate (FPR) is defined as follows:

$$FPR = rac{FP}{FP + TN}$$













# Which one is better?



AUC ROC-curve  $\mathbf{A} = 0.75$ 

AUC ROC-curve  $\mathbf{B} = 0.78$ 





# WHAT IS LINEAR REGRESSION?

Housing price prediction.







# WHAT IS LINEAR REGRESSION?







# What is Gradient Descent?

It is an Optimization Algorithm to find the Minimum of a Function

Start with a random point on the function and move in the **negative direction** of the **gradient of the function** to reach the **local/global minima**.



Which of the three lines gives you a smaller Mean Absolute Error?



### SOLUTION:

They all give the same error

Which of the three lines gives you a smaller Mean Squared Error?



SOLUTION:

В

### SOLUTION:

В



## R2 SCORE

## BAD MODEL

The errors should be similar.

R2 score should be close to 0.

## GOOD MODEL

The mean squared error for the linear regression model should be a lot smaller than the mean squared error for the simple model.

R2 score should be close to 1.





$$y=(x+5)^{2}$$

### STEP 1

let's start from random point **X** = -3

then find the gradient of the function, dy/dx = 2x(X + 5)

### STEP 2

move in the direction of the **negative of the gradient**.

But: How much to move? learning\_rate = 0.01

#### STEP 3

Perform 2 iterations of gradient descent

### initialize parameters

$$X = -3$$
 learning\_rate = 0.01  $dy/dx = 2x(X + 5)$ 

### # Iteration 1

## Linear Regression Warnings!!

## Linear Regression Works Best When the Data is Linear

Linear regression produces a straight line model from the training data.

If the relationship in the training data is not really linear, you'll need to either make adjustments (transform your training data), add features, or use another kind of model.



## **Linear Regression is Sensitive to Outliers**

If your dataset has some outlying extreme values that don't fit a general pattern, they can have a surprisingly large effect.

adding a few points that are outliers and don't fit the pattern really changes the way the

model predicts.



## **Multiple Linear Regression**

$$y = m_1 x_1 + m_2 x_2 + b$$

To represent this graphically, we'll need a three-dimensional plot, with the linear regression model represented as a plane:



## **Polynomial Regression**





regression and classification



## Simple VS Complex Models





## WHAT IS SKLEARN?





## SKLEARN FEATURES

- Supervised Learning algorithms Linear Regression, (SVM), Decision Tree etc
- **Unsupervised Learning algorithms** from clustering, factor analysis, PCA to unsupervised neural networks
- Clustering This model is used for grouping unlabeled data.
- **Ensemble methods** As name suggest, it is used for combining the predictions of multiple supervised models.



# Let's Code!



# Quiz Time!





Thank Gow