Milestone 2:

For milestone 2, our team has focused on structure and design; i.e., defining the ways that the database will be built and maintained before the actual implementation. Most of this document ought to be readable for a non-technical person through the use of diagrams, figures, and common, generalized speech. By doing so, if we discover we can't explain our concepts to a non-technical person, it is obvious we have worked our way into a compromising circumstance that must be resolved before the implementation process.

ER Diagram:

This ER diagram is subject to change. We are considering possibly changing the "City" entity to "Region" in the event that we run into difficulties clearly defining in what city an earthquake

took place. We are also considering adding a few more attributes to the policy and maybe even making a seperate weak entity for the "Type" of policy.

Database Schema:

Foreign key from DAMAGE to EARTHQUAKE: Earthquake ID.

Constraints:

Earthquake

Name	Data Type	Constraint
<u>Id</u>	INT (primary key)	NOT NULL, Unique
Time	DATE	NOT NULL
Magnitude	INT	NOT NULL, 0-11
Hastsunami	BIT	NOT NULL
Year	DATE	NOT NULL
MONTH	DATE	NOT NULL
DAY	DATE	NOT NULL
Clusterid	INT (Foreign Key)	NOT NULLABLE
CityId	INT (Foreign key)	NOT NULLABLE

City

Name	Data Type	Constraint
CityId	INT (primary key)	NOT NULL, Unique
Long	INT	NOT NULL, 0-90
Name	VARCHAR(50)	NOT NULL
Lat	INT	NOT NULL, 0-180
Population	INT	NOT NULL, Unsigned

Policy: PolicyId

Name	Data Type	Constraint
<u>PolicyId</u>	INT (primary key)	NOT NULL, Unique
PolicyName	VARCHAR(50)	NOT NULL
Туре	INT (Foreign Key)	
CompanyName	VARCHAR(50)	NOT NULL
CityCovered	INT (Foreign Key)	NULLABLE

We will include a price, which is derived as needed from the amount of damages and earthquakes in a region.

Type:

Name	Data Type	Constraint
TypeId	INT	Unique, NOT NULL
Name	VARCHAR(50)	NOT NULL
Pricemodifier	DOUBLE	Unsigned

Damage:

Name	Data Type	Constraint
Costs	INT	Unsigned
Fatality	INT	Unsigned
Tsunami	BIT	
Injuries	INT	Unsigned
EarthquakeId	INT	Foreign Key

Cluster:

Name	Data Type	Constraint
Clusterid	INT	NOT NULL, Unique

Front End Design (Presentation Tier):

The earthquake page (figure 1) will show the results of a SQL query, whether that's through prebuilt queries accessed through the top panel or variable queries generated by user search.

Figure 1

The search form (figure 2) is able to filter earthquake results by magnitude, longitude, latitude, date range. There will also be options to only return earthquakes if they caused fatalities, if they caused a tsunami, or if they were a part of a larger cluster of earthquakes.

Figure 2

Relational Algebra Statements:

EARTHQUAKE

 $EARTHQDISPLAY \leftarrow EARTHQUAKE \bowtie_{(EARTHQUAKE.Cityid=CITY.Cityid)}$ CITY

 $\Pi_{(Date,Time,Name,Location,Population,Magnitude)}(EARTHQDISPLAY)$

TSUNAMI

 $TSUNAMIDISPLAY \leftarrow \sigma_{Hastsunami=True}(EARTHQUAKE)$

 $\Pi_{(Id,Date,Time,Magnitude)}(TSUNAMI)$

POLICY

 $RESULT1 \leftarrow CITY \bowtie_{(CITY.Cityid=POLICY.Cityid)} POLICY$

 $RESULT2 \leftarrow TYPE \bowtie_{(Typeid = Typeid)} (RESULT1)$

 $\Pi_{(Policyid, Policyname, Companyname, TYPE.name, CITY.name)}(RESULT2)$

CLUSTER

Ahmed Boukhousse; Zach Gharst; Anna Johnson; Matt Miller

MostFunGroup!

 $CLUSTERRESULT \leftarrow EARTHQUAKE \bowtie_{(EARTHQUAKE.Clusterid = CLUSTER.Clusterid)} \\ (CLUSTER)$

 $CLUSTERCOUNT \leftarrow_{Clusterid} F_{count(Earthquakeid)}(CLUSTERRESULT)$

 $CLUSTERDISPLAY \leftarrow CLUSTERRESULT \bowtie CLUSTERCOUNT$

 $\Pi_{(Clusterid,Count)}CLUSTERDISPLAY$

CITY

 $CITYDISPLAY \leftarrow \Pi_{(Cityid, Location, Name, Population)}(CITY)$

DAMAGE

 $DAMAGEDISPLAY \leftarrow EARTHQUAKE \bowtie_{(Earthquakeid=Id)} DAMAGE$

 $\Pi_{(Costs,Injuries,Fatality,Tsunami,Id,Date)}(DAMAGEDISPLAY)$