a ·)	Possible V Values	Dic Combinations	Probabilities of V
	a	(1,1)	Y36
	3	(0,1),(1,2)	9∕36
	4	(2,2), (3,1),(1,3)	³ /36
	5	(2,3),(4,1),(3,2),(1,4)	4/26
	6	(1,5),(0,4),(3,3),(5,1),(4,2)	5/36
	7	(1,6), (2,5), (3,4), (6,1), (5,2),(4,3)	ь/ ₃₆
	8	(2,6),(3,5),(4,4),(6,2),(5,3)	5/ 36
	9	(3,6),(4,5),(6,3),(5,4)	436
	10	(4,6),(5,5),(6,4)	3/36
	11	(5,6),(6,5)	3/36
	13	(6,6)	1/36

b.)
$$\bar{X} = \sum_{i=1}^{n} x_i \cdot P(i)$$

$$\bar{x} = 2 + 6 + 12 + 20 + 30 + 42 + 40 + 36 + 30 + 22 + 12 = 7$$

Single Dic:
$$\bar{x} = \frac{1+2+3+4+5+6}{6} = \frac{\partial I}{6} = \frac{7}{2}$$
: $\bar{x} = 3.5$

Yes this twice that of a single die.

$$C.) \ \mathcal{O} = \sqrt{(\bar{x^2}) - (\bar{x})^2}$$

$$\overline{X}^2 = \sum_{i=1}^{n} x_i^2 \cdot P(i)$$

$$x^2 = \frac{4 + 18 + 48 + 100 + 180 + 294 + 320 + 324 + 300 + 242 + 144}{36} = \frac{329}{6}$$

$$\sigma = \sqrt{329/6 - 49} = 2.42$$

Single Die:
$$\bar{x}^2 = \underbrace{1 + 4 + 9 + 16 + 35 + 36}_{h} = \underbrace{91}_{h}$$
 ; $\bar{x}^2 = \underbrace{91}_{h}$

$$\sigma = \sqrt{996 - 4994} = 1.71$$
 , No, the σ for 2 die is not twice as much

- a.) I guess that there will be 53 hoods
- b.) There were 51.5 occurrences of heads. The mean was also 61.5. This was slightly off mg guess
- C.) There were 685 Trials of this experiment. The most commonly occurring number of heads was 49.5. The average number of heads in this experiment was 50.0. This does not match my estimate any better.
- d.)
 i.) I predict 5100 heads
 - ii.) There were 5060.6 occurrences of heads.

This is more accurate regarding my prediction compared to 100 fups

- e.) There were 200 trials this time. The average number of heads returned over all trials was 5,012. This method deviated further from my prediction (I expected more deviation honestly). This however indicates a smaller range of possibilities than that of 100 flips.
- f.) This animation indicates there is a higher accuracy of statistical precision when more trials are performed.

a.) Prob(Stopping R) =
$$\frac{1}{2}$$
 $2^6 = 64$ Possibilities : R=9, L=P
Prob(Stopping L) = $\frac{1}{2}$

Posibilities	Fmal Pos.	Prob.	_
LLLLRR	- ي	P4 92	
LLLRRL	ڍ-	P4 92	
LLRRLL	- a	P4 92	
LRRLLL	-a	P4 92	
RRLLLL	- 2	P4 92	
LLLRLR	-2	P4 92	
LLRLLR	-9	P4 92	-0 15 occurences: $P^4 e^2 = (\frac{1}{2})^4 (\frac{1}{2})^2 = (\frac{1}{2})^6 = \frac{1}{2}$
LRLLLR	-2	P4 92	
RLLLLR	-2	P4 92	
LLRLRL	-2	P4 92	Prob (2 steps to left) = 15/64
LRLLRL	-2	P4 92	
RLLLRL	-2	P4 22	
LRLRLL	- 2	pu qz	
RLLRLL	-9	P4 92	
RLRLLL	- a	pu qz	

b.) Prob(stepping R) =
$$\frac{1}{3}$$
 : R=Q, L=P
Prob(stepping L) = $\frac{2}{3}$

Posibilities	Fmal Pos.	Prob.	
LLLLRR	- ي	P4 92	_
LLLRRL	-2	P4 92	
LLRRLL	- a	P4 92	
LRRLLL	-a	P4 92	
RRLLLL	- ၁	p4 q2	
LLLRLR	-a	P4 92	-0 B occurences: $P^4 e^2 = (\frac{2}{3})^4 (\frac{1}{3})^2 = \frac{16}{3}$
LLRLLR	-9	P4 92	729
LRLLLR	-2	P4 92	
RLLLLR	-2	P4 92	Prob (3 steps to left) = 80
LLRLRL	-ຊ	P4 22	243
LRLLRL	-2	P4 q2	
RLLLRL	-2	P4 22	
LRLRLL	- 2	pu qz	
RLLRLL	-9	P4 q2	
RLRLLL	- 2	P4 92	

a.)
$$(P+q)^N = \sum_{n=0}^N \binom{N}{n} P^n q^{N-n}$$

$$\sum_{n=0}^{\infty} \binom{n}{n} p^n q^{n-n} = (p+q)^n \rightarrow \sum_{n=0}^{\infty} \binom{n}{n} p^n q^{n-n} = (1)^n \rightarrow \sum_{n=0}^{\infty} \binom{n}{n} p^n q^{n-n} = 1$$

$$\sum_{n=0}^{\infty} \binom{n}{n} p^n \ell^{n-n} = \sum_{n=0}^{\infty} P(n) \qquad \therefore \qquad \sum_{n=0}^{\infty} P(n) = 1$$

b.)
$$\bar{n}^2 = N^2 p^2 + N pq$$
: $\bar{n} = P N$: $\bar{\sigma} = \sqrt{(\bar{n}^2) - (\bar{n})^2} = \sqrt{N^2 p^2 + N pq - N^2 p^2} = \sqrt{N pq}$

C.)
$$\frac{\sigma}{\tilde{n}} = \frac{\sqrt{NPQ}}{NP} = \frac{\sqrt{NP(1-P)}}{NP} = \sqrt{\frac{(1-P)}{NP}}$$

$$\frac{\sigma}{\bar{n}} = \sqrt{\frac{(1-P)}{NP}} , \vec{d}_{im} \quad \frac{\sigma}{\bar{n}} = 0$$

a.)
$$P(n) = \binom{N}{n} P^n q^{N-n} : \binom{N}{n} = \frac{N!}{n! (N-n)!}$$

$$P(0) = \begin{pmatrix} b \\ 0 \end{pmatrix} P^0 Q^{b \cdot 0} = \frac{b!}{0! (6 \cdot 0)!} \cdot \left(\frac{1}{a}\right)^b = \frac{b!}{b!} \left(\frac{1}{b4}\right) = \left(\frac{1}{b4}\right) \approx 0.016$$

$$P(1) = {\binom{6}{1}} {\binom{6}{1}} {\binom{6}{1}} = \frac{6!}{1!(6\cdot1)!} \cdot {(\frac{1}{2})}^1 \cdot {(\frac{1}{2})}^5 = \frac{6!}{6!} {(\frac{1}{2})}^6 = \frac{6 \cdot 5!}{6!} \cdot \frac{1}{64} = \frac{6 \cdot 1}{64} = \frac{3}{32} \approx 0.094$$

$$P(a) = {\binom{6}{a}}^{2}q^{6-a} = \frac{6!}{a!(6-a)!} \cdot {\left(\frac{1}{a}\right)}^{2} \cdot {\left(\frac{1}{a}\right)}^{4} = \frac{b!}{a!\cdot 4!} \left(\frac{1}{a}\right)^{6} = \frac{6 \cdot 8 \cdot 44!}{a!\cdot 4!} \cdot \frac{1}{64} = \frac{15 \cdot 1}{64} = \frac{15}{64} \approx 0.034$$

$$P(3) = {b \choose 3} e^{3q^{b\cdot 3}} = \frac{b!}{3! (b\cdot 3)!} \cdot {\left(\frac{1}{2}\right)^{3}} \cdot {\left(\frac{1}{2}\right)^{3}} = \frac{6!}{3! 3!} \left(\frac{1}{2}\right)^{b} = \underbrace{b \cdot s \cdot 4 \cdot 3!}_{3! 3!} \cdot \frac{1}{64} = \frac{5}{64} \approx 0.515$$

$$P(4) = {\binom{6}{4}} P^{4}q^{6-4} = \frac{6!}{4! (6-4)!} \cdot {\left(\frac{1}{a}\right)}^{4} \cdot {\left(\frac{1}{a}\right)}^{2} = \frac{6!}{4! \cdot 2!} {\left(\frac{1}{a}\right)}^{6} = \frac{6 \cdot 5 \cdot \cancel{\cancel{4}}!}{\cancel{\cancel{\cancel{4}}!} \cdot \cancel{\cancel{6}!}} \cdot \frac{1}{\cancel{\cancel{6}!}} = \frac{15 \cdot 1}{\cancel{\cancel{6}!}} = \frac{15}{\cancel{\cancel{6}!}} \approx 0.889$$

$$P(5) = {\binom{6}{5}} P^{5}q^{6-5} = \frac{6!}{5!(6-6)!} \cdot {\left(\frac{1}{a}\right)^{5} \cdot \left(\frac{1}{a}\right)^{1}} = \frac{6!}{5!1!} {\left(\frac{1}{a}\right)^{6}} = \frac{6 \cdot 5!}{5!1!} \cdot \frac{1}{64} = \frac{6 \cdot 1}{64} = \frac{3}{32} \approx 0.094$$

$$P(b) = \binom{b}{b} p^{b} q^{0} = \frac{b!}{b! (b \cdot b)!} \cdot \left(\frac{1}{2}\right)^{b} = \frac{b!}{k! o!} \cdot \frac{1}{64} = \frac{7}{64} \approx 0.016$$

n	Prob(n) 0.016 0.094 0.234 0.313 0.234 0.094 0.016	
0	0.016	N = \(\Gamma\) = 0 .0.016 +1.0.094 + &.0.234 + 3.0.613 + 4.0.284 +5.0.044 +6.0.016
t	0.094	
Q	0.234	ñ=3.003 : mean = 3.0
3	0.313	
Ч	0.234	n2 = 02.0.016 + 12.0.094 + 22.0.234 + 32.0.313 + 42.0.234 + 52.0.094 + 62.0.016
5	0.094	
6	0.016	$n^2 = 10.617$ $\sigma = \sqrt{(\bar{n^2}) \cdot (\bar{n})^2} = \sqrt{10.617 \cdot (3.003)^2} = 1.224$, $\bar{n} = 3.003$, $\sigma = 1.224$

FWHM = 4

C.)
$$N=50$$
: Max $P(N)=0.113$, $n_1=31$, $n_2=39$ FWHM=129-311=8
 $N=200$: Max $P(N)=0.066$, $n_1=92$, $n_2=108$ FWHM=100-921=16
 $N=1000$: Max $P(N)=0.03635$, $n_1=981$, $n_2=519$ FWHM=[519-481]=38

The FWHM increases with more N, but not linearly

d.) As w increases, n increases. As w increases, FWHM increases as well.

FWHM/n is decreasing