

Práctica 5: Complejidad espacial

Compilado: 18 de febrero de 2025

PSPACE

- 1. Probar que los siguientes lenguajes están en PSPACE.
 - a) CLIQUE.
 - b) FORMULA_MAS_CHICA = $\{\langle \phi, k \rangle : \phi \text{ es una fórmula booleana proposicional, y no existe una fórmula } \phi' \text{ tal que } \phi \equiv \phi' \text{ y } |\phi'| \leq k \}.$
 - c) TA-TE-TI¹ = $\{\langle T, k \rangle : T \text{ es una matriz de con entradas de valor } 0, 1 y 2 tal que el jugador 1 tiene una estrategia ganadora.}^2$
- 2. Probar que PSPACE está cerrado por complemento.
- 3. Probar que $NP \subseteq PSPACE$.
- 4. Considerar el siguiente juego: dado un grafo G, dos jugadores toman turnos para mover una piedra. Inicialmente la piedra está en un nodo v, y el jugador 1 debe elegir un nodo $w \in N(v)$ a donde mover la piedra. Luego, el jugador 2 hace lo mismo: elige un vecino $z \in N(w)$ y mueve la piedra hacia ahí. El juego termina cuando un jugador solo puede mover la piedra a nodos que ya fueron antes visitados. En ese caso, el jugador que está obligado a mover la piedra a una posición ya visitada pierde. A este juego lo llamamos Generalized Geography, o bien GG.
 - Probar que el lenguaje GEO = $\{\langle G, v \rangle : G \text{ es un grafo con un nodo } v, y \text{ el jugador 1 tiene una estrategia ganadora jugando GG sobre el grafo } G \text{ empezando el juego en } v \}$ es PSPACE-complete.
- 5. Probar un teorema de jerarquía espacial análogo al temporal. Más formalmente, probar que si f,g son funciones space-constructible que satisfacen f(n)=o(g(n)) entonces $\mathsf{SPACE}(f(n))\subsetneq \mathsf{SPACE}(g(n))$.
- 6. Probar que $P \neq \mathsf{SPACE}(n)$. AYUDA: observar que ambas clases tienen propiedades de clausura distintas.
- 7. **GG a fondo** Probar que la siguiente variante de GEO es PSPACE-completa.
 - GEO-EJES: como GEO, pero un jugador pierde cuando repite un eje (es decir, es válido moverse a un nodo ya visitado siempre y cuando para hacer esto no se use un eje ya visitado).

Probar que, en cambio, la siguientes variante está en P.

■ GEO-REPITE: GEO, pero se pueden repetir nodos sin problema. Es decir, un jugador pierde únicamente si se queda en un nodo sin ejes salientes.

 $^{^{1}}$ En este TATETI generalizado gana el jugador que logra ocupar k casilleros consecutivos (esto puede ser en horizontal, en vertical o en diagonal). Hay dos jugadores (1 y 2), y el tablero se representa con una matriz donde 0 indica un casillero libre, 1 un casillero ocupado por el jugador 1 y 2 un casillero ocupado por el jugador 2.

 $^{^{2}}$ Un jugador A tiene una estrategia ganadora en un juego determinístico contra otro jugador B si existe una jugado de A tal que sin importar qué juegue B el jugador A tiene otra jugado tal que sin importar qué juegue B ..., y asi hasta que A gana.

L y NL

- 8. Probar que la relación \leq_L es transitiva.
- 9. Sea \mathcal{L} el lenguaje de todas las expresiones con paréntesis bien formadas. Es decir, $(),(()),(()()) \in \mathcal{L}$, pero $((),)),()(\notin \mathcal{L}$. Probar que $\mathcal{L} \in \mathsf{L}$.
- 10. Probar que 2-COLOREO está en NL.
- 11. Probar que los sigientes problemas son NL-completos.
 - $SCC = \{\langle G \rangle : G \text{ es un grafo fuertemente conexo}\}$
 - NFA-NO-VACIO = $\{\langle A \rangle : A \text{ es un autómata no determinístico que reconoce un lenguaje no vacío.} \}$
- 12. Probar que 2-SAT \in NL.
- 13. Probar que $NL \subseteq P$.