Interpreting the neural network solution

18-03-2019

Experiments

100px * 200px videos

5 * 5 = 25 bits per frame

Encoding technique:

0 bit : (R,G,B) -----> (R-offset, G-offset, B-offset)

1 bit: (R,G,B) -----> (R+offset, G+offset, B+offset)

Videos tested on

1. "BW video"

$$(R,G,B) = (127,127,127)$$

Offset = 127

2. "Random video"

$$(R,G,B)=(U(50,200),U(50,200),U(50,200))$$

Offset = 20

3. "Multiple videos"

Offset = Chromocode paper

Neural Network

Pre processing:

convert videos to BW, normalize the distribution assuming uniform (NOT gaussian) distribution.

NN architecture

Input layer 200,0000 nodes

Output layer 25 nodes

Sigmoid activation

NN weights: BW video

NN weights: BW video

- 0.2

0.0

-0.2

NN weights: Random video

☆ ← → + Q = B

x=261.408 , y=74.8764 , z=-1.4

NN weights: Random video

▼ Figure 1 - + ×

NN weights : multiple videos

25 50

75 Screen width 125

NN weights: multiple videos

NN weights: multiple video

Accuracy (Without any hidden layers)

BW video 100%

Random video 95%

Multiple video 90%

Failed experiments

Actual experimental data with shallow neural network

Reason: A shallow NN is not enough to handle the experimental data

Multiple videos with a deep neural network

Reason: We don't have enough data to train a deep NN