Bayesian Classifier Linear Disciminant Analysis (LDA) Quadratic Discriminant Analysis (QDA)

Ref: Chapter 4, Introduction To Statistical Learning, Gareth James et al

	OUTLOOK	TEMPERATURE	HUMIDITY	WINDY	PLAY GOLF
0	Rainy	Hot	High	False	No
1	Rainy	Hot	High	True	No
2	Overcast	Hot	High	False	Yes
3	Sunny	Mild	High	False	Yes
4	Sunny	Cool	Normal	False	Yes
5	Sunny	Cool	Normal	True	No
6	Overcast	Cool	Normal	True	Yes
7	Rainy	Mild	High	False	No
8	Rainy	Cool	Normal	False	Yes
9	Sunny	Mild	Normal	False	Yes
10	Rainy	Mild	Normal	True	Yes
11	Overcast	Mild	High	True	Yes
12	Overcast	Hot	Normal	False	Yes
13	Sunny	Mild	High	True	No

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(y|X) = \frac{P(X|y)P(y)}{P(X)}$$

$$P(y|x_1,...,x_n) = \frac{P(x_1|y)P(x_2|y)...P(x_n|y)P(y)}{P(x_1)P(x_2)...P(x_n)}$$

$$P(y|x_1,...,x_n) \propto P(y) \prod_{i=1}^n P(x_i|y)$$

$$y = argmax_y P(y) \prod_{i=1}^n P(x_i|y)$$

	оитьоок	TEMPERATURE	HUMIDITY	WINDY	PLAY GOLF
0	Rainy	Hot	High	False	No
1	Rainy	Hot	High	True	No
2	Overcast	Hot	High	False	Yes
3	Sunny	Mild	High	False	Yes
4	Sunny	Cool	Normal	False	Yes
5	Sunny	Cool	Normal	True	No
6	today =	(Sunny,	Hot, Norm	al, False)	Yes
7	Rainy	Mild	High	False	No
8	Rainy	Cool	Normal	False	Yes
9	Sunny	Mild	Normal	False	Yes
10	Rainy	Mild	Normal	True	Yes
11	Overcast	Mild	High	True	Yes
12	Overcast	Hot	Normal	False	Yes
13	Sunny	Mild	High	True	No

$$P(Yes|today) = \frac{P(SunnyOutlook|Yes)P(HotTemperature|Yes)P(NormalHumidity|Yes)P(NoWind|Yes)P(Yes)}{P(today)}$$

$$P(No|today) = \frac{P(SunnyOutlook|No)P(HotTemperature|No)P(NormalHumidity|No)P(NoWind|No)P(No)P(NoWind|No)P(No)P(NoWind|No)P(No)P(NoWind|No)P(Nowind|No)P(Nowind|No)P(Nowind|No)P(Nowind|No)P(Nowind|No)P(Nowind|No$$

Outlook

	Yes	No	P(yes)	P(no)
Sunny	2	3	2/9	3/5
Overcast	4	0	4/9	0/5
Rainy	3	2	3/9	2/5
Total	9	5	100%	100%

Humidity

	Yes	No	P(yes)	P(no)
High	3	4	3/9	4/5
Normal	6	1	6/9	1/5
Total	9	5	100%	100%

Temperature

	Yes	No	P(yes)	P(no)
Hot	2	2	2/9	2/5
Mild	4	2	4/9	2/5
Cool	3	1	3/9	1/5
Total	9	5	100%	100%

Wind

	Yes	No	P(yes)	P(no)
False	6	2	6/9	2/5
True	3	3	3/9	3/5
Total	9	5	100%	100%

Play	P(Yes)/P(No)	
Yes	9	9/14
No	5	5/14
Total	14	100%

Outlook

	Yes	No	P(yes)	P(no)
Sunny	2	3	2/9	3/5
Overcast	4	0	4/9	0/5
Rainy	3	2	3/9	2/5
Total	9	5	100%	100%

Temperature

	Yes	No	P(yes)	P(no)	
Hot	2	2	2/9	2/5	
Mild	4	2	4/9	2/5	
Cool	3	1	3/9	1/5	
Total	9	5	100%	100%	

Play		P(Yes)/P(No)
Yes	9	9/14
No	5	5/14
Total	14	100%

Humidity

		_	7777	
	Yes	No	P(yes)	P(no)
High	3	4	3/9	4/5
Normal	6	1	6/9	1/5
Total	9	5	100%	100%

Wind

	Yes	No	P(yes)	P(no)
False	6	2	6/9	2/5
True	3	3	3/9	3/5
Total	9	5	100%	100%

$$P(Yes|today) \propto \frac{2}{9} \cdot \frac{2}{9} \cdot \frac{6}{9} \cdot \frac{6}{9} \cdot \frac{9}{14} \approx 0.0141$$

and

$$P(No|today) \propto \frac{3}{5} \cdot \frac{2}{5} \cdot \frac{1}{5} \cdot \frac{2}{5} \cdot \frac{5}{14} \approx 0.0068$$

$$P(Yes|today) = \frac{0.0141}{0.0141 + 0.0068} = 0.67$$

and

$$P(No|today) = \frac{0.0068}{0.0141 + 0.0068} = 0.33$$

Bayes Classifier

- Bayes Classifier
 - The ideal classifier
 - A Generative Classifier
 - Assumes that the probability distributions of oservations are known
 - And they satisfy certain assumptions

Bayes Classifier

- Bayes Classifier
 - The ideal classifier
 - A Generative Classifier
 - Assumes that the probability distributions of oservations are known
 - And they satisfy certain assumptions

$$p(y=k|x=x_0)$$

 $9na+mo$ class classifier
 $p(y=1|x=x_0) > 0.5 \Rightarrow$
assigned classification = 1
else, 0

Bayes Classifier

Many classifiers are based on the principles of Bayes Classifier

They use Bayes Theorem

T[
$$k$$
 = overall prior probability that randomly chosen probability belongs to class K

ie: $P(Y=K)$
 $f_k(X) = P(X=x|Y=K)$...

Then,
$$P(Y=K|X=x) = \frac{P(X=x|Y=K) \cdot P(Y=K)}{P(X=x)}$$

Linear Discriminant Analysis

then,

$$P(Y=K|X=x) = \frac{P(X=x|Y=k) \cdot P(Y=k)}{P(X=x)}$$

$$\Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$$

Assumptions made...

$$f_k(x) = \frac{1}{\sqrt{2\pi}\sigma_k} \exp\left(-\frac{1}{2\sigma_k^2}(x-\mu_k)^2\right)$$

let us further assume that $\sigma_1^2 = \ldots = \sigma_K^2$

$$p_k(x) = \frac{\pi_k \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_k)^2\right)}{\sum_{l=1}^K \pi_l \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_l)^2\right)}$$

Linear Discriminant Analysis

$$p_k(x) = \frac{\pi_k \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_k)^2\right)}{\sum_{l=1}^K \pi_l \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_l)^2\right)}$$

Can be simplified to ...

$$\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

Linear Discriminant Analysis: Univariate

$$\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

LDA estimates the following:

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i:y_i = k} x_i$$

$$\hat{\sigma}^2 = \frac{1}{n - K} \sum_{k=1}^K \sum_{i:y_i = k} (x_i - \hat{\mu}_k)^2$$

$$\hat{\pi}_k = n_k/n$$

$$\hat{\delta}_k(x) = x \cdot \frac{\hat{\mu}_k}{\hat{\sigma}^2} - \frac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \log(\hat{\pi}_k)$$

How to use LDA?

$$\hat{\delta}_k(x) = x \cdot \frac{\hat{\mu}_k}{\hat{\sigma}^2} - \frac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \log(\hat{\pi}_k)$$

- Given a candidate observation 'x'
- Find out the value of the above expression for every class 'k'
- Assign the observation 'x' to that class 'k' for which the above expression evaluates to the largest value

When is LDA used?

- Instead of Logistic Regression
 - When the output states / response classes are more than 2

- Number of observations are small and approximately normally distributed (each class)
 - Multivariate Gaussian Normal Distribution

- When the classes are well separated
 - Logistic Regression parameter estimates are unstable
 - LDA does not have this problem

LDA Assumptions

- Normally distributed X in every class
- Same variance across classes

LDA: Multivariate Case

- Univariate
 - Distribution of x \sim N(μ_x , σ_x)
- Multivariate
 - Distribution of $X \sim N(\mu, \Sigma)$

In the multivariate case:

$$f(x) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \mathbf{\Sigma}^{-1}(x-\mu)\right)$$

$$\delta_k(x) = x^T \mathbf{\Sigma}^{-1} \mu_k - \frac{1}{2} \mu_k^T \mathbf{\Sigma}^{-1} \mu_k + \log \pi_k$$

LDA: Multivariate Case

- Univariate
 - Distribution of x \sim N(μ_x , σ_x)
- Multivariate
 - Distribution of $X \sim N(\mu, \Sigma)$

• In the multivariate case:

$$f(x) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \mathbf{\Sigma}^{-1}(x-\mu)\right)$$

$$\delta_k(x) = x^T \mathbf{\Sigma}^{-1} \mu_k - \frac{1}{2} \mu_k^T \mathbf{\Sigma}^{-1} \mu_k + \log \pi_k$$

Assumptions

- Class specific μ
- Covariance matrix
 "Σ" common to all K classes

LDA Multivariate Case

Bayes Decision Boundary is defined by:

$$\delta_k(x) = \delta_\ell(x)$$

$$x^T \mathbf{\Sigma}^{-1} \mu_k - \frac{1}{2} \mu_k^T \mathbf{\Sigma}^{-1} \mu_k = x^T \mathbf{\Sigma}^{-1} \mu_l - \frac{1}{2} \mu_l^T \mathbf{\Sigma}^{-1} \mu_l$$

Even in this case the boundary is linear in X

Can we relax some of the assumptions?

QDA results from the covariance relaxation

Quadratic Discriminant Analysis

- Assumption that remains: Gaussian Distribution
- Relaxed
 - Each class can now have its own covariance matrix

In case of QDA

- Distribution of $\mathbf{X} \sim N(\boldsymbol{\mu}_{L}, \boldsymbol{\Sigma}_{L})$ $\delta_{k}(x) = -\frac{1}{2}(x - \mu_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1}(x - \mu_{k}) - \frac{1}{2}\log|\boldsymbol{\Sigma}_{k}| + \log \pi_{k}$

$$= -\frac{1}{2}x^{T} \mathbf{\Sigma}_{k}^{-1} x + x^{T} \mathbf{\Sigma}_{k}^{-1} \mu_{k} - \frac{1}{2} \mu_{k}^{T} \mathbf{\Sigma}_{k}^{-1} \mu_{k} - \frac{1}{2} \log |\mathbf{\Sigma}_{k}| + \log \pi_{k}$$

Quadratic Discriminant Analysis

- Assumption that remains: Gaussian Distribution
- Relaxed: Each class has its own covariance matrix

- In case of QDA
 - Distribution of $X \sim N(\mu_k, \Sigma_k)$

$$\begin{split} \delta_k(x) &= -\frac{1}{2}(x-\mu_k)^T \boldsymbol{\Sigma}_k^{-1}(x-\mu_k) - \frac{1}{2}\log|\boldsymbol{\Sigma}_k| + \log\pi_k \\ &= \left(-\frac{1}{2}x^T \boldsymbol{\Sigma}_k^{-1}x\right) + x^T \boldsymbol{\Sigma}_k^{-1}\mu_k - \frac{1}{2}\mu_k^T \boldsymbol{\Sigma}_k^{-1}\mu_k - \frac{1}{2}\log|\boldsymbol{\Sigma}_k| + \log\pi_k \\ &\Rightarrow \text{QUADLATIC TERM} \end{split}$$

LDA v/s QDA: Sample Data Set

LDA Boundaries

QDA Boundaries

