Linear Regression

Wei Li

Syracuse University

Spring 2024

OVERVIEW

Notations

Linear Regression Models

Linear regression with orthogonal design

Regression by Successive Orthogonalization

Some further remarks

Notations

Notations

A random variable or random vector:

- \triangleright Y: response variable
- \triangleright X: random variable or random vector
 - if a p-dim random vector, $X = (X_1, \ldots, X_p)^{\top}$.

Suppose that we have a random sample, that is say n copies of (Y, X)'s from certain population.

▶ Subscript *i* sometimes used to emphasizes for the *i*th observation, say the pair (Y_i, X_i) , where $X_i = (X_{i,1}, \dots, X_{i,p})^{\top}$.

Observed values:

- \triangleright y_i : the value of response variable for ith observation
- $\triangleright x_i$: the *i*th observed value of X
 - $ightharpoonup x_i$ could be a scalar of a vector. If a scalar, just x_i .

y: the n-dim response vector consisting of y_i .

$$\mathbf{y} = \left[\begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_n \end{array} \right]$$

- **X**: the $n \times p$ design matrix
 - ightharpoonup ith row is \boldsymbol{x}_i^{\top}
 - ightharpoonup jth column is \mathbf{x}_j

$$\mathbf{X} = \left[egin{array}{c} \mathbf{x}_1^{ op} \ \mathbf{x}_2^{ op} \ dots \ \mathbf{x}_n^{ op} \end{array}
ight] = \left[egin{array}{c} \mathbf{x}_1, \mathbf{x}_2 \cdots \mathbf{x}_p \end{array}
ight]$$

All vector are taken as column vectors by default. Generic capital letter or bold-face capital letter will often denote a matrix, e.g., A or \mathbf{A} .

Linear Regression Models

Linear Regression Models

Given a list of random variables $(Y, X) \in \mathbb{R} \times \mathbb{R}^p$. Here $X = (X_1, \dots, X_p)^p$ is the covariate vector.

The covariates may come from different sources

- quantitative inputs; dummy coding qualitative inputs.
- ightharpoonup transformed inputs: $\log(X_1), X_1^2, \sqrt{X_1}, \dots$
- basis expansion: X_1, X_1^2, X_1^3, \dots (polynomial representation)
- ightharpoonup interaction between variables: X_1X_2, \ldots

Suppose we have a random sample $\{(Y_i, X_i)\}_{i=1}^n$. A standard linear regression model assumes

$$Y_i = X_i^{\top} \boldsymbol{\beta} + \epsilon_i, \quad \epsilon_i \sim \text{ i.i.d }, \quad E(\epsilon_i) = 0, \text{Var}(\epsilon_i) = \sigma^2$$

▶ Y_i is the response for the ith observation, $X_i \in \mathbb{R}^p$ is the covariates

classical model assumptions for simplicity:

- ightharpoonup independence of errors ϵ_i
- constant error variance (homoscedasticity)
- ightharpoonup ϵ_i (conditional mean) independent of X_i

note:

- ightharpoonup normality of ϵ is not needed provided sample size is large.
- violation of homoscedasticity (heteroscedasticity) can be dealt with robust estimators
- \triangleright ϵ_i (mean) independent of X_i is the key for interpreting coefficients.

^{*}Assume no perfect linear relationship in X_i .

- ▶ The response vector $\mathbf{y} = (y_1, \dots, y_n)^{\top}$
 - ► The design matrix **X**.
 - ► Assume the first column of **X** is **1**
 - ▶ The dimension of **X** is $n \times (1+p)$.
 - ▶ The regression coefficients $\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}$.
 - ▶ The error vector $\boldsymbol{\epsilon} = (\epsilon_1, \dots, \epsilon_n)^{\mathsf{T}}$

The linear model is written as:

$$y = X\beta + \epsilon$$

- ightharpoonup the estimated coefficients $\hat{\beta}$
- ightharpoonup the predicted response $\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$.

$$\min_{\beta} RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^{\top} (\mathbf{y} - \mathbf{X}\beta)$$

- ▶ Normal equations: $\mathbf{X}^{\top}(\mathbf{y} \mathbf{X}\boldsymbol{\beta}) = 0$
- $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} \text{ and } \hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} = P_{\mathbf{X}}\mathbf{y}$
- ► Residual vector is $\mathbf{r} = \mathbf{y} \hat{\mathbf{y}} = (I P_{\mathbf{X}})\mathbf{y}$.
- ightharpoonup Residual sum squares $RSS = \mathbf{r}^{\top} \mathbf{r}$.
- ► The predicted response at a test point x_0 is $\hat{\mu}(x_0) := \hat{\boldsymbol{\beta}}^\top x_0$.
- $*\mathbf{X}^{\top}\mathbf{X}$ invertible if and only if \mathbf{X} full column rank.

Call the following square matrix the projection or hat matrix:

$$P_{\mathbf{X}} = \mathbf{X} \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{X}^{\top}$$

ESL: Fig 3.2

Properties:

- symmetric and non-negative definite
- idempotent: $P_{\mathbf{X}}^2 = P_{\mathbf{X}}$. The eigenvalues are 0 's and 1 's.
- $P_{\mathbf{X}}\mathbf{X} = \mathbf{X}, \quad (\widehat{I} P_{\mathbf{X}})\mathbf{X} = 0$

We have

$$\mathbf{r} = (I - P_{\mathbf{X}}) \mathbf{y}, \quad RSS = \mathbf{y}^{\top} (I - P_{\mathbf{X}}) \mathbf{y}$$

Note

$$\mathbf{X}^{\top}\mathbf{r} = \mathbf{X}^{\top} (I - P_{\mathbf{X}}) \mathbf{y} = 0$$

The residual vector is orthogonal to the column space spanned by \mathbf{X} , $\operatorname{col}(\mathbf{X})$.

R-squared

Source	SS	df	MS
Regression	$ESS = \sum (\hat{Y}_i - \bar{Y})^2$	p	ESS/p
Error	$SS = \sum (Y_i - \hat{Y}_i)^2$	n-p-1	RSS/(n-p-1)
Total	$TSS = \sum (Y_i - \bar{Y})^2$	n-1	

$$TSS = ESS + RSS$$

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$$

- $ightharpoonup 0 < R^2 < 1.$
- ▶ It is equal the square of the correlation between Y_i and \hat{Y}_i .
- $ightharpoonup R^2$ always increases as more X variables are added to the model.

adjusted R-squared

$$\bar{R}^2 = 1 - \frac{RSS/(n-p-1)}{TSS/(n-1)} = 1 - \frac{(n-p-1)^{-1} \sum_{i=1}^{n} r_i^2}{(n-1)^{-1} \sum_{i=1}^{n} \left(Y_i - \bar{Y}\right)^2}$$

- $ightharpoonup \bar{R}^2$ does not necessarily increase as p increases.
- $ightharpoonup \bar{R}^2$ increases only if the new term improves the model more than would be expected by chance.
- $ightharpoonup \bar{R}^2$ can be negative.

Sampling properties

Conditional on \mathbf{X} ,

- \triangleright E($\hat{\boldsymbol{\beta}}$) = $\boldsymbol{\beta}$ (unbiasedness)
- $\operatorname{Var}(\hat{\boldsymbol{\beta}}) = \sigma^2 \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1}$
- \triangleright The variance σ^2 can be estimated as

$$\hat{\sigma}^2 = RSS/(n-p-1)$$

This is an unbiased estimator, i.e., $E(\hat{\sigma}^2) = \sigma^2$

With large sample,

$$\widehat{\boldsymbol{\beta}} = \left(\frac{1}{n} \sum_{i=1}^{n} X_i X_i^{\top}\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} X_i Y_i\right) \stackrel{p}{\to} \boldsymbol{\beta}.$$

$$\sqrt{n}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{d}{\longrightarrow} N\left(0, n\sigma^2 \left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right).$$

Inferences under normal errors:

Under the normal assumption on the error ϵ , we have

- $\blacktriangleright \ \hat{\boldsymbol{\beta}} \sim N\left(\boldsymbol{\beta}, \sigma^2 \left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)$
- $(n-p-1)\hat{\sigma}^2 \sim \sigma^2 \chi^2_{n-p-1}$
- $\triangleright \hat{\beta}$ is independent of $\hat{\sigma}^2$

To test $H_0: \beta_i = 0$, we use

- ▶ if σ^2 is known, $z_j = \frac{\hat{\beta}_j}{\sigma \sqrt{v_j}}$ has a standard normal distribution under H_0
 - \triangleright v_j is the j th diagonal element of $(\mathbf{X}^{\top}\mathbf{X})^{-1}$ (0-indexing);
- ▶ if σ^2 is unknown, $t_j = \frac{\hat{\beta}_j}{\hat{\sigma}\sqrt{v_j}}$ has a t_{n-p-1} distribution under H_0 .

With large sample, even if the normal assumption does not hold, the distribution of $\hat{\beta}$ is approximately normal, hence the test statistics.

Confidence intervals for coefficients:

▶ Under Normal assumption, the $100(1-\alpha)\%$ C.I. of β_j is

$$\hat{\beta}_j \pm t_{n-p-1,\frac{\alpha}{2}} \hat{\sigma} \sqrt{v_j}$$

where $t_{k,\nu}$ is ν upper-percentile of t_k distribution.

▶ With large sample, the approximate $100(1 - \alpha)\%$ C.I. of β_j

$$\hat{\beta}_j \pm z_{\frac{\alpha}{2}} \hat{\sigma} \sqrt{v_j}$$

where $z_{\frac{\alpha}{2}}$ is $\frac{\alpha}{2}$ upper percentile of the standard Normal distribution.

With large sample, even if the normal assumption does not hold, this interval is approximately right, with the coverage probability $1 - \alpha$ as $n \to \infty$.

Confidence intervals and prediction intervals for means:

Let for some fixed values x_0 for x.

▶ The $100(1-\alpha)\%$ confidence interval for $E(Y|X=\mathbf{x}_0)$ is given by

$$\hat{y}_0 \pm z_{\alpha/2} \hat{\sigma} \sqrt{\boldsymbol{x}_0^{\top} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{x}_0}$$

where $\hat{y}_0 = \boldsymbol{x}_0^{\top} \hat{\boldsymbol{\beta}}$.

The $100(1-\alpha)\%$ prediction interval for the value of Y when $X = \boldsymbol{x}_0$ is given by

$$\hat{y}_0 \pm z_{\alpha/2} \hat{\sigma} \sqrt{1 + \boldsymbol{x}_0^{\top} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{x}_0}$$

Testing multiple parameters

Example: Assume $\mathbf{y} \sim N_n \left(\mathbf{X} \boldsymbol{\beta}, \sigma^2 I_n \right)$.

Assume $\mathbf{X} = [\mathbf{X}_0, \mathbf{X}_1]$, where \mathbf{X}_0 consists of the first k columns.

Correspondingly, $\boldsymbol{\beta} = \left[\boldsymbol{\beta}_0^\top, \boldsymbol{\beta}_1^\top\right]^\top$. To test $H_0: \boldsymbol{\beta}_0 = \mathbf{0}$, using

$$F = \frac{\left(RSS_1 - RSS\right)/k}{RSS/(n-p-1)}$$

- $ightharpoonup RSS_1 = \mathbf{y}^\top (I P_{\mathbf{X}_1}) \mathbf{y} \text{ (reduced model)}$
- $ightharpoonup RSS = \mathbf{y}^{\top} (I P_{\mathbf{X}}) \mathbf{y} \text{ (full model)}$
- $ightharpoonup RSS \sim \sigma^2 \chi^2_{n-p-1}$
- $RSS_1 RSS = \mathbf{y}^\top (P_{\mathbf{X}} P_{\mathbf{X}_1}) \mathbf{y}$

Applying Cochran's Theorem, under H_0 , $F \sim F_{k,n-p-1}$.

^{*}More generally, with large sample, one can use Wald test.

Confidence set

▶ The approximate confidence set of β is

$$C_{\pmb{\beta}} = \left\{ \pmb{\beta} \mid (\hat{\pmb{\beta}} - \pmb{\beta})^\top \left(\mathbf{X}^\top \mathbf{X} \right) (\hat{\pmb{\beta}} - \pmb{\beta}) \leq \hat{\sigma}^2 \chi_{p+1,\alpha}^2 \right\}$$

where $\chi_{k,\alpha}^2$ is α upper percentile of χ_k^2 distribution.

▶ The confidence interval for the true function $f(x) = x^{\top}\beta$ is

$$\left\{ oldsymbol{x}^{ op}oldsymbol{eta}\midoldsymbol{eta}\in C_{oldsymbol{eta}}
ight\}$$

Linear regression with orthogonal design

Linear regression with orthogonal design

ightharpoonup If X is univariate, the least square estimate is

$$\hat{\beta} = \frac{\sum_{i} x_{i} y_{i}}{\sum_{i} x_{i}^{2}} = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{x} \rangle}$$

ightharpoonup if $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_d]$ has orthogonal columns, i.e.,

$$\langle \mathbf{x}_j, \mathbf{x}_k \rangle = 0, \quad \forall j \neq k$$

or equivalently, $\mathbf{X}^{\top}\mathbf{X} = \operatorname{diag}\left(\left\|\mathbf{x}_{1}\right\|^{2}, \dots, \left\|\mathbf{x}_{d}\right\|^{2}\right)$. The OLS estimates are given as

$$\hat{\beta}_j = \frac{\langle \mathbf{x}_j, \mathbf{y} \rangle}{\langle \mathbf{x}_j, \mathbf{x}_j \rangle}$$
 for $j = 1, \dots, d$

- ▶ Each input has no effect on the estimation of other parameters.
- Multiple linear regression reduces to univariate regression.

Regression by Successive Orthogonalization

To orthogonalize ${\bf X}$

Consider $\mathbf{y} = \beta_0 \mathbf{x}_0 + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \epsilon$. $(\mathbf{x}_0 = \mathbf{1})$ Orthogonization process:

(1) We regress \mathbf{x}_1 onto \mathbf{x}_0 , compute the residual

$$\mathbf{z}_1 = \mathbf{x}_1 - \gamma_{01}\mathbf{x}_0$$
. (note $\mathbf{z}_1 \perp \mathbf{x}_0$)

(2) We regress \mathbf{x}_2 onto $(\mathbf{x}_0, \mathbf{z}_1)$, compute the residual

$$\mathbf{z}_2 = \mathbf{x}_2 - \gamma_{02}\mathbf{x}_0 - \gamma_{12}\mathbf{z}_1.$$
 (note $\mathbf{z}_2 \perp \{\mathbf{x}_0, \mathbf{z}_1\}$)

Note: span $\{\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2\} = \text{span} \{\mathbf{x}_0, \mathbf{z}_1, \mathbf{z}_2\}$.

We may use Gram-Schmidt procedure, to transform $\mathbf{X} = (\mathbf{x}_0, \dots, \mathbf{x}_p)$ to $\mathbf{Z} = (\mathbf{z}_0, \dots, \mathbf{z}_p)$ where \mathbf{z}_j is the residual of regress \mathbf{x}_j on $\mathbf{x}_0, \dots, \mathbf{x}_{j-1}$ Such a \mathbf{Z} has orthogonal columns. $\{\mathbf{z}_0, \mathbf{z}_1, \dots, \mathbf{z}_p\}$ forms orthogonal basis for $\mathrm{Col}(\mathbf{X})$.

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon.$$

- 1. Initialize $\mathbf{z}_0 = \mathbf{x}_0 = \mathbf{1}$
- 2. For j = 1, ..., p, successively perform the following: regress \mathbf{x}_j on $\mathbf{z}_0, \mathbf{z}_1, ..., \mathbf{z}_{j-1}$ to produce coefficients

$$\hat{\gamma}_{kj} = \frac{\langle \mathbf{z}_k, \mathbf{x}_j \rangle}{\langle \mathbf{z}_k, \mathbf{z}_k \rangle}$$

for k = 0, ..., j - 1, and residual vector $\mathbf{z}_j = \mathbf{x}_j - \sum_{k=0}^{j-1} \hat{\gamma}_{kj} \mathbf{z}_k$.

3. Regress \mathbf{y} on \mathbf{z}_n to get

$$\hat{\beta}_p = \hat{\eta}_p = \frac{\langle \mathbf{y}, \mathbf{z}_p \rangle}{\langle \mathbf{z}_p, \mathbf{z}_p \rangle}.$$

4. To compute $\hat{\beta}_j$, for $j = p - 1, \dots, j = 0$:

regress **y** on \mathbf{z}_j to get $\hat{\eta}_j$ for all $j = 0, \dots, p-1$,

$$\hat{\eta}_j = rac{\langle \mathbf{z}_j, \mathbf{y}
angle}{\langle \mathbf{z}_j, \mathbf{z}_j
angle}.$$

Let Γ be the $(p+1) \times (p+1)$ upper triangular matrix with all diagonal elements equal to 1 and $\Gamma_{ij} = \hat{\gamma}_{i-1,j-1}$ for $j > i \ge 1$.

Solve for $\hat{\beta}_i$, for $j = p - 1, \dots, j = 0$ recursively from $\Gamma \hat{\beta} = \hat{\eta}$.

*In general, for arbitrary index j, we can put the j-th regression in the last column, then do the orthogonalization process to obtain $\hat{\beta}_j$.

Multicollinearity

For the term j=p (the step 3 in above procedure), the p-th coefficient (the last coefficient)

$$\hat{\beta}_p = \frac{\langle \mathbf{z}_p, \mathbf{y} \rangle}{\langle \mathbf{z}_p, \mathbf{z}_p \rangle}$$

If \mathbf{x}_p is highly correlated with some of the other $\mathbf{x}_j's$, then

- ightharpoonup The residual vector \mathbf{z}_p is close to zero
- ▶ The coefficient $\hat{\beta}_p$ will be very unstable
- ▶ The variance estimate

$$\operatorname{Var}\left(\hat{\beta}_{p}\right) = \frac{\sigma^{2}}{\left\|\mathbf{z}_{p}\right\|^{2}}$$

The precision for estimating $\hat{\beta}_p$ depends on the length of \mathbf{z}_p , or, how much \mathbf{x}_p is unexplained by the other (or previous) \mathbf{x}_k 's

Computational algorithms

Consider the Normal Equation

$$\mathbf{X}^{\top}\mathbf{X}\boldsymbol{eta} = \mathbf{X}^{\top}\mathbf{y}$$

We like to avoid computing $(\mathbf{X}^{\top}\mathbf{X})^{-1}$ directly.

- (1) QR decomposition of X:
 - $ightharpoonup \mathbf{X} = QR$ where Q is orthonormal and R is upper triangular
- (2) Cholesky decomposition of $\mathbf{X}^{\top}\mathbf{X}$:
- ▶ $\mathbf{X}^{\top}\mathbf{X} = \tilde{R}\tilde{R}^{\top}$ where \tilde{R} is lower triangular

QR algorithm

We can represent step 2 of the above Algorithm in matrix form:

$$\mathbf{X} = \mathbf{Z}\Gamma$$

 $\mathbf{X} = [\mathbf{x}_0, \dots, \mathbf{x}_p] \text{ and } \mathbf{Z} = [\mathbf{z}_0, \dots, \mathbf{z}_p]$

Standardizing **Z** using $D = \operatorname{diag} \{ \|\mathbf{z}_0\|, \dots, \|\mathbf{z}_p\| \},$

$$\mathbf{X} = \mathbf{Z}\Gamma = \mathbf{Z}D^{-1}D\Gamma \equiv QR$$
, with $Q = ZD^{-1}$, $R = D\Gamma$

- ightharpoonup The columns of Q consists of an orthonormal basis for the column space of X.
- ▶ Q is orthonormal matrix of $n \times (p+1)$, satisfying $Q^{\top}Q = I$.
- ▶ R is upper triangular matrix of $(p+1) \times (p+1)$, full-rank.

We then can show

$$R\boldsymbol{\beta} = Q^{\top}\mathbf{y}$$

Based on this, we solve for $\hat{\beta}$ as follows:

- (1) Conduct QR decomposition of $\mathbf{X} = QR$. (Gram-Schmidt Orthogonalization)
- (2) Compute $Q^{\top}\mathbf{y}$
- (3) Solve the triangular system $R\beta = Q^{\top}\mathbf{y}$.

Cholesky Decomposition algorithm

For any positive definite square matrix A, we have

$$A = RR^{\top}$$

where R is a lower triangular matrix of full rank.

- (1) Compute $\mathbf{X}^{\top}\mathbf{X}$ and $\mathbf{X}^{\top}\mathbf{y}$
- (2) Factoring $\mathbf{X}^{\top}\mathbf{X} = RR^{\top}$, then $\hat{\boldsymbol{\beta}} = (R^{\top})^{-1}R^{-1}\mathbf{X}^{\top}\mathbf{y}$
- (3) Solve the triangular system $R\mathbf{w} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$ for \mathbf{w} .
- (4) Solve the triangular system $R^{\top} \boldsymbol{\beta} = \mathbf{w}$ for $\boldsymbol{\beta}$.

Some further remarks

The role of E(Y|X) in our interpretation

It is common to interpret the coefficient, say β_1 as the "effect" on the average value of Y from increasing X_1 by one unit while holding the other predictors or covariates unchanged.

This is due to the assumption that ϵ_i is independent of all X's, or more precisely,

$$E(\epsilon|X)=0,$$
 equivalently
$$E(Y|X_1,\dots,X_p)=\beta_0+\beta_1X_1+\dots+\beta_pX_p.$$

So

$$\beta_1 = \frac{\partial E(Y|X_1, \dots, X_p)}{\partial X_1}.$$

▶ linear regression models seldom satisfy this assumption in practice.

Note: For a linear regression coefficients to have meaningful interpretation, one essentially believe that E(Y|X) is equal to $X^{\top}\beta^*$ for some true β^* .

Even without assuming $E(Y|X) = X^{\top} \beta$ for some β , one can still go ahead to fit linear regression.

$$\min_{\boldsymbol{\beta}} \mathrm{MSE}\left(\boldsymbol{\beta}\right) = E\left[\left(\boldsymbol{Y} - \boldsymbol{\beta}^{\top} \boldsymbol{X}\right)^{2}\right]$$

$$\boldsymbol{\beta}_{ols} := \mathrm{E}(XX^{\top})^{-1} \, \mathrm{E}(XY)$$

The OLS estimators $\hat{\boldsymbol{\beta}}$ is consistent for $\boldsymbol{\beta}_{ols}$.

- ▶ If $E(Y|X) = X^{\top} \boldsymbol{\beta}^*$, we have $\boldsymbol{\beta}_{ols} = \boldsymbol{\beta}^*$, thus giving the usual interpretation for $\boldsymbol{\beta}_{ols}$ (as "structural" parameter $\boldsymbol{\beta}^*$).
- ▶ If $E(Y|X) \neq X^{\top}\beta$, the usual interpretation for β_{ols} does not hold.

The conditional expectation function $\mu(X)$

Given (Y, X), without specifying any further model here, it is still always possible to write

$$Y = \mu(X) + \epsilon$$

where $\mu(X) := E(Y|X)$ and ϵ satisfies $E(\epsilon|X) = 0$.

Here $\mu(X)$ is called the **conditional expectation function**.

The statistical meaning of $\mu(X)$

Consider the L_2 -risk or MSE for predicting Y:

$$\begin{aligned} \text{MSE}(f) &= E\left[(Y - f(X))^2 \right] \\ &= E\left[V[Y \mid X] + (E[Y - f(X) \mid X])^2 \right] \end{aligned}$$

The optimal function f^* is given by

$$f^*(x) = \mu(x) \equiv E[Y \mid X = x]$$

In other words, given X, the best predictor for Y is the conditional expectation $E[Y \mid X]$ (in mean-squared sense).

Why linear regression?

Suppose we want to construct a linear approximation to the CEF $\mu(X)$:

$$b = \arg\min E((\mu(X) - X^{\top}b)^2)$$

Let the solution be b^* . The so-called **best linear approximation** of $\mu(X)$ is $X^{\top}b^*$.

It turns out that

$$b^* = \beta_{ols} = E(XX^{\top})^{-1}E(XY).$$

If we are interested in CEF ultimately, by using OLS we are still able to glean useful information about the linear effects in CEF.

Causal relationship?

In most classical courses in regression, X is viewed as "independent variable", while Y viewed as "dependent" variable, which may seems to suggest some **causal relationship** between them. However this is not necessarily so.

The conditional expectation E(Y|X) or E(X|Y) may be defined regardless of the actual causal relationship between X and Y.

In the so-called structural equations framework, $\mu(X)$ may have structural meaning (often suggested by subject matter), which means X is viewed as a **direct cause** of Y. In that case, it might make sense to consider E(Y|X) as a causal model.

Without imposing further distributional/causal structure for (Y, X), regression model in itself should be viewed as a **prediction model** for Y using X.