Отчет по лабораторной работе №7

Модель распространения рекламы - вариант 4

Чан Куок Кхань НПИбд-02-19

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы 3.1 Теоретические сведения	6 6 8
4	Выводы	12
Сп	исок литературы	13

List of Figures

3.1	График решения уравнения модели Мальтуса	7
3.2	График логистической кривой	8
3.3	График для случая 1	ç
3.4	График для случая 2	(
3.5	График для случая 3	1

1 Цель работы

Изучить модель эффективности рекламы

2 Задание

- 1. Изучить модель эфеективности рекламы
- 2. Построить графики распространения рекламы в заданных случайх
- 3. Определить для случая 2 момент времени, в который скорость распространения рекламы будет максимальной

3 Выполнение лабораторной работы

3.1 Теоретические сведения

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, N - общее число потенциальных платежеспособных покупателей, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей,

еще не знающих о нем, это описывается следующим образом $\alpha_1(t)(N-n(t))$, где $\alpha_1>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$. эта величина увеличивается с увеличением потребителей узнавших о товаре.

Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t))$$

При $\alpha_1(t) >> \alpha_2(t)$ получается модель типа модели Мальтуса, решение которой имеет вид

Figure 3.1: График решения уравнения модели Мальтуса

В обратном случае $\alpha_1(t) << \alpha_2(t)$ получаем уравнение логистической кривой

Figure 3.2: График логистической кривой

3.2 Задача

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

```
 \begin{aligned} &1. \ \ \frac{dn}{dt} = (0.44 + 0.0021n(t))(N-n(t)) \\ &2. \ \ \frac{dn}{dt} = (0.00009 + 0.44n(t))(N-n(t)) \\ &3. \ \ \frac{dn}{dt} = (0.77t + 0.5\cos tn(t))(N-n(t)) \end{aligned}
```

При этом объем аудитории N=650, в начальный момент о товаре знает 7 человек.

Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

```
model Project
  parameter Real a=0.44;
  parameter Real b=0.0021;
  parameter Real N=650;

Real n(start=7);
  equation
   der(n) = (a+b*n) * (N-n);
```

```
annotation(experiment(StartTime=0, StopTime=5, Tplerance=1e-
06,Interval=0.05));
```

end Project;

Figure 3.3: График для случая 1

```
model Project
  parameter Real a=0.00009;
  parameter Real b=0.44;
  parameter Real N=650;

Real n(start=7);
  equation
    der(n) = (a+b*n) * (N-n);

annotation(experiment(StartTime=0, StopTime=0.1, Tplerance=1e-06,Interval=0.05));
end Project;
```


Figure 3.4: График для случая 2

максимальная скорость распространения достигается при t=0

```
model Project
  parameter Real a=0.65;
  parameter Real b=1;
  parameter Real N=741;

Real n(start=4);
  equation
    der(n) = (sin(7*time)*a+b*cos(3*time)*n ) * (N-n);

annotation(experiment(StartTime=0, StopTime=0.03, Tplerance=1e-06,Interval=0.0005));
end Project;
```


Figure 3.5: График для случая 3

4 Выводы

В ходе выполнения лабораторной работы была изучена модель эффективности рекламы и построены графики.

Список литературы

- 1. Модель Мальтуса
- 2. Логистическая модель роста