

Problem R10J (C_{24} H_{28} O_9). This problem requires you to analyze part of the 1H NMR spectrum of a tetrahydropyran, and determine the stereochemistry at three centers. A planar projection and conformational drawing is shown below.

(a) Determine the stereochemistry at C-6. Explain what signal(s) you used, give their shift and multiplicity (e.g. δ 0.00, tq, J =0, 0) and briefly describe how you made the stereochemical assignment using the data:

 $A = ____, B = ____(H \text{ or } CO_2Me).$

(b) Determine the stereochemistry at C-4. Explain what signal(s) you used, give their shift and multiplicity and briefly describe how you made the stereochemical assignment using the data:

 $C = \underline{\hspace{1cm}} , \;\; D = \underline{\hspace{1cm}} \; (\textbf{H or OBz}).$

(c) Determine the stereochemistry at C-3. Explain what signal(s) you used, give their shift and multiplicity and briefly describe how you made the stereochemical assignment using the data:

 $\mathsf{E} = \underline{\hspace{1cm}}$, $\mathsf{F} = \underline{\hspace{1cm}}$ (**H** or **OBz**).

7

Problem R10J (C_{24} H_{28} O_9). This problem requires you to analyze part of the 1H NMR spectrum of a tetrahydropyran, and determine the stereochemistry at three centers. A planar projection and conformational drawing is shown below.

OBz
$$\begin{array}{c} BzO \\ \hline \\ 8 \\ \hline \\ 7 \\ \hline \\ O \end{array}$$

$$\begin{array}{c} Bz = PhC(=O) \\ \hline \\ B \\ \hline \end{array}$$

$$\begin{array}{c} Bz = PhC(=O) \\ \hline \\ B \\ \hline \end{array}$$

$$\begin{array}{c} Bz = PhC(=O) \\ \hline \\ B \\ \hline \end{array}$$

$$\begin{array}{c} Bz = PhC(=O) \\ \hline \\ B \\ \hline \end{array}$$

3 or 4 for reasoning (a) Determine the stereochemistry at C-6. Explain what signal(s) you used, give their shift and multiplicity (e.g. δ

0.00, tq, J = 0, 0) and briefly describe how you made the stereochemical assignment using the data:

$$A = \frac{H}{}$$
, $B = \frac{CO_2Me}{}$ (H or CO_2Me). δ 4.31 (H⁶)

The quartet at δ 2.24 (q, J = 12 Hz) is the axial proton at C-5. The three large couplings must be a $J_{\rm gem}$ and two $J_{\rm ax-ax}$, thus protons on both sides are axial, and the substituents at C-6 and C-4 must both be equatorial.

The couplings of the equatorial proton H^{5e} (dddd J=12, 5, 2.5, 1 Hz) also help identify the H^4 (5.40, J=5 Hz) and H^6 (4.31, J=2.5 Hz) protons

(b) Determine the stereochemistry at C-4. Explain what signal(s) you used, give their shift and multiplicity and briefly describe how you made the stereochemical assignment using the data:

$$C = H$$
, $D = OBz$ (H or OBz). δ 5.40 (H⁴)

6 See part (a)

The signal at 5.4 shows J = 12, 5, 3, so one axial-axial coupling (to H⁵), and two ax-eq couplings to H³ and H⁵ (this also proves that H³ must be equatorial)

(c) Determine the stereochemistry at C-3. Explain what signal(s) you used, give their shift and multiplicity and briefly describe how you made the stereochemical assignment using the data:

$$E = H$$
, $F = OBz$ (H or OBz). δ 5.86 (H³)

The "d" at 5.86 has to be H^3 - it shows only one obvious small coupling. Since H^2 is axial, this means that H^3 must be equatorial, or else it would show a large J_{ax-ax}

Could also use the axial proton at H⁴ 5.40, ddd, J = 12, 5, 3 Hz. The 12 Hz coupling is the J_{ax-ax} to H⁵, the two smaller coulings have to be the J_{ax-eq} to H³ and H⁵, hence H³ has to be equatorial

The proton at H^2 (δ 3.67, dd, J = 8, 2 Hz) has to be axial, if it were equatorial the ring would flip. The 8 Hz coupling is to H^7 , the 2 Hz coupling must be to H^3 . Thus H_3 must be equatorial.

