- OCTOBER 1976-REVISED MARCH 1988
- Programmable Look-Ahead Up/Down **Binary Counters**
- **Fully Synchronous Operation for Counting** and Programming

These synchronous presettable counters feature an internal carry look-ahead for cascading in high speed counting applications. The 'LS169B and 'S169 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the countenable inputs and internal gating. This mode of operation helps eliminate the output counting spikes that are normally associated with asynchronous (ripple-clock) counters. A buffered clock input triggers

the four master-slave flip-flops on the rising (positive-

going) edge of the clock waveform.

- Internal Look-Ahead for Fast Counting
- · Carry Output for n-Bit Cascading
- Fully Independent Clock Circuit

description

SN54LS169B, SN54S169 . . . J OR W PACKAGE SN74LS169B, SN74S169 . . . D OR N PACKAGE

(TOP VIEW)

บ/ҏิ่∐า	U_{16}	□vcc
CLK 🛛 2	15	RCO
A 🔲 3	14] Q _A
в 🛛 4	13	DαB
c 🛛 ⁵	12	Dαc
D □ 6	11	<u></u>
ENP 7	10	ENT
	9	LOAD

SN54LS169B, SN54S169 . . . FK PACKAGE (TOP VIEW)

NC-No internal connection

¥10 0 000 0 0 2 0 00 0 1 20 19		
	18	пα
	17	QB
	16	NC
	15	
	14	ďΦ.
9 10 11 12 13	/	,
GND GND EN	i	
	9 10 11 12 13	3 2 1 20 19 18 17 16 15 14 9 10 11 12 13

TYPICAL MAXIMUM These counters are fully programmable: that is the outputs may each be preset to either level. The load input CLOCK FREQUENCY TYPE circuitry allows loading with the carry-enable output of COUNTING COUNTING cascaded counters. As loading is synchronous, setting HP DOWN up a low level at the load input disables the counter and 'LS169B 35MHz 35MHz causes the outputs to agree with the data inputs after 'S169 70MHz 55MHz the next clock pulse.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a carry output. Both count enable inputs (ENP. ENT) must be low to count. The direction of the count is determined by the level of the up/down input. When the input is high, the counter counts up; when low, it counts down. Input ENT is fed forward to enable the carry output. The carry output thus enabled will produce a low-level output pulse with a duration approximately equal to the high portion of the QA output when counting up and approximately equal to the low portion of the QA output when counting down. This low-level overflow carry pulse can be used to enable successive cascaded stages. Transitions at the ENP or ENT inputs are allowed regardless of the level of the clock input. All inputs are diode-clamped to minimize transmission-line effects, thereby simplifying system design.

These counters feature a fully independent clock circuit. Changes at control inputs (ENP, ENT, LOAD, U/D) that will modify the operating mode have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

PRODUCTION DATA documents centain information rnout from DATA accuments centain information current as of publication date. Products conform to specifications per the terms of Taxas instruments standard werrenty. Production processing does not necessarily include testing of all parameters.

2-543

TYPICAL

POWER

DISSIPATION

100mW

500mW

 † This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

2

TTL Devices

logic diagram (positive logic)

Pin numbers shown are for D, J, N, and W packages.

Pin numbers shown are for D, J, N, and W packages.

Texas VI Instruments

2-546

TTL Devices

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

typical load, count, and inhibit sequences

Illustrated below is the following sequence:

- 1. Load (preset) to binary thirteen
- 2. Count up to fourteen, fifteen (maximum), zero, one, and two
- 3. Inhibit
- 4. Count down to one, zero (minimum), fifteen, fourteen, and thirteen

TEXAS
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2-547

TTL Devices

Supply voltage, VCC (see Note 1)		
Operating free-air temperature range:	SN54LS169B	0°C to 70°C
Storage temperature range	314/4131095	– 65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

recommended operating conditions

	dea operating			SM	154LS10	59B	SN	174LS16	59B	UNIT
				MIN	NOM	MAX	MIN	NOM	MAX	0.4
	C			4.5	5	5.5	4.75	5	5.25	
v _{cc}	Supply voltage			2			2			
<u> ∨ıн</u>	High-level-input voltage					0.7			0.8	V
VIL	Low-level input voltage		RCO	+		- 0.4	—		- 0.4	mA
Юн	High-level output current					- 1.2			- 1.2	mA
			Any Q				 		8	mA
lot	Low-level output current		RCO			4	ļ.—.			
OL 2011 MAN 2017		Any Q			12	İ		24	mA	
fclock	Clock frequency			0		20	0		20	MHz
tw(clock)	Width of clock pulse (high or low	(see Figure 1)		25			25			ns
-WYCHOCK)		Data inputs	A, B, C, D	30			30			╛
		ENP or ENT		30			30			ns
t _{su}	Setup time, (see Figure 1)	Load		35			35			┧
		U/D		35			35			ļ
t _h	Hold time at any input with respe	ct to clock (see Fig	ure 1)	0			0			ns
<u>τη</u>	Operating free-air temperature		<u>-</u>	55		125	0		70	°c

SN54LS169B, SN74LS169B SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTERS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]			S	154LS16	9B	SN	1					
PANAMETEN		TEST CONDITIONS				TYP‡	MAX	MIN	TYP\$	MAX	UNI.		
VIK	V _{CC} = MIN,	I _I = 18 mA					1.5			- 1.5	V		
Voн	VCC = MIN,	V _{IH} = 2 V,	RCO	I _{OH} = - 0.4 mA	2.5	3.4		2.7	3.4		V		
*OH	VIL = MAX		Any Q	I _{OH} = - 1.2 mA	2.4	3.2		2.4	3.2		7 °		
	V_{OL} $V_{CC} = MIN, V_{IH} = 2 V,$ $V_{IL} = MAX$		RCO	IOH = 4 mA	1	0.25	0.4	1	0.25	0.4	T		
Va		V _{IH} = 2 V,	V _{IH} = 2 V,	nco	nco nco	IOL = 8 mA	1				0.35	0.5	1
VOL			Any Q	IOL = 12 mA		0.25	0.4		0.25	0.4	\ \		
			IOL ≈ 24 mA	1				0.35	0.5	1			
11	VCC = MAX,	V ₁ = 7 V					0.1			0.1	mA		
ЧН	V _{CC} = MAX,	V _I = 2.7 V					20			20	μΑ		
l	VCC = MAX,	V. = 0.4.V	U/D, LOAD, ENP, CLK				- 0.2	ĺ		- 0.2	1 .		
lIL	ACC - MIMY	V - 0.4 V	All othe	r inputs			- 0.4			- 0.4	mA		
loo	V	V- = 0.V	RCO		- 20		- 100	- 20		- 100			
¹oss	V _{CC} = MAX,	VO = 0 V	Any Q		- 30		- 130	- 30		- 130	mA		
lcc	V _{CC} = MAX,	See Note 2				28	45		28	45	mA		

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C (see note 3)

PARAMETER¶	FROM	то	TEST COM	IDITIONS		'LS169	В		
FANAMETER *	AMETER® (INPUT) (OUTPUT) TEST CONDITIONS			MIN	TYP	MAX	UNIT		
fmax					20	35		MHz	
tPLH .	CLK	RCO				26	40		
tPHL tPHL	CER	NCO	R_L = 2 k Ω , C_L = 15 pF			· · · · ·	17	25	ns
^t PLH	ENT	RCO		0 45 5		15	25		
tPHL.	2.141	nco		11 <u>L</u> -2 Nte, O <u>L</u> - 15 pr	C[= 15 pr		11	20	ns
^t PLH	U/D	RCO							23
^t PHL	0/0	0/6 ACC				15	25	ns	
^t PLH	CLK	Any Q	$R_L = 667 \Omega$, $C_L = 4$	0 45 5		16	25		
tPHL .	CLK	Ally U		C _L = 45 pF		17	25	กร	

Propagation delay time from up/down to ripple carry must be measured with the counter at either a minimum or a maximum count. As the logic level of the up/down input is changed, the ripple carry output will follow. If the count is minimum (0), the ripple carry output transistion will be in phase. If the count is maximum (15), the ripple carry output will be out of phase.

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

2-549

 $[\]ddagger$ All typical values are at V_{CC} = 5 V, T_A = 25°C. § Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 2: I_{CC} is measured after applying a momentary 4.5 V, then ground, to the clock input with all other inputs grounded and the outputs open.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

olute maximum tamigo con operati	7 V
Supply voltage, VCC (See Note 4)	5.5 V
Supply voltage, VCC (See Note 4)	5.5 V
Input voltage Interemitter voltage (see Note 5) Operating free-air temperature range: SN54S169 (see Note 6)	55°C to 125°C
SN/45109 Storage temperature range	65°C to 150°C
Storage temperature range	

recommended operating conditions

Commended operating		s	N54S1	69	S	N74S16	69	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
		4.5	5	5.5	4.75	5	5.25	V
Supply voltage, VCC				-1			- 1	mA
High-level output current, IOH				20			20	mA
Low-level output current, IOL				40	0		40	MH
Clock frequency, f _{clock}		10			10			ns
Width of clock pulse, tw(clock) (high o	r low) (see Figure 1)	4			4			
	Data inputs A, B, C, D	14			14			ns
ligh-level output current, IOH _ow-level output current, IOL	ENP or ENT	9			6] '''
	Load	20			20			<u> </u>
	U/Ď				1			ns
Hold time at any input with respect to	clock, t _W (see Figure 1)	- 55		125	1 0		70	°C
Operating free-air temperature, TA (se	e Note 6)	1-33						

NOTES: 4. Voltage values, except interemitter voltage, are with respect to network ground terminal.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

5. This is the voltage between two emitters of a multiple-emitter transistor. For these circuits, this rating applies between the

6. A SN54S169 in the W package operating at free-air temperatures above 91°C requires a heat sink that provides a thermal resistance from case to free-air, R_{9CA}, of not more than 26 °C/W.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			TEST CONDITIONS† SN54S169 SN74S169			SN54S169 SN74S16					UNIT
PARAMETER		IEST CO	MOITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNII	
VIH High-level input voltage				2			2			٧	
V _{IL} Low-level input voltage						0.8			0.8	v	
V _{IK} Input clamp voltage		V _{CC} = MIN,	It = -18 mA			-1.2			- 1.2	٧	
VOH High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = -1 mA	2.5	3.4		2.7	3.4		٧	
VOL Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = 20 mA			0.5			0.5	¥	
I Input current at maximum input v	oltage	VCC = MAX,	V _I = 5.5 V			1			1	mA	
	ENT					100			100		
I _{IH} High-level input current	Load	V _{CC} = MAX,	$V_1 = 2.7 V$	- 10		- 200	- 10		- 200	μΑ	
	Other inputs					50			50		
	ENT		V 05.V			- 4			- 4		
IIL Low-level input current	Other inputs	V _{CC} = MAX,	V ₁ = 0.5 V			- 2			- 2	mA	
IOS Short-circuit output current§		V _{CC} = MAX,		- 40		- 100	- 40		- 100	mΑ	
I _{CC} Supply current		V _{CC} = MAX,	See Note 2		100	160		100	160	mA	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, V_{CC} = 5 V, T_A = 25°C

	TER® FROM TO TEST CONDITIONS	U	/D - H	IGH	U/	D - L0	wo	UNIT								
PARAMETER¶	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	Civi						
f _{max}				40	70		40	55		MHz						
†PLH	CLK	RCO	1		14	21		14	21	ns						
tPHL	CLK	Any Q	RCO	0 45 5		20	28		20	28	113					
†PLH	0.14		A O	A === 0	A === 0	Δαν. Ο	A === 0	A === 0	C _L = 15 pF, R _I = 280 Ω,		8	15		8	15	ns
tPHL	CLK		See Figures 2 and 3		11	15		11	15	1113						
tPLH .	ENT		===	500	RCO	and Note 3		7.5	11		6	12				
tPHL	ENI	HCO			15	22		15	25	ns						
tPLH≎	=	RCO			9	15		8	15							
tPHL♡	U/D				10	15	1	16	22	ns						

[¶] t_{max} = maximum clock frequency

Propagation delay time from up/down to ripple carry must be measured with the counter at either a minimum or a maximum count. As the logic level of the up/down input is changed, the ripple carry output will follow. If the count is minimum (0), the ripple carry output transition will be in phase. If the count is maximum (15 for 'S169), the ripple carry output will be out of phase.

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25 °C.

[§] Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 2: ICC is measured after applying a momentary 4.5 V, then ground, to the clock input with all other inputs grounded and the outputs open.

tpLH = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

TL Devices

NOTES: A. The input pulses are supplied by a generator having the following characteristics: PRR ≤ 1 MHz, duty cycle ≤ 50%, Z_{OUt} ≈ 50 Ω; for 'LS169B, $t_{\rm f} \leq$ 15 ns; $t_{\rm f} \leq$ 6 ns, and for 'S169, $t_{\rm f} \leq$ 2.5 ns, $t_{\rm f} \leq$ 2.5 ns.

B. For 'LS169B, $V_{ref} = 1.3 \text{ V}$; for 'S168 and 'S169, $V_{ref} = 1.5 \text{ V}$.

FIGURE 1-PULSE WIDTHS, SETUP TIMES, HOLD TIMES

NOTES: A. The input pulses are supplied by a generator having the following characteristics: PRR \leq MHz, duty cycle \leq 50%, Z_{out} \approx 50 Ω ; for 'LS169B, $t_r \leq$ 15 ns, $t_f \leq$ 5 ns; and for 'S169, $t_r \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.

- B. tpLH and tpHL from enable T input to ripple carry output assume that the counter is at the maximum count, all Q outputs high.
- C. For 'LS169B, $V_{ref} = 1.3 \text{ V}$; for 'S169, $V_{ref} = 1.5 \text{ V}$.
- D. Propagation delay time from up/down to ripple carry must be measured with the counter at either a minimum or a maximum count. As the logic level of the up/down input is changed, the ripple carry output will follow. If the count is minimum (0) the ripple carry output transition will be in phase. If the count is maximum (15), the ripple carry output will be out of phase.

FIGURE 2-PROPAGATION DELAY TIMES TO CARRY OUTPUT

2-552

POST OFFICE BOX 655012 . DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

UP-COUNT VOLTAGE WAVEFORMS

NOTES: A. The input pulses are supplied by a generator having the following characteristics: PRR ≤ 1 MHz, duty cycle ≤50%, $Z_{out} \approx 50~\Omega$; for LS169B, $t_r \le 15$ ns; $t_f \le 6$ ns, and S169, $t_r \le 2.5$ ns, $t_f \le 2.5$ ns. Vary PRR to measure f_{max} .

- B. Outputs Q_D and carry are tested at t_{n+16} , where t_n is the bit-time when all outputs are low.
- C. For 'LS169B, $V_{ref} = 1.3 \text{ V}$; for 'S169, $V_{ref} = 1.5 \text{ V}$.

FIGURE 3-PROPAGATION DELAY TIMES FROM CLOCK

2-553

TTL Devices

POST OFFICE BOX 655012 . DALLAS, TEXAS 75265