

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta005

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică, Filiera\ Vocațională,\ profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică,\ Filiera\ Vocațională,\ profil\ Militar,\ Specializarea\ matematică-informatică,\ profil\ Militar,\ Specializarea\ matematică-informatică,\ profil\ Militar,\ Specializarea\ matematică-informatică,\ profil\ Militar,\ Specializarea\ profil\ Militar,\ Specializarea\ profil\ Militar,\ profil\ Militar,\ profil\ Militar,\ Specializarea\ profil\ Militar,\ profil\ Mi$

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p) a) Să se calculeze distanța dintre punctele A(1, 2, 3) și B(3, 2, 1).
- (4p) b) Să se determine centrul de greutate al unui triunghi cu vârfurile în punctele A(1,0), B(0,1), C(2,2).
- (4p) c) Să se calculeze aria cercului de ecuație $(x-2)^2 + (y-3)^2 = 10$.
- (4p) d) Să se determine modulul numărului complex $\left(\cos\frac{\pi}{5} + i \cdot \sin\frac{\pi}{5}\right)^{10}$.
- (2p) e) Să se determine numărul punctelor de intersecție dintre parabolele $y^2 = 4x$ și $x^2 = 4y$.
- (2p) f) Să se determine numărul soluțiilor din intevalul $[0, 2\pi]$ ale ecuației $\sin x = 1$.

SUBIECTUL II (30p)

1.

- (3p) a) Să se rezolve în R ecuația $\lg(x^2+1)=1$.
- (3p) b) Pentru funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 + 1$, să se calculeze suma f(1) + f(2) + ... + f(10).
- (3p) c) Să se determine probabilitatea ca alegând o funcție din mulțimea funcțiilor definite pe mulțimea {1, 2} cu valori în mulțimea {1, 2, 3}, aceasta să fie injectivă.
- (3p) d) Să se determine al zecelea termen al unei progresii geometice cu primul termen 1024 și cu rația $\frac{1}{2}$.
- (3p) e) Să se calculeze suma coeficienților dezvoltării $(2x+1)^4$.
 - 2. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = e^x x 1$.
- (3p) a) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (3p) b) Să se arate că funcția f este strict descrescătoare pe intervalul $(-\infty, 0)$.
- (3p) c) Să se arate că funcția f este convexă pe \mathbf{R} .
- (3p) d) Să se arate că $\forall x \in \mathbf{R}, f(x) \ge 0$.
- (3p) e) Să se calculeze $\lim_{x \to \infty} \frac{f(x)}{x^2}$.

SUBIECTUL III (20p)

Se consideră mulțimea $H = \{ f \in \mathbb{Q}[X] | f(\sqrt[3]{2}) = 0 \}$

- (4p) a) Să se arate că polinomul nul f = 0 este în H.
- (4p) **b**) Să se arate că polinomul $X^3 2$ este din H.
- (4p) c) Să se arate că dacă $f_1, f_2 \in H$, atunci $f_1 f_2 \in H$.
- (2p) d) Să se demonstreze că dacă $a, b, c \in \mathbb{Q}$ şi $a\sqrt[3]{4} + b\sqrt[3]{2} + c = 0$ atunci a = b = c = 0.
- (2p) e) Să se arate că dacă $g \in \mathbb{Q}[X]$ și grad(g) = 1 sau grad(g) = 2, atunci $g \notin H$.
- (2p) **f**) Să se arate că dacă grad(f) = 3 și $f \in H$, atunci există $a \in \mathbb{Q}^*$ astfel încât $f = a \cdot (X^3 2)$.
- (2p) $| \mathbf{g} | \mathbf{g} | \mathbf{g} | \mathbf{g} = \mathbf{q} =$

SUBIECTUL IV (20p)

Se consideră funcțiile $f:(0,\infty)\to \mathbf{R}$, $f(x)=\ln\frac{x}{x+1}$ și $g:(0,\infty)\to \mathbf{R}$, g(x)=f'(x).

- (4p) a) Să se arate că $g(x) = \frac{1}{x} \frac{1}{x+1}, x > 0.$
- (4p) b) Să se arate că funcția g este strict descrescătoare pe $(0, \infty)$.
- (4p) c) Să se arate că $g(x) \ge 0$, $\forall x > 0$.
- (2p) d) Utilizând eventual metoda inducției matematice, să se arate că $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}, \ \forall \ n \in \mathbb{N}^*.$
- (2p) e) Utilizând teorema lui *Lagrange*, să se arate că $\forall n \in \mathbb{N}^*$ există $c_n \in (n, n+1)$ astfel încât $g(c_n) = f(n+1) f(n)$.
- (2p) f) Să se arate că $g(n+1) < f(n+1) f(n) < g(n), \forall n \in \mathbb{N}^*$.
- (2p) g) Să se arate că $\frac{n}{2(n+2)} < \ln \frac{2n+2}{n+2} < \frac{n}{n+1}, \ \forall \ n \in \mathbb{N}^*.$

2