import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

iris = load_iris()
data = pd.DataFrame(iris.data, columns=iris.feature_names)
data

_		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
	0	5.1	3.5	1.4	0.2
	1	4.9	3.0	1.4	0.2
	2	4.7	3.2	1.3	0.2
	3	4.6	3.1	1.5	0.2
	4	5.0	3.6	1.4	0.2
	145	6.7	3.0	5.2	2.3
	146	6.3	2.5	5.0	1.9
	147	6.5	3.0	5.2	2.0
	148	6.2	3.4	5.4	2.3
	149	5.9	3.0	5.1	1.8
1	150 rc	ws × 4 columns			

Start coding or generate with AI.

data.info()

<< class 'pandas.core.frame.DataFrame'>
 RangeIndex: 150 entries, 0 to 149
 Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	sepal length (cm)	150 non-null	float64
1	sepal width (cm)	150 non-null	float64
2	petal length (cm)	150 non-null	float64
3	petal width (cm)	150 non-null	float64
d+vn	oc. float64(4)		

dtypes: float64(4)
memory usage: 4.8 KB

data.describe()

→		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
	count	150.000000	150.000000	150.000000	150.000000
	mean	5.843333	3.057333	3.758000	1.199333
	std	0.828066	0.435866	1.765298	0.762238
	min	4.300000	2.000000	1.000000	0.100000
	25%	5.100000	2.800000	1.600000	0.300000
	50%	5.800000	3.000000	4.350000	1.300000
	75%	6.400000	3.300000	5.100000	1.800000
	max	7.900000	4.400000	6.900000	2.500000
	7				

```
kmeans = KMeans(n_clusters=3, random_state=42)
kmeans.fit(data)
data['Cluster'] = kmeans.labels_
feature_1 = 'sepal_length (cm)'
feature_2 = 'sepal width (cm)'

plt.figure(figsize=(8, 6))
for cluster in range(3):  # Number of clusters
    plt.scatter(data[data['Cluster'] == cluster][feature_1],data[data['Cluster'] == cluster][feature_2],label=f'Cluster {cluster}'
plt.xlabel(feature_1)
plt.ylabel(feature_2)
plt.title('K-Means Clustering on Iris Dataset')
```

```
plt.legend()
plt.show()
```


import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

import seaborn as sns

 ${\tt from \ sklearn.manifold \ import \ TSNE}$

iris = load_iris()
data = pd.DataFrame(iris.data, columns=iris.feature_names)
data

_ →	sepa	l length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	
	0	5.1	3.5	1.4	0.2	ılı
	1	4.9	3.0	1.4	0.2	+/
	2	4.7	3.2	1.3	0.2	-
	3	4.6	3.1	1.5	0.2	
	4	5.0	3.6	1.4	0.2	
1	145	6.7	3.0	5.2	2.3	
1	146	6.3	2.5	5.0	1.9	
1	147	6.5	3.0	5.2	2.0	
1	148	6.2	3.4	5.4	2.3	
1	149	5.9	3.0	5.1	1.8	

Next steps: Generate code with data

View recommended plots
New interactive sheet

data.info()

150 rows × 4 columns

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 150 entries, 0 to 149
 Data columns (total 4 columns):

Data	columns (total 4 c		
#	Column	Non-Null Count	Dtype
0	sepal length (cm)	150 non-null	float64
1	sepal width (cm)	150 non-null	float64
2	petal length (cm)	150 non-null	float64

3 petal width (cm) 150 non-null float64

tsne = TSNE(n_components=3, random_state=42)

dtypes: float64(4)
memory usage: 4.8 KB

data.describe()

```
\overline{\mathbf{T}}
             sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
                                                                                                   \blacksquare
                      150.000000
                                          150.000000
                                                                150.000000
      count
                                                                                    150.000000
      mean
                        5.843333
                                            3.057333
                                                                  3.758000
                                                                                      1.199333
                        0.828066
                                            0.435866
                                                                  1.765298
                                                                                      0.762238
       std
      min
                        4.300000
                                            2.000000
                                                                  1.000000
                                                                                      0.100000
      25%
                        5.100000
                                            2.800000
                                                                  1.600000
                                                                                      0.300000
      50%
                        5.800000
                                             3.000000
                                                                  4.350000
                                                                                       1.300000
      75%
                        6.400000
                                             3.300000
                                                                  5.100000
                                                                                       1.800000
                        7.900000
                                             4.400000
                                                                  6.900000
                                                                                      2.500000
      max
```

```
iris_tsne = tsne.fit_transform(data)

tsne = TSNE(n_components=2, random_state=42)
iris_tsne = tsne.fit_transform(iris.data)
tsne_df = pd.DataFrame(data=iris_tsne, columns=['sepal length (cm)', 'sepal width (cm)'])
tsne_df['species'] = iris.target
plt.figure(figsize=(10, 6))
sns.scatterplot(x='sepal length (cm)', y='sepal width (cm)', hue='species', data=tsne_df, palette='viridis')
plt.title('t-SNE visualization of Iris dataset')
plt.xlabel('sepal length (cm)')
plt.ylabel('sepal width (cm)')
plt.legend(title='Species', loc='upper right', labels=iris.target_names)
plt.show()
```


Start coding or $\underline{\text{generate}}$ with AI.