Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Departement Informatik Wintersession 2019

Prof. Ueli Maurer

Exam Diskrete Mathematik

21. Januar 2019

Hinweise:

- 1.) Erlaubte Hilfsmittel: Selbstverfasste, handgeschriebene Notizen auf 6 A4-Seiten. Es ist erlaubt ein Wörterbuch zu benutzen. Es sind keine weiteren Hilfsmittel erlaubt (auch kein Taschenrechner).
- 2.) Die Prüfung besteht aus 5 Aufgaben mit total 90 Punkten. Die Aufgaben sind in drei Schwierigkeitsstufen von (\star) bis $(\star \star \star)$ eingeteilt.
- 3.) Die Aufgaben sind direkt auf dem Prüfungsblatt zu lösen. Bei Platzmangel befinden sich am Ende der Prüfung vier Zusatzblätter. Weitere Zusatzblätter können während der Prüfung bei uns bezogen werden. Nur von uns verteilte Zusatzblätter sind erlaubt.
- 4.) Bitte einen dokumentenechten Stift verwenden (also kein Bleistift) und nicht die Farben Rot oder Grün verwenden.
- 5.) Die Legi bitte für die Ausweiskontrolle auf den Tisch legen.
- 6.) Bis 10 Minuten vor Ende der Prüfung darf man vorzeitig abgeben und den Raum still verlassen.
- 7.) Mobiltelefone und Smartwatches müssen komplett ausgeschaltet sein (kein Stand-By).

Prüfungs-Nr.
StudNr.:
Name:
Unterschrift:

Korrektur:

	Punkte		Unters	schrift
Aufgabe	Max	Erreicht	Korr.	Ver.
1	23			
2	16			
3	23			
4	24			
5	4			
Total	90			

(' ')	hort questions. Each correct answer gives one point.			(3 Points)
1.)	What is the number of elements in the set $\{1,2\} \times \{1,(2,3)\}$	3)}?		
2.)	What is the number of elements in the set $\mathcal{P}(\varnothing) \setminus \varnothing$?			
3.)	List all elements in the set $\mathcal{P}(\{\{\varnothing\},\varnothing\})$.			
) (*) P	Prove that for any sets A, B, C , we have $(A \setminus B) \setminus C = A$	$\setminus (B \cup$	C).	(2 Points)
	rove or disprove: if ρ and σ are partial order relations on on A .	a set A	1, then $\rho \cup \sigma$	is a partial order (2 Points
101001				
) Let μ	ho be a relation on a set A (both A and $ ho$ are non-empt	y). Is	it possible tl	hat (justify you
) Let $ ho$ answe	ho be a relation on a set A (both A and $ ho$ are non-empt	- ,	it possible tl	,,
) Let $ ho$ answe	ρ be a relation on a set A (both A and ρ are non-empters):	- ,		,,
) Let $ ho$ answe	ρ be a relation on a set A (both A and ρ are non-empters):	- ,		,
) Let $ ho$ answe	ρ be a relation on a set A (both A and ρ are non-empters):	- ,		,
) Let $ ho$ answe	ρ be a relation on a set A (both A and ρ are non-empters):	- ,		,,
1.) (ρ be a relation on a set A (both A and ρ are non-empters):	Yes		hat (justify you (2 Points

*) reflexive:	(1 Poin
$\star \star$) symmetric:	(3 Poin
	`
* * *) transitive:	(4 Poin
·	

then $f(n) > f(n+1)$, between bigger and sn	and if $f(n-1) > f$	(n) then $f(n) < f$	f(n+1) (that is, the	function alternates

Task 2. Number The	eory		1	16 Points
a) (\star) Compute $ Z_{56}^* $.				(1 Point)
b) (*) Show that 10 di	vides $(43^{43} - 17^{17})$.			(2 Points)
) () (TI) DCA 11			. 1 7	(0 D : 1)
c) $(\star \star)$ The RSA publ	$\frac{\text{ic key of Alice is }(n,e)}{}$	0 = (77, 7). Compute I	ner secret key d.	(3 Points)
d) $(\star \star)$ Find all solution Justify why you listed		system of modular co		$\leq x < 180.$ (5 Points)
		$x \equiv_{15} 2$		
		$x \equiv_{12} 8$		

, = == : = ==== == == == == == == == == =	is a subgroup of $\langle \mathbb{Z}; + \rangle$, then $G = \{n \cdot a \mid n \in \mathbb{Z}\}$ for some $a \in \mathbb{Z}$. (5 Point

Tas	k 3.	Algebra		23 P	\mathbf{oints}
a) (. ,	ort questions. Each correct answer gives half a point.	**	`	Points)
	1.) 2.)	Does there exist a non-abelian group of order 47? Is $\langle \mathbb{Z}_{12}; + \rangle$ isomorphic to $\langle \mathbb{Z}_2; + \rangle \times \langle \mathbb{Z}_6; + \rangle$?	□ Yes □ Yes	□ No □ No	
	3.)	Is $\langle \mathbb{Z}_{12}; + \rangle$ isomorphic to $\langle \mathbb{Z}_3; + \rangle \times \langle \mathbb{Z}_4; + \rangle$?	□ Yes	□ No	
	4.)	Find a group isomorphic to \mathbb{Z}_{18} other than \mathbb{Z}_{18} .			
	5.)	List all subgroups of $\langle \mathbb{Z}_6; + \rangle$.			
	6.)	Find all units in the ring $\mathbb{Z}[x]$.			
	7.)	Find all zero divisors in the ring \mathbb{Z}_{12} .			
	8.)	Determine all roots of $2x^2 + 3x + 1 \in \mathbb{Z}_5[x]$.			
	9.)	Find $m(x) \in \mathbb{Z}_5[x]$ such that $\mathbb{Z}_5[x]_{m(x)}$ is a field.			
	10.)	List the elements of $\mathbb{Z}_2[x]_{x^2+x+1}$.			
	(* *) I of G.	Let $\langle G; * \rangle$ be a group and let $H := \{a \in G \mid \forall b \in G \ a * b = b * a \}$	}. Prove th		ogroup Points)
	(* *) Is □ Yes	s it possible that $F[x]$ is a field if F is a field with at least two \Box No	elements?		Points

d) $(\star \star)$ Consider the ring $R := \mathbb{Z}_7[x]_{x^2+x+1}$.	
1.) Find the multiplicative inverse of $2x + 1 \in \mathbb{R}^*$.	(3 Points)
2.) List the elements of $R \setminus R^*$. Justify your answer.	(3 Points)
e) $(\star \star)$ Let $\langle R; +, -, 0, \cdot, 1 \rangle$ be any ring such that $a^2 = a$ for all $a \in R$. Prove that $a + a \in R$.	-a = 0 for all (4 Points)

	$((A \lor B) \to (B \land C)) \lor ((A \lor B) \land (A \lor \neg C)) \lor (A \land B). $ Using the resolution
	e that G is valid. (5 $Points$)
 *	e syntax and semantics of propositional logic by the symbol \downarrow , denoting the not-or ion $(A \downarrow B)$ is true if and only if both A and B are false). (1 Point)
-	nula, there exists an equivalent formula that contains only the operation \downarrow . To prove formulas F and G , find formulas that contain only the operation \downarrow , and that are
	$\neg F$, to $F \lor G$ and to $F \land G$. (3 Points)
$\neg F \equiv$	
$F \vee G \equiv$	
$F \wedge G \equiv$	
	quence F_0, F_1, \ldots of formulas be defined as follows: $F_0 := A$ and $F_{i+1} := (F_i \to A)$ ermine the truth table of F_{2019} . (2 Points)

e)	(\star) Find a formula F in predicate logic with equality, such that:	
	1.) In every model for F , the universe has at least 2 elements.	(1 Point)
	2.) F contains a binary function symbol f and a constant function symbol e , and for e \mathcal{A} for F , it holds that $\langle U^{\mathcal{A}}; f^{\mathcal{A}}, e^{\mathcal{A}} \rangle$ is a monoid.	very model (2 Points)
f)	$(\star \star)$ Find a formula F in predicate logic without equality , such that in every model universe has at least 2 elements.	for F, the (1 Point)
g)	(*) For the formula $F := P(x,x) \land \exists x \ ((\forall x \ P(x,y)) \to Q(x))$, give an equivalent formprenex normal form.	nula in the (2 Points)
h)	$(\star \star)$ Let $F := \forall x \ \Big(P(x, f(x)) \ \lor \ \exists y \ \neg P(x, y) \Big)$. Is F a tautology? Prove your claim. \Box Tautology	(5 Points)

Task 5. Proof Patterns	4 Points
a) $(\star \star)$ Let a_1, \ldots, a_n be any integers. Prove that there exists a sequence $1 \leq i \leq j \leq n$, such that the sum $a_i + a_{i+1} + \cdots + a_j$ is divisible by n . Hint: Use the pigeonhole principle.	a_i, a_{i+1}, \dots, a_j for some (4 Points)