Zweiseitige *z*-Transformation

Definition

$$x(n) \stackrel{\mathcal{Z}}{\longrightarrow} X(z) = \sum_{n=-\infty}^{\infty} x(n) \ z^{-n}$$

$x(n) = \frac{1}{2\pi j} \oint_C X(z) \ z^{n-1} \ \mathrm{d}z$

Eigenschaften

Spiegelung

$$x(-n) \xrightarrow{\mathcal{Z}} X(z^{-1})$$

Wenn für X(z) gilt KB = $\{z \mid r < |z| < r_2\}$, dann ist nun KB = $\{z \mid \frac{1}{r_2} < |z| < \frac{1}{r_1}\}$.

Konjugiert komplex

$$x^*(n) \xrightarrow{\mathcal{Z}} X^*(z^*)$$

Keine Änderung des KB.

Linearität

$$\sum_{i} c_i \ x_i(n) \stackrel{\mathcal{Z}}{\longrightarrow} \sum_{i} c_i \ X_i(z)$$

Mindestens $KB = \bigcap_i KB_i$.

Verschiebung

$$x(n-k) \xrightarrow{\mathcal{Z}} z^{-k} X(z)$$

Bleibt gleich, bis auf: z=0 fällt weg für k>0 und $z=\infty$ fällt weg für k<0.

Dehnung in z-Ebene

$$a^n x(n) \xrightarrow{\mathcal{Z}} X\left(\frac{z}{a}\right) \quad \text{mit } a \neq 0$$

Wenn für X(z) gilt KB = $\{z \mid r < |z| < r_2\}$, dann ist nun KB = $\{z \mid |a| \ r_1 < |z| < |a| \ r_2\}$.

Differentiation in z-Ebene

$$n \ x(n) \stackrel{\mathcal{Z}}{\longrightarrow} -z \ \frac{\mathrm{d}}{\mathrm{d}z} \ X(z)$$

Keine Änderung des KB, sofern X(z) rational.

Faltung

$$(x_1 * x_2)(n) \xrightarrow{\mathcal{Z}} X_1(z) X_2(z)$$

Mindestens $KB = KB_1 \cap KB_2$.

Moment

$$\sum_{n=-\infty}^{\infty} n \ x(n) = -z \left. \frac{\mathrm{d}}{\mathrm{d}z} \ X(z) \right|_{z=1}$$

Anfangswert

$$x(0) = \begin{cases} X(\infty) & \text{wenn } x(n) \text{ rechtsseitig ist} \\ X(0) & \text{wenn } x(n) \text{ linksseitig ist} \end{cases}$$

Eindeutigkeit

$$x(n) \xleftarrow{\text{eindeutig}} X(z)$$

Fouriertransformation

$$X(e^{j\omega}) := \sum_{n=-\infty}^{\infty} x(n) e^{j\omega n} \stackrel{!}{=} X(z = e^{j\omega})$$

Wichtige zweiseitige z-Transformationen

x(n)	$\stackrel{\mathcal{Z}}{\longrightarrow}$	X(z)	Konvergenzbereich KB
$\delta(n)$	$\stackrel{\mathcal{Z}}{\longrightarrow}$	1	\mathbb{C}
$\delta(n-k)$	$\stackrel{\mathcal{Z}}{\longrightarrow}$	z^{-k}	$\mathbb{C} \setminus \{0\}$ wenn $k > 0$
			$\mathbb{C} \setminus \{\infty\}$ wenn $k < 0$
$a^n u(n)$	$\overset{\mathcal{Z}}{\longrightarrow}$	$\frac{1}{1 - az^{-1}}$	z > a
$-a^n u(-n-1)$	$\stackrel{\mathcal{Z}}{\longrightarrow}$	$\frac{1}{1 - az^{-1}}$	z < a
$n a^n u(n)$	$\stackrel{\mathcal{Z}}{\longrightarrow}$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-n a^n u(-n-1)$	$\stackrel{\mathcal{Z}}{\longrightarrow}$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$d_k(n) \ a^n \ u(n)$	$\stackrel{\mathcal{Z}}{\longrightarrow}$	$\frac{1}{(1-az^{-1})^k}$	z > a
$-d_k(n) a^n u(-n-k)$	_	$\frac{1}{(1-az^{-1})^k}$	z < a
$a^{ n }$	$\stackrel{\mathcal{Z}}{\longrightarrow}$	$\frac{1 - a^2}{(1 - az^{-1})(1 - az)}$	$ a < z < \frac{1}{ a }$
$a^n \cos(\omega_0 n) \ u(n)$	$\stackrel{\mathcal{Z}}{\longrightarrow}$	$\frac{1 - a^{2} \cos(\omega_{0}) z^{-1}}{1 - 2a^{2} \cos(\omega_{0}) z^{-1} + a^{2} z^{-2}}$	z > a

$$a^{n} \sin(\omega_{0}n) u(n) \xrightarrow{\mathcal{Z}} \frac{a \sin(\omega_{0}) z^{-1}}{1 - 2a \cos(\omega_{0}) z^{-1} + a^{2} z^{-2}} \quad |z| > |a|$$

$$\frac{1}{n!} u(n) \xrightarrow{\mathcal{Z}} e^{z^{-1}} \qquad \mathbb{C} \setminus \{0\}$$

Mit Abkürzung:
$$d_1(n) = 1$$
, $d_2(n) = n + 1$, $d_3(n) = \frac{(n+1)(n+2)}{2}$, $d_k(n) = \sum_{i=0}^n d_{k-1}(i)$

Rationale z-Transformierte

Definition

$$X(z) = \frac{B(z)}{A(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{a_0 + a_1 z^{-1} + \dots + a_N z^{-N}}$$

Polstellen p_i und Nullstellen n_i

$$X(z = p_i) = \infty \Leftrightarrow B(p_i) = \infty \text{ oder } A(p_i) = 0$$

 $X(z = n_i) = 0 \Leftrightarrow B(n_i) = 0 \text{ oder } A(n_i) = \infty$

Eigenschaften

- Keine Polstellen im KB von X(z)
- Ein Pol-Nullstellen-Diagramm legt X(z) bis auf eine Skalierung fest

Pol-Nullstellen-Zerlegung

$$X(z) = \frac{b_0}{a_0} z^{N-M} \frac{(z - n_1) \cdot \dots \cdot (z - n_M)}{(z - p_1) \cdot \dots \cdot (z - p_N)}$$

$$\begin{split} &\Rightarrow \begin{cases} \text{M nicht triviale Nullstellen } n_1,...,n_M \\ \text{N nicht triviale Polstellen } p_1,...,p_N \end{cases} \\ &+ \begin{cases} N > M \colon N - M \text{ triviale Nullstellen an } z = 0 \\ N < M \colon M - N \text{ triviale Polstellen an } z = 0 \end{cases} \end{split}$$

Pol-Nullstellen-Kürzung für $p_i = n_j$

- Reduzierte Systemordnung
- Mögliche Änderung von Stabilität und KB

Rücktransformation $X(z) \xrightarrow{\mathcal{Z}^{-1}} x(n)$

Möglichkeit 1: Ablesen mit Potenzreihenenwicklung

Bringe durch Ausmultiplizieren oder Potenzreihenenwicklung auf Form:

$$X(z) \stackrel{!}{=} \sum_{n} x(n) \ z^{-n} \ \Rightarrow \ \text{dann direktes Ablesen von } x(n)$$

Möglichkeit 2: Partialbruchzerlegung für rationale z-Transformierte

Sei
$$X(z) = \frac{\beta(z^{-1})}{\alpha(z^{-1})}$$
 rationale z-Transformierte

- 1. **Polynomdivision** falls Zählergrad ≥ Nennergrad ("negativste" Potenz zuerst)!
- 2. Partialbruchzerlegung und Bestimmung der Koeffizienten wie herkömmlich oder mit Regeln:

Koeffizient
$$c_i$$
 für **einfache Polstelle** p_i

$$\frac{\beta(z^{-1})}{\alpha(z^{-1})} = \frac{c_1}{1 - p_1 z^{-1}} + \dots + \frac{c_N}{1 - p_N z^{-1}}$$

$$c_i = \frac{\beta(z^{-1})}{\alpha(z^{-1})} (1 - p_i z^{-1}) \Big|_{z=p_i}$$
Koeffizienten c_1, \dots, c_m für **m-fache Polstellen** p_1, \dots, p_m

$$\frac{\beta(z^{-1})}{\alpha(z^{-1})} = \frac{c_1}{1 - p_1 z^{-1}} + \dots + \frac{c_m}{(1 - p_1 z^{-1})^m} + \dots$$

$$c_{m-i} = \frac{1}{i!} \frac{\mathrm{d}^i \gamma(w)}{\mathrm{d} w^i} \Big|_{w=p_1^{-1}} \text{mit } 0 \le i < m$$

Koeffizienten
$$c_1, \ldots, c_m$$
 für **m-fache Polstel-**
len p_1, \ldots, p_m

$$\frac{\beta(z^{-1})}{\alpha(z^{-1})} = \frac{c_1}{1 - p_1 z^{-1}} + \dots + \frac{c_m}{(1 - p_1 z^{-1})^m} + \dots$$

$$c_{m-i} = \frac{1}{i! (-p_1)^i} \frac{\mathrm{d}^i \gamma(w)}{\mathrm{d} w^i} \Big|_{w = p_1^{-1}} \text{mit } 0 \le i < m$$

$$\gamma(w) := \frac{\beta(z^{-1})}{\alpha(z^{-1})} (1 - p_1 z^{-1})^m \Big|_{z^{-1} = w}$$

3. Rücktransformation mittels Tabelle bekannter z-Transformationen

LTI-Systeme / Filter und z-Transformation

Übertragungsfunktion

$$y(n) = (h * x)(n) \xrightarrow{\mathcal{Z}} Y(z) = H(z) X(z)$$
$$H(z) = \frac{Y(z)}{X(z)} = \frac{\beta(z^{-1})}{\alpha(z^{-1})}$$

Differenzengleichung im Zeitbereich $\leftrightarrow H(z)$ rational mit Pol-und Nullstellen

BIBO-Stabilität

System ist BIBO-stabil

 $\Leftrightarrow \quad \sum_{n=-\infty}^{\infty} |h(n)| < \infty$

- $\Leftrightarrow h(n)$ ist kausal und $|p_i| < 1 \ \forall i$
- \Leftrightarrow KB von H(z) enthält den Einheitskreis |z|=1 \Leftrightarrow h(n) ist antikausal und $|p_i|>1$ $\forall i$

Filter

Bezeichnungen FIR und IIR

Bezeichnung	$\ddot{\textbf{U}}\textbf{bertragungs}\textbf{funktion}$	Eigenschaften
FIR(M)	$H(z) = \beta \left(z^{-1} \right)$	Nichtrekursive Differenzengleichung, endliche Impul-
IIR(N,0)	$H(z) = \frac{1}{\alpha(z^{-1})}$	santwort, $\beta\left(z^{-1}\right)$ vom Grad M Rein rekursive Differenzengleichung, nicht-endliche Impulsantwort, $\alpha\left(z^{-1}\right)$ vom Grad N
IIR(N, M)	$H(z) = \frac{\beta(z^{-1})}{\alpha(z^{-1})}$	Allgemein rekursive Differenzengleichung, nichtendliche Impulsantwort, $\beta\left(z^{-1}\right)$ vom Grad M , $\alpha\left(z^{-1}\right)$ vom Grad N

Stabilität und Kausalität im Pol-Nullstellen-Diagramm

Stabiles System - Einheitskreis im KB

Kausales System - KB ist Äußeres

Antikausales System - KB ist Inneres

Definitionen $H(e^{j\omega})$, $A(\omega)$, $\theta(\omega)$, $\tau_q(\omega)$

Frequenzgang

$$H\left(e^{j\omega}\right) = H\left(z = e^{j\omega}\right)$$

Phasengang

$$\theta(\omega) = \arg\left(H\left(e^{j\omega}\right)\right)$$

Amplitudengang

$$A(\omega) = \left| H\left(e^{j\omega}\right) \right|$$

Gruppenlaufzeit

$$\tau_g(\omega) = -\frac{\mathrm{d}\theta(\omega)}{\mathrm{d}\omega}$$

Kerbfilter

FIR-Kerbfilter hat nur Nullstelle:

$$H(z) = c (1 - 2\cos(\omega_0)z^{-1} + z^{-2})$$

IIR-Kerbfilter hat Polstelle mit $0 \ll r < 1$:

$$H(z) = c \frac{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}{1 - 2r\cos(\omega_0)z^{-1} + r^2 z^{-2}}$$

Filter

Kammfilter

Übertragungsfunktion des Kammfilters:

$$H(z) = c \; \frac{1 - z^{-N}}{1 - r \; z^{-N}}$$

Polstellen haben Betrag $|p_i| = \sqrt[N]{r}$

$$N = 5$$

Allpass

- Amplitudengang: $A(\omega) = \text{const. } \forall \omega$
- Pol- und Nullstellen symmetrisch zum Einheitskreis:

$$n_i = \frac{1}{p_i^*}$$

- Kausaler, stabiler Allpass: $\tau_g(\omega) \geq 0 \ \forall \omega$
- Polynome in Übertragungsfunktion $\beta(z^{-1})$, $\alpha(z^{-1})$ haben gleiche Ordnung:

$$H(z) = \frac{\beta(z^{-1})}{\alpha(z^{-1})}$$

Minimalphasig

Für kausales, stabiles, minimalphasiges Filter gilt:

$$|p_i| < 1$$
 $|n_i| < 1$

Filter hat kleinste Gruppenlaufzeit aller Filter mit gleichem Amplitudengang $(A(\omega) = A_{\min}(\omega))$ und größte partielle Energie:

$$\tau_q(\omega) \ge \tau_{q,\min}(\omega) \ \forall \omega$$

$$\sum_{n=0}^{L} |h(n)|^2 \le \sum_{n=0}^{L} |h_{\min}(n)|^2 \quad \forall L \ge 0$$

Sonst: Filter hat "gemischte Phase".

Maximalphasig

Für kausales, stabiles, maximalphasiges Filter gilt:

$$|p_i| < 1$$
 $|n_i| > 1$

Filter hat $gr\ddot{o}\beta te$ Gruppenlaufzeit aller Filter mit gleichem Amplitudengang $(A(\omega) = A_{\max}(\omega))$ und kleinste partielle Energie:

$$\tau_q(\omega) \le \tau_{q,\max}(\omega) \ \forall \omega$$

$$\sum_{n=0}^{L} |h(n)|^2 \ge \sum_{n=0}^{L} |h_{\max}(n)|^2 \quad \forall L \ge 0$$

$$H(e^{j\omega}) \stackrel{!}{=} H_0(\omega) \ e^{j(\theta_0 - \omega \alpha)}, \quad H_0(\omega) \in \mathbb{R} \iff \tau_g(\omega) = -\frac{\mathrm{d}\theta(\omega)}{\mathrm{d}\omega} = \alpha = \mathrm{const.}$$

 $\forall \omega$, wo $\theta(\omega)$ differenzierbar

Zerlegung: Allpass und minimalphasiges Filter

Jedes beliebige $kausale\ und\ stabile$ Filter kann ein ein minimalphasiges Filter und einen Allpass zerlegt werden.

Gesamtes Filter Im Re

Minimal phasiges Filter ist wie Gesamtfilter, aber mit Nullstellen $|n_i| > 1$ nach innen gespiegelt. Der Allpass kompensiert gespiegelte Nullstellen wieder.

Minimalphasiges Filter

Nullstellen mit $|n_i| > 1$ nach innen spiegeln:

$$n_{i,\min} = \frac{1}{n_i^*}$$

Allpass

Nullstellen des minimalphasigen Filters mit Polstellen kompensieren:

$$p_{i,\text{all}} = n_{i,\text{min}} = \frac{1}{n_i^*}$$

Einseitige *z*-Transformation

Definition

$$x(n) \xrightarrow{\mathcal{Z}^+} \sum_{n=0}^{\infty} x(n) z^{-n}$$

$$x(n) = \frac{1}{2\pi j} \oint_C X^+(z) \ z^{n-1} dz \text{ mit } n \ge 0$$

 \mathcal{Z}^+ -Trafo

Eigenschaften

Spiegelung

$$x(-n) \xrightarrow{\mathcal{Z}^+}$$
 nicht definiert

konjugiert komplex

$$x^*(n) \xrightarrow{\mathcal{Z}^+} X^{+*}(z^*)$$

Linearität

$$\sum_{i} c_i \ x_i(n) \xrightarrow{\mathcal{Z}^+} \sum_{i} c_i \ X_i^+(z)$$

Verschiebung mit k > 0

$$x(n-k) \xrightarrow{Z^+} z^{-k} \left[X^+(z) + \sum_{n=-k}^{-1} x(n) z^{-n} \right]$$

$$x(n+k) \xrightarrow{Z^+} z^k \left[X^+(z) - \sum_{n=0}^{k-1} x(n) z^{-n} \right]$$

Dehnung in z-Ebene

$$a^n \ x(n) \xrightarrow{\mathcal{Z}^+} X^+ \left(\frac{z}{a}\right) \ \text{mit} \ a \neq 0$$

Differentiation in z-Ebene

$$n \ x(n) \xrightarrow{\mathcal{Z}^+} -z \frac{\mathrm{d}}{\mathrm{d}z} X^+(z)$$

Faltung

$$(x_1 * x_2)(n) \xrightarrow{\mathcal{Z}^+} X_1^+(z) X_2^+(z) \text{ mit } x_i(n) \text{ rechtsseitig}$$

Moment

$$\sum_{n=0}^{\infty} n \ x(n) = -z \left. \frac{\mathrm{d}}{\mathrm{d}z} X^{+}(z) \right|_{z=1}$$

Anfangswert

$$x(0) = X(\infty)$$

Lösen von Differenzengleichungen

1. Differenzengleichung einseitig z-transformieren und Anfangsbedingungen einsetzen

$$y(n) \xrightarrow{\mathcal{Z}^+} Y^+(z), \quad y(n-1) \xrightarrow{\mathcal{Z}^+} z^{-1} Y^+(z) + y(-1), \quad y(n-2) = z^{-2} Y^+(z) + z^{-1} y(-1) + y(-2),$$
$$y(n-3) = z^{-3} Y^+(z) + z^{-2} y(-1) + z^{-1} y(-2) + y(-3), \text{ usw.}$$

- 2. Einseitige z-Transformierte nach $Y^+(z)$ umformen
- 3. Durch Rücktransformation $y^+(n)$ bestimmen, z.B. mit Partialbruchzerlegung
- 4. y(n) aus Anfangsbedingungen und $y^+(n)$ bestimmen

Korrelationsanalyse

Korrelation der Signale $x(n), y(n) \in \mathbb{C}, 1 \leq n \leq N$:

$$r_{xy} = \alpha \sum_{n=1}^{N} x(n) \ y^*(n)$$

Wähle üblicherweise $\alpha = 1$ oder $\alpha = \frac{1}{N}$

Kovarianz ($\hat{=}$ mittelwertbereinigte Korrelation) der Signale $x(n), y(n) \in \mathbb{C}, 1 \leq n \leq N$:

$$c_{xy} = \alpha \sum_{n=1}^{N} (x(n) - m_x) (y(n) - m_y)^*$$

$$m_x = \frac{1}{N} \sum_{n=1}^{N} x(n)$$
 $m_y = \frac{1}{N} \sum_{n=1}^{N} y(n)$

Wähle üblicherweise $\alpha = 1$ oder $\alpha = \frac{1}{N}$

Varianz des Signals $x(n) \in \mathbb{C}, \ 1 \leq n \leq N$:

$$c_{xx} = \alpha \sum_{n=1}^{N} |x(n) - m_x|^2 \ge 0$$

Wähle üblicherweise $\alpha=1$ oder $\alpha=\frac{1}{N}$

Korrelationskoeffizient (normierte Kovarianz) der Signale $x(n), y(n) \in \mathbb{C}, \ 1 \le n \le N$:

$$\rho_{xy} = \frac{c_{xy}}{\sqrt{c_{xx} \ c_{yy}}}$$

Wähle üblicherweise $\alpha=1$ oder $\alpha=\frac{1}{N}$

Kreuzkorrelationsfunktion zwischen Signalen $x(n) \in \mathbb{C}, 1 \leq n \leq M$ und $y(n) \in \mathbb{C}, 1 \leq n \leq N$ mit M > N:

$$r_{xy}(k) = \alpha \sum_{n=1}^{N} x(n+k) y^{*}(n), \quad 0 \le k \le M-N$$

Wähle üblicherweise $\alpha = 1$ oder $\alpha = \frac{1}{N}$

Kreuzkovarianzfunktion zwischen Signalen $x(n) \in \mathbb{C}, 1 \leq n \leq M$ und $y(n) \in \mathbb{C}, 1 \leq n \leq N$ mit M > N:

$$c_{xy}(k) = \alpha \sum_{n=1}^{N} \tilde{x}(n+k) \ \tilde{y}^*(n), \quad 0 \le k \le M - N$$

$$\tilde{x}(n+k) = x(n+k) - m_x$$
 $\tilde{y}(n) = y(n) - m_y$

$$m_x(k) = \frac{1}{N} \sum_{n=1}^{N} x(n+k)$$
 $m_y = \frac{1}{N} \sum_{n=1}^{N} y(n)$

Wähle üblicherweise $\alpha=1$ oder $\alpha=\frac{1}{N}$

Zirkulare Faltung

Zirkulare Faltung der Länge N der Signale $x_1(n)$ mit $0 \le n \le N_1$ und $x_2(n)$ mit $0 \le n \le N_2$ ist gegeben durch

$$(x_1 \circledast x_2)(n) = \sum_{m=0}^{N-1} x_{p,1}(m) \ x_{p,2}(n-m)$$

mit $n \ge \max\{N_1, N_2\}$ und $x_{p,i}$... periodische Fortsetzungen:

$$x_{p,i} = \sum_{l=-\infty}^{\infty} x_i(n+lN_i) = x_i(m \bmod N_i)$$

Damit zirkulare Faltung \equiv lineare Faltung, wähle $N \geq N_1 + N_2 - 1 =$ Länge von $(x_1 * x_2)(n)$.

Rechenbeispiel

$$x(n) = \begin{cases} 1, 2, 3, 4 \end{cases} \qquad h(n) = \begin{cases} 1, 2, 1 \end{cases} \qquad y(n) = (x \circledast h)(n)$$

$$\begin{array}{c|cccc} h_p(0) & x_p(n) & 1 & 2 & 3 & 4 \\ h_p(1) & x_p(n-1) & 8 & 2 & 4 & 6 \\ h_p(2) & x_p(n-2) & 3 & 4 & 1 & 2 \\ \hline & y(n) & 12 & 8 & 8 & 12 \end{array}$$

 $(x \overset{\star}{\circledast} y)(n)$

Diskrete Fouriertransformation DFT

Definition

$$X(k) = \sum_{n=0}^{N-1} x_p(n) \ e^{-j\frac{2\pi}{N}kn} \qquad x_p(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) \ e^{j\frac{2\pi}{N}kn} \qquad \text{mit } x_p(n) = \sum_{l=-\infty}^{\infty} x(n+lN)$$

Eigenschaften (zirkular)

Nyquist-Bedingung

Länge von $X(k) = N \ge L =$ Länge von x(n) \implies Rekonstruktion von x(n) aus $x_p(n)$

Spiegelung

$$x_p(-n) \xrightarrow{\mathrm{DFT}_N} X(-k)$$

Konjugiert komplex

$$x_p^*(n) \xrightarrow{\mathrm{DFT}_N} X^*(-k)$$

Linearität

$$\sum_{i} c_{i} \ x_{p,i}(n) \xrightarrow{\text{DFT}_{N}} \sum_{i} c_{i} \ X_{i}(k)$$

Symmetrie

 $x_p(n)$ ungerade imaginär \iff X(k) ungerade reell

Periodizität

$$x_p(n+N) = x_p(n)$$
 $X(k+N) = X(k)$

Verschiebung

$$x_p(n-n_0) \xrightarrow{\mathrm{DFT}_N} e^{-j\frac{2\pi}{N}kn_0} X(k)$$
$$e^{j\frac{2\pi}{N}k_0n} x_p(n) \xrightarrow{\mathrm{DFT}_N} X(k-k_0)$$

Faltung

$$\sum_{m=0}^{N-1} x_{p,1}(m) \ x_{p,2}(n-m) \xrightarrow{\text{DFT}_N} X_1(k) \ X_2(k)$$

$$x_{p,1}(n) \ x_{p,2}(n) \xrightarrow{\text{DFT}_N} \frac{1}{N} \sum_{m=0}^{N-1} X_1(m) \ X_2(k-m)$$

 $x_p(n)$ gerade reell \iff X(k) gerade reell p_2 $x_p(n)$ gerade imaginär \iff X(k) gerade imaginär $x_p(n)$ ungerade reell \iff X(k) ungerade imaginär Parsevalsche Gleichung

$$\sum_{n=0}^{N-1} x_{p,1}(n) \ x_{p,2}^*(n) = \frac{1}{N} \sum_{k=0}^{N-1} X_1(k) \ X_2^*(k)$$

DFT und iDFT als Matrixoperation

Mit DFT_N-Faktor $w_N := e^{-\frac{2\pi}{N}}$ schreibt sich die DFT_N als

$$\begin{pmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \\ \vdots \\ X(N-1) \end{pmatrix} = \begin{pmatrix} w_N^0 & w_N^0 & w_N^0 & w_N^0 & \cdots & w_N^0 \\ w_N^0 & w_N^1 & w_N^2 & w_N^3 & \cdots & w_N^{N-1} \\ w_N^0 & w_N^2 & w_N^4 & w_N^6 & \cdots & w_N^{2(N-1)} \\ w_N^0 & w_N^3 & w_N^6 & w_N^9 & \cdots & w_N^{3(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ w_N^0 & w_N^{N-1} & w_N^{2(N-1)} & w_N^{3(N-1)} & \cdots & w_N^{(N-1)^2} \end{pmatrix} \cdot \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \\ \vdots \\ x(N-1) \end{pmatrix}$$

$$\underline{\mathbf{X}}_{N\times 1} = \underline{\underline{\mathbf{W}}}_{N\times N} \cdot \underline{\mathbf{x}}_{N\times 1}$$

Analog die iDFT $_N$:

$$\begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \\ \vdots \\ x(N-1) \end{pmatrix} = \frac{1}{N} \begin{pmatrix} w_N^0 & w_N^0 & w_N^0 & w_N^0 & \cdots & w_N^0 \\ w_N^0 & (w_N^*)^1 & (w_N^*)^2 & (w_N^*)^3 & \cdots & (w_N^*)^{N-1} \\ w_N^0 & (w_N^*)^2 & (w_N^*)^4 & (w_N^*)^6 & \cdots & (w_N^*)^{2(N-1)} \\ w_N^0 & (w_N^*)^3 & (w_N^*)^6 & (w_N^*)^9 & \cdots & (w_N^*)^{3(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ w_N^0 & (w_N^*)^{N-1} & (w_N^*)^{2(N-1)} & (w_N^*)^{3(N-1)} & \cdots & (w_N^*)^{(N-1)^2} \end{pmatrix} \cdot \begin{pmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \\ \vdots \\ X(N-1) \end{pmatrix}$$

$$\underline{\mathbf{x}}_{N\times 1} = \frac{1}{N} \ \underline{\underline{\mathbf{W}}}_{N\times N}^{H} \cdot \underline{\mathbf{X}}_{N\times 1}$$

Beispiel DFT₄

$$\underline{\underline{W}} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{pmatrix}$$

Beispiel iDFT₄

$$\frac{1}{N} \ \underline{\underline{W}}^H = \frac{1}{N} \ \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{pmatrix}$$

DFT

Mathematik

Additionstheoreme

$$\sin(\alpha) \cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

$$\cos(\alpha) \cos(\beta) = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

$$\sin(\alpha) \sin(\beta) = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\sin(\alpha) \sin(\beta) = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\sin(\alpha + \beta) = \sin(\alpha) \cos(\beta) + \cos(\alpha) \sin(\beta)$$

$$\sin(\alpha - \beta) = \sin(\alpha) \cos(\beta) - \cos(\alpha) \sin(\beta)$$

$$\cos(\alpha + \beta) = \cos(\alpha) \cos(\beta) - \sin(\alpha) \sin(\beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha) \cos(\beta) + \sin(\alpha) \sin(\beta)$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$
$$\cos^2(\alpha) - \sin^2(\alpha) = \cos(2\alpha)$$
$$\cos(x)^2 = \frac{1}{2} \left(1 + \cos(2x) \right) \qquad \sin(x)^2 = \frac{1}{2} \left(1 - \cos(2x) \right)$$

Mathe

Hyperbolische Funktionen

$$\cosh(x) := \frac{e^x + e^{-x}}{2} \qquad \sinh(x) := \frac{e^x - e^{-x}}{2}$$
$$\cosh(x)^2 - \sinh(x)^2 = 1$$

Eulersche Formel

$$e^{jx} = \cos(x) + j\sin(x)$$

$$\cos(x) = \frac{e^{jx} + e^{-jx}}{2} \qquad \sin(x) = \frac{e^{jx} - e^{-jx}}{2j}$$

Zusammenhang zwischen trigonometrischen Funktionen

$$\sin(x) = \cos\left(x - \frac{\pi}{2}\right) \qquad -\sin(x) = \cos\left(x + \frac{\pi}{2}\right)$$
$$\cos(x) = \sin\left(x + \frac{\pi}{2}\right) \qquad -\cos(x) = \sin\left(x - \frac{\pi}{2}\right)$$

Summenformeln

$$\sum_{k=M}^{N-1} q^k = \frac{q^M - q^N}{1 - q}, \ q \neq 1 \qquad \sum_{k=0}^{\infty} q^k = \frac{1}{1 - q}, \ |q| < 1$$

$$\sum_{k=1}^{n} k = \frac{n^2 + n}{2}$$

Sinus-Cosinus-Wertetabelle

	0]	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{5\pi}{12}$	$\frac{\pi}{2}$	$\frac{7\pi}{12}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	$\frac{11\pi}{12}$	π
	0°	1	5°	30°	45°	60°	75°	90°	105°	120°	135°	150°	165°	180°
$\sin(x)$	0	$\sqrt{6}$	$\frac{-\sqrt{2}}{4}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	1	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	0
$\cos(x)$	1		$\frac{+\sqrt{2}}{4}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	0	$-\frac{\sqrt{6}-\sqrt{2}}{4}$	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{6}+\sqrt{2}}{4}$	-1
	$\frac{13\pi}{12}$	<u>r</u>	$\frac{7\pi}{6}$	5	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{17\pi}{12}$	$\frac{3\pi}{2}$	$\frac{19\pi}{12}$	$\frac{5\pi}{4}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	$\frac{23\pi}{12}$	2π
	195	0	210°	22	25°	240°	255°	270°	285°	300°	315°	330°	345°	360°
$\sin(x)$	$-\frac{\sqrt{6}-}{4}$	$\frac{-\sqrt{2}}{4}$	$-\frac{1}{2}$	_	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{6}+\sqrt{2}}{4}$	-1	$-\frac{\sqrt{6}+\sqrt{2}}{4}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	$-\frac{\sqrt{6}-\sqrt{2}}{4}$	0
$\cos(x)$	$-\frac{\sqrt{6}+}{4}$		$-\frac{\sqrt{3}}{2}$	_	$\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	$-\frac{\sqrt{6}-\sqrt{2}}{4}$	0	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	1