Discrete Mathematics Exercise 19

Qiu Yihang, 2020/12/09

1. Solution:

2. Proof:

Suppose the connected planar simple graph is G.

Since G has no simple circuits of length 4 or less, for any region R, $deg(R) \ge 5$.

Therefore, $\sum_{R} \deg(R) \ge \sum_{R} 5 = 5r$.

By Euler's Formula, r = |E| - |V| + 2.

Thus, $2|E| = \sum_{R} \deg(R) \ge 5r = 5|E| - 5|V| + 10$, i.e., $3|E| \le 5|V| - 10$.

In other words, $e \le (5/3)v - (10/3)$.

QED

3. Solution:

7 is a planar graph.

A planar representation is as follows:

8 is a non-planar graph.

A subgraph of **8** (depicted as follows) is homeomorphic to $K_{3,3}$.

9 is a non-planar graph.

A subgraph of 9 (depicted as follows) is homeomorphic to $K_{3,3}$.

23 is a planar graph.

A planar representation is as follows.

25 is a non-planar graph.

A subgraph of 25 (depicted as follows) is a

 $K_{3,3}$.

i.e.

