CONCORDIA UNIVERSITY

Department of Mathematics & Statistics

Course	Number	Sections
Mathematics	203	All
Examination	Date	Pages
Final	April 2014	3
Instructors:	D. Dryanov, L. Dube, H. Greenspan,	Course Examiner
	M. Hadid, Z. Li	A. Atoyan & H. Proppe
Special	Only calculators approved by the	
Instructions:	Department are allowed	
	Show your work for full marks	

MARKS

- [9] 1. (a) Let $f(x) = \ln(1+x^2)$ and $g(x) = \sqrt{4+x}$. Find $f \circ g$ and $g \circ f$ and determine the domain of each of these composite functions.
 - (b) Find the range of the function $f = e^{2x} + 3$, the inverse function f^{-1} , and the range of f^{-1} .
- [12] 2. Evaluate the limits Do not use l'Hôpital rule:

(a)
$$\lim_{x\to 2} \frac{x-2}{x^2+x-6}$$
 (b) $\lim_{x\to 1} \frac{\sqrt{x^2+5x-5}-x}{x-1}$ (c) $\lim_{x\to \infty} \ln\left(\frac{1+x+2x^3}{3+2x+x^3}\right)$

- [6] **3.** Calculate both one-sided limits of $f(x) = \frac{|x^2 9|}{x + 3}$ at the point(s) where the function f is discontinuous.
- [15] **4.** Find the derivatives of the following functions:

(a)
$$f(x) = \frac{\sqrt{x^7} + x^{5/2}}{x^3}$$

(b)
$$f(x) = \ln(x^4 \cdot \sqrt{x+3}) + \ln e$$

(c)
$$f(x) = \frac{\arctan(2x)}{\tan(x)}$$

(d)
$$f(x) = \sin[x^2 \cos(e^x)]$$

(e)
$$f(x) = (1+2x)^{x^2}$$
 (use logarithmic differentiation)

- [15] **5.** (a) Verify that the point (2,1) belongs to the curve defined by the equation $xy + 2\sqrt{3 + y^2} = x^3 2$, and find the equation of the tangent line to the curve at this point.
 - (b) Two cars start simultaneously moving away from the intersection of two orthogonal streets at the speeds $v_1 = 12$ m/s going west, and $v_2 = 16$ m/s going north. How fast is the distance between the cars increasing at the instant t = 5 seconds after they start moving from the intersection?
 - (c) Use the l'Hôpital's rule to evaluate the $\lim_{x\to 0} \frac{e^{x^2}-1}{\cos(2x)-1}$.
- [6] **6.** Let $f(x) = 3 + x + 3x^2 x^3$.
 - (a) Find the slope m of the secant line joining the points (0, f(0)) and (3, f(3)).
 - (b) Find all points x = c (if any) on the interval [0,3] such that f'(c) = m.
- [9] 7. Consider the function $f(x) = \sqrt{2x+1}$.
 - (a) Use the definition of the derivative to find the formula for f'(x).
 - (b) Write the linearization formula for f at a=4
 - (c) Use this linearization to approximate the value of $f(3) = \sqrt{7}$
- [12] 8. (a) Find the absolute extrema of $f(x) = \frac{x}{x^2 x + 1}$ on the interval [0, 3].
 - (b) A box with a square base is to be constructed with a volume of 54 m³. The material for the box costs $2/m^2$, and the material for the top costs $6/m^2$. Find the dimensions that minimize the cost of the box.

- [16] **9.** Given the function $f(x) = 2x^2 x^4$.
 - (a) Find the domain of f and check for symmetry. Find asymptotes of f (if any).
 - (b) Calculate f'(x) and use it to determine intervals where the function is increasing, intervals where it is decreasing, and the local extrema (if any).
 - (c) Calculate f''(x) and use it to determine intervals where the function is concave upward, intervals where the function is concave downward, and the inflection points (if any).
 - (d) Sketch the graph of the function f(x) using the information obtained above.
- [5] **Bonus Question:** Let f be a function which is monotonically decreasing (strictly) and differentiable everywhere on the real axis. Let also $g = x^2 + 1$. Prove that the composite function $h = f \circ g$ has one and only one local extremum and determine whether it corresponds to a maximum or minimum of h(x).