

Ù&@^œ^¦ÊÁQ}&È		HÍ »Á√ã¦oÁ, Đị ÁÙ^ã; {ã&ÁÖ^•ã;}
PÔX	Ùœ), 忦åÁÚXTæ¢ÁÜæ&\ ã), *ÁÛ^• ♂{	
	Ü^]¦^•^} æaāç^ÁÔæþ&` æaā[}•ÁËÁŒLÌÔÒÁIEF€	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 35°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 14.43 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s = 1.00$$

$$C_s = 0.64$$

$$C_e = 0.90$$

1.20

2.3 Wind Loads

Design Wind Speed, V =	110 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 19.00 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.200	
Cf+ BOTTOM	=	1.200 2.000 (Pressure)	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.700	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.100 (Suction)	applied away from the surface.
Cf- POTTOM	=	-1 200	applied and, nem are carrace.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

1.2D + 1.6S + 0.5W

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.0W + 0.5S 0.9D + 1.0W M 1.54D + 1.3E + 0.2S R 0.56D + 1.3E R 1.54D + 1.25E + 0.2S O 0.56D + 1.25E O

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	102.21	<u>5560.26</u>	k
Compressive Load =	3079.62	<u>4534.99</u>	k
Lateral Load =	<u>19.66</u>	3932.96	k
Moment (Weak Axis) =	0.04	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 136480.3 in-lbs Resisting Force Required = 2067.88 lbs A minimum 132in long x 27in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3446.47 lbs to resist overturning. Minimum Width = Weight Provided = 5383.13 lbs Sliding Force = 906.84 lbs Use a 132in long x 27in wide x 18in tall Friction = 0.4 Weight Required = 2267.10 lbs ballast foundation to resist sliding. Resisting Weight = 5383.13 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 906.84 lbs Cohesion = 130 psf Use a 132in long x 27in wide x 18in tall 24.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2691.56 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

		Ballast	t Width	
	<u>27 in</u>	28 in	29 in	<u>30 in</u>
$P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.25 \text{ ft}) =$	5383 lbs	5583 lbs	5782 lbs	<u>5981 lbs</u>

ASD LC		1.0D -	+ 1.0S			1.0D+	0.6W		1.0D + 0.75L + 0.45W + 0.75S			iS	0.6D + 0.6W			
Width	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in
FA	1205 lbs	1205 lbs	1205 lbs	1205 lbs	967 lbs	967 lbs	967 lbs	967 lbs	1482 lbs	1482 lbs	1482 lbs	1482 lbs	70 lbs	70 lbs	70 lbs	70 lbs
F _B	1088 lbs	1088 lbs	1088 lbs	1088 lbs	1920 lbs	1920 lbs	1920 lbs	1920 lbs	2124 lbs	2124 lbs	2124 lbs	2124 lbs	-2557 lbs	-2557 lbs	-2557 lbs	-2557 lbs
F _V	200 lbs	200 lbs	200 lbs	200 lbs	1673 lbs	1673 lbs	1673 lbs	1673 lbs	1381 lbs	1381 lbs	1381 lbs	1381 lbs	-1814 lbs	-1814 lbs	-1814 lbs	-1814 lbs
P _{total}	7676 lbs	7876 lbs	8075 lbs	8274 lbs	8271 lbs	8470 lbs	8669 lbs	8869 lbs	8989 lbs	9188 lbs	9387 lbs	9587 lbs	743 lbs	863 lbs	982 lbs	1102 lbs
M	3576 lbs-ft	3576 lbs-ft	3576 lbs-ft	3576 lbs-ft	2681 lbs-ft	2681 lbs-ft	2681 lbs-ft	2681 lbs-ft	4257 lbs-ft	4257 lbs-ft	4257 lbs-ft	4257 lbs-ft	3627 lbs-ft	3627 lbs-ft	3627 lbs-ft	3627 lbs-ft
е	0.47 ft	0.45 ft	0.44 ft	0.43 ft	0.32 ft	0.32 ft	0.31 ft	0.30 ft	0.47 ft	0.46 ft	0.45 ft	0.44 ft	4.88 ft	4.21 ft	3.69 ft	3.29 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft								
f _{min}	231.3 psf	230.9 psf	230.4 psf	230.0 psf	275.1 psf	273.0 psf	271.1 psf	269.3 psf	269.4 psf	267.5 psf	265.8 psf	264.2 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	388.9 psf	382.8 psf	377.1 psf	371.8 psf	393.3 psf	387.0 psf	381.1 psf	375.7 psf	457.0 psf	448.4 psf	440.5 psf	433.0 psf	356.6 psf	190.4 psf	150.0 psf	133.1 psf

Maximum Bearing Pressure = 457 psf Allowable Bearing Pressure = 1500 psf Use a 132 $\rm in\ long\ x\ 27$ $\rm in\ wide\ x\ 18$ $\rm in\ tall\ ballast\ foundation\ for\ an\ acceptable\ bearing\ pressure.$

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 794.1 \text{ ft-lbs}$

Resisting Force Required = 705.91 lbs S.F. = 1.67

Weight Required = 1176.51 lbs Minimum Width = 27 in in Weight Provided = 5383.13 lbs A minimum 132in long x 27in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	5E	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		27 in 27 in				27 in				
Support	Outer	Inner	Outer	Outer	Outer Inner Out		Outer	Inner	Outer	
F _Y	280 lbs	693 lbs	280 lbs	729 lbs	1960 lbs	729 lbs	82 lbs	203 lbs	82 lbs	
F _V	3 lbs	0 lbs	3 lbs	8 lbs	0 lbs	8 lbs	1 lbs	0 lbs	1 lbs	
P _{total}	6944 lbs	5383 lbs	6944 lbs	7073 lbs	5383 lbs	7073 lbs	2030 lbs	5383 lbs	2030 lbs	
М	9 lbs-ft	0 lbs-ft	9 lbs-ft	26 lbs-ft	0 lbs-ft	26 lbs-ft	3 lbs-ft	0 lbs-ft	3 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	
f _{min}	279.6 psf	217.5 psf	279.6 psf	283.0 psf	217.5 psf	283.0 psf	81.7 psf	217.5 psf	81.7 psf	
f _{max}	281.6 psf	217.5 psf	281.6 psf	288.6 psf	217.5 psf	288.6 psf	82.4 psf	217.5 psf	82.4 psf	

Maximum Bearing Pressure = 289 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 27in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 27in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Rear Strut		Front Strut
Maximum Axial Load = 3.661 k	2.369 k	Maximum Axial Load =
M12 Bolt Capacity = 12.808 k	12.808 k	M12 Bolt Capacity =
Strut Bearing Capacity = 7.421 k	7.421 k	Strut Bearing Capacity =
Utilization = 49%	<u>32%</u>	Utilization =
		Diagonal Strut
	2.480 k	Maximum Axial Load =
Bolt and bearing capacities are accounting for double she	12.808 k	M12 Bolt Shear Capacity =
(ASCE 8-02, Eq. 5.3.4-1)	7.421 k	Strut Bearing Capacity =
	<u>33%</u>	Utilization =
	4.4	
Struts under compression are shown to del	•	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, $h_{sx} = 53.78$ in Allowable Story Drift for All Other Structures, $\Delta = \{ 0.020h_{sx} \\ 1.076$ in Max Drift, $\Delta_{MAX} = 0.095$ in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 135 \text{ in}$$
 $J = 0.432$
 373.473

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_1 = 27.0 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 135$$
 $J = 0.432$
 237.507

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_1 = 28.3$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$\phi F_L =$ 23.1 ksi

3.4.16.1

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^{\frac{1}{2}}$$

$$S1 = \frac{1.1}{1.1}$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = \phi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$lx = 897074 \text{ mm}^4$$

$$y = 41.015 \text{ mm}$$

 $Sx = 1.335 \text{ in}^3$

$$M_{max}St = 2.788 \text{ k-ft}$$

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$S1 = 36.9$$

 $M = 0.65$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$SZ = \frac{1}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$x = 45.5 \text{ mm}$$

 $Sy = 0.599 \text{ in}^3$

$$M_{max}Wk = 1.152 \text{ k-ft}$$

Compression

3.4.9

$$b/t = 32.195 \\ S1 = 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = 25.1 \text{ ksi} \\ b/t = 37.0588 \\ S1 = 12.21 \\ S2 = 32.70 \\ \phi F_L = (\phi c k2^* \sqrt{(BpE))/(1.6b/t)} \\$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 = 29.2$

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2 S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Us
Rb/t = 18.1
$$\frac{\theta_y}{2}$$
 For

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

31.1 ksi

3.4.16.1

3.4.18

N/A for Weak Direction

3.4.18

 $\phi F_L =$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

h/t = 16.2

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

 $\phi F_L =$

$$\begin{array}{ccc} \phi F_L S t = & 29.4 \text{ ksi} \\ lx = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ y = & 43.717 \text{ mm} \\ Sx = & 1.375 \text{ in}^3 \\ M_{max} S t = & 3.363 \text{ k-ft} \end{array}$$

43.2 ksi

$$\phi F_L W k = 33.3 \text{ ksi}$$

$$ly = 923544 \text{ mm}^4$$

$$2.219 \text{ in}^4$$

$$x = 40 \text{ mm}$$

$$Sy = 1.409 \text{ in}^3$$

$$M_{max} W k = 3.904 \text{ k-ft}$$

43.2 ksi

Compression

 $\phi F_L =$

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$

33.3 ksi

3.4.10

 $\phi F_L =$

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

 $P_{max} =$

Rev. 11.05.2015

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ & 38.7028 \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b [Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

 $\phi F_L =$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

31.4 ksi

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

0.621 in³

 $M_{max}St = 1.460 \text{ k-ft}$

3.4.18

h/t =

$$\begin{array}{rcl} \text{S1} = & 36.9 \\ \text{m} = & 0.65 \\ \text{C}_0 = & 27.5 \\ \text{Cc} = & 27.5 \\ \text{S2} = \frac{k_1 B b r}{m D b r} \\ \text{S2} = & 77.3 \\ \text{ϕF}_L = & 1.3 \text{ϕy$Fcy} \\ \text{$\phi$F}_L = & 43.2 \text{ ksi} \\ \text{ϕF}_L \text{Wk} = & 28.2 \text{ ksi} \\ \text{ϕF}_L \text{Wk} = & 279836 \text{ mm}^4 \\ \text{ϕF}_L \text{Wk} = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ \end{array}$$

 $M_{max}Wk = 1.460 \text{ k-ft}$

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$ mDbr

24.5

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

 $P_{max} =$

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_{b} = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942	J = 0.942
135.148	135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$
$\phi F_L = 29.6 \text{ ksi}$	$\phi F_{L} = 29.6$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$\underline{\text{Compression}}$

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L W k = & 28.2 \text{ ksi} \\ l y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ S y = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 78.03 \text{ in}$$
 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16B}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

Weak Axis:

$$L_b = 78.03$$

$$J = 0.942$$
121.773

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 29.8$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F_C y$$
 $\phi F_L = 38.9 \text{ ksi}$

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \ ksi \\ k = & 279836 \ mm^4 \\ & 0.672 \ in^4 \\ y = & 27.5 \ mm \\ Sx = & 0.621 \ in^3 \\ M_{max} St = & 1.460 \ k\text{-ft} \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.80509 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.83271 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 8.94465 \text{ ksi} \end{array}$$

$$\begin{array}{lll} \textbf{9} \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \textbf{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \textbf{\phiF}_{L} = & \boldsymbol{\phi} \textbf{c} \textbf{[Bp-1.6Dp*b/t]} \\ \textbf{\phiF}_{L} = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \\ \textbf{S2} = & 32.70 \\ \textbf{\phiF}_{L} = & \boldsymbol{\phi} \textbf{c} \textbf{[Bp-1.6Dp*b/t]} \\ \textbf{\phiF}_{L} = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-32.97	-32.97	0	0
2	M14	Υ	-32.97	-32.97	0	0
3	M15	Υ	-32.97	-32.97	0	0
4	M16	Υ	-32 97	-32 97	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-63.577	-63.577	0	0
2	M14	٧	-63.577	-63.577	0	0
3	M15	V	-105.961	-105.961	0	0
4	M16	V	-105.961	-105.961	0	0

Member Distributed Loads (BLC 5 : Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	143.047	143.047	0	0
2	M14	V	111.259	111.259	0	0
3	M15	V	63.577	63.577	0	0
4	M16	У	63.577	63.577	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	766.853	2	1056.458	2	.772	1	.003	1	Ö	1	Ó	1
2		min	-948.916	3	-1301.307	3	.048	15	0	15	0	1	0	1
3	N7	max	.041	9	979.698	1	861	15	002	15	0	1	0	1
4		min	149	2	50.826	15	-15.126	1	029	1	0	1	0	1
5	N15	max	.206	3	2368.936	1	0	1	0	1	0	1	0	1
6		min	-1.603	2	106.196	15	0	3	0	2	0	1	0	1
7	N16	max	2844.131	2	3488.451	2	0	3	0	12	0	1	0	1
8		min	-3025.357	3	-4277.124	3	0	9	0	1	0	1	0	1
9	N23	max	.041	9	979.698	1	15.126	1	.029	1	0	1	0	1
10		min	149	2	50.826	15	.861	15	.002	15	0	1	0	1
11	N24	max	766.853	2	1056.458	2	048	15	0	15	0	1	0	1
12		min	-948.916	3	-1301.307	3	772	1	003	1	0	1	0	1
13	Totals:	max	4375.935	2	9086.821	1	0	1						
14		min	-4922.921	3	-6437.056	3	0	2						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	140.335	1	362.759	2	-11.138	15	.002	3	.336	1_	0	2
2			min	7.802	15	-584.945	3	-201.036	1	011	2	.019	15	0	3
3		2	max	140.335	1	254.281	2	-8.576	15	.002	3	.114	1	.623	3
4			min	7.802	15	-411.623	3	-154.723	1	011	2	.006	15	386	2
5		3	max	140.335	1	145.802	2	-6.015	15	.002	3	001	12	1.029	3
6			min	7.802	15	-238.301	3	-108.409	1	011	2	051	1	636	2
7		4	max	140.335	1	37.323	2	-3.453	15	.002	3	008	12	1.219	3
8			min	7.802	15	-64.98	3	-62.095	1	011	2	157	1	75	2
9		5	max	140.335	1	108.342	3	891	15	.002	3	011	12	1.191	3
10			min	7.802	15	-71.155	2	-15.782	1	011	2	206	1	729	2
11		6	max	140.335	1	281.664	3	30.532	1	.002	3	011	15	.948	3
12			min	7.802	15	-179.634	2	1.162	12	011	2	197	1	572	2
13		7	max	140.335	1	454.985	3	76.845	1	.002	3	007	15	.487	3
14			min	7.802	15	-288.113	2	3.724	12	011	2	13	1	28	2
15		8	max	140.335	1	628.307	3	123.159	1	.002	3	0	10	.148	2
16			min	7.802	15	-396.591	2	6.285	12	011	2	005	1	19	3
17		9	max	140.335	1	801.629	3	169.472	1	.002	3	.178	1	.712	2
18			min	7.802	15	-505.07	2	8.846	12	011	2	.007	12	-1.083	3
19		10	max	140.335	1	974.951	3	142.891	9	.011	2	.419	1	1.411	2
20			min	7.802	15	-613.548	2	-215.786	1	002	3	.02	12	-2.194	3
21		11	max	140.335	1	505.07	2	-8.846	12	.011	2	.178	1	.712	2
22			min	7.802	15	-801.629	3	-169.472	1	002	3	.007	12	-1.083	3
23		12	max	140.335	1	396.591	2	-6.285	12	.011	2	0	10	.148	2
24			min	7.802	15	-628.307	3	-123.159		002	3	005	1	19	3
25		13	max	140.335	1	288.113	2	-3.724	12	.011	2	007	15	.487	3
26			min	7.802	15	-454.985	3	-76.845	1	002	3	13	1	28	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]									
27		14	max	140.335	1	179.634	2	-1.162	12	.011	2	011	15	.948	3
28			min	7.802	15	-281.664	3	-30.532	1	002	3	197	1	572	2
29		15	max	140.335	1	71.155	2	15.782	1_	.011	2	011	12	1.191	3
30			min	7.802	15	-108.342	3	.891	15	002	3	206	1	729	2
31		16	max	140.335	1_	64.98	3	62.095	1	.011	2	008	12	1.219	3
32			min	7.802	15	-37.323	2	3.453	15	002	3	157	1	75	2
33		17	max	140.335	1	238.301	3	108.409	1	.011	2	001	12	1.029	3
34			min	7.802	15	-145.802	2	6.015	15	002	3	051	1	636	2
35		18	max	140.335	1	411.623	3	154.723	1	.011	2	.114	1	.623	3
36			min	7.802	15	-254.281	2	8.576	15	002	3	.006	15	386	2
37		19	max	140.335	1	584.945	3	201.036	1	.011	2	.336	1	0	2
38			min	7.802	15	-362.759	2	11.138	15	002	3	.019	15	0	3
39	M14	1	max	60.593	1	380.534	2	-11.451	15	.007	3	.378	1	0	1
40	.,,,,,		min	3.375	15	-461.254	3	-206.691	1	008	2	.021	15	0	3
41		2	max	60.593	1	272.055	2	-8.889	15	.007	3	.149	1	.493	3
42		_	min	3.375	15	-327.667	3	-160.378	1	008	2	.008	15	408	2
43		3	max	60.593	1	163.577	2	-6.327	15	.007	3	0	3	.819	3
44		-		3.375	15	-194.08	3	-114.064	1	008	2	022	1	68	2
		4	min			55.098					3		12		
45		4	max	60.593	1		2	-3.766	15	.007		007		.978	3
46		-	min	3.375	15	-60.493	3	-67.75	1_	008	2	136	1	817	2
47		5	max	60.593	1	73.093	3_	-1.204	15	.007	3	01	12	.97	3
48			min	3.375	15	-53.38	2	-21.437	1	008	2	192	1_	818	2
49		6	max	60.593	1	206.68	3	24.877	1	.007	3	011	15	.796	3
50			min	3.375	15	-161.859	2	.863	12	008	2	19	1	683	2
51		7	max	60.593	1_	340.267	3_	71.19	_1_	.007	3	007	15	.454	3
52			min	3.375	15	-270.338	2	3.425	12	008	2	13	1	413	2
53		8	max	60.593	1	473.854	3	117.504	1	.007	3	0	10	.006	9
54			min	3.375	15	-378.816	2	5.986	12	008	2	012	1	055	3
55		9	max	60.593	1	607.44	3	163.817	1	.007	3	.164	1	.534	2
56			min	3.375	15	-487.295	2	8.547	12	008	2	.007	12	731	3
57		10	max	60.593	1	595.773	2	139.141	9	.008	2	.398	1	1.211	2
58			min	3.375	15	-741.027	3	-210.131	1	007	3	.019	12	-1.574	3
59		11	max	60.593	1	487.295	2	-8.547	12	.008	2	.164	1	.534	2
60			min	3.375	15	-607.44	3	-163.817	1	007	3	.007	12	731	3
61		12	max	60.593	1	378.816	2	-5.986	12	.008	2	0	10	.006	9
62		T	min	3.375	15	-473.854	3	-117.504	1	007	3	012	1	055	3
63		13	max	60.593	1	270.338	2	-3.425	12	.008	2	007	15	.454	3
64		10	min	3.375	15	-340.267	3	-71.19	1	007	3	13	1	413	2
65		14	max	60.593	1	161.859	2	863	12	.008	2	011	15	.796	3
66		17	min	3.375	15	-206.68	3	-24.877	1	007	3	19	1	683	2
67		15	max		-	53.38	2	21.437	1	.008	2	01	12	003 .97	3
68		13	min	3.375	15	-73.093	3	1.204	15	007	3	192	1	818	2
		16	_	60.593	1	60.493	3	67.75	1	.007	2	007	12	<u>616</u> .978	3
69		10	max	3.375	15		2		15	007	3	136			2
70		17	min			-55.098		3.766 114.064					1	817	
71		17	max	60.593	1_1_	194.08	3		1_	.008	2	0	3	.819	3
72		40	min	3.375	15	-163.577	2	6.327	15	007	3	022	1	<u>68</u>	2
73		18	max	60.593	1	327.667	3	160.378	1_	.008	2	.149	1	.493	3
74			min	3.375	15	-272.055	2	8.889	15	007	3	.008	15	408	2
75		19	max	60.593	1	461.254	3	206.691	1	.008	2	.378	1	0	1
<u>76</u>			min	3.375	15	-380.534	2	11.451	15	007	3	.021	15	0	3
77	<u>M15</u>	1	max	-3.562	15	559.351	2	-11.448	15	.009	2	.378	1	0	2
78			min	-63.938	1	-260.176	3	-206.657	1	006	3	.021	15	0	3
79		2	max	-3.562	15	397.893	2	-8.886	15	.009	2	.149	1	.279	3
80			min	-63.938	1	-186.192	3	-160.343	1	006	3	.008	15	598	2
81		3	max	-3.562	15	236.434	2	-6.324	15	.009	2	0	3	.465	3
82			min	-63.938	1	-112.208	3	-114.03	1	006	3	023	1	995	2
83		4	max	-3.562	15	74.976	2	-3.763	15	.009	2	007	12	.559	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC :	z-z Mome	LC_
84			min	-63.938	1_	-38.223	3	-67.716	1	006	3	136	1	-1.189	2
85		5	max	-3.562	15	35.761	3	-1.201	15	.009	2	01	12	.561	3
86			min	-63.938	1	-86.483	2	-21.403	1	006	3	192	1	-1.182	2
87		6	max	-3.562	15	109.745	3	24.911	1	.009	2	011	15	.47	3
88			min	-63.938	1	-247.942	2	.905	12	006	3	19	1	973	2
89		7	max	-3.562	15	183.729	3	71.224	1	.009	2	007	15	.287	3
90			min	-63.938	1	-409.4	2	3.467	12	006	3	13	1	562	2
91		8	max	-3.562	15	257.714	3	117.538	1	.009	2	0	15	.05	2
92			min	-63.938	1	-570.859	2	6.028	12	006	3	012	1	0	15
93		9		-3.562	15	331.698	3	163.852	1	.009	2	.164	1	.865	2
		9	max												3
94		40	min	-63.938	1_	-732.317	2	8.59	12	006	3	.007	12	358	
95		10	max	-3.562	<u>15</u>	893.776	2	-11.151	12	.006	3	.398	1	1.881	2
96			min	-63.938	_1_	-405.682	3	-210.165	1	009	2	.019	12	818	3
97		11	max	-3.562	15	732.317	2	-8.59	12	.006	3	.164	1	.865	2
98			min	-63.938	1_	-331.698	3	-163.852	1	009	2	.007	12	358	3
99		12	max	-3.562	15	570.859	2	-6.028	12	.006	3	0	15	.05	2
100			min	-63.938	1_	-257.714	3	-117.538	1	009	2	012	1	0	15
101		13	max	-3.562	15	409.4	2	-3.467	12	.006	3	007	15	.287	3
102			min	-63.938	1	-183.729	3	-71.224	1	009	2	13	1	562	2
103		14	max	-3.562	15	247.942	2	905	12	.006	3	011	15	.47	3
104			min	-63.938	1	-109.745	3	-24.911	1	009	2	19	1	973	2
105		15	max	-3.562	15	86.483	2	21.403	1	.006	3	01	12	.561	3
106		10	min	-63.938	1	-35.761	3	1.201	15	009	2	192	1	-1.182	2
107		16	max	-3.562	15	38.223	3	67.716	1	.006	3	007	12	.559	3
		10		-63.938			2	3.763	15					-1.189	2
108		47	min		1_	-74.976				009	2	136	1		
109		17	max	-3.562	15	112.208	3_	114.03	1	.006	3	0	3	.465	3
110		4.0	min	-63.938	1_	-236.434	2	6.324	15	009	2	023	1	<u>995</u>	2
111		18	max	-3.562	<u>15</u>	186.192	3	160.343	1	.006	3	.149	1	.279	3
112			min	-63.938	1_	-397.893	2	8.886	15	009	2	.008	15	598	2
113		19	max	-3.562	15	260.176	3	206.657	1	.006	3	.378	1	0	2
114			min	-63.938	1	-559.351	2	11.448	15	009	2	.021	15	0	3
115	M16	1	max	-8.427	15	542.186	2	-11.147	15	.008	2	.338	1	0	2
116			min	-151.343	1	-246.851	3	-201.271	1	009	3	.019	15	0	3
117		2	max	-8.427	15	380.728	2	-8.586	15	.008	2	.115	1	.262	3
118			min	-151.343	1	-172.867	3	-154.957	1	009	3	.006	15	577	2
119		3	max	-8.427	15	219.269	2	-6.024	15	.008	2	002	12	.432	3
120				-151.343	1	-98.883	3	-108.644	1	009	3	05	1	952	2
121		4	max	-8.427	15	57.811	2	-3.462	15	.008	2	008	12	.51	3
122		_	min	-151.343	1	-24.898	3	-62.33	1	009	3	157	1	-1.125	2
123		5	max	-8.427	15	49.086	3	901	15	.008	2	011	12	.494	3
124		5				-103.648		-16.017	1	009	3	205	1	-1.096	2
		_		-151.343					-						
125		6	max		<u>15</u>	123.07	3	30.297	1	.008	2	011	15	.387	3
126		_		-151.343	1_	-265.107	2	1.297	12	009	3	197	1	866	2
127		7	max	-8.427	15	197.054	3_	76.61	1	.008	2	007	15	.187	3
128		_		-151.343	1	-426.565	2	3.858	12	009	3	13	1	434	2
129		8	max		15	271.038	3	122.924	1	.008	2	0	10	.201	2
130			min	-151.343	1_	-588.024	2	6.42	12	009	3	005	1	106	3
131		9	max	-8.427	15	345.023	3	169.237	1	.008	2	.178	1	1.036	2
132			min	-151.343	1	-749.483	2	8.981	12	009	3	.008	12	491	3
133		10	max	-8.427	15	747.324	1	142.779	9	.009	3	.418	1	2.074	2
134				-151.343	1	-910.941	2	-215.551	1	008	2	.021	12	968	3
135		11	max		15	749.483	2	-8.981	12	.009	3	.178	1	1.036	2
136				-151.343	1	-345.023	3	-169.237	1	008	2	.008	12	491	3
137		12	max	-8.427	15	588.024	2	-6.42	12	.009	3	0	10	.201	2
138		14		-0.427	1	-271.038	3	-122.924	1	008	2	005	1	106	3
		12			•										
139		13	max		<u>15</u>	426.565	2	-3.858	12	.009	3	007	15	.187	3
140			ITHIN	-151.343	1	-197.054	3	-76.61	1	008	2	13	1	434	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec	I	Axial[lb]		y Shear[lb]				Torque[k-ft]				z-z Mome	LC
141		14	max	-8.427	15	265.107	2	-1.297	12	.009	3	011	15	.387	3
142			min	-151.343	1	-123.07	3	-30.297	1	008	2	197	1_	866	2
143		15	max	-8.427	15	103.648	2	16.017	1	.009	3	011	12	.494	3
144			min	-151.343	1	-49.086	3	.901	15	008	2	205	1	-1.096	2
145		16	max	-8.427	15	24.898	3	62.33	1	.009	3	008	12	.51	3
146			min	-151.343	1	-57.811	2	3.462	15	008	2	157	1	-1.125	2
147		17	max	-8.427	15	98.883	3	108.644	1	.009	3	002	12	.432	3
148			min	-151.343	1	-219.269	2	6.024	15	008	2	05	1	952	2
149		18	max	-8.427	15	172.867	3	154.957	1	.009	3	.115	1	.262	3
150			min	-151.343	1	-380.728	2	8.586	15	008	2	.006	15	577	2
151		19	max	-8.427	15	246.851	3	201.271	1	.009	3	.338	1	0	2
152			min	-151.343	1	-542.186	2	11.147	15	008	2	.019	15	0	3
153	M2	1	max	878.833	2	2.016	4	.475	1	0	12	0	3	0	1
154	1412		min	-1113.178	3	.474	15	.026	15	0	1	0	2	0	1
155		2	max	879.354	2	1.898	4	.475	1	0	12	0	1	0	15
156			min	-1112.788	3	.446	15	.026	15	0	1	0	15	0	4
157		3	max	879.875	2	1.779	4	.475	1	0	12	0	1	0	15
158		3	min	-1112.397	3	.419	15	.026	15	0	1	0	15	001	4
		1										_			
159		4	max		2	1.66	4	.475	1	0	12	0	1	0	15
160		-	min	-1112.007	3	.391	15	.026	15	0	1	0	15	002	4
161		5	max	880.916	2	1.541	4	.475	1	0	12	0	1	0	15
162			min	-1111.616	3	.363	15	.026	15	0	1	0	15	003	4
163		6	max	881.437	2	1.422	4	.475	1_	0	12	0	1	0	15
164			min	-1111.226	3	.335	15	.026	15	0	1	0	15	003	4
165		7	max	881.958	2	1.303	4	.475	1_	0	12	0	1_	0	15
166			min	-1110.835	3	.307	15	.026	15	0	1	0	15	004	4
167		8	max	882.478	2	1.184	4	.475	1_	0	12	.001	1_	0	15
168			min	-1110.445	3	.279	15	.026	15	0	1	0	15	004	4
169		9	max	882.999	2	1.066	4	.475	1	0	12	.001	1	001	15
170			min	-1110.054	3	.251	15	.026	15	0	1	0	15	004	4
171		10	max	883.52	2	.947	4	.475	1	0	12	.002	1	001	15
172			min	-1109.664	3	.223	15	.026	15	0	1	0	15	005	4
173		11	max	884.04	2	.828	4	.475	1	0	12	.002	1	001	15
174			min	-1109.273	3	.187	12	.026	15	0	1	0	15	005	4
175		12	max	884.561	2	.716	2	.475	1	0	12	.002	1	001	15
176			min	-1108.882	3	.141	12	.026	15	0	1	0	15	005	4
177		13	max	885.082	2	.624	2	.475	1	0	12	.002	1	001	15
178			min	-1108.492	3	.095	12	.026	15	0	1	0	15	006	4
179		14	max	885.602	2	.531	2	.475	1	0	12	.002	1	001	15
180			min	-1108.101	3	.048	12	.026	15	0	1	0	15	006	4
181		15		886.123	2	.439	2	.475	1	0	12	.002	1	001	15
182			min	-1107.711	3	02	3	.026	15	0	1	0	15	006	4
183		16			2	.346	2	.475	1	0	12	.003	1	001	15
184				-1107.32	3	089	3	.026	15	0	1	0	15	006	4
185		17		887.164	2	.253	2	.475	1	0	12	.003	1	001	15
186		17			3	159	3	.026	15	0	1	0	15	006	4
187		18	max		2	.161	2	.475	1	0	12	.003	1	001	15
188		10	min	-1106.539	3	228	3	.026	15	0	1	.003	15	006	4
189		10		888.206		.068	2	.475	1	_	12	.003	1		15
		19		-1106.149	2					0				001	
190	MO	4	min		3	298 7.66	3	.026	15	0	12	0	15	006	4
191	<u>M3</u>	1		637.805	2	7.66	4	.401	1	0	12	0	1	.006	4
192			min		3	1.801	15	.022	15	0	1	0	15	.001	15
193		2	max		2	6.899	4	.401	1	0	12	0	1_	.003	2
194			min		3	1.622	15	.022	15	0	1	0	15	0	12
195		3	max		2	6.138	4	.401	1	0	12	0	1	.001	2
196			min		3	1.443	15	.022	15	0	1	0	15	001	3
197		4	max	637.294	2	5.377	4	.401	1	0	12	.001	1	0	15

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
198			min	-784.395	3	1.264	15	.022	15	0	1	0	15	002	3
199		5	max	637.123	2	4.616	4	.401	1	0	12	.001	1	0	15
200			min	-784.522	3	1.085	15	.022	15	0	1	0	15	004	4
201		6	max	636.953	2	3.855	4	.401	1	0	12	.001	1	001	15
202			min	-784.65	3	.907	15	.022	15	0	1	0	15	006	4
203		7	max		2	3.094	4	.401	1	0	12	.002	1	002	15
204			min	-784.778	3	.728	15	.022	15	0	1	0	15	007	4
205		8	max	636.612	2	2.334	4	.401	1	0	12	.002	1	002	15
206			min	-784.906	3	.549	15	.022	15	0	1	0	15	008	4
207		9	max	636.442	2	1.573	4	.401	1	0	12	.002	1	002	15
208			min	-785.033	3	.37	15	.022	15	0	1	0	15	009	4
209		10	max	636.272	2	.812	4	.401	1	0	12	.002	1	002	15
210			min	-785.161	3	.191	15	.022	15	0	1	0	15	01	4
211		11	max	636.101	2	.18	2	.401	1	0	12	.002	1	002	15
212			min	-785.289	3	164	3	.022	15	0	1	0	15	01	4
213		12	max	635.931	2	167	15	.401	1	0	12	.002	1	002	15
214			min	-785.417	3	71	4	.022	15	0	1	0	15	01	4
215		13	max	635.76	2	346	15	.401	1	0	12	.003	1	002	15
216			min	-785.545	3	-1.471	4	.022	15	0	1	0	15	009	4
217		14	max	635.59	2	524	15	.401	1	0	12	.003	1	002	15
218			min	-785.672	3	-2.232	4	.022	15	0	1	0	15	009	4
219		15	max	635.42	2	703	15	.401	1	0	12	.003	1	002	15
220			min	-785.8	3	-2.993	4	.022	15	0	1	0	15	008	4
221		16	max	635.249	2	882	15	.401	1	0	12	.003	1	001	15
222			min	-785.928	3	-3.754	4	.022	15	0	1	0	15	006	4
223		17	max	635.079	2	-1.061	15	.401	1	0	12	.003	1	001	15
224			min	-786.056	3	-4.515	4	.022	15	0	1	0	15	004	4
225		18	max	634.909	2	-1.24	15	.401	1	0	12	.003	1	0	15
226			min	-786.183	3	-5.276	4	.022	15	0	1	0	15	002	4
227		19	max	634.738	2	-1.419	15	.401	1	0	12	.004	1	0	1
228			min	-786.311	3	-6.037	4	.022	15	0	1	0	15	0	1
229	M4	1	max	976.631	1	0	1	862	15	0	1	.003	1	0	1
230			min	49.901	15	0	1	-15.531	1	0	1	0	15	0	1
231		2	max	976.802	1	0	1	862	15	0	1	.002	1	0	1
232			min	49.952	15	0	1	-15.531	1	0	1	0	15	0	1
233		3	max	976.972	1	0	1	862	15	0	1	0	12	0	1
234			min	50.003	15	0	1	-15.531	1	0	1	0	1	0	1
235		4	max	977.142	1	0	1	862	15	0	1	0	15	0	1
236			min	50.055	15	0	1	-15.531	1	0	1	002	1	0	1
237		5	max	977.313	1	0	1	862	15	0	1	0	15	0	1
238			min	50.106	15	0	1	-15.531	1	0	1	004	1	0	1
239		6	max		1	0	1	862	15	0	1	0	15	0	1
240			min	50.158	15	0	1	-15.531	1	0	1	006	1	0	1
241		7	max	977.653	1	0	1	862	15	0	1	0	15	0	1
242			min	50.209	15	0	1	-15.531	1	0	1	007	1	0	1
243		8	max	977.824	1	0	1	862	15	0	1	0	15	0	1
244			min	50.26	15	0	1	-15.531	1	0	1	009	1	0	1
245		9	max		1	0	1	862	15	0	1	0	15	0	1
246			min		15	0	1	-15.531	1	0	1	011	1	0	1
247		10	max	978.164	1	0	1	862	15	0	1	0	15	0	1
248			min		15	0	1	-15.531	1	0	1	013	1	0	1
249		11	max		1	0	1	862	15	0	1	0	15	0	1
250			min	50.415	15	0	1	-15.531	1	0	1	014	1	0	1
251		12		978.505	1	0	1	862	15	0	1	0	15	0	1
252			min	50.466	15	0	1	-15.531	1	0	1	016	1	0	1
253		13		978.675	1	0	1	862	15	0	1	001	15	0	1
254			min	50.517	15	0	1	-15.531	1	0	1	018	1	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

055	Member	Sec		Axial[lb]						Torque[k-ft]					LC 1
255 256		14	max min	978.846 50.569	<u>1</u> 15	0	1	862 -15.531	<u>15</u> 1	0	<u>1</u> 1	001 02	<u>15</u> 1	0	1
257		15	max		1	0	1	862	15	0	1	001	15	0	1
258		10	min	50.62	15	0	1	-15.531	1	0	1	022	1	0	1
259		16	max		1	0	1	862	15	0	1	001	15	0	1
260			min	50.672	15	0	1	-15.531	1	0	1	023	1	0	1
261		17	max		1	0	1	862	15	0	1	001	15	0	1
262			min	50.723	15	0	1	-15.531	1	0	1	025	1	0	1
263		18	max		1	0	1	862	15	0	1	001	15	0	1
264			min	50.774	15	0	1	-15.531	1	0	1	027	1	0	1
265		19	max		1	0	1	862	15	0	1	002	15	0	1
266			min	50.826	15	0	1	-15.531	1	0	1	029	1	0	1
267	M6	1	max	2842.525	2	2.162	2	0	1	0	1	0	1	0	1
268			min	-3660.792	3	.348	12	0	1	0	1	0	1	0	1
269		2	max	2843.046	2	2.07	2	0	1	0	1	0	1	0	12
270			min	-3660.401	3	.302	12	0	1	0	1	0	1	0	2
271		3	max	2843.566	2	1.977	2	0	1	0	_1_	0	1	0	12
272			min	-3660.011	3	.255	12	0	1	0	1	0	1	001	2
273		4		2844.087	2	1.884	2	0	1	0	1	0	1_	0	12
274			min	-3659.62	3	.209	12	0	1_	0	1	0	1	002	2
275		5		2844.608	2	1.792	2	0	1	0	1	0	1	0	12
276			min	-3659.23	3	.163	12	0	1	0	1	0	1	003	2
277		6		2845.128	2	1.699	2	0	1	0	1	0	1	0	12
278		_	min	-3658.839	3	.101	3	0	1	0	1	0	1	003	2
279		7		2845.649	2	1.606	2	0	1	0	1	0	1	0	12
280		_	min	-3658.449	3	.031	3	0	1_	0	1_	0	1	004	2
281		8	max	2846.17 -3658.058	2	1.514	2	0	1	0	1	0	1	0	12
282		_	min		3	038	3	0	1	0	<u>1</u> 1	0	1	005	2
283		9		2846.69 -3657.668	3	1.421	3	0	1	0	1	0	1	0	12
284 285		10	min	2847.211	2	108 1.329	2	0	1	0	1	0	1	005 0	3
286		10	min	-3657.277	3	177	3	0	1	0	1	0	1	006	2
287		11		2847.732	2	1.236	2	0	1	0	1	0	1	0	3
288			min	-3656.887	3	247	3	0	1	0	1	0	1	006	2
289		12		2848.253	2	1.143	2	0	1	0	1	0	1	0	3
290			min	-3656.496	3	316	3	0	1	0	1	0	1	006	2
291		13		2848.773	2	1.051	2	0	1	0	1	0	1	0	3
292			min	-3656.106	3	385	3	0	1	0	1	0	1	007	2
293		14	max	2849.294	2	.958	2	0	1	0	1	0	1	0	3
294				-3655.715	3	455	3	0	1	0	1	0	1	007	2
295		15		2849.815	2	.866	2	0	1	0	1	0	1	0	3
296			min	-3655.325	3	524	3	0	1	0	1	0	1	008	2
297		16		2850.335	2	.773	2	0	1	0	1	0	1	0	3
298			min	-3654.934	3	594	3	0	1	0	1	0	1	008	2
299		17	max	2850.856	2	.68	2	0	1	0	1	0	1	0	3
300			min		3	663	3	0	1	0	1	0	1	008	2
301		18		2851.377	2	.588	2	0	1	0	1	0	1	0	3
302				-3654.153	3	733	3	0	1	0	1	0	1	008	2
303		19		2851.897	2	.495	2	0	1	0	1	0	1	.001	3
304				-3653.762	3	802	3	0	1	0	1	0	1	009	2
305	<u>M7</u>	1		2442.012	2	7.694	4	0	1	0	1	0	1	.009	2
306		_		-2477.97	3_	1.806	15	0	1_	0	1_	0	1	001	3
307		2		2441.842	2	6.933	4	0	1	0	1	0	1	.006	2
308				-2478.097	3_	1.628	15	0	1_	0	1	0	1	003	3
309		3		2441.671	2	6.172	4	0	1	0	1	0	1	.004	2
310				-2478.225	3	1.449	15	0	1_	0	1_	0	1	004	3
311		4	max	2441.501	2	5.411	4	0	1	0	<u>1</u>	0	1	.002	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-2478.353	3	1.27	15	0	1	0	1	0	1	005	3
313		5	max	2441.331	2	4.65	4	0	1	0	1	0	1	0	2
314			min	-2478.481	3	1.091	15	0	1	0	1	0	1	006	3
315		6	max		2	3.889	4	0	1	0	1	0	1	001	15
316			min	-2478.608	3	.912	15	0	1	0	1	0	1	007	3
317		7	max	2440.99	2	3.128	4	0	1	0	_1_	0	1	002	15
318			min	-2478.736	3	.733	15	0	1	0	1	0	1	007	3
319		8	max	2440.82	2	2.367	4	0	1	0	1	0	1	002	15
320			min	-2478.864	3	.534	12	0	1	0	1	0	1	008	4
321		9	max	2440.649	2	1.732	2	0	1	0	1	0	1	002	15
322			min	-2478.992	3	.238	12	0	1	0	1	0	1	009	4
323		10	max	2440.479	2	1.139	2	0	1	0	_1_	0	1_	002	15
324			min	-2479.119	3	152	3	0	1	0	1	0	1	01	4
325		11	max	2440.309	2	.546	2	0	1	0	1	0	1	002	15
326			min	-2479.247	3	597	3	0	1	0	1	0	1	01	4
327		12	max	2440.138	2	047	2	0	1	0	1	0	1	002	15
328			min	-2479.375	3	-1.041	3	0	1	0	1	0	1	01	4
329		13	max	2439.968	2	34	15	0	1	0	1	0	1	002	15
330			min	-2479.503	3	-1.486	3	0	1	0	1	0	1	009	4
331		14	max	2439.798	2	519	15	0	1	0	1	0	1	002	15
332			min	-2479.63	3	-2.199	4	0	1	0	1	0	1	009	4
333		15	max	2439.627	2	698	15	0	1	0	1	0	1	002	15
334			min	-2479.758	3	-2.96	4	0	1	0	1	0	1	007	4
335		16	max	2439.457	2	877	15	0	1	0	1	0	1	001	15
336			min	-2479.886	3	-3.721	4	0	1	0	1	0	1	006	4
337		17	max	2439.287	2	-1.056	15	0	1	0	1	0	1	001	15
338			min	-2480.014	3	-4.482	4	0	1	0	1	0	1	004	4
339		18	max	2439.116	2	-1.234	15	0	1	0	1	0	1	0	15
340			min	-2480.141	3	-5.243	4	0	1	0	1	0	1	002	4
341		19	max	2438.946	2	-1.413	15	0	1	0	1	0	1	0	1
342			min	-2480.269	3	-6.004	4	0	1	0	1	0	1	0	1
343	M8	1	max	2365.87	1	0	1	0	1	0	1	0	1	0	1
344			min	105.271	15	0	1	0	1	0	1	0	1	0	1
345		2	max	2366.04	1	0	1	0	1	0	1	0	1	0	1
346			min	105.323	15	0	1	0	1	0	1	0	1	0	1
347		3	max		1	0	1	0	1	0	1	0	1	0	1
348			min	105.374	15	0	1	0	1	0	1	0	1	0	1
349		4	max		1	0	1	0	1	0	1	0	1	0	1
350			min	105.425	15	0	1	0	1	0	1	0	1	0	1
351		5	max	2366.551	1	0	1	0	1	0	1	0	1	0	1
352				105.477	15	0	1	0	1	0	1	0	1	0	1
353		6		2366.721	1	0	1	0	1	0	1	0	1	0	1
354			min		15	0	1	0	1	0	1	0	1	0	1
355		7		2366.892	1	0	1	0	1	0	1	0	1	0	1
356			min	105.58	15	0	1	0	1	0	1	0	1	0	1
357		8		2367.062	1	0	1	0	1	0	1	0	1	0	1
358			min		15	0	1	0	1	0	1	0	1	0	1
359		9		2367.232	1	0	1	0	1	0	1	0	1	0	1
360				105.682	15	0	1	0	1	0	1	0	1	0	1
361		10		2367.403	1	0	1	0	1	0	1	0	1	0	1
362		1	min		15	0	1	0	1	0	1	0	1	0	1
363		11	_	2367.573	1	0	1	0	1	0	1	0	1	0	1
364			min		15	0	1	0	1	0	1	0	1	0	1
365		12	+	2367.743	1	0	1	0	1	0	1	0	1	0	1
366		14	min		15	0	1	0	1	0	1	0	1	0	1
367		13		2367.914		0	1	0	1	0	1	0	1	0	1
368		10	min		15	0	1	0	1	0	1	0	1	0	1
300			1111111	100.000	IU	U		U		U		U		U	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

		4 4		Axial[lb]							LC	y-y Mome	LU	_	LC
369		14		2368.084	1_	0	1	0	1_	0	1	0	1	0	1
370		4.5	min	105.939	15	0	1_	0	1_	0	1_	0	1	0	1
371		15		2368.254	1_	0	1	0	1	0	1	0	1	0	1
372		40		105.991	15	0	1	0	1_	0	1_	0	1	0	1
373		16		2368.425	1_	0	1	0	1_	0	1	0	1	0	1
374		47	min	106.042	<u>15</u>	0	1_	0	1_	0	1_	0	1	0	1
375		17		2368.595	1_	0	1	0	1	0	1	0	1	0	1
376		4.0	min	106.093	15	0	1_	0	_1_	0	1_	0	1	0	1
377		18		2368.765	1_	0	1	0	1_	0	1_	0	1	0	1
378		40	min	106.145	<u>15</u>	0	1_	0	1_	0	1_	0	1_	0	1
379		19		2368.936	1_	0	1	0	1	0	1	0	1	0	1
380	1440	4	min	106.196	<u>15</u>	0	1_	0	1_	0	1_	0	1	0	1
381	M10	1	max	878.833	2	2.016	4	026	15	0	1	0	2	0	1
382			min	-1113.178	3	.474	15	475	1_	0	12	0	3	0	1
383		2	max	879.354	2	1.898	4	026	<u>15</u>	0	1	0	15	0	15
384			min	-1112.788	3	.446	15	475	1_	0	12	0	1_	0	4
385		3	max	879.875	2	1.779	4	026	<u>15</u>	0	1	0	15	0	15
386		_	min	-1112.397	3	.419	15	475	1_	0	12	0	1_	001	4
387		4	max	880.395	2	1.66	4	026	15	0	1_	0	15	0	15
388		_	min	-1112.007	3	.391	15	475	1_	0	12	0	1_	002	4
389		5	max	880.916	2	1.541	4	026	15	0	1_	0	15	0	15
390			min	-1111.616	3	.363	15	475	_1_	0	12	0	1	003	4
391		6	max	881.437	2	1.422	4	026	15	0	1_	0	15	0	15
392			min	-1111.226	3	.335	15	475	1_	0	12	0	1	003	4
393		7	max	881.958	2	1.303	4	026	<u>15</u>	0	1_	0	15	0	15
394			min	-1110.835	3	.307	15	475	1_	0	12	0	1	004	4
395		8	max	882.478	2	1.184	4	026	15	0	_1_	0	15	0	15
396			min	-1110.445	3	.279	15	475	1_	0	12	001	1	004	4
397		9	max	882.999	2	1.066	4	026	15	0	1_	0	15	001	15
398			min	-1110.054	3	.251	15	475	1_	0	12	001	1	004	4
399		10	max	883.52	2	.947	4	026	<u>15</u>	0	_1_	0	15	001	15
400			min	-1109.664	3	.223	15	475	1_	0	12	002	1	005	4
401		11	max	884.04	2	.828	4	026	15	0	_1_	0	15	001	15
402			min	-1109.273	3	.187	12	475	1_	0	12	002	1	005	4
403		12	max	884.561	2	.716	2	026	<u>15</u>	0	_1_	0	15	001	15
404			min	-1108.882	3	.141	12	475	1	0	12	002	1	005	4
405		13	max	885.082	2	.624	2	026	<u>15</u>	0	_1_	0	15	001	15
406			min	-1108.492	3	.095	12	475	1_	0	12	002	1	006	4
407		14	max	885.602	2	.531	2	026	15	0	1_	0	15	001	15
408			min	-1108.101	3	.048	12	475	1	0	12	002	1	006	4
409		15	max	886.123	2	.439	2	026	<u> 15</u>	0	_1_	0	15	001	15
410			min	-1107.711	3	02	3	475	1_	0	12	002	1	006	4
411		16		886.644	2	.346	2	026	15	0	_1_	0	15	001	15
412				-1107.32	3	089	3	475	1	0	12	003	1	006	4
413		17		887.164	2	.253	2	026	15	0	1_	0	15	001	15
414				-1106.93	3	159	3	475	1	0	12	003	1	006	4
415		18		887.685	2	.161	2	026	15	0	1	0	15	001	15
416				-1106.539	3	228	3	475	1	0	12	003	1	006	4
417		19	max	888.206	2	.068	2	026	15	0	1	0	15	001	15
418			min	-1106.149	3	298	3	475	1	0	12	003	1	006	4
419	M11	1		637.805	2	7.66	4	022	15	0	1	0	15	.006	4
420				-784.011	3	1.801	15	401	1	0	12	0	1	.001	15
421		2		637.634	2	6.899	4	022	15	0	1	0	15	.003	2
422				-784.139	3	1.622	15	401	1	0	12	0	1	0	12
423		3	max		2	6.138	4	022	15	0	1	0	15	.001	2
424				-784.267	3	1.443	15	401	1	0	12	0	1	001	3
425		4		637.294	2	5.377	4	022	15	0	1	0	15	0	15

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]			LC	z-z Mome	<u>LC</u>
426			min	-784.395	3	1.264	15	401	1	0	12	001	1	002	3
427		5	max	637.123	2	4.616	4	022	15	0	1	0	15	0	15
428			min	-784.522	3	1.085	15	401	1	0	12	001	1	004	4
429		6	max	636.953	2	3.855	4	022	15	0	1	0	15	001	15
430			min	-784.65	3	.907	15	401	1	0	12	001	1	006	4
431		7	max	636.783	2	3.094	4	022	15	0	1	0	15	002	15
432			min	-784.778	3	.728	15	401	1	0	12	002	1	007	4
433		8	max	636.612	2	2.334	4	022	15	0	1	0	15	002	15
434			min	-784.906	3	.549	15	401	1	0	12	002	1	008	4
435		9	max	636.442	2	1.573	4	022	15	0	1	0	15	002	15
436			min	-785.033	3	.37	15	401	1	0	12	002	1	009	4
437		10	max	636.272	2	.812	4	022	15	0	1	0	15	002	15
438			min	-785.161	3	.191	15	401	1	0	12	002	1	01	4
439		11	max	636.101	2	.18	2	022	15	0	1	0	15	002	15
440			min	-785.289	3	164	3	401	1	0	12	002	1	01	4
441		12	max	635.931	2	167	15	022	15	0	1	0	15	002	15
442			min	-785.417	3	71	4	401	1	0	12	002	1	01	4
443		13	max	635.76	2	346	15	022	15	0	1	0	15	002	15
444			min	-785.545	3	-1.471	4	401	1	0	12	003	1	009	4
445		14	max	635.59	2	524	15	022	15	0	1	0	15	002	15
446			min	-785.672	3	-2.232	4	401	1	0	12	003	1	009	4
447		15	max	635.42	2	703	15	022	15	0	1	0	15	002	15
448			min	-785.8	3	-2.993	4	401	1	0	12	003	1	008	4
449		16	max	635.249	2	882	15	022	15	0	1	0	15	001	15
450			min	-785.928	3	-3.754	4	401	1	0	12	003	1	006	4
451		17	max	635.079	2	-1.061	15	022	15	0	1	0	15	001	15
452			min	-786.056	3	-4.515	4	401	1	0	12	003	1	004	4
453		18	max	634.909	2	-1.24	15	022	15	0	1	0	15	0	15
454			min	-786.183	3	-5.276	4	401	1	0	12	003	1	002	4
455		19	max	634.738	2	-1.419	15	022	15	0	1	0	15	0	1
456			min	-786.311	3	-6.037	4	401	1	0	12	004	1	0	1
457	M12	1	max	976.631	1	0	1	15.531	1	0	1	0	15	0	1
458			min	49.901	15	0	1	.862	15	0	1	003	1	0	1
459		2	max	976.802	1	0	1	15.531	1	0	1	0	15	0	1
460			min	49.952	15	0	1	.862	15	0	1	002	1	0	1
461		3	max	976.972	1	0	1	15.531	1	0	1	0	1	0	1
462			min	50.003	15	0	1	.862	15	0	1	0	12	0	1
463		4	max	977.142	1	0	1	15.531	1	0	1	.002	1	0	1
464			min	50.055	15	0	1	.862	15	0	1	0	15	0	1
465		5	max	977.313	1	0	1	15.531	1	0	1	.004	1	0	1
466			min	50.106	15	0	1	.862	15	0	1	0	15	0	1
467		6		977.483	1	0	1	15.531	1	0	1	.006	1	0	1
468			min	50.158	15	0	1	.862	15	0	1	0	15	0	1
469		7	max	977.653	1	0	1	15.531	1	0	1	.007	1	0	1
470			min	50.209	15	0	1	.862	15	0	1	0	15	0	1
471		8	max	977.824	1	0	1	15.531	1	0	1	.009	1	0	1
472			min	50.26	15	0	1	.862	15	0	1	0	15	0	1
473		9	max		1	0	1	15.531	1	0	1	.011	1	0	1
474			min	50.312	15	0	1	.862	15	0	1	0	15	0	1
475		10	max		1	0	1	15.531	1	0	1	.013	1	0	1
476			min	50.363	15	0	1	.862	15	0	1	0	15	0	1
477		11		978.335	1	0	1	15.531	1	0	1	.014	1	0	1
478			min	50.415	15	0	1	.862	15	0	1	0	15	0	1
479		12	max		1	0	1	15.531	1	0	1	.016	1	0	1
480			min	50.466	15	0	1	.862	15	0	1	0	15	0	1
481		13			1	0	1	15.531	1	0	1	.018	1	0	1
482			min	50.517	15	0	1	.862	15	0	1	.001	15	0	1
										_					

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	LC
483		14	max	978.846	1	0	1	15.531	1	0	1	.02	1	0	1
484			min	50.569	15	0	1	.862	15	0	1	.001	15	0	1
485		15	max		1	0	1	15.531	1	0	1	.022	1	0	1
486			min	50.62	15	0	1	.862	15	0	1	.001	15	0	1
487		16	max	979.187	1	0	1	15.531	1	0	1	.023	1	0	1
488			min	50.672	15	0	1	.862	15	0	1	.001	15	0	1
489		17	max	979.357	1	0	1	15.531	1	0	1	.025	1	0	1
490			min	50.723	15	0	1	.862	15	0	1	.001	15	0	1
491		18	max	979.527	1	0	1	15.531	1	0	1	.027	1	0	1
492		-10	min	50.774	15	0	1	.862	15	0	1	.001	15	0	1
493		19	max	979.698	1	0	1	15.531	1	0	1	.029	1	0	1
494		-10	min	50.826	15	0	1	.862	15	0	1	.002	15	0	1
495	M1	1	max	201.043	1	584.909	3	-7.801	15	0	2	.336	1	.002	3
496	1711		min	11.138	15	-362.126	2	-140.137	1	0	3	.019	15	011	2
497		2	max	201.865	1	584.028	3	-7.801	15	0	2	.262	1	.18	2
498			min	11.386	15	-363.299	2	-140.137	1	0	3	.015	15	307	3
499		3	max	488.41	3	430.271	2	-7.776	15	0	3	.188	1	.362	2
500		<u> </u>		-279.415	2	-428.598	3	-139.93	1	0	2	.01	15	603	3
501		4	max	489.026	3	429.098	2	-7.776	15	0	3	.114	1	.144	1
502				-278.593	2	-429.478	3	-139.93	1	0	2	.006	15	376	3
503		5	max	489.642	3	427.925	2	-7.776	15	0	3	.041	1	003	15
504)	min		2	-430.358	3	-139.93	1	0	2	.002	15	149	3
505		6			3	426.751	2	-7.776	15	0	3	002	15	.078	3
506		O	max min	-276.95	2	-431.238	3	-139.93	1	0	2	002	1	316	2
		7		490.874				-139.93 -7.776					_		
507			max	-276.128	<u>3</u>	425.578 -432.118	3	-139.93	1 <u>5</u>	0	<u>3</u> 2	006 107	1 <u>5</u>	.306 541	3
508		0	min						_				_		
509		8	max		3_	424.404	2	-7.776	15	0	3	01	15	.534	3
510		_		-275.307	2	-432.998	3	-139.93	1_	0	2	181	1	765	2
511		9	max	510.103	3	45.119	2	-11.151	15	0	9	.104	1	.622	3
512		4.0	min	-184.35	2	.359	15	-200.567	1_	0	3	.006	15	877	2
513		10	max	510.72	3_	43.945	2	-11.151	15	0	9	0	15	.607	3
514		4.4		-183.528	2	.005	15	-200.567	1_	0	3	001	1	901	2
515		11		511.336	3_	42.772	2	-11.151	15	0	9	006	15	.592	3
516		40		-182.707	2	-1.413	4	-200.567	1_	0	3	107	1	923	2
517		12	max	529.88	3	290.349	3	-7.589	15	0	2	.179	1	.516	3
518		4.0	min	-98.313	10	-517.112	2	-136.72	1_	0	3	.01	15	819	2
519		13	max	530.496	3_	289.469	3	-7.589	15	0	2	.106	1	.363	3
520			min	-97.629	10	-518.285	2	-136.72	1_	0	3	.006	15	546	2
521		14	max	531.113	3	288.588	3	-7.589	15	0	2	.034	1	.21	3
522		4.5	min	<u>-96.944</u>	10	-519.459	2	-136.72	1_	0	3	.002	15	272	2
523		15		531.729		287.708		-7.589	15	0	2	002	15	.058	3
524				-96.259	<u> 10</u>	-520.632	2	-136.72	1_	0	3	038	1	019	1
525		16		532.345	3_	286.828	3	-7.589	15	0	2	006	15	.277	2
526				-95.575	10	-521.806	2	-136.72	1	0	3	11	1	093	3
527		17		532.961	3_	285.948	3	-7.589	15	0	2	01	15	.553	2
528			min	-94.89	10	-522.979	2	-136.72	1	0	3	182	1	244	3
529		18		-11.395	<u>15</u>	543.893	2	-8.428	15	0	3_	014	15	.278	2
530			min	-202.087	_1_	-246.052	3	-151.535		0	2	258	1	121	3
531		19	max		15	542.72	2	-8.428	15	0	3	019	15	.009	3
532				-201.265	1_	-246.932	3	-151.535	1	0	2	338	1	008	2
533	M5	11		431.557	_1_	1949.731	3	0	1	0	_1_	0	1	.023	2
534				22.817	12	-1223.161	2	0	1	0	1	0	1	003	3
535		2		432.379	_1_	1948.851	3	0	1	0	_1_	0	1	.668	2
536				23.228	12	-1224.334	2	0	1	0	1	0	1	-1.032	3
							_	i e	1			1			1 2
537		3	max	1576.045	3_	1325.676	2	0	1	0	_1_	0	1	1.284	2
		3	min	1576.045 -1004.552 1576.661	2	1325.676 -1397.204 1324.503	2 3 2	0 0	1 1 1	0 0	1 1 1	0 0	1	1.284 -2.02 .594	3

: Schletter, Inc. : HCV

Model Name

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
540			min	-1003.73	2	-1398.085	3	0	1	0	1	0	1	-1.282	3
541		5		1577.277	3	1323.329	2	0	1	0	1	0	1	0	9
542			min	-1002.909	2	-1398.965	3	0	1	0	1	0	1	544	3
543		6	max	1577.893	3	1322.156	2	0	1	0	1	0	1	.194	3
544			min	-1002.087	2	-1399.845	3	0	1	0	1	0	1	812	2
545		7	max	1578.509	3	1320.983	2	0	1	0	1	0	1	.933	3
546			min	-1001.265	2	-1400.725	3	0	1	0	1	0	1	-1.509	2
547		8	max	1579.126	3	1319.809	2	0	1	0	1	0	1	1.673	3
548			min	-1000.444	2	-1401.605	3	0	1	0	1	0	1	-2.206	2
549		9	max	1612.905	3	150.417	2	0	1	0	1	0	1	1.921	3
550			min	-814.291	2	.357	15	0	1	0	1	0	1	-2.515	2
551		10	max	1613.522	3	149.244	2	0	1	0	1	0	1	1.867	3
552				-813.47	2	.003	15	0	1	0	1	0	1	-2.594	2
553		11	max	1614.138	3	148.07	2	0	1	0	1	0	1	1.813	3
554			min	-812.648	2	-1.233	4	0	1	0	1	0	1	-2.672	2
555		12		1648.055	3	940.373	3	0	1	0	1	0	1	1.595	3
556				-626.513	2	-1625.665	2	0	1	0	1	0	1	-2.394	2
557		13		1648.671	3	939.493	3	0	1	0	1	0	1	1.099	3
558				-625.692	2	-1626.838	2	0	1	0	1	0	1	-1.536	2
559		14		1649.287	3	938.613	3	0	1	0	1	0	1	.603	3
560			min		2	-1628.011	2	0	1	0	1	0	1	678	2
561		15		1649.903	3	937.733	3	0	1	0	1	0	1	.182	2
562				-624.049	2	-1629.185	2	0	1	0	1	0	1	004	13
563		16			3	936.853	3	0	1	0	1	0	1	1.042	2
564			min	-623.227	2	-1630.358	2	0	1	0	1	0	1	386	3
565		17		1651.136	3	935.973	3	0	1	Ö	1	0	1	1.902	2
566			min	-622.405	2	-1631.532	2	0	1	0	1	0	1	88	3
567		18	max		12	1826.24	2	0	1	0	1	0	1	.98	2
568				-431.936	1	-837.668	3	0	1	0	1	0	1	46	3
569		19	max	-23.083	12	1825.067	2	0	1	0	1	0	1	.017	2
570		13		-431.114	1	-838.548	3	0	1	0	1	0	1	018	3
571	M9	1	max		1	584.909	3	140.137	1	0	3	019	15	.002	3
572	IVIO		min	11.138	15	-362.126	2	7.801	15	0	2	336	1	011	2
573		2	max	201.865	1	584.028	3	140.137	1	0	3	015	15	.18	2
574			min	11.386	15	-363.299	2	7.801	15	0	2	262	1	307	3
575		3	max	488.41	3	430.271	2	139.93	1	0	2	01	15	.362	2
576			min	-279.415	2	-428.598	3	7.776	15	0	3	188	1	603	3
577		4	max		3	429.098	2	139.93	1	0	2	006	15	.144	1
578				-278.593	2	-429.478	3	7.776	15	0	3	114	1	376	3
579		5	max		3	427.925	2	139.93	1	0	2	002	15	003	15
580				-277.772	2	-430.358		7.776	15	0	3	041	1	149	3
581		6		490.258	3	426.751	2	139.93	1	0	2	.033	1	.078	3
582		J		-276.95	2	-431.238	3	7.776	15	0	3	.002	15	316	2
583		7		490.874	3	425.578	2	139.93	1	0	2	.107	1	.306	3
584		,	min	-276.128	2	-432.118	3	7.776	15	0	3	.006	15	541	2
585		8		491.491	3	424.404	2	139.93	1	0	2	.181	1	.534	3
586		0		-275.307	2	-432.998	3	7.776	15	0	3	.01	15	765	2
587		9		510.103	3	45.119	2	200.567	1	0	3	006	15	.622	3
		9		-184.35							9		1		2
588		10			2	.359 43.945	15	11.151 200.567	15	0	3	104 .001	1	877 .607	
589 590		10	max	510.72 -183.528	2	.005	<u>2</u>	11.151	1 15	0	9	0	15	901	2
		11		511.336				200.567		_	3	.107			
591		11		-182.707	3	42.772	2		1	0			1	.592	2
592		10			2	-1.413	4	11.151	15	0	9	.006	15	923 923	
593		12	max		3	290.349	3	136.72	1	0	3	01	15	.516	3
594		10	min	-98.313	<u>10</u>	-517.112	2	7.589	15	0	2	179	1	819	2
595		13	max		3	289.469	3	136.72	1	0	3	006	15	.363	3
596			min	-97.629	10	-518.285	2	7.589	15	0	2	106	1	546	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:_

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	531.113	3	288.588	3	136.72	1	0	3	002	15	.21	3
598			min	-96.944	10	-519.459	2	7.589	15	0	2	034	1	272	2
599		15	max	531.729	3	287.708	3	136.72	1	0	3	.038	1	.058	3
600			min	-96.259	10	-520.632	2	7.589	15	0	2	.002	15	019	1
601		16	max	532.345	3	286.828	3	136.72	1	0	3	.11	1	.277	2
602			min	-95.575	10	-521.806	2	7.589	15	0	2	.006	15	093	3
603		17	max	532.961	3	285.948	3	136.72	1	0	3	.182	1	.553	2
604			min	-94.89	10	-522.979	2	7.589	15	0	2	.01	15	244	3
605		18	max	-11.395	15	543.893	2	151.535	1	0	2	.258	1	.278	2
606			min	-202.087	1	-246.052	3	8.428	15	0	3	.014	15	121	3
607		19	max	-11.147	15	542.72	2	151.535	1	0	2	.338	1	.009	3
608			min	-201.265	1	-246.932	3	8.428	15	0	3	.019	15	008	2

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.089	2	.008	3 7.512e-3	2	NC	1_	NC	1
2			min	0	15	013	3	004	2 -1.494e-3	3	NC	1	NC	1
3		2	max	.001	1	.381	3	.063	1 8.763e-3	2	NC	5	NC	2
4			min	0	15	144	1	.004	15 -1.663e-3	3	686.57	3	4388.338	1
5		3	max	.001	1	.699	3	.154	1 1.001e-2	2	NC	5	NC	3
6			min	0	15	32	1	.009	15 -1.832e-3	3	379.464	3	1769.316	1
7		4	max	0	1	.892	3	.234	1 1.127e-2	2	NC	15	NC	3
8			min	0	15	421	1	.013	15 -2.001e-3	3	298.525	3	1162.535	1
9		5	max	0	1	.936	3	.275	1 1.252e-2	2	NC	15	NC	5
10			min	0	15	433	1	.016	15 -2.17e-3	3	284.658	3	985.666	1
11		6	max	0	1	.834	3	.267	1 1.377e-2	2	NC	5	NC	5
12			min	0	15	357	1	.015	15 -2.339e-3	3	318.747	3	1016.946	1
13		7	max	0	1	.618	3	.211	1 1.502e-2	2	NC	5	NC	5
14			min	0	15	213	1	.012	15 -2.508e-3	3	428.329	3	1290.193	1
15		8	max	0	1	.343	3	.123	1 1.627e-2	2	NC	5	NC	3
16			min	0	15	037	1	.007	15 -2.677e-3	3	759.58	3	2213.897	1
17		9	max	0	1	.146	2	.036	1 1.752e-2	2	NC	4	NC	2
18			min	0	15	.004	15	005	10 -2.845e-3	3	2539.375	3	7780.633	1
19		10	max	0	1	.219	2	.026	3 1.877e-2	2	NC	3	NC	1
20			min	0	1	019	3	018	2 -3.014e-3	3	2076.628	2	NC	1
21		11	max	0	15	.146	2	.036	1 1.752e-2	2	NC	4	NC	2
22			min	0	1	.004	15	005	10 -2.845e-3	3	2539.375	3	7780.633	1
23		12	max	0	15	.343	3	.123	1 1.627e-2	2	NC	5	NC	3
24			min	0	1	037	1	.007	15 -2.677e-3	3	759.58	3	2213.897	1
25		13	max	0	15	.618	3	.211	1 1.502e-2	2	NC	5	NC	5
26			min	0	1	213	1	.012	15 -2.508e-3	3	428.329	3	1290.193	1
27		14	max	0	15	.834	3	.267	1 1.377e-2	2	NC	5	NC	5
28			min	0	1	357	1	.015	15 -2.339e-3	3	318.747	3	1016.946	1
29		15	max	0	15	.936	3	.275	1 1.252e-2	2	NC	15	NC	5
30			min	0	1	433	1	.016	15 -2.17e-3	3	284.658	3	985.666	1
31		16	max	0	15	.892	3	.234	1 1.127e-2	2	NC	15	NC	3
32			min	0	1	421	1	.013	15 -2.001e-3	3	298.525	3	1162.535	1
33		17	max	0	15	.699	3	.154	1 1.001e-2	2	NC	5	NC	3
34			min	001	1	32	1	.009	15 -1.832e-3	3	379.464	3	1769.316	1
35		18	max	0	15	.381	3	.063	1 8.763e-3	2	NC	5	NC	2
36			min	001	1	144	1	.004	15 -1.663e-3	3	686.57	3	4388.338	1
37		19	max	0	15	.089	2	.008	3 7.512e-3	2	NC	1	NC	1
38			min	001	1	013	3	004	2 -1.494e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.189	3	.007	3 4.434e-3	2	NC	1	NC	1
40			min	0	15	295	2	004	2 -3.257e-3	3	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
41		2	max	0	1	.558	3	.044	1	5.359e-3	2	NC	_5_	NC	2
42			min	0	15	631	2	.003	15	-4.004e-3	3	733.261	3	6293.032	1
43		3	max	0	1	.866	3	.126	1	6.283e-3	2	NC	<u>15</u>	NC	3
44			min	0	15	919	2	.007		-4.751e-3	3	398.803	3	2174.867	1
45		4	max	0	1	1.075	3	.203	1	7.207e-3	2	NC 204.744	<u>15</u>	NC	3
46 47		E	min	0	15 1	<u>-1.123</u>	2	.011	15	-5.498e-3	3	304.744	3	1343.357	5
		5	max	0	15	1.165 -1.227	2	.247	1	8.131e-3 -6.246e-3	2	9173.649	<u>15</u>	NC	
48 49		6	min	0	1	1.136	3	.014 .244	1 <u>5</u>	9.056e-3	3	276.815 9253.711	<u>3</u> 15	1101.483 NC	5
50		0	max min	0	15	-1.232	2	.014	15	-6.993e-3	3	285.359	3	1112.652	1
51		7	max	0	1	1.009	3	.196	1	9.98e-3	2	NC	<u> </u>	NC	5
52		+	min	0	15	-1.153	2	.011	15	-7.74e-3	3	314.776	2	1390.729	1
53		8	max	0	1	.829	3	.116	1	1.09e-2	2	NC	15	NC	3
54			min	0	15	-1.024	2	.007		-8.487e-3	3	370.378	2	2357.654	1
55		9	max	0	1	.657	3	.035	1	1.183e-2	2	NC	5	NC	2
56		 	min	0	15	896	2	004	10	-9.234e-3	3	449.487	2	8137.656	
57		10	max	0	1	.577	3	.023	3	1.275e-2	2	NC	5	NC	1
58			min	0	1	835	2	016	2	-9.981e-3	3	500.025	2	NC	1
59		11	max	0	15	.657	3	.035	1	1.183e-2	2	NC	5	NC	2
60			min	0	1	896	2	004	10	-9.234e-3	3	449.487	2	8137.656	1
61		12	max	0	15	.829	3	.116	1	1.09e-2	2	NC	15	NC	3
62			min	0	1	-1.024	2	.007	15	-8.487e-3	3	370.378	2	2357.654	1
63		13	max	0	15	1.009	3	.196	1	9.98e-3	2	NC	15	NC	5
64			min	0	1	-1.153	2	.011	15	-7.74e-3	3	314.776	2	1390.729	1
65		14	max	0	15	1.136	3	.244	1	9.056e-3	2	9253.711	15	NC	5
66			min	0	1	-1.232	2	.014	15	-6.993e-3	3	285.359	3	1112.652	1
67		15	max	0	15	1.165	3	.247	1	8.131e-3	2	9173.649	<u>15</u>	NC	5
68			min	0	1	-1.227	2	.014	15		3	276.815	3	1101.483	
69		16	max	0	15	1.075	3	.203	1	7.207e-3	2	NC	15	NC	3
70		l	min	0	1	-1.123	2	.011	15	-5.498e-3	3	304.744	3	1343.357	1
71		17	max	0	15	.866	3	.126	1	6.283e-3	2	NC	<u>15</u>	NC	3
72		10	min	0	1	<u>919</u>	2	.007	15	-4.751e-3	3	398.803	3_	2174.867	1
73		18	max	0	15	.558	3	.044	1	5.359e-3	2	NC	_5_	NC	2
74		40	min	0	1	631	2	.003	15	-4.004e-3	3	733.261	3	6293.032	1
75		19	max	0	15	.189	3	.007	3	4.434e-3	2	NC	1_	NC NC	1
76	NAC.	4	min	0	1	29 <u>5</u>	2	004	2	-3.257e-3	3	NC NC	1_	NC NC	1
77	M15	1	max	0	15	.192	2	.007	2	2.875e-3	3	NC NC	1	NC NC	1
78		2	min	0		294 426		003	1	-4.66e-3	2	NC NC	1_	NC NC	2
79 80			max min	0	15	.426 751	3	.045	15	3.542e-3 -5.635e-3	2	591.219	<u>5</u>	6265.213	1
81		3	max	0	15	.626	3	.126		4.209e-3		NC	15		3
82		-	min	0	1	-1.135	2	.007		-6.611e-3		320.943		2169.299	
83		4	max	0	15	.769	3	.203	1	4.876e-3	3	NC	15	NC	3
84			min	0	1	-1.399	2	.011	_	-7.587e-3	2	244.431		1340.722	
85		5	max	0	15	.843	3	.247	1	5.542e-3	3	9189.477	15	NC	3
86			min	0	1	-1.517	2	.014	<u> </u>	-8.563e-3	2	220.848	2	1099.552	
87		6	max	0	15	.849	3	.245	1	6.209e-3	3	9273.053	15	NC	5
88			min	0	1	-1.49	2	.014	_	-9.538e-3	2	225.749		1110.658	
89		7	max	0	15	.798	3	.196	1	6.876e-3	3	NC	15	NC	5
90			min	0	1	-1.345	2	.011		-1.051e-2	2	256.923	2	1387.721	1
91		8	max	0	15	.712	3	.116	1	7.542e-3	3	NC	15	NC	3
92			min	0	1	-1.132	2	.007	15	-1.149e-2	2	322.141	2	2349.507	1
93		9	max	0	15	.626	3	.035	1	8.209e-3	3	NC	5	NC	2
94			min	0	1	928	2	003	10	-1.247e-2	2	426.058	2	8046.712	1
95		10	max	0	1	.585	3	.022	3	8.876e-3	3	NC	5	NC	1
96			min	0	1	833	2	015	2	-1.344e-2	2	501.291	2	NC	1
97		11	max	0	1	.626	3	.035	1	8.209e-3	3	NC	5	NC	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					LC
98			min	0	15	928	2	003	10 -1.247e-2	2	426.058	2	8046.712	1
99		12	max	0	1	.712	3	.116	1 7.542e-3	3	NC	15	NC	3
100			min	0	15	-1.132	2	.007	15 -1.149e-2	2	322.141	2	2349.507	1
101		13	max	0	1	.798	3	.196	1 6.876e-3	3	NC	15	NC	5
102			min	0	15	-1.345	2	.011	15 -1.051e-2	2	256.923	2	1387.721	1
103		14	max	0	1	.849	3	.245	1 6.209e-3	3	9273.053	15	NC	5
104			min	0	15	-1.49	2	.014	15 -9.538e-3	2	225.749	2	1110.658	1
105		15	max	0	1	.843	3	.247	1 5.542e-3	3	9189.477	15	NC	3
106			min	0	15	-1.517	2	.014	15 -8.563e-3	2	220.848	2	1099.552	1
107		16	max	0	1	.769	3	.203	1 4.876e-3	3	NC	15	NC	3
108		1.0	min	0	15	-1.399	2	.011	15 -7.587e-3	2	244.431	2	1340.722	1
109		17	max	0	1	.626	3	.126	1 4.209e-3	3	NC	15	NC	3
110		111	min	0	15	-1.135	2	.007	15 -6.611e-3	2	320.943	2	2169.299	1
111		18	max	0	1	.426	3	.045	1 3.542e-3	3	NC	5	NC	2
112		10	min	0	15	751	2	.003	15 -5.635e-3	2	591.219	2	6265.213	1
113		19	max	0	1	.192	3	.003	3 2.875e-3	3	NC	1	NC	1
114		19		0	15	294	2	003	2 -4.66e-3	2	NC NC	1	NC	1
	MAC	4	min								NC NC			
115	M16	1	max	0	15	.078	2	.006	3 4.925e-3	3_		1_	NC NC	1
116			min	002	1	06	3	003	2 -6.125e-3	2	NC NC	1_	NC NC	1
117		2	max	0	15	.09	3	.062	1 5.902e-3	3_	NC	5_	NC	2
118			min	001	1	271	2	.004	15 -7.043e-3	2	772.929	2	4420.3	1
119		3	max	0	15	.208	3	.153	1 6.88e-3	3_	NC	5_	NC	3
120			min	001	1	551	2	.009	15 -7.961e-3	2	429.111	2	1775.872	1
121		4	max	0	15	.274	3	.233	1 7.858e-3	3_	NC	5	NC	3
122			min	001	1	715	2	.013	15 -8.879e-3	2	340.409	2	1164.684	1
123		5	max	0	15	.278	3	.275	1 8.835e-3	3_	NC	<u>15</u>	NC	5
124			min	0	1	741	2	.015	15 -9.797e-3	2	329.383	2	986.076	1
125		6	max	0	15	.221	3	.267	1 9.813e-3	3	NC	5	NC	5
126			min	0	1	634	2	.015	15 -1.072e-2	2	378.991	2	1015.768	1
127		7	max	0	15	.118	3	.211	1 1.079e-2	3	NC	5	NC	5
128			min	0	1	421	2	.012	15 -1.163e-2	2	540.168	2	1285.503	1
129		8	max	0	15	0	15	.124	1 1.177e-2	3	NC	4	NC	3
130			min	0	1	157	2	.007	15 -1.255e-2	2	1146.015	2	2192.689	1
131		9	max	0	15	.096	1	.037	1 1.275e-2	3	NC	1	NC	2
132			min	0	1	12	3	002	10 -1.347e-2	2	4523.176	3	7461.703	1
133		10	max	0	1	.187	2	.019	3 1.372e-2	3	NC	4	NC	1
134		10	min	0	1	17	3	014	2 -1.439e-2	2	2462.272	3	NC	1
135		11	max	0	1	.096	1	.037	1 1.275e-2	3	NC	1	NC	2
136			min	0	15	12	3	002	10 -1.347e-2	2	4523.176	3	7461.703	1
137		12	max	0	1	0	15	.124	1 1.177e-2	3	NC	4	NC	3
138		14	min	0	15	157	2	.007	15 -1.255e-2	2	1146.015		2192.689	
139		13		0	1	.118	3	.211	1 1.079e-2	3	NC	5	NC	5
140		13	max	0	15	421	2	.012	15 -1.163e-2	2	540.168	2	1285.503	
141		1.1	min	0	1	.221	3	.012 .267			NC		NC	5
		14	max							3		5		
142		15	min	0	15	634	2	.015	15 -1.072e-2	2	378.991	<u>2</u>	1015.768	1
143		15	max	0	1	.278	3	.275	1 8.835e-3	3	NC 220 202	<u>15</u>	NC 000 070	5
144		40	min	0	15	741	2	.015	15 -9.797e-3	2	329.383	2	986.076	1
145		16	max	.001	1	.274	3	.233	1 7.858e-3	3_	NC 0.40, 400	5_	NC	3
146			min	0	15	71 <u>5</u>	2	.013	15 -8.879e-3	2	340.409	2	1164.684	1
147		17	max	.001	1	.208	3	.153	1 6.88e-3	3	NC	5_	NC	3
148			min	0	15	551	2	.009	15 -7.961e-3	2	429.111	2	1775.872	1
149		18	max	.001	1	.09	3	.062	1 5.902e-3	3	NC	5	NC	2
150			min	0	15	271	2	.004	15 -7.043e-3	2	772.929	2	4420.3	1
151		19	max	.002	1	.078	2	.006	3 4.925e-3	3	NC	1_	NC	1
152			min	0	15	06	3	003	2 -6.125e-3	2	NC	1	NC	1
153	M2	1	max	.007	2	.008	2	.011	1 -1.79e-5	15	NC	1_	NC	2
154			min	008	3	013	3	0	15 -3.223e-4	1	NC	1	7111.097	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]					LC	(n) L/z Ratio	
155		2	max	.006	2	.006	2	.01		-1.694e-5	<u>15</u>	NC	_1_	NC	2
156			min	008	3	013	3	0		-3.049e-4	1_	NC	1_	7750.189	1
157		3	max	.006	2	.005	2	.009		-1.597e-5	<u>15</u>	NC	<u>1</u>	NC	2
158			min	007	3	012	3	0	15	-2.875e-4	1_	NC	1_	8510.815	1
159		4	max	.005	2	.004	2	.008	1	-1.5e-5	15	NC	1	NC	2
160			min	007	3	012	3	0	15	-2.701e-4	1	NC	1	9424.893	1
161		5	max	.005	2	.003	2	.007	1	-1.404e-5	15	NC	1	NC	1
162			min	006	3	012	3	0	15	-2.527e-4	1	NC	1	NC	1
163		6	max	.005	2	.002	2	.006	1	-1.307e-5	15	NC	1	NC	1
164			min	006	3	011	3	0		-2.353e-4	1	NC	1	NC	1
165		7	max	.004	2	0	2	.006	1	-1.21e-5	15	NC	1	NC	1
166			min	005	3	011	3	0	15	-2.179e-4	1	NC	1	NC	1
167		8	max	.004	2	0	2	.005		-1.114e-5	15	NC	1	NC	1
168			min	005	3	01	3	0		-2.005e-4	1	NC	1	NC	1
169		9	max	.004	2	0	2	.004		-1.017e-5	•	NC	1	NC	1
170			min	005	3	01	3	0		-1.831e-4	1	NC	1	NC	1
171		10	max	.003	2	001	2	.003		-9.204e-6	•	NC	1	NC	1
172		10	min	004	3	009	3	0		-1.657e-4	1	NC	1	NC	1
173		11	max	.003	2	00 <u>3</u> 001	15	.003		-8.238e-6	15	NC	1	NC	1
174				004	3	001	3	<u>.003</u>		-0.236e-6 -1.483e-4	1	NC NC	1	NC NC	1
175		12	min	.003	2	006 001	15	.002		-7.272e-6		NC NC	1	NC NC	1
		12	max		3										
176		40	min	003		008	3	0		-1.309e-4	1_	NC NC	1_	NC NC	1
177		13	max	.002	2	001	15	.002		-6.305e-6		NC NC	1_	NC	1
178		4.4	min	003	3	007	3	0		-1.135e-4	1_	NC	1_	NC NC	1
179		14	max	.002	2	001	15	.001		-5.339e-6		NC NC	1	NC	1
180		4.5	min	002	3	006	3	0		-9.606e-5	1_	NC	1_	NC	1
181		15	max	.001	2	001	15	0		-4.373e-6	<u>15</u>	NC	1_	NC	1
182			min	002	3	005	3	0		-7.866e-5	_1_	NC	1_	NC	1
183		16	max	.001	2	0	15	0		-3.406e-6		NC	1_	NC	1
184			min	001	3	004	4	0		-6.125e-5	_1_	NC	1_	NC	1
185		17	max	0	2	0	15	0	1	-2.44e-6	<u>15</u>	NC	_1_	NC	1
186			min	0	3	003	4	0		-4.385e-5	1_	NC	1_	NC	1
187		18	max	0	2	0	15	0		-1.473e-6	<u>15</u>	NC	<u>1</u>	NC	1
188			min	0	3	001	4	0	15	-2.645e-5	1	NC	1	NC	1
189		19	max	0	1	0	1	0	1	-5.071e-7	15	NC	1	NC	1
190			min	0	1	0	1	0		-9.043e-6	1	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	1.379e-6	1_	NC	1	NC	1
192			min	0	1	0	1	0	1	7.802e-8	15	NC	1	NC	1
193		2	max	0	3	0	15	0	15	2.925e-5	1	NC	1	NC	1
194			min	0	2	002	4	0			15	NC	1	NC	1
195		3	max	0	3	0	15	0		5.713e-5	1	NC	1	NC	1
196			min	0	2	004	4	0		3.168e-6	15	NC	1	NC	1
197		4	max	.001	3	001	15	0	1	8.5e-5	1	NC	1	NC	1
198			min	0	2	006	4	0	3	4.713e-6	15	NC	1	NC	1
199		5	max	.002	3	002	15	0		1.129e-4	1	NC	1	NC	1
200			min	001	2	008	4	0		6.258e-6	15	NC	1	NC	1
201		6	max	.002	3	002	15	0		1.408e-4	1	NC	1	NC	1
202			min	002	2	01	4	0		7.803e-6		9242.098	4	NC	1
203		7	max	.002	3	003	15	0	1	1.686e-4	1	NC	1	NC	1
204			min	002	2	003 012	4	0		9.348e-6		7992.855	4	NC	1
205		8		.003	3	012	15	0		1.965e-4	1 <u>15</u>	NC	2	NC NC	1
		0	max							1.965e-4 1.089e-5		7224.093			
206		0	min	002	2	<u>013</u>	4	0					4_	NC NC	1
207		9	max	.003	3	003	15	.001		2.244e-4	1_	NC C77F C4C	5_4	NC NC	1
208		40	min	002	2	014	4	0		1.244e-5		6775.646	4_	NC	1
209		10	max	.003	3	003	15	.001		2.522e-4	1_	NC	5	NC	1
210			min	003	2	014	4	0		1.398e-5		6570.406	4_	NC	1
211		11	max	.004	3	003	15	.002	1	2.801e-4	<u>1</u>	NC	5	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
212			min	003	2	014	4	0	15	1.553e-5	15	6578.407	4	NC	1
213		12	max	.004	3	003	15	.003	1	3.08e-4	_1_	NC	3	NC	1
214			min	003	2	014	4	0	15	1.707e-5	15	6805.316	4	NC	1
215		13	max	.005	3	003	15	.003	1	3.359e-4	_1_	NC	2	NC	1
216			min	004	2	<u>013</u>	4	0	15	1.862e-5	15	7296.104	4_	NC	1
217		14	max	.005	3	003	15	.004	1	3.637e-4	1_	NC	1	NC NC	1
218		45	min	004	2	012	4	0	15	2.016e-5		8157.802	4	NC NC	1
219		15	max	.005	3	002	15	.005	1	3.916e-4	1_	NC	1_	NC NC	1
220		4.0	min	004	2	01	4	0	15	2.171e-5		9625.531	4	NC NC	1
221		16	max	.006	3	002 008	15	.006	15	4.195e-4 2.325e-5	1_	NC NC	<u>1</u> 1	NC NC	1
223		17	min	005 .006	3		15	<u> </u>			<u>15</u>	NC NC	1	NC NC	1
224		17	max	005	2	001 006	4	<u>.007</u>	15	4.474e-4 2.48e-5	<u>1</u> 15	NC NC	1	NC NC	1
225		18	max	.005	3	<u>006</u> 0	15	.009	1	4.752e-4	1 1	NC NC	1	NC NC	1
226		10	min	005	2	004	1	<u>.009</u>	15	2.634e-5	15	NC	1	NC	1
227		19	max	.007	3	_ 004 0	10	.01	1	5.031e-4	1	NC	1	NC	2
228		13	min	005	2	002	3	0	15	2.789e-5	15	NC	1	8753.794	1
229	M4	1	max	.002	1	.005	2	0	15	1.665e-4	1	NC	1	NC	3
230	IVIT	'	min	0	15	007	3	01	1	9.247e-6	15	NC	1	2417.011	1
231		2	max	.002	1	.005	2	0	15	1.665e-4	1	NC	1	NC	3
232			min	0	15	007	3	009	1	9.247e-6	15	NC	1	2620.64	1
233		3	max	.002	1	.005	2	0	15	1.665e-4	1	NC	1	NC	3
234			min	0	15	006	3	009	1	9.247e-6	15	NC	1	2863.484	1
235		4	max	.002	1	.004	2	0	15	1.665e-4	1	NC	1	NC	3
236			min	0	15	006	3	008	1	9.247e-6	15	NC	1	3155.643	1
237		5	max	.002	1	.004	2	0	15	1.665e-4	1	NC	1	NC	3
238			min	0	15	006	3	007	1	9.247e-6	15	NC	1	3510.851	1
239		6	max	.002	1	.004	2	0	15	1.665e-4	1	NC	1	NC	3
240			min	0	15	005	3	006	1	9.247e-6	15	NC	1	3948.153	1
241		7	max	.002	1	.003	2	0	15	1.665e-4	1_	NC	1_	NC	2
242			min	0	15	005	3	006	1	9.247e-6	15	NC	1	4494.586	
243		8	max	.001	1	.003	2	0	15	1.665e-4	_1_	NC	_1_	NC	2
244			min	0	15	004	3	005	1	9.247e-6	15	NC	1_	5189.572	1
245		9	max	.001	1	.003	2	0	15	1.665e-4	_1_	NC	_1_	NC	2
246			min	0	15	004	3	004	1	9.247e-6	15	NC	_1_	6092.445	1
247		10	max	.001	1	.003	2	0	15	1.665e-4	_1_	NC	_1_	NC	2
248			min	0	15	004	3	003	1	9.247e-6	<u>15</u>	NC	1_	7295.928	1
249		11	max	.001	1	.002	2	0	15	1.665e-4	_1_	NC	1_	NC	2
250		40	min	0	15	003	3	003	1_	9.247e-6	15	NC	_1_	8951.641	1
251		12	max	0	1	.002	2	0	15	1.665e-4	1_	NC NC	1_	NC NC	1
252		40	min	0	15	003	3	002		9.247e-6			1	NC NC	1
253		13	max	0	1	.002	2	0		1.665e-4	1_	NC	1	NC	1
254		1.1	min	0	15	002	2	002	1 1 5	9.247e-6	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
255		14	max	0 0	15	.001	3	0	1	1.665e-4 9.247e-6	1_		1	NC NC	1
256 257		15	min	0	1	002 .001	2	001 0	15	1.665e-4	<u>15</u> 1	NC NC	1	NC NC	1
258		15	max min	0	15	002	3	0	1	9.247e-6	15	NC	1	NC	1
259		16	max	0	1	<u>002</u> 0	2	0	15		1	NC	1	NC	1
260		10	min	0	15	001	3	0	1	9.247e-6	15	NC	1	NC	1
261		17	max	0	1	<u>001</u> 0	2	0	15	1.665e-4	1 <u>15</u> 1	NC NC	1	NC NC	1
262		11/	min	0	15	0	3	0	1	9.247e-6	15	NC	1	NC	1
263		18	max	0	1	0	2	0	15	1.665e-4	1	NC	1	NC	1
264		10	min	0	15	0	3	0	1	9.247e-6	15	NC	1	NC	1
265		19	max	0	1	0	1	0	1	1.665e-4	1	NC	1	NC	1
266		13	min	0	1	0	1	0	1	9.247e-6	15	NC	1	NC	1
267	M6	1	max	.021	2	.03	2	0	1	0	1	NC	3	NC	1
268	0		min	027	3	042	3	0	1	0	1	2591.703	2	NC	1
				1021		10 12					-	_00 00	_		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio			
269		2	max	.02	2	.027	2	0	1	0	1		3	NC	1
270			min	026	3	039	3	0	1	0	<u>1</u>	2854.674	2	NC	1
271		3	max	.019	2	.024	2	0	1	0	_1_	NC	3	NC	1
272			min	024	3	037	3	0	1	0	1_		2	NC	1
273		4	max	.018	2	.022	2	0	1_	0	_1_	NC	3_	NC	1
274			min	023	3	035	3	0	1	0	1	3565.457	2	NC	1
275		5	max	.016	2	.019	2	0	1	0	_1_	NC	3	NC	1
276			min	021	3	033	3	0	1	0	1_	4052.302	2	NC	1
277		6	max	.015	2	.016	2	0	1	0	1_		1_	NC	1
278			min	02	3	03	3	0	1	0	1	4667.125	2	NC	1
279		7	max	.014	2	.014	2	0	1	0	1	NC	1_	NC	1
280			min	018	3	028	3	0	1	0	1	5458.357	2	NC	1
281		8	max	.013	2	.012	2	0	1	0	1	NC	1	NC	1
282			min	017	3	026	3	0	1	0	1	6500.111	2	NC	1
283		9	max	.012	2	.01	2	0	1	0	1	NC	1	NC	1
284			min	015	3	023	3	0	1	0	1	7910.529	2	NC	1
285		10	max	.011	2	.008	2	0	1	0	1	NC	1	NC	1
286			min	014	3	021	3	0	1	0	1	9887.618	2	NC	1
287		11	max	.009	2	.006	2	0	1	0	1	NC	1	NC	1
288			min	012	3	019	3	0	1	0	1	NC	1	NC	1
289		12	max	.008	2	.004	2	0	1	0	1	NC	1	NC	1
290			min	011	3	016	3	0	1	0	1	NC	1	NC	1
291		13	max	.007	2	.003	2	0	1	0	1	NC	1	NC	1
292		10	min	009	3	014	3	0	1	0	1	NC	1	NC	1
293		14	max	.006	2	.002	2	0	1	0	1	NC	1	NC	1
294		17	min	008	3	012	3	0	1	0	1	NC	1	NC	1
295		15	max	.005	2	.001	2	0	1	0	1	NC	1	NC	1
296		10	min	006	3	009	3	0	1	0	1	NC	1	NC	1
297		16	max	.004	2	009	2	0	1	0	1	NC	1	NC	1
298		10	min	005	3	007	3	0	1	0	1	NC	1	NC	1
299		17		.002	2	<u>007</u> 0	2	0	1	0	1	NC NC	1	NC NC	1
		17	max		3	005			1		1	NC NC	1	NC NC	1
300		10	min	003	2		3	0	1	0		NC NC	•	NC NC	
301		18	max	.001		0	2	0	1	0	1		1		1
302		40	min	002	3	002	3	0	-	0		NC NC	•	NC NC	
303		19	max	0	1	0	1	0	1	0	1_	NC NC	1_	NC NC	1
304	N 47		min	0	1	0	1	0	1	0	1_	NC NC	1_	NC NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1_	NC NC	1
306			min	0	1	0	1	0	1	0	1_	NC	1_	NC	1
307		2	max	.001	3	0	15	0	1	0	1	NC	1_	NC NC	1
308			min	001	2	003	3	0	1	0	1_	NC	1_	NC	1
309		3	max	.002	3	0	15	0	1	0	1	NC	1_	NC NC	1
310			min	002	2	005	3	0	1	0	1_	NC	<u>1</u>	NC	1
311		4	max	.004	3	001	15	0	1	0	1	NC	1	NC	1
312			min	004	2	007	3	0	1	0	1_	NC	1_	NC	1
313		5	max	.005	3	002	15	0	1	0	1	NC	1_	NC	1
314			min	005	2	01	3	0	1	0	1	NC	1	NC	1
315		6	max	.006	3	002	15	0	1	0	1	NC	1	NC	1
316			min	006	2	011	3	0	1	0	1		3	NC	1
317		7	max	.007	3	003	15	0	1	0	1		1	NC	1
318			min	007	2	013	3	0	1	0	1	8153.517	4	NC	1
319		8	max	.008	3	003	15	0	1	0	1	NC	1	NC	1
320			min	008	2	014	3	0	1	0	1	7359.593	4	NC	1
321		9	max	.01	3	003	15	0	1	0	1	NC	1	NC	1
322			min	009	2	015	3	0	1	0	1		4	NC	1
323		10	max	.011	3	003	15	0	1	0	1	NC	1	NC	1
324			min	011	2	016	3	0	1	0	1	6679.96	4	NC	1
325		11	max	.012	3	003	15	0	1	0	1	NC	1	NC	1
		•						· · · · · · · · · · · · · · · · · · ·	•						$\overline{}$

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

12		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
328	326			min	012	2		3	0	1	_	1	6682.772	4	NC	1
138			12	max					0		0	1		1_		1
330																
331			13													
333			4.4											•		
333			14													_
334			45													
336			15													
336			10									•		•		•
338			16													
338			17									•		_		-
339			17													
3440			10									•		_		
341			10													•
342			10									_				
343 M8			13									_				
344		M8	1													
345		IVIO	'													1
346			2		_							•		1		1
347			_													
348			3							1		1		1		1
349										1		1		1		1
S50			4		.005				0	1	0	1		1		1
SS1						15			0	1	0	1		1		1
353			5		.004	1			0	1	0	1	NC	1	NC	1
354	352			min	0	15	017	3	0	1	0	1	NC	1	NC	1
355	353		6	max	.004	1	.015	2	0	1	0	1	NC	1	NC	1
356	354			min	0	15	016	3	0	1	0	1	NC	1	NC	1
357			7		.004				0	1		1_		1_		1_
358				min								1		1_		-
359			8	max					0		0	1		1_		1
360				min					0			•		1_		1
361			9													
362					•						_	_				
363 11 max .003 1 .009 2 0 1 0 1 NC 1 NC 1 364 min 0 15 01 3 0 1 0 1 NC 1 NC 1 365 12 max .002 1 .008 2 0 1 0 1 NC 1 NC 1 366 min 0 15 009 3 0 1 0 1 NC 1 NC 1 367 13 max .002 1 .007 2 0 1 0 1 NC 1			10													
364 min 0 15 01 3 0 1 0 1 NC 1 NC 1 365 12 max .002 1 .008 2 0 1 0 1 NC 1 NC 1 366 min 0 15 009 3 0 1 0 1 NC 1 NC 1 367 13 max .002 1 .007 2 0 1 0 1 NC 1 NC 1 368 min 0 15 007 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .006 2 0 1 0 1 NC 1 NC 1 370 min 0 15 006 3 0 1 0 1 <td></td>																
365 12 max .002 1 .008 2 0 1 0 1 NC 1 NC 1 NC 1 NC 1 1 366 min 0 15009 3 0 1 0 1 NC 1 NC 1 NC 1 <td< td=""><td></td><td></td><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1_</td><td></td><td>1</td></td<>			11											1_		1
366 min 0 15 009 3 0 1 0 1 NC 1 NC 1 367 13 max .002 1 .007 2 0 1 0 1 NC 1 NC 1 368 min 0 15 007 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .006 2 0 1 0 1 NC 1 NC 1 370 min 0 15 006 3 0 1 0 1 NC 1 NC 1 371 15 max .001 1 .005 2 0 1 0 1 NC 1 NC 1 372 min 0 15 005 3 0 1 0 1 <td></td> <td></td> <td>40</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>1_</td> <td></td> <td>1</td>			40		_						_			1_		1
367 13 max .002 1 .007 2 0 1 0 1 NC 1 NC 1 368 min 0 15 007 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .006 2 0 1 0 1 NC 1 NC 1 370 min 0 15 006 3 0 1 0 1 NC 1 NC 1 371 15 max .001 1 .005 2 0 1 0 1 NC 1 NC 1 372 min 0 15 005 3 0 1 0 1 NC 1 NC 1 373 16 max 0 1 .003 2 0 1 0 <td>365</td> <td></td> <td>12</td> <td>max</td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	365		12	max				2								
368 min 0 15 007 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .006 2 0 1 0 1 NC 1 NC 1 370 min 0 15 006 3 0 1 0 1 NC 1 NC 1 371 15 max .001 1 .005 2 0 1 0 1 NC 1 NC 1 372 min 0 15 005 3 0 1 0 1 NC 1 NC 1 373 16 max 0 1 .003 2 0 1 0 1 NC 1 NC 1 374 min 0 15 004 3 0 1 0 1			40													
369 14 max .002 1 .006 2 0 1 0 1 NC 1 NC 1 NC 1 NC 1 370 min 0 15006 3 0 1 0 1 NC 1 NC 1 NC 1 NC 1 371 15 max .001 1 .005 2 0 1 0 1 NC 1 NC 1 NC 1 NC 1 372 min 0 15005 3 0 1 0 1 NC 1 NC 1 NC 1 NC 1 373 16 max 0 1 .003 2 0 1 0 1 NC 1 NC 1 NC 1 NC 1 374 min 0 15004 3 0 1 0 1 NC 1 NC 1 NC 1 NC 1 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 NC 1 NC 1 376 min 0 15002 3 0 1 0 1 NC 1 NC 1 NC 1 NC 1 377 18 max 0 1 .001 2 0 1 0 1 NC 1 NC 1 NC 1 NC 1 378 min 0 15001 3 0 1 0 1 NC 1 NC 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 0 1 NC 1 NC 1 NC 1 NC 1 380 min 0 1 max .007 2 .008 2 0 15 3.223e-4 1 NC 1 NC 1 NC 2			13	_												
370 min 0 15 006 3 0 1 0 1 NC 1 NC 1 371 15 max .001 1 .005 2 0 1 0 1 NC 1 NC 1 372 min 0 15 005 3 0 1 0 1 NC 1 NC 1 373 16 max 0 1 .003 2 0 1 0 1 NC 1 NC 1 374 min 0 15 004 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 376 min 0 15 002 3 0 1 0 1			1.1											•		
371 15 max .001 1 .005 2 0 1 0 1 NC 1 NC 1 372 min 0 15 005 3 0 1 0 1 NC 1 NC 1 373 16 max 0 1 .003 2 0 1 0 1 NC 1 NC 1 374 min 0 15 004 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 NC 1 376 min 0 15 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 .001 3 0			14													
372 min 0 15 005 3 0 1 0 1 NC 1 NC 1 373 16 max 0 1 .003 2 0 1 0 1 NC 1 NC 1 374 min 0 15 004 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 376 min 0 15 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 .001 2 0 1 0 1 NC 1 NC 1 378 min 0 15 001 3 0 1 0 1			15		_							_		_		
373 16 max 0 1 .003 2 0 1 0 1 NC 1 NC 1 374 min 0 15 004 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 376 min 0 15 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 .001 2 0 1 0 1 NC 1 NC 1 378 min 0 15 001 3 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 <t< td=""><td></td><td></td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			10													
374 min 0 15 004 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 376 min 0 15 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 .001 2 0 1 0 1 NC 1 NC 1 378 min 0 15 001 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1			16													
375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 376 min 0 15 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 .001 2 0 1 0 1 NC 1 NC 1 378 min 0 15 001 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .007 2 .008 2 0 15 3.223e-4 1 NC 1			10													
376 min 0 15 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 .001 2 0 1 0 1 NC 1 NC 1 378 min 0 15 001 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .007 2 .008 2 0 15 3.223e-4 1 NC 1 NC 2			17							•						•
377 18 max 0 1 .001 2 0 1 0 1 NC 1 378 min 0 15 001 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .007 2 .008 2 0 15 3.223e-4 1 NC 1 NC 2			17													
378 min 0 15 001 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .007 2 .008 2 0 15 3.223e-4 1 NC 1 NC 2			18		_							_		_		-
379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .007 2 .008 2 0 15 3.223e-4 1 NC 1 NC 2			1.0	_												
380 min 0 1 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .007 2 .008 2 0 15 3.223e-4 1 NC 1 NC 2			19											_		
381 M10 1 max .007 2 .008 2 0 15 3.223e-4 1 NC 1 NC 2			1.5													
		M10	1							15		1		1		
	382			min	008		013	3	011		1.79e-5	15	NC	1	7111.097	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
383		2	max	.006	2	.006	2	0	15	3.049e-4	1_	NC	1_	NC	2
384			min	008	3	013	3	01	1	1.694e-5	15	NC	1_	7750.189	
385		3	max	.006	2	.005	2	0	15		_1_	NC	1_	NC	2
386			min	007	3	012	3	009	1_	1.597e-5	15	NC NC	1_	8510.815	
387		4	max	.005	2	.004	2	0 008	15	2.701e-4	1_	NC NC	1	NC 0404 000	2
388		-	min	007	3	012	3		1 1 1 5	1.5e-5	15	NC NC	_	9424.893	
389		5	max	.005 006	3	.003 012	3	0 007	15	2.527e-4 1.404e-5	<u>1</u> 15	NC NC	1	NC NC	1
391		6	min max	.005	2	.002	2	<u>007</u> 0	15	2.353e-4	1 <u>1</u>	NC NC	1	NC NC	1
392		0	min	006	3	011	3	006	1	1.307e-5	15	NC	1	NC	1
393		7	max	.004	2	0	2	_ 000 _	15	2.179e-4	1	NC NC	1	NC	1
394			min	005	3	011	3	006	1	1.21e-5	15	NC	1	NC	1
395		8	max	.004	2	0	2	0	15	2.005e-4	1	NC	1	NC	1
396			min	005	3	01	3	005	1	1.114e-5	15	NC	1	NC	1
397		9	max	.004	2	0	2	0	15	1.831e-4	1	NC	1	NC	1
398			min	005	3	01	3	004	1	1.017e-5	15	NC	1	NC	1
399		10	max	.003	2	001	2	0	15	1.657e-4	1	NC	1	NC	1
400			min	004	3	009	3	003	1	9.204e-6	15	NC	1	NC	1
401		11	max	.003	2	001	15	0	15	1.483e-4	1	NC	1	NC	1
402			min	004	3	008	3	003	1	8.238e-6	15	NC	1	NC	1
403		12	max	.003	2	001	15	0	15	1.309e-4	1	NC	1	NC	1
404			min	003	3	008	3	002	1	7.272e-6	15	NC	1	NC	1
405		13	max	.002	2	001	15	0	15	1.135e-4	1	NC	1	NC	1
406			min	003	3	007	3	002	1	6.305e-6	15	NC	1	NC	1
407		14	max	.002	2	001	15	0	15	9.606e-5	1_	NC	1_	NC	1
408			min	002	3	006	3	001	1	5.339e-6	15	NC	1	NC	1
409		15	max	.001	2	001	15	0	15	7.866e-5	1_	NC	1_	NC	1
410			min	002	3	005	3	0	1	4.373e-6	15	NC	1_	NC	1
411		16	max	.001	2	0	15	0	15	6.125e-5	_1_	NC	_1_	NC	1
412			min	001	3	004	4	0	1_	3.406e-6	<u>15</u>	NC	1_	NC	1
413		17	max	0	2	0	15	0	15	4.385e-5	1_	NC	1_	NC	1
414		10	min	0	3	003	4	0	1_	2.44e-6	15	NC NC	1_	NC NC	1
415		18	max	0	2	0	15	0	15	2.645e-5	1_	NC NC	1_	NC NC	1
416		40	min	0	3	001	4	0	1	1.473e-6	<u>15</u>	NC NC	1_	NC NC	1
417		19	max	<u> </u>	1	<u> </u>	1	<u>0</u> 	1	9.043e-6 5.071e-7	1_	NC NC	1	NC NC	1
419	M11	1	min	0	1	0	1	0	1		<u>15</u> 15	NC NC	1	NC NC	1
420	IVI I		max	0	1	0	1	0	1	-7.802e-8 -1.379e-6	1	NC NC	1	NC NC	1
421		2	min max	0	3	0	15	<u> </u>	1	-1.623e-6	15	NC NC	1	NC NC	1
422			min	0	2	002	4	0	15	-2.925e-5	1	NC	1	NC	1
423		3	max	0	3	0	15	0		-3.168e-6			1	NC	1
424		J	min	0	2	004	4	0	15		1	NC	1	NC	1
425		4	max	.001	3	001	15	0	3	-4.713e-6		NC	1	NC	1
426			min	0	2	006	4	0	1	-8.5e-5	1	NC	1	NC	1
427		5	max	.002	3	002	15	0	12			NC	1	NC	1
428			min	001	2	008	4	0	1	-1.129e-4	1	NC	1	NC	1
429		6	max	.002	3	002	15	0	12	-7.803e-6	15	NC	1	NC	1
430			min	002	2	01	4	0	1	-1.408e-4	1	9242.098	4	NC	1
431		7	max	.002	3	003	15	0	15	-9.348e-6	15	NC	1	NC	1
432			min	002	2	012	4	0	1	-1.686e-4	1	7992.855	4	NC	1
433		8	max	.003	3	003	15	0	15	-1.089e-5	15	NC	2	NC	1
434			min	002	2	013	4	0	1	-1.965e-4	1	7224.093	4	NC	1
435		9	max	.003	3	003	15	0	15	-1.244e-5	15	NC	5	NC	1
436			min	002	2	014	4	001	1	-2.244e-4	1	6775.646	4	NC	1
437		10	max	.003	3	003	15	0	15		15	NC	5	NC	1
438			min	003	2	014	4	001	1	-2.522e-4	1_	6570.406	4	NC	1
439		11	max	.004	3	003	15	00	15	-1.553e-5	15	NC	5	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		
440			min	003	2	014	4	002		-2.801e-4	1_	6578.407	4	NC	1
441		12	max	.004	3	003	15	0	15 -	-1.707e-5	<u>15</u>	NC	3	NC	1
442			min	003	2	014	4	003	1	-3.08e-4	1_	6805.316	4	NC	1
443		13	max	.005	3	003	15	0		-1.862e-5	15	NC	2	NC	1_
444			min	004	2	013	4	003		-3.359e-4	1	7296.104	4	NC	1
445		14	max	.005	3	003	15	0	15 -	-2.016e-5	15	NC	1	NC	1
446			min	004	2	012	4	004	1 -	-3.637e-4	1	8157.802	4	NC	1
447		15	max	.005	3	002	15	0	15 -	-2.171e-5	15	NC	1	NC	1
448			min	004	2	01	4	005	1 -	-3.916e-4	1	9625.531	4	NC	1
449		16	max	.006	3	002	15	0	15 -	-2.325e-5	15	NC	1_	NC	1
450			min	005	2	008	4	006		-4.195e-4	1	NC	1	NC	1
451		17	max	.006	3	001	15	0	15	-2.48e-5	15	NC	1	NC	1
452			min	005	2	006	4	007	1 -	-4.474e-4	1_	NC	1	NC	1
453		18	max	.006	3	0	15	0	15 -	-2.634e-5	15	NC	1	NC	1
454			min	005	2	004	1	009	1 -	-4.752e-4	1	NC	1	NC	1
455		19	max	.007	3	0	10	0	15 -	-2.789e-5	15	NC	1	NC	2
456			min	005	2	002	3	01	1 -	-5.031e-4	1	NC	1	8753.794	1
457	M12	1	max	.002	1	.005	2	.01	1 -	-9.247e-6	15	NC	1	NC	3
458			min	0	15	007	3	0		-1.665e-4	1	NC	1	2417.011	1
459		2	max	.002	1	.005	2	.009			15	NC	1	NC	3
460			min	0	15	007	3	0	15 -	-1.665e-4	1	NC	1	2620.64	1
461		3	max	.002	1	.005	2	.009		-9.247e-6	15	NC	1	NC	3
462			min	0	15	006	3	0		-1.665e-4	1	NC	1	2863.484	1
463		4	max	.002	1	.004	2	.008		-9.247e-6	15	NC	1	NC	3
464			min	0	15	006	3	0		-1.665e-4	1	NC	1	3155.643	
465		5	max	.002	1	.004	2	.007		-9.247e-6	15	NC	1	NC	3
466			min	0	15	006	3	0		-1.665e-4	1	NC	1	3510.851	1
467		6	max	.002	1	.004	2	.006		-9.247e-6	15	NC	1	NC	3
468			min	0	15	005	3	0		-1.665e-4	1	NC	1	3948.153	1
469		7	max	.002	1	.003	2	.006			15	NC	1	NC	2
470			min	0	15	005	3	0		-1.665e-4	1	NC	1	4494.586	1
471		8	max	.001	1	.003	2	.005		-9.247e-6	15	NC	1	NC	2
472			min	0	15	004	3	0		-1.665e-4	1	NC	1	5189.572	1
473		9	max	.001	1	.003	2	.004		-9.247e-6	15	NC	1	NC	2
474			min	0	15	004	3	0		-1.665e-4	1	NC	1	6092.445	
475		10	max	.001	1	.003	2	.003		-9.247e-6	15	NC	1	NC	2
476			min	0	15	004	3	0		-1.665e-4	1	NC	1	7295.928	
477		11	max	.001	1	.002	2	.003		-9.247e-6	15	NC	1	NC	2
478			min	0	15	003	3	0		-1.665e-4	1	NC	1	8951.641	1
479		12	max	0	1	.002	2	.002		-9.247e-6	15	NC	1	NC	1
480		1	min	0	15	003	3	0		-1.665e-4		NC	1	NC	1
481		13	max	0	1	.002	2	.002		-9.247e-6		NC	1	NC	1
482			min	0	15	002	3	0		-1.665e-4	1	NC	1	NC	1
483		14	max	0	1	.001	2	.001		-9.247e-6	15	NC	1	NC	1
484			min	0	15	002	3	0		-1.665e-4	1	NC	1	NC	1
485		15	max	0	1	.001	2	0		-9.247e-6	15	NC	1	NC	1
486		1.0	min	0	15	002	3	0		-1.665e-4	1	NC	1	NC	1
487		16	max	0	1	0	2	0		-9.247e-6	15	NC	1	NC	1
488		1.0	min	0	15	001	3	0		-1.665e-4	1	NC	1	NC	1
489		17	max	0	1	0	2	0		-9.247e-6		NC	1	NC	1
490			min	0	15	0	3	0		-1.665e-4	1	NC	1	NC	1
491		18	max	0	1	0	2	0		-9.247e-6	•	NC	-	NC	1
492		10	min	0	15	0	3	0		-1.665e-4	1	NC	1	NC	1
493		19	max	0	1	0	1	0		-9.247e-6	15	NC	1	NC	1
494		13	min	0	1	0	1	0		-1.665e-4	1	NC	1	NC	1
495	M1	1	max	.008	3	.089	2	.001		1.562e-2	2	NC	1	NC	1
496	IVI I		min	004	2	013	3	0		-2.719e-2	3	NC	1	NC	1
430			1111111	004		013	J	U	10	2.7 136-2	J	INC		INC	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Section Sect		Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio L		
Section Sect			2												1
500															1
SO1			3												2
502												•			
Sola			4												1
504				min						-					1
506			5												1
Sofe				min											1
508			6							15		2			1
508	506			min	004				003	1		3			1
Solid	507		7	max	.008			3	0	1	1.707e-2	2			1
Sito	508			min					0	12		3			1
Still	509		8	max	.008				.001		2.135e-2	2	9430.853 1	5 NC	1
Sit	510			min	004	2	282	2	0	15	-2.345e-2	3	310.433	2 NC	1
513	511		9	max	.007	3	.199	3	0	15	2.462e-2	2	8808.559 1	5 NC	1
514	512			min	004	2	309	2	0	1	-2.357e-2	3	290.003	2 NC	1
Second Color	513		10	max	.007	3	.206	3	0	1	2.722e-2	2	8619.186 1	5 NC	1
516	514			min	004	2	318	2	0	12	-2.065e-2	3	284.031 2	2 NC	1
516			11			3			0	1		2			1
518										15		3			1
The image			12						0			2			1
519									001						1
S20			13												1
S21											-1 185e-2				1
S22			14												1
523										<u> </u>					1
S24			15												1
S25			10							_					1
526 min 003 2 06 2 0 15 -2.975e-3 3 810.594 2 NC 527 17 max .006 3 .005 3 .01 1 6.712e-4 1 NC 5 NC 528 min 003 2 006 2 0 15 -1.554e-5 3 1339.745 2 9864.83 529 18 max .006 3 .039 2 .007 1 1.208e-2 2 NC 4 NC 530 min 003 2 029 3 0 15 5.123e-3 3 2867.791 2 NC 531 19 max .006 3 .2029 3 0 15 2.419e-2 2 NC 1 NC 532 min 018 2 019 3 0 1 0 1 NC			16												1
527 17 max .006 3 .005 3 .01 1 6.712e-4 1 NC 5 NC 528 min 003 2 006 2 0 15 -1.554e-5 3 1339.745 2 9864.83 529 18 max .006 3 .039 2 .007 1 1.208e-2 2 NC 4 NC 530 min 003 2 029 3 0 15 5.123e-3 3 2867.791 2 NC 531 19 max .006 3 .078 2 0 15 5.419e-2 2 NC 1 NC 532 min 003 2 06 3 002 1 0 1 NC 1 NC 538 NC 1 NC 538 NC 1 NC 536 Min 018 2			10												1
528 min 003 2 006 2 0 15 -1.554e-5 3 1339.745 2 9864.83 529 18 max .006 3 .039 2 .007 1 1.208e-2 2 NC 4 NC 530 min 003 2 029 3 0 15 -5.123e-3 3 2867.791 2 NC 531 19 max .006 3 .078 2 0 15 2.419e-2 2 NC 1 NC 532 min 003 2 06 3 002 1 -1.042e-2 3 NC 1 NC 534 min 018 2 019 3 0 1 0 1 NC 1 NC 534 min 018 2 019 3 0 1 0 1 NC 5 NC			17									_			2
529 18 max .006 3 .039 2 .007 1 1.208e-2 2 NC 4 NC 530 min 003 2 029 3 0 15 -5.123e-3 3 2867.791 2 NC 531 19 max .006 3 .078 2 0 15 2.419e-2 2 NC 1 NC 532 min 003 2 06 3 002 1 -1.042e-2 3 NC 1 NC 533 M5 1 max .026 3 .219 2 0 1 0 1 NC 1 NC 534 min 018 2 019 3 0 1 0 1 NC 1 NC 535 2 max .026 3 .099 2 0 1 0 1 NC 5 NC <			17												1
530 min 003 2 029 3 0 15 -5.123e-3 3 2867.791 2 NC 531 19 max .006 3 .078 2 0 15 2.419e-2 2 NC 1 NC 532 min 003 2 06 3 002 1 -1.042e-2 3 NC 1 NC 533 M5 1 max .026 3 .219 2 0 1 0 1 NC 1 NC 534 min 018 2 019 3 0 1 0 1 NC 1 NC 535 2 max .026 3 .099 2 0 1 0 1 NC 5 NC 536 min 018 2 .0023 0 1 0 1 962.712 2 NC			10												1
531 19 max .006 3 .078 2 0 15 2.419e-2 2 NC 1 NC 532 min 003 2 06 3 002 1 -1.042e-2 3 NC 1 NC 533 M5 1 max .026 3 .219 2 0 1 0 1 NC 1 NC 534 min 018 2 019 3 0 1 0 1 NC 1 NC 535 2 max .026 3 .099 2 0 1 0 1 NC 5 NC 536 min 018 2 .002 3 0 1 0 1 962.712 2 NC 537 3 max .026 3 .043 3 0 1 0 1 \$562.712 NC<			10												1
532 min 003 2 06 3 002 1 -1.042e-2 3 NC 1 NC 533 M5 1 max .026 3 .219 2 0 1 0 1 NC 1 NC 534 min 018 2 019 3 0 1 0 1 NC 1 NC 535 2 max .026 3 .099 2 0 1 0 1 NC 5 NC 536 min 018 2 .002 3 0 1 0 1 962.712 2 NC 537 3 max .026 3 .043 3 0 1 0 1 455.549 2 NC 538 min 018 2 035 2 0 1 0 1 455.549 2 NC <td></td> <td></td> <td>40</td> <td></td>			40												
533 M5 1 max .026 3 .219 2 0 1 0 1 NC 1 NC 534 min 018 2 019 3 0 1 0 1 NC 1 NC 535 2 max .026 3 .099 2 0 1 0 1 NC 5 NC 536 min 018 2 .002 3 0 1 0 1 962.712 2 NC 536 min 018 2 .002 3 0 1 0 1 962.712 2 NC 538 min 018 2 035 2 0 1 0 1 455.549 2 NC 539 4 max .026 3 .123 3 0 1 0 1 9709.607 15 NC			19												1
534 min 018 2 019 3 0 1 0 1 NC 1 NC 535 2 max .026 3 .099 2 0 1 0 1 NC 5 NC 536 min 018 2 .002 3 0 1 0 1 962.712 2 NC 537 3 max .026 3 .043 3 0 1 0 1 962.712 2 NC 538 min 018 2 035 2 0 1 0 1 455.549 2 NC 539 4 max .026 3 .123 3 0 1 0 1 455.549 2 NC 540 min 018 2 192 2 0 1 0 1 280.967 2 NC		NAC.	4												
535 2 max .026 3 .099 2 0 1 0 1 NC 5 NC 536 min 018 2 .002 3 0 1 0 1 962.712 2 NC 537 3 max .026 3 .043 3 0 1 0 1 NC 5 NC 538 min 018 2 035 2 0 1 0 1 455.549 2 NC 539 4 max .026 3 .123 3 0 1 0 1 9709.607 15 NC 540 min 018 2 192 2 0 1 0 1 280.967 2 NC 540 min 018 2 192 2 0 1 0 1 280.967 2 NC 542 min		<u>IVI5</u>	1												1
536 min 018 2 .002 3 0 1 0 1 962.712 2 NC 537 3 max .026 3 .043 3 0 1 0 1 NC 5 NC 538 min 018 2 035 2 0 1 0 1 455.549 2 NC 539 4 max .026 3 .123 3 0 1 0 1 9709.607 15 NC 540 min 018 2 192 2 0 1 0 1 280.967 2 NC 541 5 max .025 3 .228 3 0 1 0 1 6801.9 15 NC 542 min 017 2 361 2 0 1 0 1 198.977 2 NC										-		_			1
537 3 max .026 3 .043 3 0 1 0 1 NC 5 NC 538 min 018 2 035 2 0 1 0 1 455.549 2 NC 539 4 max .026 3 .123 3 0 1 0 1 9709.607 15 NC 540 min 018 2 192 2 0 1 0 1 280.967 2 NC 541 5 max .025 3 .228 3 0 1 0 1 6801.9 15 NC 542 min 017 2 361 2 0 1 0 1 198.977 2 NC 543 6 max .025 3 .343 3 0 1 0 1 198.977 2 NC			2							-					1
538 min 018 2 035 2 0 1 0 1 455.549 2 NC 539 4 max .026 3 .123 3 0 1 0 1 9709.607 15 NC 540 min 018 2 192 2 0 1 0 1 280.967 2 NC 541 5 max .025 3 .228 3 0 1 0 1 6801.9 15 NC 542 min 017 2 361 2 0 1 0 1 198.977 2 NC 543 6 max .025 3 .343 3 0 1 0 1 5240.636 15 NC 544 min 017 2 528 2 0 1 0 1 4338.225 15 NC											_				1
539 4 max .026 3 .123 3 0 1 0 1 9709.607 15 NC 540 min 018 2 192 2 0 1 0 1 280.967 2 NC 541 5 max .025 3 .228 3 0 1 0 1 6801.9 15 NC 542 min 017 2 361 2 0 1 0 1 198.977 2 NC 543 6 max .025 3 .343 3 0 1 0 1 5240.636 15 NC 544 min 017 2 528 2 0 1 0 1 154.503 2 NC 545 7 max .024 3 .455 3 0 1 0 1 154.503 2			3												1
540 min 018 2 192 2 0 1 0 1 280.967 2 NC 541 5 max .025 3 .228 3 0 1 0 1 6801.9 15 NC 542 min 017 2 361 2 0 1 0 1 198.977 2 NC 543 6 max .025 3 .343 3 0 1 0 1 5240.636 15 NC 544 min 017 2 528 2 0 1 0 1 5240.636 15 NC 545 7 max .024 3 .455 3 0 1 0 1 4338.225 15 NC 546 min 017 2 678 2 0 1 0 1 3813.176 15 NC															1
541 5 max .025 3 .228 3 0 1 0 1 6801.9 15 NC 542 min 017 2 361 2 0 1 0 1 198.977 2 NC 543 6 max .025 3 .343 3 0 1 0 1 5240.636 15 NC 544 min 017 2 528 2 0 1 0 1 5240.636 15 NC 545 7 max .024 3 .455 3 0 1 0 1 1545.503 2 NC 546 min 017 2 678 2 0 1 0 1 128.588 2 NC 547 8 max .024 3 .548 3 0 1 0 1 3813.176 15			4						_						1
542 min 017 2 361 2 0 1 0 1 198.977 2 NC 543 6 max .025 3 .343 3 0 1 0 1 5240.636 15 NC 544 min 017 2 528 2 0 1 0 1 154.503 2 NC 545 7 max .024 3 .455 3 0 1 0 1 154.503 2 NC 546 min 017 2 678 2 0 1 0 1 128.588 2 NC 547 8 max .024 3 .548 3 0 1 0 1 3813.176 15 NC 548 min 016 2 799 2 0 1 0 1 3543.788 15 NC										-					1
543 6 max .025 3 .343 3 0 1 0 1 5240.636 15 NC 544 min 017 2 528 2 0 1 0 1 154.503 2 NC 545 7 max .024 3 .455 3 0 1 0 1 4338.225 15 NC 546 min 017 2 678 2 0 1 0 1 128.588 2 NC 547 8 max .024 3 .548 3 0 1 0 1 3813.176 15 NC 548 min 016 2 799 2 0 1 0 1 13813.176 15 NC 549 9 max .023 3 .608 3 0 1 0 1 3543.788 15 NC 550 min 016 2 875 2 0			5_									_			1
544 min 017 2 528 2 0 1 0 1 154.503 2 NC 545 7 max .024 3 .455 3 0 1 0 1 4338.225 15 NC 546 min 017 2 678 2 0 1 0 1 128.588 2 NC 547 8 max .024 3 .548 3 0 1 0 1 3813.176 15 NC 548 min 016 2 799 2 0 1 0 1 1343.176 15 NC 549 9 max .023 3 .608 3 0 1 0 1 3543.788 15 NC 550 min 016 2 875 2 0 1 0 1 3462.62 15 NC									0	1		1_			1
545 7 max .024 3 .455 3 0 1 0 1 4338.225 15 NC 546 min 017 2 678 2 0 1 0 1 128.588 2 NC 547 8 max .024 3 .548 3 0 1 0 1 3813.176 15 NC 548 min 016 2 799 2 0 1 0 1 113.421 2 NC 549 9 max .023 3 .608 3 0 1 0 1 3543.788 15 NC 550 min 016 2 875 2 0 1 0 1 105.604 2 NC 551 10 max .023 3 .629 3 0 1 0 1 3462.62 15			6		.025			3	0	1		_1_			1
546 min 017 2 678 2 0 1 0 1 128.588 2 NC 547 8 max .024 3 .548 3 0 1 0 1 3813.176 15 NC 548 min 016 2 799 2 0 1 0 1 113.421 2 NC 549 9 max .023 3 .608 3 0 1 0 1 3543.788 15 NC 550 min 016 2 875 2 0 1 0 1 105.604 2 NC 551 10 max .023 3 .629 3 0 1 0 1 3462.62 15 NC 552 min 016 2 9 2 0 1 0 1 103.322 2 NC				min					0	1		1_			1
547 8 max .024 3 .548 3 0 1 0 1 3813.176 15 NC 548 min 016 2 799 2 0 1 0 1 113.421 2 NC 549 9 max .023 3 .608 3 0 1 0 1 3543.788 15 NC 550 min 016 2 875 2 0 1 0 1 105.604 2 NC 551 10 max .023 3 .629 3 0 1 0 1 3462.62 15 NC 552 min 016 2 9 2 0 1 0 1 103.322 2 NC			7	max	.024				0	1	0	1			1
548 min 016 2 799 2 0 1 0 1 113.421 2 NC 549 9 max .023 3 .608 3 0 1 0 1 3543.788 15 NC 550 min 016 2 875 2 0 1 0 1 105.604 2 NC 551 10 max .023 3 .629 3 0 1 0 1 3462.62 15 NC 552 min 016 2 9 2 0 1 0 1 103.322 2 NC	546			min			678		0	1		1			1
549 9 max .023 3 .608 3 0 1 0 1 3543.788 15 NC 550 min 016 2 875 2 0 1 0 1 105.604 2 NC 551 10 max .023 3 .629 3 0 1 0 1 3462.62 15 NC 552 min 016 2 9 2 0 1 0 1 103.322 2 NC	547		8	max	.024		.548	3	0	1	0	1	3813.176 1	5 NC	1
549 9 max .023 3 .608 3 0 1 0 1 3543.788 15 NC 550 min 016 2 875 2 0 1 0 1 105.604 2 NC 551 10 max .023 3 .629 3 0 1 0 1 3462.62 15 NC 552 min 016 2 9 2 0 1 0 1 103.322 2 NC	548			min	016	2	799	2	0	1	0	1	113.421 2	2 NC	1
550 min 016 2 875 2 0 1 0 1 105.604 2 NC 551 10 max .023 3 .629 3 0 1 0 1 3462.62 15 NC 552 min 016 2 9 2 0 1 0 1 103.322 2 NC			9						0	1	0	1			1
551 10 max .023 3 .629 3 0 1 0 1 3462.62 15 NC 552 min 016 2 9 2 0 1 0 1 103.322 2 NC									0	1		1			1
552 min016 29 2 0 1 0 1 103.322 2 NC			10						0	1	0	1			1
										1		1			1
553 11 max .022 3 .612 3 0 1 0 1 3543.899 15 NC	553		11		.022	3	.612	3	0	1	0	1			1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio		(n) L/z Ratio	LC
554			min	016	2	874	2	0	1	0	1	106.011	2	NC	1
555		12	max	.021	3	.559	3	0	1	0	1_	3813.444	15	NC	1
556			min	015	2	794	2	0	1	0	1	114.743	2	NC	1
557		13	max	.021	3	.475	3	0	1	0	1_	4338.791	15	NC	1
558			min	015	2	666	2	0	1	0	1	131.994	2	NC	1
559		14	max	.02	3	.368	3	0	1	0	_1_	5241.772	15	NC	1
560			min	015	2	507	2	0	1	0	1	162.131	2	NC	1
561		15	max	.02	3	.249	3	0	1	0	1_	6804.186	15	NC	1
562			min	015	2	335	2	0	1	0	1	215.479	2	NC	1
563		16	max	.019	3	.128	3	0	1	0	1	9714.445	15	NC	1
564			min	014	2	166	2	0	1	0	1	317.902	2	NC	1
565		17	max	.019	3	.015	3	0	1	0	1	NC	5	NC	1
566			min	014	2	019	2	0	1	0	1_	545.513	2	NC	1
567		18	max	.019	3	.094	2	0	1	0	1	NC	5	NC	1
568			min	014	2	082	3	0	1	0	1	1204.347	2	NC	1
569		19	max	.019	3	.187	2	0	1	0	1	NC	1	NC	1
570			min	014	2	17	3	0	1	0	1	NC	1	NC	1
571	M9	1	max	.008	3	.089	2	0	15	2.719e-2	3	NC	1	NC	1
572			min	004	2	013	3	001	1	-1.562e-2	2	NC	1	NC	1
573		2	max	.008	3	.041	2	.007	1	1.346e-2	3	NC	4	NC	1
574			min	004	2	003	3	0	15	-7.649e-3	2	2415.154	2	NC	1
575		3	max	.008	3	.013	3	.011	1	2.311e-4	1	NC	5	NC	2
576			min	004	2	01	2	0	15	-4.882e-6	10	1163.029	2	9494.062	1
577		4	max	.008	3	.041	3	.01	1	4.802e-3	3	NC	5	NC	1
578			min	004	2	068	2	0	15	-4.237e-3	2	733.321	2	NC	1
579		5	max	.008	3	.076	3	.007	1	9.465e-3	3	NC	5	NC	1
580			min	004	2	129	2	0	15	-8.515e-3	2	528.734	2	NC	1
581		6	max	.008	3	.114	3	.003	1	1.413e-2	3	NC	15	NC	1
582			min	004	2	188	2	0	15	-1.279e-2	2	416.124	2	NC	1
583		7	max	.008	3	.15	3	0	12	1.879e-2	3	NC	15	NC	1
584			min	004	2	241	2	0	1	-1.707e-2	2	349.699	2	NC	1
585		8	max	.008	3	.18	3	0	15	2.345e-2	3	9430.853	15	NC	1
586			min	004	2	282	2	001	1	-2.135e-2	2	310.433	2	NC	1
587		9	max	.007	3	.199	3	0	1	2.357e-2	3	8808.559	15	NC	1
588			min	004	2	309	2	0	15	-2.462e-2	2	290.003	2	NC	1
589		10	max	.007	3	.206	3	0	12	2.065e-2	3	8619.186	15	NC	1
590			min	004	2	318	2	0	1	-2.722e-2	2	284.031	2	NC	1
591		11	max	.007	3	.201	3	0	15	1.774e-2	3	8808.223	15	NC	1
592			min	004	2	309	2	0	1	-2.981e-2	2	291.087	2	NC	1
593		12	max	.007	3	.184	3	.001	1	1.481e-2	3	9430.155	15	NC	1
594			min		2	281	2	0		-2.908e-2	2	313.764	2	NC	1
595		13	max	.007	3	.157	3	0	1	1.185e-2	3	NC	15	NC	1
596		10	min	003	2	237	2	0		-2.334e-2	2	357.873	2	NC	1
597		14	max	.007	3	.122	3	0	15	8.895e-3	3	NC	15	NC	1
598		17	min	003	2	182	2	003	1	-1.76e-2	2	433.696	2	NC	1
599		15	max	.006	3	.083	3	<u>.003</u>	15	5.935e-3	3	NC	5	NC	1
600		1.0	min	003	2	121	2	007	1	-1.186e-2	2	565.122	2	NC	1
601		16	max	.006	3	.043	3	0	15	2.975e-3	3	NC	5	NC	1
602		10	min	003	2	06	2	01	1	-6.116e-3	2	810.594	2	NC	1
603		17	max	.006	3	.005	3	<u>01</u> 0	15	1.554e-5	3	NC	5	NC	2
604		17	min	003	2	006	2	01	1	-6.712e-4	1	1339.745	2	9864.83	1
605		18	max	.006	3	.039	2	<u>01</u> 0	15	5.123e-3	3	NC	4	NC	1
606		10	min	003	2	029	3	007	1	-1.208e-2	2	2867.791	2	NC	1
607		19	max	.006	3	.078	2	.002	1	1.042e-2	3	NC	1	NC	1
608		13	min	003	2	06	3	0	15	-2.419e-2	2	NC NC	1	NC NC	1
000			1111111	003		00	J	U	10	-2.4136-2		INC		INC	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-30 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015				
Engineer:	HCV	Page:	2/5				
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-30 Inch Width					
Address:							
Phone:							
E-mail:							

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378 00	648.00	1 000	0 836	1 000	1 000	15503		φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 21-30 Inch Width		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.