Notation

Inputs What are we feeding the model with. A single input is denote with \boldsymbol{x} , a batch of inputs with \boldsymbol{X} . For example in CIFAR-10 \boldsymbol{x} is single image 32×32 with 3 color channel (a tensor $3 \times 32 \times 32$, channel \times height \times width). A batch of 64 images will be denoted \boldsymbol{X} and is a tensor $64 \times 3 \times 32 \times 32$. $|\boldsymbol{X}|$ is the size of batch dimension.

Classes We are concern with classification task. Let K be the set of classes and |K| its cardinality. For example in CIFAR-10 $K = \{\text{airplane}, \dots, \text{truck}\} = \{k_1, \dots, k_{10}\}$ and |K| = 10. Let $g_{(\boldsymbol{x})} \in K$ be the class associated to the input \boldsymbol{x} (ground–truth class). When the \boldsymbol{x} is clear from the context the index for g will be dropped.

Labels Labels are the numerical encoding of classes. Each x belong to only one class g. In this setting one popular encoding scheme is *one-hot encoding*.

one—hot :
$$K \longrightarrow \{0,1\}^{|K|}$$
 : $g_{(\boldsymbol{x})} \longmapsto \boldsymbol{y}_{(\boldsymbol{x})}$ with components $\boldsymbol{y}_j := \delta_{g,j}$

Applying an encoding scheme to the batch of labels produce $Y_{(X)}$.

Outputs What model return. Let $z_{(x)} \in \mathbb{R}^{|K|}$ be the outputs of the model given the input x. To output prediction as probability vector, usually denoted by \hat{y} , z must be normalized.

$$P_K: \mathbb{R}^{|K|} \to [0,1]^{|K|}: \boldsymbol{z}_{(\boldsymbol{x})} \mapsto \hat{\boldsymbol{y}}_{(\boldsymbol{x})} = P_K(\boldsymbol{z}_{(\boldsymbol{x})}) \quad \text{with} \quad P_K(\boldsymbol{z})_j := \frac{e^{\boldsymbol{z}_j}}{\sum_{k \in K} e^{\boldsymbol{z}_k}}$$

 $P_K(.)$ is an alternative notation for the usual *softmax* function. Be more explicit about the underlying classes K give us more flexibility for constructing custom loss function.

Losses In the following losses are define as a pointwise operation that take x and its corresponding label y as input and return a scalar. Pointwise function apply to a batch can be combined with a reduction operator \bigoplus (e.g. sum or mean).

$$\ell: (\boldsymbol{x}, \boldsymbol{y}) \longmapsto \ell(\boldsymbol{x}, \boldsymbol{y}) \qquad \mathcal{L}: (\boldsymbol{X}, \boldsymbol{Y}) \longmapsto \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}) := \bigoplus_{(\boldsymbol{x}, \boldsymbol{y}) \in (\boldsymbol{X}, \boldsymbol{Y})} \ell(\boldsymbol{x}, \boldsymbol{y})$$

Cross Entropy Loss (XE)

Standard Cross–Entropy only uses the output vector component corresponding to the ground–truth label (i.e. the g component of the output vector). Training process force \hat{y}_g to increase and, due to normalization, other components shrinks.

$$\ell_{\mathrm{XE}} := -\boldsymbol{y}^{\mathsf{T}} \log \hat{\boldsymbol{y}} = -\log \hat{\boldsymbol{y}}_g \longrightarrow \mathcal{L}_{\mathrm{XE}} := \frac{1}{|\boldsymbol{X}|} \sum \ell_{\mathrm{XE}}$$
 (1)

Complement Entropy Loss (CE)

[Che+19a] introduce Complement Entropy Loss. CE take as input the output vector z, remove its g component and renormalise it obtaining $P_{K\setminus\{g\}}(z)$. CE is minus the Shannon Entropy H(.) of this new vector.

$$\ell_{\text{CE}} := -H(P_{K \setminus \{g\}}(\boldsymbol{z})) \longrightarrow \mathcal{L}_{\text{CE}} := \frac{1}{|\boldsymbol{X}|} \sum \ell_{\text{CE}}$$
 (2)

Maximise the entropy of a distribution force it towards a flatter one (in these setting the distribution with maximum entropy is the uniform distribution). CE is paired with XE using a custom training loop:

Algorithm 1 Custom Training Loop for CE

- 1: $\mathbf{for} \ step \ in \ steps \ \mathbf{do}$
- 2: Update parameters of the model using $\mathcal{L}_{\mathrm{XE}}$
- 3: Update parameters of the model using \mathcal{L}_{CE}
- 4: end for

They also proposed an empirical modification to balance the contribution that came from CE 1 .

$$\ell'_{\text{CE}} := \frac{\ell_{\text{CE}}}{|K| - 1} \longrightarrow \mathcal{L}'_{\text{CE}} := \frac{1}{|X|} \sum \ell'_{\text{CE}}$$

Guided Complement Entropy Loss (GCE)

[Che+19b] improved upon CE by adding an additional term in the $\ell_{\rm CE}$ that leverage the variation in model confidence during the training phase, i.e.

$$\ell_{\text{GCE}} := \left[\hat{\boldsymbol{y}}_{g}\right]^{\alpha} \ell_{\text{CE}} \qquad \longrightarrow \qquad \mathcal{L}_{\text{GCE}} := \frac{1}{|\boldsymbol{X}|} \sum \ell_{\text{GCE}}$$
 (3)

The new factor $[\hat{y}_g]^{\alpha}$ is called the *guiding factor*. At the beginning of training it is small (the model outputs low probability for the g-component of \hat{y}) and then it increase with training (the model get better and the g-component of \hat{y} will be higher). α is a fixed hyperparameter ($\alpha = 0.2$ works reasonably well).

GCE is the only loss used in a standard training loop, i.e.

Algorithm 2 Standard Training Loop for GCE

- 1: $\mathbf{for} \ step \ in \ steps \ \mathbf{do}$
- 2: Update parameters of the model using \mathcal{L}_{GCE}
- 3: end for

Similar to [Che+19a], they modify \mathcal{L}_{GCE} to account for the number of classes

$$\ell'_{\mathrm{GCE}} \coloneqq \frac{\ell_{\mathrm{GCE}}}{\log(|K|-1)} \qquad \longrightarrow \qquad \mathcal{L}'_{\mathrm{GCE}} \coloneqq \frac{1}{|X|} \sum \ell'_{\mathrm{GCE}}$$

¹In the paper they propose a rescaling factor of |K|-1 but in the source code they use |K|. The same inconsistency appers for $\mathcal{L}'_{\text{GCE}}$.

Hierarchical Complement Entropy (HCE)

[Che+19c] try to exploit hierarchical labels in CIFAR-100. Let G be a set that contains the siblings classes that belong to the same parental class of the ground–truth class, that is $g \in G$ and $G \subseteq K$. The *Hierarchical Complement Entropy* is

$$\ell_{\text{HCE}} := -H(P_{G \setminus \{g\}}(\boldsymbol{z})) - H(P_{K \setminus \{G\}}(\boldsymbol{z})) \longrightarrow \mathcal{L}_{\text{HCE}} := \frac{1}{|\boldsymbol{X}|} \sum \ell_{\text{HCE}}$$
 (4)

The sum of HCE and XE is employed is a standard training loop:

Algorithm 3 Standard Training Loop for XE + HCE

- 1: **for** step in steps **do**
- 2: Update parameters of the model using $\mathcal{L}_{XE} + \mathcal{L}_{HCE}$
- 3: end for

Results

Model	Val Acc	Val Adv Acc
Che+19a_ResNet110_CIFAR10_XE	0.8698	0.5571
Che+19a_ResNet110_CIFAR10_XE,CE	0.8836	0.5923
Che+19b_ResNet56_CIFAR10_XE	0.8983	0.5333
Che+19b_ResNet56_CIFAR10_GCE	0.9005	0.6213

Table 1: CIFAR-10 experiments. Accuracy are calculate on validation dataset. FGSM based on XE is used to produce adversarial inputs.

Model	Val Acc	Val Adv Acc
Che+19a_ResNet110_CIFAR100_XE	0.6497	0.3128
Che+19a_ResNet110_CIFAR100_XE,CE	0.6516	0.3214
Che+19b_ResNet56_CIFAR100_XE	0.6001	0.2744
Che+19b_ResNet56_CIFAR100_GCE	0.6246	0.3674
Che+19c_ResNet56_CIFAR100_XE,CE	0.6164	0.2674
Che+19c_ResNet56_CIFAR100_XE,HCE	0.6164	0.3013
Ours_ResNet56_CIFAR100_HGCE	0.6356	0.3603

Table 2: CIFAR-100 experiments. Accuracy are calculate on validation dataset. FGSM based on XE is used to produce adversarial inputs.

References

- [Che+19a] Hao-Yun Chen et al. "Complement Objective Training". In: (Mar. 2019). eprint: 1903.01182v2. URL: http://arxiv.org/abs/1903.01182v2.
- [Che+19b] Hao-Yun Chen et al. "Improving Adversarial Robustness via Guided Complement Entropy". In: (Mar. 2019). eprint: 1903.09799v3. URL: http://arxiv.org/abs/1903.09799v3.
- [Che+19c] Hao-Yun Chen et al. "Learning with Hierarchical Complement Objective". In: (Nov. 2019). eprint: 1911.07257v1. URL: http://arxiv.org/abs/1911.07257v1.