

Outlook

- About me
- Research Objectives
- Contribution & Achievements
- MobiTrick (Mobile Traffic Checker)
- Online Learning of Timeout Policies (OLTP)
- Online Adaptation of Power/Performance (OAPP)
- Implementation Platform
- Evaluation
- Conclusion
- Future Directives

About Me

- PhD (Energy efficiency in portable embedded devices) 2013
 - Pervasive computing group, Alpen-Adria Universität Klagenfurt, Austria
- MS (Intelligent Transportation Systems) 2010
 - Institute of Smart Systems Technologies, Alpen-Adria Universität Klagenfurt, Austria
- B.E (Computer Systems Engineering) 2004
 - QUEST, NawabShah
- Research Interests
 - Energy-efficient embedded platforms
 - Machine learning
 - Image processing

Research Objectives

- A portable traffic surveillance platform
- Generic DPM¹ framework
- Model independency
- Addressing non-stationarity
- Power/performance trading
- Constraints adaptation
- Implementation on MobiTrick²

¹Dynamic Power Management

Contribution & Achievements

- A portable, heterogeneous embedded traffic surveillance platform
- Online, RL³ based DPM
- Learning, optimization & control
- Pareto-optimal tradeoff
- Constraints adaptation
- Scalability
- Implementation and evaluation

MobiTrick (1/4)

- Salient Features
 - Portable, easy deployment
 - Multiple, heterogeneous image sensors
 - High-level stereo image processing
 - 3D reconstruction
 - Vehicel detection & classification
 - Over-height estimation
 - License plate detection
 - Toll-collection
- Project Partners
 - NES, KLU, Austria (http://www.uni-klu.ac.at/tewi/ict/nes/)
 - ICG, TU-Graz, Austria (http://www.icg.tu-graz.ac.at/)
 - EFKON, Austria (http://www.efkon.com/)
- Funded by Austrian Research Foundation (http://www.ffg.at)

MobiTrick's sensing platform

MobiTrick (2/4)

- Heterogeneous architecture
 - Exploiting the redundancy
 - Getting multiple views of a scene
 - Covering wider range of lighting conditions
 - Eliminating the need of larger sensors

MobiTrick's sensing platform

MobiTrick (3/4)

Work Packages

- Development of the sensor head
- Envisaging power-efficient algorithms

Requirements

- Portability, compactness
- Low-power design
- Local processing
- Autonomous operation
- Auto-calibration & adaptation
- CUDA based image processing
- Online power management

MobiTrick's sensing platform

MobiTrick (4/4)

- Challenges faced
 - Communication among heterogeneous sensors
 - Low-power design with CUDA
 - Low-power design vs. Performance
 - Synchronized operation of heterogeneous sensors
 - Identifying the right parameters for stereo vision
 - Focal lengths
 - resolutions
 - FOV
 - sensor types
 - shutters types
 - frame rates
 - Interfaces
 - Mount type
 - etc, ...

MobiTrick's sensing platform

- Dynamic timeout values in each state
 - Changing timeout decisions
 - Estimating the workload
 - Adaptation to the workload
- Multi-objective optimization
 - Reducing latency, reducing power consumption

Depiction of the system under power management with OLTP

Dynamics of the OLTP

- Learning timeouts based on:
 - Power-performance preference
 - Workload estimation

State-transition mechanism of the OLTP for a generic PMS

Generic RL Framework

Implemented action a_t

RL Framework for OLTP

State Space:

$$\begin{cases} S = (WL, SQ, SP) \\ A = \{t_{out}^{k}\} = \{\varepsilon_{k}T_{thr}\}, \ \varepsilon_{k} \in R^{+}, \ k = 1, 2, ..., n \end{cases}$$

Cost Function:

$$\forall s, a \in S \times A$$
:

$$c_{t+1}(s, a, \omega) = (1-\omega)p_t(s, a) + \omega l_t(s, a)$$

Online Adaptation of Power/Performance (OAPP) - 1

- Online constraints adaptation
- Adjusting objectives weights
- Online, discrete OAPP controller

Online Adaptation of Power/Performance (OAPP) - 2

The Implementation Platform (MobiTrick) - 1

The Implementation Platform (MobiTrick) - 2

Processing platform

- Intel ATOM 1.6 GHz
- Nvidia ION GPU
- 4 GB RAM
- Power modes: idle, sleep, processing

Sensing Components

- i) TMDXIPCAM8127 (5MP, RGB)
 - 1x Arm Cortex A8
 - 2x Arm Cortex M3
 - 1x C674x DSP
 - Encoding co-processor
 - ▶ 512 MB DDR
- ii) PhotonFocus (1.4 MP, Infrared)
- iii) AV10005DN (10 MP, RGB)
- iv) Accelerometers, gyroscopes, magnetometer, GPS receiver

Evaluation Results – (1)

OLTP: Power-Performance Pareto Front (MobiTrick's PMS)

Workload	Mean Inter-Arrival Time	No. of Requests	Duration
Workload 1	6.79 sec	11649	22 hours
Workload 2	11.13 sec	7762	24 hours
Workload 3	11.07 sec	7803	24 hours
Workload 4	9.06 sec	9502	24 hours
Workload 5	12.05 sec	7155	24 hours

Characteristics of different workloads

MobiTrick's PMS: 1 idle, 1 sleep and 1 processing state

Evaluation Results – (2)

OLTP: States Occupancy (MobiTrick's PMS)

Evaluation Results – (3)

OAPP - MobiTrick's PMS

Evaluation Results – (4)

OLTP/OAPP: Power Profile With Changing Workload (MobiTrick's PMS)

Evaluation Results – (5)

OLTP: Power-Performance Pareto Front (Synthetic PMS) Multiple idle and sleep states

Workload	Mean Inter-Arrival Time	No. of Requests	Duration
Workload 1	6.79 sec	11649	22 hours
Workload 2	11.13 sec	7762	24 hours
Workload 3	11.07 sec	7803	24 hours
Workload 4	$9.06~{ m sec}$	9502	24 hours
Workload 5	$12.05 \; \mathrm{sec}$	7155	24 hours

Characteristics of different workloads

Evaluation Results – (6)

OAPP - Synthetic PMS (Multiple idle and sleep states)

Conclusion

- Online, model-free DPM approach
- Computation & memory efficiency
- Controllable power-performance tradeoff
- Adaptation to non-stationary workloads
- Online constraints adaptation
- Compatibility with larger systems

Future Directives

- Migration to OS level
- Variable timeout values
- Continuous timeout values
- Multiprocessor DPM
- Dynamic frequency scaling