7.3: Ring Homomorphisms

Alex L.

December 14, 2024

Definition: (Ring Homomorphism) Let R and S be rings. Then, a mapping $\varphi: R \to S$ is a **ring homomorphism** if:

- 1. $\varphi(a+b) = \varphi(a) + \varphi(b)$
- 2. $\varphi(ab) = \varphi(a)\varphi(b)$

The kernel ker φ is the set of all elements in R which map to 0 in S.

A bijective ring homomorphism is called a ring isomorphism.

Proposition: Let R and S be rings and let $\varphi: R \to S$ be a ring homomorphism. Then:

- 1. The image of R is a subring of S
- 2. The kernel of φ is a subring of R

Proof: 1. Elements of the image of R take the form $\varphi(a)$, where a is in R. The image of R is commutative because $\varphi(a) + \varphi(b) = \varphi(a+b) = \varphi(b+a) = \varphi(b) + \varphi(a)$.