

生成式對抗網路 (Generative Adversarial Network, GAN) (二) – 理論介紹與 WGAN

Create at 2022/06/22

- 生成式對抗網路 (Generative Adversarial Network, GAN) (二) 理論介紹與 WGAN
 - o GAN 理論介紹
 - 訓練 GAN 的小技巧
 - WGAN
- 上課資源:
 - 1. <u>生成式對抗網路 (Generative Adversarial Network, GAN) (二) 理論介紹與 WGAN (https://www.youtube.com/watch?v=jNY1WBb8I4U)</u>

GAN 理論介紹

- 在訓練 network 的時候,要定一個 Loss Function
- 定完之後用 Gradient Descent 去調參數
- 去 minimize Loss Function 之後結束

- 在 Generation 問題裡面,我們要 minimize 或 maximize 的是什麼?
 - o 有一個 Generator 給它一堆 vector (從 normal distribution sample 出來的東西), 丟進 Generator
 - 。 會產生一個比較複雜的 Distribution 稱為 P_G
 - o 真正的 data 也形成另外一個 Distribution 稱為 P_{data}
 - o 我們希望 P_G 跟 P_{data} 越接近越好
- 寫成式子的話 $Div(P_G, P_{data})$
 - 。 就是 P_G 跟 P_{data} 這兩個 distribution 之間的 Divergence
- Divergence:兩個 distribution 之間的某種距離
 - o 如果越大,代表這兩個 distribution 越不像
 - o 如果越小,代表這兩個 distribution 越相近
- 目標:
 - o 找一個 Generator 裡面的參數,因為 Generator 也是一個 network,裡面有一堆的 weight 跟 bias,可以讓我們產生出的 P_G 跟 P_{data} 之間的 Divergence 越小越好

Sampling is good enough

$$G^* = arg \min_G Div(P_G, P_{data})$$

Although we do not know the distributions of P_G and P_{data} , we can sample from them.

33

- Divergence 要怎麼算?
 - o GAN 告訴我們,只要知道怎麼從 P_G 跟 P_{data} 這兩個 distribution sample 東西出來,就有辦法算 divergence
 - 。 而 P_G 跟 P_{data} 是可以 sample 的
 - o 如何從真正的 data 裡面 sample 出東西來呢?
 - 把 database 拿出來,從 database 裡面隨機產生 sample 一些圖片出來,就得到 P_{data}
 - o 如何從 generator 裡面產生東西出來?
 - 把 generator
 - 輸入:從 normal distribution sample 出來的 vector
 - 輸出:產生一堆圖片出來 (這些圖片就是從 P_G sample 出來的結果)
- 有辦法從 P_G 做 sample · 就有辦法從 P_{data} 做 sample

https://arxiv.org/abs/1406.2661

 $D^* = arg \max_{D} V(D, G)$ = Training classifier: minimize cross entropy

- 要靠 discriminator
 - o 有一堆 Real data : 一堆從 P_{data} sample 出來的結果
 - o 有一堆 Generative data : 一堆從 P_G sample 出來的結果
 - o 根據 Real data 跟 Generative data 去訓練一個 discriminator
 - o 訓練目標
 - 看到 real data 給比較高的分數
 - 看到 generative data 給比較低的分數
- 希望 Objective Function V 越大越好
 - 。 意味希望 P_{data} 的 D(y) 越大越好
 - 。 希望 P_G 的 D(y) 越小越好
- 事實上這個 Objective Function 就是 Cross Entropy 乘上一個負號
 - o 在訓練 classifier 的時候,要 minimize cross entropy
 - 當 maximize objective function (maximize cross entropy 乘一個負號) = minimize cross entropy
 - o 等於訓練一個 classifier
- Discriminator
 - o 把 P_{data} sample 出來的 real image 分類為 class 1
 - 。 把 P_G sample 出來的假的 image 分類為 class 2
 - 訓練一個 binary classifier,等於解一個 optimization 問題
- 紅框的 Objective function 最大值,它跟 divergence 是有關的

$$G^* = arg \min_{G} \max_{D} V(G, D)$$

$$D^* = arg \max_{D} V(D, G)$$

The maximum objective value is related to JS divergence.

- Initialize generator and discriminator
- In each training iteration:

Step 1: Fix generator G, and update discriminator D

Step 2: Fix discriminator D, and update generator G

36

- ullet 原本的目標是要找一個 Generator 去 minimize P_G 跟 P_{data} 的 Divergence
- 但我們卡在不知道怎麼計算 Divergence
- 我們現在知道,只要訓練一個 Discriminator,訓練完之後 objective function V 的最大值,就是 divergence
- 所以考慮把 紅框 跟 Divergence 做替換
- 找一個 G 讓紅框的值最小,這個 G 就是我們要的 Generator

Can we use other divergence?

Name	$D_f(P Q)$	Generator $f(u)$
Total variation	$\frac{1}{2} \int p(x) - q(x) \mathrm{d}x$	$\frac{1}{2} u-1 $
Kullback-Leibler	$\int p(x) \log \frac{p(x)}{a(x)} dx$	$u \log u$
Reverse Kullback-Leibler	$\int q(x) \log \frac{q(x)}{p(x)} dx$	$-\log u$
Pearson χ^2	$\int \frac{(q(x) - p(x))^2}{p(x)} dx$	$(u-1)^2$
Neyman χ^2	$\int \frac{(p(x)-q(x))^2}{q(x)} \mathrm{d}x$	$\frac{(1-u)^2}{u}$
Squared Hellinger	$\int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 dx$	$(\sqrt{u}-1)^2$
Jeffrey	$\int (p(x) - q(x)) \log \left(\frac{p(x)}{q(x)}\right) dx$	$(u-1)\log u$
Jensen-Shannon	$\frac{1}{2} \int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx$	$-(u+1)\log\frac{1+u}{2} + u\log u$
Jensen-Shannon-weighted	$\int p(x)\pi \log \frac{p(x)}{\pi p(x) + (1-\pi)q(x)} + (1-\pi)q(x) \log \frac{q(x)}{\pi p(x) + (1-\pi)q(x)} dx$	$\pi u \log u - (1 - \pi + \pi u) \log(1 - \pi + \pi u)$
GAN	$\int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx - \log(4)$	$u\log u - (u+1)\log(u+1)$

Using the divergence you like ☺

https://arxiv.org/abs/1606.00709

Name	Conjugate $f^*(t)$
Total variation	t
Kullback-Leibler (KL)	$\exp(t-1)$
Reverse KL	$ \exp(t-1) \\ -1 - \log(-t) $
Pearson χ^2	$\frac{1}{4}t^2 + t$
Neyman χ^2	$\frac{3}{2} - 2\sqrt{1-t}$
Squared Hellinger	$\frac{t}{1-t}$
Jeffrey	$W(e^{1-t}) + \frac{1}{W(e^{1-t})} + t - 2$
Jensen-Shannon	$-\log(2 - \exp(t))$
Jensen-Shannon-weighted	$(1-\pi)\log\frac{1-\pi}{1-\pi e^{t/\pi}}$
GAN	$-\log(1-\exp(t))$ 37

• 可以用其他的 divergence

GAN is difficult to train

(I found this joke from 陳柏文's facebook.)

• GAN 以不好 train 而聞名

訓練 GAN 的小技巧

JS divergence is not suitable

- In most cases, P_G and P_{data} are not overlapped.
- · 1. The nature of data

Both P_{data} and P_{G} are low-dim manifold in high-dim space.

The overlap can be ignored.

Even though P_{data} and P_{G} have overlap.

If you do not have enough sampling

- 最知名的 WGAN
- JS divergence 有什麼問題?
 - o 先看 P_G 跟 P_{data} 有什麼特性?
 - P_G 跟 P_{data} 重疊的部分非常少
 - 1. 來自於 data 本身的特性, P_G 跟 P_{data} 都是要產生圖片,圖片是高維空間 裡面的一個低維的 manifold (因為在高維空間隨便 sample 一個點,通常 都沒辦法構成一個二次元人物的頭像),所以二次元人物的頭像分佈在高 維空間中是非常狹窄的
 - 2. 我們從來不知道 P_G 跟 P_{data} 長什麼樣子,如果我們沒有 sample 很多的點或是 sample 的點不夠密,可以畫一條線當作楚河漢界

What is the problem of JS divergence?

JS divergence is always log2 if two distributions do not overlap.

Intuition: If two distributions do not overlap, binary classifier achieves 100% accuracy.

The accuracy (or loss) means nothing during GAN training.

41.

- 幾乎沒有重疊會對 JS divergence 造成什麼問題?
 - 。 JS divergence 的特性,兩個沒有重疊的分佈,JS divergence 算出來會永遠都是 log2
 - o 不管距離多遠,只要沒有相交, JS divergence 算出來就是 log2
- 實際直觀的角度說明
 - o 當你是用 JS divergence,假設今天在 train binary 的 classifier 去分辨 real 的 Image 跟 Generated Image
 - o 會發現實際 train 完之後,正確率幾乎都是 100 %
 - o 在實際操作的時候觀察不到這個現象,所以在 update 幾次 generator 之後,要把 圖片 print 出來看

Wasserstein distance

- Considering one distribution P as a pile of earth, and another distribution Q as the target
- The average distance the earth mover has to move the earth.

- 換一個衡量兩個 distribution 相似程度的方式,換一種 divergence 就可以解決這個問題?
 - Wasserstein distance
 - 假設有兩個 distribution $P \cdot Q$
 - 把P移動到Q的平均距離D,就是 wasserstein distance

Wasserstein distance

There are many possible "moving plans".

Using the "moving plan" with the smallest average distance to define the Wasserstein distance.

Source of image: https://vincentherrmann.github.io/blog/wasserstein/

- ullet 開一台推土機,想把 P 塑造成與 Q 接近的形狀
- 把P塑造成與Q形狀的方法有無窮多種
- 但不同的 moving plan 移動的距離不同
- 為了讓 wasserstein distance 只有一個固定的值
- 所以這裡 wasserstein distance 的定義是窮舉所有的 moving plan,看哪一個 moving plan 讓移動的距離最小,最小的值才是 wasserstein distance

What is the problem of JS divergence?

- 假設能夠計算 wasserstein distance 能帶給我們什麼好處?
 - o 所以換一個 divergence 的計算方式,就能解決 JS divergence 帶來的問題

What is the problem of JS divergence?

https://www.pnas.org/content/104/suppl_1/8567.figures-only

45

- 演化
- 當使用 wasserstein distance 來計算 divergence 會得到類似的效果
 - \circ 本來 P_{G_0} 跟 P_{data} 距離很遙遠
 - o 但只要每次稍微靠近一點點 wasserstein distance 就會有變化,所以才有辦法 train generator
- 對 JS divergence 而言,要從 P_{G_0} 到 $P_{G_{100}}$,它的 loss 才會有差異
- 這就是當我們從 JS divergence 換成 Wasserstein distance 帶來的好處

WGAN

https://arxiv.org/abs/1701.07875

WGAN

Evaluate Wasserstein distance between P_{data} and P_{G}

$$\max_{D \in 1-Lipschitz} \left\{ E_{y \sim P_{data}}[D(y)] - E_{y \sim P_{G}}[D(y)] \right\}$$

D has to be smooth enough. How to fulfill this constraint?

Without the constraint, the training of D will not converge.

Keeping the D smooth forces D(y) become ∞ and $-\infty$

- P_G 跟 P_{data} 之間的 wasserstein distance 要怎麼計算?
 - 。 $E_{y^{\sim}P_{data}}\left[D(x)
 ight]$: y 如果是從 P_{data} 來的,計算它的 D(x) 期望值
 - o $-E_{y}\sim_{P_G}[D(x)]$: y 如果是從 P_G 來的,計算它的 D(x) 期望值,但前面加上一個 負號
- 所以如果要 maximum objective function 會達成什麼效果
 - o 如果 y 是從 P_{data} sample 出來的,discriminator output 越大越好
 - \circ 如果 y 是從 P_G sample 出來的,discriminator output 越小越好
 - o D 不能是一個隨便的 function,必須是一個 1-Lipschitz 的 function (足夠平滑的 function,不可以是變動很劇烈的 function)
 - 這個限制是要求 discriminator 不可以太變化劇烈,real data 的值跟 generated data 的值就沒辦法差很多,算出來的 wasserstein distance 就會比較小

$$\max_{D \in 1-Lipschitz} \left\{ E_{y \sim P_{data}}[D(y)] - E_{y \sim P_{G}}[D(y)] \right\}$$

Original WGAN → Weight

Force the parameters w between c and -c After parameter update, if w > c, w = c; if w < -c, w = -c

Improved WGAN → Gradient Penalty

- 實作 WGAN 有很多不同的做法
- 目前看起來效果最好的是 Spectral Normalization (SNGAN)

tags: 2022 李宏毅_機器學習