ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn: TOÁN; Khối B (Đáp án - thang điểm gồm 04 trang)

Câu	Đáp án	Điểm
1	a. (1,0 điểm)	
(2,0 điểm)	Khi $m = -1$ ta có $y = 2x^3 - 6x$. • Tập xác định: $D = \mathbb{R}$. • Sự biến thiên: - Chiều biến thiên: $y' = 6x^2 - 6$; $y' = 0 \Leftrightarrow x = \pm 1$.	0,25
	Các khoảng đồng biến: $(-\infty; -1)$ và $(1; +\infty)$; khoảng nghịch biến: $(-1; 1)$. - Cực trị: Hàm số đạt cực tiểu tại $x = 1$, $y_{\text{CT}} = -4$; đạt cực đại tại $x = -1$, $y_{\text{CD}} = 4$. - Giới hạn: $\lim_{x \to -\infty} y = -\infty$; $\lim_{x \to +\infty} y = +\infty$.	0,25
	- Bằng biến thiên: $ \frac{x - \infty -1}{y' + 0 - 0} + \infty $ $ y - \infty $	0,25
	• Đồ thị: y -1 0 x	0,25
	b. (1,0 điểm)	I
	Ta có $y' = 6x^2 - 6(m+1)x + 6m$; $y' = 0 \Leftrightarrow x = 1$ hoặc $x = m$.	0,25
	Điều kiện để đồ thị hàm số có hai điểm cực trị là $m \neq 1$.	0,25
	Ta có $A(1;3m-1)$, $B(m;-m^3+3m^2)$. Hệ số góc của đường thẳng AB là $k=-(m-1)^2$. Đường thẳng AB vuông góc với đường thẳng $y=x+2$ khi và chỉ khi $k=-1$	0,25
	$\Leftrightarrow m=0$ hoặc $m=2$. Vậy giá trị m cần tìm là $m=0$ hoặc $m=2$.	0,25

Câu	Đáp án	Điểm
2 (1,0 điểm)	Phương trình đã cho tương đương với $\sin 5x + \cos 2x = 0$	0,25
(1,0 u.e.m)	$\Leftrightarrow \cos\left(5x + \frac{\pi}{2}\right) = \cos 2x$	0,25
	$\Leftrightarrow 5x + \frac{\pi}{2} = \pm 2x + k2\pi \ (k \in \mathbb{Z})$	0,25
	$\Leftrightarrow \begin{bmatrix} x = -\frac{\pi}{6} + k\frac{2\pi}{3} \\ x = -\frac{\pi}{14} + k\frac{2\pi}{7} \end{bmatrix} (k \in \mathbb{Z}).$	0,25
3 (1,0 điểm)	$\begin{cases} 2x^2 + y^2 - 3xy + 3x - 2y + 1 = 0 & (1) \\ 4x^2 - y^2 + x + 4 = \sqrt{2x + y} + \sqrt{x + 4y} & (2) \end{cases}$ Điều kiện: $2x + y \ge 0$, $x + 4y \ge 0$. Từ (1) ta được $y = x + 1$ hoặc $y = 2x + 1$.	0,25
	• Với $y = x + 1$, thay vào (2) ta được $3x^2 - x + 3 = \sqrt{3x + 1} + \sqrt{5x + 4}$	
	$\Leftrightarrow 3(x^2 - x) + (x + 1 - \sqrt{3x + 1}) + (x + 2 - \sqrt{5x + 4}) = 0$	0,25
	$\Leftrightarrow (x^2 - x) \left(3 + \frac{1}{x + 1 + \sqrt{3x + 1}} + \frac{1}{x + 2 + \sqrt{5x + 4}} \right) = 0$	
	$\Leftrightarrow x^2 - x = 0 \Leftrightarrow x = 0$ hoặc $x = 1$. Khi đó ta được nghiệm $(x; y)$ là $(0;1)$ và $(1;2)$.	0,25
	• Với $y = 2x + 1$, thay vào (2) ta được $3 - 3x = \sqrt{4x + 1} + \sqrt{9x + 4}$	
	$\Leftrightarrow 3x + (\sqrt{4x+1} - 1) + (\sqrt{9x+4} - 2) = 0$	
	$\Leftrightarrow x \left(3 + \frac{4}{\sqrt{4x+1}+1} + \frac{9}{\sqrt{9x+4}+2} \right) = 0 \Leftrightarrow x = 0. \text{ Khi d\'o ta được nghiệm}(x; y) \text{ là } (0; 1).$	0,25
	Đối chiếu điều kiện ta được nghiệm $(x; y)$ của hệ đã cho là $(0;1)$ và $(1;2)$.	
4 (1,0 điểm)	Đặt $t = \sqrt{2 - x^2} \Rightarrow t dt = -x dx$. Khi $x = 0$ thì $t = \sqrt{2}$, khi $x = 1$ thì $t = 1$.	0,25
	Suy ra $I = \int_{1}^{\sqrt{2}} t^2 dt$	0,25
	$=\frac{t^3}{3}\bigg _1^{\sqrt{2}}$	0,25
	$=\frac{2\sqrt{2}-1}{3}.$	0,25
5 (1,0 điểm)	S Gọi H là trung điểm của AB , suy ra $SH \perp AB$ và $SH = \frac{a\sqrt{3}}{2}$.	
	S Mà (SAB) vuông góc với ($ABCD$) theo giao tuyến AB , nên $SH \perp (ABCD)$.	0,25
	Do đó $V_{S.ABCD} = \frac{1}{3}SH.S_{ABCD} = \frac{a^3\sqrt{3}}{6}$.	0,25
	$Do AB // CD và H \in AB nên d(A, (SCD)) = d(H, (SCD)).$	
	Gọi K là trung điểm của CD và I là hình chiếu vuông góc của H trên SK . Ta có $HK \perp CD$. Mà $SH \perp CD \Rightarrow CD \perp (SHK)$ $\Rightarrow CD \perp HI$. Do đó $HI \perp (SCD)$.	0,25
	Suy ra $d(A,(SCD)) = HI = \frac{SH.HK}{\sqrt{SH^2 + HK^2}} = \frac{a\sqrt{21}}{7}$.	0,25

Câu	Đáp án	Điểm
6 (1,0 điểm)	Ta có: $(a+b)\sqrt{(a+2c)(b+2c)} \le (a+b)\frac{a+b+4c}{2} = \frac{a^2+b^2+2ab+4ac+4bc}{2} \le 2(a^2+b^2+c^2)$.	0,25
	$ \frac{2}{\text{Dặt } t = \sqrt{a^2 + b^2 + c^2 + 4}}, \text{ suy ra } t > 2 \text{ và } P \le \frac{4}{t} - \frac{9}{2(t^2 - 4)}. $ $ \text{Xét } f(t) = \frac{4}{t} - \frac{9}{2(t^2 - 4)}, \text{ với } t > 2. \text{ Ta có } f'(t) = -\frac{4}{t^2} + \frac{9t}{(t^2 - 4)^2} = \frac{-(t - 4)(4t^3 + 7t^2 - 4t - 16)}{t^2(t^2 - 4)^2}. $ $ \text{Với } t > 2 \text{ ta có } 4t^3 + 7t^2 - 4t - 16 = 4(t^3 - 4) + t(7t - 4) > 0. \text{ Do đó } f'(t) = 0 \Leftrightarrow t = 4. $	0,25
	Bảng biến thiên: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,25
	Từ bảng biến thiên ta được $P \le \frac{3}{8}$.	
	Khi $a = b = c = 2$ ta có $P = \frac{5}{8}$. Vậy giá trị lớn nhất của P là $\frac{5}{8}$.	0,25
7.a (1,0 điểm)	Gọi I là giao điểm của AC và $BD \Rightarrow IB = IC$. Mà $IB \perp IC$ nên ΔIBC vuông cân tại $I \Rightarrow \widehat{ICB} = 45^{\circ}$. $BH \perp AD \Rightarrow BH \perp BC \Rightarrow \Delta HBC$ vuông cân tại $B \Rightarrow I$ là trung điểm của đoạn thẳng HC .	0,25
	Do $CH \perp BD$ và trung điểm I của CH thuộc BD nên tọa độ điểm C thỏa mãn hệ $\begin{cases} 2(x+3)-(y-2)=0\\ \frac{x-3}{2}+2\left(\frac{y+2}{2}\right)-6=0. \end{cases}$ Do đó $C(-1;6)$.	0,25
	Ta có $\frac{IC}{ID} = \frac{IB}{ID} = \frac{BC}{AD} = \frac{1}{3} \Rightarrow ID = 3IC \Rightarrow CD = \sqrt{IC^2 + ID^2} = IC\sqrt{10} = \frac{CH\sqrt{10}}{2} = 5\sqrt{2}.$	0,25
	Ta có $D(6-2t;t)$ và $CD=5\sqrt{2}$ suy ra $(7-2t)^2+(t-6)^2=50 \Leftrightarrow \begin{bmatrix} t=1\\ t=7. \end{bmatrix}$ Do đó $D(4;1)$ hoặc $D(-8;7)$.	0,25
8.a (1,0 <i>điểm</i>)	(P) có vécto pháp tuyến $\vec{n} = (2;3;-1)$.	0,25
(1,0 <i>atem</i>)	Đường thẳng Δ qua A và vuông góc với (P) nhận n làm vécto chỉ phương, nên có phương trình $\frac{x-3}{2} = \frac{y-5}{3} = \frac{z}{-1}.$	0,25
	Gọi B là điểm đối xứng của A qua (P) , suy ra B thuộc Δ . Do đó $B(3+2t;5+3t;-t)$.	0,25
	Trung điểm của đoạn thẳng AB thuộc (P) nên $2(3+t)+3\left(\frac{10+3t}{2}\right)-\left(\frac{-t}{2}\right)-7=0 \Leftrightarrow t=-2$. Do đó $B(-1;-1;2)$.	0,25
9.a	Số cách chọn 2 viên bi, mỗi viên từ một hộp là: 7.6=42.	0,25
(1,0 điểm)	Số cách chọn 2 viên bi đỏ, mỗi viên từ một hộp là: 4.2=8.	0,25
	Số cách chọn 2 viên bi trắng, mỗi viên từ một hộp là: 3.4=12.	0,25
	Xác suất để 2 viên bi được lấy ra có cùng màu là: $p = \frac{8+12}{42} = \frac{10}{21}$.	0,25

Câu	Đáp án	Điểm
7.b (1,0 điểm)	Ta có $H \in AH$ và $AH \perp HD$ nên AH có phương trình: $x+2y-3=0$. Do đó $A(3-2a;a)$.	0,25
	Do M là trung điểm của AB nên $MA = MH$. Suy ra $(3-2a)^2 + (a-1)^2 = 13 \Leftrightarrow a = 3$ hoặc $a = -\frac{1}{5}$. Do A khác H nên $A(-3;3)$.	0,25
	Phương trình đường thẳng AD là $y-3=0$. Gọi N là điểm đối xứng của M qua AD . Suy ra $N \in AC$ và tọa độ điểm N thỏa mãn hệ $\begin{cases} \frac{1+y}{2}-3=0 \\ 1.x+0.(y-1)=0 \end{cases} \Rightarrow N(0;5).$	0,25
	Đường thẳng AC có phương trình: $2x-3y+15=0$. Đường thẳng BC có phương trình: $2x-y-7=0$. Suy ra tọa độ điểm C thỏa mãn hệ: $\begin{cases} 2x-y-7=0\\ 2x-3y+15=0. \end{cases}$	0,25
	Do đó C(9;11).	
8.b	Ta có $\overrightarrow{AB} = (-2,3,2)$, vecto chỉ phương của Δ là $\overrightarrow{u} = (-2,1,3)$.	0,25
(1,0 điểm)	Đường thẳng vuông góc với AB và Δ , có vecto chỉ phương là $\vec{v} = [\overrightarrow{AB}, \overrightarrow{u}]$.	0,25
	Suy ra $\vec{v} = (7; 2; 4)$.	0,25
	Đường thẳng đi qua A , vuông góc với AB và Δ có phương trình là: $\frac{x-1}{7} = \frac{y+1}{2} = \frac{z-1}{4}$.	0,25
9.b (1,0 điểm)	Điều kiện: $x>1$; $y>-1$. Hệ đã cho tương đương với $\begin{cases} x^2+2y=4x-1\\ \log_3(x-1)=\log_3(y+1) \end{cases}$	0,25
	$\Leftrightarrow \begin{cases} x^2 - 2x - 3 = 0 \\ y = x - 2 \end{cases}$	0,25
	$\Leftrightarrow \begin{bmatrix} x = -1, y = -3 \\ x = 3, y = 1. \end{bmatrix}$	0,25
	Đối chiếu điều kiện ta được nghiệm (x, y) của hệ đã cho là $(3;1)$.	0,25

----- Hết -----