

Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

1.	A 4x4 transformation matrix (element of $SE(3)$) consists of a rotation matrix, a 3-vector, and a row consisting of three zeros and a one. What is the purpose of the row of 4 constants?	1 / 1 point
	O This row is a historical artifact.	
	This row allows simple matrix operations for useful calculations.	
2.	Which of the following are possible uses of a transformation matrix? Select all that apply.	1/1 point
	✓ Displace (rotate and translate) a frame.	
	○ Correct	
	✓ Displace a vector.	
	Change the frame of reference of a vector.	
	Represent the position and orientation of one frame relative to another.	
3.	The representation of a point p in the {b} frame is $p_b \in \mathbb{R}^3$. To find the representation of this point in the {a} frame, we could write $T_{ab}p_b$, but there is a dimension mismatch; p_b has only 3 components, but T_{ab} is 4x4. How do we alter p_b to allow this matrix operation?	1 / 1 point
	$lacktriangle$ Put a 1 in the last row of p_b , making it a 4-element column vector, and otherwise ignore the last row in your interpretation of the 4-vector.	
	\bigcirc Put a 0 in the last row of p_b , making it a 4-element column vector, and otherwise ignore the last row in your interpretation of the 4-vector.	
4.	Which of these is a valid calculation of T_{ab} , the configuration of the frame $\{b\}$ relative to $\{a\}$? Select all that apply.	1 / 1 point
	$ ightharpoonup T_{ac}T_{cb}$	
	○ Correct Correct by subscript cancellation rule.	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	$ ightharpoonup T_{ac}T_{dc}^{-1}T_{db}$	
	\odot Correct T_{dc}^{-1} is equivalent to T_{cd} , so this is correct by the subscript cancellation rule.	
	$ ightharpoons (T_{bc}T_{ca})^{-1}$	
	\odot Correct Assuming the matrices A and B are invertible, then the following identity holds: $(AB)^{-1} = B^{-1}A^{-1}$. Then the expression is correct from our subscript cancellation rule.	