Brute Force & Backtracking

La solution brute force à un problème de recherche / optimisation consiste à tout tester :

```
S:list # liste finie de solutions
                                                                             python
2
3 # Problème de recherche
4 for s in S:
5
      if is_solution(s):
           return True
6
   return False
8
9
10 # Problème d'optimisation
11 opt:int # = +infini ou -infini
12 for s in S:
       if is_better(score(s), opt): # si s est mieux que l'ancien mieux
           opt = score(s)
14
15 return opt
```

La difficulté est d'énumérer les éléments de S. C'est l'espace de recherche (space search). Cela revient à construire une bijection entre S et [0, #S - 1]

I - Structures ensemblistes usuelles et énumération

On en dénombre 4 classiques :

- Intervalle de $\mathbb N$
- Produit cartésien
- Sous-ensemble d'un ensemble fini E
- Permutations

Mais il en existe également des moins classiques, il faudra s'adapter.

On reprend les exemples du chapitre 17.

1. Recherche d'un nombre premier dans [a,b]

```
\longrightarrow Énumérer l'intervalle [a,b]\subseteq\mathbb{N}
\longrightarrow for i = a to b do ...
```

Remarque : S'il y a solution, le plus petit est trouvé d'abord, donc on résout aussi le problème d'optimisation associé.

2. Somme d'une tranche d'un tableau

```
Soit a un tableau d'entiers et s = len(a)
```

```
On cherche (i, j) \in [0, n-1] \times [1, n] avec i < j
```

- → Produit cartésien
- \longrightarrow De manière générale, pour énumérer $A \times B$ on effectue une double boucle telle que celle-ci :

```
1 for a in A:
2  bar()
3  ...
4  for b in B:
5   foo()
6  ...
```

3. Subset Sum | sac à dos

 \longrightarrow Énumérer les sous-ensembles $F\subseteq E$

Solution classique :

Généralement E est représenté par un tableau de longueur n=#E

On encode alors un sous-ensemble F par un tableau T_F de booléens de longueur n tel que $\forall i \in [0,n-1]: T_F[i] = True \Leftrightarrow i \in F$

Comment énumérer les T_F ?

 \longrightarrow Par ordre lexico-graphique, ce qui correspond par ailleurs à énumérer les entiers de 0 à 2^n-1 en binaire.

4. Les N-dames

Nouvelle difficulté : identifier S

Une première idée : On cherche à placer N dames sur N^2 cases.

 \longrightarrow On numéro te les cases de 0 à $N^2-1.$ Un candidat est alors une façon de choisir N
 cases parmi les $N^2.$

$$\Rightarrow$$
 Il y a $\binom{N^2}{N}$ candidats, ce est égal à : $\frac{N^2!}{N!(N^2-N)!}$

Une meilleure idée :

- Il y aura exactement 1 dame par colonne donc on appelle dame n°i celle qui sera placée dans la colonne i.
- Un candidat est alors une fonction $f:[0,N-1]\to [0,N-1]$ et qui indique "la dame n°i est sur la ligne n°f(i)".
- De plus f est injective puisqu'on ne peut pas avoir 2 dames sur la même ligne.
- Donc elle est bijective par cardinal.
- \Rightarrow f est une permutation

Comment les énumérer? Avec l'ordre lexico-graphique.

5. Problème du Cavalier

Solution naïve : Les candidats sont des suites de cases, $f:[0,N^2-1]\to[0,N^2-1]$ et f est une permutation $\Rightarrow N^2!$ candidats !

Bonne solution : Le cavalier a 8 déplacements possibles à chaque étape et il y en a N^2 .

Une course de cavalier se décrit par une suite de N^2-1 déplacements parmi $\{A,B,C,D,E,F,G,H\}$.

$$\Rightarrow \left\{A,B,C,D,E,F,G,H\right\}^{N^2-1}$$

 $\Rightarrow 8^{N^2-1}$ candidats.

	A		В	
Н				С
		С		
G				D
	F		Е	

II - BackTracking (retour sur trace)

On s'intéresse dans un premier temps aux problèmes de recherche. L'idée du backtracking est d'organiser l'espace de recherche S sous forme d'un arbre afin que les feuilles de l'arbre correspondent de manière bijective aux éléments $s \in S$.

Les nœuds représentent alors des "candidats partiels" de telle sorte qu'un candidat partiel ait quelque chose en commun avec tous les candidats $s \in S$ qui sont ses feuilles dans l'arbre.

Pour énumérer S, on effectue un parcours en profondeur de l'arbre.

Illustration sur le cavalier

Dans les nœuds on écrit la position actuelle du cavalier. Chaque nœud a 8 enfants qui correspondent aux sauts possibles A, B,...H.

Dès lors qu'un nœud se situe en dehors de l'échiquier, on arrête de l'explorer, on ne construit pas le sous-arbre de ce nœud (idem si case déjà visitée).

Le backtracking consiste à effectuer le parcours en profondeur de cet arbre sans le construire.

Deuxième exemple : Subset Sum

Il s'agit d'énumérer P([0, n-1]). Comment organiser S dans un arbre ? Il faut éviter la redondance.

Une bonne idée serait alors de créer un arbre de décision. Dans l'ordre de 0 à n-1, on se pose la question "je prends ou pas ?".

Résumé

Si la façon de représenter S est pertinente, on peut s'épargner la recherche de certains sous-arbres. Dans le cas des optimisations, on va pouvoir ne pas explorer les sous-arbres qui ne respectent plus la contrainte mais il faudra bien trouver toutes les solutions pour déterminer l'optimum (ouverture sur le Branch and Bound).