2009-2010 学年第一学期《模拟电子技术》试卷 A (半开卷)

题号	1	2	3	4	5	总分	审核
题分	24	24	20	16	16		
得分							

得分	评阅人

- 1. (每小题 6 分, 共 12 分)
- 1.1 设硅稳压管 D_1 和 D_2 的稳定电压分别为 5V 和 10V, 正向压降均为 0.7V, 求:
- (1) 稳压管接法如图,求输出电压 U_0 。
- (2) 若两只稳压管方向均相反,求 U_0 。
- (3)若 D_1 方向不变, D_2 方向相反,求 U_0 。

题 1.1 图

1.2.题图(a)所示电路中,设 D_1 、 D_2 为理想二极管,导通压降忽略不计,图题(b)为输入 ν_A 、 ν_B 的波形,试分析 0 \sim 4ms 时间段内 D_1 和 D2 的导通、截止情况,并画出 ν_O 的波形。

1.3 电路如图所示,晶体管 β =50,导通时 U_{BE} =0.7V,三极管的饱和压降 Uces=0.3V。试分析 u_I 为 0V、1V、1.9V 三种情况下 T 的工作状态及输出电压 u_0 的值。

1.4图示电路,

- (1)连接图中 A、B、C、D 四点, 使之成为正弦波振荡电路;
- (2)根据给定参数估算振荡频率;
- (3) 求振荡时电路中 R₂ 为多大。

题 1.4 图

得分	评阅人

- 2. (每小题12分, 共24分)
- 2.1在图题中,设集成运放为理想器件,求下列情况下 v_0 与 v_s 的的关系式:
- (1)若 S_1 和 S_3 闭合, S_2 断开, v_0 =?
- (2)若 S_1 和 S_2 闭合, S_3 断开, v_0 =?
- (3)若 S_2 闭合, S_1 和 S_3 断开, v_0 =?
- (4)若 S_1 、 S_2 、 S_3 都闭合, v_0 =?

2.2 图题是由 LM317 组成的输出电压可调的三端稳压电路 。已知当 LM317 上 3-1 之间的电压 V_{31} = V_{REF} =1.2V,且要求 V_{I} - V_{O} >2V,调整端 1 输出的电流 I_{adj} 忽略不计,(1)当 R_{I} =210 Ω , R_{2} =3k Ω 时,求输出电压 V_{0} ;(2)当 V_{0} =37V, R_{1} =210 Ω 时, R_{2} =? (3)电路的最小输入电压 $V_{I \ (min)}$ = ?(4)调节 R_{2} 从 0 变化到 6.2k Ω 时,求输出电压的调节范围。

得分	评阅人

- 3. (20 分) 图示电路中,已知晶体管的电流放大系数β=50,
- (1) 试估算各静态值 I_B 、 I_C 和 V_{CE} ;
- ____ (2) 求晶体管的输入电阻 r_{be} ;
- (3) 画出微变(小信号)等效电路;
- (4) 求电压增益 A v;
- (5) 求该放大电路的输入电阻 R_i 和输出电阻 R_0 。
- (6) 如果出现了截止失真应该调整哪个电阻? 怎么调整(增大还是减小)?

得分	评阅人

4. $(16\ \beta)$ 图示差分放大电路中,调零电位器 R_P 的动端处在中点位置,已知晶体管 V_1 和 V_2 的电流放大系数 β 均为 50, U_{BE1} = U_{BE2} = $0.7\ V$,其它参数如图所示。

- (1) 求静态工作点(I_B 、 I_C 、 U_{CE});
- (2) 画出输入为差模信号时小信号等效电路;
- (3) 当 $u_{S1} = -u_{S2} = 10$ mV 时, 求 $u_0 = ?$
- (4) 求差模输入电阻 R_{id} 、共模输入电阻 R_{ic} 和输出电阻 R_0 ;
- (5) 电位器 Rp作用是什么?

题 4 图

得分	评阅人

- 5. (16 分) 在图示电路中,Rf 为反馈元件,三极管 T 饱和压降忽略不 计。
- (1) 为了提高输入电阻,稳定输出电压,且减小非线性失真,应引入哪种组态的负反馈?试画出引入反馈支路后的电路图。
- (2) 在深度负反馈情况下,若使闭环电压增益 $A_{Vf} = 10$,确定 $R_f = ?$
- (3) 求最大不失真输出电压功率 Pom = ? 以最大不失真输出功率时的输入电压幅值为多少?
- (4) T1、T2 允许的管耗 PCM 至少应该为多少?耐压 | V(BR) CEO | 应该大于多少?
- (5) 二极管 D1、D2 起什么作用?

