STUDENT PORTFOLIO

Insert Photo

Name: K.HARSHINI

Register Number:RA2211003011299 Mail ID:hk4595@srmist.edu.in

Department: COMPUTING TECHNOLOGIES

Semester: IV

Subject Title: 21CSC204J Design and Analysis of Algorithm

Handled By: Dr. V.Arulalan

EIAb Completion Status

Lab Experiment Completion status

Name Yr &	21CSC20 K. Harshini (RA2911003011299) Sec: II Yr D2 -Sec				lysis of	The Street	thms						
S.No.	Experiments	Aim & Algo	Program Implementation (10 Marks)						*				
			Basic Solution (2)	Basic Solution (2)	Modularity (2.5)	Readability (2.5)	Validation (2)	Scalability (1)	Time complexity analysis (3)	I/O and Result (1)	Viva (5)	Total (20)	Experiment mark
1	a. Insertion sort b. Bubble sort	1		2	23	2.5	2	1	3	1	5	20	.]
2	a. Linear search b. Binary search	1		2	25	2.5	2	1	3	0	5	19	0-9
3	Quick sort 1/2	1		2	25	25	2	1	3	1 1	5	20	1
4	Merge sort //	1		2	1.5	2.5	2	1	3	1	3	20	1
5	Divide and conquer problems a. Strassen's Matrix multiplication	1		2	2.5	2-5	2	,	3	1	3	20	1
6	Divide and conquer problems a. Finding Maximum and Minimum in an array b. Convex Hull problem	1		2	5->	23	2	1	3	1 (5	20	1
7	Huffman coding using greedy programming	1		2	25	25	2	1	2	1	(5)	20	1

8	Knapsack using greedy programming	1	2	25	23	2	1	3	1	12	114	1
9	Finding the longest common subsequence from a sequence	1	2	25	25	2	1	3	1	3	18	0.0
10	N queen's problem	1	2	75	25	2	0	2	1	1	20	1
11	Travelling salesman problem using a. Dynamic programming b. Greedy programming	1	2	25	2.5	2	,	3	1	3	\$ 8	0.40
12	String matching algorithm - Rabin Karp algorithm	1	2	25	27	2	1	3	1	5	20	1
13	Randomized Quick Sort	(2	20	0)	1	,	n	1	1	20	

completed by high with the

REAL WORLD APPLICATION IN DAA PPT VR/SIMULATION DEMO

https://github.com/HARSHINIKASTURI07/DAA-real-world-project

TITLE OF THE PROJECT: ENERGY-EFFICIENT ROUTING PROTOCOLS FOR WIRELESS SENSOR NETWORKS"

ABSTRACT:

Networks of distributed devices (sensors) that monitor and record conditions in a different environments and coordinate to pass their data through the network to a main location.

WSNs are crucial for applications like environmental monitoring, healthcare, home automation, and military uses.

Most sensor nodes are battery-operated, making energy conservation a critical design consideration.

REAL-WORLD APPLICATIONS OF WSNS:

Agriculture: Use WSNs for precision farming techniques, monitoring soil moisture and conditions, optimizing irrigation schedules, and reducing water usage.

Healthcare Monitoring: Implement WSNs for remote health monitoring, tracking patient vital signs, and providing real-time data to medical professionals, enhancing patient care.

Environmental Monitoring: Deploy sensor networks for monitoring air and water quality, detecting forest fires early, and observing wildlife, contributing to conservation efforts.

Smart Cities: Utilize WSNs for managing traffic flows, monitoring public infrastructure, enhancing public safety, and optimizing energy use in urban environments

NPTEL/HOTS Questions Solution.

I have completed the 8 weeks of quiz and assignment in DAA NPTEL and scored good marks in it.

Signature

Note: Enclose the assignment and relevant certificates along with the profile