

Departamento de Estatística Universidade Federal de Juiz de Fora

Planejamento de Experimentos Delineamento Fatorial

Professora Ângela

Experimentos Fatoriais

Experimentos fatoriais completos são aqueles que levam em conta todas as possíveis combinações entre os vários níveis de 2 ou mais fatores.

Modelo Matemático

- ▶ Considere o caso de um fatorial $(I \times J)$ no delineamento em blocos casualizados;
- Obs: Um experimento fatorial pode ser instalado segundo qualquer delineamento experimental.
- O modelo nesse caso é:
- $y_{ijk} = m + a_i + b_j + ab_{ij} + r_k + e_{ijk};$
- Em que:
 - m é uma constante (usualmente a média geral);
 - a_i , com i = 1, ..., I, é o efeito do fator A;
 - b_j , com j = 1, ..., J, é o efeito do fator B;
 - $lacktriangle ab_{ij}$ é o efeito da interação entre os fatores A e B;
 - r_k , com k = 1, ..., K, é o efeito de blocos; e
 - e_{ijk} é o erro experimental.

Esquema da ANOVA

Causa de Variação	Graus de Liberdade	Soma de Quadrados	Quadrado Médio	F
Fator A	I-1	Q_1	V_1	V_1/V_6
Fator B	J-1	Q_2	V_2	V_2/V_6
Int AxB	(I-1)(J-1)	Q_3	V_3	V_3/V_6
(Tratamentos)	(IJ - 1)	(Q_4)	(V_4)	(V_4/V_6)
Blocos	K-1	Q_5	V_5	
Resíduos	(IJ-1)(K-1)	Q_6	V_6	
Total	<i>IJK</i> – 1	Q_7	V_7	

Fórmulas para o Cálculo das Somas de Quadrados

Considere o Fator A com I níveis, o Fator B com J níveis e um experimento com K Blocos.

$$Q_1 = \frac{1}{JK} \sum_{i} (\sum_{jk} y_{ijk})^2 - \frac{1}{IJK} (\sum_{ijk} y_{ijk})^2$$

$$Q_2 = \frac{1}{IK} \sum_j \left(\sum_{ik} y_{ijk} \right)^2 - \frac{1}{IJK} \left(\sum_{ijk} y_{ijk} \right)^2$$

$$Q_3 = Q_4 - Q_1 - Q_2$$

$$Q_4 = \frac{1}{K} \sum_{ij} (\sum_k y_{ijk})^2 - \frac{1}{IJK} (\sum_{ijk} y_{ijk})^2$$

$$Q_5 = \frac{1}{IJ} \sum_{k} \left(\sum_{ij} y_{ijk} \right)^2 - \frac{1}{IJK} \left(\sum_{ijk} y_{ijk} \right)^2$$

$$Q_6 = Q_7 - Q_4 - Q_5$$

$$Q_7 = \sum_{ijk} (y_{ijk})^2 - \frac{1}{IJK} (\sum_{ijk} y_{ijk})^2$$

Fórmulas para os Cálculos dos Quadrados Médios

$$V_1 = \frac{Q_1}{I-1}$$

$$V_2 = \frac{Q_2}{I-1}$$

$$V_3 = \frac{Q_3}{(I-1)(J-1)}$$

$$V_6 = \frac{Q_6}{(IJ-1)(K-1)}$$

- Permite o estudo de dois ou mais fatores em um único experimento;
- È possível saber se os fatores são dependentes ou não, dado o resultado obtido para interações;
 - Se, por exemplo, a interação AxB apresentar um teste F não significativo, entende-se que os fatores A e B são independentes.
 - Sendo assim, a aplicação de um teste de comparação de médias para o fator A, independentemente do fator B, é válida, ou seja, é possível tirar conclusões para A sem se referir a B ou viceversa.

- Se, no entanto, a interação AxB for significativa, conclúi-se que os fatores A e B são dependentes. Logo, o comportamento dentro do fator A é influenciado pela presença ou ausência de B, e viceversa.
- Nesse caso não é possível tirar conclusões sobre um fator sem levar o outro em consideração.
- Deve-se, então, estudar o comportamento de A dentro de cada nível de B, ou alternativamente, o comportamento de B dentro de cada nível de A:

Comportamento de A dentro dos níveis de B:

Entre A d.
$$B_1 \rightarrow (I-1)gl$$

Entre A d. $B_2 \rightarrow (I-1)gl$
...
$$J(I-1)gl$$
Entre A d. $B_J \rightarrow (I-1)gl$

Comportamento de B dentro dos níveis de A:

Entre B d.
$$A_1 \rightarrow (J-1)gl$$

Entre B d. $A_2 \rightarrow (J-1)gl$
...
$$I(J-1)gl$$
Entre B d. $A_I \rightarrow (J-1)gl$

A desvantagem dos experimentos fatoriais é que o número de tratamentos cresce rapidamente em função do aumento no número de fatores e/ou do número de níveis de cada fator. O que pode trazer problemas de homogeneidade da área experimental.

Fatores	Níveis	Tratamentos
A e B	4 e3	12
A e B	5 e 5	25
A, B e C	4, 3 e 2	24
A, B e C	4, 3 e 3	36

- Pode-se contornar essa desvantagem do seguinte modo:
 - Utiliza-se o delineamento em Blocos Incompletos;
 - Utiliza-se fatoriais fracionários;
 - Usa-se o confundimento, que consiste em se confundir o efeito de alguma interação sem importância prática, com o efeito de blocos.

Exemplo

- Dados de altura total (metros) de árvores de E. saligna, com 7 anos de idade de um ensaio fatorial de 5x4, em blocos casualizados.
- Os 5 aparelhos foram operados pelos 4 observadores de modo a se formarem 20 combinações ou tratamentos;
- Através de sorteio, cada observador manipulando um aparelho fazia 2 medições seguidas na mesma árvore (num total de 10 árvores).
- A média das 2 observações era, então anotada para essa combinação e árvore.
- A trena foi sempre o último aparelho, dado a necessidade em tombar a árvore.

Aparelhos

1. Hipsômetro de Bllume-Leis

2. Hipsômetro de Haga

3. Hipsômetro de Weise

4. Prancheta dendrométrica

5. Trena

Dados de altura total (m) de árvores de E. saligna, com 7 anos de idade de um ensaio fatorial de 5×4 , em blocos casualizados

Tuest	Blocos									
Trat	I	II	Ш	IV	V	VI	VII	VIII	IX	X
Ap I e Ob I	22,40	20,85	23,60	21,00	19,10	19,80	16,55	14,75	21,10	14,30
Ap 2 e Ob I	22,90	21,4	23,95	22,25	21,40	21,00	16,90	14,85	22,00	15,00
Ap 3 e Ob I	23,50	21,00	23,75	20,75	19,50	19,50	17,50	14,50	20,00	14,00
Ap 4 e Ob I	22,50	20,50	23,20	21,00	21,00	18,90	17,80	14,30	20,60	14,20
Ap 5 e Ob I	21,45	19,20	23,35	20,35	19,95	19,35	17, 4 5	14,45	22,00	14,75
Ap I e Ob 2	22,65	20,65	23,00	20,75	20,25	19,80	17,25	15,00	19,75	14,25
Ap 2 e Ob 2	23,00	20,70	22,50	20,95	22,25	20,75	18,00	14,75	20,50	15,25
Ap 3 e Ob 2	22,00	19,50	23,25	20,50	21,25	19,75	17,75	14,75	20,50	14,25
Ap 4 e Ob 2	22,90	21,20	24,60	21,50	21,20	20,00	18,70	15,00	21,50	14,20
A p 5 e O b 2	21,45	18,90	23,20	20,25	19,95	19,20	17,35	14,35	21,80	14,65
Ap I e Ob 3	22,50	21,25	23,10	20,60	21,00	19,50	16,60	14,35	20,75	14,10
Ap 2 e Ob 3	22,50	21,00	23,00	21,75	22,75	20,35	17,20	14,85	22,35	16,00
A p 3 e O b 3	22,75	20,50	22,75	19,50	20,50	19,75	17,25	14,25	21,50	14,25
Ap 4 e Ob 3	21,75	19,35	21,75	19,50	20,50	19,00	16,35	14,10	20,85	13,85
A p 5 e O b 3	21,35	19,20	23,20	20,30	20,00	19,30	17,50	14,40	21,90	14,80
Ap I e Ob 4	21,25	21,25	22,25	21,25	18,00	20,00	17,25	14,65	21,00	14,25
Ap 2 e Ob 4	22,10	21,60	22,35	21,75	19,75	20,65	16,70	15,75	20,85	15,40
Ap 3 e Ob 4	21,25	21,50	22,10	21,70	19,75	19,75	18,20	14,60	21,25	14,75
Ap 4 e Ob 4	21,90	21,00	22,75	20,75	19,70	20,00	18,45	14,30	20,75	15,10
A p 5 e O b 4	21,20	18,90	23,30	20,30	19,90	19,30	17,40	14,50	22,00	14,40
Total	443,3	409,45	460,95	416,7	407,7	395,65	348,15	292,45	422,95	291,75

Quadros Auxiliares

Totais para os 20 tratamentos e totais marginais para observadores e aparelhos

		A parelhos						
Observadores	I	2	3	4	5	Total		
I	193,45	201,65	194,00	194,00	192,30	975,40		
2	193,35	198,65	193,50	200,80	191,10	977,40		
3	193,75	201,75	193,00	187,00	191,95	967,45		
4	191,15	196,90	194,85	194,70	191,20	968,80		
Total	771,70	798,95	775,35	776,50	766,55	3889,05		

Quadro de médias para os 20 tratamentos, para aparelhos, observadores e geral

		A parelhos						
Observadores	I	2	3	4	5	Total		
I	19,35	20,17	19,40	19,40	19,23	19,51		
2	19,34	19,87	19,35	20,08	19,11	19,55		
3	19,38	20,18	19,30	18,70	19,20	19,35		
4	19,12	19,69	19,49	19,47	19,12	19,38		
Total	19,29	19,97	19,38	19,41	19,16	19,45		

Tabela da ANOVA

CV	GL	SQ	QM	F
Aparelhos (Ap)	4	15,4697	3,8674	9,37
Observadores (Ob)	3	1,4277	0,4759	1,15
Interação Ap x Ob	12	10,5503	0,8792	2,13*
(Tratamentos)	(19)	(27,4477)		
Blocos	9	1565,2699		
Resíduos	171	70,6004	0,4129	
Total	199	1663,3180		

CV(%) = 3,30%
$$F_{tab}\begin{cases} n_1 = 12 \\ n_2 = 171 \end{cases} = 1,809(5\%)e\ 2,29(1\%)$$

Interação Aparelhos x Observadores

Desdobramento de Observadores dentro de Aparelhos - Cálculo

		A parelhos						
Observadores	I	2	3	4	5	Total		
I	193,45	201,65	194,00	194,00	192,30	975,40		
2	193,35	198,65	193,50	200,80	191,10	977,40		
3	193,75	201,75	193,00	187,00	191,95	967,45		
4	191,15	196,90	194,85	194,70	191,20	968,80		
Total	771,70	798,95	775,35	776,50	766,55	3889,05		

Desdobramento de Observadores dentro de Aparelhos

CV	GL	SQ	QM	F
Entre Ob d.Ap1	3	0,4288	0,1429	0,838
Entre Ob d.Ap2	3	1,6942	0,5647	1,37
Entre Ob d.Ap3	3	0,1867	0,0622	0,151
Entre Ob d.Ap4	3	9,5668	3,1889	7,72**
Entre Ob d.Ap5	3	0,1017	0,0339	0,082
Resíduos	171	70,6004	0,4129	

$$F_{tab} \begin{cases} n_1 = 3 \\ n_2 = 171 \end{cases} = 2,6562(5\%) \text{e } 3,9262(1\%)$$

Desdobramento de Aparelhos dentro de Observadores - Cálculo

		A parelhos						
Observadores	I	2	3	4	5	Total		
I	193,45	201,65	194,00	194,00	192,30	975,40		
2	193,35	198,65	193,50	200,80	191,10	977,40		
3	193,75	201,75	193,00	187,00	191,95	967,45		
4	191,15	196,90	194,85	194,70	191,20	968,80		
Total	771,70	798,95	775,35	776,50	766,55	3889,05		

Desdobramento de Aparelhos dentro de Operadores

CV	GL	SQ	QM	F
Entre Ap d. Ob I	4	5,5883	1,3971	3,38**
Entre Ap d. Ob2	4	6,5993	1,6498	3,99**
Entre Ap d. Ob3	4	11,3027	2,8257	6,84**
Entre Ap d. Ob4	4	2,5297	0,6324	1,53
Resíduos	171	70,6004	0,4129	

$$F_{tab}$$
 $\begin{cases} n_1 = 4 \\ n_2 = 171 \end{cases}$ = 2,4262(5%)e 3,4323(1%)

Conclusões

- Como a interação entre observadores e aparelhos foi significativa tem-se que um fator depende do outro, ou seja, não se pode estudá-los separadamente, sendo assim deve-se estudar o efeito de um fator dentro do outro;
- Ao estudar observadores dentro de aparelhos, temos que houve diferença entre observadores apenas para o aparelho 4 (prancheta dendrométrica), sendo assim, esse é o aparelho que mais permite diferenças de interpretações entre operadores;
- Para mais informações se faz necessária a utilização de um método de comparação múltipla.

Comparação Múltipla – Observadores dentro de Aparelhos - Tukey

As médias ordenadas de Observadores dentro do Aparelho 4 são:

$$\hat{m}_{2/4} = 20.08$$
 a

$$\widehat{m}_{4/4} = 19,47$$
 a

$$\widehat{m}_{1/4} = 19,40$$
 a b

$$\hat{m}_{3/4} = 18,70$$
 b

$$\Delta = q \sqrt{\frac{QMRes}{K}} = 3,67 \sqrt{\frac{0,4129}{10}} = 0,74 \text{ metros}$$

Comparação Múltipla – Aparelhos dentro de Observadores - Dunnett

As médias ordenadas de Aparelhos dentro de Observador I são:

$$\widehat{m}_{5/1} = 19,23$$
 (trena - controle) a

$$\hat{m}_{1/1} = 19,34$$

$$\hat{m}_{3/1} = 19,40$$

$$\hat{m}_{4/1} = 19,40$$

$$\hat{m}_{2/1} = 20,16$$

$$d' = 2,51\sqrt{0,4129\left(\frac{1}{10} + \frac{1}{10}\right)} = 0,7213$$

Comparação Múltipla – Aparelhos dentro de Observadores - Dunnett

As médias ordenadas de Aparelhos dentro de Observador 2 são:

$$\widehat{m}_{5/1} = 19,11$$
 (trena - controle) a

$$\hat{m}_{1/1} = 19,34$$

$$\hat{m}_{3/1} = 19,35$$

$$\hat{m}_{2/1} = 19,86$$
 b

$$\hat{m}_{4/1} = 20.80$$

$$d' = 2,51\sqrt{0,4129\left(\frac{1}{10} + \frac{1}{10}\right)} = 0,7213$$

Comparação Múltipla – Aparelhos dentro de Observadores - Dunnett

As médias ordenadas de Aparelhos dentro de Observador 3 são:

$$\hat{m}_{4/1} = 18,70$$

$$\widehat{m}_{5/1} = 19,20$$
 (trena - controle) a

$$\hat{m}_{3/1} = 19,30$$

$$\hat{m}_{1/1} = 19,38$$

$$\hat{m}_{2/1} = 20,18$$
 b

$$d' = 2,51\sqrt{0,4129\left(\frac{1}{10} + \frac{1}{10}\right)} = 0,7213$$

Conclusões

- ▶ Fazendo um teste de comparação de médias para operadores dentro do aparelho 4 verifica-se que o operador 3 encontrou resultados diferentes dos operadores 2 e 4.
- ▶ Ao estudar aparelhos dentro de operadores, tem-se que houve diferença nos resultados obtidos pelos diferentes aparelhos para os operadores 1, 2 e 3.
- O observador 2 foi aquele que teve mais erro de medição, todos os aparelhos deram diferença na medida, quando comparados com a trena, sendo que o observador teve uma tendência em superestimar as alturas com os outros aparelhos;
- O observador 3 superestimou a altura das árvores ao usar o aparelho 2;

Conclusões

- Já o observador I teve dificuldade apenas na utilização do Hipsômetro de Haga (aparelho 2);
- Sendo assim, pode-se dizer que os aparelhos Prancheta
 Dendrométrica e Hipsômetro de Haga, foram aqueles que os observadores tiveram mais dificuldade em utilizar;
- O observador 2 foi aquele que teve a maior dificuldade em manejar os equipamentos;
- Num geral, podemos dizer que pode-se utilizar o Hipsômetro de Blume-Leiss ou de Weise na medição da altura de árvores *E. Saligna*, que foram os aparelhos que não apresentaram diferença do resultado da trena, a não ser para o observador 2, o qual não deveria ser encarregado de medições que não com a trena.