

Smart Series Confirmation of the Confirmation

SmartSensTM

SC5238 数据手册

V1.2

2018.1.4

应用

- 安防监控系统
- 网络摄像机
- 行车记录仪
- 可移动设备相机
- PDA
- 视频电话会议设备
- 工业和环境系统

特性

- 高光敏度
- 支持外部控制帧率及多 sensor 同步
- 16x 模拟增益,32x 数字增益
- 水平/垂直窗口调整
- 水平/垂直窗口翻转
- 支持 2×2 binning 模式
- 高动态范围
 - 支持行间宽动态
- 高信噪比
- I2C 接口寄存器编程
- 低功耗
- 850nm/940nm 近红外增强

关键指标(典型值)

- 分辨率: 500万
- 像素阵列: 2608H×1960V
- 像素尺寸: 1.998µm×1.998µm
- 镜头光学尺寸: 1/2.7"
- 最大图像传输速率:
 - 2560H×1440V @50fps
 - 2592H×1944V@30fps
- 输出接口:
 - 12/10/8 -bit 2lane MIPI
- 输出格式: RAW RGB
- CRA: 15°
- 灵敏度: 2800mV/Lux・s
- 动态范围:
 - HDR 模式 100dB
 - 非 HDR 模式 74dB
- 信噪比: 39dB
- 工作温度范围: -30° C~+85° C
- 最佳工作温度范围: -20°C~+60°C
- 电源电压:
 - AVDD = 2.8V
 - DVDD = 1.5V
 - DOVDD = 1.8V
- 封装: 41pin CSP
- 封装尺寸: 5.965mm×4.922mm

目录

目录				
表程				
1.	糸纡	梵描述		7
	1.1.	芯片桐	私述	7
	1.2.	系统机	至架	
	1.3.	引脚指	描述	8
	1.4.		J始化	
	1.4.	1011111		
		1.4.1.	上电时序	10
		1.4.2.	睡眠模式	11
		1.4.3.	复位模式	11
	1.5.	配置接	ξΠ	12
	1.6.			
	1.0.	3611301	ID	13
	1.7.	数据接	ξ 🗆	13
	1.8.		Z	
2.	功能	比介绍	\mathcal{L}	17
	2.1.	SLAVF	MODE	17
	2.2.			
	2.3.	AEC/A	GC	21
		231	AEC/AGC 的控制策略	21
			AEC/AGC 控制寄存器说明	
	2.4.	GROU	P_HOLD	32
	2.5.	黑电平	^至 控制(BLC)	32
	2.6.	视频轴	ì出模式	33
		2.6.1.	读取顺序	33
		2.6.2.	输出窗口	
	2.7.	帧率计	·算	35
		271	Mactar Mada	25
		2.7.1.	Master Mode	
		2.7.2.	Slave Mode	36

Company Confidential

数据手册

SC5238	
3C3Z30	

	2.8.	测试模式	36
3.	电气制	寺性	38
4.	光学特	寺性	40
	封装在		4 1

Smarts ens

图片索引

图	1-1 SC5238 结构图	7
图	1-2 典型应用示意图	8
图	1-3 SC5238 封装引脚图	.10
图	1-4 上电时序图	.11
图	1-5 I2C 接口时序	
图	1-6 MIPI 时序示意图	.14
图	1-7 MIPI 底层数据包示意图	
图	1-8 MIPI 长/短数据包结构示意图	.15
图	1-9 MIPI 数据包 DI 结构	
图		.16
图	2-1 Slave Mode 时序图	.17
图	2-2 Slave Mode 曝光实现图	.18
图	2-3 行间 HDR 使用 virtual channel 数据读出时序	.19
图	2-4 行间 HDR 不使用 virtual channel 数据模式 a 读出时序	.20
图	2-5 行间 HDR 不使用 virtual channel 数据模式 b 读出时序	.20
图	2-6 像素阵列图一	.34
图	2-7 像素阵列图二	.34
图	2-8 镜像和倒置实例	.34
图	2-9 视频有效输出示意图	.36
图	2-10 测试模式	.37
图	4-1 SC5238 光谱曲线	.40
夂	5.1 封建尺寸示音网	11

表格索引

表 :	1-1 SC5238 引脚描述	8
表 :	1-2 睡眠模式控制寄存器	11
表 :	1-3 软复位控制寄存器	12
	1-4 I2C 接口时序详细参数	
表 :	1-5 SENSOR ID 寄存器	13
表 :	1-6 MIPI 数据类型	15
	1-7 MIPI 调整寄存器	
表:	2-1 Slave mode 控制寄存器	19
表:	2-2 HDR 控制寄存器	21
表:	2-3 增益/曝光的手动控制寄存器	22
表:	2-4 Normal 模式/HDR 模式下的长曝光的模拟 gain 值控制寄存器	2 3
表:	2-5 Normal 模式/HDR 模式下的长曝光的数字 gain 值控制寄存器	25
表:	2-6 HDR 模式下的短曝光的模拟 gain 值控制寄存器	27
表:	2-7 HDR 模式下的短曝光的数字 gain 值控制寄存器	29
表:	2-8 Group hold 控制寄存器	32
表:	2-9 Normal or HDR 模式下长曝光的 BLC 控制寄存器	32
表:	2-10 HDR 模式下短曝光的 BLC 控制寄存器	33
表:	2-11 镜像和倒置模式控制寄存器	35
表:	2-12 输出窗口寄存器	35
表 :	2-13 帧率相关寄存器	36
表 :	2-14 测试模式控制寄存器	37
表:	3-1 绝对最大额定值(以上所有电压都是 to pad 电压)	38
表:	3-2 直流电气特性(以上所有电压都是 to pad 电压)	38
表:	3-3 交流特性(TA=25℃,AVDD=2.8V,DOVDD=1.8V)	39
表「	5-1 SC5238 封装示意图	41

1. 系统描述

1.1. 芯片概述

SC5238 是监控相机领域先进的数字 CMOS 图像传感器,最高支持 2560H×1440V @ 50fps/2592 x 1944 @ 30fps 的传输速率。SC5238 输出 raw 格式图像,有效像素窗口为 2608H ×1960V,支持复杂的片上操作——例如窗口化、水平或垂直镜像化等。

SC5238 可以通过标准的 I²C 接口进行配置。

SC5238 可以通过 EFSYNC 引脚实现外部控制曝光。

1.2. 系统框架

图 1-1 展示了 SC5238 图像传感器的功能模块。图 1-2 展示了一个典型的应用示例。

SC5238 Block Diagram

图 1-1 SC5238 结构图

SC5238 支持 MIPI 接口,下是其典型应用示意图。

图 1-2 典型应用示意图

1.3. 引脚描述

表 1-1 列出了 SC5238 图像传感器的引脚信息及相关描述。

表 1-1 SC5238 引脚描述

序号	编号	信号名	引脚类型	描述
1	A1	AVDD	电源	2.8V 模拟电源
2	A2	NC	-	-
3	A3	SCL	输入	I2C 时钟线
4	A4	PWDNB	输入	Power Down 信号输入(内置上拉
4	A4	FWDNB	+ 制八	电阻,低电位有效)
5	A5	SID	输入	I2C Device ID (内置下拉电阻,对
3	AJ	SID	相りへ	应 Device ID 是 0X30)
6	۸.6	VREFN	输出	内部参考电压(外接电容至
6	A6	V KEFIN	湘 凸	AGND)

序号	编号	信号名	引脚类型	描述		
7	A7	AVDD	电源	2.8V 模拟电源		
8	B1	AGND	地线	模拟地		
9	B2	FSYNC	输出	帧同步信号		
10	В3	SDA	输入/输出	I2C 数据线(open drain)		
11	В5	DVDD	电源	1.5V 数字电源		
12	В6	EFSYNC	输入	外部同步触发		
13	В7	AGND	地线	模拟地		
14	C1	DVDD	电源	1.5V 数字电源		
15	C2	EXTCLK	输入	时钟输入		
16	C3	DOGND	地线	IO地		
17	C4	XSHUTDN	输入	复位信号输入(内置上拉电阻,低 电位有效)		
18	C5	NC	-	-		
19	C6	NC	-	-/		
20	C7	AVDD	电源	2.8V 模拟电源		
21	D1	NC	- ~	-		
22	D2	DOGND	地线	IO地		
23	D3	NC		-		
24	D4	DOVDD	电源	1.8V IO 电源		
25	D5	NC .	-	-		
26	D6	DVDD	电源	1.5V 数字电源		
27	D7	TXVDD	输出	内部参考电压(外接电容至 AGND)		
28	E1	NC	-	-		
29	E2 <i>C</i>	DOVDD	电源	1.8V IO 电源		
30	E3	MD1N	输出	MIPI 数据 1 负极信号		
31	E4	MCN	输出	MIPI 时钟负极信号		
32	E5	MD0P	输出	MIPI 数据 0 正极信号		
33	E6	DOGND	地线	IO地		
34	E7	VREFH	输出	内部参考电压(外接电容至 AGND)		
35	F1	NC	-	-		
36	F2	NC	-	-		
37	F3	MD1P	输出	MIPI 数据 1 正极信号		
38	F4	МСР	输出	MIPI 时钟正极信号		
39	F5	MD0N	输出	MIPI 数据 0 负极信号		
40	F6	DOGND	地线	IO地		
41	F7	VREFN2	输出	内部参考电压(外接电容至 AGND)		

数据手册

Top View

(A1)	(A2)	(A3)	(A4) PWDNB	(A5)	(A6)	(A7)
AVDD	NC	SCL		SID	VREFN	AVDD
(B1) AGND (C1) DVDD	(B2) FSYNC (C2) EXTCLK	(B3) SDA (C3) DOGND	(C4) XSHUTDN	(B5) DVDD (C5) NC	(B6) EFSYNC (C6) NC	(B7) AGND $(C7)$ AVDD
(D1) NC	(D2) DOGND	(D3) NC	(D4) DOVDD	(D5) NC	(D6) DVDD	(D7) TXVDD
(E1)	(E2)	(E3)	(E4)	(E5)	(E6) DOGND	(E7)
NC	DOVDD	MD1N	MCN	MDOP		VREFH
(F1)	(F2)	(F3)	(F4)	(F5)	(F6) DOGND	(F7)
NC	NC	MD1P	MCP	MDON		VREFN2

图 1-3 SC5238 封装引脚图

1.4. 芯片初始化

1.4.1. 上电时序

在上电过程中,必须对 XSHUTDN 信号进行控制。具体上电时序要求如下:

数据手册

图 1-4 上电时序图

说明:

1) T1>0ms, T2>1ms, T3>2ms, T4>=0ms, T5>2ms;

1.4.2. 睡眠模式

SC5238 提供两种方式进入睡眠模式:

- 1) 将 PWDNB 拉低,此时不支持 I²C 读写。
- 2) 将寄存器 16'h0100[0]写入 0,此时支持 I²C 读写。

表 1-2 睡眠模式控制寄存器

地址	寄存器名	默认值	读/写	描述	
16'h0100	Sleep mode	'b1	RW	Bit[0]: manual stream enable Sleep=~Bit[0] or ~PWDNB	

1.4.3. 复位模式

SC5238 含一个 XSHUTDN 引脚,低电平有效。硬复位时,XSHUTDN 拉低,SC5238 重置 所有寄存器为默认值。同时也可通过 I²C 接口将寄存器 16'h0103 的 Bit[0]设置为高位来实现 软复位功能。

表 1-3 软复位控制寄存器

地址	寄存器名	默认值	读/写	描述
16'h0103	Rst_pon	'b0	W	Bit[0]: rst soft

1.5. 配置接口

SC5238 控制寄存器通过标准的 I2C 总线进行读写,PAD SID 拉低时,I2C 总线设备地址为 7'h30,PAD SID 拉高时,I2C 总线设备地址为 7'h32。PAD SID 内部有下拉电阻。

消息类型:16-bit 地址、8-bit 数据和7-bit 设备地址

S	Slave Ad	dres	S	R/W	R/W A Sub Addr			ress[15:8]	Α	Sı	ub A	ddress[7:0]	A	data	A/Ã	Р
I ² C 读操作																	
S	Slave Address	0	Α	Addr	Sub ess[1	5:8]	Α	Sub Address[7:	0]	Α	Sr	Slave address	1	Α	data	Ã	Р
I ² C 写操作																	
S	Slave Ad	dres	S	0	0 A Sub Add			ress[15:8]	Α	Sı	ub Ad	ddress[7:0]	Α	data	A/Ã	Р

从机到主机 S: 起始条件 A: 答复

I²C 时序

图 1-5 I2C 接口时序

表	1-4 I2C	接口	时序详细参数

符号	参数	最小值	典型值	最大值	单位
fI2C	时钟频率	_	_	400	kHz
tlow	时钟低电平时间	1.3	_	_	μs
thigh	时钟高电平时间	0.6	_	_	μs
tcl2dov	SCL 拉低至输出数据有效间时间间隔	0.1	_	0.9	μs
tbusft	下一个起始状态前总线空闲时间	1.3	_	_	μs
tscht0	起始条件保持时间	0.6	_	_	μs
tscst	起始条件建立时间	0.6	_	- <	μs
tdiht	输入数据保持时间	0	_	-0	μs
tdist	输入数据建立时间	0.1	-	>	μs
tscst1	终止条件建立时间	0.6	-()) > -	μs
tf/tr	下降上升时间比	_	->	0.3	μs
tdoht	输出数据保持时间	0.05	/-	_	μs

注意:

- 1) 这是在 400kHz 模式下的 I²C 时序。
- 2) 判断上升沿起始或下降沿终止的电平阈值为 10%; 判断上升沿终止或下降沿起始的阈 值为 90%。

1.6. Sensor ID

表 1-5 SENSOR ID 寄存器

地址	寄存器名	寄存器值	
16'h3107	SENSOR ID	8'h52	
16'h3108	SENSOR ID	8'h35	

1.7. 数据接口

SC5238 提供串行视频端口(MIPI)。SC5238 MIPI 接口支持 8/10/12bit, 1/2lane 串行输出, 每个 lane 传输速率推荐不大于 1.1Gbps。图 1-6 是 MIPI 数据接口示意图。

MIPI TX MIPI RX N+1 lane, N=0,1,2,3 (DataN+)MDNP MDNP(DataN+) (DataN-)MDNN MDNN(DataN-) MD<mark>0</mark>P(Data0+) (Data0+)MDOP (Data0-)MD0N MDON(Data0-) (Clock+)MCP MCP(Clock+) (Clock-)MCN MCN(Clock-)

图 1-6 MIPI 时序示意图

图 1-7 是 MIPI 底层数据包的简略示意图,其中分别展示了一个短数据包和长数据包的传输过程。

图 1-7 MIPI 底层数据包示意图

图 1-8 展示了 MIPI 长、短数据包结构示意图。其中数据标识 DI(Data Identifier)用来区分不同的数据包类型。图 1-9 中,DI 包括两部分,分别是虚拟通道(VC)和数据类型(DT)。默认情况下,Sensor 给出的 MIPI 数据 VC 值都是 0,而 DT 值如表 1-6 所示。

图 1-8 MIPI 长/短数据包结构示意图

图 1-9 MIPI 数据包 DI 结构

表 1-6 MIPI 数据类型

DT	描述
0x00	帧起始短包
0x01	帧结束短包
0x02	行起始短包
0x03	行结束短包
0x2a	8-bit 模式下数据长包
0x2b	10-bit 模式下数据长包
0x2c	12-bit 模式下数据长包

表 1-7 是 MIPI 调整相关寄存器。

表 1-7 MIPI 调整寄存器

功能	寄存器名	描述
MIPI lane 数量	16'h3018	Bit[7:5]: mipi lane num-1 3'h0~ 1 lane mode 3'h1~ 2 lane mode
MIPI 输出数据模式	16'h3031	Bit[3:0]: mipi bit mode 4'h8~ raw8 mode 4'hc~ raw12 mode others~ raw10 mode
MIPI clock 设置	16'h303f	Bit[7]: pclk sel 1'b0~ sel pll_pclk
MIPI Lane 0&1 延时	16'h3652	Bit[7]: lane0 相位反向,默认 0 Bit[6:4]: lane0 延时,100ps/step,默认 3'b100 Bit[3]: lane1 相位反向,默认 0 Bit[2:0]: lane1 延时,100ps/step,默认 3'b100
MIPI Clock 延时	16'h3654	Bit[7:4]: Reserved Bit[3]: 时钟反向,默认 0 Bit[2:0]: 时钟延时,100ps/step,默认 3'b100

1.8. 锁相环

SC5238 的 PLL 模块允许的输入时钟频率范围为 6~27MHz ,其中 VCO 输出频率(F_VCO) 的范围为 100MHz-1200MHz。PLL 结构示意图在图 1-10 展示。

图 1-10 PLL 控制示意图

2. 功能介绍

2.1. SLAVE MODE

Slave Mode 是主控芯片通过 EFSYNC 信号触发帧读出,以达到多个 sensor 同步成像。当 EFSYNC 信号发生时,SC5238 开始输出图像数据,帧率受外部控制。

当 SC5238 工作在 Slave Mode 时,主控芯片通过 EFSYNC 引脚控制视频数据输出,具体时序如图 2-1:

图 2-1 Slave Mode 时序图

Slave Mode 工作流程

- 1) 当 SC5238 工作在 Slave Mode 时,芯片自动进入 Active state 状态,等待 EFSYNC 触发。
- 2) 当 EFSYNC 触发后,芯片进入 RB Rows, RB Rows 是有效数据读出之前的等待时间,由寄存器控制,以行为单位
- 3) Active Rows 时读出芯片图像数据,由寄存器控制,以行为单位
- 4) Blank Rows 时读出芯片图像数据之后的消隐时间,由寄存器控制,以行为单位
- 5) Extra Delays = 4 PIXCLK
- 6) Active state 时芯片等待下一次 EFSYNC 触发

Slave Mode 注意事项:

1) 只有当 SC5238 处于 Active state 时,EFSYNC 触发才有效 SC5238 Slave mode 下的曝光实现如图 2-2:

图 2-2 Slave Mode 曝光实现图

注释:

- Row Reset 开始曝光操作,Row Readout 开始前结束曝光操作,包括 Active state 时间
- 2) F_Length 表示帧长,F_Length= RB Rows + Active Rows + Blank Rows
- 当芯片工作在 slave 模式下,曝光时间需要小于 F_Length,为了留一定余量,我们建议 3) 曝光时间最大为帧长 F_Length-4。
- Active state 时,芯片停止输出及停止 Row reset 操作,如上图所示,会导致一帧图像 Row 1~Row e 行与 Row (e+1)~Row n 行的曝光时间不同, Row 1~Row e 行的曝光时间比 Row (e+1)~Row n 行的曝光时间大,多出的时间为 Active state time,为避免这种曝光差异, 要求外部精确控制 EFSYNC, 使 Active state 控制在 20 个 PIXCLK 以内, 保证一帧内的每 行曝光时间基本一致。
- 当 RB Rows 大于曝光时间时,注释 3)中帧内曝光时间不一致的情况便不会出现,一帧内 的每行曝光时间一致,此时 EFSYNC 引脚可实现同步曝光。

表 2-1 Slave mode 控制寄存器

功能	寄存器地址	说明	
		Slave mode 使能控制	
Slave mode enable	16'h3228[4]	1~slave mode	
		0~master mode	
RB rows	{16'h3226,16'h3227}	Rows Before Read 控制寄存器	
{16'h3202,16'h3203}		Active Rows = {16'h 3206, 16'h 3207} -	
Active Rows	{16'h3206,16'h3207}	{16'h 3202, 16'h 3203} + 1	13
Blank Rows	{16'h3218,16'h3219}	Blank Rows	Oly

2.2. HDR

SC5238 HDR 是指通过把两帧相同场景、不同曝光时间的图片合成一帧,从而提高图像的动态范围。SC5238 支持行间 HDR。

SC5238 行间 HDR 是指两种不同长短曝光时间的图像在帧内行交替输出。SC5238 行间 HDR 的优势是同一像素的长短曝光时间间隔短,这样进行 HDR 合成时,可以一定程度上避免拖尾现象。

SC5238 可以通过 MIPI 接口的 virtual channel 来区分长短曝光数据,默认长曝光的 virtual channel 为 00,默认短曝光的 virtual channel 为 01。

SC5238 行间 HDR 使用 virtual channel 数据读出时序图如图 2-3 所示。

图 2-3 行间 HDR 使用 virtual channel 数据读出时序

SC5238 也可不通过 Virtual channel 区分长短曝光数据,通过长短曝光数据读出行偏差来区分。这其中,又分为两种模式,模式 a 与模式 b。模式 a 时,长短曝光数据只输出有效行。模式 b 时,长短曝光数据插入无效 dummy 行数据。

SC5238 行间 HDR 不使用 virtual channel 数据模式 a 时读出时序图如图 2-4 所示。

图 2-4 行间 HDR 不使用 virtual channel 数据模式 a 读出时序

注释:

- 1) Fram_long 与 Fram_short 输出偏差为 max short exposure。
- 2) max long exposure=帧长({16'h320e,16'h320f})-max short exposure。

SC5238 行间 HDR 不使用 virtual channel 数据模式 b 时读出时序图如

图 2-5 所示。

图 2-5 行间 HDR 不使用 virtual channel 数据模式 b 读出时序

表 2-2 HDR 控制寄存器

功能	寄存器地址	说明		
		HDR mode 使能控制		
HDR mode enable	16'h3220[6]	1~HDR mode		
		0~HDR mode		
MAX short exposure	{16'h3e23,16'h3e24}	Max short exposure		
		Bit[4]: vc_s_en		
		1~short frame vc enable		
		0~ short frame vc disable		
VC(Virtual		Bit[3:2] :vc_l		
Channel)	16'h4816	In HDR mode, vc_l is long frame vc		
Channer)		In non-HDR mode, vc_l is normal vc		
		Bit[1:0]:vc_s		
		In HDR mode, vc_s is short frame vc		
		In non-HDR mode, vc_s is reserved		
		Bit[5:4]:column adc href always enable		
		Bit[3]:		
		1~long exp blc remove no href 0~ long exp blc remove		
	C. ^	balck href		
In HDR no virtual	{16'h4503[6:5],3928[1],3	Bit[2]:		
channel mode select	9a8[1],5001[5],5001[3]}	1~short exp blc remove no href 0~ short exp blc remove		
		balck href		
	<u> </u>	Bit[1]: short exp isp sof select		
	0,00	Bit[0]: long exp isp eof select		

2.3. AEC/AGC

AEC/AGC 都是基于亮度进行调节的,AEC 调节曝光时间,AGC 调节增益值,最终使图像亮度落在设定亮度阈值范围内。

2.3.1. AEC/AGC 的控制策略

SC5238 本身没有 AEC 功能,需要通过后端平台实现 AEC/AGC。

在整个 AEC/AGC 过程中,不是独立的调整 sensor 的曝光时间或者增益,调整策略为:曝光时间优先,曝光时间已经最长无法继续调整时,调整增益。

以图像过暗的情况为例,调控的先后顺序为: ①不开启任何增益,直到曝光时间达到

上限;②曝光时间达到上限后,再开始调用自动增益控制。需要明确指出的是,增益开启,将直接导致平均噪声呈倍数放大;而曝光时间加大,则有助于提升信噪比。

反之,当图像过亮时,则优先关闭增益,当所有增益关闭,图像仍旧过亮,才会降低曝 光时间。

曝光时间与增益是一个交互的调节体系,在调试的时候,应该综合考虑。

2.3.2. AEC/AGC 控制寄存器说明

AEC/AGC 的控制寄存器如表 2-3 所示。

表 2-3 增益/曝光的手动控制寄存器

功能	寄存器地址	
长曝光时间	{16'h 3e01[7:0], 16'h 3e02[7:4]}	手动曝光时间/HDR 模式下的手动长曝光时间
短曝光时间	{16'h 3e04[7:0], 16'h 3e05[7:4]}	HDR 模式下手动短曝光时间.

AEC 控制说明如下:

- 1) AEC 的调节步长为半行曝光时间,一行曝光时间等于行长乘以 T_{PIXCLK} (其中的 T_{PIXCLK} 为 Pixel clock 的一个周期), 行长 = 寄存器{16'h320c, 16'h320d} * 2的值。
- 2) 曝光时间及增益都是在第一帧(第 N 帧)写入,第三帧(第 N+2 帧)生效。
- 3) 曝光时间上限不能超过两倍当前帧长减去 4 行,帧长 = 寄存器{16'h320e,16'h320f}的值,即在同一时刻,写入的{16'h3e01,16'h3e02[7:4]}值最大为 2*{16'h320e,16'h320f}-4。如果曝光时间大于等于两倍帧长,为了避免时序错误而闪烁,sensor 会自动加大真实帧长(此时真实帧长会在{16'h320e,16'h320f}基础上按需加一个值),以避免闪烁,但同时也带来帧率的下降。

AGC 控制方法有两种,具体说明如下:

- 1) 16'h3e03 设置为 8'h03 时的 Gain mapping:
 - a. normal 模式/HDR 模式下的长曝光的 gain 值 = {16'h3e08,16'h3e09}/8'h10,
 - b. HDR 模式下的短曝光的 gain 值,gain 值 = {16'h3e12,16'h3e13}/8'h10。
- 2) 16'h3e03 设置为 8'h0b 此时对应的长曝光模拟 gain 值如表 2-4 所示,长曝光数字 gain 值如表 2-5 所示,短曝光的模拟 gain 值如表 2-6 所示,短曝光的数字 gain 值如表 2-7 所示。

SC5238 具有 Digital Fine Gain, Digital Fine Gain 的精度为 1/128,以 1/16 的精度为例,列出 digital gain 的控制如下表 2-5,2-7 所示。

表 2-4 Normal 模式/HDR 模式下的长曝光的模拟 gain 值控制寄存器

	Coarse gain	Fine gain		
Items	(16' h3E08)	(16' h3E09)	Total gain
		bit[7:0]		
	bit[4:2]	寄存器值	增益	
		10	1	1
		11	1.0625	1.0625
		12	1.125	1.125
		13	1.1875	1.1875
		14	1.25	1.25
		15	1.3125	1.3125
	166 子 371	16	1.375	1.375
	增益 X1	17	1.4375	1.4375
	寄存器值: 0	18	1.5	1.5
	可行船阻: 0	19	1.5625	1.5625
		1a	1.625	1.625
		1b	1.6875	1.6875
		1c	1.75	1.75
		1d	1.8125	1.8125
		le	1.875	1.875
	c ^	1f	1.9375	1.9375
增益控制		10	1	2
增血红刺	Coj	11	1.0625	2.125
		12	1.125	2.25
	Ġ	13	1.1875	2.375
~		14	1.25	2.5
CO>		15	1.3125	2.625
X	增益 X2	16	1.375	2.75
	垣皿 八乙	17	1.4375	2.875
Maj Ser	寄存器值: 1	18	1.5	3
	可行船阻: 1	19	1.5625	3.125
/		1a	1.625	3.25
		1b	1.6875	3.375
		1c	1.75	3.5
		1d	1.8125	3.625
		1e	1.875	3.75
		1f	1.9375	3.875
		10	1	4
		11	1.0625	4.25

数据手册

	Coarse gain	Fine gain	,	
Items	(16' h3E08) bit[4:2]	(16' h3E09 bit[7:0])	Total gain
		寄存器值	増益	
		12	1.125	4.5
		13	1.1875	4.75
		14	1.25	5
		15	1.3125	5.25
		16	1.375	5.5
	→ → ▼ ▼ 7 4	17	1.4375	5.75
	增益 X4	18	1.5	6
	寄存器值:3	19	1.5625	6.25
	可行船阻: 3	1a	1.625	6.5
		1b	1.6875	6.75
		1c	1.75	7
		1d	1.8125	7.25
		1e	1.875	7.5
		1f	1.9375	7.75
		10	1	8
	۶^	11	1.0625	8.5
		12	1.125	9
		13	1.1875	9.5
		14	1.25	10
	CO>	15	1.3125	10.5
	本 大	16	1.375	11
	增益 X8	17	1.4375	11.5
~	安方思估 7	18	1.5	12
20'	寄存器值:7	19	1.5625	12.5
		1a	1.625	13
adit Seil		1b	1.6875	13.5
10°		1c	1.75	14
\\ \frac{1}{2}		1d	1.8125	14.5
		1e	1.875	15
		1f	1.9375	15.5

表 2-5 Normal 模式/HDR 模式下的长曝光的数字 gain 值控制寄存器

	Digital gain	Fine	gain	
Items	(16' h3E06	(16' h3E07)		Total gain
) bit[3:0]	bit[[*] 寄存器值	7:0] 增益	
		80	1	1
		88	1.0625	1.0625
		90	1.125	1.125
		98	1.1875	1.1875
		a0	1.25	1.25
		a8	1.3125	1.3125
	增益 X1	b0	1.375	1.375
	7日.III. X 1	b8	1.4375	1.4375
	寄存器值: 0	c0	1.5	1.5
	F, 1, HI E. V	с8	1.5625	1.5625
		d0	1.625	1.625
		d8	1.6875	1.6875
		e0	1.75	1.75
		e8	1.8125	1.8125
	C^	f0	1.875	1.875
		f8	1.9375	1.9375
增益控制		80	1	2
		88	1.0625	2.125
Ċ		90	1.125	2.25
	2	98	1.1875	2.375
C 6 }		a0	1.25	2.5
X		a8	1.3125	2.625
Maj Ser	增益 X2	b0	1.375	2.75
	增益 A 2	b8	1.4375	2.875
	寄存器值: 1	c0	1.5	3
	可行船阻: 1	c8	1.5625	3.125
		d0	1.625	3.25
		d8	1.6875	3.375
		e0	1.75	3.5
		e8	1.8125	3.625
		f0	1.875	3.75
		f8	1.9375	3.875
		80	1	4

数据手册

Items	Digital gain	Fine gain (16' h3E07)		Total main	
	(16' h3E06	bit[7:0]		Total gain	
) bit[3:0]		增益		
		88	1.0625	4.25	
		90	1.125	4.5	
		98	1.1875	4.75	
		a0	1.25	5	
		a8	1.3125	5.25	
		b0	1.375	5.5	
	增益 X4	b8	1.4375	5.75	
		с0	1.5	6	
	寄存器值: 3	с8	1.5625	6.25	
		d0	1.625	6.5	
		d8	1.6875	6.75	
		e0	1.75	7	
		e8	1.8125	7.25	
		f0	1.875	7.5	
		f8	1.9375	7.75	
	• .	80	1	8	
	ς ^	> 88	1.0625	8.5	
		90	1.125	9	
	CO,	98	1.1875	9.5	
		a0	1.25	10	
Ċ	2	a8	1.3125	10.5	
	增益 X8	b0	1.375	11	
mai sen	/自皿 八0	b8	1.4375	11.5	
	寄存器值:7	с0	1.5	12	
	ल्यामामः /	с8	1.5625	12.5	
100		d0	1.625	13	
) y		d8	1.6875	13.5	
		e0	1.75	14	
		e8	1.8125	14.5	
		f0	1.875	15	
		f8	1.9375	15.5	
	增益 X8	80	1	16	
	⊁ ⊟ ш. Л 0	88	1.0625	17	
	寄存器值: F	90	1.125	18	
	L3 13 HH ET • T	98	1.1875	19	

Items	Digital gain (16' h3E06) bit[3:0]	Fine gain (16'h3E07) bit[7:0] 寄存器值 增益		Total gain
		a0	1.25	20
		a8	1.3125	21
		b0	1.375	22
		b8	1.4375	23
		c0	1.5	24
		с8	1.5625	25
		d0	1.625	26
		d8	1.6875	27
		e0	1.75	28
		e8	1.8125	29
		f0	1.875	30
		f8	1.9375	31

表 2-6 HDR 模式下的短曝光的模拟 gain 值控制寄存器

		H37 ± 130 5 H3 150		
	Coarse gain	Fine	gain	
Items	(16' h3E12)	(16' h	3E13)	Total gain
		bit[7:0]	
	bit[4:2]	寄存器值	增益	
X		10	1	1
		11	1.0625	1.0625
100		12	1.125	1.125
		13	1.1875	1.1875
	增益 X1	14	1.25	1.25
增益控制		15	1.3125	1.3125
, B mr 17. 16.1	寄存器值:0	16	1.375	1.375
	-4 14 HH III. 0	17	1.4375	1.4375
		18	1.5	1.5
		19	1.5625	1.5625
		1a	1.625	1.625
		1b	1.6875	1.6875

数据手册

	Coarse gain	Fine	gain	
Thomas		(16' h	3E13)	W-4-1:
Items	(16' h3E12)	bit[7:0]		Total gain
	bit[4:2]	あります。 おおおおります。 おおおままます。 おおおままます。	<i>(</i> ∶0] 增益	
		1c	1.75	1.75
		1d	1.8125	1.8125
		1e	1.875	1.875
		1f	1.9375	1.9375
		10	1	2
		11	1.0625	2.125
		12	1.125	2.25
		13	1.1875	2.375
		14	1.25	2.5
		15	1.3125	2.625
	1% 24 770	16	1.375 /	2.75
	增益 X2	17	1.4375	2.875
	安左照法 1	18	1.5	3
	寄存器值:1	19	1.5625	3.125
		1a	1.625	3.25
		1b	1.6875	3.375
		1c	1.75	3.5
	Ç	1d	1.8125	3.625
		1e	1.875	3.75
	CO),	1f	1.9375	3.875
		10	1	4
	Ġ	11	1.0625	4.25
		12	1.125	4.5
C (4′	13	1.1875	4.75
indit S		14	1.25	5
		15	1.3125	5.25
40.	1% 24. 37. 4	16	1.375	5.5
	增益 X4	17	1.4375	5.75
	安方思估 2	18	1.5	6
	寄存器值: 3	19	1.5625	6.25
		1a	1.625	6.5
		1b	1.6875	6.75
		1c	1.75	7
		1d	1.8125	7.25
		1e	1.875	7.5
		1f	1.9375	7.75

数据手册

Items	Coarse gain (16' h3E12) bit[4:2]	Fine (16' h bit[' 寄存器 值	3E13)	Total gain
		10	1	8
		11	1.0625	8.5
		12	1.125	9
		13	1.1875	9.5
		14	1.25	10
		15	1.3125	10.5
	136 37:	16	1.375	110
	增益 X8	17	1.4375	11.5
	寄存器值:7	18	1.5	12
	可付船阻: /	19	1.5625	12.5
		1a	1.625 /	13
		1b	1.6875	13.5
		1c	1.75	14
		1d	1.8125	14.5
		1e	1.875	15
		1f	1.9375	15.5

表 2-7 HDR 模式下的短曝光的数字 gain 值控制寄存器

	Digital gain	Fine	gain	
Items	(16' h3E10)	(16' h	3E11)	Total gain
	bit[3:0]	bit[' 寄存器值	7:0] 增益	
		80	1	1
100		88	1.0625	1.0625
		90	1.125	1.125
		98	1.1875	1.1875
	增益 X1	a0	1.25	1.25
增益控制		a8	1.3125	1.3125
	寄存器值: 0	b0	1.375	1.375
		b8	1.4375	1.4375
		c0	1.5	1.5
		с8	1.5625	1.5625
		d0	1.625	1.625

	Digital gain	Fine	gain	
Items	(16' h3E10)	(16' h3E11)		Total gain
1 coms		bit[7:0]	Total gain
	bit[3:0]	寄存器值	増益	
		d8	1.6875	1.6875
		e0	1.75	1.75
		e8	1.8125	1.8125
		f0	1.875	1.875
		f8	1.9375	1.9375
		80	1	2
		88	1.0625	2.125
		90	1.125	2.25
		98	1.1875	2.375
		a0	1.25	2.5
		a8	1.3125	2.625
	增益 X2	b0	1.375	2.75
	增血 A2	b8	1.4375	2.875
	寄存器值:1	c0	1.5	3
	时 任相 臣: 1	c8	1.5625	3.125
		dO	1.625	3.25
		d8	1.6875	3.375
	\$	e0	1.75	3.5
		e8	1.8125	3.625
	CO>	f0	1.875	3.75
		f8	1.9375	3.875
	5	80	1	4
Å	Ç-,	88	1.0625	4.25
56		90	1.125	4.5
X		98	1.1875	4.75
Mar Se		a0	1.25	5
100		a8	1.3125	5.25
Div	增益 X4	b0	1.375	5.5
		b8	1.4375	5.75
	寄存器值:3	c0	1.5	6
		с8	1.5625	6.25
		d0	1.625	6.5
		d8	1.6875	6.75
		e0	1.75	7
		e8	1.8125	7.25
		f0	1.875	7.5

数据手册

	Digital gain	Fine	gain	
Items	(16' h3E10)	(16' h	ı3E11)	Total gain
	1 * 4 [0 - 0]	bit[7:0]	
	bit[3:0]	寄存器值	增益	
		f8	1.9375	7.75
		80	1	8
		88	1.0625	8.5
		90	1.125	9
		98	1.1875	9.5
		a0	1.25	10
		a8	1.3125	10.5
	126.26.770	b0	1.375	11
	增益 X8	b8	1.4375	11.5
	安左甲体 5	c0	1.5	12
	寄存器值:7	c8	1.5625/	12.5
		d0	1.625	13
		d8	1.6875	13.5
		e0	1.75	14
		e8	1.8125	14.5
		f0	1.875	15
		f8	1.9375	15.5
	Ç	80	1	16
		88	1.0625	17
	CO)	90	1.125	18
		98	1.1875	19
	Ġ	a0	1.25	20
^	() ·	a8	1.3125	21
<u> </u>] AK N/. =	b0	1.375	22
Martse	增益 X8	b8	1.4375	23
	安生即生	c0	1.5	24
(0)	寄存器值: F	c8	1.5625	25
		d0	1.625	26
~		d8	1.6875	27
		e0	1.75	28
		e8	1.8125	29
		f0	1.875	30
		f8	1.9375	31

2.4. GROUP_HOLD

SC5238 具有 Group hold 功能,Group hold 指的是把寄存器打包在一帧特定时刻生效的功能。

使用方法: 寄存器 16'h3812 写 8'h00,需要打包生效的寄存器写入对应值,寄存器 16'h3812 写 8'h30。备注:①需要打包生效的寄存器最多支持 10 个 ②打包生效的时刻为 16'h3812 写 8'h30 之后第一个帧内生效时刻(帧延迟为 0 时),帧内生效时刻由寄存器{16'h3235,16'h3236} 控制,{16'h3235,16'h3236}==16'h0 时表示帧开始。

 功能
 寄存器名
 描述

 帧内生效时刻
 {16'h3235,16'h3236}
 帧内生效时刻,以行为单位,当该值等于 0 时表示帧开始

 帧延迟控制
 Bit[7:0]:帧延迟控制,生效时间帧延迟控制,写 0 表示不做帧延迟,写 1 表示一帧延迟

表 2-8 Group hold 控制寄存器

2.5. 黑电平控制(BLC)

SC5238 像素阵列包含 12 条黑行,这些黑行可以为补偿消除算法提供数据。数字图像处理首先要减去黑电平数据,BLC 算法可以从黑行数据中估算黑电平的补偿值,而彩色像素的值会减去各自色彩通道的黑电平补偿值。如果在一些特定的像素点,这样的减法得到了负值,那么将结果置 0。

默认情况下,改变增益值后会重新进行 BLC 操作。

黑电平有两种计算模式:手动BLC 和自动BLC。在手动模式下,补偿值由寄存器指定;在自动模式下,补偿值通过黑行计算得到。

 功能
 寄存器名
 描述

 BLC 使能
 Bit[0]: blc_enable

 0~ bypass BLC

 1~ BLC enable

表 2-9 Normal or HDR 模式下长曝光的 BLC 控制寄存器

功能	寄存器名	描述
自动 BLC 使能	16'h3902	Bit[6]: blc_auto_en 0~ manual mode 1~ auto mode
BLC 通道选择	{16'h3928[0],16'h3905[6]}	16'h3928[0]: 0~ use 8 channel offset mode 1~ use 4 channel offset mode 16'h3905[6]: one channel enable 0~ use 8 or 4 channel offset 1~ use one channel mode
BLC 目标值	{16'h3907[4:0],16'h3908}	BLC target

表 2-10 HDR 模式下短曝光的 BLC 控制寄存器

功能	寄存器名	描述
BLC 使能	16'h3980	Bit[0]: blc_enable 0~ bypass BLC 1~ BLC enable
自动 BLC 使能	16°h3982	Bit[6]: blc_auto_en 0~ manual mode 1~ auto mode
BLC 通道选择	{16'h39a8[0],16'h3985[6]}	16'h39a8[0]: 0~ use 8 channel offset mode 1~ use 4 channel offset mode 16'h3905[6]: one channel enable 0~ use 8 or 4 channel offset 1~ use one channel mode
BLC 目标值	{16'h3987[4:0],16'h3908}	BLC target

2.6. 视频输出模式

2.6.1. 读取顺序

图 2-6 提供了芯片工作的时候,第一个读取的 pixel 位置,以及整个 array 的结构示意

图。此图是在 A1 pin 脚置于左上方的时候得到(top view)。

图 2-6 像素阵列图一

图 2-7 给出了 first pixel 的数据颜色格式。

图 2-7 像素阵列图二

SC5238 提供镜像模式和倒置模式。前者会水平颠倒传感器的数据读出顺序;而后者会垂直颠倒传感器的读出顺序。如图 2-8 所示。

图 2-8 镜像和倒置实例

表 2-11 镜像和倒置模式控制寄存器

功能	寄存器地址	寄存器值	描述
镜像模式	0x 3221	0x06	Bit[2:1]: mirror ctrl 2'b00~mirror off 2'b11~mirror on
倒置模式	0x 3221	0x60	Bit[6:5]: flip ctrl 2'b00~filp off 2'b11~flip on

2.6.2. 输出窗口

表 2-12 输出窗口寄存器

功能	寄存器	描述
窗口宽度	{16'h3208, 16'h3209}	输出窗口宽度={16'h3208, 16'h3209}
窗口高度	{16'h320a, 16'h320b}	输出窗口高度={16'h320a,16'h320b}
列起始	{16'h3210, 16'h3211}	输出窗口列起始={16'h3210, 16'h3211}
行起始	{16'h3212, 16'h3213}	输出窗口行起始={16'h3212, 16'h3213}

2.7. 帧率计算

2.7.1. Master Mode

图 2-9 为有效输出示意图,可以按照以下公式来计算图像帧率: 帧率 =Fpixclk/(行长*帧长)。其中 Fpixclk 指的是 pixel clk 的时钟频率,行长包括图像水平方向上,有效区域宽度以及行消隐区宽度之和; 帧长包括图像竖直方向上,有效区域高度以及帧消隐去宽度之和。

图 2-9 视频有效输出示意图

表 2-13 帧率相关寄存器

功能	寄存器	描述
行长	{16'h320c ,16'h320d }	行长 = {16'h320c, 16'h320d}*2
帧长	{16'h320e ,16'h320f }	帧长 = {16'h320e, 16'h320f}*2

2.7.2. Slave Mode

Slave Mode 下,帧率由外部控制,最大帧率= F_{PIXCLK} / (行长*帧长),公式中的帧长等于图中 **2-9** 的 F_{L} ength。

2.8. 测试模式

为方便测试, SC5238 提供一种递增测试模式, 递增的步长设置为 1, 如图 2-10 所示。

图 2-10 测试模式

表 2-14 测试模式控制寄存器

功能	寄存器地址	寄存器值	描述
	16'h4501[3]	1'b1	Bit[3]: incremental pattern enable 0~ normal image 1~ incremental pattern
灰度渐变模式		10)	Bit[0]:BLC enable
	16'h3900[0]	1'b0	0~bypass BLC
		$\zeta \rightarrow$	1~BLC enable
	ens (0)	> ⁷	

003230

3. 电气特性

表 3-1 绝对最大额定值(以上所有电压都是 to pad 电压)

项目	符号	绝对最大额定值	单位
模拟电源电压	AVDD	-0.3~4.0	V
IO 电源电压	DOVDD	-0.3~4.0	v
数字电源电压	DVDD	-0.3~1.5	v
I/O 输入电压	_	-0.3~DOVDD+0.3	V
I/O 输出电压	_	-0.3~DOVDD+0.3	v
工作温度	_	-40~+85	°C
最佳工作温度	_	-30~+60	°C
贮存温度	_	-50~+120	°C

表 3-2 直流电气特性(以上所有电压都是 to pad 电压)

项目	符号	最小值	典型值	最大值	单位				
电源									
模拟电源电压	AVDD	2.7	2.8	2.9	V				
IO 供电电压	DOVDD	V _{DOVDD} -5%	1.8	V _{DOVDD} +5%	V				
数字电源	DVDD	1.425	1.5	1.575	V				
电流 (MIPI 模式,典型条件:AVDD=2.8V,DOVDD=1.8V)									
模拟电源电流	I _{AVDD}	_	25	_	mA				
IO 电源电流	Idovdd	_	0.2	_	mA				
数字电源电流	I _{DVDD}	_	60	_	mA				
数字输入 (典型条件	: AVDD=2.	8V, DOVDD=1.8	V)		·				
输入低电平	$V_{\rm IL}$	_	_	0.3×DOVDD	V				
输入高电平	V_{IH}	$0.7 \times DOVDD$	_	_	V				
输入电容	Cin	_	_	10	pF				
数字输出 (25pF 标准负载)									
输出高电平	V_{OH}	0.9×DOVDD	_	_	V				
输出低电平	Vol	_		0.1×DOVDD	V				
串行接口输入(SCL 和 SDA)									
输入低电平	$V_{\rm IL}$	-0.5	0	0.3×DOVDD	V				
输入高电平	V_{IH}	0.7×DOVDD	DOVDD	DOVDD+0.5	V				

表 3-3 交流特性 (TA=25°C, AVDD=2.8V, DOVDD=1.8V)

	符号	最小值	典型值	最大值	单位
交流参数					
直流微分线性误差	DLE	_	<1	_	LSB
直流积分线性误差	ILE	_	<2	_	LSB
软复位设置时间	_	_	_	1	ms
更改分辨率设置时间	_	_	_	1	ms
配置寄存器设置时间	_	_	_	300	ms
晶振和时钟输入		1			
输入时钟频率	Fosc	6	_	27	MHz
输入时钟上升/下降时间	_	_	_	5	ns
		A			
Smartser	5				

4. 光学特性

SC5238 光谱响应曲线如图 4-1 所示。

图 4-1 SC5238 光谱曲线

5. 封装信息

SC5238 提供 Pin41CSP 的封装, 封装尺寸如图 5-1 所示。

Mechanical Drawing

图 5-1 封装尺寸示意图

表 5-1 SC5238 封装示意图

<u>Parameter</u>	Sym bol	<u>Nominal</u>	Min	<u>Max</u>	Nominal	Min	<u>Max</u>
		Millimeters		Inches			
Package Body Dimension X	A	5.9646	5.9396	5.9896	0.23483	0.23384	0.23581
Package Body Dimension Y	В	4.9215	4.8965	4.9465	0.19376	0.19278	0.19474
Package Height	С	0.810	0.750	0.870	0.03189	0.02953	0.03425
Ball Height	C1	0.150	0.120	0.180	0.00591	0.00472	0.00709
Package Body Thickness	C2	0.660	0.625	0.695	0.02598	0.02461	0.02736
Thickness from top glass surface to wafer	C3	0.445	0.425	0.465	0.01752	0.01673	0.01831
Glass Thickness	C4	0.400	0.390	0.410	0.01575	0.01535	0.01614
Ball Diameter	D	0.300	0.270	0.330	0.01181	0.01063	0.01299
Total Ball Count	N	41(9NC)					
Pins Pitch X axis	J1	0.730					
Pins Pitch Y axis	J2	0.650					
Edge to Pin Center Distance along X1	S1	0.8337	0.8037	0.8637	0.0328	0.0316	0.0340
Edge to Pin Center Distance along Y1	S2	0.835926	0.8059	0.8659	0.0329	0.0317	0.0341

41

Company Confidential

数据手册

Edge to Pin Center Distance along X2	S3	0.7509	0.7209	0.7809	0.0296	0.0284	0.0307
Edge to Pin Center Distance along Y2	S4	0.835574	0.8056	0.8656	0.0329	0.0317	0.0341

注: 芯片的封装中心与光学中心不是重合的。以封装中心为原点, BGA 中心为(-41.4, -Smart Sens Confridential 0.176) , 光学中心为(-41.4, -211.176) , 单位为 um。

联系我们:

总部:

地址: 上海市徐汇区宜山路 900 号 A 座 1101 室

电话: 021-64853570

传真: 021-64853572-8004

邮箱: sales@smartsenstech.com

美国分公司:

地址: 4340 Stevens Creek Blvd. Suite 280, San Jose, CA 95129,

Smartsens confidential