

Segundo Examen Parcial

DOCENTE	CARRERA	CURSO
MSc. Vicente Machaca Arceda	Escuela Profesional de Ciencia	Estructura de Datos Avanzada
	de la Computación	

1. Competencias del curso

- Conocer e investigar los métodos de acceso multidimensional, métrico y aproximado.
- Analiza, diseña y propone soluciones utilizando estructuras de datos avanzadas.
- Comprende la importancia e impacto de los algoritmos estudiados y las nuevas propuestas.
- Aplica principios matemáticos para la solución de problemas.

2. Competencias del examen

• Comprende e implementa la estructura multidimensional KD-Tree.

3. Equipos y materiales

- Python
- Cuenta en Github
- IDE de desarrollo

4. Entregables

- Un informe en PDF donde se detalle el trabajo. Respecto a este informe:
 - Debe estar hecho en Latex.
 - Solo un integrante de cada grupo sube el informe a Classroom.
 - El informe debe ser nombrado "GRUPO-X", donde "X" es el nombre del grupo (1A, 2A, 1B, etc.).
 - Debe incluir un enlace al repositorio Github donde esta el código.
 - Debe tener el código fuente asi como capturas de pantalla de la ejecución y resultados del mismo.

5. Descripción del trabajo

La estructura KD-Tree es una estructura multidimensional de k dimensiones. Esta permite implementar busquedas por similitud como K Nearest Neighbor o Closest point. Adicionalmente, se puede usar esta estructura como un clasificador. Usted debe implementar este clasificador en el tema de su preferencia. A continuación detallamos el algoritmo:

Algorithm 1: KNN Classifier

Input: X: training data; y: object to be classified.

Output: Classification for y. Extract features of each sample;

Build KD-Tree;

Select KNN of y in X;

 $Class(y) \leftarrow max of classes (k closest objects);$

Para mas detalles de este algoritmo puede revisar el trabajo de Hou [1]. En cuanto al clasificador, usted es libre de escoger el tema, algunos ejemplos pueden ser:

- Clasificación de señales de transito.
- Clasificación de emociones faciales.
- Clasificación de tumores malignos y benignos.
- Clasificación de correo spam.
- Etc.

Usted tambien es libre de escoger el descriptor. Este descriptor es un método que toma como entrada una muestra de la base de datos y retorna un vector de carácterísticas, luego este vector representa un punto en el KD-Tree. Usted tambien, puede evaluar varios descriptores y hacer comparativas. Entre algunos descriptores tenemos:

- Para imágenes:
 - Key points: SIFT.
 - Bordes: Canny.
 - Texturas: Local Binary Patterns.
 - $\bullet \ \ Histograms.$
- Para texto:
 - Frecuencia de palabras clave.
 - Bolsa de palabras.
- Para otras señales en general:
 - Fourier.
 - Wavelets.
- Seguido a un descriptor, puede aplicar reducción de dimensiones como PCA o eliminar atributos: recursive feature elimination.

6. Rúbricas

Rúbrica	Cumple	Cumple con obs.	No cumple
Implementa el algoritmo de clasificación en el KD-Tree.	6	3	0
Evalua los descriptores y mide los resultados (accuracy).	6	3	0
El informe contiene todo el código fuente, pantallazos de la aplicación y buena redacción.	4	2	0
Durante la presentación el alumno presenta dominio del tema.	4	2	0

Referencias

[1] W. Hou, D. Li, C. Xu, H. Zhang, and T. Li, "An advanced k nearest neighbor classification algorithm based on kd-tree," in 2018 IEEE International Conference of Safety Produce Informatization (IICSPI), pp. 902–905, IEEE, 2018.