MATH 356 - FALL 2016 - HOMEWORK 4 SOLUTION

This homework set is on Inequalities, Multiple Random Variables, Independence and Conditional Distributions. It's due on Nov. 10th in class. Late homework will not be accepted.

Problem 1. (20pts) Given a probability space $(\Omega, \mathcal{S}, \mathbb{P})$ and R > 0, let (X, Y) be a continuous bivariate random variable on Ω with the joint PDF given by

$$f(x,y) = \begin{cases} \frac{1}{\pi R^2}, & \text{if } x^2 + y^2 \le R^2, \\ 0, & \text{otherwise.} \end{cases}$$

We say that (X,Y) has the uniform distribution on the disk $D:=\{(x,y): x^2+y^2\leq R^2\}$.

(i) (5pts) Determine the marginal DF F_X and the marginal PDF f_X of X, as well as the marginal DF F_Y and the marginal PDF f_Y of Y.

Solution: For $x \in [-R, R]$,

$$f_X(x) = \int_{-\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} \frac{1}{\pi R^2} dy = \frac{2\sqrt{R^2 - x^2}}{\pi R^2};$$

for $x \notin [-R, R]$, $f_X(x) = 0$. For symmetry,

$$f_{Y}(y) = \begin{cases} \frac{2\sqrt{R^{2}-x^{2}}}{\pi R^{2}}, & \text{if } y \in [-R, R], \\ 0, & \text{otherwise.} \end{cases}$$

For $x \in [-R, R]$,

$$F_X(x) = \frac{2}{\pi R^2} \int_{-R}^x \sqrt{R^2 - t^2} dt$$

$$= \frac{2}{\pi R^2} \left[t \sqrt{R^2 - t^2} \Big|_{-R}^x + \int_{-R}^x \frac{t^2 dt}{\sqrt{R^2 - t^2}} \right]$$

$$= \frac{2}{\pi R^2} \left[x \sqrt{R^2 - x^2} - \int_{-R}^x \sqrt{R^2 - t^2} dt + R^2 \int_{-R}^x \frac{dt}{\sqrt{R^2 - t^2}} \right]$$

$$= \frac{2}{\pi R^2} \left[x \sqrt{R^2 - x^2} + R^2 \left(\arcsin \frac{x}{R} + \frac{\pi}{2} \right) \right] - F_X(x).$$

So, we get that

$$F_X(x) = \begin{cases} 0, & x < -R, \\ \frac{x\sqrt{R^2 - x^2} + R^2\left(\arcsin\frac{x}{R} + \frac{\pi}{2}\right)}{\pi R^2}, & x \in [-R, R], \\ 1, & x > R. \end{cases}$$

 $F_{Y}(y)$ takes the same formula as above with x replaced by y.

(ii) (5pts) Show that X and Y are NOT independent by finding two Borel sets $A, B \in \mathcal{B}(\mathbb{R})$ such that

$$\mathbb{P}\left(X\in A,Y\in B\right)\neq\mathbb{P}\left(X\in A\right)\mathbb{P}\left(Y\in B\right).$$

Solution: For example, let $A = \left[-\frac{\sqrt{2}}{2}R, \frac{\sqrt{2}}{2}R \right]$ and $B = \left[0, \frac{\sqrt{2}}{2}R \right]$. Then, $\{X \in A, Y \in B\}$ corresponds to a rectangle within the disk, and area of the rectangle is R^2 . So

$$\mathbb{P}(X \in A, Y \in B) = \frac{1}{\pi}.$$

However,

$$\mathbb{P}(X \in A) = F_X\left(\frac{\sqrt{2}}{2}R\right) - F_X\left(-\frac{\sqrt{2}}{2}R\right) = \frac{1}{\pi} + \frac{1}{2},$$

and

$$\mathbb{P}\left(Y \in B\right) = F_Y\left(\frac{\sqrt{2}}{2}R\right) - F_Y\left(0\right) = \frac{1}{2\pi} + \frac{1}{4},$$

so

$$\mathbb{P}\left(X\in A\right)\mathbb{P}\left(Y\in B\right)\neq\mathbb{P}\left(X\in A,Y\in B\right).$$

(iii) (5pts) Compute $\mathbb{P}(|Y| \leq |X|)$ and $\mathbb{P}(|X+Y| \leq R)$. Draw in the disk D the region corresponding to each of these events.

Solution: $\{|Y| \leq |X|\}$ corresponds to two opposite "slices" of the disk each of which has a central angle of 90°. So

$$\mathbb{P}(|Y| \le |X|) = \frac{\frac{1}{2}\pi R^2}{\pi R^2} = \frac{1}{2}.$$

 $\{|X+Y| \leq R\}$ corresponds to a square "diamond" centered in the disk with the four corners on the circle. So

$$\mathbb{P}(|X+Y| \le R) = \frac{2R^2}{\pi R^2} = \frac{2}{\pi}.$$

(iv) (5pts) Set R=4. Compute $\mathbb{P}(|XY| \leq \sqrt{3})$. Draw in the disk D the region corresponding to this event.

Solution: Due to symmetry, we only need to find the area of the target region in the first quadrant. Assume that the hyperbola $y=\sqrt{3}/x$ and the circle $y=\sqrt{16-x^2}$ intersect at two points $\left(a,\sqrt{3}/a\right)$ and $\left(b,\sqrt{3}/b\right)$ (assuming that b>a) in the first quadrant. Then the area of the region below the circle $y=\sqrt{16-x^2}$ but above the parabola $y=\sqrt{3}/x$,

i.e., the region defined by

$$\left\{ (x,y) : x > 0, y > 0, \sqrt{3}/x < y < \sqrt{16 - x^2} \right\},$$

is given by

$$\int_{a}^{b} \left(\sqrt{16 - x^2} - \frac{\sqrt{3}}{x}\right) dx = \int_{a}^{b} \sqrt{16 - x^2} dx - \int_{a}^{b} \frac{\sqrt{3}}{x} dx$$

$$= \frac{1}{2} \left[x\sqrt{16 - x^2} + 16 \arcsin \frac{x}{4} \right]_{a}^{b} - \sqrt{3} \ln x \Big|_{a}^{b}$$

$$= 8 \left(\arcsin b - \arcsin a \right) - \sqrt{3} \ln \frac{b}{a}.$$

Therefore, the desired probability is the difference between 16π (the area of the disk) and four times the area computed above, i.e.,

$$\mathbb{P}\left(|XY| \le \sqrt{3}\right) = 16\pi - 32\left(\arcsin b - \arcsin a\right) + 4\sqrt{3}\ln\frac{b}{a}$$

where $a = \sqrt{8 - \sqrt{61}}$ and $b = \sqrt{8 + \sqrt{61}}$ by direct computation.

Problem 2. (12pts) Consider the random variable (X, Y) as in Problem 1 restricted in the first quadrant with the origin (0,0), the x-axis and y-axis removed, i.e., assume that the joint PDF of (X,Y) is

$$f(x,y) = \begin{cases} \frac{4}{\pi R^2}, & \text{if } x > 0, \ y > 0, \ \text{and } x^2 + y^2 \le R^2, \\ 0, & \text{otherwise.} \end{cases}$$

Set $Q:=\{(x,y): x>0, y>0, x^2+y^2\leq R^2\}$. Consider the transformations of (X,Y) given by

$$r\left(X,Y\right) = \begin{cases} \sqrt{X^2 + Y^2}, & \text{if } (X,Y) \in Q, \\ 0, & \text{otherwise} \end{cases} \text{ and } \theta\left(X,Y\right) := \begin{cases} \arctan\frac{Y}{X}, & \text{if } (X,Y) \in Q, \\ 0, & \text{otherwise.} \end{cases}$$

(i) (4pts) Determine the DF of the random variable r, i.e., $F_r(t) = \mathbb{P}(r \leq t)$. Is r a continuous random variable? If so, write down the PDF of r.

Solution: For each $t \in \mathbb{R}$,

$$F_r(t) = \mathbb{P}\left(r \le t\right) = \mathbb{P}\left(X^2 + Y^2 \le t^2\right) = \begin{cases} 0, & \text{if } t \le 0, \\ t^2/R^2, & \text{if } 0 \le t \le R, \\ 1, & \text{if } t \ge R. \end{cases}$$

r is a random variable with continuous distribution, and its PDF is given by

$$f_r(t) = \begin{cases} 0, & \text{if } t < 0 \text{ or } t > R, \\ 2t/R^2, & \text{if } t \in (0, R). \end{cases}$$

(ii) (4pts) Determine the DF of the random variable θ , i.e., $F_{\theta}(\alpha) = \mathbb{P}(\theta \leq \alpha)$. Is θ a continuous random variable? If so, write down the PDF of θ .

Solution: For each $\alpha \in \mathbb{R}$,

$$F_{\theta}\left(\alpha\right) = \mathbb{P}\left(\theta \leq \alpha\right) = \mathbb{P}\left(\arctan\frac{Y}{X} \leq \alpha\right) = \begin{cases} 0, & \text{if } \alpha \leq 0, \\ 2\alpha/\pi, & \text{if } 0 \leq \alpha \leq \frac{\pi}{2}, \\ 1, & \text{if } \alpha \geq \frac{\pi}{2}. \end{cases}$$

 θ is a random variable with continuous distribution, and its PDF is given by

$$f_{\theta}(\alpha) = \begin{cases} 0, & \text{if } \alpha < 0 \text{ or } \alpha > \frac{\pi}{2}, \\ 2/\pi, & \text{if } \alpha \in \left(0, \frac{\pi}{2}\right). \end{cases}$$

(iii) (4pts) Determine the joint DF of (r, θ) , i.e., $F_{(r,\theta)}(t, \alpha) = \mathbb{P}(r \leq t, \theta \leq \alpha)$, and show that r and θ are independent random variables.

Solution: By the result derived in class on the circular coordinate transformation, we have that (r, θ) is a continuous type random variable with the joint PDF given by

$$f_{(r,\theta)}\left(t,\alpha\right) = f_{(X,Y)}\left(t\cos\alpha,t\sin\alpha\right) \cdot t = \begin{cases} \frac{4t}{\pi R^2}, & \text{if } t \in (0,R) \text{ and } \alpha \in \left(0,\frac{\pi}{2}\right), \\ 0, & \text{otherwise.} \end{cases}$$

Clearly that

$$f_{(r,\theta)}(t,\alpha) = f_r(t) \cdot f_{\theta}(\alpha)$$

which implies that r and θ are independent random variables. Finally,

$$F_{(r,\theta)}(t,\alpha) = F_r(t) \cdot F_{\theta}(\alpha)$$

where F_r and F_θ are as derived above in (i) and (ii).

Problem 3. (12pts) Given a probability space $(\Omega, \mathcal{S}, \mathbb{P})$, for each $n \in \mathbb{N}$, assume that X_1, \dots, X_n are independent random variables on Ω , and for each $i = 1, \dots, n$, X_i has the uniform distribution on [0, 1], i.e., the PDF of X_i is

$$f_{X_i}(x) = \begin{cases} 1, & 0 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

Set

$$Z_n := X_1 + X_2 + \dots + X_n.$$

(i) (5pts) Show, by an induction in n, that the DF F_{Z_n} of Z_n satisfies that, if $0 \le x \le 1$, then

$$F_{Z_n}\left(x\right) = \frac{x^n}{n!}.$$

Note that this formula only applies to x that is in [0,1]. For general x, the formula of $F_{Z_n}(x)$ is much more complicated, and you are not required to derive it.

Proof: The statement is clearly true for n = 1. Assume that it is true for n. Let $f_{(Z_n, X_{n+1})}$ be the joint PDF of (Z_n, X_{n+1}) , and since Z_n and X_{n+1} are independent,

$$f_{(Z_n,X_{n+1})}(z,x) = f_{Z_n}(z) \cdot f_{X_{n+1}}(x)$$
.

By the inductive assumption, for $z \in [0, 1]$,

$$f_{Z_n}(z) = \frac{z^{n-1}}{(n-1)!}.$$

So, for each $c \in [0, 1]$,

$$F_{Z_{n+1}}(c) = \mathbb{P}(Z_n + X_{n+1} \le c) = \iint_{\{(z,x) \in [0,1]^2 : z+x \le c\}} \frac{z^{n-1}}{(n-1)!} dz dx$$
$$= \int_0^c \int_0^{c-x} \frac{z^{n-1}}{(n-1)!} dz dx$$
$$= \frac{c^{n+1}}{(n+1)!}.$$

(ii) (4pts) For each sample point $\omega \in \Omega$, define

$$N(\omega) := \min \{ n \in \mathbb{N} : Z_n(\omega) > 1 \}.$$

That is, $N(\omega)$ is the first time that the sum of $X_i(\omega)$'s exceeds 1, so $N(\omega) = k$ if and only if

$$X_1(\omega) + \cdots + X_{k-1}(\omega) \le 1$$
 and $X_1(\omega) + \cdots + X_k(\omega) > 1$.

 $N:\Omega\to\mathbb{N}$ is a discrete RV on Ω (you don't have to prove this statement). Show that, for $k\in\mathbb{N}$,

$$\mathbb{P}\left(N \ge k\right) = \frac{1}{(k-1)!}.$$

Proof: Note that, the event $\{N \geq k\}$ is equivalent to the event $\{Z_{k-1} \leq 1\}$. Therefore,

$$\mathbb{P}(N \ge k) = F_{Z_{k-1}}(1) = \frac{1}{(k-1)!}.$$

(iii) (3pts) Show that $\mathbb{E}[N] = e$.

Proof: By the previous result,

$$\mathbb{E}[N] = \sum_{k=1}^{\infty} \mathbb{P}(N \ge k) = \sum_{l=0}^{\infty} \frac{1^{l}}{l!} = e.$$

Problem 4. (20pts) Given constants $m_1, m_2 \in \mathbb{R}$, $\sigma_1^2 > 0$, $\sigma_2^2 > 0$, $\sigma_1 = \sqrt{\sigma_1^2}$, $\sigma_2 = \sqrt{\sigma_2^2}$ and $c \in \mathbb{R}$ such that $|c| < \sigma_1 \sigma_2$, let function $f: \mathbb{R}^2 \to [0, \infty)$ be given by, for $(x, y) \in \mathbb{R}^2$,

$$f(x,y) = \frac{1}{2\pi} \frac{1}{\sqrt{\sigma_1^2 \sigma_2^2 - c^2}} \exp \left[-\frac{\sigma_2^2 (x - m_1)^2 - 2c (x - m_1) (y - m_2) + \sigma_1^2 (y - m_2)^2}{2 (\sigma_1^2 \sigma_2^2 - c^2)} \right]. \quad (\star)$$

(i) (4pts) Show that f(x, y) is a joint PDF, i.e.,

$$\iint_{\mathbb{R}^2} f(x,y) \, dx dy = 1.$$

Proof: By direct computation, one can verify that

$$f(x,y) = \frac{1}{\sqrt{2\pi} \cdot \sqrt{\left(\sigma_1^2 - \frac{c^2}{\sigma_2^2}\right)}} \exp\left\{-\frac{\left[x - \left(m_1 + \frac{c(y - m_2)}{\sigma_2^2}\right)\right]^2}{2\left(\sigma_1^2 - \frac{c^2}{\sigma_2^2}\right)}\right\} \cdot \frac{1}{\sqrt{2\pi} \cdot \sigma_2^2} \exp\left[-\frac{(y - m_2)^2}{2\sigma_2^2}\right]. \quad (A)$$

In fact, we also have that

$$f(x,y) = \frac{1}{\sqrt{2\pi} \cdot \sqrt{\left(\sigma_2^2 - \frac{c^2}{\sigma_1^2}\right)}} \exp\left\{-\frac{\left[y - \left(m_2 + \frac{c(x - m_1)}{\sigma_1^2}\right)\right]^2}{2\left(\sigma_2^2 - \frac{c^2}{\sigma_1^2}\right)}\right\} \cdot \frac{1}{\sqrt{2\pi} \cdot \sigma_1^2} \exp\left[-\frac{(x - m_1)^2}{2\sigma_1^2}\right]. \quad (B)$$

Therefore, following either of the expressions above, we can see that

$$\iint f(x,y) \, dx dy = 1.$$

(ii) (5pts) Let (X, Y) be a bivariate random variable on some probability space $(\Omega, \mathcal{S}, \mathbb{P})$ that has continuous distribution with f(x, y) in (\star) being the joint PDF. Determine the marginal PDF f_X of X and the marginal PDF f_Y of Y. What kind of the distributions are the marginal distributions of X and Y?

Solution: Using (B), we have that, for every $x \in \mathbb{R}$.

$$f_X(x) = \int_{\mathbb{R}} f(x, y) dy = \frac{1}{\sqrt{2\pi} \cdot \sigma_1^2} \exp \left[-\frac{(x - m_1)^2}{2\sigma_1^2} \right]$$

so X is an $N(m_1, \sigma_1^2)$ random variable. Similarly, using (A), for every $y \in \mathbb{R}$,

$$f_Y(y) = \int_{\mathbb{R}} f(x, y) dx = \frac{1}{\sqrt{2\pi} \cdot \sigma_2^2} \exp \left[-\frac{(y - m_2)^2}{2\sigma_2^2} \right],$$

so Y is an $N(m_2, \sigma_2^2)$ random variable.

(iii) (5pts) Show that

$$Cov(X, Y) = c,$$

$$Corr(X,Y) = \frac{c}{\sigma_1 \sigma_2},$$

and the joint MGF of (X, Y), i.e.,

$$M\left(s_{1}, s_{2}\right) = \mathbb{E}\left[e^{s_{1}X_{1} + s_{2}X_{2}}\right]$$

exists for all $s_1, s_2 \in \mathbb{R}$ and

$$M(s_1, s_2) = \exp \left[s_1 m_1 + s_2 m_2 + \frac{1}{2} \left(\sigma_1^2 s_1^2 + 2c s_1 s_2 + \sigma_2^2 s_2^2 \right) \right].$$

Proof: Again, we can use (A) or (B) to compute these integrals. For example, using (A),

$$\begin{aligned}
&\text{Cov}(X,Y) \\
&= \iint_{\mathbb{R}^2} (x - m_1) (y - m_2) f(x, y) dx dy \\
&= \iint_{\mathbb{R}} \left(\int_{\mathbb{R}} \frac{(x - m_1)}{\sqrt{2\pi} \cdot \sqrt{\left(\sigma_1^2 - \frac{c^2}{\sigma_2^2}\right)}} \exp\left\{ -\frac{\left[x - \left(m_1 + \frac{c(y - m_2)}{\sigma_2^2}\right)\right]^2}{2\left(\sigma_1^2 - \frac{c^2}{\sigma_2^2}\right)} \right\} dx \right) \frac{(y - m_2)}{\sqrt{2\pi} \cdot \sigma_2^2} \exp\left[-\frac{(y - m_2)^2}{2\sigma_2^2} \right] dy \\
&= \iint_{\mathbb{R}} \frac{c(y - m_2)}{\sigma_2^2} \cdot \frac{(y - m_2)}{\sqrt{2\pi} \cdot \sigma_2^2} \exp\left[-\frac{(y - m_2)^2}{2\sigma_2^2} \right] dy \\
&= \frac{c}{\sigma_2^2} \cdot \sigma_2^2 = c.
\end{aligned}$$

It follows immediately that $\operatorname{Corr}(X,Y) = \frac{c}{\sigma_1 \sigma_2}$. Using (B),

$$\begin{split} & = \int_{\mathbb{R}} e^{s_1 x} \cdot e^{s_2 y} f\left(x,y\right) dx dy \\ & = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} \frac{e^{s_2 y}}{\sqrt{2\pi} \cdot \sqrt{\left(\sigma_2^2 - \frac{c^2}{\sigma_1^2}\right)}} \exp\left\{ -\frac{\left[y - \left(m_2 + \frac{c(x - m_1)}{\sigma_1^2}\right)\right]^2}{2\left(\sigma_2^2 - \frac{c^2}{\sigma_1^2}\right)} \right\} dy \right) \frac{e^{s_1 x}}{\sqrt{2\pi} \cdot \sigma_1^2} \exp\left[-\frac{(x - m_1)^2}{2\sigma_1^2} \right] dx \\ & = \int_{\mathbb{R}} e^{s_2 m_2 + s_2 \frac{c(x - m_1)}{\sigma_1^2} + \frac{s_2^2}{2} \left(\sigma_2^2 - \frac{c^2}{\sigma_1^2}\right)} \cdot \frac{e^{s_1 x}}{\sqrt{2\pi} \cdot \sigma_1^2} \exp\left[-\frac{(x - m_1)^2}{2\sigma_1^2} \right] dx \\ & = e^{s_2 m_2 - s_2 \frac{cm_1}{\sigma_1^2} + \frac{s_2^2}{2} \left(\sigma_2^2 - \frac{c^2}{\sigma_1^2}\right)} \int_{\mathbb{R}} \frac{e^{\left(s_1 + \frac{s_2 c}{\sigma_1^2}\right) x}}{\sqrt{2\pi} \cdot \sigma_1^2} \exp\left[-\frac{(x - m_1)^2}{2\sigma_1^2} \right] dx \\ & = e^{s_2 m_2 - s_2 \frac{cm_1}{\sigma_1^2} + \frac{s_2^2}{2} \left(\sigma_2^2 - \frac{c^2}{\sigma_1^2}\right)} \cdot e^{\left(s_1 + \frac{s_2 c}{\sigma_1^2}\right) m_1 + \frac{\left(s_1 + \frac{s_2 c}{\sigma_1^2}\right)^2 \sigma_1^2}{2}} \\ & = e^{s_2 m_2 + s_1 m_1 + \frac{s_2^2 \sigma_2^2}{2} + s_1 s_2 c + \frac{s_1^2 \sigma_1^2}{2}}. \end{split}$$

(iv) (3pts) Further determine the conditional PDF $f_{X|Y}$ of X given Y. What kind of the distribution is this conditional distribution? Let Z be another continuous random variable on Ω and Z has $f_{X|Y}$ as its PDF. Determine $\mathbb{E}[Z]$ and $\mathrm{Var}(Z)$.

Solution: It's obvious from (A) that

$$f_{X|Y}(x|y) = \frac{f_{(X,Y)}(x,y)}{f_{Y}(y)} = \frac{1}{\sqrt{2\pi} \cdot \sqrt{\left(\sigma_{1}^{2} - \frac{c^{2}}{\sigma_{2}^{2}}\right)}} \exp\left\{-\frac{\left[x - \left(m_{1} + \frac{c(y - m_{2})}{\sigma_{2}^{2}}\right)\right]^{2}}{2\left(\sigma_{1}^{2} - \frac{c^{2}}{\sigma_{2}^{2}}\right)}\right\}.$$

If Z has the above PDF, then Z is a Gaussian random variable with expectation

$$\mathbb{E}\left[Z\right] = m_1 + \frac{c\left(y - m_2\right)}{\sigma_2^2}$$

and variance

$$\operatorname{Var}(Z) = \sigma_1^2 - \frac{c^2}{\sigma_2^2}.$$

(v) (3pts) Based on the statements in (i)-(iv), determine an "if and only if" condition, i.e., a both necessary and sufficient condition, for X and Y to be independent.

Solution: It is clear from above that, X and Y are independent if and only if c = 0, i.e., Cov(X, Y) = 0.

Problem 5. (6pts) Given a probability space $(\Omega, \mathcal{S}, \mathbb{P})$, let X and Y be two independent random variables on Ω and both X and Y have the standard Gaussian distribution N(0,1). Denote $U = \frac{X+Y}{\sqrt{2}}$ and $V = \frac{X-Y}{\sqrt{2}}$. Show that U and V are independent and both U and V have the standard Gaussian distribution N(0,1).

Proof: Consider the joint MGF of (U, V). For every $s_1, s_2 \in \mathbb{R}$,

$$M_{(U,V)}(s_1, s_2) = \mathbb{E}\left[e^{s_1 U + s_2 V}\right] = \mathbb{E}\left[e^{\frac{(s_1 + s_2)}{\sqrt{2}}X + \frac{(s_1 - s_2)}{\sqrt{2}}Y}\right]$$
$$= M_X\left(\frac{s_1 + s_2}{\sqrt{2}}\right) \cdot M_Y\left(\frac{s_1 - s_2}{\sqrt{2}}\right)$$
$$= e^{\frac{(s_1 + s_2)^2}{4}} \cdot e^{\frac{(s_1 - s_2)^2}{4}} = e^{\frac{s_1^2}{2}} \cdot e^{\frac{s_2^2}{2}}.$$

The right hand side of above is exactly the joint MGF of two independent standard normal random variables.

Problem 6. (15pts) (The converse of Problem 5.) Given a probability space $(\Omega, \mathcal{S}, \mathbb{P})$, let X and Y be two independent random variables on Ω . Assume that X and Y have the same continuous distribution with a common PDF ϕ , i.e.,

$$f_X(t) = f_Y(t) = \phi(t) \ \forall t \in \mathbb{R}$$

where f_X and f_Y are the PDFs of X and Y respectively. Further assume that ϕ is smooth (having derivatives of all orders) on \mathbb{R} and

$$\phi\left(0\right) = \max_{t \in \mathbb{R}} \phi\left(t\right) > 0,$$

 $\operatorname{Var}(X)$ exists and equals 1 (so does $\operatorname{Var}(Y)$), and the MGF M(s) of X exists for all $s \in \mathbb{R}$ (same for Y). Denote $U = \frac{X+Y}{\sqrt{2}}$ and $V = \frac{X-Y}{\sqrt{2}}$. Suppose that U and V are also independent random variables, and both U and V have the same distribution as that of X and Y, which means that U and V have the common continuous distribution, and

$$f_{U}(t) = f_{V}(t) = \phi(t) \ \forall t \in \mathbb{R}$$

where f_U and f_V are the PDFs of U and V respectively.

(i) (3pts) First show that,

$$\mathbb{E}\left[X\right] = \mathbb{E}\left[Y\right] = \mathbb{E}\left[U\right] = \mathbb{E}\left[V\right] = 0$$

and

$$\operatorname{Var}(X) = \operatorname{Var}(Y) = \operatorname{Var}(U) = \operatorname{Var}(V) = 1.$$

Proof: By the hypothesis, we have that

$$\mathbb{E}\left[X\right] = \mathbb{E}\left[U\right] = \mathbb{E}\left[\frac{X+Y}{\sqrt{2}}\right] = \frac{\mathbb{E}\left[X\right] + \mathbb{E}\left[Y\right]}{\sqrt{2}} = \sqrt{2}\mathbb{E}\left[X\right],$$

which implies that $\mathbb{E}[X] = 0$ and hence the expectations of Y, U and V are all zero. Since U, V, X and Y all have the same distribution, they all have variance 1.

Next, show, in two different ways as in (ii) and (iii), that $\phi(t) = \frac{e^{-t^2/2}}{\sqrt{2\pi}}$, i.e., X, Y, U and V all have the standard Gaussian distribution N(0,1).

(ii) (6pts) Method 1: Show that for every $u, v \in \mathbb{R}$,

$$\phi\left(\frac{u+v}{\sqrt{2}}\right)\phi\left(\frac{u-v}{\sqrt{2}}\right) = \phi\left(u\right)\phi\left(v\right).$$

Then argue that, if $\psi(t) := \frac{\phi(t)}{\phi(0)}$ for $t \in \mathbb{R}$, then

$$\psi\left(\sqrt{2}t\right) = \left(\psi\left(t\right)\right)^{2} \quad \forall t \in \mathbb{R}.$$

Finally, establish that $\psi(t) = \exp\left(\frac{\psi''(0)t^2}{2}\right)$, and combine the hypotheses that ϕ is a PDF and $\operatorname{Var}(X) = 1$ to show that

$$\phi\left(t\right) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} \quad \forall t \in \mathbb{R}.$$

Proof: By the result on transformation of bivariate random variables given in class, we know that (U, V) is has the joint density given by

$$f_{(U,V)}(u,v) = f_{(X,Y)}\left(\frac{u+v}{\sqrt{2}}, \frac{u-v}{\sqrt{2}}\right) \cdot 1.$$

Further, because U and V are i.i.d. with common PDF ϕ , and meanwhile, X and Y are also i.i.d. with PDF ϕ , the relation above leads to

$$\phi(u) \phi(v) = \phi\left(\frac{u+v}{\sqrt{2}}\right) \phi\left(\frac{u-v}{\sqrt{2}}\right).$$

Define ψ as in the statement. $\psi(0) = 1$. Setting u = v = t, we get $\psi(\sqrt{2}t) = (\psi(t))^2$ and by repeating this formula, we have

$$\psi(t) = \left[\psi\left(\frac{t}{2^n}\right)\right]^{2^{2n}} \quad \forall t \in \mathbb{R}, n \ge 1.$$

Let t be fixed for now. Then we have

$$\psi'(0) = \lim_{n \to \infty} \frac{\psi(t/2^n) - 1}{t/2^n} = \frac{1}{t} \lim_{n \to \infty} \frac{(\psi(t))^{2^{-2n}} - 1}{2^{-n}} = 0$$

and

$$\psi''(0) = \lim_{n \to \infty} \frac{\psi(t/2^n) + \psi(-t/2^n) - 2}{t^2/2^{2n}}$$

$$= \frac{1}{t^2} \lim_{n \to \infty} \frac{(\psi(t))^{2^{-2n}} + (\psi(-t))^{2^{-2n}} - 2}{2^{-2n}}$$

$$= \frac{\ln(\psi(t)) + \ln(\psi(-t))}{t^2}.$$

Finally, with Taylor's expansion of ψ near 0, we have that

$$\psi(t) = \left[1 + \frac{\psi''(0)}{2} \frac{t^2}{2^{2n}} + o\left(\frac{1}{2^{2n}}\right)\right]^{2^{2n}} \to \exp\left(\frac{\psi''(0)t^2}{2}\right) \text{ as } n \to \infty.$$

This means that

$$\phi\left(t\right) = \phi\left(0\right) \exp\left(\frac{\psi''\left(0\right)t^{2}}{2}\right).$$

Since ϕ is a PDF, it must a Gaussian PDF. Combining with the fact that the expectation of X is 0 and the variance of X is 1, we know that ϕ must be the PDF of the standard Gaussian distribution.

(iii) (6pts) Method 2: Consider the MGF M(s) of X (same MGF for Y, U and V). Show that for every $s_1, s_2 \in \mathbb{R}$,

$$M(s_1) M(s_2) = M\left(\frac{s_1 + s_2}{\sqrt{2}}\right) M\left(\frac{s_1 - s_2}{\sqrt{2}}\right).$$

Further deduce that for every $s \in \mathbb{R}$,

$$M\left(\sqrt{2}s\right) = \left(M\left(s\right)\right)^{2}.$$

From here, establish that $M(s) = e^{s^2/2}$, and hence X, Y, U and V are all standard Gaussian random variables.

Proof: A similar argument as in the proof of Problem 5 leads to

$$M\left(s_{1}\right)M\left(s_{2}\right)=M\left(\frac{s_{1}+s_{2}}{\sqrt{2}}\right)M\left(\frac{s_{1}-s_{2}}{\sqrt{2}}\right)$$

which, by setting $s_1 = s_2 = s$, implies that

$$M\left(\sqrt{2}s\right) = \left(M\left(s\right)\right)^2$$

and further

$$M(s) = \left[M\left(\frac{s}{2^n}\right)\right]^{2^{2n}}.$$

Since $M\left(0\right)=1,\ M'\left(0\right)=\mathbb{E}\left[X\right]=0$ and $M''\left(0\right)=\mathbb{E}\left[X^{2}\right]=1,$ we have that

$$M(s) = \left[1 + \frac{1}{2} \frac{s^2}{2^{2n}} + o\left(\frac{1}{2^{2n}}\right)\right]^{2^{2n}} \to \exp\left(\frac{s^2}{2}\right) \text{ as } n \to \infty.$$

Problem 7. (10pts) Given a probability space $(\Omega, \mathcal{S}, \mathbb{P})$, $m \in \mathbb{R}$, $\sigma^2 > 0$ and $\sigma = \sqrt{\sigma^2}$, let $\{X_i : i \in \mathbb{N}\}$ be a sequence of random variables on Ω such that for each $i \in \mathbb{N}$, $\mathbb{E}[X_i] = m$ and $\text{Var}(X_i) = \sigma^2$. Further assume that $\{X_i : i \in \mathbb{N}\}$ is uncorrelated, i.e., $\text{Corr}(X_i, X_j) = 0$ whenever $i \neq j$. For each $n \geq 1$, define

$$S_n = \sum_{i=1}^n X_i$$
 and $\overline{S}_n = \frac{S_n}{n}$.

(i) (3pts) Show that for every $n \in \mathbb{N}, \mathbb{E}\left[\overline{S}_n\right] = m$ and $\operatorname{Var}\left(\overline{S}_n\right) = \frac{\sigma^2}{n}$.

Proof:

$$\mathbb{E}\left[\overline{S}_{n}\right] = \frac{\mathbb{E}\left[S_{n}\right]}{n} = \frac{\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]}{n} = m.$$

$$\operatorname{Var}\left(\overline{S}_{n}\right) = \mathbb{E}\left[\left(\overline{S}_{n} - m\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(\frac{\sum_{i=1}^{n}\left(X_{i} - m\right)}{n}\right)^{2}\right]$$

$$= \frac{1}{n^{2}}\left\{\sum_{i=1}^{n}\mathbb{E}\left[\left(X_{i} - m\right)^{2}\right] + \sum_{i \neq j}\mathbb{E}\left[\left(X_{i} - m\right)\left(X_{j} - m\right)\right]\right\}$$

$$= \frac{1}{n^{2}}\left\{\sum_{i=1}^{n}\operatorname{Var}\left(X\right) + \sum_{i \neq j}\operatorname{Cov}\left(X_{i}, X_{j}\right)\right\}$$

$$= \frac{1}{n^{2}} \cdot n\sigma^{2} = \sigma^{2}/n.$$

(ii) (4pts) Show that, $\forall \epsilon > 0$ and $n \in \mathbb{N}$,

$$\mathbb{P}\left(\left|\overline{S}_n - m\right| > \epsilon\right) \le \frac{\sigma^2}{n\epsilon^2}.$$

Proof: By Chebyshev's inequality,

$$\mathbb{P}\left(\left|\overline{S}_n - m\right| > \epsilon\right) \le \frac{\operatorname{Var}\left(\overline{S}_n\right)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}.$$

(iii) (3pts) In particular, when $\{X_i : i \in \mathbb{N}\}$ is a sequence of independent and identically distributed (i.i.d.) random variables, i.e., X_i 's are independent and X_i 's share a common distribution, and assume that the common distribution of X_i 's is $N(m, \sigma^2)$. Show that, for every $n \in \mathbb{N}$, if

$$T_n = \frac{S_n - nm}{\sqrt{n}\sigma},$$

then T_n has the distribution N(0,1).

Proof: As seen in class, S_n is an $N\left(nm, n\sigma^2\right)$ random variable, then $T_n = \frac{1}{\sqrt{n\sigma}}S_n - \sqrt{n\frac{m}{\sigma}}$ is also a Gaussian random variable, with expectation $\frac{1}{\sqrt{n\sigma}}nm - \sqrt{n\frac{m}{\sigma}} = 0$ and variance $\frac{n\sigma^2}{n\sigma^2} = 1$. In other words, T_n is an $N\left(0,1\right)$ random variable for each $n \geq 1$.

Problem 8. (5pts) Given a probability space $(\Omega, \mathcal{S}, \mathbb{P})$ and $n \in \mathbb{N}$, let X_1, \dots, X_n be i.i.d. random variables and the common distribution of X_i 's is the standard Gaussian distribution N(0,1). Set $Z_n := X_1^2 + \dots + X_n^2$. Show that, by studying the MGF of Z_n , that Z_n has the χ -square distribution with n degrees of freedom, i.e., the Gamma distribution with parameters $\alpha = \frac{n}{2}, \lambda = \frac{1}{2}$ (as introduced in HW 3 Problem 6).

Proof: Considering the MGF of Z_n . By the result of HW 3 Problem 9, we have that

$$M_{Z_n}(s) = \prod_{i=1}^n \mathbb{E}\left[e^{sX_i^2}\right] = \left(\frac{1}{\sqrt{1-2s}}\right)^n = \left(\frac{1/2}{(1/2)-s}\right)^{n/2}.$$

By HW 3 Problem 6, this is exactly the MGF of the $\chi-$ square distribution with n degrees of freedom.