Variantes da MT

Vimos que alterar o critério de reconhecimento de palavras nas MTs não aumenta seu poder computacional. Agora veremos que outras pequenas modificações na estrutura da máquina também não as torna mais poderosas.

A primeira variação que vamos tratar é a opção de manter o cabeçote imóvel durante alguma transição.

<u>Máquina de Turing com cabeçote imóvel</u>: Uma máquina de Turing com cabeçote imóvel é uma sêxtupla $M = (Q, \Sigma, \Gamma, \delta, i, F)$ em que todos os elementos, com exceção da função de transição, são como na máquina padrão.

A função de transição agora é $\delta: Q \times \Gamma \to Q \times \Gamma \times \{E, D, I\}$. Ou seja, o cabeçote pode ser movido à esquerda, direita, ou permanecer imóvel durante uma transição.

Manter o cabeçote imóvel pode ser simulado pela máquina padrão fazendo-se duas transições que movimentam o cabeçote para uma direção e depois o retornam para a posição de origem, passando por um estado intermediário.

Dessa forma, apesar de conveniente em muitos casos, essa variante não aumenta o poder da máquina padrão.

<u>Máquina de Turing com múltiplas trilhas</u>: Nesse tipo de máquina, cada célula da fita de entrada é capaz de armazenar múltiplos valores (possui múltiplas trilhas). A arquitetura da MT passa a ser como na figura abaixo.

Logo, o cabeçote pode ler/escrever uma tupla de k elementos de uma única vez em MT com k trilhas. Veja que a movimentação das trilhas não é independente. O cabeçote continua movendo sobre as células da fita, que, por sua vez, podem armazenar múltiplos valores. Formalmente, a função de transição passa a ser $\delta : Q \times \Gamma^k \to Q \times \Gamma^k \times \{E, D\}$.

Percebe-se que a máquina padrão pode ser simulada nessa, utilizando-se somente uma das trilhas. Por outro lado, a MT de múltiplas trilhas pode ser simulada por uma MT padrão ao usar k-tuplas como símbolos do alfabeto da fita, ao invés de símbolos atômicos (unitários).

<u>Máquina com fita ilimitada em ambas as direções</u>: Na máquina padrão, assumimos que a fita possui um marcador de início à esquerda, sendo ilimitada à direita. Nessa variante, não impomos qualquer limitação em ambos os lados. Nesse caso, a palavra de entrada é escrita na fita no início da computação, o cabeçote posicionado no primeiro símbolo da palavra, e só então a máquina inicia as transições.

Como a fita é ilimitada em ambos os lados, não há necessidade de se ter o símbolo (no alfabeto da fita.

Uma MT com fita ilimitada em ambas as direções pode simular uma MT padrão, escrevendo um marcador de início de fita na primeira posição vazia que antecede a palavra antes do início das

1 of 3 04/04/2021 22:19

computações. O restante das transições seriam como na MT padrão.

Por outro lado, podemos simular uma MT com fita ilimitada em ambas as direções em uma MT com duas trilhas conforme a figura abaixo:

Fita ilimitada em ambas as direções

Simulação em uma MT com 2 trilhas.

A simulação é feita, portanto, assumindo que as posições que antecedem a palavra inicial são tratadas na segunda trilha, enquanto as posições que a palavra ocupa e à direita são tratadas na primeira trilha.

Dada a equivalência entre a MT com múltiplas trilhas e MT padrão, tem-se que MT com fita ilimitada em ambas as direções é equivalente à MT padrão.

<u>Máquinas de Turing com múltiplas fitas</u>: Essa extensão atribui à MT múltiplas fitas de leitura/escrita. A alusão que podemos fazer é a de um computador com múltiplos discos, os quais podem ser acessados em paralelo e de forma independente. A figura abaixo resume essa ideia.

Como os cabeçotes movem de forma independente sobre as fitas, a função de transição agora é $\delta: Q \times \Gamma^k \to Q \times (\Gamma \times \{E, D, I\})^k$.

A MT padrão pode ser vista como uma MT de múltiplas fitas com k=1. Por outro lado, a MT de múltiplas fitas pode ser simulada por uma MT com 2k trilhas. A simulação é feita usando uma das trilhas para armazenar efetivamente o conteúdo de uma fita na máquina original e uma segunda trilha para indicar a posição do cabeçote referente àquela fita.

Por exemplo, uma máquina com duas fitas é simulada por outra com 4 trilhas. As trilhas ímpares (1 e 3) armazenam o conteúdo das fitas. As trilhas pares são usadas para marcar a posição do cabeçote em cada fita. Cada transição na máquina original requer uma série de transições na MT multitrilhas, já que ela deve localizar a posição de cada cabeçote, realizar as operações de leitura e escrita em cada um deles separadamente, para só então se deslocar para o estado equivalente à transição original.

2 of 3 04/04/2021 22:19

<u>Máquina de Turing não-determinística</u>: A ideia da MT não-determinística é análoga à das outras máquinas não-determinísticas estudas anteriormente. Admitem-se agora múltiplas transições sob um mesmo estado e símbolo sob o cabeçote.

Uma MT não-determinística é uma sêxtupla $(Q, \Sigma, \Gamma, \delta, I, F)$ em que todos os elementos com exceção de I e δ são como na MT padrão. Agora possibilita-se o início da computação em diferentes estados e a função de transição,

 $\delta: Q \times \Gamma \to \mathcal{P}(\{Q \times \Gamma \times \{E,D\}))$, é uma função total. No caso de $\delta(e,a) = \emptyset$, a máquina para no estado e.

Novamente, a MT padrão é um caso particular da MT não-determinística. A simulação de uma MT não-determinística por uma MT padrão deve se dar enumerando todas as computações possíveis que a primeira faz. Como as computações da MT não determinística podem ser vistas como uma árvore, a simulação corresponde a uma busca em largura nessa árvore (implícita) de computações.

Os detalhes dessa simulação podem ser conferidos no livro texto.

3 of 3 04/04/2021 22:19