Introduction to Data Science

ĸ.

Data Science Process

Different methodologies used in data science

- CRISP-DM Methodology,
- SEMMA,
- BIG DATA LIFE CYCLE,
- SMAM.

M

CRISP-DM: Methodology

CRISP-DM stands for Cross-Industry Standard Process for Data Mining.

- Widely adopted methodology
- Provides a structured approach for planning & executing DM projects.
- Designed to be adaptable across various industries and applications.
- Key Characteristics of CRISP-DM
 - ☐ **Iterative:** The process is not strictly linear. You may need to revisit previous phases as you progress.
 - ☐ **Flexible:** It can be adapted to various project sizes and complexities.
 - □ **Industry-Neutral:** Applicable across different domains and sectors.
 - □ **Focus on Business Value:** Emphasizes understanding business needs and aligning data mining efforts accordingly.

CRISP-DM: Data Mining Operations

1. Business Understanding:

- 1. Determine business objectives and requirements.
- 2. Assess situation and resources.
- 3. Determine data mining goals.

2. Data Understanding:

- 1. Collect initial data.
- 2. Describe data.
- 3. Explore data.
- 4. Verify data quality.

3. Data Preparation:

- 1. Select and Clean data.
- Construct data.
- 3. Integrate data.
- 4. Format data.

4. Data Modeling:

- 1. Select modeling techniques.
- 2. Generate test design.
- 3. Build and Assess models.

5. Evaluation:

- 1. Evaluate results.
- 2. Review process.
- 3. Determine next steps.

6. Deployment:

- 1. Plan deployment.
- 2. Plan monitoring and maintenance.
- 3. Produce final report.
- 4. Review project.

CRISP-DM: Methedology

w

SEMMA

SEMMA is a data mining methodology developed by the SAS Institute. It outlines a five-step process for extracting meaningful insights from data:

1. Sample:

- **Select a representative subset of the data** for analysis. Necessary to manage the computational complexity of working with large datasets.
- Sampling techniques can include random sampling, stratified sampling, and cluster sampling.

2. Explore:

- Conduct exploratory data analysis (EDA) to understand the characteristics of the data.
- This involves visualizing the data, identifying patterns, and detecting anomalies.
- Common EDA techniques include histograms, scatter plots, box plots...

٧

SEMMA

3. Modify:

- Transform and prepare the data for modeling.
 - Data cleaning: Handling missing values, outliers, and inconsistencies.
 - **Feature engineering:** Creating new variables or transforming existing ones.
 - **Data transformation:** Scaling or normalizing data to improve model accuracy.

4. Model:

- Build and train predictive models using appropriate algorithms.
 - **Regression:** Predicting continuous values.
 - **Classification:** Predicting categorical values.
 - **Clustering:** Grouping similar data points together.

5. Assess:

- Evaluate the performance of the models using appropriate metrics.
- This helps to determine the accuracy, reliability, and generalizability of the models.
- Common evaluation metrics include accuracy, precision, recall, and F1-score.

SEMMA

M

SMAM

■ **SMAM** stands for **Sample**, **Mine**, **Assess**, **Maintain**. It's a simplified data science methodology, particularly useful for initial data exploration and analysis. Here's a breakdown:

1. Sample:

Select a representative subset of the data.

2. Mine:

 Apply data mining techniques to discover patterns and relationships within the data.

3. Assess:

Evaluate the findings and their implications.

4. Maintain:

- Update and refine the analysis as new data becomes available.
- This may involve:
 - Retraining models with new data to improve their performance.
 - Updating data sources and re-running the analysis.
 - Incorporating new insights and adjusting the analysis accordingly.

Big Data

ANALYSES WHICH CAN HANDLE THE 3 VS AND DO IT WITH QUALITY (VERACITY)

ETL vs ELT

ETL

ELT

Source Systems

Big Data Life Cycle

Fusion

