

Simple Linear Regression and Correlation

Dependent vs Independent Variables

Independent Variable

The value does not change due to the impact of any other variable. The researcher manipulates or changes the independent variable to measure its impact on other variables.

Dependent Variable

- It depends on other variables.
- It is the variable that is being tested in the experiment.
- A researcher measures the outcome of the experiment to see how other variables cause changes in the value of a dependent variable.

Dependent vs Independent Variables

Examples:

- How does the amount of sleep impact test scores?
 - Independent Variable: Time spent on sleeping before the exam
 - Dependent Variable: Test Score
- What is the effect of fast food on blood pressure?
 - Independent Variable: Consumption of fast food
 - Dependent Variable: Blood Pressure
- What is the effect of caffeine on sleep?
 - Independent Variable: the amount of caffeine consumed
 - Dependent Variable: Sleep

Dependent vs Independent Variables

 We mark x-axis as independent variable and y-axis as dependent variable.

Scatter Plots and Correlation

Scatter Plots and Correlation

Correlation Coefficient

- Correlation coefficients are used to measure how strong a relationship is between two variables.
- There are several types of correlation coefficient, but the most popular are:
 - Pearson Correlation Coefficient (r)
 - Spearman Correlation Coefficient ρ (rho)

Comparison of Pearson and Spearman coefficients

- Pearson coefficient works with a linear relationship between the two variables whereas the Spearman Coefficient works with monotonic relationships as well.
- Pearson works with raw data values of the variables whereas Spearman works with rank-ordered variables.
- The Spearman's rank-order correlation is the nonparametric version of the Pearson.

Monotonic relationship

- A monotonic relationship is a relationship that does one of the following:
 - as the value of one variable increases, so does the value of the other variable
 - as the value of one variable increases, the other variable value decreases.

Features of p and r

- Unit free
- Range between -1 and 1
- The closer to -1, the stronger the negative linear relationship
- The closer to 1, the stronger the positive linear relationship
- The closer to 0, the weaker the linear relationship

Features of p and r

- In this we try to find out the relationship between two variables and form a straight line on the scattered plot called regression line.
- We try to fit this regression line to all the observations.
- Regression line is based upon least squared method.

Estimated Regression Model

The sample regression line provides an estimate of the population regression line

Least Square Equation

•
$$\hat{y} = b_0 + b_1 x$$

•
$$b_1 = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$

$$b_0 = \bar{y} - b_1 \bar{x}$$

- $\mathbf{b_0}$ is the estimated average value of y when the value of x is zero.
- $\mathbf{b_1}$ is the estimated change in the average value of y as a result of a one-unit change in x.

 We try to minimize the errors produced due to the difference between actual and estimated data points.

- We examine the relationship between variables i.e. when one independent variable is changing what is its effect on dependent variable?
 - Positive relationship
 - Negative relationship

Relationship Examples: Positive relationship

Relationship Examples: Negative relationship

 Regression line must pass through the point where means of dependent and independent variables crossed.

Measures of Goodness of fit

- R² (R-squared)
 - (Coefficient of Determination)
 - Value ranges from 0(worst fit) to 1(best fit)

$$R^2 = \frac{\sum (\hat{y} - \bar{y})^2}{\sum (y - \bar{y})^2}$$

- Standard Error of Estimate
 - Distance between estimated and actual values

$$=\sqrt{\frac{\sum (\hat{y}-y)^2}{n-2}}$$