Notes on Chapter 1.2: Some Preliminaries

Your Name

June 16, 2025

1 Sets

- A set is any collection of objects (elements)
- Notation:
 - $-x \in A$: x is an element of A
 - $-x \notin A$: x is not an element of A
- Operations:
 - Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}$
 - Intersection: $A \cap B = \{x : x \in A \text{ and } x \in B\}$
 - Complement: $A^c = \{x \in \mathbb{R} : x \notin A\}$

• Example 1.2.1:

- Let $A = \{1, 2, 3\}, B = \{2, 4, 6\}$
- $-A \cup B = \{1, 2, 3, 4, 6\}$
- $-\ A\cap B=\{2\}$
- If universal set is \mathbb{N} , then $A^c = \{4, 5, 6, \ldots\}$

2 Functions

- A function $f:A\to B$ is a rule associating each $x\in A$ to a single element of B
- Key properties:
 - **One-to-one (1-1)**: $a_1 \neq a_2$ implies $f(a_1) \neq f(a_2)$
 - **Onto**: For every $b \in B$, there exists $a \in A$ with f(a) = b

• Example 1.2.4 (Dirichlet's function):

$$g(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

This function is:

- Not one-to-one (both 1 and 2 map to 1)
- Not onto if codomain is \mathbb{R} (no x maps to 2)

3 Absolute Value and Triangle Inequality

• Absolute value definition:

$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

- Properties:
 - |ab| = |a||b|
 - $-|a+b| \le |a| + |b|$ (Triangle Inequality)
 - $|a-b| \le |a-c| + |c-b|$
- Example:
 - |-3| = 3
 - $-|2 \cdot (-5)| = |2| \cdot |-5| = 10$
 - For a = 1, b = -2: |1 + (-2)| = 1 < |1| + |-2| = 3

4 Logic and Proofs

- **Proof by contradiction**: Assume the opposite of what you want to prove and find a contradiction
- Example 1.2.6 (Uniqueness of limits):
 - Assume $\lim a_n = a$ and $\lim a_n = b$ with $a \neq b$
 - Take $\epsilon = |a b|/2$
 - By definition, $\exists N_1$ such that $n \geq N_1 \implies |a_n a| < \epsilon$
 - And $\exists N_2$ such that $n \geq N_2 \implies |a_n b| < \epsilon$
 - For $n \ge \max\{N_1, N_2\}$:

$$|a - b| \le |a - a_n| + |a_n - b| < 2\epsilon = |a - b|$$

- Contradiction: |a - b| < |a - b|

5 Induction

- Principle of Induction:
 - 1. Show statement holds for n = 1 (base case)
 - 2. Assume holds for n, prove for n+1 (inductive step)
- Example 1.2.7:
 - Define $x_1 = 1$, $x_{n+1} = \frac{1}{2}x_n + 1$
 - Claim: $x_n \le x_{n+1}$ for all $n \in \mathbb{N}$
 - Base case: $x_1 = 1 \le 1.5 = x_2$
 - Inductive step: Assume $x_n \leq x_{n+1}$

$$x_{n+2} = \frac{1}{2}x_{n+1} + 1 \ge \frac{1}{2}x_n + 1 = x_{n+1}$$