Macroeconomia Dinâmica

A economia centralizada: ciclos de negócios reais

João Ricardo Costa Filho

Modelos

Sobre modelos

Good ideas shine far more brightly when supported by good models

Avinash Dixit ("The making of Economic Policy", 1996, p. 17)

All models are wrong.

George Box

Models are to be used, not believed. **Henri Theil** ("Principles of Econometrics", 1971, p. vi)

A economia centralizada

Premissas

- Agente representativo (Ramsey 1928; Cass 1965; Koopmans 1965) com vida infinita.
- Utilidade separável ao longo do tempo.
- Retornos constantes de escala.
- Produtividade marginal decrescente.
- Economia fechada e sem governo.

Formas funcionais (Wickens 2012)

Trabalhemos com as seguintes funções:

$$U(c) = \frac{c^{1-\sigma} - 1}{1 - \sigma},\tag{1}$$

na qual $\sigma=-cU''/U'$ é o coeficiente de aversão relativa ao risco. A função de produção será dada por:

$$y_t = Ak_t^{\alpha} \tag{2}$$

onde A é a produtividade total dos fatores e α a parcela do capital na produção.

Equilíbrio (Wickens 2012)

Da equação de Euler, temos que

$$\beta \frac{U'(c_{t+1})}{U'(c_t)} \left[F'(k_{t+1}) + 1 - \delta \right] = \beta \left(\frac{c_{t+1}}{c_t} \right)^{-\sigma} \left[\alpha A k_{t+1}^{-(1-\alpha)} + 1 - \delta \right] = 1$$

Portanto, o estoque de capital em equilíbrio é dado por:

$$k^* = \left(\frac{\alpha A}{\delta + \theta}\right)^{1/(1-\alpha)},\tag{3}$$

onde $\theta = 1/\beta - 1$ é a taxa de desconto intertemporal.

5

Equilíbrio (Wickens 2012)

O consumo, portanto, é dado por

$$c^* = Ak^{*\alpha} - \delta k^*$$

$$= \left(\frac{A}{\delta + \theta}\right)^{1-\alpha} \left(\frac{(1-\alpha)\delta + \theta}{\alpha^{\alpha}}\right). \tag{4}$$

Dinâmica

Sistema de equações

O sistema de equações que descreve essa economia é dado por:

$$\frac{\beta U'(c_{t+1})}{U'(c_t)} [F'(k_{t+1}) + 1 - \delta] = 1,$$

$$\Delta k_{t+1} = F(k_t) - \delta k_t - c_t.$$

Diagrama de fases ($\Delta c_{t+1} = 0$)

Diagrama de fases ($\Delta c_{t+1} = 0$)

Diagrama de fases ($\Delta k_{t+1} = 0$)

Diagrama de fases ($\Delta k_{t+1} = 0$)

Diagrama de fases

Diagrama de fases

Choques

Choque permanente na produtividade

Assuma que a produtividade aumentou permanentemente. Dados os resultados anteriores, teríamos:

- Um estoque de capital maior no equilíbrio de longo prazo.
- O consumo também será maior no equilíbrio de longo prazo.

Mas como chegamos nesse equilíbrio?

Choque permanente na produtividade

Choque transitório na produtividade

Assuma que a produtividade aumentou transitóriamente. Dados os resultados anteriores, teríamos:

- O estoque de capital se mantém igual no equilíbrio de longo prazo.
- O consumo também se mantém igual no equilíbrio de longo prazo.

Mas nada se altera então?

Choque transitório na produtividade

Assuma que a produtividade aumentou transitóriamente. Dados os resultados anteriores, teríamos:

- O estoque de capital se mantém igual no equilíbrio de longo prazo.
- O consumo também se mantém igual no equilíbrio de longo prazo.

Mas nada se altera então? Se o choque durar apenas um período, esse aumento será todo consumido (não faz sentido deixar para amanh - acumular capital - se isso significa estar acima do capital no equilíbrio de longo prazo). Mas e se durar alguns períodos?

Choque permanente na produtividade

O modelo com trabalho

 No modelo anterior, há a hipótese implícita de que a quantidade de horas trabalhadas é constante (Wickens 2012).

- No modelo anterior, há a hipótese implícita de que a quantidade de horas trabalhadas é constante (Wickens 2012).
- Para introduzirmos a escolha acerca das horas trabalhadas, precisamos modelar a escolha entre lazer e trabalho.

- No modelo anterior, há a hipótese implícita de que a quantidade de horas trabalhadas é constante (Wickens 2012).
- Para introduzirmos a escolha acerca das horas trabalhadas, precisamos modelar a escolha entre lazer e trabalho.
- Assuma a seguinte restrição: $n_t + l_t = 1$, onde n_t são as horas trabalhadas e l_t as horas de lazer.

- No modelo anterior, há a hipótese implícita de que a quantidade de horas trabalhadas é constante (Wickens 2012).
- Para introduzirmos a escolha acerca das horas trabalhadas, precisamos modelar a escolha entre lazer e trabalho.
- Assuma a seguinte restrição: $n_t + l_t = 1$, onde n_t são as horas trabalhadas e l_t as horas de lazer.
- A função utilidade seria $U(c_t, I_t)$, com $U_c > 0$, $U_l > 0$, $U_{cc} \leqslant 0$, and $U_{ll} \leqslant 0$. Seguindo Wickens (2012), assumamos $U_{cl} = 0$.

- No modelo anterior, há a hipótese implícita de que a quantidade de horas trabalhadas é constante (Wickens 2012).
- Para introduzirmos a escolha acerca das horas trabalhadas, precisamos modelar a escolha entre lazer e trabalho.
- Assuma a seguinte restrição: $n_t + l_t = 1$, onde n_t são as horas trabalhadas e l_t as horas de lazer.
- A função utilidade seria $U(c_t, I_t)$, com $U_c > 0$, $U_l > 0$, $U_{cc} \le 0$, and $U_{ll} \le 0$. Seguindo Wickens (2012), assumamos $U_{cl} = 0$.
- A função de produção será, portanto, $F(k_t, n_t)$, com $F_k > 0$, $F_{kk} \le 0$, $F_n > 0$, $F_{nn} \le 0$, $F_{kn} \ge 0$, $\lim_{k \to \infty} F_k = \infty$, $\lim_{k \to 0} F_k = \infty$, $\lim_{n \to \infty} F_n = 0$ e $\lim_{n \to 0} F_n = \infty$.

O modelo com trabalho

A restrição de recursos agora é dada por

$$F(k_t, n_t) = c_t + k_{t+1} - (1 - \delta)k_t.$$
 (5)

Lagrangiano

$$\mathcal{L}_{t} = \sum_{s=0}^{\infty} \left\{ \beta^{s} U\left(c_{t+s}, I_{t+s}\right) + \lambda_{t+s} \left[F\left(k_{t+s}, n_{t+s}\right) - c_{t+s} - k_{t+s+1} + (1 - \delta_{t+s} - k_{t+s}) + \lambda_{t+s} \left[1 - n_{t+s} - k_{t+s} \right] \right\} \right\}$$
(6)

C.P.O.

$$\frac{\partial \mathcal{L}_t}{\partial c_{t+s}} = \beta^s U_{c,t+s} - \lambda_{t+s} = 0, \quad s \geqslant 0$$
 (7)

$$\frac{\partial \mathcal{L}_t}{\partial I_{t+s}} = \beta^s U_{l,t+s} - \mu_{t+s} = 0, \qquad s \geqslant 0$$
 (8)

$$\frac{\partial \mathcal{L}_t}{\partial n_{t+s}} = \lambda_{t+s} F_{n,t+s} - \mu_{t+s} = 0, \qquad s \geqslant 0$$
 (9)

$$\frac{\partial \mathcal{L}_t}{\partial k_{t+s}} = \lambda_{t+s} \left[F_{k,t+s} + 1 - \delta \right] - \lambda_{t+s-1} = 0, \quad s > 0.$$
 (10)

Escolhas intra e intertemporais

Para s = 1, temos:

$$\beta \frac{U_{c,t+1}}{U_{c,t}} \left[F_{k,t+1} + 1 - \delta \right] = 1. \tag{11}$$

Para s = 0, temos:

$$U_{l,t} = U_{c,t} F_{n,t}. (12)$$

Equilíbrio de longo prazo

No longo prazo, temos:

$$F_k = \theta + \delta. \tag{13}$$

Aplicando o Teorema de Euler, temos:

$$F(k_t, n_t) = F_{n,t} n_t + F_{k,t} k_t. (14)$$

Portanto, como $F_{k,t}k_t$. é a renda do capital, temos $F_{n,t}=w_t$. O retorno (líquido) do capital, r_t é dado por $F_{k,t}-\delta=r_t$.

Equilíbrio de longo prazo

Assim,

$$F(k_t, n_t) = w_t n_t + (r_t + \delta) k_t, \qquad (15)$$

que pode ser reescrita como

$$w_{t} = \frac{F(k_{t}, n_{t}) - (r_{t} + \delta) k_{t}}{n_{t}},$$
 (16)

No equilíbrio temos $r^* = \theta$, portanto:

$$F(k^*, n^*) = w^* n^* + (\theta + \delta) k^*,$$

$$w^* = \frac{F(k^*, n^*) - (\theta + \delta) k^*}{n^*}$$
(17)

Equilíbrio de longo prazo

No modelo da anterior (com horas trabalhadas constantes, $n_t = 1$,), teríamos:

$$w_{t} = F(k_{t}, 1) - F_{k, t} k_{t}$$

= $F(k_{t}) - (r_{t} + \delta) k_{t}$, (18)

portanto:

$$w^* = F(k^*) - (\theta + \delta)k^*$$
(19)

Referências i

Cass, David. 1965. "Optimum Growth in an Aggregative Model of Capital Accumulation." *The Review of Economic Studies* 32 (3): 233–40.

Koopmans, Tjalling C. 1965. "On the Concept of Optimal Economic Growth," in the Econometric Approach to Development Planning, North Holland, Amsterdam."

Ramsey, Frank Plumpton. 1928. "A Mathematical Theory of Saving." *The Economic Journal* 38 (152): 543–59.

Wickens, Michael. 2012. *Macroeconomic Theory: A Dynamic General Equilibrium Approach*. Princeton University Press.