1

EE25BTECH11003 - Adharvan Kshathriya Bommagani

Question:

Find the direction and normal vectors of each of the following lines.

4.2.6
$$3x + 2 = 0$$

Solution:

To find the normal and direction vectors for the line 3x + 2 = 0, we can express the equation in a standard vector form.

The equation of a line can be written in the form $\mathbf{n}^T \mathbf{x} = c$, where \mathbf{n} is the normal vector and $\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$.

The given equation can be rewritten to include the y term explicitly:

$$3x + 0y = -2$$

This can be expressed in vector form:

$$\begin{pmatrix} 3 \\ 0 \end{pmatrix}^T \begin{pmatrix} x \\ y \end{pmatrix} = -2$$

By comparing this to the general form $\mathbf{n}^T \mathbf{x} = c$, we can directly identify the **normal** vector as:

$$\mathbf{n} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$

The direction vector \mathbf{m} is orthogonal (perpendicular) to the normal vector \mathbf{n} . This means their dot product is zero:

$$\mathbf{m}^T \mathbf{n} = 0$$

Let the direction vector be $\mathbf{m} = \begin{pmatrix} m_1 \\ m_2 \end{pmatrix}$. We can set up the equation:

$$(m_1 m_2) \begin{pmatrix} 3 \\ 0 \end{pmatrix} = 0$$

$$(m_1)(3) + (m_2)(0) = 0$$

$$3m_1 = 0$$

$$m_1 = 0$$

Since $m_1 = 0$, the direction vector is of the form $\begin{pmatrix} 0 \\ m_2 \end{pmatrix}$. The vector must be non-zero, so we can choose any non-zero value for m_2 . The simplest choice is $m_2 = 1$.

Therefore, the direction vector is:

$$\mathbf{m} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Answer:

Normal Vector: $\mathbf{n} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$

Direction Vector: $\mathbf{m} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Illustration of the Line and Vectors:

Fig. 6: Figure for 4.2.6