Lecture 2: Axiomatic Probability Defn: Sample Space The set of possible outcomes. Ex. Flip a coin. S' = } H, T } Ex. Loll a six-sided die $S = \{1, 2, ..., 6\}$ Ex. Roll two dice $S = \{(1,1),(1,2),(2,1),\dots\}$ Ex. Waiting time fer bus $S = [0, \infty)$ Ex. Number of customers $S = \{0, 1, 2, 3, ...\}$ Types & sample spuces!

We	say an event" happens" if the observed tome of our experiment is in E.
	SCS, So S is an event The event that happens Something happens
Ex.	&CS, so & is an event Levent that nothing hoppons (?)
Axi	omatic Probability
-	en a sample spaa S
War	it! for any event ECS want to assym Some measure of the prob. of
	E occuring a prob. In
Math	e maticely!
F	or each ECS we assign P(E) L prob. of E

we will show This also holds for finite partitions E=ÜEL, Ei disjoint $P(E) = \sum_{i=1}^{n} P(E_i)$ In particular, n=2 E = AUB, AB=4, P(F) = P(A) + P(B). I Third axiom is like a distributive low P(UE;)=ZP(E;) If Ei disjoint. Flip a coin S = {H, T} What is a valid P on S & P(4H3) = /2 P(5H,T3) = 1

 $P(ST3) = \frac{1}{2} P(\emptyset) = 0$

$$S = \{1, 7, 3\}$$

$$P_{1} = \frac{1}{4}$$

$$P_{2} = \frac{1}{4}$$

non neg,

sum to

$$P(\{2,33\}) = P_2 + P_3 = \frac{3}{4}$$

$$P(\{1,23\}) = P_1 + P_2 = \frac{1}{2}$$

Theorem: Finite Sample Space

and we choose some pi where

and define Pas

then Pis a valid prob. for.

pf. Cherk K-axioms

P(S) =
$$\sum_{i:A_i \in S} P_i = \sum_{i=1}^{n} P_i = \sum_{i:A_i \in S} P_i =$$

 $\mathbb{P}(S) = \mathbb{P}(S) + \mathbb{P}(\emptyset) + \mathbb{P}(\emptyset) + \cdots$

Theorem! If E,FCS then $P(E \setminus F) = P(EF^{c}) = P(E) - P(EF)$ $P(E \setminus F) = P(EF^{c}) = P(EF) + P(EF^{c})$ $P(E) = P(EF) + P(EF^{c})$ $P(EF^{c}) = P(EF) - P(EF)$