Ex1. Déterminer les valeurs non définies dans les schémas suivants :

Ex2. Soit le circuit suivant, dans lequel R1 = R2 = R3 = $1 \text{ k}\Omega$.

- a) Déterminer la tension UAB.
- b) Déterminer le courant l₂.
- c) Calculer la puissance électrique totale reçue par les résistances.

Ex3.Soit le circuit suivant :

- a) Déterminer le courant passant dans D2.
- b) Déterminer la tension aux bornes de D4.
- c) Déterminer la tension aux bornes de D1.

Ex4. Calculer les résistances équivalentes des associations suivantes.

Ex5. On dispose de 6 résistances de valeurs identiques 180 Ω . Comment faut-il les associer pour obtenir une résistance de 270 Ω puis de 120 Ω ?

Ex6. (bonus) Simplifier les circuits suivants en calculant la résistance équivalente. Faire l'application numérique dans le cas de résistances toutes égales à 10Ω .

Ex7. Masse. Envisager successivement les quatre circuits ci-dessous :

- a) Circuit de la figure 1 : calculez l'intensité du courant qui le traverse, ainsi que les différences de potentiel V_{A-} V_{D} ; V_{B-} V_{D} ; V_{C-} V_{D-} .
- b) Circuit de la figure 2 : Le point D est mis à la masse : V_D = 0. En prenant le potentiel de ce point comme référence, donnez la valeur des potentiels V_A , V_B , V_C .
- c) Circuit de la figure 3 : Le point C est également porté à la masse. Donnez l'intensité du courant traversant R_3 , et calculez V'_A , V'_B et V'_C .
- d) Circuit de la figure 4 : Le point B est mis à la masse à la place de C. Mêmes questions qu'en c.

Ex8. (bonus)

- 1 Trouvez la résistance équivalente au groupement ci-dessus vu entre les points A et B.
- 2 On branche entre A et B un générateur de force électromotrice E (A étant relié au pôle +).
- a) Sur un schéma, indiquez dans quel sens les courants vont circuler dans chaque branche du circuit.
- b) Avec le minimum de calculs, trouvez en fonction de E et de R les intensités de ces courants.

