

AULA 3 – SOMA, SUBTRAÇÃO, DIVISÃO E MULTIPLICAÇÃO

OBJETIVO DA AULA

Efetuar operações aritméticas nas bases binária, octal e hexadecimal.

APRESENTAÇÃO

Na aula anterior conhecemos as bases binária, octal e hexadecimal. Além disso, aprendemos como converter números entre elas.

Agora que já sabemos como funcionam as bases binária, octal e hexadecimal e como converter números entre elas, está na hora de aprendermos a somar, subtrair, multiplicar e dividir nelas.

As operações funcionam da mesma forma que na base decimal. Então, é hora de começarmos.

1. SOMA EM BINÁRIO

Para começarmos, vamos lembrar que:

0 + 0 = 0.

0 + 1 = 1.

1 + 0 = 1.

1 + 1 = 10 (= 2 em binário – vamos usar o "vai 1").

1 + 1 + 1 = 11 (= 3 em binário – e vamos usar o "vai 1" também).

Como exemplo, vamos somar os números (1101)₂ e (1011)₂.

Repare que o processo é o mesmo utilizado nas somas em decimal. E você verá que em octal e hexadecimal será da mesma forma.

Livro Eletrônico

1.1. SOMA EM OCTAL

Aqui precisamos lembrar que, como não usamos os algarismos 8 e 9, sempre que o resultado da soma igualar ou passar de 8, teremos o *vai 1*.

O algoritmo é simples:

1º caso: o resultado da soma está entre 0 e 7 – simplesmente o escrevemos, sem precisar o *vai* 1.

2º caso: o resultado iguala ou ultrapassa 8 – então executaremos os seguintes passos:

- Somamos 1 à próxima coluna (vai 1);
- Na coluna atual colocamos o quanto ultrapassou a base (no caso, 8).

Observe o exemplo abaixo, somando (1563 + 1275)₈.

- a) 3 + 5 = 8 → colocamos o resultado igual a 0 (zero), pois devemos subtrair 8 (resultado maior do que 7) por 8 (a base octal). Então fica: 8 8 = 0. Devemos adicionar 1 a próxima coluna a esquerda, pois a regra informa que ao ultrapassar o valor, subtraímos, inserirmos o resultado e adicionamos 1 a próxima coluna a esquerda.
- b) 1 + 6 + 7 = 14 → colocamos o resultado igual a 6, pois devemos subtrair 14 (resultado maior do que 7) por 8 (a base octal). Então fica: 14 8 = 6. Devemos adicionar 1 a próxima coluna a esquerda, pois a regra informa que ao ultrapassar o valor, subtraímos, inserirmos o resultado e adicionamos 1 a próxima coluna a esquerda.
- c) $1 + 5 + 2 = 8 \rightarrow$ colocamos o resultado igual a 0 (zero), pois devemos subtrair 8 (resultado maior do que 7) por 8 (a base octal). Então fica: 8 8 = 0. Devemos adicionar 1 a próxima coluna a esquerda, pois a regra informa que ao ultrapassar o valor, subtraímos, inserirmos o resultado e adicionamos 1 a próxima coluna a esquerda.
 - d) $1 + 1 + 1 = 3 \rightarrow$ colocamos o resultado igual a 3 e, como está entre 0 e 7, não precisa-

O conteú**do se adicionar, nada na próxima coluna**6, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuiçã sujeitando-se aos infratores à responsabilização civil e criminal.

1.2. SOMA EM HEXADECIMAL

Aqui usaremos o mesmo raciocínio. Mas lembre-se: como estamos trabalhando na base decimal, tudo o que fizemos em relação a 8 na base octal faremos em relação ao 16 na base hexadecimal.

Assim, quando a soma ficar entre 0 e 15, usaremos o algarismo (ou letra) correspondente, sem precisar adicionar 1 à próxima coluna. E quando igualar ou passar de 16 utilizaremos o mesmo raciocínio do octal.

Como exemplo, vamos efetuar (AF97 + BC59) $_{16}$.

- a) 7 + 9 = 16 → colocamos o resultado igual a 0 (zero), pois devemos subtrair 16 (resultado maior do que 15) por 16 (a base hexadecimal). Então fica: 16 16 = 0. Devemos adicionar 1 a próxima coluna a esquerda, pois a regra informa que ao ultrapassar o valor, subtraímos, inserirmos o resultado e adicionamos 1 a próxima coluna a esquerda.
- b) $1 + 9 + 5 = 15 \rightarrow$ como 15 é menor do que 16, colocamos a letra correspondente ao 15, a letra F.
- c) 15(F) + 12(C) = 27 → colocamos o resultado igual a B (11), pois devemos subtrair 27 (resultado maior do que 15) por 16 (a base hexadecimal). Então fica: 27 16 = 11 (B). Devemos adicionar 1 a próxima coluna a esquerda, pois a regra informa que ao ultrapassar o valor, subtraímos, inserirmos o resultado e adicionamos 1 a próxima coluna a esquerda.
- d) 1 + 10(A) + 11(B) = 22 → colocamos o resultado igual a 6, pois devemos subtrair 22 (resultado maior do que 15) por 16 (a base hexadecimal). Então fica: 22 16 = 6. Devemos adicionar 1 a próxima coluna a esquerda, pois a regra informa que ao ultrapassar o valor, subtraímos, inserirmos o resultado e adicionamos 1 a próxima coluna a esquerda. Neste caso, ao subir o 1, consequentemente faremos a 1 + 0 (nada, vazio da coluna) e será igual a 1. Resultado: 16BF0

2. SUBTRAÇÃO EM BINÁRIO

Agora vamos usar, como em decimal, o recurso de "pedir emprestado". Lembrando uma regra simples: quem empresta perde um e quem ganha emprestado ganha o valor da base. Isso valerá para todas as bases com que trabalhamos aqui.

Vamos efetuar, como exemplo (110001 - 101111)₂.

2.1. SUBTRAÇÃO EM OCTAL

Aqui também precisaremos do recurso de "pedir emprestado", lembrando de que quem emprestar perderá 1 e quem receber ganhará 8.

Vamos ao exemplo efetuando (7214 - 1636)₈.

_	7214 1636	Como 4 é menor do que 7, terá que pedir emprestado ao 1
	72 <mark>0</mark> 4 163 <u>6</u>	Ao emprestar, o 1 virou 0 e o 4, recebendo 8, virou 12. Então, 12 – 6 = 6
-	6 7 <mark>10</mark> 4 1636 56	Como 0 é menor do que 3, terá que pedir emprestado ao 2, que vira 1 e o 0, ao receber emprestado, vira 8. Finalmente, 8 - 3 = 5
_	9 6104 1636	Como 1 é menor do que 6, terá que pedir emprestado ao 7, que vira 6 e o 1, ao receber emprestado, vira 9. Finalmente, 9 - 6 = 3
	5356	Finalizando, 6 – 1 = 5

2.2. SUBTRAÇÃO EM HEXADECIMAL

Aqui executaremos o mesmo algoritmo, sempre lembrando que os valores entre 10 e 15 serão substituídos pelas letras e que, na regra do pedir emprestado, aquele que receber o empréstimo ganhará 16.

Vamos efetuar (A741 – 8BED)₁₆.

3. MULTIPLICAÇÃO EM BINÁRIO

Aqui também vamos utilizar o mesmo algoritmo que usamos nas multiplicações em decimal.

Lembrando que $0 \times 0 = 0$, $0 \times 1 = 0$ e $1 \times 1 = 1$.

Como exemplo, vamos efetuar (1101 x 101)₂.

3.1. MULTIPLICAÇÃO EM OCTAL

Para facilitar essa operação, vamos utilizar uma tabela com uma "tabuada" em octal.

X	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7

X	0	1	2	3	4	5	6	7
2	0	2	4	6	10	12	14	16
3	0	3	6	11	14	17	22	25
4	0	4	10	14	20	24	30	34
5	0	5	12	17	24	31	36	43
6	0	6	14	22	30	36	44	52
7	0	7	16	25	34	43	52	61

Com ajuda dessa tabela, vamos efetuar (32 x 45)₈.

3.2. MULTIPLICAÇÃO EM HEXADECIMAL

Da mesma forma que fizemos com a base octal, vamos usar uma tabela para nos auxiliar.

X	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F
2	0	2	4	6	8	Α	С	Е	10	13	14	16	18	1A	1C	1E
3	0	3	6	9	С	F	12	15	18	1B	1E	21	24	27	2A	2D
4	0	4	8	С	10	14	18	1C	20	24	28	2C	30	34	38	3C
5	0	5	Α	F	14	19	1E	23	28	2D	32	37	3C	41	46	4B
6	0	6	С	12	18	1E	24	2A	30	36	3C	42	48	4E	54	5A
7	0	7	Ε	15	1C	23	2A	31	38	3F	46	4D	54	5B	62	69
8	0	8	10	18	20	28	30	38	40	48	50	58	60	68	70	78
9	0	9	13	1B	24	2D	36	3F	48	51	5A	63	6C	75	7E	87
Α	0	Α	14	1E	28	32	3C	46	50	5A	64	6E	78	82	8C	96

X	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
В	0	В	16	21	2C	37	42	4D	58	63	6E	69	84	8F	9A	A5
С	0	С	18	24	30	3C	48	54	60	6C	78	84	90	9C	A8	B4
D	0	D	1A	27	34	41	4E	5B	68	75	82	8F	9C	Α9	B6	C3
Ε	0	E	1C	2A	38	46	54	62	70	7E	8C	9A	A8	B6	C4	D2
F	0	F	1E	2D	3C	4B	5A	69	78	87	96	A5	B4	C3	D2	E1

Como exemplo, vamos efetuar $(3F \times D9)_{16}$.

4. DIVISÃO EM BINÁRIO

A operação de divisão em binário segue o mesmo procedimento da divisão em binário, com a diferença de que quando o valor do dividendo é menor do que o divisor, o quociente recebe 0. Se o dividendo foi maior ou igual ao divisor, o quociente recebe 1.

Para entender melhor, vamos a um exemplo, efetuando $(111010 \div 11)_2$.

4.1. DIVISÃO EM OCTAL

Vamos agora efetuar a divisão na base octal. Como já mencionamos, o raciocínio é o mesmo das bases binária e decimal, considerando que não vamos usar os algarismos 8 e 9.

Para isso, vamos efetuar $(443 \div 17)_8$.

Para facilitar essa operação é bom colocarmos uma tabuada em octal do divisor (que é o 17), como a seguir:

O conteúdo deste livro eletrônico é licenciado para Tassio - 04860559576, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuição

4.2. DIVISÃO EM HEXADECIMAL

Nesta última operação aritmética vamos repetir o processo usado na base octal e criar uma tabuada do divisor para facilitar.

Como exemplo, vamos efetuar (B54A \div C1)₁₆.

Para facilitar essa operação é bom colocarmos uma tabuada em octal do divisor (que é o C1), como a seguir:

```
C1x1 = C1

C1x2 = 182

C1x3 = 243

C1x4 = 304

C1X5 = 3C5

C1x6 = 486

C1x7 = 547

C1x8 = 608

C1x9 = 6C9

C1xA = 78A

C1xB = 84B

C1xC = 90C
```

C1xD = 9CD C1xE = A8E C1xF= B4F C1x10 = C10

O dividendo é maior do que o divisor. Então, pela tabuada, vemos a linha a ser usada é a décima quinta.

Agora baixamos o A e, como o novo dividendo é menor do que o divisor, colocamos 0 no quociente e o resto da divisão fica sendo 5A.

CONSIDERAÇÕES FINAIS

Nesta aula vimos como trabalhar as quatro operações aritméticas nas bases binária, octal e hexadecimal.

São algoritmos semelhantes usados nas três bases (assim como na base decimal) e, embora pareça complicado a princípio, vemos com a prática que é muito simples trabalhar essas operações.

O mais importante é que, como qualquer atividade ligada à matemática, é fundamental a O conteú**prática e repetição de exercícios pata consolidat o aprendizado** quer título, a sua reprodução, cópia, divulgação ou distribuiçã sujeitando-se aos infratores à responsabilização civil e criminal.

Como sugestão, utilize a calculadora do Windows, na versão programador, e pratique bastante até consolidar seu conhecimento.

Na próxima aula veremos estudaremos as portas lógicas que compõem os circuitos existentes no computador.

Até lá!

MATERIAIS COMPLEMENTARES

Assista a esse vídeo bem didático com exemplos de multiplicação em octal. Link: https://www.youtube.com/watch?v=3kStGiYGmkc&t=44s.

Nesse material você poderá ler um pouco sobre a importância da base hexadecimal. Link: https://canaltech.com.br/produtos/0-que-e-sistema-hexadecimal/.

REFERÊNCIAS

STALLINGS, William. *Arquitetura e organização de computadores: projeto para o desempe-nho*. 8ª edição. Editora Pearson. Livro (642 p.). ISBN 9788576055648. Disponível em: https://middleware-bv.am4.com.br/SSO/iesb/9788576055648>. Acesso em: 16 out. 2022.

TANENBAUM, Andrew S. *Sistemas operacionais modernos*. 3ª edição. Editora Pearson. Livro (674 p.). ISBN 9788576052371. Disponível em: https://middleware-bv.am4.com.br/SSO/iesb/9788576052371. Acesso em: 16 out. 2022.

TANENBAUM, Andrew S. *Organização estruturada de computadores*. 6ª edição. Editora Pearson. Livro (628 p.). ISBN 9788581435398. Disponível em: https://middleware-bv.am4.com. br/SSO/iesb/9788581435398>. Acesso em: 16 out. 2022.