Analysis 1 - Übungsblatt 12

Wintersemester 2016/2017

Prof. Dr. Anna Marciniak-Czochra, Dr. Frederik Ziebell, Chris Kowall Internetseite: http://www.biostruct.uni-hd.de/Analysis1.php

Abgabe: 3. Februar, 11:00 Uhr in den Zettelkasten (1. Stock Mathematikon)

Aufgabe 12.1 4 Punkte

Betrachten Sie für $n \in \mathbb{N}$ die Funktion $f_n : \mathbb{R}_+ \to \mathbb{R}, x \mapsto nxe^{-nx^2}$.

- (a) Bestimmen Sie die Nullstellen von f_n .
- (b) Bestimmen Sie alle Extrempunkte der Funktion f_n und entscheiden Sie, ob sie lokale oder globale Extrempunkte darstellen.

Ein Wendepunkt $x_0 \in I$ einer stetigen Funktion $f: I \to \mathbb{R}$ auf einem offenen Intervall $I \subset \mathbb{R}$ ist dadurch definiert, dass es Intervalle $(a, x_0), (x_0, b) \subset I$ gibt mit genau einer der beiden Eigenschaften:

- $f|_{(a,x_0)}$ ist konvex und $f|_{(x_0,b)}$ ist konkav
- $f|_{(a,x_0)}$ ist konkav und $f|_{(x_0,b)}$ ist konvex
- (c) Bestimmen Sie die Wendepunkte der Funktion f_n auf dem offenen Intervall $\mathbb{R}_{>0}$.
- (d) Konvergiert die Funktionenfolge $(g_n)_{n\in\mathbb{N}}$ der auf [0,1] eingeschränkten Funktionen $g_n = f_n|_{[0,1]}$ gleichmäßig gegen eine Grenzfunktion? Geben Sie die Grenzfunktion an. Prüfen Sie die Vertauschbarkeit

$$\int_0^1 \lim_{n \to \infty} g_n(x) \, \mathrm{d}x = \lim_{n \to \infty} \int_0^1 g_n(x) \, \mathrm{d}x.$$

Aufgabe 12.2 4 Punkte

Seien $n \in \mathbb{N}$ und eine konvexe Funktion $f : \mathbb{R} \to \mathbb{R}$ gegeben.

(a) Zeigen Sie per Induktion über n, dass die Ungleichung

$$f\left(\sum_{k=1}^{n} \lambda_k x_k\right) \le \sum_{k=1}^{n} \lambda_k f(x_k)$$
 für $\sum_{k=1}^{n} \lambda_k = 1$

für beliebige $x_k \in \mathbb{R}, k=1,\ldots,n$ und $\lambda_k \in \mathbb{R}_+$ mit obiger fester Summe gilt.

(b) Sei $g:[0,1]\to\mathbb{R}$ stetig. Folgern Sie mithilfe von (a) die Abschätzung

$$f\left(\int_0^1 g(x) \, \mathrm{d}x\right) \le \int_0^1 (f \circ g)(x) \, \mathrm{d}x.$$

(c) Zeigen Sie für eine Riemann-integrierbare Funktion $h:[0,1]\to\mathbb{R}$ die Ungleichung

$$\left(\int_0^1 |h(x)| \, \mathrm{d}x\right)^p \le \int_0^1 |h(x)|^p \, \mathrm{d}x$$

für alle $p \in \mathbb{R}, p \geq 1$.

Hinweis. Zeigen Sie, dass die Funktion $x \mapsto x^p$ konvex auf \mathbb{R}_+ ist.

Bitte wenden!

Aufgabe 12.3 4 Punkte

(a) Zeigen Sie, dass für eine Riemann-integrierbare Funktion $f:[0,1]\to\mathbb{R}$ die Identität

$$\int_0^1 f(x) \, dx = \lim_{n \to \infty} S_n \quad \text{mit} \quad S_n = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right)$$

gilt.

- (b) Belegen Sie mit einem Gegenbeispiel, dass es nicht Riemann-integrierbare Funktionen gibt, für die der Grenzwert $\lim_{n\to\infty} S_n$ dennoch existiert.
- (c) Verwenden Sie die obige Gleichung und bestimmen Sie die Grenzwerte der folgenden Folgen von Partialsummen $(A_n)_{n\in\mathbb{N}}$ sowie $(B_n)_{n\in\mathbb{N}}$ mit

$$A_n = \sum_{k=1}^n \frac{n}{n^2 + k^2}$$
 bzw. $B_n = \sum_{k=1}^n \frac{k}{n^2 + k^2}$.

Aufgabe 12.4 4 Punkte

(a) Bestimmen Sie den Wert des Integrals

$$\int_0^{2\pi} |\sin(x)| \, \mathrm{d}x.$$

(b) Für $p \in \mathbb{R}$ sei die Funktion f_p gegeben mit

$$f_p: \mathbb{R} \setminus \{-p, 0\} \to \mathbb{R}, \qquad x \mapsto \frac{1}{x^2 + px}.$$

Bestimmen Sie in Abhängigkeit des Parameters p eine Stammfunktion von f_p .

Hinweis. Sie dürfen das Prinzip der Partialbruchzerlegung aus der Plenarübung anwenden.

(c) Bestimmen Sie das Integral

$$I_{\alpha}(x) := \int_{2}^{x} \frac{1}{y(\ln(y))^{\alpha}} \, \mathrm{d}y$$

für $x \in \mathbb{R}, x \geq 2$ in Abhängigkeit von $\alpha \in \mathbb{R}$.

Prüfen Sie außerdem in Abhängigkeit von α die Konvergenz $\lim_{x\to\infty} I_{\alpha}(x)$.

(d) Berechnen Sie den Wert des Integrals

$$\int_0^1 x^2 e^{-x} dx.$$