Chapter 4 Vector Spaces

Section 4.4: Coordinate Systems

Section 4.5: The Dimension of a Vector Space

Section 4.6: Change of Basis

The Unique Representation Theorem

• **Theorem:** Let $B = \{b_1, ..., b_n\}$ be a basis for vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars $c_1, ..., c_n$ such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n \tag{1}$$

• **Proof:** Since B spans V, there exist scalars such that (1) holds. Suppose \mathbf{x} also has the representation for scalars d_1, \ldots, d_n .

$$\mathbf{x} = d_1 \mathbf{b}_1 + \dots + d_n \mathbf{b}_n$$

The Unique Representation Theorem

Then, subtracting, we have

$$0 = \mathbf{x} - \mathbf{x} = (c_1 - d_1)\mathbf{b}_1 + \dots + (c_n - d_n)\mathbf{b}_n$$
 (2)

- Since B is linearly independent, the weights in (2) must all be zero. That is, $c_j = d_j$ for $1 \le j \le n$.
- **Definition:** Suppose $B = \{b_1, ..., b_n\}$ is a basis for V and x is in V. The coordinates of x relative to the basis B (or the B-coordinate of x) are the weights $c_1, ..., c_n$ such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$$

The Unique Representation Theorem

• If c_1, \ldots, c_n are the **B**-coordinates of **x**, then the vector in \mathbb{R}^n

$$[\mathbf{X}]_{\mathsf{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

is the coordinate vector of x (relative to B), or the B-coordinate vector of x.

• The mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathsf{B}}$ is the coordinate mapping (determined by B).

• When a basis B for \mathbb{R}^n is fixed, the B-coordinate vector of a specified **x** is easily found, as in the example below.

• Example: Let
$$\mathbf{b}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$, and

 $B = \{b_1, b_2\}$. Find the coordinate vector $[x]_B$ of x relative to B.

• Solution: The B-coordinate c_1 , c_2 of **x** satisfy

$$c_{1} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_{2} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

$$\mathbf{b}_{1} \qquad \mathbf{b}_{2} \qquad \mathbf{x}$$

or

$$\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$
 (3)

- This equation can be solved by row operations on an augmented matrix or by using the inverse of the matrix on the left.
- In any case, the solution is $c_1 = 3$, $c_2 = 2$.
- Thus $\mathbf{x} = 3\mathbf{b}_1 + 2\mathbf{b}_2$ and

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{B} = \begin{vmatrix} c_1 \\ c_2 \end{vmatrix} = \begin{vmatrix} 3 \\ 2 \end{vmatrix}$$

$$\mathbf{x} = 3\mathbf{b}_1 + 2\mathbf{b}_2$$

See the following figure.

The \mathcal{B} -coordinate vector of \mathbf{x} is (3, 2).

- The matrix in (3) changes the B-coordinates of a vector **x** into the standard coordinates for **x**.
- An analogous change of coordinates can be carried out in \mathbb{R}^n for a basis $B = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$.
- Let $P_{\mathsf{B}} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_n \end{bmatrix}$

Then the vector equation

is equivalent to

$$\mathbf{x} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \dots + c_n \mathbf{b}_n$$

$$\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}} \tag{4}$$

- $P_{\rm B}$ is called the change-of-coordinates matrix from B to the standard basis in \mathbb{R}^n .
- Left-multiplication by $P_{\rm B}$ transforms the coordinate vector $[\mathbf{x}]_{\rm B}$ into \mathbf{x} .
- Since the columns of $P_{\rm B}$ form a basis for \mathbb{R}^n , $P_{\rm B}$ is invertible (by the Invertible Matrix Theorem).

• Left-multiplication by $P_{\rm B}^{-1}$ converts **x** into its B-coordinate vector:

 $P_{\rm B}^{-1}\mathbf{x}=\left[\mathbf{x}\right]_{\rm B}$

- The correspondence $\mathbf{x} \mapsto [\mathbf{x}]_{\mathsf{B}}$, produced by P_{B}^{-1} , is the coordinate mapping.
- Since P_B^{-1} is an invertible matrix, the coordinate mapping is a one-to-one linear transformation from \mathbb{R}^n onto \mathbb{R}^n , by the Invertible Matrix Theorem.

• **Theorem:** Let $B = \{b_1, ..., b_n\}$ be a basis for a vector space V. Then the coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_B$ is a one-to-one linear transformation from V onto \mathbb{R}^n .

Proof: Take two typical vectors in V, say,

$$\mathbf{u} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$$
$$\mathbf{w} = d_1 \mathbf{b}_1 + \dots + d_n \mathbf{b}_n$$

• Then, using vector operations,

$$\mathbf{u} + \mathbf{v} = (c_1 + d_1)\mathbf{b}_1 + ... + (c_n + d_n)\mathbf{b}_n$$

It follows that

$$\begin{bmatrix} \mathbf{u} + \mathbf{w} \end{bmatrix}_{\mathbf{B}} = \begin{bmatrix} c_1 + d_1 \\ \vdots \\ c_n + d_n \end{bmatrix} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} + \begin{bmatrix} d_1 \\ \vdots \\ d_n \end{bmatrix} = \begin{bmatrix} \mathbf{u} \end{bmatrix}_{\mathbf{B}} + \begin{bmatrix} \mathbf{w} \end{bmatrix}_{\mathbf{B}}$$

- So the coordinate mapping preserves addition.
- If *r* is any scalar, then

$$r\mathbf{u} = r(c_1\mathbf{b}_1 + ... + c_n\mathbf{b}_n) = (rc_1)\mathbf{b}_1 + ... + (rc_n)\mathbf{b}_n$$

So

$$\begin{bmatrix} r\mathbf{u} \end{bmatrix}_{\mathbf{B}} = \begin{bmatrix} rc_1 \\ \vdots \\ rc_n \end{bmatrix} = r \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = r [\mathbf{u}]_{\mathbf{B}}$$

- Thus the coordinate mapping also preserves scalar multiplication and hence is a linear transformation.
- The linearity of the coordinate mapping extends to linear combinations.
- If $\mathbf{u}_1, ..., \mathbf{u}_p$ are in V and if $c_1, ..., c_p$ are scalars, then

$$\left[c_{1}\mathbf{u}_{1}+...+c_{p}\mathbf{u}_{p}\right]_{\mathbf{B}}=c_{1}\left[\mathbf{u}_{1}\right]_{\mathbf{B}}+...+c_{p}\left[\mathbf{u}_{p}\right]_{\mathbf{B}}$$

- The coordinate mapping in the above theorem is an important example of an *isomorphism* from V onto \mathbb{R}^n .
- In general, a one-to-one linear transformation from a vector space V onto a vector space W is called an isomorphism from V onto W.
- Every vector space calculation in V is accurately reproduced in W, and vice versa.
- In particular, any real vector space with a basis of n vectors is indistinguishable from \mathbb{R}^n .

• Example: Let
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 3 \\ 12 \\ 7 \end{bmatrix}$,

and $B = \{v_1, v_2\}$. Then B is a basis for $H = \operatorname{Span}\{v_1, v_2\}$. Determine if **x** is in H, and if it is, find the coordinate vector of **x** relative to B.

 Solution: If x is in H, then the following vector equation is consistent:

$$\begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 12 \\ 7 \end{bmatrix}$$

• The scalars c_1 and c_2 , if they exist, are the B-coordinates of **x**.

Using row operations, we obtain

$$\begin{bmatrix} 3 & -1 & 3 \\ 6 & 0 & 12 \\ 2 & 1 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}.$$

• Thus
$$c_1 = 2$$
, $c_2 = 3$ and $[\mathbf{x}]_B = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

 The coordinate system on H determined by B is shown in the following figure.

A coordinate system on a plane H in \mathbb{R}^3 .

$$B = \{v_1, v_2\}$$

$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

Section 4.4: Coordinate Systems

Section 4.5: The Dimension of a Vector Space

Section 4.6: Change of Basis

- Theorem: If a vector space V has a basis B= {b₁,...,b_n}, then any set in V containing more than n vectors must be linearly dependent.
- **Proof:** Let $\{\mathbf{u}_1, ..., \mathbf{u}_p\}$ be a set in V with more than n vectors.

The coordinate vectors $[\mathbf{u}_1]_{\mathbb{B}}$, ..., $[\mathbf{u}_p]_{\mathbb{B}}$ form a linearly dependent set in \mathbb{R}^n , because there are more vectors (p) than entries (n) in each vector.

• So there exist scalars c_1, \ldots, c_p , not all zero, such that

$$c_1[\mathbf{u}_1]_{\mathcal{B}} + \ldots + c_p[\mathbf{u}_p]_{\mathcal{B}} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$
 The zero vector in \mathbb{R}^n

Since the coordinate mapping is a linear transformation,

$$\begin{bmatrix} c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

• The zero vector on the right displays the n weights needed to build the vector $c_1\mathbf{u}_1 + ... + c_p\mathbf{u}_p$ from the basis vectors in B.

• That is,
$$c_1 \mathbf{u}_1 + ... + c_p \mathbf{u}_p = 0 \mathbf{b}_1 + ... + 0 \mathbf{b}_n = 0$$
.

- Since the c_i are not all zero, $\{\mathbf{u}_1, ..., \mathbf{u}_p\}$ is linearly dependent.
- The following theorem implies that if a vector space V has a basis $B = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$, then each linearly independent set in V has no more than n vectors.

- **Theorem:** If a vector space *V* has a basis of *n* vectors, then every basis of *V* must consist of exactly *n* vectors.
- **Proof:** Let B₁ be a basis of *n* vectors and B₂ be any other basis (of *V*).
- Since B₁ is a basis and B₂ is linearly independent, B₂ has no more than n vectors. Also, since B₂ is a basis and B₁ is linearly independent, B₂ has at least n vectors.
- Thus B₂ consists of exactly n vectors.

- **Definition:** If *V* is spanned by a finite set, then *V* is said to be **finite-dimensional**, and the **dimension** of *V*, written as dim *V*, is the number of vectors in a basis for *V*. The dimension of the zero vector space **{0}** is defined to be zero. If *V* is not spanned by a finite set, then *V* is said to be **infinite-dimensional**.
- Example 1: Find the dimension of the subspace

$$H = \left\{ \begin{bmatrix} a - 3b + 6c \\ 5a + 4d \\ b - 2c - d \\ 5d \end{bmatrix} : a, b, c, d \text{ in } \mathbb{R} \right\}$$

• H is the set of all linear combinations of the vectors

$$\mathbf{v}_{1} = \begin{bmatrix} 1\\5\\0\\0 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} -3\\0\\1\\0 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} 6\\0\\-2\\0 \end{bmatrix}, \quad \mathbf{v}_{4} = \begin{bmatrix} 0\\4\\-1\\5 \end{bmatrix}$$

- Clearly, $\mathbf{v}_1 \neq 0$, \mathbf{v}_2 is not a multiple of \mathbf{v}_1 , but \mathbf{v}_3 is a multiple of \mathbf{v}_2 .
- By the Spanning Set Theorem, we may discard v₃ and still have a set that spans H.

Subspaces of a Finite-Dimensional Space

- Finally, \mathbf{v}_4 is not a linear combination of \mathbf{v}_1 and \mathbf{v}_2 .
- So $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4\}$ is linearly independent and hence is a basis for H.
- Thus dim

$$H = 3$$

• **Theorem:** Let *H* be a subspace of a finite-dimensional vector space *V*. Any linearly independent set in *H* can be expanded, if necessary, to a basis for *H*. Also, *H* is finite-dimensional and

$$\dim H \leq \dim V$$

Subspaces of a Finite-Dimensional Space

- **Proof:** If $H = \{0\}$, then certainly $\dim H = 0 \le \dim V$.
- Otherwise, let $S = \{\mathbf{u}_1, ..., \mathbf{u}_k\}$ be any linearly independent set in H.

- If S spans H, then S is a basis for H.
- Otherwise, there is some \mathbf{u}_{k+1} in H that is not in Span S.

Subspaces of a Finite-Dimensional Space

- But then $\{\mathbf{u}_1,...,\mathbf{u}_k,\mathbf{u}_{k+1}\}$ will be linearly independent, because no vector in the set can be a linear combination of vectors that precede it.
- So long as the new set does not span H, we can continue this
 process of expanding S to a larger linearly independent set in H.
- But the number of vectors in a linearly independent expansion of S can never exceed the dimension of V.

So eventually the expansion of S will span H and hence will be a basis for H, and $\dim H \leq \dim V$.

The Basis Theorem

- **Theorem:** Let V be a p-dimensional vector space, $p \ge 1$.
- a. Any linearly independent set of exactly *p* elements in *V* is automatically a basis for *V*.
- b. Any set of exactly *p* elements that spans *V* is automatically a basis for *V*.

The Basis Theorem

- Proof: By Theorem, a linearly independent set S of p elements can be extended to a basis for V.
- But that basis must contain exactly p elements, since dim V = p.
- So S must already be a basis for V.

Now suppose that S has p elements and spans V.

The Basis Theorem

• Since *V* is nonzero, the Spanning Set Theorem implies that a subset *S'* of *S* is a basis of *V*.

- Since $\dim V = p$, S' must contain p vectors.
- Hence S = S'

- **Definition:** The rank of A is the dimension of the column space of A.
- Since Row A is the same as Col A^T , the dimension of the row space of A is the rank of A^T .
- The dimension of the null space is called the **nullity** of *A*.

- **Theorem:** The dimensions of the column space and the row space of an $m \times n$ matrix A are equal.
- This common dimension, the rank of A, also equals the number of pivot positions in A and satisfies the equation

$$rank A + nullity A = n$$

Example:

- a. If A is a 7×9 matrix with a two-dimensional null space, what is the rank of A?
- b. Could a 6×9 matrix have a two-dimensional null space?

Solution:

a. Since A has 9 columns, $(\operatorname{rank} A) + 2 = 9$, and hence rank A = 7.

b. No. If a 6×9 matrix, call it B, has a two-dimensional null space, it would have to have rank 7, by the Rank Theorem.

But the columns of B are vectors in \mathbb{R}^6 , and so the dimension of Col B cannot exceed 6; that is, rank B cannot exceed 6.

Rank and Nullity

• Example: Find the rank and nullity of A.

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

Rank and Nullity

• **Solution:** Row reduce the augmented matrix $\begin{bmatrix} A & 0 \end{bmatrix}$ to echelon form:

$$\begin{bmatrix} 1 & -2 & 2 & 3 & -1 & 0 \\ 0 & 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- There are three free variable— x_2 , x_4 and x_5 .
- Hence the nullity A = 3.
- Also rank A = 2 because A has two pivot columns.

The Invertible Matrix Theorem

- Theorem: Let A be an n × n matrix. Then the following statements are each equivalent to the statement that A is an invertible matrix.
 - m. The columns of A form a basis of \mathbb{R}^n .
 - n. Col $A = \mathbb{R}^n$
 - o. Rank A = n
 - p. Nullity A = 0
 - q. Nul $A = \{0\}$

Section 4.4: Coordinate Systems

Section 4.5: The Dimension of a Vector Space

Section 4.6: Change of Basis

• Example: Consider two bases $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$ for a vector space V, such that

$$\mathbf{b}_1 = 4\mathbf{c}_1 + \mathbf{c}_2 \quad \text{and} \quad \mathbf{b}_2 = -6\mathbf{c}_1 + \mathbf{c}_2 \tag{1}$$

Suppose

$$\mathbf{x} = 3\mathbf{b}_1 + \mathbf{b}_2 \tag{2}$$

• That is, suppose $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$. Find $[\mathbf{x}]_{\mathcal{C}}$.

• **Solution** Apply the coordinate mapping determined by \mathcal{C} to \mathbf{x} in (2). Since the coordinate mapping is a linear transformation,

$$[\mathbf{x}]_{\mathcal{C}} = [3\mathbf{b}_1 + \mathbf{b}_2]_{\mathcal{C}}$$
$$= [3\mathbf{b}_1]_{\mathcal{C}} + [\mathbf{b}_2]_{\mathcal{C}}$$

 We can write the vector equation as a matrix equation, using the vectors in the linear combination as the columns of a matrix:

$$[\mathbf{x}]_{\mathcal{C}} = [[\mathbf{b}_1]_{\mathcal{C}} \quad [\mathbf{b}_2]_{\mathcal{C}}] \begin{bmatrix} 3\\1 \end{bmatrix} \tag{3}$$

• This formula gives $[x]_{\mathcal{C}}$, once we know the columns of the matrix. From (1),

$$[\mathbf{b}_1]_{\mathcal{C}} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$
 and $[\mathbf{b}_2]_{\mathcal{C}} = \begin{bmatrix} -6 \\ 1 \end{bmatrix}$

• Thus, (3) provides the solution:

$$[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 4 & -6 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

FIGURE 1 Two coordinate systems for the same vector space.

■ Theorem: Let $\mathcal{B} = \{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$ and $\mathcal{C} = \{\mathbf{c}_1, \ldots, \mathbf{c}_n\}$ for a vector P space V. Then there is a unique $n \times n$ matrix $c \leftarrow \mathcal{B}$ such that

$$[\mathbf{x}]_{\mathcal{C}} = c \leftarrow \mathcal{B} [\mathbf{X}]_{\mathcal{B}}$$
(4)

• The columns of $c \leftarrow \mathcal{B}$ are the \mathcal{C} -coordinate vectors of the vectors in the basis . That is,

$$\begin{array}{ccc}
P \\
c \leftarrow \mathcal{B} = [[\mathbf{b}_1]_{\mathcal{C}} & [\mathbf{b}_2]_{\mathcal{C}} & [\mathbf{b}_n]_{\mathcal{C}}]
\end{array} \tag{5}$$

- The matrix $c \leftarrow \mathcal{B}$ in is called the change-of-coordinates matrix Pfrom \mathcal{B} to \mathcal{C} . Multiplication by $c \leftarrow \mathcal{B}$ converts \mathcal{B} -coordinates into \mathcal{C} -coordinates.
- Figure 2 below illustrates the change-of-coordinates equation (4).

FIGURE 2 Two coordinate systems for V.

- The columns of $c \leftarrow B$ are linearly independent because they are the coordinate vectors of the linearly independent set B.
- Since $c \leftarrow \mathcal{B}$ is square, it must be invertible, by the Invertible Matrix Theorem. Left-multiplying both sides of equation (4) by $\begin{pmatrix} P \\ C \end{pmatrix}^{-1}$ yields

$$\begin{pmatrix} P \\ C \leftarrow B \end{pmatrix}^{-1} [\mathbf{x}]_{C} = [\mathbf{x}]_{B}$$

Thus $(c \leftarrow B)^{-1}$ is the matrix that converts C-coordinates into B-coordinates. That is,

$$\begin{pmatrix} P \\ C \leftarrow B \end{pmatrix}^{-1} = B \leftarrow C$$

(6)

Change of Basis in \mathbb{R}^n

• If $\mathcal{B} = \{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$ and \mathcal{E} is the standard basis $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ in \mathbb{R}^n , then $[\mathbf{b}_1]_{\mathcal{E}} = \mathbf{b}_1$, and likewise for the other vectors in \mathcal{B} . In this P case, $\mathcal{E} \leftarrow \mathcal{B}$ is the same as the change-of-coordinates matrix $P_{\mathcal{B}}$ introduced in Section 4.4, namely,

$$P_{\mathcal{B}} = [\mathbf{b}_1 \ \mathbf{b}_2 \dots \mathbf{b}_n]$$

• To change coordinates between two nonstandard bases in \mathbb{R}^n , we need Theorem 15. The theorem shows that to solve the change-of-basis problem, we need the coordinate vectors of the old basis relative to the new basis.

Change of Basis in \mathbb{R}^n

- **Example:** Let $\mathbf{b}_1 = \begin{bmatrix} -9 \\ 1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -5 \\ -1 \end{bmatrix}$, $\mathbf{c}_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$, $\mathbf{c}_2 = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$ and consider the bases for \mathbb{R}^n given by $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} .
- **Solution** The matrix $c \leftarrow \mathcal{B}$ involves the \mathcal{C} -coordinate vectors of \mathbf{b}_1 and \mathbf{b}_2 . Let $[\mathbf{b}_1]_{\mathcal{C}} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $[\mathbf{b}_2]_{\mathcal{C}} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$. Then, by definition,

$$\begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{b}_1$$
 and $\begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \mathbf{b}_2$

Change of Basis in \mathbb{R}^n

To solve both systems simultaneously, augment the coefficient matrix with b₁ and b₂, and row reduce:

Thus

$$[\mathbf{b}_1]_{\mathcal{C}} = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$$
 and $[\mathbf{b}_2]_{\mathcal{C}} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$

The desired change-of-coordinates matrix is therefore

$$c \leftarrow \mathcal{B} = \begin{bmatrix} [\mathbf{b}_1]_{\mathcal{C}} & [\mathbf{b}_2]_{\mathcal{C}} \end{bmatrix} = \begin{bmatrix} 6 & 4 \\ -5 & -3 \end{bmatrix}$$