CS208: Mathematical Foundations of CS

Fall 2018

Lecture 22: October 3

Lecturer: Samar Scribes: Akhil Rajput, Ankit Jiqanwal

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

22.1 Sum and Asymptotics

Sums and products arise regularly in the analysis of algorithms, financial applications, physical problems, and probabilistic systems. For example,

$$1 + 2 + 3 + 4 + \dots + n = n(n-1)/2$$
(22.1)

The following summation formula can be calculated using Gauss's method which he applied when he was in school.

Theorem 1 $\Sigma i = n(n-1)/2, \ \forall i \in N$

Proof: We will prove this using Gauss's method.

Let $S = \Sigma i, \forall i \in N$

 $S = 1 + 2 + 3 + \dots + n$

 $S = n + (n-1) + (n-2) + \dots + 1$ Adding both the equations we get,

 $\Rightarrow 2S = n(n+1)$

 $\Rightarrow S = n(n+1)/2$

Hence proved

22.1.1 The Perturbation Method

Given a sum that has a nice structure, it is often useful to "perturb" the sum so that we can somehow combine the sum with the perturbation to get something much simpler. For example, suppose

$$S = 1 + x + x^2 + x^3 + \dots + x^n$$
 (22.2)

An example of a perturbation would be:

$$xS = x + x^{2} + x^{3} + x^{4} + \dots + x^{n+1}$$
(22.3)

Lecture 22: October 3 22-2

On subtracting equation 10.3 from equation 10.2, we get

$$S - Sx = 1 - x^{n+1} (22.4)$$

$$\Rightarrow S = (1 - x^{n+1})/(1 - x)$$

These methods are used in generating functions.

22.2 Approximating Sums

Defining increasing and decreasing functions,

- 1. A function $f: \mathbb{R}^+ \to \mathbb{R}^+$ is strictly increasing if, $x < y \Rightarrow f(x) < f(y)$
- 2. and it is weakly increasing when, $x < y \Rightarrow f(x) \le f(y)$
- 3. Similarly, f is strictly decreasing when, $x < y \Rightarrow f(x) > f(y)$
- 4. and it is weakly decreasing when, $x < y \Rightarrow f(x) \ge f(y)$

Theorem 2 Let $f : R^+ \to R^+$ be a weakly increasing function, define

$$S = \sum_{i=1}^{n} f(i) \tag{22.5}$$

and,

$$I = \int_{i=1}^{n} f(i)dx \tag{22.6}$$

Then,

$$I + f(1) \le S \le I + f(n) \tag{22.7}$$

References

[1] ERIC LEHMAN, F THOMSON LEIGHTON, ALBERT R MEYER "Mathematics for Computer Science," Chapter 14,Sums and Asymptotics, 2017, pp. 563–573