Übungsserie 5

Aufgabe 1: Map-Implementation

Es soll eine einfache *Map (MapImpl.java* resp. *map_impl.py)* implementiert werden, welche in der Lage ist, *Entries* aufzunehmen.

Als Basis-Datenstruktur für die Map wird der Einfachheit halber eine doppelt-verkettete Liste verwendet (Java: *java.util.LinkedList*, Python: *list*).

Aufgabe 2: Hash-Tables

Es sollen in untenstehenden Hash-Tabellen die folgenden Zahlen so eingetragen werden wie sie mit der *put()*- Operation eingefügt würden:

12, 44, 13, 88, 23, 94, 11, 39, 20, 16, 5

a) Kollisionen werden mittels Seperate Chaining behandelt. Hash-Funktion $h(i) = (2^{*i}+5) \mod 11$

h(i)	Key Chaining
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Th. Letsch 2023-10-16 Übungsserie 05 : AS 1 / 2

b) Kollisionen werden mittels *Linear Probing* behandelt. *Hash-Funktion* $h(i) = (2^*i+5) \mod 11$

h(i)	Linear Probing
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

c) Kollisionen werden mittels Double Hashing behandelt.

Erste Hash-Funktion h(i) = (2 * i + 5) mod 11

Zweite Hash-Funktion d(i) = 7 - i mod 7

h(i)	Double Hashing
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Th. Letsch 2023-10-16 Übungsserie 05 : AS 2 / 2