Práctico 0 Álgebra II – Año 2024/1 **FAMAF**

Objetivos.

• Familiarizarse con los números complejos.

• Aprender a operar con números complejos (sumar, multiplicar, calcular inversos, conjugados y normas).

Ejercicios.

(1) Expresar los siguientes números complejos en la forma a+ib. Hallar el módulo y conjugado de cada uno de ellos, y graficarlos.

a)
$$(-1+i)(3-2i)$$
 b) $i^{131}-i^9+1$

b)
$$i^{131} - i^9 + 1$$

c)
$$\frac{1+i}{1+2i} + \frac{1-i}{1-2i}$$

(2) Encontrar números reales x e y tales que 3x + 2yi - xi + 5y = 7 + 5i

(3) Probar que si $z \in \mathbb{C}$ tiene módulo 1 entonces $z + z^{-1} \in \mathbb{R}$.

(4) Probar que si $a \in \mathbb{R} \setminus \{0\}$ entonces el polinomio $x^2 + a^2$ tiene siempre dos raíces complejas distintas.

(5) Demostrar que dados z, z_1 , z_2 en \mathbb{C} se cumple:

$$|\bar{z}| = |z|, \qquad |z_1 \, z_2| = |z_1| \, |z_2|.$$

(6) Sean z = 1 + i y $w = \sqrt{2} - i$. Calcular:

a)
$$z^{-1}$$
; $1/w$; z/w ; w/z .

b)
$$1 + z + z^2 + z^3 + \cdots + z^{2019}$$
.

c)
$$(z(z+w)^2-iz)/w$$
.

(7) Sumar y multiplicar los siguientes pares de números complejos

a)
$$2 + 3i y 4$$
.

b)
$$2 + 3i$$
 y $4i$.
c) $1 + i$ y $1 - i$.

$$d) 3 - 2i y 1 + i$$
.

(8) Expresar los siguientes números complejos en la forma a+ib. Hallar el módulo, argumento y conjugado de cada uno de ellos y graficarlos.

a)
$$2e^{\mathrm{i}\pi} - i$$
,

b)
$$i^3 - 2i^{-7} - 1$$
,

c)
$$(-2+i)(1+2i)$$
.

(9) Sean $a, b \in \mathbb{C}$. Decidir si existe $z \in \mathbb{C}$ tal que:

a) $z^2 = b$. ¿Es único? ¿Para qué valores de b resulta z ser un número real?

b) z es imaginario puro y $z^2 = 4$.

c) z es imaginario puro y $z^2 = -4$.

Ejercicios de repaso. Si ya hizo los ejercicios anteriores continue a la siguiente quía. Los ejercicios que siguen son similares a los anteriores y le pueden servir para practicar antes de los exámenes.

1

(10) Expresar los siguientes números complejos en la forma a+ib. Hallar el módulo y conjugado de cada uno de ellos, y graficarlos.

a)
$$(\cos \theta - i \sin \theta)^{-1}$$
, b) $3i(1+i)^4$, c) $\frac{1+i}{1-i}$.

(11) Sea $z = 2 + \frac{1}{2}i$, calcular

a)
$$\frac{(z+i)(z-i)}{z^2+1}$$
. b) $z-2+\frac{1}{z-2}$. c) $\left|\frac{1}{z-i}\right|^2$.

- (12) Sea $z \in \mathbb{C}$. Calcular $\frac{1}{z} + \frac{1}{\overline{z}} \frac{1}{|z|^2}$.
- (13) (Designaldad triangular) Sean w y z números complejos. Probar que $|w+z| \le |w| + |z|$,

y la igualdad se cumple si y sólo si $w=r\cdot z$ para algún número real $r\geq 0$. En general, sean z_1,z_2,\ldots,z_n números complejos. Probar que

$$\left|\sum_{k=1}^n z_k\right| \le \sum_{k=1}^n |z_k|.$$

(14) Sean w y z números complejos. Entonces

$$||w|-|z|| \le |w-z|.$$