

Applied Statistics for Data Scientists with R

Class 03: Data Structures

Learning Objective

- 1. Identifying and creating different data structures
- 2. Modifying data structures

Common Data Structures in R

	Vector
Single Data Type	Matrix
	Array
Multiple Data Type	Data Frame
	List

Vector

Index ->	1	2	3	4	5	6	7
Values ->	30	12	14	15	18	26	18

Matrix

		Column 1	Column 2	
2x2 Matrix	Row 1	2	3	
	Row 2	1	5	
		Column 1	Column 2	Column 3
2x3 Matrix	Row 1	2	3	2
	Row 2	1	5	6
				_
		Column 1	Column 2	Column 3
	Row 1	2	3	2
4x3 Matrix	Row 2	1	5	6
	Row 3	9	6	4
	Row 4	1	2	6

Matrix Multiplication

Matrix multiplication

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \otimes \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 1 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} & 2 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} & 2 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 \times 0 & 1 \times 5 & 2 \times 0 & 2 \times 5 \\ 1 \times 6 & 1 \times 7 & 2 \times 6 & 2 \times 7 \\ \hline 3 \times 0 & 3 \times 5 & 4 \times 0 & 4 \times 5 \\ 3 \times 6 & 3 \times 7 & 4 \times 6 & 4 \times 7 \end{bmatrix} = \begin{bmatrix} 0 & 5 & 0 & 10 \\ 6 & 7 & 12 & 14 \\ \hline 0 & 15 & 0 & 20 \\ 18 & 21 & 24 & 28 \end{bmatrix}.$$

Kronecker product

Data Frame

