

Confidentialité

Garantit qu'une partipant ne connaissant pas la clé de déchiffrement **n'apprend** aucune information sur le message clair.

Chiffrement symmétrique

Chiffrement(clé, IV, clair) = chiffré
Déchiffrement(clé, IV, chiffré) = clair

Contraintes

clé	générée par un générateur d'aléa cryptographiquement sûr OU dérivé à partir d'un mot de passe ou d'un secret Diffie-Hellman par une fonction de dérivation de clé
IV	jamais réutilisé pour chiffrer deux messages avec la même clé, imprédictible si mode CBC utilisé, peut être séquentiel sinon

Modes de chiffrement par bloc

ECB	chiffre chaque bloc indépendamment, à proscrire
CTR	génère un flux pseudo-aléatoire comme du chiffrement par flux
СВС	effectue un XOR entre le chiffré du bloc précédent et le bloc suivant. IV imprédctible impérativement

Conseillés : aucun, préférer le chiffrement authentifié.

Chiffrement asymétrique

Chiffrement(clé_publique, clair) = chiffré
Déchiffrement(clé_privée, chiffré) = clair

⚠ Choisir un padding adapté (OAEP ou sinon PKCS v1.5) avant chiffrement. Deux choix : RSA (plus répandu) ou El-Gamal

Intégrité

Garantit qu'un participant ne connaissant pas la clé de génération de motif d'intégrité ne peut pas émettre de messages valides.

Chiffrement intègre

Chiffrement(clé, IV, clair) = tag||chiffré
Déchiffrement(clé, IV, tag, chiffré) = clair ou erreur de déchiffrement

Pour certaines bibliothèques, le chiffré contient déjà le tag pour le déchiffrement

⚠ Certaines bibliothèques exposent la possibilité de protéger en intégrité des donnés en clair, qui doivent être fournies à l'identique lors du déchiffrement.

Algorithmes de chiffrement intègre

	AES-GCM	Combine un mode AES-CTR avec une garantie d'intégrité. L'IV est sur 96 bits et doit être unique. Si beaucoup de données à chiffrer : utiliser des IVs successifs, sinon générer aléatoirement
	ChaCha20- Poly1305	Chiffrement par flot avec une garantie d'intégrité. Mêmes contraintes que AES-GCM
	XSalsa20	Variante avec un IV de 192 bits, adapté si IV générés aléatoirement

(H)MAC (symétrique)

Authentifier(clé, message) = tag Vérifier(clé, message, tag) = oui / non

Signature (asymétrique)

Signer(clé_privée, message) = signature
Vérifier(clé_publique, message, signature) = oui / non

⚠ Choisir un padding adapté (PSS ou sinon PKCS v1.5) si signature RSA.

ECDSA requiert en plus un IV unique. Il ne doit pas être réutilisé.

⚠ Choisir une fonction de hachage adaptée avant signature et potentiellement padding (SHA2, sinon SHA3 ou Blake2 ou Blake 3, avec au moins 256 bits de sortie).

Deux choix: ECDSA (conseillé) avec une courbe sûre, sinon RSA-2048 minimum.

Stockage de mot de passe

Dérivation(sel, mot_de_passe) = condensat
Vérification(sel, condensat, mot_de_passe) = oui / non

⚠ Le sel doit être différent pour chaque mot de passe à stocker

⚠ Mêmes fonctions pour la dérivation de clé (sans sel obligatoire)

Conseillés: argon2id, sinon balloon, sinon PBKDF2

Partage de secret Diffie-Hellman

 ${\tt D\acute{e}rivation}(K^1_{\rm pub},K^2_{\rm priv}) = {\tt D\acute{e}rivation}(K^2_{\rm pub},K^1_{\rm priv})$

Conseillé : Diffie-Hellman sur courbe elliptique (X25519, P521, P384, P-256), sinon sur corps premier suffisamment grand (1024 bits minimum)