Формулы кратных углов

Напомним, как формулы косинус и синус двойного угла выражаются через косинус исходного угла: $\cos 2\alpha = 2\cos^2\alpha - 1$, $\sin 2\alpha = 2\sin\alpha\cos\alpha$. Найдём аналогичные формулы для бо́льших кратных аргументов.

- 1. Докажите формулы $\cos 3\alpha = 4\cos^3\alpha 3\cos\alpha$ и $\sin 3\alpha = \sin\alpha (4\cos^2\alpha 1)$.
- 2. Докажите формулу $\cos 4\alpha = 8\cos^4\alpha 8\cos^2\alpha + 1$.
- 3. Докажите формулу $\sin 4\alpha = \sin \alpha (8\cos^3 \alpha 4\cos \alpha)$.
- 4. Докажите, что в равенствах $\cos n\alpha = T_n(\cos \alpha)$ и $\sin n\alpha = \sin \alpha \cdot U_{n-1}(\cos \alpha)$ функции T_n и U_n совпадают на отрезке [0,1] с некоторыми многочленами.

Многочлены Чебышёва

Многочлены $T_n(x)$ и $U_n(x)$ называются многочленами Чебышёва первого и второго рода, соответственно. Найдём закономерности в полученных ранее формулах.

- 5. Проверьте, что многочлены Чебышёва удовлетворят следующим (начальным) условиям: $T_0(x) = 1$, $T_1(x) = x$; $U_0(x) = 1$, $U_1(x) = 2x$.
- 6. Проверьте, что многочлены Чебышёва удовлетворят одинаковой рекуррентной формуле: $T_{n+1}(x) = 2xT_n(x) T_{n-1}(x)$; $U_{n+1}(x) = 2xU_n(x) U_{n-1}(x)$.
- 7. Докажите, что у многочлена $2T_n(x/2)$ старший коэффициент равен единице, а все остальные коэффициенты целые числа.
- 8. Докажите, что многочлены Чебышёва первого и второго рода связаны равенством $T_{n+1}^2(x) + (1-x^2)U_n^2(x) = 1.$

Минимальное свойство многочленов Чебышёва

Рассмотрим множество $\mathfrak{P}_{\mathfrak{n}}$ приведённых (со старшим коэффициентом, равным 1) многочленов степени n. Отклонением от нуля многочлена $P \in \mathfrak{P}_n$ на отрезке [-1,1] называется величина $\max_{x \in [-1,1]} |P(x)|$. Классическая минимаксная задача — определить многочлены с минимальным отклонением.

- 9. Решите сформулированную задачу для \mathfrak{P}_1 и \mathfrak{P}_2 .
- 10. Найдите количество точек максимума, минимума и нулей многочленов Чебышёва первого рода на отрезке [-1,1].
- 11. Докажите¹, что для $\mathfrak{P}_{\mathfrak{n}}$ есть единственный многочлен с минимальным отклонением от нуля, и это отклонение равно $2^{1-n}T_n(x)$.

Упражнения

- 12. Рассмотрим последовательность $(P_n)_{n\in\mathbb{N}}$ многочленов, заданную начальными условиями $P_0(x)=2,\ P_1(x)=x,$ и соотношением $P_{n+1}(x)=xP_n(x)-P_{n-1}(x).$ Как связаны многочлены $P_n(x)$ с $T_n(x)$ и $U_n(x)$?
- 13. Выпишите несколько первых многочленов $P_n(x)$ и найдите их коэффициенты в треугольнике Паскаля.

Задачи

- 14. Докажите, что если α рациональное число, то $\cos \alpha^{\circ}$ может быть рациональным только если он принадлежит множеству $\{0, \pm 1/2, \pm 1\}$.
- 15. Обозначим множество всех многочленов вида $P(x) = ax^3 + bx^2 + cx + d$, удовлетворяющих неравенству $|P(x)| \le 1$ при $x \in [-1,1]$ через M. Докажите, что найдётся такое число k, что для всех многочленов $P \in M$ верно неравенство $|a| \le k$ и найдите наименьшее возможное значение k.

¹Утверждение о том, что многочлен принимает нулевое значение между точками, в которых его значения имеют разные знаки, по-прежнему используем без доказательства.