Action Potential Propagation

MNS CP Project WS '19/20 with Roopa, Andrey, and Luke

Outline

- Introduction to the cable equation
- Method of solving the partial differential equation
- Usage with the Hodgkin-Huxley model
- Initiation of an action potential
- Propagation in a myelinated axon

Motivation

- Create a model of an axon with various biological parameters that allow us to simulate action potential conduction.
- Understand the impact of myelination on the spiking characteristics, as well as propagation velocity.
- 3. Illustrate what affect multiple action potentials within the same axon simultaneously has.

$$c_m rac{\partial V}{\partial t} = rac{1}{2ar_L} rac{\partial}{\partial x} (a^2 rac{\partial V}{\partial x}) - i_m + i_e$$

Figure 6.6 Dayan & Abbott, 2001

$$c_m rac{\partial V}{\partial t} = rac{1}{2ar_L} rac{\partial}{\partial x} (a^2 rac{\partial V}{\partial x}) - i_m + i_e$$

Figure 6.15 Dayan & Abbott, 2001

$$c_m rac{\partial V}{\partial t} = rac{1}{2ar_L} rac{\partial}{\partial x} (a^2 rac{\partial V}{\partial x}) - i_m + i_e$$

Assumptions:

- Constant axon radius a
- Identical compartment size
- No branching

The Analytical Solution to the Infinite Cable

Cable equation reduces to ODE in static case

$$c_{m}rac{\partial v}{\partial t}=rac{1}{2ar_{I}}rac{\partial}{\partial x}\Big(a^{2}rac{\partial v}{\partial x}\Big)-i_{m}+i_{e}$$

Current is steady, implying no change over time, therefore: $\frac{\partial v}{\partial t}=0$

$$0 = \frac{1}{2ar_L} \frac{\partial}{\partial x} \left(a^2 \frac{\partial v}{\partial x} \right) - i_m + i_e$$

Rearranging terms:
$$rac{dv}{dx^2} = rac{2r_L}{a}(i_m-i_e)$$

Substituting:
$$i_m = rac{V - V_{rest}}{r_m} = rac{v}{r_m}$$

$$rac{dv}{dx^2} = rac{2r_L}{ar_m}(v-i_er_m) imes \lambda^2rac{dv}{dx^2} = v-i_er_m$$

[$i_e=0$ everywhere except the site of injection (x=0)]

$$\lambda^2 rac{\partial v}{\partial x^2} = v \ v(x) = B_1 e^{(-x/\lambda)} + B_2 e^{(x/\lambda)}$$

At ends of cable, B = 0. lat x=0, as we want the solution to be continuous, B1=B2=B, and the solution: $v(x)=Be^{(-|x|/\lambda)}$

To find B: current injected = current diffusing away from x

In the region around x:
$$rac{dv}{dx}=-rac{B}{\lambda}e^{\left(rac{-|x|}{\lambda}
ight)}$$
 , where $e^{\left(rac{-|x|}{\lambda}
ight)}$ is approx. = 1, giving $-B/\lambda$. (Other side is B/λ)

Second derivative:
$$\frac{d^2v}{dx^2} = -\frac{2B}{\lambda\Delta x}$$

Substituting in cable equation: $-2\lambda^2 B/\lambda \Delta x = -r_m I_e/2\pi ax$, which gives: $~B=I_e R_\lambda/2$

Therefore:
$$v(x)=rac{I_eR_\lambda}{2}e^{(-|x|/\lambda)}$$

Numerical solution:

Membrane voltage along axon (steady current injection in middle of axon)

Numerical Solution of PDEs

Crank-Nicolson Method: Theory

- For problems which involve an update in both time and space, to increase accuracy, "implicit"
 methods of numerical analysis are preferred, e.g. the Crank-Nicolson scheme.
- time derivative evaluated with the "forward differencing" approach, but spatial derivative evaluated at a time in between the current and next time point
- get a system of linear equations to be solved simultaneously

$$\frac{\partial v}{\partial t} = \frac{\partial v}{\partial x^2}$$

$$egin{array}{l} rac{v_{i,j+1}-v_{i,j}}{\Delta t} = rac{v_{i+1,j+1/2}-2v_{i,j+1/2}-v_{i-1,j+1/2}}{\Delta x^2} \ = \left(rac{v_{i+1,j+1}-2v_{i,j+1}-v_{i-1,j+1}}{\Delta x^2} + rac{v_{i+1,j}-2v_{i,j}-v_{i-1,j}}{\Delta x^2}
ight) \end{array}$$

Crank-Nicolson Method: Application

Coupled equations are solved as follows:

- 1. starting from compartment #1, we get the voltage, ΔV_{ii} , in terms of ΔV_{ii+1} .
- At the last compartment, using the boundary condition, we obtain ΔV_N, and substitute it in the previous equation, and continue solving backwards until compartment #1.

$$egin{align} c_m rac{dV_\mu}{dt} &= -i_m^\mu + rac{I_e^\mu}{A_\mu} + g_{\mu,\mu+1}(V_{\mu+1} - V_\mu) + g_{\mu,\mu-1}(V_{\mu-1} - V_\mu) \ rac{dV_\mu}{dt} &= A_\mu V_{\mu-1} + B_\mu V_\mu + C_\mu V_{\mu+1} + D_\mu \ A_\mu &= rac{g_{\mu,\mu-1}}{c_m} \; B_\mu = rac{\sum_i g_i^\mu + g_{\mu,\mu+1} + g_{\mu,\mu-1}}{c_m} \ C_\mu &= rac{g_{\mu,\mu+1}}{c_m} \; D_\mu = rac{\sum_i g_i^\mu E_i + rac{I_e^\mu}{A_\mu}}{c_m} \ \end{align}$$

$$\Delta V_{\mu}=(A_{\mu}V_{\mu-1}(t+z\Delta t)+B_{\mu}V_{\mu}(t+z\Delta t)+C_{\mu}V_{\mu+1}(t+z\Delta t)+D_{\mu})\Delta t$$

$$\Delta V_{\mu} = (A_{\mu}V_{\mu-1}(t+z\Delta t)+B_{\mu}V_{\mu}(t+z\Delta t)+C_{\mu}V_{\mu+1}(t+z\Delta t)+D_{\mu})\Delta t$$

$$V_{\mu}(t+z\Delta t)=V_{\mu}(t)+z\Delta V_{\mu}$$

$$\Delta V_{\mu} = a_{\mu}\Delta V_{\mu-1} + b_{\mu}\Delta V_{\mu} + c_{\mu}\Delta V_{\mu+1} + d_{\mu}$$

$$c_{\mu}=C_{\mu}z\Delta t$$
 $d_{\mu}=(D_{\mu}+A_{\mu}V_{\mu-1}(t)+B_{\mu}V_{\mu}(t)+C_{\mu}V_{\mu+1}(t))\Delta t$

Solve
$$\Delta V_\mu$$
 equation sequentially for each compartment, in $\Delta V_{\mu-1}=rac{c_{\mu-1}\Delta V_\mu+d'_{\mu-1}}{1-b'_{\mu-1}}$ terms of $\Delta V_{\mu+1}$

At end of cable use boundary condition to find $\,\Delta V_{N}$, and substitute backwards to get all $\,\Delta V_{\mu}$

1:

 $a_{\mu}=A_{\mu}z\Delta t$

 $b_{\mu} = B_{\mu} z \Delta t$

Hodgkin-Huxley model

The Hodgkin-Huxley Model

$$egin{align} i_m &= ar{g}_Lig(V-E_Lig) + ar{g}_{Na}m^3h(V-E_{Na}) + ar{g}_Kn^4(V-E_K) \ &rac{dx}{dt} = lpha_x(V)(1-x) - eta_x(V)x \end{aligned}$$

Initiating an action potential

Initiating an action potential

$$egin{aligned} v \equiv rac{x}{t_{max}} = rac{2\lambda}{ au_m} \ oldsymbol{ au_m} = oldsymbol{r_m} oldsymbol{c_m} \ \lambda = \sqrt{rac{r_m a}{2r_L}} \ v = rac{2}{r_m c_m} \sqrt{rac{r_m a}{2r_L}} = rac{1}{c_m} \sqrt{rac{2a}{r_m r_L}} \end{aligned}$$

$$v \propto \sqrt{a}$$

Action Potential Propagation Velocity - Analytically

Action Potential Propagation Velocity - Numerically

Annihilation of Two Action Potentials

Annihilation of Two Action Potentials

Myelinated Axons

Impact of myelin:

- Increases resistance r_m by a factor of 5,000
- Decreases capacitance c_m by 50

Myelinated Axons

Branching Cable

Branching Cable

$$\left\{egin{aligned} v_1(x) &= p_1 I_e R_{\lambda_1} exp(rac{-x_1}{\lambda_1} - rac{y}{\lambda_2}) \ v_2(x) &= rac{I_e R_{\lambda_2}}{2} [exp(rac{-|y-x_2|}{\lambda_2}) + (2p_2 - 1)exp(rac{-(y+x_2)}{\lambda_2})] \ v_3(x) &= p_3 I_e R_{\lambda_3} exp(rac{-x_3}{\lambda_3} - rac{y}{\lambda_2}) \end{aligned}
ight.$$

$$p_i = rac{a_i^{3/2}}{a_1^{3/2} + a_2^{3/2} + a_3^{3/2}} \;\; \lambda_i = \sqrt{rac{a_i r_m}{2 r_L}} \;\; R_{\lambda_i} = rac{r_L \lambda_i}{\pi a_i^2} \;\;$$

Branching Cable - Analytical

Branching Cable - Analytical

Questions?