

Lehrgebiet für Grundlagen der Informatik Prof. Dr. Heiko Körner

11. Übung zur Vorlesung Theoretische Informatik I

Aufgabe 1 ($\bullet \bullet \bullet$): Es sei $L \subseteq \Sigma^*$ eine beliebige reguläre Sprache. Zeigen Sie, dass dann auch die folgenden Mengen regulär sind:

- a) $L_P := \{u \mid \exists v \in \Sigma^* : uv \in L\}$ (L_P ist die Sprache aller Präfixe von Wörtern aus L)
- b) $L_S := \{v \mid \exists u \in \Sigma^* \colon uv \in L\}$ (L_S ist die Sprache aller Suffixe von Wörtern aus L)

Hinweis: Betrachten Sie einen DEA für die Sprache L und modifizieren Sie ihn so, dass er L_P bzw. L_S erkennt. Es reicht aus, wenn Sie die Konstruktion informal beschreiben.

Aufgabe 2 ($\bullet \bullet$): Sei $\Sigma = \{0, 1\}$. Betrachten Sie nochmals die Sprache

$$L := \{w \in \{0,1\}^* \mid w \text{ enthält gleich viele Nullen und Einsen}\}$$

aus einer vergangenen Aufgabe. Es soll nun noch ein weiteres Mal die Nichtregularität von L bewiesen werden, diesmal jedoch ohne Verwendung des Pumping–Lemmas oder des Satzes von Myhill–Nerode.

- a) Zeigen Sie, dass die Sprache $L' := \{0^p 1^q \mid p, q \in \mathbb{N}\}$ regulär ist.
- b) Bestimmen Sie die Sprache $L \cap L'$. Ist sie regulär?
- c) Folgern Sie aus den Abgeschlossenheitseigenschaften regulärer Sprachen, dass L nicht regulär sein kann.

Aufgabe 3 ($\bullet \bullet$): Betrachten Sie die folgende Sprache L über $\Sigma := \{0, 1\}$:

$$L := \{w \in \{0,1\}^* \mid w \text{ enthält mehr Nullen als Einsen} \}$$
.

Beispielsweise ist 0110001 in L enthalten, nicht aber 011.

- a) Überlegen Sie sich, wie ein passender NKA M mit L = N(M) aussehen könnte. Beschreiben Sie informal die Arbeitsweise von M mit mehreren Sätzen.
- b) Geben Sie Ihren NKA formal als 6-Tupel $M=(Z,\Sigma,\Gamma,\delta,z_0,\#)$ an.
- c) Dokumentieren Sie eine erfolgreiche Kette von Konfigurationsübergängen beim Verarbeiten von $01001 \in L$.
- d) Prüfen Sie, ob M deterministisch ist. Begründen Sie Ihre Antwort.

Aufgabe 4 (•): Sei $\Sigma := \{a, b\}$. Konstruieren Sie einen DEA für die Sprache $L := \Sigma^* \setminus \{ab\}$:

- a) Konstruieren Sie zunächst einen DEA für die Sprache $L' := \{ab\}.$
- b) Erweitern Sie Ihren DEA so, dass die Übergangsfunktion total wird.
- c) In der Vorlesung wurde gezeigt, dass die regulären Sprachen unter Komplementbildung abgeschlossen sind. Benutzen Sie die im zugehörigen Beweis benutzte Konstruktion, um den gewünschten DEA für L zu erzeugen.