Advanced information, computation, communication I EPFL - Fall semester 2020-2021

Week 8November 3, 2020

Exercise 1. Find a formula for f(n), and prove it by induction, if

- 1. f(0) = 0 and f(n) = f(n-1) 1.
- 2. f(0) = 0, f(1) = 1 and f(n) = 2f(n-2).

Exercise 2. Use strong¹ or mathematical induction to show the following statements.

- 1. Any postage of at least 8 cents can be formed using just 3 cents and 5 cents stamps.
- 2. Consider a $2^n \times 2^n$ grid of 2^{2n} squares arranged in 2^n rows and 2^n columns. If we remove one square from this grid of 2^{2n} squares, we obtain a shape. Let C_n be the set of shapes obtained by removing one square from the grid of 2^{2n} squares. We say that a shape is L-coverable if it can be completely covered, without overlapping, with L-shaped tiles occupying exactly 3 squares, like this:

Prove that, for any integer $n \geq 1$, any shape in C_n is L-coverable.

Exercise 3. Denote by f_n the nth Fibonacci number, i.e., $f_0 = 0, f_1 = 1$ and for $n \ge 2, f_n = f_{n-1} + f_{n-2}$.

- 1. Prove that $f_1^2 + f_2^2 + \cdots + f_n^2 = f_n f_{n+1}$, when n is a positive integer.
- 2. Show that $f_0f_1 + f_1f_2 + \cdots + f_{2n-1}f_{2n} = f_{2n}^2$, when n is a positive integer.
- 3. Show that if $a = (1 + \sqrt{5})/2$ and $b = (1 \sqrt{5})/2$, then

$$f_n = (a^n - b^n)/(a - b).$$

[Hint: a and b are two solutions of the equation $x^2 = x + 1$]

Exercise 4. Prove that $n! > 2^n$ for $n \ge 4$.

Exercise 5. Let P(n) for $n \in \mathbb{Z}_{\geq 0}$ be the propositional function "all cardinality-n sets of integers consist of only even integers," which is proved using strong induction:

Basis step P(0) is true, since if S is an empty set of integers the statement " $\forall s \ s \in S \rightarrow s$ is even" is true.

Inductive step Let $k \ge 0$ and assume that P(i) is true for $0 \le i \le k$. To prove that P(k+1) is true we use the following steps:

¹Mathematical induction is based on the tautology $\left(P(0) \land \forall k \ [\underline{P(k)} \to P(k+1)]\right) \to \forall n \ P(n)$, strong induction is based on the tautology $\left(P(0) \land \forall k \ [\underline{(\forall \ell \leq k \ P(\ell))} \to P(k+1)]\right) \to \forall n \ P(n)$. Although the latter looks "stronger" than mathematical induction, the two notions are equivalent.

- 1. Let T be an arbitrary set of integers with |T| = k + 1.
- 2. Write T as the disjoint union of sets T_1 and T_2 such that $|T_1| = k$ and $|T_2| = 1$.
- 3. Because $|T_1| < |T|$ and $|T_2| < |T|$ the induction hypothesis applies to both T_1 and T_2 , implying that all elements of both T_1 and T_2 are even.
- 4. Because $T = T_1 \cup T_2$ it follows that all elements of T are even as well.
- 5. Because T was arbitrarily chosen as a set of integers of cardinality k + 1, it follows that P(k + 1) is true.

Because not all integers are even, the proof cannot be correct (unless the well-ordering principle is false). Find the mistake.

Exercise 6. Let P(n) for $n \in \mathbb{Z}_{>0}$ be the propositional function "all cardinality-n sets of integers consist of only odd integers," which is proved using strong induction:

Basis Step P(1) is true because 1 is odd.

Inductive step Let k > 0 and assume that P(i) is true for $0 < i \le k$. To prove that P(k+1) is true we use the following steps:

- 1. Let S be an arbitrary set of integers with |S| = k + 1.
- 2. Write S as the disjoint union of sets S_1 and S_2 such that $|S_1| = k$ and $|S_2| = 1$.
- 3. Because $|S_1| < |S|$ and $|S_2| < |S|$ the induction hypothesis applies to both S_1 and S_2 ,
- 4. implying that all elements of both S_1 and S_2 are odd.
- 5. Because $S = S_1 \cup S_2$ it follows that all elements of S are odd as well.
- 6. Because S is an arbitrarily chosen set of integers with |S| = k + 1, it follows that P(k+1) is true.
- Only the basis step in the proof is incorrect.
- O The basis step and step (3) of the inductive step of the proof are incorrect.
- Only step (3) of the inductive step of the proof is incorrect.
- Only step (4) of the inductive step of the proof is incorrect.

Exercise 7. Suppose that **A** and **B** are square matrices with the property $\mathbf{AB} = \mathbf{BA}$. Prove using induction that $\mathbf{AB}^n = \mathbf{B}^n \mathbf{A}$ for every positive integer n.