Notes On Geometric Calculus

Spencer T. Parkin

July 30, 2012

This paper is a formal account of everything I have or have tried to learn about geometric calculus. Take it for what it's worth, if anything.

I will compile a list of references later. Most of this comes from Hestenese' stuff. I go into more detail to prove his statements so that I can understand what-the-hell he's saying.

1 Outermorphism

Let $f: \mathbb{A} \to \mathbb{B}$ be a linear transformation from the vector space \mathbb{A} to the vector space \mathbb{B} . Every such transformation f can be extended to what we call an outermorphism \underline{f} if for all vectors $a \in \mathbb{A}$, we have $\underline{f}(a) = f(a)$ and for all blades $A \in \mathbb{G}(\mathbb{A})$, we define \underline{f} for A as preserving the outer product. Notice that by preserving the outer product, this does not necessarily mean that \underline{f} preserves grade. For any k-blade $A \in \mathbb{G}(\mathbb{A})$, letting $A = \bigwedge_{i=1}^k a_k$ with each $a_k \in \mathbb{A}$, we may write

$$\underline{f}(A) = \underline{f}\left(\bigwedge_{i=1}^{k} a_k\right) = \bigwedge_{i=1}^{k} \underline{f}(a_k),$$

yet while $A \neq 0$, we may have $\underline{f}(A) = 0$, showing that while $\{a_i\}_{k=1}^k$ is a linearly independent set, $\{\underline{f}(a_i)\}_{i=1}^n$ is not. As we become clear later on, if \underline{f} was always grade preserving, then \underline{f}^{-1} must exist.

Of particular interest is how \underline{f} maps the unit psuedo-scalar of $\mathbb{G}(\mathbb{A})$, which we'll denote by $I_{\mathbb{A}}$. Clearly this will be some scalar multiple of the unit psuedo-scalar of $\mathbb{G}(\mathbb{B})$, which we'll denote by $I_{\mathbb{B}}$. We define this scalar multiple as the determinant of f and write

$$\underline{f}(I_{\mathbb{A}}) = (\det \underline{f}) I_{\mathbb{B}}.$$

Associated with every outermorphism is a function \overline{f} denoting what we call the adjoint of \underline{f} . We define $\overline{f}: \mathbb{A} \to \mathbb{B}$ as an outermorphism with the property that for any pair of vectors $a, b \in \mathbb{A}$, we have

$$a \cdot \underline{f}(b) = \overline{f}(a) \cdot b.$$

Using the k-blade A given earlier, this leads to the following result.

$$a \cdot \underline{f}(A) = -\sum_{i=1}^{k} (-1)^{i} (a \cdot \underline{f}(a_{i})) \bigwedge_{j=1, j \neq i}^{k} \underline{f}(a_{j})$$

$$= -\sum_{i=1}^{k} (-1)^{i} (\overline{f}(a) \cdot a_{i}) \bigwedge_{j=1, j \neq i}^{k} \underline{f}(a_{j})$$

$$= \underline{f} \left(-\sum_{i=1}^{k} (-1)^{i} (\overline{f}(a) \cdot a_{i}) \bigwedge_{j=1, j \neq i}^{k} a_{j} \right)$$

$$= f(\overline{f}(a) \cdot A)$$

Now since \overline{f} is an outermorphism, we may interchange underbars and overbars in the above equation.

Letting $A, B \in \mathbb{G}(\mathbb{A})$ be i and j-blades, respectively, recall that if $i \leq j$, we have the identity

$$A \cdot B = \left(\bigwedge_{k=1}^{i-1} a_k\right) \cdot (a_i \cdot B),$$

which is not hard to show. Recursively applying this identity, we get

$$A \cdot B = a_1 \cdot \cdots \cdot a_i \cdot B$$

where here, right to left associativity of the inner product is understood. It then follows that

$$A \cdot \underline{f}(B) = \underline{f}\left(\overline{f}(a_1) \cdot \dots \cdot \overline{f}(a_i) \cdot B\right) = \underline{f}(\overline{f}(A) \cdot B), \tag{1}$$

where here again we recursively applied the identity above.

We can now use the result in equation (1) to show that \underline{f} and \overline{f} have the same determinant in the case that $\mathbb{A} = \mathbb{B}$. In the case that $\mathbb{A} = \mathbb{B}$, let

I denote the unit psuedo-scalar of $\mathbb{G}(\mathbb{A}) = \mathbb{G}(\mathbb{B})$. Recalling that for any k-blade A, we have $\tilde{A} = (-1)^{k(k-1)/2}A$, it follows that $I^{-1} = \lambda I$, where $\lambda = \pm 1$, depending on the dimension of \mathbb{A} . We then see that

$$\begin{split} \det \underline{f} &= I^{-1} \cdot \underline{f}(I) \\ &= \underline{f}(\overline{f}(I^{-1}) \cdot I) \\ &= \underline{f}(\overline{f}(\lambda I) \cdot I) \\ &= \underline{f}(\overline{f}(I) \cdot \lambda I) \\ &= \underline{f}(\overline{f}(I) \cdot I^{-1}) \\ &= \underline{f}(\det \overline{f}) \\ &= \det \overline{f}. \end{split}$$

We also have enough at this point to find a formula for the inverse of the outermorphism f. Letting A be a blade in $\mathbb{G}(\mathbb{A})$, we have

$$(\det \underline{f})A \cdot I_{\mathbb{B}} = A \cdot \underline{f}(I_{\mathbb{A}}) = \underline{f}(\overline{f}(A) \cdot I_{\mathbb{A}}).$$

From this we get

$$(\det f)f^{-1}(A \cdot I_{\mathbb{B}}) = \overline{f}(A) \cdot I_{\mathbb{A}}.$$

We can then make the substitution $B = A \cdot I_{\mathbb{B}}$ to get

$$\underline{f}^{-1}(B) = \frac{\overline{f}(B \cdot I_{\mathbb{B}}^{-1}) \cdot I_{\mathbb{A}}}{\det f}.$$
 (2)

We'll now show that f^{-1} is an outermorphism. Do that here...

Using some calculus, we can find a formula for the adjoint \overline{f} in terms of f. Do that here...