

Current IMS Database

DS Group

*Fig 1A
(Prior Art)*

Invention Database

Directory DS

Segdata DS

Fig 1B

Layout of Segment in Directory Dataset

Segment Prefix <u>26</u>		Segment Data <u>28</u>			
Seg Code & Delete Byte <u>30</u>	Prefix Pointers <u>32</u>	Pointer to Seg Data <u>34</u>	Metadata		Seg Key Born-On-Date <u>35</u> <u>36</u>
			Seg Key	Born-On-Date	

Figure 2A. Split Segment Composition – Prefix Portion with Metadata in segment data portion

Layout of Segment in Segdata Dataset

Segment Prefix <u>26</u>			Seg Data <u>28</u>
Seg Code & Delete Byte <u>30</u>	Prefix Pointers <u>32</u>	Metadata Seg Key Born-On-Date <u>34</u> <u>35</u> <u>36</u>	Pointer to Seg Data <u>34</u>

Figure 2B. Split Segment Composition – Prefix Portion with Metadata in segment prefix portion

Layout of Segment in Segdata Dataset

Segment Prefix <u>40</u>	Segment Data <u>42</u>	Trans-parent <u>44</u>
Seg code & delete byte <u>46</u>	User Data <u>48</u>	Born on Date <u>50</u>

Fig. 3

DBD NAME=IVPDB1, ACCESS=(HIDAM, OSAM)

DIR DD1=DFSIVD1, SIZE=2048, UOW=(500, 50, 10) 122

DATASET DD1=DFSIVD1A, DEVICE=3380, SIZE=2048

SEGM NAME=A1111111, PARENT=0, BYTES=40, RULES=(LLV, LAST), PTR=(TB, CTR)

FIELD NAME=(A1111111, SEQ, U), BYTES=010, START=00001, TYPE=C

FIELD NAME=A9999999, BYTES=010, START=00011, TYPE=C

LCHILD NAME=(A1, IVPDB1I), POINTER=INDX, RULES=LAST

LCHILD NAME=(A1X, IVPDB1X), POINTER=INDX

XDFLD NAME=AXXXXXXX, SEGMENT=A1111111, SRCH=(A9999999)

LCHILD NAME=(C1X, IVPDB1Z), POINTER=INDX

XDFLD NAME=CXXXXXXX, SEGMENT=C1111111, SRCH=(C9999999)

DATASET DD1=DFSIVD1B, DEVICE=3380, SIZE=4096

SEGM NAME=B1111111, PARENT=A1111111, BYTES=(1000, 50),
RULES=(LLV, LAST), PTR=(TB) X

FIELD NAME=(B1111111, SEQ, M), BYTES=010, START=00003, TYPE=C

FIELD NAME=/SXB1

LCHILD NAME=(B1X, IVPDB1Y), POINTER=INDX

XDFLD .NAME=BXXXXXXX, SEGMENT=B1111111, SRCH=(B1111111), SUBSEQ=(/SXB1)

DATASET DD1=DFSIVD1C, DEVICE=3380, SIZE=8192

SEGM NAME=C1111111, PARENT=B1111111, COMPRTN=(DFSKMPX0, DATA, INIT),
RULES=(LLV, LAST), PTR=(TB), BYTES=(8000, 50) X

FIELD NAME=(C1111111, SEQ, U), BYTES=010, START=00003, TYPE=C

FIELD NAME=C9999999, BYTES=010, START=00011, TYPE=C

DIRGEN

DBDGEN
FINISH
END

Figure 4A Sample HIDAM DBD

124

```
DBD      NAME=IVPDB2, ACCESS=HDAM, RMNAME=(DFSHDC40,4,1000)

DIR  DD1=DFSIVD2, UOW=(100,10)

DATASET DD1=DFSIVD2A, DEVICE=3380, SIZE=2048
SEGMENT NAME=A1111111, PARENT=0, BYTES=40, RULES=(LLL, LAST), COMPRTN=(DFSKMPX0, DATA, INIT) X
FIELD   NAME=(A1111111, SEQ, U), BYTES=010, START=00001, TYPE=C

DATASET DD1=DFSIVD2B, DEVICE=3380, SIZE=4096
SEGMENT NAME=B1111111, PARENT=A1111111, BYTES=(1000,50), RULES=(LLV, LAST), PTR=(TB) X
FIELD   NAME=(B1111111, SEQ, U), BYTES=010, START=00003, TYPE=C

DATASET DD1=DFSIVD2C, DEVICE=3380, SIZE=8192
SEGMENT NAME=C1111111, PARENT=B1111111, COMPRTN=(DFSKMPX0, DATA, INIT),
          RULES=(LLV, LAST), PTR=TB, BYTES=8000
FIELD   NAME=(C1111111, SEQ, U), BYTES=010, START=00001, TYPE=C

DIRGEN

DBDGEN
FINISH
END
```

Figure 48 Sample HDAM DBD

Secondary Index

Target Database

Figure 5 Secondary Index Architecture

Secondary Index

TYPE : INDEX / SEGMENT

Figure 6 Secondary Index Before Reorganizing

Secondary Index

Figure 7 Secondary Index After Reorganizing

Figure 8 Retrieving a Target Segment via a Secondary Index

Figure 9 Correcting Direct Pointer in a Secondary Index

92

Figure 10 Saving the Database Definition at DB Load Time

Figure 11 Checking the Database Definition at DB Processing Time

Figure 12. Unit Of Work (UOW) Architecture

Figure 13. HDAM UOW Architecture

Figure 14. HIDAM UOW Architecture

Figure 15. Prime & DOVF Block Composition

Figure 16. IOVF Block Composition

Figure 17 Block Composition Using IMS' Space Management

Figure 18 Block Composition Using Invention's Space Management

Figure 19 Space Management at Database Load Time

Figure 20 Space Management at Database Update Time

Figure 21. Space Management at Database Load Time

Figure 22. Space Management at Database Update Time