Abstract Algebra I

Ji, Yong-hyeon April 1, 2025

We cover the following topics in this note.

- Cyclic Group
- TBA

Note. Let (G, *) be a group with identity element e. Recall that the axioms of a group require:

- (G0) $\forall x, y \in G, x * y \in G$;
- (G1) $\forall x, y, z \in G$, (x * y) * z = x * (y * z);
- (G2) $\exists e \in G$, s.t. $\forall x \in G$, $e \cdot x = x \cdot e = x$;
- (G3) $\forall x \in G, \exists x^{-1} \in G \text{ s.t. } x \cdot x^{-1} = x^{-1} \cdot x = e.$

Consider $(\mathbb{Z}, +)$ as the additive group of integers. For $a \in G$ and $n \in \mathbb{Z}$, the notation

$$a^{n} := \begin{cases} \underbrace{a * a * \cdots * a}_{n \text{ times}} &: n > 0, \\ e &: n = 0, \\ (a^{-1})^{-n} &: n < 0, \end{cases}$$

defines the n-th power of a.

Cyclic Group

Definition. A group *G* is said to be **cyclic** if and only if

$$\exists a \in G \text{ such that } \Big[\forall g \in G, \exists n \in \mathbb{Z} \text{ with } g = a^n \Big].$$

The element *a* is called a **generator** of *G*.

The Classification for Cyclic Groups

Theorem. *Let G be a cyclic group. Then*

$$G \simeq \begin{cases} \mathbb{Z} & \text{if } G \text{ is infinite,} \\ \mathbb{Z}/n\mathbb{Z} & \text{if } G \text{ is finite of order } n. \end{cases}$$

In other words, Every cyclic group G is isomorphic to either \mathbb{Z} or $\mathbb{Z}/n\mathbb{Z}$ for some $n \in \mathbb{N}$.

Proof. Let G be a cyclic group and let $a \in G$ be a generator. Define the mapping

$$\varphi:(\mathbb{Z},+)\to (G,*),\quad \varphi(n)=a^n.$$

We now verify several properties of φ .

Definition. *G* is called *cyclic* $\iff \exists a \in G \text{ such that } G = \langle a \rangle := \{ a^n \mid n \in \mathbb{Z} \}.$

In symbolic logic, this may be written as:

$$\exists a \in G \ \forall g \in G, \ \exists n \in \mathbb{Z} \text{ such that } g = a^n.$$

Here, the element a is called a *generator* of G. The notation a^n is understood in the group-theoretic sense, where for $n \ge 0$,

$$a^n = \underbrace{a \cdot a \cdots a}_{n \text{ factors}}$$

and for n < 0,

$$a^n = (a^{-1})^{-n}$$
.

The structure of cyclic groups is completely determined by the order of any generator. Let $a \in G$ be a generator of the cyclic group G. Consider the homomorphism

$$\varphi: (\mathbb{Z}, +) \to (G, \cdot)$$
 defined by $\varphi(n) = a^n$.

Since *G* is cyclic, φ is surjective. The kernel of φ is given by

$$\ker(\varphi) = \{ n \in \mathbb{Z} \mid a^n = e \},$$

where *e* denotes the identity element in *G*.

We now distinguish two cases:

1. **Infinite Case:** If no nonzero $n \in \mathbb{Z}$ satisfies $a^n = e$, then

$$ker(\varphi) = \{0\}.$$

By the First Isomorphism Theorem,

$$G \cong \mathbb{Z}$$
.

2. **Finite Case: ** If there exists a least positive integer n_0 such that

$$a^{n_0} = e$$
,

then

$$\ker(\varphi) = n_0 \mathbb{Z} := \{ n_0 k \mid k \in \mathbb{Z} \}.$$

Again by the First Isomorphism Theorem,

$$G \cong \mathbb{Z}/n_0\mathbb{Z}$$
.

In this context, we say that G is of *finite order* n_0 .

Thus, we have the following classification theorem:

Every cyclic group G is isomorphic to either \mathbb{Z} (if $|G| = \infty$) or $\mathbb{Z}/n\mathbb{Z}$ for some $n \in \mathbb{N}$ (if $|G| = n < \infty$).

—

- **Existence of Generator:** \exists *a* ∈ *G* such that \forall *g* ∈ *G*, \exists *n* ∈ \mathbb{Z} with *g* = *a*ⁿ.
- **Homomorphism Construction:** Define $\varphi: \mathbb{Z} \to G$ by $\varphi(n) = a^n$. This map is a group homomorphism with image G.
- **Kernel Analysis:** If $\ker(\varphi) = \{0\}$, then $G \cong \mathbb{Z}$. If $\ker(\varphi) = n\mathbb{Z}$ for some n > 0, then $G \cong \mathbb{Z}/n\mathbb{Z}$.

This completes the formal definition and classification of cyclic groups in an extremely rigorous and symbolic manner suitable for graduate-level presentation.

Proposition. *The subgroup of cyclic group is also cyclic.*

References

[1] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 20. 추상대수학 (a) 순환군의 분류 Classification of cyclic group" YouTube Video, 22:01. Published October 18, 2019. URL: https://www.youtube.com/watch?v=1yQ520SB_Cc&t=708s.

A Unit Circle

The set $\mathbb{S}^1 := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ is called the **unit circle**.

The standard parametrization of \mathbb{S}^1 is given by

$$t \mapsto (\cos t, \sin t), \quad t \in [0, 2\pi),$$

which in turn implies the fundamental trigonometric identity $\cos^2 t + \sin^2 t = 1$. The mapping

$$\varphi : [0,2\pi) \longrightarrow \mathbb{S}^1$$

$$t \longmapsto (\cos t, \sin t)$$

provides a bijection between the half-open interval $[0, 2\pi)$ and the unit circle \mathbb{S}^1 .

Geometrically, it represents the set of points at a fixed distance 1 from the origin in \mathbb{R}^2 , while algebraically it can be seen as a group under complex multiplication.

The unit circle can be described in several equivalent ways. In \mathbb{R}^2 , it is given by:

$$\mathbb{S}^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$$

In the complex plane, we write:

$$\mathbb{S}^1 = \{ z \in \mathbb{C} : |z| = 1 \} = \{ re^{i\theta} : |r| = 1 \text{ and } \theta \in \mathbb{R} \}.$$

We now show that S^1 forms a group under complex multiplication:

- (G0) **(Closure)** Let $z_1 = e^{i\theta_1}$ and $z_2 = e^{i\theta_2} \in \mathbb{S}^1$. Then $z_1 z_2 = e^{i\theta_1} e^{i\theta_2} = e^{i(\theta_1 + \theta_2)} \in \mathbb{S}^1$.
- (G1) **(Associativity)** Let $z_1 = e^{i\theta_1}$, $z_2 = e^{i\theta_2}$, $z_3 = e^{i\theta_3} \in \mathbb{S}^1$ then

$$(z_1 z_2) z_3 = (e^{i\theta_1} e^{i\theta_2}) e^{i\theta_3} = e^{i(\theta_1 + \theta_2)} e^{i\theta_3} = e^{i(\theta_1 + \theta_2 + \theta_3)} = e^{i\theta_1} e^{i(\theta_2 + \theta_3)} = e^{i\theta_1} (e^{i\theta_2} e^{i\theta_3}) = z_1 (z_2 z_3).$$

(G2) (**Identity Element**) For each $z = e^{i\theta} \in S^1$,

$$1 \cdot z = e^{i0}e^{i\theta} = e^{i(0+\theta)} = e^{i\theta} = z,$$

and similarly $z \cdot 1 = z$.

(G3) (Inverses) For any $z = e^{i\theta} \in S^1$, its inverse is given by $z^{-1} = e^{-i\theta}$, since

$$z \cdot z^{-1} = e^{i\theta} e^{-i\theta} = e^{i(\theta - \theta)} = e^{i \cdot 0} = 1.$$

Notice that $e^{-i\theta} \in S^1$ as well.

We show that multiplication on the circle group is equivalent to addition of angles: let

$$z_1 = r_1 e^{i\theta_1} = r_1 (\cos \theta_1 + i \sin \theta_1) \in \mathbb{C} \text{ and}$$

$$z_2 = r_2 e^{i\theta_2} = r_2 (\cos \theta_2 + i \sin \theta_2) \in \mathbb{C}.$$

Then

$$\begin{aligned} z_1 \cdot z_2 &= r_1 e^{i\theta_1} \cdot r_2 e^{i\theta_2} = = r_1 r_2 \left(\cos\theta_1 + i\sin\theta_1\right) \left(\cos\theta_2 + i\sin\theta_2\right) \\ &= r_1 r_2 \left[\left(\cos\theta_1 \cos\theta_2 - \sin\theta_1 \sin\theta_2\right) + i \left(\cos\theta_1 \sin\theta_2 + \sin\theta_1 \cos\theta_2\right) \right] \\ &= r_1 r_2 \left[\cos\left(\theta_1 + \theta_2\right) + i \sin\left(\theta_1 + \theta_2\right) \right] \\ &= r \left(\cos\theta + \sin\theta\right) \text{ with } \begin{cases} r &= r_1 r_2 \\ \theta &= \theta_1 + \theta_2. \end{cases} \end{aligned}$$

However, it is important to note that S^1 itself is not a cyclic group because no single element can generate the entire uncountable set. A group G is called **cyclic** if there exists an element $g \in G$ such that

$$G = \langle g \rangle = \{ g^n : n \in \mathbb{Z} \}.$$

In the context of S^1 , while the full group is not cyclic, every finite subgroup of S^1 is cyclic.

 S^1 is a compact, connected, and smooth one-dimensional manifold. Its compactness follows from the Heine-Borel theorem, and its connectedness is inherent in the continuity of the circle. These topological features are critical in understanding its role as a topological group.

Though S^1 is a group under multiplication, it is not cyclic. To see this, consider any element $e^{i\theta} \in S^1$. The subgroup generated by $e^{i\theta}$ is:

$$\langle e^{i\theta} \rangle = \{ e^{in\theta} : n \in \mathbb{Z} \}.$$

If $\theta/2\pi$ is irrational, then $\langle e^{i\theta} \rangle$ is dense in S^1 but does not equal S^1 since it is countable. If $\theta/2\pi$ is rational, the subgroup is finite. In either case, no single element can generate the entire uncountable group S^1 .

The exponential map provides a natural connection between the additive group \mathbb{R} and the multiplicative group S^1 :

$$\exp: \mathbb{R} \to S^1$$
, $\exp(i\theta) = e^{i\theta}$.

This continuous group homomorphism is essential in many areas of analysis and differential geometry.

For any positive integer n, the nth roots of unity form a finite cyclic subgroup of S^1 . Specifically, define:

$$C_n = \{e^{2\pi i k/n} : k = 0, 1, \dots, n-1\}.$$

This group is cyclic because it can be generated by the element:

$$e^{2\pi i/n}$$
,

and every element in C_n is a power of this generator.

The cyclic group C_n is a fundamental object in various fields:

- **Number Theory:** The *n*th roots of unity are closely related to cyclotomic polynomials.
- **Signal Processing:** They appear in the discrete Fourier transform (DFT).
- **Algebra:** Finite cyclic groups are among the simplest groups and serve as building blocks for more complex structures.

 S^1 is not only a topological group but also a Lie group. Its smooth manifold structure enables the study of continuous group representations and provides a gateway into harmonic analysis.

The study of S^1 and its subgroups extends to many areas:

- **Differential Geometry:** S^1 serves as an example of a smooth manifold with a rich geometric structure.
- Complex Analysis: As the boundary of the unit disk, S^1 plays a key role in conformal mappings and function theory.
- **Algebraic Topology:** The fundamental group of S^1 is isomorphic to \mathbb{Z} , providing insight into covering spaces and homotopy theory.

Recall that a group *G* is called *cyclic* if

$$\exists a \in G \text{ s.t. } \forall g \in G, \ \exists n \in \mathbb{Z}: \ g = a^n.$$

Consider the circle

$$S^1 \coloneqq \{ z \in \mathbb{C} \mid |z| = 1 \},$$

which is a group under complex multiplication. Each element of \mathcal{S}^1 may be written in the form

$$z=e^{2\pi i\theta},\quad \theta\in[0,1),$$

and for a fixed irrational θ_0 , the subgroup

$$\langle e^{2\pi i\theta_0} \rangle = \{ e^{2\pi i n\theta_0} \mid n \in \mathbb{Z} \}$$

is dense in S^1 . In the finite setting, for any $n \in \mathbb{N}$, the subgroup of nth roots of unity

$$\mu_n = \{ e^{2\pi i k/n} \mid k = 0, 1, \dots, n-1 \}$$

is cyclic, isomorphic to $\mathbb{Z}/n\mathbb{Z}$.

B Torus

