CSC 433/533 Computer Graphics

Joshua Levine josh@email.arizona.edu

Lecture 08 Vector Math + Coding

Sept. 23, 2019

Today's Agenda

- Reminders:
 - · A02 questions?
- · Goals for today:
 - Introduce some mathematics and connect it to code

Vectors

What is a Vector?

- A vector describes a length and a direction
- A vector is also a tuple of numbers
 - But, it often makes more sense to think in terms of the length/direction than the coordinates/numbers
 - And, especially in code, we want to manipulate vectors as objects and abstract the low-level operations
 - Compare with a scalar, or just a single number

Properties

- Two vectors, a and b, are the same (written a = b) if they
 have the same length and direction.
- A vector's **length** is denoted with $\| \ \|$,
 - e.g. the length of a is ||a||
- A unit vector has length one
- The zero vector has length zero, and undefined direction

Vectors in Pictures

- · We often use an arrow to represent a vector
 - The length of the arrow indicates the length of the vector, the direction of the arrow indicates the direction of the vector.
- The position of the arrow is irrelevant!
 - However, we can use vectors to represent positions by describing displacements from a common point

Vector Operations

- Vectors can be added, e.g. for vectors a,b, there exists a vector c = a+b
- Defined using the parallelogram rule: idea is to trace out the displacements and produced the combined effect
- Vectors can be negated (flip tail and head), and thus can be subtracted
- Vectors can be multiplied by a scalar, which scales the length but not the direction

Vectors Decomposition

- By linear independence, any 2D vector can be written as a combination of any two nonzero, nonparallel vectors
- Such a pair of vectors is called a 2D basis

$$\mathbf{c} = a_c \mathbf{a} + b_c \mathbf{b}$$

Canonical (Cartesian) Basis

- Often, we pick two perpendicular vectors, x and y, to define a common basis
- · Notationally the same,

$$\mathbf{a} = x_a \mathbf{x} + y_a \mathbf{y}$$

 But we often don't bother to mention the basis vectors, and write the vector as a = (x_a,y_a), or

$$\mathbf{a} = egin{bmatrix} x_a \ y_a \end{bmatrix}$$

Vector Multiplication: Dot Products

 Given two vectors a and b, the dot product, relates the lengths of a and b with the angle φ between them:

$$\mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| \, ||\mathbf{b}|| \cos \phi$$

 Sometimes called the scalar product, as it produces a scalar value

$$\mathbf{a} o \mathbf{b} = ||\mathbf{a}|| \cos \phi = \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{b}||}$$

Dot Products are Associative and Distributive

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a},$$

 $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c},$
 $(k\mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (k\mathbf{b}) = k\mathbf{a} \cdot \mathbf{b}$

 And, we can also define them directly if a and b are expressed in Cartesian coordinates:

$$\mathbf{a} \cdot \mathbf{b} = x_a x_b + y_a y_b$$

3D Vectors

- Same idea as 2D, except these vectors are defined typically with a basis of three vectors
 - · Still just a direction and a magnitude
 - · But, useful for describing objects in three-dimensional space
- · Most operations exactly the same, e.g. dot products:

$$\mathbf{a} \cdot \mathbf{b} = x_a x_b + y_a y_b + z_a z_b$$

Cross Products

• In 3D, another way to "multiply" two vectors is the **cross product**, $\mathbf{a} \times \mathbf{b}$:

$$\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \phi$$

- $\|\mathbf{a} \times \mathbf{b}\|$ is always the area of the parallelogram formed by a and b, and a × **b** is always in the direction perpendicular
- · Cross products distribute, but order

$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$$

 $\mathbf{a} \times (k\mathbf{b}) = k(\mathbf{a} \times \mathbf{b})$

$$\mathbf{a} \times \mathbf{b} = -(\mathbf{b} \times \mathbf{a})$$

Cross Products

• Since the cross product is always orthogonal to the pair of vectors, we can define our 3D Cartesian coordinate space with it:

$$\mathbf{x} = (1,0,0)$$

$$\mathbf{x} \times \mathbf{y} = +\mathbf{z},$$

$$y = (0,1,0)$$

$$\mathbf{y} \times \mathbf{x} = -\mathbf{z},$$

$$z - (0.0)$$

$$\mathbf{y} \times \mathbf{z} = +\mathbf{x},$$

$$\mathbf{z} = (0,0,1)$$

$$\mathbf{y} \times \mathbf{z} = +\mathbf{x},$$

$$\mathbf{z} \times \mathbf{x} = +\mathbf{y}$$

• In practice though (and the book derives this), we use the following to compute cross products:

$$\mathbf{a} \times \mathbf{b} = (y_a z_b - z_a y b, z_a x_b - x_a z_b, x_a y b - y_a x_b)$$

Orthonormal Bases

- Frequently, we will use three arbitrary vectors to define a coordinate space relative to an object.
- Vectors u. v. and w define an orthonormal basis if

$$||\mathbf{u}|| = ||\mathbf{v}|| = ||\mathbf{w}|| = 1$$

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{u} = 0$$

Constructing Orthonormal Bases from a Single Vector

- · Say you have a single direction a and want an orthonormal basis that aligns with it
- · First, make a into a unit vector w

$$\mathbf{w} = \frac{\mathbf{a}}{||\mathbf{a}||}$$

• Then, choose any vector t that is not collinear with w

$$\mathbf{u} = \frac{\mathbf{t} \times \mathbf{w}}{||\mathbf{t} \times \mathbf{w}||}$$

• Once \mathbf{w} and \mathbf{u} are defined, \mathbf{v} is simply: $\mathbf{v} = \mathbf{w} \times \mathbf{u}$

Constructing Orthonormal Bases from a Pair of Vectors

• Given two vectors a and b, which might not be orthonormal to begin with:

$$\mathbf{w} = \frac{\mathbf{a}}{||\mathbf{a}||}$$

$$\mathbf{u} = \frac{\mathbf{b} \times \mathbf{w}}{\|\mathbf{b} \times \mathbf{w}\|},$$

$$\mathbf{v} = \mathbf{w} \times \mathbf{u}$$

• In this case, w will align with a and v will be the closest vector to **b** that is perpendicular to **w**

Lec09 Required Reading

• FOCG, Ch. 4.1-4.4