Introduction to machine learning

Human Body Temperature Distribution According to Their Emotional State

Human emotions and postures

Source: "Recognizing Emotions Expressed by Body Pose: a Biologically Inspired Neural Model" by Schindler et al, Neural Networks, 2008, https://goo.gl/kJ3BNg

Threat Perception in Real Time Security Systems

- Can we recognize emotions
 - from posture and thermographs?
 - of an individual in a group or crowd?
- Can we link recognized emotions to predict possible threat from an individual in a crowd monitored using thermographs and gait analysis from video cameras?

Threat Perception in Real Time Security Systems

- Desired features of an algorithm
 - Programmable/ Automate
 - Realistic computation time
 - Accurate and Precise, independent of data accuracy/precision
- Considerations for the data
 - Required accuracy and precision in thermograph and video resolution, magnification
- How can we automate/program this task?
 - ➤ Possibly embed this into camera chip and link it to the security system?

See: *Multi-sensor Surveillance Systems: The Fusion Perspective, edited by* Gian Luca Foresti, Carlo S. Regazzoni, Pramod K. Varshney, Google books URL: https://goo.gl/m10vAG

Outline

- What is Machine Learning?
- What machine learning can do?
- Machine learning models/algorithms
- Design of Machine Learning Study
- Goals and Objectives of This Module
- Summary and Comments

What is "Machine Learning"?

- Algorithms and techniques used for data analytics
- Studies how to <u>automatically learn</u> to make accurate predictions based on past observations
- Machine learning is <u>programming</u> computers to optimize a performance criterion by tuning set of parameters. These tuned programs then perform same task on unseen data.

Machine Learning is used when...

- Human expertise does not exist
 - Navigating on Mars
- Humans are unable to explain their expertise
 - speech recognition
 - mine detection
- Solution changes or evolves in time
 - routing on a computer network
- Solution needs to be adapted to particular cases
 - user biometrics, virtual agent based solutions)

Applications

- Retail: Market basket analysis, Customer relationship management (CRM)
- Finance: Credit scoring, fraud detection
- Manufacturing: Optimization, troubleshooting
- Medicine: Medical diagnosis, Prognosis
- Telecommunications: Quality of service optimization
- Bioinformatics: Motifs, alignment
- Web mining: Search engines
- And many more....

Algorithms

- The success of machine learning system also depends on the algorithms.
- The algorithms control the search to find and build the knowledge structures.
- The learning algorithms should extract useful information from training examples.

Machine Learning Algorithms

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Supervised Learning

- Learning from examples
- We are given attributes,
 X and targets y
- knowledgeable external supervisor
 - Regression
 - Classification
- Decision trees
- Random forest

Regression: Examples

Reading your mind

 Happiness state is related to brain region intensities

Predicting stock prices

- Depends on
 - Recent stock prices
 - News Events
 - Related commodities

Classification: Examples

Credit scoring

 Differentiating between low-risk and high-risk customers from their income and

Outlook of the day and Weather derivatives

Classification: Applications

Also known as Pattern recognition

- Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- Character recognition: Different handwriting styles.
- Speech recognition: Temporal dependency.
- Use of a dictionary or the syntax of the language.
- Sensor fusion: Combine multiple modalities; eg, visual (lip image) and acoustic for speech
- Medical diagnosis: From symptoms to illnesses
- Web Advertising: Predict if a user clicks on an ad on the Internet.

Unsupervised Learning

- Learning from examples
- We are given only attributes, X and no targets
 - Clustering
- Finding association (in features)
- Image compression
- Probability distribution estimation
- Dimension reduction

Document Clustering and Text Mining

Lingo4G: Large-scale text clustering

- Topic discovery
- Document clustering
- Document retrieval
- No external taxonomies
- Scalable

Image source: https://get.carrotsearch.com/lingo4g/latest/doc/#explorer-results-view

Learning Associations

Basket analysis:

 $P(Y \mid X)$ probability that somebody who buys X also buys Y where X and Y are products/services.

Example: P (chips | beer) = 0.7

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Image Object tectogration It is a source separation

 Recognize objects in the image

 Recognize source/s in a mixed music signal

Reinforcement learning

- Mimics intelligent system
- Observers interaction of environment and system actions
- Optimize goal/rewards
- Continuous, self-learning
- It is not a method but a process as a whole to build knowledge
- Corrective action even if system sees a new situation

mage Source: http://www.33rdsquare.com/2015/05/demis-hassabis-theory-of-everything.html

- Applications
 - Decision making
 - Robot, Chess machine
 - Optimal control theory
 - Stochastic approximations

Machine Learning and Traditional Statistics

Machine Learning

- Emphasize predictions, usually no super-population model specified
- Evaluates results via prediction performance
- Concern for overfitting but not model complexity per se

Traditional Statistics

- Emphasizes super-population inference
- Focuses on a-priori hypotheses
- Simpler models preferred over complex ones (parsimony), even if the more complex models perform slightly better

Machine Learning and Traditional Statistics

Machine Learning

- Emphasis on performance
- Generalizability is obtained through performance on novel datasets
- Concern over performance and robustness

Traditional Statistics

- Emphasis on parameter interpretability
- Statistical modelling or sampling assumptions connects data to a population of interest
- Concern over assumptions and robustness

Machine learning design study: Data science process

Source: "Doing data science" by Schutt, R and O'Neil, C

Machine learning design study: Data scientist role

Source: "Doing data science" by Schutt, R and O'Neil, C

Course content: Machine learning Algorithms

Supervised Learning

- Regression
 - Ordinary Least Squares
 - Logistic
- Decision Trees
- Random Forests

Classification

- K-Nearest Neighbour (KNN)
- Logistic Regression
- Trees
- Support Vector Machine (SVM)
- Naïve-Bayes

Unsupervised Learning

- Clustering & Dimensionality Reduction
 - K-means
 - SVD
 - PCA

- Association Analysis
 - Apriori
 - Market basket analysis
- Hidden Markov Model

Categorical

Course philosophy: Always use case study and ..

Core **Visual** Algorithm Concept **Advanced Practical Implement Concepts**

Resources: Datasets

- UCI Repository: http://www.ics.uci.edu/~mlearn/MLRepository.html
- UCI KDD Archive: http://kdd.ics.uci.edu/summary.data.application.html
- Statlib: http://lib.stat.cmu.edu/
- Delve: http://www.cs.utoronto.ca/~delve/

Resources: Journals

- Journal of Machine Learning Research <u>www.jmlr.org</u>
- Machine Learning
- IEEE Transactions on Neural Networks
- IEEE Transactions on Pattern Analysis and Machine Intelligence
- Annals of Statistics
- Journal of the American Statistical Association

• ...

Resources: Conferences

- International Conference on Machine Learning (ICML)
- European Conference on Machine Learning (ECML)
- Neural Information Processing Systems (NIPS)
- Computational Learning
- International Joint Conference on Artificial Intelligence (IJCAI)
- ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)
- IEEE Int. Conf. on Data Mining (ICDM)

Summary

- We had a broad overview of
 - machine learning philosophy
 - Different algorithms
 - Application fields of machine learning
 - Examples
- Provided links to datasets, journals and conferences related to the machine learning.
- We also introduced
 - Course content
 - recommended approach to master machine learning techniques

Thank you!