

Inhalt

Referat: Schandry, Kapitel 7 - Aufteilung und Struktur des peripheren Nervensystems

- PNS vs. ZNS
- Rückenmark
- Sympatikus & Parasympatikus
- Reflexe
- Nervenfasertypen & Neurotransmitter
- Hirnnerven

Multiple Sklerose (MS)

- 1. Symptome
- 2. Verlauf/ Diagnostik
- 3. Geschichte
- 4. Ursachen
- 5. Medizinische Behandlung von MS

Gruppenarbeit: Multiple Sclerosis Review

MS verstehen - Ursachen der MS

CAU

Christian-Albrechts-Universität zu Kiel

Philosophische Fakultä

Was ist MS?

- MS = Multiple ("mehrere") Sklerose ("Verfestigungen"/"Narben")
- neurodegenerative Autoimmun-Erkrankung
- neurologische Symptome u.a.:
 - Funktionsausfälle (z.B. Lähmungen, Seh- oder Sprachstörungen)
 - störende Sinnesempfindungen ("Missempfindungen")
 - Kognitive Störungen
 - Fatigue
 - Schmerzen
- -> zeitlich begrenzt ("Schübe") oder progredienter Verlauf

Diagnostik: Die 4(+1) Arten von MS

Klinisch isoliertes Syndrom (KIS)

- allein noch <u>keine MS</u>
- neurologische Symptome wie bei MS Schub
- wenn Symptomdauer > 24h -> mögliches Anzeichen für MS
- bei 85% der Patient*innen später schubförmig remittierende MS (RRMS)

Diagnostik: Die 4 Arten von MS

Christian-Albrechts-Universität zu Kiel

CAU

Klinisch isoliertes Syndrom (KIS)

- allein noch <u>keine MS</u>
- neurologische Symptome wie bei MS Schub
- wenn Symptomdauer > 24h -> mögliches Anzeichen für MS
- bei 85% der Patient*innen später schubförmig remittierende MS (RRMS)

1. schubförmig remittierende MS (relapsing-remitting MS = RRMS)

- häufigste Art der MS (85% der MS-Fälle sind RRMS)
- Schübe mit neurologischen Symptomen, klingen nach Tagen oder Wochen ab oder bilden sich völlig zurück

Diagnostik: Die 4 Arten von MS

C A U

Christian-Albrechts-Universität zu Kiel

Philosophische Fakultät

1. schubförmig remittierende MS (relapsing-remitting MS = RRMS)

- häufigste Art der MS
- Schübe mit neurologischen Symptomen, klingen nach Tagen oder Wochen ab oder bilden sich völlig zurück

2. sekundär progrediente MS (secondary-progressive MS = SPMS)

 wenn nach Jahren der RRMS Schübe selten / nicht mehr auftreten und Symptome schlimmer werden

Diagnostik: Die 4 Arten von MS

Christian-Albrechts-Universität zu Kiel
Philosophische Fakultät

CAU

- 3. primär progrediente MS (primary-progressive MS = PPMS)
 - fortschreitende Verschlechterung ohne Schübe
 - selten (10%), meist erst bei höherem Alter, eher bei Männern
- 4. progredient-schubförmige MS (progressive-relapsing MS = PRMS)
 - fortschreitende Verschlechterung mit Schüben

Klinischer Verlauf von MS

Diagnostik - McDonald Kriterien

CAU Christian-Albrechts-Universität zu Kiel

Hinweise auf MS-**Erkrankung:**

- Anzahl der Schübe
- ggf. Läsionen im MRT
- diagnostische Marker im Liquor:
 - Können oligoklonale Banden nachgewiesen werden?
 - Hinweis auf Entzündungsprozess im 7NS

Abbildung 2 Grafische Darstellung der McDonald Kriterien. CSF = Liquor

Diagnostik - MRT Scans

CAU

Christian-Albrechts-Universität zu Kiel

Philosophische Fakultät

Abbildung 6

Saggitalschnitt des Gehirns einer Patientin mit MS. Dawson's Fingers (periventrikuläre Demyelinisierungsherde) markiert durch pinke Pfeile.

- 1916 erstmals beschrieben von James Walker Dawson
- Auslöser der Läsionen:

 autoreaktive T-Lymphozyten,
 die die Blut-Hirn-Schranke
 durchbrechen und ins
 Hirngewebe eindringen
- -> Entzündungsprozess
- –> Zerstörung derMyelinisierung & der Axone

Gaillard, o.D.

Diagnostik - MRT Scans

Abbildung 7
MRT-Scans eines Patienten mit RRMS. Fokale Läsionen erscheinen im Scan weiß

Rovira et al., 2015

Diagnostik - MRT Scans

Christian-Albrechts-Universität zu Kiel

Philosophische Fakultät

Abbildung 8 MRT-Scans eines Patienten mit Multipler Sklerose.

Rovira et al., 2015 Baseline

nach 6 Jahren

Geschichte der MS-Forschung Entdeckung der Erkrankung

Christian-Albrechts-Universität zu Kiel

Philosophische Fakultät

Abbildung 3 Augustus d'Esté (1794–1848)

Abbildung 4
Eislauf-Unfall der 16-Jährigen Lidwina von

Geschichte der MS-ForschungJean-Martin Charcot

Christian-Albrechts-Universität zu Kiel

Philosophische Fakultä

- 1868 erste umfassende Beschreibung der MS durch den Neurologen Jean-Martin Charcot
- Identifikation als eigenständige Erkrankung
- trotzdem bis in die 1960er:
 Annahme von psychischen
 Gründen für MS
- Idee: MS ist eigentlich eine "Konversionshysterie"

Abbildung 5

Männer, die auf Frauen starren: Charcot führt eine "hysterische" Patientin in der Salpétière vor

Bildarchiv Preußischer Kulturbesitz, o. D.

Medizinische Behandlung von MS

CAU

Christian-Albrechts-Universität zu Kiel

Schub-Prophylaxe:

- klassischer Ansatz: Therapie mit beta-Interferonen
 - Problem: grippeähnliche Symptome, Resistenzen
- modernere Medikamente sind wirksamer (Reduktion) von Schüben: 75%)
 - Problem: sehr starken Nebenwirkungen

Behandlung eines akuten Schubs:

- intravenöse Behandlung mit hochdosiertem Cortison
- "Blutwäsche" (Plasmapharese und Immunadsorption)
 - weitgehend schmerzfrei & nebenwirkungsarm
 - nur bei schweren Schüben vorgesehen

Dorst, 2016

Impact factor

CAU

Christian-Albrechts-Universität zu Kiel

Philosophische Fakultät

1. Impact factor (IF) bestimmt wie häufig Paper zitiert werden (Bsp: Nature 2017)

$$ext{IF}_{2017} = rac{ ext{Citations}_{2017}}{ ext{Publications}_{2016} + ext{Publications}_{2015}} = rac{74090}{880 + 902} = 41.577.$$

Review: Multiple Sclerosis

Philosophische Fakultät

Gruppenarbeit mit 3 Räumen:

- 1. Symptome und Diagnose
- Krankheits-Mechanismen
- Umweltfaktoren

Multiple sclerosis

Alastair Compston, Alasdair Coles

Lancet 2008; 372: 1502-17

Department of Clinical Neurosciences, University of Cambridge Clinical School, Addenbrooke's Hospital, Cambridge, UK (A Compston FRCP, A Coles FRCP)

Correspondence to:
Dr Alasdair Coles, University of
Cambridge Clinical School,
Addenbrooke's Hospital, Hills
Road, Cambridge CB2 2QQ, UK
ajc1020@medschl.cam.ac.uk

Multiple sclerosis is primarily an inflammatory disorder of the brain and spinal cord in which focal lymphocytic infiltration leads to damage of myelin and axons. Initially, inflammation is transient and remyelination occurs but is not durable. Hence, the early course of disease is characterised by episodes of neurological dysfunction that usually recover. However, over time the pathological changes become dominated by widespread microglial activation associated with extensive and chronic neurodegeneration, the clinical correlate of which is progressive accumulation of disability. Paraclinical investigations show abnormalities that indicate the distribution of inflammatory lesions and axonal loss (MRI); interference of conduction in previously myelinated pathways (evoked electrophysiological potentials); and intrathecal synthesis of oligoclonal antibody (examination by lumbar puncture of the cerebrospinal fluid). Multiple sclerosis is triggered by environmental factors in individuals with complex genetic-risk profiles. Licensed disease modifying agents reduce the frequency of new episodes but do not reverse fixed deficits and have questionable effects on the long-term accumulation of disability and disease progression. We anticipate that future studies in multiple sclerosis will provide a new taxonomy on the basis of mechanisms rather than clinical empiricism, and so inform strategies for improved treatment at all stages of the disease.

Aufgabe 1: Symptome und Diagnose

CAU

Christian-Albrechts-Universität zu Kiel

Tabelle 1

Ausschnitt aus Tabelle 1 aus dem Paper von Compston & Coles (2008, S.1503)

	Symptoms	Signs
Cerebrum	Cognitive impairment	Deficits in attention, reasoning, and executive function (early); dementia (late)
	Hemisensory and motor	Upper motor neuron signs
	Affective (mainly depression)	
	Epilepsy (rare)	
	Focal cortical deficits (rare)	
Optic nerve	Unilateral painful loss of vision	Scotoma, reduced visual acuity, colour vision, and relative afferent pupillary defect
Cerebellum and cerebellar pathways	Tremor	Postural and action tremor, dysarthria
	Clumsiness and poor balance	Limb incoordination and gait ataxia
Brainstem	Diplopia, oscillopsia	Nystagmus, internuclear and other complex ophthalmoplegias
	Vertigo	
	Impaired swallowing	Dysarthria
	Impaired speech and emotional lability	Pseudobulbar palsy
	Paroxysmal symptoms	
Spinal cord	Weakness	Upper motor neuron signs
	Stiffness and painful spasms	Spasticity
	Bladder dysfunction	
	Erectile impotence	
	Constipation	
Other	Pain	
	Fatigue	
	Temperature sensitivity and	
	exercise intolerance	

Abschnitt "Diagnosis" S. 1502-1503:

- 1a) Nennt einige der Hauptsymptome der MS und deren Verortung im Nervensystem (Tabelle 1).
 - Was ist das Lhermitte-Symptom?
 - Was ist das Uthoff-Phänomen?
 - Haben Sie Ideen zur Erklärung der beiden Phänomene?

Aufgabe 1: Symptome und Diagnose

C A U

Christian-Albrechts-Universität zu Kiel

Abschnitt "Diagnosis" S. 1502-1503:

1b) Welche Rolle spielt das MRT bei der Diagnosestellung?

Abbildung 10MRT-Scans eines Patienten mit RRMS

Rovira et al., 2015

Aufgabe 2: Krankheits-Mechanismen

2a) Abschnitte "Disease mechanism" und "Pathophysiology", S. 1506-1509: Was sind das zentrale Kennzeichen von MS und was sind die daran beteiligten Mechansimen?

Abbildung 11 eGFP-fluoreszente Oligodendrozyten im Corpus Callosum

Aufgabe 2: Krankheits-Mechanismen

- 2b) Abschnitte "Disease mechanism" und "Pathophysiology",
- S. 1506-1507 & 1507 (ganz unten links) -1509:

Erklärt die dargestellten klinischen Verlaufsformen der MS und die zugrundeliegenden Prozesse anhand der Abbildung.

Welche Erklärungen werden angeboten für:

- das Lhermitte-Symptom?
- das Uthoff-Phänomen?

Aufgabe 3: Umweltfaktoren

Abschnitt "environmental factor", S. 1504 - 1505:

3a) Wo finden sich regionale Häufungen von MS?

3b) Welche Rolle spielt dabei das Alter?

3c) Was ist die Hygiene-Hypothese?

Compston & Coles, 2008, S.1505

Folgen im Gehirn

"Das Markenzeichen der demyelinisierenden Erkrankung ist die Bildung der sklerotischen Plaques, die das Endstadium eines Prozesses darstellt."

Nächste Woche

- Referat: Das visuelle System
- Vorbereitung auf die n\u00e4chste Sitzung:
 Schauen Sie sich den Artikel von Zeki et al. (1999) zuhause an und zwar...
 - Vornamen mit A-L: die psychophysikalische Untersuchung und Ergebnisse
 - Vornamen mit M-Z: die fMRI Untersuchung und Ergebnisse

Literatur

- Compston, A. & Coles, A. (2008). Multiple sclerosis. The Lancet, 372(9648), 1502–1517. doi: 10.1016/s0140-6736(08)61620-7
- Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A. & Hudspeth, A. J. (2012). *Principles of Neural Science (Principles of Neural Science (Kandel))* (5. Aufl.). New York, NY, USA: McGraw-Hill Education Ltd.
- Schandry, R. (2016). Aufbau und Funktion des Nervensystems. In *Biologische Psychologie* (4. überarbeitete Auflage, S. 109–162). Weinheim, Deutschland: Beltz Verlag.
- Schandry, R. (2016). Steuerung vegetativer Funktionen. In *Biologische Psychologie* (4. überarbeitete Auflage, S. 163–177). Weinheim, Deutschland: Beltz Verlag.

Abbildungen

- Compston, A. & Coles, A. (2008). Multiple sclerosis. The Lancet, 372(9648), 1502–1517. doi: 10.1016/s0140-6736(08)61620-7
- Dorst, J. (2016). Immunadsorptionsgerät [Fotografie]. Abgerufen von https://www.freseniusmedicalcare.com/fileadmin/data/de/images/Healthcare_Professionals/Therapeutic_aphe resis/DE/IA_Fachartikel_Johannes_Dorst-Immunapherese-Multiple_Sklerose-2016.pdf
- Gaillard, F. (o. D.). Multiple sclerosis [MRT-Scan]. Abgerufen von https://radiopaedia.org/cases/ms02
- Lidwina von Schiedam. (o. D.). [Holzschnitt]. https://multiple-sclerosis-research.org/2011/06/history-of-ms-2-st-lidwina-of-schiedam-1380-1433/
- NHLinfo. (o. D.). Eine T-Helferzelle unterstützt die Bildung von Antikörpern [Illustration]. Abgerufen von https://www.nhlinfo.de/exec/start?site=/infopool/321.htm&check=0
- Richter, N. (o. D.). eGFP-fluoreszente Oligodendrozyten im Corpus Callosum [Fotografie]. Abgerufen von https://www.dasgehirn.info/grundlagen/glia/oligodendrozyten-tankstellen-der-nervenbahnen
- Rochard, J. (1815). portrait miniature of Sir Augustus Frederick d'Este [Ölgemälde].
 https://en.wikipedia.org/wiki/Augustus_d%27Este#/media/File:Detail_from_Augustus_d'Este_young_(cropped).jpg
- Rovira, A., Wattjes, M. P., Tintoré, M., Tur, C., Yousry, T. A., Sormani, M., et al. (2015). MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis establishing disease prognosis and monitoring patients. Nature Reviews Neurology, 11(10), 597–606. doi: 10.1038/nrneurol.2015.157