Introduction to Distributed/Federated Machine Learning

Li Ju
PhD student@TDB
li.ju@it.uu.se

The Optimization Problem $\arg_{\theta} \min \sum_{n} \ell(x_n; \theta)$

n=1

How to solve: first order methods, e.g. gradient descent:

Iteratively, at step t:
$$\theta_t = \theta_t - \eta \nabla_{\theta} \sum_{n=1}^N \ell(x_n; \theta_{t-1})$$

* In practice, we use stochastic gradient descent (sgd):

$$\nabla_{\theta} \sum_{n=1}^{N} \ell(x_n; \theta) \approx \nabla_{\theta} \sum_{x \in \mathcal{B}} \ell(x; \theta)$$

where $\mathcal{B} \sim \{x_n\}_{n=1}^N$

Why Distributed ML

 $\arg_{\theta} \min \sum_{n=1}^{N} \ell(x_n; \theta)$

Biggggger models and datasets bring

better performance (Scaling Law)

Organization ↑↓	Model ↑↓	License ↑↓	Parameters (B) ↑↓
S	о3	Proprietary	
Α\	Claude 3.7 Sonnet	Proprietary	
lx	Grok-3	Proprietary	
x	Grok-3 Mini	Proprietary	
9	o3-mini	Proprietary	
9	o1-pro	Proprietary	
S	о1	Proprietary	
G	Gemini 2.0 Flash Thinking	Proprietary	
S	o1-preview	Proprietary	
3	DeepSeek-R1	Open @	671
9	GPT-4.5	Proprietary	-

Why Distributed ML

Physical infeasibility

GPU RAM required:

~6 TB (batch size: 512)

Best GPU:

Nvidia H100, with 80GB

We need ~ 80 H100

Organization ↑↓	Model ↑↓ License ↑↓		Parameters (B) ↑↓	
\$	о3	Proprietary	-	
A\	Claude 3.7 Sonnet	Proprietary	-	
×í	Grok-3	Proprietary	-	
×i	Grok-3 Mini	Proprietary	-	
\$	o3-mini	Proprietary	-	
\$	o1-pro	Proprietary	-	
\$	o1	Proprietary	-	
G	Gemini 2.0 Flash Thinking	Proprietary	-	
\$	o1-preview	Proprietary	-	
©	DeepSeek-R1	Open @	671	
9	GPT-4.5	Proprietary	-	

$\arg_{\theta} \min \sum \ell(x_n; \theta)$

How to do Distributed ML

Data parallelization: split batch across M GPUs $\mathcal{B} = \cup_{m=1}^M \mathcal{B}_m$

Allreduce

Ring Allreduce

Tree Allreduce

$$\arg_{\theta} \min \sum_{n=1}^{N} \ell(x_n; \theta)$$

Model parallelization?

GPU 0

GPU 1

$$\arg_{\theta} \min \sum_{n=1}^{N} \ell(x_n; \theta)$$

Model parallelization?

This is **NOT** model parallelization!

Workloads on GPUs depend on each other...

It is called workload partitioning.

GPU 0

GPU 1

$\arg_{\theta} \min \sum_{n=1}^{N} \ell(x_n; \theta)$

How to do Distributed ML

Pipeline parallelization:

^{*} The batch of data needs to be split into mini batches.

Model Parallelization:

- Zero Redundancy Optimizer (ZeRO)
- Tensor parallelization
- ...

ZeRO is the most common approach.

* The batch of data needs to be split into M mini batches.

3D-parallelization

Data, pipeline and model

parallelization are orthogonal to

each other:

Backend

Taking PyTorch as an example:

Backend

gloo

MPI: CPU

NCCL: Nvidia GPU

GLOO: Both (partially)

Ī	Device	СРИ	GPU	СРИ	GPU	СРИ	GPU
	send	✓	×	✓	?	×	✓
•	recv	✓	×	✓	?	×	✓
	broadcast	✓	✓	✓	?	×	✓
	all_reduce	✓	✓	✓	?	×	✓
	reduce	✓	×	✓	?	×	✓
	all_gather	✓	×	✓	?	×	✓
		,		,			,

nccl

Why Federated ML

Intrinsic distributed nature + privacy concern

How to do Federated ML

- I. Initialize a seed model
- II. Iteratively:
 - 1. Broadcast model params
- 2. Training locally
- 3. Collecting local models
- Aggregating and updating model

How to do Federated ML

Algorithm 1 Federated Averaging (FEDAVG)

```
1: procedure FEDAVG (\mathbf{x}^{(0,0)}, \eta)

2: for r = 0, ..., R-1 do

3: on client for m \in [M] in parallel do

4: \mathbf{x}_{m}^{(r,0)} \leftarrow \mathbf{x}^{(r,0)} \triangleright broadcast current iterate

5: for k = 0, ..., K-1 do

6: \xi_{m}^{(r,k)} \sim \mathcal{D}_{m}

7: \mathbf{g}_{m}^{(r,k)} \leftarrow \nabla f(\mathbf{x}_{m}^{(r,k)}; \xi_{m}^{(r,k)})

8: \mathbf{x}_{m}^{(r,k+1)} \leftarrow \mathbf{x}_{m}^{(r,k)} - \eta \cdot \mathbf{g}_{m}^{(r,k)} \triangleright client update

\mathbf{x}^{(r+1,0)} \leftarrow \frac{1}{M} \sum_{m=1}^{M} \mathbf{x}_{m}^{(r,K)} \triangleright server averaging
```

K=1: Parameter-server data parallelization / Distributed SGD

K>>1: Federated learning

Why FML is significant

Intrinsic mathematical issues: Distributed

SGD is equivalent to SGD, but FedAvg is not:

- Different local steps
- Size heterogeneity of local data
- Statistical heterogeneity of local data
- Convergence analysis
- ...

Why FML is significant

Practical/engineering issues:

- Extremely bottlenecked by communication
- Straggler problem
- Asynchronized FML
- Personalization
- Machine Unlearning (quitting participant)
- -

Any Questions?