Decomposing Complete Graphs into Disconnected Graphs with Six Edges

Bryan Freyberg

University of Minnesota Duluth, USA frey0031@d.umn.edu

ICTCGT at Vellelar College for Women January 10, 2024

► Let K be a simple graph

- Let K be a simple graph
- ▶ A decomposition of K is a collection of pairwise edge disjoint subgraphs $\mathcal{G} = \{G_0, G_1, ..., G_t\}$ such that every edge of K belongs to exactly one member of \mathcal{G}

- ▶ Let K be a simple graph
- ▶ A *decomposition* of K is a collection of pairwise edge disjoint subgraphs $\mathcal{G} = \{G_0, G_1, ..., G_t\}$ such that every edge of K belongs to exactly one member of \mathcal{G}
- ▶ If every subgraph in \mathcal{G} is isomorphic to a given graph G, then we say that K allows a G-decomposition, or (K, G)-design

- ▶ Let K be a simple graph
- ▶ A decomposition of K is a collection of pairwise edge disjoint subgraphs $\mathcal{G} = \{G_0, G_1, ..., G_t\}$ such that every edge of K belongs to exactly one member of \mathcal{G}
- ▶ If every subgraph in \mathcal{G} is isomorphic to a given graph G, then we say that K allows a G-decomposition, or (K, G)-design
- ▶ If $K \cong K_n$, then we call the decomposition a G-design of order n

A G-design of Order 9 for $G \cong C_3 \cup P_4$

Cyclic Designs

- ightharpoonup Let $V(K_n) = \mathbb{Z}_n$
- ▶ A G-design is *cyclic* if the permutation $v \mapsto v + 1$ on $V(K_n)$ is an automorphism of the design
- ▶ We call this *clicking*

Cyclic P₃-design of order 5

Cyclic P₃-design of order 5

 $\{1,0,3\}$

Cyclic P₃-design of order 5

{1, 0, 3} {2, 1, 4}

Cyclic P₃-design of order 5

 $\{1,0,3\}$ $\{2, 1, 4\}$

 ${3,2,0}$

Cyclic P₃-design of order 5

```
\{1,0,3\}
```

 $\{2, 1, 4\}$

 ${3,2,0}$

 $\{4, 3, 1\}$

Cyclic P₃-design of order 5

```
\{1,0,3\}
```

 $\{2, 1, 4\}$

 ${3,2,0}$

 ${4,3,1}$

 ${3,2,0}$

Small Graphs

- ▶ If $|E(G)| \le 5$, then the spectrum of n such that a G-design of order n exists is known
 - ▶ Ex. If $G \cong C_3$, there exists a G-design or order n (STS(n)) iff $n \equiv 1,3 \pmod{6}$

Small Graphs

- ▶ If $|E(G)| \le 5$, then the spectrum of n such that a G-design of order n exists is known
 - ▶ Ex. If $G \cong C_3$, there exists a G-design or order n (STS(n)) iff $n \equiv 1,3 \pmod{6}$
- ► |E(G)| = 6
 - |V(G)| = 4 (Hanani, 1961)
 - ightharpoonup |V(G)| = 5 (Bermond, Huang, Rosa, Sotteau, 1980 & Kang, Wang, 2004)
 - |V(G)| = 6 (Yin, Gong, 1998)
 - |V(G)| = 7 (Trees: Huang, Rosa, 1978)

Small Graphs

- ▶ If $|E(G)| \le 5$, then the spectrum of n such that a G-design of order n exists is known
 - ▶ Ex. If $G \cong C_3$, there exists a G-design or order n (STS(n)) iff $n \equiv 1,3 \pmod{6}$
- ► |E(G)| = 6
 - |V(G)| = 4 (Hanani, 1961)
 - |V(G)| = 5 (Bermond, Huang, Rosa, Sotteau, 1980 & Kang, Wang, 2004)
 - |V(G)| = 6 (Yin, Gong, 1998)
 - |V(G)| = 7 (Trees: Huang, Rosa, 1978)
 - $|V(G)| \ge 7$ (Disconnected graphs)
 - ► Forests (F, Peters 2023+)
 - Unicyclic graphs (Ahern, F, Froncek, Keranen, 2022+)

► Let $V(K_n) = \{0, 1, ..., n-1\}$

- ► Let $V(K_n) = \{0, 1, ..., n-1\}$
- ► The *length* of edge $xy \in E(K_n)$ is min(|x-y|, n-|x-y|)

- ► Let $V(K_n) = \{0, 1, ..., n-1\}$
- ▶ The *length* of edge $xy \in E(K_n)$ is min(|x y|, n |x y|)
- ▶ If the length of xy is $n |x y| \ge 2$, then xy is a *wrap-around* edge

- ► Let $V(K_n) = \{0, 1, ..., n-1\}$
- ▶ The *length* of edge $xy \in E(K_n)$ is min(|x y|, n |x y|)
- ▶ If the length of xy is $n |x y| \ge 2$, then xy is a *wrap-around* edge

Edge lengths of K₇

length 1

- Let $V(K_n) = \{0, 1, ..., n-1\}$
- ▶ The length of edge $xy \in E(K_n)$ is min(|x-y|, n-|x-y|)

Edge lengths of K7

- length 1
- ▶ length 2

- Let $V(K_n) = \{0, 1, ..., n-1\}$
- ▶ The *length* of edge $xy \in E(K_n)$ is min(|x y|, n |x y|)

Edge lengths of K7

- length 1
- ▶ length 2
- length 3

 \blacktriangleright Notice that edge length is preserved by the permutation $\nu\mapsto\nu+1$ on $V(K_n)$

- ▶ Notice that edge length is preserved by the permutation $v \mapsto v + 1$ on $V(K_n)$
- Also, when n is odd, edge length partitions $E(K_n)$ into $\frac{n-1}{2}$ (the number of lengths) sets of size n (the number of edges of each length)

- ▶ Notice that edge length is preserved by the permutation $v \mapsto v + 1$ on $V(K_n)$
- ▶ Also, when n is odd, edge length partitions $E(K_n)$ into $\frac{n-1}{2}$ (the number of lengths) sets of size n (the number of edges of each length)

- ▶ Notice that edge length is preserved by the permutation $v \mapsto v + 1$ on $V(K_n)$
- ▶ Also, when n is odd, edge length partitions $E(K_n)$ into $\frac{n-1}{2}$ (the number of lengths) sets of size n (the number of edges of each length)

- ▶ Notice that edge length is preserved by the permutation $v \mapsto v + 1$ on $V(K_n)$
- ▶ Also, when n is odd, edge length partitions $E(K_n)$ into $\frac{n-1}{2}$ (the number of lengths) sets of size n (the number of edges of each length)

- ▶ Notice that edge length is preserved by the permutation $v \mapsto v + 1$ on $V(K_n)$
- ▶ Also, when n is odd, edge length partitions $E(K_n)$ into $\frac{n-1}{2}$ (the number of lengths) sets of size n (the number of edges of each length)

- ▶ Notice that edge length is preserved by the permutation $v \mapsto v + 1$ on $V(K_n)$
- ▶ Also, when n is odd, edge length partitions $E(K_n)$ into $\frac{n-1}{2}$ (the number of lengths) sets of size n (the number of edges of each length)

- ▶ Notice that edge length is preserved by the permutation $v \mapsto v + 1$ on $V(K_n)$
- ▶ Also, when n is odd, edge length partitions $E(K_n)$ into $\frac{n-1}{2}$ (the number of lengths) sets of size n (the number of edges of each length)

ρ-labeling

Let G be a simple graph with n edges. A ρ -labeling of G is a one-to-one function $f: V(G) \to \{0, 1, ..., 2n\}$ such that the set of induced edge lengths is $\{1, 2, ..., n\}$.

ρ-labeling

Let G be a simple graph with n edges. A ρ -labeling of G is a one-to-one function $f: V(G) \to \{0, 1, ..., 2n\}$ such that the set of induced edge lengths is $\{1, 2, ..., n\}$.

ρ-labeling

Let G be a simple graph with n edges. A ρ -labeling of G is a one-to-one function $f:V(G) \to \{0,1,...,2n\}$ such that the set of induced edge lengths is $\{1,2,...,n\}$.

Theorem (Rosa, 1967)

Let G be a graph with n edges. A cyclic decomposition of K_{2n+1} exists if and only if G admits a ρ -labeling.

Ordered p-labeling

A ρ-labeling of a bipartite graph G with bipartition (X, Y) is called an *ordered* ρ-labeling and denoted ρ^+ , if f(x) < f(y) for each edge xy with $x \in X$ and $y \in Y$.

Ordered p-labeling

A ρ -labeling of a bipartite graph G with bipartition (X, Y) is called an *ordered* ρ -labeling and denoted ρ^+ , if f(x) < f(y) for each edge xy with $x \in X$ and $y \in Y$.

Theorem (El-Zanati, Vanden Eynden, Punnim, 2001)

Let G be a graph with n edges which has a ρ^+ labeling. Then G decomposes K_{2nt+1} for all positive integers t.

Ordered p-labeling

A ρ -labeling of a bipartite graph G with bipartition (X, Y) is called an *ordered* ρ -labeling and denoted ρ^+ , if f(x) < f(y) for each edge xy with $x \in X$ and $y \in Y$.

Theorem (El-Zanati, Vanden Eynden, Punnim, 2001)

Let G be a graph with n edges which has a ρ^+ labeling. Then G decomposes K_{2nt+1} for all positive integers t.

▶ Bunge, Chantasartrassmee, El-Zanati, and Vanden Eynden introduced the following in 2013.

- Bunge, Chantasartrassmee, El-Zanati, and Vanden Eynden introduced the following in 2013.
- Let G be a tripartite graph with n edges and vertex tripartition $\{A, B, C\}$. A ρ-tripartite labeling of G is a ρ-labeling f that satisfies the following conditions.

- Bunge, Chantasartrassmee, El-Zanati, and Vanden Eynden introduced the following in 2013.
- Let G be a tripartite graph with n edges and vertex tripartition $\{A, B, C\}$. A ρ -tripartite labeling of G is a ρ -labeling f that satisfies the following conditions.
 - 1. f(a) < f(v) for every edge av with $a \in A$.
 - 2. For every edge bc with $b \in B$ and $c \in C$, there exists a complementary edge b'c' with $b' \in B$ and $c' \in C$ such that

$$|f(b) - f(c)| + |f(b') - f(c')| = 2n.$$

3. For all $b \in B$ and $c \in C$, we have

$$|f(b)-f(c)| \neq 2n$$
.

Example

Let G be a tripartite graph with n edges and vertex tripartition $\{A, B, C\}$. A ρ -tripartite labeling of G is a ρ -labeling f that satisfies the following conditions.

- 1. f(a) < f(v) for every edge av with $a \in A$.
- 2. For every edge bc with $b \in B$ and $c \in C$, there exists a complementary edge b'c' with $b' \in B$ and $c' \in C$ such that |f(b) f(c)| + |f(b') f(c')| = 2n.
- 3. $|f(b) f(c)| \neq 2n$ or all $b \in B$ and $c \in C$.

Theorem (Bunge et al., 2013)

Let G be a tripartite graph on n edges which admits a ρ -tripartite labeling. Then there exists a cyclic G-decomposition of K_{2nt+1} for all $t \ge 1$.

Can we take a similar approach when n is even?

Can we take a similar approach when n is even?

Let $V(K_{2n}) = \{0, 1, 2, ..., 2n - 2, \infty\}$ and G be a graph with n edges and at least one pendant edge.

Let $V(K_{2n}) = \{0, 1, 2, ..., 2n - 2, \infty\}$ and G be a graph with n edges and at least one pendant edge.

1-rotational ρ-labeling

A 1-rotational ρ -labeling of G is an embedding of G into K_{2n} such that the edge lengths form the set $\{1,2,...,n-1,\infty\}$.

Let $V(K_{2n}) = \{0, 1, 2, ..., 2n - 2, \infty\}$ and G be a graph with n edges and at least one pendant edge.

1-rotational ρ-labeling

A 1-rotational ρ -labeling of G is an embedding of G into K_{2n} such that the edge lengths form the set $\{1, 2, ..., n-1, \infty\}$.

- ► Let $V(K_{2n}) = \{0, 1, 2, ..., 2n 2, \infty\}.$
- ▶ Let G be a graph with n edges and at least one pendant edge.

1-rotational ρ-labeling

A 1-rotational ρ -labeling of G is an embedding of G into K_{2n} such that the edge lengths form the set $\{1, 2, ..., n-1, \infty\}$.

A 1-rotational P₄-design of order 6

► $(0, 2, 1, \infty)$

- ► Let $V(K_{2n}) = \{0, 1, 2, ..., 2n 2, \infty\}$.
- ▶ Let G be a graph with n edges and at least one pendant edge.

1-rotational ρ-labeling

A 1-rotational ρ -labeling of G is an embedding of G into K_{2n} such that the edge lengths form the set $\{1, 2, ..., n-1, \infty\}$.

- \triangleright $(0,2,1,\infty)$
- \blacktriangleright $(1,3,2,\infty)$

- ► Let $V(K_{2n}) = \{0, 1, 2, ..., 2n 2, \infty\}.$
- ▶ Let G be a graph with n edges and at least one pendant edge.

1-rotational ρ-labeling

A 1-rotational ρ -labeling of G is an embedding of G into K_{2n} such that the edge lengths form the set $\{1, 2, ..., n-1, \infty\}$.

- \triangleright $(0,2,1,\infty)$
- \blacktriangleright $(1,3,2,\infty)$
- \triangleright $(2,4,3,\infty)$

- ► Let $V(K_{2n}) = \{0, 1, 2, ..., 2n 2, \infty\}.$
- ▶ Let G be a graph with n edges and at least one pendant edge.

1-rotational ρ-labeling

A 1-rotational ρ -labeling of G is an embedding of G into K_{2n} such that the edge lengths form the set $\{1, 2, ..., n-1, \infty\}$.

- $\triangleright (0,2,1,\infty)$
- \blacktriangleright $(1,3,2,\infty)$
- \triangleright $(2,4,3,\infty)$
- $\blacktriangleright (3,0,4,\infty)$

- ► Let $V(K_{2n}) = \{0, 1, 2, ..., 2n 2, \infty\}.$
- ▶ Let G be a graph with n edges and at least one pendant edge.

1-rotational ρ-labeling

A 1-rotational ρ -labeling of G is an embedding of G into K_{2n} such that the edge lengths form the set $\{1, 2, ..., n-1, \infty\}$.

- $\triangleright (0,2,1,\infty)$
- \blacktriangleright $(1,3,2,\infty)$
- $ightharpoonup (2,4,3,\infty)$
- $\blacktriangleright (3,0,4,\infty)$
- $\blacktriangleright (4,1,0,\infty)$

- ▶ Recall the length of $xy \in E(K_n)$ is min(|x-y|, n-|x-y|).
- ▶ A σ-labeling is a ρ-labeling such that the length of every edge $xy ∈ E(K_n)$ is |x y|.

- ▶ Recall the length of $xy \in E(K_n)$ is min(|x-y|, n-|x-y|).
- ▶ A σ-labeling is a ρ-labeling such that the length of every edge $xy ∈ E(K_n)$ is |x y|.
- \triangleright F and Tran introduced the following restricted σ -labeling in 2020.

Definition

Let G be a bipartite graph with n edges and bipartition $V(G) = A \cup B$. A σ^{+-} -labeling of G is a σ -labeling with:

- 1. f(a) < f(b) for every edge $ab \in E(G)$ with $a \in A$ and $b \in B$
- 2. $f(a) f(b) \neq n$ for all $a, b \in V(G)$
- 3. $f(v) \notin \{2n-1, 2n\}$ for all $v \in V(G)$

Theorem (F, Tran, 2020)

Let G be a graph with n edges and a σ^{+-} -labeling such that the edge of length n is a pendant edge. Then there exists cyclic G-decompositions of K_{2nt} and K_{2nt+1} for every positive integer t.

► Let $V(K_{2n}) = \{0, 1, 2, ..., 2n - 2, \infty\}$.

- ► Let $V(K_{2n}) = \{0, 1, 2, ..., 2n 2, \infty\}$.
- Let G be a tripartite graph with n edges, tripartition $\{A, B, C\}$, and pendant edge xy with deg(y) = 1.

- ► Let $V(K_{2n}) = \{0, 1, 2, ..., 2n 2, \infty\}.$
- Let G be a tripartite graph with n edges, tripartition $\{A, B, C\}$, and pendant edge xy with deg(y) = 1.
- A 1-rotational ρ-tripartite labeling of G is a 1-rotational ρ-labeling f that:
 - 1. $f(y) = \infty$.
 - 2. f(a) < f(v) for every edge av with $a \in A$.
 - 3. For every edge bc with $b \in B$ and $c \in C$, there exists a complementary edge b'c' with $b' \in B$ and $y' \in Y$ such that

$$|f(b) - f(c)| + |f(b') - f(c')| = 2n.$$

1-Rotational ρ-tripartite Labeling

- Let $V(K_{2n}) = \{0, 1, 2, ..., 2n 2, \infty\}$ and G be a tripartite graph with n edges, tripartition $\{A, B, C\}$, and pendant edge xy with deg(y) = 1.
- A 1-rotational ρ-tripartite labeling of G is a 1-rotational ρ-labeling f that:
 - 1. $f(y) = \infty$.
 - 2. f(a) < f(v) for every edge av with $a \in A$.
 - 3. For every edge bc with $b \in B$ and $c \in C$, there exists a complementary edge b'c' with $b' \in B$ and $y' \in Y$ such that |f(b) f(c)| + |f(b') f(c')| = 2n.

Theorem (Bunge, 2019)

Let G be a tripartite graph on $\mathfrak n$ edges with at least one pendant edge. If G admits a 1-rotational $\mathfrak p$ -tripartite labeling, then there exists a 1-rotational decomposition of $K_{2\mathfrak n\mathfrak t}$ for any positive integer $\mathfrak t$.

Observation

Observation

- ► The Rosa-type labelings discussed so far will take care of $n \equiv 0$ or 1 (mod 12) only
 - $ightharpoonup \sigma^{+-}$ for the 27 bipartite graphs (23 forests and 4 unicyclics)
 - ρ-tripartite and 1-rotational ρ-tripartite for the 9 tripartite unicyclics

Observation

- ► The Rosa-type labelings discussed so far will take care of $n \equiv 0$ or 1 (mod 12) only
 - $ightharpoonup \sigma^{+-}$ for the 27 bipartite graphs (23 forests and 4 unicyclics)
 - ρ-tripartite and 1-rotational ρ-tripartite for the 9 tripartite unicyclics
- ▶ What to do about $n \equiv 4$ or $9 \pmod{12}$?

Observation

- ► The Rosa-type labelings discussed so far will take care of $n \equiv 0$ or 1 (mod 12) only
 - $ightharpoonup \sigma^{+-}$ for the 27 bipartite graphs (23 forests and 4 unicyclics)
 - ρ-tripartite and 1-rotational ρ-tripartite for the 9 tripartite unicyclics
- ▶ What to do about $n \equiv 4$ or 9 (mod 12)?
- ► If the designs exist, they cannot be cyclic
 - Ex. K_{21} has $210 = 6 \times 35$ edges

Observation

- ► The Rosa-type labelings discussed so far will take care of $n \equiv 0$ or 1 (mod 12) only
 - $ightharpoonup \sigma^{+-}$ for the 27 bipartite graphs (23 forests and 4 unicyclics)
 - ρ-tripartite and 1-rotational ρ-tripartite for the 9 tripartite unicyclics
- ▶ What to do about $n \equiv 4$ or 9 (mod 12)?
- ► If the designs exist, they cannot be cyclic
 - Ex. K_{21} has $210 = 6 \times 35$ edges
- ► We'll adapt the techniques; click multiple blocks

A Forest and n = 12k + 4

A Forest and n = 12k + 4

- ▶ Click G_1 by 3 and G_i by 1 for $2 \le i \le k+1$ (we're working in Z_{12k+3})
- Number of edges of each length = $3 \times \frac{n-1}{3} = 1 \times (n-1) = n-1$
- ▶ Total number of edges = $(n-1) \times \frac{n}{2} = \binom{n}{2}$

Approach for Tripartite Unicyclics and n = 12k + 9

▶ Partition $V(K_n)$ into three *groups* of cardinality 4k + 3:

$$A = \{(0,0), (1,0), \dots, (4k+2,0)\}$$

$$B = \{(0,1), (1,1), \dots, (4k+2,1)\}$$

$$C = \{(0,2), (1,2), \dots, (4k+2,2)\}$$

 \triangleright The edge set of K_n can be expressed as

$$E(K_n) = \{(i,j)(i',j') : j = j', i \neq i'\} \cup \{(i,j)(i',j') : j \neq j'\}$$

- ▶ Intragroup edge length defined as usual for K_{4k+3}
- ▶ Intergroup edge length defined as $\ell((i,j)(i',j+1)) = i' i$ where i' i is reduced modulo 4k + 3 and j + 1 is taken modulo 3
- ightharpoonup Exactly one edge of each length can be obtained by clicking 3k + 2 blocks

Approach for Tripartite Unicyclics and n = 12k + 4

▶ Partition $V(K_n)$ into $\{\infty\}$ and three *groups* of cardinality 4k + 1:

```
A = \{(0,0), (1,0), \dots, (4k,0)\}
B = \{(0,1), (1,1), \dots, (4k,1)\}
C = \{(0,2), (1,2), \dots, (4k,2)\}
```

- ▶ The edge set of K_n can be expressed as before with the addition of n-1 edges of length ∞ .
- ► Intragroup edges take on lengths $\{1, 2, ..., 2k\}$
- ▶ Intergroup edges take on lengths $\{0, 1, ..., 4k\}$ between each pair of groups

A $(C_3 \cup P_3 \cup P_2)$ -design of order 12k + 9

Main Result

Theorem (Ahern, F, Froncek, Keranen, Peters, 2022+)

If G is a disconnected graph with six edges, then a G-design of order n exists if and only if $n \equiv 0, 1, 4$, or 9 (mod 12) unless either n = 4 or n = 9 and G is isomorphic to one of the graphs listed below.

- \square $K_{1,5} \cup K_2$
- \square $K_{1,4} \cup 2K_2$
- \square $K_{1,3} \cup 3K_2$
- \square P₄ \cup 3K₂

- \square 2P₃ \cup 2K₂
- \square P₃ \cup 4K₂
- \square 6K₂
- \square $K_3 \cup K_{1,3}$

Main Result

Theorem (Ahern, F, Froncek, Keranen, Peters, 2022+)

If G is a disconnected graph with six edges, then a G-design of order n exists if and only if $n \equiv 0, 1, 4$, or 9 (mod 12) unless either n = 4 or n = 9 and G is isomorphic to one of the graphs listed below.

- \square $K_{1,5} \cup K_2$
- \square $K_{1,4} \cup 2K_2$
- \square $K_{1,3} \cup 3K_2$
- \square P₄ \cup 3K₂

- \square 2P₃ \cup 2K₂
- \square $P_3 \cup 4K_2$
- \square 6K₂
- \square $K_3 \cup K_{1,3}$

THANK YOU!