Introduzione alla Regressione Lineare

Corso di Informatica Avanzato

Liceo Peano

Febbraio 2018

Motivazioni Strumenti Derivazione Richiami sulle sommatorie Parametri Conclusion

Motivazioni

Come dedurre una legge generale partendo da dati sperimentali?

Motivazioni Strumenti Derivazione Richiami sulle sommatorie Parametri Conclusioni

Motivazioni

Come dedurre una legge generale partendo da dati sperimentali?

Ad esempio, come predire la velocitá di oggetti extragalattici basandosi sulla loro distanza dalla Terra: la Legge di Hubble

 $v = H_0 d$

I dati

I dati sono raccolti in tabelle (file *.csv) come questa

distance (MegaParsec)	recession velocity (km/sec)
.032	170
.034	290
.214	-130
.263	-70
.275	-185
.275	-220
.45	200
.5	290
.5	270
.63	200
.8	300
.9	-30
.9	650
.9	150
.9	500
1.0	920

Modello lineare

L'idea è cercare di rappresentare i dati tramite un modello lineare, ovvero... una retta!

$$\hat{y}_i = a + bx_i$$

Perchè una retta?

- è la funzione più semplice (il rasoio di Occam è sempre da prendere in considerazione)
- si è visto essere in accordo coi dati sperimentali

La funzione di Costo

Definiamo la Funzione di Costo

$$C = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Dove si ha:

- $n \rightarrow$ numero di punti disponibili
- $y_i \rightarrow \text{output}$
- $\hat{y}_i \rightarrow$ output predetto

La funzione di Costo

Definiamo la Funzione di Costo

Strumenti

$$C = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Dove si ha:

- $n \rightarrow$ numero di punti disponibili
- $y_i \rightarrow \text{output}$
- $\hat{y}_i \rightarrow$ output predetto

Siccome stiamo usando un modello lineare l'output predetto diventa

$$\hat{y}_i = a + bx_i$$

La funzione di Costo

Definiamo la Funzione di Costo

$$C = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Dove si ha:

- $n \rightarrow$ numero di punti disponibili
- $y_i \rightarrow \text{output}$
- $\hat{y}_i \rightarrow$ output predetto

Siccome stiamo usando un modello lineare l'output predetto diventa

$$\hat{y}_i = a + bx_i$$

E quindi la funzione di Costo si puó riscrivere come

$$C = \sum_{i=1}^{n} (y_i - a - \frac{b}{b}x_i)^2$$

Motivazioni Strumenti **Derivazione** Richiami sulle sommatorie Parametri Conclusioni

Derivazione

$$C = \sum_{i=1}^{n} (y_i - a - \frac{b}{b}x_i)^2$$

Derivazione

$$C = \sum_{i=1}^{n} (y_i - a - \frac{b}{b}x_i)^2$$

• L'idea è ricavare i parametri a e b tali da minimizzare la funzione di costo C.

Derivazione

$$C = \sum_{i=1}^{n} (y_i - a - \frac{b}{b}x_i)^2$$

- L'idea è ricavare i parametri a e b tali da minimizzare la funzione di costo C.
- Utilizziamo quindi le derivate!

$$\frac{\partial C}{\partial a} = -2\sum_{i=1}^{n} (y_i - a - b) \qquad \qquad \frac{\partial C}{\partial b} = -2\sum_{i=1}^{n} (y_i - a - bx_i) x_i$$

Derivazione

$$C = \sum_{i=1}^{n} (y_i - a - \frac{b}{b}x_i)^2$$

- L'idea è ricavare i parametri a e b tali da minimizzare la funzione di costo C.
- Utilizziamo quindi le derivate!

$$\frac{\partial C}{\partial a} = -2\sum_{i=1}^{n} (y_i - a - b) \qquad \qquad \frac{\partial C}{\partial b} = -2\sum_{i=1}^{n} (y_i - a - bx_i) x_i$$

Imponiamo la condizione di minimizzazione ponendo le derivate a zero:

$$\frac{\partial C}{\partial a} = -2\sum_{i=1}^{n} (y_i - a - bx_i) = 0 \qquad \frac{\partial C}{\partial b} = -2\sum_{i=1}^{n} (y_i - a - bx_i) x_i = 0$$

Prima di dedicarci ai calcoli, ricaviamoci alcune formule utilizzando le sommatorie

•
$$\sum_{i=1}^{n} 1 = n$$
; $\sum_{i=1}^{n} c = c \sum_{i=1}^{n} 1 = c n$;

Prima di dedicarci ai calcoli, ricaviamoci alcune formule utilizzando le sommatorie

•
$$\sum_{i=1}^{n} 1 = n$$
; $\sum_{i=1}^{n} c = c \sum_{i=1}^{n} 1 = c n$;

• Definiamo la media
$$\rightarrow \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Prima di dedicarci ai calcoli, ricaviamoci alcune formule utilizzando le sommatorie

•
$$\sum_{i=1}^{n} 1 = n$$
; $\sum_{i=1}^{n} c = c \sum_{i=1}^{n} 1 = c n$;

- Definiamo la media $\rightarrow \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$
- Dimostriamo ora che $\sum_{i=1}^{n} \left(\overline{x}^2 x_i \overline{x}_i \right) = 0$

Prima di dedicarci ai calcoli, ricaviamoci alcune formule utilizzando le sommatorie

•
$$\sum_{i=1}^{n} 1 = n$$
; $\sum_{i=1}^{n} c = c \sum_{i=1}^{n} 1 = c n$;

- Definiamo la media $\rightarrow \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$
- Dimostriamo ora che $\sum_{i=1}^{n} \left(\overline{x}^2 x_i \overline{x}_i \right) = 0$

$$\sum_{i=1}^{n} \left(\overline{X}^2 - X_i \overline{X}_i \right) = \sum_{i=1}^{n} \overline{X}^2 - \sum_{i=1}^{n} \overline{X} X_i$$

Richiami sulle sommatorie

Prima di dedicarci ai calcoli, ricaviamoci alcune formule utilizzando le sommatorie

•
$$\sum_{i=1}^{n} 1 = n$$
; $\sum_{i=1}^{n} c = c \sum_{i=1}^{n} 1 = c n$;

- Definiamo la media $\rightarrow \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$
- Dimostriamo ora che $\sum_{i=1}^{n} \left(\overline{X}^2 x_i \overline{X}_i \right) = 0$

$$\sum_{i=1}^{n} \left(\overline{x}^{2} - x_{i} \overline{x}_{i} \right) = \sum_{i=1}^{n} \overline{x}^{2} - \sum_{i=1}^{n} \overline{x}_{i} = \overline{x}^{2} \sum_{i=1}^{n} 1 - \overline{x} \sum_{i=1}^{n} x_{i}$$

Prima di dedicarci ai calcoli, ricaviamoci alcune formule utilizzando le sommatorie

•
$$\sum_{i=1}^{n} 1 = n$$
; $\sum_{i=1}^{n} c = c \sum_{i=1}^{n} 1 = c n$;

- Definiamo la media $\rightarrow \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$
- Dimostriamo ora che $\sum_{i=1}^{n} \left(\overline{X}^2 x_i \overline{X}_i \right) = 0$

$$\sum_{i=1}^{n} \left(\overline{x}^2 - x_i \overline{x}_i \right) = \sum_{i=1}^{n} \overline{x}^2 - \sum_{i=1}^{n} \overline{x} x_i = \overline{x}^2 \sum_{i=1}^{n} 1 - \overline{x} \sum_{i=1}^{n} x_i = \overline{x}^2 n - \overline{x} n \overline{x} = 0$$

Consideriamo la prima derivata

$$\frac{\partial C}{\partial a} = -2\sum_{i=1}^{n} (y_i - a - b) = 0$$

Consideriamo la prima derivata

$$\frac{\partial C}{\partial a} = -2\sum_{i=1}^{n} (y_i - a - b) = 0$$

Facciamo un po' di calcoli, ricordando che a e b sono costanti

$$0 = \sum_{i=1}^{n} (y_i - a - bx_i) = \sum_{i=1}^{n} y_i - a \sum_{i=1}^{n} 1 - b \sum_{i=1}^{n} x_i$$

Consideriamo la prima derivata

$$\frac{\partial C}{\partial a} = -2\sum_{i=1}^{n} (y_i - a - b) = 0$$

Facciamo un po' di calcoli, ricordando che a e b sono costanti

$$0 = \sum_{i=1}^{n} (y_i - a - \frac{b}{b}x_i) = \sum_{i=1}^{n} y_i - a \sum_{i=1}^{n} 1 - \frac{b}{b} \sum_{i=1}^{n} x_i = n\overline{y} - na - \frac{b}{n}\overline{x}$$

Consideriamo la prima derivata

$$\frac{\partial C}{\partial a} = -2\sum_{i=1}^{n} (y_i - a - b) = 0$$

Facciamo un po' di calcoli, ricordando che a e b sono costanti

$$0 = \sum_{i=1}^{n} (y_i - a - \frac{b}{b}x_i) = \sum_{i=1}^{n} y_i - a \sum_{i=1}^{n} 1 - \frac{b}{b} \sum_{i=1}^{n} x_i = n\overline{y} - na - \frac{b}{n}\overline{x}$$

Consideriamo la prima derivata

$$\frac{\partial C}{\partial a} = -2\sum_{i=1}^{n} (y_i - a - b) = 0$$

Facciamo un po' di calcoli, ricordando che a e b sono costanti

$$0 = \sum_{i=1}^{n} (y_i - a - \frac{b}{b}x_i) = \sum_{i=1}^{n} y_i - a \sum_{i=1}^{n} 1 - \frac{b}{b} \sum_{i=1}^{n} x_i = n\overline{y} - na - \frac{b}{n}\overline{x}$$

Ricavando a otteniamo quindi il primo parametro

$$a = \overline{y} - \frac{b\overline{x}}{y}$$

Consideriamo ora la seconda derivata

$$\frac{\partial C}{\partial b} = -2\sum_{i=1}^{n} (y_i - a - bx_i) x_i = 0$$

Consideriamo ora la seconda derivata

$$\frac{\partial C}{\partial \mathbf{b}} = -2 \sum_{i=1}^{n} (y_i - a - \mathbf{b} x_i) x_i = \mathbf{0}$$

Nei calcoli, utilizziamo $a = \overline{y} - b\overline{x}$

$$0 = \sum_{i=1}^{n} (y_i - a - \frac{b}{b}x_i) x_i = \sum_{i=1}^{n} (y_i - (\overline{y} - \frac{b}{\overline{x}}) - \frac{b}{b}x_i) x_i$$

Consideriamo ora la seconda derivata

$$\frac{\partial C}{\partial b} = -2 \sum_{i=1}^{n} (y_i - a - bx_i) x_i = 0$$

Nei calcoli, utilizziamo $a = \overline{y} - b\overline{x}$

$$0 = \sum_{i=1}^{n} (y_i - a - bx_i) x_i = \sum_{i=1}^{n} (y_i - (\overline{y} - b\overline{x}) - bx_i) x_i$$
$$= \sum_{i=1}^{n} (y_i x_i - \overline{y} x_i) - b \sum_{i=1}^{n} (x_i^2 - \overline{x} x_i)$$

Consideriamo ora la seconda derivata

$$\frac{\partial C}{\partial b} = -2 \sum_{i=1}^{n} (y_i - a - bx_i) x_i = 0$$

Nei calcoli, utilizziamo $a = \overline{y} - b\overline{x}$

$$0 = \sum_{i=1}^{n} (y_i - a - bx_i) x_i = \sum_{i=1}^{n} (y_i - (\overline{y} - b\overline{x}) - bx_i) x_i$$
$$= \sum_{i=1}^{n} (y_i x_i - \overline{y} x_i) - b \sum_{i=1}^{n} (x_i^2 - \overline{x} x_i)$$

Consideriamo ora la seconda derivata

$$\frac{\partial C}{\partial b} = -2\sum_{i=1}^{n} (y_i - a - bx_i) x_i = 0$$

Nei calcoli, utilizziamo $a = \overline{y} - b\overline{x}$

$$0 = \sum_{i=1}^{n} (y_i - a - bx_i) x_i = \sum_{i=1}^{n} (y_i - (\overline{y} - b\overline{x}) - bx_i) x_i$$
$$= \sum_{i=1}^{n} (y_i x_i - \overline{y} x_i) - b \sum_{i=1}^{n} (x_i^2 - \overline{x} x_i)$$

Ricavando b si ottiene

$$\frac{\mathbf{b}}{\sum_{i=1}^{n} (y_i x_i - \overline{y} x_i)} \left| \frac{\sum_{i=1}^{n} (x_i^2 - \overline{x} x_i)}{\sum_{i=1}^{n} (x_i^2 - \overline{x} x_i)} \right|$$

lotivazioni Strumenti Derivazione Richiami sulle sommatorie **Parametri** Conclusion

Cosmesi

$$b = \frac{\sum_{i=1}^{n} (y_i x_i - \overline{y} x_i)}{\sum_{i=1}^{n} (x_i^2 - \overline{x} x_i)}$$

Parametri

Cosmesi

$$b = \frac{\sum_{i=1}^{n} (y_i x_i - \overline{y} x_i)}{\sum_{i=1}^{n} (x_i^2 - \overline{x} x_i)}$$

La formula ottenuta puó essere semplificata ricordando che

$$\sum_{i=1}^{n} \left(\overline{x}^2 - \overline{x} x_i \right) = 0 ; \qquad \sum_{i=1}^{n} \left(\overline{x} \, \overline{y} - \overline{x} y_i \right) = 0$$

$$b = \frac{\sum_{i=1}^{n} (y_i x_i - \overline{y} x_i)}{\sum_{i=1}^{n} (x_i^2 - \overline{x} x_i)}$$

La formula ottenuta puó essere semplificata ricordando che

$$\sum_{i=1}^{n} \left(\overline{x}^2 - \overline{x} x_i \right) = 0 ; \qquad \sum_{i=1}^{n} \left(\overline{x} \, \overline{y} - \overline{x} y_i \right) = 0$$

Sommando la prima al denominatore e la seconda al numeratore si ottiene

$$b = \frac{\sum_{i=1}^{n} (y_i x_i - \overline{y} x_i)}{\sum_{i=1}^{n} (x_i^2 - \overline{x} x_i)}$$

La formula ottenuta puó essere semplificata ricordando che

$$\sum_{i=1}^{n} \left(\overline{x}^2 - \overline{x} x_i \right) = 0 ; \qquad \sum_{i=1}^{n} \left(\overline{x} \, \overline{y} - \overline{x} y_i \right) = 0$$

Sommando la prima al denominatore e la seconda al numeratore si ottiene

$$b = \frac{\sum_{i=1}^{n} (y_i x_i - \overline{y} x_i - y_i \overline{x} + \overline{x} \overline{y})}{\sum_{i=1}^{n} (x_i^2 - \overline{x} x_i - x_i \overline{x} + \overline{x}^2)}$$

$$b = \frac{\sum_{i=1}^{n} (y_i x_i - \overline{y} x_i)}{\sum_{i=1}^{n} (x_i^2 - \overline{x} x_i)}$$

La formula ottenuta puó essere semplificata ricordando che

$$\sum_{i=1}^{n} \left(\overline{x}^2 - \overline{x} x_i \right) = 0 ; \qquad \sum_{i=1}^{n} \left(\overline{x} \, \overline{y} - \overline{x} y_i \right) = 0$$

Sommando la prima al denominatore e la seconda al numeratore si ottiene

$$\frac{b}{\sum_{i=1}^{n}\left(y_{i}x_{i}-\overline{y}x_{i}-y_{i}\overline{x}+\overline{x}\,\overline{y}\right)}{\sum_{i=1}^{n}\left(x_{i}^{2}-\overline{x}x_{i}-x_{i}\overline{x}+\overline{x}^{2}\right)}=\frac{\sum_{i=1}^{n}\left[y_{i}(x_{i}-\overline{x})-\overline{y}(x_{i}-\overline{x})\right]}{\sum_{i=1}^{n}\left(x_{i}-\overline{x}\right)^{2}}$$

$$b = \frac{\sum_{i=1}^{n} (y_i x_i - \overline{y} x_i)}{\sum_{i=1}^{n} (x_i^2 - \overline{x} x_i)}$$

La formula ottenuta puó essere semplificata ricordando che

$$\sum_{i=1}^{n} \left(\overline{x}^2 - \overline{x} x_i \right) = 0 ; \qquad \sum_{i=1}^{n} \left(\overline{x} \, \overline{y} - \overline{x} y_i \right) = 0$$

Sommando la prima al denominatore e la seconda al numeratore si ottiene

$$\frac{b}{\sum_{i=1}^{n}\left(y_{i}x_{i}-\overline{y}x_{i}-y_{i}\overline{x}+\overline{x}\,\overline{y}\right)}{\sum_{i=1}^{n}\left(x_{i}^{2}-\overline{x}x_{i}-x_{i}\overline{x}+\overline{x}^{2}\right)}=\frac{\sum_{i=1}^{n}\left[y_{i}(x_{i}-\overline{x})-\overline{y}(x_{i}-\overline{x})\right]}{\sum_{i=1}^{n}\left(x_{i}-\overline{x}\right)^{2}}$$

$$b = \frac{\sum_{i=1}^{n} (y_i x_i - \overline{y} x_i)}{\sum_{i=1}^{n} (x_i^2 - \overline{x} x_i)}$$

La formula ottenuta puó essere semplificata ricordando che

$$\sum_{i=1}^{n} \left(\overline{x}^2 - \overline{x} x_i \right) = 0 ; \qquad \sum_{i=1}^{n} \left(\overline{x} \, \overline{y} - \overline{x} y_i \right) = 0$$

Sommando la prima al denominatore e la seconda al numeratore si ottiene

$$\frac{b}{\sum_{i=1}^{n}\left(y_{i}x_{i}-\overline{y}x_{i}-y_{i}\overline{x}+\overline{x}\,\overline{y}\right)}{\sum_{i=1}^{n}\left(x_{i}^{2}-\overline{x}x_{i}-x_{i}\overline{x}+\overline{x}^{2}\right)}=\frac{\sum_{i=1}^{n}\left[y_{i}(x_{i}-\overline{x})-\overline{y}(x_{i}-\overline{x})\right]}{\sum_{i=1}^{n}\left(x_{i}-\overline{x}\right)^{2}}$$

da cui otteniamo

$$\frac{\mathbf{b}}{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Conclusioni

Conclusioni

Abbiamo quindi ricavato i tre ingredienti per studiare la Legge di Hubble:

• l'intercetta a e il coefficiente angolare b del modello lineare $\hat{y}_i = a + bx_i$

$$a = \overline{y} - b\overline{x}$$
; $b = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$

La stima della bontà della regressione linare: la funzione di Costo

$$C = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

Motivazioni Strumenti Derivazione Richiami sulle sommatorie Parametri Conclusioni

E ora..

Possiamo ora implementare tutto su python!

