EXERCÍCIOS ARITMÉTICA BINÁRIA, CONVERSÃO DE BASES E **PONTO FLUTUANTE**

Conversão de bases

- 1. Converta o número decimal 156 para as bases binária, octal e hexadecimal.
- 2. Converta o número binário 101101.012 para decimal e hexadecimal.
- 3. O número hexadecimal 3F.A corresponde a qual valor em decimal?
- 4. Converta **245**₈ para binário e depois para decimal.
- 5. Um endereço de memória é representado em binário como 110010111110001₂. Qual é o valor correspondente em hexadecimal?

Aritmética binária - Complemento de 2

- 6. Some os números **101101₂** e **110010₂** considerando 6 bits e representação em complemento de 2. Indique se ocorre overflow.
- 7. Subtraia **010110**₂ de **101001**₂ considerando 6 bits e complemento de 2.
- 8. Represente o número decimal **-23** usando 8 bits em complemento de 2.
- 9. Some **00110101₂** e **11101100₂** em complemento de 2 (8 bits) e converta o resultado para decimal.
- 10. Um microprocessador de 8 bits armazena valores em complemento de 2. Qual é o menor e o maior valor decimal que ele pode representar?

Re	ostas:
1.	Converta o número decimal 156 para as bases binária, octal e hexadecimal.
	Resposta: Binário: 100111100 ₂ ; Octal: 234 ₈ ; Hexadecimal: 9C ₁₆
2.	Converta o número binário 101101.01 ₂ para decimal e hexadecimal.
	Resposta: Decimal: 45,25; Hexadecimal: 2D.4 ₁₆
3.	O número hexadecimal 3F.A corresponde a qual valor em decimal?
	Resposta: 63,625
	Resposta: 63,625

4. 4) Converta 245₈ para binário e depois para decimal.

		Resposta: Binário: 10100101 ₂ ; Decimal: 165	
5.		n endereço de memória é representado em binário como 11001010111110 é o valor correspondente em hexadecimal?	001 ₂ .
		Resposta: 0xCAF1	
6.		me os números 101101 ₂ e 110010 ₂ considerando 6 bits e representação e plemento de 2. Indique se ocorre overflow.	·m
		Resposta: Soma: -19 + (-14) = -33; Overflow: Sim	
7.	7) Su	btraia 010110_2 de 101001_2 considerando 6 bits e complemento de 2.	
		Resposta: Resultado: -45 (overflow)	
8.	8) Re	presente o número decimal –23 usando 8 bits em complemento de 2.	
		Resposta: 11101001₂	
9.		me 00110101_2 e 11101100_2 em complemento de 2 (8 bits) e converta o res decimal.	sultado
		Resposta: Resultado: 33 (00100001 ₂)	
10.		Im microprocessador de 8 bits armazena valores em complemento de 2. C or e o maior valor decimal que ele pode representar?	Qual é c
		Resposta: Mínimo: -128; Máximo: +127	

11 - Um sistema de controle industrial possui 256 KB de memória RAM, com endereçamento byte a byte. Um programa precisa alocar três estruturas de dados, cada

uma com os seguintes tamanhos: Estrutura A: 2 KB Estrutura B: 1024 bytes Estrutura C: 0x0800 bytes O programa começa a armazenar esses dados a partir do endereço 0x2000, sem espaços entre as estruturas. Pergunta: Qual será o último endereço de memória ocupado após o carregamento das três estruturas?

Vamos fazer passo a passo):

- A = 2 KB = 2048 bytes = 0x0800
- B = 1024 bytes = 0x0400
- C = 0x0800 bytes = 2048 bytes

```
Total = 2048 + 1024 + 2048 = 5120 bytes = 0x1400
```

Endereços (sem espaços), a partir de 0x2000:

- **A**: $0x2000 \dots 0x2000 + 0x0800 1 =$ **0x27FF**
- B: 0x2800 ... 0x2800 + 0x0400 1 = 0x2BFF
- C: 0x2C00 ... 0x2C00 + 0x0800 1 = 0x33FF

Como verificação global:

Endereço final = 0x2000 + 0x1400 - 1 = 0x33FF.

Exercícios sobre Padrão IEEE 754

12) Representar o número decimal 12,5 no formato IEEE 754 simples precisão (32 bits).

Solução:

Em binário: $12,5_{10} = 1100,1_2$ Forma normalizada: $1,1001_2 \times 2^3$

Sinal = 0 (positivo)

Hexadecimal: 0x41480000

13) Determinar o valor a partir do IEEE 754 simples precisão 0xC2480000.

Solução:

Sinal: $1 \rightarrow negativo$

Expoente: $10000100_2 = 132 \rightarrow \text{expoente real} = 132 - 127 = 5$

Mantissa: $1,0100100_2 = 1,5625$

Valor: $-1,5625 \times 2^{5} = -50$

14) Um sistema embarcado possui uma memória endereçável de **64 KB**. Cada posição de memória armazena exatamente **1 byte**. O sistema utiliza endereçamento hexadecimal para acessar cada posição da memória.

Sabendo disso, responda:

- a) Qual é o total de posições de memória disponíveis neste sistema?
- b) Qual é o valor hexadecimal do último endereço de memória acessível?
- c) Suponha que uma variável ocupa 32 bytes e será armazenada a partir do endereço 0x1F30. Qual será o endereço hexadecimal da última posição ocupada por essa variável?

Respostas esperadas:

- a) $64 \text{ KB} = 64 \times 1024 = 6553664 \times 1024 = 6556664 \times 1024 = 6556664 \times 1024 = 6556664 \times 1$
- **b)** Como a contagem começa do **0**, o último endereço será 65536-1=65535 $65535_{10}=FFFF_{16} \rightarrow \textbf{Resposta: 0xFFFF}$

c)

Início: 0x1F30

Ocupando 32 bytes \rightarrow último endereço = 0x1F30 + 31

0x1F30+0x1F =>**Resposta:** 0x1F4F