1、PLC 寄存器地址(编号)

一般 PLC、信捷/昆仑通泰/威纶触摸屏,或文本显示器采用这样的方式表示数据地址。PLC 寄存器地址一般采用 10 进制描述,共有 5 位,其中第一位数字表示寄存器类型。第一位数字和寄存器类型的对应关系如下表所示。PLC 寄存器地址例如 40001、00001等。

数据类型	PLC 寄存器地址/编号	读功能码	写功能码	数据大小
数字量输出	0 0001—— 0 9999	01H	05H, 0FH	位,1bit
(线圈寄存器)				
数字量输入(触点)	1 0001—— 1 9999	02H		位,1bit
输入寄存器	3 0001—— 3 9999	04H		字,16bit
保持寄存器	4 0001—— 4 9999	03H	06H, 10H	字,16bit

2、协议地址 (一般十六进制表示,一个地址占 2 个字节)

协议地址指发送一串十六进制命令通信时使用的地址,例如 PLC 保持寄存器地址 40001 对应协议地址 0x0000, 40002 对应协议地址 0x0001, 40012 对应协议地址 0x000b, 再如 PLC 线圈寄存器地址 00003 对应协议地址 0x0002, 00013 对应协议地址 0x000c, 保持寄存器地址和线圈寄存器地址对应我们控制器 2 块独立的地址上,不会有访问冲突。

<PLC 寄存器地址减 1,然后再转换成十六进制数,就是协议地址>

<协议地址,也就是我们控制器内部的地址>

4800、9600、19200、115200、38400 通信波特率可选择。

3、默认通信参数: 9600 波特率 8 位数据位 1 位停止位 无校验 (大端模式表示地址和数据项; 而 CRC 是低位在前, 高位在后。) (485 接口通信时每帧数据响应时间不能低于 35ms)

4、支持的功能码(十六进制表示): 不支持 01 02 0F

03: 读多个保持寄存器的内容(连续寄存器块)

05: 写单个线圈

06: 写单个保持寄存器

10: 写多个保持寄存器(连续寄存器块)

5、保持数据寄存器: (用来存放和显示数据)

(1个寄存器是16位的无符号数,占2个字节)

(= 1 :4 14 HEVC ==	E H 4 7 6 1 4 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
PLC 或工控屏对应寄	定义(对应参数)	读/写	本控制器内部对应的
存器编号			数据寄存器地址
40001	步距角 (比如步距角是 1.8,写	R/W	0x0000
	的时候需要扩大 100 倍,即设置		
	为 180。读的时候缩小 100 倍)		
40002	细分 (驱动器上是多少细分,就	R/W	0x0001
	设为多少细分)		
40003	启动频率(单位: HZ)	R/W	0x0002
40004	加减频率(单位: HZ)	R/W	0x0003
40005 40006	螺距 (电机转一圈对应的距离)	R/W,2个寄存器	0x0004、0x0005
40007	机械零点信号(有效值 04)	R/W	0x0006
40008	停止模式	R/W	0x0007
	(0 缓慢停 1 立即停)		
40009	速度(单位:转/每分钟)	R/W	0x0008
40010 40011	距离(即单次运行的距离)	R/W,2个寄存器	0x0009、0x000a
40012	方向 (0 正向, 1 反向)	R/W	0x000b
40013	单次运行到位反馈	R	0х000с
	0表示没到位 1表示运行到位	只针对单次运行命令	
40014	备用	备用	0x000d
40015	正限位信号(有效值 04)	R/W	0x000e
40016	反限位信号(有效值 04)	R/W	0x000f
40017	控制器 ID 号(485 设备号)	R/W <mark>(232 设备号只能为1)</mark>	0x0010
40018	工程启动信号(有效值 04)	R/W	0x0011
40019	工程停止信号(有效值 04)	R/W	0x0012
40020 40021	系统工作次数计数	R/W,2个寄存器	0x0013、0x0014
40022	备用	备用	0x0015
40023 40024	当前坐标显示	R/W,读这个寄存器会	0x0016、0x0017
		实时显示当前坐标	
40025	工程号(只能为1)	R/W	0x0018
40026	工程总步数(有效值 133)	R/W	0x0019
40027	本步启动口信号(有效值 04)	R/W	0x001a
40028	工程本步启动频率,单位 HZ	R/W	0x001b
40029	工程本步加减频率,单位 HZ	R/W	0x001c

40030	工程本步运行方向	R/W	0x001d
	(0 正向, 1 反向)		
40031	工程本步运行速度	R/W	0x001e
	(单位:转/每分钟)		
40032 40033	工程本步运行距离	R/W,2个寄存器	0x001f、0x0020
40034	本步输出口(有效值 08)	R/W	0x0021
40035 40036	本步延时时间(单位:毫秒)	R/W,2个寄存器	0x0022、0x0023
40037	段循环起始步	R/W	0x0024
40038	段循环结束步	R/W	0x0025
40039	段循环次数	R/W	0x0026
40040	设定工程当前步号(有效值 133)	R/W	0x0027
40041	备用	备用	0x0028
40042	工程实时步号显示	R (有效值 0-33)	0x0029
40043	第1路输入信号状态显示	R (1ON 0OFF)	0x002a
40044	第2路输入信号状态显示	R(1ON 0OFF)	0x002b
40045	第3路输入信号状态显示	R(1ON 0OFF)	0x002c
40046	第 4 路输入信号状态显示	R(1ON 0OFF)	0x002d
40047	第5路输入信号状态显示	备用	0x002e
40048	第1路输出信号状态显示	R(1ON 0OFF)	0x002f
40049	电机运行状态显示	R(1ON 0OFF)	0x0030
40050	工程循环次数	R/W	0x0031
40051	本步停止口信号(有效值 04)	R/W	0x0032
40052	备用	R/W	0x0033
40053	备用	R/W	0x0034
40054	备用	R/W	0x0035
40055	备用	R/W	0x0036
40056	第2路输出信号状态显示	R(1ON 0OFF)	0x0037
40057	第3路输出信号状态显示	R(1ON 0OFF)	0x0038
40058	备用	R/W	0x0039
40074	波特率低 16 位	R/W	0x0049
40075	波特率高 16 位	R/W	0x004a
40076	相对/绝对运行	R/W	0x004b
	(0 相对 1 绝对)	只针对单次运行命令	
40077	运行方式选择	R/W	0x004c
	0位置 1速度触发 2速度点动	(主要是针对正反启动	
		信号控制的)	
40078	正转启动信号 (0表示无设置)	R/W	0x004d
	(1─4 对应 IN1─I4 输入)	信号有效时,按上面	
		选择的运行方式正转	
40079	反转启动信号 (0 表示无设置)	R/W	0x004e
	(1-4 对应 IN1-I4 输入)	信号有效时,按上面	
		选择的运行方式反转	

6、线圈输出寄存器 (用来执行控制操作)

线圈输出值表示请求的 ON/OFF 状态。十六进制值 0xFF00 请求线圈为 ON;十六进制值 0x0000 请求线圈为 OFF。其它所有值均为非法的,并且对线圈不起作用。

PLC 或工控屏对应寄	定义(对应参数)		本控制器内部对应的
存器编号)C)((1)=9 34)	9674	线圈寄存器地址
00001	数据保存	断电保存所有参数	0x0000
00002	工程参数读取		0x0001
00003	参数清零		0x0002
00004	(工程)停止/急停		0x0003
00005	正转点动	置ON,电机一直正转	0x0004
		置 OFF,电机停止	
00006	反转点动	置ON,电机一直反转	0x0005
		置 OFF,电机停止	
00007	回数据零	电机运行到坐标零点	0x0006
80000	单次运行(按 40009 的速度和	可选择相对/绝对运行	0x0007
	40010 40011 的距离运行 1 次)	2 种方式运行	
00009	工程启动	按设定好的每一个步	0x0008
		骤运行。直到所有步骤	
		完毕或急停。	
00010	回机械零	电机一直反转,碰到机	0x0009
		械零点信号停止。	
00011	坐标清零	将 40023 40024 的值	0x000a
		设为 0	
00012	输出 1 开	控制 OC1 输出低电平	0x000b
00013	输出1关	控制 OC1 输出高电平	0x000c
00014	输出2开	控制 OC2 输出低电平	0x000d
00015	输出2关	控制 OC2 输出高电平	0x000e
00016	输出3开	控制 OC3 输出低电平	0x000f
00017	输出3开	控制 OC3 输出高电平	0x0010
00018	工程上一步	将 40040 的值减 1	0x0011
00019	工程下一步	将 40040 的值加 1	0x0012
00037	基本参数初始化		0x0024

7、通信实例说明

(1) 使用 03 功能码读取 2 个寄存器 40001H 40002H 中的数据内容。即步距角 细分值

设备号/站号	功能码	数据起始地址	读寄存器个数	CRC 校验
(1 个字节)	(1 个字节)	(2 个字节, 高位在前)	(2 个字节, <mark>高位在前</mark>)	(2 个字节, 低位在前)
01	03	00 00	00 02	C4 0B

回应信息格式: 回字节个数=5+2*N N为读的寄存器个数

设备号/站号	功能码	数据字节个数	回数据内	容(高位在前)	CRC 校验
(1 个字节)	(1个字节)	(1 个字节)	40001 地址的数据	40002 地址的数据	
01	03	04	00h B4h	00h 08h	BBH D3H

(2) 写单个线圈 05 功能码 (比如:控制电机单次运行的命令。地址是 00008) 请求数据域中的常量说明请求的 ON/OFF 状态。十六进制值 FF 00 请求输出为 ON。十六进制值 00 00 请求输出为 OFF。其它所有值均是非法的,并且对输出不起作用

设备号/站号	功能码	线圈输出地址	输出值	CRC 校验
(1 个字节)	(1个字节)	(2 个字节, 高位在前)	(2 个字节)	(2 个字节)
01	05	00 07	ff 00	3D FB

回信息格式: 和发送的数据一样。 回字节个数=8个

(3) 写单个保持寄存器 06 功能码 (比如:设定细分值设为 4。地址是 40002)

设备号/站号	功能码	数据地址	数据内容	CRC 校验
(1 个字节)	(1个字节)	(2 个字节,高位在前)	(2 个字节)	(2 个字节)
01	06	00 01	00 04	D9 C9

回信息格式: 和发送的数据一样。 回字节个数=8个

(4) 写多个寄存器 10 功能码

(比如:设定运行距离的值为 200,等于十六进制 0x00c8。)

地址 40010 对应低 16 位数据, 40011 对应高 16 位数据;

设备号/站号	功能码	数据起始地址	寄存器个数	数据字节个数	数据内容	CRC 校验
(1 个字节)	(1 个字节)	(2 个字节,高位在前)	(2 个字节)	(1 个字节)	数据 1 数据 2,,,,,	(2 个字节)
01	10	00 09	00 02	04	00 C8 00 00	B2 3B

回应信息格式:回字节个数=8个

设备号/站号	功能码	数据起始地址	寄存器个数	CRC 校验
(1 个字节)	(1个字节)	(2 个字节, 高位在前)	(2 个字节)	(2 个字节)
01	10	00 09	00 02	91 CA

注意 1: 485 设备地址的修改操作以及波特率修改操作:

出厂默认设备号为 1。首先使用 06 功能码或 10 功能码写设备号,然后再使用 05 功能码发送 1 条数据保存命令,再断电重启才会生效。

注意 2: 读/写一个 32 位的参数(即占 2 个寄存器)时,低 16 位在前,

<mark>高 16 位在后。</mark> 比如螺距、运行距离、当前坐标。

这几个参数也可以带 2 位小数。读取或写入时需要缩小/扩大 100