

Homework 1 - Berkeley STAT 157

Handout 1/22/2017, due 1/29/2017 by 4pm in Git by committing to your repository. Please ensure that you add the TA Git account to your repository.

- 1. Write all code in the notebook.
- 2. Write all text in the notebook. You can use MathJax to insert math or generic Markdown to insert figures (it's unlikely you'll need the latter).
- 3. **Execute** the notebook and **save** the results.
- 4. To be safe, print the notebook as PDF and add it to the repository, too. Your repository should contain two files: homework1.ipynb and homework1.pdf.

The TA will return the corrected and annotated homework back to you via Git (please give rythei access to your repository).

In [43]: from mxnet import ndarray as nd import numpy as np

1. Speedtest for vectorization

Your goal is to measure the speed of linear algebra operations for different levels of vectorization. You need to use wait_to_read() on the output to ensure that the result is computed completely, since NDArray uses asynchronous computation. Please see http://beta.mxnet.io/api/ndarray/ autogen/mxnet.ndarray.NDArray.wait to read.html (http://beta.mxnet.io/api/ndarray/ autogen/mxnet.ndarray.NDArray.wait to read.html) for details.

- 1. Construct two matrices A and B with Gaussian random entries of size 4096×4096 .
- 2. Compute C = AB using matrix-matrix operations and report the time.
- 3. Compute C = AB, treating A as a matrix but computing the result for each column of B one at a time. Report the time.
- 4. Compute C = AB, treating A and B as collections of vectors. Report the time.
- 5. Bonus question what changes if you execute this on a GPU?

1/31/2019 homework1

```
In [7]: import time
         tic = time.time()
         a = nd.random.normal(0, 1, (4096, 4096))
         b = nd.random.normal(0, 1, (409), 4096))
         c = nd.dot(a, b)
         print(time.time() - tic)
         c.wait to read()
         print(time.time() - tic)
         0.010117053985595703
         3.6122050285339355
In [7]: | tic = time.time()
         b t = b.T
         c = nd.zeros((4096, 4096))
         for i in range(4096):
             c[i] = nd.dot(a, b_t[i])
         c = c.T
         print(time.time() - tic)
         c.wait_to_read()
         print(time.time() - tic)
         4.0372560024261475
         73.63805103302002
                 in range(4096):
c[j, i] = nd.sum(a[j] * b_t[i])
to_read()
me.time() - tic)
180900192
In [44]: tic = time.time()
         b t = b.T
         c = nd.zeros((4096, 4096))
         for i in range(4096):
             for j in range(4096):
         c.wait to read()
         print(time.time() - tic)
```

4665.045080900192

1/31/2019 homework1

2. Semidefinite Matrices

Assume that $A \in \mathbb{R}^{m \times n}$ is an arbitrary matrix and that $D \in \mathbb{R}^{n \times n}$ is a diagonal matrix with nonnegative entries.

- 1. Prove that $B = ADA^{T}$ is a positive semidefinite matrix.
- 2. When would it be useful to work with B and when is it better to use A and D?

saved as pdf

3. MXNet on GPUs

- 1. Install GPU drivers (if needed)
- 2. Install MXNet on a GPU instance
- 3. Display !nvidia-smi
- 4. Create a 2 × 2 matrix on the GPU and print it. See http://d2l.ai/chapter_deep-learning-computation/use-gpu.html) for details.

Tried to run GPU, got up to gpu access on AWS but had trouble connecting it with jupyter notebook

1/31/2019 homework1

4. NDArray and NumPy

Your goal is to measure the speed penalty between MXNet Gluon and Python when converting data between both. We are going to do this as follows:

- 1. Create two Gaussian random matrices A, B of size 4096×4096 in NDArray.
- 2. Compute a vector $\mathbf{c} \in \mathbb{R}^{4096}$ where $c_i = ||AB_i||^2$ where \mathbf{c} is a **NumPy** vector.

To see the difference in speed due to Python perform the following two experiments and measure the time:

- 1. Compute $||AB_{i\cdot}||^2$ one at a time and assign its outcome to \mathbf{c}_i directly.
- 2. Use an intermediate storage vector **d** in NDArray for assignments and copy to NumPy at the end.

```
In [42]: tic = time.time()
         a = nd.random.normal(0, 1, (4096, 4096))
         b = nd.random.normal(0, 1, (4096, 4096))
         c = np.zeros(4096)
         b t = b.T
         for i in range(4096):
             vec = nd.dot(a, b_t[i])
             c[i] = vec.norm().asscalar()
         print(time.time() - tic)
         72.5136399269104
In [41]: | tic = time.time()
         a = nd.random.normal(0, 1, (4096, 4096))
         b = nd.random.normal(0, 1, (4096, 4096))
         c = nd.zeros(4096)
         b t = b.T
         print(time.time() - tic)
         for i in range(4096):
             vec = nd.dot(a, b_t[i])
             c[i] = vec.norm()
         c = c.asnumpy()
         print(time.time() - tic)
         0.051258087158203125
         66.14804792404175
```

1/31/2019 homework1

5. Memory efficient computation

We want to compute $C \leftarrow A \cdot B + C$, where A, B and C are all matrices. Implement this in the most memory efficient manner. Pay attention to the following two things:

- 1. Do not allocate new memory for the new value of C.
- 2. Do not allocate new memory for intermediate results if possible.

```
In [45]: a = nd.random.normal(0, 1, (4096, 4096))
         b = nd.random.normal(0, 1, (4096, 4096))
         c = nd.random.normal(0, 1, (4096, 4096))
         nd.elemwise add(nd.dot(a, b), c, out = c)
         С
Out[45]: [[-136.53722
                          72.59831
                                       -2.1823547 ... -89.08128
                                                                      42.181435
            -16.420313 ]
                                       70.85523
          [-97.03846]
                           6.6538477
                                                      -51.745754
                                                                     -44.10528
             20.53577 1
                                        42.555477 ... -53.673546
          [ 16.992313
                         -10.352718
                                                                      49.54098
            -23.488247 1
          [-73.42694]
                                        47.24751
                                                         12.638767
                                                                     -30.496918
                         124.763466
             56.542774 ]
                                        1.0797606 \dots -74.54492
          [ 130.45993
                          23.206944
                                                                       5.094515
             48.01982 1
          [-49.40635]
                          27.739756
                                        68.296074 ...
                                                          9.620451
                                                                     -68.24221
             65.92578 ]]
         <NDArray 4096x4096 @cpu(0)>
```

6. Broadcast Operations

In order to perform polynomial fitting we want to compute a design matrix A with

$$A_{ij} = x_i^j$$

Our goal is to implement this **without a single for loop** entirely using vectorization and broadcast. Here $1 \le j \le 20$ and $x = \{-10, -9.9, \dots 10\}$. Implement code that generates such a matrix.

```
In [40]: x = \text{nd.arange}(-10, 10, .1).\text{reshape}((200, 1))
      j = nd.arange(1, 21).reshape((1, 20))
      nd.broadcast power(x, j)
Out[40]: [[-1.0000000e+01 1.0000000e+02 -1.0000000e+03 ... 9.9999998e+17
        -1.0000000e+19 1.0000000e+20]
       [-9.8999996e+00 9.8009995e+01 -9.7029889e+02 ... 8.3451318e+17
        -8.2616803e+18 8.1790629e+19]
       [-9.8000002e+00 9.6040001e+01 -9.4119208e+02 ... 6.9513558e+17
        -6.8123289e+18 6.6760824e+19]
       5.6061355e+18 5.4379519e+19]
       6.8123415e+18 6.6760952e+19]
       8.2616803e+18 8.1790629e+19]]
      <NDArray 200x20 @cpu(0)>
```


ADAT it ADAT is series, so is A DA

x T(ADAT) x 2 0 then it is serie defente positive Y = A X -> Since Dis servis positive x^T(A^rDA) x > 0 \(\frac{1}{2}\) A \(\frac{1}{2}\) DA \(\frac{1}{2}\) Sen: position we use B it m is smaller than a significanty Since Bina mxm matrix, it n is matrices A à D as this will be mae smalle. memory efficient.