PSGD Pytorch implementation updates

Xilin Li

December 11, 2023

Notations:

- H: Hessian
- v: a probe vector for Hessian estimation, typically $v \sim \mathcal{N}(0, I)$
- h: Hessian-vector product, i.e., $h = Hv + \epsilon$, where $\epsilon = 0$ if no gradient noise
- P: preconditioner
- Q: factor of P as $P = Q^T Q$

Preconditioner fitting loss given a single pair of (v, h),

$$\ell(v, h; P) = h^T P h + v^T P^{-1} v$$

Expectation of the above loss assuming $\epsilon = 0$,

$$\ell(P) = \operatorname{tr}(PH^2) + \operatorname{tr}(P^{-1})$$

The optimal P is $|H|^{-1}$. With $\epsilon \neq 0$, the stochastic gradient noise damps the preconditioner estimation.

1 Dec 2023

1.1 Added the gradient whitening preconditioner

When h is set to the stochastic gradient, we have the optimal P as

$$P = \left(E[qq^T]\right)^{-1/2}$$

This preconditioner whitens the gradient. Specifically, for this type, PSGD reduces to RMSProp and Adam (with momentum) when P is diagonal. By default, we assume the Newton type, i.e., $|H|^{-1}$ as the preconditioner.

1.2 Tighter lower bound for triangular matrix norm

We update Q on the group of triangular matrix as

$$Q \leftarrow (I + \mu A)Q$$

where the step size μ is small enough such that $\|\mu A\|_2 < 1$, and $-A \in \mathbb{R}^{N \times N}$ is the gradient for preconditioner fitting.

Possible cheap, i.e., $\mathcal{O}(N^2)$ complexity, lower bounds of $||A||_2$ for step size normalization are:

- Bound F: $\frac{1}{\sqrt{r}} ||A||_F \le ||A||_2 \le ||A||_F$, where r is the rank of G.
- Bound max: $||A||_{\max} \le ||A||_2 \le N||A||_{\max}$, where $||A||_{\max} = \max_{ij} a_{ij}$
- Bound 1: $\frac{1}{\sqrt{N}} ||A||_1 \le ||A||_2 \le \sqrt{N} ||A||_1$, where $||A||_1 = \max_j \sum_i |a_{ij}|$

• Bound inf: $\frac{1}{\sqrt{N}} \|A\|_{\infty} \leq \|A\|_2 \leq \sqrt{N} \|A\|_{\infty}$, where $\|A\|_{\infty} = \max_i \sum_j |a_{ij}|$

Bound F is useful only when $r \ll N$. In general, none of the above lower bound is tighter than the rest. In the updated implementation, I replaced lower bound $||A||_{\text{max}}$ with the following consistently tighter one.

Let

$$\beta = \sqrt{\max\left(\max_{i} \sum_{j} a_{ij}^{2}, \max_{j} \sum_{i} a_{ij}^{2}\right)}$$

Then we have

$$\beta < \|A\|_2 < \sqrt{N}\beta$$

Not difficult to prove the following desired properties:

- $\beta \leq ||A||_2$: since $||A^T||_2 = ||A||_2 \geq ||Ax||/||x||$ for any $x \neq 0$, we let x be the columns or rows of A to have this lower bound. This lower bound is tight, e.g., when A = I.
- $\beta \geq \frac{1}{\sqrt{N}} ||A||_F$: obvious.
- $\beta \ge ||A||_{\max}$: obvious.
- $\beta \geq \frac{1}{\sqrt{N}} ||A||_1$: due to the Cauchy–Schwarz inequality, $N \sum_i a_{ij}^2 \geq (\sum_i |a_{ij}|)^2$.
- $\beta \geq \frac{1}{\sqrt{N}} ||A||_{\infty}$: again, due to the Cauchy-Schwarz inequality.
- $||A||_2 \le \sqrt{N}\beta$: as $||A||_2 \le ||A||_F \le \sqrt{N}\beta$. This upper bound is tight, e.g., when A is a matrix with all elements taking the same value.

1.3 Initial scale of the preconditioner can be set to None

I initialize Q as $Q = \alpha I$, where α is the initial scale. By letting

$$\alpha^2$$
 learning_rate_{PSGD} = learning_rate_{SGD}

we can map the initial settings of SGD to PSGD. In general, proper tuning of α is necessary. If α is set to None, the first pair of (v,h) is used to initialize Q as

$$Q = \left(\frac{v^T v}{h^T h}\right)^{1/4} I$$

However, this can be risky as the Newton's method does not always converge faster than gradient descent out of the basin of attraction. For example, considering convex function $f(x) = x^2 - 4x^{1/2}$, $x \in \mathbb{R}^+$. We have $f'(x) = 2x - 2x^{-1/2}$, $f''(x) = 2 + x^{-3/2}$, and optimal soltion x = 1. The Newton's method can be arbitrarily slower than the gradient descent when $0 < x \ll 1$, as shown by

$$\lim_{x \to 0} \frac{f'(x)}{f''(x)} = \lim_{x \to 0} \frac{2x - 2x^{-1/2}}{2 + x^{-3/2}} = \lim_{x \to 0} \frac{-2x^{-1/2}}{x^{-3/2}} = -2\lim_{x \to 0} x = 0$$

Thus, for this example, PSGD will get stuck around x=0 if we rely on this strategy to determine α .

1.4 More updates

- Changed class name UVd to LRA (low-rank approximation); keep UVd as an alias of LRA.
- Now LRA reduces to the diagonal preconditioner when the rank of approximation is set to 0.
- Updated hello_psgd.py to show how easy to apply PSGD on minimizing the Rosenbrock function.
- Added misc/preconditioner_fitting_rule_verification.py to show how fitting works on Lie groups.