Projekt OWiSR

Paweł Cyganiuk Jan Nawrat

April 2025

Wybrany artykuł

Nazwa artykułu

Repeated Padding for Sequential Recommendation

Autorzy

Yizhou Dang, Yuting Liu, Enneng Yang, Guibing Guo, Linying Jiang, Xingwei Wang, Jianzhe Zhao

Konferencja

RecSys '24: Proceedings of the 18th ACM Conference on Recommender Systems

Źródło:

https://dl.acm.org/doi/proceedings/10.1145/3640457

Problematyka

Format danych

Dany jest zbiór użytkowników \mathcal{U} i zbiór elementów \mathcal{V} . Dla każdego użytkownika określona jest chronologiczna sekwencja interakcji z elementami $s_u = [v_1, \ldots, v_j, \ldots, v_{|s_u|}], \ v_i \in \mathcal{V}$.

Rekomendowanie sekwencyjne

Celem jest wyznaczenie kolejnego najbardziej prawdopodobnego elementu interesującego użytkownika biorąc pod uwagę kolejność elementów, z którymi wchodził w interakcję:

$$\operatorname*{arg\,max}_{v^* \in \mathcal{V}} P(v_{|s_u|+1} = v^* \mid s_u).$$

Problematyka

Padding w systemach rekomandacyjnych

Wyrównanie długości wszystkich sekwencji w zbiorze danych do określonej wartości N poprzez augmentację danych lub użycie specjalnej wartości 0.

Tradycyjne podejście:

$$ZeroPad(s_u, N) = [\underbrace{0 \mid 0 \mid \ldots \mid 0}_{N-|s_u|} \mid s_u],$$

przy założeniu, że $|s_u| \leq N$.

 $\label{eq:first-decomposition}$ Repeated Padding for Sequential Recommendation

Problematyka

Padding w systemach rekomandacyjnych

Wyrównanie długości wszystkich sekwencji w zbiorze danych do określonej wartości N poprzez augmentację danych lub użycie specjalnej wartości 0.

Inne podejścia zakładają augmentację danych, dodając nowe sekwencje z kombinacji istniejących.

Źródło: Repeated Padding for Sequential Recommendation

Proponowana metoda

RepPad

Proponowane przez autorów rozwiązanie zakłada padding poprzez powtarzanie sekwencji *m* razy.

Autorzy proponują dwa warianty rozwiązania, w jednym z nich powtórzenia sekwencji dzielone są przez specjalną wartość 0.

$$RepPad(m, s_u) = [\underbrace{s_u \mid s_u \mid \ldots \mid s_u}_{(m+1)s_u}],$$

$$RepPadO(m, s_u) = [\underbrace{s_u \mid 0 \mid s_u \mid \ldots \mid 0 \mid s_u}_{(m+1)s_u}].$$

(d) Our Repeated Padding

- $0 \quad 0 \quad \boxed{v_1} \quad \boxed{v_2} \quad \boxed{v_3} \quad \boxed{v_4} \quad \boxed{v_1} \quad \boxed{v_2} \quad \boxed{v_3} \quad \boxed{v_4}$
- $0 \quad v_3 \quad v_7 \quad v_9 \quad v_3 \quad v_7 \quad v_9 \quad v_3 \quad v_7 \quad v_9$

(e) Our Repeated Padding (With Separator 0)

- $\begin{pmatrix} v_1 \end{pmatrix} \begin{pmatrix} v_2 \end{pmatrix} \begin{pmatrix} v_3 \end{pmatrix} \begin{pmatrix} v_4 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} v_1 \end{pmatrix} \begin{pmatrix} v_2 \end{pmatrix} \begin{pmatrix} v_3 \end{pmatrix} \begin{pmatrix} v_4 \end{pmatrix}$

- 0 v_6 v_2 v_4 v_1 0 v_6 v_2 v_4 v_1 Total Training Sequences = |U|

Žródło:

Repeated Padding for Sequential Recommendation

Proponowana metoda

Autorzy proponują różne sposoby doboru wartości m:

Wartość m	Interpretacja
0	Oryginalna sekwencja jest użyta bez paddingu.
$1, 2, 3, \dots$	Sekwencja dodana jest określoną ilość razy.
max	Sekwencja jest powtarzana dopóki starcza miejsca. $m = (N - s_u)/s_u$
random(0, max)	Losowana jest liczba pomiędzy 0 a maksymalną.
random(1, max)	Losowana jest liczba pomiędzy 1 a maksymalną.

Na przestrzeni artykułu metoda random(1, max) zostaje wybrana jako osiągająca najlepsze wyniki.

Zbiory danych

Zbiory danych, na których przeprowadzone zostały badania:

Dataset	Toys	Beauty	Sports	Yelp	Home	Clicks*				
# Users	19 412	22 363	35 598	30 431	66 519	20 000				
# Items	11 924	12 101	18 357	20 033	28 237	11 696				
# Inter	167 597	198 502	296 337	316 354	551 682	144 537				
# AvgLen	8,6	8,9	8,3	10,4	8,3	7,2				
Sparsity	98,43%	95,64%	97,19%	97,03%	97,01%	95,96%				
	·									

^{*}Zbiór zaproponowany przez nas

Zastosowane metryki

Wybrane modele

Większość testów autorzy przeprowadzili z użyciem modeli GRU4Rec oraz SAS4Rec.

Format wyników

Wyniki mają postać listy rekomendacji posortowanej od najbardziej prawdopodobnej pozycji.

Zbiór testowy

Zbiór testowy tworzony jest metodą leave-one-out, to znaczy z każdej sekwencji wybierany jest ostatni element.

Zastosowane metryki

Metryki wybrane przez autorów

Autorzy zastosowali dwie popularne metryki dla walidacji leave-one-out:

- Hit Ratio@K (HR@K)
- Normalized Discounted Cumulative Gain@K (NDCG@K)

Zaproponowana dodatkowa metryka

Z racji użytego typu walidacji wiele popularnych metryk nie da się zastosować bez znacznych zmian w kodzie. Metryką dobrze działającą z walidajcą leave-one-out jest Mean Reciprocal Rank (MRR).

Odtworzenie wyników

Dataset	Metric	GRU4Rec	w/RP	Improve	SASRec	w/RP	Improve	Dataset	Metric	GRU4Rec	w/RP	Improve	SASRec	w/RP	Improve
Toys	Hit@5	0,0201	0,0282	140,30%	0,0488	0,0564	116%	Yelp	Hit@5	0,008	0,0145	181,25%	0,0151	0,021	139%
	Hit@10	0,0308	0,0439	142,53%	0,073	0,0823	113%		Hit@10	0,0158	0,0264	167,09%	0,0269	0,0354	132%
	Hit@20	0,0521	0,0659	126,49%	0,1017	0,1132	111%		Hit@20	0,0303	0,0452	149,17%	0,0463	0,0599	129%
	NDCG@5	0,0125	0,0172	137,60%	0,033	0,0391	118%		NDCG@5	0,005	0,0088	176,00%	0,0094	0,013	138%
	NDCG@10	0,0159	0,0222	139,62%	0,0409	0,0475	116%		NDCG@10	0,0075	0,0126	168,00%	0,0132	0,0176	133%
	NDCG@20	0,0212	0,0277	130,66%	0,048	0,0553	115%		NDCG@20	0,0111	0,0173	155,86%	0,0181	0,0237	131%
	MRR	0,0128	0,0171	133,59%	0,0331	0,0391	118%		MRR	0,006	0,0098	163,33%	0,0105	0,0139	132%
Beauty	Hit@5	0,0209	0,0284	135,89%	0,036	0,048	133%	Home	Hit@5	0,0032	0,0067	209,38%	0,0096	0,0123	128%
	Hit@10	0,036	0,0452	125,56%	0,0588	0,0738	126%		Hit@10	0,0059	0,0109	184,75%	0,0153	0,0195	127%
	Hit@20	0,0595	0,0714	120,00%	0,0867	0,1075	124%		Hit@20	0,0109	0,0187	171,56%	0,0241	0,03	124%
	NDCG@5	0,0129	0,0179	138,76%	0,0234	0,0322	138%		NDCG@5	0,002	0,0041	205,00%	0,0062	0,0081	131%
	NDCG@10	0,0178	0,0232	130,34%	0,0308	0,0404	131%		NDCG@10	0,0029	0,0055	189,66%	0,008	0,0105	131%
	NDCG@20	0,0237	0,0298	125,74%	0,0378	0,0489	129%		NDCG@20	0,0041	0,0074	180,49%	0,0102	0,0131	128%
	MRR	0,0139	0,0184	132,37%	0,0242	0,0327	135%		MRR	0,0023	0,0044	191,30%	0,0064	0,0085	133%
Sports	Hit@5	0,0068	0,0122	179,41%	0,0215	0,0261	121%	Clicks	Hit@5	0,0636	0,084	132,08%	0,1361	0,1543	113%
	Hit@10	0,0133	0,0219	164,66%	0,0325	0,0406	125%		Hit@10	0,108	0,1383	128,06%	0,192	0,2162	113%
	Hit@20	0,026	0,0358	137,69%	0,0491	0,0606	123%		Hit@20	0,1621	0,2021	124,68%	0,2472	0,2782	113%
	NDCG@5	0,004	0,0068	170,00%	0,0145	0,0173	119%		NDCG@5	0,0407	0,0457	112,29%	0,0911	0,1044	115%
	NDCG@10	0,0061	0,0099	162,30%	0,018	0,0219	122%		NDCG@10	0,055	0,0632	114,91%	0,1092	0,1244	114%
	NDCG@20	0,0092	0,0134	145,65%	0,0221	0,027	122%		NDCG@20	0,0686	0,0793	115,60%	0,1231	0,14	114%
	MRR	0,0048	0,0072	150,00%	0,0147	0,0177	120%		MRR	0,0427	0,0447	104,68%	0,0876	0,1005	115%

Możliwość rozbudowania eksperymentu

Dodatkowe metryki

Zmodyfikowanie sposobu testowania może pozwolić na użycie innych metryk, nieefektywnych z leave-one-out, chociaż może wymagać użycia innych zbiorów danych.

Dodatkowe modele

Nie wszystkie modele użyte podczas testów przez autorów artykułu znajdują się w kodzie dostępnym na github.

Inne rodzaje metryk

Interesujący może być wpływ powtarzanych sekwencji na metryki takie jak novelty, diversity czy serendipity.

Plany udoskonalenia metody

Alternatywne wartości m

- $random(1, \frac{1}{2}max)$
- $random(\frac{1}{2}max, max)$
- $random(\frac{1}{4}max, \frac{3}{4}max)$
- $random(\frac{1}{3}max, \frac{2}{3}max)$

Alternatynwe sposby powtarzania sekwencji

• losowe podzbiory s_u

Wpływ tych modyfikacji na zbiory danych o dłuższej średniej sekwenji.