CSE331 COMPUTER ORGANIZATION FALL 2022 FINAL PROJECT

Burcu Sultan ORHAN 1901042667

Truth Table for Main Control:

	opcode	func	regDst	ALUSrc	MemtoReg	RegWrite	MemRead	MemWrite	Branch	NotBranch	Jump	ALUOp
add	00 0000	10 0000	1	0	0	1	0	0	0	0	0	111
subtract	00 0000	10 0010	1	0	0	1	0	0	0	0	0	111
and	00 0000	10 0100	1	0	0	1	0	0	0	0	0	111
or	00 0000	10 0101	1	0	0	1	0	0	0	0	0	111
shift left logical	00 0000	00 0000	1	0	0	1	0	0	0	0	0	111
shift right logical	00 0000	00 0010	1	0	0	1	0	0	0	0	0	111
set on less than	00 0000	10 1010	1	0	0	1	0	0	0	0	0	111
jump register	00 0000	00 1000	1	0	0	1	0	0	0	0	0	111
load immediate			0	1		1	0	0	0	0	0	000
add immediate	00 1000	xx xxxx	0	1	0	1	0	0	0	0	0	000
and immediate	00 1100	xx xxxx	0	1	0	1	0	0	0	0	0	100
or immediate	00 1101	xx xxxx	0	1	0	1	0	0	0	0	0	101
load word	10 0011	xx xxxx	0	1	1	1	1	0	0	0	0	000
store word	10 1011	xx xxxx	0	1	x	0	0	1	. 0	0	0	000
branch on equal	00 0100	xx xxxx	0	0	X	0	0	0	1	0	0	010
branch on not equal	00 0101	xx xxxx	0	0	х	0	0	0	0	1	0	010
set on less than immediate	00 1010	xx xxxx	0	1	0	1	0	0	0	0	0	110
jump	00 0010	xx xxxx	0	1	0	0	0	0	0	0	1	000
jump and link	00 0011	xx xxxx	0	1	0	1	0	0	0	0	1	000

Truth table for ALU Control:

	ALUOp	Func	ALUControl	Action
add	111	10 0000	0 0 0	add
subtract	111	10 0010	001	sub
and	111	10 0100	100	and
or	111	10 0101	101	or
shift left logical	111	00 0000	010	mult
shift right logical	111	00 0010	010	mult
set on less than	111	10 1010	110	slt
jump register	111	00 1000	0 0 0	add
load immediate	000	xxxxxx	0 0 0	add
add immediate	000	xxxxxx	0 0 0	add
and immediate	100	xxxxxx	100	and
or immediate	101	xxxxxx	101	or
load word	000	xxxxxx	0 0 0	add
store word	000	xxxxxx	0 0 0	add
branch on equal	010	xxxxxx	001	sub
branch on not equal	010	xxxxxx	001	sub
set on less than immediate	110	xxxxxx	110	slt
jump	000	xxxxxx	0 0 0	add
jump and link	000	xxxxxx	0 0 0	add

Test Benches:

MIPS Test bench
 For these instructions:

Result:

```
Transcript ===
VSIM 5> step -current
 time= 0, clock= 1, PC= 0000000000, instruction= 0000000000010010010000000000,
  opcode= 000000, rs= 0000, rt= 0001, rd= 0010, func= 0000, imm= 0010000010000000
 # datal= 0000000000000000, data2= 000000000000001,
  written data= zzzzzzzzzzzzzzzz,
 # ALUop= 111, ALUcontrol= 000, ALUresult= 00000000000001, Destination result = 000000000000001
  RegDst= 1, ALUsrc= 0, MemtoReg= 0, RegWrite= 1, MemRead= 0, MemWrite= 0, Branch= 0, NotBranch= 0, Jump= 0
# time= 20, clock= 0, PC= 0000000001, instruction= 000000000001001000001000000000,
  opcode= 000000, rs= 0000, rt= 0001, rd= 0010, func= 0000, imm= 0010000010000000
  datal= 00000000000000000, data2= 000000000000001,
  ALUop= 111, ALUcontrol= 000, ALUresult= 00000000000001, Destination result = 00000000000001
  RegDst= 1, ALUsrc= 0, MemtoReg= 0, RegWrite= 1, MemRead= 0, MemWrite= 0, Branch= 0, NotBranch= 0, Jump= 0
  time= 40, clock= 1, PC= 0000000001, instruction= 000000001101000101000010000000,
  opcode= 000000, rs= 0011, rt= 0100, rd= 0101, func= 0010, imm= 0101000010001000
  data1= 00000000000000011, data2= 00000000000000100,
  written data= zzzzzzzzzzzzzzz,
  ALUop= 111, ALUcontrol= 001, ALUresult= 1111111111111111, Destination result = 0000000000000000
  RegDst= 1, ALUsrc= 0, MemtoReg= 0, RegWrite= 1, MemRead= 0, MemWrite= 0, Branch= 0, NotBranch= 0, Jump= 0
# time= 60, clock= 0, PC= 0000000010, instruction= 00000000110100010100001000000,
  opcode= 000000, rs= 0011, rt= 0100, rd= 0101, func= 0010, imm= 0101000010001000
  datal= 0000000000000011, data2= 0000000000000100,
  written data= zzzzzzzzzzzzzzz,
  ALUop= 111, ALUcontrol= 001, ALUresult= 1111111111111111, Destination result = 00000000000000000
  RegDst= 1, ALUsrc= 0, MemtoReg= 0, RegWrite= 1, MemRead= 0, MemWrite= 0, Branch= 0, NotBranch= 0, Jump= 0
# time= 80, clock= 1, PC= 0000000010, instruction= 00000001100111100000001001000000,
  opcode= 000000, rs= 0110, rt= 0111, rd= 1000, func=
                                                      0100, imm= 1000000010010000
  datal= 0000000000000110, data2= 000000000000111,
# written data= zzzzzzzzzzzzzzzz.
# ALUop= 111, ALUcontrol= 100, ALUresult= 00000000000110, Destination result = 00000000000111
```

Instruction Memory Test bench

Now: 100 ps Delta: 1 sim:/instructionMemory_testbench

Main Control Test bench

```
# time= 0,
# opcode= 000000,
# RegDst= 1,
# ALUsrc= 0,
# MemtoReg= 0,
# RegWrite= 1,
# MemRead= 0,
# MemWrite= 0,
# Branch= 0,
# NotBranch= 0,
# Jump= 0.
# ALUop= 111
# time= 20,
# opcode= 001000,
# RegDst= 0,
# ALUsrc= 1,
# MemtoReg= 0,
# RegWrite= 1,
# MemRead= 0,
# MemWrite= 0,
# Branch= 0,
# NotBranch= 0.
# Jump= 0,
# ALUop= 110
# time= 40,
# opcode= 001100,
# RegDst= 0,
# ALUsrc= 1,
# MemtoReg= 0,
# RegWrite= 1,
# MemRead= 0,
# MemWrite= 0,
# Branch= 0,
# NotBranch= 0,
# Jump= 0,
# ALUop= 100
```

Now: 220 ps Delta: 1 sim:/MainContro

Select Destination Test bench

```
# Loading work.SelectDestination
VSIM 28> step -current
# time = 0, rt=0101, rd=1011, regDest=0 , Destination=0101
# time = 20, rt=0101, rd=1010, regDest=1 , Destination=1010
VSIM 29>
```

Register Operations Test bench
 For these register values

Results

```
add wave -position insertpoint sim:/registerOperations_testbench/*

VSIM 32> step -current

# time = 0, clock = 1 rs = 0001, rt = 0010, output1 = 00000000000001, output2 = 00000000000010, rd = 011, data = 00000011110000, RegWrite = 0

# time = 20, clock = 0 rs = 0011, rt = 0100, output1 = 000000000000011, output2 = 000000000000100, rd = 011, data = 0000001111000011, RegWrite = 1

VSIM 33>
```

ALU Control Test bench

```
# Loading work.ALUControl
add wave -position insertpoint sim:/ALUControl testbench/*
VSIM 36> step -current
# time= 0,AluOp= 111,func= 100000,AluControl= 000
# time= 20, AluOp= 111, func= 100010, AluControl= 001
# time= 40, AluOp= 111, func= 100100, AluControl= 100
# time= 60, AluOp= 111, func= 100101, AluControl= 101
# time= 80, AluOp= 111, func= 000000, AluControl= 010
# time= 100, AluOp= 111, func= 000010, AluControl= 010
# time= 120, AluOp= 111, func= 101010, AluControl= 110
# time= 140, AluOp= 111, func= 001000, AluControl= 000
# time= 160, AluOp= 000, func= 110110, AluControl= 000
# time= 180, AluOp= 100, func= 110110, AluControl= 100
# time= 200, AluOp= 101, func= 110110, AluControl= 101
# time= 220, AluOp= 010, func= 110110, AluControl= 001
# time= 240, AluOp= 110, func= 110110, AluControl= 110
VSIM 37> step -current
VSIM 37>
```

• Mux2x1 Test bench

```
VSIM 40> step -current

# time = 0 ,a=010101010101010101,b=101011101010111, Selection=0 ,Result=01010101010101

# time = 20 ,a=0101010101010101,b=111100101111010, Selection=1 ,Result=111100101111010

VSIM 41>
```

ALU Test bench

• Memory Operations Test bench

```
VSIM 43> step -current

# time = 0, address = 0000000000000001, data = 000000000001111, myOutput = 00000000001111, MemRead = 1, MemWrite = 0, clk = 1

# time = 20, address = 0000000000000001, data = 00000000001111, myOutput = 00000000001111, MemRead = 1, MemWrite = 1, clk = 0

# time = 40, address = 000000000000001, data = 000000000011111, myOutput = 00000000001111, MemRead = 1, MemWrite = 1, clk = 1

# time = 60, address = 0000000000000010, data = 0001001000111110, myOutput = 000100100011110, MemRead = 1, MemWrite = 1, clk = 0

# time = 80, address = 0000000000000010, data = 001001000111110, myOutput = 000100100011110, MemRead = 1, MemWrite = 1, clk = 1

# time = 100, address = 0000000000000111, data = 010001000011100, myOutput = 0100001000011100, MemRead = 1, MemWrite = 1, clk = 0

# time = 120, address = 0000000000000111, data = 0100001000011100, myOutput = 0100001000011100, MemRead = 1, MemWrite = 1, clk = 1

VSIM 44>
```

Now: 140 ns Delta: 0 sim:/memorvOnerations testbench