Graph Search

Breadth First, Depth First, Least Cost First, Heunistic

Applies to

- · Craph Search
- . Deterministic State Space Search

16- Puzz1e

Grown

1	2	3	4
5	ъ	7	8
9	lo	11	12
13	14	15	1111

empty square

Start State

	1	3	6	4
	5	9	2	8
	9	4	7	12
•	13	14	15	1111

Con figuration

Road Network:

Costs are not same across edges.

First consider cost of edge to be 1.

Parblem: Starting from start State (or start Vertex) S we want to read the Goal State (or goal vertex) G

Assume: unit step ost or edge cost = 1.

Data Standure:

- . Search Tree (Separate from the graph data staudule)
- a Priority Queuc) · Ferontier (Implemented as Quene / Stack
- . Explored List (Optional)

Node in Search Tree

: m. STATE / n. vertex * Yeakex / State

· n. Parent * parent

: n. Action /n. Edge action/edge

: m. WST , Pala West

No explored list (potentially revisit nodes) tree Search: Graph Search: wer Explored list Tree-Search = { Start State / Vertex } t Frontier * If Frontier = Empty => Search failed So a node E Frontier, Frontier = Frontier - Node noae = Goal the Stop (trace route back to Pick Selevion Faontier = Frontier + Children (node) Groat Test

Expansion

$$S = \{s, \ldots, s^n \}$$

$$A = \{a', \ldots, a^k \}$$

$$A = \{a', \dots, a^k\}$$

edges: actions

ventices: states

cast: 1

A13	3(9)	1 ⁵	316
1,9	مام	g) l	S12
35	26	5 ⁷	1,8
<i>s</i> '	<i>S</i> ²	ДЭ	34

$$A = \{ \uparrow, \downarrow, \leftarrow, \rightarrow \}$$

START STATE = S'
GOAL STATE = 3

Farontier:

S'

R' leaves

2'

s² is not Groal, so expand s²

Farantier:

| ss | s | s | s |

15 leaves.

s's not Gwal state

Fauntier

- . st gets repeated.

 In Tree Search We don't stop

A ¹³	8 ⁽ 4)	A15	8 ¹ (
ß	مام	g ¹¹	B12
15°	26	3 ⁷	1,8
ß	<i>S</i> ²	дЪ	24

A13	869	1 ⁵	816
1,9	مامر	ا (چ	812
3	<i>1</i> 36	<i>κ</i> ¹	1,8
1	2	4	<i>9</i> .4

x2 35

trontier

\s \ \ \s^b \

Expensed list

s Expensed list

1		
-	211	-
-	811	-
	<i>9</i> 16	}
	37	+
	s6	
	<u>\$</u> 5	

A ¹³	89	A ¹⁵	8 ^{1 (}
1 ⁹	مام	RIL	1812
15	26/	137	18
	132	1851	25/4

: Breadth First Search : Quene Fasnier : Depth : Stack Parionity Quene BFS + Wunt : DFS - Gunt Performance Griteria. Does it actually find the solution * Completeness: (not necessarily the best) « Optimality: Does it find the optimal solution? Time * Space

Assume: unit Cost DFS BFS X (Search space is finite)
The Graph 4 Completeness (graph & Trel) optimality S

3 = 0.1 6 = 3

