To find the following the machine learning regression method using r2 value

1. Multiple Linear Regression(R² value)= 0.935868097004624

2. Support Vector Machine

Sl.No.	Hyper parmeter	Linear	rbf	Poly	sigmoid
1	C =1	0.895077923	-0.057317309	-0.050890118	- 0.057499197
2	C=10	-2.437215037	-0.055800923	0.025312389	- 0.057615386
3	C=100	-357.0795147	-0.03023556	0.465662634	- 0.058780024
4	C=500		0.050018181	0.620773805	- 0.064016657
5	C=1000	-36014.02058	0.160600292	0.640323938	- 0.070701273
6	C=2000		0.288395441	0.671747715	- 0.084533254
7	C=3000		0.395140856	0.690998545	- 0.098982232

The SVM Regression use R² value(Linear and hyper parameter (c1) = **0.895077923**

3. Decision Tree

Sl.No.	CRITERIAN	MAX FEATURES	SPLITTER	R_VAALUE
1	squared_error	None	best	0.929771464
2	squared_error	None	random	0.710480582
3	squared_error	sqrt	best	0.72149386
4	squared_error	sqrt	random	0.659990407
5	squared_error	log2	best	0.697858344
6	squared_error	log2	random	0.753304161
7	friedman_mse	None	best	0.946496311
8	friedman_mse	None	random	0.761292183
9	friedman_mse	sqrt	best	0.059908185
10	friedman_mse	sqrt	random	0.27648082
11	friedman_mse	log2	best	0.561691501
12	friedman_mse	log2	random	0.709178623
13	absolute_error	None	best	0.962373806
14	absolute_error	None	random	0.931751668
15	absolute_error	sqrt	best	0.552159137
16	absolute_error	sqrt	random	0.555381088
17	absolute_error	log2	best	-0.906443655
18	absolute_error	log2	random	0.632805257
19	poisson	None	best	0.918744895
20	poisson	None	random	0.872307635
21	poisson	sqrt	best	0.383493983
22	poisson	sqrt	random	-0.415629226
23	poisson	log2	best	0.411697943
24	poisson	log2	random	0.745410817

The Decision Tree Regression use R^2 value (absolute_error,None,best) = **0.962373806**

4. Random Forest

Sl.No.	CRITERIAN	MAX FEATURES	n_estimator	R_VAALUE
1	squared_error	None	100	0.946004355
2	squared_error	None	50	0.944633639
3	squared_error	sqrt	100	0.75915045
4	squared_error	sqrt	50	0.683002237
5	squared_error	log2	100	0.75915045
6	squared_error	log2	50	0.683002237
7	friedman_mse	None	100	0.941270197
8	friedman_mse	None	50	0.938895763
9	friedman_mse	sqrt	100	0.760859221
10	friedman_mse	sqrt	50	0.688918213
11	friedman_mse	log2	100	0.760859221
12	friedman_mse	log2	50	0.688918213
13	absolute_error	None	100	0.945909746
14	absolute_error	None	50	0.940193525
15	absolute_error	sqrt	100	0.785748335
16	absolute_error	sqrt	50	0.722235187
17	absolute_error	log2	100	0.785748335
18	absolute_error	log2	50	0.722235187
19	poisson	None	100	0.941388942
20	<mark>poisson</mark>	None None	50	0.946354971
21	poisson	sqrt	100	0.771764207
22	poisson	sqrt	50	0.720862467
23	poisson	log2	100	0.771764207
24	poisson	log2	50	0.720862467

The Random forest Regression use R² value (poisson,Nonen_feature=50)= **0.94635497053**

Compare Best model

S.no	Model	R2_value
1	MLR	0.935868097004624
2	SVM	0.895077923
3	Decision Tree	<mark>0.962373806</mark>
4	Random Forest Tree	0.946354971

Best Moel is Decision Tree Regression use R^2 value (absolute_error, None , best) = $\mathbf{0.962373806}$