ZÁRÓVIZSGA TÉTELEK

ELTE IK Programtervező informatikus BSc szak

Sorozatok, sorok függvények határértéke és folytonossága. (Számsorozatok, vektorsorozatok konvergenciája. Monoton sorozatok. A végtelen numerikus sor fogalma és konvergenciája. Pozitív tagú sorok. Gyök- és hányados- kritérium. Leibniz-típusú sorok. A hatványsor fogalma. Cauchy-Hadamard- tétel. Vektor-vektor függvények határértéke és folytonossága. Kompakt halmazon folytonos függvények tulajdonságai: Heine-tétel, Weierstrasst tétel, az inverz függvény folytonossága. Bolzano-tétel.)

Differenciálszámítás, integrálszámítás és alkalmazásaik. (Vektor-vektor függvények deriválhatósága. Jacobi-mátrix, gradiens, parciális derivált. Az egyváltozós valós függvények esete. Differenciálási szabályok. Rolle-, Cauchy-, Lagrange-tétel. Szélsőérték, függvényvizsgálat. A Riemann-integrál fogalma. Parciális integrálás, integrálás helyettesítéssel. Newton-Leibniz-formula. Terület, ívhossz, térfogat, felszín.)

Differenciálegyenlet rendszerek. (A kezdeti érték probléma. Lineáris differenciálegyenlet rendszerek, magasabb rendű lineáris egyenletek.)

Interpolációs eljárások. (Lagrange-interpoláció, Hermite-interpoláció, spline interpoláció.)

Lineáris egyenletrendszerek numerikus megoldása. (Gauss-elimináció, szorzat felbontáson alapuló módszerek, iterációs módszerek, legkisebb négyzetes módszerek.)

Számelmélet és rejtjelezési eljárások. (Számelméleti alapok. RSA és alkalmazásai, Diffie-Hellman-Merkle kulcscsere.)

Kódoláselmélet. (Huffmann kód, hibajavító kódok, véges testek konstrukciója. Reed-Solomon kód és dekódolása.)

Lineáris algebrai alapok (Vektorterek, mátrixok, lineáris egyenletrendszerek. A lineáris programozási feladat, szimplex algoritmus.)

Valószinűségszámítási és statisztikai alapok. (Diszkrét és folytonos valószinűségi változók, nagy számok törvénye, centrális határeloszlás tétel. Statisztikai becslések, klasszikus statisztikai próbák.)

Mesterséges intelligencia. (MI problémák és az útkeresési feladat kapcsolata. Állapottér reprezentáció. Keresések – lokális keresés, visszalépéses keresés, gráfkeresés – jellemzése. Kétszemélyes játékok. Evolúciós algoritmusok, mesterséges neuronhálózatok. Automatikus logikai következtés.)

Programozási tételek. (A programozási tétel és a visszavezetés fogalma. Összegzés, számlálás, maximum kiválasztás, feltételes maximumkeresés. Lineáris keresések. Logaritmikus keresés. Rekurzív függvény helyettesítési értékének kiszámítása. Programtranszformáció fogalma, szerepe a feladat finomításában, és a program hatékonyságában.)

Típus. (Az adattípus fogalma (típusspecifikáció, reprezentáció, invariáns, implementáció). Programozási tételek típus-transzformációi különböző iterált szerkezetű objektumokra (pl.: vektorra, halmazra vagy szekvenciális fájlokra). Az állapottér-transzformáció fogalma.)

Programfejlesztési modellek. (Nagy rendszerek fejlesztési fázisai, kapcsolataik. Az objektumelvű programozás kialakulása, típusöröklődés. Az objektumelvű modellezés nézetrendszerei, UML eszközök. Tervminták fogalma.)

Statikus és dinamikus modellek. (Statikus modell (osztálydiagram, objektumdiagram). Dinamikus modell (állapotdiagram, szekvencia diagram, együttműködési diagram, aktivációs diagram). Használati esetek diagramja.)

Programok fordítása és végrehajtása. (Fordítás és interpretálás, bytecode. Előfordító, fordító, szerkesztő. A make. Fordítási egység, könyvtárak. Szintaktikus és szemantikus szabályok. Statikus és dinamikus típusellenőrzés. Párhuzamos programozás.)

Adatok, műveletek és vezérlés. (Számábrázolás, alaptípusok. Típuskonstrukciók. Operátorok, kifejezések kiértékelése. Utasítások, vezérlési szerkezetek, rekurzió, kivételkezelés. Adatabsztrakció. Osztály, öröklődés, statikus és dinamikus kötés, altípusos polimorfizmus. Generikusok.)

Programszerkezet. (Blokk, hatókör, láthatóság. Automatikus, statikus és dinamikus élettartam, szemétgyűjtés. Konstruktor, destruktor. Objektumok másolása, összehasonlítása. Programegységek, névterek. Alprogramok, paraméterátadás. Túlterhelés.)

Fordító programok. (Fordítóprogramok felépítése, az egyes komponensek feladata. A lexikáliselemzőműködése, implementációja. Szintaktikus elemző algoritmusok csoportosítása, összehasonlítása; létrehozásuk és működésük vázlatos ismertetése. Az ATG-k szerepe és alapfogalmai. Kódgenerálás assemblyben alapvető imperatív vezérlési szerkezetekhez.)

Logika. (Az ítéletlogika és a predikátumkalkulus szintaxisa és szemantikája. A szemantikus következményfogalom. Alapvető módszerek a szemantikus következmény bizonyítására az ítéletlogikában –igazságtábla, szemantikus fa, rezolúció.)

Számításelmélet. (A kiszámíthatóság fogalma és a Church-Turing tézis. A Turing gép, mint algoritmus modell. A rekurzív és a rekurzívan felsorolható nyelvek. Algoritmikusan eldönthető és eldönthetetlen problémák. Problémák egymásra való visszavezethetősége. Idő- és tárbonyolultsági osztályok. A P, NP. Polinomiális idejű visszavezetések. P-teljes, NP-teljes problémák.)

Adatszerkezetek. (Egyszerű adattípusok - tömb, verem, sor, elsőbbségi sor, lista, bináris fa, gráf - ábrázolásuk és műveleteik.)

Alapvető algoritmusok. (Az adattárolás és visszakeresés néhány megvalósítása (bináris keresőfa, AVL-fa, 2-3-fa és B-fa, hasítás láncolással és nyílt címzéssel. Rendezési módszerek és hatékonyságuk (buborék, beszúró és maximum-kiválasztó, ill. verseny, kupac, gyors és összefésülő rendezés). Rendezés lineáris időben: edényrendezések.)

Formális nyelvek. (Formális nyelvtanok és a Chomsky-féle nyelvosztályok. A reguláris nyelvek alapvető tulajdonságai és alkalmazásai. Környezetfüggetlen nyelvek és elemzésük. Matematikai gépek – véges automata és veremautomata.)

Operációs rendszerek - párhuzamos folyamatok. (Folyamat, szál fogalma és megvalósításaik. Interaktív, kötegelt és valós idejű folyamatok, ütemező algoritmusok. Párhuzamosság fajtái, versenyhelyzetek, kritikus szekciók. Osztott memória és üzenetküldés. Szemaforok és monitorok. Holtpontok, jellemzésük, megelőzésük, elkerülésük és felismerésük.

Operációs rendszerek - tárkezelés. (Tárak hierarchiája. Memóriakezelés: rögzített és dinamikus partíciók, virtuális memória fogalma. Lapozás és szegmentálás. Lapcserélési algoritmusok, munkahalmaz. Bemenet/kimenet ütemezése és a kiszolgálási idő csökkentése. Lemezterület-szervezés, fizikai és logikai formázás, partíciók. Redundáns tömbök, kötetkezelő rendszerek. Állományrendszerek szolgáltatásai és megvalósításuk. Blokkfoglalási módszerek, szabad tárterület nyilvántartása, naplózás.)

Számítógépes hálózatok és Internet eszközök. (Fizikai réteg, adatkapcsolati réteg, hálózati réteg, szállítói réteg - feladatok, módszerek, protokollok.)

Osztott rendszerek. (Folyamatok specifikációja, absztrakt párhuzamos program tulajdonságai, nevezetes feladatok megoldása párhuzamos és elosztott programokkal. Vagy: köztesrétegek tulajdonságai, elnevezési rendszerek, kommunikáció, szinkronizáció, konzisztencia.)

Adatbázisok – adatmodellezés. (Az adatbázis-kezelő rendszerek feladata, tulajdonságai, egyed-kapcsolat modell, relációs adatmodell, az E/K diagram átalakítása relációs adatmodellbe. Adatbázisok tervezése, anomáliák, funkcionális és többértékű függőségek, implikációs probléma, attribútumhalmazok lezárása, dekompozíciók tulajdonságai, veszteségmentesség, függőségőrzés ellenőrzése, Boyce-Codd normálforma, 3NF, 4NF, dekomponáló algoritmusok.)

Adatbázisok - lekérdezés és időszerűsítés. (A relációs algebra műveletei, használata, műveleti tulajdonságok, lekérdező nyelvek ekvivalenciája, átírás egyik nyelvből a másikba, rekurzív lekérdezések az SQL-ben, lekérdezések kiértékelése és optimalizálási stratégiák.)