(5) Adib N. Rahmouni. Copyleft.

Permission vous est donnée de copier, distribuer et/ou modifier ce document selon les termes de la Licence GNU Free Documentation License, Version 1.2 ou ultérieure publiée par la Free Software Foundation; avec pas de section inaltérable, pas de texte de première page de couverture, pas de texte de dernière page de couverture.

On pourra consulter la licence sur http://www.gnu.org/licenses/fdl.html.

Sommaire

Prir	cipales lois de probabilité	1				
1.1	Loi de Bernoulli	1		1.7	Loi Normale	2
1.2	Loi binomiale	1		1.8	Loi Gamma	2
1.3	Loi Uniforme	1				
1.4	Loi Géométrique	1	2	Vale	eurs moyennes	2
1.5	Loi de Poisson	1		2.1	Espérence	2
1.6	Loi Uniforme continue	2		2.2	Variance	3
	1.1 1.2 1.3 1.4 1.5	1.1 Loi de Bernoulli	1.2 Loi binomiale 1 1.3 Loi Uniforme 1 1.4 Loi Géométrique 1 1.5 Loi de Poisson 1	1.1 Loi de Bernoulli 1 1.2 Loi binomiale 1 1.3 Loi Uniforme 1 1.4 Loi Géométrique 1 1.5 Loi de Poisson 1	1.1 Loi de Bernoulli 1 1.7 1.2 Loi binomiale 1 1.8 1.3 Loi Uniforme 1 1 1.4 Loi Géométrique 1 2 Vale 1.5 Loi de Poisson 1 2.1	1.1 Loi de Bernoulli 1 1.7 Loi Normale 1.2 Loi binomiale 1 1.8 Loi Gamma 1.3 Loi Uniforme 1 1 1.4 Loi Géométrique 1 2 Valeurs moyennes 1.5 Loi de Poisson 1 2.1 Espérence

1 Principales lois de probabilité Lois discrètes finies

1.1 Loi de Bernoulli

• Loi de Bernoulli : $\mathcal{B}(1,p)$ $p \in]0,1[$

La v.a.r. X sur l'espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ suit une loi de Bernoulli de paramètre p (on note $X \sim \mathcal{B}(1, p)$ si elle est à valeurs dans $\{0,1\}$ avec $\mathbb{P}(X=1)=p$ et $\mathbb{P}(X=0)=1-p$.

Cette loi modélise l'issue d'une expérience en ne s'intéressant qu'au "succès" ou à l' "échec" de l'expérience.

1.2 Loi binomiale

• Loi binomiale $\mathcal{B}(n,p)$ $n \in \mathbb{N}^*$ $p \in]0,1[$

La v.a.r. X sur l'espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ suit une loi binomiale de paramètre (n, p) (on note $X \sim \mathcal{B}(n, p)$ si elle est à valeurs dans $\{0, 1, \ldots, n\}$ avec

$$\forall i = 0, \dots, n \ \mathbb{P}(X = i) = C_n^i p_i (1 - p)^{n-i}$$

Cette loi modélise une succession de "succès" et d"'échecs", p étant la probabilité du succès.

1.3 Loi Uniforme

• Loi uniforme sur $\{1,\ldots,N\}$

La v.a.r. X sur l'espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ suit une loi uniforme sur $\{1, \ldots, N\}$ (on note $X \sim \mathcal{U}_N$) si elle est à valeurs dans $\{1, \ldots, N\}$ avec

$$\forall k \in \{1,\dots,N\} \ \mathbb{P}(X=k) = \frac{1}{N}$$

Cette loi modélise l'issue d'une expérience où les résultats sont équiprobables.

1.4 Loi Géométrique

V.A.R. "infinies dénombrables"

Loi géométrique $\mathcal{G}(p)$, $p \in]0,1[$ La v.a.r. X sur l'espace probabilisé $(\Omega,\mathcal{F},\mathbb{P})$ suit une loi géométrique de paramètre p (on note $X \sim \mathcal{G}(p)$) si elle est à valeurs dans \mathbb{N}^* avec

$$\forall i \in \mathbb{N}^*, \ \mathbb{P}(X=i) = p(1-p)^{i-1}$$

. Cette loi modélise une série d' "échecs" suivie du premier "succès".

1.5 Loi de Poisson

Loi de Poisson $\mathcal{P}(\lambda)$, $\lambda > 0$ on note $X \sim \mathcal{P}(\lambda)$) si elle est à valeurs dans \mathbb{N} avec

$$\forall i \in \mathbb{N}, \ \mathbb{P}(X=i) = e^{-\lambda} \frac{\lambda^i}{i!}$$

C'est l'une des lois discrètes les plus utilisées en modélisation, en particulier pour les files d'attente, elle régit par exemple le nombre d'accidents, les déchets de fabrication, les appels téléphoniques à un standard... Cette loi est aussi appelée loi des événements rares.

1.6 Loi Uniforme continue

Variables aléatoires continues

La v.a.r. X sur l'espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ suit une loi uniforme sur [a,b] (on note $X \sim \mathcal{U}([a,b])$) si elle est à valeurs dans [a,b] avec pour densité la fonction

$$f_X(t) = \frac{1}{b-a} . \mathbb{I}_{[a,b]}(t)$$

Sa fonction de répartition

$$F_X = \begin{cases} 0 & \text{si } x \le a \\ \int_a^x \frac{1}{b-a} dt = \frac{x-a}{b-a} & \text{si } x \in [a,b] \\ 1 & \text{si } x \ge b \end{cases}$$
 (1)

1.7 Loi Normale

Loi normale $\mathcal{N}(m, \sigma^2)$, $m \in \mathbb{R}$, $\sigma^2 > 0$ La v.a.r. X sur l'espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ suit une loi normale de paramètres (m, σ^2) (on note $X \sim \mathcal{N}(m, \sigma^2)$) si elle est à valeurs dans \mathbb{R} avec pour densité la fonction

$$f_X(t) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right) \quad t \in \mathbb{R}$$

Cette loi est parfois appelée loi de Laplace-Gauss.

La v.a.r. X sur l'espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ suit une loi de Cauchy si elle est à valeurs dans \mathbb{R} avec pour densité la fonction

$$f_X(t) = \frac{1}{\pi(1+t^2)}$$

1.8 Loi Gamma

Loi Gamma, $\Gamma(a,b), \ a>0, \ b>0$ La v.a.r. X sur l'espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ suit une loi Gamma de paramètres (a,b) (on note $X \sim \Gamma(a,b)$) si elle est à valeurs dans \mathbb{R}_+ avec pour densité la fonction

$$f_X(t) = \frac{1}{\Gamma(a)} b^a t^{a-1} e^{-bt} \mathbb{I}_{\mathbb{R}_+}(t)$$

οù

$$\Gamma(a) = \int_0^{+\infty} u^{a-1} e^{-u} du, \quad \forall a > 0.$$

La fonction Γ prolonge la fonction factorielle sur l'ensemble des réels au sens où

$$\forall n \in \mathbb{N}, \ \Gamma(n+1) = n! \ \text{et} \ \forall a > 0, \ \Gamma(a+1) = a\Gamma(a)$$

. De plus, on a

$$\Gamma(\frac{1}{2}) = \sqrt(\pi)$$

2 Valeurs moyennes

2.1 Espérence

Définition Soit X une v.a.r. définie sur l'espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$.

Si X est une v.a.r. discrète, on appelle espérence de X et on note $\mathbb{E}(X)$, la moyenne des valeurs prises par X pondérées par leurs probabilités de réalisation autrement dit, lorsque cette quantité existe,

$$\mathbb{E}(X) = \sum_{i \in \mathbb{N}} i \mathbb{P}(X = i)$$

Définition De même, si X est une v.a.r. continue de densité f_X , on appelle espérance de X et on note $\mathbb{E}(X)$, lorsqu'elle existe, la quantité

$$\mathbb{E}(X) = \int_{\mathbb{R}} x f_X(x) dx$$

Attention, cette quantité peut ne pas exister.

Soit la v.a. continue de densité

$$f_X = \begin{cases} 0 & \text{si} & x < 0 \\ e^{-x} & \text{si} & x \ge 0 \end{cases}$$

Sa moyenne est alors donnée par

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{+\infty} x e^{-x} dx = 1$$

Propriétes de l'espérance

- $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$
- $\mathbb{E}(\lambda X) = \lambda \mathbb{E}(X)$
- Si $X \ge 0$ alors $\mathbb{E}(X) \ge 0$.

 $\bullet \ \mathbb{E}(a) = a$

Attention $\mathbb{E}(a)$ existe.

Généralisation.

Définition Soit X une v.a.r. et $g: \mathbb{R} \to \mathbb{R}$ une fonction continue par morceaux. L'espérance de g(X) est définie par (lorsqu'elle existe)

$$\mathbb{E}(g(X)) = \sum_{i \in \mathbb{N}} g(i).\mathbb{P}(X = i) \qquad Si \ X \ v.a. \ discrète$$

$$\mathbb{E}(g(X)) = \int_{-\infty}^{+\infty} g(x).f_X(x)dx \quad Si \ X \ v.a. \ continue$$

2.2 Variance

Mesure "l'éparpillement" ou la "dispersion" de X autour de la moyenne

Définition Soit X une v.a.r. définie sur l'espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$.

La variance de la v.a.r. X est définie, lorsque cette quantité existe, par

$$Var(X) = \mathbb{E}\left[(X - \mathbb{E}(X))^2\right]$$

ou encore, en utilisant la linéarité de $\mathbb{E}(X)$

$$Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

Propriétés

$$\begin{array}{ll} Var(X) & \text{n'existe pas toujours} \\ Var(X) \geq 0 & \\ Var(X+\lambda) & = Var(X) \ \ \, \forall \lambda \in \mathbb{R} \\ Var(\lambda X) & = \lambda^2 Var(X) \ \, \forall \lambda \in \mathbb{R} \\ X \text{ v.a. constante} & \Leftrightarrow Var(X) = 0 \end{array}$$

Définition Soit X une v.a.r. telle que Var(X) existe. L'écart-type de X est défini par

$$\sigma_X = \sqrt{Var(X)}$$

Mesure aussi "l'éparpillement" ou la "dispersion" de \boldsymbol{X} autour de la moyenne.

On l'utilise plus souvent que la variance. Loi $\mathcal{B}(1,p)$: Espérance p; Variance p(1-p)

Loi $\mathcal{B}(n,p)$: Espérance np; Variance np(1-p)

Loi $\mathcal{P}(\lambda)$: Espérance λ ; Variance λ

Loi $\mathcal{U}([a,b])$: Espérance $\frac{a+b}{2}$; Variance $\frac{(b-a)^2}{12}$

Loi $\mathcal{E}(\lambda)$: Espérance $\frac{1}{\lambda}$; Variance $\frac{1}{\lambda^2}$

Loi $\mathcal{N}(m,\sigma)$: Espérance m; Variance σ^2

Corollaire Si X est une v.a.r. pour laquelle $\mathbb{E}(X)$ et Var(X) existent, alors la v.a.r. Y définie par

$$Y = \frac{X - \mathbb{E}(X)}{\sqrt{Var(X)}} = \frac{X - \mathbb{E}(X)}{\sigma_X}$$

est appelé v.a.r. centrée réduite associée à la v.a.r X. Elle vérifie

$$\mathbb{E}(Y) = 0$$
 et $Var(Y) = 1$

Réduction d'une loi Normale $X \sim \mathcal{N}(m, \sigma^2)$. Il suffit de poser

$$Z = \frac{X - m}{\sigma}$$

On a alors

$$Z \sim \mathcal{N}(0,1)$$

. La fonction de répartition $F_Z = \Phi$ de Z est donnée par les tables. Comment en déduire celle de X ?

Il suffit d'ecrire:

$$F_X(a) = \mathbb{P}(X \le a)$$

$$= \mathbb{P}\left(\frac{X - m}{\sigma} \le \frac{a - m}{\sigma}\right)$$

$$= \mathbb{P}\left(Z \le \frac{a - m}{\sigma}\right)$$

$$= \Phi\left(\frac{a - m}{\sigma}\right)$$

De la même manière

$$\mathbb{P}(a \le X \le b) = \mathbb{P}\left(\frac{a-m}{\sigma} \le \frac{X-m}{\sigma} \le \frac{b-m}{\sigma}\right)$$
$$= \mathbb{P}\left(\frac{a-m}{\sigma} \le Z \le \frac{b-m}{\sigma}\right)$$
$$= \Phi\left(\frac{b-m}{\sigma}\right) - \Phi\left(\frac{a-m}{\sigma}\right)$$

Soit $X \sim \mathcal{N}(1, 2^2)$ donc $\mathbb{E}(X) = 1$ et $\sigma = 2$. on a

$$\mathbb{P}(X \le 1) = \mathbb{P}(\frac{X-1}{2} \le \frac{1-1}{2})$$

$$= \mathbb{P}(\frac{X-1}{2} \le 0)$$

$$= \mathbb{P}(Z \le 0)$$

$$= \Phi(0) = 0.5 \text{ Cf tables}$$

On peut calculer de la même manière $\mathbb{P}(a \leq X \leq b)$.

Exercice récapitulatif

Variable aléatoire exponentielle.

On dit que la variable aléatoire X suit une loi exponentielle de paramètre λ ssi elle admet comme densité

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \ge 0\\ 0 & \text{si } x < 0 \end{cases}$$

- 1. Vérifier que f_X est bien une densité.
- 2. Calculer l'espérance et la variance de X.
- 3. Écrire la fonction de répartition de X.

Solution

1.

$$\int_{-\infty}^{+\infty} f_X(x) dx = \int_{0}^{+\infty} \lambda e^{-\lambda x}$$
$$= \lambda \int_{0}^{+\infty} e^{-\lambda x}$$
$$= \lambda \left[\frac{-1}{\lambda} e^{-\lambda x} \right]_{0}^{+\infty}$$
$$= 1$$

(on peut aussi l'intégrer en remarquant qu'elle s'ecrit u' e^u) f_X est donc bien une densité de probabilité.

2.

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} x f_X(x) dx$$

$$= \int_{0}^{+\infty} x \lambda e^{-\lambda x} dx$$
On intègre par parties en posant
$$u = -x \quad v' = -\lambda e^{-\lambda x}$$

$$= \left[x e^{-\lambda x} \right]_{0}^{+\infty} + \int_{0}^{+\infty} e^{-\lambda x} dx$$

$$= 0 + \left[\frac{-1}{\lambda} e^{-\lambda x} \right]_{0}^{+\infty}$$

$$= \frac{1}{\lambda}$$

même type de calcul pour la variance en utilisant la formule de Koenig, on trouve

$$Var(X) = \frac{1}{\lambda^2}$$

3.

$$F_X(x) = \mathbb{P}(X \le x)$$

$$= \int_{-\infty}^x f_X(t)dt$$

$$= \int_{-\infty}^x \lambda e^{-\lambda t} dt$$

$$= 1 - e^{-\lambda x}$$