第八章 向量代数与空间解析几何

习题 8-1 P₁₃ 15.

15. 设已知两点 $M_1\left(4,\sqrt{2},1\right)$ 和 $M_2\left(3,0,2\right)$,计算向量 $\overline{M_1M_2}$ 的模、方向余弦和方向角.

习题 8-2 P₂₃ 9(3); 10; 补充题 1.

9 (3). 已知向量 $\vec{a} = 2\vec{i} - 3\vec{j} + \vec{k}$, $\vec{b} = \vec{i} - \vec{j} + 3\vec{k}$ 和 $\vec{c} = \vec{i} - 2\vec{j}$, 计算 $(\vec{a} \times \vec{b}) \cdot \vec{c}$.

10. 已知 $\overrightarrow{OA} = \vec{i} + 3\vec{k}$, $\overrightarrow{OB} = \vec{j} + 3\vec{k}$, 求 ΔOAB 的面积.

补充题 1. 已知向量 \vec{a} , \vec{b} 的模分别为 $\left|\vec{a}\right|=4$, $\left|\vec{b}\right|=2$,且 $\vec{a}\cdot\vec{b}=4\sqrt{2}$,求 $\left|\vec{a}\times\vec{b}\right|$.

习题 8-3 P₃₀ 6; 补充题 2.

6. 一平面过点(1,0,-1)且平行于向量 $\vec{a}=(2,1,1)$ 和 $\vec{b}=(1,-1,0)$,试求这平面方程.

补充题 2. 求通过点 A(1,1,1) 和 B(2,2,2) 且与平面 $\Pi: x+y-z=0$ 垂直的平面方程.

习题 8-4 P₃₆₋₃₇ 7; 13; 补充题 3.

7. 求过点(0,2,4)且与两平面x+2z=1和y-3z=2平行的直线方程.

13. 求点 P(3,-1,2) 到直线 $\begin{cases} x+y-z+1=0\\ 2x-y+z-4=0 \end{cases}$ 的距离.

姓名:

学号:

补充题 3. 求过点 $P_0(3,1,-2)$ 且通过直线 $l: \frac{x-4}{5} = \frac{y+3}{2} = \frac{z}{1}$ 的平面方程.

习题 8-5 P₄₅ 4; 7.

4. 求与坐标原点O及点(2,3,4)的距离之比为1:2的点的全体所组成的曲面的方程,它表示怎样的曲面?

7. 将 xOy 坐标面上的双曲线 $4x^2 - 9y^2 = 36$ 分别绕 x 轴及 y 轴旋转一周,求所生成的旋转曲面的方程.

习题 8-6 P₅₁ 3; 7.

3. 分别求母线平行于 x 轴及 y 轴而且通过曲线 $\begin{cases} 2x^2 + y^2 + z^2 = 16 \\ x^2 + z^2 - y^2 = 0 \end{cases}$ 的柱面方程.

7. 求上半球 $0 \le z \le \sqrt{a^2 - x^2 - y^2}$ 与圆柱体 $x^2 + y^2 \le ax(a > 0)$ 的公共部分在 xOy 面和 xOz 面上的投影.

第九章 多元函数微分法及其应用

习题 9-2 P₇₁ 4; 5; 9 (2).

4. 设
$$f(x,y) = x + (y-1) \arcsin \sqrt{\frac{x}{y}}$$
, 求 $f_x(x,1)$

5. 曲线
$$\begin{cases} z = \frac{x^2 + y^2}{4}, & \text{在点 (2, 4, 5)} \text{ 处的切线对于 } x \text{ 轴的倾角是多少?} \\ y = 4 \end{cases}$$

9 (2). 验证:
$$r = \sqrt{x^2 + y^2 + z^2}$$
 满足 $\frac{\partial^2 r}{\partial x^2} + \frac{\partial^2 r}{\partial y^2} + \frac{\partial^2 r}{\partial z^2} = \frac{2}{r}$

习题 9-3 P₇₈ 3, 5; 补充题 1.

3. 求函数 $z = \frac{y}{x}$ 当 x = 2, y = 1, $\Delta x = 0.1$, $\Delta y = -0.2$ 时的全增量和全微分.

- 5. 考虑二元函数 f(x, y) 的下面四条性质:
- (1) f(x, y) 在点 (x_0, y_0) 连续;
- (2) $f_x(x,y)$ 、 $f_y(x,y)$ 在点 (x_0,y_0) 连续;
- (3) f(x, y) 在点 (x_0, y_0) 可微;
- (4) $f_x(x,y)$ 、 $f_y(x,y)$ 在点 (x_0,y_0) 存在.

若用" $P \Rightarrow Q$ "表示可由性质 P 推出性质 Q,则下列四个选项中正确的是 ().

- (A) $(2) \Rightarrow (3) \Rightarrow (1)$;
- (B) $(3) \Rightarrow (2) \Rightarrow (1)$;
- (C) $(3) \Rightarrow (4) \Rightarrow (1)$;
- (D) $(3) \Rightarrow (1) \Rightarrow (4)$.

补充题 1. 设 $z = e^{\sin(x+y)}$, 求 dz.

姓名:

学号:

习题 9-4 P₈₅ 2; 9; 12 (3).

9. 设
$$z = xy + xF(u)$$
, 而 $u = \frac{y}{x}$, $F(u)$ 为可导函数, 证明 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z + xy$.

姓名:

学号

12 (3). 对函数 $z = f(xy^2, x^2y)$,求 $\frac{\partial^2 z}{\partial x \partial y}$ (其中 f 具有二阶连续偏导数).

习题 9-5 P₉₁₋₉₂ 2; 9; 10 (1)

班级: 姓名: 学号:

9. 设
$$z^3 - 3xyz = a^3$$
, 求 $\frac{\partial^2 z}{\partial x \partial y}$.

姓名:

学号:

习题 9-6 P₁₀₃ 2(1); 6; 12.

2. 设 $\mathbf{r} = \mathbf{f}(t)$ 是空间中的质点 M 在时刻 t 的位置,求质点 M 在时刻 t_0 的速度向量和加速度向量以及在任意时刻 t 的速率.

(1)
$$\mathbf{r} = \mathbf{f}(t) = (t+1)\mathbf{i} + (t^2-1)\mathbf{j} + 2t\mathbf{k}, \ t_0 = 1;$$

6. 求曲线 $\begin{cases} x^2 + y^2 + z^2 - 3x = 0 \\ 2x - 3y + 5z - 4 = 0 \end{cases}$, 在点 (1, 1, 1) 处的切线及法平面方程.

12. 试证曲面 $\sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{a} \ (a > 0)$ 上任何点处的切平面在各坐标轴上的截距之和等于 a .

习题 9-7 P₁₁₁ 6; 8.

6. 求函数 $u = x^2 + y^2 + z^2$ 在曲线 x = t, $y = t^2$, $z = t^3$ 上点(1, 1, 1)处,沿曲线在该点的切线正方向(对应于 t 增大的方向)的方向导数.

习题 9-8 P₁₂₁ 4; 11; 补充题 2.

4. 求函数 $f(x,y) = e^{2x}(x+y^2+2y)$ 的极值.

11. 拋物面 $z = x^2 + y^2$ 被平面 x + y + z = 1 截成一椭圆,求椭圆上的点到原点的距离的最大值与最小值.

班级: 姓名: 学号:

补充题 2. 已知 f(1, 1) = -1 为函数 $f(x, y) = ax^3 + by^3 + cxy$ 的极值,求 a, b, c.

第十章 重积分

习题 10-2 P₁₅₇₋₁₅₉ 2(3); 6(6); 补充题 1; 14(2); 15(1); 18.

2 (3). 画出积分区域,并计算二重积分 $I=\iint_D e^{x+y}\mathrm{d}\sigma$,其中 $D=\left\{\left.\left(x,y\right)\right|\ \left|x\right|+\left|y\right|\leq 1\right\}$.

6 (6). 改换二次积分 $\int_0^\pi \mathrm{d}x \int_{-\sin\frac{x}{2}}^{\sin x} f\left(x,y\right) \mathrm{d}y$ 的积分次序:

补充题 1. 计算积分 $I = \int_0^2 dx \int_x^2 e^{-y^2} dy$.

14(2). 利用极坐标计算 $\iint_D \ln(1+x^2+y^2) d\sigma$, 其中 D 是由圆周 $x^2+y^2=1$ 及坐标轴所围成的在第一象限内的闭区域.

15(1). 选用适当的坐标计算 $\iint_D \frac{x^2}{y^2} d\sigma$,其中 D 是由直线 x=2,y=x,及曲线 xy=1 所围成的闭区域.

18. 计算以 xoy 面上的圆周 $x^2 + y^2 = ax$ 围成的闭区域为底,而以曲面 $z = x^2 + y^2$ 为项的曲项柱体的体积.

习题 10-3 P_{167} 7; 9(2) ; 10(2) ; 补充题 2.

7. 计算 $\iint_{\Omega} xz \, dxdydz$, 其中 Ω 是由平面 z=0, z=y, y=1 以及抛物柱面 $y=x^2$ 所围成 的闭区域.

9 (2). 利用柱面坐标计算三重积分 $\iint_\Omega \left(x^2+y^2\right) \mathrm{d} v$, 其中 Ω 是由曲面 $x^2+y^2=2z$ 及平 面 z = 2 所围成的闭区域.

10 (2). 利用球面坐标计算三重积分 $\iint_{\Omega} z \, dv$, 其中闭区域 Ω 是由不等式 $x^2 + y^2 + (z - a)^2 \le a^2$, $x^2 + y^2 \le z^2$ 所确定.

姓名:

学号:

补充题 2. 计算三重积分 $\iint_{\Omega} (x+z) \, \mathrm{d}v$,其中 Ω 是由曲面 $z = \sqrt{x^2 + y^2} \, 与 z = \sqrt{1 - x^2 - y^2} \, 围$ 成的闭区域.

习题 10-4 P₁₇₈ 3.

3. 求底圆半径相等的两个直交圆柱面 $x^2 + y^2 = R^2$ 及 $x^2 + z^2 = R^2$ 所围立体的表面积.

第十一章 曲线积分与曲面积分

习题 11-1 P₁₉₃ 3(4).

3(4). 计算对弧长的曲线积分: $\oint_L e^{\sqrt{x^2+y^2}} ds$,其中 L 为圆周 $x^2+y^2=a^2$,直线 y=x 及 x 轴在第一象限内所围成的扇形的整个边界.

习题 11-2 P₂₀₃ 3(4); 4(1), 4(4); 补充题 1.

3 (4). 计算对坐标的曲线积分: $\oint_L \frac{(x+y)dx - (x-y)dy}{x^2 + y^2}$, 其中 L 为圆周 $x^2 + y^2 = a^2$ (按 逆时针方向绕行).

- 4. 计算 $\int_L (x+y)dx+(y-x)dy$, 其中L是:
- (1) 抛物线 $y^2 = x$ 上从点(1,1)到点(4,2)的一段弧;
- (4) 曲线 $x = 2t^2 + t + 1$, $y = t^2 + 1$ 上从点 (1,1) 到点 (4,2) 的一段弧.

姓名: 学号:

习题 11 - 3 P₂₁₇ 2(1); 3; 补充题 2.

2 (1). 利用曲线积分,求星形线 $x = a\cos^3 t$, $y = a\sin^3 t$ 所围成的图形的面积.

姓名:

学号:

3. 计算曲线积分 $\oint_L \frac{ydx - xdy}{2(x^2 + y^2)}$, 其中 L 为圆周 $(x-1)^2 + y^2 = 2$, L 的方向为逆时针方向.

补充题 2. 计算 $\int_L (x^2 + 3y) dx + (y^2 - x) dy$, 其中 L 为上半圆周 $y = \sqrt{4x - x^2}$ 从 O(0,0) 到 A(4,0).

姓名: 学号:

习题 11-4 P₂₂₂ 5(2); 6(3).

5 (2). 计算 $\iint_{\Sigma} (x^2 + y^2) dS$,其中 Σ 是锥面 $z^2 = 3(x^2 + y^2)$ 被平面 z = 0和z = 3 所截得的部分.

6 (3). 计算对面积的曲面积分 $\iint_{\Sigma} (x+y+z)dS$,

其中 \sum 为球面 $x^2 + y^2 + z^2 = a^2 \perp z \ge h(0 < h < a)$ 的部分.

习题 11-5 P₂₃₁ 3(2); 4(2); 补充题 3.

3(2). 计算对坐标的曲面积分 $\iint_{\Sigma} z dx dy + x dy dz + y dz dx$, 其中 Σ 是柱面 $x^2 + y^2 = 1$ 被平面 z=0 及 z=3 所截得的在第一卦限内的部分的前侧.

4(2). 把对坐标的曲面积分 $\iint_{\Sigma} P(x,y,z) dy dz + Q(x,y,z) dz dx + R(x,y,z) dx dy$ 化成对面积的曲面积分,其中: Σ 是抛物面 $z=8-(x^2+y^2)$ 在 xOy 面上方的部分的上侧.

补充题 3. 求 $\iint_{\Sigma} z^2 dx dy$, 其中 Σ 为 $x^2 + y^2 + z^2 = a^2$ 的外侧.

习题 11-6 P₂₃₉ 1(2); 补充题 4; 2(2).

补充题 4. 利用高斯公式计算曲面积分:

$$\iint\limits_{\Sigma} \frac{x dy dz + y dz dx + z dx dy}{\sqrt{x^2 + y^2 + z^2}}$$
其中 \sum 为球面 $x^2 + y^2 + z^2 = a^2$ 的外侧;

姓名:

学号:

2(2). 求向量 $\mathbf{A} = (2x-z)\vec{i} + x^2y\vec{j} - xz^2\vec{k}$ 穿过曲面 Σ 流向指定侧的通量,其中 Σ 为立方体 $0 \le x \le a, 0 \le y \le a, 0 \le z \le a$ 的全表面,流向外侧.

习题 11 - 7 P₂₄₈ 2(1); 4(1).

2 (1). 利用斯托克斯公式, 计算曲线积分 $\oint_{\Gamma} y dx + z dy + x dz$, 其中 Γ 为圆周 $x^2 + y^2 + z^2 = a^2 x + y + z = 0$, 若从 x 轴的正向看去, 这圆周是取逆时针方向;

班级: 姓名:

4(1).利用斯托克斯公式把曲面积分 $\iint_{\Sigma} \mathbf{rot} A \cdot \mathbf{n} dS$ 化为曲线积分,并计算积分值,其中 $\mathbf{A} = y^2 \vec{i} + xy \vec{j} + xz \vec{k}$, Σ 为上半球面 $z = \sqrt{1-x^2-y^2}$ 的上侧, \mathbf{n} 是 Σ 的单位法向量.

第十二章 无穷级数

习题 12-1 P₂₅₈ 2(2); 3(3).

2(2). 根据级数收敛与发散的定义判定级数 $\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \cdots + \frac{1}{(2n-1)(2n+1)} + \cdots$ 的收敛性.

3 (3). 判别级数 $\frac{1}{3} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt[3]{3}} + \dots + \frac{1}{\sqrt[n]{3}} + \dots$ 的收敛性.

- 习题 12-2 P₂₇₁₋₂₇₂ 1 (5); 2 (3); 4 (1); 4 (6); 5 (2); 补充题 1.
- 1 (5). 用比较审敛或极限形式的比较审敛法判定级数 $\sum_{n=1}^{\infty} \frac{1}{1+a^n} (a>0)$ 的收敛性.

2 (3). 用比值审敛法判定级数 $\sum_{n=1}^{\infty} \frac{2^n \cdot n!}{n^n}$ 的收敛性.

4. 判定下列级数的收敛性:

(1)
$$\frac{3}{4} + 2(\frac{3}{4})^2 + 3(\frac{3}{4})^3 + \dots + n(\frac{3}{4})^n + \dots;$$

(6)
$$\frac{1}{a+b} + \frac{1}{2a+b} + \dots + \frac{1}{na+b} + \dots + (a>0, b>0)$$
.

5 (2). 判定级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{3^{n-1}}$ 是否收敛? 如果是收敛的,是绝对收敛还是条件收敛?

补充题 1. 设函数 f(x) 在 x=0 的某邻域内有二阶连续导数,且 $\lim_{x\to 0} \frac{f(x)}{x} = 0$,证明:级数 $\sum_{n=1}^{\infty} f(\frac{1}{n})$ 绝对收敛.

习题 12-3 P_{281} 1(7), 1(8); 2(3).

1. 求下列幂级数的收敛区间:

(7)
$$\sum_{n=1}^{\infty} \frac{2n-1}{2^n} x^{2n-2};$$

$$(8) \sum_{n=1}^{\infty} \frac{(x-5)^n}{\sqrt{n}}.$$

姓名:

学号:

2(3). 利用逐项求导或逐项积分,求级数 $x + \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{x^{2n-1}}{2n-1} + \dots$ 的和函数.

习题 12 - 4 P₂₉₀ 6; 补充题 2.

6. 将函数
$$f(x) = \frac{1}{x^2 + 3x + 2}$$
 展开成 $(x+4)$ 的幂级数.

姓名:

学号:

补充题 2. 将函数 $f(x) = \frac{1}{4} \ln \frac{1+x}{1-x} + \frac{1}{2} \arctan x - x$ 展成关于 x 的幂级数.

习题 12-7 P₃₂₁ 1(1).

1 (1). 设周期函数 f(x) 的周期为 2π , 试将 f(x) 展开成傅立叶级数,如果 f(x) 在 $[-\pi,\pi)$ 上的表达式为: $f(x) = 3x^2 + 1$ $(-\pi \le x < \pi)$.

高等数学 A (下) 试题一

- 一、单项选择题(本题共有5道小题,每小题3分,满分15分).
- 1. 已知向量 \vec{a} , \vec{b} , 又 $|\vec{a}| = 6$, $|\vec{b}| = 3$, 向量 \vec{a} 和向量 \vec{b} 的夹角为 $\frac{\pi}{6}$, 则 $\left| \vec{a} \times \vec{b} \right| =$ ().

- **A**. $9\sqrt{3}$ **B**. 9 **C**. 18 **D**. $6\sqrt{3}$
- 2. 二元函数 $f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$ 在 (0,0) 点处 ().
 - 连续,偏导数不存在

连续,偏导数存在

C. 不连续,偏导数不存在

- D. 不连续,偏导数存在
- 3. 设 Σ 为球面: $x^2 + y^2 + z^2 = R^2$, 取外侧,则在下列四个选项中,正确的 选项是().

$$\mathbf{A.} \quad \iint x^2 dS = 0, \quad \iint x^2 dy dz = 0$$

$$\mathbf{B.} \qquad \iint x dS = 0, \quad \iint x dy dz = 0$$

$$\mathbf{C.} \quad \iint x dS = 0, \quad \iint x^2 dy dz = 0$$

A.
$$\iint_{\Sigma} x^2 dS = 0, \quad \iint_{\Sigma} x^2 dy dz = 0$$
B.
$$\iint_{\Sigma} x dS = 0, \quad \iint_{\Sigma} x dy dz = 0$$
C.
$$\iint_{\Sigma} x dS = 0, \quad \iint_{\Sigma} x^2 dy dz = 0$$
D.
$$\iint_{\Sigma} xy dS = 0, \quad \iint_{\Sigma} y dz dx = 0$$

4. 极坐标系下的累次积分 $\int_0^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} f(\rho\cos\theta,\rho\sin\theta)\rho d\rho$ 在直角坐标系 下的累次积分可写为().

A.
$$\int_0^2 dx \int_0^{\sqrt{2x-x^2}} f(x, y) dy$$

B.
$$\int_0^1 dy \int_0^{\sqrt{1-y^2}} f(x, y) dx$$

C.
$$\int_0^2 dx \int_0^1 f(x, y) dy$$

D.
$$\int_0^1 dy \int_0^{\sqrt{y-y^2}} f(x, y) dx$$

- 5. 若级数 $\sum_{n=1}^{\infty} a_n$ 条件收敛,则 $x = \sqrt{3}$ 与 x = 3 依次为幂级数 $\sum_{n=1}^{\infty} na_n (x-1)^n$ 的 ().
 - A. 收敛点,收敛点

B. 收敛点,发散点

姓名:

C. 发散点,收敛点

D. 发散点,发散点

二、填空题(本题共有5道小题,每小题3分,满分15分)

- 1. 设 C 为圆锥面 $z = \sqrt{x^2 + y^2}$ 和柱面 $z^2 = 2x$ 的交线,则曲线 C 在 xOy 面上的 投影曲线方程为
- 2. 函数 z = f(x, y) 在 (x_0, y_0) 点的微分为 $dz\Big|_{(x_0, y_0)} = 3dx 2dy$,且该函数在 (x_0, y_0) 点沿 \vec{l}^0 方向增长最快, \vec{l}^0 为单位向量,则 $\vec{l}^0 =$ ________.
- 3. 设 f(x) 是周期为 2π 的周期函数,它在区间 $(-\pi, \pi]$ 上的定义为

 $f(x) = \begin{cases} x, & -\pi < x \le 0 \\ 1+x, & 0 < x \le \pi \end{cases}$,则 f(x) 的傅里叶级数在 $x = 5\pi$ 处收敛于_______.

- **4.** 曲线 $\begin{cases} y = x \\ z = x^2 \end{cases}$ 在点 M(1,1,1) 处的切线方程为______.
- 5. 设 L 是圆周 $x^2 + y^2 = 4$,则曲线积分 $\oint_L (x^2 + y^2) ds = ______$.

三、(本题满分14分,每小题7分)

- 1. 计算二重积分 $I = \iint_D e^{x^2+y^2} dx dy$, 其中 $D = \{(x, y) | x^2 + y^2 \le 4\}$.
- 2. 设 $z = f(\sin x, \cos y, e^{x+y})$, 其中 f 具有二阶连续偏导数,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial^2 z}{\partial x \partial y}$.
- 四、(本题满分 10 分) 求过点 (3,1,-2) 且通过直线 $\frac{x-4}{3} = \frac{y+3}{2} = \frac{z}{1}$ 的平面方程.
- 五、(本题满分 10 分) 求函数 $f(x, y) = x^2 + y^2 12x + 16y$ 在区域 $x^2 + y^2 \le 25$ 上的最大值和最小值.
- 六、(本题满分 10 分) 计算曲线积分 $\int_{L} \frac{(e^{x} \sin y + 1)dx + (e^{x} \cos y + x^{2})dy}{x^{2} + y^{2}}$,其中 L 为曲线 $x^{2} + y^{2} = 4$ 的上半部分,方向为逆时针.
- 七、(本题满分 10 分) 计算曲面积分 $\iint_{\Sigma} \frac{xdydz + 2dzdx + (z+1)^2 dxdy}{(x^2 + y^2 + z^2)^2}$, 其中曲面 Σ 为 $z = -\sqrt{1-x^2-y^2}$ 的上侧.

班级: 姓名: 学号:

八、(本题满分 10 分)设 $u_n(x) = x^n + \frac{1}{n(n+1)}x^{n+1}$ $(n=1,2,\cdots)$,求级数 $\sum_{n=1}^{\infty}u_n(x)$ 的收敛域与和函数.

九、(本题满分 6 分) 已知函数 f(x) 可导,且 $0 < f'(x) < \frac{1}{2}$,设数列 $\{x_n\}$ 满足

$$x_{n+1} = f(x_n)$$
 $(n = 1, 2, \dots, 证明: 级数 \sum_{n=1}^{\infty} (x_{n+1} - x_n)$ 绝对收敛.

姓名:

高等数学 A (下) 试题二

一、单项选择题(本题共有5道小题,每小题3分,满分15分)

1. 函数 f(x,y) 在点 (x_0,y_0) 处连续是函数在该点有偏导数的(

(A) 充分而不必要条件.

(B) 必要而不充分条件.

(C) 必要而且充分条件.

(D) 既不必要也不充分条件.

2. 函数 z = 2x + y 在点 (1,2) 沿各方向的方向导数的最大值为 (

(A) 3. (B) 0. (C) $\sqrt{5}$. (D) 2.

3. 设 $I = \int_{1}^{3} dx \int_{0}^{\ln x} f(x, y) dy$, 改变积分次序, 则I = (

(A) $\int_0^{\ln 3} dy \int_0^{e^y} f(x, y) dx$. (B) $\int_0^{\ln 3} dy \int_0^3 f(x, y) dx$.

(C) $\int_{0}^{\ln 3} dy \int_{a^{y}}^{3} f(x, y) dx$. (D) $\int_{1}^{3} dy \int_{0}^{\ln x} f(x, y) dx$.

4. 设 $L: \begin{cases} x^2 + y^2 + z^2 = 10 \\ z = 1 \end{cases}$,则曲线积分 $\oint_L \frac{ds}{x^2 + v^2 + z^2} = ($)

(A) $\frac{4}{5}\pi$. (B) $\frac{3}{5}\pi$. (C) $\frac{2}{5}\pi$. (D) $\frac{1}{5}\pi$.

5. $\partial u_n = (-1)^n \sin \frac{1}{\sqrt{n}}$, 则级数 ()

(A) $\sum_{n=0}^{\infty} u_n = \sum_{n=0}^{\infty} u_n^2$ 都收敛. (B) $\sum_{n=0}^{\infty} u_n = \sum_{n=0}^{\infty} u_n^2$ 都发散.

(C) $\sum_{n=0}^{\infty} u_n$ 收敛, 而 $\sum_{n=0}^{\infty} u_n^2$ 发散. (D) $\sum_{n=0}^{\infty} u_n$ 发散, 而 $\sum_{n=0}^{\infty} u_n^2$ 收敛.

姓名:

学号:

二、填空题(本题共有5道小题,每小题3分,满分15分).

- 1. 若向量 α,β,γ 中任两个的夹角都为 $\frac{\pi}{3}$,且模 $|\alpha|=|\beta|=|\gamma|=1$,则模 $|\alpha+\beta+\gamma|=$ _______.
- 2. 曲线 Γ : $\begin{cases} x = t \\ y = t^2 & \text{在点 (1,1,1)} 处的切线方程为}_{z = t^3} \end{cases}$
- 4. 曲面 $z = \sqrt{x^2 + y^2}$ 与 $z = x^2 + y^2$ 所围立体的体积为_______.
- 5. 设周期为 2π 的函数 $f(x) = \begin{cases} -x, & -\pi < x \le 0 \\ 0, & 0 < x \le \pi \end{cases}$ 的傅里叶级数在 $[-\pi, \pi]$ 上的和函数为 S(x),则 $S(\pi) =$ _______.
- 四、(本题满分 10 分) 设函数 $z=f\left(x^2+y^2,x^2-y^2\right)$, 其中 f 具有二阶连续偏导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.
- 五、(本题满分10分)

计算曲线积分 $\int_L \frac{-ydx + xdy}{x^2 + y^2}$, 其中 L 是从点 A(1,0) 沿抛物线 $y = 1 - x^2$ 到点 B(-1,0) 的有向曲线.

六、(本题满分 10 分)

计算曲面积分 $I = \iint_{\Sigma} (y-z)dzdx + (x+2z)dxdy$,其中 Σ 是抛物面 $z = x^2 + y^2$ $(0 \le z \le 1)$,取下侧.

班级: 姓名: 学号:

七、(本题满分10分)

求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \cdot 5^n} x^n$ 的收敛域及和函数 S(x).

八、(本题满分10分)

设 $x_i > 0$ ($i = 1, 2, \dots, n$),且 $x_1 + x_2 + \dots + x_n = q$,求 $f(x_1, x_2, \dots, x_n) = x_1 x_2 \dots x_n$ 的最大值. 并由此证明不等式:

$$\sqrt[n]{x_1x_2\cdots x_n} \leq \frac{x_1+x_2+\cdots+x_n}{n}.$$

九、(本题满分5分)

设函数 f(x) 在 $(-\infty, +\infty)$ 上有定义,在 x=0 的某个邻域内有一阶连续导数

且
$$\lim_{x\to 0} \frac{f(x)}{x} = a > 0$$
,证明级数 $\sum_{n=1}^{\infty} (-1)^n f(\frac{1}{n})$ 收敛,而 $\sum_{n=1}^{\infty} f(\frac{1}{n})$ 发散.

十、(本题满分5分)

设 f(x,y) 在闭区域 $D = \{(x,y) | x^2 + y^2 \le y, x \ge 0\}$ 上连续,且

$$f(x,y) = \sqrt{1-x^2-y^2} - \frac{8}{\pi} \iint_{\Omega} f(x,y) dxdy,$$

求f(x,y).