Análisis de Series Temporales Trabajo Práctico

• • •

Análisis de Tráfico en una Intersección Vial

Andrés David Vallejo Rodríguez

Introducción

Introducción

Traffic Prediction Dataset

- 48120 datos
- 4 intersecciones viales
- Información de la cantidad de vehículos por hora
- 20 meses de información
 (01/11/2015 30/06/2017)

	Junction	Vehicles	ID
DateTime			
2015-11-01 00:00:00	1	15	20151101001
2015-11-01 01:00:00	1	13	20151101011
2015-11-01 02:00:00	1	10	20151101021
2015-11-01 03:00:00	1	7	20151101031
2015-11-01 04:00:00	1	9	20151101041
2017-06-30 19:00:00	4	11	20170630194
2017-06-30 20:00:00	4	30	20170630204
2017-06-30 21:00:00	4	16	20170630214
2017-06-30 22:00:00	4	22	20170630224
2017-06-30 23:00:00	4	12	20170630234

Análisis inicial

Análisis trimestre:

- Abril, mayo y junio de 2016
- Ciclos semanales
- Menor congestión vehicular los fines de semana
- Se observan ciclos diarios

Análisis semana:

- 2 al 8 de mayo de2016
- Ciclos diarios
- Menor congestión vehicular a la madrugada

Descomposición

Descomposición con modelo aditivo

Tendencia

Se observa una tendencia a crecer, aparentemente de forma exponencial y manteniendo su varianza en el tiempo.

Estacionalidad

Se observan los comportamientos cíclicos, tanto semanal como diario, con sus caídas en fines de semana y horas de la madrugada.

Análisis espectral:

- 1≈ 20 meses
- -608 = 1 día
- 87 ≈ 1 semana
- 174 ≈ ½ semana
- 1216 = ½ día

Estacionariedad

Autocorrelación:

Autocorrelación parcial

Test Dickey-Fuller:

- Estadístico: -8.04
- p-valor: 1.85e-12
- *-* 1%: *-*3.43
- 5%: -2.86
- *-* 10%**:** −2.57

Test KPSS:

- Estadístico: 15.19
- p-valor: 0.01
- 1%: 0.74
- <u>- 2.5%: 0</u>.57
- 5%: 0.463
- 10%: 0.35

Modelo Determinístico

Exponencial

Cíclico

Análisis espectral:

- 1 ≈ 20 meses
- 87 ≈ 1 semana
- 173 ≈ ½ semana
- 610 = 1 día

Autocorrelación:

Autocorrelación parcial

Test Dickey-Fuller:

- Estadístico: -8.19
- p-valor: 7.71e-13
- 1%: -3.43
- 5%: -2.86
- - 10%: -2.57

Test KPSS:

- Estadístico: 14.31
- p-valor: 0.01
- 1%: 0.74
- <u>- 2.5%: 0</u>.57
- 5%: 0.463
- 10%: 0.347

Modelo SARIMA

Parámetros:

- AR: p=3 y P=2
- MA: q=1 y Q=1
- Diferenciación: d=1 y D=1
- -S=24

SARIMAX Results									
Dep. Variable:		Vehic	es No. Observations:		 1459				
Model: ARIMA(3, 1, 1)		(2, 1, 1,	24) Log Lik	Log Likelihood		-33467.19			
Date: Fri		i, 28 Apr 2	28 Apr 2023 AIC		66950.39				
Time:			21:01	21:01:06 BIC		67011.09			
Sample:			11-01-2	015 HQIC		6	66970.56		
			- 06-30-2	017					
Covariance	Туре:			opg					
========	coef	std err	z	P> z	[0.025	0.975]			
ar.L1	-0.1051	0.035	-3.006	0.003	-0.174	-0.037			
ar.L2	-0.0610	0.022	-2.794	0.005	-0.104	-0.018			
ar.L3	-0.0264	0.014	-1.874	0.061	-0.054	0.001			
ma.L1	-0.4844	0.035	-13.934	0.000	-0.553	-0.416			
ar.S.L24	0.0505	0.008	6.078	0.000	0.034	0.067			
ar.S.L48	-0.0477	0.008	-5.826	0.000	-0.064	-0.032			
ma.S.L24	-0.9576	0.002	-401.652	0.000	-0.962	-0.953			
sigma2	5.7713	0.055	104.366	0.000	5.663	5.880			
Ljung-Box (L1) (Q):		 0.00	Jarque-Bera (JB):		======== 1114.86				
Prob(Q):		0.98	Prob(JB):		0.00				
Heteroskedasticity (H):		1.58	Skew:		0.07				
Prob(H) (two-sided):		0.00	Kurtosis:		4	4.35			

Resultado:

Redes Neuronales

Resultados:

Resultados:

Conclusiones

Conclusiones:

- SARIMA prioriza ciclos diarios
- LSTM se ajusta a toda la dinámica de la serie original
- Ambas se ajustan en fase con los periodos de tiempo de la serie original