(Referencia: Prat. Tort-Martorell, Grima y Pozueta "Métodos estadísticos. Control y mejora de la calidad" Ed. UPC, Cap.9)

Variable de interés: Índice de porosidad en tapas de aluminio

Factores de trabajo: Temperatura de Aluminio (°C) y Presión de inyección (kg./cm.²).

Objetivos:

- 1. Encontrar condiciones de trabajo donde el producto resultante surja con mínima porosidad.
- 2. Estimar la relación existente entre el "índice de porosidad", "temperatura" y "presión" en una región próxima a las condiciones óptimas de trabajo.

Etapa 1

Los técnicos recomiendan no trabajar fuera del intervalo 600-900 °C de temperatura y por debajo de 700 kg./cm². de presión. Tales restricciones definen la región de operabilidad.

En esta etapa se selecciona el siguiente diseño 2^2 con dos puntos centrales:

Temperatura_1 (°C)	Presión_1 (kg./cm.²)	Porosidad_1
-1 (640)	-1 (950)	6,09
1 (660)	-1 (950)	5,53
-1 (640)	1 (1000)	6,78
1 (660)	1 (1000)	6,16
0 (650)	0 (975)	5,93
0 (650)	0 (975)	6,12

Preguntas:

- 1a) ¿Cuál es a tu juicio el mejor modelo lineal de primer orden que se ajusta a la superficie en esta zona de experimentación?. Razona la respuesta.
- 1b) ¿Existe alguna evidencia de que el modelo así estimado no es adecuado en el sentido de que se necesite un modelo más complicado de segundo orden?. Razona la respuesta.
- 1c) Manteniendo el objetivo de minimizar la porosidad al máximo, y en el supuesto de tener la posibilidad de seguir experimentando, ¿Qué estrategia propones?. Razona la respuesta.

Etapa 2En una segunda etapa se han realizado las pruebas siguientes:

Temperatura_2 (°C)	Presión_2 (kg./cm.²)	Porosidad_2
670	920	4,53
685	880	3,28
695	845	2,54
710	805	4,15
670	920	4,53
685	880	3,28

Preguntas:

- 2a) ¿Crees que existe alguna estrategia detrás de estas pruebas?. Razona la respuesta.
- 2b) ¿Qué se intuye a partir de los resultados obtenidos?
- 2c) Manteniendo el objetivo de minimizar la porosidad al máximo, y en el supuesto de tener la posibilidad de seguir experimentando, ¿Qué estrategia propones?. Razona la respuesta.

Etapa 3

Se ha experimentado alrededor de la mejor condición obtenida en la etapa anterior (695°C y 845 kg./cm.²) y se ha añadido la información de este dato a la tabla siguiente de cara al análisis de los datos.

Temperatura_3 (°C)	Presión_3 (kg./cm.²)	Porosidad_3
-1 (690)	-1 (820)	2,20
1 (710)	-1 (820)	3,71
-1 (690)	1 (870)	2,86
1 (710)	1 (870)	3,49
0 (700)	0 (845)	2,53
0 (700)	0 (845)	2,30
0 ("700")	0 (845)	2,54←

Preguntas:

- 3a) ¿A qué tipo de diseño corresponden estas pruebas?.
- 3b) Da una estimación del error experimental que sea independiente de cualquier modelo que se ajuste a los datos. Utiliza para ello la información obtenida en las tres etapas.
- 3c) ¿Cuál es a tu juicio el mejor modelo lineal de primer orden que se ajusta a la superficie en esta zona de experimentación?. Razona la respuesta.
- 3d) ¿Existe alguna evidencia de que el modelo así estimado no es adecuado en el sentido de que se necesite un modelo más complicado de segundo orden?. Razona la respuesta.
- 3e) ¿Cuál es a tu juicio el mejor modelo de segundo orden que se aproxime a la respuesta?. ¿Qué inconvenientes presenta este modelo?
- 3f) Manteniendo el objetivo de minimizar la porosidad al máximo, y en el supuesto de tener la posibilidad de seguir experimentando, ¿Qué estrategia propones?. Razona la respuesta.

Etapa 4

En estos momentos de la experimentación, se realizan una nueva tanda de pruebas que complementan las realizadas en la etapa anterior

Temperatura_4 (°C)	Presión_4 (kg./cm.²)	Porosidad_4
$-\sqrt{2}$ (685)	0 (845)	3,02
$\sqrt{2}$ (715)	0 (845)	4,40
0 (700)	$-\sqrt{2}$ (810)	3,90
0 (700)	$\sqrt{2}$ (880)	3,76
0 (700)	0 (845)	3,20
0 (700)	0 (845)	3,28
0 (700)	0 (845)	3,17

Se sospecha que el hecho de realizar la experimentación en dos tiempos (etapa 3-etapa 4) puede acompañar un efecto bloque que puede afectar a la estimación de los efectos si las condiciones experimentales del segundo diseño no se han seleccionado adecuadamente.

Preguntas:

- 4a) ¿Crees que en caso de existir efecto bloque afectaría la estimación del efecto del resto de los factores tal y como se han seleccionado las pruebas? Razona la respuesta.
- 4b) ¿Existe efecto bloque? Interpreta este resultado.
- 4c) ¿Cuál es a tu juicio el mejor modelo de segundo orden que aproxime a la respuesta?.
- 4d) ¿Se detecta falta de ajuste? Razona la respuesta.
- 4e) Representa la superficie por curvas de nivel

Etapa 5

- 5a) Responde a los objetivos marcados al comienzo del problema.
- 5b) Expresa la superficie de respuesta en unidades codificadas y en originales
- 5c) Representa sobre el plano determinado por los 2 factores a estudio las pruebas que se han realizado en cada etapa.