	Sy (umps B2-2 Somania Grade: AV AB / BB / BC / CC / CD / DD
ce)	TRUST Signature of the Faculty in-Charge with date
-,,	V = (y+z); +(z+y)++(y+u)+; (188 at 100 a)
	in mying pasticle Som A(0,0,0) to
\	B (1, 2,3)
A)	DXD = { i i j j
	19/9x 8/9x 9/95
	= i [& (X14) - & (Z1)1)] - 1 (& (1144)
	1 2 3 1 2 x
	-8 (Y+2)] + H & (2+51) - & (Y12)]
	dz J L dou dy J
	$= i(1-1)^{2} - i(1-1) + i(1-1)$
	=0
	Since, cast vis of the velocity given
	by Tis issational
	To sind scalar putential,
	7 2 7 4
- 1	(Y. + 2); + (Z+)1) + ()1+ y) + = 184 + 784 + 188
	8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7
	Administration and many
	=> do = y+2 => 0= yy + >12
	The support
	K.J. Somaiya College of Engineering, Vidyavihar (E), Mumbai - 400 077.

5 19 7740 13 = x+y => q xy +42 +x2 +6 Vo do Fo de where F = xi - NI clockwist. 1 4 9x - 71

Equation Of AB = 312y=0 Equation of CA = 31=y Taking vestical Staip V: AB+0'(A N: 0407. July 34 day = 3 () 11 14 1 dx 1 >((x+1) dil =13/1/2/ 23/2 436 =) (1-0) = }-(1 G+17+17 Along (

$$\begin{cases} (21_3 - 21^{14}) & (3_3 - 3_3) & (3_3 -$$

K.J. Somaiya College of Engineering, Vidyavihar (E), Mumbai - 400 077.

$$= \begin{pmatrix} 1 & (1-y) & 0 & (1-y) & dy \\ = \begin{pmatrix} 1 & (1-y) & dy \\ = \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 &$$

Fdx by Hobe's Meusem sertangle 0 tod N

