

University of Texas at Austin Invitational

Circuit Lab B

Exam Booklet

- DO NOT BEGIN UNTIL GIVEN PERMISSION
- You will have 50 minutes to complete the exam | You may separate the exam
- For calculation questions, it is **not** required that you show your work, however partial credit will be assigned if correct steps are shown with an incorrect answer.
- Answers must be given with appropriate significant figures and units to receive full credit.
- All final answers must be placed inside the designated box, including multiple choice.
- Lab: You will have up to 10 minutes to complete the lab section. A proctor will instruct you when it is your turn. You will not be given any replacement components, so be careful not to damage them.
- Allowed materials: 3-ring binder, writing utensils, two calculators, basic multimeter
- Tie-breaker order: 31, 32, 34, 46, 40, 28, 24, 26, Chronologically

Competitors:	Rank:
School Name:	Score:
Team Number:	

Kevin Hao¹, Asher Noel², Roger Zhong³

¹University of Florida - BS Biology '21, MD '24

²Harvard College – BS Physics '23

³University of Texas at Austin – BS Computer Science '22

kevin@floridascienceolympiad.org ashernoel@college.harvard.edu rzhong688@gmail.com This page is for administrative use only. DO NOT WRITE ON THIS PAGE.

Page Number	Possible Score	Your Score
3	24	
4	18	
5	22	
6	24	
7	32	
8	22	
9	32	
LAB	44	
Total	218	

Ide	entify	the l	ast n	ame of the individual ass	ociate	ed with the following ep	pithe	ets for questions 1-10. (10 pts; 1 pt each)
	1.	Reje	cted	a knighthood. 2 (1 pt)			6.	Believed in 'contiguous particles'. 2 (1 pt)
			Fo	raday				0hm
	2.	Cont		d with a man over frogs. ²	(1 pt	t)	7.	Showed the sun has sodium. 2 (1 pt)
			Va	14a				Kirchoff
	3.	Regu	ılarly	y got two hours of sleep. ²	(1 pt	t)	8.	Won the Nobel prize for helping invent alternating
			T	esla				current. ² (1 pt)
	4.	Fled		s around 1800. ² (1 pt)				Nobody
				donb			9.	Published the following: "On Magnetism". 2 (1 pt)
	5.	-		d that sound is perceived	as a i	number of		Coulomb
	٥.			c tones. 2 (1 pt)	us u		10.	Winner of the Berlin Prize. 2 (1 pt)
				Ohm			1770.000	Nobody
								Nobazy
	11.	Wha	at is	the voltage of a diesel eng	gine b	attery?² (2 pts)		
	1		A.	1.5V	В.	9V		
	17	,	C.	12V	D.	24V		
	12.	In a	pola	rized receptable, which p	rong	is "hot", and what does	s that	t mean?² (2 pts)
	B		A.	Shorter, swings (-)	В.	Shorter, swings (+)		
	1	,	C.	Longer, swings (-)	D.	Longer, swings (+)		
	13.	How	mai	ny deaths were due to Co	rona l	Discharge from 2005-2	015	in the US? 2 (2 pts)
	F	À	A.	<u>0</u>	В.	550		
	Ŀ	,		1050		16,360		
	14.	Whi	ch m	ultiway switching system	is no		for l	ong hallways? ² (2 pts)
	1	1	A.	Alternative	В.	California		
	_		C.			Traveler		
	15.	Wha		uses currents to change ev Programming		nalf cycle in a motor? 2 (Commutator	(2 pt	·s)
	6	3		Combinatorics		Bigfoot		
				or is associated with an L			dro	o of 4.15V? ² (2 pts)
	Γ.	7		Red		Green		
	5			Blue		White		
	17.	— Wha		the curie temperature of 0				
	0	7		192K		292K		
	E	>	C.	392K	D.	492K		
	18.	Wha	at is t	the effect of a 200 mA cur	rent j	passing from the left ha	nd to	o the feet in 20 ms? 2 (2 pts)
	0	1	A.	No effect	В.	tingling		
	1)	C.	shaking	D.	death		

19. What magnetism results from the orbital angular momentum of electrons antiparallel to the external	rnal field? 2 (2 pts)
A. Para magnetism B. diamagnetism	
C. ferromagnetism D. antiferromagnetism	
20. What is a disadvantage of Eddy Current Brakes used in slow high-speed trains and roller coasters	5?1 (2 pts)
A. Frequent replacement of components B. Temperature-dependent	
C. No force when stationary D. Rare metals required	
21. Two initially uncharged metal spheres, A and B, are in contact. A negatively charged rod is brough	
touch them. With the rod held in place, sphere B is moved to the right, so that the spheres are now	w separated. Which of
the following is now true of sphere B? 3 (2 pts)	
A. It is uncharged B. It is positively charged	
C. It is negatively charged D. It is charged, but its sign cannot be pr	
22. High frequency UV light with an energy of 300 eV per photon strikes a metal surface with a work	function of 108.57
eV. What is the velocity of the electrons ejected from the material? 3 (2 pts)	
A. 8.21 E6 m/s B. 1.24 E7 m/s	
C. 9.28 E6 m/s D. 1.31 E7 m/s	
23. Two capacitors are connected in parallel. A voltage V is applied to the pair. What is the ratio of ch	arge stored on C1 to
the charge stored on C2, when C1 = $1.5*C2?^3$ (2 pts)	
A. 2/3 B. 3/2	
C. 1 D. 9/4	
24. A simple circuit consists of a battery and a single variable resistor. Data of the current and	IV
voltage drop over the variable resistor at 4 different settings is shown to the right. Which	0.1A 14.1V
value best approximates the internal resistance of the battery? 3 (2 pts) (TB#7)	1.5A 13.3V
A. 0.38 ohms B. 0.44 ohms	3.1A 12.6V 4.6A 11.8V
C. 0.47 ohms D. 0.51 ohms	
25. In the unlikely event that a high voltage power line hits your car, what is the best method of esca	ipe if no one else can
help you? 3 (2 pts)	
A. Jump out with both feet together B. Slide out of the window feet first	
C. Roll out onto the ground D. Crawl out	
26. Suppose a power transmission line has a current of 2000A and a resistance of 2.3 ohms. What is	s the total power loss
across the line? ³ (2 pts) (TB#8)	
A. 4.6 kW	
D. 9.2 MW	
27. The AC generator shown below generates a voltage curve that is a sinusoidal wave. The peak vol	
is 16V. With the rectangular coil in its current position, what is the absolute value voltage output	of the generator at
that moment? 3 (2 pts) A 0 V B, 8 V N Magnetic Flax	
	s
C. 12 V D. 16 V	
Step rings Wire Loop (the conductor)	ero.
4 Carton	/ 18
Autis of Rotation Brushes	/10

28. A smartphone with a 3000 mAh 4.4V battery has an average battery life of 6 hours. What is the average power consumption of the phone? ³ (4 pts) (TB#6)

3000 mAh battery can power a device drawing 600 mA for 6 hours at 4.4 V. P = IV = (0.8 A)(4.4 V) = 2.2 W $P_{AVG} = 2.2 \text{ W}$

29. Draw the electric field lines for the pairs of charges shown. Include direction on the lines. 3 (6 pts; 2 pts each)

When the switches S1 and S2 are open, the equivalent capacitance of the circuit is 6 μ F. What is the equivalent capacitance of the circuit when both switches are closed? ³ (4 pts)

31. Find the voltage drop (V_{R3}) and power dissipated (Ω) over the 3 Ω resistor. Provide your answers to 3 significant figures. (8 pts; 4, 4) (TB#1)

32. Find the value of the missing resistor if the total current flowing through the circuit is 3.18 A. Provide your answer to 3 significant figures. 3 (6 pts) (TB#2)

33. Switches S1 and S2 are in the "open" position as shown in the diagram. Note how S2 is able to redirect current. Consider two scenarios where S2 is either open (bypass R3) or closed (connected to R3) and determine if power dissapated over R1 would increase, decrease, or stay the same when S1 moves from open to closed. 3 (6 pts; 3, 3)

34. Determine the value of the voltage source V_s given V₁=20 V and a current source I_s=6A.³ (4 pts) (TB#3)

35. Draw the Thévenin equivalent circuit with respect to the terminals A and B in the circuit below. Provide your answers to 3 significant figures. 3 (8 pts)

36. Part 1: Determine the current thru each of the lightbulbs connected to the battery in series (B). Part 2: Determine the current thru each of the lightbulbs connected to the battery in parallel (A). Provide your answers to 3 significant figures. 1 (12 pts; 2 pts each)

37. Determine the current (I_{VI}) thru the battery V1 and the voltage (V_{R2}) across the resistor R2. Provide your answers to 3 significant figures. ¹ (8 pts; 4, 4)

38. Determine the node voltages V₁ and V₂ in the circuit. Provide your answers to 3 significant figures. ¹ (8 pts; 4, 4)

$$\frac{V_{1} - 12}{2} + \frac{V_{1}}{4} + 3 + \frac{V_{1} - U_{2}}{8} = 0$$

$$\frac{V_{2} - V_{1}}{8} - 3 + \frac{V_{2} - - 5V_{0}}{1} = 0$$

$$V_{0} = 12 - V_{1}$$

$$V_{1} = -10.9 \quad V$$

$$V_{2} = -100.36V$$

$$V_{3} = 22.91V$$

$$V_{1} = 12V$$

$$V_{2} = 5V_{0}$$

39. Determine the current I_3 given $I_1 = 2A$ and $I_2 = 3A$. Provide your answers to 3 significant figures. ¹ (4 pts)

40. Part 1: Indicate the direction the magnet must be moving in order to induce the current in the wire that is shown by circling the arrow for each diagram. Part 2: State the law you used to solve this problem. (6 pts; 1, 1, 1, 1, 2) (TB#5)

- 41. Four point charges surround a point P as listed below. <u>Part 1:</u> Find the magnitude and direction (East or West) of the electric field at point P. <u>Part 2:</u> Determine the electric potential at point P. Provide your answers to 3 significant figures. 3 (6 pts; 2, 2, 2)
 - 1. +2 mC 40 meters to the west
 - 2. -2 mC 30 meters to the west
 - 3. +2 mC 30 meters to the east
 - 4. -2 mC 40 meters to the east

$$E = 2\frac{16Q}{r^{2}}$$

$$E = 8.99 \times 10^{9} \left(\frac{0.002}{40^{2}} - \frac{0.002}{30^{2}} - \frac{0.002}{30^{2}} + \frac{0.002}{40^{2}}\right) = 17.480.6 \approx 17.5 \text{ kN/C}$$

$$West$$

$$Magnitude = 17.5 \text{ kN/C} \quad Direction = (E||W|) \quad Potential = 0.00 \text{ V}$$

42. In the image below, a rod moves in the +x direction at a constant speed of 2.0 m/s along the horizontal rails, separated by L=12 cm. The rod, rails, and connecting resistor form a conducting loop. The resistor has a resistance of 200 m Ω ; the rest of the loop has negligible resistance. The entire apparatus is placed in a uniform 1.2 T magnetic field pointing into the page. Determine the direction (+y or -y) and value of the induced current through the resistor. ¹ (10 pts; 2, 8)

$$| = \frac{\text{GLv}}{R} = \frac{(1.2)(0.12)(2.0)}{0.200} = 1.44A$$

$$y = \frac{(1.2)(0.12)(2.0)}{0.200} = 1.44A$$

$$y = \frac{(1.2)(0.12)(2.0)}{(2.0)} = \frac{(1.44A)}{(2.0)}$$

$$y = \frac{(1.2)(0.12)(2.0)}{(2.0)} = \frac{(1.44A)}{(2.0)}$$

$$y = \frac{(1.44A)}{(2.0)}$$

43. Complete the table to show which lamps (L1, L2, L3) will be turned on based on the potition of each of the switches (S1, S2, S3). Assume each switch in the image is "ON", and flipping it would turn it "OFF". 1 (12 pts; ½ pt each)

S1 ON ON	S2 ON ON	S3 ON OFF	L1 04 04	1.2 0 N 0 N	L3 QN QFF	S1 S2 S3 S3 WY
ON OFF	OFF ON	ON ON	OFF	OFF	OFF	12V_10W 12V_10W 12V_10W
ON OFF	OFF ON	OFF OFF	ON	OFF	OFF	T
OFF	OFF	ON	OFF	OFF	OFF	
OFF	OFF	OFF	OFF	OFF	OFF	

44. Part 1: A 3-way light switch diagram is shown below. Complete the diagram so that the lightbulb can be powered on. Label hot wires as "HOT". 3 wires are given. The top wire is the hot wire. The middle wire is the neutral wire. The bottom wire is ground. The terminals on the switches are denoted by a letter. "A" refers to the left traveler terminal. "B" refers to the right traveler terminal. "C" refers to the common terminal. "G" refers to the ground terminal. When drawing the wires, connect them directly to the terminal labels (the first step is done for you). Part 2: Notice the ground terminals connected to the switches, draw the ground wires and connect them to the main ground wire to guarantee the safety of the user. (8 pts; 6, 2)

45. Part 1: Why don't transformers work with DC? Part 2: In a single ideal transformer, the primary (in) coil A has 10 turns, a current of 10A, and a voltage of 5V. The secondary (out) coil B has 50 turns. What is the current and voltage in coil B? Provide your answers to 3 significant figures. 3 (6 pts; 3, 3)

Faraday's law of induction states that only changing Magnetic flux can induce an EMF in the secondary coil of the transformer. IB = 2.00 A $V_B = 25.0 \text{ V}$

46. Consider two capacitors A and B: Capacitor A has a capacitance of 3 uF with a vacuum as its dielectric. Capacitor B has a capacitance of 241 uF with ______ as its dielectric. Calculate the dielectric constant of the mystery substance and make an educated guess as to what it is. ³ (6 pts; 4, 2) (TB#4)

$$C = \underbrace{\epsilon_0 A}_{d}$$

$$Vacuum \ die keckric = 1.00$$

$$Dielectric \ constant = \underbrace{80}_{d}$$

$$Dielectric \ substance = \underbrace{Water}_{d}$$

Hands-On Task: For the following questions, your circuit diagrams and calculations MUST be composed of components that are provided (e.g. resistor values used in circuit diagrams should correspond to actual provided values). You will have 15 minutes to work with the physical components to complete the questions in this section.

47. Draw a simple circuit diagram such that its input is \sim 5 V (battery voltage V_{i1}) and output is \sim 1 V (\sim means within +/-10%). Calculate its theoretical output voltage (V_{o1}). Provide your answer to 3 significant figures. HINT: Your answer

48. Construct the circuit from Q42. Measure and record the input (V_i) and output (V₀) voltages to 3 significant figures. ¹ (10 pts; 5, 5)

Measured $V_i = Varies$ Measured $V_o = Varies$

49. Study the circuit below and fill out the table to show which LEDs are turned on when each combination of push buttons are pressed. Draw an "X" to indicate the LED is turned on. Determine the theoretical and actual power dissipated by the LEDs when buttons 1 and 2 are pressed. You are provided with the necessary components to build the circuit, but it is NOT required. 1 (24 pts; ½ pt each box; 5, 5)

u	ttoı	ıs		LI	D	
1	2	3	Red	Yellow	Green	Blue
X			X	X		
	X		X			
		X	X	X		
	X		X	X		
Х	.,	X	X	X	<u> </u>	
х	X	X	- \	\ \ \		
^	Λ		^	_^	1	
				D Val		
	Re	7.	١.	63-	2.03	->1
	46	2110	W:	2.10	2.18 -	-7 /
No.	-フ	71	nere	75 M	o res	istor
		W	Ntil	CHY	er tv	1e
		L	ED	, thus	a	the
		0	N/C	bure	L Cd	Nuct
eta-	1	101	reve	n us	ina o	vo
				ind f		
		DI		perfo	MES.	