Extensiones de los espacios funcionales de Lebesgue: espacios de Orlicz, modulares y de exponente variable

Autor: Daniel Peinado Ginés

Tutor: F. Javier Soria de Diego

TRABAJO DE FIN DE GRADO

14 de julio de 2021

Contenido de la presentación

- Propiedades de las funciones convexas
 - Funciones convexas
 - N-funciones
- $oxed{2}$ Clases y espacios de Orlicz: propiedad $oldsymbol{\Delta}_2$
 - ullet Clases de Orlicz y Propiedad Δ_2
 - Espacios de Orlicz
 - Propiedades funcionales
- Espacios modulares
- 4 Espacios de Lebesgue de exponente variable

Sea $F: I \longrightarrow \mathbb{R}$ una función convexa. Entonces,

- ullet es absolutamente continua y lipschitziana en todo intervalo $[a,b]\subset \mathring{I}$,
- es derivable en casi todo punto,
- existe su derivada por la derecha, es continua por la derecha y no decreciente,
- admite una representación de la forma

$$F(u) - F(a) = \int_{a}^{u} f(t) dt$$

donde f es una función continua por la derecha y no decreciente

Sea $F: I \longrightarrow \mathbb{R}$ una función convexa. Entonces,

- es absolutamente continua y lipschitziana en todo intervalo $[a,b]\subset \mathring{l}$,
- es derivable en casi todo punto,
- existe su derivada por la derecha, es continua por la derecha y no decreciente,
- admite una representación de la forma

$$F(u) - F(a) = \int_a^u f(t) dt.$$

donde f es una función continua por la derecha y no decreciente

Sea $F: I \longrightarrow \mathbb{R}$ una función convexa. Entonces,

- ullet es absolutamente continua y lipschitziana en todo intervalo $[a,b]\subset \mathring{I}$,
- es derivable en casi todo punto,
- existe su derivada por la derecha, es continua por la derecha y no decreciente,
- admite una representación de la forma

$$F(u) - F(a) = \int_{a}^{u} f(t) dt$$

donde f es una función continua por la derecha y no decreciente

Sea $F: I \longrightarrow \mathbb{R}$ una función convexa. Entonces,

- ullet es absolutamente continua y lipschitziana en todo intervalo $[a,b]\subset \mathring{l}$,
- es derivable en casi todo punto,
- existe su derivada por la derecha, es continua por la derecha y no decreciente,
- admite una representación de la forma

$$F(u) - F(a) = \int_a^u f(t) dt,$$

donde f es una función continua por la derecha y no decreciente.

N-funciones

Definición

Se dice que una función Φ es una *N-función* si admite una representación de la forma

$$\Phi(u) = \int_0^{|u|} f(t) dt,$$

donde $f:[0,\infty)\longrightarrow\mathbb{R}$ es continua por la derecha, no decreciente y positiva para t>0, tal que

$$f(0) = 0$$
 y $\lim_{t \to \infty} f(t) = \infty$.

N-función complementaria

$$\Psi(v) = \max_{v \ge 0} \{u|v| - \Phi(u)\}$$

N-funciones complementarias

$$\Phi(u) = \frac{|u|^p}{p} \quad \text{y} \quad \Psi(v) = \frac{|v|^q}{q}$$

N-funciones

Definición

Se dice que una función Φ es una *N-función* si admite una representación de la forma

$$\Phi(u) = \int_0^{|u|} f(t) dt,$$

donde $f:[0,\infty)\longrightarrow \mathbb{R}$ es continua por la derecha, no decreciente y positiva para t>0, tal que

$$f(0) = 0$$
 y $\lim_{t \to \infty} f(t) = \infty$.

N-función complementaria

$$\Psi(v) = \max_{v \ge 0} \{u|v| - \Phi(u)\}$$

N-funciones complementarias

$$\Phi(u) = \frac{|u|^p}{p}$$
 y $\Psi(v) = \frac{|v|^q}{q}$

Clases de Orlicz y propiedad Δ_2

CLASES DE ORLICZ

Sea Φ una N-función. Se denota por $L_{\Phi}(\Omega)$ a la clase de Orlicz definida como

$$L_{\Phi}(\Omega) \doteq \bigg\{ u : \Omega \longrightarrow \mathbb{R} : \ \rho(u; \Phi) = \int_{\Omega} \Phi(u(x)) \, dx < \infty \bigg\}.$$

Definición

Se dice que una función Φ satisface la condición Δ_2 para grandes valores de u si existen k>0 y $u_0\geq 0$ tales que

$$\Phi(2u) \leq k\Phi(u)$$
,

para todo $u \geq u_0$.

ESPACIOS DE ORLICZ

Sean Φ y Ψ dos N-funciones mutuamente complementarias. Se define el *espacio* de *Orlicz* $L_{\Phi}^*(\Omega)$ como

$$L_\Phi^*(\Omega)\doteqdot \bigg\{u:\Omega\longrightarrow \mathbb{R}:\ \int_\Omega |u(x)v(x)|\ dx<\infty,\ \mathsf{para\ todo}\ v\in L_\Psi\bigg\}.$$

Norma de Orlicz

$$||u||_{\Phi} = \sup_{\rho(v;\Psi) \le 1} \int_{\Omega} |u(x)v(x)| dx$$

Si $u \in L_{\Phi}^*$, entonces

$$\int_{\Omega} \Phi\left(\frac{u(x)}{\|u\|_{\Phi}}\right) \le 1 \ dx$$

Norma de Luxemburg

$$\|u\|_{(\Phi)} = \inf\left\{k > 0: \rho\left(\frac{u}{k}; \Phi\right) \le 1\right\}$$

Si $u \in L_{\Phi}^*$ y $v \in L_{\Psi}^*$, entonces

$$\left| \int_{\Omega} u(x) v(x) \, dx \right| \leq \|u\|_{\Phi} \|v\|_{(\Psi)}$$

ESPACIOS DE ORLICZ

Sean Φ y Ψ dos N-funciones mutuamente complementarias. Se define el *espacio de Orlicz* $L_{\Phi}^*(\Omega)$ como

$$L_\Phi^*(\Omega)\doteqdot \bigg\{u:\Omega\longrightarrow \mathbb{R}:\ \int_\Omega |u(x)v(x)|\ dx<\infty,\ \mathsf{para\ todo}\ v\in L_\Psi\bigg\}.$$

Norma de Orlicz

$$||u||_{\Phi} = \sup_{\rho(v;\Psi) \le 1} \int_{\Omega} |u(x)v(x)| dx$$

Si $u \in L_{\Phi}^*$, entonces

$$\int_{\Omega} \Phi\left(\frac{u(x)}{\|u\|_{\Phi}}\right) \le 1 \ dx$$

Norma de Luxemburg

$$\|u\|_{\left(\Phi\right)}=\inf\left\{k>0:\,\rho\left(\frac{u}{k};\Phi\right)\leq1\right\}$$

Si $u \in L_{\Phi}^*$ y $v \in L_{\Psi}^*$, entonces

$$\left| \int_{\Omega} u(x) v(x) \, dx \right| \leq \|u\|_{\Phi} \|v\|_{(\Psi)}$$

ESPACIOS DE ORLICZ

Sean Φ y Ψ dos N-funciones mutuamente complementarias. Se define el *espacio* de *Orlicz* $L_{\Phi}^*(\Omega)$ como

$$L_\Phi^*(\Omega)\doteqdot \bigg\{u:\Omega\longrightarrow \mathbb{R}:\ \int_\Omega |u(x)v(x)|\ dx<\infty,\ \mathsf{para\ todo}\ v\in L_\Psi\bigg\}.$$

Norma de Orlicz

$$||u||_{\Phi} = \sup_{\rho(v;\Psi) \le 1} \int_{\Omega} |u(x)v(x)| dx$$

Si $u \in L_{\Phi}^*$, entonces

$$\left| \int_{\Omega} \Phi\left(\frac{u(x)}{\|u\|_{\Phi}} \right) \le 1 \, dx \right|$$

Norma de Luxemburg

$$\|u\|_{(\Phi)} = \inf\left\{k>0:\, \rho\left(\frac{u}{k};\Phi\right) \leq 1\right\}$$

Si $u \in L_{\Phi}^*$ y $v \in L_{\Psi}^*$, entonces

$$\left| \left| \int_{\Omega} u(x) v(x) \, dx \right| \leq \|u\|_{\Phi} \|v\|_{(\Psi)}$$

Propiedades funcionales

- L_{Φ}^* es un espacio de Banach,
- las normas de Orlicz y de Luxemburg son equivalentes,
- L_{Φ}^{*} es separable si, y solo si, Φ satisface la propiedad Δ_{2} ,
- $L_{\Phi}^{*}=L_{\Phi}$ si, y solo si, Φ satisface la propiedad Δ_{2} ,
- ullet L $_{\Phi}^{*}$ es un espacio invariante por reordenamientos,
- $(L_{\Phi}^*, \|\cdot\|_{\Phi})$ tiene como espacio asociado $(L_{\Psi}^*, \|\cdot\|_{(\Psi)})$, donde Ψ es la N-función complementaria de Φ .

Propiedades funcionales

- L_{Φ}^* es un espacio de Banach,
- las normas de Orlicz y de Luxemburg son equivalentes,
- L_{Φ}^{*} es separable si, y solo si, Φ satisface la propiedad Δ_{2} ,
- $L_{\Phi}^* = L_{\Phi}$ si, y solo si, Φ satisface la propiedad Δ_2 ,
- ullet L $_{\Phi}^{*}$ es un espacio invariante por reordenamientos,
- $(L_{\Phi}^*, \|\cdot\|_{\Phi})$ tiene como espacio asociado $(L_{\Psi}^*, \|\cdot\|_{(\Psi)})$, donde Ψ es la N-función complementaria de Φ .

Propiedades funcionales

- L_{Φ}^* es un espacio de Banach,
- las normas de Orlicz y de Luxemburg son equivalentes,
- L_{Φ}^{*} es separable si, y solo si, Φ satisface la propiedad Δ_{2} ,
- $L_{\Phi}^* = L_{\Phi}$ si, y solo si, Φ satisface la propiedad Δ_2 ,
- ullet L $_{\Phi}^{*}$ es un espacio invariante por reordenamientos,
- $(L_{\Phi}^*, \|\cdot\|_{\Phi})$ tiene como espacio asociado $(L_{\Psi}^*, \|\cdot\|_{(\Psi)})$, donde Ψ es la N-función complementaria de Φ .

Propiedades funcionales

- L_{Φ}^* es un espacio de Banach,
- las normas de Orlicz y de Luxemburg son equivalentes,
- L_{Φ}^{*} es separable si, y solo si, Φ satisface la propiedad Δ_{2} ,
- $L_{\Phi}^* = L_{\Phi}$ si, y solo si, Φ satisface la propiedad Δ_2 ,
- ullet L $_{\Phi}^{*}$ es un espacio invariante por reordenamientos,
- $(L_{\Phi}^*, \|\cdot\|_{\Phi})$ tiene como espacio asociado $(L_{\Psi}^*, \|\cdot\|_{(\Psi)})$, donde Ψ es la N-función complementaria de Φ .

Propiedades funcionales

- L_{Φ}^* es un espacio de Banach,
- las normas de Orlicz y de Luxemburg son equivalentes,
- L_{Φ}^{*} es separable si, y solo si, Φ satisface la propiedad Δ_{2} ,
- $L_{\Phi}^* = L_{\Phi}$ si, y solo si, Φ satisface la propiedad Δ_2 ,
- ullet L $_{\Phi}^{*}$ es un espacio invariante por reordenamientos,
- $(L_{\Phi}^*, \|\cdot\|_{\Phi})$ tiene como espacio asociado $(L_{\Psi}^*, \|\cdot\|_{(\Psi)})$, donde Ψ es la N-función complementaria de Φ .

Propiedades funcionales

- L_{Φ}^* es un espacio de Banach,
- las normas de Orlicz y de Luxemburg son equivalentes,
- L_{Φ}^{*} es separable si, y solo si, Φ satisface la propiedad Δ_{2} ,
- $L_{\Phi}^* = L_{\Phi}$ si, y solo si, Φ satisface la propiedad Δ_2 ,
- ullet L $_{\Phi}^{*}$ es un espacio invariante por reordenamientos,
- $(L_{\Phi}^*, \|\cdot\|_{\Phi})$ tiene como espacio asociado $(L_{\Psi}^*, \|\cdot\|_{(\Psi)})$, donde Ψ es la N-función complementaria de Φ .

Definición

Sea X un \mathbb{K} -espacio vectorial. Se dice que una función $\rho: X \longrightarrow [0,\infty]$ es un modular en X, si se cumplen

- \bullet ρ es una función convexa,
- ② ρ es continua por la izquierda, i.e., $\lim_{\lambda \to 1^-} \rho(\lambda x) = \rho(x)$ para todo $x \in X$,
- si $|\lambda| = 1$, entonces $\rho(\lambda x) = \rho(x)$ para todo $x \in X$.

Definición

Sea X un \mathbb{K} -espacio vectorial. Se dice que una función $\rho: X \longrightarrow [0, \infty]$ es un modular en X, si se cumplen

- \bullet ρ es una función convexa,
- ② ρ es continua por la izquierda, i.e., lím $_{\lambda \to 1^-} \rho(\lambda x) = \rho(x)$ para todo $x \in X$,
- \bullet si $|\lambda| = 1$, entonces $\rho(\lambda x) = \rho(x)$ para todo $x \in X$

Definición

Sea X un \mathbb{K} -espacio vectorial. Se dice que una función $\rho: X \longrightarrow [0,\infty]$ es un modular en X, si se cumplen

- \bullet ρ es una función convexa,
- ② ρ es continua por la izquierda, i.e., lím $_{\lambda \to 1^-} \rho(\lambda x) = \rho(x)$ para todo $x \in X$,
- si $|\lambda| = 1$, entonces $\rho(\lambda x) = \rho(x)$ para todo $x \in X$.

Definición

Sea X un \mathbb{K} -espacio vectorial. Se dice que una función $\rho: X \longrightarrow [0,\infty]$ es un modular en X, si se cumplen

- \bullet ρ es una función convexa,
- ② ρ es continua por la izquierda, i.e., $\lim_{\lambda \to 1^-} \rho(\lambda x) = \rho(x)$ para todo $x \in X$,
- si $|\lambda| = 1$, entonces $\rho(\lambda x) = \rho(x)$ para todo $x \in X$.

Definición

Sea X un \mathbb{K} -espacio vectorial. Se dice que una función $\rho: X \longrightarrow [0,\infty]$ es un modular en X, si se cumplen

- \bullet ρ es una función convexa,
- ② ρ es continua por la izquierda, i.e., $\lim_{\lambda \to 1^-} \rho(\lambda x) = \rho(x)$ para todo $x \in X$,
- si $|\lambda| = 1$, entonces $\rho(\lambda x) = \rho(x)$ para todo $x \in X$.

ESPACIOS MODULARES

Sea X un \mathbb{K} -espacio vectorial y sea ρ un modular en X. Se define el *espacio modular* X_{ρ} como

$$X_{\rho}\doteqdot \bigg\{u\in X:\, \lim_{\lambda\to 0}\rho(\lambda u)=0\bigg\}=\bigg\{u\in X:\, \rho(\lambda u)<\infty, \text{ para algún }\lambda>0\bigg\}.$$

ESPACIOS $L^{p(\cdot)}$ DE EXPONENTE VARIABLE

Sea $p(\cdot): \Omega \longrightarrow [1,\infty]$ una función medible. Se define el conjunto de las funciones medibles en Ω tales que existe un k>0 para el cual se satisface

$$\int_{\Omega\setminus\Omega_{\infty}} \left(\frac{|f(x)|}{k}\right)^{p(x)} dx + \underset{x\in\Omega_{\infty}}{\operatorname{ess\,sup}} |f(x)| < \infty$$

donde $\Omega_{\infty} = \{x \in \Omega : p(x) = \infty\}$. A este espacio se le llama espacio de Lebesgue de exponente varible, y se denota por $L^{p(\cdot)}(\Omega)$.

Norma de Luxemburg

$$\|f\|_{\rho(\cdot)} = \inf\left\{\lambda > 0: \ \rho_{\rho(\cdot)}\left(\frac{f}{\lambda}\right) \leq 1\right\} \qquad \|f\|_{\rho(\cdot)} = \sup_{\rho_{\rho'(\cdot)}(g) \leq 1} \int_{\Omega} f(x)g(x) \, dx,$$

Otra norma

$$|||f|||_{p(\cdot)} = \sup_{\rho_{p'(\cdot)}(g) \le 1} \int_{\Omega} f(x)g(x) dx,$$

Propiedades funcionales

Sea $p(\cdot): \Omega \longrightarrow [1,\infty]$ una función medible. Entonces el espacio $L^{p(\cdot)}$ tiene las siguientes propiedades

- $L^{p(\cdot)}$ es un espacio de Banach,
- si la función $p(\cdot)$ no es constante, entonces $L^{p(\cdot)}$ no es un espacio invariante por reordenamientos,
- $(L^{p(\cdot)}, \|\cdot\|_{p(\cdot)})$ tiene como espacio asociado a $(L^{p'(\cdot)}, \|\cdot\|_{p'(\cdot)})$, donde $p'(\cdot)$ es la función exponente conjugada de $p(\cdot)$.

Propiedades funcionales

Sea $p(\cdot):\Omega\longrightarrow [1,\infty]$ una función medible. Entonces el espacio $L^{p(\cdot)}$ tiene las siguientes propiedades

- $L^{p(\cdot)}$ es un espacio de Banach,
- si la función $p(\cdot)$ no es constante, entonces $L^{p(\cdot)}$ no es un espacio invariante por reordenamientos,
- $(L^{p(\cdot)}, \|\cdot\|_{p(\cdot)})$ tiene como espacio asociado a $(L^{p'(\cdot)}, \|\cdot\|_{p'(\cdot)})$, donde $p'(\cdot)$ es la función exponente conjugada de $p(\cdot)$.

Propiedades funcionales

Sea $p(\cdot):\Omega\longrightarrow [1,\infty]$ una función medible. Entonces el espacio $L^{p(\cdot)}$ tiene las siguientes propiedades

- $L^{p(\cdot)}$ es un espacio de Banach,
- si la función $p(\cdot)$ no es constante, entonces $L^{p(\cdot)}$ no es un espacio invariante por reordenamientos,
- $(L^{p(\cdot)}, \|\cdot\|_{p(\cdot)})$ tiene como espacio asociado a $(L^{p'(\cdot)}, \|\cdot\|_{p'(\cdot)})$, donde $p'(\cdot)$ es la función exponente conjugada de $p(\cdot)$.

Propiedades funcionales

Sea $p(\cdot): \Omega \longrightarrow [1,\infty]$ una función medible. Entonces el espacio $L^{p(\cdot)}$ tiene las siguientes propiedades

- $L^{p(\cdot)}$ es un espacio de Banach,
- si la función $p(\cdot)$ no es constante, entonces $L^{p(\cdot)}$ no es un espacio invariante por reordenamientos,
- $(L^{p(\cdot)}, \|\cdot\|_{p(\cdot)})$ tiene como espacio asociado a $(L^{p'(\cdot)}, \|\cdot\|_{p'(\cdot)})$, donde $p'(\cdot)$ es la función exponente conjugada de $p(\cdot)$.

Desigualdad de Hölder

Sea $p(\cdot):\Omega\longrightarrow [1,\infty]$ una función medible. La desigualdad

$$\int_{\Omega} |f(x)g(x)| \, dx \le K_{p(\cdot)} ||f||_{p(\cdot)} ||g||_{p'(\cdot)},$$

se cumple para todo $f \in L^{p(\cdot)}(\Omega)$ y $g \in L^{p'(\cdot)}(\Omega)$, donde

$$\mathcal{K}_{p(\cdot)} = \|\chi_{\Omega_{\mathbf{1}}}\|_{\infty} + \|\chi_{\Omega_{\infty}}\|_{\infty} + \|\chi_{\Omega_{\mathbf{0}}}\|_{\infty} \left(1 + \frac{1}{p_{\min}} - \frac{1}{p_{\max}}\right).$$

Bibliografía

- D. V. Cruz-Uribe y A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analisys. Birkhäuser, Heildelberg, 2013.
- M. A. Krasnosel'skii y Y. U. Rutickii, *Convex Functions and Orlicz Spaces*. P. Noordhoff, Groningen, 1961.
- 📡 J. Musielak, Orlicz Spaces and Modular Spaces. Springer-Verlag, Berlin, 1983.
- W. Orlicz, Über eine gewisse Klasse von Räumen vom Typus, Bulletin International de l'Academie Polonaise des Sciences 8/9(1932), 207–220.
- W. Orlicz, Über konjugierte Exponentefolgen, Studia Math. 3(1931), 200–211.