Proyección Ortogonal

March 4, 2025

1 Proyección Ortogonal

1.1 Explicacion Matematica

Para definir una proyección ortogonal se requieren de las siguientes definiciones:

1. Espacio Vectorial y Subespacios:

Consideremos un espacio vectorial V y un subespacio W de V que también es un espacio vectorial. En el contexto de la proyección ortogonal, nos enfocamos en subespacios generados por un vector \mathbf{u} , que comprende todos los vectores que son múltiplos escalares de \mathbf{u} .

2. Producto Interno (o Producto Escalar):

El producto interno entre dos vectores \mathbf{v} y \mathbf{u} en V, denotado como $\langle \mathbf{v}, \mathbf{u} \rangle$, es una función que asigna un escalar a cada par de vectores. En el caso de espacios vectoriales reales, el producto interno se conoce como producto punto, definido geométricamente como:

$$\langle \mathbf{v}, \mathbf{u} \rangle = ||\mathbf{v}|| ||\mathbf{u}|| \cos(\theta),$$

donde $||\mathbf{v}||$ y $||\mathbf{u}||$ son las magnitudes de \mathbf{v} y \mathbf{u} , respectivamente, y θ es el ángulo entre ellos. Algebraicamente, si $\mathbf{v} = (v_1, v_2, ..., v_n)$ y $\mathbf{u} = (u_1, u_2, ..., u_n)$ entonces:

$$\langle \mathbf{v}, \mathbf{u} \rangle = v_1 u_1 + v_2 u_2 + \dots + v_n u_n.$$

3. Proyección Ortogonal:

La proyección ortogonal de un vector \mathbf{v} sobre un vector \mathbf{u} , denotada como $\operatorname{proj}_{\mathbf{u}}\mathbf{v}$, es un vector en \mathbf{u} que minimiza la distancia entre \mathbf{v} y cualquier vector en \mathbf{u} . Esta distancia se mide perpendicularmente a \mathbf{u} , garantizando la ortogonalidad.

4. Deducción de la Fórmula:

Dado que $\operatorname{proj}_{\mathbf{u}}\mathbf{v}$ pertenece a \mathbf{u} , se puede expresar como:

$$\operatorname{proj}_{\mathbf{u}}\mathbf{v} = \alpha\mathbf{u},$$

donde α es un escalar. Para asegurar la ortogonalidad, requerimos que $\mathbf{v}-\operatorname{proj}_{\mathbf{u}}\mathbf{v}$ sea ortogonal a \mathbf{u} , es decir:

$$\langle \mathbf{v} - \text{proj}_{\mathbf{u}} \mathbf{v}, \mathbf{u} \rangle = 0.$$

Sustituyendo la expresión de la proyección y aplicando la linealidad del producto interno, obtenemos:

$$\langle \mathbf{v} - \alpha \mathbf{u}, \mathbf{u} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle - \alpha \langle \mathbf{u}, \mathbf{u} \rangle = 0.$$

Despejando α , llegamos a:

$$\alpha = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle}$$

Finalmente, sustituyendo α en la expresión de la proyección, obtenemos la fórmula:

$$\operatorname{proj}_{\mathbf{u}} \mathbf{v} = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u}.$$

5. Propiedades:

Ortogonalidad: $\mathbf{v} - \text{proj}_{\mathbf{u}} \mathbf{v}$ es ortogonal a \mathbf{u} .

Unicidad: La proyección ortogonal de ${\bf v}$ sobre ${\bf u}$ es única.

Linealidad: $\operatorname{proj}_{\mathbf{u}}(a\mathbf{v} + b\mathbf{w}) = a(\operatorname{proj}_{\mathbf{u}}\mathbf{v}) + b(\operatorname{proj}_{\mathbf{u}}\mathbf{w})$ para cualquier escalar a, b y vectores \mathbf{v}, \mathbf{w} .

 $\mathbf{Idempotencia:}\ \mathbf{proj_u(proj_uv)} = \mathbf{proj_uv}$

1.2 Aplicaciones en Ciencias de datos

En la regresión lineal, buscamos encontrar la mejor línea (o hiperplano en dimensiones mayores) que se ajuste a un conjunto de puntos de datos. La línea de regresión se puede encontrar minimizando la suma de los cuadrados de las distancias verticales entre los puntos de datos y la línea. Estas distancias verticales son precisamente las magnitudes de las proyecciones ortogonales de los vectores de error (la diferencia entre los valores reales y los predichos) sobre la dirección perpendicular a la línea de regresión.

1.2.1 Ejemplo en Python para Uso de proyección ortogonal en regresiones lineales

```
[3]: import numpy as np
import matplotlib.pyplot as plt
# Generar datos de ejemplo
np.random.seed(0)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)
# Agregar una columna de unos a X para el término independiente
X_b = np.c_[np.ones((100, 1)), X]
# Calcular los coeficientes de la regresión lineal usando la ecuación normal
theta_best = np.linalg.solve(X_b.T.dot(X_b), X_b.T.dot(y))
# Predecir los valores de y usando los coeficientes
y_predict = X_b.dot(theta_best)
# Calcular los residuos (errores)
residuos = y - y_predict
# Calcular la proyección ortogonal de los residuos sobre el subespacio generadou
 \hookrightarrow por X_b
```

Proyección Ortogonal en Regresión Lineal

