EP3 - Integração por Monte Carlo

Guilherme Navarro - N°USP: 8943160

Abril de 2018

1 Enunciado

O presente relatório tem como objetivo simular três formas distintas de integração pelo método de Monte Carlo importance sampling. $\int_0^\infty f(x)\ dx$ em que

$$f(x) = y^{c-1}e^{-y}$$

sendo y=x+|sin(ax+b)|, a=0.RG, b=0.CPF e c=1.NUSP. Neste caso, NUSP representa o número USP (7 dígitos) e CPF representa o número do CPF (11 dígitos), enquanto RG representa o número do RG (8 dígitos). Para tal, o cálculo da integral deve ser feito com um erro inferior a 0,5% com n a amostra previamente definida, assim o erro é determinado por:

$$Erro = \frac{\sigma}{\sqrt{n}}$$

2 Constantes utilizadas na simulação

Para dar continuidade a simulação do método de integração *importance* sampling, serão considerados, neste relatório, os seguintes valores:

- 1. $RG = 50057666 \Rightarrow a = 0,50057666$
- 2. $CPF = 43396344847 \Rightarrow b = 0,43396344847$
- 3. $NUSP = 8943160 \Rightarrow c = 1,8535791$

3 Importance Sampling

A simulação pelo método Importance Sampling consiste em encontrar uma função g(x) que se comporte de maneira semelhante em relação à função f(x). Assim, tem-se que:

$$\theta = \int_0^\infty f(x)dx = \int_0^\infty \frac{f(x)}{g(x)}g(x)dx$$

Logo para estimarmos a Integral θ é:

$$\hat{\theta} \approx \frac{1}{n} \sum_{i=1}^{n} \frac{f(x_i)}{g(x_i)} g(x_i)$$

Onde $X_1, X_2, ..., X_n$ são amostras geradas pela distribuição de g(x).

3.1 Distribuição Qui-Quadrado

Para o primeiro método utilizei um gerador aleatório com distribuição Quiquadrado, logo pelo método do Importance Sampling, temos que

$$g(x) = \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})} x^{\frac{\nu}{2}-1} e^{\frac{-x}{2}}$$

porém neste caso utilize
i $\nu=2,$ ou seja 2 graus de liberdade, que fica muito próximo da distribuição gamma.

Para 10 amostras aleatórias geradas de tamanho n=10000, foram obtidos os seguintes resultados:

Amostra	Estimativa	σ	Erro
1	0.7402834	0.1870649	0.001870649
2	0.7395690	0.1909798	0.001909798
3	0.7394079	0.1913149	0.001913149
4	0.7360132	0.1919221	0.001919221
5	0.7410992	0.1860060	0.001860060
6	0.7388761	0.1914131	0.001914131
7	0.7371713	0.1908047	0.001908047
8	0.7398101	0.1913737	0.001913737
9	0.7401100	0.1892472	0.001892472
10	0.7384239	0.1925994	0.001925994

Observa-se que o valor aproximado para $\int_0^\infty f(x) \ dx$ para esse método é 0.73907 e a precisão utilizada é de 0.05%.

3.2 Distribuição Exponencial

Para o segundo método utilizei um gerador aleatório com distribuição Exponencial, logo pelo método do Importance Sampling, temos que

$$g(x) = \lambda e^{-\lambda x}$$

porém neste caso utilize
i $\lambda=1,$ que é uma boa aproximação da distribuição gamma.

Para 10 amostras aleatórias geradas de tamanho n=10000, foram obtidos os seguintes resultados:

Amostra	Estimativa	σ	Erro
1	0.7392638	0.1870649	0.004359587
2	0.7362537	0.1909798	0.004234159
3	0.7414718	0.1913149	0.004299636
4	0.7390269	0.1919221	0.004342252
5	0.7448643	0.1860060	0.004425362
6	0.7348974	0.1914131	0.004233377
7	0.7404254	0.1908047	0.004396889
8	0.7423693	0.1913737	0.004393020
9	0.7368790	0.1892472	0.004275651
10	0.7349573	0.1925994	0.004233768

Observa-se que o valor aproximado para $\int_0^\infty f(x)\ dx$ para esse método é 0.73904 e a precisão utilizada é de 0,05%.

3.3 Distribuição Gamma

Para o terceiro método implementei um gerador aleatório com distribuição Gamma, logo pelo método do Importance Sampling, temos que

$$g(x) = \frac{x^{c-1}e^{-x}}{\Gamma(c)}$$

Para 10 amostras aleatórias geradas de tamanho n=10000, foram obtidos os seguintes resultados:

Amostra	Estimativa	σ	Erro
1	0.7367394	1.4182207	0.014182207
2	0.7335030	0.4790546	0.004790546
3	0.7410796	0.6375696	0.006375696
4	0.7369746	0.4727243	0.004727243
5	0.7363559	0.5111403	0.005111403
6	0.7309480	0.5000902	0.005000902
7	0.7351135	0.4779316	0.004779316
8	0.7316098	0.6757312	0.006757312
9	0.7331316	0.5696112	0.005696112
10	0.7342952	0.4619952	0.004619952

Observa-se que o valor aproximado para $\int_0^\infty f(x)\ dx$ para esse método é 0.73497 e a precisão utilizada é de 0,05%.

4 Conclusão

A partir dos erros dos métodos de integração calculados acima, é possível perceber que, em média, o método de Importance Sampling com a distruibuição gamma converge mais rápido, por precisa de uma amostra de tamanho menor para chegar no valor aproximado da integral.

Referências

- [1] LECTURE, Monte Carlo Methods I (2012). Disponível em: http://www.lce.hut.fi/teaching/S-114.1100/lect_9.pdf. acesso em 20/04/2018.
- [2] STERN, J.M., Cognitive Constructivism and the Epistemic Significance of Sharp Statistical Hypotheses in Natural Sciences(2010). *Disponível em:* https://www.ime.usp.br/~jstern/books/evli.pdf. acesso em 18/04/2018.
- [3] Notas de Aula do professor J. Stern MAP2212 Abril 2018