Turbulence

One Rocket Closer to Space

AGH Space Systems

Team 105

Design and Development of Self-Pressurized Feed System for Bi-Liquid Rocket Engines Using N20

AGH Space Systems

Non-profit student club from Poland. We take on space-related projects, including hybrid-powered and liquid-powered sounding rockets, planetary rovers, CanSat planetary probes and stratospheric balloons.

CANSAT PLANETARY PROBE

CANSAT COMPETITION

1ST PLACE

- > DEPLOYMENT AUTOMATION
- > ONBOARD COMPUTER
- > DESCENT CONTROL SYSTEM
- > STILL OBSERVATION
- > RECOVERY SYSTEM

STRATOSPHERIC FLIGHT

GLOBAL SPACE
BALLOON CHALLENGE
1ST PLACE

Rocket counter

5

1 still missing

ROCKET SYSTEMS DEVELOPMENT

2015

Brajan 1 first tested hybrid engine 350N thrust **Carbonara** our first hybrid rocket for Cansat Competition

2016

Beta first experimental hybrid rocket, complete system

2017

Bagieta supersonic hybrid propulsion rocket [missing RIP] **Zawisza** first rocket-scale I RF in Poland

2018

Turbulence first LRE rocket project for SA Cup 18 **Panda3** our hybrid rocket for SA Cup 18

The Turbulence rocket in BS10 configuration is propelled by **liquid rocket engine** designated as Zawisza Z3000, which is currently developed, built and tested by the members of AGH Space Systems.

It uses **ethanol and nitrous oxide** as rocket propellants in a unique pressure-fed cycle.

Previous experience with N2O bi-liquid rocket engines. Coupled blow-down with VaPak

OF shift due to bad feed system coupling

Better solution?

Better solution?

Bi-liquid Vapour pressurization

Better solution?

AGHSpace systems

Bi-liquid Vapour pressurization

Trade-off analysis Why not try?

Self-pressurized	External gas	Blowdown
Constant pressure drop ratio	Difficult to control pressure drop ratio	No control over pressure drop ratio
Low pressure drop during burn	No pressure drop during burn	High pressure drop during burn
Complex	Complex	Simple
Medium weight	High weight	Low weight
Propellants usage measurements possible	Easy to control flow	Difficult control over flow

Fabrication of prototypes

Still testing...

AGH Space Systems
Team 105

aghspacesystems@gmail.com stay in touch

Thank you

see you in space