Copulas

Ernest Chan, Ph.D.

Week 4 - Predict 451

Why Copulas?

- We can have tail dependence without correlations and without univariate fat tails.
- But t-distribution mixes up all these effects.
- Want to model tail dependence separately from correlations and fat tails.
- Free us to combine "normal" univariate distributions with "abnormal" multivariate distributions.
 - Or vice versa!
- Construct multivariate distributions by factoring out the co-dependence: easier!

From correlation to copulas

 Correlation is a measure of how 2 or more random variables move together, without dealing with how much each move.

$$\sigma_{XY} = \rho_{XY}\sigma_X\sigma_Y$$

where ρ_{XY} is the correlation and σ_{XY} the covariance, and σ_{X} and σ_{Y} the standard deviations.

 Note how correlation factors out the codependence, not the "marginal" univariate distributions.

From correlation to copulas

- But correlations only capture the second moment of distributions.
- More generally, if $f(Y_1, ..., Y_d)$ is a multivariate density, then we can similarly factor our codependence by writing

 $f(Y_1, ..., Y_d)=c_Y(F_{Y_1}(Y_1), ..., F_{Y_1}(Y_d))f(Y_1)...f(Y_d)$ where c_Y is called the copula density, and F's are the marginal CDF of Y's.

From correlation to copulas

- This correspondence between correlation and copulas can be made precise because there is a 1-1 correspondence between them.
- I find this way of motivating copula is more intuitive than the usual definition, which states that the copula C of Y₁, ..., Y_d is just the CDF of F_{Y1}(Y₁), ..., F_{Y1}(Y_d), where "of course"* the marginal univariate distribution of F_{Yi}(Y_i) is Uniform(0, 1).

^{*} See equation A.9 in Section A.9.2

Copulas as CDF of CDF of Y

- A copulas ("C") is the multivariate CDF of the univariate marginal CDF ("F"_i) of Y_i.
- The univariate marginal distribution of F_i is Uniform(0,1).

Distribution of any CDF is Uniform

Highlights of copulas

- Independence copula ↔ zero correlations.
- Co-monotonicity copula ← perfect (1) correlations.
- Counter-monotonicity copula ←> perfect (-1) anti-correlations (only for 2 variables).
- Gaussian copulas
 ← meta-Gaussian distribution
 ≠ Gaussian distribution
- t copulas
 ← meta-t distribution
 ≠ t distribution.

Highlights of copulas

- Archimedean copulas:
 - Created by "generator" function.
 - Unchanged under permutation of variables ("exchangeable")
 - Useful for modeling variables where all pairs have similar dependence.

Correlations

- Pearson's correlation = mean of differences between Y_1, Y_2 (assuming zero means and unit variances).
- Kendall's tau = mean of sign of differences between Y_1, Y_2 .
- Spearman's correlation = Pearson's correlation of ranks of Y_1, Y_2 = Pearson's correlation of $F(Y_1)$ and $F(Y_2)$

Correlations

- Pearson correlation still depends on univariate distributions of Y₁,Y₂ even though independent of variances.
- Kendall's tau and Spearman correlation depend only on the copula of Y_1, Y_2 .
- Kendall's tau of $F(Y_1)$ and $F(Y_2)$ gives the tau of the copula of Y_1 , Y_2 .

Highlights of copulas

- Kendall's tau is related to Pearson correlation for both meta-Gaussian and meta-t distributions through $\rho_{\tau}(Y_i, Y_j) = \frac{2}{\pi} \arcsin(\Omega_{i,j})$ where ρ_{τ} is Kendall's tau and $\Omega_{i,j}$ is the Pearson correlation.
- Tail-dependence as captured (or not!) by copulas.
 - Why is Gaussian copula "the formula that kills Wall Street"?

Formula that kills Wall Street

- Gaussian copula allows for fat tails of individual distributions (of mortgage-backed securities)
- Gaussian copula does not allow for tail dependence of individual distributions.
- Mortgages all went south at the same time during 2008 crisis!