Asymmetric Aircraft Responses to Atmospheric Turbulence

ae4-304 lecture # 8, edition 2005-2006

prof dr ir Bob Mulder

j.a.mulder@lr.tudelft.nl

1

Asymmetric Aircraft Responses to Atmospheric Turbulence

For this lecture the following material was used:

• Chapter 8 of Lecture notes Aircraft Responses to Atmospheric Turbulence.

Contents of this lecture

Introduction

2-dim. auto-covariance functions + PSD functions

Elementary two-dimensional fields of flow

Asymmetric forces and moments due to gust velocities

- longitudinal turbulence
- lateral turbulence
- vertical turbulence

Approximation of effective one-dimensional PSD

Asymmetric equations of motions

3

Introduction

Preceding lecture: symmetric EOM in atmospheric turbulence.

- gust velocity: variations along <u>longitudinal</u> axis only
- aircraft motions: only in plane of symmetry

This lecture: asymmetric EOM in atmospheric turbulence.

- gust velocity: variations along longitudinal and lateral axis
- aircraft motions: asymmetric motions
- → Atmospheric turbulence (this lecture): **two-dimensional** process.

Introduction

Symmetric vs asymmetric turbulence (1-dimensional vs 2-dimensional):

5

2. auto-covariance functions + PSD functions

Assumption: atmospheric turbulence is:

- stationary and frozen
- homogeneous
- isentropic

Atmospheric turbulence field is two-dimensional stochastic process:

$$u_g = u_g(x, y)$$

$$v_g = v_g(x, y)$$

$$w_g = w_g(x, y)$$
(8.1)

Auto-cov. func. = average relations between velocities in 2 points:

7

2-dim. auto-covariance functions + PSD functions

Auto-cov. funct.: between the origin $O_e(0,0)$ and point P(x,y):

$$C_{u_g u_g} = E\{u_g(0,0) \ u_g(x,y)\}$$

$$C_{v_g v_g} = E\{v_g(0,0) \ v_g(x,y)\}$$

$$C_{w_g w_g} = E\{w_g(0,0) \ w_g(x,y)\}$$
(8.2)

 u_g , v_g and w_g are mutually independent ightarrow cross-corr. func. are 0.

Basic one-dimensional auto-covariance functions:

9

2-dim. auto-covariance functions + PSD functions

One 2-dim. field \rightarrow two 1-dim. fields:

When decomposed into components along and perp. to O_eP :

$$u_g = u_1 \sin \alpha + u_2 \cos \alpha = u_1 \frac{x}{r} + u_2 \frac{y}{r}$$
 (8.3)

$$v_g = v_1 \cos \alpha + v_2 \sin \alpha = v_1 \frac{y}{r} + v_2 \frac{x}{r}$$
 (8.4)

The expression for Cu_qu_q then reads,

$$C_{u_{g}u_{g}} = E\{u_{g}(0,0) u_{g}(x,y)\}$$

$$= E\{(u_{1}(0,0) \frac{x}{r} + u_{2}(0,0) \frac{y}{r}) (u_{1}(x,y) \frac{x}{r} + u_{2}(x,y) \frac{y}{r})\}$$

$$= E\{u_{1}(0,0) u_{1}(x,y) (\frac{x}{r})^{2} + u_{2}(0,0) u_{2}(x,y) (\frac{y}{r})^{2} + u_{1}(0,0) u_{2}(x,y) (\frac{xy}{r^{2}}) + u_{2}(0,0) u_{1}(x,y) (\frac{xy}{r^{2}})\}$$

$$(8.5)$$

11

2-dim. auto-covariance functions + PSD functions

Since,

$$E\{u_1(0,0) \ u_1(x,y)\} = \sigma_{u_q}^2 f(r)$$
 (8.6)

$$E\{u_2(0,0) \ u_2(x,y)\} = \sigma_{u_0}^2 g(r) \tag{8.7}$$

$$E\{u_1(0,0) \ u_2(x,y)\} = E\{u_2(0,0) \ u_1(x,y)\} = 0$$
 (8.8)

it follows,

$$C_{u_g u_g}(x, y) = \sigma_{u_g}^2 \left\{ f(r) \left(\frac{x}{r} \right)^2 + g(r) \left(\frac{y}{r} \right)^2 \right\}$$
 (8.9)

Similarly,

$$C_{v_g v_g}(x, y) = \sigma_{v_g}^2 \left\{ f(r) \left(\frac{y}{r} \right)^2 + g(r) \left(\frac{x}{r} \right)^2 \right\}$$
 (8.10)

and,

$$C_{w_g w_g}(x, y) = \sigma_{w_g}^2 g(r) \tag{8.11}$$

With the **Dryden** covariance functions for f(r) and g(r) (6.28):

$$f(r) = e^{-\frac{r}{L_g}}$$

$$g(r) = e^{-\frac{r}{L_g}} \left(1 - \frac{1}{2} \frac{r}{L_g} \right)$$

the auto-cov. funct. result in:

$$C_{ugug}\left(\frac{x}{L_g}, \frac{y}{L_g}\right) = \sigma_{ug}^2 \left\{ e^{-\frac{r}{L_g}} \left(\frac{x}{r}\right)^2 + e^{-\frac{r}{L_g}} \left(1 - \frac{1}{2} \frac{r}{L_g}\right) \left(\frac{y}{r}\right)^2 \right\}$$

$$C_{vgvg}\left(\frac{x}{L_g}, \frac{y}{L_g}\right) = \sigma_{vg}^2 \left\{ e^{-\frac{r}{L_g}} \left(\frac{y}{r}\right)^2 + e^{-\frac{r}{L_g}} \left(1 - \frac{1}{2} \frac{r}{L_g}\right) \left(\frac{x}{r}\right)^2 \right\}$$

$$C_{wgwg}\left(\frac{x}{L_g}, \frac{y}{L_g}\right) = \sigma_{wg}^2 e^{-\frac{r}{L_g}} \left(1 - \frac{1}{2} \frac{r}{L_g}\right)$$

$$(8.13)$$

$$(8.14)$$

13

2-dim. auto-covariance functions + PSD functions

 $\label{time-domain} \mbox{Time-domain (cov.-func.)} \ \rightarrow \mbox{freq.-domain (PSD func.)}$

$$S_{u_g u_g}(\Omega_x L_g, \Omega_y L_g)$$

$$S_{v_g v_g}(\Omega_x L_g, \Omega_y L_g)$$

$$S_{w_g w_g}(\Omega_x L_g, \Omega_y L_g)$$
(8.15)

with the use of the 2-dim. fourier-transform.

$$S(\Omega_x L_g, \Omega_y L_g) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} C\left(\frac{x}{L_g}, \frac{y}{L_g}\right) e^{-j(\Omega_x x + \Omega_y y)} d\frac{x}{L_g} d\frac{y}{L_g}$$
(8.16)

Two-dimensional power spectral densities:

$$S_{u_g u_g}(\Omega_x L_g, \Omega_y L_g) = \pi \sigma_{u_g}^2 \frac{1 + \Omega_x^2 L_g^2 + 4\Omega_y^2 L_g^2}{\left(1 + \Omega_x^2 L_g^2 + \Omega_y^2 L_g^2\right)^{5/2}}$$
(8.20)

$$S_{v_g v_g}(\Omega_x L_g, \Omega_y L_g) = \pi \sigma_{v_g}^2 \frac{1 + 4\Omega_x^2 L_g^2 + \Omega_y^2 L_g^2}{\left(1 + \Omega_x^2 L_g^2 + \Omega_y^2 L_g^2\right)^{5/2}}$$
(8.21)

$$S_{w_g w_g}(\Omega_x L_g, \Omega_y L_g) = 3\pi \sigma_{w_g}^2 \frac{\Omega_x^2 L_g^2 + \Omega_y^2 L_g^2}{\left(1 + \Omega_x^2 L_g^2 + \Omega_y^2 L_g^2\right)^{5/2}}$$
(8.22)

15

2-dim. auto-covariance functions + PSD functions

Graphical representation of $S_{u_g u_g}(\Omega_x L_g, \Omega_y L_g)$:

Relation between 2-dim. spectrum and 1-dim. spectrum:

$$S'_{u_g u_g}(\Omega_x L_g) = \frac{1}{\pi} \int_{0}^{+\infty} S_{u_g u_g}(\Omega_x L_g, \Omega_y L_g) \ d(\Omega_y L_g)$$
 (8.23)

The one-dimensional spectrum is the sum (integral) of distributions of the 2-dim. spectrum at all lateral positions.

When elaborated,

$$S'_{u_g u_g}(\Omega_x L_g) = 2\sigma_{u_g}^2 \frac{1}{1 + \Omega_x^2 L_g^2}$$
 (8.24)

which is identical to the one-dimensional Dryden power spectrum.

17

Elementary two-dimensional fields of flow

Turbulence field = superposition of ∞ elementary fields of flow.

$$u_{g} = u_{g_{max}} Re \left\{ e^{j(\Omega_{x}x + \Omega_{y}y)} \right\}$$

$$v_{g} = v_{g_{max}} Re \left\{ e^{j(\Omega_{x}x + \Omega_{y}y)} \right\}$$

$$w_{g} = w_{g_{max}} Re \left\{ e^{j(\Omega_{x}x + \Omega_{y}y)} \right\}$$
(8.25)

with $rac{\Omega}{\omega}$: spatial frequency

The wavelengths are given by:

$$\lambda_x = \frac{2\pi}{\Omega_x}, \ \lambda_y = \frac{2\pi}{\Omega_y}$$

Previous lecture: **1-dim. fields** ↔ this lecture: **2-dim. fields**.

Note: obviously the 1-dim. fields are the 2-dim. fields for $\Omega_y = 0$.

Elementary two-dimensional fields of flow

Symmetric vs antisymmetric 2-dim. elementary fields of flow:

19

Elementary two-dimensional fields of flow

Symmetric 2-dim. elementary fields of flow:

Two-dimensional elementary flowfield, symmetric with respect to the $O_eX_eZ_e$ -plane, in which the components of the gust velocity u_g , v_g or w_g change sinusoidally in the X_{e^-} as well as in the Y_e -direction.

Elementary two-dimensional fields of flow

Antisymmetric 2-dim. elementary fields of flow:

Two-dimensional elementary flowfield, antisymmetric with respect to the $O_e X_e Z_e$ -plane.

Elementary two-dimensional fields of flow

When written as:

$$u_{g} = u_{g_{max}} Re \left\{ e^{j(\Omega_{x}x + \Omega_{y}y)} \right\}$$

$$= u_{g_{max}} Re \left\{ (\cos \Omega_{x}x + j \sin \Omega_{x}x) (\cos \Omega_{y}y + j \sin \Omega_{y}y) \right\}$$

$$= u_{g_{max}} (\cos \Omega_{x}x \cos \Omega_{y}y - \sin \Omega_{x}x \sin \Omega_{y}y)$$

$$= u_{g_{1}}(x, y) - u_{g_{2}}(x, y)$$
(8.26)

each turbulence field can be written as **symmetric** + **antisymmetric** velocity-field $(u_g=u_{g_1}-u_{g_2})$, where

$$u_{g_1}(x,y) = u_{g_{max}} \cos \Omega_x x \cos \Omega_y y$$
 (symmetric)
 $u_{g_2}(x,y) = u_{g_{max}} \sin \Omega_x x \sin \Omega_y y$ (antisymmetric) (8.27)

21

Elementary two-dimensional fields of flow

Similarly, the v_g- and w_g- fields can be separated in **symmetric** and **antisymmetric** parts:

$$v_{g_1}(x,y) = v_{g_{max}} \cos \Omega_x x \cos \Omega_y y$$
 (antisymmetric)
 $v_{g_2}(x,y) = v_{g_{max}} \sin \Omega_x x \sin \Omega_y y$ (symmetic) (8.28)

$$w_{g_1}(x,y) = w_{g_{max}} \cos \Omega_x x \cos \Omega_y y$$
 (symmetric)
 $w_{g_2}(x,y) = w_{g_{max}} \sin \Omega_x x \sin \Omega_y y$ (antisymmetric) (8.29)

23

Elementary two-dimensional fields of flow

When aircraft plane of symmetry coincides with $O_eX_eZ_e$ -plane:

Symmetric velocity fields (u_{g_1}, v_{g_2}) and w_{g_1}

- → symmetric aircraft deviations from steady flight.
- \rightarrow in previous lecture: Ω_y =0, hence $v_{g_2}(x,y)$ omitted !!

Antisymmetric velocity fields $(u_{g_2}, v_{g_1} \text{ and } w_{g_2})$

- \rightarrow asymmetric aircraft deviations from steady flight.
- \Rightarrow only antisymmetric elementary fields of flow are considered !
- \rightarrow next: forces and moments due to these elementary velocity fields. (longitudinal, lateral and vertical turbulence)

Longitudinal turbulence:

25

Forces and moments: longitudinal turbulence

Antisymmetric part of the elementary u_g -field

$$u_{g_2}(x,y) = u_{g_{max}} \sin \Omega_x x \sin \Omega_y y$$

With,

$$u_g = u_{g_{max}} \sin \Omega_x x \tag{8.30}$$

 u_{g_2} can be written as (index 2 is omitted):

$$u_q(x,y) = u_q \sin \Omega_y y \tag{8.31}$$

Variations of u_g in the Y_e -direction \rightarrow **rolling** and **yawing** moment.

(Sideforces are neglected)

Strip-theory: wing is divided in strips: turbulence → **additional lift**

The contribution to the rolling moment by a chordwise strip of the wing of width dy at a distance y from the plane of symmetry (a), and description of the gust penetration effect for asymmetric aircraft motions (b).

27

Forces and moments: longitudinal turbulence

Rolling moment, due to

- (a) longitudinal turbulence $u_g(x,y)$
- (b) constant yawing velocity r
- (a) $u_g(x,y)$ at chordwise **strip** \rightarrow contributes to **rolling moment**:

$$dL_g = -c_l \frac{1}{2} \rho \left\{ [V + u_g(x, y)]^2 - V^2 \right\} \quad c \quad y \quad dy = -\rho V \quad u_{g_{max}} \sin \Omega_x x \quad c_l c \quad \sin \Omega_y y \quad y \quad dy$$
(8.32)

Total rolling moment:

$$L_g = -2\rho V \ u_g \int_0^{\frac{b}{2}} c_l c \sin \Omega_y y \ y \ dy \tag{8.33}$$

28

$$C_{l_g} = \frac{L_g}{\frac{1}{2}\rho V^2 Sb} = -\frac{4}{Sb} \frac{u_g}{V} \int_{0}^{\frac{b}{2}} c_l c \sin \Omega_y y \ y \ dy$$
 (8.34)

Introducing gust derivative $C_{l_{u_g}}(\Omega_y \frac{b}{2})$, C_{l_g} is also written as:

$$C_{l_g} = C_{l_{u_g}}(\Omega_y \, \frac{b}{2}) \, \hat{u}_g \tag{8.35}$$

Hence, $C_{l_{uq}}$ can be written as,

$$C_{lug}(\Omega_y \frac{b}{2}) = -\frac{4}{Sb} \int_0^{\frac{b}{2}} c_l c \sin \Omega_y y \ y \ dy \simeq -\frac{4}{Sb} \int_0^{\frac{b}{2}} c_l c \ \Omega_y y^2 \ dy$$
 (8.36)

(For small values of
$$\Omega_{y\frac{b}{2}}$$
, $u_g(x,y)$ varies approximately linearly.)
$$u_g(x,y) = u_g \sin \Omega_y y \simeq u_g \Omega_y y \qquad (8.37)$$

29

Forces and moments: longitudinal turbulence

(b) constant yawing velocity $r \to rolling$ moment: $u_g(x,y)$ varies linearly instead of sinusoidally along wingspan and corresponds to additional velocity due to constant yawing velocity r:

$$\Delta u = -ry \tag{8.38}$$

Total rolling moment (from strip-theory):

$$L = 2\rho V r \int_{0}^{\frac{b}{2}} c_{l} c y^{2} dy = C_{l_{r_{w}}} \frac{rb}{2V} \frac{1}{2} \rho V^{2} Sb$$
 (8.40)

With the contribution of the wing to C_{l_r} :

$$C_{lr_w} = \frac{8}{Sb^2} \int_{0}^{\frac{b}{2}} c_l c \ y^2 \ dy$$
 (8.41)

Thus with

(a):
$$C_{l_{u_g}}(\Omega_y \frac{b}{2}) = -\frac{4}{Sb} \int_0^{\frac{b}{2}} c_l c \sin \Omega_y y \, y \, dy$$
 (8.36)

(b):
$$C_{l_{rw}} = \frac{8}{Sb^2} \int_0^{\frac{b}{2}} c_l c \, y^2 \, dy$$
 (8.41)

and introduction of $h(\Omega_y \frac{b}{2})$:

$$h(\Omega_y \frac{b}{2}) = \frac{b}{2} \frac{\int_0^{\frac{b}{2}} c_l c \sin \Omega_y y \, y \, dy}{\int_0^{\frac{b}{2}} c_l c \, y^2 \, dy}$$
(8.43)

the gust derivative $C_{l_{\mathit{ug}}}$ can be written as a function of $C_{l_{\mathit{rw}}}.$

$$C_{l_{u_g}}(\Omega_y \frac{b}{2}) = -C_{l_{r_w}} h(\Omega_y \frac{b}{2})$$
(8.44)

31

Forces and moments: longitudinal turbulence

Yawing moment, due to

- longitudinal turbulence $u_q(x,y)$
- constant yawing velocity r

In an identical manner,

$$N_g = C_{n_g} \frac{1}{2} \rho V^2 Sb (8.45)$$

where,

$$C_{ng} = C_{nug}(\Omega_y \frac{b}{2}) \hat{u}_g \tag{8.46}$$

and,

$$C_{nu_g}(\Omega_y \frac{b}{2}) = -C_{nr_w} h(\Omega_y \frac{b}{2})$$
(8.47)

Sideforce neglected:
$$C_{Y_{u_q}} = C_{Y_{r_w}} = 0$$
 (8.48)

 $h(\Omega_y \frac{b}{2})$ for three different spanwise distributions of the lift.

33

Forces and moments: lateral turbulence

Lateral turbulence:

Forces and moments: lateral turbulence

Antisymmetric part of the elementary v_g -field

$$v_{g_1}(x,y) = v_{g_{max}} \cos \Omega_x x \cos \Omega_y y$$

Variation of v_{g_1} along wingspan neglected: $\cos \Omega_y y = 1$ v_{g_1} can be written as (index 1 is omitted):

$$v_q = v_{q_{max}} \cos \Omega_x x \tag{8.49}$$

Definition of gust angle of sideslip:

$$\beta_g = \frac{v_g}{V} \tag{8.50}$$

Gust angle of sideslip \rightarrow forces and moments (like α_g , previous lecture).

Forces and moments: lateral turbulence

This results in:

$$C_{Y_g} = \left(C_{Y_{\beta_g}} + C_{Y_{\dot{\beta}_g}} D_b\right) \beta_g \tag{8.51}$$

$$C_{l_g} = \left(C_{l_{\beta_g}} + C_{l_{\dot{\beta}_g}} D_b\right) \beta_g \tag{8.52}$$

$$C_{n_g} = \left(C_{n_{\beta_g}} + C_{n_{\dot{\beta}_g}} D_b\right) \beta_g \tag{8.53}$$

Analogue to the previous lecture,

$$C_{Y_{\beta g}} = C_{Y_{\beta}} \qquad C_{Y_{\dot{\beta}g}} = C_{Y_{\dot{\beta}}} + \frac{1}{2} C_{Y_{r_{f+v}}}$$

$$C_{l_{\beta g}} = C_{l_{\beta}} \qquad C_{l_{\dot{\beta}g}} = C_{l_{\dot{\beta}}} + \frac{1}{2} C_{l_{r_{f+v}}}$$

$$C_{n_{\beta g}} = C_{n_{\beta}} \qquad C_{n_{\dot{\beta}g}} = C_{n_{\dot{\beta}}} + \frac{1}{2} C_{n_{r_{f+v}}}$$

$$(8.55)$$

Straight wings and small tailplane: $C_{Y_{\dot{\beta}_q}} = C_{l_{\dot{\beta}_q}} = C_{n_{\dot{\beta}_q}} = 0$

36

35

Forces and moments: vertical turbulence

Vertical turbulence:

37

Forces and moments: vertical turbulence

Antisymmetric part of the elementary w_g -field

$$w_g(x,y) = w_{gmax} \sin \Omega_x x \sin \Omega_y y$$
)

The gust angle of attack,

$$\alpha_g(x,y) = \frac{w_g(x,y)}{V} \tag{8.56}$$

varies along X_e and Y_e . With,

$$\alpha_g = \alpha_{gmax} \sin \Omega_x x \tag{8.57}$$

it follows:

$$\alpha_g(x,y) = \alpha_g \sin \Omega_y y \tag{8.58}$$

Gust angle of attack \rightarrow rolling and yawing motions (like long. turb.)

Forces and moments: vertical turbulence

Analogue to longitudinal turbulence.

Rolling moment, due to

- vertical turbulence $\alpha_q(x,y)$
- constant rolling velocity p

Yawing moment, due to

- vertical turbulence $\alpha_q(x,y)$
- constant rolling velocity p

Two gust derivatives (roll and yaw):

$$C_{l_g} = C_{l_{\alpha_g}}(\Omega_y \frac{b}{2}) \alpha_g \tag{8.60}$$

$$C_{n_g} = C_{n_{\alpha_g}}(\Omega_y \frac{b}{2}) \alpha_g \tag{8.61}$$

39

Forces and moments: vertical turbulence

For **long wavelengths** in Y_e -direction:

$$\alpha_q(x,y) = \alpha_q \sin \Omega_y y \simeq \alpha_q \Omega_y y \tag{8.62}$$

This is an approximation by a linear distribution and corresponds to additional angle of attack due to constant rolling velocity p,

$$\Delta \alpha = \frac{p}{V}y\tag{8.63}$$

For small values of Ω_y ,

$$C_{l_{\alpha g}}(\Omega_y \frac{b}{2}) = C_{l_{pw}} h(\Omega_y \frac{b}{2})$$

$$C_{n_{\alpha g}}(\Omega_y \frac{b}{2}) = C_{n_{pw}} h(\Omega_y \frac{b}{2})$$
(8.64)
$$(8.65)$$

$$\left| C_{n_{\alpha g}}(\Omega_y \frac{b}{2}) \right| = C_{n_{p_w}} h(\Omega_y \frac{b}{2})$$
 (8.65)

Sideforce neglected: $C_{Y_{\alpha_g}} = C_{Y_{p_w}} = 0$

Overview

For **symmetric** aircraft motions:

- forces: X, Z

- moments: m

- gust velocities: u_g, w_g

- varying along: X_e -axis (symmetric fields)

For asymmetric aircraft motions:

- forces: Y

- moments: l, n

- gust velocities: u_g, v_g, w_g

- varying along: X_e, Y_e -axis (only antisymmetric fields)

- exception: v_q varies only along X_e -axis

41

Approximation of effective one-dimensional PSD

Turbulence field:

-in X_e -direction: evolves with time: $\omega = \Omega_x V$

-in Y_e -direction: all values of Ω_y occur simultaneously.

To study the influence of Ω_y on C_{l_g} and C_{n_g} : 2-dimensional field $(X_e,Y_e) \to 1$ -dimensional "average" field (X_e) .

One-dimensional spectra as function of $\Omega_x L_g$, due to u_g and w_g : Consider C_{l_g} as function of $\Omega_x L_g$, $\Omega_y L_g$, and $B = \frac{b}{2L_g}$.

$$C_{l_g} = C_{l_{u_g}}(\Omega_y \frac{b}{2}) \hat{u}_g(\Omega_x L_g)$$

The PSD of C_{l_a} is then,

$$S_{C_{lg}}(\Omega_x L_g, \Omega_y L_g, B) = C_{lug}^2(\Omega_y \frac{b}{2}) S_{\widehat{u}_g}(\Omega_x L_g, \Omega_y L_g) \quad (8.66)$$

Note: duplication of indices of the PSD notation are omitted.

When substituting $S_{\widehat{u}_g}$ by,

$$S_{u_g u_g}(\Omega_x L_g, \Omega_y L_g) = \pi \sigma_{u_g}^2 \frac{1 + \Omega_x^2 L_g^2 + 4\Omega_y^2 L_g^2}{\left(1 + \Omega_x^2 L_g^2 + \Omega_y^2 L_g^2\right)^{5/2}}$$
(8.20)

and substituting $C_{l_{u_q}}$ by,

$$C_{l_{u_g}}(\Omega_y \frac{b}{2}) = -C_{l_{r_w}} h(\Omega_y \frac{b}{2})$$
(8.44)

the PSD of C_{l_g} becomes,

$$S_{C_{lg}}(\Omega_x L_g, \Omega_y L_g, B) = C_{l_{rw}}^2 h^2(\Omega_y \frac{b}{2}) \pi \sigma_{\widehat{u}_g}^2 \frac{1 + \Omega_x^2 L_g^2 + 4\Omega_y^2 L_g^2}{\left(1 + \Omega_x^2 L_g^2 + \Omega_y^2 L_g^2\right)^{5/2}}$$
(8.67)

43

Approximation of effective one-dimensional PSD

The one-dimensional PSD of C_{lg} as function of $\Omega_x Lg$ can be obtained by taking together all the contributions of Ω_y at a fixed Ω_x .

Hence, integration with respect to $\Omega_y Lg$ results,

$$S_{C_{l_g}}(\Omega_x L_g, B) = \sigma_{\hat{u}_g}^2 C_{l_{r_w}}^2 \int_0^\infty h^2(\Omega_y \frac{b}{2}) \frac{1 + \Omega_x^2 L_g^2 + 4\Omega_y^2 L_g^2}{\left(1 + \Omega_x^2 L_g^2 + \Omega_y^2 L_g^2\right)^{5/2}} d(\Omega_y L_g)$$
(8.69)

$$S_{C_{l_g}}(\Omega_x L_g, B) = C_{l_{r_w}}^2 I_{\hat{u}_g}(\Omega_x L_g, B)$$
 (8.70)
 $S_{C_{n_g}}(\Omega_x L_g, B) = C_{n_{r_w}}^2 I_{\hat{u}_g}(\Omega_x L_g, B)$ (similarly for C_{n_g}) (8.73)

with effective 1-dim. PSD of \widehat{u}_q as a function of $\Omega_x L_q$ and B,

$$I_{\hat{u}_g}(\Omega_x L_g, B) = \sigma_{\hat{u}_g}^2 \int_0^\infty h^2(\Omega_y \frac{b}{2}) \frac{1 + \Omega_x^2 L_g^2 + 4\Omega_y^2 L_g^2}{\left(1 + \Omega_x^2 L_g^2 + \Omega_y^2 L_g^2\right)^{5/2}} d(\Omega_y L_g)$$
(8.72)

The derivation can also be applied to the moments due to w_q :

$$S_{C_{l_g}}(\Omega_x L_g, B) = C_{l_{p_w}}^2 I_{\alpha_g}(\Omega_x L_g, B)$$
(8.75)

$$S_{C_{n_q}}(\Omega_x L_g, B) = C_{n_{p_w}}^2 I_{\alpha_g}(\Omega_x L_g, B)$$
(8.76)

With,

$$I_{\alpha_g}(\Omega_x L_g, B) = 3 \sigma_{\alpha_g}^2 \int_0^\infty h^2(\Omega_y \frac{b}{2}) \frac{\Omega_x^2 L_g^2 + \Omega_y^2 L_g^2}{\left(1 + \Omega_x^2 L_g^2 + \Omega_y^2 L_g^2\right)^{5/2}} d(\Omega_y L_g)$$
(8.77)

45

Approximation of effective one-dimensional PSD

When approximated:

$$I_{\hat{u}_g}(\Omega_x L_g, B) = I_{\hat{u}_g}(0, B) \frac{1 + \tau_3^2 \,\Omega_x^2 L_g^2}{\left(1 + \tau_1^2 \,\Omega_x^2 L_g^2\right) \left(1 + \tau_2^2 \,\Omega_x^2 L_g^2\right)}$$
(8.79)

$$I_{\alpha_g}(\Omega_x L_g, B) = I_{\alpha_g}(0, B) \frac{1 + \tau_6^2 \ \Omega_x^2 L_g^2}{\left(1 + \tau_4^2 \ \Omega_x^2 L_g^2\right) \left(1 + \tau_5^2 \ \Omega_x^2 L_g^2\right)}$$
(8.80)

The PSD of eta_g is,

$$S_{\beta_g \beta_g}(\Omega_x L_g) = \sigma_{\beta_g}^2 \frac{1 + 3 \Omega_x^2 L_g^2}{\left(1 + \Omega_x^2 L_g^2\right)^2}$$
(8.84)

The values of $I_{\widehat{u}_g}(0,B)$, τ_1 , τ_2 , τ_3 and $I_{\alpha_g}(0,B)$, τ_4 , τ_5 , τ_6 can be found in tables in the lecture notes.

The effective one-dimensional PSD function for \hat{u}_g $(I_{\hat{u}_g})$:

The effective (not approximated) one-dimensional power spectral density function of the horizontal gust velocity for different values of $B=\frac{b}{2L_g}$.

47

Approximation of effective one-dimensional PSD

The effective one-dimensional PSD function for α_g (I_{α_g}):

The effective (not approximated) one-dimensional power spectral density function of the vertical gust velocity for different values of $B=\frac{b}{2L_n}$.

 $I_{\widehat{u}_q}$ for three different lift distributions and two values for B:

The effective (not approximated) one-dimensional power spectral density function of the horizontal gust velocity for three different spanwise lift distributions at two different values for B.

49

Asymmetric equations of motions

For rigid body, small dev's from steady, symmetric and level flight:

$$\begin{bmatrix} C_{Y_{\beta}} - 2\mu_b D_b & C_L & C_{Y_p} & C_{Y_r} - 4\mu_b \\ 0 & -\frac{1}{2}D_b & 1 & 0 \\ C_{l_{\beta}} & 0 & C_{l_p} - 4\mu_b K_X^2 D_b & C_{l_r} + 4\mu_b K_{XZ} D_b \\ C_{n_{\beta}} & 0 & C_{n_p} + 4\mu_b K_{XZ} D_b & C_{n_r} - 4\mu_b K_Z^2 D_b \end{bmatrix} \begin{bmatrix} \beta \\ \varphi \\ \frac{pb}{2V} \\ \frac{rb}{2V} \end{bmatrix} =$$

$$-\begin{bmatrix} 0 & C_{Y_{\delta_r}} & 0 & C_{Y_{\beta}} & 0 \\ 0 & 0 & 0 & 0 & 0 \\ C_{l_{\delta_a}} & C_{l_{\delta_r}} & C_{l_{ug}}(\Omega_y \frac{b}{2}) & C_{l_{\beta}} & C_{l_{\alpha g}}(\Omega_y \frac{b}{2}) \\ C_{n_{\delta_a}} & C_{n_{\delta_r}} & C_{n_{ug}}(\Omega_y \frac{b}{2}) & C_{n_{\beta}} & C_{n_{\alpha g}}(\Omega_y \frac{b}{2}) \end{bmatrix} \begin{bmatrix} \delta_a \\ \delta_r \\ \hat{u}_g \\ \beta_g \\ \alpha_g \end{bmatrix}$$
(8.85)

When used in conjunction with the random atmospheric turbulence model, and $I_{\hat{u}_g}$, I_{α_g} are used for \hat{u}_g and α_g , the right-hand side can be modified.

This results in:

$$\begin{bmatrix} C_{Y_{\beta}} - 2\mu_b D_b & C_L & C_{Y_p} & C_{Y_r} - 4\mu_b \\ 0 & -\frac{1}{2}D_b & 1 & 0 \\ C_{l_{\beta}} & 0 & C_{l_p} - 4\mu_b K_X^2 D_b & C_{l_r} + 4\mu_b K_{XZ} D_b \\ C_{n_{\beta}} & 0 & C_{n_p} + 4\mu_b K_{XZ} D_b & C_{n_r} - 4\mu_b K_Z^2 D_b \end{bmatrix} \begin{bmatrix} \beta \\ \varphi \\ \frac{pb}{2V} \\ \frac{rb}{2V} \end{bmatrix} =$$

$$-\begin{bmatrix} 0 & C_{Y_{\delta_r}} & 0 & C_{Y_{\beta}} & 0 \\ 0 & 0 & 0 & 0 & 0 \\ C_{l_{\delta_a}} & C_{l_{\delta_r}} & -C_{l_{rw}} & C_{l_{\beta}} & -C_{l_{pw}} \\ C_{n_{\delta_a}} & C_{n_{\delta_r}} & -C_{n_{rw}} & C_{n_{\beta}} & -C_{n_{pw}} \end{bmatrix} \begin{bmatrix} \delta_a \\ \delta_r \\ \hat{u}_g \\ \beta_g \\ \alpha_g \end{bmatrix}$$
(8.86)

51

Asymmetric equations of motions

This can be rewritten into general state-space representation:

$$\begin{bmatrix} \dot{\beta} \\ \dot{\varphi} \\ \frac{\dot{p}b}{2V} \\ \frac{rb}{2V} \end{bmatrix} = \begin{bmatrix} y_{\beta} & y_{\varphi} & y_{p} & y_{r} \\ 0 & 0 & 2\frac{V}{b} & 0 \\ l_{\beta} & 0 & l_{p} & l_{r} \\ n_{\beta} & 0 & n_{p} & n_{r} \end{bmatrix} \begin{bmatrix} \beta \\ \varphi \\ \frac{pb}{2V} \\ \frac{rb}{2V} \end{bmatrix} + \begin{bmatrix} 0 & y_{\delta_{r}} & 0 & y_{\beta_{g}} & 0 \\ 0 & 0 & 0 & 0 & 0 \\ l_{\delta_{a}} & l_{\delta_{r}} & l_{u_{g}} & l_{\beta_{g}} & l_{\alpha_{g}} \\ n_{\delta_{a}} & n_{\delta_{r}} & n_{u_{g}} & n_{\beta_{g}} & n_{\alpha_{g}} \end{bmatrix} \begin{bmatrix} \delta_{a} \\ \delta_{r} \\ \hat{u}_{g} \\ \beta_{g} \\ \alpha_{g} \end{bmatrix}$$

$$(8.87)$$

(coefficients: see table 8-4).

Turbulence field is modelled as **input** to the system, generated by turbulence filters.

Turbulence filters:

Consider the relation between the PSD of input and output signal,

$$S_{yy}(\omega) = |H(\omega)|^2 S_{uu}(\omega)$$

with white noise as input signal,

$$S_{uu}(\omega) = 1$$

and the turbulence velocities u_q , v_q and w_q as output signals.

53

Asymmetric equations of motions

Using the approximated 1-dim. PSDs $I_{\widehat{u}_g}$, I_{α_g} and $S_{\beta_g\beta_g}$ (with ω rather than Ω_x) in the relation above yields:

$$\left| H_{\widehat{u}_g w_1}(\omega) \right|^2 = \frac{L_g}{V} I_{\widehat{u}_g}(0, B) \frac{1 + \tau_3^2 \left(\frac{\omega L_g}{V}\right)^2}{\left(1 + \tau_1^2 \left(\frac{\omega L_g}{V}\right)^2\right) \left(1 + \tau_2^2 \left(\frac{\omega L_g}{V}\right)^2\right)} \tag{8.89}$$

$$\left| H_{\alpha_g w_3}(\omega) \right|^2 = \frac{L_g}{V} I_{\alpha_g}(0, B) \frac{1 + \tau_6^2 \left(\frac{\omega L_g}{V}\right)^2}{\left(1 + \tau_4^2 \left(\frac{\omega L_g}{V}\right)^2\right) \left(1 + \tau_5^2 \left(\frac{\omega L_g}{V}\right)^2\right)} \quad (8.90)$$

$$\left|H_{\alpha_g w_3}(\omega)\right|^2 = \frac{L_g}{V} I_{\alpha_g}(0, B) \frac{1 + \tau_6^2 \left(\frac{\omega L_g}{V}\right)^2}{\left(1 + \tau_4^2 \left(\frac{\omega L_g}{V}\right)^2\right) \left(1 + \tau_5^2 \left(\frac{\omega L_g}{V}\right)^2\right)}$$
(8.90)
$$\left|H_{\beta_g w_2}(\omega)\right|^2 = \frac{L_g}{V} \sigma_{\beta_g}^2 \frac{1 + 3 \left(\frac{\omega L_g}{V}\right)^2}{\left(1 + \left(\frac{\omega L_g}{V}\right)^2\right)^2}$$
(8.91)

For example, consider $\left|H_{\widehat{u}_qw_1}(\omega)\right|^2$ for deriving the filter for \widehat{u}_g .

The frequency response function of the turbulence field for horizontal turbulence parallel to the longitudinal axis is given by:

$$H_{\widehat{u}_g w_1}(\omega) = \sqrt{\frac{L_g}{V} I_{\widehat{u}_g}(0, B)} \frac{1 + \tau_3 \frac{L_g}{V} j\omega}{\left(1 + \tau_1 \frac{L_g}{V} j\omega\right) \left(1 + \tau_2 \frac{L_g}{V} j\omega\right)}$$
(8.92)

Transforming to time domain gives the differential equation:

$$\tau_{1}\tau_{2}\left(\frac{L_{g}}{V}\right)^{2} \ddot{\bar{u}}_{g}(t) + (\tau_{1} + \tau_{2}) \frac{L_{g}}{V} \dot{\bar{u}}_{g}(t) + \hat{u}_{g}(t) =$$

$$= \sqrt{\frac{L_{g}}{V} I_{\hat{u}_{g}}(0, B)} w_{1}(t) + \tau_{3} \sqrt{\left(\frac{L_{g}}{V}\right)^{3} I_{\hat{u}_{g}}(0, B)} \dot{w}_{1}(t)$$
(8.93)

55

Asymmetric equations of motions

To obtain a state-space description, an auxiliary variable \hat{u}_g^* is introduced:

$$\hat{u}_g^*(t) = \dot{\hat{u}}_g(t) - \frac{\tau_3}{\tau_1 \tau_2} \sqrt{\frac{V}{L_g} I_{\hat{u}_g}(0, B)} w_1(t)$$
(8.94)

Differentiating (8.94) and substituting (8.93) and (8.94) yields:

$$\dot{\hat{u}}_{g}^{*}(t) = \frac{1}{\tau_{1}\tau_{2}} \sqrt{\left(\frac{V}{L_{g}}\right)^{3}} I_{\hat{u}_{g}}(0, B) w_{1}(t) + \frac{\tau_{1} + \tau_{2}}{\tau_{1}\tau_{2}} \frac{V}{L_{g}} \hat{u}_{g}^{*}(t) - \frac{\tau_{3} (\tau_{1} + \tau_{2})}{(\tau_{1}\tau_{2})^{2}} \sqrt{\left(\frac{V}{L_{g}}\right)^{3}} I_{\hat{u}_{g}}(0, B) w_{1}(t) - \frac{1}{\tau_{1}\tau_{2}} \left(\frac{V}{L_{g}}\right)^{2} \hat{u}_{g}(t) \tag{8.95}$$

In state-space form, using $[\hat{u}_g\,\hat{u}_g^*]^T$ as the state vector:

$$\begin{bmatrix} \dot{\hat{u}}_{g} \\ \dot{\hat{u}}_{g}^{*} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{1}{\tau_{1}\tau_{2}} \left(\frac{V}{L_{g}}\right)^{2} & -\frac{\tau_{1}+\tau_{2}}{\tau_{1}\tau_{2}} \frac{V}{L_{g}} \end{bmatrix} \begin{bmatrix} \hat{u}_{g} \\ \hat{u}_{g}^{*} \end{bmatrix} + \begin{bmatrix} \frac{\tau_{3}}{\tau_{1}\tau_{2}} \sqrt{\frac{V}{L_{g}}} I_{\hat{u}_{g}}(0, B) \\ \left(1 - \frac{\tau_{3}(\tau_{1}+\tau_{2})}{\tau_{1}\tau_{2}}\right) \frac{1}{\tau_{1}\tau_{2}} \sqrt{\left(\frac{V}{L_{g}}\right)^{3}} I_{\hat{u}_{g}}(0, B) \end{bmatrix} w_{1} \quad (8.96)$$

Similarly, the filters for α_g and β_g can be derived:

$$\begin{bmatrix} \dot{\alpha}_{g} \\ \dot{\alpha}_{g}^{*} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{1}{\tau_{4}\tau_{5}} \left(\frac{V}{L_{g}}\right)^{2} & -\frac{\tau_{4}+\tau_{5}}{\tau_{4}\tau_{5}} \frac{V}{L_{g}} \end{bmatrix} \begin{bmatrix} \alpha_{g} \\ \alpha_{g}^{*} \end{bmatrix} + \begin{bmatrix} \frac{\tau_{6}}{\tau_{4}\tau_{5}} \sqrt{\frac{V}{L_{g}}} I_{\alpha_{g}}(0, B) \\ \left(1 - \frac{\tau_{6}(\tau_{4}+\tau_{5})}{\tau_{4}\tau_{5}}\right) \frac{1}{\tau_{4}\tau_{5}} \sqrt{\left(\frac{V}{L_{g}}\right)^{3}} I_{\alpha_{g}}(0, B) \end{bmatrix} w_{3} \quad (8.97)$$

$$\begin{bmatrix} \dot{\beta}_{g} \\ \dot{\beta}_{g}^{*} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\left(\frac{V}{L_{g}}\right)^{2} & -2\frac{V}{L_{g}} \end{bmatrix} \begin{bmatrix} \beta_{g} \\ \beta_{g}^{*} \end{bmatrix} + \begin{bmatrix} \sigma_{\beta_{g}}\sqrt{\frac{3V}{L_{g}}} \\ (1-2\sqrt{3})\sigma_{\beta_{g}}\sqrt{\left(\frac{V}{L_{g}}\right)^{3}} \end{bmatrix} w_{2}$$
(8.98)

57

Asymmetric equations of motions

With the use of the above given **turbulence filters** the EOM of an aircraft flying through turbulent air can be obtained:

$$\left[\begin{array}{c} \dot{X} \\ \dot{X}_g \end{array} \right] = \left[\begin{array}{cc} A_{X\dot{X}} & A_{X_g\dot{X}} \\ A_{X\dot{X}_g} & A_{X_g\dot{X}_g} \end{array} \right] \left[\begin{array}{c} X \\ X_g \end{array} \right] + \left[\begin{array}{cc} B_{\delta\dot{X}} & B_{N\dot{X}_g} \end{array} \right] \left[\begin{array}{c} \delta \\ N \end{array} \right]$$

with δ being the control input vector and N being white noise.

59

Asymmetric equations of motions

Responses of the Cessna Ce-500 'Citation' to turbulence

$$\sigma_{ug} = \sigma_{vg} = \sigma_{wg} = 1 \text{ m/s}$$

Investigate the influence of:

turb. velocity comp.: long. (u_g) , lat. (v_g) , and vert. (w_g) gust

scale length: $L_g = 150$ m vs. $L_g = 1500$ m

flight condition: 'landing' V = 59.9 m/s vs. 'cruise' V = 181.9 m/s

position in the a/c: front, c.g., and rear

61

Examples

Longitudinal, lateral, and vertical turbulence

Longitudinal, lateral, and vertical turbulence (PSD)

63

Examples

 $L_g =$ 150 m versus $L_g =$ 1500 m with v_g

 $L_g =$ 150 m versus $L_g =$ 1500 m with v_g (PSD)

 ω , rad/s

Lg = 150 m Lg = 1500 m

___ Lg = 150 m __ Lg = 1500 m

65

Examples

'Landing' (${\it V}=$ 59.9 m/s) vs. 'cruise' (${\it V}=$ 181.9 m/s) with ${\it v}_g$

'Landing' ($\mathit{V} = 59.9 \text{ m/s}$) vs. 'cruise' ($\mathit{V} = 181.9 \text{ m/s}$) with v_g (PSD)

67

Examples

 ${\it A_y}$ also depends on the position w.r.t. the c.g.

