Perfectly Competitive Market

- Many firms. Each firm is small in size. It means each firm can serve only small fraction of the market.
- Each firm is a price taker. Each firm take the market price as given.
- Each firm produces homogeneous product. The characteristic of the output does not change from firm to firm. Each firm produces perfect substitute. So does not make difference from which firm a buyer buys.
- Complete information:
 Each firm knows the market demand and market price. Each firm knows the cost function of all other firms. Buyers know the nature of the product.

- Since each firm take market price as given. So the demand curve faced by each firm is a horizontal line as shown in figure.
- The market demand is downward sloping but the demand curve faced by each firm is a flat horizontal line.

- The objective of each firm is to maximize profit.
- Each firm chooses output y_i to maximize profit taking market price as given.
- The profit function of a firm i is $\pi_i = py_i c(y_i)$ where p is the market price, y_i output of firm i.
- py_i is the total revenue received by firm i.
- $c(y_i)$ is the total cost of producing y_i units of output.
- Each firm i maximizes profit π_i with respect to y_i .
- The profit function is differentiable with respect y_i .

- $\frac{d\pi_i}{dy_i} = p c'(y_i)$ First order condition gives that $\frac{d\pi_i}{dy_i} = p - c'(y_i) = 0$, at profit maximizing point. $\Rightarrow p = c'(y_i)$. $c'(y_i)$ is marginal cost when the output is y_i . First order condition gives that price must be equal to marginal cost. A firm must choose to produce that output where price is equal to marginal cost.
- Second order condition gives $\frac{d^2\pi_i}{dy_i^2} = -c''(y_i) < 0 \text{ at } y_i = y_i^*. \text{ It means that marginal cost must be positive at the profit maximising level of output.}$

- When the profit function is differentiable, we get that for the profit
 maximising output to exist, the cost function must be such that
 marginal cost is increasing in output.
- This implies that the cost function must exhibits decreasing returns to scale.

- Suppose the cost function is of the following type; $c(y_i) = c_v(y_i) + F$. We assume there is a fixed cost. From the profit maximising condition we get that, $c_v(y_i)$ must have $c_v''(y_i) < 0$ at the profit maximising output y_i^* .
- Another requirement to produce positive unit of output is $\pi_i = py_i c_v(y_i) F > -F$ It implies $p > \frac{c_v(y_i)}{y_i}$. The price must be above the average variable cost.
- If price is below average variable cost, the firm shut down its production in the short run.

Derivation of the supply curve of a firm

Follow the class notes

- Thus, the supply curve of a firm is inverse of this function, $p=c_v'(y_i)$ given that $p>\frac{c_v(y_i)}{v_i}$.
- The marginal cost curve above the minimum of the average variable cost is the supply curve of a firm.

- If production function is CRS. The cost function is $c(y_i) = cy_i + F$. if it has a fixed cost component.
- $\pi_i = py_i cy_i F$. $\Rightarrow \pi_i = (p - c)y_i - F$.

If p > c, as we go on increasing y_i , profit increases so no profit maximising output.

If p < c, profit is negative, and as output increases, loss increases. So better not to produce.

If p = c, still y_i is indeterminate. Because profit is zero always.

10 / 12

Increasing returns to scale

Follow the class notes