Thinking in Frequency: Face Forgery Detection by Mining Frequency-aware Clues

```
Yuyang Qian*,<sup>†1,2</sup>, Guojun Yin<sup>†,‡1</sup>, Lu Sheng<sup>‡3</sup>, Zixuan Chen*<sup>1,4</sup>, and Jing Shao<sup>1</sup>
```

¹ SenseTime Research,

- ² University of Electronic Science and Technology of China,
 - ³ College of Software, Beihang University,
 - ⁴ Northwestern Polytechnical University

ECCV 2020

Background

Target: Distinguish the fake human face (failed by naked eyes)

FaceSwap*, DFD, DFDC, DeeperForensics (CVPR 2020),

Face2Face*,2016 DeepFake*,2018 NuralTexture*,2019 FaceShifter,2020 Celeb-DF,2020

Classify: Manipulation or Reenactment / Blending or Synthesis

[Li et al., Celeb-DF: A Large-scale Challenging ..., 2020]

[Li et al., FaceShifter: Towards High Fidelity ..., 2020]

Motivation

- Related methods: Detect forgery artifacts
- Challenge: JEPG compression
- Insights: Mine forgery artifacts with the awareness of frequency
- CNN-compatible: frequency feature with shift-invariance and local consistency

- FAD: Frequency-aware Decomposition
- LFS: Local Frequency Statistics

Overview of F³-Net

Learn subtle manipulation patterns through frequency-aware image decomposition

FAD: Frequency-Aware Decomposition

- Motive: Partition image in frequency and represent adaptively
- Combined filters:

$$\mathbf{f}_{base}^i + \sigma(\mathbf{f}_w^i)$$

Base filter

Learnable filter

Normalization in (-1, 1): $\sigma(x) = \frac{1-\exp(-x)}{1+\exp(-x)}$

$$\mathbf{y}_i = \mathcal{D}^{-1} \{ \mathcal{D}(\mathbf{x}) \odot [\mathbf{f}_{base}^i + \sigma(\mathbf{f}_w^i)] \}, \quad i = \{1, \dots, N\}$$

High band:

$$\left[\frac{15}{16}, 1\right]$$

Middle band:

$$\left[\frac{7}{8}, \frac{15}{16}\right]$$

Low band:

$$[0,\frac{7}{8}]$$

LFS: Local Frequency Statistics

- Motive: Extract local frequency statistics to describe discrepancy
- Sliding Window DCT: Re-assemble back to a spatial map
- Local statistics in each frequency band:

$$\mathbf{q}_i = \log_{10} \| \mathcal{D}(\mathbf{p}) \odot [\mathbf{h}_{base}^i + \sigma(\mathbf{h}_w^i)] \|_1, \quad i = \{1, \dots, M\}$$

• Implementation details: N = 6, Stride = 2

Input: $299 \times 299 \times 3$ Output: $149 \times 149 \times 6$

MixBlock: Two-stream Collaborative Learning

- Motive: Fuse two types of complementary clues FAD and LFS
- Cross-attention module: Augment the attentive features from one stream to another

Results

Quantitative results on FF++ dataset with all quality settings

Methods	Acc	AUC	Acc	AUC	Acc	AUC
Methods	(LQ)	(LQ)	(HQ)	(HQ)	(RAW)	(RAW)
Steg.Features [24]	55.98%	-	70.97%	-	97.63%	-
LD-CNN $\boxed{14}$	58.69%	-	78.45%	-	98.57%	-
Constrained Conv 6	66.84%	-	82.97%	-	98.74%	-
CustomPooling CNN 49	61.18%	-	79.08%	-	97.03%	-
MesoNet 3	70.47%	-	83.10%	-	95.23%	-
Face X-ray [40]	-	0.616	-	0.874	-	-
Xception 12	86.86%	0.893	95.73%	0.963	99.26%	0.992
Xception-ELA [27]	79.63%	0.829	93.86%	0.948	98.57%	0.984
Xception-PAFilters [10]	87.16%	0.902	-	-	-	-
F ³ -Net (Xception)	90.43%	0.933	97.52 %	0.981	99.95%	0.998
Optical Flow 5	81.60%	-	-	-	-	-
Slowfast [20]	90.53%	0.936	97.09%	0.982	99.53%	0.994
F^3 -Net(Slowfast)	93.02%	0.958	98.95%	0.993	99.99%	0.999

Embedding Visualization

• The t-SNE embedding visualization of the baseline and F³-Net Baseline (Xception) in the left; F³-Net in the right

Ablation Study

- Quantitatively evaluate F³-Net and four variants:
 - 1) the baseline (Xception), 2) F3-Net w/o LFS and MixBlock,
 - 3) F³-Net w/o FAD and MixBlock, 4) F³-Net w/o MixBlock

ID	FAD	LFS	MixBlock	Acc	AUC
1	-	-	-	86.86%	0.893
2		-	-	87.95%	0.907
3	-		-	88.73%	0.920
4		$\sqrt{}$	-	89.89%	0.928
5			\checkmark	$\boldsymbol{90.43\%}$	0.933

Visualization

• The visualization of feature map extracted by baseline and F³-Net

Thank you!