# TO PREDICT THE RAIN FALL BASED ON VARIOUS FEATURES OF DATASET

IMPORTING THE ESSENTIAL LIBRARIES:-

# In [1]:

```
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns
```

# In [2]:

df=pd.read\_csv(r"C:\Users\vaidyamyasoda\OneDrive\Desktop\district wise rainfall normal.csv")
df

# Out[2]:

|     | STATE_UT_NAME                     | DISTRICT       | JAN   | FEB  | MAR   | APR   | MAY   | JUN   | JUL    | A  |
|-----|-----------------------------------|----------------|-------|------|-------|-------|-------|-------|--------|----|
| 0   | ANDAMAN And<br>NICOBAR<br>ISLANDS | NICOBAR        | 107.3 | 57.9 | 65.2  | 117.0 | 358.5 | 295.5 | 285.0  | 27 |
| 1   | ANDAMAN And<br>NICOBAR<br>ISLANDS | SOUTH ANDAMAN  | 43.7  | 26.0 | 18.6  | 90.5  | 374.4 | 457.2 | 421.3  | 42 |
| 2   | ANDAMAN And<br>NICOBAR<br>ISLANDS | N & M ANDAMAN  | 32.7  | 15.9 | 8.6   | 53.4  | 343.6 | 503.3 | 465.4  | 46 |
| 3   | ARUNACHAL<br>PRADESH              | LOHIT          | 42.2  | 80.8 | 176.4 | 358.5 | 306.4 | 447.0 | 660.1  | 42 |
| 4   | ARUNACHAL<br>PRADESH              | EAST SIANG     | 33.3  | 79.5 | 105.9 | 216.5 | 323.0 | 738.3 | 990.9  | 71 |
|     |                                   |                |       |      |       |       |       |       |        |    |
| 636 | KERALA                            | IDUKKI         | 13.4  | 22.1 | 43.6  | 150.4 | 232.6 | 651.6 | 788.9  | 52 |
| 637 | KERALA                            | KASARGOD       | 2.3   | 1.0  | 8.4   | 46.9  | 217.6 | 999.6 | 1108.5 | 63 |
| 638 | KERALA                            | PATHANAMTHITTA | 19.8  | 45.2 | 73.9  | 184.9 | 294.7 | 556.9 | 539.9  | 35 |
| 639 | KERALA                            | WAYANAD        | 4.8   | 8.3  | 17.5  | 83.3  | 174.6 | 698.1 | 1110.4 | 59 |
| 640 | LAKSHADWEEP                       | LAKSHADWEEP    | 20.8  | 14.7 | 11.8  | 48.9  | 171.7 | 330.2 | 287.7  | 21 |

641 rows × 19 columns

# **DATA PROCESSING**

# In [3]:

df.head()

# Out[3]:

|   | STATE_UT_NAME                     | DISTRICT         | JAN   | FEB  | MAR   | APR   | MAY   | JUN   | JUL   | AUG   | SEP   |
|---|-----------------------------------|------------------|-------|------|-------|-------|-------|-------|-------|-------|-------|
| 0 | ANDAMAN And<br>NICOBAR<br>ISLANDS | NICOBAR          | 107.3 | 57.9 | 65.2  | 117.0 | 358.5 | 295.5 | 285.0 | 271.9 | 354.8 |
| 1 | ANDAMAN And<br>NICOBAR<br>ISLANDS | SOUTH<br>ANDAMAN | 43.7  | 26.0 | 18.6  | 90.5  | 374.4 | 457.2 | 421.3 | 423.1 | 455.6 |
| 2 | ANDAMAN And<br>NICOBAR<br>ISLANDS | N & M<br>ANDAMAN | 32.7  | 15.9 | 8.6   | 53.4  | 343.6 | 503.3 | 465.4 | 460.9 | 454.8 |
| 3 | ARUNACHAL<br>PRADESH              | LOHIT            | 42.2  | 80.8 | 176.4 | 358.5 | 306.4 | 447.0 | 660.1 | 427.8 | 313.6 |
| 4 | ARUNACHAL<br>PRADESH              | EAST<br>SIANG    | 33.3  | 79.5 | 105.9 | 216.5 | 323.0 | 738.3 | 990.9 | 711.2 | 568.0 |
| 4 |                                   |                  |       |      |       |       |       |       |       |       | •     |

# In [4]:

df.tail()

# Out[4]:

|     | STATE_UT_NAME | DISTRICT       | JAN  | FEB  | MAR  | APR   | MAY   | JUN   | JUL    | AU  |
|-----|---------------|----------------|------|------|------|-------|-------|-------|--------|-----|
| 636 | KERALA        | IDUKKI         | 13.4 | 22.1 | 43.6 | 150.4 | 232.6 | 651.6 | 788.9  | 527 |
| 637 | KERALA        | KASARGOD       | 2.3  | 1.0  | 8.4  | 46.9  | 217.6 | 999.6 | 1108.5 | 636 |
| 638 | KERALA        | PATHANAMTHITTA | 19.8 | 45.2 | 73.9 | 184.9 | 294.7 | 556.9 | 539.9  | 352 |
| 639 | KERALA        | WAYANAD        | 4.8  | 8.3  | 17.5 | 83.3  | 174.6 | 698.1 | 1110.4 | 592 |
| 640 | LAKSHADWEEP   | LAKSHADWEEP    | 20.8 | 14.7 | 11.8 | 48.9  | 171.7 | 330.2 | 287.7  | 217 |
| 4   |               |                |      |      |      |       |       |       |        | •   |

# In [5]:

```
df.isnull().any()
```

## Out[5]:

STATE\_UT\_NAME False DISTRICT False JAN False **FEB** False False MAR **APR** False MAY False False JUN JUL False **AUG** False False SEP 0CT False False NOV DEC False False **ANNUAL** Jan-Feb False False Mar-May False Jun-Sep Oct-Dec False

dtype: bool

# In [6]:

```
df.isnull().sum()
```

# Out[6]:

STATE\_UT\_NAME 0 0 **DISTRICT** JAN 0 FEB 0 MAR 0 **APR** 0 MAY 0 JUN 0 JUL 0 AUG 0 SEP 0 0CT 0 0 NOV DEC 0 **ANNUAL** 0 0 Jan-Feb 0 Mar-May Jun-Sep 0 Oct-Dec dtype: int64

# In [7]:

df.describe()

# Out[7]:

|       | JAN        | FEB        | MAR        | APR        | MAY        | JUN         | JUL         |
|-------|------------|------------|------------|------------|------------|-------------|-------------|
| count | 641.000000 | 641.000000 | 641.000000 | 641.000000 | 641.000000 | 641.000000  | 641.000000  |
| mean  | 18.355070  | 20.984399  | 30.034789  | 45.543214  | 81.535101  | 196.007332  | 326.033697  |
| std   | 21.082806  | 27.729596  | 45.451082  | 71.556279  | 111.960390 | 196.556284  | 221.364643  |
| min   | 0.000000   | 0.000000   | 0.000000   | 0.000000   | 0.900000   | 3.800000    | 11.600000   |
| 25%   | 6.900000   | 7.000000   | 7.000000   | 5.000000   | 12.100000  | 68.800000   | 206.400000  |
| 50%   | 13.300000  | 12.300000  | 12.700000  | 15.100000  | 33.900000  | 131.900000  | 293.700000  |
| 75%   | 19.200000  | 24.100000  | 33.200000  | 48.300000  | 91.900000  | 226.600000  | 374.800000  |
| max   | 144.500000 | 229.600000 | 367.900000 | 554.400000 | 733.700000 | 1476.200000 | 1820.900000 |
| 4     |            |            |            |            |            |             | •           |

In [8]:

df.info

Out[8]:

```
DI
<bound method DataFrame.info of</pre>
                                                        STATE UT NAME
          JAN
                 FEB
                         MAR
                                 APR
                                             NICOBAR 107.3 57.9
     ANDAMAN And NICOBAR ISLANDS
                                                                       65.2
                                                                             117.
0
0
     ANDAMAN And NICOBAR ISLANDS
1
                                      SOUTH ANDAMAN
                                                                              90.
                                                        43.7
                                                               26.0
                                                                       18.6
<sup>5</sup>/<sub>2</sub>n [9]:
ANDAMAN And NICOBAR ISLANDS
                                      N & M ANDAMAN
                                                        32.7
                                                               15.9
                                                                        8.6
                                                                              53.
df.columns
                ARUNACHAL PRADESH
                                               LOHIT
                                                        42.2
                                                               80.8
                                                                      176.4
                                                                             358.
Ōut[9]:
                ARUNACHAL PRADESH
                                          EAST SIANG
                                                        33.3
                                                              79.5
                                                                      105.9
₱ndex(['STATE_UT_NAME', 'DISTRICT', 'JAN', 'FEB',
                                                               'APR',
                                                       'MAR',
                                                                       'MAY', 'JU
       'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC', 'ANNUAL', 'Jan-Feb',
. . .
       'Mar-May', 'Jun-SepKFRAbet-Dec'], IDUKKI
636
                                                        13.4
                                                               22.1
                                                                       43.6 150.
4
      dtype='object')
637
                            KERALA
                                            KASARGOD
                                                         2.3
                                                                1.0
                                                                        8.4
                                                                              46.
In<sub>8</sub>[10]:
                            KERALA PATHANAMTHITTA
                                                        19.8
                                                               45.2
                                                                       73.9
                                                                             184.
df.shape
639
                            KERALA
                                             WAYANAD
                                                         4.8
                                                                8.3
                                                                       17.5
                                                                              83.
gut[10]:
                       LAKSHADWEEP
                                         LAKSHADWEEP
                                                                              48.
                                                        20.8
                                                               14.7
                                                                       11.8
9641, 19)
       MAY
               JUN
                        JUL
                                AUG
                                       SEP
                                               OCT
                                                       NOV
                                                               DEC ANNUAL
In [11]:
gf['ANNOAE']?951de_count8()<sup>271.9</sup>
                                                             250.9
                                     354.8
                                             326.0
                                                     315.2
                                                                    2805.2
                                                                               16
            457.2
                      421.3 423.1 455.6
                                             301.2
                                                     275.8
                                                             128.3
                                                                     3015.7
                                                                                 6
ANNUA 243.6 503.3
                                                            100.0
                      465.4 460.9
                                     454.8 276.1
                                                     198.6
                                                                    2913.3
                                                                                 4
949.1
         9
<u>3080.</u>306.4<sub>4</sub> 447.0
                      660.1
                             427.8
                                     313.6
                                             167.1
                                                      34.1
                                                              29.8
                                                                    3043.8
                                                                               12
        3
£396.5
<del>1</del>824.323.0<sub>3</sub> 738.3
                      990.9
                             711.2 568.0
                                             206.9
                                                      29.5
                                                              31.7
                                                                    4034.7
                                                                               11
        3
2894.4
       ••:.
1037.6
          1
686.2<sup>232.6</sup>1 651.6
                                                                                 3
                      788.9
                             527.3
                                     308.4
                                             343.2 172.9
                                                              48.1
                                                                    3302.5
544.5
6003.317.6<sub>1</sub> 999.6
                              636.3
                                     263.1
                     1108.5
                                                      84.6
                                                                    3621.6
3233.1
                                             359.4
                                                     213.5
                                                              51.3
                                                                    2958.4
NaMe: 228unt, 5Eength: 53919 d₹$2e? i26642
                                                                                 6
5.0
639
    174.6 698.1 1110.4 592.9
                                     230.7
                                             213.1
                                                      93.6
                                                              25.8
                                                                    3253.1
                                                                                 1
3.1
                      287.7 217.5 163.1 157.1 117.7
640
     171.7 330.2
                                                              58.8 1600.0
                                                                                 3
5.5
     Mar-May
               Jun-Sep Oct-Dec
       540.7
                1207.2
0
                           892.1
1
       483.5
                1757.2
                           705.3
2
                1884.4
       405.6
                           574.7
3
       841.3
                1848.5
                           231.0
4
       645.4
                3008.4
                           268.1
                            . . .
         . . .
. .
       426.6
636
                2276.2
                           564.2
637
       272.9
                3007.5
                           337.9
       553.5
                1715.7
                           624.2
638
       275.4
                2632.1
                           332.5
```

639

```
232.4
                 998.5
640
                           333.6
In [12]:
[641]rows x.19 columns]>df[Jan-Feb'].value_counts()
Out[12]:
Jan-Feb
32.7
          5
18.2
          5
21.4
0.8
          5
17.5
          5
107.7
         1
87.0
          1
101.0
          1
135.2
          1
65.0
          1
Name: count, Length: 399, dtype: int64
In [13]:
df['Mar-May'].value_counts()
Out[13]:
Mar-May
43.5
27.9
          5
36.6
          4
          4
468.6
40.4
          3
16.3
         1
23.3
          1
49.6
          1
20.5
          1
232.4
Name: count, Length: 511, dtype: int64
In [14]:
df['Jun-Sep'].value_counts()
Out[14]:
Jun-Sep
636.2
           9
           4
1386.1
385.0
           3
1122.3
           3
1308.0
           3
916.9
           1
923.5
           1
790.3
           1
840.7
           1
998.5
           1
Name: count, Length: 592, dtype: int64
```

# In [15]:

```
df['Oct-Dec'].value_counts()
```

# Out[15]:

Oct-Dec 34.7 9 4 174.8 3 49.6 27.7 3 183.7 3 82.8 1 55.2 1 65.6 1 54.0 1 333.6 1 Name: count, Length: 524, dtype: int64

# In [16]:

```
df=df[['JAN','MAR','APR','DEC']]
sns.heatmap(df.corr(),annot=True)
plt.show()
```



## In [17]:

df.columns

# Out[17]:

Index(['JAN', 'MAR', 'APR', 'DEC'], dtype='object')

# **FEATURE SCALING**

To Split the data into train and test data

# In [18]:

```
x=df[["DEC"]]
y=df["JAN"]
```

## In [19]:

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
```

#### In [20]:

```
x=df[["DEC"]]
y=df["JAN"]
```

# **DATA VISUALIZATION**

## In [21]:

```
df=df[['JAN','MAR','APR','DEC']]
sns.heatmap(df.corr(),annot=True)
plt.show()
```



# In [22]:

sns.pairplot(df)

# Out[22]:

<seaborn.axisgrid.PairGrid at 0x2280b550b50>



# **DATA MODELLING**

# **LINEAR REGRESSION**

# In [23]:

```
from sklearn.linear_model import LinearRegression
reg=LinearRegression()
reg.fit(X_train,y_train)
print(reg.intercept_)
coeff_=pd.DataFrame(reg.coef_,x.columns,columns=['coefficient'])
coeff_
```

## 12.782665729383353

# Out[23]:

#### coefficient

**DEC** 0.280279

#### In [24]:

```
score=reg.score(X_test,y_test)
print(score)
```

#### 0.12294534437183668

# In [25]:

predictions=reg.predict(X\_test)

# In [26]:

plt.scatter(y\_test,predictions)

# Out[26]:

<matplotlib.collections.PathCollection at 0x2280e2684d0>



# In [27]:

```
df500=df[:][:500]
sns.lmplot(x="DEC",y="JAN",order=2,ci=None,data=df500)
plt.show()
```



# In [28]:

```
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.33)
reg.fit(X_train,y_train)
reg.fit(X_test,y_test)
```

## Out[28]:

```
LinearRegression
LinearRegression()
```

#### In [29]:

```
y_pred=reg.predict(X_test)
plt.scatter(X_test,y_test,color='pink')
plt.plot(X_test,y_pred,color='skyblue')
plt.show()
```



#### In [30]:

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
model=LinearRegression()
model.fit(X_train,y_train)
y_pred=model.predict(X_test)
r2=r2_score(y_test,y_pred)
print("R2 Score:",r2)
```

R2 Score: 0.12658466121292555

# **RIDGE MODEL**

## In [31]:

```
from sklearn.linear_model import Lasso,Ridge
from sklearn.preprocessing import StandardScaler
```

#### In [32]:

```
features= df.columns[0:5]
target= df.columns[-4]
```

## In [33]:

```
x= df[features].values
y= df[target].values
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=17)
```

#### In [34]:

```
ridgeReg=Ridge(alpha=10)
ridgeReg.fit(x_train,y_train)
train_score_ridge=ridgeReg.score(x_train,y_train)
test_score_ridge=ridgeReg.score(x_test,y_test)
```

## In [35]:

```
print("\n Ridge Model:\n")
print("the train score for ridge model is{}".format(train_score_ridge))
print("the test score for ridge model is{}".format(test_score_ridge))
```

#### Ridge Model:

the train score for ridge model is0.9999999872352109 the test score for ridge model is0.9999999899454203

# In [36]:

```
lr=LinearRegression()
```

# In [37]:

```
plt.figure(figsize=(10,10))
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker="*",markersize=5,colo
plt.plot(features,alpha=0.4,linestyle='none',marker="o",markersize=7,color='BLUE',label=
plt.xticks(rotation=90)
plt.legend()
plt.show()
          Ridge; \alpha = 10
 DEC
          LinearRegression
 APR
MAR
 JAN
```

# **LASSO MODEL**

ΑN

DEC

#### In [38]:

```
print("\n Lasso Model:\n")
lasso=Lasso(alpha=10)
lasso.fit(x_train,y_train)
train_score_ls=lasso.score(x_train,y_train)
test_score_ls=lasso.score(x_test,y_test)
print("The train score for ls model is {}".format(train_score_ls))
print("The test score for ls model is{}".format(test_score_ls))
```

#### Lasso Model:

The train score for ls model is 0.9991293224579318 The test score for ls model is 0.9991975662336752

## In [39]:

```
pd.Series(lasso.coef_,features).sort_values(ascending=True).plot(kind="bar")
```

#### Out[39]:

#### <Axes: >



#### In [40]:

```
from sklearn.linear_model import LassoCV
lasso_cv=LassoCV(alphas=[0.0001,0.001,0.01,1,10],random_state=0).fit(x_train,y_train)
print(lasso_cv.score(x_train,y_train))
print(lasso_cv.score(x_test,y_test))
```

#### 0.999999999999198

0.99999999999253

# In [41]:

```
igure(figsize=(10,10))
lot(features, ridgeReg.coef_,alpha=0.7,linestyle='none',marker="*",markersize=5,color='BL/
lot(features,alpha=0.4,linestyle='none',marker="o",markersize=7,color='BLUE',label='Line
ticks(rotation=90)
egend()
how()
          Ridge; \alpha = 10
 DEC
          LinearRegression
 APR
 MAR
  JAN
```

APR

DEC

# **ELASTIC NET**

ΑN

```
In [42]:
```

```
from sklearn.linear_model import ElasticNet
eln=ElasticNet()
eln.fit(x,y)
print(eln.coef_)
print(eln.intercept_)
print(eln.score(x,y))
```

```
[ 9.96190198e-01 1.01899510e-03 -7.79895878e-05 2.63803659e-04] 0.03808751310977243 0.9999931631406689
```

#### In [45]:

```
y_pred_elastic = eln.predict(x_train)
mean_squared_error=np.mean((y_pred_elastic - y_train)**2)
print(mean_squared_error)
```

0.002635293637095672

# **CONCLUSION**

```
From this we can conclude that the score of LINEAR REGRESSION is 0.12658466121292555, score of RIDGE MODEL is 0.9999999872352109, score of LASSO MODEL is 0.9991293224579318, score of ELASTIC NET is 0.002635293637095672, from above scores i observed that the RIDGE MODEL has an highest accuracy, so i prefer RIDGE MODEL is set for this data set
```

#### In [ ]: