

### 计算机组成与系统结构

### 第五章 中央处理器

#### 吕昕晨

lvxinchen@bupt.edu.cn

#### 网络空间安全学院

- 指令周期基本概念
- 典型指令周期
  - MOV指令
  - LAD指令
  - ADD指令
  - STO指令
  - JMP指令
- 方框图表示指令周期

### 指令周期的基本概念

- CPU功能
  - 根据存储程序自动取出指令, 并执行
  - 如封闭循环(如右图)
- 指令周期
  - 取出指令、分析指令到执行 完该指令所需的全部时间
  - 各种指令功能不同(访存次数/执行复杂度)
  - 各种指令的指令周期不同



### 指令周期组成

- 指令周期划分为若干个CPU周期
- CPU周期
  - 又称机器周期/时钟周期
  - 机器周期,每个机器周期完成一个基本操作。
  - 以主存的工作周期(存取周期)为基础来规定CPU周期
  - 可以用CPU读取一个指令字的最短时间来规定CPU周期



#### 指令周期组成

- CPU周期由多个T周期组成
- T周期 又称节拍脉冲,是处理操作的基本单位
- 在一个CPU周期内,要完成若干个微操作
  - 因而需要把一个CPU周期分为若干个相等的时间段,每一个时间段称为一个节拍脉冲或T周期



### 单周期、多周期



- 单周期CPU
  - 在一个时钟周期内完成从指令取出到得到结果的所有工作
  - 指令系统中所有指令执行时间都以最长时间的指令为准, 因而效率低,当前较少采用
- 多周期CPU
  - 指令的执行分成多个阶段,每个阶段一个时钟周期
  - 例如:取指→译码→执行→回写
  - 因而时钟周期短,不同指令所用周期数可以不同
- 粗略划分:取指阶段+执行阶段

- 指令周期基本概念
- 典型指令周期
  - MOV指令
  - LAD指令
  - ADD指令
  - STO指令
  - JMP指令
- 方框图表示指令周期

## 典型指令程序示例





#### MOV指令的指令周期

- MOV R0, R1
  - 功能:将R1的值传送至R0
- 指令周期
  - 取指周期
    - 取指令
    - PC=PC+1
    - 指令译码
  - 执行周期
    - 传送准备
    - 总线控制
    - 寄存器写入



### MOV指令——取指周期

- 取指令
- PC=PC+1
- 指令译码
- ①程序计数器PC中 装入第一条指令地 址101 (八进制)
- ② PC的内容放到 ABUS (I) 上,对 指存进行译码,并 启动读命令



• ③从101号地址读出的MOV指令通过指令总线IBUS装入指令寄存器IR

# MOV指令——取指周期

- 取指令
- PC=PC+1
- 指令译码
- ④ 程序计数器内容 加1,变成102,为 取下一条指令做好 准备



## MOV指令——取指周期

- 取指令
- PC=PC+1
- 指令译码
- ⑤ 指令寄存器中的 操作码 (OP) 被译 码
- ⑥ CPU识别出是 MOV指令,至此, 取指周期即告结束



## MOV指令——执行周期

- 传送准备
- 总线控制
- 寄存器写入
- ① 操作控制器 (OC) 送出控制信号到通 用寄存器,选择R1 作源寄存器,选择 R0作目标寄存器;
- ② OC送出控制信号
  到ALU,指定ALU
  做传送操作;



## MOV指令——执行周期

- 传送准备
- 总线控制
- 寄存器写入
- ③ OC送出控制信号, 打开ALU输出三态 门,将ALU输出送 到数据总线DBUS上
- ④ OC送出控制信号, 将DBUS上的数据打 入到数据缓冲寄存 器DR



### MOV指令——执行周期

- 传送准备
- 总线控制
- 寄存器写入
- ⑤ OC送出控制信号 将DR中的数据10打 入到目标寄存器R0, R0的内容由00变为 10
- 思考: DR作用?
  - 数据缓冲寄存器
  - DBUS特性



- 指令周期基本概念
- 典型指令周期
  - MOV指令
  - LAD指令
  - ADD指令
  - STO指令
  - JMP指令
- 方框图表示指令周期

#### LAD指令的指令周期

- LAD R1, 6
  - 功能: 从D-Cache中取6号单元数至寄存器R1
- 指令周期
  - 取指周期
  - 执行周期
    - 地址码传送
    - 读命令/总线操作
    - 寄存器写入



### LAD指令——执行周期

- 地址码传送
- 读命令/总线操作
- 寄存器写入
- ① OC发出控制命令 打开IR三态门,将 地址码6送到数据总 线DBUS
- ② OC发出操作命令, 将地址码6装入地址 寄存器AR



### LAD指令——执行周期

- 地址码传送
- 读命令/总线操作
- 寄存器写入
- ③ OC发出读命令,
  将D-cache6号单元
  数据传送到DBUS
- ④ OC发出操作命令, 将DBUS数据装入缓 冲寄存器DR



### LAD指令——执行周期

- 地址码传送
- 读命令/总线操作
- 寄存器写入
- ⑤ OC发出命令,将 DR数据装入通用寄 存器R1,R1数据变 化为100



- 指令周期基本概念
- 典型指令周期
  - MOV指令
  - LAD指令
  - ADD指令
  - STO指令
  - JMP指令
- 方框图表示指令周期

### ADD指令的指令周期

- ADD R1, R2
  - 功能: 将寄存器R1和R2的数据相加存入R2
- 指令周期
  - 取指周期
  - 执行周期



### ADD指令——执行周期

- 选定源寄存器R0, 目的寄存器R1
- 控制ALU执行加法 操作
- 打开三态门,将结 果放至DBUS
- 存至DR; 更新PSW 状态位标志
- DR写入R2



- 指令周期基本概念
- 典型指令周期
  - MOV指令
  - LAD指令
  - ADD指令
  - STO指令
  - JMP指令
- 方框图表示指令周期

### STO指令的指令周期

- STO R2, (R3)
  - 功能:将寄存器R2内容写入D-cache地址位R3的单元
- 指令周期
  - 取指周期
  - 执行周期
    - RS型指令
    - 对比LAD指令



### STO指令——执行周期

- 选择R3寄存器
- 打开三态门将数据 放至DBUS
- 将地址码打入AR
- 选择通用寄存器R2
- 打开三态门将数据 放至DBUS
- 将DBUS数据写入 AR,并更新30号单 元数据



- 指令周期基本概念
- 典型指令周期
  - MOV指令
  - LAD指令
  - ADD指令
  - STO指令
  - JMP指令
- 方框图表示指令周期

### JMP指令的指令周期

- JMP 101
  - 功能: 无条件跳转至PC=101地址继续执行
- 指令周期
  - 取指周期
  - 执行周期



## JMP指令——执行周期



- 将IR中地址码101放 至DBUS
- 将101打入PC寄存 器中,PC更新



- 指令周期基本概念
- 典型指令周期
  - MOV指令
  - LAD指令
  - ADD指令
  - STO指令
  - JMP指令
- 方框图表示指令周期

#### 用方框图语言表示的指令周期

- 画数据通路图过程繁琐
- 引入目的主要是为了教学目的(控制器设计)
  - 方框:代表CPU周期
    - 方框内内容——数据通路操作或控制操作
  - 菱形符号——判别或测试
  - ~——公操作:指令执行完毕
    - 中断处理等



开始

### 例题



控制

信号

[例1] 双总线结构机器的数据通路图 PC有自增功能、小圈控制信号 ADD R2, R0与SUB R1, R3





## 第五章作业



• 5-2, 5-3