UNIT-1 CIRCUIT THEOREMS

By
Ch. V. Krishna Reddy
EEE,CBIT

Introduction

- · Thevenin's theorem
- · Circuit linearity
- source transformation

- · Norton theorem
- Superposition
- · max. power transfer

Topics to be Discussed

- Superposition Theorem.
- Thevenin's Theorem.
- Norton's Theorem.

Superposition Theorem

- The response (current or voltage) in a linear network at any point due to multiple sources (current and/or emf) can be calculated by summing the effects of each source considered separately,
- Turn off, killed, inactive source:
 - □ independent voltage source: 0 V (short circuit)
 - independent current source: 0 A (open circuit)
- Dependent sources are left intact.

Superposition Theorem

How to "Turning off" sources

The McGraw-Hill Companies

Ex:1 Use superposition theorem to find 'v' in the circuit in Fig.

(i) consider voltage source of 6V alone

Apply VDR to get V₁

$$V_1 = \frac{4}{4+8}(6) = 2V$$

(ii) consider current source of 3 A alone

Apply CDR to get i3

$$i_3 = \frac{8}{4+8}(3) = 2A$$

Hence
$$v_2 = 4i_3 = 8V$$

Finally find

$$v = v_1 + v_2 = 2 + 8 = 10V$$

Ex: 2 Find the current I in the circuit given, using superposition theorem.

(i) First, consider the current source of 0.5 A alone,

$$I_1 = -\frac{0.5 \times 0.3}{0.1 + 0.3} = \frac{-0.15}{0.4} = -0.375 \text{ A}$$

(ii) Next, consider the voltage source of 80mV alone,

$$I_2 = \frac{80 \times 10^{-3}}{0.1 + 0.3} =$$
0.2 A

$$I = I_1 + I_2 = -0.175 \text{ A}$$

Ex:3 Using superposition theorem, find current i_x in the network given.

(i) Consider 10-V source alone

(ii) Consider 40-A source alone

$$i_2 = 40 \times \frac{150}{50 + 150} = 30 \,\mathrm{A}$$

(iii) Consider 120-A source alone

$$i_3 = -120 \times \frac{50}{50 + 150} = -30 \,\mathrm{A}$$

Ex:3 Using superposition theorem, find current i_x in the network given.

In the end, the total response due to all the sources working together is

$$i_x = i_1 + i_2 + i_3$$

= 0.05 + 30 - 30
= **0.05** A

Ex:4 Find voltage v across 3- Ω resistor by applying the principle of superposition.

(i) response due to 4-A source alone

Using CDR

$$i = 4 \times \frac{1}{1 + (2 + 3)} = \frac{2}{3}A$$

$$v_4 = i \times R$$

$$= (2/3 \text{ A}) \times (3 \Omega)$$

$$= 2.0 \text{ V}$$

(ii) Next, the response due to 5-A source alone

Using CDR, voltage v_5 across 3- Ω

$$v_5 = \begin{vmatrix} -5 \times \frac{1}{1 + (2 + 3)} & A \end{vmatrix} \times (3 \Omega) = -2.5 \text{ V}$$

Ex:4 Find voltage v across 3- Ω resistor by applying the principle of superposition.

(iii) response due to 6-V source alone

By voltage divider,

$$v_6 = 6 \times \frac{3}{1+2+3} = 3.0 \text{ V}$$

$$\therefore$$
 $v = +v_4 + v_5 + v_6 = +2.0 - 2.5 + 3.0 = +2.5 \text{ V}$

$\mathbf{E_{X}}$: 5 Use superposition to find the current i_x through the 20 k Ω resistor?

Superposition states that to calculate the current i20kΩ, this current is the sum of all of the individual currents produced by the 12V, 3mA and 9mA-sources:

$$\mathbf{i}_{20k} = \mathbf{i}_{12V} + \mathbf{i}_{3mA} + \mathbf{i}_{9mA} \equiv \mathbf{i}_1 + \mathbf{i}_2 + \mathbf{i}_3$$

(i)Response of the 12V-source

(ii)Response of the 3mA-source

$$i_2 = \frac{16}{16 + 20} (3mA) = \frac{4}{3} mA = i_2$$

(iii) Response of the 9mA-source

Ex: 6 Determine Vx and Ix using the superposition method

(i) Contribution of -5V voltage source:

Using KVL,
$$-(-5V) + V_{3\Omega} - V_{x1} = 0$$

 $V_{x1} = -(-5V) = 5V$.

(ii) Contribution of the 3V voltage source:

Using KVL

$$-(3V) + V_{2\Omega} + V_{x2} + V_{3\Omega} = 0$$

 $V_{x2} = 3V.$

(iii) Contribution of the -1A current source:

Using KVL

$$V_{x3} + V_{3\Omega} = 0$$

$$V_{x3} + (-1A) \times (3\Omega) = 0$$
 $V_{x3} = 3V$

Ex: 6 Determine Vx and Ix using the superposition method

(iv) Contribution of the 2A current source:

Using KVL

$$V_{x4} + V_{3\Omega} = 0$$

$$V_{x4} + (2A) \times (3\Omega) = 0$$

$$V_{x4} = -6V$$

V. Adding up the individual contributions algebraically:

$$V_x = V_{x1} + V_{x2} + V_{x3} + V_{x4}$$

= $5V + 3V + 3V - 6V$
 $V_x = 5V$

$$I_x = I_{x1} + I_{x2} + I_{x3} + I_{x4}$$

$$= -2.5A + 1A + 0A - 0A$$

$$I_x = -1.5A$$

Ex: 7 Using superposition theorem find current in R₃

$$R_{EQ} = 106.7 \Omega$$
, $I_T = 0.141 A$ and $I_{R_3} = 0.094 A$

Ex: 7 Using superposition theorem find current in R₃

 $R_{EQ} = 29.09 \Omega$, $I_T = 0.447 A$ and $I_{R_3} = 0.406 A$

Ex: 7 Using superposition theorem find current in R₃

With V₂ shorted

$$R_{EQ} = 106.7 \Omega$$
, $I_T = 0.141 A$ and $I_{R_3} = 0.094 A$

With V₁ shorted

$$R_{EQ} = 29.09 \Omega$$
, $I_T = 0.447 A$ and $I_{R_3} = 0.406 A$

Adding the currents gives $I_{R_2} = 0.5 \text{ A}$

- Statement: It states that a linear two-terminal circuit (Fig. a) composed of passive and active elements can be replaced by an equivalent circuit (Fig. b) consisting of a voltage source V_{TH} in series with a resistor R_{TH}.
- where
- VTH is the open-circuit voltage at the load terminals.

 RTH is the input or equivalent resistance at the terminals when the independent sources are turned off.

\blacksquare Calculation of V_{Th}

The voltage $V_{\rm Th}$ is equal to the potential difference between the two terminals 'ab' caused by the active network with no external resistance (load) connected to these terminals. Hence, it is called open-circuit voltage, $V_{\rm oc}$.

\blacksquare Calculation of R_{Th}

The series resistance $R_{\rm Th}$ is the equivalent resistance looking back into the network at the terminals 'ab' with all the sources within the network made inactive, or dead.

Linear

circuit

two-terminal

 $V_{Th} = v_{oc}$

EX:1 Find V_x using Thevenin theorem for the circuit shown in Fig.

(i) Find V_{th}

$$V_{AB} = \frac{(30)(6)}{6+12} = 10V$$

(ii) Find R_{th}

$$R_{TH} = 12||6 + 4 = 8 \Omega$$

(iii) Thevenin equivalent circuit

EX:2 Find R_{th} and V_{th} at terminals 1-2 of the given circit

Solution:

(i) Find Rth

$$R_{Th} = 10||40 = 400/50 = 8 \text{ ohms}$$

(ii) Find V_{th}

$$V_{Th} = (40/(40 + 10))20 = 16 V$$

EX:3 Find R_{th} and V_{th} at terminals 1-2 of the given circit

Solution:

(i) Find Rth

$$R_{Th} = 30||60 = 1800/90 = 20 \text{ ohms}$$

$$2 + (30 - v_1)/60 = v_1/30$$
, and $v_1 = V_{Th}$
 $120 + 30 - v_1 = 2v_1$, or $v_1 = 50 \text{ V}$

$$V_{Th} = 50 V$$

EX:4 Find the Thevenin equivalent circuit of the circuit shown in Fig.

EX:5 Find V₀ using Thevenin theorem for the circuit shown in Fig.

EX:6 Find V₀ using Thevenin theorem for the circuit shown in Fig.

Solution:

(i) Find R_{th}

(ii) Find V_{th}

Loop Analysis $I_2 = 2mA$ $-6V + 4kI_1 + 2k(I_1 - I_2) = 0$

$$I_1 = \frac{6+2I_2}{6} mA = \frac{5}{3} mA$$

$$V_{oc} = 4k * I_1 + 2k * I_2 = 20/3 + 4V = 32/3[V]$$

(iii) Thevenin equivalent circuit

EX:7 Find V₀ using Thevenin theorem for the circuit shown in Fig.

Solution:

(i) Find V_{th}

$$9kI = 18[V] \Rightarrow I = 2mA$$

$$V_{OC} = 3kI - 12 = -6[V]$$

(ii) Find R_{th}

(iii) Thevenin equivalent circuit

$$V_o = \frac{4}{4+4}(-6V) = -3[V]$$

EX:8 Find voltage across 50 KΩ using Thevenin theorem in the given circuit

Solution:

(i) Find R_{th}

•
$$R_{\text{Th}} = R_3 + R_1 || R_2 + R_4$$

= 10 k\O + 23 k\O + 10 k\O
= 43 k\O

(ii) Find V_{th}

• From KVL around the inner loop $v_2 = 10 *R_2/(R_1 + R_2) = 2.3 \text{ mV}$

(iii) Thevenin equivalent circuit

 $v_{\text{LOAD}} = V_{\text{Th}} (R_{\text{LOAD}} / (R_{\text{LOAD}} + R_{\text{Th}}) = 2.3 \text{ mV} \times (50 \text{ k}\Omega) / (93 \text{ k}\Omega)$ = 0.54 mV

circuit Theorems

EX:9 Find voltage across 17Ω using Thevenin theorem in the given circuit

(i) Find V_{th}

$$V_{os} = V_{AB} = V_{IH} = (1.5)(10) + \frac{20(20)}{(20+5)}$$

$$V_{TH} = 31V$$

(ii) Find Rth

$$R_{TH} = 10 + \frac{5(20)}{(5+20)} = 14\Omega$$

(iii) Thevenin equivalent circuit

EX:10 Find the Thevenin equivalent circuit of the circuit shown in Fig. Then find the current through $R_L = 6$, 16, and 36 Ω

Calculation of V_{Th}

Using mesh analysis

$$-32 + 4i_1 + 12(i_1 - i_2) = 0,$$

$$i_2 = -2 \text{ A}$$

Solving for i_1 , we get $i_1 = 0.5$ A. Thus,

$$V_{\text{Th}} = 12(i_1 - i_2) = 12(0.5 + 2.0) = 30 \text{ V}$$

Using Nodal analysis

$$\frac{32 - V_{\rm Th}}{4} + 2 = \frac{V_{\rm Th}}{12}$$

$$96 - 3V_{\text{Th}} + 24 = V_{\text{Th}}$$

$$V_{\rm Th} = 30 \text{ V}$$

Resultant circuit

$$I_L = \frac{V_{\text{Th}}}{R_{\text{Th}} + R_L} = \frac{30}{4 + R_L}$$

$$I_L = \frac{30}{10} = 3 \text{ A}$$

$$I_L = \frac{30}{20} = 1.5 \text{ A}$$

When $R_L = 36$,

$$I_L = \frac{30}{40} = 0.75 \text{ A}$$

Ex: 11 Using Thevenin's theorem, find the current in resistor R_2 of 2 Ω .

Solution:

1. Designate the resistor R_2 as "load".

Ex: 11 Using Thevenin's theorem, find the current in resistor R_2 of 2 Ω .

Calculation of V_{Th}

Find the open-circuit voltage across the terminals A-B,

$$I = \frac{28-7}{4+1} = \frac{21}{5} = 4.2 \text{ A};$$

$$V_{AB} = 7 + 4.2 \times 1 = 11.2 \text{ V}$$

Thevenin's voltage, $V_{\text{Th}} = V_{\text{AB}} = 11.2 \text{ V}$

Calculation of R_{Th}

Find the resistance between terminals A and B. This is the *Thevenin's resistance*, R_{Th} . Thus,

$$R_{Th} = 1 \Omega || 4 \Omega = \frac{1 \times 4}{1 + 4} = 0.8 \Omega$$

Ex:11 Using Thevenin's theorem, find the current in resistor R_2 of 2 Ω .

Thevenin's equivalent

$$I_2 = \frac{V_{\text{Th}}}{R_{\text{Th}} + R_2} = \frac{11.2}{0.8 + 2} = 4 \text{ A}$$

Ex:12 Determine voltage across 3- Ω by applying Thevenin's theorem.

Solution: Calculation of V_{Th}

- We treat the 3-Ω resistor as load.
- $V_{\rm Th}$ = open-circuit voltage(with $R_{\rm L}$ removed).

Use Source transformation Technique

$$V_{\rm Th} = 5 \times 1 = 5 \text{ V}$$

Ex:12 Determine voltage across 3- Ω by applying Thevenin's theorem.

Calculation of $R_{\rm Th}$

turn off all the sources in the circuit within box and get the circuit

Thevenin's equivalent

Now, apply VDR, we get

$$V_L = 5 \times \frac{3}{3+3} = 2.5 \text{ V}$$

Ex:13 Determine voltage across 2- Ω by applying Thevenin's theorem.

(a) Given circuit

(c) Short-circuit V to find that R_{AB} is 2Ω .

(b) Disconnect R_L to find that V_{AB} is 24V.

(e) Reconnect R_I at terminals A and B to find that V_i is 12V.

 $R_{\rm tot} = 2 \Omega$ V_ =

(e)

Ex:14 Determine voltage across $6-\Omega$ by applying Thevenin's theorem.

(a) Given circuit

(c) Short-circuit V_1 and V_2 to find that R_{AB}

b) Disconnect R_3 to find that V_{AB}

(d) Thevenin equivalent

Ex:15 Find the voltage drop across R_L

(a) Given circuit

(b) Disconnect R_L to find V_{AB}

(c) With source V short-circuited

$$R_{AB} = R_{TA} + R_{TB} = 2 + 2.4 = 4.4 \Omega$$

(d) Thevenin equivalent

Ex:16 Using Thevenin's Theorem, find current in ammeter A of resistance 1.5 Ω for the given circuit

Solution : Calculation of $V_{\rm Th}$

$$I_1 = \frac{12}{12+4} = 0.75 \text{ A}$$
 and
 $I_2 = \frac{12}{2+6} = 1.5 \text{ A}$
 $\therefore V_{\text{Th}} = V_{\text{oc}} = V_{AB} = V_{AD} - V_{BD}$
 $= 0.75 \times 4 - 1.5 \times 6 = -6 \text{ V}$

Calculation of $R_{\rm Th}$

Replace the voltage sources by a short-circuit, and find resistance between A and B.

Ex:16 Using Thevenin's Theorem, find current in ammeter A of resistance 1.5 Ω for the given circuit

Thevenin's equivalent

$$I = \frac{V_{\text{Th}}}{R_{\text{Th}} + R_{\text{L}}} = \frac{-6}{4.5 + 1.5} = -1 \text{ A}$$

- It is dual of Thevenin's Theorem.
- **Statement:** It states that a linear two-terminal circuit (Fig. a) composed of passive and active elements can be replaced by an equivalent circuit (Fig. b) consisting of a current source I_N in parallel with a resistor R_N ,
- Where, I_N is the short circuit current through the terminals.

 R_N is the input or equivalent resistance at the terminals when the independent sources are turned off.

Calculation of I_N

The current I_N is the short-circuit current developed through 'ab' terminals when the load is replaced with short circuit in original network.

• Calculation of R_N

24 August 2020

The parallel resistance R_N is the equivalent resistance looking back into the network at the terminals 'ab' with all the sources within the network made inactive, or dead (as in Thevenin's Theorem).

all independent sources set equal

 $R_N = R_{in}$

to zero

Linear

circuit

two-terminal

 $i_{sc} = I_N$

Ex:1 Obtain the Norton's equivalent circuit with respect to the terminals AB for the network shown and also find current in 5Ω if connected

between AB.

Solution: (i) Calculation of I_N

$$I_{N} = I_{1} + I_{2} = \frac{10}{5} + \frac{5}{10} = 2.5 \text{ A}$$

(ii) Calculation of R_N

$$R_{\rm N} = \frac{5 \times 10}{5 + 10} = \frac{10}{3} \Omega$$

$$I_{\rm L} = I_{\rm N} \frac{R_{\rm N}}{R_{\rm N} + R_{\rm L}} = 2.5 \times \frac{(10/3)}{(10/3) + 5} = 1 \,\mathrm{A}$$

Ex:2 Find the Norton equivalent circuit of the circuit in Fig

Solution: (i) Calculation of IN

short – circuit terminals a and b.

Mesh:
$$i_1 = 2A$$
, $20i_2 - 4i_1 - i_2 = 0$
 $i_2 = 1A = i_{sc} = I_N$

(ii) Calculation of R_N

Ex:3 Find current in 2 Ω using Norton theorem

Solution: (i) Calculation of I_N

(ii) Calculation of R_N

Ex:4 Find the current through 3 Ω by Norton's Theorem

Solution: (i) Calculation of I_N

$$I_N = I_1 + I_2 = \frac{24}{6} + \frac{12}{1} = 16A$$

(ii) Calculation of R_N

Ex:5 Find the current through 10 Ω by Norton's Theorem

Solution: (i) Calculation of IN

$$R_{eq} = 4 + \frac{82}{8+2} = 5.6 \Omega$$

$$I_1 = \frac{V}{Req} = \frac{48}{5.6} = 8.57 A$$

$$I_N = I_3 = 8.57 \times \frac{8}{8+2} = 6.86 A$$

(ii) Calculation of R_N

$$I_L = I_N \times \frac{R_N}{R_N + R_L} = 6.86 \times \frac{4.67}{4.67 + 10} = 2.18 A$$

Ex:6 Find Norton equivalent circuit across 'ab'

Solution: (i) Calculation of I_N

IN = 4.5A

(ii) Calculation of R_N

Ex:7 Find Norton equivalent circuit across 'XY'

Solution: (i) Calculation of I_N

Here, $I_{s,c}$ is the current through 5Ω resistor.

$$I_{sc} = 10 \times \frac{10}{10 + 5} = 6.67A$$

(ii) Calculation of R_N

 $= 10 + 5 = 15\Omega$

(iii) Norton's equivalent circuit

 $I_N = 6.67A; R_{int} = 15\Omega.$

Ex:8 Find current flowing in the 6Ω and also find current through 3Ω if

 6Ω is replaced by 3Ω Norton theorem (ii) Calculation of R_N

Solution: (i) Calculation of I_N

$$I_{N} = \frac{E_{S}}{R_{i}}$$

$$= \frac{24 \text{ V}}{4 \Omega}$$

$$= 6 \text{ A}$$

$$R_{N} = \frac{R_{1} \times R_{2}}{R_{1} + R_{2}}$$

$$= \frac{4 \Omega \times 12 \Omega}{4 \Omega + 12 \Omega}$$

$$= 3 \Omega$$

$$I_{R_L} = \frac{R_N}{R_N + R_L} \times I_N$$
$$= \frac{3 \Omega}{3 \Omega + 6 \Omega} \times 6 A$$
$$= 2 A$$

$$E_{R_L} = I_{R_L} \times R_L$$

$$= 2 \text{ A} \times 6 \Omega$$

$$= 12 \text{ V}$$

$$I_{R_L} = \frac{R_N}{R_N + R_L} \times I_N$$
$$= \frac{3\Omega}{3\Omega + 3\Omega} \times 6 \text{ A}$$
$$= 3 \text{ A}$$

$$E_{R_L} = I_{R_L} \times R_L$$

$$= 3 \text{ A} \times 3 \Omega$$

$$= 9 \text{ V}$$

Ex:9 Find Norton equivalent circuit across 'ab'

Ex:10 Find Current through 5 Ω Norton theorem

