

2022 / 04 / 07 D&A 운영진 윤경서

CONTENTS.

01 LeNet 02 AlexNet 03 VGG

01. LeNet

- 1998년 Yann Lecun 연구팀이 개발한 CNN 알고리즘이다.
- Yann Lecun 팀의 논문 'Gradient-Based Learning Applied to Document Recognition'에 수록되어 있는 LeNet-5가 대표적인 모델이다.
- LeNet-5는 32x32 크기의 흑백 이미지에서 학습된 7 layer CNN이다.
- [Input Conv(C1) Subsampling(S2) Conv(C3) Subsampling(S4) Conv(C5) FC6 FC7(output)]

LeNet Architecture

Input

Input

Input size: (1, 32, 32)

convolution

Filter size: 5x5 Filter 개수: 6 Stride: 1

C1 layer

C1 Output size: (6, 28, 28)

LeNet Architecture

C1 layer C1 Output

C1 Output size: (6, 28, 28)

Subsampling Average Pooling

Pooling size: 2x2

S2 Output size: (6, 14, 14)

LeNet Architecture

S2 layer

Convolution

C3 layer

S2 Output size: (6, 14, 14)

Filter size: 5x5 Filter 개수 : 16 Stride: 1

C3 Output size: (16, 10, 10)

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	X				Χ	Χ	Χ			Χ	Χ	Χ	Χ		Χ	X
1	X	Χ				X	Χ	Χ						Χ		\mathbf{X}
2	X	Χ	Χ				Χ	Χ	Χ			X		Χ	Χ	X
3		\mathbf{X}	X	\mathbf{X}			Χ	Χ	Χ	Χ			Χ		X	X
4			Χ	\mathbf{X}	\mathbf{X}			Χ	X	Χ	Χ		Χ	Χ		X
5				\mathbf{X}	\mathbf{X}	X			X	Χ	X	X		X	X	X

TABLE I

EACH COLUMN INDICATES WHICH FEATURE MAP IN S2 ARE COMBINED BY THE UNITS IN A PARTICULAR FEATURE MAP OF C3.

- ① 연속된 3장을 모아 Convolution
 - → 6장의 10x10 feature map 생성
- ② 연속된 4장을 모아 Convolution
 - → 6장의 10x10 feature map 생성
- ③ 불연속한 4장을 모아 Convolution
 - → 3장의 10x10 feature map 생성
- ④ 6장 모두 Convolution
 - → 1장의 10x10 feature map 생성
- ⇒ 16장(6장+6장+3장+1장) 의 10x10 feature map 생성

LeNet Architecture

LeNet Architecture

S4 layer

S4 Output size: (16, 5, 5)

Convolution

Filter size: 5x5 Filter 개수 : 120

Stride: 1

C5 layer

C 5

0

C5 Output size: (120, 1, 1)

LeNet Architecture

- ILSVRC(ImageNet Large-Scale Visual Recognition Challenge)의 2012년 대회에서 1위를 한 CNN 모델이다.
 - ILSVRC란?

이미지 인식(image recognition) 경진대회로 대용량의 이미지 데이터셋을 주고 이미지 분류 알고리즘의 성능을 평가한다.

- 논문 'ImageNet Classification with Deep Convolutional Neural Networks'에 수록되어 있다.
- 2개의 GPU로 병렬연산을 수행하기 위해 병렬적인 구조로 설계되었다.
- [Input Conv1 MaxPool1 Norm1 Conv2 MaxPool2 Norm2 Conv3 Conv4 Conv5 MaxPool5 FC6- FC7- FC8(output)]

AlexNet Architecture

Input size: (3, 227, 227) Conv1 Output size: (48, 55, 55) MaxPool1 Output size: (48, 27, 27)

[Input. . . - Conv1 - MaxPool1 - Norm1 - . . . Output]

MaxPooling layer: overlapping maxpooling 사용

LeNet-5의 경우, non-overlapping average pooling을 사용하며, 일반적으로 다른 CNN모델도 non-overlapping pooling을 사용한다.

Normalization layer: LRN (local response normalization) 시행

- AlexNet에서 처음 도입했다.
- 인접 화소들을 억제시키고, 특징을 부각시키기 위한 방법이다.
- 신경생물학에서 원리를 가져온 것으로, 예를 들어 우측 그림의 검은 부분을 집중하여 보면 회색의 점이 보인다. 이는 강한 자극인 검정색이 약한 자극인 흰색의 인식을 막아 발생하는 '측면억제' 현상이다.
- 위 예시처럼 지역적인 현상을 약화하고 학습을 일반화 하기 위해 고안된 방법이다.

Non-overlapping pooling

	——			
1	3	5	5	
4	1	4	9	
3	2	0	1	
5	2	4	6	

Stride 2 2 x 2 max pooling

Overlapping pooling

1	3	5	5
4	1	4	9
3	2	0	1
5	2	4	6

Stride 1 2 x 2 max pooling

AlexNet Architecture

Norm1 Output size: (48, 27, 27) Conv2 Output size: (128, 27, 27) MaxPool2 Output size: (128, 13, 13)

AlexNet Architecture

Norm2 Output size: (128, 13, 13)

Conv3 Output size: (192, 13, 13)

Conv4 Output size: (192, 13, 13)

AlexNet Architecture

Conv4 Output size: (192, 13, 13) Conv5 Output size: (128, 13, 13) MaxPool5 Output size: (128, 6, 6)

AlexNet Architecture

MaxPool5 Output size: (128, 6, 6) FC6 Output size: (2048) FC7 Output size: (2048) FC8 Output size: (1000)

[Input. . . - **FC6** - **FC7** - Output]

Fully connected layer: ReLU function 사용

- LeNet-5에서는 tanh 사용
- ReLU를 사용하는 것이 같은 정확도를 유지하면서 tanh을 사용하는 것보다 6배나 빨라 AlexNet 이후로는 ReLU 함수 주로 사용했다.

Overfitting을 막기위한 방법 2가지

1. Data Augmentation

Mirror Image Random Crops 256

2. Dropout

- ILSVRC(ImageNet Large-Scale Visual Recognition Challenge)의 2014년 대회에서 2위를 한 CNN 모델이다.
- 논문 'Very deep convolutional networks for large-scale image recognition'에 수록되어 있다.
- VGG부터 네트워크의 깊이가 확 깊어졌다. (VGG16: 16개층, VGG19: 19개층)
- [Input C1 C2 MaxPool2 C3 C4 MaxPool4 C5 C6 C7 MaxPool7 C8 C9 C10 MaxPool10 C11 C12 C13 MaxPool13 FC14 FC15 FC16(Output)]

3*3 filter 사용

학습 이미지 data augmentation

256x256

VGG Architecture

Input C1 layer convolution Input C1 Output Filter size: 3x3 Filter 개수: 64 Stride: 1 Padding: 1 C1 Output size: (64, 224, 224) Input size: (3, 224, 224) C2 layer

convolution

Filter size: 3x3 Filter 개수: 64 Stride: 1 Padding: 1

C2 Output

Maxpooling

Pooling size: 2x2 Stride: 2

Max Pool2

MaxPool2 layer

MaxPool2 Output size: (64, 112, 112)

C2 Output size: (64, 224, 224)

VGG Architecture

03. VGG MaxPool2 layer C3 layer convolution Filter size: 3x3 Max Filter 개수: 128 **C**3 Stride: 1 Pool2 Padding: 1 C3 Output size: (128, 112, 112) MaxPool2 Output size: (64, 112, 112) C4 layer MaxPool4 layer Maxpooling convolution Pooling size: 2x2 Filter size: 3x3 Filter 개수: 128 Stride: 2 Stride: 1 Padding: 1 **C4** Max Pool4 C4 Output size: (128, 112, 112) MaxPool4 Output size: (128, 56, 56)

2022 빅데이터 분석 학회 D&A

VGG Architecture

VGG Architecture

FC15 Output size: (4096, 1, 1) FC16 Output size: (1000, 1, 1)

과제

1. Alexnet 주석달기 2. VGG 논문 리뷰하기

Reference

01. LeNet

- LeNet architecture

- Convoution layer Table

02. AlexNet

03. VGG

04. 폰트

2022 / 04 / 07 D&A 운영진 윤경서

