Practice with NLP

Review Rating Prediction

Outline

Motivation behind NLP and sentiment analysis

Introduction to Yelp dataset and our research question

Methodology workflow

Exploratory Data Analysis

Overview of applied NLP techniques

Predictive modelling and evaluation

Our model from a practical perspective

Visualizing word embeddings in feature space

Conclusion and future work

Unstructured Data Is Sexy – You Just Don't Know It

Massive boom in the amount of NLP startups

"Since 2011 nearly 800 Natural Language Processing startups have been established worldwide with an average valuation of \$4.8 million"

Market trends indicates growing demand for NLP

"NLP market was at \$280 million in 2015 and expected to reach \$2.1 billion by 2024"²

"According to Time.com, Natural Language Processing skills are expected to boost your salary by 18%"³

source of data

"Unstructured data is growing at the rate of 62% per year"4

"Data volume is set to grow 800% over the next 5 years and 80% of it will reside as unstructured data" 5

... even in the Academia

"Nearly 7,000 papers of sentiment analysishave been published ... 99% of the papers have appeared after 2004 making sentiment analysis one of the fastest growing research areas"

"Searches made with a search string "sentiment analysis" in Google search engine have increased nearly 800% since 2014"2

Introduction to the Yelp Official Dataset

Overview

Yelp Open Dataset from September **2017**

More than **1.1** million unique users

4.7 millions reviews of local businessess across **4** countries

More than **10** different categories of services

Motivation

Scientifically bulletproof

More than **38,000** scientific papers have been published based on the Yelp dataset

Learning

Excellent toy dataset to conduct experiments via machine learning techniques

Reviews

The variety of the sentiment and the length of the reviews across different businesses makes the dataset highly useful

Problem statement

Conduct several experiments to capture the **semantic** relationships between reviews, and we use different **techniques** to predict the **sentiment** and star rating

A **1** star increase in rating results in **5-9%** increase in revenue

1 negative review can cost 30 customers

Methodology workflow

Pre-phase

Exploratory Data Analysis

Distribution of review length across different star ratings

Quartile overview of star ratings

Data preparation

Focusing on all types of reviews independent of the venue category

Filtering out non-US reviews by scraping all states from wiki resulting in 3.9 million reviews

Downsampling to 100k reviews for each class to avoid overrepresentation for same star ratings

Overview of applied NLP techniques

Applied NLP techniques in our experiments

We applied 3 different NLP techniques to the Yelp dataset by starting with the most simple technique and proceeded with more complex word embedding models

Illustration of the Doc2vec model

Illustration of the Bag-of-Words model

- The simplest method of representing text when modelling text with ML algorithms
- Cannot capture the semantics relationship between reviews since it ignores the context
- Select top words, letters only, lowercase, remove stop words and do stemming

Illustration of the Word2vec model

Vectors that represent similar words are close by different distance measures

Two methods:

CBOW Skip-gram

Word2vec will be elaborated on the next slide...

It's illegal to talk about word2vec without attaching this plot

^{*}Based on cosine similarity

Using word2vec model for learning word embeddings from raw text

Pre-processing to build word2vec model

- 1 Build iterator to import 1 review at a time
- 2 Make the review to lowercase
- 3 Remove symbols and numbers
- 4 Convert each word to a token
- **5** Append the tokenized word to a list
- 6 Discard the original review and import next review

"Decent customer service but the food was awful. It was cold and had no sauce at all. I was expecting it to be good but this place really went down hill. I will never eat here again."

['decent', 'customer', 'service', 'but', 'the', 'food', 'was', 'awful', 'it', 'was', 'cold', 'and', 'had', 'no', 'sauce', 'at', 'all', 'i', 'was', 'expecting', 'it', 'to', 'be', 'good', 'but', 'this', 'place', 'really', 'went', 'down', 'hill', 'i', 'will', 'never', 'eat', 'here', 'again']

"In my experience, it is usually good to disconnect (or remove) punctuation from words, and sometimes also convert all characters to lowercase" – Mikolov

Skip-gram neural network

Binary classification

Predictive modelling for sentiment analysis

Logistic regression Embeddings Test score Bag-of-Words 58.95 64.76 Word2vec Doc2vec 64.32 Word2vec **Bag-of-Word** True sentiment True sentiment Positive Negative Positive Negative Predicted sentiment Predicted sentiment Positive 13430 9994 12633 6882 Negative 6424 10152 7205 13258 0.8 TPR = 0.67 TPR = 0.63 P.0 G FPR = 0.50 FPR = 0.34 nacro-average ROC curve (area = 0.62) macro-average ROC curve (area = 0.68)

Convolutional Neural Network

Parameters	Value
Embedding	(20000, 300, 300)
Conv1D	(filters = 64, window = 5, activation = ReLu)
Maxpooling1D	4
LTSM	128, 300
Output activation function	Sigmoid
Loss function	Cross entropy
Results (Keras embedding)	88.36
Results (word2vec embedding)	90.13

Loss and accuracy plot (word2vec embedding)

Multinomial classification

Predictive modelling for multinomial star rating prediction

Our model from a practical perspective

Visualizing word embeddings in feature space

Summing up

Conclusion

- Difference between self and pre-trained embedding models
- Length of word vectors has a significant impact on the performance of the predictive models
- Acknowledge that performance relies significantly on the specific applied context

Future work

- Combine different embedding techniques (e.g. PV-DM + PV-DBOW)
- Conduct experiments with GloVe
- Increase the number of reviews
- Play around with the CNN hyper parameters
- Apply problem to other business settings

Thank you!