Teoria da computação Problem set 3

Rodrigo Santos Universidade NOVA de Lisboa

Exercício 1

Para cada uma das linguagens abaixo descreva um AFD que a reconhece através do seu diagrama de estados e de uma definição formal

(a)
$$L = \{0^{2n} \mid n \in \mathbb{N}\}$$

A descrição formal do AFD é:

$$M_1 = (\{q_{even}, q_{odd}\}, \{0\}, \delta, q_{even}, \{q_{even}\})$$

onde δ é representado da seguinte maneira:

$$egin{array}{c|c} \delta & 0 \\ \hline q_{even} & q_{odd} \\ q_{odd} & q_{even} \\ \hline \end{array}$$

(b)
$$L = \{(01)^n \mid n \in \mathbb{N}\}$$

A descrição formal do AFD é:

$$M_2 = (\{q_{01}, q_1, q_{final}\}, \{0, 1\}, \delta, q_{01}, \{q_{final}\})$$

onde δ é representado da seguinte maneira:

$$egin{array}{c|cccc} \delta & 0 & 1 \ \hline q_{01} & q_{1} & ot \ q_{1} & ot \ q_{final} \ q_{final} & q_{1} & ot \ \end{array}$$

(c) A linguagem L das strings sobre $\{0,1\}$ que contêm pelos menos dois 0's e pelo menos um 1.

A descrição formal do AFD é:

$$M_3 = (\{q_{001}, q_{01}, q_{00}, q_1, q_0, q_{final}\}, \{0, 1\}, \delta, q_{001}, \{q_{final}\})$$

onde δ é representado da seguinte maneira:

δ	0	1
q_{001}	q_{01}	q_{00}
q_{00}	q_0	q_{00}
q_{01}	q_1	q_0
q_1	q_1	q_{final}
q_0	q_{final}	q_0
q_{final}	q_{final}	q_{final}

(d) A linguagem L das strings sobre $\{0,1\}$ que contêm exatamente dois 0's e pelo menos dois 1's.

A descrição formal do AFD é:

$$M_4 = (\{q_{0011}, q_{011}, q_{001}, q_{11}, q_{01}, q_{00}, q_1, q_0, q_{final}\}, \{0, 1\}, \delta, q_{0011}, \{q_{final}\})$$

onde δ é representado da seguinte maneira:

δ	0	1
q_{0011}	q_{011}	q_{001}
q_{001}	q_{01}	q_{00}
q_{011}	q_{11}	q_{01}
q_{01}	q_0	q_1
q_{00}	q_0	q_{00}
q_{11}		q_1
q_0	q_{final}	q_0
q_1		q_{final}
q_{final}		q_{final}

(e) A linguagem L das strings sobre $\{0,1\}$ com um número par de 0's e um número impar de 1's .

A descrição formal do AFD é:

$$M_5 = (\{q_{00}, q_{10}, q_{01}, q_{11}\}, \{0, 1\}, \delta, q_{00}, \{q_{01}\})$$

onde δ é representado da seguinte maneira;:

δ	0	1
q_{00}	q_{10}	q_{01}
q_{10}	q_{00}	q_{11}
q_{01}	q_{11}	q_{00}
q_{11}	q_{01}	q_{10}

(f) A linguagem L das strings sobre $\{0,1\}$ que não contêm a substring 010.

A descrição formal do AFD é:

$$M_6 = (\{q_{010}, q_{10}, q_0, q_{final}\}, \{0, 1\}, \delta, q_{010}, \{q_{010}, q_{10}, q_0\})$$

onde δ é representado da seguinte maneira:

δ	0	1
q_{010}	q_{10}	q_{010}
q_{10}	q_{10}	q_0
q_0	q_{final}	q_{010}
q_{final}	q_{final}	q_{final}

(g) A linguagem L das strings sobre $\{0,1\}$ com um número par de 0's e em que cada 0 é sempre seguido de pelo menos um 1.

A descrição formal do AFD é:

$$M_7 = (\{q_{001}, q_{01}, q_0, q, q_{final}\}, \{0, 1\}, \delta, q_{001}, \{q_{final}\})$$

onde δ é representado da seguinte maneira:

δ	0	1
q_{001}	q_{01}	q_{001}
q_{01}	1	q_0
q_0	q	q_0
q	1	q_{final}
q_{final}	q_{01}	q_{final}

(h) A linguagem L das strings sobre $\{0\}$ com tamanho divisível por 2 ou por 3. q_{ij} onde i=n%2 e j=n%3.

A descrição formal do AFD é:

$$M_8 = (\{q_{00}, q_{11}, q_{02}, q_{10}, q_{01}, q_{12}\}, \{0\}, \delta, q_{00}, \{q_{00}, q_{02}, q_{10}, q_{01}\})$$

onde δ é representado da seguinte maneira:

δ	0
q_{00}	q_{11}
q_{11}	q_{02}
q_{02}	q_{10}
q_{10}	q_{01}
q_{01}	q_{12}
q_{12}	q_{00}

(i) A linguagem L das strings sobre $\{A,C,G,T\}$ que contêm pelo menos uma ocorrência da substring ACT.

A descrição formal do AFD é:

$$M_9 = (\{q_{ACT}, q_{CT}, q_T, q_{final}\}, \{A, C, G, T\}, \delta, q_{ACT}, \{q_{final}\})$$

onde δ é representado da seguinte maneira:

δ	A	\mathbf{C}	\mathbf{G}	${ m T}$
q_{ACT}	q_{CT}	q_{ACT}	q_{ACT}	q_{ACT}
q_{CT}	q_{CT}	q_T	q_{ACT}	q_{ACT}
q_T	q_{CT}	q_{ACT}	q_{ACT}	q_{final}
q_{final}	q_{final}	q_{final}	q_{final}	q_{final}

(j) $L = \emptyset$

Iremos assumir Σ como $\{0,1\}$.

A descrição formal do AFD é:

$$M_{10} = (\{q_0\}, \{0, 1\}, \delta, q_0, \varnothing)$$

onde δ é representado da seguinte maneira: $\delta: S \times \Sigma \to S$ dada por $\delta(q_0, 0) = \bot$ e $\delta(q_0, 1) = \bot$

(k) $L = \varepsilon$

Iremos assumir Σ como $\{0,1\}$.

A descrição formal do AFD é:

$$M_{11} = (\{q_0\}, \{0, 1\}, \delta, q_0, \{q_0\})$$

onde δ é representado da seguinte maneira: $\delta: S \times \Sigma \to S$ dada por $\delta(q_0, 0) = \bot$ e $\delta(q_0, 1) = \bot$

(1)
$$L = \{0, 1\}^* \setminus \{\varepsilon\}$$

A descrição formal do AFD é:

$$M_{12} = (\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_1\})$$

onde δ é representado da seguinte maneira:

$$\begin{array}{c|cccc} \delta & 0 & 1 \\ \hline q_0 & q_1 & q_1 \\ q_1 & q_1 & q_1 \end{array}$$

Exercício 2

Para cada um dos AFD's que construiu nas alíneas (a) a (g) do Exercício 1, descreva a sequência de estados percorridos no input 0100110 e diga se esta string é aceite ou não.

(a)

 $\delta(q_{even},0100110) = \delta(\delta(q_{even},0),1001110) = \delta(\delta(q_{odd},1),001110),\ \delta(q_{odd},1) = \bot. \ \text{logo esta sequência não \'e aceite}.$

(b)

 $\delta(q_{01},0100110) = \delta(\delta(q_{01},0),100110) = \delta(\delta(q_{1},1),00110) = \delta(\delta(q_{final},0),0110) = delta(\delta(q_{1},0),110)$ como $\delta(q_{1},0) = \bot$, a sequência não é aceite.

(c)

 $\delta(q_{001},0100110) = \delta(\delta(q_{001},0),100110) = \delta(\delta(q_{01},1),00110) = \delta(\delta(q_{0},0),0110) = \delta(\delta(q_{final},0),110) = \delta(\delta(q_{final},1),10) = \delta(\delta(q_{final},1),0) = \delta(\delta(q_{final},0),00110) = \delta(\delta(q_{final}$

(d)

 $\delta(q_{0011},0100110) = \delta(\delta(q_{0011},0),100110) = \delta(\delta(q_{011},1),00110) = \delta(\delta(q_{01},0),0110) = \delta(\delta(q_{1},0),110),$ como $\delta(q_{1},0) = \bot$, a sequência não é aceite.

(e)

 $\delta(q_{00},0100110) = \delta(\delta(q_{00},0),100110) = \delta(\delta(q_{10},1),00110) = \delta(\delta(q_{11},0),0110) = \delta(\delta(q_{01},0),110) = \delta(\delta(q_{01},0),110) = \delta(\delta(q_{11},1),10) = \delta(\delta(q_{11},1),0) = \delta(\delta(q_{11},0),0110) = \delta(\delta($

(f)

 $\delta(q_{010},0100110) = \delta(\delta(q_{010},0),100110) = \delta(\delta(q_{10},1),00110) = \delta(\delta(q_{0},0),0110) = \delta(\delta(q_{final},0),110) = \delta(\delta(q_{final},1),10) = \delta(\delta(q_{final},1),0) = \delta(\delta(q_{final},1$

(g)

 $\delta(q_{001},0100110) = \delta(\delta(q_{001},0),100110) = \delta(\delta(q_{01},1),00110) = \delta(\delta(q_{0},0),0110) = \delta(\delta(q,0),110), \text{ como } \delta(q,0) = \bot, \text{ a sequência não é aceite.}$

Exercício 3

Seja L uma linguagem regular. Quando é que temos $\epsilon \in L$?

Se L é regular quer dizer que existe um AFD $M=(S,\Sigma,\delta,s,F)$ com função de transição total que reconhece L. Para M reconhecer ϵ , basta termos $s\in F$. Ou seja o estado inicial também ser estado de aceitação.

Exercício 4

Para cada uma das linguagens L abaixo descreva um AFD que a reconhece através do seu diagrama de estados. Sugestão: Primeiro construa um AFD que reconhece o complemento \overline{L} e depois converta-o para um AFD que reconhece L.

(a) A linguagem L sobre $\{a,b\}$ cujas strings não contêm a substring ab.

(b) $L = \{a, b\}^* \setminus \{a^m b^n \mid m, n \in \mathbb{N}\}$

(c) $L = \{a, b\}^* \setminus (\{a\}^* \cup \{b\}^*)$

(d) A linguagem L sobre $\{a,b\}$ cujas strings não contêm exatamente dois a's.

Exercício 5

Sejam L_1 e L_2 linguagens regulares sobre o mesmo alfabeto Σ . Mostre que $L_1 \cap L_2$ também é regular.

Como L_1 e L_2 são regulares, existem AFD's $M_1=(S_1,\Sigma,\delta_1,s_1,F_1)$ e $M_2=(S_2,\Sigma,\delta_2,s_2,F_2)$, com funções de transição δ_1 e δ_2 totais tal que M_1 e M_2 aceitam L_1 e L_2 respetivamente. Queremos construir um AFD M a partir de M_1 e M_2 que reconhece $L_1 \cap L_2$. Dado um input w, queremos simular as computações de M_1 e M_2 em w lado-a-lado, e aceitar w exatamente quando ambos M_1 e M_2 aceitam w.

7

Para implementar a estratégia acima vamos definir um novo AFD $M=(S,\Sigma,\delta,s,F)$. Para tal necessitamos de a cada momento saber os estados atuais de M_1 e M_2 na computação. Ou seja os estados de M podem ser descritos como pares de estados de M_1 e M_2 , em que cada par representam o estado atual dos dois AFD's. Portanto queremos $S=S_1\times S_2$. Se M estiver no estado $(q_1,q_2)\in S_1\times S_2$ num dado ponto da computação e ler o símbolo $a\in \Sigma$, queremos simular a computação de M_1 e M_2 , para tal deveríamos atualizar q_1 para $\delta_1(q_1,a)$ e q_2 para $\delta_2(q_2,a)$. Definimos então a função de transição δ como

$$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)).$$

Para o estado inicial de M, queremos escolher o par de estados iniciais de M_1 e M_2 . Escrevemos então $s=(s_1,s_2)$. Resta especificar F, o conjunto de estados finais de M. Queremos aceitar w se ambas as computação de M_1 e M_2 acabarem em estados de aceitação. Para tal queremos escolher F como o conjunto de pares $(q_1,q_2) \in S$ tal que $q_1 \in F_1$ e $q_2 \in F_2$. Ou seja definimos o conjunto de estados de aceitação F como

$$F = (F_1 \times F_2)$$

Agora que definimos M formalmente, queremos provar que $L(M) = L_1 \cap L_2$. Para tal vamos mostrar $L(M) \subseteq L_1 \cap L_2$ e $L_1 \cap L_2 \subseteq L(M)$. Comecemos por supor que $w \in \Sigma^*$, arbitrário. Denotemos a sequência de estados gerada por w em M_i por $(r_0^{(i)}, r_1^{(i)}, \ldots, r_n^{(i)})$ para $i \in \{1, 2\}$ e $n \in \mathbb{N}$. Se $w \in L_1 \cap L_2$, pela definição de M_1 e M_2 temos que $r_n^{(1)} \in F_1$ e $r_n^{(2)} \in F_2$. Deste modo concluímos que $\delta(w) = (r_n^{(1)}, r_n^{(2)}) \in F$. Como W é arbitrário, segue que $L_1 \cap L_2 \subseteq L(M)$. Por outro lado, se $w \notin L_1 \cap L_2$, então temos que $r_n^{(1)} \notin F_1$ e $r_n^{(2)} \notin F_2$, o que leva a $(r_n^{(1)}, r_n^{(2)}) \notin F$, portanto $w \notin L(M)$. Logo, $L(M) \subseteq L_1 \cap L_2$, e concluímos que $L(M) = L_1 \cap L_2$.

Exercício 6

Dada uma string $w=w_1w_2\dots w_n\in \Sigma^*$ definimos o seu reverso $rev(w)=w_nw_{n-1}\dots w_2w_1$. Para uma linguagem $L\subseteq \Sigma^*$, definimos $rev(L)=rev(w)|w\in L$. Mostre que se L é regular então rev(L) também é regular.

Resolver com um AFN .-.

Exercício 7

Seja $L_n = \{0^k | k \text{ \'e m\'ultiplo de } n\}$. Mostre que $L_n \text{ \'e regular para qualquer } n \in \mathbb{N}^+$.

Fixamos $n \in \mathbb{N}^+$. Queremos mostrar que o AFD $M = (S, \Sigma, \delta, s, F)$, reconhece L_n i.e $L(M) = L_n$.

Vamos definir M. Comecemos pelo conjunto de estados S. Queremos cobrir todos os multiplos possíveis, comecando no q_0 , para tal vamos ter m-1 estados tal que m é o número de multiplos possíveis ou seja, $S=\{q_0,q_1,q_2,\ldots,q_{m-1}\}$. Intuitivamente $\Sigma=0$. O estado inicial q será o estado q_0 , portanto $s=q_0$. O conjunto de estados finais F é dado por um único estado q_0 o que se traduz para $F=\{q_0\}$. Falta nos então definir δ . Em cada estado $q_i\in S$ queremos ler o símbolo '0' repetindo ciclicamente até chegar ao estado final q_0 . Portanto obtemos:

$$\delta(q_i, 0) = q_{(i+1)\%n}$$

Desta forma, M reconhece sequência de potências de 0 cujo expoente seja um múltiplo de n. Portanto agora falta-nos provar que $L(M) = L_n$. Para tal vamos demonstrar que $L(M) \subseteq L_n$ e $L_n \subseteq L(M)$. Comecemos por supor que $w \in \Sigma^*$, arbitrário. Denotemos a sequência de estados gerado por w em M por $(q_0, q_1, q_2, \ldots, q_i)$ com $i \in \mathbb{N}$. Se $w \in L_n$ pela definição de L_n , $q_i \in F$. Como $F = \{q_0\}$, $q_i = q_0$. Ou seja $\delta(w) = q_0 \in F$. Visto que w é arbitrário, segue que $L_n \subseteq L(M)$. Por outro lado, se $w \notin L_n$ então $q_i \notin F$, pelo que $q_i \neq q_0$. Como $F = \{q_0\}$ e $q_i \neq q_0$, $w \notin L(M)$. Logo, $L(M) \subseteq L_n$, e concluímos que $L(M) = L_n$.