9. Bistabil

Sadržaj predavanja

- pojam bistabila
- osnovni bistabil
- sinkroni bistabil
- tipovi bistabila
- poboljšanje upravljanja
- karakteristični dinamički parametri

- sekvencijski sklopovi (engl. sequential circuits):
 - digitalni sklopovi koji imaju sposobnost pamćenja;
 - izlaz je funkcija:
 - trenutnog stanja ulaza
 trenutno narinute pobude
 - trenutnog unutarnjeg stanja sklopa
 postoji memorija
- struktura sekvencijskih sklopova:
 - kombinacijski dio (KS)
 - memorija (M)
 - ~ obično memorijski elementi koji pamte *binarne* vrijednosti: moraju imati *dva stabilna* stanja

- memorijski element = bistabil (engl. flip-flop)
 karakteristični digitalni sklop:
 - ostaje u jednom od dva moguća stanja i bez djelovanja vanjske pobude
 - stanja su *stabilna*posebna struktura sklopa:
 - unakrsno povezivanje invertora (sklopki)
 multivibrator
 - logički i električki (naponski!) stabilno

- promjena stanja bistabila~ okidanje impulsom ("okidni" impuls)
 - samo iniciranje promjene stanja
 T koji vodi (zasićenje!) dovesti u aktivno područje
 - dalje "regenerativna" povratna veza

- simbol bistabila:
 - izlazi su komplementarni:
 - ulazi:

S (engl. set): postavljanje Q = 1

R (engl. reset): postavljanje Q = 0

~ "brisanje"!

Sadržaj predavanja

- pojam bistabila
- osnovni bistabil
 - bistabil izveden univerzalnim sklopovima
 - analiza promjene stanja
- sinkroni bistabil
- tipovi bistabila
- poboljšanje upravljanja
- karakteristični dinamički parametri

- "logička" izvedba bistabila
 - ~ *izdvojeni* ulazi za okidanje:
 - interpretacija sklopki (invertora) univerzalnim funkcijama
 sklopovi NI i NILI

- bistabil izveden sklopovima NI/NILI
 - ~ osnovni bistabil (engl. latch): primjena u svim ostalim složenijim vrstama bistabila te u sekvencijskim sklopovima

bistabil ostvaren logičkim sklopovima NI:

bistabil ostvaren logičkim sklopovima NILI:

okidanje bistabila (radi promjene stanja)
 druge kombinacije 1 i 0 na ulazima

•
$$Q^{n+1} = f(X,Y;Q^n)$$
: tablica (promjene) stanja

identifikacija ulaza:

$$X = \overline{S}$$

$$Y = \overline{R}$$

_	\overline{S}	Q
	\overline{R}	$\overline{\mathcal{Q}}$ –

X	Y	Q ⁿ	Q	n+1
1	1	0	0	○ n
1	1	1	1	Q.
0	1	0	1	
0	1	1	1	1
1	0	0	0	
1	0	1	0	0
0	0	0	1	
0	0	1	1	X

 terminologija
 osnovni bistabil = "zasun" (engl. latch): podatak ostaje pohranjen u sklopu

- komentar~ pobuda XY = 00 je zabranjena!!!
 - Q= Q = 1 za X=Y=0
 ~ proturječi definiciji izlaza bistabila

nesimetrija sklopa/pobude
 nije jasno u kojem će stanju ostati bistabil
 po "otpuštanju" ulaza

X	Υ	Q ⁿ	Q	n+1
1	1	0	0	○ n
1	1	1	1	Q
0	1	0	1	4
0	1	1	1	1
1	0	0	0	
1	0	1	0	0
0	0	0	1	
0	0	1	1	X

VHDL model SR bistabila izvedenog sklopovima NI

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
ENTITY SRbistabil IS PORT (
  S, R: IN std logic;
  Q, Qn: OUT std logic);
END SRbistabil;
ARCHITECTURE Structural OF SRbistabil IS
  SIGNAL Qint, Qnint: std logic;
BEGIN
  -- Izračun internih izlaza
  Qint <= NOT S NAND Qnint AFTER 5 ns;
  Onint <= NOT R NAND Oint AFTER 5 ns;
  -- Preslikavanje na izlaze bistabila
  0 <= Oint;</pre>
  On <= Onint;
END Structural:
```

- osnovni bistabil ostvaren NILI sklopovima:
 - skraćena tablica stanja:

R	S	Q ⁿ⁺¹
0	0	Q ⁿ
0	1	1
1	0	0
1	1	X

simbol:

$$egin{array}{cccc} S & Q & - \ - & R & \overline{Q} & - \ \end{array}$$

- analiza promjene stanja osnovnog bistabila:
 - bistabil ostvaren sklopovima NI :

uzeti u obzir stvarne sklopove: ∃ t_d

 analiza promjene stanja osnovnog bistabila:

 sklop je osjetljiv na trajanje pobude (okidnog impulsa): t > 2·t_d

Sadržaj predavanja

- pojam bistabila
- osnovni bistabil
- sinkroni bistabil
 - sinkronizacija impuslima takta
 - asinkroni ulazi
- tipovi bistabila
- poboljšanje upravljanja
- karakteristični dinamički parametri

- svojstva osnovnog bistabila:
 - mijenja stanje u skladu s pobudom
 "transparentan" za ulaze
 - trenutno (≤ 2·td) reagira na pobudu
 romjena stanja nezavisno od sustavskog nadzora (tj. zajedničkih sinkronizacijskih impulsa)
 - hazard može prouzrokovati neželjenu promjenu stanja ~ nezgodno!

Primjer: neželjena promjena stanja zbog hazarda

protufazna pobuda ulaza S

proteinazina postada diaza si početno:
$$A = 1$$
, $B = 0 \rightarrow S = 0$ $R = 0$ $R = 0$ $Q = 0$ $R = 0$ $R = 0$ $R = 0$ $R = 0$ $Q = 0$ $R = 0$ $Q = 0$ $R =$

 $Q^{n+1} = Q^n = 0$

promjena A kasni za promjenom B

$$\rightarrow$$
 hazard: nakratko S = A·B = 1 \Rightarrow Qⁿ⁺¹ = 1

- rješenje problema moguće pojave hazarda zbog transparentnosti ulaza osnovnog bistabila:
 - dozvoliti upis u bistabil samo u određenim trenucima vremena
 izbjegavanje efekata prijelazne pojave
 - upravljanje radom bistabila
 ~ sinkronizacija

- sinkronizacija okidanja bistabila
 - ~ sinkronizacijski impulsi (impulsi takta)
 CP (engl. Clock Pulses) na poseban ulaz bistabila:
 sinkroni bistabil
 - promjena stanja bistabila u sinkronizaciji s CP: jedino za CP = 1
 - usputno invertiranje ulaza:
 S R → S R

- konceptualizacija sinkronizacije okidanja bistabila
 ~ diskretizacija vremena
 - (bitno!) olakšava razmatranje sekvencijskih sklopova
 ~ sekvencijski problem sveden na kombinacijski
 - obično se razmatra prijelaz n-to → (n+1)-vo stanje
 ~ prije, odnosno poslije, nailaska impulsa CP
- simbol(i) sinkronog bistabila:

- dodavanje asinkronih ulaza:
 - ~ na osnovni bistabil, zaobiđena mreža za upravljanje: direktni ulazi $(\overline{S}_d, \overline{C}_d)$

- aktivni s 0
- dominiraju nad sinkronim ulazima (S, R)
- mogući problem
 - ~ za vrijeme CP aktivna pobuda preko sinkronih i asinkronih ulaza: hazard?

Primjer: hazard zbog istovremene pobude na sinkronom i asinkronom ulazu

• $\overline{C}_d = 0$, $\overline{S}_d = 1 \rightarrow Q = 0$, $\overline{Q} = 1$ uz dodatno S = 1, R = 0

- dodati I sklopove na izlaze
- zamijeniti značenje asinkronih ulaza

Sadržaj predavanja

- pojam bistabila
- osnovni bistabil
- sinkroni bistabil
- tipovi bistabila
 - SR bistabil
 - JK bistabil
 - T bistabil
 - D bistabil
- poboljšanje upravljanja
- karakteristični dinamički parametri

- tipovi bistabila:
 - SR bistabil
 - ~ osnovna funkcionalnost
 - JK bistabil
 - proširena funkcionalnost:"univerzalni" bistabil
 - T bistabil
 - ~ (samo) promjena stanja
 - D bistabil
 - ~ (samo) pamćenje 1 bita informacije

- formalizmi definicije bistabila:
 - tablica (promjene) stanja
 - jednadžba (promjene) stanja, karakteristična jednadžba

$$Q^{n+1} = f(ulazi, Q^n)$$

- uzbudna tablica:ulazi = f(promjena_stanja)
- dijagram stanja
 ~ grafički prikaz tablice stanja
 - čvor ≡ stanje
 - strelica = prijelaz

SR bistabil (rekapitulacija):

S	R	Q^{n+1}
0	0	Q ⁿ
0	1	0
1	0	1
1	1	Χ
		='

- JK bistabil:
 - posebna povratna veza na SR bistabil: propuštanje "vanjskih" ulaza tako da *nema* zabranjene kombinacije ulaza:
 - JK = 11
 bistabil *mijenja stanje* (engl. toggle)
 - JK bistabil
 ~ neka vrsta "univerzalnog" bistabila

• JK bistabil:

 \sim JK = 11 \rightarrow bistabil *mijenja stanje*

J	K	Q^{n+1}
0	0	Q^n
0	1	0
1	0	1
1	1	\overline{Q}^{n}

$$Q^{n+1} = J \cdot \overline{Q}^n + \overline{K} \cdot Q^n$$

Q ⁿ	Q n+1	J	K
0	0	0	Χ
0	1	1	X
1	0	Χ	1
1	1	Χ	0

- T bistabil
 - ~ samo mijenja stanje (engl. toggle)
 - tipična primjena
 ~ brojanje impulsa (→ brojila)
 - jednostavno se dobiva iz JK bistabila

0 $n+1$	~	$\overline{}_{n}$	\overline{x}	\circ n
Q^{n+1}	=T	Q^n	+T	$\cdot Q^n$

_	J .	_K_	Q^{n+1}	
1	0	0	Q^n	Q^{n+1}
	0	1	0	Q^{n}
	1	0	1 1	$\frac{\sim}{O^n}$
1	1	1		Ł

Q ⁿ	Q n+1	Τ
0	0	0
0	1	1
1	0	1
1	1	0

- VHDL model T bistabila
 - izlazni signali se koriste kao ulazni
 povratna veza: dvosmjerni signali (tip INOUT)

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
ENTITY Tbistabil IS PORT (
   T, CP: IN std_logic;
   Q, Qn: INOUT std_logic);
END Tbistabil;
```



```
ARCHITECTURE Structural OF Tbistabil IS

COMPONENT NI3

PORT (i1, i2, i3: IN std_logic; y: OUT std_logic);
END COMPONENT;
SIGNAL JCPQn, KCPQ: std_logic; -- izlazi prvog reda NI sklopova
SIGNAL J, K: std_logic;

BEGIN

J <= T; K <= T;
c1: NI3 PORT MAP(J, CP, Qn, JCPQn);
c2: NI3 PORT MAP(K, CP, Q, KCPQ);
c3: NI3 PORT MAP(JCPQn, JCPQn, Qn, Q);
c4: NI3 PORT MAP(KCPQ, KCPQ, Q, Qn);

END Structural;
```

- izlazni signali su tipa OUT
 - ~ povratna veza ostvarena unutarnjim signalima

```
Qint, Qnint: std_logic
```

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
ENTITY Tbistabil IS PORT (
   T, CP: IN std_logic;
   Q, Qn: OUT std_logic);
END Tbistabil;
```



```
ARCHITECTURE Structural OF Thistabil IS
  COMPONENT NI3
       PORT (i1, i2, i3: IN std logic; y: OUT std logic);
  END COMPONENT:
  SIGNAL JCPQn, KCPQ: std logic; -- izlazi prvog reda NI sklopova
  SIGNAL J, K: std logic;
  SIGNAL Qint, Qnint: std logic; -- interni izlazi bistabila
BEGIN
  -- modeliranje samog bistabila
       J \ll T; K \ll T;
  c1: NI3 PORT MAP(J, CP, Qnint, JCPQn);
  c2: NI3 PORT MAP(K, CP, Qint, KCPQ);
  c3: NI3 PORT MAP (JCPQn, JCPQn, Qnint, Qint);
  c4: NI3 PORT MAP (KCPQ, KCPQ, Qint, Qnint);
  -- preslikavanje internih izlaza na izlaze sklopa
  0 <= Oint;</pre>
  On <= Onint;
END Structural:
```

modeliranje jednadžbama promjene stanja
 (izlazi tipa INOUT ostvaruju povratnu vezu ~ stanje!)

```
library IEEE;
                                                          T - egin{aligned} oldsymbol{T} 	ext{ bistabil} \ Q_{n+1} &= ar{T} \cdot Q_n + T \cdot ar{Q}_n \ ar{Q}_{n+1} &= ar{T} \cdot ar{Q}_n + T \cdot Q_n \ Uvjet: promjena na CP=1 \end{aligned} - ar{Q}
use IEEE.STD LOGIC 1164.ALL;
ENTITY Tbistabil IS PORT (
   T, CP: IN std logic;
   Q, Qn: INOUT std logic);
END Tbistabil;
ARCHITECTURE Behavioral OF Tbistabil IS
BEGIN
   PROCESS (T,CP)
   BEGIN
      IF CP='1' THEN
         \bigcirc <= (NOT T AND \bigcirc) OR (T AND NOT \bigcirc) AFTER 15 ns;
         Qn \leftarrow (NOT T AND NOT Q) OR (T AND Q) AFTER 15 ns;
      END IF;
   END PROCESS;
END Behavioral;
```

modeliranje stanja korištenjem varijable

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
ENTITY Thistabil IS PORT (
 T, CP: IN std logic;
 Q, Qn: OUT std logic);
END Thistabil:
ARCHITECTURE Behavioral OF Tbistabil IS
BEGIN
 PROCESS (T,CP)
 VARIABLE stanje: std logic
 BEGIN
    IF CP='1' THEN
      stanje := (NOT T AND stanje) OR (T AND NOT stanje);
    END IF;
    Q <= stanje AFTER 15 ns;
    On <= NOT stanje AFTER 15 ns;
 END PROCESS;
END Behavioral;
```

Tipovi bistabila

- D bistabil
 - ~ kasni (engl. delay) za 1 x CP
 - "pamti" podatak narinut na ulazu
 - primjena: *pohranjivanje* podataka (→ *registri*)

	J	K	Q^{n+1}	D	Q^{n+1}
•	0	0	Q^{n}	0	0
1	0	1)	1
\ \ \	1	0	1 _		
	1	1	Q^n	Q^{n-1}	$+1 = D^n$

Q ⁿ	Q n+1	D
0	0	0
0	1	1
1	0	0
1	1	1

Tipovi bistabila

Primjer: JK bistabil ostvaren D bistabilom

- "logika" u dodatni kombinacijski sklop na ulazu D
- povratna veza s Q i Q
- D bistabil: $Q^{n+1} = D^n \implies D^n = Q^{n+1}$

$$Q^{n+1} = J \cdot \overline{Q}^{n} + \overline{K} \cdot Q^{n} = D^{n}$$

Tipovi bistabila

Primjer: izvedba bistabila multipleksorom

- "zabravljivanje" podatka u multipleksoru
 povratna veza s izlaza *na jedan* od ulaza
- drugi ulaz za vanjski podatak
- adresni ulaz za impuls takta
 upravljanje razinom CP
 CP = 1 upis podatka

$$A_0 = CP$$
 $Z = Q^{n+1}$
 0 $I_0 = Q^n$
 1 $I_1 = D$

Sadržaj predavanja

- pojam bistabila
- osnovni bistabil
- sinkroni bistabil
- tipovi bistabila
- poboljšanje upravljanja
 - dvostruki bistabil
 - bridom upravljani bistabil
- karakteristični dinamički parametri

- rekapitulacija problema vezanih za *upravljanje* bistabila: ~ za CP = 1 sinkroni se bistabil ponaša kao
 "asinkroni"
 - transparentnost za ulaze:
 - stanje nakon prestanka CP ?
 - kaskadirani bistabili
 - ~ eventualne promjene stanja *nisu* ograničene na pobudu susjednih bistabila: *neispravni rad*!
 - posebno JK bistabil
 ~ osciliranje izlaza
 - rješenje~ *djelovati na CP*:
 - poboljšanje upravljanja razinom CP
 - upravljanje bistabila bridom CP

- izvedba JK bistabila sklopovima NI
 povratna veza na ulaznu mrežu za upravljanje
 - intuitivni (i naivni!) pristup
 problemi kad CP = 1 "traje predugo"

- JK bistabil izveden sklopovima NI
 ~ "predugo trajanje" CP = 1
 - CP = 1 & JK = 11
 - promjena stanja Q ∀ 2.td
 - osciliranje (stanja) izlaza:
 "utrka" (engl. race-around condition)

- osciliranje izlaza JK bistabila izvedenog sklopovima NI ~ dva suprotstavljena zahtjeva
 - CP "dovoljno dug" da bistabil promijeni stanje
 - CP "dovoljno kratak" da bistabil ne zaoscilira
 - moguća rješenja:
 - odgovarajuća kašnjenja u petlje povratne veze
 - poboljšati upravljanje djelovanjem na CP

- upravljanje razinom CP
 - koristiti *dva* bistabila:
 "dvostruki" bistabil
 (engl. master-slave flip-flop)
- princip rada:
 - CP nije aktivan
 - ~ glavni i pomoćni bistabil povezani
 - CP aktivan
 - ~ u glavni bistabil se upisuje novi sadržaj
 - CP ponovno neaktivan
 - ~ sadržaj glavnog se prenosi u pomoćni bistabil
 - = stanje na izlazima bistabila

dvostruki bistabil (engl. master-slave flip-flop)

~ prikaz sklopovima NI

objašnjenje rada dvostrukog bistabila:

t₁: CP izlazi iz područja 0 ~ prekid veze G i P

t₂: CP ulazi u područje 1
 uspostavljanje veze ulaza i G, upis podataka u G

t₄: CP ulazi u područje 0

uspostavljanje veze G i P, upis podatka iz G u P

stvarno onemogućeno osciliranje

Primjer: izvedba dvostrukog bistabila multipleksorom

- po jedan multipleksor za svaki komponentni bistabil
- komplementarni CP
 odabir ulaza u multipleksore
- funkcionalnost dvostrukog bistabila

CP = 0 : podatak zapamćen u izlaznom MUX; veza ulaza D i ulaznog MUX

CP = 1 : podatak zapamćen u ulaznom MUX; veza ulaznog i izlaznog MUX

blok-simbol dvostrukog bistabila:

- komentar izvedbe:
 - dva bistabila umjesto jednog!
 - brzina rada je manja
 - sklop i dalje osjetljiv na promjene ulaza
 (→ hazard) za vrijeme CP = 1
 - potrebno ograničiti mogućnost upisa

- vrlo popularna SSI izvedba (mahom TTL, CMOS):
- sinkroni ulazi
 sklopovi I:
 olakšanje izgradnje složenijih sklopova
- primjer
 ~ dvostruki JK bistabil 7472 (TTL, serija 74)

- upravljanje bridom CP
 ~ bridom okidani bistabil
 (engl. edge-triggered flip-flop)
 - eliminiranje transparentnosti za trajanja impulsa CP
 - osnovna ideja:
 - ~ na *jedan* od bridova impulsa CP generirati *kratki* impuls koji će propustiti ulaze
 - više mogućih izvedbi:
 - kašnjenje u logičkim sklopovima
 - kombiniranje više osnovnih bistabila

 izvedba bridom okidanog bistabila korištenjem kašnjenja u logičkim sklopovima (~ hazard):

- na rastući brid impulsa CP generiranje impulsa trajanja t_d
- ispravni rad mreže
 ~ 2·n+1 invertora:
 (2·n+1)·t_d

• blok-simbol:

okidanje negativnim bridom:

primjer
 bridom okidani JK bistabil
 7470 (TTL, serija 74)

- bridom okidani bistabil
 izveden kombiniranjem osnovnih bistabila:
 - karakteristična izvedba D bistabila:

• blok-simbol:

Primjer: VHDL model bridom upravljanog D-bistabila (padajući brid signala takta), sa sinkronim ulazom za brisanje

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

ENTITY Dbistabil IS PORT (
    D, Reset: IN std_logic;
    Q, Qn: OUT std_logic;
    Clock: IN std_logic
);
END Dbistabil;
Clock:

Cloc
```

```
ARCHITECTURE Behavioral OF Dbistabil IS
BEGIN
  PROCESS (Clock)
    VARIABLE Qint: std logic;
  BEGIN
    IF falling edge(Clock) THEN
      IF Reset = '1' THEN
        Oint := '0';
      ELSE
        Qint := D;
      END IF;
    END IF;
    0 <= Oint AFTER 5 ns;</pre>
    Qn <= NOT Qint AFTER 5 ns;
  END PROCESS;
END BEHAVIORAL;
```


Sadržaj predavanja

- pojam bistabila
- osnovni bistabil
- sinkroni bistabil
- tipovi bistabila
- tipovi bistabila
- poboljšanje upravljanja
- karakteristični dinamički parametri

Karakteristični dinamički parametri

- maksimalna frekvencija, f_{max}:
 ~ najveća frekvencija CP,
 a da bistabil sigurno mijenja stanje
 kad to ulazi zahtijevaju
- vrijeme kašnjenja, t_d:
 - ~ interval od djelotvorne promjene na ulazu (asinkrono: S_d, C_d; sinkrono: CP) do promjene na izlazu

češće: *vrijeme proleta* (*propagacije*) \sim posebno za $0 \rightarrow 1$, odnosno $1 \rightarrow 0$

Karakteristični dinamički parametri

- vrijeme postavljanja, t_{set up}
 minimalno vrijeme održavanja podatka
 na sinkronim ulazima prije djelotvorne promjene CP
 (dvostruki bistabil: prekid veze ulaz-glavni bistabil),
 a da bistabil sigurno prihvati podatak
- vrijeme otpuštanja (oslobađanja), t_{release} (analogno t_{set up})
 maksimalno vrijeme održavanja podatka na sinkronim ulazima, a da ga bistabil sigurno ne prihvati
- vrijeme pridržavanja, t_{hold}
 ~ minimalno vrijeme održavanja podatka na sinkronim ulazima nakon djelotvorne promjene CP;
 potrebno kod nekih izvedbi bistabila

Karakteristični dinamički parametri

definicija
 t_{set up}, t_{release}, t_{hold}:

 tipični parametri za TTL bistabile serije 74 (t_{PLH} i t_{PHL}za sinkrone ulaze)

	bridom okidani	dvostruki
	7474	7472
f _{max} [MHz]	25	20
t _{PLH} [ns]	14	16
t _{PHL} [ns]	20	25
t _{set up} [ns]	20	0
t _{hold} [ns]	5	0

Literatura

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 5: Bistabil.
- pojam bistabila: str. 165-169
- osnovni bistabil: str. 169-176
- sinkroni bistabil: str. 176-179
- tipovi bistabila: str. 179-189
- poboljšanje upravljanja: str. 189-195
- karakteristični dinamički parametri: str. 195-196

Zadaci za vježbu (1)

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 5: Bistabil.
- tipovi bistabila: 5.1-5.4, 5.7
- poboljšanje upravljanja: 5.5, 5.6

Zadaci za vježbu (2)

- M. Čupić: *Digitalna elektronika i digitalna logika. Zbirka riješenih zadataka*, Cjelina 7: Bistabil.
- tipovi bistabila:
 - riješeni zadaci: 7.1-7.6
 - zadaci za vježbu: 1-3
- poboljšanje upravljanja:
 - riješeni zadaci: 7.7