Ausgabe: 8. Juli 2022 ______ Bearbeitung: 11. – 15. Juli 2022

Einführung in die angewandte Stochastik

13.	Präsenzübung	

Aufgabe P 47

Die Zufallsvariablen X_1, X_2 seien stochastisch unabhängig. Weiterhin sei die Verteilung von X_1 gegeben durch die Gamma-Verteilung $\Gamma(\vartheta, 2)$ und die Verteilung von X_2 durch die Gamma-Verteilung $\Gamma(2\vartheta, 1)$ mit einem Parameter $\vartheta \in \Theta := (0, \infty)$ (siehe Bezeichnung B 3.9). Die a priori Verteilung von ϑ basierend auf der Realisierung (x_1, x_2) von (X_1, X_2) sei gegeben durch $\Gamma(1, 2)$. Zeigen Sie, dass die a posteriori Verteilung von ϑ gegeben ist durch $\Gamma(1 + x_1 + 2x_2, 5)$.

Aufgabe P 48

In der Produktion von Eisenbahn-Waggons werden zur Durchführung von Bohrungen an Stahlträgern zwei unterschiedliche Bohrstationen B_1 und B_2 verwendet. Zum Vergleich der beiden Bohrstationen hinsichtlich der jeweils benötigten Bohrzeiten soll ein zweiseitiges Konfidenzintervall für die Differenz der erwarteten Bohrzeiten berechnet werden.

Hierzu wurden 13 Bohrungen mit der Bohrstation B_1 und 11 Bohrungen mit der Bohrstation B_2 durchgeführt. Es ergaben sich folgende Zeiten für die Bohrvorgänge (in s):

Bohrstation B_1	67.5	59.0	51.2	61.1	51.7	55.9	55.2	55.6	54.4	60.2	61.8	60.7	68.1
Bohrstation B_2	61.8	77.7	66.7	59.6	70.8	69.5	66.4	61.1	62.9	68.5	75.2		

Nehmen Sie an, dass diese Zeiten als Realisationen (gemeinsam) stochastisch unabhängiger Zufallsvariablen $X_1, \ldots, X_{13}, Y_1, \ldots, Y_{11}$ mit $X_i \sim \mathrm{N}(\mu_1, \sigma^2)$ und $Y_j \sim \mathrm{N}(\mu_2, \sigma^2)$ für $i \in \{1, \ldots, 13\}$, $j \in \{1, \ldots, 11\}$ aufgefasst werden können, wobei $\mu_1, \mu_2 \in \mathbb{R}$ und $\sigma > 0$ jeweils unbekannt seien.

Berechnen Sie zu den gemessenen Bohrzeiten ein zweiseitiges 90%-Konfidenzintervall für die Differenz $d=\mu_1-\mu_2$ der erwarteten Bohrzeiten μ_1 und μ_2 . Interpretieren Sie das Ergebnis im Hinblick auf den Vergleich der jeweils benötigten Bohrzeiten .

Aufgabe P 49

Die Güte eines Ampèremeters soll anhand der Mess-Streuung des Geräts beurteilt werden. Hierzu wurde ein Strom bekannter Stärke mehrfach mit dem Ampèremeter gemessen. Bei insgesamt 10 Messungen ergaben sich die folgenden Stromstärken (in mA):

Nehmen sie an, dass diese Messwerte als Realisationen stochastisch unabhängiger, jeweils $N(\mu, \sigma^2)$ -verteilter Zufallsvariablen mit $\mu \in \mathbb{R}$ und $\sigma^2 > 0$ aufgefasst werden können.

- (a) Bestimmen Sie zu den gegebenen Messwerten ein einseitiges unteres 99%-Konfidenzintervall für die Varianz σ^2 .
- (b) Bestimmen Sie zu den gegebenen Messwerten ein einseitiges unteres 99%–Konfidenzintervall für die Standardabweichung σ .