A. Vizualizační řetězec

1. Vizualizační řetězec

- proces, který transformuje 3D objekty do 2D prostoru (obrazovka)
- kombinace několika transformací:
 - o modelovací transformace (tvar/pozice objektu)
 - o kamerová transformace (projekční)
 - o viewport transformace (zobrazovacího objemu)

Zobrazovací řetězec II (pro Zbuffer)

a) Homogenní souřadnice, použití, výhody, ořezávání

- souřadnice skládající se ze 4 hodnot
 - o x, y, z, w
- umožňuje transformaci bodů pomocí maticového násobení
- ořezání se provádí na základě hodnoty w
 - body sw menší než z-near nebo větší než z-far jsou považovány za body mimo zobrazovací objem

b) Modelovací transformace, zápis transformací, matice

- proces transformace objektů ve 3D prostoru do virtuálního modelu
 - o slouží k umístění objektů do správného místa
 - o změně jejich velikosti
 - o orientace
 - o translace, rotace, škálování
- zapsány pomocí matic
 - o čtvercová matice
 - o reprezentace a aplikace jedné nebo více transformací
 - o 4x4 matice, která kombinuje jednotlivé transformační operace

- R11 R33 jsou prvky matice rotace
- Tx, Ty, Tz jsou hodnoty translace
- poslední řádek 0, 0, 0, 1 slouží k zachování homogenních souřadnic

c) Pohledová transformace, definice soustavy souřadnic

- určuje jak je scéna pozorována ze zvoleného místa a úhlu
 - definuje souřadnicový systém, který popisuje, jak se 3D scéna má zobrazit na 2D rovině
- provádí se po modelovací transformaci, před projekční transformací
- obvykle v pravoúhlé kartézské soustavě
 - 3 osy
 - x horizontální
 - y vertikální
 - z osa, která směřuje do kamery nebo z ní ven
- soustava souřadnic kamery se skládá z
 - o polohy v prostoru
 - o natočení kamery

d)Transformace zobrazovacího objemu, definice, příklady

- definování oblasti ve 3D prostoru, která bude viditelná na 2D obrazovce
- několik typů projekce
 - o ortogonální
 - vytváří plochý pohled na scénu
 - objekty mají konstantní velikost bez ohledu na jejich vzdálenost od kamery
 - tvar kvádru

- perspektivní
 - objekty se zmenšují v závislosti vzdálenosti od kamery
 - používá se k vytvoření dojmu prostoru a hloubky scény
 - tvar komolého jehlanu

- ohraničena šesti parametry
 - o x_min
 - o x max
 - o y_min
 - o y_max
 - o z_near
 - o z_far
- body mimo zobrazovací objem se ořezávají → nejsou zobrazeny

e)Transformace do okna

- poslední fáze zobrazení 3D scény na 2D obrazovku
- převádí normalizované souřadnice zobrazovacího objemu na souřadnice obrazovky
- transformuje pouze x, y souřadnice
 - o souřadnici z uchováváme pro řešení viditelnosti
- upraví se poměr stran, aby se 2D obraz zobrazil v celém okně

f) Algoritmus Z-buffer, implementace

- ukládá hodnotu hloubky (z-hodnotu) každého pixelu
 - o hodnotu porovná s aktuální hodnotou v z-bufferu
 - o pouze pixely s nižší z-hodnotou jsou vykresleny a aktualizují hodnoty z-bufferu
- implementace
 - o transformace 3D homogenní souřadnice
 - tvar objektu
 - pozice objektu
 - pohledu
 - zobrazovacího objemu
 - o ořezání homogenní souřadnice
 - o dehomogenizace
 - odstranění souřadnice w
 - vydělení všech souřadnic hodnotou w
 - o projekce
 - 3D → 2D
 - o transformace do okna
 - o rasterizace
 - o viditelnosti
 - porovnání hodnoty v z-bufferu

g) Mapování textury, souřadnice do textury, interpolace

- možnost přidání detailu, barvy nebo vzoru na povrch 3D objektů pomocí 2D textur
 - při mapování jsou texturovací souřadnice přiřazeny ke každému bodu nebo vrcholu objektu
 - o souřadnice jsou v rozsahu 0 − 1
 - určují, jaký pixel z textury se má použít pro vykreslení daného bodu, nebo vrcholu
- interpolace se provádí pomocí barycentrického zobrazení
 - o výpočet váhy pro každý vrchol a použití k interpolaci hodnot v daném pixelu

h)Ořezání zobrazovacím objemem

- cílem je nezpracovávat část scény ležící mimo zobrazovací objem
 - zlepšení výkonu
 - efektivnější vykreslení scény
- vrchol x, y, z po dehomogenizaci v NDC ořezán podmínky
 - -1 < x < 1</p>
 - \circ -1 < y < 1
 - \circ 0 < z < 1
- vrchol x, y, z, w před dehomogenizací ořezán podmínky
 - -w < x < w</p>

- -w < y < w</p>
- \circ 0 < z < w
- postup ořezání:
 - o bod kontrola podmínek
 - o úsečka kontrola vrcholů a zjištění části úsečky
 - trojúhelník
 - může vzniknout až devítiúhelník
 - Sutherland-Hodgman algoritmus
- způsoby:
 - přísné ořezání
 - jakmile jeden bod leží mimo zobrazovací objem, trojúhelník / úsečku zahazujeme
 - rychlé ořezání
 - zjistíme, zda celý objekt neleží mimo zobrazovací objem, pokud ano zahodíme, pokud ne pokračujeme ve zpracovávání
 - nutno odřezat část ležící za pozorovatelem, záporné nebo nulové w,
 z důvodu dehomogenizace = dělení w

i) Jak se provádí výpočet v homogenních souřadnicích.

- převod 3D vektoru na homogenní vektor
 - o každý vektor (x, y, z) lze převést pomocí rovnice (x, y, z, 1) → vzniká 4D vektor x, y, z,
 w
- aplikace homogenní transformace
 - 4D homogenní vektor se transformuje pomocí homogenní transformace
 - matice 4x4
- převod zpět na 3D vektor
 - 4D vektor se převede pomocí vydělení všech složek hodnotou w
 - x' = x / w
 - y' = z / w
 - z' = z / w

Práce v homogenních souřadnicích

2. Vysvětlete princip rasterizace trojúhelníka.

a)Interpolace v ploše trojúhelníka

 každý pixel se vyplní barvou odpovídající interpolovaným hodnotám barev ve vrcholech trojúhelníku

pro trojúhelník: rozdělíme trojúhelník vodorovně (setřídit podle y) Ay <= By <= Cy prohazovat všechny souřadnice bodů Pro y od Ay do By lineárně interpolujeme podél hran souřadnici x podle y s1 = (y-Ay)/(By-Ay)s2 = (y-Ay)/(Cy-Ay) $x1 = Ax \cdot (1-s1) + Bx \cdot s1$ $x2 = Ax \cdot (1-s2) + Cx \cdot s2$ pro dané y procházíme od x1 do x2 (nebo obráceně) for (x = x1; x < x2; x++)vypočítat z (interpolací) В vyřešit viditelnost případně vykreslit PutPixel(x,y) Pro y od By do Cy to samé pro druhou polovinu

b)Interpolace na hranách

- při vykreslování hran trojúhelníka se interpolují hodnoty atributů v jeho vrcholech
- tyto interpolované hodnoty se používají pro vykreslování výplňových pixelů trojúhelníka
- postup:
 - výpočet atributů vrcholů
 - o výpočet přírůstků atributů
 - o interpolace atributů na hranách
 - o výpočet atributu pro každý pixel

3. Co je to interpolace, jak se využívá v zobrazovacím řetězci.

- proces výpočtu neznámých hodnot mezi známými hodnotami na základě jejich vzájemného
- slouží k dosažení plynulého přechodu nebo hladkých efektů mezi body

a)Interpolace souřadnic x, y, z

- proces vyhodnocování neznámých hodnot souřadnic mezi dvěma nebo více známými body v prostoru
- používá se pro určení polohy bodů na křivkách nebo plochách, které jsou popsány pouze jejich řídícími hodnotami

b)Interpolace atributů ve vrcholech

- používá se pro přenos vlastností mezi vrcholy
 - o barva
 - o textura
 - o normála
- prování se normální interpolace dehomogenizovaných atributů a následné násobení interpolovanou hodnotou w'

c) Princip perspektivně korektní interpolace

- zajištění správného vykreslení objektů v 3D prostoru, tak aby perspektiva byla zachována a
 předměty ve scéně měli realistický vzhled
- interpolace na základě hodnot ve vrcholech trojúhelníka a jejich vzdálenosti od pozorovatele
 - například při interpolaci z-hodnot při vykreslování 3D scény, kdy se musí brát v úvahu perspektivní zkreslení

4. Metody optimalizace vizualizace

• snaha o urychlení zobrazení scény v reálném čase

a)Úlohy vizualizace

- zobrazení složitých scén
 - o volba vhodných datových struktur
 - o předzpracování scény
 - o využití hw prostředků
- vytváření realistických scén
 - o nahrazení klasických algoritmů přibližnými metodami
- optimalizovat Ize
 - o řešení viditelnosti
 - ořezávání
 - o kolize
 - osvětlení a stíny
 - o určení viditelnosti bodu A z bodu B
- metody optimalizace
 - o vhodná reprezentace objektů
 - redukce počtu zobrazovaných objektů
 - na úrovni polygonů
 - na úrovni sektorů, strukturalizace scény
 - o snižování složitosti objektů

b)Double buffering

- odstranění blikání při vykreslení scény
- použití dvou ImageBufferů
 - o první buffer je zobrazen
 - o druhý je schován a použit pro překreslení scény

- o po vykreslení jsou oba buffery prohozeny
- další buffery pro steroskopickou projekci
 - o GL_FRONT_LEFT
 - o GL_FRONT_RIGHT
 - o GL_BACK_LEFT
 - GL BACK RIGHT
- OpenGL vždy alespoň levý přední buffer

c) Reprezentace scény

- způsob, jakým jsou objekty v 3D scéně uloženy do paměti pro snadnou manipulaci a rychlé vykreslování
- scéna N trojúhelníků
 - o velká paměťová náročnost
 - o nutnost předání a zpracování velkého počtu vrcholů
 - Index buffer
- scéna N polygonů

d)Display list

- seznam příkazů pro vykreslování 3D scény uložené v paměti
 - o pro rychlé a efektivní vykreslení scény
- v metodě init:
 - o glNewList(jméno, parametr)
 - o posloupnost příkazů
 - o glEndList(jméno, parametr)
- v metodě display:
 - o glCallList(číslo)

e)Backface culling

- odstranění odvrácených polygonů
 - o odvrácené polygony nejsou zpracovány
 - o není prováděna rasterizace, z-buffer....
 - o orientace závisí na pořadí vrcholů, ne na normále
- glEnable(GL_CULL_FACE)
- glCullFace()
- glFrontFace()
- důležitá orientace polygonů / trojúhelníků

f) Frustum culling

- ořezání zobrazovacím objemem
- vyšetření ve 3D, homogenní souřadnice
 - o u složitějších objektů výpočetně náročné
 - o vytvoření obálek objektu koule
 - o detekce průsečíku koule a rovin omezujících zobrazovací objem
 - o střed koule musí ležet uvnitř nebo vně ve vzdálenosti bližší než je poloměr

- vyšetření ve 2D
 - x, y v rozsahu od -1 do 1 v NDC, nebo po Viewport transformaci <0, width> a <0, height>
 - o vytvoření obálek objektů kruh
 - o promítnutí středu kruhu do průmětny + detekce uvnitř nebo vně
 - o výpočet vzdálenosti středu od obdélníka
 - o zvětšení obdélníka o velikost středu

g)Ohraničující objemy

- těleso obalující celý objekt obálka
- jednoduchá geometrie
 - o rychlý test viditelnosti / zobrazovacího objemu / kolize
 - o základní geometrie tělesa
- rychlejší než provádění testů s plochami původního objektu
- typy
 - o bounding sphere
 - bounding box
 - o elipsoid
 - o K-DOP
 - o convex hull

h)Úroveň detailu

- metoda optimalizace, která snižuje úroveň detailu vzdálených objektů pro zrychlení vykreslení
- LOD (Level of Detail)

- contribution culling
 - některé objekty nezobrazovat
 - pokud je objekt příliš daleko / jeví se příliš malý, není zobrazen
- discrete LOD
 - různě složité objekty pro různé vzdálenosti
 - větší paměťová náročnost
 - nutnost vytvořit modely s různou složitostí
- o continuous
 - automatická degradace objektu
 - hranový kolaps
 - obtížně řešitelné v obecném případě
- MIP Mapping
 - o snižuje počet polygonů, nejčastěji například u stromu
 - výrazně zvyšuje výkon a snižuje náročnost na HW

i) Occlusion culling

• vyloučení elementů, které jsou překryty jinými pixely

j) Deferred shading

- metoda vykreslování, ve které je nejdříve renderována geometrie, poté je vypočítáno osvětlení a stínování pouze pro viditelné části scény
- Ize velmi efektivně zpracovat scénu s mnoha světly
- nejprve se informace načítají z G-bufferu

k)Rozdělení scény

- Bounding Volume Hierarchy
 - o vytvoření ohraničujících geometrií pro jednotlivé objekty
 - možnost překrývání objemů
- Potentially Visible Set
 - o části scény, které mohou být vidět, ostatní není zpracovávané
 - o je nutné řešit skutečnou viditelnost
 - o příklady:
 - Portal Culling
 - možnost vzájemného propojení buněk pomocí portálů
 - pokud není vidět portál, nemůže být vidět buňka
 - BSP Tree
 - rekurzivní dělení prostoru vybranou obecnou rovinou
 - orientace normály určuje co je před a co za rovinou
 - k-D tree
 - osově orientovaný BSP
 - v každé úrovni stromu dělení podle roviny kolmé na jednu souřadnicovou osu
 - Octree
 - pravidelné dělení prostoru scény na 8 boxů (oktetů)
 - boxy jsou reprezentovány listy stromu

B. OpenGL

5. Knihovna OpenGL

a)základní principy

- multi-platformní knihovna pro 2D a 3D grafiku
- API ke grafické kartě
- pixelově orientované
- umí:
 - o vykreslení grafických primitiv
 - o transformace
 - o mapovaní textur
 - o výpočet osvětlení z bodových zdrojů
 - o učení viditelnosti (z-buffer)
- neumí:
 - o práci s okny
 - o výpočet odrazů ve scéně
 - o řešení vržených stínů
 - o pokročilejší algoritmy musí být ručně provedeny v shaderech
- nástupce Vulkan

b)grafické elementy, atributy

- složeny z vrcholů
 - Vertex buffer
 - Index buffer
- modely složeny z:
 - o bodů
 - o čar
 - trojúhelníků
 - o polygonů
- atributy:
 - velikost bodu
 - tloušťka čáry
 - typ čáry
 - o způsob vykreslení
 - o výplň polygonu
 - o orientace vrcholů
 - o ořezání
 - barva

6. Knihovna OpenGL: poskytované funkce pro zobrazení scény, řetězec zpracování a)Modelování scény

- glBegin začátek zadávání objektu
- glEnd konec zadávání objektu
- vytvářejí se modely, které jsou složeny z množství geometrických primitiv
- modely se mohou transformovat rotací, posunem, nebo změnou velikosti

b)Řešení viditelnosti

• využití z-bufferu implementovanému na kartě

c)Osvětlení scény

- různé druhy světla v prostoru scény
- různé techniky osvětlení:
 - bodové
 - reflektové
 - o směrové
 - o plošné
- stínování:
 - o GL_SMOOTH
 - Gouraudovo stínování
 - interpolace barvy ve vrcholech
 - o GL FLAT
 - konstantní stínování
 - obarveno barvou určitého vrcholu

7. Knihovna OpenGL: transformace

a)Způsob skládání transformací, násobení matic

- skládání transformací
- řádky krát sloupce
- Modelovací * Projekční * Pohledová
 - o transformace vpravo se provedou jako první
- glPushMatrix(): uloží aktuální matici na zásobník
- glPopMatrix(): nahradí aktuální matici maticí na vrcholu zásobníku
- glMultMatrix(): násobí aktuální matici maticí, která je vložena jako parametr

b) Modelovací matice

- transformace aplikované na 3D objekty
- aplikují se na vertexy modelu
- translace, rotace, škálování
- glTranslate()
- glRotate()
- glScale()

c) Pohledová matice

- k určení, jak se bude scéna zobrazovat z určitého bodu
- transformace pohledové matice zahrnují rotaci a posun kamery

d)Projekční matice

- před viewport transformací
- používá se k transformaci 3D scény do 2D roviny
- od (-1, 1)
- transformace projekční matice zahrnují perspektivní projekci a určení pozice dálkové roviny

e)Zásobník transformací, použití

- operace
 - glPushMatrix()
 - uloží aktuální matici na zásobník
 - o glPopMatrix()

- vybere matici ze zásobníku a aktualizuje s ní aktuální matici
- počet push a pop musí být stejný

f) Transformace do okna

- prování se aby se určila velikost a pozice okna vykreslování
- glViewPort(x, y, w, h)
 - transformace v rovině xy
- glDepthRange(near, far)
 - o rozsah 0, 1
 - o přepočítává Z souřadnici z intervalu od -1 do 1 (NDC) na definovaný interval
 - o ovlivňuje přesnost z-bufferu

8. Knihovna OpenGL:

a)model osvětlení, typy zdrojů světla, vlastnosti

- různé techniky osvětlení:
 - o **bodové**
 - všude přítomné světlo
 - paprsky jsou rovnoběžné
 - reflektové
 - všesměrový bodový zdroj
 - paprsky se rozbíhají
 - o směrové
 - kužel světla z jednoho bodu
 - podobné jako bodové
 - o plošné
 - vznikají polostíny
 - náročné na výpočet
- attenuation
 - o zeslabení intenzity světla s rostoucí vzdáleností

b)model osvětlení, materiály

phongův osvětlovací model

c)stínování a mlha

- snížení viditelnosti pozorovatele do dálky
- aplikuje se podle Z souřadnice
- parametry:
 - o barva (glFogfv)
 - o režim
 - lineární
 - nelineární

- o hustota
- o startovací a koncová hodnota Z
- stínování:
 - o GL_SMOOTH
 - Gouraudovo stínování
 - interpolace barvy ve vrcholech
 - o GL FLAT
 - konstantní stínování
 - obarveno barvou určitého vrcholu

d)textury, mapování a způsoby aplikace

- MIP mapování textur
 - o různé rozlišení obrazu u textury v jednom souboru
 - o vybrána textura vhodné úrovně podle vzdálenosti od pozorovatele
- Interpolace textury
 - o mapování textury při zvětšení / zmenšení
 - o velikost textury x velikost rastrového elementu
- glEnable(GL_TEXTURE_2D)
 - o zapnutí textur
- glBindTexture(GL_TEXTURE_2D, textureID)
 - o navázání textury na objekt
- glTexEnv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, textureEnvMode)
 - o nastavení způsobu aplikace textury
- glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data)
 - o načtení textury

e)míchání barev

- neboli blending
- míchání nového pixelu s tím, co už je umístěn v Image bufferu
- lineární kombinace barev
 - src * srcFactor + dst * dstFactor
- OpenGL
 - glEnable/Disable(GL_BLEND)
 - o glBlendFunc(SourceFactor, DestinationFactor)
- využití:
 - o částečně transparentní textury

C. Zpracování obrazu a počítačové vidění

9. Komprese rastrového obrazu principy, parametry, použití.

- transformace dat z jedné reprezentace do druhé
- zmenšení velikosti dat při zachování všech informací

a)Ztrátová komprese

- odstraňuje informace, které nejsou pro lidské oko významné
 - o redukce barev
 - o ztráta přesnosti geometrických tvarů
- vysoká komprese 50:1
- JPEG

b)Bezeztrátová komprese

- přesně 100% zachovaný obraz
 - o odstranění nevyužitých bitů
 - o odstranění redundance kódu
- nízká komprese 3:1

10. Komprese grafických dat: metody

a) LZW

- Lampel, Ziv, Welch
- substituční algoritmus
- slovníková metoda komprese
 - o postupně rostoucí slovník vytvářen za běhu
 - o délka kódu je kratší než délka kódovaného řetězce
 - o rozšířená vstupní abeceda (12 bitů)
 - o na výstupu pouze indexy do slovníku
 - o slovník vytvářen pomocí kódování a dekódování
 - speciální znaky na mazání a vytváření slovníku
- jednoduchý algoritmus, složitá implementace
- odstranění šumu před kompresí
- GIF, TIFF, zip, arj

b)RLE

- Run Length Encoding
- kontextově závislá komprese
- opakující se hodnoty jsou nahrazeny počtem opakování a hodnotou
- JPEG, BMP, PCX

c) Huffmanovo kódování

- statická metoda komprese
 - o zjišťuje četnost výskytu kódu
 - o použití prefixového kódu
 - o každá hodnota je reprezentována unikátní bitovou hodnotou
- nahrazuje běžné symboly nebo kombinace symbolů kratšími kódy
- komprese
 - o spočítat výskyt všech znaků
 - o setřídit podle počtu výskytů

- o vytvořit binární strom
- o pro každou hodnotu najít binární reprezentaci
- dekomprese
 - o načíst počáteční hodnoty a vytvořit strom
 - o čtení bitů ze souboru a procházení stromu
- JPEG, TIFF, FAX

11. Grafické formáty, použití, způsob komprese: GIF, TIFF, PCX, JPEG atd.

a) GIF

- pro ukládání obrazových souborů
- omezení 256 barev
- používá se především pro jednoduché obrázky a animace
- verze:
 - o 87a
 - prokládání obrazu
 - umístění bloků na pozadí
 - o 89a
 - doprovodný text vypisovaný na obrazovku
 - řízení grafiky
 - překreslování více obrázků
 - prodleva
 - průhlednost

b) TIFF

- formát pro ukládání rastrových obrazů
- podporuje 16-bitovou barevnou hloubku
- vysoká univerzálnost
 - o různé kódování bytů
 - různé barevné modely
 - o různé komprese (RLE, LZW, JPEG)
- různé kategorie datových položek
 - o velikost
 - o způsob reprezentace
 - vlastní data pruhy
 - o interpretace
- použití
 - o DTP
 - o zpracování obrazu

c) PCX

- pro ukládání rastrových obrazů
- původně pouze 16 barev rozšířeno na 24 bitů
- komprese RLE

d) JPEG

- formát pro ukládání fotografických snímků s vysokým kompresním poměrem, ale určitou ztrátou kvality
- nastavení kvality Q faktor

- o snížení velikosti dat a zrychlení přenosového času
- komprese
 - o transformace předlohy do optimálního barevného prostředí
 - o redukce barev
 - o odstranění redundantních dat
 - kvantizace DCZ koeficientů
 - o cik-cak výběr výsledných koeficientů a aplikace Huffmanova kódování

e) PNG

- nástupce GIFu
 - o nepodporuje animace
- určeno primárně pro internet
- bezeztrátová komprese
- vlastnosti:
 - o TrueColor 24 bitů
 - o detekce poškozených dat při přenosu
 - o různé komprese
 - o věrné zobrazení

f) ostatní

• TGA, SGI, JNG, MNG, DjVu, MrSID, DICOM, BPG, WebP, FLIF

12. Počítačové vidění a rozpoznávání, řetězec zpracování a rozpoznávání obrazu, aplikace

a) počítačové vidění

- obor zabývající se zpracováním obrazu pomocí PC
 - o rozpoznání objektů v obraze
 - o vyhledávání známých tvarů a entit
- používají se algoritmy a techniky zpracování signálů

b) řetězec zpracování

- proces identifikace
 - o klasifikace a přiřazení významu obrazům
 - o používá se především v oblasti umělé inteligence
- předzpracování
 - o změna formátu, barev, ořezání...
- segmentace obrazu na objekty
- popis objektů

c) aplikace

- rozpoznání textu
- dálkový průzkum země
- lékařství
- sledování dopravy
- identifikace lidí
- pohyb robotů

13. Snímání obrazu

a)Požadavky na snímání, digitalizace a reprezentace obrazu

- kvalita obrazu, rozlišení a citlivost senzoru
- analogové signály se musí převést na digitální pomocí A/D převodníků
- digitální obraz může být reprezentován pomocí rastrových nebo vektorových dat

b)Vzorkování

- provedení digitalizace signálu v pravidelných intervalech
- čím vyšší vzorkovací frekvence, tím vyšší rozlišení obrazu, ale také větší datový objem
- typy
 - pravidelné
 - o náhodné
 - o roztřesené
 - o semi-jitter
 - o poissonovo diskové vzorkování

c) Kvantování

- reprezentace digitálního obrazu pomocí konečného počtu úrovní jasu
- čím větší počet úrovní, tím vyšší kvalita obrazu, ale větší datový objem
- typy
 - o uniformní
 - konstantní délka intervalu
 - rovnoměrné rozložení
 - o neuniformní
 - proměnná délka intervalu
 - méně využívaná
 - technicky náročnější

d)Snímání prostorové informace

- pokud senzor nezachycuje pouze intenzitu, ale také polohu, může vzniknout obraz s prostorovou informací
- typy
 - pasivní triangulace
 - jeden snímaný obraz
 - 1 kamera
 - stereoskopické vnímání využití 2 pohledů z různých úhlů
 - aktivní triangulace
 - osvětluje scénu
 - dotykové snímání
 - laserové snímání
 - Motion Capture
 - o snímání 2D obrazu
 - dírková kamera
 - všechno zaostřené
 - zachovává linie
 - kamera s čočkou
 - vzniká zakřivení
- expozice

- citlivost (ISO)
 - o s citlivostí rose šum
 - o Scanner jednorozměrný senzor, který se postupně hýbe
 - o CCD / CMOS
- šum
 - o nadbytečná informace, která nesouvisí s obrazem
 - bílý šum
 - nadbytečné informace
 - o sůl a pepř
 - hodnoty {-max, 0, max}
 - o kvalita signálu
 - poměr signál-šum
- 3D snímání
 - o LIDAR
 - výstupem jsou body umístěny v prostoru
 - vhodné pro snímání vegetace
 - Medicínské scannery
 - MRI

14. Předzpracování obrazu

a)Operace s obrazem

- aritmetické operace (sčítání, odčítání, násobení)
 - o kombinace 2 obrazů
 - o problém s přetečením rozsahu saturace
- logické operace (AND, OR, XOR, NOT)
- konvoluce (hladké a ostřejší filtry)
- převod na odstíny šedi

b)Geometrické transformace obrazu

- přepočet souřadnic obrazu na nové
 - o posunutí, otočení, škálování, zkosení
- transformační funkce
- deformace
- warping
 - o zmačkání, pokřivení
 - trojúhelníková síť
- morphing
 - spojitý přechod mezi 2 obrazy
- transformace rastru
 - o mapování jednotlivých pixelů vstupního obrazu na výstupní rastr

c) Interpolace obrazu

- získání nových hodnot pixelů na základě existujících
- postupy:
 - o nearest neighbor
 - získání hodnoty nejbližšího souseda (zaokrouhlení)
 - o bilineární interpolace
 - interpolace na základě 4 okolních hodnot

- o bikubická interpolace
 - použití okolních 16 sousedů
- o kosinová interpolace
 - použití 4 sousedů
- o Lanczos interpolace
 - zachování detailu
 - malý alias při vzorkování

d)Úprava jasové funkce

- změna celkového kontrastu nebo jasu
- histogram obrazu lze použít k optimalizaci jasové funkce
- typy
 - roztažení kontrastu
 - prahování
 - vytváření monochromatického obrazu
 - o gamma korekce
 - přizpůsobuje obraz lidskému oku nebo charakteristice snímače

e)Histogram a vyrovnání histogramu

- ukazuje, kolik pixelů má určitou intenzitu
- globální informace
- vyrovnání histogramu
 - equalizace
 - nelineární přerozdělení úrovní kvantifikace, aby komulativní histogram měl lineární průběh
 - o nemění se četnosti ale úroveň intenzit

- vyhlazení histogramu
 - o obsahuje řadu lokálních minim a maxim

- o provedení vyhlazená váženým průměrem
- o plovoucí okno s váženým průměrem průměrování několika hodnot z okolí

15. Filtrace obrazu

a)Konvoluční filtry – aplikace, příklady

- matematická operace aplikovaná na pixely obrazu, kde nová hodnota pixelu je váženým průměrem jeho okolí
- používá se k vyhlazení obrazu, zvýraznění hran nebo odstranění šumu
- příklady
 - o obyčejné průměrování
 - nový jas je průmětem okolních hodnot
 - Gaussův filtr
 - rozmazání pomocí normálního rozdělení
 - o nelineární filtrace
 - filtrace pomocí mediánu

b)Gradientní operátory – použití, příklady

- operace, které vypočítávají gradient obrazu, tedy změnu intenzity v jednotlivých směrech
- používají se k detekci hran a změn v intenzitě obrazu
- typy
 - o Robertsův operátor
 - veliká citlivost na šum
 - nesymetrický
 - Sobelův operátor
 - aproximuje 1. derivaci, je směrově závislý
 - zvýhodňuje sousedy přes hrany (4-okolí)
 - používá se pro detekci hran
 - Cannyho hranový detektor
 - kritéria
 - žádná hrana nesmí být opomenuta
 - rozdíl mezi skutečnou a nalezenou hranou musí být minimální
 - potlačení hran s nemaximální hodnotou

c) Frekvenční filtry

- používají se k odstranění periodického šumu nebo změn v intenzitě obrazu na určitých frekvencích
- Fourierova transformace
 - rozložení komplexního signálu na jednotlivé složky
- filtry
 - dolní propust
 - odstraňuje z obrazu složky vyšších frekvencí
 - odstraňuje detail a šum
 - průměrování
 - horní propust
 - odstraňuje složky s nízkou frekvencí
 - detekce bodů a hran
 - o pásmová propust
 - propouští pouze vybrané složky frekvencí

- výší dimenze matice filtru
- navržení filtru pro konkrétní aplikace
- převod do frekvenční oblasti

16. Segmentace obrazu

a) Prahování, metody určení prahu

- rozděluje pixely do dvou skupin
 - o hodnota přesahuje určitý práh
 - hodnota je pod prahovou hodnotou
- metodu určení prahu
 - o pevné hodnoty prahu
 - pomocí známé kalibrované stupnice
 - podle fyzikálního principu snímání
 - o procentní prahování
 - znalost procentuálního pokrytí objekty
 - o analýza histogramu
 - podle počtu vrcholů
 - hodnota mezi vrcholy určuje hodnotu prahu

- o otsuova metoda
 - statická metoda optimálního prahu
 - statická analýza histogramu
 - rozdělení na 2 třídy B a O s určitým prahem T
- o iterační metoda
 - předpoklad pro první iteraci:
 - všechny pixely patří k oblasti Objektu kromě 4 rohových, které patří Pozadí
 - pro obě třídy určíme dělící hodnotu použitou v další iteraci
 - další iterace:
 - spočítáme průměrnou hodnotu pro Objekty a Pozadí a zase spočítáme novou hodnotu prahu
 - v iteraci pokračujeme, dokud hodnota nekonverguje
- o prahování barevného obrazu
 - převedeme na grayscale
 - nebo v každých složkách zvlášť
 - nebo převod do jiného barevného modelu

b)Segmentace na základě detekce hran, Houghova transformace

- spočívá v nalezení bodů v obraze, kde se jeho jas mění rychle
- heuristické sledování hranice
 - velikost hran tvořící hranici
 - vzdálenost od předpokládané hranice

- odhadu ceny z uzlu do koncového uzlu
- o zjednodušení stromu řešení
- o nejmenší maximální ceny
- o hledání s omezením cesty
- hranové detektory
 - o pixely označené jako hraniční se snažíme pospojovat do oblasti

- Houghova transformace
 - o úloha nalezení daného předmětu v obraze
 - o nutná znalost rovnice hraničních křivek
 - o necitlivost výsledků na šum
 - pro všechny body obrazového prostoru lze nalézt obraz odpovídající všem možným přímkám procházejících obrazovým bodem
 - o obrazem je opět přímka
 - o průsečím přímek nám dává parametry hledané přímky
- c) Segmentace na základě detekce oblastí, narůstání a štěpení oblastí, srovnávání se vzorem.
 - informace o spojitých oblastech v obraze, které mají podobné vlastnosti
 - homogenita
 - závisí na konkrétním segmentačním mechanismu, může být založena na odstínu šedi, tvaru, textuře...
 - o výsledná oblast v segmentovaném obraze musí být homogenní a současně maximální
 - region growing
 - o záplavový algoritmus
 - počátek semínko, oblast
 - hranice kritérium homogenity
 - sousednost 4 a 8 konektivita
 - přístupy
 - spojováni oblastí
 - na začátku každý pixel jednotlivá oblast, postupně spojujeme
 - Pozor na 4 nebo 8 sousednost
 - štěpení oblastí
 - na začátku celý obrázek jedna oblast, postupně štěpíme
 - dělení může být pravidelné např. kvadrantový strom
 - dělení může být i nepravidelné
 - o segmentace srovnání se vzorem
 - testování souhlasu vzoru s obrazem
 - výpočet korelace
 - úroveň celých objektů
 - úroveň malých vzorů
 - problémy
 - geometrická transformace objektu v obraze
 - přítomnost šumu

- brute-force algoritmus
 - snažíme se namapovat vzor (s různými transformacemi) na obrázek
 - pro všechny možné transformace určit míru vzoru a obrazu

d) Matematická morfologie – operace, použití

- metoda pro analýzu tvaru a struktury obrazu pomocí matematických operací jako eroze a dilatace
- nauka o tvarech
- dilatace
 - o objekty se rozrůstají podle velikosti strukturního elementu
 - zaplnění malých děr a úzkých zálivů

- eroze
 - o zjednodušení struktury objektu
 - rozklad objektů spojených čarami na několik objektů
 - o nalezení obrysů objektů

- otevření a uzavření
 - o používá se pro odstranění detailů menších, než je velikost strukturálního elementu
 - otevření
 - oddělí objekty spojené úzkou šíjí
 - zjednoduší strukturu objektů
 - uzavření
 - spojuje blízké objekty
 - zaplní malé díry a vyhladí obrys

17. Popis objektů a porozumění obrazu, klasifikace, kvantitativní charakteristiky, obarvení obrazu.

a) popis objektů a porozumění obrazu

- interpretace obrazu, klasifikace oblastí
- teorie rozpoznávání, umělá inteligence, statistika
- třídy objektů
- klasifikátor, kritéria
- popis objektů
- obrazový prostor

b) klasifikace

- rozlišování objektů do skupin na základě rysů
- použití strojového učení k naučení se klasifikovat objekty

c) kvantitativní charakteristiky

- vlastnosti objektů vyjádřené kvantitativně např. velikost, tvar, barva, textura
- využití statistických metod pro analýzu a porovnání charakteristik objektů

d) obarvení obrazu

- změna barev v obrazu pro zlepšení vizuálního dojmu nebo zvýraznění určitých rysů
- aplikace barevných filtrů pro zvýraznění konkrétních oblastí v obrazu

D. Doplňkové

1. Metody znázornění 3D prostoru

- projekce (promítnutí)
- stereoskopie
 - o vytvoříme 2 pohledy na scénu
 - pro pravé a levé oko
 - o výsledný obraz vnímáme ve 3D
- osvětlení a vržené stíny, barvy, textury a jiné efekty
 - o pomohou nám rozpoznat, co vlastně vidíme
 - o dodají výslednému obrazu atmosféru nebo styl
- pohyb (animace)
- konkrétní způsoby projekce
 - o paralelní promítání
 - promítnutí do některé z rovin (x, y, z)
 - perspektivní
 - odpovídá lidskému vidění světa
 - typy
 - jednoúběžníková perspektiva
 - dvoúběžníková perspektiva
 - trojúběžníková perspektiva

2. Jak popisujeme transformace v 2D.

- proces, při kterém dochází ke změně polohy, orientace, velikosti
- lineární transformace
 - o posunutí
 - o otočení
 - o změna měřítka
 - o zrcadlení
 - zkosení
- obrazem bodu je bod
- vektorová a rastrová grafika
 - o vektor transformace se aplikuje na všechny řídící body
 - o rastr aplikuje se na všechny pixely rastru

3. Jaké základní lineární transformace v 2D používáme, jak jsou definovány

Posunutí: X' = X +Px, Y' = Y + Py
 Změna měřítka: X' = X * Zx, Y' = Y * Zy
 Otočení: X' = X * cos(a) - Y * sin(a) Y' = X * sin(a) + Y * cos(a)

· Zkoseni, zrcadleni, bodová symetrie

 $\frac{\text{Matice}}{\text{Změna měřítka}}$ $S(Sx,Sy) = \begin{pmatrix} Sx & 0 & 0 \\ 0 & Sy & 0 \\ 0 & 0 & 1 \end{pmatrix}$ Pokud je Sx = Sy, je možné se stejným efektem použít matici $1 & 0 & 0 \\ S = 0 & 1 & 0 \\ 0 & 0 & Sx \\ \text{Tzn. nastavením homogenní souřadnice lze dosáhnout změny}$ Rotace $\frac{cos(\alpha)}{R(\alpha)} - \frac{-sin(\alpha)}{cos(\alpha)} & 0 \\ R(\alpha) = \frac{sin(\alpha)}{cos(\alpha)} & 0 \\ 0 & 0 & 0 \\ R(\alpha) = \frac{sin(\alpha)}{cos(\alpha)} & 0 \\ 0 & 0 & 0 \\ R(\alpha) = \frac{sin(\alpha)}{cos(\alpha)} & 0 \\ 0$

Posunutí
$$\begin{array}{cccc}
1 & 0 & Px \\
T = 0 & 1 & Py
\end{array}$$

Zkosení (Shear)
$$S = \begin{matrix} 1 & Zx & 0 \\ S = Zy & 1 & 0 \\ 0 & 0 & 1 \end{matrix}$$

$$\mathbf{Sh}_x(sh_x) = \begin{bmatrix} 1 & sh_x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ \mathbf{Sh}_y(sh_y) = \begin{bmatrix} 1 & 0 & 0 \\ sh_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

4. Jak popisujeme transformace v 3D.

- transformace světa
 - o změna měřítka, translace, rotace objektů
 - o transformace může být výsledkem součinu několika transformačních matic
 - o transformace světa jsou většinou jedinečné pro každý 3D objekt ve scéně
- pohledová transformace
 - o tato transformace se používá pro úpravu celé scény
 - o transformace upraví všechny vrcholy a vyjádří je v nových lokálních souřadnicích
- projekční transformace
 - o může přidat perspektivní nebo ortogonální projekci
 - o použití homogenních souřadnic
 - nutné před vykreslením homogenizovat

5. Jaké základní lineární transformace v 3D používáme, jak jsou definovány.

Posunutí

Posunutí ve 3D je určeno vektorem posunutí $\vec{p}=(X_t,Y_t,Z_t)$. Transformační matice posunutí ${\bf T}$ a inverzní matice ${\bf T}^{-1}$ jsou

$$\mathbf{T} = \mathbf{T}(X_t, Y_t, Z_t) = \begin{bmatrix} 1 & 0 & 0 & X_t \\ 0 & 1 & 0 & Y_t \\ 0 & 0 & 1 & Z_t \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Změna měřítka

$$\mathbf{S}(s_x, s_y, s_z) = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotace kolem os: o X

 $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\alpha & -\sin\alpha & 0 \\ 0 & \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \text{Transponovan\'a:} \qquad \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\alpha & \sin\alpha & 0 \\ 0 & -\sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

o Y

$$\begin{pmatrix} \cos\alpha & 0 & \sin\alpha & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\alpha & 0 & \cos\alpha & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Transponovaná:

$$\begin{pmatrix} \cos\alpha & 0 & -\sin\alpha & 0 \\ 0 & 1 & 0 & 0 \\ \sin\alpha & 0 & \cos\alpha & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

o Z

$$\begin{pmatrix} \cos\alpha & -\sin\alpha & 0 & 0\\ \sin\alpha & \cos\alpha & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 Transponovaná:

$$\begin{pmatrix} cos\alpha & sin\alpha & 0 & 0 \\ -sin\alpha & cos\alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Zkosení:

$$\mathbf{Sh}_{yz} = \begin{bmatrix} 1 & sh_y & sh_z & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \; \mathbf{Sh}_{xz} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ sh_x & 1 & sh_z & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \; \mathbf{Sh}_{xy} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ sh_x & sh_y & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

6. Jak funguje skládání transformací.

- Skládání transformací (matic) není komutativní = záleží na pořadí prováděných transformací! $A \cdot B \neq B \cdot A$
- Ale naštěstí je asociativní = můžeme libovolně skládat do závorek $\mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C}) = (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}$
- Taky platí, že Maticové násobení je distributivní vůči sčítání = lze vytýkat před závorku $\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$
- Přinásobením jednotkové matice E zleva i zprava se nic nezmění

$$\mathbf{E} \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{E} = \mathbf{A}$$

Transpozice součinu matic je součin transponovaných matic v opačném pořadí $(\mathbf{A}\cdot\mathbf{B})^T=\mathbf{B}^T\cdot\mathbf{A}^T$

$$(\mathbf{\Delta} \cdot \mathbf{R})^T = \mathbf{R}^T \cdot \mathbf{\Delta}^T$$

Inverzní matice součinu regulárních matic je součin inverzních matic v opačném pořadí

- model
 - modelovací matice; vznikla složením matice rotace, posunu, měřítka, atd.... 0
- view

- o pohledová matice; vznikla složením vektorů popisujících pozorovatele
- projection
 - o projekční matice (promítnutí); popisuje druh pohledu (perspektiva/ortogonální)

7. Kumulativní histogram

- <u>viz 14) e)</u>
- 8. Houghova transformace
 - viz 16) b)
- 9. Co je to alias, kdy vzniká
 - chyba při vzorkování spojité funkce

- časový alias
 - o blikání
 - o interference cyklického pohybu se snímkovou frekvencí
- prostorový alias
 - o schodovité zobrazení šikmých čar

- interference obrazu s rastrem
- lze vyřešit anti-aliasingem

10. Mediánový filtr – použití

- nelineární metoda odstranění šumu
- vhodný k odstranění náhodného šumu
- algoritmus
 - o pro každý pixel:
 - seřaď okolní pixely podle jejich intenzity
 - z těch pixelů urči medián a nahraď jím hodnotu zpracovávaného pixelu

11. Výpočet osvětlení ve scéně

a. Vysvětlete pojem konstantní stínování.

- flat shading
- předpokládá se, že plocha má pouze jednu normálu
- barva závisí na normále plochy, která je stejná pro celou plochu
- tělesa s interpolovanými povrchovými plochami se jeví hranatá
- zvýraznění umělých hran
- vhodné pro hranatá tělesa

b. Vysvětlete pojem interpolace barvy.

- výpočet barvy mezi 2 jinými barvami
- také se nazývá Gouraudovo stínování
- osvětlení se vypočítá ve vrcholech plochy a vypočtená barva se interpoluje v ploše
- plynulé stínování

c. Vysvětlete pojem interpolace normály.

- vhodné v phongově stínování
- určena k plynulému stínování těles, jejichž povrch je tvořen množinou rovinných bodů
- vychází ze znalosti normálových vektorů ve vrcholech
- vyšší časová náročnost

d. Phongův osvětlovací model – ambientní složka.

- okolní světlo udává intenzitu té části světla, která na těleso dopadá rovnoměrně ze všech směru
- konstantní osvětlení
- okolní světlo zajišťuje, aby povrchy odvrácené od světla nebyly zcela černé

e. Phongův osvětlovací model – difúzní složka.

- udává intenzitu té části světla, která se od matného povrchu tělesa rovnoměrně odráží do všech směrů
- množství odraženého světla závisí na směru dopadu světla
- čím více dopadne, tím více se odrazí
- tento jev popisuje Lambertův zákon

f. Phongův osvětlovací model – zrcadlová složka.

• udává intenzitu té části, která se od tělesa odráží převážně v jednom směru podle zákona odrazu