動的計画法:DP

北海道大学 情報科学研究科 情報知識ネットワーク研究室 修士1年 栗田 和宏

DPって何?

- > DP(Dynamic Programming)とはある計算式に対して、一度計算した結果を記憶しておき、効率化を図ることである.
- ⇒ 記憶するメモリのことをDPテーブルと呼ぶ

⇒ DPを使ってフィボナッチ数を求めてみよう!!

⇒ fibonacci(5) → fibonacci(4) + fibonacci(3)

- ⇒ fibonacci(5) → fibonacci(4) + fibonacci(3)
- ⇒ fibonacci(4) → *fibonacci(3) + fibonacci(2)

- ⇒ fibonacci(5) → fibonacci(4) + fibonacci(3)
- ⇒ fibonacci(4) → *fibonacci(3) + fibonacci(2)
- ⇒ fibonacci(3) → *fibonacci(2) + fibonacci(1)

- ⇒ fibonacci(5) → fibonacci(4) + fibonacci(3)
- ⇒ fibonacci(4) → *fibonacci(3) + fibonacci(2)
- ⇒ fibonacci(3) → *fibonacci(2) + fibonacci(1)
- \Rightarrow fibonacci(2) \rightarrow *fibonacci(1) + fibonacci(0)

- ⇒ fibonacci(5) → fibonacci(4) + fibonacci(3)
- ⇒ fibonacci(4) → *fibonacci(3) + fibonacci(2)
- ⇒ fibonacci(3) → *fibonacci(2) + fibonacci(1)
- \Rightarrow fibonacci(2) \rightarrow *fibonacci(1) + fibonacci(0)
- \Rightarrow *fibonacci(1) \rightarrow 1

. . .

1, 1, ?, ?, ?, ?

1, 1, 2, ?, ?, ?

1, 1, 2, 3, ?, ?

1, 1, 2, 3, 5, ?

1, 1, 2, 3, 5, 8

> 愚直なアルゴリズム計算量: O(2ⁿ)

→ DPを用いたアルゴリズム 計算量: O(n)

ソースコードの例

https://github.com/kazu0423/procon example/ blob/master/fibonacci dp.cpp

最長共通部分列

→ 最長共通部分列(Longest Common Subsequence) とは2つの与えられた列XとYの最長の共通部分列を求める問題である.

部分列とは?

⇒ 列X = abcの部分列 {emp, a, b, c, ab, bc, ac, abc}

- (emp:空集合)
- > 大雑把に言うと元の文字列の順番は変えずに、 幾つか文字を取ってきてできる列

愚直な解法

- >列Xと列Yの部分列を列挙する.
- > 列Xの1つの部分列と列Yの全ての部分列を比較 して共通部分の長さを求める
- ⇒最長なものが見つかる

n = max(|X|, |Y|)

愚直な解法

- > 列Xと列Yの部分列を列挙する. → O(2ⁿ)
- > 列Xの1つの部分列と列Yの全ての部分列を比較 して共通部分の長さを求める → O(n³)
- ⇒ 最長なものが見つかる \rightarrow O(1) $n = \max(|X|, |Y|)$

自明な考察

- > 例えば列Xと列YのLCSがわかっていると仮定 する.
- > このとき, X'=X+aとY'=Y+aのLCSは?

自明な考察

- ⇒ 例えば列Xと列YのLCSがわかっていると仮定 する.
- > このとき, X'=X+aとY'=Y+aのLCSは?
- ⇒ 当然,列X'と列Y'とのLCS + 1である.

記憶する計算

⇒ 列X_iと列Y_jのLCSがわかっていれば、列X_{i+1}と 列Y_{j+1}のLCSをO(1)求められる.

記憶する計算

- > 列Xの先頭からi個の列をXiとする.
- ⇒ 列X_iと列Y_jのLCSがわかっていれば、列X_{i+1}と 列Y_{j+1}のLCSをO(1)求められる.
- ⇒ ということは列X_iと列Y_jのLCSを記憶しておけば 良い.

X\Y	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0						
2	0						
3	0						
4	0						
5	0						

X\Y	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	1	1	1	1	1
2	0						
3	0						
4	0						
5	0						

X\Y	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	1	1	1	1	1
2	0	1	2	2	2	2	2
3	0						
4	0						
5	0						

X\Y	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	1	1	1	1	1
2	0	1	2	2	2	2	2
3	0	1	2	2	2	2	2
4	0	1	2	3	3	3	3
5	0	1	2	3	4	4	4

X\Y	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	1	1	1	1	1
2	0	1	2	2	2	2	2
3	0	1	2	2	2	2	2
4	0	1	2				
5	0						

X\Y	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	1	1	1	1	1
2	0	1	2	2	2	2	2
3	0	1	2	2	2	2	2
4	0	1	2				
5	0						

X\Y	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	1	1	1	1	1
2	0	1	2	2	2	2	2
3	0	1	2	2	2	2	2
4	0	1	2	3			
5	0						

X\Y	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	1	1	1	1	1
2	0	1	2	2	2	2	2
3	0	1	2	2	2	2	2
4	0	1	2	3			
5	0						

X\Y	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	1	1	1	1	1
2	0	1	2	2	2	2	2
3	0	1	2	2	2	2	2
4	0	1	2	3			
5	0						

X = abacd, Y = abcded

X\Y	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	1	1	1	1	1
2	0	1	2	2	2	2	2
3	0	1	2	2	2	2	2
4	0	1	2	3	3		
5	0						

更新の計算量

- ⇒ DPテーブルの各マスはO(1)で更新可能.
- > マスの数は|X|*|Y|
- ⇒ 計算量はO(|X|*|Y|)になる.
- ⇒ 発展問題としてLongest common substringという 問題もある.

ソースコードの例

https://github.com/kazu0423/procon example/ blob/master/longest common subsequence.cpp

連鎖行列積

- > n個の行列の連鎖M₁, M₂, ..., Mnが与えられたとき, 乗算回数の最小を求めよ
- >制約

1 < n, r, c < 100

乗算回数:0回

 3

 5

 8

5 9 2

1	6	3
7	2	4
6	4	8

乗算回数:9回

15	27	6
25	45	10
40	72	16

1	6	3
7	2	4
6	4	8

乗算回数:36回

乗算回数:0回

 3

 5

 8

5 9 2

1	6	3
7	2	4
6	4	8

乗算回数:9回

3 5 8

80 | 56 | 67

乗算回数:18回

発展:連鎖行列積

- ⇒ 行列の乗算の順番によって乗算回数が大きく異なる。
- > 乗算回数の最小値はいくつか?

愚直な解放

> やっぱりまずは全探索. これで解ければ一番楽!!

愚直な解放

- > やっぱりまずは全探索. これで解ければ一番楽!!
- しかし全探索はO(n!)かかる → nの最大値は100 これはまずい

愚直な解放

- ンやっぱりまずは全探索. これで解ければ一番楽!!
- > しかし全探索はO(n!)かかる → nの最大値は100 これはまずい
- ⇒ DPを使おう

- ⇒ 行列M₁とM₂を考える. M₁は(c₁, r₁), M₂は(c₂, r₂)の 行列である.
- > これらの行列の乗算回数はr₁*c₁*r₂である.

- ⇒ 行列M₁とM₂を考える. M₁は(c₁, r₁), M₂は(c₂, r₂)の 行列である.
- > これらの行列の乗算回数はr₁*c₁*r₂である.
- ⇒ しかし、我々が知りたいのはM₁M₂M₃…M_nの 乗算回数である。

- $^{\circ}$ ここで、 $M'_{1} = M_{1}...M_{k}$ と $M'_{2} = M_{k+1}...M_{m}$ に 分けて考える
- ⇒ もし、M'₁とM'₂を作る最小の乗算回数がわかれば M'₁M'₂を作る最小の乗算回数がわかる.

- $^{\diamond}$ ここで、 $M'_{1}=M_{1}...M_{k}$ と $M'_{2}=M_{k+1}...M_{m}$ に 分けて考える
- ⇒ もし、M'₁とM'₂を作る最小の乗算回数がわかれば
 M'₁M'₂を作る最小の乗算回数がわかる。
- ⇒覚えておこう

- ⇒ M'₁とM'₂の作り方はO(m)通りなので、O(m)通りの中の最小値を求める。
- ⇒ まとめるとDPテーブルにはi番目からj番目までの 最小の乗算回数を記憶させることになる.

i\j	1	2	3	4	5	6
1	0	inf	inf	inf	inf	inf
2	emp	0	inf	inf	inf	inf
3	emp	emp	0	inf	inf	inf
4	emp	emp	emp	0	inf	inf
5	emp	emp	emp	emp	0	inf
6	emp	emp	emp	emp	emp	0

i\j	1	2	3	4	5	6
1	0	inf	inf	inf	inf	inf
2	emp	0	inf	inf	inf	inf
3	emp	emp	0	inf	inf	inf
4	emp	emp	emp	0	inf	inf
5	emp	emp	emp	emp	0	inf
6	emp	emp	emp	emp	emp	0

i\j	1	2	3	4	5	6
1	0	8	inf	inf	inf	inf
2	emp	0	inf	inf	inf	inf
3	emp	emp	0	inf	inf	inf
4	emp	emp	emp	0	inf	inf
5	emp	emp	emp	emp	0	inf
6	emp	emp	emp	emp	emp	0

i\j	1	2	3	4	5	6
1	0	8	inf	inf	inf	inf
2	emp	0	inf	inf	inf	inf
3	emp	emp	0	inf	inf	inf
4	emp	emp	emp	0	inf	inf
5	emp	emp	emp	emp	0	inf
6	emp	emp	emp	emp	emp	0

i\j	1	2	3	4	5	6
1	0	8	inf	inf	inf	inf
2	emp	0	8	inf	inf	inf
3	emp	emp	0	inf	inf	inf
4	emp	emp	emp	0	inf	inf
5	emp	emp	emp	emp	0	inf
6	emp	emp	emp	emp	emp	0

i\j	1	2	3	4	5	6
1	0	8	inf	inf	inf	inf
2	emp	0	8	inf	inf	inf
3	emp	emp	0	inf	inf	inf
4	emp	emp	emp	0	inf	inf
5	emp	emp	emp	emp	0	inf
6	emp	emp	emp	emp	emp	0

i\j	1	2	3	4	5	6
1	0	8	inf	inf	inf	inf
2	emp	0	8	inf	inf	inf
3	emp	emp	0	8	inf	inf
4	emp	emp	emp	0	inf	inf
5	emp	emp	emp	emp	0	inf
6	emp	emp	emp	emp	emp	0

i\j	1	2	3	4	5	6
1	0	8	inf	inf	inf	inf
2	emp	0	8	inf	inf	inf
3	emp	emp	0	8	inf	inf
4	emp	emp	emp	0	8	inf
5	emp	emp	emp	emp	0	8
6	emp	emp	emp	emp	emp	0

i\j	1	2	3	4	5	6
1	0	8	inf	inf	inf	inf
2	emp	0	8	inf	inf	inf
3	emp	emp	0	8	inf	inf
4	emp	emp	emp	0	8	inf
5	emp	emp	emp	emp	0	8
6	emp	emp	emp	emp	emp	0

i\j	1	2	3	4	5	6
1	0	8	inf	inf	inf	inf
2	emp	0	8	inf	inf	inf
3	emp	emp	0	8	inf	inf
4	emp	emp	emp	0	8	inf
5	emp	emp	emp	emp	0	8
6	emp	emp	emp	emp	emp	0

i\j	1	2	3	4	5	6
1	0	8	16	inf	inf	inf
2	emp	0	8	inf	inf	inf
3	emp	emp	0	8	inf	inf
4	emp	emp	emp	0	8	inf
5	emp	emp	emp	emp	0	8
6	emp	emp	emp	emp	emp	0

i\j	1	2	3	4	5	6
1	0	8	16	inf	inf	inf
2	emp	0	8	16	inf	inf
3	emp	emp	0	8	16	inf
4	emp	emp	emp	0	8	16
5	emp	emp	emp	emp	0	8
6	emp	emp	emp	emp	emp	0

i\j	1	2	3	4	5	6
1	0	8	16	inf	inf	inf
2	emp	0	8	16	inf	inf
3	emp	emp	0	8	16	inf
4	emp	emp	emp	0	8	16
5	emp	emp	emp	emp	0	8
6	emp	emp	emp	emp	emp	0

i\j	1	2	3	4	5	6
1	0	8	16	inf	inf	inf
2	emp	0	8	16	inf	inf
3	emp	emp	0	8	16	inf
4	emp	emp	emp	0	8	16
5	emp	emp	emp	emp	0	8
6	emp	emp	emp	emp	emp	0

i\j	1	2	3	4	5	6
1	0	8	16	inf	inf	inf
2	emp	0	8	16	inf	inf
3	emp	emp	0	8	16	inf
4	emp	emp	emp	0	8	16
5	emp	emp	emp	emp	0	8
6	emp	emp	emp	emp	emp	0

i\j	1	2	3	4	5	6
1	0	8	16	inf	inf	inf
2	emp	0	8	16	inf	inf
3	emp	emp	0	8	16	inf
4	emp	emp	emp	0	8	16
5	emp	emp	emp	emp	0	8
6	emp	emp	emp	emp	emp	0

i\j	1	2	3	4	5	6
1	0	8	16	24	inf	inf
2	emp	0	8	16	inf	inf
3	emp	emp	0	8	16	inf
4	emp	emp	emp	0	8	16
5	emp	emp	emp	emp	0	8
6	emp	emp	emp	emp	emp	0

i\j	1	2	3	4	5	6
1	0	8	16	24	32	40
2	emp	0	8	16	24	32
3	emp	emp	0	8	16	24
4	emp	emp	emp	0	8	16
5	emp	emp	emp	emp	0	8
6	emp	emp	emp	emp	emp	0

更新の計算量

- ⇒ 大雑把に考えると一つのマスを更新するのに 最悪でもO(n)時間で更新できる.
- ンマスの数はn²なので更新にはO(n³)時間がかかる.

更新の計算量

- ⇒ 大雑把に考えると一つのマスを更新するのに 最悪でもO(n)時間で更新できる.
- ンマスの数はn²なので更新にはO(n³)時間がかかる.
- > これならnが100でも余裕で間に合う

ソースコードの例

 https://github.com/kazu0423/procon_example/ blob/master/ matrix chain multiplication_problem.cpp

まとめ

- ⇒ DPとは途中結果を記憶して同じ計算をしないよう にするテクニック
- ⇒ DPの計算量を出すときは マスの数*1マスを埋めるのにかかる時間
- ⇒他にも有名な問題としてナップサック問題というのもある。