

LECTURE 3:

OPTIMIZATION IN DEEP LEARNING

University of Washington, Seattle

Fall 2024

Previously in EEP 596...

$$J = E_2 = \sum_{i=1}^{n} (\vec{p} \cdot \vec{\tilde{x}}_i - y_i)^2 \quad \vec{p}^* = (X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}} \vec{y}$$

$$p = \frac{1}{1 + e^{-x}} \quad 0 \le p \le 1$$

Previously in EEP 596...

Previously in EEP 596...

$$\nabla_{\vec{w}} L(\hat{y}, y) = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} \nabla_{\vec{w}} z$$

$$\begin{vmatrix} z = \\ \vec{w}^T \vec{x} + b \end{vmatrix} \longrightarrow \begin{vmatrix} \hat{y} = \sigma(z) \\ \vec{w} \end{vmatrix} \longrightarrow L(\hat{y}, y)$$

$$\hat{y} = \sigma(z)$$

$$\rightarrow L(\hat{y}, y)$$

$$\nabla_{\vec{w}}z$$

$$rac{\partial \hat{y}}{\partial z}(z)$$

$$\nabla_{\vec{w}}z \qquad \stackrel{\longleftarrow}{\leftarrow} \qquad \frac{\partial \hat{y}}{\partial z}(z) \qquad \stackrel{\longleftarrow}{\leftarrow} \qquad \frac{\partial L}{\partial \hat{y}}(\hat{y},y)$$

OUTLINE

Part 1: Stochastic Gradient Descent

- GD vs SGD
- Convergence of SGD
- Learning rate and convergence
- Comparing GD variants

Part 2: Optimizers

- Variable learning rate
- Advanced methods
- Choosing optimizer

Part 3: Optimization Techniques in DL

- Cross validation
- Regularization
- Data Normalization
- Batch-normalization
- Network initialization
- Hyperparameter tunings

PART 1:

Stochastic Gradient Descent (SGD)

Gradient descent (GD) vs Stochastic Gradient Descent (SGD)

Batch Gradient Descent

1 iteration: FWD pass and BWD pass on

whole training set

Stochastic Gradient Descent

1 iteration: FWD pass and BWD pass on

subset of training set

Stochastic Gradient Descent

Batch Gradient Descent

Stochastic Gradient Descent

Batch Gradient Descent

Stochastic Gradient Descent

Batch Gradient Descent

Stochastic Gradient Descent

Batch Gradient Descent

Stochastic Gradient Descent

Batch Gradient Descent

Stochastic Gradient Descent

Batch Gradient Descent

Stochastic Gradient Descent

Batch Gradient Descent

Stochastic Gradient Descent

Pros and Cons of SGD

Pros:
Still consistently converges to minimum
May take shortcut to minimum

Pros and Cons of SGD

Pros:
Still consistently converges to minimum
May take shortcut to minimum

Cons:
Not useful when we are already close to minimum
Hard to parallelize

On convergence of the stochastic subgradient method with on-line stepsize rules

Andrzej Ruszczyński *, Wojciech Syski

w2 w1

Pros:
Still consistently converges to minimum
May take shortcut to minimum

Cons:
Not useful when we are already close to minimum
Hard to parallelize

Effects of learning rate (α) on SGD

$$\vec{w}_{k+1} = \vec{w}_k - \alpha \nabla_{\vec{w}} J(\vec{w}_k; b)$$

$$b_{k+1} = b_k - \frac{\partial}{\partial b} J(\vec{w}; b_k)$$

Effects of learning rate (α) on SGD

$$\vec{w}_{k+1} = \vec{w}_k - \boxed{\alpha} \nabla_{\vec{w}} J(\vec{w}_k; b)$$

$$b_{k+1} = b_k - \boxed{\alpha} \frac{\partial}{\partial b} J(\vec{w}; b_k)$$

Loss curve is typically noisy with SGD

Effects of learning rate on SGD

N = Total # of datapoints in training set

m = Number of mini-batches for training set

Effects of learning rate on SGD

N = Total # of datapoints in training set

m = Number of mini-batches for training set

Effects of learning rate on SGD

	SGD	Mini-batch GD	Batch GD
Data batch size iteration	e per 1	N/m	n
	(-) Can loose speedup from oscillations	(+) The whole mini- batch is evaluated in	(+) Consistent convergence
	(-) hard to parallelize	parallel	(+) Maximum parallelization
		(+) Mostly consistent convergence	(-) Too long per iteration
			(-) Hardware memory limit (RAM, VRAM)

N = Total # of datapoints in training set

m = Number of mini-batches for training set

PART 2:

Optimizers in Deep Learning

Variable Learning Rates

$$\vec{w}_{k+1} = \vec{w}_k - \alpha \nabla_{\vec{w}} J(\vec{w}_k; b)$$

$$b_{k+1} = b_k - \alpha \frac{\partial}{\partial b} J(\vec{w}; b_k)$$

Variable Learning Rates

$$\vec{w}_{k+1} = \vec{w}_k - \alpha \nabla_{\vec{w}} J(\vec{w}_k; b)$$

$$b_{k+1} = b_k - \alpha \frac{\partial}{\partial b} J(\vec{w}; b_k)$$

$$\alpha$$
= $f(hp_1, hp_2, ...)$

Variable Learning Rates

$$\vec{w}_{k+1} = \vec{w}_k - \alpha \nabla_{\vec{w}} J(\vec{w}_k; b) \qquad \alpha = \frac{1}{1 + decr \cdot epnum} \alpha_0$$

$$b_{k+1} = b_k - \alpha \frac{\partial}{\partial b} J(\vec{w}; b_k) \qquad \alpha = d^{epnum} \cdot \alpha_0$$

$$\alpha = f(hp_1, hp_2, \dots)$$

$$\alpha = \frac{d}{\sqrt{epnum}} \cdot \alpha_0$$

Momentum

"Accelerate" gradients vectors in the right directions, to lead to faster converging.

AdaGrad

Adagrad uses a different learning rate for every parameter w_j at every step k. It eliminates the need to manually tune the learning rate.

RMSProp

"Extended" and weighted version of AdaGrad

AdaM

Adaptive learning rate + Momentum

SGD

Fixed α

First pass

RSMProp & AdaDelta adaptive

Adam adaptive + momentum

Worth a try if SGD fails to converge

Standard optimizer in DL community

PART 3:

Optimization Techniques in Deep Learning

Optimizers

Optimization Techniques

Optimizers

Optimization Techniques

Optimizers

- Vanilla SGD
- Momentum
- AdaGrad
- RMSProp
- Adam

Optimization Techniques

Optimizers

- Vanilla SGD
- Momentum
- AdaGrad
- RMSProp
- Adam

Optimization Techniques

Everything else that contributes to optimization

Optimizer vs Optimization Techniques

Optimizers

- Vanilla SGD
- Momentum
- AdaGrad
- RMSProp
- Adam

Optimization Techniques

- Data splitting (Train/Val/Test)
- Regularization
- Data normalization
- Batch-normalization
- Network initialization
- Hyperparameter tunings

Cross Validation in Supervised Learning

Cross Validation in Supervised Learning

Overfitting vs Underfitting

Overfitting vs Underfitting

Bad training accuracy Bad testing accuracy Good training accuracy
Good testing accuracy

Great training accuracy
Bad testing accuracy

Overfitting vs Underfitting

Underfitted

Good Fit/Robust

Overfitted

Bad training accuracy Bad testing accuracy Good training accuracy
Good testing accuracy

Great training accuracy Bad testing accuracy

High Bias

High Variance

Remedies for Overfitting/Underfitting

- More Layers/Neurons
- Longer Training
- Architecture
- Hyperparameter tunings

Remedies for Overfitting/Underfitting

Underfitted

- More Layers/Neurons
- Longer Training
- Architecture
- Hyperparameter tunings

Good Fit/Robust

Overfitted

- More training data
- Regularization
- Dropout
- Initialization

Remedies for Overfitting/Underfitting

- More Layers/Neurons
- Longer Training
- Architecture
- Hyperparameter tunings

- More training data
- Regularization
- Dropout
- Initialization

L1, L2 Regularizations

L1 Regularization

$$Loss = Error(y, \hat{y}) + \lambda \sum_{i=1}^{N} |w_i|$$

L2 Regularization

$$Loss = Error(y, \hat{y}) + \lambda \sum_{i=1}^{N} w_i^2$$

L1, L2 Regularizations

L1 Regularization

$$Loss = Error(y, \hat{y}) + \lambda \sum_{i=1}^{N} |w_i|$$

L2 Regularization

$$Loss = Error(y, \hat{y}) + \lambda \sum_{i=1}^{N} w_i^2$$

L1, L2 Regularizations

L1 Regularization

$$Loss = Error(y, \hat{y}) + \lambda \sum_{i=1}^{N} |w_i|$$

L2 Regularization

$$Loss = Error(y, \hat{y}) + \lambda \sum_{i=1}^{N} w_i^2$$

Penalizes sum of absolute values of weights

Results in a sparse model

Not suitable for learning complex patterns

Robust to outliers

Penalizes sum of squared values of weights

Results in a dense model

Learns complex patterns

Sensitive to outliers

Single-layer Regularization

$$J(\vec{w}, b) = \frac{1}{m} \sum_{i=1}^{m} L(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} ||\vec{w}||_{2}^{2}$$

Cost function

Weight regularization terms

Multi-layer Regularization

$$J(W^{[1]}, b^{[1]}, ..., W^{[L]}, b^{[L]}) = \frac{1}{m} \sum_{i=1}^{m} L(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \sum_{l=1}^{L} ||W^{[l]}||_F^2$$

Cost function

$$||W^{[l]}||_F^2 = \sum_{i=1}^{n^{[l]}} \sum_{j=1}^{n^{[l-1]}} (w_{ij}^{[l]})^2$$

Weight regularization term over multiple layer

Dropout Regularization

Standard Neural Network

Network with Dropout

Dropout Regularization

Standard Neural Network

Network with Dropout

Dropout forces the network to learn more robust features + different random subsets of other neurons

Dropout Regularization

Standard Neural Network

- Effectively spreading the weights
- Similar to L2 reg
- Testing with dropout p_d=0

Network with Dropout

- Can depend on weights (W)
- J could not be well defined in each pass

Data Augmentation

Data Augmentation

Early Stopping

Exploding/Vanishing Gradients

Very deep neural network

Exploding/Vanishing Gradients

Very deep neural network

$$\mathbf{x}$$
 \mathbf{w}_1
 \mathbf{w}_1
 \mathbf{w}_1
 \mathbf{w}_1
 \mathbf{w}_1
 \mathbf{w}_1
 \mathbf{w}_1
 \mathbf{w}_1
 \mathbf{w}_2
 \mathbf{w}_1
 \mathbf{w}_2
 \mathbf{w}_1
 \mathbf{w}_2
 \mathbf{w}_3
 \mathbf{w}_4
 \mathbf{w}_5
 \mathbf{w}_6
 \mathbf{w}_7
 \mathbf{w}_8
 \mathbf{w}_8
 \mathbf{w}_8

Exploding/Vanishing Gradients

With **activation**:

...
$$w_3\sigma_3(w_2\sigma_2(\sigma_1'(w_1x))$$

For **gradients**:

...
$$w_3 \sigma_3(w_2 \sigma_2(\sigma'_1(w_1 x))) \frac{\partial J}{\partial w_1} = \sigma'_3(z_3) w_3 \sigma'_2(z_2) w_2 \sigma'_1(z_1) x$$

Remedies for exploding/vanishing gradients: Data Normalization

Zero mean:

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$$

$$x^{(i)\mu} = x^{(i)} - \mu$$

Normalized Variances

$$\sigma^2 = \frac{1}{m} \sum_{i=1}^{m} x^{(i)^2}$$

$$x^{(i)\mu,\sigma^2} = x^{(i)\mu}./\sigma^2$$

Intuition for data normalization

If **inputs have different scales**, the **cost function** will also have to include different scales → increased likelihood of instability

Remember to **normalize all sets**: training, validation, testing

Remedies for Vanishing/Exploding Gradients: Batch Normalization

Layer 1

Layer 1

Layer 1

Batch normalization

() Remedies for Vanishing/Exploding Gradients: Weight Initialization

Proper weight initialization plays essential roles in preventing exploding/vanishing gradients

() Remedies for Vanishing/Exploding Gradients: Weight Initialization

Proper weight initialization plays essential roles in preventing exploding/vanishing gradients

Faster convergence

Network Initialization

- Zero → Problematic
- Random Normal (0,1) -> Problematic
- Xavier (tanh):

$$Var(w^{[l]}): 1/n^{[l-1]}$$
 $w^{[l]} = N(0,1) \cdot \sqrt{\frac{1}{n^{[l-1]}}}$

Network Initialization

• He (ReLU):

$$Var(w^{[l]}): 2/n^{[l-1]}$$

• Other:

$$w^{[l]} = N(0,1) \cdot \sqrt{\frac{2}{n^{[l-1]}}}$$

$$Var(w^{[l]}): rac{2}{n^{[l-1]}+n^{[l]}}$$

Hyperparameters

- Learning rate
- Number of layers
- Neurons in each layer
- Activation function (ReLU, Tanh, sigmoid)
- Training batch size (SGD, Mini-batch, Batch Gradient)
- Optimizer (SGD, Adam, RMS Prop etc)
- Number of training epochs

Hyperparameters

- Learning rate
- Number of layers
- Neurons in each layer
- Activation function (ReLU, Tanh, sigmoid)
- Training batch size (SGD, Mini-batch, Batch Gradient)
- Optimizer (SGD, Adam, RMS Prop etc)
- Number of training epochs

Number of layers

Hyperparameters

Number of layers

- Learning rate
- Number of layers
- Neurons in each layer
- Activation function (ReLU, Tanh, sigmoid)
- Training batch size (SGD, Mini-batch, Batch Gradient)
- Optimizer (SGD, Adam, RMS Prop etc)
- Number of training epochs

Learning rate

Summary

Optimizers

- Vanilla SGD
- Momentum
- AdaGrad
- RMSProp
- Adam

Optimization Techniques

- Data splitting (Train/Val/Test)
- Regularization
- Data normalization
- Batch-normalization
- Network initialization
- Hyperparameter tunings

Next episode in EEP 596

Convolution Layers + Pooling Layers (Image feature extraction)

Fully connected layers (Classifier)