

Politechnika Wrocławska

Wydział Elektroniki, Fotoniki i Mikrosystemów

Wizualizacja Danych Sensorycznych

Wizualizacja silosów zbożowych Raport

Prowadzący: dr inż. Bogdan Kreczmer

Wykonał: Jakub Kusz, 259267

Spis treści

1		arakterystyka tematu projektu Główne cele aplikacji
		Realizacja projektu
2	Spe	ecyfikacja finalnego produktu
	2.1	Aplikacja
		2.1.1 Wymagania funkcjonalne
		2.1.2 Wymagania niefunkcjonalne
	2.2	System czujników
3	Ter	minarz realizacji poszczególnych podcelów

1. Charakterystyka tematu projektu

Niniejszy projekt ma na celu stworzenie aplikacji służącej do wizualizacji silosów zbożowych. Aplikacja będzie wizualizować oraz monitorować 3 kluczowe parametry dotyczące stanu silosów:

- wypełnienie,
- temperatura panująca wewnątrz,
- wilgotność panująca wewnątrz.

Z perspektywy rolnika magazynującego zboże w silosach są to niezmiernie ważne informacje, dzięki nim będzie w stanie w łatwy sposób szacować ilość zebranego plonu, monitorować wilgotność oraz temperaturę panującą w silosie, których zbyt wysokie wartości bardzo często są wyznacznikiem tego, że w silosie rozpoczęły się procesy gnilne.

1.1. Główne cele aplikacji

Głównymi celami aplikacji będą:

- umożliwienie szybkiego i łatwego dostępu do informacji o stanie zboża w silosach,
- prezentowanie danych w przyjemniej i intuicyjnej formie graficznej,
- informowanie o zbliżaniu się do wartości krytycznych i przekroczeniu ich.

1.2. Realizacja projektu

Aplikacja zostanie napisana w języku C++, wykorzystywać będzie bibliotekę Qt pozwalającą na tworzenie graficznego interfejsu użytkownika (GUI). Dane do wizualizacji udostępnianie będą przez zaprojektowany układ czujników, znajdujący się na makiecie silosów.

2. Specyfikacja finalnego produktu

Finalnym efektem projektu będzie aplikacja pozwalająca na monitorowanie parametrów wymienionych w pkt. 1 i system czujników zastępujący prawdziwe silosy zbożowe.

2.1. Aplikacja

2.1.1. Wymagania funkcjonalne

Wymagania funkcjonalne są to wymagania które określają działanie systemu i zaspokajają potrzeby użytkownika. Poniżej znajduje się lista wymagań funkcjonalnych, które finalna wersja aplikacji powinna spełniać:

- Możliwość przeglądu monitorowanych na bieżąco parametrów stanu silosów:
 - każdego z parametrów osobno,
 - wszystkich parametrów razem.
- prowadzenie rejestru pomiarów,

- wizualizacja pomiarów historycznych z określonego okresu czasu,
- ostrzeganie o zbliżaniu się do wartości niebezpiecznych,
- alarmowanie po przekroczeniu wartości niebezpiecznych.

2.1.2. Wymagania niefunkcjonalne

Wymagania niefunkcjonalne określają przede wszystkim oczekiwania co do samej jakości działania aplikacji oraz pożądanego zachowania tworzonego systemu. Poniżej znajduje się lista wymagań niefunkcjonalnych, które finalna wersja aplikacji powinna spełniać:

- Użyte technologie:
 - C++ 17,
 - Qt 6,
- możliwość zmiany rozmiaru ekranu i responsywność elementów GUI,
- wielojęzyczność,
- komunikacja z układem sensorów za pomocą portu szeregowego,
- przechowywanie danych historycznych w pliku CSV.

2.2. System czujników

W celu realizowania odczytu z czujników zostanie skonstruowana prosta, niewielkich rozmiarów makieta silosów zbożowych, na której zostaną osadzone odpowiednie czujniki:

- pomiary temperatury i wilgotności: DHT11,
- pomiar wypełniania: HC SR04.

3. Terminarz realizacji poszczególnych podcelów

Lista podcelów z dokładnością do jednego tygodnia oraz wykres gantta (wykr. 1):

- 20.03.2023: Studia literatury dotyczące biblioteki Qt:
 - przegląd klas dostępnych w Qt,
 - zapoznanie się z Qt designer i Qt Linguist,
- 27.03.2023: Projektowanie interfejsu graficznego
- 3.04.2023 : Projektowanie architektury systemu, projektowanie makiety i układu elektronicznego czujników
- PIERWSZY KAMIEŃ MILOWY: Ukończenie etapu projektowania
- 10.04.2023: Budowa makiety i układu elektronicznego czujników

- 17.04.2023: Testowanie działania układu elektronicznego czujników
- 24.04.2023: Implementacja głównych elementów GUI:
 - menu użytkownika,
 - wybór widoku bieżącego lub historycznego,
 - prezentacja temperatury, wypełnienia i wilgotności,
- 1.05.2023: Implementacja głównych elementów GUI:
 - menu użytkownika,
 - wybór widoku bieżącego lub historycznego,
 - prezentacja wartości temperatury, wypełnienia i wilgotności na modelu silosa,
 - prezentacja historycznych wartości temperatury, wypełnienia i wilgotności na wykresach
- 8.05.2023: Testowanie głównych elementów GUI
- 15.05.2023: Implementacja komponentów logicznych aplikacji:
 - sposób komunikacji z czujnikami,
 - parsowanie danych,
 - przechowywanie danych,
- 22.05.2023: Testowanie komponentów logicznych aplikacji
- 29.05.2023: Implementacja pozostałych elementów GUI:
 - dopracowanie modelu silosa,
 - dopracowanie wykresów
- 5.06.2023: Testowanie pozostałych elementów GUI
- 12.06.2023: Integracja wszystkich komponentów, testowanie aplikacji
- 19.06.2023: Tworzenie raportu końcowego
- DRUGI KAMIEŃ MILOWY: Złożenie raportu końcowego i prezentacja rezultatów

Wykres 1: Wykres gantta $_{5}$