First utilize DH representation:

- 1. Z^{K} : each Z always align with the axis of joint
- 2. origin^K: intersection of Zs, or norm of Zs if parallel
- 3. X^{K} : to be orthogonal to Zs. away from prev Z
- 4. Y^K: right handed

as for the tool tip:

Z: r3 approach

Y:r2 sliding

X:r1 normal

Second generate 4tuples for all joints(except joint0):

 θ_k : Xs angle about prev Z

d_k: Xs dist about prev Z

ak: Zs dist about now X

 α_k :Zs angle about now X

Third use forward kinematics to determine Tk_{k-1}

Transferring Frame k-1 to Frame k

Operation	Description	
1	Rotate	L_{k-1} about z^{k-1} by $ heta_k$.
2	Translate	L_{k-1} along z^{k-1} by d_k .
3	Translate	L_{k-1} along x^{k-1} by a_k .
4	Rotate	L_{k-1} about x^{k-1} by $lpha_k$

$$T_{k-1}^{k}(\theta_{k}, d_{k}, a_{k}, \alpha_{k}) = Rot(\theta_{k}, 3) Tran(d_{k}i^{3}) Tran(a_{k}i^{1}) Rot(\alpha_{k}, 1)$$

so we get Link-Coordinate Transformation

$$T_{k-1}^{k} = \begin{pmatrix} C\theta_{k} & -C\alpha_{k}S\theta_{k} & S\alpha_{k}S\theta_{k} & a_{k}C\theta_{k} \\ S\theta_{k} & C\alpha_{k}C\theta_{k} & -S\alpha_{k}C\theta_{k} & a_{k}S\theta_{k} \\ 0 & S\alpha_{k} & C\alpha_{k} & d_{k} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

The inverse of T is:

$$T^{-1} = \begin{pmatrix} R^T & -R^T p \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Its inverse transformation which maps link k-l coordigiven as:

$$T_k^{k-1} = \begin{pmatrix} C\theta_k & S\theta_k & 0 & -a_k \\ -C\alpha_k S\theta_k & C\alpha_k C\theta_k & S\alpha_k & -d_k S\alpha_k \\ S\alpha_k S\theta_k & -S\alpha_k C\theta_k & C\alpha_k & -d_k C\alpha_k \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

and we also define

$$q_k = \xi_k \theta_k + (1 - \xi_k) d_k.$$

because a joint can either but not both be revolute and prismatic

Arm Equation

2024年9月22日 2:52

$$T_{base}^{tool}(q) = \begin{pmatrix} R(q) & p(q) \\ 0 & 0 & 1 \end{pmatrix}$$

as for the p(q), each dim denotes an axis as for the R(q), each column denotes an axis rotation

Direct Kinematics

2024年9月22日 11:45

$$R_1(\phi) = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{pmatrix}$$

$$\frac{R_2(\phi)}{R_2(\phi)} = \begin{pmatrix} \cos\phi & 0 & \sin\phi \\ 0 & 1 & 0 \\ -\sin\phi & 0 & \cos\phi \end{pmatrix}$$

$$R_3(\phi) = \begin{pmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

The rotation matrix must be orthogonal matrix thus we have

$$Rot^{-1}(\phi, k) = Rot(-\phi, k) = Rot^{T}(\phi, k)$$
 for $1 \le k \le 3$

Inverse Homogeneous Transformation

The inverse of T is:

$$T^{-1} = \begin{pmatrix} R^T & -R^T p \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

2.5.2 Normal, Sliding, and Approach Vectors

The orientation of the tool can be expressed in rectangular coordinates by a rotation matrix $R = [r^1, r^2, r^3]$, where the three columns of R correspond to the

- normal vector,
- sliding vector, and
- approach vectors,

respectively. The origin of the $\{r^1, r^2, r^3\}$ frame is usually placed at the tool tip.

Tool-Configuration

2024年9月22日 12:51

$$w = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \\ w_5 \\ w_6 \end{pmatrix} = \begin{pmatrix} p \\ exp(q_n/\pi) r^3 \end{pmatrix}$$

$$q_n = \pi \ln(w_4^2 + w_5^2 + w_6^2)^{1/2}$$