Lab 7: Characterization and DC Biasing of the BJT

ECEN 325 - 511

TA: Zhiyong Zhang

Date Performed: October 26, 2021

Due Date: November 2, 2021

Purpose

The objective of this lab is to be able to charaterize NPN and PNP BJTs and to analyze DC biasing circuits.

Calculations

$$V_{\mathcal{L}} = 0$$

$$V_{\mathcal{L}} = 1.5V$$

$$I_{\mathcal{L}} = 1 \text{ MA}$$

$$V_{\mathcal{L}} = 1.5V$$

$$I_{\mathcal{L}} = 1 \text{ MA}$$

$$V_{\mathcal{L}} = \frac{V_{\mathcal{L}} - V_{\mathcal{E}\mathcal{E}}}{I_{\mathcal{L}}} = \frac{1.5V}{1 \text{ mA}} = 1.5k \text{ A}$$

$$I_{\mathcal{E}} = I_{\mathcal{E}} / \beta = \frac{1 \text{ mA}}{1 \text{ mA}} = 0.01 \text{ mA}$$

$$I_{\mathcal{E}} = I_{\mathcal{E}} + I_{\mathcal{L}} = 1.01 \text{ mA}$$

$$V_{RE} = V_{CC} - V_{RC} - U_{C} = 5 - 1.5 - 1.5 = 2V$$

$$R_{G} = \frac{V_{RE}}{I_{G}} + \frac{2V}{1.01mA} = 1.98k_{R} = 2k_{R}$$

$$V_{R1} + V_{R2} = V_{CC} \rightarrow V_{R2} = .7 + 2 = 2.7V$$

$$V_{R1} = 2.3U$$

$$I supply = I + I_{G} = 2mA \qquad I = 2mA - 1.01mA = 0.99mA$$

$$R_{G2} = \frac{V_{R2}}{I} = \frac{7.7V}{.99mA} = \frac{2.72k_{R}}{1.00mA}$$

$$R_{G3} = \frac{V_{R1}}{I_{R3}} = \frac{2.3}{1.00mA} = \frac{2.3k_{R}}{1.00mA}$$

2) PND
$$V_{L}$$
 V_{L}
 $V_{$

Simulations (on Multisim)

Schematic NPN

I_c vs V_{BE}

Schematic PNP

Schematic 6a

DC operating point or interactive simulation for 6a

Schematic 6b

DC operating point or interactive simulation for 6b

Schematic 7a

DC operating point or interactive simulation for 7a

Schematic 8a

DC operating point or interactive simulation for 8a

Measurements

NPN: I_c vs V_{BE}

NPN: I_c vs V_{CE}

PNP: I_c vs V_{EB}

PNP: I_c vs V_{EC}

Figure 6 in Data Tables Figure 7 in Data Tables Figure 8 in Data Tables

Data Tables

Figure 6a

	$I_{\rm C}$	$V_{\rm B}$	\mathbf{v}_{c}	\mathbf{V}_{E}	V_2
Simulations	1.00504 mA	1.95601	3.49244	1.80342	2.69070
Measurements	1.17 mA	1.76	3.321	1.611	2.114

Figure 6b

	$I_{\rm C}$	$V_{\rm B}$	$\mathbf{V}_{\mathbf{C}}$	\mathbf{V}_{E}	\mathbf{V}_{2}
Simulations	813.34229 uA	1.43678	1.22001	3.35990	2.70833
Measurements	8.966 uA	1.345	1.258	3.41	2.711

Figure 7

	$I_{\rm C}$	\mathbf{v}_{c}	V_2	V _x	$\mathbf{V}_{\mathbf{Y}}$
Simulations	1.70039 mA	3.72471	2.19604	1.51676	2.18993
Measurements	1.836 mA	3.541	2.314	1.211	2.241

Figure 8

	$I_{\rm C}$	$\mathbf{V}_{\mathbf{C}}$	V_2	V _x	$\mathbf{V}_{\mathbf{Y}}$
Simulations	1.83442 mA	1.37582	2.80275	3.52295	2.7688
Measurements	1.932 mA	1.455	2.731	3.431	2.873

Discussion

For lab 7, students learned about DC biasing and characterization of NPN and PNP BJTs. Most of the values between the simulations and measurements were pretty consistent for the circuits. If there were any minor differences, that's probably because of component differences, old breadboards, or loose wires.