Logaritmos

Definição: Sejam a e b números reais positivos, com $a \ne 1$, chama-se logaritmo de b na base a, o expoente que se deve dar à base a de modo que a potência obtida seja igual a b.

$$\log_a b = x \leftrightarrow a^x = b$$

Dizemos ainda que a é a base do logaritmo, b é o logaritmando e x é o logaritmo.

Exemplo

- 1) Calcule pela definição:
 - a) $\log_2 16 = x$

c) $\log_7 1 = x$

b) $\log_{\frac{1}{2}} 8 = x$

d) $\log_5 5 = x$

Propriedades

- 1) $\log_a 1 = 0$
- $2) \log_a a = 1$
- 3) $\log_a b^m = m \log_a b$
- 4) $a^{\log_a b} = b$

- $5) \log_a bc = \log_a b + \log_a c$
- $6) \log_a b/c = \log_a b \log_a c$
- 7) $\log_a b = \log_a c \leftrightarrow b = c$
- 8) $\log_a b = \frac{\log_c b}{\log_c a}$ (mudança de base)

Exemplos

- 1) Calcular o valor de:
 - a) 8^{log₂5}
 - b) 31+log₈ 4
 - c) $9^{2-\log_8\sqrt{2}}$
- 2) Simplifique as seguintes expressões:
 - a) $\log_3 \frac{a^3b^2}{c^4}$
 - b) $a^{\left[\frac{\log(\log a)}{\log a}\right]}$
- 3) Qual é a expressão cujo desenvolvimento logarítmico é:

$$1 + \log_2 a - \log_2 b - 2\log_2 c$$
 (a, b, c são reais positivos)

Exercícios

- 1) Desenvolva aplicando as propriedades dos logaritmos (a,b,c são reais positivos):
 - a) $\log_5\left(\frac{5a}{bc}\right)$

c) $\log_3\left(\frac{ab^3}{c\sqrt[3]{a^2}}\right)$

b) $\log_3\left(\frac{ab^2}{c}\right)$

- d) $\log \sqrt{\frac{ab^3}{c^2}}$
- 2) Simplificar a expressão abaixo:

$$a^{\log_a b \cdot \log_b c \cdot \log_c d}$$

3) Se $\log_{ab} a = 4$, calcule $\log_{ab} \frac{\sqrt[3]{a}}{\sqrt{b}}$.

Função Logarítmica

Definição: Dado um número real a ($0 < a \ne 1$) chamamos função logarítmica de base a função f de \mathbb{R}^* , em \mathbb{R} definida por $g(x) = a^x$ são inversas uma da outra.

Representação Gráfica da Função Logarítmica

Com relação ao gráfico cartesiano da função $f(x) = \log_a x$ ($0 < a \ne 1$), podemos dizer:

- 1) Está todo à direita do eixo y (x>0);
- 2) Corta o eixo x no ponto _____;
- 3) Se _____ a função é crescente e se ______ a uma função é ______;

Ex.: Construir o gráfico das funções abaixo num mesmo sistema de eixos e indicar o conjunto imagem e a equação da assíntota em cada caso:

Compare os gráficos das funções $f(x) = a^x$ e $g(x) = \log_a x$. Existe alguma relação entre estas funções?

Exercício:

Construir o gráfico da função $g(x) = \log_{\frac{1}{3}}(x-1) + 3$ a partir do gráfico de $f(x) = \log_{\frac{1}{3}}x$. Identifique a assíntota e descreva o domínio e a imagem da função. Determine ainda, a função inversa de g.

As funções e^x e $\ln x$

Propriedade:

1. Se
$$f(x) = e^x$$
 e $g(x) = \ln x$, então $(f \circ g)(x) = \underline{\hspace{1cm}}$ e $(g \circ f)(x) = \underline{\hspace{1cm}}$

Exemplos:

1. Determine a inversa das seguintes funções:

a)
$$f(x) = 3 + 2^{x-1}$$

b)
$$f(x) = \ln(x+3)$$

c)
$$f(x) = 2^{10^x}$$

d)
$$f(x) = \frac{1 + e^x}{1 - e^x}$$

e)
$$f(x) = \sqrt{3 - e^{2x}}$$

$$f) \quad f(x) = \ln(2 + \ln x)$$

Equação Logarítmica

Temos que:

1) Para
$$\log_a f(x) = \log_a g(x)$$
.
Se $0 < a \ne 1$, então, $\log_a f(x) = \log_a g(x) \rightarrow f(x) = g(x) > 0$.

2) Para
$$\log_a f(x) = \alpha$$

Se $0 < a \neq 1$ e $\alpha \in \mathbb{R}$, então $\log_a f(x) = \alpha \rightarrow f(x) = a^{\alpha}$

Exemplos

1) Resolva as equações:

a)
$$\log_4(3x+2) = \log_4(2x+5)$$

b)
$$\log_{\frac{1}{2}}(3x^2 - 4x - 17) = \log_{\frac{1}{2}}(2x^2 - 5x + 3)$$

c)
$$\log_3(\log_2 x) = 1$$

d)
$$\log_x(3x^2 - 13x + 15) = 2$$

e)
$$\log_2(x+1) + \log_2(x-1) = 3$$

$$\frac{1}{2}\log_3(x-16) - \log_3(\sqrt{x}-4) = 1$$

$$\log_4(x-3) - \log_{16}(x-3) = 0$$

g)
$$\log_4(x-3) - \log_{16}(x-3) = 1$$

h) $\log_3(x+2) - \log_{\frac{1}{3}}(x-6) = \log_3(2x-5)$

i)
$$(\log_3 x)^2 - 5\log_9 x + 1 = 0$$

Exercício

1) Resolva as equações:

a)
$$\log_2(5x^2 - 14x + 1) = \log_2(4x^2 - 4x - 20)$$

b)
$$\log \sqrt{7x-5} + \frac{1}{2} \log(2x+7) = 1 + \log \frac{9}{2}$$

c)
$$\log(x+1) + 2 = \log(4x^2 - 500)$$

Inequação Logarítmica

$$\log_a x > \log_a y \rightarrow x > y, se \ a > 1$$
$$\log_a x > \log_a y \rightarrow x < y, se \ 0 < a < 1$$

$$\log_a x > \log_a y \rightarrow x < y$$
, se $0 < a < 1$

Exemplo

1) Resolva as inequações:

a)
$$\log_3(5x-2) < \log_3 4$$

b)
$$\log(x^2 - x - 2) < \log(x - 4)$$

c)
$$\log_{\frac{1}{2}} \left(x^2 - x - \frac{3}{4} \right) > 2 - \log_2 5$$

d)
$$\log_3(3x+4) - \log_3(2x-1) > 1$$

Exercícios

1) Resolva as inequações abaixo:

a)
$$\log_{\frac{1}{10}}(x^2+1) < \log_{\frac{1}{10}}(2x-5)$$

b)
$$\log_2(x-3) + \log_2(x-2) \le 1$$

c)
$$(4-x^2) \log_2(1-x) \le 0$$

2) Determine o domínio das funções:

a)
$$f(x) = \sqrt{\log_2(\log_{\frac{1}{2}}x)}.$$

$$f(x) = \ln(2 + \ln x)$$