소프트웨어 공학개론

Introduction to Software Engineering

2022-1학기 (Spring) 선문대학교 AI소프트웨어학과

5월 10일 (화)

강의 목차

- 8. 유저인터페이스설계
 - 8.1 유저인터페이스설계 란?
 - 8.2 대화방식
 - 8.3 화면설계
- 연습 문제

개요

- 유저인터페이스는 시스템의 사용 용이성에 영향을 줌
 - 이용자는 유저인터페이스를 통해서 시스템을 조작하고, 시스템의 동작을 알 수 있음
- 유저인터페이스설계
 - 설계지침을 토대로 유저인터페이스를 결정하는 작업
 - 설계지침: 인간공학 및 인지심리학 등의 연구성과를 토대로 설계가이드라인으로서 설정된 것

목차

- 8.1.1 사용자모델
- 8.1.2 설계가이드라인
- 8.1.3 설계공정

8.1.1 사용자모델

- 유저인터페이스는 사용자(user)와 시스템 사이에 존재하여 양쪽의 "대화"를 중계하는 역할 수행
 - 사용자의 부담이 최소화되도록 시스템이 사용자의 입력으로부터 목적과 의도를 파악하여 사용자가 기대하는 결과를 알기쉬운 형태로 응답할 필요가 있음
 - 사용자에게 입력을 요구하는 경우에도 사용자가 무엇을 어디로부터 어떻게 입력하면 좋은지 수월하게 알 수 있도록 해야 함
- 유저인터페이스의 구현을 위해 시스템은 사용자에 관한 사항들을 잘 알고 있어야
 함
 - 사용자에게 정보를 정확하게 전달하기 위해 사용자 특성을 알고 있어야함
 - 시스템은 한번에 제시할 데이터량을 어느 정도로 하면 사용자가 파악할 수 있는지
 - 화면의 전환을 어느정도 빠르기로 하면 사용자가 따라올 수 있는지
 - 인지심리학 등의 연구에 의해 인간의 "인지기능"에 관한 다양한 지식을 얻을 수 있음
 - 인간의 정보처리는 그림과 같이 감각정보저장소, 단기기억, 장기기억 등으로 구성되는 처리모델로 표현됨

그림 8.1 인간의 정보처리모델

8.1.1 사용자모델

- 인간의 정보처리모델
 - 눈과 귀로부터 입력된 정보는 매우 짧은 순간에 거의 원래 형태대로 감각정보저장소에 보존됨
 - 아주 조금밖에 차이가 나지 않는 정보를 계속 입력하면
 - 정보들 사이의 융합이 일어나 연속된 영상으로서 인지
 - 매우 짧은 간격으로 이질적인 정보를 차례대로 보여주면
 - 정보내용 사이의 간섭이 일어나 정보 결여 현상 발생
 - 감각정보저장소로부터 추출된 정보는 20초정도 단기기억에 보존됨
 - 단기기억에 있는 정보는 머리속에서 고속으로 이용 가능
 - 그러나 단기기억의 용량은 적으며, 보존가능한 정보의 뭉치(Chunk) 개수는 7±2개가 상한 값임
 - Chunk: 겉에서 바라본 모습 또는 음운적/의미적 뭉치
 - 한문자씩이 아니라, 단어와 같이 뭉쳐져서 모습을 형성하면 보존할 수 있는 문자수가 늘어남

8.1.1 사용자모델

- 유저인터페이스의 설계에 관련된 지식
 - 단기기억정보는 장기기억에 있는 지식을 사용하여 부호화되어서 장기기억에 격납됨
 - 장기기억은 막대하며 장기기억에 격납된 정보는 장기간 보존됨
 - 그러나 장기기억에 있는 정보를 이용하기 위해서는 일종의 검색을 수행하기 위한 시간이 필요하며 검색에 실패하여 이용할 수 없게 되는 경우도 있음
 - 가능한 한 풍부한 검색방법을 제공하거나,기억에 격납하였을 때와 같은 상황을 만들어서 생각나게 하는 등 보존되어 있는 지식을 이끌어내기 쉽게 하는 것이 중요
- 사용자모델 작성이 효과적
 - 단기기억의 용량 및 장기기억의 내용과 검색시간 등에는 개인차가 있고, 사용자가 다양함
 - 컴퓨터 지식 및 사용경험 정도 등과 같이 몇 가지 관점에서 사용자들을 분류하고, 유사한 사용자들을 나타내는 사용자모델을 작성하는 방법이 효과적
 - 초급자, 중급자, 고급자 등과 같이 사용자모델을 작성하여 유저가 자신에게 적합한 인터페이스를 선택할 수 있도록 함

8.1.2 설계가이드라인

- 필요성과 사용자모델을 고려하여 설계
- (1) 대화 도구
 - 사용자가 친숙해지기 쉬워야 함
 - 일상업무에서 사용하는 시스템에서는 디렉토리와 파일 등이 아니라, 편지, 문서, 폴더 등과 같은 사용자에게 친숙한 용어와 개념을 사용하도록 함
 - ㅇ 일관성을 유지함
 - 일관된 조작방법,용어의 통일,명령어형식의 통일 등과 같이 유사한 상황에 대해서 동일한 대응을 하도록 하는 것이 좋음
 - 명령어나 메뉴는 같은 서식으로 함
 - 명령어의 분리기호, 매개변수, 명령어 이름의 생략방법 등 일관성 유지

8.1.2 설계가이드라인

- (2) 대화 진행방법
 - ㅇ 피드백 제공
 - 피드백(Feedback): 사용자의 입력에 대해서 시스템이 응답하는 것
 - 모든 조작결과에 대한 상황변화를 즉시 사용자에게 통지
 - 사용자의 명령어를 접수하였다는 사실
 - 처리하는데 시간이 걸린다는 사실 등
 - 놀라게 하는 상황 최소화
 - 명령어가 사용자의 멘탈모델에 따라 동작한다면 사용자는 이전에 사용했던 명령어의 동작으로부터 새로운 명령어의 동작을 예상 할 수 있음
 - 멘탈모델: 사용자가 시스템을 어느정도 사용하면 시스템이 어떤 동작을 하는지를 머릿속에 이미지화하는 것
 - 사용자가 주체가 되어야 함
 - 사용자가 주체가 되어 제어를 진행할 수 있도록 함
 - 시스템에게 이끌려다닌다는 불쾌감이나 불안감을 갖지 않도록 함

8.1.2 설계가이드라인

- (3) 오류에 대한 대응
 - 오류로부터 회복이 수월해야 함
 - 되돌리기(Undo) 기능, 파괴적인 동작에 대한 확인 등 시스템은 사용자가 오류로부터 회복할수 있도록 해야 함
 - 사용자에 대한 안내(도움말)가 있어야 함
 - 사용자의 조작오류를 조기에 검출하여 단순하면서도 이해하기 쉬운 오류회복방법을 제공
 - 상황에 따라서 사용자를 도와줄 수 있는 도움말 기능,온라인 매뉴얼 등 제공

8.1.3 설계공정

그림 8.2 유저인터페이스의 설계공정

8.1.3 설계공정

- (1) 초기단계
 - 요구사항분석단계에서 요구사항의 기능적 요건과 유저인터페이스에 관한 요건을 분석하고,시스템 이용시의 사용자 액션을 분석하여 이해함

UI프로토타입 작성

만족가능한

- 이를 토대로, 화면과 조작순서의 기본설계를 시작하여, 화면기반의 유저인터페이스 프로토타입(UI Prototype)을 작성
 - UI 프로토타입: 화면의 그림과 움직임을 표현
 - 사용자의 전형적인 이용방법을 예상하여 조작 시나리오를 정하고, 해당 시나리오
 수행에 필요한 화면의 이미지를 작성
- UI 프로토타입을 사용자에게 보여주고, 메뉴의 기본적인 디자인과 레이아웃, 조작순서 등에 대해 사용자와 함께 평가함
 - 조작순서에 관해 사용자가 각 단계에서 다음단계의 조작이 곧바로 머릿속에 떠오르는지 등을
 조사함으로써 메뉴구조 등에 관한 문제점을 추출
 - 문제점이 해소될 때까지 UI 프로토타입을 수정하여 다시 사용자와 평가하는 등의 작업 반복

8.1.3 설계공정

- (2) 중간단계
 - 전체 개발에 앞서,가능한 한 초기단계에서 유저인터페이스에 관한 실행가능한 프로토타입을 작성함
 - 프로토타입: 중요도가 높은 유저인터페이스 및 해당 인터페이스를 통해 사용자로부터 주어진 입력에 대한 결과를 표시하는 기능을 구현한 것
 - 프로토타입을 사용자에게 제공하여 피실험자의 입장에서 과제를 수행해 보도록 요청함

최종적인 시스템의 구현

8.1.3 설계공정

- (3) 최종단계
 - 시스템이 완성되면 사용자와 유저인터페이스에 관한 최종적인 평가를 수행
 - 설계에 피드백하기 위한 것이 아니라, 사양에서 결정한 목표가 달성되었는지를 판정하기 위함
 - 평가 수행시 참고가 되는 Ben Sheiderman이 측정가능한 인적요인으로서 주장한 항목
 - ① 학습시간: 업무수행에 필요한 조작의 사용방법을 익히기 위해 필요한 학습시간
 - ②실행속도:업무수행에 필요한 시간
 - ③ 오류포함정도:업무수행중에 발생한 오류의 종류와 횟수
 - ④ 장기기억: 한번 습득한 업무수행에 필요한 지식을 기억하고 있는 정도
 - ╻ ⑤ 만족도:시스템을 사용하여 어느 정도 만족하였는가에 대한 주관적 평가
 - 정량적 평가
 - 평가 목적에 따라서 항목들을 선택하고,평가의 타당성을 잃지 않도록 하기 위해 필요한 숫자만큼의 피실험자들을 모아서 평가하도록 함
 - 평가에 의해 수집된 데이터에 대해서 통계적 검증을 수행하여 타당성 판정
 - 정성적 평가
 - 피실험자에 대한 인터뷰와 피실험자가 과제를 수행하는 과정을 중시
 - 비교적 단기간에 문제점을 추출할 수 있으므로, 초기와 중간단계에서 설계에 적절히 수정하는데 있어 유용

목차

- 8.2.1 명령어언어에 의한 대화
- 8.2.2 메뉴선택에 의한 대화
- 8.2.3 직접조작에 의한 대화

8.2.1 명령어언어에 의한 대화

- 컴퓨터에게 있어, 사용자와 대화하기 위한 가장 기본적이고 단순한 방식
- 장점
 - (1) 키보드와 디스플레이가 있으면 되므로, 저렴한 가격의 단말기가 설치되어 있는 경우에도 구현가능
 - (2)컴파일러기술을 사용하여 명령어를 수월하게 해독 가능
 - (3) 명령어를 조합함으로써 복잡한 명령어를 만들 수 있음
 - (4) 명령어의 생략형을 도입함으로써 타이핑을 최소화할 수 있는 간략한 인터페이스를 만들 수 있음

• 문제점

- (1) 사용자는 명령어언어를 학습하고 기억해두어야 하므로,가끔식 밖에 사용하지 않는
 사용자에게는 적합하지 않음
- (2) 사용자는 명령어를 잘못 입력하는 경우가 있으므로, 오류의 검출과 회복기능 구현 필요
- (3) 키보드에 의해 명령어를 입력해야 하므로, 사용자에게 타이핑능력이 요구됨

8.2.2 메뉴선택에 의한 대화

- 시스템이 메뉴로서 제시한 항목들의 리스트로부터 사용자가 1개의 항목을 선택함
 - 선택하기 위한 입력장치
 - 키보드: 선택항목의 이름 또는 그 일부를 타이핑함으로써 항목 선택
 - 커서키,마우스:커서를 이동시켜 선택항목의 위치를 지정하면 되므로,키보드보다 선택이 수월
 - 터치스크린:선택항목의 위치를 손가락 등으로 가리키면 되므로 편리
- 장점
 - (1)조작이 알기 쉽고,사용자의 조작오류가 적음
 - (2)학습시간이 비교적 짧음
 - 사용자를 올바른 명령어들의 일람 중에서 선택하면 되며, 명령어이름을 정확하게 기억할 필요가 없음 → 대상이 되는 시스템에 익숙하지 않은 사용자들에게 유효
 - (3) 타이핑 양을 최소화할 수 있음
 - (4) 사용자의 상황에 알맞은 도움말 기능을 제공할 수 있음
 - 사용자가 메뉴를 여러번 선택하였을 경우, 어떤 순서로 메뉴를 선택하여 현재의 처리에 이르게 되었는지를 조사하면, 현재 사용자의 상황을 파악할 수 있음

8.2.2 메뉴선택에 의한 대화

- 문제점
 - (1) 여러 개의 조작을 조합하여 복잡한 조작을 표현하기 어려움
 - (2) 메뉴의 구조화가 필요하게 됨
 - 선택항목의 수가 많은 경우, 그대로 표시되더라도 선택이 수월하지 않음
 - (3) 메뉴가 표시될 때까지 대기해야 하므로, 조작의 효율성이 나쁨
 - 경험이 풍부한 사용자는 커서키 또는 마우스를 사용하여 항목을 선택하는 것이 명령어 입력보다 느리다고 느껴질 수 있음

8.2.3 직접조작에 의한 대화

- 1983년 슈나이더만이 "직접조작"에 의한 대화 모델 제안
 - (1) 사용자가 관심있어하는 객체를 항상 화면 위에 표시하여 보여줄 수 있도록 함
 - (2) 사용자는 복잡한 구문규칙에 따른 명령어가 아니라, 마우스이동 또는 버튼조작에 의해 객체 조작
 - (3) 조작은 빠르고, Undo기능을 제공하며, 조작실행에 의한 변화가 즉시 표시
- 직접조작에 의한 대화시스템의 예
 - o (1) 휴대전화를 컴퓨터에 의해 가상적으로 구현
 - 시뮬레이터를 사용함으로써 실제로 휴대전화를 조작하는 것처럼 휴대전화용 애플리케이션 프로그램을 테스트
 - 그림(a): PC위에 가상적으로 구현한 휴대전화시뮬레이터 화면
 - 시뮬레이터는 휴대전화의 각종 버튼을 표시하여 사용
 자가 버튼 조작시 휴대전화의 동작 결과를 화면에 표시
 - 예: 마우스커서를 버튼 위치고 이동시켜 클릭하는 조작은 버튼을 누르는 것으로 간주
 → 버튼이 클릭되면 버튼의 색을 변화시키거나 눌려지는 모양으로 표시

(a)휴대전화 시뮬레이터

8.2.3 직접조작에 의한 대화

- Windows 등과 같은 OS에서 사용되고 있는 데스크톱환경
 - 그림(b)와 같이,서류나 휴지통 등과 같은 일상생활에서 친숙한 객체들과,이에 대한 조작을 흉내내서 컴퓨터를 조작하는 인터페이스 제공
 - 관계있는 서류들은 같은 폴더에 넣어두거나 또는 불필요하게 된 서류들은 휴지통에 버리는 등, 일상적인 작업들을 흉내내서 사용자가 컴퓨터내부의 파일을 관리할 수 있음

• 직접조작의 장점

- (1) 사용자는 컴퓨터를 주체적으로 통제하고 있다는 기분이 들게 되어, 컴퓨터에게 지배되고 있다는 느낌이 적어지게 됨
- (2) 직접적이고 이해하기 수월하며 유사성에 의해 조작결과를 추측할 수 있기 때문에 사용자의 학습시간이 비교적 짧음
- (3) 사용자는 자신의 행위에 대한 피드백을 곧바로 얻을 수 있으므로, 오류에 대해 즉각적으로 대처할 수 있게 됨

(b)데스크탑 환경

8.2.3 직접조작에 의한 대화

- 직접조작의 문제점
 - (1) 컴퓨터화면을 책상 위, 컴퓨터 내부의 파일을 문서라고 비유하는 등, 적당한 비유(Metaphor)를 생각해서 조작대상(객체)을 결정할 필요가 있음
 - 객체에 대한 조작에 대해서도 휴지통에 넣는 동작과 같은 메타포를 규정할 필요가 있음
 - 일반적으로 적당한 정보공간 모델을 개발하고,객체와 조작에 대해서 많은 사람들이 이해하기 쉬운 적절한 메타포를 정하는 작업은 쉽지 않음
 - (2) 직접조작을 위한 인터페이스는 프로그램이 복잡하게 되며,컴퓨터 하드웨어에 대한 요구사항이 커지게 됨
 - (3) 일련의 조작들을 반복하는 처리 및 조작의 이력을 추적하는 기능을 구현하는 것은 명령어언어와 메뉴선택에 비해서 어려움

목차

- 8.3.1 GUI
- 8.3.2 GUI 부품
- 8.3.3 출력화면의 설계

8.3.1 GUI

- 대부분의 GUI: 여러 개의 윈도우들을 사용할 수 있도록 한 멀티윈도우시스템
- 화면위에 여러개의 윈도우들을 배치하는 방식
 - 그림(a) 타일형 방식: 화면을 분할해서 만들어진 영역을 각각 윈도우로서 사용
 - 초기 윈도우 시스템에서 주로 사용
 - 그림(b) 중복형 방식: 책상 위에 종이를 배치하듯이 윈도우를 자유롭게 겹쳐서 배치 가능
 - 현재는 제약사항이 적은 중복형 방식이 주로 사용

8.3.1 GUI

- 대부분의 멀티윈도우시스템에서는 화면에 표시되는 다양한 그림기호들(아이콘)을 사용하여 직접조작인터페이스를 제공
 - 그림(a) 대상아이콘: 문서와 이미지 등 작업대상을 나타내는 아이콘
 - 그림(b) 조작아이콘: 이동과 삭제 등 조작을 나타내는 아이콘
 - 그림(c) 상태아이콘: 파일의 다운로드 등의 진척상황을 퍼센트로 나타내는 상태와 상태변화를 나타내는 아이콘
- 직접조작인터페이스
 - 마우스를 사용하여 대상아이콘을 이동시키거나 조작을 적용하는 등의 작업수행이 가능
 - 조작아이콘의 위치에 마우스포인터를 이동시켜서 클릭하면,
 조작아이콘에 대응하는 조작이 개시됨
- 아이콘: 현실세계의 메타포를 이용하여 대부분의 사용자들이 보면 곧바로 이해할 수 있는 그림으로 지정하는 것이 바람직

8.3.1 GUI

- 멀티윈도우시스템과 아이콘을 사용한 GUI 장점
 - 사용자가 기억하거나 사용하는 것이 수월함
 - 경험이 적은 사용자가 시스템의 사용방법을 신속하게 익힐 수 있음
 - 동시에 여러 개의 애플리케이션과 상호작용이 수월함
 - 사용자가 어떤 업무로부터 다른 업무로 신속 이동 가능
 - 여러개의 윈도우를 사용하는 경우, 사용자의 관심이 다른 곳으로 이동하더라도 정보는 윈도우에 표시되어 있는 상태로 남겨지게 됨

8.3.2 GUI 부품

- GUI 에서는 아이콘 외에도 다양한 부품들을 사용하여 화면을 구성
- 다이얼로그박스 (Dialog Box): 조작의 확인 및 동작의 지정 등 사용자로부터의 지시가 필요한 경우에 응답을 받기 위해 표시되는 윈도우
 - 예: 그림과 같이 (a)명령어버튼, (b)라디오버튼, (c)체크박스, (d)리스트박스, (e)텍스트박스, (f)스핀박스등이 있음

8.3.2 GUI 부품

• 다이얼로그박스(Dialog Box)의 기능

표 8.1 다이얼로그박스의 기능

명칭	기능
명령어버튼	등록, 삭제 등의 실행해야하는 기능을 나타내는 레이블이 붙은 버튼
라디오버튼	여러개의 선택항목들 중에서 한개만을 선택하기 위한 버튼
체크박스	여러개의 선택항목들 중에서 적당한 항목들을 선택하기 위한 GUI요소. 여러개의 항목들을 선택할 수 있으며, 선택한 항목들에는 체크마크가 붙여진다.
리스트박스	선택할 항목들의 일람을 표시하고, 그 중에서 한개를 선택하기 위한 GUI요소.
텍스트박스	키보드로부터 입력하기 위한 GUI요소. 한줄 입력용과 여러줄 입력용이 있다.
스핀박스	숫자값의 입력란에 상하 버튼을 클릭하여 숫자값을 증감시킬 수 있는 GUI요소,

8.3.2 GUI 부품

- "버튼을 누른다": 마우스포인터를 버튼 위치로 이동시켜서 클릭하는 것
 - 버튼에는 레이블로서 텍스트 또는 아이콘을 붙여놓음으로써 버튼을 눌렀을 때에 실행되는 기능을 이해할 수 있도록 하는 경우가 있음
 - 버튼을 누르면 색의 변화 및 눌려지는 모양표시 등에 의해 시각적으로 사용자에게 상태가 통지됨

8.3.2 GUI 부품

- 메뉴
 - o 그림(a) 메뉴바(Menu Bar)
 - 메뉴항목들에 대한 일람
 - 명령어 버튼을 나열한 것
 - 그림(b) 풀다운메뉴(Pull-down Menu)
 - 메뉴바의 항목(명령어 버튼)을 선택시 해당 항목에 관한 보다 상세한 선택항목들의 일람이 아래에 드리워져 표시됨
 - 그림(c) 팝업메뉴(Pop-Up Menu)
 - 화면위에서 마우스를 클릭하거나 메뉴항목들의 일람에서 어떤 항목으로 마우스포인터를 이동시키면, 마우스포인터 위치에 새로운 메뉴가 표시됨
 - 일반적으로 마우스클릭을 사용하는 경우, 2개 이상의 버튼이 있는 마우스에서는 주로 사용하는 버튼 이외의 버튼에 표시기능을 함당

(c)팝업메뉴

- 출력화면을 설계할 때 고려할 점
 - (1) 유저의 관심
 - 사용자의 관심을 파악하여 사용자의 요구에 부응되도록 함
 - 예: 사용자는 정확한 정보에 관심이 있는지, 아니면 데이터사이의 상호관계에 관심이 있는지를 파악
 - (2) 정보의 가치
 - 표시되어야하는 정보의 가치가 어느 정도로 빠르게 변화하는지, 그리고 변화는 곧바로 표시되어야하는지 등과 같은 사항을 명확히 함
 - 정보의 변화에 대하여 사용자가 무엇인가 대응할 필요가 있는지,그리고 필요있다면 어떤 액션을 수행하는지를 명확히 함
 - (3) 표시방법의 특징
 - 텍스트표현과 비주얼표현, 아날로그표현과 디지털표현 등 성질이 서로다른 다양한 표시방법의 특성을 이해하고 차이점 파악 필요

- 출력화면을 설계할 때 주요 표시기법
 - (1) 표현형식
 - 텍스트표현
 - 문자, 숫자 기호 등의 텍스트를 사용한 경우, 일반적으로 정보가 왼쪽→오른쪽, 위→ 아래로 선형적으로 배열됨
 - 배열순서에 제약사항이 있으므로 사용자의 해석에 자유도가 적어짐
 - 비주얼표현
 - 도표 등의 비주얼표현의 경우,정보는 2차원적으로 자유롭게 배열되므로,사용자의 해석에 대한 자유도가 커짐

- 출력화면을 설계할 때 주요 표시기법
 - (1) 표현형식
 - 그림(a) 디지털표현
 - 수치데이터를 숫자에 의해 이산적으로 표현한 것
 - 정확한 값을 전달 가능
 - 치밀하며 표시공간이 적어도 좋음
 - 그림(b) 아날로그표현
 - 직선, 곡선, 파형 등과 같이 연속적인 형태로 표현한 것
 - 값에 대한 일상을 즉시 파악하기 수월함
 - 그림(c)와 같이 동적으로 변화하는 정보를 표시하는 경우에 적합
 - 온도와 습도 등과 같은 관련있는 값들을 나열하여 표시
 - 예외적인 데이터값을 표시

- 출력화면을 설계할 때 주요 표시기법
 - o (2) 색의 사용법
 - 색은 출력화면에 새로운 요소를 한 개 추가하여 사용자가 복잡한 구조를 이해하는데 도움
 - 예외적인 이벤트 발생을 강조하기 위해 이용 가능
 - 유저인터페이스로서 보조적으로 사용해야 함
 - 의미를 전달하기 위하여 사용하거나 너무 많은 색을 사용하는 것은 바람직하지 않음
 - 유저인터페이스에 있어서 효과적인 색 사용법 14가지 가이드라인 중 주요항목(슈나이더만)
 - 색상의 수가 너무 많지 않도록 하며 보수적인 색을 사용
 - 색 사용에 있어서 충분히 생각하여 일관성을 유지하도록 함
 - 주목해야하는 부분의 색을 변경하여 강조하는 등 사용자가 수행하고 있는 작업을 도울
 수 있도록 색을 사용
 - 시스템의 상태변화를 나타내기 위하여 색을 변화시킴
 - 맨처음에는 흑백으로 설계하고 나중에 색을 추가

- 출력화면을 설계할 때 주요 표시기법
 - o (2) 색의 사용법
 - 색은 출력화면에 새로운 요소를 한 개 추가하여 사용자가 복잡한 구조를 이해하는데 도움
 - 예외적인 이벤트 발생을 강조하기 위해 이용 가능
 - 유저인터페이스로서 보조적으로 사용해야 함
 - 의미를 전달하기 위하여 사용하거나 너무 많은 색을 사용하는 것은 바람직하지 않음
 - 유저인터페이스에 있어서 효과적인 색 사용법 14가지 가이드라인(슈나이더만)
 - 색상의 수가 너무 많지 않도록 하며 보수적인 색을 사용
 - 색 사용에 있어서 충분히 생각하여 일관성을 유지하도록 함
 - 주목해야하는 부분의 색을 변경하여 강조하는 등 사용자가 수행하고 있는 작업을 도울
 수 있도록 색을 사용
 - 시스템의 상태변화를 나타내기 위하여 색을 변화시킴
 - 맨처음에는 흑백으로 설계하고 나중에 색을 추가

- 출력화면을 설계할 때 주요 표시기법
 - (3) 대량정보의 가시화
 - 대량정보를 취급하는 경우, Tree구조 또는 그래프구조 등을 사용하여 구조화하여 표현하거나 3차원적으로 표시하여 사용자가 이해하기 쉽도록 표시하는 다양한 정보가시화기술이 개발됨
 - 도표화
 - 정보가시화의 가장 기본적이면서도 중요한 기법
 - 장점
 - ㅇ 전체를 한눈에 이해
 - 전체와 부분 사이의 관계 및 부분들 사이의 관계를 알 수 있음
 - 정보가시화를 위한 가장 기본적인 가이드라인(슈나이더만)
 - 우선 전체의 개요를 보여주고
 - 그 중에서 중요한 정보를 확대/선별하여
 - 사용자의 요구사항에 알맞게
 - 보다 상세한 정보를 제시하라

- 출력화면을 설계할 때 주요 표시기법
 - (3) 대량정보의 가시화
 - 어안렌즈(魚眼 렌즈, FishEye lens) 기법
 - 1986년에 George W. Furnas가 제안
 - 전체의 개요와 국소적인 상세사항을 동시에 한 개의 화면에 표시하는 기법
 - 어안렌즈의 메타포를 기반으로 하는 정보가시화기법
 - 어안렌즈를 통해서 바라본 것 같은 굴절이 포함된 도면을 표시
 - Focus + Context 기술
 - 주목하려는 영역(Focus 영역)을 확대하여 상세하게 표시
 - 주변영역(Context 영역)을 축소하여 전체의 개요를 파악할 수 있도록 표시
 - ㅇ 커다란 그래프나 지도 등과 같은 대용량 데이터를 가시화하는 중요한 기술

8.3.3 출력화면의 설계

- 출력화면을 설계할 때 주요 표시기법
 - (3) 대량정보의 가시화

(a)

- 그림(a): 지도데이터에 대해서 어안렌즈의 메타포를 적용
- 그림(b): Focus + Context + Glue형 지도
 - Focus영역과 Context영역 사이에 왜곡을 흡수하는 접합영역(Glue영역)을 삽입

(b)

● 접합영역에서는 지도데이터의 의미를 고려하여 배치함으로써 시각적인 인지능력 향상

어안렌즈의 메타포를 사용한 지도표시의 예

Focus + Context + Glue형 지도표시의 예

각 질문에 대한 알맞은 답의 번호(숫자)를 괄호안에 표시하시오.

- □ 1. 유저인터페이스의 설계가이드라인에 알맞지 <u>않은</u> 것을 고르시오. **(**
 - (1) 사용자에게 친근할 것
 - (2) 일관성을 유지할 것
 - (3) 시스템이 주체적이 될 수 있도록 할 것
 - (4) 피드백을 적용할 것
 - (5) 오류로부터의 회복을 수월하게 할 것
- □ 2. 유저인터페이스 설계공정 중 UI 프로토타입을 사용자에게 보여주고, 메뉴의 기본적인 디자인과 레이아웃,조작순서 등에 대해 사용자와 함께 평가하는 것은 가능한한 어느 단계에서 실시하는가? (□) (1) 초기단계 (2) 중간단계 (3) 최종단계 (4) 아무 단계나 상관없음
- □ 3. 시스템이 완성되면 사용자와 유저인터페이스에 관한 최종적인 평가를 수행한다. 평가 수행시 참고가 되는 Ben Sheiderman이 측정가능한 인적요인으로서 주장한 항목이 <u>아닌</u> 것을 고르시오. (□) (1) 학습시간 (2) 실행속도 (3) 오류포함정도 (4) 단기기억 (5) 만족도

- 1. (3) → 시스템이 아니라 사용자가 주체적이 될 수 있도록 할 것
- □ 2.(1) → 초기단계
- □ 3.(4) → 장기기억

각 질문에 대한 알맞은 답의 번호(숫자)를 괄호안에 표시하시오.

- 4. 유저인터페이스의 대화방식 중 메뉴선택에 의한 대화의 장점이 <u>아닌</u> 것을 고르시오.()
 - (1) 조작이 알기 쉽고, 사용자의 조작오류가 적다.
 - (2) 학습시간이 비교적 짧다.
 - (3) 타이핑 양을 최소화할 수 있다.
 - (4) 사용자의 상황에 알맞은 도움말 기능을 제공할 수 있다.
 - (5) 여러 개의 조작을 조합하여 복잡한 조작을 표현하기 쉽다.
- 고 5.파일의 다운로드 등의 진척상황을 퍼센트로 나타내는 아이콘은 무엇인가?
 - (1) 대상아이콘 (2) 상태아이콘 (3) 조작아이콘 (4) 명령아이콘

- 4. (5) → 여러 개의
 조작을 조합하여
 복잡한 조작을
 표현하기 어렵다.
- □ 5.(2) → 상태아이콘

각 질문에 대한 알맞은 답의 번호(숫자)를 괄호안에 표시하시오.

□ 6. 유저인터페이스의 대화방식 중 직접조작에 관한 설명이 <u>아닌</u> 것을 **2**개고르시오.

,

- (1) 직접조작을 위한 인터페이스는 프로그램이 단순하여 컴퓨터 하드웨어에 대한 요구사항이 적다.
- (2) 사용자는 컴퓨터를 주체적으로 통제하고 있다는 기분이 들게 되어, 컴퓨터에게 지배되고 있다는 느낌이 적어지게 된다.
- (3) 일련의 조작들을 반복하는 처리 및 조작의 이력을 추적하는 기능을 구현하는 것은 명령어언어와 메뉴선택에 비해서 쉽다.
- (4) 직접적이고 이해하기 수월하며 유사성에 의해 조작결과를 추측할 수 있기 때문에 사용자의 학습시간이 비교적 짧다.
- (5) 사용자는 자신의 행위에 대한 피드백을 곧바로 얻을 수 있으므로, 오류에 대해 즉각적으로 대처할 수 있게 된다.

객관식 문제 (답안지)

6. $(1, 3) \rightarrow$ (1) 직접조작을 위한 인터페이스는 프로그램이 복잡하게 되며, 컴퓨터 하드웨어에 대한 요구사항이 커지게 된다. (3) 일련의 조작들을 반복하는 처리 및 조작의 이력을 추적하는 기능을 구현하는 것은 명령어언어와 메뉴선택에 비해서 어렵다.

각 질문에 대한 알맞은 답의 번호(숫자)를 괄호안에 표시하시오.

- 7. 슈나이더만이 제시한 유저인터페이스에 있어서 효과적인 색 사용법 중 주요항목이 <u>아닌</u> 것을 고르시오.(
 - (1) 색상의 수가 너무 많지 않도록 하며 보수적인 색을 사용한다.
 - (2) 색 사용에 있어서 충분히 생각하여 다양성을 유지하도록 한다.
 - (3) 주목해야하는 부분의 색을 변경하여 강조하는 등 사용자가 수행하고 있는 작업을 도울 수 있도록 색을 사용한다.
 - (4) 시스템의 상태변화를 나타내기 위하여 색을 변화시킨다.
 - (5) 맨처음에는 흑백으로 설계하고 나중에 색을 추가한다.
- 8. 파일의 다운로드 등의 진척상황을 퍼센트로 나타내는 아이콘은 무엇인가?
 - (1) 대상아이콘 (2) 상태아이콘 (3) 조작아이콘 (4) 명령아이콘

- 고 7. (2) → 색 사용에 있어서 충분히 생각하여 일관성을 유지하도록 한다.
- 8.(2) → 상태아이콘

주관식 문제 (괄호안에 알맞은 단어를 입력하시오.)

- □ 1. 사용자(user)와 시스템 사이에 존재하여 양쪽의 "대화"를 중계하는 역할을 수행하는 것으로, 사용자는 이것을 통해 시스템을 조작하고, 시스템의 동작을 알 수 있다. 이것은 무엇인가?()
- □ 2. 유저인터페이스의 설계지침에는 ([1])에게 친근할 것, 일관성을 유지할 것, ([2])을 적용할 것, 사용자에게 예상치못한 놀라움을 최소화할 것, 사용자가 주체적이 될 수 있도록 할 것, ([3])로부터의 회복을 수월하게 할 것, 사용자에 대한 도움기능이 제공될 것 등이 있다.
- □ 3. 유저인터페이스설계공정의 초기단계에서 사용자의 전형적인 이용방법을 예상하여 조작 시나리오를 정하고, 해당 시나리오 수행에 필요한 화면의 이미지(그림과 움직임을 표현)를 작성하는 것을 무엇이라고 하는가?

- 1. 유저인터페이스 (또는 UI 또는 User Interface)
 - 2
 - (1) 사용자
 - (2) 피드백
 - (3) 오류
- 3. 유저인터페이스 프로토타입 (또는 UI Prototype)

주관식 문제 (괄호안에 알맞은 단어를 입력하시오.)

- □ 4. 유저인터페이스설계공정의 최종단계에서 하는 평가 중 () 평가는 피실험자에 대한 인터뷰와 피실험자가 과제를 수행하는 과정을 중시하고, 비교적 단기간에 문제점을 추출할 수 있어서 초기와 중간단계에서 설계에 적절히 수정하는데 있어 유용하다.
- 5. 유저인터페이스의 대화방식에는 명령어 언어과 메뉴 선택,그리고 현재의 대화형시스템의 중심적인 인터페이스로서 직감적으로 이해하기 수월한 ()등이 있다.
- □ 6. 대부분의 GUI는 여러 개의 윈도우들을 사용할 수 있도록 한 멀티윈도우시스템으로서 ([1]) 방식은 화면을 분할해서 만들어진 영역을 각각 윈도우로서 사용하고, ([2]) 방식은 책상 위에 종이를 배치하듯이 윈도우를 자유롭게 겹쳐서 배치하여 사용한다.

- 4. 정성적
- □ 5. 직접조작
- **□** 6.(1) 타일형 (2) 중복형

주관식 문제 (괄호안에 알맞은 단어를 입력하시오.)

- 7. 멀티윈도우시스템과 아이콘을 사용한 GUI의 장점을 2가지 쓰시오. ([1]), ([2])
- 8. 출력화면을 설계할 때의 표현형식은 수치데이터를 숫자에 의해 이산적으로 표현하여 정확한 값을 전달 가능한 ([1]) 표현과 직선, 곡선, 파형 등과 같이 연속적인 형태로 표현하여 값에 대한 일상을 즉시 파악하기 수월한 ([2]) 표현이 있다.

- □ 7. (1) 사용자가 기억하거나 사용하는 것이 수월함
 - (2) 동시에 여러 개의 애플리케이션과 상호작용이 수월함
- 교 8. (1) 디지털(Digital)
 - (2) 아날로그(Analog)

주관식 문제 (괄호안에 알맞은 단어를 입력하시오.)

 9. 컴퓨터내부에서 처리된 결과를 사용자에게 이해하기 쉽게 표시하기 위해 출력화면을 설계할 때 어떤 특징을 고려해야하는지 3가지를 쓰시오.

```
([1]
([2]
([3]
```

□ 10. 어안렌즈 기법은 어안렌즈를 통해서 바라본 것 같은 굴절이 포함된 도면을 표시한다. ([1]) 영역을 확대하여 상세하게 표시하고,

([2]) 영역을 축소하여 전체의 개요를 파악할 수 있도록 표시한다.

- ┛ 9. (1) 사용자의 관심
 - (2) 정보의 가치와 변화
 - (3) 표시기법의 특징
- □ 10. (1) Focus (또는 포커스, 초점, 주목)
 - (2) Context (또는 컨텍스트, 주변)

Talktime

Any questions?