Korrespondenssianalyysi - kaavaliite (v. 1.03)

Jussi Hirvonen

4.4.2018

	Paperin versiot	
Versio	muutokset	- päivämäärä
0.1	harjoittelua - drawmatrix	14.7.2017
1.01	harjoittelua - matriisiyhtälöt ja ca-peruskaavat	5.8.2017
1.02	pientä korjailua, turhan poistoa	28.1.2018
1.03	lisäillään yksinkertaisen ca:n kaavoja, taulukoita R-paketilla furniture	4.4.2018

Sisältö

1	Kaavat ja matemaattisen merkinnät - työkalut	1
2	Yksinkertaisia kaavoja leipätekstiin	1
3	Matriisit ja niiden havainnollistaminen	2
4	Matriisiyhtälöt ilman kaavioita	3

1 Kaavat ja matemaattisen merkinnät - työkalut

Tähän voisi kerätä Latex:in suositukset ja tavat esittää kaavoja, tässä on pientä epäselvyyttä mulla vielä. Esimerkkejä löytyy varsinaisesta luonnosdokkarista. Myös kaavito sun muut, kuvien insertointi on varsinaisessa luonnosdokkarissa.

2 Yksinkertaisia kaavoja leipätekstiin

Yksinkertaisen korrespondenssianalyysin esittelyssä tarvitaan muutama kaava, vaikka koitan niitä liitteen ulkopuolella välttää.

Taulukko 1: Alle kouluikäinen lapsi todennäköisesti kärsii, jos hänen äitinsä käy työssä

	1	2	3	4	5	Test	P-V
	n = 295	n = 600	n = 593	n = 889	n = 732		
$_{\mathrm{maa}}$						Chi Square: 588.1	<.0
FI	47 (15.9%)	188 (31.3%)	149 (25.1%)	$423 \ (47.6\%)$	303 (41.4%)		
$_{ m HU}$	219 (74.2%)	288 (48%)	225 (37.9%)	190 (21.4%)	75 (10.2%)		
SE	29 (9.8%)	$124\ (20.7\%)$	219 (36.9%)	276 (31%)	354 (48.4%)		

Kahden luokittelumuuttujan ristiintaulukointi (kontigenssitaulu)

En käytä kaavaliitteen notaatiota leipätekstissä, vaan yksinkertaisempaa tapaa. Aloitetaan taulukolla.

Koitetaan furniture-paketilla vääntää taulukko. Tämä menee oikealta yli (output = latex) .

Toinen koe (output = latex 2):

Taulukko 2: Alle kouluikäinen lapsi todennäköisesti kärsii, jos hänen äitinsä käy työssä

			V 6		
	1	2	3	4	5
	n=295	n = 600	n = 593	n = 889	n = 732
maa					
FI	47 (15.9%)	188 (31.3%)	149 (25.1%)	$423 \ (47.6\%)$	303 (41.4%)
HU	219 (74.2%)	288 (48%)	225 (37.9%)	190 (21.4%)	$75 \ (10.2\%)$
SE	29 (9.8%)	$124\ (20.7\%)$	219 (36.9%)	276 (31%)	354 (48.4%)

Yritetään vielä yksinkertaisempaa:

Bigskip

3 Matriisit ja niiden havainnollistaminen

Drawmatrix toimii, mutta vaatii säätöä. Voisi olla leipätekstissä hyvä matriisiyhtälöiden havainnollistamiseen.

Kummallinen kohdistus.

$$\left(\begin{array}{c|c} A & B \end{array} \right)^{-1} C$$

Taulukko 3: Alle kouluikäinen lapsi todennäköisesti kärsii, jos hänen äitinsä käy työssä

	V6					
	1	2	3	4	5	Total
	n=4	n = 4	n=4	n = 4	n=4	n = 4
maa						
FI	1(25%)	1(25%)	1(25%)	1(25%)	1(25%)	1(25%)
HU	1(25%)	1(25%)	1(25%)	1(25%)	1(25%)	1(25%)
SE	1(25%)	1(25%)	1(25%)	1(25%)	1(25%)	1(25%)
Total	1(25%)	1~(25%)	1~(25%)	1~(25%)	1~(25%)	1(25%)

Ainakin SVD - osuudessa voi hyödyntää tätä:

4 Matriisiyhtälöt ilman kaavioita

Tässä lähteenä Greenacren kirja (ca in practice) ja sen liite Theory of CA. Muistiinpanoja löytyy, joissa viitataan myös Biplots in practice - kirjaan. Ei valmis, lähinnä kaavojen kirjoittelun harjoittelua.

Korrespondenssianalyysin perusyhtälöt:

Datamatriisin N alkiot ovat ei-negatiivisia (eli nollat sallittuja) ja samassa mitta-asteikossa (jos mitta-asteikko on intervalli- tai suhdeasteikko mittayksiköiden on oltava samoja), ja n on taulukon alkoiden summa. GDA-kirjassa on tarkennettu tätä vaatimusta einegatiivisuudesta.

Korrespondenssimatriisi P saadaan jakamalla matriisin N alkiot niiden summalla n (tai ehkä parempi merkintä N). Merkitään matriisin P rivisummien vektoria r ja sarakesummien vektoria c. Korrespondenssianalyysin termein nämä vektorit ovat rivi- ja sarakemassojen vektoreita, ja niitä vastaavat diagonaalimatriisit ovat D_r ja D_c .

Korrespondenssianalyysin perusrakenne (algoritmi?) on tämä. Singulaariarvohajoitelma (singular value decomposition) tuottaa ratkaisun kun sitä sovelletaan standardoituun residuaalimatriisiin S.

(1)
$$\boldsymbol{S} = \boldsymbol{D_r}^{-1/2} (\boldsymbol{P} - \boldsymbol{r} \boldsymbol{c}^T) \boldsymbol{D_c}^{-1/2}$$
 tai

$$S = D_r^{1/2} (D_r^{-1} P D_c^{-1} - 11^T) D_c^{-1/2}$$
.

Toinen esitystapa on hyödyllinen, kun tarkastellaan CA:n yhteyksiä muihin läheisiin menetelmiin (erityisesti kai log ratio analysis of compositional data?). Ehkäpä siksi, että matriisin alkiolle elementtimuodossa saadaan vastaavasti kaksi esitystapaa. Ensimmäinen on

$$s_{ij} = \frac{p_{ij} - r_i c_j}{\sqrt{r_i c_j}}$$

ja toinen

$$s_{ij} = \sqrt{r_i} \left(\frac{p_{ij}}{r_i c_j} \right) \sqrt{c_j} \quad .$$

Mitäköhän tuosta pitäisi nähdä? Selitykset löytyvät em. teorialiitteestä. Singulaariarvohajoitelma (singular value decomposition, SVD) matriisille \boldsymbol{S} on

$$S = U D_{\alpha} V^{T}$$

missä D_{α} on diagonaalimatriisi, jonka alkiot ovat singulaariarvot suuruusjärjestyksessä $\alpha_1 \geq \alpha_1 \geq \dots$

Näin saadaan standardikoordinaatit ja principal-koordinaatit riveille ja sarakkeille. Rivien standardikoordinaatit

$$\Phi = \boldsymbol{D_r}^{-1/2} \boldsymbol{U}$$

Sarakkeiden standardikoordinaatit

(3)
$$\Gamma = \boldsymbol{D_c}^{-1/2} \boldsymbol{V}$$

Rivien principal-koordinaatit

(4)
$$F = D_r^{-1/2}UD_\alpha = \Phi D_\alpha$$

Sarakkeiden principal-koordinaatit

(5)
$$G = D_c^{-1/2} V D_{\alpha} = \Gamma D_{\alpha}$$