

Interface maître et esclave d'un robot

CCP PSI 2015

Savoirs et compétences :

- Mod2.C34 : chaînes de solides ;
- Mod2.C34 : degré de mobilité du modèle ;
- Mod2.C34 : degré d'hyperstatisme du modèle;

Mise en situation

La téléopération consiste à mettre en relation deux manipulateurs appelés communément maître et esclave. Le manipulateur maître permet au chirurgien de donner sa consigne de déplacement à l'aide d'un levier de commande tandis que l'esclave l'exécute au contact de l'environnement (l'organe à opérer). Les deux sous-systèmes échangent des informations de déplacement et d'effort au travers d'un ou plusieurs canaux de communication. Un retour visuel est également mis en place en parallèle à ce dispositif.

Modélisation de l'interface maître

Ce mécanisme est constitué de 4 barres reliées par des liaisons pivots.

Objectif Vérifier que les exigences « Amplitude déplacement » (id 1.2.1.1), « Mouvement rectiligne » (id 1.2.1.2), « Linéarité déplacement » (id 1.2.1.3) peuvent être satisfaites par le mécanisme de HOEKEN.

- Solide S_0 , repère $\mathcal{R}_0(A; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}), \overrightarrow{AB} = L_0 \overrightarrow{x_0}$ avec $L_0 = 50 \, \text{mm}.$
- Solide S_1 , repère $\mathcal{R}_1(B; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0})$, $\overrightarrow{BC} = L_1 \overrightarrow{x_1}$ avec $L_1 = 25 \,\mathrm{mm}, \; \theta_1 = (\overrightarrow{x_0}, \overrightarrow{x_1}) = (\overrightarrow{y_0}, \overrightarrow{y_1}).$
- Solide S_2 , repère $\mathcal{R}_2(A; \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_0}), \overrightarrow{AD} = L_2 \overrightarrow{x_2}$ avec $L_2 = 62.5 \,\mathrm{mm}, \; \theta_2 = (\overrightarrow{x_0}, \overrightarrow{x_2}) = (\overrightarrow{y_0}, \overrightarrow{y_2}).$
- Solide S_3 , repère $\mathcal{R}_3(C; \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_0})$, $\overrightarrow{ED} = \overrightarrow{DC} =$ $L_2\overrightarrow{x_3}$ avec $\theta_3 = (\overrightarrow{x_0}, \overrightarrow{x_3}) = (\overrightarrow{y_0}, \overrightarrow{y_3}).$

Question 1 Donner une relation algébrique reliant les paramètres L_0 , L_1 , L_2 , θ_1 et θ_3 .

Question 2 De même, exprimer le vecteur position du point $E(\overrightarrow{AE})$ dans la base du repère \mathcal{R}_0 en fonction de L_0 , L_1 , L_2 , θ_1 et θ_3 .

La résolution analytique du système d'équations permettant d'obtenir le déplacement du point E en fonction de l'angle de rotation θ_1 du moteur et des différentes longueurs du mécanisme n'étant pas triviale, seuls les résultats d'une simulation numérique seront analysés.

1

Question 3 Vérifier, à l'aide des figures précédentes, que le déplacement du point E est compatible avec les exigences « Amplitude déplacement » (id 1.2.1.1) et « Mouvement rectiligne » (id 1.2.1.2) sur l'intervalle $X_E \in [-60\,\mathrm{mm};40\,\mathrm{mm}]$.

Question 4 Proposer, à partir de la dernière figure, une démarche permettant de vérifier l'exigence « Linéarité déplacement » (id 1.2.1.3) sur l'intervalle $X_E \in [-60\,\mathrm{mm};40\,\mathrm{mm}]$.

Modélisation de l'interface esclave

Solide	Repère associé	Paramètres géométriques	Paramètres dynamiques
S_0 (bâti)	$R_0(A, \vec{x}_0, \vec{y}_0, \vec{z}_0)$		
S_1 (barre AB + rotor moteur)	$\mathcal{R}_1(A, \vec{x}_1, \vec{y}_1, \vec{z}_0)$	$ \overrightarrow{AB} = L_1 \overrightarrow{x}_1 $ avec $L_1 = 35 \text{mm}$ $\theta_1 = (\overrightarrow{x}_0, \overrightarrow{x}_1) = (\overrightarrow{y}_0, \overrightarrow{y}_1) $	$\label{eq:local_local_local} \begin{array}{ll} \text{Inertic} & \text{\'equivalente} & \text{ramen\'ee} & \tilde{\epsilon} \\ \text{l'ars} \left(A, \tilde{z_0}\right) : \\ I_1 = 5, 7 \times 10^{-5} \text{kg} \cdot \text{m}^2 \\ \text{Frottement} & \text{fluide} & \text{entre rotor} & \text{et stator} : \\ f_v = 1, 6 \times 10^{-3} \text{N} \cdot \text{m} \cdot \text{s} \\ \text{Masse} & \text{n\'eglig\'ee} \\ \end{array}$
S_2 (barre BC)	$\mathcal{R}_2(B, \vec{x}_2, \vec{y}_2, \vec{z}_0)$	$\overrightarrow{BC} = L_2 \vec{x}_2$ avec $L_2 = 80 \text{ mm}$ $\theta_2 = (\vec{x}_0, \vec{x}_2) = (\vec{y}_0, \vec{y}_2)$	Masse et inertie négligées
S_3 (organe terminal)	$\mathcal{R}_3(C, \vec{x}_0, \vec{y}_0, \vec{z}_0)$	$\overrightarrow{AC} = L_3 \cdot \vec{y}_0 + x_s(t) \cdot \vec{x}_0$ avec $L_3 = 25 \text{ mm}$	Masse : $M_3 = 0.1 \mathrm{kg}$
S_4 (barre DE)			Masse et inertie négligées
S_5 (barre EF)			Masse et inertie négligées

Objectif Modéliser le comportement dynamique de l'interface esclave de façon à évaluer son comportement au sein d'une boucle d'asservissement.

On note $\{\mathcal{T}(\text{mot} \to S_1)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_m \overrightarrow{z} \end{array}\right\}_{\forall P}$ l'expression, dans la base \mathcal{B}_0 du torseur de l'action mécanique exercée par le moteur sur le solide S_1 et l'accélération de la

pesanteur sera représentée par le vecteur $\overrightarrow{g} = -g \overrightarrow{y_0}$. **Question** 5 Tracer le graphe des liaisons du dispositif esclave. Précisier les actions mécaniques extéreiures Donner le degré d'hyperstatisme de la modélisation de ce mé-

Question 6 Proposer une modification simple pour le rendre isostatique.

Question 7 Montrer que le mouvement de S_3/S_0 ne peut être qu'une translation de direction $\overrightarrow{x_0}$.

Question 8 En utilisant le théorème de l'énergie cinétique, déterminer l'équation de mouvement liant les paramètres C_m , $\dot{\theta}_1$, $\ddot{\theta}_1$, \dot{x}_s , \ddot{x}_s , f_v , M_3 et I_1 .

Question 9 La relation géométrique liant les paramètres x_s et θ_1 n'étant pas triviale, on propose de la linéariser autour du point de fonctionnement par l'expression $\theta_1(t) \simeq \alpha x_s(t)$ avec $\alpha = -30 \, \mathrm{m}^{-1}$. En déduire l'équation différentielle liant les paramètres C_m , \dot{x}_s , \ddot{x}_s , f_v , M_3 , I_1 et α .

Question 10 Donner, dans les conditions d'Heaviside et sous forme canonique, la fonction de transfert modélisant le comportement dynamique du manipulateur esclave : $H(p) = \frac{X_s(p)}{C_m(p)}$ sachant que $X_s(p) = \mathcal{L}[x_s(t)]$ et $C_m(p) = \mathcal{L}[c_m(t)]$. Faire l'application numérique.

canisme.