

From Recurrent Neural Networks to Transformers

Nicoletta Noceti @unige.it

Dealing with sequential data

Text

Audio

Sequences of visual data

Dealing with sequences: a first summary

- Autoregressive models

One-to-may: the input is in a standard format (not a sequence!), the output is a sequence

<u>Example of applications</u>: image captioning (input: image, output: text describing the image content)

Many-to-one: the input is a sequence, the output is a fixed-size vector (not a sequence!)

Example of applications: sentiment analysis (input: text, output:

Direct Many-to-many: input and output are both sequences

<u>Example of applications</u>: video captioning (input is a sequence of images, output is text)

Delayed Many-to-many: input and output are both sequences

<u>Example of applications</u>: language translation (input is a text, output is a text)

Text data

- ML can not (directly) handle text data... we need a numerical descriptor
- Word embeddings can do the job

Vocabulary

my this I walk taking a the since am dog

Indexing

a	→ 0
am	→ 1
dog	→ 2
 walk	→N

Embeddings

A = [10000] Am = [01000] dog = [00100]	happy sad	walk run
	dog	day
Walk = [00001]	cat	night

No guarantee that words with similar meanings have descriptions close to each other in the embedding space...

One-hot encoding vs word embeddings

- Very sparse
- High dimensional
- Hard-coded

Word embeddings:

- Dense
- Lower dimensional
- Learned from data

Dealing with sequences: issues

- Handling sequences of **different lengths**
- Taking into account **short** and **long term** dependences
- Considering order between elements

Modelling sequences

Standard one-to-one vanilla network

Modelling sequences

Standard one-to-one vanilla network

Adding recurrence over time

Recurrent Neural Networks (1986)

- Recurrence adds memory to the NN
- It also provides a way to model causal relationships between observations: the decision a recurrent net reached at time step t-1 affects the decision it will reach at time step t
- RNNs have two sources of input: the present and the recent past, which are combined to determine how they respond to new data

The weight matrices are filters that determine how much importance to give to both the present input and the past hidden state

$$\mathbf{x}_t \in \mathbb{R}^m$$
$$y_t \in \mathbb{R}$$

$$\mathbf{h}_t \in \mathbb{R}^p$$

$$\mathbf{h}_t = \sigma(W_h \mathbf{h}_{t-1} + W_x \mathbf{x}_t)$$

$$y_t = \sigma(W_y \mathbf{h}_t)$$

$$W_h \in \mathbb{R}^{p \times p}$$

$$W_{y} \in \mathbb{R}^{p}$$

$$W_x \in \mathbb{R}^{p \times m}$$

The weight matrices are filters that determine how much importance to give to both the present input and the past hidden state

$$\mathbf{x}_t \in \mathbb{R}^m$$

$$y_t \in \mathbb{R}$$

$$\mathbf{h}_t \in \mathbb{R}^p$$
 This is a hyper-parameter of the method

$$\mathbf{h}_t = \sigma(W_h \mathbf{h}_{t-1} + W_x \mathbf{x}_t)$$

$$y_t = \sigma(W_y \mathbf{h}_t)$$

$$W_h \in \mathbb{R}^{p \times p}$$

$$W_y \in \mathbb{R}^p$$

$$W_x \in \mathbb{R}^{p \times m}$$

The weight matrices are filters that determine how much importance to give to both the present input and the past hidden state

$$\mathbf{x}_t \in \mathbb{R}^m$$

$$y_t \in \mathbb{R}$$

$$\mathbf{h}_t \in \mathbb{R}^p$$
 This is a hyper-parameter of the method

Usually a tanh

$$\mathbf{h}_t = \sigma(W_h \mathbf{h}_{t-1} + W_x \mathbf{x}_t)$$

$$y_t = \sigma(W_y \mathbf{h}_t)$$

It depends on the problem

$$W_h \in \mathbb{R}^{p \times p}$$

$$W_y \in \mathbb{R}^p$$

$$W_x \in \mathbb{R}^{p \times m}$$

The weight matrices are filters that determine how much importance to give to both the present input and the past hidden state

$$\mathbf{x}_t \in \mathbb{R}^m$$

$$y_t \in \mathbb{R}$$

$$\mathbf{h}_t \in \mathbb{R}^p$$
 This is a hyper-parameter of the method

Usually a tanh

$$\mathbf{h}_t = \mathbf{\sigma}(W_h \mathbf{h}_{t-1} + W_x \mathbf{x}_t)$$

$$y_t = \sigma(W_y \mathbf{h}_t)$$

It depends on the problem

$$W_h \in \mathbb{R}^{p \times p}$$

$$W_{y} \in \mathbb{R}^{p}$$

$$W_x \in \mathbb{R}^{p \times m}$$

Having multiple hidden layers

 $\hat{y}^i = f_\sigma(w_y h_{t+2})$

 $J(S;\mathbf{w}) = rac{1}{n}\sum_i (y^i - \hat{y}^i)^2$

Let's assume everything (input, output, state, weights) is one-dimensional

 $h_{t+2} = f_{\sigma}(w_h h_{t+1} + w_x x_{t+2}^i)$

 $h_{t+1} = f_{\sigma}(w_h h_t + w_x x_{t+1}^i)$

Uni**Ge** | **Mal Ga**

 h_t

 x_t^i

 w_x

 $h_t = f_\sigma(w_h h_{t-1} + w_x x_t^i)$

$$J(S; \mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (y^i - \hat{y}^i)^2$$

$$J(S;\mathbf{w}) = rac{1}{n}\sum_{i=1}^n (y^i - \hat{y}^i)^2$$

Let's consider the cost related to a single sample

$$J^i(\mathbf{w}) = (y^i - \hat{y}^i)^2$$

$$J(S; \mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (y^i - \hat{y}^i)^2$$

Let's consider the cost related to a single sample

$$J^i(\mathbf{w}) = (y^i - \hat{y}^i)^2$$

$$rac{\partial J^i(\mathbf{w})}{\partial w_x}$$

$$J(S;\mathbf{w}) = rac{1}{n} \sum_{i=1}^n (y^i - \hat{y}^i)^2$$
 Let's consider the cost related to a single sample

$$J^i(\mathbf{w}) = (y^i - \hat{y}^i)^2$$

$$\begin{split} \frac{\partial J^i(\mathbf{w})}{\partial w_x} &= \frac{\partial J^i(\mathbf{w})}{\partial \hat{y}^i} \frac{\partial \hat{y}^i}{\partial h_{t+2}} \frac{\partial h_{t+2}}{\partial h_{t+1}} \frac{\partial h_{t+1}}{\partial h_t} \frac{\partial h_t}{\partial w_x} + \\ &+ \frac{\partial J^i(\mathbf{w})}{\partial \hat{y}^i} \frac{\partial \hat{y}^i}{\partial h_{t+2}} \frac{\partial h_{t+2}}{\partial h_{t+1}} \frac{\partial h_{t+1}}{\partial w_x} + \\ &+ \frac{\partial J^i(\mathbf{w})}{\partial \hat{y}^i} \frac{\partial \hat{y}^i}{\partial h_{t+2}} \frac{\partial \hat{y}^i}{\partial h_{t+2}} \frac{\partial h_{t+2}}{\partial h_{t+2}} \frac{\partial h_{t+1}}{\partial w_x} \end{split}$$

$$J(S; \mathbf{w}) = rac{1}{n} \sum_{i=1}^n (y^i - \hat{y}^i)^2$$

Let's consider the cost related to a single sample

$$J^i(\mathbf{w}) = (y^i - \hat{y}^i)^2$$

$$\frac{\partial J^{i}(\mathbf{w})}{\partial w_{x}} = \underbrace{\frac{\partial J^{i}(\mathbf{w})}{\partial \hat{y}^{i}} \frac{\partial \hat{y}^{i}}{\partial h_{t+2}}}_{\partial \hat{y}^{i}} \underbrace{\frac{\partial h_{t+2}}{\partial h_{t+1}} \frac{\partial h_{t+1}}{\partial h_{t}} \frac{\partial h_{t}}{\partial w_{x}}}_{\partial h_{t+1}} + \underbrace{\frac{\partial J^{i}(\mathbf{w})}{\partial \hat{y}^{i}} \frac{\partial \hat{y}^{i}}{\partial h_{t+2}}}_{\partial h_{t+1}} \underbrace{\frac{\partial h_{t+1}}{\partial w_{x}}}_{\partial h_{t+1}} + \underbrace{\frac{\partial J^{i}(\mathbf{w})}{\partial \hat{y}^{i}} \frac{\partial \hat{y}^{i}}{\partial h_{t+2}}}_{\partial h_{t+2}} \underbrace{\frac{\partial h_{t+1}}{\partial w_{x}}}_{\partial h_{t+2}} + \underbrace{\frac{\partial J^{i}(\mathbf{w})}{\partial \hat{y}^{i}} \frac{\partial \hat{y}^{i}}{\partial h_{t+2}}}_{\partial h_{t+2}} \underbrace{\frac{\partial h_{t+1}}{\partial w_{x}}}_{\partial h_{t+2}} + \underbrace{\frac{\partial h_{t+1}}{\partial w_{x}}}_{\partial h_{t+2}} + \underbrace{\frac{\partial h_{t+1}}{\partial h_{t}}}_{\partial w_{x}} + \underbrace{\frac{\partial h_{t+1}}{\partial h_{t}}}_{\partial w_{x}} + \underbrace{\frac{\partial h_{t+1}}{\partial h_{t}}}_{\partial w_{x}} + \underbrace{\frac{\partial h_{t+1}}{\partial h_{t+1}}}_{\partial w_{x}} + \underbrace{\frac{\partial h_{t+1}}{\partial w_{x}}}_{\partial w_{x}} + \underbrace{\frac{\partial h_{t+1}}{\partial h_{t+1}}}_{\partial w_{x}} + \underbrace{\frac{\partial h_{t+1}}{\partial w_{x}}}_{\partial w_{x}} + \underbrace$$

$$J(S;\mathbf{w}) = rac{1}{n} \sum_{i=1}^n (y^i - \hat{y}^i)^2$$
 Let's consider the cost related to a single sample

$$J^i(\mathbf{w}) = (y^i - \hat{y}^i)^2$$

$$\begin{split} \frac{\partial J^i(\mathbf{w})}{\partial w_x} &= \frac{\partial J^i(\mathbf{w})}{\partial \hat{y}^i} \frac{\partial \hat{y}^i}{\partial h_{t+2}} (\frac{\partial h_{t+2}}{\partial h_{t+1}} \frac{\partial h_{t+1}}{\partial h_t} \frac{\partial h_t}{\partial w_x} + \\ &\quad + \frac{\partial h_{t+2}}{\partial h_{t+1}} \frac{\partial h_{t+1}}{\partial w_x} + \\ &\quad + \frac{\partial h_{t+2}}{\partial w_x}) \end{split}$$

$$J(S;\mathbf{w}) = rac{1}{n} \sum_{i=1}^n (y^i - \hat{y}^i)^2$$
 Let's consider the cost related to a single sample

$$J^i(\mathbf{w}) = (y^i - \hat{y}^i)^2$$

$$\frac{\partial J^i(\mathbf{w})}{\partial w_x} = \frac{\partial J^i(\mathbf{w})}{\partial \hat{y}^i} \frac{\partial \hat{y}^i}{\partial h_{t+2}} \left(\frac{\partial h_{t+2}}{\partial h_{t+1}} \frac{\partial h_{t+1}}{\partial h_t} \frac{\partial h_t}{\partial w_x} + \frac{\partial h_{t+1}}{\partial w_x} \frac{\partial h_{t+1}}{\partial w_x} + \frac{\partial h_{t+2}}{\partial h_{t+1}} \frac{\partial h_{t+1}}{\partial w_x} + \frac{\partial h_{t+1}}{\partial w_x} + \frac{\partial h_{t+1}}{\partial w_x} + \frac{\partial h_{t+1}}{\partial w_x} + \frac{\partial h_{t+2}}{\partial w_x} \right)$$
UniGe | MålGa

$$\frac{\partial J^{i}(\mathbf{w})}{\partial w_{x}} = \frac{\partial J^{i}(\mathbf{w})}{\partial \hat{y}^{i}} \frac{\partial \hat{y}^{i}}{\partial h_{t+2}} \sum_{k=t}^{t+2} \left(\frac{\partial h_{t+2}}{\partial h_{k}} \frac{\partial h_{k}}{\partial w_{x}} \right)$$

$$\frac{\partial J^{i}(\mathbf{w})}{\partial w_{x}} = \frac{\partial J^{i}(\mathbf{w})}{\partial \hat{y}^{i}} \frac{\partial \hat{y}^{i}}{\partial h_{t+2}} \sum_{k=t}^{t+2} \underbrace{\left(\frac{\partial h_{t+2}}{\partial h_{k}}\right) \frac{\partial h_{k}}{\partial w_{x}}}_{bw_{x}})$$

$$\frac{\partial h_{t+2}}{\partial h_{k}} = \prod_{j=k+1}^{t+2} \frac{\partial h_{j}}{\partial h_{j-1}}$$

$$\frac{\partial J^{i}(\mathbf{w})}{\partial w_{x}} = \frac{\partial J^{i}(\mathbf{w})}{\partial \hat{y}^{i}} \frac{\partial \hat{y}^{i}}{\partial h_{t+2}} \sum_{k=t}^{t+2} \underbrace{\left\{\frac{\partial h_{t+2}}{\partial h_{k}}\right\}}_{bw_{x}} \frac{\partial h_{k}}{\partial w_{x}}$$

$$\frac{\partial h_{t+2}}{\partial h_{k}} = \prod_{j=k+1}^{t+2} \frac{\partial h_{j}}{\partial h_{j-1}}$$

- How to incorporate the contributions from all samples in the training set?
- What if multiple hidden layers are present?
- What if the output is a sequence?

Gradients-related issues for long-term dependences

- The computation of the loss gradient as successive multiplication leads to instability of the gradient and may take very long training times
- Many values < 1 lead to **vanishing** gradient problems
- Many values > 1 lead to exploding gradient problems

Exploding gradient

 Many values > 1 lead to **exploding** gradient problems: the update with SGD is done with very large steps, leading to bad results

- A possible solution is gradient clipping: if the gradient is greater than some threshold, scale it down before applying SGD update
- You make a step in the same direction but with a smaller step

Vanishing gradient

- Many values < 1 lead to vanishing gradient problems: gradient signal far over time is lost because it's much smaller than gradient signal from closer times
- Model weights are updated only with respect to near effects, not longterm effects
- A possible solution to learn long-term dependences in the data is to use
 gated cells

Long-Short Term Memory

RNNs cells

In standard RNNs, the cells contain a simple computation and their state is constantly re-written

Gated cells

Gated cells contain computational blocks that control information flow

Gated cells

Gated cells contain computational blocks that control information flow

Long-short term memory (LSTM, 1997)

- They consider connection weights that may change at each time step
- Information is accumulated over a long duration
- Once the information has been used, it may be useful for the layer to forget the old state or keep the information
- The LSTM learns how to decide when to do that (this is in fact the role of gated units)

LSTM cell

- It includes two states: a hidden state and a cell state, both vectors of length n
- The cell stores long-term information. The LSTM can erase, write and read information from the cell
- The selection of which information is erased/written/read is controlled by three corresponding **gates**, vectors again of length n
- Each element of the gates can be open (1), closed (0), or somewhere inbetween
- The gates are dynamic: their value is computed based on the current context

The cell state values are selectively updated

Variations on the theme and recent advances

GRU (Gated Recurrent Unit)

- It includes only the hidden state
- It also has two gates:
 - Update gate: it decides what information to keep and what to throw away
 - Reset gate: it decides how much past information to forget

Transformers

 It includes an attention mechanism that decides at each step which other part of a certain sequence is important

Output

https://arxiv.org/abs/1706.03762

Self-attention and Transformers

Transformer (2017)

Originally proposed for language translation, they can be highly parallelized

Encoding layers

Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward N× Add & Norm N× Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encodina Output Input Embedding Embedding Inputs Outputs (shifted right)

Output
Probabilities

Softmax

From https://arxiv.org/abs/1706.03762

Figure 1: The Transformer - model architecture.

Transformer

As other models for sequence transduction (e.g. language translation), they are based on an encoder-decoder structure

At each time step the model is auto-regressive, as the previously generated symbols are used as additional output in the decoder

Encoding

(shifted right)

Inputs

What about the position of the words in the sequence?

- We need to «guide» the network to see the words in the correct order
- This is done by means of positional encoding

Transformer: main structure

A stack of N identical layers each one composed by multi-head selfattention and a fully connected net

Figure 1: The Transformer - model architecture.

Transformer: main structure

A stack of N identical layers each one composed by multi-head selfattention and a fully connected net

A stack of N identical layers each one composed by masked multi-head self-attention, multi-head self-attention, and a fully connected net

Transformer: main structure

A stack of N identical layers each one composed by multi-head selfattention and a fully connected net

Figure 1: The Transformer - model architecture.

A stack of N identical layers each one composed by masked multi-head self-attention, multi-head self-attention, and a fully connected net

<u>RESIDUAL CONNECTION</u>: the output of each layer is

$$\sigma(x+f(x))$$

Where x is the input to the layer, while f(x) is the function implemented by the layer itself

Training a Transformer

Training a 6 De Nada **Transformer** Word Probabilities Transformer Softmax **5** Linear Dec-2 Out The output layer Enc-2 Out Encoder-2 Decoder-2 converts the decoded representations into Dec-1 Out Enc-1 Out word probabilities and produce the output Encoder-1 Decoder-1 Pos Enc Embed Embed Pos Enc Position Position Embedding Embedding Encoding Encoding Word IDs Word IDs You are welcome De Nada

Transformers at inference

time

Understanding self-attention

Combining values/words

Here we would assume the same importance for all relationships... but we would like that, for instance, the relation between «not» and «complex» was more important than the one between «is» and «too»

Learning the attention weights

Inspired by https://twitter.com/MishaLaskin/status/147924 6928454037508

T Keys $K = XW_K \ W_K \in \mathbb{R}^{N imes D}$

Intuitions

- Each token's embedding x is transformed into three vectors: Query (Q), Key (K),
 and Value (V)
- A web search analogy:
 - Query (Q) is the search text you type in the search engine bar. This is the token for which you want to find more information
 - **Key (K)** is the title of each web page in the search result window. It represents the possible tokens the query can attend to
 - Value (V) is the actual content of the web pages shown.

Once we matched the appropriate search term (Query) with the relevant results (Key), we want to get the content (Value) of the most relevant pages

From https://poloclub.github.io/transformer-explainer/

Inspired by https://twitter.com/MishaLaskin/status/1479246928454037508

Single-head attention

Single-head attention [Nothing but a Scaled Dot-Product]

Single-head attention [Nothing but a Scaled Dot-Product]

Single-head attention [Nothing but a Scaled Dot-Product]

Single-head attention [Nothing but a Scaled Dot-Product]

Single-head attention [Nothing but a Scaled Dot-Product]

UniGe MalGa

Figure 1: The Transformer - model architecture.

Figure 1: The Transformer - model architecture.

Multi-head attention

Multi-head attention

When it will translate the word "it" the decoder will take into account the importance of "cat" and "hungry"

<u>Input</u> Score 1 Score 2

From https://towardsdatascience.com/transformers-explained-visually-part-1-overview-offunctionality-95a6dd460452/

The decoder side

From http://jalammar.github.io/illustrated-transformer/

The decoder side

UniGe

Decoding time step: 1 2 3 4 5 6 OUTPUT

Encoder-Decoder Encoder-6 Decoder-2 attention **Encoder-Decoder Attention** Emb Value Key Query Norm Out Enc-6 Out Self-Attention Key Value Query Dec-1 Out Emb Decoder-1

https://towardsdatascience.com/transformers-explained-visually-part-2-how-it-works-step-by-step-b49fa4a64f34/

Decoder behind the scenes

 In the decoder, the self-attention layer is only allowed to consider earlier positions in the output sequence (it can not "see" the future)

 This is achieved using masked attention: future positions are set to -inf before the softmax step

Drawings from https://www.datacamp.com/tutorial/how-transformers-work

Figure 1: The Transformer - model architecture.

Encode to classify

https://towardsdatascience.com/transformers-explained-visually-part-1-overview-of-functionality-95a6dd460452/

Encode to generate

https://towardsdatascience.com/transformers-explained-visually-part-1-overview-of-functionality-95a6dd460452/

Variants: vision transformers

"Imagine you're reading a book, but instead of reading the entire book, you summarize it with a single sentence that captures the main theme. The "[class]" token is that sentence."

https://paperswithcode.com/paper/an-image-is-worth-16x16-words-transformers-1

https://saadsohail5104.medium.com/understanding-the-role-of-the-class-token-in-vision-transformers-vit-d0f7750d7066

Variants: extensions to videos

https://medium.com/aiguys/vivit-video-vision-transformer-648a5fff68a4

Variants: extensions to videos

https://medium.com/aiguys/vivit-video-vision-transformer-648a5fff68a4

Links

https://poloclub.github.io/transformer-explainer/

https://towardsdatascience.com/transformers-explained-visually-part-1-overview-of-functionality-95a6dd460452/

https://towardsdatascience.com/transformers-explained-visually-part-2-how-it-works-step-by-step-b49fa4a64f34/

https://www.datacamp.com/tutorial/how-transformers-work

https://medium.com/aiguys/vivit-video-vision-transformer-648a5fff68a4

https://saadsohail5104.medium.com/understanding-the-role-of-the-class-token-in-vision-transformers-vit-d0f7750d7066

UniGe

