robotron

Betriebssystem

KC85/1

(Z9001)

Herausgeber: VEB Robotron-Meßelektronik "Otto Schön" Dresden

Inhaltsverzeichnis

1.	Allgemeiner Überblick		1
1.1.	Bestandteile des Monitors		1
1.2.	Speicheraufteilung		3
2.	Monitormodule		7
2.1.	CONSOLE COMMAND PROGRAMM (CCP)		7
2.2.	BASIC OPERATING SYSTEM (BOS)		9
2.3.	BASIC INPUT/OUTPUT SYSTEM (BIOS)		23
3.	Zusätzliche Treiber		28
3.1.	Treiberinitialisierung		28
3.2.	Besonderheiten der Treiber für CONST	29	
3.3	Besonderheiten der Treiber für READER und LIST		31
4.	Spezielle Monitorroutinen		32
4.1.	Monitorroutinen im CCP		32
4.2.	Monitorroutinen im BOS/BIOS		36
4.3	Monitorroutine zur Kassetten-F/A		42

Anlage: Quelltext

Kombinat Robotron 1986

digitalisiert von Ulrich Zander <zander@felix.sax.de>

1. Allgemeiner Überblick

Vorbild für den Monitor des Computers Z 9001 Ist das Betriebsystem CP/M-80. Allgemeiner Aufbau und externe Schnittstellen wurden weitestgehend vom Vorbild übernommen. Entscheidende Abweichungen gibt es bei den residenten Kommandos und der Arbeit mit externen Datenträgern. Die im CP/M-80 üblichen residenten Kommandos wurden durch Z 9001-spezifische ersetzt, und die Dateiarbeit wurde den Möglichkeiten und Anwendungserfordernissen des Computers angepaßt (nur Kassette als externer Datenträger). Dementsprechend wurden Systemrufe und Direktrufe des CP/M-80 zur Diskettensteuerung durch spezielle, auf den Z 9001 zugeschnittene, ersetzt.

Um den Monitor des Computers Z 9001 in einer späteren Ausbaustufe entscheidend aufwerten zu können, besteht die Möglichkeit, den Monitor um beliebige Kommandos und Gerätetreiber zu erweitern. Die entsprechenden Programme sind sowohl in RAM- als auch in ROM-Versionen arbeitsfähig. Zur Systemerweiterung bzw. Modifizierung ist der Monitor in der Lage, nach Einschalt-RESET/RESET ein Programm mit dem Namen "#" im Speicher (RAM/ROM) zu suchen und automatisch zu starten (siehe 2.1.2. und 3.).

1.1. Bestandteile des Monitors

Entsprechend dem Vorbildsystem CP/M-80 wurde auch der Monitor des Computers Z 9001 in drei Hauptbestandteilen realisiert. Diese Bestandteile sind jedoch im Gegensatz zum Vorbildsystem lediglich funktionell eindeutig voneinander zu trennen, da der für den Monitor zur Verfügung stehende Speicherbereich sehr begrenzt ist. Der Monitor des Computers Z 9001 besitzt folgende Hauptbestandteile:

a) CONSOLE COMMAND PROGRAMM (CCP)

Funktion:

- Steuerung des Computers im OS-Mode
- Kommando- und Parameterübernahme
- Verzweigen zur Kommandoausführung
- Ausführen der residenten Kommandos
- Verwaltung der Gerätetreiber

Inhalt:

- Monitorgrundschleife zur Kommandoanforderung vom Nutzer
- Kommandoentschlüsselung
- Routinen zur Ausführung der residenten Kommandos
- Subroutinen zur Kommando- und Parameterübernahme und deren Prüfung
- Subroutinen für Speichertest und Speicherverwaltung
- Subroutinen zum Test auf zulässige Geräteadressierung bei Zeichen-E/A
- allgemeine Hilfsroutinen

Eintritt nach:

- Einschalten des Computers
- RESET
- Systemruf 0 und JMP 0
- Betätigung der STOP-Taste im OS-Mode
- Rückkehr von der Kommandoausführung
- Rückkehr aus einem Anwenderprogramm

b) **B**ASIC **O**PERATING **S**YSTEM (BOS)

Funktion:

- Steuerprogramm für die Ausführung von Systemrufen
- Prüfen der Systemrufe
- Übernahme von Parametern
- Verzweigen zur Ausführung
- Rückgabe von Parametern
- Ausgabe von Fehlermeldungen

Inhalt:

- zentraler Eintrittspunkt zur Rufnummernentschlüsselung, Parameterübernahme und Registerrettung
- Adreßvektor zur Adressierung der angewählten Systemprogramme
- Systemprogramme zur Zeichenketten- und Kassetten-E/A -Fehlerbehandlung
- zentraler Austrittspunkt mit Rückgabe von Parametern, Ausgabe von Fehlermeldungen und Registerregenerierung

Eintritt:

- nach CALL 0005
- Rufnummer in Register C C = 0(1) ... 33
- Parameter in Register DE bzw. A

Austritt:

- Parameter in Reg BC bzw. A

c) **B**ASIC **I**NPUT/**O**UTPUT **S**YSTEM (BIOS)

Funktion:

- untersetzt Rufe von CCP und BOS durch Unterprogramme zur Einzelzeichen-E/A
- verbindet logische und physische Geräte und übergibt die Zeichen den entsprechenden Treiberprogrammen
- übergibt übergeordneten Steuerprogrammen Parameter und spezielle Fehlercodes

Inhalt:

- Sprungtabelle zur Direktadressierung spezieller Monitorprogramme
- Programme zur Initialisierung des Computers nach Kalt- bzw. Warmstart
- Programme zur Einzelzeichen-E/A
- Standardtreiber für Tastatur und Bildschirm
- Standardtreiber für Kassetten-E/A
- spezielle Unterprogramme zur Ausführung von System- und Direktrufen (werden von BOS zum Teil unmittelbar mitgenutzt)
- verschiedene Hilfsprogramme (zum Teil von CCP und BOS mitgenutzt)

Eintritt:

- nach CALL 0F000H + (n*3) n = 0(1) ... 22
- Parameter in BC bzw. C

Austritt

- Parameter in BC bzw. A
- Fehlerstatus in CY

1.2. Speicheraufteilung

Die Speicheraufteilung des Computers Z 9001 weicht erheblich von der des CP/M-80 ab. Alle Systemzellen wurden in den Bereich bis 0FFH verlegt. Die erste durch den Anwender nutzbare Adresse ist 300H. Interne Puffer und der Stackbereich liegen im Bereich von 100H bis 2FFH.

MONITOR
BWS
ROM Erweiterung (z.B. BASIC)
RAM 2.Erweiterung
RAM 1.Erweiterung
RAM Grundgerät
System -RAM

⁻ Speicher Gesamtüberblick -

Bei der Aufteilung des Speichers wurde berücksichtigt, daß auf den RESTART-Adressen jeweils 3 Bytes für die Aufnahme eines Sprungbefehls frei bleiben, um die Arbeit der Anwender mit den RST-Befehlen zu ermöglichen. Eine Ausnahme bilden die Adressen 0 und 66H. Die Adressen 0 bis 2 sind mit einem Sprung zum Warmstart belegt, so daß der Befehl RST 0 die Übergabe der Steuerung an das CCP zur Folge hat. Die NMI-Adresse 66H ist für den Z9001 ohne Bedeutung, da für die Behandlung eines NMI keine Notwendigkeit bestand. Die Adresse 66H wird daher während der Kassetten-E/A mitgenutzt. Zusätzlich wurden im nicht angezeigten Teil des Bildwiederholspeichers einige Systemzellen für den Systemschutz und die aktuelle Gerätekonfiguration eingerichtet (EFC0H).

1.2.1. Systemspeicher

Adresse		Befehl		
0000 0003 0004 0005 0008 000B 000D 000F 0010 0013 0014 0015	IOBYT: SPSV: BCSV: ASV: JOYR: JOY1: LISW:	JMP BER DB JMP BER DA DA DB BER DB DB	WBOOT 1 1 BOS 3 0 0 0 0 0 0 0	;Sprung zum Warmstart ;frei ;I/O-Byte zur Zuweisung log.Gerät phy. Gerät ;Sprung zum BOS-Eintritt (für alle Systemrufe) ;frei für RST 8 ;Register für aktuellen Steck bei Eintritt in BOS ;Register für BC bei Eintritt in BOS ;Register für A bei Eintritt in BOS ;frei für RST 10H ;Datenpuffer für Spielbebel 1 ;Datenpuffer für Spielhebel 2 ;Schalter für Hardcopy ;0 kein Copy
0016	BSW:	DB	0	;1 Copy ;Schalter für Kontrollton ;0 kein Kontrollton :1 Kontrollton
0017 0018 001B 001D 001E	COLSW: DMA: HOUR: MIN:	DB BER DA BER BER	0 3 80H 1	;Merkzelle für Farbsteuercode ;frei für RST 18H ;Zeiger auf Puffer für Kassetten-E/A ;Puffer für Stunden ;Puffer für Minuten

Adresse		Befehl		
001F 0020	SEC:	BER BER	1 3	;Puffer für Sekunden ;frei für RST 20H
0023	COUNT:	DB	0	;Zähler zur Tastaturentprellung und ;REPEAT-Funktion der Tastatur
0024 0025 0026	LAKEY:DB KEYBU: SHLOC:	0 DB DB	;Merkz 0 0	zelle für letztes gültiges Zeichen von Tastatur ;Tastaturpuffer ;Schalter für SHIFT LOCK ;0 kein SHIFT LOCK
0027 0018 002B 002C 002D 002F 0030 0033 0034	ATRIB: CHARP: LINEP: CURS: PU: WORKA: BUFFA:	DB BER DB DB DA BER BER BER	2 3 1 1 0EC00H 1 3 1	;1 SHIFT LOCK ;aktuelles Farbattribut ;frei für RST 28H ;aktuelle Spalte d. Cursors(1-40) ;aktuelle Zeile d. Cursors(1-24) ;aktuelle physische Adresse des Cursors ;Hilfszelle ;frei für RST 30H ;Hilfszelle ;Puffer für das Attribut des von Cursor überlagerten ;Zeichens
0035 0036 0038 003B 003C 003D 003E 0040 0042 005C	BU: EOR: P1ROL: P2ROL: P3ROL: P4ROL: BUFF: PARBU: FCB: FNAME: FTYP: PSUM: ARB: BLNR: LBLNR: LBLNR: AADR EADR SADR SBY:	BER BER DB DB DB BER BER BER EQU EQU EQU EQU EQU EQU EQU EQU	1 2 3 0 25 0 41 1 2 26 36 FCB+8 FCB+13 FCB+14 FCB+15 FCB+17 FCB+16 FCB+17 FCB+19 FCB+21	;Zeichens ;Hilfszelle ;Zeiger auf letzte für Anwender freie Adresse ;frei für RST 38H ;1. rollende Zeile - 1 ;letzte zu rollende Zeile + 1 ;1. zu rollende Spalte - 1 ;letzte zu rollende Spalte + 1 ;Puffer für das vom Cursor überschriebene Zeichen ;Hilfszelle zur Paramterpufferung ;frei für IDAS, DEBUGGER, usw. ;Dateikontrollblock ;Dateiname 8 Zeichen ;Prüfsumme eines Datenblockes ;Hilfszelle für Kassettentreiber ;Blocknummer ;gesuchte Blocknummer bei Lesen ;Dateianfangsadresse ;Dateiendeadresse ;Startadresse, wenn Datei ein Maschinencode- ;programm ist ;Schutzbyte ;0 nicht geschützt ;1 System nach Laden der Datei vor WRITE ; geschützt
0800	CONBU:	DB	80	; geschutzt ;CCP-Eingabepuffer und Standardpuffer für ;Kassetten-E/A
0081 0082 00D2 0100 0101 0151 01C0	INTLN: BOSSP: CCPSP:	DB BER BER DB BER BER BER	0 80 46 0 80 6FH 40H	;aktuelle Länge der Eingabezeile ; ;frei ;interner Zeichenkettenpuffer ;Beginn BOS-Stackbereich ;Beginn CCP- und Nutzerstackbereich
0200 0202	INTV:	EQU DA DA	# IKACT 0	;Interruptadresstabelle ;Kassette schreiben ;frei für Anwender CTC Kanal 1

Adresse		Befehl		
0204 0206 0208 020A 020C ;der	folgende Speich	DA DA DA DA BER erbereic	ICTC INUHR INTP IKEP 74H h ist durch den N	;Entprellen Tastatur, Vorteiler für Systemuhr ;Sekundentakt Systemuhr ;Tastaturinterrupt ;Kassette lesen ;frei für Anwenderinterrupts Nutzer für eigene Treiber verwendbar
0280	RTTYC	BER	4	;RAM TTY-Treiber für CONST
0284	RCRTC:	BER	4	;RAM CRT-Treiber für CONST
0288	RBATC:	BER	4	;RAM BAT-Treiber für CONST
028C	RUC:	BER	4	;RAM UC-Treiber für CONST
0290	PTTYR:	BER	4	;RAM TTY-Treiber für READER
0294	RRDR:	BER	4	;RAM RDR-Treiber für READER
0298	RUR1:	BER	4	;RAM UR1-Treiber für READER
029C	RUR2:	BER	4	;RAM UR2-Treiber für READER
02A0	RTTYP:	BER	4	;RAM TTY-Treiber für PUNCH
02A4	RPUN:	BER	4	;RAM PUN-Treiber für PUNCH
02A8	RUP1:	BER	4	;RAM UP1-Treiber für PUNCH
02AC	RUP2:	BER	4	;RAM UP2-Treiber für PUNCH
02B0	RTTYL:	BER	4	;RAM TTY-Treiber für LIST
02B4	RCRTL:	BER	4	;RAM CRT-Treiber für LIST
02B8	RLST:	BER	4	;RAM LST-Treiber für LIST
02BC	RUL:	BER	4	;RAM UL-Treiber für LIST
02C0	SYSR:	BER	40H	reserviert für Systemerweiterung;

1.2.2. Bildwiederholspeicher

Der gesamte Bildwiederholspeicher besteht aus zwei Teilen.

- a) Zeichenspeicher
 - 1k Bytes RAM ab Adresse EC00H
 - es werden 960 Bytes zur Anzeige gebracht
- b) Farbspeicher (nur mit Farbzusatzmodul)
 - 1k Bytes RAM ab Adresse EB00H
 - es werden 960 Bytes zur Anzeige gebracht

Die Adresse des Farbattributes im Farbspeicher ergibt sich aus der Adresse des zugehörigen Zeichens im Zeichenspeicher minus 400H.

Aufbau des Farbattributes:

Bit	Funkti	on
0	rot	Zeichenhintergrund Zeichenhintergrund
2	grün blau	Zeichenhintergrund
3 4	rot	nicht genutzt Zeichenvordergrund
5	grün	Zeichenvordergrund
6 7	blau	Zeichenvordergrund Zeichenblinken

Hinweis:

Bit 3 im Farbattribut eines Zeichens wird in keiner Weise genutzt und kann durch den Anwender belegt werden Die im Zeichenspeicher freien 64 Bytes werden durch den Monitor als Systemspeicher mitgenutzt. Sie dienen der Speicher- und Treiberverwaltung.

Speicherbelegung im Zeichenspeicher:

Adresse		Befehl			
EFC0 EFC1	SYSB: MAPAR:	DB BER	0 8		nbyte Register für Speicherkonfiguration je 1k Speicher ROM bzw. geschützt RAM
;Adreß	tabelle der Gerä	tetreibei	r	,.	
EFC9	ATTYC:	DA	-1	;Adress	se TTY-Treiber für CONST
EFCB	ACRTC:	DA	CRT	;Adress	se CRT-Treiber für CONST
	ABATC:	DA	BAT	;Adress	se BAT-Treiber für CONST
EFCF	AUC:	DA	-1	;Adress	se UC-Treiber für CONST
EFD1	ATTYR:	DA	-1	,	se TTY-Treiber für READER
EFD3	ARDR:	DA	-1	;Adress	se RDR-Treiber für READER
EFD5	AUR1:	DA	-1	;Adress	se UR1-Treiber für READER
EFD7	AUR2:	DA	-1	,	se UR2-Treiber für READER
EFD9	ATTYP:	DA	-1		se TTY-Treiber für PUNCH
EFDB	APUN:	DA	-1	•	se PUN-Treiber für PUNCH
EFDD	AUP1:	DA	-1	,	se UP1-Treiber für PUNCH
EFDF	AUP2:	DA	-1		se UP2-Treiber für PUNCH
EFE1	ATTYL:	DA	-1	•	se TTY-Treiber für LIST
EFE3	ACRTL:	DA	-1		se CRT-Treiber für LIST
EFE5	ALST:	DA	-1	•	se LST-Treiber für LIST
EFE7	AUL:	DA	-1	;Adress	se UL-Treiber für LIST
•	enkettenadreßta				
EFE9	TXCON:	DA	PHYD\	/+2	;Adresse einer Zeichenkette des aktuellen CONST- ;Gerätes, Zeichenkette wird im ASGN-Kommando ;ausgegeben
EFEB	TXRDR:	DA	PHYD\	/	•
EFED	TXPUN:	DA	PHYD\	/	;entsprechend TXCON
EFEF	TXLST:	DA	PHYD\	/	;

2. Monitormodule

2.1. CONSOLE COMMAND PROGRAMM (CCP)

Das CCP ist das zentrale Steuerprogramm des Computers Z 9001. Hier erfolgt die Anforderung, Übernahme und Prüfung aller Kommandos. Residente Kommandos werden durch das CCP selbst ausgeführt. Bei transienten Kommandos wird zu deren Ausführung verzweigt. Wird ein Kommando eingegeben, welches weder ein residentes noch ein transientes Kommando ist, so wird das eingegebene Kommando als Name (Aufbau siehe CLOAD-Kommando) eines Anwenderprogrammes interpretiert. Das Programm wird von der Kassette eingelesen und entsprechend den Informationen im aktualisierten FCB plaziert und gestartet.

Bei Rückkehr mit Fehler in die Monitorgrundschleife wird entsprechend dem Fehlercode eine Fehlerausschrift ausgegeben (siehe 2.2.3.). Das CCP kann durch den Anwender umgangen werden, indem im Speicher das transiente Kommando "#" abgelegt wird (siehe 2.1.2.). In diesem Fall verzweigt die Initialisierungsroutine WBOOT automatisch zur Ausführung dieses Kommandos, unter Umgehung des CCPs. Damit ist es möglich, den Monitor abzuschalten und die Steuerung durch ein eigenes Programm selbst zu übernehmen.

Das CCP besitzt einen eigenen Stackbereich ab 200H in einer Länge von 40H. Dies ist gleichzeitig der Stackbereich eines Anwenderprogrammes, sofern dieses nicht einen eigenen Stack einrichtet. Die für den Anwender verfügbare Stacktiefe ist dabei 3CH.

Mit Eintritt in ein Anwenderprogramm ist SP = 1FCH. Auf Adresse 1FCH steht die Adresse der Fehleranzeige (ERDIS), auf Adresse 1FEH die Adresse des CCPs (GOCPM).

2.1.1. Residente Kommandos

TIME

Funktion 1:

- Anzeige der aktuellen Systemzeit

Syntax

TIME (ENTER)

Funktion 2:

- Stellen der Systemuhr

Syntax

TIME Stunde [, Minute [, Sekunde]] (Enter)

- Eingabeparameter dezimal ohne Suffix
- für weggelassene Parameter wird 00 ergänzt

CLOAD

Funktion:

- Einlesen einer Datei (Daten, Programme)
- Speichern ab der im FCB gelesenen Anfangsadresse
- kein Start von Programmen

Syntax

CLOAD Name [.Typ] (Enter)

- Name maximal 8 Zeichen mit Buchstaben beginnend
- Typ maximal 3 Zeichen mit Buchstaben beginnend
- bei Weglassen des Typs wird eine Datei vom Typ .com erwartet

ASGN

Funktion 1:

- Anzeige der aktuellen Gerätezuweisung

Syntax

ASGN (Enter)

Funktion 2:

- Zuweisung von Standardtastatur und -bildschirm zu CONST

Syntax

ASGN CONST:=CRT (Enter)

Funktion 3:

- CONST-Gerät in BATCH-Modus schalten
- Konsoleingabe erfolgt über das aktuelle READER-Gerät
- Konsolausgabe erfolgt über das aktuelle LIST-Gerät
- READER und LIST müssen zuvor zugewiesen werden

Syntax

ASGN CONST:=BAT (Enter)

Funktion 4:

- Zuweisen des Standardbildschirmes zum LIST-Gerät

Syntax

ASGN LIST:=CRT (Enter)

Funktion 5:

- Zuweisung von Anwendertreibern
- Treiber kann als Programm auf Kassette oder als transientes Kommando ausgelegt sein Syntax

ASGN log.Gerät:=Name (Enter)

- logische Geräte sind CONST, READER, PUNCH und LIST

2.1.2. Transiente Kommandos

Der Monitor des Z 9001 erlaubt es dem Anwender, den Kommandovorrat um beliebige Nutzerkommandos zu erweitern. Diese Kommandos können sowohl im RAM, als auch im ROM plaziert werden. Die Programmierung dieser Kommandos unterliegt einem speziellen Schema. Das Kommando muß auf einer integralen 100H-Grenze beginnen. Beliebig viele Kommandos können in einer Tabelle angegeben werden.

```
Beispiel 1:
```

```
;Einzelkommando

JMP AUSF ;Sprung zur Kommandoausführung

DB 'NAME ' ;Kommandoname (im OS-Mode einzugeben)

:8 Zeichen
```

;ggf. mit Leerzeichen auffüllen

DA 0 ;Endekennzeichen

Beispiel 2:

;Kommandotabelle

```
JMP
      AUSF1
                          ;Sprung zur Ausführung Kommando 1
DB
      'Name1 '
                          :Kommandoname 1
DB
                          :Ende Kommando 1
JMP
      AUSF2
                          ;Sprung zur Ausführung Kommando 2
                          ;Kommandoname 2
DB
      'Name2 '
                          Ende Kommando 2
DB
      0
JMP
      AUSFN
                          ;Sprung zur Ausführung Kommando N
      'NameN '
                          ;Kommandoname N
DB
                          :Ende Kommandotabelle
      0
DA
```

Hinweis:

- derartige Kommandos können auch bei der Zuweisung von Geräten verwendet werden
- dabei ist, an Stelle des Sprunges zur Kommandoausführung, ein Sprung zur Treiberinitialisierung zu programmieren

Eine Besonderheit bildet der Kommandoname '# '. Dieses Kommando dient zur Systemerweiterung. In der Initialisierungsroutine des Computers wird der Speicher nach diesem Kommando durchsucht. Wird dabei dieses Kommando gefunden, so springt die Initialisierungsroutine unter Umgehung des Monitors direkt zu dessen Ausführung.

2.2. BASIC OPERATING SYSTEM (BOS)

2.2.1. Überblick über die Systemrufe

Das BOS Ist ein Steuerprogramm zur Ausführung von speziellen Systemrufen des Anwenders. Mit diesen Systemrufen ist es möglich, relativ komplexe Funktionen durch den Monitor ausführen zu lassen, ohne dessen interne Schnittstellen und Funktionen zu kennen. Der Aufruf von BOS erfolgt über CALL 0005. Die Auswahl des gewünschten Systemrufes erfolgt über das C-Register, dessen Inhalt den Systemruf adressiert. Verschiedene Systemrufe erwarten Eingabeparameter bzw. liefern Parameter zurück.

Eingabeparameter:

- Bytewerte im E -Register
- Wortwerte im DE-Register

Ausgabeparameter:

- Bytewerte im A -Register
- Wortwerte im BC-Register

BOS kontrolliert selbständig die korrekte Ausführung des Systemrufes. Im Fehlerfalle wird eine geeignete Fehlermeldung ausgegeben, die Rückkehr erfolgt mit CY = 1 und einem entsprechenden Fehlercode im A-Register (siehe 2.2.3.).

Alle Register außer Index- und Hintergrundregister werden gerettet, soweit sie nicht Parameter oder einen Fehlercode zurückvermitteln. Außerdem besitzt das BOS einen eigenen Stackbereich ab 1C0H.

Tabelle der Sy Rufnr.	stemrufe: Name	Funktion
00	INIT	Ausführung eines Kaltstartes
01	CONSI	Eingabe eines Zeichens von CONST
02	CONSO	Ausgabe eines Zeichens zu CONST
03	READI	Eingabe eines Zeichens von READ
04	PUNO	Ausgabe eines Zeichens zu PUNCH
05	LISTO	Ausgabe eines Zeichens zu LIST
06	GETST	Abfrage der Spielbebel
07	GETIO	Lesen I/0-Byte
08	SETIO	Setzen I/0-Byte
09	PRNST	Ausgabe einer Zeichenkette zu CONST
10	RCONB	Eingabe einer Zeichenkette von CONST
11	CSTS	Abfrage Status CONST
12	RETVN	Abfrage der Verionsnummer des Monitors
13	OPENR	Eröffnen Kassette lesen
14	CLOSR	Abschließen Kassette lesen
15	OPENW	Eröffnen Kassette schreiben
16	CLOSW	Abschließen Kassette schreiben
17	GETCU	Abfrage logische und pyhsische Cursoradresse
18	SETCU	Setzen logische Cursoradresse
19	BOSER	nicht benutzt
20	READS	Lesen eines Blockes von Kassette
21	WRITS	Schreiben eines Blockes auf Kassette
22	SETTI	Stellen der Systemuhr
23	GETTI	Abfrage der Systemuhr
24	PRITI	Ausgabe der Systemzeit als Zeichenkette
25	INITA	Initialisierung der Tastatur und der Systemuhr
26	SETDM	Setzen der Pufferadresse für Kassette lesen/schreiben
27	GETM	Abfrage der Speicherkonfiguration
28	SETM	Setzen der Speicherkonfiguration
29	DCU	Löschen Cursor
30	SCU	Setzen Cursor
31	COEXT	Zeichenkette vorverarbeiten
32	B0SER	nicht genutzt
33	RRAND	Lesen eines Blockes von Kassette (vgl. READS)

2.2.1. Beschreibung der Systemrufe

Funktion:

- volle Initialisierung des Computers
- Übergang in den OS-Mode

CONSI C=1

Funktion: - Eingabe eines Zeichen vom aktuellen CONST-Gerät

- kein automatisches Echo auf dem Bildschirm

Return:

- A Zeichencode

- CY Fehlerstatus

Beispiel:

M1:

;Warten auf Betätigung der ENTER-Taste

LD C,1 CALL 5

JPC FEHL ;Fehler bei Zeicheneingabe

CMP 0DH ;Code für ENTER

JRNZ M1-#

CONSO C=2

Funktion:

- Ausgabe eines Zeichens zum aktuellen CONST-Gerät

Eingang:

- E Zeichencode

Return:

- CY Fehlerstatus

Beispiel:

;Löschen Bildschirm in Hintergrundfarbe blau

LD C,2 LD E,15

;Farbsteuercode Hintergrund

CALL CBOS

LD E,4 ;Farbe BLAU

CALL CBOS

LD E,0CH ;Code für CLEAR SCREEN

CALL CBOS

CBOS: CALL 5

RNC ;kein Fehler

;Fehlerbehandlung

READI C=3

Funktion:

- Eingabe eines Zeichens vom aktuellen READER-Gerät

Return:

- A Zeichencode- CY Fehlerstatus

PUNO C=4

Funktion:

- Ausgabe eines Zeichens zum aktuellen PUNCH-Gerät

Eingang:

- E Zeichencode

Return:

- CY Fehlerstatus

LISTO C=5

Funktion:

- Ausgabe eines Zeichens zum aktuellen LIST-Gerät

Eingang:

- E Zeichencode

Return:

- CY Fehlerstatus

GETST C=6

Funktion:

- Abfrage der Spielbebel

Return:

- B Spielhebel 2- C Spielhebel 1

- Bitbelegung des B- bzw. C-Registers:

Bit	Richtung Spielhebel 1	äquivalente Taste (nur für Spielhebel 1)
0	links	←
1	rechts	\rightarrow
2	runter	\downarrow
3	hoch	↑
4	Aktionstaste	ESC oder Komma

beliebige Kombinationen sind möglich

Beispiel:

;Warten auf Betätigung der Aktionstaste 1

M1: LD C,6 CALL 5 LD A,C

AND 10H ;Ausblenden aller anderen Kombinationen

JRZ M1-#

GETIO C=7

Funktion:

- Abfrage des I/0-Bytes

Return:

- A I/0-Byte

SETIO C=8

Funktion:

- Setzen des I/0-Byte

Eingang:

- E I/0-Byte

PRNST C=9

Funktion:

- Ausgabe einer Zeichenkette zum aktuellen CONST-Gerät
- die Zeichenkette kann beliebige Steuercodes zur Zeichenausgabe enthalten (siehe 2.3.2.)
- das Ende der Zeichenkette ist ein Byte 00

Eingang:

- DE Adresse der Zeichenkette

Return:

- CY Fehlerstatus

Beispiel:

;Löschen Bildschirm in Hintergrundfarbe blau ;Ausgabe einer Kopfzeile in der Farbe rot

> LD C,9 LD DE,TEXT CALL 5

. . . .

;Zeichenkettendefinition

TEXT: DB 15H ;Farbsteuercode Hintergrund

DB 4 ;Farbe BLAU

DB 0CH ;Code für CLEAR SCREEN
DB 14H ;Farbsteuercode Vordergrund

DB 1 ;Farbe ROT

DB 'Kopfzeile'

DA 0A0DH ;CRLF

DB 0 ;Ende der Zeichenkette

RCONB C=10

Funktion:

- Eingabe einer Zeichenkette vom aktuellen CONST-Gerät
- die Zeichenkette wird in einem Pufferbereich abgelegt, dessen Länge vom Nutzer zu initialisieren ist
- das die Zeichenkette abschließende ENTER wird nicht im Puffer abgelegt
- die Zeichenkette wird vom BOS automatisch abgeschlossen, wenn das Pufferende erreicht wurde (kein versehentliches Überschreiben der folgenden Speicherbereiche.
- die Tasten DEL und \leftarrow löschen das Zeichen vor dem Cursor
- die Taste CLLN löscht die gesamte Zeichenkette
- die Tasten ↑ und ↓ werden ignoriert
- das Zuschalten des Druckers (CTRL/P) ist möglich; die interne Codierung (10H) wird jedoch <u>nicht</u> in die Zeichenkette übernommen
- alle anderen Steuercodes sind verwendbar und werden in die Zeichenkette übernommen (siehe 2.3.2.)
- Pufferaufbau

LDU	1.71/	4 7	2.7	1 27	
LPU	LZN	1.∠	2.2	J.Z	

LPU Länge des Puffers vom Nutzer initialisiert

LZK Länge der Zeichenkette (vom BOS aktualisiert)

1.Z 1. Zeichen der Zeichenkette

2.Z 2. Zeichen der Zeichenkette

Eingang:

- DE Adresse des Zeichenpuffers

Return:

- CY Fehlerstatus
- bei Eingabe von STOP wird die Zeichenkette abgebrochen, die Rückkehr erfolgt mit CY=1 und Fehlercode=0

Beispiel:

;Anfordern einer Eingabe

LD C,9 LD DE, TEXT

CALL CBOS ;Ausgabe der Anforderung

LD C,10

LD DE,PUFFE

LD A,40

LD (DE),A ;initialisieren max. Zeichenzahl

CALL CBOS

JPC STOP ;STOP-Taste gedrückt

INC DE

LD A,(DE) ;lesen eingegebene Zeichenzahl

OR A

JPZ LEER ;leere Zeichenkette (nur ENTER)

;Auswertung

CBOS: CALL 5

RNC ;kein Fehler

OR A SCF

RZ ;Fehlerstatus durch STOP-Taste

;Fehlerbehandlung

. . . .

;Definitionen

TEXT: DA 0A0D ;CRLF

DB 'Ihre Eingabe'

DB 'bitte'

DB 0

PUFFE: BER 1 ;Länge Puffer

BER 1 ;Länge Zeichenkette BER 80 ;max. Zeichenzahl

CSTS C=11

Funktion:

- Abfrage Status des aktuellen CONST-Gerätes

Return:

- A Status

keine Taste betätigt A = 0

Taste betätigt A = Zeichencode

- CY Fehlerstatus

RETVN C=12

Funktion:

- Abfrage der Versionsnummer des Monitors (für eventuelle Modifikationen des Monitors)

Return:

- BC Versionsnummer

OPENR C=13

Funktion:

- Ausgabe der Ausschrift 'start tape'
- Lesen Block 0 einer Datei von Kassette
- Vergleich gelesener Dateiname mit gesuchtem Dateinamen
- bei Namensgleichheit übernehmen der gelesenen Dateiparameter in den FCB (siehe 2.3.4.)
- Ausgabe eines Leerzeichens zum aktuellen CONST-Gerät
- Kassettenpuffer ist die aktuelle DMA-Adresse (siehe Ruf 26)

Eingang:

- Name und Typ der gewünschten Datei im FCB

- DMA (1BH) Adresse Kassettenpuffer für Block 0

Return:

- aktualisierte Dateiparameter im FCB (Anfangsadresse, Endadresse, Startadresse, Schutzbyte)

- LBLNR (6CH) nächste zu lesende Blocknummer (1)

- CY Fehlerstatus

CLOSR C=14

Funktion:

- beenden Kassette lesen
- mit diesem Ruf wird kein Block von der Kassette gelesen

Return:

- BC Adresse der aktuellen Dateiparameter (Anfangsadresse, Endadresse, Startadresse, Schutzbyte)

OPENV C=15

Funktion:

- Ausgabe der Ausschrift 'start tape'
- Ausgabe von Block 0 auf Kassette

Eingang:

- Name Typ und Dateiparameter im FCB (von Nutzer zu initialisieren) (siehe 2.3.4.)

Return:

- A Nummer des geschriebenen Blocks (0)
- BLNR Blocknummer des nächsten Blocks (1)
- CY Fehlerstatus

CLOSW C=16

Funktion:

- Ausgabe des letzten Blockes einer Datei auf Kassette

Return:

- A Nummer des geschriebenen Blockes (FF)
- BLNR die Merkzelle der Blocknummer hat den Wert 0
- CY Fehlerstatus

GETCU C=17

Funktion:

- gleichzeitige Abfrage der logischen und physischen Cursoradresse

Return:

- D Zeile des Cursors (1-24)
- E Spalte des Cursors (1-40)
- BC physische Cursoradresse
- CY Fehlerstatus

Hinweis:

- bei Änderung des Monitors mit Verlegung des BOS-Stackbereichs durch den Nutzer, ist dieser Ruf nicht mehr verwendbar

SETCU C=18

Funktion:

- Setzen des Cursors durch eine logische Adressierung

Eingang:

- D Zelle (1-24)
- E Spalte (1-40)

Return:

- CY Fehlerstatus

READS C=20

Funktion:

- Lesen eines Blockes einer Datei von der Kassette
- Ausgabe eines Leerzeichens zum aktuellen CONST-Gerät

Eingang:

- LBLNR (6CH) zu lesende Blocknummer

- DMA (1BH) Adresse, auf welcher der Block abgelegt wird

Return:

- A Kennzeichen für letzten Block der Datei (EOF)

kein EOF 0 EOF 1

- LBLNR neu = LBLNR alt + 1 - DMA DMA neu = DMA alt + 80H

- CY Fehlerstatus
- BLNR die wirklich gelesene Blocknummer (auch im Fehlerfall)

Hinweis:

- das Lesen kann an beliebiger Stelle der Datei beginnen
- solange die gelesene Blocknummer kleiner ist als die gesuchte, liest das Programm weiter
- ist die gelesene Blocknummer größer, kehrt das Programm mit Fehler 'record not found' zurück
- wird der letzte Block erkannt, so wird dieser Block eingelesen und das Programm kehrt mit A=1 (EOF) zurück

Beispiel:

M1:

;einfaches Programm zum Lesen einer Datei

;der FCB (5CH) wurde bereits mit dem Namen der gewünschten Datei belegt

LD DE,80H ;Standard-Kassettenpuffer

LD C,26 ;Ruf SETDM

CALL CBOS

LD C.13 :Ruf OPENR

CALL CBOS

LD DE,(ANFAD) ;gelesene Anfangsadresse der Datei (6DH)

LD C,26 ;nach DMA

CALL CBOS LD C,20 CALL CBOS OR A

JRZ M1-# ;weiterlesen bis EOF

;Endebehandlung

. . . .

CBOS CALL 5

RNC ;kein Fehler

;Fehlerbehandlung

. . . .

WRITS C=21

Funktion:

- Schreiben eines Blockes einer Datei auf Kassette

Eingang:

BLNR (6BH) Nummer des zu schreibenden BlockesDMA (1BH) Speicheradresse, ab der zu schreiben ist

Return:

- A Nummer des geschriebenen Blockes

- BLNR neu = BLNR alt + 1 - DMA DMA neu = DMA alt + 80H

SETTI C=22

Funktion:

- Stellen der internen Uhr

Eingang:

- A Stunde - D Minute - E Sekunde

Hinweis:

- die Uhr wird für die Dauer von Kassettenlese- und Kassettenschreiboperationen unterbrochen

GETTI C=23

Funktion:

- Abfrage des aktuellen Standes der internen Uhr

Return:

- A Stunde - D Minute - E Sekunde
- PRITI C=24

Funktion:

- Ausgabe des aktuellen Standes der internen Uhr als Zeichenkette
- die Zeichenkette ist 8 Bytes lang und nicht durch ein Byte 0 abgeschlossen
- Form der Zeichenkette Stunde: Minute: Sekunde

Eingang:

- DÉ Adresse des Speicherbereiches für die Zeichenkette (Adresse kann auch im Bildwiederholspeicher liegen)

Beispiel:

;Zeitanzeige während des Tastaturpollings

;Hauptprogramm

CALL EINGZ ;Eingabe eines Zeichens

;Zeicheneingaberoutine EINGZ: LD C,24

DE,POS LD CALL 5

LD C,11 ;Sys.-Ruf CSTS

CALL 5

OR Α

EINGZ-# JRZ ;noch keine Taste betätigt

LD C,1

JMP 5 ;Zeichen abholen

Beispiel 2:

¿Zeitanzeige durch Nutzung des Sekundeninterruptes des CTC

;Nutzer dieses Programms müssen gewährleisten, daß die Adressen 100H,, 10AH nicht durch ihr

;Bildschirmposition der Zeitausgabe

;Programm verwendet werden

;(durch Ruf 24 überschrieben)

;Initialisierung

INITO: LD HL,(206H) ;Adresse Interrupt CTC 3

> LD (INTAD),HL

```
HL,TOUT
       LD
                           ;Startadresse der Zeitausgabe
       DI
       LD
             (206H),HL
       ΕI
       RET
INTAD: DA
             0
;Zeitausgabe
TOUT: PUSH BC
       PUSH DE
       PUSH HL
             HL,TOUT1
       LD
       PUSH HL
                           ;Rückkehradresse bereitstellen
             HL,(INTAB)
       LD
       JMP
             (HL)
                           ;Ansprung der Uhrinterruptroutine
             DE,POS
TOUT1: LD
       LD
             C,24
       CALL 5
       POP
             HL
       POP
             DE
       POP
             BC
       RET
```

INITA C=25

Funktion:

- Initialisierung der Tastatur
- Initialisierung des Sekundentaktes der internen Uhr (keine Initialisierung der Uhrzeit)

SETDM C=26

Funktion:

- Setzen der Pufferadresse für Kassette lesen und schreiben

Eingang:

- DE Adresse des Kassettenpuffers

GETM C=27

Funktion:

- Abfrage der Speicherkonfiguration
- logischer Speichertest (Speicher ist in 1k Blöcken konfigurierbar)

Eingang:

- DE zu testende Adresse

Return:

- A Speicherstatus des 1k Bereiches, welcher die zu testende Adresse beinhaltet
 - 1 RAM beliebig nutzbar
 - 0 ROM oder kein Speicher oder

RAM bei Verwendung von Systemrufen

Schutz vor Überschreiben und Kopieren mittels Kassetten-E/A

Beispiel:

;Test auf vorhandenen Farbzusatzmodul

LD DE,0E800H ;Adresse des Farbattributspeichers LD C,27 CALL 5 OR A JPNZ FARBE

JMP SW ;nur schwarz/weiß

Hinweis:

- nach RESET oder Systemruf 0, ist die logische Speicherkonfiguration der physischen gleich
- ein Test der Adresse 1000H liefert das gleiche Ergebnis, wie der Test der Adresse 13FFH
- in beiden Fällen wird der Bereich 1000H bis 13FFH getestet

SETM C=28

Funktion:

Eingang:

- DE Adresse - A Status 1 frei

0 geschützt

Beispiel:

;Schutz eines Programm es vor Überschreiben durch Nachladen von Kassette

PANF: LD HL,PANF LD DE,400H LD BE,PEND

XOR A ;Status geschützt

M1: EX DE,HL PUSH BC LD C,28 CALL 5

POP BC EX DE,HL

ADD HL,DE ;nächste Adresse bereitstellen

PUSH HL SBC HL,BC POP HL

JRC M1-# ;Adresse <=PEND, weiter

PEND: EQU #

DCU C=29

Funktion: - Löschen des Cursors auf dem aktuellen CONST-Gerät

Hinweis:

- jede Zeichenausgabe bringt den Cursor sofort wieder zu Anzeige

SCU C=30

Funktion:

- Anzeige des Cursors auf dem aktuellen CONST-Gerät

Return:

- BC physische Cursoradresse

COEXT C=31

Funktion:

- Vorverarbeiten einer eingegebenen Zeichenkette

- Entfernen aller Steuercodes aus der Zeichenkette
- Anfügen eines abschließenden Bytes 00

Eingang:

- DE Adresse des Zeichenkettenpuffers (Pufferaufbau analog Systemruf 10)

Return:

- neue Zeichenkettenlänge und Zeichenkette im Zeichenkettenpuffer

- CY Zeichenkettenstatus

1 zu bearbeitende oder resultierende Zeichenkette hat die Länge 0

0 sonst

Beispiel:

```
;Eingabe und Vorverarbeitung einer Parameterzeile
```

```
LD DE,ZKPU ;Zeichenkettenpuffer
LD C,10 ;Eingabe Zeichenkette
CALL CBOS
```

LD C,31 CALL 5

JPC NOPAR ;keine Parameter, Zeile war leer

:Parameteranalyse

```
CBOS CALL 5
```

RNC ;kein Fehler

OR A

JRNZ FAUSW-# ;Fehlerauswertung INC DE ;STOP wurde gegeben

LD (DE), A ;löschen Puffer

DEC DE

RET

RRAND C=33

Funktion:

- Lesen eines einzelnen Blockes einer Datei
- keine Veränderung von LBLNR und DMA (vgl. Systemruf 20)

Eingang:

- LBLNR (6CH) zu lesende Blocknummer

- DMA (1BH) Adresse auf welcher der Block abgelegt wird

Return:

- A Kennzeichen für letzten Block der Datei (EOF)

kein EOF 0 EOF 1

- CY Fehlerstatus

- BLNR (6BH) die wirklich gelesene Blocknummer (auch im Fehlerfall)

Hinweis:

- das Lesen kann an beliebiger Stelle der Datei beginnen
- solange die gelesene Blocknummer kleiner ist als die gesuchte, liest das Programm weiter
- ist die gelesene Blocknummer größer, so kehrt das Programm mit Fehler 'record not found' zurück
- wird der letzte Block erkannt, so wird dieser Block eingelesen und das Programm kehrt mit A=1 (EOF) zurück

2.2.3. Fehlerbehandlung

Der Monitor des Computers Z 9001 besitzt eine eigene Fehlerbehandlung. Diese wird bei Verwendung von Systemrufen aktiviert und gibt auf das aktuelle CONST-Gerät Fehlermeldungen aus. Ein Fehlerzustand wird durch das gesetzte CY-Flag angezeigt. Zusätzlich enthält das A-Register in diesem

Fall einen speziellen Fehlercode zur näheren Bestimmung des Fehlers. Fehlerzustand und Fehlercode werden dem Nutzer durch BOS übergeben.

Tabelle der Fehlercodes:

Fehler- Fehlermeldung code			Fehlerursache		
00			dieser Code dient nur als Warnung(vgl. SysRuf 10)		
01	error 1		Parameterfehler		
02	error 2		Eingabefehler		
03	error 3		Parameter außerhalb zulässiger Grenzen		
04	error 4		Fehler bei Gerätezuweisung		
05			frei für Erweiterung		
06			frei für Erweiterung		
07	BOS-error:	os	unzulässiger Systemruf		
80	BOS-error:	CONST	Fehler im Gerät CONST		
	BOS-error:	READER	Fehler im Gerät READER		
	BOS-error:	PUNCH	Fehler im Gerät PUNCH		
	BOS-error:	LIST	Fehler im Gerät LIST		
09	BOS-error:	memory protected	Speicherbereich ist geschützt		
10	BOS-error:	end of memory	logisches Speicherende erreicht		
11	BOS-error:	record not found	gelesene Blocknummer zu groß		
12	BOS-error:	bad record	Lesefehler		
13	BOS-error:	file not found			
13	DO3-61101.	ille flot lourid	falscher Dateiname wurde gelesen		

2.3. BASIC INPUT/OUTPUT SYSTEM (BIOS)

2.3.1. Überblick

Im Monitor des Z 9001 besteht für den Anwender die Möglichkeit, verschiedene Systemprogramme unter Umgehung des BOS direkt aufzurufen. Bei Verwendung dieser Direktrufe werden keine Register gerettet und keine Fehlermeldungen ausgegeben. Die Direktrufe belasten den Stack des Anwenders. Bestimmte Direktrufe erwarten Parameter oder übergeben Parameter an den Anwender.

Eingabeparameter:

- Wortparameter im BC Register
- Byteparameter im C Register

Ausgabeparameter:

- Wortparameter Im BC Register
- Byteparameter im A Register

Ein Fehler bei der Behandlung eines Direktrufes wird durch das gesetzte CY-Flag und einen Fehlercode im A - Register angezeigt (siehe 2.2.3.). Der Aufruf erfolgt über eine Sprungtabelle ab F000H.

BIOS-Sprungtabelle

Adress	se		Funktion
F000 F003 F006	JMP JMP JMP	INIT WBOOT CONST	Kaltstart (RESET) Warmstart (Teilinitialisierung) Abfrage Status CONST Return: A - Status
			0 keine Taste sonst Zeichencode
F009	JMP	CONIN	Eingabe Zeichen von CONST
			Return: A - Zeichen
F00C	JMP	COOUT	Ausgabe Zeichen zu CONST
F00F	JMP	LIST	Eingang: C - Zeichen Ausgabe Zeichen zu LIST

			Eingang: C - Zeichen
F012	JMP	PUNCH	Ausgabe Zeichen zu PUNCH
F015	JMP	READER	Eingang: C - Zeichen Eingabe Zeichen von READER
F013	JIVIF	READER	Return: A - Zeichen
F018	JMP	GSTIK	Abfrage Spielhebel
			Return: C - Spielhebel 1
E01D	JMP	DOSED	B - Spielhebel 2
F01B F01E	JMP	BOSER STIME	nicht genutzt Stellen Systemuhr
	0	0	Eingang: A - Stunde
			C - Minute
E004	IMP	OTIME	B - Sekunde
F021	JMP	GTIME	Abfrage Systemuhr
			Return: A - Stunde C - Minute
			B - Sekunde
F024	JMP	SDMA	Setzen Adresse Kassettenpuffer
			Eingang BC - Adresse
F027	JMP	READ	Lesen eines Blockes von Kassette
			Eingang: LBLNR - gewünschte Blocknummer Return: LBLNR neu = LBLNR alt + 1
			DMA neu = DMA alt + 80H
F02A	JMP	WRITE	Schreiben eines Blockes auf Kassette
			Eingang: BLNR - zu schreibender Block
			Return: BLNR neu = BLNR alt + 1
=005			DMA neu = DMA alt + 80H
F02D	JMP	LLIST	Abfrage Status LIST Return: A - Status
F030	JMP	GCURS	Return: A - Status Abfrage physische Cursoradresse
1 000	Olvii	000110	Return: BC - Adresse
F033	JMP	SCURS	Setzen physische Cursoradresse
			Eingang BC - Adresse
F036	JMP	BOSER	nicht genutzt
F039	JMP	GIOBY	Abfrage I/0-Byte
F03C	JMP	SIOBY	Return: A - I/0-Byte Setzen I/0-Byte
1 030	JIVII	GIODT	Eingang: C - I/0-Byte
F03F	JMP	GMEM	Abfrage logische Speicherkonfiguration
			Eingang: BC - Adresse
			Return: A - Status
			1 RAM
F042	JMP	SMEM	0 sonst Setzen logische Speicherkonfiguration
1 042	JIVIF	CIVILIVI	Eingang: BC - Adresse
			A - Status
			1 RAM
			0 sonst

Hinweis:

Direktrufe sollten nur für Programme genutzt werden, die mit dem installierten Monitor ohne Systemerweiterung arbeiten.

2.3.2. Spezielle Steuercodes

Der Computer Z 9001 ist in der Lage, spezielle Steuercodes zu erzeugen und zu verarbeiten. Diese dienen insbesondere der Farbsteuerung des Bildschirms. Die ordnungsgemäße Arbeit des Computers mit diesen Steuercodes ist jedoch nur bei Verwendung der im Monitor integrierten Standardtreiber für Tastatur und Bildschirm gewährleistet. Die folgende Tabelle gibt einen Überblick über alle verwend-

baren Steuercodes des Z 9001. Ist bei der Beschreibung der Funktion der Wirkungsbereich des Steuercodes nicht explizit angegeben, so sind diese Codes im OS-Mode, im Systemruf 2, 9 und 10 gleichermaßen verwendbar.

Hexco	de	Funkt taste	CTRL- taste	Funktion
01 02		CLLN	CTRL/A CTRL/B	SysRuf 10 und OS-Mode: Löschen aller eingegebenen Zeichen
03		STOP	CTRL/C	SysRuf 10: Abbruch der Eingabe OS-Mode: Durchführen eines Warmstarts
04 05 (F) 06 (F) 07 08	\leftarrow		CTRL/D CTRL/E CTRL/F CTRL/G CTRL/H	nächstes Zeichen Ist Code für Bildschirmrandfarbe Blinken EIN/AUS für alle folgenden Zeichen Ausgabe eines Summertones SysRuf 2 und 9: Cursor nach links ohne Zeichenlöschen SysRuf 10 und OS-Mode: Löschen des letzten Zeichens
09 0A	$\overset{\rightarrow}{\downarrow}$		CTRL/I CTRL/J	Cursor nach rechts ohne Zeichenlöschen SysRuf 2 und 9: Cursor runter ohne Zeichenlöschen
0B	\uparrow		CTRL/K	Bildschirm rollt aufwärts SysRuf 2 und 9: Cursor hoch ohne Zeichenlöschen Bildschirm rollt abwärts
0C 0D	ENTER	₹	CTRL/L CTRL/M	Bildschirm löschen SysRuf 2 und 9: Cursor an den Anfang der Zeile ohne Zeichenlöschen SysRuf 10 und OS-Mode: Zeilenabschluß und Ausgabe CRLF
0E 0F 10			CTRL/N CTRL/0 CTRL/P	Parallelausgabe auf LIST-Gerät EIN/AUS
11 12 13	PAUSE		CTRL/Q CTRL/R CTRL/S	(LIST-Gerät muß vorher zugewiesen werden) Kontrollton EIN/AUS
14 (F) 15 (F) 16 (F) 17 18	COLO		CTRL/T TCTRL/U CTRL/V CTRL/W CTRL/X	nächstes Zeichen ist Code für Vordergrundfarbe nächstes Zeichen ist Code für Hintergrundfarbe Inversdarstellung aller folgenden Zeichen
19 1A 1B 1C 1D 1E 1F	INS ESC LIST RUN CONT DEL		CTRL/Y	

(F) Wirkt nur bei eingebautem Farbmodul

Die Tasten SHIFT, SHLOK, CTRL und GRAFIC erzeugen keine externen Codes. Die internen Farbcodes sind 0 (schwarz), 1 (rot), . . . und 7 (weiß).

2.2.3. Das I/0-Byte

Das I/0-Byte dient zur Verbindung von logischen und physischen Geräten. Für jedes der 4 logischen Geräte sind 4 physische Geräte wählbar. Die Zuschaltung eines dieser Geräte erfolgt über Änderung des I/0-Bytes. Zuvor müssen alle zu verwendenden Treiber zugewiesen und initialisiert werden.

Das I/0-Byte ist in 4 Bereiche zu je 2 Bits unterteilt. Jeder Bereich, der einem logischen Gerät zugeordnet ist, kann einen Wert von 0 bis 3 beinhalten und damit logisches und physisches Gerät verbinden.

Aufbau des I/0-Bytes:

Vom Monitor werden folgende Belegungen realisiert

CONST: 1 CRT ist aktiviert

2 BAT ist aktiviert

LIST: 1 CRT ist aktiviert

Die Treiberadressen der jeweiligen physischen Geräte liegen auf den Adressen EFC9H bis EFE8H (siehe 1.2.2.).

2.3.4. Der FCB

Der FCB wird zur Beschreibung von Dateien auf einem externen Speicher (Kassette) verwendet. Vor jedem Auslagern einer Datei muß der FCB initialisiert werden. Mit dem Systemruf 15 (OPENW) wird dieser FCB als Block 0 auf Kassette geschrieben, um die Datei bei erneutem Einlesen eindeutig identifizieren zu können. Zum Einlesen ist der Systemruf 13 (OPENR) zu verwenden. Die Anfangsadresse des FCBs ist 5CH.

Aufbau des FCBs:

Adresse	Inhalt	Bemerkung
5CH	Dateiname	8 Zeichen mit Buchstaben beginnend ggf. mit 00 auffüllen
64H	Dateityp	3 Zeichen mit Buchstaben beginnend ggf. mit 00 auffüllen
67H	-	frei für Erweiterungen
68H	-	frei für Erweiterungen
69H	PSUM	Blockprüfsumme
6AH	ARB	interne Arbeitszelle
6BH	BLNR	Nummer zu schreibender Block oder Nummer gelesener Block
6CH	LBLNR	Nummer zu lesender Block
6DH	AADR	Anfangsadresse der Datei
6FH	EADR	Endadresse der Datei
71H	SADR	Startadresse eines Programms
73H	SBY	Schutzbyte

Hinweise:

- vor OEPNW sind durch den Anwender Dateiname, Dateityp, Anfangsadresse, Endadresse, Startadresse und Schutzbyte zu initialisieren
- die Startadresse einer Datendatei oder eines nicht selbst startenden Programmes auf FFFH setzen (kein versehentliches Starten bei Einlesen im OS-Mode, da Sprung auf RET-Befehl)
- vor OPENR sind Dateiname und Dateityp zu initialisieren
- nach OPENR sind Anfangsadresse, Endadresse, Startadresse und Schutzbyte durch die von Kassette gelesenen aktualisiert (nicht bei 'file not found')
- wird eine Datei mit Schutzbyte = 1 eingelesen, ist kein Schreiben auf Kassette mehr möglich

2.3.5. Kassettenaufzeichnung

Die Aufzeichnung von Programmen und Daten auf Kassette erfolgt in geblockter Form zu je 128 Bytes. Die Übertragungsrate beträgt etwa 1800 Baud. Zur Aufzeichnung werden 3 unterschiedliche Frequenzen verwendet.

0 - Bit : 2500 Hz 1 - Bit : 1250 Hz Trennzeichen : 625 Hz

Jedes Zeichen wird durch eine volle Periode aufgezeichnet.

a) Dateiaufbau:

Block 0 Dateikopf

Inhalt ist der komplette FCB (siehe 2.3.4.)

Block 1, ..., n Daten der Datei

Block FFH letzter Datenblock der Datei

Endeblock

b) Blockaufbau:

Vorton Folge von 1 - Bit mit abschließendem Trennzeichen

Block 0: 6000 sonst 160

Blocknummer 1 Byte Daten 128 Bytes

Prüfsumme 1 Byte (durch Addition aller Datenbytes gewonnen)

c) Byteaufbau:

Information 8 Zeichen Trennzeichen 1 Zeichen

3. Zusätzliche Treiber

Der Monitor des Z 9001 bietet dem Anwender über das ASGN-Kommando die Möglichkeit, den logischen Geräten jeweils 4 physische Geräte mit beliebigen Treiberroutinen zuzuweisen. Um die Zusammenarbeit mit allen anderen Systemkomponenten zu gewährleisten, sind dabei besondere Randbedingungen zu beachten.

Treibereingangsparameter:

- A Kommando (siehe 3.2.) (für CONST, READER, LIST)

- C Zeichen (bei Kommando AUSGABE)- DE Adresse bei Cursorkommandos

Treiberausgangsparameter:

- A Zeichen (bei Kommando EINGABE)

- CY Fehlerstatus

- HL,DE Adresse bei Cursorkommandos

Hinweis:

Vordergrundregister müssen bei Eintritt in das Treiberprogramm nicht gerettet werden (erfolgt bereits im BOS)

3.1. Treiberinitialisierung

Die Initialisierung sollte grundsätzlich über das ASGN-Kommando erfolgen. Eine automatische Initialisierung über die Nutzung des Kommandos (siehe 2.1.2.) und Direktzugriff auf entsprechende Systemzellen ist zu vermeiden.

Der Aufruf der Initialisierung im ASGN-Kommando erfolgt in der gleichen Weise wie der Start eines Anwenderprogrammes. Dabei kann es sich sowohl um ein transientes Kommando, als auch um ein Programm auf Kassette handeln. Ladbare Treiberprogramme auf Kassette werden durch das ASGN-Kommando selbständig eingelesen und zur Initialisierung gestartet. Derartige Programme sind in der Initialisierung mittels geeigneter RELOCATING-Routinen an das Ende des logischen RAM-Bereiches zu verschieben. Notwendiger Arbeitsspeicher ist gleichfalls dort einzurichten. Nach dem Verschieben ist der Zeiger des logischen RAM-Endes EOR (36H) auf eine Adresse vor dem Treiberprogramm zu stellen. Für jede Treiberroutine eines physischen Gerätes stehen im System-RAM (ab 280H) 4 Bytes Speicher zur Verfügung. Die Treiberinitialisierung muß der ASGN-Routine folgende Parameter übergeben:

```
- CY Fehlerstatus nach Initialisierung
```

```
- H logische Gerätenummer
```

```
0 CONST
2 READER
4 PUNCH
6 LIST
```

- L physische Gerätenummer (0, 1 3)
- BC Adresse der E/A-Routine
- DE Adresse einer Zeichenkette (wird nach der Zuweisung durch ASGN angezeigt)

Beispiel:

```
;PROM-Transientkommandoprogramm zur Initialisierung eines Druckers als TTY-Gerät
       JMP
              INIT
       DB
              'DRUCKER '
       DA
              0
INIT:
       LD
              HL,(EOR)
                                    ;Adresse end of RAM (36H)
              DE,RAME-RAMA
                                    ;benötigter Arbeitsspeicher
       LD
       SBC
              HL.DE
       LD
              (EOR),HL
                                    ;neue log. RAM-Ende
       INC
              HL
       LD
                                    :Zeiger auf Arbeitsspeicher (2B0H)
              (RTTYL),HL
;Hardwareinitialisierung
       LD
              H,6
                                    ;log. Gerätenummer (LIST)
                                    ;phy. Gerätenummer (TTY)
       LD
              L,0
              BC,OUTZ
       LD
                                    ;Adresse der Zeichenausgabe
       LD
              DE,TEXT
       OR
                                    :kein Fehler
       RET
FEHL: SCF
                                    :Fehler
       RET
;Zeichenausgabe
OUTZ: ....
:RAM-Definitionen
RAMA: ....
RAME: EQU
              #
```

Hinweis:

- TTY-Treiber können beliebigen logischen Geräten zugewiesen werden
- CRT-Treiber können CONST und LIST zugewiesen werden
- alle anderen nur dem im H-Register angegebenen logischen Gerät (sonst Fehlermeldung im ASGN-Kommando)

3.2. Besonderheiten der Treiber für CONST

An die Treiber der für CONST möglichen Geräte (TTY, CRT, BAT, UC) werden besondere Anforderungen gestellt, da sie Routinen zur Eingabe, Ausgabe, Statusabfrage und Cursorsteuerung beinhalten müssen. Dem Treiber wird die zu erfüllende Aufgabe durch spezielle Kommandocodes im A - Register übergeben.

Kommandocodetabelle:

Code	Funktion				
00	Abfrage Status Return:				
	A Status				
	0 kein Zeichen bei Eingabegerät, nicht bereit bei Ausgabegerät				
	sonst Zeichen liegt an bei Eingabegerät,				
	(im installierten CRT-Treiber wird der Zeichencode übergeben)				
01	Eingabe Zeichen				
	Return: A Zeichen				
02	A Zeichen Ausgabe Zeichen				
02	Eingang:				
	C Zeichen				
03	Cursor löschen				
04	Cursor anzeigen				
	Return:				
0.5	HL physische Cursoradresse				
05	Abfrage logische und physische Cursoradresse				
	Return: HL physische Cursoradresse				
	DE logische Cursoradresse				
06	Setzen Cursor auf logische Adresse				
	Eingang:				
	DE logische Cursoradresse				
07	Abfrage physische Cursoradresse				
	Return:				
00	HL physische Cursoradresse				
80	Setzen Cursor auf physische Adresse				
	Eingang: DE physische Cursoradresse				
FF	Initialisieren/Rücksetzen des Gerätes				
-					

Hinweis:

- werden verschiedene Kommandos durch den Anwender nicht benötigt, kann dafür ein Sprung zum Fehlerausgang des Treibers programmiert werden
- korrespondierende System- und Direktrufe sind dann nicht mehr verwendbar

Beispiel:

;Eingangsverteiler für CRT-Treiber mit allen Funktionen

INC	Α	
JPZ	RESET	;Initialisieren/Rücksetzen Gerät
DEC	Α	
JPZ	STAT	;Status
DEC	Α	
JPZ	EING	;Eingabe
DEC	Α	
JPZ	AUSG	;Ausgabe
DEC	Α	
JPZ	LCUR	;Löschen Cursor
DEC	Α	
JPZ	ACUR	;Anzeige Cursor
		=

DEC Α **ADRLC** JPZ ;Abfrage log. und phy. Cursoradresse DEC SLOGC JPZ ;Setzen Cursor auf log. Adresse DEC JPZ **ADRPC** ;Abfrage phy. Cursoradresse DEC ;Setzen Cursor auf phy. Adresse JPZ **SPHYC** FEHL: SCF ;unzulässiges Kommando RET ;Fehlerausgang

3.3. Besonderheiten der Treiber für READER und LIST

Soll ein READER-Gerät Im Zusammenhang mit dem BATCH-Mode von CONST betrieben werden, so müssen im Treiber für das READER-Gerät (RDR, UR1, UR2) die Kommandos Eingabe, Statusabfrage und Initialisierung programmiert sein. Bei Treibern für das LIST-Gerät müssen die Kommandos Ausgabe, Statusabfrage und Initialisierung In jedem Falle programmiert werden.

4. Spezielle Monitorroutinen

Die Verwendung von Programmen, die im folgenden aufgeführt werden, ist <u>nur</u> für Anwender eines Z 9001 mit der Monitorversion 1.2. gewährleistet. Spätere Änderungen am Monitor können auf die Weiterverwendbarkeit dieser Programme keine Rücksicht nehmen. Da eine ausführliche Beschreibung aller Programme den Rahmen dieser Dokumentation sprengen würde, sollte sich ein Nutzer dieser Programme vorher intensiv mit dem Monitorprogramm vertraut gemacht haben.

4.1. Monitorroutinen im CCP

Name: ALDEV (F0E7H)

Funktion: Zuweisung log. Gerät - phys. Gerät

a) <u>Eingang</u>

- ALDEV

gerufen von: ASGN

Parameter: CONBU Konsolpuffer mit weiteren Eingabeparametern

b) gerufene Programme

GVAL Parameter übernehmenLOCK log. Gerätenamen suchen

- CDEL Zeichentest

LOPDV Suchen phys. Gerätenamen
 INDV Einlesen Treiberprogramm
 EXIO Prüfen der Zuweisung

c) Ausgang

- ERPAR Parameterfehler - ERINP Eingabefehler

DISPA

Name: ASGN (F0BAH)

Funktion: Zuweisung log. Gerät - phys. Gerät

Anzeige der aktuellen Zuweisung

a) Eingang

ASGN

gerufen von: GOCPM über JMP (HL)

Parameter: CY 0 weitere Parameter im Konsolpuffer

1 keine weiteren Parameter

b) gerufene Programme

c) Ausgang

- ALDEV

- DISPA

Name: CDEL (F1C4H)

Funktion: Übernahme des nächsten Zeichens aus dem Konsolpuffer

Löschen des Zeichens mit Leerzeichen

Test des Zeichens auf Trennzeichen (20H,','.':',0)

a) Eingang

CDEL

gerufen von: GVAL, ALDER

Parameter : CONBU Konsolpuffer

- CDEL 2

gerufen von: GVAL Test eines Zeichens auf Trennzeichen 0

Parameter: A zu testendes Zeichen

Z

b) gerufene Programme

- CDELI Zeichentest

c) Ausgang

. -

d) Return

Parameter: A, C getestetes Zeichen

Z 0 kein Trennzeichen

1 Trennzeichen

CY 1 Trennzeichen 0 (Kennzeichen für Stringende)
CONBU getestetes Zeichen gelöscht mit Leerzeichen

Name: CHEC (F26CH)

Funktion: Stringvergleich

a) Eingang

CHEC

gerufen von: LOCK, OPENR

Parameter: HL Adresse String 1

DE Adresse String 2

B Anzahl zu vergleichender Zeichen

b) gerufene Programme

-

c) Ausgang

d) Return

Parameter: Z 1 String 1 = String 2

DE unverändert HL Wort vor String 2

Name: CPROM (F28EH)

Funktion: Suchen Kommando im Speicher

Kommando muß auf integraler 100H-Grenze beginnen

Aufbau: JMP KOMM

DB 'KNAME ' ;8 Zeichen mit Space aufgefüllt

DA 00 ;Ende Kommandofeld

oder JMP KOMM 1

DB 'K1NAME '

DB 0 ;Ende Kommando 1

JMP KOMM 2

DB 'K2NAME '

DB 0 ;Ende Kommando 2

•

JMP KOMM N ' DB 'KNNAME'

DA 0 ;Ende Kommandofeld

a) Eingang

- CPROM

gerufen von: WBOOT, GOCPM

Parameter: INTLN INTLN+1 enthält Kommando in der Länge 8 Bytes

b) gerufene Programme

- LOCK Suchen String

c) Ausgang

d) Return

Parameter: Z 0 Kommando nicht gefunden

1 Kommando gefunden

HL Adresse der Kommandoroutine

DE Adresse des Kommandos im Speicher

Name: DISPA (F0BDH)

Funktion: Anzeige der aktuellen Gerätezuweisung

a) Eingang

- DISPA

gerufen von: ASGN, ALDEV

Parameter: SADV Stringadreßvektor zur Adressierung der zum log. Gerät

definierten Ausgebestrings

LOGDV Tabelle der logischen Geräte

DISPE

gerufen von: GOCPM Zeichen-E/A-Fehler in der Kommandoeingabe

b) gerufene Programme

OCRLF
 PRNST
 OUTA
 Ausgabe CRLF
 Ausgabe String
 Ausgabe Zeichen

c) Ausgang

- WBOOT Fehler nach Gerätezuweisung bei Zeichenausgabe

d) Return

Parameter: -

Name: EXIO (F2CEH)

Funktion: Lesen einer ausgewählten Treiberadresse

Prüfen der gültigen Zuweisung

a) Eingang

- EXIO

gerufen von: ALDEV, CONST

Parameter: B interne Nummer des log. Gerätes (0, 2, 4, 6)

0 : CONST 6 : LIST

IOBYT

Treiberadreßvektor

b) gerufene Programme

- COMPW Vergleichen DE und HL

c) Ausgang

_

d) Return

Parameter: CY 1 keine Treiberadresse gefunden (FFFFH)

0 Adresse gefunden

HL Treiberadresse

Name: GVAL (F1EAH)

Funktion: Löschen internen Puffer (INTLN).

Übernahme Parameter aus CONBU nach INTLN

Test auf Parameterart

Konvertieren Parameter, wenn dieser ein Wert ist

a) Eingang

- GVAL

gerufen von: WBOOT, GOCPM, ALDEV, STIME, LOAD

Parameter : CONBU Konsolpuffer

b) gerufene Programme

- CDEL Übernahme Zeichen aus CONBU und Test

CDEL1 Test ZeichenCDEL2 Test Zeichen

- CONV konvertieren Parameter

c) Ausgang

- ERINP Eingabefehler im Parameter

d) Return

Parameter: Z 1 Parameter war Dezimalzahl

0 Parameter war keine Zahl

CY 0 kein Fehler

1 Fehler im Parameter

A Konvertierte Dezimalzahl, wenn 2 = 1 und CY = 0 C den Parameter begrenzendes Trennzeichen

B Länge des Parameters

HL Adresse des nächsten Zeichens in CONBU CY' 0 kein weiterer Parameter in CONBU

1 weitere Parameter

A' den Parameter begrenzendes Trennzeichen

INTLN Länge des Parameters INTLN+1... übernommener Parameter

CONBU übernommener Parameter und Trennzeichen gelöscht mit

Leerzeichen

4.2. Monitorroutinen im BOS/BIOS

Name: ERDIS (F5EAH)

Funktion: Ausgabe Fehlermeldung

a) <u>Eingang</u>

- ERDIS

gerufen von: BOSE, REA, GOCPM Parameter: A Fehlercode

CY 1 (bei 0 RET)

b) gerufene Programme

PRNST Ausgabe String
 OUTA Ausgabe Zeichen in A
 OCRCF Ausgabe CR/LF

c) Ausgang

_

d) Return

Parameter: CY

A Fehlercode

Name: GETMS (F35CH)

Funktion: Eingabe String in Monitorpuffer (80H)

a) Eingang

- GETMS

gerufen von: GOCPM, REQU

Parameter: -

b) gerufene Programme

CONIN Eingabe ZeichenOUTA Ausgabe Zeichen in A

c) Ausgang

- RCONB

Parameter: DE Adresse Consolepuffer (80H)

Name: LOAD (F522H)

Funktion: Laden eines Programms

a) Eingang

- LOAD

gerufen von: INFIL, CLOAD

Parameter: CONBU mit gesuchtem Namen

b) gerufene Programme

GVAL ParameterübernahmeMOV verschieben Speicherbereich

OPENR Eröffnen für LesenREAD Lesen eines Blockes

REA Abfrage Bedienerhandlung bei Fehler

c) Ausgang

ERPAR ParameterfehlerERINP Eingabefehler

OCRLF Ausgabe CR/LF nach Einlesen

Parameter: CY 0 keine Fehler 1 Fehler, Code in A

Programm ab Anfangsadresse im Speicher

DMA nach Programm

Name: REQU

Funktion: Ausgabe String 'start tape', warten auf ENTER

a) Eingang

- REQU

gerufen von: OPENR, OPENW

- REQUO

gerufen von: REA

b) gerufene Programme

PRNST Ausgabe StringGETMS Eingabe String

c) Ausgang

-

d) Return

Parameter: A FFH wenn STOP

0 sonst

Name: PEA

Funktion: Ausgabe Fehlermeldung, warten auf Bedienerhandlung

a) Eingang

- REA

gerufen von: LOAD

Parameter: A Fehlercode

b) gerufene Programme

REQUO warten auf Bedienerhandlung

- MOD verändern Speicherkonfiguration (bei Fehler 9)

c) Ausgang

-

d) Return

Parameter: CY 0 kein STOP

1 STOP, Fehlercode in A

Name: CONST, CONIN, CONOUT, LIST, LLIST, READER,

PUNCH (CONST1, LIST1, RDR1) (F756H)...

Funktion: Verzweigen zu log. Geräten

a) Eingang

gerufen von: Systemruf, Cursorruf bei OUT Zeichen in C

b) gerufene Programme

- EXIO Test Gerätezuweisung, Startadresse der Gerätetreiber holen

c) Ausgang

-

d) Return

Parameter: CY 0 kein Fehler

1 Fehler, Code in A

B interne log. Gerätenummer

A bei IN Zeichen

Name: CRT (F8F1H)

Funktion: Bildschirmtreiber, Tastaturtreiber, Steuerprogramm

a) Eingang

- CRT

gerufen von: CONST1 (über JMP (HL))

Parameter: A Art des Rufes

FF Init.

0 Status Tastatur1 Eingabe2 Ausgabe

(C Zeichen bei Ausgabe)

3 Cursor löschen4 Cursor setzen

5 Abfrage log. Cursoradr.6 Setzen log. Cursoradr.

(DE Adresse; Zeile/Spalte)

Abfrage phys. Cursoradr.Setzen phys. Cursoradr.

(DE Adresse)

b) gerufene Programme

- OC Ausgabe ASCII-Zeichen

c) Ausgang

- INITA Tastaturinitialisierung
- OCHAR Ausgabe Zeichen

- OC Ausgabe ASCII-Zeichen (für Cursoroperationen)

d) Return

Parameter: A Zeichen bei IN

DE, HL Adressen bei Cursorabfrage

DE log. HL phys.

Name: DECK (FD33H)

Funktion: dekodieren Tastaturmatrix

a) Eingang

- DECOO

gerufen von: ICTC

b) gerufene Programme

- GPIOD Abfrage Tastatur PIO

c) Ausgang

_

d) Return

Parameter: A Zeichen

Z 1 Fehler 0 gültig

Name: FORMS (F836H)

Funktion: Formatieren String auf n Bytes für Konvertierung in interne Zahl

Ausblenden bzw. Einfügen von Vornullen

a) Eingang

- FORMS

gerufen von: VIEXT

Parameter: DE Stringadresse

A neue gewünschte Länge

b) gerufene Programme

- MOVE verschieben Speicherbereich

c) Ausgang

-

d) Return

Parameter: DE Adresse 1. Zeichen neuer String

CY 0 kein Fehler

1 zu viele signifikante Stellen (keine Vornullen)

Name: OC (F97DH)

Funktion: phys. Bildschirmtreiber

a) Eingang

- OC

gerufen von: CRT, OCHAR

Parameter: C ASCII-Zeichen

b) gerufene Programme

DELC Cursor löschen
 ROLU Rollen hoch
 ROLD Rollen runter

- MIAT Farbcode investieren

c) Ausgang

-

d) Return

Parameter: HL phys. Cursoradresse

Name: OCHAR (F88DH)

Funktion: Behandlung alle Sonderzeichen (Farbe, Bell, Blinken, Invers)

a) Eingang

- OCHAR

gerufen von: CRT

Parameter: C Zeichen

b) gerufene Programme

- COL Farbbehandlung

BELL1 Tonausgabe vorbereiten/beenden

- INIVT Initialisieren Ton - AUS1 Ausgabe Ton

OC Ausgabe ASCII-Zeichen
 MIAT Farbcode invertieren

Name: ROLU, ROLS, ROLL, MOVEL, DELLI (FA4FH)...

Funktion: Bildschirm rollen, letzte Zeile löschen

a) Eingang

- ROLU, ROLD

gerufen von: OC

ROLL

gerufen von: ROLU, ROLD

Parameter: A 0 runter =0 hoch

b) gerufene Programme

- MOVE Speicher verschieben

Name: VIEXT (F815H)

Funktion: Umwandlung Parameterstring (Dezimalzahl) in interne Darstellung (ein Byte)

a) <u>Eingang</u>

VIEXT

gerufen von: GEVAL

Parameter : DE Stringadresse

b) gerufene Programme

- FORMS formatieren Eingabe-String

c) Ausgang

-

d) Return

Parameter: DE Adresse nach String

A Wert

4.3. Monitorroutinen zur Kassetten-E/A

Name: IBYTE (FFE8H)

Funktion: Lesen eines Bytes

a) Eingang

IBYTE

gerufen von: MAREK

b) gerufene Programme

- LSTOP Lesen eines Bits

c) Ausgang

-

d) Return

Parameter: A, E Byte

CY 1 Fehler 0 kein Fehler

Name: IKACT (FF43H)

Funktion: Interruptroutine Schreiben

a) Eingang

- IKACT

Parameter: ARB Länge nächste Halbperiode

b) <u>geru</u> -	fene Programm	<u>e</u>	
c) <u>Ausç</u> -	gang		
d) Retu	ırn Parameter:	ARB	0
<u>Name</u>	: IKEP	(FFBDH)	
Funktio	n: Interruptrou	tine lesen	
a) <u>Eing</u> -	ang IKEP		
b) <u>geru</u> -	fene Programm	<u>e</u>	
c) <u>Ausc</u> -	gang		
d) <u>Retu</u>	<u>ırn</u> Parameter	A Länge einer	Halbperiode
<u>Name</u>	: KAUB	<u>T</u> (FF18H)	
Funktio	n: Ausgabe ei	nes Bytes	
a) <u>Eing</u> -	ang KAUBT gerufen von:	KARAM	
	Parameter :	A D	Byte Länge Halbperiode vorheriges Bit
-	AUST	L/ADAM	
	gerufen von: Parameter :	KARAM D	Länge Halbperiode vorheriges Bit
-			Länge Halbperiode vorheriges Bit Länge Halbperiode vorheriges Bit
- b) <u>geru</u> - -	Parameter : AUS1 gerufen von:	D KARAM D	
b) <u>geru</u> - - c) <u>Ausç</u>	Parameter : AUS1 gerufen von: Parameter : ufene Programm AUS1, AUSO DYNST	D KARAM D	Länge Halbperiode vorheriges Bit Ausgabe 1 Bit, 0 Bit

(FED6H) Name: **KARAM**

Funktion: Schreiben eines Blockes

a) Eingang

KARAM

gerufen von: **WRIT**

Parameter: DMA Blockadresse **BLNR** Blocknummer

> BC Anzahl der Vortonzeichen

b) gerufene Programme

INIC1 CTC vorinitialialisieren INIVT Vorton initialisieren AUS1 Ausgabe 1 Bit

AUST Ausgabe Trennzeichen **KAUBT** Ausgabe 1 Byte

c) Ausgang

DYNST Ausgabe der letzten Halbperiode

d) Return

Name: **LSTOP** (FFD1H)

Funktion: Lesen eines Bits

a) Eingang

LSTOP

gerufen von: MAREK, IBYTE

LS1

gerufen von: **MAREK**

b) gerufene Programme

c) Ausgang

d) Return

Parameter: C Länge der Periode

0 Bit 1

> 0 und C 90H Trennz. 0 und C - 90H 1 Bit

(FF59H) Name: MAREK

Funktion: Lesen eines Blockes

a) Eingang

MAREK

gerufen von: **RRAND** Parameter: DMA

b) gerufene Programme

INIC1 CTC vorinitialisieren **LSTOP** Warten eine Periode LS1 Warten eine Halbperiode - IBYTE Lesen eines Bytes

c) Ausgang

d) <u>Return</u> Parameter: BLNR Blocknummer

PSUM CY Prüfsumme 0 kein Fehler

1 Fehler