Please check the examination details below	before entering your candidate information
Candidate surname	Other names
Pearson Edexcel nternational Advanced Level	Candidate Number
Wednesday 20 N	/lay 2020
Morning (Time: 2 hours 30 minutes)	Paper Reference WMA01/01
Mathematics International Advanced Sub Core Mathematics C12	osidiary/Advanced Level

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 15 questions in this question paper. The total mark for this paper is 125.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

 Turn over

I. (a) Solve, using algebraic

$$6x^3 + 5x^2 - 6x = 0$$

(3)

(b) Hence solve, for $0 \leqslant \theta < \pi$,

$$6\sin^3\theta + 5\sin^2\theta - 6\sin\theta = 0$$

giving your answers, as appropriate, to 3 significant figures.

(3)

Question 1 continued	blank
	—
	—
	—
	—
	—
	—
	<u>Q1</u>
(Total 6 may	·lze)
(Total 6 mar	KSJ

2. Find

$$\int \left(15x^4 + \frac{4}{3x^3} - 4\right) \mathrm{d}x \qquad x > 0$$

		(4)

Question 2 continued	blank
	Q2
(Total 4 marks)	

3. A sequence is defined by

$$u_1 = 5$$
$$u_{n+1} = ku_n + 2$$

where k is a non-zero constant.

(a) Find u_2 and u_3 in terms of k, simplifying your answers as appropriate.

(3)

Given that $u_3 = 2$

(b) find the value of $\sum_{n=1}^{3} u_n$

(3)

Question 3 continued	Leave
	02
	Q3
(Total 6 marks)	

4. In this question you must show all stages of your working.

Solutions relying on calculator technology are not acceptable.

(i) Given

$$\frac{8^{y}}{4^{2x}} = \frac{\sqrt{2}}{32}$$

find y in terms of x, giving your answer in simplest form.

(4)

(ii) Solve the equation

$$x\sqrt{3} = 4\sqrt{2} + x$$

writing your answer in the form $a\sqrt{b} + c\sqrt{d}$ where a, b, c and d are integers to be found.

- 1	1	•
	4	
١,	-	,

Question 4 continued	blank
	Q4
(Total 8 marks)	

Figure 1

Figure 1 shows a sketch of the curve with equation

$$y = \frac{4}{\sqrt{x}} \qquad x > 0$$

The region R, shown shaded in Figure 1, is bounded by the curve, the line with equation x = 4, the x-axis and the line with equation x = a, where a is a constant greater than 4

Given that the area of R is 9

(a) find, in simplest form, the numerical value of

(i)
$$\int_{4}^{a} \frac{4}{\sqrt{3x}} \, \mathrm{d}x$$

(ii)
$$\int_{1}^{a} \frac{4}{\sqrt{x}} \, \mathrm{d}x$$

(b) find the exact value of a.

(5)

(4)

	L b
uestion 5 continued	

Question 5 continued		

Question 5 continued	blank
	Q5
(Total 9 marks)	

6. A curve has equation

$$y = x(x+3)(x-2)$$

(a) Find, in simplest form, $\frac{dy}{dx}$

(3)

(b) Hence find the range of values for x such that

$$\frac{\mathrm{d}y}{\mathrm{d}x} \geqslant 2$$

(4)

	blank
Question 6 continued	
	_
	Q6
(Total 7 man	·ks)

7. (i) Solve

$$3 \times \left(\frac{1}{2}\right)^{p-1} = 1.3$$

giving your answer to 3 decimal places.

(3)

(ii) Find the exact value of x for which

$$\log_4 2x + 2\log_4 x = 8$$

(3)

16

stion 7 continued	

Leave

8.	In a parallelogram ABCD,	
	• side AB has length 8.6 cm	
	• side BC has length 6 cm	
	• angle CAB is 23°	
	(a) Find possible sizes of angle ABC, giving each answer, in degrees, to one	
	decimal place.	(4)
		(4)
	Given that angle ABC is obtuse, find	
	(b) the length of diagonal AC , in cm, to 2 decimal places,	
		(2)
	(c) the area of the parallelogram <i>ABCD</i> , in cm ² , to 3 significant figures.	
	(c) the area of the parametogram ADCD, in citi, to 3 significant figures.	(2)
		(-)
_		

estion 8 continued	

Question 8 continued

08	Question 8 continued		Leave blank
(Total 8 marks)			Q8
(200020 2110)		(Total 8 marks)	

9. A curve *C* has equation

$$y = \frac{2}{x} + k$$

where k is a positive constant.

(a) Sketch a graph of the curve C.

Show clearly the coordinates of the point where the curve crosses the x-axis and state the equations of both asymptotes to the curve.

(4)

The straight line *l* has equation y = 5 - 3x

Given that l and C do not meet,

(b) find the range of possible values for k.

(5)

Question 9 continued	Leave blank
	Q9
(Total 9	marks)

10. (a) Use the binomial expansion to find the first four terms, in ascending powers of x, of

$$\left(2-\frac{1}{3}x\right)^9$$

giving each term in simplest form.

(5)

$$f(x) = \left(3 + \frac{a}{x}\right)\left(2 - \frac{1}{3}x\right)^9$$
 where a is a constant

Given that the coefficient of x in the series expansion of f(x) is zero,

(b) find the value of a, writing the answer as a fully simplified fraction.

1	- 4	`
ı	~)	,

estion 10 continued	

Question 10 continued	

Question 10 continued	blank
	Q10
(Total 8 marks)	

11. $f(x) = 13 + 3x + (x + 2)(x + k)^2$ where k is a constant

Given that (x + 3) is a factor of f(x),

- (a) (i) show that a possible value of k is 5
 - (ii) find the other possible value of k.

(3)

Given that k = 5

- (b) (i) write f(x) as the product of two algebraic factors
 - (ii) show that the equation f(x) = 0 has only one real solution.

(6)

uestion 11 continued	
lestion 11 continued	

Question 11 continued	

Question 11 continued	blank
Question 11 continued	
	011
	Q11
(Total 9 marks)	

Figure 2

Figure 2 shows a sketch of the curve with equation $y = \tan x$, $0 < x \le 2\pi$ and the curve with equation $y = 5\cos x$, $0 < x \le 2\pi$

The curves meet at the points A and B shown in Figure 2.

(a) Show that the x coordinates of points A and B satisfy the equation

$$5\sin^2 x + \sin x - 5 = 0 \tag{4}$$

(b) Hence find, to 2 decimal places, the x coordinate of A and the x coordinate of B.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(4)

- (c) Find the number of solutions of the equation
 - (i) $\tan x = 5 \cos x$ in the interval $0 < x \le 21\pi$
 - (ii) $\tan 2x = 5\cos 2x$ in the interval $0 < x \le 20\pi$

Explain briefly the reason for your answer in each case.

(4)

	L
uestion 12 continued	

Question 12 cont	inued		

Question 12 continued	blank
	_
	_
	_
	_
	_
	_
	_
	_
	-
	-
	_
	-
	_
	-
	-
	_
	_
	_
	-
	-
	_
	_
	-
	_
	-
	-
	_
	-
	-
	-
	-
	-
	Q12
	-
(Total 12 marks))

 $A \xrightarrow{\theta} B$

Figure 3

Figure 3 shows the plan view of a design for the stage at a concert.

The shape of this design is a sector *AOB* of a circle with centre *O*.

The radius of the sector is r m and the angle AOB is θ radians.

Given that the sector has area 200 m²

(a) show that the perimeter of the sector, P m, is given by

$$P = 2r + \frac{400}{r} \tag{4}$$

(b) Using calculus, find the exact minimum possible value of P.

(5)

(c) Justify, by further use of calculus, that the value of P you have found in part (b) is the minimum.

(2)

uestion 13 continued	

Leave blank

Question 13 continu	ied		

	blank
Question 13 continued	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	Q13
(Total 11 mark	(s)
(

- 14. (i) A car has five gears. Given that
 - the maximum speed of the car in first gear is 22 km h⁻¹
 - the maximum speed in each successive gear forms a geometric sequence
 - the maximum speed of the car in fifth gear is 130 km h⁻¹

find the maximum speed of the car in second gear, giving your answer, in km h⁻¹, to one decimal place.

(4)

(ii) The first two terms of an arithmetic sequence are 208 and 207.2

Given that S_n is the sum to n terms,

(a) find the maximum value of S_n

(4)

(b) Hence or otherwise state the smallest value of N such that $S_N < 0$

(1)

uestion 14 continued	

Leave blank

Question 14 continued		

Question 14 continued	blank
	Q14
(Total 9 marks)	

Figure 4

Figure 4 shows a sketch of

- the circle C_1 with equation $x^2 + (y-3)^2 = 26$
- the circle C_2 with equation $(x-6)^2 + y^2 = 17$

The points S and Q are the centres of C_1 and C_2 respectively.

(a) Find the length SQ, writing your answer as a fully simplified surd.

(3)

The circles meet at points P and R shown on Figure 4.

- (b) Using algebra,
 - (i) show that the coordinates of the points P and R satisfy

$$y = 2x - 6$$

(ii) find the coordinates of point P and the coordinates of point R.

(7)

(c) Hence find the exact area of the kite SPQR.

(3)

	I
Question 15 continued	1
vacstion 13 continued	

Leave blank

Question 15 continued		

estion 15 continued			
			-
			_
			_
			_
			_
			-
			- -
			-
			- -
			-
			_
			-
			_
			-
			_
			-
			-
			_
		 	_
			_
			-

estion 15 continued		
	/TD / 140	r
	(Total 13 marks) TOTAL FOR PAPER: 125 MARKS	+