DESMOND 2.0: Identification differentially expressed biclusters and investigation of their network properties

O. Zolotareva^{1,2}, O. I. Isaeva³, Z. Chervontseva⁴, A. Savchik⁴, E. Zotova⁵, O. Lazareva¹, D. B. Blumenthal^{1,6}, N. K. Wenke², M. Ester^{7,8}, J. Baumbach^{2,9}

1 - Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany; 2 - Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany; 3 - Division of Molecular Oncology & Immunology and Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; 4 - A.A.Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences (RAS), Moscow, Russia; 5 - Independent scholar, Moscow, Russia; 6 - Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; 7 - School of Computing Science, Simon Fraser University, Canada; 8 - Vancouver Prostate Centre, Canada; 9 - Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.

BICLUSTERING VS CLUSTERING

(A) and conventional clustering (B). Differentially expressed up-regulated (C) and down-regulated (D) biclusters. Differentially co-expressed bicluster (E).

METHOD

- a new method for identification of • DESMOND differentially network-constrained expressed biclusters (Zolotareva et al., 2020)
- **DESMOND2** is an **unconstrained** version
- 1 Binarization of gene expressions

z-score of **g1** gene expression in a row of **samples**

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 binarized expression profile

Only genes that split patients in two groups are kept. Genes are filthered by signal-to-noise ratio:

- O DESMOND2 identifies differentially expressed biologically biclusters, significant and reproducible in independent datasets
- Only small fractions of bicluster genes directly interact in homogeneous networks
- Composite networks may be a better constraint for biclustering and active subnetwork detection methods than traditionally used PPI networks

2 Probabilistic gene clustering

- Initialization: each gene is assigned to an individual bicluster

- Iterations: each gene joins a bicluster with a certain probability

**** \ \ \ \ \

- Convergence: the number of oscilating genes reaches a plateau

II. Gene clustering: each gene is assigned to all biclusters where it spent at least **f** time during the sampling phase

3 Postprocessing

I. Keeping non-redundant biclusters (Jaccard < 0.5)

II. Permutations: filtering out biclusters with avg.SNR lower than random

EVALUATION

Gene set overrepresentation

Most of the biclusters are significantly overrepresented by at least one GO term, pathway, drug-induced or gene signature from GEO

Survival analysis

OS ~ bicluster+ stage + age

Many biclusters identified by DESMOND2 are significantly associated with overall survival

CONNECTIVITY OF BICLUSTER GENES

Fractions of directly connected bicluster genes. Bright boxplots show the distributions for biclusters matching between TCGA and METABRIC (27-31 gene sets of 5-65 genes), pale boxplots the distributions for 100 sets of size-matching random gene sets. Mann-Whitney test p-values are shown above each pair of boxplots.