

13. Übungsblatt zur Vorlesung Informatik III

Empfohlene Vorgehensweise zum Führen eines Reduktionsbeweises:

- 1. Reduktionsrichtung bestimmen
- 2. passende Sprache für Reduktion finden
- 3. Reduktionsfunktion f angeben
- 4. angeben, dass und ggf. warum f total und berechenbar ist
- 5. Äquivalenz $w \in L_1$ gdw. $f(w) \in L_2$ zeigen
- 6. verwendete Eigenschaft der gewählten Sprache ((un-/semi-)entscheidbar) angeben und damit die zu zeigende Aussage folgern

Aufgabe 1: Eigenschaften der Reduktionsrelation

2 Punkte

Abgabe: 2. Februar 2018

Satz 7.17 der Vorlesung besagt:

Die Reduktionsrelation \leq ist reflexiv und transitiv.

Beweisen Sie diese Aussage.

Aufgabe 2: Reduktion I

3 Punkte

Sei $L_1 \subseteq \Sigma^*$ eine entscheidbare Sprache und sei $\emptyset \subsetneq L_2 \subsetneq \Sigma^*$ eine weitere Sprache. Dann gilt $L_1 \preceq L_2$.

- (a) Beweisen Sie diese Behauptung.
- (b) Für die Fälle $L_2 = \emptyset$ und $L_2 = \Sigma^*$ folgt nicht $L_1 \leq L_2$. Beweisen Sie dies für einen der beiden Fälle.

Aufgabe 3: Reduktion II

4 Punkte

Zeigen Sie mit Hilfe von Reduktion, dass die folgende Sprache unentscheidbar ist.

 $H_{\forall w} = \{ \lceil \mathcal{M} \rceil \mid \mathcal{M} \text{ angesetzt auf jedes beliebige Wort } w \in \Sigma^* \text{ hält} \}$

Aufgabe 4: Reduktion III

4 Punkte

Zeigen Sie mit Hilfe von Reduktion, dass die folgende Sprache semi-entscheidbar ist.

 $H_{42} = \{ \lceil \mathcal{M} \rceil \mid \mathcal{M} \text{ angesetzt auf die Binärcodierung von 42 hält} \}$

Verwenden Sie zur Reduktion die semi-entscheidbare Sprache H_{ε} .