1. In the diagram, triangle ABC is isosceles. AB = AC, CB = 15 cm and angle ACB is 23° .

Diagram not to scale

Find

- (a) the size of angle CAB;
- (b) the length of AB.

Working:	
	Acons
	Answers:
	(a)
	(b)

(Total 4 marks)

2. The diagram shows the plan of a playground with dimensions as shown.

Calculate

- (a) the length BC;
- (b) the area of triangle ABC.

Working:	
	Answers:
	(a)
	(b)

(Total 4 marks)

3. The diagram below shows an equilateral triangle ABC, with each side 3 cm long. The side [BC] is extended to D so that CD = 4 cm.

Diagram not to scale

Calculate, correct to two decimal places, the length of [AD].

4. A gardener pegs out a rope, 19 metres long, to form a triangular flower bed as shown in this diagram.

Diagram not to scale

Calculate

(a) the size of the angle BAC;

(3)

(b) the area of the flower bed.

(2) (Total 5 marks)

5. The following diagram shows a triangle ABC. AB = 8 m, AC = 14 m, BC = 18 m, and $B\hat{A}C = 110^{\circ}$.

Diagram not to scale

Calculate

- (a) the area of triangle ABC;
- (b) the size of angle AĈB.

Working:	
	Answers:
	(a)
	(b)

(Total 4 marks)

6. The diagram below shows a crane PQR that carries a flat box W. (PQ) is vertical, and the floor (PM) is horizontal.

Diagram not to scale

Given that PQ = 11.1m, QR = 7.8 m, $P\hat{Q}R$ =102° and RW = 6.5 m, calculate

- (a) PR; (2)
- (b) angle $P\hat{R}Q$; (2)
- (c) the height, h, of W above (PM). (3) (Total 7 marks)
- 1. (a) $\hat{CAB} = 180 2 \times 23^{\circ}$ (M1) = 134° (A1) (C2)

(b)
$$\frac{AB}{\sin 23^{\circ}} = \frac{15}{\sin 134^{\circ}}$$
 (M1)

Note: Follow through with candidate's answer from (a)

$$AB = \frac{15\sin 23^{\circ}}{\sin 134^{\circ}}$$

$$AB = 8.147702831...$$

$$= 8.15 (3 \text{ s.f.})$$
(A1) (C2)
[4]

2. (a)
$$BC = \sqrt{48^2 + 57^2 - 2(48)(57)\cos 117^\circ}$$
 (or equivalent) (M1)
 $\approx 89.7 \text{ m } (3 \text{ s.f.})$ (A1)

(b) Area of
$$\triangle ABC = \frac{1}{2}ab \sin C = \frac{1}{2}(48)(57)\sin 117^{\circ}$$
 (M1)
= 1220 m² (3 s.f.) (A1)
[4]

3. (a)
$$A\hat{C}D = 120^{\circ}$$
 (M1)
 $AD^2 = 3^2 + 4^2 - 2(3)(4)\cos 120^{\circ} \text{ or } AD^2 = 3^2 + 7^2 - 2(3)(7)\cos 60^{\circ}$ (M1)
Note: Award (M1) for correct substitution only.

AD =
$$\sqrt{37}$$

= 6.08 cm (2 d.p.) (A1)
[4]

4. (a)
$$AC = 19 - 11 = 8$$
 (M1)
 $6^2 = 5^2 + 8^2 - 2(5)(8)\cos BAC$ (M1)
 $\Rightarrow BAC = 48.5^{\circ} (3 \text{ s.f.})$ (A1) 3

(b) Area =
$$\left(\frac{1}{2}\right)$$
(5)(8) sin BÂC (M1)
= 15.0 cm² (3 s.f.) (allow **ft** from part (a)) (A1) 2 [5]

5. (a) Area =
$$\frac{1}{2} \times 14 \times 8 \sin 110^{\circ}$$
 (M1)
= 52.62278676 m^2
= $52.6 \text{ m}^2 (3s.f)$ (A1)

(b)
$$\frac{\sin C}{8} = \frac{\sin 110^{\circ}}{18}$$
 (or equivalent) (M1) $\sin C = \frac{8 \times \sin 110^{\circ}}{18}$ $C = 24.68575369$ $C = 24.7^{\circ}$ (3s.f.) (A1)

Note: Accept all answers obtained from all appropriate methods, given to the correct degree of accuracy.

[4]

6. (a)
$$PR^2 = 7.8^2 + 11.1^2 - 2 \times 7.8 \times 11.1 \times \cos 102^\circ$$

= $60.84 + 123.21 - (-36.00)$
= 220.05 (M1)

$$PR = 14.8 \text{ m (or } \sqrt{220.05})$$
 (A1) 2

(b)
$$\frac{11.1}{\sin \hat{R}} = \frac{14.8}{\sin 102^{\circ}}$$
 (Follow through with candidate's answer to part (a))

$$\Rightarrow \sin \hat{R} = \frac{11.1 \sin 102^{\circ}}{14.8} = 0.7336$$
 (M1)

$$\Rightarrow \hat{R} = 47.2^{\circ} \text{ (or } 47.0^{\circ} \text{ from } \sqrt{220.05} \text{)}$$
 (A1) 2

(c)

OR

 $\Rightarrow H = 14.8 \sin 59.2^{\circ} = 12.7 \text{ m}$

$$\cos 30.8^{\circ} = \frac{H}{14.8}$$

$$\Rightarrow H = 14.8 \cos 30.8^{\circ} = 12.7 \text{ m}$$
(M1)

Therefore,
$$h = 12.7 - 6.5$$

= 6.2 m (A1) 3