Induction

Section 5

Proof by Induction

another proof technique

The method of proof by induction is based on the following principle.

Principle of Mathematical Induction

Let P(n) be any statement about n. Suppose we have proved that

$$P(1)$$
 is true (1)

and that

for each natural number
$$n$$
, if $P(n)$ is true, then $P(n+1)$ is true. (2) $\forall n \in \mathbb{N} \setminus [-P(n)] \Rightarrow P(n+1)$

Then we may conclude that for each natural number n, P(n) is true.

• This is a commonly used technique to prove a universal sentence
$$(\forall x \in A)P(x)$$
 when A is \mathbb{N}

 $(\forall x \in A)P(x)$ when A is N.

(Yn E W) P(n)

Steps in Proof by Induction

$$P(n) : 1 + \cdots + (2n-1) = n^2$$

Sum of Odd Natural Numbers

For each
$$n \in \mathbb{N}$$
, $1 + 3 + \cdots + (2n - 1) = n^2$.

Proof. Let P(n) be the sentence

$$1+3+\cdots+(2n-1)=n^2$$
.

BASE CASE: Observe that P(1) is true because if n=1, then the left-hand side is just 1 and the right-hand side is $1^2 = 1$.

INDUCTIVE STEP: Let $n \in \mathbb{N}$ such that P(n) is true. Then

$$\frac{(1+3+\cdots+(2n-1)_1+[2(n+1)-1])}{=n^2+[2(n+1)-1]}$$

$$=n^2+2n+2-1=n^2+2n+1$$

$$=(n+1)^2$$

Thus P(n+1) is true.

CONCLUSION: Therefore, by induction, for each $n \in \mathbb{N}$, P(n) is true. That is, for each $n \in \mathbb{N}$, $1+3+\cdots+(2n-1)=n^2$.

D(n+1): 1+ ... + (2n-1) + (2(n+1)-1)

Declare P(n).

Show P(1) is true. $\Gamma(1)$

Show $(\forall n \in \mathbb{N})(P(n) \Rightarrow P(n+1))$. (2)

The first sentence in this paragraph is called the inductive hypothesis.

Use induction to conclude.

Tip Do scratch work by writing out (P(n+1) is time.

Example 1

Prove by induction that for each $n \in \mathbb{N}$.

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$
.

 $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$ BASE CASE P(1) is the because It 2+ ... + n is

Proof Let P(n) be the sentence

$$[+2+\cdots+n+(n+i)]$$

P(n+1):

= (n+1) [(n+1)+1]

$$= \frac{(n+1)(n+2)}{}$$

Show P(1) is true Samply 1 and $\frac{n(n+1)}{2} = \frac{1(1+1)}{2} = \frac{1\cdot 2}{2} = 1$. INDUCTIVE STEP Let n EM such P(n) is true. & this may be something that you encounter. $\underbrace{1 + 2 + \dots + n}_{1} + (n+1) = \underbrace{\frac{n(n+1)}{2}}_{2} + (n+1)$ by *

$$= \frac{n(n+1)}{2} + \frac{2(n+1)}{2}$$

$$= \frac{n(n+1) + 2(n+1)}{2}$$

$$= \frac{(m+2)(n+1)}{2} = \frac{[n+1)[(n+1)+1]}{2}$$

Thus P(n+1) is true.

CONCLUSION Therefore, by induction, for each
$$n \in \mathbb{N}$$
, $p(n)$ is true. That is, for each $n \in \mathbb{N}$, $1+2+\cdots+n=n(n+1)/2$.

Example 2

Prove by induction that for each $n \in \mathbb{N}$,

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$$

Proof Let P(n) be the sentence

$$\frac{1}{1+2+\cdots+n^2} = \frac{n(n+1)(2n+1)}{6}$$
.

BASE CASE P(1) is the because 1+2+...+n is

Show P(1) is true Samply
$$1^2 = 1$$
 and $\frac{n(n+1)(2n+1)}{6} = \frac{1(1+1)(2+1)}{6} = 1$.

INDUCTIVE STEP Let n∈N such that P(n) is true. Show (∀n∈N)[p(n) ⇒ g(n+1)]

$$1^{2} + 2^{2} + \dots + n^{2} + (n+1)^{2} = \frac{n(n+1)(2n+1)}{6} + (n+1)^{2}$$

P(n+1): $|^{2}+2^{2}+\cdots+N^{2}+(n+1)^{2}$ $=\frac{(n+1)[(n+1)+1][2(n+1)+1]}{6}$ $=\frac{(n+1)(n+2)(2n+3)}{6}$

Scratch:

$$= \frac{n(n+1)(2n+1)}{6} + \frac{6(n+1)^{2}}{6}$$

$$= \frac{n(n+1)(2n+1) + 6(n+1)^{2}}{6}$$

$$= \frac{(n+1)\left[n(2n+1) + 6(n+1)\right]}{6}$$

$$= \frac{(n+1)(2n^{2} + 7n + 6)}{6}$$

$$= \frac{(n+1)(n+2)(2n+3)}{6} = \frac{(n+1)\left[(n+1)+1\right]\left[2(n+1)+1\right]}{6}$$
Thus $P(n+1)$ is true.

Thus p(n+1) is true.

CONCLUSION Therefore, by induction, for each
$$n \in \mathbb{N}$$
,
$$p(n) \text{ is true. That is, for each } m \in \mathbb{N}, \quad 1^2 + 2^2 + \dots + n^2 = m(n+1)(2n+1)/6.$$

Example 3

Prove by induction that for each $n \in \mathbb{N}$, 3 divides $4^n - 1$.

$$4^{n+1} - 1 = 4 \cdot 4^{n} - 1$$

$$= (3+1) \cdot 4^{n} - 1$$

$$= 3 \cdot 4^{n} + 4^{n} - 1$$