Processi Stocastici Quasi-Birth and Death con un numero infinito di fasi: proprietà asintotiche di decadimento

Barbarino Giovanni

Università di Pisa

25 aprile 2015

- Catene di Markov
 - Definizione
 - Quasi-Birth and Death
 - Problema dell'Infinito
- 2 Double QBD
 - Risultati Iniziali
 - Domini di Convergenza
- 3 Decay Rates
 - Norma di Convergenza
 - Risultati

Una Catena di Markov è un processo stocastico $\{X_n\}$ con spazio degli stati S numerabile e tempi discreti \mathbb{N} , in cui valga la *Proprietà di Markov*

$$\mathbb{P}(X_{n+1} = x \mid X_i = x_i, i = 0, 1, \dots, n) = \mathbb{P}(X_{n+1} = x \mid X_n = x_n)$$

Si dice che la catena è **Omogenea** se le transizioni sono indipendenti dal tempo, ossia

$$p_{ij} = \mathbb{P}(X_{n+1} = j \mid X_n = i) = \mathbb{P}(X_1 = j \mid X_0 = i)$$

e in questo caso, è rappresentabile con la sua Matrice di Transizione $P = (p_{ij})$, o come una Passeggiata Aleatoria sul grafo pesato associato a P.

Una Catena di Markov è un processo stocastico $\{X_n\}$ con spazio degli stati S numerabile e tempi discreti \mathbb{N} , in cui valga la *Proprietà di Markov*

$$\mathbb{P}(X_{n+1} = x \mid X_i = x_i, i = 0, 1, \dots, n) = \mathbb{P}(X_{n+1} = x \mid X_n = x_n)$$

Si dice che la catena è **Omogenea** se le transizioni sono indipendenti dal tempo, ossia

$$p_{ij} = \mathbb{P}(X_{n+1} = j \mid X_n = i) = \mathbb{P}(X_1 = j \mid X_0 = i)$$

e in questo caso, è rappresentabile con la sua Matrice di Transizione $P = (p_{ij})$, o come una Passeggiata Aleatoria su grafo pesato associato a P.

Una Catena di Markov è un processo stocastico $\{X_n\}$ con spazio degli stati S numerabile e tempi discreti \mathbb{N} , in cui valga la *Proprietà di Markov*

$$\mathbb{P}(X_{n+1} = x \mid X_i = x_i, i = 0, 1, \dots, n) = \mathbb{P}(X_{n+1} = x \mid X_n = x_n)$$

Si dice che la catena è **Omogenea** se le transizioni sono indipendenti dal tempo, ossia

$$p_{ij} = \mathbb{P}(X_{n+1} = j \mid X_n = i) = \mathbb{P}(X_1 = j \mid X_0 = i)$$

e in questo caso, è rappresentabile con la sua Matrice di Transizione $P=(p_{ij})$, o come una Passeggiata Aleatoria sul grafo pesato associato a P.

Proprietà

Una Catena di Markov si dice Irriducibile se

$$\forall i, j \in S \ \exists n \mid \ \mathbb{P}(X_n = j \mid X_0 = i) \neq 0$$

ossia, se il suo grafo associato è fortemente connesso.

Preso uno stato $x \in S$, allora

Una Catena di Markov si dice Irriducibile se

$$\forall i, j \in S \ \exists n \mid \ \mathbb{P}(X_n = j \mid X_0 = i) \neq 0$$

ossia, se il suo grafo associato è fortemente connesso.

Preso uno stato $x \in S$, allora

x è Positivo Ricorrente s

$$T_X = \inf\{n \mid X_n = x, \ n \ge 1\}$$

$$\mathbb{P}(\mathcal{T}_x < \infty \mid X_0 = x) = 1 \qquad \mathbb{E}[\mathcal{T}_x \mid X_0 = x] < \infty$$

$$\gcd\{n\mid \mathbb{P}(X_n=x\mid X_0=x)\neq 0\}=s$$

Una Catena di Markov si dice Irriducibile se

$$\forall i, j \in S \ \exists n \mid \mathbb{P}(X_n = j \mid X_0 = i) \neq 0$$

ossia, se il suo grafo associato è fortemente connesso.

Preso uno stato $x \in S$, allora

$$T_{\mathsf{x}} = \inf\{n \mid X_n = \mathsf{x}, \ n \ge 1\}$$

$$\mathbb{P}(T_x < \infty \mid X_0 = x) = 1 \qquad \mathbb{E}[T_x \mid X_0 = x] < \infty$$

$$gcd\{n \mid \mathbb{P}(X_n = x \mid X_0 = x) \neq 0\} = s$$

Proprietà

Una Catena di Markov si dice Irriducibile se

$$\forall i, j \in S \ \exists n \mid \mathbb{P}(X_n = j \mid X_0 = i) \neq 0$$

ossia, se il suo grafo associato è fortemente connesso.

Preso uno stato $x \in S$, allora

• x è Positivo Ricorrente se

$$T_x = \inf\{n \mid X_n = x, \ n \ge 1\}$$

$$\mathbb{P}(T_x < \infty \mid X_0 = x) = 1 \qquad \mathbb{E}[T_x \mid X_0 = x] < \infty$$

x è s-Periodico se

$$gcd\{n \mid \mathbb{P}(X_n = x \mid X_0 = x) \neq 0\} = s$$

Una Catena di Markov si dice Irriducibile se

$$\forall i, j \in S \ \exists n \mid \mathbb{P}(X_n = j \mid X_0 = i) \neq 0$$

ossia, se il suo grafo associato è fortemente connesso.

Preso uno stato $x \in S$, allora

• x è Positivo Ricorrente se

$$T_{x} = \inf\{n \mid X_{n} = x, \ n \ge 1\}$$

$$\mathbb{P}(T_{x} < \infty \mid X_{0} = x) = 1 \qquad \mathbb{E}[T_{x} \mid X_{0} = x] < \infty$$

• x è s-Periodico se

$$gcd\{n \mid \mathbb{P}(X_n = x \mid X_0 = x) \neq 0\} = s$$

$$\pi^t P = \pi^t$$

Esistenza e Unicità

• Se $|S| < \infty$, allora π esiste sempre

$$\pi^t P = \pi^t$$

- Se $|S| < \infty$, allora π esiste sempre.
- Se $|S| = \infty$, allora π esiste se e solo ogni stato è *positivo* ricorrente.
- Se π esiste, allora è unico se la catena è *irriducibile*, e nel caso in cui sia anche *aperiodica*, si ha

$$\pi^t = \lim_{n o \infty} \pi^t_{(0)} P^n \qquad \lim_{n o \infty} P^n = \mathbf{e} \pi^t$$

$$\pi^t P = \pi^t$$

- Se $|S| < \infty$, allora π esiste sempre.
- Se $|S| = \infty$, allora π esiste se e solo ogni stato è *positivo* ricorrente.
- Se π esiste, allora è unico se la catena è *irriducibile*, e nel caso in cui sia anche *aperiodica*, si ha

$$oldsymbol{\pi}^t = \lim_{n o \infty} oldsymbol{\pi}^t_{(0)} P^n \qquad \lim_{n o \infty} P^n = oldsymbol{e} oldsymbol{\pi}^t$$

Distribuzione Stazionaria

Data π una distribuzione di probabilità su S, si dice che è **Stazionaria** se

$$\pi^t P = \pi^t$$

- Se $|S| < \infty$, allora π esiste sempre.
- Se $|S| = \infty$, allora π esiste se e solo ogni stato è *positivo* ricorrente.
- Se π esiste, allora è unico se la catena è *irriducibile*, e nel casc in cui sia anche *aperiodica*, si ha

$$oldsymbol{\pi}^t = \lim_{n o \infty} oldsymbol{\pi}^t_{(0)} P^n \qquad \lim_{n o \infty} P^n = oldsymbol{e} oldsymbol{\pi}^t$$

$$\pi^t P = \pi^t$$

- Se $|S| < \infty$, allora π esiste sempre.
- Se $|S| = \infty$, allora π esiste se e solo ogni stato è *positivo* ricorrente.
- Se π esiste, allora è unico se la catena è *irriducibile*, e nel caso in cui sia anche *aperiodica*, si ha

$$\pi^t = \lim_{n \to \infty} \pi^t_{(0)} P^n$$
 $\lim_{n \to \infty} P^n = e \pi^t$

Poniamo

$$S = \mathbb{N}^d$$

$$J \subseteq \{1, 2, \dots, d\} \rightarrow S_J = \{x \in S : x_i = 0 \iff i \notin J\}$$

Prese delle variabili aleatorie Z^J su \mathbb{Z}^d , definiamo la Catena di Markov $\{X_n\}$ per cui

$$\mathbb{P}(X_{n+1} = y \mid X_n = x) = \mathbb{P}(Z^J = y - x)$$
 se $x \in S_J$

Nota: Le transizioni non dipendono dallo stato di partenza.

Distribuzione Stazionaria

Se d > 4. l'esistenza di π è un problema aperto

Reflecting Random Walk

Poniamo

$$S = \mathbb{N}^d$$

$$J \subseteq \{1, 2, \dots, d\} \rightarrow S_J = \{x \in S : x_i = 0 \iff i \notin J\}$$

Prese delle variabili aleatorie Z^J su \mathbb{Z}^d , definiamo la Catena di Markov $\{X_n\}$ per cui

$$\mathbb{P}(X_{n+1} = y \mid X_n = x) = \mathbb{P}(Z^J = y - x)$$
 se $x \in S_J$

Nota: Le transizioni non dipendono dallo stato di partenza.

Distribuzione Stazionaria

Se d > 4. l'esistenza di π è un problema aperto

Reflecting Random Walk

Poniamo

$$S = \mathbb{N}^d$$

$$J \subseteq \{1, 2, \dots, d\} \rightarrow S_J = \{x \in S : x_i = 0 \iff i \notin J\}$$

Prese delle variabili aleatorie Z^J su \mathbb{Z}^d , definiamo la Catena di Markov $\{X_n\}$ per cui

$$\mathbb{P}(X_{n+1} = y \mid X_n = x) = \mathbb{P}(Z^J = y - x)$$
 se $x \in S_J$

Nota: Le transizioni non dipendono dallo stato di partenza

Distribuzione Stazionaria

Se $d \ge 4$, l'esistenza di π è un problema aperto

Poniamo

$$S = \mathbb{N}^d$$

$$J \subseteq \{1, 2, \dots, d\} \rightarrow S_J = \{x \in S : x_i = 0 \iff i \notin J\}$$

Prese delle variabili aleatorie Z^J su \mathbb{Z}^d , definiamo la Catena di Markov $\{X_n\}$ per cui

$$\mathbb{P}(X_{n+1} = y \mid X_n = x) = \mathbb{P}(Z^J = y - x)$$
 se $x \in S_J$

Nota: Le transizioni non dipendono dallo stato di partenza.

Distribuzione Stazionaria

Se d > 4, l'esistenza di π è un problema aperto

Reflecting Random Walk

Poniamo

$$S = \mathbb{N}^d$$

$$J \subseteq \{1, 2, \dots, d\} \rightarrow S_J = \{x \in S : x_i = 0 \iff i \notin J\}$$

Prese delle variabili aleatorie Z^J su \mathbb{Z}^d , definiamo la Catena di Markov $\{X_n\}$ per cui

$$\mathbb{P}(X_{n+1} = y \mid X_n = x) = \mathbb{P}(Z^J = y - x)$$
 se $x \in S_J$

Nota: Le transizioni non dipendono dallo stato di partenza.

Distribuzione Stazionaria

Se $d \geq 4$, l'esistenza di π è un problema aperto

QBD

Supponiamo d=2, ossia $Z^J=(Z_1^J,Z_2^J)$. In questo caso, chiamiamo **Livello** la prima coordinata, e **Fase** la seconda.

Abbiamo un processo Quasi-Birth and Death se

$$\mathbb{P}(Z_1^J \notin \{-1,0,1\}) = 0 \quad \forall J$$

e la matrice di transizione è tridiagonale a blocchi

$$P = \begin{pmatrix} B_0 & B_1 & & & & \\ A_{-1} & A_0 & A_1 & & & & \\ & A_{-1} & A_0 & A_1 & & & \\ & & \ddots & \ddots & \ddots & \end{pmatrix} \quad A_i, B_j = \begin{pmatrix} & * & & \\ \hline & Toeplitz & & \\ & & & & \end{pmatrix}$$

Dividiamo anche π in sottovettor

Livello :
$$\boldsymbol{\pi}^t = [\boldsymbol{\pi}_0^t, \boldsymbol{\pi}_1^t, \dots]$$
 Fase : $\boldsymbol{\pi}_i^t = [\pi_{i0}, \pi_{i1}, \dots]$

QBD

Supponiamo d=2, ossia $Z^J=(Z_1^J,Z_2^J)$. In questo caso, chiamiamo **Livello** la prima coordinata, e **Fase** la seconda.

Abbiamo un processo Quasi-Birth and Death se

$$\mathbb{P}(Z_1^J \not\in \{-1,0,1\}) = 0 \quad \forall J$$

e la matrice di transizione è tridiagonale a blocchi

Dividiamo anche π in sottovettori

Livello :
$$\pi^t = [\pi_0^t, \pi_1^t, \dots]$$
 Fase : $\pi_i^t = [\pi_{i0}, \pi_{i1}, \dots]$

Supponiamo d=2, ossia $Z^J=(Z_1^J,Z_2^J)$. In questo caso, chiamiamo **Livello** la prima coordinata, e **Fase** la seconda.

Abbiamo un processo Quasi-Birth and Death se

$$\mathbb{P}(Z_1^J \not\in \{-1,0,1\}) = 0 \quad \forall J$$

e la matrice di transizione è tridiagonale a blocchi

Dividiamo anche π in sottovettori

Livello :
$$\pi^t = [\pi_0^t, \pi_1^t, \dots]$$
 Fase : $\pi_i^t = [\pi_{i0}, \pi_{i1}, \dots]$

Decay Rates

Poniamo che

A0 P irriducibile

A1 $A_{-1} + A_0 + A_1$ irriducibile e aperiodica

A2 Vale la condizione 1-aritmetica, ossia

$$gcd\{n_1+\ldots+n_k\mid A_{n_1}(i,j_1)\cdot A_{n_2}(j_1,j_2)\cdot \ldots\cdot A_{n_k}(j_{k-1},i)>0\}=1$$

Rate Matrix

 $\pi_{h}^{i}=\pi_{h}^{i}R^{2}$

Poniamo che

A0 P irriducibile

A1 $A_{-1} + A_0 + A_1$ irriducibile e aperiodica

A2 Vale la condizione 1-aritmetica, ossia

$$gcd\{n_1+\ldots+n_k\mid A_{n_1}(i,j_1)\cdot A_{n_2}(j_1,j_2)\cdot \ldots\cdot A_{n_k}(j_{k-1},i)>0\}=1$$

Rate Matrix

Poniamo che

A0 P irriducibile

A1 $A_{-1} + A_0 + A_1$ irriducibile e aperiodica

A2 Vale la condizione 1-aritmetica, ossia

$$gcd\{n_1+\ldots+n_k\mid A_{n_1}(i,j_1)\cdot A_{n_2}(j_1,j_2)\cdot \ldots\cdot A_{n_k}(j_{k-1},i)>0\}=1$$

Rate Matrix

ullet Esiste R la minima soluzione irriducibile nonnegativa d

$$X = X^2 A_{-1} + X A_0 + A_1$$

$$\pi' = \pi' R''$$

Poniamo che

- A0 P irriducibile
- A1 $A_{-1} + A_0 + A_1$ irriducibile e aperiodica
- A2 Vale la condizione 1-aritmetica, ossia

$$gcd\{n_1+\ldots+n_k \mid A_{n_1}(i,j_1)\cdot A_{n_2}(j_1,j_2)\cdot \ldots \cdot A_{n_k}(j_{k-1},i)>0\}=1$$

Rate Matrix

ullet Esiste R la minima soluzione irriducibile nonnegativa d

 $X = X^2 A_{-1} + X A_0 + A_1$

Se π esiste, vale

 $\pi_n^t = \pi_0^t R^n$

Poniamo che

- A0 P irriducibile
- A1 $A_{-1} + A_0 + A_1$ irriducibile e aperiodica
- A2 Vale la condizione 1-aritmetica, ossia

$$gcd\{n_1+\ldots+n_k \mid A_{n_1}(i,j_1)\cdot A_{n_2}(j_1,j_2)\cdot \ldots \cdot A_{n_k}(j_{k-1},i)>0\}=1$$

Rate Matrix

• Esiste R la minima soluzione irriducibile nonnegativa di

$$X = X^2 A_{-1} + X A_0 + A_1$$

• Se π esiste, vale

$$\pi_n^t = \pi_0^t R^n$$

Poniamo che

- A0 P irriducibile
- A1 $A_{-1} + A_0 + A_1$ irriducibile e aperiodica
- A2 Vale la condizione 1-aritmetica, ossia

$$gcd\{n_1+\ldots+n_k \mid A_{n_1}(i,j_1)\cdot A_{n_2}(j_1,j_2)\cdot \ldots \cdot A_{n_k}(j_{k-1},i)>0\}=1$$

Rate Matrix

• Esiste R la minima soluzione irriducibile nonnegativa di

$$X = X^2 A_{-1} + X A_0 + A_1$$

• Se π esiste, vale

$$\pi_n^t = \pi_0^t R^n$$

Se lo spazio delle fasi è **finito**, siano λ il raggio spettrale di R, e ${\bf v}$ il relativo autovettore. Si ha

$$\lim_{n\to\infty}\lambda^{-n}\boldsymbol{\pi}_n=\boldsymbol{\nu}$$

Se lo spazio delle fasi è infinito

lo spettro di R non è più sufficiente

Se lo spazio delle fasi è **finito**, siano λ il raggio spettrale di R, e \mathbf{v} il relativo autovettore. Si ha

$$\lim_{n\to\infty}\lambda^{-n}\boldsymbol{\pi}_n=\mathbf{v}$$

- lo spettro di R non è più sufficiente
- il comportamento asintotico dipende da B_0 e B_1
- \bullet non è detto che π abbia una decrescita esponenziale
- la positiva ricorrenza è più difficile da caratterizzare
- calcolare R è più difficile

Se lo spazio delle fasi è **finito**, siano λ il raggio spettrale di R, e \mathbf{v} il relativo autovettore. Si ha

$$\lim_{n\to\infty}\lambda^{-n}\boldsymbol{\pi}_n=\mathbf{v}$$

- lo spettro di R non è più sufficiente
- il comportamento asintotico dipende da B_0 e B_1
- ullet non è detto che π abbia una decrescita esponenziale
- la positiva ricorrenza è più difficile da caratterizzare
- calcolare R è più difficile

Se lo spazio delle fasi è **finito**, siano λ il raggio spettrale di R, e \mathbf{v} il relativo autovettore. Si ha

$$\lim_{n\to\infty}\lambda^{-n}\boldsymbol{\pi}_n=\mathbf{v}$$

- lo spettro di *R* non è più sufficiente
- ullet il comportamento asintotico dipende da B_0 e B_1
- non è detto che π abbia una decrescita esponenziale
- la positiva ricorrenza è più difficile da caratterizzare
- calcolare R è più difficile

Se lo spazio delle fasi è **finito**, siano λ il raggio spettrale di R, e \mathbf{v} il relativo autovettore. Si ha

$$\lim_{n\to\infty}\lambda^{-n}\boldsymbol{\pi}_n=\boldsymbol{v}$$

- lo spettro di R non è più sufficiente
- ullet il comportamento asintotico dipende da B_0 e B_1
- ullet non è detto che π abbia una decrescita esponenziale
- la positiva ricorrenza è più difficile da caratterizzare
- calcolare R è più difficile

Se lo spazio delle fasi è **finito**, siano λ il raggio spettrale di R, e \mathbf{v} il relativo autovettore. Si ha

$$\lim_{n\to\infty}\lambda^{-n}\boldsymbol{\pi}_n=\boldsymbol{\nu}$$

- lo spettro di R non è più sufficiente
- ullet il comportamento asintotico dipende da B_0 e B_1
- ullet non è detto che π abbia una decrescita esponenziale
- la positiva ricorrenza è più difficile da caratterizzare
- calcolare R è più difficile

Se lo spazio delle fasi è **finito**, siano λ il raggio spettrale di R, e \mathbf{v} il relativo autovettore. Si ha

$$\lim_{n\to\infty}\lambda^{-n}\boldsymbol{\pi}_n=oldsymbol{v}$$

- lo spettro di *R* non è più sufficiente
- ullet il comportamento asintotico dipende da B_0 e B_1
- ullet non è detto che π abbia una decrescita esponenziale
- la positiva ricorrenza è più difficile da caratterizzare
- calcolare R è più difficile

Prendiamo i minori principali di testa $k \times k$.

Si può calcolare $_kR$, e dunque $_k\pi$, ma esistono esempi in cui non

Prendiamo i minori principali di testa $k \times k$.

Si può calcolare $_kR$, e dunque $_k\pi$, ma esistono esempi in cui non converge.

Modifichiamo le matrici in modo che siano stocastiche.

_kπ converge, ma non si hanno risultati teorici

Modifichiamo le matrici in modo che siano stocastiche.

 $_k\pi$ converge, ma non si hanno risultati teorici.

Un processo QBD Doppio è un QBD per cui

$$\mathbb{P}(Z^J \not\in \{-1,0,1\}^2) = 0 \quad \forall J$$

$$P = \begin{pmatrix} B_0 & B_1 & & & \\ A_{-1} & A_0 & A_1 & & & \\ & A_{-1} & A_0 & A_1 & & & \\ & & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

Doppia Coda

Un processo QBD Doppio è un QBD per cui

$$\mathbb{P}(Z^J \notin \{-1,0,1\}^2) = 0 \quad \forall J$$

Sotto forma matriciale, vuol dire che A_{-1} , A_0 , A_1 , B_0 , B_1 sono tridiagonali

$$P = \begin{pmatrix} B_0 & B_1 & & & \\ A_{-1} & A_0 & A_1 & & & \\ & A_{-1} & A_0 & A_1 & & & \\ & & \ddots & \ddots & \ddots & \end{pmatrix}$$

Nel grato associato, ci muoviamo su nodi adiacenti

Doppia Coda

Un processo QBD Doppio è un QBD per cui

$$\mathbb{P}(Z^J \not\in \{-1,0,1\}^2) = 0 \quad \forall J$$

Sotto forma matriciale, vuol dire che A_{-1} , A_0 , A_1 , B_0 , B_1 sono tridiagonali

$$P = \left(\begin{array}{cccc} B_0 & B_1 & & & \\ A_{-1} & A_0 & A_1 & & & \\ & A_{-1} & A_0 & A_1 & & \\ & & \ddots & \ddots & \ddots & \end{array}\right)$$

Nel grafo associato, ci muoviamo su nodi adiacenti

Poniamo che la Catena sia irriducibile e aperiodica, e siano

$$m = \mathbb{E}[Z]$$
 $m^1 = \mathbb{E}[Z^1]$ $m^2 = \mathbb{E}[Z^2]$

dove $Z^{\{1,2\}} = Z$, con $m \neq 0$.

Esistenza di a

La Catena è positiva ricorrente se e solo se vale una delle seguenti

•
$$m_1 < 0$$
 $m_2 < 0$ $m_1 m_2^1 <$

$$m_1 \ge 0$$
 $m_2 < 0$ $m_1 m_2^1 < m_2 m_1^2$

$$m_1 < 0$$
 $m_2 \ge 0$ $m_2 m_1^2 < m_2^2 m_2^2$

Condizioni di Positiva Ricorrenza

Poniamo che la Catena sia irriducibile e aperiodica, e siano

$$oldsymbol{m} = \mathbb{E}\left[Z
ight]$$

$$m = \mathbb{E}[Z]$$
 $m^1 = \mathbb{E}[Z^1]$ $m^2 = \mathbb{E}[Z^2]$

$$m^2 = \mathbb{E}\left[Z^2\right]$$

dove $Z^{\{1,2\}} = Z$. con $m \neq 0$.

Esistenza di π

La Catena è positiva ricorrente se e solo se vale una delle seguenti

•
$$m_1 < 0$$

$$m_2 < 0$$

$$m_2 < 0$$
 $m_1 m_2^1 < m_2 m_1^1$ $m_2 m_1^2 < m_2^1 m_2^2$

$$m_2 m_1^2 < m_2^1 m_2^2$$

$$m_2 < 0$$

•
$$m_1 \ge 0$$
 $m_2 < 0$ $m_1 m_2^1 < m_2 m_1^1$

•
$$m_1 < 0$$

$$m_2 \geq 0$$

$$m_2 m_1^2 < m_2^1 m_2^2$$

Catene di Markov Additive

Definiamo un nuovo processo $\{L_n^1\}$ su $\mathbb{Z} \times \mathbb{N}$ dato da

$$\mathbb{P}(L_{n+1}^1 = (m+s,k) \mid L_n^1 = (m,j)) = [A_s]_{jk}$$

Abbiamo tolto il limite sul livello

La matrice di transizione è composta solo dagli A_i

$$P^1 = \left(egin{array}{cccc} \ddots & \ddots & \ddots & & \\ & A_{-1} & A_0 & A_1 & & \\ & & \ddots & \ddots & \ddots \end{array}
ight)$$

Supponiamo che i processi L_n^1 e L_n^2 siano irriducibili, e che le relative matrici A_k siano 1-aritmetiche.

Definiamo un nuovo processo $\{L_n^1\}$ su $\mathbb{Z} \times \mathbb{N}$ dato da

$$\mathbb{P}(L_{n+1}^1 = (m+s,k) \mid L_n^1 = (m,j)) = [A_s]_{jk}$$

La matrice di transizione è composta solo dagli Ai

4 D > 4 A > 4 B > 4 B > 9 Q P

Catene di Markov Additive

Definiamo un nuovo processo $\{L_n^1\}$ su $\mathbb{Z} \times \mathbb{N}$ dato da

$$\mathbb{P}(L_{n+1}^{1} = (m+s,k) \mid L_{n}^{1} = (m,j)) = [A_{s}]_{jk}$$

Abbiamo tolto il limite sul livello

La matrice di transizione è composta solo dagli A_i

Supponiamo che i processi L_n^1 e L_n^2 siano irriducibili, e che le relative matrici A_k siano 1-aritmetiche.

Catene di Markov Additive

Definiamo un nuovo processo $\{L_n^1\}$ su $\mathbb{Z} \times \mathbb{N}$ dato da

$$\mathbb{P}(L_{n+1}^1 = (m+s,k) \mid L_n^1 = (m,j)) = [A_s]_{ik}$$

Abbiamo tolto il limite sul livello

La matrice di transizione è composta solo dagli A_i

Supponiamo che i processi L_n^1 e L_n^2 siano irriducibili, e che le relative matrici A_k siano 1-aritmetiche.

vviener-nopi

Sotto le ipotesi per cui R esiste, definiamo

$$A^{(1)}(z) = z^{-1}A_{-1} + A_0 + zA_1$$

Factorization

$$I - A^{(1)}(z) = (I - zR)(I - (A_0 + RA_{-1} + z^{-1}A_{-1}))$$

Definiamo inoltre

$$\Lambda_R = \{ (z, x) : zx^t R = x^t, \quad z \ge 1, \quad x \in \mathbb{R}_+^{\infty} - \{0\} \}$$
$$\Lambda_A = \{ (z, x) : x^t A^{(1)}(z) = x^t, \quad z \ge 1, \quad x > 0 \}$$

$$(z,x) \in \Lambda_R \iff (z,x) \in \Lambda_A$$

Sotto le ipotesi per cui R esiste, definiamo

$$A^{(1)}(z) = z^{-1}A_{-1} + A_0 + zA_1$$

Factorization

$$I - A^{(1)}(z) = (I - zR)(I - (A_0 + RA_{-1} + z^{-1}A_{-1}))$$

Definiamo inoltre

$$\Lambda_R = \{ (z, x) : zx^t R = x^t, \quad z \ge 1, \quad x \in \mathbb{R}_+^{\infty} - \{0\} \}$$
$$\Lambda_A = \{ (z, x) : x^t A^{(1)}(z) = x^t, \quad z \ge 1, \quad x > 0 \}$$

$$(z,x) \in \Lambda_R \iff (z,x) \in \Lambda_Z$$

Wiener-Hopf

Sotto le ipotesi per cui R esiste, definiamo

$$A^{(1)}(z) = z^{-1}A_{-1} + A_0 + zA_1$$

Factorization

$$I - A^{(1)}(z) = (I - zR)(I - (A_0 + RA_{-1} + z^{-1}A_{-1}))$$

Definiamo inoltre

$$\Lambda_R = \{ (z, x) : zx^t R = x^t, \quad z \ge 1, \quad x \in \mathbb{R}_+^{\infty} - \{0\} \}$$

$$\Lambda_A = \{ (z, x) : x^t A^{(1)}(z) = x^t, \quad z \ge 1, \quad x > 0 \}$$

$$(z,x) \in \Lambda_R \iff (z,x) \in \Lambda_A$$

Sotto le ipotesi per cui R esiste, definiamo

$$A^{(1)}(z) = z^{-1}A_{-1} + A_0 + zA_1$$

Factorization

$$I - A^{(1)}(z) = (I - zR)(I - (A_0 + RA_{-1} + z^{-1}A_{-1}))$$

Definiamo inoltre

$$\Lambda_R = \{ (z, x) : zx^t R = x^t, \quad z \ge 1, \quad x \in \mathbb{R}_+^{\infty} - \{0\} \}$$
$$\Lambda_A = \{ (z, x) : x^t A^{(1)}(z) = x^t, \quad z \ge 1, \quad x > 0 \}$$

$$(z, x) \in \Lambda_R \iff (z, x) \in \Lambda_A$$

Poniamo $p_{ii} = \mathbb{P}(Z = (i, j))$ $p_{ii}^k = \mathbb{P}(Z^k = (i, j))$

$$A^{(1)}(z) = \begin{pmatrix} p_0^1(z) & p_1^1(z) & & & \\ p_{-1}(z) & p_0(z) & p_1(z) & & \\ & p_{-1}(z) & p_0(z) & p_1(z) & \\ & & \ddots & \ddots & \ddots & \\ & & & \ddots & \ddots & \ddots \end{pmatrix} \quad p_k^1(z) = z^{-1}p_{-1,k}^1 + p_{0,k}^1 + z p_{1,k}^1 \\ p_k(z) = z^{-1}p_{-1,k} + p_{0,k} + z p_{1,k}^1$$

$$\varphi^1(\theta) = \mathbb{E}\left[e^{\theta Z^1}\right] = p_0^1(e^{\theta_1}) + e^{\theta_2} p_1^1(e^{\theta_1})$$

$$arphi^1(heta) = arphi(heta) = 1 \implies A^{(1)}(e^{ heta_1}) \left(egin{array}{c} 1 \ e^{ heta_2} \ e^{2 heta_2} \ dots \end{array}
ight) = \left(egin{array}{c} 1 \ e^{ heta_2} \ e^{2 heta_2} \ dots \end{array}
ight)$$

Poniamo
$$p_{ii} = \mathbb{P}(Z = (i, j))$$
 $p_{ii}^k = \mathbb{P}(Z^k = (i, j))$

$$A^{(1)}(z) = \begin{pmatrix} p_0^1(z) & p_1^1(z) & & & \\ p_{-1}(z) & p_0(z) & p_1(z) & & \\ & p_{-1}(z) & p_0(z) & p_1(z) & \\ & & \ddots & \ddots & \ddots \end{pmatrix} \quad p_k^1(z) = z^{-1} p_{-1,k}^1 + p_{0,k}^1 + z p_{1,k}^1 + z p_{1$$

$$\varphi^{1}(\theta) = \mathbb{E}\left[e^{\theta Z^{1}}\right] = p_{0}^{1}(e^{\theta_{1}}) + e^{\theta_{2}}p_{1}^{1}(e^{\theta_{1}})$$

$$arphi^1(heta) = arphi(heta) = 1 \implies A^{(1)}(e^{ heta_1}) \left(egin{array}{c} 1 \ e^{ heta_2} \ e^{2 heta_2} \ dots \end{array}
ight) = \left(egin{array}{c} 1 \ e^{ heta_2} \ e^{2 heta_2} \ dots \end{array}
ight)$$

Poniamo
$$p_{ii} = \mathbb{P}(Z = (i, j))$$
 $p_{ii}^k = \mathbb{P}(Z^k = (i, j))$

$$A^{(1)}(z) = \begin{pmatrix} p_0^1(z) & p_1^1(z) & & & \\ p_{-1}(z) & p_0(z) & p_1(z) & & \\ & p_{-1}(z) & p_0(z) & p_0(z) & p_1(z) \\ & & \ddots & \ddots & \ddots \end{pmatrix} \quad p_k^1(z) = z^{-1}p_{-1,k}^1 + p_{0,k}^1 + z p_{1,k}^1 \\ p_k(z) = z^{-1}p_{-1,k} + p_{0,k} + z p_{1,k}^1$$

$$arphi^1(heta) = \mathbb{E}\left[e^{ heta \mathcal{Z}^1}
ight] =
ho_0^1(e^{ heta_1}) + e^{ heta_2}\,
ho_1^1(e^{ heta_1})$$

$$arphi^1(heta) = arphi(heta) = 1 \implies A^{(1)}(e^{ heta_1}) \left(egin{array}{c} 1 \ e^{ heta_2} \ e^{2 heta_2} \ dots \end{array}
ight) = \left(egin{array}{c} 1 \ e^{ heta_2} \ e^{2 heta_2} \ dots \end{array}
ight)$$

Struttura di A⁽¹⁾

Poniamo
$$p_{ij} = \mathbb{P}(Z = (i, j))$$
 $p_{ij}^k = \mathbb{P}(Z^k = (i, j))$

$$A^{(1)}(z) = \begin{pmatrix} p_0^1(z) & p_1^1(z) & & & \\ p_{-1}(z) & p_0(z) & p_1(z) & & \\ & p_{-1}(z) & p_0(z) & p_0(z) & p_1(z) & \\ & & \ddots & \ddots & \ddots \end{pmatrix} p_k^1(z) = z^{-1} p_{-1,k}^1 + p_{0,k}^1 + z p_{1,k}^1 \\ p_k(z) = z^{-1} p_{-1,k} + p_{0,k} + z p_{1,k}^1$$

$$\varphi(\boldsymbol{\theta}) = \mathbb{E}\left[e^{\boldsymbol{\theta}Z}\right] = \sum_{k \in \{-1,0,1\}} e^{k\theta_2} \mathbb{E}\left[e^{\theta_1 Z_1} \mathbf{1}(Z_2 = k)\right] =$$

$$= \sum_{k \in \{-1,0,1\}} e^{k\theta_2} \, p_k(e^{\theta_1}) = e^{-\theta_2} \left[p_{-1}(e^{\theta_1}) + e^{\theta_2} \, p_0(e^{\theta_1}) + e^{2\theta_2} \, p_1(e^{\theta_1}) \right]$$

$$arphi^1(heta) = \mathbb{E}\left[e^{ heta \mathcal{Z}^1}
ight] = p_0^1(e^{ heta_1}) + e^{ heta_2}\,p_1^1(e^{ heta_1})$$

Struttura di A⁽¹⁾

Poniamo
$$p_{ij} = \mathbb{P}(Z = (i, j))$$
 $p_{ij}^k = \mathbb{P}(Z^k = (i, j))$

$$A^{(1)}(z) = \begin{pmatrix} p_0^1(z) & p_1^1(z) & & & \\ p_{-1}(z) & p_0(z) & p_1(z) & & \\ & p_{-1}(z) & p_0(z) & p_0(z) & p_1(z) & \\ & & \ddots & \ddots & \ddots & \end{pmatrix} \quad p_k^1(z) = z^{-1}p_{-1,k}^1 + p_{0,k}^1 + z p_{1,k}^1 \\ p_k(z) = z^{-1}p_{-1,k} + p_{0,k} + z p_{1,k}^1$$

$$\varphi(\boldsymbol{\theta}) = \mathbb{E}\left[e^{\boldsymbol{\theta}Z}\right] = e^{-\theta_2}\left[p_{-1}(e^{\theta_1}) + e^{\theta_2}p_0(e^{\theta_1}) + e^{2\theta_2}p_1(e^{\theta_1})\right]$$
$$\varphi^1(\theta) = \mathbb{E}\left[e^{\boldsymbol{\theta}Z^1}\right] = p_0^1(e^{\theta_1}) + e^{\theta_2}p_1^1(e^{\theta_1})$$

$$\varphi^{1}(\theta) = \varphi(\theta) = 1 \implies A^{(1)}(e^{\theta_{1}}) \begin{pmatrix} 1 \\ e^{\theta_{2}} \\ e^{2\theta_{2}} \end{pmatrix} = \begin{pmatrix} 1 \\ e^{\theta_{2}} \\ e^{2\theta_{2}} \end{pmatrix}$$

Poniamo
$$p_{ij} = \mathbb{P}(Z = (i, j))$$
 $p_{ij}^k = \mathbb{P}(Z^k = (i, j))$

$$A^{(1)}(z) = \begin{pmatrix} p_0^1(z) & p_1^1(z) \\ p_{-1}(z) & p_0(z) & p_1(z) \\ p_{-1}(z) & p_0(z) & p_1(z) \\ \vdots & \vdots & \ddots & \ddots \end{pmatrix} p_k^1(z) = z^{-1}p_{-1,k}^1 + p_{0,k}^1 + z p_{1,k}^1 + z p$$

$$\varphi(\boldsymbol{\theta}) = \mathbb{E}\left[e^{\boldsymbol{\theta}Z}\right] = e^{-\theta_2}\left[p_{-1}(e^{\theta_1}) + e^{\theta_2}p_0(e^{\theta_1}) + e^{2\theta_2}p_1(e^{\theta_1})\right]$$
$$\varphi^1(\boldsymbol{\theta}) = \mathbb{E}\left[e^{\boldsymbol{\theta}Z^1}\right] = p_0^1(e^{\theta_1}) + e^{\theta_2}p_1^1(e^{\theta_1})$$

$$\varphi^{1}(\theta) = \varphi(\theta) = 1 \implies A^{(1)}(e^{\theta_{1}}) \begin{pmatrix} 1 \\ e^{\theta_{2}} \\ e^{2\theta_{2}} \\ \vdots \end{pmatrix} = \begin{pmatrix} 1 \\ e^{\theta_{2}} \\ e^{2\theta_{2}} \\ \vdots \end{pmatrix}$$

Poniamo
$$p_{ii} = \mathbb{P}(Z = (i, j))$$
 $p_{ii}^k = \mathbb{P}(Z^k = (i, j))$

$$A^{(1)}(z) = \begin{pmatrix} p_0^1(z) & p_1^1(z) & & & \\ p_{-1}(z) & p_0(z) & p_1(z) & & \\ & p_{-1}(z) & p_0(z) & p_1(z) & & \\ & & \ddots & \ddots & \ddots & \end{pmatrix} \quad p_k^1(z) = z^{-1}p_{-1,k}^1 + p_{0,k}^1 + z p_{1,k}^1 \\ p_k(z) = z^{-1}p_{-1,k} + p_{0,k}^1 + z p_{1,k}^1$$

$$arphi^1(oldsymbol{ heta}) = arphi(oldsymbol{ heta}) = 1 \implies A^{(1)}(e^{ heta_1}) \left(egin{array}{c} 1 \ e^{ heta_2} \ e^{2 heta_2} \ dots \end{array}
ight) = \left(egin{array}{c} 1 \ e^{ heta_2} \ e^{2 heta_2} \ dots \end{array}
ight)$$

Domini di Convergenza

Definiamo il Dominio di Convergenza come

$$D_1 = \left\{ egin{array}{ll} oldsymbol{ heta} \in \mathbb{R}^2 : \ arphi(oldsymbol{ heta}) = 1, \quad arphi^1(oldsymbol{ heta}) \leq 1, \quad heta_1 \geq 0
ight\} \end{array}$$

Corrispondenza con lo Spettro

Esiste una bigezione tra $\theta \in D_1$ e $(z,x) \in \Lambda_A$ per cui

- $z=e^{\theta_1}$
- Fissato θ_1 , siano θ_2 e $\underline{\theta}_2$ le soluzioni di $\varphi(\theta)=1$. Allora

$$x_{n} = \begin{cases} c_{1}e^{-\underline{\theta}_{2}(n-1)} + c_{2}e^{-\overline{\theta}_{2}(n-1)} & \overline{\theta}_{2} \neq \underline{\theta}_{2} \\ (c'_{1} + c'_{2}(n-1))e^{-\underline{\theta}_{2}(n-2)} & \overline{\theta}_{2} = \underline{\theta}_{2} \end{cases}$$

Domini di Convergenza

Definiamo il Dominio di Convergenza come

$$D_1 = \left\{ \begin{array}{l} oldsymbol{ heta} \in \mathbb{R}^2 \ : \ arphi(oldsymbol{ heta}) = 1, \quad arphi^1(oldsymbol{ heta}) \leq 1, \quad heta_1 \geq 0
ight\}$$

Corrispondenza con lo Spettro

Esiste una bigezione tra $\theta \in D_1$ e $(z,x) \in \Lambda_A$ per cui

- $z = e^{\theta_1}$
- Fissato θ_1 , siano $\overline{\theta}_2$ e $\underline{\theta}_2$ le soluzioni di $\varphi(\theta)=1$. Allora

$$x_{n} = \begin{cases} c_{1}e^{-\underline{\theta}_{2}(n-1)} + c_{2}e^{-\overline{\theta}_{2}(n-1)} & \overline{\theta}_{2} \neq \underline{\theta}_{2} \\ (c'_{1} + c'_{2}(n-1))e^{-\underline{\theta}_{2}(n-2)} & \overline{\theta}_{2} = \underline{\theta}_{2} \end{cases}$$

Dato π , cerchiamo il comportamento asintotico di π_{nk} con k fissato. Diremo che

• ha una coda esponenziale esatta se esistono $\alpha, \beta > 0$ per cui

$$\lim_{n\to\infty}e^{\alpha n}\,\pi_{nk}=\beta$$

ullet Ha una **coda esponenziale lasca** se esiste lpha>0 per cui

$$\lim_{n\to\infty}\frac{1}{n}\log\pi_{nk}=-\alpha$$

In questo caso, si dice che lpha è il **Rate di Decadimento** di $oldsymbol{\pi}$ a fase fissa.

Nel caso finito

$$\lim_{n\to\infty}\lambda^{-n}\pi_n<\infty\implies\alpha=-\log(\lambda)$$

Dato π , cerchiamo il comportamento asintotico di π_{nk} con k fissato. Diremo che

• ha una coda esponenziale esatta se esistono $\alpha, \beta > 0$ per cui

$$\lim_{n\to\infty} e^{\alpha n} \; \pi_{nk} = \beta$$

• Ha una coda esponenziale lasca se esiste $\alpha > 0$ per cui

$$\lim_{n\to\infty}\frac{1}{n}\log\pi_{nk}=-\alpha$$

In questo caso, si dice che lpha è il **Rate di Decadimento** di $oldsymbol{\pi}$ a fase fissa.

Nel caso finito

$$\lim_{n\to\infty}\lambda^{-n}\boldsymbol{\pi}_n<\infty\implies\alpha=-\log(\lambda)$$

Dato π , cerchiamo il comportamento asintotico di π_{nk} con k fissato. Diremo che

• ha una coda esponenziale esatta se esistono $\alpha, \beta > 0$ per cui

$$\lim_{n\to\infty} e^{\alpha n} \; \pi_{nk} = \beta$$

• Ha una coda esponenziale lasca se esiste $\alpha > 0$ per cui

$$\lim_{n\to\infty}\frac{1}{n}\log\pi_{nk}=-\alpha$$

In questo caso, si dice che lpha è il **Rate di Decadimento** di $oldsymbol{\pi}$ a fase

Nel caso finito,

$$\lim_{n\to\infty}\lambda^{-n}\boldsymbol{\pi}_n<\infty\implies\alpha=-\log(\lambda)$$

Dato π , cerchiamo il comportamento asintotico di π_{nk} con k fissato. Diremo che

• ha una coda esponenziale esatta se esistono $\alpha, \beta > 0$ per cui

$$\lim_{n\to\infty}e^{\alpha n}\;\pi_{nk}=\beta$$

• Ha una coda esponenziale lasca se esiste $\alpha > 0$ per cui

$$\lim_{n\to\infty}\frac{1}{n}\log\pi_{nk}=-\alpha$$

In questo caso, si dice che α è il Rate di Decadimento di π a fase fissa.

Nel caso finito

$$\lim_{n\to\infty}\lambda^{-n}\boldsymbol{\pi}_n<\infty\implies\alpha=-\log(\lambda)$$

Dato π , cerchiamo il comportamento asintotico di π_{nk} con k fissato. Diremo che

• ha una coda esponenziale esatta se esistono $\alpha, \beta > 0$ per cui

$$\lim_{n\to\infty}e^{\alpha n}\;\pi_{nk}=\beta$$

• Ha una coda esponenziale lasca se esiste $\alpha > 0$ per cui

$$\lim_{n\to\infty}\frac{1}{n}\log\pi_{nk}=-\alpha$$

In questo caso, si dice che α è il Rate di Decadimento di π a fase fissa.

Nel caso finito,

$$\lim_{n \to \infty} \lambda^{-n} \pi_n < \infty \implies \alpha = -\log(\lambda)$$

$$\lim_{n\to\infty}\frac{1}{n}\log\pi_{nk}=-\alpha$$

In generale, non è detto che lpha esista, dunque chiamiamo

$$\overline{\alpha} = -\limsup_{n \to \infty} \frac{1}{n} \log \pi_{nk} \qquad \underline{\alpha} = -\liminf_{n \to \infty} \frac{1}{n} \log \pi_{nk}$$

$$\overline{r} = e^{-\underline{\alpha}} \qquad \underline{r} = e^{-\overline{\alpha}}$$

$$\lim_{n\to\infty}\frac{1}{n}\log\pi_{nk}=-\alpha$$

In generale, non è detto che α esista, dunque chiamiamo

$$\overline{\alpha} = -\limsup_{n \to \infty} \frac{1}{n} \log \pi_{nk} \qquad \underline{\alpha} = -\liminf_{n \to \infty} \frac{1}{n} \log \pi_{nk}$$

$$\overline{r} = e^{-\underline{\alpha}} \qquad \underline{r} = e^{-\overline{\alpha}}$$

Norma di Convergenza

Data R, definiamo la sua Norma di Convergenza come

$$c_p(R) = \sup \left\{ z \ge 0 : \sum_{n=0}^{\infty} z^n R^n < \infty \right\} = \left(\lim_{n \to \infty} \sqrt[n]{\|R^n\|} \right)^{-1}$$

Bound

Si dimostra in ordine che

•
$$c_p(R) = \sup \{ z \ge 0 : zx^t R = x^t, x \in \mathbb{R}_+^{\infty} - \{0\} \}$$

•
$$c_p(R) = \sup\{z \ge 1 : (z, x) \in \Lambda_A\}$$

$$ullet c_p(R) = \sup \left\{ e^{ heta_1} : heta \in D_1
ight\}$$

Inoltre ci fornisce un bound sul decay rate

$$c_p(R)^{-1} \leq \underline{r}$$

Norma di Convergenza

Data R, definiamo la sua Norma di Convergenza come

$$c_p(R) = \sup \left\{ z \ge 0 : \sum_{n=0}^{\infty} z^n R^n < \infty \right\} = \left(\lim_{n \to \infty} \sqrt[n]{\|R^n\|} \right)^{-1}$$

Bound

Si dimostra in ordine che

•
$$c_p(R) = \sup \{ z \ge 0 : zx^tR = x^t, x \in \mathbb{R}_+^{\infty} - \{0\} \}$$

•
$$c_p(R) = \sup\{z \ge 1 : (z, x) \in \Lambda_A\}$$

Inoltre ci fornisce un bound sul decay rate

$$c_p(R)^{-1} \leq \underline{r}$$

Sia
$$(z, x) \in \Lambda_A$$
, con

$$\overline{d} = \limsup_{n \to \infty} \frac{\pi_{1,n}}{x_n}$$
 $\underline{d} = \liminf_{n \to \infty} \frac{\pi_{1,n}}{x_n}$

Teorema:

Se \overline{d} è finito, allora

- $c_p(R)^{-1} \le r \le \overline{r} \le z^{-1}$
- se d > 0, allora $\pi_{n,1}$ ha coda esponenziale lasca con

$$e^{-\alpha} = z^{-1}$$

• se esiste y > 0 autovettore destro di $A^{(1)}(z)$ per cui $x^t y < \infty$, allora $\pi_{n,1}$ ha coda esponenziale esatta con parametro

$$z^{-1} = c_n(R)^{-1}$$

Sia
$$(z, x) \in \Lambda_A$$
, con

$$\overline{d} = \limsup_{n \to \infty} \frac{\pi_{1,n}}{x_n} \qquad \underline{d} = \liminf_{n \to \infty} \frac{\pi_{1,n}}{x_n}$$

Teorema

Se \overline{d} è finito, allora

- $c_p(R)^{-1} \le \underline{r} \le \overline{r} \le z^{-1}$
- se $\underline{d} > 0$, allora $\pi_{n,1}$ ha coda esponenziale lasca con

$$e^{-\alpha} = z^{-1}$$

• se esiste y > 0 autovettore destro di $A^{(1)}(z)$ per cui $x^t y < \infty$, allora $\pi_{n,1}$ ha coda esponenziale esatta con parametro

$$z^{-1} = c_p(R)^{-1}$$

Sia
$$(z, x) \in \Lambda_A$$
, con

$$\overline{d} = \limsup_{n \to \infty} \frac{\pi_{1,n}}{x_n} \qquad \underline{d} = \liminf_{n \to \infty} \frac{\pi_{1,n}}{x_n}$$

Teorema 1

Se \overline{d} è finito, allora

- $c_p(R)^{-1} \le \underline{r} \le \overline{r} \le z^{-1}$
- se $\underline{d} > 0$, allora $\pi_{n,1}$ ha coda esponenziale lasca con

$$e^{-\alpha} = z^{-1}$$

• se esiste y > 0 autovettore destro di $A^{(1)}(z)$ per cui $x^t y < \infty$, allora $\pi_{n,1}$ ha coda esponenziale esatta con parametro

$$z^{-1} = c_n(R)^{-1}$$

Teorema 2

Se β è definito come

$$eta = \sup \left\{ heta_1 : oldsymbol{ heta} \in D_1 \quad \limsup_{n o \infty} \ \pi_{1,n} \ \mathrm{e}^{ heta_2 n} < \infty
ight\}$$

allora

•
$$c_p(R)^{-1} \leq \underline{r} \leq \overline{r} \leq e^{-\beta}$$

• se $e^{-\beta} = c_p(R)^{-1}$, allora $\pi_{n,1}$ ha coda esponenziale lasca con

$$e^{-\alpha} = c_n(R)^{-1}$$

ullet se $\pi_{1,n}$ ha coda esponenziale esatta, allora ce l'ha anche $\pi_{n,1}$,

$$e^{-\alpha} = c_n(R)^{-1}$$

Teorema 2

Se β è definito come

$$eta = \sup \left\{ heta_1 \; : \; oldsymbol{ heta} \in D_1 \quad \limsup_{n o \infty} \; \pi_{1,n} \; e^{ heta_2 n} < \infty
ight\}$$

allora

- $c_p(R)^{-1} \leq \underline{r} \leq \overline{r} \leq e^{-\beta}$
- se $e^{-\beta} = c_p(R)^{-1}$, allora $\pi_{n,1}$ ha coda esponenziale lasca con

$$e^{-\alpha} = c_p(R)^{-1}$$

• se $\pi_{1,n}$ ha coda esponenziale esatta, allora ce l'ha anche $\pi_{n,1}$, con

$$e^{-\alpha} = c_n(R)^{-1}$$

$$egin{aligned} D_1 &= \left\{ egin{aligned} oldsymbol{ heta} \in \mathbb{R}^2 \ : \ arphi(oldsymbol{ heta}) = 1, & arphi^1(oldsymbol{ heta}) \leq 1, & heta_1 \geq 0
ight\} \ D_2 &= \left\{ egin{aligned} oldsymbol{\eta} \in \mathbb{R}^2 \ : \ arphi(oldsymbol{\eta}) = 1, & arphi^2(oldsymbol{\eta}) \leq 1, & heta_2 \geq 0
ight\} \end{aligned}$$

Rate di Decadimento

$$\begin{aligned} \alpha_1 &= \sup \left\{ \theta_1 \ : \ \eta_1 \leq \theta_1 \quad \theta_2 \leq \eta_2 \quad \boldsymbol{\theta} \in D_1 \quad \boldsymbol{\eta} \in D_2 \right\} \\ \alpha_2 &= \sup \left\{ \eta_2 \ : \ \eta_1 \leq \theta_1 \quad \theta_2 \leq \eta_2 \quad \boldsymbol{\theta} \in D_1 \quad \boldsymbol{\eta} \in D_2 \right\} \\ &\text{sono i Rate di Decadimento di } \pi_{n,1} \in \pi_{1,n} \end{aligned}$$

Positiva Ricorrenza

Se almeno uno degli m_i è negativo, allora

$$\exists \pi \iff \alpha_1 > 0 \quad \alpha_2 > 0$$

Rough Decay Rates

$$egin{aligned} D_1 &= \left\{ egin{aligned} oldsymbol{ heta} \in \mathbb{R}^2 \ : \ arphi(oldsymbol{ heta}) = 1, & arphi^1(oldsymbol{ heta}) \leq 1, & heta_1 \geq 0
ight\} \ D_2 &= \left\{ egin{aligned} oldsymbol{\eta} \in \mathbb{R}^2 \ : \ arphi(oldsymbol{\eta}) = 1, & arphi^2(oldsymbol{\eta}) \leq 1, & heta_2 \geq 0
ight\} \end{aligned}$$

Rate di Decadimento

$$\begin{aligned} \alpha_1 &= \sup \left\{ \theta_1 \ : \ \eta_1 \leq \theta_1 \quad \theta_2 \leq \eta_2 \quad \boldsymbol{\theta} \in D_1 \quad \boldsymbol{\eta} \in D_2 \right\} \\ \alpha_2 &= \sup \left\{ \eta_2 \ : \ \eta_1 \leq \theta_1 \quad \theta_2 \leq \eta_2 \quad \boldsymbol{\theta} \in D_1 \quad \boldsymbol{\eta} \in D_2 \right\} \\ &\text{sono i Rate di Decadimento di } \pi_{n,1} \in \pi_{1,n} \end{aligned}$$

Positiva Ricorrenza

Se almeno uno degli m_i è negativo, allora

$$\exists \pi \iff \alpha_1 > 0 \quad \alpha_2 > 0$$

$$D_1 = \left\{ \begin{array}{l} \boldsymbol{\theta} \in \mathbb{R}^2 \ : \ \varphi(\boldsymbol{\theta}) = 1, \quad \varphi^1(\boldsymbol{\theta}) \leq 1, \quad \theta_1 \geq 0 \right\} \\ D_2 = \left\{ \begin{array}{l} \boldsymbol{\eta} \in \mathbb{R}^2 \ : \ \varphi(\boldsymbol{\eta}) = 1, \quad \varphi^2(\boldsymbol{\eta}) \leq 1, \quad \eta_2 \geq 0 \right\} \end{array}$$

Rate di Decadimento

$$\alpha_1 = \sup \{ \theta_1 : \eta_1 \leq \theta_1 \quad \theta_2 \leq \eta_2 \quad \boldsymbol{\theta} \in D_1 \quad \boldsymbol{\eta} \in D_2 \}$$

$$\alpha_2 = \sup \{ \eta_2 : \eta_1 \leq \theta_1 \quad \theta_2 \leq \eta_2 \quad \boldsymbol{\theta} \in D_1 \quad \boldsymbol{\eta} \in D_2 \}$$
sono i Rate di Decadimento di $\pi_{n,1}$ e $\pi_{1,n}$

Positiva Ricorrenza

Se almeno uno degli m_i è negativo, allora

$$\exists \pi \iff \alpha_1 > 0 \quad \alpha_2 > 0$$

Exact Decay Rates

Chiamato
$$D_0 = \{ \boldsymbol{\theta} : \varphi(\boldsymbol{\theta}) = 1 \}$$
 siano

$$\theta^{max} = \max \{ \theta_1 : \boldsymbol{\theta} \in D_0 \} \qquad \eta^{max} = \max \{ \eta_2 : \boldsymbol{\eta} \in D_0 \}$$

$$\lim_{n\to\infty} n^{\frac{1}{2}} e^{n\alpha_1} \pi_{n,1} = 0$$

$$\lim_{n\to\infty} n^{\frac{3}{2}} e^{n\alpha_1} \pi_{n,1} = 0$$

$$\limsup_{n\to\infty}e^{n\alpha_1}\pi_{n,1}=0\quad \lim_{n\to\infty}e^{n\alpha_2}\pi_{1,n}=c$$

Chiamato
$$D_0 = \{ \boldsymbol{\theta} : \varphi(\boldsymbol{\theta}) = 1 \}$$
 siano

$$\theta^{max} = \max\{\theta_1 : \boldsymbol{\theta} \in D_0\} \qquad \eta^{max} = \max\{\eta_2 : \boldsymbol{\eta} \in D_0\}$$

Se $\alpha_1 > 0$ e $\alpha_2 > 0$, allora

- $\alpha_1 \neq \theta^{max} \implies \alpha_1$ è il decay rate esatto
- Se $\alpha_1 = \theta^{max}$, allora
 - Nel caso C1, se $\varphi^1(\theta^{max})=1$, allora $\exists c>0$ per cui

$$\lim_{n\to\infty} n^{\frac{1}{2}} e^{n\alpha_1} \pi_{n,1} = c$$

• Nel caso C1, se $\varphi^1(\theta^{max}) \neq 1$, allora $\exists c > 0$ per cui

$$\lim_{n\to\infty} n^{\frac{3}{2}} e^{n\alpha_1} \pi_{n,1} = c$$

• Nel caso C2, allora $\exists c > 0$ per cui

$$\limsup_{n\to\infty} e^{n\alpha_1}\pi_{n,1} = 0 \quad \lim_{n\to\infty} e^{n\alpha_2}\pi_{1,n} = c$$