

Contrôle continu de mécanique du solide

Robot planaire

Le robot planaire de la figure ci-dessous est à deux degrés de liberté . Il est constitué par deux bras S_1 et S_2 , contenus dans le plan (xOy) d'un repère de référence R_0 (O, $\overrightarrow{x_0}$, $\overrightarrow{y_0}$, $\overrightarrow{z_0}$) lié au bâti S_0 .

On définit deux repères R_1 (O, $\overrightarrow{x_1}$, $\overrightarrow{y_1}$, $\overrightarrow{z_1}$) et R_2 (A, $\overrightarrow{x_2}$, $\overrightarrow{y_2}$, $\overrightarrow{z_2}$) liés au bras S_1 et S_2

On considère les mouvements suivants :

- S_1 est en rotation de θ_1 par rapport à S_0 autour de l'axe ($O, \overline{Z_0}$), et le bras S_1 est en liaison pivot avec le bâti S_0 au point O La masse de S_1 est m_1 , son moment d'inertie en son centre de gravité G_1 est I_{G1z} ($\overrightarrow{OG_1} = l_1.\overrightarrow{x_1}$)
- S_2 est en rotation de θ_2 par rapport à S_1 autour de l'axe (O, $\overrightarrow{z_0}$), et le bras S_2 est en liaison pivot avec le bras S_1 au point A La masse de S_2 est m_2 , son moment d'inertie en son centre de gravité G_2 est I_{G12} ($\overrightarrow{AG_2} = l_2 . \overrightarrow{x_2}$)

On donne par ailleurs les dimensions suivantes : $\overrightarrow{OA} = 2l_1 \cdot \overrightarrow{x_1}$ et $\overrightarrow{AB} = 2l_2 \cdot \overrightarrow{x_2}$

Questions

- 1 Représenter les figures de changement de repère
- 2 Calculer $\vec{\Omega}$ (R_1/R_0) et $\vec{\Omega}$ (R_2/R_0) . En déduire $\vec{\Omega}$ (R_2/R_1)
- 3 Calculer $\overrightarrow{V_{A/R_0}}$, $\overrightarrow{V_{B/R_0}}$, $\overrightarrow{V_{G_1/R_0}}$ et $\overrightarrow{V_{G_2/R_0}}$.
- 4 Calculer $\overline{\varGamma_{A/R_0}}$, $\overline{\varGamma_{B/R_0}}$, $\overline{\varGamma_{G_1/R_0}}$ et $\overline{\varGamma_{G_2/R_0}}$.
- 5 Calculer le moment cinétique en 0 de S_1 dans son mouvement par rapport à R_0 $\overrightarrow{\sigma_{\mathcal{O}(S_1/R_0)}}$
- 6 Calculer le moment cinétique en 0 de S_2 dans son mouvement par rapport à R_0 $\overline{\sigma_{\mathcal{O}(S_2/R_0)}}$
- 7 Calculer le moment dynamique en 0 de S_1 dans son mouvement par rapport à R_0 $\overline{\delta_{\mathcal{O}(S_1/R_0)}}$
- 8 Calculer le moment dynamique en 0 de S_2 dans son mouvement par rapport à R_0 $\overrightarrow{\delta_{O(S_2/R_0)}}$

 $\text{L'action de la liaison pivot en O est modélisée par le torseur } \{ \ T_{S_0 \rightarrow S_1} \} = \left\{ \begin{array}{l} X_O.\overrightarrow{x_1} + \ Y_O.\overrightarrow{y_1} \\ \hline C_{m0} = \ C_{m0}.\overrightarrow{z_0} \end{array} \right\}_O$

C_{m0} est le moment du couple du moteur actionnant le système

- 9 Par application du principe fondamental de la dynamique (PFD) à un solide ou un ensemble de solides à définir :
- déterminez les équations résultant de l'application du PFD faisant intervenir les composantes X₀ et Y₀
- exprimez les composantes X_0 , Y_0 et C_{m0} en fonction de θ_1 , θ_2 , de leurs dérivées ainsi que de I_1 , I_2 , m_1 , m_2 , I_{G1z} , I_{G2z}

On projetera les relations vectorielles sur le repère R_1 ($O, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0}$)