Galois cohomology

Olivier Haution

 ${\bf Ludwig\text{-}Maximilians\text{-}Universit\"{a}t\ M\"{u}nchen}$

Summer semester 2020

Contents

Note on the literature	3
Part 1. Noncommutative Algebra	5
Chapter 1. Quaternion algebras	7
1. The norm form	7
2. Quadratic splitting fields	11
3. Biquaternion algebras	13
Chapter 2. Central simple algebras	17
1. Wedderburn's Theorem	17
2. The commutant	20
3. Skolem–Noether's Theorem	23
4. The index	23
5. Splitting fields	24
6. The Brauer group, I	28
Part 2. Torsors	31
Chapter 3. Galois descent	33
1. Profinite sets	33
2. Profinite groups	35
3. Infinite Galois extensions	38
4. Galois descent	42
Chapter 4. Étale and Galois algebras	45
1. Categories	45
2. Étale algebras	46
3. Galois algebras	52
Chapter 5. Torsors, cocyles, and twisted forms	55
1. Torsors	55
2. Twisted forms	56
3. 1-cocyles	61
4. Galois cohomology	64
Chapter 6. Applications of torsor theory	67
1. Kummer theory	67
2. Artin–Schreier theory	69

COMMENTE	•
Contents	_

3. Tensor product and 1-cocyles4. Cyclic algebras	70 71
5. The reduced characteristic polynomial	75
Part 3. Cohomology	81
Chapter 7. The Brauer group and 2-cocycles	83
1. 2-cocyles	83
2. The Brauer group, II	86
3. The period	87
Chapter 8. Cohomology of groups	89
1. Projective Resolutions	89
2. Cochain complexes	91
3. Cohomology of discrete groups	92
Bibliography	97

3 Contents

Note on the literature

The main references that we used in preparing these notes is the book of Gille and Szamuely [GS17]. As always, Serre's books [Ser62, Ser02] provide excellent accounts. There is also very useful material contained in the Stack's project [Sta] (available online). Kersten's book [Ker07] (in German, available online) provides a very gentle introduction to the subject.

For the first part (on noncommutative algebra), we additionally used Draxl's [**Dra83**] and Pierce's [**Pie82**], as well as Lam's book [**Lam05**] (which uses the language of quadratic forms) for quaternion algebras. For the second part (on torsors), we used the book of involutions [**KMRT98**, Chapters V and VII].

Part 1 Noncommutative Algebra

CHAPTER 1

Quaternion algebras

This chapter will serve as an introduction to the theory of central simple algebras, by developing some aspects of the general theory in the simplest case of quaternion algebras. The results proved here will not really be used in the sequel, and many of them will be in fact substantially generalised by other means. Rather we would like to show what can be done "by hand", which may help appreciate the more sophisticated methods developed in the sequel.

Quaternions are historically very significant; since their discovery by Hamilton in 1843, they have played an influential role in various branches of mathematics. A particularity of these algebras is their deep relations with quadratic forms, which is not really a systematic feature of central simple algebras. For this reason, we will merely hint at the connections with quadratic form theory.

1. The norm form

All rings will be unital and associative (but often noncommutative!). The set of elements of a ring R admitting a two-sided inverse is a group, that we denote by R^{\times} .

We fix a base field k. A k-algebra is a (unital associative) ring A equipped with a structure of k-vector space such that the multiplication map $A \times A \to A$ is k-bilinear. A morphism of k-algebras is a ring morphism which is k-linear. If $A \neq 0$, the map $k \to A$ given by $\lambda \mapsto \lambda 1$ is injective, and we will view k as a subring of A. Observe that the bilinearity of the multiplication map implies that for any $\lambda \in k$ and $a \in A$

(1.1.a)
$$\lambda a = (\lambda a)1 = a(\lambda 1) = a\lambda.$$

In this chapter on quaternion algebras, we will assume that the characteristic of k is not equal to two.

DEFINITION 1.1.1. Let $a, b \in k^{\times}$. We define a k-algebra (a, b) as follows. A basis of (a, b) as k-vector space is given by 1, i, j, ij. The multiplication is determined by the rules

(1.1.b)
$$i^2 = a, \quad j^2 = b, \quad ij = -ji.$$

We will call i, j the standard generators of (a, b). An algebra isomorphic to (a, b) for some $a, b \in k^{\times}$ will be called a quaternion algebra.

LEMMA 1.1.2. Let A be a 4-dimensional k-algebra. If $i, j \in A$ satisfy the relations (1.1.b) for some $a, b \in k^{\times}$, then $A \simeq (a, b)$.

PROOF. It will suffice to prove that the elements 1, i, j, ij are linearly independent over k. Since i anticommutes with j, the elements 1, i, j must be linearly independent. Now assume that ij = u + vi + wj, with $u, v, w \in k$. Then

$$0 = i(ij + ji) = i(ij) + (ij)i = i(u + vi + wj) + (u + vi + wj)i = 2ui + 2av,$$

hence u = v = 0. So ij = wj, hence $ij^2 = wj^2$ and thus bi = bw, a contradiction.

The following observations will be used without explicit mention.

Lemma 1.1.3. Let $a, b \in k^{\times}$. Then

- (i) $(a, b) \simeq (b, a)$,
- (ii) $(a,b) \simeq (a\alpha^2, b\beta^2)$ for any $\alpha, \beta \in k^{\times}$.

PROOF. (i): The isomorphism is given by exchanging i and j.

(ii): The isomorphism is given by $i \mapsto \alpha i$ and $j \mapsto \beta j$.

LEMMA 1.1.4. For any $b \in k^{\times}$, the k-algebra (1,b) is isomorphic to the algebra $M_2(k)$ of 2 by 2 matrices with coefficients in k.

PROOF. The matrices

$$I = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, J = \begin{pmatrix} 0 & b \\ 1 & 0 \end{pmatrix} \in M_2(k)$$

satisfy $I^2 = 1, J^2 = b, IJ = -JI$. Thus the statement follows from Lemma 1.1.2.

From now on, the letter Q will denote a quaternion algebra over k.

DEFINITION 1.1.5. An element $q \in Q$ such that $q^2 \in k$ and $q \notin k^{\times}$ will be called a pure quaternion.

LEMMA 1.1.6. Let $a, b \in k^{\times}$ and $x, y, z, w \in k$. The element x + yi + zj + wij in the quaternion algebra (a, b) is a pure quaternion if and only if x = 0.

PROOF. This follows from the computation

$$(x+yi+zj+wij)^2 = x^2 + ay^2 + bz^2 - abw^2 + 2x(yi+zj+wij).$$

LEMMA 1.1.7. The subset $Q_0 \subset Q$ of pure quaternions is a k-subspace, and we have $Q = k \oplus Q_0$ as k-vector spaces.

PROOF. Letting $a, b \in k^{\times}$ be such that $Q \simeq (a, b)$, this follows from Lemma 1.1.6. \square

It follows from Lemma 1.1.7 that every $q \in Q$ may be written uniquely as $q = q_1 + q_2$, where $q_1 \in k$ and q_2 is a pure quaternion. We define the *conjugate of* q as $\overline{q} = q_1 - q_2$. The following properties are easily verified:

- (i) $q \mapsto \overline{q}$ is k-linear.
- (ii) $\overline{\overline{q}} = q$ for all $q \in Q$.
- (iii) $q = \overline{q} \iff q \in k$.
- (iv) $q = -\overline{q} \iff q \in Q_0$.
- (v) $q\overline{q} \in k$ for all $q \in Q$.
- (vi) $\overline{pq} = \overline{q} \ \overline{p}$ for all $p, q \in Q$.

Definition 1.1.8. We define the (quaternion) norm map $N: Q \to k$ by $q \mapsto q\bar{q}$.

For all $p, q \in Q$, we have N(pq) = N(p)N(q) for all $p, q \in Q$. If $a, b \in k^{\times}$ are such that Q = (a, b) and q = x + yi + zj + wij with $x, y, z, w \in k$, then

(1.1.c)
$$N(q) = x^2 - ay^2 - bz^2 + abw^2.$$

LEMMA 1.1.9. An element $q \in Q$ admits a two-sided inverse if and only if $N(q) \neq 0$.

PROOF. If $N(q) \neq 0$, then q is a left inverse of $N(q)^{-1}\overline{q}$, hence a two-sided inverse by Remark 1.1.11. Conversely, if pq = 1, then N(p)N(q) = 1, hence $N(q) \neq 0$.

We will give below a list of criteria for a quaternion algebra to be isomorphic to $M_2(k)$. In order to do so, we need some definitions.

DEFINITION 1.1.10. A ring (resp. a k-algebra) D is called division if it is nonzero and every nonzero element of D admits a two-sided inverse. Such rings are also called skew-fields in the literature.

Remark 1.1.11. Let A be a finite-dimensional k-algebra and $a \in A$. We claim that a left inverse of a is automatically a two-sided inverse. Indeed, assume that $u \in A$ satisfies ua = 1. Then the k-linear morphism $A \to A$ given by $x \mapsto ax$ is injective (as ax = 0 implies x = uax = 0), hence surjective by reasons of dimensions. In particular 1 lies in its image, hence there is $v \in A$ such that av = 1. Then u = u(av) = (ua)v = v.

DEFINITION 1.1.12. Let A be a commutative finite-dimensional k-algebra. The (algebra) norm map $N_{A/k} \colon A \to k$ is defined by mapping $a \in A$ to the determinant of the k-linear map $A \to A$ given by $x \mapsto ax$.

It follows from the multiplicativity of the determinant that $\mathcal{N}_{A/k}(ab) = \mathcal{N}_{A/k}(a) \, \mathcal{N}_{A/k}(b)$ for every $a,b \in A$.

When $a \in k$, we consider the field extension

$$k(\sqrt{a}) = \begin{cases} k & \text{if } a \text{ is a square in } k, \\ k[X]/(X^2 - a) & \text{if } a \text{ is not a square in } k. \end{cases}$$

In the second case, we will denote by $\sqrt{a} \in k(\sqrt{a})$ the element corresponding to X (this element is determined only up to sign by the field extension $k(\sqrt{a})/k$). Every element of $k(\sqrt{a})$ is represented as $x + y\sqrt{a}$ for uniquely determined $x, y \in k$, and

$$N_{k(\sqrt{a})/k}(x+y\sqrt{a}) = x^2 - ay^2.$$

Proposition 1.1.13. Let $a, b \in k^{\times}$. The following are equivalent.

- (i) $(a,b) \simeq M_2(k)$.
- (ii) (a,b) is not a division ring.
- (iii) The quaternion norm map $(a, b) \rightarrow k$ has a nontrivial zero.
- (iv) We have $b \in N_{k(\sqrt{a})/k}(k(\sqrt{a}))$.
- (v) There are $x, y \in k$ such that $ax^2 + by^2 = 1$.
- (vi) There are $x, y, z \in k$, not all zero, such that $ax^2 + by^2 = z^2$.

Proof. (i) \Rightarrow (ii) : The nonzero matrix

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in M_2(k)$$

is not invertible.

- $(ii) \Rightarrow (iii)$: This follows from Lemma 1.1.9.
- (iii) \Rightarrow (iv): We may assume that a is not a square in k. Let q = x + yi + zj + wij be a nontrivial zero of the norm map, where $x, y, z, w \in k$. Then by the formula (1.1.c)

$$0 = x^2 - ay^2 - bz^2 + abw^2,$$

hence $x^2 - ay^2 = b(z^2 - aw^2)$. Assume that $z^2 - aw^2 = 0$. Then z = w = 0, because a is not a square. Thus $x^2 - ay^2 = 0$, and for the same reason x = y = 0. Thus q = 0, a contradiction. Therefore $z^2 - aw^2 \neq 0$, and

$$b = \frac{x^2 - ay^2}{z^2 - aw^2} = \frac{N_{k(\sqrt{a})/k}(x + y\sqrt{a})}{N_{k(\sqrt{a})/k}(z + w\sqrt{a})} = N_{k(\sqrt{a})/k}\left(\frac{x + y\sqrt{a}}{z + w\sqrt{a}}\right).$$

(iv) \Rightarrow (v) : There are $u, v \in k$ such that $b = N_{k(\sqrt{a})/k}(u + v\sqrt{a}) = u^2 - av^2$, so we may take $x = vu^{-1}$ and $y = u^{-1}$.

 $(v) \Rightarrow (vi) : Take z = 1.$

(vi) \Rightarrow (i): By Lemma 1.1.4 we may assume that a is not a square in k, so that $y \neq 0$. Let i, j be the standard generators of (a, b), and set in (a, b)

$$i' = i, \quad j' = b^{-1}y^{-1}(zj + xij).$$

The relation ij + ji = 0 implies that i'j' + j'i' = 0. We have $i'^2 = i^2 = a$, and

$$j'^{2} = b^{-2}y^{-2}(bz^{2} - abx^{2}) = b^{-1}y^{-2}(z^{2} - ax^{2}) = 1$$

By Lemma 1.1.2, we have $Q \simeq (a,1) \simeq (1,a)$, and (i) follows from Lemma 1.1.4.

DEFINITION 1.1.14. A quaternion algebra satisfying the conditions of Proposition 1.1.13 will be called *split* (observe that this does not depend on the choice of $a, b \in k^{\times}$).

EXAMPLE 1.1.15. Assume that every element of k is a square. Then for every $a, b \in k^{\times}$, we have $(a, b) \simeq (1, b) \simeq M_2(k)$ by Lemma 1.1.4. Therefore every quaternion k-algebra splits.

EXAMPLE 1.1.16. Assume that the field k is finite, with q elements. As the group k^{\times} is cyclic of order q-1, there are exactly 1+(q-1)/2 squares in k. Thus the sets $\{ax^2|x\in k\}$ and $\{1-by^2|y\in k\}$ both consist of 1+(q-1)/2 elements; as subsets of the set k having q elements, they must intersect. It follows from the criterion (v) in Proposition 1.1.13 that (a,b) splits. Therefore every quaternion algebra over a finite field is split.

EXAMPLE 1.1.17. Let $k = \mathbb{R}$. The quaternion algebra (-1, -1) is not split, by Proposition 1.1.13 (v). Since $k^{\times}/k^{\times 2} = \{1, -1\}$, and taking into account Lemma 1.1.4, we see that there are exactly two isomorphism classes of k-algebras, namely $M_2(k)$ and (-1, -1).

Let us record another useful consequence of the argument used to prove the implication (vi) \Rightarrow (i) in Proposition 1.1.13:

PROPOSITION 1.1.18. Let $a, b, c \in k^{\times}$. If (a, c) is split, then $(a, bc) \simeq (a, b)$.

PROOF. Since (a, c) is split, by Proposition 1.1.13 (iv) there are $\alpha, \beta \in k$ such that $c = \alpha^2 - a\beta^2$. Let Q = (a, bc) with its standard generators i', j'. Set

$$i = i', \quad j = c^{-1}(\alpha j' + \beta i' j') \in Q.$$

The relation i'j' + j'i' = 0 implies that ij + ji = 0. We have $i^2 = i'^2 = a$, and

$$j^2 = c^{-2}(bc\alpha^2 - abc\beta^2) = bc^{-1}(\alpha^2 - a\beta^2) = b.$$

It follows from Lemma 1.1.2 that $Q \simeq (a, b)$.

PROPOSITION 1.1.19. Let Q, Q' be quaternion algebras, with pure quaternion subspaces Q_0, Q'_0 . Then $Q \simeq Q'$ if and only if there is a k-linear map $\varphi \colon Q_0 \to Q'_0$ such that $\varphi(q)^2 = q^2 \in k$ for all $q \in Q_0$.

PROOF. Let $\psi \colon Q \to Q'$ be an isomorphism of k-algebras. If $q \in Q_0$, then

$$\psi(q)^2 = \psi(q^2) = q^2 \in k$$
, and $\psi(q) \notin \psi(k^{\times}) = k^{\times}$,

so that $\psi(q) \in Q'_0$. So we may take for φ the restriction of ψ .

Conversely, let $\varphi: Q_0 \to Q_0'$ be a k-linear map such that $\varphi(q)^2 = q^2 \in k$ for all $q \in Q_0$. We may assume that Q = (a, b) with its standard generators i, j. We have $\varphi(i)^2 = i^2 = a$ and $\varphi(j)^2 = j^2 = b$, and

$$\varphi(i)\varphi(j) + \varphi(j)\varphi(i) = \varphi(i+j)^{2} - \varphi(i)^{2} - \varphi(j)^{2} = (i+j)^{2} - i^{2} - j^{2} = ij + ji = 0.$$

By Lemma 1.1.2 (applied to the elements $\varphi(i), \varphi(j) \in Q'$), we have $Q' \simeq (a, b)$.

The norm map $N: Q \to k$ is in fact a quadratic form. The next corollary is a reformulation of Proposition 1.1.19, assuming some basic quadratic form theory. It can be safely ignored, and will not be used in the sequel.

COROLLARY 1.1.20. Two quaternion algebras are isomorphic if and only if their norm forms are isometric.

PROOF. Let Q be a quaternion algebra and $N: Q \to k$ its norm form. Note that $N(q) = -q^2$ for all $q \in Q_0$. The subspaces k and Q_0 are orthogonal in Q with respect to the norm form N, and $N|_k = \mathrm{id}_k$. So we have a decomposition $N \simeq \langle 1 \rangle \perp (N|_{Q_0})$. This quadratic form is nondegenerate (e.g. by (1.1.c)), hence a morphism φ as in Proposition 1.1.19 is automatically an isometry. The corollary follows, by Witt's cancellation Theorem (see for instance [Lam05, Theorem 4.2]).

2. Quadratic splitting fields

DEFINITION 1.2.1. The *center* of a ring R is the set of elements $r \in R$ such that rs = sr for all $s \in R$. As observed in (1.1.a), the center of a nonzero k-algebra always contains k. A k-algebra is called *central* if it is nonzero and its center equals k.

Lemma 1.2.2. Every quaternion algebra is central.

PROOF. We may assume that the algebra is equal to (a, b) with $a, b \in k^{\times}$. Consider an arbitrary element q = x + yi + zj + wij of (a, b), where $x, y, z, w \in k$. Easy computations show that qi = iq if and only if z = w = 0, and that qj = jq if and only if y = w = 0. \square

Remark 1.2.3. Let $a, b \in k^{\times}$. We claim that (a, b) contains a subfield isomorphic to $k(\sqrt{a})$. To see this, we may assume that a is not a square in k. Then the morphism of k-algebras $k(\sqrt{a}) = k[X]/(X^2 - a) \to (a, b)$ given by $X \mapsto i$ is injective.

PROPOSITION 1.2.4. Let D be a central division k-algebra of dimension 4. Assume that D contains a k-subalgebra isomorphic to $k(\sqrt{a})$ for some $a \in k$ which is not a square in k. Then $D \simeq (a,b)$ for some $b \in k^{\times}$.

PROOF. Let $L \subset D$ be a subalgebra isomorphic to $k(\sqrt{a})$, and $\alpha \in L$ such that $\alpha^2 = a$. Since α does not lie in the center of D, there is $x \in D$ such that $x\alpha \neq \alpha x$. Then $\beta = \alpha^{-1}x\alpha - x$ is nonzero. Using the fact that $\alpha^2 = a$ is in the center of D, we see that

$$\beta \alpha = \alpha^{-1} x \alpha^2 - x \alpha = \alpha x - x \alpha = -\alpha \beta.$$

Multiplying with β on the left, resp. right, we obtain $\beta^2 \alpha = -\beta \alpha \beta$, resp. $\beta \alpha \beta = -\alpha \beta^2$. It follows that β^2 commutes with α . Since β does not commute with α , we have $\beta \notin L$. Therefore the L-subspace of D generated by 1, β has dimension two over L, hence coincides with D by dimensional reasons. In particular the k-algebra D is generated by α , β . Since β^2 commutes with α and β , it lies in center of D, so that $b = \beta^2 \in k^{\times}$. It follows from Lemma 1.1.2 (applied with $i = \alpha, j = \beta$) that $D \simeq (a, b)$.

LEMMA 1.2.5. Let D be a central division k-algebra of dimension 4 and $d \in D - k$. Then the k-subalgebra of D generated by d is a quadratic field extension of k.

PROOF. The powers d^i for $i \in \mathbb{N}$ are linearly dependent over k (as D is finite-dimensional), hence there is a nonzero polynomial $P \in k[X]$ such that P(d) = 0. Since D contains no nonzero zerodivisors (being division), we may assume that P is irreducible. Then $X \mapsto d$ defines a morphism of k-algebras $k[X]/P \to D$. Since k[X]/P is a field, this morphism is injective. Its image L is a field, and coincides with the k-subalgebra of D generated by d. Now D is a vector space over L, and $\dim_L D \cdot \dim_k L = \dim_k D = 4$. We cannot have $\dim_k L = 4$, for D = L would then be commutative, and so would not be central over k. The case $\dim_k L = 1$ is also excluded, since by assumption $d \notin k$. So we must have $\dim_k L = 2$.

Corollary 1.2.6. Every central division k-algebra of dimension 4 is a quaternion algebra.

PROOF. Since k has characteristic different from 2, every quadratic extension of k has the form $k(\sqrt{a})$ for some $a \in k^{\times}$. Thus D contains such an extension by Lemma 1.2.5, and the statement follows from Proposition 1.2.4.

If L/k is a field extension and Q is a quaternion k-algebra, then $Q_L = Q \otimes_k L$ is naturally a quaternion L-algebra. Note that for any $q \in Q$ and $\lambda \in L$ we have

$$(1.2.a) \overline{q \otimes \lambda} = \overline{q} \otimes \lambda ; N(q \otimes \lambda) = N(q) \otimes \lambda^2.$$

DEFINITION 1.2.7. We will say that Q splits over L, or that L is a splitting field for Q, if the quaternion L-algebra Q_L is split.

EXAMPLE 1.2.8. Let Q be a quaternion k-algebra which splits over the purely transcendental extension k(t). By Proposition 1.1.13, this means that $ax^2 + by^2 = z^2$ has a nontrivial solution in k(t). Clearing denominators we may assume that $x, y, z \in k[t]$, and that one of x, y, z is not divisible by t. Then x(0), y(0), z(0) is a nontrivial solution in k, hence Q splits. Therefore every quaternion algebra splitting over k(t) splits over k.

PROPOSITION 1.2.9. Let $a \in k^{\times}$ and Q be a quaternion algebra. Assume that a is not a square in k. Then the following are equivalent:

- (i) $Q \simeq (a,b)$ for some $b \in k^{\times}$.
- (ii) Q splits over $k(\sqrt{a})$.
- (iii) The k-algebra Q contains a subalgebra isomorphic to $k(\sqrt{a})$.

PROOF. (i) \Rightarrow (ii) : Since a is a square in $k(\sqrt{a})$, we have $(a,b) \simeq (1,b)$ over $k(\sqrt{a})$, which splits by Lemma 1.1.4.

(ii) \Rightarrow (iii) : If Q is split, then $Q \simeq (1, a) \simeq (a, 1)$ by Lemma 1.1.4, and (iii) was observed in Remark 1.2.3. Thus we assume that Q is division. Then there are $p, q \in Q$

not both zero such that $N(p \otimes 1 + q \otimes \sqrt{a}) = 0$ by Proposition 1.1.13. Set $r = p\overline{q} \in Q$. In view of (1.2.a), we have

$$0 = (p \otimes 1 + q \otimes \sqrt{a})(\overline{p} \otimes 1 + \overline{q} \otimes \sqrt{a}) = (N(p) + aN(q)) \otimes 1 + (r + \overline{r}) \otimes \sqrt{a}.$$

We deduce that N(p) = -aN(q) and that r is a pure quaternion. Now

$$r^{2} = -r\overline{r} = -p\overline{q}q\overline{p} = -N(p)N(q) = aN(q)^{2}.$$

Note that $N(q) \neq 0$, for otherwise N(p) = -aN(q) = 0, and thus q = p = 0 (by Lemma 1.1.9, as Q is division), contradicting the choice of p,q. The element $s = N(q)^{-1}r \in Q$ satisfies $s^2 = a$. Mapping X to s yields a morphism of k-algebras $k[X]/(X^2 - a) \to Q$, and (iii) follows.

(iii) \Rightarrow (i) : If Q is not division, then $Q \simeq (1,a) \simeq (a,1)$ by Lemma 1.1.4, so we may take b=1 in this case. If Q is division, the implication has been proved in Proposition 1.2.4.

3. Biquaternion algebras

Let Q, Q' be quaternion algebras. Denote by Q_0, Q'_0 the respective subspaces of pure quaternions.

DEFINITION 1.3.1. The Albert form associated with the pair (Q, Q') is the quadratic form $Q_0 \oplus Q'_0 \to k$ defined by $q + q' \mapsto q'^2 - q^2$ for $q \in Q_0$ and $q' \in Q'_0$.

Theorem 1.3.2 (Albert). Let Q,Q' be quaternion algebras. The following are equivalent:

- (i) The ring $Q \otimes_k Q'$ is not division.
- (ii) There exist $a, b', b \in k^{\times}$ such that $Q \simeq (a, b)$ and $Q' \simeq (a, b')$.
- (iii) The Albert form associated with (Q, Q') has a nontrivial zero.

PROOF. (ii) \Rightarrow (iii) : If $i \in Q_0$ and $i' \in Q'_0$ are such that $i^2 = a = i'^2$, then $i - i' \in Q_0 \oplus Q'_0$ is a nontrivial zero of the Albert form.

(iii) \Rightarrow (i) : If $q \in Q_0$ and $q' \in Q'_0$ are such that $q^2 = q'^2 \in k$, we have

$$(q \otimes 1 - 1 \otimes q')(q \otimes 1 + 1 \otimes q') = 0.$$

As $Q_0 \cap k = 0$ in Q (see Lemma 1.1.7) we have $(Q_0 \otimes_k k) \cap (k \otimes_k Q'_0) = 0$ in $Q \otimes_k Q'$ (exercise), hence $q \otimes 1 \neq \pm 1 \otimes q'$. Thus the above relation shows that $q \otimes 1 - 1 \otimes q'$ is a nonzero noninvertible element of $Q \otimes_k Q'$.

(i) \Rightarrow (ii): We assume that (ii) does not hold, and show that $Q \otimes_k Q'$ is division. In view of Lemma 1.1.4 none of the algebras Q, Q' is isomorphic to $M_2(k)$, so Q and Q' are division by Proposition 1.1.13. We may assume that Q' = (a, b) for some $a, b \in k^{\times}$, and consider the standard generators $i, j \in Q'$. Since Q' is division, the element a is not a square in k (by Lemma 1.1.4). The subalgebra L of Q generated by i is a field isomorphic to $k(\sqrt{a})$ (Remark 1.2.3). Since (ii) does not hold, Proposition 1.2.9 implies that the ring $Q \otimes_k L$ remains division.

In view of Remark 1.1.11, it will suffice to show that any nonzero $x \in Q \otimes_k Q'$ admits a left inverse. Since 1, j is an L-basis of Q', we may write $x = p_1 + p_2(1 \otimes j)$ where $p_1, p_2 \in Q \otimes_k L$. If $p_2 = 0$, then x belongs to the division algebra $Q \otimes_k L$, hence admits a left inverse. Thus we may assume that p_2 is nonzero, hence invertible in the division

algebra $Q \otimes_k L$. Replacing x by $p_2^{-1}x$, we come to the situation where $p_2 = 1$. So we find $q_1, q_2 \in Q$ such that

$$x = q_1 \otimes 1 + q_2 \otimes i + 1 \otimes j.$$

Assume that $q_1q_2=q_2q_1$. Let K be the k-subalgebra of Q generated by q_1,q_2 . We claim that if $K\neq k$, then K is a quadratic field extension of k. Indeed, this is true by Lemma 1.2.5 if $q_1\in k$. Otherwise the k-subalgebra K_1 of Q generated by q_1 is a quadratic field extension of k, by the same lemma. If $q_2\notin K_1$, then $1,q_2$ is a K_1 -basis of Q, so that K=Q. This is not possible since q_1 and q_2 commute (as Q is central). Thus $q_2\in K_1$, and $K=K_1$ is as required, proving the claim. If $K\neq k$, then Proposition 1.2.9 thus implies that Q splits over K, and since (ii) does not hold, by the same proposition $K\otimes_k Q'$ must remain division. This conclusion also holds if K=k. Thus $x\in K\otimes_k Q'$ admits a left inverse.

So we may assume that $q_1q_2 \neq q_2q_1$. Let $y = q_1 \otimes 1 - q_2 \otimes i - 1 \otimes j$. Then

$$yx = (q_1 \otimes 1 - q_2 \otimes i - 1 \otimes j)(q_1 \otimes 1 + q_2 \otimes i + 1 \otimes j)$$

$$= (q_1 \otimes 1 - q_2 \otimes i)(q_1 \otimes 1 + q_2 \otimes i) - 1 \otimes j^2$$
 as $ji = -ij$

$$= q_1^2 \otimes 1 - aq_2^2 \otimes 1 + (q_1q_2 - q_2q_1) \otimes i - b \otimes 1.$$

Thus yx belongs to the division subalgebra $Q \otimes_k L$. This element is also nonzero (since $q_1q_2 \neq q_2q_1$), hence admits a left inverse. \square

LEMMA 1.3.3. For any $a, b, c \in k^{\times}$, we have

$$(a,b) \otimes_k (a,c) \simeq (a,bc) \otimes_k M_2(k).$$

PROOF. Let i, j, resp. i', j', be the standard generators of (a, b), resp. (a, c). Consider the k-subspace A of $(a, b) \otimes_k (a, c)$ generated by

$$1 \otimes 1$$
, $i \otimes 1$, $j \otimes j'$, $ij \otimes j'$.

Then A is stable under multiplication. So is the k-subspace A' generated by

$$1 \otimes 1$$
, $1 \otimes j'$, $i \otimes i'$, $i \otimes j'i'$.

Moreover every element of A commutes with every element of A'. Now, there are isomorphisms of k-algebras

$$A \simeq (a, bc)$$
 ; $A' \simeq (c, a^2) \simeq (c, 1) \simeq M_2(k)$.

The k-linear map $f: A \otimes_k A' \to (a,b) \otimes_k (a,c)$ given by $x \otimes y \mapsto xy = yx$ is a morphism of k-algebras; its image visibly contains the elements

$$i \otimes 1$$
, $1 \otimes i'$, $j \otimes 1$, $1 \otimes j'$.

Since these elements generate the k-algebra $(a, b) \otimes_k (a, c)$, we conclude that f is surjective, hence an isomorphism by dimensional reasons.

Remark 1.3.4. A tensor product of two quaternion algebras is called a biquaternion algebra. By Theorem 1.3.2 and Lemma 1.3.3, such an algebra is either division, or isomorphic to $M_2(D)$ for some division quaternion algebra D, or to $M_4(k)$.

Proposition 1.3.5. Let Q, Q' be quaternion algebras. Then

$$Q \simeq Q' \iff Q \otimes_k Q' \simeq M_4(k).$$

PROOF. If $Q \simeq Q' \simeq (a,b)$ for some $a,b \in k^{\times}$, then $Q \otimes_k Q' \simeq (a,b^2) \otimes_k M_2(k)$ by Lemma 1.3.3, and $(a,b^2) \simeq (a,1) \simeq M_2(k)$. Now $M_2(k) \otimes_k M_2(k) \simeq M_4(k)$ (exercise).

Assume now that $Q \otimes_k Q' \simeq M_4(k)$. Since $M_4(k)$ is not division, by Albert's Theorem 1.3.2, there are $a,b,c \in k^{\times}$ such that $Q \simeq (a,b)$ and $Q' \simeq (a,c)$. If (a,bc) splits, then Proposition 1.1.18 implies that $(a,b) \simeq (a,b^2c) \simeq (a,c)$, as required. So we assume that D=(a,bc) is division, and come to a contradiction. We have $M_2(D)=D \otimes_k M_2(k) \simeq M_4(k)$ by Lemma 1.3.3. The element of $M_2(D)$ corresponding to the matrix

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \in M_4(k)$$

is an endomorphism φ of the left D-module $D^{\oplus 2} = De_1 \oplus De_2$ such that $\varphi^3 \neq 0$ and $\varphi^4 = 0$. Since φ is not injective (as φ^4 is not injective), the kernel of φ contains an element $\lambda_1 e_1 + \lambda_2 e_2$, where $\lambda_1, \lambda_2 \in D$ are not both zero. Upon exchanging the roles of e_1 and e_2 , we may assume that $\lambda_1 \neq 0$. Then $\varphi(e_1) = -\lambda_1^{-1}\lambda_2\varphi(e_2) \in D\varphi(e_2)$, hence letting $f = \varphi(e_2)$, we have $\varphi(D^{\oplus 2}) = Df$. Thus $\varphi(f) = \mu f$ for some $\mu \in D$, and

$$0 = \varphi^4(e_2) = \varphi^3(f) = \mu^3 f.$$

If $\mu \neq 0$, then $f = \mu^{-3}\mu^3 f = 0$, which implies that $\varphi = 0$, a contradiction. Thus $\mu = 0$, and $\varphi^2 = 0$, another contradiction.

CHAPTER 2

Central simple algebras

In this chapter, we develop the general theory of finite-dimensional central simple algebras over a field. Wedderburn's Theorem asserts that such algebras are matrix algebras over (finite-dimensional central) division algebras. This theorem plays a key role in the theory, because it permits to reduce many proofs to the case of division algebras, where the situation is often more tractable.

After extending scalars appropriately, any finite-dimensional central simple algebras becomes a matrix algebra over a field. So such algebras may be thought of as twisted forms of matrix algebras, and as such share many of their properties. This point of view will be further explored in the next chapters.

Much information on the algebra is encoded in the data of which extensions of the base field transform it into a matrix algebras; such fields are called splitting fields. We prove the existence of a separable splitting field, a crucial technical result which will allow us to use Galois theory later on. The index of the algebra is an integer expressing how far is the algebra from being split. In this chapter we gather basic information concerning the behaviour of this invariant under field extensions.

We conclude with a definition of the Brauer group, which classifies finite-dimensional central simple algebras over a given base field.

1. Wedderburn's Theorem

A module (resp. ideal) will mean a left module (resp. ideal). When R is a ring, the ring of n by n matrices will be denoted by $M_n(R)$. If M,N are R-modules, we denote the set of morphisms of R-modules $M \to N$ by $\operatorname{Hom}_R(M,N)$. If M is an R-module, the set $\operatorname{End}_R(M) = \operatorname{Hom}_R(M,M)$ is naturally an R-algebra, and we will denote by $\operatorname{Aut}_R(M) = (\operatorname{End}_R(M))^{\times}$ the set of automorphisms of M.

The letter k will denote a field, which is now allowed to be of arbitrary characteristic.

DEFINITION 2.1.1. Let R be a ring. An R-module is called *simple* if it has exactly two submodules: zero and itself.

LEMMA 2.1.2 (Schur). Let R be a ring and M a simple R-module. Then $\operatorname{End}_R(M)$ is a division ring.

PROOF. Let $\varphi \in \operatorname{End}_R(M)$ be nonzero. The kernel of φ is a submodule of M unequal to M. Since M is simple, this submodule must be zero. Similarly the image of φ is a nonzero submodule of M, hence must coincide with M. Thus φ is bijective, and it follows that φ is invertible in $\operatorname{End}_R(M)$.

DEFINITION 2.1.3. Let R be a ring. The *opposite ring* R^{op} is the ring equal to R as an abelian group, where multiplication is defined by mapping (x, y) to yx (instead of

xy for the multiplication in R). Note that if R is a k-algebra, then R^{op} is naturally a k-algebra.

Observe that:

- (i) $R = (R^{op})^{op}$.
- (ii) Every isomorphism $R \simeq S$ induces an isomorphism $R^{\text{op}} \simeq S^{\text{op}}$.
- (iii) If R is simple, then so is R^{op} .
- (iv) Transposing matrices induces an isomorphism $M_n(R)^{\text{op}} \simeq M_n(R^{\text{op}})$.

LEMMA 2.1.4. Let R be a ring (resp. k-algebra) and $e \in R$ such that $e^2 = e$. Then S = eRe is naturally a ring (resp. k-algebra), which is isomorphic to $\operatorname{End}_R(Re)^{\operatorname{op}}$.

PROOF. Consider the ring morphism $\varphi \colon S \to \operatorname{End}_R(Re)^{\operatorname{op}}$ sending s to the morphism $x \mapsto xs$. Observe that $\varphi(s)(e) = s$ for any $s \in S$, hence φ is injective. If $f \colon Re \to Re$ is a morphism of R-modules, we may find $r \in R$ such that f(e) = re. Then for any $g \in Re$, we have g = g, hence

$$f(y) = f(ye) = yf(e) = yre = yere = \varphi(ere)(y),$$

so that $f = \varphi(ere)$, proving that φ is surjective.

DEFINITION 2.1.5. A ring is called *simple* if it has exactly two two-sided ideals: zero and itself.

Remark 2.1.6. A division ring (Definition 1.1.10) is simple.

PROPOSITION 2.1.7. Let R be a ring and $n \in \mathbb{N} - 0$. We view R as the subring of diagonal matrices in $M_n(R)$.

- (i) If the ring R is simple, then so is $M_n(R)$.
- (ii) The rings R and $M_n(R)$ have the same center (Definition 1.2.1).
- (iii) Assume that R is a division ring (resp. division k-algebra). Then $M_n(R)$ possesses a minimal nonzero ideal. If I is any such ideal, then $R \simeq \operatorname{End}_{M_n(R)}(I)^{\operatorname{op}}$.

PROOF. We will denote by $e_{i,j} \in M_n(R)$ the matrix having (i,j)-th coefficient equal to 1, and all other coefficients equal to zero. These elements commute with the subalgebra $R \subset M_n(R)$, and generate $M_n(R)$ as an R-module. Taking the (i,j)-th coefficient yields a morphism of two-sided R-modules $\gamma_{i,j} \colon M_n(R) \to R$. For any $m \in M_n(R)$, we have $m = \sum_{i,j} \gamma_{i,j}(m)e_{i,j}$, and

(2.1.a)
$$e_{k,i} m e_{j,l} = \gamma_{i,j}(m) e_{k,l} \quad \text{for all } i, j, k, l.$$

- (i): Let J be a two-sided ideal of $M_n(R)$. Then there is a couple (i, j) such that the two-sided ideal $\gamma_{i,j}(J)$ of R is nonzero, hence equal to R by simplicity of R. Thus there is $m \in J$ such that $\gamma_{i,j}(m) = 1$, and (2.1.a) implies that $e_{k,l} \in J$ for all k, l. We conclude that $J = M_n(R)$.
 - (ii) : Let $k, l \in \{1, ..., n\}$ and $m \in M_n(R)$. Then

$$e_{k,l}m = \sum_{i,j} \gamma_{i,j}(m) e_{k,l} e_{i,j} = \sum_j \gamma_{l,j}(m) e_{k,j},$$

$$me_{k,l} = \sum_{i,j} \gamma_{i,j}(m)e_{i,j}e_{k,l} = \sum_{i} \gamma_{i,k}(m)e_{i,l}.$$

Assume that m commutes with $e_{k,l}$. Then $\gamma_{k,k}(m) = \gamma_{l,l}(m)$, and $\gamma_{i,k}(m) = 0$ for $i \neq k$. It follows that the center of $M_n(R)$ is contained in R, hence in the center of R. Conversely, any element of the center of R certainly commutes with every matrix.

(iii): Let us write $B = M_n(R)$. For r = 1, ..., n, consider the ideal $I_r = Be_{r,r}$ of B. Let m be a nonzero element of I_r . There is a couple (k, i) such that $e_{k,i}m \neq 0$. As $(e_{r,r})^2 = e_{r,r}$, we have $m = me_{r,r}$. It follows from (2.1.a) that $\gamma_{i,r}(m)e_{k,r} = e_{k,i}m$. In particular $\gamma_{i,r}(m) \neq 0$, and

$$e_{r,r} = e_{r,k}e_{k,r} = e_{r,k}\gamma_{k,r}(m)^{-1}e_{k,i}m \in Bm,$$

and therefore $I_r \subset Bm$. We have proved that I_r is a simple B-module, or equivalently a minimal nonzero ideal of B. If I is any other such ideal, then there is a surjective morphism of B-modules $B \to I$ (as I must be generated by a single element). Since the natural morphism $I_1 \oplus \cdots \oplus I_n \to B$ is surjective (as $e_{i,j} = e_{i,j}e_{j,j} \in I_j$ for all i,j), the composite $I_r \to I$ must be nonzero for some r, hence an isomorphism as both I_r and I are simple (see the proof of Lemma 2.1.2). Now the map $R \to e_{r,r}Be_{r,r}$ given by $x \mapsto xe_{r,r}$ is a ring (resp. k-algebra) isomorphism (with inverse $\gamma_{r,r}$). Thus it follows from Lemma 2.1.4 that $R \simeq \operatorname{End}_B(I_r)^{\operatorname{op}} \simeq \operatorname{End}_B(I)^{\operatorname{op}}$.

COROLLARY 2.1.8. If D, E are division rings (resp. division k-algebras) such that $M_n(D) \simeq M_m(E)$ for some nonzero integers m, n, then $D \simeq E$.

PROOF. By Proposition 2.1.7 (ii), there is a minimal nonzero ideal I of $M_n(D)$. The corresponding ideal J of $M_m(E)$ is also minimal nonzero, hence by Proposition 2.1.7 (ii)

$$D \simeq \operatorname{End}_{M_n(D)}(I)^{\operatorname{op}} \simeq \operatorname{End}_{M_m(E)}(J)^{\operatorname{op}} \simeq E.$$

Definition 2.1.9. A ring is called *artinian* if every descending chain of ideals stabilises.

Example 2.1.10. Every finite-dimensional k-algebra is artinian.

Proposition 2.1.11. Let A be an artinian simple ring.

- (i) There is a unique simple A-module, up to isomorphism.
- (ii) Every finitely generated A-module is a finite direct sum of simple A-modules.

PROOF. Since A is artinian, it admits a minimal nonzero ideal S. Then S is a simple A-module. Moreover the two-sided ideal SA generated by S in A is nonzero, hence SA = A by simplicity of A. In particular there are elements $a_1, \ldots, a_p \in A$ such that $1 \in Sa_1 + \cdots + Sa_p$. We have thus a surjective morphism of A-modules $S^{\oplus p} \to A$ given by $(s_1, \ldots, s_p) \mapsto s_1a_1 + \cdots + s_pa_p$.

Let now M be a finitely generated A-module. Then M is a quotient of $A^{\oplus q}$ for some integer q, hence a quotient of $S^{\oplus n}$ for some integer n (namely n=pq). Choose n minimal with this property, and denote by N the kernel of the surjective morphism $S^{\oplus n} \to M$. For $i=1,\ldots,n$, denote by $\pi_i\colon S^{\oplus n}\to S$ the projection onto the i-th factor. If $N\neq 0$, there is i such that $\pi_i(N)\neq 0$. Since S is simple, this implies that $\pi_i(N)=S$. Let now $m\in M$, and $s\in S^{\oplus n}$ a preimage of m. Then there is $z\in N$ such that $\pi_i(z)=\pi_i(s)$. The element s-z is mapped to m in M, and belongs to $\ker \pi_i\simeq S^{\oplus n-1}$. This yields a surjective morphism $S^{\oplus n-1}\to M$, contradicting the minimality of n. So we must have N=0, and $S^{\oplus n}\simeq M$. This proves the second statement.

If M is simple, we must have n=1. Now a simple module is necessarily finitely generated, so (i) follows.

THEOREM 2.1.12 (Wedderburn). Let A be an artinian simple ring (resp. a finite-dimensional simple k-algebra). Then A is isomorphic to $M_n(D)$ for some integer n and division ring (resp. finite-dimensional division k-algebra) D. Such a ring (resp. k-algebra) D is unique up to isomorphism, and has the same center as A.

PROOF. Recall that in any case A is artinian (Example 2.1.10). Let S be a simple A-module, which exists by Proposition 2.1.11. Then the ring $E = \operatorname{End}_A(S)$ is division by Schur's Lemma 2.1.2. By Proposition 2.1.11 there is an integer n such that $A^{\operatorname{op}} \simeq S^{\oplus n}$ as A-modules. In view of Lemma 2.1.4 (with R = A and e = 1), we have

$$A = \operatorname{End}_A(A)^{\operatorname{op}} \simeq \operatorname{End}_A(S^{\oplus n})^{\operatorname{op}} = M_n(\operatorname{End}_A(S))^{\operatorname{op}} = M_n(E^{\operatorname{op}}).$$

So we may take $D = E^{\text{op}}$. Unicity was proved in Corollary 2.1.8, and the last statement follows from Proposition 2.1.7 (ii).

2. The commutant

DEFINITION 2.2.1. Let R be a ring and $E \subset R$ a subset. The set

$$\mathcal{Z}_R(E) = \{ r \in R | er = re \text{ for all } e \in E \}$$

is a subring of R, called the *commutant* of E in R. We say that an element of R commutes with E if it belongs to $\mathcal{Z}_R(E)$. Recall from Definition 1.2.1 that $\mathcal{Z}(R) = \mathcal{Z}_R(R)$ is called the center of R, and that a nonzero k-algebra A is called central if $\mathcal{Z}(A) = k$.

Lemma 2.2.2. The center of a simple ring is a field.

PROOF. Let R be a simple ring, and x a nonzero element of $\mathcal{Z}(R)$. Then the two-sided ideal RxR of R is nonzero, hence RxR = R. Thus we may write $1 = a_1xa'_1 + \cdots + a_nxa'_n$ with $a_1, \ldots, a_n, a'_1, \ldots, a'_n \in R$. Then the element $y = a_1a'_1 + \cdots + a_na'_n$ is a two-sided inverse of x in R. For any $r \in R$, we have

$$yr = yr(xy) = y(rx)y = y(xr)y = (yx)ry = ry,$$

proving that $y \in \mathcal{Z}(R)$.

LEMMA 2.2.3. Let A, B be k-algebras, and $A' \subset A$ a subalgebra. Then

$$\mathcal{Z}_{A\otimes_k B}(A'\otimes_k k) = \mathcal{Z}_A(A')\otimes_k B.$$

PROOF. Let $C = \mathcal{Z}_{A \otimes_k B}(A' \otimes_k k)$. Certainly $\mathcal{Z}_A(A') \otimes_k B \subset C$. Any element $c \in C$ may be written as $c = a_1 \otimes b_1 + \cdots + a_n \otimes b_n$ with $a_1, \ldots, a_n \in A$ and $b_1, \ldots, b_n \in B$. We may additionally assume that b_1, \ldots, b_n are linearly independent over k. Let $a' \in A'$. Then c commutes with $a' \otimes 1$, hence we have in $A \otimes_k B$

$$0 = c(a' \otimes 1) - (a' \otimes 1)c = (a_1a' - a'a_1) \otimes b_1 + \dots + (a_na' - a'a_n) \otimes b_n.$$

The linear independence of b_1, \ldots, b_n implies that the k-subspaces $A \otimes_k b_1 k, \ldots, A \otimes_k b_n k$ are in direct sum in $A \otimes_k B$ (exercise), and we conclude that each a_i commutes with a', proving the other inclusion.

Proposition 2.2.4. Let A, B be k-algebras, and $A' \subset A, B' \subset B$ subalgebras. Then

$$\mathcal{Z}_{A\otimes_k B}(A'\otimes_k B')=\mathcal{Z}_A(A')\otimes_k \mathcal{Z}_B(B').$$

PROOF. Let $C = \mathcal{Z}_{A \otimes_k B}(A' \otimes_k B')$. Then C contains $\mathcal{Z}_A(A') \otimes_k \mathcal{Z}_B(B')$. Conversely by Lemma 2.2.3, the subalgebra $C \subset A \otimes_k B$ is contained in

$$\mathcal{Z}_{A\otimes_k B}(A'\otimes_k k)\cap \mathcal{Z}_{A\otimes_k B}(k\otimes_k B')=(\mathcal{Z}_A(A')\otimes_k B)\cap (A\otimes_k \mathcal{Z}_B(B')),$$

which coincides with $\mathcal{Z}_A(A') \otimes_k \mathcal{Z}_B(B')$ (exercise).

PROPOSITION 2.2.5. Let A, B be k-algebras. If the ring $A \otimes_k B$ is simple, then so are A and B.

PROOF. Let I be a two-sided ideal of A such that $I \neq A$. Then the k-algebra C = A/I is nonzero. Consider the commutative diagram

$$A \xrightarrow{f} C$$

$$\downarrow c \mapsto c \otimes 1$$

$$A \otimes_k B \xrightarrow{f \otimes \mathrm{id}_B} C \otimes_k B$$

Since $A \otimes_k B \neq 0$ (being simple), we have $B \neq 0$. As $C \neq 0$, we must have $C \otimes_k B \neq 0$ (exercise). By simplicity of $A \otimes_k B$, the morphism $f \otimes \mathrm{id}_B$ is injective. Since the left vertical morphism in the above diagram is also injective (exercise), it follows that f is injective, or equivalently that I = 0. This proves that A is simple (and so is B by symmetry).

PROPOSITION 2.2.6. Let A be a simple k-algebra and B a central simple k-algebra. Then the k-algebra $A \otimes_k B$ is simple.

PROOF. Let $I \subseteq A \otimes_k B$ be a two-sided ideal. Let $i = a_1 \otimes b_1 + \dots + a_n \otimes b_n$ be a nonzero element of I, where $a_1, \dots, a_n \in A$ and $b_1, \dots, b_n \in B$. We assume that n is minimal, in the sense that if $a'_1 \otimes b'_1 + \dots + a'_m \otimes b'_m$ is a nonzero element of I, then $m \ge n$. Consider the following subset of B:

$$H = \{\beta_1 \in B | a_1 \otimes \beta_1 + \dots + a_n \otimes \beta_n \in I \text{ for some } \beta_2, \dots, \beta_n \in B\}.$$

The set H is a two-sided ideal of B, and it is nonzero since it contains $b_1 \neq 0$. By simplicity of B, it follows that H = B, hence H contains 1. We may thus assume that $b_1 = 1$. Then for any $b \in B$, we have

$$(1 \otimes b)i - i(1 \otimes b) = a_2 \otimes (bb_2 - b_2b) + \dots + a_n \otimes (bb_n - b_nb) \in I.$$

By minimality of n, we must have $(1 \otimes b)i = i(1 \otimes b)$. Thus, by Proposition 2.2.4

$$i \in \mathcal{Z}_{A \otimes_k B}(k \otimes_k B) = \mathcal{Z}_A(k) \otimes_k \mathcal{Z}_B(B) = A \otimes_k k.$$

Therefore i is of the form $a \otimes 1$ for some $a \in A$. The subset $\{a \in A | a \otimes 1 \in I\} \subset A$ is a two-sided ideal of A. It is distinct from A (for otherwise $1 \in I$), hence is zero by simplicity of A. Thus i = 0, a contradiction.

COROLLARY 2.2.7. Let A, B be k-algebras. Then the k-algebra $A \otimes_k B$ is central simple if and only if A and B are central simple.

Proof. Combine Proposition 2.2.6, Proposition 2.2.4 and Proposition 2.2.5. \Box

PROPOSITION 2.2.8. Let A be a finite-dimensional central simple k-algebra. Then the morphism $\varphi \colon A \otimes_k A^{\operatorname{op}} \to \operatorname{End}_k(A)$ mapping $a \otimes b$ to $x \mapsto axb$ is an isomorphism.

PROOF. This morphism is visibly nonzero. Its kernel is a two-sided ideal in the ring $A \otimes_k A^{\text{op}}$, which is simple by Proposition 2.2.6. Thus φ is injective, and bijective for dimensional reasons.

Lemma 2.2.9. Let A be a finite-dimensional central simple k-algebra and $B \subset A$ a subalgebra. Then there is a natural isomorphism

$$\mathcal{Z}_A(B) \otimes_k A^{\mathrm{op}} \simeq \mathrm{End}_B(A).$$

PROOF. Consider the isomorphism $\varphi \colon A \otimes_k A^{\operatorname{op}} \simeq \operatorname{End}_k(A)$ of Proposition 2.2.8, and let $C = \varphi(B \otimes_k k)$. A morphism in $\operatorname{End}_k(A)$ commutes with C if and only if it is B-linear (for the left action on A). Thus

$$\mathcal{Z}_{A\otimes_k A^{\mathrm{op}}}(B\otimes_k k)\simeq \mathcal{Z}_{\mathrm{End}_k(A)}(C)=\mathrm{End}_B(A).$$

To conclude, note that $\mathcal{Z}_{A \otimes_k A^{\mathrm{op}}}(B \otimes_k k) = \mathcal{Z}_A(B) \otimes_k A^{\mathrm{op}}$ by Lemma 2.2.3.

Proposition 2.2.10. Let A be a finite-dimensional central simple k-algebra and B a simple subalgebra of A.

- (i) The ring $\mathcal{Z}_A(B)$ is simple.
- (ii) There exists a division k-algebra D, and integers n, r such that

$$\mathcal{Z}_A(B) \otimes_k A^{\mathrm{op}} \simeq M_n(D^{\mathrm{op}})$$
 ; $B \simeq M_r(D)$.

- (iii) $(\dim_k B)(\dim_k \mathcal{Z}_A(B)) = \dim_k A$.
- (iv) $\mathcal{Z}_A(\mathcal{Z}_A(B)) = B$.
- (v) The centers of B and $\mathcal{Z}_A(B)$ coincide, as subsets of A.

PROOF. Let $C = \mathcal{Z}_A(B)$.

(ii): By Proposition 2.1.11, there exist a simple B-module S, and integers r, n such that $B \simeq S^{\oplus r}$ and $A \simeq S^{\oplus n}$ as B-modules. The k-algebra $D = \operatorname{End}_B(S)^{\operatorname{op}}$ is division by Schur's Lemma 2.1.2. We have, by Lemma 2.2.9

$$C \otimes_k A^{\mathrm{op}} \simeq \mathrm{End}_B(A) \simeq \mathrm{End}_B(S^{\oplus n}) = M_n(\mathrm{End}_B(S)) = M_n(D^{\mathrm{op}}).$$

Now, by Lemma 2.1.4 (with R = B and e = 1)

$$B = \operatorname{End}_B(B)^{\operatorname{op}} \simeq \operatorname{End}_B(S^{\oplus r})^{\operatorname{op}} = M_r(\operatorname{End}_B(S))^{\operatorname{op}} = M_r(\operatorname{End}_B(S)^{\operatorname{op}}) = M_r(D).$$

- (i): Since $M_n(D^{\text{op}})$ is simple by Remark 2.1.6 and Proposition 2.1.7 (i), it follows from Proposition 2.2.5 that $\mathcal{Z}_A(B)$ is simple.
- (iii): Let $a=\dim_k A, b=\dim_k B, c=\dim_k C, d=\dim_k D, s=\dim_k S$. Taking the dimensions in (i) yields $ac=n^2d$ and $b=r^2d$. Since $B\simeq S^{\oplus r}$ and $A\simeq S^{\oplus n}$, we have b=rs and a=ns, and therefore ar=bn. Thus

$$a^2b = a^2r^2d = b^2n^2d = b^2ac$$

hence a = bc.

- (iv): Clearly $B \subset \mathcal{Z}_A(C)$. The equality follows by dimensional reasons. Indeed, let $z = \dim_k \mathcal{Z}_A(B)$ and $z' = \dim_k \mathcal{Z}_A(\mathcal{Z}_A(B))$, $a = \dim_k A$, $b = \dim_k B$. Then by(i) and (iii), we have bz = a = zz', so that b = z'.
 - (v): Let R be a subring of A, and $S = \mathcal{Z}_A(R)$. Then $R \subset \mathcal{Z}_A(S)$, hence

(2.2.a)
$$\mathcal{Z}(R) = R \cap \mathcal{Z}_A(R) = R \cap S \subset \mathcal{Z}_A(S) \cap S = \mathcal{Z}(S).$$

Taking R = B in (2.2.a) yields $\mathcal{Z}(B) \subset \mathcal{Z}(C)$. Since $B = \mathcal{Z}_A(C)$ by (iv), taking R = C in (2.2.a) yields $\mathcal{Z}(C) \subset \mathcal{Z}(B)$.

3. Skolem-Noether's Theorem

Lemma 2.3.1. Let A be a simple k-algebra. Then two A-modules of finite dimension over k are isomorphic if and only if they have the same dimension over k.

PROOF. This follows from Proposition 2.1.11. Indeed let S be a simple A-module. Then every A-module M of finite dimension over k (which is necessarily finitely generated) is isomorphic to $S^{\oplus n}$ for some integer n, which is determined by $\dim_k M$.

We will need the following notation. Let $h: B \to A$ be a morphism of k-algebras. We define a $B \otimes_k A^{\mathrm{op}}$ -module A^h , by setting $A^h = A$ as a k-vector space, with the module structure given by letting $b \otimes a$ act on A^h by $x \mapsto h(b)xa$, where $b \in B$, $a \in A^{\mathrm{op}}$.

LEMMA 2.3.2. Let $f,g: B \to A$ be morphisms of k-algebras such that $A^f \simeq A^g$ as $B \otimes_k A^{\mathrm{op}}$ -modules. Then there exists an element $u \in A^{\times}$ such that $f(b) = u^{-1}g(b)u$ for all $b \in B$.

PROOF. Let $\varphi \colon A^f \to A^g$ be an isomorphism of $B \otimes_k A^{\operatorname{op}}$ -modules. Set $u = \varphi(1) \in A$. For any $b \in B$, we have

$$\varphi(f(b)) = \varphi((b \otimes 1)1) = (b \otimes 1)\varphi(1) = g(b)u,$$

$$\varphi(f(b)) = \varphi((1 \otimes f(b))1) = (1 \otimes f(b))\varphi(1) = uf(b).$$

To conclude, we prove that $v = \varphi^{-1}(1) \in A$ is a two-sided inverse of u. We have

$$\varphi(vu) = \varphi((1 \otimes u)v) = (1 \otimes u)\varphi(v) = u = \varphi(1),$$

so that vu = 1, since φ is injective. On the other hand

$$uv = (1 \otimes v)\varphi(1) = \varphi((1 \otimes v)1) = \varphi(v) = 1.$$

THEOREM 2.3.3 (Skolem-Noether). Let B be a simple k-algebra and A a finite-dimensional central simple k-algebra. If $f, g: B \to A$ are morphisms of k-algebras, there is an element $u \in A^{\times}$ such that $f(b) = u^{-1}g(b)u$ for all $b \in B$.

PROOF. The k-algebra $B \otimes_k A^{\text{op}}$ is simple by Proposition 2.2.6. As $\dim_k A^f = \dim_k A = \dim_k A^g$, by Lemma 2.3.1 the $B \otimes_k A^{\text{op}}$ -modules A^f and A^g are isomorphic, and the statement follows from Lemma 2.3.2.

COROLLARY 2.3.4. Every automorphism of a finite-dimensional central simple k-algebra A is inner, i.e. of the form $x \mapsto a^{-1}xa$ for some $a \in A^{\times}$.

4. The index

When L/k is a field extension and A a k-algebra, we will denote by A_L the L-algebra $A \otimes_k L$.

LEMMA 2.4.1. Let A be a k-algebra and L/k a field extension. Then A is a finite-dimensional central simple k-algebra if and only if A_L is a finite-dimensional central simple L-algebra.

PROOF. Since $\dim_k A = \dim_L A_L$ and $\mathcal{Z}(A_L) = \mathcal{Z}(A) \otimes_k L$ by Proposition 2.2.4, the k-algebra A is finite-dimensional (resp. central) if and only if the L-algebra A_L is so. Observe that the ring L is simple (Remark 2.1.6). Thus the equivalence follows from Proposition 2.2.5 and Proposition 2.2.6.

Lemma 2.4.2. Every finite-dimensional subalgebra of a division k-algebra is division.

PROOF. Let D be a division k-algebra, and B a finite-dimensional subalgebra. Let b be a nonzero element of B. The k-linear map $B \to B$ given by left multiplication by b is injective, because if $x \in B$ is such that bx = 0, then $0 = b^{-1}bx = x$ in D, hence x = 0 in B. By dimensional reasons, this map is surjective. Thus the element $1 \in B$ lies in its image, so there is $b' \in B$ such that bb' = 1. Multiplying by b^{-1} on the left, we deduce that $b^{-1} = b' \in B$.

Proposition 2.4.3. If k is algebraically closed, the only finite-dimensional division k-algebra is k.

PROOF. Let D be a finite-dimensional division k-algebra. Pick an element $x \in D$. The k-subalgebra of D generated by x is commutative, hence a field by Lemma 2.4.2. It has finite degree over k, and is thus an algebraic extension of k. By assumption it must equal k, hence $x \in k$, and finally D = k.

Corollary 2.4.4. If k is algebraically closed, then every finite-dimensional simple k-algebra is isomorphic to $M_n(k)$ for some integer n.

PROOF. This follows from Wedderburn's Theorem 2.1.12 and Proposition 2.4.3. \Box

COROLLARY 2.4.5. If A is a finite-dimensional central simple k-algebra, the integer $\dim_k A$ is a square.

PROOF. Let \overline{k} be an algebraic closure of k. The \overline{k} -algebra $A_{\overline{k}}$ is finite-dimensional simple by Lemma 2.4.1, hence isomorphic to $M_n(\overline{k})$ for some integer n by Corollary 2.4.4. Then $\dim_k A = \dim_{\overline{k}} A_{\overline{k}} = n^2$.

DEFINITION 2.4.6. When A is a finite-dimensional central simple k-algebra, the integer $d \in \mathbb{N}$ such that $d^2 = \dim_k A$ is called the *degree* of A and denoted $\deg(A)$. By Wedderburn's Theorem 2.1.12 there is a finite-dimensional central division k-algebra D such that $A \simeq M_n(D)$ for some integer n, and D is unique up to isomorphism. The *index* of A, denoted $\operatorname{ind}(A)$, is defined as the degree of D.

Observe that $\operatorname{ind}(A)$ divides $\operatorname{deg}(A)$, and that if $A \simeq M_r(B)$ for some integer $r \geq 1$ and finite-dimensional central simple k-algebra B, then $\operatorname{ind}(A) = \operatorname{ind}(B)$ (recall that $M_r(M_n(D)) \simeq M_{rn}(D)$).

Lemma 2.4.7. Let A be a finite-dimensional central simple k-algebra, and L/k a field extension. Then

$$\operatorname{ind}(A_L) \mid \operatorname{ind}(A).$$

PROOF. Let D be a central division k-algebra such that $A \simeq M_n(D)$ for some integer n. Then $A_L \simeq M_n(D_L)$, hence

$$\operatorname{ind}(A_L) = \operatorname{ind}(D_L) \mid \deg(D_L) = \deg(D) = \operatorname{ind}(A).$$

5. Splitting fields

DEFINITION 2.5.1. A finite-dimensional central simple k-algebra is called split if it is isomorphic to the matrix algebra $M_n(k)$ for some integer n. A field extension L/k is called a splitting field of A if the L-algebra $A_L = A \otimes_k L$ is split.

Proposition 2.5.2. Let A be a finite-dimensional central simple k-algebra, and L/k be a field extension of finite degree splitting A. Then

$$\operatorname{ind}(A) \mid [L:k].$$

PROOF. Let $d = \operatorname{ind}(A)$ and n = [L : k]. Let D be a central division k-algebra such that $A \simeq M_t(D)$ for some integer t. We view L as a k-subalgebra of $\operatorname{End}_k(L) \simeq M_n(k)$ by mapping $\lambda \in L$ the endomorphism $x \mapsto \lambda x$ of L. Then we have inclusions

$$M_d(k) \subset M_d(L) \simeq D \otimes_k L \subset D \otimes_k M_n(k) = M_n(D).$$

Thus we may view $M_d(k)$ as a subalgebra of $M_n(D)$. It is a simple subalgebra by Proposition 2.1.7 (i), hence so is $B = \mathcal{Z}_{M_n(D)}(M_d(k))$ by Proposition 2.2.10 (i). Then $\mathcal{Z}_{M_n(D)}(B) = M_d(k)$ by Proposition 2.2.10 (iv). By Proposition 2.2.10 (ii) there exists a division k-algebra E and integers r, s such that $B \simeq M_r(E)$ and $M_d(k) \otimes_k M_n(D)^{\mathrm{op}} \simeq M_s(E^{\mathrm{op}})$. Then $M_{dn}(D) \simeq M_s(E)$, so that $E \simeq D$ by Corollary 2.1.8. It follows that $B \simeq M_r(D)$. Setting $b = \dim_k B$, we have thus $b = r^2 d^2$. By Proposition 2.2.10 (iii) we have $bd^2 = n^2 d^2$. Thus $n^2 = r^2 d^2$, and $d \mid n$.

LEMMA 2.5.3. Let A be a finite-dimensional central simple k-algebra, and $L \subset A$ a subalgebra. Assume that L is a field. Then $[L:k] \mid \deg(A)$, with equality if and only if $L = \mathcal{Z}_A(L)$.

PROOF. Since L is commutative, we have $L \subset \mathcal{Z}_A(L)$. The ring L being simple (Remark 2.1.6), by Proposition 2.2.10 (iii) we have

$$\deg(A)^2 = [L:k] \cdot \dim_k \mathcal{Z}_A(L) = [L:k]^2 \cdot \dim_L \mathcal{Z}_A(L),$$

from which the statement follows.

PROPOSITION 2.5.4. Let D be a finite-dimensional central division k-algebra, and $L \subset D$ a commutative subalgebra. Then L is a field, and the following are equivalent:

- (i) $L = \mathcal{Z}_D(L)$
- (ii) L is maximal among the commutative subalgebras of D.
- (iii) $[L:k] = \operatorname{ind}(D)$.
- (iv) L splits D.

PROOF. The first assertion follows from Lemma 2.4.2.

- (i) \iff (iii): This has been proved in Lemma 2.5.3.
- (iv) \Longrightarrow (iii) : Since $[L:k] \mid \operatorname{ind}(D)$ by Lemma 2.5.3, this follows from Proposition 2.5.2.
- (i) \Longrightarrow (ii) : Any commutative k-subalgebra of D containing L must be contained in $\mathcal{Z}_D(L)$.
- (ii) \Longrightarrow (i): Let $x \in \mathcal{Z}_D(L)$. The k-subalgebra of D generated by L and x is commutative, hence equals L. Thus $x \in L$.
- (i) \Longrightarrow (iv) : If $L = \mathcal{Z}_D(L)$, then $(D^{\text{op}})_L \simeq \operatorname{End}_L(D)$ by Lemma 2.2.9. Thus L splits D^{op} , hence also D.

Definition 2.5.5. A subalgebra L satisfying the equivalent conditions of Proposition 2.5.4 is called a *maximal subfield*.

In view of the characterisation (ii) in Proposition 2.5.4, maximal subfields always exist in finite-dimensional central division k-algebras (by dimensional reasons).

COROLLARY 2.5.6. Let A be a finite-dimensional central simple k-algebra. Then A is split by a field extension of k of degree $\operatorname{ind}(A)$.

PROOF. We may assume that A is division, and use the observation just above. \Box

Proposition 2.5.7. Let A be a finite-dimensional central simple k-algebra, and L/k a field extension of finite degree. Then

$$\operatorname{ind}(A_L) \mid \operatorname{ind}(A) \mid [L:k] \operatorname{ind}(A_L).$$

PROOF. The first divisibility was established in Lemma 2.4.7. By Corollary 2.5.6, there exists a field extension E/L splitting the L-algebra A_L and such that $[E:L] = \operatorname{ind}(A_L)$. Then E is a splitting field for the k-algebra A, and it follows from Proposition 2.5.2 that

$$ind(A) \mid [E:k] = [L:k][E:L] = [L:k] ind(A_L).$$

COROLLARY 2.5.8. If D is a finite-dimensional central division k-algebra and L/k a field extension of finite degree coprime to the degree of D, then D_L is division.

Proof. Proposition 2.5.7 yields

$$\operatorname{ind}(D_L) = \operatorname{ind}(D) = \deg(D) = \deg(D_L),$$

which implies that D_L is division.

PROPOSITION 2.5.9. Let A, B be finite-dimensional central simple k-algebras. Then $\operatorname{ind}(A \otimes_k B) \mid \operatorname{ind}(A) \operatorname{ind}(B) \mid \operatorname{ind}(A \otimes_k B) \operatorname{gcd}(\operatorname{ind}(A)^2, \operatorname{ind}(B)^2)$.

PROOF. Let L/k be a splitting field for A such that $[L:k] = \operatorname{ind}(A)$. Then $(A \otimes_k B)_L \simeq M_d(B_L)$, where $d = \operatorname{deg}(A)$, hence $\operatorname{ind}((A \otimes_k B)_L) = \operatorname{ind}(B_L)$. Applying Proposition 2.5.7 to the algebra $A \otimes_k B$, and Lemma 2.4.7 to the algebra B yields

$$\operatorname{ind}(A \otimes_k B) \mid [L : k] \operatorname{ind}((A \otimes_k B)_L) = \operatorname{ind}(A) \operatorname{ind}(B_L) \mid \operatorname{ind}(A) \operatorname{ind}(B),$$

proving the first divisibility. Applying Proposition 2.5.7 to the algebra B, and Proposition 2.5.7 to the algebra $A \otimes_k B$ yields

$$\operatorname{ind}(B) \mid [L:k] \operatorname{ind}(B_L) = \operatorname{ind}(A) \operatorname{ind}((A \otimes_k B)_L) \mid \operatorname{ind}(A) \operatorname{ind}(A \otimes_k B).$$

Similarly $\operatorname{ind}(A) \mid \operatorname{ind}(B) \operatorname{ind}(A \otimes_k B)$, and the second divisibility follows. \square

COROLLARY 2.5.10. If D, D' are finite-dimensional central division k-algebras of coprime degrees, then $D \otimes_k D'$ is division.

Proof. Proposition 2.5.9 yields

$$\operatorname{ind}(D \otimes_k D') = \operatorname{ind}(D) \operatorname{ind}(D') = \operatorname{deg}(D) \operatorname{deg}(D') = \operatorname{deg}(D \otimes_k D'),$$

which implies that $D \otimes_k D'$ is division.

Proposition 2.5.11. Let D be a finite-dimensional division k-algebra. If D is not commutative, then D contains a nontrivial separable field extension of k.

PROOF. By Lemma 2.4.2, the k-subalgebra generated by any element of D-k is a field (being commutative). Assume for a contradiction that D-k contains no element separable over k. Let $d \in D$. Since D is finite-dimensional over k, there is a nonzero polynomial $P \in k[X]$ such that P(d) = 0. Since D contains no nonzero zerodivisors (being division), we may assume that P is irreducible. The field k has characteristic

p > 0, and we may find a power q of p such that $P(X) = Q(X^q)$, where $Q \in k[Y]$ and $Q \notin k[Y^p]$. The polynomial Q is irreducible (because P is so), hence separable (as it does not lie in $k[Y^p]$). Since $Q(d^q) = 0$, we must have $d^q \in k$, by our assumption.

Let now $a \in D$ be such that $a \notin \mathcal{Z}(D)$. Consider the k-algebra automorphism $\sigma \colon D \to D$ given by $x \mapsto axa^{-1}$. As we have just seen, there is a power q of p such that $a^q \in k$, so that $\sigma^q = \mathrm{id}$. We thus have $(\sigma - \mathrm{id})^q = \sigma^q - \mathrm{id} = 0$, since k has characteristic p. Let f be the largest integer such that $(\sigma - \mathrm{id})^f \neq 0$, and let $c \in D$ be such that $(\sigma - \mathrm{id})^f(c) \neq 0$. Since $a \notin \mathcal{Z}(D)$, we have $\sigma \neq \mathrm{id}$, and thus $f \geq 1$. Let $x = (\sigma - \mathrm{id})^{f-1}(c)$ and $y = (\sigma - \mathrm{id})^f(c) = \sigma(x) - x$. Since $(\sigma - \mathrm{id})^{f+1} = 0$, we have $\sigma(y) = y$. Set $z = y^{-1}x$. Then

$$\sigma(z) = \sigma(y)^{-1}\sigma(x) = y^{-1}(y+x) = 1+z.$$

As we have seen above, there is a power r of p such that $z^r \in k$. Then

$$z^{r} = \sigma(z^{r}) = \sigma(z)^{r} = (1+z)^{r} = 1+z^{r}$$

(as k has characteristic p), a contradiction.

Corollary 2.5.12. Assume that k is separably closed (i.e. admits no nontrivial separable extension). Then every finite-dimensional division k-algebra is commutative. In particular, every finite-dimensional central simple k-algebra splits.

PROOF. The first statement follows from Proposition 2.5.11. In particular k is the only finite-dimensional central division k-algebra, which implies the second statement by Wedderburn's Theorem 2.1.12.

Theorem 2.5.13 (Köthe). Every finite-dimensional central division k-algebra contains a maximal subfield which is separable over k.

PROOF. Recall that every commutative subalgebra of D is a field by Lemma 2.4.2. Let L be a commutative subalgebra of D, which is maximal among those which are separable as a field extension of k. As L is commutative, we have $L \subset \mathcal{Z}_D(L)$. The L-algebra $\mathcal{Z}_D(L)$ is division by Lemma 2.4.2, and central by Proposition 2.2.10 (v). If $L \subsetneq \mathcal{Z}_D(L)$, then we find a separable extension $L \subsetneq L' \subset \mathcal{Z}_D(L)$ by Proposition 2.5.11, contradicting the maximality of L. Thus $L = \mathcal{Z}_D(L)$, and L is a maximal subfield. \square

COROLLARY 2.5.14. Let A be a finite-dimensional central simple k-algebra. Then A is split by a separable field extension of k of degree $\operatorname{ind}(A)$.

PROOF. We may assume that A is division, in which case the statement follows from Theorem 2.5.13 (in view of Proposition 2.5.4).

We conclude this section with two classical results concerning division algebras over specific fields.

Theorem 2.5.15 (Wedderburn, 1905). Every division ring of finite cardinality is a field.

PROOF. Let k be the center D; it is a field by Lemma 2.2.2. Then D is a finite-dimensional central division k-algebra; let n be its degree. Let q be the cardinality of k. Let L be a maximal subfield of D. Then L/k is a field extension of degree n by Proposition 2.5.4 (iii), and such an extension is isomorphic to the splitting field of the polynomial $X^{q^n} - X \in k[X]$ by the theory of finite fields. Therefore if L' is another maximal subfield of D, there exists an isomorphism of k-algebras $\sigma: L \to L'$. Applying

Skolem–Noether's Theorem 2.3.3 to the pair of morphisms $L \subset D$ and $L \xrightarrow{\sigma} L' \subset D$ shows that there is $d \in D^{\times}$ such that $L' = \sigma(L) = dLd^{-1} \subset D$. Thus the group D^{\times} act transitively on the set of maximal subfields, by conjugation. The set $N = \{d \in D^{\times} | dLd^{-1} = L\}$ is a subgroup of D^{\times} , and the number of maximal subfields is $[D^{\times} : N]$. Since any element of D is contained in a maximal subfield (by Proposition 2.5.4 (ii)), the set $D^{\times} - \{1\}$ is the union of the sets $L'^{\times} - \{1\}$, where L' runs over the maximal subfields of D. Thus

$$[D^{\times}:N]\cdot(|L^{\times}|-1) \ge |D^{\times}|-1 = [D^{\times}:N]\cdot|N|-1.$$

Since N contains L^{\times} , we must have $[D^{\times}:N]=1$ and $L^{\times}=N$. We deduce that D=L, hence D is commutative.

THEOREM 2.5.16 (Frobenius, 1877). Every finite-dimensional division \mathbb{R} -algebra is isomorphic to \mathbb{R} , or to \mathbb{C} , or to the quaternion \mathbb{R} -algebra (-1,-1).

PROOF. Let D be a finite-dimensional division \mathbb{R} -algebra, and k its center. Then k is a finite extension of \mathbb{R} , hence $k=\mathbb{R}$ or $k\simeq\mathbb{C}$. In the latter case, we have $D\simeq\mathbb{C}$ by Proposition 2.4.3. So we may assume that $k=\mathbb{R}$. Then D splits over the degree two extension \mathbb{C} of \mathbb{R} (by Corollary 2.4.4) hence $\operatorname{ind}(D)\in\{1,2\}$ by Proposition 2.5.2. If $\operatorname{ind}(D)=1$, then $D=\mathbb{R}$. Otherwise D is a quaternion \mathbb{R} -algebra by Corollary 1.2.6; such an algebra is division if and only if it is isomorphic to (-1,-1) by Example 1.1.17. \square

6. The Brauer group, I

DEFINITION 2.6.1. Two finite-dimensional central simple k-algebras A, B are called Brauer equivalent if there are integers m, n and an isomorphism of k-algebras $M_n(A) \simeq M_m(B)$.

This defines an equivalence relation on the set of isomorphism classes of finite-dimensional central simple k-algebras (recall that $M_n(M_m(R)) \simeq M_{nm}(R)$ for any ring R). Let us denote by [A] the Brauer-equivalence class of a finite-dimensional central simple k-algebra A. In view of Proposition 2.2.8, the operation $([A], [B]) \mapsto A \otimes_k B$ endows the set of equivalence classes with the structure of an abelian group, where

$$0 = [k]$$
 , $[A] + [B] = [A \otimes_k B]$, $-[A] = [A^{\text{op}}].$

DEFINITION 2.6.2. The group of Brauer-equivalence classes is called the *Brauer group* of k, and is denoted by Br(k).

By Wedderburn's Theorem 2.1.12, each element of Br(k) is represented by a finite-dimensional central division k-algebra, which is unique up to isomorphism.

EXAMPLE 2.6.3. It follows respectively from Corollary 2.5.12, Theorem 2.5.15 and Theorem 2.5.16 that:

- (i) Br(k) = 0 when k is separably closed.
- (ii) Br(k) = 0 when k is finite.
- (iii) $Br(\mathbb{R}) = \mathbb{Z}/2$.

PROPOSITION 2.6.4. Let A, B be finite-dimensional central simple k-algebras such that [B] belongs to the subgroup generated by [A] in Br(k). Then $ind(B) \mid ind(A)$.

PROOF. There is an integer i such that $A^{\otimes i}$ is Brauer-equivalent to B, which implies that $\operatorname{ind}(A^{\otimes i}) = \operatorname{ind}(B)$, by the definition of the index. By Corollary 2.5.6, we may find an extension L/k of degree $\operatorname{ind}(A)$ splitting A. Then L splits $A^{\otimes i}$, hence by Lemma 2.4.7

$$\operatorname{ind}(B) = \operatorname{ind}(A^{\otimes i}) \mid [L:k] = \operatorname{ind}(A).$$

COROLLARY 2.6.5. The index of a finite-dimensional central simple k-algebra A depends only on the subgroup of Br(k) generated by [A].

DEFINITION 2.6.6. If L/k is a field extension, we denote by Br(L/k) the subgroup of Br(k) consisting of those classes of algebras split by L.

Observe that, if L/k is a field extension, then the map $Br(k) \to Br(L)$ given by $[A] \mapsto [A \otimes_k L]$ is a group morphism, whose kernel is Br(L/k).

We will use the following observation:

Remark 2.6.7. Let $A \neq k$ be a split finite-dimensional central simple algebra. Then A contains an element $x \neq 0$ such that $x^2 = 0$. Indeed we may assume that $A = M_r(k)$ for some r > 1, and then take for x the matrix whose only nontrivial entry is 1 in the upper right corner.

Lemma 2.6.8. Let L/k be a field extension. Then

$$\operatorname{Br}(L/k) = \bigcup_{K} \operatorname{Br}(K/k) \subset \operatorname{Br}(k),$$

where K runs over the finitely generated field extensions of k contained in L.

PROOF. We show that every finite-dimensional central division k-algebra D splitting over L splits over a finitely generated subextension of L, proceeding by induction on the degree of D (for all fields k simultaneously). We may assume that $D \neq k$. Then $D \otimes_k L$ contains an element $x \neq 0$ such that $x^2 = 0$ (Remark 2.6.7). Writing $x = d_1 \otimes \lambda_1 + \cdots + d_n \otimes \lambda_n$, where $d_1, \ldots, d_n \in D$ and $\lambda_1, \ldots, \lambda_n \in L$, we see that x belongs to $D \otimes_k K'$, where K' is the subextension of L generated by $\lambda_1, \ldots, \lambda_n$. Then $D \otimes_k K'$ is not division (as it contains the nonzero noninvertible element x), hence is Brauer equivalent to a central division algebra of strictly smaller degree, by Wedderburn's Theorem 2.1.12. So by induction it splits over a finitely generated extension K of K'. Then K is a finitely generated extension of k splitting D.

PROPOSITION 2.6.9. If L is a purely transcendental extension of k, then Br(L/k) = 0.

PROOF. By Lemma 2.6.8, we may assume that $L = k(t_1, \ldots, t_n)$, and using induction we reduce to the case n = 1, that is L = k(t). Let $D \neq k$ be a finite-dimensional central division k-algebra which splits over k(t). Then $D \otimes_k k(t)$ contains an element $x \neq 0$ such that $x^2 = 0$ (Remark 2.6.7). We may write

$$x = \sum_{i=1}^{n} d_i \otimes (f_i/g_i)$$

where $d_i \in D$ and $f_i, g_i \in k(t)$ for all i. Choosing such a decomposition with n minimal, we see that the elements $d_i \in D$ must be linearly independent over k. Multiplying x with an appropriate element of k[t], we may assume that $g_1 = \cdots = g_n = 1$, and that there is

 $j \in \{1, \ldots, n\}$ such that f_j is not divisible by t. In particular $x \in D \otimes_k k[t]$. Consider the k-linear map $e \colon D \otimes_k k[t] \to D$ given by $d \otimes f \mapsto df(0)$. Then

$$e(x) = \sum_{i=1}^{n} d_i f_i(0) \in D$$

is nonzero (as the elements d_i are linearly independent over k and $f_j(0) \neq 0$). As e is a ring morphism, we have $e(x)^2 = e(x^2) = 0$. Thus e(x) is a nonzero noninvertible element of the division algebra D, a contradiction.

Part 2

Torsors

CHAPTER 3

Galois descent

In this chapter, we develop the tools permitting to work with the absolute Galois group, which is almost always infinite. It is however profinite, and such groups carry a nontrivial topology. Compared with finite Galois theory, the key point is that one must systematically keep track of this topology, and in particular restrict one's attention to continuous actions of the Galois group. Although most arguments involving the absolute Galois group can ultimately be reduced to finite Galois theory, this point of view is extremely useful, and permits a very convenient formulation of many results and proofs.

The chapter concludes with a basic treatment of Galois descent, a technique that will be ubiquitous in the sequel. The general philosophy is that extending scalars to a separable closure is a reversible operation, as long as one keeps track of the action of the absolute Galois group.

1. Profinite sets

Definition 3.1.1. An *inverse system* of sets consists of:

- a partially ordered set (A, \leq) ,
- for each $\alpha \in A$ a set E_{α} ,
- for each $\alpha \leq \beta$ in A a map $f_{\beta\alpha} : E_{\beta} \to E_{\alpha}$ (called transition map).

These data must satisfy the following conditions:

- (i) For each $\alpha, \beta \in A$, there is $\gamma \in A$ such that $\alpha \leq \gamma$ and $\beta \leq \gamma$.
- (ii) For each $\alpha \in A$, we have $f_{\alpha\alpha} = \mathrm{id}_{E_{\alpha}}$.
- (iii) For each $\alpha \leq \beta \leq \gamma$, we have $f_{\beta\alpha} \circ f_{\gamma\beta} = f_{\gamma\alpha}$.

DEFINITION 3.1.2. The *inverse limit* of an inverse system $(E_{\alpha}, f_{\beta\alpha})$ is defined as

$$E = \lim_{\longleftarrow} E_{\alpha} = \Big\{ (e_{\alpha}) \in \prod_{\alpha \in A} E_{\alpha} \text{ such that } f_{\beta \alpha}(e_{\beta}) = e_{\alpha} \text{ for all } \alpha \leq \beta \text{ in } A \Big\}.$$

It is equipped with projections maps $\pi_{\alpha} \colon E \to E_{\alpha}$ for every $\alpha \in A$, such that $f_{\beta\alpha} \circ \pi_{\beta} = \pi_{\alpha}$ for all $\alpha \leq \beta$. It satisfies the following universal property: if $s_{\alpha} \colon S \to E_{\alpha}$ is a collection of maps satisfying $f_{\beta\alpha} \circ s_{\beta} = s_{\alpha}$ for all $\alpha \leq \beta$, then there is a unique map $s \colon S \to E$ such that $s_{\alpha} = \pi_{\alpha} \circ s$ for all $\alpha \in A$.

Observe that $(E_{\alpha}), (E'_{\alpha})$ are inverse system indexed by the same set A and $E'_{\alpha} \to E_{\alpha}$ are maps compatible with the transition maps, there is a unique morphism $\varprojlim E'_{\alpha} \to \lim_{\leftarrow} E_{\alpha}$ compatible with the projection maps.

DEFINITION 3.1.3. A profinite set E is an inverse limit of finite sets E_{α} . It is endowed with the profinite topology, which is generated by open subsets of the form $\pi_{\alpha}^{-1}\{x\}$ for $\alpha \in A$ and $x \in E_{\alpha}$, where $\pi_{\alpha} : E \to E_{\alpha}$ is the projection map.

3. Galois descent 34

Let us fix an inverse system of finite sets E_{α} for $\alpha \in A$, with transition maps $f_{\alpha\beta}$, inverse limit E, and projection maps $\pi_{\alpha} \colon E \to E_{\alpha}$.

LEMMA 3.1.4. Every open subset of E is a union of subsets of the form $\pi_{\alpha}^{-1}\{x\}$ where $\alpha \in A$ and $x \in E_{\alpha}$.

PROOF. Let $U \subset E$ be an open subset, and $u \in U$. By definition of the topology, there are $\alpha_1, \ldots, \alpha_n \in A$ and $x_i \in E_{\alpha_i}$ for $i = 1, \ldots, n$ such that $\pi_{\alpha_1}^{-1}\{x_1\} \cap \cdots \cap \pi_{\alpha_n}^{-1}\{x_n\}$ is contained in U and contains u. Let us choose $\alpha \in A$ such that $\alpha_i \leq \alpha$ for all $i \in \{1, \ldots, n\}$. Set $x = \pi_{\alpha}(u)$. Then $u \subset \pi_{\alpha}^{-1}\{x\}$. On the other hand $\pi_{\alpha}^{-1}\{x\} \subset \pi_{\alpha_i}^{-1}\{x_i\}$ for all i, hence $\pi_{\alpha}^{-1}\{x\} \subset U$.

Lemma 3.1.5. The inverse limit of an inverse system of nonempty finite sets is nonempty.

PROOF. Assume that each E_{α} is nonempty. Let us define a subsystem as a collection of subsets $T_{\alpha} \subset E_{\alpha}$ for each $\alpha \in A$ such that $f_{\beta\alpha}(T_{\beta}) \subset T_{\alpha}$ for each $\alpha \leq \beta$. Consider the set \mathcal{T} of all subsystems (T_{α}) such that each T_{α} is nonempty. We may order such subsystems by inclusion. Consider a totally ordered family of subsystems $(T_{\alpha})_i \in \mathcal{T}$, for $i \in I$. For a fixed $\alpha \in A$, let us set $S_{\alpha} = \bigcap_{i \in I} (T_{\alpha})_i$. Since each $(T_{\alpha})_i$ is nonempty, so is S_{α} (here we use the finiteness of E_{α}), and therefore $S_{\alpha} \in \mathcal{T}$. Thus by Zorn's lemma, there is a (possibly nonunique) minimal element of $(T_{\alpha}) \in \mathcal{T}$.

Consider the subsystem (T'_{α}) defined by $T'_{\alpha} = \bigcap_{\alpha \leq \beta} f_{\beta\alpha}(T_{\beta})$. Let $\alpha \in A$. Since T_{α} is finite, we may write $T'_{\alpha} = f_{\beta_1\alpha}(T_{\beta_1}) \cap \cdots \cap f_{\beta_n\alpha}(T_{\beta_n})$ where $\alpha \leq \beta_i$ for $i = 1, \ldots, n$. Choose $\beta \in A$ such that $\beta_i \leq \beta$ for all $i = 1, \ldots, n$. Then T'_{α} contains the set $f_{\beta\alpha}(T_{\beta})$ which is nonempty, since T_{β} is nonempty. We have proved that $(T'_{\alpha}) \in \mathcal{T}$. By minimality of (T_{α}) , we deduce that $(T'_{\alpha}) = (T_{\alpha})$; in other words the maps $T_{\beta} \to T_{\alpha}$ for $\alpha \leq \beta$ are surjective.

Now let us fix $\gamma \in A$ and $x \in T_{\gamma}$. For $\alpha \in A$, we set

$$S_{\alpha} = \begin{cases} \text{preimage of } \{x\} \text{ under } T_{\alpha} \to T_{\gamma} & \text{ if } \gamma \leq \alpha, \\ T_{\alpha} & \text{ otherwise.} \end{cases}$$

Then (S_{α}) is a subsystem contained in (T_{α}) . By surjectivity of the maps $T_{\alpha} \to T_{\gamma}$ when $\gamma \leq \alpha$, it follows that $(S_{\alpha}) \in \mathcal{T}$. By minimality of (T_{α}) , we deduce that $(S_{\alpha}) = (T_{\alpha})$. We have $S_{\gamma} = \{x\}$, and thus $T_{\gamma} = \{x\}$. We have proved that each T_{α} is a singleton, say $T_{\alpha} = \{x_{\alpha}\}$. The elements $x_{\alpha} \in E_{\alpha}$ then define an element of $\lim_{x \to \infty} E_{\alpha}$.

Proposition 3.1.6. Every profinite set is compact.

PROOF. Let U_i for $i \in I$ be a family of open subsets covering E. We need to find a finite subset $J \subset I$ such that the subsets U_i for $i \in J$ cover E. While doing so, by Lemma 3.1.4 we may assume that each U_i is of the form $\pi_{\alpha_i}^{-1}\{x_i\}$, where $\alpha_i \in A$ and $x_i \in E_{\alpha}$.

For each $\alpha \in A$, let $F_{\alpha} \subset E_{\alpha}$ be the subset consisting of those elements x such that $f_{\alpha\alpha_i}(x) \neq x_i$ for every $i \in I$ such that $\alpha_i \leq \alpha$. Then for any $\alpha \leq \beta$, we have $f_{\beta\alpha}(F_{\beta}) \subset F_{\alpha}$, hence the sets F_{α} for $\alpha \in A$ form an inverse system, whose transition maps are the restrictions of the maps $f_{\beta\alpha}$.

Assume that $F_{\alpha} = \emptyset$ for some $\alpha \in A$. Then E_{α} is covered by subsets of the form $V_i = f_{\alpha\alpha_i}^{-1}\{x_i\}$. As E_{α} is finite, it is covered by finitely many such subsets, and thus

35 3. Galois descent

 $E = \pi_{\alpha}^{-1} E_{\alpha}$ is covered by finitely many subsets of the form $\pi_{\alpha}^{-1} V_i = U_i$. Thus we are done in this case.

Therefore we may assume that $F_{\alpha} \neq \emptyset$ for each $\alpha \in A$. Then $\varprojlim F_{\alpha}$ contains an element by Lemma 3.1.5. Its image in $y \in E$ satisfies $\pi_{\alpha}(y) \in F_{\alpha} \subset E_{\alpha}$ for all $\alpha \in A$, and in particular y belongs to no U_i . This contradicts the fact the subsets U_i for $i \in I$ cover E.

LEMMA 3.1.7. Assume that each E_{α} is finite, and that the transition maps $E_{\beta} \to E_{\alpha}$ for $\alpha \leq \beta$ are surjective. Then the projection maps $\pi_{\alpha} : E \to E_{\alpha}$ are surjective.

PROOF. Fix $\gamma \in A$ and $x \in E_{\gamma}$. Define an inverse system by

$$F_{\alpha} = \begin{cases} \text{preimage of } \{x\} \text{ under } E_{\alpha} \to E_{\gamma} & \text{if } \gamma \leq \alpha \text{ ,} \\ E_{\alpha} & \text{otherwise.} \end{cases}$$

Then each F_{α} is nonempty and finite, hence $\varprojlim F_{\alpha}$ contains an element by Lemma 3.1.5. Its image in $y \in E$ satisfies $\pi_{\gamma}(y) = x$.

2. Profinite groups

DEFINITION 3.2.1. When each E_{α} appearing in Definition 3.1.1 is a group and the transition maps $f_{\beta\alpha}$ are group morphisms, we say that E_{α} is an *inverse system of groups*. Its inverse limit is naturally a group, and the projections maps π_{α} are group morphisms. Such an inverse limit is called a *profinite group* when each E_{α} is finite.

Example 3.2.2. Every finite group is a profinite group, whose topology is discrete (take for A a singleton).

EXAMPLE 3.2.3. Let p be a prime number. The groups $\mathbb{Z}/p^n\mathbb{Z}$ for $n \in \mathbb{N}$, together with the maps $\mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^m\mathbb{Z}$ for $m \leq n$ given by $(1 \mod p^n) \mapsto (1 \mod p^m)$ yield an inverse system of groups, whose limit is the profinite group denoted by \mathbb{Z}_p .

EXAMPLE 3.2.4. The groups $\mathbb{Z}/n\mathbb{Z}$ for $n \in \mathbb{N}$, together with the maps $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ for $m \mid n$ given by $(1 \mod n) \mapsto (1 \mod m)$ yield an inverse system of groups, whose limit is the profinite group denoted by $\widehat{\mathbb{Z}}$.

We fix an inverse system of groups Γ_{α} for $\alpha \in A$, with transition morphisms $f_{\beta\alpha} \colon \Gamma_{\beta} \to \Gamma_{\alpha}$ when $\alpha \leq \beta$, set $\Gamma = \varprojlim \Gamma_{\alpha}$, and denote by $\pi_{\alpha} \colon \Gamma \to \Gamma_{\alpha}$ the projections. We also define the subgroups $U_{\alpha} = \ker \pi_{\alpha}$.

LEMMA 3.2.5. (i) Let $U \subset \Gamma$ be an open subset and $u \in U$. Then there is an index α such that $uU_{\alpha} \subset U$.

- (ii) A subgroup of Γ is open if and only if it is closed and of finite index.
- (iii) If a subgroup of Γ contains an open subgroup, it is open.

PROOF. (i): By Lemma 3.1.4 there are $\alpha \in A$ and $x \in E_{\alpha}$ such that $\pi_{\alpha}^{-1}\{x\}$ is contained in U and contains u. Then $uU_{\alpha} \subset \pi_{\alpha}^{-1}\{x\}$.

(ii): Let $U \subset \Gamma$ be an open subgroup, and S its complement in Γ . Then S is the union of the subsets γU for $\gamma \in S$. Such subsets are homeomorphic to U, hence open, so that S is open, proving that U is closed. By (i) (with u=1) the subgroup U contains U_{α} for some $\alpha \in A$. Certainly U_{α} has finite index in Γ (since $\Gamma/U_{\alpha} \simeq \Gamma_{\alpha}$), so that U has finite index in Γ .

3. Galois descent 36

Let now $H \subset \Gamma$ be a closed subgroup of finite index. Its complement is the union of subsets γH where γ runs over a finite subset of Γ (a set of representatives of Γ/H), hence is closed. Thus H is open.

(iii): Let $H \subset \Gamma$ be a subgroup containing an open subgroup U. Then $H = HU = \bigcup_{h \in H} hU$ is open, since each hU is open, being homeomorphic to U.

The next lemma shows that any profinite group admits a canonical representation as an inverse limit. We let \mathcal{U} be the set of open normal subgroups of Γ , ordered by letting $U \leq V$ when $V \subset U$.

LEMMA 3.2.6. The groups Γ/U for $U \in \mathcal{U}$ form an inverse system of finite groups, whose inverse limit is isomorphic to Γ , as a topological group.

PROOF. The finiteness of the groups Γ/U for $U \in \mathcal{U}$ was observed in Lemma 3.2.5 (ii). Any pair of elements $U, U' \in \mathcal{U}$ contain the common element $U \cap U' \in \mathcal{U}$. It follows that the groups Γ/U for $U \in \mathcal{U}$ form an inverse system. Let Γ' be their inverse limit, and $\pi_U \colon \Gamma' \to \Gamma/U$ the projection maps. The quotient morphisms $q_U \colon \Gamma \to \Gamma/U$ induce a morphism $\rho \colon \Gamma \to \Gamma'$ such that $\pi_U \circ \rho = q_U$ for all $U \in \mathcal{U}$. For any such U and $u \in U$, the subset $u \in \Gamma \cap \Gamma_U \cap \Gamma$

$$q_U \circ \theta = p \circ \pi_{\alpha} \circ \theta = p \circ \pi_{U_{\alpha}} = \pi_U.$$

Therefore $\pi_U \circ \rho \circ \theta = \pi_U$ for all $U \in \mathcal{U}$, and $\pi_\alpha \circ \theta \circ \rho = \pi_\alpha$ for all $\alpha \in A$. The universal property of the inverse limit then implies that $\rho \circ \theta = \mathrm{id}_{\Gamma'}$, and $\theta \circ \rho = \mathrm{id}_{\Gamma}$.

DEFINITION 3.2.7. Let p be a prime. A p-group is finite group whose order is a power of p. A p-group is an inverse limit of p-groups. A subgroup P of Γ is called a p-group subgroup if all the following conditions are satisfied:

- (i) P is a closed subgroup of Γ ,
- (ii) P is a pro-p-group,
- (iii) for every open normal subgroup U of Γ , the image of P in Γ/U has index prime to p.

Observe that a finite quotient of pro-p-group is a p-group. Therefore if P is a pro-p-Sylow subgroup of Γ , then the image of P in Γ/U is a p-group, for every open normal subgroup U of Γ

Proposition 3.2.8. The profinite group Γ admits a pro-p-Sylow subgroup.

PROOF. By Lemma 3.2.6, we may identify Γ with $\varprojlim (\Gamma/U)$ for $U \in \mathcal{U}$. For each $U \in \mathcal{U}$ of Γ , let S_U be the set of p-Sylow subgroups of Γ/U , which is finite and nonempty by Sylow's Theorem. If $U \leq V$ in \mathcal{U} , the map $\Gamma/V \to \Gamma/U$ sends elements of S_V to elements of S_U , because the image of a p-Sylow subgroup under a surjective morphism is a p-Sylow subgroup (exercise). Thus the sets S_U form an inverse system, whose inverse limit S is nonempty by Lemma 3.1.5. Any element of S is represented by a collection of p-Sylow subgroups $P_U \subset \Gamma/U$ for $U \in \mathcal{U}$, such that for any $U \leq V$ in \mathcal{U} the morphism $\Gamma/V \to \Gamma/U$ maps P_V onto P_U . The group $P = \varprojlim P_U$ is naturally a subgroup of Γ ,

37 3. Galois descent

and is a pro-p-group. Since P is the intersection in Γ of the preimages of $P_U \subset \Gamma/U$ for $U \in \mathcal{U}$ (by construction of the inverse limit), it is closed in Γ . It follows from Lemma 3.1.7 (applied to the system P_U for $U \in \mathcal{U}$) that for each $U \in \mathcal{U}$ the image of P in Γ/U is the p-Sylow subgroup P_U , and in particular has index prime to p.

Lemma 3.2.9. Let X be a set with an action of the profinite group Γ . The following conditions are equivalent:

- (i) The action morphism $\Gamma \times X \to X$ is continuous, for the discrete topology on X.
- (ii) Every element of X is fixed by an open subgroup of Γ .
- (iii) Every finite subset of X is elementwise fixed by an open subgroup of Γ .
- PROOF. (i) \Rightarrow (ii): Let $x \in X$, and U be the preimage of x under the map $\Gamma \to E$ given by $g \mapsto g \cdot x$, which is continuous by (i). Then U is an open subgroup in Γ , hence has finite index by Lemma 3.2.5 (iii).
- (ii) \Rightarrow (i): For $x, y \in X$, we denote by $U_{x,y}$ the subset of Γ consisting of those elements γ such that $\gamma x = y$. The set $U_{x,y}$ is either empty, or equal to $\gamma U_{x,x}$ for some (in fact, any) $\gamma \in U_{x,y}$. The subgroup $U_{x,x} \subset \Gamma$ contains an open subgroup by (ii), hence is open by Lemma 3.2.5. Thus $U_{x,y}$ is open, being either empty or homeomorphic to $U_{x,x}$. Now the preimage of any $y \in X$ under the action morphism $\Gamma \times X \to X$ is the union of the subsets $U_{x,y} \times \{x\}$ where x runs over X, which are open since X has the discrete topology. This proves (i).
- (ii) \Rightarrow (iii): Let $F \subset X$ be a finite subset. Each $f \in F$ is fixed by some open subgroup U_f of Γ . Then the open subgroup $\bigcap_{f \in F} U_f$ of Γ fixes each element of F.

$$(iii) \Rightarrow (ii)$$
: Clear.

DEFINITION 3.2.10. When the conditions of Lemma 3.2.9 are fulfilled, we say that Γ acts continuously on X, or that X is a Γ -set. A Γ -set equipped with a Γ -equivariant group structure will be called a Γ -group. A Γ -group whose underlying group is abelian will be called a Γ -module. A morphism of Γ -groups, resp. Γ -modules, is just a Γ -equivariant group morphism.

We conclude this section with a statement that will be needed later. When a group acts on a set X, we denote by X^G the set of elements of X fixed by every element of G.

Lemma 3.2.11. Let X be a Γ -set and n an integer. Then every continuous map $\Gamma^n \to X$ factors through a map $(\Gamma/U)^n \to X^U$ for some open normal subgroup U of Γ . Conversely, any map $\Gamma^n \to X$ factoring through $(\Gamma/U)^n \to X$ for some open normal subgroup U of Γ is continuous.

PROOF. If $\Gamma^n \to X$ factors through a map $(\Gamma/U)^n \to X$ for some open normal subgroup U of Γ , it is continuous, since both maps $\Gamma^n \to (\Gamma/U)^n$ and $(\Gamma/U)^n \to X$ are continuous (for the discrete topology on $(\Gamma/U)^n$).

Let now $f: \Gamma^n \to X$ be a continuous map, and $Y \subset X$ its image. Since Γ^n is profinite set (the limit of the inverse system $(\Gamma_\alpha)^n$), it is compact by Proposition 3.1.6. Therefore Y is compact. Being also discrete, the set Y is finite. Since X is a Γ -set, there is an open subgroup U' in Γ fixing all the elements of Y. Shrinking U', we may assume that it is normal in Γ (by Lemma 3.2.5 (i) with u = 1).

For each $y \in Y$, the preimage $f^{-1}\{y\}$ is a nonempty open subset of Γ^n . Therefore there exists a nonempty open subset V_y of Γ such that $(V_y)^n \subset f^{-1}\{y\}$. By Lemma 3.2.5 (i), the subset V_y contains a subset of the form gU_y , where f(g) = y and U_y

3. Galois descent 38

is an open normal subgroup of Γ . Then $U'' = \bigcap_{y \in Y} U_y$ is a open normal subgroup of Γ . Setting $U = U' \cap U''$ does the job.

3. Infinite Galois extensions

In this chapter, we review some aspects of Galois theory, and show that the Galois group is an example of a profinite group.

When A, B are k-algebras, we will denote by $\operatorname{Hom}_{k-\operatorname{alg}}(A, B)$ the set morphisms of k-algebras $A \to B$. The group of automorphisms of a k-algebra A will be denoted by $\operatorname{Aut}_{k-\operatorname{alg}}(A)$.

LEMMA 3.3.1. Let L/k and F/k be field extensions.

- (i) If L/k is algebraic, and F is algebraically closed, then $\operatorname{Hom}_{k-\operatorname{alg}}(L,F) \neq \varnothing$.
- (ii) If L/k is finite, then $|\operatorname{Hom}_{k-\operatorname{alg}}(L,F)| \leq [L:k]$.
- (iii) If L/k is finite separable, and F is algebraically closed, then $|\operatorname{Hom}_{k-\operatorname{alg}}(L,F)| = [L:k]$.

PROOF. (i): Consider the set of pairs (K, σ) where K/k is a subextension of k, and $\sigma \colon K \to F$ a k-algebra morphism. It is partially ordered by letting $(K, \sigma) \leq (K', \sigma')$ when $K \subset K'$ and $\sigma'|_K = \sigma$. It is easy to see that every totally ordered subset admits a maximal element. By Zorn's lemma, we find a maximal element (K, σ) . Let $x \in L$ and P be its minimal polynomial over k. Then P has a root p in p. The subextension p of p of p degree p degree

(ii) and (iii): We proceed by induction on [L:k]. Let $x \in L-k$ and P its minimal polynomial. The subextension K of L/k generated by x is isomorphic to k[X]/P, and morphisms of k-algebras $K \to F$ correspond to roots of P in F. There are at most (resp. exactly, if L/k is separable and F is algebraically closed) deg P = [L:k] such roots. By induction each morphism of k-algebras $K \to F$ admits at most (resp. exactly) [L:K] extensions to a morphism $L \to F$. There are thus at most (resp. exactly) [L:K][K:k] = [L:k] morphisms of k-algebras $L \to F$.

PROPOSITION 3.3.2. Let L/k be a finite field extension. Let G be a subgroup of $\operatorname{Aut}_{k-\operatorname{alg}}(L)$ such that $L^G=k$. Then $G=\operatorname{Aut}_{k-\operatorname{alg}}(L)$ and |G|=[L:k].

PROOF. We have $[L:k] \geq |\operatorname{Aut}_{k-\operatorname{alg}}(L)|$ by Lemma 3.3.1 (ii). In particular G is finite, and it will suffice to prove that $|G| \geq [L:k]$. Let M be the set of maps $G \to L$, viewed as an k-vector space via pointwise operations. Consider the k-linear map $\varphi \colon L \otimes_k L \to M$ sending $x \otimes y$ to the map $g \mapsto xg(y)$. Assume that the kernel of φ contains a nonzero element $v = x_1 \otimes y_1 + \dots + x_r \otimes y_r$, where $x_1, \dots, x_r, y_1, \dots, y_r \in L$. Choose r minimal with this property. Then x_1, \dots, x_r are linearly independent over k. Replacing v with $(1 \otimes y_1^{-1})v$, we may assume that $y_1 = 1$. Since $0 = \varphi(v)(\operatorname{id}_L) = x_1y_1 + \dots + x_ry_r$ and the elements x_1, \dots, x_r are linearly independent over k, there is $j \in \{2, \dots, r\}$ such that y_j does not lie in k. As $k = L^G$, we may find $g \in G$ such that $g(y_j) \neq y_j$. The element $v' = x_1 \otimes g(y_1) + \dots + x_r \otimes g(y_r)$ also lies in the kernel of φ , hence so does

$$v - v' = \sum_{i=1}^{r} x_i \otimes y_i - \sum_{i=1}^{r} x_i \otimes g(y_i) = \sum_{i=2}^{r} x_i \otimes (y_i - g(y_i)).$$

39 3. Galois descent

This element is nonzero, because x_2, \ldots, x_r are linearly independent over k and $y_j - g(y_j) \neq 0$. We have obtained a contradiction with the minimality of r. This proves that φ is injective, so that

$$[L:k]^2 = \dim_k L \otimes_k L \leq \dim_k M = |G| \cdot [L:k],$$
 and $|G| \geq [L:k].$

Recall that an algebraic extension L/k is called *normal* if the minimal polynomial of every element of L splits into linear factors over L.

LEMMA 3.3.3. Let L/k be a normal field extension and F/k a field extension. Then all morphisms of k-algebras $L \to F$ have the same image.

PROOF. Let $\mathcal{P} \subset k[X]$ be the set of minimal polynomials over k of elements of L, and E be the set of roots in F of the elements of \mathcal{P} . Let $\sigma \colon L \to F$ be a k-algebra morphism. If $x \in L$, then $\sigma(x) \in F$ is a root of the minimal polynomial of x, proving that $\sigma(L) \subset E$. Conversely, let $y \in E$, and pick $P \in \mathcal{P}$ such that P(y) = 0. As L/k is normal, we may find $x_1, \ldots, x_n \in L$ such that $P = (X - x_1) \cdots (X - x_n)$ in L[X], hence

$$0 = P(y) = (\sigma(P))(y) = (y - \sigma(x_1)) \cdots (y - \sigma(x_n)) \in F,$$

so that $y = \sigma(x_i)$ for some $i \in \{1, ..., n\}$. Thus $E \subset \sigma(L)$.

Proposition 3.3.4. Let F/k be an algebraic field extension. The following are equivalent:

- (i) The extension F/k is separable and normal,
- (ii) $F^{\operatorname{Aut}_{k-\operatorname{alg}}(F)} = k$.

PROOF. (i) \Longrightarrow (ii): Let P be the minimal polynomial of an element $x \in F - k$. The polynomial P splits into linear factors over F (as F/k is normal), and has no multiple root (as F/k separable). Since P has degree at least two, we find $y \in F$ such that $y \neq x$ and P(y) = 0. Let K be the subfield of F generated by x over k, and \overline{F} be an algebraic closure of F. The morphism of k-algebras $K \to \overline{F}$ given by $x \mapsto y$ extends to a morphism $F \to \overline{F}$ by Lemma 3.3.1 (i). The image of this morphism equals F by Lemma 3.3.3. We have thus found $\sigma \in \operatorname{Aut}_{k-\operatorname{alg}}(F)$ such that $\sigma(x) = y \neq x$, proving (i).

(ii) \Longrightarrow (i): Let $x \in F$. Let S be the set of those $\sigma(x)$, where σ runs over $\operatorname{Aut}_{k-\operatorname{alg}}(F)$. The elements of S are among the roots of the minimal polynomial of x over k, and in particular S is finite. Consider the polynomial

$$P = \prod_{s \in S} (X - s) \in F[X].$$

Any $\sigma \in \operatorname{Aut}_{k-\operatorname{alg}}(F)$ permutes the elements of S, so that

$$\sigma(P) = \prod_{s \in S} (X - \sigma(s)) = \prod_{s \in S} (X - s) = P.$$

Thus $P = (F[X])^{\operatorname{Aut}_{k-\operatorname{alg}}(F)} = (F^{\operatorname{Aut}_{k-\operatorname{alg}}(F)})[X] = k[X]$. The minimal polynomial of x over k divides P, hence also splits into pairwise distinct linear factors over F.

DEFINITION 3.3.5. An algebraic field extension F/k is called *Galois* if it satisfies the conditions of Proposition 3.3.4.

3. Galois descent 40

LEMMA 3.3.6. Let F/k be a Galois extension, and E/k a Galois subextension of F/k. Then every element of Gal(F/k) restricts to an element of Gal(E/k), and the induced morphism $Gal(F/k) \to Gal(E/k)$ is surjective.

PROOF. Let $\sigma \in \operatorname{Gal}(F/k)$. Then $\sigma(E) = E$ by Lemma 3.3.3, proving the first statement. Let now $\tau \in \operatorname{Gal}(E/k)$. Let \overline{F} be an algebraic closure of F. Then the morphism $E \xrightarrow{\tau} E \subset \overline{F}$ extends to a morphism of k-algebras $F \to \overline{F}$ by Lemma 3.3.1 (i), whose image equals F by Lemma 3.3.3. We have thus extended τ to an element of $\operatorname{Gal}(F/k)$.

Lemma 3.3.7. Let F/k be a Galois extension. Then every element of F is contained in a finite Galois subextension of F/k.

PROOF. Let $x \in F$. The elements $\sigma(x) \in F$ for $\sigma \in \operatorname{Gal}(F/k)$ are roots of the minimal polynomial of x over k, hence are in finite number. Let L be the subfield of F generated by these elements. Since F/k is Galois, for every $y \in L - k$ we may find $\sigma \in \operatorname{Gal}(F/k)$ such that $\sigma(y) \neq y$ (Proposition 3.3.4). But σ maps L to itself by construction of L, hence restricts to an element of $\operatorname{Aut}_{k-\operatorname{alg}}(L)$. This proves that L/k is Galois (Proposition 3.3.4).

PROPOSITION 3.3.8. Let F/k be a Galois extension. The groups Gal(L/k), where L/k runs over the finite Galois subextensions of F/k (ordered by inclusion) form an inverse system of groups, whose inverse limit is isomorphic to Gal(F/k).

PROOF. Let \mathcal{F} be the set of finite Galois subextensions of F/k. If $L, L' \in \mathcal{F}$, then we may find $L'' \in \mathcal{F}$ such that $L \subset L''$ and $L' \subset L''$ by Lemma 3.3.7. The morphisms $\operatorname{Gal}(L'/k) \to \operatorname{Gal}(L/k)$ for $L \subset L' \in \mathcal{F}$ are given by restricting automorphisms (see Lemma 3.3.6).

By Lemma 3.3.7 the field F is the union of the fields $L \in \mathcal{F}$. Therefore an automorphism of F is the identity if and only if it restricts to the identity on each $L \in \mathcal{F}$. This implies the injectivity of the natural morphism (see Lemma 3.3.6)

$$\operatorname{Gal}(F/k) \to \varprojlim \operatorname{Gal}(L/k) \subset \prod_{L \in \mathcal{F}} \operatorname{Gal}(L/k).$$

Let now $\sigma^L \in \operatorname{Gal}(L/k)$ be a family of elements representing an element of $\varprojlim \operatorname{Gal}(L/k)$. Let $x \in F$. By Lemma 3.3.7, there exists $L \in \mathcal{F}$ such that $x \in L$. Moreover, if $L' \in \mathcal{F}$ contains x, there exists $L'' \in \mathcal{F}$ containing L and L', so that $\sigma^L(x) = \sigma^{L''}(x) = \sigma^{L'}(x)$. Therefore $\sigma^L(x) \in F$ does not depend on the choice of $L \in \mathcal{F}$ containing x. We have thus defined a map $\sigma \colon F \to F$ restricting to σ^L for each finite Galois extension L/k. It is easy to verify that σ is indeed an automorphism of the k-algebra F.

DEFINITION 3.3.9. Let F/k be a Galois extension. By Proposition 3.3.8 the group Gal(F/k) is profinite, hence is endowed with a topology called the *Krull topology*.

Theorem 3.3.10 (Krull). The associations

$$E \mapsto \operatorname{Gal}(F/E)$$
 ; $H \mapsto F^H$

yield mutually inverse, inclusion-reversing, bijections between subextensions E of F/k and closed subgroups H of Gal(F/k). If E is a subextension of F/k, then

- (i) the subgroup Gal(F/E) is open if and only if E/k is finite,
- (ii) the subgroup Gal(F/E) is normal if and only if E/k is Galois.

41 3. Galois descent

PROOF. Let E/k be a subextension of F/k. The extension F/E is separable and normal, hence $F^{\operatorname{Gal}(F/E)} = F$ by Proposition 3.3.4. Assume that E/k is finite. Then E is contained in a finite Galois subextension E' of F/k by Lemma 3.3.7. The subgroup $\operatorname{Gal}(F/E)$ is open in $\operatorname{Gal}(F/k)$, hence also closed, because it is the preimage of $\operatorname{Gal}(E'/E)$ under the projection $\operatorname{Gal}(F/k) \to \operatorname{Gal}(E'/k)$ (by definition of the topology). When E/k is arbitrary (not necessarily finite), it is the union of its finite subextensions, so that $\operatorname{Gal}(F/E)$ is an intersection of closed subgroups in $\operatorname{Gal}(F/k)$, hence is closed.

Conversely, let $H \subset \operatorname{Gal}(F/k)$ be a closed subgroup. Let $E = F^H$. Then $H \subset \operatorname{Gal}(F/E)$. Assume $\sigma \in \operatorname{Gal}(F/E)$ does not belong to H. By Lemma 3.2.5 (i), the open subset $\operatorname{Gal}(F/k) - H$ contains a subset of the $\sigma \operatorname{Gal}(F/L)$, where L/k is a finite Galois subextension of F/k. Let H' be the image of H under the morphism $\operatorname{Gal}(F/k) \to \operatorname{Gal}(L/k)$, and set $E' = L^{H'} = E \cap L$. The extension L/E' is Galois, and $H' = \operatorname{Gal}(L/E')$ by Proposition 3.3.2. In particular we may find $h \in H$ such that $h|_{L} = \sigma|_{L} \in \operatorname{Gal}(L/E')$. But then $h \in H \cap \sigma \operatorname{Gal}(F/L)$, a contradiction. We have proved that $H = \operatorname{Gal}(F/E)$.

Now assume that H is an open subgroup of $\operatorname{Gal}(F/k)$. By Lemma 3.2.5 (i), there exists a finite Galois subextension L of F/k such that $\operatorname{Gal}(F/L) \subset H$. Then F^H is contained in $F^{\operatorname{Gal}(F/L)} = L$, hence is finite.

If E/k is a Galois subextension, the subgroup $\operatorname{Gal}(F/E)$ is normal, being the kernel of the morphism $\operatorname{Gal}(F/k) \to \operatorname{Gal}(E/k)$. Conversely let H be a normal subgroup of $\operatorname{Gal}(F/k)$, and $E = F^H$. Let $x \in E$. Then for any $\sigma \in \operatorname{Gal}(F/k)$ and $h \in H$, we have $h \circ \sigma(x) = \sigma \circ \sigma^{-1} \circ h \circ \sigma(x) = \sigma(x)$ (as $\sigma^{-1} \circ h \circ \sigma \in H$ fixes x), proving that $\sigma(x) \in E$. Thus E is stable under the action of $\operatorname{Gal}(F/k)$, and $E^{\operatorname{Aut}_{k-\operatorname{alg}}(E)} \subset F^{\operatorname{Gal}(F/k)} = k$, so that E/k is Galois by Proposition 3.3.4.

In the sequel, the most important example of an infinite Galois extension will be the separable closure, which we discuss now. Recall that a field is called separably closed if it admits no nontrivial separable extension. An extension F/k is called a *separable closure* if it is separable and if F is separably closed. Such an extension always exists: we may take for F the set of separable elements in a given algebraic closure of k.

LEMMA 3.3.11. Let L/k and F/k be field extensions.

- (i) Assume that L is separable over k and that F is separably closed. Then there exists a morphism of k-algebras $L \to F$.
- (ii) Assume that L is separably closed and that F is separable over k. Then any morphism of k-algebras $L \to F$ is an isomorphism.

PROOF. (i): Let \overline{F} be an algebraic closure of F. By Lemma 3.3.1, we find a morphism of k-algebras $L \to \overline{F}$. Its image consists of elements which are separable over F, hence is contained in F. This proves (i).

(ii): Since every element of F is separable over k, any morphism of k-algebras $L \to F$ is a separable extension, hence an isomorphism since F' is separably closed.

Proposition 3.3.12. Every separable closure of k is a Galois extension.

PROOF. Let F be a separable closure of k, and $x \in F - k$. The minimal polynomial $P \in k[X]$ of x over k is separable of degree at least two. Its image in F[X] thus has a monic irreducible factor Q such that $Q(x) \neq 0$. The field F[X]/Q is a separable extension of F, hence equals F. It follows that Q = X - y for some $y \in F$ distinct from x. Let K be the subextension of F/k generated by x, and consider the morphism of k-algebras $K \to F$

3. Galois descent 42

mapping x to y. As F is separable over K, this morphism extends to a morphism of k-algebras $\sigma \colon F \to F$ by Lemma 3.3.11 (i), which is an isomorphism by Lemma 3.3.11 (ii). We have thus constructed $\sigma \in \operatorname{Aut}_{k-\operatorname{alg}}(F)$ such that $\sigma(x) \neq x$, proving that F is Galois (Proposition 3.3.4).

Remark 3.3.13. By Lemma 3.3.11, a separable closure of k is unique up to isomorphism of k-algebras. But by Proposition 3.3.12 and Proposition 3.3.4, such isomorphism is nonunique, unless k is separably closed. For this reason, we will usually fix a separable closure k_s of k.

EXAMPLE 3.3.14. Let k be a finite field, and k_s a separable closure of k. Then k has positive characteristic p, and its cardinality q is a power of p. For each $n \in \mathbb{N} - \{0\}$, there is a unique subextension F_n of k_s/k having degree n, namely the set of roots of the polynomial $X^{q^n} - X \in k[X]$. This polynomial splits into distinct linear factors over F_n , hence F_n/k is Galois. The group $\operatorname{Gal}(F_n/k)$ is cyclic of order n, generated by the automorphism $x \mapsto x^q$. We deduce that (see Example 3.2.4)

$$\operatorname{Gal}(k_s/k) = \widehat{\mathbb{Z}}.$$

4. Galois descent

In this section we fix a (possibly infinite) Galois extension F/k, and consider the profinite group $\Gamma = \operatorname{Gal}(F/k)$. When $\gamma \in \Gamma$ and $\lambda \in F$, we will write $\gamma \lambda$ instead of $\gamma(\lambda)$.

Let us first formalise an argument that will be used repeatedly.

LEMMA 3.4.1. Let U, W be k-vector spaces. Assume that a group G acts by k-linear automorphisms on U. Then the induced G-action on $W \otimes_k U$ satisfies $(W \otimes_k U)^G = W \otimes_k (U^G)$.

PROOF. Clearly $W \otimes_k (U^G) \subset (W \otimes_k U)^G$. Let now e_i for $i \in I$ be a k-basis of W. For each $i \in I$, let $e_i^* : W \to k$ be the linear map sending an element to its i-th coordinate in the above basis, and consider the k-linear map

$$\epsilon_i \colon W \otimes_k U \xrightarrow{e_i^* \otimes \mathrm{id}_U} k \otimes_k U = U.$$

Then for any $x \in W \otimes_k U$, we have

$$x = \sum_{i \in I} e_i \otimes \epsilon_i(x).$$

Since each ϵ_i is G-equivariant, it maps $(W \otimes_k U)^G$ into U^G , and the statement follows. \square

DEFINITION 3.4.2. Let V be an F-vector space. A Γ -action on V is called *semilinear* if for all $v \in V$ and $\lambda \in k$ and $\gamma \in \Gamma$, we have in V

$$\gamma(\lambda v) = (\gamma \lambda)(\gamma v).$$

LEMMA 3.4.3. Let W be a k-vector space. Then the Γ -action on $W_F = W \otimes_k F$ via the second factor is semilinear and continuous. The subset $(W_F)^{\Gamma}$ of W_F coincides with $W = W \otimes_k k$.

43 3. Galois descent

PROOF. The semilinearity is clear, and the last statement follows from Lemma 3.4.1, since $F^{\Gamma} = k$. It only remains to prove the continuity. An arbitrary element $w \in W_F$ is of the form $w_1 \otimes \lambda_1 + \cdots + w_n \otimes \lambda_n$, where $w_1, \ldots, w_n \in W$ and $\lambda_1, \ldots, \lambda_n \in F$. By Lemma 3.3.7, the elements $\lambda_1, \ldots, \lambda_n$ are contained in some finite Galois subextension L/k of F/k. Then the subgroup $\operatorname{Gal}(F/L) \subset \Gamma$ is open in Γ (Theorem 3.3.10) and fixes w, proving the continuity (see Lemma 3.2.9).

LEMMA 3.4.4 (Dedekind). Let A be a k-algebra and K/k a field extension. Let $\sigma_1, \ldots, \sigma_n$ be pairwise distinct morphisms of k-algebras $A \to K$. Then the elements

$$\sigma_1, \ldots, \sigma_n \in \operatorname{Hom}_{k-\operatorname{alg}}(A, K) = \operatorname{Hom}_{K-\operatorname{alg}}(A_K, K) \subset \operatorname{Hom}_K(A_K, K)$$

are linearly independent over K. In particular $n \leq \dim_k A$ when A is finite-dimensional.

PROOF. Assume that

$$(3.4.a) a_1\sigma_1 + \dots + a_m\sigma_m = 0.$$

where $a_1, \ldots, a_m \in K$ are not all zero. Pick such a relation, where $m \in \{1, \ldots, n\}$ is minimal. Then $m \neq 1$ (as $\sigma_1 \neq 0$), and there exists $i \in \{1, \ldots, m-1\}$ such that $a_i \neq 0$ (as $\sigma_m \neq 0$). Since $\sigma_i \neq \sigma_m$, we may find $z \in A$ such that $\sigma_i(z) \neq \sigma_m(z)$. Since the maps $\sigma_1, \ldots, \sigma_m$ are multiplicative, it follows from (3.4.a) that

(3.4.b)
$$a_1\sigma_1(z)\sigma_1 + \dots + a_m\sigma_m(z)\sigma_m = 0.$$

Subtracting $\sigma_m(z)$ times Equation (3.4.a) to (3.4.b) yields

$$a_1(\sigma_1(z) - \sigma_m(z))\sigma_1 + \dots + a_{m-1}(\sigma_{m-1}(z) - \sigma_m(z))\sigma_{m-1} = 0.$$

Since $a_i(\sigma_i(z) - \sigma_m(z)) \neq 0$, we have found a contradiction with the minimality of m.

The last statement follows from the fact that $\dim_K \operatorname{Hom}_K(A_K,K) = \dim_K A_K = \dim_k A$.

PROPOSITION 3.4.5 (Galois descent). Let V be an F-vector space. If Γ acts continuously on V by semilinear automorphisms, then the natural morphism $V^{\Gamma} \otimes_k F \to V$ is bijective.

PROOF. Denote by φ the morphism $V^{\Gamma} \otimes_k F \to V$. The proof of the injectivity of φ is a recast of the proof of Proposition 3.3.2. Namely, assume that the kernel of φ contains a nonzero element $v = v_1 \otimes \lambda_1 + \dots + v_r \otimes \lambda_r$ with $v_i \in V^{\Gamma}$ and $\lambda_i \in F$ for all $i = 1, \dots, r$. Choose r minimal with this property. Then v_1, \dots, v_r are linearly independent over k. Replacing v with $\lambda_1^{-1}v$, we may assume that $\lambda_1 = 1$. Since $0 = \varphi(v) = \lambda_1 v_1 + \dots + \lambda_r v_r$ and the elements v_1, \dots, v_r are linearly independent over k, there is $j \in \{2, \dots, r\}$ such that λ_j does not lie in k. Since $k = F^{\Gamma}$, we may find $\gamma \in \Gamma$ such that $\gamma \lambda_j \neq \lambda_j$. By semilinearity of the Γ -action on V, the morphism φ is Γ -equivariant, hence γv lies in the kernel of φ . Thus

$$v - \gamma v = \sum_{i=1}^{r} v_i \otimes \lambda_i - \sum_{i=1}^{r} v_i \otimes \gamma \lambda_i = \sum_{i=2}^{r} v_i \otimes (\lambda_i - \gamma \lambda_i)$$

is in the kernel of φ . This element is nonzero, because v_2, \ldots, v_r are linearly independent over k and $\lambda_j - \gamma \lambda_j \neq 0$. We have obtained a contradiction with the minimality of r. This proves that φ is injective.

Conversely let $v \in V$. By continuity of the Γ -action on V, we may find a finite Galois extension L/k such that v is fixed by Gal(F/L) (see Lemma 3.2.9 and Theorem 3.3.10).

3. Galois descent 44

Let e_1, \ldots, e_n be a basis of the k-vector space L. The group $\operatorname{Gal}(L/F)$ has order n (by Proposition 3.3.2), and by Lemma 3.3.6 we may find preimages $\gamma_1, \ldots, \gamma_n \subset \Gamma$ of the elements of $\operatorname{Gal}(L/k)$. Consider the elements

(3.4.c)
$$w_j = \sum_{i=1}^n (\gamma_i e_j)(\gamma_i v) \in V \text{ for } j = 1, \dots, n.$$

Let $\gamma \in \Gamma$. Since Γ is the disjoint union of the subsets $\gamma_1 \operatorname{Gal}(F/L), \ldots, \gamma_n \operatorname{Gal}(F/L)$, for each $i \in \{1, \ldots, n\}$ there is a unique $p \in \{1, \ldots, n\}$ such that $\gamma_p^{-1} \gamma \gamma_i \in \Gamma$ belongs to the subgroup $\operatorname{Gal}(F/L)$. Therefore, for every $j \in \{1, \ldots, n\}$, we have

$$\gamma w_j = \sum_{i=1}^n (\gamma \gamma_i e_j)(\gamma \gamma_i v) = \sum_{p=1}^n (\gamma_p e_j)(\gamma_p v) = w_j,$$

proving that $w_j \in V^{\Gamma}$. The matrix $(\gamma_i e_j)_{i,j} \in M_n(L)$ is invertible by Dedekind's Lemma 3.4.4. Let $m_{i,j} \in L$ be the coefficients of its inverse. By (3.4.c), we have

$$\gamma_i v = \sum_{j=1}^n m_{i,j} w_j$$
 for $i = 1, \dots, n$.

These elements lie in the image of φ (as each w_j belongs to V^{Γ}). There is $i \in \{1, ..., n\}$ such that γ_i is the preimage of $1 \in \operatorname{Gal}(L/k)$, hence belongs to $\operatorname{Gal}(F/L)$ and thus fixes v. Then $v = \gamma_i v$ belongs to the image of φ .

CHAPTER 4

Étale and Galois algebras

Étale algebras are generalisations of finite separable field extensions, and share many of their properties. The category of étale algebras has the advantage of begin stable under extension of scalars, which provides a very useful flexibility lacking if one works only with separable extensions. In this chapter, we show that an étale algebra is the same thing as a finite set with a continuous action of the absolute Galois group. Shifting the point of view in this fashion will be central in the next chapter.

In the same spirit, Galois G-algebras, introduced at the end of this chapter, generalise finite Galois field extensions while being stable under extension of scalars. These algebras will provide a guiding example for the next chapter, since they constitute a simple type of torsors, objects which will figure prominently in the sequel.

This chapter begins with a brief introduction to the language of categories, which provides a suitable framework to express the above mentioned results.

By contrast with the previous ones, this chapter only deals with *commutative* algebras, and as such has a slightly different flavour. Its purpose is nonetheless to provide motivation to develop a more general theory of torsors, that will then be applied to the noncommutative case.

1. Categories

In this section, we briefly introduce a language that will permit a convenient formulation of certain results. We will not make a very extensive use of it, and so limit ourselves to very basic considerations leading to the notion of equivalence of categories.

Definition 4.1.1. A category C consists of the following data:

- (i) a class of objects,
- (ii) for each ordered pair of objects A, B a set of morphisms $\operatorname{Hom}_{\mathcal{C}}(A, B)$,
- (iii) a specified element $id_A \in Hom_{\mathcal{C}}(A, A)$ for every $A \in Ob(\mathcal{C})$,
- (iv) a map (called *composition law*) $\operatorname{Hom}_{\mathcal{C}}(A,B) \times \operatorname{Hom}_{\mathcal{C}}(B,C) \to \operatorname{Hom}_{\mathcal{C}}(A,C)$ denoted by $(f,g) \mapsto g \circ f$, for every objects A,B,C.

We write $f: A \to B$ to indicate that $f \in \text{Hom}_{\mathcal{C}}(A, B)$. These data are subject to the following axioms

- (a) $id_B \circ f = f = f \circ id_A$ for every $f: A \to B$,
- (b) $h \circ (g \circ f) = (h \circ g) \circ f$ for every $f: A \to B, g: B \to C, h: C \to D$.

A morphism $f: A \to B$ in \mathcal{C} is called an *isomorphism* if there exists $g: B \to A$ such that $g \circ f = \mathrm{id}_A$ and $f \circ g = \mathrm{id}_B$.

REMARK 4.1.2. We will often write $X \in \mathcal{C}$ to mean that X is an object of \mathcal{C} .

Remark 4.1.3. The meaning of the word "class" in the above definition is left to the imagination of the reader. Observe that the objects do not necessarily form a set, for instance in the category Sets defined just below.

EXAMPLE 4.1.4. The category Sets is defined by letting its objects be the sets, its morphisms the maps of sets, the composition law is given by composition of maps. Similarly, one defines the category of groups (denoted by Groups), of abelian groups (denoted by Ab), of rings, of k-algebras....

When \mathcal{B}, \mathcal{C} are categories, a functor $\mathcal{F}: \mathcal{B} \to \mathcal{C}$ is the data of an object $\mathcal{F}(B) \in \mathcal{C}$ for every object $B \in \mathcal{B}$, and a morphism $\mathcal{F}(f): \mathcal{F}(B) \to \mathcal{F}(B')$ in \mathcal{C} for every morphism $f: B \to B'$ in \mathcal{B} , subject to the following conditions:

- (a) $\mathcal{F}(\mathrm{id}_B) = \mathrm{id}_{\mathcal{F}(B)}$ for every $B \in \mathcal{B}$,
- (b) $\mathcal{F}(g) \circ \mathcal{F}(f) = \mathcal{F}(g \circ f)$ for every $f \colon B \to B'$ and $g \colon B' \to B''$ in \mathcal{B} .

When $\mathcal{B} = \mathcal{C}$, setting $\mathcal{F}(B) = B$ and $\mathcal{F}(f) = f$ for all B and f as above defines a functor $\mathrm{id}_{\mathcal{B}} \colon \mathcal{B} \to \mathcal{B}$.

If $\mathcal{F}, \mathcal{G} \colon \mathcal{B} \to \mathcal{C}$ are functors, a morphism of functors (or natural transformation) $\varphi \colon \mathcal{F} \to \mathcal{G}$ is the data of a morphism $\varphi_B \colon \mathcal{F}(B) \to \mathcal{G}(B)$ in \mathcal{C} for every $B \in \mathcal{B}$ such that for every morphism $f \colon B \to B'$ in \mathcal{B} , we have

$$\mathcal{G}(f) \circ \varphi_B = \varphi_{B'} \circ \mathcal{F}(f).$$

When $\mathcal{F} = \mathcal{G}$, setting $\varphi_B = \mathrm{id}_{\mathcal{F}(B)}$ for all $B \in \mathcal{B}$ defines a morphism of functors $\mathrm{id}_{\mathcal{F}} \colon \mathcal{F} \to \mathcal{F}$. Morphisms of functors can be composed in an obvious way. A morphism of functors $\varphi \colon \mathcal{F} \to \mathcal{G}$ is called an *isomorphism* if there is a morphism of functors $\psi \colon \mathcal{G} \to \mathcal{F}$ such that $\psi \circ \varphi = \mathrm{id}_{\mathcal{F}}$ and $\varphi \circ \psi = \mathrm{id}_{\mathcal{G}}$. Observe that φ is an isomorphism if and only if each φ_B for $B \in \mathcal{B}$ is an isomorphism in \mathcal{C} .

An equivalence of categories $\mathcal{B} \simeq \mathcal{C}$ is the data of a pair of functors $\mathcal{F} \colon \mathcal{B} \to \mathcal{C}$ and $\mathcal{G} \colon \mathcal{C} \to \mathcal{B}$ together with a pair of isomorphisms of functors $\mathrm{id}_{\mathcal{B}} \to \mathcal{G} \circ \mathcal{F}$ and $\mathrm{id}_{\mathcal{C}} \to \mathcal{F} \circ \mathcal{G}$.

Given a category \mathcal{C} , the *opposite category* \mathcal{C}^{op} is defined as follows. The objects of \mathcal{C}^{op} are the objects of \mathcal{C} , and $\text{Hom}_{\mathcal{C}^{\text{op}}}(A,B) = \text{Hom}_{\mathcal{C}}(B,A)$ for every $A,B \in \mathcal{C}$. If $A \in \mathcal{C}$ the morphism $\text{id}_A \in \text{Hom}_{\mathcal{C}^{\text{op}}}(A,A)$ corresponds to the morphism $\text{id}_A \in \text{Hom}_{\mathcal{C}}(A,A)$. Composition of morphisms is defined by the map

 $\operatorname{Hom}_{\mathcal{C}^{\operatorname{op}}}(A,B) \times \operatorname{Hom}_{\mathcal{C}^{\operatorname{op}}}(B,C) = \operatorname{Hom}_{\mathcal{C}}(B,A) \times \operatorname{Hom}_{\mathcal{C}}(C,B) \to \operatorname{Hom}_{\mathcal{C}}(C,A) = \operatorname{Hom}_{\mathcal{C}^{\operatorname{op}}}(A,C)$ where the middle map is the composition map in \mathcal{C} .

A contravariant functor $\mathcal{B} \to \mathcal{C}$ is a functor $\mathcal{B}^{\text{op}} \to \mathcal{C}$. We define in an obvious way the notions of morphism of contravariant functors, contravariant equivalence of categories,...

2. Étale algebras

Let us fix a separable closure k_s of k. Let A be a k-algebra. We define

$$\mathbf{X}(A) = \operatorname{Hom}_{k-\operatorname{alg}}(A, k_s) = \operatorname{Hom}_{k_s-\operatorname{alg}}(A_{k_s}, k_s).$$

Remark 4.2.1. By Proposition 3.3.12 (i), the set $\mathbf{X}(A)$ does not depend, up to bijection, on the choice of k_s . In particular the integer $|\mathbf{X}(A)|$ does not depend on this choice.

LEMMA 4.2.2. We have $|\mathbf{X}(A)| \leq \dim_k A$.

PROOF. This follows from Dedekind's Lemma 3.4.4.

DEFINITION 4.2.3. A commutative k-algebra A is called étale if it is finite-dimensional and $|\mathbf{X}(A)| = \dim_k A$. A morphism of étale k-algebras is just a morphism of k-algebras between étale algebras. This yields the category of étale k-algebras Et_k .

Lemma 4.2.4. Let K/k be a field extension. Then the k-algebra K is étale if and only if the extension K/k is finite and separable.

PROOF. If K is étale, then $\mathbf{X}(K) \neq \emptyset$, hence K can be embedded in k_s over k, which implies that K/k is separable. Conversely, let K be a separable field extension of k. Let F be an algebraic closure of k_s . There are [K:k] distinct morphisms of k-algebras $K \to F$ by Lemma 3.3.1 (iii). Any element of the image of such a morphism is separable over k, hence belongs to k_s . We have thus produced [K:k] distinct elements of $\mathbf{X}(K)$.

LEMMA 4.2.5. Let L/k be a field extension and A an étale k-algebra. Then the L-algebra A_L is étale.

PROOF. Let L_s be a separable closure of L. By Lemma 3.3.11 (i) there is a morphism of k-algebras $k_s \to L_s$. Such a morphism is injective, hence distinct morphisms $A \to k_s$ give rise to distinct morphisms $A_L \to k_s \to L_s$. So $|\mathbf{X}(A_L)| = |\mathbf{X}(A)| = \dim_k A = \dim_L A_L$.

Lemma 4.2.6. If k is separably closed, then every étale k-algebra is isomorphic to k^n for some integer n.

PROOF. Assume that A is an étale k-algebra of dimension n, and let f_1, \ldots, f_n be the pairwise distinct elements of $\mathbf{X}(A)$. By Dedekind's Lemma 3.4.4, these elements are linearly independent over k, hence generate the n-dimensional k-vector space $\mathrm{Hom}_k(A,k)$. In particular the intersection of their kernels is zero. Thus the morphism of k-algebras $A \to k^n$ given by $a \mapsto (f_1(a), \ldots, f_n(a))$ is injective, hence bijective by dimensional reasons

Recall that an element r of a ring R is called *nilpotent* if $r^n = 0$ for some integer n, and that the ring R is called *reduced* if it contains no nonzero nilpotent element.

Remark 4.2.7. Let R, S be rings. Then $R \times S$ is reduced if and only if R and S are reduced. Indeed a pair of nonzero nilpotent elements of R and S give rise to a nonzero nilpotent element of $R \times S$. Conversely, if $r \in R$ (resp. $s \in S$) is nonzero nilpotent, then $(r, 0) \in R \times S$ (resp. $(0, s) \in R \times S$) is so.

Lemma 4.2.8. An étale k-algebra is reduced.

PROOF. If x is a nilpotent element of A, every k-algebra morphism $A \to k_s$ factors uniquely through $A \to A/xA$. In other words, the map $\mathbf{X}(A/xA) \to \mathbf{X}(A)$ is bijective. If $x \neq 0$, then

$$|\mathbf{X}(A)| = |\mathbf{X}(A/xA)| \le \dim_k(A/xA) < \dim_k A,$$

and A is not étale.

LEMMA 4.2.9. Let A, B be finite-dimensional k-algebras.

(i) We have $\mathbf{X}(A \times B) = \mathbf{X}(A) \sqcup \mathbf{X}(B)$.

(ii) The k-algebra $A \times B$ is étale if and only if A and B are étale.

PROOF. (i): The surjective morphisms of k-algebras $A \times B \to A$ and $A \times B \to B$ allow us to view $\mathbf{X}(A)$ and $\mathbf{X}(B)$ as subsets of $\mathbf{X}(A \times B)$. Let $f \in \mathbf{X}(A \times B)$. The image of f is a field by Lemma 2.4.2, hence the kernel of f is a maximal ideal \mathfrak{m} of $A \times B$. There exist ideals $I \subset A$ and $J \subset B$ such that $\mathfrak{m} = I \times J$ (every ideal of $A \times B$ is of this form), and the maximality of \mathfrak{m} implies that I = A or J = B, and that $I \neq A$ or $J \neq B$. This proves that f belongs to exactly one of the subsets $\mathbf{X}(A)$ and $\mathbf{X}(B)$.

(ii): Since $\dim_k(A \times B) = \dim_k A + \dim_k B$, this follows from (i) and Lemma 4.2.2. \square

Lemma 4.2.10. A commutative reduced finite-dimensional k-algebra is a product of field extensions of k.

PROOF. Let A be such an algebra. Then A is artinian, hence every prime ideal of A is maximal (exercise). Any pair of distinct maximal ideals are coprime. Since A is reduced (Lemma 4.2.8), the intersection of all maximal ideals is zero (the nilradical is the intersection of all prime ideals). It follows from the Chinese remainder theorem that A is isomorphic to the product of the fields A/\mathfrak{m} , where \mathfrak{m} runs over the maximal ideals of A.

Proposition 4.2.11. A finite-dimensional k-algebra is étale if and only if it is a product of separable field extensions of k.

PROOF. An étale k-algebra is a product of fields by Lemma 4.2.8 and Lemma 4.2.10. In view of Lemma 4.2.9, the statement follows from Lemma 4.2.4.

PROPOSITION 4.2.12. Let A be a finite-dimensional commutative k-algebra, and $n = \dim_k A$. Then the following conditions are equivalent:

- (i) The k-algebra A is étale.
- (ii) The k_s -algebra A_{k_s} is isomorphic to $(k_s)^n$.
- (iii) The k-algebra A is a product of separable field extensions of k.
- (iv) If \overline{k} is an algebraic closure of k, then the ring $A_{\overline{k}}$ is reduced.
- (v) If L/k is a field extension, then the ring A_L is reduced.

Proof. (i) \iff (iii) : Proposition 4.2.11.

- $(i) \Longrightarrow (ii)$: This follows from Lemma 4.2.5 and Lemma 4.2.6.
- (ii) \Longrightarrow (i): The projections $(k_s)^n \to k_s$ yield n pairwise distinct elements of $\mathbf{X}(A)$.
- (i) \Longrightarrow (v): This follows from Lemma 4.2.5 and Lemma 4.2.8.
- $(v) \Longrightarrow (iv) : Clear.$
- (iv) \Longrightarrow (iii): The ring A is a product of fields by Lemma 4.2.10. Let K be one of these fields, and $x \in K$. Let B be the k-subalgebra of K generated by x. Then B is isomorphic to k[X]/P, where P is the minimal polynomial over k of x. The ring $\overline{k}[X]/P \simeq B_{\overline{k}}$ is reduced, being contained in $K_{\overline{k}}$, which is reduced because $A_{\overline{k}}$ is so (in view of Remark 4.2.7). This implies that P is separable: indeed if P = (X a)Q where $Q \in \overline{k}[X]$ and $a \in \overline{k}$ are such that Q(a) = 0, then $P \mid Q^2$, hence Q defines a nonzero nilpotent element of $\overline{k}[X]/P$.

COROLLARY 4.2.13. Let L/k be a field extension and A a k-algebra. If the L-algebra A_L is étale, then so is the k-algebra A.

PROOF. Let \overline{k} be an algebraic closure of k, and \overline{L} an algebraic closure of L. By Lemma 3.3.11 (i), we may view \overline{k} as a subfield of \overline{L} . The ring $A_{\overline{L}}$ is reduced by assumption (and the criterion (v) in Proposition 4.2.12), hence so is its subring $A_{\overline{k}}$. This proves that A is étale by the criterion (iv) in Proposition 4.2.12.

Let us write $\Gamma = \operatorname{Gal}(k_s/k)$. If $f \in \mathbf{X}(A)$ and $\gamma \in \Gamma$, we set $\gamma f = \gamma \circ f \in \mathbf{X}(A)$. This yields an action of the group Γ on the set $\mathbf{X}(A)$.

LEMMA 4.2.14. Let A be a finite-dimensional k-algebra. Then the Γ -action on $\mathbf{X}(A)$ is continuous (Definition 3.2.10).

PROOF. Let L be a finite extension of k in k_s , and containing the image $f(A) \subset k_s$ of all $f \in \mathbf{X}(A)$ (recall that $\mathbf{X}(A)$ is finite, and that each f(A) has finite dimension over k). Then every element of $\mathbf{X}(A)$ is fixed by the open subgroup $\operatorname{Gal}(k_s/L)$ of Γ , and the statement follows from Lemma 3.2.9.

Let us denote by Fsets_Γ the category whose objects are finite Γ -sets and morphisms are Γ -equivariant maps. We have just seen that $\mathbf{X}(A) \in \mathsf{Fsets}_\Gamma$ for any étale k-algebra A. If $\varphi \colon A \to B$ is a morphism of étale k-algebras, there is an induced map $\mathbf{X}(B) \to \mathbf{X}(A)$ given by $f \mapsto f \circ \varphi$, and one sees easily that \mathbf{X} defines a contravariant functor $\mathsf{Et}_k \to \mathsf{Fsets}_\Gamma$.

Let now X be a finite Γ -set of cardinality n. The set

$$\mathbf{M}(X) = \{ \text{maps } X \to k_s \}.$$

is naturally a k_s -algebra (via pointwise operations). This algebra is isomorphic to $(k_s)^n$. The Γ -actions on k_s and X induce a Γ -action on $\mathbf{M}(X)$; namely for $f \in \mathbf{M}(X)$ and $\gamma \in \Gamma$ we have

$$(\gamma f)(x) = \gamma \circ f(\gamma^{-1}x)$$
 for all $x \in X$.

Then the fixed subset $\mathbf{M}(X)^{\Gamma}$ is the subset of Γ -equivariant maps $X \to k_s$.

LEMMA 4.2.15. The Γ -action on $\mathbf{M}(X)$ is continuous and semilinear (Definition 3.4.2).

PROOF. Let $\gamma \in \Gamma$ and $f \in \mathbf{M}(X)$. For any $x \in X$ and $\lambda \in k$, we have

$$(\gamma(\lambda f))(x) = \gamma \circ (\lambda f)(\gamma^{-1}x) = \gamma(\lambda)\gamma \circ f(\gamma^{-1}x) = \gamma(\lambda)(\gamma f(x)),$$

so that the Γ -action on $\mathbf{M}(X)$ is semilinear.

Let now $f \in \mathbf{M}(X)$. There exists an open subgroup U_1 (resp. U_2) of Γ such that U_1 (resp. U_2) acts trivially on the finite set X (resp. f(X)). Then $U_1 \cap U_2$ is an open subgroup of Γ fixing f.

We deduce from Proposition 3.4.5 that the natural morphism of k_s -algebras

$$\mathbf{M}(X)^{\Gamma} \otimes_k k_s \to \mathbf{M}(X)$$

is bijective. Since $\mathbf{M}(X) \simeq (k_s)^n$, we conclude that $\mathbf{M}(X)^{\Gamma}$ is an étale k-algebra of dimension n. To a map of finite Γ -sets $\alpha \colon X \to Y$ corresponds a morphism of étale k-algebras $\mathbf{M}(Y)^{\Gamma} \to \mathbf{M}(X)^{\Gamma}$ given by $f \mapsto f \circ \alpha$, and one sees easily that $\mathbf{M}^{\Gamma} \colon X \mapsto \mathbf{M}(X)^{\Gamma}$ defines a contravariant functor $\mathsf{Fsets}_{\Gamma} \to \mathsf{Et}_k$.

Let A be a k-algebra. If $a \in A$, then the map $\Phi_A(a) \colon \mathbf{X}(A) \to k_s$ given by $f \mapsto f(a)$ is Γ -equivariant. We thus define a morphism of k-algebras

$$\Phi_A \colon A \to \mathbf{M}^{\Gamma}(\mathbf{X}(A)).$$

LEMMA 4.2.16. Let A be a commutative finite-dimensional k-algebra. Then the morphism Φ_A is surjective. The k-algebra A is étale if and only if Φ_A is an isomorphism.

PROOF. Since the k-algebra $\mathbf{M}^{\Gamma}(\mathbf{X}(A))$ is étale, so will be A if Φ_A is an isomorphism. In general $\dim_k \mathbf{M}^{\Gamma}(\mathbf{X}(A)) = |\mathbf{X}(A)|$, hence it will suffice to prove the first statement.

The composite (see Proposition 3.4.5)

$$A_{k_s} \xrightarrow{\Phi_A \otimes_k \mathrm{id}_{k_s}} \mathbf{M}^{\Gamma}(\mathbf{X}(A)) \otimes_k k_s \simeq \mathbf{M}(\mathbf{X}(A))$$

factors as the composite

$$A_{k_s} \to \operatorname{Hom}_{k_s}(\operatorname{Hom}_{k_s}(A_{k_s}, k_s), k_s) \to \mathbf{M}(\mathbf{X}(A))$$

where the first map sends a to the map $f \mapsto f(a)$, and the second map is given by viewing $\mathbf{X}(A) = \operatorname{Hom}_{k_s-\operatorname{alg}}(A_{k_s}, k_s)$ as a subset of $\operatorname{Hom}_{k_s}(A_{k_s}, k_s)$. The first map is surjective because the k_s -vector space A_{k_s} is finite-dimensional. The second map is surjective because $\mathbf{X}(A) \subset \operatorname{Hom}_{k_s}(A_{k_s}, k_s)$ consists of linearly independent elements by Dedekind Lemma 3.4.4. It follows that $\Phi_A \otimes_k \operatorname{id}_{k_s}$ is surjective. Since the image of that map is $\Phi_A(A) \otimes_k k_s$, it follows that Φ_A is surjective.

THEOREM 4.2.17. Let $\Gamma = \operatorname{Gal}(k_s/k)$. The functors \mathbf{X} and \mathbf{M}^{Γ} define a contravariant equivalence of categories $\mathsf{Et}_k \simeq \mathsf{Fsets}_{\Gamma}$.

PROOF. Let X be a finite Γ -set. Note that

$$\mathbf{X}(\mathbf{M}(X)^{\Gamma}) = \operatorname{Hom}_{k-\operatorname{alg}}(\mathbf{M}(X)^{\Gamma}, k_s) = \operatorname{Hom}_{k_s-\operatorname{alg}}(\mathbf{M}(X)^{\Gamma} \otimes_k k_s, k_s)$$

is naturally isomorphic to $\operatorname{Hom}_{k_s-\operatorname{alg}}(\mathbf{M}(X),k_s)$ by Proposition 3.4.5. Consider the map

$$\Psi_X \colon X \to \operatorname{Hom}_{k_s-\operatorname{alg}}(\mathbf{M}(X), k_s)$$

defined by letting $\Psi_X(x)$ be the morphism of k_s -algebras sending $f \in \mathbf{M}(X)$ to f(x). The map Ψ_X is injective: if f(x) = f(x') for all $f \in \mathbf{M}(X)$, taking for f the map

$$y \mapsto \begin{cases} 1 & \text{if } y = x, \\ 0 & \text{otherwise,} \end{cases}$$

we see that x = x'. Since the source and target of the map Ψ_X have the same finite number of elements, the map Ψ_X is bijective.

Conversely, we have seen in Lemma 4.2.16 that the morphism $\Phi_A : A \to \mathbf{M}^{\Gamma}(\mathbf{X}(A))$ is bijective when A is étale k-algebra.

To conclude note that Ψ and Φ in fact define functors.

Remark 4.2.18. If X, Y are finite Γ -sets, there are natural Γ -equivariant isomorphisms of k-algebras

$$\mathbf{M}(X \sqcup Y) \simeq \mathbf{M}(X) \times \mathbf{M}(Y)$$
; $\mathbf{M}(X \times Y) \simeq \mathbf{M}(X) \otimes_k \mathbf{M}(Y)$.

Thus under the equivalence of Theorem 4.2.17 disjoint unions, resp. direct products, of finite Γ -sets correspond to direct products, resp. tensor products, of étale k-algebras.

Remark 4.2.19. An étale k-algebra A is a field if and only if Γ acts transitively on the set $\mathbf{X}(A)$ (as A is a product of fields by Proposition 4.2.11, this follows from Remark 4.2.18).

DEFINITION 4.2.20. Let A be a finite-dimensional k-algebra, and $n = \dim_k A$. The characteristic polynomial of an element $a \in A$ is the polynomial

$$\operatorname{Cp}_{A/k}(a) = \det(X \operatorname{id}_A - l_a) \in k[X],$$

where $l_a: A \to A$ is the map given by $x \mapsto ax$ (viewed as a k-linear map). Writing this polynomial as $a_n X^n + \cdots + a_0$ where $a_0, \ldots, a_n \in k$, we define the norm and trace of a as

$$N_{A/k}(a) = (-1)^n a_0$$
 and $Tr_{A/k}(a) = -a_{n-1}$.

Observe that if K/k is a field extension, then for any $a \in A$

$$\operatorname{Cp}_{A_K/K}(a \otimes 1) = \operatorname{Cp}_{A/k}(a) \in k \subset K.$$

PROPOSITION 4.2.21. Let A be an étale k-algebra. Then for any $a \in A$, we have

$$Cp_{A/k}(a) = \prod_{f \in \mathbf{X}(A)} (X - f(a)).$$

In particular

$$N_{A/k}(a) = \prod_{f \in \mathbf{X}(A)} f(a)$$
 and $\operatorname{Tr}_{A/k}(a) = \sum_{f \in \mathbf{X}(A)} f(a)$.

PROOF. We may extend scalars to k_s , and replace A with A_{k_s} . Then map $A \to \mathbf{M}(\mathbf{X}(A))$ sending a to $f \mapsto f(a)$ is an isomorphism of k-algebras. Thus A admits a k-basis e_f for $f \in \mathbf{X}(A)$ such that $e_f e_g = 0$ if $f \neq g$ and $e_f^2 = e_f$, and for every $a \in A$

$$a = \sum_{f \in \mathbf{X}(A)} f(a)e_f.$$

Then $ae_f = f(a)e_f$ for every $f \in \mathbf{X}(A)$. The statement follows.

COROLLARY 4.2.22. Let K/k be a finite separable field extension and A a commutative finite-dimensional K-algebra. Then the K-algebra A is étale if and only if the k-algebra A is étale. If this is the case, we have

$$N_{K/k} \circ N_{A/K} = N_{A/k}$$
 and $Tr_{K/k} \circ Tr_{A/K} = Tr_{A/k}$.

PROOF. Let K_s be a separable closure of K and denote by $\mathbf{X}(A/K)$ the set of morphisms of K-algebras $A \to K_s$. For each $f \in \mathbf{X}(K)$ choose a morphism of k-algebras $\widetilde{f} \colon K_s \to k_s$ extending f (this is possible by Lemma 3.3.11 (i)). We claim that the elements $\widetilde{f} \circ g \in \mathbf{X}(A)$ for $f \in \mathbf{X}(K)$ and $g \in \mathbf{X}(A/K)$ are pairwise distinct. Indeed if $f, f' \in \mathbf{X}(K)$ and $g, g' \in \mathbf{X}(A/K)$ are such that $\widetilde{f} \circ g = \widetilde{f'} \circ g' \colon A \to k_s$, composing with the unique morphism of K-algebras $K \to A$ we see that f = f'. Therefore $\widetilde{f} = \widetilde{f'}$, hence g = g' (by injectivity of \widetilde{f}), proving the claim. Thus, using Lemma 4.2.2,

$$|\mathbf{X}(A/K)| \cdot |\mathbf{X}(K)| \le |\mathbf{X}(A)| \le \dim_k A = \dim_K A \cdot [K:k] = \dim_K A \cdot |\mathbf{X}(K)|,$$

we see that the k-algebra A is étale if and only if the k-algebra A is étale.

Assume that this is the case. Then the equality $|\mathbf{X}(A/K)| \cdot |\mathbf{X}(K)| = |\mathbf{X}(A)|$ implies that every element of $\mathbf{X}(A)$ is of the form $\widetilde{f} \circ g \in \mathbf{X}(A)$ for $f \in \mathbf{X}(K)$ and $g \in \mathbf{X}(A/K)$.

If $a \in A$ then

$$\begin{split} \mathbf{N}_{K/k} \circ \mathbf{N}_{A/K}(a) &= \prod_{f \in \mathbf{X}(K)} f\Big(\prod_{g \in \mathbf{X}(A/K)} g(a)\Big) \\ &= \prod_{f \in \mathbf{X}(K)} \prod_{g \in \mathbf{X}(A/K)} \widetilde{f} \circ g(a) \\ &= \prod_{h \in \mathbf{X}(A)} h(a) \\ &= \mathbf{N}_{A/k}(a), \end{split}$$

and similarly

$$\operatorname{Tr}_{K/k} \circ \operatorname{Tr}_{A/K}(a) = \sum_{f \in \mathbf{X}(K)} f\left(\sum_{g \in \mathbf{X}(A/K)} g(a)\right)$$
$$= \sum_{f \in \mathbf{X}(K)} \sum_{g \in \mathbf{X}(A/K)} \widetilde{f} \circ g(a)$$
$$= \sum_{h \in \mathbf{X}(A)} h(a)$$
$$= \operatorname{Tr}_{A/k}(a).$$

3. Galois algebras

In this section we fix a finite group G. As before k_s denotes a separable closure of k, and we write $\Gamma = \operatorname{Gal}(k_s/k)$.

DEFINITION 4.3.1. A commutative k-algebra endowed with a left action of G by automorphisms of k-algebras will be called a G-algebra (over k). A morphism of G-algebras is a G-equivariant morphism of k-algebras between G-algebras.

If A is a G-algebra, then the set $\mathbf{X}(A)$ is naturally equipped with a right G-action by Γ -equivariant permutations. Explicitly for $g \in G$ and $f \in \mathbf{X}(A)$, we have $f \cdot g = f \circ g$. Conversely, if X is Γ -set with a right G-action, then $\mathbf{M}^{\Gamma}(X)$ is a G-algebra.

PROPOSITION 4.3.2. Let A be a G-algebra over k. Then the following are equivalent (i) $A^G = k$,

(ii) A is étale and G acts transitively on $\mathbf{X}(A)$.

PROOF. Assume that $A^G = k$. Let L/k be a field extension, and set $B = A_L$. Then $B^G = L$ by Lemma 3.4.1. Let $b \in B$. Let S be the set consisting in the elements $g \cdot b$ for $g \in G$. Then the polynomial

$$P = \prod_{s \in S} (X - s) \in B[X]$$

satisfies g(P) = P for all $g \in G$, hence belongs to $B[X]^G = L[X]$. Let I be the ideal of L[X] consisting of those polynomials Q such that Q(b) = 0. Assume that $b \neq 0$ and that $b^m = 0$ for some integer m. Then $P(0) \neq 0$, hence the polynomials X^m and P are relatively prime. Since $X^m \in I$ and $P \in I$, we deduce that $1 \in I$, a contradiction. We have proved that $B = A_L$ is reduced, which implies that A is étale.

Assume now that A is étale (and A^G is arbitrary). We use the correspondence established in Theorem 4.2.17. Let $X = \mathbf{X}(A)$, and consider the Γ -set Y = X/G. Since

a map $Y \to k_s$ is the same thing as a map $X \to k_s$ which is G-invariant as an element of $\mathbf{M}(X) = A_{k_s}$, we have

$$\mathbf{M}^{\Gamma}(Y) = \mathbf{M}^{\Gamma}(X/G) = \mathbf{M}^{\Gamma}(X)^G = A^G.$$

It follows that A^G is an étale k-algebra such that $\mathbf{X}(A^G) = Y$. Thus $A^G = k$ if and only if Y is a single point, i.e. G acts transitively on X.

DEFINITION 4.3.3. Let A be a G-algebra over k. We say that A is a G-algebra (over k) if the following conditions hold:

- (a) $A^G = k$,
- (b) $\dim_k A = |G|$.

A morphism of Galois G-algebras is a morphism of G-algebras between Galois G-algebras.

Note that a Galois G-algebra is étale by Proposition 4.3.2. If L/k is a field extension, it follows from Lemma 3.4.1 that a G-algebra A is Galois over k if and only if A_L is Galois over L.

EXAMPLE 4.3.4. Let L/k be a field extension of finite degree. The following may be deduced from Proposition 3.3.2. If the field extension L/k is Galois, then L is a Galois Gal(L/k)-algebra over k. Conversely, if L is a G-algebra, then L/k is a Galois field extension, and the morphism $G \to Gal(L/k)$ is bijective.

Example 4.3.5. Consider the set S consisting of all maps $G \to k$, with the k-algebra structure given by pointwise operations. The group G naturally acts on S: if f is a map $G \to k$ and $g \in G$, then $g \cdot f$ is the map $G \to k$ given by $x \mapsto f(xg)$. Then S is a Galois G-algebra. We have $\mathbf{X}(S) = G$ with the trivial Γ -action, and the G-action given by right multiplication.

PROPOSITION 4.3.6. The functors \mathbf{X} and \mathbf{M}^{Γ} induce a contravariant equivalence between the categories of Galois G-algebras and the category of nonempty finite Γ -sets with a simply transitive G-action.

PROOF. This follows from Proposition 4.3.2, since a transitive G-action on a set of cardinality |G| is simply transitive, and conversely any nonempty set with a simply transitive G-action has cardinality |G|.

DEFINITION 4.3.7. We say that a Galois G-algebra A is split if Γ acts trivially on $\mathbf{X}(A)$.

It follows from Proposition 4.3.6 that a Galois G-algebra is split if and only if it is isomorphic to the algebra S of Example 4.3.5.

PROPOSITION 4.3.8. Let A be a Galois G-algebra, and consider the split G-algebra S of Example 4.3.5. Then there is an isomorphism of k-algebras $A \otimes_k A \simeq S \otimes_k A$, which is G-equivariant for the actions via the first factors, and A-linear for the module structures via the second factors.

PROOF. Let $X = \mathbf{X}(A)$. Consider the map of Γ -sets $G \times X \to X \times X$ given by $(g,x) \mapsto (xg,x)$. This map is G-equivariant if we let G act via the first factors, and yield an isomorphism of G-algebras $A \otimes_k A \to S \otimes_k A$ under the equivalence of Proposition 4.3.6. To prove the last statement, note that the composite $G \times X \to X \times X \to X$, where the last map is the second projection, coincides with the projection $G \times X \to X$. Therefore

the composite $A \to A \otimes_k A \to S \otimes_k A$, where the first map is $a \mapsto 1 \otimes a$, coincides with the morphism of k-algebras $A \to S \otimes_k A$ given by $a \mapsto 1 \otimes a$.

COROLLARY 4.3.9. Let A be a Galois G-algebra, and $A \to K$ a morphism of k-algebras, where K is a field. Then the Galois G-algebra A_K over K is split.

PROOF. Since the image of $f\colon A\to K$ is a field (by Lemma 2.4.2), we may assume that f is surjective. Then the isomorphism $A\otimes_k A\simeq S\otimes_k A$ of Proposition 4.3.8 induces an isomorphism of G-algebras $A\otimes_k K\simeq S\otimes_k K$ over K.

Proposition 4.3.10. Let A be a Galois G-algebra. Then for any $a \in A$, we have

$$\operatorname{Cp}_{A/k}(a) = \prod_{g \in G} (X - g \cdot a)$$

(using the notation of Definition 4.2.20). In particular

$$N_{A/k}(a) = \prod_{g \in G} g \cdot a$$
 and $Tr_{A/k}(a) = \sum_{g \in G} g \cdot a$.

PROOF. Pick an element f in the nonempty set $\mathbf{X}(A)$. Then $\mathbf{X}(A) = \{f \circ g | g \in G\}$, hence the formula follows from Proposition 4.2.21.

CHAPTER 5

Torsors, cocyles, and twisted forms

In this chapter we introduce the notion of torsor (also called principal homogeneous space), under a group G equipped with a continuous action of the absolute Galois group. Such objects coincide with G as sets, but carry a different Galois action.

Torsors naturally appear in the study of twisted forms of algebraic objects, that is, objects defined over a base field, which become isomorphic to a given object (called split) over the separable closure of the base field. In this situation, the group G is the automorphism group of the split object. Examples of twisted forms include étale algebras, Galois algebras, finite-dimensional central simple algebras, nondegenerate quadratic forms,...

A related notion is that of 1-cocyles. These objects provide a more computational approach to torsors, and admit higher dimensional generalisations which will be explored in the next chapters. The set of 1-cocyles is endowed with a natural equivalence relation, so that the set of equivalence classes (called the first cohomology set) is in bijection with the set of isomorphism classes of twisted forms, or of torsors. An important subtlety is that twisted forms correspond to torsors, but not to 1-cocyles; this is only true "up to isomorphism", and therefore some care is required when working with twisted forms and 1-cocyles. Another pitfall is that the cohomology of various groups are related by exact sequences (as one might expect), but these are only sequences of pointed sets. In particular such sequences only provide information concerning the fiber over the split object (the base point).

1. Torsors

In this section Γ is a profinite group, and G a Γ -group (Definition 3.2.10). We will denote by $(g,h) \mapsto g \cdot h$ the group operation in G.

Definition 5.1.1. A left G-action on a Γ -set X is called *compatible* if

$$\gamma(g \cdot x) = (\gamma g) \cdot (\gamma x)$$
 for $x \in X$ and $g \in G$.

Similarly, a right G-action on a Γ -set X is called *compatible* if

$$\gamma(x \cdot g) = (\gamma x) \cdot (\gamma g)$$
 for $x \in X$ and $g \in G$.

DEFINITION 5.1.2. Let X be a Γ -set equipped with a compatible right G-action. We say that X is a G-torsor if X is nonempty and the G-action on X is simply transitive.

A morphism of G-torsors is a map between torsors compatible with the Γ - and Gactions. Such a morphism is always bijective (because of the simple transitivity), and the
inverse map is automatically Γ - and G-equivariant. Thus all morphisms of G-torsors are
isomorphisms.

EXAMPLE 5.1.3. Let $\Gamma = \operatorname{Gal}(k_s/k)$, and G a finite group considered as a Γ -group with trivial Γ -action. We have seen in Proposition 4.3.6 that the category of G-torsors is equivalent to the opposite of the category of Galois G-algebras over k.

Let X be a Γ -set with a compatible left G-action, and let P be a G-torsor. We now describe a procedure that yields another Γ -set PX, called the twist of X by P.

DEFINITION 5.1.4. We define an equivalence relation on $P \times X$ by letting (p, x) be equivalent to $(p \cdot g, g^{-1} \cdot x)$, whenever $p \in P, x \in X, g \in G$. The set of equivalence classes will be denoted by PX.

Setting $\gamma(p,x)=(\gamma p,\gamma x)$ for $p\in P,x\in X,\gamma\in G$ defines a Γ -action on the set PX.

Lemma 5.1.5. The Γ -action on $_PX$ is continuous.

PROOF. Let (p, x) be an arbitrary element of pX, where $p \in P$ and $x \in X$. By continuity of the Γ -actions on P and X, there are open subgroups U and V in Γ fixing respectively p and x. Then $U \cap V$ is an open subgroup in Γ which fixes $(p, x) \in PX$. \square

To each element $p \in P$ correspond a bijection

(5.1.a)
$$\pi_p \colon X \to pX$$
 , $x \mapsto (p, x)$.

This map is not Γ -equivariant in general; in fact we have for any $p \in P, x \in X, \gamma \in \Gamma$,

(5.1.b)
$$\pi_p(\gamma x) = \gamma \pi_{\gamma^{-1}p}(x).$$

Also observe that, for any $p \in P, x \in X, g \in G$,

(5.1.c)
$$\pi_p(g \cdot x) = \pi_{p \cdot q}(x).$$

Assume now that V is an F-vector space, equipped with a semilinear continuous left Γ -action and a compatible left G-action by F-automorphisms. Then the set ${}_PV$ is naturally an F-vector space, the Γ -action on ${}_PV$ is semilinear, and the maps $\pi_p\colon V\to {}_PV$ are F-linear.

2. Twisted forms

Let us denote by Sep_k the category of separable field extensions¹ of k, a morphism between two such extensions being just a morphism of k-algebras. Let \mathcal{F} be a functor $\mathsf{Sep}_k \to \mathsf{Sets}$. For any $L \in \mathsf{Sep}_k$, the group $\mathsf{Aut}_{k-\mathrm{alg}}(L)$ naturally acts on $\mathcal{F}(L)$; explicitly if $\gamma \in \mathsf{Aut}_{k-\mathrm{alg}}(L)$ and $x \in \mathcal{F}(L)$, then $\gamma x = \mathcal{F}(\gamma)(x)$.

DEFINITION 5.2.1. We will say that \mathcal{F} is a sheaf of sets, or simply a k-set (nonstandard terminology), if for all morphisms $K \to L$ in Sep_k with L/K Galois, the $\mathsf{Gal}(L/K)$ -action on the set $\mathcal{F}(L)$ is continuous, and the map

$$\mathcal{F}(K) \to \mathcal{F}(L)^{\operatorname{Gal}(L/K)}$$

is bijective. A morphism of k-sets is just a natural transformation between k-sets. The notion of k-groups is defined similarly.

¹for us a separable field extension is algebraic.

Remark 5.2.2. Let us fix a separable closure k_s of k. If X is a k-set, then $X(k_s)$ is a $\operatorname{Gal}(k_s/k)$ -set. Conversely, assume that Y is a Γ -set. Let $L \in \operatorname{\mathsf{Sep}}_k$. Then there exists a morphism of k-algebras $\varphi \colon L \to k_s$, which allows us to view L as a subextension of k_s . The set $X(L) = Y^{\operatorname{Gal}(k_s/L)}$ does not depend on the choice of φ , since any other such choice is of the form $\gamma \circ \varphi$, where $\gamma \in \operatorname{Gal}(k_s/L)$. Now let $f \colon L \to L'$ be a morphism in $\operatorname{\mathsf{Sep}}_k$. Choose morphisms of k-algebras $\varphi \colon L \to k_s$ and $\varphi' \colon L' \to k_s$. Then there exists γ such that $\gamma \circ \varphi = \varphi' \circ f$, and we define a map $X(L) \to X(L')$ as the restriction of the action γ on Y. As above, this map independent of the choice of $\gamma, \varphi, \varphi'$. It is easy to verify that we have thus defined a k-set X such that $X(k_s) = Y$ as $\operatorname{Gal}(k_s/k)$ -sets. Moreover, if $Y = X'(k_s)$ for some k-set X', then there is a natural isomorphism of k-sets $X' \to X$.

EXAMPLE 5.2.3. Any set X defines a k-set taking the value X on every separable extension L/k. We will denote again by X this k-set. Note that all Galois group actions on X are trivial.

EXAMPLE 5.2.4. Let V be a vector space over k. Every morphism $E \to L$ in Sep_k induces a group morphism $V_E \to V_L$, so that we may define a functor $\mathsf{Sep}_k \to \mathsf{Groups}$ by $L \mapsto V_L$. We have proved in Lemma 3.4.3 that this functor is in fact a k-group.

When V = k, we will denote this k-group by \mathbb{G}_a . Thus $\mathbb{G}_a(L) = L$ (as groups) for any separable extension L/k.

Let us now fix an integer $n \in \mathbb{N}$ and a collection of integers $m_1, \ldots, m_n, m'_1, \ldots, m'_n \in \mathbb{N}$. When V is a vector space over a field K we will write

$$T(V) = \bigoplus_{i=1}^{n} \operatorname{Hom}_{K}(V^{\otimes m_{i}}, V^{\otimes m'_{i}}),$$

and if $\varphi \colon V \to W$ is a K-isomorphism, we will write

$$T(\varphi) = \bigoplus_{i=1}^n \operatorname{Hom}_K((\varphi^{-1})^{\otimes m_i'}, \varphi^{\otimes m_i}) \colon T(V) \to T(W).$$

If $\psi \colon U \to V$ is another K-isomorphism, then

(5.2.a)
$$T(\varphi) \circ T(\psi) = T(\varphi \circ \psi).$$

In fact we thus defined a functor T from the subcategory of k-vector spaces, where morphisms are the k-automorphisms, to itself. This construction is compatible with scalars extension, that is, if L/K is a field extension, then $T(V_K) = T(V)_K$.

Let us now fix a Galois extension F/k, and set $\Gamma = \operatorname{Gal}(F/k)$. We also fix a finite-dimensional k-vector space S and element $s \in T(S)$.

DEFINITION 5.2.5. A twisted form of (S, s) is a pair (R, r), where R is a k-vector space and $r \in T(R)$ so that there is an isomorphism of F-vector spaces $\varphi \colon S_F \to R_F$ such that $T(\varphi)(s_F) = r_F$. A morphism $(R, r) \to (R', r')$ of twisted forms of (S, s) is an isomorphism of k-vector spaces $\psi \colon R \to R'$ such that $T(\psi)(r) = r'$. This defines a category of twisted forms of (S, s).

Remark 5.2.6. The isomorphism φ is *not* part of the data, only its existence is required.

Let (R, r) be a twisted form of (S, s). For every separable extension L/k, consider the set

$$\mathcal{I}(L) = \left\{ \begin{array}{c} \text{isomorphisms of L-vector spaces } \varphi \colon S_L \to R_L \\ \text{such that } T(\varphi)(s_L) = r_L. \end{array} \right\}$$

When $f: E \to L$ is a morphism in Sep_k and $\varphi \in \mathcal{I}(E)$, the map $\mathcal{I}(f)(\varphi) = \varphi \otimes_E \mathrm{id}_L$ fits into the commutative diagram

$$(5.2.b) S_E \xrightarrow{\varphi} R_E$$

$$\downarrow_{\mathrm{id}_S \otimes_k f} \qquad \downarrow_{\mathrm{id}_R \otimes_k f}$$

$$\downarrow_{S_L} \xrightarrow{\mathcal{I}(f)(\varphi)} R_L$$

We have thus defined a functor \mathcal{I} : $\mathsf{Sep}_k \to \mathsf{Sets}$. When necessary, we will use the more precise notation $\mathcal{I}_{(R,r)}$ for this functor. It follows from the diagram (5.2.b) (with E = L and $f = \gamma$) that the action of $\gamma \in \mathsf{Aut}_{k-\mathsf{alg}}(L)$ on $\varphi \in \mathcal{I}(L)$ is given by

(5.2.c)
$$\gamma \varphi = (\mathrm{id}_R \otimes_k \gamma) \circ \varphi \circ (\mathrm{id}_S \otimes_k \gamma^{-1}).$$

Lemma 5.2.7. The functor \mathcal{I} is a k-set.

PROOF. Let $f: K \to L$ be a morphism in Sep_k so that L/K is Galois, and $\varphi \in \mathcal{I}(L)$. Let x_1, \ldots, x_r be a finite generating set of the k-vector space S (which is assumed to be finite-dimensional). Since $\operatorname{Gal}(L/K)$ acts continuously on R_L (by Lemma 3.4.3), we may find an open normal subgroup U of $\operatorname{Gal}(L/K)$ acting trivially on $\varphi(x_i \otimes 1) \in R_L$ for $i = 1, \ldots, r$. Then for any $\gamma \in U$ and $i = 1, \ldots, r$, we have by (5.2.c)

$$\gamma \varphi(x_i \otimes 1) = (\mathrm{id}_R \otimes_k \gamma) \circ \varphi \circ (\mathrm{id}_S \otimes_k \gamma^{-1})(x_i \otimes 1) = \varphi(x_i \otimes 1),$$

so that the subgroup U fixes φ . We have proved that $\mathcal{I}(L)$ is a $\operatorname{Gal}(L/K)$ -set.

Since the morphism $\mathrm{id}_R \otimes_k f \colon R_K \to R_L$ is injective, the diagram (5.2.b) (with E = K) implies that $\mathcal{I}(K) \to \mathcal{I}(L)$ is injective. Assume now that φ lies in $\mathcal{I}(L)^{\mathrm{Gal}(L/K)}$. In view of the formula (5.2.c), the morphism $\varphi \colon S_L \to R_L$ is $\mathrm{Gal}(L/K)$ -invariant. Since $R_K = (R_L)^{\mathrm{Gal}(L/K)}$ by Lemma 3.4.3, there is an induced morphism $\psi = \varphi^{\mathrm{Gal}(L/K)} \colon S_K \to R_K$. This is an isomorphism (with inverse $(\varphi^{-1})^{\mathrm{Gal}(L/K)}$). We have $\psi_L = \varphi$ by Proposition 3.4.5, and the condition $T(\varphi)(s_L) = r_L$ implies that $T(\psi)(s_K) = r_K$ (because $T(R)_K \to T(R)_L$ is injective). We have thus constructed an element $\psi \in \mathcal{I}(K)$ mapping to $\varphi \in \mathcal{I}(L)$.

In the special case (R, r) = (S, s), the functor \mathcal{I} is naturally a k-group that we denote by $\operatorname{Aut}(S, s)$. Thus for every separable extension L/k

$$\operatorname{Aut}(S,s)(L) = \{L\text{-automorphisms }\varphi \text{ of } S_L \text{ such that } T(\varphi)(s_L) = s_L\}.$$

In general $\mathcal{I}(L)$ is equipped with a simply transitive right $\operatorname{Aut}(S,s)(L)$ -action. In particular $\operatorname{Aut}(S,s)(F)$ is a Γ -group, and $\mathcal{I}(F)$ is an $\operatorname{Aut}(S,s)(F)$ -torsor.

Example 5.2.8. Lemma 5.2.7 yields many examples of k-groups. For instance taking s=0 and T=0 yields the k-group $\mathrm{GL}(V)$, which satisfies for any separable field extension L/k.

$$GL(V)(L) = Aut_L(V_L).$$

When n is an integer, we write $GL_n = GL(k^n)$, as well as $\mathbb{G}_m = GL_1$.

EXAMPLE 5.2.9. More generally, let A be a finite-dimensional k-algebra and S an A-module, of finite dimension over k. The A-module structure is given by a k-linear map $S \otimes_k A \to S$. Setting $T(S) = \operatorname{Hom}_k(S \otimes_k A, S)$ (choosing a k-basis of A), we see that

$$L \mapsto \operatorname{Aut}_{A_L}(S_L)$$

defines a k-group. When $S = A^{\oplus n}$, we denote this k-group by $GL_n(A)$. In particular we have $GL_1(A)(L) = (A_L)^{\times}$ for all separable field extensions L/k.

We now start with an $\operatorname{Aut}(S,s)(F)$ -torsor P and construct a twisted form (R,r) of (S,s). Consider the Γ -set ${}_PS_F$ introduced in Definition 5.1.4. The element $s_F \in T(S_F)$ is $\operatorname{Aut}(S,s)(F)$ -equivariant (by definition of $\operatorname{Aut}(S,s)$). It thus follows from (5.1.c) and (5.2.a) that its image $r' = T(\pi_p)(s_F) \in T({}_PS_F)$ does not depend on the choice of $p \in P$. Also s_F is Γ -invariant (being defined over k), and (5.1.b) (together with independence of r' in p) implies that r' is Γ -invariant. Setting $R = ({}_PS_F)^{\Gamma}$, we have a Γ -equivariant identification of F-vector spaces $R_F = {}_PS_F$ by Proposition 3.4.5. The element r' lies in

$$T({}_{P}S_{F})^{\Gamma} = T(R_{F})^{\Gamma} = (T(R)_{F})^{\Gamma}.$$

By Lemma 3.4.3, this implies that $r' = r_F$ for some $r \in T(R)$. The choice of an element $p \in P$ yields an isomorphism $\varphi \colon S_F \xrightarrow{\pi_p} {}_P S_F = R_F$ such that $T(\varphi)(s_F) = r_F$. We have thus constructed a twisted form (R, r) of (S, s), which will be denoted by (R(P), r(P)) when necessary.

Proposition 5.2.10. The above defined associations

$$(R,r) \mapsto \mathcal{I}_{(R,r)}(F)$$
 and $P \mapsto (R(P), r(P))$

induce an equivalence between the categories of Aut(S, s)(F)-torsors and of twisted forms of (S, s).

PROOF. Let (R,r) be a twisted form of (S,s), and set $P=\mathcal{I}_{(R,r)}(F)$. The isomorphism

$$u: R_F \xrightarrow{\varphi^{-1}} S_F \xrightarrow{\pi_{\varphi}} {}_P S_F = R(P)_F$$

does not depend on the choice of $\varphi \in P$, since for $g \in \operatorname{Aut}(S,s)(F)$, we have by (5.1.c)

$$\pi_{\varphi \cdot g} \circ (\varphi \cdot g)^{-1} = \pi_{\varphi} \circ g \circ g^{-1} \circ \varphi^{-1} = \pi_{\varphi} \circ \varphi^{-1}.$$

We have $T(u)(r_F) = T(\pi_{\varphi})(s_F) = r(P)_F$ (by construction of r(P)). The morphism u is Γ -equivariant, since for $\gamma \in \Gamma$ we have by (5.2.c) and (5.1.b)

$$u \circ (\mathrm{id}_R \otimes \gamma) = \pi_\varphi \circ \varphi^{-1} \circ (\mathrm{id}_R \otimes \gamma)$$

$$= \pi_\varphi \circ (\mathrm{id}_S \otimes \gamma) \circ (\gamma^{-1} \varphi^{-1})$$

$$= (\mathrm{id}_{R(P)} \otimes \gamma) \circ \pi_{\gamma^{-1} \varphi^{-1}} \circ (\gamma^{-1} \varphi)$$

$$= (\mathrm{id}_{R(P)} \otimes \gamma) \circ u,$$

where we used the independence of u in the choice of φ for the last step. In view of Lemma 3.4.3, the morphism u induces an isomorphism $u^{\Gamma}: R \to R(P)$ such that $T(u^{\Gamma})(r) = r(P)$. Therefore the twisted forms (R, r) and (R(P), r(P)) are isomorphic.

Conversely, let P be a $\operatorname{Aut}(S,s)(F)$ -torsor, and write (R,r)=(R(P),r(P)). Consider the map

$$v \colon P \to \mathcal{I}_{(R,r)}(F)$$

sending $p \in P$ to the map $S_F \xrightarrow{\pi_P} {}_P S_F = R_F$. The morphism v is Γ -equivariant, since for any $p \in P$ we have by (5.1.b) and (5.2.c)

$$v(\gamma p) = (\mathrm{id}_R \otimes \gamma) \circ v(p) \circ (\mathrm{id}_S \otimes \gamma^{-1}) = (\gamma v)(p).$$

The morphism v is also $\operatorname{Aut}(S,s)(F)$ -equivariant by (5.1.c), and is therefore an isomorphism of $\operatorname{Aut}(S,s)(F)$ -torsors.

To conclude, it only remains to notice that these associations define functors, and that the isomorphisms u and v are functorial.

Assume now that S is a finite-dimensional k-algebra. The multiplication in S defines an element $s \in T(S) = \operatorname{Hom}_k(S \otimes_k S, S)$. The group $\operatorname{Aut}(S,s)(L)$ defined above coincides with $\operatorname{Aut}_{L-\operatorname{alg}}(S_L)$, when L/k is a separable field extension. Let A be a k-algebra such that $A_F \simeq S_F$ as F-algebras. Then the k-vector space A together with the product of A, viewed as an element of $\operatorname{Hom}_k(A \otimes_k A, A)$, define a twisted form of (S, s). Conversely, let (R, r) be a twisted form of (S, s). Then r defines a product $R \otimes_k R \to R$. The induced product on R_F defines a F-algebra structure (isomorphic to S_F). This implies that the product on R is associative. For $\gamma \in \Gamma$ and $a, b \in R_F$, we have $(\gamma a)(\gamma b) = \gamma(ab)$, hence

$$\gamma 1 = (\gamma 1)1 = (\gamma 1)(\gamma \gamma^{-1}1) = \gamma (1\gamma^{-1}1) = \gamma \gamma^{-1}1 = 1 \in R_F,$$

so that $1 \in R \subset R_F$, and it follows that the product on R defines a k-algebra structure.

In conclusion, a twisted form of (S, s) is precisely a k-algebra A such that $A_F \simeq S_F$ as F-algebras. Note that if the twisted form (R, r) corresponds to the $\operatorname{Aut}(S, s)(F)$ -torsor P under the correspondence of Proposition 5.2.10, then the k-algebra R may be identified with ${}_PS_F$. We have thus proved:

PROPOSITION 5.2.11. Let S be a finite-dimensional k-algebra. There is a contravariant equivalence between the category of k-algebras A such that $A_F \simeq S_F$ as F-algebras, and the category of $\mathrm{Aut}_{F-\mathrm{alg}}(S_F)$ -torsors.

EXAMPLE 5.2.12. (Étales algebras) Since $\operatorname{Aut}_{k_s-\operatorname{alg}}(k_s^n)$ is the symmetric group \mathfrak{S}_n with the trivial $\operatorname{Gal}(k_s/k)$ -action, étale k-algebras of dimension n correspond to \mathfrak{S}_n -torsors.

EXAMPLE 5.2.13. (Galois G-algebras) Let G be a finite group, viewed as a Γ -group with the trivial $Gal(k_s/k)$ -action. Consider the split $Galois\ G$ -algebra S described in Example 4.3.5. Its automorphism group is the group of G-equivariant automorphisms of the set $\mathbf{X}(S) = G$, which coincides with G. Therefore $Galois\ G$ -algebras correspond to G-torsors. One may see that the G-torsor corresponding to a G-algebra G-algebra

EXAMPLE 5.2.14. (Quadratic forms) Let n be an integer and assume that the characteristic of k is not 2. A basic result in quadratic form theory asserts that all nondegenerate quadratic forms of rank n are twisted forms of the "split" quadratic form q given by $(x_1,\ldots,x_n)\mapsto x_1^2+\cdots+x_n^2$. For each separable field extension L/k, let $O_n(L)$ be the group of isometries of the bilinear form q_L . Then O_n defines a k-group by Lemma 5.2.7, and $O_n(k_s)$ -torsors correspond to isometry classes of nondegenerate bilinear forms of rank n.

Example 5.2.15. (Central simple algebras) Let n be an integer. Setting for each separable field extension L/k

$$\operatorname{PGL}_n(L) = \operatorname{Aut}_{L-\operatorname{alg}}(M_n(L))$$

defines a k-group by Lemma 5.2.7. Finite-dimensional central simple k-algebras of degree n correspond to $\operatorname{PGL}_n(k_s)$ -torsors.

REMARK 5.2.16. In all the above examples, we may replace k_s/k by an arbitrary Galois extension F/k, and obtain classifications of twisted forms "split by F/k".

3. 1-cocyles

In this section we fix a profinite group Γ . Let A be a Γ -group. As before, we denote by $a \mapsto \gamma a$ the action on A of $\gamma \in \Gamma$ and by $(a,b) \mapsto a \cdot b$ the group operation in A.

DEFINITION 5.3.1. A 1-cocyle of Γ with values in A is a continuous map $\xi \colon \Gamma \to A$ (for the discrete topology on A) that we denote by $\gamma \mapsto \xi_{\gamma}$, and such that

(5.3.a)
$$\xi_{\gamma\tau} = \xi_{\gamma} \cdot (\gamma \xi_{\tau}) \quad \text{for all } \gamma, \tau \in \Gamma.$$

The set of 1-cocyles $\Gamma \to A$ will be denoted by $Z^1(\Gamma, A)$. We define an equivalence relation by declaring two 1-cocyles ξ, η cohomologous if there is $a \in A$ such that

$$\eta_{\gamma} = a^{-1} \cdot \xi_{\gamma} \cdot (\gamma a)$$
 for all $\gamma \in \Gamma$.

The set of equivalence classes is denoted by $H^1(\Gamma, A)$.

Assume now that M is a Γ -module (we still use the multiplicative notation for the group operation in M). Setting for $\xi, \eta \in Z^1(\Gamma, M)$ and $\gamma \in \Gamma$

$$(\xi\eta)_{\gamma} = \xi_{\gamma}\eta_{\gamma},$$

turns $Z^1(\Gamma, M)$ into an abelian group, compatibly with the equivalence relation defined above. Thus $H^1(\Gamma, M)$ is naturally an abelian group.

REMARK 5.3.2. If $\xi \colon \Gamma \to A$ is a 1-cocyle, note that $\xi_1 = 1$, and that

$$\xi_{\gamma}^{-1} = \gamma \xi_{\gamma^{-1}}$$
 for all $\gamma \in \Gamma$.

Remark 5.3.3. If the Γ -action on the Γ -group A is trivial, a 1-cocyle $\Gamma \to A$ is just a continuous group morphism $\Gamma \to A$. Two 1-cocyles are cohomologous if and only if they are conjugated by an element of A. In particular if M is a Γ -module with trivial Γ -action, then $Z^1(\Gamma, M) = H^1(\Gamma, M)$ is the group of continuous group morphisms $\Gamma \to M$.

Let $\xi \colon \Gamma \to A$ be a 1-cocyle. Let X be a Γ -set with a compatible left A-action, denoted by $(a,x) \mapsto a \cdot x$. For $\gamma \in \Gamma$ and $x \in X$, we set

$$(5.3.b) \gamma \star_{\xi} x = \xi_{\gamma} \cdot (\gamma x).$$

A straight-forward verification show that this defines a Γ -action on X. Any $x \in X$ is fixed by some open subgroup $V \subset \Gamma$ (for the original action), and the 1-cocyle ξ factors through Γ/U for some open subgroup $U \subset \Gamma$ by Lemma 3.2.11. Then $\gamma \star_{\xi} x = x$ for all $\gamma \in U \cap V$, which proves the Γ -action defined in (5.3.b) is continuous.

DEFINITION 5.3.4. The Γ -action defined in (5.3.b) is called the action twisted by ξ . The set X equipped with that action is a Γ -set, that we denote by ξX .

Now let $a \in A$, and consider the 1-cocycle $\xi' \colon \Gamma \to A$ defined by

$$\xi_{\gamma}' = a^{-1} \cdot \xi_{\gamma} \cdot (\gamma a) \text{ for } \gamma \in \Gamma.$$

A straight-forward computation shows that the left action of a on X induces an isomorphism of Γ -sets $_{\xi}X \to _{\xi'}X$. This shows that twisting the action by cohomologous 1-cocyles yields isomorphic Γ -sets.

REMARK 5.3.5. The above isomorphism depends on the choice of a (and not simply on ξ, ξ'), hence we cannot define a Γ -set ξX for $\xi \in H^1(\Gamma, A)$.

PROPOSITION 5.3.6. Let G be a Γ -group. The set $H^1(\Gamma, G)$ is naturally in bijection with the set of isomorphism classes of G-torsors.

PROOF. This follows from (i), (ii), (iii) in the more precise Lemma 5.3.7 below.

Lemma 5.3.7. Let G be a Γ -group. We view G as a Γ -set, with the G-action given by right multiplication. Then

- (i) If $\xi \colon \Gamma \to G$ is a 1-cocyle, then ξG is a G-torsor.
- (ii) Every G-torsor is isomorphic to $_{\xi}G$ for some 1-cocycle $\xi\colon\Gamma\to G$.
- (iii) Let ξ, ξ' be 1-cocycles $\Gamma \to G$. Then $\xi G \simeq \xi' G$ as G-torsors if and only if ξ and ξ' are cohomologuous.
- (iv) Let P be a G-torsor and $p \in P$. Then there is a unique map $\xi \colon \Gamma \to G$ such that $\gamma p = p \cdot \xi_{\gamma}$ for all $\gamma \in \Gamma$. The map ξ is a 1-cocycle such that $P \simeq {}_{\xi}G$ as G-torsors.
- (v) Let X be a Γ -set with a compatible left G-action. Let $\xi \colon \Gamma \to G$ be a 1-cocyle, and $P = {}_{\xi}G$. Then ${}_{P}X \simeq {}_{\xi}X$ as Γ -sets.

PROOF. (i): We need to check that the G-action on itself given by right multiplication is compatible with the twisted Γ -action. Indeed, for $g, h \in G$ and $\gamma \in \Gamma$, we have

$$\gamma \star_{\mathcal{E}} (g \cdot h) = \xi_{\gamma} \cdot (\gamma(g \cdot h)) = \xi_{\gamma} \cdot (\gamma g) \cdot (\gamma h) = (\gamma \star_{\mathcal{E}} g) \cdot \gamma(h).$$

(iv): The first statement follows from the simple transitivity of the G-action on P. If U is an open subgroup of Γ acting trivially on p, then ξ factors as $\Gamma/U \to G$, so that the map ξ is continuous by Lemma 3.2.11. For $\gamma, \tau \in \Gamma$, we have

$$\gamma \tau p = \gamma (p \cdot \xi_{\tau}) = (\gamma p) \cdot (\gamma \xi_{\tau}) = p \cdot \xi_{\gamma} \cdot (\gamma \xi_{\tau}),$$

so that $\xi_{\gamma\tau} = \xi_{\gamma} \cdot (\gamma \xi_{\tau})$, proving that ξ is 1-cocyle. The map $\xi G \to P$ given by $g \mapsto p \cdot g$ is G-equivariant for the right G-actions. It is also Γ -equivariant, since for any $\gamma \in \Gamma$ and $g \in G$, we have

$$p \cdot (\gamma \star_{\xi} g) = p \cdot \xi_{\gamma} \cdot (\gamma g) = (\gamma p) \cdot (\gamma g) = \gamma (p \cdot g).$$

The map $\xi G \to P$ is thus a morphism of G-torsors, hence an isomorphism.

- (ii): Since a torsor in nonempty by definition, this follows from (iv).
- (iii): One implication has already been observed. Let $\varphi \colon {}_{\xi}G \to {}_{\xi'}G$ be an isomorphism of G-torsors. Set $a = \varphi(1)$. Then for any $\gamma \in \Gamma$

$$\xi'_{\gamma} \cdot (\gamma a) = \gamma \star_{\xi'} a = \gamma \star_{\xi'} \varphi(1) = \varphi(\gamma \star_{\xi} 1) = \varphi(\xi_{\gamma} \cdot 1) = \varphi(1 \cdot \xi_{\gamma}) = \varphi(1) \cdot \xi_{\gamma} = a \cdot \xi_{\gamma},$$
 proving that ξ and ξ' are cohomologous.

(v): Consider the element $p \in P$ corresponding to $1 \in G$. Then we have $\gamma p = p \cdot \xi_{\gamma}$ for any $\gamma \in \Gamma$. In view of (5.1.b) and (5.1.c), we have, for any $x \in X$ and $\gamma \in \Gamma$,

$$\pi_p(\gamma \star_{\xi} x) = \pi_p(\xi_{\gamma} \cdot (\gamma x)) = \pi_{p \cdot \xi_{\gamma}}(\gamma x) = \pi_{\gamma p}(\gamma x) = \gamma \pi_p(x)$$

proving that the map $\pi_p: X \to {}_PX$ induces a Γ -equivariant bijection ${}_{\xi}X \to {}_PX$.

DEFINITION 5.3.8. A pointed set is a set equipped with a distinguished element. We will denote by 1 the pointed set {*} with its distinguished element *. A morphism of pointed sets is a map sending the distinguished element to the distinguished element. The

image of such a map is naturally a pointed set; the kernel of a morphism of pointed sets is the preimage of the distinguished element. We say that a sequence of pointed sets

$$A_0 \xrightarrow{f_0} A_1 \xrightarrow{f_1} \cdots \xrightarrow{f_n} A_n$$

is exact if $\ker f_i = \operatorname{im} f_{i-1}$ for $i = 1, \ldots, n$

The set $H^1(\Gamma, A)$ is naturally pointed, the distinguished element being given by the class of the 1-cocycle $\gamma \mapsto 1$.

Remark 5.3.9. Let A, B be Γ -groups. Then the pointed set $H^1(\Gamma, A \times B)$ is naturally isomorphic to $H^1(\Gamma, A) \times H^1(\Gamma, B)$.

Composing 1-cocyles $\Gamma \to A$ with a morphism of Γ -groups $f \colon A \to B$ yields a morphism of pointed sets

$$f_*: H^1(\Gamma, A) \to H^1(\Gamma, B).$$

PROPOSITION 5.3.10. Let B be a Γ -group, and $A \subset B$ a Γ -subgroup. Denote by C = B/A the quotient of B by action of A given by right multiplication. Then C is a Γ -set, and we have an exact sequence of pointed sets

$$1 \to A^{\Gamma} \to B^{\Gamma} \to C^{\Gamma} \xrightarrow{\delta} H^1(\Gamma, A) \to H^1(\Gamma, B).$$

For $c \in C^{\Gamma}$, the class $\delta(c) \in H^1(\Gamma, A)$ is represented by the 1-cocyle sending $\gamma \in \Gamma$ to $b^{-1}(\gamma b) \in A \subset B$, where $b \in B$ is any preimage of c. The preimage of $c \in C^{\Gamma}$ under the map $B \to C$ is naturally an A-torsor, whose class in $H^1(\Gamma, A)$ is $\delta(c)$.

PROOF. We explain only the last statement, the rest being straight-forward. Denote by $F \subset B$ the preimage of c. Then $b \in F$, and each element of F is of the form ba for a unique $a \in A$, so that F is an A-torsor. It follows from Lemma 5.3.7 (iv) that the corresponding element of $H^1(\Gamma, A)$ is $\delta(c)$.

COROLLARY 5.3.11. In the situation of Proposition 5.3.10, the kernel of $H^1(\Gamma, A) \to H^1(\Gamma, B)$ is isomorphic to the quotient of the pointed set C^{Γ} by the left action of B^{Γ} .

PROOF. Let $c, c' \in C^{\Gamma}$, with preimages $b, b' \in B$. We have $\delta(c) = \delta(c')$ if and only if the 1-cocyles $\gamma \mapsto b^{-1}(\gamma b)$ and $\gamma \mapsto b'^{-1}(\gamma b')$ are cohomologuous, which means that there exists $a \in A$ such that $b'^{-1}(\gamma b') = a^{-1}b^{-1}(\gamma ba)$ for all $\gamma \in \Gamma$, or equivalently $b'a^{-1}b^{-1} \in B^{\Gamma}$. This is equivalent to the existence of $\beta \in B^{\Gamma}$ such that $\beta c = c'$ in C^{Γ} .

Proposition 5.3.12. Any exact sequence of Γ -groups

$$1 \rightarrow A \rightarrow B \rightarrow C \rightarrow 1$$

induces an exact sequence of pointed sets

$$1 \to A^{\Gamma} \to B^{\Gamma} \to C^{\Gamma} \xrightarrow{\delta} H^1(\Gamma, A) \to H^1(\Gamma, B) \to H^1(\Gamma, C).$$

The morphism of pointed sets δ is the one described in Proposition 5.3.10.

Proof. This is clear.
$$\Box$$

In the situation of Proposition 5.3.12, let $c \in C^{\Gamma}$ and $\xi \in Z^1(\Gamma, A)$. Pick a preimage $b \in B$ of c. Then for any $\gamma \in \Gamma$ the element

$$\xi_{\gamma}' = b^{-1} \cdot \xi_{\gamma} \cdot (\gamma b) \in B$$

is mapped to 1 in C, hence belongs to A. It is easy to verify that we have thus defined a 1-cocycle $\xi' \colon \Gamma \to A$. Another choice of b yields a 1-cocycle cohomologous to ξ' , and in fact $(\xi, c) \mapsto \xi'$ defines a right action of C^{Γ} on $H^1(\Gamma, A)$.

COROLLARY 5.3.13. In the situation of Proposition 5.3.12, the kernel of $H^1(\Gamma, B) \to H^1(\Gamma, C)$ is isomorphic to the quotient of the pointed set $H^1(\Gamma, A)$ by the action of C^{Γ} .

PROOF. Let $\xi, \xi' \in Z^1(\Gamma, A)$ have the same image in $H^1(\Gamma, B)$. Then there exists $b \in B$ such that $\xi'_{\gamma} = b^{-1} \cdot \xi_{\gamma} \cdot (\gamma b)$ in B for all $\gamma \in \Gamma$. The image $c \in C$ of b belongs to C^{Γ} , and the action of c transforms ξ into ξ' . The converse is clear.

4. Galois cohomology

We say that a k-group G acts on a k-set X if G(L) acts on X(L) for every separable extension L/k, compatibly with the morphisms $G(L) \to G(L')$ and $X(L) \to X(L')$ when $L \to L'$ is a morphism in Sep_k .

DEFINITION 5.4.1. Let G be a k-group. A k-set X with an action of G is called a G-torsor if for all separable closures F/k the Gal(F/k)-set X(F) is a G(F)-torsor. A morphism of G-torsors is a morphism of functors between G-torsors which is compatible with the G-actions. The set of isomorphism classes of G-torsors will be denoted by $H^1(k,G)$.

Remark 5.4.2. Let X be a k-set with a G-action. If F, F' are separable closures of k, there exists an isomorphism $\varphi \colon F \to F'$, which yields a bijection $X(F) \to X(F')$ compatible with the G(F)- and G(F')-actions. Therefore X is a G-torsor as soon as $X(k_s)$ is a $G(k_s)$ -torsor for some separable closure k_s/k . In this case, it follows from Remark 5.2.2 that there is a canonical identification

$$H^1(k,G) = H^1(\operatorname{Gal}(k_s/k), G(k_s)).$$

DEFINITION 5.4.3. Let $f: H \to G$ be a morphism of k-groups. The kernel of f is the k-subgroup ker $f \subset G$, defined by setting for every separable field extension L/k

$$(\ker f)(L) = \ker(H(L) \to G(L)).$$

DEFINITION 5.4.4. When A, B, C are k-groups, an exact sequence

$$1 \to A \to B \to C \to 1$$

is the data of morphisms of k-groups $A \to B$ and $B \to C$ such that for every separable closure F of k, the sequence of groups

$$1 \to A(F) \to B(F) \to C(F) \to 1$$

is exact.

Note that the morphism $B(k) \to C(k)$ need not be surjective. In fact, by Proposition 5.3.12, there is an induced exact sequence of pointed sets

$$1 \to A(k) \to B(k) \to C(k) \to H^1(k,A) \to H^1(k,B) \to H^1(k,C).$$

We finally come back to the setting of $\S5.2$, and note the following consequence from Proposition 5.2.10:

PROPOSITION 5.4.5. Assume that F is a separable closure of k. Isomorphism classes of twisted forms of (S, s) correspond to elements of $H^1(k, Aut(S, s))$.

If $\xi \colon \operatorname{Gal}(F/k) \to \operatorname{Aut}(S,s)(F)$ is 1-cocyle, the corresponding (up to isomorphism) twisted form (R,r) may be constructed by setting

$$R = \{ x \in S_F | x = \xi_{\gamma} \cdot (\gamma x) \}$$

and $r = s_F \in R \subset S_F$.

Conversely let (R,r) be a twisted form of (S,s). Choose an isomorphism $\varphi \colon S_F \to R_F$ such that $T(\varphi)(s_F) = r_F$. A 1-cocyle corresponding to (R,r) is given by the map $\Gamma \to \operatorname{Aut}(S,s)(F)$ sending $\gamma \in \operatorname{Gal}(F/k)$ to the composite

$$S_F \xrightarrow{\operatorname{id}_S \otimes \gamma^{-1}} S_F \xrightarrow{\varphi} R_F \xrightarrow{\operatorname{id}_R \otimes \gamma} R_F \xrightarrow{\varphi^{-1}} S_F.$$

PROOF. The first statement follows from Proposition 5.3.6 and Proposition 5.2.10. The explicit description of R follows from Lemma 5.3.7 (v), and the explicit description of the 1-cocyle follows from Lemma 5.3.7 (iv) (in view of the formula (5.2.c)).

EXAMPLE 5.4.6. (Étales algebras.) The set of isomorphism classes of étale k-algebras of dimension n is $H^1(k, \mathfrak{S}_n)$, where \mathfrak{S}_n is considered as a Γ -group with trivial Γ -action. In view of Remark 5.3.3, this is the set of continuous group morphisms $\operatorname{Gal}(k_s/k) \to \mathfrak{S}_n$ modulo conjugation by elements of \mathfrak{S}_n .

EXAMPLE 5.4.7. (Galois G-algebras.) Let G be a finite group, viewed as a Γ -group with the trivial $\operatorname{Gal}(k_s/k)$ -action. The set of isomorphism classes of Galois G-algebras is in bijection with $H^1(k,G)$. Since Γ acts trivially on G, this is the set of continuous group morphisms $\operatorname{Gal}(k_s/k) \to G$ modulo conjugation by elements of G (Remark 5.3.3). In particular, if G is abelian, this is the set of continuous group morphisms $\operatorname{Gal}(k_s/k) \to G$.

EXAMPLE 5.4.8. (Central simple algebras) Let n be an integer. Finite-dimensional central simple k-algebras of degree n are classified up to isomorphism by the pointed set $H^1(k, PGL_n)$.

CHAPTER 6

Applications of torsor theory

In this chapter, we apply the theory of twisted forms that we have just developed. The simplest applications are the classical Kummer and Artin–Schreier theories, which describe torsors under cyclic groups (in the presence of enough roots of unity), that is, Galois algebras under those groups. These theories are consequences of Hilbert's Theorem 90 (and its additive counterpart), a central result which is the basis of many computations of Galois cohomology sets.

The rest of the chapter concerns central simple algebras. As we have seen, such algebras of degree n correspond to torsors under the group PGL_n . Thus algebras of different degrees have classes in the first cohomology set of different groups. We first briefly explain how to relate these cohomology sets in order to understand the tensor product of central simple algebras in terms of 1-cocyles.

The next application concerns the so-called cyclic algebras. Those algebras may be thought of as higher degrees generalisations of quaternion algebras, and provide a concrete way of constructing central simple algebras. This section culminates with a computation of the relative Brauer group of a cyclic Galois extension.

The last application is a construction of the reduced norm and trace, which are twisted versions of the determinant and trace of matrices. The reduced norm may be thought of as a higher degree generalisation of the quaternion norm. We relate the image of the reduced norm to the images of the norms of splitting fields of finite degrees.

1. Kummer theory

Let V is a finite-dimensional k-vector space. Recall from Example 5.2.8 that GL(V) denoted the k-group defined by $GL(V)(L) = Aut_L(V_L)$ for any separable field extension L/k.

PROPOSITION 6.1.1 (Hilbert's Theorem 90). For any Galois field extension F/k, we have $H^1(Gal(F/k), GL(V)(F)) = \{*\}$. In particular $H^1(k, GL(V)) = \{*\}$.

PROOF. This follows at once from Proposition 5.4.5, since all twisted forms of the k-vector space V have the same dimension, hence are isomorphic.

The above statement is in fact due to Speiser. Hilbert proved the following consequence:

COROLLARY 6.1.2. Let L/k be a Galois field extension of finite degree such that Gal(L/k) is cyclic generated by σ . Let $\alpha \in L$. Then $N_{L/k}(\alpha) = 1$ if and only if $\alpha = (\sigma\beta)\beta^{-1}$ for some $\beta \in L$.

PROOF. Let n = [L:k]. Recall that, by Proposition 4.3.10,

$$N_{L/k}(\alpha) = \alpha(\sigma\alpha) \cdots (\sigma^{n-1}\alpha).$$

Certainly $N_{L/k}((\sigma\beta)\beta^{-1}) = 1$. Conversely, assume that $N_{L/k}(\alpha) = 1$. Then the map

$$\xi \colon \operatorname{Gal}(L/k) \to L^{\times} \quad ; \quad \sigma^{i} \mapsto \alpha(\sigma\alpha) \cdots (\sigma^{i-1}\alpha)$$

is a 1-cocyle. By Hilbert's Theorem 90 (Proposition 6.1.1), this 1-cocyle is cohomologous to the trivial 1-cocyle. This yields an element $\beta \in L^{\times}$ such that $\xi_{\sigma^i} = (\sigma^i \beta) \beta^{-1}$, and the statement follows by taking i = 1.

DEFINITION 6.1.3. Let n be an integer. We denote by μ_n the kernel of the morphism of k-groups $\mathbb{G}_m \to \mathbb{G}_m$ given by $x \mapsto x^n$. Thus μ_n is a k-group such that, for any separable field extension L/k, we have

$$\mu_n(L) = \{ x \in L^{\times} | x^n = 1 \}.$$

Lemma 6.1.4. Assume that n is not divisible by the characteristic of k. Then we have an exact sequence of k-groups

$$1 \to \mu_n \to \mathbb{G}_m \xrightarrow{x \mapsto x^n} \mathbb{G}_m \to 1.$$

PROOF. We only need to prove surjectivity of the last morphism. If $a \in k_s^{\times}$, then the polynomial $X^n - a$ is separable, hence has a root in $b \in k_s^{\times}$. The element b is the required preimage of a.

PROPOSITION 6.1.5 (Kummer's theory). Assume that n is not divisible by the characteristic of k. Then there is a natural group isomorphism

$$k^{\times}/k^{\times n} \simeq H^1(k, \mu_n),$$

mapping $a \in k^{\times}$ to the class of the 1-cocyle $\gamma \mapsto (\gamma \alpha)\alpha^{-1}$, where $\alpha \in k_s$ is any element such that $\alpha^n = a$.

Every $\mu_n(k_s)$ -torsor is of the form $\{x \in k_s | x^n = a\}$, where $\omega \in \mu_n(k_s)$ acts by $x \mapsto \omega x$, for a uniquely determined element $a \in k^{\times}/k^{\times n}$.

PROOF. By Proposition 5.3.12, the exact sequence of k-groups of Lemma 6.1.4 yields an exact sequence of groups

$$1 \to \mu_n(k) \to k^{\times} \xrightarrow{x \mapsto x^n} k^{\times} \xrightarrow{\delta} H^1(k, \mu_n) \to H^1(k, \mathbb{G}_m).$$

The group on the right is trivial by Hilbert's Theorem 90 (Proposition 6.1.1), so the required isomorphism is induced by δ . The remaining statements follow from the explicit descriptions of δ provided in Proposition 5.3.10.

COROLLARY 6.1.6. Assume that k contains a root of unity ω of order n. Then

$$H^1(k, \mathbb{Z}/n) \simeq k^{\times}/k^{\times n}$$
.

The class of an element $a \in k^{\times}$ corresponds to the isomorphism class of the Galois \mathbb{Z}/n -algebra $R_a = k[X]/(X^n - a)$, with the action of $i \in \mathbb{Z}/n$ given by $X \mapsto \omega^i X$.

PROOF. The assumption implies that n is not divisible by the characteristic of k and that there is an isomorphism of $\operatorname{Gal}(k_s/k)$ -groups $\mathbb{Z}/n \to \mu_n(k_s)$ given by $i \mapsto \omega^i$. We have $\mathbf{X}(R_a) = \{x \in k_s | x^n = a\}$ as \mathbb{Z}/n -torsors, where $i \in \mathbb{Z}/n$ acts by $x \mapsto \omega^i x$. Since $\dim_k R_a = n$, this implies that R_a is the Galois \mathbb{Z}/n -algebra (unique up to isomorphism) corresponding to the $\mu_n(k_s)$ -torsor $\{x \in k_s | x^n = a\}$, where ω acts by $x \mapsto \omega x$. Thus the statement follows from Proposition 6.1.5.

2. Artin-Schreier theory

Proposition 6.1.1 has the following "additive" counterpart.

PROPOSITION 6.2.1. We have $H^1(k, \mathbb{G}_a) = \{*\}.$

PROOF. Consider the k-vector space $S = k^2$. The element $s = (1,0) \in S$ and the map $\sigma \in \operatorname{Hom}_k(S,k)$ given by $\sigma(x,y) = y$ for all $x,y \in F$ define an element

$$(s, \sigma) \in T(S) = S \oplus \operatorname{Hom}_k(S, k).$$

We will abuse notation and denote the pair $(S, (s, \sigma))$ by (S, s, σ) . Let F/k be a Galois extension and $\Gamma = \text{Gal}(F/k)$. Any element $\varphi \in \text{Aut}(S, s, \sigma)(F)$ is given by a matrix

$$\begin{pmatrix} a_{\varphi} & b_{\varphi} \\ c_{\varphi} & d_{\varphi} \end{pmatrix} \in M_2(F).$$

The condition $\varphi(s_F) = s_F$ means that $a_{\varphi} = 1$ and $c_{\varphi} = 0$. The condition $\sigma_F \circ \varphi = \sigma_F$ means that $d_{\varphi} = 1$ and $c_{\varphi} = 0$. The remaining coefficient b_{φ} may be freely chosen in F, and we have, for any $x, y \in F$,

$$\varphi(x,y) = (x + b_{\varphi}y, y).$$

If ψ is another automorphism of (S_F, s_F, σ_F) , we have $b_{\varphi \circ \psi} = b_{\varphi} + b_{\sigma}$. This proves that $\operatorname{Aut}(S, s, \sigma)(F)$ is the group F. Moreover if $\gamma \in \operatorname{Gal}(F/k)$, and $\psi = (\operatorname{id} \otimes \gamma) \circ \varphi \circ (\operatorname{id} \otimes \gamma^{-1})$, we have for any $x, y \in F$

$$\psi(x,y) = (\operatorname{id} \otimes \gamma) \circ \varphi(\gamma^{-1}x, \gamma^{-1}y) = (\operatorname{id} \otimes \gamma)(\gamma^{-1}x + b_{\varphi}\gamma^{-1}y, \gamma^{-1}y) = (x + (\gamma b_{\varphi})y, y),$$

so that $b_{\psi} = \gamma b_{\varphi}$. We have proved that the Γ -group $\operatorname{Aut}(S, s, \sigma)(F)$ is isomorphic to $\mathbb{C}_{\mathbb{F}_{\sigma}}(F)$.

Let now (R, r, ρ) and (R', r', ρ') be twisted forms of (S, s, σ) over k. Note that all the elements r, r', ρ, ρ' are nonzero, since they are so after extending scalars to F. Let $e \in R$, resp. $e \in R'$, be such that $\rho(e) = 1$, resp. $\rho'(e') = 1$. Then (r, e), resp. (r', e'), is a k-basis of R, resp. R'. The k-linear map $R \to R'$ given by $r \mapsto r'$ and $e \mapsto e'$ is then an isomorphism $(R, r, \rho) \to (R', r', \rho')$. We have proved that all twisted forms of (S, s, σ) are isomorphic. Therefore $H^1(\operatorname{Gal}(k_s/k), \operatorname{Aut}(S, s, \sigma)(k_s)) = H^1(k, \mathbb{G}_a) = \{*\}$ by Proposition 5.4.5.

LEMMA 6.2.2. If k has characteristic p > 0, we have an exact sequence of k-groups

$$0 \to \mathbb{Z}/p \to \mathbb{G}_a \xrightarrow{\wp} \mathbb{G}_a \to 0,$$

where, for every separable field extension L/k,

$$\wp \colon L \to L \quad ; \quad x \mapsto x^p - x.$$

PROOF. Note that \wp defines a morphism of k-groups, and that $\ker \wp \colon L \to L$ coincides with the prime field $\mathbb{F}_p \subset L$ for every separable field extension L/k. Thus $\ker \wp$ is isomorphic to the constant group \mathbb{Z}/p . The morphism $\wp \colon k_s \to k_s$ is surjective because for any $a \in k_s$ the polynomial $X^p - X - a \in k_s[X]$ is separable; if b is a root of that polynomial, then $\wp(b) = a$.

Proposition 6.2.3 (Artin–Schreier's theory). Assume that k has characteristic p > 0. There is a natural group isomorphism

$$k/\wp(k) \simeq H^1(k, \mathbb{Z}/p),$$

mapping $a \in k$ to the class of the 1-cocyle $\gamma \mapsto \gamma \alpha - \alpha$, where $\alpha \in k_s$ is any element such that $\alpha^p - \alpha = a$.

Every \mathbb{Z}/p -torsor is of the form $\{x \in k_s | x^p - x = a\}$, where $i \in \mathbb{Z}/p$ acts by $x \mapsto x + i$, for a uniquely determined $a \in k/\wp(k)$.

PROOF. By Proposition 5.3.12, the exact sequence of k-groups of Lemma 6.2.2 yields an exact sequence of groups

$$1 \to \mathbb{Z}/p \to k \xrightarrow{\wp} k \xrightarrow{\delta} H^1(k, \mathbb{Z}/p) \to H^1(k, \mathbb{G}_a).$$

The group on the right is trivial by Proposition 6.2.1, so the required isomorphism is induced by δ . The remaining statements follow from the explicit descriptions of δ provided in Proposition 5.3.10.

COROLLARY 6.2.4. Assume that k has characteristic p > 0. Every Galois \mathbb{Z}/p -algebra is of the form $T_a = k[X]/(X^p - X - a)$ for a uniquely determined $a \in k/\wp(k)$, where the action of $i \in \mathbb{Z}/p$ given by $X \mapsto X + i$.

PROOF. We have $\mathbf{X}(T_a) = \{x \in k_s | x^p - x = a\}$ as \mathbb{Z}/p -torsors, where $i \in \mathbb{Z}/p$ acts by $x \mapsto x + i$. Since $\dim_k T_a = p$, this implies that T_a is the Galois \mathbb{Z}/p -algebra (unique up to isomorphism) corresponding to the \mathbb{Z}/p -torsor $\{x \in k_s | x^p - x = a\}$. Thus the statement follows from Proposition 6.2.3.

3. Tensor product and 1-cocyles

In this short section, we explain how the tensor product of central simple algebras can be expressed in terms of 1-cocycles.

Let $m, n \in \mathbb{N} - 0$ and set $V = k^n$ and $W = k^m$. A morphism $GL(V) \times GL(W) \to GL(V \otimes_k W)$ can be defined by sending (φ, ψ) to $\varphi \otimes \psi$. This yields a morphism of k-groups $GL_m \times GL_n \to GL_{mn}$ fitting into a commutative diagram of k-groups, with exact rows

where the vertical map on the left is the group operation in \mathbb{G}_m .

Let us denote by $[A] \in H^1(k, \operatorname{PGL}_n)$ the class of a finite-dimensional central simple k-algebra of degree n.

PROPOSITION 6.3.1. Let A, B be a finite-dimensional central simple k-algebras, and $m = \deg(A), n = \deg(B)$. Then ([A], [B]) is mapped to $[A \otimes_k B]$ under the composite

$$H^1(k, \operatorname{PGL}_m) \times H^1(k, \operatorname{PGL}_n) \to H^1(k, \operatorname{PGL}_m \times \operatorname{PGL}_n) \to H^1(k, \operatorname{PGL}_{mn}).$$

PROOF. Let $\varphi: A_{k_s} \to M_m(k_s)$ and $\psi: B_{k_s} \to M_n(k_s)$ be isomorphisms of k_s -algebras. Those yield an isomorphism of k_s -algebras

$$(A \otimes_k B)_{k_s} = A_{k_s} \otimes_{k_s} B_{k_s} \xrightarrow{\varphi \otimes \psi} M_m(k_s) \otimes_{k_s} M_n(k_s) = M_{mn}(k_s).$$

To conclude, we use the explicit description of the 1-cocycle associated to a twisted form given in Proposition 5.4.5. Indeed, for any $\gamma \in \operatorname{Gal}(k_s/k)$ we have

$$(\varphi \otimes \psi)^{-1} \circ \gamma \circ (\varphi \otimes \psi) \circ \gamma^{-1} = (\varphi^{-1} \circ \gamma \circ \varphi \circ \gamma^{-1}) \otimes (\psi^{-1} \circ \gamma \circ \psi \circ \gamma^{-1}). \qquad \Box$$

4. Cyclic algebras

When L is a Galois \mathbb{Z}/n -algebra, we will denote by $\rho: L \to L$ the action of $1 \in \mathbb{Z}/n$.

DEFINITION 6.4.1. Let L be a Galois \mathbb{Z}/n -algebra over k, and $a \in k^{\times}$. We define the k-algebra (L, a) as

$$(L,a) = \bigoplus_{i=0}^{n-1} Lz^i$$

where the element z, that we call the standard element, is subject to the relations

$$z^n = a$$
 and $zl = \rho(l)z$ for all $l \in L$.

Algebras of the form (L, a) are called *cyclic algebras*.

Observe that $\dim_k(L, a) = n^2$.

LEMMA 6.4.2. Let A be a k-algebra containing L as a subalgebra and $\alpha \in A$ such that

$$\alpha^n = a$$
 and $\alpha l = \rho(l)\alpha$ for all $l \in L$.

Then there exists a unique morphism of k-algebras $(L,a) \to A$ mapping z to α , whose restriction on L is the inclusion $L \subset A$.

PROOF. This is clear from the definition.

REMARK 6.4.3. If $b \in k^{\times}$, then $z \mapsto bz$ induces an isomorphism $(L, a) \to (L, ab^n)$, hence the isomorphism class of (L, a) depends only on the class of a in $k^{\times}/k^{\times n}$.

Remark 6.4.4. If $\omega \in k^{\times}$ is a root of unity of order n, then Galois \mathbb{Z}/n -algebras are classified by elements of $k^{\times}/k^{\times n}$ by Corollary 6.1.6, hence we may associate a cyclic algebra to each pair $(a,b) \in (k^{\times}/k^{\times n})^2$ (which depends on ω). When n=2 and k has characteristic different from two (thus $\omega=-1$), this is of course the quaternion algebra (a,b) of Definition 1.1.1. This suggests how to define quaternion algebras when k has characteristic two: in this case Artin–Schreier theory (Proposition 6.2.3) asserts that Galois $\mathbb{Z}/2$ -algebras are classified by $k/\wp(k)$, so that one may associate a cyclic algebra of degree 2 to each pair $(a,b) \in (k/\wp(k)) \times (k^{\times}/k^{\times 2})$.

For $a \in k^{\times}$, consider the matrix (blank entries are zero)

$$Z_{a} = \begin{pmatrix} 0 & \cdots & 0 & a \\ 1 & & & 0 \\ & \ddots & & \vdots \\ & & 1 & 0 \end{pmatrix} \in M_{n}(k).$$

Using the notation diag for the diagonal matrices, observe that

$$(6.4.a) (Z_a)^n = \operatorname{diag}(a, \dots, a)$$

and that, if $x_1, \ldots, x_n \in k$, then

(6.4.b)
$$Z_a \cdot \operatorname{diag}(x_1, \dots, x_n) \cdot Z_a^{-1} = \operatorname{diag}(x_n, x_1, \dots, x_{n-1}).$$

PROPOSITION 6.4.5. Let L be a Galois \mathbb{Z}/n -algebra over k and $a \in k^{\times}$.

- (i) The k-algebra (L, a) is central and simple.
- (ii) If L is split, then $(L, a) \simeq M_n(k)$.

(iii) Let $\Gamma = \operatorname{Gal}(k_s/k)$ and $\lambda \colon \Gamma \to \mathbb{Z}/n$ be a 1-cocycle whose class in $H^1(\Gamma, \mathbb{Z}/n)$ is the class of the Galois \mathbb{Z}/n -algebra L. The class of the finite-dimensional central simple k-algebra (L,a) in $H^1(\Gamma, \operatorname{PGL}_n(k_s))$ is given by the 1-cocycle $z_a \circ \lambda$, where $z_a \colon \mathbb{Z}/n \to \operatorname{PGL}_n(k_s)$ is the group morphism mapping $1 \in \mathbb{Z}/n$ to the automorphism of $M_n(k_s)$ given by $M \mapsto Z_a M Z_a^{-1}$.

PROOF. (ii): We may assume that $L_{k_s} = (k_s)^n$ with the \mathbb{Z}/n -action given by

$$\rho(x_1, \dots, x_n) = (x_n, x_1, \dots, x_{n-1})$$
 for $x_1, \dots, x_n \in k_s$.

In view of (6.4.b) and (6.4.a) (and Lemma 6.4.2), we may define a morphism of k_s -algebras $\varphi \colon (L, a) \to M_n(k_s)$ by

$$(x_1, \ldots, x_n) \in L \mapsto \operatorname{diag}(x_1, \ldots, x_n) \quad \text{and} \quad z \mapsto Z_a.$$

Let $j \in \{1, ..., n\}$ and $u_j = (\delta_{1,j}, ..., \delta_{n,j}) \in L$ (where $\delta_{i,j}$ is the Kronecker delta). For $i \in \{1, ..., n\}$, we have

$$\varphi(u_j z^i) = \begin{cases} e_{j,j-i} & \text{if } j > i, \\ ae_{j,n+j-i} & \text{if } j \leq i, \end{cases}$$

where $e_{u,v}$ denotes the matrix in $M_n(k_s)$ whose only nonzero entry is in position (u,v) and has value 1. It follows that φ is surjective, hence bijective by dimensional reasons.

- (i): This follows from (ii) by extending scalars to k_s (in view of Lemma 2.4.1).
- (iii): Consider the isomorphism of k_s -algebras $\varphi \colon (L,a)_{k_s} \to M_n(k_s)$ constructed above. We twist the Γ -action on $M_n(k_s)$ via the 1-cocyle $\xi = z_a \circ \lambda$. Every element $\gamma \in \Gamma$ acts trivially on z, and $\xi_{\gamma} = Z_a^{\lambda_{\gamma}}$, so that

$$\gamma \star_{\xi} \varphi(z) = Z_a^{\lambda_{\gamma}} \cdot (\gamma \varphi(z)) \cdot Z_a^{-\lambda_{\gamma}} = Z_a^{\lambda_{\gamma}} \cdot Z_a \cdot Z_a^{-\lambda_{\gamma}} = Z_a = \varphi(z) = \varphi(\gamma z).$$

Now the Γ -action on L_{k_s} is given by twisting the componentwise Γ -action on $(k_s)^n$ by the 1-cocyle λ . Thus if $l=(x_1,\ldots,x_n)\in L_{k_s}=(k_s)^n$, we have for any $\gamma\in\Gamma$

$$\gamma \star_{\lambda} l = \rho^{\lambda_{\gamma}}(\gamma x_1, \dots, \gamma x_n) = \rho^{\lambda_{\gamma}}(\gamma l).$$

We also have $\varphi(\gamma l) = \gamma \varphi(l)$, and, in view of (6.4.b)

$$\gamma \star_{\xi} \varphi(l) = Z_a^{\lambda_{\gamma}} \cdot (\varphi(\gamma l)) \cdot Z_a^{-\lambda_{\gamma}} = \varphi(\rho^{\lambda_{\gamma}}(\gamma l)) = \varphi(\gamma \star_{\lambda} l).$$

We have proved that the morphism φ is Γ -equivariant, hence induces an isomorphism of k-algebras $(L, a) \simeq_{\varepsilon} (M_n(k_s))$, as required.

LEMMA 6.4.6. Let $a, b \in k^{\times}$. Then there exists an invertible element $U \in M_n(k) \otimes_k M_n(k)$ such that

$$Z_a \otimes Z_b = U^{-1}(Z_1 \otimes Z_{ab})U \in M_n(k) \otimes_k M_n(k).$$

PROOF. Let e_1, \ldots, e_n be a k-basis of $V = k^n$. Letting U correspond to the endomorphism of $V \otimes_k V$ given by

$$e_i \otimes e_j \mapsto \begin{cases} e_i \otimes e_j & \text{if } i \ge j, \\ a^{-1} e_i \otimes e_j & \text{if } i < j, \end{cases}$$

one verifies that $Z_a \otimes Z_b$ and $U^{-1}(Z_1 \otimes Z_{ab})U$ both correspond to the endomorphism of $V \otimes_k V$ given by

$$e_i \otimes e_j \mapsto \begin{cases} e_{i+1} \otimes e_{j+1} & \text{if } i < n \text{ and } j < n, \\ ae_1 \otimes e_{j+1} & \text{if } j < i = n, \\ be_{i+1} \otimes e_1 & \text{if } i < j = n, \\ abe_1 \otimes e_1 & \text{if } i = j = n. \end{cases}$$

PROPOSITION 6.4.7. Let L be a Galois \mathbb{Z}/n -algebra over k and $a,b \in k^{\times}$. Then

$$(L, a) \otimes_k (L, b) \simeq (L, ab) \otimes_k M_n(k).$$

PROOF. As in §3, we identify $M_n(k) \otimes_k M_n(k)$ with $M_{n^2}(k)$, which yields a group morphism

$$\operatorname{PGL}_n(k_s) \times \operatorname{PGL}_n(k_s) \to \operatorname{PGL}_{n^2}(k_s) \quad ; \quad (f,g) \mapsto f \otimes g.$$

Let $U \in M_{n^2}(k)$ be as in Lemma 6.4.6, and $u \in \operatorname{PGL}_{n^2}(k) \subset \operatorname{PGL}_{n^2}(k_s)$ be the automorphism given by $M \mapsto U^{-1}MU$. Then for every $M \in M_{n^2}(k)$ and $i \in \mathbb{Z}/n$,

$$(Z_1 \otimes Z_{ab})^i M(Z_1 \otimes Z_{ab})^{-i} = U(Z_a \otimes Z_b)^i U^{-1} M U(Z_a \otimes Z_b)^{-i} U^{-1}.$$

We now apply Proposition 6.4.5 (iii) and use its notation. The above formula implies that, for all $i \in \mathbb{Z}/n$

$$(6.4.c) (z_1 \otimes z_{ab})(i) = u^{-1} \cdot (z_a(i) \otimes z_b(i)) \cdot u.$$

Since U is defined over k, the automorphism u is Γ -invariant, so that (6.4.c) shows that the 1-cocyles $(z_a \otimes z_b) \circ \lambda$ and $(z_1 \otimes z_{ab}) \circ \lambda$ in $Z^1(\Gamma, \operatorname{PGL}_{n^2}(k_s))$ are cohomologous, hence represent isomorphic k-algebras. Since $(L,1) \simeq M_n(k)$ (Proposition 6.4.5 (i)), the statement follows from Proposition 6.3.1.

Remark 6.4.8. It follows from Proposition 6.4.7, Remark 6.4.3 and Proposition 6.4.5 (ii) that the algebra $(L, a)^{\otimes n}$ splits.

LEMMA 6.4.9. Let L be a Galois \mathbb{Z}/n -algebra and $a \in k^{\times}$. Consider the cyclic algebra (L,a) and its standard element $z \in (L,a)$. Let $i \in \{0,\ldots,n-1\}$ be an integer. Any element $x \in (L,a)$ such that $\rho^i(l)x = xl$ for all $l \in L$ is of the form uz^i for some $u \in L$.

PROOF. Write $x = x_0 + x_1 z + \dots + x_{n-1} z^{n-1}$ with $x_j \in L$. The condition $\rho^i(l)x = xl$ implies that for all $j = 0, \dots, n-1$

$$\rho^{i}(l)x_{j}z^{j} = x_{j}z^{j}l = x_{j}\rho^{j}(l)z^{j} = \rho^{j}(l)x_{j}z^{j}.$$

Thus if $x_j \neq 0$, we obtain $\rho^i(l) = \rho^j(l)$ for all $l \in L$, which implies j = i (as $L^{\mathbb{Z}/n} = k$). \square

We will now need a variant of Skolem–Noether's Theorem 2.3.3. When $h: B \to A$ is a morphism of k-algebras, we denote by A^h the set A viewed as B-module via h.

PROPOSITION 6.4.10. Let A be a finite-dimensional central simple k-algebra, and $B = B_1 \times \cdots \times B_n$ where each B_i is a simple k-algebra. If $f, g: B \to A$ are morphisms of k-algebras such that the B-modules A^f and A^g are isomorphic, then there exists $u \in A$ such that $g(b) = u^{-1}f(b)u$ for all $b \in B$.

PROOF. Let $R = R_1 \times \cdots \times R_n$, where R_i are rings. Then every R-module M is of the form $M_1 \times \cdots \times M_n$, where M_i are uniquely determined R_i -modules. Moreover two R-modules M, N are isomorphic if and only if the R_i -modules M_i, N_i are isomorphic for each $i = 1, \ldots, n$.

Let $C = B \otimes_k A^{\operatorname{op}}$. As in §2.3, we may view A^f and A^g as C-modules. We have $C = C_1 \times \cdots \times C_n$ as k-algebras, where $C_i = B_i \otimes_k A^{\operatorname{op}}$. Then for each $i = 1, \ldots, n$, the B_i -modules $(A^f)_i$ and $(A^g)_i$ are isomorphic by the assumption, and in particular have the same finite dimension over k. Since each k-algebra C_i is simple by Proposition 2.2.6, it follows from Lemma 2.3.1 that $(A^f)_i$ and $(A^g)_i$ are isomorphic as C_i -modules. We deduce that $A^f \simeq A^g$ as C-modules, and the statement follows from Lemma 2.3.2.

PROPOSITION 6.4.11. Let L be a Galois \mathbb{Z}/n -algebra over k and $a, b \in k^{\times}$. The cyclic algebras (L, a) and (L, b) are isomorphic if and only if $ab^{-1} \in N_{L/k}(L^{\times})$.

PROOF. Let y and z be the respective standard elements of (L,a) and (L,b). For any $u \in L$, we have $(uz)^n = u\rho(u)\cdots\rho^{n-1}(u)z^n$, so that by Proposition 4.3.10

$$(6.4.d) (uz)^n = b N_{L/k}(u).$$

Now assume that $u \in L^{\times}$ is such that $a = b \, \mathcal{N}_{L/k}(u)$. Then $(uz)^n = a$ by (6.4.d), so that by Lemma 6.4.2 we may define a morphism of k-algebras $\varphi \colon (L,a) \to (L,b)$ satisfying $\varphi(y) = uz$ and $\varphi(l) = l$ for all $l \in L$. This morphism is injective by simplicity of (L,a), and an isomorphism by dimensional reasons.

Conversely, assume given an isomorphism of k-algebras $\varphi \colon (L,a) \to (L,b)$. The k-algebra L being étale, it is a finite product of fields (Proposition 4.2.11), hence of simple k-algebras by Remark 2.1.6. The L-modules (L,a) and (L,b) are isomorphic, being both free of rank n by construction. Applying Proposition 6.4.10 to the inclusion $L \subset (L,b)$ and the composite $L \subset (L,a) \xrightarrow{\varphi} (L,b)$, we obtain an element $v \in (L,b)$ such that $v\varphi(l)v^{-1} = l$ for all $l \in L$. Replacing φ by the isomorphism $x \mapsto v\varphi(x)v^{-1}$, we may assume that $\varphi(l) = l$ for all $l \in L$. Then for all $l \in L$

$$\varphi(y)l = \varphi(yl) = \varphi(\rho(l)y) = \rho(l)\varphi(y),$$

so that by Lemma 6.4.9 (with i=1) we have $\varphi(y)=uz$ for some $u\in L$. Then, by (6.4.d),

$$a = \varphi(z^n) = \varphi(z)^n = (uz)^n = b \, \mathcal{N}_{L/k}(u). \qquad \Box$$

Here are is a statement that should have figured in §2.

Proposition 6.4.12. Let A be a finite-dimensional central simple k-algebra, and L/k an extension of finite degree n splitting A. Then the algebra A is Brauer-equivalent to a finite-dimensional central simple k-algebra of degree n containing L as a subalgebra.

PROOF. Let $d = \deg(A)$ and $V = L^{\oplus d}$. We view L as a subalgebra of $\operatorname{End}_L(V)$ by mapping $l \in L$ to the endomorphism $x \mapsto lx$. The isomorphisms of L-algebras $A^{\operatorname{op}} \otimes_k L \simeq M_d(L)^{\operatorname{op}} \simeq M_d(L) \simeq \operatorname{End}_L(V)$ allow us to view A^{op} as a k-subalgebra of $\operatorname{End}_L(V)$; in the algebra $\operatorname{End}_L(V)$, every element of L commutes with A^{op} . Let us view $\operatorname{End}_L(V)$ as a subalgebra of $\operatorname{End}_k(V)$, and set $B = \mathcal{Z}_{\operatorname{End}_k(V)}(A^{\operatorname{op}})$. Then $L \subset B$. It follows from Proposition 2.2.10 (ii) and (v) that B is a central simple k-algebra. By Proposition 2.2.10 (iii) we have $\dim_k A^{\operatorname{op}} \cdot \dim_k B = \dim_k \operatorname{End}_k(V)$. Since $\dim_k A^{\operatorname{op}} = d^2$ and $\dim_k V = dn$, we deduce that $\deg(B) = n$. Finally Proposition 2.2.10 (ii) implies that B is Brauer-equivalent to A.

PROPOSITION 6.4.13. Let L be a Galois \mathbb{Z}/n -algebra over k and A a finite-dimensional central simple k-algebra of degree n containing L as a subalgebra. Assume that L is a field. Then there exists $a \in k^{\times}$ such that $A \simeq (L, a)$.

PROOF. The ring L being simple (Remark 2.1.6), by Skolem–Noether's Theorem 2.3.3 applied the morphisms $L \subset A$ and $L \xrightarrow{\rho} L \subset A$, we find $\alpha \in A^{\times}$ such that $\alpha l \alpha^{-1} = \rho(l)$ for all $l \in L$. Let $a = \alpha^n$. Then $a \in \mathcal{Z}_A(L)$ (as $\rho^n = \mathrm{id}_L$). Since $L = \mathcal{Z}_A(L)$ by Lemma 2.5.3, it follows that $a \in L$. We have

$$\rho(a) = \alpha^{-1} a \alpha = \alpha^{-1} \alpha^n \alpha = \alpha^n = a,$$

hence $a \in L^{\mathbb{Z}/n} = k$. By Lemma 6.4.2, we may define a morphism of k-algebras $\varphi \colon (L,a) \to A$ satisfying $\varphi(z) = \alpha$ and $\varphi(l) = l$ for $l \in L$. This morphism is injective by simplicity of (L,a), and bijective by dimensional reasons.

Theorem 6.4.14. Let L be a Galois \mathbb{Z}/n -algebra. Assume that L is a field. Then mapping $a \in k^{\times}$ to the cyclic algebra (L, a) yields a group isomorphism

$$k^{\times}/\operatorname{N}_{L/k}(L^{\times}) \simeq \operatorname{Br}(L/k).$$

PROOF. Mapping a to (L,a) induces a group morphism $k^{\times} \to \operatorname{Br}(k)$ by Proposition 6.4.7. The image of this morphism is contained in $\operatorname{Br}(L/k)$ by Corollary 4.3.9 and Proposition 6.4.5 (ii). This morphism induces an injective morphism $k^{\times}/\operatorname{N}_{L/k}(L^{\times}) \to \operatorname{Br}(L/k)$ by Proposition 6.4.11. Its surjectivity is proved by combining Proposition 6.4.12 with Proposition 6.4.13.

Corollary 6.4.15. If L/k is a finite Galois extension such that $\mathrm{Gal}(L/k)$ is cyclic, then

$$\operatorname{Br}(L/k) \simeq k^{\times} / \operatorname{N}_{L/k}(L^{\times}).$$

PROOF. Choosing a generator of Gal(L/k) makes L a Galois \mathbb{Z}/n -algebra over k, where n = [L:k] (Example 4.3.4), and we may apply Theorem 6.4.14.

5. The reduced characteristic polynomial

When L is a field and n an integer, we denote by

$$\chi_L : M_n(L) \to L[X] \quad ; \quad M \mapsto \det(XI_n - M)$$

the map sending a matrix to its characteristic polynomial (where $I_n \in M_n(k)$ is the unit matrix). Observe that, for any field extension E/L the following diagram commutes

$$(6.5.a) \qquad M_n(L) \xrightarrow{\chi_L} L$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$M_n(E) \xrightarrow{\chi_E} E$$

DEFINITION 6.5.1. Let A be a k-algebra, and M an A-module of finite dimension over k. The characteristic polynomial of an element $a \in A$ is the polynomial

$$\operatorname{Cp}_{M/k}(a) = \det(X \operatorname{id}_M - l_a) \in k[X],$$

where $l_a: M \to M$ is the map given by $x \mapsto ax$ (viewed as a k-linear map).

Observe that if $f: M \to N$ is an isomorphism of A-modules, then $l_{f(a)} = f \circ l_a \circ f^{-1}$, so that

(6.5.b)
$$\operatorname{Cp}_{M/k}(f(a)) = \operatorname{Cp}_{N/k}(a).$$

If M, N are A-modules of finite dimensions over k, then for any $a \in A$

(6.5.c)
$$\operatorname{Cp}_{M \oplus N/k}(a) = \operatorname{Cp}_{M/k}(a) \operatorname{Cp}_{N/k}(a).$$

LEMMA 6.5.2. For any $M \in M_n(k)$, we have $\chi(M)^n = \operatorname{Cp}_{M_n(k)/k}(M)$.

PROOF. For $1 \leq i, j \leq n$, let us set $x_{i+(n-1)j} = e_{i,j} \in M_n(k)$ (the matrix whose only nonzero entry is 1, in the position (i, j)). The elements x_1, \ldots, x_{n^2} form a k-basis of $M_n(k)$. If $M \in M_n(k)$ has coefficients $m_{i,j} \in k$, we have

$$Mx_{k+(n-1)l} = Me_{k,l} = \sum_{i,j=1}^{n} m_{i,j}e_{i,j}e_{k,l} = \sum_{i=1}^{n} m_{i,k}e_{i,l} = \sum_{i=1}^{n} m_{i,k}x_{i+(n-1)l},$$

showing that, in the basis x_1, \ldots, x_{n^2} , the matrix of the map $M_n(k) \to M_n(k)$ given by $x \mapsto Mx$ is

$$\begin{pmatrix} M & 0 & \cdots & 0 \\ 0 & M & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & M \end{pmatrix}.$$

Its characteristic polynomial is $\chi(M)^n$

LEMMA 6.5.3. Let A be a simple k-algebra. If $f,g: A \to M_n(k)$ are morphisms of k-algebras, then $\chi_k \circ f = \chi_k \circ g: A \to k[X]$.

PROOF. By Skolem–Noether's Theorem 2.3.3 there exists $b \in M_n(k)$ such that $f(a) = b^{-1}g(a)b$ for all $a \in A$, so that the matrices f(a) and g(a) have the same characteristic polynomial.

LEMMA 6.5.4. Let A be a central simple k-algebra, and F/k a Galois extension. Let $f: A_F \to M_n(F)$ be a morphism of F-algebras. Then the composite

$$A \to A_F \xrightarrow{f} M_n(F) \xrightarrow{\chi_F} F[X]$$

has image contained in k[X].

PROOF. Let $\Gamma = \operatorname{Gal}(F/k)$. In view of the diagram (6.5.a) when E = L and $\gamma \in \Gamma$, the map $\chi_F \colon M_n(F) \to F$ is Γ -equivariant. If $\gamma \in \Gamma$, the map $g \colon A_F \to M_n(F)$ given by $x \mapsto \gamma^{-1} f(\gamma x)$ is a morphism of F-algebras, hence by Lemma 6.5.3 we have for any $x \in A_F$,

$$\chi_F \circ f(x) = \chi_F \circ g(x) = \chi_F(\gamma^{-1}f(\gamma x)) = \gamma^{-1}(\chi_F \circ f(\gamma x)).$$

Thus the morphism $\chi_F \circ f$ is Γ -equivariant, hence maps $A = (A_F)^{\Gamma}$ to $k[X] = (F[X])^{\Gamma}$ (see Lemma 3.4.3).

Let now A be a finite-dimensional central simple k-algebra of degree n. Choose a Galois extension F/k and a morphism of F-algebras $f: A_F \to M_n(F)$ (this is possible, since $A_{k_s} \simeq M_n(k_s)$). Let $a \in A$. The polynomial $\chi_F \circ f(a \otimes 1) \in F[X]$ belongs to k[X] by Lemma 6.5.4. Let now F'/k be a Galois extension and $f': A_{F'} \to M_n(F')$ a morphism of F'-algebras. Let E be a separable closure of E'. Then E can be embedded into E by

Lemma 3.3.11, and using Lemma 6.5.3 and the commutativity of the diagram (6.5.a), we have in $k[X] \subset E[X]$

$$\chi_F \circ f_F(a \otimes 1) = \chi_E \circ f_E(a \otimes 1) = \chi_E \circ f_E'(a \otimes 1) = \chi_{F'} \circ f_{F'}'(a \otimes 1).$$

This proves that the map

(6.5.d)
$$A \to k[X] \quad ; \quad a \mapsto \chi_F \circ f(a \otimes 1)$$

does not depend on the choices of the Galois extension F/k and the morphism $f: A_F \to M_n(F)$.

Definition 6.5.5. The map (6.5.d) is called the *reduced characteristic polynomial* and denoted by

$$\operatorname{Cprd}_A : A \to k[X].$$

Writing this map as $a_n X^n + \cdots + a_0$ where a_0, \ldots, a_n are maps $A \to k$ and $n = \deg(A)$, we define the reduced norm and reduced trace as

$$\operatorname{Nrd}_A = (-1)^n a_0$$
 and $\operatorname{Trd}_A = -a_{n-1}$.

If L/k is a separable field extension, it follows from the construction that the following diagram commutes

$$(6.5.e) \qquad A \xrightarrow{\operatorname{Nrd}_A} k[X] \\ \downarrow \qquad \qquad \downarrow \\ A_L \xrightarrow{\operatorname{Nrd}_{A_L}} L[X]$$

Proposition 6.5.6. Let A be a finite-dimensional central simple k-algebra of degree n.

(i) For any $a \in A$, we have $\operatorname{Cp}_{A/k}(a) = \operatorname{Cprd}_A(a)^n$. In particular

$$N_{A/k}(a) = Nrd_A(a)^n$$
 and $Tr_{A/k}(a) = n Trd_A(a)$.

(ii) Let L be a subalgebra of A, and assume that L is a field. Then n = r[L:k] for some integer r, and for any $l \in L$ we have $\operatorname{Cprd}_A(l) = \operatorname{Cp}_{L/k}(l)^r$. In particular

$$\operatorname{Nrd}_A(l) = \operatorname{N}_{L/k}(l)^r$$
 and $\operatorname{Trd}_A(l) = r \operatorname{Tr}_{L/k}(l)$.

PROOF. (i): Let $f: A_F \to M_n(F)$ be a morphism of F-algebras, where F/k is a Galois extension. Then $\operatorname{Cp}_{A/k}(a) \in k[X]$ maps to $\operatorname{Cp}_{A_F/F}(a \otimes 1) \in F[X]$. By (6.5.b) and Lemma 6.5.2, we have in $k[X] \subset F[X]$

$$\operatorname{Cp}_{A_F/F}(a \otimes 1) = \operatorname{Cp}_{M_P(F)/F} \circ f(a \otimes 1) = (\chi_F \circ f(a \otimes 1))^n = \operatorname{Cprd}(a)^n.$$

(ii): The first statement follows from Lemma 2.5.3. Let d=[L:k]. Since $n^2=\dim_k A=d\cdot\dim_L A$, we have $\dim_L A=r^2d=nr$. Thus the L-vector space A is isomorphic to $L^{\oplus nr}$, and it follows from (6.5.b) and (6.5.c) that $\operatorname{Cp}_{A/k}(l)=\operatorname{Cp}_{L/k}(l)^{nr}$. By (i), we deduce that $\operatorname{Cprd}_A(l)^n=\operatorname{Cp}_{L/k}(l)^{nr}$. We conclude using Lemma 6.5.7 below.

LEMMA 6.5.7. Let $P, Q \in k[X]$ be monic polynomials, and $s \in \mathbb{N} - \{0\}$ such that $P^s = Q^s$. Then P = Q.

PROOF. Let \mathcal{R} be the set of monic irreducible polynomials in k[X]. Since k[X] is factorial, there are uniquely determined integers p_R, q_R for each $R \in \mathcal{R}$ such that

$$P = \prod_{R \in \mathcal{R}} R^{p_R} \quad ; \quad Q = \prod_{R \in \mathcal{R}} R^{q_R}.$$

For each $R \in \mathcal{R}$, we have $sp_R = sq_R$, hence $p_R = q_R$, and P = Q.

We will be mostly interested in the reduced norm. Let us first collect some of its elementary properties.

Lemma 6.5.8. Let A be a finite-dimensional central simple k-algebra.

- (i) For any $a, b \in A$, we have $Nrd_A(ab) = Nrd_A(a) Nrd_A(b)$.
- (ii) We have $Nrd_A(1) = 1$.

PROOF. Extending scalars, we may assume that $A \simeq M_n(k)$. Since the map $\operatorname{Nrd}_{M_n(k)}$ sends a matrix to its determinant, the lemma follows from the properties of the determinant.

PROPOSITION 6.5.9. Let A be a finite-dimensional central simple k-algebra, and $a \in A$. Then $a \in A^{\times}$ if and only if $\operatorname{Nrd}_A(a) \neq 0$.

PROOF. If $a \in A^{\times}$, then $\operatorname{Nrd}_{A}(a)$ must be nonzero by Lemma 6.5.8. Conversely assume that $\operatorname{Nrd}_{A}(a) \neq 0$. Then $\operatorname{N}_{A/k}(a) \neq 0$ by Proposition 6.5.6 (i), hence left multiplication by a is an isomorphism $A \to A$. In particular 1 lies in its image, showing that a admits a right inverse, which is also a left inverse by Remark 1.1.11.

Let A be a finite-dimensional central simple k-algebra. Recall from Example 5.2.9 that the k-group $\mathrm{GL}_1(A)$ is defined by setting $\mathrm{GL}_1(A)(L)=(A_L)^\times$ for every separable field extension L/k. The reduced norms induce group morphisms $\mathrm{Nrd}_{A_L}\colon (A_L)^\times \to L^\times$ by Lemma 6.5.8, and thus, by the commutativity of the diagram (6.5.e), a morphism of k-groups

$$\operatorname{Nrd}_A \colon \operatorname{GL}_1(A) \to \mathbb{G}_m$$
.

DEFINITION 6.5.10. We define the k-group $SL_1(A)$ as the kernel of the morphism $Nrd_A: GL_1(A) \to \mathbb{G}_m$.

Lemma 6.5.11. We have an exact sequence of k-groups

$$1 \to \mathrm{SL}_1(A) \to \mathrm{GL}_1(A) \xrightarrow{\mathrm{Nrd}_A} \mathbb{G}_m \to 1.$$

PROOF. Let F be a separable closure of k. Then there exist an isomorphism of F-algebras $M_n(F) \simeq A_F$ for some n. The composite $\mathrm{GL}_n(F) \simeq (A_F)^{\times} \xrightarrow{\mathrm{Nrd}_{A_F}} F^{\times}$ sends a matrix to its determinant, and is therefore surjective.

Proposition 6.5.12. Let A be a finite-dimensional central simple k-algebra. Then

$$H^1(k, GL_1(A)) = \{*\}.$$

PROOF. If M is an A-module such that the A_{k_s} -module M_{k_s} is isomorphic to A_{k_s} , then $\dim_k M = \dim_k A$, so that the A-module M is isomorphic to A by Lemma 2.3.1. Therefore all twisted forms of the A-module A are isomorphic, and the statement follows from Proposition 5.4.5

COROLLARY 6.5.13. Let A be a finite-dimensional central simple k-algebra. There is a natural isomorphism of pointed sets

$$H^1(k, \mathrm{SL}_1(A)) \simeq k^{\times} / \mathrm{Nrd}_A(A^{\times}).$$

PROOF. In view of the sequence of Lemma 6.5.11, this follows by combining Proposition 6.5.12 with Corollary 5.3.11.

LEMMA 6.5.14. The subset $\operatorname{Nrd}_A(A^{\times}) \subset k^{\times}$ depends only on the Brauer-equivalence class of the finite-dimensional central simple k-algebra A.

PROOF. When R is a ring and r an integer, a matrix $P \in M_r(R)$ is called permutation if there exists a permutation $\sigma \in \mathfrak{S}_r$ such that the (i,j)-th coefficient of P is equal to 1 if $j = \sigma(i)$ and zero otherwise. Such σ is then unique, and we define the signature ε of P in $\{-1,1\}$ as the signature of the permutation σ . If R is a field, then $\det(P) = \varepsilon$.

In order to prove the statement, by Wedderburn's Theorem 2.1.12, we may assume that $A = M_n(D)$ for some finite-dimensional central simple division k-algebra D and integer n. It will suffice to prove that $Nrd_D(D^{\times}) = Nrd_A(A^{\times})$. The same proof as over fields shows that every matrix in $M_n(D) = A$ can be made upper triangular by elementary rows operations. Any invertible upper triangular matrix can then be made diagonal by elementary rows operations. This implies that the group A^{\times} is generated by elementary matrices (those matrices whose diagonal coefficients are equal to 1, and having a unique nonzero coefficient off the diagonal), diagonal matrices, and permutation matrices. Let F/k be a Galois extension and $\varphi \colon D_F \to M_d(F)$ and isomorphism of Falgebras. Consider the isomorphism $f: M_n(M_d(F)) \to M_{nd}(F)$ given by viewing a matrix with coefficients in $M_d(F)$ as a block matrix with coefficients in F. If $B_1, \ldots, B_n \in M_d(F)$, then $\det(f(\operatorname{diag}(B_1,\ldots,B_n))) = \det(B_1)\cdots\det(B_n)$. If $E\in M_n(M_d(F))$ is an elementary matrix, then f(E) is an upper or lower triangular matrix whose diagonal coefficients are equal to 1, so that $\det(f(E)) = 1$. If $P \in M_n(M_d(F))$ is a permutation matrix with signature $\varepsilon \in \{-1,1\}$, then $f(P) \in M_{dn}(F)$ is a permutation matrix with signature ε^d , so that $\det(f(P)) = \varepsilon^{d} = \det(\varepsilon I_d)$ (where $I_d = 1 \in M_d(F)$ is the unit matrix). We deduce that the composite

$$A^{\times} = M_n(D)^{\times} \subset M_n(D_F) \xrightarrow{M_n(\varphi)} M_n(M_d(F)) \xrightarrow{f} M_{nd}(F) \xrightarrow{\det} F$$

has the same image as the composite

$$D^{\times} \subset D_F \xrightarrow{\varphi} M_d(F) \xrightarrow{\det} F,$$

as required (observe that $\varepsilon I_d \in M_d(F)$ is the image of $\varepsilon \in k^{\times} \subset D^{\times}$ under φ).

Proposition 6.5.15. Let A be a finite-dimensional central simple k-algebra. Then

$$\mathrm{Nrd}_A(A^\times) = \bigcup_L \mathrm{N}_{L/k}(L^\times) \subset k^\times$$

where L/k runs over the extensions of finite degree splitting A.

PROOF. \subset : By Lemma 6.5.14, we may assume that A is division. Let $a \in A$. Then any $a \in A$ is contained in some maximal subfield L of A, and $\operatorname{Nrd}_A(a) = \operatorname{N}_{L/k}(a)$ by Proposition 6.5.6 (ii).

 \supset : Let L/k be a splitting field of A. By Proposition 6.4.12 and Lemma 6.5.14, we may assume that $L \subset A$ and that $\deg(A) = [L:k]$. It then follows from Proposition 6.5.6 (ii) that $N_{L/k}(L^{\times}) \subset \operatorname{Nrd}_A(A^{\times})$ in k^{\times} .

Remark 6.5.16. With some more work, one may prove that it suffices to consider finite separable splitting fields in Proposition 6.5.15.

Part 3 Cohomology

CHAPTER 7

The Brauer group and 2-cocycles

In this chapter, we define the second cohomology group of a commutative discrete group equipped with a continuous action of a profinite group, using a concrete approach in terms of cocycles. A more sophisticated approach will be developed in the next chapter, but this will not make this chapter obsolete. In fact, it is crucial to use this down-to-earth approach in order to make the connections with first cohomology sets of noncommutative groups, that is, with torsors.

We have seen that central simple algebras of degree n may be described using the first cohomology set of PGL_n . We will obtain an alternative description of the Brauer group, as the second cohomology group of \mathbb{G}_m . It is in fact a recurring situation that objects can be described either as low-degree cohomology of a complicated group, or as higher-degree cohomology of a simpler group. This new description of the Brauer group has several advantages; in particular this is a group on the nose, and the classes of algebras of different degrees live in the same cohomology set.

In this chapter we only prove that the Brauer group can be embedded into the second cohomology group of \mathbb{G}_m . This fact still has substantial consequences that can be expressed in an elementary fashion involving central simple algebras, but are difficult to prove without cohomology. In particular we show that the class of every central simple algebra is torsion in the Brauer group, and that its order (called the period of the algebra) divides its index. We deduce a primary decomposition theorem for division algebras, due to Brauer.

It is actually not very difficult to finish the identification Brauer group with the second cohomology group of \mathbb{G}_m , using the methods of this chapter via the so-called crossed-product construction. We prefer to leave this result to the next chapters, where more sophisticated methods will allow us to give a somewhat more natural proof.

1. 2-cocyles

We fix a profinite group Γ . We will still use the multiplicative notation for the group law of a Γ -module, even though it is commutative.

DEFINITION 7.1.1. Let M be a Γ -module. A 2-cocyle of Γ with values in M is a continuous map $\alpha \colon \Gamma \times \Gamma \to M$ (for the discrete topology on M) that we denote by $(\sigma, \tau) \mapsto \alpha_{\sigma, \tau}$, and such that

(7.1.a)
$$(\gamma \alpha_{\sigma,\tau}) \cdot \alpha_{\gamma,\sigma\tau} = \alpha_{\gamma\sigma,\tau} \cdot \alpha_{\gamma,\sigma} \text{ for all } \gamma, \sigma, \tau \in \Gamma.$$

We denote the set of 2-cocycles of Γ with values in M by $Z^2(\Gamma, M)$. It is naturally an abelian group, for the operation defined by setting, for $\xi, \eta \in Z^2(\Gamma, M)$

$$(\xi \cdot \eta)_{\sigma,\tau} = \xi_{\sigma,\tau} \cdot \eta_{\sigma,\tau}$$
 for all $\sigma, \tau \in \Gamma$.

The 2-cocycles α, α' are called *cohomologous* if there exists a continuous map $a: \Gamma \to M$, denoted by $\sigma \mapsto a_{\sigma}$, such that

$$\alpha'_{\sigma,\tau} = (\sigma a_{\tau}) \cdot a_{\sigma\tau}^{-1} \cdot a_{\sigma} \cdot \alpha_{\sigma,\tau}$$
 for all $\sigma, \tau \in \Gamma$.

PROPOSITION 7.1.2. Let B be a Γ -group and $A \subset B$ a Γ -subgroup such that $a \cdot b = b \cdot a$ for all $a \in A$ and $B \in B$. Then the quotient C = B/A is a Γ -group, and there is an exact sequence of pointed sets

$$1 \to A^{\Gamma} \to B^{\Gamma} \to C^{\Gamma} \xrightarrow{\delta} H^1(\Gamma, A) \to H^1(\Gamma, B) \to H^1(\Gamma, C) \xrightarrow{\delta^2} H^2(\Gamma, A).$$

If $x \in H^1(\Gamma, C)$ is represented by a 1-cocycle $\xi \colon \Gamma \to C$, then $\delta^2(x) \in H^2(\Gamma, A)$ is represented by the 2-cocycle $\alpha \colon \Gamma \times \Gamma \to A$ defined by setting

$$\alpha_{\sigma,\tau} = \beta_{\sigma} \cdot (\sigma \beta_{\tau}) \cdot \beta_{\sigma\tau}^{-1} \quad \text{for } \sigma, \tau \in \Gamma,$$

where $\beta \colon \Gamma \to B$ is any continuous map such that $\beta_{\gamma} \in B$ maps to $\xi_{\gamma} \in C$ for all $\gamma \in \Gamma$.

PROOF. First note that such a continuous map β exists. Indeed choosing a preimage $s(c) \in B$ of each $c \in C$ defines a map $s \colon C \to B$, which is continuous because C has the discrete topology, and we may take $\beta = s \circ \xi$.

Next observe that $\alpha_{\sigma,\tau}$ belongs to $A \subset B$, because its image in C is $\xi_{\sigma} \cdot (\xi \beta_{\tau}) \cdot \xi_{\sigma\tau}^{-1} = 1$, as ξ is a 1-cocyle. The continuity of α follows from Lemma 3.2.11, for if β factors as $\Gamma/U \to B^U$ for some open normal subgroup U of Γ , then α factors as $(\Gamma/U) \times (\Gamma/U) \to B^U$. Now, for $\gamma, \sigma, \tau \in \Gamma$, we have in $A \subset B$

$$\begin{split} (\gamma \alpha_{\sigma,\tau}) \cdot \alpha_{\gamma,\sigma\tau} &= (\gamma \alpha_{\sigma,\tau}) \cdot \beta_{\gamma} \cdot (\gamma \beta_{\sigma\tau}) \cdot \beta_{\gamma\sigma\tau}^{-1} \\ &= \beta_{\gamma} \cdot (\gamma \alpha_{\sigma,\tau}) \cdot (\gamma \beta_{\sigma\tau}) \cdot \beta_{\gamma\sigma\tau}^{-1} \\ &= \beta_{\gamma} \cdot (\gamma \beta_{\sigma}) \cdot (\gamma \sigma \beta_{\tau}) \cdot (\gamma \beta_{\sigma\tau}^{-1}) \cdot (\gamma \beta_{\sigma\tau}) \cdot \beta_{\gamma\sigma\tau}^{-1} \\ &= \beta_{\gamma} \cdot (\gamma \beta_{\sigma}) \cdot (\gamma \sigma \beta_{\tau}) \cdot \beta_{\gamma\sigma\tau}^{-1} \\ &= \beta_{\gamma} \cdot (\gamma \beta_{\sigma}) \cdot \beta_{\gamma\sigma}^{-1} \cdot \beta_{\gamma\sigma} \cdot (\gamma \sigma \beta_{\tau}) \cdot \beta_{\gamma\sigma\tau}^{-1} \\ &= \beta_{\gamma} \cdot (\gamma \beta_{\sigma}) \cdot \beta_{\gamma\sigma}^{-1} \cdot \beta_{\gamma\sigma} \cdot (\gamma \sigma \beta_{\tau}) \cdot \beta_{\gamma\sigma\tau}^{-1} \\ &= \alpha_{\gamma,\sigma} \cdot \alpha_{\gamma\sigma,\tau}, \end{split}$$

proving that α is 2-cocyle.

If $\beta' : \Gamma \to B$ is another map lifting ξ , then for each $\gamma \in \Gamma$ we have $\beta'_{\gamma} = a_{\gamma} \cdot \beta_{\gamma}$, where $a_{\gamma} \in A$. Thus, for $\sigma, \tau \in \Gamma$, we have in A

$$\alpha_{\sigma,\tau}' = \beta_{\sigma}' \cdot (\sigma \beta_{\tau}') \cdot \beta_{\sigma\tau}'^{-1} = a_{\sigma} \cdot (\sigma a_{\tau}) \cdot a_{\sigma\tau}^{-1} \cdot \beta_{\sigma} \cdot (\sigma \beta_{\tau}) \cdot \beta_{\sigma\tau}^{-1} = a_{\sigma} \cdot (\sigma a_{\tau}) \cdot a_{\sigma\tau}^{-1} \cdot \alpha_{\sigma,\tau},$$

proving that α' and α are cohomologous. We have proved that the class of α in $H^2(\Gamma, A)$ does not depend on the choice of the map β .

Now assume that $\xi' \colon \Gamma \to C$ is cohomologous to ξ . Then there is $c \in C$ such that

$$\xi'_{\gamma} = c^{-1} \cdot \xi_{\gamma} \cdot (\gamma c) \text{ for all } \gamma \in \Gamma.$$

Let $b \in B$ be a preimage of C. Then the map $\beta' \colon \Gamma \to B$ defined by setting $\beta'_{\gamma} = b^{-1} \cdot \beta_{\gamma} \cdot (\gamma b)$ for all $\gamma \in \Gamma$ is a lifting of ξ' , and for $\sigma, \tau \in \Gamma$, we have in A

$$\begin{split} \beta_{\sigma}' \cdot (\sigma \beta_{\tau}') \cdot \beta_{\sigma \tau}^{\prime - 1} &= b^{-1} \cdot \beta_{\sigma} \cdot (\sigma b) \cdot (\sigma b^{-1}) \cdot (\sigma \beta_{\tau}) \cdot (\sigma \tau b) \cdot (b^{-1} \cdot \beta_{\sigma \tau} \cdot (\sigma \tau b))^{-1} \\ &= b^{-1} \cdot \beta_{\sigma} \cdot (\sigma \beta_{\tau}) \cdot \beta_{\sigma \tau}^{-1} \cdot b \\ &= b^{-1} \cdot \alpha_{\sigma, \tau} \cdot b = \alpha_{\sigma, \tau}, \end{split}$$

as $\alpha_{\sigma,\tau}$ is central in B. We have proved that the class of α in $H^2(\Gamma,A)$ depends only on the class of ξ in $H^1(\Gamma, C)$.

Assume that α is cohomologous to the trivial 2-cocycle. Then there is $a \colon \Gamma \to A$ such that, for all $\sigma, \tau \in \Gamma$,

$$\beta_{\sigma} \cdot (\sigma \beta_{\tau}) \cdot \beta_{\sigma \tau}^{-1} = a_{\sigma} \cdot (\sigma a_{\tau}) \cdot a_{\sigma \tau}^{-1}.$$

 $\beta_{\sigma} \cdot (\sigma \beta_{\tau}) \cdot \beta_{\sigma \tau}^{-1} = a_{\sigma} \cdot (\sigma a_{\tau}) \cdot a_{\sigma \tau}^{-1}.$ Setting $\zeta_{\gamma} = \beta_{\gamma} \cdot a_{\gamma}^{-1}$ for $\gamma \in \Gamma$ defines a map $\zeta \colon \Gamma \to B$. This map is 1-cocycle, since for all $\sigma, \tau \in \Gamma$,

$$\zeta_{\sigma} \cdot (\sigma \zeta_{\tau}) = \beta_{\sigma} \cdot a_{\sigma}^{-1} \cdot (\sigma \beta_{\tau}) \cdot (\sigma a_{\tau})^{-1} = \beta_{\sigma \tau} \cdot a_{\sigma \tau}^{-1} = \zeta_{\sigma \tau}.$$

Since for $\gamma \in \Gamma$, the element a_{γ} lies in $A = \ker(B \to C)$, the image of ζ_{γ} in C is ξ_{γ} . Thus the class of ζ in $H^1(\Gamma, B)$ maps to the class of ξ in $H^1(\Gamma, C)$, proving the exactness of the sequence.

The exact sequence of Proposition 7.1.2 is functorial in the following sense. To a commutative diagram of Γ -groups with exact rows

$$1 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow A' \longrightarrow B' \longrightarrow C \longrightarrow 1$$

such that $a \cdot b = b \cdot a$ for all $a \in A, b \in B$, resp. $a \in A', b \in B'$, corresponds a commutative diagram of pointed sets with exact rows

$$1 \longrightarrow A^{\Gamma} \longrightarrow B^{\Gamma} \longrightarrow C^{\Gamma} \longrightarrow H^{1}(\Gamma, A) \longrightarrow H^{1}(\Gamma, B) \longrightarrow H^{1}(\Gamma, C) \longrightarrow H^{2}(\Gamma, A)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow A'^{\Gamma} \longrightarrow B'^{\Gamma} \longrightarrow C'^{\Gamma} \longrightarrow H^{1}(\Gamma, A') \longrightarrow H^{1}(\Gamma, B') \longrightarrow H^{1}(\Gamma, C') \longrightarrow H^{2}(\Gamma, A').$$

This assertion may be verified using the explicit formula for the connecting maps δ and

If G is a k-group such that $G(k_s)$ is abelian, we will write

$$H^2(k,G) = H^2(\operatorname{Gal}(k_s/k), G(k_s)).$$

Thus if

$$1 \to A \to B \to C \to 1$$

is an exact sequence of k-groups such that $a \cdot b = b \cdot a$ for all $a \in A(k_s)$ and $b \in B(k_s)$, we have by Proposition 7.1.2 an exact sequence of pointed sets

$$1 \to A(k) \to B(k) \to C(k) \to H^1(k,A) \to H^1(k,B) \to H^1(k,C) \xrightarrow{\delta^2} H^2(k,A)$$

which is functorial in the sense described above.

Proposition 7.1.3. Let B be a Γ -module and $A \subset B$ a Γ -submodule. Let C = B/A. Then the exact sequence of Proposition 7.1.2 may be extended to an exact sequence

$$1 \to A^\Gamma \to B^\Gamma \to C^\Gamma \to H^1(\Gamma,A) \to H^1(\Gamma,B) \to H^1(\Gamma,C) \to H^2(\Gamma,A) \to H^2(\Gamma,B).$$

PROOF. The only point to verify is exactness at $H^2(\Gamma, A)$. So let $\alpha \colon \Gamma^2 \to A$ be a 2-cocycle whose image in $Z^2(\Gamma, B)$ is cohomologous to the trivial 2-cocycle. This means that there exists a continuous map $\beta \colon \Gamma \to B$ such that

$$\alpha_{\sigma,\tau} = \beta_{\sigma\tau}^{-1} \cdot \beta_{\sigma} \cdot (\sigma\beta_{\tau})$$
 for all $\sigma, \tau \in \Gamma$.

Since α takes values in A, the image of $\beta_{\sigma\tau}^{-1} \cdot \beta_{\sigma} \cdot (\sigma\beta_{\tau})$ in C vanishes for every $\sigma, \tau \in \Gamma$, which proves that the composite $\xi \colon \Gamma \xrightarrow{\beta} B \to C$ is a 1-cocyle. It follows from the formula for δ^2 given in Proposition 7.1.2 that the class of ξ in $H^1(\Gamma, C)$ is mapped to the class of α in $H^2(\Gamma, A)$.

2. The Brauer group, II

Let L/k be a separable extension. Since every automorphism of $M_n(L)$ is inner by Skolem–Noether's Theorem 2.3.3, and the center of $M_n(L)$ is L, we have an exact sequence of groups

(7.2.a)
$$1 \to L^{\times} \to \operatorname{GL}_n(L) \to \operatorname{PGL}_n(L) \to 1.$$

This yields an exact sequence of k-groups

$$1 \to \mathbb{G}_m \to \mathrm{GL}_n \to \mathrm{PGL}_n \to 1$$
,

and thus by Proposition 7.1.2 an exact sequence of pointed sets

(7.2.b)
$$H^1(k, \operatorname{GL}_n) \to H^1(k, \operatorname{PGL}_n) \xrightarrow{\delta_n} H^2(k, \mathbb{G}_m).$$

Lemma 7.2.1. Let A be a finite-dimensional central simple k-algebra of degree n. Then $\delta_n[A] = 0$ if and only if A is split.

PROOF. Since δ_n is a morphism of pointed sets, we have $\delta_n[A] = 0$ when A is split. The converse follows from the exact sequence (7.2.b), since $H^1(k, GL_n)$ vanishes by Hilbert's Theorem 90 (Proposition 6.1.1).

LEMMA 7.2.2. Let A, B be finite-dimensional central simple k-algebras. Set $m = \deg(A)$ and $n = \deg(B)$. Then

$$\delta_m([A]) + \delta_n([B]) = \delta_{mn}([A \otimes_k B]) \in H^2(k, \mathbb{G}_m)$$

Proof. By Proposition 7.1.2 (and the discussion just below), the diagram (6.3.a) yields a commutative diagram

$$\begin{array}{c|c} H^1(k,\operatorname{PGL}_m)\times H^1(k,\operatorname{PGL}_n) &\longrightarrow H^1(k,\operatorname{PGL}_m\times\operatorname{PGL}_n) &\longrightarrow H^1(k,\operatorname{PGL}_{mn}) \\ & \downarrow & & \downarrow \delta_{mn} \\ H^2(k,\mathbb{G}_m)\times H^2(k,\mathbb{G}_m) &\longrightarrow H^2(k,\mathbb{G}_m\times\mathbb{G}_m) &\longrightarrow H^2(k,\mathbb{G}_m) \end{array}$$

Since the map $\mathbb{G}_m \times \mathbb{G}_m \to \mathbb{G}_m$ in the diagram (6.3.a) is the group operation of \mathbb{G}_m , it follows that the lower composite in the above diagram is the operation in the group $H^2(k, \mathbb{G}_m)$. The upper composite maps ([A], [B]) to [A \otimes_k B] by Proposition 6.3.1, and the statement follows.

Proposition 7.2.3. Mapping a finite-dimensional central simple k-algebra A to the element $\delta_{\deg(A)}([A])$ yield an injective group morphism

$$Br(k) \to H^2(k, \mathbb{G}_m).$$

PROOF. Let A be a finite-dimensional central simple k-algebra of degree m. Since $\delta_n([M_n(k)]) = 0$ for any integer n, it follows from Lemma 7.2.2 that $\delta_m[A] = \delta_{mn}(M_n(A))$. Thus $A \mapsto \delta_m[A]$ induces a group morphism $\operatorname{Br}(k) \to H^2(k, \mathbb{G}_m)$ which is injective by Lemma 7.2.1.

Remark 7.2.4. We will prove later that this morphism is in fact bijective.

3. The period

THEOREM 7.3.1. We have $\operatorname{ind}(A) \cdot [A] = 0$ in $\operatorname{Br}(k)$.

PROOF. We may assume that A is division, and let $n = \deg(A)$. The commutative diagram of k-groups with exact rows

$$1 \longrightarrow \mathbb{G}_m \longrightarrow \operatorname{GL}_n \longrightarrow \operatorname{PGL}_n \longrightarrow 1$$

$$\downarrow^n \qquad \qquad \downarrow^{\operatorname{det}} \qquad \downarrow$$

$$1 \longrightarrow \mathbb{G}_m \stackrel{=}{\longrightarrow} \mathbb{G}_m \longrightarrow 1 \longrightarrow 1$$

gives rise to a commutative diagram of pointed sets

$$H^{1}(k, \operatorname{PGL}_{n}) \xrightarrow{\delta_{n}} H^{2}(k, \mathbb{G}_{m})$$

$$\downarrow \qquad \qquad \downarrow^{n}$$

$$\{*\} \longrightarrow H^{2}(k, \mathbb{G}_{m})$$

It follows that $n\delta_n([A]) = 0$ in $H^2(k, \mathbb{G}_m)$, so that by Proposition 7.2.3 we have n[A] = 0 in Br(k).

COROLLARY 7.3.2. For every finite-dimensional central simple k-algebra A, there exist integers $r, n \in \mathbb{N} - \{0\}$ such that $A^{\otimes n} \simeq M_r(k)$.

COROLLARY 7.3.3. Let L/k be a finite field extension. Then the map $Br(L/k) \to Br(L/k)$ given by multiplication by [L:k] is zero.

PROOF. This follows from Proposition 2.5.2 and Theorem 7.3.1. \Box

PROPOSITION 7.3.4. Assume that the field k has positive characteristic p and is perfect (i.e. every algebraic extension of k is separable). Then the map $Br(k) \to Br(k)$ given by multiplication by p is an isomorphism.

PROOF. The map $k_s^{\times} \to k_s^{\times}$ given by $x \mapsto x^p$ is injective because k_s has characteristic p, and surjective because k_s is algebraically closed. It follows that multiplication by p is bijective in $H^2(\operatorname{Gal}(k_s/k), k_s^{\times}) = H^2(k, \mathbb{G}_m)$, hence injective in $\operatorname{Br}(k)$ by Proposition 7.2.3. Now for every element $x \in \operatorname{Br}(k)$, there exists a nonzero integer n such that nx = 0 by Theorem 7.3.1. If n = pm for some integer m, we must have mx = 0, as multiplication by p is injective in $\operatorname{Br}(k)$. We may thus assume that n is prime to p. Writing 1 = un + vp with $u, v \in \mathbb{Z}$, we have x = unx + vpx = p(vx), proving that multiplication by p is surjective in $\operatorname{Br}(k)$.

DEFINITION 7.3.5. Let A be a finite-dimensional central simple k-algebra. The order of the class of A in the group Br(k) is called the *period* of A, and is denoted by per(A).

The period of A is thus the smallest integer n > 0 such that $A^{\otimes n}$ splits. By Theorem 7.3.1, we have

$$per(A) \mid ind(A)$$
.

If L/k is a field extension, observe that $per(A_L) \mid per(A)$.

PROPOSITION 7.3.6. The integers per(A) and ind(A) have the same prime divisors.

PROOF. Let L/k be a separable field extension splitting A and such that $[L:k] = \operatorname{ind}(A)$ (see Corollary 2.5.14). Then L is contained in some finite Galois extension E/k by Lemma 3.3.7. Let p be a prime divisor of $\operatorname{ind}(A)$, let H be a p-Sylow subgroup of $\operatorname{Gal}(E/k)$, and set $K = E^H$. Then [K:k] is prime to p and [E:K] is a power of p. The integer $\operatorname{ind}(A)$ divides [K:k] $\operatorname{ind}(A_K)$ by Proposition 2.5.7, hence $\operatorname{ind}(A_K)$ is divisible by p. Moreover $\operatorname{ind}(A_K)$ divides [E:K] (by Proposition 2.5.2), hence $\operatorname{ind}(A_K)$ is a power of p. Thus $\operatorname{per}(A_K)$ is a power of p by Theorem 7.3.1. Since A_K is not split (as its index is divisible by p), it follows that $\operatorname{per}(A_K) \neq 1$, so that $p \mid \operatorname{per}(A_K) \mid \operatorname{per}(A)$.

PROPOSITION 7.3.7 (Brauer). Let D be a finite-dimensional central division k-algebra. Write

$$\operatorname{ind}(D) = q_1 \cdots q_n$$

where q_1, \ldots, q_n are powers of pairwise distinct prime numbers. Then there are finite-dimensional central division k-algebras D_i such that $\operatorname{ind}(D_i) = q_i$ for $i = 1, \ldots, n$ and

$$D \simeq D_1 \otimes_k \cdots \otimes_k D_n$$
.

PROOF. For $i=1,\ldots,n$, let p_i be the prime divisor of q_i . By Theorem 7.3.1 we may write $\operatorname{per}(D)=b_1\cdots b_n$, where $b_i\mid q_i$ for each $i=1,\ldots,n$. The elements $r_i=\operatorname{per}(D)/b_i$ for $i=1,\ldots,n$ are coprime, hence there exist integers $a_1,\ldots,a_n\in\mathbb{Z}$ such that $a_1r_1+\cdots+a_nr_n=1$. For each $i=1,\ldots,n$, let D_i be a finite-dimensional central division k-algebra whose class in $\operatorname{Br}(k)$ is $a_ir_i[D]$. Then $D_1\otimes_k\cdots\otimes_k D_n$ is Brauer equivalent to D. Also for each $i=1,\ldots,n$ we have $\operatorname{per}(D_i)\mid b_i$, hence $\operatorname{ind}(D_i)$ is a power of p_i by Proposition 7.3.6. It follows from Corollary 2.5.10 (applied n-1 times) that the k-algebra $D_1\otimes_k\cdots\otimes_k D_n$ is division, hence isomorphic to D. Since $\operatorname{ind}(D_1)\cdots\operatorname{ind}(D_n)=q_1\cdots q_n$, we see that $\operatorname{ind}(D_i)=q_i$ for all $i=1,\ldots,n$ (by looking at the p_i -adic valuation). \square

CHAPTER 8

Cohomology of groups

In this chapter we present the classical construction of group cohomology (with abelian coefficients) using homological methods. The aim is to define cohomology groups in degrees higher than two, in a way which permits to extend the long exact sequences obtained earlier.

Beside providing long exact sequences, this approach has two important consequences, including for cohomology groups in degrees 1 and 2; both of those can be obtained directly in low degrees, but the homological approach is particularly effective in these situations. The first such consequence is Shapiro's Lemma computing the cohomology coinduced modules. Like Hilbert's Theorem 90, this lemma provides vanishing results, which are at the basis of many computations of Galois cohomology groups. The second consequence is the construction of corestriction morphisms, together with the associated projection formula. This is a very useful tool when trying to control torsion phenomena in the cohomology groups and passing to subgroups (the so-called "transfer" or "restriction-corestriction" arguments).

We start with the cohomology of finite groups, and more generally, discrete groups. This is done using projective resolutions of the module \mathbb{Z} equipped with the trivial group action. The cohomology of profinite groups (the main case of interest for Galois cohomology) can then be obtained as the direct limit of the cohomology of its finite quotients. These cohomology groups cannot simply be constructed using projective resolutions as in the finite case, because such resolutions need not exist in the category of discrete modules when the group is not discrete. They could, however, be constructed directly using injective resolutions of the coefficient module, a strategy that we did not pursue here.

1. Projective Resolutions

In this section, we fix a (unital associative) ring R. As before, an R-module means a left R-module.

DEFINITION 8.1.1. A chain complex (of R-modules) C is a collection of R-modules C_i and morphisms of R-modules $d_i^C: C_i \to C_{i-1}$ for $i \in \mathbb{Z}$, satisfying $d_{i-1}^C \circ d_i^C = 0$ for all $i \in \mathbb{Z}$. The chain complex C is called exact if $\ker d_i^C = \operatorname{im} d_{i+1}^C$ for all $i \in \mathbb{Z}$. A morphism of chain complexes $f: C \to C'$ is a collection of morphisms $f_i: C_i \to C'_i$ such that $f_{i-1} \circ d_i = d_i \circ f_i$ for all $i \in \mathbb{Z}$.

DEFINITION 8.1.2. We say that the morphisms of chain complexes $f, g: C \to C'$ are homotopic if there exists a collection of morphisms $s_i: C_i \to C'_{i+1}$ for $i \in \mathbb{Z}$ such that

$$f_i - g_i = d_{i+1}^{C'} \circ s_i + s_{i-1} \circ d_i^C.$$

A morphism of chain complexes $f: M \to N$ is a homotopy equivalence if there exists a morphism of chain complexes $g: N \to M$ such that $f \circ g$ is homotopic to the identity of N and $g \circ f$ is homotopic to the identity of M.

DEFINITION 8.1.3. An R-module P is called *projective* if for every surjective R-module morphism $M \to N$, the natural morphism $\operatorname{Hom}_R(P, M) \to \operatorname{Hom}_R(P, N)$ is surjective.

Lemma 8.1.4. An R-module is projective if and only if it is a direct summand of a free module.

PROOF. Let P be a projective R-module. Let F be the free R-module on the basis e_p for $p \in P$. The morphism of R-modules $f \colon F \to P$ given by $e_p \mapsto p$ is visibly surjective. By projectivity of P, we find a morphism of R-modules $s \colon P \to F$ such that $f \circ s = \mathrm{id}_P$. We have proved that P is a direct summand of F.

Let now L be a free R-module, with basis l_{α} for $\alpha \in A$. Let $M \to N$ be a surjective morphism of R-modules and $f: L \to N$ a morphism of R-modules. For each $\alpha \in A$, pick a preimage $m_{\alpha} \in M$ of $f(l_{\alpha}) \in N$. Then $l_{\alpha} \mapsto m_{\alpha}$ defines a morphism of R-modules $F \to M$ such that the composite $F \to M \to N$ is f. We have proved that L is projective.

Finally, let P be a projective R-module, and B a direct summand of P. Let $M \to N$ be a surjective morphism of R-modules and $f: B \to N$ a morphism of R-modules. By projectivity of P, the composite $P \to B \to N$ lifts to a morphism $P \to M$. Then the composite $B \to P \to M$ is a lifting of f. We have proved that B is projective. \square

DEFINITION 8.1.5. Let M be an R-module. A resolution $C \to M$ is a chain complex C such that $C_i = 0$ for i < 0, together with a morphism $C_0 \to M$ such that the augmented chain complex

$$\cdots \rightarrow C_1 \rightarrow C_0 \rightarrow M \rightarrow 0$$

is exact. A resolution $C \to M$ is said to be projective if each C_i is so.

Lemma 8.1.6. Every R-module admits a projective resolution.

PROOF. Set $M=P_{-1}$ and $P_i=0$ for i<-1. We proceed by induction, and assume that the exact sequence $P_i\to P_{i-1}\to\cdots\to P_0\to P_{-1}\to 0$ is constructed for some $i\geq -1$. Let $N=\ker(P_i\to P_{i-1})$, and let P_{i+1} be the free module on the basis e_n for $n\in N$. Then P_{i+1} is projective by Lemma 8.1.4. The morphism of R-modules $P_{i+1}\to N$ given by sending $e_n\mapsto n$ is surjective, and the composite $P_{i+1}\to N\subset P_i$ fits into the required exact sequence.

Proposition 8.1.7. Let E and P be chain complexes of R-modules. Assume that

- (i) $P_i = E_i = 0$ for i < -1.
- (ii) P_i is projective for $i \geq 0$.
- (iii) E is exact.

Let $g: P_{-1} \to E_{-1}$ be a morphism of R-modules. Then there exists a morphism of chain complexes of R-modules $f: P \to E$ such that $f_{-1} = g$. This morphism is unique up to homotopy.

PROOF. We construct $f_i: P_i \to E_i$ inductively, starting with $f_{-1} = g$. Assume that $i \ge 0$ and that f_{i-1} is constructed. The composite $f_{i-1} \circ d_i^P: P_i \to E_{i-1}$ has image contained into ker d_{i-1}^E , because

$$d_{i-1}^{E} \circ f_{i-1} \circ d_{i}^{P} = f_{i-2} \circ d_{i-1}^{P} \circ d_{i}^{P} = 0.$$

By exactness of the chain complex E, the morphism $E_i \to \ker d_{i-1}^E$ induced by d_i^E is surjective, hence by projectivity of P_i , we may find a morphism of R-modules $f_i \colon P_i \to E_i$ such that $d_i^E \circ f_i = f_{i-1} \circ d_i^P$.

Now let $f, f' : P \to E$ be two morphisms of chain complexes extending g. We construct for each $i \in \mathbb{Z}$ a morphism of R-modules $s_i : P_i \to E_{i+1}$ such that

$$f_i - f'_i = d^E_{i+1} \circ s_i + s_{i-1} \circ d^P_i$$

by induction on i. We let $s_i = 0$ for i < -1. Assume that s_{i-1} is constructed. Then

$$d_{i}^{E} \circ (f_{i} - f'_{i}) = (f_{i-1} - f'_{i-1}) \circ d_{i}^{P}$$

$$= d_{i}^{E} \circ s_{i-1} \circ d_{i}^{P} + s_{i-2} \circ d_{i-1}^{P} \circ d_{i}^{P}$$

$$= d_{i}^{E} \circ s_{i-1} \circ d_{i}^{P},$$

so that the morphism $(f_i - f_i') - s_{i-1} \circ d_i^P : P_i \to E_i$ has image in $\ker d_i^E$. By exactness of the chain complex E, the morphism $E_{i+1} \to \ker d_i^E$ is surjective. By projectivity of P_i , we obtain a morphism $s_i : P_i \to E_{i+1}$ such that $d_{i+1}^E \circ s_i = (f_i - f_i') - s_{i-1} \circ d_i^P$, as required.

COROLLARY 8.1.8. Let M be an R-module, and $P \to M$, $P' \to M$ projective resolutions. Then there exists a morphism of chain complexes $P \to P'$ such that the composites $P_0 \to P'_0 \to M$ and $P_0 \to M$ coincide. Such a morphism is unique up to homotopy, and is a homotopy equivalence.

PROOF. By Proposition 8.1.7, the identity of M extends to morphisms of chain complexes $P \to P'$ and $P' \to P$, which are unique up to homotopy. The composite $P \to P' \to P$ and the identity of P are both extensions of the identity of M. They must be homotopic by the unicity part of Proposition 8.1.7. For the same reason, the composite $P' \to P \to P'$ is homotopic to the identity of P'.

2. Cochain complexes

DEFINITION 8.2.1. A cochain complex (of R-modules) C is a collection of R-modules C^i and morphisms of R-modules $d_C^i : C^i \to C^{i+1}$ for $i \in \mathbb{Z}$, called coboundary morphisms, satisfying $d_C^{i+1} \circ d_C^i = 0$ for all $i \in \mathbb{Z}$. The R-module

$$H^i(C) = \ker d_C^i / \operatorname{im} d_C^{i-1}$$

is called the *i-th cohomology* of the cochain complex C. A morphism of cochain complexes $f: C \to C'$ is a collection of morphisms of R-modules $f^i: C^i \to C'^i$ such that $f^{i+1} \circ d^i = d^i \circ f^i$ for all $i \in \mathbb{Z}$. Such a morphism induces morphisms of R-modules $H^i(C) \to H^i(C')$ for all $i \in \mathbb{Z}$.

DEFINITION 8.2.2. We say that the morphisms of cochain complexes $f, g: C \to C'$ are homotopic if there is a collection of morphisms $s^i: C^i \to C'^{i-1}$ for $i \in \mathbb{Z}$ such that

$$f^i-g^i=d^{i-1}_{C'}\circ s^i+s^{i+1}\circ d^i_C.$$

A morphism of cochain complexes $f \colon C \to C'$ is a homotopy equivalence if there exists a morphism of cochain complexes $g \colon C' \to C$ such that $f \circ g$ is homotopic to the identity of C' and $g \circ f$ is homotopic to the identity of C.

Proposition 8.2.3. Homotopic morphisms induce the same morphism in cohomology.

PROOF. In the notation of Definition 8.2.2, the morphism $d_{C'}^{i-1} \circ s^i$ has image contained in $\operatorname{im} d_{C'}^{i-1}$ and the kernel of the morphism $s^{i+1} \circ d_C^i$ contains $\operatorname{ker} d_C^i$. These morphisms thus induce the zero morphism in cohomology by construction.

COROLLARY 8.2.4. A homotopy equivalence induces isomorphisms in cohomology.

Definition 8.2.5. A sequence of cochain complexes

$$0 \to C' \to C \to C'' \to 0$$

is called *exact* if the sequence

$$0 \to C'^i \to C^i \to C''^i \to 0$$

is exact for each $i \in \mathbb{Z}$.

Proposition 8.2.6. An exact sequence of cochain complexes of R-modules

$$0 \rightarrow C' \rightarrow C \rightarrow C'' \rightarrow 0$$

 $induces\ an\ exact\ sequence\ of\ R\text{-}modules$

$$\cdots \to H^{i-1}(C'') \to H^i(C') \to H^i(C) \to H^i(C'') \to H^{i+1}(C) \to \cdots$$

Given a commutative diagram of cochain complexes of R-modules

$$0 \longrightarrow C' \longrightarrow C \longrightarrow C'' \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow D' \longrightarrow D \longrightarrow D'' \longrightarrow 0$$

having exact rows, the induced diagram of R-modules

 $is\ commutative.$

PROOF. (The is the so-called "snake lemma"; details are left as an exercise.) Given $a \in H^{i-1}(C'')$, choose a representative $b \in C''^{i-1}$ such that $d_{C''}^{i-1}(b) = 0$. Pick a preimage $c \in C^{i-1}$ of b, and let $e = d_C^{i-1}(c) \in C^i$. Then e is mapped to zero in C''^i , hence is the image of an element $f \in C'^i$. One may then check that the class of f in $H^i(C')$ does not depend on any of the choices made, and that the map $\partial \colon H^{i-1}(C'') \to H^i(C')$ given sending x to the class of f is a morphism of R-modules fitting into the above exact sequences and diagrams.

3. Cohomology of discrete groups

In this section G is a group (endowed with the discrete topology). We consider the ring $\mathbb{Z}[G]$ defined as the free abelian group on the basis e_g for $g \in G$, with the multiplication given by $e_g e_h = e_{gh}$ for $g, h \in G$. Observe that a $\mathbb{Z}[G]$ -module structure on an abelian group A is the same thing as an action of the group G by group automorphisms, the action of $g \in G$ corresponding to left multiplication by e_g . In order to lighten the notation, we will usually denote the element $e_g \in \mathbb{Z}[G]$ simply by g. We will use the additive notation

for the group action on a $\mathbb{Z}[G]$ -module A, and denote the action of an element $g \in G$ on A by $x \mapsto gx$.

3.1. The cohomology groups. Let A be $\mathbb{Z}[G]$ -module and C a chain complex of $\mathbb{Z}[G]$ -modules. We denote by $\operatorname{Hom}_{\mathbb{Z}[G]}(C,A)$ the chain complex of abelian groups (i.e. \mathbb{Z} -modules) such that $(\operatorname{Hom}_{\mathbb{Z}[G]}(C,A))^i = \operatorname{Hom}_{\mathbb{Z}[G]}(C_i,A)$ for all $i \in \mathbb{Z}$, and

$$d^{i}_{\operatorname{Hom}_{\mathbb{Z}[G]}(C,A)} \colon \operatorname{Hom}_{\mathbb{Z}[G]}(C_{i},A) \to \operatorname{Hom}_{\mathbb{Z}[G]}(C_{i+1},A)$$

is the morphism induced by composition with d_{i+1}^C .

A morphism of chain complexes of $\mathbb{Z}[G]$ -modules $f \colon C \to C'$ induces a morphism of cochain complexes of abelian groups

$$\operatorname{Hom}_{\mathbb{Z}[G]}(f,A) \colon \operatorname{Hom}_{\mathbb{Z}[G]}(C,A) \to \operatorname{Hom}_{\mathbb{Z}[G]}(C',A).$$

If f is homotopic to g, then $\operatorname{Hom}_{\mathbb{Z}[G]}(f,A)$ is homotopic to $\operatorname{Hom}_{\mathbb{Z}[G]}(g,A)$. Thus a homotopy equivalence $C \to C'$ induces a homotopy equivalence $\operatorname{Hom}_{\mathbb{Z}[G]}(C,A) \to \operatorname{Hom}_{\mathbb{Z}[G]}(C',A)$, and therefore isomorphisms $H^q(\operatorname{Hom}_{\mathbb{Z}[G]}(C,A)) \to H^q(\operatorname{Hom}_{\mathbb{Z}[G]}(C',A))$ for all q by Corollary 8.2.4.

DEFINITION 8.3.1. Let A be a $\mathbb{Z}[G]$ -module. We view \mathbb{Z} as a $\mathbb{Z}[G]$ -module with trivial G-action, and choose a projective resolution $P \to \mathbb{Z}$. By the discussion above and Corollary 8.1.8, for each $q \in \mathbb{Z}$ the group $H^q(\operatorname{Hom}_{\mathbb{Z}[G]}(P,A))$ is independent of the choice of the projective resolution P, up to a canonical isomorphism. We denote this group by $H^q(G,A)$.

It follows from the construction that $H^q(G, A) = 0$ for q < 0.

REMARK 8.3.2. If G = 1, then $H^0(G, A) = A$ and $H^q(G, A) = 0$ for all q > 0. Indeed a projective resolution P of \mathbb{Z} is given by setting $P_0 = \mathbb{Z}$ and $P_i = 0$ for $i \neq 0$, where the morphism $P_0 \to \mathbb{Z}$ is the identity.

LEMMA 8.3.3. For any $\mathbb{Z}[G]$ -module A, we have $H^0(G, A) = A^G$.

PROOF. Observe that $A^G = \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, A)$. Let $P \to \mathbb{Z}$ be a projective resolution, as $\mathbb{Z}[G]$ -module. The exact sequence of $\mathbb{Z}[G]$ -modules

$$P_1 \to P_0 \to \mathbb{Z} \to 0$$

induces an exact sequence of abelian groups (exercise)

$$0 \to \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, A) \to \operatorname{Hom}_{\mathbb{Z}[G]}(P_0, A) \to \operatorname{Hom}_{\mathbb{Z}[G]}(P_1, A),$$

so that

$$\operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, A) = \ker(\operatorname{Hom}_{\mathbb{Z}[G]}(P_0, A) \to \operatorname{Hom}_{\mathbb{Z}[G]}(P_1, A)) = H^0(\operatorname{Hom}_{\mathbb{Z}[G]}(P, A)).$$

Let now $f: A \to A'$ be a morphism of $\mathbb{Z}[G]$ -modules. Composition with f induces a morphism of cochain complex of abelian groups

$$\operatorname{Hom}_{\mathbb{Z}[G]}(P,A) \to \operatorname{Hom}_{\mathbb{Z}[G]}(P,A')$$

and thus morphisms of abelian groups for all q

$$f_* \colon H^q(G,A) \to H^q(G,A').$$

Observe that for every q, the map

$$\operatorname{Hom}_{\mathbb{Z}[G]}(A, A') \to \operatorname{Hom}_{\mathbb{Z}}(H^q(G, A), H^q(G, A')) \; ; \quad f \mapsto f_*$$

is a morphism of abelian groups, and that the associations $A \mapsto H^q(G, A)$ and $f \mapsto f_*$ define a functor from the category of $\mathbb{Z}[G]$ -modules to the category of abelian groups.

Proposition 8.3.4. Every exact sequence of $\mathbb{Z}[G]$ -modules

$$0 \to A \to B \to C \to 0$$

induces an exact sequence of abelian groups

$$\cdots \to H^{q-1}(G,C) \to H^q(G,A) \to H^q(G,B) \to H^q(G,C) \to \cdots$$

Given a commutative diagram of $\mathbb{Z}[G]$ -modules

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow A' \longrightarrow B' \longrightarrow C' \longrightarrow 0$$

having exact rows, the induced diagram of abelian groups

is commutative.

PROOF. Let $P \to \mathbb{Z}$ be a projective resolution. Since each $\mathbb{Z}[G]$ -modules P_i is projective, we have an exact sequence of cochain complexes of abelian groups

$$0 \to \operatorname{Hom}_{\mathbb{Z}[G]}(P, A) \to \operatorname{Hom}_{\mathbb{Z}[G]}(P, B) \to \operatorname{Hom}_{\mathbb{Z}[G]}(P, C) \to 0.$$

The statement (including the fact that the long exact sequence obtained does not depend on the choice of P) is then a consequence of Proposition 8.2.6.

Let now $\psi \colon G \to G'$ be a group morphism and A a $\mathbb{Z}[G']$ -module. We may view any $\mathbb{Z}[G']$ -module as a $\mathbb{Z}[G]$ -module using ψ . Choose a projective resolution P of the $\mathbb{Z}[G]$ -module \mathbb{Z} , and a projective resolution P' of the $\mathbb{Z}[G']$ -module \mathbb{Z} . Then by Proposition 8.1.7 there exists a morphism of chain complexes of $\mathbb{Z}[G]$ -modules $f \colon P \to P'$, which is unique up to homotopy. This morphism induces a morphism of cochain complexes of abelian groups

$$\operatorname{Hom}_{\mathbb{Z}[G']}(P', A) = \operatorname{Hom}_{\mathbb{Z}[G]}(P', A) \xrightarrow{\operatorname{Hom}_{\mathbb{Z}[G]}(f, A)} \operatorname{Hom}_{\mathbb{Z}[G]}(P, A).$$

Taking the cohomology, we obtain morphisms of abelian groups

$$\psi^* \colon H^q(G',A) \to H^q(G,A)$$

for all q, which does not depend on the choices of P, P' or f by Proposition 8.2.3.

In particular, when $H\subset G$ is a subgroup, we have thus constructed the restriction morphisms

$$\operatorname{Res}_H^G \colon H^q(G,A) \to H^q(H,A).$$

3.2. Explicit resolutions. We now describe a canonical projective resolution of the $\mathbb{Z}[G]$ -module \mathbb{Z} (endowed with the trivial G-action). For each $i \in \mathbb{N}$, let L_i be the free abelian group on the basis G^{i+1} . A G-action is given by $g(g_0, \ldots, g_i) = (gg_0, \ldots, gg_i)$. The $\mathbb{Z}[G]$ -module L_i is free, a basis being given by the elements $(1, g_1, \ldots, g_i)$. For $i \geq 1$, consider the morphism of abelian groups $d_i^L : L_i \to L_{i-1}$ defined by

$$d_i^L(g_0, \dots, g_i) = \sum_{i=0}^i (-1)^j (g_0, \dots, \widehat{g_j}, \dots, g_i),$$

where the notation $\widehat{g_j}$ means that the element g_j is omitted. Let us write $L_{-1} = \mathbb{Z}$ with the trivial G-action, and $L_i = 0$ for i < -1. We define a morphism of abelian groups $d_0^L: L_0 \to L_{-1} = \mathbb{Z}$ by $(g_0) \mapsto 1$ for all $g_0 \in G$, and set $d_i^L = 0$ for i < 0. The morphism d_i^L are $\mathbb{Z}[G]$ -linear, and a straightforward computation shows that $d_i^L \circ d_{i+1}^L = 0$ for all $i \in \mathbb{Z}$. We have thus constructed a chain complex of $\mathbb{Z}[G]$ -modules L.

Lemma 8.3.5. The complex L is exact.

PROOF. Consider the group morphisms (which are not $\mathbb{Z}[G]$ -linear)

$$s_i: L_i \to L_{i+1}: (g_0, \ldots, g_i) \mapsto (1, g_0, \ldots, g_i)$$

for $i \geq 0$. Let $s_{-1} : \mathbb{Z} = L_{-1} \to L_0$ be given by $n \mapsto n(1)$, and set $s_i = 0$ for i < -1. Then $d_{i+1}^L \circ s_i + s_{i-1} \circ d_i^L = \mathrm{id}_{L_i}$ for all i, which implies the statement.

Remark 8.3.6. We just proved that L is homotopic to 0, when viewed as a complex of \mathbb{Z} -modules. Of course this is in general not true as a complex of $\mathbb{Z}[G]$ -modules.

When A is a $\mathbb{Z}[G]$ -module, we obtain a cochain complex of abelian groups $C(G, A) = \operatorname{Hom}_{\mathbb{Z}[G]}(L, A)$. For $i \in \mathbb{Z}$, we write $C^i(G, A) = \operatorname{Hom}_{\mathbb{Z}[G]}(L_i, A)$, and set $Z^i(G, A) = \ker d^i_{C(G,A)}$ and $B^i(G,A) = \operatorname{im} d^i_{C(G,A)}$. Since L is a projective resolution of the $\mathbb{Z}[G]$ -module \mathbb{Z} (Lemma 8.3.5), it follows that

$$H^{i}(G, A) = Z^{i}(G, A)/B^{i}(G, A).$$

For $g_1, \ldots, g_i \in G$, the elements

$$[g_1, \ldots, g_i] = (1, g_1, g_1g_2, \ldots, g_1 \cdots g_i)$$

for a basis of the $\mathbb{Z}[G]$ -module L_i . An element $f \in C^i(G, A)$ then corresponds to a map $a: G^i \to A$ given by

$$(g_1, \ldots, g_i) \mapsto a_{g_1, \ldots, g_i} = f[g_1, \ldots, g_i].$$

The element $d^i_{C(G,A)}(f) \in C^{i+1}(G,A)$ is then given by the map $b \colon G^{i+1} \to A$ defined by

(8.3.a)
$$b_{g_1,...,g_{i+1}} = g_1 a_{g_2,...,g_{i+1}} + \sum_{i=1}^{i} (-1)^j a_{g_1,...,g_j g_{j+1},...,g_{i+1}} + (-1)^{i+1} a_{g_1,...,g_i}.$$

EXAMPLE 8.3.7 (1-cocyles). An element $\xi \colon g \mapsto a_g$ of $C^1(G,A)$ belongs to $Z^1(G,A)$ if and only if $g_1\xi_{g_2} - \xi_{g_1g_2} + \xi_{g_1} = 0$ for all $g_1, g_2 \in G$, which is exactly (5.3.a) written additively. The element ξ belongs to $B^1(G,A)$ if and only if there exists $a \in A$ such that $\xi_{g_1} = g_1a - a$ for all $g_1 \in G$, which means that the 1-cocyle ξ is cohomologous to the trivial 1-cocyle. Thus we recover the group $H^1(G,A)$ defined earlier when G is finite.

Example 8.3.8 (2-cocyles). An element $\alpha:(g,h)\mapsto a_{g,h}$ of $C^2(G,A)$ belongs to $Z^2(G,A)$ if and only if

$$0 = g_1 \alpha_{g_2,g_3} - \alpha_{g_1g_2,g_3} + \alpha_{g_1,g_2g_3} - \alpha_{g_1,g_2}$$

for all $g_1, g_2, g_3 \in G$, which is exactly (7.1.a) written additively. The element α belongs to $B^2(G, A)$ if and only if there exists a map $a: G \to A$ denoted by $g \mapsto a_g$ such that

$$\alpha_{g_1,g_2} = g_1 a_{g_2} - a_{g_1 g_2} + a_{g_1}$$

for all $g_1, g_2 \in G$, which means that the 2-cocyle α is cohomologous to the trivial 2-cocyle. Thus we recover the group $H^2(G, A)$ defined earlier when G is finite.

REMARK 8.3.9. Under the identifications of Example 8.3.7 and Example 8.3.8, the long exact sequence of Proposition 7.1.2 coincides with the relevant part of the long exact sequence of Proposition 8.3.4 (this may be checked using (8.3.a)).

Example 8.3.10 (Cohomology of cyclic groups). Assume that the group G is finite and cyclic, generated by σ . Consider the elements

$$N = \sum_{g \in G} g \in \mathbb{Z}[G]$$
 ; $D = \sigma - 1 \in \mathbb{Z}[G]$.

We define a projective resolution C of the $\mathbb{Z}[G]$ -module \mathbb{Z} as follows. Set $C_i = 0$ if i < 0 and $C_i = \mathbb{Z}[G]$ if $i \geq 0$. For i > 0, the morphism $d_i^C : C_i \to C_{i-1}$ is defined as the multiplication with D if i is odd, and the multiplication with N if i is even. The morphism $C_0 = \mathbb{Z}[G] \to \mathbb{Z}$ is given by $g \mapsto 1$ for all $g \in G$. One verifies easily that the complex C is exact (observe that $\mathbb{Z}[G] \simeq \mathbb{Z}[X]/(X^n - 1)$ with $\sigma \mapsto X$ and n = |G|).

Let now A be a $\mathbb{Z}[G]$ -module. Then for $i \geq 0$, we have $\operatorname{Hom}_{\mathbb{Z}[G]}(C_i, A) = A$, and the morphism $\operatorname{Hom}_{\mathbb{Z}[G]}(C_i, A) \to \operatorname{Hom}_{\mathbb{Z}[G]}(C_{i+1}, A)$ corresponds to the endomorphism of A given by the action of N if i is odd, and by the action of D if i is even. Noting that A^G is the kernel of $D: A \to A$, and letting NA be the kernel of $N: A \to A$, we obtain for $q \geq 0$

$$H^{q}(G, A) = \begin{cases} A^{G}/NA & \text{if } q \text{ is even,} \\ NA/DA & \text{if } q \text{ is odd.} \end{cases}$$

Bibliography

- [Dra83] P. K. Draxl. Skew fields, volume 81 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1983.
- [GS17] Philippe Gille and Tamás Szamuely. Central simple algebras and Galois cohomology, volume 165 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2017.
- [Ker07] Ina Kersten. Brauergruppen. Universitätsverlag Göttingen, Göttingen, 2007. https://univerlag.uni-goettingen.de/bitstream/handle/3/isbn-978-3-938616-89-5/brauergruppen.pdf.
- [KMRT98] Max-Albert Knus, Alexander S. Merkurjev, Markus Rost, and Jean-Pierre Tignol. The book of involutions. With a preface by J. Tits. Providence, RI: American Mathematical Society, 1998.
- [Lam05] T. Y. Lam. Introduction to quadratic forms over fields, volume 67 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2005.
- [Pie82] Richard S. Pierce. Associative algebras, volume 88 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1982. Studies in the History of Modern Science, 9.
- [Ser62] Jean-Pierre Serre. Corps locaux. Publications de l'Institut de Mathématique de l'Université de Nancago, VIII. Actualités Sci. Indust., No. 1296. Hermann, Paris, 1962.
- [Ser02] Jean-Pierre Serre. Galois cohomology. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2002. Translated from the French by Patrick Ion and revised by the author.
- $[Sta] \qquad \qquad \text{The Stacks Project Authors. Stacks Project. $http://stacks.math.columbia.edu}.$