Kulki

XV OIJ, zawody III stopnia, sesja próbna

13 maja 2021

Limit czasu: 1 s (C++) / 2 s (Python)

Limit pamięci: 256 MB

Bajtazar bawi się w Kulki. Gra ta toczy się na planszy o wymiarach $2 \times N$ (dwa rzędy po N kolumn). Na każdym polu znajduje się dokładnie jedna kulka. Łącznie na planszy znajduje się dokładnie N kulek białych oraz N kulek czarnych. W jednym ruchu Bajtazar może zamienić miejscami dwie sąsiednie kulki (w pionie lub w poziomie). Celem gry jest uporządkowanie kulek w taki sposób, aby w każdym rzędzie występowały tylko kulki jednego koloru. Bajtazar chciałby osiągnąć cel w jak najmniejszej liczbie ruchów. Pomóż mu!

Napisz program, który wczyta początkowe ułożenie kulek na planszy oraz wyznaczy minimalną liczbę ruchów prowadzącą do celu.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba naturalna N ($1 \le N \le 100\,000$), określająca liczbę kolumn. W drugim i trzecim wierszu wejścia znajduje się ciąg N znaków B lub C opisujący kolory kulek w kolejnych kolumnach pierwszego i drugiego rzędu planszy, gdzie B oznacza białą kulkę, a C – czarną kulkę.

Wyjście

W pierwszym (jedynym) wierszu wyjścia należy wypisać jedną nieujemną liczbę całkowitą – minimalną liczbę ruchów prowadzących do osiągnięcia celu gry.

Ocenianie

Możesz rozwiązać zadanie w kilku prostszych wariantach – niektóre grupy testów spełniają pewne dodatkowe ograniczenia. Poniższa tabela pokazuje, ile punktów otrzyma Twój program, jeśli przejdzie testy z takim ograniczeniem.

Dodatkowe ograniczenia	Liczba punktów
wynik zawsze jest równy 0, 1 lub 2	10
$N \le 10$	35
$N \le 1000$	60

Przykłady

Wejście dla testu ku10a:

5 BBCBB CCCBC Wyjście dla testu kul0a:

2

Wyjaśnienie do przykładu: Poniższe rysunki przedstawiają dwa ruchy potrzebne, aby wszystkie białe kulki znalazły się w jednym rzędzie oraz wszystkie czarne kulki w jednym rzędzie.

Wejście dla testu kul0b:	Wyjście dla testu kul0b:
2	1
BC	
CB	

Wyjaśnienie do przykładu: Jedną z dwóch możliwości dojścia do celu jest zamienienie miejscami kulek w pierwszej kolumnie. Zauważ, że nie jest to jedyna możliwość. Możemy równie dobrze w jednym ruchu zamienić miejscami kulki w drugiej kolumnie.

	•
•	\bigcirc

Wejście dla	testu	kul0c:
-------------	-------	--------

7	
BCBCBBB	
BCCCCBC	

Wyjście dla	testu kul	0c:
-------------	-----------	-----

_
5

Pozostałe testy przykładowe

Na potrzeby opisu poniższych testów kolumny numerujemy od 1 do N.

- test kul0d: $N = 1\,000$, wszystkie białe kulki są w górnym rzędzie, a wszystkie czarne kulki są w dolnym rzędzie, poza kolumnami 42 i 94, gdzie biała kulka znajduje się w dolnym rzędzie, a czarna w górnym rzędzie. Odpowiedź to 2.
- test kul0e: $N = 100\,000$, kulki białe są w kolumnach o numerach parzystych, a kulki czarne w kolumnach o numerach nieparzystych. Odpowiedź to $100\,000$.