

Theorembeweiserpraktikum

Tactic Proofs

Jakob von Raumer, Sebastian Ullrich | SS 2021

Why Tactics

Term proofs can be very compact

```
example : (\exists x, p x \land q x) \rightarrow (\exists x, p x) \land (\exists x, q x) :=
   fun \langle x, hpx, hqx \rangle \Rightarrow \langle \langle x, hpx \rangle, \langle x, hqx \rangle \rangle
```

Why Tactics

Term proofs can be very compact

```
example: (\exists x, p x \land q x) \rightarrow (\exists x, p x) \land (\exists x, q x) :=
    fun \langle x, hpx, hqx \rangle \Rightarrow \langle \langle x, hpx \rangle, \langle x, hqx \rangle \rangle
```

... but also be very tedious

```
example (d : Weekday) : next (previous d) = d :=
 match d with
   monday => rfl
  tuesday => rfl
   wednesday => rfl
```

```
example : (p x \rightarrow f x = y) \rightarrow (if p x then f x else y) = y :=
  fun hfxy =>
    iteCongr rfl (fun hpx => hfxy hpx) (fun _ => rfl) > ite_self (p x) y
```


Tactics enable an imperative, step-by-step proof style

```
example: (\exists x, p x \land q x) \rightarrow (\exists x, p x) \land (\exists x, q x) := by
  intro \langle x, hpx, hqx \rangle -- \vdash (\exists x, p x) \land (\exists x, q x)
  apply And.intro -- + \exists x, p x, + \exists x, q x
  focus -- \vdash \exists x, p x
    exact \langle x, hpx \rangle
  focus
           -- ⊦ ∃ x, q x
    exact \langle x, hqx \rangle
```

Why Tactics

Tactics enable an imperative, step-by-step proof style

... where a proof step can also automate away many term steps

```
example (d : Weekday) : next (previous d) = d := by
cases d <;> rfl
```

```
example : (p x \rightarrow f x = y) \rightarrow (if p x then f x else y) = y := by simp_all
```

Running Tactics

At any point, instead of specifying a term we can use by to execute one or more tactics, separated by ; or line breaks

```
example : (\exists x, p x \land q x) \rightarrow (\exists x, p x) \land (\exists x, q x) := fun \langlex, hpx, hqx\rangle => by apply And.intro \langlex, hpx\rangle; exact \langlex, hqx\rangle
```

The expected type at the position of by becomes the proof goal, displayed after -

intro x	introduce variables/hypotheses, same syntax as fun
exact e	solve first goal with e
apply e	solve first goal with e, add missing arguments as new goals
assumption	solve first goal using any hypothesis of the same type
contradiction	solve first goal if "obviously" contradictory, e.g. with hypothesis $x \neq x$ or none = some a
cases e	split first goal into one case for each constructor of type of e
byCases p	split first goal into cases p and ¬ p for a (decidable) proposition p
induction e	like cases , but also introduce induction hypotheses
rfl	abbreviation for exact rfl
have e :=/by	
let x :=	like in term mode
show e	

Basic Combinators

focus t	run tactic(s) on first goal only, which must be closed by the last tactic
t <;> t'	run t' on every goal (which must be closed) produced by t
allGoals t	run t on every goal

Equational Reasoning

```
rw [e, ...] if e : e<sub>1</sub> = e<sub>r</sub>, replace every e<sub>1</sub> in the first goal with e<sub>r</sub>
rw [e, ...] at h | do so at hypothesis h instead
rw [←e] invert equality before rewriting
```


Equational Reasoning

```
rw [e, ...] if e : e<sub>1</sub> = e<sub>r</sub>, replace every e<sub>1</sub> in the first goal with e<sub>r</sub>
rw [e, ...] at h | do so at hypothesis h instead
rw [←e]
                    invert equality before rewriting
```

Arguments are inferred (once) where possible

```
example (n m k : Nat) : (n + m) * k = (m + n) * k := by rw [Nat.add_comm n]
```


Equational Reasoning

```
rw [e, ...] if e : e_1 = e_r, replace every e_1 in the first goal with e_r
rw [e, ...] at h | do so at hypothesis h instead
rw [←e]
                invert equality before rewriting
```

Arguments are inferred (once) where possible

```
example (n m k : Nat) : (n + m) * k = (m + n) * k := bv rw [Nat.add comm n]
```

For performance reasons, subterms must match the rewrite rule *structurally*

```
example (h : succ n = m) : n + 1 = m := bv
  rw [h] -- tactic 'rewrite' failed, did not find instance of the pattern in the target expression
```


simp is a supercharged rw:

exhaustively applies all given equations

```
example
(h1: ∀ x, f (f x) = f x)
(h2: ∀ x, f' x = f x):
f' (f' (f' x)) = f' x := by
--rw [h2, h2, h2, h1, h1]
simp [h1, h2]
```


- exhaustively applies all given equations
- ...including all theorems marked with @[simp]

```
@[simp] theorem zero_mul : 0 * n = 0 := ...
@[simp] theorem zero_mul : 0 * n = 0 := ...
example : 0 * n + (0 + n) = n := by simp
```


- exhaustively applies all given equations
- ...including all theorems marked with @[simp]
- ...unfolding given definitions

```
by ... -- ... F add n (succ m) = k
simp [add] -- ... F succ (add n m) = k
...
```


- exhaustively applies all given equations
- ...including all theorems marked with @[simp]
- ...unfolding given definitions
- ...recursively solving hypotheses

```
example (h1: y = 0 \rightarrow x = 0) (h2: p \rightarrow 0 = y) (h3: p): x = 0 := by simp [h1, h2, h3]
```


- exhaustively applies all given equations
- ...including all theorems marked with @[simp]
- ...unfolding given definitions
- ...recursively solving hypotheses
- ...preprocessing theorems not yet in equation form

```
by simp [
show p x from ..., -- interpreted as `p x = True`
show p x ∧ ¬ p y from ..., -- interpreted as rules `p x = True` and `p y = False`
show p a ↔ p b from ..., -- interpreted as `p a = p b`
...]
```


- exhaustively applies all given equations
- ...including all theorems marked with @[simp]
- ...unfolding given definitions
- ...recursively solving hypotheses
- ...preprocessing theorems not yet in equation form
- ...rewriting under binders

```
example (xs : List Nat) : xs.map (fun n \Rightarrow n + 1) = xs.map (fun n \Rightarrow 1 + n) := by simp [Nat.add_comm]
```


- exhaustively applies all given equations
- ...including all theorems marked with @[simp]
- ...unfolding given definitions
- ...recursively solving hypotheses
- ...preprocessing theorems not yet in equation form
- ...rewriting under binders
- ...and finally tries to close goals with True.intro

simp_all

simp_all is a supercharged simp:

iteratively simplifies all current hypotheses and the goal up to fixpoint

```
example (h1: n + m = m) (h2: m = n): n + n = n := by simp_all
```

simp_all

simp_all is a supercharged simp :

iteratively simplifies all current hypotheses and the goal up to fixpoint

```
example (h1: n + m = m) (h2: m = n): n + n = n := by simp_all
```

includes propositions it finds on the way

```
example: (p x \rightarrow f x = y) \rightarrow (if p x then f x else y) = y := by simp_all
```


How not to write tactic proofs:

```
induction n
simp [foo]
rw [←bar]
simp [baz]
```

Which tactics belong to which case...? Repairing tactic proofs is hard, repairing unstructured ones is harder!


```
induction n
focus
  simp [foo]
  rw [←bar]
focus
  simp [baz]
```

Better: clearly separate each case


```
induction n
case zero =>
  simp [foo]
  rw [←bar]
case succ n' ih =>
  simp [baz]
```

Better: reference cases by name (see infoview for case names)
Also allows reordering cases, e.g. to eliminate trivial cases with a final allGoals


```
induction n with
| zero =>
simp [foo]
rw [←bar]
| succ n' ih =>
simp [baz]
```

Better: use special induction/cases syntax that also allows naming new variables

Better: use extensible, $\it fragile$ tactics like $\it simp$ at the end of a branch only

Put it in a have side proof if necessary

Lean marks *inaccessible* variable names with a † in the output

```
example : zero + n = n := by
induction n
```

Variable names become inaccessible when

- shadowed, e.g. fun x => ... (fun x => ...), or
- generated by a tactic, as above, to avoid fragile proof scripts Give them explicit names as on the previous slide instead if you need to access them