Tipicality & ontology

Igor de Camargo e Souza Câmara

14 de Setembro de 2018

IME - USP

Segundo [1], há duas maneiras de entender o que significa *saber* um conceito.

- 1. Compreender as condições necessárias e suficientes que caracterizam o conceito. Essa noção vem sobretudo da filosofia.
- Ser capaz de identificar elementos do conceito, ainda que imperfeitamente, baseando-se em heurísticas e produção de protótipo. Ideia que vem da psicologia e das ciências cognitivas.

Um **protótipo** é uma instanciação abstrata de um conceito.

Um **protótipo** é uma instanciação abstrata de um conceito.

 $\mathsf{P\'{a}ssaro} \Rightarrow$

Um **protótipo** é uma instanciação abstrata de um conceito.

 $\mathsf{P\'{a}ssaro} \Rightarrow$

Um **protótipo** é uma instanciação abstrata de um conceito.

Pássaro \Rightarrow

Pássaro $\not\Rightarrow$

Conceito de pássaro provavelmente envolve uma série de características como: ter penas, voar, ter um determinado tamanho, construir ninho etc. Nem todas elas são necessárias para a caracterização do conceito de pássaro e também não são suficientes.

Uma grande diferença entre o raciocínio a partir de protótipos e de conceitos "clássicos": **composicionalidade**.

Conceitos "clássicos" são composicionais: $Pet\ fish = Pet \cap fish$.

Protótipos não são composicionais:

```
\begin{cases} \textit{Pet} \Rightarrow \textit{ small, warm, furry, have paws etc.} \\ \textit{Fish} \Rightarrow \textit{scaly, wet etc.} \end{cases}
```

Pet fish $\Rightarrow \dots$

Uma grande diferença entre o raciocínio a partir de protótipos e de conceitos "clássicos": composicionalidade.

Conceitos "clássicos" são composicionais: $Pet fish = Pet \cap fish$.

Protótipos **não** são composicionais:

 $\begin{cases} \textit{Pet} \Rightarrow \textit{small, warm, furry, have paws etc.} \\ \textit{Fish} \Rightarrow \textit{scaly, wet etc.} \end{cases}$

- Frixione [1] argumenta que mesmo em cenários onde há um conceito claro e o dominamos, é frequente usarmos a tipicalidade (o quanto um objeto se assemelha ao protótipo do conceito) para decidir instâncias particulares.
- Um exemplo é a água. Sabemos que, no nível molecular, água = H₂O. No entanto, para decidir se um objeto é ou não água, atentamos para outras propriedades, como ser líquido, incolor, inodoro etc.
- Isso pode ser útil para representação de sistemas baseados em conhecimento porque frequentemente nos depararemos com situações em que não é possível auferir as condições necessárias e suficientes para caracterizar um objeto. Por exemplo, não teremos como fazer uma análise química de um líquido para decidir se ele é ou não água.

Mas como implementar essa outra maneira de entender a representação conceitual?

Frixione [1] sugere que olhemos para ensinamentos das ciências cognitivas. Em especial:

1. Distinção entre sistemas de raciocínio - dual process. Sistema 1 e 2.

[2]

- 2. Manter os efeitos prototípicos separados da representação de conceitos composicional.
 - 2.1 Representações composicionais e efeitos prototípicos exigem arquiteturas representacionais diferentes.

- 2. Manter os efeitos prototípicos separados da representação de conceitos composicional.
 - 2.1 Representações composicionais e efeitos prototípicos exigem arquiteturas representacionais diferentes.
- 3. Desenvolver representações de conceitos híbridas, prototípicas e baseadas em exemplos (exemplar based).
 - 3.1 Baseado em protótipos: conhecimento sobre categorias é guardado em protótipos - melhor representante de cada categoria. Protótipos são listas de valores associados a pesos.
 - 3.2 Baseado em exemplos: conceito é um conjunto de exemplos do conceito (i.e. gato é um conjunto de gatos vistos durante a vida).

Uma ideia é trabalhar com **linked data**, coordenando mais de um banco de dados.

Assim, haveria uma taxonomia com os conceitos clássicos usuais, baseada em DLs/Ontologias, e outra para dar conta do raciocínio prototípico (Frixione [1] sugere um *Prototype-Exemplar Learning Classifier*. PEL-C.)

Por exemplo: perguntar por uma fruta cítrica amarela (SPARQL).

```
SELECT? citrus

WHERE {?citrus :has colour : YELLOW .
}
```

Ser amarelo não é uma condição necessária para limão, mas amarelo constitui protótipo de limão ¹.

Um sistema híbrido poderia responder a query com um limão, portanto.

¹talvez não no Brasil...

Ching-man Au Yeung e Ho-fung Leung [3] propuseram um modelo formal para **typicality**, que eles diferenciam de **likeliness** (i.e. o quanto um objeto pertence a um conceito - o que permite graus de pertencimento, ao invés do par pertence/não pertence).

Vetor característico c_x (de um conceito x): vetor $(c_{x,1}, \ldots, c_{x_n})$, com cada $c_{x,i} \in [0,1]$ e n é o número total de propriedades.

Vetor de propriedades p_a de um individuo a - análogo ao anterior. Indica quanto o indivíduo a tem de cada propriedade.

Vetor prototípico t_x , de um conceito x é um vetor de números reais $(t_{x,1},\ldots,t_{x,n})$, onde cada $t_{x,i}\in[0,1]$ é definido por:

$$t_{\mathsf{x}} = \frac{1}{|S|} \sum_{\mathsf{s} \in S \cup \{\mathsf{x}\}} c_{\mathsf{s}}$$

Onde S é o conjunto de *sub-conceitos* de x, c_s é a medida da propriedade naquele subconceito.

Ideia: quanto maior for o peso da propriedade nos subconceitos, maior será o peso no vetor prototípico.

Finalmente definimos **tipicalidade** de um objeto a para um conceito x como um número que resultante de uma função e que representa quanto a é considerado instância típica de x.

$$au_{\mathsf{x}}:I \to [0,1]$$

A função de tipicalidade obedece a 4 axiomas:

- (**A6**) a tem tipicalidade máxima (1) para conceito x sse $t_{x,i} > 0 \rightarrow p_{a,i} = 1$ para todos i.
- (A7) a tem tipicalidade mínima (0) para conceito x sse $t_{x,i} > 0 \rightarrow p_{a,i} = 0$ para todos i.
- (A8) para conceito x e dois indivíduos a,b, se existe j tal que $t_{x,j} > 0, p_{a,j} > p_{b,j} \ge 0$ e para os demais $i \ne j, p_{a,i} = p_{b,i}$, então $\tau_x(a) > \tau_x(b)$.
- (**A9**) Para dois conceitos, x, y e um indivíduo a. Se, para algum j tal que $t_{x,j} > t_{y,j} > 0$ vale que $p_{a,j} > 0$ e $t_{x,i} = t_{y,i}$ para os demais $i \neq j$, então $\tau_y(a) > \tau_x(a)$.

Uma função possível:

$$\tau_{x}(a) = \frac{p_{a} \cdot t_{x}}{\sum_{i=1}^{n} t_{x,i}}$$

Onde p_a é o vetor de características de a, t_x é o vetor do conceito x e $t_{x,i}$ denota cada uma das características do vetor t_x .

Um exemplo

Supor as características:

A	Animal	В	Has-Wings	С	Has-Feathers		
Ε	Eat-Seed	F	Has-Curved-Beak	G	Can-Sing	Н	Can-Run

E os conceitos²:

 $^{^2}$ O número à direita indica o quanto aquela característica tem força para o conceito em questão - é o número que aparece no vetor de características do conceito.

Um exemplo

Agora consideramos um indvíduo que é um avestruz (ostrich): caracterizado por $p_o = (1, 1, 1, 0, 0, 0, 0, 0.8)$.

O vetor prototípico de pássaro é: (1, 1, 1, 0.75, 0.25, 0.25, 0.25, 0.225).

Com tudo isso, calculamos a tipicalidade dele em relação ao conceito de pássaro: $\tau_{Bird}(o) = 0.673$.

Ou seja, um avestruz não é tão representativo do conceito de pássaro.

Referências

M. Frixione and A. Lieto.

Representing and reasoning on typicality in formal ontologies.

In Proceedings of the 7th International Conference on Semantic Systems, pages 119-125. ACM, 2011.

D. Kahneman.

A perspective on judgment and choice: mapping bounded rationality.

American psychologist, 58(9):697, 2003.

C.-m. A. Yeung and H.-f. Leung.

Ontology with likeliness and typicality of objects in concepts.

In International Conference on Conceptual Modeling, pages 98–111. Springer, 2006.