Cenying(Tracy) Yang

Due Date: 11/16/2016

Algorithm

Witten et al. (2009) proposes a penalized matrix decomposition, with applications to sparse principal component and canonical correlation analysis. Here, I summarize how the algorithm works. The algorithm attempts to solve the following problem

$$\label{eq:minimize} \begin{aligned} & \underset{u \in R^N, v \in R^p}{\text{minimize}} & & \frac{1}{2} \|X - duv^T\|_F^2 \\ & \text{subject to} & & \|u\|_2^2 = 1, & \|v\|_2^2 = 1 \\ & & \|u\|_1 \le c_1, & \|v\|_1 \le c_2 \end{aligned}$$

The problem is equivalent to

$$\begin{array}{ll} \underset{u \in R^N, v \in R^p}{\text{maximize}} & u^T X v \\ \text{subject to} & \|u\|_2^2 = 1, & \|v\|_2^2 = 1 \\ & \|u\|_1 \leq c_1, & \|v\|_1 \leq c_2 \end{array}$$

The rank 1 matrix approximation algorithm runs as follows:

- 1. Initialize v with ℓ_2 norm being 1
- 2. Update $u = \frac{S_{\Delta_1}(Xv)}{\|S_{\Delta_1}(Xv)\|_2}$
- 3. Update $v = \frac{S_{\Delta_2}(X^T u)}{\|S_{\Delta_2}(X^T u)\|_2}$

where Δ_1 and Δ_2 are chosen based on binary search such that $||u||_1 = c_1$ and $||v||_1 = c_2$ respectively. And S is the soft thresholding operator.

The $rank\ k\ matrix\ approximation$ algorithm is built based on rank 1 algorithm.

- 1. Initialized $X^1 \leftarrow X$
- 2. For $k \in {1, ..., K}$:
 - (a) Find u_k , v_k and d_k by applying the rank 1 matrix approximation algorithm to data X^k
 - (b) $X^{T+1} \leftarrow X^k d_k u_k v_k^T$

Application to social marketing data

I transform the data using square root so that standard deviation of count data is approximately constant. A quick look into what topics are discussed most frequently on the Twitter:

	colmeans
	cormeans
chatter	1.9094277
photo_sharing	1.3681041
current_events	1.0501033
health_nutrition	1.0167170
travel	0.9549531
cooking	0.9548596

```
sports_fandom
                 0.9266684
politics
                 0.9127590
food
                 0.8753729
shopping
                 0.8478124
college_uni
                 0.7991081
personal_fitness 0.7801828
tv_film
                 0.6993931
news
                 0.6925771
uncategorized
                 0.6505390
religion
                 0.6451401
family
                 0.6420915
online_gaming
                 0.6414276
parenting
                 0.6044721
fashion
                 0.6030449
automotive
                 0.5741795
outdoors
                 0.5594291
school
                 0.5515864
music
                 0.5246168
                 0.4988884
sports_playing
beauty
                 0.4791737
computers
                 0.4741713
art
                 0.4619582
home_and_garden 0.4469229
                 0.4349158
dating
eco
                 0.4313205
crafts
                 0.4241252
business
                 0.3661789
small_business
                 0.2972368
adult
                 0.1598987
                 0.0063218
spam
```

I implement $rank \ 1$ algorithm to find out the major topics with different threshold c_1 and c_2 . Results with $c_1 = 5$ and $c_2 = 5$:

[,1] chatter 0.33546158 current_events 0.14109283 travel 0.23827754 photo_sharing 0.28766436 uncategorized 0.08844721 tv_film 0.09532899 sports_fandom 0.17428162 politics 0.29400356 food 0.20316637 family 0.12305913 home_and_garden 0.02597041 0.07265437 music 0.18950121 news online_gaming 0.02882779 shopping 0.17889782 health_nutrition 0.34411310 college_uni 0.11984188 sports_playing 0.06698127

```
cooking
                  0.29931693
                  0.05654087
eco
computers
                  0.11904043
business
                  0.04288818
outdoors
                  0.11606007
crafts
                  0.03991565
automotive
                  0.09678883
art
                  0.06787109
religion
                  0.18920898
beauty
                  0.14555424
parenting
                  0.16155267
                  0.11070105
dating
school
                  0.13720559
personal_fitness 0.21847360
                  0.15848661
fashion
small_business
                  0.03282414
                  0.0000000
spam
                  0.00000000
adult
```

Results with $c_1 = 3$ and $c_2 = 3$:

[,1]chatter 0.44257137 current_events 0.06261090 travel 0.19925966 photo_sharing 0.18299416 uncategorized 0.0000000 tv_film 0.00000000 sports_fandom 0.03580287 politics 0.28373996 food 0.13758287 family 0.00000000 home_and_garden 0.0000000 music 0.0000000 news 0.14357340 online_gaming 0.0000000 shopping 0.07275263 health_nutrition 0.66699643 college_uni 0.00000000 sports_playing 0.0000000 cooking 0.11345524 0.0000000 есо computers 0.0000000 business 0.0000000 outdoors 0.05049464 crafts 0.0000000 automotive 0.00000000 0.0000000 art religion 0.09896652 beauty 0.00000000 parenting 0.05501594 dating 0.06175267

0.04381438

school

```
      personal_fitness
      0.34861642

      fashion
      0.00000000

      small_business
      0.00000000

      spam
      0.00000000

      adult
      0.00000000
```

Results with $c_1 = 1.5$ and $c_2 = 1.5$:

	[,1]
chatter	0.50167170
current_events	0.00000000
travel	0.00000000
photo_sharing	0.06085227
${\tt uncategorized}$	0.00000000
tv_film	0.00000000
sports_fandom	0.00000000
politics	0.00000000
food	0.00000000
family	0.00000000
home_and_garden	0.00000000
music	0.00000000
news	0.00000000
online_gaming	0.00000000
shopping	0.00000000
health_nutrition	0.85937328
college_uni	0.00000000
sports_playing	0.00000000
cooking	0.00000000
eco	0.00000000
computers	0.00000000
business	0.00000000
outdoors	0.00000000
crafts	0.00000000
automotive	0.00000000
art	0.00000000
religion	0.00000000
beauty	0.00000000
parenting	0.00000000
dating	0.00000000
school	0.00000000
personal_fitness	0.07810288
fashion	0.00000000
small_business	0.00000000
spam	0.00000000
adult	0.00000000

As we can see, as penalty c_1 and c_2 shrinks, fewer topics will be chosen.

Class Notes

Q1: LDA v.s. matrix factorization

LDA provides the distribution of topics. It is a unsupervised learning algorithm, but it is less scaleble and takes more time.

Matrix factorization depends on penalty parameters and gives a specific results based on the choice of penalty parameters. But it is more scaleble since it deals well with sparse matrix and runs much faster.

Q2: When to use covariance matrix and when to use original matrix when doing matrix factorization? PCA uses covariance matrix, which is

$$S = \frac{1}{n}X^TX \tag{1}$$

where $X \in \mathbb{R}^{n \times D}$, and $S \in \mathbb{R}^{D \times D}$. Factorize it, we get $S = UDU^T$.

If we use the original matrix, we have

$$X = U_L \Omega U_R^T \tag{2}$$

where $U_L \in \mathbb{R}^{n \times D}$, and $\Omega_L = diag(\lambda_1, ..., \lambda_D)$, and $U_R \in \mathbb{R}^{D \times D}$, which are orthogonal. Then, S takes the form of

$$\frac{1}{n}X^TX = \frac{1}{n}U_R\Omega U_L^T U_L \Omega U_R^T = U_R(\frac{1}{n}\Omega^2)U_R^T$$
(3)

Denote $D = \frac{1}{n}\Omega^2$. $S_1 = X_1^T U_R^{(1)}$, and $XU_R = U_L \Omega$.