Viszkoelasztikus gumi modellek paraméteroptimálása

Adattudomány és gépi tanulás házi feladat

Valki Márton

A feladat

A szakdolgozatom első fázisában egy osztályozási feladatot kell megoldanom, melynek során különböző típusú terhelések során kapott feszültség-alakváltozás diagramok alapján kell anyagmodellt rendelnem az adott gumi mintákhoz. A bemeneteim tehát fezsültség-alakváltozás párok sorozatai. Az egyes gumi típusokhoz hatféle terhelési teszt eredményei állnak rendelkezésre. Ezek a következők:

- 1) biaxial tension
- 2) planar compression
- 3) planar tension
- 4) simple shear
- 5) uniaxial compression
- 6) uniaxial tension

A gumi típusokhoz ezen hat feszültség-alakváltozás görbe alapján három anyagmodell egyikét kell rendelni:

- 1) neo-hoohean
- 2) 2-parameter mooney-rivlin
- 3) ogden

Dolgozatom során egy kétdimenziós konvolúciós neurális hálóval fogom osztályozni a bemeneteket, ám ez előtt készítek egy random forest referencia modellt is. A random forest modellek széles körben alkalmazottak, egyszerűbbek a CNN modelleknél, ám általában viszonylag pontos eredményeket adnak, így ideális referenciaként szolgálhatnak.

Random forest modell

Bemeneti változók

A referencia modell bemeneti változóit is egyszerűsíteni szerettem volna. Az volt a célom, hogy úgy csökkentsem a bemeneti változók számát, hogy a kapott változók szemantikailag könnyen értelmezhetők legyenek. A bemeneti görbék vizualizálása után megfigyelhető, hogy a görbéknek jellemzően nincs, de legfeljebb egy inflexiós pontja van.

ábra 1: Feszültség-alakváltozás görbék tipikus formái

A választásom végül egy négy bemeneti változót tartalmazó halmazra esett, melynek elemei a végső alakváltozás, végső feszültség, a görbe teljes görbülete és a görbületi arány. A görbületi arány a pozitív és negatív görbületek abszolútértékének hányadosa úgy, hogy minden esetben a domináns gürbület kerül a nevezőbe. Így a görbületi hányados értéke egy nulla és egy közötti szám lesz. Ezzel a teljes görbület és görbületi hányados értékek egyrészt függetlenek egymástól, másrészt együttesen tartalmazzák a diagramok pozitív és negatív görbületi információit.

Egyes terhelési típusoknál a maximum feszültség a mérés eredetéből kifolyólag konstans, így ezekben az esetekben elhagytam a maximális feszültséghez tartozó változót. Továbbá a 'planar compression' terheléskor egyetlen diagramnak sem volt inflexiós pontja, így itt görbületi arány változót hagytam el, hiszen ez minden bemenetre nulla lett volna. Ezzel az egyes terhelési típusokhoz a következő független változókat állapítottam meg:

Biax. tension	Plan. compr.	Plan. tension	Simple shear	Uniax compr.	Uniax tension
Total curv.	Total curv.	Total curv.	Total curv.	Total curv.	Total curv.
Curv. ration	Final strain	Curv. ration	Curv. ration	Curv. ration	Curv. ration
Final strain		Final strain	Final strain	Final strain	Final strain
Final stress					

Az osztályozó modell

Minden terhelési típushoz tanítottam egy-egy random forest modellt, és minden egyes gumi példányhoz összesítettem a hat modell súlyozatlan szavazatait, végül a legtöbb szavazatot kapó gumi-modell címkét rendeltem a gumi példányhoz. A bemeneteket

kettéosztottam tanító és tesztadatokra 80%-20% arányban úgy, hogy mind a hat random forest esetében ugyanazok a gumi példányok essenek a tanító és teszthalmazokba. Ezzel biztosítottam, hogy a teszt mind a hat random forest modell számára ismeretlen adatokkal zajlik.

A random forest modellen belül két hiperparamétert optimalizáltam: a döntési fák maximális mélységét és az esztimátorként használt döntési fák számát. A maximális mélység meghatározására egy sima döntési fát használtam, melyet több különböző mélységgel is betanítottam és kiértékeltem. Ehhez a tanító halmazon belüli keresztvalidációt használtam. A random forest tanításához már csak az adott terhelési típushoz meghatározott maximális mélységet használtam, az esztimátorok ideális számát pedig az előzőhez hasonlóan itt is keresztvalidációval határoztam meg.

ábra 2: random forest – maximális mélység és esztimátorok számának meghatározása keresztvalidációval

Mind a hat random forest modellt külön-külön kiértékeltem a teszthalmazon. A keveredési mártixok vizualizálása mellett minden esetben meghatároztam az osztályozáshoz tartozó pontosságot (accuracy score). A keveredési mátrixokhoz tartozó diagramokon 0-val jelöltem a neo-hookean, 1-essel a mooney-rivlin és 2-essel az ogden anyagmodelleket.

	Biax. tension	Plan. compr.	Plan. tension	Simple shear	Uniax compr.	Uniax tension	Combined
max_depth	3	7	5	4	5	3	-
estimators	6	18	60	15	38	40	-
accuracy	0.9875	0.85	0.8375	0.9494	0.8375	0.9894	0.9574

táblázat 1: A modellek hiperparaméterei és pontossága

ábra 3: Az egyes random forest modellekhez tartozó keveredési mátrixok

ábra 4: A kombinált modell keveredési mátrixa

Az eredmények értékelése

Látható, hogy az anyagmodelleket bizonyos terhelési típusok mentén jobban el lehet választani egymástól. Biaxial tension és Uniaxial tension alapján majdnem 99%-os pontosságot kaptam, míg planar tesnion és uniaxial compression esetében csak 84%-ot. A kombinált modell pontosságát javítani lehetne egy súlyozott szavazási mechanizmussal, ahol a pontosabb komponensek nagyobb súlyt kapnak. Ennek ellenéri a kombinált modell így is majdnem 96%-os pontosságot ért el a teszthalmazon.

Ami az osztályokat illeti, a keveredési mátrixokról leolvasható, hogy a modellek a neohookean (0) és mooney-rivlin (1) anyagmodelleket különböztetik meg a legnehezebben.

Továbbá a mindössze négyszáz gumi példányt tartalmazó adathalmaz mérete viszonylag kicsit, így további mérési eredményekkel megbízhatóbb eredményeket kapnék.