- Three reciprocal identities: $\cos ec\theta = \frac{1}{\sin \theta}$, $\sec \theta = \frac{1}{\cos \theta}$, $\cot \theta = \frac{1}{\tan \theta}$

- 1. (a) (secx)
 - (b) (tanx)
 - (c) 1/sinx ×sinx=1

JE MATHS

JE MATHS

- (d) sinx/cosx ×cos/sinx=1
- JE MATHS

JE MATHS

- (a) sinx ×sinx=sin ¾
 - (b) cosx/sinx ×sinx=cosx

JE MATHS

- (c) $(\cos x/\sin x)^2 = \cot^2 x$
- (d) $(\sin x \times 1/\sin x)^2 = 1$

JE MATHS

- 3. (a) LHS = secxcosecx
 - = RHS

- JE MATHS
 - $LHS = 1/\cos x \times \cos x/\sin x$ JE MATHS
 - = 1/sinx
 - = cosecx
 - = RHS

JE MATHS

- (c)
- LHS = 1/cosecx + 1/secx= (secx+cosecx)/cosecxsecx =RHS

JE MATHS

- (d)
- LHS = tanx-1/tanx $=(\tan x-1)/\tan x$ = RHS

JE MATHS

JE.Maths

- Ratio identities:
$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sec \theta}{\cos ec\theta}$$
, $\cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{\cos ec\theta}{\sec \theta}$

LHS =
$$\cos \theta \sin \theta / \cos \theta$$

= $\sin \theta$
= RHS

$$LHS = \sin\theta \cos\theta/\sin\theta$$
$$= \cos\theta$$

= RHS

JE MATHS

JE MATHS

(c)
LHS =
$$1/\sin \theta \times \cos \theta$$

= $\cos \theta / \sin \theta$
= $\cot \theta$
= RHS

JE MATHS

LHS =
$$\tan \theta \times 1/\sin \theta \times \cos \theta$$

= $\sin \theta /\cos \theta \times \cos \theta /\sin \theta$
= 1
= RHS

JE MATHS

- Complementary angle identities:

 $cos(90^{\circ} - \theta) = sin \theta$, $cot(90^{\circ} - \theta) = tan \theta$, $cos ec(90^{\circ} - \theta) = sec \theta$

JE MATHS

5. (a)

JE MATHS

JE MATHS

- 6. (a) cosx
 - (b) cosecx
 - (c) $1/\tan x = \cot x$
 - (d) sinx/cosx=tanx

7. (a) $y = \sin(90^{\circ}-\Theta) = -\sin(\Theta-90^{\circ})$

(c) (yes)

8. (a) $y = \csc(90^{\circ}-\Theta) = -\csc(\Theta-90^{\circ})$

JE MATHS

JE MATHS

(c) (yes)

JE MATHS

LHS =
$$-\sin\Theta\sin\Theta$$

= $-\sin\Theta$
= RHS
 $JEMATHS$

JE MATHS

(b)

LHS = $tan\Theta tan\Theta cos\Theta$

= tanOsinO/cosO×cosO

= tanOsinO

= RHS

JE.Maths

- Pythagorean identities: $\sin^2 \theta + \cos^2 \theta = 1$, $1 + \tan^2 \theta = \sec^2 \theta$, $1 + \cot^2 \theta = \cos ec^2 \theta$ 10. (a) (b) (cos A) (tan A) JE MATHS

JE MATHS JE MATHS

(c) (d) (1+1=2)(1) JE MATHS JE MATHS

11. (a) (b) (b) $\sin \Theta \times \csc \Theta = \sin \Theta \times 1/\sin \Theta = 1$ $1+\tan^2 A = \sec^2 A$

JE MATHS JE MATHS (c) (d)

1+1=2tan A/tan A=1 JE MATHS

JE MATHS JE MATHS

12. $1 + \tan \frac{2}{3}\Lambda = \sec \frac{2}{3}\Lambda$ $\tan \Lambda = -\sqrt{\sec^2 \Lambda - 1}$ ($\Lambda \text{ in 4th Q, } \tan \Lambda < 0$) IE MATHS $= -\sqrt{(9-1)}$ $= -\sqrt{8}$ $= -2\sqrt{2}$

> JE MATHS JE MATHS

13. (a) (b) LHS = $\sin \Theta + 2\sin\Theta\cos\Theta + \cos\Theta$ LHS = $1-\sin \Theta - \sin \Theta$ $= 1 + 2\sin\Theta\cos\Theta$ = 1-2sin *\text{*\text{*}} JE MATHS JE MATHS = RHS =RHS

JE.Maths

```
14. (a)
                                                                (b)
     LHS = cosx/sinx + sinx/cosx
                                                                LHS = 1/sinx-sinx
           = (\cos x + \sin x) / \sin x \cos x
                                                                       = (1-\sin x)/\sin x
           = 1/sinxcosx
                                                                       = \cos \frac{2}{x} / \sin x
           = cosecxsecx
                                                                       = cotxcosecx
                                                         JE MATHS
                                                                                                      JE MATHS
           = RHS
                                                                       = RHS
          TE MA
                                                                                        JE MATHS
15. LHS = (\sin\Theta - \cos\Theta)(\sin\Theta + \cos\Theta)/\sin\Theta(\sin\Theta + \cos\Theta)
           = (\sin\Theta - \cos\Theta)/\sin\Theta
           = 1 - \cot\Theta
           =RHS
                                                                          JE MATHS
                                                                                                      JE MATHS
                        JE MATHS
16. LHS = (\sin x + \cos x)(1/\cos x + 1/\sin x)
           = (\sin x + \cos x)[(\sin x + \cos x)/\cos x \sin x]
                                                         JE MATHS
           = (sinx+cosx) 7cosxsinx
           = (\sin x + 2\sin x \cos x + \cos x)/\cos x \sin x
           = (1±2sinxcosx)/cosxsinx
                                                                                        JE MATHS
          = 1/\cos x \sin x + 2
           = secxcosecx+2
           = RHS
                                        JE MATHS
                                                                     (reciprocal identities)
17. LHS = (1/\sin x + \cos x/\sin x)/(1/\sin x - \cos x/\sin x)
           = (1+\cos x)/\sin x + (1-\cos x)/\sin x
           = (1+\cos x)/(1-\cos x)\times(1-\cos x)/(1-\cos x)
                                                                     (times conjugate terms)
           = (1-\cos \frac{2}{x})/(1-\cos x)^{2}
                                                                     (Pythagorean identities)
           = \sin \frac{2}{x}/(1-\cos x)^2
           = RHS
                                                         JE MATHS
                                                                                                      JE MATHS
          JE MATHS
```

18. (a) (-120+360=240°) (b)

(-78+360=282°)

(c)

(370-360=10°)

(d)

(432-360=72°)

- Boundary angles:

JE MATHS

JE MATHS

19. (a) $x = 90^{\circ}, 450^{\circ}$

(b) $x = 180^{\circ}, 540^{\circ}$

JE MATHS

(c) $x = -180^{\circ}, 0, 180^{\circ}$

JE MATHS

(d) cosx=1

 $x = -360^{\circ}, 0^{\circ}, 360^{\circ}$

- Use related angles:

20. (a)

 $x = -150^{\circ}, -30^{\circ}$

(b)

 $x = -120^{\circ}, 60^{\circ}$

(c) $x = 82^{\circ}, 278^{\circ}$

(d)

 $\sin x = 1/3$, $x = 19^{\circ}$, 161°

21. (a)

 $\cos x = 1/2_{HS}$ $x = 60^{\circ}, 300^{\circ}, 420^{\circ}, 660^{\circ}$

(b)

 $\sin x = -\sqrt{3/2}$ x = 240°, 300°,600°, 660°

JE MATHS

(c)

(c) $secx=-3/2 \rightarrow cosx=-2/3$

 $x = 132^{\circ}, 228^{\circ}, 492^{\circ}, 588^{\circ}$

(d)

 $\cot x = -\sqrt{2}/2$, $\tan x = -\sqrt{2}$ $x = 126^{\circ}, 306^{\circ}, 486^{\circ}, 666^{\circ}$

126° ATHS 54 54° 306

- Compound angle:

22. (a) Let:
$$\Theta = 2x$$
, $0^{\circ} \le x \le 360^{\circ}$, $0^{\circ} \le \theta \le 720^{\circ}$
 $\sin \Theta = 1/2$
 $\Theta = 30^{\circ}$, 150° , 390° , 510°
 $x = \Theta/2$
 $= 15^{\circ} 75^{\circ}$, 195° , 255°

JE MATHS

(b) Let:
$$\Theta = x-45^{\circ}$$
, $0^{\circ} \le x \le 360^{\circ}$, $0^{\circ} \le \theta \le 315^{\circ}$
 $\tan \Theta = \sqrt{3/3}$
 $\Theta = 30^{\circ}$, 210°
 $x = \Theta + 45^{\circ}$
 $= 75^{\circ}$, 255°

WATHS

(b)
$$\cos(75^{\circ}-x) = \cos(x-75^{\circ}) = -\sqrt{3}/2$$

Let: $\Theta = x-75^{\circ}$, $0^{\circ} \le x \le 360^{\circ}$, $-75^{\circ} \le \theta \le 285^{\circ}$
 $\cos \Theta = -\sqrt{3}/2$
 $\Theta = 150^{\circ}$, 210°
 $x = \Theta + 75^{\circ}$ 3.5
 $= 225^{\circ}$, 285°

- Substitution:

24. (a) Let
$$t = \cos x$$

$$4t^2 = t$$

$$4t^2 - t = 0$$

$$t(4t-1) = 0$$

1)
$$t = 0 = \cos x$$
,

$$x = 90^{\circ}, 270^{\circ}$$

2)
$$4t - 1 = 0$$

$$t = 1/4 = \cos x$$

$$x = 76^{\circ}, 284^{\circ}$$

1) 2): ans: 76°, 90°, 270°, 284° MATHS

(b) $5/\sin x - \sin x = 0$

Let
$$t = sinx_{IB MATHS}$$

$$5/t-t=0$$

$$5-t = 0$$

$$(t-\sqrt{5})(t+\sqrt{5})=0$$

1)
$$t - \sqrt{5} = 0$$

$$t = \sqrt{5} = \sin x$$

$$x = no solution$$

JE MATHS

2)
$$t + \sqrt{5} = 0$$

$$t = -\sqrt{5} = \sin x$$

$$5 = \sin x$$

 $x = \text{no solution}^{\text{B MATHS}}$

1) 2): ans: no solution

JE MATHS

- Using trigonometric identities:

25. (a)
$$tanx = 1$$
, $0^{\circ} \le x \le 360^{\circ}$
 $x = 45^{\circ}$, 225°

JE MATHS

JE MATHS

JE MATHS

(b) $\sqrt{3}\sin x = -\cos x$ $\tan x = -\sqrt{3}, \ 0^{\circ} \le x \le 360^{\circ}$ $x = 120^{\circ}, 300^{\circ}$

26. (a) $3\sin x + 2(1-\sin x) = 0$

$$3\sin x + 2 - 2\sin x = 0$$

$$2\sin x - 3\sin x - 2 = 0$$

$$(2\sin x+1)(\sin x-2)=0$$

1) $2\sin x = -1$

$$sinx=1/2$$

$$x = 210^{\circ}, 330^{\circ}$$

2) $\sin x - 2 = 0$

$$x = no solution$$

1) 2): ans: 210°, 330°

(b) $1+\tan x = 4+2\tan x$ $\tan x-2\tan x-3=0$

$$(tanx-3)(tanx+1)=0$$

1) tanx - 3 = 0 JB MATHS

$$x = 72^{\circ}, 252^{\circ}$$

2) tanx +1 = 0

$$tanx = -1$$

$$x = 135^{\circ}, 315^{\circ}$$

1) 2): ans: 72°, 135°, 252°, 315° 252°

IE MATHS

JE MATHS

- Homogeneous equation: Sum of indices of $\sin x$ and $\cos x$ in each term is the same.
- 27. $\tan^2 x + \tan x 2 = 0$ (÷cos ½)

$$(\tan x - 1)(\tan x + 2) = 0$$

1)
$$tanx - 1 = 0$$

$$tanx = 1$$

$$x = 45 \, ^{\circ}, 225 \, ^{\circ}_{THS}$$

2)
$$tanx + 2 = 0$$
 JB M

$$tanx = -2$$

$$x = 116^{\circ}, 296^{\circ}$$

1) 2): ans: $x = 45 \, ^{\circ}$, $116 \, ^{\circ}$, $225 \, ^{\circ}$, $296 \, ^{\circ}$

