Zusammenha	ing on Basen and Dimension
	, un EV (paarweise verschieden) und S= {v,, un }
a) S ist ei	ine Basis von V => dim (V)=n und S (ineas unablängig (V)=n und V=(S)
	Falls Seine Basis ist, so ist dim(V) = n and V = (S)
0 0	und S line es unablangia (nact Definition des Basis und des Dimension).
I (a) II	1st dim(V)=n und S (ineas unablängig, so ist S maximal
	Cinear unablangig also aucleine Basis,
•	1st dim(V) = n und V=(S), so ist S ein minimales Erzeugendensystem, also lineas unablängig

Beweis: Jede linear unablangige Menge in V Lat Löckstens dim (V)

Elemente. Aus allen linear unablangigen Mengen M mit SEM

wähler wir eine aus die maximal viele Elemente Lat. Das ist dann eine maximale linear unablängige Menge, also eine Basis. Ausgelend von eines lineas unablängigen S kann man eine Basisergänzung dusch suhren, indem man "greedy immor weitere zu den bisherigen Vehtoren in S lineas unablängige Vehtoren der Menge Linzusugget Beispiele. V.= (1) ER ist als einzelher Vektor linear unablängig V, lasst sid durch jeden zweifen Veltor der nicht Vi kollinear zu vrist, zu einer Basis erganzen

Beobacttung six endlicle Dimension: U = V Unterveletorraum =) dim (U) = dim (V) U # V => dim (U) < dim (V)

Endlichteit

aquivalent: dim (V) = dim (V) < 00 => U = V Begrundung: Jede (ineus unablangige Teilmenge SSU kann zu Basis
B von Verganzt werden, also 1S/=/B/= din/V) <00 Es gibt eine maxima l'ineas unablangige Tei (menge S = 1) die also auch eine Bosis von U sein muss. =) Fis so ein S gict |S| = dim (V) und (is dim(V) = dim(V)

Solgt S=B. => U = (S) = (B) = V

(7) $/in$	eare Abbildungen	_
		_
V, W l	éliforraune, l'Körper	_
	Eine Abbildung P: V>W Leißt Linear, Salls gelten	_
()	Fis alle v, v EV: 9(v+v') = 9(v) + 9(v')	_
(2)	Fis alle vEV und aEK: f(a·v) = a·f(v)	
Beobachung	aus (2) Eine lineare Abbildung bildet den Nullveltor von Vauf	_
den	Nullveltor von Wab.	_
		_
Deispiele	(1) $A \in \mathcal{U}^{m \times n}$. Down ist $P_A : \mathcal{U} \to \mathcal{U}^n$, $\mathcal{V} \mapsto A \cdot \mathcal{V}$	
	eine Lineare Abbildung. A(v+v) = Av + Av	
	(2) Nullasbildung V->W, VI->O A(av) = a(Av)	_
	ist linew.	_
		_

Kem	, Bild und Unterraune
Satz	Sei 9: V-) Weine (ineage Abbildung.
	a) Ken (9) ist ein Unterraum von
	c) Pist injectiv = Kern (4) = 808.
Beweis	a) V Vehtorraum
	Der Nullveletor ist in Kern (f) entlalten => Kern (f) # \$
	vyl unsere ente Beobachtung nach der Definition des Cinearen Abbildung
	Fis v, v' E Kem (4) gild P(v+v') = P(v) + P(v') = 0+0 = 0
	also v+v & Kern (P). Fis v & Kern (P) und a & K gilt P(av)=a P(v)=
	= a.0 = 0, also a.v E Kern (9).
	b) wieder explizite Montrolle des Unterraumeigensclaften

c) I injektiv =) Kern $f = \{0\}^n$. Fix $v \in Kern(f)$ gilt f(v) = 0 = f(0),

also v = 0. Da umgekelt $O \in Kern(f)$ folg f(v) = 0 = f(0).

Nern $f = \{0\} \Rightarrow f$ injektiv Seien $v \in V$ mit f(v) = f(v').

=) f(v) - f(v') = f(v - v') = 0, also ist $v - v \in Kern(f)$ =) f(v) - f(v') = f(v - v') = 0, ist injektiv.

Kern $f = \{0\}$ Beispiele (1) Sei AEW. Pa ist ja eine lineare Abbildung. Dann ist Vorn (Pa) die Lösungsmenge des Lomogenen Geiclungssystems Ax = O. Insbesondere gitt : Pa ist injektiv (=) rang A = n