Method for sensing side impacts in a vehicle

Patent number:

DE10103661

Publication date:

2002-08-08

Inventor:

GROTENDIEK TORSTEN (DE); ROELLEKE MICHAEL

(DE); KOCHER PASCAL (DE)

Applicant:

BOSCH GMBH ROBERT (DE)

Classification:

- international:

B60R21/01: B60R21/00; B60R21/01; B60R21/00;

(IPC1-7): B60R21/01

- european:

B60R21/01C3

Application number: DE20011003661 20010127 Priority number(s): DE20011003661 20010127

Also published as:

如阿阿阿阿阿

WO02058968 (A1) EP1358093 (A1) US6917866 (B2) US2004117089 (A1) EP1358093 (B1)

Report a data error here

Abstract of DE10103661

The invention relates to a method for sensing side impacts in a vehicle, used to recognise a side impact by acceleration signals. The acceleration signals from the left and the right sides of the vehicle are deducted from each other which are then integrated or added up whereby a trigger threshold is formed according to the differential acceleration signal thereof. If the integrated differential acceleration signal exceeds said threshold, a side impact is recognised.

Data supplied from the esp@cenet database - Worldwide

(9) BUNDESREPUBLIK DEUTSCHLAND

PatentschriftDE 101 03 661 C 1

(5) Int. Cl.⁷: **B 60 R 21/01**

DEUTSCHES
PATENT- UND
MARKENAMT

(2) Aktenzeichen: 101 03 661.2-21 (2) Anmeldetag: 27. 1. 2001

43 Offenlegungstag: -

Weröffentlichungstag der Patenterteilung: 8. 8. 2002

61 C 1

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(3) Patentinhaber:

Robert Bosch GmbH, 70469 Stuttgart, DE

(12) Erfinder:

Grotendiek, Torsten, Dr., 74321 Bietigheim-Bissingen, DE; Roelleke, Michael, 71229 Leonberg, DE; Kocher, Pascal, 70839 Gerlingen, DE

(55) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

DE 196 09 077 C1 DE 199 09 296 A1 DE 197 81 657 T1

(9) Verfahren zur Seitenaufprallsensierung in einem Fahrzeug

(f) Es wird ein Verfahren zur Seitenaufprallsensierung in einem Fahrzeug vorgeschlagen, das dazu dient, einen Seitenaufprall anhand von Beschleunigungssignalen zu erkennen, wobei die Beschleunigungssignale von der linken und der rechten Fahrzeugseite voneinander abgezogen werden, um diese dann zu integrieren bzw. aufzusummieren und in Abhängigkeit von diesem Differenzbeschleunigungssignal die Auslöseschwelle zu bilden. Liegt das integrierte Differenzbeschleunigungssignal über dieser Schwelle, dann wird auf einen Seitenaufprall erkannt.

Beschreibung

Stand der Technik

[0001] Die Erfindung geht aus von einem Verfahren zur Seitenaufprallsensierung in einem Fahrzeug nach der Gattung des unabhängigen Patentanspruchs.

[0002] Zur Seitenaufprallsensierung werden Beschleunigungsmessungen verwendet. Dabei werden insbesondere ausgelagerte Beschleunigungssensoren (Peripheral Accele- 10 ration Sensors = PAS) dezentral eingebaut. Sie sind räumlich näher zum Objektaufprallort angebracht, um Signalverzögerungen und -abschwächungen auszugleichen. Typische Einbauorte sind am Türschweller, auf dem Sitzquerträger oder an der B-Säule.

[0003] In DE 197 81 657 T1 wird ein Aufpralldetektor für einen Seitenaufprall beschrieben, bei dem ein fester Referenzschwellenwert von einem Beschleunigungssignal abgezogen wird. Das so entstehende Signal wird dann über die Zeit integriert. Das integrierte Signal wird mit einem 20 Schwellwert verglichen, um zu entscheiden, ob Rückhaltemittel ausgelöst werden müssen. In DE 196 09 077 C1 wird beschrieben, dass ein Schwellwert von einem Auslösekriterium selbst abhängig gemacht werden kann. DE 199 09 296 A1 wird ein Verfahren zum Auslösen einer 25 Insassenschutzkomponente bei einer Seitenkollision beschrieben, wobei Signale von Satellitensensoren in einem zentralen Steuergerät ausgewertet werden.

Vorteile der Erfindung

[0004] Das erfindungsgemäße Verfahren zur Seitenaufprallsensierung in einem Fahrzeug mit den Merkmalen des unabhängigen Patentanspruchs hat demgegenüber den Vorteil, daß die Signale von den Beschleunigungen links und 35 rechts des Fahrzeugs von dem Steuergerät intelligent kombiniert werden. Damit wird nur noch ein Signal verarbeitet, um einen Seitenaufprall zu detektieren, so daß der Rechenaufwand für zwei Signale überflüssig wird. Die Fahrzeugschwingungen, die bei harten Fahrmanövern, den sogenannten Misuses, auftreten, zeigen dabei keine Seitenbewegungen. Der Abstand zu den Auslösesignalen wird dann größer. Hier wird insbesondere der Effekt der Fahrzeugbewegung bei einem Seitenaufprall ausgenutzt. Die Seitenbewegung läßt sich an allen y-Beschleunigungssensoren, also die die 45 Seitenbewegung detektieren, feststellen und wird durch die Intrusion bei einem Seitenaufprall an der entsprechenden Seite überlagert. Auf der abgewandten Seite und in dem Steuergerät ist die Bewegung des Fahrzeugs und ein gefiltertes Intrusionssignal sichtbar. Somit erfolgt durch die Zusam- 50 menführung eine Erhöhung der Auslösesicherheit zu Nichtauslösern.

[0005] Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen und Weiterbildungen sind vorteilhafte Verbesserungen des im unabhängigen Patentanspruch ange- 55 gebenen Verfahrens zur Seitenaufprallsensierung in einem Fahrzeug möglich.

[0006] Besonders vorteilhaft ist, daß das Differenzbeschleunigungssignal vor der Bildung der Schwelle gefiltert wird, um insbesondere Signale, die eine Auslösung bei einer 60 Nichtauslösesituation hervorrufen würden, also den sogenannten Misuse zu vermeiden.

[0007] Schließlich ist es auch von Vorteil, daß eine Vorrichtung zur Seitenaufprallsensierung zur Durchführung des Verfahrens vorliegt und die entsprechenden Beschleuni- 65 gungssensoren sowie das Steuergerät aufweist.

Zeichnung

[0008] Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigt Fig. 1 eine Aufsicht auf die erfindungsgemäße Vorrichtung und Fig. 2 ein Blockdiagramm, das das erfindungsgemäße Verfahren illustriert.

Beschreibung

[0009] Die Seitenaufprallsensierung ist durch die kurze Deformationszone bei einem Seitenaufprall zwischen Insasse und Aufprallobjekt besonders kritisch, und dennoch müssen vor allem hier Fehlauslöser vermieden werden.

15 [0010] Erfindungsgemäß werden hier Seitenaufprallsituationen durch Beschleunigungssensoren erkannt, wobei die Beschleunigungssignale von den Beschleunigungssensoren auf der rechten und auf der linken Fahrzeugseite voneinander abgezogen werden, um ein Differenzbeschleunigungssignal zu bilden. Anhand des Differenzbeschleunigungssignals wird durch Integration ein Differenzgeschwindigkeitssignal bestimmt und die Auslöseschwelle wird in Abhängigkeit von dem Differenzbeschleunigungssignal gebildet. Liegt nun das Differenzgeschwindigkeitssignal über der Schwelle, dann ist ein Seitenaufprall erkannt, und Rückhaltemittel können gegebenenfalls ausgelöst werden, liegt es darunter, so liegt kein Seitenaufprall vor, der die Auslösung von Rückhaltemitteln erfordert.

[0011] Fig. 1 zeigt schematisch eine Aufsicht auf die erfindungsgemäße Vorrichtung in einem Fahrzeug. Ein Fahrzeug 1 weist am rechten Seitenteil ausgelagerte Beschleunigungssensoren 2 und 3 auf. Der Sensor 2 vorne ist hier am Sitzquerträger eingebaut. Weitere Einbauorte sind der Türschweller und die B-Säule. Der Sensor 3 hinten ist hier an der C-Säule montiert. Weitere Einbauorte sind der Türschweller und der Sitzquerträger. Die Sensoren 2 und 3 sind jeweils an Datenein-/ausgänge eines Steuergeräts 6 angeschlossen. Auch Sensoren 4 und 5, die ebenfalls Beschleunigungssensoren sind und sich an der linken Fahrzeugseite befinden und symmetrisch am Sitzquerträger und der C-Säule montiert sind, sind über Datenein-/ausgänge jeweils mit dem Steuergerät 6 verbunden. Die Verbindung kann beispielsweise über einen Bus erfolgen. Aber auch herkömmliche Zweidrahtleitungen sind hier möglich.

[0012] Die Beschleunigungssignale werden von den Beschleunigungssensoren 2 bis 5 zu dem Steuergerät 6 als digitale Daten übertragen. Dazu weisen die Sensoren 2 bis 5 jeweils einen Meßverstärker, eine Meßfilterung und einen Analog/Digitalwandler auf. Alternativ ist es möglich, daß beispielsweise die Analog/Digitalwandlung im Steuergerät 6 erfolgt, wobei dabei elektromagnetische Störsignale zu beachten sind.

[0013] Das Steuergerät 6 berechnet den Auslösealgorithmus in Abhängigkeit von den Signalen der Beschleunigungssensoren 2 bis 5. Zusätzlich weist das Steuergerät 6 selbst Beschleunigungssensoren für die x- und y-Richtung auf, um so eine Plausibilitätsüberprüfung der Beschleunigungssignale von den ausgelagerten Beschleunigungssensoren zu erhalten.

[0014] Fig. 2 beschreibt nun diesen Auslösealgorithmus. Zwei Beschleunigungssignale ayleft und ayright werden im Block 7 voneinander abgezogen, so daß das Beschleunigungssignal aydiv entsteht. Dieses Differenzbeschleunigungssignal aydiv wird einerseits in Block 8 integriert, um das Differenzgeschwindigkeitssignal Δv_{vdiv} und andererseits gefiltert in Block 9, um das gefilterte Signal avfilter zu erzeugen. Die Filterung in Block 9 wird in Abhängigkeit von einer Integrationszeit tinteg durchgeführt. Anhand des

35

gefilterten Beschleunigungssignals avfilter wird in Block 10 die Schwelle berechnet, mit der das Differenzbeschleunigungssignal Δv_{vdiv} verglichen wird. Die Schwelle wird dann mit Δv_{vth} bezeichnet und in Block 11 wird der Schwellwertvergleich vollzogen. Liegt das Differenzbeschleunigungssignal über dem Schwellwert Δv_{vth} , dann ist auf einen Auslösefall erkannt worden, und Rückhaltemittel werden in Abhängigkeit von der Insassenklassifizierung eingesetzt. Liegt das Differenzgeschwindigkeitssignal unter der Schwelle, dann liegt kein Auslösefall vor. Dieser Algorithmus wird 10 dann permanent in Abhängigkeit von den Beschleunigungssignalen 2 bis 5 durchgeführt. Die Richtung des Seitenaufpralls wird beispielsweise im Steuergerät 6 durch die eigenen Beschleunigungssensoren für die y-Richtung erkannt. Dabei wird insbesondere das Vorzeichen des integrierten y- 15 Bschleunigungssignal zur Richtungsbestimmung verwendet. Damit ist es dann möglich, die situationsgerechten Rückhaltemittel einzusetzen.

[0015] Die Filterung wird in zwei Stufen durchgeführt. Einerseits wird die Steigung des Beschleunigungssignals 20 begrenzt, um harte Fahrmanöver, die Beschleunigungssignale mit sehr hohen Steigungen aufweisen, als Misuse zu eliminieren.

[0016] Andererseits wird ein Gleichanteil von dem Beschleunigungsdifferenzsignal abgezogen, um die Schwelle 25 nicht zu hoch werden zu lassen. Sowohl der Gleichanteil als auch die Steigungsbegrenzung werden zeitabhängig durch-

[0017] Die Wahl des einzusetzenden Algorithmus ist beliebig und nicht vom Verfahren abhängig. Die gegenüberlie- 30 genden Sensoren 2-5 sowie 3-4 bilden jeweils ein Paar und werden zusammengefaßt. Jedes Paar wird dann durch einen eigenen Algorithmus gemäß Fig. 2 bewertet. Somit ist es möglich, die Plausibilitätsbetrachtung bei den benachbarten Paaren oder in dem Steuergerät 6 zu erhalten.

Patentansprüche

1. Verfahren zur Seitenaufprallsensierung in einem Fahrzeug (1), wobei wenigstens ein Beschleunigungs- 40 sensor (2-5) auf jeder Seite des Fahrzeugs zur Seitenaufprallsensierung eingesetzt wird, dadurch gekennzeichnet, daß durch Subtrahieren von ersten Beschleunigungssignalen von zweiten Beschleunigungssignalen ein Differenzbeschleunigungssignal erzeugt wird, wo- 45 bei die ersten Beschleunigungssignale von wenigstens einem Beschleunigungssensor an der ersten Seite des Fahrzeugs und die zweiten Beschleunigungssignale von wenigstens einem zweiten Beschleunigungssensor an der zweiten Seite des Fahrzeugs erzeugt werden, 50 daß das Differenzbeschleunigungssignal zu einem Differenzgeschwindigkeitssignal integriert oder aufsummiert wird und daß zur Seitenaufprallsensierung das Differenzgeschwindigkeitssignal mit einer Schwelle verglichen wird, die in Abhängigkeit von dem Diffe- 55 renzbeschleunigungssignal gebildet wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Differenzbeschleunigungssignal vor der Bildung der Schwelle gefiltert wird.

3. Vorrichtung zur Seitenaufprallsensierung nach ei- 60 nem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Beschleunigungssensoren (2-5) mit einem Steuergerät (6) für Rückhaltemittel verbindbar sind, das zur Plausibilitätsüberprüfung Beschleunigungssensoren aufweist und einen Algorithmus zur Seitenauf- 65 prallsensierung berechnet, wobei der Algorithmus eine Differenz der Beschleunigungssignale von den Beschleunigungssensoren (2-5) auf der ersten und zweiten Seite des Fahrzeugs zur Bestimmung der Auslöseentscheidung heranzieht.

Hierzu 1 Seite(n) Zeichnungen

