显示模块使用说明书

产品名称: 0.96 Inch Display Module

液晶编号: UG-2864WJTGM

更正记录:

<u></u>				
产品名称	PCB	文档 版本	内容	日期
	版本	版本		
0.96 Inch Display Module	V1.0	V1.0	撰写	2015.1.5

审核签名:

日期:

目录

1,	模块外形尺寸图:	3
	1.1 引脚接口	
	1.2 尺寸参数:	
	1.3 模块工作参数:	3
	1.4 直流电气特性:	3
2、	OLED 液晶屏的特点:	4
3、	模块概述	4
4、	产品实物展示:	4
	4.1 蓝光效果:	4
	4.2 白光效果:	5
5、	通讯方式硬件配置	5
6、	软件驱动时序:	6
	6.1 8 位 8080 并口通讯时序	6
	6.2 8 位 6800 并口通讯时序	6
	6.3 4 线 SPI 串口通讯时序	7
7、	初始化代码:	7
8,	故障问题处理:	8
9、	UG-2864WJTGM 外观尺寸	9

1、模块外形尺寸图:

1.1 引脚接口

1.2 尺寸参数:

项目	标准尺寸	单位
模块尺寸(WxHxT)	27.3x27.8x5.0	mm
可视区(WxH)	27.14x11.78	mm
点距离(W x H)	0.17x0.17	mm
点大小(W x H)	0.154x0.154	mm

1.3 模块工作参数:

项目	符号	最小值	最大值	单位
模块电压	Vin	3	5	V
工作电流	I	0	50	MA
工作温度	T	-40	+70	$^{\circ}\mathbb{C}$
存储温度	Т	-40	+80	$^{\circ}\!\mathbb{C}$

Pin	Symboy	
1	GND	地
2	VCC	电源
3	D0	时钟
4	D1	数据输入
5	RST	复位
6	DC	命令/数据
7	CS	片选

注意:

1. 显示颜色: 白光 2. 控制器: SSD1306

3. 接口支持: 4线 SPI,I2C

1.4 直流电气特性:

项目	符号	最小值	标值	最大值	单位
输入高电平	Vih	0.8Vin		Vin	V
输入低电平	Vil	0		0.2*Vin	V
输出高电平	Voh	0.9Vin		Vin	V
输出低电平	Vol	0		0.1*Vin	V

2、OLED 液晶屏的特点:

- (1) OLED 器件的核心层厚度很薄,厚度可以小于1mm,为液晶的1/3。
- (2) OLED 器件为全固态机构,无真空,液体物质,抗震性好,可以适应巨大的加速度,振动等恶劣环境。
- (3) 主动发光的特性使 OLED 几乎没有视角物体,视角一般可达到 170 度,具有较宽的视角,从侧面也不会失真。
- (4) OLED 显示屏的响应时间超过 TFT—LCD 液晶屏。TFT—LCD 的响应时间大约使几十毫秒,现在做得最好的 TFT—LCD 响应时间也只有 12 毫秒。而 OLED 显示屏的响应时间大约是几微秒到几十微秒。
- (5) OLED 低温特性毫,在零下 40 摄氏度都能正常显示,而 TFT—LCD 的响应速度随温度发生变化,低温下,其响应速度变慢,因此,液晶在低温下显示效果不好。
- (6) OLED 采用的二极管会自行发光,因此不需要背面光源,发光转化效率高,能耗比液晶低。
- (8) 低电压直流驱动,100以下,用电池就能点亮。高亮度,可达300明流以上。

3、模块概述

0.96 Inch Display Module 是一款控制器为 SSD1306,分辨力为 128*64 点阵 OLED 显示模块。显示模块具有以下特点:

- 1、采用 3V 供电: Vdd=3V~5V
- 2、支持 4 线 SPI、I2C 等通讯方式。出厂默认设置为 SPI 通讯。如需其他通讯方式,请在下订单时注明。
- 3、工作温度: -40℃~70℃, 存储温度: -40℃~85℃。
- 4、显示模式:黑底白字或黑底蓝字,请在购买时向业务说明。

4、产品实物展示:

4.1 蓝光效果:

4.2 白光效果:

5、 通讯方式硬件配置

通讯方式	S1	S2
4线 SPI		低电平
I2C	0R	高电平

6、软件驱动时序:

6.1 8位8080并口通讯时序

```
平台: keil4
MCU: STC89C52RC
引脚连接: D0~D7、D/C、CS、R/W、RES、VDD、GND
备注:程序中的 DC 对应 D/C、WR 对应 R/W
//_________
写命令时序
                                         写数据时序
void Write_Command(unsigned char Data)
                                         void Write_Data(unsigned char Data)
{
DC=0;
                                         DC=1;
CS=0;
                                         CS=0;
WR=0;
                                         WR=0;
xData=Data;
                                         xData=Data;
WR=1;
                                         WR=1;
                                         CS=1;
CS=1;
DC=1;
                                         DC=1;
}
```

6.2 8位 6800 并口通讯时序

```
E=1;
                                                    DC=1;
xData=Data;
                                                    CS=0;
E=0;
                                                    RW=0;
RW=1;
                                                    E=1;
CS=1;
                                                   xData=Data;
DC=1;
                                                    E=0;
}
                                                   RW=1;
写数据时序
                                                   CS=1;
void Write_Data(unsigned char Data)
                                                    DC=1;
```

4线 SPI 串口通讯时序 6.3

```
引脚连接: D0、D1、DC、CS、VDD、GND
   备注:程序中的 DC 对应 D/C、SCLK 对应 D0、SDIN 对应 D1
   void Write Command(unsigned char Data)
                                                       void Write Data(unsigned char Data)
   unsigned char i;
                                                       unsigned char i;
   CS=0;
                                                       CS=0;
   DC=0;
                                                       DC=1;
    for (i=0; i<8; i++)
                                                       for (i=0; i<8; i++)
    {
       SCLK=0;
                                                            SCLK=0;
       SDIN=(Data&0x80)>>7;
                                                            SDIN=(Data&0x80)>>7;
        Data = Data << 1;
                                                            Data = Data << 1;
           uDelay(1);
                                                                uDelay(1);
   //
                                                       //
       SCLK=1;
                                                            SCLK=1;
   //
            uDelay(1);
                                                       //
                                                                uDelay(1);
   }
                                                       }
   //
       SCLK=0;
                                                           SCLK=0;
                                                       //
   DC=1;
                                                       DC=1;
   CS=1;
                                                       CS=1;
void OLED_Init()
                                                        {
```

7、初始化代码:

```
uDelay(200);
unsigned char i;
                                                             RES=1;
    RES=0;
    for(i=0;i<200;i++)
                                                             Write Command(0xfd);
```

Write_Command(0x12);	Write_Command(0xc8);
Write_Command(0xae);	Write_Command(0xda);
	Write_Command(0x12);
Write_Command(0xd5);	
Write_Command(0xa0);	Write_Command(0xd1);
	Write_Command(0xff);
Write_Command(0xa8);	
Write_Command(0x3f);	Write_Command(0xd9);
	Write_Command(0x82);
Write_Command(0xd3);	
Write_Command(0x00);	Write_Command(0xdb);
	Write_Command(0x34);
Write_Command(0x40);	
<u>-</u>	Write_Command(0xa4);
Write_Command(0xd8);	
Write_Command(0x04);	Write_Command(0xa6);
Write_Command(0x20);	Fill_RAM(0x00); // Clear Screen
Write_Command(0x02);	
	Write_Command(0xaf);
Write_Command(0xa1);	
	}
	1

8、故障问题处理:

点不亮		图形、字符显示乱码		
(1)	测试 C3 电压是否有 3.3V 左右的电压?	(1) 检查刷屏函数是否正确。液晶屏显存写数据方式为页	豆编	
(2)	测试 C2 电容电压是否 8V~12V 之间?	程模式。		
(3)	1、2 均有电压后,在 MCU 初始化完成。	(2) 了解所要显示的图形的取模方式。		
	主函数调用 Fill-ram 函数,测试 C2 电压	(3) 如果使用字库 IC 的,请仔细阅读相关资料。		
	是否为 C1 电压的 0.8 倍。	(4) 如果以上步骤均做了检查,仍未解决问题,请联系我	们。	
(4)	如果以上三个步骤均正确, 仍未点亮。请	温馨提示: 目前客户用的比较多的字符取模软件有	ī:	
	联系我们,谢谢。	PCtoLCD2002 完美版,图片取模软件: Image2Lcd。		

9、UG-2864WJTGM 外观尺寸

