HOMEWORK 3

2021/10/13

[Wei] 2.47. 样本联合 p.d.f 为

$$f(\mathbf{x}, \mathbf{y}; a, b, \sigma) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^{m+n} \exp\left\{-\frac{1}{2\sigma^2} \left[\sum_{i=1}^m (X_i - a)^2 + \sum_{i=1}^n (Y_i - b)^2\right]\right\}$$
$$= \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^{m+n} \exp\left\{-\frac{1}{2\sigma^2} \left(\sum_{i=1}^m X_i^2 + \sum_{i=1}^m Y_i^2 - 2ma\bar{X} - 2nb\bar{Y} + ma^2 + nb^2\right)\right\}.$$

由因子分解定理知, $\left(\sum X_i^2 + \sum Y_i^2, \bar{X}, \bar{Y}\right)$ 是充分统计量。样本联合 p.d.f. 是指数族;令 $\eta := \left(-\frac{1}{2\sigma^2}, \frac{ma}{\sigma^2}, \frac{nb}{\sigma^2}\right) \in \Theta^*$,这里自然参数空间 $\Theta^* = \mathbf{R}_- \times \mathbf{R} \times \mathbf{R}$ 作为 \mathbf{R}^3 的子集有内点,由课本定理 2.8.1, $\left(\sum X_i^2 + \sum Y_i^2, \bar{X}, \bar{Y}\right)$ 是完全统计量。注意到 $(n+m-2)S^2 = \sum X_i^2 + \sum Y_i^2 - m\bar{X}^2 - n\bar{Y}^2$,故从 $\left(\sum X_i^2 + \sum Y_i^2, \bar{X}, \bar{Y}\right)$ 到 $\left(S^2, \bar{X}, \bar{Y}\right)$ 有 1-1 映射,故 $\left(S^2, \bar{X}, \bar{Y}\right)$ 也是充分完全统计量。

Remark:两个说明指数蔟的完全统计量的定理的条件和结论形式不太一样. 其中课本定理 2.8.1 是写出样本联合 p.d.f.,验证自然参数空间有内点;《统计推断》定理 6.2.25 是写出总体 p.d.f.,验证参数空间有内点,但这里 pdf 指数上的参数部分形如 $w(\theta_j)$,注意这里是同一个 w,不同的 θ_j ,也就是说,这里本质还是化到某种自然参数来做。建议大家书写时统一化成自然参数形式

定理 2.8.1 设样本 $X = (X_1, X_2, \dots, X_n)$ 的概率函数

$$f(oldsymbol{x},oldsymbol{ heta}) = C(oldsymbol{ heta}) \exp \left\{ \sum_{i=1}^k heta_i T_i(oldsymbol{x})
ight\} h(oldsymbol{x}), \quad oldsymbol{ heta} = (heta_1,\cdots, heta_k) \in \Theta^*$$

为指数族的自然形式. 令 $T(\boldsymbol{X}) = (T_1(\boldsymbol{X}), \cdots, T_k(\boldsymbol{X}))$, 若自然参数空间 Θ^* 作为 R_k 的子集有内点, 则 $T(\boldsymbol{X})$ 是完全统计量.

Date: 2021/10/27.

Thanks for Weiyu Li who is with the School of the Gifted Young, University of Science and Technology of China. Corresponding Email: liweiyu@mail.ustc.edu.cn.

Theorem 6.2.25 (Complete statistics in the exponential family) Let X_1, \ldots, X_n be iid observations from an exponential family with pdf or pmf of the form

(6.2.7)
$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left(\sum_{j=1}^{k} w(\theta_j)t_j(x)\right),$$

where $\theta = (\theta_1, \theta_2, \dots, \theta_k)$. Then the statistic

$$T(\mathbf{X}) = \left(\sum_{i=1}^{n} t_1(X_i), \sum_{i=1}^{n} t_2(X_i), \dots, \sum_{i=1}^{n} t_k(X_i)\right)$$

is complete as long as the parameter space Θ contains an open set in \Re^k .

[Wei] 2.48.

$$f(\mathbf{x}; \theta) = \left(\frac{1}{2\theta}\right)^n \exp\left\{-\frac{\sum_{i=1}^n |x_i|}{\theta}\right\}.$$

令 $\eta := -\frac{1}{\theta} \in \Theta^*$,自然参数空间 $\Theta^* = \mathbf{R}_-$ 在 \mathbf{R} 中有内点. 由因子分解定理及定理 2.8.1 知 $T = \sum_{i=1}^{n} |X_i|$ 是充分完全统计量.

[Wei] 2.49.

$$f(\mathbf{x}; \theta) = \exp\left\{n\theta - \sum_{i=1}^{n} x_i\right\} I_{(\theta, +\infty)}(x_{(1)}).$$

由因子分解定理, $T = X_{(1)}$ 是充分统计量.

$$\therefore f_T(t) = ne^{-n(t-\theta)}I_{(\theta,+\infty)}(t)$$

$$\therefore E_{\theta}(\phi(T)) = \int_{\theta}^{+\infty} \phi(t)ne^{-n(t-\theta)}dt,$$

$$\therefore \int_{\theta}^{+\infty} \phi(t)e^{-nt}dt = 0$$

对上式关于 θ 求导,得 $\phi(\theta)e^{-n\theta}=0$,故 $\phi\stackrel{a.s.}{=}0$. 由定义知 T 是完全统计量.

[Wei] 2.50.

$$f(\mathbf{x}; \theta) = \left(\frac{1}{\theta}\right)^n I\left(-\theta/2 < x_{(1)} \le x_{(n)} < \theta/2\right).$$

由因子分解定理知 $T=(X_{(1)},X_{(n)})$ 是充分统计量.。由于 $Y_i:=\frac{X_i}{\theta}\stackrel{i.i.d.}{\sim}U(-\frac{1}{2},\frac{1}{2})$,故 $\frac{X_{(n)}}{X_{(1)}}=\frac{Y_{(n)}}{Y_{(1)}}$ 是辅助统计量. 故 T 不是完全统计量.

Remark: Actually the statistic $\frac{X_{(n)}}{X_{(1)}}$ is not well-defined. Some tricks such as $\frac{X_{(n)}+1}{X_{(1)}+1}$ can fix this problem.

[Wei] 2.51.

$$f(\mathbf{x}; \theta) = \left(\frac{1}{\theta}\right)^n I\left(\theta < x_{(1)} \le x_{(n)} < 2\theta\right).$$

由因子分解定理知 $T=(X_{(1)},X_{(n)})$ 是充分统计量.。由于 $Y_i:=\frac{X_i}{\theta}\stackrel{i.i.d.}{\sim}U(1,2)$,故 $\frac{X_{(n)}}{X_{(1)}}=\frac{Y_{(n)}}{Y_{(1)}}$ 是辅助统计量. 故 T 不是完全统计量.

[Wei] 2.52. 样本联合 p.d.f. 为

$$f(\mathbf{x}; \lambda, \mu) = \lambda^{-n} \exp\left\{\frac{n\mu - \sum_{i} x_{(i)}}{\lambda}\right\} I_{[x_{(1)} > \mu]}$$

由因子分解定理知 $(X_{(1)}, \sum_i X_{(i)})$ 是 (λ, μ) 的充分统计量。

任意固定 λ , 由样本联合 p.d.f. 知 $X_{(1)}$ 是 μ 的充分统计量。且 $X_{(1)}$ 的 p.d.f. 为

$$f_1(x|\mu) = \frac{n}{\lambda} \exp\{-\frac{n(x-\mu)}{\lambda}\}\mathbf{1}(x>\mu)$$

若 $E\phi(X_{(1)})=0$, 即

$$\frac{n}{\lambda} \int_{\mu}^{+\infty} \phi(x) e^{-n(x-\mu)/\lambda} = 0$$

则 $\int_{\mu}^{+\infty} \phi(x) e^{-nx/\lambda} = 0$,关于 μ 求导整理得 $\phi(\mu) = 0$, $\forall \mu \in \mathbb{R}$. 由定义知 $X_{(1)}$ 关于 μ 是完全统计量.

令 $Y_i = X_i - \mu$, 其分布与 μ 无关。则 $\sum_i X_i - X_{(1)} = \sum_i Y_i - Y_{(1)}$ 关于 μ 是辅助统计量。而 $X_{(1)}$ 是 μ 的充分完全统计量,由 **Basu** 定理, λ 固定时,两统计量独立.

又由 λ 的任意性知 $X_{(1)}$ 与 $\sum_{i=1}^{n} (X_i - X_{(1)})$ 独立.

Remark1:多参数情况下,应指明统计量关于哪个参数是充分完全统计量。如本题中任意固定 λ 后, $X_{(1)}$ 是 μ 的充分完全统计量

Remark2:Basu 定理是充分完全统计量和辅助统计量独立,不少同学只验证了完全性 Remark3:称 V 是 θ 的有界完全统计量是若任意有界可测函数 ϕ 使得 $\mathbb{E}_{\theta}[\phi(V)] = 0$ 必有 $\phi = 0$, a.s. θ ; 不是指统计量本身有界

[Wei] 2.53. Fix σ^2 , from the factorization and that the natural parameter space is \mathbb{R} (which has inner point), \bar{X} is a sufficient complete statistic for a. Let $Y_i = X_i - a$, then $X_{(n)} - X_{(1)} = Y_{(n)} - Y_{(1)}$ is auxiliary. Derive independence from **Basu** theorem. According to the **arbitrariness** of σ^2 , the two statistics are independent if σ^2 is a parameter.

[Wei] 2.54. Hint:

From the factorization and that the natural parameter space is

$$\left\{ \left(\frac{na}{\sigma_1^2}, \frac{nb}{\sigma_2^2}, -\frac{1}{2\sigma_1^2}, -\frac{1}{2\sigma_2^2}\right) \right\} = \mathbb{R}^2 \times \mathbb{R}^2_-$$

(which has inner point in \mathbb{R}^4), $T(\mathbf{X}, \mathbf{Y})$ is **sufficient complete** for $(a, b, \sigma_1^2, \sigma_2^2)$. Rescaling $\tilde{X}_i = \frac{X_i - a}{\sigma_1} \sim N(0, 1)$, $\tilde{Y}_i = \frac{Y_i - b}{\sigma_2} \sim N(0, 1)$ to find that r is **auxiliary**. Derive independence from **Basu** theorem.

Assignment: X_1, X_2 独立同分布于 $N(0, \sigma^2)$, 用 Basu 定理证明统计量 $\frac{X_1}{X_2}$ 和 $\sqrt{X_1^2 + X_2^2}$ 独立。

令 $Y_i=X_i/\sigma$,则 Y_1,Y_2 同分布于 $N(0,1).\frac{X_1}{X_2}=\frac{Y_1}{Y_2}$,其分布与 σ^2 无关,故 $\frac{X_1}{X_2}$ 是辅助统计量。

 (X_1, X_2) 的联合 p.d.f. 为

$$f(x_1, x_2 | \sigma^2) = \frac{1}{2\pi\sigma^2} \exp\{-\frac{1}{2\sigma^2} (\sqrt{x_1^2 + x_2^2})^2\}$$

它是指数族,且由因子分解定理知 $\sqrt{X_1^2+X_2^2}$ 是充分统计量。令 $\eta=-\frac{1}{2\sigma^2}$,则自然参数空间 $\Theta^*=(-\infty,0)$ 作为 $\mathbb R$ 的子集有内点,故 $X_1^2+X_2^2$ 是完全统计量,从而 $\sqrt{X_1^2+X_2^2}$ 也是完全统计量。

由 Basu 定理,
$$\sqrt{X_1^2+X_2^2}$$
 和 $\frac{X_1}{X_2}$ 独立。