

Engineering

Software Processes

Fattane Zarrinkalam

Software Process

- A software process is a set of related activities that leads to the production of a software system.
- Many different software processes but all involve:
 - Specification defining what the system should do;
 - Design and implementation defining the organization of the system and implementing the system;
 - Validation checking that it does what the customer wants;
 - Evolution changing the system in response to changing customer needs.

Software Process

- Plan-driven process
 - Processes where all of the process activities are planned in advance and progress is measured against this plan.
 - Long lifetime, critical and embedded systems
- Agile process
 - In agile processes, planning is incremental, and it is easier to change the process to reflect changing customer requirements.
 - Software products and apps

In practice, most practical processes include elements of both plan-driven and agile approaches.

There are no right or wrong software processes.

Software Process Models

(Software Development Life Cycle)

Software Process Models

Waterfall model

- Incremental development
- Integration and configuration

Waterfall model

Waterfall Model

- Plan-driven model.
 - Separate and distinct phases of specification and development.

Waterfall Model Problems

- Inflexible partitioning of the project into distinct stages makes it difficult to respond to changing customer requirements.
 - Therefore, this model is only appropriate when the requirements are well-understood, and changes will be fairly limited during the design process.
 - Few business systems have stable requirements.

Waterfall Model Applications

Embedded systems

- where the software has to interface with hardware systems.
- Due of the inflexibility of hardware, it is not usually possible to delay decisions on the software's functionality until it is being implemented.

Critical systems

- where there is a need for extensive safety and security analysis of the software specification and design.
- In these systems, the specification and design documents must be complete so that this analysis is possible.

Large software systems

 where several companies are involved, complete specifications may be needed to allow for the independent development of subsystems.

Incremental Development

Incremental Development

Incremental Development

- Specification, development and validation are interleaved. May be plan-driven or agile.
 - Plan-driven: the system increments are identified in advance
 - Agile: the early increments are identified, but the development of later increments depends on progress and customer priorities.
- Incremental software development, which is a fundamental part of agile development methods, is better than a waterfall approach for systems whose requirements are likely to change during the development process.

Incremental Development Benefits

- The cost of accommodating changing customer requirements is reduced.
- It is easier to get customer feedback on the development work that has been done.
- More rapid delivery and deployment of useful software to the customer is possible.

Incremental Development Problems

- The process is not visible
 - Managers need regular deliverables to measure progress.
 - If systems are developed quickly, it is not cost-effective to produce documents that reflect every version of the system.
- System structure tends to degrade as new increments are added
 - Unless time and money is spent on refactoring to improve the software, regular change tends to corrupt its structure.
 - Incorporating further software changes becomes increasingly difficult and costly.

Integration and Configuration

Integration and Configuration

- The system is integrated from existing configurable components (reuse-oriented approach).
- Reuse is now the standard approach for building many types of business system
- Reused elements may be configured to adapt their behaviour and functionality to a user's requirements

Reuse-oriented Software Engineering

Types of Reusable Software

- Stand-alone application systems
 - that are configured for use in a particular environment.
- Collections of objects
 - that are developed as a package to be integrated with a component framework such as .NET or J2EE.
- Web services
 - that are developed according to service standards, and which are available for remote invocation.

Reuse-oriented Software Engineering

- Advantages:
 - Reduced costs and risks as less software is developed from scratch
 - Faster delivery of the system
- Disadvantages:
 - Requirements compromises are inevitable so system may not meet real needs of users
 - Loss of control over evolution of reused system elements

Process Activities

Process Activities

- The four fundamental software engineering activities:
 - Software specification
 - The functionality of the software and constraints on its operation must be defined.
 - Software design and implementation
 - The software to meet the specification must be produced.
 - Software validation
 - The software must be validated to ensure that it does what the customer wants.
 - Software evolution
 - The software must evolve to meet changing customer needs.
- These four basic process activities are organized differently in different development processes.

1

Software Specification

Requirements Engineering Process

2

Software Design and Implementation

Software Design and Implementation

- The process of converting the system specification into an executable system.
- Software design
 - Design a software structure that realises the specification;
- Implementation
 - Translate this structure into an executable program;
- The activities of design and implementation are closely related and may be inter-leaved.

A General Model of the Design Process

System Implementation

- The software is implemented either by developing a program or programs or by configuring an application system.
- Programming is an individual activity with no standard process.
- Debugging is the activity of finding program faults and correcting these faults.

3

Software Validation

Software Validation

- Verification and validation (V & V) is intended to show that a system conforms to its specification and meets the requirements of the system customer.
- Involves checking and review processes and system testing.
- System testing involves executing the system with test cases that are derived from the specification of the real data to be processed by the system.

Testing Stages

Testing Process

- Agile software process
 - Each increment should be tested as it is developed, with these tests based on the requirements for that increment.
 - In test-driven development, which is a normal part of agile processes, tests are developed along with the requirements before development starts.
- Plan-driven software process
 - Testing is driven by a set of test plans.
 - An independent team of testers works from these test plans, which have been developed from the system specification and design.

Testing Phases in Plan-driven Software Process (V-model)

4

Software Evolution

Software Evolution

- Software is inherently flexible and can change.
- As requirements change through changing business circumstances, the software that supports the business must also evolve and change.
- Although there has been a demarcation between development and evolution (maintenance) this is increasingly irrelevant as fewer and fewer systems are completely new.

System Evolution

Summary

Summary

- Software processes are the activities involved in producing a software system. Software process models are abstract representations of these processes.
- General process models describe the organization of software processes.
 - Examples of these general models include:
 - the waterfall model,
 - incremental development, and
 - integration and configuration.

Summary

- Requirement engineering is the process of developing a software specification. Specifications are intended to communicate the system needs of the customer to the system developers.
- Design and implementation processes are concerned with transforming a requirements specification into an executable software system.
- Software validation is the process of checking that the system conforms to its specification and that it meets the real needs of the users of the system.
- Software evolution takes place when you change existing software systems to meet new requirements. Changes are continuous, and the software must evolve to remain useful.