

Sistemas Numéricos

1. Definição:

Sistema numérico é um **conjunto de caracteres** e regras matemáticas que são utilizados para **representar números**.

Sistemas Numéricos Antigos

Sistema Romano;

Chinês;

Grego;

Arábico;

etc...

Meyer	Chinese	Bulglanian	Graily	Egyption	Greek	Reman	Hindu - Arabic
em)	0	8	Ф				0
•	1	Y	0	1	Α	1	1
••	11	YY	0	11	В	11	2
	Ш	7777	Θ	111	Г	III	3
****	1111	w.	0	00	Δ	IV	4
_	11111	W	0	ıii	Ε	٧	5
	т	***	Ó	111	F	VI	6
	π	₩	Q	111	Z	VII	7
	ш	₩	a	1111	Н	VIII	8
241	тт	¥,	Q		Θ	١X	9
=	-	<	Ω	Λ	ī	Х	10
=	=	****	00	^^^	Ν	L	50
	100	Y 4444	00	e	Р	С	100

Sistemas Numéricos

1. Definição:

O sistema decimal (arábico) contém 10 algarismos, sendo:

0123456789

Depois do nove a contagem reinicia acrescendo-se uma dezena, e sucessivamente acrescendo o próximo elemento da sequência.

9... 10... 11... 12

19... 20... 21... 22...

99... 100... 101... 102....

Meyer	Charte	Bublenien	Gravily	Egyption	Greek	lenn	Handa - Arabe
am	0	8	0				0
	1	Y	0	1	Α	1	1
	11	ΥΥ	0	Ш	В	II I	2
	Ш	YYY	Θ	Ш	Г	III	3
	Ш	Ψ	0	00	Δ	IV	4
_	11111	*	0	ıll	Ε	٧	5
	т	***	Ó	III	F	VI	6
-	π	₩	Q	1111	Z	VII	7
-46	ш	₩	a	1111	Н	VIII	8
	тт	· Š	Q		Θ	١X	٩
=	_	<	Ω	Λ	-1	Х	10
=	≣	****	00	^^^	N	L	50
	100	Y < < < <	00	e	Р	С	100

Decomposição de números base decimal em potências de 10 (b = 10).

$$N_{10} = a_n \cdot b^{n-1} + a_{n-1} \cdot b^{n-2} + \dots + a_1 \cdot b^0 + a_m \cdot b^{-1} + a_{m-1} \cdot b^{-2} \dots$$

$$n = digitos da parte inteira$$

$$m = digitos da parte fracionária$$

$$b = base$$

$$a_i = algarismo$$

Ex.: 325.453 = 300 + 20 + 5 + 0.4 + 0.05 + 0.003

$$(213)_{10} = 2 \cdot 10^{2} + 1 \cdot 10^{1} + 3 \cdot 10^{0} = 200 + 10 + 3 = 213$$

$$(43.84)_{10} = 4 \cdot 10^{1} + 3 \cdot 10^{0} + 8 \cdot 10^{-1} + 4 \cdot 10^{-2} = 40 + 3 + 0.8 + 0.04 = 43.84$$

Sistemas Numéricos

2. Sistemas Numéricos Computacionais

No computador, todas as informações são representadas e processadas na forma binária.

Sistema Binário: possui apenas 2 algarismos – 0 e 1.

Razão: simplicidade de representação dos mesmos por:

- dispositivos elétricos
- eletrônicos
- mecatrônicos
- magnéticos

Sistemas Numéricos

Sistema Binário: possui apenas 2 algarismos – 0 e 1.

Na prática cada dígito recebe a denominação de **bit** (**binary digit**)

ex.: (101001)₂

6 bits – base 2

O conjunto de **8 bits** é chamado de **byte** – termo bastante utilizado na informática.

Logo, se n = número de bits, 2^n é quantidade de números representados.

- 1. quantos e quais números podem ser representados em 4 bits ?
- 2. e em 1 byte?
- 3. e em 4 bytes ?

Sistemas Numéricos Unidades da base binária

1 nibble - 4 bits

1 byte - 8 bits

1 KB - 1024 bytes (2¹⁰)

1 MB - 1024 KB (2²⁰)

1 GB - 1024 MB (2³⁰)

1 TB - 1024 GB (2⁴⁰)

1 PB - 1024 TB (2⁵⁰)

Sistemas Numéricos

Sistema Binário: possui apenas 2 algarismos – 0 e 1.

Contagem decimal	Contagem binária
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
•••	•••

Como exercício – dê sequência da contagem até 32.

Sistemas Numéricos

Sistema Octal (base)₈: no sistema de numeração hexadecimal existem 7 algarismos:

01234567

O objetivo é facilitar a representação de cadeias binárias muito grandes:

DEC	BIN	OCTAL	DEC	BIN	OCTAL
0	0	0	8	1000	10
1	1	1	9	1001	11
2	10	2	10	1010	12
3	11	3	11	1011	13
4	100	4	12	1100	14
5	101	5	13	1101	15
6	110	6	14	1110	16
7	111	7	15	1111	17

Sistemas Numéricos

Sistema Hexadecimal (base)₁₆: no sistema de numeração hexadecimal existem 16 algarismos:

0 1 2 3 4 5 6 7 8 9 A B C D E F

O objetivo é facilitar a representação de cadeias binárias muito grandes

$$A = 10$$
; $B = 11$; $C = 12$; $D = 13$; $E = 14$; $F = 15$;

		DEC.	BIN.	OCT.	HEXAD.
		0	0	0	0
		1	1	1	1
		2	10	2	2
	Tabela dos Decimais	3	11	3	3
	Tabela dos Decimais	4	100	4	4
		5	101	5	5
		6	110	6	6
- 1	Considerando a ordem de	7	111	7	7
	contagem de cada base é	8	1000	10	8
- 1	contagem de cada base e	9	1001	11	9
	possível montar uma tabela	10	1010	12	Α
		11	1011	13	В
- 1	em que se possa observar	12	1100	14	С
- 1	qual relação existe entre 2	13	1101	15	D
- 1		14	1110	16	E
- 1	números de bases diferentes.	15	1111	17	F
- 1		16	10000	20	10
- 1		17	10001	21	11
- 1	DEC [18	10010	22	12
- 1		•••	•••		
- 1		32	100000	40	20
- 1		64	1000000	100	40
	BIN OCT HEX	128	10000000	200	80
	OCT OCT	256	100000000	400	100
		1234	10011010010	2322	4D2

3. Conversão de <u>decimal</u> para qualquer base

Utilizamos o **método das divisões sucessivas** pelo valor da respectiva base:

Ex.: converter o número $(213)_{10}$ para binário $(???)_{2}$.

Exercícios de conversão de base:

a)
$$(75)_{10} \rightarrow (?)_{2}$$

d)
$$(254)_{10} \rightarrow (?)_{2}$$

b)
$$(324)_{10} \rightarrow (?)_{2}$$

e)
$$(170)_{10} \rightarrow (?)_{2}$$

c)
$$(129)_{10} \rightarrow (?)_{2}$$

f)
$$(32.768)_{10} \rightarrow (?)_{2}$$

3. Conversão de <u>decimal</u> para qualquer base

Utilizamos o **método das divisões sucessivas** pelo valor da respectiva base:

Ex.: converter o número $(213)_{10}$ para octal $(???)_{8}$.

Exercícios de conversão de base:

a)
$$(75)_{10} \rightarrow (?)_{8}$$

d)
$$(254)_{10} \rightarrow (?)_{8}$$

b)
$$(324)_{10} \rightarrow (?)_{8}$$

e)
$$(170)_{10} \rightarrow (?)_{8}$$

c)
$$(129)_{10} \rightarrow (?)_{8}$$

f)
$$(32.768)_{10} \rightarrow (?)_{8}$$

3. Conversão de <u>decimal</u> para qualquer base

Utilizamos o **método das divisões sucessivas** pelo valor da respectiva base:

Ex.: converter o número (213)₁₀ para hexadecimal (???)₁₆.

Exercícios de conversão de base:

a)
$$(75)_{10} \rightarrow (?)_{16}$$

$$a) (75)_{10} \rightarrow (?)_{16}$$

b)
$$(324)_{10} \rightarrow (?)_{16}$$

c)
$$(129)_{10} \rightarrow (?)_{16}$$

d)
$$(254)_{10} \rightarrow (?)_{16}$$

e)
$$(170)_{10} \rightarrow (?)_{16}$$

f)
$$(32.768)_{10} \rightarrow (?)_{16}$$

4. Conversão de qualquer base para Decimal

4. Conversão de qualquer base para Decimal

$$N_{10} = a_n b^{n-1} + a_{n-1} b^{n-2} + ... + a_1 b^0 + a_m b^{-1} + a_{m-1} b^{-2} ...$$

n = dígitos da parte inteira

m = dígitos da parte fracionária

b = base $a_i = algarismo$

$$(215)_{8} \rightarrow (?)_{10} \rightarrow (6405)_{8} \rightarrow (?)_{10}$$

$$(125)_{8} \rightarrow (?)_{10} \qquad (5274)_{8} \rightarrow (?)_{10}$$

$$(707)_{8} \rightarrow (?)_{10} \rightarrow (1425)_{8} \rightarrow (?)_{10}$$

4. Conversão de qualquer base para Decimal

$$N_{10} = a_n \cdot b^{n-1} + a_{n-1} \cdot b^{n-2} + \dots + a_1 \cdot b^0 + a_m \cdot b^{-1} + a_{m-1} \cdot b^{-2} \dots$$

n = dígitos da parte inteira

m = dígitos da parte fracionária

b = base
$$a_i = algarismo$$

$$(8D)_{16} \rightarrow (?)_{10}$$

$$(A6)_{16} \rightarrow (?)_{10}$$

$$(D05)_{16} \rightarrow (?)_{10}$$

$$(ABC)_{16} \rightarrow (?)_{10}$$

$$(99BA)_{16} \rightarrow (?)_{10}$$

5. Conversão de binário ← → octal

e binário ← → hexadecimal

Binário-Octal, os bits são agrupados de 3 a 3, a partir do bit da direita.

A conversão é realizada associando o algarismo numérico octal correspondente.

BIN.	ост.
0	0
1	1
10	2
11	3
100	4
101	5
110	6
111	7

5. Conversão de binário ← → octal

e binário ← → hexadecimal

Binário-Hexadecimal, os bits são agrupados de 4 a 4, a partir do bit da direita.

A conversão é realizada associando o algarismo numérico hexadecimal

BIN.	HEXAD.
0	0
1	1
10	2
11	3
100	4
101	5
110	6
111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	1 2 3 4 5 6 7 8 9 A B C D E F
1110	E
1111	F

6. Conversão de octal ← → hexadecimal

Converter para binário e logo após para o sistema numérico desejado.

ост.	BIN.	HEXAD.
0	0	0
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
7	111	7
10	1000	8
11	1001	9
12	1010	Α
13	1011	В
14	1100	С
15	1101	D
16	1110	E
17	1111	F

octal ← → binário ← → hexadecimal

$$(AF35)_{16} \rightarrow (?)_{8}$$
 $(3173)_{8} \rightarrow (?)_{16}$

7. Operações aritméticas no sistema binário Adição Sistema Binário

$$(11)_{2}$$
 $(3)_{10}$ $(110)_{2}$ $(6)_{10}$
+ $(10)_{2}$ $(2)_{10}$ + $(111)_{2}$ $(7)_{10}$
= $(101)_{2}$ $(5)_{10}$ = $(1101)_{2}$ $(13)_{10}$

Resolvam e tirem a prova em base decimal

1.
$$(11001)_2 + (1011)_2 = ?$$

2.
$$(100111)_2 + (1110)_2 + (1011)_2 = ?$$

3.
$$(11011)_2 + (1111)_2 + (1110)_2 = ?$$

7. Operações aritméticas no sistema binário Subtração Sistema Binário

$$0-0=0$$
 $0-1=1$ $1-0=1$ $1-1=0$

Obs.: 0-1 = 1 e passa 1 para próximo bit

$$(111)_{2}$$
 $(7)_{10}$ $(10110)_{2}$ $(22)_{10}$
 $- (100)_{2}$ $(4)_{10}$ $- (1101)_{2}$ $(13)_{10}$
 $= (011)_{2}$ $(3)_{10}$ $= (01001)_{2}$ $(9)_{10}$

Resolvam e tirem a prova em base decimal

1.
$$(1111\ 1111)_2 - (1010\ 0100)_2 = ?$$

2.
$$(11001)_2 - (1110)_2 = ?$$

3.
$$(110001)_2 - (11010)_2 = ?$$

4.
$$(1111\ 0001)_{2}$$
 - $(1110\ 0101)_{2}$ = ?

7. Operações aritméticas no sistema binário Multiplicação Sistema Binário

$$0*0 = 0$$
 $0*1 = 0$ $1*0 = 0$ $1*1 = 1$

$$1*0 = 0$$

$$(18)_{10}$$

Resolvam e tirem a prova em base decimal

1.
$$(11011)_2 \times (101)_2 = ?$$

2.
$$(101110)_2 \times (1101)_2 = ?$$

3.
$$(0110\ 0100)_2 \times (1100\ 1000)_2 = ?$$

8. Números Positivos e Negativos

Representação decimal de números negativos +, -

Computacionalmente, estes símbolos não podem ser utilizados.

Forma 1 – definir um bit de sinal.

- positivo bit de sinal 1
- negativo bit de sinal 0

Forma 2 – Complemento 2

- mas primeiro precisa-se converter um número para complemento 1.

Exemplo:

 $1100 \ 1101 \rightarrow 0011 \ 0010 + 1 = 0011 \ 0011$