

Analyse I Série de révision

Automne 2018

- Pour les questions à choix multiple, on comptera :
 - +3 points si la réponse est correcte,
 - 0 point si la question n'est pas répondue ou s'il y a plusieurs croix, -1 point si la réponse est incorrecte.
- Pour les questions de type vrai-faux, on comptera :
 - +1 point si la réponse est correcte,
 - 0 point si la question n'est pas répondue ou s'il y a plusieurs croix, −1 point si la réponse est incorrecte.

Pour chaque question mettre une croix dans la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'**une seule** réponse correcte par question.

Question 1 : Soit l'intégrale

$$I = \int_{-2}^{0} \frac{1}{\sqrt{1 - 4x + 4x^2}} \, \mathrm{d}x \; .$$

Alors:

Question 2 : Soit une fonction $g: \mathbb{R} \to \mathbb{R}$ et la suite de nombre réels $(a_n)_{n \in \mathbb{N}}$ définie récursivement par $a_0 = 1$ et $a_n = g(a_{n-1})$ pour $n \in \mathbb{N} \setminus \{0\}$. Alors, la suite $(a_n)_{n \in \mathbb{N}}$ converge pour g définie par :

$$g(x) = 2x - 2$$

$$g(x) = -x^2 + 2x - 2$$

$$g(x) = \frac{1}{4}x^2 + 1$$

Question 3 : Soit la fonction $f\colon \left]-\pi,\pi\right[\setminus\{0\}\to\mathbb{R}$ définie par

$$f(x) = \frac{e^{\cos(x)-1} - 1 - x^2}{\left(\sin(x)\right)^2}.$$

Alors:

Question 4 : Soit la série numérique S définie par

$$S = -\sum_{k=1}^{\infty} \left(-\frac{2}{3} \right)^k .$$

Alors:

$$S=2$$

Question 5 : Soit $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + x^3 \varepsilon(x)$ avec $\lim_{x \to 0} \varepsilon(x) = 0$ le développement limité d'ordre trois de la fonction $f:]-1,1[\to \mathbb{R}$ définie par

$$f(x) = \sin\left(\frac{x}{1-x}\right)$$

autour de x = 0. Alors :

$$a_3 = 5$$

Question 6 : Soit l'intégrale

$$I = \int_{-1}^{0} x^2 e^{-x} dx.$$

Alors:

$$I = -3e + 2$$

$$I = e - 2$$

$$I = 4e - 1$$

$$I = 5e - 2$$

Question 7: Soit la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} \frac{\sin(e^{\frac{1}{x}})}{e^{\frac{1}{x}}} & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases}$$

Alors:

Question 8: Soit le nombre complexe

$$z = \frac{e^{i\pi/2} + e^{i\pi/4}}{e^{i\pi/3} + e^{i\pi/6}} .$$

Alors:

Question 9: Soit la fonction $f: [0, 2\pi] \to \mathbb{R}$ définie par $f(x) = \sin(x) e^{-x}$. Alors:

$\prod f$ atteint son minimum en $x=0$ en $x=\pi$ et en $x=2\pi$.

Question 10: Soit r le rayon de convergence de la série entière S, définie par

$$S = \sum_{k=0}^{\infty} \frac{(k+1)^2}{5^{k+3}} x^k .$$

Alors:

Question 11 : Soit la fonction bijective $f\colon]\,0,\infty\,[\,\,\to\mathbb{R}$ définie par

$$f(x) = 2 + \operatorname{Log}\left(\frac{2e + x}{x^2}\right) ,$$

et soit f^{-1} la fonction réciproque de f et $y_0 := f(2e)$. Alors :

$$(f^{-1})'(y_0) = -\frac{4e}{3}$$

$$(f^{-1})'(y_0) = 2e + 1$$

$$(f^{-1})'(y_0) = -\frac{1}{2e + 1}$$

$$(f^{-1})'(y_0) = \frac{3}{4e}$$

Question 12: Soit le nombre complexe $z = e^{i} + e^{i/3}$. Alors :

$$|z| = \sqrt{2}$$

$$|z| = \sqrt{2 + 2\cos(\frac{2}{3})}$$

$$|z| = \sqrt{1 + (e^{2i/3} + e^{-2i/3})}$$

$$|z| = \sqrt{2 + 2\left(e^{i/3} + e^{-i/3}\right)}$$

Question 13 : Soit la suite de nombres réels $(a_n)_{n\in\mathbb{N}}$ définie par

$$a_n = \frac{\operatorname{Log}(n + e^n)}{n+1} .$$

Alors:

 a_n est une suite bornée et $\lim_{n\to\infty} a_n = e$

 a_n est une suite bornée et $\lim_{n\to\infty} a_n = 0$

 a_n est une suite non bornée

Question 14 : Soient $\alpha \in \mathbb{R}$ et $\beta \in \mathbb{R}$ tels que la fonction $f \colon \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} (x+1)(x+2) & \text{si } x < 0, \\ \alpha x + \beta & \text{si } x \ge 0, \end{cases}$$

est dérivable sur \mathbb{R} . Alors :

$$f(2) = 12$$

$$f(3) = 9$$

$$f(-3) + f(1) = 7$$

$$f'(2) = 2$$

Question 15: Soit le sous-ensemble $E \subset \mathbb{R}$,

$$E = \left\{ \sin\left(\frac{\pi n}{4}\right) - \sin\left(\frac{\pi}{4n}\right) : n \in \mathbb{N} \setminus \{0\} \right\}.$$

Alors:

$$\square$$
 Inf $E = -1$

$$\prod$$
 Inf $E=0$

Question 16: Soit l'intégrale

$$I = \int_{1}^{e^3} \frac{\text{Log}(x)}{x \sqrt{\left(\text{Log}(x)\right)^2 + 1}} \, dx.$$

Alors:

$$I = \frac{1}{2} \left(\sqrt{10} - 1 \right)$$

$$I = 2(\sqrt{10} - 1)$$

Question 17: Soit la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \text{Log}(2 \operatorname{Arctg}(3 + 5x^2)).$$

Alors:

$$f'(x) = \frac{2x}{(5x^4 + 6x^2 + 2) \operatorname{Arctg}(3 + 5x^2)}$$

$$f'(x) = \frac{10x}{\text{Arctg}(3+5x^2)} \left(1 + \left(3+5x^2\right)^2\right)$$

$$f'(x) = \text{Log}(2) + \frac{x}{(5x^4 + 6x^2 + 2) \operatorname{Arctg}(3 + 5x^2)}$$

Question 18: Soit la série numérique S avec paramètre $c \in \mathbb{R}$ définie par

$$S = \sum_{n=1}^{\infty} \frac{n!}{n^{cn}} .$$

Alors:

	S converg	e si et	seulement	si 2	> c	> ()
--	-----------	---------	-----------	------	-----	-----	---

- $\hfill \hfill \hfill$
- \square S converge si et seulement si $c \ge 0$
- \square S converge si et seulement si c > 3

Question 19: Soit $(a_k)_{k\in\mathbb{N}}$ une suite de nombres réels et $s_n=\sum_{k=0}^n a_k,\,n\in\mathbb{N}$, la suite des sommes partielles. Si $\lim_{n\to+\infty} s_n=1$, alors :

Deuxième partie, questions du type Vrai ou Faux

Pour chaque question, mettre une croix (sans faire de ratures) dans la case VRAI si l'affirmation est **toujours vraie** ou dans la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire, si elle est parfois fausse).

Question 24 : Soit $\sum_{n=0}^{\infty} a_n$ une série numérique divergente et $(b_n)_{n\in\mathbb{N}}$ une suite de nombres réels

telle que $\lim_{n\to\infty}b_n=0$. Alors la série numérique $\sum_{n=0}^\infty a_nb_n$ converge.

☐ VRAI ☐ FAUX

Question 25 : Soit $A \subset \mathbb{R}$ un ensemble borné de \mathbb{R} et $c = \operatorname{Sup} A$. Alors pour tout $\epsilon > 0$ il existe $x \in A$ tel que $x + \epsilon \geq c$.

☐ VRAI ☐ FAUX

Question 26 : L'intégrale $\int_{-\pi}^{\pi} \sin(x^{13}) dx$ vaut zéro.

☐ VRAI ☐ FAUX

Question 27 : La fonction $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ définie par $f(x) = \sin\left(\frac{e^x - 1}{x}\right)$ est prolongeable par continuité en x = 0.

☐ VRAI ☐ FAUX

Question 28: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable en $x_0 \in \mathbb{R}$. Alors

$$\lim_{h \to 0} \frac{f(x_0) - f(x_0 - 2h)}{h} = 2f'(x_0).$$

☐ VRAI ☐ FAUX

Question 29 : Soit $f:]-1,1[\to \mathbb{R}$ une fonction qui admet autour de x=0 le développement limité $f(x)=x-2x^3+x^3\varepsilon(x),$ où $\lim_{x\to 0}\varepsilon(x)=0.$ Alors

$$\lim_{x \to 0} \frac{f(x) - x}{x^2} = 0.$$

VRAI FAUX

