Complexity Analysis (Orders and Notations)

PROF. NAVRATI SAXENA

Algorithm and Complexity

Algorithm: A finite sequence of precise instructions for performing a computation for solving a problem.

Computational complexity: Measure of the processing time required by the algorithm to solve problems of a particular problem size.

Time Complexity of Algorithm

How to measure the **complexity** (time) of an algorithm? What is this a function of?

The size of the problem: an integer n

- 1. # inputs (e.g., for sorting problem)
- 2. # digits of input (e.g., for the primality problem)
- 3. sometimes more than one integer

Objective: Characterize the running time of an algorithm for increasing problem sizes

Units of time

What is a good unit of time?

- 1 microsecond ?
 - Possibly no. It's too specific and machine dependent
- 1 machine instruction
 - No. Also quite specific and machine dependent
- # of code fragments that take constant time
 - Yes. Could be used

Worst-Case Analysis

- Worst case running time.
- A bound on largest possible running time of algorithm on inputs of size n.
 - Generally captures efficiency in practice.
 - Sometimes can be an overestimate.

Measuring Efficiency of Algorithms

- Two algorithms: Algo1 and Algo2 that solve the same problem.
- We need a fast running time.
- How do we choose between the algorithms?

Efficiency of Algorithms

Implement the two algorithms and compare their run-times?

Limitations with this approach

- 1. How are the algorithms coded?
 - We want to compare the algorithms, not the implementations.
- 2. What computer should we use?
 - Choice of operations could favor one implementation over another.
- 3. What data should we use?
 - Choice of data could favor one algorithm over another

Measuring Efficiency of Algorithms

Objective: Analyze algorithms independently of specific implementations, hardware or data.

Observation: An algorithm's execution time is related to the number of operations it executes

Solution: Count the number of STEPS: significant time and operations the algorithm will perform for an input of given size

An Example: Linear Search

- What is the maximum number of steps linSearch takes?
- What's a step here?
- for an Array of size 32? for an Array of size n?

Growth Rates (1/3)

- Algorithm A requires n²/2 steps to solve a problem of size n
- Algorithm B requires 5n+10 steps to solve a problem of size n
- Which one is better for us?

Growth Rates (2/3)

- Increase the size of input n,
- Check how the execution time grows for these algorithms?

n	1	2	5	8	10	20	50
n ² /2	0.5	2	12.5	32	50	200	1250
5n+10	15	20	35	50	60	110	260

n	100	1,000	10,000	100,000
n ² /2	5,000	500,000	50,000,000	5,000,000,000
5n+10	510	5,010	50,010	500,010

Care about large input sizes

Growth Rates (3/3)

- A: $n^2/2+1$ operations (for size n)
- **B**: 5n + 10 operations (for size n)
- For large problems B is more efficient
- Important: Growth of algorithm's execution time as a function of input.

Conclusion:

- Algorithm A: requires time proportional to n²
- Algorithm B: requires time proportional to n
- B's time requirement grows more slowly than A's

Analyzing Order Complexity

Big O notation: A function f(x) is O(g(x)), if there exist two positive constants, c and k, such that $f(x) \le c \times g(x), \forall x > k$

Focus on:

- Shape of function g(x)
- Large x

Infinite many pairs: (C, k)

Upper Bound: Notation Big "O"

- Let f and g be functions.
- f(x) = O(g(x))
- If there are positive constants c and k such that $f(x) \le C g(x)$, whenever x > k

Lower Bound: Ω Notation

- Let f and g be functions.
- $f(x) = \Omega(g(x))$
- If there are positive constants c and k such that $f(x) \ge C g(x)$, whenever x > k

A Tight Bound – Notation ⊕

Sample Questions

- If $f(n) = n^2 + 3n$, can we say $f(n) = O(n^2)$?
- If f(n) = n + log(n), what can we say about Order Complexity **O**?
- If $f(n) = 2n + n \log(n)$, what is the order complexity **O**?

Orders of Magnitude

- O (big O) is used for Upper Bounds in algorithm analysis:
 - Used in worst case analysis
 - This algorithm never takes more than this number of steps
- We will concentrate on worst case analysis
- Ω (big Omega) is used for lower bounds in problem characterization:
 - Minimum number of steps this problem takes
- θ (big Theta) for tight bounds: a more precise characterization

Common Orders: Constant

Examples:

Any integer/double arithmetic/logic operation

Accessing a variable or an element in an array

Common Orders: Linear

$$f(n) = a*n + b$$

- a is the slope
- b is the Y intersection

Example of Algorithms with Linear Order

Example: copying an array

```
for (int i = 0; i < size; i++) {
    a[i] <- b[i];
}</pre>
```

Other Shapes: Sublinear

Common Sub-Linear Order: Logarithm

- $\log_b \mathbf{n}$: is the number x such that $b^x = n$
 - $2^3 = 8 = > log_2 8 = 3$
 - $2^5 = 32 = \log_2 32 = 5$
 - $2^{10} = 1024 = \log_2 1024 = 10$
- log_bn: (# of digits to represent n in base b) 1
- Most common base used: 2

More on Logarithms

Common properties of logarithms

- log(x y) = log x + log y
- $log(x^a) = a log x$
- $log_a n = log_b n / log_b a$

Note: $log_b a$ is a constant => $log_a n = O(log_b n)$ for any a, b

Logarithm is a **very** slow-growing function

Complexity: O(log n)

- Common for "Divide and Conquer" algorithms,
 - Problem size gets chopped into 1/2 (or 1/3, or ½) in every step
- How many times 1,000 can be divided by 2 to get 1?
 - How about 1,000,000 ?

Example: Guess a Number

- Given a number between 0 and 100
- How many questions (only "Y/N") needed to find it?

>=	50	N
>=	25	Υ
>=	37	N
>=	31	N
>=	28	Υ
>=	30	Y

What's the number?

Another Example: Binary Search

```
private int binSearch (int Arr, int key, int lo, int hi) {
// pre: A array is already sorted
// post: if k in A[lo..hi] return its position, else return (-1)
 int r;
  if (lo>hi)
     r = -1;
  else
     int mid = (lo+hi)/2;
     if (k==A[mid])
        r = mid:
     else if (k < A[mid])
        r = binSearch(Arr, key,lo,mid-1);
     else
         r = binSearch(Arr, key,mid+1,hi);
     return r;}
```

Not Found

Higher Order: Quadratic

Super-linear Complexities

Polynomial Order

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where a_n, a_{n-1}, a_1, a_0 are real numbers. $f(x): O(x^n)$

$$f(x): O(x^n)$$

Example: Complexity of $x^2 + 5x$ is: $O(x^2)$

Question

Complexity for the following growth function.

$$f(n) = (3n^2 + 8)(n + 1)$$

- (a) O(n)
- (b) $O(n^3)$
- (c) $O(n^2)$
- (d) O(1)

Complexity for Combination of Functions

- **Assumption**: $f_1(x)$: $O(g_1(x))$ and $f_2(x)$: $O(g_2(x))$
- Additive Theorem:

$$(f_1+f_2)(x)$$
: $O(\max(g_1(x),g_2(x))$.

Multiplicative Theorem:

$$(f_1f_2)(x)$$
 is $O(g_1(x) \times g_2(x))$.

Practical Examples

Additive

• Example: copying of array, followed by binary search $O(n) + O(log(n)) \longrightarrow O(?)$

Multiplicative

• Example: a while loop with n iterations and the body in loop taking: $O(\log n) \longrightarrow O(?)$

Worst vs. Average Case Complexity

1. Worst case

- Just how bad can it get: the maximal number of steps
- Our focus in this topic

2. Average case

- Amount of time expected "usually"
- Not in scope of this course

3. Best case

- The smallest number of steps
- Generally not very useful.

Algorithm Analysis: Nested Loops

```
int nestedLoop1(int n) {
                 int result = 0;
for (int i=0;i<n;i++) {</pre>
        for (int j=0;j<n;j++) {</pre>
                 for (int k=0; k< n; k++)
                         result++;
return result;
```

Complexity = ?

In real life, this comes up in 3D imaging, video, etc., and it is **slow**! Graphics cards are built with thousands of processors to tackle this problem!

What is Recursion?

- Recursion: A procedure or function calling itself
- Example: Factorial n (i.e. n!)

```
factorial (n)
{
    if (n = 0)
        return 1
    else
        return n * factorial(n-1)
}
```

Practical Analysis – Recursion

- Number of operations in recursion depends on:
 - Number of recursive calls
 - Work done in each call
- Examples:
 - Factorial: how many recursive calls?
 - Fibonacci number?

Analysis – Factorial by Recursion

```
T(n) = T(n-1) + c
    = T(n-2) + 2c (Second recursive call)
    = T(n-3) + 3c (Third recursive call)
     = T(n-k) + kc, until, k = n
After that,
     = T(n-n) + nc
     = T(0) + nc
     = 1 + nc
```


Analysis: Recursive Fibonacci (1/3)

```
fibo (n)
  if (n = 0)
                                              Recursive Call
    return 0
  else if (n = 1)
    return 1
  else
    return fibo(n-1) + fibo(n-2) ←
                                             Looks nice, but has a serious flaw.
                                             Why?
                                             Let's look at the call tree for fibo(6):
```

Analysis: Recursive Fibonacci (2/3)

Look at all the functional duplication! Each call is making two recursive calls, and many are duplicated!

Analysis: Recursive Fibonacci (3/3)

$$T(n) = T(n-1) + T(n-2) + c$$

- Need to solve this recurrence.
- Use characteristic equation: $x^2 = x + 1$
 - Roots: $(1 + \sqrt{5})/2$, $(1 \sqrt{5})/2$

$$T(n) = O((1 + \sqrt{5})/2)^n$$

= $O(1.618)^n$

Exponential Order!

Differences in Complexity Matters

Assumption: An algorithm has 1000 elements, and the O(log n) version runs in 10 ns (nanoseconds)

Below is the comparison table of different order complexity

constant	logarithmic	linear	n log n	quadratic	<i>polynomial</i> (k=3)	exponential (a=2)
0(1)	O(log n)	O(n)	O(n log n)	O(n²)	$O(n^k)$ $(k \ge 1)$	O(a ⁿ) (a>1)
1 ns	10 ns	1 μs	10 μs	1 msec	1 sec	10 ²⁹² years

Thank you!