$\label{linear_complex} \mbox{https://Antoine-dSG.github.io/frieze}_{p} atternshttps://github.com/Antoine-dSG/frieze_{p} atternshttps$

Coxeter frieze patterns

Antoine de Saint Germain

July 16, 2024

Chapter 1

Symmetries of frieze patterns

Definition 1.1. frieze_n $Fixn \in \mathbb{N}$. A map $f : \{1, 2, ..., n\} \times \mathbb{Z} \longrightarrow \mathbb{R}$ is called a frieze pattern of width n if, for all $(i, m) \in \{1, 2, ..., n\} \times \mathbb{Z}$, we have

$$f(i,m)f(i,m+1) = 1 + f(i+1,m)f(i-1,m+1),$$

where by convention we set f(0,m) = f(n+1,m) = 1 for all $m \in \mathbb{Z}$.

Consider the map $\rho_n: \{1, 2, \dots, n\} \times \mathbb{Z} \longrightarrow \{1, 2, \dots, n\} \times \mathbb{Z}$ given by

$$\rho_n(i,m) = (n+1-i, m+i+1). \tag{1.1}$$

Note that $\rho_n^2:(i,m)\mapsto (i,m+n+3)$, and therefore ρ_n is bijective. The main result in this section is the so-called *glide symmetry* of frieze patterns.

Proposition 1.2. def:closed-fp, def:glide Every frieze pattern of width n is ρ_n -invariant, i.e. satisfies

$$f(\rho_n(i,m)) = f(i,m), \quad \forall (i,m) \in \{1,2,\ldots,n\} \times \mathbb{Z}.$$

The remainder of this section is dedicated to the proof of Proposition ??.

Chapter 2

Classification of arithmetic frieze patterns

Definition 2.1. def:closed-fp A frieze pattern of width n is said to be arithmetic if it takes values in $\mathbb{Z}_{>0}$.

We denote by Frieze(n) the set of all arithmetic frieze patterns of width n. The main result in this section is Conway and Coxeter's enumeration of arithmetic frieze patterns.

Theorem 2.2. def:arith-fp $Fix n \in \mathbb{N}$. There is a set-theoretic bijection from the set of triangulations of the regular n + 3-gon in the plane and the set Frieze(n). In particular we have

$$|Frieze(n)| = C_{n+1},$$

where $C_n = \frac{1}{n+1} \binom{2n}{n}$ is the n^{th} Catalan number.

The remainder of this section is dedicated to the proof of Theorem ??.