NSC3270 / NSC5270 Computational Neuroscience

Tu/Th 9:35-10:50am Featheringill Hall 129

Professor Thomas Palmeri Professor Sean Polyn

For Today

Required Readings

Chapter 3 (selected pages) of Churchland, P.S., & Sejnowski, T.J. (2017). *The Computational Brain* (25th Anniversary Edition). MIT Press.

In-Class Python Code

Homework3.py

Homework3.ipynb

Info to help with Homework 3 NumpyExamples.ipynb

net input sums the weighted inputs

$$n_j = \sum_i a_i w_{ij}$$

inputs integrate at the cell body - they are added together

$$n_j = \sum_i a_i w_{ij}$$

$$a = \begin{bmatrix} a_1, a_2, \dots, a_m \end{bmatrix}$$
 activation of all the input nodes

$$\boldsymbol{w}_{j} = \begin{bmatrix} w_{1j}, w_{2j}, \dots, w_{mj} \end{bmatrix}$$
 all weights going to 2nd layer node j

$$n_{j} = \sum_{i} a_{i} w_{ij}$$

$$a = [a_{1}, a_{2}, ..., a_{m}]$$

$$w_{j} = [w_{1j}, w_{2j}, ..., w_{mj}]$$

```
import numpy as np
n = 0
for i in np.arange(len(a)):
    n += a[i]*wj[i]
```

$$n_{j} = \sum_{i} a_{i} w_{ij}$$

$$a = [a_{1}, a_{2}, ..., a_{m}]$$

$$w_{j} = [w_{1j}, w_{2j}, ..., w_{mj}]$$

element-wise multiplication of numpy arrays (different from Matlab, which requires .* operator)

$$n_{j} = \sum_{i} a_{i} w_{ij}$$

$$a = \begin{bmatrix} a_{1}, a_{2}, \dots, a_{m} \end{bmatrix}$$

$$w_{j} = \begin{bmatrix} w_{1j}, w_{2j}, \dots, w_{mj} \end{bmatrix}$$

$$n_{j} = a \cdot w_{j}$$

dot product

"similarity" between two vectors

angle between two vectors ...

$$\cos(\theta) = \frac{a \cdot w_j}{\|a\| \|w_j\|}$$

$$\cos(\theta) = \frac{a \cdot w_j}{\|a\| \|w_j\|}$$

product of the lengths and the angle

$$a \cdot w_j = \|a\| \|w_j\| \cos(\theta)$$

dot length length cos
product $a w_j$ angle

product of the lengths and the angle

$$a \cdot w_j = \|a\| \|w_j\| \cos(\theta)$$

dot length length cos
product $a \quad w_j$ angle

activation equation

Idealized Neuron

Multi-layered network

single-layered network

the terminology

ork

may vary

fully-interconnected two-layer network

fully-interconnected two-layer network single-layer network

input layer

output layer

Logistic (Sigmoidal) Function

$$a_j = \frac{1}{1 + \exp(-n_j)}$$

from homework

$$a_j = \frac{L}{1 + \exp(-k(n_j - \theta_j))}$$

Logistic (Sigmoidal) Function 0.8 0.7 0.6 0.3 0.2 0.1 net $\frac{1 + \exp(-(n_j + \beta_j))}{1 + \exp(-(n_j + \beta_j))}$ from homework $\overline{1 + \exp(-k(n_j - (-\beta_j)))}$

Idealized Neuron

k term is like multiplying all input weights and bias by k

L term is like multiplying all output weights by L

Example of a Simple Neural Network

Example of a Simple Neural Network

inputs can be sensory, perceptual, or abstract features

they can be discrete or continuous values

I_1	I_2	0
0	0	0
1	0	0
0	1	0
1	1	1

what is this computation?

Example of a Simple Neural Network

I_1	I_2	0
0	0	0
1	0	0
0	1	0
1	1	1

logical AND

$$o = f\left(\sum_{i} I_{i} w_{i} + \beta\right)$$

what values of w_1 , w_2 , and β

I_1	I_2	0
0	0	0
1	0	0
0	1	0
1	1	1

logical AND

$$o = f\left(\sum_{i} I_{i} w_{i} + \beta\right)$$

what values of w_1 , w_2 , and β

$$I_1 \qquad f(x) = \begin{cases} 0 & \text{if } x \le 0 \\ 1 & \text{otherwise} \end{cases}$$

I_1	I_2	0
0	0	0
1	0	0
0	1	0
1	1	1

logical AND

(infinite number of solutions)

I_1	I_2	0
0	0	0
1	0	1
0	1	1
1	1	1

what is this computation?

I_1	I_2	0
0	0	0
1	0	1
0	1	1
1	1	1

logical OR

$$o = f\left(\sum_{i} I_{i} w_{i} + \beta\right)$$

what values of w_1 , w_2 , and β

I_1	I_2	0
0	0	0
1	0	1
0	1	1
1	1	1

logical OR

$$o = f\left(\sum_{i} I_{i} w_{i} + \beta\right)$$

what values of w_1 , w_2 , and β

$$I_1 \qquad f(x) = \begin{cases} 0 & \text{if } x \le 0 \\ 1 & \text{otherwise} \end{cases}$$

$$I_2 \qquad -.5$$

I_1	I_2	0
0	0	0
1	0	1
0	1	1
1	1	1

ī

logical OR

infinite number of solutions

I_1	I_2	0
0	0	1
1	0	0
0	1	0
1	1	1

what is this computation?

I_1	I_2	0
0	0	0
1	0	1
0	1	1
1	1	0

logical XOR

$$o = f\left(\sum_{i} I_{i} w_{i} + \beta\right)$$

what values of w_1 , w_2 , and β

I_1	I_2	0
0	0	0
1	0	1
0	1	1
1	1	0

logical XOR

$$o = f\left(\sum_{i} I_{i} w_{i} + \beta\right)$$

what values of w_1 , w_2 , and β

$$I_{1} \qquad f(x) = \begin{cases} 0 & \text{if } x \le 0 \\ 1 & \text{otherwise} \end{cases}$$

$$I_{2} \qquad 0$$

$$I_{2} \qquad 0$$

I_1	I_2	0
0	0	0
1	0	1
0	1	1
1	1	0

logical XOR

no solution exists!!!

$$o = f\left(\sum_{i} I_{i} w_{i} + \beta\right)$$

what values of w_1 , w_2 , and β

$$I_1 \qquad f(x) = \begin{cases} 0 & \text{if } x \le 0 \\ 1 & \text{otherwise} \end{cases}$$

I_1	I_2	0
0	0	0
1	0	1
0	1	1
1	1	0

logical XOR

Why?

no solution exists!!!

$$o = f\left(\sum_{i} I_{i} w_{i} + \beta\right)$$

what values of w_1 , w_2 , and β

I_1	I_2	0
0	0	0
1	0	0
0	1	0
1	1	1

logical AND

I_1	I_2	0	
0	0	0	
1	0	0	
0	1	0	
1	1	1	
logical AND			

I_1	I_2	0
0	0	0
1	0	1
0	1	1
1		1
logical OR		

I_1	I_2	0	
0	0	0	
1	0	1	
0	1	1	
1	1	0	
logical XOR			

$$\begin{array}{c|c} I_1 & I_2 & o \\ w_1 \times 0 + w_2 \times 0 + \beta < 0 \\ w_1 \times 1 + w_2 \times 0 + \beta \ge 0 \\ w_1 \times 0 + w_2 \times 1 + \beta \ge 0 \\ 1 & 1 & 1 \end{array}$$

$$\begin{array}{c|c} I_0 & I_1 & I_2 & o \\ \hline I_1 & I_2 & I_3 & I_4 & I_5 \\ \hline I_1 & I_2 & I_4 & I_5 & I_5 \\ \hline I_1 & I_2 & I_4 & I_5 & I_5 \\ \hline I_2 & I_3 & I_4 & I_5 & I_5 \\ \hline I_3 & I_4 & I_5 & I_5 & I_5 \\ \hline I_4 & I_5 & I_5 & I_5 & I_5 \\ \hline I_5 & I_5 & I_5 & I_5 & I_5 \\ \hline I_7 & I_7 & I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 & I_7 & I_7 \\ \hline I_7 & I_7 \\ \hline I_7 & I_7 & I_7 \\ \hline I_7 & I_7 \\ \hline I_7 & I_7 & I_7 \\ \hline I_7 &$$

$$\begin{array}{c|c|c}
I_1 & I_2 & o \\
w_1 \times 0 + w_2 \times 0 + \beta < 0 \\
w_1 \times 1 + w_2 \times 0 + \beta \ge 0 \\
w_1 \times 0 + w_2 \times 1 + \beta \ge 0 \\
w_1 \times 1 + w_2 \times 1 + \beta < 0
\end{array}$$

logical XOR

$$\begin{array}{c|c|c} I_1 & I_2 & o \\ & \beta < 0 \\ w_1 + \beta \ge 0 \\ w_2 + \beta \ge 0 \\ w_1 + w_2 + \beta < 0 \end{array}$$

mutually contradictory (convince yourself)

networks with multiple layers can solve this!!! (the week after next)

&

Background for Homework 3

Example: Visual Digit Classification

input layer

output layer

P(classification)

- more practice using Python
- use a one-layer neural network (input and output layer)

MNIST http://yann.lecun.com/exdb/mnist/

see Homework3.ipynb

```
from keras.datasets import mnist
  (train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# check out dimensions and types of mnist data
print('Training images shape: ', train_images.shape)
print('Training images type: ', type(train_images[0][0][0]))
print('Testing images shape: ', test_images.shape)
print('Testing images type: ', type(test_images[0][0][0]))
```

```
Training images shape: (60000, 28, 28)
Training images type: <class 'numpy.uint8'>
Testing images shape: (10000, 28, 28)
Testing images type: <class 'numpy.uint8'>
```

```
import matplotlib.pyplot as plt

# display some digits
fig = plt.figure()
for i in range(9):
    plt.subplot(3,3,i+1)
    plt.tight_layout()
    plt.imshow(train_images[i], cmap='gray', interpolation='none')
    plt.title("Digit: {}".format(train_labels[i]))
    plt.xticks([])
    plt.yticks([])
plt.show()
```


P(classification)


```
# need to reshape and preprocess the training/testing images
sz = train_images.shape[1]
train_images_vec = train_images.reshape((train_images.shape[0], sz * sz))
train_images_vec = train_images_vec.astype('float32') / 255
test_images_vec = test_images.reshape((test_images.shape[0], sz * sz))
test_images_vec = test_images_vec.astype('float32') / 255

# display new input dimensions/type
print('Training images shape: ', train_images_vec.shape)
print('Training images type: ', type(train_images_vec[0][0]))
```

```
Training images shape: (60000, 784)
Training images type: <class 'numpy.float32'>
Testing images shape: (10000, 784)
Testing images type: <class 'numpy.float32'>
```



```
print('Training labels shape: ', train labels.shape)
print('Training labels type: ', type(train labels[0]))
# also need to categorically encode the labels
print("First 5 training labels as labels:\n", train labels[:5])
from keras.utils import to categorical
train labels onehot = to categorical(train labels)
test labels onehot = to categorical(test labels)
print("First 5 training labels as one-hot encoded vectors:\n",
                       train labels onehot[:5])
# display new output dimensions/type
print('Training labels shape: ', train labels onehot.shape)
print('Training labels type: ', type(train_labels_onehot[0][0]))
Training labels shape: (60000,)
Training labels type: <class 'numpy.uint8'>
First 5 training labels as labels:
 [5 0 4 1 9]
First 5 training labels as one-hot encoded vectors:
 [[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
 [1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]]
Training labels shape: (60000, 10)
Training labels type: <class 'numpy.float32'>
```



```
# import tools for basic keras networks
from keras import models
from keras import layers
nout = 10
# create architecture of simple neural network model
# input layer : 28*28 = 784 input nodes
# output layer : 10 (nout) output nodes
network = models.Sequential()
network.add(layers.Dense(nout, activation='sigmoid', input shape=(sz * sz,)))
# compile network
network.compile(optimizer='sqd', loss='mean squared error', metrics=['accuracy'])
# now train the network
history = network.fit(train images vec, train labels onehot, verbose=False,
                       validation split=.1, epochs=20, batch size=128)
```

$$a_j = \frac{1}{1 + \exp(-n_j)}$$

the weights (**W**) and biases (**B**) are learned from training data

Homework 3

see Homework3.py and Homework3.ipynb on Brightspace

20 points
Due Thursday January 24th

Q1. The original MNIST test_labels numpy array contains the digit value associated ## with the corresponding digit image (test_images). The output from the network (from ## out = network.predict(test_images_vec) above) contains the activations of the 10 ## output nodes for every test image presented to the network. Write a function that ## takes the (10000,10) numpy array of output activations (of type float32) and returns ## a (10000,) numpy array of discrete digit classification by the network (of type uint8). ## In other words, create a test_decisions numpy array of the same size and type as the ## MNIST test_labels array you started with. Below you will use both arrays to pull out ## test images that the network classifies correctly or incorrectly.

To turn a numpy array of continuous output activations into a discrete digit classification, ## just take the maximum output as the "winner" that take all, determining the classification.

In your function, feel free to use for loops. We are looking to see that you understand ## how to use the outputs generated by the network, not whether you can program using the ## most efficient python style.

Q2. Comparing the correct answers (test_labels) and network classifications ## (test_decisions), for each digit 0..9, find one test image (test_image) that is classified ## by the network correctly and one test image that is classified by the network incorrectly.

Create a 2x10 plot of digit images (feel free to adapt the code above that uses subplot), ## with a column for each digit 0..9 with the first row showing examples correctly classified ## (one example for each digit) and the second row showing the examples incorrectly ## classified (one example for each digit). Each subplot title should show the answer and ## the classification response (e.g., displaying 4/2 as the title, if the correct answer is 4 ## and the classification was 2).

Q2. Comparing the correct answers (test_labels) and network classifications ## (test_decisions), for each digit 0..9, find one test image (test_image) that is classified ## by the network correctly and one test image that is classified by the network incorrectly.

Create a 2x10 plot of digit images (feel free to adapt the code above that uses subplot), ## with a column for each digit 0..9 with the first row showing examples correctly classified ## (one example for each digit) and the second row showing the examples incorrectly ## classified (one example for each digit). Each subplot title should show the answer and ## the classification response (e.g., displaying 4/2 as the title, if the correct answer is 4 ## and the classification was 2).

Q2. Comparing the correct answers (test_labels) and network classifications ## (test_decisions), for each digit 0..9, find one test image (test_image) that is classified ## by the network correctly and one test image that is classified by the network incorrectly.

Create a 2x10 plot of digit images (feel free to adapt the code above that uses subplot), ## with a column for each digit 0..9 with the first row showing examples correctly classified ## (one example for each digit) and the second row showing the examples incorrectly ## classified (one example for each digit). Each subplot title should show the answer and ## the classification response (e.g., displaying 4/2 as the title, if the correct answer is 4 ## and the classification was 2).

Q3. Create "images" of the connection weight adapting the code used to display ## the actual digit images. There should be 10 weight images, an image for each ## set of weight connecting the input layer (784 inputs) to each output node. ## You will want to reshape the (784,1) vector of weights to a (28,28) image and ## display the result using imshow().


```
## Q4. Use the weight matrix (W), bias vector (B), and activation function (simple sigmoid)
## to reproduce in your own code the outputs (out) generated by the network (from
## this out = network.predict(test_images_vec))
##
## The simple sigmoid activation function is defined as follows:
## f(x) = 1 / (1+exp(-x))
##
## Feel free to use for loops or vector/matrix operations (we will go over the latter in
## in the coming weeks)
##
## Confirm that your output vectors and the keras-produced output vectors are the same
```

(within some small epsilon since floating point calculations will often not come out

exactly the same on computers).