SEMICONDUCTOR LASER DEVICE

Patent Number:

JP11025465

Publication date:

1999-01-29

Inventor(s):

UCHIDA ETSUSHI

Applicant(s):

VICTOR CO OF JAPAN LTD

Requested Patent:

Application Number: JP19970189220 19970630

Priority Number(s):

IPC Classification:

G11B7/08; G11B7/125; H01S3/18

EC Classification:

Equivalents:

CN1102300B, CN1204171

Abstract

PROBLEM TO BE SOLVED: To contrive reduction of the cost, enhancement of a heat radiating property and improvement of life of a laser by sealing a lead frame fitted with a semiconductor laser chip with a thermoplastic resin material mixed with particles of metallic oxide of an insulating material having high thermal conductivity.

SOLUTION: The semiconductor laser chip 2 as a heat generating source is fitted via a submount 11 and a photodiode 12 to the lead frame 13. This lead frame 13 is sealed by a resin package 14 consisting of a high thermal conductivity resin material A or B to constitute an integrated unit 30. This material A or B to be used is such a material of PPS as a base resin with an additive of MnFe2 O3 or Al2 O3 in its filling ratio of 40% or 50% by volume. As a result, the thermal conductivity is 1.15 or 1.97 W/(m, K), and a thermal resistance from the submount 11 to the resin package 14 is 160 or 110 deg.C/W. Consequently, a heat sink effect is improved at low cost, and application to a high output laser is feasible.

Data supplied from the esp@cenet database - 12

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-25465

(43)公開日 平成11年(1999)1月29日

(51) Int.Cl.4		識別記号	FΙ		
G11B	7/08		G11B	7/08	
	7/125			7/125	Α
H01S	3/18		HOIS	3/18	

		審查請求	未請求 請求項の数4 FD (全 6 頁)
(21)出願番号	特願平9-189220	(71)出顧人	000004329 日本ピクター株式会社
(22)出魔日	平成9年(1997)6月30日		神奈川県横浜市神奈川区守屋町3丁目12番地
		(72)発明者	内田 悦嗣 神奈川県横浜市神奈川区守屋町3丁目12番 地 日本ピクター株式会社内

(54) 【発明の名称】 半導体レーザ装置

(57) 【要約】

【課題】 放熱特性に優れたリードフレーム型半導体レーザ装置を提供する。

【解決手段】 リードフレーム13上に半導体レーザチップ2を取り付け、このリードフレーム13を樹脂パッケージ14によって、封止した半導体レーザ装置30において、樹脂パッケージ14にMnFe2O4を混合してなる半導体レーザ装置。

【特許請求の範囲】

【請求項1】リードフレーム上に少なくも半導体レーザ チップを取り付け、このリードフレームを樹脂材料によ って、封止した半導体レーザ装置において、

該樹脂材料に熱伝導率の高い絶縁性材料の粒子を混合し てなることを特徴とする半導体レーザ装置。

【請求項2】該熱伝導率の高い絶縁性材料の粒子は、金 属酸化物であることを特徴とする請求項1記載の半導体 レーザ装置。

特徴とする請求項1又は2記載の半導体レーザ装置。

【請求項4】該熱可塑性樹脂はPPSであることを特徴 とする請求項3記載の半導体レーザ装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】光ピックアップ等に用いるリ ドフレーム型の半導体レーザあるいは、リードフレーム 上に半導体レーザチップを含む、各種の光学部品を組み 立てた集積ユニットにおける、放熱性の改善に関するも のである。

[0002]

【従来の技術】半導体レーザは温度が上昇すると、急速 に寿命が劣化することが知られている。一般に、温度が 10℃上昇する毎に寿命は半減する。このため、周囲温 度に対する配慮と同時に、自己発熱に対する、放熱の問 題は極めて重要である。従来の半導体レーザは、図1に 示すように、金属製のステム1の上に図示しないレーザ チップを取り付け、この上にガラス窓3aを設けた金属 キャップ3を溶接 (ハーメチックシール) で取り付ける のが普通であった。

【0003】しかし、このステム型レーザ10は、部品 代や組立費が高いため、これに代えて図2に示すよう な、所謂リードフレーム型レーザ20が製造されるよう になった。このリードフレーム型レーザ20は、ニッケ ルメッキ等を施したリン青銅等の薄板を所定形状に打ち 抜き加工して形成した、半導体レーザチップ2を載置す べき部位、半導体レーザチップ2に電力を供給するリー ド4、リードフレーム型レーザ20全体を筐体 (リード フレーム型レーザ20と対物レンズとの相対位置を規定 する筐体)に取り付けるための板状のフィン5等からな るリードフレーム6と、このリードフレーム6を一体に 支持するようにインサート成型した樹脂パッケージで と、リードフレーム6の所定位置に銀ペースト等により 固着された半導体レーザチップ2とから大略構成されて

【0004】そして、更に最近は、図3に示すように、 レーザチップの他に複数の光学部品をリードフレームの 上に組み立ててより小型化・低廉化を図った集積ユニッ トも製造されるようになった。図3は、ホログラム素子 16を分離して示す集積ユニット30の斜視図である。

【0005】半導体レーザチップ2は、サブマウント1 1、フォトダイオード12を介して、リードフレーム1 3に取り付けられている。さらにリードフレーム13は 樹脂パッケージ14でパッケージングされている。16 はホログラム索子であり、その両面にグレーティング1 6aとホログラム16bが形成されている。そして、周 知のように、半導体レーザチップ2から放射してマイク ロミラー15で反射したレーザピームを3本のピーム

(実線矢印) に分割すると共に図示しない光ディスクで **【請求項3】該樹脂材料は、熱可塑性樹脂であることを □ 反射されたレーザ光をフォトダイオード12上に形成さ** れた受光センサに導くことにより、トラッキング信号や フォーカシング信号を得るようになっている。なお、図 3では、ホログラム素子16を樹脂パッケージ14と分 離して示しているが、実際にはホログラム素子16は樹 脂パッケージ14に接着されて、半導体レーザチップ2 やマイクロミラー15等が封止された状態で使用され る。

> 【0006】従来のステム型レーザ10の場合、ステム 1が金属のため、熱伝導率も良く、放熱設計が容易であ った。例えば、対物レンズや反射鏡等を支持する図示し ない金属製の光学ベースにステム型レーザ10のステム 1を付き当てて取り付けることにより、金属製の光学べ ースがヒートシンクの役割を果たすことになり、ステム 1から光学ペースまでの熱抵抗 (1ワットあたりの温度 上昇) は20℃/W程度とすることができる。通常のC D用の光ピックアップに用いられるレーザの場合、その 出力は0.1W程度であるから、温度上昇は2℃程度で 大きな問題とはならない。

> 【0007】これに対し、リードフレーム型の場合、通 常、熱伝導率の低い、樹脂材料でパッケージングされて おり、取り付けは、この樹脂成形部分を介して行われ る。このため、半導体レーザチップ2で発生した熱はリ ードフレームまでは伝わるものの、樹脂材料以降は熱伝 導率が小さく、この樹脂部分にヒートシンクを取り付け ても、大きな放熱効果は期待できない。たとえば、上記 . ステム型レーザ10の場合と同じ金属製の光学ペースに 取り付けた場合でも、リードフレーム6以降の熱抵抗は 200℃/W程度となりレーザの出力を同様に0.1W としても、20℃もの温度上昇となり、寿命は1/4以 下に劣化してしまう。

[0008]

【発明が解決しようとする課題】このように、リードフ レーム型レーザ及び、集積ユニットは、熱伝導の低い樹 脂材料で、パッケージングされており、光学ベース等他 の部材への取り付けも通常この樹脂成形部を介して取り 付けられるため、樹脂部で熱の伝導が悪く、樹脂の上に ヒートシンクを取り付けても、放熱効果が期待できない という問題がある。

【0009】ここで、図3の集積ユニット30につい 50 て、熱的モデルを設定し、その放熱過程について図4万 至図6を参照して検討する。図6は、図3の集積ユニット30の熱的モデルを示す図である。この図は、発熱源である半導体レーザチップ2から樹脂パッケージ14までの熱の伝導経路を1~11までの番号を順に付して示す模式図である。

【0010】また、図4は、横軸に熱伝導方向、縦軸に 熱伝導可能量 (W/m℃) をとったグラフであり、図5 は、横軸に熱伝導方向、縦軸に放熱可能量 (W/s℃) をとったグラフである。なお、図4及び図5において、 横軸に付した1、6、8、10、11は半導体レーザチ 10 ップ2、サブマウント11、フォトダイオード12、リ ードフレーム13、樹脂パッケージ14をそれぞれ示 す。また、図6では、半導体レーザチップ2とサブマウ ント11との間に非常に薄いAu膜、Sn膜等が介在 し、サブマウント11とフォトダイオード12との間及 びフォトダイオード12とリードフレーム13との間に 銀ペースト膜がそれぞれ介在する構成となっているが図 4及び図5では、簡単のためにこれらを省略して示す。 また、図5において各棒グラフ中ハッチングを施した部 分は輻射による放熱を示し、ハッチングのない部分は自 然対流による放熱を示す。

【0011】図5から明らかなように、最大の放熱は樹脂パッケージ14からの輻射及び対流によるものであることがわかる。他方、図4を参照すると、この樹脂パッケージ14への熱伝達可能量が最も小さくなっていることが分かる。従って、外部にヒートシンクを取り付ける場合でもこの樹脂パッケージ14を介して取り付けることになるため、ヒートシンクの効果が出ないことがわかる。

【0012】以上のような理由から従来より、リードフ 10 レームを樹脂でパッケージしたレーザ装置は、放熱が難 しいものとされている。そこで、従来は、レーザ自体の 効率を高めることにより消費電力を少なくして、自己発 熱を少なくするなどの対策もとられているが、この方法 はレーザの設計が困難であると共に高出力レーザの要求 を考えると限界があると言える。

[0013]

【課題を解決するための手段】本発明は、斯かる問題点 に鑑みなされたものであり、請求項1に係る発明は、

「リードフレーム上に少なくも半導体レーザチップを取 u す。 り付け、このリードフレームを樹脂材料によって、封止 【表

した半導体レーザ装置において、該樹脂材料に熱伝導率 の高い絶縁性材料の粒子を混合してなることを特徴とする半導体レーザ装置。」を提供するものであり、

【0014】請求項2に係る発明は、「該熱伝導率の高い絶縁性材料の粒子は、金属酸化物であることを特徴とする請求項1記載の半導体レーザ装置。」を提供するものであり、

【0015】請求項3に係る発明は、「該樹脂材料は、 熱可塑性樹脂であることを特徴とする請求項1又は2記 載の半導体レーザ装置。」を提供するものであり、

【0016】請求項4に係る発明は、「該熱可塑性樹脂はPPSであることを特徴とする請求項3記載の半導体レーザ装置。」を提供するものである。

[00.17]

【発明の実施の形態】本発明の半導体レーザ装置は、図2又は図3に示したリードフレーム型レーザ又は、リードフレーム上にレーザチップの他の光学部品等を一体に組み立てた集積ユニットの放熱性の改善についてのものである。以下、図3に示した集積ニット30を例に、本発明の実施の形態について説明する。

【0018】先に、検討した集積ユニット30の熱的モデルの結果から、樹脂パッケージ14の熱伝導率を大きくすれば、放熱性を大幅に改善できることが分かる。従来、この種のリードフレーム型レーザ20や集積ユニット30のパッケージングには、熱硬化性のエポキシ、又は、熱可塑性のPPSが使用されてきた。市販材料には、ガラスや無機フィラーなど各種の添加物を入れた材料が存在するが、これらの材料の熱伝導率はPPSで0.2~0.4W/m・K、エポキシで0.4~0.6W/m・K程度のものしか存在しない。

【0019】そこで本発明では、ベースレジンをPPSとし、添加物として鉄系酸化物、アルミ系酸化物において実験を行い、添加物の容積比率40%以上において、熱伝導率を1W/m・K以上とすることができることを確認した。なお、これらの金属酸化物はその混合比率が高いほど熱伝導率は高くなるが、その上限は成形時の材料の流動性や、金型の摩耗等を考慮して決定すべきものである。表1に、今回使用したPPSベースの材料Aと材料Bの熱伝導率と従来樹脂の熱伝導率との比較を示す

【表1】

材料	熱伝導率
通常エポキシ	0.60 W/m·K
通常PPS	0.40 W/m·K
材料 A	1. 15 W/m·K
材料 B	1. 97 W/m·K

なお、ここで材料Aは、PPSにMnFe2O4を容積比 率で40%添加したものであり、材料BはA1203を5 0%添加したものである。

*合と、この高熱伝導樹脂材料A又はBを使用した場合 の、サブマウントから樹脂パッケージまでの、熱抵抗の 比較結果を示す。

【0020】また、表2に、通常のPPSを使用した場*

【表2】

材料	熟抵抗
通常PPS	230 ℃/W
材料 A	160 ℃/w
材料 B	110 °C/W

さらに、金属製光学ベースをヒートシンクとして使用し ※示す。 た場合のサブマウント以降の熱抵抗の比較結果を表3に※ 【表3】

材料	熟抵抗	
(ステム型レーザ)	(20 ℃/W)	
通常PPS	200 ℃/W	
材料 A	120 °C/W	
材料 B	60 ℃/W	

これらの結果から、材料A又はBを使った場合、ステム 型レーザ10には及ばないものの、従来の集積ユニット (通常PPSで樹脂パッケージ14を成形) と比べれ ば、放熱性を大幅(約2~3倍)に改善することがで き、レーザ寿命の大幅な改善を実現することができる。 ーザにも、コストの安い、リードフレーム型レーザや隼 積ユニットの実現が可能となるものである。

【0021】なお、リードフレームを用いた集積ユニッ トにおいては、過去、熱硬化性樹脂のエポキシでしか実 例がない。これは、熱硬化性エポキシの場合、リードフ レームと樹脂の密着性が高く、湿度の侵入が少ないから であり、ICやLSIの封止経験からきている。しか し、熱硬化性エポキシは、成形サイクルが長く、後処理 に6時間~8時間以上の熱処理が必要である。また、バ リがでやすく、パリ取り工程を除くことができない。こ 40 れらの理由から、どうしてもコストが高くなってしま

【0022】これに対し、熱可塑性樹脂は、成形サイク ルが短く、後処理は不必要であり、且つバリが出にく い。このため、大幅な工程の短縮ができ、コストを押さ えることができる。一方、リードフレームとの密着性が エポキシに劣り、湿度の侵入の可能性があることは事実 である。しかし、本発明の半導体レーザ装置は、LSI などの大規模集積回路と異なり、半導体レーザチップ及 び光学部品等が集積化されてもリード間の距離が長く、

リークの心配が少ない。また、LSIと比較して電流が 大きいため、抵抗や静電容量などの変化の影響が少な い。

【0023】更に、本発明の半導体レーザ装置では、半 導体レーザチップ2そのものは、樹脂に封止されている また、この方法を利用すれば、将来の高出力タイプのレ 10 わけでなく、結路などがリードと樹脂の界面に侵入して もレーザチップそのものが、水に覆われるわけではな い。また、レーザチップ表面への結露については、発光 部表面に付けるコーティングの改善によって充分対応で きる。これらのことから、熱硬化性樹脂に代えて熱可塑 材料を採用することが充分可能である。

> 【0024】なお、上に説明した実施の形態では、添加 物として金属酸化物を用いた場合について説明したが、 本発明はこれに限定されるものではない。例えば、単結 晶シリコンやボロン系酸化物等も用いることができる。 [0025]

> 【発明の効果】以上説明したように本発明の半導体レー ザ装置によれば、コストの安いリードフレーム型レーザ や集積ユニットで大幅な放熱性の向上を図ることがで き、レーザの寿命の改善を実現できる。また、本発明の 半導体レーザ装置に取り付けるヒートシンクの効果が大 幅に改善するため、放熱設計が容易になる。将来の高出 カレーザへの応用が可能である。

【図面の簡単な説明】

【図1】ステム型レーザの概略構成を示す斜視図であ

(5)

【図2】リードフレーム型レーザの概略構成を示す斜視 図である。

【図3】レーザチップの他に複数の光学部品をリードフレームの上に組み立てた集積ユニットの構成を示す斜視図である。

【図4】横軸に熱伝導方向、縦軸に熱伝導可能量 (W/m[℃]) をとったグラフである。

【図5】横軸に熱伝導方向、縦軸に放熱可能量 (W/s ℃) をとったグラフである。

【図6】図3の集積ユニットの熱的モデルを示す図であ 10 る。

【符号の説明】

- 1 ステム
- 2 半導体レーザチップ

- 3 金属キャップ
- 4 リード
- 5 フィン
- 6 リードフレーム
- 7 樹脂パッケージ
- 10 ステム型レーザ
- 11 サブマウント
- 12 フォトダイオード
- 13 リードフレーム
- 14 樹脂パッケージ
- 15 マイクロミラー
- 16 ホログラム素子
- 20 リードフレーム型レーザ
- 30 集積ユニット

[図6]

