Fast method in evaluating density of multivariate Gaussian

▶ Given data $x \in \mathbb{R}^d$, the likelihood that it comes from a multivariate Gaussian density with mean vector $\mu \in \mathbb{R}^d$ and covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$ is

$$\mathcal{N}(x;\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^d \det(\Sigma)}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

- ▶ The most expensive part to compute this is to evaluate Σ^{-1} , which has a complexity $\mathcal{O}(d^3)$.
- Moreover, when Σ is rank-deficient, i.e., there are close-to-zero eigenvalues, computing Σ^{-1} will return NAN (you cannot invert the matrix)

- Now let's make it faster and avoid the numerical issues by compute using "low-rank approximation"
- ► Compute eigendecomposition of

$$\Sigma = U \Lambda U^T$$

where $\Lambda = \text{diag}\{\lambda_1, \dots, \lambda_d\}$ and the eigenvalues are ordered

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d$$

▶ The rank-r approximation (r < d) of Σ is

$$\tilde{\Sigma} = \tilde{U}\tilde{\Lambda}\tilde{U}^T$$

where \tilde{U} is a d-by-r matrix formed by the first r columns of U, $\tilde{\Lambda} = \text{diag}\{\lambda_1, \ldots, \lambda_r\}$.

▶ Typically we will choose r such that at least $\lambda_r > 0$

Now compute transform of data and parameters

$$ilde{x} = ilde{U}^T x$$
 https://www.cse.huji.ac.il/~ csip/tirgul34.pdf

- ▶ Compute $\tilde{\Lambda}^{-1} = \text{diag}\{\lambda_1^{-1}, \dots, \lambda_r^{-1}\}$
 - ► Note that

$$\det(\Sigma) = \prod_{i=1}^{d} \lambda_i, \quad \det(\tilde{\Sigma}) = \prod_{i=1}^{r} \lambda_i$$

Finally, the density calculated by replacing Σ with $\tilde{\Sigma}$ is:

$$\mathcal{N}(x; \mu, \Sigma) \approx \frac{1}{\sqrt{(2\pi)^d \prod_{i=1}^r \lambda_i}} \exp\left\{-\frac{1}{2} \sum_{i=1}^r \frac{(\tilde{x}_i - \tilde{\mu}_i)^2}{\lambda_i}\right\}$$

where \tilde{x}_i and $\tilde{\mu}_i$ denote the ith entry of \tilde{x} and $\tilde{\mu}$, respectively.

▶ Note: you can play with different *r* to have a good tradeoff between accuracy and speed

Note that above we have used the following basic identity from linear algebra

$$\tilde{\Sigma}^{-1} = \tilde{U}\tilde{\Lambda}^{-1}\tilde{U}^T$$

and

$$(x - \mu)^T \Sigma^{-1} (x - \mu)$$
$$= (x - \mu)^T \tilde{U} \tilde{\Lambda}^{-1} \tilde{U}^T (x - \mu)$$

$$= (x - \mu)^T \tilde{U} \tilde{\Lambda}^{-1} \tilde{U}^T (x - \mu)$$

 $= [\tilde{U}^T(x-\mu)]^T \tilde{\Lambda}^{-1} [\tilde{U}^T(x-\mu)]$ $= [\tilde{x} - \tilde{\mu}]^T \tilde{\Lambda}^{-1} [\tilde{x} - \tilde{\mu}]$

$$=\sum_{i=1}^{r}\frac{(\tilde{x}_{i}-\tilde{\mu}_{i})^{2}}{\lambda_{i}}$$