Forensic Analysis: Quantifying Gender Pay Disparities at Daikibo Industrials

Task 2: Forensic technology

Here is the background information on your task

After a worrisome number of internal complaints about gender inequality in terms of salary, Daikibo Industrials wants us to help them investigate.

The Forensic Tech team has built an algorithm to quantify "level of gender pay equality" for most job roles within the company, in all company locations. Our Forensics lead thinks it would be a great idea for you to finish the job.

Recap & Task Summary:

Previously, we built a Tableau dashboard analyzing Daikibo's factory downtime (classifying "Unhealthy" statuses and comparing performance across locations). Now, we're investigating gender pay equity by processing their compensation data: adding an "Equality Class" column to categorize scores as Fair (±10), Unfair (<-10 or >10), or Highly Discriminative (<-20 or >20) in Excel. Both projects transform raw data into actionable compliance insights.

Implementation Tasks for Daikibo's Forensic Analysis

Task 2: Forensic technology

Here is your task

We have processed all data on employee compensation and generated an Excel file (Equality Table.xlsx, available in the Resources) containing 3 columns:

- 1. Factory
- 2. Job Role
- 3. Equality Score (integer; ranging between -100 and +100; 0 is ideal)

Here is your task:

- Create a 4th column (Equality class), classifying the equality score into 3 types:
 - Fair (+-10)
 - Unfair (<-10 AND >10)
 - Highly Discriminative (<-20 AND >20)

Examples:

- 10 → Fair
- -9 → Unfair
- 30 → Highly Discriminative

Please find the Equality Table you need to edit in the resources below. When you are done, upload the edited version of the file.

Daikibo's Forensic Analysis

1	Factory	Job Role	Equality Score	Equality class
2	Daikibo Factory Meiyo	C-Level	-25	Highly Discriminative
3	Daikibo Factory Meiyo	V P	-26	Highly Discriminative
4	Daikibo Factory Meiyo	Director	-19	Unfair
5	Daikibo Factory Meiyo	Sr. Manager	-15	Unfair
6	Daikibo Factory Meiyo	Manager	-14	Unfair
7	Daikibo Factory Meiyo	Jr. Manager	-20	Unfair
8	Daikibo Factory Meiyo	Sr. Engineer	-5	Fair
9	Daikibo Factory Meiyo	Engineer	-8	Fair
10	Daikibo Factory Meiyo	Jr. Engineer	3	Fair
11	Daikibo Factory Meiyo	Operational Support	-22	Highly Discriminative
12	Daikibo Factory Meiyo	Machine Operator	-7	Fair
13	Daikibo Factory Seiko	V P	-19	Unfair
14	Daikibo Factory Seiko	Director	-10	Fair
15	Daikibo Factory Seiko	Sr. Manager	-21	Highly Discriminative
16	Daikibo Factory Seiko	Manager	-21	Highly Discriminative
17	Daikibo Factory Seiko	Jr. Manager	-24	Highly Discriminative
18	Daikibo Factory Seiko	Sr. Engineer	-4	Fair
19	Daikibo Factory Seiko	Engineer	-7	Fair
20	Daikibo Factory Seiko	Jr. Engineer	4	Fair
21	Daikibo Factory Seiko	Operational Support	-19	Unfair
22	Daikibo Factory Seiko	Machine Operator	-5	Fair
23	Daikibo Berlin	Sr. Manager	-15	Unfair
24	Daikibo Berlin	Manager	-16	Unfair
25	Daikibo Berlin	Jr. Manager	-17	Unfair
26	Daikibo Berlin	Sr. Engineer	4	Fair
27	Daikibo Berlin	Engineer	2	Fair
28	Daikibo Berlin	Jr. Engineer	4	Fair
29	Daikibo Berlin	Operational Support	0	Fair
30	Daikibo Berlin	Machine Operator	-6	Fair
31	Daikibo Shenzhen	Sr. Manager	-21	Highly Discriminative
32	Daikibo Shenzhen	Manager	-19	Unfair
33	Daikibo Shenzhen	Jr. Manager	-20	Unfair
34	Daikibo Shenzhen	Sr. Engineer	-5	Fair
35	Daikibo Shenzhen	Engineer	-4	Fair
36	Daikibo Shenzhen	Jr. Engineer	3	Fair
37	Daikibo Shenzhen	Operational Support	-7	Fair
79	Daikibo Shenzhen	Machine Operator	-7	Fair

A new column titled '**Equality Class**' has been added to the dataset, implementing the following classification logic

=IF(ABS(C2)<=10, "Fair", IF(ABS(C2)<=20, "Unfair", "Highly Discriminative"))

```
    This is my Remnote document

    ▼ • Explanation of the Formula used in Cell D2 of Equality class:

          =IF(ABS(C2)<=10, "Fair", IF(ABS(C2)<=20, "Unfair", "Highly Discriminative"))
     ▼ 1. IF(condition, value_if_true, value_if_false)
          • This function checks a condition. If it's TRUE, it returns the first value; otherwise, it returns
            the second value.
     ▼ 2. ABS(C2)
          • ABS() returns the absolute value of C2, meaning it removes any negative sign.
     ▼ 3. ABS(C2) <= 10
          • Checks if the absolute value of C2 is 10 or less.
          • If TRUE → Returns "Fair".
     ▼ 4. ABS(C2) <= 20
          • If the first condition is FALSE, it checks if ABS(C2) is between 11 and 20.
          • If TRUE → Returns "Unfair".
     ▼ 5. "Highly Discriminative"
          • If neither of the first two conditions is met (i.e., ABS(C2) > 20), it returns "Highly
            Discriminative".
```

Deloitte.

Priyanshu Biswas Data Analytics Job Simulation

Certificate of Completion
March 24th, 2025

Over the period of March 2025, Priyanshu Biswas has completed practical tasks in:

Data analysis Forensic technology 1. Mi lucum

Tina McCreery Chief Human Resources Officer, Deloitte