Combinatorial Games

Mark Bell (m.c.bell@warwick.ac.uk)

19th February 2014

Each of the following games are played by two players, I and II. Player I always starts and players alternate turns until one of them wins or loses. If a player cannot make a move then they lose.

1 Warmup

Question 1.1. Start with a pile of k coins and a set $S \subseteq \{1, ..., k\}$. On a player's turn they must remove x coins from the pile where $x \in S$.

- (a) Show that I has a winning strategy when k = 20 and $S = \{1, 2, 3, 4, 5\}$.
- (b) Show that I has a winning strategy when k = 11 and $S = \{1, 4, 5\}$.
- (c) Who has a winning strategy when k = 2014 and $S = \{1, 4, 5\}$?

2 To think about

Question 2.1. Start with several piles of coins. On a player's turn they must remove some non-zero number of coins from one pile.

- (a) Show that I has a winning strategy when the piles start with 2, 3 and 3 coins respectively.
- (b) Show that I has a winning strategy when the piles start with 2, 3 and 4 coins respectively.
- (c) Who has a winning strategy when when the piles start with 2012, 2013 and 2014 coins respectively?

Question 2.2. Start with a rooted tree G; that is, a connect graph which has no cycles and a special vertex v_0 called the *root*. On a player's turn they *must* remove an edge of G along with the connected component *not* containing v_0 .

Let G_1 be the rooted tree shown in Figure 1a. Let G_k be the rooted tree obtained by identifying each leaf vertex of G_1 with the root vertex of a copy of G_{k-1} . In Figure 1a, the leaf vertices of G_1 have been labelled by an ℓ and G_2 and G_3 are shown in Figure 1b and Figure 1c respectively for reference.

- (a) Show that I has a winning strategy when $G = G_2$.
- (b) Show that I has a winning strategy when $G = G_3$.
- (c) Who has a winning strategy when $G = G_{2014}$?

Figure 1: G_k is obtained by identifying each leaf vertex of G_1 with the root vertex of a copy of G_{k-1} .

3 Homework

Question 3.1. Start with a row of coins, each showing either Heads or Tails. On a player's turn they must turn over one coin showing Heads and may turn over a second coin to the left of it.

- (a) Show that II has a winning strategy when the initial row of coins is HHH.
- (b) Show that I has a winning strategy when the initial row of coins is HTHTTH.
- (c) Suppose that $0 \le i < j < k$ and that the initial row of coins is

$$\underbrace{T\cdots T}_{i}H\underbrace{T\cdots T}_{j}H\underbrace{T\cdots T}_{k}H.$$

For what values of i, j and k does I have a winning strategy?

Question 3.2. Start with a row of n boxes. On a player's turn they must write either an S or O in one box. A player wins if at the end of their turn the sequence SOS appears in consecutive boxes.

- (a) Show that if n = 4 and I starts by writing an S in the first box then II has a winning strategy.
- (b) Show that **I** has a winning strategy when n = 7.
- (c) Who has a winning strategy when n = 2014?