Introduction to Domain Science

By Prof. Roman Voronov New Jersey Institute of Technology

Outline

- Simulation Scales Overview
- Why use Computational Modeling?
- Molecular Simulations

Electronic - Density Functional Theory (DFT): Schrödinger Equation

Atomistic - Molecular Dynamics (MD): F = m * a

Atomistic - Metropolis Monte Carlo (MC): Random Movement Generation

Mesoscopic Simulations

Coarse-Grained: MD & MC

Lattice Boltzmann Method

• Macroscopic Simulations

Continuum Mechanics

Astrophysics

Spatial & Temporal Problem Scales

Length (m)	Phenomena
10-18-10-15	quarks, strings
10 ⁻¹⁵ -10 ⁻¹²	proton, neutron
10 ⁻¹² -10 ⁻⁹	gamma rays, X rays, hydrogen atom
10 ⁻⁹ -10 ⁻⁶	DNA virus optical light
10 ⁻⁶ -10 ⁻³	bacteria, fog, human hair
10 ⁻³ -10 ⁰	mosquito, golf ball, football
10 ⁰ -10 ³	people, football field, Eiffel tower
10 ³ -10 ⁶	Mt. Everest, Panama Canal, asteroid
10 ⁶ -10 ⁹	Moon, Earth, light-second
10 ⁹ -10 ¹²	Sun, light-minute, Earth's orbit
10 ¹² -10 ¹⁵	Solar System
10 ¹⁵ -10 ¹⁸	light-year, nearest star
10 ¹⁸ -10 ²¹	galactic arm
10 ²¹ -10 ²⁴	Milky Way, distance to Andromeda galaxy
10 ²⁴ -10 ²⁶	visible universe

re-		
Time Scale (s)	Phenomena	
10-44	Planck time	
10 ⁻²⁴	light crosses nucleus	
10 ⁻¹⁵	atomic vibration, visible light	
10 ⁻¹²	IBM SiGe transistor	
10 -9	1 Gz CPU	
10 ⁻⁶	protein folding, lightning bolt	
10 ⁻³	hard disk seek time, blink of an eye	
10 ⁰	earthquakes	
10 ²	tornadoes	
10 ⁵	hurricanes	
10 ⁷	year	
10 ⁹	human life span	
10 ¹⁰	deep ocean mixing time	
10 ¹²	first homo sapiens	
10 ¹⁵	Milky Way rotation period	
10 ¹⁷	age of universe	

Direct Human Experience

Why Modeling: Real Problems are Complex...

Lung Airways

Brain Vasculature

Why Modeling: Analytical Solutions are Limited!

As an example, let's consider the equations that describe *fluid flow*:

$$\rho g_{x} - \frac{\partial p}{\partial x} + \mu \left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{2} u}{\partial z^{2}} \right) = \rho \frac{Du}{Dt}$$

$$\rho g_{y} - \frac{\partial p}{\partial y} + \mu \left(\frac{\partial^{2} v}{\partial x^{2}} + \frac{\partial^{2} v}{\partial y^{2}} + \frac{\partial^{2} v}{\partial z^{2}} \right) = \rho \frac{Dv}{Dt}$$

$$\rho g_{z} - \frac{\partial p}{\partial z} + \mu \left(\frac{\partial^{2} w}{\partial x^{2}} + \frac{\partial^{2} w}{\partial y^{2}} + \frac{\partial^{2} w}{\partial z^{2}} \right) = \rho \frac{Dw}{Dt}$$

$$\frac{\partial \rho}{\partial z} + \nabla \cdot (\rho \overrightarrow{V}) = 0$$

Navier-Stokes Equation They are **Coupled**, **Nonlinear**, **Partial Differential Equations** ...

Can YOU solve them?

 $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{V}) = 0$ Continuity

Exact solutions are only available for **simple** geometries: like flow in a *Channel*, *Duct*, *Pipe*, *Annulus*; or around *Steps / Cavity*, *Cylinders*, *Spheres*.

It is a "Millennium Prize" problem → You get \$1 million for the *general* solution! https://www.claymath.org/millennium-problems/navier%E2%80%93stokes-equation

Why Modeling: Experiments can be VERY expensive!

James Webb Telescope (**\$10 billion** USD, 2016)

Large Hadron Collider, CERN (**\$4.75 billion** + and **\$1billion /yr** operating cost, 2010)

Why Modeling: Political / Ethical / Safety Reasons

Human Embryonic Stem Cell research bans (was federal, now by state)

Nuclear Test-Ban Treaty → Department of Energy built large supercomputers

to simulate nuclear weapons: Summit Supercomputer was No. 1 in the World June 2018 to November 2019

Chemical Plant Safety Simulations

https://www.energy.gov/sci ence-innovation/science-te chnology/computing

Why Modeling: Inherent Technology Limitations

For example, Optical Microscopy has a limit:

Poor Resolution: diffraction limit IS exceeded (\(\lambda > \) length-scale)

2014 Nobel Prize in Chemistry For Super-Resolution \rightarrow nm Range

Difference between confocal and super resolution view of a human cell. Credit: Dr. Dr. Kandasamy Biomedical Microscopy Core University of Georgia.

But still limited to >nm objects and cannot image deeper than ~100µm

Ultimate Goal: Experiments + Modeling Together

Joke: "Only the person who coded the simulation believes its results, while everybody <u>but</u> the person who worked in the lab believes the experiment."

Experiment

Empirical Validation

Theory and Computation

Simulated Prediction

Electronic Structure: Density Functional Theory (DFT)

Nobel Prize in Chemistry 1998

<u>Common Applications</u>: Condensed-matter physics, Computational physics and chemistry (e.g., catalysis)

How it Works: Solves the **Schrödinger** Equation

What it Calculates: Electron Density Around Atoms → Force Fields / Interactions between Atoms

Popular Codes:

https://www.msg.chem.iastate.edu/gamess/ https://gaussian.com http://www.pqs-chem.com https://www.vasp.at

Atomistic Simulations: Molecular Dynamics (MD)

<u>Common Applications</u>: Anything w/ atoms (**high ρ**) - Drug Design, Material Science...

<u>How it Works:</u> Calculates Force Interactions (i.e, solves $\mathbf{F} = \mathbf{m} \cdot \mathbf{a}$) between many atoms. No explicit electrons are modeled, the forces between "atoms" are assumed:

- Van der Waals (i.e., Covalent)
- Coulomb Electrostatic
- Hydrogen Bonds
- Intramolecular Interactions
- Hybrid MD/DFT is possible
 (MD = atom motion / DFT = forces)

What it Calculates: Atom **Trajectories** → Animations, Statistical Averages (Pressure, Density, etc), Protein Folding Confirmations.

Popular Codes:

GROMACS
FAST. FLEXIBLE. FREE.
http://www.gromacs.org/

Formation of a Liquid Droplet Video from Voronov et. al https://doi.org/10.1021/ie0712941

Atomistic: Metropolis Monte Carlo (MC)

Common Applications: Like MD \rightarrow Anything with atoms (**Low** ρ)

How it Works: Atoms are Moved *Randomly* Over Tiny Distances.

Each move is then EITHER Accepted OR Discarded based on

how *likely* it is to occur in nature (Interaction Forces + Boltzmann

Distribution)! The forces are either assumed (e.g., MD) or calculated via DFT.

Monte Carlo, Monaco ("Las Vegas" of Europe

What it Calculates: Statistical Averages (Pressure, Density, etc), Likely Protein Folding Confirmations... but **NOT** Atom **Trajectories!!** → **Time** Sequence is **LOST!**

Popular Codes:

https://www.ccp5.ac.uk/ DL MONTE

https://wiki.iraspa.org /index.php/RASPA

http://towhee.sourceforge.net/

https://cassandra.nd.edu/

Mesoscopic: Coarse Grained MD/MC Simulations

Common Applications: Simple Representation of Complex systems (e.g. Proteins).

"United Atom" Model: A group of atoms (e.g., CH₂, CH₃, etc.) are considered to be a **single** unit.

"Coarse Grained" Model: **Several** united atoms

are taken as one "bead".

<u>Codes</u>: Typically Same as MD & MC

Representation of a solvated protein at different levels of details. Protein G (PDB ID: 3GB1) is chosen for the illustration.

Mesoscopic: Lattice Boltzmann / Gas Automata

<u>Common Applications</u>: Very Scalable on Supercomputers → Very **Large** Problems Also, handles *Complex Boundaries* Easily → *Non-Ideal* Geometries (e.g., Porous Media)

How it Works: Instead of Discrete Particles their **Densities** move on a fixed **Lattice**.

The Molecular Nature of the "Fluid" is *Hidden* within the Streaming "Collisions"

Application Example:

Natural Gas Transport in Shale Rock

The inner four cells are consistently colored to visualize the propagation.

https://www.openlb.net/

https://palabos.unige.ch/

Traditional Continuum Mechanics: Conservation Eqns

- The **Continuity** Assumption: Matter Has No Discrete Atoms or Molecules
- The Molecular Nature of a Fluid is "*Hidden*" within its Viscosity
- Solid Objects are Accounted for via Boundary Conditions (e.g., No Slip)
- Density, Velocity, Pressure, Temperature are Assumed to Vary *Continuously* with Space and Time → Conservation eqns. (i.e., Mass, Force, and Energy balances, like on Slide 5) of macroscopic properties are solved *numerically*.
- The assumption breaks down at Knudsen (Kn) number > 0.01

Kn = <u>Mean Travel Distance Before Collision</u> Characteristic Length of System

Traditional Continuum Mechanics: Examples & Codes

<u>Common Applications</u>: Automotive, Aerospace, Oil & Gas, Pharmaceutical Manufacturing (e.g., Chemical Reactors), Meteorology. Even flow over a cow...:)

Aerodynamics of a Cow

Air Bubble in Oil/Water

Tornado Structure

Multiphase Flow with Interphase eXchanges https://mfix.netl.doe.gov/

Larger Meteorology and Astrophysics Scales

A 3-D animated image of downscaled Global Forecast System (GFS) model data showing Hurricane Katrina making landfall on August 29, 2005. This image was generated with the Visualization and Analysis Platform for Ocean, Atmosphere, and Solar Researchers (VAPOR) tool and ImageMagick.

Large-Scale Simulation of the Known Universe: TNG50

The centers of massive galaxy clusters are super hot (red), while bright structures show diffuse gas from the intergalactic medium shock heating at the boundary between cosmic voids and filaments. (Image: © TNG Collaboration)

- 230 million light-years wide (TNG 300 is even larger!)
- Contains **tens of thousands** of evolving galaxies
- Tracked more than 20 billion particles
- Dark matter, gases, stars and supermassive black holes
- **13.8-billion-year** period
- **16,000 cores** on a Hazel Hen Supercomputer (Germany):

Peak performance	7420 TFlops
Number of compute nodes	7712
Memory/node	128 GB
Power consumption	~3200 KW

A single processor would take 15,000 yrs to compute

https://www.space.com/most-detailed-universe-simulation.html https://www.hlrs.de/systems/cray-xc40-hazel-hen/

https://www.tng-project.org/about/

Other Types of Modeling: Top-Down (Data Science)

The goal is to use "artificial intelligence" to pick up **patterns** in *large* amounts of *data*, instead of relying on fundamental principles (i.e., the code can make predictions *without knowing how the system actually works*).

Physics-Based

By Making Associations (i.e., Machine Learning)

https://er

https://en.wikipedia.org/wiki/Watson_(computer)