Stabilizátory napětí v napájecích zdrojích - měření základních parametrů

Ondřej Šika

Obsah

1	Zad	ání	4
2	Teo	retický úvod	4
	2.1	Stabilizátor	4
	2.2	Druhy stabilizátorů	4
		2.2.1 Parametrické stabilizátory	4
		2.2.2 Zpětnovazební stabilizátory	4
	2.3	Části stabilizátoru	
		2.3.1 Parametrický stabilizátor	5
		2.3.2 Zpětnovazební stabilizátor	5
	2.4	Elektronická pojistka	5
		2.4.1 Druhy pojistek	5
		2.4.2 Důvody používání	5
	2.5	Integrované stabilizátory	6
		2.5.1 LM317T	6
		2.5.2 L200C	6
3	Sch	éma zapojení	7
	3.1	Parametrický	7
	3.2	LM317T	7
	3.3	L200C	7
4	Pos	sup měření	7
5	Nar	něřené a vypočtené hodnoty	8
•	5.1	Parametrický stabilizátor	8
	0.1	5.1.1 Stabilizační charakteristika	8
		5.1.2 Zatěžovací charakteristika	8
	5.2	LM317T	Ĝ
	J.2	5.2.1 Stabilizační charakteristika	Ĝ
		5.2.2 Zatěžovací charakteristika	Ĉ
	5.3	L200C	ç
	0.0	5.3.1 Stabilizační charakteristika	G
	5.4	Zatěžovací charakteristika	ç
	5.5		lC
	0.0		10
		v	L(
		5.5.5 L200C	10
6	Gra	fy 1	.1
	6.1	·	L 1
		v	L 1
			12
			13
	6.2		[4
	_		-

8	Záv	ěr		20
7	Pou	žité př	ístroje	20
		6.3.3	Zatěžovací charakteristika	19
			Stabilizační oblast	-
		6.3.1	Stabilizační charakteristika	17
	6.3	L200C		17
		6.2.3	Zatěžovací charakteristika	16
		6.2.2	Stabilizační oblast	15
		6.2.1	Stabilizační charakteristika	14

1 Zadání

- 1. Na vzorcích stabilizátorů napětí změřte a znázorněte stabilizační charakteristiku.
- 2. V samostatném grafu znázorněte (ve vhodném měřítku) stabilizační oblast.
- 3. Určete činitel stabilizace jednotlivých zapojení. Hodnoty potřebné pro jeho určení v grafu vyznačte.
- 4. Změřte a znázorněte zatěžovací charakteristiky stabilizátorů od 0 do doporučené maximální hodnoty proudu.
- 5. Určete hodnotu vnitřního odporu R_i . Hodnoty potřebné pro jeho určení v grafu vyznačte.
- 6. Porovnejte jednotlivé stabilizátory z hlediska kvality stabilizace a tvrdosti.
- 7. Porovnejte tvrdost nestabilizovaného zdroje (měřeného v úloze č. 2) a stabilizovaného.

2 Teoretický úvod

2.1 Stabilizátor

Napěťový stabilizátor je elektrický obvod (dvojbran) pro udržení konstantního výstupního napětí při změně zátěže a vstupního napětí. Dále snižuje vnitřní odpor zdroje a zvlnění.

2.2 Druhy stabilizátorů

Napěťové stabilizátory můžeme rozdělit do dvou základních skupin. Parametrické a zpětnovazební.

2.2.1 Parametrické stabilizátory

Stabilizují podle parametru některé součástky. To je její nelinearita ve VA charakteristice. Typickým panamerickým stabilizátorem je Zenerova dioda v sérii s rezistorem. Přesnost těchto stabilizátorů není tak vysoká, protože žádná VA charakteristika nikdy není ideální a proto nemají velký rozsah stabilizační oblasti.

2.2.2 Zpětnovazební stabilizátory

Jejich činnost spočívá v tom, že porovnávají velikost výstupního napětí referenčním napětím, což je parametrický stabilizátor v jednom pracovním bodě. Proto tyto stabylizátory mají větší stabilizační oblast a větší přesnost.

2.3 Části stabilizátoru

2.3.1 Parametrický stabilizátor

Má pouze dvě části. Stabilizační prvek a vyrovnávací prvek. Většinou je stabilizační prvek Zenerova dioda a vyrovnávací prvek rezistor. Na stabilizačním prvku je pořád stejný úbitek napětí a zbytek je pak na vyrovnávacím prvku. Ten vyrovnává změny vstupního napětí.

2.3.2 Zpětnovazební stabilizátor

Zpětnovazební stabilizátor se skládá ze 4 členů: snímač výstupního napětí, zdroj referenčního napětí, diferenciální zesilovač a regulační prvek. Snímač výstupního napětí je většinou odporový dělič, který je nastaven tak, aby ideální výstup z děliče byl stejně velký jako zdroj referenčního napětí. Tyto dvě napětí pak porovnává diferenciální zesilovač (operační zesilovač), který pak pomocí regulačního prvku (tranzistoru) reguluje velikost výstupního napětí.

2.4 Elektronická pojistka

2.4.1 Druhy pojistek

• Tavná

Tavná pojistka je tenký drátek. Při překročení určitého proudu se drátek přetaví. Tato pojistka je nevratná.

• Elektronická

Elektronická pojistka je vratná pojistka, což je její velkou výhodou. Je to nelineární termistor, který se chová jako tavná pojistka, s tím rozdílem, že se po určité době znovu vrátí.

2.4.2 Důvody používání

Hlavní výhodou elektronických pojistek je vratnost. Proto se používají všude, kde chceme zamezit většímu proudu a zároveň vím, že se trvalý proud bude pohybovat

v okolí mezního proudu. Tam bychom museli klasické pojistky často měnit. Je také vhodná jako tepelná ochrana obvodu.

2.5 Integrované stabilizátory

$2.5.1 \quad LM317T$

max. výstupní proud 1,5 A min.výstupní proud 3,5 mA	
min.výstupní proud 3.5 mA	
rozsah regulace napětí 1,25 - 37 V	7
referenční napětí 1,25 V	
max.rozdílové napětí 40 V	
pracovní teplota $0 - 125 ^{\circ}C$	
teplotní stabilita 1%	
orientační cena 16,- Kč	
0.1M 240R 240R 1M	⊸ o I

2.5.2 L200C

3 Schéma zapojení

3.1 Parametrický

3.2 LM317T

3.3 L200C

4 Postup měření

Při měření stabilizační charakteristiky nastavujeme na zdroji U_1 napětí od nuly a postupně zvyšujeme. Před měřením musíme mít k dispozici informaci o maximálním vstupním napětí, při kterém je možné ještě stabilizátor provozovat! Změny měřeného výstupního napětí budou po dosažení stabilizační oblasti malé, proto použijeme na výstupu dvou voltmetrů V_2 a V_3 zapojených do série. Pomocné napětí na zdroji U2 nastavíme tak, aby na voltmetru V_3 bylo možné využít nejmenší rozsah (asi tak 0,2 až 1V). Protože napětí na voltmetru V_2 je stabilizované, odečítáme prakticky změny na voltmetru V_2 a výstupní napětí určíte z II. Kirchhoffova zákona.

Při měření zatěžovací charakteristiky budeme měnit zatěžovací odpor. Ve výstupním obvodu zapojíme do série se zatěžovacím odporem ochranný odpor R_0 , abychom se vyvarovali případného zkratu vyřazením odporu R_2 . Hodnotu ochranného odporu R_0 určíme alespoň přibližně z výstupního napětí a maximálního dovoleného proudu. Napětí U_1 nastavíme takové, aby bylo dodrženo potřebné pracovní napětí stabilizátoru.

5 Naměřené a vypočtené hodnoty

5.1 Parametrický stabilizátor

5.1.1 Stabilizační charakteristika

konstantní	$I_2 =$	0.1A
ROHBUGHUH	10 —	O.111

HOHECCH	<u>2</u>	0.11							
U_1	[V]	2	4	6	7.5	8	8.5	9	10
U_2	[V]	0.13	1.13	2.15	8	3.15	8	3.6	4.05
U_3	[V]	0.13	1.13	2.15	-1.131	3.15	-1.98	3.6	4.05
U_{OUT}	[V]	0.26	2.26	4.3	6.869	6.3	6.02	7.2	8.1
U_1	[V]	11	12	15	17	19	21	25	30
U_2	[V]	8	8	8	8	8	8	8	8
U_3	[V]	0.151	0.164	0.2	0.24	0.25	0.320	0.36	0.39
U_{OUT}	[V]	8.151	8.164	8.2	8.24	8.25	8.32	8.36	8.39

5.1.2 Zatěžovací charakteristika

konstantní $U_1 = 15V$

HOIIB GAITGITI C	<u> </u>	<i></i>						
I_Z [A]	0.1	0.2	0.25	0.3	0.35	0.4	0.45	0.50
U_2 [V]	4.13	4.12	4.13	4.1	4.1	4.09	4.09	4.06
U_3 [V]	4.13	4.12	4.13	4.1	4.1	4.09	4.09	4.06
U_{OUT} [V]	8.26	8.24	8.26	8.2	8.2	8.18	8.18	8.12
I_Z [A]	0.55	0.6	0.65	0.7	0.75	0.8	0.9	1
U_2 [V]	4.05	4.05	4.06	4.03	4	3.94	3.66	3.4
U_3 [V]	4.05	4.05	4.06	4.03	4	3.94	3.66	3.4
U_{OUT} [V]	8.1	8.1	8.12	8.06	8	7.88	7.32	6.7

5.2 LM317T

5.2.1 Stabilizační charakteristika

konstantní $I_2 = 0.1A$

U_1	[V]	2	4	6	8	10	11	11.5	12
U_2	[V]	0.18	1.2	2.17	3.14	4.16	4.7	10	5
U_3	[V]	0.18	1.2	2.17	3.14	4.16	4.7	0.1	5
U_{OUT}	[V]	0.36	2.4	4.34	6.28	8.32	9.4	10.1	10
U_1	[V]	12.5	13	15	17	19	21	25	30
U_2	[V]	10	10	10	10	10	10	10	10
U_3	[V]	-0.02	-0.03	-0.016	-0.03	-0.007	-0.015	-0.013	-0.005
U_{OUT}	[V]	9.978	9.970	9.984	9.970	9.993	9.985	9.987	9.995

5.2.2 Zatěžovací charakteristika

konstantní $U_1 = 15V$

I_Z [A]	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.5
U_{OUT} [V] 4.99	4.98	4.97	4.96	4.95	4.94	4.93	4.92	4.91
I_Z [A]	0.55	0.6	0.7	0.8	0.85	0.9	0.95	1
U_{OUT} [V]	4.9	4.89	4.88	4.87	4.86	4.85	4.84	4.81

5.3 L200C

5.3.1 Stabilizační charakteristika

konstantní $I_2 = 0.1A$

$\frac{1}{2} = 0.171$									
U_1	[V]	3	4	6	8	9	10	11	11.5
U_2	[V]	0.17	1.18	2.16	3.13	3.67	4.17	4.64	4.89
U_3	[V]	0.17	1.18	2.16	3.13	3.67	4.17	4.64	4.89
U_{OUT}	[V]	0.34	2.36	4.32	6.26	7.34	8.34	9.28	9.78
U_1	[V]	12	12.5	13	16	18	21	25	30
U_2	[V]	5.07	5.1	10	10	10	10	10	10
U_3	[V]	5.07	5.1	0.06	0.06	0.07	0.08	0.2	0.21
U_{OUT}	[V]	10.14	10.2	10.06	10.06	10.07	10.08	10.2	10.21

5.4 Zatěžovací charakteristika

konstantní $U_1 = 0.1A$

$I_Z[A]$	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45
U_{OUT} [V]	4.99	4.98	4.97	4.96	4.95	4.94	4.93	4.92
I_Z [A]	0.5	0.55	0.6	0.65	0.7	0.8	0.9	1
U_{OUT} [V]	4.91	4.9	4.89	4.88	4.87	4.86	4.85	4.84

5.5 Činitel stabilizace a vnitřní odpor

5.5.1 Parametrický stabilizátor

činitel stabilizace

$$k = \frac{\Delta U_{OUT}}{\Delta U_{IN}} = \frac{8.39 - 8.1}{30 - 10} = 0.0145$$

vnitřní odpor

$$R_i = \frac{\Delta U_{OUT}}{\Delta I_Z} = \frac{8.26 - 6.6}{1 - 0.1} = 1.84\Omega$$

5.5.2 LM317T

činitel stabilizace

$$k = \frac{\Delta U_{OUT}}{\Delta U_{IN}} = \frac{9.995 - 9.978}{30 - 12.5} = 9.7 * 10^{-4}$$

vnitřní odpor

$$R_i = \frac{\Delta U_{OUT}}{\Delta I_Z} = \frac{4.98 - 4.81}{1 - 0.1} = 0.188\Omega$$

5.5.3 L200C

činitel stabilizace

$$k = \frac{\Delta U_{OUT}}{\Delta U_{IN}} = \frac{10.21 - 10.06}{30 - 13} = 8.8 * 10^{-3}$$

vnitřní odpor

$$R_i = \frac{\Delta U_{OUT}}{\Delta I_Z} = \frac{4.99 - 8.84}{1 - 0.1} = 0.166\Omega$$

6 Grafy

- 6.1 Parametrický stabilizátor
- 6.1.1 Stabilizační charakteristika

6.1.2 Stabilizační oblast

6.1.3 Zatěžovací charakteristika

6.2 LM317T

6.2.1 Stabilizační charakteristika

6.2.2 Stabilizační oblast

6.2.3 Zatěžovací charakteristika

6.3 L200C

6.3.1 Stabilizační charakteristika

6.3.2 Stabilizační oblast

6.3.3 Zatěžovací charakteristika

7 Použité přístroje

Zdroj 3206-26-CL 143 Rezistor AL 1732 Stabilizátor L200, LM317, KD 503 Multimetr E11, E6, E7, 37

8 Závěr

Stabilizační a zatěžovací charakteristiky vyšly u všech stabilizátorů podle teoretických předpokladů. Nejlepší činitel stabilizace měl zpětnovazební stabilizátor LM317T a byl $9.7*10^{-4}$. Dále zpětnovazební stabilizátor L200C který měl $k=8.8*10^{-3}$ a nakonec parametrický stabilizátor k=0.0145. Vnitřní odpory u stabilizátorů byly vždy pod 1Ω , což jsou poměrně tvrdé zdroje. Parametrický stabilizátor měl větší vnitřní odpor, než stabilizátory zpětnovazební. LM317T měl vnitřní odpor 0.188Ω , L200C měl $R_i=0.166\Omega$ a parametrický měl $R_i=0.188\Omega$