KUPC2019-H 123PUZZLE

YAMUNAKU

問題概要

- N 頂点 M 辺の有向単純グラフ
- 辺iは頂点 u_i から v_i への辺で、ラベル $l_i \in \{0,1\}$ がついている
- 各頂点に数 1,2,3 のいずれかを書き込む
- 頂点xに書かれた数を A_x として、 $1 \le i \le M$ について
 - $\exists \, \exists \, \vdash C_i \coloneqq \max\{0, A_{u_i} A_{v_i} + (1 l_i)\}$
- C_i の総和の最小値を求めよ
- $2 \le N \le 5000, 1 \le M \le \min\{5000, N(N-1)\}$

問題概要

$$l_i = 0$$
 のときの C_i

A_{v_i} A_{u_i}	1	2	3
1	1	0	0
2	2	1	0
3	3	2	1

$$l_i = 1$$
 のときの C_i

A_{v_i} A_{u_i}	1	2	3
1	0	0	0
2	1	0	0
3	2	1	0

- 辺i で結ばれた 2 頂点に書く数を決めるとコスト C_i が決まる
- コストの総和を最小化したい
- 最小カットで扱いやすそう

- C_i をカットのコストの形で表せれば、最小カットで解ける
- ・つまり、2項点に割り当てる数のペアとカットが対応し、カットの重み がコストと等しくなるようなグラフを作りたい

• 2 頂点に割り当てる数のペアとカットを対応させる

• 例えばカット ($\{s, x_u, y_u, x_v\}, \{y_v, t\}$)に対応するのは $(A_u, A_v) = (2, 3)$

u	1	2	3
1	0	0	0
2	0	0	0
3	0	0	0

v	1	2	3
1	0	0	0
2	1	1	0
3	1	1	0

v	1	2	3
1	1	0	0
2	2	1	0
3	2	1	0

• カットの重みをコストと等しくする

u	1	2	3
1	1	0	0
2	2	1	0
3	3	2	1

• $l_i = 0$ のときの C_i を表せた

u	1	2	3
1	0	0	0
2	0	0	0
3	0	0	0

v	1	2	3
1	0	0	0
2	1	0	0
3	1	0	0

• カットの重みをコストと等しくする

u	1	2	3
1	0	0	0
2	1	0	0
3	2	1	0

• $l_i = 1$ のときの C_i を表せた

• 頂点集合 $\{s,t,x_1,y_1,x_2,y_2,...,x_N,y_N\}$ のグラフに対して同じような辺を 張り、最小カットを求めると、それが答えになる

• 最小カットは最大フローに一致するから、最大フローを求めればよい

- 答えは M 以下である
 - すべての頂点に同じ数を書き込んだときを考えればよい
- 最大フローを求めたいグラフの辺数は3N + 3M以下である
- Ford-Fulkerson法を用いれば、最大フローを O(M(N+M)) で求めることができる