3.12. Построение комбинаторов логических значений, булевых функций, операций с параметрами, проверки на ноль для нумералов Чёрча (с доказательством корректности)

Определение. *Комбинатором* называется замкнутый λ -терм (без свободных переменных).

Представление логических значений и булевых функций

Пусть

$$False = \lambda xy.y (= \overline{0})$$
$$True = \lambda xy.x$$

Получается, что

$$True\ M\ N = M$$
 $False\ M\ N = N$

Тогда логические функции выражаются следующим образом:

$$And = \lambda pq.pqp$$

$$Or = \lambda pq.ppq$$

$$Not = \lambda p.p \ False \ True$$

Доказательство. *

1) $And = \lambda pq.pqp$

Если p=0, то $p \wedge q=0=p$

Если p=1, то $p \wedge q=q$

2) $Or = \lambda pq.ppq$

Если p=0, то $p \vee q=q$

Если p = 1, то $p \vee q = 1 = p$

3) $Not = \lambda p.p \ False \ True$

Если p = False, то FalseFalseTrue = True Если p = True, то TrueFalseTrue = False

Представление арифметических опреаций на нумералах Чёрча

1)
$$Inc$$
 – прибавление единицы $(Inc\overline{n} = \overline{n+1})$

$$Inc = \lambda n f x. f(n f x)$$

Доказательство.
$$Inc\overline{n}=(\lambda nfx.f(nfx))\overline{n}=\lambda fx.f(\overline{n}fx)=\lambda fx.f(\lambda gy.\underbrace{g(g(g(\ldots)))}_{npa3}fx)=$$

$$\lambda fx.\underbrace{f(f(f(...(f(fx))...)))}_{n+1\text{pas}} = \overline{n+1}$$

2) *Add* – сложение

$$Add = \lambda mnfx.mf(nfx)$$

Доказательство. * Add \overline{m} $\overline{n} = (\lambda m n f x. m f (n f x))$ \overline{m} $\overline{n} = \lambda f x. \overline{m} f (\overline{n} f x) = \lambda f x. (\lambda g y. \underbrace{g(g(g(...)))}_{m pa3}) f(\underbrace{f(f(...))}_{n pa3}) = \lambda f x. \underbrace{f(f(f(...)))}_{m+n pa3} = \overline{m} + \overline{n}$

 $3) \ Mult$ – умножение

$$Mult = \lambda mnfx.m(nf)x$$

Доказательство аналогично.

Проверка на ноль для нумералов Чёрча

$$IsZero = \lambda n.n(\lambda x.False)True$$

Проверим для нуля:

$$IsZero\overline{0} = \overline{0}(\lambda x.False)True = True$$

Любое число, кроме нуля представимо в виде: $\overline{n+1}$. Проверим IsZero для таких чисел:

$$IsZero(\overline{n+1}) = \overline{n+1}(\lambda x.False)True = (\lambda fx.f(...))(\lambda x.False)True = ((\lambda x.False)(...)) = False$$