Orthogonal Functions

Michael Brodskiy

Professor: Meetal Shah

November 30, 2020

- Properties of inner (dot) product:
 - 1. $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$
 - 2. $\langle k\mathbf{u}, \mathbf{v} \rangle = k \langle \mathbf{v}, \mathbf{u} \rangle$, where k is a scalar
 - 3. $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ if $\mathbf{u} = 0$ and $\langle \mathbf{u}, \mathbf{u} \rangle > 0$ if $\mathbf{u} > 0$
 - 4. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
- The inner product of two functions f_1 and f_2 on an interval [a, b] is a number given by (1)

$$(f_1, f_2) = \int_a^b f_1(x) f_2(x) dx \tag{1}$$

 \bullet Two functions f_1 and f_2 are orthogonal if (2) is true

$$(f_1, f_2) = \int_a^b f_1(x) f_2(x) dx = 0$$
 (2)

• A set of real-valued functions $\{\phi_0(x), \phi_1(x), \phi_2(x), \dots\}$ is said to be orthogonal on an interval [a, b] if (3) and $m \neq n$

$$(\phi_m, \phi_n) = \int_a^b \phi_m(x)\phi_n(x) dx = 0$$
(3)

- The square norm of a function ϕ_n is $||\phi_n(x)||^2 = (\phi_n, \phi_n)$, meaning that the norm, or its generalized length, is $||\phi_n(x)|| = \sqrt{(\phi_n, \phi_n)}$
- The above means that (4)

$$||\phi_n(x)||^2 = \int_a^b \phi_n^2(x) \, dx$$

$$||\phi_n(x)|| = \sqrt{\int_a^b \phi_n^2(x) \, dx}$$
(4)

- If $\{\phi_n(x)\}$ is an orthogonal set of functions on the interval [a,b] with the additional property that $||\phi_n(x)|| = 1$ for $n = 0, 1, 2 \dots$, then $\{\phi_n(x)\}$ is said to be an orthonormal set on the interval
- The norm of $\phi_0(x) = 1$ is $||\phi_0(x)|| = \sqrt{2\pi}$
- The process of normalizing a function set consists of dividing each function by its norm
- Given the components c_i where i = 1, 2, 3, $\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$, each component may be found using (5)

$$c_{1} = \frac{\langle \mathbf{u}, \mathbf{v}_{1} \rangle}{||v_{1}||^{2}}$$

$$c_{2} = \frac{\langle \mathbf{u}, \mathbf{v}_{2} \rangle}{||v_{2}||^{2}}$$

$$c_{3} = \frac{\langle \mathbf{u}, \mathbf{v}_{3} \rangle}{||v_{3}||^{2}}$$

$$(5)$$

• In inner product notation, each component may be found using (6)

$$f(x) = \sum_{n=0}^{\infty} c_n \phi_n(x)$$

$$c_n = \frac{\int_a^b f(x)\phi_n(x) dx}{||\phi_n(x)||^2}$$
(6)

• A set of real-valued functions $\{\phi_0(x), \phi_1(x), \phi_2(x), \dots\}$ is said to be orthogonal with respect to a weight function w(x) on an interval [a, b] if (7), where w(x) is usually greater than zero

$$\int_{a}^{b} w(x)\phi_{m}(x)\phi_{n}(x) dx = 0, \quad m \neq n$$
(7)

• If $\{\phi_n(x)\}$ is orthogonal with respect to a weight function w(x) on the interval [a, b], then multiplying the (6) by $w(x)\phi_n(x)$ and integrating yields (8) where (9)

$$c_n = \frac{\int_a^b f(x)w(x)\phi_n(x) dx}{||\phi_n(x)||^2}$$
 (8)

$$||\phi_n(x)||^2 = \int_a^b w(x)\phi_n^2(x) dx$$
 (9)