02.06.2013

Numele Grupa .

1. a) Definiți noțiunea de transpoziție și arătați că orice transpoziție este o permutare impară.

b) Fie
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 4 & 7 & 5 & 10 & 9 & 8 & 12 & 6 & 11 & 13 & 3 & 2 & 1 \end{pmatrix} \in S_{13}.$$

Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați σ^3 , σ^{-1} , $\varepsilon(\sigma)$, ord (σ) și σ^{1255} .

- $2.\,$ a) Teorema fundamentală de izomorfism pentru grupuri: enunț și demonstrație.
- b) Precizați dacă grupurile $\mathbb{Z}_4 \times \mathbb{Z}_5$, $\mathbb{Z}_4 \times \mathbb{Z}_6$, \mathbb{Q} sunt sau nu ciclice. Justificări!
- 3. a) Definiți noțiunile de inel integru și element nilpotent al unui inel.
- b) Determinați idealele și, până la izomorfism, inelele factor ale inelului $\mathbb{Z}_9 \times \mathbb{Q}$.

02.06.2013

Numele	Grupa.	

1. a) Definiți subgrupul generat de o submulțime și arătați că $S_n = \langle (1,2), (2,3), \dots, (n-1,n) \rangle$.

b) Fie
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 11 & 10 & 7 & 12 & 1 & 2 & 5 & 4 & 13 & 6 & 3 & 8 & 9 \end{pmatrix} \in S_{13}.$$

Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați σ^3 , σ^{-1} , $\varepsilon(\sigma)$, ord (σ) și σ^{2455} .

- 2. a) Teorema lui Lagrange: enunț și demonstrație.
- b) Determinați elementele de ordin 50 din $\mathbb{Z}_{10} \times \mathbb{Z}_{25}$.
 - 3. a) Ideale: definiție, exemple.
- b) Determinați elementele idempotente de grad cel mult 5 din $\mathbb{Z}_{700}[X]$.

03.02.2014

1. a) Definiți noțiunea de funcție injectivă și precizați dacă funcția $f: \mathbb{Z} \to \mathbb{Z}, f(a) = 5a + 3$ este sau nu surjectivă.

b) Fie
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 5 & 4 & 7 & 6 & 9 & 8 & 11 & 10 & 13 & 12 & 3 & 2 & 1 \end{pmatrix} \in S_{13}.$$

Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați σ^4 , σ^{-1} , $\varepsilon(\sigma)$, ord (σ) și σ^{1402}

- 2. a) Teorema lui Lagrange: enunţ şi demonstraţie.
- b) Descompuneți numărul $2^{48}+1$ în produs de cel putin trei factori (neunitari).
- 3. a) Demonstrați că $\widehat{a} \in \mathbb{Z}_n$ este divizor al lui zero dacă și numai dacă $(a,n) \neq 1$.
- b) Determinați numărul elementelor idempotente de grad cel mult 5 din $\mathbb{Z}_{116}[X]$.

03.02.2014

1. a) Definiți noțiunea de funcție surjectivă și precizați dacă funcția $f: \mathbb{Z} \to \mathbb{Z}, f(a) = |a-5|$ este sau nu injectivă.

b) Fie
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 3 & 4 & 5 & 8 & 7 & 10 & 9 & 2 & 11 & 12 & 13 & 6 & 1 \end{pmatrix} \in S_{13}.$$

Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați σ^3 , σ^{-1} , $\varepsilon(\sigma)$, ord (σ) și σ^{2014} .

- 2. a) Construcția grupului factor.
- b) Rezolvați în \mathbb{Z}_{601} ecuația 327 x + 208 = 0.
- 3. a) Demonstrați că $\widehat{a} \in \mathbb{Z}_n$ este inversabil dacă și numai dacă (a,n)=1.
- b) Determinați numărul elementelor inversabile de grad cel mult 5 din $\mathbb{Z}_{116}[X]$.

09.02.2014

Nur	nele								• • • • • •			Gr	upa			•
1. a	ı) Gı	rupu	ri ci	clice	: def	iniţi	e, p	ropi	rietă	ţi, e	xem	ple.				
b) (sunt s					urile stific		\mathbb{Z}_8 ×	$\langle \mathbb{Z}_9$	şi 2	\mathbb{Z}_8 $ imes$	\mathbb{Z}_{10}	. De	cide	ţi da	acă e	ele
2. a	ı) Aı	rătaț	i că	S_n =	= \((1	, 2),	(2, 3)	3),.	(n	· — 1	$,n)\rangle$					
b) Co	nsid	erăm	urn	năto	area	per	muta	are	$\sigma \in$	S_{17} :						
$\begin{pmatrix} 1\\17 \end{pmatrix}$	2 16	3 15	4 14	5 13	6 12	7 11	8 10	9	10 2	11 1	12 8	13 7	14 6	15 5	16 4	$\begin{pmatrix} 17 \\ 3 \end{pmatrix}$
Des		-	_		$rodu$ $^{-1}, \varepsilon$			-	_		ìn pr	odus	s de	ciclu	ıri di	is-

3. a) Definiți noțiunea de funcție polinomială și dați exemplu de

două polinoame diferite cărora le corespunde aceeași funcție polino-

b) Este 65537 număr prim? Justificare!

mială.

18.09.2013

1. a) Definiți noțiunea de subgrup și precizați care sunt subgrupurile lui $\mathbb{Z}_{20}.$

b) Fie
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 9 & 10 & 1 & 6 & 8 & 2 & 3 & 11 & 7 & 12 & 5 & 4 & 13 \end{pmatrix} \in S_{13}.$$

Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați σ^3 , σ^{-1} , $\varepsilon(\sigma)$, ord (σ) și σ^{1907} .

- 2. a) Demonstrați că, date fiind $m,n\in\mathbb{N}^*$, dacă $\mathbb{Z}_{mn}\simeq\mathbb{Z}_m\times\mathbb{Z}_n$ atunci (m,n)=1.
- b) Determinați elementele de ordin 12 din \mathbb{Z}_{180} .
- 3. a) Daţi un exemplu de ideal la dreapta care nu este ideal la stânga.
- b) Determinați elementele idempotente ale inelului \mathbb{Z}_{900} .

18.09.2013

1. a) a) Definiți noțiunea de subgrup normal și precizați care sunt subgrupurile normale ale lui \mathbb{Z} .

b) Fie
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 2 & 12 & 10 & 6 & 9 & 8 & 4 & 7 & 5 & 11 & 3 & 13 & 1 \end{pmatrix} \in S_{13}.$$

Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați $\sigma^3,\,\sigma^{-1},\,\varepsilon(\sigma),\,\mathrm{ord}(\sigma)$ și $\sigma^{90125}.$

- 2. a) Teorema lui Euler: enunţ şi demonstraţie.
- b) Determinați elementele de ordin 45 din $\mathbb{Z}_{30} \times \mathbb{Z}_9$.
- 3. a) Dați un exemplu de divizor al lui zero nenul și un exemplu de element nilpotent nenul.
- b) Determinați idealele și, până la izomorfism, inelele factor ale inelului $\mathbb{Z}_5 \times \mathbb{Z}_{12}.$

31.01.2014

Numele Grupa .

1. a) Definiți noțiunea de subgrup normal și precizați care sunt subgrupurile normale ale lui \mathbb{Z} .

b) Fie
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 13 & 5 & 10 & 3 & 8 & 9 & 1 & 2 & 12 & 4 & 7 & 6 & 11 \end{pmatrix} \in S_{13}.$$

Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați σ^3 , σ^{-1} , $\varepsilon(\sigma)$, ord (σ) și σ^{4102} .

- 2. a) Mica teoremă a lui Fermat: enunț și demonstrație.
- b) Determinați elementele de ordin 50 din $\mathbb{Z}_{25} \times \mathbb{Z}_{10}$.
 - 3. a) Daţi un exemplu de ideal la dreapta care nu este ideal la stânga.
- b) Determinați elementele idempotente ale inelului \mathbb{Z}_{1125} .

31.01.2014

Numele Grupa

1. a) a) Definiți noțiunea de subgrup și precizați care sunt subgrupurile lui \mathbb{Z}_{75} .

b) Fie
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 10 & 5 & 1 & 6 & 8 & 4 & 7 & 11 & 9 & 12 & 13 & 3 & 2 \end{pmatrix} \in S_{13}.$$

Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați σ^4 , σ^{-1} , $\varepsilon(\sigma)$, ord (σ) și σ^{2014} .

- 2. a) Fie $m,n\in\mathbb{N}^*.$ Demonstrați că dacă (m,n)=1atunci $\mathbb{Z}_{mn}\simeq\mathbb{Z}_m\times\mathbb{Z}_n.$
- b) Determinați elementele de ordin 18 din \mathbb{Z}_{540} .
- 3. a) Dați un exemplu de divizor al lui zero nenul și un exemplu de element nilpotent nenul.
- b) Determinați idealele și, până la izomorfism, inelele factor ale inelului $\mathbb{R} \times \mathbb{Z}_{116}$.

01.06.2014

Numele	Grupa
--------	-------

1. a) Definiți noțiunea de transpoziție și arătați că orice transpoziție este o permutare impară.

b) Fie
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 3 & 4 & 5 & 6 & 7 & 13 & 9 & 12 & 1 & 8 & 2 & 10 & 11 \end{pmatrix} \in S_{13}.$$

Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați σ^4 , σ^{-1} , $\varepsilon(\sigma)$, ord (σ) și σ^{2345} .

- 2. a) Teorema fundamentală de izomorfism pentru grupuri: enunţ şi demonstraţie.
- b) Precizați dacă grupurile $\mathbb{Z}_{28} \times \mathbb{Z}_{29}$, $\mathbb{Z}_{28} \times \mathbb{Z}_{30}$, \mathbb{R} sunt sau nu ciclice. Justificări!
- 3. a) Definiți noțiunile: domeniu de integritate, element idempotent al unui inel.
- b) Determinați idealele și, până la izomorfism, inelele factor ale inelului $\mathbb{C} \times \mathbb{Z}_{25}.$

01.06.2014

Numele Grupa

1. a) Definiți subgrupul generat de o submulțime și arătați că $S_n = \langle (1,2), (1,3), \dots, (1,n) \rangle$.

b) Fie
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 4 & 5 & 6 & 7 & 8 & 9 & 11 & 12 & 3 & 13 & 1 & 2 & 10 \end{pmatrix} \in S_{13}.$$

Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați σ^4 , σ^{-1} , $\varepsilon(\sigma)$, ord (σ) și σ^{3456} .

- 2. a) Teorema lui Lagrange: enunț și demonstrație.
- b) Determinați elementele de ordin 18 din $\mathbb{Z}_9 \times \mathbb{Z}_{30}$.
 - 3. a) Definiți noțiunea de ideal și descrieți ideale
le lui $\mathbb{Z}.$
- b) Determinați elementele idempotente din \mathbb{Z}_{1080} .

01.06.2014

Numele	Grupa
--------	-------

1. a) Definiți noțiunea de subgrup și precizați care sunt subgrupurile lui $\mathbb{Z}_{50}.$

b) Fie
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 6 & 7 & 9 & 12 & 1 & 2 & 3 & 13 & 5 & 10 & 11 & 8 & 4 \end{pmatrix} \in S_{13}.$$

Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați σ^4 , σ^{-1} , $\varepsilon(\sigma)$, ord (σ) și σ^{4567} .

- 2. a) Teorema lui Euler: enunț și demonstrație.
- b) Considerăm în S_3 subgrupurile $H = \langle (1,2) \rangle$ şi $K = \langle (1,3,2) \rangle$. Pentru fiecare din ele, decideți dacă este sau nu normal, iar în caz afirmativ descrieți grupul factor corespunzător.
 - 3. a) Este $\mathcal{M}_3(\mathbb{Z}_4)$ un inel integru?
- b) Determinaţi caracteristica inelului $\mathbb{Z}_8 \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$.

01.06.2014

Numele	Grupa
--------	-------

1. a) Definiți noțiunea de subgrup normal și precizați care sunt subgrupurile normale ale lui \mathbb{Z}_{34} .

b) Fie
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 13 & 12 & 2 & 9 & 8 & 7 & 10 & 4 & 5 & 1 & 3 & 11 & 6 \end{pmatrix} \in S_{13}.$$

Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați $\sigma^4,\,\sigma^{-1},\,\varepsilon(\sigma),\,\mathrm{ord}(\sigma)$ și $\sigma^{1234}.$

- 2. a) Construcția grupului factor.
- b) Determinați elementele de ordin 17 și pe cele de ordin 18 din
 $\mathbb{Z}_{540}.$
- 3. a) Definiți noțiunea de corp și precizați de ce $\mathbb{Z}[\sqrt{2}]$ nu este corp.
- b) Câte elemente inversabile de grad 5 are inclul $\mathbb{Z}_{72}[X]$?

14.09.2014

Numele	Grupa
--------	-------

1. a) Demonstrați că ordinul oricărui element al unui grup finit divide ordinul respectivului grup.

b) Fie
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 3 & 4 & 5 & 6 & 7 & 2 & 9 & 10 & 11 & 12 & 13 & 8 & 1 \end{pmatrix} \in S_{13}.$$

Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați σ^3 , σ^{-1} , $\varepsilon(\sigma)$, ord (σ) și σ^{2014} .

- 2. a) Teorema lui Euler: enunț și demonstrație.
- b) Precizați dacă grupurile $\mathbb{Z}_{10} \times \mathbb{Z}_{11}$, $\mathbb{Z}_{10} \times \mathbb{Z}_{12}$, \mathbb{C} sunt sau nu ciclice. Justificări!
- 3. a) Definiți noțiunea de inel integru și precizați dacă $\mathcal{M}_3(\mathbb{Z}_4)$ este sau nu inel integru.
- b) Câte elemente inversabile de grad 4 are inelul $\mathbb{Z}_{80}[X]$?

14.09.2014

1\u111010 \u111010 \u111	Numele		Grupa	
--	--------	--	-------	--

1. a) Demonstrați că pentru orice grup finit G și pentru orice subgrup H al lui G are loc relația $|(G/H)_s| = |(G/H)_d|$.

b) Fie
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 10 & 5 & 3 & 7 & 8 & 2 & 1 & 11 & 13 & 4 & 6 & 12 & 9 \end{pmatrix} \in S_{13}.$$

Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați σ^4 , σ^{-1} , $\varepsilon(\sigma)$, ord (σ) și σ^{1234} .

- 2. a) Teorema de structură a grupurilor ciclice.
- b) Arătați că $U_7 = \{z \in \mathbb{C} : z^7 = 1\}$ este un subgrup al lui (\mathbb{C}^*, \cdot) .
- c) Arătați că $(U_7, \cdot) \simeq (\mathbb{Z}_7, +)$.
- 3. a) Definiți noțiunea de corp și precizați dacă ($\mathbb{R}[X],+,\cdot$) este sau nu corp.
- b) Determinați idealele și, până la izomorfism, inelele factor ale inelului $\mathbb{Z}_8 \times \mathbb{Z}_9$.

27.01.2015

Numele	• • • • • • • • • • • • • • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •	Grupa	• • • • • • • • • • • • • • • • • • • •

1. a) Construcția grupului factor.

Considerăm grupul $\mathbf{Q} = \{1, -1, i, -i, j, -j, k, -k\}$ al cuaternionilor.

- b) Arătați că $\{1, -1\} \leq \mathbf{Q}$ c) Arătați că $\{1, -1\} \leq \mathbf{Q}$
- d) Descrieţi grupul factor $\frac{\mathbf{Q}}{\{-1,1\}}$.
- 2. a) Definiți următoarele noțiuni: morfism de grupuri, izomorfism de grupuri, nucleul unui morfism de grupuri.
- b) Arătați că grupul O nu e ciclic.
- c) Determinați $\text{Hom}(\mathbb{Q}, \mathbb{Z}_8)$.
- 3. a) Definiți noțiunea de transpoziție și arătați că orice transpoziție este o permutare impară.

b) Fie
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 5 & 4 & 7 & 8 & 9 & 6 & 3 & 10 & 13 & 12 & 11 & 2 & 1 \end{pmatrix} \in S_{13}.$$

Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați σ^4 , σ^{-1} , $\varepsilon(\sigma)$, ord (σ) și σ^{2015} .

27.01.2015

Numele Grupa

 $1.\ a)$ Teorema fundamentală de izomorfism pentru grupuri: enunț și demonstrație.

Considerăm $f: \mathbb{C}^* \to S^1 = \{z \in \mathbb{C}^* : |z| = 1\}$ dată prin $f(z) = \frac{z}{|z|}$.

- b) Arătați că f este morfism de grupuri.
- c) Determinaţi $\ker f$ şi $\operatorname{Im} f$.
- d) Demonstrați că $\frac{\mathbb{C}^*}{\mathbb{R}_+^*} \simeq S^1$.
- 2. a) Definiți noțiunea de grup ciclic și enunțați teorema de structură a grupurilor ciclice.
- b) Arătați că grupul $\mathbb{Z}\times\mathbb{Z}$ nu este ciclic.
- c) Determinați $\operatorname{Hom}(\mathbb{Z} \times \mathbb{Z}, \mathbb{Z})$.
 - 3. a) Demonstrați că $S_n = \langle (1,2), (2,3), \dots, (n-1,n) \rangle$.

b) Fie
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 3 & 12 & 5 & 2 & 7 & 8 & 9 & 4 & 11 & 13 & 1 & 6 & 10 \end{pmatrix} \in S_{13}.$$

Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați σ^4 , σ^{-1} , $\varepsilon(\sigma)$, ord (σ) și σ^{5102} .

06.02.2015

Numele	Grupa	
--------	-------	--

1. a) Definiți noțiunea de funcție injectivă. Precizați (cu argumente!) dacă funcția $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = 3xe^y$ este sau nu surjectivă.

Considerăm pe \mathbb{R} relația $x \rho y \stackrel{\text{def}}{\Leftrightarrow} x^2 + 7x = y^2 + 7y$.

- b) Arătați că ρ este o relație de echivalență.
- c) Determinați
 $\frac{\sqrt{2}}{\rho}$.
- d) Descrieți mulțimea factor $\frac{\mathbb{R}}{\rho}$.
- e) Descrieți un sistem complet și independent de reprezentanți pentru relația ρ .
- 2. a) Definiți următoarele noțiuni: relație reflexivă, închidere reflexivă a unei relații. Dată fiind o relație ρ pe o mulțime A, care este închiderea sa reflexivă?

b) Fie
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 2 & 3 & 1 \end{pmatrix} \in S_{13}.$$

Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați σ^4 , σ^{-1} , $\varepsilon(\sigma)$, ord (σ) și σ^{1025} .

- 3. a) Teorema lui Euler: Enunţ şi demonstraţie.
- b) Decideţi dacă grupurile $\mathbb{Z}_6 \times \mathbb{Z}_7$, $\mathbb{Z}_6 \times \mathbb{Z}_8$ şi \mathbb{R} sunt sau nu ciclice. Justificaţi răspunsurile date!

06.02.2015

Numele Grupa

1. a) Definiți noțiunea de funcție surjectivă. Precizați (cu argumente!) dacă funcția $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = 3x + e^y$ este sau nu injectivă.

Considerăm pe \mathbb{C} relația $x \rho y \stackrel{\text{def}}{\Leftrightarrow} |x| = |y|$.

- b) Arătați că ρ este o relație de echivalență.
- c) Determinați $\frac{i}{\rho}$. d) Descrieți mulțimea factor $\frac{\mathbb{C}}{\rho}$.
- e) Descrieți un sistem complet și independent de reprezentanți pentru relația ρ .
- 2. a) Definiți următoarele noțiuni: relație simetrică, închidere simetrică a unei relații. Dată fiind o relație ρ pe o multime nevidă A, care este închiderea sa simetrică?

b) Fie
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 3 & 4 & 5 & 6 & 9 & 8 & 7 & 10 & 11 & 2 & 13 & 12 & 1 \end{pmatrix} \in S_{13}.$$

Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați σ^4 , σ^{-1} , $\varepsilon(\sigma)$, ord (σ) și σ^{5120} .

- 3. a) Arătați că dacă grupurile $\mathbb{Z}_m \times \mathbb{Z}_n$ și \mathbb{Z}_{mn} sunt izomorfe, atunci (m,n) = 1.
- b) Determinați elementele de ordin 20 din grupul $\mathbb{Z}_4 \times \mathbb{Z}_{10}$.

06.06.2015

Numele	Grupa
--------	-------

1. a) Definiți noțiunea de funcție injectivă și precizați dacă funcția $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \ f(a,b) = 17a - 24b$ este sau nu surjectivă.

b) Fie
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 5 & 4 & 7 & 6 & 9 & 8 & 11 & 10 & 13 & 12 & 3 & 2 & 1 \end{pmatrix} \in S_{13}.$$

Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați σ^4 , σ^{-1} , $\varepsilon(\sigma)$, ord (σ) și σ^{1402}

- 2. a) Teorema lui Lagrange: enunţ şi demonstraţie.
- b) Descompuneți numărul $2^{48} + 1$ în produs de cel putin trei factori (neunitari).
 - 3. a) Enunțați teorema de structură a grupurilor ciclice.
- b) Determinați numărul elementelor de ordin 600 din \mathbb{Z}_{180000} .

06.06.2015

Numele Grupa

1. a) Definiți noțiunea de funcție surjectivă și precizați dacă funcția $f: \mathbb{Z} \to \mathbb{Z}, f(a) = |3a - 5|$ este sau nu injectivă.

b) Fie
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 3 & 4 & 5 & 8 & 7 & 10 & 9 & 2 & 11 & 12 & 13 & 6 & 1 \end{pmatrix} \in S_{13}.$$

Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați σ^3 , σ^{-1} , $\varepsilon(\sigma)$, ord (σ) și σ^{2014} .

- 2. a) Construcția grupului factor.
- b) Rezolvați în \mathbb{Z}_{601} ecuația 237 x + 208 = 0.
 - 3. a) Definiți ordinul unui element dintr-un grup.
- b) Precizați dacă grupurile \mathbb{C} , $\mathbb{Z}_8 \times \mathbb{Z}_{15}$ și $\left(\left\{\frac{a}{2} + \frac{b}{3} : a, b \in \mathbb{Z}\right\}, +\right)$ sunt sau nu ciclice. Justificări!

20.09.2015

Numele Grupa

- 1. a) Definiți următoarele noțiuni: relație simetrică, închidere simetrică a unei relații. Dată fiind o relație ρ pe o mulțime A, care este închiderea sa simetrică?
- b) Câte elemente de ordin 200 conține grupul $\mathbb{Z}_{40} \times \mathbb{Z}_{450}$?
- 2. a) Definiți noțiunea de transpoziție și arătați că orice transpoziție este o permutare impară.

b) Fie
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 10 & 6 & 1 & 3 & 13 & 8 & 4 & 11 & 9 & 7 & 2 & 12 & 5 \end{pmatrix} \in S_{13}.$$

Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați σ^4 , σ^{-1} , $\varepsilon(\sigma)$, ord (σ) și σ^{2015} .

3. a) Teorema fundamentală de izomorfism pentru grupuri: Enunț și demonstrație.

Fie $n \in \mathbb{N}^*$. Notăm $U_n = \{z \in \mathbb{C} : z^n = 1\}$.

b) Arătați că U_n este subgrup al lui \mathbb{C}^* .

Considerăm $f: \mathbb{Z} \to \mathbb{C}^*, \ f(k) = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}.$

- c) Arătați că f este morfism de grupuri.
- d) Determinați ker f și Im f.
- e) Arătați că $U_n \simeq \mathbb{Z}_n$.

06.02.2015

Numele	Grupa	
Numele	Grupa	

- 1. a) Definiți următoarele noțiuni: relație tranzitivă, închidere tranzitivă a unei relații. Dată fiind o relație ρ pe o mulțime nevidă A, care este închiderea sa tranzitivă?
- b) Câte elemente de ordin 300 conține grupul \mathbb{Z}_{60000} ?
- 2. a) Definiți noțiunea de sistem de generatori pentru un grup și demonstrați că $S_n = \langle (1,2), (2,3), \dots, (n-1,n) \rangle$.

b) Fie
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 13 & 12 & 11 & 2 & 9 & 8 & 1 & 6 & 7 & 4 & 5 & 10 & 3 \end{pmatrix} \in S_{13}.$$

Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați σ^4 , σ^{-1} , $\varepsilon(\sigma)$, ord (σ) și σ^{2015} .

- 3. a) Enunțați și demonstrați teorema de structură pentru grupuri ciclice.
- b) Care dintre grupurile $\mathbb{Z}_{10} \times \mathbb{Z}_{20}$, $\mathbb{Z}_{10} \times \mathbb{Z}_{21}$ şi $\mathbb{Z}_{10} \times \mathbb{Z}$ sunt ciclice? Dar finit generate? Justificări!