Leon Fiethen 1728330 Janik Sperling 1728567.

Sheet 7

Unclear if $u \in \mathcal{C}(\mathbb{R}^n)$ is $u : \mathbb{R}^n \to \mathbb{R}$ or $u : \mathbb{R}^n \to \mathbb{R}^n$, we consider the first case here but it doesn't change any of the following proofs

19. Twirling towards freedom

Let $u \in \mathcal{C}^2(\mathbb{R}^n)$ be a harmonic function. Show that the following functions are also harmonic.

Note Whenever we write $\frac{\partial v}{\partial x_i}$ we are really referring to $\tilde{x}(x)_i$

Exercise (a). v(x) = u(x+b) for $b \in \mathbb{R}^n$

Solution. Using chain rule gives

$$\frac{\partial v}{\partial x_i} = \frac{\partial u}{\partial x_i} \cdot \frac{\partial (x+b)}{\partial x_i} = \frac{\partial u}{\partial x_i} \cdot 1.$$

Second derivative gets another \cdot 1.

Such that summing gives

$$\triangle v = 1 \cdot \triangle u = 0.$$

Exercise (b). v(x) = u(ax) for $a \in \mathbb{R}^n$

Solution. Again using chain rule

$$\frac{\partial v}{\partial x_i} = \frac{\partial v}{\partial x_i} \cdot \frac{\partial (ax)}{\partial x_i} = \frac{\partial v}{\partial x_i} \cdot a.$$

For the second derivative :

$$\frac{\partial v}{\partial x_i} = \frac{\partial^2 u}{\partial x_i^2} \cdot \frac{\partial (ax)}{\partial x_i} \cdot a = \frac{\partial^2 u}{\partial x_i} \cdot a^2.$$

$$\triangle v = a^2 \triangle u = a^2 \cdot 0 = 0.$$

Exercise (c). v(x) = u(Rx) for $R(x_1, \ldots, x_n) = (-x_1, \ldots, x_n)$

Solution. Using chain rule

$$\frac{\partial v}{\partial x_i} = \frac{\partial v}{\partial x_i} \cdot \frac{\partial (Rx)}{\partial x_i} = \begin{cases} -1 & \frac{\partial v}{\partial x_1} \text{ if } i = 1\\ & \frac{\partial v}{\partial x_i} \end{cases}.$$

Second derivative if i = 1 we get another -1 and they cancel out s.t.

$$\frac{\partial^2 v}{\partial x_i^2} = \frac{\partial^2 u}{\partial x_i^2}.$$

Summing gives

$$\triangle v = \triangle u = 0.$$

Exercise (d). v(x) = u(Ax) for any orthogonal matrix $A \in O(\mathbb{R}^n)$

Solution. Note $(Ax)_i = \sum_{j=1}^n A_{ji}x_j$ such that using the chain rule

$$\frac{\partial v}{\partial x_i} = \frac{\partial u(Ax)}{\partial (Ax)_i} \frac{\partial Ax}{\partial x_i} = \nabla u \cdot \underbrace{A_i}_{i\text{-th col}}.$$

We get the gradient of u since we take the derivative of u with respect to $(Ax)_i$

Second derivative

$$\frac{\partial}{\partial x_i} \frac{\partial v}{\partial x_i} = \frac{\partial}{\partial (Ax)_i} \nabla u(Ax) \cdot A_i \cdot \frac{\partial Ax}{\partial x_i} = \nabla \cdot (\nabla u \cdot A_i) A_i.$$

Note since A is orthogonal we get $AA^T=\mathbb{1}$, writing out the terms as sum for clarity

$$\sum_{j,k=1}^{n} \frac{\partial^{2} u}{\partial x_{j} \partial x_{k}} A_{ji} A_{ki} = \sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}} = 0.$$

20. Harmonic Polynomials in Two Variables

Exercise (a). Let $u \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ be a smooth harmonic function. Prove that any derivative of u is also harmonic

Solution. First note that $u^{(k)}(x_0) \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ for any $k \in \mathbb{N}$ and $x_0 \in \mathbb{R}^n$

IA: k = 1

$$\triangle(u^{(1)}) = \left(\frac{\partial^2}{\partial x_i^2}, \dots, \frac{\partial^2}{\partial x_i^2}\right) \begin{pmatrix} \frac{\partial u(x_0)}{\partial x_1} \\ \vdots \\ \frac{\partial u(x_0)}{\partial x_n} \end{pmatrix} = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2} \cdot \frac{\partial u}{\partial x_i}.$$

The order of differentiation does not matter such that we get

$$\triangle(u^{(1)}) = \frac{d}{dx}(\triangle u^1) = 0.$$

IV: Suppose the statement holds for $k \in \mathbb{N}$

IS: $k \rightarrow k+1$

We know that $u^{(k)} \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ is harmonic by IV. such that by relabeling $u^{(k)} := v \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ we can again apply the argument from the IA. which concludes the proof

Exercise (b). Choose any positive degree n. Consider the complex valued function $f_n : \mathbb{R}^2 \to \mathbb{C}$ given by $f_n(x,y) = (x+iy)^n$ and let $u_n(x,y)$ and $v_n(x,y)$ be its real and imaginary parts respectively. Show that u_n and v_n are harmonic.

Solution. Treating the Laplacian in \mathbb{C} as we do in \mathbb{R}

$$\partial_x f_n = n(x+iy)^{n-1}$$

 $\partial_y f_n = n \cdot i(x+iy)^{n-1}$.

Then

$$\Delta f_n = n(n-1)(x+iy)^{n-2} + (i^2n(n-1)(x+iy))$$

= $n(n-1) \cdot ((x+iy)^{n-2} - (x+iy)^{n-2})$
= 0.

Since u_n, v_n are real and imaginary part , their Laplacian must be 0 as well.

Exercise (c). A homogeneous polynomial of degree n in two variables is a

polynomial of the form

$$p = \sum a_k x^k y^{n-k}.$$

Show that $\partial_x p$ and $\partial_y p$ are homogeneous of degree n-1

Solution. Calculating

$$\partial_x p = \frac{\partial}{\partial x} \sum_{k=0}^n a_k x^k y^{n-k} = \sum_{k=0}^n k \cdot a_k x^{k-1} y^{n-k}.$$

For k=0 we have $k\cdot a_k=0$ such that the first term vanishes

$$\sum_{k=0}^{n} k a_k x^{k-1} y^{n-k} = \sum_{k=1}^{n} k a_k x^{k-1} y^{n-k} = \sum_{i=0}^{n-1} (i+1) a_{i+1} x^i y^{(n-1)-i}.$$

For the case ∂_y we get the term $(n-k)\cdot a_k$ which is 0 for k=n such that the last term of our sum vanishes and the degree is reduced by 1

Exercise (d). Show that such a homogeneous polynomial of degree n is harmonic if and only if it is a linear combination of u_n and v_n

Solution. " \Leftarrow ": Let p be a linear combination of u_n and v_n then by (b) we know u_n and v_n are harmonic, since the Laplacian is a linear operator, we conclude p must also be harmonic.

Other direction is missing

Louisville's Theorem

Liouville's theorem (3.9 in the script) says that if u is bounded and harmonic, then u is constant. In this question we give a geometric proof in \mathbb{R}^2 using globular means defined when $B(x,r) \subset \Omega$ through

$$\mathcal{M}[v](x,r) = \frac{1}{\omega_n r^n} \int_{B(x,r)} v(y) dy.$$

Recall from Theorem 3.5 that if u is harmonic then it obeys $u(x) = \mathcal{M}[u](x,r)$.

Exercise (a). Consider two points a, b in the plane which are distance 2d apart. Now consider two balls, both with radius r > d, centered on the two points respectively. Show that the area of the intersection is

$$\operatorname{area} B(a,r) \cap B(b,r) = 2r^2 a \cos(dr^{-1}) - 2d\sqrt{r^2 - d^2}$$

Solution. W.l.o.g we may assume a = (0,0) and b = (2d,0), otherwise we just shift the plane to be centered at a first and rotate (both volume preserving)

In that case we can solve for the points of intersection by

$$x^{2} + y^{2} = r^{2} = (x - 2d)^{2} + y^{2}.$$

Such that

$$x^{2} - (x - 2d)^{2} = 0$$

$$x^{2} - (x^{2} - 4dx + 4d^{2}) = 0$$

$$4dx - 4d^{2} = 0$$

$$x = d.$$

And y

$$d^2 + y^2 = r^2 \Rightarrow y = \pm \sqrt{r^2 - d^2}.$$

Now either by integrating we get

$$x^2 + y^2 = r^2 \Rightarrow x = \sqrt{r^2 - y^2}.$$

$$2 \cdot \left(\int_{-\sqrt{r^2 - d^2}}^{\sqrt{r^2 - d^2}} \sqrt{r^2 - y^2} dy - 2d \cdot \sqrt{r^2 - d^2} \right).$$

Or the prettier way

We can get the light-green area by calculating the area of the triangle and subtracting it from the area of the sector and multiplying by 4, this gives the following

Triangle area

$$\frac{1}{2} \cdot d \cdot \sqrt{r^2 - d^2}.$$

Sector area , since $\theta=\cos^{-1}(\frac{d}{r})$ and the area of the sector is proportional to the angle where $\theta=2\pi$ gives the full circle we get

$$\frac{r^2\theta}{2}$$
.

Putting it together

$$4 \cdot \left(\frac{r^2 \cos^{-1}(\frac{d}{r})}{2} - \frac{d}{2}\sqrt{r^2 - d^2}\right)$$
$$= 2r^2 \cos^{-1}(dr^{-1}) - 2d\sqrt{r^2 - d^2}.$$

Exercise (b). Suppose that v is a bounded function on the plane $-C \le v(x) \le C$ for all x and some constant C. Show that

$$|\mathcal{M}[v](a,r) - \mathcal{M}[v](b,r)| \leq \frac{2C}{\omega_2}(\pi - 2a\cos(\frac{d}{r})) - \frac{2d}{r}\sqrt{1 - d^2r^2}.$$

Solution. We get

$$|\mathcal{M}[v](a,r) - \mathcal{M}[v](b,r)| = \frac{1}{\omega_2 r^2} \left| \left(\int_{B(a,r)} v(y) dy - \int_{B(b,r)} v(y) dy \right) \right|$$

leaving the constant

$$\begin{split} &= \left| \left(\int_{B(a,r)\backslash B(b,r)} v(y) dy - \int_{B(b,r)\backslash B(a,r)} v(y) dy \right) \right. \\ &\leq \int_{B(a,r)\backslash B(b,r)} |v(y)| dy + \int_{B(b,r)\backslash B(a,r)} |v(y)| dy \\ &\overset{\text{\tiny def.}}{\leq} \int_{B(a,r)\backslash B(b,r)} C dy - \int_{B(b,r)\backslash B(a,r)} C dy \end{split}$$

Then by drawing a picture and looking at it we know

 $\operatorname{area}(B(a,r)\setminus B(b,r)) + \operatorname{area}(B(a,r)\setminus B(b,r)) = 2\pi r^2 - 2 \cdot \operatorname{area}(B(a,r)\cap B(b,r)).$ Using (a)

$$|\mathcal{M}[v](a,r) - \mathcal{M}[v](b,r)| \le \frac{2C}{\omega_2} \cdot \left(\pi - 2\cos^{-1}(\frac{d}{r}) + \frac{2d}{r^2}\sqrt{r^2 - d^2}\right).$$

Exercise (c). Let $u \in \mathcal{C}^2(\mathbb{R}^2)$ be a bounded harmonic function. Complete the proof that u is constant

Solution. By Theorem 3.5 we know that

$$u(x) = \mathcal{M}[u](x,r).$$

Picking any points $a,b\in\mathbb{R}^2$ we check the distance

$$|u(a) - u(b)| = |\mathcal{M}[u](a,r) - \mathcal{M}[u](b,r)| \le C(r,d)$$

$$\lim_{h \to 0} \frac{|u(a+h) - u(a)|}{h} = \lim_{h \to 0} \frac{|\mathcal{M}[u](a+h, r(h)) - \mathcal{M}[u](a, r(h))|}{h}$$

$$\leq \lim_{h \to 0} \frac{1}{h} \cdot C(r(h), h)$$

$$= 0.$$

Where $C(r(h), h) \to 0$ as $h \to 0$, thus u must be constant if it is bounded

Weak Tea

In this question we try to generalise the idea of spherical means to distribution in the way suggested in the lectures. Let $\lambda_{\varepsilon}: \mathbb{R} \to \mathbb{R}$ be the standard mollifier and define a sphere mollifier

$$\Lambda_{x,r,\varepsilon}(y) = \frac{\lambda_{\varepsilon}(|y-x|-r)}{n\omega_n |y-x|^{n-1}}.$$

Exercise (a). Describe the support of $\Lambda_{x,r,\varepsilon}$

Solution. By definition it is all y such that $\Lambda_{x,r,\varepsilon}(y) \neq 0$ i.e all y such that $|y-x|-r \in \operatorname{supp} \lambda_{\varepsilon} := \overline{B(0,\varepsilon)}$, Which gives $|y-x|-r \leq \varepsilon \Rightarrow |y-x| \leq \varepsilon + r.$ $y \in B(x,\varepsilon+r).$

$$|y-x|-r \le \varepsilon \Rightarrow |y-x| \le \varepsilon + r$$

$$u \in B(x, \varepsilon + r)$$

Exercise (b). We may try to define the spherical mean of a distribution F as $\lim_{\varepsilon \to 0} F(\Lambda_{x,r,\varepsilon})$. However this does not always exist. Let G be the distribution in Exercise 17(d), submanifold inte- gration on the unit circle. Show that $G(\Lambda_{0,1,\varepsilon}) = \lambda_{\varepsilon}(1)$ and therefore the limit does not exist.

Solution. First we can check that indeed $\Lambda \in \mathcal{C}_0^{\infty}$ such that $G(\Lambda_{0,1,\varepsilon})$ is valid

$$\Lambda_{0,1,\varepsilon} = \frac{\lambda_{\varepsilon}(|y|-1)}{2\omega_2|y|}.$$

We have $C \coloneqq \{x^2 + y^2 = 1\}$ i.e $C \coloneqq \partial B(0,1)$ then

$$G(\Lambda_{0,1,\varepsilon}) = \int_{\{x^2 + y^2 = 1\}} \frac{\lambda_{\varepsilon}(|y| - 1)}{2\omega_2|y|} d\sigma$$
$$= \int_{\partial B(0,1)} \frac{\lambda_{\varepsilon}(0)}{2\omega_2} d\sigma = \lambda_{\varepsilon}(0).$$

If we didn't shift by r=1 it would be 1. For $\varepsilon \to 0$ we have $\lambda_\varepsilon(0) \to \infty$

Exercise (c). Show that the limit $\lim_{\varepsilon \to 0} F(\Lambda_{x,r,\varepsilon})$

Solution. Let F be a harmonic distribution i.e $\triangle F=0$ then F has the weak mean value property by Theorem 3.6 and we know that F vanishes on any test function with $\int \psi d\mu=0$ where $\psi\in\mathcal{C}_0^\infty((0,r))$ We know that necessarily we have

$$\int_{\Omega} \Lambda_{x,r,\varepsilon} d\mu = 1.$$

Choose any test function φ such that its integral is 1 then $\tilde{\varphi} = \varphi - \Lambda_{x,r,\varepsilon}$

$$\int_{\Omega} \tilde{\varphi} = 0.$$

Since distribution are linear operators

$$0 = F(\tilde{\varphi}) = F(\varphi) - F(\Lambda_{x,r,\varepsilon}).$$

Thus the limit exists.