L 的若干个子格的集合,则对所有 $x,y\in \cap A$,由于 x,y 属于 A 中的每一个子格,所以 $x\wedge y$ 和 $x\vee y$ 也属于 A 中的每一个子格,从而 $x\wedge y,x\vee y\in \cap A$,这就是说, $\cap A$ 也是 L 的子格),从而 L_3 是 L 的子格。

19.10 L_1 含有与钻石格同构的子格 $\{d,e,f,g,h\}$,因此不是分配格。但 L_1 不含与五角格同构的子格,因此是模格。

 L_2 含有与五角格同构的子格 $\{a,b,c,f,g\}$, 因此不是模格, 也不是分配格。

 L_3 含有与五角格同构的子格 $\{a,b,d,e,h\}$, 因此不是模格, 也不是分配格。

 L_4 含有与五角格同构的子格 $\{a,b,d,d,e\}$ (书中似有印刷错误, 出现了两个 d), 因此不是模格, 也不是分配格。

 L_5 含有与五角格同构的子格 $\{a,b,c,d,f\}$, 因此不是模格, 也不是分配格。

19.11 易见,下图中 L_1 是分配格, L_2 是模格但不是分配格, L_3 不是模格。

19.12

证明: 必要性。

由教材定理 19.1(2) 知, $a \leq a \vee c$ 。若 L 是模格,则由 $a \leq a \vee c$ 和模格定义就有 $a \vee (b \wedge (a \vee c)) = (a \vee b) \wedge (a \vee c)$ 。

充分性。

若对任意 $a,b,c\in L$ 都有 $a\vee (b\wedge (a\vee c))=(a\vee b)\wedge (a\vee c)$,则对任意 $x,y,z\in L$,若 $x\preccurlyeq y$,则由教材定理 19.2 就有 $x\vee y=x$,从而

$$x \lor (z \land y) = x \lor (z \land (x \lor y))$$
 $(x \lor y = x)$ $($ 前提 $)$ $(x \lor y) \land (x \lor y)$ $($ 前提 $)$ 由定义知, L 是模格。

19.13

证明: 必要性。