CS M51A, Sec. 1, Class Exercises No. 2 - SOLUTIONS

Exercise 2.41

CSP equivalent:

$$\begin{split} E(x,y,z) &= x' + x(x'y + y'z)' \\ &= x'(y + y')(z + z') + x((x'y)'.(y'z)') \\ &= x'yz + x'yz' + x'y'z + x'y'z' + x(x + y').(y + z') \\ &= x'yz + x'yz' + x'y'z + x'y'z' + x(xy + xz' + y'y + y'z') \\ &= x'yz + x'yz' + x'y'z + x'y'z' + xy + xz' + xy'z' \\ &= x'yz + x'yz' + x'y'z + x'y'z' + xy(z + z') + xz'(y + y') + xy'z' \\ &= x'yz + x'yz' + x'y'z + x'y'z' + xyz + xyz' + xyz' + xy'z' + xy'z' \\ &= x'yz + x'yz' + x'y'z + x'y'z' + xyz + xyz' + xy'z' + xy'z' \\ &= \sum m(0, 1, 2, 3, 4, 6, 7) \end{split}$$

CPS equivalent:

$$E(x, y, z) = x' + x(x'y + y'z)'$$

$$= (x' + x).(x' + (x'y + y'z)')$$

$$= x' + (x'y)'(y'z)'$$

$$= (x' + (x'y)')(x' + (y'z)')$$

$$= (x' + x + y')(x' + y + z')$$

$$= 1.(x' + y + z')$$

$$= \prod M(5)$$

Exercise 2.49

(a)

• Inputs: x, y where $x, y \in \{0, 1, 2, 3\}$

• Output: $z \in \{0, 1, 2, 3, 4, 6, 9\}$

• Function: $z = x \cdot y$

(b) The table for the arithmetic function is

x, y	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	4	6
3	0	3	6	9

(c) considering binary representation for inputs and outputs we obtain the following table:

	3	X.	,	y	Z			
i	x_1	x_0	y_1	y_0	z_3	z_2	z_1	z_0
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0
2	0	0	1	0	0	0	0	0
3	0	0	1	1	0	0	0	0
4	0	1	0	0	0	0	0	0
5	0	1	0	1	0	0	0	1
6	0	1	1	0	0	0	1	0
7	0	1	1	1	0	0	1	1
8	1	0	0	0	0	0	0	0
9	1	0	0	1	0	0	1	0
10	1	0	1	0	0	1	0	0
11	1	0	1	1	0	1	1	0
12	1	1	0	0	0	0	0	0
13	1	1	0	1	0	0	1	1
14	1	1	1	0	0	1	1	0
15	1	1	1	1	1	0	0	1

$$\begin{aligned} &\text{one-set}(z_3) = \{15\} \\ &\text{one-set}(z_2) = \{10, 11, 14\} \\ &\text{one-set}(z_1) = \{6, 7, 9, 11, 13, 14\} \\ &\text{one-set}(z_0) = \{5, 7, 13, 15\} \end{aligned}$$

Exercise 2.50 (a) A conditional expression is

$$L = \left\{ \begin{array}{l} ON \ \ \mathbf{if} \quad \text{an odd number of switches are ON} \\ OFF \ \mathbf{otherwise} \end{array} \right.$$

The state of the light cannot be considered as an input because a feedback loop is formed and the circuit generated with this loop will not be stable (it will oscillate for some combinations of the switches).

(b) Calling w, x, y, z the four switches, the table for the switching functions is:

2112212	L
wxyz	
0000	0
0001	1
0010	1
0011	0
0100	1
0101	0
0110	0
0111	1
1000	1
1001	0
1010	0
1011	1
1100	0
1101	1
1110	1
1111	0

(c) The minimal sum of products expression for this function is

$$L = w'x'y'z + w'x'yz' + w'xy'z' + w'xyz + wx'y'z' + wx'yz + wxy'z + wxyz'$$