Indian Institute of Technology Guwahati Probability Theory (MA 683) Problem Set 05

1. The sequence $\{X_n\}_{n\geq 1}$ converges a.e. if and only if for every $\varepsilon>0$,

$$\lim_{m \to \infty} P(|X_n - X_{n'}| > \varepsilon \text{ for some } n' > n \ge m) = 0.$$

2. The sequence $\{X_n\}_{n\geq 1}$ converges in probability if and only if for every $\varepsilon>0$,

$$\lim_{n \to \infty, n' \to \infty} P(|X_n - X_{n'}| > \varepsilon) = 0.$$

3. The sequence $\{X_n\}_{n\geq 1}$ converges in probability to zero if and only if

$$E\left(\frac{|X_n|}{1+|X_n|}\right) \to 0.$$

4. The function $\rho(\cdot, \cdot)$ given by

$$\rho(X,Y) = E\left(\frac{|X-Y|}{1+|X-Y|}\right)$$

is a metric in the space of random variables, provided that we identify random variables that are equal a.e.

Note: A notion of convergence is called metrizable if there exists a metric d such that $X_n \to X$ in the notion of convergence if and only if $d(X_n, X) \to 0$. For example, Problems 3 and 4 imply that the probability convergence is metrizable.

5. Let Υ denote the collection of all random variables defined on a probability space (Ω, \mathcal{F}, P) . Let d be a metric defined on Υ such that $\{X_n\}_{n\geq 1}\subset \Upsilon$ converges almost surely to $X\in \Upsilon$ if and only if $d(X_n,X)\to 0$ as $n\to\infty$. Then show that $X_n\to 0$ a.e. (P) if $X_n\to 0$ in probability.

Hint: Let (M, d) be a metric space. A sequence $\{x_n\}_{n\geq 1}$ in M converges to $x\in M$ if and only if given any subsequence $\{x_{n_k}\}_{k\geq 1}$ of $\{x_n\}_{n\geq 1}$, there exists a further subsequence $\{x_{m_k}\}_{k\geq 1}$ of $\{x_{n_k}\}_{k\geq 1}$ that converges to x.

Note: This result shows that convergence in a.e. is not metrizable in general.

- 6. If $\{Y_n\}_{n\geq 1}$ are non-negative random variables satisfying $\lim_{n\to\infty} EY_n = 1 = \lim_{n\to\infty} EY_n^p$ for some p>1, then show that $Y_n\to 1$ in p-th mean.
- 7. If $\{X_n\}_{n\geq 1}$ is a sequence of random variables on some probability space such that

$$\sum_{n=1}^{\infty} E \left| X_n - X \right|^p < \infty,$$

for some p > 0, then show that $X_n \to X$ a.e.

- 8. Let $\{X_n\}_{n\geq 1}$ be a sequence of random variables such that $\sum_{i=1}^{\infty} EX_i < \infty$. Then show that $\{S_n\}_{n\geq 1}$ converges a.e., where $S_n = X_1 + X_2 + \ldots + X_n$.
- 9. Let $(\Omega, \mathcal{F}, \mu)$ be a probability space and let $\{A_n\}_{n\geq 1}\subseteq \mathcal{F}$ be a sequence of events. Show that
 - (a) $\mu\left(\liminf_{n\to\infty}A_n\right) \leq \liminf_{n\to\infty}\mu\left(A_n\right)$.
 - (b) $\limsup_{n\to\infty} \mu(A_n) \le \mu\left(\limsup_{n\to\infty} A_n\right)$.
- 10. Let $X_1, X_2, ...$ be a sequence of random variables, with $E(X_n) = 8$ and $Var(X_n) = \frac{1}{\sqrt{n}}$ for all $n \ge 1$. Prove or disprove that $\{X_n\}_{n \ge 1}$ must converge to 8 in probability.
- 11. If $X_n \to X$ and $Y_n \to Y$ both in probability, then $X_n \pm Y_n \to X \pm Y$ and $X_n Y_n \to XY$ all in probability.
- 12. Let f be a bounded continuous function on \mathbb{R} . Then $X_n \to 0$ in probability implies $Ef(X_n) \to f(0)$.
- 13. Convergence in \mathcal{L}_p implies convergence in \mathcal{L}_r for r < p.
- 14. (a) If $X_n \to X$ and $Y_n \to Y$, both in \mathcal{L}_p , then $X_n \pm Y_n \to X \pm Y$ in \mathcal{L}_p .
 - (b) If $X_n \to X$ in \mathcal{L}_p and $Y_n \to Y$ in \mathcal{L}_q , where p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$, then $X_n Y_n \to XY$ in \mathcal{L}_1 .
- 15. If $X_n \to X$ in probability and $X_n \to Y$ in probability, then X = Y a.e.
- 16. Let $X_n \to X$ a.e. and P_n and P be the induced probability by X_n and X, respectively. With an example show that $\{P_n(I)\}_{n\geq 1}$ may not converge to P(I) for an interval $I \subset \mathbb{R}$.
- 17. Give an example in which $E(X_n) \to 0$ but there does not exist any subsequence $\{n_k\}_{k\geq 1}$ such that $n_k \to \infty$ and $X_{n_k} \to 0$ in probability.
- 18. Let $\{X_n\}_{n\geq 1}$ be a sequence of independent random variables with $E(X_n)=0$ and $Var(X_n)=1$ for all $n\geq 1$. Prove that for any bounded random variable Y, $\lim_{n\to\infty} EX_nY=0$. Hint: Consider $E\left(Y-\sum_{i=1}^n X_iEX_iY\right)^2$ to obtain $E(Y^2)\geq \sum_{i=1}^n \left(EX_iY\right)^2$.