1) From	giver	n inte	and and	l distribution	frequency
Interval	O _i				$(0_i - E_i)^2 / E_i$
0.0-0.1	112	100	12	144	1.44
0-1-0-2	101	100	1	1	0-01
0.2-0.3	94	100	-6	36	0.36
0.3 - 0.4	99	100	-1	1	0.01
0.4-0.5	108	100	8	64	0.64
0.5-0.6	93	100	-7	49	0.49
0.6-0.7	94-	00	-6	36	0.36
5.7 -0.8	100	00	O	0	0
5.8 - 0.9	104	100	4	16	0.16
0.9-1.0	95	100	-5	25	0.25

Calculated $\omega = 3.72$ Critical value $\chi_{0.05,9}^2 = 16.919$ Calculated $\omega <$ critical value Since, the calculated value is less than critical value, Null hypothesis is accepted.

Hours 0 1 2 3 4 5 6 7

Freq of 22 53 58 39 20 5 2 1

Calculate
$$\Lambda$$
 $\Lambda = (0 \times 2) + (1 \times 53) + (2 \times 58) + (3 \times 39) + (4 \times 20) + (5 \times 5) + (6 \times 2) + (7 \times 1)$
 $= 2.05$
 $P(X = x) = \frac{e^{-2.05} \times (2.05)^{x}}{2}$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.63$
 $= 2.$

$$W = 1-926$$

Critical $\chi^{2}_{6-1-1} = \chi^{2}_{4}$
 $\chi^{2}_{4,0.05} = 9.48$

Computed w is 1.926 which is less than 9.48 \$\square\$ So we will accept the null hypothesis.