Planche 1.

Exercice 1. Montrer que pour tout $z \in \mathbb{C}$:

$$|z| \le |z|^2 + |z - 1|$$

Exercice 2.

1. Soit x un nombre complexe différent de 1. Montrer par récurrence que pour tout $n \in \mathbb{N}$.

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}$$

2. Soit $n \in \mathbb{N}$ et $x \in]0, 2\pi[$. Calculer $\sum_{k=0}^{n} \cos(kx)$ et $\sum_{k=0}^{n} \sin(kx)$.

Planche 2.

Exercice 1. Montrer par récurrence que pour tout $n \in \mathbb{N}$:

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

Exercice 2. Soit $u \in \mathbb{U}$ et $z \in \mathbb{C}^*$. Montrer que :

$$|u - \frac{1}{\bar{z}}| = \frac{|u - z|}{|z|}$$

Planche 3.

Exercice 1. Soit $n \in \mathbb{N}$. Soit un tableau de taille $3 \times (2n+1)$. On note F_n le nombre de chemins qui partent de la case en haut à gauche et qui termine en bas à gauche en passant par toutes les cases une et une seule fois.

Montrer par récurrence que $F_n = 2^n$ pour tout $n \ge 0$.

Exercice 2. Calculer l'argument et le module du nombre complexe suivant :

$$z = \sqrt{2 + \sqrt{2}} + i\sqrt{2 - \sqrt{2}}$$

Solutions - Planche 1.

Exercice 1. Ce genre d'inégalité fait penser à l'inégalité triangulaire : $|a+b| \le |a| + |b|$. Pour l'utiliser il faut écrire z comme un a+b avec un a et un b qui ressemble à ce qu'on cherche à droite. Donc on a $|z| = |(z-z^2) + z^2| \le |z^2| + |z||z-1|$ qui nous donne presque ce que l'on veut. La seule différence avec ce qu'on cherche est le |z| qu'on veut remplacer par un 1.

- Si $|z| \le 1$ alors on a bien ce que l'égalité attendue : $|z| \le |z|^2 + |z||z-1| \le |z|^2 + |z-1|$.
- Sinon $|z| \ge 1$. Dans ce cas on a pas besoin de l'inégalité précédente mais on a directement : $|z| \le |z|^2 \le |z|^2 + |z||z-1|$.

Ainsi dans tous les cas on a l'inégalité voulue :

$$|z| \le |z|^2 + |z||z - 1|$$

Exercice 2.

1. Procédons par récurrence. Soit $x \neq 1$. On considère l'assertion P_n : $\sum_{k=0}^n x^k = \frac{1-x^{n+1}}{1-x}$. Comme $1 = \frac{1-x}{1-x}$, alors P_0 est vraie. Supposons maintenant que P_n soit vraie et vérifions que P_{n+1} soit vraie. On part de la somme jusqu'à n+1 et on fait apparaître une somme jusqu'à n:

$$\sum_{k=0}^{n+1} x^k = \sum_{k=0}^n x^k + x^{n+1} = \frac{1 - x^{n+1}}{1 - x} + \frac{x^{n+1}(1 - x)}{1 - x} = \frac{1 - x^{n+1} + x^{n+1} - x^{n+2}}{1 - x} = \frac{1 - x^{n+2}}{1 - x}$$

Donc P_{n+1} est encore vraie. Par récurrence, l'assertion est vraie pour tout $n \geq 0$.

Remarquons qu'une récurrence n'est pas nécessaire. On peut faire de manière direct aussi en remarquant que pour tout n:

$$(1-x)\sum_{k=0}^{n} x^k = \sum_{k=0}^{n} x^k - \sum_{k=0}^{n} x^{k+1} = \sum_{k=0}^{n} x^k - \sum_{k=1}^{n+1} x^k = 1 - x^{n+1}$$

On en déduit l'égalité voulue car $x \neq 1$.

2. Soit $n \in \mathbb{N}$. On applique l'égalité précedente en remplacant x par e^{ix} . On peut le faire car $e^{ix} \neq 1$ car $x \in]0, 2\pi[$. On obtient :

$$\sum_{k=0}^{n} e^{ikx} = \frac{1 - e^{i(n+1)x}}{1 - e^{ix}}$$

On remarque que par linéarité de la partie réelle et de la partie imaginaire : $\sum_{k=0}^{n} \cos(kx) = Re(\sum_{k=0}^{n} e^{ikx})$ et $\sum_{k=0}^{n} \sin(kx) = Im(\sum_{k=0}^{n} e^{ikx})$. On va donc maintenant essayer de calculer ce nombre. On utilise alors la technique de l'angle moitié (cela marche bien car on a une fraction) :

$$\frac{1-e^{i(n+1)x}}{1-e^{ix}} = \frac{e^{i(n+1)x/2}}{e^{ix/2}} \frac{e^{-i(n+1)x/2} - e^{i(n+1)x/2}}{e^{-ix/2} - e^{ix/2}}$$

Or on rappelle la formule d'Euler : $\sin(z) = (z - \bar{z})/2i$. Donc

$$\frac{1 - e^{i(n+1)x}}{1 - e^{ix}} = e^{inx/2} \frac{\sin((n+1)x/2)}{\sin(x/2)}$$

D'où finalement, en identifiant partie réelle et imaginaire, on obtient :

$$\sum_{k=0}^{n} \cos(kx) = \frac{\cos(nx/2)\sin((n+1)x/2)}{\sin(x/2)}$$

$$\sum_{k=0}^{n} \sin(kx) = \frac{\sin(nx/2)\sin((n+1)x/2)}{\sin(x/2)}$$

Solutions - Planche 2.

Exercice 1. Pour $n \in \mathbb{N}$. On considère l'assertion suivante P_n :

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

On vérifie que pour n=0, l'assertion est vraie. Suppsons que P_n soit vraie pour un $n\geq 0$, montrons que P_{n+1} est vraie.

$$\sum_{k=0}^{n+1} k^2 = \sum_{k=0}^{n} k^2 + (n+1)^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2 = \dots = \frac{(n+1)(n+2)(2n+3)}{6}$$

Donc l'hérédité est vérifiée. Donc P_n est vraie pour tout $n \in \mathbb{N}$.

Exercice 2. Remarquons que comme $u \in \mathbb{U}$, alors $u\bar{u} = 1$ et |u| = 1.

On va partir de l'équation de gauche pour arriver à celle de droite à l'aide de ces deux égalités.

$$|u - 1/\bar{z}| = |\frac{u\bar{z} - 1}{\bar{z}}| = \frac{|u\bar{z} - 1|}{|\bar{z}|}$$

Or $|z| = |\bar{z}|$ et $|u\bar{z} - 1| = |u\bar{z} - 1||\bar{u}| = |u\bar{u}\bar{z} - \bar{u}| = |\bar{z} - \bar{u}| = |u - z|$.

$$|u - 1/\bar{z}| = \frac{|u - z|}{|z|}$$

Solutions - Planche 3.

Exercice 1. Pour n=0, il n'y a qu'un chemin possible. On initialise donc la récurrence. Supposons que la formule soit vraie pour $n\geq 0$. L'idée est de compter les chemins sous deux formes. On note C_n l'ensemble de tous les chemins. \tilde{C}_n ceux du type 1 et \bar{C}_n ceux de taille n et de type 2. Ces deux sous ensembles sont disjoints : il n'y a pas de chemin du type 1 et du type 2. De plus il n'y a pas d'autres "types". En effet quand on va d'abord à gauche, on ne peut descendre sinon on atteindrai pas la case à gauche. Donc il faut poursuivre à droite. On continue le raisonnement ainsi.

Donc $C_n = \tilde{C}_n + \bar{C}_n$. Maintenant comptons le nombre de chemin du type 1. Il y en a autant que de chemins de C_{n-1} car cela revient à choisir un chemin de C_{n-1} et à le coller à droite. De même pour les chemins du type 2. Donc par récurrence on obtient

$$|C_n| = |\tilde{C}_n| + |\bar{C}_n| = |C_{n-1}| + |C_{n-1}| = 2^{n-1} + 2^{n-1} = 2 \times 2^{n-1} = 2^n$$

Donc on a montré par récurrence la formule.

Exercice 2. Calculons le module : $|z|^2 = 2 + \sqrt{2} + 2 - \sqrt{2} = 4$ donc |z| = 2.

On note θ l'argument de z. Or $|z|\cos(\theta)=Re(z)=\sqrt{2+\sqrt{2}}$. Donc $2\cos(\theta)=\sqrt{2+\sqrt{2}}$. On ne peut pas directement en déduire θ par les valeurs connues de cos. Pour obtenir un cos plus simple on utilise la formule de trigonométrie suivante : $\cos(2\theta)=2\cos(\theta)^2-1$. On en déduit $\cos(2\theta)=\sqrt{2}/2$, donc $2\theta=\pm\pi/4$ et $\theta=\pm\pi/8$. Pour connaître le signe de θ , on regarde le signe de la partie imaginaire. Comme elle est positive alors $\theta=\pi/8$. Donc

$$z = 2e^{i\pi/8}$$