Today's agenda

- Nitrogen cycle in groundwater
- Geochemistry in groundwater
- Piper plots

The Redox ladder

The redox-couples are shown on each stair-step, where the most energy is gained at the top step and the least at the bottom step. (Gibb's free energy becomes more positive going down the steps)

Nitrogen Cycle

Figure 1. Microbial nitrogen cycle and its influence upon the water environment.

Source: Rivett et al. (2008).

Nitrogen Cycle

Nitrogen Cycle

- Nitrogen enters groundwater through fertilizer and nitrogen fixation as ammonium
 - Ammonium (NH₄) is unusable by plants
- 2. Ammonium is converted to **nitrate** (NO₃) though **nitrification**
 - Nitrate is usable by plants
- 3. Once there is no dissolved oxygen left in the groundwater, microbes are forced to respire nitrate instead
 - This respiration is **denitrification**

Denitrification

- Occurs in low oxygen (anoxic) groundwater
- Nitrate + DOC → N₂

Sampling porewater for biogeochemical analysis

The goal is to preserve samples for analysis. Why?

1) Nalgene sample bottles

3) Acidify to <2 pH using nitric acid

Measures of concentration

- Total dissolved solids (TDS)
 - Total amount of solids (mg/l) remaining after evaporation

Water Type	TDS (mg/l)
Fresh	0-1,000
Brackish	1,000-10,000
Saline	10,000-100,000
Brine	>100,000

Measures of concentration

Electrical conductivity (EC)

- Conductance (S or μS) per length (cm or m)
- EC is temperature dependent (so be careful)

Some water quality guidelines

Guidelines for Drinking-water Quality

FOURTH EDITION

Arsenic (0.01 mg/L)

Big issue in Bangladesh. Also aquifer storage and recovery systems can cause the release of Arsenic. Natural groundwater concentrations 1-2 µg/L.

Nitrate $(NO_3^-, 50 \text{ mg/L})$

Primarily from agriculture (e.g. fertilizer run off). This value expressed as concentration of NO₃⁻. Excess Nitrate can cause 'blue baby syndrome'

Cholera and diarrheal diseases to diarrheal diseases, heart disease, cancer, skin lesions (below)

Common Reactions in Natural Waters

Dissolution of Carbonate Minerals (limestone, dolostone)

$$(Ca,Mg)CO_3 \rightarrow Ca^{2+} + Mg^{2+} + CO_3^{2-}$$

 $CO_3^{2-} + H_2O + CO_2 \rightarrow 2 HCO_3^{--}$

Ionic Dissolution of Salts

Halite: NaCl → Na+ + Cl-

Gypsum: $CaSO_4 \rightarrow Ca^{2+} + SO_4^{2-}$

Ion Exchange with Clays

You Can Graphically Classify the Waters

Based on relative concentrations

The Four Major Water Types:

Ca-Mg-HCO₃ Associated with limestone

Ca-SO₄-HCO₃ Associated with gypsum

Na-HCO₃ Associated with ion-exchange

Na-Cl Associated with halite or brines

Piper Plot

- Combination of two tri-linear (ternary) diagrams and an xy scatter
 - One tri-linear plot of anions (Cl, SO₄, HCO₃)
 - One tri-linear plot of cations (Ca, Mg, Na+K)
- Concentrations are plotted as a percentage of the total number of cations (or anions)
 - i.e. 50% Ca, 40% Mg, 10% Na+K
- Locations on triangles are projected onto a diamond point is plotted where they meet
- Sometimes the circle shows the relative total ion concentrations (TDS)

Tri-linear Plot

```
Mg, Ca, Na+K
100, 0,0
0, 50, 50
                            100
33, 33, 33
                         80)
                                     20
              Mg
                                                  Na + K
                                      ¥40
                      60)
                                           60
                                             80
                                                100
                      80
             100
                                  40
                                         20
                            60
                               Ca
```

Compare aquifers and Sources

Compare aquifers and Sources

Piper plots can indicate mixing

Ion Exchange: Na, HCO₃

http://epa.ohio.gov/ddagw/gwqcp.asp x#115412887-water-quality-datadistribution