# N26F300 VLSI SYSTEM DESIGN (GRADUATE LEVEL)

Verilog (IV)

#### Outline

■ Number Basics

#### Number Basics

[adapted from "Digital Design: An Embedded System Approach," Peter J. Ashenden]

#### **Numeric Basics**

- Representing and processing numeric data is a common requirement
  - unsigned integers
  - signed integers
  - fixed-point real numbers
  - floating-point real numbers
  - complex numbers

#### Unsigned Integers

- Non-negative numbers (including 0)
  - Represent real-world data
    - e.g., temperature, position, time, ...
  - Also used in controlling operation of a digital system
    - e.g., counting iterations, table indices
- Coded using unsigned binary (base 2) representation
  - analogous to decimal representation

# Binary Representation

- Decimal: base 10
  - $124_{10} = 1 \times 10^2 + 2 \times 10^1 + 4 \times 10^0$
- □ Binary: base 2
- □ In general, a number x is represented using n bits as  $x_{n-1}, x_{n-2}, ..., x_0$ , where

$$x = x_{n-1} 2^{n-1} + x_{n-2} 2^{n-2} + \dots + x_0 2^0$$

#### Binary Representation

- Unsigned binary is a code for numbers
  - $\square$  n bits: represent numbers from 0 to  $2^n 1$ 
    - $\blacksquare$  0: 0000...00;  $2^n 1$ : 1111...11
  - To represent  $x: 0 \le x \le N 1$ , need  $\lceil \log_2 N \rceil$  bits
- Computers use
  - 8-bit bytes: 0, ..., 255
  - 32-bit words: 0, ..., ~4 billion
- Digital circuits can use what ever size is appropriate

## Unsigned Integers in Verilog

- Use vectors as the representation
  - Can apply arithmetic operations

```
module multiplexer_6bit_4_to_1
  ( output reg [5: 0] z,
    input        [5: 0] a0, a1, a2, a3,
    input       [1: 0] sel );
    always @*
    case (sel)
        2' b00: z = a0;
        2' b01: z = a1;
        2' b10: z = a2;
        2' b11: z = a3;
    endcase
endmodule
```

#### Octal and Hexadecimal

- Short-hand notations for vectors of bits
- Octal (base 8)
  - Each group of 3 bits represented by a digit
  - □ 0: 000, 1:001, 2: 010, ..., 7: 111
  - $\square$  253<sub>8</sub> = 010 101 011<sub>2</sub>
  - $\square$  11001011<sub>2</sub>  $\Rightarrow$  11 001 011<sub>2</sub> = 313<sub>8</sub>
- □ Hex (base 16)
  - Each group of 4 bits represented by a digit
  - □ 0: 0000, ..., 9: 1001, A: 1010, ..., F: 1111
  - $\square$  3CE<sub>16</sub> = 0011 1100 1110<sub>2</sub>
  - $\blacksquare$  11001011<sub>2</sub>  $\Rightarrow$  1100 1011<sub>2</sub> = CB<sub>16</sub>

## Extending Unsigned Numbers

- $\square$  To extend an *n*-bit number to *m* bits
  - Add leading 0 bits
  - $\blacksquare$  e.g.,  $72_{10} = 1001000 = 000001001000$



```
wire [3:0] x;
wire [7:0] y;
assign y = {4' b0000, x};
```

**assign** 
$$y = \{4' b0, x\};$$

assign 
$$y = x$$
;

## Truncating Unsigned Numbers

- To truncate from m bits to n bits
  - Discard leftmost bits
  - Value is preserved if discarded bits are 0
  - $\square$  Result is x mod  $2^n$



assign x = y[3:0];

## **Unsigned Addition**

Performed in the same way as decimal





# Adders in Verilog

#### Use arithmetic "+" operator

```
wire [7:0] a, b, s;
...
assign s = a + b;
```

```
assign \{c, s\} = \{1'b0, a\} + \{1'b0, b\};
```

$$assign \{c, s\} = a + b;$$

## **Unsigned Subtraction**

#### As in decimal



# Scaling by Power of 2

$$x = x_{n-1} 2^{n-1} + x_{n-2} 2^{n-2} + \dots + x_0 2^0$$

$$2^{k} x = x_{n-1} 2^{k+n-1} + x_{n-2} 2^{k+n-2} + \dots + x_0 2^{k} + (0) 2^{k-1} + \dots + (0) 2^{0}$$

- $\ \square$  This is x shifted left k places, with k bits of 0 added on the right
  - $lue{}$  logical shift left by k places
  - $\blacksquare$  e.g., 00010110<sub>2</sub>  $\times$  2<sup>3</sup> = 00010110000<sub>2</sub>
- Truncate if result must fit in n bits
  - overflow if any truncated bit is not 0

# Scaling by Power of 2

$$x = x_{n-1} 2^{n-1} + x_{n-2} 2^{n-2} + \dots + x_0 2^0$$

$$x/2^{k} = x_{n-1}2^{n-1-k} + x_{n-2}2^{n-2-k} + \dots + x_{k}2^{0} + x_{k-1}2^{-1} + \dots + x_{0}2^{-k}$$

- $\hfill\Box$  This is x shifted right k places, with k bits truncated on the right
  - $lue{}$  logical shift right by k places
  - $\blacksquare$  e.g., 01110110<sub>2</sub> / 2<sup>3</sup> = 01110<sub>2</sub>
- lacksquare Fill on the left with k bits of 0 if result must fit in n bits

# Scaling in Verilog

- Shift-left (<<) and shift-right (>>) operations
  - result is same size as operand

$$s = 00010011_2 = 19_{10}$$



assign 
$$y = s \ll 2$$
;

$$y = 01001100_2 = 76_{10}$$

$$s = 00010011_2 = 19_{10}$$



assign 
$$y = s \gg 2$$
;



$$y = 000100_2 = 4_{10}$$

## Unsigned Multiplication

$$xy = x(y_{n-1}2^{n-1} + y_{n-2}2^{n-2} + \dots + y_02^0)$$
$$= y_{n-1}x2^{n-1} + y_{n-2}x2^{n-2} + \dots + y_0x2^0$$

- $\square y_i x 2^i$  is called a partial product
  - $\blacksquare$  if  $y_i = 0$ , then  $y_i \times 2^i = 0$
  - $\blacksquare$  if  $y_i = 1$ , then  $y_i \times 2^i$  is x shifted left by i
- Combinational array multiplier
  - AND gates form partial products
  - adders form full product

#### Unsigned Multiplication

- Adders can be any of those we have seen
- Optimized multipliers combine parts of adjacent adders



NCKU EE

LY Chiou

#### **Product Size**

 $\square$  Greatest result for n-bit operands:

$$(2^{n}-1)(2^{n}-1) = 2^{2n}-2^{n}-2^{n}+1 = 2^{2n}-\left(2^{n+1}-1\right)$$

- Requires  $2^{2n}$  bits to avoid overflow
- Adding n-bit and m-bit operands
  - requires n + m bits

```
wire [ 7:0] x; wire [13:0] y; wire [21:0] p;
...
assign p = {14'b0, x} * {8'b0, y};
```

assign p = x \* y; // implicit resizing

## Other Unsigned Operations

- □ Division, remainder
  - More complicated than multiplication
  - Large circuit area, power
- Complicated operations are often performed sequentially
  - in a sequence of steps, one per clock cycle
  - cost/performance/power trade-off

## Signed Integers

- Positive and negative numbers (and 0)
- □ *n*-bit signed magnitude code
  - $\blacksquare$  1 bit for sign:  $0 \Rightarrow +$ ,  $1 \Rightarrow -$
  - $\blacksquare n 1$  bits for magnitude
- Signed-magnitude rarely used for integers now
  - circuits are too complex
- □ Use 2s-complement binary code

#### 2s-Complement Representation

$$x = -x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_02^0$$

- Most-negative number
  - $\square$  1000...0 =  $-2^{n-1}$
- Most-positive number

$$\square$$
 0111...1 =  $+2^{n-1}-1$ 

- $x_{n-1} = 1 \Rightarrow \text{negative},$  $x_{n-1} = 0 \Rightarrow \text{non-negative}$ 
  - Since

$$2^{n-2} + \cdots + 2^0 = 2^{n-1} - 1$$

# 2s-Complement Examples

- 00110101
  - $= 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^2 + 1 \times 2^0 = 53$
- 10110101

$$= -1 \times 2^7 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^2 + 1 \times 2^0$$

$$= -128 + 53 = -75$$

- $\Box$  00000000 = 0
- $\Box$  11111111 = -1
- $\square$  10000000 = -128
- $\Box$  01111111 = +127

# Signed Integers in Verilog

Use signed vectors

```
wire signed [ 7:0] a;
reg signed [13:0] b;
```

 Can convert between signed and unsigned interpretations

#### Octal and Hex Signed Integers

- Don't think of signed octal or hex
  - Just treat octal or hex as shorthand for a vector of bits
- □ E.g., 844<sub>10</sub> is 001101001100
  - □ In hex: 0011 0100 1100  $\Rightarrow$  34C
- $\square$  E.g.,  $-42_{10}$  is 1111010110
  - □ In octal: 1 111 010 110  $\Rightarrow$  1726 (10 bits)

#### Resizing Signed Integers

- □ To extend a non-negative number
  - Add leading 0 bits
  - $\blacksquare$  e.g.,  $53_{10} = 00110101 = 000000110101$
- □ To truncate a non-negative number
  - Discard leftmost bits, provided
    - discarded bits are all 0
    - sign bit of result is 0
  - E.g., 41<sub>10</sub> is 00101001
    - Truncating to 6 bits: 101001 error!

#### Resizing Signed Integers

- □ To extend a negative number
  - Add leading 1 bits
    - See textbook for proof
  - $\blacksquare$  e.g.,  $-75_{10} = 10110101 = 1111110110101$
- □ To truncate a negative number
  - Discard leftmost bits, provided
    - discarded bits are all 1
    - sign bit of result is 1

# Resizing Signed Integers

- In general, for 2s-complement integers
  - Extend by replicating sign bit
    - sign extension
  - Truncate by discarding leading bits
    - Discarded bits must all be the same, and the same as the sign bit of the result



```
wire signed [ 7:0] x;
wire signed [15:0] y;
...
assign y = {{8{x[7]}}, x};
assign y = x;
...
assign x = y;
```

NCKU EE

# Signed Negation

- Complement and add 1
  - Note that  $\overline{x_i} = 1 x_i$

$$\overline{x} + 1 = -(1 - x_{n-1})2^{n-1} + (1 - x_{n-2})2^{n-2} + \dots + (1 - x_0)2^0 + 1$$

$$= -2^{n-1} + x_{n-1}2^{n-1} + 2^{n-2} - x_{n-2}2^{n-2} + \dots + 2^0 - x_02^0 + 1$$

$$= -(-x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_02^0)$$

$$-2^{n-1} + (2^{n-2} + \dots + 2^0) + 1$$

$$= -x - 2^{n-1} + 2^{n-1} = -x$$

E.g., 43 is 00101011so -43 is 11010100 + 1 = 11010101

## Signed Negation

- What about negating  $-2^{n-1}$ ?
  - $\square$  1000...00  $\Rightarrow$  0111...11 + 1 = 1000...00
  - $\blacksquare$  Result is  $-2^{n-1}!$
- Recall range of n-bit numbers is not symmetric
  - Either check for overflow, extend by one bit, or ensure this case can't arise
- □ In Verilog: use operator
  - $\blacksquare$  E.g., assign y = -x;

# Signed Addition

$$x = -x_{n-1}2^{n-1} + x_{n-2...0} y = -y_{n-1}2^{n-1} + y_{n-2...0}$$

$$x + y = -(x_{n-1} + y_{n-1})2^{n-1} + x_{n-2...0} + y_{n-2...0}$$

$$yields c_{n-1}$$

- Perform addition as for unsigned
  - $lue{}$  Overflow if  $c_{n-1}$  differs from  $c_n$
  - See textbook for case analysis
- Can use the same circuit for signed and unsigned addition

## Signed Addition Examples

33

no overflow

positive overflow

no overflow

negative overflow

no overflow

no overflow

# Signed Addition in Verilog

Result of + is same size as operands

```
wire signed [11:0] v1, v2;
wire signed [12:0] sum;
...
assign sum = {v1[11], v1} + {v2[11], v2};
...
assign sum = v1 + v2; // implicit sign extension
```

To check overflow, compare signs

```
wire signed [7:0] x, y, z;

wire ovf;

...

assign z = x + y;

assign ovf = \simx[7] & \simy[7] & z[7] | x[7] & y[7] & \simz[7];
```

NCKU EE LY Chiou

# Signed Subtraction

$$x - y = x + (-y) = x + y + 1$$

- □ Use a 2s-complement adder
  - $lue{}$  Complement y and set  $c_0 = 1$



# Other Signed Operations

- Increment, decrement
  - same as unsigned
- Comparison
  - =, same as unsigned
  - >, compare sign bits using

$$x_{n-1} \cdot y_{n-1}$$

- Multiplication
  - Complicated by the need to sign extend partial products
  - Refer to Further Reading

## Scaling Signed Integers

- $\square$  Multiplying by  $2^k$ 
  - logical left shift (as for unsigned)
  - truncate result using 2s-complement rules
- $\square$  Dividing by  $2^k$ 
  - arithmetic right shift
  - lacktriangle discard k bits from the right, and replicate sign bit k times on the left
  - e.g., s = "11110011" -- -13shift\_right(s, 2) = "111111100" -- -13 / 2<sup>2</sup>

#### Fixed-Point Numbers

- Many applications use non-integers
  - especially signal-processing apps
- □ Fixed-point numbers
  - allow for fractional parts
  - represented as integers that are implicitly scaled by a power of 2
  - can be unsigned or signed

#### Positional Notation

In decimal

$$10.24_{10} = 1 \times 10^{1} + 0 \times 10^{0} + 2 \times 10^{-1} + 4 \times 10^{-2}$$

In binary

$$101.01_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} = 5.25_{10}$$

- Represent as a bit vector: 10101
  - binary point is implicit ———

#### Unsigned Fixed-Point

- n-bit unsigned fixed-point
  - $\blacksquare m$  bits before and f bits after binary point

$$x = x_{m-1} 2^{m-1} + \dots + x_0 2^0 + x_{-1} 2^{-1} + \dots + x_{-f} 2^{-f}$$

- Range: 0 to  $2^m 2^{-f}$
- Precision: 2<sup>-f</sup>
- m may be  $\leq 0$ , giving fractions only
  - e.g., m = -2: 0.0001001101

# Signed Fixed-Point

- n-bit signed 2s-complement fixed-point
  - lacksquare m bits before and f bits after binary point

$$x = -x_{m-1}2^{m-1} + \dots + x_02^0 + x_{-1}2^{-1} + \dots + x_{-f}2^{-f}$$

- Range:  $-2^{m-1}$  to  $2^{m-1} 2^{-f}$
- Precision: 2<sup>-f</sup>
- E.g., 111101, signed fixed-point, *m* = 2
  - 11.1101<sub>2</sub> = -2 + 1 + 0.5 + 0.25 + 0.0625= -0.1875<sub>10</sub>

#### Choosing Range and Precision

- Choice depends on application
- Need to understand the numerical behavior of computations performed
  - some operations can magnify quantization errors
- □ In DSP
  - fixed-point range affects dynamic range
  - precision affects signal-to-noise ratio
- Perform simulations to evaluate effects

## Fixed-Point in Verilog

- Use vectors with implied scaling
  - Index range matches powers of weights
  - Assume binary point between indices 0 and -1

# Fixed-Point Operations

- Just use integer hardware
  - e.g., addition:

$$x + y = (x \times 2^f + y \times 2^f)/2^f$$

Ensure binary points are aligned



# Summary

Unsigned:  $x = x_{n-1} 2^{n-1} + x_{n-2} 2^{n-2} + \dots + x_0 2^0$ 

- □ Signed:  $x = -x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_02^0$
- Octal and Hex short-hand
- Operations: resize, arithmetic, compare
- Fixed non-integers