Университет ИТМО

Мой прекрасный диплом «сверхбыстрая динамика носителей заряда в полупроводниковых нитевидных нанокристаллах.»

Студент: Елисеев А.

Группа: V3400

Научрук: Валерий Николаевич

Санкт-Петербург 2017

КИДАТОННА

СОДЕРЖАНИЕ

	Стр
АННОТАЦИЯ RNJATOHHA	2
ГЛАВА 1 Введение 1.1 Актуальность темы работы	6
проводниковых ННК	
заряда	
ГЛАВА 2 Основная часть	11
2.1 Описание метода и схема установки	12
2.2 Исследование ННК на основе $GaAs$	13
2.2.1 Описание образцов и метода их получения	13
2.2.2 Зонная диаграмма ННК GaAs и GaAs/AlGaAs2.2.3 Зависимость эффективности генерации ТГц излучения	14
от времени при возбуждении плазмы в образцах	14
2.2.4 Спад эффективности - экранировка встроенного поля	14
2.2.5 Восстановление эффективности	14
2.3 Исследование ННК на основе $GaAs/AlGaAs$	14
2.3.1 Описание образцов и метода их получения	14
2.3.2 Зонные диаграммы ННК $GaAs$ и $GaAs/AlGaAs$	15
2.3.3 Зависимость эффективности генерации ТГц излучения	
от времени при возбуждении плазмы в образцах	15
2.3.4 Спад эффективности	15
2.3.5 Восстановление эффективности	
2.4 Исследование неупорядоченных массивов ННК на основе $GaAs$	
2.4.1 Описание образцов и метода их получения	15
2.4.2 Зависимость эффективности генерации ТГц излучения	
от времени при возбуждении плазмы в образцах	16
2.4.3 Спад эффективности - экранировка встроенного поля	
2.4.4 Восстановление эффективности	
2.5 Сравнение и анализ динамики носителей в разных образцах	16

ГЛАВА 3 Заключение	17
3.1 Положения дипломной работы	17
СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ	18
СПИСОК ТЕРМИНОВ	19
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	20
ПРИЛОЖЕНИЯ	21

ГЛАВА 1

Введение

1.1 Актуальность темы работы.

Полупроводниковые наноструктуры в виде свободно стоящих полупроводниковых нитевидных нанокристаллов (ННК), а так же отдельные ННК, являются одними из наиболее перспективных объектов для применения в наноэлектронике, нанофотонике, а так же во многих других областях науки и техники. Так ННК используются для создания сверхчувствительных фотодиодов [1], транзисторов сверхвысокой плотности [2], эмиттеров излучения видимого диапазона волн [3] и ТГц диапазона [4].

Огромная перспективность таких нанообъектов и структур на их основе обусловлена рядом уникальных электрических и оптических свойств. При создании метаповерхностей на основе свободно стоящих ННК, характерные размеры которых порядка 100 нм в диаметре и 1 мкм по высоте, получаются структуры с огромным по сравнению с объемными материалами соотношением площади поверхности к объему. В работе [4] было показано, что генерация ТГц излучения от упорядоченного массива ННК на основе GaAs может быть практически в два раза эффективнее, чем от InAs - объемного полупроводникового материала, который обладает наибольшей эффективностью генерации ТГц излучения. Такая высокая эффективность обусловлена именно тем, что соотношение площади поверхности к объему у таких структур значительно выше, чем у объемных материалов.

При создании структур описанных в предыдущем параграфе, первостепенную важность занимает изучение вопроса влияния формы материала и ее размеров на динамику носителей заряда. Например, при значительном увеличении отношения площади поверхности к объему увеличивается вклад поверхностной рекомбинации носителей в материале. Таким образом время жизни электронов и дырок в наноструктурах на основе свободно стоящих полупроводниковых ННК может существенно отличаться от времени жизни в соответствующем объемном полупроводнике. Исследование этих отличий является основной задачей, которую необходимо решить перед тем, как использовать подобные материалы

в качестве основы для базовых элементов наноэлектроники и нанофотоники.

Кроме того необходимо учитывать, что в полупроводниковых ННК при диаметрах порядка десятка нанометров и меньше и при концентрации $\geqslant 10^{17} {\rm cm}^{-3}$ процессы переноса в статических внешних полях описываются только продольной составляющей квазиимпульса, как это имеет место в чисто одномерном (1D)случае. Динамика носителей заряда в таких структурах существенно отличается от динамики в объемных материалах. Например, в таких низкоразмерных системах как тонкие ННК, экранирование внешнего электромагнитного поля носит качественно иной характер, чем в объемных полупроводниках. Заряды, которые экранируют внешнее электромагнитное поле во всем пространстве, сами ограничены в своем движении одной линией. В связи с этим, эффективность экранирования в одномерных и квазиодномерных ННК значительно ниже, чем в случае трехмерных систем. Кроме того, как показано в [5], в одномерных структурах процессы релаксации происходят по диффузионному закону, а дрейф носителей вносит лишь небольшую поправку в эффективный коэффициент диффузии. В то же время в трехмерном случае релаксация заряда в основном определяется дрейфовыми процессами.

1.2 Транспорт, релаксация и рекомбинация носителей в ННК.

В связи с высокой значимостью изучения временных характеристик носителей заряда и их транспорта в полупроводниковых ННК для различных областей науки и техники, на текущий момент представлено немало работ посвященных этой тематике.

1.2.1 Время жизни и подвижность носителей заряда в полупроводниковых ННК.

На сегодняшний день многие научные группы изучают электрооптические свойства ННК на основе различных материалов. Так, значительный вклад в изучение влияния структуры полупроводниковых ННК, выращеных методом газофазной эпитаксии, на время жизни фототока и подвижность носителей в

них сделали авторы [6]. В своей работе [6] авторы пользуясь методом Optical-pump terahertz-probe spectroscopy измеряли $T\Gamma$ ц проводимость и показали что HHK на основе GaAs покрытие шубой AlGaAs (материалом с более широкой запрещенной зоной) уменьшает плотность поверхностных ловушек до 82% тем самым увеличивая проводимость. Кроме того, им удалось установить, что двухтемпературный режим роста HHK на основе GaAs почти удваивает подвижность носителей в HHK и втрое увеличивает время жизни свободных носителей.

В их работе исследованы образцы четырех типов, СЭМ фотография и схематичное изображение которых приведены на Рис. 1.1

Рисунок 1.1 — СЭМ фотография образцов и их схематичное изображение. Рисунок взят из статьи [6]

Первые три типа были выращены при двухтемпературном режиме: nw1-C - обычные ННК на основе GaAs, nw2-CS - ННК на основе GaAs с шубой AlGaAs толщиной ~ 30 нм, а на образце nw3-CSS поверх шубы AlGaAs был еще нанесен тонкий слой GaAs примерно 5 нм. Четвертый образец nw4-DCSS по структуре

такой же как nw3-CSS, но выращен при однотемпературном режиме и поэтому подвержен двойниковому дефекту плотности.

Эксперимент показал, что покрытие шубой AlGaAs ядра ННК на основе GaAs увеличивает время жизни фотопроводимости примерно в четыре раза, кроме того, было установлено, что двутемпературный режим роста ННК увеличивает время жизни фотопроводимости на значительную величину. Для того чтобы оценить это время авторы использовали простую одноэкспоненциальную модель $\Delta E(\tau)/E = AExp(-\tau/\tau_c)$. Но такая модель не дала им возможность оценить вклад бездефектного роста и в то же время воздействие верхнего слоя (AlGaAs). Чтобы установить влияние типа роста ННК и его структуры была предложена следующая модель:

$$\begin{cases} \frac{dN}{dt} = -\frac{N}{\tau_{intrincic}} - \frac{N}{\tau_{NW}} - \gamma NT \\ \frac{dT}{dt} = -\gamma NT \\ \text{Начальные условия: } N(0) = N_i, T(0) = T_i \end{cases}$$
 (1.1)

Где N - плотность свободных носителей заряда, а T плотность свободных уровней ловушек. Первый член в уравнении для изменения плотности в единицу времени - это член отвечающий за объемную рекомбинацию проходящую за время $au_{intrincic}=3$ нс. Второй член в этом уравнении учитывает вклад ненасыщенной рекомбинации, которая возникает только в ННК. Третий член описывает захват заряда и рекомбинацию на поверхностных ловушках с коэффициентом связи γ , так же третий член - это скорость, с которой убывает концентрация поверхностных незанятых состояний ловушек. Подобранные параметры для уравнения 1.1 согласующиеся с экспериментальными измерениями позволили определить вклад типа роста и поверхностного слоя с большей шириной запрещенной зоны, эти параметры приведены в таблице 1.1. В этой таблице $au_{NW[1T]}$ это время про которое говорилось выше, но применительно к ННК выращенным однотемпературным методом, а $au_{NW[2T]}$ для двутемпературного. $T_{i[CS]}$ и $T_{i[C]}$ это изначальная концентрация ловушек для ННК покрытых шубой и образцов типа nw1-C. По определенным параметрам 1.1 авторы [6] сделали вывод о том, что покрытие шубой AlGaAs ядра ННК на основе GaAs уменьшает концентрацию свободных уровней поверхностных ловушек, а так же о том, что время жизни фотопроводимости увеличивается при уменьшении двойниковых дефектов

Таблица 1.1 — Таблица параметров из работы [6]

Параметр	Значение
γ	$1.62 * 10^{-7} \text{ cm}^3 \text{c}^{-1}$
$ au_{NW[1T]}$	10.2 пс
$ au_{NW[2T]}$	28.2 пс
$T_{i[CS]}/T_{i[C]}$	0.182

Таблица 1.2 — Таблица оценки подвижности на основе данных работы [6]

тип ННК	Подвижность $cm^2/(Bc)$
nw1-C	1850
nw2-CS	1650
nw3-CSS	2250
nw4-DCSS	1200

в ядре ННК.

Кроме времени жизни фотопроводимости в этой работе так же была оценена подвижность свободных носителей заряда во всех четырех типах ННК. Для этого экспериментально были измерены спектры фотопроводимости в ТГц области для каждого из четырех типов образцов. После чего экспериментальные данные были аппроксимированы уравнением для фотоиндуцированной проводимости, учитывающем вклад отклика свободных друдевских носителей и поверхностных плазмонов $\Delta \sigma = (\sigma_{Drude} + \sigma_{Plasmon})$.

$$\begin{cases}
\sigma_{Drude} = \frac{iN_d e^2 \omega}{m(\omega^2 + i\omega\Gamma)} \\
\sigma_{Plasmon} = \frac{iN_p e^2 \omega}{m(\omega^2 - \omega_0^2 + i\omega\Gamma)}
\end{cases}$$
(1.2)

Здесь N_d и N_p представляют концентрацию свободных носителей в друдевской моде и в плазмонной соответственно, а ω_0 это плазмонная частота и Γ - это обратное время релаксации электрона по импульсу. Определив с помощью аппроксимации экспериментальных данных моделью 1.2 коэффициента γ , можно оценить подвижность $\mu = \frac{e}{m\Gamma}$. Для каждого типа образцов подвижность приведена в таблице 1.2. Из этих данных следует, что двухтемпературный рост вдвое

увеличивает проводимость для ННК на основе GaAs покрытых шубой AlGaAs и тонким слоем GaAs. Кроме того, видно, что вообще говоря подвижность электронов различна в ННК покрытых шубой и обычных ННК. Первое объясняется тем, что при двутемпературном росте ННК значительно менее подвержены двойниковым дефектам. Второе, по предположению авторов [6] вызвано адсорбцией кислорода из ядра ННК GaAs в шубу AlGaAs, при этом процессе адсорбция кислорода приводит к увеличению подвижности зарядов.

Таким образом, авторы продемонстрировали один из способов изучения сверхбыстрой динамики носителей заряда в ННК на основе полупроводниковых материалов и получили интересные научно-практические результаты о способах изготовления ННК.

- 1.2.2 Особенности процессов диффузии и дрейфа носителей заряда.
- 1.3 Генерация ТГц от массива полупроводниковых ННК

Коротко, о том, от чего зависит ТГц излучение от ННК. Определяющие процессы.

ГЛАВА 2

Основная часть

Далее речь пойдет о данной работе. Первое о чем будет рассказано - схема установки и описание экспериментального метода изучения динамики носителей в ННК. Динамикой в общем случае будем называть . . .

2.1 Описание метода и схема установки

Ссылочка На статью, где впервые описан этот метод и его описание Схема, ссылка на приложение, в котором описаны характеристики элементов, используемых в схеме.

- 2.2 Исследование ННК на основе GaAs
- 2.2.1 Описание образцов и метода их получения

Метод газофазной эпитаксии, ссылка на статью и короткое описание Ориентация GaAs, получившиеся образцы, фото СЭМ

- 2.2.2 Зонная диаграмма ННК GaAs и GaAs/AlGaAs
- 2.2.3 Зависимость эффективности генерации ТГц излучения от времени при возбуждении плазмы в образцах.

Типичный вид динамики

Динамика, для упорядоченных образцов, при разной мощности накачки Характерные участки (короткая и длинная динамика)

- 2.2.4 Спад эффективности экранировка встроенного поля
- 2.2.5 Восстановление эффективности
- 2.3 Исследование ННК на основе GaAs/AlGaAs
- 2.3.1 Описание образцов и метода их получения

Метод газофазной эпитаксии, ссылка на статью и короткое описание Ориентация GaAs, получившиеся образцы, фото СЭМ

- 2.3.2 Зонные диаграммы ННК GaAs и GaAs/AlGaAs
- 2.3.3 Зависимость эффективности генерации ТГц излучения от времени при возбуждении плазмы в образцах.

Типичный вид динамики

Динамика, для упорядоченных образцов, при разной мощности накачки Характерные участки (короткая и длинная динамика)

- 2.3.4 Спад эффективности.
- 2.3.5 Восстановление эффективности.
- 2.4 Исследование неупорядоченных массивов ННК на основе GaAs
- 2.4.1 Описание образцов и метода их получения

Метод газофазной эпитаксии, ссылка на статью и короткое описание Ориентация GaAs, получившиеся образцы, фото СЭМ

2.4.2 Зависимость эффективности генерации ТГц излучения от времени при возбуждении плазмы в образцах.

Типичный вид динамики

Динамика, для упорядоченных образцов, при разной мощности накачки Характерные участки (короткая и длинная динамика)

- 2.4.3 Спад эффективности экранировка встроенного поля
- 2.4.4 Восстановление эффективности
- 2.5 Сравнение и анализ динамики носителей в разных образцах

Объяснение разницы в динамике

ГЛАВА 3

Заключение

3.1 Положения дипломной работы

Все что удалось узнать, но в виде выражений и емких утверждений.

СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

СПИСОК ТЕРМИНОВ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Agarwal R., Lieber C. M. Semiconductor nanowires: optics and optoelectronics //Applied Physics A. − 2006. − T. 85. − №. 3. − C. 209.
- 2. Tomioka K., Yoshimura M., Fukui T. A III-V nanowire channel on silicon for high-performance vertical transistors //Nature. − 2012. − T. 488. − №. 7410. − C. 189-192.
- 3. Duan X. et al. Single-nanowire electrically driven lasers //Nature. 2003. T. $421. N_0. 6920.$ C. 241-245.
- 4. Trukhin V. N. et al. Generation of terahertz radiation in ordered arrays of GaAs nanowires //Applied Physics Letters. 2015. T. 106. №. 25. C. 252104.
- 5. Аверкиев Н.С., Шик А.Я. Контактные явления в квантовых нитях и пористом кремнии//Физика и техника полупроводников. 1996. №.2 С. 199
- 6. Parkinson P. et al. Carrier lifetime and mobility enhancement in nearly defectfree coreshell nanowires measured using time-resolved terahertz spectroscopy //Nano letters. − 2009. − T. 9. − №. 9. − C. 3349-3353.

ПРИЛОЖЕНИЯ