

Busan science high school

2023 Ocean ICT Festival **2023 BOIF**

B **29**

QR 코드 영역 QR 삽입 후 테두리 삭제

Youtube 영상 QR

해안 쓰레기로부터 바다를 지키자!!

스위트걸 (2401 권지민 2402 김서진)

탐구동기

해양 쓰레기가 많은 요즘, 많은 생물이 피해를 입으며 미세 플라스틱 등에 의해 인간에게까지 많은 영향을 미치고 있다. 이는 해양 생태계의 생산성을 감소시킨 다는 것 뿐만 아니라 다양한 문제점이 존재한다. 따라서 해양 오염의 원인을 분석한 뒤 실제로 어떤 성분이 큰 영향 을 미치고 어느 정도의 비중을 차지하고 있는지 안 뒤에 해양 생태계 파괴 예방 을 위한 빅데이터를 분석하고 안내 프로 그램을 제작하였다.

프로그램 개요

창 띄우기

프로그램 실행 버튼

해수욕장 종류 선택

오염 정도를 알 수 있는 엑셀 파일 불러오기

기준별 변화 추이를 알 수 있는 그래프

창을 띄워서 해수욕장의 점수 확인

융합 분야

지구과학 + 생명과학 + 정보과학

IUU 어업은 정직하지 않은 수단을 통해 어획물을 취하는 것을 말하는 단어이다. IUU 어업은 공해를 포함한 국가의 관할 수역까지 다양한 곳에서 이 어업이 진행 되고 있으며 세계 어업량 중 34.2%를 차 지한다. 인류는 매년 3억 8천만 톤의 플 라스틱을 생산하고, 그 중 50% 이상이 일회용의 목적으로 소비된다고 한다.

해양 환경 정보 포털 및 국립 해양 조사 원의 인터넷 자료를 수집해 파이썬으로 나타내었다. 버튼을 사용하여 사용자가 선택할 수 있도록 하였으며, 해수욕장 선택 시 년도별 해수욕장의 다양한 성분 상태나 수질 상태를 알 수 있고 그래프 를 보여주어 판단할 수 있도록 한다.

```
import tkinter
 from tkinter import messagebox
 import pandas as pd
 import matplotlib.pyplot as plt
win = tkinter.Tk()
win.geometry('450×450')
Label = tkinter.Label(win, text = "더위에 찌든 당신! 해수욕장 여행을 계획중이시군요!")
|b1 = tkinter.Button(win, text = "네! 벌써 기대가 됩니다!", command=gotothebeach)
|b2 = tkinter.Button(win, text = "아니요.",command=popup)
Label.pack()
b1.pack()
b2.pack()
win.mainloop()
def popup():
   messagebox.showwarning('아쉽군요!','도움을 드리지 못해 죄송합니다. 다음에 봬요!')
```

원하는 모듈을 불러오고 450 × 450 크기의 창 을 띄웠다. 버튼을 생성하고 버튼에 따른 함 수를 넣는 코딩문을 작성하였다

해수욕장 6개를 선택하여 바다를 고를 수 있게 하였고, 바다에 따라 자료를 엑셀로 불러온 후 그래프를 띄워주는 함수를 설계 하였다. 각 바다별로 객관적인 지표를 알 수 있는 기준 7개를 설정하였다

```
def score_Gadeokdo():
    win = tkinter.Tk()
    win.geometry('450x450')
   Location = 'C:\\Users\\Ktjwl\\OneDrive\\Uberb\b 항면\\BSS 2023\\C
   File = '가덕도.xlsx'
   hydrogen = 0
   oxygen = 0
    wealthy = 0
   nitrogen = 0
   data_pd = pd.read_excel('{}\\{}'.format(Location,File),header=None, index_col=None, names=None)
    data_np = pd.DataFrame.to_numpy(data_pd)
    for i in range(5):
       a = data_np[i+1][4]
       hydrogen += a
   score_hydrogen = (200 - hydrogen)*0.2
    for i in range(5):
       a = data_np[i+1][5]
    score_oxygen = oxygen*0.15
    for i in range(5):
       a = data_np[i+1][6]
        wealthy += a
    score_wealthy = (150 - wealthy)*0.15
    for i in range(5):
       a = data_np[i+1][7]
       nitrogen += a * 0.1
    score_nitrogen = (500-nitrogen)*0.5
    score = score_hydrogen + score_oxygen + score_wealthy + score_nitrogen
    real_score=str(score)
    Label1 = tkinter.Label(win, text = '가덕도의 5개년 평균 점수는 다음과 같습니다.')
   Label2 = tkinter.Label(win, text = real_score)
   Labell.pack()
   Label2.pack()
```

def gotothebeach(): win = tkinter.Tk()win.geometry('450×450') Label = tkinter.Label(win, text = "어디로 가시나요?") b1 = tkinter.Button(win, text = "일광해수욕장",command=ilkwang) b2 = tkinter.Button(win, text = "일산해수욕장",command=ilsan) b3 = tkinter.Button(win, text = "나사해수욕장",command=nasa) b4 = tkinter.Button(win, text = "해양대학교",command=beach) b5 = tkinter.Button(win, text = "가덕도",command=Gadeokdo) b6 = tkinter.Button(win, text = "주전몽돌자갈밭해수욕장",command=mongdol) b7 = tkinter.Button(win, text = "이 중에 없어요.ㅜㅜ",command=popup) Label.pack() b1.pack() b2.pack() b3.pack() b4.pack() b5.pack() b6.pack() b7.pack() plt.rcParams['font.family']='Malgun Gothic' for i in range(7): kind=['개수', '무게', '투명도', '수소이온농도', '용존 산소량', '총질소', '부유물질']

kind.remove(kind[i])
csv = pd.read_csv('C:\\U00fc\u00fcrs\u00ff\u00fcktj\u00fcl\u00ff\u00ff\u00ff\u00fcrs\u00ff\u csv = csv.drop(columns=kind) csv.plot() plt.show() def ilkwang() plt.rcParams['font.family']='Malgun Gothic' for i in range(7): kind=['개수', '무게', '투명도', '수소이온농도', '용존 산소량', '총질소', '부유물질'] kind.remove(kind[i]) csv = pd.read_csv('C:\#\Users\\Ktjw|\\noneDrive\\Limin\b 화면\\SS 2023\\Zero plt.show() plt.rcParams['font.family']='Malgun Gothic' kind=['개수','무게','투명도','수소이온농도','용존 산소량','총질소','부유물질'] kind.remove(kind[i]) csv = pd.read_csv('C:\\u00fc\ csv = csv.drop(columns=kind) csv.plot() plt.show() def nasa(): plt.rcParams['font.family']='Malgun Gothic' for i in range(7): kind=['개수','무게','투명도','수소이온농도','용존 산소량','총질소','부유물질'] kind.remove(kind[i]) csv = pd.read_csv('C:\\U00ffulsers\\U00fful csv = csv.drop(columns=kind) csv.plot() plt.show() plt.rcParams['font.family']='Malgun Gothic' for i in range(7): kind=['개수','무게','투명도','수소이온농도','용존 산소량','총질소','부유물질'] kind.remove(kind[i]) csv = pd.read_csv('C:\\U00fc\u00e4\u00ff\ csv = csv.drop(columns=kind) csv.plot() plt.show() plt.rcParams['font.family']='Malgun Gothic' kind=['개수','무게','투명도','수소이온농도','용존 산소량','총질소','부유물질'] kind.remove(kind[i]) csv = csv.drop(columns=kind)

plt.show() import tkinter from tkinter import messagebox import pandas as pd import matplotlib.pyplot as plt win = tkinter.Tk()win.geometry('450x450') def score_Gadeokdo(): win = tkinter.Tk()win.geometry('450x450') Location = 'C:\\Users\Users\Uktjw|\UmoneDrive\Umbers\Uperb 라면\UperbBSS 2023\UperbBSS File = '가덕도.xlsx' hydrogen = 0 oxygen = 0 data_pd = pd.read_excel('{\}\format(Location,File),header=None, index_col=None, names=None) data_np = pd.DataFrame.to_numpy(data_pd) for i in range(5) a = data_np[i+1][4] hydrogen += a score_hydrogen = (200 - hydrogen)*0.2 for i in range(5): a = data_np[i+1][5] oxygen += a score_oxygen = oxygen*0.15 for i in range(5): a = data_np[i+1][6] wealthy += a score_wealthy = (150 - wealthy)*0.15 for i in range(5): a = data_np[i+1][7] nitrogen += a * 0.1 $score_nitrogen = (500-nitrogen)*0.5$ score = score_hydrogen + score_oxygen + score_wealthy + score_nitrogen Label1 = tkinter.Label(win, text = '가덕도의 5개년 평균 점수는 다음과 같습니다.') Label2 = tkinter.Label(win, text = real_score)_ Label1.pack() Label2.pack()

나름의 기준을 만들어 점수를 부여하는 코드를 작성하였다. 5년간 각 값 🗐 평균을 내서 점수로 변화하여 해수욕장 별 점수를 나타내었다

결론 고찰

위 코딩 결과를 바탕으로 분석해보면, 일광 해수욕장의 수질 상태가 가장 좋다는 것을 알 수 있었다. 해양에 영향을 미치는 다양한 요인을 알 수 있었으며 폭 넓은 코딩을 할 수 있게 된 것 같다. 위 프로그램은 사람들로 하여금 더 깨끗한 해수욕장 선택에 도움을 줄 수 있을 것이라 예상되며 추후 다양한 요인들을 참고해 환경오염을 줄이는 것에 기여할 것으로 기대된다.