

Aspect-Based Sentiment Analysis

NLP Homework 2

July 2021

Olga Sorokoletova, 1937430

Overview

Models (denoted with just letters are transformer-based):

- Given: Aspect-Based Sentiment Analysis task
 - Aspect Extraction
 - Aspect Sentiment
 - Aspect Extraction + Aspect Sentiment
 - Category Extraction
 - Category Evaluation
 - Category Extraction + Category Sentiment
- Goal: Obtain the best-performing model (in terms of macro-F1)

Naive (just word embeddings)

Pre-processing

1. First input sentence is tokenized and each token maps to ground truth labels as follows:

1 if token ∈ gt term 0 otherwise

Before:

'The **selection** changes frequently but the **basic dishes** are always available.'

After 1:

```
['The: 0', 'selection: 1', 'changes:
0', 'frequently: 0', 'but: 0', 'the:
0', 'basic: 1', 'dishes: 1', 'are:
0', 'always: 0', 'available: 0']
```

Pre-processing

2. Then **indexed vocabulary** (with <UNK> and <PAD> tokens indexed as 1 and 0) and **indexed label vocabulary** (with 3 elements: 2 labels and <PAD> token indexed as 2) are created:

```
Vocab: ['A:2', 'hearty:1', 'two:3',...,
'subwoofer:3553', 'scary:3552']
Label vocab: ['<pad>:2', '0:0', '1:1']
```

After 2:

```
[('The', 36), ('selection', 76), ('changes',
1), ('frequently', 77), ('but', 78), ('the',
9), ('basic', 79), ('dishes', 80), ('are',
81), ('always', 82), ('available', 83),
('None', 0), ('None', 0),..., ('None', 0)]
[0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 2, ..., 2]
```


Embeddings

Two ways of creating indexed vocabulary are applied:

- Based on the dataset;
- Downloading **GloVe 100d** embeddings, so they could be further applied as pre-trained in the network layer.

Naive

Model

Model

Architecture

Hyper-parameters

Epochs	100
Batch size	128
Embedding dim	100
Window Size	100
Window Shift	50
N hidden units	128
N LSTM cells	1
Optimizer	Adam
Learning Rate	0.0001
Dropout Rate	0.0

Naive

Post-processing and Performance

Post-processing: collect predicted tokens to the multi-token terms


```
{'targets': [[[11, 29], 'wines by the glass', 'negative']],
'text': 'Not enough wines by the glass either.'}
```


Ground truth tokens	Input tokens	Gold labels	Predicted labels	Predicted tokens
	Not	0	0	
	enough	0	0	
wines	wines	1	1	wines
by	by	1	1	by
the	the	1	0	
glass	glass	1	1	glass
	either	0	0	

{'wines by', 'glass'}

• Best F1: **0.67**

BERT-models

Pre-processing

Interpret as a sentence-pair classification task:

Apply BERT tokenizer form pre-trained for the corresponding BERT model:

+ attention mask

Given

```
{'categories': [['food', 'neutral']],
   'targets': [[[4, 13], 'selection', 'neutral'],
   [[41, 53], 'basic dishes', 'neutral']],
   'text': 'The selection changes frequently but the basic dishes are always available.'}
```

Aspect Extraction

Binary classification

Sentence (Sentence 1)	Aspect (Sentence 2)	Label
The selection changes frequently but the basic	The	unrelated
The selection changes frequently but the basic	selection	related
The selection changes frequently but the basic	changes	unrelated
The selection changes frequently but the basic	frequently	unrelated
The selection changes frequently but the basic	but	unrelated
The selection changes frequently but the basic	the	unrelated
The selection changes frequently but the basic	basic	related
The selection changes frequently but the basic	dishes	related
The selection changes frequently but the basic	are	unrelated
The selection changes frequently but the basic	always	unrelated
The selection changes frequently but the basic	available	unrelated
The selection changes frequently but the basic	•	unrelated 13

Given

```
{'categories': [['food', 'neutral']],
  'targets': [[[4, 13], 'selection', 'neutral'],
  [[41, 53], 'basic dishes', 'neutral']],
  'text': 'The selection changes frequently but the basic dishes are always available.'}
```

4-class classification {positive, negative, neutral, conflict}

Aspect Sentiment

Sentence (Sentence 1)	Aspect (Sentence 2)	Label
The selection changes frequently but the basic	selection	neutral
The selection changes frequently but the basic	basic dishes	neutral

ground truth terms

Given

```
{'categories': [['food', 'neutral']],
  'targets': [[[4, 13], 'selection', 'neutral'],
    [[41, 53], 'basic dishes', 'neutral']],
  'text': 'The selection changes frequently but the basic dishes are always available.'}
```

Category Extraction

Sentence (Sentence 1)	Category (Sentence 2)	Label
The selection changes frequently but the basic	food	related
The selection changes frequently but the basic	service	unrelated
The selection changes frequently but the basic	price	unrelated
The selection changes frequently but the basic	ambience	unrelated
The selection changes frequently but the basic	anecdotes/miscellaneous	unrelated

fixed 5 for each Sentence 1

Given

```
{'categories': [['food', 'neutral']],
  'targets': [[[4, 13], 'selection', 'neutral'],
    [[41, 53], 'basic dishes', 'neutral']],
  'text': 'The selection changes frequently but the basic dishes are always available.'}
```

4-class classification {positive, negative, neutral, conflict}

Category Sentiment

Sentence (Sentence 1)	Category (Sentence 2)	Label
The selection changes frequently but the basic	food	neutral

ground truth categories

Given

```
{'categories': [['food', 'neutral']],
   'targets': [[[4, 13], 'selection', 'neutral'],
   [[41, 53], 'basic dishes', 'neutral']],
   'text': 'The selection changes frequently but the basic dishes are always available.'}
```

Aspect Extraction + Aspect Sentiment

Pre-processing

5-class classification {none, positive, negative, neutral, conflict}

Sentence (Sentence 1)	Aspect (Sentence 2)	Label
The selection changes frequently but the basic	The	none
The selection changes frequently but the basic	selection	neutral
The selection changes frequently but the basic	changes	none
The selection changes frequently but the basic	frequently	none
The selection changes frequently but the basic	but	none
The selection changes frequently but the basic	the	none
The selection changes frequently but the basic	basic	neutral
The selection changes frequently but the basic	dishes	neutral
The selection changes frequently but the basic	are	none
•••		

Aspect Extraction -> Aspect Sentiment

Binary classification

Sentence (Sentence 1)	Aspect (Sentence 2)	Label
The selection changes frequently but the basic	The	unrelated
The selection changes frequently but the basic	selection	related
•••		

4-class classification {positive, negative, neutral, conflict}

Sentence (Sentence 1)	Aspect (Sentence 2)	Label
The selection changes frequently but the basic	predicted terms	neutral

Given

```
{'categories': [['food', 'neutral']],
  'targets': [[[4, 13], 'selection', 'neutral'],
    [[41, 53], 'basic dishes', 'neutral']],
  'text': 'The selection changes frequently but the basic dishes are always available.'}
```

Category Extraction + Category Sentiment

5-class classification {none, positive, negative, neutral, conflict}

Sentence (Sentence 1)	Category (Sentence 2)	Label
The selection changes frequently but the basic	food	neutral
The selection changes frequently but the basic	service	none
The selection changes frequently but the basic	price	none
The selection changes frequently but the basic	ambience	none
The selection changes frequently but the basic	anecdotes/miscellaneous	none

fixed 5 for each Sentence 1

Category Extraction -> Category Sentiment

Binary classification

Sentence (Sentence 1)	Aspect (Sentence 2)	Label
The selection changes frequently but the basic	food	unrelated
The selection changes frequently but the basic	service	related
•••		

4-class classification {positive, negative, neutral, conflict}

Sentence (Sentence 1)	Aspect (Sentence 2)	Label
The selection changes frequently but the basic	predicted categories	neutral
•••		

BERT-models

Models

Models

BERT-models

Performances

Performances: Naive vs BERT for Aspect Extraction and Choose the best BERT

Task: Aspect Extraction

• Dataset: **Restaurants**

Model	Best F1
Naive	67
Distil BERT	83

Transformer based architecture is preferable

Task: Aspect Extraction

• Dataset: Restaurants

Model	Best F1
Small BERT	79
BERT	81
Distil BERT	83
Large BERT	83

• Dataset: **Restaurants**

Task	Distil BERT	Large BERT
b	55	60
a + b	44	48
c + d	48	56

Performances: Choose best model for joined and separate tasks, merge datasets

Dataset: Restaurants

Task	->	+
ab	48	40
cd	50	56

For Aspect Extraction + Aspect Sentiment a -> b performs better than a + b

For Category Extraction + Category Sentiment c + d performs better than c -> d

• Dataset: **Restaurants**

Task	As is	From Combined
а	83	82
b	60	50
С	82	82
d	64	55

Separately implemented models perform better than their estimations from a + b and c + d

Task: Aspect Sentiment

Dataset	Best F1
Restaurant	60
Laptops	54
Mixed	59

Mixed dataset can be approximated by Restaurants
Laptops are a bit harder than Restaurants

Performances: Confusion matrices for Extractions

For tokens!

• Task: **Aspect Extraction**

Dataset: Mixed

Task: Category Extraction

• Dataset: Restaurants

Performances: Confusion matrices for Sentiments

Task: Aspect Sentiment

Dataset: Mixed

Task: Category Sentiment

Dataset: Restaurants

Performances: Confusion matrices for Combinations

1.0

0.8

0.6

0.4

0.2

0.0

For tokens!

• Task: **a** + **b**

Dataset: Mixed

• Task: **c** + **d**

Dataset: Restaurants

Conclusion

- Transformers are powerful instrument in approaching Aspect-Based Sentiment Analysis;
- Sentence-pair classification interpretation of a task is appropriate for use of pre-trained BERT models;
- Work on aspects could be improved through the modification of the decoding approach;
- Work on categories could be improved through the conceptual modifications;
- Precise fine-tuning should be under focus;
- For sentiment analysis part conflict class is the hardest for recognition.