Método Simplex Solução inicial artificial

Prof. Marcelo de Souza

55MQU – Métodos Quantitativos Universidade do Estado de Santa Catarina

Solução básica inicial

Um solução básica inicial conveniente é $x_i = 0$ (para toda variável i do problema original).

- Neste caso, as variáveis de folga formam a base da solução $(s_j \neq 0)$;
- Essa solução só é viável quando todas as restrições forem do tipo ≤;

Solução básica inicial

Um solução básica inicial conveniente é $x_i = 0$ (para toda variável i do problema original).

- Neste caso, as variáveis de folga formam a base da solução $(s_j \neq 0)$;
- Essa solução só é viável quando todas as restrições forem do tipo ≤;

Quando há restrições ≥ ou =, recorremos a uma solução básica inicial artificial.

- 1. Introduzimos variáveis artificiais para desempenhar o papel de folgas (problema auxiliar);
- 2. Usamos o problema auxiliar para encontrar uma solução básica viável e resolver o problema original.

Solução básica inicial

Um solução básica inicial conveniente é $x_i = 0$ (para toda variável i do problema original).

- Neste caso, as variáveis de folga formam a base da solução $(s_j \neq 0)$;
- ► Essa solução só é viável quando todas as restrições forem do tipo ≤;

Quando há restrições ≥ ou =, recorremos a uma solução básica inicial artificial.

- 1. Introduzimos variáveis artificiais para desempenhar o papel de folgas (problema auxiliar);
- 2. Usamos o problema auxiliar para encontrar uma solução básica viável e resolver o problema original.

Métodos:

- M-grande;
- Duas fases.

Dado um problema na forma padrão:

- Para cada equação i sem uma variável de folga, adiciona uma variável artificial R_i;
- Penaliza R_i na função objetivo com um coeficiente M ;
- lacktriangle M deve ser suficientemente grande para que as R_i seja descartada na solução ótima.

$$M \to \begin{cases} \infty, & \text{para minimização,} \\ -\infty, & \text{para maximização.} \end{cases}$$

Se M é suficientemente grande e o modelo tem solução viável, então as variáveis artificiais são descartadas e recebem valor zero na solução ótima.

Exemplo – variáveis artificiais e programa auxiliar

minimiza
$$z = 4x_1 + x_2$$

sujeito a $3x_1 + x_2 = 3$
 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 4$
 $x_1, x_2 \ge 0$

Exemplo – variáveis artificiais e programa auxiliar

minimiza
$$z = 4x_1 + x_2$$

sujeito a $3x_1 + x_2 = 3$
 $4x_1 + 3x_2 - s_1 = 6$
 $x_1 + 2x_2 + s_2 = 4$
 $x_1, x_2, s_1, s_2 \ge 0$

Exemplo – variáveis artificiais e programa auxiliar

minimiza

$$z = 4x_1 + x_2$$
 minimiza
 $z = 4x_1 + x_2 + MR_1 + MR_2$

 sujeito a
 $3x_1 + x_2 = 3$
 sujeito a
 $3x_1 + x_2 + R_1 = 3$
 $4x_1 + 3x_2 - s_1 = 6$
 $4x_1 + 3x_2 - s_1 + R_2 = 6$
 $x_1 + 2x_2 + s_2 = 4$
 $x_1 + 2x_2 + s_2 = 4$
 $x_1, x_2, s_1, s_2 \ge 0$
 $x_1, x_2, s_1, R_1, R_2, s_2 \ge 0$

 (programa original)
 (programa auxiliar)

- R₁ e R₂ são as variáveis artificiais introduzidas, formando o programa auxiliar;
- Uma penalização M é usada na função objetivo como coeficientes de R₁ e R₂;
 M é positivo porque o problema é de minimização.
- **Solução básica**: $(R_1, R_2, s_2) = (3, 6, 4)$.

Exemplo - solução do programa auxiliar

minimiza
$$z = 4x_1 + x_2 + MR_1 + MR_2$$

sujeito a $3x_1 + x_2 + R_1 = 3$
 $4x_1 + 3x_2 - s_1 + R_2 = 6$
 $x_1 + 2x_2 + s_2 = 4$
 $x_1, x_2, s_1, R_1, R_2, s_2 \ge 0$

Para resolver o programa linear:

- Opção 1: manipular a penalidade M algebricamente nas iterações do simplex;
- ▶ **Opção 2**: atribuir a M um valor alto suficiente para que R_i sejam descartadas.

Exemplo - solução do programa auxiliar

Base	$ x_1$	\mathbf{x}_2	s_1	R_1	R_2	s_2	Sol.
z	-4	-1	0	-100	-100	0	0
R_1	3	1	0	1 0	0	0	3
R_2	4	3	-1	0	1	0	6
s_2	1	2	0	0	0	1	4

minimiza
$$z = 4x_1 + x_2 + MR_1 + MR_2$$

sujeito a $3x_1 + x_2 + R_1 = 3$
 $4x_1 + 3x_2 - s_1 + R_2 = 6$
 $x_1 + 2x_2 + s_2 = 4$
 $x_1, x_2, s_1, R_1, R_2, s_2 \ge 0$

Para resolver o programa linear:

- Opção 1: manipular a penalidade M algebricamente nas iterações do simplex;
- ▶ **Opção 2**: atribuir a M um valor alto suficiente para que R_i sejam descartadas.

Como os coeficientes de x_1 e x_2 são 4 e 1, respectivamente, atribuímos 100.

Montamos a tabela simplex com esses valores.

Exemplo – solução do programa auxiliar

Base	$ x_1$	\mathbf{x}_2	s_1	R_1	R_2	s_2	Sol.
z				-100			
R_1	3	1	0	1 0 0	0	0	3
$egin{array}{c} R_1 \ R_2 \end{array}$	4	3	-1	0	1	0	6
s_2	1	2	0	0	0	1	4

minimiza
$$z = 4x_1 + x_2 + MR_1 + MR_2$$

sujeito a $3x_1 + x_2 + R_1 = 3$
 $4x_1 + 3x_2 - s_1 + R_2 = 6$
 $x_1 + 2x_2 + s_2 = 4$
 $x_1, x_2, s_1, R_1, R_2, s_2 \ge 0$

A linha z não está consistente: o valor de z não é zero, pois R_i têm coeficientes não zero. Para corrigir:

Nova linha
$$z = \text{Linha } z$$
 atual + $(M \times \text{linha } R_1 + M \times \text{linha } R_2)$

Exemplo - solução do programa auxiliar

Base	$ x_1$	x_2	s_1	R_1	R_2	s_2	Sol.
z	696	399	-100	0	0	0	900
R_1	3	1	0	1	0	0	3
R_2	4	3	-1	0	1	0	6
s_2	1	2	0	0	0	1	4

minimiza
$$z = 4x_1 + x_2 + MR_1 + MR_2$$

sujeito a $3x_1 + x_2 + R_1 = 3$
 $4x_1 + 3x_2 - s_1 + R_2 = 6$
 $x_1 + 2x_2 + s_2 = 4$
 $x_1, x_2, s_1, R_1, R_2, s_2 \ge 0$

Correção da linha z:

Linha
$$z$$
 atual \rightarrow $\begin{pmatrix} -4 & -1 & 0 & -100 & -100 & 0 & 0 \end{pmatrix} + \\ \begin{pmatrix} 3 & 1 & 0 & 1 & 0 & 0 & 3 \end{pmatrix} \times 100 + & [linha R_1 \times M] \\ \hline \begin{pmatrix} 4 & 3 & -1 & 0 & 1 & 0 & 6 \end{pmatrix} \times 100 & [linha R_2 \times M] \\ \hline Nova linha $z \rightarrow \begin{pmatrix} 696 & 399 & -100 & 0 & 0 & 900 \end{pmatrix}$$

Exemplo – solução do programa auxiliar

Base	$ x_1$	x_2	s_1	R_1	R_2	s_2	Sol.
z	696	399	-100	0	0	0	900
R_1	3	1	0	1	0	0	3
R_2	4	3	-1	0	1	0	6
s_2	1	2	0	0	0	1	4

Procedemos com a solução do programa pelo método simplex:

- Como trata-se de minimização, a variável entrante é a de coeficiente mais positivo: x₁;
- ▶ A variável sainte é R₁, pois apresenta a menor razão não negativa (3/3 = 1);
- Prossiga com as iterações do método simplex.

Exemplo – solução do programa auxiliar

Base	χ_1	\mathbf{x}_2	s_1	R_1	R_2	$s_2 \mid So$	Base	$e \mid x_1$	\mathbf{x}_2	s_1	R_1	R_2	$s_2 \mid Sol.$
z	696	399	-100	0	0	0 90	z						
	3	1	0	1	0	0 3	x_1						
R_2	4	3	-1	0	1	0 6	R_2						
s_2	1	2	0	0	0	1 4	s_2						

Atualização da linha pivô:

Nova linha pivô =
$$\frac{\text{linha pivô atual}}{\text{elemento pivô}}$$

Atualização das demais linhas:

Nova linha = linha atual – coeficiente na coluna pivô x nova linha pivô

Exemplo – solução do programa auxiliar

Base	x_1	χ_2	s_1	R_1	R_2	$s_2 \mid So$	Base	x_1	x_2	s_1	R_1	R_2	s_2	Sol.
z	696	399	-100	0	0	0 900	z	0	167	-100	-232	0	0	204
R_1	3	1	0	1	0	0 3	$egin{array}{c} x_1 \ R_2 \ s_2 \end{array}$	1	1/3	0	1/3	0	0	1
R_2	4	3	-1	0	1	0 6	R_2	0	5/3	-1	-4/3	1	0	2
s_2	1	2	0	0	0	1 4	s_2	0	5/3	0	-1/3	0	1	3

letodo Simplex

Exemplo – solução do programa auxiliar

Base	x_1	\mathbf{x}_2	s_1	R_1	R_2	s_2	Sol.
z	696	399	-100	0	0	0	900
R_1	3	1	0	1	0	0	3
R_2	4	3	-1	0	1	0	6
s_2	1	2	0	0	0	1	4

Base	x_1	x_2	s_1	R_1	R_2	s_2	Sol.
z	0	167	-100	-232	0	0	204
x_1	1	1/3	0	1/3	0	0	1
R_2	0	5/3	-1	-4/3	1	0	2
S 2	0	5/3	0	$-1/_{3}$	0	1	3

Base	$ x_1$	\mathbf{x}_2	s_1	R_1	R_2	s_2	Sol.
z	0	0	0,2	-98,4	-100,2	0	3,6
x_1	1	0	1/5	3/5	-1/5 3/5 -1	0	3/5
x_1 x_2	0	1	-3/5	-4/5	$^{3}/_{5}$	0	6/5
s_2	0	0	1	1	-1	1	1

Solução básica viável para o programa original

Exemplo – solução do programa auxiliar

Base	χ_1	\mathbf{x}_2	s_1	R_1	R_2	s_2	Sol.	
z	696	399	-100	0	0	0	900	
R_1	3	1	0	1	0	0	3	
R_2	4	3	-1	0	1	0	6	
s_2	1	2	0	0	0	1	4	

Base	x_1	χ_2	s_1	R_1	R_2	s_2	Sol.
z	0	167	-100	-232	0	0	204
x_1	1	1/3	0	1/3	0	0	1
R_2	0	5/3	-1	-4/3	1	0	2
s_2	0	5/3	0	-1/3	0	1	3

Base	$ \chi_1$	\mathbf{x}_2	s_1	R_1	R_2	s_2	Sol.
z	0	0	0,2	-98,4	-100,2	0	3,6
χ_1	1	0	1/5	3/5	-1/5	0	3/5
x_2	0	1	-3/5	-4/5	$^{3}/_{5}$	0	6/5
s_2	0	0	1	1	-1	1	1

Base	x_1	χ_2	s_1	R_1	R_2	s_2	Sol.
z	0	0	0	-98,6	-100	-0,2	3,4
x_1	1	0	0	² / ₅ -1/ ₅	0	-1/5	2/5
$\begin{array}{c c} x_1 \\ x_2 \end{array}$	0	1	0	$^{-1}/_{5}$	0	$3/_{5}$	9/5
s_1	0	0	1	1	-1	1	

Exemplo – solução do programa auxiliar

Base	χ_1	χ_2	s_1	R_1	R_2	s ₂ So	. Base	χ_1	χ_2	s_1	R_1	R_2	s_2	Sol.
z	696	399	-100) z		167	-100	-232			204
R_1	3	1		1		0 3	$egin{array}{c} x_1 \\ R_2 \\ s_2 \\ \end{array}$	1		0			0	1
R_2	4	3	-1		1	0 6	R_2			-1	-4/3	1		2
s_2	1	2			0	1 4	s ₂			0			1	3

Base	χ_1	χ_2	s_1	R_1	R_2	s ₂	Sol.	Base	x_1	x_2	s_1	R_1	R_2	s_2	Sol.
z			0,2	-98,4	-100,2		3,6	z	0	0	0	-98,6	-100	-0,2	3,4
χ_1	1		1/5					$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	1	0	0	2/5	0	-1/5	2/5
χ_2		1		-4/5				χ_2	0	1	0	$^{-1}/_{5}$	0	3/5	9/5
So			1	1	_1	1	1	s.	Ο	Ο	1	1	-1	1	1

Solução ótima

rtodo Simplex

Exemplo – solução ótima para o programa original

Base	\mathbf{x}_1	\mathbf{x}_2	s_1	R_1	R_2	s_2	Sol.
z	0	0	0	-98,6	-100	-0,2	3,4
χ_1	1	0	0	$\frac{2}{5}$ $\frac{-1}{5}$ 1	0	-1/5	2/5
χ_2	0	1	0	-1/5	0	3/5	9/5
s_1	0	0	1	1	-1	1	1

Como R_1 , R_2 = 0, esta é também a solução ótima para o programa original:

- Variáveis não básicas: $s_2 = 0$ (bem como $R_1 = 0$ e $R_2 = 0$);
- ▶ Variáveis básicas: $x_1 = 2/5$, $x_2 = 9/5$ e $s_1 = 1$;
- Função objetivo: z = 3,4.

Fase 1: encontrar uma solução básica viável (transformando as equações de restrição originais);

Fase 2: resolver o programa original com a solução encontrada e as restrições transformadas.

Fase 1: encontrar uma solução básica viável (transformando as equações de restrição originais);

- 1. expressar o problema na forma de equações;
- 2. adicionar as variáveis artificiais (similar ao método do M-grande);
- 3. substituir a função objetivo pela minimização de $r = \sum R_j$, para toda variável artificial j;
- 4. resolver o programa auxiliar resultante.
 - se o valor mínimo de r for positivo, o programa original não tem nenhuma solução viável;
 - caso contrário, procedemos à fase 2.

Fase 2: resolver o programa original com a solução encontrada e as restrições transformadas.

Exemplo - programa auxiliar

minimiza
$$z = 4x_1 + x_2$$

sujeito a $3x_1 + x_2 = 3$
 $4x_1 + 3x_2 - s_1 = 6$
 $x_1 + 2x_2 + s_2 = 4$
 $x_1, x_2, s_1, s_2 \ge 0$

(programa original)

Exemplo - programa auxiliar

minimiza
$$z = 4x_1 + x_2$$

sujeito a $3x_1 + x_2 = 3$
 $4x_1 + 3x_2 - s_1 = 6$
 $x_1 + 2x_2 + s_2 = 4$
 $x_1, x_2, s_1, s_2 \ge 0$
(programa original)

minimiza
$$\mathbf{r} = \mathbf{R}_1 + \mathbf{R}_2$$

sujeito a $3x_1 + x_2 + \mathbf{R}_1 = 3$
 $4x_1 + 3x_2 - s_1 + \mathbf{R}_2 = 6$
 $x_1 + 2x_2 + s_2 = 4$
 $x_1, x_2, s_1, \mathbf{R}_1, \mathbf{R}_2, s_2 \ge 0$

(programa auxiliar)

- A função objetivo r é minimizada, mesmo se o programa original for de maximização;
- Não há penalização das variáveis artificiais na função objetivo;
- **Solução básica**: $(R_1, R_2, s_2) = (3, 6, 4)$.

Exemplo – fase 1: solução do programa auxiliar

Base	x_1	\mathbf{x}_2	s_1	R_1	R_2	s_2	Sol.
r	0	0	0	-1	-1	0	0
R ₁	3	1 3	0	1	0	0	3
R_2	4	3	-1	0	1	0	3 6 4
s_2	1	2	0	0	0	1	4

$$\begin{array}{ll} \textbf{minimiza} & r = R_1 + R_2 \\ \textbf{sujeito a} & 3x_1 + x_2 + R_1 = 3 \\ & 4x_1 + 3x_2 - s_1 + R_2 = 6 \\ & x_1 + 2x_2 + s_2 = 4 \\ & x_1, x_2, s_1, R_1, R_2, s_2 \geq 0 \end{array}$$

Para corrigir a inconsistência da linha r (causada por variáveis não nulas na função objetivo):

Nova linha
$$r = Linha r$$
 atual + $(1 \times linha R_1 + 1 \times linha R_2)$

(note que 1 é o coeficiente de R_1 e R_2 na função objetivo)

Exemplo – fase 1: solução do programa auxiliar

Base	$ x_1$	x_2	s_1	R_1	R_2	s_2	Sol.
r	7	4	-1	0	0	0	9
R_1	3	1	0	1	0	0	3
R_2	4	3	-1	0	1	0	6
s_2	1	2	0	0	0	1	4

$$\begin{array}{ll} \textbf{minimiza} & r = R_1 + R_2 \\ \textbf{sujeito a} & 3x_1 + x_2 + R_1 = 3 \\ & 4x_1 + 3x_2 - s_1 + R_2 = 6 \\ & x_1 + 2x_2 + s_2 = 4 \\ & x_1, x_2, s_1, R_1, R_2, s_2 \geq 0 \end{array}$$

Correção da linha r:

Exemplo – fase 1: solução do programa auxiliar

Base	$ x_1$	χ_2	s_1	R_1	R_2	$s_2 \mid Sol.$	Base	x_1	x_2	s_1	R_1	R_2	s_2	Sol.
r	7	4	-1	0	0	0 9	r	0	0	0	-1	-1	0	0
R_1	3	1	0	1	0	0 3	χ_1	1	0	1/5	3/5	-1/5	0	3/5
R_2	4	3	-1	0	1	0 6	χ_2	0	1	-3/5	-4/5	3/5	0	6/5
s_2	1	2	0	0	0	0 3 0 6 1 4	s_2	0	0	1	1	-1	1	1

Solução ótima para o programa auxiliar

Resolvendo pelo método simplex, chegamos à solução ótima do programa auxiliar:

- Variáveis não básicas: $s_1 = 0$, $R_1 = 0$ e $R_2 = 0$;
- Solução ótima: $x_1 = 3/5$, $x_2 = 6/5$, $s_2 = 1$;
- Função objetivo: r = 0.

Exemplo – fase 1: solução do programa auxiliar

Base	χ_1	χ_2	s_1	R_1	R_2	$s_2 \mid Sol.$	Base	\mathbf{x}_1	x_2	s_1	R_1	R_2	$s_2 \mid S$	Sol.
r	7	4	-1	0	0	0 9	r	0	0	0	-1	-1	0	0
R_1	3	1	0	1	0	0 3 0 6 1 4	x_1	1	0	1/5	3/5	-1/5	0 3	3/5
R_2	4	3	-1	0	1	0 6	χ_2	0	1	-3/5	-4/5	$3/_{5}$	0 6	⁵ /5
s_2	1	2	0	0	0	1 4	s_2	0	0	1	1	-1	1	1

Solução ótima para o programa auxiliar

Resolvendo pelo método simplex, chegamos à solução ótima do programa auxiliar:

- Variáveis não básicas: $s_1 = 0$, $R_1 = 0$ e $R_2 = 0$;
- Solução ótima: $x_1 = 3/5$, $x_2 = 6/5$, $s_2 = 1$;
- Função objetivo: r = 0.

Como a solução ótima tem r = 0, a fase 1 produz uma solução básica viável. Com isso, temos:

- Uma solução básica inicial para resolver o programa original;
- Restrições do programa original ajustadas para que a solução seja viável.

Exemplo – fase 2: solução do programa original

minimiza
$$z = 4x_1 + x_2$$

sujeito a $x_1 + \frac{1}{5} \cdot s_1 = \frac{3}{5}$
 $x_2 - \frac{3}{5} \cdot s_1 = \frac{6}{5}$
 $s_1 + s_2 = 1$
 $x_1, x_2, s_1, s_2 \ge 0$

Base	χ_1	x_2	s_1	R_1	R_2	$s_2 \mid Sol.$
r	0	0	0	-1	-1	0 0
x_1	1	0	1/5	3/5	-1/5	0 3/5 0 6/5
$x_1 \\ x_2$	0	1	-3/5	-4/5	3/5	0 6/5
s_2	0	0	1	1	-1	1 1

Ajustamos o programa original com os coeficientes da solução ótima do programa auxiliar.

- A função objetivo é a mesma do programa original;
- As variáveis artificiais são eliminadas;
- As restrições são dadas pelas linhas da tabela da solução ótima do programa auxiliar.

Exemplo – fase 2: solução do programa original

minimiza
$$z = 4x_1 + x_2$$

sujeito a $x_1 + \frac{1}{5} \cdot s_1 = \frac{3}{5}$
 $x_2 - \frac{3}{5} \cdot s_1 = \frac{6}{5}$
 $s_1 + s_2 = 1$
 $x_1, x_2, s_1, s_2 \ge 0$

Base	\mathbf{x}_1	\mathbf{x}_2	s_1	s_2	Sol.
z	-4	-1	0	0	0
χ_1	1	0	1/5	0	3/ ₅ 6/ ₅
χ_2	0	1	-3/ ₅	0	$6/_{5}$
s_2	0	0	1	1	1

A tabela associada ao programa original ajustado (acima) possui somente as variáveis não artificiais.

ightharpoonup Como as variáveis x_1 e x_2 da função objetivo são não nulas, a linha z precisa ser ajustada.

Nova linha
$$z = \text{Linha } z$$
 atual + $(4 \times \text{linha } x_1 + 1 \times \text{linha } x_2)$

Exemplo - fase 2: solução do programa original

minimiza
$$z = 4x_1 + x_2$$

sujeito a $x_1 + \frac{1}{5} \cdot s_1 = \frac{3}{5}$
 $x_2 - \frac{3}{5} \cdot s_1 = \frac{6}{5}$
 $s_1 + s_2 = 1$
 $x_1, x_2, s_1, s_2 \ge 0$

Base	x_1	\mathbf{x}_2	s_1	s_2	Sol.
z	0	0	$^{1}/_{5}$	0	3,6
χ_1	1	0	1/5	0	3/ ₅ 6/ ₅
χ_2	0	1	-3/5	0	6/5
s_2	0	0	1	1	1

Correção da linha z:

Linha z atual
$$\rightarrow$$
 $\begin{pmatrix} -4 & -1 & 0 & 0 & 0 \\ 1 & 0 & \frac{1}{5} & 0 & \frac{3}{5} \end{pmatrix} \times 4 + \begin{bmatrix} \text{linha } x_1 \times 4 \end{bmatrix}$

$$\begin{pmatrix} 0 & 1 & \frac{-3}{5} & 0 & \frac{6}{5} \end{pmatrix} \times 1 \qquad \begin{bmatrix} \text{linha } x_2 \times 1 \end{bmatrix}$$
Nova linha $z \rightarrow \begin{pmatrix} 0 & 0 & \frac{1}{5} & 0 & 3,6 \end{pmatrix}$

Exemplo - fase 2: solução do programa original

minimiza
$$z = 4x_1 + x_2$$

sujeito a $x_1 + \frac{1}{5} \cdot s_1 = \frac{3}{5}$
 $x_2 - \frac{3}{5} \cdot s_1 = \frac{6}{5}$
 $s_1 + s_2 = 1$
 $x_1, x_2, s_1, s_2 \ge 0$

Base	χ_1	\mathbf{x}_2	s_1	s_2	Sol.
z	0	0	1/5	0	3,6
χ_1	1	0	1/5	0	3/ ₅ 6/ ₅
χ_2	0	1	-3/5	0	6/5
s_2	0	0	1	1	1

Procedemos com o simplex.

- Var. não básicas: $s_2 = 0$;
- Var. básicas: $x_1 = 2/5$, $x_2 = 9/5$ e $s_1 = 1$;
- Função objetivo: z = 3,4;
- A solução é ótima!

Base	$ $ χ_1	χ_2	s_1	s_2	Sol.
z	0	0	0	-0,2	3,4
χ_1	1	0	0	-1/5	² / ₅ ⁹ / ₅
χ_2	0	1	0	3/5	9/5
s_1	0	0	1	1	1

Solução ótima

