

Course Specialist Test 2 Year 12

Student name:	Teacher name:		
Task type:	Response/Investigation		
Reading time for this test: 5 mins			
Working time allowed for this task: 40 mins			
Number of questions:	7		
Materials required:	Upto 3 classpads/calculators		
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters		
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper, and up to three calculators approved for use in the WACE examinations		
Marks available:	41 marks		
Task weighting:	13%		
Formula sheet provided: no but formulae stated on page 2			
Note: All part questions worth more than 2 marks require working to obtain full marks.			

Useful formulae

Complex numbers

Cartesian form			
z = a + bi	$\overline{z} = a - bi$		
Mod $(z) = z = \sqrt{a^2 + b^2} = r$	$\operatorname{Arg}(z) = \theta$, $\tan \theta = \frac{b}{a}$, $-\pi < \theta \le \pi$		
$ z_1 z_2 = z_1 z_2 $	$\left \frac{z_1}{z_2}\right = \frac{ z_1 }{ z_2 }$		
$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$	$\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$		
$z\bar{z} = z ^2$	$z^{-1} = \frac{1}{z} = \frac{\overline{z}}{ z ^2}$		
$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$	$\overline{z_1}\overline{z_2} = \overline{z_1}\overline{z_2}$		
Polar form			
$z = a + bi = r(\cos \theta + i \sin \theta) = r \operatorname{cis} \theta$	$\overline{z} = r \operatorname{cis} (-\theta)$		
$z_1 z_2 = r_1 r_2 cis \left(\theta_1 + \theta_2\right)$	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis} (\theta_1 - \theta_2)$		
$cis(\theta_1 + \theta_2) = cis \ \theta_1 \ cis \ \theta_2$	$cis(-\theta) = \frac{1}{cis \theta}$		
De Moivre's theorem			
$z^n = z ^n cis(n\theta)$	$(cis \theta)^n = \cos n\theta + i \sin n\theta$		
$z^{rac{1}{q}} = r^{rac{1}{q}} \left(\cos rac{ heta + 2\pi k}{q} + i \sin rac{ heta + 2\pi k}{q} ight), ext{ for } k ext{ an integer}$			

$$(x-\alpha)(x-\beta) = x^2 - (\alpha + \beta)x + \alpha\beta$$

Q1 (2 & 3 = 5 marks)

Consider the function f(x) plotted below.

a) Solve for |f(x)| = 5.

x=-2,2

Specific behaviours

P one value

P exactly two values

b) Sketch y = |f(|x|)| on the axes below.

Specific behaviours

P y intercept

P Absolute value used to reflect negative y values in x axis

P reflection of right to give new left side

Q2 (2, 3 & 3 = 8 marks)

Consider the functions $f(x) = \frac{1}{\sqrt{2x-9}}$ and $g(x) = \frac{1}{3x-1}$.

a) Determine the natural domain and range of g(x).

$$d_g: x \neq \frac{1}{3}$$

$$r_g: y \neq 0$$

$$\mathbf{Specific behaviours}$$

$$\mathsf{P} \ \mathsf{domain}$$

$$\mathsf{P} \ \mathsf{range}$$

b) Does $f \circ g(x)$ exist over the natural domain of g(x)? Explain.

 $f \circ g(x)$ $to exist r_g \subseteq d_f$ $r_g : y \neq 0$ $d_f : x > \frac{9}{2}$ $\therefore not$ $r_g \not\in d_f$ Specific behaviours

P states relevant domain and range

P states reason to exist

P states does not exist with a reason

c) Determine the largest possible domain for $f \circ g(x)$.

$$f \circ g(x) = \frac{1}{\sqrt{2\frac{1}{3x-1} - 9}} = \sqrt{\frac{3x-1}{11 - 27x}}$$
$$3x - 1 > 0 \Rightarrow x > \frac{1}{3}$$
$$11 - 27x > 0 \Rightarrow x < \frac{11}{27}$$
$$d : \frac{1}{3} < x < \frac{11}{27}$$

Specific behaviours

P states rule, no need to simplify OR gives reasoning

P determines lower limit of domain (non inclusive)

P determines upper limit of domain (non inclusive)

Do not award if inequality incorrect

Q3 (3, 3, & 2 = 8 marks)

Consider the function $f(x) = 3x^2 - 12x + 19$, $x \le 2$.

a) Determine $f^{-1}(x)$ and state its domain.

$$f(x) = 3x^{2} - 12x + 19, x \le 2$$

$$x = 3y^{2} - 12y + 19, y \le 2$$

$$0 = 3y^{2} - 12y + 19 - x$$

$$y = \frac{12 \pm \sqrt{144 - 12(19 - x)}}{6} = \frac{12 \pm \sqrt{12x - 84}}{6}$$

$$f^{-1}(x) = \frac{12 - 2\sqrt{3x - 21}}{6} = \frac{6 - \sqrt{3x - 21}}{3}, x \ge 7$$

Specific behaviours

P swaps x and y

P states inverse rule with initially two possibilities

P discards positive and states domain

Q3 continued

b) Sketch $f(x) & f^{-1}(x)$ on the same set of axes below.

Specific behaviours

P sketches f with point (2,7) clearly plotted

P sketches f(-1) with point (7,2) clearly plotted

P both functions appear to be reflected in line y=x

c) Determine value(s) of X, if any, such that $f \circ f(X) = X$. Explain.

 $f \circ f(x) = x$ results in $f(x) = f^{-1}(x)$ graphs overlapping at these points

From graph above it is apparent that $f(x) \neq f^{-1}(x)$ therefore no solutions

Specific behaviours

P explains that $f \circ f(x) = x$ results in $f(x) = f^{-1}(x)$

P states no solution to equation with a reason

Q4 (3 marks)

If $z = 27 cis \frac{7\pi}{8}$ is a solution to the equation $z^n = ir$ where r is a positive real number and n is a positive integer, determine the smallest possible value for r in the form 3^p . **Justify** your answer.

$$z^{n} = 3^{3n} cis \frac{7\pi n}{8} = ir = rcis \frac{k\pi}{2}, k = 1, 5, 9, 13, 17, 21...$$

$$\frac{7\pi n}{8} = \frac{k\pi}{2}$$

$$n = \frac{4k}{7}$$
smallest $k = 21, n = 12$

$$smallest k = 21, n = 12$$

$$r = 3^{36}$$

Specific behaviours

P establishes a relationship between n and k algebraically

P determines smallest value for n

P expresses r as a power of 3.

Q5 (3 & 3 = 6 marks)

7 | Page

Consider a triangular plane with vertices A(3,0,0), B(0,4,0) & C(0,0,5) shaded as shown below. There is a light globe situated at point D(5,11,7).

a) Determine the cartesian equation of the shaded plane ABC above.

Q5 continued

b) Determine the distance of the globe to the shaded plane ABC .

Q6 (5 marks)

$$r = \begin{pmatrix} -3 \\ 0 \\ 11 \end{pmatrix} + \lambda \begin{pmatrix} 5 \\ -1 \\ 2 \end{pmatrix} \text{ and the sphere B} \left| r - \begin{pmatrix} -3 \\ \alpha \\ 1 \end{pmatrix} \right| = 10$$

Consider the line A

where α is a real constant.

Determine all possible values of α , to one decimal place such that:

- the line misses the sphere.
- ii) the line just touches the sphere.
- iii) the line pierces the sphere at two points.

$$\Delta$$
 < 0 misses α < - 3.1, α > 4.5

$$\Delta = 0$$
 touches $\alpha = -3.1$, $\alpha = 4.5$

$$\Delta > 0$$
 pierces - 3.1 < α < 4.5

Specific behaviours

P sets up an equation for $\lambda \& \alpha$

P states a quadratic equation or uses shortest distance approach

P uses discriminant expression or compares distances to radius

P states values of α for all three scenarios

Pstates a condition for **each** of the three scenarios to determine values

Q7 (3 & 3 = 6 marks)

Consider two rockets ${}^{A \& B}$ that are ignited at the same time from different positions and move with constant velocities as shown below.

$$r_{A} = \begin{pmatrix} 5 \\ -3 \\ 2 \end{pmatrix} km \quad , v_{A} = \begin{pmatrix} 1 \\ -1 \\ 7 \end{pmatrix} km/h$$

$$r_{\rm B} = \begin{pmatrix} 5 \\ -3 \\ 15 \end{pmatrix} km \quad , v_{\rm B} = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} km / h$$

Both rockets leave a smoke trail that stays in the air for at least 6 hours.

a) Determine the distance of the closest approach between the rockets using scalar dot product (3 marks)

Edit Action Interactive

$$\begin{bmatrix} 5 \\ -3 \\ 15 \end{bmatrix} - \begin{bmatrix} 5 \\ -3 \\ 2 \end{bmatrix} + t \times \begin{pmatrix} 2 \\ -2 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ -1 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} t \\ -t \\ -6 \cdot t + 13 \end{bmatrix}$$

$$dotP \begin{bmatrix} t \\ -t \\ -6 \cdot t + 13 \end{bmatrix}, \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ -1 \\ 7 \end{bmatrix}$$

$$6 \cdot (6 \cdot t - 13) + 2 \cdot t$$

$$solve (6 \cdot (6 \cdot t - 13) + 2 \cdot t = 0, t)$$

$$\left\{ t = \frac{39}{19} \right\}$$

$$norm \begin{pmatrix} t \\ -t \\ -6 \cdot t + 13 \end{bmatrix} \mid t = \frac{39}{19}$$

b) Determine the exact point in space, if any, where the smoke trails overlap at some time in the first 6 hours.
 (3 marks)

$$r_{A} = \begin{pmatrix} 5 \\ -3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 7 \end{pmatrix}$$

$$r_{B} = \begin{pmatrix} 5 \\ -3 \\ 15 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$

$$r_{A} = r_{B}$$

Smoke trails meet at (7,-5,16)km

Specific behaviours

P uses vector equation of lines

P uses two different parameter variables

P states exact point in space, no need for units

(Max 1 mark if only one parameter used)

Mathematics Department

Perth Modern

Working out space

Mathematics Department

Perth Modern

Working out space

Mathematics Department Working out space	Perth Modern
End of test	