Exercises 6, 13, 14, 21, 25, 26, pp. 230-233.

Problem 6. Are the following subrings of the ring of all functions from the closed interval [0,1] to \mathbb{R} .

(a) the set of all functions f(x) such that f(q) = 0 for all $q \in \mathbb{Q} \cap [0,1]$:

Yes.

(b) the set of all polynomial functions:

Yes.

(c) the set of all functions which have only finite numer of zeros, together with the zero function:

Yes.

(d) the set of all functions which have an infinite number of zeros:

Yes.

(e) the set of all functions f such that $\lim_{x\to 1^-} f(x) = 0$:

Yes.

(f) the set of all rational linear combinations of the fuctions $\sin nx$ and $\cos nx$, where $m, n \in \{0, 1, 2, \dots\}$:

Yes.

And we're done.

Problem 13. An element x in R is called *nilpotent* if $x^m = 0$ for some $m \in \mathbb{Z}^+$.

- (a) Show that if $n = a^k b$ for some integers a and b then \overline{ab} is a nilpotent element of $\mathbb{Z}/n\mathbb{Z}$.
- (b) If $a \in \mathbb{Z}$ is an integer, show that the element $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$ is nilpotent if and only if every prome divisor of a. In particular, determine the nilpotent elements of $\mathbb{Z}/72\mathbb{Z}$ explicitly.
- (c) Let R be the ring of functions from a nonempty set X to a field F. Prove that R contains no nonzero nilpotent elements.

Proof. TODO

1

Problem 14. Let x be a nilpotent element of the commutative ring R.

- (a) Prove that x is either zero or a zero divisor.
- (b) Prove that rx is nilpotent for all $r \in R$.

Page 1

- (c) Prove that 1 + x is a unit in R.
- (d) Deduce that the sum of a nilpotent element and a unit is a unit.

Proof. TODO

Problem 21. Let X be any nonempty set.

- (a) Prove that $\mathcal{P}(X)$ is a ring under the addition and multiplication given.
- (b) Prove that this ring is commutative, has an identity and is a Boolean ring.

Proof. TODO

Problem 25. Let I be the ring of integral Hamilton Quaterions and define

$$N: I \to \mathbb{Z}$$
 by $N(a + bi + cj + dk) = a^2 + b^2 + c^2 + d^2$

(the map N is called the norm).

- (a) Prove that $N(\alpha) = \alpha \overline{\alpha}$ for all $\alpha \in I$, where if $\alpha = a + bi + cj + dk$ then $\overline{\alpha} = a bi cj = dk$
- (b) Prove that $N(\alpha\beta) = N(\alpha)(\beta)$ for all $\alpha, \beta \in I$.
- (c) Prove that an element of I is a unit if and only if it has norm +1. Show that I^{\times} is isomorphic to the quaterion group of order 8.

Proof. TODO

Problem 26. Let K be a field and $\nu: K^{\times} \to \mathbb{Z}$ a discrete valuation on K. Let R be the valuation ring of ν .

- (a) Prove that R is a subring of K which contains the identity.
- (b) Prove that for each nonzero element $x \in K$ either x or x^{-1} is in R.
- (c) Prove that an element x is a unit of R if and only if $\nu(0) = 0$.

Proof. TODO

Exercises 3, 4, 10, 11, pp. 238-239.

Problem 3. Let R[[x]] be the formal power series of R in x. Define addition and multiplication as the textbook does.

2

- (a) Prove that R[[x]] is a commutative ring with 1.
- (b) Show that 1-x is a unit in R[[x]] with inverse $1+x+x^2+\cdots$.

(c) Prove that $\sum_{n=0}^{\infty} a_n x^n$ is a unit in R[[x]] if and only if a_0 is a unit in R.

Proof. TODO

Problem 4. Prove that if R is an integral domain then the ring of formal power series R[[x]] is also an integral domain.

Proof. TODO

Problem 10. Consider the following elements of the integral group ring $\mathbb{Z}S_3$:

$$\alpha = 3(1,2) - 5(2,3) + 14(1,2,3)$$
 and $\beta = 6(1) + 2(2,3) - 7(1,3,2)$

(where (1) is the identity of S_3). Compute the following elements:

(a) $\alpha + \beta$, (b) $2\alpha - 3\beta$, (c) $\alpha\beta$, (d) $\beta\alpha$, (e) a^2 .

Proof. TODO

Problem 11. Repeat the precedeing exercise under the assumption that the coefficients of α and β are in $\mathbb{Z}/3\mathbb{Z}$.

Proof. TODO

Exercises 15, 17, 18, 19, 24, 26, pp. 247-251.

Problem 15. Prove that the map $\mathcal{P}(X) \to R$ defined by $A \mapsto \chi_A$ is a ring homomorphism.

Proof. TODO

Problem 17. Let R and S be nonzero rings with identity and denote their respective identities by 1_R and 1_S . Let $\varphi: R \to S$ be a nonzero homomorphism of rings.

- (a) Prove that if $\varphi(1_R) \neq 1_S$, then $\varphi(1_R)$ is a zero divisor in S. Deduce that if S is an integral domain then every ring homomorphism from R to S sends the identity of R to the identity of S.
- (b) Prove that if $\varphi(1_R) = 1_S$ then $\varphi(u)$ is a unit in S and that $\varphi(u^{-1}) = \varphi(u)^{-1}$ for each unit $u \in R$.

Proof. TODO

Problem 18. Let R be a ring.

(a) If I and J are ideals of R prove that their intersection $I \cap J$ is also an ideal of R.

Page 3

(b)	Prove the	hat the	intersection	of an	arbitrary	nonempty	collection	of ideals	is	again	an
	ideal of	R.									

Proof. TODO

Problem 19. Prove that if $I_1 \subseteq I_2 \subseteq \ldots$ are ideals of R then $\bigcup_{n=1}^{\infty} I_n$ is an ideal of R.

Proof. TODO

Problem 24. Let $\varphi: R \to S$ be a ring homomorphism.

- (a) Prove that if J is an ideal of S then $\varphi^{-1}(J)$ is an ideal of R. Apply this to the special case when R is a subring of S and φ is the inclusion homomorphism to deduce that if J is an ideal of S then $J \cap R$ is an ideal of R.
- (b) Prove that if φ is surjective and I is an ideal of R then $\varphi(I)$ is an ideal of S. Give an example where this fails if φ is not surjective.

Proof. TODO

Problem 26. Let R be a ring. For any $n \in \mathbb{Z}$ and $r \in R$, define $nr = r + \cdots + r$ (n times).

- (a) Prove that the map $\mathbb{Z} \to R$ defined by $k \mapsto k1_R$ is a ring homomorphism whose kernel is $n\mathbb{Z}$, where n is the characteristic of R.
- (b) Determine the characteristics of the rings \mathbb{Q} , $\mathbb{Z}[x]$, and $\mathbb{Z}/n\mathbb{Z}[x]$.
- (c) Prove that if p is a prime and if R is a commutative ring of characteristic p, then $(a+b)^p=a^p+b^p$ for all $a,b\in R$.

Proof. TODO

4

Page 4