Лекція 8

ЧИСЛА ФІБОНАЧЧІ

 $\mathit{Числами}\ \Phi \mathit{iбоначч}\mathit{i}\$ називають числа $F_n,\ n\geq 1,\$ які задовольняють таке рекурентне співвідношення

(1)
$$F_n = F_{n-1} + F_{n-2}, \qquad n \ge 3,$$

 $F_1 = 1$, $F_2 = 1$. Вважається, що ці числа вперше з'явилися як розв'язок такої задачі, які приписують Леонардо Пізанському (відомому під прізвищем Фібоначчі):

Задача 1. Фермер вирощуе кроликів. Кожен кролик, який досягае віку 2 місяці, породжує на протязі місяці ще одного кролика. Скільки буде кроликів у фермера, якщо на початку він мав одного кролика?

Якщо позначити кількість кроликів, яких має фермер в n-ому місяці, через F_n , то F_n задовольняє співвідношення (1), оскільки кількість кроликів, яких має фермер в n-ому місяці, дорівнює кількості кроликів, яких фермер мав в (n-1)-ому місяці, та тих кроликів, які народились в n-ому місяці. Остання кількість дорівнює кількості кроликів, яких фермер мав в (n-2)-ому місяці.

Числа Фібоначчі мають багато цікавих властивостей, одна з яких пов'язує їх з відношенням золотого перерізу.

Теорема 1.

$$\lim_{n \to \infty} \frac{F_{n+1}}{F_n} = \frac{1 + \sqrt{5}}{2} \equiv \phi \approx 1.618034\dots$$

⁰Printed from the file [discretka_L=07.tex] on 15.8.2013

0.1. Золотий перетин. Число ϕ називається $ei\partial$ ношенням золотого перетину. Саму назву цьому числу дав Леонардо да Вінчі. Іоганн Кеплер писав

В геометрії є два скарби — теорема Пифагора та золотий перетин; якщо перший з них можна порівняти с мірою золота, то друге — з коштовним каменем . . .

В літературі золотий перетин вперше зустрічається у Евкліда (III сторіччя до н.е.), який розв'язав таку задачу.

Задача 2. Побудувати точку С відрізку AB, для якої відношення довжини більшої з частин до довжини меншої дорівнює відношенню довжини всього відрізку до довжини більшої частини.

Використовуючи сучасні позначення, алгебраїчне розв'язання задачі є досить простим. Позначимо довжини відрізків AC та CB через a та b. Вважатимемо, що a>b. Тоді умову задачі можна записати так:

$$\frac{a+b}{a} = \frac{a}{b} \iff 1 + \frac{1}{\phi} = \phi \iff \phi^2 - \phi - 1 = 0,$$

де ми позначили $\phi = \frac{a}{b}$. Розв'язавши квадратне рівняння відносно ϕ , отримаємо

$$\phi_{\pm} = \frac{1 \pm \sqrt{5}}{2}.$$

Оскільки $\phi_{-} < 0$, то єдиним розв'язком задачі 2 є

$$\phi_{\pm} = \frac{1 + \sqrt{5}}{2}.$$

1. Формула Біне

Для підрахунку загального члену послідовності Фібоначчі застосуємо метод генератрис. Для зручності покладемо $F_0 = 0$. Тоді рівність (1) справджується для $n \geq 2$. Генератрисою послідовності F_n , $n \geq 1$, назвемо суму ряду

(2)
$$F(t) = F_0 + F_1 t + F_2 t^2 + \dots$$

Спочатку знайдемо формулу для генератриси, потім розкладемо її у ряд, порівнюючи який з (2), отримаємо F_n , $n \ge 1$.

Крок перший. На підставі (1) маємо

$$F(t) = t + t^{2} + \sum_{n=3}^{\infty} F_{n}t^{n} = t + t^{2} + \sum_{n=3}^{\infty} F_{n-1}t^{n} + \sum_{n=3}^{\infty} F_{n-2}t^{n}.$$

Оскільки

$$\sum_{n=3}^{\infty} F_{n-1}t^n = t(F(t) - t), \qquad \sum_{n=3}^{\infty} F_{n-2}t^n = t^2F(t),$$

то $F(t) = t + t^2 + t(F(t) - t) + t^2 F(t) = t + t F(t) + t^2 F(t),$ звідки

$$F(t) = -\frac{t}{t^2 + t - 1}.$$

 $Kpo\kappa\ \partial py \imath u \ddot{u}$. Тепер знайдемо у явному вигляді розклад функції F(t) у ряд. Корені рівняння $t^2+t-1=0$ позначимо t_1 та t_2 :

(3)
$$t_1 = \frac{-1 - \sqrt{5}}{2}, \qquad t_2 = \frac{-1 + \sqrt{5}}{2}.$$

Зауважимо, що $t_1t_2=-1,\ t_2-t_1=\sqrt{5}.$ Знайдемо коефіцієнти A та B у розкладі

$$F(t) = \frac{A}{t - t_1} + \frac{B}{t - t_2} = \frac{(A + B)t - At_2 - Bt_1}{(t - t_1)(t - t_2)}$$
$$= \frac{(A + B)t - At_2 - Bt_1}{t^2 + t - 1}.$$

Ці коефіцієнти задовольнять таку систему рівнянь:

$$\begin{cases} A+B=-1\\ At_2+Bt_1=0 \end{cases} \implies A=\frac{t_1}{\sqrt{5}}, \qquad B=-\frac{t_2}{\sqrt{5}}.$$

Таким чином

$$F(t) = \frac{1}{\sqrt{5}} \left(\frac{t_1}{t - t_1} - \frac{t_2}{t - t_2} \right) = \frac{1}{\sqrt{5}} \left(\frac{1}{1 - \frac{t}{t_2}} - \frac{1}{1 - \frac{t}{t_1}} \right).$$

Надалі вважаємо, що $|t| < \min\{|t_1|, |t_2|\}$. Тоді за формулою суми геометричної прогресії

(4)
$$F(t) = \frac{1}{\sqrt{5}} \sum_{n=0}^{\infty} \left(\frac{1}{t_2^n} - \frac{1}{t_1^n} \right) t^n.$$

 $Kpo\kappa \ mpemi$ й. Отримаємо тепер безпосередньо числа F_n . Порівнюючи (4) з (2), дістаємо

(5)
$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1}{t_2^n} - \frac{1}{t_1^n} \right).$$

Цю формулу можна дещо спростити:

$$F_n = \frac{1}{\sqrt{5}} \cdot \frac{t_1^n - t_2^n}{(t_1 t_2)^n} = \frac{(-1)^n}{\sqrt{5}} \left[\left(\frac{-1 - \sqrt{5}}{2} \right)^n - \left(\frac{-1 + \sqrt{5}}{2} \right)^n \right],$$

оскільки $t_1t_2=-1$ на підставі формули Вьєта. Тому

(6)
$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right].$$

Цей результат називається формулою Біне.

Доведення теореми 1. Покладемо $c=t_2/t_1$. З формули (5) випливає, що

$$\frac{F_{n+1}}{F_n} = -\frac{t_1^{n+1} - t_2^{n+1}}{t_1^n - t_2^n} = -\frac{t_1 - c^n t_2}{1 - c^n}.$$

Оскільки |c|<1, то $c^n\to 0,$ $n\to \infty,$ звідки $F_{n+1}/F_n\to -t_1=\phi,$ $n\to \infty.$

2. Інші властивості чисел Фібоначчі

Оскільки $F_i=F_{i+2}-F_{i+1},\ i\geq 1$, згідно до (1), то $F_1+F_2+\cdots+F_n=[F_3-F_2]+[F_4-F_3]+\cdots+[F_{m+2}-F_{m+1}]=F_{m+2}-F_2=F_{m+2}-1$, звідки

(7)
$$\sum_{k=1}^{m} F_i = F_{m+2} - 1, \qquad m \ge 1.$$

Оскільки $F_1=F_2$ та $F_{2k-1}=F_{2k}-F_{2k-2},\ k\geq 2,$ згідно до (1), то $F_1+F_3+\cdots+F_{2n-1}=F_2+[F_4-F_2]+[F_6-F_4]+\cdots+[F_{2n}-F_{2n-2}]=F_{2n}-1,$ звідки

(8)
$$\sum_{k=1}^{n} F_{2k-1} = F_{2n}, \qquad n \ge 1.$$

Застосуємо тепер рівність (7) для m=2n. Віднімемо від цієї суми всі непарні числа, для суми яких використаємо формулу (8). Тоді згідно до (1)

(9)
$$\sum_{k=1}^{n} F_{2k} = F_{2n+2} - 1 - F_{2n} = F_{2n+1} - 1,$$

3. Система числення Фібоначчі

Ми кажемо, що послідовність натуральних чисел a_k , $k \ge 1$, дозволяє побудувати систему числення, якщо будь-яке натуральне число n можна представити єдиним способом у вигляді скінченої суми різних членів послідовності $\{a_k\}$. Послідовність степеней числа 10 дозволяє побудувати систему числення, якою ми постійно користуємось. Аналогічна ситуація з степенями будь-якого іншого натурального числа (найбільш відомою є послідовність степеней 2). Виявляється, що те ж саме можна здійснити з послідовністю чисел Фібоначчі. Наприклад, $1,000,000 = F_{30} + F_{26} + F_{24} + F_{12} + F_{10}$.

Теорема 2. Будъ-яке натуральне число n мае едине представлення виду

$$(10) n = F_{k_1} + F_{k_2} + \dots + F_{k_r},$$

$$\partial e \ k_1 \ge k_2 + 2, k_2 \ge k_3 + 2, \dots, k_{r-1} \ge k_r + 2.$$

Зауваження 1. За допомогою теореми 2 кожне натуральне число n можна представити єдиним чином у вигляді послідовністі нулей та одиниць:

$$n = (\varepsilon_m \varepsilon_{m-1} \dots \varepsilon_2)_F \iff n = \sum_{k=2}^m \varepsilon_k F_k.$$

Наприклад $1 = (1)_F$, $2 = (10)_F$, $3 = (100)_F$, $4 = (101)_F$. Це представлення нагадує двійковий розклад числа. Зауважимо, що в розкладі Фібоначчі дві одиниці поруч стояти не можуть.

Лема 1. Нехай для нескінченної послідовності натуральних чисел $\{a_k\}$

$$a_1 = 1,$$
 $a_k \le 1 + \sum_{i=1}^{k-1} a_i,$ $k \ge 2.$

Тоді кожне натуральне число можна представити у вигляді суми скінченої кількості членів цієї послідовності.

Доведення леми 1. Покладемо $A_1=0,\,A_k=\sum_{i=1}^{k-1}a_i,\,k\geq 2.$ Доведемо, що для будь-якого $N\geq 1$ всі числа $n\leq 1+A_N$ мають зазначене представлення. Використаємо метод математичної індукції за N. База індукції. Число N=1 можна представити зазначеним чином, оскільки $1=a_1.$ Припущення індукції. Нехай представлення справедливе для всіх $n\leq 1+A_N.$ Крок індукції. Доведемо, що представлення справедливе для всіх $n\leq 1+A_{N+1}.$ Якщо $n\leq 1+A_N,$ то представлення виконується за припущенням індукції. Нехай $1+A_N< n\leq 1+A_{N+1}.$ Тоді $0\leq 1+A_N-a_{N+1}< n-a_{N+1}\leq 1+A_N.$ Тому за припущенням індукції представлення справджується для числа $n-a_{N+1},$ значить і для числа n.

Доведення теореми 2. Застосуємо лему 1 до послідовності Фібоначчі. Умови леми виконані: $F_1=1,\ F_k=F_{k-2}+F_{k-1}<1+F_1+\cdots+F_{k-2}+F_{k-1}.$

Для побудови зображення (10) використовуємо такий алгоритм: в ролі F_{k_1} вибирається найбільше число Фібоначчі,

яке не перевищує n; потім в ролі F_{k_2} вибирається найбільше число Фібоначчі, яке не перевищує $n-F_{k_1}$, і так далі.

Для доведення єдиності представлення (10), помітимо, що $n \geq F_{k_1} > F_{k_1} - 1 = F_1 + \dots + F_{k_1-2}$ на підставі (7). Оскільки $k_1 \geq k_2 + 2$, то жодна комбінація чисел Фібоначчі F_k з $k \leq k_1 - 2$ (навіть всі вони) не перевищить $F_{k_1} - 1$, тим більше n. Тому число k_1 обирається єдиним способом. \square

ВПРАВИ

Вправа 1. Довести теорему 1.

Вправа* 2. Чи містить послідовність чисел Фібоначчі нескінченну кількість простих чисел? (відповідь невідома до цього часу)

Вправа 3. За допомогою циркуля та лінійку побудувати золотий перетин відрізка AB.

Вправа 4. Спряженим золотим перетином називається від'ємний розв'язок рівняння

$$1 - \Phi = -\frac{1}{\Phi}.$$

Довести, що $\Phi = 1 - \phi$.

Вправа 5. Вивести безпосередньо з означення, що ϕ є ірраціональним числом.

Вправа 6. Нехай числа t_1 та t_2 означені рівністю (3). Довести, що $|t_2|<1$ та $F_n=[(-t_1)^n/\sqrt{5}].$

Вправа 7. Довести безпосередньо, що права частина (6) є натуральним числом.

Вправа 8. Числами Люка́ називається послідовність $L_1=1, L_2=3,$ $L_n=L_{n-1}+L_{n-2}, n>2.$ Методом генератрис знайти загальну формулу для чисел Люка.

Вправа 9. Методом математичної індукції довести, що

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}.$$

Вправа 10. Довести, що $F_{n+1}F_{n-1}-F_n^2=(-1)^n$. [Знайти детермінанти у задачі 9.]

Вправа 11. Довести, що сусідні числа Фібоначчі є взаємно простими.

Вправа 12. Довести, що $F_n = F_m F_{n-m+1} + F_{m-1} F_{n-m}, \ n \ge 1,$ $1 \le m < n.$ [Представити матриці у задачі 9 у вигляді добутку степенів m та n-m тих самих матриць.]

Вправа 13. Довести, що всі інші числа k_2, \ldots, k_r в представленні (10) також обираються єдиним способом.

Вправа 14. Навести приклад, який показує, що представлення (10) не є єдиним, якщо умова $k_1 \geq k_2 + 2, k_2 \geq k_3 + 2, \dots, k_{r-1} \geq k_r + 2$ не вимагається.

відповіді

3.

- 1. Побудувати у точці B перпендикуляр до відрізка AB. Обрати на ньому точку T так, щоб довжина BT дорівнювала половині довжини AB. З'єднати A та T.
- 2. Побудувати коло з центром в T та радіусом BT. Коло перетинає гіпотенузу AT в точці D.
- 3. Побудувати коло з центром в A та радіусом AD. Це коло перетинає відрізок AB в точці C, яка і є золотим перетином.
- **5.** Якби ϕ було раціональним, то $\phi = \frac{n}{m}$ для деяких натуральних n та m. Серед усіх можливих таких n та m оберемо пару з мінімальним значенням суми чисельника та знаменника. Тоді

$$1 + \frac{1}{\phi} = \phi \implies 1 + \frac{m}{n} = \frac{n}{m} \implies \frac{n}{m} = \frac{m}{n - m}.$$

Сума чисельника та знаменника дробу справа дорівнює n і є меншим, ніж число n+m, яке було обрано як мінімум сум чисельників та знаменників. Тому припущення про раціональність ϕ є хибним.