使用matlab解线性规划问题

PB20000156 徐亦昶

问题描述

2.10 某糖果厂用原料 A、B、C加工成三种不同牌号的糖果甲、乙、丙。已知各种牌号糖果中 A、B、C含量,原料成本,各种原料的每月限制用量,三种牌号糖果的单位加工费及售价如表 2-20 表示。

-	2 20
农	2-20

原 料	甲	Z	丙	原料成本/(元/kg)	毎月限制用量/kg
A	≥60%	≥15%		2.00	2 000
В				1.50	2 500
c	≪20%	≪60%	≪50%	1,00	1 200
加工费/(元/kg)	0.50	0.40	0, 30		
售价/(元/kg)	3.40	2, 85	2. 25		

问该厂每月应生产这三种牌号糖果各多少千克,使该厂获利最大?试建立这个问题 的线性规划的数学模型。

模型建立

设甲产品中ABC三种原料的含量分别是 x_1,x_2,x_3 (单位千克),同理对乙、丙产品中原料设定为 x_4,x_5,\ldots,x_9 ,则约束方程可列为:

$$\left\{egin{array}{l} x_1+x_2+x_3 \leq 2000 \ x_4+x_5+x_6 \leq 2500 \ x_7+x_8+x_9 \leq 1200 \ x_1-0.6(x_1+x_4+x_7) \geq 0 \ x_2-0.15(x_2+x_5+x_8) \geq 0 \ x_7-0.2(x_1+x_4+x_7) \leq 0 \ x_8-0.6(x_2+x_5+x_8) \leq 0 \ x_9-0.5(x_3+x_6+x_9) \leq 0 \ x_1,\ldots,x_9 \geq 0 \end{array}
ight.$$

 $\max z = -2x_1 - 2x_2 - 2x_3 - 1.5x_4 - 1.5x_5 - 1.5x_6 - x_7 - x_8 - x_9 + 2.9(x_1 + x_4 + x_7) + 2.45(x_2 + x_5 + x_8) + 1.95(x_3 + x_6 + x_9)$

化简后得:

$$egin{cases} x_1+x_2+x_3 \leq 2000 \ x_4+x_5+x_6 \leq 2500 \ x_7+x_8+x_9 \leq 1200 \ 0.4x_1-0.6x_4-0.6x_7 \geq 0 \ 0.85x_2-0.15x_5-0.15x_8 \geq 0 \ -0.2x_1-0.2x_4+0.8x_7 \leq 0 \ -0.6x_2-0.6x_5+0.4x_8 \leq 0 \ -0.5x_3-0.5x_6+0.5x_9 \leq 0 \ x_1,\ldots,x_9 \geq 0 \end{cases}$$

 $\max z = 0.9x_1 + 0.45x_2 - 0.05x_3 + 1.4x_4 + 1.95x_5 + 0.45x_6 + 1.9x_7 + 1.45x_8 + 0.95x_9$

加入松弛变量变为标准型:

$$\left\{egin{array}{l} x_1+x_2+x_3+x_{10}=2000\ x_4+x_5+x_6+x_{11}=2500\ x_7+x_8+x_9+x_{12}=1200\ 0.4x_1-0.6x_4-0.6x_7-x_{13}=0\ 0.85x_2-0.15x_5-0.15x_8-x_{14}=0\ -0.2x_1-0.2x_4+0.8x_7+x_{15}=0\ -0.6x_2-0.6x_5+0.4x_8+x_{16}=0\ -0.5x_3-0.5x_6+0.5x_9+x_{17}=0\ x_1,\ldots,x_{17}\geq 0 \end{array}
ight.$$

 $\max z = 0.9x_1 + 0.45x_2 - 0.05x_3 + 1.4x_4 + 1.95x_5 + 0.45x_6 + 1.9x_7 + 1.45x_8 + 0.95x_9$

可取 x_{13} 到 x_{20} 为基变量,约束方程变为

$$\left\{egin{array}{l} x_1+x_2+x_3+x_{10}=2000 \ x_4+x_5+x_6+x_{11}=2500 \ x_7+x_8+x_9+x_{12}=1200 \ -0.4x_1+0.6x_4+0.6x_7+x_{13}=0 \ -0.85x_2+0.15x_5+0.15x_8+x_{14}=0 \ -0.2x_1-0.2x_4+0.8x_7+x_{15}=0 \ -0.6x_2-0.6x_5+0.4x_8+x_{16}=0 \ -0.5x_3-0.5x_6+0.5x_9+x_{17}=0 \ x_1,\dots,x_{17}\geq 0 \end{array}
ight.$$

 $\max z = 0.9x_1 + 0.45x_2 - 0.05x_3 + 1.4x_4 + 1.95x_5 + 0.45x_6 + 1.9x_7 + 1.45x_8 + 0.95x_9$

初始系数矩阵:

在单纯形表中,

$$c_j = \left[0.9, 0.45, -0.05, 1.4, 1.95, 0.45, 1.9, 1.45, 0.95, 0, 0, 0, 0, 0, 0, 0, 0\right]$$

$$m{X}_B = [x_{10}, x_{11}, \dots, x_{17}]$$

 $\boldsymbol{b} = [2000, 2500, 1200, 0, 0, 0, 0, 0]$

其余项会在后续的程序中自动算出。

程序编写

原理

使用Matlab编写一个solve函数,传入 c_j 、 X_B ,b和约束方程矩阵,输出每次迭代得到的单纯性表并返回最终的目标函数值。如果有无界解则返回Inf。

这个函数会先计算单纯形表中没有给出的 C_B 列和 c_j-z_j 行并确定换入变量。如果存在换入变量则计算 θ_j 列并得到换出变量或无界解。如果存在换出变量,则对原单纯形表进行旋转操作,将新的单纯形表作为参数传入solve函数进行一次递归调用,完成接下来的迭代。不存在换入变量时,说明目标函数已经最大化,此时输出最终的单纯形表并计算目标函数值。

另外还有一个Display函数,负责传入单纯形表相关参数并以尽可能规范的形式打印出单纯形表。

源码展示

solve.m

```
function f=solve(cj,XB,b,mat,iter)
if nargin==4
  iter=1;
```

```
for i = 1:length(XB(:)) %Compute CB
    CB(i)=cj(XB(i));
end
for i = 1:length(cj(:)) %Compute cj-zj
    zj=0;
    for j = 1:length(CB(:))
        zj=zj+CB(j)*mat(j,i);
    cjzj(i)=cj(i)-zj;
replace_in=find(cjzj==max(cjzj));
replace_in=replace_in(1);
if cjzj(replace_in)>0 %Not optimized
    for i = 1:length(CB(:)) %Compute theta_j
        if mat(i,replace_in)<=0</pre>
            theta(i)=inf;
        else
            theta(i)=b(i)/mat(i,replace_in);
    fprintf("Iteration %d:\n",iter);
    Display(cj,CB,XB,b,mat,cjzj,theta);
    if min(theta)==inf %Infinite solution
        f=inf;
        return;
    else
        replace_out=find(theta==min(theta));
        replace_out=replace_out(1);
        XB(replace_out)=replace_in;
        for i = 1:length(CB(:)) %Rotate the matrix
            if i==replace_out
                continue
            ratio=mat(i,replace_in)/mat(replace_out,replace_in);
            b(i)=b(i)-b(replace_out)*ratio;
            mat(i,:)=mat(i,:)-mat(replace_out,:)*ratio;
        end
        b(replace_out)=b(replace_out)/mat(replace_out,replace_in);
        \verb|mat(replace_out,:)= \verb|mat(replace_out,:)/mat(replace_out,replace_in);|
        f=solve(cj, XB, b, mat, iter+1); %Process the next table
    end
else %Optimized
    f=0;
    for i = 1:length(CB(:))
        theta(i)=inf;
        f=f+CB(i)*b(i);
    fprintf("Iteration %d:\n",iter);
    Display(cj,CB,XB,b,mat,cjzj,theta);
end
return;
```

• Display.m

```
function f=Display(cj,CB,XB,b,mat,cjzj,theta)
fprintf("\tcj\t\t");
for i = 1:length(cj(:))
    fprintf("%.2f\t",cj(i));
end

fprintf("theta\nCB\tXB\tb\t");
for i = 1:length(cj(:))
    fprintf("x%d\t",i);
end

fprintf("\n");
for i = 1:length(CB(:))
    fprintf("\n");
```

已经使用教材及作业中的多道题目验证了程序的正确性。

问题解决

变量建立

先在Matlab中建立调用solve函数需要的变量cj,XB,b,mat(约束方程矩阵)。

```
%answer.m
clear;
cj=[0.9,0.45,-0.05,1.4,0.95,0.45,1.9,1.45,0.95,0,0,0,0,0,0,0];
XB=[10,11,12,13,14,15,16,17];
b=[2000,2500,1200,0,0,0,0];
mat(1,:)=[1,1,1,0,0,0,0,0,0,1,0,0,0,0,0];
mat(2,:)=[0,0,0,1,1,1,0,0,0,0,1,0,0,0,0,0];
mat(3,:)=[0,0,0,0,0,1,1,1,0,0,1,0,0,0,0];
mat(4,:)=[-0.4,0,0,0.6,0,0,0.6,0,0,0,0,1,0,0,0];
mat(5,:)=[0,-0.85,0,0,0.15,0,0,0.15,0,0,0,0,1,0,0,0];
mat(6,:)=[-0.2,0,0,-0.2,0,0,0.8,0,0,0,0,0,0,1,0,0];
mat(7,:)=[0,-0.6,0,0,-0.6,0,0,0.4,0,0,0,0,0,0,1,0];
mat(8,:)=[0,0,-0.5,0,0,-0.5,0,0,0.5,0,0,0,0,0,0,0];
solve(cj,XB,b,mat)
```

输出

```
Iteration 1:
            0.45 -0.05 1.40 0.95
     0.90
                                    0.45
                                         1.90
                                               1.45
                                                     0.95
                                                          0.00
                                                                0.00
                                                                      0.00
  Сi
0.00 0.00 0.00 0.00 0.00 theta
CB XB b x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17
     x10 2000.00 1.00 1.00 1.00 0.00
                                    0.00
                                        0.00
                                                          0.00
                                                                      0.00
                                              0.00
                                                                1.00
     0.00 0.00 0.00 0.00 -
0.00
     x11 2500.00 0.00 0.00 0.00 1.00
                                              0.00
0.00
                                    1.00
                                        1.00
                                                     0.00
                                                          0.00
                                                                0.00
                                                                      1.00
    0.00 0.00 0.00 0.00 -
0.00
    x12 1200.00 0.00 0.00 0.00 0.00 0.00
                                              1.00
0.00
                                         0.00
                                                    1.00
                                                          1.00
                                                                0.00
                                                                      0.00
1.00 0.00 0.00 0.00 0.00 0.00 1200.00
0.00 x13 0.00 -0.40 0.00 0.00 0.60 0.00
                                         0.00
                                              0.60
                                                     0.00
                                                          0.00
                                                                0.00
                                                                      0.00
0.00 1.00 0.00 0.00 0.00 0.00 0.00
0.00 x14 0.00 0.00 -0.85 0.00 0.00 0.15 0.00
                                              0.00
                                                     0.15
                                                          0.00
                                                                0.00
                                                                      0.00
0.00 0.00 1.00 0.00 0.00 0.00 -
0.00 x15 0.00 -0.20 0.00 0.00 -0.20 0.00
                                         0.00
                                              0.80 0.00 0.00
                                                                0.00
                                                                      0.00
0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 x16 0.00 0.00 -0.60 0.00 0.00 -0.60 0.00
                                               0.00
                                                   0.40 0.00
                                                                0.00
                                                                      0.00
0.00 0.00 0.00 0.00 1.00 0.00 -
0.00 x17 0.00 0.00 0.00 -0.50 0.00 0.00 -0.50 0.00
                                                     0.00
                                                          0.50
                                                                0.00
                                                                      0.00
0.00 0.00 0.00 0.00 1.00 -
 cj-zj 0.90 0.45 -0.05 1.40 0.95 0.45 1.90 1.45 0.95 0.00 0.00
                                                                       0.00
0.00 0.00 0.00 0.00
Iteration 2:
```

cj	0.90 0.4		1.40	0.95	0.45	1.90	1.45	0.95	0.00	0.00	0.00
0.00	0.00 0.00	0.00 0.0					4546				
CB XB	b x1 x2 x3								0.00	1 00	0.00
0.00	x10 2000.00 1.0		1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
0.00	0.00 0.00	0.00 0.0			0.00						
0.00	x11 2500.00 0.0		0.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	1.00
0.00	0.00 0.00	0.00 0.0									
0.00	x12 1200.00 0.6		0.00	-1.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00
1.00	-1.67 0.00	0.00 0.0	0 0.0	0 1800	0.00						
1.90	x7 0.00 -0.	67 0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00
0.00	1.67 0.00	0.00 0.0	0 0.0	- 0							
0.00	x14 0.00 0.0	00 -0.85	0.00	0.00	0.15	0.00	0.00	0.15	0.00	0.00	0.00
0.00	0.00 1.00	0.00 0.0	0 0.0	- 0							
0.00	x15 0.00 0.3	0.00	0.00	-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	-1.33 0.00	1.00 0.0	0 0.0	0.00	9						
0.00	x16 0.00 0.0	00 -0.60	0.00	0.00	-0.60	0.00	0.00	0.40	0.00	0.00	0.00
0.00	0.00 0.00	0.00 1.0	0 0.0	- 0							
0.00	x17 0.00 0.0	0.00	-0.50	0.00	0.00	-0.50	0.00	0.00	0.50	0.00	0.00
0.00	0.00 0.00	0.00 0.0	0 1.0	- 0							
cj-	zj 2.17	0.45 -0.	05 -0.	50 0.95	0.4	5 0.00	0 1.4	5 0.9	95 0.0	0.0	0.00
-3.17	0.00 0.00	0.00 0.0	0								
Iterati	on 3:										
cj	0.90 0.4	15 -0.05	1.40	0.95	0.45	1.90	1.45	0.95	0.00	0.00	0.00
0.00	0.00 0.00	0.00 0.0	0 the	ta							
CB XB	b x1 x2 x3	x4 x5 x6	x7 x8	x9 x10	X11 X12	x13 x14	x15 x16	x17			
0.00	x10 2000.00 0.0	00 1.00	1.00	3.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
0.00	4.00 0.00	-3.00 0.0	0.0	0 666	. 67						
0.00	X11 2500.00 0.0	0.00	0.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	1.00
0.00	0.00 0.00	0.00 0.0	0.0	0 2500	0.00						
0.00	X12 1200.00 0.0	0.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00
1.00	1.00 0.00	-2.00 0.0	0.0	0 1200	0.00						
1.90	x7 0.00 0.0	0.00	0.00	-1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00
0.00	-1.00 0.00	2.00 0.0	0.0	- 0							
0.00	x14 0.00 0.0	00 -0.85	0.00	0.00	0.15	0.00	0.00	0.15	0.00	0.00	0.00
0.00	0.00 1.00	0.00 0.0	0 0.0	- 0							
0.90	x1 0.00 1.0	0.00	0.00	-3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	-4.00 0.00	3.00 0.0	0.0	- 0							
0.00	x16 0.00 0.0	00 -0.60	0.00	0.00	-0.60	0.00	0.00	0.40	0.00	0.00	0.00
0.00	0.00 0.00	0.00 1.0	0.0	- 0							
0.00	x17 0.00 0.0	0.00	-0.50	0.00	0.00	-0.50	0.00	0.00	0.50	0.00	0.00
0.00	0.00 0.00	0.00 0.0	0 1.0	- 0							
cj-	zj 0.00	0.45 -0.	05 6.0	0.95	0.4	5 0.00	0 1.4	5 0.9	95 0.0	0.0	0.00
5.50	0.00 -6.50	0.00 0.0	0								
Iterati	on 4:										
cj	0.90 0.4	15 -0.05	1.40	0.95	0.45	1.90	1.45	0.95	0.00	0.00	0.00
0.00	0.00 0.00	0.00 0.0	0 the	ta							
CB XB	b x1 x2 x3	x4 x5 x6	x7 x8	x9 x10	x11 x12	x13 x14	x15 x16	x17			
1.40	x4 666.67 0.0	0.33	0.33	1.00	0.00	0.00	0.00	0.00	0.00	0.33	0.00
0.00	1.33 0.00	-1.00 0.0	0.0	- 0							
0.00	x11 1833.33 0.0	00 -0.33	-0.33	0.00	1.00	1.00	0.00	0.00	0.00	-0.33	1.00
0.00	-1.33 0.00	1.00 0.0	0 0.0	- 0							
0.00	x12 533.33 0.0	00 -0.33	-0.33	0.00	0.00	0.00	0.00	1.00	1.00	-0.33	0.00
1.00	-0.33 0.00	-1.00 0.0	0 0.0	0 533	. 33						
1.90	x7 666.67 0.0	0.33	0.33	0.00	0.00	0.00	1.00	0.00	0.00	0.33	0.00
0.00	0.33 0.00	1.00 0.0	0 0.0	- 0							
0.00	x14 0.00 0.0	00 -0.85	0.00	0.00	0.15	0.00	0.00	0.15	0.00	0.00	0.00
0.00	0.00 1.00	0.00 0.0	0 0.0	0.00	9						
0.90	x1 2000.00 1.0	00 1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
0.00	-0.00 0.00	0.00 0.0	0 0.0	- 0							
0.00	x16 0.00 0.0			0.00	-0.60	0.00	0.00	0.40	0.00	0.00	0.00
0.00	0.00 0.00	0.00 1.0		0.00	9						
0.00	×17 0.00 0.0				0.00	-0.50	0.00	0.00	0.50	0.00	0.00
0.00	0.00 0.00	0.00 0.0									
cj-		-1.55 -2.		0.95	0.4	5 0.00	9 1.4	5 0.9	95 -2.	00 0.0	0.00
	-										
-2.50	0.00 -0.50	0.00 0.0	0								

T 6 6 -	5.							
Iterati cj	on 5: 0.90 0.45 -0.05 1.40 0.95	0.45	1.90	1.45	0.95	0.00	0.00	0.00
0.00	0.00 0.00 0.00 0.00 theta							
CB XB	b x1 x2 x3 x4 x5 x6 x7 x8 x9 x16							
1.40	x4 666.67 0.00 0.33 0.33 1.00	0.00	0.00	0.00	0.00	0.00	0.33	0.00
0.00	1.33 0.00 -1.00 0.00 0.00 200 x11 1833.33 0.00 -0.33 -0.33 0.00	1.00	1.00	0.00	0.00	0.00	-0.33	1.00
0.00	-1.33 0.00 1.00 0.00 0.00 -							
0.00	x12 533.33 0.00 5.33 -0.33 0.00	-1.00	0.00	0.00	0.00	1.00	-0.33	0.00
1.00	-0.33 -6.67 -1.00 0.00 0.00 100	0.00						
1.90	x7 666.67 0.00 0.33 0.33 0.00	0.00	0.00	1.00	0.00	0.00	0.33	0.00
0.00 1.45		1.00	0.00	0.00	1.00	0.00	0.00	0.00
0.00	x8 0.00 0.00 -5.67 0.00 0.00 0.00 6.67 0.00 0.00 0.00 -	1.00	0.00	0.00	1.00	0.00	0.00	0.00
0.90	x1 2000.00 1.00 1.00 1.00 0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
0.00	-0.00 0.00 0.00 0.00 0.00 200	00.00						
0.00	x16 0.00 0.00 1.67 0.00 0.00	-1.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00 -2.67 0.00 1.00 0.00 0.00 x17 0.00 0.00 0.00 -0.50 0.00		-0.50	0.00	0.00	0.50	0.00	0.00
0.00	x17 0.00 0.00 0.00 -0.50 0.00 0.00 0.00 0.00 0.00 1.00 -	0.00	-0.50	0.00	0.00	0.50	0.00	0.00
cj-:		50 0.4	5 0.00	0.0	0.9	5 -2.0	90 0.00	0.00
-2.50	-9.67 -0.50 0.00 0.00							
Iterati		0.45	1 00	4 45	0.05	0.00	0.00	0.00
cj 0.00	0.90 0.45 -0.05 1.40 0.95 0.00 0.00 0.00 0.00 theta	0.45	1.90	1.45	0.95	0.00	0.00	0.00
CB XB	b x1 x2 x3 x4 x5 x6 x7 x8 x9 x16	x11 x12	x13 x14	x15 x16	x17			
1.40	x4 666.67 0.00 0.00 0.33 1.00	0.20	0.00	0.00	0.00	0.00	0.33	0.00
0.00	1.33 0.53 -1.00 -0.20 0.00 333	33.33						
0.00	x11 1833.33 0.00 0.00 -0.33 0.00	0.80	1.00	0.00	0.00	0.00	-0.33	1.00
0.00	-1.33 -0.53 1.00 0.20 0.00 229 x12 533.33 0.00 0.00 -0.33 0.00	01.67 2.20	0.00	0.00	0.00	1.00	-0.33	0.00
1.00		2.20	0.00	0.00	0.00	1.00	-0.33	0.00
1.90	x7 666.67 0.00 0.00 0.33 0.00	0.20	0.00	1.00	0.00	0.00	0.33	0.00
0.00	0.33 0.53 1.00 -0.20 0.00 333	33.33						
1.45	x8 0.00 0.00 0.00 0.00 0.00	-2.40	0.00	0.00	1.00	0.00	0.00	0.00
0.00	0.00 -2.40 0.00 3.40 0.00 -	0.60	0.00	0.00	0.00	0.00	1.00	0.00
0.90	x1 2000.00 1.00 0.00 1.00 0.00 -0.00 1.60 0.00 -0.60 0.00 333	33.33	0.00	0.00	0.00	0.00	1.00	0.00
0.45	x2 0.00 0.00 1.00 0.00 0.00	-0.60	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00 -1.60 0.00 0.60 0.00 -							
0.00	x17 0.00 0.00 0.00 -0.50 0.00	0.00	-0.50	0.00	0.00	0.50	0.00	0.00
0.00	0.00 0.00 0.00 0.00 1.00 -	:0 0 41	- 0.00	0.00		- 2	00 00	0.00
cj-: -2.50		0.4	5 0.00	9 6.6	0.9	5 -2.1	0.00	9 0.00
Iterati	on 7:							
	0.90 0.45 -0.05 1.40 0.95	0.45	1.90	1.45	0.95	0.00	0.00	0.00
0.00 CB YB	0.00 0.00 0.00 0.00 theta b x1 x2 x3 x4 x5 x6 x7 x8 x9 x10) v11 v12	v12 v1/	v15 v16	v17			
1.40	x4 618.18 0.00 0.00 0.36 1.00	0.00	0.00	0.00	0.00	-0.09	0.36	0.00
-0.09	1.36 0.36 -0.91 0.09 0.00 -							
0.00	x11 1639.39 0.00 0.00 -0.21 0.00	0.00	1.00	0.00	0.00	-0.36	-0.21	1.00
-0.36		2.22						
0.95	x5 242.42 0.00 0.00 -0.15 0.00	1.00	0.00	0.00	0.00	0.45	-0.15	0.00
0.45 1.90	-0.15	0.00	0.00	1.00	0.00	-0.09	0.36	0.00
-0.09		6.67	5.50	1.00	3.00	0.09	0.30	3.00
1.45	x8 581.82 0.00 0.00 -0.36 0.00	0.00	0.00	0.00	1.00	1.09	-0.36	0.00
1.09	-0.36 -0.36 -1.09 -0.09 0.00 -							
0.90	x1 1854.55 1.00 0.00 1.09 0.00	0.00	0.00	0.00	0.00	-0.27	1.09	0.00
-0.27 0.45		0.00	0.00	0.00	0.00	0.27	-0.09	0.00
0.45	x2 145.45 0.00 1.00 -0.09 0.00 -0.09 -1.09 -0.27 -0.27 0.00 -	0.00	0.00	0.00	0.00	0.21	-0.09	0.00
0.00	x17 0.00 0.00 0.00 -0.50 0.00	0.00	-0.50	0.00	0.00	0.50	0.00	0.00
0.00	0.00 0.00 0.00 0.00 1.00 -							
		00 0.4	5 0.00	0.0	0.0	64 -1.	47 0.00	9 -1.59
-1.97	-1.97 1.09 1.09 0.00							

Iterati	on 8:										
cj	0.90 0.4			0.95	0.45	1.90	1.45	0.95	0.00	0.00	0.00
0.00 CB XB	0.00 0.00 b x1 x2 x3		.00 the		x11 x12	x13 x14	x15 x16	x17			
1.40	x4 1133.33 0.0		0.67	1.00	0.00	0.00	0.83	0.00	-0.17	0.67	0.00
-0.17	1.67 0.67	0.00 0	.17 0.0	0 680	0.00						
0.00	x11 866.67 0.0	0.00	-0.67	0.00	0.00	1.00	-1.25	0.00	-0.25	-0.67	1.00
-0.25	-1.67 -1.67		.25 0.0			0.00	0.40	0.00	0.40	0.00	0.00
0.95 0.42	x5 500.00 0.0 0.00 1.00		0.00 1.42 0.0	0.00	1.00	0.00	0.42	0.00	0.42	0.00	0.00
0.42	x15 566.67 0.0		0.33	0.00	0.00	0.00	0.92	0.00	-0.08	0.33	0.00
-0.08	0.33 0.33		.08 0.0	0 680	0.00						
1.45	x8 1200.00 0.0	0.00	0.00	0.00	0.00	0.00	1.00	1.00	1.00	0.00	0.00
1.00	0.00 -0.00		.00 0.0			585587200					
9.90 -0.25	x1 1700.00 1.00 -0.00 1.00		1.00 .25 0.0	0.00	0.00 0.00	0.00	-0.25	0.00	-0.25	1.00	0.00
0.45	x2 300.00 0.0		0.00	0.00	0.00	0.00	0.25	0.00	0.25	0.00	0.00
9.25	0.00 -1.00		0.25 0.0								
0.00	x17 0.00 0.0	0.00	-0.50	0.00	0.00	-0.50	0.00	0.00	0.50	0.00	0.00
0.00	0.00 0.00		.00 1.0								
cj- -2.33	_		1.88 0.0	0 0.00	0.4	5 -1.0	90 0.00	9 -0.	55 -1.	83 0.0	0 -1.50
-2.33	-2.33 0.00	1.00 0	.00								
Iterati	on 9:										
cj	0.90 0.4	5 -0.05	1.40	0.95	0.45	1.90	1.45	0.95	0.00	0.00	0.00
0.00	0.00 0.00		.00 the								
CB XB 1.40	b x1 x2 x3								0 12	0.76	0.12
-0.13	x4 1017.78 0.6 1.89 0.89		0.76 .00 0.0	1.00 0 101	0.00 7.78	-0.13	1.00	0.00	-0.13	0.76	-0.13
0.00	x16 693.33 0.0		-0.53	0.00	0.00	0.80	-1.00	0.00	-0.20	-0.53	0.80
-0.20	-1.33 -1.33	0.00 1	.00 0.0	0 -							
0.95	x5 1482.22 0.0		-0.76	0.00	1.00	1.13	-1.00	0.00	0.13	-0.76	1.13
9.13	-1.89 -0.89		0.00 0.0		0.00	0.07	1 00	0.00	0.07	0.20	0.07
9.00 -0.07	x15 508.89 0.6 0.44 0.44		0.38	0.00 0 508	0.00	-0.07	1.00	0.00	-0.07	0.38	-0.07
1.45	x8 1200.00 0.0		0.00	0.00	0.00	-0.00	1.00	1.00	1.00	0.00	-0.00
1.00	0.00 0.00	0.00 0	.00 0.0	0 1200	0.00						
0.90	x1 1526.67 1.0		1.13	0.00	0.00	-0.20	0.00	0.00	-0.20	1.13	-0.20
-0.20	0.33 1.33		.00 0.0		0.00	0.00	0.00		0.00	0.40	0.00
0.45 0.20	x2 473.33 0.0 -0.33 -1.33		-0.13 .00 0.0	0.00	0.00	0.20	0.00	0.00	0.20	-0.13	0.20
0.00	x17 0.00 0.0				0.00	-0.50	0.00	0.00	0.50	0.00	0.00
0.00	0.00 0.00		.00 1.0								
cj-	zj 0.00	0.00 -	1.35 0.0	0.00	0 -0.	35 0.00	0.00	9 -0.3	35 -1.	30 -0.	80 -1.30
-1.00	-1.00 0.00	0.00 0	.00								
Iterati	on 10:										
cj		5 -0.05	1.40	0.95	0.45	1.90	1.45	0.95	0.00	0.00	0.00
0.00	0.00 0.00										
CB XB	b x1 x2 x3	x4 x5 x	6 x7 x8	x9 x10	X11 X12	x13 x14	x15 x16	x17			
1.40	x4 508.89 0.0			1.00	0.00	-0.07	0.00	0.00	-0.07	0.38	-0.07
-0.07	1.44 0.44 x16 1202.22 0.0	-1.00 0 0 0.00			0.00	0.73	0.00	0.00	0.27	-0.16	0.73
0.00 -0.27	-0.89 -0.89		-0.16 .00 0.0			0.73	0.00	0.00	-0.27	-0.10	0.73
0.95	x5 1991.11 0.0		-0.38		1.00	1.07	0.00	0.00	0.07	-0.38	1.07
0.07	-1.44 -0.44	1.00 -	0.00 0.0	0 -							
1.90	x7 508.89 0.0		0.38	0.00	0.00	-0.07	1.00	0.00	-0.07	0.38	-0.07
-0.07	0.44 0.44				0.00	0.07	0.00	1 00	4 07	0.00	0.07
1.45 1.07	x8 691.11 0.6 -0.44 -0.44	0.00 -1.00 0	-0.38 .00 0.0		0.00	0.07	0.00	1.00	1.07	-0.38	0.07
0.90	×1 1526.67 1.0		1.13	0.00	0.00	-0.20	0.00	0.00	-0.20	1.13	-0.20
-0.20	0.33 1.33		.00 0.0								
0.45	x2 473.33 0.0	1.00	-0.13	0.00	0.00	0.20	0.00	0.00	0.20	-0.13	0.20
0.20	-0.33 -1.33		.00 0.0		0.00	0.50	0.00	0.00	0.50	0.00	0.00
0.00	x17 0.00 0.00 0.00				0.00	-0.50	0.00	0.00	0.50	0.00	0.00
0.00	0.00 0.00	0.00 0	.00 1.0	-							

```
cj-zj 0.00 0.00 -1.35 0.00 0.00 -0.35 0.00 0.00 -0.35 -1.30 -0.80 -1.30
          -0.00 0.00
-1.00 -1.00
                      0.00
Iteration 11:
 cj 0.90 0.45 -0.05 1.40 0.95
                                     0.45 1.90
                                               1.45 0.95
                                                            0.00
                                                                 0.00
                                                                       0.00
0.00 0.00 0.00 0.00 0.00 theta
CB XB b x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17
1.40 x4 508.89 0.00 0.00 0.38 1.00
                                     0.00
                                         -0.07 0.00 0.00 -0.07 0.38
                                                                       -0.07
-0.07 1.44 0.44 -1.00 0.00 0.00 -
0.00 x16 1202.22 0.00 0.00 -0.16 0.00
                                     0.00 0.73 0.00 0.00 -0.27 -0.16
                                                                       0.73
-0.27 -0.89 -0.89 1.00 1.00 0.00 -
0.95 x5 1991.11 0.00 0.00 -0.38 0.00
                                     1.00 1.07 0.00 0.00
                                                            0.07
                                                                  -0.38
                                                                       1.07
0.07 -1.44 -0.44 1.00 0.00 0.00 -
1.90 x7 508.89 0.00 0.00 0.38 0.00
                                     0.00
                                         -0.07 1.00
                                                    0.00
                                                          -0.07 0.38
                                                                       -0.07
-0.07 0.44 0.44 1.00 0.00 0.00 -
1.45 x8 691.11 0.00 0.00 -0.38 0.00
                                     0.00
                                         0.07
                                                0.00 1.00 1.07
                                                                       0.07
                                                                 -0.38
1.07
     -0.44 -0.44 -1.00 0.00 0.00 -
0.90
     x1 1526.67 1.00 0.00 1.13 0.00
                                          -0.20 0.00 0.00
                                     0.00
                                                          -0.20
                                                                       -0.20
                                                                 1.13
-0.20
     0.33 1.33 0.00 0.00 0.00
     x2 473.33 0.00
                  1.00 -0.13 0.00
                                     0.00
                                          0.20
                                                0.00
                                                     0.00
                                                           0.20
                                                                  -0.13
                                                                       0.20
0.20
     -0.33 -1.33 0.00 0.00 0.00
0.00
     x17 0.00 0.00 0.00 -0.50 0.00
                                     0.00
                                         -0.50 0.00
                                                     0.00
                                                            0.50
                                                                 0.00
                                                                       0.00
0.00
     0.00 0.00 0.00 0.00 1.00
          0.00
 cj-zj
                      -1.35 0.00 0.00 -0.35 0.00 0.00 -0.35 -1.30 -0.80 -1.30
                0.00
-1.00 -1.00 -0.00 0.00 0.00
ans =
     6160
```

验证

采用linprog, 代码如下:

```
%verify.m
clear;
c=[0.9;0.45;-0.05;1.4;0.95;0.45;1.9;1.45;0.95;0;0;0;0;0;0;0;0;0];
a=[];
b=[];
deq=[2000,2500,1200,0,0,0,0,0];
aeq(1,:)=[1,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0];
aeq(2,:)=[0,0,0,1,1,1,0,0,0,0,1,0,0,0,0,0,0];
aeq(3,:)=[0,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,0];
aeq(4,:)=[-0.4,0,0,0.6,0,0.6,0,0,0,0,0,0,1,0,0,0,0];
aeq(5,:)=[0,-0.85,0,0,0.15,0,0,0.15,0,0,0,0,0,1,0,0,0];
aeq(6,:)=[-0.2,0,0,-0.2,0,0.8,0,0,0,0,0,0,0,1,0,0];
aeq(7,:)=[0,-0.6,0,0,-0.6,0,0,0.4,0,0,0,0,0,0,0,1,0];
aeq(8,:)=[0,0,-0.5,0,0,-0.5,0,0,0.9,0,0,0,0,0,0,0,1];
x=linprog(-c,a,b,aeq,deq,zeros(17,1),[]);
disp(c'*x);
```

输出:

```
>> verify
Optimal solution found.
6160
```

结果完全吻合, 因此程序无误。

结论

最大利润为6160元,三种糖果的产量可以由相应变元相加得到,此处从略。