Programación de Estructuras de Datos y Algoritmos Fundamentales (TC1031)

M.C. Xavier Sánchez Díaz sax@tec.mx

Outline

Introducción

2 Aplicaciones I

3 Vocabulario

Introducción

Un grafo es una estructura matemática ordenada que, como otras estructuras de datos, son representaciones de algún objeto con características dadas.

Definición formal

Un grafo G es una tupla G=(V,E), donde V es un conjunto de vértices (o nodos) y E es un conjunto de ejes (o conexiones).

Introducción

Un grafo es una estructura matemática ordenada que, como otras estructuras de datos, son representaciones de algún objeto con características dadas.

Definición formal

Un grafo G es una tupla G=(V,E), donde V es un conjunto de vértices (o nodos) y E es un conjunto de ejes (o conexiones).

Introducción

Un grafo es una estructura matemática ordenada que, como otras estructuras de datos, son representaciones de algún objeto con características dadas.

Definición formal

Un grafo G es una tupla G=(V,E), donde V es un conjunto de vértices (o nodos) y E es un conjunto de ejes (o conexiones).

Origen de la teoría de grafos Introducción

Story time: Los puentes de Konisberg

Redes Computacionales

Aplicaciones

Redes Sociales

Aplicaciones

O sea, relaciones

Aplicaciones

- Locaciones
- Personas
- Variables

- Números
- Estados
- Conjuntos

Relaciones no necesariamente bidireccionales Aplicaciones

Cuando un **grafo** tiene ejes con dirección, se le conoce como **grafo** direccionado o **digrafo**.

Vocabulario

Extremos y paralelos

- ullet Dos vértices v y w son **extremos** de los ejes e_1 y e_2
- ullet Los ejes e_1 y e_2 son **paralelos** (porque conectan los mismos nodos)

Esto nos sugiere la idea de una función $f:V\to V$ para $\emph{generar}$ el conjunto de $\emph{ejes}\ E.$

- Un eje de la forma (v, v) es un ciclo
- Se dice que un grafo es simple si no tiene ejes paralelos o ciclos
- Un grafo en el que $E=\emptyset$ es un grafo vacío
- ullet Un grafo en el que $E=V=\emptyset$ es un grafo **nulo**
- Un grafo en el que |V|=1 es un grafo trivial
- Dos ejes son adyacentes si comparten un vértice
- Dos vértices u y v son advacentes si existe un eje (u,v) o (v,u)
- El grado de un vértice v, deg(v), es el número de ejes donde v es un extremo (los ciclos cuentan doble)
- Un vértice v es **pendiente** si deg(v) = 1
- Un vértice v está aislado si deg(v) = 0
- ullet El vecindario de un vértice v es el conjunto de vértices adyacentes de v

- Un eje de la forma (v, v) es un ciclo
- Se dice que un grafo es simple si no tiene ejes paralelos o ciclos
- Un grafo en el que $E = \emptyset$ es un grafo vacío
- Un grafo en el que $E=V=\emptyset$ es un grafo **nulo**
- ullet Un grafo en el que |V|=1 es un grafo trivial
- Dos ejes son adyacentes si comparten un vértice
- Dos vértices u y v son advacentes si existe un eje (u,v) o (v,u)
- El grado de un vértice v, deg(v), es el número de ejes donde v es un extremo (los ciclos cuentan doble)
- Un vértice v es **pendiente** si deg(v) = 1
- Un vértice v está aislado si deg(v) = 0
- ullet El vecindario de un vértice v es el conjunto de vértices adyacentes de v

- Un eje de la forma (v, v) es un ciclo
- Se dice que un grafo es simple si no tiene ejes paralelos o ciclos
- Un grafo en el que $E=\emptyset$ es un grafo **vacío**
- ullet Un grafo en el que $E=V=\emptyset$ es un grafo **nulo**
- Un grafo en el que |V|=1 es un grafo trivial
- Dos ejes son adyacentes si comparten un vértice
- Dos vértices u y v son advacentes si existe un eje (u,v) o (v,u)
- El grado de un vértice v, deg(v), es el número de ejes donde v es un extremo (los ciclos cuentan doble)
- Un vértice v es **pendiente** si deg(v) = 1
- Un vértice v está aislado si deg(v) = 0
- ullet El vecindario de un vértice v es el conjunto de vértices adyacentes de v

- Un eje de la forma (v, v) es un ciclo
- Se dice que un grafo es simple si no tiene ejes paralelos o ciclos
- Un grafo en el que $E=\emptyset$ es un grafo **vacío**
- Un grafo en el que $E=V=\emptyset$ es un grafo **nulo**
- Un grafo en el que |V|=1 es un grafo trivial
- Dos ejes son adyacentes si comparten un vértice
- Dos vértices u y v son advacentes si existe un eje (u,v) o (v,u)
- El grado de un vértice v, deg(v), es el número de ejes donde v es un extremo (los ciclos cuentan doble)
- Un vértice v es pendiente si deg(v) = 1
- Un vértice v está aislado si deg(v) = 0
- El vecindario de un vértice v es el conjunto de vértices adyacentes de v

- Un eje de la forma (v, v) es un ciclo
- Se dice que un grafo es simple si no tiene ejes paralelos o ciclos
- Un grafo en el que $E=\emptyset$ es un grafo **vacío**
- Un grafo en el que $E=V=\emptyset$ es un grafo **nulo**
- ullet Un grafo en el que |V|=1 es un grafo **trivial**
- Dos ejes son adyacentes si comparten un vértice
- Dos vértices u y v son advacentes si existe un eje (u,v) o (v,u)
- El grado de un vértice v, deg(v), es el número de ejes donde v es un extremo (los ciclos cuentan doble)
- Un vértice v es pendiente si deg(v) = 1
- Un vértice v está aislado si deg(v) = 0
- El vecindario de un vértice v es el conjunto de vértices adyacentes de v

- Un eje de la forma (v, v) es un **ciclo**
- Se dice que un grafo es simple si no tiene ejes paralelos o ciclos
- Un grafo en el que $E=\emptyset$ es un grafo **vacío**
- Un grafo en el que $E=V=\emptyset$ es un grafo **nulo**
- ullet Un grafo en el que |V|=1 es un grafo trivial
- Dos ejes son adyacentes si comparten un vértice
- Dos vértices u y v son advacentes si existe un eje (u,v) o (v,u)
- El grado de un vértice v, deg(v), es el número de ejes donde v es un extremo (los ciclos cuentan doble)
- Un vértice v es **pendiente** si deg(v) = 1
- Un vértice v está aislado si deg(v) = 0
- El vecindario de un vértice v es el conjunto de vértices adyacentes de v

- Un eje de la forma (v, v) es un **ciclo**
- Se dice que un grafo es simple si no tiene ejes paralelos o ciclos
- Un grafo en el que $E=\emptyset$ es un grafo **vacío**
- Un grafo en el que $E=V=\emptyset$ es un grafo **nulo**
- Un grafo en el que |V|=1 es un grafo trivial
- Dos ejes son adyacentes si comparten un vértice
- Dos vértices u y v son advacentes si existe un eje (u,v) o (v,u)
- El grado de un vértice v, deg(v), es el número de ejes donde v es un extremo (los ciclos cuentan doble)
- Un vértice v es **pendiente** si deg(v) = 1
- Un vértice v está aislado si deg(v) = 0
- El vecindario de un vértice v es el conjunto de vértices adyacentes de v

- Un eje de la forma (v, v) es un **ciclo**
- Se dice que un grafo es simple si no tiene ejes paralelos o ciclos
- Un grafo en el que $E=\emptyset$ es un grafo **vacío**
- Un grafo en el que $E=V=\emptyset$ es un grafo **nulo**
- ullet Un grafo en el que |V|=1 es un grafo trivial
- Dos ejes son adyacentes si comparten un vértice
- Dos vértices u y v son advacentes si existe un eje (u,v) o (v,u)
- El grado de un vértice v, deg(v), es el número de ejes donde v es un extremo (los ciclos cuentan doble)
- Un vértice v es pendiente si deg(v) = 1
- Un vértice v está aislado si deg(v) = 0
- El vecindario de un vértice v es el conjunto de vértices adyacentes de v

- Un eje de la forma (v, v) es un **ciclo**
- Se dice que un grafo es simple si no tiene ejes paralelos o ciclos
- Un grafo en el que $E=\emptyset$ es un grafo **vacío**
- Un grafo en el que $E=V=\emptyset$ es un grafo **nulo**
- Un grafo en el que |V|=1 es un grafo trivial
- Dos ejes son adyacentes si comparten un vértice
- Dos vértices u y v son advacentes si existe un eje (u,v) o (v,u)
- El grado de un vértice v, deg(v), es el número de ejes donde v es un extremo (los ciclos cuentan doble)
- Un vértice v es **pendiente** si deg(v) = 1
- Un vértice v está aislado si deg(v) = 0
- El vecindario de un vértice v es el conjunto de vértices adyacentes de v

- Un eje de la forma (v, v) es un ciclo
- Se dice que un grafo es simple si no tiene ejes paralelos o ciclos
- Un grafo en el que $E=\emptyset$ es un grafo **vacío**
- Un grafo en el que $E=V=\emptyset$ es un grafo **nulo**
- Un grafo en el que |V|=1 es un grafo trivial
- Dos ejes son adyacentes si comparten un vértice
- Dos vértices u y v son advacentes si existe un eje (u,v) o (v,u)
- El grado de un vértice v, deg(v), es el número de ejes donde v es un extremo (los ciclos cuentan doble)
- Un vértice v es **pendiente** si deg(v) = 1
- Un vértice v está **aislado** si deg(v) = 0
- El vecindario de un vértice v es el conjunto de vértices adyacentes de v

- Un eje de la forma (v, v) es un **ciclo**
- Se dice que un grafo es simple si no tiene ejes paralelos o ciclos
- Un grafo en el que $E = \emptyset$ es un grafo **vacío**
- Un grafo en el que $E=V=\emptyset$ es un grafo **nulo**
- Un grafo en el que |V|=1 es un grafo trivial
- Dos ejes son adyacentes si comparten un vértice
- Dos vértices u y v son advacentes si existe un eje (u,v) o (v,u)
- El grado de un vértice v, deg(v), es el número de ejes donde v es un extremo (los ciclos cuentan doble)
- Un vértice v es **pendiente** si deg(v) = 1
- Un vértice v está **aislado** si deg(v) = 0
- ullet El vecindario de un vértice v es el conjunto de vértices adyacentes de v

- Una caminata (walk) es una secuencia de nodos y ejes alternados: saliendo de un nodo inicial v_{i_0} y llegando a un nodo final v_{i_k}
- Dos vértices están conectados si existe una caminata entre ellos
- ullet Una caminata es abierta si $v_{i_0}
 eq v_{i_k}$, o cerrada si $v_{i_0} = v_{i_k}$
- Un sendero (trail) es una caminata en donde cada eje visitado se recorre una sola vez.
- Un **sendero** es un **camino** (*path*) si cualquier vértice es visitado a una sola vez, a excepción del inicial y el final.
- Un camino cerrado es un circuito (o ciclo¹)
- Un grafo es completo si todos los vértices están conectados al resto.
 También se le conoce como grafo conectado

¹Total BS, yo sé. Lo siento; así es esto.

Walks, Trails, Paths, Circuits, Components...

- Una caminata (walk) es una secuencia de nodos y ejes alternados: saliendo de un nodo inicial v_{i_0} y llegando a un nodo final v_{i_k}
- Dos vértices están conectados si existe una caminata entre ellos
- Una caminata es abierta si $v_{i_0} \neq v_{i_k}$, o cerrada si $v_{i_0} = v_{i_k}$
- Un sendero (trail) es una caminata en donde cada eje visitado se recorre una sola vez.
- Un **sendero** es un **camino** (*path*) si cualquier vértice es visitado a una sola vez, a excepción del inicial y el final.
- Un camino cerrado es un circuito (o ciclo¹)
- Un grafo es completo si todos los vértices están conectados al resto.
 También se le conoce como grafo conectado

¹Total BS, yo sé. Lo siento; así es esto.

Walks, Trails, Paths, Circuits, Components...

- Una caminata (walk) es una secuencia de nodos y ejes alternados: saliendo de un nodo inicial v_{i_0} y llegando a un nodo final v_{i_k}
- Dos vértices están conectados si existe una caminata entre ellos
- ullet Una caminata es abierta si $v_{i_0}
 eq v_{i_k}$, o cerrada si $v_{i_0} = v_{i_k}$
- Un sendero (trail) es una caminata en donde cada eje visitado se recorre una sola vez.
- Un **sendero** es un **camino** (*path*) si cualquier vértice es visitado a una sola vez, a excepción del inicial y el final.
- Un camino cerrado es un circuito (o ciclo¹)
- Un grafo es completo si todos los vértices están conectados al resto.
 También se le conoce como grafo conectado

¹Total BS, yo sé. Lo siento; así es esto.

- Una caminata (walk) es una secuencia de nodos y ejes alternados: saliendo de un nodo inicial v_{i_0} y llegando a un nodo final v_{i_k}
- Dos vértices están conectados si existe una caminata entre ellos
- ullet Una caminata es abierta si $v_{i_0}
 eq v_{i_k}$, o cerrada si $v_{i_0} = v_{i_k}$
- Un sendero (trail) es una caminata en donde cada eje visitado se recorre una sola vez.
- Un **sendero** es un **camino** (*path*) si cualquier vértice es visitado a una sola vez, a excepción del inicial y el final.
- Un camino cerrado es un circuito (o ciclo¹)
- Un grafo es completo si todos los vértices están conectados al resto.
 También se le conoce como grafo conectado

¹Total BS, yo sé. Lo siento; así es esto.

- Una caminata (walk) es una secuencia de nodos y ejes alternados: saliendo de un nodo inicial v_{i_0} y llegando a un nodo final v_{i_k}
- Dos vértices están conectados si existe una caminata entre ellos
- Una caminata es abierta si $v_{i_0} \neq v_{i_k}$, o cerrada si $v_{i_0} = v_{i_k}$
- Un sendero (trail) es una caminata en donde cada eje visitado se recorre una sola vez.
- Un sendero es un camino (path) si cualquier vértice es visitado a una sola vez, a excepción del inicial y el final.
- Un camino cerrado es un circuito (o ciclo¹)
- Un grafo es completo si todos los vértices están conectados al resto.
 También se le conoce como grafo conectado

¹Total BS, yo sé. Lo siento; así es esto.

- Una caminata (walk) es una secuencia de nodos y ejes alternados: saliendo de un nodo inicial v_{i_0} y llegando a un nodo final v_{i_k}
- Dos vértices están conectados si existe una caminata entre ellos
- Una caminata es abierta si $v_{i_0} \neq v_{i_k}$, o cerrada si $v_{i_0} = v_{i_k}$
- Un sendero (trail) es una caminata en donde cada eje visitado se recorre una sola vez.
- Un sendero es un camino (path) si cualquier vértice es visitado a una sola vez, a excepción del inicial y el final.
- Un camino cerrado es un circuito (o ciclo¹)
- Un grafo es completo si todos los vértices están conectados al resto.
 También se le conoce como grafo conectado

¹Total BS, yo sé. Lo siento; así es esto.

- Una caminata (walk) es una secuencia de nodos y ejes alternados: saliendo de un nodo inicial v_{i_0} y llegando a un nodo final v_{i_k}
- Dos vértices están conectados si existe una caminata entre ellos
- Una caminata es abierta si $v_{i_0} \neq v_{i_k}$, o cerrada si $v_{i_0} = v_{i_k}$
- Un sendero (trail) es una caminata en donde cada eje visitado se recorre una sola vez.
- Un sendero es un camino (path) si cualquier vértice es visitado a una sola vez, a excepción del inicial y el final.
- Un camino cerrado es un circuito (o ciclo¹)
- Un grafo es completo si todos los vértices están conectados al resto.
 También se le conoce como grafo conectado

¹Total BS, yo sé. Lo siento; así es esto.

- Un grafo G'=(V',E') es un subgrafo inducido de G=(V,E) si $V'\subset V$ y si E' es el conjunto de ejes que conectan a V'.
- Un subgrafo G' es un componente de G si G' es un grafo conectado y G' es un subgrafo inducido por aquellos ejes de G que tengan uno de sus extremos en G'.
- $\sum_{i=1}^{n} deg(v_i) = 2|E|$ (La suma de todos los grados de un grafo es el doble del número de ejes)
- $\sum_{i=1}^{n} deg(v_i) \mod 2 = 0$ (Por lo mismo, la suma de todos los grados de un grafo es un número par)
- $|\{v: deg(v) \mod 2 = 1\}| \mod 2 = 0$ (El número de vértices de un grafo que tienen grado impar, es un número par)

- Un grafo G'=(V',E') es un subgrafo inducido de G=(V,E) si $V'\subset V$ y si E' es el conjunto de ejes que conectan a V'.
- Un subgrafo G' es un componente de G si G' es un grafo conectado y G' es un subgrafo inducido por aquellos ejes de G que tengan uno de sus extremos en G'.
- $\sum_{i=1}^{n} deg(v_i) = 2|E|$ (La suma de todos los grados de un grafo es el doble del número de ejes)
- $\sum_{i=1}^{n} deg(v_i) \mod 2 = 0$ (Por lo mismo, la suma de todos los grados de un grafo es un número par)
- $|\{v: deg(v) \mod 2 = 1\}| \mod 2 = 0$ (El número de vértices de un grafo que tienen grado impar, es un número par)

- Un grafo G'=(V',E') es un subgrafo inducido de G=(V,E) si $V'\subset V$ y si E' es el conjunto de ejes que conectan a V'.
- Un subgrafo G' es un componente de G si G' es un grafo conectado y G' es un subgrafo inducido por aquellos ejes de G que tengan uno de sus extremos en G'.
- $\sum_{i=1}^{n} deg(v_i) = 2|E|$ (La suma de todos los grados de un grafo es el doble del número de ejes)
- $\sum_{i=1}^{n} deg(v_i) \mod 2 = 0$ (Por lo mismo, la suma de todos los grados de un grafo es un número par)
- $|\{v: deg(v) \mod 2 = 1\}| \mod 2 = 0$ (El número de vértices de un grafo que tienen grado impar, es un número par)

- Un grafo G'=(V',E') es un subgrafo inducido de G=(V,E) si $V'\subset V$ y si E' es el conjunto de ejes que conectan a V'.
- Un subgrafo G' es un componente de G si G' es un grafo conectado y G' es un subgrafo inducido por aquellos ejes de G que tengan uno de sus extremos en G'.
- $\sum_{i=1}^{n} deg(v_i) = 2|E|$ (La suma de todos los grados de un grafo es el doble del número de ejes)
- $\sum_{i=1}^{n} deg(v_i) \mod 2 = 0$ (Por lo mismo, la suma de todos los grados de un grafo es un número par)
- $|\{v: deg(v) \mod 2 = 1\}| \mod 2 = 0$ (El número de vértices de un grafo que tienen grado impar, es un número par)

- Un grafo G' = (V', E') es un subgrafo inducido de G = (V, E) si $V' \subset V$ y si E' es el conjunto de ejes que conectan a V'.
- Un subgrafo G' es un componente de G si G' es un grafo conectado y G' es un subgrafo inducido por aquellos ejes de G que tengan uno de sus extremos en G'.
- $\sum_{i=1}^{n} deg(v_i) = 2|E|$ (La suma de todos los grados de un grafo es el doble del número de ejes)
- $\sum_{i=1}^{n} deg(v_i) \mod 2 = 0$ (Por lo mismo, la suma de todos los grados de un grafo es un número par)
- $|\{v: deg(v) \mod 2 = 1\}| \mod 2 = 0$ (El número de vértices de un grafo que tienen grado impar, es un número par)

Operaciones y problemas con grafos los vemos la próxima clase