NumPy has fast built-in aggregation functions for working on arrays; we'll discuss and demonstrate some of them here.

Summing the Values in an Array

As a quick example, consider computing the sum of all values in an array. Python itself can do this using the built-in sum function:

```
In[1]: import numpy as np
In[2]: L = np.random.random(100)
       sum(L)
Out[2]: 55.61209116604941
```

The syntax is quite similar to that of NumPy's sum function, and the result is the same in the simplest case:

```
In[3]: np.sum(L)
Out[3]: 55.612091166049424
```

However, because it executes the operation in compiled code, NumPy's version of the operation is computed much more quickly:

```
In[4]: big_array = np.random.rand(1000000)
      %timeit sum(big_array)
      %timeit np.sum(big array)
10 loops, best of 3: 104 ms per loop
1000 loops, best of 3: 442 μs per loop
```

Be careful, though: the sum function and the np.sum function are not identical, which can sometimes lead to confusion! In particular, their optional arguments have different meanings, and np. sum is aware of multiple array dimensions, as we will see in the following section.

Minimum and Maximum

Similarly, Python has built-in min and max functions, used to find the minimum value and maximum value of any given array:

```
In[5]: min(big_array), max(big_array)
Out[5]: (1.1717128136634614e-06, 0.9999976784968716)
```

NumPy's corresponding functions have similar syntax, and again operate much more quickly:

```
In[6]: np.min(big_array), np.max(big_array)
Out[6]: (1.1717128136634614e-06, 0.9999976784968716)
```

```
In[7]: %timeit min(big_array)
      %timeit np.min(big array)
10 loops, best of 3: 82.3 ms per loop
1000 loops, best of 3: 497 µs per loop
```

For min, max, sum, and several other NumPy aggregates, a shorter syntax is to use methods of the array object itself:

```
In[8]: print(big_array.min(), big_array.max(), big_array.sum())
1.17171281366e-06 0.999997678497 499911.628197
```

Whenever possible, make sure that you are using the NumPy version of these aggregates when operating on NumPy arrays!

Multidimensional aggregates

One common type of aggregation operation is an aggregate along a row or column. Say you have some data stored in a two-dimensional array:

```
In[9]: M = np.random.random((3, 4))
     print(M)
[ 0.8354065  0.99196818  0.19544769  0.43447084]
[ \ 0.66859307 \ \ 0.15038721 \ \ 0.37911423 \ \ 0.6687194 \ ]]
```

By default, each NumPy aggregation function will return the aggregate over the entire array:

```
In[10]: M.sum()
Out[10]: 6.0850555667307118
```

Aggregation functions take an additional argument specifying the axis along which the aggregate is computed. For example, we can find the minimum value within each column by specifying axis=0:

```
In[11]: M.min(axis=0)
Out[11]: array([ 0.66859307, 0.03783739, 0.19544769, 0.06682827])
```

The function returns four values, corresponding to the four columns of numbers.

Similarly, we can find the maximum value within each row:

```
In[12]: M.max(axis=1)
Out[12]: array([ 0.8967576 , 0.99196818, 0.6687194 ])
```

The way the axis is specified here can be confusing to users coming from other languages. The axis keyword specifies the dimension of the array that will be collapsed, rather than the dimension that will be returned. So specifying axis=0 means that the first axis will be collapsed: for two-dimensional arrays, this means that values within each column will be aggregated.

Other aggregation functions

NumPy provides many other aggregation functions, but we won't discuss them in detail here. Additionally, most aggregates have a NaN-safe counterpart that computes the result while ignoring missing values, which are marked by the special IEEE floating-point NaN value (for a fuller discussion of missing data, see "Handling Missing Data" on page 119). Some of these NaN-safe functions were not added until NumPy 1.8, so they will not be available in older NumPy versions.

Table 2-3 provides a list of useful aggregation functions available in NumPy.

Table 2-3. Aggregation functions available in NumPy

Function Name	NaN-safe Version	Description
np.sum	np.nansum	Compute sum of elements
np.prod	np.nanprod	Compute product of elements
np.mean	np.nanmean	Compute median of elements
np.std	np.nanstd	Compute standard deviation
np.var	np.nanvar	Compute variance
np.min	np.nanmin	Find minimum value
np.max	np.nanmax	Find maximum value
np.argmin	np.nanargmin	Find index of minimum value
np.argmax	np.nanargmax	Find index of maximum value
np.median	np.nanmedian	Compute median of elements
np.percentile	np.nanpercentile	Compute rank-based statistics of elements
np.any	N/A	Evaluate whether any elements are true
np.all	N/A	Evaluate whether all elements are true

We will see these aggregates often throughout the rest of the book.

Example: What Is the Average Height of US Presidents?

Aggregates available in NumPy can be extremely useful for summarizing a set of values. As a simple example, let's consider the heights of all US presidents. This data is available in the file president heights.csv, which is a simple comma-separated list of labels and values:

```
In[13]: !head -4 data/president_heights.csv
order, name, height(cm)
1, George Washington, 189
```