PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-115652.

(43)Date of publication of application :

(51)Int.CI.

H01J 1/30

H01J 29/46

H01J 31/12

H01J 31/15

(21)Application number: 06-278556

(71)Applicant: CANON INC

(22)Date of filing:

19.10.1994

(72)Inventor: KISHI FUMIO

ISHIZAKI AKIYOSHI

AEBA TOSHIAKI

(54) ELECTRON EMISSION ELEMENT, ITS MANUFACTURE, AND ELECTRON SOURCE AND IMAGE FORMING DEVICE USING IT

[Patent number]

2903290

[Date of registration]

26.03.1999

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

PURPOSE: To simplify fabrication processes and to provide a uniform electron emission characteristic by forming on an insulating substrate a pair of electrodes facing each other with a microclearance between them, and forming an electron emission element from a sediment accumulated in the clearance and composed chiefly of carbon.

CONSTITUTION: An element electrode material is accumulated on an insulating substrate 1 and then a predetermined cliarance L is formed between element electrodes 2, 2' by means of a convergent ion beam. A

sediment 3 composed mainly of carbon is accumulated in the clearance L. The sediment 3 is preferably fibrous carbons, consisting of graphite or amorphous carbons. The fibrous carbons are produced by heat decomposition of hydrocarbons, such as benzene, or CO in a gaseous phase with the use of particles of Fe, etc., as catalysts. The use of Pd as the nuclei for formation of the fibrous carbons is desirable since the maximum process temperature can then be lowered to 450°C or less. Ni can also be used in addition to Fe and Pd.

LEGAL STATUS

[Dat of request for examination]

19.06.1997

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2903290

[Date of registration]

26.03.1999

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出頭公開番号

特開平8-115652

(43)公開日 平成8年(1996)5月7日

(51) Int.CL*	微例記号 广内整理番号	FI	技術表示臨所
HO1J 1/30	-	•	* · · · · · · · · · · · · · · · · · · ·
29/46	В		
31/12	В		
31/15	C		
·		審査請求	未請求 請求項の数18 FD (全 17 頁)
(21)出顧番号	特頭平6-278556	(71)出順人	000001007
,			キヤノン株式会社
(22)出願日	平成6年(1994)10月19日		東京都大田区下丸子3丁目30番2号
		(72)発明者	岸 文夫
			東京都大田区下丸子3丁目30番2号 キヤ
			ノン株式会社内
		(72)発明者	石崎 明美
	•		東京都大田区下丸子3丁目30番2号 キヤ
	•		ノン株式会社内
	,	(72)発明者	愛場 利明
	•		東京都大田区下丸子3丁目30番2号 キヤ
			ノン株式会社内
		(74)代理人	弁理士 登田 善雄 (外1名)

(54) 【発明の名称】 電子放出素子及びその製造方法、該電子放出素子を用いた電子源並びに画像形成装置

(57) 【要約】

【目的】 製造工程が繁殖でなく、均一な電子放出特性を有する電子放出来子を提供する。

【構成】 絶縁性基板1上に、索子電極2及び2,をつながった形状で形成し、収束イオンビームにより500 nm以下の微小間隙1を形成し、炭化水素ガスを含む雰囲気下で熱処理することにより炭素を主成分とする堆積物3を上記微小間隙に堆積させてなる電子放出素子。

【特許請求の範囲】

【翻求項1】 少なくとも、絶縁性基板と、試絶縁性基板上に形成された数小関膜を介して対向する一対の電極と、前記数小関膜に堆積された炭素を主成分とする堆積物からなることを特徴とする電子放出来子。

【請求項2】 積小開放が500nm以下であることを 特徴とする請求項1記載の電子放出漢子。

【調求項4】 繊維状カーボンが、グラファイト又はアモルファスカーボンもしくはこれらの混合物からなることを特徴とする請求項3配義の電子放出来子。

【請求項5】 絶縁性基板上に、類小間隙を介して対向する一対の電極を形成する工程と、該電極関同隙に炭素を主成分とする堆積物を堆積させる工程を有することを特徴とする電子放出素子の製造方法。

【請求項6】 炭素を主成分とする堆積物の堆積工程 が、炭素化合物の熱分解工程であることを特徴とする請 求項5記載の電子放出素子の製造方法。

【調求項7】 炭素化合物が炭化水素であることを特徴とする調求項6記載の電子放出素子の製造方法。

【請求項9】 炭素化合物の熱分解工程が、炭素化合物 を含む雰囲気中で加熱する工程であることを特徴とする 請求項6~8のいずれかに記載の電子放出案子の製造方法。

【請求項10】 炭素を主成分とする堆積物の堆積工程が、電極間間隙に金属微粒子を形成する工程と、炭液化 30合物を熱分解して上記金属微粒子を核として繊維状カーポンを堆積させる工程からなることを特徴とする請求項5~9のいずれかに記載の電子放出素子の製造方法。

【翻求項11】 金属微粒子の形成工程が、当該金属の有機組体溶液を電極関限に強布する工程と、該有機金属 組体を焼成して金属酸化物とする工程と、該金属酸化物 を還元凝集させる工程からなることを特徴とする翻求項 10記載の電子放出素子の製造方法。

【請求項12】 金属酸化物の週元凝集工程が、水素ガスを含む雰囲気に曝露、或いは飲雰囲気中での熱処理工 40程であることを特徴とする請求項11配載の電子放出業子の製造方法。

【請求項13】 繊維状力ーポンの堆積工程が、エチレンガスを含む雰囲気中でエチレンの熱分解温度以上で熱処理する工程であることを特徴とする請求項10~12のいずれかに配載の電子放出来子の製造方法。

【請求項14】 金属酸化物の遠元凝集工程をエチレンガスを含む雰囲気中でエチレンの熱分解温度未満で熱処理して行ない、続けて同じ雰囲気中でエチレンの熱分解温度以上に加熱して繊維状力ーポンの堆積工程を行なう 50

ことを特徴とする請求項10~12のいずれかに記載の 電子放出票子の製造方法。

【謝求項15】 請求項1~4のいずれかに記載の電子 放出来子を複数顕並列に配置し結構してなる素子列を少なくとも1列以上有してなることを特徴とする電子額。

【請求項16】 請求項1~4のいずれかに記載の電子 放出素子を複数配個列してなる薬子列を少なくとも1列 以上有し、該来子を駆動するための配線がマトリクス配 置されていることを特徴とする電子源。

10 【請求項17】 少なくとも、請求項15配載の電子 源、國像形成部材、及び情報信号により各電子放出来子 から放出される電子換を制御する制御電極を有すること を特徴とする國像形成装置。

【請求項 18】 少なくとも、請求項 16記載の電子額 と画像形成部材とを有することを特徴とする画像形成装 歴

[発明の詳細な説明]

[0001]

【産業上の利用分野】本発明は、電子放出業子と、該業子を複数個配置してなる電子源、及び該電子源を用いて構成した表示装置や爆光装置等の画像形成装置に関し、更には、上記電子放出業子の製造方法に関する。

[0002]

(従来の技術) 従来、電子放出率子として熱電子派と冷 陰極電子派の2種類が知られており、冷陰極電子派に は、電界放出型(以下FE型と記す)、金属/絶縁層/ 金属型(以下MIM型と記す) や表面伝導型等がある。

【0003】上記FE型の例としては、ダブリュ ピィダイク アンド ダブリュ ダブリュ ドラン著「フィールド エミッション」アドバンス イン エレクトロンフィジックス、8、89(1956)(W. P. Dyke & W. W. Dolan" Fleld emission"、Advance in electron Physics) 或いはシィ エィ スピント「フィジカル プロパティズ オブ シンーフィルム フィールド エミッション カソーズ ウィズモリブデニウム コーンズ」ジャーナル オブ アプライド フィジクス、47、5248(1976)(C. A. Spindt" PHYSICAL Properties of

thin-film field emission cathodes with molybdenlu m cones" J. Appl. Phys.) 等が知られている。

[0004] またM1M型の例としては、シィ エイミード 「ザ トンネルーエミッション "アンプリファイア」 ジャーナル オブ アプライド フィジクス。 3 2,646(1961) (C. A. Mead" The tunnel-emission amplifle r* J. Appl. Phys.) 等が知られている。

【0005】また、表面伝導型電子放出案子の例として

は、エム アイ エリンソン、レィディオ エンジニア リング エレクトロン フィジクス、10(1965) (M. I. Ellnson, Radio Eng. El ectron Phys.)等がある。

[0006]

【発明が解決しようとする課題】上記に挙げたような電 子放出来子を複数個用いて表示装置等を形成する場合、 各来子の電子放出特性が均一であること、及び均一な来 子の作製に繁雑な工程を伴わないことが要求される。従 って、電子放出来子においては、こういった要求や更な 10 る製造工程の簡略化、より優れた来子を達成するべく税 **立検討されている。**

【0007】本発明の目的は、上記のような状況におい て、繁殖な工程を伴わずに均一な電子放出特性を示す信 類性の高い電子放出素子を提供することであり、更に、 該電子放出素子を用いて電子原、更には面像形成装置を 構成することにある。

[0008]

【課題を解決するための手段及び作用】請求項1~4の 発明は、上記目的を達成した電子放出素子であって、絶 20 緑性基板上に、微小間隙を介して一対の電極を設け、該 微小間隙に炭素を主成分とする堆積物を有することに特 徴を有する。

【0009】請求項5~14の発明は、上記電子放出素 子の財治方法であって、絶縁性基板上に、微小間隙を設 けて一対の電極を形成し、該微小間隙に炭素を主成分と する堆積物を堆積させることを特徴とする。

【0010】請求項15及び16の発明は上記電子放出 **菜子を複数個配置したことを特徴とする電子級であり、** 調求項17及び18の発明はそれぞれの電子額を用いた 30 ことを特徴とする画像形成装置である。

【0011】以下本発明を詳細に説明する。

【0012】図1は本発明の電子放出案子の基本的な構 成を示す図である。図中、1は絶縁性基板、2。2゜は 茶子電極、3は炭末を主成分とする堆積物である。

【0013】基板1としては、例えば石英ガラス、Na 等の不純物含有量を減少させたガラス、青板ガラス、青 板ガラスにスパッタ法等によりSIO:を積層した積層 体、アルミナ等のセラミックス等が挙げられる。

[0014] 対向する末子電極2, 2 の材料として は、一般的導体材料が用いられ、例えばNI、Cr、A u、Mo、W、Pt、Ti、Al、Cu、Pd等の金属 あるいは合金及びPd、Ag、Au、RuO,、Pd-Ag等の金属あるいは金属酸化物とガラス等から構成さ れる印刷導体、ln,O,-SnO,等の透明導電体及 びポリシリコン等の半導体等体材料等から適宜選択され

【0015】素子電極間隙し、素子電極長さWは、応用 される形態等によって設計される。

出特性を考慮すると、好ましくは数μm~数百μmであ り、また来子電極厚dは、数百A~数µmである。

【0017】 素子電極間隙しは、微小であり、好ましく は500ヵm以下である。

【0018】本発明の電子放出来子の製造方法について 図2に基づいて設明する。尚、図2において図1と同じ 符号は同じ部材を示すものである。

【0019】 (A) 基板1を洗剤、純水及び有機溶剤に より十分に洗浄した後、真空蒸着法、スパッタ法等によ り末子電視材料を堆積させた後、フォトリソグラフィー 技術により基板1の面上に素子電極2。2°がつながっ た状態を形成する(図2(a))。

[0020] (B) 次に、収束イオンピーム (FIB) により、所定の間隙しを素子電極2、2 間に形成する (図2 (b))。 間隙しの形成は、上記F1Bの他に、 フォトリソグラフィーのプロセスを用いて形成する方 法、或いは、基板1に段差を設けておいて間隙を形成す る方法などが可能である。

[0021] (C) 炭素を主成分とする堆積物を間隙し に堆積する。本発明において、該堆積物は、好ましくは 雄雄状カーポンであり、グラファイト或いはアモルファ スカーポンからなる。

[0022] 繊維状カーポンは、ペンゼンなどの炭化水 素やCOを気相で微粒子を触媒として熱分解した時に生 成するもので、不規則な曲折を示したり、くびれを伴う 場合もある (例えば、アール ティ ケイ ペーカー アンド ピィ エス ハリス:ケミストリイ アンド フィジクス オブ カーポン Vol、14 p84~ 165, フィリップ エル ウォーカー ジュニア・ア ンド ピーター エィスローワー編,マーセル ディー カー インク (R. T. K. Baker and P. S. Harris: Chemistry and Ph ysics of Carbon, Philip L. Walker Jr. and Petere A. T hrower, MARCEL DEEKER, In c.)).

[0023] Feなどの金属表面の、炭化水素ガスの分 解反応における触媒活性は古くから研究されており、エ チレンの分解についても多くの報告がある(例えば、矢 ケ崎大り子・岩崎康裕「遷移金属表面におけるエチレン、 の化学」: 表面 第29巻879~891頁 1991

【0024】Feの微粒子がある場合には、炭化水素の 存在する雰囲気中で熱処理することにより、微粒子を核 にして繊維状カーポンが形成されることは上記の通り良 く知られている。このFe碌粒子はフェライト基板の一 部などのFe化合物を選元して形成したものである。本 発明者等は、電子放出業子の分野において広く用いられ ているPdからなる微粒子でも、Feと同様に銀線状力 【0016】素子電極長さWは、電極の抵抗値や電子放 50 一ポン形成時の核となることを見出した。従って本発明

において、Pdを繊維状カーボン形成の核として用いると、プロセス最高温度を450℃以下に抑えることができ(Feを用いた場合には950~1000℃である)、他の部材への影響や、製造コストの面から好ましい。

【0025】具体的には、Pd等用いる金属の有機媒体 溶液を塗布し、加熱焼成して金属酸化物とした後、水楽 ガスを含む雰囲気中に曝離するか或いは武雰囲気中で熱 処理することにより、金属酸化物を還元凝集させ金属数 粒子21とする(図2(c))。

【0026】本発明において、カーボンの形成核としては、上配FeやPdの他にNIが好ましく用いられ、また、微粒子の形状をとる必要もなく、突起等繊維状カーボンの成長の特異点となる形状であれば同様の効果が得られる。

【0027】上記金属敬拉子を核として、繊維状カーボンを堆積させる(図2(d))。堆積方法は、前記したように、良化水素等炭素化合物を熱分解すれば良く、阿えば、エチレンガスを含む雰囲気中でエチレンの熱分解以上の温度で熱処理を行なえばよい。エチレンの他に 20も、メタン、プロバン、プロピレンなどの炭化水素ガス、或いはエタノールやアセトンなどの有複溶剤の蒸気を用いることも可能である。

【0028】本発明者等は400℃以下では繊維状力ーポンが形成されないことを確認した。一方、高温倒では十分広い範囲で形成可能であり、900℃の熱処理で後述の実施例と同様の繊維状力ーポンが形成される。しかしながら、上記したように、高温では素子の他の部材が影響を受けるため、900℃以下での熱処理が好ましい。実際には、電極や基板の耐熱温度から設定すればよ 30 い

【0029】また、上記金属数粒子の還元工程を、例えばエチレンガスを含む雰囲気中でエチレンの熱分解進度未満で行ない、続いてエチレンの熱分解進度以上の熱処理を行なうことにより、金属数粒子の還元工程と繊維状カーボンの堆積工程を連携して行なうことができ、製造工程の簡素化の上で好ましい。

【0030】尚、表面に熱酸化膜を形成したシリコン基板に後述する実施例と同様の工程でPd微粒子を形成してなるPd粒子分散膜をエチレン雰囲気中熱処理したは 40料を走蛮電子顕微鏡で腹緊したところ、繊維状カーポンが腹察された。これがカーボンであることはX線光電子分光 (XPS)分析、ラマン分光分析により確認した。また、この繊維状カーボンを、透過電子顕微鏡により観察したところ、格子像が観察され結晶性を持つことがわかった。但し、格子像は非常に乱れており、結晶性は悪い。

【0031】図3は、電子放出素子の電子放出特性を翻定するための測定評価系の一例を示す概略構成図で、まずこの測定評価系を説明する。

【0032】図3において、図1と同じ符号は同じ部材を示す。また、31は素子に素子電圧Viを印加するための電源、30は素子電振2、2、間を流れる素子電流1iを測定するための電液計、34は放出電流1.を抽提するためのアノード電極、33はアノード電極34に電圧を印加するための高圧電源、32は放出電流1.を測定するための電流計、35は真空装置、36は排気ポンプである。

【0033】電子放出来子及びアノード電極34等は真 2を装置35内に設置され、この真空装置35には不図示 の真空計等の必要な機器が具備されていて、所望の真空 下で電子放出来子の測定評価ができるようになってい る。

【0034】排気ポンプ36は、ターポポンプ、ロータリーポンプ等からなる通常の高真空装置系と、イオンポンプ等からなる超高真空装置系とから構成されている。また、真空装置35全体及び電子放出来子の基板1は、ヒーターにより200℃程度まで加熱できるようになっている。

【0035】以下に述べる電子放出素子の基本特性は、 上記測定評価系のアノード電価34の電圧を1kV~1 0kVとし、アノード電価34と電子放出素子の距離H を2~8mmとして行った測定に基づくものである。

【0036】まず、放出電流1。及び来子電流1,と、 来子電圧V,との関係の典型的な例を図4に示す。尚、 図4において、放出電流1,は来子電流1,に比べて著 しく小さいので、任意単位で示されている。

【0037】図4から明らかなように、本発明の電子放出来子は、放出電流1,に対する次の3つの特徴的特性を有する。

【0038】まず第1に、電子放出票子はある電圧(しきい値電圧と呼ぶ:図5中のVn)以上の素子電圧Vnを印加すると急激に放出電流1。が増加し、一方しきい値電圧Vn以下では放出電流1。が殆ど検出されない。即ち、放出電流1。に対する明確なしきい値電圧Vnを持った非線形案子である。

【0039】第2に、放出電流1、が素子電圧V, に対して単調増加する特性 (M 1 特性と呼ぶ) を有するため、放出電流1、は素子電圧V, で制御できる。

【0040】第3に、アノード電極34(図3参照)に 捕捉される放出電荷は、涞子電圧V,を印加する時間に 依存する。即ち、アノード電極34に捕捉される電荷量 は、来子電圧V,を印加する時間により制御できる。

【0041】放出電流1、が来子電圧V,に対してM1特性を有すると同時に、来子電流1、も来子電圧V,に対してM1特性を有する場合もある。このような電子放出来子の特性の例が図4の実線で示す特性である。一方、図4に破線で示すように、来子電流1,は来子電圧V,に対して電圧制御型負性抵抗特性(VCNR特性と50呼ぶ)を示す場合もある。いずれの特性を示すかは、電

子放出来子の製法及び制定時の測定条件等に依存する。 但し、菜子電流」、が来子電圧V、に対してVCNR特 性を有する電子放出案子でも、放出電流』。は案子電圧 V, に対してM J 特性を有する。

【0042】次に、本発明の電子源における電子放出素 子の配列について設明する。

【0043】本発明の電子源における電子放出来子の配 列方式としては、並列に電子放出来子を配列し、個々の 素子の両端 (両業子電極) を配線 (共通配線とも呼ぶ) にて夫々結婚した行を複数行配列した様型配置と、m本 10 のX方向配換の上にn本のY方向配線を層間絶録層を介 して設置し、電子放出素子の一対の素子電極に夫々X方 向配線、Y方向配線を接続した配置方式が挙げられる。 これを以後単純マトリクス配置と呼ぶ、まず、この単純 マトリクス配置について詳述する。

【0044】前述した電子放出素子の基本的特性によれ は、単純マトリクス配置された電子放出来子における放 出電子は、しきい値電圧を超える電圧では、対向する素 子電板間に印加するパルス状電圧の波高値とパルス幅で 制御できる。一方、しきい値電圧以下では殆ど電子は故 20 出されない。従って、複数の電子放出来子を配置した場 合においても、個々の素子に上記パルス状電圧を適宜印 加すれば、入力信号に応じて電子放出ネ子を選択し、そ の電子放出量が制御でき、単純なマトリクス配線だけで 個別の電子放出業子を選択して独立に駆動可能となる。

【0045】単純マトリクス配置はこのような原理に基 づくもので、本発明の電子派の一例である、この単純マ トリクス配置の電子源の構成について図5に基づいて更 に説明する。

ガラス板等であり、この基板】上に配列された電子放出 **素子54の関数及び形状は用途に応じて適宜設定される** ものである。

【0047】m本のX方向配線52は、夫々外部端子D 11, D.2, ……, D. を有するもので、基板1上に、真 空蒸着法、印刷法、スパッタ法等で形成した導電性金属 等である。また、複数の電子放出素子54にほぼ均等に 電圧が供給されるように、材料、膜厚、配線幅が設定さ

【0048】n本のY方向配線53は、夫々外部端子D 40 ,,, D,,,, D,, を有するもので、X方向配線52 と同様に作成される。

【0049】これらm本のX方向配線52とn本のY方 向配線5.3間には、不図示の層間絶縁層が設置され、電 気的に分離されて、マトリクス配線を構成している。 尚、このm、nは共に正の整数である。

【0050】不図示の層間絶縁層は、真空蒸着法、印刷 法、スパッタ法等で形成されたSiO: 等であり、X方 向配線52を形成した基板1の全面或は一部に所望の形 の交差部の電位差に耐え得るように、誤厚、材料、製法 が適宜設定される。

【0051】更に、電子放出素子54の対向する業子電 極 (不図示) が、m本のX方向配線52と、n本のY方 向配線53と、真空蒸着法、印刷法、スパッタ法等で形 成された導電性金属等からなる結構55によって電気的 に接放されているものである。

【0052】ここで、m本のX方向配線52と、n本の Y方向配線53と、結線55と、対向する素子電極と は、その構成元素の一部あるいは全部が同一であって も、また夫々異なっていてもよく、前述の素子電極の材 料等より適宜選択される。これら素子電極への配線は、 素子電板と材料が同一である場合は素子電板と総称する 場合もある。また、電子放出来子54は、基板1或いは 不図示の層間絶録層上どちらに形成してもよい。

【0053】また、詳しくは後述するが、前記X方向配 **線52には、X方向に配列された電子放出素子54の行** を入力信号に応じて走査するために、走査信号を印加す る不図示の走査信号印加手段が電気的に接続されてい

【0054】一方、Y方向配線53には、Y方向に配列 された電子放出索子54の列の各列を入力信号に応じて 変調するために、変調信号を印加する不図示の変調信号 発生手段が電気的に接続されている。更に、各電子放出 素子54に印加される駆動電圧は、当該電子放出案子5 4に印加される走査信号と変調信号の差電圧として供給 されるものである。

【0055】次に、以上のような単純マトリクス配置の 本発明の電子源を用いた本発明の固像形成装置の一例 [0046] 図5において基板1は既に成明したような 30 を、図6~図8を用いて説明する。尚、図6は表示パネ ル81の基本構成図であり、図7は蛍光膜64を示す図 であり、図8は図6の表示パネル81で、NTSC方式 のテレビ信号に応じてテレビジョン表示を行うための駆 動回路の一例を示すブロック図である。

> [0056] 図6において、1は上述のようにして電子 放出素子を配置した電子源の基板、61は基板1を固定 したリアプレート、66はガラス基板63の内面に蛍光 膜64とメタルパック65等が形成されたフェースプレ ート、62は支持枠であり、リアプレト61、支持枠6 2及びフェースプレート66ピブリットガラス等を整布 し、大気中あるいは空来中で、400~500℃で10 分以上焼成することで封着して外囲器68を構成してい る。

[0057] 図6において、52、53は、電子放出素 子54の一対の索子電極2,2°と接続されたX方向配 線及びY方向配線で、夫々外部端子D.:。 D.: ~ D,,を有している。

[0058] 外函器68は、上述の如く、フェースープ レート66、支持枠62、リアプレート61で構成され 状で形成され、特に、X方向配線52とY方向配線53 50 ている。しかし、リアプレート61は主に基板1の強度

を補強する目的で設けられるものであり、基板1自体で 十分な強度を持つ場合は別体のリアプレート61は不要 で、基板1に直接支持枠62を封着し、フェースプレー ト66、支持枠62、基板1にて外囲器68を構成して もよい。また、フェースプレート66、リアプレート6 1の間にスペーサーと呼ばれる不図示の支持体を更に設 置することで、大気圧に対して十分な強度を有する外囲 翌68とすることもできる。

【0059】 蛍光膜64は、モノクロームの場合は蛍光 体72のみからなるが、カラーの蛍光膜64の場合は、 強光体 7 2 の配列により、ブラックストライプ (図 7 (a)) あるいはプラックマトリクス(図7(b))等 と呼ばれる黒色導伝材71と蛍光体72とで構成され る。ブラックストライプ、ブラックマトリクスが設けら れる目的は、カラー表示の場合必要となる三原色の各蛍 光体72間の塗り分け部を黒くすることで混色等を目立 たなくすることと、蛍光膜74における外光反射による コントラストの低下を抑制することである。黒色導伝材 71の材料としては、通常良く用いられている黒鉛を主 成分とする材料だけでなく、導電性があり、光の透過及 20 び反射が少ない材料であれば他の材料を用いることもで きる.

【0060】ガラス基板73に蛍光体72を塗布する方 法としては、モノクローム、カラーによらず、沈政法や 印刷法が用いられる。

【0061】また、図6に示されるように、蛍光膜64 の内面側には通常メタルバック65が設けられる。メタ ルパック65の目的は、蛍光体72(図7参照)の発光 のうち内面倒への光をガラス基板63倒へ鏡面反射する ことにより輝度を向上すること、電子ピーム加速電圧を 30 印加するための電極として作用すること、外囲器68内 で発生した負イオンの衝突によるダメージからの蛍光体 72の保護等である。メタルバック65は、蛍光膜64 の作製後、蛍光膜 6 4 の内面倒表面の平滑化処理(通常・ フィルミングと呼ばれる)を行い、その後A1を真空蒸 着等で堆積することで作製できる。

【0062】フェースプレート66には、更に蛍光膜6 4の導電性を高めるため、蛍光膜64の外面側に透明電 栖(不図示)を設けてもよい。

【0063】前述の封着を行う際、カラーの場合は各色 40 資光体72と電子放出業子64とを対応させなくてはい。 けないため、十分な位置合わせを行なう必要がある。

【0064】外囲器68内は、不図示の排気管を通じ、 100"1001程度の真空度にされ、封止される。ま た、外囲器68の封止を行う直前あるいは封止後に、ゲ ッター処理を行うこともある。これは、外囲器68内の 所定の位置に配置したゲッター(不図示)を加熱し、森 着膜を形成する処理である。ゲッターは通常Ba等が主 成分であり、該蓋着膜の吸着作用により、例えば1×1

のである。

【0065】上述の表示パネル81は、例えば図8に示 されるような駆動回路で駆動することができる。肖、図 8において、81は表示パネル、82は走査回路、83 は制御回路、84はシフトレジスタ、85はラインメモ り、86は同期信号分無回路、87は変調信号発生器、 V、及びV、は直流電圧液である。

10

【0066】図8に示されるように、表示パネル81 は、外部端子D.,,~D.,、外部端子D.,,~D.,。及び高圧 端子H vを介して外部の電気回路と技統されている。こ の内、外部落子D.:~D.。には前記表示パネル81内に 設けられている電子放出来子、即ちm行n列の行列状に マトリクス配置された電子放出来子群を1行(n来子ず... つ) 順次駆動して行くための走査信号が印加される。

【0067】一方、外部端子Dn~Dnには、前記走査 信号により選択された1行の各電子放出素子の出力電子 ビームを制御するための変調信号が印加される。また、 高圧増子Hvには、直流電圧源V。より、例えば10k Vの直流電圧が供給される。これは電子放出案子より出 力される電子ピームに、蛍光体を励起するのに十分なエ ネルギーを付与するための加速電圧である。

【0068】 走査回路82は、内部にm個のスイッチン グ素子 (図8中S) ~S。で模式的に示す) を備えるも ので、各スイッチング素子S。~S。は、直流電圧電源 V,の出力電圧もしくは0V (グランドレベル) のいず れか一方を選択して、表示パネル81の外部端子Dii~ D.、と電気的に接続するものである。 各スイッチング末 子S、~S。は、制御回路83が出力する制御信号T ,,,,に基づいて動作するもので、実際には、例えばFE 丁のようなスイッチング機能を有する素子を組み合わせ ることにより容易に構成することが可能である。

【0069】本例における前記直流電圧版V。は、前記 電子放出素子の特性(しきい値電圧)に基づき、走査さ れていない電子放出索子に印加される駆動電圧がしきい 植地圧以下となるような一定地圧を出力するよう設定さ

【0070】制御回路83は、外部より入力される画像 信号に基づいて適切な表示が行われるように、各部の動 作を整合させる働きを持つものである。次に説明する同 期借号分離回路86より送られる同期信号 T. に基フ いて、各部に対してT....、T... 及びT..., の各制料 信号を発生する。

【0071】同期信号分離回路86は、外部から入力さ れるNTSC方式のテレビ信号から、同期信号成分と輝 度信号成分を分離するための回路で、よく知られている ように、周波数分離(フィルター)回路を用いれば、容 易に構成できるものである。 同期信号分離回路 8 6によ り分離された何期信号は、これもよく知られるように、 垂直同期信号と水平同期信号よりなる。ここでは、説明 0-3~1×10-1torrの真空度を維持するためのも 50 の便宜上T.,,,として図示する。一方、前紀テレビ信号 から分離された画像の輝度信号成分を便宜上DATA留 号と図示する。このDATA信号はシフトレジスタ84 に入力される。

【0072】シフトレジスタ84は、時系列的にシリア ル入力される前記DATA信号を、画像の1ライン毎に シリアル/パラレル支換するためのもので、前記制御回 路83より送られる制御信号で、1、に基づいて作動す る。この制御信号T.i. は、シフトレジスタ84のシフ トクロックであると言い換えてもよい。また、シリアル /パラレル変換された面像1ライン分(電子放出素子の *10* A/D変換器を設けることで行える。 n 来子分の駆動データに相当する) のデータは、1m~ l..のn個の並列信号として前記シフトレジスタ84よ り出力される。

【0073】ラインメモリ85は、画像1ライン分のデ 一夕を必要時間だけ配憶するための記憶装置であり、制 御回路83より送られる制御信号T..., に従って適宜】 , ~ 」, の内容を記憶する。記憶された内容は、 」, · 」 ~」。。として出力され、変調信号発生器87に入力さ れる.

【0074】変調信号発生器87は、前記画像データ】 111 ~ 11. の各々に応じて、電子放出業子の各々を適 切に駆動変調するための信号源で、その出力信号は、端 子D,,~D,,を通じて表示パネル81内の電子放出案子 に印加される。

【0075】前述したように、電子放出来子は電子放出 に明確なしきい値電圧を有しており、しきい値電圧を超 える電圧が印加された場合にのみ電子放出が生じる。ま た、しきい値電圧を超える電圧に対しては電子放出案子 への印加電圧の変化に応じて放出電流も変化して行く。 電子放出案子の材料、構成、製造方法を変えることによ 30 り、しきい値電圧の値や印加電圧に対する放出電流の変 化度合いが変わる場合もあるが、いずれにしても以下の ことがいえる。 2.5

【0076】即ち、電子放出素子にバルス状の電圧を印 加する場合、例えばしきい値電圧以下の電圧を印加して も電子放出は生じないが、しきい値電圧を超える電圧を 印加する場合には電子放出を生じる。その際、第1には 電圧パルスの波高値を変化させることにより、出力され る電子ピームの強度を制御することが可能である。第2 には、電圧パルスの幅を変化させることにより、出力さ 40 れる電子ピームの電荷の総量を制御することが可能であ ろ。

【0077】従って、入力信号に応じて電子放出来子を 変調する方式としては、電圧変調方式とパルス幅変調方 式とが挙げられる。電圧変調方式を行う場合、変調信号 発生器87としては、一定の長さの電圧パルスを発生す るが、入力されるデータに応じて適宜パルスの液高値を **変調できる電圧変調方式の回路を用いる。また、パルス** 福変調方式を行う場合、変調信号発生器87としては、

一定の故高雄の電圧パルスを発生するが、入力されるデ 50 はこれに限られるものではなく、PAL、SECAM方

12

ータに応じて適宜パルス幅を変調できるパルス幅変調方 式の回路を用いる。

[0078] シフトレジスタ84やラインメモリ85 は、デジタル信号式のものでもアナログ信号式のもので もよく、画像信号のシリアル/パラレル変換や記憶が所 定の速度で行えるものであればよい。

【0079】デジタル信号式を用いる場合には、同期信 号分離回路86の出力信号DATAをデジタル信号化す る必要がある。これは同期信号分離回路86の出力部に

【0080】また、これと関連して、ラインメモリ85 の出力信号がデジタル信号かアナログ信号かにより、変 調信号発生器87に設けられる回路が若干異なるものと

[0081] 即ち、デジタル信号で領圧変調方式の場 合、変調信号発生器87には、例えばよく知られている D/A変換回路を用い、必要に応じて増幅回路等を付け 加えればよい。また、デジタル信号でパルス幅変調方式 の場合、変調信号発生器87は、例えば高速の発振器及。 び発振器の出力する被数を計数する計数器(カウンタ) 及び計数器の出力値と前記メモリの出力値を比較する比 🦠 校器(コンパレータ)を組み合わせた回路を用いること で容易に構成することができる。更に、必要に応じて、 比較器の出力するパルス幅変調された変調信号を電子放 出来子の駆動電圧にまで電圧増幅するための増幅器を付 け加えてもよい。

【0082】一方、アナログ信号で電圧変調方式の場 合、変調信号発生器87には、例えばよく知られている オペアンプ等を用いた増幅回路を用いればよく、必要に 応じてレベルシフト回路等を付け加えてもよい。また、 アナログ信号でパルス幅変調方式の場合、例えばよく知 られている電圧制御型発掘回路(VCO)を用いればよ く、必要に応じて電子放出索子の駆動電圧にまで電圧増 幅するための増幅器を付け加えてもよい。

[0083] 以上のような表示パネル81及び駆動回路 を有する本発明の画像形成装置は、端子D.i.〜D.i.及び D,、~D,。から電圧を印加することにより、必要な電子 放出素子から電子を放出させることができ、高圧焼子H ぃを通じて、メタルパック55あるいは透明電極(不図 電子ピームを蛍光膜54に衝突させることで生じる励起 ・発光によって、NTSC方式のテレビ信号に応じてテ レビジョン表示を行うことができるものである。

【0084】尚、以上説明した構成は、表示等に用いら れる本発明の画像形成装置を得る上で必要な概略構成で あり、例えば各部材の材料等、詳細な部分は上述の内容 に限られるものではなく、画像形成芸篋の用途に適する よう、通宜選択されるものである。また、入力信号とし TNTSC方式を挙げたが、本発明に係る画像形成装置 ... 式等の他の方式でもよく、更にはこれらよりも複数の走 変貌からなるTV信号、例えばMUSE方式を初めとす る高品位TV方式でもよい。

【0085】次に、前述の様型配置の電子顧及びこれを用いた本発明の画像形成装置の一例について図9及び図10を用いて説明する。

【0086】図9において、1は基板、54は電子放出 素子、94は電子放出素子54を接続する共通配線で1 0本設けられており、各々外部菓子D1~D10を有して いる。

【0087】電子放出来子54は、基板1上に並列に複数個配置されている。これを来子行と呼ぶ、そしてこのネ子行が複数行配置されて電子額を構成している。

[0088] 各素子行の共通配線94(例えば外部端子D, とD, の共適配線94) 間に適宜の駆動電圧を印加することで、各素子行を独立に駆動することが可能である。即ち、電子ビームを放出させたい来子行にはしきい値電圧を超える電圧を印加し、電子ビームを放出させたくない素子行にはしきい値電圧以下の電圧を印加するようにすればよい。このような駆動電圧の印加は、各業子行間に位置する共通配線D: ~D, について、夫々相解接する共通配線94、即ち夫々相隣接する外部端子D: とD, D, とD, の共通配線94を一体の同一配線としても行うことができる。

[0089] 図10は、本発明の電子源の他の例である、上記様型配置の電子源を備えた表示パネル91の構造を示す図である。

【0090】図10中92はグリッド電極、93は電子が通過するための開口、Di~D。は各電子放出来子に電圧を印加するための外部端子、Gi~G。はグリッド 30電極92に接続された外部端子である。また、各漢子行間の共通配線94は一体の同一配線として基板1上に形成されている。

【0091】尚、図10において図6と同じ符号は同じ 部材を示すものであり、図6に示される単純マトリクス 配置の電子液を用いた表示パネル81との大きな違い は、基板1とフェースプレート66の間にグリッド電極 92を備えている点である。

【0092】基板1とフェースプレート66の間には、 上記のようにグリッド電板92が設けられている。この 40 グリッド電板92は、電子放出来子54から放出された 電子ピームを変調することができるもので、移型配置の 来子行と直行して設けられたストライブ状の電極に、電 子ピームを通過させるために、各電子放出来子54に対 応して1個ずつ円形の閉口93を設けたものとなってい

【0093】グリッド電極92の形状や配置位置は、必ずしも図10に示すようなものでなければならないものではなく、関口93をメッシュ状に多数設けることもあり、またグリッド電極92を、例えば電子放出来子5450

の周囲や近傍に設けてもよい。

【0094】外部ペテDi~D. 及びGi~G. は不図示の駆動回路に接続されている。そして、京子行を1列ずつ脳次駆動(走査)して行くのと同期してグリッド電低92の列に画像1ライン分の変調係号を印加することにより、各電子ピームの強光膜64への限射を制御し、画像を1ラインずつ表示することができる。

14

【0095】以上のように、本発明の国像形成装置は、単純マトリクス配置及び様型配置のいずれの本発明の電 10 子原を用いても得ることができ、上述したテレビジョン 放送の表示装置のみならず、テレビ会議システム、コン ビューター等の表示装置として好適な関像形成装置が得 られる。更には、感光ドラムとで構成した光ブリンター の露光装置としても用いることができるものである。

[0096]

【実施例】

[実施例1] 本発明第1の実施例として、図1に示した 電子放出素子を作製した。

くない素子行にはしきい値電圧以下の電圧を印加するようにすればよい。このような駆動電圧の印加は、各業子 20 基板上に厚さ5 nmのT1、及び厚さ30 nmのP tを 有間に位置する共通配線D2 ~D3 について、夫々相解 接する共通配線94、即ち夫々相降接する外部端子D2 とD3、D4 とD3、「D4 とD3、「D4 とD3 の共通配 4mの間隙を形成した。

【0098】次に、有機Pd類体溶液(CCP4230: 奥野製薬株式会社製を酢酸プチルで3倍に希釈したもの)をスピンナーコートした後、大気中300℃で熱処理、更に窒素で希釈した2%水素気液中で180℃の熱処理を行なった。この段階で素子表面にはΦ=3~7nmの微粒子が形成された。

[0099] 続いて、空素希釈したの、1%エチレン気流中で500℃で10分間熱処理した。これを走査電子 関微規で関係すると、電極間隙中に直径10~25nm 程度で、屈曲しながら繊維状に伸びた多数の繊維状力ー ポンが形成されていることがわかった。尚、来子電極上 には、Pd微粒子も繊維状力ーポンも見られず、Pd微 粒子はPt電板に吸収されたものと思われる。

【0100】上記のようにして作製した電子放出来子の 1、及び1、を、図3に示した測定評価系により測定し *

【0102】【実施例2】素子電極間の間隙を500nmとする以外は実施例1と同様にして電子放出来子を作製し、1。及び1、を測定した。1。及び1、はそれぞれ約400秒で飽和し、その値は実施例1の電子放出業子とほぼ同じであった。

[0103] 走査電子顕微鏡による観察では、実施例1 と同様に、間隙中に多数の繊維状カーボンが形成されて いる様子が観察された。但し、間隙中央部ではやや殊に なっていた。

[0104] [実施例3] 実施例1と同様にして素子電極、及び該電極間の間隙を形成し、有機Pd婦体溶液を塗布、300℃で焼成を行なった後、空深で希釈したの。1×エチレン気流中で180℃で10分間の熱処理を行ない、引き続き450℃に昇退して10分間の熱処理を行なった。この電子放出来子の電気的特性は実施例1とほぼ同様であった。

【0105】【比較例1】実施例1と同様の工程で素子 10 電極及び電極関策を形成し、Pd 複粒子を形成した後、エチレン雰囲気中での熱処理工程を省いて、1。及び1,を測定した。その結果、1。、1,共に観測されなかった。

【0106】【比較例2】電極間隙を900nmとする 以外は実施例1と同様にして電子放出素子を作製し、1 、及び1、を測定したところ、1。、1、とも全く規測 されなかった。

【0107】この電子放出素子を走査電子顕微鏡で観察したところ、素子電極の端面付近には繊維状カーポンが 形成されているが、間隙の中央部には存在せず、両方のカーポン間の間隔が大きく開いていることがわかった。これは、有機Pd溶液を強布した際、表面張力により電極端面付近に溶液が集まり、中央付近は少なくなるために、Pd微粒子が間隙中央部に形成されず、従って、これを核として堆積する繊維状カーポンが堆積しにくかったものと推測される。そのため、カーポン間の間隙が広く、1。、1。が観測されなかった、即ち案子電極間に電流が流れず電子放出が行なわれなかったものと推測される。 30

【0 1 0 8】 【実施例4】単純マトリクス配線により電子放出素子を配置した電子源を作製した。その手順を以下に示す。

【0109】洗浄した宵板ガラスの基板上に真空蒸着法により厚さ5nmのCr、厚さ60nmのAuを順次積層した後、フォトレジスト(AZ1370:ヘキスト社製)をスピンナーにより回転塗布、ペークした後、フォトマスク像を開光、現像して、下配線のレジストパターンを形成し、Au/Cr積相膜をウエットエッチングして下配線を形成した。

【0 1 1 0】厚さ 0. 1 μmのシリコン酸化膜からなる 層間絶縁層を高周波スパッタ法により形成した。

【011】 堆積したシリコン酸化膜上にコンタクトホールを形成するためのフォトレジストパターンを作り、これをマスクとして層間絶縁層をエッチングしてコンタクトホールを形成した。エッチングはCF。とH2 ガスを用いたRIE (Reactive lon Etching) 法によった。

【01]2] 来子電極となるベきパターンをフォトレジ ろ画像情報を表示できる。 スト (RD-2000N-41:日立化成社製) で形成 50 そのブロック図を示す。

16

し、真空蒸着法により厚さ5 nmのT 1、厚さ100 nmのN 1を順次積層した。フォトレジストパターンを有機溶剤で溶解し、N i / T i 堆積膜をリフトオフし来子電極を形成した。

【0113】末子電極の上に上配線のフォトレジストパーターンを形成した後、厚さ5nmのT1、厚さ100nmのAuを順次真空蒸着法により堆積し、リフトオフにより不要の部分を除去して上配線を形成する。

【0]14】コンタクトホール部分以外をカバーするようにレジスト膜を形成し、真空蒸着法により厚さ5nmのTi、厚さ500nmのAuを順次積層した。リフトオフにより不要部分を除去することにより、コンタクトホールを埋め込んだ。

【0115】実施例1と同様に、FIBにより案子電極 間に間隙を形成した。更に、実施例1と同様にして、有 視Pd関体溶液をスピンナーで塗布し、大気中300℃ で焼成してPdOとし、更にN1-2%H1。混合ガス気 流中で180℃10分間の熱処理を行ないPd競粒子を 形成した。

2 【0116】実施例1と同様に、0.01%C1H1気 流中で500で10分間の熱処理を行ない、繊維状力ー ポンを形成した。高分解能SEM(走変型電子顕微鏡) によりこの電子派の電子放出来子を観察したところ、熱 処理により、素子電極上のPd微粒子は電極中に拡散し たらしく、素子電極上には微粒子も繊維状カーポンも見 られなかった。

【0117】この電子源に図11に示すように引き出し電極と蛍光板を取り付け、全ての電子放出素子を時間順次に走査駆動した。図11の系を説明する。図中111は真空槽であり、不図示の排気系により、5×10°Pa以下に排気されている。112は窓、114は電子放出部(電極間隙)、電極、配線などからなる素子本体である。115、116はX方向及びY方向ラインの駆動用配線である。117は前記配線に適当なパルスを印加するドライバーである。118は引き出し電極で、アルミニウム製の枠に透明電極の1TO薄膜を形成したガラスを嵌め込み、その下面に蛍光体を塗布したものである。

[0]19] 窓1]2を通して、電子放出による強光体の発光を目視で観察したところ、本実施例の電子源においては、素子間での輝度のばらつきが小さく、電子放出特性の均一性が高いことが確認された。

[0120] [実施例5] 実施例4の電子派に、図6に 示すように画像形成部材を組み合わせ、例えばテレビジョン放送をはじめとする種々の画像情報派より提供され る画像情報を表示できる表示装置を構成した。図12に そのブロック図を示す。

【0121】図中120はディスプレイパネル、121 はディスプレイパネルの駆動回路、122はディスプレ イコントローラ、123はマルチプレクサ、124はデ コーダ、125は入出カインターフェース回路、126 はCPU、127は画像生成回路、128、129及び 130は画像メモリインターフェース回路、131は画 像入力インターフェース回路、132及び133はTV 信号受信回路、134は入力師である。(尚、本表示芸 質は、例えばテレビジョン信号のように映像情報と音声 情報の両方を含む信号を受信する場合には、当然映像の 10 表示と同時に音声を再生するものであるが、本発明の特 徴と直接関係しない音声情報の受信、分離、再生、処 理、配位などに関する回路やスピーカーなどについては 説明を省略する。)

【0122】以下、画像信号の流れに沿って各部を説明

【0123】先ず、TV信号受信回路133は、例えば 電波や空間光通信などのような無線伝送系を用いて伝送 されるTV画像信号を受信するための回路である。受信 するTV信号の方式は特に限られるものではなく、何え 20 ば、NTSC方式、PAL方式、SECAM方式などの 路方式でも良い。また、これらよりさらに多数の走夜線 よりなるTV信号(好えばMUSE方式をはじめとする いわゆる高品位TV)は、大面積化や大面素数化に適し た前記ディスプレイパネルの利点を生かすのに好適な信 号源である。TV信号受信回路133で受信されたTV 信号は、デコーダ124に出力される。

【0124】また、画像TV信号受信回路132は、例 えば同軸ケーブルや光ファイパーなどのような有貌伝送 系を用いて伝送されるTV画像信号を受信するための回 30 路である。前記TV信号受信回路133と同様に、受信 するTV信号の方式は特に限られるものではなく、また 本回路で受信されたTV信号もデコーダ124に出力さ

【0125】また、画像入力インターフェース回路13 1は、何えばTVカメラや画像説取スキャナーなどの画 像入力装置から供給される画像信号を取り込むための回 路で、取り込まれた画像信号はデコーダ124に出力さ れる.

【0126】また、画像メモリインターフェース回路】 30は、ビデオテープレコーダー (以下VTRと略す) に記憶されている資像信号を取り込むための回路で、取 り込まれた画像信号はデコーダ124に出力される。

【0127】また、面像メモリインターフェース回路1 29は、ビデオディスクに記憶されている函像信号を取 り込むための回路で、取り込まれた面像信号はデコーダ 124に出力される。

【0128】また、画像メモリーインターフェース回路 128は、いわゆる静止面ディスクのように、静止画像

18 の回路で、取り込まれた静止画像データはデコーダ12 4に出力される。

【0129】また、入出カインターフェース回路125 は、本表示装置と、外部のコンピュータ、コンピュータ ネットワークもしくはプリンタなどの出力装置とを接続 するための回路である。面像データや文字・図形情報の 入出力を行なうのはもちろんのこと、場合によっては本 表示装置の備えるCPU126と外部との間で制御信号 や数値データの入出力などを行なうことも可能である。

【0130】また、画像生成回路127は、前紀入出力 インターフェース回路125を介して外部から入力され る面像データや文字・図形情報や、或いはCPU156 より出力される画像データや文字・図形情報に基づき表・ 示用画像データを生成するための回路である。本回路の 内部には、例えば画像データや文字・図形情報を蓄積す るための書き換え可能メモリや、文字コードに対応する 函像パターンが記憶されている読み出し専用メモリや、 函数処理を行なうためのプロセッサなどをはじめとして 画像の生成に必要な回路が組み込まれている。

【0131】本回路により生成された表示用画像データ は、デコーダ124に出力されるが、場合によっては前 記入出力インターフェース回路125を介して外部のコ ンピュータネットワークやプリンターに出力することも

【0 1 3 2】また、CPU126は、主として本表示装 間の動作制御や、表示画像の生成、選択、編集に関わる。 作業を行なう。

【0133】例えば、マルチプレクサ123に制御信号 を出力し、ディスプレイパネルに表示する関像信号を適 宜選択したり組み合わせたりする。また、その際には表す 示する画像信号に応じてディスプレイパネルコントロー ラ122に対して制御信号を発生し、画面表示周波数や 走査方法(何えばインターレースかノンインターレース か)や一面面の走査線の数など表示装置の動作を適宜制 御する。

【0134】また、前記画像生成回路127に対して画 像データや文字・図形情報を直接出力したり、或いは前 記入出力インターフェース回路125を介して外部のコ ンピュータやメモリをアクセスして画像データや文字・ 図形情報を入力する。

【0135】尚、CPU126は、むろんこれ以外の目 的の作業にも関わるものであっても良い。例えば、パー ソナルコンピュータやワードプロセッサなどのように、 情報を生成したり処理する機能に直接関わっても良い。

【0136】 支いは、前述したように入出カインターフ ェース回路125を介して外部のコンピュータネットワ 一クと接続し、例えば数値計算などの作業を外部復器と「 協同して行なっても良い。

【0137】 主た、入力部134は、前記CPU126 データを記憶している装置から函像信号を取り込むため 50 に使用者が命令やプログラム、支いはデータなどを入力 するためのものであり、例えばキーポードやマウスの 他、ジョイスティック、パーコードリーダー、音声**認識** 装置など多様な入力機器を用いることが可能である。

【0138】また、デコーダ124は、前記127ないし133より入力される種々の画像信号を3原色信号、または輝度信号と1信号、Q信号に逆変換するための回路である。尚、同図中に点鏡で示すように、デコーダ124は内部に画像メモリを備えるのが望ましい。これは、例えばMUSE方式をはじめとして、逆変換するに際して画像メモリを必要とするようなテレビ信号を扱う 10ためである。また、画像メモリを輸えることにより、静止面の表示が容易になる、或いは前記画像生成回路127及びCPU126と協同して画像の同引き、補同、拡大、縮小、合成をはじめとする画像処理や編集が容易に行なえるようになるという利点が生まれるからである。

【0139】また、マルチプレクサ123は前配CPU 126より入力される制御信号に基づき表示画像を適宜 選択するものである。即ち、マルチプレクサ123はデコーダ124から入力される逆変換された画像信号のうちから所望の画像信号を選択して駆動回路121に出力 なする。その場合には、一画面表示時間内で画像信号を切り換えて選択することにより、いわゆる多画面テレビのように、一画面を複数の領域に分けて領域によって異なる画像を表示することも可能である。

【0140】また、ディスプレイパネルコントローラ122は、前記CPU126より入力される制御信号に基づき駆動回路121の動作を制御するための回路である。

【0141】先ず、ディスプレイパネルの基本的な動作 に関わるものとして、例えばディスプレイパネルの駆動 30 用電源(不図示)の動作シーケンスを制御するための信 号を駆動回路121に対して出力する。

[0142] また、ディスプレイパネルの駆動方法に関わるものとして、何えば國面表示周波数や走査方法(何えばインターレースかノンインターレースか)を制御するための信号を駆動回路121に対して出力する。

【0143】また、場合によっては表示画像の輝度、コントラスト、色調、シャープネスといった画質の調整に関わる制物信号を駆動回路121に対して出力する場合もある。

【0144】また、駆動回路121は、ディスプレイバネル120に印加する駆動信号を発生するための回路であり、前記マルチプレクサ123から入力される画像信号と、前記ディスプレイパネルコントローラ122より入力される制御信号に基づいて動作するものである。

【0145】以上、各部の機能を説明したが、図12に 例示した構成により、本表示装置においては多様な画像 情報源より入力される画像情報をディスプレイパネル1 20に表示することが可能である。即ち、テレビジョン 放送をはじめとする各種の画像個号はデコーダ124に 50

おいて逆変換された後、マルチプレクサ123において 適宜選択され、駆動回路121に入力される。一方、ディスプレイコントローラ122は、表示する面像信号に 応じて駆動回路121の動作を制御するための制御信号 を発生する。駆動回路121は、上記画像信号と制御信 号に基づいてディスプレイパネル120に駆動信号を印 加する。これにより、ディスプレイパネル120におい て画像が表示される。これらの一連の動作は、CPU1

26により統括的に制御される。

【0146】また、本表示装置においては、前記デコーダ124に内底する関像メモリや、関像生成回路127及びCPU126が関与することにより、単に複数の画像情報の中から選択したものを表示するだけでなく、表示する画像情報に対して、例えば拡大、縮小、回転、移動、エッジ強調、間引き、補間、色変換、画像の凝撲比変換などをはじめとする画像処理や、合成、消去、接続、入れ替え、はめ込みなどをはじめとする画像組集を行なうことも可能である。また、本実施例の説明では、特に触れなかったが、上記画像処理や画像編集と同様に、音声情報に関しても処理や編集を行なうための専用回路を設けても良い。

【0147】従って、本表示装置は、テレビジョン放送の表示機器、テレビ会議の端末機器、静止面像及び動配像を扱う面像類集機器、コンピューターの端末機器、ワードプロセッサをはじめとする事務用端末機器、ゲーム機などの機能を一台で兼ね備えることが可能で、産業用域いは民生用として極めて応用範囲が広い。

【0148】尚、上記図12は、電子放出素子を電子源とするディスプレイパネルを用いた表示装置の構成の一例を示したに過ぎず、これのみに限定されるものでないことは言うまでもない。例えば図12の構成要素のうち使用目的上必要のない機能に関わる回路は省いても差し支えない。またこれとは逆に、使用目的によってはさらに構成要素を追加しても良い。例えば、本表示装置をテレビ電話機として応用する場合には、テレビカメラ、音声マイク、照明機、モデムを含む送受信回路などを構成要素に追加するのが好適である。

【0149】本表示装置においては、とりわけ電子放出 末子を電子派とするディスプレイパネルの薄型化が容易 がため、表示装置の奥行きを小さくすることができる。 それに加えて、電子放出業子を電子派とするディスプレ イパネルは大国面化が容易で輝度が高く視野角特性にも 優れるため、本表示装置は臨場感あふれ迫力に富んだ画 像を視路性良く表示することが可能である。

【0150】更に、本発明の電子疎は各電子故出来子間での電子放出特性が均一であるため、形成される面像の画質が高く、また高精細な画像の表示も可能である。

[0151]

【発明の効果】以上説明したように、本発明によれば、 良好な電子放出特性を示す電子放出素子を信頼性高く提

供することができ、試案子の作製に当たり、特に繁雄な工程や効果な素材を用いることもない。従って、当試業子を複数用いてなる本発明の電子源、更に画像形成装置においては、各案子によって形成される輝点の輝度が均一でむらがないため、高品質な画像の形成が可能となる。

【図面の簡単な説明】

- 【図1】本発明の電子放出案子の基本構成図である。
- 【図2】本発明の電子放出素子の製造工程例を示す図である。
- 【図3】本発明の電子放出素子の電子放出特性を評価するための測定評価系を示す図である。
- 【図4】本発明の電子放出来子の電子放出特性を示す図である。
- 【図5】本発明の単純マトリクス電子源の模式図である。
- 【図 6】 本発明の画像形成装置の一実施線様を示す図である。
- 【図7】 本発明の画像形成装置に用いる蛍光膜を示す図 である。
- 【図8】本発明の画像形成装置の一実施銀様のプロック 図である。
- 【図9】本発明の様子型電子版の模式図である。
- 【図10】梯子型電子源を用いた本発明の画像形成装置を示す図である。
- 【図】1】本発明の電子額の測定評価系を示す図である。
- 【図12】本発明の実施例4の画像形成装置の応用例の ブロック図である。

【符号の説明】

- 1 柏緑性基板
- 2. 2' 素子電極
- 3 炭素を主成分とする堆積物
- 21 金属磁粒子
- 30 電液計
- 31 電源
- 32 電流計
- 33 高圧電源
- 34 アノード電極
- 35. 真空装置
- 36 排気ポンプ
- 5 2 X方向配線
- 53 Y方向配線
- 5 4 電子放出素子

- 55 結線
- 61 リアプレート
- 62 支持枠
- 63 ガラス基板・
- 6.4 蛍光膜
- 65 メタルパック
- 66 フェースプレート
- 68 外囲短
- 71 黑色游伝材
- 10 72 蛍光体:
 - 81 表示パネル
 - 82 走查回路
 - 83 制御回路
 - 84 シフトレジスタ
 - 85 ラインメモリ
 - 86 同期但号分解回路
 - 87 变调信号発生器。
 - 92 グリッド電極
 - 93 開口
- 20 94 共通配線
 - 111 真空槽
 - 112 2
 - 114 素子本体
 - 115 X方向耶動用配線
 - 116 Y方向取動用配線
 - 117 ドライバー
 - 118 引き出し電極
 - 119 電源
 - 120 ディスプレイパネル
- 30 121 駆動回路
 - 122 ディスプレイパネルコントローラ
 - .123 マルチプレクサ
 - 124 デコーダ
 - 125 入出力インターフェース -
 - 126 CPU
 - 127 国像生成回路
 - 128 西像メモリーインターフェース
 - 129 函像メモリーインターフェース
 - 130 面像メモリーインターフェース
- - 132 TV信号受信回路
- 133 TV信号受信回路
 - 134 入力部
 - 130 ディスプレイパネル

(図10)

(⊠12)

OLISTI WHY IS JOYEL SHILL