

Clearing Forward Markets Based on Forecasts of Stochastic Production

Juan M. Morales¹, M. Zugno¹, S. Pineda², P. Pinson³

- (1) Technical University of Denmark, DTU Compute
- (2) University of Copenhagen, Department of Mathematical Sciences
- (3) Technical University of Denmark, DTU Elektro

EURO-INFORMS 2013

Rome, Italy

July 2, 2013

DTU Compute

Institut for Matematik og Computer Science

(Motivation)

• Uncertainty \uparrow (stochastic production \uparrow) and flexibility $\downarrow \Rightarrow$ Balancing costs \uparrow

(Clearing mechanism)

• The day-ahead market is cleared by accounting for the projected impact on subsequent balancing operation

(Conventional)

Minimize
$$C^{D}(p_{G}, p_{W})$$

s.t. $h^{D}(p_{G}, p_{W}, \delta^{0}) - l = 0$
 $g^{D}(p_{G}, \delta^{0}) \leq 0$
 $p_{W} \leq \hat{W}$
 $p_{G}^{*}, p_{W}^{*}, \delta^{0*}$

Minimize
$$C^B(y_{\omega'})$$

s.t.
$$h^{B}(y_{\omega'}, \delta_{\omega'}, \delta^{0*}) + W_{\omega'} - p_{W}^{*} = 0$$

 $g^{B}(y_{\omega'}, \delta_{\omega'}, p_{G}^{*}; W_{\omega'}) \le 0$

(Conventional)

Minimize
$$C^B(y_{\omega'})$$

s.t.
$$h^{B}(y_{\omega'}, \delta_{\omega'}, \delta^{0*}) + W_{\omega'} - p_{W}^{*} = 0$$

 $g^{B}(y_{\omega'}, \delta_{\omega'}, p_{G}^{*}; W_{\omega'}) \le 0$

Balancing dispatch costs

$$\sum_{i=1}^{N_G} \left(C_i^{\mathrm{U}} r_{i\omega'}^{\mathrm{U}} - C_i^{\mathrm{D}} r_{i\omega'}^{\mathrm{D}} \right) + \sum_{j=1}^{N_L} V_j^{\mathrm{LOL}} L_{j\omega'}^{\mathrm{shed}}$$

(Conventional)

s.t.
$$h^{D}(p_{G}, p_{W}, \delta^{0}) - l = 0$$
$$g^{D}(p_{G}, \delta^{0}) \leq 0$$
$$p_{W} \leq \hat{W}$$

Power balance at the day-ahead stage

$$\sum_{i \in \Phi_n^{\mathbf{G}}} P_i + \sum_{q \in \Phi_n^{\mathbf{Q}}} W_q^{\mathbf{S}} - \sum_{j \in \Phi_n^{\mathbf{L}}} L_j - \sum_{\ell \mid o(\ell) = n} b_\ell \left(\delta_{o(\ell)}^0 - \delta_{e(\ell)}^0 \right)$$

$$+ \sum_{\ell \mid e(\ell) = n} b_\ell \left(\delta_{o(\ell)}^0 - \delta_{e(\ell)}^0 \right) = 0 \quad \forall n$$

$$p_G^*, p_W^*, \delta^{0*}$$

Actual production from "stochastic" energy sources

Minimize $C^{B}(y_{\omega'})$

s.t.
$$h^{B}(y_{\omega'}, \delta_{\omega'}, \delta^{0*}) + W_{\omega} - p_{W}^{*} = 0$$
$$g^{B}(y_{\omega'}, \delta_{\omega'}, p_{G}^{*}; W_{\omega'}) \leq 0$$

Power balance at the balancing stage

$$\begin{split} & \sum_{i \in \Phi_{n}^{\mathbf{G}}} \left(r_{i\omega'}^{\mathbf{U}} - r_{i\omega'}^{\mathbf{D}} \right) + \sum_{j \in \Phi_{n}^{\mathbf{L}}} L_{j\omega'}^{\mathbf{shed}} + \sum_{q \in \Phi_{n}^{\mathbf{Q}}} \left(W_{q\omega'} - W_{q}^{\mathbf{S}} - W_{q\omega'}^{\mathbf{spill}} \right) \\ & + \sum_{\ell \mid o(\ell) = n} b_{\ell} \left(\delta_{o(\ell)}^{0} - \delta_{o(\ell)\omega'} - \delta_{e(\ell)}^{0} + \delta_{e(\ell)\omega'} \right) \\ & - \sum_{\ell \mid e(\ell) = n} b_{\ell} \left(\delta_{o(\ell)}^{0} - \delta_{o(\ell)\omega'} - \delta_{e(\ell)}^{0} + \delta_{e(\ell)\omega'} \right) = 0 \quad \forall n \end{split}$$

(Conventional)

Offer limits

$$P_i \le P_i^{\max}, \forall i$$

Typically the (conditional) expected production!

Minimize
$$C^{B}(y_{\omega'})$$

s.t. $h^{B}(y_{\omega'}, \delta_{\omega'}, \delta^{0*}) + W_{\omega'} - p_{W}^{*} = 0$
 $g^{B}(y_{\omega'}, \delta_{\omega'}, p_{G}^{*}; W_{\omega'}) \leq 0$

Offer limits

$$\begin{aligned} r_{i\omega'}^{\mathrm{U}} &\leq R_i^{\mathrm{U},\mathrm{max}}, \forall i \\ r_{i\omega'}^{\mathrm{D}} &\leq R_i^{\mathrm{D},\mathrm{max}}, \forall i \\ P_i^{\star} &- r_{i\omega'}^{\mathrm{D}} \geq 0, \forall i \\ P_i^{\star} &+ r_{i\omega'}^{\mathrm{U}} \leq \overline{P}_i, \forall i \end{aligned}$$

(Conventional)

Minimize
$$C^{D}(p_{G}, p_{W})$$

s.t. $h^{D}(p_{G}, p_{W}, \delta^{0}) - l = 0$
 $g^{D}(p_{G}, \delta^{0}) \leq 0$
 $p_{W} \leq \hat{W}$

- Transmission capacity limits, variable bounds, reference node ...
- Non convexities are disregarded!

Minimize
$$C^{B}(y_{\omega'})$$

s.t. $h^{B}(y_{\omega'}, \delta_{\omega'}, \delta^{0*}) + W_{\omega'} - p_{W}^{*} = 0$
 $g^{B}(y_{\omega'}, \delta_{\omega'}, p_{G}^{*}; W_{\omega'}) \leq 0$

Total system demand = 170 MW

G3

L2 (90 MW)

• Unit capacity and offer cost in DAM

Bus 2

L1 (80 MW)

High: (50 MW, 0.6)

Low: (10 MW, 0.4)

Unit	P ^{max}	C	C^{U}	C^{D}	$R_U^{ m max}$	$R_D^{ m max}$
G1	100	35	40	34	20	40
G2	110	30	_	_	0	0
G3	50	10	-	_	0	0

 Offer limit and cost for the energy sold in BM

Unit	P^{\max}	C	C^{U}	C^{D}	$R_U^{ m max}$	R_D^{\max}
G1	100	35	40	34	20	40
G2	110	30	_	_	0	0
G3	50	10	_	-	0	0

High: (50 MW, 0.6)

Low: (10 MW, 0.4)

- Unit capacity and offer cost in DAM
- Offer limit and cost for the energy sold in BM
- Offer limit and cost for the energy repurchased in BM

Unit	P^{\max}	C	C^{U}	C^{D}	$R_U^{ m max}$	R_D^{\max}
G1	100	35	40	34	20	40
G2	110	30	_	_	0	0
G3	50	10	_	_	0	0

Expensive, but flexible

Unit	P^{\max}	C	C^{U}	C^{D}	$R_U^{ m max}$	$R_D^{ m max}$
G1	100	35	40	34	20	40
G2	110	30	_	_	0	0
G3	50	10	-	-	0	0

Less expensive, but inflexible

Unit	P^{\max}	C	C^{U}	C^{D}	$R_U^{ m max}$	$R_D^{ m max}$
G1	100	35	40	34	20	40
G2	110	30	-	-	0	0
G3	50	10	-	-	0	0

Unit	P^{\max}	C	C^{U}	C^{D}	$R_U^{ m max}$	$R_D^{ m max}$
G1	100	35	40	34	20	40
G2	110	30	_	_	0	0
G3	50	10	-	-	0	0

Cheap, but inflexible

Wind power production modeled using two scenarios

Expected production = 34 MW

Unit	P^{\max}	C	C^{U}	C^{D}	$R_U^{ m max}$	R_D^{\max}
G1	100	35	40	34	20	40
G2	110	30	_	_	0	0
G3	50	10	-	-	0	0

Powers in MW; costs in \$/MWh

Low: (10 MW, 0.4)

Conventional

Unit	P ^{max}	C	P^{sch}
G1	100	35	0
G2	110	30	86
G3	50	10	50
WP	34	0	34

Conventional

Unit	P ^{max}	C	P^{sch}
G1	100	35	0
G2	110	30	86
G3	50	10	50
WP	34	0	34

Expected production

Conventional

Unit	P ^{max}	C	P^{sch}
G1	100	35	0
G2	110	30	86
G3	50	10	50
WP	34	0	34

Conventional

Unit	P^{\max}	C	P^{sch}
G1	100	35	0
G2	110	30	86
G3	50	10	50
WP	34	0	34

Conventional

Unit	P ^{max}	C	P^{sch}
G1	100	35	0
G2	110	30	86
G3	50	10	50
WP	34	0	34

Powers in MW; costs in \$/MWh

Units are dispatched in a cost merit-order

(Stochastic)

$$\underset{p_{G},p_{W},\delta^{0}}{\textit{Minimize}} \quad C^{D}(p_{G},p_{W})$$

s.t.
$$h^{D}(p_{G}, p_{W}, \delta^{0}) - l = 0$$
$$g^{D}(p_{G}, \delta^{0}) \leq 0$$

 $p_w \leq \hat{W}$

$$igg| p_G^*, p_W^*, \delta^0$$

Minimize
$$C^B(y_{\omega'})$$

s.t.
$$h^{B}(y_{\omega'}, \delta_{\omega'}, \delta^{0*}) + W_{\omega'} - p_{W}^{*} = 0$$

 $g^{B}(y_{\omega'}, \delta_{\omega'}, p_{G}^{*}; W_{\omega'}) \le 0$

$$\underset{p_G, p_W, \delta^0; y_\omega, \forall \omega}{\textit{Minimize}} \quad C^D(p_G, p_W) + \mathbf{E}_{\omega} \Big[C^B(y_\omega) \Big]$$

s.t.
$$h^{D}(p_{G}, p_{W}, \delta^{0}) - l = 0$$

$$g^{D}(p_{G},\delta^{0}) \leq 0$$

$$p_W \leq \overline{W}$$

$$h^{B}(y_{\omega}, \delta_{\omega}, \delta^{0}) + W_{\omega} - p_{W} = 0, \quad \forall \, \omega$$

$$g^{B}(y_{\omega}, \delta_{\omega}, p_{G}; W_{\omega}) \leq 0, \quad \forall \omega$$

(Stochastic)

$$\underset{p_{G},p_{W},\delta^{0}}{\textit{Minimize}} \quad C^{D}(p_{G},p_{W})$$

s.t.
$$h^{D}(p_{G}, p_{W}, \delta^{0}) - l = 0$$
$$g^{D}(p_{G}, \delta^{0}) \leq 0$$

$$p_{\scriptscriptstyle W} \leq \hat{W}$$

$$p_G^*, p_W^*, \delta^{0*}$$

Minimize
$$C^B(y_{\omega'})$$

s.t.
$$h^{B}(y_{\omega'}, \delta_{\omega'}, \delta^{0*}) + W_{\omega'} - p_{W}^{*} = 0$$

 $g^{B}(y_{\omega'}, \delta_{\omega'}, p_{G}^{*}; W_{\omega'}) \le 0$

Balancing prognosis

(Stochastic)

- Expectation of the balancing costs: It requires a centralized forecasting tool
- Scenario-based modeling of uncertainty

$$\sum_{i=1}^{N_{G}} C_{i} P_{i} + \sum_{\omega=1}^{N_{\Omega}} \pi_{\omega} \left[\sum_{i=1}^{N_{G}} \left(C_{i}^{U} r_{i\omega}^{U} - C_{i}^{D} r_{i\omega}^{D} \right) + \sum_{j=1}^{N_{L}} V_{j}^{LOL} L_{j\omega}^{shed} \right]$$

 Two-stage stochastic programming problem

$$\begin{aligned} & \underset{p_{G}, p_{W}, \delta^{0}; y_{\omega}, \forall \omega}{\textit{Minimize}} \quad C^{D}(p_{G}, p_{W}) + \operatorname{E}_{\omega}[C^{B}(y_{\omega})] \\ & s.t. \quad h^{D}(p_{G}, p_{W}, \delta^{0}) - l = 0 \\ & g^{D}(p_{G}, \delta^{0}) \leq 0 \\ & p_{W} \leq \overline{W} \\ & h^{B}(y_{\omega}, \delta_{\omega}, \delta^{0}) + W_{\omega} - p_{W} = 0, \quad \forall \omega \\ & g^{B}(y_{\omega}, \delta_{\omega}, p_{G}; W_{\omega}) \leq 0, \quad \forall \omega \end{aligned}$$

Conventional

Unit	P^{\max}	C	P^{sch}
G1	100	35	0
G2	110	30	86
G3	50	10	50
WP	34	0	34

Powers in MW; costs in \$/MWh

- The wind producer is dispatched only to 10 MW
- G1 is dispatched to 40, even though it is more expensive than G2
- The "traditional" cost merit-order principle does not hold in the stochastic dispatch
- G1 is dispatched to exploit its ability to reduce production in real time

Stochastic

Unit	P ^{max}	C	P^{sch}
G1	100	35	40
G2	110	30	70
G3	50	10	50
WP	34	0	10

	Total	Day ahead	Balancing	Load shedding
Conv	3720	3080	320	320
Stoch	3184	4000	-816	0

"Stoch" results in a more expensive day-ahead dispatch that leads, however, to a much more efficient balancing operation

Conventional

Unit	P ^{max}	C	P^{sch}
G1	100	35	0
G2	110	30	86
G3	50	10	50
WP	34	0	34

Powers in MW; costs in \$/MWh

Stochastic

Unit	P^{\max}	C	P^{sch}
G1	100	35	40
G2	110	30	70
G3	50	10	50
WP	34	0	10

(Prices & Revenues)

$$Minimize_{p_G,p_W,\delta^0} C^D(p_G,p_W)$$

$$\begin{aligned} & \underset{p_{G}, p_{W}, \delta^{0}}{\textit{Minimize}} \quad C^{D}(p_{G}, p_{W}) \\ & s.t. \quad h^{D}(p_{G}, p_{W}, \delta^{0}) - l = 0 : \lambda^{D} \\ & g^{D}(p_{G}, \delta^{0}) \leq 0 \\ & p_{W} \leq \hat{W} \end{aligned}$$

$$p_G^*, p_W^*, \delta^{0}$$

Minimize
$$C^{B}(y_{\omega'})$$

s.t.
$$h^{B}(y_{\omega'}, \delta_{\omega'}, \delta^{0*}) + W_{\omega'} - p_{W}^{*} = 0 : \lambda_{\omega'}^{B}$$

 $g^{B}(y_{\omega'}, \delta_{\omega'}, p_{G}^{*}; W_{\omega'}) \le 0$

s.t.
$$h^D(p_G, p_W, \delta^0) - l = 0: \lambda^D$$

$$g^{D}(p_{G},\delta^{0}) \leq 0$$

$$p_W \leq \overline{W}$$

$$h^{B}(y_{\omega}, \delta_{\omega}, \delta^{0}) + W_{\omega} - p_{W} = 0, \quad \forall \omega$$

$$g^{B}(y_{\omega}, \delta_{\omega}, p_{G}; W_{\omega}) \leq 0, \quad \forall \omega$$

(Example: Day-ahead market prices)

Conventional

Unit	P^{\max}	C	P^{sch}
G1	100	35	0
G2	110	30	86
G3	50	10	50
WP	34	0	34

Powers in MW; costs in \$/MWh

Stochastic

Unit	P^{\max}	C	P^{sch}
G1	100	35	40
G2	110	30	70
G3	50	10	50
WP	34	0	10

In "stochastic" unit G1 is dispatched day ahead in a loss-making position

(Example: Day-ahead market prices)

Profit G1	Expected	Per scenario	
		High	Low
Conv	1320	0	3300
Stoch	24	173.33	-200

In "Stochastic" unit G1 incur losses if scenario "low" happens

Conventional

Unit	P ^{max}	C	P^{sch}
G1	100	35	0
G2	110	30	86
G3	50	10	50
WP	34	0	34

Powers in MW; costs in \$/MWh

Stochastic

Unit	P^{\max}	C	P^{sch}
G1	100	35	40
G2	110	30	70
G3	50	10	50
WP	34	0	10

Clearing mechanism (Alternatives)

- ✓ The stochastic dispatch is more efficient, but ...
 - may schedule flexible units in a loss-making position;
 - guarantees cost recovery for flexible producers **only in expectation**, not per scenario;
 - this expectation depends on a centralized forecasting tool out of producers' control.
- ✓ We try to approach the stochastic dispatch ideal by improving the conventional dispatch

(Conventional)

Minimize
$$C^{D}(p_{G}, p_{W})$$

s.t. $h^{D}(p_{G}, p_{W}, \delta^{0}) - l = 0$
 $g^{D}(p_{G}, \delta^{0}) \leq 0$
 $p_{W} \leq \hat{W}$

$$p_{G}^{*}, p_{W}^{*}, \delta^{0*}$$

Do we have something better than the expected production?

$$\underset{y_{\omega'}}{\textit{Minimize}} \quad C^B(y_{\omega'})$$

s.t.
$$h^{B}(y_{\omega'}, \delta_{\omega'}, \delta^{0*}) + W_{\omega'} - p_{W}^{*} = 0$$

 $g^{B}(y_{\omega'}, \delta_{\omega'}, p_{G}^{*}; W_{\omega'}) \le 0$

(Example: Improved dispatch)

Conventional

Unit	P ^{max}	C	P^{sch}
G1	100	35	0
G2	110	30	86
G3	50	10	50
WP	34	0	34

Powers in MW; costs in \$/MWh

Improved

Unit	P ^{max}	C	P^{sch}
G1	100	35	0
G2	110	30	90
G3	50	10	50
WP	34	0	30

(Example: Improved dispatch)

	Total	Day ahead	Balancing	Load shedding
Conv	3720	3080	320	320
Stoch	3184	4000	-816	0
Imp	3520	3200	320	0

Conventional

Unit	P ^{max}	C	P^{sch}
G1	100	35	0
G2	110	30	86
G3	50	10	50
WP	34	0	34

Powers in MW; costs in \$/MWh

Improved

Unit	P^{\max}	C	P^{sch}
G1	100	35	0
G2	110	30	90
G3	50	10	50
WP	34	0	30

(Improved dispatch)

✓ How do we compute the "best" schedule for stochastic generation?

$$\begin{aligned} & \underset{p_{G}, p_{W}, \delta^{0}(p_{W}^{\max}) y_{\omega}, \delta_{\omega}, \forall \omega}{\textit{Minimize}} & C^{D}(p_{G}, p_{W}) + \mathbb{E}_{\omega} \Big[C^{B}(y_{\omega}) \Big] \\ & s.t. & h^{B}(y_{\omega}, \delta_{\omega}, \delta^{0}) + W_{\omega} - p_{W} = 0, \quad \forall \omega \\ & g^{B}(y_{\omega}, \delta_{\omega}, p_{G}; W_{\omega}) \leq 0, \quad \forall \omega \\ & 0 \leq p_{W}^{\max} \leq \overline{W} \\ & (p_{G}, p_{W}, \delta^{0}) \in \arg \Big\{ \underset{x_{G}, x_{W}, \theta}{\textit{Minimize}} & C^{D}(x_{G}, x_{W}) \\ & s.t. & h^{D}(x_{G}, x_{W}, \theta) - l = 0 \\ & g^{D}(x_{G}, \theta) \leq 0 \\ & x_{W} \leq p_{W}^{\max} \Big\} \end{aligned}$$

The "marginal cost" of a stochastic generator is the cost of its uncertainty

(24-bus case study)

- Based on the IEEE Reliability test System
- Total system demand = 2000 MW
- \bullet Per-unit wind power productions are modeled using Beta distributions with a correlation coefficient ρ

(24-bus case study)

- Under "ImpD" and "StochD", higher penetrations of stochastic production never lead to an increase in the expected cost
- "ImpD" and "StochD" are robust to the spatial correlation of stochastic energy sources

(24-bus case study)

Wind penetration 38% $\rho = 0.35$		Unit			
		1	6	11	12
Stoch	Expected profit (\$)	47.9	49.4	102.2	67.4
	Avearge losses (\$)	-14.9	-10.7	-16.5	-9.7
	Probability profit < 0	0.81	0.71	0.71	0.75
Conv	Expected profit (\$)	379.8	359.7	724.9	389.1
lmp	Expected profit (\$)	170.2	263.7	531.6	178.7

Clearing mechanism (Final remarks)

- Day-ahead markets should not clear the expected stochastic production by default.
- The amount of stochastic generation to be scheduled in advance should not be driven only by its marginal cost, which is usually very low or zero, but also by the **cost of its uncertainty**.

Thanks for your attention! Questions?

(Adjustment markets)

 Adjustment markets allow redefining forward positions and trading with a lesser degree of uncertainty

(Adjustment markets)

 Adjustment markets allow redefining forward positions and trading with a lesser degree of uncertainty

(Capacity markets)

Guarantee balancing resources

 Help flexible producers (missing money in price-capped energy markets)

Demand curve? Cost allocation?

Day-ahead market

Reserve capacity markets

Balancing market

Day d

Day d-1

Time

(Energy-only market)

