CS/ECE 374 FALL 2018	Zhe Zhang (zzhan157@illinois.edu)
Homework 4 Problem 3	Ray Ying (xinruiy2@illinois.edu)
	Anqi Yao (anqiyao2@illinois.edu)

- 3. It is common these days to hear statistics about wealth inequality in the United States. A typical statement is that the top 1% of earners together make more than ten times the total income of the bottom 70% of earners. You want to verify these statements on some data sets. Suppose you are given the income of people as an n element unsorted array A, where A[i] gives the income of person i.
 - (a) Describe an O(n)-time algorithm that given A checks whether the top 1% of earners together make more than ten times the bottom 70% together. Assume for simplicity that n is a multiple of 100 and that all numbers in A are distinct. Note that sorting A will easily solve the problem but will take $\Omega(n \log n)$ time.
 - (b) More generally we may want to compute the total earnings of the top $\alpha\%$ of earners for various values of α . Suppose we are given A and k numbers $\alpha_1 < \alpha_2 < \ldots < \alpha_k$ each of which is a number between 0 and 100 and we wish to compute the total earnings of the top $\alpha_i\%$ of earners for each $1 \le i \le k$. Assume for simplicity that $\alpha_i n$ is an integer for each i. Describe an algorithm for this problem that runs in $O(n \log k)$ time. Note that sorting will allow you to solve the problem in $O(n \log n)$ time but when $k \ll n$, $O(n \log k)$ is faster. Note that an O(nk) time algorithm is relative easy. *Hint*: Use the previous part with $\alpha_{k/2}$ first and then use divide and conquer.

You should prove the correctness of the second part of the problem. It helps to write a recursive algorithm so that you can use induction to prove correctness.-

Solution:

- (a) The solution is to find the top 1% and bottom 70% of the elements in A by QUICKSELECT, which requires constant time and iterate over A to sum up the incomes. The algorithm is as following:
 - Find the index i of the 99% * n + 1 ranked element by QUICKSELECT.
 - Find the index j of the 70% * n ranked element by QUICKSELECT.
 - Iterate over the array A and store the elements greater than A[i] in another array A_top , and store the elements smaller than A[j] in array A_bottom .
 - Sum up the elements in A_top to get Sum_top and sum up the elements in A_bottom to get Sum_bottom.
 - Return A top > 10 *A bottom.

The running time for QUICKSELECT is constant, i.e., O(1), the time for iterate over A is O(n), summing up the new array takes O(n), and comparison simply costs O(1). Thus overall the algorithm takes O(n).

(b) The idea is to rank $\alpha_i s$ from 1 to k, and use the divide and conquer method on this ranked array to find out the top $\alpha_i \%$ of A. The algorithm is as following:

- Rank $\alpha_i s$ from 1 to k, and let S denote the array of $\alpha_i s$.
- Use QUICKSELECT to find the median m of S, and use QUICKSELECT again to find the m_{th} ranked element in A. Then partition the A by pivot A[m] to get A_l and A_r where A_l stores element smaller than A[m] and A_r stores element greater than A[m].
- Recursively divide the array A_l and A_r into subarrays like in previous step. Also divide S into S_l and S_r by S[m] in the similar way. Let sum_i denote the sum of the elements in each subarray. $sum_t otal$ is the sum of all subarrays and it is the value to return.

The function can be represented as follows:

```
S <- ranked array of \alpha_l s

SUM_UP(A, S):

if(len(R) == 0) return

m <- QUICKSELECT(r, \lceil len(R)/2 \rceil)

a_m <- QUICKSELECT(A, m)

(A_l, A_r) <- PARTITION(A, a_m)

Return (total\_sum - SUM(A_l))

S_l <- S[1, ..., m-1]

Sr <- S[m, ..., len(R)]

for i in S_r: i < -i - m

SUM\_UP(A_l, R_l)

SUM\_UP(A_r, R_r)
```

This algorithm takes O(nlogk), because both QUICKSELECT and PARTITION takes O(n) time and the recursion for divide and conquer is:

$$T(n,k) = T(r,k/2) + T(n-r,k/2) + O(n)$$

where n is len(A) and k is len(R). Since it takes log k times to divide R into single $\alpha_i s$, which means the recursion tree has a height of log k, and each level takes O(n) time. In total, the recursion takes O(nlog k) time to complete.

Now prove the correctness of the algorithm.

Proof: By induction on k, where k is the number of $\alpha_i s$, i.e., $i \in \{1, 2, ..., k \text{ for } \alpha_i\}$.

- Base case: When k = 0, len(S) = 0, and sum = 0 as the algorithm returns. Thus the base case is correct.
- Induction: Suppose the algorithm is true for i = 1, 2, ..., k-1. Need to show it is correct for i = k. Let $m = \lceil len(S)/2 \rceil$. Then there are following cases for i in α_i :
 - 1 ≤ i < m: Then α_i is in the left part of S, i.e., S_l , so the n_{th} element in A_l is the n_{th} element in A. Since $len(R_l)$ < k, by the inductive hypothesis, the algorithm is correct
 - -i = m: Since A_l contains all elements smaller than a_m by how we do the partition, $(total_sum SUM(A_l))$ is the correct income for top a_m % people. Thus the algorithm is correct.

- $m < i \le k$: In this case, since we used the median m as pivot in the QUICKSELECT for R in recursion, we can have the correct rank for R[i] - R[m]. Since the n_{th} element in A is the $n - m_{th}$ element in A_r and $len(A_r) < k$, by the inductive hypothesis, the algorithm is correct.

Hence, the algorithm is correct.