Ruled Surface

In this section, fix an algebraically closed field **k**.

1 Preliminaries on Projective Bundles

Let S be a variety over \mathbb{k} and \mathcal{E} a vector bundle of rank r+1 on S.

Proposition 1. The S-varieties $\mathbb{P}_X(\mathcal{E}) \cong \mathbb{P}_X(\mathcal{E}')$ if and only if $\mathcal{E} \cong \mathcal{E}' \otimes \mathcal{L}$ for some line bundle \mathcal{L} on S.

Theorem 2. Let $\pi: X = \mathbb{P}_S(\mathcal{E}) \to S$ be the projective bundle associated to a vector bundle \mathcal{E} of rank r+1 on S. Then there is an exact sequence of vector bundles on $\mathbb{P}_S(\mathcal{E})$

$$0 \to \Omega_{\mathbb{P}_{S}(\mathcal{E})/S} \to \pi^{*}(\mathcal{E})(-1) \to \mathcal{O}_{\mathbb{P}_{S}(\mathcal{E})} \to 0.$$

In particular, $K_X \sim \pi^*(K_S + \det \mathcal{E}) - (r+1)\mathcal{O}_{\mathbb{P}_S(\mathcal{E})}(1)$. Yang: To be continued...

Theorem 3 (Tsen's Theorem). Let C be a smooth curve over an algebraically closed field k. Then K = k(C) is a C_1 field, i.e., every degree d hypersurface in \mathbb{P}^n_K has a K-rational point provided $d \leq n$. Yang: Need a reference.

2 Minimal Section and Classification

Definition 4 (Ruled surface). A *ruled surface* is a projective surface X together with a surjective morphism $\pi: X \to C$ to a smooth curve C such that all fibers of π are isomorphic to \mathbb{P}^1 .

Let $\pi:X\to C$ be a ruled surface over a smooth curve C of genus g.

Lemma 5. There exists a section of π .

Proposition 6. Then there exists a vector bundle $\mathcal E$ of rank 2 on $\mathcal C$ such that $X\cong \mathbb P_{\mathcal C}(\mathcal E)$ over $\mathcal C$.

Lemma 7. There is a one-to-one correspondence between sections of π and quotient line bundles of \mathcal{E} .

Lemma 8. It is possible to write $X \cong \mathbb{P}_{\mathcal{C}}(\mathcal{E})$ such that $H^0(\mathcal{C}, \mathcal{E}) \neq 0$ but $H^0(\mathcal{C}, \mathcal{E} \otimes \mathcal{L}) = 0$ for any line bundle \mathcal{L} on \mathcal{C} with $\deg \mathcal{L} < 0$. Such a vector bundle \mathcal{E} is called a *normalized vector bundle*.

Definition 9. A section C_0 of π is called a *minimal section* if $C_0^2 \leq C_1^2$ for any other section C_1 of π .

Theorem 10. Let

Date: August 25, 2025, Author: Tianle Yang, My Homepage

Theorem 11. Let $\pi:X\to C$ be a ruled surface over $C=\mathbb{P}^1$ with invariant e. Then $X\cong \mathbb{P}_C(\mathcal{O}_C\oplus\mathcal{O}_C(-e))$.

Theorem 12. Let

3 The Néron-Severi Group of Ruled Surfaces

Proposition 13. Let $\pi: X \to C$ be a ruled surface over a smooth curve C of genus g. Let C_0 be a minimal section of π and let f be a fiber of π . Then $K_X \sim -2C_0 + (K_C -)f$ where $e = -C_0^2$. Yang: Check this carefully.

Rational case. Let $\pi: X = \mathbb{P}_{\mathbb{P}^1}(\mathcal{E}) \to \mathbb{P}^1$ be a ruled surface over \mathbb{P}^1 with $\mathcal{E} \cong \mathcal{O} \oplus \mathcal{O}(-e)$ for some $e \geq 0$.

Elliptic case. Let $\pi: X = \mathbb{P}_{\mathcal{C}}(\mathcal{E}) \to E$ be a ruled surface over an elliptic curve E with \mathcal{E} a normalized vector bundle of rank 2 and degree -e.