# Лабораторная работа 1.4.5 "Изучение колебания струны"

Белов Михаил Б01-302

30 ноября 2023 г.

#### Аннотация:

**Цель лабораторной работы:** Изучить стоячие поперечные волны на тонкой натянутой струне; измерить собственные частоты колебаний струны и проверить услови образовния стоячией волны; измеить скорость распространения попересной волны и исследовать их зависимости от натяжения струны.

#### Теоретические сведения:

Струной называют длинную однородную тонкую упругую нить. в данной работе исселедуются поперечные колебания металлической гитраной струны.

Основное свойство струны – гибкость – обусловлено тем, что её поперечные размеры малы по сранению с длиной. Это означает, что напряжение направлено только вдоль струны, и позволяет не учитывать изгибные напряжения.

В силу волнового уравнения скорость распространения поперечной воны на струне равна:

$$u = \sqrt{\frac{F}{\rho_l}}, (1)$$

где F – сила натяжения струны,  $\rho_l$  – масса струны на единицу длины. При заданной частоте  $\nu$  длина волны:

$$\lambda = \frac{u}{\nu} (2)$$

Частоты собственных колебаний струны определяется формулой:

$$\nu_n = n \frac{u}{2l}, (3)$$

где l – длина струны, n – число полуволн.



#### Методика измерений:

**В работе используются:** Закреплённая на станине стальная струна, набор грузов, элеткроман=гнитные датчики, звуковой генератор, двухканальный осциллограф, частотометр.

## Результаты измерений:

Проведём эксперименты по расчёту частоты для образования стоячей волны с различными номерами гармоники при разных силах нятжения струны и рассчитаем эти же значения теоретически:

| n                        | 1           | 2           | 3     | 4     | 5      | 6      | 7      | 8      |
|--------------------------|-------------|-------------|-------|-------|--------|--------|--------|--------|
| Т натяж., Н              | 10,68286368 |             |       |       |        |        |        |        |
| $\nu_{teor},\mathrm{Hz}$ | 137,0       | 274,0       | 411,0 | 550,0 | 690,0  | 820,0  | 960,0  | 1100,0 |
| $\nu$ , Hz               | 135,5       | 273,1       | 409,7 | 548,5 | 685,1  | 826,1  | 966,3  | 1106,9 |
| $\delta \nu$ , Hz        | 3,0         | 5,0         | 8,0   | 11,0  | 14,0   | 16,0   | 19,0   | 20,0   |
| Т натяж., Н              |             | 14,01217952 |       |       |        |        |        |        |
| $\nu_{teor}$ , Hz        | 157,0       | 314,0       | 471,0 | 628,0 | 785,0  | 942,0  | 1100,0 | 1260,0 |
| $\nu$ , Hz               | 155,8       | 312,1       | 468,4 | 626,4 | 783,2  | 941,1  | 1099,4 | 1259,1 |
| $\delta \nu$ , Hz        | 3,0         | 6,0         | 9,0   | 13,0  | 16,0   | 19,0   | 20,0   | 30,0   |
| Т натяж., Н              | 18,8599068  |             |       |       |        |        |        |        |
| $\nu_{teor},\mathrm{Hz}$ | 182,0       | 364,)       | 546,0 | 730,0 | 910,0  | 1100,0 | 1280,0 | 1460,0 |
| $\nu$ , Hz               | 182,8       | 366,4       | 550,1 | 733,5 | 917,8  | 1103   | 1288,1 | 1474,5 |
| $\delta \nu$ , Hz        | 4,0         | 7,0         | 11,0  | 15,0  | 18,0   | 20,0   | 30,0   | 30,0   |
| Т натяж., Н              | 23,70076344 |             |       |       |        |        |        |        |
| $\nu_{teor},\mathrm{Hz}$ | 204,0       | 408,0       | 610,0 | 817,0 | 1020,0 | 1230,0 | 1430,0 | 1630,0 |
| $\nu$ , Hz               | 202,6       | 405,8       | 609,1 | 812,4 | 1016,6 | 1220,8 | 1425,5 | 1630,5 |
| $\delta \nu$ , Hz        | 4,0         | 8,0         | 12,0  | 16,0  | 20,0   | 20,0   | 30,0   | 30,0   |
| Т натяж., Н              | 28,53573096 |             |       |       |        |        |        |        |
| $\nu_{teor},\mathrm{Hz}$ | 224,0       | 448,0       | 670,0 | 900,0 | 1120,0 | 1340,0 | 1570,0 | 1790,0 |
| v, Hz                    | 220,8       | 442,4       | 663,8 | 885,3 | 1107,9 | 1329,2 | 1552,7 | 1776,5 |
| $\delta \nu$ , Hz        | 4,0         | 9,0         | 13,0  | 18,0  | 20,0   | 30,0   | 30,0   | 40,0   |

Построим графики зависимостей частот образования стоячих волн от чисел гармоники для различных величин натяжения нити:



По углам наклона, пользуясь формулой (3), можно найти скорость распространения волны и:

$$u = 2l \cdot \frac{\nu_n}{n}$$

| u          | 138,71 | 157,6 | 184,5 | 203,97 | 222,15 |
|------------|--------|-------|-------|--------|--------|
| $\delta u$ | 0,32   | 0,2   | 0,2   | 0,19   | 0,17   |

Построим график зависимости силы натяжения нити Т от  $u^2$  и по углу наклона графикаБ по уравнению (1), определим величину  $\rho_l$ :

| u2 | 19240,4641  | 24822,0025  | 34021,8025 | 41603,7609  | 49350,6225  |
|----|-------------|-------------|------------|-------------|-------------|
| Т  | 10,68286368 | 14,01217952 | 18,8599068 | 23,70076344 | 28,53573096 |



Таким образом получим:

| $\rho_l$ | $\delta  ho_l$ |
|----------|----------------|
| 0,000589 | 0,000012       |

Определение добротности Q струны как колебательной системы по AЧX:

$$Q = \frac{\nu_{rez}}{\Delta \nu}$$



| $\nu_{rez}$ | $\delta \nu$ | Q       |
|-------------|--------------|---------|
| 221,1       | 0,29         | 759,793 |
| 155,4       | 0,32         | 730,937 |

Погрещность можно рассчитать по формуле:

$$\delta Q = Q \cdot \sqrt{2} \cdot \frac{\delta \nu}{\nu} = 19, 3$$

### Обсуждение результатов и вывод:

Таким образом мы исследовали стоячие поперечные волны на тонкой натянутой струне и зависимость частот их вобзуждения от чисел гармоники при различных сил натяжения нити. По полученным графикам мы нашли скорость распространения поперечной волны при различных силах натяжения (с поргешностью менее 0.2%).

Исходя из зависимости квадрата скорости распростронения волны от силы натяжения, мы проверили правильность величины плотности нити (она сошлась с точностью 3,6%).

По АЧХ мы измерили добротность струны как колебательной системы (с погрешностью 2,6%)