Topic 2. Visual data analysis

Practice. Analyzing "Titanic" passengers

Fill in the missing code ("You code here").

Competition Kaggle "Titanic: Machine Learning from Disaster".

```
In [2]: import numpy as np
import pandas as pd
import seaborn as sns
sns.set()
import matplotlib.pyplot as plt
```

Read data

						5							
	PassengerId												
,	1	0) 3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	
	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С	

```
In [9]: train_df.describe(include="all")
```

Out[9]:		Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	count	891.000000	891.000000	891	891	714.000000	891.000000	891.000000	891	891.000000	204	889
	unique	NaN	NaN	891	2	NaN	NaN	NaN	681	NaN	147	3
	top	NaN	NaN	Dooley, Mr. Patrick	male	NaN	NaN	NaN	347082	NaN	G6	S
	freq	NaN	NaN	1	577	NaN	NaN	NaN	7	NaN	4	644
	mean	0.383838	2.308642	NaN	NaN	29.699118	0.523008	0.381594	NaN	32.204208	NaN	NaN
	std	0.486592	0.836071	NaN	NaN	14.526497	1.102743	0.806057	NaN	49.693429	NaN	NaN
	min	0.000000	1.000000	NaN	NaN	0.420000	0.000000	0.000000	NaN	0.000000	NaN	NaN
	25%	0.000000	2.000000	NaN	NaN	20.125000	0.000000	0.000000	NaN	7.910400	NaN	NaN
	50%	0.000000	3.000000	NaN	NaN	28.000000	0.000000	0.000000	NaN	14.454200	NaN	NaN
	75%	1.000000	3.000000	NaN	NaN	38.000000	1.000000	0.000000	NaN	31.000000	NaN	NaN
	max	1.000000	3.000000	NaN	NaN	80.000000	8.000000	6.000000	NaN	512.329200	NaN	NaN

In [10]: train_df.info()

```
<class 'pandas.core.frame.DataFrame'>
Index: 891 entries, 1 to 891
Data columns (total 11 columns):
    Column
              Non-Null Count Dtype
    Survived 891 non-null
                               int64
              891 non-null
    Pclass
                               int64
              891 non-null
    Name
                              object
              891 non-null
 3
    Sex
                               object
 4
    Age
              714 non-null
                              float64
              891 non-null
    SibSp
                               int64
    Parch
              891 non-null
                              int64
    Ticket
              891 non-null
                              obiect
              891 non-null
                              float64
 8
    Fare
    Cabin
              204 non-null
                              object
10 Embarked 889 non-null
                              obiect
dtypes: float64(2), int64(4), object(5)
memory usage: 83.5+ KB
```

Let's drop Cabin, and then – all rows with missing values.

```
In [5]: train_df = train_df.drop("Cabin", axis=1).dropna()
In []: train_df.shape
```

1. Build a picture to visualize all scatter plots for each pair of features Age, Fare, SibSp, Parch and Survived. (scatter_matrix from Pandas or pairplot from Seaborn)

```
In [18]: sns.pairplot(train_df)
```

Out[18]: <seaborn.axisgrid.PairGrid at 0x7ad22d752210>

2. How does ticket price (Fare) depend on Pclass ? Build a boxplot.

```
In [6]: sns.boxplot(y=train_df["Fare"], x=train_df["Pclass"])
```

Out[6]: <Axes: xlabel='Pclass', ylabel='Fare'>

3. Let's build the same plot but restricting values of Fare to be less than 95% quantile of the initial vector (to drop outliers that make the plot less clear).

```
In [8]: fare_95 = train_df["Fare"].quantile(0.95)
    cleared_df = train_df[train_df["Fare"] < fare_95]
    sns.boxplot(y=cleared_df["Fare"], x=cleared_df["Pclass"])

Out[8]: <Axes: xlabel='Pclass', ylabel='Fare'>
```


4. How is the percentage of surviving passengers dependent on passengers' gender? Depict it with **Seaborn.countplot** using the hue argument.

```
In [34]: sns.countplot(train_df, x="Sex", hue="Survived")
```

Out[34]: <Axes: xlabel='Sex', ylabel='count'>

5. How does the distribution of ticket prices differ for those who survived and those who didn't. Depict it with Seaborn.boxplot

```
In [39]: sns.boxplot(train_df, x="Survived", y="Fare")
Out[39]: <Axes: xlabel='Survived', ylabel='Fare'>
```


6. How does survival depend on passengers' age? Verify (graphically) an assumption that youngsters (< 30 y.o.) survived more frequently than old people (> 55 y.o.).

```
In [61]: train_df["Age group"] = pd.cut(train_df["Age"], bins=[0, 30, 55, 100], labels=["<30", "30-55", ">55"])
    sns.barplot(data=train_df, x="Age group", y="Survived")

Out[61]: <Axes: xlabel='Age group', ylabel='Survived'>
```

