

ANEXO DA RESOLUÇÃO Nº 30/2011, DO CONSELHO DE GRADUAÇÃO

Faculdade de Computação COLEGIADO DO CURSO DE BACHARELADO EM SISTEMAS DE INFORMAÇÃO

PLANO DE ENSINO

1. IDENTIFICAÇÃO

COMPONENTE CURRICULAR: SISTEMAS DIGITAIS UNIDADE OFERTANTE: FACOM								
CÓDIGO: GSI008		PERÍODO/SÉRIE: SEGUNDO		TURMA: S, SA e SB				
CARGA HORÁRIA			NATUREZA					
TEÓRICA: 30	PRÁTICA: 30	TOTAL: 60	OBRIGATÓRIA: (X)	OPTATIVA: ()				
PROFESSOR(ANO/SEMESTRE:							
JOÃO HENRIQI	2019/1							
OBSERVAÇÕES:								

2. EMENTA

Sistemas de Representação Numérica e Operações; Representação de Números Binários em ponto fixo e em ponto flutuante; Códigos para dados não numéricos; Introdução a Detecção e Correção de Erros; Álgebra das Variáveis Lógicas; Portas Lógicas; Circuitos Lógicos; Simplificação de Funções Lógicas; Circuitos Combinacionais; Latches, Flip-Flops e Registradores; Máquinas Sequenciais e Circuitos Sequenciais Síncronos; Simplificação de Máquinas Sequenciais; Circuitos Sequenciais Assíncronos.

3. JUSTIFICATIVA

Sistemas digitais é uma disciplina de base para o aprendizado dos alunos de Sistemas de Informação. Ele tem como objetivo instruir os alunos a respeito dos fundamentos da eletrônica digital que compõem a base dos sistemas microprocessados, assim como dispositivos de aquisição de informação, arquivamento de dados digitais, captura de sinais biométricos, etc. A disciplina de sistemas digitais tem ainda, como responsabilidade, fundamentar solidamente as bases para as demais disciplinas relacionadas à linha de aprendizado tal como as disciplinas de arquiteturas de computadores e microprocessadores. É uma disciplina de caráter fundamental em qualquer formação ligada à computação, segundo diretrizes do MEC.

4. OBJETIVO

Objetivo Geral:

Aprender os conceitos de sistema do ponto de vista das organizações, percebendo como fornecer recursos de controle do ambiente através dos sistemas de informações.

Objetivos Específicos:

Ao final do curso o aluno será capaz de

- 1. Operar com bases numéricas binárias, octal e hexadecimal (magnitude e sinal-magnitude);
- 2. Representar números binários em ponto fixo ou em ponto flutuante;
- 3. Reconhecer e trabalhar com códigos ASCII, BCD e Gray;
- 4. Realizar convenções entre as diversas representações numéricas;
- 5. Descrever os princípios da detecção e correção de erros;
- 6. Aplicar a Álgebra de Boole a problemas de circuitos digitais;
- 7. Reconhecer e utilizar portas lógicas;
- 8. Simplificar funções lógicas;
- 9. Projetar circuitos combinacionais;
- 10. Analisar circuitos combinacionais;
- 11. Reconhecer e utilizar os diversos tipos de latches e de flip-flops;
- 12. Utilizar o modelo de uma Máquina Sequencial no projeto de circuitos sequenciais síncronos;
- 13. Analisar circuitos seguenciais síncronos;
- 14. Projetar e analisar circuitos sequenciais assíncronos.

5. PROGRAMA

- Aula 1 11/03/19 Apresentação da disciplina, ementa, metodologia, bibliografia, método de avaliação e datas das provas.
- Aula 2 12/03/19 Introdução aos sistemas Digitais. Eletricidade e Principais Componentes Eletrônicos.
- Aula 3 18/03/19 Sistemas Numéricos Posicionais. Bases numéricas binárias, octal e hexadecimal).
- Aula 4 19/03/19 Apresentação do Laboratório.
- Aula 5 25/03/19 Representações avançadas em binário. Representação de Números Reais. Operações aritméticas em binário.
- Aula 6 26/03/19 Prática de Laboratório: Mensuração de Grandezas Elétricas.
- Aula 7 01/04/19 Visão geral da álgebra de Boole. Circuitos Lógicos, Tabelas Verdade e Funções Booleanas. Portas Lógicas Operações Fundamentais e Compostas.
- Aula 8 02/04/19 Prática de Laboratório: Mensuração de Grandezas Elétricas.
- Aula 9 08/04/19 Teoremas Booleanos e simplificação algébrica. Produtos Canônicos, Soma de Produtos e Produto de Somas. Universalidade das Portas Não-E e Não-OU.
- Aula 10 09/04/19 Prática de Laboratório: Formas de Onda e Mensuração de Frequência.
- Aula 11 15/04/19 Simplificação de funções através de diagramas de Veitch-Karnaugh.
- Aula 12 16/04/19 Avaliação em Laboratório: Mensuração de Grandezas Elétricas.
- Aula 13 22/04/19 Circuitos equivalentes. Simplificação via mapas de Karnaugh.
- Aula 14 23/04/19 Avaliação em Laboratório: Formas de Onda e Mensuração de Frequência.
- Aula 15 29/04/19 Projeto de Circuitos Combinacionais Aritméticos. Codificadores, decodificadores, detecção e correção de erros.
- Aula 16 30/04/19 Prática de Laboratório: Logisim

- Aula 17 06/05/19 Revisão.
- Aula 18 07/05/19 Primeira avaliação.
- Aula 19 13/05/19 Resolução da prova em sala e vista de provas. Circuitos Combinacionais de Controle e Correção de Erros.
- Aula 20 14/05/19 Prática de Laboratório: Logisim
- Aula 21 20/05/19 Codificadores e Decodificadores e Saídas de Alta Impedância. Multiplexadores e Demultiplexadores.
- Aula 22 21/05/19 Avaliação em Laboratório: Logisim
- Aula 23 27/05/19 Latches e Flip-Flops. Registradores de Deslocamento. Contadores e Divisores de Frequência.
- Aula 24 28/05/19 Avaliação em Laboratório: Sistemas Digitais
- Aula 25 03/06/19 Fundamentos de Circuitos Sequenciais Modelos de Mealy e Moore.
- Aula 26 04/06/19 Avaliação em Laboratório: Sistemas Digitais
- Aula 27 10/06/19 FACOM TechWeek.
- Aula 28 11/06/19 FACOM TechWeek.
- Aula 29 17/06/19 Revisão.
- Aula 30 18/06/19 Segunda avaliação.
- Aula 31 24/06/19 Resolução da prova em sala e vista de provas.
- Aula 32 25/06/19 Revisão para a prova substitutiva.
- Aula 33 01/07/19 Prova substitutiva.
- Aula 34 02/07/19 Prática de Laboratório.
- Aula 35 08/07/19 Resolução da prova substitutiva e vista da prova.
- Aula 36 09/07/19 Prática de Laboratório.

6. METODOLOGIA

O conteúdo programático será abordado via aulas teórico-expositivas. Serão utilizados como recursos de apoio didático o quadro negro e datashow. As aulas teórico-expositivas serão complementadas por exercícios em sala de aula e exercícios propostos para treinamento fora de horário de aula. Para fixação do conteúdo teórico visto em aula, experimentos em laboratório serão propostos aos alunos. O atendimento aos alunos será segunda-feira, de 18h40 a 19h00 e 20h50 a 22h30, mediante agendamento prévio por e-mail (joaohs@ufu.br). Uma confirmação de agendamento será enviada.

Dúvidas podem ser solucionadas via e-mail a qualquer momento: joaohs@ufu.br

7. AVALIAÇÃO

A avaliação da disciplina será composta por duas avaliações escritas, individuais e sem consulta (P1 e P2) valendo 35 pontos cada. Os trabalhos práticos, em laboratório, terão somatória de 30 pontos.

Uma avaliação substitutiva será aplicada no final do semestre, valendo 35 pontos e substituindo a menor nota dentre as provas regulares.

8. BIBLIOGRAFIA

Básica

TOCCI, R. J., WIDMER, N. S., MOSS, G. L. Sistemas Digitais - Princípios e Aplicações. 10a Ed. Pearson Prentice Hall, São Paulo, S.P., 2007, Brasil.

GARCIA, P. A., Martini, S. C. Eletrônica Digital - Teoria e Laboratório. 2a Ed. Editora Érica. São Paulo. S.P. 2008. Brasil.

CAPUANO, F. G., IDOETA, I. V. Elementos de Eletrônica Digital. 40a Ed. Editora Érica. São Paulo. S.P. 2008. Brasil.

Complementar

FRIEDMAN, A. D. Fundamentals of Logic Design and Switching Theory. Rockville; Maryland: Computer Science Press, 1986.

HILL, F. J., PETERSON, G. R. Introduction to Switching Theory and Logical Design John Wiley & Sons, 1981.

TAUB, H. Circuitos Digitais e Microprocessadores. São Paulo: McGraw-Hill. 1984. Brasil.

MALVINO, A. P., LEACH, D. P. Eletrônica Digital - Princípios e Aplicações. McGraw-Hill. São Paulo. S.P. 1987. Brasil.

WILKINSON, B. Digital System Design, 2.ed. Hemel Hempstead: Prentice-Hall, 1992.

9. APROVAÇAO										
Aprovado em reuni	ão do Cole	giado realizada	em:/	/						
Coordenação	do	Curso	de	Graduação	em:					