P. Maurer

ENS Rennes

Recasages: 102, 106, 155, 156, 157

Référence : FGN, Oraux X-ENS Algèbre 2

Morphismes de S^1 vers $\mathrm{GL}_n(\mathbb{R})$

Théorème 1. Soit $\varphi: (S^1, \times) \to (GL_n(\mathbb{R}), \times)$ un morphisme de groupes continu. Il existe $Q \in GL_n(\mathbb{R})$, $r \in \mathbb{N}$, $k_1, \ldots, k_r \in \mathbb{Z}^*$ tels que :

$$\forall t \in \mathbb{R} \quad \varphi(e^{it}) = Q \begin{pmatrix} R_{tk_1} & & & & \\ & \ddots & & & \\ & & R_{tk_r} & & \\ & & & 1 & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix} Q^{-1}$$

Où les matrices R_{tk_i} sont des matrices de rotation : $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ pour $\theta \in \mathbb{R}$.

Démonstration.

⊳ Analyse

• Etape 1. Relèvement : L'application $\psi: t \mapsto \varphi(e^{it})$ est dérivable. Posons $F: x \mapsto \int_0^x \psi(t) dt$. Comme ψ est continue, F est de classe \mathcal{C}^1 sur \mathbb{R} . En particulier, $F'(0) = I_n$. Ainsi :

$$\frac{F(t)}{t} = \frac{F(t) - F(0)}{t - 0} \underset{t \to 0}{\longrightarrow} I_n$$

Puisque $GL_n(\mathbb{R})$ est ouvert, il existe $\delta > 0$ tel que $\frac{1}{t}F(t) \in GL_n(\mathbb{R})$ pour $|t| < \delta$. En particulier, on a $F(\delta/2) \in GL_n(\mathbb{R})$. En intégrant la relation $\psi(x+t) = \psi(x) \psi(t)$ pour $x, t \in \mathbb{R}$, on obtient :

$$\int_0^{\delta/2} \psi(x+t) dt = \psi(x) \int_0^{\delta/2} \psi(t) dt$$
$$(F(\delta/2+x) - F(x))F(\delta/2)^{-1} = \psi(x)$$

En particulier, ψ est dérivable sur $\mathbb R$ par théorème fondamental de l'intégration. En dérivant la relation précédente, il vient alors $\psi'(x+t) = \psi(x) \ \psi'(t)$, d'où pour $t=0, \ \psi'(x) = \psi(x) \ \psi'(0)$. On obtient une équation différentielle du premier ordre, d'où $\psi(t) = \psi(0)e^{t\psi'(0)} = e^{tA}$, en posant $A := \psi'(0)$.

• Etape 4. A est diagonalisable : Comme ψ est 2π -périodique, A vérifie :

$$e^{(2\pi+t)A} = e^{2\pi A} \iff e^{2\pi A} = I_n$$

On en déduit que $\operatorname{Sp}(e^{2\pi A}) = \{e^{2\pi \lambda} : \lambda \in \operatorname{Sp}(A)\} = \{1\}, \operatorname{donc} \operatorname{Sp}(A) \subset i \mathbb{Z}.$

Ecrivons la décomposition de Dunford A = D + N de A, avec D diagonalisable et N nilpotante. D a les mêmes valeurs propres que A, en particulier $e^{2\pi D}$ a les mêmes valeurs propres que $e^{2\pi A} = I_n$, donc $e^{2\pi D} = I_n$, l'exponentielle étant stable par similitude.

Comme D et N commutent, on a donc $e^{2\pi N}e^{2\pi D}=e^{2\pi A}$, on en déduit que $e^{2\pi N}=I_n$. Supposons par l'absurde que $N\neq 0$. Comme N est nilpotente, on a Ker $N\neq {\rm Ker}\ N^2$: en particulier, il existe $X\in {\rm Ker}\ N^2\setminus {\rm Ker}\ N$. Pour ce X, on a $e^{2\pi N}X=I_nX+2\pi NX\neq X$, ce qui contredit que $e^{2\pi N}=1$. Finalement, N=0 donc A=D est diagonalisable.

• Etape 5. Conclusion : A est diagonalisable dans \mathbb{C} . De plus, comme A est réelle, ses valeurs propres non nulles sont conjuguées dans $i\mathbb{Z}$. Donc il existe $k_1, \ldots, k_r \in \mathbb{Z}^*$ et $P \in \operatorname{GL}_n(\mathbb{C})$ tels que $A = P \operatorname{diag}(ik_1, -ik_1, \ldots, ik_r, -ik_r, 0, \ldots, 0) P^{-1}$. D'où :

$$e^{tA} = P \begin{pmatrix} e^{itk_1} & & & & \\ & e^{-itk_1} & & & & \\ & & \ddots & & & \\ & & & e^{-itk_r} & & \\ & & & & 1 \\ & & & & \ddots & \\ & & & & 1 \end{pmatrix} P^{-1}$$

Où $P \in GL_n(\mathbb{C})$ ne dépend pas de t. Par ailleurs, $\begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix} = \begin{pmatrix} -i & 1 \\ 1 & -i \end{pmatrix} R_\theta \begin{pmatrix} -i & 1 \\ 1 & -i \end{pmatrix}^{-1}$, donc il existe $Q \in GL_n(\mathbb{C})$ tel que $e^{tA} = B := Q \operatorname{Diag}(R_{tk_1}, \dots, R_{tk_r}, 1, \dots, 1)Q^{-1}$. Comme les deux matrices sont réelles, on peut choisir $Q \in GL_n(\mathbb{R})^1$

⊳ Synthèse

• Soit $\varphi: \mathcal{S}^1 \to \operatorname{GL}_n(\mathbb{R})$ défini par $\varphi(e^{it}) = Q \operatorname{Diag}(R_{tk_1}, \dots, R_{tk_r}, 1, \dots, 1) Q^{-1}$. L'application est bien définie, car pour $k \in \mathbb{Z}$, R_{tk} ne dépend que de t modulo 2π . C'est un morphisme de groupes, car $R_{(t+t')k} = R_{tk} R_{t'k}$. Montrons qu'il est continu.

En appliquant l'inégalité des accroissements finis entre t et t', il vient :

$$|e^{kit} - e^{kit'}| \le |k| |e^{it} - e^{it'}|$$

On a $|e^{ikt} - e^{ikt'}| = |\cos(kt) + i\sin(kt) - (\cos(kt') + i\sin(kt'))| \ge |\cos(kt) - \cos(kt')|$, et de même, $|\sin(kt) - \sin(kt')| \le |e^{ikt} - e^{ikt'}|$. On en déduit la continuité de R_{tk} par rapport à t, et a fortiori de φ par rapport à t.

$$e^{tA}(Q_1 + xQ_2) = (Q_1 + xQ_2)B \implies e^{tA} = (Q_1 + xQ_2)B(Q_1 + xQ_2)^{-1}$$

^{1.} Donnons une preuve de cette af: écrivons $Q = Q_1 + iQ_2$. On a $e^{tA}(Q_1 + iQ_2) = (Q_1 + iQ_2)B$, donc $e^{tA}Q_1 = Q_1B$ et $e^{tA}Q_2 = Q_2B$. Le polynôme $P(X) = \det(Q_1 + xQ_2)$ n'est pas nul car $P(i) = \det(Q) \neq 0$. On en déduit qu'il existe $x \in \mathbb{R}$ tel que $P(x) \neq 0$, donc $Q_1 + xQ_2$ est inversible. On a alors :