Lecture Notes

2301107 Calculus I for Engineering Section 4

First Semester, Academic Year 2024

Chapter 2 Limits and Derivatives

Paisan Nakmahachalasint

Department of Mathematics and Computer Science Faculty of Science, Chulalongkorn University

Chapter 2 Limits and Derivatives

2.2	The Limit of a Function	T
	Finding Limits Numerically and Graphically	1
	One-Sided Limits	3
	How Can a Limit Fail to Exist?	6
	Infinite Limits; Vertical Asymptotes	8
2.3	Calculating Limits Using the Limit Laws	11
	Properties of Limits	11
	Evaluating Limits by Direct Substitution	13
	Using One-Sided Limits	19
	The Squeeze Theorem	21
2.5	Continuity	23
	Continuity of a Function	23
	Properties of Continuous Functions	30

2.6	Limits at Infinity; Horizontal Asymptotes	35
	Limits at Infinity and Horizontal Asymptotes	35
	Evaluating Limits at Infinity	38
	Infinite Limits at Infinity	42
2.7	Derivatives and Rates of Change	43
	Tangents	43
	Derivatives	45
	Rates of Change	49
2.8	The Derivative as a Function	50
	The Derivative Function	50
	Other Notations	55
	How Can a Function Fail to be Differentiable?	59

2.2 The Limit of a Function

Finding Limits Numerically and Graphically

Example 1

Let's investigate the behavior of $f(x) = \frac{2^x - 1}{x}$ for values of x near 0.

Remark We write

- 1. $x \to a$ for "x approaches a"
- 2. $\lim_{x \to a} f(x) = L$ for " $f(x) \to L$ as $x \to a$ "

Definition 1 (Intuitive Definition of a Limit)

Suppose f(x) is defined when x is near the number a.

(This means that f is defined on some open interval that contains a, except possibly at a itself.)

Then we write

$$\lim_{x \to a} f(x) = L$$

and say "the limit of f(x), as x approaches a, equals L"

if we can make the values of f(x) arbitrarily close to L (as close to L as we like)

by restricting x to be sufficiently close to a (on either side of a) but not equal to a.

Remark If a limit of a function exists, the limit must have a unique value.

One-Sided Limits

Example 2 (The Sign Function)

$$\operatorname{sgn}(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$$

Remark If $x \neq 0$, then $\frac{|x|}{x} = \operatorname{sgn}(x)$.

Definition 2 (Intuitive Definition of One-Sided Limits)

We write $\lim_{x\to a^-} f(x) = L$ and say that the left-hand limit of f(x) as x approaches a [or the limit of f(x) as x approaches a from the left] is equal to L if we can make the values of f(x) arbitrarily close to L by restricting x to be sufficiently close to a with x < a.

We write $\lim_{x\to a^+} f(x) = L$ and say that the right-hand limit of f(x) as x approaches a [or the limit of f(x) as x approaches a from the right] is equal to L if we can make the values of f(x) arbitrarily close to L by restricting x to be sufficiently close to a with x > a.

Remark $\lim_{x\to a} f(x) = L$ if and only if $\lim_{x\to a^-} f(x) = L$ and $\lim_{x\to a^+} f(x) = L$

Example 3 Let
$$f(x) = \frac{x}{\sqrt[4]{x^2}}$$
. Find 1. $\lim_{x \to 0^+} f(x)$ 2. $\lim_{x \to 0^-} f(x)$ 3. $\lim_{x \to 0} f(x)$.

2.
$$\lim_{x \to 0^{-}} f(x)$$

$$3. \lim_{x \to 0} f(x).$$

Remark $\sqrt[4]{x^2} = \sqrt{|x|}$

How Can a Limit Fail to Exist?

Example 4

Investigate $\lim_{x\to 0} \sin \frac{\pi}{x}$.

Example 5

Investigate $\lim_{x\to 0} \frac{1}{x^2}$.

Infinite Limits; Vertical Asymptotes

Definition 3 (Intuitive Definition of an Infinite Limit)

Let f be a function defined on both sides of a, except possibly at a itself. Then

$$\lim_{x \to a} f(x) = \infty$$

means that the values of f(x) can be made arbitrarily large (as large as we please) by taking x sufficiently close to a, but not equal to a.

Let f be a function defined on both sides of a, except possibly at a itself. Then

$$\lim_{x \to a} f(x) = -\infty$$

means that the values of f(x) can be made arbitrarily large negative by taking x sufficiently close to a, but not equal to a.

Definition 4 (Vertical Asymptotes)

The vertical line x = a is called a vertical asymptote of the curve y = f(x)

if at least one of the following statements is true:

$$\lim_{x \to a} f(x) = \infty$$

$$\lim_{x \to a^{-}} f(x) = \infty$$

$$\lim_{x \to a^+} f(x) = \infty$$

$$\lim_{x \to a} f(x) = -\infty$$

$$\lim_{x \to a^{-}} f(x) = -\infty$$

$$\lim_{x \to a^+} f(x) = -\infty$$

Example 6

The vertical asymptote of $f(x) = \ln x$.

$$\lim_{x \to 0^+} \ln x = -\infty$$

2.3 Calculating Limits Using the Limit Laws

Properties of Limits

Theorem 1 (Limit Laws)

Suppose that c is a constant and the limits $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist.

Then

1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} \left[c f(x) \right] = c \lim_{x \to a} f(x)$$

4.
$$\lim_{x \to a} \left[f(x)g(x) \right] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \qquad \text{if } \lim_{x \to a} g(x) \neq 0$$

Theorem 2 (Limits Laws (Cont'd))

Let n be a positive integer. Suppose that the limit $\lim_{x\to a} f(x)$ exist. Then

6.
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$$

7.
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$
 (If n is even, we assume that $\lim_{x \to a} f(x) > 0$.)

Theorem 3 (Special Limits)

Let n be a positive integer. Then

- 1. $\lim_{x\to a} c = c$ when c is a constant.
- $2. \lim_{x \to a} x = a$
- $3. \lim_{x \to a} x^n = a^n$
- 4. $\lim_{x\to a} \sqrt[n]{x} = \sqrt[n]{a}$ (If n is even, we assume that a > 0.)

Evaluating Limits by Direct Substitution

Definition 5 (Polynomial Functions and Rational Functions)

- 1. If f(x) is a polynomial of x, we say that f is a polynomial function.
- 2. If there exist polynomials P(x) and Q(x) such that $f(x) = \frac{P(x)}{Q(x)}$, we say that f is a rational function.

Remark A polynomial function is always a rational function.

Example 7

Which of the followings are polynomial or rational functions?

$$\frac{x+1}{x^2+1}$$

$$\frac{1}{x}$$

$$x^2$$

$$|x| \qquad \frac{1}{\sqrt{x}} \qquad \frac{|x|}{|x|^3}$$

$$\frac{|x|}{|x|^3}$$

Theorem 4 (Direct Substitution Property)

If f is a polynomial or rational function and a is in the domain of f, then

$$\lim_{x \to a} f(x) = f(a).$$

Example 8 Find
$$\lim_{x \to 1} \frac{x^2 + 2x + 3}{x^3 + 2x^2 + 1}$$
.

Remark Functions that have the Direct Substitution Property are called continuous at a.

Example 9 Evaluate
$$\lim_{x\to 1} \frac{x^3-1}{x^2+x-2}$$
.

Remark if f(x) = g(x) when $x \neq a$, then $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$, provided the limits exist.

Find
$$\lim_{x \to 1} \frac{x^3 - 1}{x^4 - 1}$$
.

Example 11 Find
$$\lim_{x \to 0} \frac{x^2}{\sqrt{x^2 + 9} - 3}$$
.

Using One-Sided Limits

Theorem 5

$$\lim_{x\to a} f(x) = L \qquad \text{if and only if} \qquad \lim_{x\to a^-} f(x) = L \quad \text{and} \quad \lim_{x\to a^+} f(x) = L$$

Example 12

Show that $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.

Example 13

Investigate $\lim_{x\to 1} \frac{|x^2-1|}{x-1}$.

The Squeeze Theorem

Theorem 6 (The Squeeze Theorem)

If $f(x) \le g(x) \le h(x)$ when x is near a (except possibly at a) and

$$\lim_{x \to a} f(x) = L = \lim_{x \to a} h(x),$$

then

$$\lim_{x \to a} g(x) = L$$

Example 14 Find $\lim_{x\to 0} x^2 \sin \frac{1}{x}$.

2.5 Continuity

Continuity of a Function

Definition 6

A function f is continuous at a number a if

$$\lim_{x \to a} f(x) = f(a).$$

Remark Continuity of f at a implicitly requires three things.

- 1. f(a) is defined (that is, a is in the domain of f)
- 2. $\lim_{x\to a} f(x)$ exists
- $3. \lim_{x \to a} f(x) = f(a)$

A removable discontinuity

A removable discontinuity

An infinite discontinuity

Jump discontinuities

Example 15 Classify all discontinuities of
$$f(x) = \frac{(|x| + x)(x^2 - 4x + 3)}{(x^2 - 2x)(x^2 - 3x + 2)}$$
.

Definition 7

A function f is continuous from the right at a number a if

$$\lim_{x \to a^+} f(x) = f(a)$$

and f is continuous from the left at a if

$$\lim_{x \to a^{-}} f(x) = f(a).$$

Example 16

Let $f(x) = \lfloor x \rfloor$ be the floor function.

- 1. At which number is f continuous from the right?
- 2. At which number is f continuous from the left?
- 3. At which number is f continuous?

Definition 8 (Continuity on an Interval)

A function f is continuous on an interval if it is continuous at every number in the interval.

(If f is defined only on one side of an endpoint of the interval, we understand continuous at the endpoint to mean continuous from the right or continuous from the left.)

Example 17 Is $f(x) = \frac{1}{x}$ continuous on its domain?

Properties of Continuous Functions

Theorem 7

If f and g are continuous at a and c is a constant, the following functions are also continuous at a:

1.
$$f + g$$

2.
$$f - g$$

$$5. \ \frac{f}{g} \quad if \ g(a) \neq 0$$

Theorem 8

- 1. Any polynomial is continuous everywhere; that is, it is continuous on $\mathbb{R} = (-\infty, \infty)$.
- 2. Any rational function is continuous wherever it is defined; that is, it is continuous on its domain.

Theorem 9

The following types of functions are continuous at every number in their domains:

• polynomials

- rational functions
- root functions

- trigonometric functions
- inverse trigonometric functions
- exponential functions
- $\bullet \ \ logarithmic\ functions$

Theorem 10

if f is continuous at b and $\lim_{x\to a}g(x)=b$, then $\lim_{x\to a}f\big(g(x)\big)=f(b)$.

In other words,

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right).$$

Example 18

- Find 1. $\operatorname{sgn}\left(\lim_{x\to 0} x\right)$ 2. $\lim_{x\to 0} \operatorname{sgn}(x)$

and $\operatorname{sgn}\left(\lim_{x\to 0}x\right) \neq \lim_{x\to 0}\operatorname{sgn}(x)$. The sgn function is not continuous at 0

2.6 Limits at Infinity; Horizontal Asymptotes

Limits at Infinity and Horizontal Asymptotes

Example 19

Investigate the behavior of $f(x) = \frac{x^2 - 1}{x^2 + 1}$ as x becomes large.

Remark We write

 $x \to \infty$ to mean "x is infinitely large", and

 $x \to -\infty$ to mean "x is infinitely large negative"

Definition 9 (Intuitive Definition of a Limit at Infinity)

Let f be a function defined on some interval (a, ∞) . Then

$$\lim_{x \to \infty} f(x) = L$$

means that the values of f(x) can be made arbitrarily close to L by requiring x to be sufficiently large.

Let f be a function defined on some interval $(-\infty, a)$. Then

$$\lim_{x \to -\infty} f(x) = L$$

means that the values of f(x) can be made arbitrarily close to L by requiring x to be sufficiently large negative.

Definition 10

The line y = L is called a horizontal symptote of the curve y = f(x) if either

$$\lim_{x \to \infty} f(x) = L \qquad \text{or} \qquad \lim_{x \to -\infty} f(x) = L.$$

Example 20

Find the horizontal asymptotes of $y = \arctan x$.

Evaluating Limits at Infinity

Theorem 11

If r > 0 is a rational number, then

$$\lim_{x \to \infty} \frac{1}{x^r} = 0.$$

If r > 0 is a rational number such that x^r is defined for all x, then

$$\lim_{x \to -\infty} \frac{1}{x^r} = 0.$$

Example 21

Find
$$\lim_{x \to \infty} \frac{2x^2 + 3x + 1}{\sqrt{x^4 + x^2 + 1}}$$
.

Find
$$\lim_{x \to \infty} \left(\sqrt{x^2 + x} - \sqrt{x^2 - x} \right)$$
.

Theorem 12

- 1. $\lim_{x \to \infty} f(x) = L$ if and only if $\lim_{t \to 0^+} f\left(\frac{1}{t}\right) = L$
- 2. $\lim_{x \to -\infty} f(x) = L$ if and only if $\lim_{t \to 0^-} f\left(\frac{1}{t}\right) = L$

Example 23 Show that $\lim_{x\to 0} e^{1/x} = 0$.

Remark
$$\lim_{x \to -\infty} e^x = 0$$

Infinite Limits at Infinity

The notation

$$\lim_{x \to \infty} f(x) = \infty$$

is used to indicate that the values of f(x) become large as x becomes large.

Similar meanings are attached to the following symbols:

$$\lim f(x) = \infty$$

$$\lim_{x \to \infty} f(x) = -\infty$$

$$\lim_{x \to -\infty} f(x) = \infty \qquad \qquad \lim_{x \to \infty} f(x) = -\infty \qquad \qquad \lim_{x \to -\infty} f(x) = -\infty$$

$$\mathbf{Remark} \quad \lim_{x \to \infty} e^x = \infty$$

2.7 Derivatives and Rates of Change

Tangents

Definition 11

The tangent line to the curve y = f(x) at the point P(a, f(a)) is the line through P with slope

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

provided that this limit exists.

Remark Equivalently,

$$m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

Example 24 Find an equation of the tangent line to the parabola $y = \frac{2}{x}$ at the point (2,1).

Derivatives

Definition 12

The derivative of a function f at a number a, denoted by f'(a), is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

if this limit exists.

Remark Equivalently,

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Example 25 Find the derivative of the function $f(x) = x^2 + 2x + 3$ at the number a.

Remark The tangent line to y = f(x) at (a, f(a)) is the line through (a, f(a)) whose slope is equal to f'(a), the derivative of f at a.

Example 26 Find the derivative of the function $f(x) = \frac{1}{\sqrt{x}}$ at the number a > 0.

Example 27 If f'(1) = 5, find the following limits:

1.
$$\lim_{h \to 0} \frac{f(1+2h) - f(1)}{h}$$

2.
$$\lim_{h \to 0} \frac{f(1-h) - f(1)}{h}$$

1.
$$\lim_{h\to 0} \frac{f(1+2h)-f(1)}{h}$$
 2. $\lim_{h\to 0} \frac{f(1-h)-f(1)}{h}$ 3. $\lim_{h\to 0} \frac{f(1+h)-f(1-h)}{h}$.

Rates of Change

Suppose y is a quantity that depends on another quantity x.

Thus y is a function of x and we write y = f(x).

If x changes from x_1 to x_2 , then the change in x (also called the increment of x) is $\Delta x = x_2 - x_1$ and the corresponding change in y is $\Delta y = f(x_2) - f(x_1)$.

The difference quotient

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

is called the average rate of change of y with respect to x over the interval $[x_1, x_2]$.

Remark instantaneous rate of change =
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

The derivative f'(a) is the instantaneous rate of change of y = f(x) with respect to x when x = a.

2.8 The Derivative as a Function

The Derivative Function

The derivative of a function f at a fixed number a is defined by

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

Here we change our point of view and let the number a vary.

If we replace a by a variable x, we obtain

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

We can regard f' as a new function, called the derivative of f.

Example 28

Use the graph of a function f to sketch the graph of the derivative f'.

Example 29 If $f(x) = \sqrt{x}$, find the derivative of f. State the domain of f'.

Example 30 Find equations of lines through the point (1, -6) that are tangent to the parabola $y = x^2 + 2x$.

Example 31 Find a parabola whose tangent line at (1,2) has equation y = 5x - 3 and the parabola passes through the origin.

Other Notations

If we use the traditional notation y = f(x) to indicate that the independent variable is x and the dependent variable is y, then some common alternative notations for the derivative are as follows:

$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = Df(x) = D_x f(x)$$

The symbols D and $\frac{d}{dx}$ are called differential operators because they indicate the operation of differentiation, which is the process of calculating a derivative.

The symbol $\frac{dy}{dx}$ should not be regarded as a ration (for the time being); it is simply a synonym for f'(x). We can rewrite the definition of derivative in the form

$$\left(\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}\right)$$

If we want to indicate the value of a derivative $\frac{dy}{dx}$ at a specific number a, we use the notation

$$\frac{dy}{dx}\Big|_{x=a}$$
 or $\frac{dy}{dx}\Big|_{x=a}$

Definition 13

A function f is differentiable at a if f'(a) exists.

It is differentiable on an open interval (a,b) [or (a,∞) or $(-\infty,a)$ or $(-\infty,\infty)$]

if it is differentiable at every number in the interval.

Example 32

Where is the function f(x) = |x| differentiable?

Theorem 13

If f is differentiable at a, then f is continuous at a.

Proof

$$\lim_{x \to a} (f(x) - f(a)) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot (x - a) = f'(a) \cdot 0 = 0$$

Therefore $\lim_{x\to a} f(x) = f(a)$.

Remark

- 1. If a function f is discontinuous at a, then f is not differentiable at a.
- 2. The converse of the above theorem is false; that is, there are functions that are continuous but not differentiable.

For instance, the function f(x) = |x| is continuous at 0 but not differentiable at 0.

How Can a Function Fail to be Differentiable?

A vertical tangent

Higher Derivatives

Let y = f(x). We define higher derivatives of f as follows.

- f' is the first derivative of f.
- (f')' is the second derivative of f and is denoted by y'' or f'' or $\frac{d^2y}{dx^2}$.
- (f'')' is the third derivative of f and is denoted by y''' or f''' or $\frac{d^3y}{dx^3}$.
- The n^{th} derivative of f is denoted by $y^{(n)}$ or $f^{(n)}$ or $\frac{d^n y}{dx^n}$ and is defined by

$$f^{(n)} = (f^{(n-1)})'$$
 or $\frac{d^n y}{dx^n} = \frac{d}{dx} \left(\frac{d^{n-1} y}{dx^{n-1}} \right)$

For convenience, we may also write $f^{(0)}$ in the meaning of f; that is $f^{(0)} = f$.