RHR (Women v Men) - Stroke

Outcome	Hazard Ratio	HR 95%-CI W	/eight
def_priority = 3 16 — 21 1 25 Random effects model Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\rho = 0.5303$	→ → → → → → → → → → → → → → → → → → →		0.5% 0.8% 0.5% 62.1% 63.9%
def_priority = 2 9 2 Random effects model Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 0.4755$		0.96 [0.41; 2.22] 1.40 [0.75; 2.64] 1.22 [0.74; 2.02]	0.5% 0.9% 1.5%
<pre>def_priority = 6 18</pre>		1.10 [0.90; 1.33]	10.0%
def_priority = 1 32 23 Random effects model Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 0.8456$	<u> </u>	1.04 [0.58; 1.87]	23.5% 1.1% 24.6%
Random effects model Heterogeneity: $I^2 = 0.0\%$, $\tau^2 = 0$, $p = 0.7387$ Test for subgroup differences: $\chi_3^2 = 2.42$, df = 3 ($p = 0.4900$)	0.5 1 2	1.07 [1.00; 1.13] 10	00.0%