GCLC Prover Output for conjecture "thm-0110-Parallelogram2"

Groebner bases method used

March 4, 2014

1 Construction and prover internal state

Construction commands:

- Point A
- \bullet Point B
- \bullet Point C
- Line ab: AB
- Line bc: BC
- Parallel, p: A bc
- ullet Parallel, q: C ab
- Intersection of lines, D: p q
- Line ac: AC
- Line bd: BD
- Intersection of lines, E: ac bd

Coordinates assigned to the points:

- A = (0,0)
- $B = (u_1, 0)$
- $C = (u_2, u_3)$
- $D = (x_2, u_3)$
- $E = (x_4, x_3)$

Conjecture(s):

- 1. Given conjecture
 - GCLC code:

```
same_length A E E C
```

• Expression:

 $AE \cong EC$

2 Resolving constructed lines

- $ab \ni A, B$; line is horizontal (i.e., y(A) = y(B))
- $bc \ni B, C$
- $p \ni A, D$
- $q \ni C, D$; line is horizontal (i.e., y(C) = y(D))
- $ac \ni A, C, E$
- $bd \ni B, D, E$

3 Creating polynomials from hypotheses

- Point A no condition
- Point B no condition
- Point C no condition
- Line ab: AB
 - point A is on the line (A, B) no condition
 - point B is on the line (A, B) no condition
- Line bc: BC
 - point B is on the line (B, C) no condition
 - point C is on the line (B, C) no condition

- Parallel, p: A bc
 - Line (A, D) parallel with line (B, C)

$$p_1 = u_3 x_2 + (-u_3 u_2 + u_3 u_1)$$

- \bullet Parallel, q: C ab
 - Line (C, D) parallel with line (A, B)
 true by the construction
- Intersection of lines, D: p q
 - point D is on the line (A, D) no condition
 - point D is on the line (C, D) no condition
- Line ac: AC
 - point A is on the line (A, C) no condition
 - point C is on the line (A, C) no condition
- Line bd: BD
 - point B is on the line (B, D) no condition
 - point D is on the line (B, D) no condition
- Intersection of lines, E: ac bd
 - point E is on the line (A, C)

$$p_2 = -u_3 x_4 + u_2 x_3$$

- point E is on the line (B, D)

$$p_3 = -u_3 x_4 + x_3 x_2 - u_1 x_3 + u_3 u_1$$

4 Creating polynomial from the conjecture

- Processing given conjecture(s).
- Segment [A, E] equal size as segment [E, C]

$$p_4 = 2u_2x_4 + 2u_3x_3 + (-u_3^2 - u_2^2)$$

Conjecture 1:

$$p_5 = 2u_2x_4 + 2u_3x_3 + (-u_3^2 - u_2^2)$$

5 Invoking the theorem prover

The used proving method is Buchberger's method. Input polynomial system is:

$$p_0 = u_3x_2 + (-u_3u_2 + u_3u_1)$$

$$p_1 = -u_3x_4 + u_2x_3$$

$$p_2 = -u_3x_4 + x_3x_2 - u_1x_3 + u_3u_1$$

5.1 Iteration 1

Current set is $S_1 =$

$$p_0 = u_3x_2 + (-u_3u_2 + u_3u_1)$$

$$p_1 = -u_3x_4 + u_2x_3$$

$$p_2 = -u_3x_4 + x_3x_2 - u_1x_3 + u_3u_1$$

- 1. Creating S-polynomial from the pair (p_0, p_1) . Skipping pair p_0 and p_1 because gcd of their leading monoms is zero.
- 2. Creating S-polynomial from the pair (p_0, p_2) . Skipping pair p_0 and p_2 because gcd of their leading monoms is zero.
- 3. Creating S-polynomial from the pair (p_1, p_2) . Forming S-pol of p_1 and p_2 :

$$p_{12} = u_3 x_3 x_2 + (-u_3 u_2 - u_3 u_1) x_3 + u_3^2 u_1$$

S-pol added.

5.2 Iteration 2

Current set is $S_2 =$

$$p_0 = u_3x_2 + (-u_3u_2 + u_3u_1)$$

$$p_1 = -u_3x_4 + u_2x_3$$

$$p_2 = -u_3x_4 + x_3x_2 - u_1x_3 + u_3u_1$$

$$p_3 = -2u_3^2u_1x_3 + u_3^3u_1$$

- 1. Creating S-polynomial from the pair (p_0, p_3) . Skipping pair p_0 and p_3 because gcd of their leading monoms is zero.
- 2. Creating S-polynomial from the pair (p_1, p_3) . Skipping pair p_1 and p_3 because gcd of their leading monoms is zero.
- 3. Creating S-polynomial from the pair (p_2, p_3) . Skipping pair p_2 and p_3 because gcd of their leading monoms is zero.

5.3 Groebner Basis

Groebner basis has 4 polynomials:

$$p_0 = u_3x_2 + (-u_3u_2 + u_3u_1)$$

$$p_1 = -u_3x_4 + u_2x_3$$

$$p_2 = -u_3x_4 + x_3x_2 - u_1x_3 + u_3u_1$$

$$p_3 = -2u_3^2u_1x_3 + u_3^3u_1$$

Groebner basis successfully computed.

6 Reducing Polynomial Conjecture

Reducing with polynomial p_1 , the result is:

$$p_{21} = (-2u_3^2 - 2u_2^2)x_3 + (u_3^3 + u_3u_2^2)$$

Reducing with polynomial p_3 , the result is:

$$p_{22} = 0$$

Conclusion is reduced to zero.

7 Prover report

Status: The conjecture has been proved.

Space Complexity: The biggest polynomial obtained during proof process contained 4 terms.

Time Complexity: Time spent by the prover is 0.001 seconds. There are no ndg conditions.