Санкт-Петербургский политехнический университет Петра Великого
Институт прикладной математики и механики
Высшая школа прикладной математики и вычислительной физики

Многомерный статистический анализ

Отчет по лабораторной работе

Тема: Классификация объектов на основе дискриминантного анализа

Выполнил:

студент гр. 3630102/60401 Камалетдинова Ю. А.

Проверил:

к. ф-м. н., доцент Павлова Л. В.

> Санкт-Петербург 2020

Содержание

П	Іостановка задачи		
1	Ход	ц работы	2
	1.1	Построение дискриминантной функции	2
	1.2	Численный эксперимент	3
За	аклю	чение	6

Постановка задачи

В данной работе рассматривается задача классификации объектов на основе дискриминантного анализа. Пусть есть некоторые популяции W_1, W_2 . Тогда задача состоит в отнесении объекта w на основе вектора признаков $X = x_1, \ldots, x_p$. Необходимо построить и протестировать классификатор на разных данных:

- 1. Модельные данные
- Данные из репозитория https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/ german/

1. Ход работы

1.1. Построение дискриминантной функции

Сгенерируем обучающие выборки, представляющие популяции W_1, W_2 , в предположении, что выборки имеют многомерное нормальное распределение:

$$x \sim N\left(\mu_1, \sum_1\right), \ x \sim N\left(\mu_2, \sum_2\right)$$

, где $\mu_1,\mu_2\in R^p$ — векторы средних, $\sum_1=\sum_2\in R^p imes R^p$ — матрицы ковариаций.

Дискриминантная функция имеет вид

$$z(x) = \alpha_1 x_1 + \dots + \alpha_p x_p, \tag{1}$$

где вектор коэффициентов $\alpha \in \mathbb{R}^p$ находится по формуле:

$$\alpha = \sum^{-1} (\mu_1 - \mu_2) \tag{2}$$

Наблюдение из x_i из выборки будем относить к W_1 , если $z \geq c$, и к W_2 , если z < c, где c — постоянная.

Константу c будем вычислять по формулам:

$$c = \frac{(\xi_1 - \xi_2)^2}{\sigma_z^2},\tag{3}$$

где $\xi_1 = \sum_{j=1}^p \alpha_j \mu_{1_j}$, $\xi_2 = \sum_{j=1}^p \alpha_j \mu_{2_j}$ — средние z для $x \in W_1, W_2$ соответственно, $\sigma_z^2 = \sum_{m=1}^p \sum_{j=1}^p \alpha_m \sigma_{mj} \alpha_j$ — дисперсия

Для измерения "расстояния" между двумя популяциями воспользуемся расстоянием Махалонобиса:

$$\Delta^2 = \frac{(\xi_1 - \xi_2)^2}{\sigma_z^2} \tag{4}$$

Итак, для решения задачи требуется найти коэффициенты $\alpha_1, \ldots, \alpha_p$, минимизарующие Δ^2 . Для классификации вектора X будем использовать следующее правило:

$$x_{i} \in W_{1} : \sum_{i=1}^{p} \alpha_{i} x_{i} \geq \frac{\xi_{1} + \xi_{2}}{2} + \ln \frac{q_{2}}{q_{1}}$$

$$x_{i} \in W_{2} : \sum_{i=1}^{p} \alpha_{i} x_{i} < \frac{\xi_{1} + \xi_{2}}{2} + \ln \frac{q_{2}}{q_{1}},$$

$$(5)$$

где $P(x_i \in W_1) = q_1, \ P(x_i \in W_2) = q_2$ — априорные вероятности

1.2. Численный эксперимент

Проведем два эксперимента на смоделированных данных: в случае, когда данные "хорошо" разделимы и наоборот. Будем считать, что данные "хорошо" разделимы, когда их диапазоны значений векторов средних μ не пересекаются с учетом дисперсий.

Смоделируем две обучающие выборки объемами n_1, n_2 из нормального трехмерного распределения с заданными параметрами: $X_1 \sim N(\mu_1, \sum_1), \ X_2 \sim N(\mu_2, \sum_2), \ X_1, X_2 \in \mathbb{R}^3$. Сгенерируем тестовую выборку, распределенную по трехмерному нормальному распределению, включающую наблюдения из обеих популяций. Объемы выборок $n_1 = n_2 = 150$. Приведем значения $\mu_1, \ \mu_2, \ \sum$ для "хорошо" разделимых данных

1.862	0.943	0.007
0.943	0.521	-0.061
0.007	-0.0614	0.108

Таблица 1: Матрица ковариаций для "хорошо" разделимых данных

μ_1	3.727	3.324	3.204
μ_2	1.365	1.235	1.030

Таблица 2: Векторы средних для "хорошо" разделимых данных

Сформируем тестовую выборку из смеси данных, распределенных как исходные популяции W_1, W_2 . Зададим априорные вероятности $q_1 = 0.4, q_2 = 0.6$. Объем тестовой выборки $n_{test} = 100$. Представим результат классификации в виде матрицы ошибок:

Pred Real	W_1	W_2
W_1	40	0
W_2	0	60

Таблица 3: Матрица ошибок для "хорошо" разделимых данных

Исходя из заданных q_1 , q_2 , n_{test} получаем, что в тестовой выборке 40 наблюдений популяции W_1 и 60 наблюдений популяции W_2 . По результатам таблицы 3 делаем вывод, что все объекты были безошибочно классифицированы.

Сгенерируем "плохо" разделимые данные: значения векторов средних μ пересекаются. Тестовую выборку будем формировать как раньше: $q_1=0.4,\ q_2=0.6,\ n_{test}=100,\ n_1=n_2=150.$ Приведем параметры для генерации данных и матрицу ошибок в виде таблиц:

1.658	-0.333	1.179
-0.333	1.683	-0.756
1.179	-0.756	1.101

Таблица 4: Матрица ковариаций для "плохо" разделимых данных

μ_1	1.366	1.514	1.272
μ_2	1.268	1.126	1.083

Таблица 5: Векторы средних для "плохо" разделимых данных

Pred Real	W_1	W_2
W_1	20	20
W_2	10	50

Таблица 6: Матрица ошибок для "плохо" разделимых данных

По результатам из таблицы 3 виидим, что из 100 наблюдений тестовой выборки только 70 удалось классифицировать верно.

Рис. 1: Оцененные и реальные значения редуцированной (r) модели

Заключение

Список литературы