Neural Network

Dr. Kelly Trinh

Housekeeping

Collaborate session. Please check Collaborate Schedule document WEEK TECHNICAL COLLABORATE PRACTICAL COLLABORATE (RUN BY DR. MARTHA COOPER)

 (RUN BY DR. MARTHA COOPER)

	(KON DI DK. KELLI IKINII)	(RON DI DR. WIARTHA COOFER)
WEEK 1: 3/5-9/5	Neural Network	NN implementation using Python
WEDNESDAY & THURSDAY (6-7PM AEST)		
WEEK 2: 10/5-15/6	Regularisation, Optimisation and practical issue	AWS SageMaker, NN implementation on AWS
WEDNESDAY & THURSDAY (6-7PM AEST)		
WEEK 3: 17/5-23/5	No technical collaborate session	Hyperparameter Optimisation on AWS
THURSDAY (6-7PM AEST)		
WEEK 4: 24/5-30/5	Convolution Neural Network (CNN)	Implementation of CNN
WEDNESDAY & THURSDAY (6-7PM AEST)		
WEEK 5: 31/5-6/6	Advanced CNN and object detection	Implementation of CNN
MONDAY & THURSDAY (6-7PM AEST)		
WEEK 6: 7/6-13/6	QA session (Review Assessment 2, Students discuss data used in Assessm	No practical collaborate session nent 3)
WEDNESDAY (6-7PM)		

Dr. Kelly Trinh

Housekeeping

Assessments:

Assessment task 1 [Video presentation] [15 %]	Released on Monday, Week 0. Due on Sunday 11:59pm (AEST) Week 2		
Assessment task 2 [Report] [40 %]	Released on Monday, Week 2. Due on Sunday 11:59pm (AEST) Week 4		
Assessment task 3 [Report] [45 %]	Released on Monday, Week 2. Due on Wednesday 11:59pm(AEST) Week 7		

- Please read section 4.1 of the course outline for special consideration, extension request and late submission.
- All special consideration and extension requests are submitted via JCU website https://www.jcu.edu.au/students/assessment-and-results/ special-consideration

AWS reimbursement

- Please set up free tier AWS account.
- College of Science and Engineering will reimburse up to \$40 per student for AWS service.
- Note that if you exceed the amount, the exceeded amount will not be approved for an reimbursement.
- Please check AWS Discussion Board regarding how to apply for the reimbursement.

Recommended Activities for Week 1 and 2

- Install Python3, Jupyter notebook, Tensorflow 2 and Keras
- Set up an AWS free tier account
- Read Chapter 6, 7, 8, 9 and 16: Machine Learning in the AWS Cloud by Mishra, Abhishek (2019) as well as online content of Week 2 and 3

Neural Network

Some applications of neural networks

- Neural network is a rapidly grown research area. It has been used for classification, prediction and diagnosis in many research areas such as health, finance, agriculture, IoT, and etc.
- In this subject, we will focus on
 - Vanilla neural network (Multilayer perceptron Neural Network)
 - Convolution neural network (Image classification, Image detection)
 - Implementation of the neural network on AWS

Source: Medium

Multilayer perceptron Neural network

How can neural network learn patterns of data, and provide highly accurate classification, and prediction?

- Structure of neural network
 - Neuron (perceptron), activation function
 - Input, output, and hidden layers
- How is a neural network estimated?

Structure of neural network

Source: Rodenas et.al (2021)

What is a neuron and how is it constructed?

How is a neuron constructed?

Neuron is simply a number carrying information of inputs.

What are activation functions?

Activation functions introduces non-linearity in neural networks. They allow neural network to better approximate complex relationship between data.

Source:ISLR

Activation functions

Source: Towards Data Science

Activation function

$$ELU_{\alpha}(z) = egin{cases} lpha(\exp(z)-1) & ext{if } z < 0 \ z & ext{if } z \geq 0 \end{cases}$$

• ELU (exponential linear unit) has a slower computation than ReLu and Leaky ReLu

Structure of Neural Network

Source: Rodenas et.al (2021)

All inputs are connected to each neuron, these layers are called **Dense** layers

Python code

```
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(64, activation=tf.nn.relu),
    tf.keras.layers.Dense(32, activation=tf.nn.relu),
    tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
```

How are the weights and bias in neurons estimated?

- Loss function
- Optimiser
 - Gradient
 - Chain rule

How a neural network is estimated?

- Aim to minimise the loss incurred from incorrect predictions/classification
- The optimisation object is defined as

$$J(\mathbf{W}) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x_i; \mathbf{W}), y_i)$$

where the loss function $\mathcal{L}(f(x_i; \mathbf{W}), y_i)$ can have the form as

- Mean squared error $\mathcal{L}(f(x_i; \mathbf{W}), y_i) = (y_i f(x_i; \mathbf{W}))^2$
- Binary Cross entropy $\mathcal{L}(f(x_i; \mathbf{W}), y_i) = y_i log(f(x_i; \mathbf{W})) + (1 y_i) log(1 f(x_i; \mathbf{W}))$

Problem type	Last-layer activation	Loss function
Binary classification	sigmoid	binary_crossentropy
Multiclass, single-label classification	softmax	categorical_crossentropy
Multiclass, multilabel classification	sigmoid	binary_crossentropy
Regression to arbitrary values	None	mse
Regression to values between 0 and 1	sigmoid	mse of binary_crossentropy

Optimiser

- Optimiser
 - Gradient
 - Chain rule

Optimisation algorithm - Gradient descent

- Initialize weights randomly
- Repeat until convergence $\{ \mathbf{W}_j := \mathbf{W}_{j-1} \alpha \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}_{j-1}} \}$
- Return weights

 $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}_{j-1}}$ tell us how much the loss $J(\mathbf{W})$ change due to a small change in \mathbf{W}

How to compute the gradient?

Chain rule

Estimation of neural network

From: Medium website

Neural Network in Python

Train and Deploy NN model

The lab session

- Implementation of a neural network using Tensorflow2.0 and Python3
- Next week: Regularisation and practical issues relating to Neural network

Reading list

• Chapter 10 and 11 in "Hands-on MAchine Learning with Scikit-Learn Keras and Tensorflow" Aurelien Geron (2019)