Uniprocessor Scheduling - II

Sandeep D'souza

Lecture #4

Carnegie Mellon

18-648: Embedded Real-Time Systems

Example Real-Time Applications

Many real-time systems are **control systems**.

Example 1: A simple one-sensor, one-actuator control system.

Simple Control System (cont'd)

Pseudo-code for this system:

set timer to interrupt periodically with period T; at each timer interrupt, do do analog-to-digital conversion to get y; compute control output *u*; output u and do digital-to-analog conversion; end do

T is called the <u>sampling period</u>. T is a key design choice. Typical range for T: milliseconds to seconds.

Carnegie Mellon

18-648: Embedded Real-Time Systems

Multi-rate Control Systems

More complicated control systems have multiple sensors and actuators and must support control loops of different rates.

Example 2: Helicopter flight controller.

Do the following in each 1/180-sec. cycle:

validate sensor data and select data source; if failure, reconfigure the system

Every sixth cycle do:

keyboard input and mode selection; data normalization and coordinate

transformation;

tracking reference update

control laws of the outer pitch-control loop; control laws of the outer roll-control loop;

control laws of the outer yaw- and collective-control loop

Carry out built-in test;

yaw-control loop;

Output commands;

Every other cycle do:

control laws of the inner

collective-control loop

pitch-control loop;

Wait until beginning of the next cycle

control laws of the inner roll- and

Compute the control laws of the inner

Note: Having only **harmonic** rates simplifies the system.

Carnegie Mellon

Signal-Processing Systems

<u>Signal-processing systems</u> transform data from one form to another.

- Examples:
 - Digital filtering.
 - Video and voice compression/decompression.
 - Radar signal processing.
- Response times range from a few milliseconds to a few seconds.

Carnegie Mellon

Other Real-Time Applications

• Real-time databases.

- · Transactions must complete by deadlines.
- <u>Main dilemma:</u> Transaction scheduling algorithms and real-time scheduling algorithms often have conflicting goals.
- Data may be subject to <u>absolute</u> and <u>relative temporal consistency</u> requirements.

Multimedia.

- Want to process audio and video frames at steady rates.
 - TV video rate is 30 frames/sec. HDTV is 60 frames/sec.
 - Telephone audio is 16 Kbits/sec. CD audio is 128 Kbits/sec.
- Other requirements: Lip synchronization, low jitter, low end-to-end response times (if interactive).

Carnegie Mellon

Are All Systems Real-Time Systems?

- Question: Is a payroll processing system a real-time system?
 - It has a time constraint: Print the pay checks (say) every two weeks.
- Perhaps it is a real-time system in a definitional sense, but it does <u>not</u> pay us to view it as such.
- We are interested in systems for which it is not a priori obvious how to meet timing constraints.
 - Wide variety of constraints
 - Really tight timing constraints
 - Different levels of criticality

Carnegie Mellon

18-648: Embedded Real-Time Systems

Hard vs. Soft Real Time

- <u>Task:</u> A sequential piece of code.
- Job: Instance of a task.
- Jobs require <u>resources</u> to execute.
 - Example resources: CPU, network, disk, critical section.
 - We will simply call all hardware resources "processors".
- Release time of a job: The time instant the job becomes ready to execute.
- Absolute Deadline of a job: The time instant by which the job must complete execution.
- Relative deadline of a job: "Deadline Release time".
- Response time of a job: "Completion time Release time".

Carnegie Mellon

Hard Real-Time Systems

- A hard deadline must be met.
 - If any hard deadline is ever missed, then the system is incorrect.
 - Requires a means for validating that deadlines are met.
- <u>Hard real-time system:</u> A real-time system in which all deadlines are hard.
 - We mostly consider hard real-time systems in this course.
- <u>Examples:</u> Nuclear power plant control, flight control.

Carnegie Mellon

18-648: Embedded Real-Time Systems

Soft Real-Time Systems

- A soft deadline may occasionally be missed.
 - Question: How to define "occasionally"?
- <u>Soft real-time system:</u> A real-time system in which some deadlines are soft.
- **Examples:** Telephone switches, multimedia applications.

Carnegie Mellon

18-648: Embedded Real-Time Systems

Defining "Occasionally"

- One Approach: Use probabilistic requirements.
 - For example, 99% of deadlines will be met.
- Another Approach: Define a "usefulness" function for each job:

• Note: Validation is much trickier here.

Carnegie Mellon

Periodic, Sporadic, Aperiodic Tasks

- Periodic task:
 - We associate a **period** T_i (as in 1/f) with each task τ_i .
 - T_i is the <u>interval</u> between job releases of a task τ_i .
- Sporadic and Aperiodic tasks: Released at arbitrary times.
 - **Sporadic:** Has a hard deadline.
 - Aperiodic: Has no deadline or a soft deadline.

Carnegie Mellon

18-648: Embedded Real-Time Systems

Examples

A periodic task τ_i with $r_i = 2$, $T_i = 5$, $C_i = 2$, $D_i = 5$ may execute like this:

Carnegie Mellon

18-648: Embedded Real-Time Systems

Real Time Systems and You

- Embedded real time systems enable us to:
 - manage the vast power generation and distribution networks,
 - control industrial processes for chemicals, fuel, medicine, and manufactured products,
 - control automobiles, ships, trains and airplanes,
 - conduct video conferencing over the Internet and interactive electronic commerce, and
 - send vehicles high into space and deep into the sea to explore new frontiers and to seek new knowledge.

Carnegie Mellon

Real-Time Systems

- Timing requirements
 - meeting deadlines
- Periodic and aperiodic tasks
- Shared resources
- Interrupts

Carnegie Mellon

18-648: Embedded Real-Time Systems

What's Important in Real-Time

Metrics for real-time systems differ from that for time-sharing systems.

	Time-Sharing Systems	Real-Time Systems
Capacity	High throughput	Schedulability
Responsiveness	Fast average response	Ensured worst-case response
Overload	Fairness	Stability

- schedulability is the ability of tasks to meet all hard deadlines
- latency is the worst-case system response time to events
- stability in overload means the system meets critical deadlines even if all deadlines cannot be met

Carnegie Mellon

Real-Time Scheduling Policies

- CPU scheduling policy: a rule to select task to run next
 - cyclic executive
 - Rate-monotonic/deadline-monotonic
 - earliest deadline first
 - least laxity first
- Assume preemptive, priority scheduling of tasks
 - analyze effects of non-preemption later

Carnegie Mellon

18-648: Embedded Real-Time Systems

Rate Monotonic Scheduling (RMS)

- Priorities of periodic tasks are based on their rates: the highest rate gets the highest priority.
- Theoretical basis
 - optimal fixed scheduling policy (when deadlines are at end of period)
 - analytic formulas to check schedulability
- Must distinguish between scheduling and analysis
 - Rate-monotonic scheduling forms the basis for ratemonotonic analysis
 - however, we consider later how to analyze systems in which rate-monotonic scheduling is *not* used
 - any scheduling approach may be used, but all real-time systems should be analyzed for timing

Carnegie Mellon

Rate Monotonic Analysis (RMA)

- Rate-monotonic analysis is a set of mathematical techniques for analyzing sets of real-time tasks.
- Basic theory applies only to independent, periodic tasks, but has been extended to address
 - priority inversion
 - task interactions
 - aperiodic tasks
- Focus is on RMA, not RMS

Carnegie Mellon

18-648: Embedded Real-Time Systems

Why Are Deadlines Missed?

- For a given task, consider
 - preemption: time waiting for higher priority tasks
 - execution: time to do its own work
 - blocking: time delayed by lower priority tasks
- The task is schedulable if the sum of its preemption, execution, and blocking is less than its deadline.
- Focus: identify the biggest hits among the three and reduce, as needed, to achieve schedulability

Carnegie Mellon

18-648: Embedded Real-Time Systems

Carnegie Mellon

18-648: Embedded Real-Time Systems

Scheduling Policies

- CPU scheduling policy: a rule to select task to run next
 - cyclic executive
 - Rate-monotonic/deadline-monotonic
 - earliest deadline first
 - least laxity first
- Assume preemptive, priority scheduling of tasks
 - analyze effects of non-preemption later

Carnegie Mellon

Earliest Deadline First (EDF) Scheduling

- Can be used to schedule periodic tasks
- · Uses dynamic priorities and preemptive scheduling
 - Higher priority to task with earlier deadline
- **Example**: 2-task set where each task is (C, T=D) → {(2, 4), (3, 7)}

• Utilization U of task set $\{\tau_i\}$ for i = 1, ..., n:

$$U_i = \frac{C_i}{T_i} \qquad U = \sum_{i=1}^n U_i = \sum_{i=1}^n \frac{C_i}{T_i}$$

Carnegie Mellon

18-648: Embedded Real-Time Systems

EDF Schedulability Condition

Theorem: A task set is schedulable under EDF if and only if $U \le 1$. Proof:

- Assume that "overflow" occurs at time t₂.
- Let t_1 be the latest time before t_2 such that
 - the processor is fully utilized in the interval $[t_1, t_2]$
 - only instances with deadlines before t_2 execute in $[t_1$, $t_2]$
- If such a t_1 cannot be found, then set $t_1 = 0$.
- Let C_d be the computational demand in $[t_1, t_2]$

$$C_d = \sum_{r_i \ge t_1, d_1 \le t_2} \left\lfloor \frac{t_2 - t_1}{T_i} \right\rfloor * c_i \le \sum_{i=1}^n \frac{t_2 - t_1}{T_i} * c_i = (t_2 - t_1)U$$

• But an overflow implies that $C_d > (t_2 - t_1)$: a contradiction if $U \le 1$.

Carnegie Mellon

18-648: Embedded Real-Time Systems

Points to Note

- If deadlines are shorter than periods, the necessary condition for schedulability under EDF is an open problem.
- If U > 1, which task will first miss its deadline is unpredictable.

Carnegie Mellon

18-648: Embedded Real-Time Systems

Rate-Monotonic Scheduling (RMS)

- The priorities of periodic tasks are based on their rates: a higher rate gets a higher priority.
- Theoretical basis
 - optimal fixed-priority scheduling policy (when deadlines are at the end of period)
 - analytic formulas to check schedulability
- Must distinguish between scheduling and analysis
 - Rate-Monotonic Scheduling (RMS) forms the basis for Rate-Monotonic Analysis (RMA)
 - However, we will consider later how to analyze systems in which rate-monotonic scheduling is *not* used
 - Any scheduling approach may be used, but all real-time systems should be analyzed for timing

Carnegie Mellon

18-648: Embedded Real-Time Systems

Rate Monotonic Analysis (RMA)

- Rate-monotonic analysis is a set of mathematical techniques for analyzing sets of real-time tasksets.
- The original RMS theory applied only to independent, periodic tasks, but has been extended to address
 - priority inversion
 - task interactions
 - aperiodic tasks
- Focus is on RMA, not RMS

Carnegie Mellon

18-648: Embedded Real-Time Systems

Rate-Monotonic Scheduling (RMS)

- Higher (fixed) priority to higher frequency task
 - i.e. higher priority to task with shorter period
- Example: 2-task set where each task is $(C, T=D) \rightarrow \{(2, 4), (3, 7)\}$

Liu and Layland proved that RMS leads to a feasible schedule if $U \le n (2^{1/n} - 1)$

- If $C_2 = 3.1$, then C_2 will miss its deadline although the utilization is (2/4)+(3.1/7) = 0.5+0.443=0.943, which is < 1.
- The above bound is sufficient for schedulability but not necessary
- RMS is an <u>optimum</u> fixed-priority assignment algorithm
 - if a taskset cannot be scheduled by RMS, <u>all</u> other fixed-priority schedules will also be unschedulable.

Carnegie Mellon

More on the RMS Bound

- The RMS bound is a sufficient condition, not a necessary condition
- Occurs only under mathematically extreme conditions
- In practice
 - Many tasksets are harmonic
 - In a harmonic taskset, every period is an integral multiple (or sub-multiple) of all other periods in the task set
 - For harmonic tasksets, RMS is schedulable if U ≤ 1.
 - Or for nearly harmonic tasksets
 - The schedulable utilization is about 0.92
- Mathematically, if C's and T's are chosen randomly, the average schedulable task set utilization is 88%.
- Remaining utilization can still be used for other purposes

used for other purp	oses
 Background tasks 	, testing, etc.
arnegie Mellon	18-648: Embedded Real-Time Systems

n	$n(2^{1/n}-1)$
1	1
2	0.828
3	0.780
4	0.757
5	0.743
6	0.735
7	0.729
8	0.724
9	0.721
10	0.718
∞	$ln\ 2 = 0.693$

The Derivation of the "RMS" Least Upper Bound

- **Step 1**: Find the worst-case relative phasing between tasks
- Step 2:
 - Assume that the ratio of the largest to the smallest period (T_n / T_1) is no more than 2.
 - For *n* tasks, find U_{lub} such that if a task set has $U \le U_{lub}$, then it can be feasibly scheduled by RMS.
- **Step 3**: Generalize the result for an arbitrary T_n / T_1 ratio.

Carnegie Mellon

18-648: Embedded Real-Time Systems

The Worst-Case Relative Phasing

- **Critical instant**: the instant or relative phasing at which a task arrival encounters its worst-case response time
- **Critical zone**: the duration between the critical instant of a task instance and its completion

- For a periodic task set $\{(C, T)\}$, the critical zone for a task τ occurs when τ arrives simultaneously with *all* other higher priority tasks.
 - So, all tasks arrive together

Critical instant

 A taskset is feasible if the first instance of a task arrives along with all other tasks and completes by its deadline

Carnegie Mellon

18-648: Embedded Real-Time Systems

The Least Upper Schedulable Bound for 2 Tasks

Goal: Among all the feasibly scheduled task sets $\{\tau_1, \tau_2\}$, we want to find for any given combination of periods $\{T_1T_2\}$, the maximum feasible schedulable utilization $U_{\rm ub}$.

- Find the minimum value of $U_{\rm ub}$, $U_{\rm lub}$ for all possible combinations of $T_{\rm i}$.
- Fix T_2 and consider all possible values of T_1 , C_1 and C_2 (relative to T_2).
- For any T₁, assuming a fully utilized processor, the minimum U occurs when C₁ = T₂ T₁

Thus, $C_2 = T_1 - C_1$ $U = U_1 + U_2$ $= (T_2 - T_1) / T_1 + (T_1 - T_2 + T_1) / T_2$ $= T_2 / T_1 + 2 T_1 / T_2 - 2$

- If $C_1 = T_2 T_1 \varepsilon$, then, for full utilization, C_2 increases by 2 ε and U increases. T_2
- If $C_1 = T_2 T_1 + \varepsilon$, then, for full utilization, C_2 decreases by ε and U again increases (remember that $T_2 / T_1 < 2$).
- Next, differentiate U w.r.t. T_1 and equate the result to zero Obtain $\frac{T_2}{T} = \sqrt{2}$
- Hence, among all possible values of T_1 , the minimum utilization is

 $2(\sqrt{2}-1)$

Carnegie Mellon

18-648: Embedded Real-Time Systems

not

schedulable

schedulable

Least Upper Schedulable Bound for *n* Tasks

 For given values of T₁, ..., T_n, the upper bound, U_{ub}, on the utilization of feasible sets is obtained when

• For the above values, $U = \sum_{i=1}^{n-1} R_i + \frac{2}{R_1 R_2 ... R_{n-1}} - n$

where $R_i = T_{i+1} / T_i$ and $R_1 ... R_{n-1} = T_n / T_1$

- Differentiate U w.r.t. R_1 , ..., $R_{\rm n-1}$ and equate the result to zero to obtain $R_1=...=R_{\rm n-1}=2^{1/n}$
- Hence, among all the T's and C's, the minimum utilization for feasibility is given by $U = n (2^{1/n} 1)$

Carnegie Mellon

18-648: Embedded Real-Time Systems

Response Time (RT) Test

- Also, referred to as "Exact Schedulability Test" or "Completion Time Test"
- Can be used for computing response times with *any* fixed-priority preemptive scheduling scheme
- Let = the worst-case response time of task τ_i . of task τ_i may be a_k^i computed by the following iterative formula:

$$a_{k+1}^{i} = C_i + \sum_{j=1}^{i-1} \left[\frac{a_k^{i}}{T_j} \right] C_j$$
 where $a_0^{i} = \sum_{j=1}^{i} C_j$

- Test terminates when $a_{k+1}^i = a_k^i$
- Task *i* is schedulable if its response time is before its deadline: $\leq D_i$ a_k^i
 - Stop test once current iteration yields a value of beyond the deadline (else, you may never terminate).
- This test determines the schedulability of only task τ_i
- Repeat for other tasks as needed: i will change with the task

The 'square bracketish' thingies represent the 'integer ceiling' function, NOT brackets

Carnegie Mellon

Example: Testing for Schedulability

- Utilization of first two tasks: 0.667 < LUB(2) = 0.828
- The first two tasks are schedulable by UB test
- Utilization of all three tasks: 0.953 > LUB(3) = 0.779
- UB test is inconclusive for the third task
- Need to apply RT test

Carnegie Mellon

18-648: Embedded Real-Time Systems

Applying RT Test

Use RT test to determine if τ_3 meets its first deadline: i = 3

$$a_0^3 = \sum_{j=1}^3 C_j = C_1 + C_2 + C_3 = 40 + 40 + 100 = 180$$

$$a_1^3 = C_i + \sum_{j=1}^{i-1} \left[\frac{a_0^3}{T_j} \right] C_j = C_3 + \sum_{j=1}^2 \left[\frac{a_0^3}{T_j} \right] C_j$$

$$= 100 + \left[\frac{180}{100} \right] (40) + \left[\frac{180}{150} \right] (40) = 100 + 80 + 80 = 260$$

Carnegie Mellon

Applying the RT Test (contd.)

$$a_{2}^{3} = C_{3} + \sum_{j=1}^{2} \left[\frac{a_{1}^{3}}{T_{j}} \right] C_{j} = 100 + \left[\frac{260}{100} \right] (40) + \left[\frac{260}{150} \right] (40) = 300$$

$$a_{3}^{3} = C_{3} + \sum_{j=1}^{2} \left[\frac{a_{2}^{3}}{T_{j}} \right] C_{j} = 100 + \left[\frac{300}{100} \right] (40) + \left[\frac{300}{150} \right] (40) = 300$$

$$a_{3} = a_{2} = 300 \quad \text{Done!}$$

Task $\tau_{\scriptscriptstyle 3}$ is schedulable using the RT test

$$a_3 = 300 < D = T = 350$$

Carnegie Mellon

Exercise: Applying RT Test

- Task τ_1 : $C_1 = 1$ $T_1 = 4$
- Task τ_2 : $C_2 = 2$ $T_2 = 6$
- Task τ_3 : $C_3 = 2$ $T_3 = 10$
- a) Apply the LUB test
- b) Draw timeline
- c) Apply RT test

Carnegie Mellon

18-648: Embedded Real-Time Systems

Solution: Applying RT Test

- a) UB test
 - au_1 and au_2 OK -- no change from previous exercise
 - .25 + .34 + .20 = .79 > .779 ==> Test inconclusive for τ_3
- b) RT test and timeline

Carnegie Mellon

18-648: Embedded Real-Time Systems

Solution: Applying RT Test (cont.)

c) RT test

$$a_0^3 = \sum_{j=1}^3 C_j = C_1 + C_2 + C_3 = 1 + 2 + 2 = 5$$

$$a_1^3 = C_3 + \sum_{j=1}^2 \left\lceil \frac{a_0^3}{T_j} \right\rceil C_j = 2 + \left\lceil \frac{5}{4} \right\rceil 1 + \left\lceil \frac{5}{6} \right\rceil 2 = 2 + 2 + 2 = 6$$

$$a_2^3 = C_3 + \sum_{j=1}^2 \left\lceil \frac{a_1^3}{T_j} \right\rceil C_j = 2 + \left\lceil \frac{6}{4} \right\rceil 1 + \left\lceil \frac{6}{6} \right\rceil 2 = 2 + 2 + 2 = 6$$
Done

Carnegie Mellon

18-648: Embedded Real-Time Systems

Why Are Deadlines Missed?

- For a given task, consider
 - preemption: time waiting for higher priority tasks
 - execution: time to do its own work
 - blocking: time delayed by lower priority tasks
- The task is schedulable if the sum of its preemption, execution, and blocking is less than (or equal to) its deadline.
- Focus: identify the biggest hits among the three and reduce, as needed, to achieve schedulability

Carnegie Mellon

18-648: Embedded Real-Time Systems

Summary

- Dynamic-priority EDF scheduling can schedule periodic task sets with total utilization ≤ 100%
- Under fixed-priority Rate-Monotonic Scheduling (RMS),
 - Pathological tasksets with about 70% utilization could miss deadlines
 - Nearly impossible to find in practice
 - Least-Upper Bound tests are simple but conservative
 - Also referred to as a "utilization bound"
 - The Response time test is more exact but needs more calculations.
 - Easily automated
 - Harmonic tasksets can be scheduled up to 100%
 - Nearly harmonic tasksets (found in practice very often) are scheduled upwards of 92%
 - Randomly chosen tasksets have an average schedulable utilization of 88%
- RMS priority assignments are used widely in practice.

Carnegie Mellon

