# Operating Systems-2 CS 3510 Spring 2019 Theory Assignment

**INSTRUCTOR: DR. SPARSH MITTAL** 

**Report By:** 

Vijay Tadikamalla CS17BTECH11040



### Solution: Q1

**Given:** Page size:  $2KB = 2^{11}$ , Address:  $4095_{10} = (000011111111111111)_2$ 

Therefore, the page number is floor $(4095/2^{11}) = 1$  [Assuming zero-based indexing]

Therefore, Page offset: (11111111111)<sub>2</sub>

#### Solution: Q2

Given: Page size = 2KB = 2<sup>11</sup>, Physical Address size = 2<sup>24</sup>

Therefore, no of frames =  $2^{24}/2^{11} = 2^{13}$ 

Number of entries in inverted page table = No. of frames =  $2^{13}$ 

#### Solution: Q3

**Given:** Size of Available Chunk: 512KB, Size of Memory Request: 57KB

Divide 512KB chunk into two parts of 256KB each.

Divide one 256KB chunk into two parts of 128 KB each.

Finally, Divide one 128KB into two parts of 64KB each.

We allocate 64KB memory to kernel because any further division will reduce the size of memory block than the required memory block i.e. 57KB.

#### Solution: Q4

a) Given: Page segment = 0 and offset = 345.

As 345 < 420, It is a valid physical address

Therefore, Physical address= 239 + 345 = 584

**b) Given:** Page segment = 3 and offset = 666.

Invalid because 666 > 555

c) Given: Page segment = 2 and offset = 876.

As 876 < 1400, It is a valid physical address

Therefore, Physical address= 239 + 345 = 584

Solution: Q5

| Segment | Base | Length |
|---------|------|--------|
| 0       | 1100 | 700    |
| 1       | 9350 | 550    |
| 2       | 5600 | 600    |
| 3       | 2200 | 3400   |
| 4       | 6200 | 2500   |

## Solution: Q6

• To store the length of each page

• To check if the logical address is valid.

## Solution: Q7

Outer most page table has 536870912 entries =  $2^{29}$ . Therefore, 29 bits. Second-level page table has 8192 entries =  $2^{13}$ . Therefore, 13 bits Third level page table has 512 entries =  $2^{9}$ . Therefore, 9 bits Fourth level page table has 64 entries =  $2^{6}$ . Therefore, 6 bits

So a total of 57 bits are required for determining page configurations. So, rest 7 bits are reserved for offset.

| Outermost | Second level | Third Level | Fourth | Offset |
|-----------|--------------|-------------|--------|--------|
| 29        | 13           | 9           | 6      | 7      |

Solution: Q8

## Best Fit algorithm:

| Process No. | Process Size | Memory Partition Size |
|-------------|--------------|-----------------------|
| 1           | 135          | 155                   |
| 2           | 650          | 890                   |
| 3           | 398          | 480                   |
| 4           | 220          | 220                   |
| 5           | 520          | 580                   |
| 6           | 440          | 600                   |

# Worst-Fit algorithm:

| Process No. | Process Size | Memory Partition Size           |
|-------------|--------------|---------------------------------|
| 1           | 135          | 890 🗆 755                       |
| 2           | 650          | 755 🗆 105                       |
| 3           | 398          | 600 🗆 202                       |
| 4           | 220          | 580 □ 360                       |
| 5           | 520          | Not possible to allocate memory |
| 6           | 440          | 480 🗆 40                        |

## **Solution Q9**

| VALID | VALID   | INVALID | VALID | INVALID |
|-------|---------|---------|-------|---------|
| VALID | INVALID | VALID   | VALID | INVALID |
| FREE  | VALID   | VALID   | VALID | INVALID |

| Erase Operation No. | After Write Operation No. | Write Operation |
|---------------------|---------------------------|-----------------|
| 1                   | 15                        | 0               |
| 2                   | 17                        | 8               |
| 3                   | 19                        | 3               |
| 4                   | 22                        | 7               |

Therefore, total no. of erase operations = 4

## **Solution Q10**

**Given:** Total Size: 64GB, Block Size: 4KB, (No. of physical pages) = 4\* (No. of logical pages)

No. of logical pages =  $64GB / 4KB = 2^{24}$ Therefore, no. of physical pages =  $4 * 2^{24} = 2^{26}$ So, Table Size = (no. of pages) \* log(no. of physical pages) =  $2^{24} * log(2^{26}) = 26*2^{24}$  Bits = 52 MB