Bayesian computation project

Charles Dufour

EPFL

Spring semester 2019

Table of contents

- Framework
- Data
- Models
- Methods used
 - gradient descent and variant
 - Metropolis Hastings
- Comparison
 - Model accuracy
 - Methods comparison
- Conclusion

- Framework
- Data
- Models
- 4 Methods used
- Comparisor
- Conclusion

Framework implementations and limits¹

Optimization

- gradient descent
- linear search gd
- Wolfe cond gd
- Newton gd (slow)
- Stochastic gd

Framework implementations and limits¹

Optimization

- gradient descent
- linear search gd
- Wolfe cond gd
- Newton gd (slow)
- Stochastic gd

Approximation

- Laplace
- GVA (unstable)

¹more information can be found in the **O** repository

Framework implementations and limits¹

Optimization

- gradient descent
- linear search gd
- Wolfe cond gd
- Newton gd (slow)
- Stochastic gd

Approximation

- Laplace
- GVA (unstable)

Sampling

- MH random walk
- MALA
- IS, RS
- Gibbs
- MH within Gibbs

- Framework
- 2 Data
- Models
- 4 Methods used
- Comparison
- Conclusion

Structure

Figure: Hourly wage and features in the USA, May 1985

ED	SOUTH	NONWH	HISP	FE	MARR	MARRFE	EX	EXSQ	UNION	LNWAGE	AGE	MANUF	CONSTR	MANAG	SALES	CLER	SERV	PROF
10	0	0	0	0	1	0	27	729	0	2.1972	43	0	1	0	0	0	0	(
12	0	0	0	0	1	0	20	400	0	1.7047	38	0	0	0	1	0	0	C
12	0	0	0	1	0	0	4	16	0	1.3350	22	0	0	0	1	0	0	(
12	0	0	0	1	1	1	29	841	0	2.3514	47	0	0	0	0	1	0	0
12	0	0	0	0	1	0	40	1600	1	2.7080	58	0	1	0	0	0	0	0

Structure

Figure: Hourly wage and features in the USA, May 1985

ED	SOUTH	NONWH	HISP	FE	MARR	MARRFE	EX	EXSQ	UNION	LNWAGE	AGE	MANUF	CONSTR	MANAG	SALES	CLER	SERV	PROF
10	0	0	0	0	1	0	27	729	0	2.1972	43	0	1	0	0	0	0	C
12	0	0	0	0	1	0	20	400	0	1.7047	38	0	0	0	1	0	0	0
12	0	0	0	1	0	0	4	16	0	1.3350	22	0	0	0	1	0	0	0
12	0	0	0	1	1	1	29	841	0	2.3514	47	0	0	0	0	1	0	0
12	0	0	0	0	1	0	40	1600	1	2.7080	58	0	1	0	0	0	0	0

Purpose

- predict exactly the revenue
- predict if revenue above mean

Structure

Figure: Hourly wage and features in the USA, May 1985

ED	SOUTH	NONWH	HISP	FE	MARR	MARRFE	EX	EXSQ	UNION	LNWAGE	AGE	MANUF	CONSTR	MANAG	SALES	CLER	SERV	PROF
10	0	0	0	0	1	0	27	729	0	2.1972	43	0	1	0	0	0	0	0
12	0	0	0	0	1	0	20	400	0	1.7047	38	0	0	0	1	0	0	0
12	0	0	0	1	0	0	4	16	0	1.3350	22	0	0	0	1	0	0	0
12	0	0	0	1	1	1	29	841	0	2.3514	47	0	0	0	0	1	0	0
12	0	0	0	0	1	0	40	1600	1	2.7080	58	0	1	0	0	0	0	0

Purpose

- predict exactly the revenue
- predict if revenue above mean

Features dropped due to high correlation

- AGE
- EXSQ

Visualization

Visualization

- Framework
- Data
- Models
- Methods used
- Comparisor
- 6 Conclusion

Models

3 models implemented:

Gaussian model

$$Y|\beta,\sigma \sim \mathcal{N}\left(X\beta,\sigma^2
ight) \qquad \beta \sim \mathcal{N}_d(\vec{0},3^2I), \ \sigma \sim exp(2)$$

Models

3 models implemented:

Gaussian model

$$Y|\beta, \sigma \sim \mathcal{N}\left(X\beta, \sigma^2\right) \qquad \beta \sim \mathcal{N}_d(\vec{0}, 3^2 I), \ \sigma \sim exp(2)$$

Student model

$$Y|\beta, \nu \sim X\beta + t_{\nu}$$
 $\beta \sim \mathcal{N}_d(\vec{0}, 3^2 I), \ \nu \sim \Gamma(2, 4)$

Models

3 models implemented:

Gaussian model

$$Y|\beta, \sigma \sim \mathcal{N}\left(X\beta, \sigma^2\right) \qquad \beta \sim \mathcal{N}_d(\vec{0}, 3^2 I), \ \sigma \sim exp(2)$$

Student model

$$Y|\beta, \nu \sim X\beta + t_{\nu}$$
 $\beta \sim \mathcal{N}_d(\vec{0}, 3^2 I), \ \nu \sim \Gamma(2, 4)$

Logistic regression

$$\mathbb{P}(Y=1|X,\beta) = \frac{e^{X^T\beta}}{1+e^{X^T\beta}}, \quad \beta \sim \mathcal{N}_d(0,3^2)$$

- Framework
- 2 Data
- Models
- Methods used
 - gradient descent and variant
 - Metropolis Hastings
- Comparisor
- Conclusion

$$f(\theta) = -\log(\widetilde{f}(\theta|d))$$
$$\theta_c = \theta - \eta * \nabla_{\theta} f(\theta)$$

$$f(\theta) = -\log(\widetilde{f}(\theta|d))$$

 $\theta_c = \theta - \eta * \nabla_{\theta} f(\theta)$

Vanilla gradient descent

$$f(\theta) = -\log(\widetilde{f}(\theta|d))$$

 $\theta_c = \theta - \eta * \nabla_{\theta} f(\theta)$

- Vanilla gradient descent
- Line search gd (0 $< \beta < 1$) accept if :

$$f(\theta_c) < f(\theta) - \eta \varepsilon ||\nabla_{\theta} f(\theta)||_2^2$$

else:

$$\eta = \beta \eta$$

$$f(\theta) = -\log(f(\theta|d))$$
$$\theta_c = \theta - \eta * \nabla_{\theta} f(\theta)$$

- Vanilla gradient descent
- Line search gd (0 $< \beta < 1$) accept if :

$$f(\theta_c) < f(\theta) - \eta \varepsilon ||\nabla_{\theta} f(\theta)||_2^2$$

else:

$$\eta = \beta \eta$$

 Wolfe condition (0 < c1 < c2 < 1) decrease η if

$$f(\theta_c) \ge f(\theta) + c_1 \eta ||\nabla_{\theta} f(\theta)||_2^2$$

increase η if

$$-\nabla_{\theta} f(\theta_c)^T \nabla_{\theta} f(\theta) \ge -c_2 ||\nabla_{\theta} f(\theta)||_2^2$$

MH with random walk

Theory

10: end for

```
1: for i=1 to N do
2: draw \eta \sim \mathcal{N}_d(0,1)
3: \theta_c = \theta_n + \varepsilon \eta
4: R = f(\theta_c|d)/f(\theta_n|d)
5: if U(0,1) \leq R then
6: \theta_{n+1} = \theta_c
7: else
8: \theta_{n+1} = \theta_n
9: end if
```

Practice

- set ε such that the acceptance rate of the proposal is between 10 and 50 percent.
- compute everything using expsumlog
- check visually the chain to determine the burn-in
- test different initialization to detect potential silent failure

MH with Langevin correction (MALA)

Theory

As for the random walk MH algorithm except for

• the proposal:

$$\theta_c = \theta_n + \tau \nabla \log f(\theta_n | d) + \sqrt{2\tau} \eta$$

• the acceptance ratio:

$$R = \frac{f(\theta_c|d)q(\theta_n|\theta_c)}{f(\theta_n|d)q(\theta_c|\theta_n)}$$

Practice

- \bullet as before but be more careful with tuning the step size τ
- 0

$$q(x, x') \propto \ \exp\left(rac{||x' - x - au
abla \log f(x|d)||_2^2}{-4 au}
ight)$$

 biggest challenge: implement computation of gradient in efficient manner

- Framework
- 2 Data
- Models
- 4 Methods used
- Comparison
 - Model accuracy
 - Methods comparison
- 6 Conclusion

Comparison of accuracy on test set

Gaussian MAE

	error on test	error on train
gd	0.685706	0.613765
line_search_gd	0.685706	0.613765
Wolfe_cond_gd	0.738525	0.692682
MH_vanilla_mean	0.687246	0.614395
MH_vanilla_median	0.688279	0.614266
MH_Langevin_mean	0.687873	0.613893
MH Langevin median	0.688071	0.614006

Comparison of accuracy on test set

Gaussian MAE

	error on test	error on train
gd	0.685706	0.613765
line_search_gd	0.685706	0.613765
Wolfe_cond_gd	0.738525	0.692682
MH_vanilla_mean	0.687246	0.614395
MH_vanilla_median	0.688279	0.614266
MH_Langevin_mean	0.687873	0.613893
MH_Langevin_median	0.688071	0.614006

Student MAE

	error on test	error on train
gd	0.685292	0.609907
line_search_gd	0.685159	0.611209
Wolfe_cond_gd	0.685284	0.609814
MH_vanilla_mean	0.687430	0.611630
MH_vanilla_median	0.685471	0.612177
MH_Langevin_mean	0.685110	0.611450
MH_Langevin_median	0.684638	0.611450

Comparison of accuracy on test set

Gaussian MAE

	error on test	error on train
gd	0.685706	0.613765
line_search_gd	0.685706	0.613765
Wolfe_cond_gd	0.738525	0.692682
MH_vanilla_mean	0.687246	0.614395
MH_vanilla_median	0.688279	0.614266
MH_Langevin_mean	0.687873	0.613893
MH_Langevin_median	0.688071	0.614006

Student MAE

	error on test	error on train
gd	0.685292	0.609907
line_search_gd	0.685159	0.611209
Wolfe_cond_gd	0.685284	0.609814
MH_vanilla_mean	0.687430	0.611630
MH_vanilla_median	0.685471	0.612177
MH_Langevin_mean	0.685110	0.611450
MH_Langevin_median	0.684638	0.611450

Logistic error rate

	error on test	error on train
gd	0.448598	0.271663
line_search_gd	0.467290	0.269321
Wolfe_cond_gd	0.467290	0.269321
MH_vanilla_mean	0.467290	0.274005
MH_vanilla_median	0.467290	0.271663
MH_Langevin_mean	0.467290	0.271663
MH_Langevin_median	0.467290	0.274005

Comparison in term of time

- Framework
- Data
- Models
- 4 Methods used
- Comparison
- 6 Conclusion

Modelization

- simpler methods and models perform the best
- change the criterion : more realistic comparison

Modelization

- simpler methods and models perform the best
- change the criterion : more realistic comparison

Improvement

- Tuning of hyper-parameters
- Feature engineering

Modelization

- simpler methods and models perform the best
- change the criterion : more realistic comparison

Improvement

- Tuning of hyper-parameters
- Feature engineering
- Gamma model
- Classification in multiple ordered classes

Modelization

- simpler methods and models perform the best
- change the criterion : more realistic comparison

Improvement

- Tuning of hyper-parameters
- Feature engineering
- Gamma model
- Classification in multiple ordered classes
- More robust and faster module

References

- Guillaume Dehaene
 Lecture Notes, Bayesian computation MATH-435, 2019.
- **E**. R. Berndt

 The practice of econometrics: classic and contemporary. Addison-Wesley

 Pub. Co., 1991
- **G** GitHub repository https://github.com/dufourc1/Bayesian computation