Estimating Dynamic Models of Imperfect Competition

Bajari, Benkard and Levin

September 11, 2018

Takeaways

- New 2-step estimation procedure for dynamic discrete choice models.
- Provide both point and set identification estimation techniques.
- Limitations:
 - Method relies on single-dimensional agent uncertainty (monotonicity requirement)
 - Discrete choice relies on additive seperability
 - Perturbation techniques for finding new moment conditions is very local

Primitives

Notation:

- ▶ i is firm
- ► t is time
- > sit is state of firm i at time t
- a_{it} is action of firm i at time t
- v_{it} is private shock observable to only firm i at time t

Exogenous transition equations:

- $ightharpoonup \mathcal{P}(s_{t+1}|s_t,a_t; heta_1)$ state transition (by assumption)
- $ightharpoonup \mathcal{G}(\cdot|s_t;\theta_1)$ private shocks

Parameters to estimate:

- $\theta = (\theta_1, \theta_2)$
- \blacktriangleright θ_1 are parameters estimated in step 1
- \triangleright θ_2 are parameters estimated in step 2

Profit function:

$$\blacktriangleright \pi(a_{it}, s, v_{it}; \theta_2)$$

Policy function (Markovian):

$$ightharpoonup \sigma_i(s,v)$$

2-Step Estimation

- Step 1 Estimate policy and transition functions (possibly θ_1) using data
 - lacktriangle Estimate $\mathcal{P}(s_{t+1}|s_t,a_t)$ can do this with observed data
 - Estimate policy function (depends on setup):
 - ▶ Discrete choice setting can use Hotz-Miller inversion
 - Continous choice setting rely on monotonicity assumptions (and invertibility of G)
- Step 2 Estimate θ_2 using forward simulation + minimum distance estimator
 - Estimate value function $V_i(s; \sigma; \theta)$ by drawing shocks and state transitions and using σ from Step 1
 - Find θ_2 by using equilibrium conditions

Assumptions

- ES Data are generated by a single markov perfect eq profile σ
- H1 Transition functions are markovian and depend on states and action
- H2 Profit function linear in parameters:

$$\pi(a_{it}, s, v_{it}; \theta_2) = \theta_2 \pi(a_{it}, s, v_{it})$$

- For Discrete Choice model
 - DC Choice specific error terms $v(a_i)$ and add-seperability of profits:

$$\pi(a_{it}, s, v_{it}) = \tilde{\pi}(a_{it}, s) + v(a_{it})$$

► For Continuous Choice model

Monotone For each agent i, A_i , V_i , $\pi(a_{it}, s, v_{it})$ has increasing differences in (a_i, v_i) $(\partial^2 \pi/(\partial a_i \partial v_i) \geq 0$ for continuously differentiable profit fcns)

Estimating θ_2 with minimum distance

Use equilibrium conditions and perturbation of policy function to estimate parameters:

$$g(x; \theta, \alpha) = V_i(s; \theta_i, \sigma'_{-i}; \theta_2) - V_i(s; \sigma'_i, \sigma_{-i}; \theta_2)$$

Eq condition is violated if:

Objective function is simply:

$$Q(\theta) = \int \left(\min\{g(x; \theta_2), 0\}^2 \right) dH(x)$$

where, H(x) is the set of potential combos of (i, s, θ'_i) An example of to form H(x) is to perturb the policy function (Ellison, Snyder and Zhang 2016):

$$\sigma'(s, v_i) = \sigma_i(s, v_i) + \epsilon$$

Research Going Forward

- Multi-dimensional uncertainty (weakening monotonicity assumption)
- Good applications with multiple equilibria techniques
- Different specifications of errors (correlated across agents/time)
- ▶ More efficient construction of moments