```
In [1]: include("/home/nicole/Jupyter/SSBRJ/src/SSBR.jl")
using SSBR

In [2]: function getPos(ped,IDs)
    posAi = Array(Int64,size(IDs,1))
    for (i,id) = enumerate(IDs[:,1])
        posAi[i] = ped.idMap[id].seqID
    end
    return posAi
end

Out[2]: getPos (generic function with 1 method)

In [3]: ; cd Data/0.3/G/5
    /home/nicole/Jupyter/JG3/Data/0.3/G/5
```

```
In [4]: ;ls
```

```
Correlation.G5.G.JC.txt
Correlation.G5.G.PBLUP.txt
G0.Genotype.ID
G0.ID
G0.noGenotype.ID
G1.Genotype.ID
G1.ID
G1.noGenotype.ID
G2.Genotype.ID
G2.ID
G2.noGenotype.ID
G3.Genotype.ID
G3.ID
G3.noGenotype.ID
G4.Genotype.ID
G4.ID
G4.noGenotype.ID
G5.Genotype.ID
G5.ID
G5.noGenotype.ID
GenNF.txt
PedAll.txt
Phe.txt
PheAll.txt
Regression.G5.G.JC.txt
Regression.G5.G.PBLUP.txt
all.ID
alphaEstimates
genotype.ID
meanOfSNPGAll
meanOfSNPGG0
meanOfSNPGG1
meanOfSNPGG2
meanOfSNPGG3
meanOfSNPGG4
meanOfSNPGG5
noGenotype.ID
sim.bv
sim.phenotype
```

```
In [5]: |;awk '{print $1}' PedAll.txt | sort -b > all.ID
 In [6]: | ;awk '{print $1}' GenNF.txt | sort -b > genotype.ID
 In [7]: |;join -v1 all.ID genotype.ID > noGenotype.ID
 In [8]: | ;awk '{print $1,$2}' Phe.txt > sim.phenotype
 In [9]: | ;awk '{print $1,$3}' PheAll.txt > sim.bv
In [10]: ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
In [11]: ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
In [12]: ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
In [13]: ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
In [14]: ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
In [15]: ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
In [16]: |; join GO.ID genotype.ID > GO.Genotype.ID
In [17]: |;join G1.ID genotype.ID > G1.Genotype.ID
In [18]: ;join G2.ID genotype.ID > G2.Genotype.ID
In [19]: ;join G3.ID genotype.ID > G3.Genotype.ID
In [20]: |;join G4.ID genotype.ID > G4.Genotype.ID
In [21]: ;join G5.ID genotype.ID > G5.Genotype.ID
```

```
In [22]: |;join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [23]: ;join -v1 G1.ID genotype.ID > G1.noGenotype.ID
In [24]: ;join -v1 G2.ID genotype.ID > G2.noGenotype.ID
        ; join -v1 G3.ID genotype.ID > G3.noGenotype.ID
In [25]:
In [26]:
         ;join -v1 G4.ID genotype.ID > G4.noGenotype.ID
         ;join -v1 G5.ID genotype.ID > G5.noGenotype.ID
In [27]:
         ;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc G4.Genotype.ID;wc G5.Genotype
In [28]:
               200 1200 GO.Genotype.ID
          200
          200 200 1200 G1.Genotype.ID
          200 200 1200 G2.Genotype.ID
          200 200 1200 G3.Genotype.ID
          200 200 1200 G4.Genotype.ID
          8000 8000 48000 G5.Genotype.ID
         ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype.ID;wc G4.noGenotype.ID;wc G
In [29]:
          7800 7800 46800 GO.noGenotype.ID
               7800 46800 Gl.noGenotype.ID
          7800
                7800 46800 G2.noGenotype.ID
          7800
                7800 46800 G3.noGenotype.ID
          7800
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
```

```
In [30]:
         ped,A Mats,numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreeding=false)
         nothing
         df
                 = read genotypes("GenNF.txt", numSSBayes)
         M Mats = make MMats(df, A Mats, ped, center=true);
                                                                                   # with centering
         y Vecs = make yVecs("sim.phenotype",ped,numSSBayes)
         J Vecs = make JVecs(numSSBayes, A Mats)
         Z Mats = make ZMats(ped, y Vecs, numSSBayes)
         X Mats, W Mats = make XWMats(J Vecs, Z Mats, M Mats, numSSBayes)
                                                                                  # with J
         nothing
In [31]: vG
                = 0.754
         vRes
                = 1.760
         nIter = 50000
         @time aHat1,alphaHat,betaHat,epsiHat =
         ssGibbs(M_Mats,y_Vecs,J_Vecs,Z_Mats,X_Mats,W_Mats,A_Mats, numSSBayes,vRes,vG,nIter, outFreq=5000);
         nothing
         This is iteration 5000
         This is iteration 10000
         This is iteration 15000
         This is iteration 20000
         This is iteration 25000
         This is iteration 30000
         This is iteration 35000
         This is iteration 40000
         This is iteration 45000
         This is iteration 50000
         5188.623856 seconds (23.04 G allocations: 723.468 GB, 6.09% gc time)
         betaHat
In [32]:
Out[32]: 2-element Array{Float64,1}:
          14.1722
           4.44051
        using DataFrames
In [33]:
```

```
In [34]:
         df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',header=false)
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
In [35]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg1 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with epsilon
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n", reg1)
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.884
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.986
Out[35]: 0.8840027124990484
In [36]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[36]: -2.611126500719958
In [37]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat1[posAi])[1,1]
         reg2 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # with epsilon
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3f\n", reg2)
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.978
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 1.078
Out[37]: 0.9784865762549606
In [38]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[38]: -1.4498913706908598
```

```
In [39]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat1[posAi])[1,1]
         reg3 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 ) # with epsilon
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg3)
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.832
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.978
Out[39]: 0.8323876196414324
In [40]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[40]: -2.87910383841898
In [41]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", req4)
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.704
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 1.136
Out[41]: 0.7039358412606804
In [42]: GEBV = aHat1[posAi]
         GOGEBV=mean(GEBV)
Out[42]: -4.031526038773754
```

```
In [43]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", req4)
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation = 0.694
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 1.049
Out[43]: 0.6942015495729356
In [44]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[44]: -3.2874602572391707
In [45]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat1[posAi])[1,1]
         reg5 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", reg5)
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.695
         SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = 1.037
Out[45]: 0.6947098832734744
In [46]: GEBV = aHat1[posAi]
         G2GEBV=mean(GEBV)
Out[46]: -2.7838012049687886
```

```
In [47]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat1[posAi])[1,1]
         reg6 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", reg6)
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.701
         SSBRJC from Gibbs - G3.ID: regression of TBV on GEBV = 1.028
Out[47]: 0.701426972776136
In [48]: GEBV = aHat1[posAi]
         G3GEBV=mean(GEBV)
Out[48]: -2.327203507355799
In [49]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat1[posAi])[1,1]
         reg7 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", req7)
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation = 0.742
         SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = 1.057
Out[49]: 0.7422414599887864
In [50]: GEBV = aHat1[posAi]
         G4GEBV=mean(GEBV)
Out[50]: -1.8297087536748045
```

```
In [51]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat1[posAi])[1,1]
         reg8 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with epsilon
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", reg8)
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.977
         SSBRJC from Gibbs - G5.ID: regression of TBV on GEBV = 1.078
Out[51]: 0.9770454355777042
In [52]: GEBV = aHat1[posAi]
         G5GEBV=mean(GEBV)
Out[52]: -1.4070592423074304
In [53]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg9)
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.973
         SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = 1.065
Out[53]: 0.9726287313683705
In [54]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[54]: -2.5147241259879163
```

```
In [55]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg9)
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation = 0.974
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 1.064
Out[55]: 0.9741892162074677
In [56]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[56]: -2.2440629535226666
In [57]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat1[posAi])[1,1]
         reg10 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req10)
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.973
         SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = 1.062
Out[57]: 0.9727904895420397
In [58]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[58]: -1.8589568752231949
```

```
In [59]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor11 = cor(a[posAi],aHat1[posAi])[1,1]
         reg11 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", cor11 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req11)
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.973
         SSBRJC from Gibbs - G3.Genotype.ID: regression of TBV on GEBV = 1.086
Out[59]: 0.9734450824954709
In [60]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[60]: -1.3336294531181812
In [61]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat1[posAi])[1,1]
         reg12 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg12)
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.965
         SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = 1.046
Out[61]: 0.9650494692418528
In [62]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[62]: -1.011368580939515
```

```
In [63]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat1[posAi])[1,1]
         reg13 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13 ) # with epsilon
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req13)
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation = 0.977
         SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = 1.078
Out[63]: 0.9770454355777042
In [64]: writedlm("Correlation.G5.G.JC.txt",cor13)
In [65]: writedlm("Regression.G5.G.JC.txt",reg13)
In [66]: | TBVG5Gall = a[posAi]
         TBVG5G=mean(TBVG5Gall)
Out[66]: 12.715014125
In [67]: GEBVG5Gall = aHat1[posAi]
         GEBVG5G=mean(GEBVG5Gall)
Out[67]: -1.4070592423074304
In [68]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", cor14 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg14)
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.685
         SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = 1.219
Out[68]: 0.6846146643696028
```

```
In [69]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[69]: -4.070418395511853
In [70]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", cor14 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg14)
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.676
         SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = 1.066
Out[70]: 0.6762377098635315
In [71]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[71]: -3.314214034257543
In [72]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat1[posAi])[1,1]
         reg15 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor15 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg15)
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.677
         SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = 1.041
Out[72]: 0.677271696793933
In [73]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[73]: -2.8075151621417525
```

```
In [74]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat1[posAi])[1,1]
         reg16 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor16 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg16)
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.681
         SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = 1.028
Out[74]: 0.6809416355189812
In [75]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[75]: -2.3526797651567635
In [76]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat1[posAi])[1,1]
         reg17 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", cor17 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg17)
         JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.729
         SSBRJC from Gibbs - G4.noGenotype.ID: regression of TBV on GEBV = 1.058
Out[76]: 0.729316930296885
In [77]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[77]: -1.8506918350269912
In [78]: numSSBayes
Out[78]: SSBR.NumSSBayes(54883,45883,9000,40000,39000,1000,200)
```

```
In [79]: J1 = sortrows(J_Vecs.J1)
Out[79]: 45883x1 Array{Float64,2}:
          -1.02056
          -0.988924
          -0.988823
          -0.988276
          -0.986643
          -0.985649
          -0.985606
          -0.985458
          -0.984952
          -0.984722
          -0.984601
          -0.983967
          -0.983789
           5.90526e-17
           6.00026e-17
           6.06147e-17
           6.33096e-17
           6.76044e-17
           7.35935e-17
           7.67045e-17
           8.59192e-17
           8.87971e-17
           8.89946e-17
           1.07288e-16
           1.10973e-16
```

```
In [80]: J1[J1 .< 0.0,:]
Out[80]: 43894x1 Array{Float64,2}:
          -1.02056
          -0.988924
          -0.988823
          -0.988276
          -0.986643
          -0.985649
          -0.985606
          -0.985458
          -0.984952
          -0.984722
          -0.984601
          -0.983967
          -0.983789
          -7.2166e-36
          -7.21237e-36
          -7.20852e-36
          -7.20816e-36
          -7.01181e-36
          -5.41483e-36
          -9.14206e-66
          -1.07879e-66
          -7.2396e-67
          -7.1756e-67
          -3.56329e-67
          -1.33486e-67
```