Nom: Prénom:

Interrogation 1 - S3 - sujet b

Question:	1	2	3	Total
Points:	2	2	6	10
Note:				

Durée: 45 minutes.

1. (2 points) Soit f la fonction de $\mathbb R$ dans $\mathbb R$ définie par

$$f(x) = \begin{cases} \frac{1 - \cos x}{4x^2} & x \neq 0\\ 1/8 & x = 0. \end{cases}$$

Montrer que f est continue sur son ensemble de définition.

Solution : Déjà, f est continue sur $\mathbb R$ privé de $\{0\}$ en tant que quotient de fonctions continues, le dénominateur ne s'annulant pas sur cet ensemble. Pour établir la continuité en 0, effectuons un DL_2 de cos en 0: $\sin x = 1 - x^2/2 + \epsilon(x)x^2$. Ceci nous dit que, pour $x \neq 0$ au voisinage de 0,

$$f(x) = \frac{1 - 1 + x^2/2 + \epsilon(x)x^2}{4x^2} = 1/8 + \epsilon(x),$$

avec $\lim_{x\to 0} \epsilon(x) = 0$. Donc f est continue en 0.

2. (2 points) Soit f la fonction de $[2, +\infty[$ dans $\mathbb R$ définie par

$$f(x) = \sqrt{3x+1} \cdot \left(\sin{(1/x^2)} \right) \cdot (2x^5 - 4x + \sqrt{3}e^x).$$

Donner un équivalent simple de f au voisinage de $+\infty$.

 ${\bf Solution}$: Cherchons un équivalent au voisinage de $+\infty$ pour chaque facteur :

- $\sqrt{3x+1} \sim \sqrt{3x}.$
- D'après le DL $_1$ de sin en 0, et puisque lim $_{x\to +\infty}1/x^2=0,$ sin $(1/x^2)\sim 1/x^2.$
- Par croissances comparées le terme dominant de $2x^5 4x + \sqrt{3}e^x$ est $\sqrt{3}e^x$, et

$$\lim_{x \to +\infty} \frac{2x^5 - 4x + \sqrt{3}e^x}{\sqrt{3}e^x} = 1.$$

Donc $2x^5-4x+\sqrt{3}e^x\sim\sqrt{3}e^x$ au voisinage de $+\infty$. D'après le cours sur les produits d'équivalents,

$$f(x) \sim \sqrt{3x} \cdot \frac{1}{x^2} \cdot \sqrt{3}e^x = 3x^{-5/2}e^x.$$

3. (6 points) Déterminer la nature des intégrales généralisées suivantes :

$$I_1=\int_{\pi}^{+\infty}\frac{dx}{x(2+\cos x)\sqrt{x}},\quad I_2=\int_{0}^{+\infty}\frac{\sin t}{e^{1+3\ln t}}dt,\quad I_3=\int_{0}^{+\infty}\frac{\sin x}{\sqrt{x}}dx.$$

Solution:

1. Posons $f_1(x) = \frac{1}{x(2+\cos x)\sqrt{x}}$ pour $x \in [\pi, +\infty[$, et montrons que I_1 est convergente. f_1 est positive, et pour tout $x \in [\pi, +\infty[$, $2+\cos x \geqslant 1$ donc $f_1(x) \leqslant \frac{1}{x\sqrt{x}} = g_1(x)$. D'après le cours page 4, il suffit de montrer que l'intégrale $\int_{\pi}^{+\infty} g_1(x) dx$ converge. C'est bien le cas d'après le critère de Riemann au voisinage de $+\infty$:

$$g_1(x) = x^{-3/2},$$

et -3/2 < -1. Conclusion, I_1 est convergente.

2. Posons $f_2(t) = \frac{\cos t}{e^{1+3\ln t}}$ pour $t \in [0, +\infty[$, et montrons que I_2 est convergente. Déjà f_2 est continue sur [0, 1], ce qui permet de reléguer l'étude de la nature de l'intégrale à $[1, +\infty[$. f_2 est de signe variable; d'après le cours page 5 il suffit de montrer que f_2 est (absolument) intégrable sur $[1, +\infty[$, c'est-à-dire que

$$J_2 := \int_1^{+\infty} \frac{|\cos t|}{e^{1+3\ln t}} dt \text{ converge.}$$

Puisque J_2 est l'intégrale d'une fonction positive, et étant donné que pour tout $t \in \mathbb{R}$, $|\cos t| \leqslant 1$ et $e^{1+3\ln t} = et^3 \geqslant t^3$, d'après le cours page 4 il suffit d'avoir que l'intégrale généralisée $\int_1^{+\infty} dt/t^3$ converge. C'est bien le cas d'après le critère de Riemann en $+\infty$, car 3>1. Conclusion, I_2 est convergente.

3. Posons $f_3(x) = \frac{\sin x}{\sqrt{x}}$ pour $x \in]0, +\infty[$, et montrons que I_3 est convergente. Déjà $f_3(x)$ a pour limie 0 en 0, donc l'intégrale de f_3 entre 0 et $\pi/2$ est convergente. Ensuite, pour tout $X \geqslant \pi/2$, par intégration par parties

$$\int_{\pi/2}^{X} \frac{\sin x}{\sqrt{x}} dx = \left[\frac{-\cos x}{\sqrt{x}} \right]_{\pi/2}^{X} + \int_{\pi/2}^{X} \frac{\cos x}{2x\sqrt{x}} dx = \frac{-\cos X}{\sqrt{X}} + \int_{\pi/2}^{X} \frac{\cos x}{2x\sqrt{x}} dx.$$

Or $\frac{-\cos X}{\sqrt{X}}$ a pour limite 0 quand $X\to +\infty$, tandis que l'intégrale de droite est absolument convergente d'après le critère de Riemann. Conclusion, I_3 est convergente.