24-1 vision팀 4월 정기 발표

Study Group vision 2024/04/02

Contents

- 3월 스터디 진행 overview
- 논문 스터디 내용
- 강의 스터디 내용
- 공모전 및 연구 주제 선정

3월 스터디 진행 overview

- 매주 화 오후 7시 사당역 오프라인 스터디 진행
- 매주 논문 발표 + 강의 발표로 진행
- 논문 큰 흐름 주제는 multi-modal 로 선정
- 강의는 유튜브 Deep Learning for Computer Vision(2020) 강의에서 선택하여 수강

강의 스터디 내용

1. Lecuture 12: Recurrent Networks

- Time series 데이터 처리를 위한 모델 구조
- 각 타임 스탭 별 input용 가중치(W_h), 이전 hidden state용 가중치(b_h)사용

- Gradient vanishing/exploding을 해결하기 위한 LSTM
- 3개의 게이트와 cell state로 구성

강의 스터디 내용

2. Lecuture 3: Attention

- Seq2seq(Encoder&Decoder)
- -> seq2seq with attention
- -> transformers(* self attention, positional Encoding, Multi-head cross attention)

Output

Figure 1: The Transformer - model architecture.

강의 스터디 내용

2. Lecuture 15: Object Detection

2 stage Detecting: input -> Region Proposal -> classification
-> Bounding Box Regression

R-CNN

Fast R-CNN

Faster R-CNN

1. Clip(2021) / Blip(2022)

- Text embedding과 Image embedding을 연결하는 새로운 방법 제시 + Natural Language Supervision 이용
- Contrastive pre-training 적용

(2) Create dataset classifier from label text

1. Clip(2021) / Blip(2022)

- Encoder와 Decoder를 둘 다 사용하여 다양한 downstream task를 수행하도록 함
- Loss: Image-Text Contrastive loss + Image Text Matching Loss + Language Modeling Loss

2. OSCAR(2020)

- 개별 인코더(BERT, Faster R-CNN)를 이용한 뒤 단일 트랜스포머에 적용하여 상호작용을 모델링하는 single stream 구조
- 기존 모델과 다르게 text embedding, image embedding과 함께 Tag embedding 까지 사용한다는점이 큰 차이점

3. DALL-E(2021)

- Zero shot text-to-Image generation
- Transformer 모델을 단일 데이터 스트림 속에서 Auto-Regression 할 수 있도록 훈련
- 이미지 토큰 인풋의 메모리 한계를 극복하기 위해 two-stage 방법 채택(dVAE사용)

공모전 및 연구 주제 선정

간업문야	प ाँठ	
DNA(Data, Network, AI)	Data, Network, AI 등 지능정보기술을 결합하여 새로운 가치를 창출하고자 하는	
기반 문제	연구 문제	
바이오/디지털헬스케어	바이오/디지털헬스케어(데이터 기반 의료 및 헬스케어 기기 개발 및 서비스)를	
관련 문제	통해 인간의 지속가능한 건강한 삶에 기여하고자 하는 연구 문제	
산업체 관심 기술 설계	<u>산업체(전문가)에서 제시하는 연구 주제¹⁾ 혹은</u> 학생이 산업체 현장 분석을 통해	
문제	발견한 스스로 발견한 산업체 연구 문제	
기타 (자유주제)	창의적 역량을 시험하고 도전정신을 키울 수 있는 해결 방안 아이디어 제시	

연구주제:

Transformers 대체 기술인 **Mamba**를 활용한 style transfer 모델 연구

공모전 및 연구 주제 선정

What is Mamba?

- 기존 transformers는 텍스트 길이가 길어짐에 따라 성능과 시간에 병목이 있음
- → 텍스트에 시간성을 부여하지 않고 압축함으로써의미 함축을 잘 하지 못함
- 논문에서 제안하는 S6(Selective scan + S4) 구조를 사용하여 기존 S4 모델에 time-variance를 부여하고 Hardware-friendly 한 scan기법을 사용하여 gpu를 효율적으로 사용하도록 설계

Table 2: (**Induction Heads**.) Models are trained on sequence length $2^8 = 256$, and tested on increasing sequence lengths of $2^6 = 64$ up to $2^{20} = 1048576$. Full numbers in Table 11.

Feature	Transformer	Mamba
Architecture	Attention-based	SSM-based
Complexity	High	Lower
Inference Speed	0(n)	0(1)
Training Speed	0(n ²)	0(n)

