# Activity 18 - Convolutional Neural Networks

de Castro, Crizzia Mielle | 2015-08076

## Convolutional Neural Network

I followed the Python code presented in [1] and used the dogs and cats dataset provided by *Kaggle* in [2]. I set half of the labeled images and the other half as my validation dataset.

The code in [1] first demonstrated a single-layer CNN and a two-layer CNN. The author decided to created bigger CNN layer by increasing the number of filters from 48 to to 128. They also increased the number of epochs to see if the CNN can do better.

I decided to test all of the author's attempts on **random samples from the test set** provided by [2]. I compared them and tried to find which parameters work best. I set my cut-off probability to be at 50%. Below 50% probability is classified as a dog, while above is classified as a cat.

I also tested some of the CNN models I ran on pictures of cats and dogs outside of the dataset from Kaggle. I used images from my phone gallery.

## Single-layer CNN: 24 filters and 5 epochs

### probability of being a cat



0.99937475



0.99342084



0.35800612





0.94503343



0.99610126

## Single-layer CNN: 48 filters and 5 epochs



0.7191901





0.9959629



0.85033



0.010818601



0.5935516

## Two-layer CNN: 48 filters and 15 epochs



0.8725897



0.875263



0.041879475



0.067981094



0.62925935

## Two-layer CNN: 128 filters and 5 epochs

#### probability of being a cat



0.99512553



0.36881924



0.28458828



0.4084851



0.9869002

## Two-layer CNN: 152 filters and 10 epochs



0.26046485



0.3131905



0.015831828



0.041553468



0.6436567

## Two-layer CNN: 128 filters and 15 epochs

### probability of being a cat



0.93850005



0.16682759





0.18066075



0.9569353

# From phone gallery: Single-layer CNN (48 filters and 5 epochs)



0.9797697



0.99976194



0.0004975796



0.96985835



0.013181746



0.008053392



0.9868699



0.35279673



0.6097278



0.06845796

# From phone gallery: Two-layer CNN (128 filters and 15 epochs)



0.8214092



0.94714093



0.5708572



0.89383155



0.13106179



0.17659661



0.98920476



0.7581545



0.99442416



0.48806345

# From phone gallery: Two-layer CNN (152 filters and 10 epochs)



0.85947955



0.9823366



0.76923144



0.59594166



0.6288559



0.1974861



0.9956317



0.44508478



0.9796209



0.11401796

#### **Evaluation of Results**

Based on the results, increasing the the number of filters and CNN layers gives a better result. Increasing the number of epochs changes the probabilities, but the final classification is generally the same.

The best parameters for the two-layer CNN is 128 filters for 15 epochs. On the other hand, the best parameters for the single-layer CNN is 48 filters for 5 epochs.

## References

- 1. <a href="https://www.kdnuggets.com/2019/07/convolutional-neural-networks-python-tutorial-tensorflow-keras.">https://www.kdnuggets.com/2019/07/convolutional-neural-networks-python-tutorial-tensorflow-keras.</a>
  <a href="https://www.kdnuggets.com/2019/07/convolutional-neural-networks-python-tutorial-tensorflow-keras.">https://www.kdnuggets.com/2019/07/convolutional-neural-networks-python-tutorial-tensorflow-keras.</a>
- 2. <a href="https://www.kaggle.com/c/dogs-vs-cats/data">https://www.kaggle.com/c/dogs-vs-cats/data</a>