Neural Networks: Architecture

CS229: Machine Learning

Stanford University, Spring 2024 (Adapted from slides by Matgus Telgarsky and Alexander Schwing)

Goals of this lecture

- Understand the motivation for deep neural networks
- Learn about deep neural network architecture(s) and some standard components

Goals of this lecture

- Understand the motivation for deep neural networks
- Learn about deep neural network architecture(s) and some standard components

Reading material

- Course Notes, Section 7.1, 7.2
- I. Goodfellow et al.; Deep Learning; Chapters 6-9

Lecture notation

Notation	Usage
$h(\cdot)$	Feature function; $k(\cdot)$ in the notes
$f(\cdot)$	Prediction function; $h(\cdot)$ in the notes
$\overline{l(\cdot,\cdot)}$	Loss function; $J(\cdot)$ in the notes
$oldsymbol{w}, oldsymbol{W}$	Model Parameters, θ in the notes
$oldsymbol{x}^{(i)}, oldsymbol{x}$	Input(s)
$y^{(i)}, y$	Label(s)
λ	Regularization parameter(s); C in the notes
$\sigma(\cdot)$	Activation function, nonlinearity

Limitations of linear predictors?

No linear separator classifies perfectly!

Limitations of linear predictors?

Feature Transformation:

use features $h(x) := x_1^\top x_2$, with prediction $y = \operatorname{sgn}\left(w^\top h(x)\right)$.

No linear separator classifies perfectly!

What are y, x?

M: = background -1
Foregoound +1

X:= pixels (intersity/ wlar)

Poor contrast

Poor contrast

Shadow

Poor contrast

Shadow

Poor contrast

Shadow

Texture

Edge/Boundary detection: Why is it so difficult? Let's look at a local image region and the corresponding intensities:

Edge/Boundary detection: Why is it so difficult?

Let's look at a local image region and the corresponding intensities:

Non-Boundaries

Edge/Boundary detection: Why is it so difficult?

Let's look at a local image region and the corresponding intensities:

Non-Boundaries

Boundaries

M(x) = pixel

any local intersity

Edge/Boundary detection: Why is it so difficult?

Let's look at a local image region and the corresponding intensities:

Non-Boundaries

Boundaries

Intensity cue is not necessarily a good indicator for boundaries.

Edge/Boundary detection: What other image cues could be helpful?

Brightness gradient (BG)

- Brightness gradient (BG)
- Color gradient (CG)

- Brightness gradient (BG)
- Color gradient (CG)
- Texture gradient (TG)

- Brightness gradient (BG)
- Color gradient (CG)
- Texture gradient (TG)

How to combine all those cues? Learn a linear combination of cues

• What is $y^{(i)}$?

ullet What is $y^{(i)}$? Annotated pixel label

- ullet What is $y^{(i)}$? Annotated pixel label
- What is $x^{(i)}$?

- What is $y^{(i)}$? Annotated pixel label
- What is $x^{(i)}$? Image pixel

- What is $y^{(i)}$? Annotated pixel label
- What is $x^{(i)}$? Image pixel
- What is $h(x^{(i)})$?

- What is $y^{(i)}$? Annotated pixel label
- What is $x^{(i)}$? Image pixel
- What is $h(x^{(i)})$? Vector of features computed in the **neighborhood** of pixel i, e.g., intensity, texture gradient, oriented gradient etc.

Boundary detection performance:

Selecting good features is often key to the performance of an ML algorithm.

- Selecting good features is often key to the performance of an ML algorithm.
- Most common approach is to apply known heuristics that work well from (community/expert) experience.

- Selecting good features is often key to the performance of an ML algorithm.
- Most common approach is to apply known heuristics that work well from (community/expert) experience.
- Caution: when/how can adding features hurt performance?

- Selecting good features is often key to the performance of an ML algorithm.
- Most common approach is to apply known heuristics that work well from (community/expert) experience.
- Caution: when/how can adding features hurt performance?
- Next, we will discuss how deep learning can help automate feature extraction.

Neural networks via features.

To make a linear predictor nonlinear in x, we rely upon feature mapping h:

$$oldsymbol{w}^ op oldsymbol{x}$$
 becomes $oldsymbol{w}^ op oldsymbol{h}(oldsymbol{x}).$

We are at the mercy of the quality of h.

Neural networks via features.

To make a linear predictor nonlinear in x, we rely upon feature mapping h:

 $oldsymbol{w}^{ op} oldsymbol{x}$ becomes $oldsymbol{w}^{ op} oldsymbol{h}(oldsymbol{x}).$

We are at the mercy of the quality of h.

Why not *learn h*?

Neural networks via features.

To make a linear predictor nonlinear in x, we rely upon feature mapping h:

$$oldsymbol{w}^ op oldsymbol{x}$$
 becomes $oldsymbol{w}^ op oldsymbol{h}(oldsymbol{x}).$

We are at the mercy of the quality of h.

Why not learn h? e.g.,

ality of
$$h$$
.
$$\mathcal{L}(w) = -\log P(y|x) w$$

$$\min_{\boldsymbol{w}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y^{(i)}, \boldsymbol{w}^{\top} \boldsymbol{x}^{(i)}\right) \quad \text{becomes} \quad \min_{\boldsymbol{w}, \boldsymbol{h}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y^{(i)}, \boldsymbol{w}^{\top} \boldsymbol{h}(\boldsymbol{x}^{(i)})\right)$$

Natural choice: build feature maps out of linear predictors!

Natural choice: build feature maps out of linear predictors!

$$oldsymbol{w}^{ op}oldsymbol{x}$$
 becomes $oldsymbol{v}^{ op}h(oldsymbol{x})$ where $h(oldsymbol{x})=oldsymbol{A}oldsymbol{x}+oldsymbol{b}$

with $\boldsymbol{w} \in \mathbb{R}^d, \boldsymbol{v} \in \mathbb{R}^m, \boldsymbol{A} \in \mathbb{R}^{m \times d}, \boldsymbol{b} \in \mathbb{R}^m$.

Natural choice: build feature maps out of linear predictors!

$$oldsymbol{w}^ op oldsymbol{x}$$
 becomes $oldsymbol{v}^ op h(oldsymbol{x})$ where $h(oldsymbol{x}) = oldsymbol{A} oldsymbol{x} + oldsymbol{b}$

with $\boldsymbol{w} \in \mathbb{R}^d, \boldsymbol{v} \in \mathbb{R}^m, \boldsymbol{A} \in \mathbb{R}^{m \times d}, \boldsymbol{b} \in \mathbb{R}^m$.

There is something wrong with this!

Natural choice: build feature maps out of linear predictors!

$$oldsymbol{w}^{ op}oldsymbol{x}$$
 becomes $oldsymbol{v}^{ op}h(oldsymbol{x})$ where $h(oldsymbol{x})=oldsymbol{A}oldsymbol{x}+oldsymbol{b}$

with
$$oldsymbol{w} \in \mathbb{R}^d, oldsymbol{v} \in \mathbb{R}^m, oldsymbol{A} \in \mathbb{R}^{m imes d}, oldsymbol{b} \in \mathbb{R}^m.$$

There is something wrong with this!

Gained no additional representation flexibility!

$$oldsymbol{v}^ op(oldsymbol{A}oldsymbol{x}+oldsymbol{b})=(oldsymbol{A}^ opoldsymbol{v})^ opoldsymbol{x}.$$

Natural choice: build feature maps out of linear predictors!

$$oldsymbol{w}^{ op}oldsymbol{x}$$
 becomes $oldsymbol{v}^{ op}h(oldsymbol{x})$ where $h(oldsymbol{x})=oldsymbol{A}oldsymbol{x}+oldsymbol{b}$

with $oldsymbol{w} \in \mathbb{R}^d, oldsymbol{v} \in \mathbb{R}^m, oldsymbol{A} \in \mathbb{R}^{m imes d}, oldsymbol{b} \in \mathbb{R}^m.$

There is something wrong with this!

Gained no additional representation flexibility!

$$\boldsymbol{v}^{\top}(\boldsymbol{A}\boldsymbol{x}+\boldsymbol{b}) = (\boldsymbol{A}^{\top}\boldsymbol{v})^{\top}\boldsymbol{x} + \boldsymbol{v}^{\top}\boldsymbol{b}.$$

Fix: introduce nonlinearity/transfer/activation $\sigma: \mathbb{R}^m \to \mathbb{R}^m$:

$$h(\boldsymbol{x}) := \sigma \left(\boldsymbol{A} \boldsymbol{x} + \boldsymbol{b} \right).$$

We will predict as

$$\boldsymbol{w}^{\top}h(\boldsymbol{x})$$
 where $h(\boldsymbol{x}) = \sigma\left(\boldsymbol{A}\boldsymbol{x} + \boldsymbol{b}\right)$.

We will train as

$$\min_{\boldsymbol{w} \in \mathbb{R}^m, \boldsymbol{A} \in \mathbb{R}^m \times d, \boldsymbol{b} \in \mathbb{R}^m} \frac{1}{n} \sum_{i=1}^m \ell\left(y^{(i)}, \boldsymbol{w}^\top \sigma\left(\boldsymbol{A} \boldsymbol{x}^{(i)} + \boldsymbol{b}\right)\right).$$
 nich training procedure?
$$\bigcap_{i \in \mathbb{N}} \ell\left(y^{(i)}, \boldsymbol{w}^\top \sigma\left(\boldsymbol{A} \boldsymbol{x}^{(i)} + \boldsymbol{b}\right)\right).$$

Question: which training procedure?

We will predict as

$$\boldsymbol{w}^{\top}h(\boldsymbol{x})$$
 where $h(\boldsymbol{x}) = \sigma\left(\boldsymbol{A}\boldsymbol{x} + \boldsymbol{b}\right)$.

We will train as

$$\min_{\boldsymbol{w} \in \mathbb{R}^m, \boldsymbol{A} \in \mathbb{R}^{m \times d}, \boldsymbol{b} \in \mathbb{R}^m} \frac{1}{n} \sum_{i=1}^m \ell\left(y^{(i)}, \boldsymbol{w}^\top \sigma\left(\boldsymbol{A} \boldsymbol{x}^{(i)} + \boldsymbol{b}\right)\right).$$

Question: which training procedure?

Why stop there? We can also do

$$oldsymbol{w}^ op \sigma_1 \left(oldsymbol{A}^{[1]} \underline{h}(oldsymbol{x}) + oldsymbol{b}^{[1]}
ight) \qquad ext{where } h(oldsymbol{x}) = \sigma_2 \left(oldsymbol{A}^{[2]} oldsymbol{x} + oldsymbol{b}^{[2]}
ight),$$

and iterate further.

We will predict as

$$\boldsymbol{w}^{\top}h(\boldsymbol{x})$$
 where $h(\boldsymbol{x}) = \sigma\left(\boldsymbol{A}\boldsymbol{x} + \boldsymbol{b}\right)$.

We will train as

$$\min_{\boldsymbol{w} \in \mathbb{R}^m, \boldsymbol{A} \in \mathbb{R}^{m \times d}, \boldsymbol{b} \in \mathbb{R}^m} \frac{1}{n} \sum_{i=1}^m \ell\left(y^{(i)}, \boldsymbol{w}^\top \sigma\left(\boldsymbol{A} \boldsymbol{x}^{(i)} + \boldsymbol{b}\right)\right).$$

Question: which training procedure?

Why stop there? We can also do

$$oldsymbol{w}^ op \sigma_1\left(oldsymbol{A}^{[1]}h(oldsymbol{x}) + oldsymbol{b}^{[1]}
ight) \qquad ext{where } h(oldsymbol{x}) = \sigma_2\left(oldsymbol{A}^{[2]}oldsymbol{x} + oldsymbol{b}^{[2]}
ight),$$

and iterate further. This is a deep neural network.

Neural networks as functions.

A linear predictor (one layer network) has the form

 $oldsymbol{w}^{ op} oldsymbol{x}.$

A two layer network has the form

the form
$$x\mapsto w^{ op}\sigma_1\left(A^{[1]}x+b^{[1]}\right).$$

Iterating, a multi-layer network has the form

$$oldsymbol{w}^{ op}\sigma_1\left(oldsymbol{A}^{[1]}\sigma_2\left(\cdots oldsymbol{A}^{[L-2]}\sigma_{L-1}\left(oldsymbol{A}^{[L-1]}oldsymbol{x}+oldsymbol{b}^{[L-1]}
ight)+oldsymbol{b}^{[L-2]}\cdots
ight)+oldsymbol{b}^{[1]}
ight).$$

Neural networks as functions.

A linear predictor (one layer network) has the form

 $oldsymbol{w}^{ op}oldsymbol{x}.$

A two layer network has the form

$$oldsymbol{x} \mapsto oldsymbol{w}^ op \sigma_1 \left(oldsymbol{A}^{[1]} oldsymbol{x} + oldsymbol{b}^{[1]}
ight).$$

X X

Iterating, a multi-layer network has the form

$$oldsymbol{w}^ op \sigma_1 \left(oldsymbol{A}^{[1]} \sigma_2 \left(\cdots oldsymbol{A}^{[L-2]} \sigma_{L-1} \left(oldsymbol{A}^{[L-1]} oldsymbol{x} + oldsymbol{b}^{[L-1]}
ight) + oldsymbol{b}^{[L-2]} \cdots
ight) + oldsymbol{b}^{[1]}
ight).$$

Optimization now takes the form

$$\min_{\boldsymbol{w}, \boldsymbol{A}^{[1]}, \dots, \boldsymbol{A}^{[L-1]}, \boldsymbol{b}_1, \dots, \boldsymbol{b}_{L-1}} \frac{1}{n} \sum_{i=1}^n \ell\left(y^{(i)}, \boldsymbol{w}^\top \sigma_1 \left(\cdots \sigma_{L-1} \left(\boldsymbol{A}^{[L-1]} \boldsymbol{x}^{(i)} + \boldsymbol{b}^{[L-1]}\right)\cdots\right)\right).$$

(Computation graphs in tensorflow and other software differ slightly.)

(Computation graphs in tensorflow and other software differ slightly.)

Node j in this graph:

- Collects a vector z from its in-edges;
- Computes $\sigma_i(\boldsymbol{w}^{[j]\top}\boldsymbol{z} + b^{[j]})$;
- Propagates this value along its out-edges.

(Computation graphs in tensorflow and other software differ slightly.)

Node j in this graph:

- Collects a vector z from its in-edges;
- Computes $\sigma_j(\boldsymbol{w}^{[j]\top}\boldsymbol{z} + b^{[j]})$;
- Propagates this value along its out-edges.

Computation of whole network can be written this way.

(Computation graphs in tensorflow and other software differ slightly.)

Node j in this graph:

- Collects a vector z from its in-edges;
- Computes $\sigma_i(\boldsymbol{w}^{[j]\top}\boldsymbol{z} + b^{[j]})$;
- Propagates this value along its out-edges.

Computation of whole network can be written this way.

Tensorflow computation graphs: everything needed to train is in the graph; e.g., parameters are also assigned to nodes.

Internal representation used by deep net packages

$$f(\mathbf{w}, x, y) = h_1(w^1, h_2(w^2, h_3(\ldots)))$$

Nodes are weights, data, and functions

Example function architecture: LeNet

Decreasing spatial resolution and the increasing number of channels (dimension of feature maps)

Example function architecture: AlexNet

Decreasing spatial resolution and the increasing number of channels (dimension of feature maps)

Why is the output 1000-dimensional?

Common functions/layers in a deep network

Common functions/layers in a deep network

- Univariate activations e.g. rectified linear units (ReLU): $\max\{0, x\}$
- Fully connected layers
- Convolution layers
- Maximum-/Average- pooling
- Soft-max layer
- Dropout

Neural network (univariate) activations.

We mentioned that **nodes** compute

$$\sigma\left(\boldsymbol{v}^{\top}\boldsymbol{z}\right),$$

where activation/transfer/nonlinearity $\sigma: \mathbb{R} \to \mathbb{R}$ is:

- ReLU (Rectified Linear Unit) $\max\{0, z\}$;
- Sigmoid $\frac{1}{1+\exp(-z)}$;
-

For

$$\sigma(\boldsymbol{Az}+\boldsymbol{b}),$$

this implies applying the univariate σ coordinate-wise.

Fully connected layer

Trainable parameters w:

- Weight matrix
- Bias

Fully connected layer

$$Wx + b$$

Trainable parameters w:

- Weight matrix
- Bias

What's an issue with fully connected layers?

Issue with fully connected layers

- Suppose the input is an image of size 256×256
- Let the output of this layer have identical size

How many weights are necessary?

Issue with fully connected layers

- Suppose the input is an image of size 256×256
- Let the output of this layer have identical size
- How many weights are necessary?

$$(256 \times 256)^2 = 2^{32} = 4,294,967,296$$

Issue with fully connected layers

- Suppose the input is an image of size 256×256
- Let the output of this layer have identical size
- How many weights are necessary?

$$(256 \times 256)^2 = 2^{32} = 4,294,967,296$$

A solution: share weights

120	190	140	150	200
17	21	30	8	27
89	123	150	73	56
10	178	140	150	18
190	14	76	69	87

120	190	140	150	200
17	21	30	8	27
89	123	150	73	56
10	178	140	150	18
190	14	76	69	87

120	190	140	150	200
17	21	30	8	27
89	123	150	73	56
10	178	140	150	18
190	14	76	69	87

120	190	140	150	200
17	21	30	8	27
89	123	150	73	56
10	178	140	150	18
190	14	76	69	87

120	190	140	150	200
17	21	30	8	27
89	123	150	73	56
10	178	140	150	18
190	14	76	69	87

120	190	140	150	200
17	21	30	8	27
89	123	150	73	56
10	178	140	150	18
190	14	76	69	87

	98	98	93	
	84	97	72	
	108			

120	190	140	150	200
17	21	30	8	27
89	123	150	73	56
10	178	140	150	18
190	14	76	69	87

120	190	140	150	200
17	21	30	8	27
89	123	150	73	56
10	178	140	150	18
190	14	76	69	87

Convolutions

Trainable parameters w:

- Filters (width, height, depth, number)
- Bias

Maximum-/Average- pooling

Maximum or average over a spatial region

Trainable parameters w:

None

Soft-max layer

$$\frac{\exp z_i}{\sum_j \exp z_j}$$

Trainable parameters w:

None

Dropout layer

Randomly set activations to zero

Trainable parameters w:

None

Multiclass output.

Modern networks often end with **softmax** nonlinearity:

$$\sum_{i=1}^k \frac{\exp(\boldsymbol{z}_i)\mathbf{e}_i}{\sum_{j=1}^k \exp(\boldsymbol{z}_j)}$$

(where e_i is i^{th} standard basis vector.) Output is now a probability vector!

Multiclass output.

Modern networks often end with **softmax** nonlinearity:

$$\sum_{i=1}^{k} \frac{\exp(\boldsymbol{z}_i)\mathbf{e}_i}{\sum_{j=1}^{k} \exp(\boldsymbol{z}_j)}$$

(where e_i is i^{th} standard basis vector.) Output is now a probability vector!

Alternate notation: output vector $v_i \propto \exp(z_i)$.

Cross-entropy loss.

Given one hot $\boldsymbol{y} \in \{\mathbf{e}_1, \dots, \mathbf{e}_k\}$ and probability vector $\hat{\boldsymbol{y}} \in \mathbb{R}^k$,

Cross-entropy loss.

Given one hot $y \in \{\mathbf{e}_1, \dots, \mathbf{e}_k\}$ and probability vector $\hat{y} \in \mathbb{R}^k$,

$$\ell(y, \hat{y}) = -\sum_{i=1}^{k} \boldsymbol{y}_i \ln(\hat{\boldsymbol{y}}_i).$$

Combined with softmax $\hat{y} \propto \exp(z)$:

$$-\sum_{i=1}^k oldsymbol{y}_i \ln \left(rac{\exp(oldsymbol{z}_i)}{\sum_j \exp(oldsymbol{z}_j)}
ight) = -\sum_{i=1}^k oldsymbol{y}_i oldsymbol{z}_i + \ln \left(\sum_{i=1}^k \exp(oldsymbol{z}_i)
ight).$$

Note: For numerical stability, use $\ln \sum_i \exp v_i = c + \ln \sum_i \exp(v_i - c)$.

Cross-entropy loss.

Given one hot $y \in \{\mathbf{e}_1, \dots, \mathbf{e}_k\}$ and probability vector $\hat{y} \in \mathbb{R}^k$,

$$\ell(y, \hat{y}) = -\sum_{i=1}^{k} \boldsymbol{y}_i \ln(\hat{\boldsymbol{y}}_i).$$

Combined with softmax $\hat{y} \propto \exp(z)$:

$$-\sum_{i=1}^k oldsymbol{y}_i \ln \left(rac{\exp(oldsymbol{z}_i)}{\sum_j \exp(oldsymbol{z}_j)}
ight) = -\sum_{i=1}^k oldsymbol{y}_i oldsymbol{z}_i + \ln \left(\sum_{i=1}^k \exp(oldsymbol{z}_i)
ight).$$

Note: For numerical stability, use $\ln \sum_i \exp v_i = c + \ln \sum_i \exp(v_i - c)$. Equivalent to multinomial logistic loss.

Regularization.

- "Weight decay": $+\lambda ||w||^2$ in objective (where w are all parameters).
- Dropout: randomly nullify node outputs in training.
- Batch normalization: "standardize" node output distribution.

Regularized learning now takes the form

$$\min_{\boldsymbol{W}^{[1]},...,\boldsymbol{W}^{[L]},\boldsymbol{b}^{[1]},...,\boldsymbol{b}^{[L]}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y^{(i)}, \boldsymbol{W}^{[L]} \sigma_{L-1} \left(\cdots \sigma_{1} \left(\boldsymbol{W}^{[1]} \boldsymbol{x}^{(i)} + \boldsymbol{b}^{[1]}\right)\cdots\right)\right) + \lambda \sum_{l=1}^{L} \|\boldsymbol{W}^{[l]}\|_{2}^{2}$$

Regularized learning now takes the form

$$\min_{\boldsymbol{W}^{[1]},...,\boldsymbol{W}^{[L]},\boldsymbol{b}^{[1]},...,\boldsymbol{b}^{[L]}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y^{(i)}, \boldsymbol{W}^{[L]} \sigma_{L-1} \left(\cdots \sigma_{1} \left(\boldsymbol{W}^{[1]} \boldsymbol{x}^{(i)} + \boldsymbol{b}^{[1]}\right)\cdots\right)\right) + \lambda \sum_{l=1}^{L} \|\boldsymbol{W}^{[l]}\|_{2}^{2}$$

In general, resulting optimization is "harder" than linear regression

Regularized learning now takes the form

$$\min_{\boldsymbol{W}^{[1]},...,\boldsymbol{W}^{[L]},\boldsymbol{b}^{[1]},...,\boldsymbol{b}^{[L]}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y^{(i)},\boldsymbol{W}^{[L]}\sigma_{L-1}\left(\cdots\sigma_{1}\left(\boldsymbol{W}^{[1]}\boldsymbol{x}^{(i)}+\boldsymbol{b}^{[1]}\right)\cdots\right)\right) + \lambda \sum_{l=1}^{L} \|\boldsymbol{W}^{[l]}\|_{2}^{2}$$

In general, resulting optimization is "harder" than linear regression

Implications:

- Gradient-based optimization approaches is no longer guaranteed to find the global optimum
- Initialization of parameters matters

Regularized learning now takes the form

$$\min_{\boldsymbol{W}^{[1]},...,\boldsymbol{W}^{[L]},\boldsymbol{b}^{[1]},...,\boldsymbol{b}^{[L]}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y^{(i)},\boldsymbol{W}^{[L]}\sigma_{L-1}\left(\cdots\sigma_{1}\left(\boldsymbol{W}^{[1]}\boldsymbol{x}^{(i)}+\boldsymbol{b}^{[1]}\right)\cdots\right)\right) + \lambda \sum_{l=1}^{L} \|\boldsymbol{W}^{[l]}\|_{2}^{2}$$

In general, resulting optimization is "harder" than linear regression

Implications:

- Gradient-based optimization approaches is no longer guaranteed to find the global optimum
- Initialization of parameters matters
- Stochastic gradient descent works well in practice

• What are deep neural networks?

- What are deep neural networks?
- How can you interpret deep nets as learning feature transformations?

- What are deep neural networks?
- How can you interpret deep nets as learning feature transformations?
- How can you interpret deep nets as function graphs?

- What are deep neural networks?
- How can you interpret deep nets as learning feature transformations?
- How can you interpret deep nets as function graphs?
- What are some standard components of deep nets?

- What are deep neural networks?
- How can you interpret deep nets as learning feature transformations?
- How can you interpret deep nets as function graphs?
- What are some standard components of deep nets?
- What algorithm can be used to train deep nets?

Important topics of this lecture

- Deep nets as functions and graphs
- Components of deep nets

Up next:

Backpropagation