Analisi matematica

Analisi - Prova unica

▼ 0.0 - Informazioni generali

Ore di studio

Totale: **150** Lezione: **66**

Casa: 84 (2 al giorno - 3,5 giorni a settimana)

Esame

- Scritto
 - o Primo parziale: Esercizi + semplice domanda di teoria. Non è possibile utilizzare la calcolatrice.
 - Secondo parziale: Esercizi sui seguenti argomenti:
 - Integrale su una variabile
 - \mathbb{R}^n spazio euclideo
 - Calcolo differenziale su più variabili / derivate / ottimizzazione (massimi e minimi)
 - Integrale su più variabili
- Orale
 - Struttura: Discussione sui principali teoremi e delle loro dimostrazioni.
 - o Accesso: Solo se si è superato lo scritto durante la stessa sessione.

Ricevimento

- Marco Mughetti
 - Su appuntamento scrivendo una mail all'indirizzo marco.mughetti@unibo.it.
- · Daniele Morbidelli
 - o Venerdi' ore 9/11. Si consiglia di contattare il docente per conferma via e-mail.

▼ 1.0 - Integrali

Gli integrali sono utili per calcolare l'area delle figure curvilinee.

Con essi è infatti possibile determinare l'area del **sottografico** di una certa funzione curvilinea. Data una funzione $f[a,b] \to \mathbb{R}$ tale che $\forall x \in [a,b].f(x) \geq 0$, il suo sottografico corrisponde a $\{(x,y) \in \mathbb{R}^2 | x \in [a,b], 0 \leq y \leq f(x)\}$:

Sottografico di una funzione.

▼ 1.1 - Somma di Riemann e integrale

Scomposizione di un intervallo

Dato un intervallo $[a,b]\subseteq\mathbb{R}$ e un numero $n\in\mathbb{N}$, divido [a,b] in n parti uguali:

Ogni k-esima x dell'intervallo è ricavabile tramite: $x_k = a + k \frac{b-a}{n}$.

Per ogni parte dell'intervallo scelgo un suo punto interno $c_k \in [x_{k-1}, x_k]$.

Somma di Riemann

Sia f una funzione continua su [a,b], definiamo la **somma di Riemann** come segue:

$$S_n = \sum_{k=1}^n f(c_k) h = \sum_{k=1}^n f(c_k) rac{b-a}{n}$$

Come possiamo notare dalla formula appena descritta S_n dipende dalla scelta dei vari c_k , la quale è arbitraria.

▼ 1.2 - Integrale

Teorema: sia f una funzione continua su [a,b], allora esiste finito il $\lim_{n\to\infty} S_n$. Tale limite **non dipende** dunque dalla scelta dei punti c_k .

Si è soliti scrivere tale limite $\lim_{n o\infty}f(x)$ come $\int_a^bf(x)\,dx=\int_a^bf$ e si dice che f è **integrabile**.

Osservazione: $\int_a^a f(x) \ dx = 0$ e $\int_a^b c \ dx = c(b-a)$.

Sappiamo inoltre che l'integrale $\int_a^b f(x) \, dx$ è un numero e indica l'area del sottografico di f(x) nell'intervallo [a,b].

Proprietà dell'integrale

1. Linearità

f,g continue su [a,b]. $\lambda,\mu\in\mathbb{R}$.

 $\lambda f + \mu g$ è integrabile e vale:

$$\int_a^b (\lambda f + \mu g) = \lambda \int_a^b f + \mu \int_a^b g$$

2. Additività

 $f:\mathbb{R} o \mathbb{R}$ integrabile.

 $orall a,b,c\in\mathbb{R}$ vale:

$$\int_a^b f = \int_a^c f + \int_c^b f$$

I reali a,b e c possono trovarsi in qualunque posizione, non devono per forza essere nell'ordine a < b < c.

3. Monotonia

f, g continue su [a, b].

$$orall x \in [a,b].f(x) \leq g(c) \implies \int_a^b f \leq \int_a^b g$$

4. Convenzione

$$\int_a^b f = -\int_b^a f$$

Teorema della media integrale

Sia f una funzione continua su [a,b], allora $\exists c \in [a,b]$ tale che:

$$\frac{1}{b-a} \int_a^b f(x) \ dx = f(c)$$

Dimostrazione a pagina 2 del pdf "lezioni-1-2".

Primitiva di una funzione

 $f: [a,b] o \mathbb{R}$. $F: [a,b] o \mathbb{R}$ si dice **primitiva** di f su [a,b] se vale:

$$\forall x \in]a,b[.\ F'(x)=f(x)$$

Osservazione: Se F è la primitiva di f su]a,b[, allora anche $H:]a,b[\to \mathbb{R}, H(x) = F(x) + c$ è primitiva di f $\forall c \in \mathbb{R}$.

Le primitive di una funzione f sono infinite, e sono tutte quelle che assumono una forma riconducibile a F(x) + c, dove c è uno scalare.

Proposizione: Siano F e G primitive di f su]a,b[. Allora:

$$\exists k \in \mathbb{R}. F(x) - G(x) = k. \ \forall x \in]a,b[$$

Dimostrazione a pagina 3 del pdf "lezioni-1-2".

▼ 1.3 - Funzioni integrali e primitive elementari

Data $f:]a_0, b_0[\to \mathbb{R}$ continua e $c \in \mathbb{R}$ definiamo $I_c:]a_0, b_0[\to \mathbb{R}, I_c(x) = \int_c^x f(t) \ dt$ come funzione integrale di punto base c. La funzione integrale rappresenta l'area sottesa al grafico di f da un certo punto base c fino a x.

Teorema fondamentale del calcolo integrale

Sia f continua su $]a_0,b_0[$ e sia $c\in]a_0,b_0[$. Allora:

$$\forall x \in [a_0, b_0[.\ F'(x) = f(x).$$

Dimostrazione a pagina 3 del pdf "lezioni-1-2".

Teorema fondamentale del calcolo integrale 2 - Formula di Torricelli

Sia f continua su a_0, b_0 e sia F la primitiva di f su a_0, b_0 , allora:

$$orall x \in \left] a_0, b_0
ight[.\int_a^b f(x) \ dx = F(b) - F(a)$$

Dimostrazione a pagina 4 del pdf "lezioni-1-2".

Primitive elementari

$$\int k o kx \ \int x^{lpha}, lpha
eq -1 o rac{x^{lpha+1}}{lpha+1} \ \int x^{-1} o \ln|x| \ \int a^x o rac{a^x}{\ln x} \left[\int e^x o e^x
ight] \ \int \sin x o - \cos x \ \int \cos x o \sin x \ \int f(g(x))g'(x) o F(g(x))$$

▼ 1.4 - Integrazione per parti, cambio variabile e integrali generalizzati

Integrazione per parti

Per integrare un prodotto può essere talvolta utilizzata la formula:

$$\int_a^b f(x)g'(x)\ dx = [F(x)g(x)]_a^b - \int_a^b F(x)g'(x)\ dx$$

Nota: per integrare $\int \sin x \ e^x$ occorre utilizzare due volte la formula di integrazione per parti.

Formula per il cambio variabile

Siano I,J intervalli aperti, sia $h:I\to J$ una funzione con derivata h' continua su I e $f:J\to\mathbb{R}$ una funzione continua. Allora $\forall \alpha,\beta\in I$ vale:

$$\int_{h(lpha)}^{h(eta)} f(x) \ dx = \int_{lpha}^{eta} f(h(t)) h'(t) \ dt$$

Dimostrazione pagina 1 del pdf "lezioni-3-4".

Osservazione per esercizi: integrali del tipo $\int_a^b g(f(x))f'(x)\ dx$ possono essere risolti sostituendo a f(x) una variabile come z, e visto che $dz=f'(x)\ dx$ possiamo arrivare all'integrale $\int_a^b g'(x)\ dx$. Utilizzando il teorema fondamentale del calcolo integrale possiamo dunque concludere che $\int_a^b g(f(x))f'(x)\ dx=[g(x)]_a^b$.

Caso particolare: $F'(x)=rac{d}{dx}\int_{c}^{x}f(t)dt=f(x).$

Integrali generalizzati

Sia $f:[a,+\infty[\to \mathbb{R}$ continua. Si dice che f è integrabile in senso generalizzato su $[a,+\infty[$ se:

$$\exists \lim_{z o +\infty} \int_a^z f(x) \ dx \coloneqq \int_a^{+\infty} f(x) \ dx$$

La definizione per $\int_{-\infty}^a f(x) \ dx$ è omessa perchè analoga.

Osservazione: se $f(x) \geq 0$ su $[a, +\infty[$ e $\int_a^{+\infty} f(x)$ converge, allora tale integrale esprime l'area del sottografico di f(x) nell'intervallo $[a, +\infty[$.

Esercizio:

lacksquare Studiare l'integrale generalizzato $\int_1^{+\infty} rac{dx}{x^p}, orall p>0$

Per studiare tale integrale occorre dunque studiare il seguente limite: $\lim_{z \to +\infty} \int_1^z \frac{dx}{x^p}$.

A questo punto il valore dell'integrale dipende dal valore del parametro p in quanto questo determina il valore dell'esponente di z:

- Esponente $p \neq 1$: il limite da valutare è $\lim_{z \to +\infty} [\frac{x^{1-p}}{1-p}]_1^z = \lim_{x \to +\infty} \frac{z^{1-p}}{1-p} \frac{1}{1-p}$, il quale dipende a sua volta dal valore dell'esponente di z:
 - \circ Esponente $1-p>0 \implies p<1$: la prima frazione del limite tende a 0 e l'integrale è dunque uguale a $\frac{1}{p-1}$.
 - \circ Esponente $1-p<0 \implies p>1$: la prima frazione del limite tende a $+\infty$ e l'integrale diverge, dunque vale $+\infty$.
- Esponente $1-p=0 \implies p=1$: il limite da valutare è $\lim_{z\to +\infty} [\ln(x)]_1^z=\lim_{z\to +\infty} \ln(z)-\ln(1)$, dunque l'integrale diverge, ovvero vale $+\infty$.

Sia $f:]a,b] o \mathbb{R}$ continua. Si dice che f è integrabile in senso generalizzato su]a,b] se:

$$\exists \lim_{z o a^+} \int_z^b f(x)\ dx \coloneqq \int_a^b f(x)\ dx$$

▼ 2.0 - Spazio euclideo

Lo spazio \mathbb{R}^n o **spazio euclideo** è definito nel seguente modo:

$$ig| \;\; \mathbb{R}^n \coloneqq \{x = (x_1, \ldots, x_n) | x_1, \ldots, x_n \in \mathbb{R} \}$$

Esempi di spazi euclidei:

ullet \mathbb{R}^2 = piano cartesiano. $(x,y)\in\mathbb{R}^2=(x_1,x_2)\in\mathbb{R}^2$

Visualizzazione grafica di un vettore nello spazio \mathbb{R}^2 .

• \mathbb{R}^3 = spazio ordinario. $(x,y,z)\in\mathbb{R}^3=(x_1,x_2,x_3)\in\mathbb{R}^3.$

Visualizzazione grafica di un vettore nello spazio \mathbb{R}^3 .

▼ 2.1 - Operazioni nello spazio euclideo

Somma tra vettori

Dati due vettori $x=(x_1,\ldots,x_n)$ e $y=(y_1,\ldots,y_n)$, definiamo la **somma** tra di essi come:

$$x+y=(x_1+y_1,\ldots,x_n+y_n)$$

La somma tra vettori nello spazio \mathbb{R}^2 può essere visualizzata in maniera grafica tramite la regola del parallelogramma:

Regola del parallelogramma.

Prodotto con scalare

Dato un vettore $x=(x_1,\ldots,x_n)$ e uno scalare $\lambda\in\mathbb{R}$, definiamo il prodotto con scalare come:

$$\lambda x = (\lambda x_1, \dots, \lambda x_n)$$

Il prodotto con scalare nello spazio \mathbb{R}^2 può essere visualizzato in maniera grafica tramite un cambiamento della lunghezza e/o direzione del vettore di partenza.

Inoltre, se il vettore di partenza è un vettore non nullo, ovvero $x \neq (0, \dots, 0)$, allora l'insieme $\{\lambda x | \lambda \in \mathbb{R}\}$ rappresenta la retta generata dal vettore x.

Retta generata da un vettore tramite prodotto con scalare.

Se partiamo da due vettori non nulli invece l'insieme $\{x+ty|t\in\mathbb{R}\}$ rappresenta la retta passante per x avente direzione e verso del vettore y.

Retta generata dalla somma di un vettore e un prodotto con scalare.

Prodotto scalare euclideo

Dati due vettori $x,y\in\mathbb{R}^n$, definiamo il prodotto scalare euclideo come:

$$\langle x,y
angle\coloneqq\sum_{k=1}^n x_ky_k$$

Possiamo visualizzare in maniera grafica il prodotto scalare in \mathbb{R}^2 come il prodotto della lunghezza di uno dei due vettori per la lunghezza della componente x dell'altro vettore rispetto al vettore iniziale:

Visualizzazione grafica del prodotto scalare nel piano cartesiano.

Proprietà

1.
$$\langle x,y\rangle=\langle y,x\rangle \quad \forall x,y\in\mathbb{R}^n$$

2.
$$\langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle$$
 e $\langle z, \lambda x + \mu y \rangle = \lambda \langle z, x \rangle + \mu \langle z, y \rangle \quad \forall x, y \in \mathbb{R}^n \wedge \lambda, \mu \in \mathbb{R}^n$

3.
$$\langle x,x
angle \geq 0 \quad orall x \in \mathbb{R}^n$$

•
$$\langle x, x \rangle = 0 \iff x = (0, \dots, 0)$$

▼ 2.2 - Vettori

Vettori standard

In uno spazio vettoriale di dimensione n, ci sono n vettori standard i quali hanno tutte le componenti uguali a zero tranne una, che è uguale a 1:

$$e_1=(1,0,\ldots,0), e_2=(0,1,\ldots,0),\ldots, e_n=(0,0,\ldots,1)$$

Visualizzazione grafica dei vettori standard dello spazio \mathbb{R}^3 .

Ortogonalità/Perpendicolarità tra vettori

Due vettori $x,y\in\mathbb{R}^n$ si dicono **ortogonali/perpendicolari** se $\langle x,y
angle=0$.

L'ortogonalità/perpendicolarità può anche essere visualizzata per due vettori $\in \mathbb{R}^2$. Prendiamo infatti ad esempio due vettori $x=(\cos\theta,\sin\theta)$ e $y=(\cos(\theta+\frac{\pi}{2}),\sin(\theta+\frac{\pi}{2}))=(-\sin\theta,\cos\theta)$. Possiamo verificare che tali vettori sono ortogonali calcolando il loro prodotto euclideo $\langle x,y\rangle=-\cos\theta\sin\theta+\sin\theta\cos\theta=0$. Concludiamo dunque che tutti i vettori che differiscono di un angolo $\frac{\pi}{2}$ sono perpendicolari tra loro.

Visualizzazione grafica di 2 vettori ortoonali tra loro nel piano cartesiano.

Proposizioni

- Il **vettore nullo** è perpendicolare a tutti i vettori, infatti $\sum_{k=1}^n 0y_k = 0.$
- In \mathbb{R}^n i vettori standard e_1,\ldots,e_n sono ortogonali tra loro.

Esercizi:

▶ Dato il vettore $v=(1,2,3)\in\mathbb{R}^3$, trovare un vettore $x=(x,y,z)\perp v$ diverso dal vettore nullo. Occorre impostare l'equazione $\langle x,v\rangle=0$, ovvero $x+2y+3z=0\implies x=-2y-3z$. Abbiamo dunque trovato che l'insieme $\{(-2y-2z,y,z)|(y,z)\in\mathbb{R}^2\}$ è un insieme di vettori perpendicolari al vettore v.

Osserviamo che l'insieme trovato rappresenta un piano, infatti ogni vettore $v\in\mathbb{R}^3$ tranne il vettore nullo identifica un piano di vettori perpendicolari ad esso.

Visualizzazione grafica di un piano perpendicolare ad un vettore.

lacktriangledown Trovare il rapporto dei parametri m e p affinchè le due rette y=mx e y=px siano ortogonali. Costruiamo i vettori corrispondenti alle due rette: (1,m) e (1,p). Impostiamo l'equazione $\langle (1,m), (1,p) \rangle = 1 + mp = 0$, ovvero $p = -\frac{1}{m}$.

Norma euclidea

Dato un vettore $x \in \mathbb{R}^n$, definiamo la **norma euclidea** nel seguente modo:

$$||x|| \coloneqq \sqrt{\langle x, x
angle} \in [0, +\infty[$$

Nota: le notazioni ||x|| e |x| sono equivalenti.

Proposizioni

• Teorema di pitagona generalizzato in \mathbb{R}^n : se $x\perp y$ in \mathbb{R}^n , allora $|x+y|^2=|x|^2+|y|^2$, che è equivalente alla lunghezza della diagonale del rettangolo che ha come lati i vettori x e y.

Dimostrazione:

Per ipotesi abbiamo che $\langle x,y \rangle = 0$.

Dimostriamo la formula del quadrato di un binomio generalizzata sui vettori ($|x+y|^2=|x|^2+|y|^2+2\langle x,y\rangle$). Sappiamo che $|x+y|^2=\langle x+y,x+y\rangle$, utilizziamo la proprietà della linearità del primo argomento per ricavarci $\langle x,x+y\rangle+\langle y,x+y\rangle$ e la linearità del secondo argomento per ottenere $\langle x,x\rangle+\langle x,y\rangle+\langle y,x\rangle+\langle y,y\rangle$, dalla quale, visto che $\langle x,y\rangle=\langle y,x\rangle$, otteniamo infine che $|x+y|^2=|x|^2+|y|^2+2\langle x,y\rangle$.

Utilizziamo dunque la formula del quadrato di un binomio generalizzata appena dimostrata e per ottenere che $|x+y|^2=|x|^2+|y|^2+2|\langle x,y\rangle|=|x|^2+|y|^2+0.$

Esempio:

• In
$$\mathbb{R}^2$$
, $||(a,b)||=\sqrt{a^2+b^2}$. In \mathbb{R}^3 , $||(a,b,c)||=\sqrt{a^2+b^2+c^2}$.

Notiamo che la norma di un vettore indica la "lunghezza" di tale vettore.

Proprietà

1.
$$|\lambda x| = |\lambda||x| \quad orall \lambda \in \mathbb{R}, x \in \mathbb{R}^n$$

2.
$$|x| \geq 0 \quad orall x \in \mathbb{R}^n$$
 a. $|x| = 0 \iff x = \langle 0, \dots, 0
angle$

3.
$$|x+y| \le |x| + |y|$$

La possiamo anche leggere come $len(x+y) \geq len(x) + len(y)$, ovvero la **disuguaglianza** triangolare.

Normalizzato di un vettore

Il normalizzato di un vettore consiste in quell'unico vettore positivo multiplo del vettore di partenza che ha come norma 1.

Dobbiamo dunque trovare uno scalare r>0 tale che |rx|=1. Scomponiamo la norma in questo modo |r||x|=r|x|=1 e otteniamo che $r=\frac{1}{|x|}$. Il vettore normalizzato |rx| vale dunque $\frac{x}{|x|}$.

Dato il vettore $x \in \mathbb{R}^n$ diverso dal vettore nullo, il **normalizzato** di x è l'unico vettore positivo multiplo di x che ha norma 1, e vale:

$$\frac{x}{|x|}$$

Visualizzazione grafica del normalizzato di un vettore.

Esercizi:

lacktriangledown Trovare il normalizzato di x=(2,3)

Per trovare il normalizzato di x occorre calcolare il prodotto scalare $\frac{x}{|x|}$.

Calcoliamo dunque |x|, il quale è uguale a $|(2,3)|=\sqrt{4+9}=\sqrt{13}$.

Infine calcoliamo il normalizzato come $\frac{(2,3)}{\sqrt{13}} = (\frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}})$.

▼ Trovare il normalizzato di x = (14, 21, -28)

Per semplificarci i calcoli osserviamo che $\frac{x}{|x|}=\frac{\lambda x}{|\lambda x|}$, dunque possiamo calcolare il normalizzato nel seguente modo: $7\frac{(14,21,-28)}{|(14,21,-28)|}=\frac{(2,3,-4)}{|(2,3,-4)|}=(\frac{2}{\sqrt{29}},\frac{3}{\sqrt{29}},\frac{-4}{\sqrt{29}})$.

Coordinate polari di un vettore

Osserviamo che dato un qualunque vettore $x \in \mathbb{R}^n$ diverso dal vettore nullo, $x = |x| rac{x}{|x|}$.

Visto che $\frac{x}{|x|}$ è il generalizzato del vettore e ha lunghezza 1, esso, se il vettore x appartiene a \mathbb{R}^2 , può anche essere scritto in questo modo: $(\cos\theta,\sin\theta)$.

Utilizziamo inoltre la notazione $r \coloneqq |x|$ e scriviamo il vettore x come $r(\cos \theta, \sin \theta)$.

Concludiamo dunque che è possibile descrivere un qualunque vettore $x\in\mathbb{R}^2$ tramite l'utilizzo di due parametri, detti **coordinate polari**: (r,θ) .

Esercizi:

lacktriangle Trovare le coordinate polari del vettore (0,3)

Per trovare le coordinate polari dobbiamo calcolare il valore dei due parametri $r \in \theta$.

Sappiamo che r=|(0,3)|=3, dunque x=3y, dove y è un vettore che moltiplicato a 3 restituisce x. Troviamo dunque facilmente che y=(0,1) e, avendo che $\cos\theta=0$ e $\sin\theta=1$, otteniamo $\theta=\frac{\pi}{2}$.

Concludiamo dunque che il vettore (0,3) può essere scrtto in coordinate polari come $(3,\frac{\pi}{2})$.

Prodotto scalare in coordinate polari

Presi due vettori $x=r(\cos heta,\sin heta)$ e $y=p(\cos \phi,\sin \phi)$, risulta:

$$\langle x,y
angle = rp\cos(heta-\phi) = |x||y|\cos(heta-\phi)$$

Dove $heta-\phi$ è l'angolo compreso tra i due vettori.

Disuguaglianza Cauchy-Schwarz

Per ogni vettore $x,y\in\mathbb{R}^n$ vale la seguente **disuguaglianza**:

$$|\langle x,y
angle| \leq |x| \cdot |y|$$

Notiamo che l'uguaglianza vale solo nel caso in cui i due vettori sono dipendenti tra loro, dunque giacciono sulla stessa retta.

Distanza tra due vettori in \mathbb{R}^n

La **distanza tra due vettori/punti** in \mathbb{R}^n può essere calcolata tramite la formula:

Esempio grafico di distanza tra due vettori.

Intorni sferici/palle

Dato un vettore $x\in\mathbb{R}^n$ e uno scalare r>0, possiamo costruire l'insieme intorno sferico/palla con centro x e raggio r in questo modo:

$$B(x,r) = \{y \in \mathbb{R}^n \mid |y-x| < r\}$$

▼ 2.3 - Successioni e funzioni nello spazio euclideo

Successioni in \mathbb{R}^n

Una **successione** $(x_k)_{k\in\mathbb{N}}$ in \mathbb{R}^n è una collezione di n successioni in \mathbb{R} :

$$x_k = (x_k^1, \dots, x_k^n)$$

Esempio:

• $(rac{1}{k},k)\in\mathbb{N}$ è una successione \mathbb{R}^2 .

È possibile visualizzare alcuni dei punti che fanno parte di questa successione nella seguente figura:

Rappresentazione grafica della successione di esempio.

Successione convergente

Data una successione $(x_k)_{k\in\mathbb{N}}$ in \mathbb{R}^n e un vettore $a=(a_1,\ldots,a_n)$ si dice:

$$x_k o a ext{ per } k o \infty \iff egin{cases} \lim_{k o \infty} x_k^1 = a_1 \ \dots \ \lim_{k o \infty} x_k^n = a_n \end{cases}$$

Esempi:

- $(\frac{1}{k},\frac{k+2}{k+1}) o (0,1)$, dunque la successione è convergente.
- $((-1)^k, \frac{1}{k})$ non è una successione convergente in quanto $\lim_{k o \infty} (-1)^k$ è indefinito.

Funzioni di più variabili

Dati 2 insiemi $A\subseteq\mathbb{R}^n, B\subseteq\mathbb{R}^q$ e data una funzione $f:A\to B$, il **grafico** di f può essere definito come l'insieme:

$$Graf(f) = \{(x,f(x))|x\in A\}\subseteq A imes B$$

Funzioni radiali

Le funzioni radiali sono funzioni $f:\mathbb{R}^2 o\mathbb{R}$ che si scrivono nella forma:

$$f(x,y) = g(|(x,y)|)$$
 $g: [0,+\infty[\rightarrow \mathbb{R}$

Esempi:

• $f(x,y) = x^2 + y^2 = |(x,y)|^2$

Innanzitutto creiamo l'insieme grafico di tale funzione: $Graf(f)=\{(x,y,x^2+y^2)|(x,y)\in\mathbb{R}^2\}.$

Per disegnare tale grafico è utile scrivere (x,y) come $(r\cos\theta,r\sin\theta)$. In questo modo abbiamo che $x^2+y^2=r^2\cos^2\theta+r^2\sin^2\theta=r^2(\cos^2\theta+\sin^2\theta)=r^2$.

Riscriviamo dunque l'insieme grafico utilizzando le coordinate polari: $Graf(f)=\{(r\cos\theta,r\sin\theta,r^2)|r\geq0\}.$

Notiamo dunque che l'insieme appena ottenuto descrive il grafico di una parabola nello spazio \mathbb{R}^3 .

•
$$f(x,y) = 1 - \sqrt{x^2 + y^2} = 1 - |(x,y)|$$

Il grafico di tale funzione è il seguente:

Funzioni affini

Le funzioni affini sono funzioni $f:\mathbb{R}^2 o \mathbb{R}$ che si scrivono nella forma:

$$f(x,y) = ax + by + c$$
 $a,b,c \in \mathbb{R}$

Notiamo che tali funzioni individuano insieme grafici del tipo $Graf(f)=\{(x,y,ax+by+c)|(x,y)\in\mathbb{R}^2\}$, i quali descrivono dei piani in \mathbb{R}^3 .

Esempi:

•
$$f(x,y) = -y$$

Per disegnare il grafico di questa funzione è possibile effettuarne l'intersezione con due piani. Intersechiamo con il piano x=0 e otteniamo $Graf(f)\cap x=0:\{(0,y,-y)|y\in\mathbb{R}\}$, ossia la seguente retta:

Intersechiamo ora con un altro piano, ad esempio x=1, e otteniamo $Graf(f)\cap x=1$: $\{(1,y,-y)|y\in\mathbb{R}\}$, ossia la seguente retta:

Tramite tali intersezioni possiamo dunque prevedere il grafico della funzione data, il quale è il seguente piano:

Funzioni continue

Sia
$$f:A o B(A\subseteq\mathbb{R}^n,B\subseteq\mathbb{R}^q)$$
, f si dice **continua** in \overline{x} se: $orall (x_k)_{k\in\mathbb{N}},(x_k)$ successione in $A,x_k\xrightarrow[k o+\infty]{}\overline{x}\implies f(x_k)\xrightarrow[k o+\infty]{}f(\overline{x})$

È possibile dimostrare che tale definizione di funzione continua è equivalente alla seguente:

$$\forall \varepsilon > 0, \exists \delta \text{ t.c. } |f(x) - f(x)| < \varepsilon, \quad \forall x \in A \cap B(x, \delta)$$

Proposizioni

- Tutte le funzioni elementari sono continue nei loro domini.
- ▼ 3.0 Derivate parziali e differenziabilità
 - ▼ 3.1 Derivate parziali

Insiemi aperti in \mathbb{R}^n

Dato un insieme
$$A\subseteq R^n$$
, si dice che A è **aperto** se $\forall \overline{x}\in A, \exists \epsilon>0|B(\overline{x},\epsilon)\subseteq A$, dove $B(\overline{x},\epsilon)$ è l'intorno sferico di centro \overline{x} e raggio ϵ .

Esempio:

• Nella seguente figura osserviamo due insiemi, uno chiuso e uno aperto:

Notiamo che A_1 è un insieme chiuso in quanto esiste un $\overline{x}\in A_1$ che viola la definizione di insieme aperto, mentre in A_2 , preso un qualunque $\overline{x}\in A_2$, questo rispetta la definizione di insieme aperto.