TED (15	(-2252)
---------	---------

(REVISION — 2015)

Reg. No.	
Signature	

SECOND SEMESTER DIPLOMA EXAMINATION IN CABM — OCTOBER, 2016

BUSINESS MATHEMATICS

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions. Each question carries 2 marks.
 - 1. If $A = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix}$, find A + 2B.
 - 2. If three coins are tossed, write down the sample space.
 - 3. Differentiate sin^2x with respect to x.
 - 4. Evaluate $\int (x^2 + 5x 6) dx$
 - 5. Evaluate $\int cosec5xcot5x dx$

 $(5\times2=10)$

PART—B

(Maximum marks: 30)

- II Answer any five questions from the following. Each question carries 6 marks.
 - 1. If $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 5 \\ 1 & 6 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 0 & 2 \\ 5 & -1 & 3 \\ 9 & 6 & 2 \end{bmatrix}$. Compute AB + BA.
 - 2. Solve using determinants

$$x + 2y - z = -3$$
, $3x + y + z = 4$, $x - y + 2z = 6$

- 3. The probability that a student passes statistics test is $\frac{2}{3}$ and the probability that he passes both statistics and mathematics is $\frac{14}{45}$. The probability that he passes at least one test is $\frac{4}{5}$. What is the probability that he passes mathematics test.
- 4. Differentiate $\sin x$ with respect to x using first principle.

			Monlea
VI	(a)	A die is thrown twice. What is the probability that at least one of the two number is 4?	Marks
	(h)		5
		In a single throw of 2 dice, find the probability of getting a total of 9 or 11.	5
	(c)	Four coins are thrown simultaneously. What is the probability of getting atleast one head?	5
		Unit – III	
VII	(a)	If $y = \frac{e^x - 1}{e^x + 1}$, find $\frac{dy}{dx}$	5
	(b)	Differentiate $\log (x + \sqrt{1 + x^2})$, with respect to x.	5
	(c)	Find $\frac{dy}{dx}$ if $x^3 + y^3 = 3$ axy.	5
		OR	
VIII	(a)	Differentiate $\frac{\sin 2x}{1 + \cos 2x}$ with respect to x .	5
	(b)	Differentiate $x^5 cosec(x^5)$	5
	(c)	Find $\frac{dy}{dx}$ when $x = a (\theta - \sin \theta)$, $y = a (1 - \cos \theta)$	5
		Unit – IV	
IX	(a)	Evaluate $\int \sqrt{1 + \sin 2x} \ dx$	5
	(b)	Evaluate $\int x \sin(x^2) dx$	5
	(c)	Evaluate $\int \log x dx$	5
		OR	
X	(a)	Evaluate $\int (\tan x + \cot x)^2 dx$	5
	(b)	Evaluate $\int \frac{\sin(3+2\log x)}{x} dx$	5
	(c)	Evaluate $\int \frac{3x+2}{5x-3} dx$.	5
		JA J	

5. Find
$$\frac{dy}{dx}$$
 when
$$x = 3 \cos \theta - \cos^3 \theta$$
$$y = 3 \sin \theta - \sin^3 \theta$$

6. Evaluate
$$\int \frac{1}{1 + \sin x} dx$$

7. Evaluate
$$\int x^2 \sin x \, dx$$

 $(5 \times 6 = 30)$

PART—C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

III (a) If
$$A(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$
. Show that $A(\theta) A(\theta^T) = A(\theta + \theta^T)$ 5

(b) Solve for
$$x$$
 if $\begin{vmatrix} 3 & 1 & 9 \\ 2x & 2 & 6 \\ x^2 & 3 & 3 \end{vmatrix} = 0.$

(c) Express the matrix $A = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 2 & 3 \\ 3 & 1 & 0 \end{bmatrix}$ as the sum of a symmetric and skew symmetric matrices.

Do

IV (a) If
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
. Show that $A^2 - 4A - 5I = 0$.

- (b) If A is a square matrix prove that $A + A^{T}$ is symmetric and $A A^{T}$ is skew symmetric.
- (c) Solve $A + 2B = \begin{bmatrix} 2 & 1 & 0 \\ 1 & -1 & 2 \end{bmatrix}$, $2A + 3B = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 0 & 1 \end{bmatrix}$

5

5

5

5

5

Unit - II

- V (a) A card is drawn from a well shuffled pack of playing cards. Find the probability that it either a diamond or a king.
 - (b) The probability that a contractor will get a plumbing contract is $\frac{2}{3}$, and the probability that he will not get an electric contract is $\frac{5}{9}$. If the probability of getting at least one contract is $\frac{4}{5}$. What is the probability he will get both the contracts?
 - (c) What is the probability that a leap year selected at random will contain 53 Sundays.