Introduction to Machine Learning for Social Scientists

Class 1: Introduction

Edgar Franco Vivanco

Stanford University
Department of Political Science
edgarf1@stanford.edu

Summer 2018

Introduction
Course goals and structure
Calibrating Expectations
Machine Learning concepts

Introduction to Machine Learning for Social Scientists

Why Machine Learning?

- The machine learning revolution:
 - Self-driving cars.
 - ► Translation.
 - Predict credit card fraud.
 - Predict consumer preferences.

Why Machine Learning?

- The machine learning revolution:
 - Self-driving cars.
 - ► Translation.
 - Predict credit card fraud.
 - Predict consumer preferences.
- Write programs to solve these issues became harder and harder.

Machine Learning

- ► Replication of how humans learn
- ► Train \rightarrow Test \rightarrow Repeat \rightarrow Predict

Introduction
Course goals and structure
Calibrating Expectations
Machine Learning concepts

Instead of writing programs that solve the problem, write programs that learn how to solve it...

Machine Learning Applications

- Industry
 - Measure consumer opinion
 - Deliver engaging content to users
- Public Sector
 - Predict disease onset
 - Assist criminal sentencing
- Campaigns
 - Classify voters based on likely voting, using consumer information
 - Identify ideology based on social media behavior
- Social Science
 - Infer extent and strategy of Chinese censorship: King, Pan and Roberts (2014)
 - Measure polarization in political institutions: Clinton, Jackman, and Rivers (2004)

Introduction to Machine Learning for Social Scientists

Examples of Learning Problems in Social Science

- ▶ Predict who will win the 2020 Presidential Election, based on public opinion polls and economic data.
- Estimate a person's wage based on age, education, and gender.
- Classify articles as either "fake news" or "real news" based on the words and the title
- Identify substantive topics in a collection of documents

Introduction to Machine Learning for Social Scientists

Course history

- ▶ Developed in 2016-2017 by Justin Grimmer (as PoliSci 150)
 - ▶ I was a TA for the class
- Modified by Rochelle Terman in 2018
- Challenge:
 - ▶ 10 weeks of content into 8
 - Diverse group

Who are you?

Affiliation:

▶ Highschool students: 32%

Undergraduate from other universities: 44%

Graduate from other universities: 12%

Stanford undergrads:

Stanford grads: 12%

OS:

▶ Windows: 40%

Mac: 56%Linux: 4%

About us

► Me: Edgar Franco Vivanco

► TA: Jesse Yoder

► TA: Haemin Jee

Introductory Approach

▶ Understand the **concepts** rather than the mechanics

Introductory Approach

- Understand the concepts rather than the mechanics
- ▶ Understand the **mechanics** rather than the math behind it

Introductory Approach

- Understand the concepts rather than the mechanics
- ▶ Understand the **mechanics** rather than the math behind it
- At the end of the course you should be able to understand the intuition, strengths and weaknesses of the various approaches.

Ultimate Goal: Introduce students to modern machine learning techniques and provide the skills necessary to apply these methods widely.

Ultimate Goal: Introduce students to modern machine learning techniques and provide the skills necessary to apply these methods widely.

Proximate Goals

1. Learn about the **core concepts** in machine learning and statistics, developing skills that are transferable to other types of data and inference problems.

Ultimate Goal: Introduce students to modern machine learning techniques and provide the skills necessary to apply these methods widely.

Proximate Goals

- 1. Learn about the **core concepts** in machine learning and statistics, developing skills that are transferable to other types of data and inference problems.
- 2. Develop their programming abilities in the R language.

Ultimate Goal: Introduce students to modern machine learning techniques and provide the skills necessary to apply these methods widely.

Proximate Goals

- Learn about the core concepts in machine learning and statistics, developing skills that are transferable to other types of data and inference problems.
- 2. Develop their programming abilities in the **R language**.
- 3. Familiarize with some the **applications** of the models, including newspaper articles and podcast.
 - ▶ Applying ML methods to "real-world problems" requires both quantitative skills + social science reasoning.

Learning Approach

Semi flipped classroom

- Teaching matters.
- ▶ 1/2 lecture, 1/2 coding in R
- Bring your laptop, and close it when necessary (laptop policy)
- ► Install, R, RStudio, and R markdown now!

Sections

- Review lecture materials, finish exercises
- Improve R programming

Course structure

- ▶ Week 1 and 2: Introduction to basic concepts and intro to R
- Week 2 to 5: Supervised learning
 - Simple and multiple regression
 - Classification
 - Cross-validation
- ► Week 6: Advanced supervised learning (LASSO)
- Week 7: Unsupervised learning
- ▶ Week 8: Review and group presentations

- ▶ **40%:** 5 problems sets (8% each):
 - Learning by doing
 - Collaboration is encouraged
 - Submission via Canvas on time.
 - Normally posted after Wed class, due before Wed class next week (unless noted)

- ▶ **40%:** 5 problems sets (8% each):
 - Learning by doing
 - Collaboration is encouraged
 - Submission via Canvas on time.
 - Normally posted after Wed class, due before Wed class next week (unless noted)
- ▶ 15%: In class mid-term

- ▶ **40%:** 5 problems sets (8% each):
 - Learning by doing
 - Collaboration is encouraged
 - Submission via Canvas on time.
 - Normally posted after Wed class, due before Wed class next week (unless noted)
- ▶ 15%: In class mid-term
- ▶ 15%: Final group project: Teach the class about a ML topic we didn't cover

- ▶ **40%:** 5 problems sets (8% each):
 - Learning by doing
 - Collaboration is encouraged
 - Submission via Canvas on time.
 - Normally posted after Wed class, due before Wed class next week (unless noted)
- ▶ 15%: In class mid-term
- ▶ 15%: Final group project: Teach the class about a ML topic we didn't cover
- ▶ 20%: Final exam

- ▶ **40%:** 5 problems sets (8% each):
 - Learning by doing
 - Collaboration is encouraged
 - Submission via Canvas on time.
 - Normally posted after Wed class, due before Wed class next week (unless noted)
- ▶ 15%: In class mid-term
- ▶ 15%: Final group project: Teach the class about a ML topic we didn't cover
- 20%: Final exam
- ▶ **10%:** Participation:
 - Attend class, ask questions, do not use your computer for something else than taking notes or working on class code.
 - Post on Canvas
 - Actively participate in weekly sections

Grading Policy and Accommodations

- All grades are final
 - No grade revision (but open to discussion on how to improve)
 - ▶ There is no curve
- Extensions will be given only to students with a documented emergency or illness.
- ▶ Let me know ASAP if you need special accommodations.

Materials & Communication

Canvas

- Lecture Notes, Code, and Data
- Homework (Assigned and returned)
- Questions and discussions
- Communicate with instructors and with each other

Email Policy

- Use Canvas first
- cc me in every communication with TAs (Allow 12hrs)

Office Hours

- ► Me (Wed 3.40pm to 5.40pm) https://www.wejoinin.com/sheets/veaqw
- Haemin (Mon 3:00pm to 5:00pm) https://www.wejoinin.com/hjee@stanford.edu
- ► Jesse (Th 2:30-4:30): https://www.wejoinin.com/sheets/sarpo

Book

- This book concentrates more on the applications of the methods and less on the mathematical details.
- You can read the book for free here.

▶ It is important to understand what are we learning and what are we not learning in the course.

- It is important to understand what are we learning and what are we not learning in the course.
- We are NOT going into the technical details of machine learning methods (optimization algorithms and theoretical properties)

- ▶ It is important to understand what are we learning and what are we not learning in the course.
- We are NOT going into the technical details of machine learning methods (optimization algorithms and theoretical properties)
- We are NOT covering all the machine learning tools

- It is important to understand what are we learning and what are we not learning in the course.
- We are NOT going into the technical details of machine learning methods (optimization algorithms and theoretical properties)
- We are NOT covering all the machine learning tools
- ▶ We are NOT teaching you how to be a professional programmer or software developer.

Introduction
Course goals and structure
Calibrating Expectations
Machine Learning concepts

Questions???

ML methods

Supervised Methods:

- Simple idea: Human coders categorize a set of documents by hand, they create a gold standard.
- ► The algorithm then "learns" how to sort documents into categories.
- Steps:
 - Build a training set
 - Apply the method
 - Validate and classify the remaining documents

Individual Classification

- Classify individual documents, cases, rows, into categories:
- Different models:
 - Linear Regression
 - Logistic Regression
 - LASSO.
 - Multinomial regressions
 - Support vector machines.
 - Random forest
 - Neural network

Divide your data

- ➤ **Training set:** A set of examples used to fit the parameters and learn. These are already classified by human coders to create a "gold standard".
- ▶ **Test set:** A set that follows the same probability distribution and is used to test de model.

Divide your data

Over fitting

- Over-fitting occurs when a model estimates a model that only works well for the training set, where we know our result.
- Risk: We are not really learning!

Performance

To asses the quality of our data we compare our classifications with the real data or the "gold standard".

Actual Guess	Yes	No
Yes		
No		

Performance

Actual Guess	Yes	No
Yes	True positive	False positive
No	False Negative	True Negative

How to be successful in this course

Practice, practice, practice.

How to be successful in this course

- Practice, practice, practice.
- Program a little bit every day.

How to be successful in this course

- Practice, practice, practice.
- Program a little bit every day.
 - ➤ At the end of this course you'll have between 60-100 hrs of coding experience
- Collaborate
- ► Ask questions, either in class or talking directly to us.
- Stay organized

NEXT

- R!
 - ► Install R, R studio and R Markdown
 - If you have no or little experience with R, take these online tutorials before next class:
 - www.datacamp.com
 - Section Intro to basics
- Readings:
 - ► Google DeepMind's AI program learns human navigation skills
 - How babies learn and why robots can't compete
 - ► Podcast version
- Enroll in a section via Canvas

