Звіт

до лабораторної роботи №3 на тему:

"Інтерполяційне наближення функцій"

студентки 2-го курсу Групи К-25 ФКНК Нємкевич Дар'ї **Постановка задачі.** Функція f(x) задана на дискретній множині точок (сітці), які належать проміжку [a,b]. Потрібно

- 1) побудувати інтерполяційний поліном Ньютона $P_n(x)$ (величина п може змінюватися) за множиною
- а) рівновіддалених вузлів $\overline{\omega}_h^E = \{x_i : x_i = a + ih, h = (b a)/n, i = \overline{0,n} \}$ $(P_n^E(x))$
- б) чебишовських вузлів $\overline{\omega}_h^T = \{x_i : a \le x_0 < x_1 < x_2 ... x_n \le b\}$ $(P_n^T(x))$.
- 2) Побудувати графіки:

графік 1)
$$f(x), P_n^E(x), P_n^T(x), x \in [a,b];$$

графік 2)
$$f(x) - P_n^E(x)$$
, $f(x) - P_n^T(x)$, $x \in [a,b]$.

Пояснити отриманий результат.

3) побудувати кубічний інтерполяційний природній сплайн s(x) за множиною вузлів $\overline{\omega_N} = \{x_i : a \leq x_0 < x_1 < x_2 ... \ x_N \leq b\}$ (величина N може змінюватися). Побудувати графіки : графік 1) f(x), s(x), $x \in [a,b]$; графік 2) f(x) - s(x), $x \in [a,b]$.

Функція:

$$f(x) = \begin{cases} -x^2 + 2, -2 \le x \le 0, \\ 1 - 8(x - 0.5)^3, \ 0 \le x \le 1, \\ x^2 - 2x + 1, \ 1 \le x \le 3. \end{cases}$$

Теоретичні відомості

Нехай функція $f(x) \in C[a,b]$. Задача інтерполяції полягає у відшуканні невідомих значень функції f(x) за її відомими значеннями $f(x_k)$ в точках $x_k \in [a;b]$, $k = \overline{0,n}$, які називають вузлами інтерполяції. На підставі теореми Вейерштрасса розв'язок шукаємо у вигляді полінома $P_n(x)$, що відповідає інтерполяційним умовам:

$$f(x_k) = P_n(x_k), \quad k = \overline{0, n}.$$

Тоді для знаходження наближеного значення функції в довільній точці \tilde{x} :

$$f(\tilde{x}) \approx P_n(\tilde{x}).$$

Через (n+1) вузол інтерполяції можна побудувати єдиний поліном не вище n-го степеня. Інтерполяційний поліном можна побудувати у вигляді:

- 1) поліному Лагранжа;
- 2) поліному Ньютона.

Інтерполяційний поліном Ньютона

Розділеною різницею першого порядку називається величина:

$$f(x_i, x_j) = \frac{f(x_j) - f(x_i)}{x_j - x_i};$$

другого порядку:

$$f(x_{i-1}, x_i, x_{i+1}) = \frac{f(x_i, x_{i+1}) - f(x_{i-1}, x_i)}{x_{i+1} - x_{i-1}};$$

(k+1) порядку:

$$f(x_i, ..., x_{i+k+1}) = \frac{f(x_{i+1}, ..., x_{i+k+1}) - f(x_i, ..., x_{i+k})}{x_{i+k+1} - x_i}.$$

Таблиця розділених ріниць має вигляд:

$$x_0$$
 $f(x_0)$ $f(x_0; x_1)$ $f(x_0; x_1; x_2)$... $f(x_0; x_1; ...; x_n)$
 x_1 $f(x_1)$ $f(x_1; x_2)$ $f(x_1; x_2; x_3)$...
 x_2 $f(x_2)$ $f(x_2; x_3)$ $f(x_1; x_2; x_3)$
... ... $f(x_{n-1}; x_n)$
 x_n $f(x_n)$

На підставі цієї таблиці, використовучи перший її рядок, можемо записати *інтерполянт Ньютона вперед*:

$$P_n(x) = f(x_0) + f(x_0, x_1)(x - x_0) + f(x_0, x_1, x_2)(x - x_0)(x - x_1) + \dots + f(x_0, x_1, \dots, x_n)(x - x_0)(x - x_1) \cdot \dots \cdot (x - x_{n-1}),$$
 чи скориставшись останнім рядком, дістанемо *інтерполя- ційну формулу Ньютона назад*:

$$P_n(x) = f(x_n) + f(x_{n-1}; x_n)(x - x_n) + \cdots$$

$$\cdots + f(x_0; x_1; \dots; x_n)(x - x_n)(x - x_{n-1}) \cdots (x - x_1).$$

Обирають ту чи іншу формули Ньютона, в залежності від того, де знаходиться точка x (в якій потрібно обчислити значення функції). Якщо ближче до точки x_0 , то інтерполяційну формулу Ньютона вперед. Якщо ближче до x_n , то інтерполяційну формулу Ньютона назад.

Для практичного застосування найчастише використовують інтерполяційні поліноми Ньютона, оскільки для його обчислення можна застосовувати схему Горнера.

За точністю зручно слідкувати таким чином: якщо доданки $f(x_0; x_1; \ldots; x_k)(x-x_0)(x-x_1)\cdots(x-x_{k-1})$ в інтерполяційній формулі спадають достатньо швидко, то можна очікувати на

гарну точність.

Вузли інтерполяції називаються pівновіддаленими, якщо $x_i-x_{i-1}=h=const,\,x_i=x_0+ih,\,i=\overline{0,n}.$

Нехай $f(x_i) = y_i$. Величина $\Delta y_i = y_{i+1} - y_i$ називається скінченою різницею першого порядку.

Величина $\Delta^2 y_i = \Delta y_{i+1} - \Delta y_i$ називається *скінченою різницею другого порядку*.

Величина $\Delta^k y_i = \Delta^{k-1} y_{i+1} - \Delta^{k-1} y_i$ називається $c\kappa i \mu u e$ ною $p i s h u u e \omega k$ -го $n o p s \partial \kappa y$.

Таблиця скінчених різниць:

Має місце рівність: $\Delta^k y_i = k! h^k f(x_i; \dots; x_k)$.

Покладемо $x = x_0 + th$, $t = \frac{x - x_0}{h}$. Тоді **інтерполяційні** формули **Ньютона для рівновіддалених вузлів** набувають вигляду:

$$P_n(t) = y_0 + \frac{\Delta y_0}{1!}t + \frac{\Delta^2 y_0}{2!}t(t-1)\cdots + \frac{\Delta^n y_0}{n!}t(t-1)\cdots(t-n+1),$$

$$P_n(t) = y_0 + \frac{\Delta y_{n-1}}{1!}t + \frac{\Delta^2 y_{n-2}}{2!}t(t+1)\cdots + \frac{\Delta^n y_0}{n!}t(t+1)\cdots(t+n-1).$$

Оптимальний вибір вузлів

Для зменшення похибки інтерполяції необхідно в якості вузлів взяти нулі поліному Чебишова 1 роду. Для їх визначення використовують рекурентні співідношення:

$$T_{n+1}(x) - 2xT_n(x) + T_{n-1}(x) = 0,$$

 $T_0(x) = 1, T_1(x) = x$

чи в явному вигляді

$$T_n(x) = \frac{(x + \sqrt{x^2 - 1})^n + (x - \sqrt{x^2 - 1})^n}{2}, |x| \ge 1,$$
$$T_n(x) = \cos(n \arccos x), |x| \le 1.$$

Позначимо $\overline{T_n}(x) = 2^{1-n}T_n(x), |x| \leq 1.$

Лема 1. Серед усіх поліномів $P_n(x)$ степеня n із старшим коефіцієнтом, що дорівнює 1 багаточлен $\overline{T_n}(x)$ найменш відхиляється від нуля на проміжку [-1,1] та

$$||P_n(x)||_{C[-1,1]} \ge ||\overline{T_n}(x)||_{C[-1,1]} = 2^{1-n}$$

Лема 2. Система багаточленів Чебишова $T_n(x)$ є ортогональною на проміжку [-1;1] з ваговою функцією $\rho(x)=\frac{1}{\sqrt{1-x^2}}$

$$(T_k(x), T_m(x))_{L_{2,\rho}[a,b]} = \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} T_k(x) T_m(x) dx =$$

$$=\left\{\begin{array}{ll} =0, \text{ якщо } k\neq m\\ \neq 0, \text{ якщо } k=m \end{array}\right.$$

Нулі полінома Чебишова $x \in [-1,1]$: $x_k = \cos \frac{(2k+1)\pi}{2n}$ $k = \overline{0,n-1}$; екстремуми: $x_k = \cos \frac{\pi k}{n}$, $k = \overline{0,n}$.

Поліноми Чебишова 1 роду на проміжку [a;b]

За допомогою заміни $x = \frac{1}{2}((b-a)z + (b+a))$ переведемо проміжок [-1,1] в [a,b]. Тоді поліноми Чебишова запишуться таким чином:

$$T_n^{[a;b]}(x)=T_n^{[-1;1]}\left(\frac{2x-(b+a)}{b-a}\right)$$
 Його нулі: $x_k=\frac{a+b}{2}+\frac{b-a}{2}\cos\frac{(2k+1)\pi}{2n},\qquad k=\overline{0,n-1}$

Відповідно поліном із старшим коефіцієнтом 1 набуває вигляду:

$$\overline{T_n}^{[a;b]}(x) = (b-a)^n \cdot 2^{1-2n} T_n^{[-1;1]} \left(\frac{2x - (b+a)}{b-a} \right),$$

а його відхілення від нуля подамо у вигляді:

$$||\overline{T_n}^{[a;b]}(x)||_{C[a,b]} = (b-a)^n \cdot 2^{1-2n}.$$

Для побудови інтерполяційного поліному n-го степеня P_n необхідно в якості вузлів взяти (n+1) корінь поліному Чебишова (n+1)-го степеня:

$$x_k = \frac{a+b}{2} + \frac{b-a}{2} \cos \frac{(2k+1)\pi}{2(n+1)}, \quad k = \overline{0, n}.$$

При використанні цих вузлів похибка має вигляд:

$$|f(x) - L_n(x)| \le \frac{M_{n+1}}{(n+1)!} \frac{(b-a)^{n+1}}{2^{2n+1}}.$$

Інтерполяційний природній кубічний сплайн

Інтерполяційним природнім кубічним сплайном називається поліном, для якого виконуються умови:

- 1) s(x) поліном степеня 3 для $x \in [x_{i-1}, x_i], i = \overline{1, n};$
- 2) $s(x) \in C^2_{[a;b]};$
- 3) $s(x_i) = f(x_i), i = \overline{0, n};$
- 4) s''(a) = s''(b) = 0 умова природності.

Зауваження. Для побудови інтерполяційного кубічного сплайну можна замість умови 4) використовувати інші умови, але тоді сплайн не буде природнім: s''(a) = A; s''(b) = B або s'(a) = A; s'(b) = B, або умови періодичності: s(a) = s(b), s'(a) = s'(b), s''(a) = s''(b).

Розглянемо формули для побудови інтерполяційного природного кубічного сплайну s_i на проміжку $[x_{i-1}, x_i]$:

$$s_i = a_i + b_i(x - x_i) + \frac{c_i}{2}(x - x_i)^2 + \frac{d_i}{6}(x - x_i)^3,$$

де c_i знаходяться з тридіагональної системи лінійних алгебраїчних рівнянь:

$$h_i c_{i-1} + 2c_i(h_i + h_{i+1}) + h_{i+1} c_{i+1} = 6\left(\frac{f_{i+1} - f_i}{h_{i+1}} - \frac{f_i - f_{i-1}}{h_i}\right),$$

 $c_0 = c_n = 0;$

решта коефіцієнтів знаходяться за формулами:

$$a_i = f_i;$$
 $b_i = \frac{h_i}{2}c_i - \frac{h_i^2}{6}d_i + \frac{f_i - f_{i-1}}{h_i};$ $d_i = \frac{c_i - c_{i-1}}{h_i}.$

Результати

Рівновіддалені вузли

```
-2.0
-1.5
-1.1
-0.64
-0.18
0.27
0.73
1.2
1.6
2.1
2.5
3.0
```

```
P = -2.0 + 3.5(x + 2.0) + 4.5(x + 2.0)(x + 1.5) + 4.5(x + 2.0)(x + 1.5)(x + 1.1) + 4.5(x + 2.0)(x + 1.5)(x + 1.1)(x + 0.64) + 4.5(x + 2.0)(x + 1.5)(x + 1.1)(x + 0.64) + 4.5(x + 2.0)(x + 1.5)(x + 1.1)(x + 0.64)(x + 0.18) + 4.5(x + 2.0)(x + 1.5)(x + 1.1)(x + 0.64)(x + 0.18)(x - 0.27) + 4.5(x + 2.0)(x + 1.5)(x + 1.1)(x + 0.64)(x + 0.18)(x - 0.27)(x - 0.73) + 4.5(x + 2.0)(x + 1.5)(x + 1.1)(x + 0.64)(x + 0.18)(x - 0.27)(x - 0.73)(x - 1.2) + 4.5(x + 2.0)(x + 1.5)(x + 1.1)(x + 0.64)(x + 0.18)(x - 0.27)(x - 0.73)(x - 1.2)(x - 1.6) + 4.5(x + 2.0)(x + 1.5)(x + 1.1)(x + 0.64)(x + 0.18)(x - 0.27)(x - 0.73)(x - 1.2)(x - 1.6)(x - 2.1) + 4.5(x + 2.0)(x + 1.5)(x + 1.1)(x + 0.64)(x + 0.18)(x - 0.27)(x - 0.73)(x - 1.2)(x - 1.6)(x - 2.1) + 4.5(x + 2.0)(x + 1.5)(x + 1.1)(x + 0.64)(x + 0.18)(x - 0.27)(x - 0.73)(x - 1.2)(x - 1.6)(x - 2.1)(x - 2.5)
```

Чебишовські вузли

```
3.0
2.8
2.5
2.0
1.5
0.83
0.17
-0.46
-1.0
-1.5
-1.8
-2.0
```

```
3.8(x-3.0) + \\ 1.0(x-3.0)(x-2.8) + \\ -5.0e-14(x-3.0)(x-2.8)(x-2.5) + \\ -4.1e-14(x-3.0)(x-2.8)(x-2.5)(x-2.0) + \\ -0.13(x-3.0)(x-2.8)(x-2.5)(x-2.0)(x-1.5) + \\ -0.18(x-3.0)(x-2.8)(x-2.5)(x-2.0)(x-1.5)(x-0.83) + \\ -0.12(x-3.0)(x-2.8)(x-2.5)(x-2.0)(x-1.5)(x-0.83)(x-0.17) + \\ -0.056(x-3.0)(x-2.8)(x-2.5)(x-2.0)(x-1.5)(x-0.83)(x-0.17)(x+0.46) + \\ -0.023(x-3.0)(x-2.8)(x-2.5)(x-2.0)(x-1.5)(x-0.83)(x-0.17)(x+0.46)(x+1.0) + \\ -0.0089(x-3.0)(x-2.8)(x-2.5)(x-2.0)(x-1.5)(x-0.83)(x-0.17)(x+0.46)(x+1.0)(x+1.5) + \\ -0.0036(x-3.0)(x-2.8)(x-2.5)(x-2.0)(x-1.5)(x-0.83)(x-0.17)(x+0.46)(x+1.0)(x+1.5) + \\ -0.0036(x-3.0)(x-2.8)(x-2.5)(x-2.0)(x-1.5)(x-0.83)(x-0.17)(x+0.46)(x+1.0)(x+1.5) + \\ -0.0036(x-3.0)(x-2.8)(x-2.5)(x-2.0)(x-1.5)(x-0.83)(x-0.17)(x+0.46)(x+1.0)(x+1.5)(x+1.8) + \\ -0.0036(x-3.0)(x-0.17)(x+0.46)(x+1.0)(x+1.5)(x-0.83)(x-0.17)(x+0.46)(x+1.0)(x+1.5)(x+1.8) + \\ -0.0036(x-3.0)(x-0.17)(x+0.46)(x+1.0)(x+1.5)(x-0.83)(x-0.17)(x+0.46)(x+1.0)(x+1.5)(x+1.8) + \\ -0.0036(x-3.0)(x-0.17)(x+0.46)(x+1.0)(x+1.5)(x-0.83)(x-0.17)(x+0.46)(x+1.0)(x+1.5)(x+1.8) + \\ -0.0036(x-3.0)(x-0.17)(x+0.46)(x+1.0)(x+1.5)(x-0.83)(x-0.17)(x+0.46)(x+1.0)(x+1.5)(x+0.46)(x+1.0)(x+1.5)(x+0.46)(x+1.0)(x+1.5)(x+0.46)(x+1.0)(x+1.5)(x+0.46)(x+1.0)(x+1.5)(x+0.46)(x+1.0)(x+1.5)(x+0.46)(x+1.0)(x+1.5)(x+0.46)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)(x+1.0)
```


Як ми бачимо, справді, вузли Чебишева дають меншу похибку ніж рівновіддалені вузли.

Природній інтерполяційний кубічний сплайн:

3.000000000000000)^3/6

```
9232224168126 (x - -1.545454545455 )^3/6
 0.809917355371901 \  \  \, + \  \  \, 2.06977464503336 \  \  (x \ - \  \  \, -1.09090909090909) \  \  \, + \  \  \, -2.55941410603407 \  \  (x \ - \  \  \, -1.09090909090909) \  \  )^2/2 \  \  \, + \  \  \, -0.438388791593700 \  \  (x \ - \  \  \, -1.09090909090909) \  \  )^3/6 
1.59504132231405 + 1.62395391585011 (x - 587740805606 (x - -0.636363636363636)^3/6
                                     -0.63636363636363636) + 0.597802897627773 (x - -0.63636363636363636) ^2/2 + 6.94
6059544659 (x - 0.2727272727273 )^3/6
 0.906085649887303 \ + \ -1.21448524409836 \ (x \ - \ 0.72727272727272727 \ ) \ + \ -10.5766597675530 \ (x \ - \ 0.727272727272727 \ )^2/2 \ + \ -46.5373029772330 \ (x \ - \ 0.727272727272727 \ )^3/6 
0.0330578512396693 + -0.929226672070169 (x - 1.18181818181818 ) + 11.8317974844770 (x - 1.18181818181818 )^2/2 + 49.2986059544659 (x - 1.18181818181818 )^3/6
0.404958677685950 \ + \ 1.62395391585011 \ (x - \ 1.63636363636364 \ ) + \ -0.597802897627775 \ (x - \ 1.63636363636364 \ )^2/2 + \ -27.3486768595 \ )
51208406305 (x - 1.63636363636364 )^3/6
0805612 (x - 2.09090909090909 )^3/6
2.38842975206612 + 3.18785659492553 (x - 2.545454545454555) + 2.36014647349145 (x - 2.545454545454555)^2/2 + -0.438388
791593825 (x - 2.545454545455 )^3/6
```


