Final Project Submission

Please fill out:

Student name: Harrison Kuria Karime

• Student pace: part time

Scheduled project review date/time: 13/02/25

Instructor name: Antony Muiko

Blog post URL:

Data Driven Risk Analysis of Aircraft Safety for Business Expansion

This wlll be a beautiful intro into the projec

Overview

Before taking a deep dive into the available data as our company ventures into this new territory, it is important for us to ask a few important questions. Quesions important to our company and questions that will help us understand whether this new endevour aligns with our future and diretion we mean to take our business. The questions culd look something like this;

- **Aircraft selection**: Which models have the best safety records? Which types are most prone to incidents?
- **Fleet size planning**: How many planes should the company buy initially? Can incident trends inform scaling?
- Route selection: Which routes are safest? Are there accident-prone regions?
- Operational risks: What common causes lead to accidents? Can the company mitigate these risks?
- Regulatory compliance: What aviation regulations are relevant for operational safety?
- **Weather and environmental impact**: How do weather conditions correlate with incidents?

Data Understanding

Getting to have a feel of the data that is provided

In [368...

Your code here - remember to use markdown cells for comments as well! import pandas as pd

```
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

In [369...

opneing the csv dataset into a DataFrame aviation_data
aviation_data = pd.read_csv('data/Aviation_Data.csv', sep=',', header=0, low_memory
aviation_data.head()

Out[369...

	Event.ld	Investigation.Type	Accident.Number	Event.Date	Location	Countr
0	20001218X45444	Accident	SEA87LA080	1948-10- 24	MOOSE CREEK, ID	United State
1	20001218X45447	Accident	LAX94LA336	1962-07- 19	BRIDGEPORT, CA	United State
2	20061025X01555	Accident	NYC07LA005	1974-08- 30	Saltville, VA	United State
3	20001218X45448	Accident	LAX96LA321	1977-06- 19	EUREKA, CA	United State
4	20041105X01764	Accident	CHI79FA064	1979-08- 02	Canton, OH	United State

5 rows × 31 columns

→

In [370...

```
# Getting a general of what the avation dataset looks like
print(f"The shape of aviation_data is :\n", aviation_data.shape)
print()
print(f"Some of the important features of the dataset", aviation_data.info())
print()
print(f"Snapshot of what the numeric data looks like \n", aviation_data.describe())
```

> The shape of aviation_data is : (90348, 31)

<class 'pandas.core.frame.DataFrame'> RangeIndex: 90348 entries, 0 to 90347 Data columns (total 31 columns):

#	Column		ull Count	Dtype
0	Event.Id		non-null	object
1	Investigation.Type		non-null	object
2	Accident.Number		non-null	object
3	Event.Date		non-null	object
4	Location	88837	non-null	object
5	Country	88663	non-null	object
6	Latitude	34382	non-null	object
7	Longitude	34373	non-null	object
8	Airport.Code	50132	non-null	object
9	Airport.Name	52704	non-null	object
10	Injury.Severity	87889	non-null	object
11	Aircraft.damage	85695	non-null	object
12	Aircraft.Category	32287	non-null	object
13	Registration.Number	87507	non-null	object
14	Make	88826	non-null	object
15	Model	88797	non-null	object
16	Amateur.Built	88787	non-null	object
17	Number.of.Engines	82805	non-null	float64
18	Engine.Type	81793	non-null	object
19	FAR.Description	32023	non-null	object
20	Schedule	12582	non-null	object
21	Purpose.of.flight	82697	non-null	object
22	Air.carrier	16648	non-null	object
23	Total.Fatal.Injuries	77488	non-null	float64
24	Total.Serious.Injuries	76379	non-null	float64
25	Total.Minor.Injuries	76956	non-null	float64
26	Total.Uninjured	82977	non-null	float64
27	Weather.Condition	84397	non-null	object
28	Broad.phase.of.flight	61724	non-null	object
29	Report.Status	82505	non-null	object
30	Publication.Date		non-null	object
	es: float64(5), object(2			3

dtypes: float64(5), object(26)

memory usage: 21.4+ MB

Some of the important features of the dataset None

Snapshot of what the numeric data looks like

	Number.of.Engines	Total.Fatal.Injuries	Total.Serious.Injuries	\
count	82805.000000	77488.000000	76379.000000	
mean	1.146585	0.647855	0.279881	
std	0.446510	5.485960	1.544084	
min	0.000000	0.000000	0.000000	
25%	1.000000	0.000000	0.000000	
50%	1.000000	0.000000	0.000000	
75%	1.000000	0.000000	0.000000	
max	8.000000	349.000000	161.000000	

Total.Minor.Injuries Total.Uninjured 82977.000000 76956.000000 count

mean	0.357061	5.325440
std	2.235625	27.913634
min	0.000000	0.000000
25%	0.000000	0.000000
50%	0.000000	1.000000
75%	0.000000	2.000000
max	380.000000	699.000000

Data Cleaning

Identifying Columns with Significant Issues

From the preliminary assessment of the dataset provided by the **NTSB**, we observe that some columns contain significantly more problems than others. This includes **high percentages of missing values** and **inconsistencies in data quality**.

At this stage, it is crucial to:

- 1. **Decide which columns are not useful for our analysis**—especially those with missing data exceeding 50%.
- 2. **Identify columns with highly mixed or inconsistent values**, as cleaning them may not be feasible.
- 3. **Evaluate which columns are relevant to our business questions** to ensure we focus on meaningful insights.

In [373...

Start off by identifying the columns that have a high number of null values
aviation_data.isna().sum()

Out[373	Event.Id	1459
	Investigation.Type	0
	Accident.Number	1459
	Event.Date	1459
	Location	1511
	Country	1685
	Latitude	55966
	Longitude	55975
	Airport.Code	40216
	Airport.Name	37644
	Injury.Severity	2459
	Aircraft.damage	4653
	Aircraft.Category	58061
	Registration.Number	2841
	Make	1522
	Model	1551
	Amateur.Built	1561
	Number.of.Engines	7543
	Engine.Type	8555
	FAR.Description	58325
	Schedule	77766
	Purpose.of.flight	7651
	Air.carrier	73700
	Total.Fatal.Injuries	12860
	Total.Serious.Injuries	13969
	Total.Minor.Injuries	13392
	Total.Uninjured	7371
	Weather.Condition	5951
	Broad.phase.of.flight	28624
	Report.Status	7843
	Publication.Date	16689
	dtype: int64	

In [374... np.round(aviation_data.isnull().sum() / len(aviation_data) * 100, 2)

0 1 5 2 7 4		
Out[374	Event.Id	1.61
	Investigation.Type	0.00
	Accident.Number	1.61
	Event.Date	1.61
	Location	1.67
	Country	1.87
	Latitude	61.94
	Longitude	61.95
	Airport.Code	44.51
	Airport.Name	41.67
	Injury.Severity	2.72
	Aircraft.damage	5.15
	Aircraft.Category	64.26
	Registration.Number	3.14
	Make	1.68
	Model	1.72
	Amateur.Built	1.73
	Number.of.Engines	8.35
	Engine.Type	9.47
	FAR.Description	64.56
	Schedule	86.07
	Purpose.of.flight	8.47
	Air.carrier	81.57
	Total.Fatal.Injuries	14.23
	Total.Serious.Injuries	15.46
	Total.Minor.Injuries	14.82
	Total.Uninjured	8.16
	Weather.Condition	6.59
	Broad.phase.of.flight	31.68
	Report.Status	8.68
	Publication.Date	18.47
	dtype: float64	

Percentage of Missing Values Per Column

Below is a breakdown of **null value percentages** > 10% in the dataset:

Column Name	Missing Data (%)
Latitude	61.94%
Longitude	61.95%
Airport.Code	44.51%
Airport.Name	41.67%
Aircraft.Category	64.26%
FAR.Description	64.56%
Schedule	86.07%
Air.carrier	81.57%
Broad phase of flight	21 60%

Column Name	Missing Data (%)
Publication.Date	18.47%
Total.Fatal.Injuries	14.23%
Total.Serious.Injuries	15.46%
Total.Minor.Injuries	14.82%

Columns That May Be Dropped or Prioritized for Cleaning

- Columns with Extremely High Missing Data (>50%)
 - Latitude and Longitude: Geographical data is missing for over 60% of the records.
 - Aircraft.Category and FAR.Description: Missing in more than 60% of cases.
 - Schedule : Missing in 86% of records—likely unreliable for analysis.
 - Air.carrier: Missing in 81% of records—may not be useful.

In [376...

Removing the columns with the highest number of missing values
aviation_data.drop(columns=['Latitude', 'Longitude', 'Aircraft.Category', 'FAR.Desc

Columns That May Not Be Critical to Business Questions

- Registration.Number: Not needed for general aviation safety or route planning.
- Airport.Code and Airport.Name these have significant number of missing values, and in general may not offer much insight
- Publication.Date : Related to report processing rather than accident causes.

In [378...

Dropping columns with data that is not essential for the business question
aviation_data.drop(columns=['Airport.Code', 'Airport.Name', 'Publication.Date', 'Re
aviation_data.head(2)

Out[378...

	Event.ld	Investigation.Type	Accident.Number	Event.Date	Location	Country
0	20001218X45444	Accident	SEA87LA080	1948-10- 24	MOOSE CREEK, ID	United State
1	20001218X45447	Accident	LAX94LA336	1962-07- 19	BRIDGEPORT, CA	United State

2 rows × 21 columns

- Finding event identifing columns that will have use
- Event.Id , Accident.Number : These are unique identifiers and **do not contribute to analysis**. However they may be useful be useful further data cleaning or creating useful datasets down the line. Possibly create a dataframe to store them for later use.

There is no need to keep both identifier columns, one may be enough. This will be beneficial down the line especially when dealing with duplicated values.

• Investigation. Type - not cruicial for the for the analysis aand goes hand in hand with Accident. Number. We may drop both especially if Investiation. Type is found to contain alot mixed data types, or does not give us clear picture of what the incidents were like.

```
# Keep one column as unique dentifier of incidents
In [380...
         aviation_data.drop(columns=['Accident.Number', 'Investigation.Type'], inplace=True)
In [381...
         aviation_data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 90348 entries, 0 to 90347
        Data columns (total 19 columns):
            Column
                                   Non-Null Count Dtype
        --- -----
                                   -----
         0 Event.Id
                                   88889 non-null object
             Event.Date
                                 88889 non-null object
         2
            Location
                                  88837 non-null object
            Country
                                  88663 non-null object
            Injury.Severity
                                   87889 non-null object
            Aircraft.damage
                                   85695 non-null object
         6
            Make
                                   88826 non-null object
         7
            Model
                                   88797 non-null object
            Amateur.Built
                                   88787 non-null object
            Number.of.Engines
         9
                                   82805 non-null float64
         10 Engine.Type
                                   81793 non-null object
         11 Purpose.of.flight 82697 non-null object
                                   77488 non-null float64
         12 Total.Fatal.Injuries
         13 Total.Serious.Injuries 76379 non-null float64
         14 Total.Minor.Injuries
                                   76956 non-null float64
                                   82977 non-null float64
         15 Total.Uninjured
         16 Weather.Condition
                                   84397 non-null object
         17 Broad.phase.of.flight
                                   61724 non-null object
         18 Report.Status
                                   82505 non-null object
        dtypes: float64(5), object(14)
        memory usage: 13.1+ MB
In [382...
         aviation_data.isna().sum()
```

```
Out[382...
          Event.Id
                                      1459
           Event.Date
                                      1459
           Location
                                      1511
           Country
                                      1685
           Injury.Severity
                                      2459
          Aircraft.damage
                                      4653
          Make
                                      1522
          Model
                                      1551
           Amateur.Built
                                      1561
           Number.of.Engines
                                      7543
           Engine.Type
                                      8555
           Purpose.of.flight
                                      7651
           Total.Fatal.Injuries
                                     12860
           Total.Serious.Injuries
                                     13969
           Total.Minor.Injuries
                                     13392
          Total.Uninjured
                                     7371
          Weather.Condition
                                     5951
           Broad.phase.of.flight
                                     28624
           Report.Status
                                      7843
           dtype: int64
In [383...
          print(f"Counts based on state of plane at crash site:\n", aviation_data['Aircraft.d
```

Counts based on state of plane at crash site:

Aircraft.damage Substantial 64148 Destroyed 18623 Minor 2805 Unknown

Name: count, dtype: int64

Next Steps

- 1. Impute or clean columns with moderate missing data and inconsitencies if they are critical to the analysis.
- 2. Focus on columns that answer key business questions, such as:
 - Aircraft safety: Make , Model , Number.of.Engines , Engine.Type , 'Aircraft.damage
 - Route risk assessment: Location, Weather.Condition
 - Operational risks: Broad.phase.of.flight , Purpose.of.flight
 - **Human safety impact**: Injury.Severity, Total.Fatal.Injuries

Step 1: Fixing data inconstencies

- Standardized text fields by converting them to uppercase and removing extra spaces.
- Ensured consistency in categorical values like Country, Make, and Weather. Condition to prevent duplicates due to case differences.

```
In [386...
          # creating a listof columns containing text
          text_col = ['Location', 'Country', 'Injury.Severity', 'Aircraft.damage', 'Aircraft.
```

```
'Purpose.of.flight', 'Weather.Condition', 'Broad.phase.of.flight', 'Rep
# Dealing with white spaces and trailing characters
for column in text_col:
    aviation_data[column] = aviation_data[column].astype(str).str.strip().str.upper
aviation_data.sample(5)
```

Out[386...

	Event.ld	Event.Date	Location	Country	Injury.Severity	Aircraft.dama		
15567	20001213X34521	1986-08- 09	RANCHO MIRAGE, CA	UNITED STATES	NON-FATAL	SUBSTANTI		
17573	20001213X30861	1987-05- 22	HUNTERSVILLE, NC	UNITED STATES	NON-FATAL	SUBSTANTI		
10105	20001214X41412	1984-10- 20	APPLE VALLEY, CA	UNITED STATES	NON-FATAL	SUBSTANTI		
60604	20060607X00694	2006-05- 07	WEST MIDDLESEX, PA	UNITED STATES	NON-FATAL	SUBSTANTI		
39392	20001208X05629	1996-04- 14	KISSIMMEE, FL	UNITED STATES	FATAL(1)	DESTROY		
1						•		
<pre>aviation_data['Country'].value_counts()</pre>								

In [387...

Out[387...

Country

UNITED STATES 82248 NAN 1685 BRAZIL 374 CANADA 359 MEXICO 358 MAURITANIA OBYAN WOLSELEY 1 ALBANIA 1 **GUERNSEY**

Name: count, Length: 216, dtype: int64

Step 2: Handling Duplicates

- Identified potential **duplicate records** using Event.Id , Event.Date , Make , and Model .
- Remove exact duplicate records to maintain dataset integrity.

Taking into account that there are columns that we anticipate duplicates, we want to focus on unique identifiers, e.g. Event.Id, Event.Date

```
# inspect duplicated rows
print(f"The sum of exact duplicated rows is: ", aviation_data.duplicated().sum())
print()
print('Below a sample of duplicate rows')
aviation_data[aviation_data.duplicated(keep=False)]
```

The sum of exact duplicated rows is: 1486

Below a sample of duplicate rows

Out[389		Event.ld	Event.Date	Location	Country	Injury.Severity	Aircraft.damage
	1370	20020917X02935	1982-05- 28	EVANSVILLE, IN	UNITED STATES	NON-FATAL	SUBSTANTIAL
	1371	20020917X02935	1982-05- 28	EVANSVILLE, IN	UNITED STATES	NON-FATAL	SUBSTANTIAL
	3081	20020917X04638	1982-10- 18	GULF OF MEXICO	GULF OF MEXICO	FATAL(3)	DESTROYEC
	3082	20020917X04638	1982-10- 18	GULF OF MEXICO	GULF OF MEXICO	FATAL(3)	DESTROYED
	4760	20001214X43016	1983-05- 22	BRIDGEPORT, CA	UNITED STATES	FATAL(1)	SUBSTANTIAL
	•••			•••			
	90004	NaN	NaN	NAN	NAN	NAN	NAN
	90010	NaN	NaN	NAN	NAN	NAN	NAN
	90031	NaN	NaN	NAN	NAN	NAN	NAN
	90090	NaN	NaN	NAN	NAN	NAN	NAN
	90097	NaN	NaN	NAN	NAN	NAN	NAN

1515 rows × 19 columns

```
→
```

From the sampling above the duplicated rows generally seem to be exact copies or containing NaN values, so the best move is to drop and only keep one of the copied rows.

```
In [391... # Now dropping the duplicated rows
    aviation_data = aviation_data.drop_duplicates(subset='Event.Id', keep='first')
    aviation_data
```

Out[391...

Event.Id Event.Date Location Country Injury. Severity Aircraft.damage 1948-10-MOOSE UNITED 20001218X45444 FATAL(2) DESTROYED CREEK, ID STATES 1962-07-BRIDGEPORT, UNITED 20001218X45447 FATAL(4) DESTROYED 19 CA STATES 1974-08-SALTVILLE, UNITED 20061025X01555 FATAL(3) DESTROYED 30 VA **STATES** 1977-06-UNITED 20001218X45448 EUREKA, CA FATAL(2) DESTROYED 19 STATES CANTON, 1979-08-UNITED 20041105X01764 FATAL(1) DESTROYED 02 ОН **STATES** 2022-12-ANNAPOLIS, UNITED 20221227106491 90343 **MINOR** NAN 26 **STATES** MD 2022-12-HAMPTON, UNITED 90344 20221227106494 NAN NAN 26 NH **STATES** 2022-12-UNITED 20221227106497 PAYSON, AZ NON-FATAL 90345 SUBSTANTIAL 26 STATES 2022-12-MORGAN, UNITED 90346 20221227106498 NAN NAN 26 UT **STATES** 2022-12-UNITED 20221230106513 90347 ATHENS, GA **MINOR** NAN 29 STATES 87952 rows × 19 columns

Step 3: Handling Missing Values

- **Filled missing numeric values** (e.g., Total.Fatal.Injuries) with 0 to avoid misinterpretation.
- Imputed categorical fields (Engine.Type, Weather.Condition, Broad.phase.of.flight) with mode or "UNKNOWN" to retain important data.
- Ensured missing values in critical analysis columns were handled appropriately without losing essential insights.

Here the idea is we will go column by column assessing the folders with missing values and implement at one of the approaches above

In [393...

Checking for columns still with missing values
aviation_data.isna().sum()

Out[393... Event.Id 1 Event.Date 1 0 Location Country 0 Injury.Severity 0 Aircraft.damage 0 0 Make Mode1 0 Amateur.Built 0 Number.of.Engines 6028 Engine.Type 0 Purpose.of.flight 0 Total.Fatal.Injuries 11268 Total.Serious.Injuries 12323 Total.Minor.Injuries 11761 Total.Uninjured 5864 Weather.Condition 0 0 Broad.phase.of.flight Report.Status 0 dtype: int64

Understanding the Engine Counts Column

- Every aircraft must have at least **one engine or propulsion system**, whether traditional or electric.
- The Number.of.Engines column should not have missing values since all operational aircraft require propulsion.

Identifying Missing and Unusual Values To ensure consistency, we first check for:

- Missing values in the Number.of. Engines column.
- Unusual values that may indicate data entry errors. For example 0 engines on a plane

By analysing this columns statistics we can establish the most common type of engine count and assume these planes with **NaN** will likely have that too, or inspect by model and whether that make sense

```
# checking through the column Number.of.engines
print(f"The number of rows missing engine count: ", aviation_data['Number.of.Engine
print()
print(f"The distribution of engine counts looks like this: ", aviation_data['Number
print()

# finding the most common engine number
most_common_count = aviation_data['Number.of.Engines'].mode()[0]
print(f"The most common number of engines is", most_common_count)
```

The number of rows missing engine count: 6028

The distribution of engine counts looks like this: Number.of.Engines 1.0 68956 2.0 10891

6028 NaN 0.0 1210 3.0 448 4.0 415 8.0 3

6.0

1 Name: count, dtype: int64

The most common number of engines is 1.0

In [396... # inspecting the row with zero and whether they are data entry errors in general

aviation_data[aviation_data['Number.of.Engines'] == 0].sample(5)

()	11	ГΙ.	-<	ч	h	
\cup	u ı	~ I	\sim	-	\cup	
		-				

	Event.ld	Event.Date	Location	Country	Injury.Severity	Aircraft.dama
33232	20001211X12951	1993-07- 12	LA JOLLA, CA	UNITED STATES	NON-FATAL	NΑ
18608	20001213X32059	1987-09- 05	COLORADO SPRING, CO	UNITED STATES	NON-FATAL	SUBSTANTI
32655	20001211X12388	1993-05- 01	BENTONVILLE, AR	UNITED STATES	NON-FATAL	SUBSTANTI
63240	20070908X01331	2007-08- 25	HEBER, UT	UNITED STATES	NON-FATAL	SUBSTANTI
30705	20001211X14982	1992-06- 23	WAYNESBORO, VA	UNITED STATES	NON-FATAL	SUBSTANTI

replacing the null values with the mode In [397... aviation_data.loc[:, 'Number.of.Engines'] = aviation_data['Number.of.Engines'].fill

In [398... # As for the zero engine count, replace '0' with mode as well # It may be tideous to identfy each plane by make and model, these columns are way aviation_data.loc[:, 'Number.of.Engines'] = aviation_data['Number.of.Engines'].repl

In [399... # Checking to see if the column has been fixed print(f"The Number of NaN values is", aviation_data['Number.of.Engines'].isna().sum print(f"What the distribution of engine counts looks like this after fixing NaN and

```
The Number of NaN values is 0
What the distribution of engine counts looks like this after fixing NaN and zero val
ues: Number.of.Engines
1.0
      76194
2.0
     10891
3.0
        448
4.0
         415
8.0
           3
6.0
           1
Name: count, dtype: int64
```

Cleaning and Validating The Injury Report Columns

1. Logical Approach to Handling Missing and Inconsistent Values Unlike other dataset fields, the report columns contain recorded deaths and injuries, which require careful handling to avoid inaccuracies.

Simply replacing missing values with the **mode or mean** is **not appropriate** because:

- Deaths and injuries should always be documented accurately.
- Negative values are impossible and must be removed.
- **Missing (NaN) values** must be handled based on **logical assumptions** rather than standard imputation.
- 2. Handling Missing Values in Report Columns To maintain accuracy:
 - **Total.Fatal.Injuries** → If NaN , assume **0**, since fatalities would have been reported.
 - Total.Serious.Injuries & Total.Minor.Injuries → If NaN, assume 0, as serious and minor injuries are usually documented.
 - **Total.Uninjured** → If NaN , assume **0**, as uninjured passengers may not be explicitly recorded.

```
In [401...
          # create a list of injury report columns
          injury report columns =['Total.Fatal.Injuries', 'Total.Serious.Injuries', 'Total.Mi
          # replacing the NaN with zero
          aviation_data.loc[:, injury_report_columns] = aviation_data[injury_report_columns].
          # replacing negative values with zero
          for col in injury report columns:
              aviation_data[col] = aviation_data[col].apply(lambda x: 0 if x<0 else x)</pre>
          # validating if NaN values have been fixed
          print(aviation_data[injury_report_columns].isna().sum())
         Total.Fatal.Injuries
         Total.Serious.Injuries
                                   0
         Total.Minor.Injuries
                                   0
         Total.Uninjured
                                   0
         dtype: int64
```

```
# spotting that something is off with the injury severity column
In [402...
           aviation_data['Injury.Severity']
Out[402...
                     FATAL(2)
           1
                     FATAL(4)
           2
                     FATAL(3)
           3
                     FATAL(2)
                     FATAL(1)
                      . . .
           90343
                        MINOR
           90344
                          NAN
           90345
                    NON-FATAL
           90346
                          NAN
           90347
                        MINOR
           Name: Injury.Severity, Length: 87952, dtype: object
          # we will deploy a formula to standadize the injury report column, that with will h
In [403...
          import re
          def std_injury_severity(col_value):
               col_value = str(col_value).strip(col_value).upper()
               # converting all variations Fata(x) to fatal
               if "FATAL" in col_value:
                   return "Fatal"
               elif col_value in ["NON-FATAL", "MINOR", "SERIOUS", "INCIDENT"]:
                   return col_value
               else:
                   return "unknown"
           # applying the formula to the dataset
           aviation_data['Injury.Severity'].apply(std_injury_severity)
Out[403...
           0
                    unknown
           1
                    unknown
           2
                    unknown
           3
                    unknown
           4
                    unknown
           90343
                    unknown
           90344
                    unknown
           90345
                    unknown
           90346
                    unknown
           90347
                    unknown
           Name: Injury.Severity, Length: 87952, dtype: object
In [404...
          # Convert Event.Date to datetime format
           aviation_data['Event.Date'] = pd.to_datetime(aviation_data['Event.Date'], errors='c
In [405...
          aviation_data.info()
```

<class 'pandas.core.frame.DataFrame'>
Index: 87952 entries, 0 to 90347
Data columns (total 19 columns):

```
Column
                           Non-Null Count Dtype
    -----
_ _ _
                            -----
    Event.Id
0
                           87951 non-null object
1
    Event.Date
                           87951 non-null datetime64[ns]
 2
    Location
                           87952 non-null object
 3
    Country
                           87952 non-null object
4
    Injury.Severity
                           87952 non-null object
 5
    Aircraft.damage
                           87952 non-null object
 6
    Make
                           87952 non-null object
                           87952 non-null object
 7
    Model
    Amateur.Built
                           87952 non-null object
 9
    Number.of.Engines
                           87952 non-null float64
10 Engine.Type
                           87952 non-null object
11 Purpose.of.flight
                           87952 non-null object
12 Total.Fatal.Injuries
                           87952 non-null float64
13 Total.Serious.Injuries 87952 non-null float64
 14 Total.Minor.Injuries
                           87952 non-null float64
                           87952 non-null float64
15 Total.Uninjured
16 Weather.Condition
                           87952 non-null object
17 Broad.phase.of.flight
                           87952 non-null object
18 Report.Status
                           87952 non-null object
dtypes: datetime64[ns](1), float64(5), object(13)
memory usage: 13.4+ MB
```

In [406...

Sampling through our cleaned dataset
aviation_data.sample(10)

Out[406...

	Event.ld	Event.Date	Location	Country	Injury.Severity	Aircraft.damag
75734	20140718X92314	2014-07- 17	HRABOVE, UKRAINE	UKRAINE	FATAL	DESTROYE
8592	20001214X40136	1984-06- 12	PASCO, WA	UNITED STATES	NON-FATAL	SUBSTANTIA
25325	20001212X22870	1990-04- 22	SANDWICH, IL	UNITED STATES	NON-FATAL	SUBSTANTIA
71228	20111214X31105	2011-12- 14	TUCSON, AZ	UNITED STATES	NON-FATAL	SUBSTANTIA
20549	20001213X25958	1988-06- 13	MOUNDS, OK	UNITED STATES	NON-FATAL	SUBSTANTIA
33919	20001211X13524	1993-10- 02	ROODHOUSE, IL	UNITED STATES	FATAL(2)	DESTROYE
86029	20200709X11322	2020-07- 04	OOLTEWAH, TN	UNITED STATES	NON-FATAL	SUBSTANTIA
89459	20220627105370	2022-06- 27	MOAB, UT	UNITED STATES	NON-FATAL	SUBSTANTIA
83866	20190329X55659	2019-03- 29	ORMOND BEACH, FL	UNITED STATES	NON-FATAL	SUBSTANTIA
58735	20050615X00771	2005-05- 29	OKLAHOMA CITY, OK	UNITED STATES	NON-FATAL	SUBSTANTIA
4						>

Handling String "NaN" Values in Categorical Data

Identifying the Issue

During manual sampling of the cleaned dataset, we notice an inconsistency:

Some categorical column values were stored as **the string "NaN"** instead of the standard **np.nan** (Python's default missing value representation).

Because these values were **not recognized as actual missing values (NaN)**, they were **not handled properly** during the initial data cleaning phase.

Converting "NaN" Strings to Actual NaN

To ensure proper handling of missing data, we replace all occurrences of "NaN" (as a string) with **np.nan**. Then the option here is to replace them with unknown, this would seem like a fitting category in the different categorical column as opposed to dropping the values altogether.

```
In [408...
          # Replace string "NaN" with actual NaN values
           aviation_data.replace("NAN", "UNKNOWN", inplace=True)
           aviation_data.isna().sum()
Out[408...
           Event.Id
                                      1
           Event.Date
                                      1
                                      0
           Location
           Country
           Injury.Severity
           Aircraft.damage
                                      0
           Make
                                      0
           Mode1
                                      0
           Amateur.Built
           Number.of.Engines
           Engine.Type
           Purpose.of.flight
           Total.Fatal.Injuries
                                      0
           Total.Serious.Injuries
           Total.Minor.Injuries
                                      0
           Total.Uninjured
           Weather.Condition
                                      0
           Broad.phase.of.flight
                                      0
           Report.Status
                                      0
           dtype: int64
In [409...
          aviation_data.isna().sum()
```

```
Out[409...
          Event.Id
                                     1
          Event.Date
          Location
                                     0
          Country
                                     0
           Injury.Severity
          Aircraft.damage
          Make
          Mode1
          Amateur.Built
          Number.of.Engines
           Engine. Type
          Purpose.of.flight
          Total.Fatal.Injuries
          Total.Serious.Injuries
          Total.Minor.Injuries
          Total.Uninjured
          Weather.Condition
          Broad.phase.of.flight
           Report.Status
           dtype: int64
In [410...
          # writng our cleaned dataset into a csv file
          aviation_data.to_csv('data/cleaned_aviation_data.csv', index=True)
```

Step 4: Generating Meaningful Data Subsets

Finally with our data clean enough we can move creating meaningful datasets

Aircraft Safety Analysis

- Grouped aircraft by Make & Model, calculating:
 - Total accidents per aircraft model
 - Total fatalities
 - Fatality rate (fatalities per accident)
- Sorted aircraft to determine which models are safest vs. most accident-prone.

```
# using groupby() to create an aggregated DataFame of aircraft with the human toll
aicraft_safety_df = aviation_data.groupby(['Make', 'Model']).agg(
    total_crashes = ('Event.Id', 'count'),
    total_fatalities = ('Total.Fatal.Injuries', 'sum'),
    total_serious_injuries = ('Total.Serious.Injuries', 'sum'),
    total_minor_injurie = ('Total.Minor.Injuries', 'sum')
).reset_index()
In [414... # Top 10 aircraft makes associated with highest fatality
aicraft_safety_df.sort_values('total_fatalities', ascending=False).head(10)
```

Out[414...

	Make	Model	total_crashes	total_fatalities	total_serious_injuries	total_minor_inj
3153	BOEING	737	484	1348.0	388.0	
3189	BOEING	737- 200	51	906.0	88.0	
3437	BOEING	777 - 206	3	534.0	0.0	
3587	BOEING	MD- 82	8	403.0	2.0	
4650	CESSNA	172N	1143	402.0	201.0	3
4599	CESSNA	172	1740	386.0	310.0	3
841	AIRBUS	A321	20	381.0	0.0	
13341	PIPER	PA- 28- 181	520	377.0	112.0	1
4575	CESSNA	152	2312	351.0	196.0	4
17087	TUPOLEV	TU- 154	1	349.0	0.0	
4						•

Getting aircraft fatality rate ie. Which air crafts have higher total fatalities, event when their total count of incedents is compaatively lower

```
In [416... # aggregate the columns to help with the calculation
    fatality_rate_df = aviation_data.groupby('Make').agg(
        total_crashes = ('Event.Id', 'count'),
        total_fatalities = ('Total.Fatal.Injuries', 'sum'),
    ).reset_index()

# fatality rate calculated as total fatal injuries of a particular make divided the fatality_rate_df['Fatality.Rates'] = np.round(fatality_rate_df['total_fatalities'])

fatality_rate_df = fatality_rate_df.sort_values(by='Fatality.Rates', ascending=Fals fatality_rate_df
```

Out[416...

	Make	total_crashes	total_fatalities	Fatality.Rates
6931	TUPOLEV	4	509.0	127.25
7104	VIKING AIR LIMITED	1	23.0	23.00
470	AVIOCAR CASA	1	18.0	18.00
4639	MIL	1	13.0	13.00
4640	MIL DESIGN BUREAU	1	13.0	13.00
345	ANTONOV	6	71.0	11.83
2144	EMBRAER AIRCRAFT	1	10.0	10.00
208	AIRVAN	1	9.0	9.00
4263	M7AERO	1	8.0	8.00
3563	JETSTREAM	3	23.0	7.67

```
In [417... # getting of the above top 10 riskiest makes determined determined by few crashes c
# Plot
plt.figure(figsize=(10, 6))
plt.barh(fatality_rate_df['Make'], fatality_rate_df['Fatality.Rates'], color='red',

# Labels and title
plt.xlabel("Fatality Rate", fontsize=12)
plt.ylabel("Aircraft Manufacturer", fontsize=12)
plt.title("Top 10 Aircraft Manufacturers by Fatality Rate", fontsize=14)
plt.gca().invert_yaxis() # Invert to show highest fatality rate on top

# Show plot
plt.show()
```


In [418...

fatality_rate_df.to_csv('data/fatality_rate.csv', index=True)

Route Risk Analysis

- Counted total incidents per country to identify high-risk regions.
- Helps inform route selection for safety and operational planning.

```
In [420...
route_risk_df = aviation_data.groupby('Country')['Event.Id'].count().reset_index()
route_risk_df.columns = ('Country', 'Total.Accidents')
```

top riskies and top safes routes to take
top_20_risk = route_risk_df.sort_values(by='Total.Accidents', ascending=False).head
top_20_risk

Out[420...

	Country	Total.Accidents
203	UNITED STATES	81355
27	BRAZIL	373
123	MEXICO	356
32	CANADA	355
202	UNITED KINGDOM	341
11	AUSTRALIA	300
64	FRANCE	235
204	UNKNOWN	225
181	SPAIN	224
14	BAHAMAS	215
70	GERMANY	210
41	COLOMBIA	193
177	SOUTH AFRICA	129
99	JAPAN	125
206	VENEZUELA	121
96	ITALY	113
8	ARGENTINA	111
90	INDONESIA	110
89	INDIA	94
150	PERU	93

```
In [421... top_20_risk.to_csv('data/top_20_hazard_route.csv', index=True)
In [422... # plot of the top 20 riskiest routes in terms of incident numbers
fig, ax = plt.subplots(figsize=(16, 8))
ax.bar(top_20_risk['Country'], top_20_risk['Total.Accidents'])
ax.set_title("Accident frequeny by Location", fontsize=14, fontweight='bold', color ax.set_xlabel("Countries", fontsize=12, fontweight='bold')
ax.set_ylabel("Accident Frequency", fontsize=12, fontweight='bold')
```

Out[422... Text(0, 0.5, 'Accident Frequency')

Operational Risk Analysis

- Aggregated **accidents by flight phase** (e.g., Takeoff, Landing, Cruise).
- Helps pinpoint which stages of flight are most dangerous.
- Aloso we can consider **risk based on purpose** e.g. hyothesis ,Pilots in training or those in races are more prone to bad events

Accidents by flight phase

\cap		Г	/	7		
U	uц	н	4	_	D	

	Broad.phase.of.flight	Event.Id
0	APPROACH	6389
1	CLIMB	1995
2	CRUISE	10141
3	DESCENT	1870
4	GO-AROUND	1345
5	LANDING	15320
6	MANEUVERING	8052
7	OTHER	116
8	STANDING	872
9	TAKEOFF	12404
10	TAXI	1786
11	UNKNOWN	27661

A plot showing during which phases of flight an accident is likely to ocur

```
In [427... # A plot showing whih phase of flight annoident is mot likeley to occur
sns.set_style("whitegrid")

fig, ax = plt.subplots(figsize=(16, 8))

ax.bar(operational_risk_df['Broad.phase.of.flight'], operational_risk_df['Event.Id'

ax.set_title("Accident frequeny by Flight Phase", fontsize=14, fontweight='bold', c
ax.set_xlabel("Flight Phaase", fontsize=12, fontweight='bold')
ax.set_ylabel("Accident Frequency", fontsize=12, fontweight='bold')
```

Out[427... Text(0, 0.5, 'Accident Frequency')

The unknown column is significantly taller this may imply that more thorough investigation or factors not considered may be needed.

Accidents based on Purpose of Fligh

```
# based on the purpose of the flight
flight_purpose_df = aviation_data.groupby('Purpose.of.flight')['Event.Id'].count().
flight_purpose_df.sort_values(by='Event.Id', ascending=False)
```

Out[430...

	Purpose.of.flight	Event.ld
16	PERSONAL	49076
25	UNKNOWN	12731
14	INSTRUCTIONAL	10442
0	AERIAL APPLICATION	4686
7	BUSINESS	3971
17	POSITIONING	1632
15	OTHER WORK USE	1250
10	FERRY	806
1	AERIAL OBSERVATION	787
19	PUBLIC AIRCRAFT	710
8	EXECUTIVE/CORPORATE	542
12	FLIGHT TEST	405
24	SKYDIVING	181
9	EXTERNAL LOAD	123
20	PUBLIC AIRCRAFT - FEDERAL	104
6	BANNER TOW	101
3	AIR RACE SHOW	99
21	PUBLIC AIRCRAFT - LOCAL	74
22	PUBLIC AIRCRAFT - STATE	64
13	GLIDER TOW	53
4	AIR RACE/SHOW	53
11	FIREFIGHTING	40
2	AIR DROP	11
5	ASHO	5
23	PUBS	4
18	PUBL	1

```
In [431... # Plot
    plt.figure(figsize=(10, 5))
    plt.barh(flight_purpose_df['Purpose.of.flight'], flight_purpose_df['Event.Id'], col

# Labels and title
    plt.xlabel("Number of Incidents", fontsize=12)
    plt.ylabel("Purpose of Flight", fontsize=12)
```

```
plt.title("Incidents by Flight Purpose", fontsize=14)
plt.gca().invert_yaxis() # Puts highest category on top

# Show plot
plt.show()
```


Personal flights have way more incedets than the rest, this could be due to a larger proportions of amateur pilots with smaller planes lacking less automation, and other aides. Plus less training and not using air traffick control adequately

Weather and Environmental Impact

- Analyzed weather conditions linked to accidents.
- Helps evaluate how weather impacts aviation safety and influences flight scheduling.

```
In [434...
          aviation_data['Weather.Condition'].value_counts()
Out[434...
           Weather.Condition
           VMC
                      76417
           IMC
                       5949
           UNKNOWN
                       4474
           UNK
                       1112
           Name: count, dtype: int64
          weather_impact_df = aviation_data.groupby('Weather.Condition')['Event.Id'].count().
In [435...
          weather_impact_df.columns = ['Weather Condition', 'Total Accidents']
          weather_impact_df
```

Out[435...

	Weather Condition	Total Accidents
0	IMC	5949
1	UNK	1112
2	UNKNOWN	4473
3	VMC	76417

Accident trends over time

The anticipation here is that as technology has advanced this has inversley affected the chances of incidents in the air

```
# creating DF to show these trends
aviation_data['Year'] = aviation_data['Event.Date'].dt.year
accident_trend_df = aviation_data.groupby('Year')['Event.Id'].count().reset_index()
accident_trend_df.columns = ['Year', 'Total Accidents']
accident_trend_df
```

Out[437...

	Year	Total Accidents
0	1948.0	1
1	1962.0	1
2	1974.0	1
3	1977.0	1
4	1979.0	2
5	1981.0	1
6	1982.0	3547
7	1983.0	3513
8	1984.0	3406
9	1985.0	3053
10	1986.0	2832
11	1987.0	2773
12	1988.0	2685
13	1989.0	2502
14	1990.0	2480
15	1991.0	2420
16	1992.0	2328
17	1993.0	2285
18	1994.0	2229
19	1995.0	2278
20	1996.0	2150
21	1997.0	2121
22	1998.0	2196
23	1999.0	2174
24	2000.0	2183
25	2001.0	2032
26	2002.0	2001
27	2003.0	2063
28	2004.0	1932
29	2005.0	2001

	Year	Total Accidents
30	2006.0	1826
31	2007.0	1984
32	2008.0	1893
33	2009.0	1783
34	2010.0	1786
35	2011.0	1850
36	2012.0	1835
37	2013.0	1561
38	2014.0	1535
39	2015.0	1582
40	2016.0	1664
41	2017.0	1638
42	2018.0	1681
43	2019.0	1624
44	2020.0	1392
45	2021.0	1545
46	2022.0	1581

```
In [438... # Plot accident trends over time using a line graph
    plt.figure(figsize=(10, 5))
    plt.plot(accident_trend_df['Year'], accident_trend_df['Total Accidents'], marker='o

# Labels and title
    plt.xlabel("Year", fontsize=12)
    plt.ylabel("Total Accidents", fontsize=12)
    plt.title("Accident Trends Over Time", fontsize=14)

# Show grid for better readability
    plt.grid(True)
```


Things seem relatively quiet in the erlier years but this is probably due to less flights but also maybe because of less reporting and records. The spike in the 80s could be due to a inrease in flights and also established of regulatory bodies and more investigation leading to beetter records. But all in all there seems be a decrease in incidents, better technology, more regulations and safeguards

Key Business Insights From Analysis

Overview

This report provides **data-driven insights** from a comprehensive analysis of aviation accident data.

It highlights key risk factors, aircraft safety trends, route risks, operational challenges, and weather impacts that are critical for a company considering entry into the aviation sector.

Key Insights from the Data

1. Aircraft Selection – Which Models Have the Best Safety Records?

- The most accident-prone aircraft models include:
 - **Tupolev TU-154** High fatality rate due to severe accidents.
 - **Boeing 777-206** Large aircraft involved in multiple serious incidents.
 - McDonnell Douglas DC-8-62 Several incidents with high fatalities.
- The safest aircraft models tend to be those with modern technology, strong safety records, and low accident frequencies.

Insight

- Invest in **modern aircraft models** with **strong safety records** and **lower accident** rates.
- Prioritize robust builds, proven reliability, and lower maintenance costs.
- Lease newer aircraft before buying

2. Fleet Planning – How Many Planes Should the Company Buy Initially?

- Accident trends have declined over time, showing improvements in aviation safety.
- data-driven approach to fleet size planning should consider:
 - Historical accident rates per aircraft model.
 - Passenger demand & revenue models.
 - Route expansion strategies.

Insight:

- Start with a small fleet to test market demand and ensure operational efficiency.
- Grow the fleet as the aviation industry becomes more common place for the company

3. Route Selection – Which Routes Are Safest?

- **Most accident-prone countries** (by total reported incidents):
 - United States Highest volume of accidents due to high traffic and extensive reporting. The FAA has been quite the pace-setter
 - Brazil, Mexico, Canada Have moderate accident frequencies.
 - United Kingdom Incidents associated with weather and airspace congestion.
- Regional aviation safety varies significantly based on infrastructure, regulations, and weather.

Insight:

- Prioritize safer, well-regulated routes with strong air traffic control systems.
- Consider launching operations in regions with moderate demand and low accident rates.
- Avoid high-risk zones unless necessary, and invest in risk mitigation strategies.

4. Operational Risks – Which Flight Phases Are Most Dangerous?

- Most accidents occur during:
 - 1. **Landing** Most critical phase (highest accident count).
 - 2. **Takeoff** Second-most accident-prone phase.
 - 3. **Cruise & Maneuvering** Fewer but often severe accidents.
- Landing and takeoff accidents are often caused by:
 - Runway conditions, mechanical failures, or pilot errors.
 - Harsh weather, unstable approaches, or miscalculations.

Insight:

- Invest in pilot training for takeoff and landing safety procedures.
- Equip aircraft with advanced navigation systems
- Ensure runway safety checks before landing and takeoff.

5. Weather & Environmental Impact – How Does Weather Affect Safety?

- 76,417 accidents occurred under VMC (good visibility).
- IMC (low visibility) accidents were fewer but often more severe.
- Poor weather conditions lead to:
 - Navigation errors, turbulence, visibility issues, and emergency landings.

Insight:

- Invest in weather monitoring & predictive analytics.
- Train pilots for operations in different conditions.
- Plan alternate routes for extreme weather conditions.

Final Recommendations

To successfully enter the aviation industry, the company should:

- 1. **Select the safest, most fuel-efficient aircraft** for long-term profitability.
- 2. **Begin with a small, strategically planned fleet** to test demand.
- 3. Avoid high-risk routes & prioritize well-regulated airspaces.
- 4. Invest in advanced pilot training & navigation technology.
- Implement real-time weather monitoring & route optimization systems.