

- Punto della situazione
  - Cos'è un algoritmo
  - Tempo di esecuzione T(n)
  - Analisi di algoritmi: analisi asintotica di T(n)
  - Notazioni asintotiche
- Argomento di oggi
  - Analisi del tempo di esecuzione di un algoritmo con le notazioni asintotiche
- Motivazioni
  - Confrontare tempi di esecuzione di algoritmi fra loro o con funzioni standard (lineare, polinomiale, esponenziale...)

## Notazioni asintotiche

Nell'analisi asintotica analizziamo T(n)

- 1. A meno di costanti moltiplicative (perché non quantificabili)
- 2. Asintoticamente (per considerare input di taglia arbitrariamente grande, quindi in numero infinito)

Le notazioni asintotiche:

$$O, \Omega, \Theta, o, \omega$$

ci permetteranno il **confronto** tra funzioni, mantenendo queste caratteristiche.

Idea di fondo:  $\bigcirc$ ,  $\bigcirc$ ,  $\bigcirc$ ,  $\bigcirc$ ,  $\bigcirc$ ,  $\bigcirc$  rappresentano rispettivamente  $\leq$ ,  $\geq$ , =, <, >

in un'analisi asintotica

# Analisi di T(n)

Analizzare il tempo di esecuzione T(n) di un algoritmo significherà dimostrare che:

 $T(n) = \Theta(f(n))$  se possibile

oppure

delimitare T(n) in un intervallo:

 $T(n)=O(f(n)) e T(n)=\Omega(g(n))$ 

(nel caso in cui il caso peggiore sia diverso dal caso migliore).

### Limitazioni più utilizzate

#### Scaletta:

Man mano che si scende troviamo funzioni che crescono **più** velocemente (in senso stretto):

ogni funzione f(n) della scaletta è f(n)=o(g(n)) per ogni funzione che sta più in basso.

Quindi potremo utilizzare (negli esercizi) che per queste funzioni standard:

 $f(n) \le c g(n)$  per qualsiasi valore di c, ci possa servire, da un opportuno  $n_c$  in poi.

| Espressione O             | nome         |
|---------------------------|--------------|
| O(1)                      | costante     |
| $O(\log \log n)$          | log log      |
| $O(\log n)$               | logaritmico  |
| $O(\sqrt[c]{n}), \ c > 1$ | sublineare   |
| O(n)                      | lineare      |
| $O(n \log n)$             | $n \log n$   |
| $O(n^2)$                  | quadratico   |
| $O(n^3)$                  | cubico       |
| $O(n^k) \ (k \ge 1)$      | polinomiale  |
| $O(a^n) \ (a > 1)$        | esponenziale |
| O(n!)                     | fattoriale   |
|                           |              |

### **Asymptotic Bounds for Some Common Functions**

- Polynomials.  $a_0 + a_1 n + ... + a_d n^d$  is  $\Theta(n^d)$  if  $a_d > 0$ .
- Polynomial time. Running time is O(n<sup>d</sup>) for some constant d independent of the input size n.
- Logarithms.  $\log_a n = \Theta(\log_b n)$  for any constants a, b > 0.

  can avoid specifying the base
- Logarithms. For every x > 0,  $\log n = o(n^x)$ .  $\log grows slower than every polynomial$
- Exponentials. For every r > 1 and every d > 0,  $n^d = o(r^n)$ .

every exponential grows faster than every polynomial

# Più in dettaglio

Informalmente....

Più precisamente:

☐ Un esponenziale cresce più velocemente di qualsiasi polinomio

 $n^{d} = o(r^{n})$  per ogni d>0 e r>1

Un polinomio cresce più velocemente di qualsiasi potenza di logaritmo

 $log_b n^k = o(n^d)$ per ogni k, d>0 e b>1

## E ancora

Informalmente....

Per esempio:

- □ Nel confronto fra esponenziali conta la base
- ☐ Nel confronto fra polinomi conta il grado
- ☐ Nel confronto fra logaritmi ... la base non conta

$$2^n = o(3^n)$$

$$n^2 = o(n^3)$$

$$log_{10} n = log_2 n (log_{10} 2) = \Theta(log_2 n)$$

### Polinomi vs logaritmi

Un polinomio cresce più velocemente di qualsiasi potenza di logaritmo. *Per esempio:* 

Proviamo che

$$\log_2 n = O(n).$$

Occorre provare che  $\exists c, n_0 : \log_2 n \le cn \quad \forall n \ge n_0$ 

Per induzione su n: Per n=1 abbiamo  $\log_2 1 = 0 \le 1$ .

In generale, per  $n \ge 1$ 

$$\log_2(n+1) \le \log_2(n+n) = \log_2(2n)$$
  
=  $\log_2 2 + \log_2 n = 1 + \log n$   
 $\le 1 + n$  (per ipotesi induttiva)

Abbiamo quindi provato che

$$\log n \le n \quad \forall n \ge 1 \Longrightarrow \log n = O(n)$$

Lo proveremo con c=1 e  $n_0=1$ , cioè  $log_2$   $n \le n$ ,  $\forall n \ge 1$ 

## Domanda

Per questo genere di esercizi:

### a cosa serve la calcolatrice?

#### Suggerimento:

ricorda che f(n) = O(g(n)) significa  $f(n) \le c g(n)$  per ogni  $n \ge n_0$  cioè per un numero **infinito** di valori di n.

**QUINDI**: NON basta dimostrare che  $f(n) \le c g(n)$  per qualche costante c, per esempio che:

 $f(1) \le c g(1)$ ,  $f(2) \le c g(2)$ , ...,  $f(10.000) \le c g(10.000)$ .

Perché potrebbe essere invece  $f(n) \ge c g(n)$  per ogni  $n \ge 10.001$ .

# Nella pratica

Per stabilire l'ordine di crescita di una funzione basterà tenere ben presente la «scaletta» e alcune proprietà delle notazioni asintotiche.

## **Properties**

#### Transitivity

(analoga ad a  $\leq$ b e b  $\leq$ c allora a  $\leq$ c per i numeri)

- If f = O(g) and g = O(h) then f = O(h).
- If  $f = \Omega(g)$  and  $g = \Omega(h)$  then  $f = \Omega(h)$ .
- If  $f = \Theta(g)$  and  $g = \Theta(h)$  then  $f = \Theta(h)$ .

#### Additivity.

- If f = O(h) and g = O(h) then f + g = O(h).
- If  $f = \Omega(h)$  and  $g = \Omega(h)$  then  $f + g = \Omega(h)$ .
- If  $f = \Theta(h)$  and  $g = \Theta(h)$  then  $f + g = \Theta(h)$ .

(Attenzione: l'analoga per i numeri sarebbe

"se a  $\leq$ c e b  $\leq$ c allora a+b  $\leq$ c", che non è vera!!)

## Transitività: dimostrazione

Se f = O(g) e g = O(h) allora f = O(h)

#### Ipotesi:

esistono costanti  $c,n_0 > 0$  tali che per ogni  $n \ge n_0$  si ha  $f(n) \le c \cdot g(n)$  esistono costanti  $c',n'_0 > 0$  tali che per ogni  $n \ge n'_0$  si ha  $g(n) \le c' \cdot h(n)$ 

### Tesi (Dobbiamo mostrare che):

esistono costanti c'',n''<sub>0</sub> > 0 tali che per ogni  $n \ge n''_0$  si ha  $f(n) \le c'' \cdot h(n)$ Quanto valgono c'',  $n''_0$ ?

$$f(n) \le c \cdot g(n) \le c \cdot c' \cdot h(n)$$
 per ogni  $n \ge n_0$  e  $n \ge n'_0$ 

$$c'' = c \cdot c'$$
  
 $n''_{0} = \max \{n_{0}, n'_{0}\}$ 

## Additività: dimostrazione

Se f = O(h) e g = O(h) allora f + g = O(h)

#### Ipotesi:

```
esistono costanti c,n_0 > 0 tali che per ogni n \ge n_0 si ha f(n) \le c \cdot h(n) esistono costanti c',n'_0 > 0 tali che per ogni n \ge n'_0 si ha g(n) \le c' \cdot h(n)
```

#### Tesi (Dobbiamo mostrare che):

```
esistono costanti c'',n''<sub>0</sub> > 0 tali che per ogni n \ge n''_0 si ha f(n)+g(n) \le c'' \cdot h(n)
```

Quanto valgono c'', n''<sub>0</sub>?

$$f(n)+g(n) \le c \cdot h(n) + c' \cdot h(n) = (c+c') h(n) \text{ per ogni } n \ge n_0 \text{ e } n \ge n'_0$$
  
 $c'' = c + c'$   
 $n''_0 = \max\{n_0, n'_0\}$ 

# Due regole fondamentali

Nel determinare l'ordine di crescita asintotica di una funzione

- 1. Possiamo trascurare i termini additivi di ordine inferiore
- 2. Possiamo trascurare le costanti moltiplicative

#### ATTENZIONE!

Le regole NON servono però per determinare esplicitamente le costanti c ed  $n_0$ .

## Prima regola

«Possiamo trascurare i termini additivi di ordine inferiore»

Cosa significa formalmente?

Se g = O(f) allora 
$$f + g = \Theta(f)$$

#### Ipotesi:

```
g è di ordine inferiore a f: g=O(f):
```

esistono costanti c, $n_0 > 0$  tali che per ogni  $n \ge n_0$  si ha  $g(n) \le c \cdot f(n)$ 

### Tesi (Dobbiamo mostrare che):

```
f + g = O(f): dato che f=O(f) e g=O(f) per l'additività: f+g=O(f).
```

$$f + g = \Omega$$
 (f): esistono c'',  $n''_0 > 0$  tali che per ogni  $n \ge n''_0$  si ha  $f(n)+g(n) \ge c'' \cdot f(n)$ :

$$f(n)+g(n) \ge f(n)$$
 essendo  $g(n) \ge 0$ ;  $c''=1$  ed  $n''_0 = 0$ 

# Seconda regola

«Possiamo trascurare le costanti moltiplicative»

Cosa significa formalmente?

Per ogni costante 
$$a > 0$$
 allora  $a \cdot f = \Theta(f)$ 

Ipotesi: *a*>0

#### Tesi

esistono costanti c>0,  $n_0 \ge 0$  tali che per ogni  $n \ge n_0$  si ha  $a \cdot f(n) \le c \cdot f(n)$  esistono costanti c'>0,  $n'_0 \ge 0$  tali che per ogni  $n \ge n'_0$  si ha  $a \cdot f(n) \ge c' \cdot f(n)$  c = c' = a  $n_0 = n'_0 = 0$ 

### Per stabilire la crescita di una funzione

### Basterà usare:

- La «scaletta»
- Le proprietà di additività e transitività
- Le due regole fondamentali

# Tempo di esecuzione

Tempo di esecuzione T(n) è espresso rispetto al numero di operazioni elementari per eseguire l'algoritmo su un input di taglia n

Sono operazioni elementari le operazioni che richiedono tempo costante (= non dipendente dalla taglia n dell'input)
Per esempio: assegnamento, incremento, confronto

Nelle prossime slides vedremo come l'analisi asintotica può aiutarci nel calcolo del tempo di esecuzione di algoritmi di tipo iterativo (strutturati come for e while)

### Operazioni Semplici

- operazioni aritmetiche (+, \*,...)
- operazioni logiche( ه ه , ||,....)
- confronti ( $\leq$  , $\geq$  , = ,...)
- assegnamenti (a = b) senza chiamate di funzione
- operazioni di lettura (read)
- operaioni di controllo (break, continue, return)

$$T(n) = \Theta(1) \Rightarrow T(n) = O(1)$$

### Tempo di esecuzione: blocchi sequenziali



### Tempo di esecuzione: ciclo for



$$T(n) = O(g(n) \times f(n))$$

### Tempo di esecuzione: ciclo while



Bisogna stabilire un limite per il numero di iterazioni del ciclo, *g(n)*.

Può essere necessaria una prova induttiva per g(n).

$$T(n) = O(g(n) \times f(n))$$

## Tempo di esecuzione: If-Then-Else



O(max(f(n),g(n)))

### Esercizi

Usando la notazione  $\Theta$ , stimare il numero di volte che la istruzione x = x + 1 viene eseguita:

1. for 
$$i = 1$$
 to  $2n$   $\Theta(n)$   $x = x + 1$ 

2. for 
$$i=1$$
 to  $2n$  for  $j=1$  to  $n$   $\Theta(n^2)$   $x=x+1$ 

3. for 
$$i=1$$
 to  $n$  for  $j=1$  to  $i$  Numero di volte in cui eseguo  $x=x+1$  è for  $k=1$  to  $j$  
$$\sum_{i=1}^n \sum_{j=1}^i j = \sum_{i=1}^n \frac{i(i+1)}{2} = \sum_{i=1}^n \Theta(i^2)$$
 
$$x=x+1$$
 
$$= \Theta(n^3)$$

# Esercizio (continua)

4. 
$$i=n$$
 while  $i \ge 1$  do  $x=x+1, \ i=i/2$ 

Il **while** è eseguito per i = n, n/2, n/4, ...,  $n/2^k$ , ...,  $n/2^t = 1$  cioè per k = 0, 1, ..., t. Si noti che il simbolo «/» indica la divisione intera (che scarta le cifre decimali). Quindi  $\mathbf{t} = \lfloor \log_2 \mathbf{n} \rfloor$  (dove  $\lfloor \rfloor$  indica l'arrotondamento all'intero inferiore) e il numero di volte in cui viene eseguito il **while** è:  $\lfloor \log_2 \mathbf{n} \rfloor + 1 = \Theta(\log_2 \mathbf{n})$ .

Si noti che arrotondamenti del genere NON incidono nell'analisi asintotica:

```
\log_2 n
\log_2 n + 1
\log_2 n - 1
```

sono tutte funzioni in  $\Theta(\log_2 n)$ .

## Esempio: InsertionSort

Algoritmo di ordinamento di A[1...n] ottenuto mantenendo ad ogni iterazione A[1...j-1] ordinato e inserendovi A[j].

InsertSort(array A[1...n])

for 
$$j = 2$$
 to  $n$ 
 $key = A[j] = O(1)$ 
 $i = j - 1 = O(1)$ 

while  $i > 0$  and  $A[i] > key$ 
 $A[i+1] = A[i]$ 
 $i = i - 1$ 
 $A[i+1] = key = O(1)$ 

### Analisi di InsertionSort

InsertSort(array A[1...n])

for 
$$j = 2$$
 to  $n$ 
 $key = A[j]$ 
 $i = j - 1$ 
 $equiv = O(1)$ 

while  $i > 0$  and  $A[i] > key$ 

$$A[i+1] = A[i]$$
 $i = i - 1$ 

$$A[i+1] = key$$
 $= O(1)$ 

Più precisamente:

Fissato j, il test del while è eseguito un numero di volte fra 1 e j. Da cui

$$T(n) \le \sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1 = \frac{1}{2}n^2 + \frac{1}{2}n - 1$$

e quindi  $T(n) = O(n^2)$ . Inoltre  $T(n) = \Omega(n)$ .

## Esercizio 2

Per ciascuna delle seguenti coppie di funzioni f(n) e g(n), dire se f(n) = O(g(n)), oppure se g(n) = O(f(n)).

$$f(n) = (n^2 - n)/2, \qquad g(n) = 6n$$

$$f(n) = n + 2\sqrt{n}, \qquad g(n) = n^2$$

$$f(n) = n + \log n, \qquad g(n) = n\sqrt{n}$$

$$f(n) = n^2 + 3n, \qquad g(n) = n^3$$

$$f(n) = n \log n, \qquad g(n) = n\sqrt{n}/2$$

$$f(n) = n + \log n, \qquad g(n) = \sqrt{n}$$

$$f(n) = 2(\log n)^2, \qquad g(n) = \log n + 1$$

$$f(n) = 4n \log n + n,$$
  $g(n) = (n^2 - n)/2$ 

$$f(n) = (n^2 + 2)/(1 + 2^{-n}), \qquad g(n) = n + 3$$

$$f(n) = n + n\sqrt{n}, g(n) = 4n\log(n^3 + 1)$$

svolti

Da svolgere

NOTA: Esistono anche funzioni (particolari) non confrontabili tramite O

### Esercizio 3

#### Date le seguenti funzioni

$$\log n^5, n^{\log n}, \log^2 n, 10\sqrt{n}, (\log n)^n, n^n, n \log \sqrt{n}, n \log^3 n, n^2 \log n, \sqrt{n \log n}, 10 \log \log n, 3 \log n,$$

ordinarle scrivendole da sinistra a destra in modo tale che la funzione f(n) venga posta a sinistra della funzione g(n) se f(n) = O(g(n)).

# Esercizi «per casa»

- Esercizi dalle slides precedenti
- Es. 3, 4, 5 e 6 di pagg. 67-68 del libro [KT]
- Esercizi sul team: Esercizi\_O\_2010.pdf