

Generating keys: a toy protocol

Alice wants a shared key with Bob. Eavesdropping(窃听) security only.

Eavesdropper sees: E(k_A, "A, B" | I | k_{AB}) ; E(k_B, "A, B" | I | k_{AB})

Eavesdropper learns nothing about k_{AB}

Note: TTP needed for every key exchange, knows all session keys.

(basis of Kerberos system)

Toy protocol: insecure against active attacks

Example: insecure against replay attacks (重放攻击)

Attacker records session between Alice and merchant Bob

- For example a book order

Attacker replays session to Bob

6

8

Bob thinks Alice is ordering another copy of book

A bit modification to the toy protocol

Alice wants a shared key with Bob.

E(K_{AB}, "alice" | | timestamp)

5

This modification is used in real protocol, such as Kerberos.

Can we generate shared keys without an **online** trusted 3rd party?

9

The Diffie-hellman protocol

- In 2002, Hellman suggested the algorithm be called Diffie-Hellman-Merkle key exchange
- The system...has since become known as Diffie— Hellman key exchange. While that system was first described in a paper by Diffie and me, it is a public key distribution system, a concept developed by Merkle, and hence should be called 'Diffie—Hellman—Merkle key exchange' if names are to be associated with it. I hope this small pulpit might help in that endeavor to recognize Merkle's equal contribution to the invention of public key cryptography

12

11

Key exchange without an online TTP?

Goal: Alice and Bob want shared secret, unknown to eavesdropper

• For now: security against eavesdropping only (no tampering)

Wrap up

• Primitive root (原根)

For a prime p, exist a number g (1<=g<=p), if g mod p, g^2 mod p, ..., $g^(p-1)$ mod p, are a permutation of 1 to p-1, then g is a primitive root of prime p.

• Discrete logarithm (离散对数)

 $a = g^i \mod p$ (0 <= i <= p-1), i is called the index or discrete logarithm of a to the base g modulo p

One way function

 $y = f(x), x \rightarrow y$ is easy, and $y \rightarrow x$ is very hard.

13

14

The number 3 is a primitive root modulo 7^[1] because

$$3^{1} = 3 = 3^{0} \times 3 \equiv 1 \times 3 = 3 \equiv 3 \pmod{7}$$
 $3^{2} = 9 = 3^{1} \times 3 \equiv 3 \times 3 = 9 \equiv 2 \pmod{7}$
 $3^{3} = 27 = 3^{2} \times 3 \equiv 2 \times 3 = 6 \equiv 6 \pmod{7}$
 $3^{4} = 81 = 3^{3} \times 3 \equiv 6 \times 3 = 18 \equiv 4 \pmod{7}$
 $3^{5} = 243 = 3^{4} \times 3 \equiv 4 \times 3 = 12 \equiv 5 \pmod{7}$
 $3^{6} = 729 = 3^{5} \times 3 \equiv 5 \times 3 = 15 \equiv 1 \pmod{7}$
 $3^{7} = 2187 = 3^{6} \times 3 \equiv 1 \times 3 = 3 \equiv 3 \pmod{7}$

The Diffie-Hellman protocol

Fix a large prime p (e.g. 600 digits) Fix an integer g in {1, ..., p}

Alice

Bob

choose random ${\bf a}$ in $\{1,...,p-1\}$ choose random ${\bf b}$ in $\{1,...,p-1\}$

"Alice",
$$A \leftarrow g^{\prime} (mdp)$$
"Bob", $B \leftarrow g^{\prime} (mdp)$

$$B^{a} \pmod{p} = (g^{b})^{a} = k_{AB} = g^{ab} \pmod{p} = (g^{a})^{b} = A^{b} \pmod{p}$$

Security

Eavesdropper sees: p, g, $A=g^a \pmod{p}$, and $B=g^b \pmod{p}$

Can she compute gab (mod p) ??

 $\exp(\tilde{O}(\sqrt[3]{n}))$

More generally, if there is an *exponential gap* between users and attacker, the algorithm is secure.

if p is a prime of at least 600 digits, then even the fastest modern computers cannot find a given only g, p and g^a mod p. Such a problem is called the **discrete logarithm problem**

17

D-H example

- Alice and Bob agree to use a modulus p = 23 and base g = 5 (which is a primitive root modulo 23).
- Alice chooses a secret integer α = 6, then sends Bob A = g^α mod p
 - $-A = 5^6 \mod 23 = 8$
- Bob chooses a secret integer b = 15, then sends Alice B = g^b mod p
 - $-B = 5^{15} \mod 23 = 19$
- Alice computes $s = B^a \mod p$
 - $s = 19^6 \mod 23 = 2$
- Bob computes $\mathbf{s} = A^b \mod p$
 - $-s = 8^{15} \mod 23 = 2$
- Alice and Bob now share a secret (the number 2).

Insecure against man-in-the-middle

the protocol is insecure against active attacks

<u>Alice</u>

MiTM

<u>Bob</u>

 $A = g^a$

 $B = g^b$

Insecure against man-in-the-middle

the protocol is insecure against active attacks

<u>Alice</u>

MiTM

<u>Bob</u>

 $A = g^a$

a' $A' = g^{a'}$

 $B' = g^{b'}$

b' B = g^b

21

22

the protocol is insecure against active attacks

