1 Illustration of Hoeffding's Inequality

This is some section!

2 The effect of scale (range) and normalization of random variables in Hoeffding's Inequality

This is some section!

3 Probability in Practice

This is some section!

4 Logistic Regression

This is some section!

4.1 Cross-entropy measure

Let \mathcal{X} be some sample space, and let \mathcal{Y} be the label space $\{-1,1\}$, and assume that we want to learn the distribution of the labels y conditioned on the value of a sample x, that is we want to learn the conditional probability P(y|x) for $y \in -1, 1$ and all $x \in \mathcal{X}$. Also, assume that the distribution P(y|x) can be parametrized by choosing w in some parameter space \mathcal{W} . That is, by choosing $w \in \mathcal{W}$ we get the value of $P_w(y|x)$ for $y \in -1, 1$ and all $x \in \mathcal{X}$. In this context, the learning problem becomes to come up with a method for choosing some parameter $\hat{w} \in \mathcal{W}$ and hereby a corresponding distribution $P_{\hat{w}}(y|x)$, which somehow is our best guess of the true distribution of y conditioned on x. The information we have available to base this choice on is some finite, labeled sample $S = \{(x_1, y_1), ..., (x_N, y_N)\}$, where each y_i is assumed to have been sampled from $P_w(y|x_i)$ and all of them independently from each other.

The maximum likelihood method for choosing \hat{w} solves this problem by defining the likelihood function L_S for the given sample S as

$$L_S(w) = \prod_{(x_n, y_n) \in \mathcal{S}} P_w(y_n | x_n) = \prod_{n=1}^N P_w(y_n | x_n)$$
 (1)

and then saying that we should choose $\hat{w} \in \mathcal{W}$ such that $L_{\mathcal{S}}$ is maximized.

Since the function $-\ln$ is monotonically decreasing, this strategy is equivalent¹ to choosing $\hat{w} \in \mathcal{W}$ such that the function

$$f_S(w) = -\ln\left(\prod_{n=1}^N P_w(y_n|x_n)\right) = \sum_{n=1}^N \left(-\ln P_w(y_n|x_n)\right)$$
(2)

is minimized.

Since $y \in \{-1, 1\}$, then we can write $P_w(y|x)$ as

$$P_w(y|x) = \tag{3}$$

$$[[y=1]]P_w(y=1|x) + [[y=1]]P_w(y=-1|x) =$$
(4)

$$[[y=1]]h_w(x) + [[y=1]](1-h_w(x))$$
(5)

where we simply have defined $h_w(x) = P(y = 1|x)$. We therefore have that

$$-\ln P_w(y_n|x_n) = \tag{6}$$

$$-\ln([[y=1]]h_w(x) + [[y=-1]](1-h_w(x))) =$$
 (7)

$$[[y=1]](-\ln(h_w(x)) + [[y=-1]](-\ln(1-h_w(x))) =$$
 (8)

$$[[y=1]] \left(\ln \left(\frac{1}{h_w(x)} \right) \right) + [[y=-1]] \left(\ln \left(\frac{1}{1-h_w(x)} \right) \right)$$
 (9)

By line (2) and line (6-9), we now get that

$$f_S(w) = \sum_{n=1}^{N} \left[[[y_n = 1]] \left(\ln \left(\frac{1}{h_w(x_n)} \right) \right) + [[y_n = -1]] \left(\ln \left(\frac{1}{1 - h_w(x_n)} \right) \right) \right]$$
(10)

As I have already said, we will end up with the same \hat{w} for a given sample S, if we minimize $f_S(w)$ as if we maximize $L_S(w)$. If we had started by saying that we would like to estimate the probability $h_w(x) = P_w(y = 1|x)$ by choosing \hat{w} such that we minimize the error function $f_S(w)$ defined as in line (10), we would have ended up with the same estimates of P(y|x) for $y \in \{-1,1\}$ and $x \in \mathcal{X}$, as if we have used the maximum likelihood method. These two strategies are therefore equivalent.

¹I define two strategies to be equivalent, if and only if they end up choosing the same \hat{w} for all possible samples $S = \{(x_1, y_1), ..., (x_N, y_N)\}.$