7 Superfícies: Primera forma fonamental.

Exercici 78: Determineu els coeficients de la primera forma fonamental del pla xy de \mathbb{R}^3 quan es considera aquest pla parametritzat per les coordenades polars.

Exercici 79: Donat $(u,v) \in \mathbb{R}^2$ considereu $\varphi(u,v) = p \in \mathbb{R}^3$, on p és el punt d'intersecció de la recta que passa per (u,v,0) i el pol nord de l'esfera unitat (0,0,1) tal i com es representa en l'esquema següent

Es diu que φ (o la seva inversa) és la projecció estereogràfica de l'esfera sobre el pla.

- 1. Demostreu que la projecció estereogràfica és una parametrització regular de l'esfera.
- 2. Calculeu els coeficients de la primera forma fonamental de l'esfera respecte la parametrització determinada per la projecció estereogràfica.
- 3. Comproveu que la projecció estereogràfica conserva els angles (l'angle entre dues corbes, o vectors, de \mathbb{R}^2 és el mateix que hi ha entre les seves imatges sobre l'esfera).

Exercici 80: Considereu la parametrització de l'esfera (llevat dels dos pols i un meridià) donada per la longitud u i la latitud v:

$$\varphi: (-\pi, \pi) \times (-\pi/2, \pi/2) \longrightarrow \mathbb{R}^3$$

$$(u, v) \longmapsto (\cos(u) \cos(v), \sin(u) \cos(v), \sin(v))$$

- 1. Comproveu que és una parametrització regular i determineu els coeficients de la primera forma fonamental respecte aquesta parametrització.
- 2. Donades les corbes $\alpha_1(t) = \varphi(t,0)$, $\alpha_2(t) = \varphi(\pi/4,t)$ i $\alpha_3(t) = \varphi(t,t)$ (en tots tres casos $t \in [0,\pi/4]$), calculeu (aproximant, si cal) l'àrea del triangle que determinen, les llargades de cada un dels segments i els angles que formen.

3. Feu els mateixos càlculs que abans substituint la corba α_3 per l'arc de circumferència que s'obté tallant l'esfera amb el pla y=z (que també apareix a l'esquema anterior), determinant prèviament els nous punts de tall entre les corbes (en aquest cas, la tercera corba talla el meridià en un punt de latitud més baixa que abans).

Exercici 81: Sigui $\alpha: I \to \mathbb{R}^3$ una corba parametritzada per l'arc tal que $|\alpha(t)| = 1 \ \forall t \in I$ (el recorregut d' α està sobre l'esfera unitat). Considereu la superfície parametritzada per

$$\varphi(u, v) = u \,\alpha(v) \,,$$

 $u > 0, v \in I$.

- 1. Calculeu-ne la primera forma fonamental.
- 2. Demostreu que és localment isomètrica al pla.

Exercici 82: Calculeu l'expressió de la primera forma fonamental de les superfícies parametritzades per:

- 1. $\varphi(u,v) = (u \cos(v), u \sin(v), u^2)$
- 2. $\varphi(u,v) = (u \cosh(v), u \sinh(v), u^2)$
- 3. $\varphi(u,v) = (a \sinh(u) \cos(v), b \sinh(u) \sin(v), c \cosh(u))$ (on $a, b \in c$ són constants).

Exercici 83: Calculeu la primera forma fonamental de la superfície de revolució

$$x = r \cos v$$
$$y = r \sin v$$

 $z = \phi(r)$

Veieu que existeixen coordenades isotermals. Concretament trobeu coordenades (u, v) (v) la mateixa que anteriroment) tals que

$$ds^2 = \lambda (du^2 + dv^2),$$

amb $\lambda = \lambda(u)$.

Exercici 84: Demostreu que les superfícies

$$\varphi(t,s) = (t\cos s, t\sin s, s)$$
 Helicoide
 $\psi(t,s) = (t\sin s, t\cos s, \log t)$ Logaritmoide

tenen, en punts corresponents [mateixes coordenades (t,s)], la mateixa curvatura de Gauss, però l'aplicació que porta el punt de coordenades (t,s) de l'helicoide al punt de coordenades (t,s) del logaritmoide no és una isometria. [La curvatura no determina la mètrica].