Hybrid Karatsuba Multiplication

20.04.19

https://youtu.be/AOscc-hPd4Q

Karatsuba

3 List of parameter sets (part of 2.B.1)

3.1 Parameter set kem/mceliece348864

KEM with m = 12, n = 3488, t = 64, $\ell = 256$. Field polynomial $f(z) = z^{12} + z^3 + 1$. Hash function: SHAKE256 with 32-byte output. This parameter set is **proposed and implemented** in this submission.

3.4 Parameter set kem/mceliece460896f

KEM with m = 13, n = 4608, t = 96, $\ell = 256$. Field polynomial $f(z) = z^{13} + z^4 + z^3 + z + 1$. Hash function: SHAKE256 with 32-byte output. Extra parameters $(\mu, \nu) = (32, 64)$. This parameter set is **implemented** in this submission as a **possible future proposal**.

Karatsuba

Algo. Param.	n	m	d	r	P	P_m	Security level (bits)
ROLLO-I-128		1			-	$X^{79} + X^9 + 1$	128
					$X^{53} + X^6 + X^2 + X + 1$		
ROLLO-I-256	67	113	8	7	$X^{67} + X^5 + X^2 + X + 1$	$X^{113} + X^9 + 1$	256

Table 3. ROLLO-I parameters for each security level

Instance	P	П
RQC-I ROC-II	$X^{67} + X^5 + X^2 + X + 1$ $X^{101} + X^7 + X^6 + X + 1$	$X^{97} + X^6 + 1$ $X^{107} + X^9 + X^7 + X^4 + 1$
RQC-III	$X^{131} + X^8 + X^3 + X^2 + 1$	$X^{137} + X^{21} + 1$

Table 2: Polynomials considered for RQC. P is the polynomial used to define $\mathbb{F}_{q^m}^n$ as $\mathbb{F}_{q^m}[X]/\langle P \rangle$ and Π is the polynomial used to define \mathbb{F}_{q^m} as $\mathbb{F}_q[X]/\langle \Pi \rangle$.

Karatsuba 2-way

$$(h_0+a_0) + (h_1+a_0+a_1+b_0+r_0)x^k + (h_2+a_1+b_0+b_1+r_1)x^{2k} + (h_3+b_1)x^{3k}$$

 \mathbf{a}_0 \mathbf{a}_0 \mathbf{a}_1 \mathbf{b}_0 \mathbf{r}_0

a₁ b₀ b₁ r₁

a[i] f_0 f_1 g_1 g_1 alpah beta

$$r = (f_0 + f_1) * (g_0 + g_1)$$

Karatsuba 3-way

$$A(x) \cdot B(x) =$$

$$(A_1 + A_2) \cdot (B_1 + B_2)x^{3s} \qquad \mathbf{r_c}$$

$$+ (A_2 + A_0) \cdot (B_2 + B_0)x^{2s} \qquad \mathbf{r_b}$$

$$+ (A_1 + A_0) \cdot (B_1 + B_0)x^s \qquad \mathbf{r_a}$$

$$+ (A_2 \cdot B_2x^{2s} + A_1 \cdot B_1x^s + A_0 \cdot B_0) \cdot (x^{2s} + x^s + 1)$$

Karatsuba 3-way

Karatsuba 2-bit

0 k a₀ a₁ b₀ r

$$r = (f_0 + f_1) * (g_0 + g_1)$$

$$r = (1 + 0) * (1 + 0) = 1$$

0

$$r = (1 + 0) * (1 + 0) = 1$$

2k

Karatsuba 2-way & 3-way

0		k		2k		3k			
a_0		a_0		a ₁		b_1			
		a ₁		b ₀					
		b_0 r_0		b ₁ r ₁					
		'0		'1 					
0	k	2k	3k	4k	5k				
a	b	С							
	а	b	С						
		а	b	С					
	r_a	r_b	r_c						

 $\begin{array}{cccc} a_0 & a_1 & b_1 \\ & b_0 & \end{array}$

 $C_{0\sim6}$ C_{7~13} $C_{14\sim20}$ 13 C_{21~24} $13 \times 2 - 1 \rightarrow 25$ a0 a1 $13/2 = 6.5 \rightarrow 7$ b0 b1 $C_{0\sim3}$ $C_{4\sim7}$ C_{8~11} $7 \times 2 - 1 \rightarrow 13$ a0 **a**1

7/2 = 3.5 o 4 b0 b1

4 $C_{0\sim 1}$ $C_{2\sim 3}$ $C_{4\sim 5}$ C_{6} ← $7 o 10 a_0 a_1$ 4 o 2 o 1 o 7 a0 a1 4/2 = 2 b0 b1

 — 13의 a₀ a₁

 C_6

b1

13	$C_{0\sim 6}$	C _{7~13}	C _{14~20}	C _{21~24}
13 x 2 - 1 → 25	a0	a1		
$13 / 2 = 6.5 \rightarrow 7$		b0		b1
7	$C_{0\sim 3}$	$C_{4\sim7}$	C _{8~11}	C ₁₂ ← 13의 a ₀ a ₁
7 x 2 - 1 → 13	a0	a1		
7 / 2 = 3.5 → 4		b0		b1
4	$C_{0\sim1}$	$C_{2\sim3}$	C _{4~5}	C ₆ ← 7의 a ₀ a ₁
$4 \times 2 - 1 \rightarrow 7$	a0	a1		
4 / 2 = 2		b0		b1
3	C_4	C_5	C_7	$C_{12} \leftarrow 7^{\underline{o}} b_0 b_1$
$3 \times 2 - 1 \rightarrow 5$		Α		
3 / 2 = 1.5 → 2			В	
				С

C_4	C_5	C_6
a1	A1	
b0	b0	b1
b1		
$C_{\scriptscriptstyle{4}}$	C_5	C ₆
A	В	С
	Α	В
		Α

 C_7 C_{12} C C

<u>https://www.youtube.com/watch?v=m9VMjSfl3mA</u> 12:40 → 순서 설명

13	$C_{0\sim 6}$	$C_{7\sim13}$	$C_{14\sim 20}$	$C_{21\sim24}$
13 x 2 - 1 → 25	a0	a1		
$13/2 = 6.5 \rightarrow 7$		b0		b1
7	C _{0~3}	C _{4~7}	C _{8~11}	C ₁₂ ← 13의 a ₀ a ₁
7 x 2 - 1 → 13	a0	a1		
$7/2 = 3.5 \rightarrow 4$		b0		h1

13	$C_{0\sim6}$	C _{7~13}	$C_{14\sim20}$	$C_{21\sim24}$
13 x 2 - 1 → 25	a0	a1		
$13 / 2 = 6.5 \rightarrow 7$		b0		b1
7	C _{0~3}	C _{4~7}	C _{8~11}	C ₁₂ ← 13의 a₀ a₁
7 x 2 - 1 → 13	a0	a1		
$7/2 = 3.5 \Rightarrow 4$		b0		b1

 $13 \times 2 - 1 \rightarrow 25$

 $C_{0\sim 6}$

a0

$$C_{7\sim13}$$

 $C_{14\sim20}$

$$C_{21\sim24}$$

b1

$$13/2 = 6.5 \rightarrow 7$$

b0

a1

 $C_{0\sim3}$

a0

 $C_{4\sim7}$

C_{8~11}

 C_{12}

 $7 \times 2 - 1 \rightarrow 13$

a1 b0

b1

C_{7~8}

 $C_{9\sim10}$

 $C_{11\sim12}$

 $C_{13,21}$

$$6 \times 2 - 1 \rightarrow 11$$

a1

b0

B1

c0

c1

2

 C_9

 C_{10}

 C_{13}

 C_{13}

 C_{21}

 C_{22}

b1

 C_{10}

a0

a1

b0

b1

a0

a1

b0

a0 a1

b0

b1

 C_7 C_8 C_{10} C_{11} C_{12} C_{13} C_{21} C_{22} C_{23} C_9 a0 a0 **a**1 b0 b0 b1 c0 c0 c1

6 / 2 = 3

https://www.youtube.com/watch?v=m9VMjSfl3mA

16:40 → 순서 설명

— 13의 a₀ a₁

c1

b0

B1

c0

13	$C_{0\sim6}$	C _{7~13}	$C_{14\sim20}$	C _{21~24}
13 x 2 - 1 → 25	a0	a1		
$13/2 = 6.5 \rightarrow 7$		b0		b1

Hybrid

	12	13
Gate	47	51
CNOT	167	210
Toffoli	78	102

2 Way only

	12	13
Gate	47	51
CNOT	66	97
Toffoli	108	134

CNOT: Hybrid > 2 Way (100~110 average)

Toffoli: Hybird < 2 Way (30 average)

1 gate 9개 + CNOT 6개

Q&A

