Deep Learning for Cranial Implant Design: Insights from Two Years' MICCAI Challenges

Department Meeting Talk 2025-03-25 Jianning Li, Zuse Institute Berlin

MICCAI Challenge

MICCAI Challenge: Special Interest Group (SIG)

MICCAI Challenge

Why is the winner the best? CVPR 2023

Data from all ISBI and MICCAI 2021 competitions (n = 80)

Cranial Implant Design: Manual Design

Cranial Implant Design: 3D Printing

Cranial Implant Design

Cranial Implant Design: Surface interpolation using RBF

[Carr, J.C., **1997**, IEEE TMI]

Cranial Implant Design: Statistical shape model

manual landmarks

virtual defects

[Fuessinger, M.A., 2018, IJCARS]

Cranial Implant Design: Statistical shape model

European statistical shape on Chinese dataset

virtual defects

Chinese reconstruction: distance map

[Fuessinger, M.A., 2022]

MICCAI Cranial Implant Design Challenge: Deep Learning Solutions

Cranial Implant Design: Learning-based Solutions

Dataset

Evaluation Metrics and Ranking

AutoImplant I: DSC, HD

AutoImplant II: DSC, hd95, border DSC, neurosurgeons' scores

Methods Overview

AutoImplant I

- V-Net
- U-Net
- ED + Squeeze-and-Excitation block (cvpr 2018)
- ED + Residual blocks (ResNet, cvpr 2016)
- U-Net + Residual blocks (1st place submission)
- Residual Dense U-Net (DenseNet, cvpr 2017)

AutoImplant II

- o ED
- U-Net
- LSTM (2D)
- U-Net+ Residual block (1st place submission)

Notes:

ED: Encoder-Decoder

Methods Overview

"Details in method configuration have more impact on performance than do architectural variations"

nnU-Net. Isensee et al. (2021). *Nature Methods*

Pre-processing/ data augmentation/ method configurations contribute the most to the ranking

- Preprocessing
- Data augmentation
- Training strategies

Methods Overview

Ferreira, A., Solak, N., Li, J., Dammann, P., Kleesiek, J., Alves, V. and Egger, J., 2024. *How we won brats 2023 adult glioma challenge? just faking it! enhanced synthetic data augmentation and model ensemble for brain tumour segmentation.* arXiv preprint arXiv:2402.17317.

Technical Challenges

- Generalization
- High memory footprint
- Clinical feasibility

Technical Challenges

- Generalization
- High memory footprint
- Clinical feasibility

AutoImplant I: 5 out of 11 submissions failed on the 10 out-of-distribution cases. **AutoImplant II:** only 3 teams attempted clinical cases with irregularly shaped defects.

Data augmentation:

• created additional 5 random virtual defects for each healthy skull in the training set.

	Test case (100)	Test case (10)	Overall (110)
Mean DSC	0.920	0.910	0.919
Mean HD	4.137	4.707	4.189

[Kodym, O et al]

Data augmentation:

• create defects similar to the out-of-distribution test cases

[Matzkin, F et al]

Data augmentation:

• 100 training samples augmented to 99*100+100=10000 samples (1st place)

[Ellis, D.G. et al]

Data augmentation:

• intensive augmentation + dataset linking (1st place, AutoImplant II)

Use a shape prior (average shape of healthy skulls)

Technical Challenges

- Generalization
- High memory footprint
- Clinical feasibility

Cropping:

Keep only the ROI

Core-to-fine:

Use two networks

[Li, J .et al]

Core-to-fine:

Use two networks

[Li, J .et al]

Core-to-fine:

Use two networks

[Bayat, A et al]

Use sparse convolutions

[Li, J .et al]

Use sparse convolutions: implant generationa at full resolution 512x512xZ

use about 11GB memory for training and 3GB for evaluation

Patch-wise training

[Li, J .et al]

Technical Challenges

- Generalization
- High memory footprint
- Clinical feasibility

Clinical Feasibility

Correlation between quantitative score (Dice) and experts' evaluation (gold standard)

[Kodym, O et al]

Maier-Hein, L., Reinke, A., Godau, P., Tizabi, M.D., Buettner, F., Christodoulou, E., Glocker, B., Isensee, F., Kleesiek, J., Kozubek, M. and Reyes, M., 2024. *Metrics reloaded: recommendations for image analysis validation*. *Nature methods*, *21*(2), pp.195-212.

Customized evaluation metrics: border DSC

Quantifying neurosurgeons' manual evaluations

Table 2. Qualitative criteria for a feasible implant design.

Criteria	Description				
Complete	The implant should cover the whole defect area				
No false positive area	The implant should not extend beyond the defect area				
Implantable	The implant should be able to be placed into the defect area				
Restores skull shape	The implant should restore the expected skull shape				
Smooth transition with skull	The area of transition between the skull and implant should be smooth				
Minimal thickness	The implant must be thin enough as not to overly compress underlying tissue. Ideally, the implant should be at least 50% thinner than the skull				

[Ellis, D G et al]

The 1st place method (intensive data augmentation) ranked well for both metrics

Methods \ Scores		Comp	FPA	Fit		Feasibility
\bar{S} (50)		0.89	0.73	0.64	Ī	0.62
M. Wodzinski. et al. [32]	ı	0.93	0.57	0.55	ı	0.42
L. Yu. et al. [35]	l	0.80	0.59	0.36	ı	0.42
H. Mahdi. et al. [31]		0.76	0.43	0.45		0.33

Implant Thickness

Technical Challenges

- Generalization
- High memory footprint
- Clinical feasibility

Recommended Reading

Li, J., et al., 2021. *AutoImplant 2020-first MICCAI challenge on automatic cranial implant design. IEEE transactions on medical imaging, 40*(9), pp.2329-2342.

Li, J., et al., 2023. Towards clinical applicability and computational efficiency in automatic cranial implant design: An overview of the autoimplant 2021 cranial implant design challenge. Medical Image Analysis, 88,p.102865.

Learning-based Cranial Implant Design: Recent Development

Point Cloud Diffusion Models for Automatic Implant Generation

Outlier Detection for Shape Model Fitting

Dana Rahbani, 2022

Gaussian Process Morphable Model (using AutoImplant I data)

Automatic skull reconstruction by deep learnable symmetry enforcement

Marek Wodzinski, CMPB 2025

Improving deep learning-based automatic cranial defect reconstruction by heavy data augmentation: From image registration to latent diffusion models

Marek Wodzinski, CBM 2024

Deep Generative Networks for Heterogeneous Augmentation of Cranial Defects

Kamil Kwarciak, Marek Wodzinski, ICCV 2023

- o WGAN-GP,
- VAE/WGAN-GP
- IntroVAE

Deep learning-based framework for automatic cranial defect reconstruction and implant modeling

Marek Wodzinsk CMPB 2022

virtual interaction & see inside

Thank you for your attention