T6

- 1. Para cada una de las siguientes funciones encuentra la derivada parcial en los puntos indicados.
 - (a) $f(x,y) = xy + x^2$ en (1,0) y en (0,1).
 - (b) $f(x,y) = \log(\sqrt{1+x^2y^2})$ en (1,0) y en (1,1).
 - (c) $f(x,y) = (x^2 + y^2)e^{x^2 + y^2}$ en (1,1) y en (2,2).
 - (d) $f(x,y) = xy\cos(2x+y)$ en $(\frac{\pi}{2},0)$ y en $(0,\frac{\pi}{2})$.
- 2. Para cada una de las siguientes funciones f(x,y), encuentra el dominio de definición de las funciones $\partial_x f(x,y)$ y $\partial_y f(x,y)$.
 - (a) $f(x,y) = \log(x^2 + y^2 + 1)$.
 - (b) $f(x,y) = \frac{1}{\sqrt{x^2+y^2}}$.
 - (c) $f(x,y) = y\sqrt{1-x^2-y^2}$.
 - (d) $f(x,y) = \frac{x}{y}$.
- 3. Sea $D: \mathbb{R} \to \mathbb{R}$ la función de Dirichlet

$$D(x) = \begin{cases} 1, & x \text{ racional.} \\ 0, & x \text{ irracional.} \end{cases}$$

Define la función $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x,y) = y^2 D(x)$.

- (a) Demuestra que, para todo puntos (x_0, y_0) , $\partial_y f(x_0, y_0)$ siempre existe y calcula su valor.
- (b) Además, prueba que si $y_0 \neq 0$, $\partial_x f(x_0, y_0)$ no existe y que para todo $x_0, \partial_y f(x_0, 0) = 0$.
- 4. Considera la función f(x,y) = |x+y| |x-y|.
 - (a) Demuestra que, para todos $x_0, y_0 \in \mathbb{R}$

$$\partial_x f(x_0, 0) = 0, \quad \partial_y f(0, y_0) = 0.$$

- (b) Demuestra que $\partial_x f(1,1)$ no existe.
- 5. Para cada una de las siguientes funciones calcula $\partial_x \left(\int_0^x f(s,y) ds \right)$. ¿Encuentras algún patron?:
 - (a) $f(x,y) = x^2 + xy + y^2$,
 - (b) $f(x,y) = e^{xy}$,
 - (c) $f(x,y) = \cos(x+2y)$.

- 6. Para cada una de las siguientes funciones calcula, $\int_0^x (\partial_s f(s,y)) ds$. ¿Encuentras algún patron?
 - (a) $f(x,y) = x^3y^2 + xy + x^2y$
 - (b) $f(x,y) = e^{x^2+y}$
 - (c) $f(x,y) = \operatorname{sen}(xy)$
- 7. Este ejercicio generaliza al ejercicio 6. Usa el Teorema Fundamental para probar que $\int_0^x (\partial_x f(x,y)) dx = f(x,y) f(0,y)$.
- 8. Considera la función

$$f(x,y) = \begin{cases} \frac{\sin(x^2 + y^2)}{x^2 + y^2} & (x,y) \neq (0,0) \\ 1 & (x,y) = (0,0) \end{cases}$$

- (a) Calcula $\partial_x f(0,0)$ y $\partial_y f(0,0)$.
- (b) Considera la grífica 2-dimensional que se obtiene al cortar la gráfica de f con el plano y=0. Para ésta gráfica encuentra los puntos (x,z), para los cuales la recta tangente en dicho punto es horizontal.
- 9. Para cada una de las siguientes funciones encuentra la derivada parcial con respecto a la variable indicada.
 - (a) $f(p) = \sum_{i=1}^{n} p_i^2$. Calcular $\partial_{p_i} f(p)$.
 - (b) $f(x) = \langle x, y \rangle$, donde $x = (x_1, \dots, x_n)$ y $y = (y_1, \dots, y_n)$ es un vector fijo. Calcular $\partial_{x_j} f(x)$. ¿La notación $\partial_{y_j} f(x)$ tiene sentido en este ejemplo?
 - (c) $f(z) = \left(\sum_{i=1}^n \log(z_i^2 + 1)\right)^2$, donde $z = (z_1, \dots, z_n)$. Calcular $\partial_{z_j} f(z)$.
 - (d) $f(x,y,z) = 100x^{1/2}y^{1/4}z^{1/5}$. Calcular $\partial_x f(x,y,z)$, $\partial_y f(x,y,z)$ y $\partial_z f(x,y,z)$.