Теория чисел (теория)

Владимир Латыпов donrumata03@gmail.com **Vladimir Latypov** donrumata03@gmail.com

Содержание

1]	Базовые определения	. 3
2	Идеалы	. 4
3	Евклидовы кольца	. 6
	3.1 sdafasf	. 9
	3.1.1 dasasd	. 9
4	vdsf	. 9
	4.1 231	. 9
	Поля	
	5.1 Построение циркулем и линейкой	14
	5.2 Split fields (of a polynomial)	

1 Базовые определения

Определение 1.1 (definition 1: группа) $\langle G, \star \rangle$ — группа, если

- 1. $\forall a,b,c \in G \quad a\star(b\star c) = (a\star b)\star c$ (ассоциативность)
- 2. $\exists e \in G \quad \forall x \in G \quad x \star e = e \star x = x$ (существование нейтрального элемента)
- 3. $\forall x \exists y \quad x \star y = y \star x = e$ (существование обратного элемента)

аксиома 1 даёт полугруппу, при добавлении аксиомы 4 — получается абелева группа

Пример 1.2

 $oldsymbol{\cdot} S_n$ — группа, но не абелева

Определение 1.3 (definition 3: кольцо)

- 1. $\langle R, + \rangle$ абелева группа
- 2. $\langle R \setminus \{0\}, \cdot \rangle$ полугруппа
- 3. $a \cdot (b+c) = a \cdot b + a \cdot c = (b+c) \cdot a$ (дистрибутивность умножения относительно сложения)

Замечание 1.4 Будем работать с коммутативными кольцами (умножение коммутативно), преимущественно — с областями целостности

Пример 1.5

- $\cdot \mathbb{Z}$ кольцо
- $\cdot R[x]$ кольцо многочленов над R от переменной x.

Определение 1.6 (definition 6: Гомофморфизм колец) $f:R_1 o R_2$

- 1. f(x+y) = f(x) + f(y) («дистрибутивность» относительно сложения)
- 2. f(ab)=f(a)f(b) («дистрибутивность» относительно умножения)
- 3. $f(1_{R_1}) = 1_{R_2}$ (сохранение единицы)

Пример 1.7 (example 7: Независимость третей аксиомы)

$$f: \begin{pmatrix} R \to R \times R \\ r \mapsto (r,0) \end{pmatrix}$$

- 1, 2 выполнены, но не 3

Определение 1.8 (definition 8: поле)

- Коммутативное кольцо с единицей
- $\forall x \neq 0 \exists y \quad x \cdot y = y \cdot x = e$ (существование обратного элемента по умножению) (пишут $y = x^{-1}$)

Замечание 1.9 То есть ещё и $R \setminus \{0\}$ — абелева группа.

Пример 1.10

- · R
- \cdot \mathbb{C}
- · F2

Определение 1.11 (definition 11: область целостности)

- 2. $\forall a,b \in R \quad ab=0 \Rightarrow a=0 \lor b=0$ (отсутствие делителей нуля)
- 2'. $\forall a \neq 0 \quad ab = ac \Rightarrow b = c$ (можно сокращать на всё, кроме нуля)

(2 и 2′ эквивалентны)

Пример 1.12 \mathbb{Z} , любое поле (действительно, сократим через деление на обратный)

2 Идеалы

Определение 2.13 (definition 13: идеал) $I \leq R$

- \cdot $\forall a,b\in I \quad a-b\in I$ (замкнутость относительно разности) \cdot $\forall r\in R, a\in I \quad r\cdot a\in I$ (замкнутость относительно умножения на элемент кольца)

Замечание 2.14

- \cdot У любого кольца есть идеалы 0, R.
- $\cdot R$ поле \Rightarrow есть только эти идеалы

Замечание 2.15 Идеалы в кольцах и нормальные подгруппы обозначают «меньше или равно с треугольничком»: ⊴, остальные подструктуры — обычно просто ≤

Определение 2.16 (definition 16: Операции над идеалами)

- Сложение
- Пересечение
- определяются поэлементно
- Умножение: натягиваем на произведение множеств по Минковскому

Определение 2.17 Идеал, порождённый подмножеством $S \subset R$:

$$(S) = \bigcap_{S \subset I \leq R} I$$

Он же —

$$\left\{\sum r_i s_i \mid r_i \in R, s_i \in S\right\}$$

Замечание 2.18

$$(a_1,...,a_n) = \left\{ \sum_{i=1}^n = r_i s_i \mid r_i \in R \right\}$$

(линейная комбинация)

$$(a) = aR = Ra = \{ra \mid r \in R\}$$

Определение 2.19 Идеалы, которые можно породить одним элементом — главные.

Определение 2.20 (definition 20: PID/OГИ) Когда все идеалы — главные.

Определение 2.21 (definition 21: Факторкольцо по идеалу) Введём отношение эквивалентности $a-b\in I$ и факторизуем по нему. Получим R/I — кольцо с элементами $x+I, \quad x\in R.$

Замечание 2.22 Понятие идеала пошло из обобщения концепции делимости, «идеальные делители». Простой идеал — обобщение простого числа.

Определение 2.23 (definition 23: Простой идеал) $p ext{ } ext{$<$} ext{$<$} ext{$<$} ext{$>$} ext{$ab \in p \Rightarrow a \in p \lor b \in p$.}$

Эквивалентно: $ab \equiv 0 \Rightarrow a \equiv 0 \lor b \equiv 0$

Определение 2.24 (definition 24: Нётерово кольцо) Конечно порождённое кольцо

Теорема 2.25 (theorem 25: Эквивалентные определения нётеровости)

- 1. Все идеалы конечно порождены
- 2. Вложенная расширяющаяся последовательность идеалов стабилизируется
- 3. У множества идеалов существует максимальный по включению (но не обязательно — наибольший)

Доказательство

- (1) o (2): Пусть $I=\bigcup I_k=(a_1,...a_n)$. Каждое a_i лежит в каком-то I_{k_i} . Тогда стабилизция происходит уже при $I_{\max\{k_i\}}$.
- $(2) \to (3)$: Итеративно будем выбирать идеал, содержащий предыдищий, пока таковой имеется.
- Если кончились, мы нашли максимальный
- Если нет, построили последовательность вложенных идеалов. Так как она стабилизирутеся, стабильное значение — наш ответ.

$$(3) \rightarrow (1)$$
: $I = \max\{J \mid J \subset I, J$ — конечно порождён $\}$.

Теорема 2.26 (theorem 26: Гильберта о нётеровости кольца многочленов над нётеровым кольцом) Пусть для $I ext{ } ext{!} R[x] \quad a(i) = \{r \in R \mid rx^i + * \cdot x^{< i-1} \in I\}$, то есть коэфициенты при x^i , когда это старшая степень.

Тогда $a(1) \subset a(2) \subset \dots$ вложенная цепочка идеалов $\unlhd R$. Пусть стабилизируется на a(k).

! TODO!

З Евклидовы кольца

Определение 3.27 (definition 27: Евклидово кольцо) $d: R \setminus \{0\} \to \mathbb{N}_0$, тч

- 1. $d(ab) \ge d(a)$ 2. $\forall a,b,b \ne 0 \exists q,r: a=bq+r,r=0 \lor d(r) < d(b)$

Пример 3.28 $\mathbb{Z}, F[x]$

Теорема 3.29 Евклидово → ОГИ

Доказательство Находим a — минимальный по d, если нашёлся не кратный, делим с остатком на а, получаем меньший, противоречие **Определение 3.30** (definition 30: Φ акториальное кольцо (UFD — Unique factorization domain)) Область целостности

- Существует разложение на неприводимые множители
- Единственно с точностью до R^* : если $x=u\cdot a_1\cdot\ldots\cdot a_n=u\cdot b_1\cdot\ldots\cdot b_m\Rightarrow m=n\wedge a_i=b_{\sigma_i}\cdot w_i, w_i\in R^*$

Определение 3.31 (definition 31: Неприводимый элемент) $a \neq 0, a \notin R^*$ $a = bc \Rightarrow b \in R^* \lor c \in R^*$

Свойство 3.32 Неприводимость сохраняется при домножении на обратимые ($r \in R^*$)

Определение 3.33 (definition 33: Простой элемент) $a \mid bc \Rightarrow a \mid b \lor a \mid c$ ($\Leftrightarrow aR -$ простой идеал)

Теорема 3.34 Простой ⇒ неприводимый

Доказательство

! TODO!

Теорема 3.35 В факториальном кольце: Неприводимый ⇒ простой

Доказательство

! TODO!

Следствие 3.36 В факториальном кольце простые идеалы высоты 1 (то есть $0 \le q \le p \Rightarrow q = 0 \lor q = p$) являются главными

Доказательство Элемент идеала раскладывается на множители, а по простоте какой-то — \in p, тогда $0 \le \underbrace{(a_i)}_{\text{прост.}} \le p \to (a_i) = p$

! TODO !

Помечать разделение не лекции красивыми заголовками (как ornament header в latex)

7

Теорема 3.37 Евклидово \Rightarrow ОГИ \Rightarrow Факториальное

Доказательство (proof 38: Евклидово \rightarrow ОГИ) ...

Определение 3.38 R^* — мультипликативная группа кольца (все, для которых есть обратный, с умножением)

Доказательство (proof 39: OГИ $\rightarrow \phi$ акториальное) Схема: следует из двух свойств, докажем оба для ОГИ.

Лемма 3.39 В ОГИ: неприводимый → простой

Обобщение ОТА на произвольную ОГА с целых чисел.

Переформулируем: ...

Пусть есть такие элементы, возьмём цепочку максимальной длины, последний — приводим, представим как необратимые, тогда они сами представляются как ..., тогда и он тоже.

! TODO!

Определение 3.40 нснм — начиная с некоторого места

Замечание 3.41 Нётеровость: не можем бесконечно делить, так как при переходе к множителям идеалы расширяются, но в какой-то момент стабилизируются.

Теорема 3.42 R факториально $\Rightarrow R[x]$ — тоже

Пример 3.43 F - поле.

 $f \in F[x]$ — неприводим.

 $\frac{F[x]}{(f)}$ — область целостности, но докажем, что поле.

 $\cdot \overline{g} \quad \deg g < \deg f$

 \cdot (f,g)=1, то есть $1=fp_1+gp_2$, $\overline{1}=\overline{f}\overline{p_1}+\overline{g}\overline{p_2}$

 $\dim_F K = \deg f$

Можем построить все конечные поля.

$$\mathbb{F}_{p[x]} \ni f, \deg f = m$$

$$\mathbb{F}_{p^m}[x] \ll = \infty \ \frac{\mathbb{F}_{p[m]}}{(f)}$$

Теорема 3.44 Над конечным полем существуют неприводимые многочлены любой степени

Пример 3.45 $\mathbb{F}_{2rac{[x]}{(x^2+x+1)}}$

Таблица сложения:

	0	1	α	β
0	0	1	3	4

Теорема 3.46 Группа простого порядка — циклическая

- 3.1 sdafasf
- 3.1.1 dasasd
- 3.1.1.1 asdf
- 4 vdsf
- 4.1 231

Теорема 4.1.47 sdfs

! TODO!

Why isn't the theorem counter reset?

OMG, I'm lecture 1

Ahh, im lecture-2!

Could not find theory/lecture-3.typ

Could not find theory/lecture-4.typ

Could not find theory/lecture-5.typ

Could not find theory/lecture-6.typ
Could not find theory/lecture-7.typ
Could not find theory/lecture-8.typ
Could not find theory/lecture-9.typ
Could not find theory/lecture-10.typ
Could not find theory/lecture-11.typ
Could not find theory/lecture-12.typ
Could not find theory/lecture-13.typ
Could not find theory/lecture-14.typ

Лекция 3

5 Поля

Определение 5.48 (definition 48: Подполе)

Свойство 5.49 R— поле \Leftrightarrow вR ровно 2 идеала

Свойство 5.50 Гомоморфизмы полей инъективны, так как ядро — идеал

Определение 5.51 (definition 51: F-аглебра (алгебра над F)) кольцо R, тч $F \leq R$

Замечание 5.52 Тогда это заодно и векторное пространство

Определение 5.53 (definition 53: Гомофморфизм F-алгебр)

- $m{\cdot}\ f:R o R'$ гомоморфизм колец
- $\cdot \ f(lpha) = lpha orall lpha \in F$ (сохраняет элементы поля)

Замечание 5.54 Получается, это автоматически гомоморфизм векторных пространств

$$\mathbb{Z} \xrightarrow{f} F$$

$$n \mapsto \underbrace{1_F + 1_F + \dots 1_F}_{n \text{ pas}}.$$

Определение 5.55 (definition 55: Характеристика)

1. $\ker f = 0$

1. $\ker f = (p)$

Итого: минимальное количество раз, которое нужно сложить единицу с собой, чтобы стала нулём.

11

Теорема 5.56 (theorem 56: Количество элементов конечного поля) $|F| = \operatorname{char} F^n = p^n, p$ — prime

Теорема 5.57 (theorem 57: Единственность конечного поля) Конечные поля равного размера изоморфны.

Определение 5.58 (definition 58: Простые поля) Не содержат подполя

Замечание 5.59 ($remark\ 59$: Бином Ньютона) В полях характеристики p/в \mathbb{F}_p алгеб $pax \ p \cdot (a = 0) \Rightarrow (a + b)^p = a^p + b^p.$

Определение 5.60 (definition 60: эндоморфизм Фробениуса) $f: \binom{R \to R}{a \mapsto a^p}$.

- \cdot Если поле, то инъективен ($\ker f=0$) и $\mathrm{Im}\ f$ подполе
- $\cdot \ R = \mathbb{F}_p$ конечное поле \Rightarrow назвают «автоморфизм Фробениуса»

$$\mathbb{F}_{p(x)} \xrightarrow{f} \mathbb{F}_{p(x)} \quad \Im f = \mathbb{F}_{p(X^p)} = \left\{ \frac{g(x^p)}{h(x^p)} \mid g, h \in \mathbb{F}_{p[x]}, h \neq 0 \right\}$$

Определение 5.61 (definition 61: Унитарный многочлен) Старший коэфициент = 1

Теорема 5.62 (theorem 62: Лемма Гаусса)

Теорема 5.63 (theorem 63: Критерий Эйзенштейна)

$$h=a_nx^n+\ldots+a_1x+a_0,\quad a_i\in\mathbb{Z},\quad p$$
 — простой

- 1. $p \nmid a_n$
- 2. $p \mid a_{n-1}, ... a_0$ 3. $p^2 \nmid a_0$

Тогда h — неприводим

Доказательство

Определение 5.64 (definition 64: Расширение поля) E — расширение F, если $F \leq E$. «E/F» — E расширяет F.

E/F называется конечным, если $\infty > \dim_F E \coloneqq [E::F]$ — степень E над F.

Пример 5.65

- $\cdot \mathbb{C}/\mathbb{R}$
- $\cdot \mathbb{R}/\mathbb{Q}$
- $\cdot \mathbb{Q}[i]/\mathbb{Q}$
- $\cdot F(x)/F$

Теорема 5.66] $F \leq E \leq L$ $L/F < \infty \Longleftrightarrow E/F < \infty$, при этом $[L:F] = [L:E] \cdot [E:F]$

Доказательство

 $oldsymbol{\cdot} E$ — подпространство $F\Rightarrow \dim_F E<\infty$ $oldsymbol{\cdot} \left\{e\right\}_1^n$ — базис L над $F\Rightarrow \left\{e\right\}_1^n$ порождает L над E

Определение 5.67 (definition 67: Подалгебра, порождённая ?)

$$E/F \quad S \leq E \quad F[S] = \left\{ \sum a_I \alpha^I \mid a_I \in F, \alpha_I \in S \right\}$$

Лемма 5.68 R — конечная F-алг. R — область целостности $\Rightarrow R$ — поле

Доказательство $a \neq 0$ $f: R \rightarrow R$ f(r) = ar

- $f \in F$ -Lin
- $\cdot f \in Inj$

 $\Rightarrow f \in \mathrm{Surj}$, а тогда $\exists b$, тч ab=1, значит любой $a \neq 0$ обратим, значит, это поле.

Следствие 5.69 E/F — конечное R — подалгебра $E \Rightarrow R$ — поле

Определение (definition 70: Простое расширение) E/F — простое $E=F(\alpha), \alpha \in E$

Определение 5.71 (definition 71: Композит двух полей) $F,F'\leq E$ $F(F')=F\cdot F'=F'(F)$

Замечание 5.72 Поля разных характеристик не могут содержаться в одном поле, так как единица должна лежать и там, и там

 $F[x] \ni f$ — непрерывны, унитарны.

5.1 Построение циркулем и линейкой

5.2 Split fields (of a polynomial)

aka Поле разложения

Теорема 5.2.73 For any polynomial there exists its splitting field with degree $\leq (\deg f)!$ over F.

Доказательство ...

Замечание 5.2.74 Многочлены от конечного количества переменных — область целостности, как и от бесконечного, так как для многочлена рассмотрим подкольцо используемых переменных.

Теорема 5.2.75 lk

Теорема 5.2.76 lk