

pyrolite: Python for geochemistry

Overview and Application to REE Data

Morgan Williams | 2021-02-21 morgan.Williams@csiro.au

Australia's National Science Agency

pyrolite: A Quick Tour

- What is pyrolite? Why does it exist?
- Handling geochemical data
- Visualisation
- Putting geochem data to work
- Demonstration
- Get Involved

What is pyrolite?

A set of tools for working with geochemical data

- An open source Python package (a bundle of reusable code)
- A project under active development, aiming to eventually be community-driven
- Part of a broader ecosystem of interoperable tools within the scientific Python ecosystem

pyrolite: Python for geochemistry

Morgan J. Williams¹, Louise Schoneveld¹, Yajing Mao², Jens Klump¹, Justin Gosses³, Hayden Dalton⁴, Adam Bath¹, and Steve Barnes¹

1 CSIRO Mineral Resources 2 Institute of Geology and Geophysics, Chinese Academy of Geosciences 3 NASA Johnson Space Center 4 School of Earth Science, University of Melbourne

pyrolite is a Python package for working with multivariate geochemical data, with a particular focus on rock and mineral chemistry. The project aims to contribute to more robust, efficient and reproducible data-driven geochemical research.

DOI: 10.21105/joss.02314

Software

- Review 🗗
- Repository 🖸
- Archive ♂

What's the bigger idea?

Encouraging a programmatic approach to geochemical data analysis:

- Defining explicit workflows
- Reproducibility and reuse of research code
- Interoperability and automation
- Scalability and flexibility

To support this:

- Accessibility
- Community
- Education

Handling Geochemical Data

- Transformation (elements, oxides, minerals, normalization)
- Reference compositions and mineral composition databases

Handling Geochemical Data

- Transformation (elements, oxides, minerals, normalization)
- Reference compositions and mineral composition databases
- Compositional data logratio transforms!
- Provide some specialized functionality to complement general tools
- Linking all of this directly to your dataset (data-centric, via Pandas)

Visualisation

- Ternary diagrams
- Spider diagrams
- Addressing overplotting with data density-based visualisation methods
- Interface reflects the tools it's built on top of (e.g. matplotlib) in order to be interoperable
- Highly customisable

lambdas

- Customisable implementation of orthogonal polynomial regression, after O'Neill (2016)
 - Consistent with O'Neill (2016) using the same parameterisation
 - Updated to default to be consistent with AlambdaR/BlambdaR
- Tetrads, anomalies, fit measures and parameter uncertainties added in development version (will be released in v0.3.0)

Linking Geochem Data to Modelling and ML

- To get the most out of our geochemical data, we'll need to be able to link it to a variety of different tools
 - Modelling (e.g. lattice strain, alphaMELTS)
 - Machine learning
- The scientific Python ecosystem comes with 'batteries included'

Docs

pyrolite.rtfd.io

Plotting Examples

Heatscatter Plots

pyrolite provides some functionality for basic plotting of geochemical data in the form of spidergrams (pyrolite.plot.spider), ternary diagrams (pyrolite.plot.tern) and density diagrams (i.e. 2D histograms, pyrolite.plot.density).

Density and Contour

Plots

Spiderplots & Density
Spiderplots

Quick Demo

- Pulling in some data
- Simple visualisation
- Getting started with lambdas and tetrads

Play along at home:

tinyurl.com/minsocREE-pyrolite

Repo: github.com/morganjwilliams/202102-minsoc-REE-workshop

Anomalous Anomalies?

Get Involved

- Want help getting started?
- Find something which looks like a bug?
- Want to be able to do something, but not sure how/if its possible?
- Want to get involved with the project, or have ideas where it should go?
- Keen to make the project more sustainable?

Discussion:

gitter.im/pyrolite/community

Bugs and Features:

github.com/morganjwilliams/pyrolite

Thank you

Morgan Williams morgan.Williams@csiro.au

Contributors:

- Hayden Dalton
- Louise Schoneveld
- Adam Bath
- Yajing Mao
- Justin Gosses
- Kaarel Mand
- Laura Miller
- Steve Barnes
- Lucy Mathieson

Australia's National Science Agency

> pip install pyrolite

Some Perspectives on Getting Started

- Start where you are. For new coders, it'll take a while to get used to. Don't expect to learn everything overnight.
- Play around with the examples, then try working with your own data. Having a project or objective in mind helps with the learning process!
- I still have to look up lots of things, even for my own code. This probably won't change!

And a range of other utilities...

