УДК 517.54

ОЦЕНКА ОБЩИХ И СПЕЦИАЛЬНЫХ ЗНАНИЙ В БОЛЬШИХ ЯЗЫКОВЫХ МОДЕЛЯХ ДЛЯ РУССКОГО ЯЗЫКА ПОСРЕДСТВОМ ВОСПРОИЗВЕДЕНИЯ ЭНЦИКЛОПЕДИЧЕСКИХ СТАТЕЙ

© 2025 г. Д.А. Григорьев^{1,*}, Д.И. Чернышев^{1,**}

Представлено кем-то Поступило 16.08.2025 После доработки 20.08.2025 Принято к публикации 31.08.2025

Работа исследует методы сжатия художественных текстов с помощью языковых моделей и предлагает улучшенные подходы для точного реферирования в условиях ограниченного контекста.

Ключевые слова и фразы: LLM, реферирование, литература, книги, краткий пересказ

ВВЕДЕНИЕ

Реферирование художественной литературы Автоматическое реферирование текста — одна из ключевых задач в области обработки естественного языка. Суть этой задачи заключается в создании информативной аннотации исходного текста с сохранением основного смысла содержания. В последние годы, с появлением больших языковых моделей, резко возрос интерес к автоматизации реферирования в самых разных жанрах текстов, включая художественные произведения. В отличие от научных, новостных или технических текстов, художественные произведения характеризуются высокой степенью стилистической и семантической сложности. Нелинейность повествования, образность, метафоричность и стилистические приёмы делают задачу написания краткого содержания особенно трудоёмкой. Ограниченное контекстное окно современных моделей дополнительно осложняет работу с длинными произведениями.

Теоретически автоматическое реферирование может выполняться двумя основными способами: извлекающим (выбор ключевых фрагментов текста) и абстрактивным (генерация нового текста на основе содержания оригинала). Для художественной литературы более уместен второй подход, поскольку он позволяет передать смысл и стиль произведения, не нарушая его целостности.

набор данных

На момент начала исследования не существовало открытых и репрезентативных корпусов, предназначенных специально для задачи реферирования художественных текстов на русском языке. Был сформирован собственный набор данных, включающий:

- более 600 пользовательских пересказов с ресурса «Народный Брифли»;
- исходные произведения из электронной библиотеки LibRuSec (публичное достояние или тексты с разрешения правообладателей);

Тексты аннотаций проходили автоматическую очистку от HTML-тегов, комментариев и служебных пометок с помощью LLM Meta—Llama 3—70B—Instruct. Затем производился поиск по датасету LibRuSec и собиралась коллекция, состоящая из пар "текст книги - аннотация".

ОЦЕНИВАНИЕ МЕТОДОВ

На момент начала исследования в русскоязычном сегменте отсутствовали открытые и репрезентативные наборы данных, специально предназначенные для задачи автоматического реферирования

 $^{^{1}}$ Московский государственный университет им. М. В. Ломоносова, Москва, Россия

^{*}E-mail: dagrig14@yandex.ru

^{**}E-mail: chdanorbis@yandex.ru

художественных текстов. В отличие от аналогичных англоязычных проектов, которые уже включали крупные корпуса литературных произведений с высококачественными аннотациями, для русскоязычных текстов подобные ресурсы не были представлены. Это существенно затрудняло объективное тестирование и сравнение эффективности методов автоматического реферирования в условиях художественных произведений на русском языке.

С целью проведения экспериментов и оценки различных подходов к генерации аннотаций был создан собственный корпус, состоящий из художественных текстов и соответствующих кратких пересказов. В качестве источника для аннотаций был выбран ресурс «Народный Брифли» [1] — платформа, где пользователи публикуют краткие пересказы литературных произведений. Несмотря на вариативность качества и стиля пользовательских аннотаций и наличие нерелевантной информации, такой как учебные вопросы или редакторские замечания, после тщательной предварительной обработки удалось получить достаточно надёжный и чистый набор данных.

Художественные тексты были отобраны из электронной библиотеки LibRuSec — одного из крупнейших русскоязычных ресурсов художественной литературы, содержащего свыше 400 тысяч текстов. Отбор произведений осуществлялся на основании наличия аннотаций на выбранном ресурсе. Каждый текст проходил автоматическую предварительную обработку: удалялась метаинформация (например, заголовки, описания глав и технические вставки), после чего текст форматировался в единый стандартизированный вид, подходящий для дальнейшего использования в моделях. Важно отметить, что при создании корпуса использовались только тексты, находящиеся в общественном достоянии или распространяемые свободно с разрешения правообладателей, что обеспечивает соблюдение требований авторского права.

Для иллюстрации структуры сформированного корпуса ниже представлен пример пары «фрагмент художественного текста — соответствующая аннотация».

ПРИМЕНЕНИЕ МЕТОДОВ

Экспериментальная часть включает проверку базовых стратегий (иерархическая, итеративная, «чертёжная») и двух усовершенствований.

Влияние предварительной очистки Очистка исходного текста от технических артефактов положительно сказалась на ROUGE-L и BERTScore для моделей MetaLlama 370B и RuadaptQwen2.5-32BProBeta, повысив также полноту покрытия ключевых вопросов.

Сравнение базовых методов Иерархический и итеративный подходы продемонстрировали сопоставимое качество (ROUGE–L \approx 0.48, BERTScore \approx 0.70), заметно превосходя псевдо-генерацию без доступа к исходному тексту.

Иерархический метод с фильтрацией узлов Добавление фильтра по семантической близости (порог 0.85) позволило убрать избыточные фрагменты и ускорить генерацию на длинных текстах в среднем на $15\,\%$.

«Чертёжный» метод с кластеризацией вопросов Кластеризация эмбеддингов вопросов алгоритмом k-means и последующее сэмплирование 10–30 вопросов из каждого кластера уменьшили число обращений к модели и ускорили работу метода в 1.22 раза без потери качества.

ОЦЕНИВАНИЕ МЕТОДОВ

В таблице 1 приведены сравнительные результаты работы описанных выше методов генерации кратких пересказов художественных текстов. Для каждой из исллдованных моделей измерялись метрики качеств и время выполнеия в зависимости от метода: базовые чертежный и иерархический методы, а также их усовершенствованные версии чертежный метод с кластеризацией вопросов и иерархический метод с фильтрацией узлов.

Как видно из таблицы 1, модифицированные варианты методов действительно существенно ускоряют обработку: среднее время генерации сокращается в 1.5-3 раза в зависимости от модели (например, DeepSeek V3: $315.67 \implies 132.60$) Однако выигрыш по скорости сопровождается умеренным снижением качества: падение BERTScore и ROUGE-L чаще всего укладывается в 1-2 пункта и находится в пределах стандартных отклонений.

Таблица 1. Результаты по методам и моделям

Модель	Метрики	Чертежный	чертежный с кластеризацией	Иерархический	Иерархический с фильтрацией
RuadaptQwen2.5-7B-Lite-Beta	bertscore rouge-l time	58.7 ± 3.8 14.1 ± 4.8 159.13	$57.7 \pm 3.7 12.2 \pm 4.5 77.30$	59.6 ± 3.5 14.4 ± 4.3 106.18	59.3 ± 3.4 13.8 ± 4.3 79.58
RuadaptQwen3-32B-Instruct-v2	bertscore rouge-l time	56.8 ± 5.8 10.4 ± 4.5 201.88	53.7 ± 5.2 7.6 ± 3.6 140.41	55.6 ± 3.4 10.2 ± 2.9 182.41	55.7 ± 3.6 9.9 ± 2.5 147.32
yagpt5lite	bertscore rouge-l time	61.0 ± 3.6 15.8 ± 5.2 98.45	$61.4 \pm 3.2 14.0 \pm 4.4 27.06$	$62.3 \pm 3.2 \\ 16.7 \pm 5.0 \\ 24.97$	$62.1 \pm 3.3 \\ 16.5 \pm 4.7 \\ 24.34$
Qwen3-235B-A22B	bertscore rouge-l time	61.6 ± 3.3 15.8 ± 4.5 200.30	59.3 ± 3.4 12.2 ± 3.6 149.11	$61.2 \pm 3.0 \\ 14.9 \pm 4.0 \\ 103.49$	$60.9 \pm 2.7 \\ 14.8 \pm 3.7 \\ 83.06$
DeepSeek V3	bertscore rouge-l time	58.0 ± 4.0 12.6 ± 4.6 315.67	58.4 ± 3.6 11.2 ± 3.9 132.60	$60.0 \pm 3.1 \\ 13.7 \pm 3.9 \\ 196.77$	$60.0 \pm 2.9 \\ 13.5 \pm 3.7 \\ 147.21$
tpro	bertscore rouge-l time	59.0 ± 4.9 14.7 ± 4.9 259.35	58.2 ± 3.7 11.8 ± 3.9 161.33	59.4 ± 3.0 13.8 ± 3.1 276.45	59.5 ± 3.3 13.5 ± 3.0 230.21

СПИСОК ЛИТЕРАТУРЫ

[1] Народный Брифли. Электронная библиотека кратких пересказов литературных произведений. https://wiki.briefly.ru/ (дата обращения: 16.07.2025).

REFERENCES

[1] Народный Брифли. Электронная библиотека кратких пересказов литературных произведений. https://wiki.briefly.ru/ (дата обращения: 16.07.2025).