Отчёт по лабораторной работе №4

дисциплина: Архитектура компьютера Курбанов Рахман Акмурадович

Содержание

1 Цель работы
2 Задание
3 Теоретическое введение
4 Выполнение лабораторной работы
4.1 Программа Hello world!
4.2 Транслятор NASM
4.3 Расширенный синтаксис командной строки NASM
4.4 Компоновщик LD
4.5 Запуск исполняемого файла
4.6 Задания для самостоятельной работы
5 Выводы
6 Список дитературы

Список иллюстраций

4.1 Создание рабочеи директроии
4.2 Создание .asm файла
4.3 Редактирование файла
4.4 Компиляция программы
4.5 Возможности синтаксиса NASM
4.6 Отправка файла компоновщику
4.7 Создание исполняемого файла
4.8 Запуск программы
4.9 Создание копии
4.10 Редактирование копии
4.11 Проверка работоспособности скомпонованной программы
4.12 Отправка файлов в локальный репозиторий
4.13 Загрузка изменений

1 Цель работы

Цель данной лабораторной работы - освоить процедуры компиляции и сборки программ, написанных на ассемблере NASM.

2 Задание

- 1. Создание программы Hello world!
- 2. Работа с транслятором NASM
- 3. Работа с расширенным синтаксисом командной строки NASM
- 4. Работа с компоновщиком LD
- 5. Запуск исполняемого файла
- 6. Выполнение заданий для самостоятельной работы.

3 Теоретическое введение

Основными функциональными элементами любой ЭВМ являются центральный процессор, память и периферийные устройства. Взаимодействие этих устройств осуществляется через общую шину, к которой они подключены. Физически шина представляет собой большое количество проводников, соединяющих устройства друг с другом. В современных компьютерах проводники выполнены в виде электропроводящих дорожек на материнской плате. Основной задачей процессора является обработка информации, а также организация координации всех узлов компьютера. В состав центрального процессора входят следующие устройства: - арифметико-логическое устройство (АЛУ) выполняет логические и арифметические действия, необходимые для обработки информации, хранящейся в памяти; - устройство управления (УУ) — обеспечивает управление и контроль всех устройств компьютера; регистры — сверхбыстрая оперативная память небольшого объёма, входящая в состав процессора, для временного хранения промежуточных результатов выполнения инструкций; регистры процессора делятся на два типа: регистры общего назначения и специальные регистры. Для того, чтобы писать программы на ассемблере, необходимо знать, какие регистры процессора существуют и как их можно использовать. Большинство команд в программах написанных на ассемблере используют регистры в каче- стве операндов. Практически все команды представляют собой преобразование данных хранящихся в регистрах процессора, это например пересылка данных между регистрами или между регистрами и памятью, преобразование (арифметические или логические 7 операции) данных хранящихся в регистрах. Доступ к регистрам осуществляется не по адресам, как к основной памяти, а по именам. Каждый регистр процессора архитектуры х86 имеет свое название, состоящее из 2 или 3 букв латинского алфавита. В качестве примера приведем названия основных регистров общего назначения (именно эти регистры чаще всего используются при написании программ): -RAX, RCX, RDX, RBX, RSI, RDI — 64-битные - EAX, ECX, EDX, EBX, ESI, EDI — 32битные - AX, CX, DX, BX, SI, DI — 16-битные - AH, AL, CH, CL, DH, DL, BH, BL — 8битные

Другим важным узлом ЭВМ является оперативное запоминающее устройство (ОЗУ). ОЗУ — это быстродействующее энергозависимое запоминающее устройство, которое напрямую взаимодействует с узлами

процессора, предназначенное для хранения программ и данных, с которыми процессор непосредственно работает в текущий момент. ОЗУ состоит из одинаковых пронумерованных ячеек памяти. Номер ячейки памяти — это адрес хранящихся в ней данных. Периферийные устройства в составе ЭВМ: - устройства внешней памяти, которые предназначены для долговременного хранения больших объёмов данных. - устройства ввода-вывода, которые обеспечивают взаимодействие ЦП с внешней средой. В основе вычислительного процесса ЭВМ лежит принцип программного управления. Это означает, что компьютер решает поставленную задачу как последовательность действий, записанных в виде программы.

Коды команд представляют собой многоразрядные двоичные комбинации из 0 и 1. В коде машинной команды можно выделить две части: операционную и адресную. В операционной части хранится код команды, которую необходимо выполнить. В адресной части хранятся данные или адреса данных, которые участвуют в выполнении данной операции. При выполнении каждой команды процессор выполняет определённую последовательность стандартных действий, которая называется командным циклом процессора. Он заключается в следующем: 1. формирование адреса в памяти очередной команды; 2. считывание кода команды из памяти и её дешифрация; 3. выполнение команды; 4. переход к 8 следующей команде.

Язык ассемблера (assembly language, сокращённо asm) — машинноориентированный язык низкого уровня. NASM — это открытый проект ассемблера, версии которого доступны под различные операционные системы и который позволяет получать объектные файлы для этих систем. В NASM используется Intel-синтаксис и поддерживаются инструкции x86-64.

4 Выполнение лабораторной работы

4.1 Программа Hello world!

В домашней директории создаю каталог, в котором буду хранить файлы для текущей лабораторной работы. (рис. 4.1)

```
kurbanov@vbox:~/work/arch-pc/lab04

kurbanov@vbox:~$ mkdir -p ~/work/arch-pc/lab04

kurbanov@vbox:~$ cd ~/work/
kurbanov@vbox:~/work$ cd
kurbanov@vbox:~$ cd ~/work/arch-pc/lab04/
kurbanov@vbox:~/work/arch-pc/lab04/
kurbanov@vbox:~/work/arch-pc/lab04$
```

Рис. 4.1: Создание рабочей директории

Создаю в нем файл hello.asm, в котором буду писать программу на языке ассемблера. (рис. 4.2)

```
kurbanov@vbox:~/work/arch-pc/lab04

kurbanov@vbox:~$ mkdir -p ~/work/arch-pc/lab04

kurbanov@vbox:~$ cd ~/work/
kurbanov@vbox:~ cd ~/work/scd

kurbanov@vbox:~$ cd ~/work/arch-pc/lab04/
kurbanov@vbox:~/work/arch-pc/lab04$ touch hello.asm
kurbanov@vbox:~/work/arch-pc/lab04$ mousepad hello.asm
kurbanov@vbox:~/work/arch-pc/lab04$
```

Рис. 4.2: Создание .asm файла

С помощью редактора пишу программу в созданном файле. (рис. 4.3)

```
~/work/arch-pc/lab04/hello.asm - Mousepad
                                                                            ×
File Edit Search View Document Help
SECTION .data
       hello: db "Hello, world!",0xa
               helloLen: equ $ - hello
SECTION .text
       global _start
_start:
       mov eax, 4
       mov ebx, 1
       mov ecx, hello
       mov edx, helloLen
       int 0x80
       mov eax, 1
       mov ebx, 0
       int 0x80
```

Рис. 4.3: Редактирование файла

4.2 Транслятор NASM

Компилирую с помощью NASM свою программу. (рис. 4.4)

```
kurbanov@vbox:~/work/arch-pc/lab04
\oplus
 * Waiting in queue...
 * Loading list of packages....
The following packages have to be installed:
nasm-2.16.03-2.fc41.x86_64
                               A portable x86 assembler which uses Intel-like s
Proceed with changes? [N/y] y
 * Waiting in queue...
 * Waiting for authentication...
 * Waiting in queue...
 * Downloading packages...
 * Requesting data...
  Testing changes...
 * Installing packages...
kurbanov@vbox:~/work/arch-pc/lab04$ ls
hello.asm hello.o
kurbanov@vbox:~/work/arch-pc/lab04$
```

Рис. 4.4: Компиляция программы

4.3 Расширенный синтаксис командной строки NASM

Выполняю команду, указанную на (рис. 4.5), она скомпилировала исходный файл hello.asm в obj.o, расшиерние .o говорит о том, что файл - объектный, помимо него флаги - g -l подготвоят файл отладки и листинга соответственно.

```
kurbanov@vbox:~/work/arch-pc/lab04
\oplus
                                                                    æ
Proceed with changes? [N/y] y
 * Waiting in queue...
 * Waiting for authentication...
 * Waiting in queue...
 * Downloading packages...
 * Requesting data...
 * Testing changes...
 * Installing packages...
kurbanov@vbox:~/work/arch-pc/lab04$ ls
kurbanov@vbox:~/work/arch-pc/lab04$ nasm -o obj.o -f -g -l list.lst hello.asm
nasm: fatal: unrecognised output format `-g' - use -hf for a list
Type nasm -h for help.
kurbanov@vbox:~/work/arch-pc/lab04$ nasm -o obj.o -f elf -g -l list.lst hello.as
kurbanov@vbox:~/work/arch-pc/lab04$ ls
hello.asm hello.o list.lst obj.o
kurbanov@vbox:~/work/arch-pc/lab04$
```

4.4 Компоновщик LD

Затем мне необходимо передать объектный файл компоновщику, делаю это с помощью команды ld. (рис. 4.6)

```
kurbanov@vbox:~/work/arch-pc/lab04
\oplus
 * Waiting in queue...
 * Waiting for authentication...
* Waiting in queue...
* Downloading packages...
* Requesting data...
 * Testing changes...
 * Installing packages...
nasm: fatal: unrecognised output format `-g' - use -hf for a list
Type nasm -h for help.
kurbanov@vbox:~/work/arch-pc/lab04$ ls
hello.asm hello.o list.lst obj.o
kurbanov@vbox:~/work/arch-pc/lab04$ ld -m elf_i386 hello.o -o hello
kurbanov@vbox:~/work/arch-pc/lab04$ ls
kurbanov@vbox:~/work/arch-pc/lab04$
```

Рис. 4.6: Отправка файла компоновщику

Выполняю следующую команду ..., результатом исполнения команды будет созданный файл main, скомпонованный из объектного файла obj.o. (рис. 4.7)

```
* Downloading packages...

* Requesting data...

* Testing changes...

* Installing packages...

* kurbanov@vbox:~/work/arch-pc/lab04$ ls
hello.asm hello.o

kurbanov@vbox:~/work/arch-pc/lab04$ nasm -o obj.o -f -g -l list.lst hello.asm
nasm: fatal: unrecognised output format `-g' - use -hf for a list
Type nasm -h for help.

kurbanov@vbox:~/work/arch-pc/lab04$ nasm -o obj.o -f elf -g -l list.lst hello.asm

kurbanov@vbox:~/work/arch-pc/lab04$ ls
hello.asm hello.o list.lst obj.o

kurbanov@vbox:~/work/arch-pc/lab04$ ls
hello.asm hello.o list.lst obj.o

kurbanov@vbox:~/work/arch-pc/lab04$ ls
hello hello.asm hello.o list.lst obj.o

kurbanov@vbox:~/work/arch-pc/lab04$ ld -m elf_i386 hello.o -o main
kurbanov@vbox:~/work/arch-pc/lab04$ ls
hello hello.asm hello.o list.lst obj.o

kurbanov@vbox:~/work/arch-pc/lab04$ ls
hello hello.asm hello.o list.lst main obj.o
kurbanov@vbox:~/work/arch-pc/lab04$ ls
```

Рис. 4.7: Создание исполняемого файла

4.5 Запуск исполняемого файла

Запускаю исполняемый файл из текущего каталога. (рис. 4.8)

```
kurbanov@vbox:~/work/arch-pc/lab04
\oplus
                                                                         ≡
 * Testing changes...
 * Installing packages...
kurbanov@vbox:~/work/arch-pc/lab04$ ls
kurbanov@vbox:~/work/arch-pc/lab04$ nasm -o obj.o -f -g -l list.lst hello.asm
nasm: fatal: unrecognised output format `-g' - use -hf for a list
Type nasm -h for help.
kurbanov@vbox:~/work/arch-pc/lab04$ nasm -o obj.o -f elf -g -l list.lst hello.as
kurbanov@vbox:~/work/arch-pc/lab04$ ls
hello.asm hello.o list.lst obj.o
kurbanov@vbox:~/work/arch-pc/lab04$ ld -m elf_i386 hello.o -o hello
kurbanov@vbox:~/work/arch-pc/lab04$ ls
hello hello.asm hello.o list.lst obj.o
kurbanov@vbox:~/work/arch-pc/lab04$ ld -m elf_i386 hello.o -o main
kurbanov@vbox:~/work/arch-pc/lab04$ ./hello
Hello, world!
kurbanov@vbox:~/work/arch-pc/lab04$
```

Рис. 4.8: Запуск программы

4.6 Задания для самостоятельной работы

Создаю копию файла для последующей работы с ней. (рис. 4.9)

```
kurbanov@vbox:~/work/arch-pc/lab04

kurbanov@vbox:~/work/arch-pc/lab04$ ls
hello.asm hello.o
kurbanov@vbox:~/work/arch-pc/lab04$ nasm -o obj.o -f -g -l list.lst hello.asm
nasm: fatal: unrecognised output format `-g' - use -hf for a list
Type nasm -h for help.
kurbanov@vbox:~/work/arch-pc/lab04$ nasm -o obj.o -f elf -g -l list.lst hello.asm

kurbanov@vbox:~/work/arch-pc/lab04$ ls
hello.asm hello.o list.lst obj.o
kurbanov@vbox:~/work/arch-pc/lab04$ ld -m elf_i386 hello.o -o hello
kurbanov@vbox:~/work/arch-pc/lab04$ ls
hello hello.asm hello.o list.lst obj.o
kurbanov@vbox:~/work/arch-pc/lab04$ ld -m elf_i386 hello.o -o main
kurbanov@vbox:~/work/arch-pc/lab04$ ld -m elf_i386 hello.o -o main
kurbanov@vbox:~/work/arch-pc/lab04$ ld -m elf_i386 hello.o -o main
kurbanov@vbox:~/work/arch-pc/lab04$ ls
hello hello.asm hello.o list.lst main obj.o
kurbanov@vbox:~/work/arch-pc/lab04$ cp hello.asm lab4.asm
kurbanov@vbox:~/work/arch-pc/lab04$ ls
hello hello.asm hello.o lab4.asm list.lst main obj.o
kurbanov@vbox:~/work/arch-pc/lab04$ ls
hello hello.asm hello.o lab4.asm list.lst main obj.o
kurbanov@vbox:~/work/arch-pc/lab04$ ls
```

Рис. 4.9: Создание копии

Редактирую копию файла, заменив текст на свое имя и фамилию. (рис. 4.10)

```
~/work/arch-pc/lab04/lab4.asm - Mousepad
                                                                             ×
File Edit Search View Document Help
SECTION .data
       hello: db "Kurbanov Rahman",0xa
               helloLen: equ $ - hello
SECTION .text
       global _start
start:
       mov eax, 4
       mov ebx, 1
       mov ecx, hello
       mov edx, helloLen
       int 0x80
       mov eax, 1
       mov ebx, 0
       int 0x80
```

Рис. 4.10: Редактирование копии

Транслирую копию файла в объектный файл, компоную и запускаю. (рис. 4.11)

Рис. 4.11: Проверка работоспособности скомпонованной программы

Убедившись в корректности работы программы, копирую рабочие файлы в свой локальный репозиторий. (рис. 4.12)

```
kurbanov@vbox:~/work/arch-pc/lab04$ cp hello.asm lab4.asm ../../study/2024-2025/
'apxитектура компьютера'/arch-pc/labs/lab04
kurbanov@vbox:~/work/arch-pc/lab04$ cd ../../study/2024-2025/'apxитектура компью
тера'/arch-pc/labs/lab04/
kurbanov@vbox:~/work/study/2024-2025/apxитектура компьютера/arch-pc/labs/lab04$
ls
hello.asm lab4.asm presentation report
kurbanov@vbox:~/work/study/2024-2025/apxитектура компьютера/arch-pc/labs/lab04$
```

Рис. 4.12: Отправка файлов в локальный репозиторий

Загрузка изменений на свой удаленный репозиторий на GitHub. (рис. 4.13)

```
kurbanov@vbox:~/work/study/2024-2025/архитектура компьют...
\oplus
                                                                     #
                                                                          \equiv
Changes to be committed:
  (use "git restore --staged <file>..." to unstage)
Untracked files:
  (use "git add <file>..." to include in what will be committed)
kurbanov@vbox:~/work/study/2024-2025/архитектура компьютера/arch-pc/labs/lab04$
git comit -m "feat(main): upload 4 lab work"
git: 'comit' is not a git command. See 'git --help'.
The most similar command is
       commit
kurbanov@vbox:~/work/study/2024-2025/архитектура компьютера/arch-pc/labs/lab04$
git commit -m "feat(main): upload 4 lab work"
[master 101d8f4] feat(main): upload 4 lab work
2 files changed, 30 insertions(+)
create mode 100644 labs/lab04/hello.asm
create mode 100644 labs/lab04/lab4.asm
kurbanov@vbox:~/work/study/2024-2025/архитектура компьютера/arch-pc/labs/lab04$
```

Рис. 4.13: Загрузка изменений

5 Выводы

При выполнении данной лабораторной работы я освоила процедуры компиляции и сборки программ, написанных на ассемблере NASM.