Задачи к семинарам 18.11.2024

- **1** Случайные величины ξ_1, ξ_2 независимы и имеют равномерное распределение на отрезке [0,1]. Найдите плотности случайных величин $\xi_1\xi_2$ и ξ_1/ξ_2 .
- **2** Случайные величины X и Y независимы, $X \sim \mathrm{U}(1,2)$, а Y имеет плотность $p(x) = 2x \cdot \mathrm{I}\{x \in (0,1)\}$. Вычислите совместную плотность случайных величин X^2 и Y/X.
- **3** Случайные величины ξ_1, \ldots, ξ_n независимы и одинаково распределены с распределением $\mathrm{U}(0,1)$. Найдите совместную плотность случайных величин

$$\xi_{(1)} = \min\{\xi_1, \dots, \xi_n\} \ \text{if } \xi_{(n)} = \max\{\xi_1, \dots, \xi_n\}.$$

Вычислите $cov(\xi_{(1)}, \xi_{(n)})$.

4 Пусть ξ_1, \ldots, ξ_n — независимые одинаково распределенные случайные величины с функцией распределения F(x) и плотностью f(x). Упорядочим значения ξ_1, \ldots, ξ_n по неубыванию. Возникает новая последовательность случайных величин $\xi_{(1)} \leq \ldots \leq \xi_{(n)}$. Найдите плотность случайного вектора $(\xi_{(1)}, \ldots, \xi_{(n)})$.