Programming paradigms for GPU devices

28th Summer School on Parallel Computing

1-12 July 2019

Sergio Orlandini s.orlandini@cineca.it

Memory Hierarchy on CUDA

- Global Memory
 - caches
 - type of global memory accesses
- Shared Memory
 - Matrix-Matrix Product using Shared Memory
- Constant Memory
- Texture Memory
- Registers and Local Memory

Memory Hierarchy

Host

All CUDA threads in a block have access to:

- resources of the SM assigned to its block:
 - Registers
 - Shared Memory

NB: thread belonging to different blocks cannot share these resources

- all memory type available on GPU:
 - Global Memory
 - Costant Memory (read only)
 - Texture Memory (read only)

NB: CPU can access and initialize both constant and texture memory

NB: global, constant and texture memory have persistent storage duration

Global Memory

- Global Memory is the larger memory available on a device
 - Comparable to a RAM for CPU
 - Its status is maintained among different kernel launches
 - Can be access both read/write from all threads of the kernel grid
 - Unique memory that can be use in read/write access from the CPU
 - Very high bandwidth
 Throughput up to 240-760 GB/s
 - Very high latency about 400-800 clock cycles

Declare Variable in *Global Memory*

How to allocate a variable in Global Memory:

```
__device__ type variable_name; // static

or dynamic allocation

type *pointer_to_variable;
cudaMalloc((void **) &pointer_to_variable, size);
cudaFree(pointer_to_variable);
```

```
type, device :: variable_name

or dynamic allocation

type, device, allocatable :: variable_name
allocate(variable_name, size)
deallocate(variable_name)
```

- Lifetime of the application
- Accessible by all threads of a CUDA grid and by the host

Cache Hierarchy for *Global Memory*

- Starting with the Fermi architecture, a cache hierarchy has been introduced
- 2 Levels of cache:
 - **L2** : share among all SM
 - Fermi [768 KB], Kepler [1536 KB],
 Pascal [4MB]
 - 25% less latency than Global Memory
 - NB: all accesses to global memory pass through L2 cache, also H2D/D2H memory transfers
 - L1 : private to each SM
 - □ [16/48 KB] configurable
 - □ L1 + Shared Memory = 64 KB
 - Kepler/Pascal: configurable at 32 KB

cudaFuncSetCacheConfig(kernel1, cudaFuncCachePreferL1); // 48KB L1 / 16KB ShMem cudaFuncSetCacheConfig(kernel2, cudaFuncCachePreferShared); // 16KB L1 / 48KB ShMem

Cache Hierarchy for *Global Memory*

Two different types of *load* operations:

Caching (default mode)

- when data is requested by some threads, data is first searched in L1 cache, then in L2 cache, then in global memory
- cache line length is 128-byte

Non-caching

- L1 cache is disabled
- when data is requested by some threads, data is first searched in L2 cache, then in global memory
- cache line length is 32-bytes
- Activated at compile time with option:
 -Xptxas -dlcm=cg

Just one type of **store** operation:

 when data should be store in global memory, its L1 copy is invalidated and L2 cache value is updated

Global Memory Load/Store

```
// strided data copy
__global__ void strideCopy (float *odata, float* idata, int stride) {
   int xid = (blockIdx.x*blockDim.x + threadIdx.x) * stride;
   odata[xid] = idata[xid];
}
```

```
// offset data copy
__global__ void offsetCopy(float *odata, float* idata, int offset) {
   int xid = blockIdx.x * blockDim.x + threadIdx.x + offset;
   odata[xid] = idata[xid];
}
```

Strided copy		Offset copy	
Stri de	Bandwidth GB/s	Offs et	Bandwidth GB/s
1	106.6	0	106.6
2	34.8	1	72.2
8	7.9	8	78.2
16	4.9	16	83.4
32	2.7	32	105.7

Loads from *Global Memory*

- All load/store request in global memory are issued per warp (as all other instructions)
 - 1. each *thread* in a *warp* compute the address to access
 - 2. load/store units calculate in which memory segments data resides
 - 3. load/store units start up requests for segment to transfer

Warp requires 32 consecutive 4-byte word aligned to segment (total 128 bytes)

Caching Load	Non-caching Load
addresses fall whitin 1 cache line	addresses fall whitin 4 cache segments
128 bytes are moved across the bus	128 bytes are moved across the bus
bus utilization: 100%	bus utilization: 100%

Loads from *Global Memory*

Warp requests 32 permuted 4-byte words aligned to a segment (total 128 bytes)

Warp requests 32 consecutive 4-bytes words not aligned to a segment (total 128 bytes)

Caching Load	Non-caching Load
addresses fall within 2 cache lines	addresses fall within at most 5 segments
256 bytes are moved across the bug	256 bytes are moved across the bus
bus utilization: 50%	bus utilization: at least 80%
addresses from a warp	addresses from a warp

192 224 256

Memory addresses

160

192 224 256

Memory addresses

Loads from *Global Memory*

All threads in a warp request the same 4-byte word (total 4 bytes)

Caching Load	Non-caching Load
addresses fall within a single cache line	addresses fall within a single segment
128 bytes are moved across the bus	32 bytes are moved over the bus
bus utilization: 3.125%	bus utilization: 12.5%

Warp requests 32 not contiguous 4-bytes words (total 128 bytes)

Caching Load	Non-caching Load
addresses fall within N different cache lines	addresses fall within N different segments
N*128 bytes are moved across the bus	N*32 bytes are moved across the bus
bus utilization: 128 / (N*128)	bus utilization: 128 / (N*32)

Data alignment in *Global Memory*

- It is very important to align data in memory so to have aligned accesses (coalesced) during load/store operation in global memory, reducing the number of bytes moved across the bus
 - cudaMalloc() grants the alignment of first element in global memory, useful for one dimensional arrays
 - cudaMallocPitch() must be used to allocate 2D buffers
 - elements are padded so each row is aligned for coalescing accesses
 - returns an integer (pitch) which can be used as a stride to access row elements

```
// host code
int width = 64, heigth = 64;
float *devPtr;
int pitch;
cudaMallocPitch(&devPtr, &pitch, width * sizeof(float), height);

// device code
__global___ myKernel(float *devPtr, int pitch, int width, int height)
{
    for (int r = 0; r < height; r++) {
        float *row = devPtr + r * pitch;
        for (int c = 0; c < width; c++)
            float element = row[c];
    }
    ...
}</pre>
```


Shared Memory

- The Shared Memory is a small, but quite fast memory mounted on each SM
 - Accessible in read/write mode for only threads of a block
 - Alike a cache memory under the direct control of the programmer
 - Its status is not mantained among different kernel calls

Specifications:

- Very low latency: 2 clock cycles
- Throughput: 32 bit every 2 cycles
- Dimension: 48 KB [default]

(Configurable: 16/48 KB)

Kepler: also 32 KB

Shared Memory Allocation

```
// statically inside the kernel
 _global___ myKernelOnGPU (...) {
  __shared__ type shmem[MEMSZ];
or dynamic allocation
// dynamically sized
extern shared type *dynshmem;
 _global__ myKernelOnGPU (...) {
 dynshmem[i] = ...;
void myHostFunction() {
 myKernelOnGPU<<<gs, bs, MEMSZ>>>();
```

```
! statically inside the kernel
attribute(global)
  subroutine myKernel(...)
  type, shared:: variable_name
end subroutine
or dynamic allocation
! dynamically sized
type, shared:: dynshmem(*)
attribute(global)
  subroutine myKernel(...)
  dynshmem(i) = ...
end subroutine
```

- Lifetime of CUDA block of threads (NOT persistent along kernel launch!)
- Accessible only by threads of the same block

Thread Block Synchronization

• All threads in the same block can be synchronized using the CUDA runtime API:

__syncthreads() | call syncthreads()

which blocks execution until all other threads reach the same call location

NB: can be used in conditional too, but only if all thread in the block reach the same synchronization call

"... otherwise the code execution is likely to hang or produce unintended side effects"

Shared Memory - Thread Cooperation

- Threads belonging to the same block can cooperate togheter using the shared memory to share data
 - if a thread needs some data which has been already retrived by another thread in the same block, this data can be shared using the shared memory
- Typical Shared Memory usage:
 - 1. declare a buffer residing on shared memory (this buffer is per block)
 - 2. load data into shared memory buffer
 - 3. synchronize threads so to make sure all needed data is present in the buffer
 - 4. performe operation on data
 - 5. synchronize threads so all operations have been performed
 - 6. write back results to global memory

Shared Memory and Bank Accesses

- Shared memory has 32 banks organized such that 32-bit words map a banks
 - Data are distributed every 4-bytes cycling over successive banks
 - Shared memory accesses are per warp
 - Multicast: if N threads of the same warp request the same element, access is executed with only one transaction
 - Broadcast: if ALL threads of the same warp request the same element, access is executed with only one transaction
 - Bank Conflict: if two or more threads requests different data belonging to the same bank, each access is serialized

Avoid Bank Conflict

- A naive implementation of CUDA kernels using shared memory would use a tile of size 32x32 floats
 - each element resides on a single bank (4-byte)
 - data are on the same back every 32 floats
 - so read/write by columns will turn into the worst type of bank conflict
- Use a common trick: let's size the tile using 33 elements
 - now all elements belonging to the same column reside on different banks

float tile[TILE_DIM][TILE_DIM+1]; warps: warps: 0 2 31 padding 31 31 0 31 Bank 0 31 2 31 0 Bank 1 0 31 31 Bank 31

Constant Memory

- Constant Memory is the ideal place to store constant data in read-only access from all threads
 - constant memory data actually reside in the global memory, but fetched data is moved into a dedicated constant-cache
 - very efficient when all thread of a warp request the same memory address
 - Constant memory is initialized from host code using a special CUDA API
- Specifications:
 - Dimension : 64 KB
 - Throughput: 32 bits per warp every 2 clock cycles

Accessing Constant Memory

Suppose a kernel is launched using 320 warps per SM and all threads requests the same data

- if data is on global memory:
 - all warp will request the same segment from global memory
 - the first time segment is copied into L2 cache
 - if other data pass through L2, there are good chances it will be lost
 - there are good chances that data should be requested 320 times
- if data is in constant memory:
 - during first warp request, data is copied in constant-cache
 - since there is less traffic in *constant-cache*, there are good chances all other warp will find the data already in cache, so no more traffic on the BUS

Constant Memory Allocation

```
__constant__ type variable_name; // static

cudaMemcpyToSymbol(const_mem, &host_src, sizeof(type), cudaMemcpyHostToDevice);

// warning
// cannot be dynamically allocated
```

```
type, constant :: variable_name
! warning
! cannot be dynamically allocated
```

- data will reside in the constant memory address space
- has static storage duration (persists until the application ends)
- readable from all threads of a kernel

Texture Memory

- Texture Memory is a basic graphic rendering functionality
- as for constant memory, data actually reside in global memory, but is fetched across a dedicated texture-cache
- data is accessed in read-only using special CUDA API function, called texture fetch
- Specifications:
 - address resolution is more efficient since it is performed on dedicated hardware
- specialized hardware for:
 - out-of-bound address resolution
 - floating-point interpolation
 - type conversion or bit operations

Texture Memory Addressing Features

- integer 1D: [0,N-1]
- normalized 1D: [0,1-1/N]
- available interpolations:
 - floor, linear, bilinear
 - weights are 9 bit

Wrap: out-of-border coordinates are replaced in the box using modulus (available only for normalized indexing)

0 0.2 0.4 0.6 0.8

Clamp: out-of-border coordinates are clamped to nearest box bound

Steps for Accessing Texture Memory

 Allocate global memory on the device (standard, pitched or as cudaArray)

```
cudaMalloc(&d_a, memsize);
```

 Create a "texture reference" object at file scope: texture<datatype, dim> d_a_texRef; datatype cannot be a double; dim can be 1, 2 or 3

 Create a "channel descriptor" object to describe the return type of texture memory load:

```
cudaChannelFormatDesc d_a_desc = cudaCreateChannelDesc<datatype>();
```

- Bind the texture reference to memory cudaBindTexture(0, d_a_texRef, d_a, d_a_desc);
- when finished: unbind the texture reference (there is a maximum number of usable textures):

```
cudaUnbindTexture(d_a_texRef);
```


- Access data from CUDA kernels through "texture reference":
 - " tex1Dfetch(d_a_texRef, indirizzo) for linear memory
 - " tex1d(), tex2D(), tex3D() for pitched linear texture and cudaArray

Texture Usage Example

```
_global__ void shiftCopy(int N, int shift, float *odata, float *idata)
  int xid = blockIdx.x * blockDim.x + threadIdx.x;
 odata[xid] = idata[xid+shift];
texture<float, 1> texRef; // TEXTURE creation
 _global___ void textureShiftCopy(int N, int shift, float *odata)
 int xid = blockIdx.x * blockDim.x + threadIdx.x;
 odata[xid] = tex1Dfetch(texRef, xid+shift); // TEXTURE FETCHING
ShiftCopy<<<nBlocks, NUM THREADS>>>(N, shift, d out, d inp);
cudaChannelFormatDesc d_a_desc = cudaCreateChannelDesc<float>(); // CREATE DESC
cudaBindTexture(0, texRef, d_a, d_a_desc); // BIND TEXTURE MEMORY
textureShiftCopy<<<nBlocks, NUM THREADS>>>(N, shift, d out);
```


Texture Memory in Kepler: aka Read-only Cache

- Starting from Kepler architecture (cc 3.5) constant memory loads from global memory can pass thorough the texture cache:
 - without using a explicit texture binding
 - without limits on the maximum allowed number of texture

```
__global__ void kernel_copy (float *odata, float *idata) {
   int index = blockIdx.x * blockDim.x + threadIdx.x;
   odata[index] = __<mark>ldg</mark>(idata[index]);
}
```

```
__global__ void kernel_copy (float *odata, const __restrict__
float *idata) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  odata[index] = idata[index];
}
```


Registers

- Registers are used to store scalars or small array variables with frequent access by each thread
 - **Fermi**: 63 registers per thread / 32 KB
 - **Kepler**: 255 registers per thread / 64 KB
 - **Pascal**: same as Kepler

WARNING:

- Less registers a kernel needs, more blocks can be assigned to a SM
- Attention to *Register Pressure*: can be a limiting factor
- Number of registers per kernel can be limited during compile time:
- --maxregcount max_registers
- Number of active blocks per kernel can be forced using the CUDA special qualifier

```
__launch_bounds__
```

```
__global__ void
__launch_bounds__(maxThreadsPerBlock,
minBlocksPerMultiprocessor)
my_kernel( ... ) { ... }
```


Local Memory

- Local Memory does not correspond to a real physical memory place
- Automatic variables are often place in local memory by the compiler:
 - large structures or arrays that would consume too much register space
- If a kernel uses more registers than available (register spilling), can move variables into local memory
- Local memory is often mapped to global memory
 - using same *Caching* hierachies (L1 for read-only variables)
 - facing same latency and bandwidth limitation of global memory
- In order to obtain information on how much local, constant, shared memory and registers are required for each kernel, you can provide the following compiler options

--ptxas-options=-v

```
$ nvcc -arch=sm_20 -ptxas-options=-v my_kernel.cu
...
ptxas info : Used 34 registers, 60+56 bytes lmem, 44+40 bytes
smem, 20 bytes cmem[1], 12 bytes cmem[14]
...
```


Matrix-Matrix Product

limits of global memory implementation

using shared memory

implementation guidelines

Matrix Product using Global Memory

- Each thread compute one element of C, using 2N elements (N from A, N from B) and performing 2N floating-point operations (N add , N mul)
- NB: every element of C shares same row or colum retrived N times the same elements from A or B
- This implementation results in 2N³ loads !!!
- We can avoid requesting the same elements many times, sharing them through the shared memory
 - each thread can retrive just one data element data in parallel and store it into shared memory
 - when all threads have loaded needed data, they can access all the elements by the threads belonging to the same block, for example sharing a full row or column
- Unfortunatly shared memory size is small
 - 16/48 KB depending on the compute capability

Matrix Product using Shared Memory

- Let's solve the problem using blocks of (NB,NB) dimension
 - each CUDA thread block computes the elements of a single matrix block of size (NB·NB) of matrix C
 - each resulting matrix block of matrix C is obtained as the product of all sub-matrices of A and B

$$C_{ij} = \sum_{S=1}^{N/NB} \sum_{k=1}^{NB} A_{Sik} \cdot B_{Skj}$$

The kernel is divided in two phases:

- 1. threads load a block of A and B from global memory to shared memory
- 2. threads compute the element of sub-block C reading from shared memory
- Elements of each sub-block C are accumulated using local variables in registers, then stored in global memory
- Threads synchronizations are required
 - *after the load of sub-block of matrix A and B, in order to grant all data is available for sub-block matrix product
 - •after the partial sub-block matrix product, in order to grant that next load of other sub-block will not overwrites elements not yet used in current block evaluation

Matrix Product using Shared Memory: Flow

Matrix Product using Shared Memory: Kernel

```
// Matrix multiplication kernel called by MatMul_gpu()
 _global__ void MatMul_kernel (float *A, float *B, float *C, int N)
 // Shared memory used to store Asub and Bsub respectively
   shared float Asub[NB][NB];
  __shared__ float Bsub[NB][NB];
 // Block row and column
 int ib = blockIdx.y;
 int jb = blockIdx.x;
 // Thread row and column within Csub
 int it = threadIdx.y;
 int jt = threadIdx.x;
 int a offset, b offset, c offset;
 // Each thread computes one element of Csub
 // by accumulating results into Cvalue
 float Cvalue = 0:
 // Loop over all the sub-matrices of A and B that are
 // required to compute Csub
 // Multiply each pair of sub-matrices together
 // and accumulate the results
```

```
for (int kb = 0; kb < (A.width / NB); ++kb) {
  // Get the starting address of Asub and Bsub
  a_offset = get_offset (ib, kb, N);
  b_offset = get_offset (kb, jb, N);
  // Load Asub and Bsub from device memory to shared memory
  // Each thread loads one element of each sub-matrix
  Asub[it][jt] = A[a\_offset + it*N + jt];
  Bsub[it][jt] = B[b\_offset + it*N + jt];
  // Synchronize to make sure the sub-matrices are loaded
  // before starting the computation
  __syncthreads();
  // Multiply Asub and Bsub together
  for (int k = 0; k < NB; ++k) {
    Cvalue += Asub[it][k] * Bsub[k][it];
  // Synchronize to make sure that the preceding
  // computation is done
  __syncthreads();
// Get the starting address (c offset) of Csub
c_offset = get_offset (ib, jb, N);
// Each thread block computes one sub-matrix Csub of C
C[c\_offset + it*N + jt] = Cvalue;
```


Rights & Credits

These slides are CINECA 2014 and are released under the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) Creative Commons license, version 3.0.

Uses not allowed by the above license need explicit, written permission from the copyright owner. For more information see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

Slides and examples were authored by:

Isabella Baccarelli, Luca Ferraro, Sergio Orlandini

