

Bevölkerungswachstum und -abnahme*

Aufgabennummer: A_152				
Technologieeinsatz:		möglich ⊠	erforderlich	
Die Entwicklung der Einwohnerzahl eines Landes kann näherungsweise durch eine Exponentialfunktion modelliert werden.				
a)	Für Deutschland wird die Anzahl der Einwohner/innen näherungsweise durch die Funktion <i>N</i> modelliert:			
	9 9	82,5 \cdot $e^{-0,00043347 \cdot t}$ nzahl der vergangenen Jahre seit 2005 . Einwohnerzahl nach t Jahren in Millionen		
	 Interpretieren Sie die Bedeutung zusammenhang. 	g des negativen Vorzeichens de	r Hochzahl in diesem Sach-	
b)	Mit Stand 1. Jänner 2011 lebten i wächst jedes Jahr um jeweils 0,3		enschen. Die Bevölkerung	
	 Stellen Sie eine Funktionsgleich ab 1. Jänner 2011 modelliert. Berechnen Sie, für welches Kale mehr als 10 Millionen vorhersag 	enderjahr das Modell erstmals e	· ·	

^{*} ehemalige Klausuraufgabe

- c) Zwei verschiedene Modelle für die Bevölkerungsentwicklung einer Region sind im unten stehenden Diagramm dargestellt. Diese beiden Modelle prognostizieren unterschiedliche Zeitpunkte, zu denen die Bevölkerung auf 50 % des Ausgangswertes gesunken ist.
 - Kennzeichnen Sie im nachstehenden Diagramm die Zeitdifferenz zwischen diesen beiden Zeitpunkten.

- d) Beim Logarithmieren von Gleichung (1) ist ein Fehler passiert:
 - (1) $N = 8 \cdot 1,02^t$
 - (2) $ln(N) = ln(8) \cdot t \cdot ln(1,02)$
 - Stellen Sie die logarithmierte Gleichung (2) richtig.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Möglicher Lösungsweg

- a) Das negative Vorzeichen der Hochzahl hat zur Folge, dass das Modell eine Abnahme der Einwohnerzahl beschreibt.
- **b)** $A(t) = 8,402 \cdot 1,003^t$

t ... Anzahl der vergangenen Jahre seit dem 1. Jänner 2011 A(t) ... Einwohnerzahl nach t Jahren in Millionen

$$8,402 \cdot 1,003^t = 10$$

 $t \approx 58,13$

Für das Jahr 2069 prognostiziert das Modell erstmals eine Bevölkerungszahl von mehr als 10 Millionen.

c)

d) $ln(N) = ln(8) + t \cdot ln(1,02)$

Lösungsschlüssel

- a) $1 \times C$: für die richtige Interpretation
- b) 1 × A: für das richtige Aufstellen der Funktionsgleichung
 - 1 × B: für die richtige Berechnung des Kalenderjahrs
- c) 1 x C: für das richtige Kennzeichnen der Zeitdifferenz
- d) 1 x B: für das Richtigstellen der logarithmierten Gleichung (2)