

Design of Analog and Mixed-Signal Integrated Circuits B-KUL-H05E3A

Simulation Demo's STB, PSS+PNOISE, PAC

Alberto Gatti, Rico J. Maestro, Jun Feng, Shuangmu Li, Prayag J. Wakale Prof. Filip Tavernier

Departement Elektrotechniek (ESAT)

Overview

- These slides show how to setup simulations for
 - 1. Stability → STB simulation
 - 2. Noise → PSS + PNOISE simulation
 - 3. Accuracy → PAC simulation
- We also provide some demo's so you can try for yourself

Note: we skip basic transient and AC simulations, these are crucial for stability and accuracy simulations though! See syllabus appendix, if needed

STABILITY LOOP GAIN SIMULATION SETUP AND DEMO

Stability simulation: what's needed?

- An STB analysis assumes a single operating point
 - "Steady-state solution"

So, you must force your switch-cap system in a single state first

- In this system, you should force it into the sample phase
 - Hardest to get stable (unity feedback)
 - Also, the other phase doesn't bias the input of the OTA in steady-state...

Modifying the testbench for STB

- Copy the standard transient testbench
- Modify to force the sampling phase
- 3. Make the differential input 0V too, since this is not an AC or transient simulation

diffstbprobe

- You also need to insert a "diffstbprobe"
 - Differential stability probe

In this example, we have an ideal 2-pole OTA which doesn't have common-mode feedback. There's only one differential feedback loop.

Modifying the testbench for STB

- Easiest location here:output of the OTA
- In the future you will have multiple feedback loops, resulting in multiple options

Simulation setup

- 1. Launch new) ADE Explorer view
- Add analysis: choose "stb" and pick a frequency sweep (to get bode plot of loop gain)
- 3. "Probe Instance" = the diffstbprobe you inserted
- 4. Local Ground Name = /gnd!
- 5. Finish setting up design variables → run!

Plotting STB's result

- In ADE: Results > Direct Plot > Main
 Form ...
- You can plot either Loop Gain bode plot, or just print the Stability Summary
- 3. Check "Add To Outputs" to push the expression to ADE, so you can re-use ©
 - You could do the same for Phase Margin or Gain Margin options of the Direct Plot Form

Demo 1: "demo_SCAMPLIFIER_STB_TB"

- We've modified the testbench schematic as described
- We've replaced the idealOTA by a 2-pole idealOTA
 - It has an extra gm-C stage, where gm = 1 and C = CP2 (variable)
 - So, an extra pole will be placed at roughly $1/(2\pi^*CP2)$
- The maestro view is already setup with design variables and a second pole that is close to the dominant unity-gain frequency
 - What is the phase margin?
 - Could you place the same OTA in a transient to see the predicted instability?

Demo 1 example

PSS + PNOISE SIMULATION SETUP AND DEMO

PSS simulation and setup (1)

- Periodic steady state analysis
- It computes the steady states vs. time in your circuit within one period
 (normal AC sim = just one steady state)

- To keep simulation time low, we disable the input sine wave in the schematic → the "period" will be limited by the clock
 - Trade-off for accuracy, generally OK for this kind of design in DAMSIC
 - You can set the input sine wave frequency to 0 Hz, Cadence treats it as DC source then

PSS setup (2)

- 1. Add PSS analysis
- 2. Shooting engine
- 3. Beat Frequency:
 - It's the period in which PSS perform analysis
 - Set equal to clock frequency variable
 - Or: Auto Calculate (will be same result)

PSS setup (3)

- Make number of harmonics into
 100's (trade-off with accuracy)
 - It sets the f_{MAX} considered by PSS
 - Above a certain amount, it will make no difference anymore (no extra noise)
 - Usually, 200 is good enough
- 2. Transient: decide automatically
 - Helps PSS to converge

PNOISE simulation

- Periodic noise analysis
- It uses the steady-states computed by PSS to find either:
 - A time-average noise spectrum at the output, OR
 - Noise spectrum at the output at specific times
- We want the latter (i.e. after amplification phase)

We integrate the noise spectrum to obtain the RMS noise voltage

PNOISE setup (1)

- PSS Beat Frequency is obtained from PSS sim. setup of the same ADE test
- 2. Set frequency sweep range (for the noise PSD) up to f_s/2!
 - In this example, 500K = 1M/2
 - Tip: you could also write in the Stop field VAR("F_CLK")/2, if you have such a variable F_CLK

PNOISE setup (2)

- 1. Method = fullspectrum
 - To make sure you fold all the noise in
 - Keep maximum sidebands empty
- 2. Noise Type = sampled (jitter)
 - We need PSD at specific time!

PNOISE setup (3)

- 1. You will need to set sampling events:
 - Timing Event = Sampled Phase
 - Then select and positive and negative output node
 - Don't use a balun to measure differential noise (buggy)! Select the two diff. nodes of interest
 - Select no. samples per period and/or specific point in time (of the PSS result) where you want the PSD from (re-run later if the timing is off)
- 2. Then press "Add"! The event must be added to the list now
- 3. If you ever change the settings (e.g. samples per period), you **must** press "Change"!

Plotting PSS results

- As usual, in ADE use ResultsDirect Plot > Main Form ..
- PSS form: plotting a voltage
 vs. time (in a single period) is
 usually what you do
- Check "Add To Outputs" to add the expression to ADE for future simulations ©

Can also select a differential net if you want!

Plotting PNOISE results

Noise Spectrum

Integrated Noise

Demo 2: "demo_TH_NOISE_TB"

- Differential T/H withtransistors →
- Total sampleddifferential noisepower should be2kT/C

Demo 2: Setup

- We've set the sampling cap to 1 pF on each side
 - NMOS multiplier = 1, f_{CLK} = 10 MHz ⇔ shouldn't matter much
 - Expected single-ended RMS noise voltage is sqrt(kT/C) = 64 uV_{RMS}
 - Expected differential RMS noise voltage is sqrt(2kT/C) = 90.5 uV_{RMS}

- PSS, PNOISE are setup properly
- Setup and results are on next slides

Demo 2: Setup

Differential and single-ended measurements

Demo 3: "demo_SCAmplifier_PNOISE_TB"

- To showcase how you would simulate noise in your DAMSIC project. Setup is very similar to demo 2!
- Important notes (see ADE):
 - Made fin = 0, Vin = 0 (via design variables)
 - Output baluns are disable in the schematic (else PNOISE becomes buggy)
 - Switching frequency is 70 MHz, so PNOISE and integral up to 35 MHz

Demo 3: setup

Demo 3: results

PSS + PAC SIMULATION SETUP AND DEMO

Static settling error \Leftrightarrow PAC

- PAC = periodic AC simulation
- It's a way to find your switched-cap amplifier's AC response

- PAC uses PSS to see the average voltage gain at the output ©
 - remember, normal AC sim. considers only one steady state
- you can check the DC-gain of the switched-cap.
 ⇔ static settling error!
 - PAC = alternative to long-duration transient simulation

Demo 4: "demo_SCAmplifier_PAC_TB"

Almost same setup as demo 3, now PSS + PAC

Schematic:

Input source must have a PACmagnitude now (equal to 1)

ADE:

- Lower switching frequency to ~100k, you are interested in low-f effects
- Enable PAC simulation (see setup on next slide) → sidebands = 0!

Demo 4: schematic setup

PAC setup + plotting (Direct Plot Form)

Demo 4: results

