Div		Tut	Roll					
			no					

PH108: Electricity & Magnetism Weekly Quiz 3 - Using the Dirac Delta Function

7 February, 2018

Instructions: Read these before beginning!

- 1) Fill out the details carefully & correctly, else the quiz will NOT fetch you marks or attendance.
- 2) You have **5 min** to fill all the answer(s) at the specified location(s), for a total of **1 mark**.
- 3) There will be NO partial marking. Only answer(s) at specified location(s) will be considered.
- 4) Any sort of malpractice will be strongly penalised!

All the Best!

Use the backside for rough work.

Question

Let's try to find out the VOLUME charge density of a uniformly charged thin disk of radius R and surface charge density σ , placed in the X-Y plane, in spherical polar co-ordinates.

We can directly eliminate any ϕ dependence (due to symmetry of the scenario).

So,
$$\rho(\mathbf{r}) = \sigma f(r)g(\theta)$$
 for $\mathbf{r} \in [0, r]$. Find $g(\theta)$. [Hint: X-Y plane!]

$$g(\theta) =$$
 [$\frac{1}{2}$ mark]

Now, using the form of $\rho(\mathbf{r})$ supplied and $g(\theta)$, find f(r).

Hint 1: You can use dimensional analysis... (dimension of Dirac Delta of the form $\delta(x)$ is x^{-1})

Hint 2: $\int_{disk} \rho(\mathbf{r})dV = \text{total charge on the disk.}$

$$f(r) =$$
 [$\frac{1}{2}$ mark]

————Question Ends Here

P.S.: For more information, read about 'Charge densities and the Dirac Delta function'.