Section 2: Module 2 – Transforming Commands for Visualizations

Module Overview

This module focuses on **turning raw data into useful charts and tables** for reporting and dashboards using Splunk's transforming commands.

9. Visualization Data Structures

Transforming commands are used to reshape event data. The core structure includes:

- **Single-Series Tables**: One metric field (e.g., count by source)
- **Multi-Series Tables**: More than one metric across categories (e.g., average response time by host and status)

10. Types of Visualizations

- Tables: Basic output from stats, chart, timechart
- Charts:
 - o Column/Bar Charts for comparisons
 - o Line/Area Charts for trends over time
 - o **Pie Charts** for proportions
 - Scatter/Bubble for relationships

11. Statistics Tables

Command:

spl

| stats count by status

This returns a simple key-value summary table.

• 12. The chart Command - Single Series

Syntax:

spl

| chart count by source

- Shows the count per source.
- Good for pie/column chart visualizations.

13. The chart Command – Multi-Series

Syntax:

spl

| chart avg(bytes) over status by host

This creates a multi-series matrix (hosts on x-axis, status on y-axis, avg(bytes) as values).

◆ 14. The timechart Command - Single Series

Syntax:

spl

| timechart count

- Automatically bins by time.
- Produces line charts (by default).

• 15. The timechart Command – Multi-Series

Syntax:

spl

| timechart avg(cpu_usage) by host

• Each host becomes a separate line in the chart.

• 16. Scatter & Bubble Charts

Use when comparing:

• 2 metrics: Scatter

• 3 metrics: Bubble (third metric as size)

Example:

spl

| stats avg(speed) as Speed, avg(size) as Size by host Then use scatter/bubble chart in the Visualization tab.

• 17. Formatting Statistics Tables

Options include:

- Decimal formatting
- Renaming fields
- Rounding
- Use eval or fieldformat:

spl

| eval speed=round(speed,2)

• 18. Formatting Visualizations

You can configure:

- Axis names
- Legend position
- Color schemes
- Threshold indicators (on single value viz)

Quiz 1: Transforming Commands for Visualizations

Exam Tips:

- chart, timechart, stats, eventstats all can be used with transaction.
- Use stats when grouping by fields, transaction when grouping by session boundaries.
- timechart automatically bins _time.

Section 3: Module 3 – Advanced Visualizations

19. Module Overview

This module teaches **custom visualizations** to improve user dashboards.

20. Single Value Visualizations

Best for KPIs like:

spl

| stats count

- Can include trend indicators, colors.
- Use thresholds to indicate performance (green/yellow/red).

• 21. Maps

Use with fields like lat and lon.

Command:

spl

| inputlookup cities.csv | geostats latfield=latitude longfield=longitude count Enables plotting data on geographic maps.

22. Creating a Trendline

Use trendline command:

spl

| trendline sma5(count) as TrendCount

• sma = simple moving average over 5 time bins.

Quiz 2: Advanced Visualizations

Exam Tips:

- Use geostats to visualize geographic data.
- sma = Simple Moving Average.
- Single value with sparkline helps show both metric and trend.

Section 4: Module 4 – Filtering & Formatting Results

23. Module Overview

This module teaches how to clean, transform, and control output using commands like eval, if, case.

• 24. Using the eval Command

Syntax:

spl

| eval status_type=if(status==200, "Success", "Failure")

Used for new fields and calculations.

25. Calculating Fields

Example:

spl

| eval total=price * quantity

• 26. Rounding Field Values - round() Function

Syntax:

spl

| eval value=round(value,2)

• 27. Converting Fields – tostring() Function

Used to convert numeric to string:

| eval value=tostring(value, "commas")

28. String Concatenation

spl

| eval fullname=firstname . " " . lastname

• 29. The eval Function (Detailed)

Can be used with:

- Mathematical expressions
- String manipulation
- Conditional logic (if, case)

• 30. The if() Function

spl

| eval status_type=if(status==404, "Error", "OK")

• 31. The case() Function

spl

| eval severity=case(status==200,"OK",status==404,"Not Found",1==1,"Other")

• 32. The fillnull Command

Used to fill missing values:

spl

| fillnull value="N/A"

33. Filtering Search Results – search Command

Used after a pipeline:

spl

... | search status=200

• 34. Filtering Search Results - where Command

Used for conditional filters:

spl

... | where price > 100

✓ Quiz 3: Filtering & Formatting Results

Exam Tips:

- Use if() for binary condition; case() for multiple.
- where works only on transformed results.
- Use fillnull for cleaner tables.

Section 5: Module 5 – Correlating Events

35. Module Overview

Provides a conceptual foundation of correlating events across different logs using SPL (Search Processing Language).

36. Correlating Events – Overview

- **Event Correlation**: Tying together events from multiple sources to tell a complete story (e.g., login and logout actions).
- Common need in security, IT operations, and compliance audits.

37. The transaction Command

- Groups events that share the same field values and occurred within a specific timeframe.
- Syntax:

las

transaction user maxspan=30m

- user = grouping field
- o maxspan=30m = total time window of the transaction
- Options:
 - o startswith= / endswith= delimit the start and end conditions.
 - o maxevents = max events allowed per transaction (default is 1000).
 - o maxpause = time gap allowed between successive events.

Use Case: Detecting when a user logs in but doesn't log out.

38. Filtering Transactions

• Add filters after transaction to refine:

spl

transaction user startswith="login" endswith="logout" | search duration > 300

39. Transaction Constraints

- Limitations:
 - Slower in large environments.
 - Limited to 1000 events per transaction.
 - Memory-intensive.

40. Report on Transactions

Extract metadata:

spl

transaction user startswith="login" endswith="logout" | stats avg(duration), count by user

41. transaction vs stats

Feature transaction stats

Performance Slower, memory-heavy Fast and scalable

Use Case Start-End correlation Field-based aggregations

Syntax transaction command stats count by field Example login-logout session detection total logins per user

Exam Tips:

- Use transaction when event start and end must be captured, e.g., login to logout.
- Prefer stats in large datasets for efficiency.
- **Default limit = 1000 events** per transaction.

Section 6: Module 6 - Creating & Managing Fields

42. Module Overview

Focus on how Splunk identifies, extracts, and manages fields.

43. Overview of Knowledge Objects

- Reusable objects (e.g., tags, fields, macros) created during search and shared with users.
- Field extractions are a major type.

44. Why Extract Fields from Data?

- Makes unstructured data queryable.
- Allows you to create dashboards and alerts based on new fields.

45. Structured vs Unstructured Data

Data Type Example Field Extraction

Structured JSON, XML Automatic

Unstructured Logs, free-text Manual/Regex

46. Field Discovery (Auto-Extraction)

- Splunk automatically extracts fields at index time and search time.
- Visible in the Fields Sidebar of the Search UI.

47. Field Extractions with Knowledge Objects

- Created manually in Splunk Web:
 - Settings → Fields → Field Extractions
 - Use regex or delimiters.

48. Delimiter Field Extractions

• Use when log data is CSV-like:

spl

| rex field=_raw "^(?<field1>\w+), (?<field2>\d+), (?<field3>\w+)"

49. RegEx Field Extractions

RegEx is flexible and powerful:

spl

| rex "user=(?<username>\w+)"

50. Modify RegEx Expressions

- Test in Splunk field extractor GUI.
- Use named capture groups (?<fieldname>) to name fields.

Exam Tips:

- Use auto-extraction when fields are predictable.
- For **complex logs**, use **rex** or field extractor tool.
- Search-time field extraction is lighter and flexible.

Section 7: Module 7 - Creating Field Aliases & Calculated Fields

51. Module Overview

Focuses on **normalizing fields** without modifying raw data.

52. What is a Field Alias?

- Alternate name for an existing field.
- Useful when different sourcetypes use different field names for the same thing.
- Example:

spl

host = server1 OR hostname = server1

53. Creating Field Aliases

Go to:

Settings → Fields → Field Aliases

- Define:
 - Original field
 - Alias name
 - Applicable sourcetype

54. What is a Calculated Field?

- Field created dynamically using an expression (eval).
- Does not exist in raw data.

55. Creating Calculated Fields

Go to:

Settings → Fields → Calculated Fields

Syntax Example:

spl

eval total_bytes = bytes_in + bytes_out

Exam Tips:

- Use **field aliases** for consistent reporting across sourcetypes.
- Use calculated fields to derive new values like totals or status flags.
- Both are search-time knowledge objects.

Section 8: Module 8 - Creating Tags & Event Types

56. Module Overview

Organize and categorize your data for better usability and faster searching.

57. What are Tags?

- Labels that describe fields or field values.
- Help with grouping for **compliance**, **reporting**, or **visuals**.

58. Creating Tags

Go to:

Settings → Fields → Tags

- Select:
 - Field value
 - Assign a tag name.

59. Managing Tags

- View, edit, and delete via Tag Manager.
- Tags are stored as knowledge objects.

60. What are Event Types?

- A saved search with a label.
- Group related events under a name.

61. Creating Event Types

Use:

spl

sourcetype=access_combined status=404

Then save as event type: error_404

62. Tagging Event Types

• Tags can be applied to event types, making them easy to search.

63. Event Types vs Saved Reports

Feature Event Type Saved Report

Purpose Classification of events Store and share results

Editable Yes Yes Scheduling No Yes

Exam Tips:

- Tags enhance metadata.
- Event types are often used in dashboards and alerts.
- Tag + Event Type is a common **SIEM practice**.

Section 9: Module 9 - Creating & Using Macros

64. Module Overview

Allows you to **reuse SPL** using parameterized logic.

65. What is a Macro?

- A **search fragment** stored as a reusable object.
- Stored in: macros.conf

66. Creating a Basic Macro

Create via:

Settings → Advanced Search → Search Macros

Syntax Example:

spl

`failed_logins`

Macro:

spl

sourcetype=secure action=failure

67. Creating a Macro with Arguments

Macros can accept parameters:

spl

`bytes_macro(host)`

Definition:

spl

host=\$host\$

68. Validating Macro Arguments

- Use isnum(), isstr() to validate.
- Helps prevent injection/mistakes.

Exam Tips:

• Macros simplify long searches.

- Use arguments for flexibility.
- Enclose macros in backticks: `macro_name`

Section 10: Module 10 - Creating & Using Workflow Actions

69. Module Overview

Workflow actions allow users to interact with search results by drilling into external or internal Splunk resources (like lookups, dashboards, or websites).

70. What is a Workflow Action?

- A workflow action is a **contextual action** linked to a field in your search result.
- Use it to:
 - Open related dashboards.
 - Trigger a secondary search.
 - Redirect to an external tool with the value.

71. Creating a GET Workflow Action

- **GET** appends field values to a URL query string.
- Example: Link IPs in logs to VirusTotal.

Steps:

- Go to: Settings → Fields → Workflow Actions → Add new
- Action type: link
- Link method: GET
- Example:

ruby

https://www.virustotal.com/gui/ip-address/\$ip\$

72. Creating a POST Workflow Action

- Sends field values to another server via HTTP POST.
- Used for:
 - Logging
 - Ticketing systems (like JIRA, ServiceNow)

Steps:

- · Action type: link
- Link method: POST
- Provide key-value pairs of fields.

73. Creating a Search Workflow Action

- Launches another search using a field.
- Example:

ini

index=firewall src_ip="\$src_ip\$"

Tip: Use quotes to prevent query issues with special characters.

Exam Tips:

• **GET** = Used for **URL-based** lookups (ex: open VirusTotal).

- POST = Used for form submissions or ticketing.
- Use workflow actions for analyst interactivity within Splunk.

Section 11: Module 11 - Creating Data Models

74. Module Overview

Data Models are structured representations of your raw data, optimized for Pivot use and acceleration.

75. What is a Data Model?

- A hierarchical mapping of data for reporting and visualization.
- Backbone of Pivot and Data Model Acceleration (DMA).
- Stored in datamodels.conf.

76. Creating a Data Model

- Go to: Settings → Data Models → New
- Define:
 - o Title
 - o App
 - o Root dataset type: **event**, **search**, or **transaction**

77. Adding Fields to a Data Model – Auto-Extracted

- Fields that Splunk identifies during search time are added directly.
- Appears automatically in Pivot.

78. Adding Fields via Eval Expressions

- Use eval expressions to define fields.
- Example:

spl

eval severity=if(status>=400, "High", "Low")

79. Adding Fields via Lookup

- Leverages lookup table to enrich dataset.
- Example: Add geo info via ip_location.csv.

80. Adding Fields via Regular Expression

- Add field extraction via regex.
- Pattern Example:

ini

user=(?<username>\w+)

81. Adding Fields via GeoIP

• Auto-enrich data using geolocation fields (like country, city, longitude).

82. Adding a Root Transaction Dataset

• Base dataset built with a transaction definition.

Useful when events must be grouped logically (login → logout).

83. Adding Child Datasets

- Add datasets under the root (to organize by action, category).
- Inherit root filters and structure.

84. Using Pivot Tool

- Pivot lets **non-technical users** generate reports using drag-drop.
- Works only with accelerated or fully defined data models.

85. Data Model Permissions & Acceleration

- Enable DMA for faster queries.
- **Permissions** define who can edit or view data models.

86. Download & Upload Data Models

- Export to JSON.
- Use to migrate between environments.

Exam Tips:

- Data models are required for Pivot.
- Root dataset can be event, search, or transaction.
- Use **DMA** (Data Model Acceleration) for fast reports.

Section 12: Module 12 - Using the Common Information Model (CIM) Add-On

87. Module Overview

CIM provides a **standardized naming scheme** across all data types in Splunk (e.g., authentication, network, email).

88. What is Splunk CIM?

- A data normalization framework.
- Required for:
 - Splunk Enterprise Security
 - Unified dashboards
 - CIM-compliant apps

89. Splunk CIM Data Models

- Bundled with predefined data models like:
 - Authentication
 - Network Traffic
 - Endpoint

90. Installing Splunk CIM Add-On

- App name: Splunk Common Information Model (CIM)
- Install via Splunkbase.
- Available for free.

- 91. Using CIM Add-On Create Tags
 - Tags link raw events to **CIM-compliant fields**.
 - Example:
 - Tag action=login to tag=authentication

92. Using CIM Add-On – Create Aliases

- Use **field aliases** to map raw field names to CIM ones.
- Example:
 - o src_ip → src

93. Using CIM Add-On - Create Missing Fields

- Create eval or calculated fields to match CIM needs.
- Example:

spl

eval src=coalesce(src_ip, ip)

94. Validating Against Data Model

• Use datamodel command:

spl

| datamodel Authentication Authentication search

Ensures your events match required structure.

Exam Tips:

- CIM is mandatory for Splunk Enterprise Security.
- Use tags, aliases, and calculated fields to normalize data.
- Validate using Pivot or | datamodel SPL.

Section 13: Practice Tests

95. Practice Test 1: Splunk Core Certified Power User Practice Test I

- 50 scenario-based MCQs
- Includes:
 - o SPL command usage
 - o Field extractions
 - Search optimizations

96. Practice Test 2: Splunk Core Certified Power User Practice Test II

- Additional 50 questions
- Focus on:
 - Workflow Actions
 - Knowledge objects
 - o CIM-related applications

Final Exam Tips:

• Focus on **command behavior** and when to use stats, transaction, eval.

• Be fluent in:

- o Search vs. index time
- o Permissions and knowledge object scope
- o Naming conventions in CIM