XXXIV International Mathematical Olympiad 1993 - Problema 3

En un tablero de ajedrez infinito se juega de la siguiente manera: Hay n^2 piezas que están dispuestas en un cuadrado de $n \times n$, una pieza en cada cuadro. Un movimiento en el juego es un salto en una dirección horizontal o vertical sobre un cuadro ocupado adyacente a un cuadro desocupado inmediatamente más allá. La pieza que se ha saltado se quita del tablero. Encuentra los valores de n para los que el juego puede terminar con una sola pieza.

Solución.

Primero vamos a demostrar que cuando n es múltiplo de 3, no se puede hacer lo que pide el problema: Supongamos que si se puede y hagamos la siguiente coloración:

 0	1	2	0	
 1	2	0	1	
 2	0	1	2	
 0	1	2	0	

Con n = 3k y $k \in \mathbb{Z}^+$, sean s_0 , s_1 y s_2 la cantidad de cuadros con piezas y que estén coloreados con 0, 1 y 2, respectivamente. Inicialmente, $s_0 = s_1 = s_2 = k$, por lo que tienen la misma paridad. Al hacer un movimiento alguno de s_0 , s_1 y s_2 aumenta en uno y los otros dos se reducen en uno, por lo que su paridad se sigue manteniendo, pero para que se cumpla lo del problema el juego debe terminar con alguno de s_0 , s_1 y s_2 con valor de uno y los demás cero!!.

 \therefore Cuando n es múltiplo de 3, no se puede hacer lo que pide el problema.

Ahora vamos a demostrar que si n no es múltiplo de 3, se puede hacer lo que pide el problema. Primero vemos que con n = 1 es posible lo que pide el problema (trivial) y con n = 2 también:

Observemos que en un rectángulo de 3x2 o de 2x3 se pueden quitar 3 fichas adyacentes horizontal o verticalmente:

Veamos que estos movimientos se pueden aplicar en el caso de n=5 y n=4 para llegar a los casos de n=1 y n=2, respectivamente, los cuales ya sabemos cómo se resuelven (cada subrectángulo marcado de 3x1 o 1x3 se quitará con la técnica planteada anteriormente):

Usando una idea análoga para los demás números no múltiplos de 3, se obtiene que del caso n=3k+1 se puede ir al 3(k-1)+2 o del caso n=3k+2 se puede ir al 3(k-1)+1 y así sucesivamente hasta llegar al caso de 1 ó 2, que ya se sabe que se pueden resolver.

 \therefore Cuando n no es múltiplo de 3, se puede hacer lo que pide el problema.

 \therefore Queda demostrado que cuando n no es múltiplo de 3 el juego puede terminar con una sola pieza.