

Base de dados Relatório do Trabalho Prático

Base de dados Jardim Zoológico 3°semestre 2016/2017

Docente: Irene Rodrigues

Alunos: João Dias nº 35476

Eduardo Romão nº 35477

Introdução

No âmbito da unidade curricular de Base de dados, incorporada no programa de Licenciatura em Engenharia Informática, segundo ano, semestre ímpar, foi-nos pedido que elaborássemos um trabalho prático como instrumento de avaliação. Este trabalho consiste na criação de uma base de dados que armazene toda a informação de um jardim zoológico.

Diagrama Entidades-Relação.

Tabelas modelo E-R.

Funcionário (nif, nome, dataf)

Funcionário_telefone (nif, telefone)

Funcionário_responsavel (nif, responsável)

Administrativo (nif)

Tratador (nif)

Auxiliar (nif)

Veterinário (nif)

Animais (registo, nome, sexo, nif, espécie, local_habitat)

Classificação (espécie, família, ordem, classe)

Cativeiro (registo, data_nascimento, registo_mae, registo_pai)

Capturado (<u>registo</u>, local_captura, data_nascimento, data_captura)

Habitat (local_habitat, atmosfera, área)

Consulta (nif, data_hora, local_consulta, registo)

Tratamento (nif, data_hora, local_consulta, tratamento_O)

Diagnostico (nif, data_hora, local_consulta, diagonostico_O)

Auxiliar habitat (local habitat, nif)

Dependências funcionais.

- Animal → tratador = registo, nome, sexo, especie, nif, local_habitat
 → nif, registo
- Espécie → família
- Família →ordem
- Ordem →classe
- Registo \rightarrow nome, sexo
- Animal → classificação = registo, nome, sexo, especie, nif, local habitat → ordem, classe, espécie, família
- Consulta → veterinário = data_hora, local_consulta → nif, data_hora, local_consulta
- Capturado → animal = registo, local_captura, data_nascimento, data_captura → registo, nome, sexo
- Cativeiro → animal = registo, data_nascimento → registo, nome, sexo
- Cativeiro → cativeiro_mae = registo, data_nascimento → registo, registo_mae
- Cativeiro → cativeiro_pai = registo, data_nascimento → registo, registo_pai
- Tratamento → consulta = data_hora, local_consulta, tratamento_o → data_hora, local_consulta
- Diagonostico → consulta = data_hora, local_consulta, diagonostico_o → data_hora, local_consulta
- Animal → habitat = registo, nome, sexo →local _habitat, atmosfera, área
- Consulta → animal = data_hora, local_consulta → registo, nome, sexo

Cobertura canónica.

Junção de todos os lados esquerdos das dependências

Registo, nome, sexo → nif, registo, ordem, classe, espécie, família, local habitat, atmosfera, área

Espécie → familia

Família → ordem

Ordem → classe

Registo \rightarrow nome, sexo

Data_hora, local_consulta → nif, data_hora, local_consulta, registo, nome, sexo

Registo, local_captura, data_nascimento, data_captura → registo, nome sexo

Registo, data_nascimento → registo, registo_mae, registo_pai

Data_hora, local_consulta, tratamento_O → data_hora,

local_consulta

Data_hora, local_consulta, diagonostico_O →data_hora, local_consulta

Atributos extra lado direito

Registo → nif, espécie, local_habitat, atmosfera, área

Data_hora, local_consulta→nif, registo

local_captura, data_nascimento(captura), data_captura → registo data_nascimento(cativeiro) → registo, registo_mae, registo_pai

Cobertura final

Registo → nif, espécie, local_habitat, atmosfera, área

Espécie → familia

Família →ordem

Ordem →classe

Registo →nome, sexo

Data_hora, local_consulta →nif, registo

local_captura, data_nascimento(captura), data_captura → registo data_nascimento(cativeiro) → registo, registo_mae, registo_pai

Data_hora, local_consulta, tratamento_O →data_hora,

local_consulta

Data_hora, local_consulta, diagonostico_O →data_hora, local_consulta

Base de dados na forma normal de Boyce Codd.

Podemos concluir que esta base de dados já está na forma normal de Boyce Codd gráças às dependencias nela contida.

Relembramos que para a base de dados estar na forma normal de Boyce Codd todas as suas tabelas (relações) têm de estar na respetiva forma normal. Para isso todas as dependencias dessas mesmas tabelas tem de ser trivias ou o fecho do lado esquerdo tem de ser superchave.

Como as dependencias que temos estão todas contidas em mais que uma relação em simultaneo nunca podemos fazer o fecho de modo a obtermos uma superchave de uma só tabela, por isso concluimos que já esta na forma normal de Boyce Codd.

Base de dados na 3ª forma normal.

Como a base de dados preserva as dependências não precisamos de colocar na 3ª formal normal.

Exercício 7

Chaves primarias, candidatas e estrangeiras de cada relação.

Relações	Chaves Primárias	Chaves Candidatas	Chaves Estrangeiras
Funcionario	Nif	Nif, nome, dataf	-/-
Funcionario_telefone	Nif, telefone	Nif, telefone	Nif
Funcionario_responsavel	Nif	Nif, responsavel	Nif
Administrativo	Nif	Nif	Nif
Tratador	Nif	Nif	Nif
Auxiliar	Nif	Nif	Nif
Veterinário	Nif	Nif	Nif
Animais	Registo	Registo, Nif	Nif, especie, loca_habitat
Classificação	espécie	especie	-/-
Cativeiro	Registo	Registo, data_nascimento	Registo, registo_mae, registo_pai
Capturado	Registo	Registo	registo
Habitat	local_habitat	local_habitat	-/-
Consulta	Nif, data_hora	Nif, data_hora	Nif, registo
Tratamento	Nif, data_hora	Nif, data_hora	Nif
Diagonostico	Nif, data_hora	Nif, data_hora	Nif
Auxiliar_habitat	local_habitat, Nif	local_habitat, Nif	Local_habitat, Nif

Comandos SQL para a criação de tabelas.

Ficheiro em anexo Zoo_tabelas.sql

Expressões SQL para inserir informação na base de dados.

Ficheiro em anexo Zoo_insert.sql

(a) Em que locais do zoo se podem visitar aves?

• SQL:

select distinct(Local_habitat)
from classificacao natural inner join animais
where Classe='Aves';

(b) Em que locais do zoo não há carnívoros?

• SQL:

(c) <u>Indique os irmãos da Kilu (inclusive meios irmaos).</u>

• SQL:

(d) Indique os telefones do tratador responsável pela Kata

• SQL:

select Telefone

from animais natural inner join tratador,

funcionario natural inner join funcionario_telefone where tratador.Nif=funcionario.Nif and animais.Nome='Kata';

- (e) <u>Indique os telefones do responsável pelo auxiliar responsável pelo local</u> onde está a Kata.
 - SQL:

select telefone

from funcionario_telefone

where funcionario_telefone.nif = (select responsavel

from animais natural inner join habitat natural inner join

funcionario_responsavel

where animais.nome='Kata' and animais.nif =

funcionario_responsavel.nif);

- (f) <u>Indique os tratamentos (data e tratamento) que a Mali já fez no zoo.</u>
 - SQL:

select tratamento.data_hora, tratamento_O from animais ,consulta natural inner join tratamento where animais.Registo = consulta.Registo and animais.Nome='Mali';

- (g) <u>Indique os nomes dos veterinários que já diagnosticaram uma gravidez</u> a um carnívoro.
 - SQL:

select funcionario.Nome from classificacao natural inner join animais, consulta natural inner join diagnostico natural inner join veternario, funcionario where animais.Registo = consulta.Registo and Diagnostico_O='Grávida' and ordem='Carnivoros' and veternario.Nif=funcionario.Nif;

- (h) <u>Indique para cada família da ordem artiodáctilos quantos animais tem o zoo.</u>
 - SQL:

select familia, count(Registo) from classificacao natural inner join animais where ordem='Artiodáctilos' group by familia; (i) <u>Indique para cada espécie quais os pares de animais que podem ser acasalados, sabendo que não se devem acasalar pais com filhos ou irmãos.</u>

• SQL:

(select A.Nome, B.Nome

from animais as A, animais as B natural inner join cativeiro as C

where A.Registo!=B.Registo and A.Especie=B.Especie and A.Registo!=C.Registo_mae and

A.Registo!=C.Registo_pai and A.Sexo!=B.Sexo)

union

(select A.Nome, B.Nome

from animais as A, animais as B

where A.Registo!=B.Registo and A.Especie=B.Especie and A.Sexo!=B.Sexo)

- (j) Qual é a ordem com mais animais no zoo?
 - SQL:

select Ordem

from (select Ordem, count(Registo) as N from classificacao natural inner join animais group by Ordem) as tab1,

(select max(tab2.N) as M
from (select Ordem, count(Registo) as N
from classificacao natural inner join animais
group by Ordem) as tab2)as tab3
where tab1.N = tab3.M;

- (k) Qual é a ordem dos animais que tem mais de 5 consultas por ano (diagnóstico ou tratamento).
 - SQL:

```
select Ordem
```

```
from (select Ordem, count(Data_hora) as N from classificacao natural inner join animais, consulta where animais.Registo = consulta.Registo group by Ordem) as tab where tab.N>5;
```

- (1) Indique o numero de animais nascidos em cativeiro.
 - SQL:

```
select count(Data_nascimento)
from cativeiro;
```

- (m) Qual é o animal (nome e espécie) mais velho do zoo?
 - SQL:

(n) Qual é o local húmido com mais mamíferos?

• SQL:

select Local_habitat

from(select Local_habitat, count(Registo) as C

from habitat natural inner join animais natural inner join classificação

where Atmosfera='Quente e húmida' and classificacao.classe = 'Mamiferos'

group by Local_habitat) as tab,

(select max(tab2.C) as M

from(select Local_habitat, count(Registo) as C

from habitat natural inner join animais natural inner join classificação

where Atmosfera='Quente e húmida' and classificacao.classe = 'Mamiferos'

group by Local_habitat) as tab2)as tab3 where tab.C=tab3.M;

- (o) <u>Para cada tratador indique o número de mamíferos por que é</u> responsável?
 - SQL:

select funcionario.Nome, count(Registo)

from classificacao natural inner join animais natural inner join tratador, funcionario

where Classe='Mamiferos' and tratador.Nif=funcionario.Nif group by funcionario.Nome;

- (p) <u>Indique o nome dos animais que já foram tratados por todos os veterinários?</u>
 - SQL:

select Nome
from (select count(Nif) as C
from veternario) as tab,
 (select consulta.Registo, count(distinct(consulta.Nif)) as N
from animais, consulta
 where animais.Registo = consulta.Registo
 group by consulta.Registo) as tab2, animais
where tab.C=tab2.N and animais.Registo=tab2.Registo;