

(B) BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

- (1) Offenlegungsschrift
- [®] DE 199 11 775 A 1

(5) Int. Cl.⁷: **A 61 K 7/40** A 61 K 7/48

② Aktenzeichen:

199 11 775.6

2 Anmeldetag:

17. 3. 1999

(3) Offenlegungstag:

3. 2.2000

(66) Innere Priorität:

198 34 817. 7

01.08.1998

(7) Anmelder:

Merck Patent GmbH, 64293 Darmstadt, DE

(72) Erfinder:

Bünger, Joachim, Dr., 64823 Groß-Umstadt, DE; Driller, Hans-Jürgen, Dr., 64853 Otzberg, DE; Martin, Roland, Dr., 69469 Weinheim, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (A) Verwendung von Ectoin oder Ectoin-Derivaten in kosmetischen Formulierungen
- Die Verwendung von einer oder mehreren Verbindungen ausgewählt aus den Verbindungen der Formeln la und Ih

le

lb

den physiologisch verträglichen Salzen der Verbindungen der Formeln la und Ib und den stereoisomeren Formen der Verbindungen der Formeln la und Ib, wobei R¹, R², R³, R⁴ und n die in Anspruch 1 gegebenen Bedeutungen besitzen, zur Herstellung einer kosmetischen Formulierung ist z. B. vorteilhaft zum Schutz von Zellen, Proteinen und/oder Biomembranen der menschlichen Haut, zum Schutz der Mikroflora der menschlichen Haut und/oder zur Stabilisierung der Hautbarriere geeignet.

Beschreibung

Die Erfindung betrifft die Verwendung von einer oder mehreren Verbindungen ausgewählt aus den Verbindungen der Formeln Ia und Ib

$$\begin{array}{c|c}
 & R^3 \\
 & N \longrightarrow (C - R^4)_n \\
 & R^1 \longrightarrow R^2 \\
 & H
\end{array}$$

$$\begin{array}{c|c}
R^3 \\
HN - (C-R^4)_n \\
R^1 - R^2
\end{array}$$
Ib,

den physiologisch verträglichen Salzen der Verbindungen der Formeln Ia und Ib, und den stereoisomeren Formen der Verbindungen der Formeln Ia und Ib, wobei

R1 H oder Alkyl,

R²H, COOH, COO-Alkyl oder CO-NH-R⁵,

R³ und R⁴ jeweils unabhängig voneinander H oder OH,

n 1, 2 oder 3,

Alkyl einen Alkylrest mit 1 bis 4 Kohlenstoffatomen, und

R⁵ H, Alkyl, einen Aminosäurerest, Dipeptidrest oder Tripeptidrest

bedeuten, zur Herstellung einer kosmetischen Formulierung

35

40

- zum Schutz der menschlichen Haut gegen Stressfaktoren, insbesondere gegen Trockenheit durch hohe Temperaturen oder sehr niedrige Temperaturen bei geringer Luftfeuchtigkeit und/oder gegen hohe Salzkonzentration auf der Haut.
- zum Schutz von Zellen, Proteinen und/oder Biomembranen der menschlichen Haut,
- zum Schutz der Mikroflora der menschlichen Haut, und/oder
- zur Stabilisierung der Hautbarriere.

Die gesunde menschliche Haut wird an ihrer Oberfläche, dem Stratum corneum, von einer großen Anzahl kommensalisch lebender Mikroorganismen kolonisiert. Aus der großen Vielfalt dieser Mikroorganismen leben nur wenige ständig auf der Haut und bilden so die residente Hautflora. Die Hauptvertreter der residenten Flora auf der menschlichen Haut sind Staphylococcen, Micrococcen, coryneforme Bakterien und Pityrosporen. Diese leben in kleinen Kolonien auf der Oberfläche des Stratum corneum und in der äußeren Epidermis. Eine zweite Gruppe von Mikroorganismen, die sich vorübergehend von außen, insbesondere auf exponierten Hautbereichen, ansiedelt, wird als transiente Flora bezeichnet und kann sich auf der gesunden Haut, deren Mikromilieu stark durch die residente Mikroflora bestimmt wird, nicht dauerhaft ansiedeln. In unterschiedlichen Körperregionen variiert die Zusammensetzung der Hautflora in Abhängigkeit vom Mikromilieu der Haut. Die Dichte der Mikroorganismen paßt sich dem jeweiligen Hautmilieu an, so daß die Ökologie dieser Körperregionen nicht durch eine übermäßige Besiedlung durch Mikroorganismen aus dem Gleichgewicht gebracht wird. Im Vergleich zum Normalzustand der Haut nimmt die Anzahl der Mikroorganismen bei trockener Haut ab, während die Anzahl der Mikroorganismen bei feuchter Haut, z. B. durch entzündliche Veränderungen bei einem Ekzem, bis um das 1000-fache zunimmt.

Die Haut ist als Grenzschicht und Oberfläche des menschlichen Körpers einer Vielzahl externer Streßfaktoren ausgesetzt. Die Human-Haut ist ein Organ, das mit verschiedenartig spezialisierten Zelltypen – den Keratinozyten, Melanozyten, Langerhans-Zellen, Merkel-Zellen und eingelagerten Sinneszellen – den Körper vor äußeren Einflüssen schützt. Hierbei ist zwischen äußeren physikalischen, chemischen und biologischen Einflüssen auf die menschliche Haut zu unterscheiden. Zu den äußeren physikalischen Einflüssen sind thermische und mechanische Einflüsse sowie die Einwirkung von Strahlen zu zählen. Unter den äußeren chemischen Einflüssen sind insbesondere die Einwirkung von Toxinen und Allergenen zu verstehen. Die äußeren biologischen Einflüsse umfassen die Einwirkung fremder Organismen und deren Stoffwechselprodukte.

Die Oberfläche der menschlichen Haut wird von einem Fettfilm bedeckt, der, je nach den gegebenen Verhältnissen, als eine Öl-in-Wasser- oder eine Wasser-in-Öl-Emulsion anzusehen ist und zahlreiche Wirkstoffe, wie z. B. Enzyme und Vitamine, z. B. Vitamin D, enthält. Dieser Fettfilm, der aus den von Talgdrüsen und Keratinozyten abgegebenen Lipiden gebildet wurde, bewahrt die Feuchtigkeit der Haut und schützt den Körper als Hautbarriere vor ungünstigen Umweltfaktoren. Dieses empfindliche Gleichgewicht der Hautbarriere wird durch externe oder interne Faktoren gestört.

Die Mikroorganismen der menschlichen Haut sind verschiedenen Streßfaktoren ausgesetzt. Beispielsweise können sie durch Austrocknung oder durch hohe Salzkonzentrationen auf der Hautoberfläche, z. B. nach dem Schwitzen, geschädigt werden, was eine Schädigung der Hautbarriere zur Folge haben kann. Einige dieser Mikroorganismen – Staphylococcen, Micrococcen. Corynebakterien und Brevibakterien – besitzen jedoch üblicherweise die Fähigkeit, Kompatible Solute zu bilden, um sich gegen Austrocknung oder hohe Salzkonzentration zu schützen und tragen somit zur Ausbildung einer intakten Hautbarriere bei. Die Kompatiblen Solute, die auch als Streßschutzstoffe bezeichnet werden, sind niedermolekulare Substanzen im Cytoplasma.

Bisher wurde beispielsweise der Versuch unternommen, die Pflege oder den Schutz der menschlichen Haut durch hydrophile Substanzen, die selbst Wasser binden, zu bewirken (E. A. Galinski, Experientia 49 (1993) 487–496). Diese hydrophilen Substanzen binden jedoch Wassermoleküle des Hydratationswassers ebenso wie freie Wassermoleküle. Dadurch kommt es zwar zu einer Bindung von Wassermolekülen, nicht jedoch beispielsweise zu einem Schutz der Hydrathüllen von Zellen, Proteinen und Zellmembranen.

10

15

20

25

50

55

Es bestand daher die Aufgabe, kosmetische Formulierungen zur Verfügung zu stellen, deren Anwendung die obengenannten Hautprobleme beseitigen oder zumindest mindern und insbesondere

- zum Schutz der menschlichen Haut gegen Stressfaktoren, insbesondere gegen Trockenheit durch hohe Temperaturen oder sehr niedrige Temperaturen bei geringer Luftfeuchtigkeit und/oder gegen hohe Salzkonzentration auf der Haut,
- zum Schutz von Zellen, Proteinen, und/oder Biomembranen der menschlichen Haut,
- zum Schutz der Mikroflora der menschlichen Haut, und/oder
- zur Stabilisierung der Hautbarriere

geeignet sind.

Überraschend wurde nun gefunden, daß diese Aufgabe durch die Verwendung von einer oder mehreren Verbindungen ausgewählt aus den Verbindungen der Formeln Ia und Ib

$$\begin{array}{c|c}
R^3 \\
N \longrightarrow (C - R^4)_n \\
R^1 \longrightarrow R^2 \\
H
\end{array}$$
Ia

$$\begin{array}{c|c}
R^{3} & & & \\
HN \longrightarrow (C-R^{4})_{n} & & & \\
R^{1} \longrightarrow N & R^{2} & & & \\
\end{array}$$
1b,

den physiologisch verträglichen Salzen der Verbindungen der Formeln Ia und Ib, und den stereoisomeren Formen der Verbindungen der Formeln Ia und Ib, wobei

R1 H oder Alkyl,

R2H, COOH, COO-Alkyl oder CO-NH-R5,

R³ und R⁴ jeweils unabhängig voneinander H oder OH,

n 1, 2 oder 3

Alkyl einen Alkylrest mit 1 bis 4 Kohlenstoffatomen, und

R⁵ H, Alkyl, einen Aminosäurerest, Dipeptidrest oder Tripeptidrest

in kosmetischen Formulierungen gelöst wird.

Im Rahmen der vorliegenden Erfindung werden alle vor- und nachstehenden Verbindungen ausgewählt aus den Verbindungen der Formeln Ia und Ib, den physiologisch verträglichen Salzen der Verbindungen der Formeln Ia und Ib, und den stereoisomeren Formen der Verbindungen der Formeln Ia und Ib als "Ectoin oder Ectoin-Derivate" bezeichnet.

Ectoinhaltige kosmetische Formulierungen schützen Zellen, Proteine, Enzyme, Vitamine, DNA, Zell- und Biomembranen der Haut vor den Schäden durch Austrocknung und Wasserentzug. Durch die Hydratationswirkung des Ectoins wird das Wassergleichgewicht des Stratum corneums sowie die Hautbarriere stabilisiert. Ectoin beugt einer trockenen und schuppigen Haut vor.

Ectoinhaltige kosmetische Formulierungen schützen zudem die für eine intakte Hautbarriere wichtige Mikroflora der Haut gegen Streß durch Austrocknung und hohe Ionenkonzentration nach dem Schwitzen. Die Stabilisierung der residenten Hautslora durch Ectoin oder seine Derivate ist eine wichtige Voraussetzung für das Gleichgewicht des Mikromilieus der Haut und die Ausbildung einer intakten Hautbarriere.

Bei Ectoin und den Ectoin-Derivaten handelt es sich um niedermolekulare, cyclische Aminosäurederivate, die aus ver-

schiedenen halophilen Mikroorganismen gewonnen werden können. Sowohl Ectoin als auch Hydroxyectoin besitzen den Vorteil, daß sie nicht mit dem Zellstoffwechsel reagieren.

In der DE 43 42 560 wird die Verwendung von Ectoin und Ectoin-Derivaten als Feuchtigkeitsspender in Kosmetikprodukten beschrieben.

Die Verbindungen ausgewählt aus den Verbindungen der Formeln Ia und Ib, den physiologisch verträglichen Salzen der Verbindungen der Formeln Ia und Ib und den stereoisomeren Formen der Verbindungen der Formeln Ia und Ib können in den kosmetischen Zubereitungen als optische Isomere, Diastereomere, Racemate, Zwitterionen, Kationen oder als Gemisch derselben vorliegen. Unter den Verbindungen ausgewählt aus den Verbindungen der Formeln Ia und Ib, den physiologisch verträglichen Salzen der Verbindungen der Formeln Ia und Ib und den stereoisomeren Formen der Verbindungen der Formeln Ia und Ib, sind diejenigen Verbindungen bevorzugt, worin R¹ H oder CH₃, R² H oder COOH, R³ und R⁴ jeweils unabhängig voneinander H oder OH und n 2 bedeuten. Unter den Verbindungen ausgewählt aus den Verbindungen der Formeln Ia und Ib, den physiologisch verträglichen Salzen der Verbindungen der Formeln Ia und Ib und den stereoisomeren Formen der Verbindungen der Formeln Ia und Ib sind die Verbindungen (S)-1,4,5,6-Tetrahydro-2-methyl-4-pyrimidincarbonsäure (Ectoin) und (S,S)-1,4,5,6-Tetrahydro-5-hydroxy-2-methyl-4-pyrimidincarbonsäure (Hydroxyectoin) insbesondere bevorzugt.

Unter dein Begriff "Aminosäure" werden die stereoisomeren Formen, z. B. D- und L-Formen, folgender Verbindungen verstanden: Alanin, β-Alanin, Arginin, Asparagin, Asparaginsäure, Cystein, Glutamin, Glutaminsäure, Glycin, Histidin, Isoleucin, Leucin, Lysin, Methionin, Phenylalanin, Serin, Threonin, Tryptophan, Tyrosin, Valin, γ-Aminobutyrat, Nε-Acetyllysin, Nδ-Acetylornithin, Nγ-Acetyldiaminobutyrat und Nα-Acetyldiaminobutyrat. L-Aminosäuren sind bevorzugt

Aminosäurereste leiten sich von den entsprechenden Aminosäuren ab.

Die Reste folgender Aminosäuren sind bevorzugt: Alanin, β -Alanin, Asparagin, Asparaginsäure, Glutamin, Glutaminsäure, Glycin, Serin, Threonin, Valin, γ -Aminobutyrat, N ϵ -Acetyllysin, N δ -Acetyllysin, N γ

Die Di- und Tripeptidreste sind ihrer chemischen Natur nach Säureamide und zerfallen bei der Hydrolyse in 2 oder 3 Aminosäuren. Die Aminosäuren in den Di- und Tripeptidresten sind durch Amidbindungen miteinander verbunden. Bevorzugte Di- und Tripetidreste sind aus den bevorzugten Aminosäuren aufgebaut.

Die Alkylgruppen umfassen die Methylgruppe CH₃, die Ethylgruppe C₂H₅, die Propylgruppen CH₂CH₂CH₃ und CH(CH₃)₂ sowie die Butylgruppen CH₂CH₂CH₂CH₃, H₃CCHCH₂CH₃, CH₂CH(CH₃)₂ und C(CH₃)₃. Die bevorzugte Alkylgruppe ist die Methylgruppe.

Bevorzugte physiologisch verträgliche Salze der Verbindungen der Formeln Ia und Ib sind beispielsweise Alkali-Erdalkali- oder Ammoniumsalze, wie Na-, K-, Mg- oder Ca-Salze, sowie Salze abgeleitet von den organischen Basen Triethylamin oder Tris-(2-hydroxy-ethyl)-amin. Weitere bevorzugte physiologisch verträgliche Salze der Verbindungen der Formeln Ia und Ib ergeben sich durch Umsetzung mit anorganischen Säuren wie Salzsäure, Schwefelsäure und Phosphorsäure oder mit organischen Carbon- oder Sulfonsäuren wie Essigsäure, Citronensäure, Benzoesäure, Maleinsäure, Fumarsäure, Weinsäure und p-Toluolsulfonsäure.

Verbindungen der Formeln Ia und Ib, in denen basische und saure Gruppen wie Carboxyl- oder Aminogruppen in gleicher Zahl vorliegen, bilden innere Salze.

Die Herstellung der Verbindungen der Formel Ia und Ib ist in der Literatur beschrieben (DE 43 42 560). (S)-1,4,5,6-Tetrahydro-2-methyl-4-pyrimidincarbonsäure oder (S,S)-1,4,5,6-Tetrahydro-5-hydroxy-2-methyl-4-pyrimidincarbonsäure können auch mikrobiologisch gewonnen werden (Severin et al., J. Gen. Microb. 138 (1992) 1629–1638).

Die Herstellung der kosmetischen Formulierung erfolgt, indem eine oder mehrere Verbindungen ausgewählt aus den Verbindungen der Formeln Ia und Ib, den physiologisch verträglichen Salzen der Verbindungen der Formeln Ia und Ib und den stercoisomeren Formen der Verbindungen der Formeln Ia und Ib gegebenenfalls mit Hilfs- und/oder Trägerstoffen in eine geeignete Formulierungsform gebracht werden. Die Hilfs- und Trägerstoffe stammen aus der Gruppe der Trägermittel, Konservierungsstoffe und anderer üblicher Hilfsstoffe.

Die kosmetischen Formulierungen auf der Grundlage einer oder mehrerer Verbindungen ausgewählt aus den Verbindungen der Formeln Ia und Ib, den physiologisch verträglichen Salzen der Verbindungen der Formeln Ia und Ib und den stereoisomeren Formen der Verbindungen der Formeln Ia und Ib werden äußerlich angewendet.

Als Anwendungsform seien z. B. genannt: Lösungen, Suspensionen, Emulsionen, Pasten, Salben, Gele, Cremes, Lotionen, Puder, Seifen, tensidhaltige Reinigungspräparate, Öle und Sprays. Zusätzlich zu einer oder mehreren Verbindungen ausgewühlt aus den Verbindungen der Formeln Ia und Ib, den physiologisch verträglichen Salzen der Verbindungen der Formeln Ia und Ib und den stereoisomeren Formen der Verbindungen der Formeln Ia und Ib werden der Formulierung beliebige übliche Trägerstoffe, Hilfsstoffe und gegebenenfalls weitere Wirkstoffe zugesetzt.

Vorzuzichende Hilfsstoffe stammen aus der Gruppe der Konservierungsstoffe, Antioxidantien, Stabilisatoren, Lösungsvermittler, Vitamine, Färbemittel, Geruchsverbesserer.

Salben, Pasten, Cremes und Gele können neben einer oder mehreren Verbindungen ausgewählt aus den Verbindungen der Formeln Ia und Ib, den physiologisch verträglichen Salzen der Verbindungen der Formeln Ia und Ib und den stereoisomeren Formen der Verbindungen der Formeln Ia und Ib die üblichen Trägerstoffe enthalten, z. B. tierische und pflanzliche Fette, Wachse, Paraffine, Stärke, Traganth, Cellulosederivate, Polyethylenglykole, Silicone, Bentonite, Kieselsäure, Talkum und Zinkoxid oder Gemische dieser Stoffe.

Puder und Sprays können neben einer oder mehreren Verbindungen ausgewählt aus den Verbindungen der Formeln Ia und Ib, den physiologisch verträglichen Salzen der Verbindungen der Formeln Ia und Ib und den stereoisomeren Formen der Verbindungen der Formeln Ia und Ib die üblichen Trägerstoffe enthalten, z. B. Milchzucker, Talkum, Kieselsäure, Aluminiumhydroxid, Calciumsilikat und Polyamid-Pulver oder Gemische dieser Stoffe. Sprays können zusätzlich die üblichen Treibmittel, z. B. Chlorfluorkohlenwasserstoffe, Propan/Butan oder Dimethylether, enthalten.

Lösungen und Emulsionen können neben einer oder mehreren Verbindungen ausgewählt aus den Verbindungen der Formeln Ia und Ib, den physiologisch verträglichen Salzen der Verbindungen der Formeln Ia und Ib und den stereoiso-

meren Formen der Verbindungen der Formeln Ia und Ib die üblichen Trägerstoffe wie Lösungsmittel, Lösungsvermittler und Emulgatoren, z. B. Wasser, Ethanol, Isopropanol, Ethylcarbonat, Ethylacetat, Benzylalkohol, Benzylbenzoat, Propylenglykol, 1,3-Butylglykol, Öle, insbesondere Baumwollsaatöl, Erdnußöl, Maiskeimöl, Olivenöl, Rizinusöl und Sesamöl, Glycerinfettsäureester, Polyethylenglykole und Fettsäureester des Sorbitans oder Gemische dieser Stoffe enthalten.

Suspensionen können neben einer oder mehreren Verbindungen ausgewählt aus den Verbindungen der Formeln Ia und Ib, den physiologisch verträglichen Salzen der Verbindungen der Formeln Ia und Ib und den stereoisomeren Formen der Verbindungen der Formeln Ia und Ib die üblichen Trägerstoffe wie flüssige Verdünnungsmittel, z. B. Wasser, Ethanol oder Propylenglykol, Suspendiermittel, z. B. ethoxylierte Isostearylalkohole, Polyoxyethylensorbitester und Polyoxyethylensorbitanester, mikrokristalline Cellulose, Aluminiummetahydroxid, Bentonit, Agar-Agar und Traganth oder Gemische dieser Stoffe enthalten.

Seifen können neben einer oder mehreren Verbindungen ausgewählt aus den Verbindungen der Formeln Ia und Ib, den physiologisch verträglichen Salzen der Verbindungen der Formeln Ia und Ib und den stereoisomeren Formen der Verbindungen der Formeln Ia und Ib die üblichen Trägerstoffe wie Alkalisalze von Fettsäuren, Salze von Fettsäurehalbestern, Fettsäureeiweißhydrolysaten, Isothionate, Lanolin, Fettalkohol, Pflanzenöle, Pflanzenextrakte, Glycerin, Zucker oder Gemische dieser Stoffe enthalten.

Tensidhaltige Reinigungsprodukte können neben einer oder mehreren Verbindungen ausgewählt aus den Verbindungen der Formeln Ia und Ib, den physiologisch verträglichen Salzen der Verbindungen der Formeln Ia und Ib und den stereoisomeren Formen der Verbindungen der Formeln Ia und Ib die üblichen Trägerstoffe wie Salze von Fettalkoholsulfaten, Fettalkoholsethersulfaten, Sulfobernsteinsäurehalbestern, Fettsäureeiweißhydrolysaten, Isothionate, Imidazolinium derivate, Methyltaurate, Sarkosinate, Fettsäureamidethersulfate, Alkylamidobetaine, Fettalkohole, Fettsäureglyceride, Fettsäurediethanolamide, pflanzliche und synthetische Öle, Lanolinderivate, ethoxylierte Glycerinfettsäureester oder Gemische dieser Stoffe enthalten.

Gesichts- und Körperöle können neben einer oder mehrerer Verbindungen ausgewählt aus den Verbindungen der Formeln Ia und Ib, den physiologisch verträglichen Salzen der Verbindungen der Formeln Ia und Ib und den stereoisomeren Formen der Verbindungen der Formeln Ia und Ib die üblichen Trägerstoffe wie synthetische Öle wie Fettsäureester, Fett-alkoholc, Silikonöle, natürliche Öle wie Pflanzenöle und ölige Pflanzenauszüge, Paraffinöle, Lanolinöle oder Gemische dieser Stoffe enthalten.

Weitere typisch kosmetische Anwendungsformen sind auch Lippenstifte, Lippenpflegestifte, Mascara, Eyeliner, Lidschatten, Rouge, Puder-, Emulsions- und Wachs-Make up sowie Sonnenschutz-, Prä-Sun- und After-Sun-Präparate.

Der Anteil der Verbindungen ausgewählt aus den Verbindungen der Formeln Ia und Ib, den physiologisch verträglichen Salzen der Verbindungen der Formeln Ia und Ib und den stereoisomeren Formen der Verbindungen der Formeln Ia und Ib in der kosmetischen Formulierung beträgt vorzugsweise von 0,0001 bis 50 Gew.-%, besonders bevorzugt von 0,001 bis 10 Gew.-% bezogen auf die gesamte kosmetische Formulierung.

Der Schutz der Haut vor Austrocknung kann beispielsweise in vivo nachgewiesen werden, z. B. durch bekannte Nachweismethoden wie TEWL (transepidermal water loss), Corneometrie (zur Bestimmung der Hautfeuchtigkeit), Mikrotopographie (zur Bestimmung der Hautrauhigkeit) oder SELS (surface evaluation of living skin).

Ectoin-haltige Formulierungen können beispielsweise die Hautbarriere gegen die schädigende Wirkung von Natriumdodecylsulfat (SDS) schützen. Durch die Ληwendung einer kosmetischen Ectoin-haltigen Emulsion kann der transepidermale Wasserverlust z. B. bis zu 40% deutlich reduziert werden (Abb. 1). Eine mit einer Ectoin-haltigen kosmetischen
Formulierung vorbehandelte Haut ist unempfindlicher gegenüber einer Schädigung der Hautbarriere durch das Tensid
SDS. Durch die Ληwendung einer Ectoin-haltigen Emulsion ist die Haut besser gegen eine Tensidschädigung der Haut
und den damit einhergehenden Wasserverlust geschützt.

Ein wichtiges Ziel der Kosmetik ist nach wie vor ein Schutz der Haut gegen Stressfaktoren, die zum Austrocknen der Haut führen. Insbesondere trockene Luft während kalter oder sehr warmer Wetterlagen führt zu einem starken Wasserverlust der Haut. Ectoin schützt z. B. aus einer kosmetischen O/W-Emulsion heraus vor Austrocknung (Abb. 2). Zusätzlich zu dem Schutz gegen Austrocknung führen Ectoin-haltige kosmetische Formulierungen zu einer deutlich besseren Hautfeuchtigkeit als eine entsprechende Grundformulierung ohne Ectoin (Placebo), die aber bereits 3% Glycerin enthält. Desweiteren bewirken Ectoin-haltige kosmetische Formulierungen auch nach 24 Stunden noch eine deutlich höhrer Hautfeuchtigkeit im Vergleich zum unbehandelten oder nur mit dem Placebo behandelten Hautareal. Ectoin-haltige kosmetische Formulierungen schützen die Haut vor einer schnellen Austrocknung selbst gegen stark hygroskopisches Kieselgel, welches direkt auf die Haut aufgetragen ist. Die Feuchtigkeit der Haut kann durch die topische Anwendung von Ectoin-haltigen kosmetischen Formulierungen über einen längeren Zeitraum gegen Austrocknung geschützt werden. Ectoin-haltige kosmetische Formulierungen sind somit für eine Prophylaxe gegen trockene Haut gut geeignet.

Die Stabilisierung der Biomembranen kann z. B. in vitro nachgewiesen werden. Hierbei wird ausgenutzt, daß Propidiumiodid bei intakter Membran der Hautzellen nicht in die Zellen aufgenommen wird und tote Zellen oder Zellen mit einer geschädigten Membran für Propidiumiodid permeabel sind und durch die Propidiumiodid-Aufnahme einer Rotfärbung unterliegen.

Durch Vergleich von Zellkulturen, die vor der Schädigung, beispielsweise durch DMSO-Zugabe, mit Ectoin vorbehandelt wurden und von nicht vorbehandelten Zellen, kann nach anschließender Propidiumiodid-Behandlung die Wirkung des Ectoins oder seiner Derivate auf die Stabilisierung der Biomembranen festgestellt werden.

Zur Bestimmung der Zellmembran- und Protein-schädigenden Wirkung von Tensiden kann z. B. der RBC-Test verwendet werden. Hierzu werden die Erythrozyten z. B. mit Natriumdodecylsulfat (SDS) inkubiert, beispielsweise für eine Dauer von 10 Minuten. SDS destabilisiert die Membran unbehandelter Zellen so, daß die Zellen teilweise lysiert werden und ihre Inhaltsstoffe wie das Hämoglobin frei geben. Das bei der Zellwandschädigung freigesetzte Hämoglobin dient als Indikater für die spektrophotometrische Bestimmung der Membranschädigung durch SDS. Anhand des freigesetzten Hämoglobins kann die Anzahl der zerstörten Erythrozyten bestimmt werden.

Ectoin schützt die Zellen gegen eine Schädigung durch SDS (Abb. 3). Die mit Ectoin vorbehandelten Erythrozyten

sind gegenüber einer Membranschädigung durch SDS resistenter als unbehandelte Zellen. Je höher die Ectoin-Konzentration, desto größer ist der Schutzeffekt gegen eine Membranschädigung.

Je länger die Zellen mit Ectoin vorbehandelt werden, desto größer ist der Schutzeffekt gegen eine Membranschädigung (Abb. 4). Die Stabilisierung der Zellmembranen ist sowohl von der Ectoin-Konzentration abhängig, als auch von der Dauer der Ectoin-Vorbehandlung. Je höher die Ectoin-Konzentration und je länger die Einwirkzeit auf die Erythrozyten ist, desto stärker werden die Zellmembranen geschützt.

Der Nachweis der Stabilisierung der residenten Mikroflora kann beispielsweise in vivo erfolgen. Nach Ectoin-Behandlung bestimmter Hautbereiche, beispielsweise der Unterarme, wird die Haut z. B. Trocken- und/oder Hitzestreß in einer Klimakammer ausgesetzt. Anschließend werden die Bakterien von den Unterarmen isoliert und eine "Lebend-Zellzahlbestimmung" mittels Vitalfärbung sowie eine Wachstumskurve zur Bestimmung der Kinetik, beispielsweise durch das Ausplautieren der Bakterien auf Kulturplatten (Plattenverfahren) oder durch das Impedanzverfahren mittels Leitfähigkeitsmessungen, durchgeführt. Ein Vergleich dieser Ergebnisse mit denen für nicht vorbehandelte Hautbereiche liefert einen Nachweis der Wirkung des Ectoins oder seiner Derivate auf die Stabilisierung der residenten Mikroflora.

Alle Verbindungen oder Komponenten, die in den kosmetischen Formulierungen verwendet werden können, sind entweder bekannt und käuflich erwerbbar oder können nach bekannten Methoden synthetisiert werden.

Die folgenden Beispiele dienen zur Verdeutlichung der Erfindung und sind keinesfalls als Limitierung aufzufassen. Alle %-Angaben sind Gewichtsprozent.

Die INCI-Namen verwendeter Rohstoffe sind wie folgt (die INCI-Namen werden definitionsgemäß in englischer Sprache angegeben):

Rohstoff INCI-Name

Mandelöl Sweet Almond Oil (Prunus Dulcis)

Eutanol G Octyldodecanol Luvitol EHO Cetearyl Octanoate

Oxynex K flüssig PEG-8, Tocopherol, Ascorbyl Palmitate, Ascorbic Acid, Citric Acid

Panthenol Panthenol Karion F flüssig Sorbitol

Sepigel 305 Polyacrylamide, C13-14 Isoparaffin, Laureth-7

Paraffin, dünnflüssig Mineral Oil (Paraffinum Liquidum)

Mirasil CM 5 Cyclomethicone

Arlacel 165 Glyceryl Stearate, PEG-100 Stearate

Germaben II Propylene Glycol, Diazolidinyl urea, Methylparaben, Propylparaben

Parfum Bianca Parfum

Abil WE 09 Polyglyceryl-4 Isostearate, Cetyl Dimethicone Copolyol, Hexyl Laurate

Jojoba Oil (Buxus Chinensis)

Cetiol V Decyl Oleate

Prisorine IPIS 2021 Isopropyl Isostearate

Ricinusöl Castor Oil (Ricinus Communis)

Lunacera M Cera Microcristallina

40 Miglyol 812 Neutralöl Caprylic/Capric Triglyceride

Eusolex T-2000 Titanium Dioxide, Alumina, Simethicone

45

50

55

60

65

Beispiel 1

Aus folgenden Komponenten wird ein erfindungsgemäßes Hautpflegegel (O/W) enthaltend Ectoin hergestellt:

	8-8		Gew%	_
A Mandelöl		(2)	8.0	5
Eutanol G		(3)	2.0	
Luvitol EHO		(4)	6.0	
Oxynex K flüssig	(ArtNr. 108324)	(1)	0.05	10
Oxyrica it ildssig	(Art141. 100024)	(1)	0.03	
B Panthenol	(ArtNr. 501375)	(1)	0.5	15
Karion F flüssig	(ArtNr. 102993)	(1)	4.0	••
Konservierungsmittel	((- /	q.s.	
Wasser, demineralisiert			ad 100	20
Transfer, astronomeration,			44 100	20
C Sepigel 305		(5)	3.0	
. •		. ,		25
D Ectoin		(1)	1.0	
Als Konservierungsmittel können				
0.05% Propyl-4-hydroxybenzoat (Art)	Nr. 107427) oder			30
0.15% Methyl-4-hydroxybenzoat (Artverwendet werden.	-Nr. 106/57)			
	Herstellung			
Die vereinigte Phase B wird unter R		C eingetragen i	Danach wird die vorgelöste Phase A	35
zugesetzt. Es wird gerührt bis die Phas				
Homogenität gerührt. Bezugsquellen:				
(1) Merck KGaA, Darmstadt (2) Gustav Heess, Stuttgart				40
(3) Henkel KGaA, Düsseldorf				
(4) BASFAG, Ludwigshafen (5) Seppic, Frankreich				
				45
				50
				55
				33
				60
				65

Beispiel 2

Aus folgenden Komponenten wird eine erfindungsgemäße Hautpflegecreme (O/W) enthaltend Ectoin hergestellt:

5				<u>Gew%</u>
	A Paraffin, dünnflüssig	(ArtNr. 107174)	(1)	8.0
	Isopropylmyristat ·	(ArtNr. 822102)	(1)	4.0
10	Mirasil CM 5		(2)	3.0
	Stearinsäure		(1)	3.0
	Arlacel 165		(3)	5.0
15				
	B Glycerin, 87 %	(ArtNr. 104091)	(1)	3.0
	Germaben II		(4)	0.5
20	Wasser, demineralisiert			ad 100
25	C Parfüm Bianca		(5)	0.3
	D Ectoin		(1)	1.0

Herstellung

Zunächst werden die Phasen A und 8 getrennt auf 75°C erwärmt. Danach wird Phase A unter Rühren langsam zu Phase B gegeben und solange gerührt bis eine homogene Mischung entsteht. Nach Homogenisierung der Emulsion wird unter Rühren auf 30°C abgekühlt, die Phasen C und D zugegeben und bis zur Homogenität gerührt.

Bezugsquellen:

- (1) Merck KGaA, Darmstadt
- (2) Rhodia
- (3) ICI (4) ISP

30

55

60

65

(5) Dragoco

8

Beispiel 3

Aus folgenden Komponenten wird eine erfindungsgemäße Sonnenschutzlotion (W/O) enthaltend Ectoin hergestellt:

•	Tab Tongeriden Homponomen with e	me enmangsgemase bom	onsendamonon	O	
	A L: 1 \ A (T_ OO		(0)	<u>Gew%</u>	5
A	Abil WE 09		(2)	5.0	
	Jojoba Öl		(3)	6.0	
	Cetiol V		(4)	6.0	10
	Prisorine 2021		(5)	4.5	
	Ricinusöl		(6)	1.0	
	Lunacera M		(7)	1.8	15
	Miglyol 812 Neutralöl		(8)	4.5	
_	Funday T 2000	(A - N- 405272)	743	2.0	
В	Eusolex T-2000	(ArtNr. 105373)	(1)	3.0	20
	Glycerin, 87 %	(ArtNr. 104091)	(1)	2.0	
	Natriumchlorid	(ArtNr. 106400)	(1)	0.4	
	Konservierungsmittel			q.s.	25
	Wasser, demineralisiert			ad 100	
_	-	•	 \	• •	
С	Parfüm		(5)	0.3	30
n	Ectoin		(1)	1.0	
Als Konservierungsmittel können 0.05% Propyl-4-hydroxybenzoat (ArtNr. 107427) oder 0.15% Methyl-4-hydroxybenzoat (ArtNr. 106757) verwendet werden.			35		
		Herstellung			40
uno	l unter Rühren Phase B langsam zuge	egeben. Es wird bis zur Hor	nogenität gerüh	nach wird Phase A auf 75°C erwärmt rt und anschließend unter Rühren auf	
30°C abgekühlt. Danach werden die Phasen C und D zugegeben und bis zur Homogenität gerührt. Bezugsquellen: (1) Merck KGaA, Darmstadt				45	
(2) (3) (4) (5) (6) (7)	Th. Goldschmidt AG, Essen H. Lamotte, Bremen Henkel KGaA, Düsseldorf Unichema, Emmerich Gustav Heess, Stuttgart H. B. Fuller, Lüneburg Hüls Troisdorf AG, Witten				50
					55
			,		60
					65

Beispiel 4

Aus folgenden Komponenten wird eine Hautpflegecreme (O/W) enthaltend Ectoin hergestellt:

5			•	<u>Gew%</u>
	A Paraffin, dünnflüssig	(ArtNr. 107174)	(1)	8.0
	Isopropylmyristat	(ArtNr. 822102)	(1)	4.0
10	Mirasil CM 5		(2)	3.0
	Stearinsäure		(1)	3.0
	Arlacel 165 V		(3)	5.0
15				
	B Glycerin, 87 %	(ArtNr. 104091)	(1)	3.0
	Germaben II		(4)	0.5
20	Wasser, demineralisiert			ad 100
	D Ectoin		(1)	×
25	x=0 (Placaba) 2 5 Cow 9	/ ₋		

x = 0 (Placebo), 2, 5 Gew.-%

30

Herstellung

Zunächst werden die Phasen A und B getrennt auf 75°C erwärmt. Danach wird Phase A unter Rühren langsam zu Phase B gegeben und solange gerührt bis eine homogene Mischung entsteht. Nach Homogenisierung der Emulsion wird unter Rühren auf 30°C abgekühlt, Phase D zugegeben und bis zur Homogenität gerührt.

Bezugsquelien:

- (1) Merck KGaA, Darmstadt
- (2) Rhodia
- (3) ICI
- (4) ISP

Beispiel 4a

Mit den in Beispiel 4 beschriebenen Hautpflegecremes (O/W) enthaltend Ectoin wird eine in vivo Bestimmung des Transepidermalen Wasserverlustes (TEWL) nach Schädigung der Hautbarriere durch SDS-Behandlung durchgeführt. Zunächst wird die Haut der Probanden (N = 5) am Unterarm eine Woche lang zweimal täglich mit der O/W-Emulsion (2 mg/cm²) enthaltend 2% und 5% Ectoin und einer Emulsion ohne Ectoin (Placebo) behandelt. Um den TEWL künstlich durch eine Schädigung der Hornbarriere zu erhöhen, wird die Haut anschließend mit 80 µl Natriumdodecylsulfat (SDS; 2% in Wasser) in einer Aluminiumkammer unter Okklusion über 24 h behandelt. Die TEWL-Bestimmung wird in einem Klimaraum bei 22°C und einer Luftfeuchtigkeit von 60% mit TEWAmeter TM210 durchgeführt. In Abb. 1 ist der TEWL vor und nach der Behandlung mit den Ectoin-haltigen Emulsionen, sowie nach der Schädigung der Hautbarriere durch SDS dargestellt.

Beispiel 4b

65

Mit den in Beispiel 4 beschriebenen Hautpflegecremes (O/W) enthaltend Ectoin wird eine in vivo Bestimmung der Hautfeuchtigkeit nach Ectoin-Behandlung und Dehydratisierung mittels Kieselgel durchgeführt. Zunächst wird die Haut der Probanden (N = 5) am Unterarm eine Woche lang zweimal täglich mit einer kosmetischen Formulierung (2 mg/cm²) enthaltend 2% und 5% Ectoin und einer Formulierung ohne Ectoin (Placebo) behandelt. Der Feuchtigkeitsgehalt der Haut wird vor dem Auftragen und nach 1 Woche vier Stunden nach dem letzten Auftragen bestimmt. Dann wird Kieselgel 60 (0,2 g/cm²) auf die Testareale des Unterarmes für zwei Stunden unter Okklusion aufgetragen (Dehydratisierung). Nach Entfernen des Kieselgels wird die Hautfeuchtigkeit nach 10 min., 2 h, 4 h und 24 h in einem Klimaraum bei 22°C und einer Luftseuchtigkeit von 60% gemessen. Die Ergebnisse sind in Abb. 2 dargestellt.

Beispiel 5

Mit einer wäßrigen Ectoin-Lösung gepuffert in PBS-Puffer (22,2 mmol/l Dinatriumhydrogenphosphat, 5,6 mmol/l Kaliumdihydrogenphosphat, 123,3 mmol/l Natriumchlorid und 10 mmol/l Glucose) wird eine Bestimmung der mem-

branstabilisierenden Wirkung von Ectoin vorbehandelten Human-Erythrozyten gegenüber SDS durchgeführt. Hierzu wird der RBC-Test verwendet. Es wird die prozentuale Membranstabilisierung von mit Ectoin vorbehandelten Zellen bestimmt.

Human-Erythrozyten (2×10^8 Zellen/ml) werden 1 Stunde mit 0%, 0,1%, 0,5%, 1% und 5% Ectoin behandelt. Dann werden die Zellen 10 min. mit 0 bis 0,04% SDS-Lösung gestresst. Anschließend wird spektrophotometrisch anhand des freien Hämoglobingehalts bestimmt wieviel Zellen lysiert worden sind. In Abb. 3 ist der prozentuale Unterschied der lysierten Zellen in Abhängigkeit von der Ectoinkonzentration aus der Vorbehandlung gegenüber einer unbehandelten Kontrolle gezeigt. Der Versuch wird N=5 mal durchgeführt.

Zusätzlich werden Human-Erythrozyten (2 × 10⁸ Zellen/ml) 0 (Kontrolle), 6, 18 und 24 Stunden mit 1% Ectoin behandelt. Dann werden die Zellen 10 min. mit 0 bis 0,04% SDS-Lösung gestresst. Anschließend wird spektrophotometrisch anhand des freien Hämoglobingehalts bestimmt wieviel Zellen lysiert worden sind. In Abb. 4 ist der prozentuale Unterschied der lysierten Zellen in Abhängigkeit von der Ectoinkonzentration aus der Vorbehandlung gegenüber einer unbehandelten Kontrolle gezeigt. Der Versuch wird N = 5 mal durchgeführt.

Patentansprüche

1. Verwendung von einer oder mehreren Verbindungen ausgewählt aus den Verbindungen der Formeln Ia und Ib

15

40

45

60

$$R^{3}$$
 $HN - (C-R^{4})_{n}$
 R^{1}
 N
 R^{2}
Ib.

den physiologisch verträglichen Salzen der Verbindungen der Formeln Ia und Ib, und den stereoisomeren Formen der Verbindungen der Formeln Ia und Ib, wobei

R¹ H oder Alkyl,

R2 H, COOH, COO-Alkyl oder CO-NH-R5,

R³ und R⁴ jeweils unabhängig voneinander H oder OH,

n 1, 2 oder 3

Alkyl einen Alkylrest mit 1 bis 4 Kohlenstoffatomen, und

R⁵ H, Alkyl, einen Aminosäurerest, Dipeptidrest oder Tripeptidrest

bedeuten zur Herstellung einer kosmetischen Formulierung zum Schutz der menschlichen Haut gegen Trockenheit und/oder hohe Salzkonzentrationen.

- 2. Verwendung von einer oder mehreren Verbindungen ausgewählt aus den Verbindungen der Formeln Ia und Ib, den physiologisch verträglichen Salzen der Verbindungen der Formeln Ia und Ib und den stereoisomeren Formen der Verbindungen der Formeln Ia und Ib nach Anspruch 1 zur Herstellung einer kosmetischen Formulierung zum Schutz von Zellen, Proteinen, und/oder Biomembranen der menschlichen Haut.
- 3. Verwendung von einer oder mehreren Verbindungen ausgewählt aus den Verbindungen der Formeln Ia und Ib, den physiologisch verträglichen Salzen der Verbindungen der Formeln Ia und Ib und den stereoisomeren Formen der Verbindungen der Formeln Ia und Ib nach Anspruch 1 zur Herstellung einer kosmetischen Formulierung zum Schutz der Mikroflora der menschlichen Haut.
- 4. Verwendung von einer oder mehreren Verbindungen ausgewählt aus den Verbindungen der Formeln Ia und Ib, den physiologisch verträglichen Salzen der Verbindungen der Formeln Ia und Ib und den stereoisomeren Formen der Verbindungen der Formeln Ia und Ib nach Anspruch 1 zur Herstellung einer kosmetischen Formulierung zur Stabilisierung der Hautbarriere.
- 5. Verwendung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man eine oder mehrere Verbindungen ausgewählt aus den Verbindungen der Formeln Ia und Ib, den physiologisch verträglichen Salzen der Verbindungen der Formeln Ia und Ib und den stereoisomeren Formen der Verbindungen der Formeln Ia und Ib zur äußeren Anwendung in Form einer Lösung, einer Suspension, einer Emulsion, einer Paste, einer Salbe, eines Gels, einer Creme, einer Lotion, eines Puders, einer Seife, eines tensidhaltigen Reinigungspräparates, eines Öls, eines Lippenstifts, eines Lippenflegestifts, einer Mascara, eines Eyeliners, von Lidschatten, von Rouge, eines Puder-, Emulsions- oder Wachs-Make ups, eines Sonnenschutz-, Prä-Sun- und After-Sun-Präparats oder eines Sprays einsetzt.
- 6. Verwendung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Anteil der Verbindungen aus-

gewählt aus den Verbindungen der Formeln Ia und Ib, den physiologisch verträglichen Salzen der Verbindungen der Formeln Ia und Ib, und den stereoisomeren Formen der Verbindungen der Formeln Ia und Ib von 0,0001 bis 50 Gew.-% bezogen auf die gesamte kosmetische Formulierung beträgt.

7. Verwendung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Verbindungen der Formeln Ia und Ib ausgewählt sind aus den Verbindungen (S)-1,4,5,6-Tetrahydro-2-methyl-4-pyrimidincarbonsäure und (S,S)-1,4,5,6-Tetrahydro-5-hydroxy-2-methyl-4-pyrimidincarbonsäure.

Hierzu 4 Seite(n) Zeichnungen

Abb. 1 In vivo Bestimmung des Transepidermalen. Wasserverlustes (TEWL) nach Schädigung der Hautbarriere durch SDS-Behandlung

Abb. 2 In vivo Bestimmung der Hautfeuchtigkeit nach Ectoin-Behandlung und Dehydratisierung mittels Kieselgel

Nummer: Int. Cl.⁷: Offenlegungstag: DE 199 11 775 A1 A 61 K 7/40 3. Februar 2000

Abb. 3 Bestimmung der membranstabilisierenden Wirkung von mit Ectoin vorbehandelten Human-Erythrozyten gegenüber SDS

Ectoin-Konzentration (%)

Nummer: Int. Cl.⁷: Offenlegungstag: **DE 199 11 775 A1 A 61 K 7/40**3. Februar 2000

Vorbehandlung mit Ectoin

Abb. 4 Bestimmung der membranstabilisierenden Wirkung von mit Ectoin vorbehandelten Human-Erythrozyten gegenüber SDS