# Genetic Association of Deafness in Three Piebald Dogs



Soyeon Kim, Neel Srejan, Michelle Meng

# Background

Piebald, Merle = having a pattern of two different colors of hair



#### Dataset

503 dogs: Dalmatians, Australian Cattle Dogs, English Setters from UK and North America

- 1) deafness.fam ID and sex of each dog
- 2) deafness.bim chromosome, name, bp, alleles for each SNP
- 3) deafness.bed genotypes for each dog at each SNP
- 4) deafness\_pheno.txt phenotype file with dog ID, sex, breed, location, hearing phenotype, and sibling-pair phenotype

|   | dogID | sex | breed                 | location | BAER_test_phenotype | sib_pair_phenotype |
|---|-------|-----|-----------------------|----------|---------------------|--------------------|
| 0 | 10557 | 1   | australian_cattle_dog | UK       | hearing             | NaN                |
| 1 | 10558 | 1   | australian_cattle_dog | UK       | bilaterally_deaf    | 2.0                |
| 2 | 10560 | 2   | australian_cattle_dog | UK       | hearing             | 1.0                |
| 3 | 11934 | 2   | australian_cattle_dog | UK       | unilaterally_deaf   | NaN                |

# **GWAS** using PLINK

1. Quantify phenotype  $\rightarrow$  .phen file

| dogID | sex | breed                 | location | BAER_test_phenotype |                   | familyID | dogID | BAER_test_phenotype |
|-------|-----|-----------------------|----------|---------------------|-------------------|----------|-------|---------------------|
| 10557 | 1   | australian_cattle_dog | UK       | hearing             | $\longrightarrow$ | 10557    | 10557 | 0                   |
| 10558 | 1   | australian_cattle_dog | UK       | bilaterally_deaf    |                   | 10558    | 10558 | 1                   |

- Separate breeds → ID file for each breed/origin
   UKdalmatianIDs, NAdalmatianIDs, EnglishSetterIDs, AustralianCattleDogIDs
- 3. PLINK linear regression on each breed/origin  $\rightarrow$  .assoc.linear files
- 4. .assoc.linear  $\rightarrow$  QQ plot & Manhattan plot

# Principal Component Analysis (PCA)

- 1. Installed EIGENSTRAT (EIGENSOFT v7.2.1 package)
- 2. Run smartpca individually for each of the 3 breeds
  - a. Edit .fam file phenotype column to specify breed

```
11237 11237 0 0 2 -9 11237 11237 0 0 2 dalmatian

11246 11246 0 0 1 -9 11246 11246 0 0 1 dalmatian

11602 11602 0 0 2 -9 11602 11602 0 0 2 dalmatian

14166 14166 0 0 2 -9 14166 14166 0 0 2 english_setter

15863 15863 0 0 2 -9 15863 15863 0 0 2 english_setter

17551 17551 0 0 1 -9 17551 17551 0 0 1 australian_cattle_dog

ACD118 ACD118 0 0 2 -9 ACD118 0 0 2 australian_cattle_dog
```

b. Construct parameter file:

genotypename: deafness.bed
snpname: deafness.pedsnp

indivname: deafness\_new\_fullStr.pedind

evecoutname: breed\_out.evec
evaloutname: breed\_out.eval
poplistname: breed\_poplist.txt

altnormstyle: NO

- 3. Output respective eigenvector and eigenvalue files
- 4. Use eigenvector file to plot PC1 vs. PC2 using Matlibplot in Jupyter Notebook

# **PCA** for Dalmatians

#### Reproduction





PC1

0.05

-0.05

North America ▲
UK ●
Bilaterally Deaf
Unilaterally Deaf
Control

Genetic difference between North American vs. UK populations, shown by separation on PC1 with two distinct clusters.

The North American samples were predominantly controls and unilaterally deaf, while the UK samples were predominantly bilaterally deaf and controls.

### PCA for Australian Cattle Dog

Reproduction



Original



North America ▲
UK ●
Bilaterally Deaf
Unilaterally Deaf
Control

Sample geographic origin separates on PC2, with the exception of three UK samples

No phenotype separation

# PCA for English Setter



North America ▲
UK ●
Bilaterally Deaf
Unilaterally Deaf
Control

Some geographic structure, but no biased phenotypic distribution from the different locations

#### Challenges

- 1. Older EIGENSTRAT used by paper not available anymore.
- 2. No ways to remove SNP's under 5% minimum allele frequency
- 3. Plink --maf 0.05 vs EIGENSTRAT (no maf filter) outputs different PCA's
- 4. Not enough time to run GEMMA for GWAS step 2,3
- 5. Used PLINK for GWAS step 2, 3 and had some overlapping significant SNP's

#### Manhattan Plot bilaterally deaf vs. control Australian cattle dogs







#### **QQ plot** bilaterally deaf vs. control Australian cattle dogs





#### Significant SNP's: original paper(GEMMA)

| Breed                    | N                    | CFA | bp          | SNP ID                  | af all (deaf/controls) | pveª  | beta   | P-value                  |
|--------------------------|----------------------|-----|-------------|-------------------------|------------------------|-------|--------|--------------------------|
| Dalmatians North America | 20 deaf, 91 controls | 30  | 37,235,914  | BICF2P1106247           | 0.104 (0.300/0.060)    | 0.167 | -0.353 | 7.25×10 <sup>-6</sup> *  |
|                          |                      | 30  | 33,816,254  | BICF2P113616            | 0.333 (0.625/0.269)    | 0.155 | -0.222 | 1.60×10 <sup>-5</sup> *  |
|                          |                      | 23  | 48,506,877  | BICF2G630365393         | 0.441 (0.725/0.379)    | 0.150 | -0.220 | 2.28×10 <sup>-5</sup> *  |
|                          |                      | 30  | 22,647,163  | BICF2G630405064         | 0.068 (0.200/0.038)    | 0.130 | -0.408 | 8.93×10 <sup>-5</sup> *  |
|                          |                      | 37  | 27,255,309  | BICF2G630132623         | 0.243 (0.450/0.198)    | 0.122 | -0.245 | 1.54×10 <sup>-4</sup> *  |
| Dalmatians UK            | 72 deaf, 43 controls | 38  | 21,626,523  | BICF2G63068103          | 0.152 (0.083/0.267)    | 0.127 | 0.350  | 8.22×10 <sup>-5</sup> *  |
| Australian cattle dogs   | 16 deaf, 61 controls | 3   | 37,793,043  | BICF2G630338450         | 0.299 (0.656/0.205)    | 0.277 | -0.313 | 6.46×10 <sup>-7</sup> ** |
|                          |                      | 3   | 17,067,881  | BICF2G630703558         | 0.117 (0.344/0.057)    | 0.229 | -0.408 | 8.45×10 <sup>-6</sup> *  |
|                          |                      | 16  | 36,220,138  | BICF2P1229299           | 0.091 (0.281/0.041)    | 0.213 | -0.453 | 1.91×10 <sup>-5</sup> *  |
|                          |                      | 6   | 10,527,823  | BICF2S23125774          | 0.240 (0.500/0.172)    | 0.212 | -0.330 | 2.05×10 <sup>-5</sup> *  |
|                          |                      | 17  | 18,275,241  | thr17 18275241          | 0.110 (0.313/0.057)    | 0.187 | -0.377 | 6.96×10 <sup>-5</sup> *  |
|                          |                      | 6   | 75,622,113  | BICF2P481353            | 0.071 (0.219/0.033)    | 0.184 | -0.505 | 8.37×10 <sup>-5</sup> *  |
|                          |                      | 22  | 48,747,165  | BICF2G630335709         | 0.494 (0.188/0.574)    | 0.181 | 0.239  | 9.66×10 <sup>-5</sup> *  |
|                          |                      | 9   | 8,460,580   | BICF2S23511312          | 0.130 (0.313/0.082)    | 0.178 | -0.395 | 1.09×10 <sup>-4</sup> *  |
|                          |                      | 24  | 47,255,337  | TIGRP2P322787_rs9139922 | 0.136 (0.344/0.082)    | 0.176 | -0.344 | 1.19×10 <sup>-4</sup> *  |
| English setters          | 11 deaf, 39 controls | 39  | 111,315,267 | BICF2G6304357           | 0.220 (0.421/0.154)    | 0.192 | -0.276 | 1.20×10 <sup>-3</sup>    |

#### Significant SNP's: reproduced table(PLINK)

| Breed                       | CHR SNP ID |                 | ВР       | вета              | Р                | Rank* |
|-----------------------------|------------|-----------------|----------|-------------------|------------------|-------|
| Dalmatians<br>North America | 30         | BICF2P1106247   | 37235914 | -0.79066          | 0.000007         | 1     |
|                             | 30         | BICF2P113616    | 33816254 | -0.4430           | 0.000016         | 3     |
|                             | 23         | BICF2G630365393 | 48506877 | -0.4407           | 0.000023         | 4     |
| Dalmatians UK               | 38         | BICF2G63068103  | 21626523 | 0.6994            | 0.000082         | 1     |
| Australian cattle dog       | 3          | BICF2G630338450 | 37793043 | -6.266000e-0<br>1 | 6.461000e-0<br>7 | 1     |
|                             | 3          | BICF2G630703558 | 17067881 | -8.161000e-0<br>1 | 8.448000e-0<br>6 | 4     |
|                             | 16         | BICF2P1229299   | 36220138 | -9.054000e-0<br>1 | 1.908000e-0<br>5 | 6     |
|                             | 6          | BICF2S23125774  | 10527823 | -6.591000e-0<br>1 | 2.050000e-0<br>5 | 11    |
|                             | 17         | chr17_18275241  | 18275241 | -7.500000e-0<br>1 | 6.950000e-0<br>5 | 29    |
| English Setters             | N/A        | N/A             | N/A      | N/A               | N/A              | N/A   |

#### Future Pipeline

Pipeline from paper: Eigenstrat + GEMMA = PCA, Manhattan, QQ plots and SNP table

Pipeline from project: Eigenstrat + PLINK = PCA, Manhattan, QQ plots and SNP table

Future pipeline: As seen above PLINK as a standalone tool is capable of reproducing all the figures in the paper, thus our proposed future pipeline is to have a two sided pipeline in which one side is PLINK and the other is EIGENSTRAT + GEMMA. We can combine the results to have a wider range of significant SNP's, doesn't limit us to the capabilities of a chosen software tool.

# THANK YOU! Any Questions?