2

ઑલ્ટરનેટિંગ કરન્ટ

2.1 પ્રસ્તાવના (Introduction)

અગાઉ આપણે ડી.સી. વૉલ્ટેજ અને ડી.સી. કરન્ટની ચર્ચા કરી છે. એ.સી. વૉલ્ટેજ ઉત્પાદનમાં વપરાતા ઉપકરણ એ.સી. ડાયનેમો અથવા જનરેટર વિષેની જાણકારી આપણે પ્રકરણ 1માં મેળવી. હવે આ પ્રકરણમાં આપણે ઑલ્ટરનેટિંગ કરન્ટ (એ.સી.)ની ચર્ચા કરીશું. આપણે ઘર, ઓફિસ કે ઉદ્યોગોમાં એ.સી. વૉલ્ટેજનો ઉપયોગ કરતા હોઈએ છીએ. મોટા ભાગનાં વિદ્યુતઉપકરણો એ.સી. વૉલ્ટેજ ઉપર કાર્ય કરે છે.

આ પ્રકરણમાં આપણે કેટલાક સાદા એ.સી. વિદ્યુત પરિપથોનું વિશ્લેષણ કરીશું અને પછી એક વિદ્યુતરચનાની જાણકારી મેળવીશું. એ.સી. વૉલ્ટેજ અને પ્રવાહ sin ωt અથવા $\cos \omega t$ વિધેય અનુસાર બદલાતાં હોય તેમ લેવામાં આવે છે. અત્રે યાદ રાખવું જરૂરી છે કે એ.સી. વૉલ્ટેજ અને પ્રવાહ માત્ર sine કે cosine વિધેયો પ્રમાણે જ બદલાતાં હોય તેવું નથી. બીજી ઘણી રીતે તેઓ સમય સાથે આવર્ત રીતે બદલાઈ શકે છે, જે તમે ભવિષ્યમાં ભણશો.

2.2 ઇન્ડક્ટર, કેપેસિટર અને અવરોધના શ્રેણી-જોડાણ સાથેનો એ.સી. પરિપથ (અથવા L-C-R શ્રેણી-પરિપથ) (A.C. Circuit with Series Combination of an Inductor, Capacitor and Resistor) (or

(A.C. Circuit with Series Combination of an Inductor, Capacitor and Resistor) (or L-C-R AC Series Circuit)

આકૃતિ 2.1માં દર્શાવ્યા અનુસાર જેનો ઓહ્મિક અવરોધ શૂન્ય છે, તેવો ઇન્ડક્ટર (L), જેનો ઇન્ડક્ટન્સ શૂન્ય છે તેવો ઓહ્મિક અવરોધ (R) અને જેનું કૅપેસિટન્સ (C) છે, તેવું કૅપેસિટર, એ.સી. વૉલ્ટેજ પ્રાપ્તિસ્થાન સાથે શ્રેણીમાં જોડેલ છે. $V = V_{\rm m} \cos \omega t$

પરિણામે, ઇન્ડક્ટરના બે છેડા વચ્ચે વિદ્યુતિસ્થિતિમાનનો તફાવત $\mathbf{V}_{\!\scriptscriptstyle L} = \mathbf{L} \; rac{d\mathbf{I}}{dt}$

કેપેસિટરના બે છેડા વચ્ચેનો વિદ્યુતસ્થિતિમાનનો તફાવત $V_{_{
m C}}=rac{Q}{C}$ અને અવરોધના બે છેડા વચ્ચેનો વિદ્યુતસ્થિતિમાનનો તફાવત $V_{_{
m R}}={
m IR}$ થશે. કિર્ચીફના બીજા નિયમ અનુસાર

$$V_L + V_C + V_R = V.$$

$$L\frac{dI}{dt} + \frac{Q}{C} + IR = V_m \cos \omega t \tag{2.2.2}$$

પરંતુ
$$I = \frac{dQ}{dt}$$
 અને $\frac{dI}{dt} = \frac{d^2Q}{dt^2}$

$$\therefore L \frac{d^2Q}{dt^2} + \frac{Q}{C} + \frac{dQ}{dt}R = V_m \cos\omega t$$

$$\therefore \frac{d^2Q}{dt^2} + \frac{R}{L} \frac{dQ}{dt} + \frac{Q}{LC} = \frac{V_m}{L} \cos \omega t$$
 (2.2.3)

એ.સી. પરિપથનું વિદ્યુતભાર Q માટેનું વિકલ સમીકરણ છે, જે યંત્રશાસ્ત્રમાં ધો. 11માં તમે ભણી ગયેલા બળ પ્રેરિત દોલનના વિકલ સમીકરણ

$$\frac{d^2y}{dt^2} + \frac{b}{m}\frac{dy}{dt} + \frac{k}{m}y = \frac{F_0}{m}\sin\omega t \tag{2.2.4}$$

સાથે સામ્યતા ધરાવે છે. આ સમીકરણમાં યાંત્રિક રાશિઓ હોય છે. જ્યારે LCR શ્રેણી એ.સી. પરિપથ વિકલ સમીકરણમાં વિદ્યુતરાશિઓ હોય છે. સમીકરણ (2.2.3) અને (2.2.4) એક જ પ્રકારનાં વિકલ સમીકરણો કહેવાય. આ સમીકરણોમાં cosine અને sine વિધેયો હોવાથી તેઓ હાર્મીનિક વિધેયો જ છે.

ઉપર્યુક્ત સમીકરણોને સરખાવતાં યાંત્રિક રાશિઓ અને વિદ્યુતરાશિઓ વચ્ચેની સમતુલ્યતા નીચેના ટેબલમાં દર્શાવ્યા પ્રમાણે જોઈ શકાય છે.

ટેબલ 2.1 યાંત્રિક રાશિ અને વિદ્યુતરાશિ વચ્ચેની સામ્યતા

ક્રમ	યાંત્રિક રાશિ	વિદ્યુતરાશિ	
(1)	સ્થાનાંતર (y)	વિદ્યુતભાર (Q)	
(2)	વેગ $\left(\frac{dy}{dt} = v\right)$	વિદ્યુતપ્રવાહ $\left(\frac{dQ}{dt} = I\right)$	
(3)	અવરોધ-ગુણાંક (<i>b</i>)	અવરોધ (R)	
(4)	દળ (m)	ઇન્ડક્ટન્સ (L)	
(5)	બળ-અચળાંક (<i>k</i>)	કૅપેસિટન્સનો વ્યસ્ત $\left(\frac{1}{C}\right)$	
(6)	કોણીય આવૃત્તિ $\left(\sqrt{rac{k}{m}} ight)$	કોણીય આવૃત્તિ $\left(\sqrt{rac{1}{ ext{LC}}} ight)$	
(7)	આવર્તબળ	આવર્ત વૉલ્ટેજ	

સમીકરણ (2.2.3) ધ્યાનમાં લીધેલ કિસ્સાના એ.સી. પરિપથનું વિદ્યુતભાર Q માટેનું વિક્રણ સમીકરણ છે. Qનું સમય આધારિત જે વિધેય સમીકરણ (2.2.3)ને સંતોષી શકે તે વિધેયને સમીકરણ (2.2.3)નો ઉકેલ કહેવાય. આવા ઉકેલ મેળવવા માટે સંકર વિધેયોનો ઉપયોગ કરવામાં આવે છે. (સંકર સંખ્યા તથા સંકર વિધેયની સમજ પ્રકરણના અંતે પરિશિષ્ટ-Aમાં આપેલ છે, જે માત્ર જાણકારી માટે જ છે.)

2.3 L-C-R શ્રેણી એ.સી. પરિપથના Q માટે વિકલ સમીકરણનો ઉકેલ (Solution of differential equation of Q for L-C-R Series A.C. Circuit)

સમીકરણ (2.2.2)ને નીચે મુજબ લખી શકાય.

$$\frac{dI}{dt} + \frac{R}{L}I + \frac{1}{LC}\int Idt = \frac{V_m}{L}\cos\omega t$$
 (2.3.1)

અત્રે $Q = \int I dt$ લીધેલ છે.

ઉપર્યુક્ત સમીકરણનો ઉકેલ સંકર સંખ્યાનો ઉપયોગ કરીને મેળવી શકાય. $\cos \omega$ એ સંકર સંખ્યા $e^{j\omega_i}$ નો વાસ્તવિક ભાગ હોવાથી આપણને મળતો ઉકેલનો વાસ્તવિક ભાગ આપણા સમીકરણ (2.3.1)નો ઉકેલ બનશે. ઉપરાંત વિદ્યુતપ્રવાહ Iને સંકર સંખ્યા તરીકે લેવી પડશે. એટલે કે પ્રવાહ Iને સંકર પ્રવાહ i વડે દર્શાવતાં

$$\frac{di}{dt} + \frac{R}{L}i + \frac{1}{LC}\int idt = \frac{V_m}{L}e^{j\omega t}$$
 (2.3.2)

યાદ રાખો કે, R, L અને C તો વાસ્તવિક સંખ્યાઓ જ છે.

સમીકરણ (2.3.2)ની જમણી બાજુ સમયનું હાર્મોનિક વિધેય હોવાથી સંકર પ્રવાહ i પણ સમયનું હાર્મોનિક વિધેય હશે. આથી સમીકરણ (2.3.2)નો ઉકેલ નીચે પ્રમાણે લખી શકાય.

$$i = i_m e^{j\omega t} (2.3.3)$$

$$\therefore \frac{di}{dt} = i_m j \omega e^{j\omega t}$$
 તથા (2.3.4)

$$\int i \, dt = \frac{i_m e^{j\omega t}}{j\omega} \tag{2.3.5}$$

સમીકરણ (2.3.4 અને 2.3.5)નો સમીકરણ (2.3.2)માં ઉપયોગ કરતાં

$$i_m \, j \omega \ e^{j \omega t} + \ \frac{\mathrm{R}}{\mathrm{L}} \, i_m \ e^{j \omega t} + \frac{1}{\mathrm{LC}} \, \frac{i_m e^{j \omega t}}{j \omega} \ = \ \frac{\mathrm{V}_m}{\mathrm{L}} \, e^{j \omega t}$$

$$\therefore i_m \left(j\omega + \frac{R}{L} + \frac{1}{i\omega LC} \right) = \frac{V_m}{L}$$

બંને બાજુ L વડે ગુણતાં $\frac{1}{i} = \frac{j}{i^2} = -j$ લેતાં

$$i_m \left(j \omega \mathbf{L} + \mathbf{R} - \frac{j}{\omega \mathbf{C}} \right) \ = \ \mathbf{V}_m$$

$$\therefore i_m = \frac{V_m}{R + j\omega L - \frac{j}{\omega C}}$$
 (2.3.6)

 $i_m^{}$ નું આ મૂલ્ય સમીકરણ (2.3.3)માં મૂકતાં

$$i = \frac{V_m e^{j\omega t}}{R + j\left(\omega L - \frac{1}{\omega C}\right)}$$
(2.3.7)

આ સમીકરણ સંકર પ્રવાહ i અને સંકર વૉલ્ટેજ $V_m e^{i\omega t}$ વચ્ચેનો સંબંધ દર્શાવે છે. ત્યાં તેનું સ્વરૂપ ઓહ્મના નિયમને રજૂ કરતા સમીકરણ $I=\frac{V}{R}$ જેવું જ છે. એટલે કે તત્કાલીન વૉલ્ટેજ અને તત્કાલીન પ્રવાહ દ્વારા ઓહ્મનો નિયમ પળાય છે.

આ પરથી જોઈ શકાય છે કે પ્રવાહ પર અવરોધ Rની જે અસર થાય છે, તેવી જ અસર ઇન્ડક્ટર અને કેપેસિટર વડે પ્રવાહ પર થતી અસરો અનુક્રમો $j\omega$ L અને $\frac{-j}{\omega C}$ વડે મળે છે. એટલે કે $j\omega$ L અને $\frac{-j}{\omega C}$ અનુક્રમે ઇન્ડક્ટર અને કેપેસિટરના અસરકારક અવરોધો કહેવાય. $j\omega$ Lને ઇન્ડક્ટરનો ઇન્ડક્ટિવ રિએક્ટન્સ અને $\frac{-j}{\omega C}$ ને કેપેસિટરનો કેપેસિટિવ રિએક્ટન્સ કહે છે. જેમની સંજ્ઞાઓ અનુક્રમે $Z_{\rm L}$ અને $Z_{\rm C}$ છે. તેમનાં મૂલ્યો અનુક્રમે ω L અને $\frac{1}{\omega C}$ જેની સંજ્ઞાઓ અનુક્રમે $X_{\rm L}$ અને $X_{\rm C}$ વડે દર્શાવાય છે. આમ,

$$Z_{L} = j\omega L \tag{2.3.8}$$

$$X_{L} = \omega L \tag{2.3.9}$$

$$Z_{\rm C} = \frac{-j}{\omega C} \tag{2.3.10}$$

$$X_{C} = \frac{1}{\omega C} \tag{2.3.11}$$

 $Z_{\rm L}$, $Z_{\rm C}$ અને Rના સરવાળાને L-C-R શ્રેણી-પરિપથનો ઇમ્પિડન્સ (Z) કહે છે, જેનો એકમ ઓહ્મ છે.

$$\therefore Z = R + Z_L + Z_C \tag{2.3.12}$$

$$\therefore Z = R + j \left(\omega L - \frac{1}{\omega C} \right)$$
 (2.3.13)

હવે સમીકરણ (2.3.7) નીચે મુજબ લખી શકાય. :

$$i = \frac{V_m e^{j\omega t}}{Z} = \frac{\text{qiebs}}{\text{watsus washt}(Z)}$$
 (2.3.14)

આ સમીકરણ એ સંકર પ્રવાહ, સંકર વૉલ્ટેજ અને ઇમ્પિડન્સ વચ્ચેનો ઓહ્મનો નિયમ છે. ઇમ્પિડન્સ પણ સંકર છે, તે નોંધો. હવે, $Z=|Z|e^{j\delta}$ લેતાં, (જુઓ પરિશિષ્ટ A)

$$i = \frac{V_m e^{j\omega t}}{|Z|e^{j\delta}} \tag{2.3.15}$$

$$= \frac{V_m}{|Z|} e^{j(\omega t - \delta)} = \frac{V_m}{|Z|} [\cos(\omega t - \delta) + j\sin(\omega t - \delta)]$$
 (2.3.16)

જયાં,
$$|Z| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$
 (2.3.17)

હવે,
$$I = R_{\epsilon}(i)$$
 (2.3.18)

$$\therefore I = \frac{V_m \cos(\omega t - \delta)}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} = \frac{V_m \cos(\omega t - \delta)}{|Z|}$$
(2.3.19)

ભૌતિકવિજ્ઞાન-IV

આ પરિપથમાં પ્રવાહ સમય સાથે સમીકરણ (2.3.19) અનુસાર બદલાય છે જ્યારે વૉલ્ટેજ સમીકરણ (2.3.1) અનુસાર બદલાય છે. જે દર્શાવે છે કે પરિપથમાંનો પ્રવાહ, વૉલ્ટેજ કરતાં કળામાં (δ) જેટલો પાછળ છે. આ હકીકત આકૃતિ (2.2)માં દર્શાવેલ છે.

પરિપથનો સંકર ઇમ્પિડન્સ Z દર્શાવતું સમીકરણ $Z = R + j\omega L - \frac{j}{\omega C} \ \dot{\Theta}. \ \ (2.3.20)$

આકૃતિ 2.2 A.C. L-C-R પરિપથમાં પ્રવાહ અને વૉલ્ટેજ

આ સંકર સંખ્યાનો વાસ્તવિક ભાગ R છે. તેને વાસ્તવિક અક્ષ પર આકૃતિ (2.3)માં દર્શાવેલ છે.

આકૃતિ 2.3 Zનું ભૌમિતિક નિરૂપણ

જયારે કાલ્પનિક ભાગને કાલ્પનિક અક્ષ પર દર્શાવેલ છે. તેમના પરથી સંકર સંખ્યા Z દર્શાવતું બિંદુ H મેળવેલ છે. સમીકરણ (2.3.13) વડે અપાતા ઇમ્પિડન્સ Zની સંકર સમતલમાં રજૂઆત આકૃતિ (2.3)માં નીચે દર્શાવ્યા અનુસાર થાય.

આકૃતિમાં OD = R, OA = ω L અને OF = $\frac{1}{\omega C}$

 \therefore OG = ω L $-\frac{1}{\omega C}$, Zનો કાલ્પનિક ભાગ

$$\dot{\Theta}$$
. $Z = OH = R + j \left(\omega L - \frac{1}{\omega C}\right)$

$$|Z| = \sqrt{OD^2 + DH^2}$$

$$\therefore |Z| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$
 (2.3.22)

વળી, આકૃતિ (2.3) પરથી પ્રવાહ અને વોલ્ટેજ વચ્ચેનો કળા તફાવત નીચે મુજબ મેળવી શકાય.

$$\therefore \tan \delta = \frac{\text{HD}}{\text{OD}} = \frac{\left(\omega L - \frac{1}{\omega C}\right)}{R} \tag{2.3.23}$$

આમ, ઇમ્પિડન્સને સંકર સમતલમાં દર્શાવી ભૌમિતિક રીતે |Z| અને δ નાં મૂલ્યો સહેલાઈથી શોધી શકાય છે. ઉપરાંત ω , L, C અને Rનાં મૂલ્યો જાણીતાં હોવાથી સમીકરણ (2.3.22) અને સમીકરણ (2.3.23)નો ઉપયોગ કરી અનુક્રમે |Z| અને δ નાં મૂલ્યો મેળવી શકાય છે. તેના પરથી વિદ્યુતપ્રવાહ અને વૉલ્ટેજનો સંબંધ દર્શાવતું સમીકરણ લખી શકાય છે.

આપેલ પરિપથનો ઇમ્પિડન્સ શોધવા માટે અવરોધ Rનાં શ્રેશી અને સમાંતર જોડાણોના જે નિયમો વાપરીએ છીએ, તેવા જ નિયમો $j\omega$ L અને $-\frac{j}{\omega C}$ માટે પણ વાપરી શકાય છે.

વિવિધ પરિપથો માટે પ્રવાહ અને વૉલ્ટેજના સંબંધો ઉપર્યુક્ત ભૌમિતિક સંરચનાનો ઉપયોગ કરીને મેળવી શકાય.

2.4 એ.સી. પરિપથના વિવિધ કિસ્સાઓ (Different Cases of Circuits)

(1) માત્ર અવરોધ ધરાવતો એ.સી. પરિપથ : L–C–R પરિપથમાં ઇન્ડક્ટર (L) અને કૅપેસિટર (C)ની ગેરહાજરી એટલે માત્ર અવરોધ ધરાવતો પરિપથ. આમ, LCR પરિપથ માટેના સમીકરણમાં આવતા

(2.3.21)

આકૃતિ 2.4 ફક્ત R ધરાવતો A.C. પરિપથ

$$I = \frac{V_m \cos \omega t}{R}$$

સ્વરૂપનું બનશે. આમ માત્ર અવરોધ ધરાવતા એ.સી. પરિપથમાં પ્રવાહ અને વૉલ્ટેજની કળા સમાન હોય છે. તે જોઈ શકાય છે. આ હકીકત આકૃતિ 2.5માં દર્શાવેલ છે.

$$Z = R + j \left(\omega L - \frac{1}{\omega C}\right)$$
માં $\omega L = 0$ અને

 $\frac{1}{\omega C}=0$ લેતાં પ્રસ્તુત પરિષય માટેનો |Z|=R તથા સમીકરણ (2.3.21) પરથી મળતા δ નું મૂલ્ય શૂન્ય થાય. આમ, પ્રવાહ અને વૉલ્ટેજનો સંબંધ દર્શાવતું સમીકરણ (2.3.19)

આકૃતિ 2.5

(2) માત્ર ઇન્ડક્ટર ધરાવતો પરિપથ : માત્ર ઇન્ડક્ટર ધરાવતો પરિપથ એટલે અગાઉ જોયા પ્રમાણે LCR પરિપથમાં કેપેસિટર (C) અને અવરોધ (R)નું ગેરહાજર હોવું. આ પરિપથ માટેનો $Z=j\omega L$ તથા $|Z|=\omega L=X_L$ થશે. (કારણ કે $\frac{1}{\omega C}=0$ અને R=0).

$$I = \frac{V_m \cos\left(\omega t - \frac{\pi}{2}\right)}{\omega L} = \frac{V_m \cos\left(\omega t - \frac{\pi}{2}\right)}{X_L}$$

Zને આકૃતિ (2.6)માં સંકર સમતલમાં બિંદુ A વડે દર્શાવેલ છે.

અહીં OA એ વાસ્તવિક અક્ષ સાથે $rac{\pi}{2}$ કોણ બનાવે

છે. જે દશ્વે છે કે $\delta=\frac{\pi}{2}$ તથા $OA=\omega L=|Z|$ છે.

|Z| અને δ નાં મૂલ્યો સમીકરણ (2.3.19)માં મૂકતાં

જે દર્શાવે છે કે, પ્રવાહ એ વૉલ્ટેજ કરતાં $^{
m V,I}$ કળામાં $\frac{\pi}{2}$ જેટલો પાછળ છે. જે આકૃતિ 2.7માં દર્શાવી છે.

આકૃતિ 2.7

(3) માત્ર કેપેસિટર ધરાવતો એ.સી. પરિપથ : આ કિસ્સામાં માત્ર કૅપેસિટર હાજર હોવાથી $Z=-rac{j}{\omega C}$ અને $|Z|=rac{1}{\omega C}=$ ${\bf X}_{\rm C}$. ${\bf Z}$ ને આકૃતિ (2.8)માં ${\bf F}$ બિંદુ વડે સંકર સમતલમાં દર્શાવેલ છે. આકૃતિ 2.8 પરથી સ્પષ્ટ છે કે $\delta = -\frac{\pi}{2}$. આમ, વિદ્યુતપ્રવાહ અને વૉલ્ટેજ વચ્ચેનો સંબંધ નીચે પ્રમાણે થશે.

આમ, એકલા કેપેસિટર ધરાવતા એ.સી. પરિપથમાં $\overrightarrow{\omega_t}$ વિદ્યુતપ્રવાહ વૉલ્ટેજ કરતાં કળામાં $\frac{\pi}{2}$ જેટલો આગળ હોય 할. આ હકીકત આકૃતિ 2.9માં દર્શાવી છે.

આકૃતિ 2.8

(4) R અને L શ્રેણીમાં જોડેલા હોય તેવો એ.સી. પરિપથ : આ પરિપથ માટે $Z=R+jX_L=R+j\omega L$ થશે તથા $|Z| = \sqrt{R^2 + X_L^2} = \sqrt{R^2 + (\omega L)^2}$ આકૃતિ (2.10)માં Zને સંકર સમતલમાં H બિંદુ વડે દર્શાવેલ છે. આકૃતિ પરથી સ્પષ્ટ છે કે

આકૃતિ 2.9

$$tan\delta \ = \ \frac{\omega L}{R}$$

$$\therefore \delta = \tan^{-1}\left(\frac{\omega L}{R}\right) = \tan^{-1}\left(\frac{X_L}{R}\right)$$
 (2.4.4)

આમ, આ પરિપથ માટે વિદ્યુતપ્રવાહ, વૉલ્ટેજ કરતાં δ જેટલો કળામાં પાછળ છે.

અત્રે વિદ્યુતપ્રવાહ
$$I = \frac{V_m \cos(\omega t - \delta)}{\sqrt{R^2 + (\omega L)^2}}$$
 (2.4.5)

આકૃતિ 2.10

(5) \mathbf{R} અને \mathbf{C} શ્રેણીમાં હોય તેવો એ.સી. પરિપથ : આ પરિપથ માટે $\mathbf{Z} = \mathbf{R} - \frac{j}{\omega \mathbf{C}} = \mathbf{R} - j\mathbf{X}_{\mathbf{C}}$

ઑલ્ટરનેટિંગ કરન્ટ

$$\therefore \ |Z| \ = \ \sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2} \ = \ \sqrt{R^2 + X_C^2}$$

આ Zને આકૃતિ (2.11)માં H બિંદુ વડે દર્શાવેલ છે.

અત્રે આકૃતિમાં દર્શાવ્યા પ્રમાણે δ ઋણ તથા તેનું મૂલ્ય

$$\delta = \tan^{-1} \left(\frac{1}{\omega CR} \right) = \tan^{-1} \left(\frac{X_C}{R} \right)$$
 (2.4.6) થશે.

પ્રસ્તુત કિસ્સામાં વિદ્યુતપ્રવાહ વૉલ્ટેજ કરતાં કળામાં δ જેટલો આગળ હશે.

$$I = \frac{V_m \cos(\omega t + \delta)}{\sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}} = \frac{V_m \cos(\omega t + \delta)}{\sqrt{R^2 + (X_C)^2}}$$
(2.4.7)

(6) L અને C શ્રેણીમાં હોય તેવો એ.સી. પરિપથ : આ પરિપથ માટે $Z=j\omega L-\frac{j}{\omega C}=jX_L-jX_C$

$$\therefore |Z| = \omega L - \frac{1}{\omega C} = X_L - X_C$$

 $\omega L > rac{1}{\omega C}$ ધારીને અત્રે મેળવેલા Z આકૃતિ 2.12માં સંકર સમતલમાં G બિંદુ વડે દર્શાવેલ છે. અગે $\delta = \frac{\pi}{2}$ થશે. આમ L-C શ્રેણી એ.સી. પરિપથમાં જો $\omega L > rac{1}{\omega C}$ હોય, તો વિદ્યુતપ્રવાહ વૉલ્ટેજ કરતાં કળામાં

 $\frac{\pi}{2}$ જેટલો પાછળ હોય છે. (જો $\omega L < \frac{1}{\omega C}$ હોય, તો તમે જાતે વિચારો.)

આકૃતિ 2.12

(7) L અને Cના સમાંતર જોડાણ સાથે Rનું શ્રેણીજોડાણ :

L અને Cને સમાંતર જોડી R સાથે શ્રેણીમાં જોડેલ પરિપથ આકૃતિ 2.13માં દર્શાવ્યા મુજબનો હોય છે. આ પરિપથનો અસરકારક ઇમ્પિડન્ટ Z નીચે પ્રમાણે શ્રેણી સમાંતર જોડાણના નિયમો પરથી મેળવી શકાય છે. L અને Cના સમાંતર જોડાણનો હોય તો, ઇમ્પિડન્સ $\mathbf{Z}_{\!\scriptscriptstyle 1}$.

$$\frac{1}{Z_{1}} = \frac{1}{Z_{C}} + \frac{1}{Z_{L}} = \frac{1}{\frac{-j}{(\omega C)}} + \frac{1}{j\omega L} = j\left(\omega C - \frac{1}{\omega L}\right)$$

$$\therefore Z_1 = \frac{1}{j\left(\omega C - \frac{1}{\omega L}\right)} = -\frac{j}{\left(\omega C - \frac{1}{\omega L}\right)}$$
 (2.4.9)

વળી, R અને $Z_{\scriptscriptstyle 1}$ શ્રેશીમાં છે.

$$\therefore Z = R + Z_1$$

$$\therefore Z = R - \frac{j}{\left(\omega C - \frac{1}{\omega I}\right)}$$
 (2.4.10)

ભૌતિકવિજ્ઞાન-IV

 $\omega L > rac{1}{\omega C}$ ધારતાં Zને આકૃતિ 2.14માં દર્શાવ્યા પ્રમાણે રજૂ કરી શકાય. અત્રે સમીકરણ (2.4.10) પરથી

$$|Z| = \sqrt{R^2 + \frac{1}{\left(\omega C - \frac{1}{\omega L}\right)^2}}$$
 (2.4.11)

સમીકરણ (2.3.19) અને (2.4.12)નો ઉપયોગ કરત વિદ્યુત પ્રવાહ

$$I = \frac{V_m \cos(\omega t + \delta)}{\sqrt{R^2 + \frac{1}{\left(\omega C - \frac{1}{\omega L}\right)^2}}}$$
(2.4.12)

આકૃતિ 2.14

આ સમીકરણ પ્રસ્તુત પરિપથમાં વિદ્યુતપ્રવાહ અને વૉલ્ટેજ વચ્ચેનો સંબંધ દર્શાવે છે.

2.5 વૉલ્ટેજ અને પ્રવાહનાં rms મૂલ્યો (r.m.s. Values of Voltage and Current)

અત્યાર સુધી આપણે $V = V_m \cos \omega t$ અને $I = I_m \cos(\omega t \pm \delta)$ જેવા અનુક્રમે વૉલ્ટેજ અને પ્રવાહનાં સૂત્રો જોયાં. અત્રે V અને I સતત આવર્ત રીતે સમય સાથે બદલાતાં જાય છે. આવી પરિસ્થિતિમાં સાદું વૉલ્ટમીટર કે ઍમીટર યોગ્ય રીતે પરિપથમાં જોડીને વૉલ્ટેજ કે પ્રવાહ માપવાનું શક્ય નથી. જો આપણે એ.સી. વૉલ્ટેજ કે એ.સી. પ્રવાહના એક આવર્ત પરના સરેરાશ મૂલ્યો શોધવા જઈએ, તો તે શૂન્ય મળે છે. કારણ કે તેમને દર્શાવતાં સૂત્રોમાં sine કે cosine વિધેયો આવે છે. તમે જાણો છો કે sine અને cosine વિધેયોનું એક આવર્તકાળના ગાળા પરનું સરેરાશ મૂલ્ય શૂન્ય હોય છે. એટલે કે,

$$\langle V \rangle = V_m \left[\frac{1}{T} \int_0^T \cos \omega t \, dt \right] = 0$$

વ્યવહારમાં એ.સી. વૉલ્ટેજ અને એ.સી. પ્રવાહ માપવા માટે ખાસ રીતે તૈયાર કરેલાં એ.સી. વૉલ્ટમીટરો અને એ.સી. ઍમીટરો વપરાય છે. આ મીટરો એ.સી. વૉલ્ટેજ અને એ.સી. પ્રવાહનાં rms (root mean square) મૂલ્યો આપે છે.

કોઈ રાશિનું Root Mean Square (rms) મૂલ્ય એટલે આપેલ રાશિના વર્ગના સરેરાશનું વર્ગમૂળ. પ્રસ્તુત કિસ્સાઓમાં વર્ગનું સરેરાશ એક આવર્તકાળના ગાળા પર લેવામાં આવે છે.* $V=V_m\cos\omega t$ નું rms મેળવવા માટે એક આવર્તકાળ T પર V^2 નું સરેરાશ મેળવવું જોઈએ અને ત્યાર બાદ તેનું વર્ગમૂળ લેવું જોઈએ.

સરેરાશ
$$V^2 = \langle V^2 \rangle = \langle V_m^2 \cos^2 \omega t \rangle$$
 (2.5.1)
$$= V_m^2 \left\langle \frac{1 + \cos 2\omega t}{2} \right\rangle = V_m^2 \left\langle \frac{1}{2} + \frac{\cos 2\omega t}{2} \right\rangle$$

્ટ્રેટનોટ : * જો f(t) એ સમયનું વિધય હોય તો, T જેટલા સમયગાળા પર આ વિધયનું સરેરાશ મૂલ્ય નીચેના સૂત્ર વડે આપી શકાય છે. $\langle f(t) \rangle = \frac{1}{T} \int\limits_0^T f(t) \, dt$

$$= V_m^2 \left\langle \frac{1}{2} \right\rangle + \frac{V_m^2}{2} \left(\frac{1}{T} \int_0^T \cos 2\omega t \, dt \right)$$

પરંતુ $\left\langle \frac{1}{2} \right\rangle$ ની સરેરાશ $=\frac{1}{2}$ તથા $\frac{1}{T}\int\limits_{0}^{T}\cos 2\omega t\,dt=0$

$$\therefore \langle V_m^2 \rangle = \frac{V_m^2}{2} \tag{2.5.2}$$

$$\therefore V_{rms} = \sqrt{\langle V^2 \rangle} = \frac{V_m}{\sqrt{2}}$$
 (2.5.3)

તેવી જ રીતે
$$I_{rms} = \frac{I_m}{\sqrt{2}}$$
 (2.5.4)

2.6 શ્રેણી-અનુનાદ (Series Resonance)

L-C-R શ્રેશી-પરિપથમાં અનુનાદની ઘટના સમજવા માટે સમીકરણ (2.3.19)ને ધ્યાનમાં લો.

$$I = \frac{V_m \cos(\omega t - \delta)}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$

$$\therefore I = I_{m} \cos(\omega t - \delta)$$

જયાં,
$$I_m = \frac{V_m}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$

સમીકરણ (2.5.4) પરથી

$$I_{rms} = \frac{I_m}{\sqrt{2}} = \frac{\frac{V_m}{\sqrt{2}}}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$

$$\therefore I_{rms} = \frac{V_{rms}}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} = \frac{V_{rms}}{|Z|}$$
(2.6.1)

સમીકરણ (2.6.1) દર્શાવે છે કે જો વૉલ્ટેજની કોણીય આવૃત્તિ ω નાં મૂલ્યો બદલતાં જઈએ, તો I_{rms} નાં મૂલ્યો પણ બદલાતાં જશે અને જ્યારે એક એવું નિશ્ચિત મૂલ્ય I_{rms} મળશે કે જેથી

$$\omega_0 L = \frac{1}{\omega_0 C} \tag{2.6.2}$$

થશે. ત્યારે, |Z| ન્યૂનતમ થશે અને I_{rms} મહત્તમ થશે.

$$I_{rms} = \frac{V_{rms}}{R} = I_{rms}(max) \tag{2.6.3}$$

આમ, વૉલ્ટેજની એક ખાસ નિશ્ચિત કોણીય આવૃત્તિ માટે rms પ્રવાહનું મૂલ્ય મહત્તમ મળવાની ઘટનાને L-C-R એ.સી. શ્રેણી-પરિપથમાં શ્રેણી અનુનાદ કહે છે. સમીકરણ (2.6.2) પરથી

$$\omega_0 = \frac{1}{\sqrt{LC}} \tag{2.6.4}$$

આ પરથી $f_0=rac{1}{2\pi\sqrt{\mathrm{LC}}}$.

અત્રે ω_0 ને આપેલ L-C-R માટે AC શ્રેશી-પરિપથની પ્રાકૃતિક કોશીય આવૃત્તિ કે અનુનાદ કોશીય આવૃત્તિ કહે છે. અને f_0 ને અનુનાદ આવૃત્તિ કહે છે. અત્રે એક વસ્તુ નોંધો કે,

જયારે ઇમ્પિડન્સનો રિઍક્ટિવ ઘટક $\left(\omega L - \frac{1}{\omega C}\right)$ શૂન્ય I_{rms} થાય છે એટલે કે ઇમ્પિડન્સનો કાલ્પનિક ભાગ શૂન્ય થાય I_{rms} (max) છે, ત્યારે અનુનાદ ઉત્પન્ન થાય છે.

આકૃતિ (2.15)માં L—C—R શ્રેણી-પરિપથ માટે I_{ms} વિરદ્ધ ω નાં, Rનાં બે મૂલ્યો ($R_1 < R_2$) માટે આલેખો દર્શાવ્યા છે. જેને અનુનાદ વક્રો કહે છ. આ આલેખ પરથી સ્પષ્ટ છે કે જેમ R નાનો તેમ અનુનાદ વક્ર વધારે તીક્ષ્શ.

Q-ફેંક્ટર : L-C-R શ્રેણી-અનુનાદ વક્રની તીક્શતા Q-ફેંક્ટર તરીકે ઓળખાતી રાશિ વડે માપવામાં આવે છે.

આકૃતિ 2.15 અનુનાદ-વક

પરિપથમાં મહત્તમ પાવર rms પ્રવાહના મહત્તમ મૂલ્યના વર્ગ $[I_{rms} \ (\max)]^2$ ના સમપ્રમાણમાં હોય છે. જ્યારે I_{rms} નું મૂલ્ય $\frac{I_{rms} (\max)}{\sqrt{2}}$ જેટલું થાય, ત્યારે પાવરનું મૂલ્ય મહત્તમ પાવરના મૂલ્યથી અડધું થઈ જાય છે. આ પાવરને અનુરૂપ $\frac{I_{rms} (\max)}{\sqrt{2}}$ નું મૂલ્ય આકૃતિ 2.15માં દર્શાવ્યું છે. આકૃતિ પરથી સ્પષ્ટ છે કે પ્રવાહના આટલા મૂલ્ય માટે બે કોણીય આવૃત્તિઓ ω_1 અને ω_2 મળે છે.

$(\omega_2 - \omega_1)$ ને હાફપાવર બૅન્ડવીડ્થ $(\Delta\omega)$ કહે છે.

આ ચર્ચા પરથી સ્પષ્ટ છે કે જેમ હાફપાવર બૅન્ડવીડ્થ ($\Delta\omega$) ઓછી તેમ અનુનાદ-વક્રની તીક્ષ્ણતા વધારે. આ હકીકત સમજવા માટે Q-ફૅક્ટરની વ્યાખ્યા નીચેના સૂત્ર મુજબ વ્યાખ્યાયિત કરી શકાય.

$$Q = \frac{\omega_0}{\Delta \omega} = \frac{f_0}{\Delta f} \tag{2.6.5}$$

અત્રે સ્પષ્ટ છે કે જેમ Q-ફૅક્ટર મોટો તેમ વક્રની તીક્ષ્ણતા વધારે. વળી,

$$\Delta\omega = \frac{R}{L} \tag{2.6.6}$$

(આ સૂત્રની તારવણી પ્રકરણને અંતે પરિશિષ્ટ-Bમાં માત્ર જાણકારી માટે આપેલ છે.) $\Delta \omega$ નું આ મૂલ્ય સમીકરણ (2.6.5)માં મૂકતાં

$$Q = \frac{\omega_0 L}{R}$$
 (2.6.7)

પરંતુ $\omega_0=rac{1}{\sqrt{LC}}$

$$\therefore Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$
 (2.6.8)

આ સૂત્ર પરથી જોઈ શકાય છે કે Q-ફૅક્ટર પરિપથના બધા ઘટકોનાં મૂલ્યો પર આધાર રાખે છે.

Q-ફૅક્ટરના મૂલ્ય પરથી સર્કિટનું Tuning કેવું હશે તે જાણી શકાય છે, તથા પરિપથની સિલેક્ટિવિટી પણ જાણી શકાય છે.

રેડિયો અને ટીવીના એન્ટેના પર આપાત થતી ઘણી બધી આવૃત્તિઓમાંથી કોઈ એક પસંદગીની આવૃત્તિ મેળવવા માટે (Tune કરવા માટે) અનુનાદ પરિપથોનો ઉપયોગ થાય છે. પસંદગીની આવૃત્તિ બદલવા માટે L અથવા C અથવા બંનેને બદલી શકાય તેવી વ્યવસ્થા હોય છે. અત્રે નોંધો કે RL અને RC પરિપથમાં અનુનાદ મળી શકે નહિ.

ઉદાહરણ 1: 8.0 mHનો ઇન્ડક્ટર 80 μFનું કેપેસીટર અને 400 Ωનો અવરોધ 230 Vના એ.સી. પ્રાપ્તિસ્થાન સાથે શ્રેણીમાં જોડેલ છે, તો (1) અનુનાદ-આવૃત્તિ શોધો. (2) પરિપથનો ઇમ્પિડન્સ અને પ્રવાહનું મૂલ્ય અનુનાદની સ્થિતિમાં મેળવો. (3) પરિપથમાં ઉપર્યુક્ત શ્રેણીઘટકોને સમાંતર (rms) વિદ્યુતસ્થિતિમાનનો તફાવત શોધો.

ઉકેલ :

(1) અનુનાદ-આવૃત્તિ
$$f=rac{1}{2\pi\sqrt{\mathrm{LC}}}$$

$$\therefore f = \frac{1}{(2)(3.14)\sqrt{8\times10^{-3}\times80\times10^{-6}}} = \frac{1}{6.28\times8\times10^{-4}} = 199 \text{ Hz}$$

(2)
$$|Z| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} = \sqrt{R^2 + (X_L - X_C)^2}$$

$$X_{L} = \omega L = 2\pi f L = (2) (3.14) (199) (8 \times 10^{-3}) = 10 \Omega$$

$$X_C = \frac{1}{\omega C} = \frac{1}{2\pi f C} = \frac{1}{(2)(3.14)(199)(80 \times 10^{-6})} = 10 \ \Omega$$

અનુનાદ વખતે $X_L = X_C$

$$\therefore$$
 $|Z| = R = 400 \Omega$

$$\therefore$$
 અનુનાદ વખતે પરિપથમાંનો પ્રવાહ I = $\frac{V}{R}$ = $\frac{230}{400}$ = 0.575 A

(3) ઇન્ડક્ટરના બે છેડા વચ્ચેનો વીજસ્થિતિમાનનો તફાવત

$$V_L = I_{rms} X_L = (0.575) (10) = 5.75 \text{ volt}$$

તે જ રીતે કૅપેસિટરના બે છેડા વચ્ચેનો વીજસ્થિતિમાનનો તફાવત

 $V_C = I_{rms} X_C = (0.575) (10) = 5.75 \text{ volt}$

તથા અવરોધના બે છેડા વચ્ચેનો વીજસ્થિતિમાનનો તફાવત

$$V_R = I_{min}R = (0.575) (400) = 230 \text{ volt}$$

ઉદાહરણ 2 : આકૃતિ 2.13માં આપેલ પરિપથ માટે ω ના કયા મૂલ્ય માટે ઇમ્પિડન્સનું મૂલ્ય મહત્તમ થાય ? આ મહત્તમ મૂલ્ય કેટલું હશે? આ વખતે I_{rms} શોધો.

ઉકેલ : સમીકરણ (2.4.12) અનુસાર,

$$|Z| = \left[R^2 + \frac{1}{\left(\omega C - \frac{1}{\omega L}\right)^2} \right]^{\frac{1}{2}}$$

આ પદમાં $\left(\omega C - \frac{1}{\omega L}\right)^2$ નું મૂલ્ય ન્યૂનતમ થાય, ત્યારે |Z|નું મૂલ્ય મહત્તમ થશે.

$$\therefore \ \omega C \ - \ \frac{1}{\omega L} \ = \ 0$$

$$\therefore \omega = \frac{1}{\sqrt{LC}}$$

$$\therefore I_{rms} = \frac{V}{|Z|} = 0$$

ઉદાહરણ 3 : એક શ્રેણી L-C-R પરિપથમાં એ.સી. વૉલ્ટેજ અને પ્રવાહ નીચે મુજબના છે.

 $V = 200\sqrt{2}\cos(3000t-55^{\circ})$ V, $I = 10\sqrt{2}\cos(3000t-10^{\circ})$ A, તો પરિપથનો ઇમ્પિડન્સ અને અવરોધ R શોધો.

ઉકેલ : પરિપથમાંના પ્રવાહ અને વૉલ્ટેજ વચ્ચેનો કળા-તફાવત 45° છે.

$$\therefore \tan \delta = \tan 45^{\circ} = 1$$

હવે L-C-R શ્રેણી-પરિપથ માટે $\tan\delta = \frac{\omega L - \frac{1}{\omega C}}{R}$ છે.

$$\therefore \frac{\omega L - \frac{1}{\omega C}}{R} = 1$$

$$\therefore$$
 R = ω L - $\frac{1}{\omega C}$

$$\therefore$$
 ઇમ્પિડન્સ $|Z| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} = \sqrt{R^2 + R^2} = R\sqrt{2}$

$$\therefore |Z| = \frac{V_m}{I_m} = \frac{200\sqrt{2}}{10\sqrt{2}} = 20 \Omega$$

$$\therefore R\sqrt{2} = 20$$

$$\therefore$$
 R = 14.14 Ω

ઉદાહરણ 4: એક વિદ્યુતપ્રવાહ 12 Aના ડી.સી. પ્રવાહ (Component) અને $I=9 \sin \omega t$ Aના એ.સી. પ્રવાહ (Component)નો બનેલો છે, તો પરિણામી પ્રવાહનું સૂત્ર લખો અને I_{pms} શોધો.

$$6$$
કેલ ઃ પરિશામી પ્રવાહ (કોઈ પણ t સમયે) $I=12+9 \sin \omega t$ (1)

હવે
$$I_{rms} = \sqrt{\langle I^2 \rangle} = \sqrt{\langle 12 + 9 \sin \omega t \rangle^2} = \sqrt{\langle 144 + 216 \sin \omega t + 81 \sin^2 \omega t \rangle}$$

અહીં સરેરાશ એક આવર્તકાળ પર છે.

$$\therefore I_{rms} = \sqrt{\langle 144 \rangle + 216 \langle \sin \omega t \rangle + 81 \langle \sin^2 \omega t \rangle}$$

હવે,
$$\langle 144 \rangle = 144$$
, $216 \langle \sin \omega t \rangle = 0$ અને $81 \langle \sin^2 \omega t \rangle = 81 \times \frac{1}{2} = 40.5$

$$I_{rms} = \sqrt{144 + 40.5} = 13.58 \text{ A}$$

ઉદાહરણ $\mathbf{5}$: એકબીજા સાથે સમાંતર જોડેલ $\mathbf{L_1}$ અને $\mathbf{L_2}$ ઇન્ડક્ટન્સવાળાં બે ગૂંચળાંઓનો પરિણામી ઇન્ડક્ટન્સ શોધો.

$$Z = \frac{Z_{L_1} Z_{L_2}}{Z_{L_1} + Z_{L_2}} = \frac{(j\omega L_1) \times (j\omega L_2)}{j\omega L_1 + j\omega L_2}$$
(1)

જો પરિશામી ઇન્ડક્ટન્સ L હોય તો $Z=j\omega L$. આ મૂલ્યો સમીકરણ (1)માં મૂકતાં,

$$j\omega L = \frac{j\omega^2 L_1 L_2}{\omega L_1 + \omega L_2}$$

$$\therefore L = \frac{L_1 L_2}{L_1 + L_2}$$

ઉદાહરણ 6 : આકૃતિમાં આપેલા પરિપથ માટે ઇમ્પિડન્સ Z શોધો.

6કેલ : અહીં L અને C શ્રેણીમાં છે. જો તેમનો સંયુક્ત ઇમ્પિડન્સ Z_1 હોય, તો $Z_1=Z_L+Z_C$ હવે Z_1 અને R સમાંતર છે. જો પરિપથનો પરિણામી ઇમ્પિડન્સ Z હોય, તો

$$Z = \frac{Z_1 R}{Z_1 + R} = \frac{(Z_L + Z_C)R}{Z_L + Z_C + R}$$
$$= \frac{j\left(\omega L - \frac{1}{\omega C}\right)R}{j\left(\omega L - \frac{1}{\omega C}\right) + R}$$
$$= \frac{j(X_L - X_C)R}{j(X_J - X_C) + R}$$

(અંશ અને છેદના સંકર સંખ્યાઓને તેમની અનુબદ્ધ સંકર સંખ્યાઓ વડે ગુણતાં)

$$\therefore |Z| = \left\{ \frac{-Rj(X_{L} - X_{C}) \times Rj(X_{L} - X_{C})}{\{j(X_{L} - X_{C}) + R\}\{R - j(X_{L} - X_{C})\}} \right\}^{\frac{1}{2}}$$

$$\therefore |Z| = \left[\frac{R^2 (X_L - X_C)^2}{R^2 + (X_L - X_C)^2} \right]^{\frac{1}{2}}$$

આ કિસ્સામાં પણ જયારે ${\bf X}_{\rm L} = {\bf X}_{\rm C}$, ત્યારે $|{\bf Z}| = 0$ (અનુનાદ મળે.)

આ Z_1 કૅપેસિટર C સાથે સમાંતર છે, માટે સમગ્ર પરિપથનો સમતુલ્ય ઇમ્પિડન્સ Z હોય,

$$\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_C}$$

$$\frac{1}{Z} = \frac{1}{R + j\omega L} + j\omega C$$

$$[\because \frac{1}{-\frac{1}{\omega C}j} = -\frac{\omega C}{j} = j\omega C]$$

$$= \frac{R - j\omega L}{R^2 + \omega^2 L^2} + j\omega C$$

(જમણી બાજુ પ્રથમ પદને $R-j\omega L$ વડે ગુણતાં અને ભાગતાં)

$$= \frac{R + j(\omega CR^2 + \omega^3 L^2 C - \omega L)}{R^2 + \omega^2 L^2}$$

$$\therefore Z = \frac{R^2 + \omega^2 L^2}{R + j(\omega C R^2 + \omega^3 L^2 C - \omega L)}$$

હવે, \mathbf{Z} નું મૂલ્ય આપેલા \mathbf{R} માટે મહત્તમ મેળવવા માટે કાલ્પનિક ભાગ (jનો સહગુણક) શૂન્ય થવો જોઈએ. $\mathbf{\omega}\mathbf{C}\mathbf{R}^2 + \mathbf{\omega}^3\mathbf{L}^2\mathbf{C} - \mathbf{\omega}\mathbf{L} = 0$

$$:: \omega^2 L^2 C = L - CR^2$$

$$\therefore \omega^2 = \frac{1}{LC} - \frac{R^2}{L^2}$$

$$\therefore \omega = \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$$

ઉદાહરણ 8: અવરોધ $R(\Omega)$ અને કૅપેસિટર C(F) ને શ્રેણીમાં જોડી તે સંયોજનને સમાંતર V વૉલ્ટનું ω આવૃત્તિવાળું A.C. ઉદ્દગમ જોડ્યું છે. હવે ઉદ્દગમના વૉલ્ટેજમાં ફેરફાર કર્યા સિવાય જો આવૃત્તિ $\frac{\omega}{3}$ કરવામાં આવે, તો માલૂમ પડે છે કે પ્રવાહ અડધો થઈ જાય છે, તો કૅપેસિટિવ રિએક્ટન્સ અને અવરોધનો ગુણોત્તર શોધો. ઑલ્ટરનેટિંગ કરન્ટ

ઉકેલ : પ્રથમ કિસ્સો : (અહીં I અને Vનાં rms મૂલ્યોને સગવડતા ખાતર I અને V વડે દર્શાવેલ છે.)

$$I = \frac{V}{\sqrt{R^2 + \frac{1}{\omega^2 C^2}}} : I^2 = \frac{V^2}{R^2 + Xc^2}$$
 (1)

द्वितीय डिस्सो :

$$\frac{I}{2} = \frac{V}{\sqrt{R^2 + \frac{9}{\omega^2 C^2}}} : \frac{I^2}{4} = \frac{V^2}{R^2 + 9Xc^2}$$
 (2)

સમીકરણ (1)ને (2) વડે ભાગતાં,

$$4 = \frac{R^2 + 9Xc^2}{R^2 + Xc^2}$$

$$\therefore 4R^2 + 4Xc^2 = R^2 + 9Xc^2$$

$$\therefore 5Xc^2 + 4R^2 = R^2$$

$$\therefore \frac{Xc}{R} = \sqrt{\frac{3}{5}}$$

ઉદાહરણ 9 : જેનું મહત્તમ મૂલ્ય 100 V છે, તેવા એ.સી. વૉલ્ટેજના આકૃતિમાં દર્શાવેલા ચોરસ તરંગ માટે વૉલ્ટેજનું rms મૂલ્ય શોધો.

ઉદાહરણ 10 : એક મિડિયમવેવ રેડિયો 600 kHz થી 1200 kHz ના ગાળામાં ટ્યૂનિંગ કરી શકાય છે. LC પરિપથમાં જોડેલ ઇન્ડક્ટરનો અસરકારક ઇન્ડક્ટન્સ 100 mH હોય તો, ચલ કૅપેસિટરની રેન્જ શોધો.

 $634: L = 100 \text{ mH}, f_{max} = 1200 \text{ kHz}, f_{min} = 600 \text{ kHz}$

ટ્યૂનિંગ એટલે કે અનુનાદ માટે આવૃત્તિ $f=rac{1}{2\pi}rac{1}{\sqrt{\mathrm{LC}}}$

$$\therefore 4\pi^2 f^2 = \frac{1}{LC}$$

$$m : C = rac{1}{4\pi^2 f^2 L}$$
 આ પરથી, $C_{max} = rac{1}{4\pi^2 f^2_{min} L}$ અને $C_{min} = rac{1}{4\pi^2 f^2_{max} L}$

$$C_{max} = \frac{1}{(4)(3.14)^2 (600 \times 10^3)^2 (100 \times 10^{-3})}$$

$$= 0.7 \times 10^{-12} \text{ F}$$

$$= 0.7 \text{ pF}$$

આ જ રીતે
$$C_{min} = \frac{1}{(4)(3.14)^2(1200 \times 10^3)^2(100 \times 10^{-3})}$$

= $0.176 \times 10^{-12} F$
= $0.176 pF$

આમ, ચલ કૅપેસિટરની રેન્જ 0.176 pF થી 0.7 pF થાય.

2.7 ફેઝરની રીત (Phasor Method)

ફ્રેઝર (Phasor)ની રીતના ઉપયોગથી હાર્મોનિક વિધેયોનો સરવાળો સહેલાઈથી કરી શકાય છે. આ રીતમાં ફ્રેઝર એટલે શું? તે સમજવા માટે હાર્મોનિક વિધેય

$$I = I_m \cos(\omega t + \delta) \tag{2.7.1}$$

ને ધ્યાનમાં લો. યામપદ્ધતિના ઊગમબિંદુ પરથી જેનું માન I_m હોય તેવો સદિશ આકૃતિ 2.16માં દર્શાવ્યા પ્રમાણે X-Y સમતલમાં X-અક્ષ સાથે કળા $(\omega t + \delta)$ જેટલો કોણ બનાવે તેમ દોરવામાં આવે છે. આકૃતિ 2.16 પરથી નીચેના મુદ્દાઓ સ્પષ્ટ છે.

(1) કળા $(\omega t + \delta)$ સમય સાથે બદલાતી જાય છે. એટલે કે આકૃતિ (2.16)માં દર્શાવેલ I_m સદિશનો X-અક્ષ (પરિણામે Y-અક્ષ પણ) સાથે રચેલો કોણ સમય સાથે બદલાતો જાય છે. આમ આપણે દોરેલો સદિશ સ્થિર નથી પણ ω જેટલી કોણીય ઝડપથી X-Y સમતલમાં ભ્રમણ કરતો હશે. આવા સદિશને ઘૂમતો સદિશ કહે છે. આવો ઘૂમતો સદિશ એટલે જ Phasor અથવા Rotor.

આકૃતિ 2.16

અત્રે ખાસ નોંધ કે I તો સ્કેલર (અદિશ) છે. માત્ર આપણે તેને ઘૂમતા સદિશની આકૃતિ રૂપે નિરૂપિત કરીએ છીએ.

- (2) t=t સમયે આ સિંદશનો X—અક્ષ પરનો ઘટક $I_m cos(\omega t + \delta)$ છે, જે Iનું તત્કાલીન મૂલ્ય આપે છે. જો આપણે $I_1 cos(\omega t + \delta_1)$, $I_2 cos(\omega t + \delta_2)$ વગેરે એવા વિધેયોનો સરવાળો કરવો હોય તો તે કામ સરળ બને છે. આપણે માત્ર t સમયે આ બધાં વિધેયો માટે ફેઝરો દોરવાના, તેમના X-અક્ષ પરના ઘટકો લઈ (દોરીને) અને પછી આ ઘટકોનો બૈજિક સરવાળો કરવાનો. આમ, છેવટનું બીજગણિત અત્યંત સરળ બની જાય છે.
- (3) આ રીતનો બીજો એક ફાયદો છે. જો આપણે ધ્યાનમાં લીધેલા સિંદશનો Y-અક્ષ પરનો ઘટક લઈએ તો તે $\cos\left[\frac{\pi}{2}-(\omega t+\delta)\right]=\sin(\omega t+\delta)$ મળે છે. આમ, જો આપણે સિંદશના y ઘટકોનો વિચાર કરીએ, તો \sin પ્રકારના વિધેયો સાથે પણ આજ રીતે કામ લઈ શકાય.

(4) ધારો કે બે હાર્મોનિક વિધેયો

$$I_1 = I_{1m}\cos(\omega t + \delta_1) \tag{2.7.2}$$

$$I_2 = I_{2m}\cos(\omega t + \delta_2) \tag{2.7.3}$$

નો સરવાળો કરવો છે. પરિણામી વિધેય શોધવા માટે I_{1m} અને I_{2m} ને રજૂ કરતા સદિશો આકૃતિ 2.17માં દર્શાવ્યા પ્રમાણે દોરી સદિશ સરવાળાની જેમ જ શોધી શકાય છે. આ માટે ઊગમબિંદુ O માંથી I_{1m} સદિશ X -અક્ષ સાથે $(\omega t + \delta_{\scriptscriptstyle 1})$ કોણ બનાવતી દિશામાં દોરો. હવે આ સદિશના અંત્યબિંદુ Aમાંથી ${
m I}_{2m}$ સદિશ X-અક્ષ સાથે $(\omega t + \delta_2)$ જેટલો કોણ બનાવતી દિશામાં દોરો. પરિણામી સદિશ \mathbf{I}_m શોધવા માટે \mathbf{I}_{1m} ના પ્રારંભ બિંદુ \mathbf{O} અને \mathbf{I}_{2m} ના અંત્યબિંદુ Pને જોડતો સદિશ દોરો.

આકૃતિ 2.17ની ભૂમિતિ પરથી સ્પષ્ટ છે કે t સમયે $ext{I}$ ને રજૂ કરતો સદિશ એ $ext{I}_1$ અને $ext{I}_2$ વડે આપેલાં બે હાર્મીનિક વિધેયોના t સમયે મળતા પરિણામી વિધેય (I = $\mathrm{I_1}+\mathrm{I_2}$)ને રજૂ કરે છે. તેનો કંપવિસ્તાર \mathbf{I}_m (= OP, મૂલ્ય પ્રમાણમાપમાં) જેટલો અને t સમયે તેની કળા ϕ છે. આપણે સદિશ સરવાળાના ત્રિકોણના નિયમ પરથી Iનું વિધેયાત્મક (Functional) સ્વરૂપ પણ મેળવી શકીએ છીએ.

આકૃતિ પરથી બે હાર્મોનિક વિધેયો I_1 અને I_2 ને રજૂ કરતા સિંદશો વચ્ચેનો કોણ $(\delta_2 - \delta_1)$ છે.

હવે
$$I_{m}^{2} = I_{1m}^{2} + I_{2m}^{2} + 2I_{1m}I_{2m}\cos(\delta_{2} - \delta_{1})$$

હવે $I_m^2 = I_{1m}^2 + I_{2m}^2 + 2I_{1m}I_{2m}\cos{(\delta_2 - \delta_1)}$ ધારો કે વિધેયો I_1 અને I_2 ની કળાઓનો તફાવત $(\delta_2 - \delta_1) = \delta$ છે.

$$\therefore I_m^2 = I_{1m}^2 + I_{2m}^2 + 2I_{1m}I_{2m}\cos \delta$$

 \therefore $I_m^2 = I_{1m}^2 + I_{2m}^2 + 2I_{1m}I_{2m}\cos\delta$ આમ, આપણને પરિણામી વિધેય પણ મળી જાય છે.

અત્રે યાદ રાખવું જરૂરી છે કે \mathbf{I}_1 , \mathbf{I}_2 અને \mathbf{I} ને રજૂ કરતા સિંદશોનાં માન અનુક્રમે \mathbf{I}_{1m} , \mathbf{I}_{2m} અને \mathbf{I}_m છે. 2.8 એ.સી. પરિપથમાં ફેઝરની રીતનો ઉપયોગ (Use of Phasor Method in an A.C. Circuit)

આપેલ એ.સી. પરિપથમાંના લાગુ પાડેલ વૉલ્ટેજ અને પ્રવાહ વચ્ચે કળાના તફાવત સાથેનો સંબંધ મેળવવામાં આ રીત ઘણી સરળતાથી વાપરી શકાય છે.

માત્ર અવરોધ ધરાવતા એ.સી. પરિપથ માટે : માત્ર અવરોધ ધરાવતા એ.સી. પરિપથ માટે લાગુ પાડેલ વૉલ્ટેજ ${
m V}$ અને પ્રવાહ ${
m I}$ વચ્ચે કળા તફાવત δ = 0 હોવાથી ${
m V}$ અને I માટેના ફેઝર આકૃતિ 2.18માં દર્શાવ્યા પ્રમાણે એક જ દિશામાં મળશે. (અત્રે યાદ રાખવું જરૂરી છે કે I માટેનો ફેઝર યાદચ્છિક દિશામાં લઈ શકીએ છીએ અને અનુરૂપ વૉલ્ટેજ અને I વચ્ચે જે કળાનો તફાવત હોય તેટલો કોણ I સાથે બનાવે તે રીતે V નો ફ્રેઝર દોરવામાં આવે છે.)

આકૃતિ 2.18 પરિપથમાં જ્યારે માત્ર અવરોધ હોય ત્યારે

માત્ર ઇન્ડક્ટર ધરાવતો એ.સી. પરિપથ ઃ આવા પરિપથ આપણે પરિચ્છેદ 2.4માં બૈજિક રીતે ભણી ગયાં છીએ. આ પરિપથમાં વિદ્યુતપ્રવાહ I એ વૉલ્ટેજ V કરતાં કળામા $\frac{\pi}{2}$ rad જેટલો પાછળ હોય છે. અથવા વિદ્યુતપ્રવાહ $\frac{\pi}{2}$ rad કરતાં વૉલ્ટેજ $\frac{\pi}{2}$ rad જેટલો આગળ હોય છે. Iને X દિશામાં દર્શાવીએ, તો Vનો ફેઝર આકૃતિ (2.19)માં દર્શાવ્યા પ્રમાણે ધન Y દિશામાં હશે. આકૃતિ 2.19 પરિપથમાં જ્યારે માત્ર ઇન્ડક્ટર હોય ત્યારે

ભૌતિકવિજ્ઞાન-IV

માત્ર કેપેસિટર ધરાવતો એ.સી. પરિપથ : આ પરિપથમાં

પ્રવાહ I વૉલ્ટેજ V કરતાં કળામાં $\frac{\pi}{2}$ rad જેટલો આગળ

હોય છે. અથવા વૉલ્ટેજ અને પ્રવાહ કરતાં કળામાં $\frac{\pi}{2}$ rad

જેટલો પાછળ હોય છે. આ પરિપથ માટે I અને V ના ફેઝર આકૃતિ 2.20માં દર્શાવ્યા અનુસાર મળે છે.

આકૃતિ 2.20 પરિપથમાં જ્યારે માત્ર કેપેસિટર હોય ત્યારે

L—C—R એ.સી. શ્રેણી-પરિપથ : ઉપર્યુક્ત હકીકતો પરથી L—C—R પરિપથ માટે દરેક ઘટકના Phasor diagram આકૃતિ 2.21માં દર્શાવ્યા અનુસાર થશે.

આકૃતિ 2.21 L-C-R શ્રેશી-પરિપથ V અને Iના Phasor diagram આકૃતિ 2.22માં દર્શાવ્યા પ્રમાણે મળે.

 $V^2 = (V_L - V_C)^2 + V_R^2$ જો મહત્તમ પ્રવાહ \mathbf{I}_m હોય, તો

$$\mathbf{V}_{\mathrm{R}} = \mathbf{I}_{m}\mathbf{R}, \ \mathbf{V}_{\mathrm{L}} = \mathbf{I}_{m}\mathbf{X}_{\mathrm{L}}$$
 અਜੇ $\mathbf{V}_{\mathrm{C}} = \mathbf{I}_{m}\mathbf{X}_{\mathrm{C}}$

$$V^{2} = I_{m}^{2} (X_{L} - X_{C})^{2} + I_{m}^{2} R^{2}$$

$$\therefore V = I_m \sqrt{(X_L - X_C)^2 + R^2}$$

પરંતુ પ્રવાહ મહત્તમ લીધો હોવાથી

$$V = V_m$$

$$\therefore \ \ \mathbf{I}_m = \frac{\mathbf{V}_m}{\sqrt{(\mathbf{X}_{\mathrm{L}} - \mathbf{X}_{\mathrm{C}})^2 + \mathbf{R}^2}} \ = \ \frac{\mathbf{V}_m}{|\mathbf{Z}|}$$

પ્રસ્તુત કિસ્સામાં L,C અને R શ્રેશીમાં હોવાથી દરેક ઘટકમાંથી પસાર થતો પ્રવાહ સમાન છે. વળી, જો લાગુ પાડેલ વૉલ્ટેજ V હોય તો,

$$V = V_L + V_C + V_R$$
 (2.8.1)

જ્યાં $V_L^{},\ V_C^{}$ અને $V_R^{}$ અનુક્રમે ઇન્ડક્ટર, કૅપેસિટર અને અવરોધના બે છેડાઓ વચ્ચેના વીજસ્થિતિમાનના તફાવત (વૉલ્ટેજ) છે. ધારો કે પરિપથમાંથી પસાર થતાં પ્રવાહ I નો Phasor X દિશામાં દર્શાવવામાં આવે તો, દરેક ઘટના

> આકૃતિ 2.22 (2.8.2)

હવે આકૃતિ 2.22 પરથી લાગુ પાડેલ વૉલ્ટેજ અને પ્રવાહના ફેઝર્સ વચ્ચેનો કોણ δ છે. પ્રસ્તુત કિસ્સામાં $({
m V_L} > {
m V_C}$ હોય ત્યારે) પ્રવાહ એ વૉલ્ટેજ કરતાં કળામાં δ જેટલો પાછળ છે. જો ${
m V_L} < {
m V_C}$ હોત, તો પ્રવાહ, વૉલ્ટેજ કરતાં કળામાં δ જેટલો આગળ હોત.

આકૃતિ પરથી,

$$\tan \delta = \frac{V_L - V_C}{V_R}$$

$$= \frac{I_m X_L - I_m X_C}{I_m R}$$

$$\therefore \tan \delta = \frac{X_L - X_C}{R} \tag{2.8.3}$$

$$\delta = \tan^{-1} \left(\frac{X_L - X_C}{R} \right) \tag{2.8.4}$$

ઉદાહરણ 11 : આકૃતિમાં દર્શાવ્યા પ્રમાણે V voltના એક A.C. પ્રાપ્તિસ્થાન સાથે ઇન્ડક્ટર L અને અવરોધ

Rને સમાંતરમાં જોડવામાં આવ્યા છે, તો કુલ પ્રવાહ I, X_L અને Rના સ્વરૂપમાં શોધો. વળી, પ્રવાહ અને વૉલ્ટેજ વચ્ચે કળા-તફાવત પણ શોધો. ફેઝર ડાયાગ્રામની રીતનો ઉપયોગ કરો.

6કેલ અત્રે R અને L સમાંતરે હોવાથી તેમના બે છેડાઓ વચ્ચેના વૉલ્ટેજ સમાન છે. આ વૉલ્ટેજના ફેઝરને X—અક્ષ ઉપર દર્શાવી તેના સંદર્ભમાં પ્રવાહ ફેઝરને દર્શાવતાં પરિસ્થિતિ આકૃતિમાં દર્શાવ્યા મુજબ બનશે

(1) અત્રે ${\rm I_R}$ ફેઝર અને ${\rm V_R}$ ફેઝર સમાન કળામાં છે. તેથી ${\rm I_R}=rac{{
m V_R}}{{
m R}}$ X-અક્ષની દિશામાં છે. (જુઓ આકૃતિ)

(2) વળી ઇન્ડક્ટરમાંનો પ્રવાહ વૉલ્ટેજ ${f V}_{_{
m L}}$ કરતાં કળામાં ${\pi\over 2}$ જેટલો પાછળ છે. તેથી ${f I}_{_{
m L}}$ ઋણ ${f Y}$ -અક્ષ પર આકૃતિમાં દર્શાવ્યા પ્રમાણે આવશે.

$$\therefore \ \ I_L = \ \frac{V_L}{X_L}$$

આકૃતિ પરથી
$$I = \sqrt{I_R^2 + I_L^2} = V \sqrt{\frac{1}{R^2} + \frac{1}{X_L^2}}$$

$$tan\delta \ = \ \frac{I_L}{I_R} \ = \ \frac{V}{X_L} \, \frac{R}{V} \ = \ \frac{R}{X_L}$$

$$\therefore \delta = \tan^{-1} \frac{R}{X_{T}}$$

ઉદાહરણ 12 : આકૃતિમાં દર્શાવેલ પરિપથ માટે ફેઝર ડાયાગ્રામનો ઉપયોગ કરીને કુલ પ્રવાહના મૂલ્યનું સૂત્ર મેળવો. આ પ્રવાહ અને લાગુ પડેલ વૉલ્ટેજ વચ્ચેનો કળા-તફાવત શોધો.

ઉકેલ : અહીં, વૉલ્ટેજ અને પ્રવાહોનો ફેઝર ડાયાગ્રામ આકૃતિમાં દર્શાવ્યો છે. કુલ પ્રવાહ મેળવવા માટે પ્રવાહોના ફેઝરનો સદિશ સરવાળો કરવો જોઈએ. આકૃતિ પરથી

$$I = \sqrt{I_R^2 + (I_L - I_C)^2}$$

પણ,
$$I_R = \frac{V}{R}$$
; $I_L = \frac{V}{X_L}$ અને $I_C = \frac{V}{X_C}$

$$\therefore \ \ I \ = \ V \sqrt{\frac{1}{R^2} + \left(\frac{1}{X_L} - \frac{1}{X_C}\right)^2}$$

વળી, આકૃતિ પરથી,
$$\tan\delta = \frac{I_L - I_C}{I_R} = \frac{\frac{1}{X_L} - \frac{1}{X_C}}{\frac{1}{R}}$$

$$\therefore \tan \delta = R \left(\frac{1}{X_L} - \frac{1}{X_C} \right)$$

2.9 L-C દોલનો (L-C Oscillations)

જો વિદ્યુતભારિત કરેલા કોઈ કૅપેસિટર (C)ની બે પ્લેટોનો વાહક તાર કે અવરોધ વડે જોડી દેવામાં આવે તો કૅપેસિટર ડિસ્ચાર્જ થઈ જાય છે અને કૅપેસિટરમાં સંગૃહીત થયેલી ઊર્જા (કૅપેસિટરમાં બે પ્લેટો વચ્ચે પ્રસ્થાપિત થયેલા વિદ્યુત ક્ષેત્રમાંની ઊર્જા) વાહક તાર કે અવરોધમાં જૂલ-ઉષ્મા રૂપે વિખેરિત થાય છે.

હવે, વિદ્યુતભારિત કરેલા કેપેસિટરની બે પ્લેટોને જેનો અવરોધ અત્યંત ઓછો એટલે કે અવગણ્ય રીતે નાનો હોય (આદર્શ રીતે શૂન્ય હોય) તેવા ઇન્ડક્ટર (L) સાથે જોડતાં શું થાય તે વિચારીએ. આવો પરિપથ આકૃતિ 2.23માં I(t) દર્શાવ્યા છે, ત્યાં તેને (L-C) પરિપથ તરીકે ઓળખવામાં આવે છે. અત્રે કેપેસિટરને પ્રારંભમાં જ એટલે કે t=0 સમયે ચાર્જ કરેલું રાખતાં નીચે પ્રમાણે વિચારી શકાય.

ધારો કે t=0 કૅપેસિટર પરનો વિદ્યુતભાર \mathbf{Q}_0 છે, અને પરિપથમાં વિદ્યુતપ્રવાહ શૂન્ય છે. અગે આપણે શૂન્ય સમયે જ ઇન્ડક્ટરને પરિપથમાં લાવીએ છીએ તેમ ધારેલ છે. ઇન્ડક્ટરને પરિપથમાં લાવતાં જ કૅપેસિટર પરનો વિદ્યુતભાર ઘટવા લાગે છે (એટલે કે કૅપેસિટર ડિસ્ચાર્જ થવા લાગે છે) અને પરિપથમાં પ્રવાહની શરૂઆત થાય છે.

કેપેસિટરના ડિસ્ચાર્જિંગને લીધે ધારો કે t=t સમયે કેપેસિટર પરનો વિદ્યુતભાર $=\mathbf{Q}$ અને પરિપથમાંથી વહેતો પ્રવાહ $=\mathbf{I}$ છે.

∴ t સમયે આ બંધ-પરિપથને કિર્ચોફ્રનો બીજો નિયમ લગાડતાં

$$-L\frac{dI}{dt} + \frac{Q}{C} = 0$$

પણ ${
m I}=-rac{d{
m Q}}{dt}$ (:. કેપેસિટર પરનો વિદ્યુતભાર ઘટે છે.)

$$\therefore \ L \frac{d^2 Q}{dt^2} + \frac{Q}{C} = 0$$

$$\therefore \frac{d^2Q}{dt^2} = -\frac{Q}{LC}$$
 (2.9.1)

આ સમીકરણ સરળ આવર્તગતિના વિકલ સમીકરણ $\frac{d^2y}{dt^2} = -\omega_0^2 y$ જેવું જ છે. અત્રે વિદ્યુતભાર Q એ

સ્થાનાંતર yનો ભાગ ભજવે છે તથા ω_0^2 ના સ્થાને પદ $\frac{1}{\mathrm{LC}}$ છે. આમ, આપણા કિસ્સાના વિકલ સમીકરણનો ઉકેલ

$$Q = Q_m \sin(\omega_0 t + \phi) \quad \text{eq} \tag{2.9.2}$$

અહીં \mathbf{Q}_m અને ϕ ઉકેલના અચળાંકો છે, જેનાં મૂલ્યો પ્રારંભિક શરતો પરથી નીચે પ્રમાણે મેળવી શકાય. જયારે t=0 તે સમયે $\mathbf{Q}=\mathbf{Q}_0$ છે.

∴ સમીકરણ (2.9.2)માં આ મૂલ્યો મૂકતાં

$$Q = Q_m \sin \phi \tag{2.9.3}$$

સમીકરણ (2.9.2)નું tની સાપેક્ષે વિકલન કરતાં

$$I = \frac{dQ}{dt} = Q_m \omega_0 \cos(\omega_0 t + \phi)$$

પરંતુ t = 0 સમયે I = 0

$$\therefore 0 = Q_m \omega_0 \cos \phi \tag{2.9.4}$$

અત્રે \mathbf{Q}_m અને $\mathbf{\omega}_0$ શૂન્ય નથી.

 $\therefore \cos \phi = 0$

$$\therefore \quad \phi = \frac{\pi}{2} \tag{2.9.5}$$

φનું આ મૂલ્ય સમીકરણ (2.9.3)માં મૂકતાં

$$Q_m = Q_0 \tag{2.9.6}$$

સમીકરણ (2.9.5) અને (2.9.6)નો ઉપયોગ સમીકરણ (2.9.2)માં કરતાં

$$Q = Q_0 \sin(\omega_0 t + \frac{\pi}{2})$$

$$\therefore Q = Q_0 \cos \omega_0 t \tag{2.9.7}$$

આ સમીકરણ દર્શાવે છે કે કૅપેસિટર પરનો વિદ્યુતભાર આવર્ત રીતે બદલાતો જાય છે. વળી, આ જ સમીકરણ પરથી,

$$I = \frac{dQ}{dt} = -Q_0 \omega_0 \sin \omega_0 t \tag{2.9.8}$$

ઉપર્યુક્ત સમીકરણ પરથી જોઈ શકાય છે કે પરિપથમાંનો (એટલે કે ઇન્ડક્ટરમાંનો) પ્રવાહ I પણ આવર્ત રીતે બદલાય છે.

t=0 સમયે કૅપેસિટર પરનો વિદ્યુતભાર મહત્તમ છે અને ઇન્ડક્ટરમાંનો પ્રવાહ શૂન્ય છે. આ પરિસ્થિતિમાં કૅપેસિટરની બે પ્લેટો વચ્ચે પ્રસ્થાપિત વિદ્યુતક્ષેત્રની તિવ્રતા મહત્તમ હોય છે અને તેની સાથે સંકલિત ઊર્જા $\left(\mathbf{U_E} = \frac{1}{2} \frac{\mathbf{Q}^2}{\mathbf{C}} \right) \ \, \mathbf{v}$ ણ મહત્તમ હોય છે. આ સમયે ઇન્ડક્ટર સાથે સંકળાયેલ ચુંબકીય ક્ષેત્ર શૂન્ય હોવાથી તેમાં કોઈ ઊર્જા હોતી નથી.

જેમ સમય વધતો જાય છે તેમ તેમ સમીકરણ (2.9.7) અનુસાર કૅપેસિટર પરનો વિદ્યુતભાર ઘટતો જાય છે અને પરિણામે તેની સાથે સંકળાયેલ વિદ્યુતક્ષેત્રમાંની ઊર્જા (U_E) પણ ઘટતી જાય છે. આ વિદ્યુતભાર ઇન્ડક્ટરમાં થઈને વહેતો હોવાથી ઇન્ડક્ટરમાંનો વિદ્યુતપ્રવાહ વધતો જાય છે અને પરિણામે તેની સાથે સંકળાયેલ ચુંબકીય ક્ષેત્ર તેમજ ચુંબકીય ક્ષેત્ર સાથે સંકલિત ઊર્જા $(U_B=\frac{1}{2}\mathrm{LI}^2)$ પણ વધતાં જાય છે. આમ, કૅપેસિટરના વિદ્યુતક્ષેત્રમાંની ઊર્જા એ ઇન્ડક્ટરમાંના ચુંબકીય ક્ષેત્રની ઊર્જામાં રૂપાંતરિત થતી જાય છે.

જ્યારે કૅપેસિટર પરનો વિદ્યુતભાર Q=0 થાય છે ત્યારે ઇન્ડક્ટરમાંનો વિદ્યુતપ્રવાહ મહત્તમ બને છે. આમ, આ સમયે વિદ્યુત ક્ષેત્રમાંની સંપૂર્ણ ઊર્જા ચુંબકીય ક્ષેત્રમાં આવી જાય છે.

હવે, આ સમય બાદ કૅપેસિટરનો વિદ્યુતભાર વધતો જાય છે, પરંતુ બે પ્લેટોની પોલારિટી ઊલટાઈ ગયેલી હોય છે અને આ પોલારિટી સાથે કૅપેસિટર પરનો વિદ્યુતભાર મહત્તમ બને છે અને આ પ્રક્રિયા આવર્ત રીતે ચાલુ રહે છે અને પ્રારંભિક સ્થિતિનું (t=0 સમયની સ્થિતિ) નિર્માણ થાય છે. ટૂંકમાં, વિદ્યુતભાર કૅપેસિટરની બે પ્લેટો વચ્ચે ઇન્ડક્ટર થકી દોલનો કરે છે. આ ઘટનાને L-C પરિપથમાંના દોલનો અથવા L-C દોલનો કહે છે.

આ દોલનો દરમિયાન કૅપેસિટર સાથે સંકલિત વિદ્યુતક્ષેત્ર અને તેની સાથે સંકલિત ઊર્જા $U_{\rm B}$ તથા ઇન્ડક્ટર સાથે સંકલિત ચુંબકીય ક્ષેત્ર અને તેની સાથે સંકલિત ઊર્જા $U_{\rm B}$, આકૃતિ (2.24)માં સમયનાં દોલનો એક આવર્તકાળના જુદા-જુદા ગાળાઓ (t=0, $t<\frac{T}{4}$, $t=\frac{T}{4}$, $\frac{T}{4}$ < $t<\frac{T}{2}$, $t=\frac{T}{2}$, $\frac{T}{2}$ < $t<\frac{3}{4}$ T,

$$t=\frac{3}{4}\mathrm{T},\;\frac{3}{4}\mathrm{T}< t<\mathrm{T}$$
 અને $t=\mathrm{T})$ માટે દર્શાવેલ છે.
ઑલ્ટરનેટિંગ કરન્ટ

આકૃતિ 2.24 L-C દોલનો (માત્ર જાણકારી માટે)

અત્રે કૅપેસિટર સાથે સંકળાયેલ વિદ્યુતક્ષેત્ર અને ઇન્ડક્ટર સાથે સંકળાયેલ ચુંબકીયક્ષેત્ર સમય સાથે બદલાય છે. આવા બદલાતા જતાં વિદ્યુત અને ચુંબકીય ક્ષેત્રો વિદ્યુત ચુંબકીય વિકિરણોનું ઉત્સર્જન કરે છે. આ વિકિરણનું સતત ઉત્સર્જન થવાથી પરિપથની ઊર્જા ક્રમશઃ ઘટતી જાય છે. આમ દોલનો કરતો વિદ્યુતભાર વિદ્યુતચુંબકીય તરંગોનું ઉત્સર્જન કરે છે. આ L—C પરિપથ, ટૅન્ક (Tank) પરિપથ તરીકે પણ ઓળખાય છે. જેટલી ઊર્જા ઉત્સર્જન થતી હોય તેટલી ઊર્જા સતત રીતે L—C પરિપથને પૂરી પાડવામાં આવે, તો સતત રીતે વિદ્યુતચુંબકીય તરંગોનું ઉત્સર્જન ચાલુ રાખી શકાય.

ઉદાહરણ 13 : મુક્ત LC દોલનો માટે દર્શાવો કે કોઈ પણ ક્ષણે કૅપેસિટરમાં સંગૃહિત ઊર્જા અને ઇન્ડક્ટરમાં સંગ્રહિત ઊર્જાનો સરવાળો અચળ હોય છે.

6કેલ ઃ ધારો કે કૅપેસિટર (C) પર પ્રારંભિક (t=0 સમયે) વિદ્યુતભાર \mathbf{Q}_0 છે. આ કૅપેસિટરને ઇન્ડક્ટર

(L) સાથે જોડતાં મુક્ત દોલનો કરે છે અને તેની પ્રાકૃતિક કોણીય આવૃત્તિ $\omega_0 = \frac{1}{\sqrt{LC}}$ થશે.

અત્રે,
$$Q = Q_0 \cos \omega_0 t$$

$$\therefore I = \frac{dQ}{dt} = -Q_0 \omega_0 \sin \omega_0 t$$

કોઈ સમય t એ કૅપેસિટરમાં સંગૃહીત ઊર્જા

$$U_{E} = \frac{1}{2}CV^{2} = \frac{1}{2}\frac{Q^{2}}{C} = \frac{Q_{0}^{2}}{2C}\cos^{2}\omega_{0}t$$
 (: $V = \frac{Q}{C}$)

આ જ સમય t એ ઇન્ડક્ટરમાં સંગૃહીત ઊર્જા

$$\mathbf{U_{_{M}}} = \frac{1}{2}\mathbf{L}\mathbf{I}^{2} = \ \frac{1}{2}\mathbf{L}\mathbf{Q}_{0}^{2}\omega_{0}^{2}\ \sin^{2}(\omega_{0}t) = \ \frac{\mathbf{Q_{0}}^{2}}{2\mathbf{C}}\ \sin^{2}\!\omega_{0}t \qquad \ \ (\because \ \omega_{0} = \ \frac{1}{\sqrt{\mathbf{L}\mathbf{C}}})$$

આ બંને ઊર્જાનો સરવાળો

$$U = U_E + U_M = \frac{Q_0^2}{2C} (\cos^2 \omega_0 t + \sin^2 \omega_0 t)$$

$$=rac{Q_0^2}{2C}$$
 અત્રે Q_0 અને C સમય પર આધારિત નહિ હોવાથી

∴ U = અચળ

2.10 એ.સી. પરિપથમાં L, C અને R સાથે સંકળાયેલ પાવર અને ઊર્જા (Power and Energy Associated with L, C and R in an A.C. Circuit)

પાવરની વ્યાખ્યા અનુસાર પાવર

$$P = VI (2.10.1)$$

એ.સી. પરિપથમાં વૉલ્ટેજ અને પ્રવાહ બંને સમય સાથે બદલાય છે. એટલે સમીકરણ (2.10.1) અનુસાર દર્શાવાતા પાવરને એ.સી. પરિપથ માટેનો તત્કાલીન પાવર કહી શકાય. પરંતુ વ્યવહારમાં આપણે તત્કાલીન પાવર માપી શકતા નથી. આથી વ્યવહારમાં વાસ્તવિક પાવર વ્યાખ્યાયિત કરી તેનું માપન કરવામાં આવે છે.

વાસ્તવિક પાવર = સમગ્ર આવર્તકાળ પરનું પાવરનું સરેરાશ મૂલ્ય

L-C-R પરિપથ માટે તત્કાલીન પાવર

$$p = VI$$

=
$$V_m \cos(\omega t) I_m \cos(\omega t - \delta)$$

$$= V_{mm}^{I} \cos \omega t \cos(\omega t - \delta) \tag{2.10.2}$$

પરંતુ
$$\cos \omega t \cos (\omega t - \delta) = \frac{1}{2} \cos \delta + \frac{1}{2} \cos (2\omega t - \delta)$$
 (2.10.3)

$$\therefore p = \frac{V_m I_m}{2} (\cos \delta + \cos(2\omega t - \delta))$$
 (2.10.4)

∴ વાસ્તવિક પાવરની વ્યાખ્યા અનુસાર (હવેથી એ.સી. પરિપથ માટે પાવર P, એટલે કે વાસ્તવિક પાવર જ ગણીશું, સિવાય કે ચોક્કસ રીતે તેને કહેવામાં આવે.)

$$P = \frac{V_m I_m}{2} \left[\frac{1}{T} \int_0^T \cos \delta dt + \frac{1}{T} \int_0^T \cos(2\omega t - \delta) dt \right]$$

પરંતુ
$$\int_{0}^{T} \cos (2\omega t - \delta) dt = 0 \quad \text{અને} \quad \int_{0}^{T} \cos \delta dt = T \cos \delta$$

$$\therefore P = \frac{V_m I_m}{2} \frac{T}{T} \cos \delta$$

$$\therefore P = \frac{V_m}{\sqrt{2}} \cdot \frac{I_m}{\sqrt{2}} \cos \delta \tag{2.10.5}$$

અત્રે cosδને પાવર ફૅક્ટર કહે છે.

સમીકરણ (2.10.5)ને નીચે મુજબ rms મૂલ્યોના સ્વરૂપમાં પણ લખી શકાય.

$$\therefore P = V_{rms} I_{rms} \cos \delta \tag{2.10.6}$$

ખાસ કિસ્સાઓ :

- (1) A.C. પરિપથમાં માત્ર અવરોધ હોય ત્યારે : આ પરિપથ માટે કળાતફાવત $\delta = 0$ હોવાથી $\therefore \ \, P = V_{ms} I_{ms}$
- (2) A.C. પરિપથમાં માત્ર ઇન્ડક્ટર હોય ત્યારે : વૉલ્ટેજ અને પ્રવાહ વચ્ચે કળા તફાવત $\delta = \frac{\pi}{2}$ હોવાથી $\cos \frac{\pi}{2} = 0$ થાય.

$$\therefore P = 0$$

આમ માત્ર ઇન્ડક્ટર ધરાવતા A.C. પરિપથમાં પાવર શૂન્ય હોય છે.

જયારે ઇન્ડક્ટરમાં પ્રવાહ વધતો હોય છે ત્યારે વૉલ્ટેજ પ્રાપ્તિસ્થાનમાંથી ખેંચાતી ઊર્જા ઇન્ડક્ટર સાથે સંકળાયેલ ચુંબકીય ક્ષેત્રમાં સંગ્રહ પામે છે અને જ્યારે પ્રવાહ ઘટતો હોય છે ત્યારે આ સંગ્રહાયેલી ઊર્જા પ્રાપ્તિસ્થાનને પાછી મળી જાય છે. પરિણામે વપરાતો પાવર શૂન્ય છે. આમ ઇન્ડક્ટરની મદદથી ઊર્જાના વ્યય સિવાય એ.સી. પરિપથમાં પ્રવાહનું નિયંત્રણ કરી શકાય છે. (ટ્યૂબલાઇટમાં વપરાતો Choke (જે ઇન્ડક્ટર છે) આ કાર્ય કરે છે.)

(3) A.C. પરિપથમાં માત્ર કૅપેસિટર હોય ત્યારે : આ પરિપથ માટે વૉલ્ટેજ અને પ્રવાહ વચ્ચેનો કળા તફાવત $\delta = -\frac{\pi}{2}$ $\therefore \cos{(-\frac{\pi}{2})} = 0$

આમ, આ કિસ્સામાં પણ P = 0.

આ કિસ્સામાં જ્યારે કૅપેસિટરની બે પ્લેટ પર વિદ્યુતભાર એકઠો થતો હોય છે, ત્યારે પ્રાપ્તિસ્થાનમાંથી મળતી ઊર્જા, કૅપેસિટરની બે પ્લેટો વચ્ચેના વિદ્યુતક્ષેત્રમાં સંગ્રહ પામે છે. અને કૅપેસિટર જ્યારે ડિસ્ચાર્જ થતું હોય છે, ત્યારે આ ઊર્જા પ્રાપ્તિસ્થાનને પાછી મળે છે અને પરિણામે વપરાતો પાવર શૂન્ય છે.

(4) A.C. L-C-R શ્રેશી પરિપથ માટે : આકૃતિ 2.3 પરથી

$$\cos\delta = \frac{R}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}} = \frac{R}{|Z|}$$
 (2.10.8)

 $\cos\delta$ નું આ મૂલ્ય સમીકરણ (2.10.6)માં અવેજ કરીને પાવર શોધતાં જોઈ શકાય છે. માત્ર અવરોધ ધરાવતા પરિપથમાં મળતા પાવરના મૂલ્ય કરતાં ઓછું હોય છે.

A.C. પરિપથમાં માત્ર ઇન્ડક્ટર કે કૅપેસિટર જ હોય ત્યારે વપરાતો પાવર શૂન્ય છે. આ સ્થિતિમાં પરિપથમાંથી વહેતા પ્રવાહને વૉટલેસ પ્રવાહ (Wattless Current) કહેવાય છે.

ઉદાહરણ 14 : એક L-C-R એ.સી. શ્રેણી પરિપથ માટે L = 5 H, ω = 100 rads $^{-1}$, R = 100 Ω અને પાવર ફેક્ટર 0.5 છે. તો પરિપથમાં કેપેસિટન્સનું મૂલ્ય શોધો.

ઉક્રેલ : પાવર ફેક્ટર
$$\cos\delta = \frac{R}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$

બંને બાજુ વર્ગ લેતાં
$$\cos^2\!\delta = \frac{R^2}{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$

પરંતુ
$$\cos\delta = 0.5 = \frac{1}{2}$$

2.11 ટ્રાન્સફૉર્મર (Transformer)

પાવરસ્ટેશનમાં ઉત્પન્ન થતો પાવર (P = VI)ને સેંકડો કિલોમીટર લાંબા પથરાયેલા કૅબલ (વિદ્યુતવાહક) નેટવર્કમાં પસાર કરીને દૂર-દૂર આવેલા વસવાટો અને ઉદ્યોગોમાં પહોંચાડવાનો હોય છે. કૅબલને પોતાનો કંઈક અવરોધ (R) હોય છે. વ્યવહારમાં શૂન્ય અવરોધવાળો કૅબલ શક્ય નથી. આમ, કૅબલના આ અવરોધ (R)માંથી વિદ્યુત પ્રવાહ (I) પસાર થવાથી I^2R જેટલો પાવર જૂલ ઉષ્મા-ઊર્જામાં રૂપાંતરિત થઈ વ્યય પામે છે. ઊર્જાની બચત કરવા માટે આ ઊર્જાનો વ્યય ઘટાડવો અત્યંત જરૂરી છે. આ માટે પાવર સ્ટેશનમાં ઉત્પન્ન કરેલા પાવરને નેટવર્કમાં મોકલતાં પહેલા પાવરના મૂલ્યમાં (P = VI) ફેરફાર કર્યા સિવાય પ્રવાહ Iનું મૂલ્ય ઘટાડવું જોઈએ. અત્રે સ્પષ્ટ છે કે પાવર Iના આપેલા મૂલ્ય માટે I ઘટાડીએ, તો વૉલ્ટેજ Iમું મૂલ્ય વધારવું પડે. સલામતીના કારણો સર તથા વ્યવહારમાં વપરાતાં વિદ્યુત-ઉપકરણોમાં ઓછા વૉલ્ટેજ (સામાન્ય રીતે 230 I40 અથવા 440 I40 છે. આ પાવર ઉદ્યોગોમાં કે રહેઠાણમાં આપતાં પહેલાં વૉલ્ટેજ I41 મૂલ્ય ફરી પાછું ઘટાડવાની જરૂર પડે છે.

ઉપર્યુક્ત ચર્ચા અનુસાર આપણે એવી રચના વાપરવી જોઈએ કે જેમાં પાવરનો વ્યય થયા વિના (આદર્શ રીતે) એ.સી. વૉલ્ટેજને વધારી કે ઘટાડી શકાય. આ રચના એટલે જ ટ્રાન્સફૉર્મર. જે ટ્રાન્સફૉર્મર વડે આઉટ પુટ વૉલ્ટેજ વધારી શકાય તેને સ્ટેપ-અપ-ટ્રાન્સફૉર્મર કહે છે. જેના વડે આઉટપુટ વૉલ્ટેજને ઘટાડી શકાય તેને સ્ટેપ-ડાઉન-ટ્રાન્સફૉર્મર કહે છે. યાદ રાખો કે આદર્શ ટ્રાન્સફૉર્મરમાં પાવરનો વ્યય થતો નથી, માત્ર વૉલ્ટેજ વધારી કે ઘટાડી, પ્રવાહમાં અનુક્રમે ઘટાડો કે વધારો કરી શકાય છે.

સિદ્ધાંત : ટ્રાન્સફૉર્મર વિદ્યુતચુંબકીય પ્રેરણના સિદ્ધાંત પર કાર્ય કરે છે.

રચના : આકૃતિ 2.25માં ટ્રાન્સફૉર્મરની રચના તથા સંકેત પરિપથ દર્શાવેલ છે. અહીં ઊંચી પારગમ્યતા ધરાતા લોખંડના લંબચોરસ કે બંધ ગાળો રચતા ગર્ભ પર વાહક તારનાં બે ગૂંચળાં એકબીજાંની નજીક વીંટાળવામાં આવ્યાં હોય છે. તાંબાના તારના બનેલાં આ ગૂંચળાંઓ લોખંડના ગર્ભથી અને એકબીજાંથી અલગ કરેલાં હોય છે. બેમાંના એક ગૂંચળાને પ્રાથમિક ગૂંચળું P અને બીજા ગૂંચળાને ગૌણ ગૂંચળું S કહે છે. પ્રાથમિક ગૂંચળાને એ.સી. પ્રાપ્તિસ્થાન સાથે જોડવામાં આવે છે.

સ્ટેપ-અપ ટ્રાન્સફૉર્મરમાં પ્રાથમિક ગૂંચળામાં આંટાઓની સંખ્યા ઓછી હોય છે અને તેનો તાંબાનો તાર જાડો હોય છે. ગૌણ ગૂંચળાનો તાર પાતળો અને તેમાં આંટાઓની સંખ્યા વધારે હોય છે. સ્ટેપ-ડાઉન ટ્રાન્સફૉર્મરમાં આનાથી ઊલટું હોય છે.

વ્યવહારમાં આકૃતિ 2.25 (b)માં દર્શાવ્યા પ્રમાણે ઊંચી પારગમ્યતા ધરાવતા લોખંડના ગર્ભ પર એક ઉપર બીજું ગૂંચળું રહે તેમ પ્રાથમિક ગૂંચળાની ઉપર ગૌણ ગૂંચળું વીંટાળેલું હોય છે. લોખંડનો ગર્ભ ઘણા સ્તરો (પટ્ટીઓ) અંગ્રેજી અક્ષરો I (આઈ) ત્યા E આકારમાં પાસે પાસે મૂકી આકૃતિ 2.25 (b)માં દર્શાવેલ આકારનો બનાવવામાં આવે છે. આ રચના એક પછી એક આવતા-જતા સ્તરોમાં I અને Eનાં સ્થાનો અદલબદલ કરીને એકબીજા પર મૂકવામાં આવે છે. આ સ્તરો કે પટ્ટીઓ એકબીજાથી અલગ (Insulated) કરેલ હોય છે.

ઉપર્યુક્ત રીતે ગર્ભને બનાવવાથી તથા પ્રાથમિક ગૂંચળાની ઉપર ગૌણ ગૂંચળાને વીંટાળવાથી પ્રાથમિક ગૂંચળામાંના વિદ્યુતપ્રવાહને કારણે મળતી ચુંબકીય ક્ષેત્રમાંની લગભગ બધી જ ક્ષેત્રરેખાઓ ગૌણ ગૂંચળા સાથે સંકળાય છે, તથા eddy પ્રવાહોનું પ્રમાણ ઘટાડી શકાય છે.

ઉપર્યુક્ત સ્થિતિમાં ગૌણ ગૂંચળા (S) અને પ્રાથમિક ગૂંચળા (P) સાથે સંકળાયેલ ચુંબકીય ફ્લક્સ $\Phi_{\rm S}$ અને $\Phi_{\rm P}$ તેમની અંદર રહેલા આંટાઓની સંખ્યાઓ અનુક્રમે $N_{\rm S}$ અને $N_{\rm P}$ ના સમપ્રમાણમાં હોય છે.

:
$$\frac{}{}$$
 ગૌણ ગૂંચળા સાથે સંકળાયેલ ચૂંબકીય ફ્લક્સ Φ_{S} = $\frac{}{}$ ગૌણ ગૂંચળામાં આંટાઓની સંખ્યા N_{S} પ્રાથમિક ગૂંચળામાં આંટાઓની સંખ્યા N_{P}

હવે પ્રાથમિક ગૂંચળું એ.સી. પ્રાપ્તિસ્થાન સાથે જોડેલું હોવાથી તેમાંથી પસાર થતો પ્રવાહ સમય સાથે (આવર્ત રીતે) સતત બદલાતો હોય છે અને તેથી તેની (પ્રાથમિક ગૂંચળા સાથે સંકળાયેલ ચૂંબકીય ફ્લક્સ અને પરિણામે ગૌણ ગૂંચળા સાથે સંકળાયેલ ચૂંબકીય ફ્લક્સમાં સતત આવર્ત ફેરફાર થાય છે અને ગૌણ ગૂંચળામાં પણ પ્રાથમિક ગૂંચળામાંના વૉલ્ટેજ જેટલી જ આવૃત્તિવાળો A.C. વૉલ્ટેજ પ્રેરિત થાય છે.

ફેરેડેના નિયમ અનુસાર,

પ્રાથમિક ગૂંચળામાં પ્રેરિત થતું emf
$$arepsilon_{
m p}=-rac{d\Phi_{
m p}}{dt}$$
 અને

ગૌણ ગૂંચળામાં પ્રેરિત થતું emf
$$arepsilon_{
m S} = -rac{d\Phi_{
m S}}{dt}$$

હવે સમીકરણ (2.11.1) પરથી

$$\Phi_{_S}=~\frac{N_{_S}}{N_{_P}}\,\Phi_{_P}$$

$$\therefore \frac{d\Phi_{\rm S}}{dt} = \frac{{\rm N}_{\rm S}}{{\rm N}_{\rm P}} \frac{d\Phi_{\rm P}}{dt}$$

$$\therefore \ \epsilon_{_{S}} = \ \frac{N_{_{S}}}{N_{_{P}}} \epsilon_{_{P}}$$

$$\therefore \frac{\varepsilon_{\rm S}}{\varepsilon_{\rm p}} = \frac{N_{\rm S}}{N_{\rm p}} = r \tag{2.11.2}$$

અત્રે ત્ને ટ્રાન્સફૉર્મેશન ગુણોત્તર કહે છે.

સ્ટેપ-અપ ટ્રાન્સફૉર્મર માટે r>1 તથા સ્ટેપ-ડાઉન ટ્રાન્સફૉર્મર માટે r<1.

અત્રે એ સ્પષ્ટ છે કે ટ્રાન્સફૉર્મેશન ગુણોત્તરને યોગ્ય રીતે પસંદ કરી સ્ટેપ-અપ કે સ્ટેપ-ડાઉન ટ્રાન્સફૉર્મર તૈયાર કરી શકાય છે.

આપણે એવું ધારેલું છે કે ટ્રાન્સફૉર્મરમાં ઊર્જાનો વ્યય થતો નથી. તેથી,

તત્કાલીન આઉટપુટ પાવર અટલે કે ગૌણ ગૂંચળામાં aત્કાલીન ઇનપુટ પાવર અટલે કે પ્રાથમિક ગૂંચળામાં તત્કાલીન પાવર

$$\therefore \ \epsilon_{s}I_{s} = \epsilon_{p}I_{p}$$

$$\therefore \frac{\varepsilon_{S}}{\varepsilon_{P}} = \frac{I_{P}}{I_{S}} = \frac{N_{S}}{N_{P}} = r \tag{2.11.3}$$

આપણી ઉપર્યુક્ત ધારણા આદર્શ છે, તેથી આવા ટ્રાન્સફૉર્મરને આદર્શ ટ્રાન્સફૉર્મર કહેવાય. વ્યવહારમાં પ્રાથમિક ગૂંચળામાંથી ઊર્જાનો થોડો ભાગ ઉષ્મા-ઊર્જા રૂપે થોડો ભાગ કોર (ગર્ભ)નું ચુંબકીય કરણ અને વિચુંબકીય કરણ અને કોરની (ગર્ભની) સપાટી પર બંને eddy પ્રવાહો ઉત્પન્ન કરવામાં વપરાતો હોય છે. પરિણામે આઉટપુટ ઊર્જા એ ઇનપુટ ઊર્જા કરતાં કંઈક ઓછી હોય છે.

ઉદાહરણ 15 : એક આદર્શ સ્ટેપ-અપ ટ્રાન્સફૉર્મરમાં ઇનપુટ વૉલ્ટેજ 110 V છે, તથા ગૌણ ગૂંચળામાં 10 A પ્રવાહ વહે છે. જો ટ્રાન્સફૉર્મેશન ગુણોત્તર 10 હોય તો આઉટપુટ વૉલ્ટેજ, પ્રાથમિક ગૂંચળામાં વીજપ્રવાહ અને ઇનપુટ પાવર તથા આઉટપુટ પાવર ગણો.

ઉકેલ : દ્રાન્સફૉર્મેશન ગુણોત્તર $r=rac{N_{S}}{N_{P}}=10$

(1)
$$\frac{\varepsilon_{\rm S}}{\varepsilon_{\rm P}} = \frac{N_{\rm S}}{N_{\rm P}} : \varepsilon_{\rm S} = \varepsilon_{\rm P} \frac{N_{\rm S}}{N_{\rm P}} = 110 (10)$$

 \therefore ϵ_{s} = આઉટપુટ વૉલ્ટેજ 1100 V

(2)
$$\varepsilon_{p} I_{p} = \varepsilon_{s} I_{s} \implies I_{p} = \frac{\varepsilon_{s}}{\varepsilon_{p}} I_{s}$$

$$I_{p} = \frac{N_{S}}{N_{p}} I_{S} = (10) (10) = 100 A$$

(3) ઇનપુટ પાવર = આઉટપુટ પાવર

$$\therefore \ \epsilon_{\rm p} I_{\rm p} = \ \epsilon_{\rm S} I_{\rm S} = (1100) \ (10) = 11000 \ {
m W}$$

પરિશિષ્ટ A

સંકર સંખ્યાઓ (માત્ર જાણકારી માટે) (Complex Numbers (For Information Only))

સંકર સંખ્યાને Z=x+jy સ્વરૂપે દર્શાવવામાં આવે છે. જયાં $j=\sqrt{-1}$ છે. તથા x અને y અનુક્રમે સંખ્યાના વાસ્તવિક અને કાલ્પનિક ભાગ છે. આ જ રીતે સંકર વિધય f(Z)ને $f(Z)=f_1(x,\ y)+jf_2(x,\ y)$ તરીકે દશાવવામાં આવે છે. આપણા અભ્યાસ પૂરતાં નીચેનાં પરિણામોની જ જરૂર છે.

(1) કોઈ પણ સંકર સંખ્યાને ભૌમિતિક રીતે x અને y વડે રચાતા સમતલમાં યોગ્ય બિંદુ વડે દર્શાવી શકાય છે. આ સમતલ સંકર સમતલ તરીકે ઓળખાય છે. આકૃતિમાં $\mathbf{Z_1} = x_1 + \mathbf{j}y_1$ સંકર સંખ્યાને બિંદુ P વડે દર્શાવેલ છે. આ બિંદુ Pનો x યામ $\mathbf{Z_1}$ ના વાસ્તવિક ભાગ જેટલો તથા y યામ કાલ્પનિક ભાગ જેટલો લેવામાં આવે છે. સંકર સંખ્યા $\mathbf{Z_1}$ નું માન $|\mathbf{Z_1}| = r$ છે.

આકૃતિ પરથી,

$$x_1 = r\cos\theta$$
 અને $y_1 = r\sin\theta$

$$\therefore Z_1 = r\cos\theta + jr\sin\theta$$

$$\therefore Z_1 = r(\cos\theta + j\sin\theta)$$

અત્રે
$$e^{j\theta} = \cos\theta + j\sin\theta$$
 છે.

આમ, સંકર સંખ્યાને \therefore $|Z|=e^{i\theta}$ વડે પણ દર્શાવી શકાય.

(2) સંકર સંખ્યા Zની અનુબદ્ધ સંકર સંખ્યા (Complex Conjugate) ને Z^* વડે દર્શાવવામાં આવે છે અને તે સંકર સંખ્યા Zમાં jને બદલે -j લેવાથી મેળવી શકાય છે.

:.
$$Z^* = x - jy$$
 and, $ZZ^* = (x + jy)(x - jy) = (x^2 + y^2) = |Z|^2$ as ugu satisfies.

(3) સંકર સંખ્યા Zનો વ્યસ્ત $\frac{1}{Z}$ પણ સંકર સંખ્યા છે. $\frac{1}{Z}$ ને નીચે પ્રમાણે વાસ્તવિક ભાગ અને કાલ્પનિક ભાગ સ્વરૂપે દર્શાવી શકાય.

$$\frac{1}{Z} = \frac{Z^*}{ZZ^*} = \frac{Z^*}{|z|^2} = \frac{(x - jy)}{(x^2 + y^2)} = \frac{x}{x^2 + y^2} - j\frac{y}{x^2 + y^2}$$

આમ, $\frac{1}{Z}$ નો વાસ્તવિક ભાગ $\frac{x}{x^2+y^2}$ અને કાલ્પનિક ભાગ $\frac{y}{x^2+y^2}$ છે. કોઈ પણ સંકર સંખ્યા Z

ના વાસ્તવિક (real) ભાગને આપશે Re(z) અને કાલ્પનિક (imaginary) ભાગને Im(z) વડે દર્શાવીશું.

પરિશિષ્ટ B

માત્ર જાણકારી માટે : Δω માટેનું સૂત્ર : જ્યારે કોણીય આવૃત્તિ ω, હોય, ત્યારે

$$I_{rms} = \frac{V_{rms}}{\sqrt{R^2 + \left(\omega_2 L - \frac{1}{\omega_2 C}\right)^2}}$$

પણ, $\omega_2 = \, \omega_0 + \, \frac{\Delta \omega}{2} \,$ (આકૃતિ 2.15 પરથી)

$$\therefore I_{rms} = \frac{V_{rms}}{\sqrt{R^2 + \left\{ \left(\omega_0 + \frac{\Delta\omega}{2}\right) L - \frac{1}{\left(\omega_0 + \frac{\Delta\omega}{2}\right) C}\right\}^2}}$$
(A-1)

હવે,
$$\left(\omega_0+\frac{\Delta\omega}{2}\right)L-\frac{1}{\left(\omega_0+\frac{\Delta\omega}{2}\right)C}$$
માં $C=\frac{1}{{\omega_0}^2L}$ મૂકતાં, આ સૂત્ર નીચે પ્રમાણે લખાય :

$$\omega_0^{}L \; + \; \frac{(\Delta\omega)L}{2} \; - \; \frac{\omega_0^{}^{2}L}{\omega_0^{} + \frac{\Delta\omega}{2}} \label{eq:omega_loss}$$

$$= \ \frac{{\omega_0}^2 L + \frac{(\Delta \omega) L \omega_0}{2} + \frac{(\Delta \omega) L \omega_0}{2} + \frac{(\Delta \omega)^2 L}{4} - {\omega_0}^2 L}{\omega_0 + \frac{\Delta \omega}{2}}$$

$$=rac{(\Delta\omega)\, L\omega_0}{\omega_0+rac{\Delta\omega}{2}}$$
 [અહીં, ઉપરના સૂત્રમાં $(\Delta\omega)^2$ પદ દ્વિતીય ક્રમનું હોવાથી તેને અવગણ્યું છે.]

$$\begin{split} \mathfrak{S} \hat{\mathbf{d}}, & \frac{(\Delta \omega) L \omega_0}{\omega_0 + \frac{\Delta \omega}{2}} &= (\Delta \omega) L \omega_0 \left(\omega_0 + \frac{\Delta \omega}{2} \right)^{-1} \\ &= (\Delta \omega) L \left(1 + \frac{\Delta \omega}{2\omega_0} \right)^{-1} \\ &= (\Delta \omega) L \left(1 - \frac{\Delta \omega}{2\omega_0} \right) \\ &= (\Delta \omega) L \end{split}$$

(અહીં પણ ($\Delta\omega$)માં દ્વિતીય અને એનાથી ઉચ્ચ ઘાતાંકવાળાં પદો અવગણ્યાં છે.) આ પરિણામ સમીકરણ (A-1)માં મૂકતાં,

$$\therefore I_{rms} = \frac{V_{rms}}{\sqrt{R^2 + (L\Delta\omega)^2}}$$
 (A-2)

પણ, જ્યારે આવૃત્તિ ω_2 છે, ત્યારે

$$I_{rms} = \frac{I_{rms} \text{ (max)}}{\sqrt{2}} = \frac{V_{rms}}{\sqrt{2R}}$$

 I_{ms} નું આ મૂલ્ય સમીકરણ (8.7.6)માં મૂકતાં,

$$\frac{V_{rms}}{\sqrt{2R}} = \frac{V_{rms}}{\sqrt{R^2 + (L\Delta\omega)^2}}$$

$$\therefore 2R^2 = R^2 + (L\Delta\omega)^2$$

$$\therefore R^2 = (L\Delta\omega)^2$$

$$\therefore R = L\Delta\omega^2 \Rightarrow \Delta\omega = \frac{R}{L}$$

સારાંશ

1. આ પ્રકરણમાં આપણે જુદા-જુદા A.C. પરિપથનો અભ્યાસ કર્યો, જેમાં L-C-R શ્રેણી A.C., પરિપથ માટે વિદ્યુતભારના વિકલ સમીકરણ

$$\frac{d^2 Q}{dt^2} + \frac{L}{R} \frac{dQ}{dt} + \frac{Q}{LC} = \frac{V_m}{L} \cos \omega t$$
 તથા યંત્રશાસ્ત્રમાં આવતા બળપ્રેરિત દોલનોના વિકલ

સમીકરણ $\frac{d^2y}{dt^2} + \frac{b}{m}\frac{dy}{dt} + \frac{k}{m}y = \frac{F_0}{m}\sin\omega t$ ના સામ્ય પરથી યાંત્રિક રાશિઓ અને વિદ્યુત રાશિઓ વચ્ચેની સામ્યતા મેળવી.

L-C-R A.C. પરિપથ માટે સંકર સંખ્યાનો ઉપયોગ કરી સંકર પ્રવાહનું સૂત્ર

$$i = \frac{V_m e^{j\omega t}}{R + j\left(\omega L - \frac{1}{\omega C}\right)}$$
 (મેળવીને જોયું કે)

પ્રવાહ અને વૉલ્ટેજનાં તત્કાલીન મૂલ્યો માટે ઉપર્યુક્ત સમીકરણને ઓહ્મના નિયમના સમીકરણ સાથે સરખાવી શકાય છે. આ પરથી જેવી રીતે પ્રવાહ પર અવરોધની અસર R વડે મળે છે તેવી જ રીતે ઇન્ડક્ટર અને કૅપેસિટરની અસરો અનુક્રમે $j\omega$ L અને $\frac{-j}{\omega C}$ વડે મળે છે. $j\omega$ Lને ઇન્ડક્ટરનો ઇન્ડક્ટિવ

રિએક્ટન્સ અને $\frac{-j}{\omega C}$ ને કૅપેસિટરનો કૅપેસિટિવ રિઍક્ટન્સ કહે છે. તેમની સંજ્ઞાઓ $Z_{\rm L}$ અને $Z_{\rm C}$ વડે દર્શાવવામાં આવે છે. તથા તેમનાં મૂલ્યો અનુક્રમે $X_{\rm L}$ અને $X_{\rm C}$ વડે દર્શાવવામાં આવે છે.

$$\therefore$$
 $|Z_L| = X_L = \omega L$ અને $|Z_C| = X_C = \frac{1}{\omega C}$

 $Z_{L},\ Z_{C}$ અને Rના સરવાળાને શ્રેણી-પરિપથનો ઇમ્પિડન્સ (Z) કહે છે.

$$\therefore Z = R + Z_L + Z_C = R + j \left(\omega L - \frac{1}{\omega C}\right).$$

તથા તેનું મૂલ્ય
$$|Z| = \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}$$
 થાય.

વિદ્યુતભારના વિકલ સમીકરણનો ઉપયોગ કરી સંકર પ્રવાહ મેળવી તેમના વાસ્તવિક ભાગ પરથી પ્રવાહ

$$\text{I-j. } \exists_{\frac{1}{2}} \exists_{\frac{1}{2}} = \frac{V_m \cos{(\omega t - \delta)}}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}} = \frac{V_m \cos{(\omega t - \delta)}}{|Z|} \quad \text{મેળવ્યું, જ્યાં } \delta \text{ પ્રવાહ અને વૉલ્ટેજ }$$

વચ્ચેનો કળા-તફાવત છે, જે સૂત્ર $an\delta = rac{\left(\omega L - rac{1}{\omega C}
ight)}{R}$ પરથી મેળવી શકાય છે.

2. (1) માત્ર ઇન્ડક્ટર ધરાવતા A.C. પરિપથ માટે

$$Z = j\omega L = jX_L$$
 તથા $|Z| = \omega L = X_L$, $\delta = \frac{\pi}{2}$

અને પ્રવાહ
$$I=rac{V_m\cos{(\omega t-rac{\pi}{2})}}{\omega L}=rac{V_m\cos{(\omega t-rac{\pi}{2})}}{X_L}$$

$$Z=rac{-j}{\omega C}$$
 તથા $|Z|=rac{1}{\omega C}=X_C$, $\delta=-rac{\pi}{2}$

અને પ્રવાહ
$$I=rac{V_m cos\left(\omega t -rac{\pi}{2}
ight)}{\left(rac{1}{\omega C}
ight)}=rac{V_m cos\left(\omega t -rac{\pi}{2}
ight)}{X_C}$$

$$Z = R + j\omega L$$
 \therefore $Z\sqrt{R^2 + (\omega L)^2} = \sqrt{R^2 + X_L^2}$

$$\delta = \tan^{-1}\left(\frac{\omega L}{R}\right)$$
 અને

પ્રવાહ
$$I = \frac{V_m \cos(\omega t - \delta)}{\sqrt{R^2 + (\omega L)^2}} = \frac{V_m \cos(\omega t - \delta)}{\sqrt{R^2 + (X_L)^2}}$$

$$Z = R - \frac{j}{\omega C} = R - jX_C$$

$$\therefore$$
 $|Z| = \sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2} = \sqrt{R^2 + X_C^2}$ અસે

$$\delta = an^{-1} \Bigl(rac{1}{\omega CR} \Bigr)$$
 તથા δ નું મૂલ્ય ઋણ હોય છે અને પ્રવાહ

$$I = \frac{V_m \cos(\omega t + \delta)}{\sqrt{R^2 + (\frac{1}{\omega C})^2}} = \frac{V_m \cos(\omega t + \delta)}{\sqrt{R^2 + X_C^2}}$$

$$Z = j\omega L - \frac{j}{\omega C} = jX_L - jX_C$$

$$\therefore |Z| = \omega L - \frac{1}{\omega C} = X_L - X_C$$

અત્રે
$$\omega L > \frac{1}{\omega C}$$
 લેતાં $\delta = \frac{\pi}{2}$

તથા પ્રવાહ
$$I=rac{V_m\cos(\omega t-rac{\pi}{2})}{\omega L-rac{1}{\omega C}}=rac{V_m\cos(\omega t-rac{\pi}{2})}{X_L-X_C}$$

(6) L અને Cના સમાંતર જોડાણ સાથે R શ્રેણીમાં હોય તેવા A.C. પરિપથ માટે

$$Z = R - \frac{j}{\omega C - \frac{1}{\omega L}} = R - \left(\frac{j}{X_C - X_L}\right)$$

$$\omega C > \frac{1}{\omega L}$$
 માટે $\delta = tan^{-1} \left(\frac{1}{R(\omega C - \frac{1}{\omega L})} \right)$

ત્યાં,
$$|Z|=\sqrt{R^2+rac{1}{(\omega C-rac{1}{\omega L})}}$$
 અને પ્રવાહ

$$I = \frac{V_m \cos(\omega t + \delta)}{\sqrt{R^2 + \frac{1}{(\omega C - \frac{1}{\omega L})^2}}}$$

3. વૉલ્ટેજ અને પ્રવાહનાં rms (root mean square) મૂલ્યો માટેનાં સૂત્રો

$$V_{rms} = \frac{V_m}{\sqrt{2}}$$
 du $I_{rms} = \frac{I_m}{\sqrt{2}}$

જ્યાં, \mathbf{V}_m અને \mathbf{I}_m અનુ \mathfrak{s} મે વૉલ્ટેજ અને પ્રવાહના મહત્તમ મૂલ્યો છે.

4. L-C-R પરિપથમાં અનુનાદ વખતે $\omega_0 L = rac{1}{\omega_0 C}$ જ્યાં ω_0 અનુનાદ કોણીય આવૃત્તિ છે તથા પ્રવાહ

$$I_{rms} = \frac{V_{rms}}{R}$$
 થશે.

વળી,
$$\omega_0 L = \frac{1}{\omega_0 C}$$
 \Rightarrow $\omega_0 = \frac{1}{\sqrt{LC}}$

$$Q - \xi + S + S = \frac{\omega_0}{\Delta \Delta}$$

 $\Delta \omega$ ને હાફપાવર બૅન્ડવીડ્થ કહે છે. $\Delta \omega = rac{R}{L}$ થાય.

∴
$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$
 થાય.

Q ફેક્ટર-અનુનાદ $\mathrm{I}_{\mathit{rms}}
ightarrow \omega$ વકની તીક્શતા આપે છે.

- ફેઝરનો ઉપયોગ કરી A.C. પરિપથના જુદા જુદા કિસ્સાઓમાં વૉલ્ટેજ અને પ્રવાહ વચ્ચેના કળા-તફાવતો સહેલાઈથી મેળવી શકાય છે, તે જોયું.
- 6. L—C ટૅન્ક પરિપથમાં થતા વિદ્યુતભારનાં દોલનો પરથી જોયું કે જ્યારે કૅપેસિટર મહત્તમ વિદ્યુતભાર ધરાવે છે, ત્યારે બધી જ ઊર્જા કૅપેસિટરમાંના વિદ્યુતક્ષેત્રમાં સંગૃહીત હોય છે અને જ્યારે ઇન્ડક્ટરમાંથી મહત્તમ વિદ્યુતપ્રવાહ વહેતો હોય છે, ત્યારે બધી જ ઊર્જા ઇન્ડક્ટરમાં ચુંબકીય ક્ષેત્રમાં સંગૃહીત થયેલી હોય છે. વળી, દોલનોની કોણીય આવૃત્તિ

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

- 7. AC-પરિપથમાં વાસ્તવિક પાવર $P=rac{V_m}{\sqrt{2}}rac{I_m}{\sqrt{2}}\cos\delta$ વડે આપી શકાય છે. જયાં V_m અને I_m અનુક્રમે મહત્તમ વૉલ્ટેજ અને મહત્તમ પ્રવાહ છે. તથા δ વૉલ્ટેજ અને પ્રવાહ વચ્ચેનો કળા-તફાવત છે. અત્રે $\cos\delta$ ને પાવર-ફૅક્ટર કહેવામાં આવે છે.
 - (i) પરિપથમાં પાત્ર અવરોધ હોય ત્યારે,

$$\delta = 1 \Rightarrow \cos \delta = 1$$

$$\therefore P = V_{rms}I_{rms}$$

(ii) પરિપથમાં માત્ર ઇન્ડક્ટર હોય ત્યારે,

$$\delta = \frac{\pi}{2} \implies \cos \delta = 0$$

$$\therefore P = V_{rms}I_{rms} (0) = 0$$

(iii) પરિપથમાં માત્ર કૅપેસિટર હોય ત્યારે,

$$\delta = -\frac{\pi}{2} \implies \cos \delta = 0$$

$$\therefore P = V_{rms}I_{rms}(0) = 0$$

આમ, માત્ર ઇન્ડક્ટર કે માત્ર કેપેસિટર ધરાવતા A.C. પરિપથમાં P=0 છે. આ સ્થિતિમાં પરિપથમાંથી વહેતા પ્રવાહને વૉટલેસ (Wattless) પ્રવાહ કહે છે.

8. ટ્રાન્સફૉર્મરની મદદથી A.C. વૉલ્ટેજને ઘટાડી કે વધારી શકાય છે. જે ટ્રાન્સફૉર્મરની મદદથી A.C. વૉલ્ટેજ વધારી શકાય તેને સ્ટેપ-અપ ટ્રાન્સફૉર્મર કહે છે. તથા જેનાથી વૉલ્ટેજ ઘટાડી શકાય તેને સ્ટેપ-ડાઉન ટ્રાન્સફૉર્મર કહે છે. આદર્શ ટ્રાન્સફૉર્મરમાં તત્કાલીન ઇનપુટ પાવર ($I_p \varepsilon_p$) = તત્કાલીન આઉટપુટ પાવર ($I_q \varepsilon_p$) થાય.

ટ્રાન્સફૉર્મર વિદ્યુત ચુંબકીય પ્રેરણના સિદ્ધાંત પર કાર્ય કરે છે.

$$\frac{\varepsilon_{\mathrm{S}}}{\varepsilon_{\mathrm{P}}} = \frac{\mathrm{I}_{\mathrm{P}}}{\mathrm{I}_{\mathrm{S}}} = \frac{\mathrm{N}_{\mathrm{S}}}{\mathrm{N}_{\mathrm{P}}} = r$$
 જ્યાં r ને ટ્રાન્સફૉર્મેશન ગુણોત્તર કહે છે.

વ્યવહારમાં વપરાતા ટ્રાન્સફૉર્મરમાં પ્રાથમિક ગૂંચળામાંની વિદ્યુત ઊર્જાનો થોડો ભાગ ઉષ્મા-ઊર્જા રૂપે, થોડો ભાગ કોરનું ચુંબકીયકરણ અને વિચુંબકીયકરણ કરવામાં અને eddy પ્રવાહો ઉત્પન્ન કરવામાં વપરાતો હોવાથી આઉટપુટ ઊર્જા એ ઇનપુટ ઊર્જા કરતાં ઓછી હોય છે. એટલે કે આઉટપુટપાવર એ ઇનપુટ-પાવર કરતાં કંઈક ઓછો હોય છે.

સ્વાધ્યાય

નીચેના વિધાનો માટે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

- એક A.C. પરિપથમાં પ્રવાહનું મૂલ્ય 1 સેકન્ડમાં 120 વખત શૂન્ય થાય છે, તો A.C. પ્રવાહની આવૃત્તિ
 Hz થાય.
 - (A) 50
- (B) 100
- (C) 60

- (D) 120
- 2. L—R A.C. પરિપથમાં t સમયે વિદ્યુતપ્રવાહ I અને વિદ્યુતપ્રવાહના ફેરફારનો સમય દર $\frac{d I}{dt}$ છે, તો ઇન્ડક્ટરના બે છેડા વચ્ચે વિદ્યુતસ્થિતિમાનના તફાવતનું મૂલ્ય હોય.
 - (A) $L \frac{dI}{dt}$
- (B) $\frac{1}{L} \frac{dI}{dt}$
- (C) LI
- (D) $\frac{L}{I}$

3.	L-C-R પરિપથમાં A.C ઇન્ડક્ટિવ રિએક્ટન્સ		આવૃત્તિ ઘટાડતાં કૅપેસિટિ	વ રિઍક્ટન્સ અને		
	(A) વધે, ઘટે	(B) વધે, વધે	(C) ઘટે, વધે	(D) ઘટે, ઘટે		
4.	L-C-R (A.C.) શ્રેણી-પ	રિપથમાં ઇમ્પિડન્સ ન્યૂનત [,]	ન ક્યારે બને છે?			
	(A) જ્યારે અવરોધ શૂન્	ય હોય ત્યારે				
	(B) જયારે ઇમ્પિડન્સનું	મૂલ્ય શૂન્ય થાય ત્યારે				
	(C) જ્યારે વિદ્યુપ્રવાહનું	મૂલ્ય શૂન્ય થાય ત્યારે				
	(D) જ્યારે ઇમ્પિડન્સનો	કાલ્પનિક ભાગ શૂન્ય થાય	ા ત્યારે			
5.	L-C-R (AC) શ્રેણી-પરિ	રેપથમાં Q-ફ્રૅક્ટરનું મૂલ્ય				
	(A) લગાડેલ AC વૉલ્ટેજની આવૃત્તિ પર આધાર રાખે છે.					
	(B) L, R અને C એ	મ ત્રણેયનાં મૂલ્યો પર અ	ાધાર રાખે છે.			
	(C) માત્ર L અને C	નાં મૂલ્યો પર આધાર રાષ્	ને છે.			
	(D) પાવર ફ્રેક્ટર પર :	આધાર રાખે અને ન પણ	રાખે.			
6.	એક AC પરિપથમાં V અને 1 નીચેનાં સમીકરણો વડે આપવામાં આવ્યાં છે :					
	$V = 100 \sin(100t)$ V, $I = 100 \sin\left(100t + \frac{\pi}{3}\right)$ mA ณิ นโรนขนเ นเจร W.					
	(A) 10^4	(B) 10	(C) 2.5	(D) 5.0		
7.	$100~\Omega$ અવરોધ અને $1~\mathrm{H}$ ઇન્ડક્ટન્સના શ્રેણી-જોડાણવાળા પરિપથમાંથી $rac{50}{\pi}~\mathrm{Hz}$ આવૃત્તિવાળો A.C. પ્રવાહ					
	" - પસાર કરતાં વૉલ્ટેજ અને પ્રવાહ વચ્ચેનો કળા-તફાવત થાય.					
	(A) 60°	(B) 45°	(C) 30°	(D) 90°		
8.	L-C શ્રેણી AC પરિપથ	. માટે X_{L} $>$ X_{C} હોય,	તો પ્રવાહ વૉલ્ટેજ કરતાં	કળામાં હોય છે.		
	(A) $\frac{\pi}{2}$ જેટલો પાછળ	(B) $\frac{\pi}{2}$ જેટલો આગળ	(C) π જેટલો આગળ	(D) π જેટલો પાછળ		
9.	તત્કાલીન AC પ્રવાહ I	$= 100\cos(200t + 45^{\circ})$) A માટે પ્રવાહનું rms	મૂલ્ય કેટલું થાય?		
	(A) 50√2 A	(B) 100 A	(C) 100√2 A	(D) શૂન્ય		
10.	L-C-R AC શ્રેણી-પરિપ	થમાં અનુનાદ માટે અનુન	ાાદ-આવૃત્તિ $f_{0}=$	થાય.		
	1	2		2		
	(A) $\frac{1}{2\pi\sqrt{LC}}$	(B) $\frac{2\pi}{\sqrt{LC}}$	(C) $\frac{\sqrt{LC}}{2\pi}$	(D) $\frac{2\pi}{LC}$		
11.		ઇન્ડક્ટન્સવાળી એક કૉઇલ s ^{–1} હોય, તો પરિપથમાં :		સાથે જોડી છે. જો ઉદ્દગમની		
	Sight virgin w laus					
	(A) $\frac{V}{R}$	(B) $\frac{V}{L}$	(C) $\frac{V}{R+L}$	(D) $\frac{V}{\sqrt{R^2 + \omega^2 L^2}}$		
70				ભૌતિકવિજ્ઞાન-IV		

12.	એક ઇન્ડક્ટર (ઇન્ડક્ટન્સ, L henry)ને $V=V_0\sin\omega t$ (V) ના A.C. ઉદ્ગમ સાથે જોડેલ છે, તો					
	ઇન્ડક્ટરમાંથી પસાર થતો પ્રવાહ $I=$ $A.$					
	(A) $\frac{V_0}{\omega L} \sin\left(\omega t + \frac{\pi}{2}\right)$	(B) $\frac{V_0}{\omega L} \sin \left(\omega t - \frac{\pi}{2}\right)$				
	(C) $V_0 \omega L \sin \left(\omega t - \frac{\pi}{2}\right)$	(D) $\frac{\omega L}{V_0} \sin \left(\omega t + \frac{\pi}{2}\right)$				
13.	L-C-R એ.સી. શ્રેણી-પરિપથના ત્રણેય ઘટકોના બે છેડા વચ્ચેના વીજ સ્થિતિમાનના તફાવત અનુક્રમે $V_{ m L}$					
		અને V _R હોય તો A.C. પ્રાપ્તિસ્થાનનો વૉલ્ટેજ હશે.				
	$(A) V_L + V_C + V_R$	$(B) V_R + V_L - V_C$				
	(C) $\sqrt{V_R^2 + (V_L + V_C)^2}$	(D) $\sqrt{V_{R}^2 + (V_{L} - V_{C})^2}$) ²			
14.	R-C પરિપથમાં કૅપેસિટરની પ્લેટ પરનો વિદ્યુતભાર વધતો હોય, ત્યારે પ્રાપ્તિસ્થાનમાંથી મળતી ઊર્જા					
	માં સંગ્રહ પામે છે.	് പ്രധിവ മിച				
	(A) વિદ્યુતક્ષેત્ર (C) ગુરુત્વીય ક્ષેત્ર	(B) ચુંબકીય ક્ષેત્ર (D) ચંબકીય ક્ષેત્ર અને	વિદ્યતકોએ બંનેમાં			
15.	(C) ગુરુત્વીય ક્ષેત્ર (D) ચુંબકીય ક્ષેત્ર અને વિદ્યુતક્ષેત્ર બંનેમાં એક L-C દોલનો કરતા પરિપથમાં જો કૅપેસિટરની પ્લેટ પરનો મહત્તમ વિદ્યુતભાર Q હોય તો જ્યારે ઊ					
		ડીય ક્ષેત્ર અને વિદ્યુતક્ષેત્રમાં સરખી સંગ્રહ પામેલી હોય તે સ્થિતિમાં કૅપેસિટરની પ્લેટ પરનો વિદ્યુતભાર				
	(A) $\frac{Q}{3}$ (B) $\frac{Q}{\sqrt{2}}$	(C) Q	(D) $\frac{Q}{2}$			
16.	L-C-R AC પરિપથ માટે અનુનાદ આવૃત્તિ 600 Hz and હાફપાવર બિંદુઓએ આવૃત્તિઓ 550 Hz અને 650 Hz છે, તો Q-ફૅક્ટર કેટલો હશે?					
	(A) $\frac{1}{6}$ (B) $\frac{1}{3}$	(C) 6	(D) 3			
17.	$V=200\sqrt{2}\sin 100\ t\ (V)$ વડે અપાતો એક ઑહ	ક્ટરનેટિંગ વૉલ્ટેજ, 1 μFના	ા કૅપેસિટરને આપવામાં આવ્યો			
	છે, તો પરિપથમાં જોડેલા ઍમીટરનું અવલોન		(F) 00			
18	(A) 100 (B) 20 ΔC પરિપાસમાં પાવર P = V I cosδ αλ સ	(C) 40 Ingli (A) 1 - (C) 40	(D) 80 			
10.	AC પરિપથમાં પાવર, $P = V_{rms}I_{rms}\cos\delta$ વડે આપવામાં આવે છે, તો L-C-R શ્રેણી-પરિપથમાં, અનુનાદ વખતે પાવર ફૅક્ટર હશે.					
		(C) 1	$(D) \frac{1}{2}$			
		(C) $\frac{1}{2}$	•			
19.	વ્યવહારમાં વપરાતા સ્ટેપ-અપ ટ્રાન્સફૉર્મરમાં આઉ (A) ઇનપુટ પાવર કરતાં વધારે હોય છે.	•				
	(A) ઇનપુટ પાપર કરતા પંપાર હાય છે. (C) પાવરકટ વખતે પણ જળવાઈ રહે છે.	•				
20.		•				
	(B) પરિપથની ઊર્જા વધતી જાય છે					
	(C) પરિપથની ઊર્જા ઘટતી જાય છે					
	(D) પરિપથ દ્વારા વિદ્યતચંબકીય વિકિસ્ણનં સતત	શોષણ થતં રહે છે				

- 21. બે ઇન્ડક્ટર \mathbf{L}_1 અને \mathbf{L}_2 શ્રેણીમાં જોડતાં પરિણામી ઇન્ડક્ટર 2.4 H થાય છે તથા આ બે ઇન્ડક્ટરને સમાંતર જોડતા પરિણામી ઇન્ડક્ટર $10~\mathrm{H}$ થાય છે. તો આ બંને ઇન્ડક્ટરો $\mathrm{L_{_1}}$ અને $\mathrm{L_{_2}}$ નાં મૂલ્યો
- (B) 5H, 5H
- (C) 7H, 3H
- (D) 8H, 2H
- 22. A.C. વૉલ્ટેજમાં વધારો કે ઘટાડો કરવામાં કઈ રચનાનો ઉપયોગ થાય છે ?
 - (A) ઑસ્સિલેટર
- (B) વૉલ્ટમીટર
- (C) ટ્રાન્સફૉર્મર
- (D) રેક્ટિફાયર
- 23. સ્ટેપ-ડાઉન ટ્રાન્સફૉર્મર માટે ટ્રાન્સફૉર્મેશન ગુણોત્તરનું મૂલ્ય હોય છે.
 - (A) r > 1
- (B) r < 1
- (C) r = 1
- (D) r = 0
- 24. આદર્શ સ્ટેપ-અપ ટ્રાન્સફૉર્મર માટે પ્રાથમિક ગૂંચળાનો પ્રવાહ ${
 m I}_{
 m s}$ અને ગૌણ ગૂંચળાનો પ્રવાહ ${
 m I}_{
 m s}$ તથા આ ગૂંચળાઓના વૉલ્ટેજ અનુક્રમે $V_{
 m p}$ અને $V_{
 m g}$ હોય તો,
- (A) $I_{S}V_{S} = I_{P}V_{P}$ (B) $I_{S}V_{S} > I_{P}V_{P}$ (C) $I_{S}V_{S} < I_{P}V_{P}$ (D) $I_{S}V_{P} < I_{P}V_{S}$
- 25. એક AC પરિપથમાં 2A પ્રવાહ તથા 220 વૉલ્ટ વીજસ્થિતિમાનનો તફાવત છે. જો પરિપથમાં વપરાતો પાવર 40W હોય, તો પાવરફૅક્ટર
 - (A) 0.9
- (B) 0.09
- (C) 1.8
- (D) 0.18

જવાબો

- 3. (A) 1. (C) 2. (A) 4. (D) 5. (B) 6. (C)
- 9. (A) 7. (B) 8. (A) 10. (A) 11. (D) 12. (B)
- **14.** (A) 16. (C) 13. (A) **15.** (B) 17. (B) 18. (B)
- 19. (D) **20.** (C) 21. (A) 22. (C) 23. (B) 24. (A) 25. (B)

નીચેના પ્રશ્નોના ટંકમાં જવાબ આપો :

- 1. વૉલ્ટમીટર દ્વારા AC વૉલ્ટેજનું કયું મૂલ્ય માપી શકાય છે ?
- $\frac{1}{\omega \Gamma}$ અને ωCના એકમો જણાવો.
- અનુનાદ વખતે L-C-R A.C. શ્રેણી-પરિપથ માટે પ્રવાહ અને વૉલ્ટેજ વચ્ચે કળાનો તફાવત કેટલો
- 4. L-C-R AC શ્રેશી-પરિપથ માટે અનુનાદની શરત જણાવો.
- 5. અનુનાદની તીક્ષ્ણતા કઈ રાશિ વડે જાણી શકાય ?
- હાફ પાવર બૅન્ડવીડ્થની વ્યાખ્યા આપો.
- **7.** Q-₹ક્ટર કઈ બાબતો પર આધાર રાખે છે ?
- 8. વાસ્તવિક પાવરની વ્યાખ્યા આપો.
- 🞐 આદર્શ ટ્રાન્સફૉર્મર માટે આઉટપુટ પાવર અને ઇનપુટ પાવર વચ્ચેનો સંબંધ જણાવો.
- 10. A.C. માટે વાસ્તવિક પાવર અને મહત્તમ-પાવર વચ્ચેનો સંબંધ લખો.
- 11. Q-ફૅક્ટર શાનું માપ આપે છે ?
- 12. દોલન કરતો વીજભાર શાનું ઉત્સર્જન કરે છે ?
- 13. ટ્રાન્સફૉર્મર કયા સિદ્ધાંત પર કાર્ય કરે છે ?
- 14. ટ્રાન્સફૉર્મરમાં eddy પ્રવાહની અસરો ઘટડાવાનું શું કરવામાં આવે છે ?
- 15. ટ્રાન્સફૉર્મેશન ગુણોત્તર કોને કહેવાય ?
- આદર્શ ટ્રાન્સફૉર્મર કોને કહેવાય ?

- 17. L-C ઓસ્સિલેટર પરિપથમાં ઇન્ડક્ટર સાથે સંકળાયેલ મહત્તમ ઊર્જાનું મૂલ્ય જણાવો.
- 18. L-C ઓસ્સિલેટરમાં કૅપેસિટર સાથે સંકળાયેલી મહત્તમ ઊર્જાનું મૂલ્ય જણાવો.
- 19. rms મૂલ્ય એટલું શું?

નીચેના પ્રશ્નોના જવાબ આપો :

- 1. માત્ર અવરોધ ધરાવતા AC પરિપથ માટેના AC પરિપથના સમય અને પ્રવાહના (I o t) આલેખ પરથી ઑલ્ટરનેટિંગ પ્રવાહની સમજૂતી આપો.
- 2. L.C. અને R, A.C. વૉલ્ટેજ $V = V_m \cos \omega t$ સાથે શ્રેણીમાં જોડેલા છે, તો વિદ્યુતભાર માટેનું વિકલ સમીકરણ મેળવો.
- A.C., L-C-R શ્રેણી-પરિપથ માટે પ્રવાહ માટેનું વિકલ સમીકરણ સંકર સ્વરૂપે લખો અને તેના પરથી સંકર પ્રવાહ માટેનું સૂત્ર મેળવો.
- 4. AC, L-C-R શ્રેશી-પરિપથ માટે ઇમ્પિડન્સનું સૂત્ર લખો અને ઇમ્પિડન્સને સંકર સમતલમાં દર્શાવો. આ ઉપરથી ઇમ્પિડન્સનું મૂલ્ય તથા વૉલ્ટેજ અને પ્રવાહ વચ્ચે કળા-તફાવતનાં સૂત્રો મેળવો.
- 5. માત્ર ઇન્ડક્ટર ધરાવતા A.C. પરિપથ માટે પ્રવાહનું સૂત્ર મેળવો. (યોગ્ય આકૃતિ અને આલેખ દોરો.)
- 6. માત્ર કૅપેસિટર ધરાવતા પરિપથ માટે પ્રવાહનું સૂત્ર મેળવો. (યોગ્ય આકૃતિ અને આલેખ દોરો.)
- અવરોધ અને ઇન્ડક્ટર ધરાવતા A.C. શ્રેણી-પરિપથ માટે વિદ્યુત-પ્રવાહનું સમીકરણ મેળવો. (યોગ્ય આકૃતિ અને આલેખ દોરો.)
- અવરોધ અને કૅપેસિટર ધરાવતા A.C. શ્રેશી-પરિપથ માટે પ્રવાહનું સૂત્ર મેળવો. (યોગ્ય આકૃતિ અને આલેખ દોરો.)
- 9. ઇન્ડક્ટર અને કૅપેસિટર ધરાવતા A.C. શ્રેશી-પરિપથ માટે પ્રવાહનું સૂત્ર મેળવો. (યોગ્ય આકૃતિ અને આલેખ દોરો.)
- 10. A.C., L-C-R શ્રેણી પરિપથના અનુનાદ માટે અનુનાદૃઆવૃત્તિ અને અનુનાદ વખતે પ્રવાહનું સૂત્ર rms પ્રવાહના (I_{rms}) સૂત્ર પરથી મેળવો.
- 11. $I_{rms} o \omega$ નો આલેખ A.C., L-C-R શ્રેશી-પરિપથ માટે દોરો તેની પરથી Q-ફૅક્ટરની સમજૂતી આપો.
- 12. L-C ઓસ્સિલેટર માટે વીજભાર અને પ્રવાહના સમીકરણ પરથી L-C દોલનો સમજાવો.
- 13. AC પરિપથ માટે $P = V_{rms}I_{rms}\cos\delta$ મેળવો.
- 14. $P = V_{rms} I_{rms} \cos \delta$ ની મદદથી AC પરિપથ માટેના ખાસ કિસ્સા ચર્ચો.
- 15. પાવર ટ્રાન્સિમિશન અને વિતરણ માટે ટ્રાન્સફૉર્મરની જરૂરિયાત સમજાવો તથા સ્ટેપ-અપ અને સ્ટેપ-ડાઉન ટ્રાન્સફૉર્મરની સમજૂતી આપો.

નીચેના દાખલા ગણો :

- 1. 110 V, 10 Wનો લેમ્પ 220 V અને 50 Hzવાળા AC ઉદ્ગમ સાથે વાપરવો હોય, તો પરિપથમાં જરૂરી ચોક કૉઇલનો ઇન્ડક્ટન્સ શોધો. [જવાબ: L = 6.67 H]
- 2. 230 Vનો અને 500 Hz આવૃત્તિવાળો એક AC ઉદ્ગમ L = 8.1 mH, C = 12.5 μ F અને R = 100 Ω સાથે શ્રેણીમાં જોડેલ છે, તો અવરોધના બે છેડા વચ્ચે વોલ્ટેજ શોધો. [જવાબ : 230 volt]
- 3. મિડિયમવેવ બ્રોડકાસ્ટ બૅન્ડમાં એક રેડિયો 800 kHz થી 1200 kHzના ગાળામાં ટ્યૂન કરી શકાય છે. જો આ રેડિયોના L-C પરિપથમાં અસરકારક ઇન્ડક્ટન્સ 200 µH હોય, તો તેના ચલ-કૅપેસિટરની રેન્જ કેટલી હોવી જોઈએ ?
 [જવાબ: 88 pF થી 198 pF]
- 4. $0.5 \text{ H}_{ ext{j}}$ એક ઇન્ડક્ટર અને 200Ω નો એક અવરોધ 230 V, 50 Hzના એ.સી. પ્રાપ્તિસ્થાન સાથે શ્રેષ્ટીમાં જોડેલ છે, તો (1) ઇન્ડક્ટરમાં મહત્તમ પ્રવાહ શોધો. (2) વિદ્યુતપ્રવાહ અને વૉલ્ટેજ વચ્ચેનો કળા-તફાવત અને સમય તફાવત શોધો. [જવાબ : $I_{max} = 1.28 \text{ A}$, $38^{\circ}8'$ અને 2.1 ms]

5. એક આદર્શ સ્ટેપ-અપ ટ્રાન્સફૉર્મરમાં ઇનપુટ એ.સી. વૉલ્ટેજ 220V છે. ગૌણ ગૂંચળાના પરિપથમાં વિદ્યુતપ્રવાહ 2.5A છે. જો પ્રાથમિક અને ગૌણ ગૂંચળા માટેના આંટાની સંખ્યાનો ગુણોત્તર 1:10 હોય, તો (i) આઉટપુટ વૉલ્ટેજ (ii) પ્રાથમિક ગૂંચળામાં વિદ્યુતપ્રવાહ (iii) આઉટપુટ અને ઇનપુટ પાવર શોધો.

[४वां : 2200V, 25 A, 5500W]

6. એક એ.સી. પરિપથમાં L અને R શ્રેણીમાં જોડેલા છે. એ.સી. વૉલ્ટેજનું મહત્તમ મૂલ્ય 220 V છે. ગૂંચળાનો રિએક્ટન્સ 60 Ω અને R = 80 Ω છે, તો પરિપથમાં વપરાતો પાવર અને પાવર-ફૅક્ટર શોધો.

[**%વાબ** : 193.6 W, 0.8]

- 7. સાબિત કરો કે એ.સી. પ્રાપ્તિસ્થાનમાંથી મળતો વૉલ્ટેજ જો ${f V}={f V}_m{
 m sin}\omega t$ હોય, તો તેનું આવર્તકાળના અર્ધચક્ર પર સરેરાશ મૂલ્ય ${2{f V}_m\over \pi}$ જેટલું હોય છે.
- 8. એક એ.સી. જનરેટરમાં t=0 સમયે, V=0 V છે અને $t=\frac{1}{100\pi}$ સેકન્ડે V=2V છે. આમ, વધતો વૉલ્ટેજ 100Vના મૂલ્ય સુધી પહોંચ્યા બાદ ઘટવા લાગે છે, તો વૉલ્ટેજની આવૃત્તિ શોધો.

[જવાબ : 1 Hz]

9. માત્ર ઇન્ડક્ટર ધરાવતા એ.સી. પરિપથમાં આવૃત્તિ 159.2 Hz, $V_m=100V$ અને ઇન્ડક્ટન્સ L=1H છે, તો પરિપથમાં પસાર થતા પ્રવાહનું સમીકરણ મેળવો. અત્રે વૉલ્ટેજ $V=V_m cos \omega t$ લો.

[8414 : I = $0.1\cos\left(1000t - \frac{\pi}{2}\right)$ A]

- 10. એક R-C એ.સી. પરિપથમાં મહત્તમ વૉલ્ટેજ $220\mathrm{V}$ તથા મહત્તમ પ્રવાહ $4.4\mathrm{A}$ છે, તો પરિપથમાં વપરાતો પાવર અને પાવર-ફ્રૅક્ટર ગણો. (અત્રે $\mathrm{X}_{\mathrm{C}}=30~\Omega$ and R = $40~\Omega$) [જવાબ : $387.2~\mathrm{W},~0.8$]
- 11. એક R-L પરિપથમાં 1Hનું ઇન્ડક્ટર તથા 100 Ωનો અવરોધ મહત્તમ વૉલ્ટેજ 220V, 50Hzવાળા એ.સી. પ્રાપ્તિસ્થાન સાથે શ્રેણીમાં જોડેલા છે. તો ઇન્ડક્ટરમાંથી પસાર થતો મહત્તમ પ્રવાહ તથા વૉલ્ટેજ અને વિદ્યુત-પ્રવાહ વચ્ચેનો કળા-તફાવત શોધો. [જવાબ : 0.668 A, 72°, 20']
- 12. એ.સી. વિદ્યુત-પ્રવાહ નીચેના સૂત્ર વડે આપી શકાય છે. $I=I_1{
 m sin}\omega t+I_2{
 m cos}\omega t$ દર્શાવો કે, આ વિદ્યુતપ્રવાહનું rms મૂલ્ય $I_{rms}=\sqrt{rac{I_1^2+I_2^2}{2}}$ છે.
- 13. એક L-C ઑસ્સિલેટરની ટૅન્ક પરિપથમાં 30μFનું કૅપેસિટર અને 27 mHનું ઇન્ડક્ટર જોડેલ છે, તો આ પરિપથમાં દોલનોની પ્રાકૃતિક કોણીય આવૃત્તિ શોધો. [જવાબ: 1.111 × 10³ rads-¹]

_