Lezione 4: Prodotto Vettoriale

In questa lezione daremo un metodo sistematico per:

- (1) Trovare l'equazione di un piano che passa per tre punti in \mathbb{R}^3 .
- (2) Trovare l'intersezione di due piani non paralleli
- (3) Trovare l'angolo tra due vettori in \mathbb{R}^3
- (4) Trovare l'angolo tra due piani non paralleli in \mathbb{R}^3 .

Lo strumento che useremo è il prodotto vettoriale di due vettori in R^3.

Nota: Esiste un analogo del prodotto vettoriale

$$\mathbb{R}^n \times \mathbb{R}^n \to \Lambda^2(\mathbb{R}^n)$$

per altri valori di n, che si chiama L'algebra di Grassmann o algebra esterna. Non tratteremo questo argomento in questo corso.

<u>Definizione</u>: Siano $v=(v_1,v_2,v_3)$ e $w=(w_1,w_2,w_3)$ due vettori in \mathbb{R}^3 Allora

$$v \times w = (v_2 w_3 - v_3 w_2, v_3 w_1 - v_1 w_3, v_1 w_2 - v_2 w_1)$$
(E1)

Notazione: Siano $\mathbf{i} = (1, 0, 0), \mathbf{j} = (0, 1, 0), \mathbf{k} = (0, 0, 1)$

Esempio:

Proprietà algebriche del prodotto vettoriale:

Siano $u, v, w \in \mathbb{R}^3, c \in \mathbb{R}$ 0 = (0, 0, 0)

- (1) $v \times w = -w \times v$
- (2) $u \times (v+w) = (u \times v) + (u \times w)$
- (3) $(u+v) \times w = (u \times w) + (v \times w)$
- $(4) \quad (cu) \times w = c(u \times w)$
- $(5) \quad u \times (cw) = c(u \times w)$
- $(6) \quad v \times v = 0$
- $(7) \quad 0 \times v = 0$

In particolare, utilizzando le proprietà algebriche del prodotto vettoriale e l'equazione (E2), possiamo calcolare il prodotto vettoriale.

Esempio:

Da (E1):
$$(1,0,1) \times (0,1,0) = ((0)(0) - (1)(1), (1)(0) - (1)(0), (1)(1) - (0)(0)) = (-1,0,1)$$

Da (E2): $(1,0,1) \times (0,1,0) = (\mathbf{i}+\mathbf{k}) \times \mathbf{j} = \mathbf{i} \times \mathbf{j} + \mathbf{k} \times \mathbf{j} = \mathbf{k} - \mathbf{j} \times \mathbf{k} = \mathbf{k} - \mathbf{i}$

La definizione geometrica del prodotto vettoriale:

(1) $u \times v = 0$ se u, v sono paralleli oppure u o v sono (0,0,0). Altrimenti, u e v generano un piano:

- (2) $u \times v$ è perpendicolare al piano di u e v
- (3) La lunghezza di $u \times v$ è uguale all'area del parallelogramma da u e v:

$$P = \{ su + tv \mid 0 \le s \le 1, \ 0 \le t \le 1 \}$$

 $\operatorname{Area}(P) = (\operatorname{Lunghezza}\,\mathbf{u})(\operatorname{Lunghezza}\,\mathbf{v})\sin(\theta)$

(4) La direzione del vettore $u \times v$ è data dalla regola della mano destra, dove si punta semplicemente l'indice della mano destra in direzione di u e il dito medio in direzione di v. Quindi, il vettore $u \times v$ esce dal pollice.

 $u \times v$

Esempio: $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, Area = 1

Condizione per due vettori non nulli in \mathbb{R}^3 per essere perpendicolari

Siano:
$$u = (u_1, u_2, u_3) \neq 0, \quad v = (v_1, v_2, v_3) \neq 0$$

Allora
$$u \perp v \iff (u, v) = u_1v_1 + u_2v_2 + u_3v_3 = 0$$

Esempio:

$$u = (1, 2, 3), \quad v = (1, 1, -1) \implies (u, v) = (1)(1) + (2)(1) + (3)(-1) = 0 \implies u \perp v$$

L'equazione del piano che passa per tre punti non colineari:

$$\begin{split} &P,\,Q,\,R=\text{punti in }\mathbb{R}^3\\ &u=\text{vettore da }P\text{ a }Q.\\ &v=\text{vettore da }P\text{ a }R.\\ &n=u\;x\;v\;(\text{prodotto vettoriale}) \end{split}$$

$$S = punti in \mathbb{R}^3$$

 $w = vettore da S a P$

Allora, S appartiene al piano passante per P, Q e R se e solo se w è perpendicolare a $\ n$.

Esempio: Trova l'equazione del piano che passa per

$$P = (1, 0, 0), \ Q = (0, 1, 0), \ R = (0, 0, 1)$$

Calcoliamo:

$$\begin{split} u &= (-1,1,0) = -\mathbf{i} + \mathbf{j}, \qquad v = (-1,0,1) = -\mathbf{i} + \mathbf{k} \\ n &= u \times v = (-\mathbf{i} + \mathbf{j}) \times (-\mathbf{i} + \mathbf{k}) = (-\mathbf{i} \times -\mathbf{i}) - \mathbf{i} \times \mathbf{k} - \mathbf{j} \times \mathbf{i} + \mathbf{j} \times \mathbf{k} = \mathbf{j} + \mathbf{k} + \mathbf{i} = (1,1,1) \\ S &= (x,y,z) \implies w = (x-1,y,z) \\ (w,n) &= (x-1)(1) + (y)(1) + (z)(1) = x + y + z - 1 \\ w \perp n \iff x+y+z-1 = 0 \qquad \text{(S=P corrisponde a w=0)} \end{split}$$

L'intersezione di due piani non paralleli:

Se Π è un piano con equazione

$$Ax + By + Cz = D (E3)$$

allora n=(A,B,C). Se $(x_o,y_o,z_o)\in\Pi$, l'equazione (E3) può essere scritta come:

$$(n,r) = 0,$$
 $r = (x - x_o, y - y_o, z - z_o)$ (E4)

Se Π' è un altro piano con equazione

$$A'x + B'y + C'z = D'$$
 (E5)

e $(x_o, y_o, z_o) \in \Pi'$ allora l'equazione (E5) può essere scritta come:

$$(n',r) = 0,$$
 $n' = (A', B', C'),$ $r = (x - x_o, y - y_o, z - z_o)$ (E6)

In particolare,

$$(x, y, z) \in \Pi \cap \Pi' \iff (r \perp n) \land (r \perp n')$$
 (E7)

Poiché stiamo lavorando in \mathbb{R}^3 , c'è solo una direzione che è perpendicolare a n e n', che è data da $n \times n'$ (ricorda: Π e Π' non paralleli).

Quindi, l'equazione parametrica della linea $\Pi \cap \Pi'$ è data da

$$t \mapsto t(n \times n') + (x_o, y_o, z_o) \tag{E8}$$

Esempio: Trova l'equazone della linea $\Pi \cap \Pi'$:

$$\Pi: \quad x + y + z = 1, \qquad \Pi': \quad x + 2y + 3z = 1$$

(1) Trova un punto $(x_o, y_o, z_o) \in \Pi \cap \Pi'$

Per esempio, provate a impostare x = 1. Questo darà due equazioni in y e z:

$$y + z = 0$$
, $2y + 3z = 0 \implies (y, z) = (0, 0)$

Allora: $(x_o, y_o, z_o) = (1, 0, 0)$

(2) n = (1, 1, 1), n' = (1, 2, 3)

$$n \times n' = (\mathbf{i} + \mathbf{j} + \mathbf{k}) \times (\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) = \mathbf{i} \times (\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) + (\mathbf{j} + \mathbf{k}) \times (\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$$

$$= 2\mathbf{k} - 3\mathbf{j} + \mathbf{j} \times (\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) + \mathbf{k} \times (\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$$

$$= 2\mathbf{k} - 3\mathbf{j} - \mathbf{k} + 3\mathbf{i} + \mathbf{k} \times (\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$$

$$= 3\mathbf{i} - 3\mathbf{j} + \mathbf{k} + \mathbf{j} - 2\mathbf{i} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$$

(3)
$$L(t) = (1,0,0) + t(1,-2,1)$$

L'angolo tra due vettori in \mathbb{R}^3

In una lezione successiva, mostreremo che l'angolo tra due vettori diversi da zero in \mathbb{R}^3 è dato dalla formula:

$$\cos(\theta) = \frac{(a,b)}{\sqrt{(a,a)}\sqrt{(b,b)}}$$

Esempio: Trova l'angolo tra a = (1,0,1), b = (1,1,0):

$$(a,a) = 1^2 + 0^2 + 1^1 = 2,$$
 $(a,b) = (1)(1) + (0)(1) + (1)(0),$ $(b,b) = (1)^2 + (1)^2 + (0)^2 = 2$
 $\cos(\theta) = \frac{1}{\sqrt{2}\sqrt{2}} = \frac{1}{2} \implies \theta = \frac{\pi}{6}$

L'angolo tra due piani non paralleli in \mathbb{R}^3

Siano

$$\begin{split} \Pi:\ Ax+By+Cz&=D, & n=(A,B,C)\\ \Pi':\ A'x+B'y+C'z&=D', & n'=(A',B',C') \end{split}$$

due piani non parallei in \mathbb{R}^3 .

Allora, l'angolo tra Π e Π' è definito come l'angolo tra n e n'.

Esempio: Trova l'angolo tra

$$\Pi: x + 2y + 2z = 1, \qquad \Pi': x + y = 0$$

$$n = (1, 2, 2),$$
 $n' = (1, 1, 0)$
 $(n, n) = 1^2 + 2^2 + 2^2 = 9,$ $(n, n') = (1)(1) + (1)(2) + (2)(0) = 3$
 $(n', n') = (1)^2 + (1)^2 + (0)^2 = 2$

$$\cos(\theta) = \frac{3}{\sqrt{9}\sqrt{2}} = \frac{1}{\sqrt{2}} \implies \theta = \frac{\pi}{4}$$

Nota: l'angolo tra due piani è un angolo acuto, quindi dobbiamo usare il valore assoluto del prodotto scalare

$$\cos(\theta) = \frac{|(n, n')|}{\sqrt{(n, n)}\sqrt{(n', n')}}$$

Norma di un vettore in \mathbb{R}^3

La quantità

$$|x| = \sqrt{(x,x)} \ge 0$$
 (anche scritto come $||x||$)

è chiamata norma del vettore x. Con questa notazione, la formula per l'angolo tra due vettori non-nulla diventa:

$$\cos(\theta) = \frac{(a,b)}{|a||b|}$$

Per il teorema di Pitagora, ||x|| è la lunghezza di x:

$$x = (x_1, x_2) \implies \ell(x) = \sqrt{x_1^2 + x_2^2}$$

Distanza:

La distanza d(x,y) tra due punti $x, y \in \mathbb{R}^3$ è data da

$$d(x,y) = |x - y|$$

Esempio: Trova la distanza tra x = (1,0,0), y = (2,2,2)

$$d(x,y) = |x-y| = |(-1,-2,-2)| = \sqrt{(-1)^2 + (-2)^2 + (-2)^2} = \sqrt{9} = 3$$

Vettori Unitari:

Un vettore $x \in \mathbb{R}^3$ è detto vettore unitario se (e sole se) |x| = 1.

L'insieme

$$S^2 = \{ x \in \mathbb{R}^3 : |x| = 1 \}$$

è chiamato la sfera unitaria.

I punti di S^2 possono essere pensati come le direzioni in \mathbb{R}^3 .

In particolare, se $x \in \mathbb{R}^3$ e $x \neq 0$ allora

 $u = \frac{x}{|x|}$

è il vettore unitario nella direzione di x.

Esempio: Trova il vettore unitario nella direzione di x = (3, 4, 12)

$$|x|^2 = 3^2 + 4^2 + 12^2 = 25 + 144 = 169 = 13^2$$

$$u = \frac{x}{|x|} = \frac{x}{13}$$

Proiezione di $y \in \mathbb{R}^3$ sulla direzione di $x \in \mathbb{R}^3$:

Dobbiamo trovare λ tale che

$$(y - \lambda x, x) = 0 \implies (y, x) - \lambda(x, x) = 0 \implies \lambda = \frac{(y, x)}{(x, x)}$$

 $(y - \lambda x, x) = 0 \implies (y, x) - \lambda(x, x) = 0 \implies \lambda = \frac{(y, x)}{(x, x)}$ $\lambda x = \frac{(y, x)}{(x, x)}x \quad \text{(formula della proiezione)}$

è la proiezione di y sulla direzione di x.

$$\frac{\text{Nota:}}{(x,x)} \frac{(y,x)}{(x,x)} x = \frac{(y,x)}{\sqrt{(x,x)}} \frac{x}{\sqrt{(x,x)}} = \left(y,\frac{x}{|x|}\right) \frac{x}{|x|} = (y,u)u, \quad u = \frac{x}{|x|}$$

Pagina 6.

Esempio: Trova la proiezione di y = (1,2,3) sul direzione di x = (1,0,1):

$$\frac{(y,x)}{(x,x)}x = \frac{(1)(1) + (2)(0) + (3)(1)}{1^2 + 0^2 + 1^2}(1,0,1) = \frac{4}{2}(1,0,1) = (2,0,2)$$

Lavoro (fisica):

Lavoro = (Forza)(Distanza)

Ma la forza è un vettore e sia il lavoro che la distanza sono scalari?

La distanza dovrebbe essere pensata come uno spostamento s, che è un vettore.

