Tutorial 7.5Constructing Examples

Learning Objectives

In this tutorial you will be constructing matrices and linear transformations that satisfy given conditions, or explaining why they don't exist.

These problems relate to the following course learning objectives: *Use matrices to solve problems, translate between algebraic and geometric viewpoints to solve problems, and clearly and correctly express the mathematical ideas of linear algebra to others.*

- 1. Write mathematically precise definitions of the rank of a matrix A and the rank of a linear transformation \mathcal{T} .
- 2. Give an example of a 2×3 matrix *A* with the specified rank, or explain why it cannot exist.
 - (a) rank(A) = 1
 - (b) rank(A) = 2
 - (c) rank(A) = 3
 - (d) rank(A) = 0
- 3. For a linear transformation $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}^m$, explain how rank(\mathcal{L}) relates to m or n under the following conditions:
 - (a) \mathcal{L} is one-to-one.
 - (b) \mathcal{L} is **not** one-to-one.
 - (c) \mathcal{L} is onto.
 - (d) \mathcal{L} is **not** onto.
- 4. Give examples of linear transformations $\mathcal{T}, \mathcal{S} : \mathbb{R}^3 \to \mathbb{R}^3$ that satisfy the following, or explain why they cannot exist.
 - (a) $rank(\mathcal{T}) = rank(\mathcal{S}) = rank(\mathcal{S} \circ \mathcal{T}) = 2$
 - (b) $rank(\mathcal{T}) = rank(\mathcal{S}) = 2$, and $rank(\mathcal{S} \circ \mathcal{T}) = 1$
 - (c) $rank(\mathcal{T}) = rank(\mathcal{S}) = 2$, and $rank(\mathcal{S} \circ \mathcal{T}) = 3$
 - (d) $rank(\mathcal{T}) = 2$, $rank(\mathcal{S}) = 1$ and $rank(\mathcal{S} \circ \mathcal{T}) = 0$
- 5. Tommy has returned once again and is working on similar matrices.
 - (a) Write down a mathematically precise definition for two matrices to be similar.
 - (b) Tommy began with a 3×3 matrix A and multiplied by a change of basis matrix X to find $B = XAX^{-1}$. His matrix computations gave

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 1 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Unfortunately, Tommy lost his paper containing *X*. Can you help him by finding a change of basis matrix *X* that gives this solution or explaining to Tommy why no such matrix exists?

- 1. The rank of a matrix A is the number of pivots in rref(A); the rank of a linear transformation \mathcal{T} is the dimension of the range of \mathcal{T} .
- 2. (a) $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is one example. There are many others with linearly dependent rows, not both zero.
 - (b) $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ is one example. There are many others with linearly independent rows.
 - (c) Such a matrix does not exist. *A* only has two rows, so rref(*A*) can have at most two pivot positions. Equivalently, the columnspace of *A* is a subspace of \mathbb{R}^2 , so it can't be 3 dimensional.
 - (d) $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is the only example. There are no others.
- 3. A linear transformation $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if its nullity is 0, and it is onto if its range is all of \mathbb{R}^m .
 - (a) Using the rank-nullity theorem, we have $rank(\mathcal{L}) = n$.
 - (b) Similarly, if \mathcal{L} is not one-to-one, we have rank(\mathcal{L}) < n. Note that we can never have rank(\mathcal{L}) > n (why?).
 - (c) \mathcal{L} is onto if rank(\mathcal{L}) = m.
 - (d) \mathcal{L} is not onto if rank(\mathcal{L}) < m.
- 4. (a) Since the ranks of \mathcal{T} and \mathcal{S} are both 2, their ranges are both planes in \mathbb{R}^3 . Let $\mathcal{T} = \mathcal{S}$ be projection onto the xy-plane. Then, $\mathcal{S} = \mathcal{S} \circ \mathcal{T}$ is rank 2.
 - (b) Again, the ranges of \mathcal{T} and \mathcal{S} must be planes, but this time we want the range of $\mathcal{S} \circ \mathcal{T}$ to be a line. Let \mathcal{T} be projection onto the xy-plane and let \mathcal{S} be projection onto the xz-plane. Then $\mathcal{S} \circ \mathcal{T}$ is projection onto the x-axis, which has rank 1.
 - (c) This is impossible. Since range $(S \circ T) \subseteq \text{range}(S)$, we cannot have

$$3 = rank(S \circ T) > rank(S) = 2.$$

- (d) The range of \mathcal{T} is a plane, while the range of \mathcal{S} is a line, and we would like $\mathcal{S} \circ \mathcal{T}$ to send every vector to 0. Let \mathcal{S} be projection onto the xy-plane and let \mathcal{T} be projection onto the z-axis. Then null(\mathcal{S}) = range(\mathcal{T}) and so $\mathcal{S} \circ \mathcal{T} = \mathbf{0}$, the transformation which sends every vector to zero.
- 5. Sorry Tommy, there must be a mistake somewhere in your lost notes. Comparing ranks, rank(A) = 3 and rank(B) = 2. Since X is invertible, it does not change the dimension of the image of any subspace, so for similar matrices $A \sim B$, we must have rank(A) = rank(B).

Learning Objectives

Students need to be able to...

- Define rank (algebraically for matrices and geometrically for linear transformations) and similarity
- Produce examples of linear transformations
- Describe connection between matrix multiplication and composition of functions.
- Compute the image of a set of vectors under a transformation.

Context

What to Do

Notes