Labo 5: Gelijkrichting, afvlakking en spanningsregeling

Datum: 12/11/2022

Gebruikte toestellen:

- Transformator 230V-12V
- Digital oscilloscoop
- Multimeter

Gebruikte componenten:

- Circuitbord
- Spanningsregelaar LM317
- Diode 4x
- Potentiometer 10K
- Weerstanden schakeling:

weerstand	theoretische weerstandswaarde	werkelijke
R1	680 Ω (1W)	0.676 K
R2	330 Ω (4W)	0.335 K
R3	10 Ω	10.3 Ω

- Condensatoren schakeling:

condensator	capaciteitswaarde
C1	100 μF
C2	1000 μF

Inleiding

Meetresultaten Gelijkrichting en Afvlakking

Figuur 1: Schakeling gelijkrichting

Figuur 2: Schakeling met R=330 Ω en C= 100 μ F, DC

Figuur 4: Schakeling met $R=680\Omega$ en $C=100~\mu F$, DC

Figuur 5: Schakeling met $R=680\Omega$ en $C=100~\mu F$, AC

Figuur 6: Schakeling met R=330 Ω en C= 1000 μ F, DC

Figuur 8: Schakeling met $R=680\Omega$ en $C=1000~\mu F$, DC

Figuur 7: Schakeling met R=330 Ω en C= 1000 μ F, AC

Figuur 9: Schakeling met $R=680\Omega$ en $C=1000~\mu F$, AC

Tabel 1: Gemeten spanningen van alle R en C combinaties (DC-stand)

R (Ω)	C (μF)	MAX (V)	MIN (V)	Peak to Peak (V)
330	100	15,2	11,4	3,8
680	100	16,2	13,2	3
330	1000	14,6	14	0,600
680	1000	16,4	15,8	0,600

Tabel 2: Gemeten spanningen van alle R en C combinaties (AC-stand)

R (Ω)	C (μF)	MAX (V)	MIN (V)	Peak to Peak (V)
330	100	1,96	-1,72	3,68
680	100	1,58	-1,34	2,92
330	1000	0,284	-0,244	0,528
680	1000	0,180	-0,154	0,334

Bepaling rimpel, ripple factor:

$$r = \frac{V_{r(pp)}}{V_{DC}}$$

 $met\ V_{r(pp)} = peak\ to\ peak\ rimpel\ spanning$

$$en V_{DC} = \frac{(MAX + MIN)}{2}$$

R (Ω)	C (μF)	$V_{r(pp)}$	V_{DC}	rimpelfactor	Rimpelfactor (%)
330	100	3,68	13,3	0,277	27.7
680	100	2,92	14,7	0,199	19.9
330	1000	0,528	14,3	0,037	3.7
680	1000	0,334	16,1	0,021	2.1

De rimpelfactor wordt kleiner naarmate de weerstandswaarde of de capaciteitswaarde groter wordt. Dit komt overeen met de benaderde formules voor een filtered bridge rectifier (gefilterde diodebrug).

$$egin{aligned} V_{r(pp)} &\cong \left(rac{1}{fR_LC}
ight) V_{p(rect)} \ V_{DC} &\cong \left(1-rac{1}{2fR_LC}
ight) V_{p(rect)} \ r &= rac{V_{r(pp)}}{V_{DC}} \cong rac{2}{2fR_LC-1} \end{aligned}$$

Kleinere rimpelfactor bij grotere R- en/of C-waarde.

$$met\ V_{p(rect)} = 12 * \sqrt{2} - 2 * 0.7 = 15.6V$$

$$en\ f = 2 * 50 = 100\ Hz$$

Bepaling stroom door condensator:

Figuur 10: Schakeling met R=680 Ω en C= 100 μ F, condensator in serie met weerstand van 10 Ω

MAX (V)	MIN(V)	Peak to Peak (V)
0.600	-0.280	0.880

$$I = \frac{U}{R} = \frac{(15.6 + 14.72)/2}{10} = 1.516 A$$

Meetresultaten Spanningsregeling

Figuur 11: Spanningsregelaar LM317, vervolgschakeling voor spanningsregeling met R2 als potentiometer (10K), gelijkrichter voorafgaand met C=100 μ F en geen belastingsweerstand

bepalen van weerstandswaarde voor R1:

Uitgangsspanning, V_{OUT} moet kunnen variëren tussen de minimum mogelijke waarde en 12V. Daarvoor moet de waarde voor R₁ worden bepaald:

$$\begin{split} V_{OUT(\min)} &= V_{REF} \left(1 + \frac{R_2}{R_1} \right) + I_{ADJ} R_2 \quad met \ V_{REF} = 1.25 V, I_{ADJ} = 50 \mu A \ en \ R_{2(\min)} = 0 \Omega \\ \\ V_{OUT(\min)} &= 1.25 V \\ \\ V_{OUT(\max)} &= V_{REF} \left(1 + \frac{R_2}{R_1} \right) + I_{ADJ} R_2 \quad met \ R_{2(\max)} = 10 k \Omega \\ \\ R_1 &= \left(\frac{12}{1.25} - 0.01 \right)^{-1} = 1164 \Omega = 1 K2 \end{split}$$

Uitgangsspanning, VOUT afregelen op 10V:

Wanneer de potentiometer wordt geplaatst op de verhouding 4.2K/6.2K, vinden we een uitgangsspanning van 10V.

Figuur 2: Rimpel aan ingang van de spanningsregelaar

Figuur 13: Rimpel aan uitgang van de spanningsregelaar

	V _{DC} (V)	V _{r(pp)} (mV)
ingang	12	168
uitgang	10	31.2

Ingang:
$$r = \frac{V_{r(pp)}}{V_{DC}} = \frac{0.168}{12} = 0.014 = 1.4\%$$

$$uitgang: r = \frac{V_{r(pp)}}{V_{DC}} = \frac{0.0312}{10} = 0.00312 = 0.3\%$$

Er wordt een kleinere rimpel waargenomen aan de uitgang van de spanningsregelaar.

Uitgangsspanning 10V en belasting weerstand 330 Ω (4W) aan uitgang LM317:

Figuur 14: rimpel aan de ingang van de spanningsregelaar bij belasting van 330 Ω (4W)

Figuur 15: Rimpel aan de uitgang van de spanningsregelaar bij belasting van 330 Ω (4W)

	V _{DC} (V)	V _{r(pp)} (V)
ingang	12	2.14
uitgang	10	3.92

Bepalen van de Load regulation:

Load regulation =
$$\left(\frac{V_{NL} - V_{FL}}{V}\right)100\% = \frac{10 - 9.44}{9.44}100\% = 5.93\%$$