CSE 4125: Distributed Database Systems Chapter – 6

Optimization of Access Strategies. (part – C)

Outline

- Semi-join programs.
- Full reducer.

Semi-join Programs

$$R \text{ JN}_{C=A} S \longleftrightarrow (R \text{ SJ}_{C=A} \text{ PJ}_{A} S) \text{ JN}_{C=A} S$$

$$R \text{ JN}_{C=A} S \longleftrightarrow (R \text{ SJ}_{C=A} \text{ PJ}_A S) \text{ JN}_{C=A} S$$

Cost of Semi-join program

Cost of sending S' to site – 2:
 TC₁ = ?

Cost of Semi-join program

Cost of sending S' to site – 2:
 TC₁ = C₀+C₁*size(A)*val(A[S])

- Cost of sending S' to site 2: $TC_1 = C_0 + C_1 * size(A) * val(A[S])$
- Cost of computing R' at site 2:
 TC₂ = ?

- Cost of sending S' to site 2:
 TC₁ = C₀+C₁*size(A)*val(A[S])
- Cost of computing R' at site 2:
 TC₂ = 0

- Cost of sending S' to site 2: $TC_1 = C_0 + C_1 * size(A) * val(A[S])$
- Cost of computing R' at site 2:
 TC₂ = 0
- Cost of sending R' to site 1:
 TC₃ = ?

- Cost of sending S' to site 2: $TC_1 = C_0 + C_1 * size(A) * val(A[S])$
- Cost of computing R' at site 2:
 TC₂ = 0
- Cost of sending R' to site 1:
 TC₃ = C₀+C₁*size(R)*card(R')

- Cost of sending S' to site 2:
 TC₁ = C₀+C₁*size(A)*val(A[S])
- Cost of computing R' at site 2:
 TC₂ = 0
- Cost of sending R' to site 1:
 TC₃ = C₀+C₁*size(R)*card(R')
- Cost of computing Q at site 1:
 TC₄ = ?

- Cost of sending S' to site 2:
 TC₁ = C₀+C₁*size(A)*val(A[S])
- Cost of computing R' at site 2:
 TC₂ = 0
- Cost of sending R' to site 1:
 TC₃ = C₀+C₁*size(R)*card(R')
- Cost of computing Q at site 1:
 TC₄ = 0

- Total cost TC_{SJ} = TC₁ + TC₂ + TC₃ + TC₄
- If $TC_{SJ} < TC_{JN}$ then semi-join program is profitable.
 - Here TC_{IN} is the cost of performing join without semi-join program.

Other Applications of Semi-join Programs

- Semi-join programs can be used as fragment reducers (operations that can reduce cardinality of a relation).
 - Similarly to unary operations.
- Full reducer:
 - Chain of semi-joins.

Full Reducer

S			
В	С		
а	х		
b	У		
С	Z		

T		
С	Α	
х	2	
У	3	
Z	4	

T		
С	Α	
Х	2	
У	3	
Z	4	

R'	=	R	SJ	A=A	T
----	---	---	----	-----	---

Α	В
2	b
3	С

$$R' = R SJ_{A=A} T$$

Α	В
2	b
3	С

$$S' = S SJ_{B=B} R'$$

В	С
b	у
С	Z

$$R' = R SJ_{A=A} T$$

Α	В
2	b
3	С

$$S' = S SJ_{B=B} R'$$

В	С
b	У
С	Z

$$T' = T SJ_{C=C} S'$$

C	Α
У	3
Z	4

S		
В	С	
а	х	
b	У	
С	z	

Т			
Α			
2			
3			
4			

$$R' = R SJ_{A=A} T$$

Α	В
2	b
3	С

$$S' = S SJ_{B=B} R'$$

В	C
b	у
С	Z

$$T' = T SJ_{C=C} S'$$

С	Α
У	3
z	4

$$R'' = R' SJ_{A=A} T'$$

Α	В
3	С

T		
С	Α	
х	2	
У	3	
Z	4	
Z	4	

$$R' = R SJ_{A=A} T$$

Α	В
2	b
3	С

$$S' = S SJ_{B=B} R'$$

В	С
b	У
С	z

$$T' = T SJ_{C=C} S'$$

С	Α
У	3
Z	4

$$R'' = R' SJ_{A=A} T'$$

Α	В
3	С

$$S'' = S' SJ_{B=B} R''$$

В	С
С	Z

$$R' = R SJ_{A=A} T$$

Α	В
2	b
3	С

$$S' = S SJ_{B=B} R'$$

В	С
b	У
С	Z

$$T' = T SJ_{C=C} S'$$

С	Α
У	3
Z	4

$$R'' = R' SJ_{A=A} T'$$

Α	В
3	С

$$S'' = S' SJ_{B=B} R''$$

В	С
С	Z

С	А
Z	4

Т	
Α	
2	
3	
4	

$$R' = R SJ_{A=A} T$$

Α	В
2	b
3	С

$$S' = S SJ_{B=B} R'$$

В	С
b	У
С	Z

$$T' = T SJ_{C=C} S'$$

C	Α
У	3
Z	4

$$R'' = R' SJ_{A=A} T'$$

Α	В
3	С

$$S'' = S' SJ_{B=B} R''$$

В	С
С	Z

$$T'' = T' SJ_{C=C} S''$$

С	Α
Z	4

$$R''' = R'' SJ_{A=A} T''$$

Φ

Т	
С	А
х	2
У	3
Z	4

$$R' = R SJ_{A=A} T$$

Α	В
2	b
3	С

$$S' = S SJ_{B=B} R'$$

В	С
b	У
С	Z

$$T' = T SJ_{C=C} S'$$

С	Α
У	3
Z	4

$$R'' = R' SJ_{A=A} T'$$

Α	В
3	С

$$S'' = S' SJ_{B=B} R''$$

В	С
C	Z

$$T'' = T' SJ_{C=C} S''$$

С	Α
Z	4

$$R''' = R'' SJ_{A=A} T''$$

Φ

Additional Reading

- Length of full reducer.
- Tree queries.
- "Best" reducer.

Practice Problems/ Questions

- 1. With an example, prove that the semi-join is not symmetric. [hint: page. 142]
- 2. Textbook exercise: 6.1, 6.4