Introduction

Modelling parallel systems

Linear Time Properties

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

Idea: define regular LT properties to be those languages of infinite words over the alphabet **2**^{AP} that have a representation by a finite automata

- regular safety properties:
 NFA-representation for the bad prefixes
- other regular LT properties: representation by ω -automata, i.e., acceptors for infinite words

Introduction

Modelling parallel systems

Linear Time Properties

Regular Properties

regular safety properties ω -regular properties model checking with Büchi automata

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

NFA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subset Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

```
run for a word A_0A_1 \dots A_{n-1} \in \Sigma^*:

state sequence \pi = q_0 \ q_1 \dots q_n where q_0 \in Q_0

and q_{i+1} \in \delta(q_i, A_i) for 0 \le i < n

run \pi is called accepting if q_n \in F
```

NFA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet \longleftarrow here: $\Sigma = 2^{AP}$
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

accepted language $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^*$ is given by:

 $\mathcal{L}(\mathcal{A})$ = set of finite words over Σ that have an accepting run in \mathcal{A}

onfinal state

final state

NFA \mathcal{A} with state space $\{q_0, q_F\}$ q_0 initial state q_F final state alphabet $\Sigma = \{A, B\}$

ononfinal state

final state

accepted language $\mathcal{L}(A)$:

set of all finite words over $\{A, B\}$ ending with letter A

NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ over the alphabet $\Sigma = 2^{AP}$ symbolic notation for the labels of transitions:

If Φ is a propositional formula over AP then $q \xrightarrow{\Phi} p$ stands for the set of transitions $q \xrightarrow{A} p$ where $A \subseteq AP$ such that $A \models \Phi$

Example: if
$$AP = \{a, b, c\}$$
 then
$$q \xrightarrow{a \land \neg b} p \stackrel{\frown}{=} \{q \xrightarrow{A} p : A = \{a, c\} \text{ or } A = \{a\}\}$$

$$q \xrightarrow{true} p \qquad \stackrel{\frown}{=} \{q \xrightarrow{A} p : A \subseteq AP\}$$

A safety property $E \subseteq (2^{AP})^{\omega}$ is called regular iff $BadPref = \text{set of all bad prefixes for } E \subseteq (2^{AP})^+$ $BadPref = \mathcal{L}(\mathcal{A}) \text{ for some NFA } \mathcal{A}$ $\text{over the alphabet } 2^{AP}$ is regular.

$$AP = \{a, b\}$$

$$\text{symbolic notation:}$$

$$\text{true}$$

$$\text{true}$$

$$\text{true}$$

safety property E: " $a \land \neg b$ never holds twice in a row"

"Every red phase is preceded by a yellow phase" set of all infinite words $A_0 A_1 A_2 \dots$ s.t. for all $i \ge 0$: $red \in A_i \implies i \ge 1$ and $yellow \in A_{i-1}$

DFA for minimal bad prefixes

given: finite TS *T*regular safety property *E*(represented by an **NFA** for its bad prefixes)

question: does $T \models E$ hold ?

method: relies on an analogy between the tasks:

- checking language inclusion for NFA
- model checking regular safety properties

language inclusion for NFA	verification of regular safety properties
$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$?	$Traces(T) \subseteq E$?
check whether $\mathcal{L}(\mathcal{A}_1) \cap (\Sigma^* \setminus \mathcal{L}(\mathcal{A}_2))$ is empty	check whether $Traces_{fin}(T) \cap BadPref$ is empty
1. complement A_2 , i.e., construct NFA $\overline{A_2}$ with $\mathcal{L}(\overline{A_2}) = \Sigma^* \setminus \mathcal{L}(A_2)$	1. construct NFA \mathcal{A} for the bad prefixes $\mathcal{L}(\overline{\mathcal{A}}) = BadPref$
2. construct NFA \mathcal{A} with $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\overline{\mathcal{A}_2})$	2. construct TS T' with $Traces_{fin}(T') = \dots$
3. check if $\mathcal{L}(A) = \emptyset$	3. invariant checking for <i>T'</i>

transition system T over

 $AP = \{red, yellow\}$

DFA \mathcal{A} for the bad prefixes for \boldsymbol{E}

T satisfies the safety property E
"every red phase is preceded by a yellow phase"

invariant condition $\neg q_F$ holds for all reachable states

DFA for bad prefixes

$$\lambda_y = \delta_r = x \oplus r$$
initially $r = 0$

$$T \not\models E$$
 error indication, e.g., $\langle 10 \rangle \langle 01 \rangle$

bad prefix:
$$\{y\} \{y\}$$

safety property **E**The circuit will never ouput two ones after each other

