Funciones de varias variables o campos escalares: Linealización y extremos

- Linealización de una función y diferencial total de una función
 - Planos tangentes y rectas normales
 - Linealización de una función en un punto
 - Diferencial de una función en un punto
 - Aplicaciones
 - Fórmula de Taylor para dos variables
- Valores extremos y puntos de silla
 - Conceptos y definiciones
 - Extremos de funciones en regiones acotadas y no acotadas
 - Extremos condicionados: método de multiplicadores de Lagrange
- 3 Anexo: Ejemplos varios

- Linealización de una función y diferencial total de una función
 - Planos tangentes y rectas normales
 - Linealización de una función en un punto
 - Diferencial de una función en un punto
 - Aplicaciones
 - Fórmula de Taylor para dos variables
- Valores extremos y puntos de silla
 - Conceptos y definiciones
 - Extremos de funciones en regiones acotadas y no acotadas
 - Extremos condicionados: método de multiplicadores de Lagrange
- 3 Anexo: Ejemplos varios

- Linealización de una función y diferencial total de una función
 - Planos tangentes y rectas normales
 - Linealización de una función en un punto
 - Diferencial de una función en un punto
 - Aplicaciones
 - Fórmula de Taylor para dos variables
- 2 Valores extremos y puntos de silla
 - Conceptos y definiciones
 - Extremos de funciones en regiones acotadas y no acotadas
 - Extremos condicionados: método de multiplicadores de Lagrange
- 3 Anexo: Ejemplos varios

Definición (Plano tangente y recta normal a una superficie de nivel)

Si f es una función diferenciable en (x_0, y_0, z_0) y $\nabla f(x_0, y_0, z_0) \neq (0, 0, 0)$, el **plano tangente** y la **recta normal** a la superficie de nivel de f que contiene al punto (x_0, y_0, z_0) , en dicho punto, son el plano que pasa por (x_0, y_0, z_0) y es normal al vector $\nabla f(x_0, y_0, z_0)$ y la recta que pasa por (x_0, y_0, z_0) con vector director $\nabla f(x_0, y_0, z_0)$, respectivamente.

Plano tangente a la superficie de nivel f(x, y, z) = c en un punto de la misma, P_0 , tal que $\nabla f(P_0) \neq 0$,

$$f_x(P_0)(x-x_0)+f_y(P_0)(y-y_0)+f_z(P_0)(z-z_0)=0.$$

Recta normal a la superficie de nivel f(x, y, z) = c en un punto de la misma, P_0 , tal que $\nabla f(P_0) \neq 0$,:

$$(x, y, z) = P_0 + t \nabla f(P_0), \qquad t \in \mathbb{R}.$$

Plano tangente a la superficie de nivel f(x, y, z) = c en un punto de la misma, P_0 , tal que $\nabla f(P_0) \neq 0$,

$$f_x(P_0)(x-x_0)+f_y(P_0)(y-y_0)+f_z(P_0)(z-z_0)=0.$$

Recta normal a la superficie de nivel f(x, y, z) = c en un punto de la misma, P_0 , tal que $\nabla f(P_0) \neq 0$,:

$$(x, y, z) = P_0 + t \nabla f(P_0), \qquad t \in \mathbb{R}.$$

Ejemplo: Halle las ecuaciones de los planos tangentes y rectas normales a las superficies de nivel de la función $f(x, y, z) = x^2 + y^2 + z^2$ que pasan por lo puntos (1,0,0) y (0,0,0), en dichos puntos.

Plano tangente a la superficie de nivel f(x, y, z) = c en un punto de la misma, P_0 , tal que $\nabla f(P_0) \neq 0$,

$$f_x(P_0)(x-x_0)+f_y(P_0)(y-y_0)+f_z(P_0)(z-z_0)=0.$$

Recta normal a la superficie de nivel f(x, y, z) = c en un punto de la misma, P_0 , tal que $\nabla f(P_0) \neq 0$,:

$$(x, y, z) = P_0 + t \nabla f(P_0), \qquad t \in \mathbb{R}.$$

Ejemplo: Halle las ecuaciones de los planos tangentes y rectas normales a las superficies de nivel de la función $f(x, y, z) = x^2 + y^2 + z^2$ que pasan por lo puntos (1,0,0) y (0,0,0), en dichos puntos.

Sol.: la superficie de nivel de f que pasa por el punto (1,0,0) es f(x,y,z) = f(1,0,0): $x^2 + y^2 + z^2 = 1$;

Ecuación plano tangente (a sup. nivel en (1,0,0)): x=1.

Ecuación recta normal (a sup. nivel en (1,0,0)):

$$r(t) = (1 + 2t, 0, 0), t \in \mathbb{R}.$$

4□ ► 4□ ► 4 = ► 4 = ► 9 9 0

Plano tangente a la superficie de nivel f(x, y, z) = c en un punto de la misma, P_0 , tal que $\nabla f(P_0) \neq 0$,

$$f_x(P_0)(x-x_0)+f_y(P_0)(y-y_0)+f_z(P_0)(z-z_0)=0.$$

Recta normal a la superficie de nivel f(x, y, z) = c en un punto de la misma, P_0 , tal que $\nabla f(P_0) \neq 0$,:

$$(x, y, z) = P_0 + t \nabla f(P_0), \qquad t \in \mathbb{R}.$$

Ejemplo: Halle las ecuaciones de los planos tangentes y rectas normales a las superficies de nivel de la función $f(x, y, z) = x^2 + y^2 + z^2$ que pasan por lo puntos (1,0,0) y (0,0,0), en dichos puntos.

Sol.: la superficie de nivel de f que pasa por el punto (0,0,0) es $x^2 + y^2 + z^2 = 0$; es un punto y $\nabla f(0,0,0) = (0,0,0)$.

Ecuación plano tangente: no existe el plano tangente (a sup. nivel en (0,0,0)).

Ecuación recta normal: no existe recta normal (a sup. nivel en (0,0,0)).

Planos tangentes y rectas normales

Caso especial: ¿cómo se aplica al caso de una función f de dos variables?

Ejemplo:

$$f(x,y) = x^2 + y^2$$
 $g(x,y,z) = x^2 + y^2 - z$

El gráfico de f es la superficie de nivel g(x, y, z) = 0.

Plano tangente a la superficie z = f(x, y) en el punto $(x_0, y_0, f(x_0, y_0))$:

$$f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)-(z-z_0)=0.$$

Recta normal a la superficie z = f(x, y) en el punto $(x_0, y_0, f(x_0, y_0))$:

$$\begin{cases} x = x_0 + 2x_0t \\ y = y_0 + 2y_0t \\ z = z_0 - t \end{cases} \quad (t \in \mathbb{R})$$

- Linealización de una función y diferencial total de una función
 - Planos tangentes y rectas normales
 - Linealización de una función en un punto
 - Diferencial de una función en un punto
 - Aplicaciones
 - Fórmula de Taylor para dos variables
- 2 Valores extremos y puntos de silla
 - Conceptos y definiciones
 - Extremos de funciones en regiones acotadas y no acotadas
 - Extremos condicionados: método de multiplicadores de Lagrange
- 3 Anexo: Ejemplos varios

Linealización o Aproximación Lineal Estándar de una función f en un punto

Definición

Si f es una función de dos variables y existen las derivadas parciales de f en un punto P_0 del interior del dominio de f, se define la linealización de f en P_0 por

$$L(x,y) = f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0).$$

$$L(x,y) = f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0).$$

$$\Delta L(x_0, y_0) = L(x_0 + \Delta x, y_0 + \Delta y) - L(x_0, y_0)
= f(x_0, y_0) + f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y - f(x_0, y_0) - 0 - 0
= f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y$$

$$\Delta f(x_0, y_0) = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + \varepsilon_1(\Delta x, \Delta y) \Delta x + \varepsilon_2(\Delta x, \Delta y) \Delta y.$$

Observación: si f es diferenciable en P_0 , L provee una buena aproximación de f en un entorno de P_0 .

Observación: si f es diferenciable en P_0 , L provee una buena aproximación de f en un entorno de P_0 .

$$\underbrace{f(x_0 + \Delta x, y_0 + \Delta y)}_{f(x,y)} = f(x_0, y_0) + f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y$$

$$\underbrace{L(x_0 + \Delta x, y_0 + \Delta y)}_{L(x,y)} = f(x_0, y_0) + f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y.$$

Definición

Si f es una función de tres variables y existen las derivadas parciales de f en un punto P_0 del interior del dominio de f, se define la linealización de f en P_0 por

$$L(x, y, z) = f(x_0, y_0, z_0) + f_x(x_0, y_0, z_0)(x - x_0) + f_y(x_0, y_0, z_0)(y - y_0) + f_z(x_0, y_0, z_0)(z - z_0).$$

No contamos con una representación gráfica conveniente de este caso.

$$L(x, y, z) = f(x_0, y_0, z_0) + f_x(x_0, y_0, z_0)(x - x_0) + f_y(x_0, y_0, z_0)(y - y_0) + f_z(x_0, y_0, z_0)(z - z_0)$$

$$L(P) = f(P_0) + \nabla f(P_0) \cdot (P - P_0)$$

$$L(x, y, z) = f(x_0, y_0, z_0) + f_x(x_0, y_0, z_0)(x - x_0) + f_y(x_0, y_0, z_0)(y - y_0) + f_z(x_0, y_0, z_0)(z - z_0)$$

$$L(P) = f(P_0) + \nabla f(P_0) \cdot (P - P_0)$$

$$\Delta L(P_0) = L(x_0 + \Delta x, y_0 + \Delta y, z_0 + \Delta z) - L(x_0, y_0, z_0)$$

$$= f(P_0) + f_x(P_0)\Delta x + f_y(P_0)\Delta y + f_z(P_0)\Delta z - f(P_0) - 0$$

$$= f_x(P_0)\Delta x + f_y(P_0)\Delta y + f_z(P_0)\Delta z$$

$$L(x, y, z) = f(x_0, y_0, z_0) + f_x(x_0, y_0, z_0)(x - x_0) + f_y(x_0, y_0, z_0)(y - y_0) + f_z(x_0, y_0, z_0)(z - z_0)$$

$$L(P) = f(P_0) + \nabla f(P_0) \cdot (P - P_0)$$

$$\Delta L(P_0) = L(x_0 + \Delta x, y_0 + \Delta y, z_0 + \Delta z) - L(x_0, y_0, z_0)$$

$$= f(P_0) + f_x(P_0)\Delta x + f_y(P_0)\Delta y + f_z(P_0)\Delta z - f(P_0) - 0$$

$$= f_x(P_0)\Delta x + f_y(P_0)\Delta y + f_z(P_0)\Delta z$$

$$\Delta f(P_0) = f_x(P_0)\Delta x + f_y(P_0)\Delta y + f_z(P_0)\Delta z$$

$$+ \varepsilon_1 \Delta x + \varepsilon_2 \Delta y + \varepsilon_3 \Delta z.$$

$$L(x, y, z) = f(x_0, y_0, z_0) + f_x(x_0, y_0, z_0)(x - x_0) + f_y(x_0, y_0, z_0)(y - y_0) + f_z(x_0, y_0, z_0)(z - z_0)$$

$$L(P) = f(P_0) + \nabla f(P_0) \cdot (P - P_0)$$

$$\Delta L(P_0) = L(x_0 + \Delta x, y_0 + \Delta y, z_0 + \Delta z) - L(x_0, y_0, z_0)$$

$$= f(P_0) + f_x(P_0)\Delta x + f_y(P_0)\Delta y + f_z(P_0)\Delta z - f(P_0) - 0$$

$$= f_x(P_0)\Delta x + f_y(P_0)\Delta y + f_z(P_0)\Delta z$$

$$\Delta f(P_0) = f_x(P_0)\Delta x + f_y(P_0)\Delta y + f_z(P_0)\Delta z$$

$$+ \varepsilon_1 \Delta x + \varepsilon_2 \Delta y + \varepsilon_3 \Delta z.$$

Observación: si f es diferenciable en P_0 , L provee una buena aproximación de f en un entorno de P_0 .

- 📵 Linealización de una función y diferencial total de una función
 - Planos tangentes y rectas normales
 - Linealización de una función en un punto
 - Diferencial de una función en un punto
 - Aplicaciones
 - Fórmula de Taylor para dos variables
- 2 Valores extremos y puntos de silla
 - Conceptos y definiciones
 - Extremos de funciones en regiones acotadas y no acotadas
 - Extremos condicionados: método de multiplicadores de Lagrange
- 3 Anexo: Ejemplos varios

Diferencial de una función de dos variables

Definición

Si f es diferenciable en un punto P_0 interior a su dominio, la **diferencial** o **diferencial total** de f en P_0 es la transformación lineal dada por

$$df = f_x(P_0)dx + f_y(P_0)dy,$$

si f es de dos variables.

Diferencial de una función de dos variables

Definición

Si f es difernciable en un punto P_0 interior a su dominio, la **diferencial** o **diferencial total** de f en P_0 es la transformación lineal dada por

$$df = f_x(P_0)dx + f_y(P_0)dy,$$

si f es de dos variables.

Si f es diferenciable en $P_0(x_0, y_0)$:

$$f(x_0 + \Delta x, y_0 + \Delta y) = f(x_0, y_0) + f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y$$

$$L(x_0 + \Delta x, y_0 + \Delta y) = f(x_0, y_0) + f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y.$$

$$df_{(x_0,y_0)}(dx,dy) = f_x(x_0,y_0)dx + f_y(x_0,y_0)dy.$$

Diferencial de una función de tres variables

Definición

Si f es difernciable en un punto P_0 interior a su dominio, la **diferencial** o **diferencial total** de f en P_0 es la transformación lineal dada por

$$df = f_x(P_0)dx + f_y(P_0)dy + f_z(P_0)dz,$$

si f es de tres variables.

Si f es diferenciable en $P_0(x_0, y_0, z_0)$:

$$f(x_0 + \Delta x, y_0 + \Delta y, z_0 + \Delta z) = f(P_0) + f_x(P_0) \Delta x + f_y(P_0) \Delta y + f_z(P_0) \Delta z + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y + \varepsilon_3 \Delta z.$$

$$L_{f,P_0}(x,y,z) = f(P_0) + f_x(P_0)(x-x_0) + f_y(P_0)(y-y_0) + f_z(P_0)(z-z_0).$$

$$df_{(P_0)}(dx,dy,dz) = f_x(P_0)dx + f_y(P_0)dy + f_z(P_0)dz.$$

Ejemplo

 $df_{(1,2)}(dx, dy) = 24dx + 18dy$

$$f(x,y) = 6x^2 + 3y^2 + 6xy$$
 $f(1,2) = 30$
 $\nabla f(x,y) = (12x + 6y, 6y + 6x)$ $\nabla f(1,2) = (24,18)$
Como f es diferenciable en \mathbb{R}^2 ,

$$\underbrace{f(1 + \Delta x, 2 + \Delta y) - f(1,2)}_{\Delta f(1,2)} = 24\Delta x + 18\Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y$$
donde ε_1 y ε_2 tienden a cero cuando $(\Delta x, \Delta y) \rightarrow (0,0)$.
 $L_{f,(1,2)}(x,y) = 30 + 24(x-1) + 18(y-2)$

$$f(1,2) = 30;$$
 $L_{f,(1;2)}(1,2) = 30;$ $df_{(1,2)}(0,0) = 0$
 $f(1,1;1,9) = 30,63;$ $L_{f,(1;2)}(1,1;1,9) = 30,6;$ $df_{(1;2)}(0,1;-0,1) = 0,6$

3, 4.(1;2)(3,1, 3,1) 3,3

- 📵 Linealización de una función y diferencial total de una función
 - Planos tangentes y rectas normales
 - Linealización de una función en un punto
 - Diferencial de una función en un punto
 - Aplicaciones
 - Fórmula de Taylor para dos variables
- 2 Valores extremos y puntos de silla
 - Conceptos y definiciones
 - Extremos de funciones en regiones acotadas y no acotadas
 - Extremos condicionados: método de multiplicadores de Lagrange
- 3 Anexo: Ejemplos varios

Ejemplo: estimación del error en el volumen de una lata cilíndrica

El volumen $V=\pi r^2 h$ de un cilindro circular recto va a calcularse a partir de los valores de r y h. Suponga que las mediciones que se tiene de r y h están sujetas a error.

$$V = \pi r^2 h$$

$$\Delta V = V_r \Delta r + V_h \Delta h + \varepsilon_r \Delta r + \varepsilon_h \Delta h \approx V_r \Delta r + V_h \Delta h = 2\pi r h \Delta r + \pi r^2 \Delta h$$

Si los valores nominales r y h están fijos, pequeños errores Δr y Δh influyen de distinta manera, según los valores de r y h.

Ejemplo: estimación del error en el volumen de una lata cilíndrica

El volumen $V=\pi r^2 h$ de un cilindro circular recto va a calcularse a partir de los valores de r y h. Suponga que las mediciones que se tiene de r y h están sujetas a error.

$$V = \pi r^2 h$$

$$\Delta V = V_r \Delta r + V_h \Delta h + \varepsilon_r \Delta r + \varepsilon_h \Delta h \approx V_r \Delta r + V_h \Delta h = 2\pi r h \Delta r + \pi r^2 \Delta h$$

Si los valores nominales r y h están fijos, pequeños errores Δr y Δh influyen de distinta manera, según los valores de r y h.Como

$$|error| = \left| \frac{Aprox - Real}{Real} \right| = \left| \frac{\Delta magnitud}{magnitud \ real} \right|,$$

si se mide r con un error no mayor de ε_r y h con un error que no supera ε_h , el máximo error posible en el cálculo de V es

$$\left|\frac{\Delta V}{V}\right| = \left|\frac{2\pi r h \Delta r + \pi r^2 \Delta h}{\pi r^2 h}\right| \le 2\left|\frac{\Delta r}{r}\right| + \left|\frac{\Delta h}{h}\right| \le 2\varepsilon_r + \varepsilon_h$$

←□ → ←□ → ← 글 → ← 글 → へ ○

- Linealización de una función y diferencial total de una función
 - Planos tangentes y rectas normales
 - Linealización de una función en un punto
 - Diferencial de una función en un punto
 - Aplicaciones
 - Fórmula de Taylor para dos variables
- 2 Valores extremos y puntos de silla
 - Conceptos y definiciones
 - Extremos de funciones en regiones acotadas y no acotadas
 - Extremos condicionados: método de multiplicadores de Lagrange
- 3 Anexo: Ejemplos varios

Fórmula de Taylor para dos variables

Dados
$$(a,b) \in \operatorname{int} D$$
 y h,k tales que $(a+h,b+k) \in D$, definimos $\operatorname{r}(t) = (a+\frac{t}{\beta}h,b+\frac{t}{\beta}k), \ 0 \le t \le \beta$ que une (a,b) y $(a+h,b+k)$. Entonces:
$$f(a+h,b+k) = f(\operatorname{r}(\beta)); \qquad f(a,b) = f(\operatorname{r}(0)).$$

Definimos la función compuesta w por

$$w(t) := f(r(t));$$
 así: $f(a+h, b+k) = w(\beta);$ $f(a, b) = w(0).$

Recordando la **fórmula de Taylor para** w **alrededor de 0**:

$$w(t) = w(0) + w'(0)t + \cdots + \frac{w^{(n)}(0)}{n!}t^n + \frac{w^{(n+1)}(c)}{(n+1)!}t^{n+1},$$

para algún c entre 0 y t.

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 3 ■ 9 0 0 ○

Fórmula de Taylor para dos variables

$$w(t) = w(0) + w'(0)t + \dots + \frac{w^{(n)}(0)}{n!}t^n + \frac{w^{(n+1)}(c)}{(n+1)!}t^{n+1}, c \text{ entre 0 y } t$$

$$w(\beta) = w(0) + w'(0)\beta + \dots + \frac{w^{(n)}(0)}{n!}\beta^n + \frac{w^{(n+1)}(c)}{(n+1)!}\beta^{n+1}, c \text{ entre 0 y } \beta$$

Si f y sus derivadas parciales hasta orden n+1 son continuas en una región rectangular abierta R con centro en (a,b), entonces en R:

$$f(a+h,b+k) = f(a,b) + (hf_x + kf_y) \Big|_{(a,b)} + \frac{1}{2!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^2 f \Big|_{(a,b)} + \cdots$$

$$+\frac{1}{n!}\left(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y}\right)^{n}f\bigg|_{(a,b)}+\frac{1}{(n+1)!}\left(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y}\right)^{n+1}f\bigg|_{(a+\frac{c}{\beta}h,b+\frac{c}{\beta}k)}$$

para cierto c entre 0 y β .

Fórmula de Taylor para dos variables

Si f y sus derivadas parciales hasta orden 2 son continuas en una región rectangular abierta R con centro en (a, b), entonces en R:

$$f(a+h,b+k) = f(a,b) + (hf_x + kf_y) \left|_{(a,b)} + \frac{1}{2!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^2 f \right|_{(a+\frac{c}{\beta}h,b+\frac{c}{\beta}k)}$$

para cierto c entre 0 y β .

Observación: la linealización de f en (a,b) coincide con la fórmula de Taylor de primer orden sin el término de error.

- 📵 Linealización de una función y diferencial total de una función
 - Planos tangentes y rectas normales
 - Linealización de una función en un punto
 - Diferencial de una función en un punto
 - Aplicaciones
 - Fórmula de Taylor para dos variables
- 2 Valores extremos y puntos de silla
 - Conceptos y definiciones
 - Extremos de funciones en regiones acotadas y no acotadas
 - Extremos condicionados: método de multiplicadores de Lagrange
- 3 Anexo: Ejemplos varios

- Linealización de una función y diferencial total de una funciór
 - Planos tangentes y rectas normales
 - Linealización de una función en un punto
 - Diferencial de una función en un punto
 - Aplicaciones
 - Fórmula de Taylor para dos variables
- Valores extremos y puntos de silla
 - Conceptos y definiciones
 - Extremos de funciones en regiones acotadas y no acotadas
 - Extremos condicionados: método de multiplicadores de Lagrange
- 3 Anexo: Ejemplos varios

- Linealización de una función y diferencial total de una funciór
 - Planos tangentes y rectas normales
 - Linealización de una función en un punto
 - Diferencial de una función en un punto
 - Aplicaciones
 - Fórmula de Taylor para dos variables
- Valores extremos y puntos de silla
 - Conceptos y definiciones
 - Extremos de funciones en regiones acotadas y no acotadas
 - Extremos condicionados: método de multiplicadores de Lagrange
- 3 Anexo: Ejemplos varios

Definiciones de máximo local y mínimo local

Definición

Si f está definida en una región que contiene al punto (a,b) y $f(a,b) \ge f(x,y)$ para todos los $(x,y) \in D(f)$ de algún entorno de (a,b), entonces f(a,b) es un (valor) máximo local de f. Además se dice que f alcanza un máximo local en (a,b).

Definiciones de máximo local y mínimo local

Definición

Si f está definida en una región que contiene al punto (a,b) y $f(a,b) \ge f(x,y)$ para todos los $(x,y) \in D(f)$ de algún entorno de (a,b), entonces f(a,b) es un (valor) máximo local de f. Además se dice que f alcanza un máximo local en (a,b). Similarmente se define mínimo local.

Punto crítico y punto de silla

Un punto P interior al dominio de f donde $\nabla f(P) = 0$ es un punto crítico de f.

Un punto P interior al dominio de f donde $\nabla f(P)$ no existe, es un punto (singular o) crítico de f.

Si f es diferenciable en P, tiene un punto de silla en P si P es un punto crítico de f y f no presenta en P un máximo local ni un mínimo local.

Ejemplos

Analice los extremos de las funciones f y g (g dada por su gráfico):

$$f(x,y) = \begin{cases} 0 & \text{si } (x,y) = (0,0); \\ \frac{xy}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0). \end{cases}$$

Ejemplo

$$z = x^4 + y^4 - 4xy + 1$$

Observación: una función continua puede tener dos mínimos (o máximos) locales en una región y eso no implica que deba haber un máximo (o mínimo) local en esta región. Ver imagen.

Recorrido

- Linealización de una función y diferencial total de una funciór
 - Planos tangentes y rectas normales
 - Linealización de una función en un punto
 - Diferencial de una función en un punto
 - Aplicaciones
 - Fórmula de Taylor para dos variables
- Valores extremos y puntos de silla
 - Conceptos y definiciones
 - Extremos de funciones en regiones acotadas y no acotadas
 - Extremos condicionados: método de multiplicadores de Lagrange
- 3 Anexo: Ejemplos varios

Valores extremos de funciones continuas en conjuntos cerrados y acotados

Teorema

Si f es una función continua en un conjunto D que es cerrado y acotado, entonces existen en D puntos en los cuales f alcanza sus valores máximo y mínimo absolutos.

SIN DEMOSTRAR

Criterio de la derivada primera para valores extremos locales

Teorema

Si f tiene un valor máximo o mínimo local en un punto P_0 interior al dominio de f y, si las derivadas parciales de primer orden de f están definidas en P_0 , entonces $\nabla f(P_0) = 0$.

DEMOSTRAR

Supongamos que $f(x_0, y_0)$ es un valor extremo local de f. Entonces la función $f(x, y_0)$, como función de una variable independiente, también tiene un extremo en $x = x_0$. Por el criterio de la derivada primera para funciones de una variable, si la derivada existe en x_0 debe ser cero. Luego $f_x(x_0, y_0) = 0$.

Similarmente se prueba que $f_y(x_0, y_0) = 0$.

Ejemplos

$$f(x,y) = y^2 - y^4 - x^2$$
$$\nabla f(x,y) = (-2x, 2y - 4y^3)$$

Para hallar los puntos críticos se plantea $\nabla f(x, y) = (0, 0)$ que es un **SISTEMA DE ECUACIONES NO LINEALES**. Se resuelve por sustitución:

$$\begin{cases} -2x &= 0 \\ 2y - 4y^3 &= 0 \end{cases}$$
 Puntos críticos: $(0,0)$, $(0,-\frac{\sqrt{2}}{2})$ y $(0,\frac{\sqrt{2}}{2})$.

Ejemplos

$$f(x,y) = y^2 - y^4 - x^2$$
$$\nabla f(x,y) = (-2x, 2y - 4y^3)$$

Para hallar los puntos críticos se plantea $\nabla f(x, y) = (0, 0)$ que es un **SISTEMA DE ECUACIONES NO LINEALES**. Se resuelve por sustitución:

$$\begin{cases}
-2x &= 0 \\
2y - 4y^3 &= 0
\end{cases}$$
 Puntos críticos: $(0,0)$, $(0, -\frac{\sqrt{2}}{2})$ y $(0, \frac{\sqrt{2}}{2})$.
$$f(x,y) = 6x^2 - 2x^3 + 3y^2 + 6xy$$

$$\nabla f(x,y) = (12x - 6x^2 + 6y, 6y + 6x)$$

$$\begin{cases} 12x - 6x^2 + 6y = 0 \text{ Puntos críticos: } (0,0) \text{ y } (1,-1). \\ 6y + 6x = 0 \end{cases}$$

Criterio de la derivada segunda para valores extremos locales

Matriz hessiana asociada a una función f (cuando está definida) y hessiano:

$$\left| \begin{array}{cc} f_{xx}(a,b) & f_{yx}(a,b) \\ f_{xy}(a,b) & f_{yy}(a,b) \end{array} \right|; \qquad H_f(a,b) = f_{xx}(a,b)f_{yy}(a,b) - (f_{xy}(a,b))^2.$$

Criterio de la derivada segunda para valores extremos locales

Matriz hessiana asociada a una función f (cuando está definida) y hessiano:

$$\left| \begin{array}{cc} f_{xx}(a,b) & f_{yx}(a,b) \\ f_{xy}(a,b) & f_{yy}(a,b) \end{array} \right|; \qquad H_f(a,b) = f_{xx}(a,b)f_{yy}(a,b) - (f_{xy}(a,b))^2.$$

Teorema (DEMOSTRAR)

Suponga que f y sus derivadas parciales de primero y segundo orden son continuas en un disco con centro en (a,b) y que $\nabla f(a,b) = (0,0)$. Entonces,

- I tiene un máximo local en (a,b) si $H_f(a,b) > 0$ y $f_{xx}(a,b) < 0$;
- ② f tiene un mínimo local en (a, b) si $H_f(a, b) > 0$ y $f_{xx}(a, b) > 0$;
- \circ f tiene un punto de silla en (a,b) si $H_f(a,b) < 0$;
- el criterio no es concluyente si $H_f(a,b) = 0$.

Ejemplo

$$\nabla f(x,y) = (12x - 6x^2 + 6y, 6y + 6x)$$

Puntos críticos: (0,0) y (1,-1).

$$\begin{cases} 12x - 6x^2 + 6y = 0 \\ 6y + 6x = 0 \end{cases}$$

Ejemplo

$$f(x,y) = 6x^2 - 2x^3 + 3y^2 + 6xy$$

$$\nabla f(x,y) = (12x - 6x^2 + 6y, 6y + 6x)$$

$$\begin{cases} 12x - 6x^2 + 6y = 0 \\ 6y + 6x = 0 \end{cases}$$

Puntos críticos: (0,0) y (1,-1).

 $f_{xx} = 12(1-x)$, $f_{yy} = 6$, $f_{xy} = 6$, H(0,0) > 0 y f(0,0) = 0 es mínimo; H(1,-1) < 0 y f presenta un punto de ensilladura en (1,-1).

Extremos de funciones continuas en regiones cerradas y acotadas. Ejemplo.

Buscar los extremos de $f(x,y) = y^2 - y^4 - x^2$ en los puntos de D que es el triángulo con vértices (2,0), (-1,0) y (-1,3).

Extremos de funciones continuas en regiones cerradas y acotadas. Ejemplo.

Buscar los extremos de $f(x,y) = y^2 - y^4 - x^2$ en los puntos de D que es el triángulo con vértices (2,0), (-1,0) y (-1,3).

Los puntos críticos de f son (0,0), $(0,\frac{\sqrt{2}}{2})$ y $(0,-\frac{\sqrt{2}}{2})$, pero el último de éstos no pertenece a D y lo descartamos.

Extremos de funciones continuas en regiones cerradas y acotadas

Evaluamos f en los puntos críticos:

$$f(0,0) = 0;$$
 $f(0,\frac{\sqrt{2}}{2}) = \frac{1}{4}.$

Evaluamos f en la frontera de D:

- $f(x,0) = -x^2;$
- $f(-1,y) = y^2 y^4 1; \quad f(-1,\frac{\sqrt{2}}{2}) = -0,75;$
- $f(2-y,y) = -y^4 + 4y 4$; f(1,1) = -1.

El valor máximo es $\frac{1}{4}$ y se alcanza en $(0, \frac{\sqrt{2}}{2})$; el valor mínimo es -8,75 y se alcanza en (-1,3).

Recorrido

- Linealización de una función y diferencial total de una funciór
 - Planos tangentes y rectas normales
 - Linealización de una función en un punto
 - Diferencial de una función en un punto
 - Aplicaciones
 - Fórmula de Taylor para dos variables
- Valores extremos y puntos de silla
 - Conceptos y definiciones
 - Extremos de funciones en regiones acotadas y no acotadas
 - Extremos condicionados: método de multiplicadores de Lagrange
- 3 Anexo: Ejemplos varios

Multiplicadores de Lagrange

$$f(x,y) = x^2 + 2y^2$$
 $g(x,y) = x^2 + y^2 - 1$

Buscamos los extremos de f sujeta a la restricción g(x, y) = 0.

Teorema del gradiente ortogonal

Teorema

Suponga que f es diferenciable en una región abierta de \mathbb{R}^3 y que C es una curva suave dentro de la misma región. Si P_0 es un punto de C donde f tiene un extremo local relativo a sus valores sobre C, entonces ∇f es ortogonal a C en P_0 .

DEMOSTRAR

Teorema del gradiente ortogonal

Teorema

Suponga que f es diferenciable en una región abierta de \mathbb{R}^3 y que C es una curva suave dentro de la misma región. Si P_0 es un punto de C donde f tiene un extremo local relativo a sus valores sobre C, entonces ∇f es ortogonal a C en P_0 .

DEMOSTRAR

Sea C parametrizada por $\mathbf{r}:[a,b]\to\mathbb{R}^3$, y sea $P_0=\mathbf{r}(t_0)$, para cierto $t_0\in[a,b]$. Si $w(t)=(f\circ\mathbf{r})(t)$ alcanza un valor extremo en t_0 , por la diferenciabilidad de f y debido a que $w(t_0)$ es extremo, se tiene:

$$w'(t_0) = \nabla f(P_0) \cdot r'(t_0)$$
 y $w'(t_0) = 0$,

Luego $\nabla f(P_0) \cdot \mathbf{r}'(t_0) = 0$.

Corolario

En \mathbb{R}^2 también vale.

Teorema

Supongamos que f y g son dos funciones diferenciables, que P_0 es un punto del dominio de ambas funciones; supongamos que $g(P_0) = c$ y llamemos S al conjunto de nivel de g con valor c (así $P_0 \in S$). Supongamos también que $\nabla g(P_0) \neq 0$.

Entonces, si f restringida a S tiene un extremo local en P_0 , entonces existe un número real λ (posiblemente 0) tal que

$$\nabla f(P_0) = \lambda \nabla g(P_0).$$

SIN DEMOSTRACIÓN

Teorema

Supongamos que f y g son dos funciones diferenciables, que P_0 es un punto del dominio de ambas funciones; supongamos que $g(P_0) = c$ y llamemos S al conjunto de nivel de g con valor c (así $P_0 \in S$). Supongamos también que $\nabla g(P_0) \neq 0$.

Entonces, si f restringida a S tiene un extremo local en P_0 , entonces existe un número real λ (posiblemente 0) tal que

$$\nabla f(P_0) = \lambda \nabla g(P_0).$$

SIN DEMOSTRACIÓN

El punto P_0 es un **punto crítico** de f restringida a S (puede haber más de uno).

Para determinar los valores máximos y mínimos locales de f sujeta a la restricción g(x,y,z)=0 (si este conjunto S no es vacío), se obtienen los valores de x,y,z y λ que satisfacen en forma **simultánea** las ecuaciones

Para determinar los valores máximos y mínimos locales de f sujeta a la restricción g(x,y,z)=0 (si este conjunto S no es vacío), se obtienen los valores de x,y,z y λ que satisfacen en forma **simultánea** las ecuaciones

$$\begin{cases} \nabla f = \lambda \nabla g \\ g(x, y, z) = 0. \end{cases}$$

Para funciones de dos variables, es similar.

Hallar los extremos de $f(x,y) = x^2 + 2y^2$ sujeta a

$$2 + y^2 = 1$$

$$\begin{cases} 2x = \lambda 2x \\ 4y = \lambda 2y \\ x^2 + y^2 = 1 \end{cases}$$

Hallar los extremos de $f(x,y) = x^2 + 2y^2$ sujeta a

$$2 + y^2 = 1$$

$$\begin{cases} 2x = \lambda 2x \\ 4y = \lambda 2y \\ x^2 + y^2 = 1 \end{cases}$$

Rta: 4 puntos críticos: $(\pm 1,0)$ y $(0,\pm 1)$ $f(\pm 1,0)=1$ es mínimo y $f(0,\pm 1)=2$ es máximo.

Hallar los extremos de $f(x,y) = x^2 + 2y^2$ sujeta a

$$2 + y^2 = 1$$

$$\begin{cases} 2x = \lambda 2x \\ 4y = \lambda 2y \\ x^2 + y^2 = 1 \end{cases}$$

Rta: 4 puntos críticos: $(\pm 1,0)$ y $(0,\pm 1)$ $f(\pm 1,0)=1$ es mínimo y $f(0,\pm 1)=2$ es máximo.

②
$$x + y = 1$$

$$\begin{cases} 2x = \lambda \\ 4y = \lambda \\ x+y = 1 \end{cases}$$

Hallar los extremos de $f(x,y) = x^2 + 2y^2$ sujeta a

$$\begin{cases} 2x = \lambda 2x \\ 4y = \lambda 2y \\ x^2 + y^2 = 1 \end{cases}$$

Rta: 4 puntos críticos: $(\pm 1,0)$ y $(0,\pm 1)$ $f(\pm 1,0)=1$ es mínimo y $f(0,\pm 1)=2$ es máximo.

$$x + y = 1$$

$$\begin{cases} 2x = \lambda \\ 4y = \lambda \\ x + y = 1 \end{cases}$$

Rta: 1 punto crítico: $(\frac{2}{3}, \frac{1}{3})$ $f(\frac{2}{3}, \frac{1}{3}) = \frac{2}{3}$ ¿es máximo o mínimo? Es mínimo.

Multiplicadores de Lagrange: 2 restricciones

La curva C es la intersección de las superficies S_1 (superficie de nivel $g_1 = 0$) y S_2 (superficie de nivel $g_2 = 0$). Según el T. del Grad. Ortogonal, si f presenta un extremo relativo a C en $P_0 \in C$, debe ocurrir que $\nabla f(P_0)$ es ortogonal a C. Como C es una curva en el espacio, en P_0 habrá un plano normal a C. Por estar C includia en S_1 , $\nabla g_1(P_0)$ es ortogonal a S_1 y así, es ortogonal a C. Similarmente, $\nabla g_2(P_0)$ es ortogonal a C. Así, si $\nabla g_1(P_0)$ y $\nabla g_2(P_0)$ son

 g_1 inealmente independientes, se podrá expresar $\nabla f(P_0)$ como combinación lineal de $\nabla g_1(P_0)$ y $\nabla g_2(P_0)$.

Multiplicadores de Lagrange: 2 restricciones

El planteo es:

$$\begin{cases} \nabla f = \lambda \nabla g_1 + \mu \nabla g_2 \\ g_1(x, y, z) = 0 \\ g_2(x, y, z) = 0. \end{cases}$$

Notar que es un sistema de 5 ecuaciones no lineales con 5 incógnitas.

Recorrido

- Linealización de una función y diferencial total de una funciór
 - Planos tangentes y rectas normales
 - Linealización de una función en un punto
 - Diferencial de una función en un punto
 - Aplicaciones
 - Fórmula de Taylor para dos variables
- 2 Valores extremos y puntos de silla
 - Conceptos y definiciones
 - Extremos de funciones en regiones acotadas y no acotadas
 - Extremos condicionados: método de multiplicadores de Lagrange
- 3 Anexo: Ejemplos varios

Casos especiales

Hallar los extremos de f sujeta a g=0 para

1
$$f(x,y) = y \ g(x,y) = y^2 - \frac{y^4}{2} - x^2 - \frac{1}{2}$$
.

$$(x,y) = x^2 + 2y^2 y g(x,y) = \operatorname{sen}(\frac{\pi}{2}\sqrt{x^2 + y^2}) - 1.$$

$$(x,y) = x^2 + y^2 y g(x,y) = y - x.$$

$$(x,y) = x^2 + y^2 y g(x,y) = x^2 + y^2 - 1.$$

Casos especiales

Hallar los extremos de f sujeta a g = 0 para

$$(x,y) = x^2 + 2y^2 y g(x,y) = \operatorname{sen}(\frac{\pi}{2}\sqrt{x^2 + y^2}) - 1.$$

$$(x,y) = x^2 + y^2 y g(x,y) = y - x.$$

$$f(x,y) = x^2 + y^2 \text{ y } g(x,y) = x^2 + y^2 - 1.$$

En los dos primeros se verifica que $\nabla g(P_0)=0$, siendo P_0 punto crítico de este problema. En el tercero se puede notar que no hay ningún problema cuando $\lambda=0$. En el cuarto, se observa que g=0 es una curva de nivel de f y todos los puntos que cumplen g=0 son puntos críticos para este problema.

Hallar los extremos de $f(x,y)=y^2-\frac{y^4}{2}-x^2$ en la región (cerrada y acotada) D_1 , definida por $D_1=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\}$.

Hallar los extremos de $f(x,y)=y^2-\frac{y^4}{2}-x^2$ en la región (cerrada y acotada) D_1 , definida por $D_1=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\}$. Planteo:

$$\nabla f(x,y) = (0,0);$$
 $(-2x,2y-y^3) = (0,0).$

Puntos críticos: (0,0), $(0,-\sqrt{2})$ y $(0,\sqrt{2})$. Los dos últimos **no** pertenecen a D_1 .

Para estudiar la frontera, hallamos los extremos de f en la frontera de D_1 aplicando multiplicadores de Lagrange:

$$\begin{cases}
-2x = \lambda 2x \\
2y - y^3 = \lambda 2y \\
x^2 + y^2 = 1
\end{cases}$$

Puntos críticos: (0,-1), (0,1), (1,0) y (-1,0).

Evalúo $f: f(0,0) = 0; f(0,\pm 1) = 3/4; f(\pm 1,0) = -1.$

Concluyo: f presenta un máximo absoluto en D_1 de 0.75, en los puntos $(0,\pm 1)$, y un mínimo absoluto de -1 en los puntos $(\pm 1,0)$.

Hallar los extremos de $f(x,y)=y^2-\frac{y^4}{2}-x^2$ en la región (cerrada y acotada) D_2 , definida por $D_2=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 2\}$. Planteo:

$$\nabla f(x,y) = (0,0);$$
 $(-2x,2y-y^3) = (0,0).$

Puntos críticos: (0,0), $(0,-\sqrt{2})$ y $(0,\sqrt{2})$. Los dos últimos sí pertenecen a D_2 .

Para estudiar la frontera, hallamos los extremos de f en la frontera de D_2 aplicando multiplicadores de Lagrange:

$$\begin{cases}
-2x = \lambda 2x \\
2y - y^3 = \lambda 2y \\
x^2 + y^2 = 2
\end{cases}$$

Puntos críticos: $(0, -\sqrt{2})$, $(0, \sqrt{2})$, $(\sqrt{2}, 0)$ y $(-\sqrt{2}, 0)$.

Evalúo $f: f(0,0) = 0; f(0,\pm\sqrt{2}) = 1; f(\pm\sqrt{2},0) = -2.$

Concluyo: f presenta un máximo absoluto en D_2 de 1, en los puntos $(0, \pm \sqrt{2})$, y un mínimo absoluto de -2 en los puntos $(\pm \sqrt{2}, 0)$.

Hallar los extremos de $f(x,y)=y^2-\frac{y^4}{2}-x^2$ en la región (cerrada y acotada) D_3 , definida por $D_3=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 4\}$. Planteo:

$$\nabla f(x,y) = (0,0);$$
 $(-2x,2y-y^3) = (0,0).$

Puntos críticos: (0,0), $(0,-\sqrt{2})$ y $(0,\sqrt{2})$. Los dos últimos sí pertenecen a D_2 .

Para estudiar la frontera, hallamos los extremos de f en la frontera de D_3 aplicando multiplicadores de Lagrange:

$$\begin{cases}
-2x = \lambda 2x \\
2y - y^3 = \lambda 2y \\
x^2 + y^2 = 4
\end{cases}$$

Puntos críticos: (0, -2), (0, 2), (2, 0) y (-2, 0).

Evalúo $f: f(0,0) = 0; f(0,\pm\sqrt{2}) = 1; f(\pm 2,0) = -4; f(0,\pm 2) = 0.$

Concluyo: f presenta un máximo absoluto en D_3 de 1, en los puntos $(0, \pm \sqrt{2})$, y un mínimo absoluto de -4 en los puntos $(\pm 2, 0)$.

Ejemplo: Planos tangentes y rectas normales a superficie de nivel

Ejemplo: dada $f(x,y,z) = xy^2 + yz^2 + zx^2$, buscar la ecuación de la recta normal y del plano tangente a la superficie de nivel de f que pasa por el punto indicado, en dicho punto, para los puntos (1,0,0) y (0,0,0). Sol: la superficie de nivel f(x,y,z) = c que contiene al punto (1,0,0) es f(x,y,z) = f(1,0,0), es decir $xy^2 + yz^2 + zx^2 = 0$; el plano tangente a esta superficie de nivel en (1,0,0) es z=0 y la recta normal a la superfice en ese punto es r(t) = (1,0,t), $t \in \mathbb{R}$. El punto (0,0,0) pertenece a la misma superficie de nivel que (1,0,0); en (0,0,0), se tiene que $\nabla f(0,0,0) = (0,0,0)$ de manera que no existe plano tangente ni recta normal.

