PARTE A

- 1. Data $f(x) = x \sin(2^{-x})$. Allora f'(1) è uguale a A: $\cos(1/2)$ B: $\sin(1/2) \frac{\log 2}{2} \cos(1/2)$ C: $-2\sin(2)$ D: π E: $\sin(1/2) + \frac{\log 2}{2} \cos(1/2)$
- 2. Modulo e argomento del numero complesso $z=\left(\frac{1+i}{1-i}\right)^{-1}$ sono

A: $(1,\pi)$ B: N.A. C: $(\sqrt{2}/2,\pi/4)$ D: $(1,\pi/2)$ E: $(1,\pi/8)$

3. La funzione $f(x) = \begin{cases} 3x & \text{per } x \ge 0, \\ \frac{1}{2x} & \text{per } x < 0, \end{cases}$ definita su tutto \mathbb{R} è

A: continua ma non derivabile B: derivabile C: N.A. D: monotona E: invertibile

4. Una soluzione dell'equazione differenziale $y'(x) = 8x \cos(x^2)$ è

A: $2\sin(x^2)$ B: $4\cos(x^2)$ C: $\pi/2 + 4\sin(x^2)$. D: $4\sin(2x)$ E: N.A.

5. L'integrale

$$\int_{\pi/4}^{\pi/2} \sin(t) \cos^3(t) dt$$

vale

A: 1/8 B: 1/16 C: 0 D: -1/16 E: N.A.

6. Dato a > 0, la serie

$$\sum_{n=1}^{\infty} \frac{2 + \sin(n)}{n^a}$$

A: converge per $a \ge 2$ B: converge per $a \ge 1$ C: N.A. D: diverge E: converge per a > 1

7. Il limite

$$\lim_{x \to 0} \frac{e^{(e^x - 1)} - 1}{x}$$

vale

A: 0 B: 1 C: N.A. D: N.E. E: $+\infty$

8. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \begin{cases} x^a \sin\left(\frac{1}{x}\right) & \text{per } x \neq 0 \\ 0 & \text{per } x = 0 \end{cases}$ è derivabile per

A: a < 0 B: $a \in \mathbb{R}$ C: N.A. D: $a \ge 1$ E: a > 1

9. La retta tangente al grafico di $y(x)=\sqrt[3]{1+\tan^2(2\pi x)}$ nel punto $x_0=1/8$ vale

A:
$$\frac{4}{3}\sqrt{2}\pi x - \frac{\sqrt{2}}{6} + \sqrt[3]{2}$$
 B:
 $\frac{8\pi}{3\sqrt[3]{4}}x - \frac{\pi}{3\sqrt[3]{4}} + \sqrt[3]{2}$ C: N.A. D: $\frac{4}{3}\sqrt{2}\pi x - \frac{2}{3}\sqrt{2}\pi + \sqrt[3]{2}$ E: $\frac{8\pi}{3\sqrt[3]{4}}\left(x - \frac{1}{8}\right)$

10. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \log 2^x < 2\}$$

valgono

A:
$$\{-\infty, N.E., +\infty, N.E.\}$$
 B: $\{-\infty, N.E., 1/\log\sqrt{2}, N.E.\}$ C: $\{-\infty, N.E., \sqrt{2}/\sqrt{\log(2)}, \sqrt{2}/\sqrt{\log(2)}\}$ D: N.A. E: $\{-\infty, N.E., 1/\log\sqrt{2}, 1/\log\sqrt{2}\}$

(Cognome)									(Nome)								(Numero di matricola)															

 $\mathrm{CODICE} = 202336$

Α	В	С	D	Ε	

1	$\bigcirc \bullet \bigcirc \bigcirc \bigcirc$
2	
3	
4	
5	
6	
7	
8	
9	
10	

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

28 gennaio 2014

PARTE B

1. Studiare la funzione

$$f(x) = \int_0^x (t - 1)e^{t^2} dt$$

Soluzione: Per il teorema fondamentale del calcolo integrale la funzione f(x) è derivabile in tutto $\mathbb R$ e si ha

$$f'(x) = (x-1)e^{x^2}$$

Dallo studio del segno di f' si ricava che f è strettamente decrescente per x < 1 e strettamente crescente per x > 1. Dunque x = 1 è l'unico punto di minimo assoluto e il minimo vale $\int_0^1 (t-1) e^{t^2} dt$.

Calcolando il limiti agli estremi del dominio otteniamo, rispettivamente, poiché f è illimitata (vedi Fig. 1).

$$\lim_{x \to \pm \infty} \int_0^x (t-1)e^{t^2} dt = +\infty$$

Figura 1: Andamento del grafico di f

Dallo studio del segno di $f''(x) = e^{x^2}(1 + 2x^2 - 2x)$ si ricava che f'' > 0 e $\forall x \in \mathbb{R}$, dunque f è convessa su tutto \mathbb{R} .

2. Trovare, al variare del parametro $\alpha \in \mathbb{R},$ la soluzione del problema di Cauchy

$$\begin{cases} y''(t) + \alpha^2 y(t) = e^t \\ y(0) = 0 \end{cases}$$
$$y'(0) = 1$$

Soluzione: L'equazione caratteristica associata all'equazione, $\lambda^2 + \alpha^2 = 0$, ha radici $\pm i \alpha$. Se $\alpha \neq 0$ la soluzione generale dell'equazione omogenea è dunque

$$y_0(t) = a\cos(\alpha t) + b\sin(\alpha t)$$

Poiché 0 à secondo membro c'è un esponenziale, la soluzione particolare è del tipo

$$y_1(t) = ce^t$$

Sostituendo le derivate opportune di $y_1(t)$ all'equazione data otteniamo che $y_1(t)$ é soluzione se e solo se $c=\frac{1}{1+\alpha^2}$. Dunque la soluzione particolare è del tipo $y_1(t)=\frac{e^t}{1+\alpha^2}$. La soluzione generale è dunque

$$y(t) = a\cos(\alpha t) + b\sin(\alpha t) + \frac{e^t}{1+\alpha^2}$$
 Imponendo le condizioni iniziali abbiamo il sistema
$$\begin{cases} \frac{e^t}{1+\alpha^2} + \frac{\alpha^2}{1+\alpha^2}e^t = e^t \\ \\ a + \frac{1}{1+\alpha^2} = 0 \end{cases}$$

$$b\alpha + \frac{1}{1+\alpha^2} = 1$$

con soluzioni $a=-\frac{1}{1+\alpha^2},\,b=\frac{1}{1+\alpha^2}.$ Sostituendo tali valori nella soluzione generale otteniamo:

$$y(t) = -\frac{1}{1+\alpha^2}\cos(\alpha t) + \frac{1}{1+\alpha^2}\sin(\alpha t) + \frac{e^t}{1+\alpha^2}$$

Nel caso $\alpha = 0$, il problema omogeneo ha come soluzione $y_0(t) = c_0 + c_1 t$ e con lo stesso ragionamento si ottiene come soluzione

$$y(t) = 1 + e^t - t.$$

3. Studiare la convergenza ed eventualmente calcolare l'integrale generalizzato

$$\int_{1}^{2} \frac{x^4}{\sqrt{|1-x^5|}} \, dx.$$

Cosa si può dire di

$$\int_0^{+\infty} \frac{x^4}{\sqrt{|1-x^5|}} \, dx.$$

Soluzione: Dato che gli estremi di integrazione sono 1 e 2 e $|1-x^5|=x^5-1$ per x>1, il primo integrale diventa

$$\int_{1}^{2} \frac{x^{4}}{x^{5} - 1} dx = \left[\frac{2}{5} \sqrt{x^{5} - 1} \right]_{1}^{0} = \frac{2}{5} \sqrt{31}$$

Per quanto riguarda il secondo integrale, bisogna innanzitutto spezzare spezzare l'integrale nella somma dell'integragle fra 0 e 1 (dove $|1-x^5|=1-x^5$) e l'integrale fra 1 e $+\infty$ (dove $|1-x^5|=x^5-1$). Otteniamo dunque

$$\int_{1}^{2} \frac{x^{4}}{x^{5}-1} \, dx = \left[\frac{2}{5} \sqrt{1-x^{5}}\right]_{0}^{1} + \lim_{b \to +\infty} \int_{1}^{b} \frac{x^{4}}{\sqrt{x^{5}-1}} \, dx = -\frac{2}{5} + \lim_{b \to +\infty} \sqrt{b^{5}-1}$$

Valendo il limite $+\infty$, l'integrale diverge.

- 4. a) Sia $f: \mathbb{R} \to \mathbb{R}$. È vero che se $(f(x))^2$ è una funzione continua su tutto \mathbb{R} , allora f è continua su tutto \mathbb{R} ?
 - b) Sia $f: \mathbb{R} \to \mathbb{R}$ derivabile e tale che $|f'(x)| \le C_1$ per ogni $x \in \mathbb{R}$. Allora $(f(x))^2$ è derivabile, ma è vero che esiste $C_2 > 0$ tale che $\left| \frac{d}{dx} \frac{(f(x))^2}{2} \right| \le C_2$ per ogni $x \in \mathbb{R}$?

Soluzione: a) L'affermazione è falsa. Infatti, presa la funzione discontinua in 0 definita da f(x) = -1, se $x \le 0$ e f(x) = 1 se x > 0, allora $(f(x))^2 \equiv 1$ continua

b) L'affermazione è falsa. Basta considerare f(x) = x, derivabile in \mathbb{R} tale che $|f'(x)| \leq 1$ $\forall x \in \mathbb{R}$. Allora $(f(x))^2$ è uguale a x^2 e dunque $\left|\frac{d}{dx}\frac{x^2}{2}\right| = |2x|$ che è una funzione illimitata. Dunque non esiste $C_2 \geq 0$ tale che $|2x| \leq C_2$.