GATE 2021 EE.20

EE23BTECH11010 - VENKATESH BANDAWAR*

Question: The Bode magnitude plot for the transfer function $\frac{V_o(s)}{V_i(s)}$ of the circuit is as shown. The value of R is ______ Ω . (GATE 2021 EE Q20)

Solution: Applying KVL,

Parameter	Description	Value
C	Capacitance	250μ <i>F</i>
L	Inductor	1mH
I	Current	
I(0)	Initial Current	0A
V_o	Voltage across capacitor	
V_i	Input Voltage	
T(s)	Transfer Function	$\frac{V_o(s)}{V_i(s)}$

TABLE I: Given Parameters table

$$V_i - RI - L\frac{dI}{dt} - \frac{\int Idt}{C} = 0 \tag{1}$$

Taking Laplace Transform,

$$V_i(s) - RI(s) - LsI(s) + LI(0^+) - \frac{I(s)}{sC} = 0$$
 (2)

$$I(s) = \frac{V_i(s) + LI(0)}{R + sL + \frac{1}{sC}}$$

$$V_o(s) = \frac{V_i(s) + LI(0)}{RsC + s^2LC + 1}$$
(3)

$$V_o(s) = \frac{V_i(s) + LI(0)}{RsC + s^2LC + 1}$$
 (4)

Substituting I(0) = 0 and $s = j\omega$,

$$\frac{V_o(j\omega)}{V_i(j\omega)} = \frac{1}{\omega RC \, j - \omega^2 LC + 1} \tag{5}$$

 \therefore Magnitude in bode plot = $20 \log |T(s)|$ From given graph, At $\omega = 2000$

$$26 = 20 \log \left| \frac{V_o}{V_i} \right| \tag{6}$$

$$\left|\frac{V_o}{V_i}\right| = 20\tag{7}$$

$$\implies 20 = \left| \frac{1}{\omega RCj - \omega^2 LC + 1} \right| \tag{8}$$

$$R = 0.1\Omega \tag{9}$$

Fig. 1: Frequency response of V_o