基於DenseNet研究之總結報告

(一) 相關工作

1.1 ResNet

Kaiming He 在 2016 CVPR 上發表 <u>Deep Residual Learning for Image Recognition</u>,提出殘差學習(residual learning)框架,緩解梯度消失(gradient vanish)問題(神經網路在增加層數後,錯誤率反而更高)。

將原先的 $x \to H(x)$ (輸入→特徵)變成 $x \to F(x) + x$ (輸入→ 輸入 + 殘差):

$$H(x) = F(x) + x$$

ResNet 中使用了兩種 block,分別為 basic block(下圖左)和 bottleneck(下圖右):

1.2 DenseNet

Gao Huang在2017 CVPR上發表<u>Densely Connected Convolutional Networks</u>,比ResNet 更激進地連接方式,所有恭積層都相互連接。

因為在梯度下降法和反向傳播訓練神經網路時,梯度會越來越小,最終導致無法更新網路的權重(梯度消失)。DenseNet連接所有的卷積層進行特徵重用,提高特徵利用率和模型收斂速度。

$$x = H(x_0, x_1, x_2, \cdots, x_n)$$

DenseNet 的優點:(1)緩解梯度消失問題,(2)加強特徵傳播,鼓勵特徵重用,(3)大幅減少參數數量。

1.3 HarDNet

Ping Chao 在 2019 ICCV 上發表 <u>HarDNet: A Low Memory Traffic Network</u>,減少了 DenseNet 中的連接數量來降低網路的記憶體佔用量。

因為 DenseNet 使用了密集連接,每一層擷取的特徵都會保留到最後一層,保留下來的特徵也會在下一層擷取更細節的特徵,因此會導致資料搬運的次數過多。

HarDNet 和 DenseNet 的實驗結果比較: HarDNet 的記憶體佔用量更小,模型的推理時間更快。但由於連接的層數減少,擷取的特徵變少,模型的準確率也降低了。

(二) 研究成果

- **2.1** Rui-Yang Ju, Ting-Yu Lin, Jia-Hao Jian, Jen-Shiun Chiang, Wei-Bin Yang. <u>ThreshNet: An Efficient DenseNet Using Threshold Mechanism to Reduce Connections</u>. *IEEE Access*, 2022.
- **2.2** Rui-Yang Ju, Ting-Yu Lin, Jia-Hao Jian, Jen-Shiun Chiang. <u>Efficient Convolutional Neural Networks on Raspberry Pi for Image Classification</u>. *Journal of Real-Time Image Processing (JRTIP)*, 2022.
- **2.3** Rui-Yang Ju, Jen-Shiun Chiang, Chih-Chia Chen, Yu-Shian Lin. Connection Reduction of DenseNet for Image Recognition. International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Penang, Malaysia, Nov. 2022.

(三) 研究內容

3.1 ThreshNet

因為 DenseNet 使用密集連接(Dense Connection)鼓勵特徵重用,模型的參數量較小; HarDNet 使用諧波密集連接(Harmonic Dense Connection),提高了網路的記憶體佔用量、 縮短了模型的推理時間,但是模型的準確率下降了。為了平衡神經網路的記憶體佔用量和 模型的準確率。

因為層數大的 block 如果使用密集連接會導致資料的搬運次數過大。因此我們設置一個 Threshold Mechanism,對於層數較小的 block 使用密集連接,對於層數較大的 block 使用諧波密集連接。

3.2 TripleNet

在卷積神經網路(CNN),隨著卷積層的不斷堆疊,通道數(Channel)也會成倍增加。為了降低模型的大小,可以在邊緣運算平台(樹莓派 Raspberry Pi)上實現。因此我們在最後一個 block 中只使用 2 或 3 個層,並且使用 bottleneck 和殘差學習來進行連接。

我們設計的網路由 5 個 block 組成,第 1 個 block 使用密集連接,第 2、3、4 個 block 使用諧波密集連接,第 5 個 block 使用殘差學習進行連接。

3.3 Connection Reduction

根據對 ThreshNet 和 TripleNet 的研究,我們發現卷積層之間的不同連接方式直接影響模型的參數量、記憶體佔用量、推理時間和準確率。因此我們提出了兩種算法來進行層與層之間的連接。

```
Algorithm 1 Shortnet<sub>1</sub>
                                                                     Algorithm 2 Shortnet<sub>2</sub>
Require: Stack 3 × 3 Convolution Layer in each block
Ensure: BN + ReLU + 3 \times 3 \ Conv
                                                                     Require: Stack 3 \times 3 Convolution Layer in each block
  for layer n is odd do
                                                                     Ensure: BN + ReLU + 3 \times 3 \ Conv
    layer n connect to layer 2^0
                                                                       for layer n is even do
     for i in 2^1 to 2^5 do
                                                                          for i in 1 to 5 do
       let n connect to layer i (i \le n and i is even)
                                                                            x = 2^i = 1
                                                                            y = n - x \ (x \le n)
     end for
  end for
                                                                            layer n connect to layer y
  for layer n is even do
                                                                          end for
    layer n connect to layer 2^0
                                                                       end for
     for i in 2^1 to 2^5 do
                                                                       for layer n is odd do
       let n connect to layer i (i \le n and i is odd)
                                                                         layer n connect to layer y
     end for
  end for
```

使用算法1進行層與層之間的連接,連接的數量和諧波密集連接的數量相似;使用算法2進行層與層之間的連接,方法更激進,連接的數量更少。