جامعة محمد الصديق بن يحى – جيجل -

السنة الجامعية 2023/2022

كلية العلوم الدقيقة و الإعلام الآلي

قسم: الإعلام الآلي

الواجب المنزلى الجبر 1

 \mathbb{Z} نعرف العلاقة الثنائية \mathcal{R} على \mathbb{Z} بـ:

$$\forall (x,y) \in \mathbb{Z}^2 : x\mathcal{R} \ y \Longleftrightarrow \exists k \in \mathbb{Z}; \ x-y=n.k$$

ر هن أن \mathcal{R} علاقة تكافؤ على \mathbb{Z} .

1) احسب أ و أ .

: نعرف على
$$\mathbb{Z}/n\mathbb{Z}$$
 القانونين $\mathbb{Z}/n\mathbb{Z}=\mathbb{Z}/\mathcal{R}=\{\dot{0},\dot{1},\ldots,(\widehat{n-1})$ نعرف على $\dot{x},\dot{y}\in\mathbb{Z}/n\mathbb{Z}:\dot{x}\dot{+}\dot{y}=(\widehat{x+y})$

$$\dot{x} \dot{x} \dot{y} = (\widehat{x \times y}).$$

اكتب الجدولين: n=4 من أجل n=4

	_			_	
×	Ò	İ	Ż	3	4
× Ö					
1 2 3					
3					
4					

÷	Ò	İ	Ż	3	4
Ò					
İ					
2 3 4					
3					
4					

- عين العنصر الحيادي لـ (+) و نظير كل عنصر من $\mathbb{Z}/4\mathbb{Z}$ بالنسبة (+).
 - أوجد قواسم الصفر.
- عين العنصر الحيادي لـ (x) و ما هي عناصر \mathbb{Z}/\mathbb{Z} التي لها نظير بالنسبة (x).
 - هل $(\mathbb{Z}/4\mathbb{Z},\dot{+},\dot{\times})$ حقل تبدیلي؟
 - من أجل n=3 من أجل (1

×	Ò	İ	Ż	3
Ò				
İ				
Ż				
3				

÷	Ò	İ	Ż	3
Ò				
İ				
<u>2</u> 3				
3				

- عين العنصر الحيادي لـ $(\dot{+})$ و نظير كل عنصر من \mathbb{Z}/\mathbb{Z} بالنسبة $(\dot{+})$.
- عين العنصر الحيادي لـ (x) و ما هي عناصر \mathbb{Z}/\mathbb{Z} التي لها نظير بالنسبة (x).
 - أثبت أن $(\mathbb{Z}/3\mathbb{Z}, \dot{+}, \dot{\times})$ حقل تبديلي.

سلسلة الأعمال رقم: 04

 $\forall (a,b) \in \mathbb{R}^2$: $a\Delta b = a+b+1$ et $a\odot b = a.b+a+b$ مزود بالقانونين \mathbb{R} مزود بالقانونين

1- اِثبات أن (\mathbb{R}, Δ) زمرة تبديلية : ((\mathbb{R}, Δ) زمرة تبديلية) \Leftrightarrow ((Δ) قانون تركيب داخلي, تجميعي , يقبل عنصر حيادي و لكل عنصر من \mathbb{R} نظير في \mathbb{R} و أيضا (Δ) تبديلي).

 $(\forall (a,b) \in \mathbb{R}^2 : a\Delta b \in \mathbb{R}) \Leftrightarrow (خلي داخلي (\Delta)) (a$

. \mathbb{R} لدينا: \mathbb{R} فانون تركيب داخلى على \mathbb{R} (لأن (+)قانون الأن $a\Delta b=a+b+1\in\mathbb{R}$

 $(\forall (a,b,c) \in \mathbb{R}^3 : (a\Delta b)\Delta c = a\Delta(b\Delta c)) \Leftrightarrow (\Delta)$ (b) (b)

 $(a\Delta b)\Delta c = (a+b+1)\Delta c = (a+b+1)+c+1 = a+(b+c+1)+1 = a\Delta(b\Delta c)$ لدينا:

(لأن (+) تجميعي و تبديلي على \mathbb{R}) و منه (Δ) تجميعي.

 $(\forall (a,b) \in \mathbb{R}^2 : a\Delta b = b\Delta a) \Leftrightarrow (قيديلي) (c)$

لدينا: $a\Delta b = a + b + 1 = b + a + 1 = b\Delta a$ لأن(+) تبديلي) و منه (Δ) تبديلي.

 $(\exists e \in \mathbb{R}, \forall a \in \mathbb{R}: a\Delta e = e\Delta a = a) \Leftrightarrow (عالم عنصر حيادي) (d)$

بما أن $\Delta \Delta e = a$ تبديلي يكفي أن نحل المعادلة: $\Delta \Delta e = a$ لدينا

 $e=0_{\mathbb{R}}=-1$ و منه (Δ) يقبل عنصر حيادي $a\Delta e=a\Leftrightarrow a+e+1=a\Leftrightarrow e=-1$

 $(\forall a \in \mathbb{R}, \exists a' \in \mathbb{R}: a\Delta a' = a'\Delta a = e) \Leftrightarrow (\mathbb{R}$ لکل عنصر من \mathbb{R} نظیر فی (e

بما أن (Δ) تبديلي يكفي أن نحل المعادلة: $a\Delta a'=e$ لدينا

و منه لكل عنصر $a\in\mathbb{R}$ نظير $a\Delta a'=e\Leftrightarrow a+a'+1=-1\Leftrightarrow a'=-a-2\in\mathbb{R}$

 $.a' = -a - 2 \in \mathbb{R}$

ية البات أن $(\mathbb{R}, \Delta, \odot)$ حلقة تبديلية واحدية:

$$(R, \Delta) - I$$
 (مرة تبديلية (∞) قانون تركيب داخلي $II - (\odot)$ قانون تركيب داخلي $III - (\odot)$ حلقة تبديلية واحدية (∞, Δ, \odot) $(\infty) - V$ (∞) تبديلي $(\infty) - V$ (∞) تبديلي $(\infty) - V$

رمرة تبديلية مما سبق. (\mathbb{R}, Δ)

 $(\forall (a,b) \in \mathbb{R}^2 : a \odot b \in \mathbb{R}) \Leftrightarrow (خلي)$ داخلي آنون ترکيب داخلي -II

 \mathbb{R} لدينا: \mathbb{R} و منه (\odot) قانون تركيب داخلى على على الزينا: $a\odot b=a.b+a+b\in\mathbb{R}$

 $(\forall (a,b,c) \in \mathbb{R}^3 : (a \odot b) \odot c = a \odot (b \odot c)) \Leftrightarrow ((\odot))$ -III

 $(a \odot b) \odot c = (a.b + a + b) \odot c = (a.b + a + b) c + (a.b + a + b) + c$ لدينا من جهة:

= a.b.c + a.c + b.c + a.b + a + b + c...(1) $a\odot(b\odot c)=a\odot(b.c+b+c)=a.(b.c+b+c)+a+(b.c+b+c)$ من جهة أخرى = a.b.c + a.b + a.c + b.c + a + b + c...(2)من (1)و (2) نجد المساواة و منه (\odot) تجميعي. $(\forall (a,b) \in \mathbb{R}^2 : a \odot b = b \odot a) \Leftrightarrow (\odot)$ لدينا: $a \odot b = a.b + a + b = b.a + b + a = b \odot a$ لأن (+)و(+) تبديليان) و منه $a \odot b = a.b + a + b = b.a + b + a = b \odot a$ $(\forall (a,b,c) \in \mathbb{R}^3: \begin{cases} a \odot (b \Delta c) = (a \odot b) \Delta (a \odot c) \\ (a \Delta b) \odot c = (a \odot c) \Delta (b \odot c) \end{cases} \Leftrightarrow ((\Delta) \text{ if } (\Box))$ بما أن $a\odot(b\Delta c)=(a\odot b)\Delta(a\odot c)$ أن يكفى إثبات أن بما أن $a\odot(b\Delta c)=(a\odot b)\Delta(a\odot c)$ بما أن بديلي يكفى إثبات أن $.a \odot (b \Delta c) = a \odot (b + c + 1) = a.(b + c + 1) + a + (b + c + 1)$ $a = a \cdot b + a \cdot c + 2a + B + c + 1 \dots (1')$ من جهة أخرى $(a \odot b) \Delta(a \odot c) = (a.b + a + b) \Delta(a.c + a + c)$ = (a.b + a + b) + (a.c + a + c) + 1,= a.b + a.c + 2a + b + c + 1...(2')من ('1)و ('2) نجد أن \bigcirc توزيعي على (Δ) . $(\exists e \in \mathbb{R}, \forall a \in \mathbb{R}: a \odot e = e \odot a = a) \Leftrightarrow ((\odot))$ عنصر حیادی (\odot) بما أن $a \odot e = a$ لدبنا عند أن نحل المعادلة: يبديلي يكفى أن نحل المعادلة: و منه $a\odot e=a\Leftrightarrow a.e+a+e=a\Leftrightarrow e.(a+1)=0, \forall a\in\mathbb{R}\Leftrightarrow e=0$ $.e=1_{\mathbb{R}}=0$ حيادي \mathbb{R}^* تعيين مجموعة العناصر القابلة للقلب \mathbb{R}^* $(\exists a' \in \mathbb{R} : a \odot a' = a' \odot a = 1_{\mathbb{R}}) \Leftrightarrow ((\odot)$ قابل للقلب $(a) \Leftrightarrow (a) \Leftrightarrow (a)$ قابل للقلب $(a) \Leftrightarrow (a)$ بما أن $a\odot a'=1_{\mathbb{R}}$ المعادلة: يكفي أن نحل المعادلة: (\odot) تبديلي يكفي $\mathbb{R}^*=\mathbb{R}-\{-\mathbf{1}=0_\mathbb{R}\}$ و منه $a\odot a'=1_\mathbb{R}\Leftrightarrow a.\,a'+a+a'=0\Leftrightarrow a'=rac{-a}{a+1}$, a
eq -1 $(\mathbb{R},\Delta,\odot)$ حقل $\mathbb{R}^*=\mathbb{R}-\{-1=0_\mathbb{R}\}$ حقل حقل الاستنتاج: بما أن $(\mathbb{R},\Delta,\odot)$ حلقة واحدية و و بما أن \bigcirc تبديلي فإن \bigcirc \bigcirc \bigcirc حقل تبديلي. $\forall (x,y), (x',y') \in \mathbb{R}^2: (x,y) \oplus (x',y') = (x+x',y+y')$ مزود بالقانونين \mathbb{R}^2 مزود بالقانونين $(x,y)\otimes(x',y') = (x.x'-y.y',x.y'+y.x')$

دية: $(\mathbb{R}^2, \bigoplus, \bigotimes)$ حلقة تبديلية واحدية:

زمرة تبديلية? (\mathbb{R}^2, \oplus) زمرة تبديلية?

$$(\forall (x,y),(x',y')\in \mathbb{R}^2:(x,y)\oplus (x',y')\in \mathbb{R}^2)\Leftrightarrow ((X,y)\oplus (X,y')\in \mathbb{R}^2)$$
 قانون ترکیب داخلي ((X,Y)

لدینا: \mathbb{R}^2 المنه (\oplus) و منه (\oplus) و منه (\oplus) الأن (+)قانون تركیب داخلي علی \mathbb{R}) و منه (\oplus) قانون تركیب داخلي علی \mathbb{R}^2 .

$$(\forall (x,y),(x',y'),(x'',y'') \in \mathbb{R}^2$$
: $) \Leftrightarrow ((\oplus)) (b)$

و منه (ا) تجميعي.

$$(\forall (x,y)(x',y') \in \mathbb{R}^2 : (x,y) \oplus (x',y') = (x',y') \oplus (x,y)) \Leftrightarrow ((\oplus)) (c)$$

لدينا: $(x,y) \oplus (x',y') = (x+x',y+y') = (x'+x,y'+y) = (x',y') \oplus (x,y)$ لأن (+) تبديلي في (+) تبديلي.

$$(\exists (e_1,e_2) \in \mathbb{R}^2, \forall (x,y) \in \mathbb{R}^2:$$
 $) \Leftrightarrow ((\oplus)) (d$ $(x,y) \oplus (e_1,e_2) = (e_1,e_2) \oplus (x,y) = (x,y)$

بما أن $(x,y) \oplus (e_1,e_2) = (x,y)$ لدينا نحل المعادلة: (\oplus) تبديلي يكفي أن نحل المعادلة:

$$(x,y) \oplus (e_1,e_2) = (x,y) \Leftrightarrow (x+e_1,y+e_2) = (x,y) \Leftrightarrow \begin{cases} x+e_1 = x \\ \land \\ y+e_2 = y \end{cases} \Leftrightarrow \{e_1 = e_2 = 0\}$$

 $0_{\mathbb{R}^2}=(e_1,e_2)=(0,0)$ و منه (\bigoplus) يقبل عنصر حيادي

$$(\forall (x,y) \in \mathbb{R}^2, \exists (x',y') \in \mathbb{R}^2:) \Leftrightarrow (\mathbb{R}^2 \text{ idual } \mathbb{R}^2$$
 لکل عنصر من \mathbb{R}^2 نظیر في \mathbb{R}^2 نظیر $(x,y)\oplus(x',y')=(x',y')\oplus(x,y)=0$

بما أن $(x,y) \oplus (x',y') = 0_{\mathbb{R}^2}$ لدينا أن نحل أن نحل المعادلة:

$$(x,y) \oplus (x',y') = 0_{\mathbb{R}^2} \Leftrightarrow (x+x',y+y') = (0,0) \Leftrightarrow \begin{cases} x+x'=0 \\ \wedge \\ y+y'=0 \end{cases} \Leftrightarrow \begin{cases} x'=-x \in \mathbb{R} \\ \wedge \\ y'=-y \in \mathbb{R} \end{cases}$$

 $(x',y')=(-x,-y)\in\mathbb{R}^2$ نظیر $(x,y)\in\mathbb{R}^2$ نظیر عنصر

من (\mathbb{R}^2, \oplus) زمرة تبديلية. (a, b), (a, b) من (a, b), (a, b)

$$(\forall (x,y),(x',y')\in \mathbb{R}^2:(x,y)\otimes (x',y')\in \mathbb{R}^2)\Leftrightarrow ((X,y)\otimes (X',y')\in \mathbb{R}^2)\Leftrightarrow ((X,y)\otimes (X',y')\in \mathbb{R}^2)$$
 - II

لدینا: $(x,y)\otimes(x',y')=(x.x'-y.y',x.y'+y.x')\in\mathbb{R}^2$ لائن (+)و (-)و (+)و (+)و (+)و (+)و رمنه (\otimes) قانون ترکیب داخلی علی (+)2 . (+)3 .

 (\otimes) تجميعي من التمرين 2 لسلسلة الزمر.

الزمر. (\otimes) تبديلي من التمرين 2 لسلسلة الزمر.

$$(\forall (x,y),(x',y'),(x'',y'') \in \mathbb{R}^2: \qquad) \Leftrightarrow (\bigoplus \exists x \otimes) \qquad -V$$

$$\{(x,y) \otimes [(x',y') \oplus (x'',y'')] = [(x,y) \otimes (x',y')] \oplus [(x,y) \otimes (x'',y'')]$$

$$\{(x,y) \oplus (x',y')] \otimes (x'',y'') = [(x,y) \otimes (x'',y'')] \oplus [(x',y') \otimes (x'',y'')]$$

بما أن (⊗) تبديلي يكفي إثبات المساواة الأولى. من جهة لدينا

$$(x,y)\otimes[(x',y')\oplus(x'',y'')] = (x,y)\otimes(x'+x'',y'+y'')$$

$$= (x(x' + x'') - y(y' + y''), x(y' + y'') + y(x' + x''))$$

$$.= (xx' + xx'' - yy' - yy'', xy' + xy'' + yx' + yx'')$$

بنفس الكيفية نحسب الطرف الثاني للمساواة و نجد أن المساواة محققة. ومنه ⊗ توزيعي على ⊕.

. من التمرين الثاني لسلسلة الزمر .
$$1_{\mathbb{R}^2}=(e_1,e_2)=(1,0)$$
 عنصر حيادي (\otimes) -VI

مما سبق نجد أن $(\otimes, \oplus, \oplus, \otimes)$ حلقة تبديلية واحدية.

$(\mathbb{R}^2)^*$ تعيين مجموعة العناصر القابلة للقلب

$$((\otimes)$$
قابل القاب (x,y) له نظير بالنسبة القانون ((x,y) فابل القاب ((x,y) اله نظير بالنسبة القانون ((x,y)

من التمرين الثاني للزمر وجدنا أن لكل عنصر
$$\left(\frac{x}{x^2+y^2},\frac{-y}{x^2+y^2}\right)$$
 في نظير هو $(x,y)\in\mathbb{R}^2-\{(0,0)\}$ و نعلم ان

$$(\mathbb{R}^2)^*=\mathbb{R}^2-\{(0,0)\}$$
 ايس لهة نظير بالنسبة ل \otimes إدن $(0,0)=0_{\mathbb{R}^2}$

$$(\mathbb{R}^2, \bigoplus, \bigotimes)$$
 فإن $(\mathbb{R}^2, \bigoplus, \bigotimes)^* = \mathbb{R}^2 - \{(0,0) = 0_{\mathbb{R}^2}\}$ حلقة واحدية و $(\mathbb{R}^2, \bigoplus, \bigotimes)^* = \mathbb{R}^2 - \{(0,0) = 0_{\mathbb{R}^2}\}$ حقل و بما أن (\bigotimes) تبديلي فإن $(\bigotimes, \bigoplus, \bigoplus, \bigotimes)^*$ حقل تبديلي.

$$i = (0,1)$$
 حيث $i^2 = -1_{\mathbb{R}^2}$: اثبات أن

$$i^2 = (0,1)^2 = (0,1) \otimes (0,1) = (0 \times 0 - 1 \times 1, 0 \times 1 + 1 \times 0) = (-1,0) = -(1,0) = -1_{\mathbb{R}^2}.$$

$$\underline{\cdot}$$
 $\forall (x,y) \in \mathbb{R}^2$: $(x,y) = (x,0) \oplus (0,y) = x$. $(1,0) \oplus y$. $(0,1) = x$. $1_{\mathbb{R}^2} + y$. i

$$A = \left\{ \frac{p}{2k+1} \in \mathbb{Q}; p \in \mathbb{Z}, k \in \mathbb{N} \right\}$$
 التمرين الثالث:

 $(\mathbb{Q},+,\times)$ حلقة جزئية من $(\times,+,\mathbb{Q})$:

$$0_{\mathbb{Q}} \in A \neq \emptyset$$
 (1 $\forall (x,y) \in A^2 : x+y \in A$ (2 $\forall x \in A : -x \in A$ (3 $\forall (x,y) \in A^2 : x \times y \in A$ (4 \Rightarrow (($\mathbb{Q},+,\times$)) -

1)
$$\left(0_{\mathbb{Q}} = \frac{0}{2 \times 0 + 1}; 0 \in \mathbb{Z}, 0 \in \mathbb{N}\right) \Longrightarrow 0_{\mathbb{Q}} \in A \neq \emptyset.$$

$$2) \begin{cases} x \in A \\ \land \\ y \in A \end{cases} \Rightarrow \begin{cases} x = \frac{p}{2k+1} \in \mathbb{Q}; p \in \mathbb{Z}, \ k \in \mathbb{N} \\ \land \\ y = \frac{p'}{2k'+1} \in \mathbb{Q}; p' \in \mathbb{Z}, \ k' \in \mathbb{N} \end{cases} \Rightarrow x + y = \frac{p}{2k+1} + \frac{p'}{2k'+1} = \frac{p(2k'+1) + p'(2k+1)}{2(2k \times kr + k + k') + 1}.$$

$$\Rightarrow x + y = \frac{p''}{2k''+1}; p'' = p(2k'+1) + p'(2k+1) \in \mathbb{Z}, \ k'' = 2k \times k' + k + k' \in \mathbb{N} .$$

$$\Rightarrow x + y \in A.$$

$$3) \ x \in A \Rightarrow x = \frac{p}{2k+1} \in \mathbb{Q}; p \in \mathbb{Z}, \ k \in \mathbb{N} \Rightarrow -x = \frac{-p}{2k+1} \in \mathbb{Q}; -p \in \mathbb{Z}, \ k \in \mathbb{N}$$

$$\Rightarrow -x \in A .$$

$$4) \begin{cases} x \in A \\ \land \\ \land \\ y \in A \end{cases} \Rightarrow \begin{cases} x = \frac{p}{2k+1} \in \mathbb{Q}; p \in \mathbb{Z}, \ k \in \mathbb{N} \\ \land \\ y = \frac{p'}{2k'+1} \in \mathbb{Q}; p' \in \mathbb{Z}, \ k' \in \mathbb{N} \end{cases} \Rightarrow x \times y = \frac{p \times pr}{2(2k \times kr + k + k') + 1}$$

$$4) \begin{cases} x \in A \\ \land \\ y \in A \end{cases} \Rightarrow \begin{cases} x = \frac{p}{2k+1} \in \mathbb{Q}; p \in \mathbb{Z}, k \in \mathbb{N} \\ \land \\ y = \frac{p'}{2k'+1} \in \mathbb{Q}; p' \in \mathbb{Z}, k' \in \mathbb{N} \end{cases} \Rightarrow x \times y = \frac{p \times p'}{2(2k \times k' + k + k') + 1}$$
$$\Rightarrow x \times y = \frac{p''}{2k''+1}; p'' = p \times p' \in \mathbb{Z}, k'' = 2k \times k' + k + k' \in \mathbb{N} .$$
$$\Rightarrow x \times y \in A.$$

و منه A حلقة جزئية من (x,+,x) . (x,+,x) . (x,+,x) فإن (x,+,x) فردي (x,+,x) فردي (x,+,x) فردي (x,+,x) فردي (x,+,x)

و بما أن 2 لا يقسم البسط فإنه في جميع كتابات المقلوب يبقى المقام زوجي . إذن $A \not\equiv \frac{p}{2k+1}$ و منه $\frac{p}{2k+1}$ غير قابل للقلب في A .

لأن ($\mathbb{Q}, +, \times$). لأن A -3

$$0_{\mathbb{Q}}, 1_{\mathbb{Q}} \in A \neq \emptyset$$
 (1 $\forall (x,y) \in A^2 : x + y \in A$ (2 $\land \forall x \in A : -x \in A$ (3 $\forall (x,y) \in A^2 : x \times y \in A$ (4 $\forall x \in A - \{0_{\mathbb{Q}}\} : x^{-1} \in A$ (5) \Leftrightarrow

و الشرط 5) غير محقق من الجزء 2 السابق

.∃ $\frac{2}{2}$ ∈ A − {0_{\mathbb{Q}}} : $\frac{3}{2}$ ∉ A