Fundamental Constants as Emergent Parameters in MU-CFT

Dmitry A. Mandrov

Independent Researcher, Russia

2025

Abstract

In the Mandrov Unified Coherent Field Theory (MU-CFT), fundamental constants are not primitive inputs but emergent parameters of a coherent space–time–observer system. This work develops a mathematical pathway from the MU-CFT action to effective, potentially scale-dependent quantities such as the cosmological constant $\Lambda_{\rm eff}$, the gravitational coupling $G_{\rm eff}$, the fine-structure constant $\alpha_{\rm eff}$, and effective particle masses. We derive the asymptotic behavior of Λ_{∞} from the coherent static metric and outline how intersubjective coherence stabilizes the observed values within a branch. Observational predictions for small spatio-temporal variations of constants are also discussed.

Contents

1	Introduction					
2	Background: MU-CFT Action and Fields 2.1 Kinematic variables and fields					
	2.2 MU-CFT action (schematic form)					
3	Mathematical Framework	4				
	3.1 Static, spherically symmetric ansatz	4				
	3.2 Einstein tensor and effective Λ	4				
	3.3 Coefficient comparison heuristic	4				
	3.4 Toward G_{eff} and α_{eff}	4				
4	Constants in Standard Physics	5				
5	Emergent Constants in MU-CFT	5				
	5.1 Cosmological constant	5				
	5.2 Gravitational coupling	5				

	5.3 Fine-structure constant	5					
	5.4 Effective particle masses	5					
	5.5 Dark sector densities	5					
6	Anthropic Principle and Branch Dependence	5					
7	Observational Predictions	5					
8	Formal Summary Table	6					
9	Discussion	6					
10	0 Conclusion						
11	Outlook	7					
A	Derivations for the Static Coherent Metric	7					

1 Introduction

Fundamental constants in modern physics set interaction scales and boundary conditions for dynamics. In standard frameworks, they are treated as immutable inputs. MU-CFT reinterprets them as emergent outputs of a coherence-based interaction between geometry, fields, and the observer. This paper systematizes that interpretation, deriving explicit relations and highlighting how constants may vary across scales or quantum branches.

2 Background: MU-CFT Action and Fields

2.1 Kinematic variables and fields

We consider a Lorentzian metric $g_{\mu\nu}$ (signature +---) and an observer field F_s capturing subjective and intersubjective coherence. The realized physical branch corresponds to a coherent selection operator acting on a potentiality space.

2.2 MU-CFT action (schematic form)

We adopt the generic MU-CFT-consistent action:

$$\mathcal{S}[g, F_s, \Psi] = \int d^4x \sqrt{-g} \left(\mathcal{L}_{\text{grav}}[g] + \mathcal{L}_{\text{obs}}[F_s, g] + \mathcal{L}_{\text{int}}[F_s, \Psi, g] + \mathcal{L}_{\text{mat}}[\Psi, g] \right), \quad (2.1)$$

where Ψ denotes matter fields. The gravitational sector contains the Einstein-Hilbert term and a coherence-dependent correction:

$$\mathcal{L}_{\text{grav}}[g] = \frac{1}{16\pi} R + \Phi_{\text{coh}}(F_s) \Xi[g], \qquad (2.2)$$

with R the Ricci scalar, $\Xi[g]$ a curvature invariant (possibly R^2 -suppressed or f(R)-like), and Φ_{coh} a functional of F_s . The observer sector \mathcal{L}_{obs} encodes the dynamics of F_s , while \mathcal{L}_{int} modulates standard couplings through coherence.

2.3 Modified Einstein equations

Variation of (2.1) yields:

$$G_{\mu\nu} + \mathcal{C}_{\mu\nu}[F_s, g] = 8\pi T_{\mu\nu}^{(\Psi)} + T_{\mu\nu}^{(\text{coh})}[F_s, g],$$
 (2.3)

where $C_{\mu\nu}$ arises from the coherence-curvature coupling, and $T_{\mu\nu}^{\text{(coh)}}$ is an effective stress tensor sourced by F_s . In symmetric limits these reduce to a scale-dependent cosmological constant.

3 Mathematical Framework

3.1 Static, spherically symmetric ansatz

We adopt

$$ds^{2} = f(r) dt^{2} - \frac{dr^{2}}{f(r)} - r^{2} (d\theta^{2} + \sin^{2}\theta d\varphi^{2}),$$
(3.1)

with coherent metric function

$$f_{\rm coh}(r) = 1 - \frac{2Mr}{r^2 + \epsilon^2} + \frac{\lambda}{6} r^2 (1 - e^{-\gamma r}),$$
 (3.2)

where M is the mass parameter, $\epsilon > 0$ regularizes the center, and λ, γ are coherence parameters.

3.2 Einstein tensor and effective Λ

For (3.1) one finds:

$$G_t^t = G_r^r = \frac{f-1}{r^2} + \frac{f'}{r}, \qquad G_\theta^\theta = G_\varphi^\varphi = \frac{f''}{2} + \frac{f'}{r}.$$
 (3.3)

Substituting (3.2) and taking $r \to \infty$ ($e^{-\gamma r} \to 0$, 1/r term vanishes):

$$G^{\mu}_{\nu} \rightarrow \frac{\lambda}{2} \delta^{\mu}_{\nu} \Rightarrow \Lambda_{\infty} = -\frac{\lambda}{2}$$
 (3.4)

A local identification is:

$$\Lambda_{\text{eff}}^{(t)}(r) := -G_t^t(r), \qquad \Lambda_{\text{eff}}^{(\theta)}(r) := -G_\theta^{(\theta)}(r), \tag{3.5}$$

which coincide with (3.4) at large r but generally differ at finite r.

3.3 Coefficient comparison heuristic

Comparing (3.2) with $f_{\rm GR} = 1 - 2M/r - (\Lambda/3)r^2$:

$$-\frac{\Lambda_{\text{eff}}^{(\text{coef})}(r)}{3} \equiv \frac{\lambda}{6} \left(1 - e^{-\gamma r} \right) \quad \Rightarrow \quad \Lambda_{\text{eff}}^{(\text{coef})}(r) = -\frac{\lambda}{2} \left(1 - e^{-\gamma r} \right). \tag{3.6}$$

This matches (3.4) asymptotically and clarifies the sign.

3.4 Toward $G_{\rm eff}$ and $\alpha_{\rm eff}$

Effective couplings are defined by linear response:

$$G_{\text{eff}} \propto \chi_{\text{coh}}[F_s; g]|_{\text{weak field}}$$
 (3.7)

where $\chi_{\rm coh}$ is the coherent susceptibility functional. The EM sector yields:

$$\alpha_{\text{eff}} = \alpha \mathcal{A}[F_s; g],$$
(3.8)

with $A \to 1$ in the classical (low-coherence-contrast) limit.

4 Constants in Standard Physics

We recall how Λ , G, \hbar , α , m_e , and m_p appear in GR, QM, and the Standard Model, where their values are inputs with no deeper derivation.

5 Emergent Constants in MU-CFT

5.1 Cosmological constant

Eqs. (3.4)–(3.6) summarize the coherent reinterpretation.

5.2 Gravitational coupling

Eq. (3.7) defines G_{eff} from coherent response to localized sources.

5.3 Fine-structure constant

Eq. (3.8) expresses coherence-modulated electrodynamics; deviations could be probed via spectroscopy.

5.4 Effective particle masses

Stable coherent matter defines m^{coh} ; branch dependence allows small environment-induced drifts.

5.5 Dark sector densities

Coherent curvature mimics dark energy; geometry-induced modifications emulate dark matter.

6 Anthropic Principle and Branch Dependence

Observed constants correspond to intersubjective coherence plateaus: ranges where physical records remain stable. Other branches may realize different plateaus.

7 Observational Predictions

• Mild redshift dependence of $\alpha_{\rm eff}$ and $m^{\rm coh}$ at $z\lesssim 1$.

- Environmental variation near compact objects due to coherence gradients.
- Late-time approach to $\Lambda_{\infty} = -\lambda/2$ in cosmology.

8 Formal Summary Table

Constant	Dimension (SI)	Interpretation	Key relation
Λ	m^{-2}	In GR: vacuum curvature scale. In MU-CFT: coherent curvature emerging asymptotically.	$\Lambda_{\infty} = -\lambda/2 \text{ (Eq. 3.4)}$
G	${ m m}^3{ m kg}^{-1}{ m s}^{-2}$	In GR: Newton's constant. In MU-CFT: coherent susceptibility of space—time to energy-momentum.	$G_{ m eff} \propto \chi_{ m coh}[F_s;g]ig _{ m weak \ field} \ m (Eq. \ 3.7)$
α	dimensionless	In QED: electromagnetic coupling constant. In MU-CFT: coherence- modulated effective vertex.	$\alpha_{\text{eff}} = \alpha \mathcal{A}[F_s; g]$ (Eq. 3.8)
m_e	kg	In SM: electron rest mass. In MU-CFT: stable coherent matter state.	$m_e^{\rm coh}~({\rm def.})$
m_p	kg	In SM: proton rest mass. In MU-CFT: stable coherent baryon state.	$m_p^{\rm coh}$ (def.)

Table 1: Fundamental constants and their MU-CFT interpretations. The last column provides the corresponding MU-CFT relation or definition.

9 Discussion

MU-CFT unifies disparate tunings: constants are branch-stable outputs of coherence, not axioms. Unlike scalar-field or modified gravity models, MU-CFT ties variations to

observer-field dynamics and intersubjective stability.

10 Conclusion

Fundamental constants emerge as coherent parameters. The framework explains their apparent fine-tuning and suggests small, testable variations across scales, while recovering standard values on the coherence plateau.

11 Outlook

Future work will: (i) refine Φ_{coh} and \mathcal{A} ; (ii) derive $G_{\text{eff}}(x)$ in cosmological backgrounds; (iii) confront predictions with spectroscopy, lensing, and gravitational waves.

Acknowledgments: This paper was developed with the structural assistance of OpenAI's ChatGPT-4o. The theory, formulations, and concepts are original to Dmitry A. Mandrov.

A Derivations for the Static Coherent Metric

Using (3.1), the Einstein components are (3.3). Substituting (3.2) and expanding at large r gives (3.4). The coefficient heuristic (3.6) matches the asymptotics and clarifies the sign relation between λ and the GR Λ .