Questio			Mark
n Number	Answer		
15(a)	Use of conversion factor of 1 eV = 1.6×10^{-19} J	(1)	
	Equate kinetic energy to electric potential energy at distance of closest approach		
	Or equates potential at point of closest approach to E_k/Q	(1)	
	Use of $V = \frac{Q}{4\pi\varepsilon_0 r}$ with $W = QV$ [must be correct values of Q]	(1)	
	$\begin{vmatrix} r = 4.1 \times 10^{-14} \text{ m} \\ 1 \end{vmatrix}$	(1)	4
	Example of calculation $E_{\rm k} = 5.52 \times 10^6 \times 1.6 \times 10^{-19} \text{J MeV}^{-1} = 8.83 \times 10^{-13} \text{J}$		
	$r = \frac{79 \times 1.6 \times 10^{-19} \text{ C} \times 2 \times 1.6 \times 10^{-19} \text{ C}}{4\pi \times 8.85 \times 10^{-12} \text{ F m}^{-1} \times 8.83 \times 10^{-13} \text{ J}} = 4.12 \times 10^{-14} \text{ m}$		
15(b)	Use of $F = \frac{Q_1 Q_2}{4\pi \varepsilon_0 r^2}$ or $F = \frac{kQ_1 Q_2}{r^2}$	(1)	
	F = 11 N	(1)	2
	$F = \frac{79 \times 1.6 \times 10^{-19} \text{ C} \times 2 \times 1.6 \times 10^{-19} \text{ C}}{4\pi \times 8.85 \times 10^{-12} \text{ F m}^{-1} \times (5.68 \times 10^{-14} \text{ m})^2} = 11.3 \text{ N}$		
	Total for question 15		6