Alkanes

1.	Predict the molecular formula of an alkane with 13 carbon atoms.	
	П	Total 1 mark

2. The table below lists the boiling points of some alkanes.

alkane	number of carbon atoms	molecular formula	boiling point /°C
butane	4	C ₄ H ₁₀	0
pentane	5	C ₅ H ₁₂	36
hexane	6	C ₆ H ₁₄	69
heptane	7	C ₇ H ₁₆	99
octane	8	C ₈ H ₁₈	
nonane	9	C ₉ H ₂₀	152
decane	10	C ₁₀ H ₂₂	175

(i)	Predict the boiling point of octane.	
		[1]
(ii)	State and explain the trend in the boiling points of these alkanes.	
		[2]
	[Total 3 m	

3. The graph below shows the boiling points of some alkanes.

octane C ₈ H ₁₈ ,	hexadecane, C ₁₆ H ₃₄

[2]

(b) State how decane, $C_{10}H_{22}$, can be separated from a mixture of the alkanes.

.....

[1]

i) Draw, usin	g skeletal formula	e, two otner stri	uctural isomers of	r nexane.	
^					
isomer A	isomer B	isomer C			
(iii) Isomers A ,	ner B B and C have diff	ferent boiling po	ints. In the boxes	below, list	
the isomer	s A , B and C in or	der of their boili	ng points. highest boiling	point	
(iv) Explain the	e order given in (c)) (iii).			
Oxygen-containi performance of f	ng compounds ca uels.	n be added to in	nprove the efficie	ncy and	
In Formula One racing cars, it is common practice to add oxygen-containing compounds, such as 2-methylpropan-2-ol, (CH ₃) ₃ COH. The amount of oxygen-containing compounds added is strictly controlled by the Federation Internationale de l'Automobile, FIA.					
i) Calculate t	Calculate the percentage by mass of oxygen in (CH ₃) ₃ COH. Give your answer to three significant figures.				
•	unee signincant no	ga. 00.			

[2]

[Total 16 marks]

4. The table below lists the boiling points of some alkanes.

alkane	number of carbon atoms	molecular formula	boiling point / °C
butane	4	C ₄ H ₁₀	0
pentane	5	C ₅ H ₁₂	36
hexane	6		69
heptane	7	C ₇ H ₁₆	99
octane	8	C ₈ H ₁₈	
nonane	9	C ₉ H ₂₀	152
decane	10	C ₁₀ H ₂₂	175

(a)	Wha	at is the molecular formula of hexane?	[1]
(b)	(i)	State the trend in the boiling points of the alkanes.	
			[1]
	(ii)	Explain the trend in the boiling points of the alkanes.	
			[1]
	(iii)	Predict the boiling point of octane°C	
			[1]
		[Total 4 m	arks]

5. Cylcohexane and cyclohexene are both cyclic hydrocarbons.

cyclohexane	cyclohexene
H H H H H H H H H H H H H H H H H H H	$\begin{array}{c c} H & \\ H & \\ C & \\ C & \\ H & \\ H & \\ C & \\ H & \\ H & \\ C & \\ H & \\ H & \\ C & \\ H & \\ H & \\ C & \\ H & \\ H & \\ C & \\ H & \\ H & \\ C & \\ H & \\ H & \\ C & \\ H & \\ H & \\ C & \\ H & \\ H & \\ C & \\ H & \\ H & \\ C & \\ H & \\ H & \\ C & \\ H & \\ H & \\ C & \\ H & \\ H & \\ C & \\ H & \\ H & \\ C & \\ H & \\ H & \\ C & \\ H & \\ H & \\ C & \\ H & \\ H & \\ C & \\ H & \\ H & \\ H & \\ C & \\ H &$

(i) What is the molecular formula of cyclohexene?

(ii) What is the empirical formula of cyclohexene?

(iii) Calculate the percentage, by mass, of carbon in cyclohexene. Give your answer to **two** significant figures.

answer	·	
answei		

[2]

[1]

[Total 4 marks]

6.	(a)	Heptane can be isomerised to produce branched chain alkanes such as
		2-methylhexane or 2.3-dimethylpentane.

The equation below shows the isomerisation of heptane into 2-methylhexane.

(i) Using skeletal formulae, complete the balanced equation for the isomerisation of heptane into 2,3-dimethylpentane.

[1]

(ii) The boiling point of 2,3-dimethylpentane is 84 $^{\circ}$ C.

Predict the boiling point of 2-methylhexane.°C

[1]

(b) Heptane can be reformed to produce methylcyclohexane which is a cycloalkane. Write a balanced equation to show the reforming of heptane to obtain methylcyclohexane

[2]

[Total 4 marks]

- 7. There are several **cycloalkanes** that are structural isomers of C_5H_{10} .
 - (i) Complete the boxes by drawing two other structural isomers of C_5H_{10} that are also **cycloalkanes**.

Name isomer **L** drawn in (i).

(iii) Draw the skeletal formula of isomer L.

(ii)

[1] [Total 4 marks]

[2]

8.	(a)	a) Many organic molecules show structural isomerism. State what is meant by the term <i>structural isomerism</i> .					
							 I
	(b)	Isom	ners 1, 2 and 3, shown l	below, are uns	aturated struct	tural isomers of (
		CH	C = C	CH ₃ CH ₂	H / CH ₃	H ₃ C C=	=C H
			isomer 1	ison	ner 2	isome	r 3
		(i)	Complete the boxes b C_5H_{10} .	by drawing two	other unsatura	ated structural is	omers of
		(ii)	Name isomer 3.				
		(iii)	Draw the skeletal form	nula of isomer	2.		1

[Total 6 marks]

9. Four possible structural isomers of $C_4H_{10}O$ are alcohols. Two are shown below.

(i) Draw the other two structural isomers of $C_4H_{10}O$ that are alcohols

[2]

(ii) Name isomer 1.

[1]

[Total 3 marks]