Mid2 Solution

Exercise 1:

Consider the two following tables T1 and T2.

Р	Q	R
10	а	5
15	b	8
25	а	6

Show the results of the following operations:

Α	В	С
10	b	6
25	С	3
10	b	5

a) T1
$$\bowtie$$
 T1.P = T2.A T2
b) T1 \bowtie T1.Q = T2.B T2
c) T1 U T2
d) T1 \bowtie (T1.P = T2.A AND T1.R = T2.C) T2

(a)	(b)
PQRABC	PQRABC
10 a 5 10 b 6	15 b 8 10 b 6
10 a 5 10 b 5	15 b 8 10 b 5
25 a 6 25 c 3	
(c)	(d)
PQR	PQRABC
10a 5	10 a 5 10 b 5
15 b 8	
25 a 6	
10b 6	
25 c 3	
10b 5	

Question 2:

Consider the following relations:

Student(id, name, address, major)

Course(<u>code</u>, title)

Registered(id,code)

1. The titles of courses for which no student is registered.

$$\pi_{\text{name}}$$
 ((π_{code} (Course) - π_{code} (Registered)) ∞ Course)

2. Names of students and the titles of courses they registered to.

```
\pi_{\text{name.title}} (Student \infty Registered \infty Course)
```

3. Ids of students who are registered for 'Database Systems' or 'Operating Systems'.

```
\begin{array}{l} \pi_{ssn} ( \ Student \ \infty \ Registered \ \infty \ (\sigma_{title='Database \ Systems}, Course)) \ \cup \\ \pi_{ssn} ( \ Student \ \infty \ Registered \ \infty \ (\sigma_{title='Operating \ Systems}, Course)) \end{array}
```

4. List of courses in which all students are registered.

$$\pi_{\text{code, id}}$$
 (Registered) / π_{id} (Student)

Question 3:

Consider the Sailors-Boats-Reserves DB:

Sailors(sid: integer, sname: string, rating: integer, age: real)

Boats(bid: integer, bname: string, color: string) **Reserves**(sid: integer, bid: integer, day: date)

Write the following queries in SQL:

1. Find the names of sailors who have reserved at least one boat.

SELECT sname FROM Sailors S, Reserves R WHERE S.sid = R.sid

2. Find the names and ratings of sailor whose rating is better than some sailor called "Ali".

SELECT S.sname, S.rating
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating
FROM Sailors S2
WHERE S2.sname = 'Ali')

3. Find the name and the age of the youngest sailor.

SELECT S.sname, S.age FROM Sailors S WHERE S.age = (SELECT MIN(S2.age) FROM Sailors S2)

4. Find the average age of sailors for each rating level that has at least two sailors.

SELECT S.rating, AVG(S.age) AS avg_age FROM Sailors S GROUP BY S.rating HAVING COUNT(*) > 1