Feuersimulation

Praktikum "Parallele Algorithmen" Kristin Schmidt Sebastian Höffner

Motivation

• Aufbau interaktiver 3D-Engines: Fackelschimmer

Umsetzungsschwerpunkte

- Partikelsystem
- ZusammenspielOpenCL + OpenGL
- Visualisierung von Partikeln

Partikelsystem

- Partikel haben Eigenschaften
 - Richtung,Position, Alter
- Bewegung durch "Krafteinwirkungen"
 - Low Pressure

Respawn

- Ziel: Alte Partikel recyclen
- Problem: Was sind "alte" Partikel?

Respawn

- Lösung 1: Sortieren
 - Beliebige Reihenfolge möglich
 - Langsam (Bitonic Sort:
 O(log²n))
- Lösung 2: ArrayShift
 - Nur O(2n) Speicherzugriffe
 - SchwierigkeitSynchronisation:Lesen/Schreiben

- Lösung 3: Erneuere m
 Partikel ab Offset
 - nur O(m) schreibende
 Speicherzugriffe
 - Unter Umständen nicht älteste Partikel
- Gewinner: Lösung 3
 - Sehr schnell
 - Nur Schreiben

OpenCL + OpenGL

- Effizienz durch geteilte Ressourcen
 - OpenCL arbeitet auf dem von OpenGL reservierten Speicher
- Einfacher Zugriff sowohl im Kernel als auch im Shader

Visualisierung

- Partikel sollen als Feuer erkennbar werden
- Blurfilter,
 Beleuchtung,
 Blending, ...
- Special Effects
 - Hitzeflimmern

Noise

• Einfache Methode um Zufall zu erzeugen

 Anwendung beim Hitzeflimmern und als Struktur

