Istituzioni di Analisi Matematica Corso del prof. Pietro Majer

Francesco Sorce

Università di Pisa Dipartimento di Matematica A.A. 2024/25

Indice

1	No	rme e Seminorme	4				
	1.1	Norme e seminorme	4				
		1.1.1 Teoremini filosofici	6				
	1.2	Completezza	7				
	1.3	Prodotto di spazi (semi)normati	9				
	1.4	Elenco di spazi completi	11				
2	Spazi vettoriali topologici						
	2.1	Intorni dell'origine in SVT	17				
	2.2	SVT localmente convessi	19				
		2.2.1 Funzionali di Minkowski	20				
	2.3	Continuità di operatori lineari in SVT	21				
	2.4	SVT I-numerabili e paranorme	22				
	2.5	Teorema di Riesz	23				
	2.6	Successioni generalizzate (nets)	24				
3	Teorema di Hahn-Banach						
	3.1	Teorema di Hahn-Banach reale	27				
		3.1.1 Immersione isometrica nel biduale	29				
		3.1.2 Sulle ipotesi del teorema di Hahn-Banach	31				
	3.2	Estensioni e altre versioni di Hahn-Banach	31				
		3.2.1 Teorema di Hahn-Banch complesso	31				
		3.2.2 Teoremi di separazione dei convessi	32				
	3.3	Parentesi esercizi	34				
4	Topologie deboli, Limitatezza e Banach-Steinhaus 36						
	4.1	Topologie deboli	36				
		4.1.1 Caso degli spazi normati	38				
	4.2	Limitatezza	39				
	4.3	Spazi di Baire e II-categoria	40				
	4.4	Teorema di Banach-Steinhaus	41				
5	Lemma di iterazione e Iniettività / Surgettività di mappe lineari 44						
	5.1	Lemma di iterazione	44				
		5.1.1 Teorema della mappa aperta	46				
	5.2	Iniettività e surgettività di mappe lineari	49				
		5.2.1 Forte iniettività	49				
		5.2.2 Polare, prepolare, annullatore, preannullatore	51				
		5 2 3 Caso dei Banach	54				

6		arabilità e Spazi uniformemente convessi 59					
	6.1 6.2	Separabilità vs Metrizzabilità					
7	Con	npattezza nei Banach 60					
	7.1	Compattezza dei polari: Banach-Alaoglu					
	7.2	Compattezza in Banach per la norma					
	7.3	Topologie polari					
		7.3.1 Topologia bounded-weak-star e Krein-Šmulian					
	7.4	Compattezza per la topologia debole					
		7.4.1 Varie nozioni di compattezza					
		7.4.2 Eberlein-Šmulian					
8	Funzioni regolari e funzioni a supporto compatto 77						
	8.1	Funzioni regolari					
	8.2	Funzioni a supporto compatto					
		8.2.1 Lo spazio C_C					
		8.2.2 Lo spazio $C_C^0(\Omega)$					
		8.2.3 Lo spazio $\mathcal{D}(\Omega)$					
	8.3	Altre proprietà di $\mathcal{D}(\Omega)$					
		8.3.1 Spazi barilati					
		8.3.2 Spazi Bornologici					
9	Distribuzioni 88						
	9.1	Estensioni e operazioni sulle distribuzioni					
		9.1.1 Estensioni					
		9.1.2 Derivazione					
		9.1.3 Moltiplicazione per funzione liscia 95					
	9.2	Distribuzioni di ordine limitato come misure					
	9.3	Successioni di distribuzioni					
	9.4	Distribuzioni sono un fascio					
		9.4.1 Distribuzioni a supporto compatto 90					
10	-	ratori compatti fra Banach 100					
		Definizioni					
		Proprietà di $L_C(X,Y)$					
	10.3	Operatori compatti di rango finito					
11		ria spettrale per operatori limitati su Banach					
	11.1	Spettro e operatori risolventi					
		11.1.1 Raggio spettrale e Cauchy-Hadamard-Gelfand 109					
	11.2	Teoria spettrale su spazi di Hilbert					
		11.2.1 Autovalori di operatori simmetrici					
		11.2.2 Spettro di operatori simmetrici compatti					
	11.3	Calcolo funzionale C^0 per operatori limitati autoaggiunti					
A		ologia 12					
	A.1	Limiti induttivi su spazi topologici					
		A 1.1 Limiti induttivi di SVT					

\mathbf{B}	Duali di ℓ_p					
	B.1	Norme estese				
	B.2	$ ext{Puali di } \ell_p \ldots \ldots \ldots \ldots \ldots 126$				
		$8.2.1$ ℓ_1 , $\ell_0 \in \ell_{\infty}$				

Capitolo 1

Norme e Seminorme

Il corso si concentra sulla relazione che si crea tra la struttura lineare e la struttura topologia degli spazi normati.

Per \mathbb{K} intendiamo un campo tra \mathbb{R} o \mathbb{C} .

1.1 Norme e seminorme

Definizione 1.1 (Seminorma).

Se X è uno spazio vettoriale su \mathbb{K} , una **seminorma** è una funzione $\|\cdot\|: X \to [0, +\infty)$ tale che

- 1. $||x + y|| \le ||x|| + ||y||$ (Disuguaglianza triangolare)
- 2. $\|\lambda x\| = \lambda \|x\|$ se $\lambda \in \mathbb{R}$, $\lambda > 0$ (Positivamente omogenea)
- 2'. $||\lambda x|| = ||x|| \text{ se } |\lambda| = 1 \ (Isotropa)$

Se inoltre vale $||x|| = 0 \iff x = 0$ allora $||\cdot||$ è detta **norma**.

La coppia $(X, \|\cdot\|)$ si dice **spazio** (semi)normato.

 $Osservazione \ 1.2.$

Su uno spazio (semi)normato possiamo definire una (semi)distanza indotta ponendo

$$d(x,y) = ||x - y||.$$

Diamo alcuni esempi di spazi normati e seminormati:

Esempio 1.3. 1.
$$X = \mathbb{R}^n$$
, $||x||_{\infty} = \max_{i \in \{1, \dots, n\}} |x_i|$

2. Per
$$1 \leq p < \infty$$
, $\ell_p = \left\{ x \in \mathbb{K}^{\mathbb{N}} \mid \sum_{i \geq 0} |x_i|^p < \infty \right\}$ con $||x||_p = \sum_{i \geq 0} |x_i|^p$

3.
$$\ell_{\infty} = \left\{x \in \mathbb{K}^{\mathbb{N}} \mid \sup|x_i| < \infty\right\} \text{ con } \left\|x\right\|_{\infty} = \sup|x_i|$$

4.
$$\mathcal{L}^p(X,\mu) = \left\{ f: X \to \mathbb{K}, \text{ misurabile, } \|f\|_p < \infty \right\}$$
 con

$$||f||_p = \begin{cases} \left(\int_X |f(x)|^p d\mu \right)^{1/p} & \text{se } 1 \le p < \infty \\ \sup_{x \in X} |f(x)| = \inf_{\substack{N \subseteq X, \\ \mu(N) = 0}} \sup_{x \in X \setminus N} |f(x)| & \text{se } p = \infty \end{cases}$$

è uno spazio seminormato ma non normato.

5. Spazi di Hilbert.

Definizione 1.4 (Funzioni continue, limitate e lineari).

Siano E, F spazi normati e S un insieme, definiamo i seguenti spazi normati:

$$\begin{split} \mathscr{B}(S,E) &= \{f: S \to E, \text{ limitate}\}\,, & \|f\|_{\infty,S} = \sup_{s \in S} \|f(s)\|_E \\ \mathscr{B}C(S,E) &= \{f: S \to E, \text{ continue e limitate}\}\,, & \|f\|_{\infty,S} = \sup_{s \in S} \|f(s)\|_E \\ L(E,F) &= \{T: E \to F \text{ lineare}, \ \|T\| < \infty\}\,, & \|T\| = \sup_{x \in B_E(0,1)} \|T(x)\|_F \end{split}$$

Definizione 1.5 (Spazio duale).

Sia V uno spazio vettoriale. Denotiamo con V' il duale algebrico, cioè l'insieme delle mappe lineari $V \to \mathbb{K}$.

Definiamo lo **spazio duale** a V come $V^* = L(V, \mathbb{K})$, cioè come il sottoinsieme di V' dato dalle mappe continue. La norma su V^* è quindi data da

$$\|f\|_{V^*} = \sup_{\|x\| \leq 1} |f(x)| \stackrel{\text{Lineare}}{=} \sup_{\|x\| = 1} |f(x)| \,.$$

Proposizione 1.6 (Per funzionale limitato equivale continuo).

Per un funzionale lineare in V^* , essere limitato è equivalente ad essere continuo.

Dimostrazione.

Se $||f|| = M \in \mathbb{R}_+$ allora

$$\left\|f(x)-f(y)\right\|=\left\|f(x-y)\right\|=\left\|f\left(\frac{x-y}{\|x-y\|}\right)\right\|\left\|x-y\right\|\leq \left\|f\right\|\left\|x-y\right\|=M\left\|x-y\right\|,$$

cioè f è M-lipschitz, e quindi continua.

Sia ora f lineare e continua. Per definizione di continuità in 0 esiste $\delta > 0$ tale che $||f(x)|| = ||f(x) - f(0)|| \le 1$ per ogni $x \in B_V(0, \delta)$. Segue che

$$||f(x)|| = \left\| \frac{||x||}{\delta} f\left(\delta \frac{x}{||x||}\right) \right\| \le \frac{||x||}{\delta},$$

cioè $||f||_{V^*} \leq 1/\delta$ e quindi f limitato.

Osservazione 1.7.

Se $(X, \|\cdot\|)$ è uno spazio seminormato e $N = \ker \|\cdot\| = \{x \in X \mid \|x\| = 0\}$ allora $\|\cdot\|$ passa al quoziente e lo rende uno spazio normato.

Esempio 1.8.

Considerando lo spazio seminormato $(\mathcal{L}^p(X,\mu),\|\cdot\|_p)$, la costruzione sopra corrisponde a definire lo spazio normato $(L^p(X,\mu),\|\cdot\|_p)$, infatti $\ker\|\cdot\|_p$ sono le funzioni con supporto in un insieme trascurabile.

 $Osservazione\ 1.9.$

 $L(E,F) \hookrightarrow \mathscr{B}(B_E(0,1),F)$ mandando $T \mapsto T|_{B_E(0,1)}$. Infatti per definizione questa mappa è isometrica¹. Questo identifica il primo spazio con un chiuso del secondo.

$$\overline{1 \| T \| = \left\| T_{|_{B_E(0,1)}} \right\|_{\infty, B_E(0,1)}}$$

1.1.1 Teoremini filosofici

Teorema 1.10 (Banach Mazur).

Sia $(E, \|\cdot\|)$ normato, $f: E \to E$ isometria². Allora $f \in affine$.

 $Dimostrazione.\ (ESERCIZIO).$

TRACCIA:

• Basta provare che $\forall a, b \in E$ vale

$$f\left(\frac{a+b}{2}\right) = \frac{f(a) + f(b)}{2}$$

(conservando questa conserva i razionali 2-adici e quindi per continuità ogni combinazione convessa)

• Fissati $a, b \in E$, definiamo la deficienza affine di f (rispetto ad $a \in b$)

$$def(f) = \left\| \left\{ f\left(\frac{a+b}{2}\right) - \frac{f(a) + f(b)}{2} \right\} \right\|$$

La tesi è def(f) = 0.

• Notiamo che

$$def(f) \le \left\| f\left(\frac{a+b}{2}\right) \right\| + \left\| \frac{f(a)}{2} \right\| + \left\| \frac{f(b)}{2} \right\| = \frac{1}{2} \left(\|a+b\| + \|a\| + \|b\| \right)$$

• Consideriamo l'applicazione affine che scambia f(a) e f(b) data da

$$\rho(y) = f(a) + f(b) - y$$

Poniamo $\widetilde{f} = f^{-1} \circ \rho \circ f$.

- Mostrare $def(\widetilde{f}) = 2def(f)$.
- Se $def(f) \neq 0$, iterando otteniamo che esiste g tale che def(g) è arbitrariamente grande (raddoppio def(f) tante volte), ma questo è assurdo perché abbiamo il limite trovato prima che non dipende dalla funzione.

Filosoficamente questo vuol dire che la struttura metrica in un qualche modo determina la struttura vettoriale.

Teorema 1.11 (Inclusione isometrica / Fréchet-Kuratowski).

Sia (M,d) spazio metrico. Allora esso si immerge isometricamente in uno spazio normato³. In particolare si immerge in $(\mathcal{B}C(M,\mathbb{R}),\|\cdot\|_{\infty})$ via l'assegnazione seguente:

Fissiamo un punto base $x_0 \in M$.⁴

$$\begin{array}{ccc} M & \longrightarrow & \mathscr{B}C(M,\mathbb{R}) \\ x & \longmapsto & d(\cdot,x) - d(\cdot,x_0) \end{array}$$

²con questo termine intendiamo che la mappa, oltre a rispettare le distanze, è anche bigettiva. Se non vale bigettività diremo "inclusione isometrica"

³addirittura di Banach.

⁴saremmo tentati da $x\mapsto d(\cdot,x)$, ma la funzione in arrivo non è limitata e quindi non esiste una norma ben definita

ESERCIZIO

Filosoficamente questo vuol dire che studiando mappe tra spazi metrici, possiamo pensare al codomino come spazi normati.

Se consideriamo l'immersione di uno spazio metrico in un Banach, possiamo "incicciottirlo" e trovare uno spazio metrico "vicino" che è localmente contraibile. Queste idee a volte possono aiutare.

1.2 Completezza

Definizione 1.12 (Successione di Cauchy).

Una successione (x_n) è **di Cauchy** o **fondamentale** se $\forall \varepsilon > 0 \ \exists n \in \mathbb{N}$ tale che per ogni p, q > n si ha $d(x_p, x_q) < \varepsilon$.

Fatto 1.13 (Proprietà delle successioni di Cauchy).

- 1. Ogni successione convergente è di Cauchy.
- 2. Se (x_n) è di Cauchy e $\widetilde{x} \in X$ è un punto ad essa aderente allora \widetilde{x} è il limite.
- 3. Se (x_n) come sopra ha una sottosuccessione convergente, la successione converge allo stesso limite.
- 4. Ogni successione di Cauchy⁵ (x_n) ha una sottosuccessione (x_{n_k}) tale che

$$d(x_{n_{k+1}}, x_{n_k}) < 2^{-k}$$
.

Definizione 1.14 (Spazio completo).

Uno spazio metrico (X,d) è **completo** se ogni successione di Cauchy in X converge. Se $(X,\|\cdot\|)$ spazio normato è completo rispetto alla distanza indotta da $\|\cdot\|$ allora si dice **di Banach**.

 $Osservazione\ 1.15.$

Uno spazio normato $(X, \|\cdot\|)$ è di Banach se e solo se ogni serie $\sum x_k$ definita a partire da una successione tale che $\|x_k\| < 2^{-k}$ è convergente.

Equivalentemente X di Banach se ogni serie $\sum x_k$ assolutamente convergente⁶ è convergente.

Dimostrazione.

Ogni successione si può scrivere come serie, infatti $y_n = \sum_{i=0}^n x_i$ per $x_i = y_i - y_{i-1}$. Il resto segue pensando sulle definizioni.

Osservazione 1.16.

Sia $Y \subseteq X$ con (X, d) metrico.

- $\bullet\,$ Se X è completo e Y è chiuso allora Y è completo.
- \bullet Se Y è completo allora è anche chiuso.

Proposizione 1.17 (Completamento).

Sia(X,d) uno spazio metrico, allora

 $^{^5}$ questa proprietà è comoda perché implica $d(x_{n_k},x_{n_p})<2^{-k+1}$ per ognip>k 6 cioè $\sum\|x_k\|$ convergente

1. esiste una inclusione isometrica densa di X in uno spazio metrico completo

$$j:(X,d)\hookrightarrow (\widetilde{X},\widetilde{d})$$

2. il completamento è universale, cioè se $j':(X,d)\to (\widetilde{X}',\widetilde{d}')$ è un'altra mappa come sopra allora esiste un'unica isometria $\phi:\widetilde{X}\to\widetilde{X}'$ che fa commutare il diagramma

Dimostrazione.

Consideriamo un paio di costruzioni

Costruzione 1 | Consideriamo

$$C_X = \{ \xi = (x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}} \mid \xi \text{ di Cauchy} \}$$

con una semidistanza⁷

$$d(\xi, \eta) = \lim_{n \to \infty} d(\xi_n, \eta_n).$$

Questo limite esiste perché la successione di queste distanze è di Cauchy in \mathbb{R} , che è completo. Notiamo che

$$d(\xi, \eta) = 0 \iff d(\xi_n, \eta_n) = o(1).$$

Notiamo che X ha una inclusione isometrica in (C_X, d) data associando a x la successione costante al valore x.

Consideriamo

$$\widetilde{X} = {}^{C_{X}}/_{\mathscr{R}}, \qquad \xi \mathscr{R} \eta \Longleftrightarrow d(\xi, \eta) = 0.$$

L'inclusione isometrica di prima definisce $X \hookrightarrow \widetilde{X},$ ma stavolta \widetilde{X} è uno spazio metrico per costruzione.

ESERCIZIO: VERIFICA PROPRIETÀ DI NORMA E DENSITÀ

Costruzione 2 Definiamo \widetilde{X} come la chiusura in $(\mathcal{B}C(X), \|\cdot\|_{\infty})$ dell'immagine di X tramite l'inclusione di Fréchet Kuratowski (1.11).

Costruzione 3 (Solo per X spazio normato, ma per il teorema di inclusione isometrica (1.11) questo è sufficiente) Vedremo che esiste una inclusione isometrica di X nel suo biduale ($x \mapsto val_x$) e che il biduale stesso è completo, quindi un completamento di X è fornito dalla chiusura di $val.(X) \subseteq X^{**}$

Proposizione 1.18 (Estensione per densità di uniformemente continue). Siano X e Y spazi metrici, Y completo, $D \subseteq X$ denso e $f: D \to Y$ uniformemente continua, allora esiste un'unica estensione continua \widetilde{f} di f a tutto X, inoltre \widetilde{f} è essa stessa uniformemente continua con lo stesso modulo di continuità.

⁷VERIFICARE CHE LO È

Definizione 1.19 (Categorie di spazi metrici).

Sia Met la categoria degli spazi metrici con mappe date da applicazioni uniformemente continue e CMet la sottocategoria piena dove gli oggetti sono spazi metrici completi

Osservazione 1.20.

L'operazione di completamento è un funtore 8 \sim : Met \rightarrow CMet. Questo funtore è aggiunto al funtore dimenticante / di inclusione j: CMet \rightarrow Met, infatti

$$\operatorname{Hom}_{\mathrm{CMet}}(\widetilde{X}, Y) = UC(\widetilde{X}, Y) \stackrel{\text{(1.18)}}{\cong} UC(X, j(Y)) = \operatorname{Hom}_{\mathrm{Met}}(X, j(Y)).$$

Esercizio 1.21.

Verificare l'aggiunzione.

1.3 Prodotto di spazi (semi)normati

$Osservazione\ 1.22.$

Se $Y \subseteq X$ è un sottospazio vettoriale e $(X, \|\cdot\|)$ è normato allora Y è (semi)normato con la norma indotta. La topologia indotta è quella di sottospazio

Definizione 1.23 (Prodotto di spazi (semi)normati).

Se $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ sono spazi (semi)normati, la (semi)norma prodotto è data da

$$||(x,y)||_{X\times Y} = \max\{||x||_X, ||y||_Y\}.$$

Questa rende $X \times Y$ uno spazio (semi)normato e

$$B_{X\times Y}((0,0),1) = B_X(0,1) \times B_Y(0,1),$$

cioè la topologia indotta è la topologia prodotto.

Definizione 1.24 (Somma diretta topologica).

Due sottospazi di $(X, \|\cdot\|)$ Y e Z sono in **somma diretta algebrica** se $+|_{Y\times Z}: Y\times Z\to X$ è bigettiva. Se $+|_{Y\times Z}$ è anche un omeomorfismo diciamo che X è la **somma diretta topologica** di Y e Z.

Osservazione 1.25.

X è la somma diretta topologica di Y e Z se X è isomorfo come spazio normato a $(Y \times Z, \|\cdot\|_{Y \times Z})$.

Osservazione 1.26.

La mappa $+_{|_{Y\times Z}}$ è sempre continua, ma in generale non è un omeomorfismo.

Definizione 1.27 (Proiettore).

Un endomorfismo lineare $P: X \to X$ si dice **proiettore** se è idempotente, cioè $P^2 = P$.

Osservazione 1.28.

Un proiettore definisce una decomposizione in somma diretta algebrica $X=\ker P\oplus \operatorname{Imm} P$. Viceversa, ad ogni decomposizione in somma diretta algebrica possiamo associare un proiettore

⁸preserva composizione per l'unicità della mappa tra estensioni

Osservazione 1.29.

I proiettori $P_Y: X \to Y$ e $P_Z = id - P_Y: X \to Z$ sono continui se e solo se la somma è topologica, infatti

$$(+|_{Y\times Z})^{-1} = P_Y \times P_Z.$$

Definizione 1.30 (Spazio (semi)normato quoziente).

Se $(X, \|\cdot\|)$ è (semi)normato e Y è un suo sottospazio allora come spazio vettoriale

$$X/Y = \{x + Y \mid x \in X\}.$$

Su essa definiamo la seguente norma: se $\xi \in X/Y$ allora⁹

$$\left\|\xi\right\|_{X/Y}=\inf_{x\in \mathcal{E}}\left\|x\right\|.$$

Esercizio 1.31.

 $\|\cdot\|_{X/Y}$ è una seminorma su X/Ye rende la proiezione $\pi:X\to X/Y$ una applicazione aperta e continua. Più precisamente

$$\pi(B_X(0,1)) = B_{X/Y}(0,1)$$

Dimostrazione.

Continua perché $\|\pi(x)\|_{X/Y} \leq \|x\|$ per definizione di estremo inferiore, quindi π ha norma come operatore ≤ 1 , e quindi è continua.

Osservazione 1.32.

Notiamo che X/Y ha effettivamente la topologia quoziente indotta da π

Esercizio 1.33.

La (semi) norma quoziente è una norma se e solo se Y è chiuso (a prescindere dal fatto che $\|\cdot\|_X$ sia una norma o seminorma).

Osservazione 1.34.

Se Y e Z sono seminormati allora $Y \cong \frac{Y \times Z}{Z}$ come spazi seminormati.

 $Osservazione\ 1.35.$

Se $Y \subseteq X$ ed esiste¹⁰ Z tale che $X = Y \oplus Z$ allora $Z \cong X/Y$.

Osservazione 1.36.

In generale X non è isomorfo a $Y \times X/Y$.

Osservazione 1.37.

Per quanto riguarda la completezza in queste costruzioni:

- $\bullet \ Y$ sottospazio di X con X di Banach è un Banach se e solo se è chiuso
- $(Y \times Z, \|\cdot\|_{Y \times Z})$ è Banach se e solo se lo sono sia Y che Z
- Se $(X, \|\cdot\|)$ è normato e $Y \subseteq X$ è un sottospazio chiuso allora $(X, \|\cdot\|)$ è completo se e solo se sia Y che X/Y sono completi.

Notiamo che l'ultima proprietà implica la seconda, infatti $Y \cong \frac{Y \times Z}{Z}$

Proposizione 1.38 (Duale del prodotto).

Dati X e Y spazi di Banach, il duale di $X \times Y$ è isometricamente isomorfo a

$$(X^* \times Y^*, \|\cdot\|)$$

dove $\|(\xi,\eta)\| = \|\xi\|_{X^*} + \|\eta\|_{Y^*}$ (che è topologicamente equivalente a $\|\cdot\|_{X^*\times Y^*}$).

$$(X^* \times Y^*, \|P_{X^*}(\cdot)\|_{X^*} + \|P_{Y^*}(\cdot)\|_{Y^*}) \cong ((X \times Y)^*, \|\cdot\|_{(X \times Y)^*}).$$

⁹pensando a ξ come un traslato di Y, la norma che stiamo definendo è la distanza di questo spazio affine dall'origine.

 $^{^{10}}$ ci sono casi in cui non esite, come $c_0 \subseteq \ell_{\infty}$

1.4 Elenco di spazi completi

Proposizione 1.39.

Sia S insieme e E Banach, allora lo spazio normato $(\mathscr{B}(S,E), \|\cdot\|_{\infty,S})$ è completo.

Dimostrazione.

[PERSO, RIGUARDA POI]

tale che
$$||f(s)|| = ||\sum_k f_k(s)|| \le \sum_k ||f_k(s)|| \le \sum_k ||f||_{\infty,S}$$
 quindi $||f||_{\infty,S}$

Uno degli strumenti dell'analista: aggiungere e togliere, cioè

προσταφαίρεσις

Lemma 1.40.

Se $(f_k)_{k\in\mathbb{N}}\subseteq \mathscr{B}(S,E)$ con f_k continua in s_0 per ogni k e $f_k\to f$ uniformemente allora anche f è continua in s_0 .

Dimostrazione.

Consideriamo

$$||f(s) - f(s_0)|| \le ||f(s) - f_k(s)|| + ||f_k(s) - f_k(s_0)|| + ||f_k(s_0) - f(s_0)|| \le$$

$$\le 2||f - f_k||_{\infty, S} + ||f_k(s) - f_k(s_0)||$$

Per la convergenza uniforme di $f_k \to f$ si ha che per ogni $\varepsilon > 0$ esiste $n \in \mathbb{N}$ tale che

 $\|f - f_n\|_{\infty, S} \le \varepsilon/3.$ Per la continuità in s_0 di f_n esiste un intorno U di s_0 rale che $\|f_n(s) - f_n(s_0)\| \le \varepsilon$ $\varepsilon/3$ per ogni $s\in U.$ Allora per ogni $s\in U$ si ha

$$||f(s) - f(s_0)|| \le 2\varepsilon/3 + \varepsilon/3 = \varepsilon.$$

Proposizione 1.41.

Sia S spazio topologico, E banach, allora $\mathscr{B}C(S,E)$ è completo.

Dimostrazione.

Basta mostrare che $\mathscr{B}C(S,E)$ è chiuso in $\mathscr{B}(S,E)$. Questo segue dal fatto che la continuità in un punto $s_0 \in S$ si conserva per convergenza uniforme, che è il lemma precedente.

Esempio 1.42.

Sia $S = \mathbb{N} \cup \{\infty\}$ la compattificazione di Alexandrov di \mathbb{N} e E un banach, allora

$$c(E) = \{x : \mathbb{N} \to E, \text{ convergente}\} \cong \mathscr{B}C(S, E)$$

Questo mostra che c(E) è chiuso (e quindi completo) in $\ell_{\infty}(E) = \mathscr{B}(\mathbb{N}, E)$.

Conseguenze:

Proposizione 1.43.

Lo spazio $(L(X,Y), \|\cdot\|)$ è completo

Dimostrazione.

Considerando l'inclusione isometrica

$$R: \begin{array}{ccc} L(X,Y) & \longrightarrow & \mathscr{B}(B_X(0,1),Y) \\ T & \longmapsto & T|_{B_X(0,1)} \end{array}$$

basta vedere che R(L(X,Y)) è chiuso.

Se $(T_n)_{n\in\mathbb{N}}\subseteq L(X,Y)$ è tale che $R(T_n)\to f$ uniformemente in $\mathscr{B}(B_X(0,1),Y)$ allora mostriamo che f è la restrizione a $B_X(0,1)$ di una qualche lineare T.

Mostriamo che le T_n convergono puntualmente per ogni $x \in X$: se x = 0 ok, se $x \neq 0$

$$T_n(x) = ||x|| T_n(x/||x||) = ||x|| R(T_n)(x/||x||) \to ||x|| f(x/||x||)$$

Sia $T: X \to Y$ definita da T(x) = ||x|| f(x/||x||)

[MOSTRARE CHE LA CONVERGENZA È UNIFORME, ME LO SONO PER-SO]

Corollario 1.44 (Duale di spazio normato è banach).

Il duale di uno spazio normato è sempre banch.

Teorema 1.45 (Integrazione per serie).

Sia (X, \mathcal{Q}, μ) è uno spazio di misura e sia $(f_k)_{k \in \mathbb{N}} \subseteq \mathcal{L}^1(X, \mathcal{Q}, \mu)$ tali che

$$\sum_{k \in \mathbb{N}} \|f_k\|_1 < \infty$$

Allora $\sum_{k \in \mathbb{N}} f_k$ converge q.o. e in norma 1.

Dimostrazione.

Per ogni $n \in \mathbb{N}$ sia $g_n : X \to \mathbb{R}$ data da

$$g_n(x) = \sum_{k=0}^n |f_k(x)|.$$

Notiamo che (g_n) è una successione di funzioni misurabili non negative crescente. Inoltre $g_n \to \sum_{k \in \mathbb{N}} |f_k(x)|$ per definizione di serie. Per convergenza monotona

$$\sum_{k \in \mathbb{N}} \|f\|_1 \leftarrow \sum_{k=0}^n \|f_k\|_1 = \inf_X g_n d\mu \to \int_X g d\mu$$

cioè $\inf_X g d\mu = \sum_{k=0}^n k \in \mathbb{N} \|f\|_1 < \infty$, cioè $g \in \mathcal{L}^1$. Inoltre $s_n = \sum_{k=0}^n f_k$ è una successione dominata da g:

$$|s_n(x)| \le \sum_{k=0}^n |f_k(x)| \le g(x).$$

Quindi la serie $\sum f_k(x)$ è una serie assolutamente convergente per ogni x dove $g < \infty$ ∞ . Poiché $\int g < \infty$ le eccezioni sono trascurabili, quindi quasi ovunque $\sum f_k(x)$ è assolutamente convergente.

Sia $f(x) = \sum f_k(x)$ dove la serie converge. Notiamo che

$$|f(x)| \le \sum_{k \in \mathbb{N}} |f_k(x)| = g(x),$$

quindi $\|f\|_1 \le \int g d\mu = \sum_{k \in \mathbb{N}} \|f_k\|_1$. Applicando come prima la stima alle code

$$||f - s_n||_1 = \left\| \sum_{k=n+1}^{\infty} f_k \right\|_1 \le \sum_{k>n} ||f_k||_1 = o(1)$$

dove l'ultimo termine va a 0 perché $\sum ||f_k||_1$ è convergente.

Corollario 1.46 (Weil).

Siano $f_n \in \mathcal{L}^1(X, \mathcal{Q}, \mu)$ convergenti in $\|\cdot\|_1$. Allora esiste n_k successione strettamente crescente di indici tali che f_{n_k} converge quasi ovunque ed è dominata in \mathcal{L}^1 .

Dimostrazione.

Sia f il limite in $\|\cdot\|_1$. Data questa convergenza consideriamo una sottosuccessione n_k tale che $||f - f_{n_k}||_1 < 2^{-k}$. Scrivendo la successione in termini di una somma telescopica

$$f_{n_k} = f_{n_0} + \sum_{i=1}^k (f_{n_j} - f_{n_{j-1}})$$

si ha per il teorema di integrazione per serie¹¹ (1.45) f_{n_k} converge quasi ovunque e in Lc^1 , inoltre è dominata da

$$g(x) = |f_{n_0}(x)| + \sum_{j=0}^{\infty} |f_{n_j} - f_{n_{j-1}}| \ge |f_{n_k}(x)|$$

con $g(x) \in \mathcal{L}^1$.

Proposizione 1.47 (L^1 è completo).

Se (X, \mathcal{Q}, μ) è uno spazio di misura, $L^1(X, \mathcal{Q}, \mu)$ è completo.

Dimostrazione.

Segue immediatamente dal teorema di integrazione per serie (1.45).

Osservazione 1.48.

La convergenza quasi ovunque di funzioni $\mathcal{L}^1(\mathbb{R}, dx)$ è **NON** è la convergenza rispetto a una topologia opportuna su $\mathcal{L}^1(\mathbb{R}, dx)$.

Proposizione 1.49 (Proprietà di Uhrison).

Ogni convergenza topologica in X insieme ha la seguente proprietà di Uhrisohn: $x_n \to x$ rispetto alla topologia se e solo se per ogni sottosuccessione x_{n_k} esiste una sotto-sottosuccessione $x_{n_{k_i}} \to x$.

Se $x_n \to x$ converge ok. Se non converge allora esiste un intorno U di x tale che $x_n \notin U$ frequentemente, quindi troviamo una sottosuccessione x_{n_k} che sta sempre fuori da U, quindi nessuna sua sotto-sottosuccessione può convergere a x.

La convergenza q.o. per successioni in $\mathcal{L}^1(\mathbb{R})$ non ha la proprietà di Uhrisohn.

Definizione 1.50 (Operatore di composizione).

Se E è uno spazio di funzioni con codominio \mathbb{R} e $f:\mathbb{R}\to\mathbb{R}$, definiamo l'operatore di composizione per f come $E \ni u \mapsto f \circ u$.

$$\overline{11} \|f_{n_0}\|_1 + \sum_{j=1}^{\infty} \|f_{n_j} - f_{n_{j-1}}\|_1 \le \|f_{n_0}\|_1 + \sum_{j=1}^{\infty} \|f_{n_j} - f\|_1 + \sum_{j=1}^{\infty} \|f_{n_{j-1}} - f\|_1 < \infty$$

Lemma 1.51.

Sia u_k una successione che converge a u in $\|\cdot\|_p$. A meno di sottosuccessione $u_k \to u$ quasi ovunque e dominata in \mathcal{L}^p .

Dimostrazione.

Teorema di Weil (1.46) in \mathcal{L}^p .

Proposizione 1.52.

Lo spazio $L^p(X, \mathcal{Q}, \mu)$ per $0 \le p < \infty$ è completo.

Dimostrazione.

 L^p ed L^1 NON sono isomorfi come spazi di Banach in generale¹², ma esiste un omeomorfismo localmente Lipschitz e questo basta a mostrare la completezza: se u_k è una successione di Cauchy in L^p , se Φ è Lipschitz allora $\Phi(u_k)$ è ancora di Cauchy in L^1 e quindi converge, poi torno indietro con Φ^{-1} , che mantiene il limite per continuità.

Consideriamo

$$\Phi: \begin{array}{ccc} \mathcal{L}^p & \longrightarrow & \mathcal{L}^1 \\ u & \longmapsto & |u|^p \operatorname{sgn}(u) \end{array}$$

Chiaramente è invertibile mandando $v \in L^1$ in $|v|^{1/p} \operatorname{sgn} v$. La mappa Φ è l'operatore di composizione con la funzione $f(t) = |t|^p \operatorname{sgn} t$. La continuità degli operatori di composizione è un fatto generale. Se $u_k \to u$ converge in $\|\cdot\|_p$ allora per il lemma a meno di sottosuccessione converge q.o. e dominata, quindi componendo con f abbiamo ancora convergenza quasi ovunque per continuità $(f(u_k) \to f(u) \text{ q.o.})$. Se $|u_k| \leq g$ in \mathcal{L}^p allora $|u_k|^p \leq g^p$ in \mathcal{L}^1 , similmente per Φ^{-1} , quindi effettivamente Φ è un omeomorfismo.

Mostriamo ora che Φ è localmente lipschitz: siano $u, v \in \mathcal{L}^p(X)$

$$|\Phi(u) - \Phi(v)|_1 = \int_X |f(u(x)) - f(v(x))| d\mu(x)$$

ma se t < sallora $|f(t)-f(s)| \leq \sup_{t \leq \xi \leq s} |f'(\xi)|\,|t-s|$ e $|f'(xi)| = p\,|xi|^{p-1} \leq p(\max{\{|t|,|s|\}})^p,$ quindi

$$\begin{split} |\Phi(u) - \Phi(v)|_1 & \leq p \int_X \max \left\{ |u(x)|^{p-1} \, , |v(x)|^{p-1} \right\} |u(x) - v(x)| \, d\mu \leq \\ & \leq p \int_X \left(|u(x)|^{p-1} + |v(x)|^{p-1} \right) |u(x) - v(x)| \, d\mu \overset{\text{H\"older}}{\leq} \\ & \leq p \left(\left(\int_X |u|^{(p-1)q} \right)^{1/q} + \left(\int_X |v|^{(p-1)q} \right)^{1/q} \right) \left(\int_X |u - v|^p \right)^{1/p} = \\ & \stackrel{p-1 = p/q}{=} p (\|u\|_p^{p-1} + \|v\|_p^{p-1}) \, \|u - v\|_p \end{split}$$

quindi Φ è Lipschitz di costante $2pR^{p-1}$ sulla palla $B_{L^p}(0,R) \subseteq L^p$

Proposizione 1.53.

Lo spazio $L^{\infty}(X, \mathcal{Q}, \mu)$ è completo

Dimostrazione.

[NON HO VISTO, RIGUARDA I PDF]

 $\|f\|_{C^1} = \|f\|_{\infty,\Omega} + \sum_{i=1}^n \|\partial_i f\|_{\infty,\Omega}$. Questa norma rende continua l'immaersione $C_b^1 \to (C_b^0)^{n+1}$ data da $f \mapsto (f, \partial_1 f, \cdots, \partial_n f)$

¹² cursiosità non banale da vedere

Proposizione 1.54.

Sia $\Omega \subseteq \mathbb{R}^n$ aperto. Lo spazio

 $C_b^k(\Omega) = \left\{ f: \Omega \to \mathbb{R} \mid di \ classe \ C^k \ con \ derivate \ limitate \ su \ \Omega \ fino \ all'ordine \ k \right\}$

 \grave{e} completo.

Dimostrazione.

Il caso k=1 è una conseguenza del teorema di limite sotto il segno di derivata, infatti se $f_k:\Omega\to\mathbb{R},\ \partial_i f_k:\Omega\to\mathbb{R}$ è tale che $\partial_i f_k\to g_i$ uniformemente in Ω e $f_k\to f$ puntualmente in Ω allora esiste $\partial_i f$ e vale g_i . Se poi $f_k\in C^1(\Omega)$ allora la g_i è continua perché limite uniforme di $\partial_i f_k$ continue, quindi per il teorema del differenziale totale la f è anche C^1 .

Per il teorema di limite sotto il segno di derivata, l'immersione $C_b^1 \to (C_b^0)^{n+1}$ ha immagine chiusa, infatti una successione $(f_k, \partial_1 f_k, \cdots, \partial_n f_k)$ nell'immagine convergente a (f, g_1, \cdots, g_n) è proprio una delle ipotesi del teorema di convergenza sotto segno di derivata, quindi $f_k \to f$ in C^1

Capitolo 2

Spazi vettoriali topologici

Definizione 2.1 (Spazio vettoriale topologico).

Uno spazio vettoriale topologico è uno spazio vettoriale X su $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ munito di una topologia che rende continue le mappe

$$+: X \times X \to X$$
 e $\cdot: \mathbb{K} \times X \to X$.

Esempio 2.2.

Esempi di SVT sono

- Ogni spazio normato
- $C(\mathbb{R}, \mathbb{R})$ con la topologia della convergenza uniforme sui compatti.
- Se X è uno spazio topologico qualunque considero $C(X,\mathbb{R})$ con topologia di convergenza uniforme su compatti.

Esercizio 2.3.

La topologia della convergenza uniforme su compatti su $C(\mathbb{R}, \mathbb{R})$ non è indotta da una norma.

Dimostrazione.

TRACCIA

- Su uno spazio normato, se U e V sono intorni di 0 allora esiste $\lambda \in \mathbb{R}$ tale che $\lambda U \supset V$.
- Mostrare che la topologia della convergenza uniforme su compatti non ha questa proprietà.

Esercizio 2.4.

Ogni SVT che è T_0 è anche T_3 e $T_{3\frac{1}{2}}$

Esercizio 2.5 (Spazi non T_0 non sono troppi interessanti).

Ogni SVT X si decompone in somma diretta topologica $X = Y \oplus \overline{\{0\}}$ con Y qualunque addendo algebrico di $\overline{\{0\}}$. Segue che $Y \cong X/\overline{\{0\}}$, Y risulta essere T_0 e $\overline{\{0\}}$ ha la topologia indiscreta.

 $^{^{1}}$ In questo corso con T_{3} intendiamo T_{3} e Hausdorff

 $^{^{2}}T_{3\frac{1}{2}}$ è T_{3} più esiste una funzione continua che vale 1 sul punto e 0 sul chiuso che sto separando

2.1 Intorni dell'origine in SVT

Definizione 2.6 (Filtro).

Un filtro \mathcal{F} su un insieme X è una famiglia non vuota di sottoinsiemi di X tale che

- per ogni $F \in \mathcal{F}, F \neq \emptyset$
- Se $F \in \mathcal{F}$ e $F \subseteq F'$ allora $F' \in \mathcal{F}$
- Se $F, F' \in \mathcal{F}$ allora $F \cap F' \in \mathcal{F}$

Definizione 2.7 (Sottoinsieme bilanciato).

Sia X un \mathbb{K} -spazio vettoriale e $A \subseteq X$. A è **bilanciato** se per ogni $\lambda \in \mathbb{K}$ tale che $|\lambda| \le 1$ si ha $a \in A \implies \lambda a \in A$, cioè

$$B_{\mathbb{K}}(0,1) \cdot A \subseteq A$$
.

Osservazione 2.8.

Se V è bilanciato allora $0 \in V$ perché $0 \in B_{\mathbb{K}}(0,1)$.

Definizione 2.9 (Sottoinsieme assorbente).

Sia X un \mathbb{K} -spazio vettoriale e $B\subseteq X$. B è **assorbente** se per ogni $x\in X$ esiste $n_x\in\mathbb{N}$ tale che per ogni $t\geq n_x$ si ha $x\in tB$.

Osservazione 2.10.

Poiché in uno SVT le traslazioni $X \to X$ con $x \mapsto x + x_0$ sono omeomorfismi, per descrivere la topologia basta descrivere il filtro degli intorni di 0.

Come notazione sia $\mathcal{U} = \mathcal{U}_X$ l'insieme degli intorni di $0 \in X$.

Proposizione 2.11 (Proprietà intorni di 0).

U ha le seguenti proprietà

- 1. U è un filtro
- 2. Per ogni $U \in \mathcal{U}$ esiste $V \in \mathcal{U}$ tale che $V + V \subseteq U$
- 3. Per ogni $U \in \mathcal{U}$ esiste $V \in \mathcal{U}$ con $V \subseteq U$ e V bilanciato
- 4. Ogni elemento di U è assorbente

Dimostrazione.

Dimostriamo le varie proprietà

- 1. La proprietà 1. è vera per ogni insieme definito come "gli intorni di x" per x fissato in spazio topologico X.
- 2. Segue dalla continuità di + in $(0,0) \in X \times X$. Basta definire V in modo tale che $V \times V \subseteq +^{-1}(U)$.
- 3. Segue dalla continuità di · in (0,0). Se U intorno di 0 in X, siano $\varepsilon > 0$ e $V \in \mathcal{U}$ tali che $B_{\mathbb{K}}(0,\varepsilon) \times V \subseteq \cdot^{-1}(U)$. Allora $B_{\mathbb{K}}(0,\varepsilon) \cdot V$ è bilanciato e contenuto in U per costruzione. Questo insieme è anche un intorno perché si può scrivere come

$$\bigcup_{|\lambda| \le \varepsilon} \lambda V$$

e poiché V è un intorno di 0, ogni λV è un intorno di 0, quindi anche questa unione.

4. Segue dalla continuità della mappa $\mathbb{R}_+ \to X$ che per fissato $x_0 \in X$ assegna $s \mapsto sx_0$. Infatti per ogni $U \in \mathcal{U}$ esiste $\varepsilon > 0$ tale che per ogni $0 \le s \le \varepsilon$, $sx_0 \in U$ e riscrivendo questo in termini di t = 1/s abbiamo $x_0 \in tU$ per ogni $t \ge 1/\varepsilon$. Come n_{x_0} basta scegliere $\lfloor \varepsilon^{-1} \rfloor$.

Esercizio 2.12.

Sia X spazio vettoriale su \mathbb{K} e \mathcal{U} una famiglia si sottoinsiemi di X tali che valgano le quattro proprietà della proposizione precedente (2.11). Allora esiste un'unica topologia su X che rende X uno SVT e tale che \mathcal{U} è il filtro degli intorni di 0. In questa topologia \mathcal{U} è un sistema fondamentale di intorni per 0.

Dimostrazione.

L'idea è che definiamo $A \subseteq X$ aperto se e solo se per ogni $a \in A$, $A - a \in \mathcal{U}$ (sto traducendo "aperto \iff intorno di ogni suo punto"). Si può mostrare che questa scelta definisce una topologia che rende X uno SVT.

Esercizio 2.13.

Definire analogamente una topologia di SVT su X tramite degli assiomi che si basano una una base di intorni di 0 (al posto di tutti gli intorni). Per esempio la famiglia degli intorni bilanciati di 0.

Osservazione~2.14.

Se uno SVT è T_0 allora è automaticamente T_1 e T_2 , basta sfruttare proprietà di simmetria.

Osservazione 2.15.

Ogni SVT è uno spazio topologico regolare, cioè ogni punto ha una base di intorni chiusi. Se X è anche T_0 allora X è T_3 .

Dimostrazione.

Sia C un chiuso di X e $x \in X$ con $x \notin C$. Sia $U \in \mathcal{U}_X$ tale che $x+U \cap C = \emptyset$, che esiste perché C è chiuso. Sia $V \in \mathcal{U}_X$ tale che $V - V \subseteq U$, allora³ $(x+V) \cap (C+V) = \emptyset$ dove C+V è un intorno di c per ogni $c \in C$ per definizione.

Osservazione 2.16.

Se K è compatto, C chiuso con $K \cap C = \emptyset$ allora esiste V tale che $(K+V) \cap (C+V) = \emptyset$.

Dimostrazione.

Per ogni $x \in K$ sia $V_x \in \mathcal{U}_X$ tale che $x + (V_x + V_x - V_x)$ è disgiunto da C. Abbiamo dunque un ricoprimento $\{x + V_x\}_{x \in K}$ di K, che è compatto, quindi estraggo un sottoricoprimento finito $\{x_i + V_{x_i}\}$ e definisco V come l'intersezione di questi. Allora

$$(K+V)\cap (C+V)=\emptyset,$$

infatti se $x \in K + V$ allora x = k + v con $k \in K$ e $v \in V$ ma $k \in x_i + V_{x_i}$ per qualche i, quindi $x = x_i + v_i + v$, e avendo supposto che $x_i + (V_{x_i} + V_{x_i} - V_{x_i}) \cap C = \emptyset$ abbiamo che $x = x_i + v_i + v \notin C + V$.

 $^{^3 \}mathrm{Un}$ insieme come C+Vè detto intorno uniforme di C

2.2 SVT localmente convessi

Definizione 2.17 (SVT localmente convesso).

Uno spazio vettoriale topologico localmente convesso (SVTLC) è uno SVT tale che 0 ha una base di intorni convessi.

Esempio 2.18.

Diamo alcuni esempi

- Ogni spazio normato
- \bullet C(X) con Xspazio topologico con la topologia della convergenza uniforme sui compatti
- $C^{\infty}(\Omega)$ con $\Omega \subseteq \mathbb{R}^n$ aperto e topologia della convergenza uniforme sui compatti di tutte le derivate in ogni ordine

Esercizio 2.19.

Sia $\mathcal{M} = \{f : [0,1] \to \mathbb{R} \mid \text{misurabili}\}$, allora esiste una metrica su \mathcal{M} che lo rende uno SVT e tale che $f_n \to f$ se e solo se $f_n \to f$ in misura, cioè per ogni

$$\forall \varepsilon > 0, \quad \lim_{n \to \infty} |\{|f_n| > \varepsilon\}| = 0$$

Mostrare che l'unico intorno convesso di 0 è \mathcal{M} stesso, da cui segue $\mathcal{M}^* = \{0\}$.

 $Osservazione\ 2.20.$

Per ciò che sappiamo sugli intorni di 0 in uno SVT, se X è SVTLC allora esiste una base \mathcal{B} data dagli intorni di 0 assorbenti, bilanciati e convessi.

Definizione 2.21 (Disco).

Un insieme B è detto **disco** se è assorbente, bilanciato e convesso.

Proposizione 2.22.

Sia X un \mathbb{R} -SV e \mathcal{B} una famiglia di sottoinsiemi di X tale che

- Per ogni $B \in \mathcal{B}$, B è Assorbente, Bilanciato e Convesso
- Per ogni $B_1, B_2 \in \mathcal{B}$ si ha $B_1 \cap B_2 \in \mathcal{B}$

allora $\mathcal{U} = \{U \subseteq X \mid \exists r > 0, \ \exists B \in \mathcal{B} \mid rB \subseteq U\}$ è un filtro di insiemi che induce una topologia che rende X uno SVT come da esercizio (2.12). La topologia indotta è anche localmente convessa.

Dimostrazione.

Mostriamo le quattro proprietà:

- Chiaramente \mathcal{U} è un filtro.
- \bullet Ogni $U \in \mathcal{U}$ è assorbente perché lo sono gli elementi di \mathcal{B}
- Per ogni $U \in \mathcal{U}$ esiste $V \in \mathcal{U}$ tale che $V + V \subseteq U$, basta scegliere $V = \frac{1}{2}B$ con $B \subseteq U$ convesso in quanto se B è convesso B + B = 2B
- Ogni $U \in \mathcal{U}$ contiene un bilanciato perché contiene una versione scalata di un elemento di \mathcal{B} .

 $Osservazione\ 2.23.$

Se \mathcal{B} è una famiglia di dischi allora definendo $\widetilde{\mathcal{B}} = \{B_1 \cap B_2 \mid B_1, B_2 \in \mathcal{B}\}$ si ha che $\widetilde{\mathcal{B}}$ rispetta gli assiomi della proposizione (2.22) e quindi induce una topologia su X che lo rende uno SVT. Questa è la meno fine tale che $\mathcal{B} \subseteq \mathcal{U}_X$. In particolare \mathcal{U}_X ha una base data da $\{rB \mid B \in \widetilde{\mathcal{B}}\}$.

19

2.2.1 Funzionali di Minkowski

Definizione 2.24 (Funzionale di Minkowski).

Sia X un \mathbb{R} -spazio vettoriale, $C \subseteq X$ convesso, $0 \in C$. Il **funzionale di Minkowski** associato a C è dato da:

$$p_C: \begin{array}{ccc} X & \longrightarrow & [0,+\infty] \\ x & \longmapsto & \inf\left\{t \geq 0 \mid x \in tC\right\} \end{array}$$

dove inf $\emptyset = \infty$ in questo formalismo.

 $Osservazione\ 2.25.$

Se $B(0,1) \subseteq C \subseteq \overline{B(0,1)}$ per X normato allora $p_C(x) = ||x||$.

Proposizione 2.26 (Proprietà funzionali di Minkowski).

Valgono le seguenti proprietà

- C è assorbente se e solo se $p_C(x) < \infty$ per ogni $x \in X$.
- $Si\ ha\ \{p_C < 1\} \subseteq C \subseteq \{p_C \le 1\}$

Dimostrazione.

Mostriamo le varie proprietà

- Evidente dalla definizione di assorbente.
- Se $p_C(x) < 1$ allora esiste $0 \le t \le 1$ tale che $x \in tC$, cioè x = tc. Poiché (1-t)0 = 0 si ha x = tc + (1-t)0 e per convessità questo è un elemento di C, cioè $x \in C$.

Se $x \in C$ allora $1 \in \{t \ge 0 \mid x \in tC\}$, quindi $p_C(x) \le 1$.

Osservazione 2.27 (Famiglia di seminorme induce SVTLC). Se \mathcal{P} è una famiglia di seminorme su X, possiamo definire

$$\mathcal{B} = \{B_p(0,r) \mid p \in \mathcal{P}, \ r \in \mathbb{R}_+\}, \quad B_p(0,r) = \{y \in X \mid p(x-y) < r\}$$

Si può mostrare che $\mathcal B$ è un insieme di dischi e quindi induce una struttura di SVTLC su X.

 $Osservazione\ 2.28.$

Se \mathcal{P} è una famiglia di seminorme su X e definiamo

$$\widetilde{\mathcal{P}} = \{ \max(p_1, \cdots, p_n) \mid p_i \in \mathcal{P} \}$$

allora $\mathcal{U} = \left\{ B_p(0,r) \mid p \in \widetilde{\mathcal{P}}, r > 0 \right\}$ è una base di intorni di 0 che induce la topologia dell'osservazione precedente.

Osservazione 2.29 (Ogni SVTLC è indotto da seminorme).

Poiché se B è assorbente, bilanciato e convesso, esso produce una seminorma p_B data dal funzionale di Minkowski tale che $\{p_B < 1\} \subseteq B \subseteq \{p_B \le 1\}$, ogni topologia di X come SVTLC si può ottenere a partire da famiglie di seminorme.

Proposizione 2.30.

La topologia di SVTLC indotta da \mathcal{P} insieme di seminorme è T_0 se e solo se \mathcal{P} è separante, cioè per ogni $x \in X \setminus \{0\}$ esiste $p \in \mathcal{P}$ tale che $p(x) \neq 0$.

Dimostrazione.

Se p(x) = 0 per ogni $p \in \mathcal{P}$ allora $x \in B(0, r)$ per ogni $p \in \widetilde{\mathcal{P}}$ e per ogni r > 0, quindi $x \in U$ per ogni $U \in \mathcal{U}_X$, ovvero

$$x \in \bigcap_{U \in \mathcal{U}_X} U = \overline{\{0\}}.$$

2.3 Continuità di operatori lineari in SVT

Proposizione 2.31 (Continuità mappe lineari).

 $Sia\ T: X \to Y$ lineare tra SVT. Valgono le seguenti affermazioni

- 1. T è continua se e solo se è continua in 0
- 2. T è continua se e solo se per ogni $U \in \mathcal{U}_Y$ esiste $V \in \mathcal{U}_X$ tale che $T(V) \subseteq U$
- 3. Se X e Y sono SVTLC con topologia indotta dalle famiglie di seminorme \mathcal{P} e \mathcal{Q} rispettivamente, T è continua se e solo se

$$\forall q \in \mathcal{Q}, \exists p_1, \cdots, p_n \in \mathcal{P}, \exists M \geq 0 \quad tali \ che$$

$$\forall x \in X, \ q(Tx) \le M \max \{p_1(x), \cdots, p_n(x)\}\$$

4. Se X e Y sono SVTLC con topologia indotta dalle famiglie di seminorme \mathcal{P} e \mathcal{Q} rispettivamente con \mathcal{P} e \mathcal{Q} stabili per \max allora T è continua se e solo se $\forall q \in \mathcal{Q}$ esistono $p \in \mathcal{P}$ e $M \geq 0$ tali che

$$q(Tx) \leq Mp(x)$$

Dimostrazione.

Dimostriamo le affermazioni

- 1. Basta traslare dato che traslare è un omeomorfismo.
- 2. Ovvio.
- 3. La condizione significa che la palla di centro 0 e raggio 1 rispettivamente alla seminorma $\max(p_1, \dots, p_n)$ di X ha immagine tramite T contenuta nella palla di raggio M rispetto a q, concludendo per il punto 2. a meno di omotetia.
- 4. Caso sopra.

Proposizione 2.32 (Caratterizzazione funzionali continui).

Sia $f \in X'_{alg} \setminus \{0\}$ con X un \mathbb{K} -spazio vettoriale. Le seguenti affermazioni sono equivalenti

- 1. f è continua
- 2. $\ker f \ \hat{e} \ chiuso$
- 3. $\ker f$ non è denso
- 4. f non è surgettiva su un aperto non vuoto

5. f è limitata su un intorno di 0

Dimostrazione.

Diamo le implicazioni

- $1. \implies 2.$ Ovvio perché $\{0\}$ è chiuso in \mathbb{K} .
- 2. \Longrightarrow 3. Se ker f è denso allora $\overline{\ker f} = X$ e quindi ha codimensione 0, ma ker f ha codimensione 1 in quanto $f \neq 0$, quindi ker $f \neq \overline{\ker f}$, cioè non è chiuso.
- 3. \implies 4. Se ker f non è denso esiste un aperto non vuoto A disgiunto da ker f, cioè $0 \notin f(A)$ e in particolare f non è surgettiva su A.
- 4. \Longrightarrow 5. Se f non è surgettiva su aperto non vuoto allora non lo è su un intorno bilanciato U di 0 e quindi f(U) è un insieme bilanciato di $\mathbb K$ diverso da $\mathbb K$ in quanto $f \neq 0$, dunque f(U) è un disco e in particolare è limitato.
- $|5. \implies 1.|$ Se $|fx| \leq M$ per ogni $x \in U \in \mathcal{U}_X$ allora per omogeneità

$$|f(x)| \le \varepsilon \quad \forall x \in \frac{\varepsilon}{M} U \in \mathcal{U}_X$$

per un qualsiasi $\varepsilon>0$, quindi f è continua in 0. Questo conclude perché

$$f(x) = f(x_0) + f(x - x_0).$$

П

2.4 SVT I-numerabili e paranorme

Definizione 2.33 (Paranorma).

Una **paranorma** sull K-spazio vettoriale X è una funzione $q: X \to [0, \infty)$ tale che

- 1. $q(x+y) \le q(x) + q(y)$
- 2. $q(\lambda x) \leq q(x)$ per ogni $x \in X$ e $\lambda \in \mathbb{K}$ tale che $|\lambda| \leq 1$
- 3. Se $\lambda_k \to 0$ in \mathbb{K} allora $q(\lambda_k x) \to 0$

Inoltre q è **definita** se vale

$$q(x) = 0 \iff x = 0.$$

 $Osservazione\ 2.34.$

Dalla proprietà 2. segue che $q(\lambda x) = q(x)$ se $|\lambda| = 1$ e che $q(\lambda x) \le q(\mu x)$ se $|\lambda| \le |\mu|$. In particolare q(x) = q(-x).

Quindi d(x,y) = q(x-y) è una (semi)distanza su X (distanza se q definita).

Esercizio 2.35.

Dimostrare che (X, d) è uno SVT per d indotta da paranorma q.

Esercizio 2.36.

Sia X un \mathbb{K} -SVT I-numerabile. Allora la sua topologia proviene da una paranorma (la quale è definita sse X è T_0).

Dimostrazione.

TRACCIA

- Sia $\{U_n\}_{n\geq 0}$ base numerabile di intorni bilanciati di 0 tali che $U_{n+1}+U_{n+1}\subseteq U_n$.
- Estendiamo la successione per n < 0 ponendo $U_k = U_{k+1} + U_{k+1}$ per ogni k < 0. Nota che $U_{k+1} + U_{k+1} \subseteq U_k$ per ogni $k \in \mathbb{Z}$ e gli $\{U_k\}_{k \in \mathbb{Z}}$ sono intorni bilanciati.
- Poniamo

$$q(x) = \inf \left\{ \sum_{i=1}^{r} 2^{-ki} \mid r \in \mathbb{N}, (k_1, \dots, k_r) \in \mathbb{Z}^r \ t.c. \ x \in U_{k_1} + U_{k_2} + \dots + U_{k_r} \right\}$$

Mostra che q è una paranorma su X.

• Nota che $\{q < 2^{-n-1}\} \subseteq U_n \subseteq \{q \le 2^{-n}\}$ e quindi q induce la topologia di X.

2.5 Teorema di Riesz

Teorema 2.37 (Riesz).

 $Per \ X \ SVT \ T_0 \ su \ \mathbb{K} \ sono \ equivalenti$

- 1. X ha dimensione finita
- 2. $X \cong \mathbb{K}^n$ per qualche $n \in \mathbb{N}$
- 3. X è localmente compatto

Dimostrazione.

Diamo le implicazioni

1. \implies 2. Sia X SVT T_0 di dimensione n e sia x_1, \dots, x_n una sua base di Hamel. Allora

$$\varphi: \begin{array}{ccc} \mathbb{K}^n & \longrightarrow & X \\ \lambda = (\lambda_1, \cdots, \lambda_n) & \longmapsto & \sum_{i=1}^n \lambda_i x_i \end{array}$$

è lineare, bigettiva e continua.

Dimostriamo che è aperta: L'insieme $\partial B(0,1) \subseteq \mathbb{K}^n$ visto con la norma euclidea è compatto, quindi $\varphi(\partial B(0,1))$ è compatto, e quindi chiuso perché X è Hausdorff. Per bigettività $0 \notin \varphi(\partial B(0,1))$, quindi esiste un intorno V di 0 in X disgiunto da $\varphi(\partial B(0,1))$. Senza perdita di generalità V bilanciato, allora $\varphi^{-1}(V)$ è un insieme bilanciato di \mathbb{K}^n disgiunto da $\partial B(0,1)$, dunque $\varphi^{-1}(V) \subseteq B(0,1)$ (se avesse un punto di modulo maggiore a 1 allora in quanto bilanciato conterrebbe tutti i punti tra esso e 0, intersecando il bordo).

Questo mostra che B(0,1) è un intorno di 0 e quindi φ è aperta (per traslazione e omotetia $\varphi(B(\lambda,r))$ è intorno di $\varphi(\lambda)$ per ogni $\lambda \in \mathbb{K}^n$ e r > 0 e concludo notando che aperti di \mathbb{K}^n sono dati da unioni di palle).

- $2. \implies 3.$ \mathbb{K}^n è localmente compatto perché conosciamo la topologia euclidea, quindi anche X
- $3. \implies 1.$ Sia X SVT localmente compatto e T_0 . Mostriamo che X è I-numerabile:

Sia V intorno compatto di 0. Mostriamo che $\left\{\frac{1}{n}V\right\}$ è una base di intorni di 0. Sia U un intorno (senza perdita di generalità U bilanciato). Poiché V è compatto e^4 $V \subseteq \bigcup_{n\geq 1} nU = X$ possiamo estrarre un sottoricoprimento finito

$$V \subseteq \bigcup_{1 \le i \le k} n_i U \stackrel{U \text{ bilanciato}}{=} \left(\max_{1 \le i \le k} n_i \right) U$$

infatti $\frac{n_i}{\max n_i}U\subseteq U.$ Questo mostra che $\left\{\frac{1}{n}V\right\}$ è una base numerabile di intorni di $0\in X.$

Notiamo che V si può coprire con un numero finito di traslati di $\frac{1}{2}V$ in quanto $V\subseteq V+\frac{1}{2}V$ e applico compattezza al variare di $v+\frac{1}{2}V$ per $v\in V$. Sia allora F tale che $V\subseteq\bigcup_{v\in F}v+\frac{1}{2}V$ con F finito e poniamo $Y=\operatorname{Span}_{\mathbb{K}}F$. Notiamo che Y ha dimensione finita.

Procedendo per induzione, per ogni $n\in\mathbb{N}$ si ha $V\subseteq Y+2^{-n}V,$ ma $\{2^{-n}V\}_{n\geq 0}$ è una base di intorni, quindi

$$\overline{Y} = \bigcap_{n \ge 0} Y + 2^{-n} V \supseteq V$$

e dato che V è un intorno assorbente, $X = \bigcup_{n>0} nV \subseteq \overline{Y}$, cioè Y è denso in X.

Poiché Y ha dimensione finita, per l'implicazione precendente $Y \cong \mathbb{K}^n$, in particolare Y è completo. Se $x \in X = \overline{Y}$, poiché X è I-numerabile, si ha che esiste $y_k \to x$ in X con $y_k \in Y$ con (y_k) di Cauchy in X e quindi anche in Y, che però è completo, quindi $y_k \to y$ per $y \in Y$, ma X è Hausdorff, quindi y = x.

Osservazione 2.38.

Se non avessimo supposto T_0 potremmo considerare $X/\overline{\{0\}}$ e troveremmo $X \cong \mathbb{K}^n \oplus \overline{\{0\}}$.

2.6 Successioni generalizzate (nets)

Definizione 2.39 (Net).

Un **net** su un insieme X è una funzione $f: D \to X$ su (D, \geq) poset diretto⁵.

Esempio 2.40 (Somme di Riemann).

Sia $u:[a,b] \to X$ una funzione con X SVT. La **somma di Riemann** per u relativa ad una suddivisione $P = \{a = t_0 < t_1 < \cdots < t_n = b\}$ e una scelta di punti $\Xi = \{\xi_1, \cdots, \xi_n\}$ con $\xi_i \in [t_{i-1}, t_i]$ è

$$S(u; P, \Xi) = \sum_{i=1}^{n} u(\xi_i)(t_i - t_{i-1}).$$

Possiamo prendere $D = \{(P,\Xi)\}$ l'insieme delle possibili partizioni e scelte di punti. D è un poset: $(P,\Xi) \geq (P',\Xi')$ se $P \supseteq P'$.

In questo contesto l'integrale di Riemann sarebbe il limite rispetto al net $D \to X$ dato da $(P, \Xi) \mapsto S(u; P, \Xi)$.

⁴U assorbente

 $^{^5}$ diretto nel senso che per ogni $i,j\in D$ esiste $k\in D$ tale che $i\leq k$ e $j\leq k.$

Esempio 2.41 (Somme infinite).

Data $\{x_i\}_{i\in I}\subseteq X$ con X SVT consideriamo

$$S: \begin{array}{ccc} \mathscr{P}_{fin}(I) & \longrightarrow & X \\ F & \longmapsto & \sum_{i \in F} x_i \end{array}$$

 $\mathscr{P}_{fin}(I)$ è parzialmente ordinato per inclusione e la somma sarebbe il limite.

Definizione 2.42 (Definitivamente e frequentemente).

Diciamo che se $\{P_{\alpha}\}_{{\alpha}\in D}$ sono proprietà indicizzate su D insieme diretto allora P_{α} vale definivamente (risp. frequentemente) se esiste $\alpha\in D$ tale che per ogni $\beta\geq\alpha$ in D vale P_{β} (risp. per ogni $\alpha\in D$ esiste $\beta\in D$ tale che vale P_{β}).

Osservazione 2.43.

Se $D \neq \mathbb{N}$ allora può succedere che "frequentemente" \neq "infinite volte".

Definizione 2.44 (Convergenza per net).

Se $f: D \to X$ è un net su X spazio topologico si ha che f converge a $x \in X$ se per ogni U intorno di x si ha che $f(i) \in U$ definitivamente.

Definizione 2.45 (Punti di accumulazione per net).

Se $f: D \to X$ è un net su X spazio topologico si ha che x è un **punto di accumulazione** di f se per ogni U intorno di $x, f(i) \in U$ frequentemente.

Definizione 2.46 (Sottonet).

Una $\varphi: D' \to D$ con D, D' insiemi diretti tale che per ogni $i \in D$ esiste $i' \in D'$ tale che $\varphi(j) \geq i$ per ogni $j \geq i'$ è detta **cofinale**.

Sia $f: D \to X$ un net, allora $f \circ \varphi: D' \to X$ per φ cofinale è un **sottonet** di f.

Osservazione 2.47.

Una successione è un net su \mathbb{N} , una sottosuccessione è quindi in particolare un sottonet, ma non tutti i sottonet di una successione sono sottosuccessioni.

Esercizio 2.48.

Se $f: D \to X$ spazio topologico e $x \in X$ allora x è aderente a f se e solo se x è limite di qualche sottonet di f.

Osservazione 2.49.

Dato $f: D \to X$ net, l'insieme A dei punti aderenti a f è

$$A = \bigcap_{j \in D} \overline{\{f(i) \mid i \ge j\}}$$

infatti x è aderente se e sono se per ogni intorno U e ogni $j \in D$ esiste $i \geq j$ tale che $f(i) \in U$, cioè per ogni $j \in D$ $U \cap \{f(i) \mid i \geq j\} \neq \emptyset$, ovvero per ogni $j \in D$ si ha $x \in \overline{f(i)} \mid i \geq j$.

Esercizio 2.50.

X spazio topologico è compatto per ricoprimenti se e solo se ogni net in X ha punti aderenti, cioè se e solo se per ogni net su X esiste un sottonet convergente.

Esercizio 2.51.

Usare l'esercizio sopra per dimostrare Tychonoff.

Dimostrazione.

IDEA:

- Sia $f:D\to\prod_{\lambda\in\Lambda}X_\lambda$ un net, vogliamo trovare dei punti aderenti.
- Consideriamo l'insieme

$$S = \left\{ (N, x) \mid x \in \prod_{\lambda \in N} X_{\lambda}, \ N \subseteq \Lambda, \ x \text{ aderente per } P_N \circ f : D \to \prod_{\lambda \in N} X_{\lambda} \right\}$$

esso è non vuoto perché se N è un singoletto allora $P_N \circ f$ è un net verso uno spazio compatto, quindi ha un punto aderente. Ordiniamo S ponendo $(N,x) \leq (N',x')$ se $N \subseteq N'$ e $P_N(x') = x$.

Vale la condizione della catena, infatti se $\{(N_{\alpha}, x_{\alpha})\}$ è una catena ascendente in S allora basta considerare $N = \bigcup N_{\alpha}$ e $x \in \prod_{\lambda \in N} X_{\lambda}$ dato da $x(\lambda) = x_{\alpha}(\lambda)$ per un qualche α tale che $\lambda \in N_{\alpha}$. Notiamo che x così definito è aderente a $P_N \circ f$ perché gli x_{α} sono aderenti e questo basta per la definizione di topologia prodotto.

Dunque per il lemma di Zorn esiste un dominio massimale (N, x)

• Se per assurdo $N \neq \Lambda$ allora esiste $\lambda \in \Lambda \setminus N$, ma allora possiamo estendere (N, x) a $(N \cup \{\lambda\}, \widetilde{x})$ per $\widetilde{x} = x$ fuori λ e uguale a un qualche aderente a $P_{\{\lambda\}} \circ f$ in λ . Questo nega la massimalità.

Esercizio 2.52.

Per X spazio topologico e $S\subseteq X$ si ha $x\in \overline{S}$ se e solo se esiste $f:D\to S$ net convergente a x.

Definizione 2.53 (Net di Cauchy).

Sia X SVT. Un net $f: D \to X$ è di Cauchy se per ogni $U \in \mathcal{U}_X$ esiste $i \in D$ tale che per ogni $p \geq i$ e $q \geq i$ vale $f(p) - f(q) \in U$.

Equivalentemente il net $\widetilde{f}: D \times D \to X$ definito da $\widetilde{f}(i,j) = f(i) - f(j)$ con $(i,j) \geq (i',j') \iff i \geq i' \land j \geq j'$ converge a 0.

Definizione 2.54 (Completo per nets).

Uno SVT è completo per nets se ogni net di Cauchy converge.

Esercizio 2.55.

Uno SVT I-numerabile è completo per nets se e solo se è completo per successioni.

Capitolo 3

Teorema di Hahn-Banach

Il teorema di Hanh-Banch ci permetterà di costruire funzionali lineari continui.

Funzionali sono i surrogati delle coordinate, che non ci sono in generale, e anche quando ci sono possono essere più complicate di quanto non valga la pena.

3.1 Teorema di Hahn-Banach reale

Definizione 3.1 (Funzione sublineare).

Una funzione $p: X \to \mathbb{R}$ è

- positivamente omogena se per $t \in \mathbb{R}$, $t \ge 0$ abbiamo p(tu) = tp(u),
- subadditiva se per ogni $u, v \in X$ vale $p(u+v) \le p(u) + p(v)$,
- sublineare se è subadditiva e positivamente omogenea.

Pillola filosofica: Teorema di esistenza senza buon criterio per scegliere un candidato spesso chiama l'uso di scelta.

Teorema 3.2 (Hahn-Banach).

Siano X uno spazio vettoriale reale, $M\subseteq X$ sottospazio, $p:X\to\mathbb{R}$ sublineare, $f:M\to\mathbb{R}$ lineare tale che $f\le p$ su M.

Allora f si estende a $F: X \to \mathbb{R}$ lineare tale che $F \leq p$.

Dimostrazione.

Vogliamo applicare il lemma di Zorn. Sia

$$\mathcal{M} = \{ g \in N' \mid g \le p, \ M \subseteq N \subseteq X \}$$

Notiamo che \mathcal{M} è ordinato secondo l'inclusione dei sottografici, cioè

$$g \preceq h \Longleftrightarrow \Gamma g \subseteq \Gamma h \Longleftrightarrow \begin{cases} \operatorname{dom} g \subseteq \operatorname{dom} h \\ g(x) \leq h(x) & \forall x \in \operatorname{dom} g \end{cases}$$

Condizione delle catene vale:

se
$$\{g_{\alpha}\}_{{\alpha}\in\Lambda}$$
 catena in \mathscr{M}

allora $\bigcup_{\alpha} \Gamma g_{\alpha}$ è ancora il grafico di una funzione lineare minore di p.

Dunque per il lemma di Zorn esiste un elemento massimale in \mathcal{M} . Per concludere basta mostrare che un massimale di \mathcal{M} è definito su tutto X, cioè vogliamo mostrare che se $g \in \mathcal{M}$ è tale che dom $g \neq X$ allora esiste $g' \in \mathcal{M}$ che estende g.

Sia dunque per assurdo $x \in X \setminus N$ dove N = dom g. Vogliamo estendere g a $h: N \oplus \langle x \rangle \to \mathbb{R}$ con $h \leq p$. In quanto estensione

$$h(u+tx) = h(u) + th(x) = g(u) + th(x),$$

dove u generico elemento di N. Sia $\alpha = h(x)$ e cerchiamo un opportuno α in modo tale che $h \leq p$.

Chiediamo che $\forall u \in N, \ \forall t \in \mathbb{R}$

$$g(u+tx) \le p(u+tx),$$

o equivalentemente per ogni t > 0 chiediamo

$$\begin{cases} h(u+tx) \le p(u+tx) \\ h(v-tx) \le p(v-tx) \end{cases}$$

equivalentemente

$$\begin{cases} g(u/t) + \alpha \le p(u/t + x) \\ g(v/t) - \alpha \le p(v/t - x) \end{cases}$$

dunque vogliamo

$$-p(v/t - x) + g(v/t) \le \alpha \le p(u/t + x) - g(u/t)$$

cioè

$$\sup_{v \in N} -p(v-x) + g(v) = m_* \le \alpha \le m^* = \inf_{u \in N} p(v+x) - g(u),$$

dunque un tale α esiste solo se $m_* \leq m^*$. Questo è vero perché

$$g(u) + g(v) = g(u+v) \le p(u+v) = p(u+x+v-x) \le p(u+x) + p(v-x).$$

 $Osservazione \ 3.3.$

Non serve questo teorema per spazi di dimensione finita o spazi di Hilbert, in quanto in quei casi abbiamo estensioni canoniche (se dom f = N, considero la proiezione organale su N e poi applico f).

Corollario 3.4 (Hahn-Banach per spazi normati).

Se $(X, \|\cdot\|)$ è spazio normato reale e Y è sottospazio lineare allora ogni funzione continua su Y si estende ad una su X con la stessa norma.

Dimostrazione.

Se $f \in Y^*$, per la definizione di norma duale si ha

$$f(x) \le ||f||_{V^*} ||x|| \doteq p(x),$$

quindi f si estende a $F: X \to \mathbb{R}$ lineare con $F(x) \le ||f||_{Y^*} ||x||$, cioè $||F||_{X^*} \le ||f||_{Y^*}$. Poiché F estende f in realtà abbiamo uguaglianza tra le norme¹.

 $[\]overline{\ }^1$ consideriamo la stessa successione in \overline{Y} che realizza la definizione di $\|f\|_{Y^*}$

Osservazione 3.5.

Se X è di Hilbert, una estensione di $f \in Y^*$ è data dal proiettore ortogonale su² $Y : X \to \overline{Y}$. A questo punto definendo $F = f \circ P$.

Corollario 3.6 (ricostruire norma tramite funzionali).

Se $(X, \|\cdot\|)$ è spazio normato reale e Y è sottospazio lineare e $x \in X$, allora la norma di x si può ricostruire dalla norma duale di X^* , in particolare³

$$||x|| = \max_{||f||_{X^*} \le 1} \langle f, x \rangle$$

Dimostrazione.

Se $f \in X^*$ e $||f|| \le 1$ allora

$$\langle f, x \rangle \le \|f\| \|x\| \le \|x\| \implies \|x\| \le \max_{\|f\| \le 1} \langle f, x \rangle.$$

D'altra parte, per il corollario precedente (3.4) nel caso particolare di $Y = x\mathbb{R}$, il funzionale lineare continuo

$$\phi: \begin{array}{ccc} x\mathbb{R} & \longrightarrow & \mathbb{R} \\ \lambda x & \longmapsto & \lambda \|x\| \end{array}$$

si estende a tutto X con la stessa norma. Se x=0 allora $\|\phi\|=0$ per linearità, altrimenti $\|\phi\|=1$ su $x\mathbb{R}$. In ogni caso $\|\phi\|\leq 1$, quindi per ogni $x\in X$ esiste $f\in X^*$ tale che $\|f\|\leq 1$ e $\langle f,x\rangle=\|x\|$.

Definizione 3.7 (Operatore aggiunto).

Per $T:X\to Y$ lineare continua tra spazi normati, si definisce l'**operatore aggiunto** o trasposto di T come

$$T^*: \begin{array}{ccc} Y^* & \longrightarrow & X^* \\ f & \longmapsto & f \circ T \end{array}$$

Proposizione 3.8 (Norma dell'aggiunto).

La norma di T^* coincide con la norma di T, in particolare T^* è continuo.

Dimostrazione.

Segue dai corollari di Hahn-Banach sopra, infatti

$$\begin{split} \|T^*\|_{L(Y^*,X^*)} &= \sup_{f \in Y^*, \|f\| \le 1} \|T^*f\|_{X^*} = \sup_{f \in Y^*, \|f\| \le 1} \sup_{\|x\| \le 1, x \in X} \langle T^*f, x \rangle = \\ &= \sup_{\|f\| \le 1, \|x\| \le 1} |f, Tx| = \sup_{\|x\| \le 1} \sup_{\|f\| \le 1} |\langle f, Tx \rangle| \stackrel{\textbf{(3.6)}}{=} \\ &= \sup_{\|x\| \le 1} \|Tx\| = \|T\|_{L(X,Y)} \,. \end{split}$$

3.1.1 Immersione isometrica nel biduale

Proposizione 3.9 (Immersione isometrica nel biduale).

Sia $(X, \|\cdot\|)$ uno spazio normato reale e consideriamo la mappa

$$i_X: \begin{array}{ccc} X & \longrightarrow & X^{**} \\ x & \longmapsto & val_x \end{array}$$

Essa è una immersione isometrica.

 $^{^2}$ stiamo supponendo ${\cal Y}$ chiuso a meno di passare alla chiusura

³dove $\langle f, x \rangle = f(x)$ quando f è forma lineare, come in questo caso.

Dimostrazione.

È immediato vedere che i_X è lineare e continua⁴ Però sappiamo che per ogni $x \in X$ esiste $f \in X$ tale che $||f|| \le 1$ e $||x|| = \langle f, x \rangle$, cioè $||val_x|| = ||x||$, ovvero $i_X : X \to X^{**}$ è una immersione isometrica.

Definizione 3.10 (Spazio riflessivo).

Uno spazio normato $(X, \|\cdot\|)$ è **riflessivo** se $i_X : X \to X^{**}$ è surgettiva, ovvero se i_X è una isometria.

Osservazione 3.11.

Esistono spazi di Banach non riflessivi ma isometrici al loro biduale. Nella definizione chiediamo che la mappa canonica i_X sia una isometria.

Lemma 3.12 (Duale è addendo diretto nel triduale).

 X^* è sempre un addendo diretto se visto come sottospazio di X^{***} .

Dimostrazione.

Poiché ogni Banach ammette un'immersione isometrica $X \hookrightarrow X^{**}$, esiste una immersione isometrica $X^* \hookrightarrow X^{***}$. Consideriamo allora la composizione

$$X^* \stackrel{\iota_{X^*}}{\longleftrightarrow} X^{***} \stackrel{(\iota_X)^*}{\longleftrightarrow} X^*$$

e mostriamo che è l'identità: per ogni $f \in X^*$ e per ogni $x \in X$

$$\langle f, x \rangle = \langle \iota_X(x), f \rangle = \langle \iota_{X^*}(f), \iota_X(x) \rangle = \langle (\iota_X)^*(\iota_{X^*}(f)), x \rangle.$$

Dunque ι_{X^*} e $(\iota_X)^*$ sono una coppia inversa destra e inversa sinistra, quindi

$$X^{***} = \iota_{X^*}(X^*) \oplus \ker((\iota_X)^*).$$

Esempio 3.13.

Sia $c_0 = \{x \in \mathbb{R}^{\mathbb{N}} \mid x(n) = o_n(1)\}$. Questo è un sottospazio chiuso di

$$\ell_{\infty} = \left\{ x \in \mathbb{R}^{\mathbb{N}} \mid \|x\|_{\infty} < \infty \right\}$$

Se $\widehat{\mathbb{N}}$ è la compattificazione di \mathbb{N} ad un punto $(\widehat{\mathbb{N}} = \mathbb{N} \cup \{\infty\})$ allora c_0 sono le funzioni $\widehat{\mathbb{N}} \to \mathbb{R}$ continue che valgono 0 in ∞ ristrette a \mathbb{N} .

Risulta che l'inclusione $c_0 \hookrightarrow \ell_\infty$ è l'inclusione nel biduale, infatti c_0^* si può identificare con

$$\ell_1 = \left\{ f \in \mathbb{R}^{\mathbb{N}} \mid \left\| f \right\|_1 = \sum |f_n| < \infty \right\}$$

identificando $f \in \ell_1$ con $\widetilde{f}(x) = \sum f_n x_n$ (che converge perché assolutamente convergente). Risulta che questa identificazione è una isometria.

Con un processo analogo identifichiamo ℓ_1^* con ℓ_{∞} .

 $[\]frac{4}{\langle val_x, f + \lambda g \rangle} = f(x) + \alpha g(x) = \langle val_x, f \rangle + \lambda \langle val_x, g \rangle \text{ e } ||val_x|| \leq ||x|| \text{ in quanto } |\langle val_x, f \rangle| = |\langle f, x \rangle| \leq ||f|| \, ||x||.$

Osservazione 3.14.

Se X è Hilbert allora $X \hookrightarrow X^{**}$ è surgettiva tramite l'isomorfismo di Riesz

$$x \mapsto \langle \cdot, x \rangle \mapsto \langle \cdot, \langle \cdot, x \rangle \rangle = val_x$$

Osservazione 3.15.

Se X normato, $i_X: X \to X^{**}$ ci permette di costruire un completamento considerando $\overline{i_X(X)}$ in X^{**} in quanto il biduale è completo.

3.1.2 Sulle ipotesi del teorema di Hahn-Banach

Il funzionale p nelle ipotesi è positivamente omogeneo e subadditivo (cioè sublineare).

Osservazione 3.16.

Una funzione f è subadditiva se, detto Γ il grafico di f, $\Gamma + (x, f(x))$ sta sempre sopra Γ .

Esercizio 3.17.

Mostra le seguenti implicazioni

- Positivamente omogeneo e subadditivo implica convesso
- Positivamente omogeneo e convesso implica subadditivo (e quindi sublineare)
- Subadditivo, convesso e $p(0) \leq 0$ implica positivamente omogeneo

Esercizio 3.18.

Trovare $f: \mathbb{R} \to \mathbb{R}$ che sia subadditiva, convessa ma non positivamente omogenea.

Esercizio 3.19.

Nel teorema di Hahn-Banach si può prendere più in generale p convesso?

Si, ma si riconduce al caso standard trovando un nuovo funzionale p_0 che sia sublineare e tale che $f \leq p_0 \leq p$.

3.2 Estensioni e altre versioni di Hahn-Banach

3.2.1 Teorema di Hahn-Banch complesso

Teorema 3.20 (Hahn-Banach complesso).

Sia X un \mathbb{C} -spazio vettoriale normato, $Y\subseteq X$ un suo sottospazio vettoriale e $f\in Y^*$, allora f si estende ad un funzionale lineare su X con uguale norma.

Dimostrazione.

Sia $(X_0, \|\cdot\|)$ lo spazio normato reale ottenuto da X per restrizione degli scalari e sia $f_0 = \Re \mathfrak{e} f$. Notiamo che f_0 è un funzionale lineare continuo reale su Y, che quindi possiamo estendere a $\widetilde{f}_0 \in X^*$ mantenendo la norma. Definiamo

$$\widetilde{f}(x) = \widetilde{f}_0(x) - i\widetilde{f}_0(ix).$$

Notiamo che $\widetilde{f}_{|_{Y}} = f$, infatti

$$f(y) = \Re \mathfrak{e}(f(y)) + i \, \Im \mathfrak{m}(f(y)) = \, \Re \mathfrak{e}(f(y)) - i \, \Im \mathfrak{m}(if(iy)) = \, \Re \mathfrak{e}(f(y)) - i \, \Re \mathfrak{e}(f(iy)).$$

Si ha anche che
$$\widetilde{f}$$
è \mathbb{C} -lineare e che $\left\|\widetilde{f}\right\|_{X^*}=\|f\|_{Y^*}$ (COMPLETA PER ESERCIZIO)

3.2.2 Teoremi di separazione dei convessi

Proposizione 3.21 (Funzionali di Minkowski sono sublineari). Se C è convesso e $0 \in C$ allora p_C è sublineare.

Dimostrazione.

Dimostriamo le due proprietà:

pos.omo. Per o

Per ogni $\lambda > 0, x \in X$ si ha che

$$p_C(\lambda x) = \inf\{t > 0 \mid \lambda x \in tC\} = \inf\{\lambda s > 0 \mid \lambda x \in \lambda sC\} = \lambda p_C(x)$$

subadd. Per ogni $x, y \in X$ siano $a \in b$ tali che

$$a > p_C(x), \quad b > p_C(y).$$

Se uno tra $p_C(x)$ e $p_C(y)$ è infinito allora la tesi vale trivialmente. Supponiamo dunque che questo non sia il caso. Allora $x \in aC$ e $y \in bC$, cioè $x/a, y/b \in C$. Notiamo che

$$\frac{x+y}{a+b} = \frac{a}{a+b}\frac{x}{a} + \frac{b}{a+b}\frac{y}{b}$$

dunque $\frac{x+y}{a+b} \in C$ per convessità, cioè $x+y \in (a+b)C$ e quindi $p_C(x+y) \le a+b$. Passando all'estremo inferiore per $a>p_C(x)$ e $b>p_C(y)$ troviamo

$$p_C(x+y) \le p_C(x) + p_C(y)$$

Osservazione 3.22.

Se C è un disco, cioè è assorbente, bilanciato e convesso allora p_C è una seminorma.

Esercizio 3.23.

Se X SVT, $F: X \to \mathbb{K}$ lineare non continua allora per ogni aperto A non vuoti si deve avere $F(A) = \mathbb{K}$.

Lemma 3.24.

Ogni funzionale lineare non nullo su uno SVT è una mappa aperta

Dimostrazione.

Sia $F \neq 0$ lineare con $F: X \to \mathbb{K}$. Vogliamo mostrare che F manda intorni di $x \in X$ in intorni di $F(x) \in \mathbb{K}$. Poiché X è SVT, basta mostrare che F(U) è intorno di $0 \in \mathbb{K}$ per ogni U intorno di $0 \in \mathbb{K}$. In realtà basta prendere una base di intorni di 0, quindi consideriamo gli U bilanciati. Notiamo che F(U) è un insieme bilanciato di \mathbb{K} , infatti se $\lambda \in \mathbb{K}$ e $|\lambda| \leq 1$ allora $\lambda F(U) = F(\lambda U) \subseteq F(U)$, quindi abbiamo le seguenti possibilità:

- $F(U) = \{0\}$, ma allora F = 0 assurdo
- F(U) è un disco, dunque è intorno di 0 ok.
- $F(U) = \mathbb{K}$ ok.

Corollario 3.25 (Discontinuità per funzionali lineari).

 $F: X \to \mathbb{K}$ lineare è discontinua se e solo se è surgettiva su ogni aperto non vuoto.

Dimostrazione.

Se F non è surgettiva su un aperto non vuoto, a meno di traslazione F non è surgettiva su un intorno di 0, quindi non è surgettiva su un qualche aperto bilanciato. Quindi esiste un elemento che non è nella immagine, ma allora F non assume valori di modulo superiore a questo valore non raggiunto.

Teorema 3.26 (Separazione di convessi).

Valgono i seguenti teoremi:

• Siano X un \mathbb{R} -SVT, A un suo aperto convesso non vuoto e B un convesso non vuoto disgiunto da A. Allora esistono $F \in X^*$ e $\gamma \in \mathbb{R}$ tali che per ogni $a \in A$, $b \in B$ si ha

$$\langle F, a \rangle < \gamma \le \langle F, b \rangle$$
,

 $cioè\ A\subseteq \{F<\gamma\}\ e\ B\subseteq \{F\geq\gamma\}.$

• Sia X un \mathbb{R} -SVTLC⁵, K convesso compatto e C convesso chiuso disgiunti. Allora esistono $F \in X^*$, $\gamma_1, \gamma_2 \in \mathbb{R}$, $\gamma_1 < \gamma_2$ tali che per ogni $x \in K$ e per ogni $y \in C$ vale

$$\langle F, x \rangle \le \gamma_1 < \gamma_2 \le \langle F, y \rangle$$

ovvero $K \subseteq \{F \le \gamma_1\}$ e $C \subseteq \{F \ge \gamma_2\}$.

Dimostrazione.

Diamo le due dimostrazioni

• Sia $x_0 \in B - A = \{b - a \mid a \in A, b \in B\}$. Poiché $A \cap B = \emptyset, x_0 \neq 0$. Sia

$$C = A - B + x_0 = \bigcup_{b \in B} (A - b + x_0).$$

Dalla definizione è evidente che C è un aperto (unione di traslati di A che è aperto) e contiene 0. C è convesso perché la somma algebrica di due convessi è un convesso (quindi A-B convesso e traslare un convesso lo lascia convesso). Essendo aperto in particolare è assorbente per (2.11).

Quindi il funzionale di Minkowski associato p_C è un funzionale sublineare $X \to \mathbb{R}$ (non raggiunge $+\infty$ perché assorbente). Sia $f_0: \mathbb{R} x_0 \to \mathbb{R}$ il funzionale lineare definito da $\langle f_0, x_0 \rangle = 1$. Poiché $0 \notin A - B$, $x_0 \notin C$ e quindi $p_C(x_0) \geq 1$. Applicando il teorema di Hahn-Banach (3.2) f_0 si estende a $F: X \to \mathbb{R}$ con $F \leq p_C$ in X. Per ogni $a \in A, b \in B$, poiché $a - b + x_0 \in C$, si ha

$$F(a) - F(b) + 1 = F(a - b + x_0) \le p_C(a - b + x_0) \le 1$$

cioè $F(a) \leq F(b)$. Ponendo $\gamma = \sup_A F$ abbiamo le disuguaglianze volute se mostriamo che $F(a) < \gamma$ per ogni $a \in A$. Per il lemma (3.24) si ha che F è una mappa aperta, quindi F(A) è un aperto di $\mathbb R$ tale che sup $F(A) \leq \gamma$, ma allora il valore γ non è raggiunto.

Concludiamo notando che F è continuo perché è limitato superiormente sull'aperto A.

⁵La locale convessità serve, infatti esistono SVT metrizzabili che non hanno funzionali lineari continui e in tal caso la tesi non vale neanche per $K = \{x\}$ e $C = \{y\}$.

⁶ricorda che $\{p_C < 1\} \subseteq C$

 $^{^{7}}$ volendo anche perché limitato su intorno di 0 o anche perché non è surgettiva sull'aperto A. Vedi esercizio sopra per l'ultima.

• Sia V intorno convesso di 0 tale che $(K+V) \cap C = \emptyset$, basta usare (2.16) e poi notare che in questo caso abbiamo una base di intorni convessi. Evidentemente K+V è aperto e convesso⁸. Per il primo punto esiste $F \in X^*$ e $\gamma \in \mathbb{R}$ tale che per ogni $x \in K + V \in y \in C$

$$\langle F, x \rangle < \gamma \le \langle F, y \rangle$$
.

Sia $\gamma_1 = \max_{x \in K} \langle F, x \rangle$, allora $\gamma_1 < \gamma$ e quindi se $x \in K$

$$\langle F, x \rangle \le \gamma_1 < \gamma \le \langle F, y \rangle$$

che è la tesi a meno di definire $\gamma_2 = \gamma$.

3.3 Parentesi esercizi

Definizione 3.27 (Misura non atomica).

Uno spazio di misura (X, \mathcal{Q}, μ) è **non-atomico** se per ogni $A \in \mathcal{Q}$ di misura positiva contiene $B \in \mathcal{Q}$ di misura positiva strettamente minore.

Esercizio 3.28 (Sierpinski).

Se (X, \mathcal{Q}, μ) è non-atomico allora è divisibile, cioè per ogni $A \in \mathcal{Q}$ e per ogni $\lambda \in$ $[0, \mu(A)]$ esiste $B \subseteq A$, $B \in \mathcal{Q}$, tale che $\mu(B) = \lambda$.

Inoltre, vedendo la misura come funzione $\mu: \mathcal{Q} \to [0, \mu(X)]$, esiste una inversa destra monotona crescente per inclusione $E:[0,\mu(X)]\to\mathcal{Q}$, cioè si ha $\mu\circ E=id$ e per ogni $t \in [0, \mu(X)]$ abbiamo $\mu(E_t) = t$ e $E_t \subseteq E_{t'}$ per ogni $t \le t'$.

Dimostrazione.

Vogliamo applicare Zorn all'insieme delle inverse destre monotone parziali, cioè

$$\Gamma = \{E: S \to \mathcal{Q} \mid S \subseteq [0, \mu(X)], E \text{ monot. cresc. per } \subseteq, \, \mu(E(t) = t \,\, \forall t \in S)\}$$

Chiaramente la condizione sulle catene funziona quindi Γ ha un elemento massimale. Mostriamo poi che il dominio del massimale è chiuso e che è denso, e quindi deve essere tutto. (CONCLUDERE PER ESERCIZIO)

Esercizio 3.29.

Sia (X, \mathcal{Q}, μ) uno spazio di misura e sia 0 . Definiamo

$$\mathcal{L}^{p}(X) = \left\{ f : X \to \mathbb{R} \mid f \text{ misurabile, } \int_{X} |f|^{p} d\mu < \infty \right\}$$

e sia $q: \mathcal{L}^p \to [0, \infty)$ con $q(f) = \int_X |f|^p d\mu = ||f||_p^p$. Notiamo che $q(f+g) \le q(f) + q(g)$, che $q(\lambda f) = |\lambda| \, q(f)$ e che q(f) = 0 se e solo se f = 0 q.o.. Dunque q definisce una semidistanza $d_q(f,g) = q(f-g)$, che induce una distanza sul quoziente

$$L^p(X) = \mathcal{L}^p(X) / \{0\}$$

Questa distanza rende $L^p(X)$ uno SVT metrico completo omeomorfo a $L^1(X)$.

Mostrare che se (X, \mathcal{Q}, μ) è non-atomico e p < 1 allora $L^p(X)$ non ha funzionali lineari continui diversi da 0 e non ha aperti convessi diversi da $L^p(X)$.

⁸somma di convessi è convessa

Esercizio 3.30.

Sia $X=\mathbb{N}$ con la misura di cardinalità. In questo caso $L^p(\mathbb{N})=\ell_p$ con la definizione di prima. Questo è uno SVT metrico completo ma la misura è puramente atomica (misura ricostruibile dai singoletti). Mostra che $(\ell_p)^*=(\ell_1)^*$.

Dimostrazione.

Nota che se $0 allora <math>\ell_p \subseteq \ell_q$ e l'inclusione è una mappa continua, quindi una mappa lineare su ℓ_q restituisce una mappa lineare su ℓ_p , quindi abbiamo $(\ell_p)^* \supseteq (\ell_1)^*$, va mostrato che non ce ne sono altri.(CONCLUDERE PER ESERCIZIO) \square

Capitolo 4

Topologie deboli, Limitatezza e Banach-Steinhaus

4.1 Topologie deboli

Proposizione 4.1 (Topologia iniziale nel caso SVT).

Sia X uno spazio vettoriale su \mathbb{K} e sia \mathcal{F} : $\{T_i: X \to Y_i\}$ dove ogni Y_i è SVT e T_i è lineare, allora la topologia iniziale su X indotta¹ da \mathcal{F} rende X uno SVT.

Dimostrazione.

Voglio verificare che + e \cdot sono mappe continue per la topologia iniziale.

$$X \times X \xrightarrow{+} X$$

$$T_i \times T_i \downarrow \qquad \qquad \downarrow T_i$$

$$Y_i \times Y_i \xrightarrow{+_i} Y_i$$

$$\begin{array}{ccc} \mathbb{K} \times X & \xrightarrow{\cdot} & X \\ id_{\mathbb{K}} \times T_{i} & & \downarrow T_{i} \\ \mathbb{K} \times Y_{i} & \xrightarrow{\cdot_{i}} & Y_{i} \end{array}$$

Per la proprietà universale della topologia iniziale (A.2), vogliamo verificare che $T_i \circ + = +_i \circ (T_i \times T_i)$ è continua per ogni i e similmente per $T_i \circ \cdot$. Questo è vero perché la topologia iniziale è rende T_i continua per ogni i.

Osservazione 4.2.

Se ogni Y_i inoltre è SVTLC allora anche X lo è.

Definizione 4.3 (Topologie deboli).

Sia X un \mathbb{K} -spazio vettoriale e $\mathcal{F} \subseteq X'$ (duale algebrico). La topologia iniziale indotta da \mathcal{F} viene detta la **topologia debole di** \mathcal{F} e si indica $\sigma(X, \mathcal{F})$.

Osservazione~4.4.

 $\sigma(X, \mathcal{F}) = \sigma(X, \operatorname{Span}_{\mathbb{K}}(\mathcal{F}))$ quindi senza perdita di generalità possiamo sempre supporre \mathcal{F} sottospazio vettoriale di X'.

 $^{^{1}}$ vedi (A.1)

Osservazione~4.5.

La famiglia di seminorme associata a \mathcal{F} (quella che induce la stessa topologia di SVTLC) è data da

$$\mathcal{P} = \{ |f| \mid f \in \mathcal{F} \}$$

Osservazione 4.6.

La topologia debole $\sigma(X, \mathcal{F})$ è T_0 (e quindi Hausdorff perché SVT) se e solo se la famiglia \mathcal{F} è separante $(\forall x \in X \setminus \{0\}, \exists f \in \mathcal{F} \text{ tale che } f(x) \neq 0)$.

Lommo 47

Siano $f_0, \cdots, f_n \in X'_{alg}$ per X un \mathbb{K} -spazio vettoriale, allora sono equivalenti

1.
$$f_0 = \sum_{i=1}^n \lambda_i f_i$$

2.
$$|f_0| \leq M \max_{i \in \{1,\dots,n\}} |f_i| \text{ per qualche } M \geq 0$$

3.
$$\ker f_0 \supseteq \bigcap_{i=1}^n \ker f_i$$

Dimostrazione.

Diamo le tre implicazioni

1.
$$\Longrightarrow$$
 2. Da 1. segue $|f_0| \leq \sum_{i=1}^n |\lambda_i| |f_i| \leq M \max |f_i|$ per $M = \sum |\lambda_i|$.

2.
$$\Longrightarrow$$
 3. Se $x \in \bigcap \ker f_i$, cioè $\langle f_i, x \rangle = 0$ per ogni i , allora $\langle f_0, x \rangle \leq M0 = 0$, cioè $f_0(x) = 0$ e abbiamo l'inclusione voluta.

$$3. \implies 1. \mid \text{Sia } F: X \to \mathbb{K}^n \text{ data da } F = (f_1, \dots, f_n), \text{ allora}$$

$$\ker F = \bigcap \ker f_i \subseteq \ker f_0$$

quindi abbiamo una fattorizzazione

$$X \xrightarrow{f_0} \mathbb{K}$$

$$F \downarrow \qquad \qquad L$$

$$\mathbb{K}^n$$

dove $L(x_1, \dots, x_n) = \sum \lambda_i x_i$ per dei λ_i (in quanto è una forma lineare). Ma allora $f_0 = L \circ F = \sum \lambda_i f_i$ come voluto.

Proposizione 4.8 (Duale per topologia debole).

Dato X \mathbb{K} -spazio vettoriale e \mathcal{F} sottospazio di X'_{alg} allora

$$(X, \sigma(X, \mathcal{F}))^* = \mathcal{F}$$

Dimostrazione.

Sia $f_0 \in (X, \sigma(X, \mathcal{F}))^*$, allora per la proposizione (2.31) esistono $f_1, \dots, f_n \in \mathcal{F}$ e $M \geq 0$ tali che per ogni $x \in X$

$$|f_0(x)| \le M \max_i |f_i(x)|.$$

Dunque per il lemma (4.7) f_0 si scrive come combinazione lineare delle f_i e quindi in particolare $f_0 \in \mathcal{F}$.

L'altra inclusione è ovvia per definizione di topologia debole.

Osservazione 4.9.

Se X ha dimensione infinita, $\sigma(X, \mathcal{F})$ non è mai localmente limitata. In particolare ogni intorno di 0 contiene uno spazio vettoriale di codimensione finita.

Dimostrazione.

Se U intorno di 0 per $\sigma(X, \mathcal{F})$ allora esistono $f_1, \dots, f_n \in \mathcal{F}$ tali che²

$$U \supseteq \bigcap_{i=1}^{n} \{|f_i| < 1\} \supseteq \bigcap_{i=1}^{n} \ker f_i$$

e l'intersezione di questi nuclei ha codimensione al massimo n.

Proposizione 4.10 (Duale di lineare continua è debole*-continua).

Se $T:E\to F$ è un operatore lineare e continuo allora $T^*:F^*\to E^*$ è debole*-continua.

Dimostrazione.

Considera le opportune composizione e la definizione di topologia debole. \Box

4.1.1 Caso degli spazi normati

Definizione 4.11 (Topologia debole).

Se X è normato, la **topologia debole** su X è la topologia debole associata a X^* , cioè $\sigma(X, X^*)$.

Proposizione 4.12.

La topologia debole è localmente convessa e Hausdorff.

Dimostrazione.

Per Hahn-Banach (3.2), il duale X^* separa i punti

Definizione 4.13 (Topologia debole*).

Su X^* possiamo considerare la topologia debole associata alle valutazioni $X\subseteq X^{**}$, cioè scegliendo

$$\mathcal{F} = \{ val_x \in (X^*)' \mid x \in X \}.$$

Questa è la **topologia debole*** su X^* e la indichiamo $\sigma(X^*, X)$.

Osservazione~4.14.

La topologia debole* rende X^* uno SVTLC T_0 (e quindi Hausdorff), infatti se $f \in X^* \setminus \{0\}$ allora esiste $x \in X$ tale che $f(x) \neq 0$.

Osservazione 4.15.

In generale $\sigma(X^*, X)$ è meno fine di $\sigma(X^*, X^{**})$. Abbiamo uguaglianza solo quando $X = X^{**}$ in quanto se $X \neq X^{**}$ allora dalla proposizione (4.8) ricaviamo

$$(X^*, \sigma(X^*, X))^* = X \neq X^{**} = (X^*, \sigma(X^*, X^{**}))^*$$

e quindi in partenza $\sigma(X^*, X^{**}) \neq \sigma(X^*, X)$

Osservazione 4.16.

Poiché $(X, \|\cdot\|) \hookrightarrow (X^{**}, \|\cdot\|)$ isometricamente allora $(X, \sigma(X, X^*))$ ha la topologia indotta come sottospazio da³ $(X^{**}, \sigma(X^{**}, X^*))$.

²vedi lemma (4.7)

³nota che X^* lo si può pensare come immerso in $X^{***}=(X^{**})^*$, quindi stiamo considerando la topologia debole su $(X^*)^*$

Dimostrazione.

Questo deriva dalla transitività della topologia iniziale (A.3) dove la prima famiglia è la mappa $X \hookrightarrow X^{**}$ e l'unica altra famiglia sono gli elementi di X^* che vanno verso \mathbb{K}

4.2 Limitatezza

Definizione 4.17 (Insieme limitato).

Un sottoinsieme S di uno SVT X con \mathcal{U} intorni di 0 è **limitato** se è assorbito da ogni elemento di \mathcal{U} , cioè⁴ per ogni $U \in \mathcal{U}$ esiste $n \in \mathbb{N}$ tale che $nU \supseteq S$.

Osservazione 4.18.

Valgono le seguenti proprietà

- 1. Se S è limitato allora anche \overline{S} lo è, basta considerare intorni chiusi.
- 2. Se $S \in S'$ sono limitati, $S \cup S'$ lo è.
- 3. Ogni compatto è limitato, basta scegliere un intorno limitato di x per ogni $x \in K$ e poi estrarre un sottoricoprimento finito. Un tale intorno esiste scalando intorni di 0 bilanciati.
- 4. Ogni $T:X\to Y$ lineare e continua tra SVT è limitata, cioè per ogni $S\subseteq X$ limitato, T(S) è limitato. In generale non vale il viceversa ma vale se X e Y sono normati.

Proposizione 4.19 (Limitatezza in SVTLC).

Se (X, \mathcal{P}) è SVTLC allora $S \subseteq X$ è limitato se e solo se per ogni seminorma $p \in \mathcal{P}$, p è limitata su S.

Dimostrazione.

 \boldsymbol{p} limitata su \boldsymbol{S} significa che

$$S \subseteq B_p(0, R_p) = \frac{R_p}{\varepsilon} B_p(0, \varepsilon)$$

e le palle $\{B_p(0,\varepsilon)\}_{p\in\mathcal{P},\varepsilon>0}$ sono una prebase di intorni di $0\in X$.

Corollario 4.20.

Se $(X, \|\cdot\|)$ è normato allora S è limitato se e solo se $\exists R > 0$ tale che $S \subseteq B(0, R)$.

Esercizio 4.21.

Se X è I-numerabile e $T: X \to Y$ lineare tale che per ogni $x_k \to 0$ in X esiste x_{k_j} tale che $T(x_{k_j})$ limitata allora T è continua.

Proposizione 4.22 (Caratterizzazione sequenziale della limitatezza).

Se X SVT e $S \subseteq X$, S è limitato se e solo se per ogni (s_k) successione in S e per ogni (α_k) successione in \mathbb{K} infinitesima, si ha $\alpha_k s_k \to 0$.

Dimostrazione.

Sia S limitato, (s_k) successione in S e (α_k) successione infinitesima in \mathbb{K} . Sia U intorno bilanciato di 0 e sia n tale che $S \subseteq nU$. Notiamo che definitivamente $|\alpha_k| < \frac{1}{n}$, quindi

$$\alpha_k s_k \in \alpha_k S \subseteq \alpha_k nU \stackrel{\text{k grande}}{\subseteq} U.$$

⁴questa condizione è equivalente a chiedere $tU \supseteq S$ per ogni t con $|t| \ge n$ o a chiedere che l'assorbimento valga per elementi di una pre-base di intorni di 0 al posto di tutti gli elementi di U

Supponiamo ora S non limitato, allora esiste $U \in \mathcal{U}_X$ che non assorbe S, cioè per ogni $n \in \mathbb{N}$ esiste $s_n \in S \setminus nU$. Dunque (s_n) è una successione in S tale che $\frac{1}{n}s_n \notin U$ per costruzione, dunque $\frac{1}{n}s_n$ non tende a $0 \in X$ nonostante $\frac{1}{n}$ sia infinitesima. \square

Proposizione 4.23.

Le successioni di Cauchy sono limitate.

Dimostrazione.

Sia (x_k) una successione di Cauchy in X, cioè per ogni $U \in \mathcal{U}_X$ esiste $n \in \mathbb{N}$ tale che per ogni $p, q \geq n$ si ha $x_p - x_q \in U$.

Fissiamo $U \in \mathcal{U}_X$ e sia V bilanciato tale che $V + V \subseteq U$. Per la definizione di successione di Cauchy esiste n_0 tale che $x_k - x_{n_0} \in V$ per ogni $k \geq n_0$, cioè $x_k \in x_{n_0} + V$.

Inoltre, esiste m tale che $x_k \in mV$ per ogni $k \leq n_0$ dato che un insieme finito è limitato. Allora per ogni $k \in \mathbb{N}$ si ha $x_k \in mV + V$, infatti se $k \leq n_0$ allora abbiamo mV, se $k > n_0$ allora $x_{n_0} \in mV$ e $x_k \in x_{n_0} + V \subseteq mV + V$.

Poiché V è bilanciato, $mV + V \subseteq mV + mV = m(V + V) \subseteq mU$.

4.3 Spazi di Baire e II-categoria

Teorema 4.24 (Baire).

Se $\{A_k\}_{k\in\mathbb{N}}$ è una famiglia numerabile di aperti densi di uno spazio metrico completo allora $\bigcap A_k$ è denso.

Dimostrazione.

Per induzione si definisce una successione di palle chiuse di X dove B_0 è arbitraria e

$$B_k = \overline{B(x_k, r_k)}$$
 tali che $B_{k+1} \subseteq B_k \cap A_k$ e $r_k = o(1)$

che possiamo fare perché A_k è un aperto denso.

Allora la successione dei centri è una successione di Cauchy, infatti se $p,q \geq n$ si ha $x_p, x_q \in B_n$ e quindi $d(x_p, x_q) \leq 2r_n$. Dunque $x_n \to x^*$ in X per completezza. Inoltre, poiché $x_k \in B_n$ definitivamente, $x^* = \lim x_k \in B_n$ per ogni n (dato che B_n è chiuso). In particolare $x^* \in B_{n+1} \subseteq A_n$ per ogni n e quindi $x^* \in \bigcap A_n$. Per costruzione $x^* \in B_0$, quindi per ogni palla B_0 abbiamo mostrato che $B_0 \cap \bigcap A_n \neq \emptyset$, cioè $\bigcap A_n$ è denso.

Esercizio 4.25.

La stessa conclusione vale se X è localmente compatto al posto di metrico completo.

Definizione 4.26 (Spazio di Baire).

Uno spazio topologico è **di Baire** se ogni intersezione numerabile di aperti densi è densa.

Osservazione~4.27.

Ogni aperto non vuoto di X di Baire è ancora di Baire. Basta verificare che ogni aperto denso di A è della forma $A \cap U$ con U aperto denso di X.

Definizione 4.28 (Sottoinsieme di I- e II-categoria).

Un sottoinsieme S di X è di **I-categoria (di Baire) in** X se è unione numerabile di insiemi $(E_i)_{i\in\mathbb{N}}$ con $int(\overline{E_i}) = \emptyset$.

Inoltre S è di **II-categoria** (di Baire) in X se non è di I-categoria.

Osservazione~4.29.

Se X è di Baire e $S \subseteq X$ è di I-categoria allora $X \setminus S$ è di II-categoria in quanto X stesso è di II-categoria (se $X = \bigcup E_i$ con E_i chiusi a parte interna vuota allora $\emptyset = \bigcap E_i^c$ con E_i^c aperti densi, ma questo è assurdo perché X di Baire).

4.4 Teorema di Banach-Steinhaus

Definizione 4.30 (Famiglia equicontinua).

Una famiglia Γ di operatori lineari continui fra SVT X e Y è **equicontinua** se per ogni $U \in \mathcal{U}_Y$ esiste $V \in \mathcal{U}_X$ tale che per ogni $T \in \Gamma$, $T(V) \subseteq U$.

Osservazione 4.31.

Possiamo riformulare la condizione nei seguenti modi: per ogni $U \in \mathcal{U}_Y$ esiste $V \in \mathcal{U}_X$ tale che

$$\forall T \in \Gamma, \ V \subseteq T^{-1}(U) \Longleftrightarrow V \subseteq \bigcap_{T \in \Gamma} T^{-1}(U) \doteqdot \Gamma^{-1}(U).$$

Equivalentemente la condizione predica che per ogni $V \in \mathcal{U}_Y$ si abbia $\Gamma^{-1}(V) \in \mathcal{U}_X$.

Osservazione 4.32.

Se $T: X \to Y$ fra spazi normati, la norma degli operatori

$$||T|| = ||T||_{\infty, B(0,1)} = \text{migliore costante di Lipschitz per } T.$$

Esempio 4.33.

Se X e Y sono normati, Γ è equicontinua se e solo se Γ è limitato in L(X,Y) rispetto alla norma degli operatori.

Teorema 4.34 (Banach-Steinhaus / Uniforme limitatezza).

Siano X,Y SVT, $S \subseteq X$ di seconda categoria e $\Gamma \subseteq L(X,Y)$ con Γ puntualmente limitata su $S \subseteq X$, cioè per ogni $s \in S$, $\Gamma(s) = \bigcup_{T \in \Gamma} T(s)$ è limitato in Y.

Allora Γ è equicontinua.

Dimostrazione.

Sia $U \in \mathcal{U}_Y$ e consideriamo $V \in \mathcal{U}_Y$ chiuso tale che $V - V \subseteq U$. Per ipotesi, per ogni $x \in S$ si ha che $\Gamma(x)$ è limitato in Y, quindi viene assorbito da V, cioè esiste $n_x \in \mathbb{N}$ tale che per ogni $T \in \Gamma$ si ha $T(x) \in n_x V$, cioè tale che

$$x\in \bigcap_{T\in \Gamma} n_x T^{-1}(V)=n_x\bigcap_{T\in \Gamma} T^{-1}(V)=n_x \Gamma^{-1}(V).$$

Dunque $S\subseteq \bigcup_{n\in\mathbb{N}}n\Gamma^{-1}(V)$. Notiamo che poiché V è chiuso, $T^{-1}(V)$ è chiuso e quindi anche $\Gamma^{-1}(V)$ lo è perché intersezione di chiusi. Poiché S è di seconda categoria anche l'unione delle versioni riscalate di $\Gamma^{-1}(V)$ lo è, dunque questo insieme non è unione numerabile di chiusi con parte interna vuota, quindi almeno uno tra gli $n\Gamma^{-1}(V)$ ha parte interna non vuota, quindi anche $\Gamma^{-1}(V)$ ha parte interna non vuota scalando per $\frac{1}{n}$.

Quindi $\Gamma^{-1}(V)$ è intorno di qualche suo punto, dunque⁵ $\Gamma^{-1}(V) - \Gamma^{-1}(V)$ è un intorno di 0.

Ricordando che $V - V \subseteq U$ si ha

$$T^{-1}(U \supseteq T^{-1}(V - V) = T^{-1}(V) - T^{-1}(V)) \supseteq \Gamma^{-1}(V) - \Gamma^{-1}(V)$$

quindi passando all'intersezione su $T \in \Gamma$ si ha

$$\Gamma^{-1}(U) \supset \Gamma^{-1}(V) - \Gamma^{-1}(V) \in \mathcal{U}_X$$

cioè abbiamo mostrato che per ogni $U \in \mathcal{U}_Y$ si ha $\Gamma^{-1}(U) \in \mathcal{U}_X$, che è equivalente all'equicontinuità di Γ .

⁵se $a_0 \in int(A)$ allora $A - a_0 \subseteq A - A$ è un intorno di 0.

Corollario 4.35 (Sottoinsiemi limitati di operatori).

Se X e Y sono Banach e $\Gamma \subseteq L(X,Y)$ è puntualmente limitata in X (o volendo anche un sottoinseme di X di II-categoria) allora Γ è un insieme limitato in L(X,Y).

Dimostrazione.

Diretta applicazione di Banach-Stenhaus (4.34) notando che spazi di Banach sono in particolare SVT e che equicontinuità per la norma su L(X,Y) significa limitatezza. **********

Esercizio 4.36.

Siano X, Y SVT. Trovare la topologia meno fine τ di SVT su L(X,Y) per la quale

 Γ puntualmente limitato in $L(X,Y) \iff \Gamma$ limitato nella topologia τ .

Corollario 4.37.

Siano X e Y Banach e sia $(T_n) \subseteq L(X,Y)$ puntualmente convergente. Allora il limite T è ancora lineare, continuo e con norma

$$||T|| \leq \liminf_{n \to \infty} ||T_n||.$$

Dimostrazione.

Per il corollario precedente (4.35) si ha che (T_n) sono limitati in $\|\cdot\|$ e il limite puntuale è lineare in quanto

$$T_n(\alpha x + \beta y) = \alpha T_n(x) + \beta T_n(y) \rightarrow \alpha T(x) + \beta T(y).$$

Questo mostra che T è limitato e lineare, quindi $T \in L(X,Y)$.

Inoltre per ogni $x \in X$ si ha

$$||T(x)|| = \lim_{n} ||T_n(x)|| \le \left(\sup_{n} ||T_n||\right) ||x||,$$

quindi $||T|| \leq \sup_n ||T_n||$. Ragionando analogamente per una sottosuccessione di (T_n) che in norma converge a lim $\inf_n ||T_n||$ ricaviamo

$$||T|| \leq \liminf_{n} ||T_n||.$$

Osservazione 4.38.

In generale NON vale $T_n \to T$ in $\|\cdot\|$.

Proposizione 4.39 (Bilineare separatamente continua è continua).

Sia $b: X \times Y \to Z$ bilineare e separatamente continua, cioè per ogni $x \in X, y \in Y$ si ha che $b(x,\cdot): Y \to Z$ e $b(\cdot,y): X \to Z$ sono lineari e continue. Allora b è continua, cioè

$$\sup_{\|x\| \le 1, \|y\| \le 1} \|b(x, y)\| < \infty.$$

Dimostrazione.

Consideriamo la famiglia

$$\Gamma = \{b(x,\cdot): Y \to Z\}_{x \in X, \ \|x\| \le 1} \subseteq L(Y,Z).$$

Per ipotesi Γ è puntualmente limitata in Y, infatti per ogni $y \in Y$

$$\sup_{b(x,\cdot)\in\Gamma}\|b(x,\cdot)\|_{L(Y,Z)}=\sup_{\|x\|\leq 1}\|b(x,y)\|_{Z}=\|b(\cdot,y)\|_{L(X,Z)}\,\|y\|<\infty$$

Allora Γ è limitata in $\lVert \cdot \rVert_{L(Y,Z)},$ cio
è per ogni $x \in X$ tale che $\lVert x \rVert \leq 1$ si ha

$$\left\|b(x,y)\right\|_{Z} \leq M \left\|y\right\|$$

e quindi al variare di y con $||y|| \le 1$ troviamo $||b||_{L(X \times Y, Z)} \le M$.

Esercizio 4.40.

Esiste una isometria lineare

$$\begin{array}{ccc} L(X,L(Y,Z)) & \longrightarrow & L^2(X\times Y,Z) \\ T & \longmapsto & (x,y) \mapsto T(x)(y) \end{array}$$

dove $L^2(X \times Y, Z)$ sono le bilineari.

Proposizione 4.41 (w*-limitato vs limitato in $\|\cdot\|_{X^*}$).

Sia $Y = \mathbb{K}$ e X Banach. Sia $\Gamma \subseteq X^*$, allora Γ è w^* -limitato se e solo se è limitato in $\|\cdot\|_{X^*}$.

Dimostrazione.

Essere limitato nella topologia debole* significa "essere assorbito da ogni intorno w* di X^* " cioè, usando intorni di prebase, essere assorbiti da insiemi della forma

$$\{f \in X^* \mid |f(x)| < 1\}$$

per $x \in X$. Notiamo che Γ viene assorbito da $\{f \in X^* \mid |f(x)| < 1\}$ significa $\Gamma(x)$ limitato in \mathbb{K} . Per il corollario (4.35) si ha che Γ è limitato in $L(X,\mathbb{K}) = X^*$.

L'altra implicazione è ovvia perché la norma operatore già rende continui gli operatori e indebolire la topologia non può trasformare un insieme limitato in uno non limitato.

Osservazione~4.42.

Se $E\subseteq F$ è un sottospazio allora $\Gamma\subseteq E$ è limitato in F se e solo se è limitato in E per la topologia indotta.

Proposizione 4.43.

Sia $\Gamma \subseteq X$, allora Γ è w-limitato se e solo se è $\|\cdot\|$ -limitato.

Dimostrazione.

Se Γ è $\sigma(X, X^*)$ -limitato allora tramite l'immersione isometrica $X \to X^{**}$ troviamo un insieme $\sigma(X^{**}, X^*)$ -limitato. A questo punto basta applicare la proposizione precedente (4.41).

Capitolo 5

Lemma di iterazione e Iniettività / Surgettività di mappe lineari

5.1 Lemma di iterazione

Lemma 5.1 (di iterazione).

Siano X e Y spazi di Banach, B palla unitaria chiusa di X, $T \in L(X,Y)$, U limitato, $U \subseteq Y$ tali che se 0 < t < 1 allora

$$U \subseteq TB + tU$$
.

Allora si ha $(1-t)U \subseteq TB$.

Dimostrazione.

Sia $u_0 \in U$, allora esistono $x_0 \in B$ e $u_1 \in U$ tali che

$$u_0 = T(x_0) + tu_1$$

Iterando troviamo $u_2 \in U$ e $x_1 \in B$ tali che $u_1 = T(x_1) + tu_2$ e così via. Questo definisce quindi due successioni $(u_n) \subseteq U$ e $(x_n) \subseteq B$. Notiamo che per ogni $n \in \mathbb{N}$

$$u_0 = t^{n+1}y_{n+1} + \sum_{i=0}^{n} t^i T(x_i) = T\left(\sum_{i=0}^{n} t^i x_i\right) + t^{n+1}y_{n+1}.$$

Poiché X è completo, la serie $\sum_{i=0}^{\infty} t^i x_i$ converge ad un punto $x^* \in \frac{1}{1-t}B$ in quanto $\sum_{i=0}^{\infty} t^i = \frac{1}{1-t}$.

Poiché U è limitato esiste M>0 tale che $U\subseteq B(0,M)$, quindi $||t^{n+1}y_{n+1}||\leq t^{n+1}M$ e questa successione converge a 0 quindi $t^{n+1}y_{n+1}$ converge a 0. Segue che

$$y_0 = \lim_{n \to \infty} T\left(\sum_{i=0}^n t^i x_i\right) + \underbrace{t^{n+1} y_{n+1}}_{=o(1)} \stackrel{T \text{ continua}}{=} T\left(\lim_{n \to \infty} \sum_{i=0}^n t^i x_i\right) = T(x^*)$$

quindi $y_0 \in \frac{1}{1-t}TB$, cioè

$$U \subseteq \frac{1}{1-t}TB \iff (1-t)U \subseteq TB.$$

Osservazione 5.2.

Se U è un intorno di 0 limitato in Y, o anche U assorbente, allora T è surgettivo.

Teorema 5.3 (Lemma di Urysohn).

Se X è normale e F_0 , F_1 sono chiusi disgiunti di X allora esiste f tale che $F_0 = \{f = 0\}$ e $F_1 = \{f = 1\}$.

Teorema 5.4 (Teorema di estensione di Tietze).

Se X è T4, Y \subseteq X chiuso, $f \in C^0(Y,\mathbb{R})$, allora f si estende ad una continua su X.

Dimostrazione.

Basta il caso di f limitata tanto la continuità è una condizione che è invariante componendo per un omeomorfismo e $\mathbb{R} \cong (0,1)$.

La tesi è che l'operatore di restrizione (il quale è lineare e continuo)

$$R: C_b^0(X) \to C_b^0(Y)$$

è surgettivo. Basta applicare il lemma (5.1) come segue:

$$3B_{C_b(Y)} \subseteq R\left(B_{C_b(X)}\right) + 2B_{C_b(Y)}$$

e chiamiamo $U=3B_{C_b(Y)},\ T=(2/3)\cdot.$ Sia $f\in 3B_{C_b(Y)}.$ Per il lemma di Urysohn esiste $g:X\to [-1,1]$ continua tale che g=-1 su $\{x\in Y\mid 3\leq f\leq -1\}$ e g=1 su $\{x\in Y\mid 3\geq f\geq 1\}$ (i due insiemi sono chiusi perché Y è chiuso e f è continua).

$$f = g_{|_{Y}} + (f - g_{|_{Y}})$$

ma notiamo allora che $g \in B_{C_b(X)}$ e quindi $g|_Y \in R(B_{C_b(X)})$, mentre $f - g|_Y \in 2B_{C_b(Y)}$, infatti su $\{x \in Y \mid -3 \le f \le -1\}$ abbiamo g = -1 e quindi $\|f - g\|_{\infty,Y} \le 2$, su $\{x \in Y \mid 3 \ge f \ge 1\}$ abbiamo g = 1 e quindi di nuovo $\|f - g\|_{\infty,Y} \le 2$, e infine sui punti rimanenti, siccome $f \in 3B_{C_b(Y)}$, si ha $\|f\| \le 1$ e stesso per g, quindi $\|f - g|_Y\|_{\infty,Y} \le 2$ di nuovo.

Questo verifica le ipotesi del lemma di iterazione (5.1), quindi

$$(1-2/3)B_{C_h(Y)} \subseteq R(B_{C_h(X)}).$$

Teorema 5.5 (Dugundji).

Sia (M,d) spazio metrico, $A \subseteq M$ chiuso, E banach e $f: A \to E$ continua (basta limitata) allora esiste una estensione di f continua a tutto M con la stessa norma.

Osservazione 5.6.

In realtà l'estensione di f a M si può dare come un operatore di estensione

$$\mathcal{E}: C_b(A, E) \to C_b(M, E).$$

Questo operatore è inverso destro dell'operatore di restrizione $R: C_b(M, E) \to C_b(A, E)$ che abbiamo usato nel teorema di Tietze (5.4).

Teorema 5.7 (Sollevamento per operatori lineari / Bartles-Groves).

Sia $L: E \to F$ lineare continuo surgettivo con E, F banach. M spazio metrico e

 $f:M\to F$ continua, allora f si può sollevare a E, cioè esiste $\widetilde{f}:M\to E$ continua tale che $f=L\circ\widetilde{f}$.

$$M \xrightarrow{\widetilde{f}} F$$

$$M \xrightarrow{f} F$$

In altre parole, è surgettivo l'operatore (lineare e continuo)

$$L_*: \begin{array}{ccc} C_b(M,E) & \longrightarrow & C_b(M,F) \\ g & \longmapsto & L \circ g \end{array}.$$

Dimostrazione.

Applichiamo il lemma di surgettività lineare come segue: sia $f \in C_b(M, E)$ e consideriamo un sollevamento approssimato g costruito con partizioni dell'unità a partire da sollevamenti approssimati locali che sono costanti.

Osservazione~5.8.

Se M=F e $f=id_F$ allora questo restituisce una inversa destra continua (ma possibilmente non lineare) σ di L. Quindi ogni operatore lineare surgettivo ammette una inversa destra continua. Inoltre se L non ammette inversa destra lineare allora σ non è neanche differenziabile in alcun punto (se fosse differenziabile $L \circ \sigma = id \implies L \circ \mathcal{D}\sigma = id$)

Osservazione 5.9.

Se X,Y banach, l'insieme degli operatori surgettivi $\mathcal{SU}=\{L\in L(X,Y,L\text{ surg})\}$ è aperto in L(X,Y).

Dimostrazione.

Se $T \in \mathcal{SU}(X,Y)$ allora esso induce

Sia $k = (\|\widetilde{T}^{-1}\|)^{-1} \in \mathbb{R}$, allora per ogni $H \in L(X,Y)$ con $\|H\| < k$ abbiamo $T + H \in \mathcal{SU}(X,Y)$: per definizione di k vale $\widetilde{T}^{-1}(B_Y) \subseteq \frac{1}{k}B_X$ perché $\frac{1}{k} = \|\widetilde{T}^{-1}\|$ e quindi

$$kB_Y \subseteq TB_X = \widetilde{T}(\pi B_X) = \widetilde{T}(B_{X/\ker T})$$

Dunque

$$kB_Y \subseteq TB_X \subseteq (T+H)B_X + HB_X \subseteq (T+H)B_X + \frac{\|H\|}{k}(kB_Y)$$

quindi T+H verifica le ipotesi del lemma di iterazione (5.1) con $t=\frac{\|H\|}{k}<1$.

5.1.1 Teorema della mappa aperta

Teorema 5.10 (Mappa aperta).

Siano X, Y Banach e $T: X \to Y$ lineare continuo e tale che T(X) è di II-categoria in Y (per esempio T surgettivo). Allora T è una mappa aperta.

Dimostrazione.

Sia B la palla unitaria chiusa di X. Basta mostrare che T(B) è un intorno di 0 in Y (per omotetia e traslazione seguirà che T manda intorni di x in intorni di T(x), cioè è aperta). Notiamo che

$$X = \bigcup_n nB \implies T(X) = \bigcup_n nT(B)$$

Per ipotesi T(X) è di II-categoria in Y, quindi per qualche n si ha che $\overline{nT(B)}$ ha parte interna non vuota e quindi $\overline{T(B)}$ stesso ha parte interna non vuota. Poiché¹

$$\overline{T(B)} - \overline{T(B)} \subseteq \overline{T(B-B)} = \overline{T(2B)} = 2\overline{T(B)}$$

si ha che $\overline{T(B)}$ è un intorno di $0 \in Y$.

Mostriamo ora che T(B) stesso è un intorno di 0. Poiché la chiusura è l'intersezione degli aperti che contengono T(B) si ha in particolare che

$$\overline{T(B)} = T(B) + \frac{1}{2}\overline{T(B)}.$$

Siccome T è continua, T(B) è limitato e quindi $\overline{T(B)}$ è limitato, quindi per il lemma di iterazione (5.1) di ha

$$\left(1 - \frac{1}{2}\right)\overline{T(B)} \subseteq T(B) \Longleftrightarrow \overline{T(B)} \subseteq 2T(B),$$

in particolare T(B) è un intorno di 0 per omotetia.

Osservazione 5.11 (Lineare continuo allora omeo se e solo se bigettivo).

Un operatore lineare continuo è un omeomorfismo se e solo se è bigettivo. Questo è immediato da mappa aperta (5.10).

Osservazione 5.12.

Se $T: X \to Y$ lineare continuo allora induce

con \widetilde{T} lineare continua iniettiva. Se T è surgettiva allora per il teorema della mappa aperta (5.10) \widetilde{T} è un omeomorfismo lineare.

Osservazione 5.13.

Se $T: X \to Y$ è lineare e continua allora

aperta
$$\iff$$
 surgettiva \iff identificazione.

In questo caso la mappa è $(x,y)\mapsto x-y$ e usiamo il fatto che T è lineare e

$$\overline{T(B) \times T(B)} = \overline{T(B)} \times \overline{T(B)}$$
.

¹ricorda che in generale se f è continua allora $f(\overline{A}) \subseteq \overline{f(A)}$.

Teorema 5.14 (Grafico chiuso).

Siano X, Y Banach, $T: X \to Y$ lineare. Allora T è continua se e solo se

$$\Gamma = \{(x, T(x)) \in X \times Y \mid x \in X\}$$

è chiuso.

Dimostrazione.

Data una qualsiasi mappa continua $f: X \to Y$ con Y Hausdorff si ha che Γ è la preimmagine della diagonale di $Y \times Y$ rispetto alla mappa $id_Y \times f$. Poiché Y è un Banach (e quindi metrico e quindi T_2) effettivamente abbiamo la prima implicazione.

Supponiamo ora che Γ sia chiuso. Poiché $X\times Y$ è prodotto di Banach esso stesso è banach e quindi Γ è banach perché chiuso di un Banach. Osserviamo ora che

$$T(x) = P_Y((x, T(x))) = P_Y((P_X|_{\Gamma})^{-1}(x)) \implies T = P_Y \circ (P_X|_{\Gamma})^{-1}.$$

Poiché $P_{X|_{\Gamma}}$ è bigettiva, continua e lineare, per il teorema della mappa aperta (5.10) essa è un omeomorfismo, quindi T è continuo in quanto composizione di P_Y e $P_{X|_{\Gamma}}^{-1}$ continue.

Esercizio 5.15.

Sia $T:X\to Y$ lineare fra Banach. Controntare la continuità di T con le topologie forti e deboli di X e Y

$$(X, w) \rightarrow (Y, w)$$

 $(X, w) \rightarrow (Y, s)$
 $(X, s) \rightarrow (Y, w)$
 $(X, s) \rightarrow (Y, s)$

Dimostrazione.

Hint: usare grafico chiuso (5.14) ricordando che sottospazi vettoriali di Banach sono chiusi forti se e solo se sono chiusi deboli e osservando chi è la topologia debole di $X \times Y$ (topologia prodotto)

Tre di queste nozioni sono equivalenti e una no. Quella diversa è più forte? Più debole? $\hfill\Box$

Norme confrontabili

Proposizione 5.16 (Norme confrontabili su Banach sono equivalenti).

Due norme su Banach confrontabili sullo stesso K-spazio vettoriale sono equivalenti.

Dimostrazione.

Se le norme sono confrontabili, id_X è continua se sul dominio consideriamo la topologia più fine. Chiaramente id_X è lineare, quindi per il teorema della mappa aperta (5.10) si ha che id_X è aperta. Poiché id_X è bigettiva questo mostra che id_X è un omeomorfismo.

Esercizio 5.17.

Su uno spazio normato X di dimensione infinita esistono sempre forme lineari non continue.

Osservazione 5.18.

Esistono $L: X \to X$ lineari bigettive non continue

Dimostrazione.

Fisso f forma discontinua e fisso $u \in X$, definiamo

$$L(x) = x + f(x)u$$

e notiamo che

$$L^{2}(x) = L(x + f(x)u) = L(x) + f(x)L(u) =$$

$$= x + f(x)u + f(x)(u + f(u)u) =$$

$$= x + (2f(x) + f(x)f(u))u.$$

Se u è tale che f(u) = -2 allora $L^2 = id_X$, cioè L involuzione. In particolare L è bigettiva ma continua se e solo se f lo è, e non lo è quindi L non continua su $(X, \|\cdot\|_1)$ Banach.

Poniamo $\|x\|_2 = \|L(x)\|_2$. Notiamo che $\|\cdot\|_2$ rende X Banach in quanto L: $(X, \|\cdot\|_1) \to (X, \|\cdot\|_2)$ è una isometria. Notiamo dunque che $\|\cdot\|_1$ e $\|\cdot\|_2$ sono norme che rendono X banach e che non sono equivalenti (L è discontinua per $\|\cdot\|_1$ ma continua per $\|\cdot\|_2$).

Esercizio 5.19.

Siano $\|\cdot\|_1$, $\|\cdot\|_2$ norme sullo stesso X e sia $\|\cdot\|_3 = \|\cdot\|_1 + \|\cdot\|_2$. Allora

- 1. Una successione (x_n) converge a $x \in X$ in $\|\cdot\|_3$ se e solo se converge a x in $\|\cdot\|_1$ e $\|\cdot\|_2$.
- 2. (x_n) è di Cauchy in X se e solo se è di Cauchy sia per $\|\cdot\|_1$ che per $\|\cdot\|_2$.

Esercizio 5.20.

TROVA L'IMBROGLIO:

"Proposizione." Tutte le norme di Banach sullo stesso X sono equivalenti.

"Dimostrazione".

Siano $\|\cdot\|_1$ e $\|\cdot\|_2$ di Banach. Notiamo che $\|\cdot\|_3$ è più fine della altre due e che (x_n) è di Cauchy per $\|\cdot\|_3$ se e solo se lo è per le altre due, quindi per il punto 1. della proposizione precedente la successione converge in $\|\cdot\|_3$. Segue dunque che, poiché $\|\cdot\|_3$ è più fine allora è confrontabile con le altre due, quindi le tre norme sono equivalenti.

5.2 Iniettività e surgettività di mappe lineari

Cerchiamo di capire che relazione c'è tra iniettività e surgettività delle mappe T e T^* per $T:X\to Y$ lineare continua.

5.2.1 Forte iniettività

Definizione 5.21 (Forte iniettività).

Una mappa $T:X\to Y$ lineare continua è **fortemente iniettiva** se esiste c>0 tale che

$$\forall x \in X \qquad ||T(x)|| \ge c ||x||.$$

Proposizione 5.22.

Se X e Y sono banach e $T: X \to Y$ lineare continua, T è fortemente iniettiva se e solo se T è iniettiva e Imm T è chiuso.

Dimostrazione.

Diamo le implicazioni

- Iniettiva ok. Sia $T': X \to \operatorname{Imm} T \subseteq Y$ la stessa mappa di T ma con codominio ristretto. Notiamo che T' è invertibile perché iniettiva e surgettiva per costruzione e che ha inversa continua per la disuguaglianza in ipotesi, quindi $\operatorname{Imm}(T)$ è Banach perché X è Banach e quindi $\operatorname{Imm} T$ è chiuso in Y.
- Se T è iniettiva con immagine chiusa allora $T': X \to \operatorname{Imm} T$ è invertibile. Inoltre, poiché $\operatorname{Imm} T$ è Banach perché chiuso di Y, si ha che per mappa aperta (5.10) vale $(T')^{-1}$ continua, cioè T fortemente iniettiva.

Proposizione 5.23 (Retrazioni e sezioni per lineari continue). Sia $T \in L(X,Y)$ con X,Y Banach. Allora $T \stackrel{.}{e} una^2$

- $inversa\ destra \iff iniettiva\ e\ {\rm Imm}\ T\ \grave{e}\ complementato^3$
- $inversa\ sinistra \iff surgettivo\ e\ \ker T\ \grave{e}\ complementato.$

Dimostrazione.

Se $T:X\to Y$ e $S:Y\to X$ sono una coppia tale che $S\circ T=id_X$ allora $T\circ S=P$ è un proiettore lineare continuo, infatti

$$P^2 = (T \circ S) \circ (T \circ S) = T \circ id_X \circ S = T \circ S.$$

Quindi $Y = \ker P \oplus \operatorname{Imm} P$ e $\ker P = \ker S$, $\operatorname{Imm} P = \operatorname{Imm} T$, ovvero

$$Y = \ker S \oplus \operatorname{Imm} T$$

come volevamo.

Viceversa, se T è iniettivo e $\operatorname{Imm} T$ è complementata (rispettivamente S è surgettivo e $\ker S$ complementato) allora considero un proiettore $P_{\operatorname{Imm} T}$ (ok per la decomposizione in somma diretta) e definisco $S = (T')^{-1} \circ P_{\operatorname{Imm} T}$ che è inversa sinistra di T (rispettivamente definisco un proiettore Q su $\ker S$ con $id_Y - Q$ proiettore sul supplementare V fissato di $\ker S$, a questo punto considero $S|_V^{-1}$, che diventa inversa destra).

Teorema 5.24 (Surgettività e aggiunti).

Sia $T \in L(X,Y)$ con X,Y banach e tale che T^* fortemente iniettivo (iniettivo più immagine chiusa). Allora T è surgettivo.

Dimostrazione.

Senza perdita di generalità supponiamo $||T^*y|| \ge ||y||$ (ricordiamo che fortemente iniettivo significa $||T^*y|| \ge k ||y||$ per qualche k < 1, ma a meno di riscalare T supponiamo k = 1). Sia 0 < t < 1 e mostriamo che $B_Y \subseteq TB_X + tB_Y$, così facendo possiamo invocare il lemma di iterazione (5.1) e mostrare $B_Y \subseteq T(B_X)$, in particolare T è surgettivo.

Supponiamo per assurdo che non valga $B_Y \subseteq TB_X + tB_Y$, allora esiste $y_0 \in B_Y$ tale che $y_0 \notin TB_X + tB_Y$ (convesso aperto). Per il teorema di Hahn-Banach in forma

 $^{^2}$ cio
è esiste $S:Y\to X$ tale che Tè l'inversa destra / sinistra d
iS.

³cioè esiste $V \subseteq Y$ tale che $Y = \operatorname{Imm} T \oplus V$.

di separazione di aperti convessi (3.26) esiste $y_0^* \in Y^* \setminus \{0\}$ tale che $\forall x \in B_X$ e $\forall y \in B_y$ si ha

$$\langle y_0^*, Tx + ty \rangle \le \langle y_0^*, y_0 \rangle \le ||y_0^*||$$

Allora

$$\langle T^* y_0^*, x \rangle + t \langle y_0^*, y \rangle \le ||y_0^*||$$

passando all'estremo superiore per $x \in B_X$ e $y \in B_Y$ troviamo

$$||T^*y_0|| + t ||y_0^*|| \le ||y_0^*||$$

cioè $||T^*y_0|| \le (1-t) ||y_0^*||$, contraddicendo l'ipotesi di forte iniettività $(||T^*y|| \ge ||y||$ per ogni y)

Osservazione 5.25.

In realtà vale anche T^* surgettivo se e solo se T fortemente iniettivo.

5.2.2 Polare, prepolare, annullatore, preannullatore

Definizione 5.26 (Assolutamente convesso).

Un insieme bilanciato e convesso si dice assolutamente convesso. Per un insieme S ha senso l'inviluppo assolutamente convesso

$$\operatorname{assco}(S) = \bigcap_{\substack{C \text{ ass.conv.} \\ C \supseteq S}} C = \left\{ \sum_{i=1}^{n} \lambda_{i} a_{i} \mid a_{1}, \cdots, a_{n} \in S, \ \lambda_{i} \in \mathbb{K}, \ \sum_{i=1}^{n} |\lambda_{i}| \leq 1 \right\} = \overline{B_{\mathbb{K}}(0, 1)} \operatorname{co}(S)$$

Definizione 5.27 (Polare e prepolare).

Sia X SVT, $A \subseteq X$, $B \subseteq X^*$. Definiamo la **polare di** A come

$$A^{0} = \{x^{*} \in X^{*} \mid |\langle x^{*}, x \rangle| \le 1, \ \forall x \in A\} = \bigcap_{x \in A} \{x\}^{0}$$

Definiamo $x^0 = \{x^* \in X^* \mid |\langle x^*, x \rangle| \le 1\} \supseteq \ker(\iota_X(x)).$

Definiamo il **prepolare** di B come

$$B_0 = \{x \in X \mid |\langle x^*, x \rangle| \le 1, \forall x^* \in B\} = \bigcap_{x^* \in B} \{x^*\}_0$$

Osservazione 5.28.

La polare di un qualche insieme è assolutamente convessa e w * -chiusa. La prepolare è assolutamente convessa e chiusa in X (anche forte).

Definizione 5.29 (Annullatore e preannullatore).

Sia X SVT, $A \subseteq X$ e $B \subseteq X^*$. Definiamo l'**annullatore** di A come

$$A^{\perp} = \left\{ x^* \in X^* \mid \langle x^*, x \rangle = 0, \ \forall x \in A \right\} = \bigcap_{x \in A} \operatorname{Ann}(x) = \bigcap_{x \in A} \left\{ x \right\}^{\perp}$$

e il **preannullatore** di B come

$$B_{\perp} = \{x \in X \mid \forall \langle x^*, x \rangle = 0, \ \forall x^* \in B\} = \bigcap_{x^* \in B} \ker x^* = \bigcap_{x^* \in B} (x^*)_{\perp}.$$

Osservazione~5.30.

Se A e B sono sottospazi vettoriali o coni in generale allora

$$A^0 = A^{\perp}, \quad B_0 = B_{\perp}.$$

Da ora in poi supponiamo $(X, \|\cdot\|)$ normato e sia $i_X : X \hookrightarrow X^{**}$.

Proposizione 5.31 (Polare e prepolare in normato).

Della definizione si ha

- $A^0 = (i_X(A))_0$
- $B_0 = i_X^{-1}(B^0) = B^0 \cap X$

Dimostrazione.

Segue dal fatto che $\langle x^*, x \rangle = \langle i_X(x), x^* \rangle$. Per esempio

$$\begin{split} A^0 &= \{x^* \in X^* \mid |\langle x^*, x \rangle| \leq 1, \forall x \in A\} = \\ &= \{x^* \in X^* \mid |\langle i_X(x), x^* \rangle| \leq 1, \forall x \in A\} = \\ &= \{x^* \in X^* \mid |\langle y, x^* \rangle| \leq 1, \forall y \in i_X(A) \subseteq X^{**}\} = (i_X(A))_0. \end{split}$$

Osservazione 5.32.

Per le palle unitarie chiuse vale

$$(B_X)^0 = B_{X^*}, \qquad (B_{X^*})_0 = B_X$$

dove per la seconda uguaglianza usiamo Hahn-Banach per dire $(B_{X^*})^0 \cap X = B_X$.

Proposizione 5.33.

Siano $A \subseteq X$ e $B \subseteq X^*$, allora

$$(A^0)_0 = \overline{\operatorname{assco}(A)}, \qquad (B_0)^0 = \overline{\operatorname{assco}(B)}^{w^*}.$$

Dimostrazione.

Dalla definizione è chiaro che $A \subseteq (A^0)_0$ e $B \subseteq (B_0)^0$. Poiché $(A^0)_0$ è assolutamente convesso e chiuso vale

$$(A_0)^0 \supseteq \overline{\operatorname{assco}(A)}$$

e per lo stesso motivo $(B_0)^0 \supseteq \overline{\mathrm{assco}(B)}^{w^*}$.

Sia $a \notin \overline{\operatorname{assco}(A)}$. Per Hahn-Banach (3.26) esiste⁴ $f_0 \in X_{\mathbb{R}}^*$ tale che $\langle f_0, a \rangle > \gamma \ge \langle f_0, x \rangle$ per ogni $x \in \overline{\operatorname{assco}(A)}$. A meno di riscalare f_0 supponiamo $\gamma = 1$. Allora $|\langle f_0, x \rangle| \le 1$ per ogni $x \in \overline{\operatorname{assco}(A)}$.

Se $\mathbb{K}=\mathbb{R}$ poniamo $f=f_0$, se $\mathbb{K}=\mathbb{C}$ allora poniamo $\langle f,x\rangle=\langle f_0,x\rangle-i\,\langle f_0,ix\rangle$ e notiamo che

$$\sup_{x \in \overline{\mathrm{assco}(A)}} |\langle f, x \rangle| = \sup_{x \in \overline{\mathrm{assco}(A)}} |\langle f_0, x \rangle|$$

Dunque $f \in A^0$, ma $|\langle f, a \rangle| \ge \langle f_0, a \rangle > 1$, quindi $a \notin (A^0)_0$. Questo mostra l'inclusione $(A^0)_0 \subseteq \operatorname{assco}(A)$.

 $^{{}^4}X_{\mathbb{R}}$ è X visto come \mathbb{R} -spazio vettoriale.

Osservazione~5.34.

 $(A^{\perp})_{\perp} = \overline{\operatorname{Span}(A)}$ e $(B_{\perp})^{\perp} = \overline{\operatorname{Span}(B)}^{w^*}$, infatti polare e prepolare coincidono con annullatore e preannullatore per coni e chiaramente

$$(A^{\perp})_{\perp} = (\operatorname{Span}(A)^{\perp})_{\perp}, \qquad (B_{\perp})^{\perp} = (\operatorname{Span}(B)_{\perp})^{\perp}.$$

Osservazione~5.35.

Se $A\subseteq X$ allora A è denso se e solo se $A^{\perp}=(0)$ e $B\subseteq X^*$ è w^* -denso se e solo se $B_{\perp}=(0).$

Proposizione 5.36 (Relazione tra nucleo e immagine tra $T \in T^*$). Se $T \in L(X,Y)$ allora

- $\ker T = (\operatorname{Imm} T^*)_{\perp}$
- $\ker T^* = (\operatorname{Imm} T)^{\perp}$
- $(\ker T)^{\perp} = \overline{\operatorname{Imm} T^*}^{w^*}$
- $(\ker T^*)_{\perp} = \overline{\operatorname{Imm} T}$.

Dimostrazione.

Abbiamo una catena di equivalenze

$$x \in \ker T$$

$$Tx = 0$$

$$\langle y^*, Tx \rangle = 0 \quad \forall y^* \in Y^*$$

$$\langle T^*y^*, x \rangle = 0 \quad \forall y^* \in Y^*$$

$$x \in (\operatorname{Imm} T^*)_{\perp}.$$

dove la seconda equivalenza è data da Hahn-Banach (3.4). Segue che $(\ker T)^{\perp} = ((\operatorname{Imm} T^*)_{\perp})^{\perp} = \overline{\operatorname{Imm} T^*}^{w^*}$.

L'altro caso si fa allo stesso modo.

Corollario 5.37 (Iniettività e aggiunti).

Sia $T \in L(X,Y)$, allora

$$T \text{ iniettivo } \iff \operatorname{Imm} T^* \ \hat{e} \ w^*\text{-denso in } X^*$$

 $T^* \text{ iniettivo } \iff \operatorname{Imm} T \ \hat{e} \text{ denso in } Y$

Dimostrazione.

Segue da (5.36), dove però per dire che $(\ker T)^{\perp} = X^* \implies \ker T = (0)$ stiamo usando Hahn-Banach (3.4) (se $\ker T$ contiene un vettore non nullo allora possiamo costruire un elemento di X^* che non si annulla su quel vettore, e quindi che non si annulla su $\ker T$).

Esercizio 5.38.

Scrivere un criterio per "essere inverso sinistro lineare" per $T \in L(X,Y)$ deducendolo dal lemma di iterazione.

Teorema 5.39 (Goldstine).

Sia
$$(X, \|\cdot\|)$$
 normato e $B_X = \overline{B_X(0, 1)}$, allora

$$\overline{i_X(B_X)}^{\sigma(X^{**},X^*)} = B_{X^{**}}$$

 $e\ quindi\ \overline{X}^{w^*}=X^{**}.$

Dimostrazione.

Calcoliamo (la topologia debole* su X^{**} è $\sigma(X^{**}, X^*)$):

$$\overline{i_X(B_X)}^{\sigma(X^{**},X^*)} = (i_X(B_X)_0)^0 \stackrel{(5.31)}{=} (B_X^0)^0 = (B_{X^*})^0 = B_{X^{**}}$$

5.2.3 Caso dei Banach

Proposizione 5.40 (Duale di sottospazi e di un quoziente).

Dato Y sottospazio chiuso di X Banach abbiamo le seguenti isometrie lineari:

1.
$$Y^* \cong X^*/Y^{\perp}$$

$$2. (X/Y)^* \cong Y^{\perp} \subseteq X^*$$

Dimostrazione.

Data l'inclusione $j_Y: Y \to X$ otteniamo $j_Y^*: X^* \to Y^*$. Il nucleo di j_Y^* sono i funzionali in X^* che si restringono al funzionale nullo su Y^* , cioè gli $f \in X^*$ tali che

$$j_Y^*(f) = f \circ j_Y = f|_V = 0$$

e quindi ker $j_Y^* = Y^{\perp}$. Per il teorema di Hahn-Banach (3.2), j_Y^* è surgettiva in quanto ogni funzionale su Y si estende ad uno su X perché X Banach e Y chiuso. Per il teorema di isomorfismo esiste un'unica mappa ϕ che fa commutare

Per questioni di algebra ϕ è lineare e poiché j_Y^* è continua e π induce la topologia quoziente, ϕ è continua. Verifichiamo che è una isometria.

$$B_{X^*/Y^{\perp}}(0,1) = \pi(B_{X^*}(0,1))$$

$$\phi(B_{X^*/Y^{\perp}}(0,1)) = \phi(\pi(B_{X^*}(0,1))) = j_V^*(B_{X^*}(0,1)) \stackrel{(3.2)}{=} B_{Y^*}(0,1).$$

dove nell'ultimo passaggio abbiamo usato il fatto che l'estensione data da Hahn-Banach mantiene la norma.

Data la proiezione $\pi: X \to X/Y$ otteniamo $\pi^*: (X/Y)^* \to X^*$. Sia $\varphi \in (X/Y)^*$ e $f = \pi^*(\varphi) = \varphi \circ \pi$. Si ha che

$$\varphi(B_{X/Y}) = \varphi(\pi(B_X)) = f(B_X),$$

quindi $\|\varphi\|_{(X/Y)^*} = \|f\|_{X^*}$, cioè π^* è una immersione isometrica.

Sia $f \in X^*$, si ha che $f \in Y^{\perp}$ se e solo se $Y \subseteq \ker f$ che succede se e solo se f si fattorizza tramite π per proprietà universale. Quindi $f \in Y^{\perp}$ se e solo se $f = \varphi \circ \pi = \pi^*(\varphi)$ per qualche $\varphi : X/Y \to \mathbb{R}$, cioè se e solo se $f \in \pi^*((X/Y)^*)$. Quindi $\operatorname{Imm} \pi^* = Y^{\perp}$.

Restringendo il codominio all'immagine troviamo quanto voluto.

Proposizione 5.41 (Banach riflessivi).

 $Sia~X~banach^5$, allora $X~\grave{e}~riflessivo~se~e~solo~se~X^*~\grave{e}~riflessivo.$

Dimostrazione.

Ricordiamo che

Se X è riflessivo, cioè i_X è isomorfismo, allora $(i_X)^*$ è un isomorfismo per funtorialità. Dal diagramma allora segue che i_{X^*} è un isomorfismo, infatti

$$(i_X)^* \circ i_{X^*} = id_{X^*} \implies i_{X^*} = ((i_X)^*)^{-1} \circ (i_X)^* \circ i_{X^*} = ((i_X)^*)^{-1}.$$

Quindi i_{X^*} è un isomorfismo, cioè X^* è riflessivo.

Viceversa, se i_{X^*} è un isomorfismo allora $(i_X)^*$ è un isomorfismo per motivi analoghi a prima, quindi i_X ha immagine densa (iniettività di $(i_X)^*$ e (5.36)), ma l'immagine di i_X è sempre chiusa, quindi X è riflessivo (iniettività di i_X vale sempre perché immersione isometrica).

Osservazione 5.42.

Se X non è riflessivo allora nessun duale successivo può essere riflessivo.

Teorema 5.43 (Immagine chiusa).

Siano X, Y banach, $T \in L(X, Y)$, allora sono equivalenti

- 1. Imm $T \grave{e} ||\cdot||$ -chiuso
- 2. Imm T è w-chiuso
- 3. Imm $T^* = (\ker T^*)_{\perp}$
- 4. Imm T^* è $\|\cdot\|$ -chiuso
- 5. Imm $T^* \stackrel{.}{e} w^*$ -chiuso
- 6. Imm $T^* = (\ker T)^{\perp}$

Dimostrazione.

1. e 2. sono sempre equivalenti per sottospazi vettoriali.

$$\overline{\operatorname{Imm} T} \stackrel{(5.36)}{=} ((\ker T^*)_{\perp})$$

quindi 2. è equivalente a 3. Similmente 5. e 6. sono equivalenti per $\overline{\mathrm{Imm}\,T^*}^{w^*} = (\ker T)^{\perp}$. Poiché la topologia debole* è meno fine della topologia forte, 5. implica 4. Resta da mostrare solo $4. \Longrightarrow 1.$ e $1. \Longrightarrow 6.$

4. \Longrightarrow 1. Supponiamo Imm T^* chiuso forte. Siano $Z = \overline{\text{Imm } T}$ e $S: X \to Z$ la mappa ottenuta da T restringendo il codominio, che possiamo fare perché Imm $T \subseteq Z$.

Per costruzione ImmS è densa in Ze la tesi è S surgettiva. Dualizzando la successione

 $^{^{5}}$ banach serve perché X^{*} è isometrico a \widehat{X}^{*} dove \widehat{X} è il completamento di X.

troviamo

dove la mappa $Y^* \to Z^*$ è la restrizione del dominio, che è surgettiva per il teorema di Hahn-Banach (3.4), dunque $S^*(Z) = T^*(Y)$. Notiamo che $T^*(Y)$ è chiuso in norma, quindi anche $S^*(Z)$ lo è. Poiché Imm S è densa, S^* è iniettiva, quindi per la caratterizzazione (5.24) S^* è fortemente iniettivo e perciò S è surgettivo.

1. \implies 6. È sempre vero che Imm $T^* \subseteq (\ker T)^{\perp}$ in quanto $(\ker T)^{\perp}$ è la chiusura di Imm T per la topologia debole* (5.36).

Sia $x^* \in (\ker T)^{\perp}$, cioè $\ker T \subseteq \ker x^*$. Consideriamo la mappa lineare (a priori non continua)

$$\xi: \begin{array}{ccc} \operatorname{Imm} T & \longrightarrow & \mathbb{K} \\ T(x) & \longmapsto & x^*(x) \end{array}$$

che è ben definita perché se T(x)=T(x') allora $x-x'\in\ker T\subseteq\ker x^*$. Notiamo che $x^*=\xi\circ T$.

Poiché Imm T è chiuso (stiamo assumendo 1.) esso è banach, quindi si ha che T è aperta come mappa $X \to \operatorname{Imm} T$ per il teorema della mappa aperta (5.10), quindi induce la topologia quoziente, il che significa che ξ era un funzionale lineare CONTINUO.

Per il teorema di Hahn-Banach (3.4) ξ si estende a $y^* \in Y^*$ e poiché $x^* = \xi \circ T$ si ha $x^* = y^* \circ T = T^*(y^*)$, cioè $x^* \in \operatorname{Imm} T^*$.

Abbiamo dunque

$$T \text{surg.} \Longleftrightarrow \begin{cases} \operatorname{Imm} T & \text{chiusa} \\ \operatorname{Imm} T & \text{densa} \end{cases} \Longleftrightarrow \begin{cases} \operatorname{Imm} T^* & \text{chiusa} \\ T^* & \text{iniettiva} \end{cases} \Longleftrightarrow T^* \text{ fortemente iniettiva}$$

Esercizio 5.44.

Per X, Y banach, i seguenti sottoinsiemi di L(X, Y) sono aperti

- Surgettive
- Inverse sinistre
- Inverse destre
- Fortemente iniettive
- Invertibili

Per T che appartiene ad uno di questi trovare r > 0 tale che B(T, r) sia contenuto nell'aperto.

Solution.

Esempio, per T invertibile posso prendere $B(T,1/\|T^{-1}\|)$.

Proposizione 5.45 (Duale è endofuntore su Banach).

 $La\ corrispondenza$

$$\begin{array}{cccc} \operatorname{Ban}^{op} & \longrightarrow & \operatorname{Ban} \\ X & \longmapsto & X^* \\ T: X \to Y & \longmapsto & T^*: Y^* \to X^* \end{array}$$

è un endofuntore controvariante esatto⁶.

Dimostrazione.

Se $\ker \alpha = (0)$ e $\operatorname{Imm} \alpha = \ker \beta$ è chiusa (cioè α è fortemente iniettiva) allora α^* ha immagine chiusa e $\operatorname{Imm} \alpha^* = (\ker \alpha)^{\perp} = X^*$, quindi α^* è surgettiva.

Se $\operatorname{Imm} \alpha = \ker \beta$ allora

$$\ker \alpha^* = (\operatorname{Imm} \alpha)^{\perp} = (\ker \beta)^{\perp} = \overline{\operatorname{Imm} \beta^*} \stackrel{\operatorname{Imm} \beta \text{ chiusa}}{=} \operatorname{Imm} \beta^*$$

Infine β surgettiva implica β^* iniettiva (5.37).

Corollario 5.46.

Il funtore biduale

$$\begin{array}{cccc} \operatorname{Ban} & \longrightarrow & \operatorname{Ban} \\ X & \longmapsto & X^{**} \\ T: X \to Y & \longmapsto & T^{**}: X^{**} \to Y^{**} \end{array}$$

è un funtore covariante esatto. L'inclusione $i_X: X \to X^{**}$ induce una trasformazione naturale tra il funtore $id_{\operatorname{Ban}} \ e \cdot {}^{**}.$

Dimostrazione.

dove $T^{**}(val_x)(f)$ per $f: Y \to \mathbb{K}$ lineare continua è data da

$$(T^{**}(val_x)(f)) = ((val_x \circ T^*)(f)) = (T^*(f))(x) = f(T(x)) = val_{T(x)}(f).$$

Osservazione 5.47.

Se $j:Y\to X$ è inclusione di sottospazio chiuso (in generale per j fortemente iniettiva) allora j^{**} è fortemente iniettiva, infatti il biduale è un funtore esatto e

$$\operatorname{Imm} j^{**} = (\ker j^*)^{\perp} = (Y^{\perp})^{\perp} = ((i_X(Y))_{\perp})^{\perp} = \overline{i_X(Y)}^{\sigma(X^{**},X^*)}$$

cioè Y^{**} è la chiusura w^* di Y visto in X^{**} .

⁶Ricordiamo che un funtore è esatto se per ogni successione esatta corta $0 \to X \xrightarrow{\alpha} Y \xrightarrow{\beta} Z \to 0$ (cioè α iniettiva, β surgettiva e Imm $\alpha = \ker \beta$) allora $0 \leftarrow X^* \xleftarrow{\alpha^*} Y^* \xleftarrow{\beta^*} Z^* \leftarrow 0$ è ancora esatta.

Osservazione 5.48.

Se $Y\subseteq X$ chiuso e X è riflessivo allora anche Y è riflessivo. Infatti se i_X è surgettivo allora $(X,\sigma(X,X^*))\cong (X^{**},\sigma(X^{**},X^*))$, quindi $i_X(Y)$ deve essere w^* -chiusa in X^{**} (perché era w-chiuso in X). Perciò $i_X(Y)=\operatorname{Imm} j^{**}$ e quindi $i_Y:Y\to Y^{**}$ è surgettiva.

$$Y \xrightarrow{j} X$$

$$i_{Y} \downarrow \qquad \downarrow i_{X}$$

$$Y^{**} \xrightarrow{j^{**}} X^{**}$$

Proposizione 5.49 (Criterio riflessivo con sottospazio chiuso). Se $Y \subseteq X$ è chiuso. X è riflessivo se e solo se Y e X/Y sono riflessivo.

Dimostrazione.

Consideriamo il diagramma

$$0 \longrightarrow Y \xrightarrow{j} X \longrightarrow X/Y \longrightarrow 0$$

$$\downarrow^{i_Y} \downarrow^{i_X} \downarrow^{i_{X/Y}} \downarrow^{i_{X/Y}} \downarrow^{i_{X/Y}} \downarrow^{i_{X/Y}} \longrightarrow 0$$

$$0 \longrightarrow Y^{**} \xrightarrow{j^{**}} X^{**} \longrightarrow (X/Y)^{**} \longrightarrow 0$$

Se X è riflessivo abbiamo già detto che anche Y lo è. Se Y e X/Y sono riflessivi, due frecce verticali su tre sono isomorfismi, quindi anche la terza lo è per il lemma dei 5.

Per un motivo analogo se X è riflessivo allora anche Y lo è e quindi di nuovo per il lemma dei 5 anche X/Y riflessivo.

Capitolo 6

Separabilità e Spazi uniformemente convessi

6.1 Separabilità vs Metrizzabilità

[RISCRIVERE POI PERCHÉ NON SI CAPISCE NIENTE]

Lemma 6.1.

Se Y è normato, $Z\subseteq Y$ e $g\in Y$ allora esiste $\varphi\in Y^*$ tale che $\|\varphi\|=1,\ \langle \varphi,g\rangle=dist(g,Z)$ e $\varphi\in Z^\perp.$

Dimostrazione.

Sia $\pi:Y\to Y/Z$ la mappa quoziente. Applichiamo Hahn-Banach (3.2) a Y/Z: esiste $\psi\in (Y/Z)^*$ tale che

$$\langle \psi, \pi(g) \rangle = ||\pi g|| = dist(g, Z)$$

di norma 1. Poniamo $\varphi = \pi^* \psi$.

$$\langle \varphi, g \rangle = \langle \pi^* \psi, g \rangle = \langle \psi, \pi g \rangle = dist(g, Z)$$

e
$$\|\varphi\| = \|\psi\| = 1$$
 perché $\pi^* : (Y/Z)^* \to Z^{\perp} \subseteq Y^*$ è una isometria.

Teorema 6.2 (Separabilità in termini di metrizzabilità di palle). Sia X spazio normato. Siano B_X e B_{X^*} palle unitarie chiuse.

- 1. se X^* è $\|\cdot\|$ -separabile allora anche X lo è.
- 2. $X \ \dot{e} \ \|\cdot\|$ -separabile se e solo se $(B_{X^*}, \sigma(X^*, X)) \ \dot{e}$ metrizzabile
- 3. $X^* \ \dot{e} \ \|\cdot\|$ -separabile se e solo se $(B_X, \sigma(X, X^*)) \ \dot{e}$ metrizzabile

Dimostrazione.

Mostriamo le proposizioni:

1. Sia X^* separabile e sia $\{f_k\}$ numerabile denso. Per ogni $k \in \mathbb{N}$ sia $x_k \in X$ tale che

$$\begin{cases} ||x_k|| = 1\\ |\langle f_k, x_k \rangle| \ge \frac{1}{2} ||f_k|| \end{cases}$$

Affermiamo che $Y = \text{Span}(\{x_k\}_{k \in \mathbb{N}})$ è denso in X: basta verificare che $\{x_k\}_{k \in \mathbb{N}}^{\perp} = (0)$ per (5.36). Sia $f \in X^*$ tale che $\langle f, x_k \rangle = 0$ per ogni k e sia f_{k_j} una sottosuccessione di $\{f_k\}$ che converge a f in norma. Allora

$$\frac{1}{2} \|f_{k_j}\| \le \left| \left\langle f_{k_j}, x_{k_j} \right\rangle \right| \le \left| \left\langle f_{k_j} - f, x_{k_j} \right\rangle \right| + \left| \left\langle f, x_{k_j} \right\rangle \right| =$$

$$= \left| \left\langle f_{k_j} - f, x_{k_j} \right\rangle \right| \le \|f_{k_j} - f\| \underbrace{\|x_{k_j}\|}_{=1} = o_{j \to \infty}(1)$$

dove quella norma è un o(1) perché $f_{k_i} \to f$.

2. Diamo le due implicazioni

 \Longrightarrow Sia X separabile e $\{x_k\}_{k\geq 1}$ numerabile denso in B_X . Definiamo una norma su X^* ponendo

$$|||f||| = \sum_{n>1} 2^{-n} |\langle f, x_n \rangle| \stackrel{\forall m}{\geq} 2^{-m} \langle f, x_m \rangle.$$

Per costruzione

$$|||f||| \le \sum_{n \ge 1} 2^{-n} |f| ||x_k|| \le \left(\sum_{n \ge 1} 2^{-n}\right) ||f|| = ||f||,$$

cioè | $||\cdot|||$ è meno fine di $||\cdot||$.

Affermiamo che $id: (B_{X^*}, |||\cdot|||) \to (B_{X^*}, \sigma(X^*, X))$ è un omeomorfismo¹.

Poiché il dominio è metrico basta mostrare la continuità sequenziale. Sia allora $(f_k)_{k\in\mathbb{N}}$ una successione in B_{X^*} con $f_k \to f \in B_{X^*}$ convergente per $|\|\cdot\||$. Vogliamo mostrare che $f_k \to f$ rispetto alla norma debole*. Senza perdita di generalità supponiamo f = 0 (altrimenti basta considerare $\frac{1}{2}(f_k - f)$).

Se $|||f_k||| \to 0$ allora $|||f_k||| \ge 2^{-n} |\langle f_k, x_n \rangle| = o_k(1)$ per ogni n, quindi f_k converge puntualmente a 0 su (x_n) . Inoltre le f_k sono funzioni 1-Lipschitz $B_X \to \mathbb{K}$ e l'insieme di convergenza di una successione di funzioni equicontinue (a valori in spazio metrico completo) è sempre un chiuso per Ascoli Arzelà. Dunque le successioni convergono puntualmente dappertutto per densità su B_X (quindi anche su X per omogeneità).

Il limite è 0 perché è sono funzioni 1-Lipschitz.

Allora $f_k \to 0$ nella topologia debole* perché questa è esattamente la topologia indotta dalla topologia prodotto.

Questo mostra la continuità di $id: (B_{X^*}, |||\cdot|||) \to (B_{X^*}, \sigma(X^*, X))$. Se il dominio è compatto allora abbiamo una mappa bigettiva, continua da compatto in Hausdorff, dunque è un omeomorfismo. $(B_{X^*}, |||\cdot|||)$ è compatto sequenzialmente perché, se $\{f_k\}$ è una successione in B_{X^*} allora le f_k sono 1-Lipschitz e limitate come funzioni su B_X , quindi per argomento diagonale (vedi Ascoli-Arzelà) esiste una sottosuccessione f_{k_j} convergente su ogni x_n . Essendo questa sottosuccessione equicontinua essa converge su tutto X puntualmente. Il limite è f lineare su X e 1-lipschitz e quindi $f \in X^*$. Infine $|||f_{k_j} - f||| \to 0$ perché

$$\left| \left\| f_{k_j} - f \right\| \right| = \sum_{n \ge 1} 2^{-n} \left| \left\langle f_{k_j} - f, x_n \right\rangle \right| = o_j(1)$$

¹nota che $id:(X^*,|||\cdot|||) \to (X^*,\sigma(X^*,X))$ non potrebbe esserlo se dim $X \ge \aleph_0$.

dove l'ultima ugualgianza vale perché ogni termine è infinitesimo ed è dominata dalla serie geometrica di fattore 1/2.

Questo mostra che $(B_{X^*}, |||\cdot|||)$ è sequenzialmente compatto e questo conclude.

Supponiamo $(B_{X^*}, \sigma(X^*, X))$ metrizzabile. Osserviamo che per $F \in \mathscr{P}_{fin}(X)$ si ha che

$$F^{0} = \{x^{*} \in X^{*} \mid |\langle x^{*}, x \rangle| \le 1 \ \forall x \in F\} = \bigcap_{x \in F} \{x\}^{0}$$

è un intorno di 0 (F è finito) in $(X^*, \sigma(X^*, X))$, in realtà questi sono una base di intorni per la topologia $\sigma(X^*, X)$.

Se $(B_{X^*}, \sigma(X^*, X))$ è metrizzabile allora in particolare è I-numerabile, quindi esiste una successione $(F_n)_{n\geq 0}\subseteq \mathscr{P}_{fin}(X)$ tale che $(F_n^0\cap B_{X^*})_{n\geq 0}$ è una base di intorni di 0. Notiamo in particolare che $\bigcap_{n\geq 0}F_n^0\cap B_{X^*}=(0)$.

Senza perdita di generalità supponiamo anche $F_{n+1} \supseteq 2F_n$ (se avevamo una successione valida basta aggiungere la riscalatura del termine prima e l'insieme resta finito). Ricordiamo che se $A \subseteq B$ allora $B^0 \subseteq A^0$, quindi gli intorni che prendiamo diventano inscatolati.

$$(0) = \bigcap_{n \ge 0} (F_n^0 \cap B_{X^*}) = \left(\bigcap_{n \ge 0} F_n^0\right) \cap B_{X^*} = \left(\bigcup_{n \ge 0} F_n\right)^0 \cap B_{X^*} =$$

$$= \left(\operatorname{assco}\left(\bigcup_{n \ge 0} F_n\right)\right)^0 \cap B_{X^*} \stackrel{(\star)}{=} \left(\operatorname{Span}\left(\bigcup_{n \ge 0} F_n\right)\right)^0 \cap B_{X^*} =$$

$$= \left(\operatorname{Span}\left(\bigcup_{n \ge 0} F_n\right)\right)^{\perp} \cap B_{X^*}$$

dove l'uguaglianza (\star) vale perché per ipotesi $2 \bigcup F_n \subseteq \bigcup F_n$, quindi prendendo l'inviluppo assolutamente convesso troviamo esattamente lo Span lineare: se $\sum \lambda_i s_i \in \operatorname{Span}\left(\bigcup_{n\geq 0} F_n\right)$ allora

$$\sum \lambda_i s_i = \sum \frac{\lambda_i}{2^N} (2^N s_i) \in \operatorname{assco} \left(\bigcup_{n \ge 0} F_n \right) \quad \text{per } N \text{ tale che } \sum \frac{|\lambda_i|}{2^N} \le 1.$$

Dunque, poiché $\left(\operatorname{Span}\left(\bigcup_{n\geq 0}F_n\right)\right)^{\perp}\cap B_{X^*}=(0)$ e B_{X^*} è una palla,

$$\left(\operatorname{Span}\left(\bigcup_{n\geq 0}F_n\right)\right)^{\perp}=(0),$$

cioè Span $\left(\bigcup_{n\geq 0}F_n\right)$ è denso in X (per $\|\cdot\|$). Quindi X è $\|\cdot\|$ -separabile se consideriamo $\operatorname{Span}_{\mathbb{Q}}\left(\bigcup_{n\geq 0}F_n\right)$ ($\bigcup_{n\geq 0}F_n$ è numerabile perché unione numerabile di finiti).

3. Diamo le due implicazioni

Segue dalla stessa freccia nel caso 2. notando che $(B_{X^{**}}, \sigma(X^{**}, X^*))$ è metrizzabile e quindi anche $(B_X, \sigma(X^{**}, X^*)) = (B_X, \sigma(X, X^*))$ lo è.

Sia $(B_X, \sigma(X, X^*))$ metrizzabile. Come per il punto 2. si ha che ogni $F \in \mathscr{P}_{fin}(X^*)$ definisce

$$F_0 = \{x \in X \mid |\langle x^*, x \rangle| \le 1 \ \forall x^* \in F\} = \bigcap_{x^* \in F} \{x^*\}_0$$

intorno di 0 in $(X, \sigma(X, X^*))$. La famiglia $\{F_0\}_{F \in \mathscr{P}_{fin}(X^*)}$ è quindi una base di intorni di 0 rispetto a $\sigma(X, X^*)$. Poiché B_X è w-metrizzabile essa è I-numerabile quindi esiste una successione $(F_n)_{n\geq 0}\subseteq \mathscr{P}_{fin}(X^*)$ tale che $(F_n)_0\cap B_X=i_X(F_n^0)\cap B_X\doteqdot F_n^0\cap B_X$ sono una base di $\sigma(X,X^*)$ ristretta a B_X .

In particolare $\bigcap_{n\geq 0}(F_n^0\cap B_X)=(0)$. Assumiamo inoltre $F_{n+1}\supseteq 2F_n$ come prima.² Supponiamo per assurdo che Span $(\bigcup_{n\geq 0}F_n)$ non sia $\|\cdot\|$ -denso, cioè

$$Z = \overline{\operatorname{Span}\left(\bigcup_{n \ge 0} F_n\right)}^{\|\cdot\|} \neq X^*,$$

cioè esiste $g \in X^* \setminus Z$.

Per il lemma (6.1) esiste $\varphi \in X^{**}$ tale che $\|\varphi\| = 1$, $Z \subseteq \ker \varphi$ e $\langle \varphi, g \rangle = dist(g, Z)$. A meno di cambiare g supponiamo dist(g, Z) = 1.

Notiamo che $\{x \in B_X \mid \langle g, x \rangle < \frac{1}{2}\}$ è un intorno di $0 \in B_X$ nella topologia $\sigma(X, X^*)$, quindi contiene un intorno di base $F_m^0 \cap B_X$. Poniamo

$$A = \left\{ \eta \in X^{**} \mid \langle \eta, g \rangle > \frac{1}{2}, \ |\langle \eta, f \rangle| < 1 \ \forall f \in F_m \right\}.$$

A è aperto in $\sigma(X^{**}, X^*)$ perché intersezione finita di aperti (la condizione su $\frac{1}{2}$ e una per ogni elemento di F_m). Notiamo che $\varphi \in A$ perché $\langle \varphi, g \rangle = 1$ e $\langle \varphi, f \rangle = 0$ per ogni $f \in Z \supseteq F_m$.

Per Goldstine (5.39) $\overline{B_X}^{w^*}=B_{X^{**}}$ ma si ha che $A\cap B_X\neq\emptyset$ perché $\varphi\in A\cap B_{X^{**}}=A\cap \overline{B_X}^{w^*}$.

Quindi esiste $\widetilde{x} \in B_X$ tale che $i_X(\widetilde{x}) \in A$, cioè $\langle g, \widetilde{x} \rangle > \frac{1}{2}$ e $|\langle f, \widetilde{x} \rangle| < 1$ per ogni $f \in F_m$, cioè dalla seconda condizione $\widetilde{x} \in F_m^0 \cap B_X$ ma questo era esattamente l'intorno che avevamo scelto dentro $\{g < \frac{1}{2}\}$, quindi $g(\widetilde{x}) > \frac{1}{2}$ e $g(\widetilde{x}) < \frac{1}{2}$ assurdo.

Esercizio 6.3.

Sia X spazio vettoriale con due norme $\|\cdot\|_1$ e $\|\cdot\|_2$ tali che $\|\cdot\|_2$ è più fine di $\|\cdot\|_1$ ($\|x\|_1 \leq \|x\|_2$ per ogni $x \in X$)³.

• B_{X_2} è $\sigma(X_1, X_1^*)$ -metrizzabile se e solo se X_1^* è separabile rispetto a $\|\cdot\|_{X_2^*}$.

$$(0) = \left(\operatorname{Span} \left(\bigcup_{n \ge 0} F_n \right) \right)^{\perp} \cap B_X,$$

quindi Span $\left(\bigcup_{n\geq 0} F_n\right)_{\perp} = (0)$, cioè Span $\left(\bigcup_{n\geq 0} F_n\right)$ è w^* -denso. Questo non basta. ³Come notazione $(X_1, \|\cdot\|_1) = (X, \|\cdot\|_1)$ e $(X_2, \|\cdot\|_2) = (X, \|\cdot\|_2)$.

²Potremmo provare a ragionare come per il punto 2.:

6.2 Spazi uniformemente convessi

Definizione 6.4 (Norma uniformemente convessa).

Per uno spazio normato $(X, \|\cdot\|)$, la norma si dice **uniformemente convessa** se per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che per ogni $x, y \in B_X$ si ha

$$\left\| \frac{x+y}{2} \right\| > 1 - \delta \implies \|x-y\| < \varepsilon.$$

Esempio 6.5.

Se H è uno spazio di Hilbert allora è uniformemente convesso e questo è testimoniato dalla identità del parallelogramma:

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

e quindi se $||x||, ||y|| \le 1$ allora

$$||x - y|| \le \sqrt{4 - ||x + y||^2} = 2\left(1 - \left(\frac{||x + y||}{2}\right)^2\right)^{1/2}$$

Esempio 6.6.

La norma $\|\cdot\|_p$ su \mathbb{R}^2 per $1 è uniformemente convessa, anche <math>\|\cdot\|_p$ su L^p .

Teorema 6.7 (Milman-Pettis).

Spazi di Banach uniformemente convessi sono riflessivi.

Dimostrazione (di Kakutani).

Sia $(X, \|\cdot\|)$ banach U.C. e sia $\eta \in X^{**}$. Vogliamo mostrare che η è una valutazione $val_{\widetilde{x}}$ per qualche $\widetilde{x} \in X$.

Per ogni $k \geq 1$ siano $\delta_k > 0$ come nella definizione di U.C. per $\varepsilon = 1/k$, cioè per ogni $x,y \in B_X$ vale

$$\left\| \frac{x+y}{2} \right\| > 1 - \delta_k \implies \|x-y\| < \frac{1}{k}.$$

Senza perdita di generalità supponiamo $\delta_k \to 0$. Sia (f_k) una successione in B_{X^*} massimizzante per $\|\eta\|$, cioè:

$$\|\eta\| \doteq \sup_{\|f\|=1} |\langle \eta, f \rangle| \stackrel{S.P.G.}{=} 1,$$

allora $||f_k|| = 1$ e $\langle \eta, f_k \rangle > 1 - \delta_k$ per ogni $k \ge 1$. Sia $f_0 \in X^*$ qualsiasi e $\delta_0 = +\infty$. Definiamo

$$A_n = \left\{ \theta \in X^{**} \mid |\langle \theta, f_k \rangle - \langle \eta, f_k \rangle| < \frac{1}{n} e \ \langle \theta, f_k \rangle > 1 - \delta_k \ \forall k \in \{0, \cdots, k\} \right\}$$

Notiamo che A_n è un intorno aperto di η per la topologia $\sigma(X^{**}, X^*)$, quindi per Goldstine (5.39) si ha $A_n \cap i_X B_X \neq \emptyset$, dunque esiste $x_n \in B_X$ tale che $i_X(x_n) \in A_n$, ovvero (ricorda che $i_X(x_n) = val_{x_n}$)

$$\begin{cases} |\langle f_k, x_n \rangle - \langle \eta, f_k \rangle| < \frac{1}{n} \\ \langle f_k, x_n \rangle > 1 - \delta_k & \forall k \le n \end{cases}$$

Per $1 \le p < q < \infty$ si ha

$$\left\| \frac{x_p + x_q}{2} \right\| \ge \left\langle f_p, \frac{x_p + x_q}{2} \right\rangle = \frac{1}{2} \left\langle f_p, x_p \right\rangle + \frac{1}{2} \left\langle f_p, x_q \right\rangle \ge 1 - \delta_k$$

e quindi $||x_p - x_q|| \le \frac{1}{p}$, cioè (x_n) è una successione di Cauchy. Poiché X è un Banach e questi punti stanno in B_X si ha che la successione converge a $\tilde{x} \in B_X$. Prendendo il limite in n del sistema sopra troviamo

$$\begin{cases} \langle f_k, \widetilde{x} \rangle = \langle \eta, f_k \rangle & \forall k \\ \langle f_k, \widetilde{x} \rangle \ge 1 - \delta_k & \forall k \end{cases}$$

Notiamo che il sistema di equazioni $\langle f_k, x \rangle = \langle \eta, f_k \rangle$ al variare di k ha una unica soluzione in B_X , ovvero \widetilde{x} : se $\langle f_k, \widetilde{y} \rangle = \langle \eta, f_k \rangle$ allora per ogni k

$$1 \ge \left\| \frac{\widetilde{x} + \widetilde{y}}{2} \right\| \ge \left\langle f_k, \frac{\widetilde{x} + \widetilde{y}}{2} \right\rangle = \left\langle \eta, f_k \right\rangle \ge 1 - \delta_k$$

e quindi $\left\|\frac{\widetilde{x}+\widetilde{y}}{2}\right\|=1,$ ma allora per uniforme convessità $\widetilde{x}=\widetilde{y}.$

Quindi, a prescindere dalla scelta di f_0 troviamo sempre lo stesso \widetilde{x} , dunque per ogni $f \in X^*$ vale $\langle f, \widetilde{x} \rangle = \langle \eta, f \rangle$ perché 0 era incluso nel sistema che ci stavamo portando dietro. Abbiamo quindi mostrato che $val_{\widetilde{x}}(f) = \eta(f)$ per ogni f, cioè $\eta = val_{\widetilde{x}}$.

Dimostrazione (via nets).

Sia $\eta \in X^{**}$ con $\|\eta\| = 1$. Per Goldstine (5.39) si ha $\overline{B_X}^{\sigma(X^{**},X^*)} = B_{X^{**}}$ quindi esiste un net $x: D \to B_X$ convergente a η in $\sigma(X^{**},X^*)$.

Consideriamo ora il nuovo net $x_{\alpha} + x_{\beta} : D \times D \to X$ e notiamo che $x_{\alpha} + x_{\beta} \to 2\eta$. Siano $\varepsilon > 0$ e $\delta > 0$ come nella definizione di uniforme convessità e sia $f \in X^*$ tale che ||f|| = 1 e $\langle \eta, f \rangle > 1 - \delta$ (ok perché $||\eta|| = 1$).

che
$$||f|| = 1$$
 e $\langle \eta, f \rangle > 1 - \delta$ (ok perché $||\eta|| = 1$).
Allora $\left\langle f, \frac{x_{\alpha} + x_{\beta}}{2} \right\rangle = \left\langle \frac{val_{x_{\alpha} + x_{\beta}}}{2}, f \right\rangle \rightarrow \langle \eta, f \rangle > 1 - \delta$, quindi

$$\left\| \frac{x_{\alpha} + x_{\beta}}{2} \right\| \ge \left\langle f, \frac{x_{\alpha} + x_{\beta}}{2} \right\rangle \ge 1 - \delta$$

definitivamente e quindi

$$||x_{\alpha} - x_{\beta}|| < \varepsilon$$

definitivamente, quindi x_{α} è un net di Cauchy e quindi converge a $\widetilde{x} \in X$ perché X è Banach e quindi è completo anche per nets. Concludiamo notando che $\widetilde{x} = \eta$ per unicità del limite.

Esempio 6.8.

Per $1 gli spazi <math>(L^p(X, \mu), \|\cdot\|_p)$ sono uniformemente convessi e quindi riflessivi per Milman Pettis (6.7).

Esercizio 6.9.

Isomorfismo tra L^q e $(L^p)^*$.

Dimostrazione.

Considerare per p, q coniugati

$$T_{p,g}: \begin{array}{ccc} L^q & \longrightarrow & (L^p)^* \\ g & \longmapsto & f \mapsto \int_X fgd\mu \end{array}.$$

Questa mappa è lineare e isometrica per Hölder, infatti

$$\left| \int_X fg d\mu \right| \leq \|f\|_p \left\| g \right\|_q$$

e quindi $||T_{p,q}g|| \leq ||g||_q$, cioè $T_{p,g}$ è continuo con norma degli operatori ≤ 1 . In realtà è una isometria perché possiamo scegliere una f opportuna tale che $||f||_p = 1$ e $T_{p,g}(g)(f)=\|g\|_q.$ Per provare che $T_{p,q}$ sono surgettive l'idea è considerare α come sotto

$$L^p \xrightarrow{i_{L^p}} (L^p)^{**} \xrightarrow{T_{p,q}^*} (L^q)^*$$

e notare che $\alpha = T_{q,p}$.

Per Milman-Pettis (6.7) la i_{L^p} è isometrica, quindi si ha che $T_{p,q}$ è surgettivo se e solo se $T_{q,p}^*$ è surgettivo, ma $T_{q,p}^*$ è surgettivo se e solo se (5.36) $T_{q,p}$ è fortemente iniettivo e questo è vero.

Capitolo 7

Compattezza nei Banach

7.1 Compattezza dei polari: Banach-Alaoglu

Teorema 7.1 (Banach-Alaoglu-Bourbaki). Sia X SVT e $V \in \mathcal{U}_X$. Allora il polare di V

$$V^0 = \{ f \in X^* \mid |\langle f, x \rangle| \le 1 \ \forall x \in V \}$$

è compatto nella topologia $\sigma(X^*,X)$, cioè¹ quella indotta su X^* dalla topologia prodotto su \mathbb{K}^X .

Dimostrazione.

Senza perdita di generalità supponiamo V assolutamente convesso e chiuso:

$$V^0 \stackrel{\text{(5.33)}}{=} \overline{\operatorname{assco}(V)}^0.$$

Sia allora V intorno assolutamente convesso chiuso di 0 in X. Sia p il funzionale di Minkowski di V. Notiamo che p è una seminorma su X e (2.26) $V = \overline{B_p(0,1)}$. Notiamo che $f \in V^0$ se e solo se

$$|\langle f, x \rangle| \le p(x) \quad \forall x \in X$$

infatti se $|\langle f, x \rangle| \leq 1$ per ogni $x \in V$ allora per $x \in X$ con $p(x) \neq 0$ si ha p(x/p(x)) = 1 e quindi $x/p(x) \in V = B_p(0,1)$, ma allora $|\langle f, x/p(x) \rangle| \leq 1$, cioè $|\langle f, x \rangle| \leq p(x)$. Se in vece p(x) = 0 allora Span $(x) \in V$ per definizione di p, quindi $\langle f, x \rangle = 0$ e vale comunque $|\langle f, x \rangle| \leq p(x)$.

Viceversa, se $|\langle f, x \rangle| \leq p(x)$ per ogni X in particolare per $x \in V$, poiché lì abbiamo $p(x) \leq 1$ abbiamo $|\langle f, x \rangle| \leq p(x) \leq 1$ per $x \in V$.

Notiamo che la condizione $|\langle f, x \rangle| \leq 1$ su V assicura che f sia continua (perché limitata in intorno di 0 (2.32)), quindi possiamo scrivere

$$V^0 = \left\{ f \in X'_{alg} \mid |\langle f, x \rangle| \leq p(x) \ \forall x \in X \right\} = X'_{alg} \cap \underbrace{\prod_{x \in X} \overline{B_{\mathbb{K}}(0, p(x))}}_{\text{compatto per Tychonoff}} \subseteq X^* \subseteq \mathbb{K}^X.$$

¹proprietà universale

Osserviamo che X'_{alg} è chiuso in \mathbb{K}^X perché si scrive come intersezione di chiusi per la topologia prodotto di \mathbb{K}^X

$$X'_{alg} = \bigcap_{\substack{\alpha, \beta \in \mathbb{K} \\ x, y \in X}} \left\{ f \in \mathbb{K}^X \mid P_{\alpha x + \beta y}(f) - \alpha P_x(f) - \beta P_y(f) = 0 \right\} =$$

$$= \bigcap_{\substack{\alpha, \beta \in \mathbb{K} \\ x, y \in X}} \ker \left(P_{\alpha x + \beta y} - \alpha P_x - \beta P_y \right).$$

Quindi V^0 si identifica con un chiuso in un compatto per la topologia prodotto, e quindi è compatto per la topologia prodotto su \mathbb{K}^X in quanto è uno spazio Hausdorff.

Corollario 7.2.

Se X è Banach allora la palla duale chiusa $\overline{B_{X^*}(0,1)}$ è compatta per la topologia w^* su X^* .

Osservazione 7.3.

Da questo corollario scendono varie applicazioni, per esempio al calcolo delle variazioni ma non solo.

Teorema 7.4 (Kakutani).

Uno spazio X di Banach è riflessivo se e solo se B_X (palla unitaria chiusa) è w-compatta.

Dimostrazione.

Se X è riflessivo allora $i_X:(B_X,w)\to(B_{X^{**}},w^*)$ è un omeomorfismo e quindi (B_X,w) è compatta per Banach-Alaoglu (7.1).

Supponiamo dunque B_X compatta in $\sigma(X, X^*)$, allora anche $i_X(B_X)$ è compatta in X^{**} per $\sigma(X^{**}, X^*)$, in particolare è chiusa. Per il teorema di Goldstine (5.39) $i_X(B_X)$ è anche densa in $B_{X^{**}}$. Mettendo tutto insieme abbiamo $i_X(B_X) = B_{X^{**}}$, quindi i_X è bigettiva e quindi X è riflessivo.

Osservazione 7.5.

ATTENZIONE: queste compattezze sono per ricoprimenti, non per successioni!!!

Proposizione 7.6 (Banach si immergono in continue su compatto).

Se X banach allora X si immerge isometricamente in $(C(K), \|\cdot\|_{\infty})$ per qualche K compatto Hausdorff.

Dimostrazione.

Sia $K=(\overline{B_{X^*}},\sigma(X^*,X))$. Kè T2 compatto per Banach-Alaoglu (7.1), inoltre abbiamo una inclusione

$$X \stackrel{i_X}{\longleftrightarrow} X^{**} \longrightarrow C(K)$$

$$f \longmapsto f|_{K}$$

che è isometrica perhcé $||x||_X = ||val_x||_{X^{**}}$, da cui $||f||_{X^{**}} = ||f||_{\infty,K}$.

Osservazione 7.7.

Questa proposizione possiamo rappresentare isometricamente X^* come $C(K)^*/X^{\perp}$ (5.40) e il duale di C(K) si rappresenta via misure di Baire finite.

7.2 Compattezza in Banach per la norma

Teorema 7.8 (Mazur).

Sia $(X, \|\cdot\|)$ banach, $K \subseteq X$ compatto, allora $\overline{\operatorname{co}(K)}$ è compatto.

Dimostrazione

Sia $B = B_X(0,1)$. Proviamo che co(K) è totalmente limitato (quindi relativamente compatto in X che è completo). Sia $\varepsilon > 0$. Siccome K è compatto, esiste $F \in \mathscr{P}_{fin}(X)$ tale che

$$K\subseteq F+\frac{\varepsilon}{2}B=\bigcup_{x\in F}B(x,\varepsilon/2).$$

Quindi $co(K) \subseteq co(F) + \frac{\varepsilon}{2}B$ (perché convesso che contiene K). Se $F = \{f_1, \dots, f_m\}$ allora co(F) è compatto, infatti è immagine continua del simplesso standard

$$\Delta^{m-1} = \left\{ (\lambda_1, \cdots, \lambda_m) \in \mathbb{R}^m \mid \lambda_i \ge 0, \ \sum \lambda_i = 1 \right\}$$

tramite la mappa ovvia $\Phi: \Delta^{m-1} \to X$ data da $e_i \mapsto f_i$.

Quindi esiste un insieme finito $G \in \mathscr{P}_{fin}(X)$ tale che

$$\operatorname{co}(F) \subseteq G + \frac{\varepsilon}{2}B$$

e quindi

$$\operatorname{co}(K)\subseteq\operatorname{co}(F)+\frac{\varepsilon}{2}B\subseteq G+\frac{\varepsilon}{2}B+\frac{\varepsilon}{2}B=G+\varepsilon B,$$

cioè co(K) è totalmente limitato.

Teorema 7.9 (Dieudonné).

Sia $(X, \|\cdot\|)$ banach, $K \subseteq X$ compatto, allora esiste una successione $(x_n)_{n \in \mathbb{N}} \subseteq X$ tale che $x_n \to 0$ e $K \subseteq \overline{\operatorname{co}(\{x_n\}_{n \in \mathbb{N}})}$.

Dimostrazione.

Senza perdita di generalità supponiamo $K \subseteq B = B_X(0,1)$.

Per ogni $n \in \mathbb{N}$ esiste $F_n \in \mathscr{P}_{fin}(K)$ tale che

$$K \subseteq F_n + 4^{-n}B$$

cioè ogni $x \in K$ dista meno di 4^{-n} da qualche $x' \in F_n$. Per comodità $F_0 = \{0\}$ (ok perché abbiamo supposto $K \subseteq B$).

Quindi $D=\bigcup_{n\geq 0}F_n$ è un sottoinsieme denso di K. Sia $y\in D\setminus\{0\}$, allora $y\in F_n$ per qualche $n\in\mathbb{N}_+$. Siccome F_{n-1} è una 4^{-n+1} -rete di K esiste $y_{n-1}\in F_{n-1}$ tale che $\|y_n-y_{n-1}\|<4^{-n+1}$. Iterando troviamo $y_n,y_{n-1},\cdots,y_1,y_0$ con $y_i\in F_i$ e $\|y_i-y_{i-1}\|<4^{-i+1}$ per ogni $i\leq n$. Notiamo che

$$y = y_n = \sum_{k=1}^n y_k - y_{k-1} + \underbrace{y_0}_{=0} = \sum_{k=1}^n 2^{-k} \left(2^k (y_k - y_{k-1}) \right) + \underbrace{2^{-n} y_0}_{=0}$$

è una combinazione convessa di $2^k(y_k - y_{k-1})$ per $k = 1, \dots, n$ e $y_0 = 0$. Inoltre, siccome $||y_k - y_{k-1}|| < 4^{-k+1}$, si ha $||2^k(y_k - y_{k-1})|| < 2^{-k+2}$. Notiamo che per ogni $k \ge 1$ si ha

$$2^{k}(y_{k}-y_{k-1}) \in A_{k} = 2^{k}(F_{k}-F_{k-1})$$
 insieme finito

Inoltre $A_k \subseteq 2^{-k+2}B$ per quanto detto. Ponendo

$$A = \bigcup_{k \ge 1} A_k \cup \{0\}$$

si ha che ogni $y \in D$ si scrive come combinazione convessa di elementi di A.

Per concludere basta mostrare che A è il supporto di una successione infinitesima: per ogni $\varepsilon > 0$, $A \setminus \varepsilon B$ è finito in quanto

$$A \setminus \varepsilon B \subseteq \bigcup_{2^{-k+2} > \varepsilon} A_k = \bigcup_{k < 2 - \log_2 \varepsilon} A_k.$$

Dunque una qualsiasi enumerazione $(x_n)_{n\in\mathbb{N}}$ di A definisce una successione infinitesima tale che $D\subseteq\operatorname{co}(\{x_n\}_{n\in\mathbb{N}})$ e quindi $K=\overline{D}\subseteq\overline{\operatorname{co}(\{x_n\}_{n\in\mathbb{N}})}$.

7.3 Topologie polari

Definizione 7.10 (Topologie polari).

Sia X banach e fissiamo $\mathscr{A} \subseteq \mathscr{P}(X)$ dove ogni insieme è limitato. La **topologia polare** su X^* associata a \mathscr{A} è la topologia di SVTLC associate alle (semi)norme uniformi $\left\{\|\cdot\|_{\infty,A} \mid A \in \mathscr{A}\right\}$. A volte indichiamo la topologia associata a \mathscr{A} con $\tau_{\mathscr{A}}$.

Esempio 7.11.

Se $\mathscr{A}=\mathscr{P}_{fin}(X)$ allora la topologia polare associata è la debole* $\sigma(X^*,X)$

Esempio 7.12.

Se $\mathscr{A}=\mathscr{K}$ è l'insieme dei compatti di X allora la topologia polare associata è la topologia di convergenza uniforme sui compatti.

Osservazione 7.13.

Per il teorema di Dieudonne (7.9) la topologia di convergenza uniforme sui compatti è anche la topologia polare associata a

$$\mathscr{K}_0 = \{ K \subseteq X \mid \forall \varepsilon > 0 \ K \setminus \varepsilon B \in \mathscr{P}_{fin}(X) \},$$

cioè gli insiemi che si accumulano al più in 0.

Esempio 7.14.

Se $\mathscr{A}=\mathscr{B}$ è l'insieme dei sottoinsiemi limitati troviamo la norma duale $(\|\cdot\|_{\infty,B_X}=\|\cdot\|_{B_X^*})$

Osservazione 7.15.

Si può sempre assumere che ${\mathscr A}$ sia una famiglia di insiemi assolutamente convessi in quanto

$$||f||_{\infty,A} = ||f||_{\infty,\mathrm{assco}(A)}.$$

Osservazione 7.16 (Perché si chiama topologia polare?).

Fissiamo una famiglia \mathscr{A} . Ricordiamo che per ogni $A \in \mathscr{A}$ si ha

$$A^{0} = \{ f \in X^{*} \mid |\langle f, x \rangle| \le 1 \ \forall x \in A \} = \overline{B}(0, 1, ||\cdot||_{\infty, A}).$$

Senza perdita di generalità supponiamo che $\mathscr A$ soddisfi

- 1. $\forall A \in \mathscr{A} \in \forall t > 0, tA \in \mathscr{A}$
- 2. $\forall A, B \in \mathscr{A}, \ \exists C \in \mathscr{A} \ \text{tale che} \ C \supseteq A \cup B$

Allora la famiglia $\left\{A^0\right\}_{A\in\mathscr{A}}$, cioè le palle unitarie delle norme $\|\cdot\|_{\infty,A}$ è una base di intorni di 0 per la topologia polare associata a \mathscr{A} .

7.3.1 Topologia bounded-weak-star e Krein-Šmulian

Definizione 7.17 (Topologia limitata-debole*).

Se $(X, \|\cdot\|)$ banach, la topologia **bounded weak*** (abbreviata bw^*) su X^* è la topologia limite topologico di $X_n = (nB_{X^*}, w^*)$. Cioè, un insieme $A \subseteq X^*$ è aperto in questa topologia se e solo se per ogni $n, A_n \cap nB_{X^*}$ è aperto nella topologia w^* .

Osservazione 7.18.

Prendere palle chiuse o aperte, cambiare successione di raggi (purché tenda a $+\infty$) o cambiare il centro delle palle non cambia la topologia bw^* .

Osservazione 7.19.

 bw^* è invariante per traslazioni, cioè $A \in bw^* \iff A + v_0 \in bw^*$ per un qualsiasi $v_0 \in X$.

Teorema 7.20.

La topologia bw* è la topologia della convergenza uniforme su compatti $\tau_{\mathscr{K}}$.

Dimostrazione.

Abbiamo notato che bw^* è invariante per traslazioni, quindi basta mostrare che le due topologie hanno gli stessi intorni di 0.

 $\tau_{\mathscr{K}_0} \subseteq bw^*$

Una base di intorni di 0 per $\tau_{\mathscr{K}}$ è

$$\{A^0 \mid A \in \mathcal{K}_0\}$$
 dove $\mathcal{K}_0 = \{K \subseteq X \mid \forall \varepsilon > 0 \ K \setminus \varepsilon B \in \mathscr{P}_{fin}(X)\}$.

Per ogni $A \in \mathcal{K}_0$ vogliamo mostrare che A^0 è aperto per bw^* , cioè per ogni $n \geq 1$ chiediamo che sia aperta l'intersezione

$$A^{0} \cap nB_{X^{*}} = A^{0} \cap nB_{X}^{0} = A^{0} \cap \left(\frac{1}{n}B_{X}\right)^{0} = \left(A \cup \frac{1}{n}B_{X}\right)^{0} =$$

$$= \left(\left(A \setminus \frac{1}{n}B_{X}\right) \cup \frac{1}{n}B_{X}\right)^{0} =$$

$$= \left(A \setminus \frac{1}{n}B_{X}\right)^{0} \cap nB_{X^{*}}$$

Poiché $A \in \mathcal{K}_0$ si ha che $A \setminus \frac{1}{n}B_X$ è finito, quindi $\left(A \setminus \frac{1}{n}B_X\right)^0$ è un intorno di 0 in w^* e quindi $A^0 \cap nB_{X^*}$ è effettivamente w^* -aperto.

 $bw^* \subseteq \tau_{\mathscr{K}_0}$ | Sia U un intorno aperto di 0 per bw^* . Vogliamo costruire un insieme $A \in \mathscr{K}_0$ tale che $A^0 \subset U$.

Costruiamo per induzione una successione (A_n) di insiemi finiti tali che

- 1. $(A_n)^0 \cap nB_{X^*} \subseteq U$
- 2. $A_{n+1} \subseteq A_n \cup \frac{1}{n} B_X$
- n=1 Poiché U è aperto in bw^* esiste A_1 finito tale che $A_1^0 \cap B_{X^*} \subseteq U \cap B_{X^*} \subseteq U$, infatti gli insiemi $A_1^0 \cap B_{X^*}$ sono base di intorni nella topologia indotta dalla bw^* su B_{X^*} e chiaramente $U \cap B_{X^*}$ è un aperto per questa topologia.

Supponiamo di aver costruito A_1, \dots, A_n finiti con le due proprietà. Costruiamo A_{n+1} :

$$\emptyset = A_n^0 \cap nB_{X^*} \cap U^c \cap \underbrace{(n+1)B_{X^*}}_{\text{tecnicamente superflua}} =$$

$$= A_n^0 \cap n \left(\bigcup_{x \in B_X} \{x\} \right)^0 \cap U^c \cap (n+1)B_{X^*} =$$

$$= A_n^0 \cap \left(\bigcap_{x \in B_X} \left\{ \frac{x}{n} \right\}^0 \right) \cap U^c \cap (n+1)B_{X^*} =$$

$$= \bigcap_{x \in B_X} \left(A_n \cup \left\{ \frac{x}{n} \right\} \right)^0 \cap (U^c \cap (n+1)B_{X^*}).$$

Questa è una intersezione di insiemi w^* chiusi e limitati: U^c è bw^* chiuso perché U aperto in bw^* , B_{X^*} è w^* -chiuso perché è la palla chiusa, quindi l'intersezione è w^* chiusa perché $U \cap B_{X^*}$ è un aperto w^* in B_{X^*} . Ogni $\left(A_n \cup \left\{\frac{x}{n}\right\}\right)^0$ è w^* chiuso per (5.33).

Per Banach-Alaoglu (7.1) questa intersezione è w^* -compatta e quindi esiste $J_n \subseteq B_X$ finito tale che

$$\emptyset = \bigcap_{x \in J_n} \left(A_n \cup \left\{ \frac{x}{n} \right\} \right)^0 \cap U^c \cap (n+1) B_{X^*} =$$

$$= \left(A_n \cup \frac{1}{n} J_n \right)^0 \cap U^c \cap (n+1) B_{X^*}$$

Poniamo $A_{n+1} = A_n \cup \frac{1}{n} J_n$. Verifichiamo le due condizioni

1.
$$\emptyset = A_{n+1}^0 \cap U^c \cap (n+1)B_{X^*} \implies A_{n+1}^0 \cap (n+1)B_{X^*} \subseteq U$$

2.
$$A_{n+1} \subseteq A_n \cup \frac{1}{n} B_X$$
 perché $J_n \subseteq B_X$

Sia $A = \bigcup A_n$. La condizione 2. garantisce che A si può accumulare solo in 0, inoltre per ogni n

$$A^0 \cap nB_{X^*} \stackrel{A^0 \subseteq A_n^0}{\subseteq} A_n^0 \cap nB_{X^*} \subseteq U$$

quindi prendendo l'unione al variare di $n, A^0 \subseteq U$.

Osservazione 7.21.

 bw^* è una topologia di SVT

Teorema 7.22.

Si ha che $(X^*, \tau_{\mathscr{K}})^* = (X^*, w^*)^*$.

Dimostrazione.

Poiché $\tau_{\mathscr{H}} = bw^*$ è più fine di w^* abbiamo immediatamente $(X^*, w^*)^* \subseteq (X^*, \tau_{\mathscr{H}})^*$. Sia $\varphi: X^* \to \mathbb{K}$ lineare e $\tau_{\mathscr{H}}$ -continua. Vogliamo mostrare che sia una valutazione. La continuità per $\tau_{\mathscr{H}}$ significa:

$$\exists K \subseteq X \text{ compatto t.c. } |\langle \varphi, f \rangle| \leq ||f||_{\infty, K}$$

in quanto \mathcal{K} è già chiuso per omotetie, intersezioni e unioni finite.

Inoltre senza perdita di generalità possiamo considerare $K \in \mathcal{K}_0$, cioè $K = \{x_n\}_{n \geq 0}$ con $x_n \to 0$. Dunque

$$|\langle \varphi, f \rangle| \le \max_{n \ge 0} |\langle f, x_n \rangle|$$

dove al posto di sup usiamo max perché $|\langle f, x_n \rangle|$ è una successione infinitesima di reali non negativi.

È quindi ben definito un operatore lineare e continuo

$$T: \begin{array}{ccc} X^* & \longrightarrow & c_0 \\ f & \longmapsto & (\langle f, x_n \rangle)_{n > 0} \end{array}$$

la continuità vale perché $\|Tf\|_{\infty} = \max_{n\geq 0} |\langle f, x_n \rangle| \leq (\max \|x_n\|) \|f\|$ dove $\max \|x_n\|$ è ben definito perché $x_n \to 0$.

Inoltre la disuguaglianza $|\langle \varphi, f \rangle| \leq \max_{n \geq 0} |\langle f, x_n \rangle|$ garantisce che ker $T \subseteq \ker \varphi$, quindi abbiamo una fattorizzazione

$$X^* \xrightarrow{\varphi} \mathbb{K}$$

$$T(X) \subseteq c_0$$

Notiamo che $\widetilde{\varphi}$ è continua perché se y=Tf allora

$$|\langle \widetilde{\varphi}, y \rangle| = |\langle \varphi, f \rangle| \leq \max_{n \geq 0} |\langle f, x_n \rangle| = \|y\|_{c_0} \implies \|\widetilde{\varphi}\| \leq 1.$$

Per Hahn-Banach (3.4) $\widetilde{\varphi}$ si estende a tutto c_0 con la stessa norma, ma i funzionali continui su c_0 sono quelli della forma $(x_i)_{i\geq 0}\mapsto \sum_{i>0}\lambda_i x_i$ per $(\lambda_i)_{i\geq 0}\in \ell_1$.

Quindi esiste $\lambda \in \ell_1$ tale che per ogni $f \in X^*$ si ha

$$\langle \varphi, f \rangle = \langle \widetilde{\varphi}, Tf \rangle = \sum_{n \ge 0} \lambda_n \langle f, x_n \rangle = \left\langle f, \sum_{n \ge 0} \lambda_n x_n \right\rangle$$

dove l'ultimo passaggio è valido perché la serie è assolutamente convergente e f è continua

In conclusione, $u = \sum_{n \geq 0} \lambda_n x_n \in X$ rappresenta φ , cioè $\langle \varphi, f \rangle = \langle f, u \rangle$ e questo conclude.

Teorema 7.23 (Krein-Šmulian).

Sia $(X, \|\cdot\|)$ spazio di Banach, $C \subseteq X^*$ convesso, allora $C \ \grave{e} \ w^*$ -chiuso se e solo se per ogni $n \in \mathbb{N}$ si ha $C \cap nB_{X^*} \ \grave{e} \ w^*$ -chiuso.

Dimostrazione.

La seconda condizione è equivalente a C chiuso in $bw^* = \tau_{\mathscr{K}}$ (7.20) e questa topologia ha lo stesso duale della w^* (7.22) e questo conclude per il teorema di Hanh-Banach/separazione dei convessi (3.26).

7.4 Compattezza per la topologia debole

7.4.1 Varie nozioni di compattezza

Definizione 7.24 (Numerabile compattezza).

X spazio topologico è **numerabilmente compatto** (abbreviato NC) se vale una delle sequenti equivalenti condizioni:

• per ogni $S \subseteq X$ infinito ha punti di ω -accumulazione, cioè esiste $x \in X$ tale che per ogni U intorno di x si ha $|U \cap S| \ge \aleph_0$, ovvero

$$\bigcap_{F\in\mathscr{P}_{fin}(S)}\overline{S\setminus F}\neq\emptyset$$

- Per ogni (F_n) successione di chiusi in X non vuoti decrescenti per inclusione si ha $\bigcap F_n \neq \emptyset$.
- Per ogni ricoprimento aperto $\{U_n\}$ numerabile di X esiste un sottoricoprimento finito.

 $A\subseteq X$ è relativamente nume brabilmente compatto (abbreviato RNC) se vale una delle seguenti

- Ogni $S \subseteq A$ infinito ha punti di ω -accumulazione in X
- Ogni $(a_n) \subseteq A$ successione ha punti di accumulazione in X.

Definizione 7.25 (Sequenzialmente compatto).

X spazio topologico è **sequenzialmente compatto** (abbreviato SC) se per ogni (x_n) successione in X esiste una sottosuccessione convergente.

 $A \subseteq X$ è relativamente sequenzialmente compatto (abbreviato RSC) se ogni successione in A ha una sottosuccessione convergente in X.

Proposizione 7.26.

Se $A \subseteq X$ spazi topologici allora valgono le seguenti implicazioni:

dove la barra sopra la sigla significa che chiediamo che \overline{A} in X abbia la proprietà.

Esempio 7.27 (Compatto T_2 non implica sequenzialmente compatto).

Sia $2 = \{0, 1\}$ spazio topologico discreto, $X = 2^{2^{\mathbb{N}}} = \{f : 2^{\mathbb{N}} \to \{0, 1\}\} = \mathscr{P}(\mathscr{P}(\mathbb{N}))$. La mappa di valutazione

$$\begin{array}{ccc} 2^{\mathbb{N}} \times \mathbb{N} & \longrightarrow & 2 \\ (f, n) & \longmapsto & f(n) \end{array}$$

definisce in modo canonico una successione $val: \mathbb{N} \to 2^{2^{\mathbb{N}}}$. Questa successione non ha estratte convergenti, infatti convergenza in uno spazio con la topologia prodotto significa convergenza puntuale, quindi se n_k è una ipotetica successione crescente di naturali che definisce la sottosuccessione allora per ogni $f \in 2^{\mathbb{N}}$ si dovrebbe avere $val_{n_k}(f) = f(n_k)$ convergente (in $2 = \{0,1\}$ con la topologia discreta), cioè $f(n_k)$ definitivamente costante, ma questo non è possibile perché per ogni fissata sottosuccessione val_{n_k} possiamo considerare una funzione tale che $f(n_k) = k \mod 2$.

Esercizio 7.28 (Sequenzialmente compatto non implica compatto).

Sia $X = \omega_1 = [0, \omega_1) = \{\text{ordinali numerabili}\}\$ con la topologia dell'ordine (quella che ha per base gli intervalli aperti).

Notiamo che ω_1 è SC, infatti ogni successione ha una sottosuccessione monotona (vero in ogni insieme totalmente ordinato) e questa successione converge: se è decrescente è stazionaria per definizione di buon ordine, se è crescente allora converge al suo estremo superiore, che sta in ω_1 .

Eppure X non è compatto perché è unione degli intervalli aperti $\bigcup_{\alpha \in X} [0, \alpha)$, che non ha sottoricoprimenti finiti.

Esercizio 7.29 $(SC \Rightarrow \overline{NC})$, e quindi in particolare $RSC \Rightarrow \overline{NC}$). Sia $X = (\omega+1) \times (\omega_1+1) \setminus \{(\omega,\omega_1)\} = [0,\omega_1] \times [0,\omega_1] \setminus \{(\omega,\omega_1)\}$ e sia $A = (\omega+1) \times \omega_1 = [0,\omega] \times [0,\omega_1)$

A è SC perché lo sono $\omega+1$ e ω_1 , inoltre $\overline{A}=X$ perché i punti (α,ω_1) sono di accumulazione. Notiamo però che X non è NC infatti l'insieme $B\subseteq X$ dato da $B=\omega\times\{\omega_1\}$ non ha punti di accumulazione in X (è isomorfo a ω e l'unico punto di accumulazione sarebbe l'angolino (ω,ω_1) che X non ha per costruzione).

Questi esempi mostrano che in generale

Osservazione 7.30.

Se $A \subseteq X$, $f: X \to Y$ continua e A è RNC allora $f(A) \subseteq Y$ è RNC.

7.4.2 Eberlein-Šmulian

Osservazione 7.31.

Se A è RNC in (X, w) allora è limitato, infatti basta mostrare che per ogni $f \in X^*$ si ha f(A) limitato, che è vero perché $f(A) \subseteq \mathbb{K}$ è RNC ma in \mathbb{R}^n questo implica limitato.

Teorema 7.32 (Eberlein-Šmulian).

Sia E spazio di Banach e $A \subseteq E$. Rispetto alla topologia debole di E sono equivalenti

- 1. \overline{A}^w è numerabilmente compatta
- 2. A è relativamente numerabilmente compatto
- 3. \overline{A}^w è sequenzialmente compatta
- 4. A è relativamente sequenzialmente compatto
- 5. \overline{A}^w è compatto

Dimostrazione.

Basta mostrare le implicazioni in blu

 $RNC \implies RSC \mid Sia(a_n) \subseteq A$, dobbiamo mostrare che (a_n) ha una sottosuccessione w-convergente in E. Sia

$$V = \overline{\operatorname{Span}(\{a_n\}_{n \in \mathbb{N}})} \subseteq E,$$

in particolare V è un sottospazio vettoriale chiuso e separabile, quindi V^* ha una palla unitaria w^* -separabile². Sia $D \subseteq V^*$ numerabile e denso. Con argomento diagonale troviamo una sottosuccessione di (a_n) (che continuiamo a chiare (a_n)) tale che $\langle f, a_n \rangle$ converge per ogni $f \in D$.

Sia $a_{\infty} \in E$ un punto di accumulazione di $(a_n) \subseteq A$ (stiamo assumendo A RNC). Allora per ogni $f \in D$, $\langle f, a_{\infty} \rangle$ è punto di accumulazione della successione convergente $\langle f, a_n \rangle$, quindi $\langle f, a_{\infty} \rangle$ è il limite (\mathbb{R} è Hausdorff).

Affermo che ciò vale per ogni $f \in V^*$: se non fosse così esisterebbe $g \in V^*$ tale che $\langle g, a_n \rangle \not\to \langle g, a_\infty \rangle$, ma allora estraendo una sottosuccessione esisterebbe una sottosuccessione tale che $\langle g, a_{n_k} \rangle$ converge ad un limite diverso da $\langle g, a_{\infty} \rangle$. Se $b_{\infty} \in E$ è di waccumulazione per (a_{n_k}) si trova come prima che per ogni $f \in D, \langle f, a_{n_k} \rangle \to \langle f, b_{\infty} \rangle$, ma essendo (a_{n_k}) una sottosuccessione di quella di prima $\langle f, a_{n_k} \rangle \to \langle f, a_{\infty} \rangle$. Eppure $\langle g, a_{n_k} \rangle \to \langle g, b_{\infty} \rangle \neq \langle g, a_{\infty} \rangle$ e questo è assurdo perché D è w^* -denso.

Dunque $\langle f, a_n \rangle \to \langle f, a_\infty \rangle$ per ogni $f \in V^*$, quindi $\langle f, a_n \rangle \to \langle f, a_\infty \rangle$ per ogni $f \in E^*$ in quanto $f|_V \in V^*$. Questo significa esattamente che $a_n \to a_\infty$ nella topologia debole, come volevamo.

 $RSC \implies \overline{C}$

Mostriamo che la chiusura $\sigma(E^{**}, E^{*})$ di A in E^{**} è in realtà contenuta in E. Se questo è vero allora questa è anche la chiusura in $\sigma(E, E^*)$ e quindi è compatta per Banach-Alaoglu (7.1) infatti

$$A \subseteq E \subseteq E^{**} \leadsto \overline{A}^E = \overline{A}^{E^{**}} \cap E.$$

Sia $\eta \in \overline{A}^{\sigma(E^{**},E^{*})}$ e mostriamo che $\eta \in E$. Quello che faremo è mostrare che

Per Krein-Šmulian (7.23) basta vedere che ker $\eta \cap \overline{B_{E^*}(0,1)}$ è w^* -chiuso (e quindi per omotetia $\ker \eta \cap \overline{B(0,R)}$ chiuso e per Krein-Šmulian questo mostra che $\ker \eta$ stesso è

Sia $g_0 \in \overline{\ker \eta \cap B_{E^*}}^{w^*}$ e mostriamo che $g_0 \in \ker \eta$, cioè $\langle \eta, g_0 \rangle = 0$ (chiaramente g_0 sta nella palla). Partendo da g_0 costruiamo due successioni $a_n \in A$ e $g_n \in \ker \eta \cap B_{E^*}$ in modo che

$$\begin{cases} \langle g_i, a_n \rangle - \langle \eta, g_i \rangle < \frac{1}{n} & \forall 0 \le i \le n - 1 \\ |\langle g_n, a_i \rangle - \langle g_0, a_i \rangle| < \frac{1}{n} & \forall 1 \le i \le n \end{cases}$$

Questo si può fare per induzione: definiti g_1, \dots, g_{n-1} esiste a_n verificante la prima condizione perché quella condizione definisce un intorno di η per la topologia $\sigma(E^{**}, E^{*})$, che quindi interseca A in quanto η appartiene alla chiusura di A. Definiti a_1, \cdots, a_n esiste g_n che verifica la seconda condizione perché quelle disuguaglianze definiscono un intorno di g_0 nella topologia $\sigma(E, E^*)$ e questo interseca ker $\eta \cap B_{E^*}$.

²Per Banach-Alaoglu (7.1) B_{V^*} è w^* -compatta, ma chiaramente è anche metrizzabile perché V è separabile (6.2), quindi B_{V^*} è separabile.

Alternativamente basta seguire la dimostrazione V^* separabile implica V separabile ma partendo da V e notare che gli stessi passi portano a mostrare che V^* è debolmente*-separabile (vedi nota a margine nella dimostrazione di 3. in (6.2)).

 $^{^3}$ forma lineare è continua se e solo se nucleo è chiuso (2.32) e mostrare che η è w^* -continua è la stessa cosa di dire che η è una valutazione per definizione di topologia debole*

Poiché $\langle \eta, g_n \rangle = 0$ per ogni $n \geq 1$ vale

$$\begin{cases} \langle g_0, a_n \rangle - \langle \eta, g_0 \rangle = o(1) & \text{prima condizione per } i = 0 \\ \langle g_i, a_n \rangle = o(1) & \text{prima condizione per } i > 0 \\ \langle g_n, a_i \rangle - \langle g_0, a_i \rangle = o(1) & \text{seconda condizione} \end{cases}$$

Poiché A è RSC, a meno di sottosuccessione, $a_n \to a_\infty \in E$ debolmente. La successione $\langle g_n, a_i \rangle \to \langle g_0, a_i \rangle$ per ogni $i < \infty$ per la terza equazione, invece per la seconda si ha $\langle g_i, a_{\infty} \rangle = 0$, in particolare converge.

Per Banach-Alaoglu (7.1) e l'implicazione RSC \Longrightarrow RNC la successione $(g_n)_n \subseteq B_{E^*}$ ha un punto di w^* -accumulazione g_{∞} . Per ogni i (anche ∞) si ha che $\langle g_{\infty}, a_i \rangle$ è un punto di accumulazione per $(\langle g_n, a_i \rangle)_n$, e quindi $\langle g_{\infty}, a_i \rangle$ è il limite di questa successione.

Facendo il limite per $n \to \infty$ nelle disguguaglianze precedenti troviamo

$$\begin{cases} \langle g_0, a_\infty \rangle = \langle \eta, g_0 \rangle \\ \langle g_i, a_\infty \rangle = 0 \\ \langle g_\infty, a_i \rangle = \langle g_0, a_i \rangle \end{cases}$$

Ora facciamo tendere $i \to \infty$ e troviamo

$$\begin{cases} \langle g_0, a_\infty \rangle = \langle \eta, g_0 \rangle \\ \langle g_\infty, a_\infty \rangle = 0 \\ \langle g_\infty, a_\infty \rangle = \langle g_0, a_\infty \rangle \end{cases}$$

cioè

$$\langle \eta, g_0 \rangle = \langle g_0, a_\infty \rangle = \langle g_\infty, a_\infty \rangle = 0$$

ovvero $g_0 \in \ker \eta$ come volevamo.

 $\overline{NC} \implies \overline{SC}$ | Per un chiuso $\overline{NC} = RNC$ e similmente $\overline{SC} = RSC$, quindi la freccia $RNC \implies$

Riassumendo:

- Su *X**
 - Banach-Alaoglu: B_{X^*} è w^* -compatta
 - Se X è separabile allora (B_{X^*}, w^*) è metrizzabile, quindi è anche sequenzialmente compatta. (Mostrato indipendentemente tramite Ascoli-Arzelá).

- \bullet Su X
 - 1. Dieudonné: i compatti (norma) K sono contenuti in $\overline{\operatorname{co}(x_n)}$ per $x_n \to 0$
 - 2. Eberlein-Šmulian: compatti per debole.

Capitolo 8

Funzioni regolari e funzioni a supporto compatto

Sia Ω aperto di \mathbb{R}^n non vuoto.

Notazione 8.1.

Sia $k(\Omega) = \{ K \subseteq \Omega \mid K \text{ compatto} \}.$

Definizione 8.2 (Spazio di Fréchet).

Uno spazio topologico è di **Fréchet** se è SVTLC, metrizzabile e completo.

8.1 Funzioni regolari

Definizione 8.3 (Funzioni continue).

Definiamo l'insieme delle funzioni continue su Ω come

$$C^0(\Omega) = \{ f : \Omega \to \mathbb{R} \mid \text{continue} \}$$

Proposizione 8.4.

L'insieme $C^0(\Omega)$ munito della topologia indotta dalle seminorme uniformi

$$\left\{\left\|\cdot\right\|_{\infty,K}\right\}_{K\in k(\Omega)}$$

è uno spazio di Fréchet.

Dimostrazione.

In quanto topologia indotta da seminorme abbiamo che $C^0(\Omega)$ è uno SVTLC.

metrizzabile

Se $(K_j)_{j\in\mathbb{N}}$ è una successione di compatti tale che $K_i\subseteq int(K_{i+1})$ e $\Omega=\bigcup_{j\geq 0}K_j$ allora le seminorme $\left\{\|\cdot\|_{\infty,K_j}\right\}$ topologizzano $C^0(\Omega)$. Quindi per esempio possiamo considerare $K_j = \{x \in \Omega \mid dist(x, \Omega^c) \leq 2^{-j}\} \cap \overline{B}(0, j)$ e definire la distanza come

$$d(f,g) = \sum_{j\geq 0} 2^{-j} \arctan(\|f - g\|_{\infty,K_j}).$$

completo $(f_n) \subseteq C^0(\Omega)$ è di Cauchy se per ogni j si ha $(f_n|_{K_j})_n$ di Cauchy in $C^0(K_j)$, quindi f_n converge uniformemente su K_j e il limite è una funzione $f \in C^0(\Omega)$ (definiamo puntualmente a priori ma è una convergenza uniforme su compatti quindi il limite è una funzione continua).

Notazione 8.5.

Sia $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$ e $f \in C^m(\Omega)$, allora

$$\partial^{\alpha} f = \frac{\partial^{\alpha_n}}{\partial x_n^{\alpha_n}} \cdots \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} f.$$

Chiamiamo n la lunghezza di α e $|\alpha| = \sum_{i=1}^{n} \alpha_i$ il peso o grado di α .

Osservazione 8.6.

Per il teorema di Schwarz non importa l'ordine delle derivate sopra.

Definizione 8.7 (Spazio $C^m(\Omega)$).

Poniamo

$$C^{m}(\Omega) = \{ f : \Omega \to \mathbb{R} \mid \forall \alpha \ t.c. \ |\alpha| \le m, \ \partial^{\alpha} f \in C^{0}(\Omega) \}.$$

Proposizione 8.8.

L'insieme $C^m(\Omega)$ con la topologia indotta dalle seminorme

$$||f||_{\alpha,\infty,K} = ||\partial^{\alpha} f||_{\infty,K}$$

considerate al variare di $|\alpha| \le m$ e $K \in k(\Omega)$ è uno spazio di Fréchet.

Dimostrazione.

Equivalente possiamo considerare le norme $\{p_{m,K}\}_{K\in k(\Omega)}$ date da

$$p_{m,K}(f) = \max_{|\alpha| \le m} \|\partial^{\alpha} f\|_{\infty,K}.$$

La metrizzabilità segue come prima.

Per la complettezza basta usare il teorema di limite sotto il segno di derivata: Se $(f_n) \subseteq C^m(\Omega)$ è di Cauchy, cioè $|\alpha| \le m$ e $\forall K \in k(\Omega)$ si ha $\partial^{\alpha} f_j$ di Cauchy in $C^0(\Omega)$, allora per ogni $|\alpha| \le m$ si ha convergenza uniforme sui compatti

$$\partial^{\alpha} f_j \to g_{\alpha}$$

per qualche $g_{\alpha} \in C^0(\Omega)$. Si conclude (per induzione su m) che $f = \lim f_j$ è di classe C^m e che $\partial^{\alpha} f = g_{\alpha}$.

 $Osservazione\ 8.9.$

 $C^m(\Omega)$ ha la topologia iniziale data dalle mappe

$$\begin{array}{ccc} C^m(\Omega) & \longrightarrow & C^0(K) \\ f & \longmapsto & \partial^\alpha f|_K \end{array}$$

al variare di $K \in k(\Omega)$ e $|\alpha| \leq m$.

Definizione 8.10 (Spazio $C^{\infty}(\Omega)$).

Definiamo

$$C^{\infty}(\Omega) = \bigcap_{m \ge 0} C^m(\Omega).$$

Osservazione 8.11.

Anche $C^{\infty}(\Omega)$ è di Fréchet.

Osservazione~8.12.

I limitati di $C^{\infty}(\Omega)$ sono relativamente compatti.

Dimostrazione.

Se $A \subseteq C^{\infty}(\Omega)$ è limitato allora per ogni $K \in k(\Omega)$ e per ogni $m \in \mathbb{N}$ si ha che

$$\sup_{f \in A} p_{m+1,K}(f) \le C(m,K) \in \mathbb{R},$$

quindi le derivate delle $\partial^{\alpha} f$ per $f \in A$ sono limitate uniformemente su K. Questo in particolare vale per K compatto convesso, quindi le $\partial^{\alpha} f$ sono equilipschitz (teorema del valor medio).

Allora per Ascoli-Arzelá abbiamo che $\{\partial^{\alpha} f\}$ è un compatto in $C^0(K)$. Dunque (argomento diagonale) ogni successione $(f_j) \subseteq A$ ha una sottosuccessione convergente uniformemente sui compatti e quindi in $C^{\infty}(\Omega)$.

Osservazione 8.13.

Nel caso di $C^m(\Omega)$ si ha che i limitati di $C^{m+1}(\Omega) \subseteq C^m(\Omega)$ sono relativamente compatti in $C^m(\Omega)$.

8.2 Funzioni a supporto compatto

Definizione 8.14 (Funzioni a supporto compatto).

Definiamo

$$C_C^0(\Omega) = \bigcup_{K \in k(\Omega)} C_K, \qquad C_K = \{ f \in C^0(\mathbb{R}^n) \mid \text{supp } f \subseteq K \}$$

Analogamente (anche per $m = \infty$)

$$C_C^m(\Omega) = C^m(\Omega) \cap C_C^0(\Omega) = \bigcup_{K \in k(\Omega)} C_K^m, \qquad C_K^m = C^m(\Omega) \cap C_K.$$

Osservazione 8.15.

 $C_C^0(\Omega)$ è denso in $C^0(\Omega)$ e similmente per ordini più alti.

Poiché questi spazi sono definiti in modo naturale come unione, la topologia naturale su $C_C^m(\Omega)$ è la più fine topologia di SVT che renda continue le inclusioni $C_K^m \hookrightarrow C_C^m(\Omega)$, dove C_K^m ha la topologia indotta da $C^m(\Omega)$.

8.2.1 Lo spazio C_C

Sia $X_n = \{x \in \mathbb{R}^n \mid x_i = 0 \ \forall i \geq n\} \cong \mathbb{R}^n$ e consideriamo questo spazio con la (unica¹) topologia di SVT T_0 , cioè la topologia euclidea. Sia $X_n \hookrightarrow X_{n+1}$ l'inclusione.

Poniamo

$$C_C = \mathbb{R}^{\omega} = \bigcup_{n \ge 0} X_n, \qquad \mathbb{R}^n = \left\{ x \in \mathbb{R}^{\mathbb{N}} \mid x_i = 0 \ \forall i \ge n \right\}.$$

Osservazione~8.16.

Qualunque topologia di SVT su C_C rende continue le inclusioni, perché induce su X_n una topologia che non è più fine di quella euclidea. Quindi la topologia di limite induttivo su C_C è la più fine topologia di SVT.

 $^{^{1}}$ equivalenza delle norme

Osservazione 8.17.

Questa topologia è localmente convessa perché lo sono le topologie sugli X_n .

Osservazione 8.18.

La topologia limite su C_C deve essere quella indotta da TUTTE le seminorme su C_C

Notazione 8.19.

 $e_i \in C_C$ è la successione identicamente nulla eccetto nell'indice i dove vale 1.

Osservazione 8.20.

Se $p: C_C \to [0, \infty)$ è una seminorma e $x \in C_C$ (che scriviamo $x = \sum_{i=0}^n x_i e_i$) allora

$$p(x) = p\left(\sum_{i=0}^{n} x_i e_i\right) \le \sum_{i=0}^{n} |x_i| p(e_i)$$

dunque ogni seminorma è maggiorata da una seminorma della forma

$$p_{\lambda}(x) = \sum_{i>0} \lambda_i |x_i|$$

per qualche $\lambda \in [0, \infty)^{\mathbb{N}}$.

Corollario 8.21.

La famiglia $\{p_{\lambda}\}_{{\lambda}\in[0,\infty)^{\mathbb{N}}}$ è una famiglia di seminorme che topologizza C_C .

Osservazione~8.22.

 C_C è completo sequenzialmente.

Dimostrazione.

Ogni successione di Cauchy è limitata quindi, poiché gli X_n sono chiusi negli X_{n+k} , si ha per (A.17) che la successione è contenuta in qualche X_n e gli X_n sono completi.

Osservazione 8.23.

 C_C non è metrizzabile, quindi in particolare non è di Fréchet.

Dimostrazione.

Supponiamo per assurdo che C_C sia metrizzabile. La famiglia $\{C_C \setminus X_n\}_{n \in \mathbb{N}}$ è numebrabile e di aperti densi in spazio metrico completo C_C (densi perché sottospazi hanno parte interna vuota), quindi per il teorema di Baire (4.24)

$$C_C = \overline{\bigcap_n C_C \setminus X_n} = \overline{\emptyset} = \emptyset,$$

che è assurdo. \Box

Osservazione~8.24.

Ogni forma lineare su C_C è continua (perché continua quando ristretta a \mathbb{R}^n), quindi

$$(C_C)^* = \mathbb{R}^{\mathbb{N}}$$

in quanto una forma lineare è identificata dai valori che assume su una base.

Esercizio 8.25.

Esercizio 6.23. Il duale di $\mathbb{R}^{\mathbb{N}}$ con la topologia prodotto delle topologie di seminorme $\left\{\|\cdot\|_{\infty,[0,n]}\right\}_{n\geq 0}$ è C_C , infatti la topologia prodotto è $\sigma(\mathbb{R}^{\mathbb{N}},C_C)$.

Esercizio 8.26.

Proviamo che la topologia di C_C come limite induttivo stretto di SVT coincide con la topologia limite topologico τ_{∞} .

Dimostrazione.

In questa topologia $A \subseteq C_C$ è aperto se e solo se per ogni n si ha $A \cap X_n$ aperto di X_n . In particolare tale A è aperto nella topologia LF di C_C .

Dalla definizione è evidente che LF è invariante per traslazioni quindi per vedere che le due topologie coincidono basta vedere che ogni intorno di 0 in τ_{∞} contiene un intorno di 0 di LF.

Vogliamo² definire una successione $(\lambda_i) \subseteq \mathbb{R}_+$ tale che $\{p_\lambda \leq 1\} \subseteq V$, cioè per ogni $n \in \mathbb{N}$ e ogni $x = \sum_{i=0}^{n-1} x_i e_i \in X_n \subseteq C_C$, se $\sum_{i=0}^{n-1} \lambda_i |x_i| \leq 1$ allora $x \in V$. Definiti $\lambda_0, \cdots, \lambda_{n-1}$ con questa proprietà allora per ogni $s \geq 0$ consideriamo

$$K_s = \left\{ x \in X_n \mid \sum_{i=0}^{n-1} \lambda_i |x_i| + s |x_n| \le 1 \right\} \setminus V.$$

Ogni K_s è un compatto di X_n , inoltre $s\mapsto X_s$ è decrescente per inclusione (s più grade è un vincolo più forte).

Notiamo che $\bigcap_{s>0} K_s = \emptyset$, infatti se esistesse un elemento di questa intersezione allora la coordinata x_n sarebbe nulla, cioè $x \in X_{n-1}$, ma per il passo induttivo abbiamo vuoto.

Dunque per compattezza esiste $\tilde{s} > 0$ tale che $K_{\tilde{s}} = \emptyset$. Definiamo $\lambda_n = \tilde{s}$.

Corollario 8.27.

Per ogni spazio topologico X, $f: C_C \to X$ è continua se e solo se $f|_{X_{-}}$ continua. Poiché su X_n continua equivale a sequenzialmente continua, f è continua se e solo se è sequenzialmente continua.

Lo spazio $C_C^0(\Omega)$ 8.2.2

Definizione 8.28 (Continue a supporto compatto).

Fissato $\Omega \subseteq \mathbb{R}^n$ aperto consideriamo lo spazio $C_C^0(\Omega)$ come limite induttivo stretto degli spazi di Banach

$$C_K^0 = \{ f : \mathbb{R}^n \to \mathbb{R} \mid \text{supp } f \subseteq K \}$$

al variare di $K \in k(\Omega)$.

Osservazione~8.29.

Possiamo equivalentemente considerare il limite di $C_{K_i}^0$ con K_j compatti, $K_j \subseteq$ $int(K_{i+1}) \in \bigcup K_i = \Omega.$

Osservazione 8.30.

 $C_{K_i}^0$ è chiuso in $C_{K_{i+1}}^0$ quindi per proprietà generali dei limiti induttivi stretti (A.17)

- 1. A limitato in $C_C^0(\Omega)$ se e solo se A è contenuto e limitato in qualche C_K^0
- 2. C_K^0 sono sottospazi chiusi di $C_C^0(\Omega)$.
- 3. $C_C^0(\Omega)$ è localmente convesso, sequenzialmente completo ma non metrizzabile (di nuovo per Baire (4.24)).

questo basta perché $\{p_{\lambda} \leq 1\}$ contiene un aperto.

Esercizio 8.31.

La topologia LF di $C_C^0(\Omega)$ è STRETTAMENTE meno fine della topologia di limite induttivo topologico.

Notazione 8.32.

Poniamo $C^0(\Omega)_+ = \{ \sigma : \Omega \to \mathbb{R}_+ \text{ continue} \}.$

Proposizione 8.33 (Costruzione di una famiglia di seminorme).

La famiglia $\{p_{\sigma}\}_{{\sigma}\in C^0(\Omega)_+}$ di seminorme date da

$$p_{\sigma}(u) = \|\sigma u\|_{\infty} \quad \forall u \in C_C^0(\Omega)$$

topologizza lo spazio $C_C^0(\Omega)$.

Dimostrazione.

Diamo alcune definizioni:

- Sia $\varphi(x) = \frac{1}{dist(x,\Omega^c)} + ||x||$. Nota che $\{\varphi \leq c\}$ è compatto perché φ tende a ∞ vicino ai bordi
- Posto $K_i = \{x \in \Omega \mid |\varphi(x) i| \le 1\} \in k(\Omega)$ si ha $\Omega = \bigcup_{i \ge 0} int(K_i)$ e $K_i \cap K_j = \emptyset$ se $|i j| \ge 2$.
- Poniamo $\eta_j=(1-|\varphi(x)-j|)_+$, segue che $\eta_j\in C^0_C(\Omega),\, 0\leq \eta_j\leq 1$, supp $\eta_j\subseteq K_j$ e $\sum_{j\geq 0}\eta_j=1$ in quanto, per ogni t,

$$\sum_{j\geq 0} (1 - |t - j|)_+ = 1.$$

Sia U aperto convesso di O in $C_C^0(\Omega)$. Vogliamo trovare $\sigma \in C^0(\Omega)$ tale che $\{p_\sigma \leq 1\} \subseteq U$ (cioè la topologia indotta da $\{p_\sigma\}$ è più fine della LF).

Per $j \geq 0$ sia $\delta_j = \inf \left\{ \|u\|_{\infty} \mid u \in C^0_{K_j} \setminus U \right\}$, che è strettamente positiva (in quanto $U \cap C^0_K$ è intorno di 0 in $C^0_{K_j}$) e contiene la palla

$$\left\{ \|u\|_{\infty} < \delta, \ u \in C_{K_j}^0 \right\}.$$

Definiamo $\rho \in C^0(\Omega)_+$ come segue: sia ε_j il minimo di $\left\{2^{-j-2}\delta_{j-1}, 2^{-j-1}\delta_j, 2^{-j}\delta_{j+1}\right\}$ e consideriamo la funzione

$$\rho = \sum_{j>0} \varepsilon_j \eta_j$$

questa funzione è positiva, è una combinazione convessa di tre degli ε_j . Sia $\sigma = \frac{1}{\rho}$. Notiamo ora che per ogni $u \in C_C^0(\Omega)$ tale che

$$|u(x)| \le \rho(x)$$

si ha $u\in U$ (cioè $\{\|\sigma(u)\|_{\infty}\leq 1\}\subseteq U$), infatti se $|u|\leq \rho$ allora per ogni i si ha $u\eta_i\in C^0_{K_i}$ e

$$|u\eta_i| \le \rho\eta_i = \sum_{i \ge 0} \varepsilon_j \eta_j \eta_i = \sum_{i-1 \le j \le i+1} \varepsilon_j \eta_j \le \max_{i-1 \le j \le i+1} \{\varepsilon_j\} \le 2^{-i-1} \delta_i$$

quindi $\left|2^{i+1}u\eta_i\right|_\infty\leq \delta_i$ e siccome $2^{i+1}u\eta_i\in C^0_{K_i}$ allora per la scelta di K_i si ha $2^{i+1}u\eta_i\in U.$ Allora

$$u = \sum_{i} u\eta_{i} = \sum_{i} 2^{-i-1} (2^{i+1} u\eta_{i})$$

e dato che U è convesso questo mostra $u \in U$.

L'altra inclusione delle topologie deriva da: per ogni j, $C_{K_j}^0 \hookrightarrow C_C^0$ è continua rispetto alla famiglia di seminorme $\{p_\sigma\}$ e quindi questa topologia è meno fine della topologia limite. La continuità segue perché per ogni $u \in C_K^0$ e ogni $\sigma \in C^0(\Omega)_+$ si ha

$$p_{\sigma}(u) = \|\sigma u\|_{\infty} \le \|\sigma\|_{\infty,K} \|u\|_{\infty}.$$

Osservazione 8.34.

Data $f \in C^0(\Omega)$ possiamo considerare su $C^0_C(\Omega)$ l'operatore di moltiplicazione per f:

$$M_f: \begin{array}{ccc} C^0_C(\Omega) & \longrightarrow & (C^0_b(\Omega), \|\cdot\|_{\infty}) \\ u & \longmapsto & fu \end{array}.$$

La topologia di $C_C^0(\Omega)$ (LF) coincide con la topologia debole della famiglia $\{M_f\}$, cioè è la topologia iniziale associata a questa famiglia.

8.2.3 Lo spazio $\mathcal{D}(\Omega)$

Definizione 8.35.

Poniamo

$$\mathcal{D}(\Omega) = \{ f \in C^{\infty}(\Omega) \mid \exists K \in k(\Omega) \ t.c. \ \text{supp} \ f \subseteq K \} .$$

Osservazione~8.36.

Possiamo dare a $\mathcal{D}(\Omega)$ la topologia di limite induttivo stretto degli C_K^{∞} .

Osservazione 8.37

Come prima, su C_K^∞ questa è la topologia indotta dalle seminorme $\{p_m\}_{m\geq 0}$ con

$$p_m(f) = \max_{|\alpha| \le m} \|\partial^{\alpha} f\|_{\infty}$$

che inducono topologia di SVTLC, metrico completo (cioè di Fréchet).

Osservazione 8.38.

 $A \subseteq \mathcal{D}(\Omega)$ è limitato se e solo se è contenuto e limitato in C_K^{∞} .

Diamo una seconda descrizione della topologia di $\mathcal{D}(\Omega)$ in termini di seminorme.

Definizione 8.39.

Dati $\sigma, \mu : \Omega \to \mathbb{R}_+$ continue definiamo la seminorma $p_{\sigma,\mu}$ su $\mathcal{D}(\Omega)$ come

$$p_{\sigma,\mu}(u) = \max_{\substack{x \in \Omega \\ \alpha \in \mathbb{N}^n \\ |\alpha| \le \mu(x)}} |\sigma(x)\partial^{\alpha}u(x)| \qquad \forall u \in \mathcal{D}(\Omega) = \bigcup_{K \in k(\Omega)} C_K^{\infty}.$$

Abbiamo buona definizione perché per ogni u in $\mathcal{D}(\Omega)$ esiste K compatto tale che $u \in C_K^{\infty}$, quindi il massimo ha senso in quanto basta considerare $x \in K$ al posto di $x \in \Omega$.

Definizione 8.40 (Funzione propria).

 $f: X \to \mathbb{R}$ funzione continua è **propria** se $\{f \le c\}$ è compatto in X.

Osservazione 8.41 (Formula di Newton per derivate).

Vale l'identità

$$\partial^{\beta}(u \cdot v) = \sum_{\alpha < \beta} \binom{\beta}{\alpha} \partial^{\alpha} u \partial^{\beta - \alpha} v$$

dove

$$\binom{\beta}{\alpha} = \prod_{1 < i < n} \binom{\beta_i}{\alpha_i}.$$

Proposizione 8.42.

La topologia LF di $\mathcal{D}(\Omega)$ è indotta dalle seminorme $\{p_{\sigma,\mu}\}.$

Dimostrazione.

Mostriamo che LF è più fine:

Se $\{p_m\}$ sono le seminorme date prima che topologizzano C_K^{∞} e $u \in C_K^{\infty}$ allora

$$p_{\sigma,\mu}(u) \leq \|\sigma\|_{\infty,K} \cdot p_{\|\mu\|_{\infty,K}}(u)$$

dunque le inclusioni C_K^{∞} in $\mathcal{D}(\Omega)$ sono continue per le seminorme $\{p_{\sigma,\mu}\}$, ovvero per ogni K è continua

$$(C_K^{\infty}, \{p_m\}) \hookrightarrow (\mathcal{D}(\Omega), \{p_{\sigma,\mu}\})$$

e quindi è continua anche la mappa identità

$$(\mathcal{D}(\Omega), LF) \to (\mathcal{D}(\Omega), \{p_{\sigma,\mu}\})$$

per definizione di topologia limite induttivo.

Mostriamo ora che LF è meno fine:

Sia $\varphi: \Omega \to \mathbb{R}$ di classe C^{∞} con $\varphi(x) > 0$ per ogni $x \in \Omega$ e propria. Definiamo a mano una partizione dell'unità:

- Definiamo $K_i = \{x \in \Omega \mid |\varphi(x) i| \le 1\} \in k(\Omega)$
- Sia $g:\mathbb{R}\to\mathbb{R}$ ci classe C^∞ con $0\leq g\leq 1$, supp $g\subseteq [-1,1],\ g(t)=g(-t),$ g(t)+g(1-t)=1, cioè

$$\sum_{j>0} g(t-j) = 1 \quad \forall t \ge 0$$

• Sia $\eta_i(x) = g(\varphi(x) - i)$.

Nota che $0 \le \eta_i \le 1$, $\eta_i \in C^{\infty}$, $\sum_{i \ge 1} \eta_i(x) = 1$ per ogni $x \in \Omega$, supp $\eta_i \subseteq K_i$ e $\eta_i \eta_j = 0$ se $|i - j| \ge 2$.

Sia U un intorno di 0 convesso³ in $(\mathcal{D}(\Omega), LF)$, allora per ogni $i \geq 0$ si ha $U \cap C_{K_i}^{\infty}$ è un intorno di 0 in $C_{K_i}^{\infty}$ per definizione, quindi esistono $m_i \in \mathbb{N}$ e $\delta_i > 0$ tali che

$$\{f \in C_{K_i}^{\infty} \mid p_{m_i}(f) \le \delta_i\} \subseteq U.$$

Definiamo $\sigma, \mu \in C^0(\Omega)_+$ incollando i numeri δ_i e m_i con la partizione di unità $\{\eta_i\}$:

- $\ell_i \doteq \max_{|i-j| \le 1} m_j = \max\{m_{i-1}, m_i, m_{i+1}\}$
- $\mu(x) = \sum_{i>0} \ell_i \eta_i$

 $^{^3}$ sappiamo che LFè una topologia di SVTLC

• quindi per ogni $i \ge 0$ si ha $m_i \le \min_{|1-j| \le 1} \ell_i = \min \{\ell_{i-1}, \ell_i, \ell_{i+1}\}$ e per ogni $x \in K_i$

$$\mu(x) = \sum_{|i-j| \le 1} \ell_j \eta_j \ge \min_{|i-j| \le 1} \ell_i \left(\sum_i \eta_i \right) = \min_{|i-j| \le 1} \ell_i \ge m_i.$$

- $n_i = 2^{-i-1-m_i} p_{m_i} (\eta_i)^{-1} \delta_i$
- $\varepsilon_i = \min_{|i-j|} n_j$
- Per ogni $i \ge 0$

$$n_i \ge \max \{\varepsilon_{i-1}, \varepsilon_i, \varepsilon_{i+1}\}.$$

- Definiamo $\sigma(x) = \left(\sum_{i \geq 0} \varepsilon_i \eta_i\right)^{-1}$.
- Per ogni $x \in K_i$

$$\sigma(x)^{-1} = \sum_{j \ge 0} \varepsilon_j \eta_j = \sum_{|i-j| \le 1} \varepsilon_j \eta_j \le \max_{|j-i| \le 1} \varepsilon_j \le n_i$$

Dunque per ogni $i \ge 0$ e $x \in K_i$

$$\mu(x) \ge m_i, \qquad \sigma(x)^{-1} \le n_i$$

quindi

$$\{f \in \mathcal{D}(\Omega) \mid p_{\sigma,\mu}(f) < 1\} \subseteq U$$

infatti se f appartiene a questo insieme allora per ogni $i \geq 0$ la funzione $2^{i+1}\eta_i f$ appartiene a $C_{K_i}^{\infty}$ e ha seminorma p_{m_i} minore di δ_i , cioè per ogni β tale che $|\beta| \leq m_i$ si ha

$$\begin{aligned} \left| \partial^{\beta}(2^{i+1}\eta_{i}f) \right| &= 2^{i+1} \left| \partial^{\beta}(\eta_{i}f) \right| = 2^{i+1} \left| \sum_{\alpha \leq \beta} \binom{\beta}{\alpha} \partial^{\beta-\alpha} \eta_{i} \partial^{\alpha} f \right| \leq \\ &\leq 2^{i+1} \left(\sum_{\alpha \leq \beta} \binom{\beta}{\alpha} \right) p_{m_{i}}(\eta_{i}) \left(\sigma(x) \max_{|\alpha| \leq m_{i}} |\partial^{\alpha} f| \right) \sigma(x)^{-1} \stackrel{|\beta| \leq m_{i}}{\leq} \\ &\leq 2^{i+1+m_{i}} p_{m_{i}}(\eta_{i}) \cdot p_{\sigma,\mu}(f) \cdot \sigma(x)^{-1} \stackrel{\sigma(x)^{-1} \leq n_{i}}{\leq} \\ &\leq 2^{i+1+m_{i}} p_{m_{i}}(\eta_{i}) \cdot p_{\sigma,\mu}(f) \cdot 2^{-i-1-m_{i}} p_{m_{i}}(\eta_{i})^{-1} \delta_{i} = \\ &= p_{\sigma,\mu}(f) \delta_{i} < 1 \cdot \delta_{i}. \end{aligned}$$

Dunque se $p_{\sigma,\mu}(f) < 1$, la funzione $2^{i+1}\eta_i f$ è tale che

$$p_{m_i}(2^{i+1}\eta_i f) \le 1$$

quindi, poiché $C_{K_i}^{\infty} \cap \{p_{m_i} \leq \delta_i\} \subseteq U$, questo mostra che $2^{i+1}\eta_i f \in U$ e quindi

$$f = \sum_{i>0} 2^{-i-1} (2^{i+1} \eta_i f)$$

è combinazione convessa finita di elementi di U e poiché abbiamo preso U convesso questo conclude. \Box

Esercizio 8.43.

La moltiplicazione (puntuale)

$$\begin{array}{ccc} \mathcal{D}(\Omega) \times \mathcal{D}(\Omega) & \longrightarrow & \mathcal{D}(\Omega) \\ (f,g) & \longmapsto & fg \end{array}$$

è continua? Sì.

Sono continue la moltiplicazioni

Solution.

Usare le seminorme e la caratterizzazione di continuità per le bilineari (4.39).

8.3 Altre proprietà di $\mathcal{D}(\Omega)$

8.3.1 Spazi barilati

Definizione 8.44 (Botte e spazi barilati).

Una **botte** o **barile** in X SVTLC è un insieme

- assorbente
- assolutamente convesso
- chiuso.

Affermiamo che X è uno **spazio botte** / **spazio barilato** (**barreled space**) se ogni barile è un intorno di 0.

 $Osservazione\ 8.45.$

Ogni spazio di Fréchet è uno spazio botte.

Dimostrazione.

Riadatta dimostrazione di Banach-Steinhaus (4.34):

Se $B\subseteq X$ botte allora $X=\bigcup nB$ in quanto assorbente. Per Baire (4.24) uno degli nB (e quindi B) ha parte interna non vuota. Poiché

$$\frac{1}{2}(int(B)-int(B))\subseteq\frac{1}{2}(B-B)=B$$

si ha che B è intorno di 0.

Osservazione 8.46.

Limiti induttivi di spazi barilati sono barilati.

Dimostrazione.

Sia $X_{\infty} = \varinjlim X_n$ con X_n barilati. Sia $B \subseteq X_{\infty}$ botte. Allora per ogni n si ha $B \cap X_n$ botte in X_n (assorbente, assolutamente convesso perché X_n sottospazio vettoriale, chiuso perché $X_n \hookrightarrow X_{\infty}$ continua). Allora $B \cap X_n$ è intorno di 0 per ogni n ed è convesso, quindi B è un intorno di 0 in X_{∞} .

Corollario 8.47.

Ogni LF-spazio (limite induttivo di Fréchet) è barilato. In particolare anche $\mathcal{D}(\Omega)$.

8.3.2 Spazi Bornologici

Definizione 8.48 (Spazi Bornologici).

Un insieme $B \subseteq X$ SVT si dice **Bornofago** se assorbe ogni insieme limitato.

X SVTLC è **Bornologico** se ogni sottoinsieme (assolutamente)convesso⁴ e bornofago è un intorno di 0.

Proposizione 8.49.

Se X è SVT I-numerabile e $C \subseteq X$ non è un intorno di 0 allora C non è assorbente.

Dimostrazione.

Se C non è intorno di 0 allora esiste una successione (x_n) con $x_n \notin C$ per ogni n e tale che $x_n \to 0$.

Se p è una paranorma per X (2.36) allora $p(x_n) \to 0$ a meno di estrarre una sottosuccessione. Si può quindi assumere $p(x_n) = o(1/n)$. Sia $y_n = nx_n \notin nC$. Nota che

$$p(y_n) = p(nx_n) \le np(x_n) = o(1)$$

quindi $\{y_n\}$ è limitato in quanto $y_n\to 0$ ma non è assorbito da C per costruzione.

Corollario 8.50.

Ogni SVTLC I-numerabile è bornologico.

Fatto 8.51.

Ogni limite induttivo di spazi bornologici è bornologico

Dimostrazione.

Se X_n bornologici con limite X_∞ allora sia B convesso e bornofago in X_∞ , allora $B \cap X_n$ è ancora convesso. $B \cap X_n$ è ancora bornofago perché ogni limitato in X_n è limitato in X_∞ per continuità delle inclusioni. Quindi $B \cap X_n$ è intorno di 0 convesso in X_n e quindi B stesso è intorno di 0 convesso di X_∞ .

Corollario 8.52.

Ogni spazio LF è bornologico e quindi in particolare anche $\mathcal{D}(\Omega)$.

 $[\]overline{^4}$ chiedere assolutamente convesso o convesso è equivalente

Capitolo 9

Distribuzioni

Definizione 9.1 (Distribuzione).

Fissato $\Omega \subseteq \mathbb{R}^n$ aperto, una **distribuzione** è una forma lineare e continua su $\mathcal{D}(\Omega)$. Lo spazio delle distribuzioni è dunque il duale topologico di $\mathcal{D}(\Omega)$, cioè $\mathcal{D}(\Omega)^*$, che però in questo contesto viene spesso indicato $\mathcal{D}'(\Omega)$ per ragioni storiche.

Osservazione 9.2.

 $u:\mathcal{D}(\Omega)\to\mathbb{R}$ lineare è una distribuzione SE è continua, cio
è se per ogni $K\in k(\Omega)$ si ha che

$$u|_{C_{\infty}^{\infty}}: C_{K}^{\infty} \to \mathbb{R}$$

è continua, o equivalentemente se per ogni $K\in k(\Omega)$ esistono $m\in\mathbb{N}$ e C>0tali che

$$|\langle u, f \rangle| \le Cp_m(f) \quad \forall f \in C_K^{\infty}.$$

Definizione 9.3 (Ordine di una distribuzione).

Se $m \in \mathbb{N}$ è tale che per ogni $K \in k(\Omega)$ esiste C > 0 tale che

$$|\langle u, f \rangle| \le Cp_m(f) \quad \forall f \in C_K^{\infty}.$$

si dice che u ha **ordine minore o uguale a** m. Se non esiste un tale m diciamo che u ha ordine ∞ , mentre se esite allora l'**ordine di** u è il minimo tale m. Indichiamo l'ordine di u con ord(u).

Osservazione 9.4.

Intuitivamente l'ordine è "il massimo ordine di derivate" che può apparire scrivendo u esplicitamente.

Esempio 9.5.

La valutazione in un punto è una distribuzione di ordine 0. La valutazione della prima derivata in un punto è una distribuzione di ordine 1.

 $Osservazione\ 9.6.$

Valgono:

- Per ogni $K \in k(\Omega)$ e per ogni $f_j \to 0$ in C_K^{∞} vale $\langle u, f_j \rangle \to 0$.
- Per ogni $f_i \to 0$ in $\mathcal{D}(\Omega)$, $\langle u, f_i \rangle \to 0$.
- Per (8.42) esistono σ, μ tali che

$$|\langle u, f \rangle| \le p_{\sigma, \mu}(f) \qquad \forall f \in \mathcal{D}(\Omega)$$

Definizione 9.7 (Integrabili su compatti).

Definiamo le funzioni **integrabili su compatti** $L^1_{loc}(\Omega)$ come le funzioni u su Ω tali che per ogni $K \in k(\Omega)$ si ha $u|_K \in L^1(K)$.

Definizione 9.8 (Inclusione delle localmente integrabili nelle distribuzioni).

Definiamo

$$T: \begin{array}{ccc} L^1_{loc}(\Omega) & \longrightarrow & \mathcal{D}'(\Omega) \\ u & \longmapsto & T_u: \begin{array}{ccc} \mathcal{D}(\Omega) & \longrightarrow & \mathbb{R} \\ f & \longmapsto & \int_{\Omega} f u \, dx \end{array}$$

Proposizione 9.9.

La mappa T è ben definita e iniettiva.

Dimostrazione.

L'integrale $\int_{\Omega} f u \, dx$ è ben definito perché f ha supporto compatto ed è continua (quindi $uf = u_{|_K} f$ è integrabile). T_u è continua su ogni C_K^{∞} perché

$$|\langle T_u, f \rangle| \le \|\mu_K\|_1 \|f\|_{\infty} = \|\mu|_K \|p_0(f).$$

L'iniettività è evidente perché se $u \neq v$ in L^1_{loc} allora esiste un insieme di misura non negativa dove non coincidono, opportune mollificazioni della caratteristica di questo insieme mostrano che $T_u \neq T_v$.

Esempio 9.10.

Le seguenti sono distribuzioni:

1. Valutazioni di derivate: Sia $x_0 \in \Omega$ allora le seguenti mappe sono distribuzioni per ogni α

$$\begin{array}{ccc}
\mathcal{D}(\Omega) & \longrightarrow & \mathbb{R} \\
f & \longmapsto & \partial^{\alpha} f(x_0)
\end{array}$$

in quanto $|\partial^{\alpha} f(x_0)| \leq p_m(f)$ per $m = |\alpha|$.

2. Integrale contro $u \in L^1_{loc}$ fissata: l'immagine di T, cioè le mappe della forma

$$T_u: \begin{array}{ccc} \mathcal{D}(\Omega) & \longrightarrow & \mathbb{R} \\ f & \longmapsto & \int_{\Omega} f u \, dx \end{array}$$

sono distribuzioni.

3. Se $(x_j) \subseteq \Omega$ con x_j che esce da ogni compatto definitivamente (va verso il bordo) allora

$$\begin{array}{ccc} \mathcal{D}(\Omega) & \longrightarrow & \mathbb{R} \\ f & \longmapsto & \sum_{i=0}^{\infty} \partial^{\alpha_i} f(x_i) \end{array}$$

è una distribuzione (qualunque sia la successione degli $\alpha_i \in \mathbb{N}^n$ che consideriamo, tanto su ogni compatto la somma è finita).

Definizione 9.11 (Bracket di Iverson).

Il **Bracket di Iverson** per una condizione booleana φ su un insieme A è la funzione caratteristica di quella condizione, cioè

$$[x] = \chi_{\{x \in A \mid \varphi(x)\}}.$$

89

Definizione 9.12.

Dato $\Omega \subseteq \mathbb{R}^n$ aperto definiamo

$$\Theta = \{\theta : \Omega \times \mathbb{N}^n \to [0, \infty), \text{ "localmente finita"} \}$$

cioè per ogni $x \in \Omega$ esiste U intorno di x tale che per ogni $y \in U$

$$\{\alpha \in \mathbb{N}^n \mid \theta(y, \alpha) \neq 0\}$$
 è finito.

Osservazione 9.13.

Se $\theta \in \Theta$ allora per ogni $K \in k(\Omega)$ si ha che esiste $N \in \mathbb{N}$ tale che per ogni $x \in K$ e per ogni $|\alpha| \geq N$ vale $\theta(x, \alpha) = 0$.

Osservazione 9.14.

Ogni $\theta \in \Theta$ è maggiorato da una $\widetilde{\theta}$ della forma

$$\widetilde{\theta}(x,\alpha) = \sigma(x)[|\alpha| \le \mu(x)]$$

dove $\sigma, \mu \in C^0(\Omega)_+$ e $[\cdot]$ è il Bracket di Iverson,

$$\mu(x) = \max\{|\alpha| \mid \theta(x, \alpha) \neq 0\}$$

eccetera (vedi capitolo precedente).

Notazione 9.15.

Per ogni $\theta \in \Theta$ e $u \in \mathcal{D}(\Omega)$ poniamo

$$||u||_{\theta} = ||\theta \cdot \partial^{\bullet} u(\bullet)||_{\infty, \Omega \times \mathbb{N}^n}$$

9.1 Estensioni e operazioni sulle distribuzioni

9.1.1 Estensioni

Possiamo considerare estensioni di operatori su $\mathcal{D}(\Omega)$ a operatori su $\mathcal{D}'(\Omega)$ tramite le inclusioni

$$\mathcal{D}(\Omega) \subseteq C^1(\Omega) \subseteq L^1_{loc} \stackrel{T}{\subseteq} \mathcal{D}'(\Omega)$$

dove come prima

$$T: \begin{array}{ccc} L^1_{loc}(\Omega) & \longrightarrow & & \mathcal{D}'(\Omega) \\ u & \longmapsto & T_u: & \mathcal{D}(\Omega) & \longrightarrow & \mathbb{R} \\ & & & \longmapsto & \int_{\Omega} f u \, dx \end{array}$$

 $Osservazione\ 9.16.$

Ponendo $\langle T_u,\varphi\rangle=\int_\Omega u\varphi dx,$ per ogni $K\in k(\Omega)$ e $\varphi\in C^\infty_K$ si ha

$$|\langle T_u, \varphi \rangle| \le C_K \|\varphi\|_{\infty}$$
 dove $C_K = \int_K |u| \, dx = \|u\|_{1,K} \, e \, \|\varphi\|_{\infty} = p_0(\varphi).$

Esercizio 9.17.

La mappa lineare $T: L^1_{loc}(\Omega) \to \mathcal{D}'(\Omega)$ è continua rispetto alle topologie

• Su $L^1_{loc}(\Omega)$ consideriamo la topologia di spazio di Fréchet indotta dalle norme $\Big\{\|\cdot\|_{1,K}\Big\}_{K\in k(\Omega)}.$

• Su $\mathcal{D}'(\Omega)$ consideriamo la topologia debole $\sigma(\mathcal{D}'(\Omega), \mathcal{D}(\Omega))$.

Dimostrazione.

T è continua per queste topologie se e solo se per ogni $\varphi \in \mathcal{D}(\Omega)$ si ha che

$$\begin{array}{ccc} L^1_{loc}(\Omega) & \longrightarrow & \mathbb{R} \\ u & \longmapsto & \langle T_u, \varphi \rangle \end{array}$$

è continua e questo è vero se e solo se per ogni $K \in k(\Omega)$ esiste C tale che per $u \in C_K^{\infty}$

$$|\langle T_u, \varphi \rangle| \le C \|u\|_{1,K} = C \int_K |u| \, dx$$

ma questo è vero perché

$$\left| \left\langle T_{u}, \varphi \right\rangle \right| = \left| \int_{\Omega} u \varphi dx \right| \leq \int_{K} \left| u \right| dx \left\| \varphi \right\|_{\infty} = \left\| u \right\|_{1, K} \left\| \varphi \right\|_{\infty}.$$

Notazione 9.18.

Se non c'è pericolo di confusione consideriamo T come una inclusione e scriviamo $L^1_{loc} \subseteq \mathcal{D}'(\Omega)$ e $T_u = u$. Spesso si usa anche $u(\varphi)$ al posto di $\langle T_u, \varphi \rangle = \langle u, \varphi \rangle$.

Definizione 9.19 (Funzioni nulle al bordo).

Definiamo $C_0(X)$ come

$$C_0(X) = \left\{ f \in C(X) \mid \lim_{x \to \infty} f(x) = 0 \text{ in } \widetilde{X} \right\}$$

dove $\widetilde{X} = X \cup \{\infty\}$ è la compattificazione di Alexandroff.

Proposizione 9.20 (Distribuzioni di ordine limitato si estendono a $(C_0^m)^*$). Le distribuzioni di ordine minore o uguale a m si estendono a funzionali lineari continui su tutto

$$C_0^m(\Omega) = \overline{C_C^\infty(\Omega)}^{C^m(\Omega)} = \left\{ f \in C^m(\Omega) \mid \forall \, |\alpha| \leq m, \,\, \partial^\alpha f \in C_0^0(\Omega) \right\}.$$

Dimostrazione

Se $u \in \mathcal{D}'(\Omega)$ ha ordine $\leq m$ allora è continua per la topologia indotta da $C^m(\Omega)$ (infatti per ogni $K \in k(\Omega)$ esiste C_K tale che $|u(\varphi)| \leq C_K p_m(\varphi)$). Quindi si estende per continuità in modo unico a una forma lineare continua sulla chiusura (per la topologia di C^m), cioè $C_0^m(\Omega) \subseteq C^m(\mathbb{R}^n)$:

Fissiamo $K \in k(\Omega)$ e sia $dist(K, \Omega^c) = \varepsilon$. Sia φ funzione C^{∞} non negativa con supporto contenuto in $B(0, \varepsilon/4)$ e tale che $\int \varphi = 1$. Sia

$$\eta = \varphi * \chi_{K + \frac{\varepsilon}{4}B}.$$

Per costruzione $\eta=1$ su K e $\eta=0$ in $\Omega\setminus K+\frac{\varepsilon}{2}B$. Quindi dato $K\in k(\Omega)$ esiste $\eta\in C_C^\infty(\Omega)$ con $0\leq \eta\leq 1$ e $\eta|_K=1$.

Concludere mostrando che la chiusura in $C^m(\Omega)$ di $C_C^{\infty}(\Omega)$ è $C_0^m(\Omega)$ usando l'approssimazione via convoluzioni e la moltiplicazione per η .

9.1.2 Derivazione

Proposizione 9.21.

L'operatore ∂_i di derivazione su $\mathcal{D}(\Omega)$ si estende ad un operatore su $\mathcal{D}'(\Omega)$ nel senso di sopra ponendo

$$\partial_i = -\partial_i^* : \begin{array}{ccc} \mathcal{D}'(\Omega) & \longrightarrow & \mathcal{D}'(\Omega) \\ u & \longmapsto & -u \circ \partial_i \end{array}$$

Dimostrazione.

Per $u \in C^1(\Omega)$ e $\partial_i u \in C^0(\Omega)$ si ha che u e $\partial_i u$ appartengono a $L^1_{loc(\Omega)}$. Le distribuzioni T_u e $T_{\partial_i u}$ sono legate dalla relazione data dall'integrazione per parti¹:

$$\langle T_u, \partial_i \varphi \rangle = \int_{\Omega} u \partial_i \varphi dx = -\int_{\Omega} \partial_i u \varphi dx = -T_{\partial_i u} \varphi$$

cioè $T_{\partial_i u} = -T_u \circ \partial_i$ (quì ∂_i è inteso in senso classico).

Definendo quindi

$$\partial_i: \begin{array}{ccc} \mathcal{D}'(\Omega) & \longrightarrow & \mathcal{D}'(\Omega) \\ u & \longmapsto & -u \circ \partial_i \end{array}$$

abbiamo una estensione di ∂_i a $\mathcal{D}'(\Omega)$. Il codominio è effettivamente $\mathcal{D}'(\Omega)$ perché $\partial_i : \mathcal{D}(\Omega) \to \mathcal{D}(\Omega)$ è lineare e continua, quindi $-u \circ \partial_i$ è composizione di due mappe lineari e continue.

Osservazione 9.22.

Più in generale è definito ∂^{α} su $\mathcal{D}'(\Omega)$ e vale $\langle \partial^{\alpha} u, \varphi \rangle = (-1)^{|\alpha|} \langle u, \partial^{\alpha} \varphi \rangle$.

Osservazione 9.23.

 $\operatorname{ord}(\partial_i u) \le \operatorname{ord}(u) + 1.$

9.1.3 Moltiplicazione per funzione liscia

Notazione 9.24.

Definiamo $\mathcal{E}(\Omega) = C^{\infty}(\Omega)$.

Osservazione 9.25.

Se $f \in \mathcal{E}(\Omega)$ è definito un operatore lineare

$$M_f: \begin{array}{ccc} \mathcal{D}(\Omega) & \longrightarrow & \mathcal{D}(\Omega) \\ \varphi & \longmapsto & f\varphi \end{array}$$

Osservazione 9.26.

 M_f è continuo.

Dimostrazione.

A livello dei C_K^{∞} il supporto resta contenuto in K dopo la moltiplicazione e

$$p_{m,K}(M_f(\varphi)) = p_{m,K}(f\varphi) = \max_{|\alpha| \le m} \|\partial^{\alpha}(f\varphi)\|_{\infty} =$$

$$= \max_{|\alpha| \le m} \left\| \sum_{\beta \le \alpha} {\alpha \choose \beta} \partial^{\beta} f \partial^{\alpha-\beta} \varphi \right\|_{\infty} \le$$

$$\le (2^m p_{m,K}(f)) p_m(\varphi).$$

i termini al bordo spariscono perché tutto ha supporto compatto.

Osservazione 9.27.

Applicando T è definito un operatore di moltiplicazione sulle distribuzioni

$$M_f: \begin{array}{ccc} \mathcal{D}'(\Omega) & \longrightarrow & \mathcal{D}'(\Omega) \\ u & \longmapsto & fu \end{array}$$

dove

$$(fu)(\varphi) = u(\varphi f).$$

9.2 Distribuzioni di ordine limitato come misure

Osservazione 9.28.

C'è una immersione isometrica

$$\begin{array}{ccc} C_0^m(\Omega) & \longrightarrow & C_0^0(\widetilde{\Omega})^N \\ \varphi & \longmapsto & (\partial^{\alpha}\varphi)_{|\alpha| \le m} \end{array}$$

dove $N = \# \{ \alpha \in \mathbb{N}^n \mid |\alpha| \leq m \}$ e $\widetilde{\Omega}$ è la compattificazione di Ω a un punto. Segue che $C_0^m(\Omega)^* \hookrightarrow (C_0^0(\Omega)^*)^N$ per Hahn-Banach (3.2).

Fatto 9.29.

Se $u \in \mathcal{D}'(\Omega)$ con $\operatorname{ord}(u) \leq m$, quindi tale che si estende a $u \in C_0^m(\Omega)^*$ (9.20), allora grazie a $C_0^m(\Omega)^* \hookrightarrow (C_0^0(\Omega)^*)^N$ otteniamo che esistono N misure di Radon^2 $\{\mu_{\alpha}\}_{|\alpha| \leq m}$ tali che

$$\langle u, \varphi \rangle = \sum_{|\alpha| \le m} \int_{\Omega} \varphi d\mu_{\alpha} = \sum_{|\alpha| \le m} \varphi \rho_{\alpha} d\nu_{\alpha}$$

 $con \ \nu_{\alpha} \geq 0 \ e \ |\rho| \leq 1.$

Osservazione 9.30.

Queste misure non sono uniche perché abbiamo usato Hahn-Banach (3.2) per estendere u da $C_0^m(\Omega)$ a $C_0^0(\widetilde{\Omega})^N$.

Osservazione 9.31.

Le distribuzioni di ordine 0 sono misure di Radon, cioè

$$\operatorname{ord}(u) = 0 \implies u(\varphi) = \int_{\Omega} \varphi d\mu \quad \mu \text{ misura relativa finita sui compatti}.$$

Fatto 9.32.

Ogni distribuzione positiva $u \in \mathcal{D}'(\Omega)$, cioè tale che $u(\varphi) \geq 0$ per ogni $\varphi \in \mathcal{D}(\Omega)$ tale che $\varphi \geq 0$ ha ordine 0.

Dimostrazione.

Per ogni $K\in k(\Omega)$ sia $\eta\in C^\infty(\Omega)$ con $0\leq \eta\leq 1$ con supp $\eta\subseteq\Omega$ e $\eta=1$ su K. Allora per ogni $\varphi\in C^\infty_K$ vale

$$\|\varphi\|_{\infty} \eta \pm \varphi \ge 0$$

infatti su un punto di K $\eta=1$ e quindi applico la definizione di $\|\cdot\|_{\infty}$, mentre su un punto che non appartiene a K abbiamo $\varphi=0$ e quindi la disuguaglianza continua a valere. Dunque

$$u(\|\varphi\|_{\infty} \eta \pm \varphi) = \|\varphi\|_{\infty} u(\eta) \pm u(\varphi) \ge 0$$

e quindi $|u(\varphi)| \le u(\eta) \|\varphi\|_{\infty} = C_K p_0(\varphi)$, cioè u ha ordine 0.

²boreliane, finite sui compatti, regolari da fuori sui Boreliani e regolari da dentro per gli aperti.

9.3 Successioni di distribuzioni

Proposizione 9.33.

Sia $(u_j) \subseteq \mathcal{D}'(\Omega)$ una successione convergente puntualmente, cioè $(u_j(\varphi))$ converge in \mathbb{R} per ogni $\varphi \in \mathcal{D}(\Omega)$. Allora il limite

$$u(\varphi) = \lim_{j} u_j(\varphi)$$

definisce una distribuzione u. Inoltre per ogni $K \in k(\Omega)$ esiste $C_K \geq 0$ e $m \in \mathbb{N}$ tale che per ogni $j \geq 0$

$$|u_j(\varphi)| \le C_K p_m(\varphi) \quad \forall \varphi \in C_K^{\infty}.$$

Dimostrazione.

Sia $K \in k(\Omega)$. Notiamo che $u_j|_{C_K^{\infty}}$ è una successione puntualmente limitata su C_K^{∞} (per ogni $\varphi \in C_K^{\infty}$ si ha $|u_j(\varphi)| \leq C_{\varphi}$). Siccome C_K^{∞} è uno spazio di Fréchet (e quindi di Baire) per Banach-Steinhaus (4.34) la successione $(u_j|_{C_K^{\infty}})$ è limitata in C_K^{∞} , cioè vale la disuguaglianza affermata.

Allora questa stima vale anche per u limite puntuale, il quale è anche ovviamente lineare, quindi $u \in \mathcal{D}'(\Omega)$.

Corollario 9.34.

Se $(\varphi_i) \subseteq \mathcal{D}(\Omega)$ è una successione convergente in $\mathcal{D}(\Omega)$ a φ allora

$$u_j(\varphi_j) \to u(\varphi)$$

Dimostrazione.

 $\varphi_j \to \varphi$ implica che esiste $K \in k(\Omega)$ tale che $\varphi_j \in C_K^{\infty}$ e $\varphi_j \to \varphi$ in C_K^{∞} e ora che sappiamo che tutte le funzioni hanno supporto nello stesso K possiamo usare la disguguaglianza

$$|u_j(\varphi_j)| \le C_K p_m(\varphi_j) \to 0$$

dove per l'ultimo limite ho supposto senza perdita di generalità $\varphi = 0$ (altrimenti sostituisco φ_j con $\varphi_j - \varphi$).

9.4 Distribuzioni sono un fascio

Proposizione 9.35.

Il funtore $\mathcal{D}': (Aperti\ di\ \mathbb{R}^n)^{op} \to (SVTLC)\ definisce\ un\ fascio,\ cioè:$

- 1. Per ogni aperto Ω di \mathbb{R}^n è ben definito $\mathcal{D}'(\Omega)$.
- 2. Per ogni contenimento $U\subseteq V\subseteq \mathbb{R}^n$ di aperti abbiamo una funzione di restrizione

$$\rho_U^V: \mathcal{D}'(V) \to \mathcal{D}'(U)$$

tale che $\rho_U^U = id_{\mathcal{D}'(U)}$ e se $U \subseteq V \subseteq W$ allora

$$\rho_U^V \circ \rho_V^W = \rho_U^W$$
.

3. Se Ω aperto ammette un ricoprimento aperto $\{\Omega_i\}$ e $u \in \mathcal{D}'(\Omega)$ allora $\rho_{\Omega_i}^{\Omega}(u) \doteq u_i = 0$ per ogni i implica che u = 0.

4. Se Ω aperto ammette un ricoprimento aperto $\{\Omega_i\}$ e per ogni i abbiamo $u_i \in \mathcal{D}'(\Omega_i)$ tali che

$$\rho_{\Omega_i \cap \Omega_j}^{\Omega_i}(u_i) = \rho_{\Omega_i \cap \Omega_j}^{\Omega_j}(u_j)$$

per ogni coppia i, j allora esiste $u \in \mathcal{D}'(\Omega)$ tale che $\rho_{\Omega}^{\Omega}(u) = u_i$.

Dimostrazione.

Mostriamo le varie proprietà:

- 1. Ovvio.
- 2. Dati due aperti $U \subseteq V \subseteq \mathbb{R}^n$ esiste una inclusione

$$\mathcal{D}(U) = \bigcup_{K \in k(U)} C_K^\infty \hookrightarrow \mathcal{D}(V) = \bigcup_{K \in k(V)} C_K^\infty$$

e quindi un operatore di restrizione

$$\rho_U^V: \mathcal{D}'(V) \to \mathcal{D}'(U).$$

Questo operatore chiaramente rispetta le due proprietà.

3. Sia $u \in \mathcal{D}(\Omega)$ tale che

$$u_{|_{\Omega_j}} = \rho_{\Omega_j}^{\Omega}(u) = 0.$$

Per ogni φ in $\mathcal{D}(\Omega)$ esiste $F \subseteq I$ finito tale che $K = \operatorname{supp} \varphi \subseteq \bigcup_{j \in F} \Omega_j$. Esiste inoltre una partizione di unità $\{\eta_j\}_{j \in F} \subseteq \mathcal{D}(\Omega)$ tale che

$$\eta_j \in \mathcal{D}(\Omega_j)$$
 e $\sum_{j \in F} \eta_j = 1$ su K .

Allora $f = \sum_{j \in F} f \eta_j$ e $u(f) = \sum_{j \in F} u(f \eta_j) = 0$ in quanto $u|_{\Omega_j} = 0$.

4. Sia $\{\Omega_i\}$ un ricoprimento aperto di Ω e per ogni i abbiamo $u_i \in \mathcal{D}'(\Omega_i)$ tali che

$$\rho_{\Omega_i\cap\Omega_j}^{\Omega_i}(u_i)=\rho_{\Omega_i\cap\Omega_j}^{\Omega_j}(u_j)$$

per ogni coppia i, j. Definiamo $u(\varphi)$ per $\varphi \in \mathcal{D}(\Omega)$ come segue:

Sia $K \in k(\Omega)$ tale che $\varphi \in C_K^{\infty}$ e sia $F \subseteq I$ finito tale che $K \subseteq \bigcup_{i \in F} \Omega_i$. Siano $\{\eta_j\}_{j \in F} \subseteq C^{\infty}(\Omega)$ tali che supp $\eta_j \subseteq \Omega_j$, $0 \le \eta_j \le 1$ e $\sum_{j \in F} \eta_j = 1$ su K. Poniamo

$$u(\varphi) = \sum_{j \in F} u_j(\varphi \eta_j)$$

Notiamo che $\varphi \eta_j \in \mathcal{D}(\Omega_j)$ quindi ha senso valutare u_j nel prodotto. La definizione non dipende dalla famiglia $\{\eta_j\}$ in quanto se η'_j ha le stesse proprietà allora

$$\sum_{j \in F} u_j(\varphi \eta_j) = \sum_{j \in F} u_j \left(\sum_{i \in F} \varphi \eta_j \eta_i' \right) = \sum_{i,j \in F} u_j(\varphi \eta_j \eta_i') \stackrel{\text{ipotesi}}{=}$$

$$= \sum_{i,j \in F} u_i(\varphi \eta_j \eta_i') = \sum_{i \in F} u_i(\varphi \eta_i').$$

Per costruzione u eredita la linearità e la continuità delle u_i , quindi è un elemento di $\mathcal{D}'(\Omega)$.

Osservazione 9.36.

Si può considerare più in generale il fascio delle distribuzioni su una varietà C^{∞} di dimensione n, basta incollare i fasci di distribuzioni su un ricoprimento di aperti omeomorfi a \mathbb{R}^n .

9.4.1 Distribuzioni a supporto compatto

Definizione 9.37 (Supporto di una distribuzione).

Fissiamo una distribuzione $u \in \mathcal{D}'(\Omega)$. Sia Ω_0 il più grande aperto tale che $u|_{\Omega_0} = 0$. Il chiuso $\Omega \setminus \Omega_0$ si dice **supporto** di u e si indica supp(u).

 $Osservazione\ 9.38.$

 Ω_0 è ben definito in quanto è l'unione di tutti gli aperti dove u si restringe alla mappa nulla: Poiché \mathcal{D}' è un fascio (9.35) e per definizione $u_{|_{\Omega_0}}$ ha tutte le restizioni a $U\subseteq\Omega_0$ aperto banali, $u_{|_{\Omega_0}}=0$.

Definizione 9.39 (Distribuzione a supporto compatto).

Se supp(u) è compatto, u si dice **a supporto compatto**. Scriviamo l'insieme delle distribuzioni a supporto compatto con $\mathcal{D}'_{C}(\Omega)$.

Proposizione 9.40.

Se $u \in \mathcal{D}'_{C}(\Omega)$ e $K \in k(\Omega)$ allora valgono le implicazioni dall'alto verso il basso

- 1. $\operatorname{supp}(u) \subseteq \operatorname{int}(K)$.
- 2. Esistono $C \geq 0$ e $m \in \mathbb{N}$ tali che per ogni $\varphi \in \mathcal{D}(\Omega)$ si ha

$$|u(\varphi)| \le Cp_{m,K}(\varphi),$$

cioè u è continua.

3. $\operatorname{supp}(u) \subseteq K$.

Dimostrazione.

Mostriamo le due implicazioni

1. \Longrightarrow 2. Siano supp $(u) \subseteq int(K)$ e $\psi \in C^{\infty}(\Omega)$ con supp $(\psi) \subseteq K$ e $\psi = 1$ su un intorno U di supp(u).

Allora per ogni $\varphi \in \mathcal{D}(\Omega)$ si ha che $(1 - \psi)\varphi$ è nulla su U, quindi

$$\{(1-\psi)\varphi\neq 0\}\subseteq \Omega\setminus U \implies \operatorname{supp}((1-\psi)\varphi)=\overline{\{(1-\psi)\varphi\neq 0\}}\subseteq \Omega\setminus U$$

Segue che $(1 - \psi)\varphi$ e u hanno supporto disgiunto, dunque

$$0 = u((1 - \psi)\varphi) = u(\varphi) - u(\psi\varphi),$$

cioè per ogni $\varphi\in\mathcal{D}(\Omega)$ si ha

$$u(\varphi) = u(\psi \varphi).$$

Per continuità di u come elemento di $\mathcal{D}'(\Omega)$, poiché $\psi \varphi \in C_K^{\infty}$, esistono $m \in \mathbb{N}$ e $C \geq 0$ tali che

$$|u(\varphi)| = |u(\psi\varphi)| \le Cp_{m,K}(\psi\varphi) \le C'p_{m,K}(\varphi)$$

dove l'ultima stima è un conto già visto che usa la formula di Leibnitz³, quindi u è continua per la topologia indotta⁴ da $\mathcal{E}(\Omega)$ su $\mathcal{D}(\Omega)$.

2. \Longrightarrow 3. Se per ogni $\varphi \in \mathcal{D}(\Omega)$ vale $|u(\varphi)| \leq Cp_{m,K}(\varphi)$ allora in particolare vale se φ ha supporto in $\Omega \setminus K$, ma in tal caso $p_{m,K}(\varphi) = 0$, cioè u è nulla su $\mathcal{D}(\Omega \setminus K)$ e quindi il supporto è contenuto in K.

Corollario 9.41.

Le distribuzioni a supporto compatto in Ω si possono identificare con gli elementi di⁵ $\mathcal{E}'(\Omega) = (C^{\infty}(\Omega))^*$.

П

Dimostrazione.

Se u ha supporto compatto è continua per la topologia indotta da $\mathcal{E}(\Omega)$ su $\mathcal{D}(\Omega)$ e quindi per Hahn-Banach (3.2) si estende ad una forma lineare continua su tutto $\mathcal{E}(\Omega)$. Questa estensione è in realtà unica perché $\mathcal{D}(\Omega)$ è denso in $\mathcal{E}(\Omega)$. In questo senso possiamo identificare $\mathcal{E}'(\Omega)$ con $\mathcal{D}'_{C}(\Omega)$ come spazi vettoriali.

Osservazione 9.42.

Se $u \in \mathcal{D}'_{C}(\Omega)$ allora ha anche ordine finito per il punto 1. della proposizione sopra (9.40).

Esempio 9.43 (Non vale $3. \Longrightarrow 2. \operatorname{di} (9.40)$).

Sia n = 1, $\Omega = \mathbb{R}$ e consideriamo $u \in \mathcal{D}'(\mathbb{R})$ tale che

$$u(\varphi) = \sum_{k>1} \frac{1}{k} \left(\varphi\left(\frac{1}{k}\right) - \varphi(0) \right), \quad \forall \varphi \in \mathcal{D}(\mathbb{R}).$$

La serie è assolutamente convergente perché $\left|\varphi(\frac{1}{k})-\varphi(0)\right| \leq \|\dot{\varphi}\|_{\infty} \frac{1}{k}$ per Lagrange e

$$\sum_{k\geq 1} \frac{1}{k} \left| \varphi\left(\frac{1}{k}\right) - \varphi(0) \right| \leq \left(\sum_{k\geq 1} \frac{1}{k^2}\right) \left\| \dot{\varphi} \right\|_{\infty}.$$

Da questa scrittura si vede anche che u dipende da φ con continuità rispetto alla norma $\|\partial \bullet\|_{\infty}$.

Se φ ha supporto disgiunto da $K=\{0\}\cup\left\{\frac{1}{k}\right\}_{k\geq 0}$ allora $\mathrm{supp}(u)\subseteq K$ (cioè vale la condizione 3.).

Eppure non vale la condizione 2. per K infatti per $m \in \mathbb{N}$ sia φ_m una funzione $\mathcal{D}(\Omega)$ tale che $\varphi_m = 0$ su un intorno di $[0, \frac{1}{m+1}]$ e $\varphi_m = 1$ su un intorno di $[\frac{1}{m}, 1]$, allora

$$\varphi_m\left(\frac{1}{k}\right) = \chi_{\{k \le m\}}, \quad \varphi_m^{(j)}(x) = 0 \ \forall x \in K, \ \forall j \ge 1$$

perciò $p_{m,K}(\varphi_m) = \left\|\varphi_m\right\|_{\infty} = 1$ quindi

$$u(\varphi_m) = \sum_{k=1}^m \frac{1}{k}$$

3

$$p_{m,K}(\psi\varphi) = \max_{|\alpha| \le m} \|\partial^{\alpha}(\psi\varphi)\|_{\infty,K} = \max_{|\alpha| \le m} \left\| \sum_{\beta \le \alpha} \binom{\alpha}{\beta} \partial^{\alpha-\beta} \psi \partial^{\beta} v p \right\|_{\infty,K} \le 2^{m} p_{m}(\psi) p_{m,K}(\varphi).$$

⁴e quindi potremmo estendere u con Hahn-Banach (3.2).

⁵la topologia su $\mathcal{E}(\Omega)$ è quella indotta dalle seminorme $\{p_{m,K}\}_{m\in\mathbb{N},\ K\in k(\Omega)}$.

cioè u non è limitata e quindi non esistono m, C tali che

$$|u(\varphi)| \le Cp_{m,K}(\varphi) \quad \forall \varphi \in \mathcal{D}(\mathbb{R})$$

Esempio 9.44.

Se K è un singoletto $\{x_0\}$ per $x_0 \in \Omega$ allora le implicazioni di (9.40) si possono invertire: Se supp $(u) = \{x_0\}$ allora esistono $m \in \mathbb{N}$ e costanti $\{c_\alpha\}_{|\alpha| \leq m}$ tali che per ogni $\varphi \in \mathcal{D}(\Omega)$

$$u(\varphi) = \sum_{|\alpha| \le m} c_{\alpha} \partial^{\alpha} \varphi(x_0).$$

Risulta $c_{\alpha} = u\left(\frac{(x-x_0)^{\alpha}}{\alpha!}\right)$:

$$u\left(\frac{(x-x_0)^{\alpha}}{\alpha!}\right) = \sum_{|\beta| \le m} \frac{c_{\beta}}{\alpha!} \partial^{\beta} ((x-x_0)^{\alpha}) = \frac{c_{\alpha}}{\alpha!} \partial^{\alpha} (x-x_0)^{\alpha} = c_{\alpha} \cdot 1.$$

Dimostrazione

Senza perdita di generalità sia $x_0 = 0$ e $u \in \mathcal{D}'(\Omega)$ con $\mathrm{supp}(u) = \{0\}$. Scegliamo $\eta \in C^{\infty}(\mathbb{R}^n)$ con $\mathrm{supp}(\eta) \subseteq B(0,2)$ e $\eta|_{B(0,1)} = 1$.

Definiamo

$$\eta_{\varepsilon}(x) = \eta\left(\frac{x}{\varepsilon}\right) \quad \leadsto \quad \operatorname{supp}(\eta_{\varepsilon}) \subseteq B(0.2\varepsilon), \ \eta_{\varepsilon|_{B(0,\varepsilon)}} = 1$$

Quindi

$$\partial^{\alpha} \eta_{\varepsilon}(x) = \varepsilon^{-|\alpha|} \partial^{\alpha} \eta\left(\frac{x}{\varepsilon}\right).$$

Per ogni $\varphi \in \mathcal{D}(\Omega)$, $\eta_{\varepsilon}\varphi \in \mathcal{D}(\Omega)$ e $(1 - \eta_{\varepsilon})\varphi$ ha supporto su $\Omega \setminus B(0, \varepsilon)$, quindi la u su annulla su questa funzione. Dunque per ogni $\varepsilon > 0$

$$u(\varphi) = u(\eta_{\varepsilon}\varphi)$$

Mostriamo il seguente caso particolare: se $\varphi \in \mathcal{D}(\Omega)$ è tale che $\partial^{\alpha}\varphi(0) = 0$ per ogni $|\alpha| \leq m$ per un qualche m allora $u(\varphi) = 0$. In queste ipotesi si ha grazie alla continuità di u su $C^{\infty}_{\overline{B(0,\varepsilon_0)}}$ e al fatto che $\eta_{\varepsilon}\varphi \in \mathcal{D}(B(0,\varepsilon_0))$ per ogni $\varepsilon < \varepsilon_0$ che

$$|u(\varphi)| = |u(\eta_{\varepsilon}\varphi)| \le C_0 p_{m,B(0,\varepsilon_0)}(\eta_{\varepsilon}\varphi)$$

Si conclude che $u(\varphi) = 0$ osservando che

$$p_{m,B(0,\varepsilon_0)}(\eta_\varepsilon\varphi) \overset{\operatorname{supp}(\eta_\varepsilon)\subseteq B(0,\varepsilon)}{=} p_m(\eta_\varepsilon\varphi) = o(1)$$

per $\varepsilon \to 0$, cioè $\eta_{\varepsilon}\varphi \to 0$ in $C^m(\mathbb{R}^n)$: poiché $\partial^{\alpha}\eta_{\varepsilon}(x) = \varepsilon^{-|\alpha|}\partial^{\alpha}\eta\left(\frac{x}{\varepsilon}\right)$ si ha $p_m(\eta_{\varepsilon}) = \varepsilon^{-m}p_m(\eta)$. D'altra parte dalla formula di Taylor, poiché $\partial^{\alpha}\varphi(0) = 0$ per ogni $|\alpha| \le m$, si ha

$$|\varphi(x)| = O(|x|^{m+1}), \qquad |\partial^{\alpha}\varphi(x)| = O(|x|^{m-|\alpha|+1})$$

per $x \to 0$. Allora

$$p_m(\eta_{\varepsilon}\varphi) \leq 2^m \max_{\substack{|\lambda| \leq m \\ \beta \leq \alpha \\ x \in B(0, 2\varepsilon)}} \left| \partial^{\alpha-\beta} \eta_{\varepsilon} \partial^{\beta} \varphi \right| = O(\varepsilon^{-m+|\beta|} \varepsilon^{m-|\beta|+1}) = O(\varepsilon)$$

Quindi $u(\varphi) = 0$ per ogni $\varphi \in \mathcal{D}(\Omega)$ con $\partial^{\alpha} \varphi(0) = 0$ per $|\alpha| \leq m$.

Ora consideriamo φ qualunque. Dalla formula di Taylor

$$\varphi(x) = \sum_{|\alpha| \le m} \frac{1}{\alpha!} \partial^{\alpha} \varphi(0) x^{\alpha} + \rho(x)$$

con $\rho \in \mathcal{D}(\Omega)$ tale che $\partial^{\alpha} \rho(0) = 0$ per ogni $|\alpha| \leq m$. Mettendo tutto insieme abbiamo finito perché $u(\rho) = 0$ e

$$u(\varphi) = \sum_{|\alpha| < m} \frac{1}{\alpha!} c_{\alpha} \partial^{\alpha} \varphi(0)$$

 $con c_{\alpha} = u(x^{\alpha}).$

Esercizio 9.45 (Convoluzione di una funzione C^{∞} a supp.cpt. e una distribuzione.). Per ogni $f \in \mathcal{D}(\mathbb{R}^n)$ è definita la mappa

$$\begin{array}{ccc} \mathcal{E}(\mathbb{R}^n) & \longrightarrow & \mathcal{E}(\mathbb{R}^n) \\ \varphi & \longmapsto & f * \varphi \end{array}$$

Per ogni $f \in \mathcal{E}(\mathbb{R}^n)$, la convoluzione induce una mappa.

$$\mathcal{D}(\mathbb{R}^n) \to \mathcal{E}(\mathbb{R}^n)$$

Queste mappe sono continue e lineari. Restano definite le trasposte

$$\mathcal{E}'(\mathbb{R}^n) \to \mathcal{E}'(\mathbb{R}^n), \qquad \mathcal{E}'(\mathbb{R}^n) \to \mathcal{D}'(\mathbb{R}^n)$$

tali che $u \mapsto \widetilde{u} = u \circ (f * \bullet)$, cioè⁶ $\widetilde{u}(g) = u(f * g)$.

Tenendo presente le proprietà della convoluzione questo fornisce una estensione dell'operazione di convoluzione alle distribuzioni.

Cosa si può dire sulla continuità dell'operazione (per esempio con $(\mathcal{E}', \sigma(\mathcal{E}', \mathcal{E}))$ e $(\mathcal{D}', \sigma(\mathcal{D}', \mathcal{D}))$?

⁶ dove g appartiene a $\mathcal{E}(\mathbb{R}^n)$ nel primo caso e a $\mathcal{D}(\mathbb{R}^n)$ nel secondo.

Capitolo 10

Operatori compatti fra Banach

10.1 Definizioni

Definizione 10.1 (Mappa compatta).

Una mappa $T: X \to Y$ con X, Y spazi di Banach è **compatta** se è continua e per ogni $S \subseteq X$ limitato, T(S) è relativamente compatto in Y, cioè $\overline{T(S)}$ è compatto.

Osservazione 10.2.

Siccome Y è completo basta chiedere che T mandi limitati in totalmente limitati.

$Osservazione\ 10.3.$

Se T è lineare allora non serve imporre continuità in quanto un insieme totalmente limitato è in particolare limitato. Inoltre basta controllare solo S=B(0,1) palla chiusa.

Osservazione 10.4.

 $T \in L(X,Y)$ è compatto se e solo se per ogni (x_n) successione limitata in X, (Tx_n) ha una sottosuccessione convergente.

Proposizione 10.5.

Se X è riflessivo allora T è compatto se e solo se per ogni successione (x_n) debolmente convergente a 0 vale $||Tx_n|| \to 0$ in Y, cioè T è sequenzialmente continuo per le topologie $(X, w) \to (Y, s)$.

Dimostrazione.

Consideriamo prima il caso di X riflessivo e separabile.

Se T è compatto, $(x_n) \xrightarrow{w} 0 \implies (Tx_n) \xrightarrow{w} 0$ e (Tx_n) ha sottosuccessione convergente a 0 in quanto separabile (6.2), ma allora (Tx_n) stessa converge a 0 per la proprietà di Uhrisohn (1.49).

Viceversa se T è sequenzialmente continuo da debole a forte e (x_n) è una successione limitata. Per il teorema di Kakutani (7.4) X riflessivo implica B_X w-compatta e per Eberlein-Šmulian (7.32) questo è equivalente a B_X w-sequenzialmente compatta. Poiché (x_n) è limitata essa è contenuta in qualche nB_X e per quanto detto questo insieme è w-sequenzialmente compatto, quindi (x_n) ammette una estratta w-convergente. Per ipotesi su T, l'immagine di questa sottosuccessione è una sottosuccessione di (Tx_n) convergente.

Se X è riflessivo (potenzialmente non separabile) allora posso considerare il sottospazio chiuso generato dalla successione (x_n) e questo è riflessivo separabile quindi la tesi passa.

Esercizio 10.6.

Se X e Y sono entrambi riflessivi, T è compatto se e solo se per ogni $(x_n) \subseteq X$ con $x_n \xrightarrow{w} 0$ e per ogni $(y_n^*) \subseteq Y^*$ con $y_n^* \xrightarrow{w^*} 0$ vale $\langle y_n^*, Tx_n \rangle \to 0$.

Dimostrazione.

ESERCIZIO, caso particolare di quella sopra.

Osservazione 10.7.

Nota che le ipotesi di riflessività sono necessarie, per $Y = \ell_{\infty}$ e la successione data da (e_n) la tesi fallisce.

Proposizione 10.8.

Se H è spazio di Hilbert $e(x_n) \subseteq H$ allora essa converge $\|\cdot\|$ a $x \in H$ se e solo se $x_n \xrightarrow{w} x$ $e(\|x_n\| \to \|x\|)$.

Dimostrazione.

Sviluppiamo

$$||x_n - x||^2 = ||x_n||^2 - 2\Re\epsilon(\langle x, x_n \rangle) + ||x||^2 \to ||x||^2 - 2\underbrace{\Re\epsilon(\langle x, x \rangle)}_{=\langle x, x \rangle} + ||x||^2 = 0.$$

Esercizio 10.9.

Esprimere la compattezza di $T \in L(X, Y)$ tra X, Y Hilbert usando la proprietà sopra.

Osservazione 10.10.

L'immagine di un operatore compatto è separabile.

Dimostrazione.

 $\operatorname{Imm}(T) = \bigcup_{n \geq 0} nT(B) e T(B)$ separabile perché relativamente compatto in metrico¹.

10.2 Proprietà di $L_C(X,Y)$

Definizione 10.11.

Sia $L_C(X,Y)$ lo spazio degli operatori compatti tra X,Y Banach.

Osservazione 10.12.

 $L_C(X,Y)$ è un sottospazio vettoriale chiuso di L(X,Y).

Proposizione 10.13.

Se X, Y, Z Banach e $T \in L(X, Y)$, $S \in L(Y, Z)$ allora $ST \in L_C(X, Z)$ se almeno uno tra T e S è compatto.

In particolare se X = Y = Z allora $L_C(X) = L_C(X, X)$ è un ideale bilatero chiuso dell'algebra di Banach² L(X) degli operatori limitati su X.

Per ogni $n \in \mathbb{N} \setminus \{0\}$ possiamo costruire il ricoprimento $\{B(x,n^{-1})\}_{x \in \overline{T(B)}}$ ed estrarre un numero finito di centri di queste palle. Unendo questi insiemi di centri abbiamo una unione numerabile di insiemi finiti, quindi numerabile, e la chiusura di questo insieme è tutto $\overline{T(B)}$ perché se una palla ha raggio $\varepsilon > n^{-1}$ deve contenere uno dei punti definiti al livello n.

²Spazio di Banach che è un'algebra tale che $||xy|| \le ||x|| \, ||y||$ e ||1|| = 1.

Dimostrazione.

Mostriamo che $L_C(X,Y)$ è uno spazio vettoriale chiuso con la proprietà di assorbimento data:

sp.vett. Siano $T, S \in L_C(X, Y)$. Allora

$$(T+S)(B_X) \subseteq T(B_X) + S(B_X) \subseteq +(\overline{TB_X} \times \overline{SB_X})$$

poiché $\overline{TB_X}$ e $\overline{SB_X}$ sono compatti anche il loro prodotto lo è, e quindi anche l'immagine sotto $+: Y \times Y \to Y$. Dunque $(T+S)(B_X)$ è relativamente compatto in Y

 λT è compatto perché $\lambda T(B_X) = T(\lambda B_X)$.

chiuso Sia $T \in \overline{L_C(X,Y)}$. Per $S \in L_C(X,Y)$ si ha

$$TB_X = (S + (T - S))B_X \subseteq SB_X + (T - S)B_X \subseteq S(B_X) + ||T - S||_{L(X,Y)}B_Y$$

dunque $T(B_X)$ è totalmente limitato in quanto per ogni $\varepsilon > 0$ scegliamo $S \in L_C(X,Y)$ con $||S - T||_{L(X,Y)} < \varepsilon/2$. Poiché $S(B_X)$ è totalmente limitato esiste $F \subseteq S(B_X)$ finito tale che $S(B_X) \subseteq F + \varepsilon B_Y$, allora

$$T(B_X) \subseteq F + \frac{\varepsilon}{2}B_Y + \frac{\varepsilon}{2}B_Y = F + \varepsilon B_Y$$

cioè è totalmente limitato per arbitrareità di ε .

assorb. Notiamo che

$$B_X \xrightarrow{T} T(B_X) \xrightarrow{S} S(T(B_X))$$

e $ST(B_X)$ è compatto perché ogni opertatore limitato manda limitati in limitati e (relativamente) compatti in (relativamente) compatti.

Definizione 10.14 (Algebra di Calkin).

L'algebra di Calkin di X spazio di Banach è l'algebra quoziente

$$c(X) = L(X) / L_C(X)$$

10.3 Operatori compatti di rango finito

Definizione 10.15.

Dati X, Y Banach definiamo

$$L_f(X,Y) = \{ T \in L(X,Y) \mid \operatorname{rnk}(T) \in \mathbb{N} \}$$

 $Osservazione\ 10.16.$

Notiamo che $L_f(X,Y)$ è un sottospazio vettoriale di $L_C(X,Y)$.

Dimostrazione.

Se $T \in L_f(X,Y)$ allora manda limitati di X in limitati di $Imm(T) \cong \mathbb{R}^n$ e i limitati di \mathbb{R}^n sono anche totalmente limitati.

Osservazione 10.17.

In generale

$$L_f(X,Y) \subsetneq \overline{L_f(X,Y)} \subsetneq L_C(X,Y)$$

Esercizio 10.18.

 $L_f(X,Y) = \overline{L_f(X,Y)}$ se e solo se almeno uno tra X e Y ha dimensione finita.

Proposizione 10.19.

Gli operatori $T \in L_f(X, Y)$ sono quelli della forma

$$Tx = \sum_{k=1}^{n} \langle \alpha_k, x \rangle y_k$$

 $con \ \alpha_1, \cdots, \alpha_n \in X^*, \ y_1, \cdots, y_n \in Y.$

Fatto 10.20.

Può accadere che

$$L(X) = \mathbb{R}id_X + \overline{L_f(X)}$$

Proposizione 10.21.

Se \hat{H} è di Hilbert allora $\overline{L_f(H)} = L_C(H)$.

Dimostrazione.

Sia $T \in L_C(H)$. Sia (P_n) una successione di proiettori ortogonali di rango finito tale che

$$\overline{\bigcup_{n\geq 0} P_n(H)} \stackrel{\text{(10.10)}}{=} \overline{T(H)}$$

Per costruzione $T_n = P_n T \in L_f(H)$, mostriamo che $T_n \xrightarrow{\|\cdot\|} T$. Poiché

$$||T_n - T|| = \sup_{\|x\| \le 1} ||P_n Tx - Tx|| = \sup_{y \in T(B_H)} ||P_n y - y|| = ||P_n - id_H|_{\overline{T(B_H)}}||_{\infty, \overline{T(B)H}}$$

si ha che questa convergenza in norma significa che $P_n|_{\overline{T(B_H)}}: \overline{TB_H} \to H$ convege a $I:=id_H|_{\overline{T(B_H)}}$ uniformemente su $\overline{T(B_H)}$.

La successione $\left(P_nT_{\mid \overline{T(B_H)}}\right)$ è una successione di mappe equilipschitz che converge puntualmente all'identità:

$$||P_nT|| \le ||P_n|| \, ||T|| \le \underbrace{||T||}_{\text{indip. da } n},$$

quindi per Ascoli-Arzelá abbiamo convergenza uniforme sui compatti e quindi in particolare sul compatto $\overline{T(B_H)}$.

Lemma 10.22.

Se $T \in L(X)$ per X Banach NON è compatto allora esiste $Y \subseteq X$ sottospazio chiuso di dimensione infinita tale che $T: Y \to TY$ è invertibile.

Esercizio 10.23.

Se ${\cal H}$ è di Hilbert

- 1. $L_C(H)$ è il più piccolo ideale bilatero chiuso non nullo di L(H)
- 2. Se H è separabile e infinito dimesionale (isomorfo ℓ_2) allora $L_C(H)$ è l'unico ideale bilatero chiuso proprio

$$(0) \subsetneq L_C(H) \subsetneq L(H).$$

Dimostrazione.

Mostriamo i due fatti

1. Sia I un ideale bilatero chiuso non nullo di L(H). Allora, scegliendo opportuni elementi di L(H) con cui comporre un funzionale non nullo di I, I contiene ogni operatore di rango 1

$$x \mapsto \langle \alpha, x \rangle y$$

- e quindi (10.19) anche ogni operatore di rango finito, ma allora in quanto chiuso contiene $L_f(H) = L_C(H)$.
- 2. Poiché H è Hilbert separabile, ogni sottospazio di H chiuso di dimensione infinita è isomorfo a H. Se $T \in I \setminus L_C(H)$ allora per il lemma (10.22) esiste Y di dimensione infinita tale che $T_{|_Y}$ invertibile, cioè abbiamo isometrie U,V tali che

$$H \xrightarrow{U} Y \xrightarrow{T} TY \xrightarrow{V} H$$

restituendo $VTU \in GL(H)$ e quindi I = (1).

Esempio 10.24 (Operatore integrale con nucleo k(x,y)).

Sia (M,d) metrico compatto e μ misura di borel finita su M. Sia $k \in C^0(M \times M)$ e definiamo

$$T_k: \begin{array}{ccc} C^0(M) & \longrightarrow & C^0(M) \\ u & \longmapsto & x \mapsto \int_M k(x,y)u(y)d\mu(y) \end{array}$$

Allora T_k è lineare e continua: per ogni $u \in C^0(M)$ e per ogni $x \in M$

$$|T_k u(x)| \le \int_M |k(x,y)| |u(y)| d\mu(y) \le \mu(M) ||k||_{\infty,M \times M} ||u||_{\infty,M}$$

quindi $||T_k u||_{\infty,M} \le \mu(M) ||k||_{\infty,M\times M} ||u||_{\infty,M}$ da cui

$$||T_k|| \leq \mu(M) ||k||_{\infty, M \times M}$$
.

Mostriamo ora che T_k è compatto. Sia ω un modulo di continuità³ per k, allora per $u \in C^0(M)$

$$|T_k u(x) - T_k u(x')| \le \int_M |k(x, y) - k(x', y)| |u(y)| d\mu(y) \le \omega(|x - x'|) \mu(M) ||u||_{\infty, M}$$

dunque $T_k(B_M(0,1))$ è una famiglia di funzioni equicontinue (con modulo di continuità $\mu(M)\omega$) ed equilimitate (da $\mu(M) ||k||_{\infty,M\times M}$), quindi è compatto per Ascoli-Arzelá.

Esercizio 10.25.

Sia (M,d) metrico compatto e μ misura di borel finita su M. Sia $k \in L^2(M \times M, \mu)$ e definiamo

$$T_k: \begin{array}{ccc} L^2(M) & \longrightarrow & L^2(M) \\ u & \longmapsto & x \mapsto \int_M k(x,y) u(y) d\mu(y) \end{array}$$

che è ben definito per Fubini. T_k è un operatore compatto.

³ cioè $|k(x,y)-k(x',y')| \le \omega(|x-x'|+|y-y'|)$. Esiste perché M è compatto e quindi k continua implica k uniformemente continua per Heine-Cantor.

Dimostrazione.

TRACCIA: Vediamo T_k come limite di operatori di rango finito T_{k_n} . Precisamente se $\{E_j\}_{1 < j < n}$ è una partizione misurabile di M e k_n è della forma

$$k_n = \sum_{1 \le i, j \le n} c_{i,j} \chi_{E_i \times E_j}$$

allora $k_n \in L_f(L^2(M))$ e per scelte opportune delle partizioni e dei coefficienti delle k_n si ha che $k_n \to k$ in L^2 . Conseguentemente $T_{k_n} \to T_k$ in norma degli operatori.

La scelta ottimale per $c_{i,j}$ fissato $\{E_j\}$ è la proiezione ortogonale di k sullo spazio generato dalle $\chi_{E_i \times E_j}$, cioè

$$c_{i,j} = \frac{1}{\mu(E_i)\mu(E_j)} \int_{E_i \times E_j} k(x, y) d(\mu \otimes \mu).$$

Per ogni $u \in L^2(M)$ si ha

$$||T_{k}u||_{2}^{2} = \int_{M} \left| \int_{M} k(x,y)u(y)d\mu(y) \right|^{2} d\mu(x) \stackrel{\text{Cauchy-Schwarz}}{\leq}$$

$$\leq \int_{M} \left(\int_{M} |k(x,y)|^{2} d\mu(y) \right) \left(\int_{M} |u(y)|^{2} d\mu(y) \right) d\mu(x) =$$

$$= ||k||_{2,M \times M}^{2} ||u||_{2,M}^{2}$$

dunque T_k ha norma degli operatori limitata da $||k||_{2,M\times M}$, quindi anche la corrispondenza

$$\begin{array}{ccc} L^2(M\times M) & \longrightarrow & L(L^2(M)) \\ k & \longmapsto & T_k \end{array}$$

è lineare e continua.

Esempio 10.26 (Operatori diagonali su ℓ_2).

Sia $u \in \ell_{\infty}$ e definiamo un operatore "diagonale" T_u su ℓ_2 ponendo per ogni $x \in \ell_2$

$$T_u(x) = (u(i)x(i))_i$$

(cioè moltipliplichiamo le entrate corrispondenti tra $x \in u$). Notiamo che

$$||T_u x||_2 \le ||u||_\infty ||x||_2$$

dunque T_u ha la norma degli operatori maggiorata da $||u||_{\infty}$. In realtà $||T_u|| = ||u||_{\infty}$ prendendo opportune approssimazioni.

Quindi abbiamo una inclusione isometrica

$$\ell_{\infty} \hookrightarrow L(\ell_2)$$

Quali $u \in \ell_{\infty}$ danno luogo a $T_u \in L_C(\ell_2)$?

Se u ha supporto finito allora T_u ha rango finito e quindi in particolare è un operatore compatto. Essendo $u \to T_u$ isometrica, considerando le chiusure si ha che le $u \in c_0$ producono $T_u \in L_C(\ell_2)$. Questi sono tutti perché ℓ_2 è uno spazio di Hilbert:

$$\{T_u \mid u \in c_0\} = L_C(\ell_2) \cap \ell_{\infty}.$$

Teorema 10.27 (Shauder).

Se $T \in L(X,Y)$ allora T è compatto se e solo se T^* è compatto.

Dimostrazione. Diamo le due implicazioni

- Sia $T \in L_C(X,Y)$ e sia $(x_n^*) \subseteq T^*(B_{Y^*})$. Vogliamo mostrare che questa successione ha estratte convergenti. Si ha che $x_n^* = T^*y_n^* = y_n^* \circ T$ per qualche successione $(y_n^*) \subseteq B_{Y^*}$. Come funzioni $Y \to \mathbb{K}$ si ha che le y_n^* sono 1-Lipschitz quindi per Ascoli-Arzelá hanno una sottosuccessione uniformemente convergente sul compatto $\overline{T(B_X)}$ (e quindi di Cauchy), cioè $x_n^* = y_n^* \circ T$ è di Cauchy in X^* e dunque converge.

$$\begin{array}{c} X \stackrel{T}{\longrightarrow} Y \\ \downarrow & \downarrow \\ X^{**} \stackrel{T}{\longrightarrow} Y^{**} \end{array}$$

Capitolo 11

Teoria spettrale per operatori limitati su Banach

11.1 Spettro e operatori risolventi

Definizione 11.1 (Spettro di un operatore).

Per X spazio di Banach e $A \in L(X)$, lo **spettro** di A è

$$\sigma(A) = \{ \lambda \in \mathbb{C} \mid \lambda - A \notin \operatorname{GL}(X) \}$$

L'insieme $\rho(A) = \mathbb{C} \setminus \sigma(A)$ è detto **insieme risolvente**.

Osservazione 11.2 (Spettro è chiuso).

Notiamo che $\lambda \mapsto \lambda - A$ è continua e GL(X) è un aperto di L(X), quindi $\sigma(A) = \rho(A)^c = (\lambda \mapsto \lambda - A)^{-1}(GL(X))^c$ è chiuso.

Osservazione 11.3.

Nel caso di X Banach su $\mathbb R$ si considera la sua complessificazione $X_{\mathbb C}=\mathbb C\otimes_{\mathbb R} X=X\times X$ dove il prodotto è inteso munito della struttura complessa indotta da

$$J = \begin{pmatrix} 0 & -id_X \\ id_X & 0 \end{pmatrix}$$

cioè $(a+bi)\underline{x} = a\underline{x} + bJ\underline{x}$ per ogni $\underline{x} \in X \times X$.

 $Osservazione\ 11.4.$

Anche se $\lambda \in \sigma(A)$ non necessariamente $\lambda - A$ non è iniettiva.

Definizione 11.5 (Spettro puntuale).

Definiamo lo spettro puntuale come

$$\sigma_{nt}(A) = \{ \lambda \in \mathbb{C} \mid \ker(\lambda - A) \neq 0 \}.$$

Gli elementi dello spettro puntuale sono detti autovalori.

Proposizione 11.6.

 $Sia\ A \in L(X)$, allora

• $\sigma(A)$ è contenuto in $\overline{B}(0, ||A||)$ e quindi compatto¹.

 $^{^{1}{\}rm abbiamo}$ già visto che è chiuso

• L'applicazione

$$\begin{array}{ccc} \rho(A) & \longrightarrow & L(X) \\ \lambda & \longmapsto & (\lambda - A)^{-1} \end{array}$$

è analitica e infinitesima per $\lambda \to \infty$. Più precisamente: Per ogni λ tale che $|\lambda| \ge ||A||$ si ha

$$(\lambda - A)^{-1} = \sum_{n=0}^{\infty} \lambda^{-n-1} A^n$$

e per ogni $\lambda_0 \in \rho(A)$ e ogni $\lambda \in B(\lambda_0, \|(\lambda_0 - A)^{-1}\|)$ si ha

$$(\lambda - A)^{-1} = \sum_{n=0}^{\infty} (\lambda_0 - \lambda)^n ((\lambda_0 - A)^{-1})^{n+1}.$$

Dimostrazione.

Se mostriamo il secondo punto abbiamo il primo in quanto se per ogni $|\lambda| \geq ||A||$ abbiamo questo sviluppo, in particolare $(\lambda - A)^{-1}$ è ben definita per $|\lambda| \geq ||A||$, quindi l'inversa può venire a mancare solo per λ contenuti in $\overline{B}(0, ||A||)$.

Se vale il primo sviluppo in serie allora

$$\|(\lambda - A)^{-1}\| \le \sum_{n=0}^{\infty} \|\lambda^{-n-1} A^n\| = \frac{1}{|\lambda| - \|A\|}$$

e quindi la mappa in esame è infinitesima per $\lambda \to \infty$.

Tutto segue se mostriamo che per un operatore H di norma ||H|| < 1 in uno spazio di Banach vale lo sviluppo in serie di $(1-H)^{-1}$, infatti la seconda espansione in serie è una caso particolare dello sviluppo

$$(K-H)^{-1} = K^{-1} + K^{-1}HK^{-1} + K^{-1}HK^{-1}HK^{-1} + \cdots$$

per $K \in GL(X)$ e $||H|| < ||K^{-1}||^{-1}$, che segue dal caso K = 1 notando

$$(K-H)^{-1} = K^{-1}(I - HK^{-1})^{-1}, ||HK^{-1}|| < 1.$$

Notiamo che se ||H|| < 1 allora la serie $\sum_{n=0}^{\infty} H^n$ converge assolutamente ad un operatore lineare continuo e per questioni algebriche questa espansione è l'inversa di (1-H).

Definizione 11.7 (Operatore risolvete).

Se $\lambda \in \rho(A)$, l'operatore risolvente relativo a λ è $(\lambda - A)^{-1}$.

Osservazione 11.8.

Vale l'identità risolvente

$$(\lambda - A)^{-1} - (\mu - A)^{-1} = (\mu - \lambda)(\lambda - A)^{-1}(\mu - A)^{-1}$$

Dimostrazione.

Basta calcolare:

$$(\mu - \lambda)(\lambda - A)^{-1}(\mu - A)^{-1} + (\mu - A)^{-1} = ((\mu - \lambda)(\lambda - A)^{-1} + 1)(\mu - A)^{-1} =$$

$$= (\lambda - A)^{-1}(\mu - \lambda + (\lambda - A))(\mu - A)^{-1} =$$

$$= (\lambda - A)^{-1}(\mu - A)(\mu - A)^{-1} =$$

$$= (\lambda - A)^{-1}.$$

Proposizione 11.9.

Se $A \in L(X)$ e $X \neq 0$ allora $\sigma(A)$ è non vuoto.

Dimostrazione.

Segue dal teorema di Liouville applicato a

$$\begin{array}{ccc}
\rho(A) & \longrightarrow & \mathbb{C} \\
\lambda & \longmapsto & \langle x^*, (\lambda - A)^{-1} x \rangle
\end{array}$$

con $x \in X$ e $x^* \in X^*$ variabili. Infatti queste funzioni sono olomorfe su $\rho(A)$ e infinitesime per $\lambda \to \infty$ (11.6), quindi se avessimo $\sigma(A) = \emptyset$ allora le mappe sarebbero olomorfe definite su tutto \mathbb{C} e infinitesime all'infinito (in particolare limitate), quindi costanti (al valore 0 in quanto infinitesime) per ogni x e x^* , quindi $(\lambda - A)^{-1} = 0$ come mappa, che è assurdo perché per definizione di $\rho(A)$ è invertibile ma $X \neq 0$.

11.1.1 Raggio spettrale e Cauchy-Hadamard-Gelfand

Definizione 11.10 (Raggio spettrale). Sia $A \in L(X)$. Il suo raggio spettrale è

$$r_A = \max_{\lambda \in \sigma(A)} |\lambda| \in [0, ||A||]$$

Notiamo che questo massimo esiste perché $\sigma(A)$ è compatto (11.6).

Lemma 11.11.

 $Sia(a_n) \subseteq \mathbb{R}$ una successione subadditiva² allora esiste il limite

$$\lim_{n \to \infty} \frac{a_n}{n} = \inf_n \frac{a_n}{n}.$$

Dimostrazione.

Dato $d \ge 1$, ogni $n \in \mathbb{N}$ si scrive $n = p_n d + k_n$ con $0 \le k_n < d$ e $p_n = \left\lfloor \frac{n}{d} \right\rfloor$. Allora per ogni $n \ge 1$

$$\inf_{m \ge 1} \frac{a_m}{m} \le \frac{a_n}{n} = \frac{a_{p_n d + k_n}}{n} \le \frac{1}{n} \left(p_n a_d + a_{k_n} \right) \le$$

$$\le \frac{dp_n}{n} \frac{a_d}{d} + \frac{1}{n} \max_{1 \le k < d} a_k =$$

$$= (1 + o(1)) \frac{a_d}{d} + o(1)$$

quindi, prendendo il \limsup_n e poi $\inf_{d\geq 1}$

$$\inf_{m\geq 1}\frac{a_m}{m}\leq \liminf_n\frac{a_n}{n}\leq \limsup_n\frac{a_n}{n}\leq \inf_{d\geq 1}\frac{a_d}{d}$$

dunque esiste il limite ed è pari all'estremo inferiore.

Proposizione 11.12 (Formula di Cauchy-Hadamard-Gelfand). Vale la seguente identità

$$r_A = \lim_{n \to \infty} \|A^n\|^{1/n} = \inf_{n \ge 1} \|A^n\|^{1/n}.$$

 $^{^{2}}a_{n+m} \le a_n + a_m$

Dimostrazione.

Applichiamo il lemma (11.11) alla successione $a_n = \log ||A^n||$, che è subadditiva perché $||A^{n+m}|| \le ||A^n|| ||A^m||$. Per continuità dell'esponenziale questo mostra che il limite nel testo esiste ed è pari all'estremo inferiore. Mostriamo che $r_A = \lim_n ||A^n||^{1/n}$:

 \leq Se $\lambda \in \sigma(A)$, cioè $\lambda - A$ non invertibile, allora anche $\lambda^n - A^n$ non è invertibile:

$$\lambda^{n} - A^{n} = (\lambda - A)B = B(\lambda - A), \quad B = \sum_{i=0}^{n-1} \lambda^{i} A^{n-1-i}$$

quindi $\lambda - A$ non invertibile implica per il teorema della mappa aperta (5.10) che $\lambda - A$ non è bigettiva, quindi non è iniettiva o non è surgettiva, e quindi neanche $\lambda^n - A^n$ lo è.

Dunque $\lambda^n \in \sigma(A^n)$ e quindi $|\lambda^n| \leq ||A^n||$ da cui $|\lambda| \leq ||A^n||^{1/n}$. Questo mostra la disuguaglianza $r_A \leq \inf_{n \geq 1} ||A^n||^{1/n} = \lim_n ||A^n||^{1/n}$.

 \geq Per ogni $z \in B_{\mathbb{C}}(0, \frac{1}{r_A})$ è ben definito³ $z(1-zA)^{-1}$. La mappa

$$\begin{array}{ccc} B_{\mathbb{C}}(0,\frac{1}{r_A}) & \longrightarrow & L(X) \\ z & \longmapsto & z(1-zA)^{-1} \end{array}$$

è "analitica": ha uno sviluppo locale in 0 dato da

$$\sum_{n=0}^{\infty} z^{n+1} A^n$$

che però si estende a tutto il disco.

Siano $x \in X$ e $x^* \in X^*$ e consideriamo la funzione olomorfa

$$\begin{array}{ccc} B_{\mathbb{C}}(0,\frac{1}{r_A}) & \longrightarrow & \mathbb{C} \\ z & \longmapsto & \left\langle x^*z(1-zA)^{-1}x\right\rangle \end{array}$$

la quale ha sviluppo locale in 0 dato da

$$\left\langle x^*, \sum_{n=0}^{\infty} z^{n+1} A^n x \right\rangle = \sum_{n=0}^{\infty} z^{n+1} \left\langle x^*, A^n x \right\rangle$$

che converge assolutamente per $|z|=\frac{1}{r}<\frac{1}{r_A}\Longleftrightarrow r>r_A$ grazie alla convergenza di $z(1-zA)^{-1}$. In particolare i termini della serie sono limitati

$$\left| \left\langle x^*, \left(\frac{A}{r} \right)^{n+1} \right\rangle x \right| \le C_{x,x^*}.$$

Per Banach-Steinhaus (4.34) si ha che $\left(\frac{A}{r}\right)^{n+1}$ è limitato: per x fissato la disuguaglianza dice che $\left\{\left(\frac{A}{r}\right)^{n+1}x\right\}_{n\in\mathbb{N}}$ è w-limitata in X, quindi limitata in norma (Banach-Steinhaus) e applicando di nuovo Banach-Steinhaus si ha che $\left\{\left(\frac{A}{r}\right)^{n+1}\right\}_{n\in\mathbb{N}}$ sono operatori puntualmente limitati, quindi sono limitati in norma. Scriviamo

$$\left\| \left(\frac{A}{r} \right)^{n+1} \right\| \le C'$$

 $[\]overline{{}^3}$ se z=0 ok, se $z \neq 0$ allora l'espressione vale $(\frac{1}{z}-A)^{-1}$ che è ben definita perché abbiamo supposto $z < 1/r_A \Longleftrightarrow 1/z > r_A \implies 1/z \in \rho(A)$.

cio
è $\left\|A^n\right\|^{1/n} \leq C'^{1/n} r$ da cui

$$\lim \|A^n\|^{1/n} \le r \lim C'^{1/n} = r$$

e questo per ogni $r > r_A$, quindi anche per r_A stesso passando all'estremo inferiore.

Osservazione 11.13.

La stessa formula, con la stessa dimostrazione, funziona anche per il raggio spettrale di algebre di Banach.

Esercizio 11.14.

Calcolare il raggio spettrale dell'operatore di Volterra

$$V: \begin{array}{ccc} C^0([a,b]) & \longrightarrow & C^0([a,b]) \\ f & \longmapsto & \int_a^x f(t)dt \end{array}$$

con la formula del raggio spettrale e provando che per ogni $\lambda \in \mathbb{C} \setminus \{0\}, \ \lambda - V \in \mathrm{GL}(V)$.

11.2 Teoria spettrale su spazi di Hilbert

Definizione 11.15 (Operatore simmetrico).

Sia A un operatore limitato su H spazio di Hilbert. A è **simmetrico** (scritto $A \in L^{sim}(H)$) se per ogni $x, y \in H$ si ha

$$\langle Ax, y \rangle = \langle x, Ay \rangle$$
.

Proposizione 11.16.

 $Sia A \in L^{sim}(H)$, allora

- 1. $\ker A = (\operatorname{Imm} A)^{\perp} e \overline{\operatorname{Imm} A} = (\ker A)^{\perp}$
- 2. Se $H_0 \subseteq H$ è un sottospazio A-invariante allora anche H_0^{\perp} e $\overline{H_0}$ lo sono.

Dimostrazione.

Mostriamo le due affermazioni

1. Segue dalle catena di equivalenze

$$x \in \ker A$$

$$Ax = 0$$

$$0 = \langle Ax, y \rangle = \langle x, Ay \rangle \ \forall y \in H$$

$$x \in (\operatorname{Imm} A)^{\perp}$$

l'altra affermazione segue notando che $\overline{V} = (V^{\perp})^{\perp}$.

2. Se $x \in H_0^{\perp}$ allora per ogni $y \in H_0$ si ha $0 = \langle x, Ay \rangle = \langle Ax, y \rangle$, cioè $Ax \in H_0^{\perp}$. Segue l'invarianza della chiusura prendendo l'ortogonale di nuovo.

Definizione 11.17 (Operatori simmetrici positivi).

Se $A \in L^{sim}(H)$ esso si dice **positivo** se $\langle Ax, x \rangle \geq 0$ per ogni x.

 $Osservazione\ 11.18.$

La positività induce una relazione d'ordine parziale su $L^{sim}(H)$:

$$A > B \iff A - B$$
 positivo.

Fatto 11.19.

Se A è simmetrico positivo allora $I+A\in \mathrm{GL}(H)$

Dimostrazione.

I+A è fortemente iniettiva in quanto per ogni $x\in H$

$$\|(I+A)x\|^2 = (x+Ax)(x+Ax) = \|x\|^2 + 2\langle Ax, x \rangle + \|Ax\|^2 \ge \|x\|^2$$

quindi in particolare è iniettivo con immagine chiusa.

Per il punto 1. di (11.16) un operatore simmetrico e iniettivo ha immagine densa, dunque I + A è anche surgettivo e quindi invertibile.

Proposizione 11.20.

Se $A \in L^{sim}(H)$ allora $\sigma(A) \subseteq \mathbb{R}$.

Dimostrazione.

Per ogni $a, b \in \mathbb{R}$ con $b \neq 0$ si ha che (a + ib - A) è invertibile perché fattore di

$$(a+ib-A)(a-ib-A) = (a-A)^2 + b^2 = b^2 \left(I + \left(\frac{a-A}{b}\right)^2\right)$$

П

e questo è invertibile per (11.19).

Proposizione 11.21.

 $Per A \in L^{sim}(H) \ si \ ha \ ||A|| = \sup_{\|x\| < 1} |Ax \cdot x| = \|q_A\|_{\infty, B}$

Dimostrazione

Siano $x, y \in H$ e consideriamo l'identità di polarizzazione:

$$Ax \cdot y = \frac{1}{4} (q_A(x+y) - q_A(x-y)).$$

Segue che

$$Ax \cdot y \leq \frac{1}{4} \left(\|q_A\|_{\infty} \|x + y\|^2 + \|q_A\|_{\infty} \|x - y\|^2 \right) =$$

$$= \frac{\|q_A\|_{\infty}}{4} \left(2 \|x\|^2 + 2 \|y\|^2 \right) \stackrel{\|x\| < 1}{\leq}$$

$$\leq \|q_A\|_{\infty}$$

quindi vale $||A|| \leq ||q_A||_{\infty}$. L'altra disuguaglianza segue dal fatto che per ||x|| < 1

$$|Ax\cdot x| \leq \sup_{\|y\|<1} |Ax\cdot y| = \|Ax\| \leq \|A\|.$$

Notazione 11.22.

$$m_A = \inf_{\|x\|=1} q_A(x), \qquad M_A = \sup_{\|x\|=1} q_A(x).$$

Proposizione 11.23.

 $\sigma(A) \subseteq [m_A, M_A]$. Inoltre $m_A = \min \sigma(A)$ e $M_A = \max \sigma(A)$.

Dimostrazione.

Sia $t < m_A$, allora, poiché $q_A(x) \ge m_A ||x||^2$, si ha che come operatore simmetrico

$$\frac{A - m_A}{m_A - t} \ge 0$$

quindi $-1 \notin \sigma(\frac{A-m_A}{m_A-t})$ in quanto $I + \frac{A-m_A}{m_A-t}$ è invertibile (11.19). Quindi

$$t - m_A \notin \sigma(A - m_A) = \sigma(A) - m_A \iff t \notin \sigma(A).$$

Un conto analogo mostra che se $t > M_A$ allora $t \notin \sigma(A)$, quindi $\sigma(A) \subseteq [m_A, M_A]$.

Mostriamo ora che $M_A = \max \sigma(A)$ e $m_A = \min \sigma(A)$: si ha che

$$||A^2|| \stackrel{\text{(11.21)}}{=} \sup_{\|x\| \le 1} q_{A^2}(x) = \sup_{\|x\| \le 1} (Ax \cdot Ax) = \sup_{\|x\| \le 1} ||Ax||^2 = ||A||^2.$$

Analogamente

$$||A|| = ||A^2||^{1/2} = ||A^4||^{1/4} = \dots = ||A^{2^n}||^{1/2^n},$$

dunque per la formula di Cauchy-Hadamard-Gelfand (11.12) si ha $||A|| = r_A$. Poiché $||A|| = ||q_A||_{\infty}$ (11.21) si ha che $r_A = ||A||$ vale M_A oppure $-m_A$ perché questi sono maggiorati da $||q_A||_{\infty}$ per definizione.

Se $A \ge 0$ allora $\sigma(A) \subseteq [0, \infty)$ e quindi $0 \le m_A \le M_A = r_A$, cioè $M_A = \max \sigma(A)$. In generale per t > ||A|| si ha $A + t \ge 0$ e quindi

$$M_A + t = M_{A+t} = \max \sigma(A+t) = \sigma(A) + t$$

cioè di nuovo $M_A = \sigma(A)$ come voluto. Analogamente si mostra min $\sigma(A) = m_A$.

 $Osservazione\ 11.24.$

Un'altra dimostrazione usa la caratterizzazione variazionale di $\sigma(A)$ e il principio variazionale di Ekeland.

11.2.1 Autovalori di operatori simmetrici

 $Osservazione\ 11.25.$

Autovettori di autovalori differenti sono ortogonali, cioè se $\lambda \neq \mu$ autovalori per u e v autovettori allora

$$\lambda(u\cdot v)=Au\cdot v=u\cdot Av=\mu u\cdot v.$$

Osservazione 11.26.

La molteplicità geometrica di λ autovalore di A (cioè dim $\ker(\lambda - A)$) è uguale alla molteplicità algebrica (cioè $\sup_{n>0} \dim \ker(\lambda - A)^n$).

Dimostrazione.

Senza perdita di generalità $\lambda = 0$. Basta notare che ker $A = \ker A^2$:

$$A^{2}x = 0 \implies ||Ax||^{2} = A^{2}x \cdot x = 0 \implies Ax = 0.$$

Caratterizzazione variazionale degli autovalori di operatori simmetrici

Ricordiamo che se $f: \Omega \subseteq H \to \mathbb{R}$ differenziabile allora il gradiente di f in $x_0 \in \Omega$ è l'elemento $\nabla f(x_0)$ di H che rappresenta via prodotto scalare il differerenziale $df(x_0) \in H^*$, cioè

$$f(x_0 + h) = f(x_0) + \nabla(f)(x_0) \cdot h + o(h)$$

Inoltre x_0 è un punto critico di f se $\nabla f(x_0) = 0$. La $f(x_0)$ corrispondente è detto valore critico.

Ricordiamo che se $u,v:\Omega\subseteq H\to\mathbb{R}$ sono differenziabili in x_0 e $v(x_0)\neq 0$ il quoziente u/v è differenziabile in x_0 e abbiamo

$$\nabla \left(\frac{u}{v}\right) = \frac{v\nabla u - u\nabla v}{v^2}.$$

Proposizione 11.27 (Caratterizzzione variazionale).

Una coppia $(x, \lambda) \in H \times \mathbb{R}$ è una coppia autovettore-autovalore di A se è una coppia punto critico-valore critico della funzione

$$f_A: \begin{array}{ccc} H\setminus\{0\} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \dfrac{Ax\cdot x}{x\cdot x} \end{array}$$

detta quoziente di Rayleigh.

Dimostrazione.

Calcolando troviamo

$$\nabla(q_A(x)) = 2Ax, \qquad \nabla q_I(x) = 2x.$$

Allora

$$\nabla f_A(x) = 2 \frac{\|x\|^2 Ax - (Ax \cdot x)x}{\|x\|^4} = \frac{2}{\|x\|^2} (Ax - f_A(x)x)$$

dunque $\nabla f_A(x) = 0$ se e solo se x è un autovettore di A corrispondente all'autovalore $f_A(x)$.

11.2.2 Spettro di operatori simmetrici compatti

Proposizione 11.28.

Sia $A \in L_C^{sim}(H)$, allora se $M_A > 0$ si ha che M_A è un autovalore di A.

Dimostrazione.

Per compattezza, q_A ha massimo sulla palla $\overline{B}(0,1)$, infatti se $(x_k) \subseteq \overline{B}(0,1)$ è una successione massimizzante per q_A su \overline{B} allora estraendo una sottosuccessione si può assumere $x_k \xrightarrow{w} x$ per $x \in \overline{B}(0,1)$, ma essendo A compatto si ha $Ax_k \to Ax$ in norma e quindi $Ax_k \cdot x_k \to Ax \cdot x$.

Siccome $M_A \neq 0$ si ha che $x \neq 0$ e quindi ||x|| = 1 (in quanto $q_A(x/||x||) \geq q_A(x)$ se $x \in \overline{B}(0,1)$). Allora x è anche il massimo di f_A si $H \setminus \{0\}$ perché f_A è 0-omogenea, in particolare è un punto critico e quindi un autovettore per (11.27).

 $^{^4}$ siamo in uno spazio di Hilbert e quindi uno spazio riflessivo, dunque per Kakutani (7.4) la palla unitaria chiusa è w-compatta, quindi per Eberlein-Šmulian (7.32) anche w-sequenzialmente compatta.

 $^{^5}$ stiamo usando il fatto che $y_k \xrightarrow{s} y$ e $x_k \xrightarrow{w} x$ implica $y_k \cdot x_k = (y \cdot x_k) + (y_k - y) \cdot x_k \to y \cdot x + o(1)$ perché $yx_k \to yx$ e $|(y-y_k) \cdot x_k| \le \|y-y_k\| \, \|x_k\| = O(\|y-y_k\|)$ in quanto convergenza debole implica limitato e quindi $\|x_k\|$ è limitato da una costante fissata per ogni k.

Osservazione 11.29.

Analogamente m_A è il minimo autovalore se A simmetrico compatto.

Osservazione 11.30.

In particolare ||A|| oppure -||A|| è un autovalore.

Corollario 11.31.

Se $H_0 \subseteq H$ è un sottospazio non banale chiuso A-invariante allora A ha un autovettore in H_0 .

Corollario 11.32.

Un operatore $A \in L_C^{sim}(H)$ ammette una base ortonormale di autovettori.

Dimostrazione.

Si considera un sistema $\{u_i\}_{i\in I}$ ortonormale di autovettori di A che sia massimale per inclusione (esiste per lemma di Zorn). Esso deve essere una base Hilbertiana, cioè

$$\overline{\operatorname{Span}(\{u_i\}_{i\in I})}=H.$$

Se non fosse così allora $H_0 := \overline{\operatorname{Span}(\{u_i\}_{i\in I})}^{\perp} \neq 0$ è un sottospazio chiuso A-invariante di H, quindi esisterebbe $u \in H_0$ autovettore che per costruzione è ortogonale al sistema considerato, negando la massimalità.

Corollario 11.33 (Operatore simmetrico compatto ammette una forma diagonale). Un operatore $A \in L_C^{sim}(H)$ è unitariamente coniugato ad un operatore di moltiplicazione per elementi di $c_0(I)$ su uno spazio $\ell_2(I)$ dove I è un insieme che indicizza una base di autovettori di A.

Indicizzazione degli autovalori

Osservazione 11.34.

Se gli autovalori di $A \in L_C^{sim}(H)$ hanno un punto di accumulazione come sottoinsieme di \mathbb{R} allora questo punto è 0.

Dimostrazione.

Supponiamo ci siano infiniti autovalori e che per assurdo tendano ad un elemento diverso da 0.

Possiamo definire una successione autovettori ortogonali. Questa ha un limite debole per Kakutani (7.4) e Eberlein-Šmulian (7.32). Poiché A è compatto avremmo una successione di vettori ortogonali (gli scalati dei vettori originali) che convergono in norma, assurdo se il limite degli autovalori non è 0.

Grazie a questa osservazione possiamo indicizzare gli autovalori di $A \in L_C^{sim}(H)$ in modo monotono:

- Se ci sono infiniti autovalori positivi essi sono una successione che converge a 0, che possiamo indicizzare in modo decrescente verso 0. Se essi sono in numero finito ci fermiamo (o volendo da quell'indice in poi ripetiamo 0).
- Procediamo in modo simile con gli autovalori negativi.
- Se un autovalore λ ha molteplicità r allora nella successione lo ripetiamo r volte nelle posizioni opportune.

$$\lambda_{-1} < \lambda_{-2} < \dots < 0 < \dots < \lambda_2 < \lambda_1$$

Sia I l'insieme di indici così creato.

Teorema 11.35 (Curant-Fischer-Weil / Minimax).

Sia H spazio di Hilbert separabile. Indicizzando gli autovalori di $A \in L_C^{sim}(H)$ come sopra si ha che per ogni $n \in I$ tale che n > 0 allora

$$\lambda_n(A) = \inf_{\substack{E \subseteq H \\ \operatorname{codim} E < n}} \sup_{\substack{\|x\| = 1 \\ x \in E}} q_A(x) = \sup_{\substack{F \subseteq H \\ \dim F \geq n}} \inf_{\substack{\|x\| = 1 \\ x \in F}} q_A(x)$$

$$\lambda_{-n}(A) = \sup_{\substack{E \subseteq H \\ \text{codim } E < n}} \inf_{\substack{\|x\| = 1 \\ x \in E}} q_A(x) = \inf_{\substack{F \subseteq H \\ \text{dim } F \ge n}} \sup_{\substack{\|x\| = 1 \\ x \in F}} q_A(x)$$

Dimostrazione.

Evidentemente basta mostrare il caso di n > 0.

Sia $E_n = \operatorname{Span}(e_1, \dots, e_n)$ dove e_i è un fissato autovettore di λ_i e gli e_i sono ortogonali tra loro. Notiamo che (poiché H separabile)

$$E_n^{\perp} = \overline{\operatorname{Span}(e_i \mid i \in I \setminus \{1, \dots, n\})}$$

е

$$A_{\mid_{E_n}} = diag(\lambda_1, \dots, \lambda_n) : E_n \to E_n$$

$$A_{\mid_{E_n^{\perp}}} = diag(\lambda_i \mid i \in I \setminus \{1, \dots, n\}) : E_n^{\perp} \to E_n^{\perp}.$$

Notiamo che λ_n è il minimo autovalore di $A_{|E_n}$ e anche il massimo autovalore di E_{n-1}^{\perp} . Dunque per la caratterizzazione variazionale (11.27) si ha che

$$\lambda_n = \min_{\substack{\|x\|=1\\x \in E_n}} q_A(x) = \max_{\substack{\|x\|=1\\x \in E_n^{\perp}}} q_A(x)$$

Siano ora $E \subseteq H$ sottospazio di codimensione codimE < n e $F \subseteq H$ un sottospazio di dimensione dim $F \ge n$. Per questione di dimensione

$$E_n \cap E \neq (0), \qquad E_n^{\perp} \cap F \neq (0)$$

quindi esistono elementi $x_0 \in E_n \cap E$ e $y_0 \in E_{n-1}^{\perp} \cap F$ non nulli e quindi senza perdita di generalità di norma 1.

$$\sup_{\substack{\|x\|=1\\x\in E}}q_A(x)\geq q_A(x_0)\geq \min_{\substack{\|x\|=1\\x\in E_n}}q_A(x)=\lambda_n=\max_{\substack{\|x\|=1\\x\in E_n^\perp}}q_A(x)\geq q_A(y_0)\geq \inf_{\substack{\|x\|=1\\x\in F}}q_A(x)$$

in particolare, poiché λ_n è raggiunto da $E=E_n$ e $F=E_n^\perp$ abbiamo mostrato che

$$\inf_{\substack{E\subseteq H\\\operatorname{codim} E< n}}\sup_{\substack{\|x\|=1\\x\in E}}q_A(x)=\lambda_n=\sup_{\substack{F\subseteq H\\\dim F\geq n}}\inf_{\substack{\|x\|=1\\x\in F}}q_A(x).$$

Corollario 11.36 (Principio autovalori intervallati).

Sia $A \in L_C^{sim}(H)$ e sia $H_0 \subseteq H$ un iperpiano chiuso con incusione $j_0 : H_0 \to H$ e proiettore ortogonale⁶ $P_0 : H \to H_0$. Sia

$$A_0 = P_0 A j_0 : H_0 \to H_0.$$

Notiamo che $^7A_0 \in L_C^{sim}(H_0)$. Notiamo che $q_{A_0} = q_A|_{H_0}$.

Allora per ogni n > 0 si ha

$$\lambda_{n+1}(A) \le \lambda_n(A_0) \le \lambda_n(A)$$

e analogamente

$$\lambda_{-n}(A) \le \lambda_{-n}(A_0) \le \lambda_{-n-1}(A).$$

Dimostrazione.

Usando il principio di minimax (11.35) si ha

$$\lambda_{n+1}(A) = \inf_{\substack{E \subseteq H \\ \operatorname{codim} E < n+1}} \sup_{\substack{\|x\|=1 \\ x \in E}} q_A(x) \overset{\operatorname{codim}_{H_0} E < n \Longrightarrow \operatorname{codim}_H E < n+1}{\leq}$$

$$\leq \inf_{\substack{E \subseteq H_0 \\ \operatorname{codim} E < n}} \sup_{\substack{\|x\|=1 \\ x \in E}} q_A(x) = \lambda_n(A_0) =$$

$$= \sup_{\substack{E \subseteq H_0 \\ \operatorname{codim} E < n}} \inf_{\substack{\|x\|=1 \\ x \in E}} q_A(x) \leq$$

$$= \sup_{\substack{F \subseteq H_0 \\ \dim F \geq n}} \inf_{\substack{\|x\|=1 \\ x \in F}} q_A(x) = \lambda_n(A).$$

$$\leq \sup_{\substack{F \subseteq H \\ \dim F \geq n}} \inf_{\substack{\|x\|=1 \\ x \in F}} q_A(x) = \lambda_n(A).$$

Esercizio 11.37.

Scrivere una stima di dipendenza Lipschitz e di dipendenza monotona di $\lambda_n(A)$ in funzione di $A \in L_C^{sim}(H)$ $(I = \mathbb{Z} \setminus \{0\})$.

11.3 Calcolo funzionale C^0 per operatori limitati autoaggiunti

Sia $A = A^* \in L(H)$, H di Hilbert e sia

$$\Sigma = \sigma(A) \subseteq [-\|A\|, \|A\|].$$

Dato $p \in \mathbb{R}[x],$ scrivendo $p(x) = \sum_{k=0}^n c_k x^k$ è definito

$$p(A) = \sum_{k=0}^{n} c_k A^k.$$

Vogliamo estendere questa costruzione definendo f(A) per $f \in C^0(\Sigma, \mathbb{R})$ o $f \in C^0(\Sigma, \mathbb{C})$.

 $^{{}^{6}}P_{0}=j_{0}^{*}$ perché siamo su uno spazio di Hilbert

⁷Eredita compattezza di $A \in A_0^* = (P_0 A j_0)^* = j_0^* A^* P_0^* = P_0 A j_0.$

Teorema 11.38 (della mappa spettrale).

Sia $p \in \mathbb{C}[z]$ e $T \in L(X)$ per X Banach. Allora

$$\sigma(p(T)) = p(\sigma(T)).$$

Dimostrazione.

Sia $\lambda \in \sigma(T)$ e scriviamo $p(z) = \sum_{k=0}^n a_k z^k$ con $a_n \neq 0$. Fattorizzando $p(z) - \lambda$ si ha

$$p(z) - \lambda = a_n \prod_{j=1}^{n} (z - \mu_j)$$

dunque $p(\mu) = \lambda$ se e solo se $\mu \in {\{\mu_1, \dots, \mu_n\}}$, cioè

$$p^{-1}(\lambda) = \{\mu_1, \cdots, \mu_n\}.$$

Dunque

$$p(T) - \lambda = a_n \prod_{j=1}^{n} (T - \mu_j)$$

e quindi $p(T)-\lambda$ è invertibile se e solo se lo sono tutti i fattori dato che commutano, cioè

$$\lambda \in \sigma(p(T)) \iff \exists j \ t.c. \ \mu_j \in \sigma(T) \iff p^{-1}(\lambda) \cap \sigma(T) \neq \emptyset \iff \lambda \in p(\sigma(T))$$

Osservazione 11.39.

La stessa dimostrazione funziona per T elemento di una algebra di Banach.

Hilbert reali

Proposizione 11.40.

Se $A = A^*$ in L(H) allora la mappa

$$\Phi: \begin{array}{ccc} \Pi_{\Sigma} = \{funzioni \ polinomiali \ \Sigma \to \mathbb{R}\} & \longrightarrow & L(H) \\ p & \longmapsto & p(A) \end{array}$$

 \grave{e} un omomorfismo di algebre isometrico.

Dimostrazione.

Per ogni $p \in \mathbb{R}[x]$ si ha che

$$\|p(A)\|_{L(H)} \stackrel{p(A) = p(A)^*}{=} r_{p(A)} = \sup_{\lambda \in \sigma(p(A))} |\lambda| \stackrel{\text{(11.38)}}{=} \sup_{\lambda \in \Sigma} |p(\lambda)| = \|p\|_{\infty,\Sigma}.$$

In particolare p(A) dipende solo dalla funzione $p_{|_{\Sigma}}$. Che Φ sia un omomorfismo è ovvio dalla definizione di p(A).

Osservazione~11.41.

Se $f \in C^0(\Sigma, \mathbb{R})$ e $f \geq 0$ su Σ allora per Stone-Weierstrass esiste una successione di polinomi $p_n \xrightarrow{\|\cdot\|_{\infty,\Sigma}} f$ e possiamo prendere $p_n \geq 0$ su Σ (a meno di sotituire p_n con $p_n + \|f - p_n\|_{\infty}$). In particolare

$$\overline{\Pi_{\Sigma}}^{\|\cdot\|_{\infty,\Sigma}} = C^0(\Sigma,\mathbb{R}).$$

Osservazione 11.42.

Essendo Φ isometrico esso si estende alle chiusure, quindi troviamo

$$\overline{\Pi_{\Sigma}}^{\|\cdot\|_{\infty,\Sigma}} = C^0(\Sigma,\mathbb{R}) \xrightarrow{\Phi} \overline{\Phi(\Pi_{\Sigma})}^{\|\cdot\|_{L(H)}} = \overline{\mathbb{R}[A]} \subseteq L(H)$$

dove $\overline{\mathbb{R}[A]}$ è l'algebra chiusa generata da A.

Osservazione 11.43.

Per continuità, la Φ estesa è ancora un omomorfismo, inoltre se $p \geq 0$ su Σ allora $\Phi(p) = p(A)$ è un operatore simmetrico ≥ 0 , infatti

$$\sigma(p(A)) \stackrel{\text{(11.38)}}{=} p(\Sigma) \subseteq [0, \infty) \iff p(A) \ge 0.$$

Notazione 11.44.

Per $f \in C^0(\Sigma, \mathbb{R})$ scriviamo $\Phi(f) = f(A)$ in analogia con il caso polinomiale.

Esercizio 11.45.

Se $A \in L^{sim}(H)$ e $A \geq 0$ allora A ammette una radice quadrata, cioè esiste $B \in L^{sim}(H)$ con $B \geq 0$ e $B^2 = A$. Più in generale, per ogni n, A ammette una radice n-esima che sia un operatore simmetrico positivo.

Esercizio 11.46.

Dato $A \in L^{sim}(H)$ con $A \ge 0$ esiste un unico B simmetrico e positivo tale che $B^2 = A$. Similmente per le radici n-esime.

Hint: usare la radice costruita col calcolo funzionale.

Esercizio 11.47.

Per $A \in L^{sim}(H)$ e $f \in C^0(\Sigma, \mathbb{R})$ si ha che f(A) commuta con ogni B che commuta con A.

Hilbert complessi

Proposizione 11.48.

Sia $A = A^*$ in L(H), allora esiste un unico omomorfismo continuo

$$\Phi: C^0(\Sigma, \mathbb{C}) \to L(H)$$

tale che $\Phi(id_{\Sigma}) = A$. Risulta inoltre che

- 1. Φ è isometrica
- 2. $\Phi(\overline{f}) = \Phi(f)^* \ (\Phi \ \dot{e} \ uno *-omomorfismo).$
- 3. Se $f \in C^0(\Sigma, \mathbb{R})$ e $f \ge 0$ allora $\Phi(f) = \Phi(f)^* \ge 0$.
- 4. Se [A, B] = 0 allora $[\Phi(f), B]$

Dimostrazione.

L'unicità segue dal fatto che $z \mapsto A$ implica che $p \mapsto p(A)$ per ogni poliniomio $p \in \mathbb{C}[z]$ e questi sono densi in $C^0(\Sigma, \mathbb{C})$ (stiamo usando il teorema di Stone-Weierstrass su intervalli, basta estendere $f: \Sigma \to \mathbb{C}$ a $\tilde{f}: [-\|A\|, \|A\|] \to \mathbb{C}$ continua e poi approssimare questa con polinomi).

Mostriamo esistenza: tutto segue dal fatto che per $p\in\mathbb{C}[z]$ vale ancora che la corrispondenza $p\mapsto p(A)$ è isometrica

$$||p(A)||^{2} = \sup_{\|x\| \le 1} ||p(A)x||^{2} = \sup_{\|x\| \le 1} \langle p(A)^{*}p(A)x, x \rangle =$$

$$= ||p(A)^{*}p(A)||^{(c_{k}A^{k})^{*}} = \overline{c_{k}}(A^{*})^{k} = \overline{c_{k}}A^{k}$$

$$= ||\overline{p}(A)p(A)|| = ||(\overline{p}p)(A)||^{(11.40)} =$$

$$= ||\overline{p}p||_{\infty,\Sigma} = ||p||_{\infty,\Sigma}^{2}.$$

Appendice A

Topologia

Proposizione A.1 (Topologia iniziale).

Sia X un insieme e $\mathcal F$ una famiglia di mappe a valori in uno spazio topologici. Notazione:

$$\mathcal{F} = \{f_j : X \to (Y_j, \tau_j)\}_{j \in I}.$$

Allora esiste la topologia meno fine su X che rende continue le mappe f_j . Una prebase di questa topologia è data da

$$\{f_i^{-1}(A) \mid j \in I, A \in \tau_j\}$$
.

In realtà basterebbe prendere una prebase per τ_j al posto di tutta la topologia. Questa topologia è detta **topologia iniziale della famiglia** \mathcal{F} e si denota $\tau_{\mathcal{F}}$.

Osservazione A.2 (Proprietà universale della topologia iniziale).

Data una mappa $\varphi: (Z, \tau_Z) \to (X, \tau_{\mathcal{F}})$ essa è continua se e solo se $f \circ \varphi$ è continua per ogni $f \in \mathcal{F}$.

Dimostrazione.

Se φ è continua allora $f \circ \varphi$ è composizione di continue. Se sappiamo che $f \circ \varphi$ è continua per ogni $f \in \mathcal{F}$ allora, se A è un aperto di X per continuità di $f \circ \varphi$ abbiamo

$$\tau_Z \ni (f \circ \varphi)^{-1}(A) = \varphi^{-1}(f^{-1}(A))$$

cioè le preimmagini tramite φ di aperti di prebase sono aperti di Z, quindi φ è continua.

Proposizione A.3 (Transitività della topologia iniziale).

Supponiamo di avere una famiglia di mappe $\mathcal{F}' = \{f_i : X \to Y_i\}_{i \in I}$ e per ogni $i \in I$ sia $\mathcal{G}_i = \{g_{ij} : Y_i \to Z_{ij}\}_{j \in J_i}$ una famiglia di mappe. Su ogni Y_i consideriamo la topologia iniziale determinata da \mathcal{G}_i . Allora la topologia iniziale data da \mathcal{F}' su X coincide con la topologia iniziale su X definita da $\mathcal{F} = \{g_{ij} \circ f_i \mid i \in I, j \in J_i\}$.

Dimostrazione.

Entrambe le topologie in esame sono generate dagli insiemi $(g_{ij} \circ f_i)^{-1}(A)$ al variare di $i \in I$, $j \in J_i$ e $A \in \tau_{Z_{ij}}$, infatti

prebase per
$$\mathcal{F} \to (g_{ij} \circ f_i)^{-1}(A) = f_i^{-1}(g_{ij}^{-1}(A)) \leftarrow \text{prebase per } \mathcal{F}'.$$

A.1 Limiti induttivi su spazi topologici

Proposizione A.4.

 $Sia \{(X_n, \tau_n)\}_{n \in \mathbb{N}}$ una famiglia di spazi topologici con inclusioni continue $X_n \subseteq X_{n+1}$. Allora esiste la più fine topologia τ_∞ su $X_\infty = \bigcup_{n \in \mathbb{N}} X_n$ che rende continue le inclusioni $X_n \subseteq X_\infty$.

La topologia in questione è

$$\begin{split} \tau_{\infty} &= \left\{ A \subseteq X_{\infty} \mid \forall n \in \mathbb{N}, \ A \cap X_n \in \tau_n \right\} = \\ &= \left\{ A \subseteq X_{\infty} \mid A = \bigcup_{n \in \mathbb{N}} A_n, \ A_n \subseteq A_{n+1}, \ A_n \in \tau_n \right\}. \end{split}$$

Dimostrazione.

Poiché la continuità delle inclusioni si traduce in " $\forall n, A \cap X_n \in \tau_n$ " basta verificare che questa condizione definisce una topologia, ma questo è ovvio perché

- $(\bigcup A_i) \cap X_n = \bigcup A_i \cap X_n$,
- $(A \cap B) \cap X_n = (A \cap X_n) \cap (B \cap X_n),$
- $\emptyset \cap X_n = \emptyset$ e
- $\bullet \ X_{\infty} \cap X_n = X_n.$

Osservazione A.5.

Se ogni inclusione $X_n \subseteq X_{n+1}$ è inclusione di sottospazio, cioè τ_n è la topologia indotta, allora τ_∞ induce τ_n come topologia di sottospazio $X_n \subseteq X_\infty$.

Dimostrazione.

Se $A_0 \subseteq X_0$ aperto allora esiste $A_1 \in \tau_1$ tale che $A_0 = A_1 \cap X_0$ perché τ_0 è la topologia indotta da τ_1 . Iterando troviamo A_n aperti inscatolati, quindi $A = \bigcup_n A_n$ e per costruzione $A \cap X_0 = A_0$. Per gli indici più alti è uguale.

Osservazione A.6.

 $f:X_{\infty}\to Z$ è continua se e solo se per ogni $n\in\mathbb{N},\, f_{\big|_{X_{n}}}\to Z$ è continua.

 $Osservazione~{\rm A.7.}$

Il limite su sottosuccessione $\{X_{n_k}\}_{k>0}$ è sempre X_{∞} con la stessa topologia.

A.1.1 Limiti induttivi di SVT

Osservazione A.8.

In generale un limite induttivo di SVT $X_n \subseteq X_{n+1}$ con inclusioni lineari è uno spazio topologico $(X_{\infty}, \tau_{\infty})$ e uno spazio vettoriale, ma NON è uno SVT.

Il motivo è che la somma su X_{∞} non è necessariamente continua in quanto in generale $\underline{\lim}(X_n \times X_n) \neq \underline{\lim} X_n \times \underline{\lim} X_n$ anche se vale uguaglianza insiemistica.

 $+: \overline{\bigcup X_n} \times \overline{\bigcup X_n} \to \overline{\bigcup X_n}$ è tale che la restrizione a $X_n \times X_n$ è continua, ma questo non implica la continuità della intera mappa.

Cerchiamo di correggere

Notazione A.9.

Se (V_i) è una successione di sottoinsiemi di X allora

$$\sum_{i \in \mathbb{N}} V_i = \bigcup_{n \in \mathbb{N}} \sum_{i=0}^n V_i = \{v_1 + \dots + v_n \mid v_j \in V_j \ \forall j\}$$

Lemma A.10.

Se X è SVT, per ogni $U \in \mathcal{U}_X$ esiste una successione $(V_i)_i \subseteq \mathcal{U}_X$ tale che $\sum_{i \geq 1} V_i \subseteq U$.

Dimostrazione.

Si costruisce (V_i) per induzione in modo che $V_{i+1}+V_{i+1}\subseteq V_i,\ V_0=U.$ Questo funziona perché

$$V_n + \sum_{i=1}^n V_i \subseteq V_n + V_1 \subseteq U.$$

Lemma A.11.

Per successioni $(V_i)_i$ e $(V'_i)_i$ di sottoinsiemi di X spazi vettoriali vale

• $(\sum V_i) + (\sum V'_i) = \sum (V_i + V'_i)$

• $(\sum V_i) \cap (\sum V_i') \supseteq \sum (V_i \cap V_i')$

• Se ogni V_i è assorbente / bilanciato / convesso allora anche $\sum V_i$ lo è. Se $\bigcup V_i$ è assorbente allora anche $\sum V_i \supseteq \bigcup V_i$ lo è.

Dimostrazione.

Ovvia apparentemente.

Proposizione A.12.

Sia (X_i) una successione di SVT con mappe $X_i \in X_{i+1}$ lineari continue iniettive (senza perdita di generalità inclusioni).

Poniamo $X_{\infty} = \bigcup_{i \geq 0} X_i$, allora X_{∞} è uno spazio vettoriale ed esiste su esso la più fine topologia di SVT che rende continue tutte le inclusioni $X_n \to X_{\infty}$.

Dimostrazione.

Sia \mathcal{U}_i un sistema di intorni per 0 in X_i , allora la continuità di $X_i \hookrightarrow X_{i+1}$ si esprime dicendo

$$\{U \cap X_i \mid U \in \mathcal{U}_{i+1}\} \subseteq \mathcal{U}_i$$

(l'uguaglianza corrisponderebbe a X_n sottospazio di X_{n+1}).

• Definitamo la base di intorni

$$\mathcal{U}_{\infty} = \left\{ \sum_{i} V_{i} \mid V_{i} \in \mathcal{U}_{i}, \ i \in \mathbb{N} \right\}.$$

Questa induce una topologia di SVT su X_{∞} , segue dal secondo lemma.

• Le inclusioni $(X_i, \mathcal{U}_i) \to (X_\infty, \mathcal{U}_\infty)$ sono continue, infatti per ogni $\sum V_i \in \mathcal{U}_\infty$ e $n \in \mathbb{N}$ si ha

$$X_n \cap \sum V_i \in \mathcal{U}_n$$

in quanto l'intersezione contiene V_n .

• Per ogni $L:X_{\infty}\to Y$ si ha L continua mostriamo che se $L_{|X_i}:X_i\to Y$ continua per ogni Y allora L è continua.

Sia $U \in \mathcal{U}_Y$. Per quanto visto esiste $(U_i) \subseteq \mathcal{U}_Y$ tale che $\sum U_i \subseteq U$. Per continuità di $L_{|_{X_i}}$ esiste $V_i \in \mathcal{U}_i$ tale che $L(V_i) \subseteq U_i$ e quindi

$$L\left(\sum V_i\right) \subseteq \sum U_i \subseteq U$$

cioè L è continua.

• Questa topologia è la più fine che rende continue le inclusioni, infatti se $Y = (X_{\infty}, \tau)$ e $L = id : (X_{\infty}, \mathcal{U}_{\infty}) \to (X_{\infty}, \tau)$ e $(X_i, \mathcal{U}_i) \to (X_{\infty}, \tau)$ continua per ogni i allora $id : (X_{\infty}, \mathcal{U}_{\infty}) \to (X_{\infty}, \tau)$ è continua per il punto precedente, cioè \mathcal{U}_{∞} è più fine di τ .

Definizione A.13 (Limite induttivo di SVT).

Sia (X_i) una successione di SVT con mappe $X_i \in X_{i+1}$ lineari continue iniettive (senza perdita di generalità inclusioni). Definiamo il loro **limite induttivo** come $(X_{\infty}, \mathcal{U}_{\infty})$ con le notazioni della proposizione precedente, cioè

$$\mathcal{U}_{\infty} = \left\{ \sum_{i} V_i \mid V_i \in \mathcal{U}_i, \ i \in \mathbb{N} \right\}.$$

La topologia si chiama anche topologia limite di spazi di Fréchet come SVT, abbreviata LF.

Osservazione A.14 (Caso SVTLC).

Se tutti gli X_i sono localmente convessi anche X_{∞} lo è in quanto $\sum V_i$ è convesso per V_i convessi.

In questo caso una base di intorni in \mathcal{U}_{∞} è data da

$$\mathcal{U}'_{\infty} = \{ C \subseteq X_{\infty} \mid C \text{ convesso}, \ C \cap C_n \in \mathcal{U}_n \ \forall n \}$$

infatti $\{\sum_i V_i \mid V_i \in \mathcal{U}_i \text{ convesso}, i \in \mathbb{N}\}$ è una base di intorni di \mathcal{U}_{∞} e questi $\sum V_i$ sono convessi che contengono V_i quando intersecati con X_i .

Viceversa se $C \subseteq X_{\infty}$ è convesso e $C \cap X_n \in \mathcal{U}_n$ allora

$$C \supseteq \sum_{i \ge 1} 2^{-i} C \supseteq \sum_{i \ge 1} 2^{-i} (C \cap X_i) \in \mathcal{U}_{\infty}.$$

Osservazione A.15.

Prendendo sottosuccessioni di (X_i) , il limite induttivo resta lo stesso (stesso insieme e stessa topologia).

Definizione A.16 (Limite induttivo stretto).

Se $X_i \hookrightarrow X_{i+1}$ è una inclusione di sottospazio, cioè² $\{V \cap X_i \mid V \in \mathcal{U}_{i+1}^*\} = \mathcal{U}_i^*$, allora il limte induttivo in questo caso è detto **stretto**.

Proposizione A.17 (Proprietà limiti induttivi stretti).

Sia $(X_{\infty}, \mathcal{U}_{\infty})$ un limite induttivo stretto di X_i

¹ricorda che per C convesso, C + C = 2C.

 $^{{}^2\}mathcal{U}_i^*$ è il sistema di tutti gli intorni di 0 in X_i

- 1. Ogni X_n è un sottospazio di X_{∞}
- 2. Se C è chiuso in X_{n_0} allora C è chiuso in X_{∞} se e solo se C è chiuso in ogni X_n per $n \geq n_0$.
- 3. Se tutti gli X_n sono T_0 anche X_{∞} lo è.
- 4. Se ogni X_n è chiuso in X_{n+1} allora $A \subseteq X_{\infty}$ è limitato se e solo se è contenuto e limitato in un X_n .

Dimostrazione.

Nelle ipotesi di limite induttivo stretto, una base di intorni di \mathcal{U}_{∞} è data dagli intorni

$$\left\{ \sum V_i \mid V_i \in \mathcal{U}_i, \ X_i \cap (V_{i+1} + V_{i+1}) \subseteq V_i \ \forall i \right\},\,$$

infatti, essendo X_i sottospazio di X_{i+1} , per ogni $V_i \in \mathcal{U}_i$ esiste $W_{i+1} \in \mathcal{U}_{i+1}$ tale che $X_i \cap W_{i+1} \subseteq V_i$, quindi basta scegliere $V_{i+1} \in \mathcal{U}_{i+1}$ tale che $V_{i+1} + V_{i+1} \subseteq W_{i+1}$. Dunque se avevamo una qualsiasi successione (V'_i) con $V_i \in \mathcal{U}_i$ basta restingere iterativamente intersecando ogni volta con l'intorno trovato con il metodo sopra.

Da $X_i \cap (V_{i+1} + V_{i+1}) \subseteq V_i$ segue che per ogni $n \in \mathbb{N}$ la successione di insiemi

$$\left(X_n \cap \left(V_k + \sum_{i=0}^k V_i\right)\right)_{k \ge n}$$

è descrescente per inclusione, infatti

$$X_n \cap \left(V_{k+1} + \sum_{i=0}^{k+1} V_i\right) \stackrel{X_k \supseteq X_n}{=} X_n \cap X_k \cap \left(V_{k+1} + V_{k+1} + \sum_{i=0}^k V_i\right) \stackrel{\sum_{i=0}^k V_i \subseteq X_k}{=}$$

$$= X_n \cap \left(X_k \cap (V_{k+1} + V_{k+1}) + \sum_{i=0}^k V_i\right) \subseteq$$

$$\subseteq X_n \cap \left(V_k + \sum_{i=0}^k V_i\right).$$

Segue che

$$X_n \cap \sum_{i=0}^N V_i \subseteq X_n \cap \left(V_N + \sum_{i=0}^N V_i\right) \subseteq V_{n+1} + \sum_{i=0}^{n+1} V_i \subseteq V_{n+1} + V_{n+1} \subseteq V_n.$$

1. Scegliendo intorni come sopra, per ogni n

$$X_n \cap \sum_{i=0}^{\infty} V_i = \bigcup_{N > n} X_n \cap \sum_{i=0}^{N} V_i \subseteq V_n$$

quindi X_{∞} induce su X_n la topologia di X_n come volevamo.

- 2. Sia $x \in X_{\infty} \setminus C$, allora $x \in X_{n_1}$ per qualche $n_1 \geq n_0$. C è chiuso in X_{n_1} per ipotesi quindi c'è un intorno U di x in X_{n_1} disgiunto da C, quindi per il punto 1. esiste un intorno $V \in \mathcal{U}_{\infty}$ tale che $V \cap X_{n_1} = U$ e quindi $V \cap C = \emptyset$, dunque C è chiuso in X_{∞} .
- 3. Se ogni X_i è T_0 allora (0) è chiuso in ogni X_i , quindi è chiuso in X_{∞} per il punto precedente, ma (0) chiuso equivale a T_0 .

4. Siccome ogni X_i è un sottospazio di X_{∞} , una $A \subseteq X_i$ è limitato in X_i se e solo se è limitato in X_{∞} , quindi basta provare che A limitato in X_{∞} implica esiste n tale che $A \subseteq X_n$.

Equivalentemente, mostriamo che se $A \subseteq X_{\infty}$ e $A \not\subseteq X_n$ per ogni n allora A non è limitato. Se $A \not\subseteq X_n$ per ogni n allora esiste una successione $a_n \in A \setminus X_n$, ma per definizione a_n appartiene a qualche X_i , quindi esiste una successione strettamente crescente di indici tale che

$$a_{n_k} \in X_{n_{k+1}} \setminus X_{n_k}$$
.

Poiché X_{∞} è invariante per sottosuccessioni X_{n_k} si può supporre reindicizzando

$$a_n \in A$$
, $a_n \in X_n \setminus X_{n-1}$.

Notiamo che anche $\frac{1}{n}a_n \in X_n \setminus X_{n-1}$.

Essendo X_{n-1} chiuso in X_n esiste un intorno $U_n \in \mathcal{U}_n$ tale che

$$\left(\frac{1}{n}a_n - U_n\right) \cap X_{n-1} = \emptyset$$

cioè $\frac{1}{n}a_n \notin X_{n-1} + U_n$. Siano $V_n \in \mathcal{U}_n$ tali che $V_n + V_n \subseteq U_n$ e $X_n \cap (V_{n+1} \cap V_{n+1}) \subseteq V_n$. Notiamo che

$$X_n \cap \left(\sum_{i \geq 0} V_i\right) \stackrel{\text{monotonia sopra}}{\subseteq} V_n \subseteq X_{n-1} + V_n + V_n \subseteq X_{n-1} + U_n.$$

Poiché $a_n \in X_n$ e $a_n \notin X_{n-1} + nU_n$ si ha che $a_n \notin n\left(\sum_{i \geq 0} V_i\right)$, quindi per ogni n esiste un elemento di A che non appartiene a $n\left(\sum_{i \geq 0} V_i\right)$, cioè A non è limitato.

Esempio A.18.

L'ipotesi di chiusura $X_n \subseteq X_{n+1}$ è necessaria per il punto 4.:

Consideriamo X_n una successione crescente di sottospazi di ℓ_{∞} con $X_0 = c_0$ muniti della topologia indotta dalla w^* di $\ell_{\infty} = \ell_1^*$. Sia $X_{\infty} \subseteq \ell_i nfty$ il limite induttivo stretto di questi sottospazi.

La palla B_0 di X_0 è limitata $(X_0$ è c_0 con la topologia indotta dalla w^* di ℓ_{∞} , cioè $X_0 = (c_0, w)$, quindi la chiusura di B_0 in X_{∞} è limitata ma $\overline{B_0}^{X_{\infty}}$ non appartiene ad alcun X_n :

$$\overline{B_0}^{X_\infty} \cap X_n \stackrel{\text{limite stretto}}{=} \overline{B_0}^{X_n}.$$

La chiusura per la topologia di X_{∞} è comunque la chiusura rispetto alla topologia debole*, quindi per Goldstine $\overline{B_0}^{X_{\infty}} = \overline{B_0}^{w^*} \cap X_{\infty} = B_{\ell_{\infty}} \cap X_{\infty}$, quindi $\overline{B_0}^{X_{\infty}} \cap X_n = B_{\ell_{\infty}} \cap X_n$ che non è tutta $B_{\ell_{\infty}}$.

Appendice B

Duali di ℓ_p

B.1 Norme estese

Definizione B.1 (Norma estesa).

Sia $\sigma: \mathbb{K}^{\mathbb{N}} \to [0, \infty]$ una **norma estesa**, cioè

1.
$$\sigma(x+y) \le \sigma(x) + \sigma(y)$$

2.
$$\sigma(\lambda x) = |\lambda| \, \sigma(x)$$

3.
$$\sigma(x) = 0 \iff x = 0$$

Inoltre supponiamo che

- 4. per ogni $n \in \mathbb{N}$ esista C_n tale che per ogni $x \in \mathbb{K}^{\mathbb{N}}$ si abbia $|x(n)| \leq C_n \sigma(x)$
- 5. σ è LSC¹ rispetto alla convergenza puntale, cioè

$$x^{\nu} \in \mathbb{K}^{\mathbb{N}}, \ \forall i \ x^{\nu}(i) \to x(i) \implies \sigma(x) \leq \liminf_{\nu \to +\infty} \sigma(x^{\nu})$$

Esempio B.2.

La funzione $\sigma(x) = (\sum |x_i|^p)^{1/p}$ è una norma estesa su $\mathbb{K}^{\mathbb{N}}$ che ha proprietà indicate. Anche $\sigma(x) = ||x||_{\infty}$ ha queste proprietà.

Osservazione B.3.

Le proprietà 4. e 5. sono equivalenti a dire che $\{\sigma \leq 1\}$ è compatto in $\mathbb{K}^{\mathbb{N}}$, infatti

$$4. \Longleftrightarrow \{\sigma \leq 1\} \subseteq \prod_{n} \overline{B(0, C_n)} \subseteq \mathbb{K}^{\mathbb{N}}$$

e 5. equivale a chiedere $\{\sigma \leq 1\}$ chiuso, quindi insieme dicono che $\{\sigma \leq 1\}$ è un chiuso in un compatto $(\prod_n \overline{B(0,C_n)}$ è prodotto di compatti).

Definizione B.4 (Dominio di finitezza).

Definiamo il **dominio di finitezza** della norma estesa σ come

$$\ell_{\sigma} = \left\{ x \in \mathbb{K}^{\mathbb{N}} \mid \sigma < +\infty \right\}$$

Esercizio B.5.

Il dominio di finitezza ℓ_{σ} è uno spazio di Banach e σ induce la norma.

¹semicontinua inferiormente

Dimostrazione.

Traccia:

- Verificare che ℓ_{σ} è uno spazio vettoriale
- \bullet σ è una norma
- Verificare la completezza:
 - Sia $(x^{\nu})_{\nu} \subseteq \ell_{\sigma}$ di Cauchy per σ . Allora per ogni $n \in \mathbb{N}$

$$(x^{\nu}(n))_{\nu} \subseteq \mathbb{K}$$

è una successione di Cauchy in \mathbb{K} (proprietà 4. insieme al fatto che (x^{ν}) è Cauchy), quindi esiste $x \in \mathbb{K}^{\mathbb{N}}$ tale che $x^{\nu} \to x$ puntualmente.

- Verificare che $x \in \ell_{\sigma}$: essendo di Cauchy, x^{ν} è limitata, cioè $\sigma(x^{\nu}) \leq R$ per qualche $R \in \mathbb{R}$, dunque $\sigma(x) \leq R$ perché $\{\sigma \leq R\}$ è chiuso.
- Verficare che $\sigma(x^{\nu}-x) \to 0$: Per ogni $\varepsilon > 0$ esiste $n \in \mathbb{N}$ tale che per ogni $p, q \geq n$ vale $\sigma(x^p-x^q) \leq \varepsilon$. Notiamo che $x^p-x^n \to x-x^n$ puntualmente, quindi per la semicontinuità si ha che per ogni $\varepsilon > 0$ esiste $n \in \mathbb{N}$ tale che per ogni $q \geq n$ vale

$$\sigma(x - x^q) \le \liminf_{p \to +\infty} \sigma(x^p - x^q) \le \varepsilon$$

cioè $\sigma(x-x^q) \to 0$ in norma σ .

Osservazione B.6.

Questa è una seconda dimostrazione della completezza di ℓ_p per $1 \le p \le \infty$.

Osservazione B.7.

Funziona anche l'analogo per paranorme, quindi in realtà segue anche la completezza di ℓ_p per 0 .

B.2 Duali di ℓ_p

Proposizione B.8 (Duali di ℓ_p).

Se p e q sono esponenti coniugati $(\frac{1}{p} + \frac{1}{q} = 1, \frac{1}{\infty} = 0)$ allora vale l'isometria $(\ell_p)^* \cong \ell_q$.

Dimostrazione.

Esiste una inclusione lineare isometrica data da

$$\Phi: \begin{array}{ccc} \ell_q & \longrightarrow & (\ell_p)^* \\ y & \longmapsto & \Phi_y : x \mapsto \sum_{i=0}^{\infty} y_i x_i \end{array},$$

dove la serie in esame converge assolutamente per la disuguaglianza di Hölder:

$$\sum |x_i y_i| \le ||x||_p ||y||_q.$$

Effettivamente $\Phi_y:\ell_p\to\mathbb{K}$ è lineare e continua per $\|\cdot\|_{(\ell_p)^*},$ infatti

$$\|\Phi_y\|_{(\ell_p^*)} = \sup_{\|x\|_p \le 1} \left| \sum_{i=0}^{\infty} x_i y_i \right| \le \sup_{\|x\|_p \le 1} \|x\|_p \|y\|_q = \|y\|_q.$$

La stessa disuguaglianza mostra che Φ stessa è un elemento di $L(\ell_q, (\ell_p)^*)$ di norma minore o uguale a 1.

Resta da mostrare che Φ è isometrica e surgettiva.

Per mostrare che $\|\Phi_y\|_{\ell_p^*} = \|y\|_q$ per ogni $y \in \ell_q$ consideriamo $x \in \mathbb{K}^{\mathbb{N}}$ dato da $x_i = \overline{\operatorname{sgn} y_i} |y_i|^{q-1}$. Con questa scelta si ha che

$$x_i y_i = \overline{\operatorname{sgn} y_i} \operatorname{sgn} y_i |y_i|^q = |y_i|^q,$$

inoltre

$$||x||_p^p = \sum_{i=0}^{\infty} |x(i)|^p = \sum_{i=0}^{\infty} |y_i|^{(q-1)p} = \sum_{i=0}^{\infty} |y_i|^q = ||y||_q^q,$$

cioè $x \in \ell_p$ e

$$\|\Phi_y\|_{\ell_p^*} \ge \frac{\Phi_y(x)}{\|x\|_p} = \frac{\sum_{i=0}^{\infty} |y_i|^q}{(\|y\|_q)^{q/p}} = \|y\|_q^{q-q/p} = \|y\|_q,$$

d'altronde sappiamo che vale anche l'altra disuguaglianza in generale, quindi abbiamo $\|\Phi_y\|_{\ell^*_x}=\|y\|_q$ come voluto.

 $p = \infty, q = 1$ Sia $x_i = \overline{\operatorname{sgn} y_i}$. Segue che $||x||_{\infty} \le 1$ quindi è un elemento valido e

$$\Phi_y(x) = \|y\|_1,$$

da cui segue $\|\Phi_y\|_{\ell_{\infty}^*} \ge \|y\|_1$ come voluto.

 $p=1, q=\infty$ In generale $\|\Phi_y\|_{\ell_1^*}$ non è raggiunto come $\Phi_y(x)$ per qualche x^2 . La conclusione però vale comunque.

Mostriamo ora che l'inclusione è surgettiva per $1 \leq p < \infty$. Per ogni $\varphi \in \ell_p^*$ cerchiamo $y \in \ell_q$ tale che $\varphi = \Phi_y$. C'è un solo y possibile, basta valutare φ negli $e_i = (\delta_{ij})_j$. Per ogni $m \in \mathbb{N}$ sia $P_m : \mathbb{K}^{\mathbb{N}} \to \mathbb{K}^m$ il proiettore sulle prime m-entrate. Considerando P_m come operatore $P_m : \ell_p \to \mathbb{K}^m \subseteq \ell_p$ restringendo il dominio, definiamo $\varphi_m = \varphi \circ P_m = P_m^* \varphi$. Infine, sia

$$y_m = P_m y = (y(0), y(1), \dots, y(m-1), 0, 0, \dots) = \sum_{i=0}^{m-1} y_i e_i,$$

e notiamo che

$$\varphi_m = \Phi_{y_m}$$

infatti sono entrambi elementi di ℓ_p^* e

$$\varphi_m(e_k) = \varphi(P_m(e_k)) = \begin{cases} \varphi(e_k) & \text{se } k < m \\ 0 & \text{se } k \ge m \end{cases}$$

$$\Phi_{y_m}(e_k) = \sum_{i=0}^{\infty} y_m(i)e_k(i) = y_m(i) = \begin{cases} \varphi(e_k) & \text{se } k < m \\ 0 & \text{se } k \ge m \end{cases}$$

quindi φ_m e Φ_{y_m} coincidono su (e_k) , quindi sullo span di questi e quindi sulla chiusura di questo span, che è ℓ_p se $p < \infty$.

Essendo Φ isometrica

$$\|y_m\|_q = \|\Phi_{y_m}\|_{\ell_p^*} = \|\varphi_m\|_{\ell_p^*} \le \|\varphi\|_{\ell_p^*}$$

quindi $\sum_{i=0}^{m-1}\left|y(i)\right|^q\leq \left\|\varphi\right\|_{\ell_p^*}^q$ per ognim,dunque passando al sup in m

$$\|y\|_q \le \|\varphi\|_{\ell_n^*}$$

e quindi y era un elemento valido di ℓ_q .

²per esempio $y_i=1-2^{-i}$ perché in tal caso $\Phi_y(x)=\sum (1-2^{-i})x_i<\sum |x_i|=\|x\|_1$

Proposizione B.9.

Si ha che $\ell_1 \cong c_0^*$

Dimostrazione.

Consideriamo

$$\Phi: \begin{array}{ccc} \ell_1 & \longrightarrow & c_0^* \\ y & \longmapsto & x \mapsto \sum_{i=0}^{\infty} x_i y_i \end{array}$$

Allora Φ è lineare e $|\Phi_y(x)| \leq ||x||_{\infty} ||y||_{1}$. Φ è isometrica

$$\|\Phi_y\|_{c_0^*} = \sup_{\|x\|_{\infty} \le 1, x \in c_0} \sum x_i y_i = \|y\|_1,$$

infatti l'estremo superiore si realizza con la successione $x^n = \overline{\operatorname{sgn} y} \chi_{[0,n]} \ (\Phi_y(x^n) = \sum_{i=0}^n |y_i|$ e passando al limite in n troviamo proprio $||y||_1$). Inoltre Φ è surgettiva infatti $(e_k)_k \in \mathbb{N} \subseteq c_0$ genera un sottospazio denso.

B.2.1 $\ell_1, c_0 \in \ell_{\infty}$

Definizione B.10 (Finita additività).

Una funzione $\mu : \mathscr{P}(S) \to \mathbb{K}$ è **finitamente additiva** se per ogni $A, B \subseteq S$ disgiunti, $\mu(A \cup B) = \mu(A) + \mu(B)$.

Osservazione B.11.

Domanda: c_0 è un duale? Cioè, esiste X Banach tale che X^* è linearmente omeomorfo a c_0 ?

NO! Perché c_0 non è complementato in ℓ_{∞} (difficile da mostrare). Questo basta per (3.12).

Lemma B.12.

Se X è un sottospazio ∞ -dimensionale di ℓ_1 allora esiste una successione $(x_k) \subseteq X$ e una successione di naturali $(T_k) \subseteq \mathbb{N}$ strettamente crescente tali che

$$\begin{cases} ||x_k||_1 = 1 \\ ||x_k||_{1,[0,T_k]} = \sum_{i=0}^{T_k} |x_k(i)| \ge 3/4 \\ x_{k+1}|_{[0,T_k]} = 0 \end{cases}$$

Dimostrazione.

Scegliamo $x_0 \in X$ di norma 1 e $T_0 \in \mathbb{N}$ che abbia la seconda proprietà. Supponiamo ora di aver definito x_0, \dots, x_k e di avere $T_0 < \dots, T_k$, allora

$$X \cap \left\{ x \in \ell_1 \mid x_{\mid_{[0,T_k]}} = 0 \right\} \neq \emptyset$$

in qunato intersezione fra un sottospazo di dimensione infinita e dei sottospazi di codimensione finita, infatti quell'intersezione si può scrivere come

$$\bigcap_{0 \le i \le T_k} \left\{ x \in X \mid x(i) = 0 \right\}.$$

Prendendo un elemento x_{k+1} normalizzato in questa intersezione abbiamo esteso la successione. Per scegliere T_{k+1} basta prenderlo maggiore di T_k e tale che

$$||x_{k+1}||_{1,[0,T_{k+1}]} \ge 3/4.$$

Proposizione B.13.

Se $Y \subseteq \ell_1$ è un sottospazio chiuso di dimensione infinita allora Y contiene una copia di ℓ_1 .

Se guardi a lungo dentro ℓ_1 , ℓ_1 guarda dentro di te.

Dimostrazione.

Sia X sottospazio chiuso di dimensione infinita di ℓ_1 e siano $(x_k) \subseteq \ell_1$ e $(T_k) \subseteq \mathbb{N}$ come nel lemma (B.12) Definiamo l'operatore lineare

$$L: \begin{array}{ccc} \ell_1 & \longrightarrow & X \\ \lambda & \longmapsto & \sum_{k=0}^{\infty} \lambda_k x_k \end{array}$$

L è ben definita perché la serie è assolutamente convergente rispetto a $\left\| \cdot \right\|_1$

$$\left\| \sum_{k=0}^{\infty} \lambda_k x_k \right\|_1 \le \sum_{k=0}^{\infty} |\lambda_k| \|x_k\|_1 \le \|\lambda\|_1.$$

Notiamo anche che X chiuso e quindi L continuo di norma $\|L\| \le 1$. Sia $I_k = [0, T_k]$ e notiamo che

$$||L\lambda|| = \left\| \sum_{k=0}^{\infty} \lambda_k x_k \right\| \ge \left\| \sum_{k=0}^{\infty} \lambda_k x_k \right|_{I_k} \left\| - \sum_{k=0}^{\infty} \left\| \lambda_k x_k \right|_{I_k^c} \right\| =$$

$$= \sum_{k=0}^{\infty} |\lambda_k| \left\| x_k \right|_{I_k} \left\|_1 - \sum_{k=0}^{\infty} |\lambda_k| \left\| x_k \right|_{I_k^c} \right\| \ge$$

$$\ge \frac{3}{4} ||\lambda||_1 - \frac{1}{4} ||\lambda||_1 = \frac{1}{2} ||\lambda||_1$$

dunque $L:\ell_1\to X$ è fortemente iniettivo e quindi è un isomorfismo con l'immagine in quanto questa è chiusa.

Esercizio B.14.

 c_0 non è un duale.

Dimostrazione.

Segue dalla proposizione (B.13): se esistesse X tale che $X^* \cong c_0$ allora $\iota_X : X \hookrightarrow X^{**} \cong \ell_1$ e quindi per la proposizione X contiene un sottospazio Y isomorfo a ℓ_1 , ma allora da $Y \subseteq X$ segue

$$\ell_{\infty} \cong \ell_1^* \cong Y^* \stackrel{(5.40)}{\cong} X^* / \operatorname{Ann}(Y) \cong c_0 / \operatorname{Ann} Y$$

ma ℓ_{∞} non è separabile mentre c_0 è separabile e ogni quoziente di un separabile deve essere separabile.

Proposizione B.15.

Si ha che $\ell_1 \hookrightarrow \ell_{\infty}^*$ è una immersione isometrica NON surgettiva.

Dimostrazione.

L'iniezione è chiara. Consideriamo le funzioni che hanno limite (le costanti a meno di una infinitesima)

$$c = \left\{ x \in \ell_{\infty} \mid \exists \lim_{i \to \infty} x_i \right\} \cong c_0 \oplus \mathbb{R}$$

Esiste un funzionale su c dato da

$$\lambda: \begin{array}{ccc} c & \longrightarrow & \mathbb{K} \\ y & \longmapsto & \lim y_i \end{array}.$$

Questo è continuo perché $\|\lambda\| \le 1$ (perché $|\lim y_i| \le \|y\|_{\infty}$). Per il teorema di Hahn-Banach (3.4) si estende ad un funzionale continuo in ℓ_{∞} .

Consideriamo

 $ba = \{\mu : \mathscr{P}(\mathbb{N}) \to \mathbb{K} \mid \text{ limitate e finitamente additive.}\} \subseteq (\mathscr{B}(\mathscr{P}(\mathbb{N}), \mathbb{K}), \|\cdot\|_{\infty})$

e la mappa

$$\Psi: \begin{array}{ccc} \ell_{\infty}^* & \longrightarrow & ba \\ y & \longmapsto & A \mapsto y(\chi_A) \end{array}$$

Notiamo che Ψ è surgettiva: se $\mu \in ba$ e definiamo una funzione lineare su ℓ_{∞} come segue

• Se $x \in \ell_{\infty}$ è della forma $x = \sum c_i \chi_{A_i}$, cioè $x(\mathbb{N}) \subseteq \{\sum_{i \in J} c_i \mid J \subseteq \{0, \cdots, n\}\}$ è finito, quindi

$$x = \sum_{c \in \mathbb{K}} c \chi_{\{x=0\}}$$
è una somma finita

Sia S il sottoinsieme di ℓ_{∞} delle successioni di questa forma. Mostriamo che $\overline{S} = \ell_{\infty}$ dove la chiusura è presa rispetto a $\|\cdot\|_{\infty}$. Per ogni $x \in \ell_{\infty}$ con $x : \mathbb{N} \to \mathbb{R}$ si ha che

$$x - 2^{-n} \le x^n = \frac{\lfloor 2^n x \rfloor}{2^n} \le x$$

- Per $x \in S$ dato da $x = \sum_{i=1}^n c_i \chi_{A_i}$ poniamo $\langle \mu, x \rangle = \sum_{i=1}^n c_i \mu(A_i)$. Chiaramente abbiamo linearità e la buona definizione segue dal fatto che questa espressione coincide con $\sum_{c \in \mathbb{K}} c\mu\left(\{x=0\}\right)$ per finita additività, ma questa forma è univocamente determinata da x.
- Vale che $|\langle \mu, x \rangle| \le ||x||_{\infty} \left(\sum_{c \in \mathbb{K}} |\mu(\{x = c\})| \right)$ infatti per ogni c, se $\mu(\{x = c\}) \ne 0$ allora $|c| \le ||x||_{\infty}$ per definizione.
- Per ogni μ esiste Ctale che per ogni $x\in S$ si ha

$$|\langle \mu, x \rangle| \leq C \|x\|_{\infty}$$

(VERIFICARE!)

• Quindi μ si estende alla chiusura di S, che è tutto ℓ_{∞} .

Notiamo che $ba = \ell_{\infty}^* = \ell_1^{**} = c_0^{***}$, quindi $\ell_1 \hookrightarrow \ell_1^{**} = ba$ è complementato per il lemma (3.12).

Proposizione B.16 (Convergenza forte e debole coincidono su ℓ_1).

La convergenza debole e la convergenza in norma per ℓ_1 sono la stessa cosa.

Dimostrazione.

Poiché la topologia debole è meno fine della topologia forte basta mostrare che convergenza debole implica convergenza in $\|\cdot\|_1$.

Sia $f_n \to f$ in w- ℓ_1 , cioè per ogni funzionale ϕ lineare continuo su ℓ_1 si ha che $\langle \phi, f_n \rangle \to \langle \phi, f \rangle$. Dunque, ricordando (B.8) che $\ell_{\infty} = \ell_1^*$, per ogni $\varphi \in \ell_{\infty}$ si ha

$$\sum_{i} \varphi(i) f_n(i) \to \sum_{i} \varphi(i) f(i).$$

Notiamo che, portando f al primo membro possiamo supporre senza perdita di generalità f=0. Per la proprietà di Uhrison (1.49) basta provare che esiste una sottosuccessione di f_n che converge a 0 infatti $f_n \to 0$ se e solo se per ogni sottosuccessione f_{n_k} esiste una sotto-sottosuccessione $f_{h_{k_i}} \to 0$.

Nel caso particolare di successioni f_n a supporto disgiunto la tesi è facile: Se siamo in questo caso scegliamo $\varphi \in \ell_{\infty}$ data da

$$\varphi = \sum \overline{\operatorname{sgn} f_i} \operatorname{dove} (\operatorname{sgn} f_i)(x) = \operatorname{sgn}(f_i(x)) = \begin{cases} f_i(x)/|f_i(x)| & f_i(x) \neq 0 \\ 0 & f_i(x) = 0 \end{cases}$$

in modo tale che $\langle \varphi, f_n \rangle = \left\langle \overline{\operatorname{sgn}(f_n)}, f_n \right\rangle = \|f_n\|_1$ e stesso per f, quindi in questo caso è chiaro che convergenza debole implica convergenza in $\|\cdot\|_1$.

Assumiamo dunque che $f_n \to 0$ debolmente (e quindi puntualmente guardando i funzionali che estraggono la n-esima entrata). Basta provare che esiste una successione $(g_j)_{j\geq 0} \subseteq \ell_1$ e una sottosuccessione f_{n_j} tale che $\|f_{n_j} - g_j\|_1 \to 0$ e g_j hanno supporto disgiunto.

Costruiamo le g_j per induzione. Notiamo che

- per ogni f_n si ha che $\|f_n\chi_{\mathbb{N}\setminus[0,T]}\|_1\to 0$ per $T\to\infty$
- per ogni T si ha $||f_n\chi_{[0,T]}||_1 \to 0$ per $n \to \infty$

quindi per costruire le g_j basta alternare questi fatti prendendo opportuni limiti (credo?).

Osservazione B.17.

Questo è un esempio dove due topologie diverse hanno "le stesse successioni convergenti".

Fatto B.18.

Esiste $\mathscr{A} \subseteq \mathscr{P}(\mathbb{N})$ di cardinalità del continuo tale che per ogni $A, B \in \mathscr{A}$ dove $A \neq B$ allora $|A \cap B| < \aleph_0$ e $|A| = |B| = \aleph_0$.

Dimostrazione.

Consideriamo \mathbb{Q} al posto di \mathbb{N} , tanto per le cardinalità non cambia nulla. Per ogni irrazionale λ consideriamo $A_{\lambda} = \{ \lfloor n\lambda \rfloor / n \mid n \in \mathbb{N} \} \subseteq \mathbb{Q}$. Poniamo $\mathscr{A} = \{ A_{\lambda} \}_{\lambda \in \mathbb{R} \setminus \mathbb{Q}}$. Ogni A_{λ} è inifinito ma se $\lambda \neq \mu$ allora $A_{\lambda} \cap A_{\mu}$ è finito perché ogni successione che converge a λ cade definitivamente in un intorno di λ e similmente per μ , allora scelgo intorni disgiunti.

Lemma B.19.

Ogni sottospazio Y di ℓ_{∞} ha duale w*-separabile.

Dimostrazione (modo diretto).

Per ogni $k \in \mathbb{N}$ sia $e_k : Y \to \mathbb{K}$ la valutazione $f \mapsto f(k)$. Allora³ Span $_{\mathbb{Q}}(\{e_k\}_{k \in \mathbb{N}})$ è w^* -denso in Y^* e quindi Y^* è w^* -separabile: stiamo usando il criterio Span $S \subseteq Y^*$ è w^* -denso se e solo se $S_{\perp} = (0)$ (proposizione (5.36) e corollario (5.37)) e

$$(\{e_k\}_{k\in\mathbb{N}})_{\perp} = \{y \in Y \mid \langle e_k, y \rangle = 0 \ \forall k \in \mathbb{N}\} = \{0\} \subseteq \ell_{\infty}.$$

 $^{3}\widetilde{\mathbb{Q}} = \mathbb{Q} \text{ se } \mathbb{K} = \mathbb{R} \text{ e } \widetilde{\mathbb{Q}} = \mathbb{Q} + i\mathbb{Q} \text{ se } \mathbb{K} = \mathbb{C}.$

Dimostrazione (concettuale).

Se $(X, \|\cdot\|)$ è uno spazio normato separabile, X^{**} è sempre w^* -separabile, quindi consideriamo $X = c_0$, $X^{**} = \ell_{\infty}$. Questo è vero perché se $S \subseteq X$ è numerabile e $\|\cdot\|$ -denso allora la sua chiusura debole* in $X \subseteq X^{**}$ contiene almeno X (su X la $\sigma(X^{**}, X)$ induce $\sigma(X, X^*)$ che è meno fine della topologia forte e quindi $\overline{X}^{\sigma(X^{**}, X^*)} = X^{**}$ per Goldstine (5.39)).

Se poi $Y \subseteq \ell_{\infty}$ sappiamo che Y^* è un quoziente di ℓ^* (dato da $\ell_{\infty}^*/Y^{\perp}$) in quanto la mappa $\pi: \ell_{\infty}^* \to \ell_{\infty}^*/Y^{\perp}$ è w^* -continua e surgettiva⁴ (e quindi l'immagine di $S \subseteq \ell_{\infty}^*$ densa resta densa). Se $\overline{S} = \ell_{\infty}^*$ allora

$$\pi(\ell_{\infty}^*) = \pi(\overline{S}) \subseteq \overline{\pi(S)}$$

Proposizione B.20.

 c_0 non è complementato in ℓ_{∞} .

Dimostrazione.

Supponiamo che esista Y sottospazio chiuso di ℓ_{∞} tale che $\ell_{\infty} = Y \oplus c_0$, allora Y sarebbe omeomorfo al quoziente ℓ_{∞}/c_0 , ma ogni sottospazio di ℓ_{∞} è w^* -separabile per il lemma, ma ℓ_{∞}/c_0 non lo è:

Fissiamo \mathscr{A} come nel fatto (B.18). Per ogni $A \in \mathscr{A}$ notiamo che $\chi_A \in \ell_{\infty}$. Sia ξ_A l'immagine di questa caratteristica in ℓ_{∞}/c_0 . Sia $g \in (\ell_{\infty}/c_0)^*$, affermo che

$$S = \{A \in \mathscr{A} \mid \langle g, \xi_A \rangle \neq 0\}$$
 è al più numerabile.

Basta mostrare che per ogni $\varepsilon > 0$ l'insieme $S_{\varepsilon} = \{A \in \mathscr{A} \mid |\langle g, \xi_A \rangle| \geq \varepsilon\}$ è finito (infatti $S = \bigcup_{\mathbb{Q} \ni \varepsilon > 0} S_{\varepsilon}$).

Siano $A_1, \dots, A_m \in S_{\varepsilon}$ e definiamo $\xi = \sum_{i=1}^m \overline{\operatorname{sgn}(\langle g, \xi_{A_i} \rangle)} \xi_{A_i}$. Per linearità

$$\xi = \pi \left(\sum_{i=1}^{m} \overline{\operatorname{sgn}(\langle g, \xi_{A_i} \rangle) \chi_{A_i}} \right),$$

dunque

$$\langle g, \xi \rangle = \sum_{i=1}^{m} \overline{\operatorname{sgn}(\langle g, \xi_{A_i} \rangle)} \langle g, \xi_{A_i} \rangle = \sum_{i=1}^{m} |\langle g, \xi_{A_i} \rangle| \ge m\varepsilon.$$

Inoltre $\|\xi\|_{\ell_{\infty}/c_0} = 1$ perché qualunque combinazione lineare φ delle χ_{A_i} ha valore superiore a 1 solo sulle intersezioni delle A_i e questo è un insieme finito, quindi $\varphi = 1 + h$ per $h \in c_0$, quindi $[\varphi] = 1$.

Mettendo tutto insieme $||g|| \ge ||\langle g, \xi \rangle|| \ge m\varepsilon$ e quindi $m \le ||g|| / \varepsilon$, dunque

$$|S_{\varepsilon}| \le \frac{\|g\|}{\varepsilon}.$$

Se $G \subseteq (\ell_{\infty}/c_0)^*$ è un sottoinsieme numerabile allora è numerabile anche

$$\bigcup_{g \in G} \{ A \in \mathscr{A} \mid \langle g, \xi_A \rangle \neq 0 \}$$

perché unione numerabile di insiemi al più numerabili. Poiché $\mathscr A$ non è numerabile esiste $\widetilde A\in\mathscr A$ tale che

$$\left\langle g,\xi_{\widetilde{A}}\right\rangle =0\quad\forall g\in G$$

 $[\]overline{^4}$ se $j:Y\to X$ è l'inclusione, $j^*=\pi:X^*\to Y^*$ è surgettiva e w^* -continua (4.10).

e $\xi_{\widetilde{A}} \neq 0$ perché ha norma pari a 1, cioè

$$\xi_{\widetilde{A}} \in G_{\perp} \neq (0)$$

ma ricordiamo che $\overline{\mathrm{Span}(G)}^{w^*}=(G_\perp)^\perp$ e che $\mathrm{Span}(G)$ è w^* -denso se e solo se $G_\perp=(0)$ (5.33).