Identifikácia z prechodových charakteristík

Aperiodická sústava vyššieho rádu

Strejcova metóda

n	1	2	3	4	5	6
f(n)	0	0,104	0,218	0,319	0,410	0,496
g(n)	1	0,368	0,271	0,224	0,195	0,161

$$\begin{split} f_s &= \frac{T_{us}}{T_n} = \frac{2.8}{20} = 0.14 \\ f(2) &= 0.104 < 0.14 < 0.218 = f(3) \Longrightarrow n_0 = 2 \\ D &= (f_s - f(2))T_n = (0.14 - 0.104).20 = 0.72 \\ T &= T_n .g(2) = 20.0.368 = 7.36 \end{split}$$

Výsledná prenosová funkcia $S(s) = \frac{5}{(1+7,36s)^2} e^{-0,72s}$

Broïdova metóda:

n	1	2	3	4	5	6
f(n)	0	0,096	0,192	0,268	0,331	0,385
g(n)	1	0,500	0,440	0,420	0,410	0,400

$$f(2) = 0.096 < 0.14 < 0.192 = f(3) \Rightarrow n_0 = 2$$

$$D = (0.14 - 0.096).20 = 0.88$$

$$T = 20.g(2) = 20.0,5 = 10$$

Výsledná prenosová funkcia

$$S(s) = \frac{5}{(1+10s)(1+5s)}e^{-0.88s}$$

Hudzovičova metóda

$$\begin{split} f_s &= 0.14 \\ e_p &= 21\% \end{split} \Rightarrow \begin{array}{l} n_m = 2 & f_m = 0.097 \\ r_m &= 0.49 & g_m = 0.253 \end{split} \\ D &= \left(f_s - f(n_m, r_m)\right) T_n = \left(0.14 - 0.097\right) .20 = 0.86 \\ T &= T_n g(n_m, r_m) = 20.0.253 = 5.06 \\ T_i &= \frac{T}{1 - i \frac{r}{n-1}} = \frac{5.06}{1 - i \frac{0.49}{1}} \qquad i = 0, \dots, n-1 \qquad \Rightarrow \qquad T_1 = 5.06 \quad T_2 = 9.92 \end{split}$$

Výsledná prenosová funkcia $S(s) = \frac{5e^{-0.86s}}{(1+5.06s)(1+9.92s)}$

Kmitavá sústava s dopravným oneskorením

Namerané hodnoty prechodovej charakteristiky

t₁=23s (prvé maximum), t₂=40s (prvé minimum), t₃=58s (druhé maximum)

Počet bodov pre vyhodnotenie prechodovej charakteristiky n=2 (i=1,2) a im odpovedajúce hodnoty a_1 =46, a_2 =11.5.

Výpočet koeficientu tlmenia

$$\xi = -\frac{\ln\frac{a_{i+1}}{a_i}}{\sqrt{\pi^2 + \ln^2\frac{a_{i+1}}{a_i}}} = -\frac{\ln\frac{a_2}{a_1}}{\sqrt{\pi^2 + \ln^2\frac{a_2}{a_1}}} = -\frac{\ln\frac{11.5}{46}}{\sqrt{3.14^2 + \ln^2\frac{11.5}{46}}} = 0.4039$$

Výpočet časovej konštanty T

$$T = \frac{1}{\pi n} (t_{n+1} - t_1) \sqrt{1 - \xi^2} = \frac{1}{3.14.2} (t_3 - t_1) \sqrt{1 - 0.4039^2} = \frac{1}{6.28} (58 - 23) \sqrt{0.8372} = 5.09$$

Výpočet dopravného oneskorenia

$$D = \frac{1}{n} \sum_{i=1}^{n} t_i - \frac{n+1}{2n} (t_{n+1} - t_1) = \frac{1}{2} \sum_{i=1}^{2} t_i - \frac{2+1}{2 \cdot 2} (t_3 - t_1) =$$

$$= \frac{1}{2} (t_1 + t_2) - \frac{3}{4} (t_3 - t_1) = \frac{1}{2} (23 + 40) - 0.75(58 - 23) = 5.2$$

Zosilnenie modelu K = 150

Výsledný identifikovaný model je potom v tvare

$$G(s) = \frac{150}{5.09^2 * s^2 + 2 * 0.4039 * 5.09 * s + 1} e^{-5.2*s} = \frac{150}{25.91* s^2 + 4.112 * s + 1} e^{-5.2*s}$$