Project Design Phase-II Technology Stack (Architecture & Stack)

Date	18/06/25	
Γeam ID LTVIP2025TMID59134		
Project Name	Plugging into the Future: An Exploration of	
	Electricity Consumption Patterns Using Tableau	
Maximum Marks	4 Marks	

Technical Architecture:

The Deliverable include's the architectural diagram as below and the information as per the table 1 & table 2

Table-1: Components & Technologies:

S.No	Component	Description	Technology
------	-----------	-------------	------------

S.No	Component	Description	Technology	
1	User Interface	Web interface to interact with dashboard	HTML, CSS, JavaScript, Flask	
2	Application Logic-1	Data preprocessing and transformation	Python (Pandas, NumPy)	
3	Application Logic-2	Connecting database with Tableau	MySQL Connector, SQLAlchemy	
4	Application Logic-3	Dashboard and Story creation using visualizations	Tableau Desktop / Tableau Public	
5	Database	Storage of electricity consumption dataset	MySQL	
6	Cloud Database	Optional cloud hosting for shared access	AWS RDS or Google Cloud SQL	
7	File Storage	Store raw datasets and exports	Local Filesystem / Google Drive	
8	External API-1	Embedding Tableau Public dashboard	Tableau Public Share/Embed API	
9	External API-2	Not applicable for this project		
10	Machine Learning Model	(Optional) Forecasting electricity usage	Prophet (by Facebook), Scikit-learn	
11	Infrastructure	Hosting the Flask web app and dashboard	Localhost / PythonAnywhere / Heroku	

Table-2: Application Characteristics:

S.No	Characteristics Description		Technology	
1	Open-Source Frameworks	Python, Flask, Pandas, MySQL, Tableau Public	Flask, Pandas, MySQL	
2	Security Implementations	Dashboard visibility control via Tableau Public, secure file storage	Tableau Public sharing settings, Flask routes	
3	Scalable Architecture	Modular design; easy to add new visualizations and filters	2-Tier Architecture (Frontend + Backend)	
4	Availability	Can be deployed on cloud platforms for 24/7 availability	Heroku, AWS, PythonAnywhere	
5	Performance	Pre-processed data in MySQL; responsive filters in Tableau	SQL indexing, Filter optimization	