Matematyka I, Kognitywistyka, Zadania

Konrad Zdanowski

8 listopada 2024

Tekst ten zawiera listę najbardziej istotnych definicji i twierdzeń z wykładu oraz przykładowe zadania.

1 Teoria liczb

1.1 Faktoryzacja, gcd, lcm

- 1. Czy 113, 201, 213 to liczby pierwsze? ([FR15, 4.6.3, zad. 2])
- 2. Znajdź faktoryzację: 3465, 40 320, 14641. ([FR15])
- 3. Czy 1 111 111 111 jest pierwsza? ([FR15])
- 4. Niech $m = 2^2 * 3^3 * 5 * 7 * 11$, n = 2 * 3 * 11. Wyznacz gcd, lcm. ([FR15])
- 5. Niech $m = 5^2 * 7 * 11 * 13^2$, $n = 2 * 3 * 7^3 * 11^2 * 13$, $k = 3 * 5 * 7^2 * 11^3$. Wyznacz gcd(m, n, k), lcm(m, n, k).
- 6. Czy jest nieskończenie wiele liczb pierwszych postaci n^2-49 , dla pewnego $n\in\mathbb{N}?$ ([FR15])
- 7. Jeśli p jest pierwsza, to czy $2^p 1$ jest pierwsza? ([FR15])
- 8. ([FR15]) Wyznacz gcd(756, 2205), gcd(4725, 17460), gcd(465, 3861), gcd(4600, 2116), gcd(630, 990), gcd(96, 144).

Wyznacz lcm(756, 2205), lcm(4725, 17460), lcm(465, 3861), lcm(4600, 2116), lcm(630, 990), lcm(96, 144).

- 9. Wyznacz wszystkie liczby, których nie dzieli żadna liczba pierwsza większa od pięciu i które mają dokładnie pięć dzielników.
- 10. Wyznacz wszystkie liczby, które dzielą 5 * 7. Ile jest takich liczb?

1.2 Przystawanie modulo

- 1. Rozstrzygnij, czy jest prawdą
 - $0 \equiv 6 \pmod{3}$,
 - $35 \equiv 55 \pmod{9}$,
 - $(-23) \equiv 20 \pmod{7}$
 - $(-3) \equiv 3 \pmod{6}$,
 - $(-2) \equiv 2 \pmod{3}$,
 - $16 \equiv 185 \pmod{1}1$.

([FR15, sec. 6.1, p. 154])

- 2. Wyznacz wszystkie liczby $n \in \mathbb{Z}$ takie, że $n \equiv 2 \pmod{5}$.
- 3. Czy $(-1) \equiv 1 \pmod{2}$?
- 4. Wyznacz resztę z dzielenia liczby 17*23*45 przez 8. Wyznacz resztę z dzielenia liczby 17*23*45 przez 5.

Nie używaj kalkulatora.

- 5. Znajdź $n \in \mathbb{N}$ takie, że $n \equiv 3 \pmod{5}$ i $n \equiv 2 \pmod{3}$.
- 6. Znajdź $n \in \mathbb{N}$ takie, że $n \equiv 4 \pmod{4}$ i $n \equiv 2 \pmod{5}$.
- 7. Nie znajdź $n \in \mathbb{N}$ takiego, że $n \equiv 3 \pmod{6}$ is $n \equiv 0 \pmod{2}$. Dlaczego takie n nie istnieje?
- 8. Nie znajdź $n \in \mathbb{N}$ takiego, że $n \equiv 3 \pmod{6}$ is $n \equiv 2 \pmod{9}$. Dlaczego takie n nie istnieje?
- 9. Wyznacz wszystkie liczby, które dzielą 5 * 7.

- 10. Korzystając z Twierdzenia Eulera $(a^{\varphi(n)} \equiv 1 \pmod n)$, gdy $\gcd(a,n)=1$ i Małego Twierdzenia Fermata $(x^{p-1} \equiv 1 \pmod p)$, dla liczby pierwszej p) i z tego, że relacja przystawania modulo jest kongruencją względem dodawania i mnożenia, oblicz
 - $3^{100} \mod 5$,
 - $5^{100} \mod 7$,
 - $3^{100} \mod 10$,
 - 3¹⁰⁰ mod 6 (uwaga),
 - $4^{100} \mod 9$,
 - $2^{2^{100}} \mod 5$,
 - $5^{5^{100}} \mod 3$.

1.3 Indukcja

- 1. Udowodnij $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- 2. Udowodnij $\sum_{i=0}^n (2i+1) = (n+1)^2$ (sumę n pierwszych liczb nieparzystych).
- 3. Udowodnij, dla każdego $n\geqslant 1$, dla wszystkich $x_1,\ldots,x_n\in\mathbb{R},\,|x_1+\ldots+x_n|\leqslant |x_1|+\ldots+|x_n|.$
- 4. Dla dowolnego $n \geqslant 1$, $\forall x \in (0,1)$ $x^n \leqslant x$. Skorzystaj z faktu, że dla dowolnych a,b, jeśli $0 \leqslant a < 1$ i $b \geqslant 0$, to ab < b.
- 5. Udowodnij, że dla dowolnego $n, \sum_{i=0}^n \frac{1}{2^i} \leqslant 2.$ Rozważ wzmocnienie tezy, do $\sum_{i=0}^n \frac{1}{2^i} \leqslant 2 - \frac{1}{2^n}.$
- 6. Udowodnij, że dla dowolnego $n \ge 4$, $2^n \ge n^2$.

Której części dowodu indukcyjnego nie można przeprowadzić dla tezy $\forall n \geqslant 0 \ (2^n \geqslant n^2).$

Której części dowodu indukcyjnego nie można przeprowadzić dla tezy $\forall n \geqslant 3 \ (2^n \geqslant n^2)$.

7. Ciąg Fibbonacciego definiujmy jako F(1) = F(2) = 1, oraz F(n+2) = F(n) + F(n+1) dla $n \ge 1$.

Udowodnij, że dla $n \ge 1$,

$$F(n) = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n.$$

8. (Nierówność Bernoulliego, uproszczony przypadek) Dla dowolnego $n \ge 1$,

$$\forall x \geqslant 0 ((1+x)^n \geqslant (1+nx)).$$

2 Matematyka dyskretna

2.1 Zliczania

Notacje. |X| to moc zbioru X. $\mathcal{P}(X)$ to zbiór podzbiorów X. $\mathcal{P}^{=k}(X)$ to ilość k elementowych podzbiorów zbioru X, gdzie $k \in \mathbb{N}$.

2.1.1 Zliczania zbiorów

Twierdzenie 1. Niech X, Y, Z zbiory skończone. Wtedy $|X \cup Y| = |X| + |Y| - |X \cap Y|$ oraz

$$X \cup Y \cup Z| = |X| + |Y| + |Z| + -|X \cap Y| - |X \cap Z| - |Y \cap Z| + |X \cap Y \cap Z|.$$

Twierdzenie 2. Niech X będzie zbiorem skończonym o mocy (liczności) n. Wtedy $|\mathcal{P}(X)| = 2^n$.

Definicja 3. Dwumian Newtona to wyrażenie $\binom{n}{k}$, gdzie $0 \le k \le n$, zdefiniowane jako

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Ponieważ 0! = 1, to $\binom{0}{0} = 1$.

Twierdzenie 4. Dla $0 \le k \le n$, ilość k-elementowych podzbiorów n elementowego to $\binom{n}{k}$.

Innymi słowy, jeśli |X| = n, to $|\mathcal{P}^{=k}(X)| = \binom{n}{k}$.

Dwumian Newtona spełnia rekurencyjną zależność, dla $k+1 \le n$,

$$\binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k}.$$

2.1.2 Zliczania wyborów

Definicja 5. Niech X będzie n elementowym zbiorem. Wtedy r-kombinacja zbioru X to r elementowy podzbiór X.

Np. Jeśli X jest zbiorem trzech osób, $X = \{ala, ola, ela\}$, to 2-kombinacja to dowolny dwuelementowy podzbiór X, np. $\{ala, ola\}$, $\{ala, ela\}$.

Twierdzenie 6. Niech X będzie n-elementowym zbiorem, niech $0 \le r \le n$. Ilość r-kombinacji X to $\binom{n}{r}$.

Przykładowe 2-kombinacje zbioru {ala, ela, ola}, to {ala, ela}, {ala, ola}. (Uwaga, w zbiorach nie ma znaczenia kolejność wypisywania elementów.)

Definicja 7. Niech X będzie n elementowym zbiorem . Permutacja zbioru X to sposób uporządkowania elementów X.

Np. jeśli X jest zbiorem 3 osób, to możemy na sześć sposobów ustawić te osoby w kolejce.

Twierdzenie 8. *Ilość permutacji zbioru n elementowego, to n!.*

Definicja 9. Niech X będzie zbiorem n elementowym i niech $r \leq n$. Wtedy, r-wariacja bez powtórzeń zbioru X to sposób na wybranie i uporządkowanie r różnych elementów z X.

Przykładowe 2-wariacje zbioru {ala, ela, ola}, to (ala, ola), (ola, ala), (ela, ala).

Twierdzenie 10. Ilość r-wariacji bez powtórzeń n elementowego zbioru to $\frac{n!}{(n-r)!}$.

Definicja 11. Niech X będzie zbiorem n elementowym i niech $r \leq n$. Wtedy, r-wariacja z powtórzeniami zbioru X to sposób na wybranie i uporządkowanie r elementóW z X, gdy elementy mogą się powtarzać.

Przykładowe 2-wariacje z powtórzeniami zbioru {ala, ela, ola}, to (ala, ala), (ola, ala), (ala, ola), (ola, ola).

Twierdzenie 12. *Ilość* r-wariacji z powtórzeniami n elementowego zbioru to n^r .

Jeśli losujemy kule tak jak w totolotku, to jest to kombinacja (kolejność wylosowania nie ma znaczenia). Jeśli losujemy r ponumerowanych kul i układamy je w rządek (bez zwracania do worka), to mamy wariację bez powtórzeń. Jeśli zapisujemy wyniki kolejnych losowań a same kule wrzucamy z powrotem do worka, to mamy wariację z powtórzeniami.

Dodatkowo, jeśli umieszczamy n takich samych przedmiotów w r różnych pudełkach, to możemy zrobić to na $\binom{n+r-1}{r-1}$ sposobów. Na przykład, jeśli mamy $1,\,2,\,5$ i 10 groszówki, to możemy wybrać z nich 10

Na przykład, jeśli mamy 1, 2, 5 i 10 groszówki, to możemy wybrać z nich 10 moment na $\binom{10+4-1}{4-1} = \binom{13}{3}$ sposobów.

2.1.3 Zadania

1. Zad. ([RW06], Cw. 5.3.1, p.302) Wśród 200 osób 150 uprawia pływanie lub jogging lub oba sporty. 85 uprawia pływanie, 60 uprawia pływanie i jogging. Ile osób pływa?

Czy informacja o ilości wszystkich osób była istotna?

- 2. Zad. Ile liczb z {10, ..., 99} ma dokładnie jedną liczbę równą 7? Ile ma przynajmniej jedną siódemkę? Ile ma przynajmniej jedną 7 lub 3? Ile ma przynajmniej jedną 7 i przynajmniej jedną 3?
- 3. Ile liczb ze zbioru {1, ..., 100} jest podzielnych przez 3 i przez 5? Ile przez 6 i przez 9?
- 4. Na ile sposobów można usadzić n osób na ławce?
- 5. Na ile sposobów można usadzić n osób przy okrągłym stole?
- 6. Na ile sposobów można rozdać 52 karty po równo między 4 graczy?
- 7. Ile przekątnych ma *n*-kąt wypukły?
- 8. Ile jest różnych sposobów ustawienia na półce dzieła 5-tomowego tak, aby:
 - a tomy I i II stały obok siebie
 - b tomy I i II nie stały obok siebie?

- 9. Ile czteroosobowych komisji można stworzyć z grupy 9 urzędników, jeżeli wiadomo, że wśród nich są osoby A oraz B, które nie chcą razem pracować?
- 10. Ile jest liczb całkowitych pomiędzy 1000 a 9999, których suma cyfr wynosi dokładnie 9?
- 11. Na ile sposobów można podzielić 3n osób na n grup 3-osobowych?
- 12. W klasie jest *n* chłopców i *n* dziewczynek. Na ile sposobów mogą utworzyć pary do tańca.
- 13. Jaka jest szansa trafienia szóstki w totolotku (losujemy sześć liczb z 49)? Ile powinna wynosić kumulacja, żeby przy cenie zakładu 3zł. opłacało się zagrać?
- 14. Na ile sposobów można przejść z lewego górnego do prawego dolnego pola szachownicy, jeśli możemy poruszać się tylko w prawo i w dół?
- 15. Na ile sposobów można odwiedzić wszystkie wierzchołki w grafie pełnym o *n* wierzchołkach? Na ile sposobów można to zrobić, ale tak, żeby wrócić do punktu wyjścia?
- 16. Ile jest możliwych wyników rzutu dwiema rozróżnialnymi kostkami do gry?

Ile jest takich wyników, jeśli nie rozróżniamy kostek?

Jaka jest szansa na wyrzucenie w sumie 12 oczek? Jaka jest szansa na wyrzucenie dwóch szóstek? Jaka jest szansa na wyrzucenie w sumie 11?

Jak jest szansa na wyrzucenie w sumie 7? Jak jest szansa na wyrzucenie w sumie 8?

2.2 Teoria grafów

3 Uwagi lub (p)odpowiedzi

• Część 1.2, zadanie 10. Aby policzyć np. $3^{5^{100}} \mod 7$ trzeba wykorzystać twierdzenie Eulera, moulo równego 7 i równego 6. Zauważmy, że $\varphi(7)=6$, $\varphi(6)=2$. Po pierwsze, jeśli przedstawimy $5^{100}=6k+i$, gdzie $0\leqslant i<6$, to

$$3^{6k+i} \equiv (3^6)^k 3^i \equiv 1^k 3^i \equiv 3^i \pmod{7}.$$

Teraz, aby sprawdzić, jaka jest reszta z dzielenia 5^100 przez 6, czyli aby znaleźć i takie, że

$$5^{100} \equiv i \pmod{6}.$$

Ponieważ 5 jest względnie pierwsze z 6, z twierdzenia Eulera mamy $5^2 \equiv 1 \pmod 6.$ Wtedy

$$5^100 \equiv (5^2)^{50} \equiv 1^{50} \equiv 1 \pmod{6}.$$

Skoro szukana wartość i wynosi 1, to

$$3^{5^100} \equiv 3^1 \equiv 3 \pmod{7}$$
.

• Część 1.3, zadanie 6.

W tezie $\forall n \ge 0 (2^n \ge n^2)$ nie uda się udowodnić kroku indukcyjnego.

W tezie $\forall n \geqslant 3(2^n \geqslant n^2)$ krok indukcyjny da się udowodnić, ale nie da się udowodnić przypadek bazowy.

Literatura

- [FR15] Sylvia Forman and Agnes M. Rash. *The Whole Truth About Whole Numbers: An Elementary Introduction to Number Theory*. Springer International Publishing, 2015.
- [RW06] Kenneth A. Ross and Charles R. B. Wright. *Matematyka dyskretna*. Wydawnictwo Naukowe PWN, 2006.