

SEQUENCE LISTING

<110> Masure, Stefan
Cik, Miroslav
Hoefnagel, Evert

<120> Neurotrophic Factor Receptor

<130> 53202/001

<140> PCT/EP00/04918
<141> 2000-05-26

<150> GB 9915200.1
<151> 1999-05-29

<160> 31

<170> PatentIn Ver. 2.0

<210> 1
<211> 792
<212> DNA
<213> Mus musculus

<220>
<221> misc_feature
<222> (583)..(583)
<223> n = any amino acid

<220>
<221> misc_feature
<222> (611)..(611)
<223> n = any amino acid

<220>
<221> misc_feature
<222> (637)..(637)
<223> n = any amino acid

<220>
<221> misc_feature
<222> (664)..(664)
<223> n = any amino acid

<220>
<221> misc_feature
<222> (684)..(684)
<223> n = any amino acid

<220>
<221> misc_feature
<222> (689)..(689)

<223> n = any amino acid

<220>
<221> misc_feature
<222> (728)..(728)
<223> n = any amino acid

<220>
<221> misc_feature
<222> (734)..(734)
<223> n = any amino acid

<220>
<221> misc_feature
<222> (742)..(742)
<223> n = any amino acid

<400> 1
gtgcggcag cgccggcgcc agactttcgc gcccgcctgc gcgttctccg gcccggggtt 60
ggtcggcccc tcttgctgg agccccctgga ggcgtcgag cgcagccgccc tgtgcgggtg 120
cgtgcgtgcg gggcgggctg ggccgcgtcac ccgcgtccgg gcgcgcgcag gccccgtctc 180
cttgccttcaggcctcatg cgctcccgcc cccggctccc gcgcgcgtcg cccggaggag 240
ggggggcccgcc gttgtctgcg cgtctacgca ggcctcatgg gcaccgttgtt caccggaaac 300
tacctggaca acgtgagcgc gcgcgttgcg ccctggtgcg gctgtgcggc cagtggaaac 360
cgccgcgaag aatgcgaagc ctccgcgaag ctctttacaa ggaacccctg cttgggtgag 420
ggggccctgga ggtccgggg aaccacggat gtctgtggcc caatccaagc tgcctggccc 480
gtgggtctta ttacgtcgc atcatgtttt gtgtgggcga tggacaatgt gcacatgcc 540
tggtaacgtgg gtggaaatgc agcgttaaaa cgtgttcaat ggnctggaaag ttggccttcc 600
tttgacact natggggtgg gcctttcttc atggtnggcc caacttacact ttgggtggc 660
ttgnctctgg gtggaaatgg cttnaattnc agaattttgg gggctttgtt tgaagcctgg 720
ctttgcnct taanaacttg anaagttaaa ctcttattaa tcccaatggg gttcacctgt 780
aaagggagag gg 792

<210> 2
<211> 497
<212> DNA
<213> Mus musculus

<400> 2
gtggAACCGG CGCGAAGAAT GCGAACCTTC CGCAAGCTCT TTACAAGGAA CCCCTGCTTG 60
gatgggtcca tacaaggcctt tgacagctt cagccatcag ttctgcagga ccagactgct 120
gggtgctttt tcccgccggc aaggcacgag tggcctgaga agagctggag gcagaaacag 180
tccttgcctt gtcctaacgc ccaaggtgtc ctggctgtat gcactcaact ccctggctct 240
ccaggccctg ctctgattag gaacatgaac cgtggacgac acagctgact gccatgtctc 300
ccgatgactc ctcaactgagc taaaactccc ttgcctcag gtctgtgcc ctttgcaggc 360
ctggaccctt gtgtggctgt cctctggatt ggggctggaa ggctagggtc tgactgaaaa 420
gcctgtgttc ccgtcagtag gcatcttgc catttttttc cccatcctag agctgagcac 480
ccatagatga ggcctca 497

<210> 3
<211> 901
<212> DNA
<213> Rattus rattus

<400> 3
ggcacccgtgg tcaccccaa ctacctggac aacgtgagcg cgccgcgttgc gcccgttgc 60
ggctgtgagg ccagcggaaa ccggcgcgaa gagtgcaag ccttcgcgaa gcttttaca 120
aggaaccctt gcttggatgg tgccatacaa gccttgcaca gctcgcaacc atcagttctg 180
caggaccagt ggaacccta ccagaatgct gggtgcgtt tcctgtgggt gtcctcgatg 240
tccatactca ctgccttggc tctccaggcc ctgctcaat taggaagggtg aaccatggac 300
aacacagctg actgcccattt ctctggatta tgctcaactg actgaaactc ccttgcctc 360
aggtctgctg tcctttgcag ttctggaccc ctgcattggct gtctcctggg ctggagctg 420
gaggcttaggg cccgactgtt aggttccctt gtttagtaggc atctcgccctg ttttcttcac 480
catcctttag agatgttag atgatattta gcacctgttag acagggcctc attgggcccc 540
ttgggcttac agagcagaac agagactagc ctccctgtct tagaattggg tagtgttctt 600
ttccaagaag acatggcact aaggcgatca tatgaacaga ctgacagact gcagtctaaa 660
tacccatgcc ccaggcccag cgctgacctt gcttgcacc tatgacatgg cgctgtgttag 720
ggattaaaga gagagattca ggtccctcct gctggacatc ccactggcct cccagactct 780
cccagcacct gcagtggcac agcagctcaa taaaccatg tgcaactggaa aaaaaaaaaaa 840
aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaagaaaa aaaaaaaaaaa 900
aaaaaaaaaaa aaaaaaaaaaa aa 901

a

<210> 4
<211> 872
<212> DNA
<213> Rattus rattus

<400> 4
gtatggggag aggatgtgga gttggcagtt tctcatcggtt cccttctgtt tttacccttc 60
tcaggcaggc caagggtgg gctgtgtgg cctgagaaga gatggaggca gaaacggtcc 120
ccgtttgtc ccaagggtgtc ctgcgtgtcc atactcaactg ccctggctct ccaggccctg 180
ctctaatttag gaaggtaac catggacaac acagctgact gccatgtctc tggattatgc 240
tcactgaact gaaactccct tgccctcagg tctgtgtcc ttgcagttc tggaccctctg 300
catggctgtc tcctggactg ggagctggag gctagggccc gactgttagg ttcccctgtt 360
agtaggcattc tgcctgttt tttcaccat ctttgcattt atggtagatg atatttagca 420
cctgttagaca gggcccttattt gggcccttgg gcttacaga gcagaacaga gactgcctc 480
ctgcttttag aattgggttag ttttttttcaagaagaca tggcactaag gcatcatat 540
gaacagactg acagactgca gtctaaataccatccatggcccgcc tgacccctgtct 600
tgtcacctat gacatggcgc tggtagggat taaaagagag agattcagttt ccctccgtt 660
ggacatccca ctggcctccc agactctccc agcacctgca gtggcacagc agctcaataa 720
acccatgtgc actggaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa 780
aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa 840
aaaaaaaaaaa aaaaaagaaaa aaaaaaaaaaa aa 872

<210> 5
<211> 2522
<212> DNA
<213> Rattus rattus

<400> 5
ctggtaagct ttaaggcaga ggagacctaa gagctgagac atgctatgtt gagtgagcg 60
tattttacggg tgctgaatga gaggccaggc caggcaggat tatggagtct tggatgccag 120
agaggtaagg aggtggaaa ggaagtacta taaaacctgaa ttgggtgact tggctggatt 180
tgcatatgtc cagtgccaaatg ttcagacata gctgcccgggt ttactgtatc tactctccca 240
aggtcaggca ttcttatttc ccctgtatgg ctttcatct gtgacttac tacatcttca 300
ctgaaactac tggttaaacgt ccaggctgtt ctcaggccgaa agtcctatgg tctgcccattt 360
agcctcagtg tcctgtcagg tgaagctggg gaggatggaa ggggtccagt agacgctctg 420
tgatgcattt gccagttctg gagatggtgg tggaggctga acctgagctt ctggggacc 480
tccgagttact gcctccattt acgacccctggg tggatatccc taggacctgc ccatgcccgc 540
ttcctcagga aaaacgggtc acgcctatgg gccacactct cttcccttgg gttgggttat 600
ctgccccccag ccccccggccaa attccgggtt gtggatgtg gagaaccaag cacagaggc 660

tgccgcctgc cctccccca ccagggtcag cgagctccac tgagggaaat cgctgcgtgg 720
 aaccccgaa ggcgtgcaca gcacacgagc agtgcacca gtcgcgtcc gactacgtgg 780
 cgcaatgcct gggccggcg ggctggcgaa gacccggag ctgcgtgcgc tccgcgtcc 840
 gcccgtccct gccgcgttc ttgcggcg ggcctccgc gtcacgcac ggcgtgtct 900
 tctcggtatg cgaaggcccc gctggtcg gacgcccccg ccagacattc ggcgcgcct 960
 ggcgttctc cggcccccag ctggcgccac ttctctgcct gaagccctt gaccgcgtcg 1020
 agccaagccg cccgtcccg tgctgtcg gccggctggg ccgctcaccc ggcgtccggc 1080
 ggcgcaggc cccgtcttt tgcttccag gcctcatgcg ctccgcgc cggctccgc 1140
 gacggctgtc cggaggaggg gggcccgccg tgtctgcgc cctacgcagg cctttaggt 1200
 acgctggcg gcctctggcg ggcggggcg cggaggcaga ttccgggggc cgcgtcacagg 1260
 tcctgggggt ccctgcaggc accgttgtca cccccaacta cctggacaac gtgagcgcgc 1320
 gcttgcgc cctggcgcc tggtgaggca gccggaaaccg ggcgtcaagag tgcaagcct 1380
 tccgcagct tttacaagg aacccctgtct tgggtgaggg ggctggagag cccggcaac 1440
 caaggacgtc tatggcccg tctaggctgc ctggctgtt gggaccctta aaatgtttc 1500
 gtcgtgtcgt atttgggttg ggtgatggac agtgcacg tgccatgggt catgggtgaa 1560
 agtcagagga caacttgtca gtctctttt accacgtggg tcccccggat agcactggc 1620
 tcatcgttt tggtggcaag tgcccttgcc tgctgagcca tcttgctggc tgatgtgagc 1680
 acattttga tggaaagaaa ctgagggttc cagagaccag atagccgatc actagagaat 1740
 tcgagagatg tcaagaatct cttagggcta gaaaggatga gttaaaacat gtccaatgac 1800
 ctggagttgg ccaaggctcc cttggcact actgaggctt tttccatgtt gtgttcccaa 1860
 tttaacgctg ctgttctgc ctggggatga aatagcggtt ttccagatt ctggggggcc 1920
 gtttgaagc ctgtctctgc cacttcgttag ccgagagttt aactctttt aatcctaatt 1980
 gtgttccacct gtaaggccgg ggtgtgcact tgtcaacctc actcttagca cagtgacctt 2040
 ccatctcagg cctgtccctg cagattccag ggggtgtctc atttgtctc aaggaggtgg 2100
 agctgtttctt agggttctt ggc当地accat tctctggatc tctccactcc atagatggtg 2160
 ccatacaagc ctttgacagc tcgcaaccat cagttctgca gacccgtgg aacccttacc 2220
 agaatgctgg gtgtgtttt ctgtgggttag gtatggggag aggatgtgg gttggcagtt 2280
 ttcatcggtt cccttctgtt ttacccttc tcaggcaggc caaggtggag gcctgagtt 2340
 cctgagaaga gatggaggca gaaacggtcc cctttgttc ccaagggtgc ctcgatgtcc 2400
 atactactg ccctggctct ccaggccctg ctctaattag gaaggtgaac catggacaac 2460
 acagctgact gccatgttcc tggattatgc tcactgaact gaaactccct tgccctcagg 2520
 tc

<210> 6
 <211> 953
 <212> DNA
 <213> Rattus rattus

<400> 6
 ctggtaagct ttaaggcaga ggagacctaa gagctgagac atgctatgtt gagtggagcg 60
 tatttacggg tgctgaatga gaggccaggc caggcgttt tatggatgtt tggatgccag 120
 agagggttag cggactccac tgagggaaat cgctgcgtgg aacgcggca ggcgtgcaca 180
 gcaaggcggc agtgcacca gtcgcgtcc gactacgtgg cgcaatgcct gggccggcg 240
 ggctggcgaa gacccggag ctgcgtgcgc tccgcgtcc gccgtgcctt ggcgcgttc 300
 ttgcggcgcc ggcctccggc gtcacgcac ggcgtgtct tctgcggatg cgaaggcccc 360
 gctgtgcgcg agcggccggc ccagacattc ggcgcgcct ggcgttctc cggcccccag 420
 ctggcgccac ttctgcctt gaaaggccctt gaccgcgtcg agcgaaggccg cgggtggcg 480
 ccccgctctt ttgccttcca ggcctcatgc gtcgcgtcc cggcgtcccg cgacggctgt 540
 ccggaggagg gggggcccg ggtgtgtcgcc gtcacgcac gtcgtgttgg caccgtggc 600
 acccccaact acctggacaa cgtgagcgcg cgcgtgcgc cctgggtgg ctgtgaggcc 660
 agcggaaacc ggcgcgaaga gtgcgaagcc ttccgcgaagc ttttacaagg gaaaccctgc 720
 ttggatggtg ccatacaagc ctttgacagc tcgcaaccat cagttctgca ggaccagtgg 780
 aacccctacc agaatgctgg gtgtgtttt ctgtgggtgt ctcgatgtc cataactact 840
 gcccctggctc tccaggccct gctctaatta ggaaggtgaa ccatggacaa cacagctgac 900
 tgccatgtct ctggattatg ctcactgaac tgaaactccc ttgcctcagg gtc 953

<210> 7

<211> 1008
 <212> DNA
 <213> Rattus rattus

<400> 7
 ctggtaagct ttaaggcaga ggagacctaa gagctgagac atgctatgtt gagtgagcg 60
 tatttacggg tgctgaatga gaggccaggg cagggcagtt tatggagtct tggatgccag 120
 agagggtcag cgagctccac tgagggaat cgctgcgtgg aagcagccga ggcgtgcaca 180
 gcagacgagc agtgcagca gctgcgctcc gactacgtgg cgcaatgcct gggccggcg 240
 ggctggcgaa gaccggag ctgcgtgcgc tcccgcgtcc gccgtgcct ggcggcttc 300
 ttgcggcg ggcctccggc gtcacgcac ggcgtgcgtct tctgcggatg cgaaggcccc 360
 ggcgtgcgcg agcgcggcg ccagacattc ggcgcgcct ggcgttctc cggcccccag 420
 ctggcgccac ctgcgtccct gaagcccttg gaccgtgcg agcgaagccg cgggtgcgg 480
 cccgcgtctt ttgcctcca ggcctcatgc gctccgcgc cccgcgtccct cgacggctgt 540
 cccggaggagg ggggcccccg gtgtctgcgc gcctacgcag gccttgcgtt caccgtggc 600
 acccccaact acctggacaa cgtgagcgcg cgcgttgcgc cctgggtgcgg ctgtgaggcc 660
 agcggaaacc ggcgcgaaga gtgcgaagcc ttccgcgaagc ttttacaag gaaccctgc 720
 ttggatggtg ccatacaagc ctttgacagc tcgcaaccat cagttctgca ggaccagtgg 780
 aacccttacc agaatgctgg gcaggccaag gtggaggcct gactggcctg agaagagatg 840
 gaggcagaaaa cggtccccgt tttgtcccaa ggtgtccctcg atgtccatac tcactgcct 900
 ggctctccag gccctgcctt aatttaggaag gtgaaccatg gacaacacag ctgactgcca 960
 tgtctctgga ttatgctcac tgaactgaaa ctcccttgcc ctcaggc 1008

<210> 8
 <211> 273
 <212> PRT
 <213> Rattus rattus

<400> 8
 Met Leu Ser Gly Ala Tyr Leu Arg Val Leu Asn Glu Arg Pro Gly Gln
 1 5 10 15
 Ala Val Leu Trp Ser Leu Gly Cys Gln Arg Gly Ser Ala Ser Ser Thr
 20 25 30
 Glu Gly Asn Arg Cys Val Glu Ala Ala Glu Ala Cys Thr Ala Asp Glu
 35 40 45
 Gln Cys Gln Gln Leu Arg Ser Glu Tyr Val Ala Gln Cys Leu Gly Arg
 50 55 60
 Ala Gly Trp Arg Gly Pro Gly Ser Cys Val Arg Ser Arg Cys Arg Arg
 65 70 75 80
 Ala Leu Arg Arg Phe Phe Ala Arg Gly Pro Pro Ala Leu Thr His Ala
 85 90 95
 Leu Leu Phe Cys Gly Cys Glu Gly Pro Ala Cys Ala Glu Arg Arg Arg
 100 105 110
 Gln Thr Phe Ala Pro Ala Cys Ala Phe Ser Gly Pro Gln Leu Ala Pro
 115 120 125
 Pro Ser Cys Leu Lys Pro Leu Asp Arg Cys Glu Arg Ser Arg Arg Cys
 130 135 140
 Arg Pro Arg Leu Phe Ala Phe Gln Ala Ser Cys Ala Pro Ala Pro Gly

145	150	155	160
Ser Arg Asp Gly Cys Pro Glu Glu Gly Gly Pro Arg Cys Leu Arg Ala			
165	170	175	
Tyr Ala Gly Leu Val Gly Thr Val Val Thr Pro Asn Tyr Leu Asp Asn			
180	185	190	
Val Ser Ala Arg Val Ala Pro Trp Cys Gly Cys Glu Ala Ser Gly Asn			
195	200	205	
Arg Arg Glu Glu Cys Glu Ala Phe Arg Lys Leu Phe Thr Arg Asn Pro			
210	215	220	
Cys Leu Asp Gly Ala Ile Gln Ala Phe Asp Ser Ser Gln Pro Ser Val			
225	230	235	240
Leu Gln Asp Gln Trp Asn Pro Tyr Gln Asn Ala Gly Cys Cys Phe Leu			
245	250	255	
Trp Val Ser Ser Met Ser Ile Leu Thr Ala Leu Ala Leu Gln Ala Leu			
260	265	270	

Leu

<210> 9			
<211> 258			
<212> PRT			
<213> Rattus rattus			
<400> 9			
Met Leu Ser Gly Ala Tyr Leu Arg Val Leu Asn Glu Arg Pro Gly Gln			
1	5	10	15
Ala Val Leu Trp Ser Leu Gly Cys Gln Arg Gly Ser Ala Ser Ser Thr			
20	25	30	
Glu Gly Asn Arg Cys Val Glu Ala Ala Glu Ala Cys Thr Ala Asp Glu			
35	40	45	
Gln Cys Gln Gln Leu Arg Ser Glu Tyr Val Ala Gln Cys Leu Gly Arg			
50	55	60	
Ala Gly Trp Arg Gly Pro Gly Ser Cys Val Arg Ser Arg Cys Arg Arg			
65	70	75	80
Ala Leu Arg Arg Phe Phe Ala Arg Gly Pro Pro Ala Leu Thr His Ala			
85	90	95	
Leu Leu Phe Cys Gly Cys Glu Gly Pro Ala Cys Ala Glu Arg Arg Arg			
100	105	110	
Gln Thr Phe Ala Pro Ala Cys Ala Phe Ser Gly Pro Gln Leu Ala Pro			
115	120	125	

Pro Ser Cys Leu Lys Pro Leu Asp Arg Cys Glu Arg Ser Arg Arg Cys
 130 135 140
 Arg Pro Arg Leu Phe Ala Phe Gln Ala Ser Cys Ala Pro Ala Pro Gly
 145 150 155 160
 Ser Arg Asp Gly Cys Pro Glu Glu Gly Gly Pro Arg Cys Leu Arg Ala
 165 170 175
 Tyr Ala Gly Leu Val Gly Thr Val Val Thr Pro Asn Tyr Leu Asp Asn
 180 185 190
 Val Ser Ala Arg Val Ala Pro Trp Cys Gly Cys Glu Ala Ser Gly Asn
 195 200 205
 Arg Arg Glu Glu Cys Glu Ala Phe Arg Lys Leu Phe Thr Arg Asn Pro
 210 215 220
 Cys Leu Asp Gly Ala Ile Gln Ala Phe Asp Ser Ser Gln Pro Ser Val
 225 230 235 240
 Leu Gln Asp Gln Trp Asn Pro Tyr Gln Asn Ala Gly Gln Ala Lys Val
 245 250 255
 Glu Ala

```

<210> 10
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCT primer

<400> 10 21
cgcgttgtct gcgcgtctac g

<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR primer

<400> 11 20
cggcgcgaag aatgcgaagc

<210> 12
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
  
```

<223> Description of Artificial Sequence:PCR primer
<400> 12
cacccacgta ccatggcatg tgc 23

<210> 13
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR primer
<400> 13
gtggtcaccc ccaactacct gg 22

<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR primer
<400> 14
gccttccgca agcttttac aagg 24

<210> 15
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR primer
<400> 15
gctcttctgc ggtatgcgaag gc 22

<210> 16
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR primer
<400> 16
agctgccggg tttactgatg ctac 24

<210> 17
<211> 24
<212> DNA

```

<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:PCR primer
<400> 17
gatgctactc tcccaaggtc aggc
24

<210> 18
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR primer
<400> 18
ctggtaagct ttaaggcaga ggagacc
27

<210> 19
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR primer
<400> 19
catggcagtc agctgtgttg tcc
23

<210> 20
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR primer
<400> 20
cagctgtgtt gtccatggtt cacc
24

<210> 21
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR primer
<400> 21
tggttgcgag ctgtcaaagg cttgttatggc
30

```

<210> 22		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220> Description of Artificial Sequence:PCR primer		
<223> 30		
<400> 22		
gggttcctt gtaaaaagct tgcggaaggc		
<210> 23		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220> Description of Artificial Sequence:PCR primer		
<223> 25		
<400> 23		
ggtccaaggc cttcaggcag gaagg		
<210> 24		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220> Description of Artificial Sequence:PCR primer		
<223> 22		
<400> 24		
gccttcgcat ccgcagaaga gc		
<210> 25		
<211> 23		
<212> DNA		
<213> Artificial Sequence		
<220> Description of Artificial Sequence:PCR primer		
<223> 23		
<400> 25		
ccaggttagtt ggggtgacc acg		
<210> 26		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220> Description of Artificial Sequence:PCR primer		
<223> 10		
<400> 26		

cccaggcatt gcgccacgta

<210> 27
<211> 22
<212> DNA
<213> Artificial Sequence

<220> Description of Artificial Sequence:PCR primer
<223>

<400> 27
cattgcgcca cgtactcgga gc

22

<210> 28
<211> 23
<212> DNA
<213> Artificial Sequence

<220> Description of Artificial Sequence:PCR primer
<223>

<400> 28
gacctgaggg caagggagtt tca

23

<210> 29
<211> 25
<212> DNA
<213> Artificial Sequence

<220> Description of Artificial Sequence:PCR primer
<223>

<400> 29
gcaaggaggt ttcatgttcag tgagc

25

<210> 30
<211> 27
<212> DNA
<213> Artificial Sequence

<220> Description of Artificial Sequence:PCR primer
<223>

<400> 30
ccatccata acgactcact atagggc

27

<210> 31
<211> 23
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:PCR primer

23

<400> 31
actcactata gggctcgagc ggc