Floating Point

lotes adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
 - Represents rational number:

 $\sum_{k=-j}^{i} b_k \times 2^k$

k=-j

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

about desired from Record and Wilelliams Committee Festivan & Recording to Recording Table Fellows

Fractional Binary Numbers: Examples

Value	Representation		
5 3/4	101.112		
2 7/8	10.1112		
1 7/16	1.01112		

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.1111111...2 are just below 1.0
 - 1/2 + 1/4 + 1/8 + ... + 1/2ⁱ + ... → 1.0
- Use notation 1.0 ε

Notes adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Editio

Fractional binary numbers

What is 1011.101₂?

Representable Numbers

Limitation #1

- Other rational numbers have repeating bit representations
- Value Representation
- **0** 1/3 0.0101010101[01]...2
- **0** 1/5 0.001100110011[0011]...2
- 1/10 0.000110011[0011]...₂

Limitation #2

- ② Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Notes adapted from Broant and CVHallaron, Computer Sustems: A Broanammer's Bernnestius, Third Edition

Precision options

Single precision: 32 bits

Ouble precision: 64 bits

Extended precision: 80 bits (Intel only)

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Ard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

"Normalized" Values

 $v = (-1)^s M 2^E$

- When: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as a biased value: E = Exp Bias
- Exp: unsigned value of exp field
- **3** Bias = 2^{k-1} 1, where k is number of exponent bits
 - © Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

Significand coded with implied leading 1: M = 1.xxx...x2

- xxx...x: bits of frac field
- Minimum when frac=000...0 (M = 1.0)
- Maximum when frac=111...1 (M = 2.0ε)
- Get extra leading bit for "free"

Notes adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Floating Point Representation

Numerical Form:

(-1)s M 2E

- **②** Sign bit s determines whether number is negative or positive
- **& Significand M** normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
- MSB s is sign bit s
- exp field encodes **E** (but is not equal to E)
- ② frac field encodes M (but is not equal to M)

Normalized Encoding Example

 $v = (-1)^s M 2^E$ E = Exp - Bias

Significand

Exponent

E = 13 Bias = 127 $Exp = 140 = 10001100_2$

@Result:

S exp IIIa

Denormalized Values

 $v = (-1)^s M 2^E$ E = 1 - Bias

- Condition: exp = 000...0
- Exponent value: E = 1 Bias (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x2
- ② xxx...x: bits of frac
- Cases
- **2** exp = 000...0, frac = 000...0
- Represents zero value
- Note distinct values: +0 and −0
- ② exp = 000...0, frac ≠ 000...0
- Numbers closest to 0.0
- Equispaced

Notes adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Today: Floating Point

- **&**Background: Fractional binary numbers
- **Q**IEEE floating point standard: Definition
- **©**Example and properties
- Rounding, addition, multiplication
- **O**Floating point in C
- **O**Summary

Special Values

- Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
- Represents value ∞ (infinity)
- Operation that overflows
- Both positive and negative
- **2** E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, frac ≠ 000...0
- Not-a-Number (NaN)
- Represents case when no numeric value can be determined
- \bigcirc E.g., sqrt(-1), ∞ ∞ , $\infty \times 0$

Tiny Floating Point Example

s	exp	frac
1	4-bits	3-bits

- **8**-bit Floating Point Representation
- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac
- Same general form as IEEE Format
 - a normalized, denormalized
 - representation of 0, NaN, infinity

Visualization: Floating Point Encodings

Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
 Bias is 2³⁻¹-1 = 3

Notice how the distribution gets denser toward zero.

Notes adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Today: Floating Point

- **&** Background: Fractional binary numbers
- **②** IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Notes adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Distribution of Values (close-up view)

6 6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

Notes adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Editio

Floating Point Operations: Basic Idea

Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

total suspection of yare and o resistor, computer systems. A ringistimes a respective, find conte

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
- All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values

pted from Bryant and O'Hallaron. Computer Systems: A Programmer's Perspective. Third Edition

- What should comparison yield?
- Otherwise OK
 - Denorm vs. normalized
- Normalized vs. infinity

Rounding

Rounding Modes (illustrate with \$ rounding)

0	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	-\$1
Round down (-∞)	\$1	\$1	\$1	\$2	- \$2
Round up (+∞)	\$2	\$2	\$2	\$3	-\$1
Nearest Even (default)	\$1	\$2	\$2	\$2	-\$2

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
- Round so that least significant digit is even
- E.g., round to nearest hundredth

7.8949999 7.89 (Less than half way) 7.8950001 7.90 (Greater than half way) 7.8950000 7.90 (Half way—round up) 7.8850000 7.88 (Half way—round down)

Notes adapted from Broats and O'Hallaron, Computer Sustems: A Broatammer's Bernactius, Third Edition

Floating Point Addition

2 (-1)⁵¹ M1 2^{E1} + (-1)⁵² M2 2^{E2} **2** Assume E1 > E2

Exact Result: (−1)^s M 2^E

Sign s, significand M:Result of signed align & add

Exponent E: E1

Get binary points lined up

(−1)^s M

Fixing

②If $M \ge 2$, shift M right, increment E

 \bigcirc if M < 1, shift M left k positions, decrement E by k

Overflow if E out of range

Round M to fit frac precision

Notes adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value Value	Binary	Rounded	Action	Rounded
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00110 ₂	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	$10.10\frac{100}{2}$	10.102	(1/2—down)	2 1/2

dotes adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

tes adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

FP Multiplication

- (-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}
- ② Exact Result: (-1)^s M 2^E
- Sign s: \$1 ^ \$2
 Significand M: \$M1 x \$M2
 Exponent E: \$E1 + E2

Fixing

- If $M \ge 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying significands

Floating Point in C

C Guarantees Two Levels

Ofloat single precision double precision

Conversions/Casting

Casting between int, float, and double changes bit representation

②double/float → int

- Truncates fractional part
- Like rounding toward zero
- Not defined when out of range or NaN: Generally sets to TMin

 \bigcirc int \rightarrow double

- e Exact conversion, as long as int has ≤ 53 bit word size
- 2 int \rightarrow float
- Will round according to rounding mode

otes adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Editi

Floating Point Puzzles

- For each of the following C expressions, either:
- Argue that it is true for all argument values
- Explain why not true

```
• x == (int) (double) x
• f == (float) (double) f
int x = ...;
                                              • d == (double) (float) d
• f == -(-f);
double d = ...;
                                              • 2/3 == 2/3.0
                                                \begin{array}{ccc} \bullet & d < 0.0 & \Rightarrow & ((d*2) < 0.0) \\ \bullet & d > f & \Rightarrow & -f > -d \end{array} 
Assume neither d nor f is NaN
```

• d * d >= 0.0 • (d+f)-d == f

• x == (int)(float) x

Notes adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- **②** One can reason about operations independent of implementation
- As if computed with perfect precision and then rounded
- Not the same as real arithmetic
- Violates associativity/distributivity
- Makes life difficult for compilers & serious numerical applications programmers

