

Introdução à Vetorização em Arquiteturas Paralelas Híbridas

Silvio Stanzani, Raphael Cóbe, Rogério Iope Núcleo de Computação Científica – UNESP

> WSCAD 2016 06 October 2016

- Hybrid Parallel Architectures;
- Memory System and Vector Processing Units;
- Intel Architectures;
- Vectorization Process;
- Optimizing Memory Access;
- Auto Vectorization;
- Guided Vectorization;
- Examples.

- Hybrid Parallel Architectures;
- Memory System and Vector Processing Units;
- Intel Architectures;
- Vectorization Process;
- Optimizing Memory Access;
- Auto Vectorization;
- Guided Vectorization;
- Examples.

Hybrid Parallel Architectures

- Heterogeneous computational systems:
 - Multicore processors;
 - Multi-level memory sub-system;
 - Input and Output sub-system;
- Multi-level parallelism:
 - Processing core;
 - Chip multiprocessor;
 - Computing node;
 - Computing cluster;
- Hybrid Parallel architectures
 - Coprocessors and accelerators;

Hybrid Parallel Architectures

Don't use a single thread or vector lane

Exploiting the parallel universe

Instruction Level Parallelism

- Single thread (ST) performance
- Automatically exposed by HW/tools
- Effectively limited to a few instructions

Data Level Parallelism

- Single thread (ST) performance
- Exposed by tools and programming models
- Operate on 4/8/16 elements at a time

Task Level Parallelism

- Multi thread/task (MT) performance
- Exposed by programming models
- Execute tens/hundreds/thousands task concurrently

Process Level Parallelism

- Multi Process (MP) performance
- Exposed by programming models
- Execute tens/hundreds/thousands of process concurrently across several nodes

- Hybrid Parallel Architectures;
- Memory System and Vector Processing Units;
- Intel Architectures;
- Vectorization Process;
- Optimizing Memory Access;
- Auto Vectorization;
- Guided Vectorization;
- Examples.

Memory System

CPU Register: internal Processor Memory. Stores data or instruction to be executed

Cache: stores segments of programs currently being executed in the CPU and temporary data frequently needed in the present calculations

Larger in Size

Fast

Main memory: only program and data currently needed by the processor resides in main memory

Auxiliary memory: devices that provides backup storage

Cache Memory

- Cache Memory is employed in computer systems to compensate for the difference in speed between main memory access time and processor.
- Operating System controls the load of Data to Cache;
 - such load can be guided by the developer
- The performance of cache memory is frequently measured in terms of hit ratio.
 - When the CPU refers to memory and finds the word in cache, it is said to produce a hit.
 - If the word is not found in cache, it is in main memory and it counts as a miss

Locality

- Temporal locality: if an item was referenced, it will be referenced again soon (e.g. cyclical execution in loops);
- Spatial locality: if an item
 was referenced, items
 close to it will be referenced
 too (the very nature of
 every program serial
 stream of instructions)

Stride (array elements)

- Stride:
 - Step size between consecutive access of array elements;
- Strided access with stride k means touching every kth memory element
 - Unit Stride:
 □ Sequential access (0, 1, 2, 3, 4, 5, 6, ...)
 Non-unit stride
 □ Constant Stride =
 2 is (0, 2, 4, 6, 8, ...)
 □ k is (0, k, 2k, 3k, 4k, ...)
 □ Random Access;
- Strides > 1 commonly found in multidimensional data
 - Row accesses (stride=N) & diagonal accesses (stride=N+1)
 - Scientific computing (e.g., matrix multiplication)

Unit-Stride

CPU Registers

Constant-Stride

Cache

CPU Registers

Random-Stride

Cache

CPU Registers

Vectorization

Vectorization

- Loading data into cache accordingly;
- Store elements on SIMD registers or vectors;
- Apply the same operation to a set of Data at the same time;
- Iterations need to be independent;
- Usually on inner loops.

Scalar loop

SIMD loop (4 elements)

```
for (int i = 0; i < N; i += 4)
c[i:4] = a[i:4] + b[i:4];
```


Vectorial processing Intel® Architecture

MMX	Intel® SSE	Intel® AVX / AVX2	Intel® MIC / AVX-512
Vector size: 64bit	Vector size: 128bit	Vector size: 256bit	Vector size: 512bit
Data types: 8, 16 and	Data types:	Data types: 32 and	Data types:
32 bit integers	8,16,32,64 bit	64 bit floats	32 and 64 bit
VL: 2,4,8	integers	VL: 4, 8, 16	integers
	32 and 64bit float	Sample: Xi, Yi 32 bit	32 and 64bit float
	VL: 2,4,8,16	int or float	VL: 8,16

Exponential & Reciprocal Instructions (ERI)
Prefetch Instructions (PFI)
Foundation instructions (FI)
Conflict Detection Instructions (CDI)
Byte & Word Instructions (BWI)
Double-/Quad-word Instructions (DQI)
Vector Length Extensions (VLE)

- Hybrid Parallel Architectures;
- Memory System and Vector Processing Units;
- Intel Architectures;
- Vectorization Process;
- Optimizing Memory Access;
- Auto Vectorization;
- Guided Vectorization;
- Examples.

Intel Xeon Architecture Overview

- •Socket: mechanical component that provides mechanical and electrical connections between a microprocessor and a printed circuit board (PCB).
- •QPI (Intel QuickPath Interconnect): high speed, packetized, point-to-point interconnection, that stitch together processors in distributed shared memory and integrated I/O platform architecture.

Intel® Xeon Phi™ Architecture Overview

Knights Core (KNC)

Knights Landing (KNL)

Cluster modes

Tile

One single space address

Hemisphere:

the tiles are divided into two parts called hemisphere

Tile Node Tile Tile Tile Tile Tile Tile Tile Tile Tile Tile

Tile

Tile

Tile

Tile

Quadrant:

tiles are divided into two parts called hemisphere or into four parts called qudrants

Node 0

01/08/16

Tile

Tile

Tile

Tile

Tile

Tile

Cluster modes

Cache data are isolated in each sub numa domain

SNC-2: the tiles are divided into two Numa Nodes

SNC-4: the tiles are divided into two Numa Nodes

01/08/16

Integrated On-Package Memory Usage Models

Integrated On-Package Memory Usage Models

Split Options: 25/75% or 50/50%

Cache Model	Flat Model	Hybrid Model
Hardware automatically manages the MCDRAM as a "L3 cache" between CPU and ext DDR memory	Manually manage how the app uses the integrated on-package memory and external DDR for peak perf	Harness the benefits of both Cache and Flat models by segmenting the integrated on-package memory
 App and/or data set is very large and will not fit into MCDRAM Unknown or unstructured memory access behavior 	 App or portion of an app or data set that can be, or is needed to be "locked" into MCDRAM so it doesn't get flushed out 	 Need to "lock" in a relatively small portion of an app or data set via the Flat model Remaining MCDRAM can then be configured as Cache

- Hybrid Parallel Architectures;
- Memory System and Vector Processing Units;
- Intel Architectures;
- Vectorization Process;
- Optimizing Memory Access;
- Auto Vectorization;
- Guided Vectorization;
- Examples.

Intel Advisor

- Survey Target;
 - Vectorization of loops:
 - detailed information about vectorization;
 - Total Time:
 - elapsed time on each loop considering the time involved in internal loops;
 - Self Time:
 - elapsed time on each loop not considering the time involved in internal loops;
- Find Trip Counts;
 - Analysis to identify how many time particular loops run;
- Check Dependencies;
 - Analysis it there are many loop-carried dependencies;
- Check Memory Access Patterns.
 - Analysis to identify how your code is iterating with memory.

Advisor – New Project

Advisor - Analysis

Advisor – Survey Target

Advisor – Survey Target

Traits	Data Types	Number of Vector Registers	Vector Widths	Instruction Sets
Extracts; Type Conversions	Float32; Float64; Int32; UIn	15	128/256	AVX; AVX2
Extracts; Inserts; Type Conversions	Float32; Float64	14; 15	128; 256	AVX
Extracts; Inserts; Type Conversions	Float32; Float64; Int32; UIn	16	256	AVX; AVX2

Advanced		1	>>		
Transformations	Unroll Factor	Vectorization Details	Optimization Details	Location	
	1			vec.c:50	
Fused; Unrolled 4	4		LOOP WAS DISTRIBUTED, CHUNK 1; LOOP WAS DISTRIBUTED, C	vec.c:63	
				vec.c:55	

Advisor – Memory Access Patterns

10/4/2016 30

- Hybrid Parallel Architectures;
- Memory System and Vector Processing Units;
- Intel Architectures;
- Vectorization Process;
- Optimizing Memory Access;
- Auto Vectorization;
- Guided Vectorization;
- Examples.

Data layout

- AoS vs SoA (Array of Structures vs Structure of Arrays)
 - Layout your data as Structure of Arrays (SoA)

```
// Array of Structures (AoS)
struct coordinate {
    float x, y, z;
} crd[N];
...
for (int i = 0; i < N; i++)
... = ... f(crd[i].x, crd[i],y,
crd[i].z);</pre>
```

Consecutive elements in memory

```
x0 y0 z0 x1 y1 z1 ... x(n-1) y(n-1) z(n-1)
```

```
// Structure of Arrays (SoA)
struct coordinate {
    float x[N], y[N], z[N];
} crd;
...
for (int i = 0; i < N; i++)
... = ... f(crd.x[i], crd.y[i],
crd.z[i]);</pre>
```

Consecutive elements in memory

```
x0 x1 ... x(n-1) y0 y1 ... y(n-1) z0 z1 ... z(n-1)
```

- Hybrid Parallel Architectures;
- Memory System and Vector Processing Units;
- Intel Architectures;
- Vectorization Process;
- Optimizing Memory Access;
- Auto Vectorization;
- Guided Vectorization;
- Examples.

Vectorization on Intel® compilers

Easy of use

Auto Vectorization

Compiler knobs

Guided Vectorization

- Compiler hints/pragmas
- Array notation
- Elemental Functions

Low level Vectorization

- C/C++ vector classes
- Intrinsics/Assembly

Fine control

Auto vectorization

- Relies on the compiler for vectorization
 - No source code changes
 - Enabled with -vec compiler knob (default in -02 and -03 modes)
- Compiler smart enough to apply loop transformations
 - It will allow to vectorize more loops

Option	Description
-00	Disables all optimizations.
-01	Enables optimizations for speed which are know to not cause code size increase.
-02/-0 (default)	 Enables intra-file interprocedural optimizations for speed, including: Vectorization Loop unrolling
-03	 Performs O2 optimizations and enables more aggressive loop transformations such as: Loop fusion Block unroll-and-jam Collapsing IF statements This option is recommended for applications that have loops that heavily use floating-point calculations and process large data sets. However, it might incur in slower code, numerical stability issues, and compilation time increase.

Vectorization: target architecture options

Option	Description
-mmic	Builds an application that runs natively on Intel® MIC Architecture.
-xfeature -xHost	Tells the compiler which processor features it may target, referring to which instruction sets and optimizations it may generate (not available for Intel® Xeon Phi TM architecture). Values for feature are: • COMMON-AVX512 (includes AVX512 FI and CDI instructions) • MIC-AVX512 (includes AVX512 FI, CDI, PFI, and ERI instructions) • CORE-AVX512 (includes AVX512 FI, CDI, BWI, DQI, and VLE instructions) • CORE-AVX2 • CORE-AVX-I (including RDRND instruction) • AVX • SSE4.2, SSE4.1 • ATOM_SSE4.2, ATOM_SSSE3 (including MOVBE instruction) • SSSE3, SSE3, SSE2 When using -xHost, the compiler will generate instructions for the highest instruction set available on the compilation host processor.
-axfeature	Tells the compiler to generate multiple, feature-specific auto-dispatch code paths for Intel® processors if there is a performance benefit. Values for <i>feature</i> are the same described for -xfeature option. Multiple features/paths possible, e.g.: -axSSE2, AVX. It also generates a baseline code path for the default case.

Auto vectorization: not all loops will vectorize

- Data dependencies between iterations
 - Proven Read-after-Write data (i.e., loop carried) dependencies
 - Assumed data dependencies
 - Aggressive optimizations

RaW dependency

```
for (int i = 0; i < N; i++)

a[i] = a[i-1] + b[i];
```

- Vectorization won't be efficient
 - Compiler estimates how better the vectorized version will be
 - Affected by data alignment, data layout, etc.

Inefficient vectorization

```
for (int i = 0; i < N; i++)
a[c[i]] = b[d[i]];
```

- Unsupported loop structure
 - While-loop, for-loop with unknown number of iterations
 - Complex loops, unsupported data types, etc.

Function call within loop body

(Some) function calls within loop bodies

```
for (int i = 0; i < N; i++)
a[i] = foo(b[i]);
```

Validating vectorization

Generate compiler report about optimizations

```
-qopt-report[=n] Generate report (level [1..6], default 2)
```

```
LOOP BEGIN at gas_dyn2.f90(193,11) inlined into gas_dyn2.f90(4326,31)

remark #15300: LOOP WAS VECTORIZED

remark #15448: unmasked aligned unit stride loads: 1

remark #15450: unmasked unaligned unit stride loads: 1

remark #15475: --- begin vector loop cost summary ---

remark #15476: scalar loop cost: 53

remark #15477: vector loop cost: 14.870

remark #15478: estimated potential speedup: 2.520

remark #15479: lightweight vector operations: 19

remark #15481: heavy-overhead vector operations: 1

remark #15488: --- end vector loop cost summary ---

remark #25456: Number of Array Refs Scalar Replaced In Loop: 1

remark #25015: Estimate of max trip count of loop=4

LOOP END
```

Vectorized loop

```
LOOP BEGIN at gas_dyn2.f90(2346,15)

remark #15344: loop was not vectorized: vector dependence prevents vectorization
remark #15346: vector dependence: assumed OUTPUT dependence between IOLD line 376 and IOLD line 354
remark #25015: Estimate of max trip count of loop=3000001
LOOP END
```

Agenda

- Hybrid Parallel Architectures;
- Memory System and Vector Processing Units;
- Intel Architectures;
- Vectorization Process;
- Optimizing Memory Access;
- Auto Vectorization;
- Guided Vectorization;
- Examples.

Intel® compiler directives for vectorization

Directive	Clause	Description
ivdep		Instructs the compiler to ignore assumed vector dependencies.
	<pre>vectorlength(n1[,]) vectorlengthfor(dtype)</pre>	Assume safe vectorization for the given vector length values or data type.
	<pre>private(var1[,]) firstprivate(var1[,]) lastprivate(var1[,])</pre>	Which variables are private to each iteration; firstprivate, initial value is broadcasted to all private instances; lastprivate, last value is copied out from the last instance.
simd	linear(var1:step1[,])	Letting know the compiler that <i>var1</i> is incremented by <i>step1</i> on every iteration of the original loop.
	reduction(oper:var1[,])	Which variables are reduction variables with a given operator.
	[no]assert	Warning or error when vectorization fails.
	[no]vecremainder	Do (not) vectorize the remainder loop when the mail loop is vectorized.

Guided vectorization: disambiguation hints

- Assume function arguments won't be aliased
 - C/C++: Compile with -fargument-noalias
- C99 "restrict" keyword for pointers
 - Compile with -restrict otherwise

Guided vectorization:

- #pragma simd or #pragma ivdep
 - Force loop vectorization ignoring all dependencies
 - □ Additional <u>clauses</u> for specify reductions, etc.

```
void v_add(float *c, float *a, float *b)
{
#pragma simd
   for (int i = 0; i < N; i++)
        c[i] = a[i] + b[i];
        SIMD loop
}</pre>
```

```
__declspec(vector)
void v_add(float c, float a, float b)
{
    c = a + b;
}
...
for (int i = 0; i < N; i++)
    v_add(C[i], A[i], B[i]);</pre>
SIMD function
```

Agenda

- Hybrid Parallel Architectures;
- Memory System and Vector Processing Units;
- Intel Architectures;
- Vectorization Process;
- Optimizing Memory Access;
- Auto Vectorization;
- Guided Vectorization;
- Examples.

Matrix Multiplication - Serial

```
void multiply(int msize, int tidx, int numt, TYPE a[][NUM], TYPE
b[][NUM], TYPE c[][NUM], TYPE t[][NUM])
int i,j,k;
   for(i=0; i<msize; i++) {
       for(k=0; k<msize; k++) {
           for(j=0; j<msize; j++) {
              c[i][j] = c[i][j] + a[i][k] * b[k][j];
```

Matrix Multiplication

	all Sites and L	oops	d	Vector Issues	Self Time▼	Total Time	Туре	Why No Vectorization?		
□ (loop	in multiply3 at	: multiply.c:228]		2 Assume	0.170s	0.170s	Scalar	vector dependence prevents vectorization		
🛮 🖰 [loop	inlibc_csu_ir	nit]			0.000s (0.000s (Scalar			
gool] 🖰 🛚	in_INTERNAL	_16_offload_host_c	pp_ad92		0.000s (0.000s (Scalar			
	in func@0x5b			💡 2 Data typ	0.000s (0.000s (Scalar			
	[loop in main at matrix.c:144]									
		: multiply.c:227]		2 Assume		0.170s		vector dependence prevents vectorization		
		: multiply.c:226]		2 Assume		0.170s		vector dependence prevents vectorization		
+ (¹) [loop	in main at ma	trix.c:144]		♀ 1 Data typ	0.000s (0.000s (Vectorized (B			
Source	Top Down	Loop Analytics	Loop Assembly	y	dations	Compiler Diagn	ostic Details			
	tiply.c:228 m	ultiply3								
Line								Source		
//map(b[0:NUM][0:NUM]) map(c[0:NUM][0:NUM]) //{ int i,j,k; // #praqma omp parallel for collapse (2) //num threads(60) for(i=0; i <msize; [loop="" applied<="" at="" dependence="" i++)="" in="" loop="" loop.="" multiply.c:226]="" multiply3="" no="" not="" prevents="" scalar="" td="" transformations="" vector="" vectorization="" vectorized:="" {=""></msize;>										
225 / 226 🖃	// #pragm for(i=0; ()[loop: Scal No l	na omp parallel i <msize; i++)<br="">in multiply3 at ar loop. Not ve oop transformat</msize;>	{ multiply.c:22 ctorized: vect ions applied	(2) //num thread 26]		torization				
225 / 226 ⊟ 227 ⊟	#pragm for(i=0;	na omp parallel i <msize; ar="" at="" i++)="" in="" inder="" k="" k<msize;="" loop.="" loop<="" multiply3="" not="" oop="" td="" transformat="" ve=""><td>{ multiply.c:22 ctorized: vections applied (++) { multiply.c:22 ctorized: vect</td><td>(2) //num thread 26] tor dependence p</td><td>revents vec</td><td></td><td></td><td></td></msize;>	{ multiply.c:22 ctorized: vections applied (++) { multiply.c:22 ctorized: vect	(2) //num thread 26] tor dependence p	revents vec					
225 / 226 🖃	#pradm for(i=0;	na omp parallel i <msize; ar="" at="" at<="" for(j="0;" i++)="" in="" inder="" j<msiz="" k="" k<msize;="" loop="" loop.="" multiply3="" not="" oop="" td="" transformat="" ve=""><td>{ multiply.c:22 ctorized: vecions applied (++) { multiply.c:22 ctorized: veci e; j++) { multiply.c:22 ctorized: veci</td><td>(2) //num thread 26] tor dependence p 27] tor dependence p</td><td>revents vec</td><td>torization</td><td></td><td></td></msize;>	{ multiply.c:22 ctorized: vecions applied (++) { multiply.c:22 ctorized: veci e; j++) { multiply.c:22 ctorized: veci	(2) //num thread 26] tor dependence p 27] tor dependence p	revents vec	torization				

Matrix Multiplication

 Check dependency analysis shows that it is safe to enforce the vectorization of this loop

Matrix Multiplication - vectorized

```
void multiply(int msize, int tidx, int numt, TYPE a[][NUM], TYPE
b[][NUM], TYPE c[][NUM], TYPE t[][NUM])
int i,j,k;
   for(i=0; i<msize; i++) {
       for(k=0; k<msize; k++) {
            #pragma simd
           for(j=0; j<msize; j++) {
               c[i][j] = c[i][j] + a[i][k] * b[k][j];
```

Matrix Multiplication

	a llea				å Vector Issues Self Time▼		_	Why No	Vector	Vectorized Loops		
Function C	Call Sites and L	.oops		Vector Issues	Self Time▼	Total Time	Type	Vectorization?	Vec	Efficiency	Gain E	
+ 🖰 [loop	in multiply4 at	t multiply.c:245]			0.460s	0.460s	Vectorized (B		AVX2	~100%	4.24×	
☑ 💍 [loop	in multiply4 at	t multiply.c:243]			0.010s(0.470s	Scalar					
□ 🖰 [loop	inlibc_csu_i	nit]			0.000s (0.000s (Scalar					
		_16_offload_host_o	cpp_ad92		0.000s (0.000s (Scalar					
	in func@0×5b			💡 3 Data typ.	-	0.000s (Scalar					
□ (loop	in func@0x54	lbf0]		💡 1 System	0.000s (0.000s (Scalar					
Source	Top Down	Loop Analytics	Loop Assembly	@ Recommend	dations 📮 C	Compiler Diagn	ostic Details					
File: mul	tiply.c:245 m	nultiply4										
Line								So	urce			
230		}	-(T)[]] . G[T][,	1 PERSESTI.								
231	}	7										
232	}											
233	//}											
	}											
235												
236	void multipl	ly4(int msize, :	int tidx, int no	mt, TYPE a[][M	NUM], TYPE b	[][NUM], TYP	E c[][NUM], T	YPE t[][NUM])				
237	{											
238	//loop ve	torization with	n praqma omp si	ıd								
239												
240	int i,j,k;		77 (-)									
			or collapse (2)	//num threads(60)							
242 🖃	Tor(1=0;	i <msize; i++)="" td="" {<=""><td>multiply.c:242</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></msize;>	multiply.c:242									
			ctorized: inner		adv vectoriz	red						
		oop transformat		1000	,							
			1									
243 🖃	for(k=0:	: k <msize: k++)<="" td=""><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></msize:>	1									
243 🗏		; k <msize; k++)<br="">in multiply4 at</msize;>	multiply.c:243									
243 ⊡	U [loop											
243 ⊡	() [loop Scal	in multiply4 at	multiply.c:243									
243 ⊟ 244	() [loop Scal No l	in multiply4 at ar loop	multiply.c:243									
	() [loop Scal No l #praqi for(j=	in multiply4 at ar loop .oop transformat na omp simd =0; j <msize; j+<="" td=""><td>multiply.c:243 ions applied</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></msize;>	multiply.c:243 ions applied									
244	() [loop Scal No l #praqi for(j=	in multiply4 at ar loop .oop transformat ma omp simd =0; j <msize; j+<br="">in multiply4 at</msize;>	multiply.c:243 ions applied +) { multiply.c:245									
244	() [loop Scal No l #praqu for(ja () [loop Vect	in multiply4 at ar loop oop transformat ma omp simd =0; j <msize; j+<br="">in multiply4 at orized AVX; FMA</msize;>	multiply.c:243 ions applied +) { multiply.c:245 loop processes		type(s) and	includes FM/	Ą					
244	() [loop Scal No l #pragi for(j= () [loop Vect Loop	in multiply4 at ar loop .oop transformat ma omp simd =0; j <msize; j+<br="">in multiply4 at .orized AVX; FMA o was unrolled b</msize;>	multiply.c:243 ions applied +) { multiply.c:245 loop processes by 4	 Float64 data	type(s) and	includes FM/	4					
244	([loop Scal No l #praq for(j= ([loop Vect Loop	in multiply4 at ar loop .oop transformat na omp simd =0; j <msize;)="" .orized="" at="" at<="" avx;="" b="" fma="" in="" j+="" multiply4="" td="" unrolled="" was=""><td>multiply.c:243 ions applied +) { multiply.c:245 loop processes by 4 multiply.c:245</td><td> Float64 data</td><td>type(s) and</td><td>includes FM/</td><td>4</td><td></td><td></td><td></td><td></td></msize;>	multiply.c:243 ions applied +) { multiply.c:245 loop processes by 4 multiply.c:245	 Float64 data	type(s) and	includes FM/	4					
244	([loop Scal No l #pragr for(j= loop Vect Loop Scal	in multiply4 at ar loop coop transformat na omp simd 0; j <msize; ar="" at="" avx;="" b="" corized="" fma="" in="" j+="" loop<="" multiply4="" peeled="" td="" unrolled="" was=""><td>multiply.c:243 ions applied) { multiply.c:245 loop processes y 4 multiply.c:245 [not executed]</td><td> Float64 data</td><td>type(s) and</td><td>includes FM/</td><td>4</td><td></td><td></td><td></td><td></td></msize;>	multiply.c:243 ions applied) { multiply.c:245 loop processes y 4 multiply.c:245 [not executed]	 Float64 data	type(s) and	includes FM/	4					
244	(Cloop Scal No l #pragi for(j= (Cloop Vect Loop (Cloop Scal Loop	in multiply4 at ar loop .oop transformat na omp simd =0; j <msize; .o="" ar="" at="" b="" b<="" in="" j+="" loop="" multiply4="" peeled="" td="" unrolled="" was=""><td>multiply.c:243 ions applied +) { multiply.c:245 vloop processes yy 4 multiply.c:245 [not executed] yy 4</td><td>l Float64 data</td><td>type(s) and</td><td>includes FM/</td><td>4</td><td></td><td></td><td></td><td></td></msize;>	multiply.c:243 ions applied +) { multiply.c:245 vloop processes yy 4 multiply.c:245 [not executed] yy 4	l Float64 data	type(s) and	includes FM/	4					
244	([loop Scal No l Foreign Fore	in multiply4 at ar loop coop transformat ma omp simd =0; j <msize; ar="" at="" at<="" be="" in="" j+="" loop="" multiply4="" peeled="" td="" unrolled="" was=""><td>multiply.c:243 ions applied +) { multiply.c:245 loop processes by 4 multiply.c:245 [not executed] multiply.c:245 multiply.c:245 multiply.c:245</td><td> Float64 data </td><td></td><td></td><td></td><td>ineludos EMA</td><td></td><td></td><td></td></msize;>	multiply.c:243 ions applied +) { multiply.c:245 loop processes by 4 multiply.c:245 [not executed] multiply.c:245 multiply.c:245 multiply.c:245	 Float64 data 				ineludos EMA				
244	([loop Scal No l For(j= Vect Loop Scal Loop Scal Loop Vect Ve	in multiply4 at ar loop coop transformat ma omp simd so; j+size; j+torized AVX; FMA o was unrolled bin multiply4 at ar peeled loop o was unrolled bin multiply4 at ar multiply4 at in multiply4 at in multiply4 at iorized AVX; FMA	multiply.c:243 ions applied +) { multiply.c:245 loop processes by 4 multiply.c:245 [not executed] multiply.c:245 multiply.c:245 remainder loop	 Float64 data 				includes FNA				
244	([loop Scal No l #pragg for(j= Vect Loop Scal Loop Vect No l No l No l	in multiply4 at ar loop .oop transformat ma omp simd =0; j <msize; .orized="" ar="" at="" avx;="" b="" fma="" in="" j+="" loop="" multiply4="" o="" oop="" peeled="" td="" torized="" transformat<="" unrolled="" was=""><td>multiply.c:243 ions applied +) { multiply.c:245 loop processes by 4 multiply.c:245 [not executed] by 4 multiply.c:245 remainder loop ions applied</td><td>Float64 data</td><td></td><td></td><td></td><td>includes FMA</td><td></td><td></td><td></td></msize;>	multiply.c:243 ions applied +) { multiply.c:245 loop processes by 4 multiply.c:245 [not executed] by 4 multiply.c:245 remainder loop ions applied	Float64 data				includes FMA				
244	(loop Scal No l #praq for ()= () loop Scal Loop Vect No l () loop Vect No l () loop Vect No l () loop C loop Vect No l () loop C loop C loop C loop Vect No l () loop C l	in multiply4 at ar loop .oop transformat ma omp simd e0; j <msize;)="" ar="" at="" at<="" avx;="" b="" coop="" corized="" fma="" in="" j+="" loop="" multiply4="" peeled="" td="" transformat="" unrolled="" was=""><td>multiply.c:243 ions applied +) { multiply.c:245 loop processes by 4 multiply.c:245 [not executed] multiply.c:245 multiply.c:245 remainder loop</td><td>Float64 data</td><td></td><td></td><td></td><td>includes FMA</td><td></td><td></td><td></td></msize;>	multiply.c:243 ions applied +) { multiply.c:245 loop processes by 4 multiply.c:245 [not executed] multiply.c:245 multiply.c:245 remainder loop	Float64 data				includes FMA				

Example

Particle Binning Problem[1]

- Optimizations:
 - Automatic Vectorization
 - Data Alignment

[1] http://colfaxresearch.com/optimization-techniques-for-the-intel-mic-architecture-part-2-of-3-strip-mining-for-vectorization/

Particle Binning - Serial

```
for (int i = 0; i < inputData.numDataPoints; i++) {
   // Transforming from cylindrical to Cartesian coordinates:
   const FTYPE x = inputData.r[i]*COS(inputData.phi[i]);
   const FTYPE y = inputData.r[i]*SIN(inputData.phi[i]);
   // Calculating the bin numbers for these coordinates:
   const int iX = int((x - xMin)*binsPerUnitX);
   const int iY = int((y - yMin)*binsPerUnitY);
```

Particle Binning - Serial

Particle Binning - Vectorized

```
for (int ii = 0; ii < inputData.numDataPoints; ii += STRIP WIDTH) {
   int iX[STRIP WIDTH];
   int iY[STRIP WIDTH];
   const FTYPE* r = &(inputData.r[ii]);
   const FTYPE* phi = &(inputData.phi[ii]);
   // Vector loop
   for (int c = 0; c < STRIP WIDTH; c++) {
      // Transforming from cylindrical to Cartesian coordinates:
      const FTYPE x = r[c]*COS(phi[c]);
     const FTYPE y = r[c]*SIN(phi[c]);
      // Calculating the bin numbers for these coordinates:
      iX[c] = int((x - xMin)*binsPerUnitX);
      iY[c] = int((y - yMin)*binsPerUnitY);
```

Particle Binning - Vectorized

2 3 2 72 3	1	la res	Self Time▼	_ , ,_	Type W		Vectorized L	oops		>>	Instruction Set Analy	ysis 🔊 Advanced		> Location
Function Call Sites and Loops		Vector Issues	Self Time	lotal I ime	lype	Why No Vectorization?	Vector ISA	Efficiency	Gain Estimate	VL	Traits	Data	Num. Advanced	Location
☑ び [loop in main at Binning.cc:68]		② 3 Assumed dependency present	0.880s	0.880s	Scalar	vector dependence pre					FMA; Type Conversi	Float32	7	Binning.cc:68
☑ ⑤ [loop in BinParticles_3 at Binning.cc:173]		♀ 1 Potential underutilization of FMA instructions	0.850s	1.420s	Scalar	inner loop was already							9	Binning.cc:173
□ [loop in BinParticles_3 at Binning.cc:182]		♀ 1 Data type conversions present	0.570s	0.570s	Vectorized (Body)		AVX2	~100%	17.64×	8	FMA; Type Conversi	Float3	9	Binning.cc:182
± 5 [loop in main\$omp\$parallel_for@519 at Binning.cc:520]			0.359s	0.359s	Vectorized+Threaded (Body)		AVX	~100%	9.00x	8	NT-stores	Float32	1	Binning.cc:520
☑ 🖔 [loop in operator new]			0.010s[0.010s[Scalar			0.00					0	
☑ [loop in memcmp]			0.010s[0.010s[Scalar								0	
5 [loop in main at Binning.cc:591]			0.000s (1.420s	Scalar	a exception handling for					Divisions	Float64	8	Binning.cc:591
☑ & [loop in main at Binning.cc:528]		□ 1 Ineffective peeled/remainder loop(s) present	n/a	n/a	Remainder Completely Un	vectorization possible b							Contains Co.	Binning.cc:528

ource	Top Down Loop Analytics Loop Assembly 💡 Recommendations 🖫 Compiler Diagnostic Details			
ine	Source	Total Time %	Loop Time %	Trait
9 0 1	threadPrivateBins[i][j] = 0;			
1	// Loop through all bunches of particles			
	//#pragma omp for			
'3 ⊕ '4	for (int ii = 0; ii < inputData.numDataPoints; ii <= STRIP WIDTH) {	0.050s (4.250s	
5	int iX[STRIP WIDTH];			
5 6 7	int iY[STRIP WIDTH];			
7 8	THE THE PARTY OF T			
9	const FTYPE" r = &(inputData.r[ii]): const FTYPE" bi= &(inputData.phi[ii]):	0.010s (
0	const Fifte n ni = a(inputData.nni(ii));	0.010s t		
	// Vector loop			
2 🗏		0.060s (3.400s III	
_	() (loop in BinParticles_3 at Binning.cc:182)			
	Vectorized AVX; FMA loop processes Float32; Int32 data type(s) and includes FMA; Type Conversions			
	Loop stats were reordered			
3	// Transforming from cylindrical to Cartesian coordinates:			
4	const FTYPE x = r[c]*COS(phi[c]);	2000000000		
5	const FTYPE $y = r[c]*SIN(phi[c]);$	3.040s		

Particle Binning - Data Alignment

```
for (int ii = 0; ii < inputData.numDataPoints; ii += STRIP WIDTH) {
   int iX[STRIP WIDTH] attribute ((aligned(64)));
   int iY[STRIP WIDTH] attribute ((aligned(64)));
   const FTYPE* r = &(inputData.r[ii]);
   const FTYPE* phi = &(inputData.phi[ii]);
   // Vector loop
#pragma vector aligned
   for (int c = 0; c < STRIP WIDTH; c++) {
      // Transforming from cylindrical to Cartesian coordinates:
      const FTYPE x = r[c]*COS(phi[c]);
     const FTYPE y = r[c]*SIN(phi[c]);
      // Calculating the bin numbers for these coordinates:
      iX[c] = int((x - xMin)*binsPerUnitX);
      iY[c] = int((y - yMin)*binsPerUnitY);
```

Particle Binning - Data Alignment

unction Call Sites and Loops	•	Vector Issues	Self Time▼	local Time	Type	Why No Vectorization?	Vector ISA	Efficiency	Gain Estimate	VL	Traits	Data	Nurr	Advanced n.	Location
[loop in BinParticles 4 at Binning.cc:226]		☐ 1 Potential underutilization of FMA instructions	0.940s	1.470s	Scalar	inner loop was already				20		10	9		Binning.cc:2
[loop in main at Binning.cc:68]		3 Assumed dependency present	0.900s	0.900s	Scalar	vector dependence pre					FMA; Type Conve	rsi Float3	32 7		Binning.cc:6
[loop in BinParticles_4 at Binning.cc:236]		□ 1 Data type conversions present	0.530s	0.530s	Vectorized (Body)		AVX2	~100%	18.50×	8	FMA; Type Conve	rsi Float3	3 9		Binning.cc:2
[loop in main\$omp\$parallel_for@519 at Binning.cc:520]			0.370s	0.370s	Vectorized+Threaded (Body)		AVX	~100%	9.00x	8	NT-stores	Float3	12 1		Binning.cc:
[loop in memcmp]			0.010s[0.010s[Scalar				78 (1000000				0		
[loop in main at Binning.cc:591]			0.000s[1.470s	Scalar	a exception handling for					Divisions	Floate	4 8		Binning.cc:
[loop in main at Binning.cc:528]		□ 1 Ineffective peeled/remainder loop(s) present	n/a	n/a	Remainder Completely Un	vectorization possible b								Contains Co	Binning.cc:
Top Down Loop Analytics Loop Assembly	Recon	nmendations Compiler Diagnostic Details													
Binning.cci220 BinParticles_4				Source								Total Time	%	Loop Time %	Traits
No loop transformations applied	236] loat32;	Int32 data type(s) and includes FMA; Type	Conversion	s										3.250s	
<pre>// Transforming from cylindrical to Cart const FTYPE x = r[c]*COS(phi[c]); const FTYPE y = r[c]*SIN(phi[c]);</pre>												0.090s 2.740s			
<pre>// Calculating the bin numbers for these iX[c] = int((x - xMin)*binsPerUnitX); iY[c] = int((y - yMin)*binsPerUnitY); }</pre>	e coordi	nates:										0.110s 0.310s			FMA; Type
<pre>// Scalar loop for (int c = 0; c < STRIP WIDTH; c++)</pre>															

threadPrivateBins[iX[c]][iY[c]]++;

> Instruction Set Analysis

M Advanced M Location

Interpolation

```
declspec(vector)
int FindPosition(double x) {
  return (int)(log(exp(x*steps)));
  declspec(vector)
double Interpolate(double x, const point*
vals)
  int ind = FindPosition(x);
  return res;
```

```
int main ( int argc , char argv [] )
{
    ...
    for ( i=0; i <ARRAY_SIZE;++ i ) {
        dst[i] = Interpolate( src[i], vals );
    }
    ...
}</pre>
```

George M. Raskulinec, Evgeny Fiksman "Chapter 22 - SIMD functions via OpenMP", In High Performance Parallelism Pearls, edited by James Reinders and Jim Jeffers, Morgan Kaufmann, Boston, 2015, Pages 171-190, ISBN 9780128038192

Vectorization report - Interpolate

```
Begin optimization report for: Interpolate.. simdsimd3 H2n v1 s1.P(double, const point *)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [ main.c(74,48) ]
Begin optimization report for: Interpolate.._simdsimd3__H2m_v1_s1.P(double, const point *)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [ main.c(74,48) ]
Begin optimization report for: Interpolate.. simdsimd3 L4n v1 s1.V(double, const point *)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [main.c(74,48)]
remark #15415: vectorization support: gather was generated for the variable pnt: indirect access, 64bit indexed [main.c(78,26)]
remark #15415: vectorization support: gather was generated for the variable pnt: indirect access, 64bit indexed [main.c(78,36)]
Begin optimization report for: Interpolate.. simdsimd3 L4m v1 s1.V(double, const point *)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [main.c(74,48)]
remark #15415: vectorization support: gather was generated for the variable pnt: masked, indirect access, 64bit indexed [main.c(78,26)]
remark #15415: vectorization support: gather was generated for the variable pnt: masked, indirect access, 64bit indexed [main.c(78,36)]
```

Vectorization report - FindPosition

```
egin optimization report for: FindPosition.. simdsimd3 H2n v1.P(double)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [main.c(70,28)]
Begin optimization report for: FindPosition.._simdsimd3__H2m_v1.P(double)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [main.c(70,28)]
Begin optimization report for: FindPosition.._simdsimd3__L4n_v1.V(double)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [main.c(70,28)]
Begin optimization report for: FindPosition.. simdsimd3 L4m v1.V(double)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [main.c(70,28)]
```

Diffusion - Serial

Function C	all Sites and Loops▲		• Vector Issues	Self Time	Total Time	Type	Why No Vectorization?		
☐ [loop	in diffusion_baseline at diffusion_	base.c:103]	♀ 1 Potential	0.000s (10.530s	Scalar	uter loop was not auto-vectorized: consider using SIMD		
□ (loop	in diffusion_baseline at diffusion	base.c:104]	♀ 1 Potential	0.010s(10.450s	Scalar	outer loop was not auto-vectorized: consider using SIMD		
□ (5 [loop	in diffusion baseline at diffusion	base.c:105]	2 Assume	0.130s[10.370s	Scalar	vector dependence: assumed dependence between lines		
+ 5 [loop	⊞ ([loop in diffusion baseline at diffusion base.c:105]								
□ (loop	in diffusion_baseline at diffusion	base.c:107]	2 Assume	10.240s	10.240s	Scalar	vector dependence: assumed dependence between lines		
+ (5 [loop	in diffusion_baseline at diffusion_	base.c:107]	2 Assume	0.070s(0.070s (Scalar Versions	1 vector dependence: assumed dependence between lines		
□ 💍 [loop	in diffusion_baseline at diffusion_	base.c:107]	2 Assume	0.060s (0.060s (Scalar	vector dependence: assumed dependence between lines		
			0.5		n 5:	5.17			
Source	Top Down Loop Analytics	Loop Assembly	Recommendation	ns 🚨 Comp	oiler Diagnostic	Details			
File: diffu	sion_base.c:107 diffusion_b	aseline							
Line						Source			
97	void								
	diffusion baseline(REAL *f:	1. REAL *f2. int	nx. int nv. int n	z.					
99			cn, REAL cs, REAL						
100		REAL cc. REAL							
101	int cou	nt) {							
102	int i;								
103 🛨									
104 ±	for (int $z = 0$; $z < nz$								
105 🕀		ny; y++) {							
106	//#pragma simd								
107 🖃	for (int x = 0; x		· 1071						
	<pre>() [loop in diffusion_ba Scalar loop. Vector</pre>			stusse lies	_				
	No loop transformat		sumed dependence b	erween rine:	>				
	()[loop in diffusion_ba		sion base c:1071						
	Scalar loop. Vector			etween lines	5				
	No loop transformat		Damed dependence by		_				
	()[loop in diffusion ba		sion base.c:107]						
	Scalar loop. Vector			etween lines	5				
	No loop transformat	ions applied							
	🚺 🕛 [loop in diffusion_ba	seline at diffu	sion_base.c:107]						
	Scalar loop. Vector		sumed dependence be	etween lines	5				
	No loop transformat								
	💹 🕛 [loop in diffusion_ba		·						
	Scalar loop. Vector		sumed dependence be	etween lines	5				
	No loop transformat	ions applied:							

Diffusion - Vectorized

Potential inefficient memory access;

Diffusion - alignment

Lattice Boltzmann

sti	**		A 1/1-		Self Time	T-4-1 T	T	Why No	Vecto	rized Loops		>>
Function Call S	Sites and Loops▲		• Vecto	or Issues	Self Time	Total Time	Type	Vectorization?	Vec	Efficiency	Gai	. VL
☑ 🖔 [loop in f	fCalcInteraction_ShanChen_Bou	undary at lbpFORCE.c	. 💡 27	Assume	0.130s[0.210s[Scalar	vector depende				
🗵 🍊 [loop in f	fCalcInteraction_ShanChen_Boเ	undary at lbpFORCE.c	. 9 2/	Assume	0.080s (0.080s (Scalar	vector depende				
🗵 🖔 [loop in f	fCalcPotential_ShanChen at lbp	FORCE.cpp:36]			0.000s (5.742s	Scalar	loop control vari				
	fCalcPotential_ShanChen at lbp	11 -	○ 1	Potential	0.000s (5.742s	Threaded (OpenMP)	🔳 inner loop was al				
	fCollisionBGK\$omp\$parallel@33		₽ 1	Ineffecti	0.160s(0.160s(Vectorized (Remainder)		AVX2	~67%	2.69×	
	fGetEquilibriumF at lbpSUB	• • • • • • • • • • • • • • • • • • • •		Data t		3.910s	Vectorized (Body;		AVX.	~91%	3.6	
	in fGetEquilibriumF at lbpSUB.o			Data typ		3.120s	Vectorized (Body)		AVX2			4
i aooll 🖰 🗹	in fGetEquilibriumF at lbpSUB.c	cop:6151	□ 11	Data tvo	0.790s l	0.790s ſ	Remainder					
				50								
Source To	Top Down Loop Analytics	Loop Assembly 💡 R	Recommendatio	ns 📮 🤇	Compiler Diagi	nostic Details						
File: lbpSUB.	.cpp:615 fGetEquilibriumF											
Line						Source						
501 502												
603												
504 int	fGetEquilibriumF(double	*feq, double *v, do	ouble rho)									
505 {												
506												
	// calculate equilibrium d											
	// only suitable for squar	e lattices, not sui	table for in	compress.	ible fluid							
509 510 de	double mody = v[0]*v[0] +	v[1]*v[1] + v[2]*v[21.									
	double uv:	A[1]A[1] + A[2]A[21.									
512												
513	//#pragma loop count(20)											
514	//for(int i=0; i <lbsy.nq< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lbsy.nq<>											
	for(int i=0; i <lbsy.nq;< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lbsy.nq;<>											
	(loop in fGetEquilibrium Scalar loop. Not vector											
	No loop transformation		endence preve	ents vect	orization							
	()[loop in fGetEquilibriu		151									
				JInt32 da	ata type(s)	and include	s FMA; Type Conversion	ns: Unpacks				
	No loop transformation				/			-, -, -, -, -, -, -, -, -, -, -, -, -, -				
	()[loop in fGetEquilibrio		15]									
	Scalar remainder loop	n										
	200000 100000000	P										

Lattice Boltzmann

	- 11-2	Loops▲				- 15-		_	Why No	Vectorized Loops				
Function	Call Sites and Lo	oops▲		•	Vector Issues	Self Time	Total Time	Type	Vectorization?	Vec	Efficiency	Gai	VL	
ы (] (] пос	p in fCalcPotent	ial_ShanChen at lbp	oFORCE.cpp:49]		💡 1 Potential	0.000s (5.871s	Threaded (OpenMP)	inner loop was al					
+ <u>(</u> 5 [loc	p in fCollisionBG	K\$omp\$parallel@3	38 at lbpBGK.cpp:3	351]	💡 1 Ineffecti	0.290s [0.290s [Vectorized (Remainder)		AVX2	~67%	2.69×	4	
- (lo	op in fGetEquil	ibriumF at lbpSU	B.cpp:614]		💡 1 Data t	4.000s	4.000s	Vectorized (Body)		AVX.	~88%	3.5	4	
2 (<u>0</u>	loop in fGetEqui	ilibriumF at lbpSUB.	cpp:614]		💡 1 Data typ	4.000s	4.000s	Vectorized (Body)		AVX2			4	
√ [loc	p in fGetEquilibri	iumF at lbpSUB.cpp	o:614]		💡 3 Assume	0.030s (0.030s (Scalar	vector depende					
⊴ <u>(</u> 5 [loc	p in fGetEquilibri	iumF at lbpSUB.cpp	o:614]		💡 3 Assume	0.010s[0.010s[Scalar	vector depende					
F 🖰 [loc	p in fGetFracSite	e at lbpGET.cpp:121]		💡 2 Ineffecti	0.210s[0.210s[Vectorized Versions		AVX	~31%	2.50×	4; 8	
☑ <u>(</u> [loc	p in fGetOneDire	ecSpeedSite at lbp0	3ET.cpp:241]			0.030s (0.140s[Scalar						
				0 -)[= -									
Source	Top Down	Loop Analytics	Loop Assembly	Recommenda	tions 📮 Comp	oiler Diagnostio	c Details							
	SUB.cpp:614 f	fGetEquilibriumF												
Line							Source							
03														
04		libriumF(double	*feq, double *	v. double rho)										
05	{													
05 06	•													
05 06 07	// calcula	te equilibrium o												
605 606 607 608	// calcula	te equilibrium (itable for squa)												
505 506 507 508 509	// calcula // only su	itable for squa	re lattices, no	t suitable for										
505 506 507 508 509 510	// calcula // only su		re lattices, no	t suitable for										
505 506 507 508 509 510	// calcula // only su	itable for squa	re lattices, no	t suitable for										
505 506 507 508 509 510 511	// calcula // only su double mod double uv;	uitable for squan	re lattices, no	t suitable for										
05 06 07 08 09 10 11 12	// calcula // only su double mod double uv; #pragma	uitable for squar v = v[0]*v[0] + loop count(20)	re lattices, no v[1]*v[1] + v[:	t suitable for										
005 006 007 008 009 010 011 012	// calcula // only su double mod double uv; #pragma	uitable for squan	re lattices, no v[1]*v[1] + v[: +1; i++)	t suitable for 2]*v[2];										
05 06 07 08 09 10 11 12	// calcula // only su double mod double uv; #pragma for(int	itable for squar v = v[0]*v[0] + loop count(20) i=0; i <lbsy.nq< td=""><td>re lattices, no v[1]*v[1] + v[: +1; i++) umF at lbpSUB.c</td><td>t suitable for 2]*v[2]; pp:614]</td><td>incompressible</td><td>fluid</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lbsy.nq<>	re lattices, no v[1]*v[1] + v[: +1; i++) umF at lbpSUB.c	t suitable for 2]*v[2]; pp:614]	incompressible	fluid								
05 06 07 08 09 10 11 12	// calcula // only su double mod double uv; #pragma for(int () [loop i	itable for squan v = v[0]*v[0] + loop count(20) i=0; i <lbsy.nq- in fGetEquilibri</lbsy.nq- 	re lattices, no v[1]*v[1] + v[: +1; i++) umF at lbpSUB.c :torized: vector	t suitable for 2]*v[2]; pp:614]	incompressible	fluid								
05 06 07 08 09 10 11 12	// calcula // only su double mod double uv; #pragma for(int () [loop i Scali	itable for squar v = v[0]*v[0] + loop count(20) i=0; i <lbsy.nq in fGetEquilibri ar loop. Not vec</lbsy.nq 	re lattices, no v[1]*v[1] + v[: +1; i++) umF at lbpSUB.c torized: vector .ons applied	t suitable for 2]*v[2]; pp:614] r dependence pre	incompressible	fluid								
05 06 07 08 09 10 11 12	// calcula // only su double mod double uv; #pragma for(int () [loop i Scal: No lu () [loop i Scal:	itable for squar v = v[0]*v[0] + loop count(20) i=0; i< losy.nq- un fGetEquilibria ar loop. Not vec oop transformati un fGetEquilibria ar loop. Not vec	re lattices, no v[1]*v[1] + v[: +1; i++) umF at lbpSUB.c :torized: vector .ons applied umF at lbpSUB.c :torized: vector	t suitable for 2]*v[2]; pp:614] dependence propp:614]	incompressible	fluid								
005 006 007 008 009 010 011 012	// calcula // only su double mod double uv; #pragma for(int) [loop i Scali No le (loop i Scali	itable for squan v = v[0]*v[0] + loop count(20) i=0; i <lbsy.nq- fgetequilibriar="" formatian="" loop.="" not="" or="" td="" transformatian="" vector="" vector<="" ="" in=""><td>re lattices, no v[1]*v[1] + v[: +1; i++) umF at lbpSUB.c ttorized: vector .ons applied ttorized: vector .torized: vector</td><td>t suitable for 2]*v[2]; pp:614] dependence propp:614] dependence pro</td><td>incompressible</td><td>fluid</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lbsy.nq->	re lattices, no v[1]*v[1] + v[: +1; i++) umF at lbpSUB.c ttorized: vector .ons applied ttorized: vector .torized: vector	t suitable for 2]*v[2]; pp:614] dependence propp:614] dependence pro	incompressible	fluid								
505 506 507 508 509 510 511 512	// calcula // only su double mod double uv; #pragma for(int	itable for squar v = v[0]*v[0] + loop count(20) i=0; i< bsy.nq - in fGetEquilibria ar loop. Not vec oop transformatia in fGetEquilibria coop transformatia in fGetEquilibria	re lattices, no v[1]*v[1] + v[: +1; i++) umF at lbpSUB.c torized: vector ons applied umF at lbpSUB.c torized: vector ons applied umF at lbpSUB.c	t suitable for 2]*v[2]; pp:614] dependence pre pp:614] dependence pre	incompressible events vectori:	fluid								
505 506 507 508 509 510 511 512	// calcula // only su double mod double uv; #praqma for(int	itable for squar v = v[0]*v[0] + loop count(20) i=0; i< bsy.nq - in fGetEquilibria ar loop. Not vecoop transformation ar loop. Not vecoop transformation fGetEquilibria in fGetEquilibria in fGetEquilibria	re lattices, no v[l]*v[l] + v[: +1; i++) umF at lbpSUB.c torized: vector ons applied umF at lbpSUB.c torized: vector ons applied	t suitable for 2]*v[2]; pp:614] dependence pre pp:614] dependence pre	incompressible events vectori:	fluid	includes FM	1A; Type Conversions;	Unpacks					
505 506 507 508 509 510 511 512	// calcula // only su double mod double uv; #pragma for(int () [loop i Scali No lo () [loop i Vecto No lo	itable for squar v = v[0]*v[0] + loop count(20) i=0; i< bsy.nq in fGetEquilibria ar loop. Not vec oop transformatia ar loop. Not vec oop transformatia orized AVX; FMA oop transformatia	re lattices, no v[l]*v[l] + v[: +1; i++) umF at lbpSUB.c torized: vector .ons applied umF at lbpSUB.c torized: vector .ons applied umF at lbpSUB.c loop processes .ons applied	t suitable for 2]*v[2]; pp:614] dependence pro pp:614] dependence pro pp:614] Float64; Int32;	incompressible events vectori:	fluid	includes FM	MA; Type Conversions;	Unpacks					
605 606 607 608 609 610 611 612	// calcula // only su double mod double uv; #pragma for(int	itable for squar v = v[0]*v[0] + loop count(20) i=0; i< bsy.nq- in fGetEquilibrian ar loop. Not vec- oop transformatian ar loop. Not vec- oop transformatian fGetEquilibrian orized AVX; FMA oop transformatian fGetEquilibrian	re lattices, no v[1]*v[1] + v[: +1; i++) umF at lbpSUB.c :torized: vector .ons applied umF at lbpSUB.c :torized: vector .ons applied umF at lbpSUB.c loop processes .ons applied umF at lbpSUB.c	t suitable for 2]*v[2]; pp:614] dependence pre pp:614] dependence pre pp:614] Float64; Int32;	incompressible events vectori:	fluid	includes FM	1A; Type Conversions;	Unpacks 					
505 506 507 508 509 510 511 512	// calcula // only su double mod double uv; #pragma for(int) [loop i Scal: No le (loop i Vector No le (loop i Scal:	itable for squar v = v[0]*v[0] + loop count(20) i=0; i< bsy.nq in fGetEquilibria ar loop. Not vec oop transformatia ar loop. Not vec oop transformatia orized AVX; FMA oop transformatia	re lattices, no v[1]*v[1] + v[: +1; i++) umF at lbpSUB.c ttorized: vector torized: vector torized: vector torized: vector torized: vector cons applied umF at lbpSUB.c loop processes cons applied umF at lbpSUB.c tp [not executed top [not executed	t suitable for 2]*v[2]; pp:614] dependence pre pp:614] dependence pre pp:614] Float64; Int32;	incompressible events vectori:	fluid	includes FM	MA; Type Conversions;	Unpacks 					

Questions?

Silvio Stanzani, Raphael Cóbe, Rogério Iope Núcleo de Computação Científica – UNESP

silvio@ncc.unesp.br
rmcobe@ncc.unesp.br
rogerio@ncc.unesp.br

Source Code

Double * A;

Double * B;

A = (double *) malloc(4*(sizeof (double)));

B = A;

B[3] = 3;

Memory

A:

B:

A:

A and B refers to same array

B:

3

Código minicurso	Código git	https://github.com/intel- unesp-mcp/wscad2016- short-course
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		67

Hybrid Parallel Architectures

- Heterogeneous computational systems:
 - Scalar and Vector Instructions

		Scalar In	struct	ions						
A7	A6	A5	A4	А3	A2	A1	A0		Α	
			+						+	
В7	В6	B5	B4	В3	B2	B1	В0		В	
			=						=	.
A7+B7	A6+B6	A5+B5	A4+B4	A3+B3	A2+B2	A1+B1	A0+B0		A+B	

- Multi-level memory
 - □ RAM Memory;
 - Multi-level Cache.

Р	rocessor	1	Processor 2					
Core 1	Core 2	Core N	Core 1	Core 2	Core N			
L1	L1	L1	L1	L1	L1			
L2	L2	L2	L2	L2	L2			
	L3			L3				
		RA	M					

Intel Advisor

- Evaluate multi-threading parallelization
- Intel[®] Advisor XE
 - □ Performance modeling using several frameworks for multi-threading in processors and co-processors:
 - OpenMP, Intel[®] Cilk ™ Plus, Intel[®] Threading Bulding Blocks
 - C, C++, Fortran (OpenMP only) and C# (Microsoft TPL)
 - □ Identify parallel opportunities
 - Detailed information about vectorization;
 - Check loop dependencies;
 - □ Scalability prediction: amount of threads/performance gains
 - □ Correctness (deadlocks, race conditions)

Intel® Advisor