1

Waves(20) 11.15

EE23BTECH11051-Rajnil Malviya

Question:-

A train, standing at the outer signal of a railway station blows a whistle of frequency 400 Hz in still air. (i) What is the frequency of the whistle for a platform observer when the train (a) approaches the platform with a speed of $10ms^{-1}$, (b) recedes from the platform with a speed of $10ms^{-1}$? (ii) What is the speed of sound in each case? The speed of sound in still air can be taken as $340ms^{-1}$.

This problem requires knowledge of *Doppler Effect*, So first we will learn Doppler effect and then we will solve our problem. Before learning Doppler effect, we will also understand Sound Waves.

Symbol	Description	
y(t)	instantaneous displacement of wave	
f_n	natural frequency	
f_r	received frequency	
A	amplitude of wave	
φ	phase difference of wave	
t	time	
λ	wavelength of wave	
T	time period of wave	

TABLE I

Equation of Sound Wave :-

Sound Wave is transmission of energy; sound wave depends on many parameters. A general equation of sound wave is shown below

$$y(t) = A\sin(2\pi f t + \phi) \tag{1}$$

From equation 1, equation of sound wave when whistle is blown by train is

Symbol	Description	Value
f	frequency of source	400Hz
ν	velocity of air	$340ms^{-1}$
v_o	velocity of observer	$0ms^{-1}$
v	velocity of source	$10ms^{-1}$

TABLE II

$$y(t) = A \sin(2\pi \times 400 \times t + \phi)$$

for this case $f = 400Hz$

Doppler Effect for Sound Waves :-

Doppler effect for sound wave refers to change in frequency or pitch of sound wave observed by an observer when there is a relative motion between observer and source.

General Equation of Doppler:-

Now we will see formulas for Doppler effect in different situations .

$$f' = \frac{v'}{\lambda'} \tag{2}$$

$$f_n = \frac{v}{\lambda} \tag{3}$$

$$f' = \frac{v \pm v_o}{\lambda \pm v_s T} \tag{4}$$

$$f_n = \frac{1}{T} \tag{5}$$

From equations 3 and 5, then substituting in equation 4

$$f' = \frac{(v \pm v_o)(f_n)}{v \pm v_s} \tag{6}$$

Above equation is general equation for any case in doppler effect . Signs of equation 6 depends on velocities of both observer and source .

Effect of observer's velocity on frequency:-

If observer is moving towards source and source is stationary ($v_s = 0$), then sound will reach observer faster , so observed frequency will increase. It means

$$f' > f_n \tag{7}$$

From equation 6

$$f' = \frac{(v \pm v_o)f_n}{v} \tag{8}$$

From equations 3 and 8,

$$\frac{(v \pm v_o)f_n}{v} > f_n \tag{9}$$

$$v \pm v_o > v \tag{10}$$

There must be (+) sign to satisfy equation 10. And for vice-versa case(observer is moving away), so frequency will be less than f_n So,

$$f' < f_n \tag{11}$$

From equation 8,

$$\frac{(v \pm v_o)f_n}{v} < f_n \tag{12}$$

$$v \pm v_o < v \tag{13}$$

There must be (-) sign to satisfy equation 13.

Effect of source's velocity on frequency:-

If source is moving towards stationary observer $(v_o = 0)$, so λ' in equation 2 will compress and denominator will decrease, so f' will increase,

$$f' > f_n \tag{14}$$

From equation 6

$$f' = \frac{(v)f_n}{v + v_n} \tag{15}$$

From equations 8 and 3

$$\frac{vf_n}{v \pm v_s} > f_n \tag{16}$$

$$\frac{v}{v \pm v_s} > 1 \tag{17}$$

There must be (-) sign to satisfy equation 17. And for vice-versa case(source is moving away), so wavelength will increase and denominator in equation 4 increases so f' will decrease

$$f' < f_n \tag{18}$$

From equation 6

$$f' = \frac{(v)f_n}{v \pm v_s} \tag{19}$$

From equations 19 and 3,

$$\frac{vf_n}{v \pm v_s} < f_n \tag{20}$$

$$\frac{v}{v \pm v_s} < 1 \tag{21}$$

There must be (+) sign to satisfy equation 21.

 v_o and v_s directly affect equation 6, independent of each other. We can change signs of numerator and denominator independently by analysing situation.

A table is given below , which includes all cases with different situations .

formation of a Different				
frequencies observed in Different cases				
Doppler	Stationary	Observer	Observer	
Shift	Ob-	moving	moving	
	server	towards	away from	
	561 / 61	Source	Source	
C4-4:		Source	Source	
Stationary				
Source	CI C	$(v + v_o)f_n$	$(v-v_o)f_n$	
	$f'=f_n$	$f' = \frac{(1 + i)^2 f''}{1}$	$f' = \frac{(v - v_o)f_n}{v}$	
		V	V	
Source				
moving	,, <i>f</i>	(n+n)f	(n, n) f	
towards	$f' = \frac{VJ_n}{}$	$f' = \frac{(v + v_o)J_n}{}$	$f' = \frac{(v - v_o)f_n}{v - v_S}$	
Ob-	$v-v_s$	$v-v_s$	$v-v_S$	
server				
Source				
moving	vf	(v+v)f	(v-v)f	
away	$f' = \frac{r f_n}{r}$	$f' = \frac{(r + r_0)Jn}{r_0}$	$f' = \frac{(v - v_o)f_n}{v + v_o}$	
from	$v + v_s$	$v + v_s$	$v + v_s$	
Ob-				
server				

TABLE III

Let's get back to our problem solution

(i).a When the train approaches the platform (i.e., the observer at rest),

Solution :-

So here source is approaching, wavelength will decrease and frequency will increase, so we have to increase f'

From Table:3

$$f' = \frac{vf_n}{v - v_c} \tag{22}$$

On Substituting in equation 22

$$f_a' = 400(\frac{340}{340 - 10})$$
$$f' = 412.1212$$

b. When the train recedes the platform (i.e., the

observer at rest),

Solution :-

It is vice-versa of above, From Table:3

$$f' = f_n(\frac{v}{v + v_s})$$

$$f' = 400(\frac{340}{340 + 10})$$

$$f' = 388.5714$$
(23)

(ii) The speed of sound in each will be same. It is $340ms^{-1}$ in each case.

From equation 6 we will interchange v_o and v_s

Transmitted Signal	Received Signal	
Source transmits a signal with	Source will receive reflection of its	
frequency	transmitted Signal	
$A\sin\left(2\pi ft+\phi\right)$	$A\sin\left(2\pi f_r t + \phi\right)$	

TABLE IV

$$f_r = \frac{(v \pm v_s)(f')}{v \pm v_o} \tag{24}$$

For signs, we will use same logic, if someone is approaching another one, so definitely it will increase frequency (f_r) and if receding so it will

decrease frequency (f_r) .

In our problem if, train approaches with $v_s 10ms^{-1}$ and if platform is taken as obstacle with $v_o = 0$, Received frequency by platform is f' 412.1212, Here train(source) is approaching, so v_s will try to increase f_r

On substituting in equation 24

$$f_r = \frac{(v \pm v_s)(f')}{v}$$

To increase f_r , there must be (+) sign;

$$f_r = \frac{(340 + 10)(412.1212)}{340}$$

 f_r =424.2424

So Received signal will be, From table Table:4

$$y_r(t) = A \sin(2\pi(424.2424)t + \phi)$$

if train is receding with $10ms^{-1}$, so v_s will try to decrease f_r so we will use (-) sign in equation 24 with $v_o = 0$

$$f_r = \frac{(v - v_s)(f')}{v_s}$$

f'=388.5714

on substituting in equation 24

$$f_r = \frac{(340 - 10)(388.5714)}{340}$$

 $f_r = 377.1428$

So received signal will be,

From table Table:4

$$y_r(t) = A \sin(2\pi(377.1428)t + \phi)$$