$\mathbf{L}(\mathbf{NL})$ — класс языков для которых существует ДМТ (НМТ), которая использует $O(\log(n))$ памяти.

СС 23. Докажите, что:

- (a) $L \subseteq P$;
- (б) если $SAT \in \mathbf{L}$, то $\mathbf{NP} \subseteq \mathbf{L}$.

СС 24. Докажите, что:

- $\overline{\rm (a)}$ задача проверки графа на сильную связность лежит в ${\bf NL}$;
- (б) задача проверки графа на сильную связность является полной в классе **NL** (относительно сведений по Карпу, использующих логарифмическую память).

 $\overline{\rm CC~25.}$ Приведите пример языка из ${
m P/poly}$, который не лежит в ${
m P.}$

ССС 26. (подсказка: NEXP^{NEXP}vs.NEXP) Докажите, что если P = NP, то существует язык из EXP, схемная сложность которого не меньше $\frac{2^n}{10n}$.

СС 27. Докажите, что существует язык, для которого любой алгоритм, работающий время $O(n^2)$ решает его правильно на менее, чем на половине входов какой-то длины, но этот язык распознается алгоритмом, работающим время $O(n^3)$.

СС 10. Докажите, что:

- (a) что число n простое тогда и только тогда, когда для каждого простого делителя q числа n-1 существует $a\in 2,3,\ldots,n-1$ при котором $a^{n-1}\equiv 1\pmod n$, а $a^{\frac{n-1}{q}}\not\equiv 1\pmod n$;
- (б) язык простых чисел лежит в NP.

СС 15. Пусть существует **NP**-полный унарный язык (все слова которого, состоят только из одного символа). Докажите, что P = NP.

СС 20. Постройте примеры полных задач относительно сведений по Карпу в классах:

- (a) EXP, NEXP;
- (6) $\mathbf{NE} = \bigcup_{n \ge 0} \mathbf{NTime}[2^{cn}].$

 $\fbox{CC 21.}$ (подсказка: вспомните задачу $\mathbf{P} = \mathbf{NP} \Rightarrow \mathbf{EXP} = \mathbf{NEXP}$) Пусть $\mathbf{NP} \subseteq \mathbf{DTime}[n^{\log(n)}]$, докажите, что $\mathbf{PH} \subseteq \bigcup_k \mathbf{DTime}[n^{\log^k(n)}]$.