Curs 6

Cuprins

Modele Herbrand

2 Decidabilitate și semi-decidabilitate

Logica de ordinul I - sintaxa

Limbaj de ordinul I ${\cal L}$
\square unic determinat de $ au=(R,F,C,\mathit{ari})$
Termenii lui \mathcal{L} , notați $Trm_{\mathcal{L}}$, sunt definiți inductiv astfel:
orice variabilă este un termen;
orice simbol de constantă este un termen;
\square dacă $f \in \mathbf{F}$, $\mathit{ar}(f) = n$ și t_1, \ldots, t_n sunt termeni, atunci $\mathit{f}(t_1, \ldots, t_n)$ este termen.
Formulele atomice ale lui ${\mathcal L}$ sunt definite astfel:
\square dacă $R \in \mathbb{R}$, $ar(R) = n$ și t_1, \ldots, t_n sunt termeni, atunci $R(t_1, \ldots, t_n)$ este formulă atomică.
Formulele lui $\mathcal L$ sunt definite astfel:
orice formulă atomică este o formulă
\square dacă $arphi$ este o formulă, atunci $\lnot arphi$ este o formulă
\Box dacă φ și ψ sunt formule, atunci $\varphi \lor \psi$, $\varphi \land \psi$, $\varphi \to \psi$ sunt formule
\square dacă φ este o formulă și x este o variabilă, atunci $\forall x \varphi$, $\exists x \varphi$ sunt formule

Logica de ordinul I - semantică

- O structură este de forma $\mathcal{A}=(A,\mathbf{F}^{\mathcal{A}},\mathbf{R}^{\mathcal{A}},\mathbf{C}^{\mathcal{A}})$, unde
 - ☐ A este o mulţime nevidă
 - □ $\mathbf{F}^{A} = \{ f^{A} \mid f \in \mathbf{F} \}$ este o mulțime de operații pe A; dacă f are aritatea n, atunci $f^{A} : A^{n} \to A$.
 - $□ R^{A} = \{R^{A} \mid R \in R\} \text{ este o multime de relații pe } A;$ dacă R are aritatea n, atunci $R^{A} \subseteq A^{n}$.
 - $\square \mathbf{C}^{\mathcal{A}} = \{ c^{\mathcal{A}} \in A \mid c \in \mathbf{C} \}.$
- O interpretare a variabilelor lui $\mathcal L$ în $\mathcal A$ ($\mathcal A$ -interpretare) este o funcție $\mathit I: V \to A$.

Inductiv, definim interpretarea termenului t în A sub I notat t_I^A .

Inductiv, definim când o formulă este adevărată în \mathcal{A} în interpretarea I notat $\mathcal{A}, I \vDash \varphi$. În acest caz spunem că (\mathcal{A}, I) este model pentru φ .

- O formulă φ este adevărată într-o structură \mathcal{A} , notat $\mathcal{A} \vDash \varphi$, dacă este adevărată în \mathcal{A} sub orice interpretare. Spunem că \mathcal{A} este model al lui φ .
- O formulă φ este adevărată în logica de ordinul I, notat $\vDash \varphi$, dacă este adevărată în orice structură. O formulă φ este validă dacă $\vDash \varphi$.
- O formulă φ este satisfiabilă dacă există o structură \mathcal{A} și o \mathcal{A} -interpretare I astfel încât \mathcal{A} , $I \vDash \varphi$.

Enunţ. Formă prenex. Formă Skolem

☐ Un enunț este o formulă fără variabile libere.

Enunţ. Formă prenex. Formă Skolem

- ☐ Un enunț este o formulă fără variabile libere.
- \square Pentru orice formulă φ există un enunț în formă prenex α astfel încât $\varphi \bowtie \alpha$.

Enunţ. Formă prenex. Formă Skolem

- ☐ Un enunt este o formulă fără variabile libere.
- \square Pentru orice formulă φ există un enunț în formă prenex α astfel încât $\varphi \bowtie \alpha$.
- \square Pentru orice enunț în formă prenex α există un enunț în formă Skolem α^{sk} astfel încât

 α este satisfiabilă dacă și numai dacă $\alpha^{\it sk}$ este satisfiabilă.

Validitate și satisfiabilitate

Dacă φ este o formulă atunci

 φ este validă dacă și numai dacă $\neg \varphi$ nu este satisfiabilă.

Vom arăta că pentru a verifica validitatea/satisfiabilitatea este suficient să ne uităm la o singură structură.

Fie ${\mathcal L}$ un limbaj de ordinul I.

- ☐ Presupunem că are cel puțin un simbol de constantă!
- □ Dacă nu are, adăugăm un simbol de constantă.

Fie ${\mathcal L}$ un limbaj de ordinul I.

- ☐ Presupunem că are cel puţin un simbol de constantă!
- □ Dacă nu are, adăugăm un simbol de constantă.

Universul Herbrand este mulțimea $T_{\mathcal{L}}$ a tututor termenilor fără variabile.

- Fie \mathcal{L} un limbaj de ordinul I.
 - ☐ Presupunem că are cel puţin un simbol de constantă!
 - □ Dacă nu are, adăugăm un simbol de constantă.

Universul Herbrand este mulțimea $T_{\mathcal{L}}$ a tututor termenilor fără variabile.

Exemplu

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție f de aritate 2 și două simboluri de constantă a și b.

- Fie \mathcal{L} un limbaj de ordinul I.
 - □ Presupunem că are cel puţin un simbol de constantă!
 - □ Dacă nu are, adăugăm un simbol de constantă.

Universul Herbrand este mulțimea $\mathcal{T}_{\mathcal{L}}$ a tututor termenilor fără variabile.

Exemplu

Fie $\mathcal L$ un limbaj de ordinul I cu un simbol de funcție f de aritate 2 și două simboluri de constantă a și b.

Universul Herbrand pentru limbajul \mathcal{L} este mulțimea:

$$(a, b), f(a, b), f(f(a, b), b), f(f(a, a), f(b, b)), \dots$$

Structură Herbrand

- O structură Herbrand este o structură $\mathcal{H}=(\mathcal{T}_{\mathcal{L}},\mathbf{F}^{\mathcal{H}},\mathbf{R}^{\mathcal{H}},\mathbf{C}^{\mathcal{H}})$, unde
 - \square pentru orice simbol de constantă c, $c^{\mathcal{H}} = c$
 - pentru orice simbol de funcție f de aritate n, $f^{\mathcal{H}}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$

Atenție! Într-o structură Herbrand nu fixăm o definiție pentru relații: pentru orice simbol de relație R de aritate n, $R^{\mathcal{H}}(t_1,\ldots,t_n)\subseteq (\mathcal{T}_{\mathcal{L}})^n$

Structură Herbrand

Exemplu

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție f de aritate 1, un simbol de constantă a și un simbol de relație R de aritate 2.

Structură Herbrand

Exempli

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție f de aritate 1, un simbol de constantă a și un simbol de relație R de aritate 2.

O structură Herbrand $\mathcal{H} = (\mathcal{T}_{\mathcal{L}}, \mathbf{F}^{\mathcal{H}}, \mathbf{R}^{\mathcal{H}}, \mathbf{C}^{\mathcal{H}})$ unde

- \Box $T_{\mathcal{L}} = \{a, f(a), f(f(a)), \ldots\}$
- $\Box a^{\mathcal{H}} = a \in T_{\mathcal{L}}$
- $\Box f_{\mathcal{H}}^{T}(t) = f(t)$
- $\square R^{\mathcal{H}} = \{(a, a), (f(a), f(a)), (f(f(a)), f(f(a))), \ldots\}$

 \square O interpretare Herbrand este o interpretare $H:V \to T_{\mathcal{L}}$

- \square O interpretare Herbrand este o interpretare $H:V \rightarrow T_{\mathcal{L}}$
- \square O structură Herbrand \mathcal{H} este model al unei formule φ dacă $\mathcal{H} \vDash \varphi$. În acest caz spunem că \mathcal{H} este model Herbrand al lui φ .

- \square O interpretare Herbrand este o interpretare $H:V \rightarrow T_{\mathcal{L}}$
- \square O structură Herbrand \mathcal{H} este model al unei formule φ dacă $\mathcal{H} \vDash \varphi$. În acest caz spunem că \mathcal{H} este model Herbrand al lui φ .

Exemplu

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție f de aritate 1, un simbol de constantă a și un simbol de relație R de aritate 2.

O structură Herbrand $\mathcal{H} = (\mathcal{T}_{\mathcal{L}}, \mathbf{F}^{\mathcal{H}}, \mathbf{R}^{\mathcal{H}}, \mathbf{C}^{\mathcal{H}})$ unde

- $\square T_{\mathcal{L}} = \{a, f(a), f(f(a)), \ldots\}$
- $\square a^{\mathcal{H}} = a \in T_{\mathcal{L}}$
- $\Box f_{\mathcal{U}}^{T}(t) = f(t)$
- $\square R^{\mathcal{H}} = \{(a, a), (f(a), f(a)), (f(f(a)), f(f(a))), \ldots\}$

- \square O interpretare Herbrand este o interpretare $H:V\to T_{\mathcal{L}}$
- \square O structură Herbrand \mathcal{H} este model al unei formule φ dacă $\mathcal{H} \vDash \varphi$. În acest caz spunem că \mathcal{H} este model Herbrand al lui φ .

Exemplu

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție f de aritate 1, un simbol de constantă a și un simbol de relație R de aritate 2.

O structură Herbrand $\mathcal{H}=(\mathcal{T}_{\mathcal{L}},\mathbf{F}^{\mathcal{H}},\mathbf{R}^{\mathcal{H}},\mathbf{C}^{\mathcal{H}})$ unde

- $\square T_{\mathcal{L}} = \{a, f(a), f(f(a)), \ldots\}$
- $\Box a^{\mathcal{H}} = a \in T_{\mathcal{L}}$
- $\Box f_{\mathcal{U}}^{T}(t) = f(t)$
- $\square R^{\mathcal{H}} = \{(a, a), (f(a), f(a)), (f(f(a)), f(f(a))), \ldots\}$

$$\mathcal{H} \vDash \forall x R(x, x).$$

Exemplu

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție f de aritate 1, un simbol de constantă a și un simbol de relație R de aritate 2.

O structură Herbrand $\mathcal{H} = (T_{\mathcal{L}}, \mathbf{F}^{\mathcal{H}}, \mathbf{R}^{\mathcal{H}}, \mathbf{C}^{\mathcal{H}})$ unde

- $\square \ T_{\mathcal{L}} = \{a, f(a), f(f(a)), \ldots\}$
- $\Box a^{\mathcal{H}} = a \in T_{\mathcal{L}}$
- \Box $f_{\mathcal{H}}^{T}(t) = f(t)$
- $\ \ \, \square \ \, R^{\mathcal{H}} = \{(a,f(a)),(f(a),f(f(a))),(f(f(a)),f(f(a))),\ldots\}$

Exemplu

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție f de aritate 1, un simbol de constantă a și un simbol de relație R de aritate 2.

O structură Herbrand $\mathcal{H} = (T_{\mathcal{L}}, \mathbf{F}^{\mathcal{H}}, \mathbf{R}^{\mathcal{H}}, \mathbf{C}^{\mathcal{H}})$ unde

- $\square \ T_{\mathcal{L}} = \{a, f(a), f(f(a)), \ldots\}$
- $\Box a^{\mathcal{H}} = a \in T_{\mathcal{L}}$
- \Box $f_{\mathcal{H}}^{T}(t) = f(t)$
- $\ \ \square \ \ R^{\mathcal{H}} = \{(a,f(a)),(f(a),f(f(a))),(f(f(a)),f(f(a))),\ldots\}$

$$\mathcal{H} \not\models \forall x R(x,x).$$

Exemplu

□ Considerăm structura Herbrand în care toate simbolurile de relație sunt adevărate peste tot,

Exemplu

- Considerăm structura Herbrand în care toate simbolurile de relație sunt adevărate peste tot, adică
- \square pentru orice simbol de relație R de aritate n, $R^{\mathcal{H}} = (T_{\mathcal{L}})^n$.
- Această structură este model pentru orice mulțime de formule atomice.
- ☐ Exerciţiu: De ce?

Fie φ este o formulă, $t \in T_{\mathcal{L}}$ un termen fără variabile și $x \in V$.

Reamintim că $\varphi[x/t]$ este formula obținută înlocuind în φ toate aparițiile libere ale lui x cu t, i.e. $\varphi[x/t] = \{x/t\}\varphi$.

Fie φ este o formulă, $t \in T_{\mathcal{L}}$ un termen fără variabile și $x \in V$.

Reamintim că $\varphi[x/t]$ este formula obținută înlocuind în φ toate aparițiile libere ale lui x cu t, i.e. $\varphi[x/t] = \{x/t\}\varphi$.

Propoziția 1

Fie $\mathcal A$ o structură, $I\colon V\to A$ o interpretare și $a=t_I^{\mathcal A}$. Atunci

Fie φ este o formulă, $t \in T_{\mathcal{L}}$ un termen fără variabile și $x \in V$.

Reamintim că $\varphi[x/t]$ este formula obținută înlocuind în φ toate aparițiile libere ale lui x cu t, i.e. $\varphi[x/t] = \{x/t\}\varphi$.

Propoziția 1

Fie \mathcal{A} o structură, $I: V \to A$ o interpretare și $a = t_I^{\mathcal{A}}$. Atunci

1 pentru orice termen u avem $u[x/t]_I^{\mathcal{A}} = u_{I_{x \leftarrow a}}^{\mathcal{A}}$

Fie φ este o formulă, $t \in T_{\mathcal{L}}$ un termen fără variabile și $x \in V$.

Reamintim că $\varphi[x/t]$ este formula obținută înlocuind în φ toate aparițiile libere ale lui x cu t, i.e. $\varphi[x/t] = \{x/t\}\varphi$.

Propoziția 1

Fie \mathcal{A} o structură, $I: V \to A$ o interpretare și $a = t_I^{\mathcal{A}}$. Atunci

- **1** pentru orice termen u avem $u[x/t]_I^A = u_{I_{x\leftarrow a}}^A$
- f 2 pentru orice formulă m arphi avem

$$A, I \vDash \varphi[x/t]$$
 dacă și numai dacă $A, I_{x \leftarrow a} \vDash \varphi$

Intuitiv, a schimba evaluarea I atribuind variabilei x valoarea $a \in A$ este același lucru cu a înlocui variabila x cu un termen t a cărui interpretare prin I este a.

Propoziția 2

Fie $\mathcal H$ o structură Herbrand, $H\colon V\to T_{\mathcal L}$ o interpretare Herbrand, $x\in V$ și $t\in T_{\mathcal L}$ un termen fără variabile. Sunt adevărate:

Propoziția 2

Fie $\mathcal H$ o structură Herbrand, $H\colon V\to T_{\mathcal L}$ o interpretare Herbrand, $x\in V$ și $t\in T_{\mathcal L}$ un termen fără variabile. Sunt adevărate:

Propoziția 2

Fie $\mathcal H$ o structură Herbrand, $H\colon V\to T_{\mathcal L}$ o interpretare Herbrand, $x\in V$ și $t\in T_{\mathcal L}$ un termen fără variabile. Sunt adevărate:

- 2 $\mathcal{H}, H \vDash \varphi[x/t]$ dacă și numai dacă $\mathcal{H}, H_{x \leftarrow t} \vDash \varphi$

Propoziția 2

Fie $\mathcal H$ o structură Herbrand, $H\colon V\to T_{\mathcal L}$ o interpretare Herbrand, $x\in V$ și $t\in T_{\mathcal L}$ un termen fără variabile. Sunt adevărate:

- $\mathbf{I} t_{H}^{\mathcal{H}} = t$
- 2 $\mathcal{H}, H \vDash \varphi[x/t]$ dacă și numai dacă $\mathcal{H}, H_{x \leftarrow t} \vDash \varphi$

Demonstrație

- 1 prin inducție structurală pe termeni.
- Următoarele echivalențe sunt adevărate

$$\mathcal{H}, H \vDash \varphi[x/t]$$
 ddacă $\mathcal{H}, H_{x \leftarrow t_H^{\mathcal{H}}} \vDash \varphi$ ddacă $\mathcal{H}, H_{x \leftarrow t} \vDash \varphi$

Prima echivalență rezultă din Propoziția 1, iar a doua rezultă din punctul 1.

Teorema lui Herbrand

Fie $n \ge 0$ și $\varphi = \forall x_k \dots \forall x_1 \psi$ un enunț în forma Skolem. Atunci φ are un model dacă și numai dacă are un model Herbrand.

Teorema lui Herbrand

Fie $n \ge 0$ și $\varphi = \forall x_k \dots \forall x_1 \psi$ un enunț în forma Skolem. Atunci φ are un model dacă și numai dacă are un model Herbrand.

Demonstrație

Dacă φ are un model Herbrand atunci este, evident, satisfiabilă. Vom demonstra afirmația inversă.

Teorema lui Herbrand

Fie $n \ge 0$ și $\varphi = \forall x_k \dots \forall x_1 \psi$ un enunț în forma Skolem. Atunci φ are un model dacă și numai dacă are un model Herbrand.

Demonstrație

Dacă φ are un model Herbrand atunci este, evident, satisfiabilă. Vom demonstra afirmația inversă.

Fie $\mathcal A$ un model pentru φ , adică $\mathcal A \vDash \varphi$. Vrem să construim un model Herbrand $\mathcal H$ pentru φ , ceea ce revine la a da o interpretare pentru simbolurile de relații.

Demonstrație (cont.)

Dacă
$$R \in \mathbf{R}$$
 și $ari(R) = n$ definim

$$(t_1,\ldots,t_n)\in R^{\mathcal{H}}$$
 dacă și numai dacă $\mathcal{A}\vDash R(t_1,\ldots,t_n)$ (*)

Demonstrație (cont.)

Dacă $R \in \mathbf{R}$ și ari(R) = n definim

$$(t_1,\ldots,t_n)\in R^{\mathcal{H}}$$
 dacă și numai dacă $\mathcal{A}\vDash R(t_1,\ldots,t_n)$ $(*)$

Demonstrăm prin inducție după $k \ge 0$ că

oricare ar fi
$$\varphi = \forall x_k \dots \forall x_1 \ \psi$$
 un enunț în forma Skolem,
$$\mathcal{A} \vDash \varphi \quad \text{implică} \quad \mathcal{H} \vDash \varphi$$

Demonstrație (cont.)

Deci φ este formată din formule atomice care conțin doar termeni fără variabile. Aplicând (*) rezultă că $\mathcal{A} \vDash \varphi$ implică $\mathcal{H} \vDash \varphi$.

- \square Pasul de bază k=0. În acest caz $\varphi=\psi$ și φ nu are variabile libere. Deci φ este formată din formule atomice care conțin doar termeni fără variabile. Aplicând (*) rezultă că $\mathcal{A} \vDash \varphi$ implică $\mathcal{H} \vDash \varphi$.
- \square Presupunem afirmația adevărată pentru k-1 și o demonstrăm pentru k. Dacă notăm $\alpha = \forall x_{k-1} \dots \forall x_1 \ \psi$ atunci $\varphi = \forall x_k \ \alpha$.

- □ Pasul de bază k=0. În acest caz $\varphi=\psi$ și φ nu are variabile libere. Deci φ este formată din formule atomice care conțin doar termeni fără variabile. Aplicând (*) rezultă că $\mathcal{A} \vDash \varphi$ implică $\mathcal{H} \vDash \varphi$.
- □ Presupunem afirmația adevărată pentru k-1 și o demonstrăm pentru k. Dacă notăm $\alpha = \forall x_{k-1} \dots \forall x_1 \psi$ atunci $\varphi = \forall x_k \alpha$. Observăm că α nu satisface ipoteza de inducție deoarece poate conține x_k ca variabilă liberă.

Demonstrație (cont.)

- □ Pasul de bază k=0. În acest caz $\varphi=\psi$ și φ nu are variabile libere. Deci φ este formată din formule atomice care conțin doar termeni fără variabile. Aplicând (*) rezultă că $\mathcal{A} \vDash \varphi$ implică $\mathcal{H} \vDash \varphi$.
- □ Presupunem afirmația adevărată pentru k-1 și o demonstrăm pentru k. Dacă notăm $\alpha = \forall x_{k-1} \dots \forall x_1 \ \psi$ atunci $\varphi = \forall x_k \ \alpha$.

Observăm că α nu satisface ipoteza de inducție deoarece poate conține x_k ca variabilă liberă.

Fie $t \in T_{\mathcal{L}}$ un termen fără variabile. Observăm că $\alpha[x_k/t]$ este enunț în formă Skolem,

Demonstrație (cont.)

- □ Pasul de bază k=0. În acest caz $\varphi=\psi$ și φ nu are variabile libere. Deci φ este formată din formule atomice care conțin doar termeni fără variabile. Aplicând (*) rezultă că $\mathcal{A} \vDash \varphi$ implică $\mathcal{H} \vDash \varphi$.
- □ Presupunem afirmația adevărată pentru k-1 și o demonstrăm pentru k. Dacă notăm $\alpha = \forall x_{k-1} \dots \forall x_1 \ \psi$ atunci $\varphi = \forall x_k \ \alpha$.

Observăm că α nu satisface ipoteza de inducție deoarece poate conține x_k ca variabilă liberă.

Fie $t \in T_{\mathcal{L}}$ un termen fără variabile. Observăm că $\alpha[x_k/t]$ este enunț în formă Skolem, deci $\mathcal{A} \vDash \alpha[x_k/t]$ implică $\mathcal{H} \vDash \alpha[x_k/t]$ din ipoteza de inducție.

Demonstrație (cont.)

 \square $\mathcal{A} \models \varphi$ implică

- \square $\mathcal{A} \models \varphi$ implică
- \square $\mathcal{A}, I \models \varphi$ pentru orice interpretare I, ceea ce implică

- \square $\mathcal{A} \models \varphi$ implică
- \square $\mathcal{A}, I \vDash \varphi$ pentru orice interpretare I, ceea ce implică
- \square A, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem

- \square $\mathcal{A} \models \varphi$ implică
- \square $A, I \models \varphi$ pentru orice interpretare I, ceea ce implică
- \square $A, I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- \square \mathcal{A} , $I \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.

- \square $\mathcal{A} \models \varphi$ implică
- $\square A, I \vDash \varphi$ pentru orice interpretare *I*, ceea ce implică
- \square A, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- \square $A, I \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- ☐ Deoarece / a fost o interpretare arbitrară, am demonstrat că

- \square $\mathcal{A} \models \varphi$ implică
- \square $A, I \models \varphi$ pentru orice interpretare I, ceea ce implică
- \square A, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- \square $A, I \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- ☐ Deoarece I a fost o interpretare arbitrară, am demonstrat că
- \square $\mathcal{A} \vDash \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$.

- $\square \mathcal{A} \models \varphi \text{ implică}$
- $\square A, I \vDash \varphi$ pentru orice interpretare *I*, ceea ce implică
- \square A, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- \square $A, I \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- ☐ Deoarece I a fost o interpretare arbitrară, am demonstrat că
- \square $\mathcal{A} \vDash \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$.
- □ Aplicând ipoteza de inducție obținem

- \square $\mathcal{A} \models \varphi$ implică
- $\square A, I \vDash \varphi$ pentru orice interpretare *I*, ceea ce implică
- \square A, $I_{x_{k}\leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- \square $A, I \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- □ Deoarece / a fost o interpretare arbitrară, am demonstrat că
- \square $\mathcal{A} \vDash \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$.
- ☐ Aplicând ipoteza de inducție obținem
- \square $\mathcal{H} \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$, adică

- \square $\mathcal{A} \models \varphi$ implică
- \square $A, I \models \varphi$ pentru orice interpretare I, ceea ce implică
- \square A, $I_{x_{k}\leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- \square $A, I \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- □ Deoarece I a fost o interpretare arbitrară, am demonstrat că
- \square $\mathcal{A} \vDash \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$.
- ☐ Aplicând ipoteza de inducție obținem
- $\square \mathcal{H} \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$, adică
- $\square \mathcal{H}, H \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$ și orice interpretarea H.

- \square $\mathcal{A} \models \varphi$ implică
- $\square A, I \vDash \varphi$ pentru orice interpretare *I*, ceea ce implică
- \square A, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- \square $A, I \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- □ Deoarece I a fost o interpretare arbitrară, am demonstrat că
- \square $\mathcal{A} \vDash \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$.
- □ Aplicând ipoteza de inducție obținem
- \square $\mathcal{H} \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$, adică
- \square $\mathcal{H}, H \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$ și orice interpretarea H.
- ☐ Folosind Propoziția 2 obținem

- \square $\mathcal{A} \models \varphi$ implică
- $\square A, I \vDash \varphi$ pentru orice interpretare *I*, ceea ce implică
- \square A, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- $\square \mathcal{A}, I \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- □ Deoarece I a fost o interpretare arbitrară, am demonstrat că
- \square $\mathcal{A} \vDash \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$.
- □ Aplicând ipoteza de inducție obținem
- \square $\mathcal{H} \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$, adică
- \square $\mathcal{H}, H \models \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$ și orice interpretarea H.
- ☐ Folosind Propoziția 2 obținem
- $\square \mathcal{H}, \mathcal{H}_{x_k \leftarrow t} \models \alpha$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$ și orice interpretare \mathcal{H} , deci

- \square $\mathcal{A} \models \varphi$ implică
- $\square A, I \vDash \varphi$ pentru orice interpretare *I*, ceea ce implică
- \square A, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- $\square \mathcal{A}, I \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- □ Deoarece I a fost o interpretare arbitrară, am demonstrat că
- \square $\mathcal{A} \vDash \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$.
- □ Aplicând ipoteza de inducție obținem
- \square $\mathcal{H} \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$, adică
- \square $\mathcal{H}, H \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$ și orice interpretarea H.
- □ Folosind Propoziția 2 obținem
- $\square \mathcal{H}, H_{x_k \leftarrow t} \vDash \alpha$ pentru orice $t \in T_{\mathcal{L}}$ și orice interpretare H, deci
- $\square \mathcal{H}, H \vDash \forall x_k \alpha$ pentru orice interpretare H, adică

- \square $\mathcal{A} \models \varphi$ implică
- $\square A, I \models \varphi$ pentru orice interpretare I, ceea ce implică
- \square A, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- $\square \mathcal{A}, I \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- □ Deoarece *I* a fost o interpretare arbitrară, am demonstrat că
- \square $\mathcal{A} \vDash \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$.
- □ Aplicând ipoteza de inducție obținem
- \square $\mathcal{H} \vDash \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$, adică
- \square $\mathcal{H}, H \models \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$ și orice interpretarea H.
- □ Folosind Propoziția 2 obținem
- $\square \mathcal{H}, H_{x_k \leftarrow t} \vDash \alpha$ pentru orice $t \in T_{\mathcal{L}}$ și orice interpretare H, deci
- $\square \mathcal{H}, H \vDash \forall x_k \alpha$ pentru orice interpretare H, adică $\mathcal{H} \vDash \varphi$

Teorema lui Herbrand

Fie $n \ge 0$ și $\varphi = \forall x_k \dots \forall x_1 \psi$ un enunț în forma Skolem. Atunci φ are un model dacă și numai dacă are un model Herbrand.

Teorema lui Herbrand reduce problema satisfiabilității la găsirea unui model Herbrand.

Exemplu

Fie \mathcal{L} un limbaj cu $\mathbf{R} = \{P, R\}$, $\mathbf{C} = \{c_1, c_2, c_3\}$ și ari(P) = ari(R) = 1. Cercetați satisfiabilitatea formulelor:

$$\square \varphi = \forall x \forall y (P(x) \land R(y) \rightarrow P(y))$$

Exemplu

Fie \mathcal{L} un limbaj cu $\mathbf{R} = \{P, R\}$, $\mathbf{C} = \{c_1, c_2, c_3\}$ și ari(P) = ari(R) = 1. Cercetați satisfiabilitatea formulelor:

$$\square \varphi = \forall x \forall y (P(x) \land R(y) \to P(y))$$

Știm că este suficient să găsim un model Herbrand.

Fie \mathcal{L} un limbaj cu $\mathbf{R} = \{P, R\}, \mathbf{C} = \{c_1, c_2, c_3\}$ și ari(P) = ari(R) = 1. Cercetați satisfiabilitatea formulelor:

$$\square \varphi = \forall x \forall y (P(x) \land R(y) \to P(y))$$

Știm că este suficient să găsim un model Herbrand.

Considerăm structura Herbrand H. cu

- $\Box T_{\mathcal{L}} = \{c_1, c_2, c_3\}$ $\Box P^{\mathcal{H}} = \{c_1\} \text{ si } R^{\mathcal{H}} = \{c_1\}$

Fie \mathcal{L} un limbaj cu $\mathbf{R} = \{P, R\}$, $\mathbf{C} = \{c_1, c_2, c_3\}$ și ari(P) = ari(R) = 1. Cercetați satisfiabilitatea formulelor:

$$\square \varphi = \forall x \forall y (P(x) \land R(y) \to P(y))$$

Știm că este suficient să găsim un model Herbrand.

Considerăm structura Herbrand H. cu

- $\Box T_{\mathcal{L}} = \{c_1, c_2, c_3\}$ $\Box P^{\mathcal{H}} = \{c_1\} \text{ si } R^{\mathcal{H}} = \{c_1\}$

Se observă că $\mathcal{H} \models \varphi$, deci φ este satisfiabilă.

Exemplu (cont.)

$$\square \ \psi = (P(c_1) \to R(c_3)) \land (\neg P(c_1) \to P(c_2)).$$

Exemplu (cont.)

 $\psi = (P(c_1) \to R(c_3)) \land (\neg P(c_1) \to P(c_2)).$ Formulele atomice sunt asemănătoare variabilelor din calculul propozițional. Putem scrie interpretările Herbrand într-un tabel

$P(c_1)$	$R(c_3)$	$P(c_2)$	$ \psi $
0	0	0	0
0	0	1	1
0	1	0	0

Exemplu (cont.)

 $\psi = (P(c_1) \to R(c_3)) \land (\neg P(c_1) \to P(c_2)).$ Formulele atomice sunt asemănătoare variabilelor din calculul propozițional. Putem scrie interpretările Herbrand într-un tabel

$P(c_1)$	$R(c_3)$	$P(c_2)$	ψ
0	0	0	0
0	0	1	1
0	1	0	0

Observăm că formula este adevărată într-o interpretare în care $P(c_2)$ este adevărată, iar $P(c_1)$ și $R(c_3)$ sunt false.

Exemplu (cont.)

 $\psi = (P(c_1) \to R(c_3)) \land (\neg P(c_1) \to P(c_2)).$ Formulele atomice sunt asemănătoare variabilelor din calculul propozițional. Putem scrie interpretările Herbrand într-un tabel

$P(c_1)$	$R(c_3)$	$P(c_2)$	ψ
0	0	0	0
0	0	1	1
0	1	0	0

Observăm că formula este adevărată într-o interpretare în care $P(c_2)$ este adevărată, iar $P(c_1)$ și $R(c_3)$ sunt false.

Considerăm structura Herbrand ${\mathcal H}$ cu

$$\square T_{\mathcal{L}} = \{c_1, c_2, c_3\}$$

Exemplu (cont.)

 $\psi = (P(c_1) \to R(c_3)) \land (\neg P(c_1) \to P(c_2)).$ Formulele atomice sunt asemănătoare variabilelor din calculul propozițional. Putem scrie interpretările Herbrand într-un tabel

$P(c_1)$	$R(c_3)$	$P(c_2)$	ψ
0	0	0	0
0	0	1	1
0	1	0	0

Observăm că formula este adevărată într-o interpretare în care $P(c_2)$ este adevărată, iar $P(c_1)$ și $R(c_3)$ sunt false.

Considerăm structura Herbrand \mathcal{H} cu

$$T_{\mathcal{L}} = \{c_1, c_2, c_3\}$$

$$P^{\mathcal{H}} = \{c_1, c_2, c_3\}$$

 $P^{\mathcal{H}} = \{c_2\} \text{ și } R^{\mathcal{H}} = \{c_2\}$

Se observă că $\mathcal{H} \models \psi$, deci ψ este satisfiabilă.

Exemplu

Fie \mathcal{L} un limbaj cu $\mathbf{R}=\{P,R\}$, $\mathbf{C}=\emptyset$ și $\mathit{ari}(P)=\mathit{ari}(R)=1$. Cercetați validitatea formulei

$$\chi = \forall x \forall y \forall z (\neg (P(x) \to R(z)) \lor \neg (\neg P(x) \to P(y)))$$

Exemplu

Fie \mathcal{L} un limbaj cu $\mathbf{R} = \{P, R\}$, $\mathbf{C} = \emptyset$ și $\mathit{ari}(P) = \mathit{ari}(R) = 1$. Cercetați validitatea formulei

$$\chi = \forall x \forall y \forall z (\neg (P(x) \to R(z)) \lor \neg (\neg P(x) \to P(y)))$$

 \square A cerceta validitatea lui χ este echivalent cu a cerceta satisfiabilitatea lui $\neg \chi$

$$\neg \chi = \exists x \exists y \exists z ((P(x) \to R(z)) \land (\neg P(x) \to P(y)))$$

Exemplu

Fie \mathcal{L} un limbaj cu $\mathbf{R} = \{P, R\}$, $\mathbf{C} = \emptyset$ și $\mathit{ari}(P) = \mathit{ari}(R) = 1$. Cercetați validitatea formulei

$$\chi = \forall x \forall y \forall z (\neg (P(x) \to R(z)) \lor \neg (\neg P(x) \to P(y)))$$

 \Box A cerceta validitatea lui χ este echivalent cu a cerceta satisfiabilitatea lui $\neg \chi$

$$\neg \chi = \exists x \exists y \exists z ((P(x) \to R(z)) \land (\neg P(x) \to P(y)))$$

 \square Determinăm forma Skolem: $\mathcal{L}^{sk} = \mathcal{L} \cup \{c_1, c_2, c_3\}$

$$(\neg \chi)^{\mathsf{sk}} = (P(c_1) \to R(c_3)) \land (\neg P(c_1) \to P(c_2))$$

Exemplu

Fie \mathcal{L} un limbaj cu $\mathbf{R} = \{P, R\}$, $\mathbf{C} = \emptyset$ și $\mathit{ari}(P) = \mathit{ari}(R) = 1$. Cercetați validitatea formulei

$$\chi = \forall x \forall y \forall z (\neg (P(x) \to R(z)) \lor \neg (\neg P(x) \to P(y)))$$

 \square A cerceta validitatea lui χ este echivalent cu a cerceta satisfiabilitatea lui $\neg \chi$

$$\neg \chi = \exists x \exists y \exists z ((P(x) \to R(z)) \land (\neg P(x) \to P(y)))$$

lacksquare Determinăm forma Skolem: $\mathcal{L}^{\mathit{sk}} = \mathcal{L} \cup \{c_1, c_2, c_3\}$

$$(\neg \chi)^{sk} = (P(c_1) \rightarrow R(c_3)) \land (\neg P(c_1) \rightarrow P(c_2))$$

□ Din exercițiul anterior știm că $(\neg \chi)^{sk}$ este satisfiabilă, deci $\neg \chi$ este satisfiabilă. În concluzie, χ nu este adevărată în logica de ordinul I, i.e $\not\vDash \chi$.

Universul Herbrand al unei formule

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

Definim $T(\varphi)$, universul Herbrand al formulei φ , astfel:

dacă c este o constantă care apare în φ atunci $c \in T(\varphi)$,
dacă φ nu conține nicio constantă atunci alegem o constantă arbitrară c și considerăm că $c \in T(\varphi)$,
dacă f este un simbol de funcție care apare în φ cu ari(f) = n și $t_1, \dots, t_n \in T(\varphi)$ atunci $f(t_1, \dots, t_n) \in T(\varphi)$.

Universul Herbrand al unei formule

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

- \square Definim $T(\varphi)$, universul Herbrand al formulei φ , astfel:
 - \square dacă c este o constantă care apare în φ atunci $c \in T(\varphi)$,
 - dacă φ nu conține nicio constantă atunci alegem o constantă arbitrară c și considerăm că $c \in \mathcal{T}(\varphi)$,
 - □ dacă f este un simbol de funcție care apare în φ cu ari(f) = n și $t_1, \ldots, t_n \in T(\varphi)$ atunci $f(t_1, \ldots, t_n) \in T(\varphi)$.

Exemplu

- \square pt. $\varphi_1 = \forall x \forall y (P(x) \land R(y) \rightarrow P(y))$ avem $T(\varphi_1) = \{c\}$
- \square pt. $\varphi_2 = \forall x (\neg P(x) \land P(f(c)))$ avem $T(\varphi_2) = \{c, f(c), f(f(c)), \ldots\}$

Intuitiv, $T(\varphi)$ este mulțimea termenilor care se pot construi folosind simbolurile de funcții care apar în φ .

Extensia Herbrand a unei formule

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

 \square Definim extensia Herbrand a lui φ astfel

$$\mathcal{H}(\varphi) = \{ \psi[x_1/t_1, \dots, x_n/t_n] \mid t_1, \dots, t_n \in \mathcal{T}(\varphi) \}$$

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

 \square Definim extensia Herbrand a lui φ astfel

$$\mathcal{H}(\varphi) = \{ \psi[x_1/t_1, \dots, x_n/t_n] \mid t_1, \dots, t_n \in T(\varphi) \}$$

Exemplu

$$\Box \varphi_1 = \forall x \forall y (P(x) \land R(y) \to P(y))
T(\varphi_1) = \{c\}
\mathcal{H}(\varphi_1) = \{P(c) \land R(c) \to P(c)\}$$

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

 \square Definim extensia Herbrand a lui φ astfel

$$\mathcal{H}(\varphi) = \{ \psi[x_1/t_1, \dots, x_n/t_n] \mid t_1, \dots, t_n \in T(\varphi) \}$$

Exemplu

- $\Box \varphi_1 = \forall x \forall y (P(x) \land R(y) \to P(y))$ $T(\varphi_1) = \{c\}$ $\mathcal{H}(\varphi_1) = \{P(c) \land R(c) \to P(c)\}$
- $\Box \varphi_2 = \forall x (\neg P(x) \land P(f(c)))$ $T(\varphi_2) = \{c, f(c), f(f(c)), \ldots\}$ $\mathcal{H}(\varphi_2) = \{\neg P(c) \land P(f(c)), \neg P(f(c)) \land P(f(c)), \\
 \neg P(f(f(c))) \land P(f(c)), \neg P(f(f(f(c)))) \land P(f(c)), \ldots\}$

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

Teoremă

Sunt echivalente:

 $\square \varphi$ este satisfiabilă,

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

Teoremă

Sunt echivalente:

- $\square \varphi$ este satisfiabilă,
- \square φ are un model Herbrand \mathcal{H} cu proprietatea că $\mathbf{R}^{\mathcal{H}} \subseteq T(\varphi)^n$ pentru orice relație $R \in \mathbf{R}$ cu ari(R) = n care apare în φ ,

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

Teoremă

Sunt echivalente:

- $\square \varphi$ este satisfiabilă,
- \square φ are un model Herbrand \mathcal{H} cu proprietatea că $\mathbf{R}^{\mathcal{H}} \subseteq T(\varphi)^n$ pentru orice relație $R \in \mathbf{R}$ cu ari(R) = n care apare în φ ,
- \square mulțimea de formule $\mathcal{H}(\varphi)$ este satisfiabilă.

Exemplu

```
 \Box \varphi_1 = \forall x \forall y (P(x) \land R(y) \to P(y)) 
 T(\varphi_1) = \{c\} 
 \mathcal{H}(\varphi_1) = \{P(c) \land R(c) \to P(c)\} 
 \mathcal{H}(\varphi_1) \text{ este satisfiabilă: } P^{\mathcal{H}} = R^{\mathcal{H}} = \{c\}
```

Exemplu

```
 \Box \varphi_1 = \forall x \forall y (P(x) \land R(y) \rightarrow P(y)) 
 T(\varphi_1) = \{c\} 
 \mathcal{H}(\varphi_1) = \{P(c) \land R(c) \rightarrow P(c)\} 
 \mathcal{H}(\varphi_1) \text{ este satisfiabilă: } P^{\mathcal{H}} = R^{\mathcal{H}} = \{c\} 
 \Box \varphi_2 = \forall x (\neg P(x) \land P(f(c))) 
 T(\varphi_2) = \{c, f(c), f(f(c)), \ldots\} 
 \mathcal{H}(\varphi_2) = \{\neg P(c) \land P(f(c)), \neg P(f(c)) \land P(f(c)), \neg P(f(f(c)), \cdots\} 
 \mathcal{H}(\varphi_2) \text{ nu este satisfiabilă: conține formula } \neg P(f(c)) \land P(f(c)).
```

- ☐ Cercetarea validității poate fi redusă la cercetarea satisfiabilității.
- Cercetarea satisfiabilității unei formule poate fi redusă la cercetarea satisfiabilității unui enunț în forma Skolem.
- □ Teorema lui Herbrand reduce verificarea satisfiabilitătii unui enunț în forma Skolem la verificarea satisfiabilității în universul Herbrand.
- În situații particulare Teorema lui Herbrand ne dă o procedură de decizie a satisfiabilității, dar acest fapt nu este adevărat în general:
 - dacă limbajul \mathcal{L} conține cel putin o constantă și cel puțin un simbol de funcție f cu $ari(f) \geq 1$ atunci universul Herbrand $\mathcal{T}_{\mathcal{L}}$ este infinit.

Decidabilitate și semi-decidabilitate

□ O problemă de decizie este o problemă cu răspuns binar T/F.

Este *n* număr prim?

□ O problemă de decizie este o problemă cu răspuns binar T/F.

Este *n* număr prim?

 \square O problemă de decizie $\mathfrak{D}(x)$ este decidabilă dacă există un algoritm care, pentru orice intrare x, întoarce \top când $\mathfrak{D}(x)$ este adevărată și \vdash când $\mathfrak{D}(x)$ este falsă.

□ O problemă de decizie este o problemă cu răspuns binar T/F.

Este *n* număr prim?

- \square O problemă de decizie $\mathfrak{D}(x)$ este decidabilă dacă există un algoritm care, pentru orice intrare x, întoarce \top când $\mathfrak{D}(x)$ este adevărată și \vdash când $\mathfrak{D}(x)$ este falsă.
- \square O problemă de decizie $\mathfrak{D}(x)$ este semi-decidabilă (recursiv enumerabilă) dacă există un algoritm care, pentru orice intrare x, întoarce \square când $\mathfrak{D}(x)$ este adevărată, dar este posibil să nu se termine când $\mathfrak{D}(x)$ este falsă.

□ O problemă de decizie este o problemă cu răspuns binar T/F.

Este *n* număr prim?

- \square O problemă de decizie $\mathfrak{D}(x)$ este decidabilă dacă există un algoritm care, pentru orice intrare x, întoarce \top când $\mathfrak{D}(x)$ este adevărată și \vdash când $\mathfrak{D}(x)$ este falsă.
- \square O problemă de decizie $\mathfrak{D}(x)$ este semi-decidabilă (recursiv enumerabilă) dacă există un algoritm care, pentru orice intrare x, întoarce \square când $\mathfrak{D}(x)$ este adevărată, dar este posibil să nu se termine când $\mathfrak{D}(x)$ este falsă.

 $\mathfrak{D}(n) = "n$ este număr prim" este decidabilă.

Problema validității ¹

Vom analiza problema validității în logica de ordinul I, adică:

$$\mathfrak{D}(\varphi) = "\varphi \text{ este validă"}$$

¹Referințe

M. Huth, M. Ryan, Logic in Computer Science, 2009 http://www.cs.ox.ac.uk/people/james.worrell/lectures.html

Problema validității ¹

Vom analiza problema validității în logica de ordinul I, adică:

$$\mathfrak{D}(\varphi) = "\varphi \text{ este validă"}$$

 \square În logica de ordinul I, problema validității $\mathfrak{D}(\varphi)$ este semi-decidabilă.

¹Referinte

M. Huth, M. Ryan, Logic in Computer Science, 2009 http://www.cs.ox.ac.uk/people/james.worrell/lectures.html

Problema validității ¹

Vom analiza problema validității în logica de ordinul I, adică:

$$\mathfrak{D}(\varphi) = "\varphi \text{ este validă"}$$

- \square În logica de ordinul I, problema validității $\mathfrak{D}(\varphi)$ este semi-decidabilă.
- \square În logica de ordinul I, problema validității $\mathfrak{D}(\varphi)$ nu este decidabilă.

¹Referinte

M. Huth, M. Ryan, Logic in Computer Science, 2009 http://www.cs.ox.ac.uk/people/james.worrell/lectures.html

 $\mathfrak{D}(\varphi)$?

Teorema de compacitate - cazul propozițional

În calculul propozițional o mulțime de formule Γ este satisfiabilă dacă și numai dacă orice submulțime finită a sa este satisfiabilă.

$$\mathfrak{D}(\varphi)$$
 ?

Teorema de compacitate - cazul propozițional

În calculul propozițional o mulțime de formule Γ este satisfiabilă dacă și numai dacă orice submulțime finită a sa este satisfiabilă.

Corolar

Fie φ un enunț în forma Skolem (în logica de ordinul I) și $\mathcal{H}(\varphi)$ extensia sa Herbrand. Sunt echivalente:

- $\square \varphi$ nu este satisfiabilă,
- \square există o submulțime finită a lui $\mathcal{H}(\varphi)$ care nu este satisfiabilă.

 $\mathfrak{D}(\varphi)$?

Procedură de semi-decidabilitate pentru validitate

Intrare: φ enunț

$$\mathfrak{D}(\varphi)$$
?

Procedură de semi-decidabilitate pentru validitate

Intrare: φ enunț

I se determina ψ forma Skolem pentru $\neg \varphi$ (ψ este $(\neg \phi)^{sk}$)

$$\mathfrak{D}(\varphi)$$
?

Procedură de semi-decidabilitate pentru validitate

Intrare: φ enunț

- **II** se determina ψ forma Skolem pentru $\neg \varphi$ (ψ este $(\neg \phi)^{sk}$)
- 2 fie $\{\psi_1, \psi_2, \psi_3, \ldots\}$ o enumerare pentru $\mathcal{H}(\psi)$

$$\mathfrak{D}(\varphi)$$
?

Procedură de semi-decidabilitate pentru validitate

Intrare: φ enunț

- **II** se determina ψ forma Skolem pentru $\neg \varphi$ (ψ este $(\neg \phi)^{sk}$)
- ullet fie $\{\psi_1,\psi_2,\psi_3,\ldots\}$ o enumerare pentru $\mathcal{H}(\psi)$
- ${f B}$ pentru $n=1,2,3,\ldots$ execută dacă $\{\psi_1,\ldots,\psi_n\}$

$$\mathfrak{D}(\varphi)$$
?

Procedură de semi-decidabilitate pentru validitate

```
Intrare: \varphi enunț
```

- **II** se determina ψ forma Skolem pentru $\neg \varphi$ (ψ este $(\neg \phi)^{sk}$)

```
g pentru n=1,2,3,\ldots execută dacă \{\psi_1,\ldots,\psi_n\} nu este satisfiabilă atunci \{\ \mbox{leşire:}\ \varphi\ \mbox{este valid;} \mbox{stop}\ \}
```

□ Problema corespondenței lui Post (PCP)

Fie $\mathbf{P}=\{(w_1,w_1'),\ldots,(w_k,w_k')\}$ cu $w_i,w_i'\in\{0,1\}^+$. O soluție pentru \mathbf{P} este o secvență de indici i_1,i_2,\ldots,i_n cu $n\geq 1$ astfel încât $w_{i_1}\cdots w_{i_n}=w_{i_1}'\cdots w_{i_n}'$.

Exemplu

P :

1	
101	

□ Problema corespondenței lui Post (PCP)

Fie
$$\mathbf{P}=\{(w_1,w_1'),\ldots,(w_k,w_k')\}$$
 cu $w_i,w_i'\in\{0,1\}^+$. O soluție pentru \mathbf{P} este o secvență de indici i_1,i_2,\ldots,i_n cu $n\geq 1$ astfel încât $w_{i_1}\cdots w_{i_n}=w_{i_1}'\cdots w_{i_n}'$.

Exemplu

P :

1	
101	

10 00

Secvența (1,3,2,3) este soluție:

101

011 10 11 00 011

101110011 101110011

□ Problema corespondenței lui Post (PCP)

Fie
$$\mathbf{P}=\{(w_1,w_1'),\ldots,(w_k,w_k')\}$$
 cu $w_i,w_i'\in\{0,1\}^+$. O soluție pentru \mathbf{P} este o secvență de indici i_1,i_2,\ldots,i_n cu $n\geq 1$ astfel încât $w_{i_1}\cdots w_{i_n}=w_{i_1}'\cdots w_{i_n}'$.

Exemplu

P :

1
101

10 00 011

Secvenţa (1,3,2,3) este soluţie:

1 011 10 011 101 11 00 11

101110011 101110011

□ PCP este nedecidabiă (E.Post, 1946)

Teorema Church-Turing

Problema validității în logica de ordinul I este nedecidabilă.

Teorema Church-Turing

Problema validității în logica de ordinul I este nedecidabilă.

Demonstrație (schiță)

Vom arăta că problema validității poate fi redusă la PCP:

fiind dată o problemă de corespondență $\mathbf{P} = \{(w_1, w_1'), \dots, (w_k, w_k')\}$ există o formulă $\varphi_{\mathbf{P}}$ astfel încât

P are o soluție dacă și numai dacă $\models \varphi_{\mathbf{P}}$.

Teorema Church-Turing

Problema validității în logica de ordinul I este nedecidabilă.

Demonstrație (schiță)

Vom arăta că problema validității poate fi redusă la PCP:

fiind dată o problemă de corespondență $\mathbf{P} = \{(w_1, w_1'), \dots, (w_k, w_k')\}$ există o formulă $\varphi_{\mathbf{P}}$ astfel încât

P are o soluție dacă și numai dacă $\vDash \varphi_{\mathbf{P}}$.

Definim \mathcal{L} un limbaj de ordinul I cu $\mathbf{F} = \{f_0, f_1\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{e\}$, $ari(f_0) = ari(f_1) = 1$ și ari(P) = 2

Teorema Church-Turing

Problema validității în logica de ordinul I este nedecidabilă.

Demonstrație (schiță)

Vom arăta că problema validității poate fi redusă la PCP:

fiind dată o problemă de corespondență $\mathbf{P} = \{(w_1, w_1'), \dots, (w_k, w_k')\}$ există o formulă $\varphi_{\mathbf{P}}$ astfel încât

P are o soluție dacă și numai dacă $\models \varphi_{\mathbf{P}}$.

Definim \mathcal{L} un limbaj de ordinul I cu $\mathbf{F} = \{f_0, f_1\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{e\}$, $ari(f_0) = ari(f_1) = 1$ și ari(P) = 2

Pentru $b_1 \dots b_n \in \{0,1\}^+$ definim $f_{b_1 \dots b_n} := f_{b_n}(f_{b_{n-1}}(\dots (f_{b_1}(e))\dots))$

Demonstrație (schiță)

Fie $\mathbf{P} = \{(w_1, w_1'), \dots, (w_k, w_k')\}$ o problemă de corespondență. Definim

$$\varphi_1 := \bigwedge_{i=1}^k P(f_{w_i}(e), f_{w'_i}(e))$$

Demonstrație (schiță)

Fie $\mathbf{P} = \{(w_1, w_1'), \dots, (w_k, w_k')\}$ o problemă de corespondență. Definim

$$\varphi_1 := \bigwedge_{i=1}^k P(f_{w_i}(e), f_{w'_i}(e))$$

$$\varphi_2 := \forall x \forall y \left(P(x, y) \to \bigwedge_{i=1}^k P(f_{w_i}(x), f_{w'_i}(y)) \right)$$

Demonstrație (schiță)

Fie $\mathbf{P} = \{(w_1, w_1'), \dots, (w_k, w_k')\}$ o problemă de corespondență. Definim

$$\varphi_{1} := \bigwedge_{i=1}^{k} P(f_{w_{i}}(e), f_{w'_{i}}(e))
\varphi_{2} := \forall x \forall y \left(P(x, y) \to \bigwedge_{i=1}^{k} P(f_{w_{i}}(x), f_{w'_{i}}(y)) \right)
\psi := \exists z P(z, z)$$

Demonstrație (schiță)

Fie $\mathbf{P} = \{(w_1, w_1'), \dots, (w_k, w_k')\}$ o problemă de corespondență. Definim

$$\varphi_{1} := \bigwedge_{i=1}^{k} P(f_{w_{i}}(e), f_{w'_{i}}(e))$$

$$\varphi_{2} := \forall x \forall y \left(P(x, y) \to \bigwedge_{i=1}^{k} P(f_{w_{i}}(x), f_{w'_{i}}(y)) \right)$$

$$\psi := \exists z P(z, z)$$

$$\varphi_{\mathbf{P}} := \varphi_1 \wedge \varphi_2 \to \psi$$

Demonstrăm că $\models \varphi_{\mathbf{P}}$ implică existența unei soluții pentru \mathbf{P} .

Demonstrație (schiță)

Fie $\mathbf{P} = \{(w_1, w_1'), \dots, (w_k, w_k')\}$ o problemă de corespondență. Definim

$$\begin{split} \varphi_1 &:= \bigwedge_{i=1}^k P(f_{w_i}(e), f_{w'_i}(e)) \\ \varphi_2 &:= \forall x \forall y \left(P(x, y) \to \bigwedge_{i=1}^k P(f_{w_i}(x), f_{w'_i}(y)) \right) \\ \psi &:= \exists z P(z, z) \end{split}$$

$$\varphi_{\mathbf{P}} := \varphi_1 \wedge \varphi_2 \to \psi$$

Demonstrăm că $\models \varphi_{\mathbf{P}}$ implică existența unei soluții pentru \mathbf{P} .

Definim un model A:

$$A = \{0,1\}^*, \ e^A := \lambda, \ f_0^A(v) := v0, \ f_1^A(v) := v1$$

Demonstrație (schiță)

Fie $\mathbf{P} = \{(w_1, w_1'), \dots, (w_k, w_k')\}$ o problemă de corespondență. Definim

$$\begin{split} \varphi_1 &:= \bigwedge_{i=1}^k P(f_{w_i}(e), f_{w'_i}(e)) \\ \varphi_2 &:= \forall x \forall y \left(P(x, y) \to \bigwedge_{i=1}^k P(f_{w_i}(x), f_{w'_i}(y)) \right) \\ \psi &:= \exists z P(z, z) \end{split}$$

$$\varphi_{\mathbf{P}} := \varphi_1 \wedge \varphi_2 \to \psi$$

Demonstrăm că $\models \varphi_{\mathbf{P}}$ implică existența unei soluții pentru \mathbf{P} .

Definim un model A:

$$A = \{0, 1\}^*, e^A := \lambda, f_0^A(v) := v0, f_1^A(v) := v1$$

 $P^A = \{(\mathbf{w}, \mathbf{w}') \mid \text{există } n \ge 1 \text{ și } i_1, \dots, i_n \text{ astfel încât} \}$

$$\mathbf{w} = w_{i_1} \cdots w_{i_n} \text{ și } \mathbf{w}' = w_{i_1} \cdots w_{i_n}$$

Demonstrație (schiță)

Fie $\mathbf{P} = \{(w_1, w_1'), \dots, (w_k, w_k')\}$ o problemă de corespondență. Definim

$$\varphi_1 := \bigwedge_{i=1}^k P(f_{w_i}(e), f_{w'_i}(e))
\varphi_2 := \forall x \forall y \left(P(x, y) \to \bigwedge_{i=1}^k P(f_{w_i}(x), f_{w'_i}(y)) \right)
\psi := \exists z P(z, z)$$

$$\varphi_{\mathbf{P}} := \varphi_1 \wedge \varphi_2 \to \psi$$

Demonstrăm că $\models \varphi_{\mathbf{P}}$ implică existența unei soluții pentru $\mathbf{P}.$

Definim un model A:

$$A = \{0,1\}^*, \ e^A := \lambda, \ f_0^A(v) := v0, \ f_1^A(v) := v1$$

$$P^{\mathcal{A}} = \{(\mathbf{w}, \mathbf{w}') \mid \text{ există } n \geq 1 \text{ și } i_1, \dots, i_n \text{ astfel încât}$$

 $\mathbf{w} = w_{i_1} \cdots w_{i_n} \text{ și } \mathbf{w}' = w'_{i_1} \cdots w'_{i_n} \}$

Ştim $\mathcal{A} \vDash \varphi_{\mathbf{P}}$ şi observăm că $\mathcal{A} \vDash \varphi_1 \land \varphi_2$. Rezultă $\mathcal{A} \vDash \psi$, deci \mathbf{P} are o soluție.

Demonstrație (schiță)

Fie $\mathbf{P} = \{(w_1, w_1'), \dots, (w_k, w_k')\}$ o problemă de corespondență. Definim

$$\begin{split} \varphi_1 &:= \bigwedge_{i=1}^k P(f_{w_i}(e), f_{w'_i}(e)) \\ \varphi_2 &:= \forall x \forall y \left(P(x, y) \to \bigwedge_{i=1}^k P(f_{w_i}(x), f_{w'_i}(y)) \right) \\ \psi &:= \exists z P(z, z) \end{split}$$

$$\varphi_{\mathbf{P}} := \varphi_1 \wedge \varphi_2 \to \psi$$

Demonstrăm că $\models \varphi_{\mathbf{P}}$ implică existența unei soluții pentru \mathbf{P} .

Definim un model A:

$$A = \{0,1\}^*, \ e^A := \lambda, \ f_0^A(v) := v0, \ f_1^A(v) := v1$$

$$P^{\mathcal{A}} = \{(\mathbf{w}, \mathbf{w}') \mid \text{ există } n \geq 1 \text{ și } i_1, \dots, i_n \text{ astfel încât}$$

 $\mathbf{w} = w_{i_1} \cdots w_{i_n} \text{ și } \mathbf{w}' = w'_{i_1} \cdots w'_{i_n} \}$

Ştim $\mathcal{A} \vDash \varphi_{\mathbf{P}}$ şi observăm că $\mathcal{A} \vDash \varphi_1 \land \varphi_2$. Rezultă $\hat{\mathcal{A}} \vDash \psi$, deci \mathbf{P} are o soluție. *Cealaltă implicație este tehnică*.

- ☐ În logica de ordinul I, problema validității este semi-decidabilă.
- ☐ În logica de ordinul I, problema validității nu este decidabilă.

- ☐ În logica de ordinul I, problema validității este semi-decidabilă.
- ☐ În logica de ordinul I, problema validității nu este decidabilă.
- ☐ În logica de ordinul I, problema satsfiabilității nu este decidabilă.

- ☐ În logica de ordinul I, problema validității este semi-decidabilă.
- ☐ În logica de ordinul I, problema validității nu este decidabilă.
- În logica de ordinul I, problema satsfiabilității nu este decidabilă.
- În logica de ordinul I, problema satisfiabilității nu este semi-decidabilă.

- ☐ În logica de ordinul I, problema validității este semi-decidabilă.
- □ În logica de ordinul I, problema validității nu este decidabilă.
- În logica de ordinul I, problema satsfiabilității nu este decidabilă. De ce?
- În logica de ordinul I, problema satisfiabilității nu este semi-decidabilă. De ce?

Pe săptămâna viitoare!