Paired passive aggressive for ranking and classification

Author I Author1@somewhere

Department of University of City, WA 98195-4322, USA

Author II Author2@somewhere

Department of University of City, WA 98195-4322, USA

Editor: some editor

Abstract

This paper describes the

Keywords: Passive aggressive, AUC, MAP

1. Introduction

The importance of the problem Related work

2. Problem Setting

Notation

AUC notation x+ and x-...

We are interested in the case where at each time point t we receive a batch of n_t sample and than choose how to update the vector weights \boldsymbol{w} . At each time point t we solve an optimization problem which performs a trade off between two things. First, it aims that the new solution \boldsymbol{w} will be close to the former weight vector w_t . Second we prefer to classify all the samples provided at time t correctly with a margin of 1.

minimize
$$\frac{1}{2}||\boldsymbol{w} - \boldsymbol{w}_t||^2 + C\sum_{i=1}^{n_t} \xi_i$$
subject to
$$1 - \boldsymbol{w}^T \boldsymbol{x}_i \boldsymbol{y}_i \leq \xi_i, \quad i = 1, \dots, n_t.$$

There are some benefits of an update which uses several samples for the update. First, in cases where the data is unbalanced, using a balanced updating scheme that introduce an equal number of samples at time point t we can come up with guaranties both for the classification mistakes and for the AUC. Second, an update rule that uses several samples at a single time point t is internally tuned since the we need to advanced w in a way that is agreeable with the samples at time t.

3. Average Classification Loss

Define the loss and the problem

Derive the update rule

Theorem 1: the expected loss is less than the average loss

Theorem 2: 1-AUC is bounded

Theorem 3: Show that classification is correct and wx+>0 while wx-<0 after the update

4. Double-slack

We are interested in solving a passive aggressive style problem only that we are shown n_t examples at time t. This minibatch setting and the way we choose to solve it have a great deal of implication on the solution where different steps will yield different results.

minimize
$$\frac{1}{2}||\boldsymbol{w} - \boldsymbol{w}_t||^2 + C\sum_{i=1}^{n_t} \xi_i$$
subject to
$$1 - \boldsymbol{w}^T \boldsymbol{x}_i \boldsymbol{y}_i \leq \xi_i, \quad i = 1, \dots, n_t.$$

The dual problem is

maximize
$$\frac{1}{2}||\sum_{i=1}^{n_t} \alpha_i \boldsymbol{x}_i \boldsymbol{y}_i||^2 + \sum_{i=1}^{n_t} \alpha_i (1 - \boldsymbol{w}_t^T \boldsymbol{x}_i \boldsymbol{y}_i)$$
subject to
$$0 \le \alpha_i \le C, \quad i = 1, \dots, n_t.$$

We aim to maximize the dual function so at each step we choose a set of indices \mathcal{J} to increase using the same step.

$$\alpha_i = \alpha_i + \delta, \ j \in \mathcal{J}$$

We derive the following δ

$$\delta = max(L_b, min(U_b, \frac{|\mathcal{J}| - \boldsymbol{w}_t^T \sum_{j \in \mathcal{J}} \boldsymbol{x}_j y_j}{||\sum_{j \in \mathcal{J}} \boldsymbol{x}_j y_j||^2}))$$

Where $L_b = \max_{j \in \mathcal{J}} (-\alpha_j)$ and $U_b = \min_{j \in \mathcal{J}} (C - \alpha_j)$ which appear since each of the updated α_j needs to keep its constrain $0 \le \alpha_j \le C$. It is possible that a step that advances all $j \in \mathcal{J}$ does not exists because U_b could be smaller than L_b . We will always be able to perform at least one such step since we initialize α_i as zero. If we partition the set of samples and at each iteration we use a different partition, we are guaranteed that $L_b \le U_b$ since we advance all the dual variables in each partition with the same steps.

We can think of this as updating a new vector $\mathbf{x}^{\mathcal{J}} = \sum_{j \in \mathcal{J}} \mathbf{x}_j y_j$ where $\mathbf{y}^{\mathcal{J}} = 1$. Only here $\mathbf{x}^{\mathcal{J}}$ should be correct with a margin of $|\mathcal{J}|$. We than update \mathbf{w} using $\mathbf{x}^{\mathcal{J}}$ with the step size δ . * this is not entirely correct because of the constrains we have on the δ .

Using various sets of \mathcal{J} and various number of iteration at time t we propose several update rules:

In the case where at time t we are provided with two samples $(n_t = 2), x^+, x^-$.

- I. PA-DCA Iterate until convergence at each iteration choose a single sample ($|\mathcal{J}|=1$).
- II. PA-sequential Iterate only once for x^+ and than once for x^- .
- III. PA-AUC Iterate only once using both samples $\mathcal{J} = \{x^+, x^-\}$.
- IV. PA-correctMistakes Iterate only once use only the samples that failed to achieve correct classification with the margin. $\mathcal{J} = \{x^+, x^-\}$ or $\{x^+\}$ or $\{x^-\}$.

In the case where we are presented n samples.

- I. PA-DCA Iterate until convergence at each iteration choose a single sample ($|\mathcal{J}| = 1$).
- II. PA-sequential Iterate only once for each sample.
- III. PA-maxViolators Iterate only once. Here \mathcal{J} contains the positive sample that caused the highest loss and the negative sample that caused the highest loss.
- IV. PA-correctMistakes Iterate only once use only the samples that failed to achieve correct classification with the margin. $\mathcal{J} = \{i | 0 \leq l_{w_t}(\boldsymbol{x}_i, y_i)\}.$

Theorem 4: convergence of DCA

Theorem 5: classification errors –; number of mistakes

Theorem 6: As in the case of the classical passive aggressive if our step is not caped by C after the update we will correctly classify the samples. In case where we are caped by C the loss of the samples we choose to update will decrease. But we are not guarantied a correct classification.

Show that classification is correct and wx + > 0 while wx - < 0 after the update when it is not caped.

Theorem 7: from Theorem 5 it follows that 1-AUC is bounded

5. Calibrated Multilabel Classification and Ranking

Calibrated separation ranking loss was proposed by?

Derive update rule

Theorem 8: correct multilabels are above the incorrect set of labels

Can we show that 1-MAP is bounded?

6. Experiments

Synthetic data

Discriminative keyword spotting with algo 1 and algo 2 LETOR3 data for ranking with algo 1 and algo 2 multi label - Reuters

Acknowledgments

We would like to acknowledge support for this project

Appendix A.

In this appendix we prove the following theorem from Section X.X:

Theorem First we will show that the 1 - AUC is bounded by the mean of the errors in the first class and the mean number of errors in the second class. $1 - AUC \le E(M^+) + E(M^-)$

Proof

$$1 - AUC = \frac{1}{|X^{-}||X^{+}|} \sum_{x^{+} \in X^{+}, x^{-} \in X^{-}} \mathbb{1}_{\boldsymbol{w}^{T} \boldsymbol{x}^{+} \leq \boldsymbol{w}^{T} \boldsymbol{x}^{-}} \leq \frac{1}{|X^{-}||X^{+}|} \sum_{x^{+} \in X^{+}, \boldsymbol{x}^{-} \in X^{-}} \mathbb{1}_{\boldsymbol{w}^{T} \boldsymbol{x}^{+} \leq 0} + \mathbb{1}_{0 \leq \boldsymbol{w}^{T} \boldsymbol{x}^{-}} = \frac{1}{|X^{+}|} \sum_{x^{+} \in X^{+}} \mathbb{1}_{\boldsymbol{w}^{T} \boldsymbol{x}^{+} \leq 0} + \frac{1}{|X^{-}|} \sum_{x^{-} \in X^{-}} \mathbb{1}_{0 \leq \boldsymbol{w}^{T} \boldsymbol{x}^{-}} = E(M^{+}) + E(M^{-}) \quad (1)$$

and that is that.

Theorem The sum of the average mistake in the two classes can be bounded

$$E(M^{+}) + E(M^{-}) \le \frac{1}{|X^{-}||X^{+}|} \max\{R^{2}, 1/C\} (||\mathbf{u}||^{2} + 2C \sum_{t=1}^{T} l_{t}^{*+} + l_{t}^{*-})$$

Proof.

(2)