

American International University-Bangladesh (AIUB)

Course: INTRODUCTION TO DATA SCIENCE [D]

Faculty Name: TOHEDUL ISLAM

Student Name: Shanto Kumar Basak

ID: 20-42945-1

Submitted Date: 13th March 2023

1) Print the Data Set

dset_1 <- read.csv("F:/Dataset_midterm.csv",header=TRUE,sep=",")
dset_1</pre>

2) Identify the Characteristics From The Data Collection.

names(dset_1)

3) An overview of each attribute in the data set

summary(dset_1)

4) From the Blood attribute, annotate high as 1, normal as 2, and low as 3.

 $dset_1$Blood <- factor(dset_1$Blood,$ levels = c("high", "normal", "low"), labels = c(1,2,3))

dset_1

5) For each attribute, locate the missing value.

colSums(is.na(dset_1))

6) Determine the exact row number where an attribute has no values.

```
which(is.na(dset_1$Age))
which(is.na(dset_1$weight.kg.))
which(is.na(dset_1$Delivery_num
be r))
which(is.na(dset_1$Delivery_time
)) which(is.na(dset_1$Blood))
which(is.na(dset_1$Caesarian))
```


7) Find the outlier by looking for a missing value.

dset_1\$missing_value= is.na(dset_1\$Age) | is.na(dset_1\$weight.kg.) | is.na(dset_1\$Delivery_number) | is.na(dset_1\$Delivery_time) | is.na(dset_1\$Blood) | is.na(dset_1\$Caesarian)

8) Use the following methods to recover missing values.

I. Delete the rows with empty values from the data collection.

remove_missingvalue<- na.omit(dset_1)

II. Use the mean value to fill in any gaps in data.

dset_1

```
meanvalueAge

dset_1[is.na(dset_1$Age), "Age"] <-meanvalueAge

dset_1

meanvalueWeight <-mean(dset_1$weight.kg.,na.rm=TRUE)

meanvalueWeight

dset_1[is.na(dset_1$weight.kg.), "weight.kg."] <-meanvalueWeight
```

meanvalueDelivery_number <-mean(dset_1\$Delivery_number,na.rm=TRUE)

meanvalueDelivery_number

dset_1[is.na(dset_1\$Delivery_number), "Delivery_number"] <-meanvalueDelivery_number

dset_1

meanvalueDelivery_time <-mean(dset_1\$Delivery_time,na.rm=TRUE)

meanvalueDelivery_time

dset_1[is.na(dset_1\$Delivery_time), "Delivery_time"] <-meanvalueDelivery_time

dset_1

meanvalueCaesarian <-mean(dset_1\$Caesarian,na.rm=TRUE)
meanvalueCaesarian
dset_1[is.na(dset_1\$Caesarian), "Caesarian"] <-meanvalueCaesarian
dset_1


```
III. Use the mode value to recover missing values.
modeAge=names(sort(table(dset_1$Age)))[1]
modeAge
dset_1[is.na(dset_1$Age), "Age"] <-modeAge
dset 1
modeweight=names(sort(table(dset_1$weight.kg.)))[1]
modeweight
dset_1[is.na(dset_1$weight.kg.), "weight.kg."] <-modeweight
dset_1
modeDelivery_number=names(sort(table(dset_1$Delivery_number)))[1]
modeDelivery_number
dset_1[is.na(dset_1$Delivery_number), "Delivery_number"] <-modeDelivery_number
dset 1
modeDelivery_time=names(sort(table(dset_1$Delivery_time)))[1]
modeDelivery_time
dset_1[is.na(dset_1$Delivery_time), "Delivery_time"] <-modeDelivery_time
dset_1
modeCaesarian=names(sort(table(dset_1$Caesarian)))[1]
modeCaesarian
dset_1[is.na(dset_1$Caesarian), "Caesarian"] <-modeCaesarian
dset 1
```


IV. Use the median value to fill in any missing values.

medianvalueAge <-median(dset_1\$Age,na.rm=TRUE)</pre>

medianvalueAge

dset 1[is.na(dset 1\$Age), "Age"] <-medianvalueAge

dset_1

medianvalueweight <-median(dset 1\$weight.kg.,na.rm=TRUE)</pre>

medianvalueweight

dset 1[is.na(dset_1\$weight.kg.), "weight.kg."] <-medianvalueweight</pre>

dset_1

medianvalueDelivery_number <-median(dset_1\$Delivery_number,na.rm=TRUE)
medianvalueDelivery_number

dset_1[is.na(dset_1\$Delivery_number), "Delivery_number"] <-medianvalueDelivery_number
dset_1</pre>

medianvalueDelivery_time <-median(dset_1\$Delivery_time,na.rm=TRUE)

medianvalueDelivery_time

dset_1[is.na(dset_1\$Delivery_time), "Delivery_time"] <-medianvalueDelivery_time

dset_1

medianvalueCaesarian <-median(dset_1\$Caesarian,na.rm=TRUE)</pre>

medianvalueCaesarian

dset_1[is.na(dset_1\$Caesarian), "Caesarian"] <-medianvalueCaesarian</pre>

dset 1

9) Range of all attribute

idRange=max(dset_1\$id, na.rm=TRUE)-min(dset_1\$id, na.rm=TRUE)

print(idRange)

AgeRange=max(dset_1\$Age, na.rm=TRUE)-min(dset_1\$Age, na.rm=TRUE)

print(AgeRange)

weightRange=max(dset_1\$weight.kg., na.rm=TRUE)-min(dset_1\$weight.kg., na.rm=TRUE)

print(weightRange)

Delivery_numberRange=max(dset_1\$Delivery_number, na.rm=TRUE)-min(dset_1\$Delivery_number, na.rm=TRUE)

print(Delivery_numberRange)

Delivery_timeRange=max(dset_1\$Delivery_time, na.rm=TRUE)-min(dset_1\$Delivery_time, na.rm=TRUE)

print(Delivery_timeRange)

CaesarianRange=max(dset_1\$Caesarian, na.rm=TRUE)-min(dset_1\$Caesarian, na.rm=TRUE)

print(CaesarianRange)

HeartRange=max(dset_1\$Heart, na.rm=TRUE)-min(dset_1\$Heart, na.rm=TRUE)

print(HeartRange)

