TD 8 - Learning II Supervised Learning

Practical Information

TD Assistant

eponiatowski@clipper.ens.psl.eu

TD Material

https://github.com/esther-poniatowski/2223_UlmM2_ThNeuro

Goals of the TD

Three types of learning algorithms are studied in this series of TDs: unsupervised, supervised and reinforcement learning.

This TD presents the standard paradigm of the **supervised perceptron**. The perceptron model originates with Rosenblatt in 1958 and marks the beginning of Artificial Neural Networks, which have now attained high performance in various tasks, placing learning as a central question of neurosciences.

Part 1 General model of the Perceptron.

Part 2 Proof of the convergence of the Perceptron algorithm to a solution for a binary classification (when such a solution exists).

Perceptron model

Perceptron

The Perceptron can be conceived as a single 'output' neuron receiving signals from N 'input' neurons.

At any time, the inputs received by the output neuron can be represented by an **input vector** \vec{I} , in which each entry I_i equals the activity of neuron i. In the simplest model, neurons are binary units, which can be either active or silent, therefore the vector \vec{I} contains only 0s and 1s.

Input neurons communicate with the output neuron through synapses. Synaptic strengths are contained in a **weights vector** \vec{W} , in which the entry W_n is the strength of the synapse connecting neuron n to the output neuron.

The "computation" performed by the output neuron is a weighted sum of the inputs, followed by thresholding. Specifically, the output neuron is active (value 1) if the total weighted input it receives is larger than a threshold θ , ortherwise it stays silent (value 0).

The Perceptron can be used to perform a **classification** task, which consists in associating a set of P input patterns \vec{I}_p with a target output $r_p \in \{0,1\}$. To achieve this function, **learning** consists in adjusting the parameters \vec{W} and θ until the output of the computation gives the correct value for all the patterns to classify.

- 1 Expression the total input received by the output neuron when a given pattern \vec{I}_p is presented.
- ② Write a condition on the input patterns $\vec{I_p}$, the target outputs r_p and the parameters \vec{W} and θ such that the task is solved.

In order to simplify the condition, it is convenient to introduce an additional input $I_0 = 1$ which is always turned on, and an additional weight $W_0 = -\theta$.

- **3** Rewrite the condition as a function of (I_0, \vec{I}_p) and (W_0, \vec{W}) . Give a vectorial relation with modified vectors.
- 4 Transform the input patterns \vec{I}_p into a set of other input patterns \vec{J}_p such that the condition is equivalent to :

$$\forall p, \ \vec{J}_p \cdot \vec{W} > 0$$

2 Perceptron algorithm

Perceptron algorithm

To correctly associate inputs to their respective output, the perceptron is trained according to an iterative learning algorithm:

- Randomly pick an input pattern $\vec{J_p}$
- If $\vec{J_p} \cdot \vec{W} > 0$, pick a new input pattern.
- If $\vec{J_p}\cdot\vec{W}<0$, perform a learning step : $\vec{W}(t+1)=\vec{W}(t)+\epsilon\vec{J_p}$

The fundamental property of the perceptron algorithm is that, if there exists a solution \vec{W}^* to the classification problem, then it necessarily converges towards a solution.

Notation

$$\overline{\cos[\alpha(t)]} = \frac{\vec{W}(t) \cdot \vec{W}^*}{\|\vec{W}(t)\| \|\vec{W}^*\|} \quad \text{ with } \alpha(t) \text{ the angle between the vectors } \vec{W}(t) \text{ and } \vec{W}^*.$$

- **⑤** Explain why the perceptron algorithm is an implementation of *supervised learning*. Explain the meaning of *gene-ralization* after learning.
- 6 Sketch the situation in a 2D graph, representing :
 - A few input patterns $\vec{J_p}$.
 - A line dividing them in two classes.
 - A vector \vec{W}^* which is a solution for this classification (at least one).
 - A current weight vector $\vec{W(t)}$ which is not a solution yet.
 - A learning step $\epsilon \vec{J}_p$.
- $\begin{tabular}{l} \hline \textbf{7} & \textbf{Introduce} \ l = \min_p \vec{J_p} \cdot \vec{W}^* > 0 \ \text{and find a lower bound on} \ \vec{W}(t+1) \cdot \vec{W}^* \ \text{given} \ \vec{W}(t) \cdot \vec{W}^*. \\ \hline \textbf{Considering} \ \vec{W}(0) = \vec{0}, \ \text{deduce a lower bound on} \ \vec{W}(t) \cdot \vec{W}^*. \\ \hline \end{tabular}$
- **8** Introduce $L = \max_p \|\vec{J_p}\|^2$ and find an upper bound on $\|\vec{W}(t+1)\|^2$ given $\|\vec{W}(t)\|^2$. Deduce an upper bound on $\|\vec{W}(t)\|^2$.
- **9** Given those results, justify that $\cos[\alpha(t)]$ admits the following lower bound (assuming that \vec{W}^* is a unit vector):

$$\cos[\alpha(t)] \ge \frac{t\epsilon l}{\sqrt{t\epsilon^2 L}} = \sqrt{t} \frac{l}{L}$$

(10) Conclude about the convergece of the algorithm towards a solution.