Consumption & Investment

ECON172(03) 경제원론2 조남운

Outline

- 소비지출 (Consumption Spending)
- 투자지출 (Investment Spending)
- 소득 지출 모형 (Income-Spending Model)

Consumption Spending

소비지출

Consumption Spending

- 미국의 소비지출 (C): 최종생산물 총지출의 2/3
 - 대부분의 국가에서 소비지출은 rGDP에서 가장 많은 비중을 차지
- 핵심질문: 소비자의 지출결정요인은 무엇인가?

가처분소득과 소비지출

Disposable income and Consumption Spending

가처분소득과 소비지출

Disposable income and Consumption Spending

Consumption Function

$c_i = a_i + MPC \times yd_i$

- c_i : 개별가계 i의 소비지출
- yd_i : 개별가계 i의 가처분소득
- MPC: 한계소비성향
 - 가계마다 다르다면 MPC_i . 여기에서는 상수로 가정하고 있음
- a_i >0: 개별가계 i의 독립 소비자 지출(Autonomous consumption spending)

독립 소비자 지출

Autonomous Consumption Spending

- a>0인 까닭
 - 어떻게 소득보다 더 많은 소비를 할 수 있나??
 - 소득은 유량(flow)이지만 소비는 소득뿐만 아니라 거량(stock)인 총 부(富, wealth)의 변수이기도 함.
 - 또한, 과거 저축, 차입(미래 저축) 등을 통해 소 득이 0일때도 소비 가능

Consumption function

• by Definition, $MPC := \Delta C/\Delta YD$

•
$$MPC \equiv \frac{\Delta C/N}{\Delta YD/N} = \frac{\Delta c}{\Delta yd}$$

- C, YD: Aggregate Variables
- N: Total number of population (=consumers)
- c, yd : (Average) Individual Variables

Aggregate Consumption Function

• 개별 소비함수를 모두 더하여 산출

•
$$C := c_1 + c_2 + \cdots + c_N = \sum_{i=1}^{N} c_i$$

$$\sum_{i}^{N} c_{i} = \sum_{i}^{N} a_{i} + MPC \times \sum_{i}^{N} y_{di}$$

$$C = A + MPC \times YD$$

Movement of Average Consumption Curve

- 총소비함수(ACf)는 [가처분소득()]과 [소비지출 (C)] 사이의 함수
- Yd, C 이외의 변수가 변할 경우 총소비곡선 자체 가 이동
 - 예상되는 미래 가처분소득의 변화: flow 변화
 - 총재산 변화: stock 변화

예상되는 미래 가처분소득의 변화 Change of Expected Future Dispensable Income

- (현재 가처분소득이 변함 없다 할지라도) 가처분소득에 대한 기대변화만으로도 소비지출에 영향을 미칠 수 있음
 - ex1: 로또에 당첨되었지만, 아직 금액을 수령하지 않 은 사람이 친구들에게 술을 삼 (C↑)
 - ex2: 채산성 악화로 다니던 기업의 아웃소싱 계획을 들은 직원이 예전부터 사려고 했던 자가용 구매계획 보류함 (C↓)
- 이러한 예상이 광범위해져 총소비에 영향을 미칠 정도
 가 될 경우 총소비곡선은 움직임

Shift of ACf curve

Shift of ACf curve

Shift of ACf curve

총재산의 변화 Change of Total Wealth

- A는 다음과 같은 상황에서 소비패턴이 다음과 같이 변하였다.
 - 선물로 30만원을 받음: 거의 변하지 않음
 - Stock 변화
 - 매월 10만원을 평생 받음: 소비 증가
 - Flow 변화
- 일시금 30만원 << 월10만원

생애주기가설

Life-Cycle Hypothesis

- 소비자들은 현재의 가처분소 득뿐만 아니라 평생에 걸친 가처분소득을 고려
- 가급적 평생 소비수준을 일 정하게 유지하려 하는 성향 이 있음
- 자세한 내용은 상급 수업에 서 배울 것.

부의 변화로 인한 이동

Movement of Cf cv. caused by Change in Wealth

- ex: 주택가격상승[하락]: 주택소유자의 재산 증가 [하락] → 기존 소유 부의 증가[하락] → A 증가[하 락]
 - 한국의 경우 총 부 중 부동산 보유 비중 70%정 도
 - 다른 예: 주가변동 등

자산 유형별 보유

통계청 (2016), 단위: 만원

투자지출 Investment Spending

경기변화와 투자지출

Business Change and Investment Spending

- Stylized Facts: 일반적으로 경기변동시 발생하는 투자지출변화폭은 소비지출변화폭보다 훨씬 큼
 - 소비지출저하 → 투자지출저하?
 - 투자지출저하 → 소비지출저하?
- 일반적으로 소비지출감소는 투자지출부진으로 인 해 발생되는 승수과정결과로 봄

실증연구: 미국 경기후퇴기의 C, I변화율

 $|\Delta I| >> |\Delta C|$

투자지출(I)결정요인

Determinants of Investment Spending

- 이자율 (Interest Rate)
- 예상되는 실질 국내총생산 (Expected rGDP)
- 현재의 생산용량 (Production Capacity)

실질이자율과 투자지출 (I)

- 실질이자율(r)은 대부자금시장의 수요-공급 관계 에 의해 결정됨.
 - 공급곡선: 우상향
 - 수요곡선: 우하향
- r과 l는 음(-)의 관계: r이 높으면 l는 감소(투자지 출유인이 감소)

복습: 균형이자율

Review: equilibrium interest rate

복습: 균형이자율

Review: equilibrium interest rate

Expected (future) rGDP

- 미래 rGDP에 대한 예상도에 따라 I는 달라질 수 있음
 - 현재K수준 < 미래rGDP : 투자지출증가
 - 현재K수준 = 미래rGDP : 현상유지
 - 현재K수준 > 미래rGDP : 투자지출저하

생산용량

Production Capacity

- 현재 갖추고 있는 생산용량이 당장의 수요를 맞추 는 데에..
 - 모자라다면: 투자지출 증가
 - 적당하다면: 현상유지
 - 과잉이라면: 투자지출 감소

종합: 가속도원리

Synthesis: Accelerator Principle

● "rGDP 증가율이 높을[낮을]수록 계획된 투자지출 이 많아[적어]진다."

Inventory as Unplanned Investment Spending

- 어느 정도의 재고는 일반적 으로 필요함
 - 신속한 공급변화대응
 - 생산의 연속성 유지

재고투자

Inventory Investment

- 재고증가는 일종의 투자지출에 해당됨
 - 재고도 일종의 자산
- 재고투자: 주어진 기간동안 발생한 재고의 변화분 (flow)
 - 재고감소는 음(-)의 재고투자에 해당
 - 재고증가는 양(+)의 재고투자에 해당

Unplanned Investment Spending

- 예상하지 못한 매출의 변화로 인해 발생한 재고의 변동
- 기업의 생산활동이 판매로 실현되지 않을 경우 계 획되지 않은 재고의 증가로 나타남
- 계획되지는 않았지만 실제로 발생한 투자지출을 의미

Actual Investment Spending (AIS)

- I(A.I.S) = I(Unplanned) + I(Planned)
- 재고수준변화의 의미(경기선행지표)
 - 재고증가: 매출이 예상보다 적었음 → 투자지 출 감소가 예상됨
 - 재고감소: 매출이 예상보다 많았음 → 투자지 출 증가가 예상됨

rGDP and Inventory

Figure 1 Changes in GDP and Inventory Investment

Next Topic

Income-Spending Model

수고하셨습니다!

Heliocentrism

Geocentrism

수고하셨습니다!

Heliocentrism

Geocentrism

Income-Spending Model

Income-Spending Model

- 이 모델은 AD곡선의 수평이동과정에 대한 AS-AD 모형의 설명을 보충
- 승수효과의 실제 조정과정을 재고에 대한 반응으로 설명

되짚기: AD곡선이동

Review: Movement of AD cv.

- By Demand Shock
- By Multiplier Effect

Demand Shock(-)LR

Demand Shock(-)LR

Demand Shock(-)LR

Multiplier effect: Graphical Explanation

(a) Rounds of Cumulative Increases in Real GDP

Multiplier effect: Graphical Explanation

Multiplier effect: Graphical Explanation

Assumptions

- Constant Price Level: Horizontal SRAS
 - Flexible Price Level: (Fiscal Policy)
- Constant Interest rate
 - Flexible Interest rate: (Monetary Policy)
- G=TR=T=0 ---> relaxed in (Fiscal Policy)
- X=IM=0 ----> relaxed in (Open Economy)
- Constant Planned Investment

계획된총기출

Planned Aggregate Expenditure

- 정의: 경제에서 계획된 지출의 총액
- Unplanned Consumption은 존재 불가능
 - 즉, 모든 C는 계획된 것
 - I에는 계획된 것과 계획되지 않은 것이 존재
- Therefore:AE[Planned] = C + I[Planned]

Planned C+I and rGDP

- GDP = C+I(+G+X-IM)
- \bullet YD = Y T + TR = Y = GDP
 - G=T=TR=0 이므로
- C = A + MPC* YD

Planned AE and rGDP

- Example: A=300, MPC=0.6
- C = 300 + 0.6 * YD

Table Expression

index	rGDP	YD	С	I[Planned]	AE[Planned]
MPC	MPC 0.6 A		300		
property:	independent	=rGDP	= A + YD*MPC	independent	=C+I[Planned]
case0	0	0	300	500	800
case1	500	500	600	500	1100
case2	case2 1000		900	500	1400
case3	case3 1500		1200	500	1700
case4	2000	2000	1500	500	2000
case5	2500	2500	1800	500	2300
case6	3000	3000	2100	500	2600
case7 3500 35		3500	2400	500	2900

Table Expression

index	rGDP	YD	С	I[Planned]	AE[Planned]
MPC	0.6 A		300		
property:	operty: independent =		= A + YD*MPC	independent	=C+I[Planned]
case0	0	0	300	500	800
case1	500	500	600	500	1100
case2	case2 1000		900	500	1400
case3	se3 1500 1		1200	500	1700
case4	2000	2000	1500	500	2000
case5	2500	2500	1800	500	2300
case6	case6 3000 30		2100	500	2600
case7	case7 3500 350		2400	500	2900

Table Expression + How can AE[Planned] +

"CDD3

Ē	index	rGDP	YD	C	I[Planned]	AE[Planned]		
	MPC	0.6	А	300				
pi	roperty:	independent	=rGDP	= A + YD*MPC	independent	=C+I[Planned]		
(case0	0	0	300	500	800		
(case1	e1 500 500		600	500	1100		
(case2	e 2 1000 1000		900	500	1400		
	case3	3 1500 1500		1200	500	1700		
0	case4	2000	2000	1500	500	2000		
	case5	2500	2500	1800	500	2300		
	case6	3000	3000	2100	500	2600		
	case7	3500	3500	2400	500	2900		

WHY $AE[P] \neq rGDP$?

- Answer: I[Unplanned] :: 비자발적 재고
- AE[Planned]+I[Unplanned] = rGDP
- 거시경제는 I[Unplanned]를 제거하는 방향으로 자기자신을 조절 → 소득-지출 균형

Income-Expenditure Equilibrium

index	rGDP	YD	С	I[Planned]	AE[Planned]
4	2000	2000	1500	500	2000

- 조정과정을 통해 I[Unplanned]=0 를 달성한 상태
- 소득지출균형 상태에서는 rGDP = AE[Planned]

Adding I[Unplanned]

Error in Text: Krugman p891 Tb28-2: I[planned]→I[Unplanned]

index	rGDP	YD	С	I[Planned]	AE[Planned	l[Unplanned
MPC	0.6	Α	300			
property	independent	=rGDP	= A + YD*MPC	independent	=C+I[Planned]	=rGDP- AE[Planned]
0	0	0	300	500	800	-800
1	500	500	600	500	1100	-600
2	1000	1000	900	500	1400	-400
3	1500	1500	1200	500	1700	-200
4	2000	2000	1500	500	2000	0
5	2500	2500	1800	500	2300	200
6	3000	3000	2100	500	2600	400
7	3500	3500	2400	500	2900	600

Adjustment Process

- I[Unplanned] <0 : 의도되지 않은 재고의 감소 발생: 초과수요 → 생산량 증가 → rGDP 증가
 → ...
- I[Unplanned] =0 : I[Planned]유지
- I[Unplanned] >0 : 의도되지 않은 재고의 증가 발생: 과잉공급 → 생산량 감소 → rGDP감소

소득-지출 균형 GDP: Y*

Income-Expenditure Equilibrium GDP: Y*

- GDP와 AE[Planned]가 같은 GDP수준
- 이때의 I[Unplanned] = 0
 - Y < Y*: 과소생산 → I[Planned]↑ → Y↑
 - Y > Y*: 과잉생산 → I[Planned]↓ → Y↓

Income-Expenditure Equilibrium vs. Short-run Macro Equilibrium (AS-AD)

- 소득지출균형: Constant Price 를 전제
 - P가 상수
- 단기균형(AS-AD): Flexible Price 를 전제
 - P가 변수
- 소득지출균형의 조정은 AD곡선의 움직임 중 재고 조정과정에 해당됨

재고조정의 승수과정

Multiplier Process of Adjusting Inventory

재고조정의 승수과정

Multiplier Process of Adjusting Inventory

재고조정의 승수과정

Multiplier Process of Adjusting Inventory

승수계산

Calculating Multiplier

$$\Delta Y^* = 승수 \times \Delta AAE_{Planned}$$

$$= \frac{1}{1 - MPC} \times \Delta AAE_{Planned}$$

$$= (y-x)/y$$

•
$$y-x = y*MPC$$

•
$$y = 1/(1-MPC)*x$$

Multiplier Process and Movement of AD cv.

Multiplier Process and Movement of AD cv.

Multiplier Process and Movement of AD cv.

절약의 역설 The Paradox of Thrift

- STEP1: 미래 경제상황 악화를 우려하여 소비/투자를 줄임
- STEP2: 감소폭*Multiplier만큼의 거시효과 발생(-)
- STEP3: STEP1의 확대재생산 ...

승수효과의 함의

Implications of Multiplier Effect

- 경기변화에 있어서 C와 I[Planned]는 매우 중요한 요소
- 경제에 충격이 오더라도 자발적 지출의 변화가 적 다면 충격으로 인한 마이너스 효과를 줄일 수 있음
 - 반면, 과잉반응한다면 작은 충격에도 큰 변동을 유발할 수도 있음

Next Topics

- 정부부문추가: 재정정책
- Krugman CH28

수고하셨습니다!

수고하셨습니다!

