Decision Table Based Testing

Introduction

- Deal with a combination of input
- Different combinations of inputs results in different actions being taken

Decision Table has four parts

Conditions	Condition entries
Actions	Actions Entries

Decision Table Example

Limited entry table: Condition entries restricted to binary

Extended entry table: Condition entries have more than two.

	Printer does not print	Y	Y	Y	Y	N	N	N	N
Conditions	A red light is flashing	Y	Y	N	N	Y	Y	N	N
	Printer is unrecognized	Y	N	Y	N	Y	N	Y	N
	Check the power cable			X					
	Check the printer-computer cable	x		X					
Actions	Ensure printer software is installed	x		X		X		X	
	Check/replace ink	x	X			X	X		
	Check for paper jam		X		X				

Steps in Forming Decision Table

- Identify the decision variables.
- Identify the possible values for each decision variable
- Form a table, list all variables and actions and enumerate the allowed combinations of each of the variables.
- Identify the cases when values assumed by a variable are immaterial for a given combination of other input variables. Represent such variables by don't care symbol.
- For each combination of decision variables, list out the expected result or action.

- STEP 1: identify the decision variables
 - -C1: a < b+c
 - C2: b < a+c
 - C3: c< a+b
 - C4: a=b?
 - C5: a=c?
 - C6: b=c?

Step 2: Identify the possible values for each decision variable

All are Conditional hence T or F

• **Step 3:** Form a table, list all variables and actions and enumerate the allowed combinations of each of the variables.

	rules	ules																
C1: a <b+c?< th=""><th></th><th colspan="6">32F</th><th colspan="8">32T</th></b+c?<>		32F						32T										
C2: b <a+c?< th=""><th>1</th><th colspan="4">16F</th><th colspan="4">16T</th><th colspan="4">16F</th><th colspan="3">16T</th></a+c?<>	1	16F				16T				16F				16T				
C3: c <a+b?< th=""><th>8F</th><th>8T</th><th></th><th>8F</th><th></th><th>8T</th><th></th><th>8F</th><th></th><th>8T</th><th></th><th colspan="3">8F 8T</th><th></th></a+b?<>	8F	8T		8F		8T		8F		8T		8F 8T						
C4: a=b?	4T 4F	4T	4F	4T	4F	4T	4F	4T	4F	4T	4F	4T	4F	4T	4F			
C5: a=c?	2 2 F T																	
C6: b=c?																		
A1:Equilateral																		
A2:Isosceles																		
A3: Scalene																		
A4: Not a																		
Triangle																		

• **Step 4**: Identify the cases when values assumed by a variable are immaterial for a given combination of other input variables.

	1-32	33-48	49-56	57	58	59	60	61	62	63	64
C1: a <b+c?< td=""><td>F</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td></b+c?<>	F	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
C2: b <a+c?< td=""><td>-</td><td>F</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>Т</td><td>T</td></a+c?<>	-	F	Т	Т	Т	Т	Т	Т	Т	Т	T
C3: c <a+b?< th=""><th>-</th><th>-</th><th>F</th><th>Т</th><th>Т</th><th>Т</th><th>Т</th><th>Т</th><th>Т</th><th>Т</th><th>Т</th></a+b?<>	-	-	F	Т	Т	Т	Т	Т	Т	Т	Т
C4: a=b?	-	-	-	Т	Т	Т	F	Т	F	F	F
C5: a=c?	-	-	-	Т	Т	F	Т	F	Т	F	F
C6: b=c?	-	-	-	Т	F	Т	Т	F	F	Т	F
A1:Equilateral				Χ							
A2:Isosceles								Χ	Χ	Χ	
A3: Scalene											Χ
A4: Not a Triangle	Х	X	Χ								
A5: impossible					X	X	Χ				
Rule Count											

• **Step 5:** Generate Test Cases

Case ID	а	b	С	Expected Output
1	4	1	2	Not a Triangle
2	1	4	2	Not a Triangle
3	1	2	4	Not a Triangle
4	5	5	5	Equilateral
5	???	???	???	Impossible
6	???	???	???	Impossible
7	2	2	3	Isosceles
8	???	???	???	Impossible
9	2	3	2	Isosceles
10	3	2	2	Isosceles
11	3	4	5	Scalene

- Step 1: Identify the decision variables: 3 variables month, day, year
 - C1: month in?
 - C2: day in?
 - C3: year in?
 - A1: Impossible date
 - A2: Increment day
 - A3: Reset day
 - A4: Increment Month
 - A5: Reset month
 - A6: Increment year

- Step 2: Identify the possible values for each variables
 - M1: {month has 30 days}
 - M2: {month has 31 days}
 - M3: {month is feb}
 - D1={ 1<=d<=28}
 - $D2={d=29}$
 - $D3={d=30}$
 - $D4={d=31}$
 - Y1={y is leap year}
 - Y2={y is common year}

• Step 3: Form a table, list various decision variables, actions and enumerate all possible combinations of each variable

Rule	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
C1	M1	M1	M1	M1	M1	M1	M1	M1	M2	M3														
C2	D1	D1	D2	D2	D3	D3	D4	D4	D1	D1	D2	D2	D3	D3	D4	D4	D1	D1	D2	D2	D3	D3	D4	D4
C3	Y1	Y2	Y1	Y2	Y1	Y2	Y1	Y2	Y1	Y2	Y1	Y2	Y1	Y2	Y1	Y2	Y1	Y2	Y1	Y2	Y1	Y2	Y1	Y2
A1							χ	Х												X	X	X	X	X
A2	Х	X	X	X					X	X	X	X	X	X			χ	?						
A3					Χ	χ									χ	X		?	X				0-	
A4		in to			χ	X									?	?		?	X					
A5															?	?								
A6															?	?								

 Step 4: Identify the cases when the values assumed by a variable (or set of variables) are immaterial for a given combination of other input variables. Represent such variables using don't care symbol.

C1:month in	M1	M1	M1	M1	M2	M2	M2	M2	M3	M3	M3	M3	M3	M3
C2: day in	D1	D2	D3	D4	D1	D2	D3	D4	D1	D1	D2	D2	D3	D4
C3: year in	-	-	-	-	-	-	-	-	Y1	Y2	Y1	Y2	-	-
A1:Impossible				x								x	x	x
A2:Inc day	x	x			x	x	Х		Χ	?				
A3:Reset day			x					Χ		?	Χ			
A4: Increment month			X					?		?	X			
A5: Reset Month								?						
A6:Increment year								?						

 The decision table produced above doesn't help us in the case where month in M2 and day in D4

```
M1: {month has 30 days}
– M2: {month has 31 days}
– M3: {month is February}
– M4: {month is December}
- D1={ 1<=d<=27}</pre>
- D2={d=28}
- D3={d=29}
- D4={d=30}
- D5={d=31}
– Y1={y is leap year}
– Y2={y is common year}
```

C1:month in	M1	M1	M1	M2	M2	М3	M3	M3	М3	М3	М3	M4	M4
C2: day in	D1-	D4	D5	D1-	D5	D1	D2	D2	D3	D3	D4-	D1-	D5
	D3			D4							D5	D4	
C3: year in	-	-	-	-	-	-	Y1	Y2	Y1	Y2	-	-	-
A1:Impossible			x							x	x		
A2:Inc day	х			X		x	х					X	
A3:Reset day		X			X			X	X				X
A4: Increment month		X			X			X	X				
A5: Reset Month													X
A6:Increment year													X

Example

 Assume your local baseball squadron offers free tickets to kids (<5) and discounted tickets (>65) to senior citizens. Free hats are given to all fans. (Note: If male then blue hat else pink hat)

Solution

c1 Age	age < 5	age < 5	age between 5 to 65	age between 5 to 65	age above 65	age above 65
				4,0 4,0 11,0 10,0	age and 10 of	age age to es
C2 Gender	М	F	М	F	М	F
A1 Free Ticket	Х	X				
A2 Discounted Ticket					x	X
A3 Normal Ticket			X	X		
A4 Blue Hat	Х		х		Х	
A5 Pink Hat		X		X		Χ

Test cases

id	age	gender	expected o/p
1	3	M	free ticket with blue hat
2	3	F	free ticket with pink hat
3	20	M	normal ticket with blue ha
4	20	F	normal ticket with pink hat
5	70	M	discounted ticket with blue hat
6	70	F	discounted ticket with pink hat

Example

Generate test cases using decision table to test transferring money online to an account which is already added and approved.