Examen de Alxebra (11-07-2014)

1. Se consideran los subespacios de \mathbb{R}^3

 $U_a = \langle (1,2,1), (1,2,a+2), (3,6,a+4) \rangle$ y $W = \{(x,y,z) \in \mathbb{R}^3 / x - y - z = 0\}$

- a) Calcular, en función de los valores de a, la dimensión y unas ecuaciones de U_a .
 - b) Para a = 0, calcular una base de $U_0 \cap W$ y la dimensión de $U_0 + W$.
- c) Definir una aplicación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ verificando que $Ker\ f = W$ e $Im\ f = U_{-1}$. Para esa aplicación lineal f, calcular f(5,3,3).
- 2. Sea $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ la aplicación lineal dada por:

$$f(x, y, z) = (x + z, y, x + 2y + z)$$

- a) Determinar una base de Ker f.
- b) Calcular para que valores de α el vector $(2, -2, 1 + \alpha)$ pertenece a Im f.
- c) Calcular una base del subespacio $f^{-1}\langle (1,1,3)\rangle$.
- **3.-** Sea la aplicación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ dada por:

$$f(x, y, z) = (y - z, y, -x + y)$$

- a) Encontrar una base \mathcal{B} de \mathbb{R}^3 tal que $(f)_{\mathcal{B},\mathcal{B}}$ sea diagonal.
- b) Justificar que para cualquier base \mathcal{D} de \mathbb{R}^3 se tiene que $|(f)_{\mathcal{D},\mathcal{D}}| = -1$.
- 4.- Sea $A \in M_5(\mathbb{R})$. Justificar la verdad o falsedad de las siguientes afirmaciones:
 - a) Si $B \in \mathcal{M}_5(\mathbb{R})$ y $|2A^tB^{-1}A^{-1}| = -\frac{1}{8}$, entonces |B| = -16.
- b) Si $|A| \neq 0$ todos los sistemas cuya matriz ampliada sea A son compatibles y determinados.
- 5.- Teoría
 - a) Si $A \in \mathcal{M}_n(\mathbb{R})$ es una matriz no singular. Probar que $(A^{-1})^t = (A^t)^{-1}$.
- b) Sea $f: V \to V$ una aplicación lineal y α y β dos valores propios diferentes de f. Probar que $V_{\alpha} \cap V_{\beta} = \{0\}$.
- c) Sea $f:V\to W$ una aplicación lineal y U un subespacio de W. Demostrar que $f^{-1}(U)$ es un subespacio de V.

PUNTUACIÓN: 15+15+15+10+15