PROJEKTOWANIE EFEKTYWNYCH ALGORYTMÓW

PROJEKT

07/10/2021

252736 Hutnik Szymon

Brute Force (1)

Strona Spis treści
Treść zadania
Opis metody
Opis algorytmu
Dane testowe
Procedura badawcza
Wyniki
Analiza

1. Treść zadania

Opracować, napisać, zbadać rozwiązanie problemu komiwojażera w wersji optymalizacyjnej algorytmem przeglądu zupełnego.

Problem komiwojażera (Travelling Salesman problem) polega na znalezieniu minimalnego cyklu Hamiltona (przejście przez wszystkie wierzchołki tylko raz, startując i kończąc w tym samym punkcie) w pełnym grafie ważonym.

2. Opis metody

Metoda przeglądu zupełnego, tzw. przeszukiwanie wyczerpujące (eng. exhaustive search) bądź metoda siłowa (eng. brute force), polega na znalezieniu i sprawdzeniu wszystkich rozwiązań dopuszczalnych problemu, wyliczeniu dla nich wartości funkcji celu i wyborze rozwiązania o ekstremalnej wartości funkcji celu – najniższej (problem minimalizacyjny) bądź najwyższej (problem maksymalizacyjny). Metoda jest stosunkowo łatwa do zaimplementowania oraz zawsze znajduje najlepsze rozwiązanie jednak jest najbardziej czasochłonna. W tym problemie sprowadza się ona do znalezienia wszystkich możliwych ścieżek, oraz wybraniu najtańszej z nich.

3. Opis algorytmu

Rozwiązanie zaimplementowano w postaci programu opisanego przez poniższy diagram:

Najpierw inicjalizowane są zmienne, najlepsza ścieżka jest ustawiona na maksymalną wartość (INT_MAX). Po wczytaniu danych z pliku następuje uruchomienie właściwej części algorytmu, następnie wypisywany jest wynik oraz czas wykonania właściwego algorytmu.

Właściwą część algorytmu opisuje diagram:

4. Dane testowe

Dane, na których była badana efektywność algorytmu pochodzą ze zbioru udostępnionego przez dr Rudego. Do badania użyto wartości z następujących plików:

- m9.astp
- m10.astp
- m11.astp
- m12.astp
- m13.astp
- m14.astp
- m15.astp

5. Procedura badawcza

Należało zbadać zależność czasu rozwiązania problemu od wielkości instancji. W przypadku algorytmu realizującego przegląd zupełny przestrzeni rozwiązań dopuszczalnych nie występowały parametry programu, które mogły mieć wpływ na czas i jakość uzyskanego wyniku. W związku z tym procedura badawcza polegała na wpisaniu w plik XD.INI wybranej nazwy zestawu danych oraz ilości powtórzeń.

Każda z instancji została wykonana do 10 razy, aby uśrednić czasy, ilość powtórzeń została skrócona do 3 w przypadku n=15 ze względu na czas wykonywania. Wyniki były zapisywane w Excelu, następnie na ich podstawie została przeprowadzona analiza.

Pomiar czasu został wykonany przy użyciu bilbioteki chrono. Po otrzymaniu wyniku należy go podzielić przez liczbę powtórzeń wywołań algorytmu.

```
auto startTime = chrono::steady_clock::now();

for (int q = 0; q < repeats; ++q)
{
    cout << "XD" << endl;
    int shortest_path = INT_MAX;
    maxMask = 1;
    findShortestPath();
}
auto resultTime = chrono::steady_clock::now() - startTime;

cout << shortest_path << " - expected: " << result << endl;
    cout << chrono::duration <double, milli>(resultTime).count() << "ms \n";</pre>
```

Item	Value
OS Name	Microsoft Windows 11
Version	10.0.22471 Build 22471
Other OS Description	Not Available
OS Manufacturer	Microsoft Corporation
System Name	SUPERCIUPERPC
System Manufacturer	Micro-Star International Co., Ltd.
System Model	MS-7C95
System Type	x64-based PC
System SKU	To be filled by O.E.M.
Processor	AMD Ryzen 5 3600 6-Core Processor, 3600 Mhz, 6 Core(s), 12 Logical Proces
BIOS Version/Date	American Megatrends International, LLC. 2.82, 22/06/2021
SMBIOS Version	2.8
Embedded Controller Version	255.255
BIOS Mode	UEFI
BaseBoard Manufacturer	Micro-Star International Co., Ltd.
BaseBoard Product	B550M PRO-VDH (MS-7C95)
BaseBoard Version	1.0
Platform Role	Desktop
Secure Boot State	Off
PCR7 Configuration	
Windows Directory	
System Directory	
Boot Device	
Locale	United Kingdom
Hardware Abstraction Layer	
Username	
Time Zone	
Installed Physical Memory (RAM)	16.0 GB
Total Physical Memory	15.9 GB
Available Physical Memory	8.21 GB
Total Virtual Memory	18.3 GB
Available Virtual Memory	6.31 GB
Page File Space	2.38 GB
Page File	
Kernel DMA Protection	Off
Virtualisation-based security	Not enabled
Device Encryption Support	Elevation Required to View
Hyper-V - VM Monitor Mode E	Yes
Hyper-V - Second Level Addres	Yes
Hyper-V - Virtualisation Enable	Yes
Hyper-V - Data Execution Prote	Yes

6. Wyniki

Graf zrealizowano w programie Excel:

7. Analiza

Krzywa wzrostu czasu względem wielkości instancji ma charakter wykładniczy (rysunek 1). Nałożenie krzywej expected time, liczonej na podstawie poprzedniego wyniku (y = time[n-1] * n) potwierdza, że badany algorytm wyznacza rozwiązania problemu komiwojażera dla badanych instancji w czasie n! zależnym od wielkości instancji (obie krzywe są zgodne co do kształtu). Złożoność czasowa opracowanego algorytmu wynosi O(n!).