Curso 2017/18

Fecha de entrega: 09/10/17.

Responder a las siguientes cuestiones:

- 1. Sean (X,T) un espacio topológico y A,B dos subconjuntos de X tales que $A\subseteq B\subseteq X$. Probar:
 - (a) $(T|_B)|_A = T|_A$.
 - (b) Si $A \in T$, entonces $A \in T|_B$.
 - (c) El recíproco de (b) no es cierto en general, pero sí cuando B es abierto (es decir, si $A \in T|_B$ y $B \in T$, entonces $A \in T$).
- 2. Probar que un conjunto es abierto si y sólo si es entorno de todos sus puntos. Utilizar esta caracterización para probar que [0,1) no es abierto euclídeo de \mathbf{R} .
- 3. Sean (X,T) un espacio topológico y $\mathcal{B} \subseteq T$. Probar que \mathcal{B} es base de T si y sólo si $\forall G \in T$ y $\forall p \in G, \exists B \in \mathcal{B}$ tal que $p \in B \subset G$.
- 4. Sean X un conjunto y Ω una familia de subconjuntos de X. Sean $\mathcal{B}_{\Omega} = \{X\} \cup \{\text{intersecciones finitas de elementos de }\Omega\}$ y $T_{\Omega} = \{\emptyset\} \cup \{\text{uniones cualesquiera de elementos de }\mathcal{B}_{\Omega}\}$. Probar que T_{Ω} es la menor topología sobre X que contiene a Ω . Probar también que \mathcal{B}_{Ω} es base de T_{Ω} .
- 5. Sean $(X, T_X), (Y, T_Y)$ dos espacios topológicos y $f: X \to Y$ una aplicación biyectiva. Probar que son equivalentes:
 - (a) f^{-1} es continua.
 - (b) f es abierta.
 - (c) f es cerrada.

Utilizar este resultado para caracterizar los homeomorfismos.

- 6. Sean (X, T_X) un espacio topológico y $f: (X, T_X) \to Y$ una aplicación biyectiva. Probar que $T_Y = \{f(G) \mid G \in T_X\}$ coincide con la topología final de f (es decir, $\{U \subseteq Y \mid f^{-1}(U) \in T_X\}$) y es la única topología sobre Y que convierte a f en un homeomorfismo.
- 7. Sean (Y, T_Y) un espacio topológico y $f: X \to (Y, T_Y)$ una aplicación biyectiva. Probar que $T_X = \{G \subseteq X \mid f(G) \in T_Y\}$ coincide con la topología inicial de f (es decir, $\{f^{-1}(U) \mid U \in T_Y\}$) y es la única topología sobre X que convierte a f en un homeomorfismo.
- 8. Probar que todo homeomorfismo local es una aplicación abierta.