第三次作业中期报告

汪靖, 王欣琪, 张鸿琳

2020年5月10日

1 对于各个参量关系的重新整理

在上一次报告的基础上,我们对原有考虑的参量进行了重新评估,从而确定了比较重要的几个参量,并对其联系进行了重新整理,如下图:

2 符号说明

表 1: 符号说明表

符号	含义
h	装甲厚度
vol_{wea}	武器体积
vol_{sou}	资源体积
vol_{mot}	动力源体积

vol	未装甲总体积
eff	动力效率
T	单次作战时间
m	总质量
t	服役时间
att	攻击力
mob	机动性
$cost_{con}$	建造成本
$cost_{rep}$	维修成本
cost	总成本
η	性价比
k_i	待定系数
$ ho_i$	密度
$f_i()$	关于自变量的某一特定函数

3 初步拟定各个参数间关系的函数表示与说明

首先,对于未装甲体积,显然 $vol = vol_{wea} + vol_{sou} + vol_{mot}$;对于质量,我们认为需要把装甲单独考虑,因为它的平均密度往往较大,而它又基本为武器外壳,厚度已知时,它的体积与除装甲体积的 $\frac{2}{3}$ 约成正比,故而总质量约为 $m = \rho_1 vol^{\frac{2}{3}}h + \rho_2 vol$;参考现代战争,我们一般认为武器体积与攻击力呈正相关,我们大致拟定为: $att = k_1 vol_{wea}$;机动性与动力成正相关,又收到总质量的牵制,所以我们初步拟定: $mob = eff \frac{vol_{mot}}{m}$;总服役时间,主要取决于武器在战斗中的抗打击能力,或者说防御力,而防御力又表现为躲避攻击的能力,受弹面积和装甲厚度,机动性增大将使躲避攻击的概率缓步增加,二者满足某一特定函数,受弹面积与未装甲体积相关,所以我们认为可以将服役时间表述为: $t = \frac{f_1(mob)h}{vol^{\frac{2}{3}}}$;对于单次战斗时间,我们同时考虑到了奔赴战场和战斗两个过程,而奔赴战场消耗一定资源使单次战斗时间减少,而战斗过程中消耗资源快慢基本正比于总质量,故而 $T = k_5 \frac{vol_{sou}}{m} - k_6 m$;对于建造成本,基本取决于装甲,武器和动力三个部分,我们初步认为装甲和武器成本基本与其体积成正比,而对于动力设备,则要考虑到动力效率越高,建造要求越高,这方面的成本将随效率增大而爆炸增长,故而我们认为: $cost_{con} = k_2 vol^{\frac{2}{3}} + k_3 vol_{wea} + k_4 vol_{mot} f_2(eff)$;然后是维修成本,武器的资源每次战斗结束都会消耗,同时随着服役时间增加,老化严重,也会导致维修成本增加,故而 $cost_{rep} = k_7 \frac{vol_{sou}t}{n} + k_8 volt$ 。最后,我们拟定性价比的计算方法为 $\eta = att \frac{t_{cost}t}{cost}$,综上,得到:

$$\eta = k_1 vol_{wea} \frac{\int_{0}^{t} \left(eff \frac{vol_{mot}}{\rho_1(vol_{wea}+vol_{sou}+vol_{mot})^{\frac{2}{3}}h + \rho_2(vol_{wea}+vol_{sou}+vol_{mot})}\right)_h}{(vol_{wea}+vol_{sou}+vol_{mot})^{\frac{2}{3}}} \frac{(vol_{wea}+vol_{sou}+vol_{mot})^{\frac{2}{3}}}{k_2(vol_{wea}+vol_{sou}+vol_{mot})^{\frac{2}{3}} + k_3 vol_{wea} + k_4 vol_{mot} f_2(eff) + k_7 \frac{vol_{sou}t}{k_5 \frac{vol_{sou}t}{m} - k_6 m} + k_8(vol_{wea}+vol_{sou}+vol_{mot})t}$$

4 后续计划 3

4 后续计划

之后我们会更深入地探讨这些函数的一些细节部分,进行一些修改,同时会搜集相关武器资料, 代入该函数中进行模型合理性的评估,并最终运用该模型对超大型武器的存在必要性进行讨论。