

• Literature

Research Gap

Problem Statement

Objective

Methodology

Dataset Description

Results

Conclusion

Content

Introduction

1.Importance

• Developing a computer vision system for the blind is crucial, granting them independence and safety. Through auditory cues from visual data, it helps them navigate, recognize obstacles, read text, and boosts inclusivity, autonomy, and daily life quality, revolutionizing their interaction with the world..

2. Significance

• The computer vision system for the blind is highly significant, providing them with independence, safety, and improved quality of life..

3. Application

- navigation,
- obstacle recognition
- text reading

4. Recent trends

- Recent trends in computer vision for the blind include advancements in deep learning models for object detection, integration of wearable devices with real-time scene analysis, and the development of user-friendly, voice-driven interfaces for seamless interaction and accessibility.
- Example: Apple Vision

Literature Review

Sr. No.	Author Name	Title	Objective	Methodology	Algorithm	preprocessing Techniques	Accuracy / Results
1.	Aswath Suresh Debrup Laha Dhruv Gaba Chetan Arora	Intelligent Smart Glass for Visually Impaired Using Deep Learning Machine Vision Techniques and Robot Operating System (ROS)	 Enhanced Mobility and Navigation Object Detection and Recognition ROS Integration Obstacle Avoidance and Path Planning Real-time Feedback Adaptability to Various Environments Gesture and Voice Interaction 		Using Deep Learning Machine Vision Techniques and Robot Operating System (ROS)		
2.	 Rakesh Chandra Joshi Saumya Yadav Malay Kishore Dutta Carlos M. Travieso-Gon zalez 	Efficient Multi-Object Detection and Smart Navigation Using Artificial Intelligence for Visually Impaired People	 Multi-Object Detection Efficiency and Real-Time Performance Semantic Segmentation Smart Navigation Assistance 		Automatic quantization algorithm is developed for (DCNN)-based object detection		

	Rashid Mehmood Iyad Katib Juan M. Corchado Mehmood Iyad Katib Assistive Smart Glasses With Smart App and Arduino	Independence Obstacle Detection Object Recognition Text-to-Speech Navigation Assistance Customization Accessibility Privacy and Security User Feedback and Improvement	Creating "LidSonic for Visually Impaired" involves developing smart glasses with cameras, sensors, and Arduino devices. Machine learning is used for real-time obstacle detection and object recognition. A mobile app complements the glasses, offering customization and GPS navigation. Text-to-speech technology converts text to audio, ensuring accessibility. Privacy and security are essential, and ongoing improvements are based on user feedback and compliance with regulations. Collaboration with visually impaired individuals and experts is key to creating an effective assistive technology.	Initialization Capture Camera Feed Obstacle Detection Object Recognition Text-to-Spee ch Navigation User Interaction Audio Feedback Privacy Measures Continuous Improveme nt	 Image Preprocessing Data Augmentation Sensor Data Processing Speech Signal Preprocessing Temporal Filtering Feature Extraction 	Object Detection and Recognition Accuracy: Aim for an accuracy rate of 90% Obstacle Detection Accuracy: Strive for a high accuracy rate of at least 95% Text Recognition Accuracy: Target a recognition accuracy rate of 95% Navigation Effectiveness: Evaluate the system's ability to 90% User Feedback and User Experience: Measure high user satisfaction, with a target of 90%
--	---	--	--	--	---	---

4	Yosoon Choi	Applications of Smart Glasses in Applied Sciences: A Systematic Review	 Comprehensive Overview Identify Trends Assess Study Recommendations Resource 	The systematic review focuses on exploring the applications of smart glasses in applied sciences. It begins with a defined research question and a structured review protocol that outlines criteria for study selection, data extraction, and analysis. Comprehensive literature searches are conducted, and relevant articles are chosen based on predefined criteria. Data from selected studies are extracted, and their quality is assessed.	Define Research Objectives Development Literature Search Study Selection Data Extraction Assessment Data Synthesis Results Presentation	 Duplicate Removal Screening and Selection Criteria Language and Publication Data Extraction Template Quality Assessment Tools Data Categorization Data Normalization Missing Data Handling Data Coding Meta-Analysis (if applicable) 	Inclusion Criteria Adherence:this should be close to 100% Inter-Rater Agreement:90% Quality Assessment Scores: Completeness of Data: The percentage of studies with complete data on relevant variables or outcomes.
5	 Yongtuo Zhang Weitao Xu Wen Hu Hongkai Wen 	NaviGlass: Indoor Localisation Using Smart Glasses	 Precise Indoor Localization: Navigation: User-Friendly Interface: Cross-Platform Compatibility: Robustness and Reliability: Security: Scalability User-Centric Experience: Potential: Development: Accessibility: 	The methodology focuses on developing a precise indoor localization system for smart glasses. It encompasses designing a user-friendly interface, ensuring cross-platform compatibility, and prioritizing robustness and security. Scalability and user-centric improvements are key, as is exploring integration potential with other applications. Research and development contribute to technology advancement, while accessibility and commercial viability are also addressed.	Sensory Data Collection: Analysis: Sensor Fusion:. Map Data Integration: Position Estimation: Navigation Guidance: User Interaction: Data Privacy and Security: Iterative Improvement: Features: Integration with Other Services:	 Duplicate Removal: Screening and Selection Criteria: Language and Publication Date Filtering: Data Extraction Template: Quality Assessment Tools: Data Categorization: Data Normalization: Missing Data Handling: Data Coding: Meta-Analysis (if 	 Positional Accuracy: Percentage of Correct Position Estimations: Error Metrics: Confidence Intervals:

|--|

Research Gap

- Lack models and algorithms to find depth
- help to navigate people through voice assistance
- Not much work on real time
- Less work on action recognition
- Specific integrating system for above operation

Problem Statement

Enhancing Independence and Mobility for the Visually Impaired through Computer Vision-Powered Smart Glasses

Objective

To...

1. Enhanced Navigation in the environment.

2. Audio output of intrepretion.

3. Real-time Output.

Image Dataset of Mendeley

- Published by: Mendeley
- Submitted by: Yingguang Li
- Published on: 24 June 2020
- This Dataset is used for
 - Analyzing the influence of process information on monitoring signals under the same tool wear state through signal processing methods.
 - Training and testing models of tool monitoring and tool wear prediction for cutting conditions and cutting parameters.
- Link: https://data.mendeley.com/datasets/2xkpwx3h59/1

Model Details: DPT-Large

Model Detail

For monocular depth estimation, a Dense Prediction Transformer (DPT) model was trained on 1.4 million pictures. It was initially made available in this repository and presented in the paper Vision Transformers for Dense Prediction by Ranftl et al. (2021). DPT bases monocular depth estimation on the Vision Transformer (ViT) and adds a head and neck on top.

Description

Model Detail	Description			
Model Authors - Company	Intel			
Date	March 22, 2022			
Version	1			
Туре	Computer Vision - Monocular Depth Estimation			
Paper or Other Resources	Vision Transformers for Dense Prediction and GitHub Repo			
License	Apache 2.0			
Questions or Comments	Community Tab and Intel Developers Discord			

Result

Depth Estimation on live video

Conclusion

- Smart glasses for the blind, equipped with advanced vision sensors and powered by deep learning with transfer learning, provide real-time environmental awareness and object recognition.
- They offer immediate audio feedback, enhancing mobility and independence