April 28, 1892.

Mr. JOHN EVANS, D.C.L., LL.D., Treasurer and Vice-President, followed by The LORD KELVIN, President, in the Chair.

A List of the Presents received was laid on the table, and thanks ordered for them.

The following Papers were read:-

I. "On a Decisive Test-case disproving the Maxwell-Boltzmann Doctrine regarding Distribution of Kinetic Energy." By The LORD KELVIN, Pres. R.S. Received April 6, 1892.

The doctrine referred to is that stated by Maxwell in his paper "On the Average Distribution of Energy in a System of Material Points" ('Camb. Phil. Soc. Trans.,' May 6, 1878, republished in vol. 2 of Maxwell's 'Scientific Papers') in the following words:—

"In the ultimate state of the system, the average kinetic energy of two given portions of the system must be in the ratio of the number of degrees of freedom of those portions."

Let the system consist of three bodies, A, B, C, all movable only in one straight line, KHL:

B being a simple vibrator controlled by a spring so stiff that when, at any time, it has very nearly the whole energy of the system, its extreme excursions on each side of its position of equilibrium are small:

C and A, equal masses:

C, unacted on by force except when it strikes L, a fixed barrier, and when it strikes or is struck by B:

A, unacted on by force except when it strikes or is struck by B, and when it is at less than a certain distance, HK, from a fixed repellent barrier, K, repelling with a force, F, varying according to any law, or constant, when A is between K and H, but becoming infinitely great when (if at any time) A reaches K, and goes infinitesimally beyond it.

Suppose now A, B, C to be all moving to and fro. The collisions between B and the equal bodies A and C on its two sides must equalise, and keep equal, the average kinetic energy of A, immediately before and after these collisions, to the average kinetic energy of C. Hence, when the times of A being in the space between H and K are vol. Li.

included in the average, the average of the sum of the potential and kinetic energies of A is equal to the average kinetic energy of C. But the potential energy of A at every point in the space HK is positive, because, according to our supposition, the velocity of A is diminished during every time of its motion from H towards K, and increased to the same value again during motion from K to H. Hence, the average kinetic energy of A is less than the average kinetic energy of C!

This is a test-case of a perfectly representative kind for the theory of temperature, and it effectually disposes of the assumption that the temperature of a solid or liquid is equal to its average kinetic energy per atom, which Maxwell pointed out as a consequence of the supposed theorem, and which, believed to be thus established, has been

largely taught, and fallaciously used, as a fundamental proposition in thermodynamics.

It is in truth only for an approximately "perfect" gas, that is to say, an assemblage of molecules in which each molecule moves for comparatively long times in lines very approximately straight, and experiences changes of velocity and direction in comparatively very short times of collision, and it is only for the kinetic energy of the translatory motions of the molecules of the "perfect gas," that the temperature is equal to the average kinetic energy per molecule, as first assumed by Waterston, and afterwards by Joule, and first proved by Maxwell.

II. "Researches on Turacin, an Animal Pigment containing Copper: Part II." By A. H. Church, M.A., F.R.S., Professor of Chemistry in the Royal Academy of Arts, London. Received April 2, 1892.

(Abstract.)

This paper is in continuation of one read before the Society in May, 1869.* It contains an account of observations made by other investigators on turacin and on the occurrence of copper in animals; a table of the geographical distribution of the Touracas, and a list of the twenty-five known species; a chart of turacin spectra (for which the author is indebted to the kindness of Dr. MacMunn); and a further examination of the chemical characters and the composition of turacin. The more important positions established by the present inquiry are these:—

- 1. The constant occurrence in eighteen out of the twenty-five known species of *Musophagidæ* of a definite organic pigment containing, as an essential constituent, about 7 per cent. of copper.
- 2. The "turacin-bearers" comprise all the known species of the three genera, Turacus, Gallirex, and Musophaga, while from all the species of the three remaining genera of the family Musophagidæ, namely, Corythæola, Schizorhis, and Gymnoschizorhis, turacin is absent. Furthermore, the zoological arrangement of the genera constituting this family is in accord with that founded on the presence of turacin.
- 3. The spectrum of turacin in alkaline solution shows, besides the two dark absorption bands previously figured, a faint broad band on either side of line F, and extending from λ 496 to λ 475.
- 4. The spectrum of isolated turacin in ammoniacal solution shows, besides the three bands already named, a narrow fourth band, lying on the less-refrangible side of line D, and extending from $\lambda 605$ to