KOSHA GUIDE W - 25 - 2017

탄소나노튜브 취급 작업환경 노출농도 관리지침

2017. 11.

한국산업안전보건공단

안전보건기술지침의 개요

- 제정자 : 한국산업안전보건공단 산업안전보건연구원 이나루
- 제·개정 경과
 - 2017년 산업위생분야 제정위원회 심의
- 관련규격 및 자료
 - 김종범, 김경환, 최병길, 송경석, 배귀남 [2016]. 국내 일부 다중벽탄소나노튜브의 직업노출기준 추정. 한국환경과학회지. 25권 4호
 - 윤충식 등 [2016]. 카본나노튜브 노출기준 설정에 관한 연구, 산업안전보건연구원
 - BSI[2007]. Nanotechnologies Part 2: Guide to safe handling and disposal of manufactured nanomaterials. London: BSI Group;6699(2)
 - Nakanishi J (ed)[2011]. Risk assessment of manufactured nanomaterials: "Approaches"
 Overview of approaches and results. Final report issued on August 17, 2011. NEDO project (P06041) "Research and Development of Nanoparticle Characterization Methods."
 - Nakanishi J (ed)[2011]. Risk assessment of manufactured nanomaterials: carbon nanotubes (CNTs). NEDO project (P06041) "Research and development of nanoparticle characterisation methods."
 - Nanocyl. Responsible care and nanomaterials case study Nanocyl. Presentation at European Responsible Care Conference, Prague. Brussels, Belgium: The European Chemical Industry Council (CEFIC) [cited 2016 Oct 11] Available from: URL:http://www.cefic.org/Documents/ResponsibleCare/04_Nanocyl.pdf
 - Pauluhn J [2010]. Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci 113(1):226 - 242
- 관련법규·규칙·고시 등
 - 해당사항 없음
- 기술지침의 적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.
 - 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2017년 11월 27일

제 정 자 : 한국산업안전보건공단 이사장

탄소나노튜브 취급 작업환경 노출농도 관리지침

1. 목 적

이 지침은 탄소나노튜브가 공기 중으로 비산되어 노동자가 영향을 받을 잠재적인 위험이 있는 작업장에서 작업환경관리를 할 때 적용할 수 있는 탄소나노튜브 노출 농도를 권고함을 목적으로 한다. 탄소나노튜브는 현재 국내에서 작업환경 측정 대상 물질은 아니지만, 건강유해성이 우려되는 물질이다. 국제암연구소(International Agency for Research on Cancer, IARC)에서는 다중벽탄소나노튜브-7(Multi-Walled Carbon Nanotubes-7)만을 사람에게 암을 일으킬 가능성이 있는 물질(Group 2B: Possibly carconogenic to humans)로 지정하였다. 탄소나노튜브의 유해성이 우려되므로, 탄소나노튜브를 취급하는 작업장에서는 탄소나노튜브 노출을 평가하고, 이를 제안 된 노출 농도와 비교하여 작업장 환경을 관리할 필요가 있으므로, 이 지침에서 탄소나노튜브 노출 농도 등에 관한 기술적 사항을 권고함을 목적으로 한다.

2. 적용범위

이 지침은 탄소나노튜브를 취급하는 작업장에서 탄소나노튜브를 측정·분석(원소탄소 기준)하여 노출 농도를 적용할 때 관련된 사항에 한한다.

3. 용어의 정의

- (1) 이 지침에서 사용되는 용어의 정의는 다음과 같다.
 - (가) "비산"이라 함은 먼지 등의 물질이 사방으로 날아 흩어짐을 말한다.
 - (나) "디젤 배출물"이라 함은 디젤 입자상 물질을 포함한 질소산화물, 탄화수소, 일산화탄소, 이산화탄소, 물 등을 말한다.
 - (다) "무영향관찰용량(No observed adverse effect level)"이라 함은 시험물질을 사용한 용량-반응 시험에서 노출집단과 적절한 비노출 집단 간 유해한 영향의

KOSHA GUIDE W - 25 - 2017

빈도나 심각성이 통계적으로 또는 생물학적으로 유의한 차이가 없는 노출 수준을 말한다. 영문 약어로는 "NOAEL"을 말한다.

- (라) "불확실성 계수(Uncertainty factor)"이라 함은 종내 및 종간의 다양성, 동물실험의 질 및 기간 등을 고려하여 상이한 인구집단에 있어 실제적으로 허용가능한 용량을 결정하기 위해 적용하는 계수를 말한다.
- (마) "호흡률(inhalation rate)"이라 함은 단위 시간을 기준으로 분당 호흡 횟수와 매호흡마다 내뱉는 공기 체적의 곱을 말한다.
- (2) 기타 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 동법시행령, 동법시행규칙 및 안전규칙에서 정하는 바에 따른다.

4. 국내·외 탄소나노튜브 노출 농도

- (1) 탄소나노튜브 노출 농도를 질량농도 기준으로 제안하고 있는 곳은 미국 국립 산업안전보건연구소(NIOSH, 1μg/m³), 일본 산업기술종합연구소(AIST, 30μg/m³), 나노실 기업(Nanocyl, 2.5μg/m³), 베이어 회사(Bayer, 50μg/m³), 그리고 국내에서는 김종범 등(142μg/m³)이 있다.
- (2) 다만, 영국 BSI(British Standard Institution)과 독일 IFA(Instutut for Auslandsbeziehungen)에서는 탄소나노튜브 노출 농도를 입자 계수 농도 기준으로 0.01개/cm²로 제안하고 있다. 현재까지 알려진 국내·외 탄소나노튜브의 노출 농도를 정리하면 <표 1>과 같다.

<표 1> 국내·외 탄소나노튜브 노출 농도

연구기관 및 연구진	작업노출 한계(Occupational exposure limit, OEL)		
미국 NIOSH REL [2013]	1 μg/m³		
일본 AIST (NEDO project) Nakanishi (ed) [2011a,b, 2015]	$30~\mu \mathrm{g/m^3}$ (8-hr TWA) for CNT		
Nanocyl [2009]	$2.5~\mu\mathrm{g/m^3}$ (8-hr TWA) for MWCNT		
Bayer [Pauluhn, 2010]	50 μg/m³		
영국 BSI [2007] 독일 IFA [2009]	0.01 fibers/ml for fibrous nanomaterials with high aspect ratios (> 31 and length > 5,000 nm)		
김종범 등 [2016]	142 μg/m³ for MWCNT		

(3) 작업환경관리를 위해 탄소나노튜브 노출 농도의 제정근거 및 측정·분석 방법의 타당성을 검토하여 국내에서 적용 가능한 노출 농도를 제안할 필요가 있다.

5. 국내 탄소나노튜브 취급 사업장 작업환경측정 결과(원소탄소 농도 기준)

(1) <표 2>는 2016년을 기준으로 탄소나노튜브를 제조 및 사용하는 곳에서 원소탄소 농도를 측정한 결과이다. 가장 높은 원소탄소 농도는 $14\mu g/m^3$ 로 탄소나노튜브 제조 및 사용 공정에서 나타났다.

<표 2> 탄소나노튜브 제조 공정의 원소탄소농도

사업장	농도 (μg/m³)	제조 여부	
A	LOD ~ 0.55	사용	
В	$LOD \sim 0.32$	제조 및 사용	
С	4.49	사용	
D	LOD ~ 0.66	사용	
Е	LOD ~ 14.24	제조 및 사용	
F	LOD	사용	
G	$3.19 \sim 7.45$	사용	
대기	1.40 ~ 3.48	배경농도	

KOSHA GUIDE W - 25 - 2017

(2) 대기 중에 디젤 배출물 등의 영향으로도 원소 탄소가 검출되므로, 탄소나노튜브 취급 사업장에서 탄소나노튜브 노출 관리를 위해서는 대기 중의 원소 탄소 농도를 고려 하여야 한다. 국내 대기 중 원소 탄소 농도는 1.40~3.48 $\mu g/m^3$ 으로 나타났다.

6. 탄소나노튜브 노출 농도(NOAEL_H) 설정 단계

- (1) 원소탄소 농도를 기준으로 탄소나노튜브 노출 농도를 설정하였다. 탄소나노튜브 측정 및 분석은 "탄소나노튜브 및 탄소나노섬유(원소탄소분석)에 대한 작업환경 측정·분석 기술지침(KOSHA GUIDE A-162-2016)"을 사용하였다.
- (2) 독성 평가자료 선택
- (가) 무영향관찰용량(NOAELR) 0.1 mg/m³ 선택

현재까지 보고 된 탄소나노튜브에 대한 동물 시험 결과는 <표 3>과 같다. 본지침에서는 그 중 가장 낮은 농도의 무영향관찰용량(No Observed Adverse Effect Level) 0.1 mg/m³을 기초 자료로 선택하였다. Wistar rats을 사용한 독성시험¹⁾으로부터 나온 결과이며, 동물 기관지 폐포 세척액 (Bronchoalveloar lavage fluid)의 호중구수 증가를 건강에 미치는 영향으로 보고 결정한 농도이다.

¹⁾ Ma-Hock, Lan, et al. "Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months." Toxicological Sciences 112.2 (2009): 468-481

<표 3> 동물을 이용한 시험에서 탄소나노튜브의 물리·화학적 특성과 독성 값

연구기관 및 연구진	Nanocyl (Ma-Hock, 2009)	일본 AIST(NEDO project 2011, 2015)		Bayer (Pauluhn, 2010)	Kim Jong Bum at al,. (2016)
시험법	OECD 413				
종류	MWCNT	SWCNT	MWCNT	MWCNT	MWCNT
시험물질 수	1	2	5	1	1
직경(nm)	5-15	8.2	44	10-15	358.46 (GMD)
길이(nm)	100-10,000	230	940 (long 3,400)	200-1,000	-
N ₂ -BET 비표면적(m ² /g)	250-300	1,064, 1,000	69, (13-440)	257	
시험물질 농도 (mg/m³)	0.1, 0.5, 2.5	0.03, 0.13	0.37	0.1, 0.4, 1.62, 5.98	0, 0.2, 0.5, 1.0
MMAD (µm)	0.8-2.0			2.2-2.9	
NOAEL _R (mg/m³)	0.1	0.13	0.37	0.1	0.98

- (3) 불확실성 계수(Uncertainty factor, UF) 결정
- (가) 동물 실험 결과를 인체에 적용하기 때문에 이에 대한 불확실성 계수 3을 선택하였다.
- (나) 국내에서 사용되는 탄소나노튜브의 물리적·화학적 특성이 다양하므로 제품에 대한 불확실성 계수 4를 선택하였다.

<표 4> KOSHA GUIDE 및 국외 연구에서 사용 된 불확실성 계수

구분	불확실성 계수(Uncertainty Factor)			
연구기관 및 연구진	KOSHA GUIDE ²⁾	KOSHA GUIDE ²⁾ 일본 AIST (NEDO, 2011)		
동물 → 사람 (Interspecies TK)	3	3	12	
아급성(subacute) (4주) → 아만성(subchronic) (13주)	2	2		
독성동태학적 계수		1	3	
카본나노튜브 특성의 다양성	4			
총	24	6	36	

- (4) 탄소나노튜브 노출 농도(NOAELH) 설정
- (가) 체중은 우리나라 성인 체중 70.6 kg를 사용하였다.
- (나) 호흡률은 일하는 성인 남자의 호흡률 17.9 m³/day를 사용하였다.
- (다) 노출계수를 반영한 계산식은 아래 <그림 1>과 같다.

$$\begin{split} NOAEL_{H} &= 0.10 \times \frac{1}{2} [mg/m^{3}] \\ &\times \frac{(6 \times 7/5 \, [\min/day]) \times (0.189 \times 10^{-3} [m^{3}/\min]) \times 70.6 [kg]}{(8 \times 7/5 \, [\min/day]) \times (12.4 \times 10^{-3} [m^{3}/\min]) \times 0.3 [kg]} \\ &\times \frac{1}{3} \times \frac{1}{4} = 0.011 \, [mg/m^{3}] \\ &< \text{그림 1> 무영향관찰용량(NOAEL_{H}) 계산 식} \end{split}$$

7. 작업환경관리를 위한 탄소나노튜브 노출 농도 $(NOAEL_H)$ $10\mu g/m^3$ 제안

- (1) 탄소나노튜브 노출 농도(NOAEL_H) 10μg/m³는 원소탄소 농도를 기준으로 하여야 한다.
- (2) 계산 값이 $11\mu g/m^3$ 인데 $10\mu g/m^3$ 으로 제안하는 이유는 탄소나노튜브의 순도가 100%가되지 않고 90% 정도 수준임을 감안하여야 하며, 탄소나노튜브의 원소탄소 농도를 분석하기 때문이다.
- (3) 10 μg/m³은 동물(래트) 기관지 폐포 세척액의 호중구 수 증가를 근거로 한 것이다. 탄소나노튜브가 발암성물질로 의심되거나 이에 대한 영향을 고려한다면, 노동자의 탄소나노튜브 노출을 낮출 수 있는 가장 낮은 농도로 작업환경을 관리할 것을 권고 한다.

²⁾ 카본나노튜브 노출 기준 설정에 관한 연구에서 권고한 불확실성 계수를 본 지침에서 사용.