Signal Processing Torgin 2016 26/01/2017 Bût. Stumleri

1-25p

$$h[n] = S[n+1] + 2S[n] - S[n-2]$$

We know that x[n] * S[n-k] = x[n-k]So: x[n] * h[n] = x[n+1] + 2x[n] - x[n-2]

	-3	-2	1-1	0	1	2	3	4	5	27
	0	1	1	2	-2					
2x[n]			2	2	4	-4				
-2[n-2]				7	-1	-1	-2	2		
				-						

y[n] 1341-5-22

$$\frac{(-1)^k}{k} \times [k]$$

1)
$$n+2 < 2 \rightarrow (n < 0)$$
 $y[n]=0$

$$\begin{array}{lll}
\text{Q[n]} &= \sum_{k=2}^{n+2} (-1)^k 2^{k-n} \\
&= 2^n \sum_{k=2}^{n+2} (-2)^k = 2^n \left(\frac{(-2)^2 - (-2)^{n+3}}{-1 - (-2)} \right) \\
&= 2^n \cdot \frac{1}{3} \left[+ 4 - (-2)^{n+3} \right] \\
&= \frac{4}{3} 2^{-n} - \frac{1}{3} 2^{-n} \times (+2)^{n+3} \times (-1)^{n+3} \\
&= \left[\frac{4}{3} 2^{-n} + \frac{8}{3} \times (-1)^n \right] \\
&= \frac{4}{3} 2^{-n} + \frac{8}{3} \times (-1)^n \\
&= -(-1)^n */ \end{aligned}$$

$$\underbrace{e^{(t-z)}}_{z} \times [t-z]$$

$$0 \quad t-1 < -2 \quad \Rightarrow \quad \boxed{t < -1} \quad y(t) = 0$$

(2)
$$-2(\pm -1/2) \rightarrow -1/2$$

 $y(+) = \int_{e^{\pm z}}^{e^{\pm z}} e^{-(+-z)} dz$
 $y(+) = \int_{e^{\pm z}}^{e^{\pm z}} e^{-(+-z)} dz$
 $= e^{\pm} \int_{e^{\pm z}}^{e^{\pm z}} e^{-(+-z)} dz = e^{\pm z} \int_{e^{\pm z}}^{e^{\pm z}} [e^{5z}]_{-2}^{t-1}$
 $= e^{\pm} (e^{5t-5} - e^{10}) = \frac{1}{5} [e^{4t-5} - e^{(10+t)}]$

3
$$t = 3$$
 $y(t) = \int_{0}^{2} e^{-t} \cdot e^{5z} \cdot dz = \frac{e^{-t}}{5} \left[e^{5z} \right]_{-2}^{2}$

$$= \left(e^{-t} \cdot \frac{e^{0} - e^{-10}}{5} \right)$$

①
$$t+2<1 \rightarrow t<-1$$
 $y(+)=0$

(2)
$$t+2/1$$
 $t-2<1$
 $t+2$
 $t+2$
 $y(t) = \int e^{4(t-2)} e^{-7} d7$

$$= \left[\frac{1}{5} \left[\frac{4t-5}{e} - e^{(5-t)} \right] \right]$$

(3)
$$(\pm \) 3)$$
 $\pm +2$
 $y(+) = \int e^{4(+-z)} e^{-7} dz$
 ± -2
 $= \left(e^{-t} \left(e^{0} - e^{-0} \right) \right)$

$$1 \quad \pm (-1) \rightarrow y(+) = 0 \quad \pm$$

(2)
$$-1 < t < 1 \rightarrow y(t) = \int (-1) dt = -(t - (-1)) = [-t-1]$$