OpenModelica超初級チュートリアル

1.解析モデルの作成と実行

Copyright (C) 2020 Shigenori Ueda Released under the MIT license https://opensource.org/licenses/mit-license.php

注意事項

· 本資料ではOpenModelicaの操作方法を主に解説します。

OpenModelica1.14.1 (64bit - windows版)を利用して
本チュートリアルは作成されています。

<u>商用ソフトに匹敵するオープンソースの1DCAEツール</u>

OpenModelica

OpenModelica

OpenModelicaはOSMC (OSMC Open Source Modelica Consortium)が提供するOSSです

高機能!

- ・わかりやすいGUI
- ・パラメータスタディ
- ・高機能なエディタ
- ・デバッガ
- ·Git対応
- ・豊富な解析ライブラリ

使いやすい!

- ·Windows対応
- · 日本語対応

学びやすい!

- ・学習用教材の充実 OMNotebook
- ・動画のチュートリアル Spoken tutorials

<u>豊富なライブラリ</u>

OpenModelicaには多くの(確か87種類以上)OSS Buildin libraryがあり様々な解析が可能(以下は一部)

<u>物理現象</u>

解析対象

数学

<u>データ用ツール</u>

流体

熱

構造

振動

騒音

電磁気

化学反応

生化学

etc.

車両

建築

風力発電

光発電

電力システム

生理現象

核反応炉

サーボ

燃料電池

etc.

複素数

ニューラルネットワーク 組み込み用デバイスドライバ

古典制御

ファジー制御

etc.

出力フォーマット変換 ⁷ 組み込み田デバイスドライ

etc.

各団体や企業が公開しているライブラリや 商用ライブラリを合わせればさらに多くの解析が可能

<u>OpenModelicaのインストール</u>

Open Source Modelica Consortiumのサイトからインストーラをダウンロードし実行してください。 基本的に指示通りに進むだけでインストールできます。

https://www.openmodelica.org/download/download-windows

Index of /omc/builds/winc

	<u>Name</u>	<u>Last modified</u>	<u>Size</u>	<u>Description</u>		
4	Parent Directory	<u>′</u>	-			
	<u>32bit/</u>	2020-01-02 17:57	7 -			
	<u>64bit/</u>	2020-01-02 17:58	3 -			
	penModelica-v1.14 penModelica-v1.14 penModelica-v1.14	1.1-64bit-ChangeLog 1.1-64bit-README.tx 1.1-64bit-testsuite-tr 1.1-64bit.exe 1.1-64bit.exe.md5su	<u>ct</u> race.txt	2019-12-31 2019-12-31 2019-12-31 2019-12-31 2019-12-31	01:48 1.4 01:48 13 01:48 1.3	K 6 G

ダウンロードして実行

OpenModelica Connection Editor(OMEdit)の起動と起動画面

これから作成する解析モデル

○非減衰自由振動

練習問題として以下のようなバネの振動を計算します。

1D CAEのようにブロックで表すと?

左図の式をまとめると 以下の式になる

$$kx = m\frac{d^2x_d}{dt^2}$$

解析モデルの作成

「Tutorial1」が作成されたことを確認

注意! クラス名の頭文字には数字は使用できません。またクラス名には 全角文字や一部の特殊文字(@や/)は使用できません

「OK」をクリック

モデルの貼り付け-1

Modelica – Mechanics – Translational – Components - Fixedをダイアグラムビューヘドラッグ&ドロップしてください。

「+」をクリックすることで中身を開く ことができます

モデルの貼り付け - 2

SpringとMassをドラッグ&ドロップして貼り付けてください。

モデル同士の接続

モデル同士の接続は以下のように行います。

spring c=c

- ① モデルの□に カーソルを近づけると カーソルの形が**+**に なります
- ② +の状態のまま ドラッグ&ドロップ するとラインが 出てきます。 ラインが出てきたら マウスを離しても ラインは出たままになります

③ 接続したいモデルの■に近づけるとカーソルが+になりますのでそこで左クリックしてください。

④ 同様にして左図のように接続してください

パラメータの設定 - 1

springをダブルクリックするとパラメータ設定の画面が出てきます。 以下のように入力してください。

パラメータの設定 - 2

同様にmassについて以下のように設定してください。

おもりの質量

おもりの初期速度 初期値を有効にするには v.startの横の□をクリックして 「Fixed」を「true」にしてく ださい

ファイルの保存

▲ OMEdit - OpenModelica Connection Editor

解析を実行する前にファイルを保存してください。

ファイル名を決定し保存を クリックしてください

解析設定

「終了時刻」を「10」にしてください。 「終了時刻」はモデル内で経過する時間を示しています。 その後、「OK」をクリックすると解析

その後、「OK」をクリックすると解析 がスタートします。

解析設定 - Tips

シミュレーションフラグタブを選択すると詳細な設定が行えます。

特に連立方程式の解法は充実しています。

解析実行時の画面

以下のようなウィンドウが表示されます。 解析が正常に終了した場合、「The simulation finished successfully.」と表示されます。 ×を押して閉じてください。

Cコードをコンパイルして exeファイルを作成し、計算を実行します

解析結果

解析終了後、自動で「プロットウィンドウ」に切り替わります。 変数ブラウザからspring - s_relにチェックをいれ、結果のプロットを確認してください。 バネの変位を解析できたことが分かります。

ダイアグラムビューに戻るには、右下のモデリングをクリックしてください。