# Statistics 203: Introduction to Regression and Analysis of Variance Fixed vs. Random Effects

Jonathan Taylor



### Today's class

### Today's class

- Two-way ANOVA
- Random vs. fixed effects
- When to use random effects?
- Example: sodium content in beer
- One-way random effects model
- Implications for model
- One-way random ANOVA table
- ullet Inference for  $\mu$  .
- ullet Estimating  $\sigma_{\mu}^2$
- Example: productivity study
- Two-way random effects model
- ANOVA tables: Two-way (random)
- Mixed effects model
- Two-way mixed effects model
- ANOVA tables: Two-way (mixed)
- Confidence intervals for variances
- Sattherwaite's procedure

- Random effects.
- One-way random effects ANOVA.
- Two-way mixed & random effects ANOVA.
- Sattherwaite's procedure.



# **Two-way ANOVA**

- Today's class
- Two-way ANOVA
- Random vs. fixed effects
- When to use random effects?
- Example: sodium content in beer
- One-way random effects model
- Implications for model
- One-way random ANOVA table
- lacksquare Inference for  $\mu$  .
- ullet Estimating  $\sigma_{\mu}^2$
- Example: productivity study
- Two-way random effects model
- ANOVA tables: Two-way (random)
- Mixed effects model
- Two-way mixed effects model
- ANOVA tables: Two-way (mixed)
- Confidence intervals for variances
- Sattherwaite's procedure

- Second generalization: more than one grouping variable.
- Two-way ANOVA model: observations:

 $(Y_{ijk}), 1 \le i \le r, 1 \le j \le m, 1 \le k \le n_{ij}$ : r groups in fi rst grouping variable, m groups ins second and  $n_{ij}$  samples in (i,j)-"cell":

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijk}, \qquad \varepsilon_{ijk} \sim N(0, \sigma^2).$$

- Constraints:
  - $\bullet \sum_{i=1}^{r} \alpha_i = 0$
  - $\bullet \sum_{j=1}^{m} \beta_j = 0$
  - $\bullet \sum_{j=1}^{m} (\alpha \beta)_{ij} = 0, 1 \le i \le r$



### Random vs. fixed effects

- Today's class
- Two-way ANOVA

### Random vs. fixed effects

- When to use random effects?
- Example: sodium content in heer
- One-way random effects model
- Implications for model
- One-way random ANOVA table
- ullet Inference for  $\mu$  .
- ullet Estimating  $\sigma_{\mu}^2$
- Example: productivity study
- Two-way random effects model
- ANOVA tables: Two-way (random)
- Mixed effects model
- Two-way mixed effects model
- ANOVA tables: Two-way (mixed)
- Confidence intervals for variances
- Sattherwaite's procedure

- In ANOVA examples we have seen so far, the categorical variables are well-defi ned categories: below average fi tness, long duration, etc.
- In some designs, the categorical variable is "subject".
- Simplest example: repeated measures, where more than one (identical) measurement is taken on the same individual.
- In this case, the "group" effect  $\alpha_i$  is best thought of as random because we only sample a subset of the entire population of subjects.



### When to use random effects?

- Today's class
- Two-way ANOVA
- Random vs. fixed effects
- When to use random effects?
- Example: sodium content in beer
- One-way random effects model
- Implications for model
- One-way random ANOVA table
- ullet Inference for  $\mu$  .
- ullet Estimating  $\sigma_{\mu}^2$
- Example: productivity study
- Two-way random effects model
- ANOVA tables: Two-way (random)
- Mixed effects model
- Two-way mixed effects model
- ANOVA tables: Two-way (mixed)
- Confidence intervals for variances
- Sattherwaite's procedure

- A "group" effect is random if we can think of the levels we observe in that group to be samples from a larger population.
- Example: if collecting data from different medical centers, "center" might be thought of as random.
- Example: if surveying students on different campuses, "campus" may be a random effect.



### **Example: sodium content in beer**

- Today's class
- Two-way ANOVA
- Random vs. fixed effects
- When to use random effects?
- Example: sodium content in heer
- One-way random effects model
- Implications for model
- One-way random ANOVA table
- ullet Inference for  $\mu$  .
- ullet Estimating  $\sigma_{\mu}^2$
- Example: productivity study
- Two-way random effects model
- ANOVA tables: Two-way (random)
- Mixed effects model
- Two-way mixed effects model
- ANOVA tables: Two-way (mixed)
- Confidence intervals for variances
- Sattherwaite's procedure

- How much sodium is there in North American beer? How much does this vary by brand?
- Observations: for 6 brands of beer, researchers recorded the sodium content of 8 12 ounce bottles.
- Questions of interest: what is the "grand mean" sodium content? How much variability is there from brand to brand?
- "Individuals" in this case are brands, repeated measures are the 8 bottles.



### One-way random effects model

- Today's class
- Two-way ANOVA
- Random vs. fixed effects
- When to use random effects?
- Example: sodium content in beer
- One-way random effects model
- Implications for model
- One-way random ANOVA table
- ullet Inference for  $\mu$  .
- ullet Estimating  $\sigma_{\mu}^2$
- Example: productivity study
- Two-way random effects model
- ANOVA tables: Two-way (random)
- Mixed effects model
- Two-way mixed effects model
- ANOVA tables: Two-way (mixed)
- Confidence intervals for variances
- Sattherwaite's procedure

- Suppose we take n identical measurements from r subjects.
- $\blacksquare Y_{ij} \sim \mu. + \alpha_i + \varepsilon_{ij}, 1 \leq i \leq r, 1 \leq j \leq n$
- $\bullet$   $\varepsilon_{ij} \sim N(0, \sigma^2), 1 \leq i \leq r, 1 \leq j \leq n$
- $\alpha_i \sim N(0, \sigma_u^2), 1 \le i \le r.$
- We might be interested in the population mean,  $\mu$ .: Cls, is it zero? etc.
- Alternatively, we might be interested in the variability across subjects,  $\sigma_{\mu}^2$ : Cls, is it zero?



### Implications for model

- Today's class
- Two-way ANOVA
- Random vs. fixed effects
- When to use random effects?
- Example: sodium content in beer
- One-way random effects model
- Implications for model
- One-way random ANOVA table
- ullet Inference for  $\mu$  .
- ullet Estimating  $\sigma_u^2$
- Example: productivity study
- Two-way random effects model
- ANOVA tables: Two-way (random)
- Mixed effects model
- Two-way mixed effects model
- ANOVA tables: Two-way (mixed)
- Confidence intervals for variances
- Sattherwaite's procedure

■ In random effects model, the observations are no longer independent (even if  $\varepsilon$ 's are independent). In fact

$$Cov(Y_{ij}, Y_{i'j'}) = \sigma_{\mu}^2 \delta_{i,i'} + \sigma^2 \delta_{j,j'}.$$

- In more complicated mixed effects models, this makes MLE more complicated: not only are there parameters in the mean, but in the covariance as well.
- In ordinary least squares regression, the only parameter to estimate is  $\sigma^2$  because the covariance matrix is  $\sigma^2 I$ .



### **One-way random ANOVA table**

- Today's class
- Two-way ANOVA
- Random vs. fixed effects
- When to use random effects?
- Example: sodium content in beer
- One-way random effects model
- Implications for model
- One-way random ANOVA table
- lacksquare Inference for  $\mu$  .
- ullet Estimating  $\sigma_{\mu}^2$
- Example: productivity study
- Two-way random effects model
- ANOVA tables: Two-way (random)
- Mixed effects model
- Two-way mixed effects model
- ANOVA tables: Two-way (mixed)
- Confidence intervals for variances
- Sattherwaite's procedure

| Source     | SS                                                                            | df       | E(MS)                        |
|------------|-------------------------------------------------------------------------------|----------|------------------------------|
| Treatments | $SSTR = \sum_{i=1}^{r} n \left( \overline{Y}_{i.} - \overline{Y} \right)^{2}$ | r-1      | $\sigma^2 + n\sigma_{\mu}^2$ |
| Error      | $SSE = \sum_{i=1}^{r} \sum_{j=1}^{n} (Y_{ij} - \overline{Y}_{i})^{2}$         | (n - 1)r | $\sigma^2$                   |

- Only change here is the expectation of SSTR which reflects randomness of  $\alpha_i$ 's.
- ANOVA table is still useful to setup tests: the same *F* statistics for fi xed or random will work here.
- Under  $H_0: \sigma_u^2 = 0$ , it is easy to see that

$$\frac{MSTR}{MSE} \sim F_{r-1,(n-1)r}.$$



### Inference for $\mu$ .

- Today's class
- Two-way ANOVA
- Random vs. fixed effects
- When to use random effects?
- Example: sodium content in beer
- One-way random effects model
- Implications for model
- One-way random ANOVA table
- lacksquare Inference for  $\mu$  .
- ullet Estimating  $\sigma_{\mu}^2$
- Example: productivity study
- Two-way random effects model
- ANOVA tables: Two-way (random)
- Mixed effects model
- Two-way mixed effects model
- ANOVA tables: Two-way (mixed)
- Confidence intervals for variances
- Sattherwaite's procedure

■ We know that  $E(\overline{Y}_{\cdot \cdot}) = \mu_{\cdot \cdot}$ , and can show that

$$\operatorname{Var}(\overline{Y}..) = \frac{n\sigma_{\mu}^2 + \sigma^2}{rn}.$$

■ Therefore,

$$\frac{\overline{Y}.. - \mu.}{\sqrt{\frac{SSTR}{(r-1)rn}}} \sim t_{r-1}$$

- Why r-1 degrees of freedom? Imagine we could record an infi nite number of observations for each individual, so that  $\overline{Y}_{i\cdot} \to \mu_i$ .
- To learn anything about  $\mu$ . we still only have r observations  $(\mu_1, \ldots, \mu_r)$ .
- Sampling more within an individual cannot narrow the CI for  $\mu$ ..



# Estimating $\sigma_{\mu}^2$

- Today's class
- Two-way ANOVA
- Random vs. fixed effects
- When to use random effects?
- Example: sodium content in beer
- One-way random effects model
- Implications for model
- One-way random ANOVA table
- ullet Inference for  $\mu$  .
- ullet Estimating  $\sigma_{\mu}^2$
- Example: productivity study
- Two-way random effects model
- ANOVA tables: Two-way (random)
- Mixed effects model
- Two-way mixed effects model
- ANOVA tables: Two-way (mixed)
- Confidence intervals for variances
- Sattherwaite's procedure

From the ANOVA table

$$\sigma_{\mu}^{2} = \frac{E(SSTR/(r-1)) - E(SSE/((n-1)r))}{n}.$$

Natural estimate:

$$S_{\mu}^{2} = \frac{SSTR/(r-1) - SSE/((n-1)r)}{n}$$

Problem: this estimate can be negative! One of the diffi culties in random effects model.



### **Example: productivity study**

- Today's class
- Two-way ANOVA
- Random vs. fixed effects
- When to use random effects?
- Example: sodium content in heer
- One-way random effects model
- Implications for model
- One-way random ANOVA table
- ullet Inference for  $\mu$  .
- ullet Estimating  $\sigma_{\mu}^2$

### Example: productivity study

- Two-way random effects model
- ANOVA tables: Two-way (random)
- Mixed effects model
- Two-way mixed effects model
- ANOVA tables: Two-way (mixed)
- Confidence intervals for variances
- Sattherwaite's procedure

- Imagine a study on the productivity of employees in a large manufacturing company.
- Company wants to get an idea of daily productivity, and how it depends on which machine an employee uses.
- Study: take m employees and r machines, having each employee work on each machine for a total of n days.
- As these employees are not *all* employees, and these machines are not *all* machines it makes sense to think of both the effects of machine and employees (and interactions) as random.



### Two-way random effects model

- Today's class
- Two-way ANOVA
- Random vs. fixed effects
- When to use random effects?
- Example: sodium content in beer
- One-way random effects model
- Implications for model
- One-way random ANOVA table
- ullet Inference for  $\mu$  .
- Estimating  $\sigma_{u}^2$
- Example: productivity study
- Two-way random effects model
- ANOVA tables: Two-way (random)
- Mixed effects model
- Two-way mixed effects model
- ANOVA tables: Two-way (mixed)
- Confidence intervals for variances
- Sattherwaite's procedure

- $Y_{ijk} \sim \mu.. + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ij}, 1 \le i \le r, 1 \le j \le m, 1 \le k \le n$
- $\bullet$   $\varepsilon_{ijk} \sim N(0, \sigma^2), 1 \leq i \leq r, 1 \leq j \leq m, 1 \leq k \leq n$
- $\blacksquare \alpha_i \sim N(0, \sigma_\alpha^2), 1 \leq i \leq r.$
- $\beta_j \sim N(0, \sigma_\beta^2), 1 \le j \le m.$
- $(\alpha\beta)_{ij} \sim N(0, \sigma_{\alpha\beta}^2), 1 \le j \le m, 1 \le i \le r.$



# **ANOVA tables: Two-way (random)**

- Today's class
- Two-way ANOVA
- Random vs. fixed effects
- When to use random effects?
- Example: sodium content in beer
- One-way random effects model
- Implications for model
- One-way random ANOVA table
- ullet Inference for  $\mu$  .
- ullet Estimating  $\sigma_{\mu}^2$
- Example: productivity study
- Two-way random effects model
- ANOVA tables: Two-way (random)
- Mixed effects model
- Two-way mixed effects model
- ANOVA tables: Two-way (mixed)
- Confidence intervals for variances
- Sattherwaite's procedure

| SS                                                                                                                                 | df         | E(SS)                                                      |
|------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------|
| $SSA = nm \sum_{i=1}^{r} \left( \overline{Y}_{i} \overline{Y} \right)^{2}$                                                         | r-1        | $\sigma^2 + nm\sigma_{\alpha}^2 + n\sigma_{\alpha\beta}^2$ |
| $SSB = nr \sum_{j=1}^{m} \left( \overline{Y}_{\cdot j} \cdot - \overline{Y}_{\cdot \cdot \cdot} \right)^2$                         | m-1        | $\sigma^2 + nr\sigma_{\beta}^2 + n\sigma_{\alpha\beta}^2$  |
| $SSAB = n \sum_{i=1}^{r} \sum_{j=1}^{m} \left( \overline{Y}_{ij} \overline{Y}_{i} - \overline{Y}_{.j}. + \overline{Y} \right)^{2}$ | (m-1)(r-1) | $\sigma^2 + n\sigma_{\alpha\beta}^2$                       |
| $SSE = \sum_{i=1}^{r} \sum_{i=1}^{m} \sum_{k=1}^{n} (Y_{ijk} - \overline{Y}_{ij})^{2}$                                             | (n-1)ab    | $\sigma^2$                                                 |

- To test  $H_0: \sigma_{\alpha}^2 = 0$  use SSA and SSAB.
- To test  $H_0: \sigma^2_{\alpha\beta} = 0$  use SSAB and SSE.



### Mixed effects model

- Today's class
- Two-way ANOVA
- Random vs. fixed effects
- When to use random effects?
- Example: sodium content in beer
- One-way random effects model
- Implications for model
- One-way random ANOVA table
- ullet Inference for  $\mu$  .
- ullet Estimating  $\sigma_{\mu}^2$
- Example: productivity study
- Two-way random effects model
- ANOVA tables: Two-way (random)

#### Mixed effects model

- Two-way mixed effects model
- ANOVA tables: Two-way (mixed)
- Confidence intervals for variances
- Sattherwaite's procedure

- In some studies, some factors can be thought of as fi xed, others random.
- For instance, we might have a study of the effect of a standard part of the brewing process on sodium levels in the beer example.
- Then, we might think of a model in which we have a fi xed effect for "brewing technique" and a random effect for beer.

### Two-way mixed effects model

- Today's class
- Two-way ANOVA
- Random vs. fixed effects
- When to use random effects?
- Example: sodium content in beer
- One-way random effects model
- Implications for model
- One-way random ANOVA table
- ullet Inference for  $\mu$  .
- ullet Estimating  $\sigma_{\mu}^2$
- Example: productivity study
- Two-way random effects model
- ANOVA tables: Two-way (random)
- Mixed effects model
- Two-way mixed effects model
- ANOVA tables: Two-way (mixed)
- Confidence intervals for variances
- Sattherwaite's procedure

- $Y_{ijk} \sim \mu.. + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ij}, 1 \le i \le r, 1 \le j \le m, 1 \le k \le n$
- $\bullet$   $\varepsilon_{ijk} \sim N(0, \sigma^2), 1 \leq i \leq r, 1 \leq j \leq m, 1 \leq k \leq n$
- $\blacksquare \alpha_i \sim N(0, \sigma_\alpha^2), 1 \leq i \leq r.$
- lacksquare  $\beta_i, 1 \leq j \leq m$  are constants.
- $(\alpha\beta)_{ij} \sim N(0, (m-1)\sigma_{\alpha\beta}^2/m), 1 \le j \le m, 1 \le i \le r.$
- Constraints:
  - $\bullet \sum_{j=1}^{m} \beta_j = 0$

  - Cov  $((\alpha\beta)_{ij}, (\alpha\beta)_{i'j'}) = -\sigma_{\alpha\beta}^2/m$
- $\begin{array}{l} \blacksquare \ \, \mathsf{Cov}(Y_{ijk},Y_{i'j'k'}) = \\ \delta_{jj'} \left( \sigma_\beta^2 + \delta_{ii'} \frac{m-1}{m} \sigma_{\alpha\beta}^2 (1-\delta_{ii'}) \frac{1}{m} \sigma_{\alpha\beta}^2 + \delta_{ii'} \delta_{kk'} \sigma^2 \right) \end{array}$



# **ANOVA tables: Two-way (mixed)**

- Today's class
- Two-way ANOVA
- Random vs. fixed effects
- When to use random effects?
- Example: sodium content in beer
- One-way random effects model
- Implications for model
- One-way random ANOVA table
- ullet Inference for  $\mu$  .
- ullet Estimating  $\sigma_{\mu}^2$
- Example: productivity study
- Two-way random effects model
- ANOVA tables: Two-way (random)
- Mixed effects model
- Two-way mixed effects model
- ANOVA tables: Two-way (mixed)
- Confidence intervals for variances
- Sattherwaite's procedure

| SS                                                                                      | df         | E(MS)                                                                        |
|-----------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------|
| SSA                                                                                     | r-1        | $\sigma^2 + nm\sigma_{\alpha}^2$                                             |
| SSB                                                                                     | m-1        | $\sigma^2 + nr \frac{\sum_{j=1}^m \beta_i^2}{m-1} + n\sigma_{\alpha\beta}^2$ |
| SSAB                                                                                    | (m-1)(r-1) | $\sigma^2 + n\sigma_{\alpha\beta}^2$                                         |
| $SSE = \sum_{i=1}^{r} \sum_{i=1}^{m} \sum_{k=1}^{n} (Y_{ijk} - \overline{Y}_{ij.})^{2}$ | (n-1)ab    | $\sigma^2$                                                                   |

- To test  $H_0: \sigma_{\alpha}^2 = 0$  use SSA and SSE.
- To test  $H_0: \beta_1 = \cdots = \beta_m = 0$  use SSB and SSAB.
- To test  $H_0: \sigma^2_{\alpha\beta}$  use SSAB and SSE.



### Confidence intervals for variances

- Today's class
- Two-way ANOVA
- Random vs. fixed effects
- When to use random effects?
- Example: sodium content in beer
- One-way random effects model
- Implications for model
- One-way random ANOVA table
- lacksquare Inference for  $\mu$  .
- ullet Estimating  $\sigma_{\mu}^2$
- Example: productivity study
- Two-way random effects model
- ANOVA tables: Two-way (random)
- Mixed effects model
- Two-way mixed effects model
- ANOVA tables: Two-way (mixed)
- Confidence intervals for variances
- Sattherwaite's procedure

■ Consider estimating  $\sigma_{\beta}^2$  in the two-way random effects ANOVA. A natural estimate is

$$\widehat{\sigma}_{\beta}^2 = nr(MSB - MSAB).$$

- What about CI?
- A linear combination of  $\chi^2$  but not  $\chi^2$ .
- To form a confi dence interval for  $\widehat{\sigma}_{\beta}^2$  we need to know distribution of a linear combination of  $MS \cdot 's$ , at least approximately.

# Sattherwaite's procedure

- Today's class
- Two-way ANOVA
- Random vs. fixed effects
- When to use random effects?
- Example: sodium content in beer
- One-way random effects model
- Implications for model
- One-way random ANOVA table
- ullet Inference for  $\mu$  .
- ullet Estimating  $\sigma_{\mu}^2$
- Example: productivity study
- Two-way random effects model
- ANOVA tables: Two-way (random)
- Mixed effects model
- Two-way mixed effects model
- ANOVA tables: Two-way (mixed)
- Confidence intervals for variances
- Sattherwaite's procedure

■ Given k independent MS·'s

$$\widehat{L} \sim \sum_{i=1}^{k} c_i M S_i$$

Then

$$\frac{df_T \widehat{L}}{\mathbb{E}(\widehat{L})} " \sim " \chi^2_{df_T}.$$

where

$$df_{T} = \frac{\left(\sum_{i=1}^{k} c_{i} M S_{i}\right)^{2}}{\sum_{i=1}^{k} c_{i}^{2} M S_{i}^{2} / df_{i}}$$

where  $df_i$  are the degrees of freedom of the *i*-th MS.

 $\blacksquare$   $(1-\alpha)\cdot 100\%$  CI for  $\mathbb{E}(\widehat{L})$ :

$$L_L = \frac{df_T \times \widehat{L}}{\chi^2_{df_T;1-\alpha/2}}, \qquad L_U = \frac{df_T \times \widehat{L}}{\chi^2_{df_T;\alpha/2}}$$