Stepwise Variable Selection in Nonparametric Additive Models

Chong Gu

Department of Statistics Purdue University

June 5, 2014

Outline

- Problem and Method
 - Nonparametric Sparse Regression
 - Iterative Variable Selection
 - Estimation, Selection, and Screening
 - Forward Addition
- 2 Empirical Studies
 - Simulation Settings
 - Empirical Performances

Outline

- Problem and Method
 - Nonparametric Sparse Regression
 - Iterative Variable Selection
 - Estimation, Selection, and Screening
 - Forward Addition
- 2 Empirical Studies
 - Simulation Settings
 - Empirical Performances

- ► Consider $Y_i = \eta(x_i) + \epsilon_i = \eta_\emptyset + \sum_{j=1}^p \eta_j(x_{i\langle j\rangle}) + \epsilon_i$, i = 1, ..., n, where $x_i = (x_{i\langle 1\rangle}, ..., x_{i\langle p\rangle}) \in [0, 1]^p$ and $\epsilon_i \sim N(0, \sigma^2)$.
- ▶ Task: Only d < p of the η_i 's are nonzero, which we try to identify.
- \blacktriangleright Existing algorithms are largely LASSO-variants, using some L_1 -type penalties to weed out inactive variables.
 - COSSO (Lin & Zhang 2006), SpAM (Ravikumar et al 2007), penGAMM (Meier et al 2009), etc.
 - When $p \gg n$, variable-screening is needed to pare down the variable list for the algorithms to work (Fan et al 2011).
- ► LASSO-type algorithms select variables and estimate the model at the same time, but variable selection and model estimation are different tasks with different objectives.

- ► Consider $Y_i = \eta(x_i) + \epsilon_i = \eta_\emptyset + \sum_{j=1}^p \eta_j(x_{i\langle j\rangle}) + \epsilon_i$, i = 1, ..., n, where $x_i = (x_{i\langle 1\rangle}, ..., x_{i\langle p\rangle}) \in [0, 1]^p$ and $\epsilon_i \sim N(0, \sigma^2)$.
- ▶ Task: Only d < p of the η_i 's are nonzero, which we try to identify.
- \triangleright Existing algorithms are largely LASSO-variants, using some L_1 -type penalties to weed out inactive variables.
 - COSSO (Lin & Zhang 2006), SpAM (Ravikumar et al 2007), penGAMmumar et al 2007), penGAMmumar et al 2009), etc.
 - When $p \gg n$, variable-screening is needed to pare down the variable list for the algorithms to work (Fan et al 2011).
- ► LASSO-type algorithms select variables and estimate the model at the same time, but variable selection and model estimation are different tasks with different objectives.

- ► Consider $Y_i = \eta(x_i) + \epsilon_i = \eta_\emptyset + \sum_{j=1}^p \eta_j(x_{i\langle j\rangle}) + \epsilon_i$, i = 1, ..., n, where $x_i = (x_{i\langle 1\rangle}, ..., x_{i\langle p\rangle}) \in [0, 1]^p$ and $\epsilon_i \sim N(0, \sigma^2)$.
- ▶ Task: Only d < p of the η_i 's are nonzero, which we try to identify.
- \triangleright Existing algorithms are largely LASSO-variants, using some L_1 -type penalties to weed out inactive variables.
 - COSSO (Lin & Zhang 2006), SpAM (Ravikumar et al 2007), penGAM (Meier et al 2009), etc.
 - When $p \gg n$, variable-screening is needed to pare down the variable list for the algorithms to work (Fan et al 2011).
- ► LASSO-type algorithms select variables and estimate the model at the same time, but variable selection and model estimation are different tasks with different objectives.

- ► Consider $Y_i = \eta(x_i) + \epsilon_i = \eta_\emptyset + \sum_{j=1}^p \eta_j(x_{i\langle j\rangle}) + \epsilon_i$, i = 1, ..., n, where $x_i = (x_{i\langle 1\rangle}, ..., x_{i\langle p\rangle}) \in [0, 1]^p$ and $\epsilon_i \sim N(0, \sigma^2)$.
- ▶ Task: Only d < p of the η_i 's are nonzero, which we try to identify.
- \triangleright Existing algorithms are largely LASSO-variants, using some L_1 -type penalties to weed out inactive variables.
 - COSSO (Lin & Zhang 2006), SpAM (Ravikumar et al 2007), penGAM (Meier et al 2009), etc.
 - When $p \gg n$, variable-screening is needed to pare down the variable list for the algorithms to work (Fan et al 2011).
- ► LASSO-type algorithms select variables and estimate the model at the same time, but variable selection and model estimation are different tasks with different objectives.

- ► Consider $Y_i = \eta(x_i) + \epsilon_i = \eta_\emptyset + \sum_{j=1}^p \eta_j(x_{i\langle j\rangle}) + \epsilon_i$, i = 1, ..., n, where $x_i = (x_{i\langle 1\rangle}, ..., x_{i\langle p\rangle}) \in [0, 1]^p$ and $\epsilon_i \sim N(0, \sigma^2)$.
- ▶ Task: Only d < p of the η_i 's are nonzero, which we try to identify.
- \triangleright Existing algorithms are largely LASSO-variants, using some L_1 -type penalties to weed out inactive variables.
 - COSSO (Lin & Zhang 2006), SpAM (Ravikumar et al 2007), penGAM (Meier et al 2009), etc.
 - When $p \gg n$, variable-screening is needed to pare down the variable list for the algorithms to work (Fan et al 2011).
- ► LASSO-type algorithms select variables and estimate the model at the same time, but variable selection and model estimation are different tasks with different objectives.

- ► Consider $Y_i = \eta(x_i) + \epsilon_i = \eta_\emptyset + \sum_{j=1}^p \eta_j(x_{i\langle j\rangle}) + \epsilon_i$, i = 1, ..., n, where $x_i = (x_{i\langle 1\rangle}, ..., x_{i\langle p\rangle}) \in [0, 1]^p$ and $\epsilon_i \sim N(0, \sigma^2)$.
- ▶ Task: Only d < p of the η_i 's are nonzero, which we try to identify.
- \triangleright Existing algorithms are largely LASSO-variants, using some L_1 -type penalties to weed out inactive variables.
 - COSSO (Lin & Zhang 2006), SpAM (Ravikumar et al 2007), penGAM (Meier et al 2009), etc.
 - When $p \gg n$, variable-screening is needed to pare down the variable list for the algorithms to work (Fan et al 2011).
- ► LASSO-type algorithms select variables and estimate the model at the same time, but variable selection and model estimation are different tasks with different objectives.

- ▶ Working with a pair of dynamic variable sets $P \supseteq S$, one may separate variable selection from estimation.
 - ② Estimation: Given a variable pool \mathcal{P} , fit $\hat{\eta}(x)$ of form $\eta(x_i) = \eta_0 + \sum_{i \in \mathcal{P}} \eta_i(x_{i(i)})$ to the data.
 - ② Variable Selection: Pick selection set $S \subseteq \mathcal{P}$ such that $\tilde{\eta}(x)$ of form $\eta(x_i) = \eta_\emptyset + \sum_{i \in S} \eta_i(x_{i(j)})$ nearly achieves the goodness-of-fit of $\hat{\eta}(x)$.
 - ⑤ Screening and Updating: Rank variables in \mathcal{P}^c to obtain $\tilde{\mathcal{P}}$, and augment \mathcal{S} by $\tilde{\mathcal{P}}$ to update $\mathcal{P} = \mathcal{S} \cup \tilde{\mathcal{P}}$.
- ▶ The size \tilde{p} of P is capped at a moderate number, say 5; \tilde{p} varies with the amount of agreement between consecutive S's.
- ▶ Initial screening is needed to obtain an initial \mathcal{P} of manageable size, but no variables are lost.
- For $p \gg n$, the numerical burden is primarily on variable screening, which is trivially parallelizable.

- ▶ Working with a pair of dynamic variable sets $\mathcal{P} \supseteq \mathcal{S}$, one may separate variable selection from estimation.
 - **Q** Estimation: Given a variable pool \mathcal{P} , fit $\hat{\eta}(x)$ of form $\eta(x_i) = \eta_{\emptyset} + \sum_{i \in \mathcal{P}} \eta_i(x_{i(j)})$ to the data.
 - ② Variable Selection: Pick selection set $S \subseteq \mathcal{P}$ such that $\tilde{\eta}(x)$ of form $\eta(x_i) = \eta_\emptyset + \sum_{j \in S} \eta_j(x_{i(j)})$ nearly achieves the goodness-of-fit of $\hat{\eta}(x)$
 - Screening and Updating: Rank variables in \mathcal{P}^c to obtain $\tilde{\mathcal{P}}$, and augment \mathcal{S} by $\tilde{\mathcal{P}}$ to update $\mathcal{P} = \mathcal{S} \cup \tilde{\mathcal{P}}$.
- ▶ The size \tilde{p} of P is capped at a moderate number, say 5; \tilde{p} varies with the amount of agreement between consecutive S's.
- ▶ Initial screening is needed to obtain an initial \mathcal{P} of manageable size, but no variables are lost.
- For $p \gg n$, the numerical burden is primarily on variable screening, which is trivially parallelizable.

- ▶ Working with a pair of dynamic variable sets $\mathcal{P} \supseteq \mathcal{S}$, one may separate variable selection from estimation.
 - **Q** Estimation: Given a variable pool \mathcal{P} , fit $\hat{\eta}(x)$ of form $\eta(x_i) = \eta_{\emptyset} + \sum_{i \in \mathcal{P}} \eta_i(x_{i(j)})$ to the data.
 - ② Variable Selection: Pick selection set $S \subseteq \mathcal{P}$ such that $\tilde{\eta}(x)$ of form $\eta(x_i) = \eta_\emptyset + \sum_{i \in S} \eta_i(x_{i(j)})$ nearly achieves the goodness-of-fit of $\hat{\eta}(x)$.
 - ⑤ Screening and Updating: Rank variables in \mathcal{P}^c to obtain $\tilde{\mathcal{P}}$, and augment \mathcal{S} by $\tilde{\mathcal{P}}$ to update $\mathcal{P} = \mathcal{S} \cup \tilde{\mathcal{P}}$.
- ▶ The size \tilde{p} of P is capped at a moderate number, say 5; \tilde{p} varies with the amount of agreement between consecutive S's.
- ▶ Initial screening is needed to obtain an initial \mathcal{P} of manageable size, but no variables are lost.
- For $p \gg n$, the numerical burden is primarily on variable screening, which is trivially parallelizable.

- ▶ Working with a pair of dynamic variable sets $P \supseteq S$, one may separate variable selection from estimation.
 - **Q** Estimation: Given a variable pool \mathcal{P} , fit $\hat{\eta}(x)$ of form $\eta(x_i) = \eta_{\emptyset} + \sum_{i \in \mathcal{P}} \eta_i(x_{i(j)})$ to the data.
 - Variable Selection: Pick selection set $S \subseteq \mathcal{P}$ such that $\tilde{\eta}(x)$ of form $\eta(x_i) = \eta_\emptyset + \sum_{i \in S} \eta_i(x_{i(j)})$ nearly achieves the goodness-of-fit of $\hat{\eta}(x)$.
 - § Screening and Updating: Rank variables in \mathcal{P}^c to obtain $\tilde{\mathcal{P}}$, and augment \mathcal{S} by $\tilde{\mathcal{P}}$ to update $\mathcal{P} = \mathcal{S} \cup \tilde{\mathcal{P}}$.
- ▶ The size \tilde{p} of P is capped at a moderate number, say 5; \tilde{p} varies with the amount of agreement between consecutive S's.
- Initial screening is needed to obtain an initial P of manageable size, but no variables are lost.
- For $p \gg n$, the numerical burden is primarily on variable screening, which is trivially parallelizable.

- ▶ Working with a pair of dynamic variable sets $\mathcal{P} \supseteq \mathcal{S}$, one may separate variable selection from estimation.
 - **Q** Estimation: Given a variable pool \mathcal{P} , fit $\hat{\eta}(x)$ of form $\eta(x_i) = \eta_{\emptyset} + \sum_{i \in \mathcal{P}} \eta_i(x_{i(j)})$ to the data.
 - Variable Selection: Pick selection set $S \subseteq \mathcal{P}$ such that $\tilde{\eta}(x)$ of form $\eta(x_i) = \eta_{\emptyset} + \sum_{j \in S} \eta_j(x_{i(j)})$ nearly achieves the goodness-of-fit of $\hat{\eta}(x)$.
 - Screening and Updating: Rank variables in \mathcal{P}^c to obtain $\tilde{\mathcal{P}}$, and augment \mathcal{S} by $\tilde{\mathcal{P}}$ to update $\mathcal{P} = \mathcal{S} \cup \tilde{\mathcal{P}}$.
- ▶ The size \tilde{p} of \tilde{P} is capped at a moderate number, say 5; \tilde{p} varies with the amount of agreement between consecutive S's.
- ▶ Initial screening is needed to obtain an initial \mathcal{P} of manageable size, but no variables are lost.
- For $p \gg n$, the numerical burden is primarily on variable screening, which is trivially parallelizable.

- ▶ Working with a pair of dynamic variable sets $\mathcal{P} \supseteq \mathcal{S}$, one may separate variable selection from estimation.
 - **Q** Estimation: Given a variable pool \mathcal{P} , fit $\hat{\eta}(x)$ of form $\eta(x_i) = \eta_{\emptyset} + \sum_{i \in \mathcal{P}} \eta_i(x_{i(j)})$ to the data.
 - Variable Selection: Pick selection set $S \subseteq \mathcal{P}$ such that $\tilde{\eta}(x)$ of form $\eta(x_i) = \eta_{\emptyset} + \sum_{j \in S} \eta_j(x_{i(j)})$ nearly achieves the goodness-of-fit of $\hat{\eta}(x)$.
 - Screening and Updating: Rank variables in \mathcal{P}^c to obtain $\tilde{\mathcal{P}}$, and augment \mathcal{S} by $\tilde{\mathcal{P}}$ to update $\mathcal{P} = \mathcal{S} \cup \tilde{\mathcal{P}}$.
- ▶ The size \tilde{p} of P is capped at a moderate number, say 5; \tilde{p} varies with the amount of agreement between consecutive S's.
- Initial screening is needed to obtain an initial \mathcal{P} of manageable size, but no variables are lost.
- For $p \gg n$, the numerical burden is primarily on variable screening, which is trivially parallelizable.

- ▶ Working with a pair of dynamic variable sets $P \supseteq S$, one may separate variable selection from estimation.
 - **Q** Estimation: Given a variable pool \mathcal{P} , fit $\hat{\eta}(x)$ of form $\eta(x_i) = \eta_{\emptyset} + \sum_{i \in \mathcal{P}} \eta_j(x_{i(j)})$ to the data.
 - Variable Selection: Pick selection set $S \subseteq \mathcal{P}$ such that $\tilde{\eta}(x)$ of form $\eta(x_i) = \eta_\emptyset + \sum_{i \in S} \eta_i(x_{i(j)})$ nearly achieves the goodness-of-fit of $\hat{\eta}(x)$.
 - Screening and Updating: Rank variables in \mathcal{P}^c to obtain $\tilde{\mathcal{P}}$, and augment \mathcal{S} by $\tilde{\mathcal{P}}$ to update $\mathcal{P} = \mathcal{S} \cup \tilde{\mathcal{P}}$.
- ▶ The size \tilde{p} of P is capped at a moderate number, say 5; \tilde{p} varies with the amount of agreement between consecutive S's.
- ▶ Initial screening is needed to obtain an initial \mathcal{P} of manageable size, but no variables are lost.
- For $p \gg n$, the numerical burden is primarily on variable screening, which is trivially parallelizable.

- For estimation given \mathcal{P} , one may use cubic spline additive models.
- ► To fit $Y_i = \eta(x_i) + \epsilon_i = \eta_\emptyset + \sum_{j \in \mathcal{P}} \eta_j(x_{i\langle j \rangle}) + \epsilon_i$, one minimizes $\frac{1}{n} \sum_{i=1}^n \left(Y_i \eta_\emptyset \sum_j \eta_j(x_{i\langle j \rangle}) \right)^2 + \lambda \sum_j \theta_j^{-1} \int_0^1 \left(\eta_j''(x_{\langle j \rangle}) \right)^2 dx_{\langle j \rangle}$ with $\eta(x) = d_0 + \sum_j d_j \phi(x_{\langle j \rangle}) + \sum_{i=1}^n c_i \left(\sum_j \theta_j R(x_{i\langle j \rangle}, x_{\langle j \rangle}) \right)$, where $\phi(x)$ and R(x, y) are known functions (Kimeldorf & Wahba 1971).

- Fixing θ_j , one may select λ using GCV (Craven & Wahba 1979).
- ▶ For θ_j , use the starting value algorithm of Gu & Wahba (1991).

- ightharpoonup For estimation given \mathcal{P} , one may use cubic spline additive models.
- ► To fit $Y_i = \eta(x_i) + \epsilon_i = \eta_\emptyset + \sum_{j \in \mathcal{P}} \eta_j(x_{i\langle j \rangle}) + \epsilon_i$, one minimizes $\frac{1}{n} \sum_{i=1}^n \left(Y_i \eta_\emptyset \sum_j \eta_j(x_{i\langle j \rangle}) \right)^2 + \lambda \sum_j \theta_j^{-1} \int_0^1 \left(\eta_j''(x_{\langle j \rangle}) \right)^2 dx_{\langle j \rangle}$ with $\eta(x) = d_0 + \sum_j d_j \phi(x_{\langle j \rangle}) + \sum_{i=1}^n c_i \left(\sum_j \theta_j R(x_{i\langle j \rangle}, x_{\langle j \rangle}) \right)$, where $\phi(x)$ and R(x, y) are known functions (Kimeldorf & Wahba 1971).

- Fixing θ_j , one may select λ using GCV (Craven & Wahba 1979).
- ▶ For θ_i , use the starting value algorithm of Gu & Wahba (1991).

6 / 16

- ▶ To fit $Y_i = \eta(x_i) + \epsilon_i = \eta_\emptyset + \sum_{i \in \mathcal{P}} \eta_i(x_{i\langle j \rangle}) + \epsilon_i$, one minimizes $\frac{1}{n}\sum_{i=1}^{n}\left(Y_{i}-\eta_{\emptyset}-\sum_{i}\eta_{j}(x_{i\langle j\rangle})\right)^{2}+\lambda\sum_{j}\frac{\theta_{j}}{\theta_{j}}^{-1}\int_{0}^{1}\left(\eta_{j}''(x_{\langle j\rangle})\right)^{2}dx_{\langle j\rangle}$ with $\eta(x) = d_0 + \sum_i d_j \phi(x_{\langle j \rangle}) + \sum_{i=1}^n c_i \left(\sum_i \theta_j R(x_{i\langle j \rangle}, x_{\langle j \rangle}) \right)$, where $\phi(x)$ and R(x,y) are known functions (Kimeldorf & Wahba 1971).
- ▶ It is clear that $\eta_i(x_{(i)}) = d_i\phi(x_{(i)}) + \theta_i \sum_i c_i R(x_{i(i)}, x_{(i)}).$

- ▶ To fit $Y_i = \eta(x_i) + \epsilon_i = \eta_\emptyset + \sum_{i \in \mathcal{P}} \eta_i(x_{i\langle j \rangle}) + \epsilon_i$, one minimizes $\frac{1}{n}\sum_{i=1}^{n}\left(Y_{i}-\eta_{\emptyset}-\sum_{i}\eta_{j}(x_{i\langle j\rangle})\right)^{2}+\lambda\sum_{j}\frac{\theta_{j}}{\theta_{j}}^{-1}\int_{0}^{1}\left(\eta_{j}''(x_{\langle j\rangle})\right)^{2}dx_{\langle j\rangle}$ with $\eta(x) = d_0 + \sum_i d_i \phi(x_{(i)}) + \sum_{i=1}^n c_i (\sum_i \theta_i R(x_{i(i)}, x_{(i)}))$, where $\phi(x)$ and R(x,y) are known functions (Kimeldorf & Wahba 1971).
- One may calculate an asymptotically efficient approximation of form $\eta(x) = d_0 + \sum_i d_i \phi(x_{(i)}) + \sum_{k=1}^q c_k \left(\sum_i \theta_i R(\mathbf{z}_{k(i)}, x_{(i)})\right), \text{ for }$ $\{z_k\} \subset \{x_i\}$ a random subset of size $q \asymp n^{2/9}$ (Gu & Kim 2002).
- Fixing θ_i , one may select λ using GCV (Craven & Wahba 1979).

6 / 16

- ▶ To fit $Y_i = \eta(x_i) + \epsilon_i = \eta_\emptyset + \sum_{i \in \mathcal{P}} \eta_i(x_{i\langle j \rangle}) + \epsilon_i$, one minimizes $\frac{1}{n}\sum_{i=1}^{n}\left(Y_{i}-\eta_{\emptyset}-\sum_{i}\eta_{j}(x_{i\langle j\rangle})\right)^{2}+\lambda\sum_{i}\frac{\theta_{j}}{\theta_{j}}^{-1}\int_{0}^{1}\left(\eta_{i}''(x_{\langle j\rangle})\right)^{2}dx_{\langle j\rangle}$ with $\eta(x) = d_0 + \sum_i d_i \phi(x_{(i)}) + \sum_{i=1}^n c_i (\sum_i \theta_i R(x_{i(i)}, x_{(i)}))$, where $\phi(x)$ and R(x,y) are known functions (Kimeldorf & Wahba 1971).

- ▶ Fixing θ_i , one may select λ using GCV (Craven & Wahba 1979).

6 / 16

- For estimation given \mathcal{P} , one may use cubic spline additive models.
- To fit $Y_i = \eta(x_i) + \epsilon_i = \eta_\emptyset + \sum_{j \in \mathcal{P}} \eta_j(x_{i\langle j \rangle}) + \epsilon_i$, one minimizes $\frac{1}{n} \sum_{i=1}^n \left(Y_i \eta_\emptyset \sum_j \eta_j(x_{i\langle j \rangle}) \right)^2 + \lambda \sum_j \theta_j^{-1} \int_0^1 \left(\eta_j''(x_{\langle j \rangle}) \right)^2 dx_{\langle j \rangle}$ with $\eta(x) = d_0 + \sum_j d_j \phi(x_{\langle j \rangle}) + \sum_{i=1}^n c_i \left(\sum_j \theta_j R(x_{i\langle j \rangle}, x_{\langle j \rangle}) \right)$, where $\phi(x)$ and R(x, y) are known functions (Kimeldorf & Wahba 1971).

- Fixing θ_j , one may select λ using GCV (Craven & Wahba 1979).
- ▶ For θ_i , use the starting value algorithm of Gu & Wahba (1991).

- For estimation given \mathcal{P} , one may use cubic spline additive models.
- ► To fit $Y_i = \eta(x_i) + \epsilon_i = \eta_\emptyset + \sum_{j \in \mathcal{P}} \eta_j(x_{i\langle j \rangle}) + \epsilon_i$, one minimizes $\frac{1}{n} \sum_{i=1}^n \left(Y_i \eta_\emptyset \sum_j \eta_j(x_{i\langle j \rangle}) \right)^2 + \lambda \sum_j \theta_j^{-1} \int_0^1 \left(\eta_j''(x_{\langle j \rangle}) \right)^2 dx_{\langle j \rangle}$ with $\eta(x) = d_0 + \sum_j d_j \phi(x_{\langle j \rangle}) + \sum_{i=1}^n c_i \left(\sum_j \theta_j R(x_{i\langle j \rangle}, x_{\langle j \rangle}) \right)$, where $\phi(x)$ and R(x, y) are known functions (Kimeldorf & Wahba 1971).

- Fixing θ_i , one may select λ using GCV (Craven & Wahba 1979).
- ▶ For θ_i , use the starting value algorithm of Gu & Wahba (1991).
- ▶ First set $\tilde{\theta}_i^{-1} \propto \operatorname{tr} Q_i$ and fit $\tilde{\eta}$, then set $\theta_i \propto \tilde{\theta}_i^2 \tilde{\mathbf{c}}^T Q_i \tilde{\mathbf{c}}$.

- For estimation given \mathcal{P} , one may use cubic spline additive models.
- ► To fit $Y_i = \eta(x_i) + \epsilon_i = \eta_\emptyset + \sum_{j \in \mathcal{P}} \eta_j(x_{i\langle j \rangle}) + \epsilon_i$, one minimizes $\frac{1}{n} \sum_{i=1}^n \left(Y_i \eta_\emptyset \sum_j \eta_j(x_{i\langle j \rangle}) \right)^2 + \lambda \sum_j \theta_j^{-1} \int_0^1 \left(\eta_j''(x_{\langle j \rangle}) \right)^2 dx_{\langle j \rangle}$ with $\eta(x) = d_0 + \sum_j d_j \phi(x_{\langle j \rangle}) + \sum_{i=1}^n c_i \left(\sum_j \theta_j R(x_{i\langle j \rangle}, x_{\langle j \rangle}) \right)$, where $\phi(x)$ and R(x, y) are known functions (Kimeldorf & Wahba 1971).

- Fixing θ_i , one may select λ using GCV (Craven & Wahba 1979).
- ▶ For θ_i , use the starting value algorithm of Gu & Wahba (1991).
- ▶ First set $\tilde{\theta}_i^{-1} \propto \text{tr} Q_i$ and fit $\tilde{\eta}$, then set $\theta_i \propto \tilde{\theta}_i^2 \tilde{\mathbf{c}}^T Q_i \tilde{\mathbf{c}}$.

- For estimation given \mathcal{P} , one may use cubic spline additive models.
- To fit $Y_i = \eta(x_i) + \epsilon_i = \eta_\emptyset + \sum_{j \in \mathcal{P}} \eta_j(x_{i\langle j \rangle}) + \epsilon_i$, one minimizes $\frac{1}{n} \sum_{i=1}^n \left(Y_i \eta_\emptyset \sum_j \eta_j(x_{i\langle j \rangle}) \right)^2 + \lambda \sum_j \theta_j^{-1} \int_0^1 \left(\eta_j''(x_{\langle j \rangle}) \right)^2 dx_{\langle j \rangle}$ with $\eta(x) = d_0 + \sum_j d_j \phi(x_{\langle j \rangle}) + \sum_{i=1}^n c_i \left(\sum_j \theta_j R(x_{i\langle j \rangle}, x_{\langle j \rangle}) \right)$, where $\phi(x)$ and R(x, y) are known functions (Kimeldorf & Wahba 1971).

- Fixing θ_j , one may select λ using GCV (Craven & Wahba 1979).
- ▶ For θ_j , use the starting value algorithm of Gu & Wahba (1991).

▶ The computational cost is comparable to that with p = 1.

- ▶ To select $S \subseteq \mathcal{P}$, one may use square error projection, which is designed to "test" $H_0: \eta \in \mathcal{H}_0$ versus $H_a: \eta \in \mathcal{H}_0 \oplus \mathcal{H}_1$.
- ▶ Given $\hat{\eta} \in \mathcal{H}_0 \oplus \mathcal{H}_1$, minimize $\mathsf{KL}(\hat{\eta}, \eta)$ over $\eta \in \mathcal{H}_0$ to get $\tilde{\eta}$. Inspect $\mathsf{KL}(\hat{\eta}, \eta_c) = \mathsf{KL}(\hat{\eta}, \tilde{\eta}) + \mathsf{KL}(\tilde{\eta}, \eta_c)$ for some η_c degenerate. (Gu 2004)
- ▶ We use $KL(g,h) = SE(g,h) = \frac{1}{n} \sum_i (g(x_i) h(x_i))^2$ and $\eta_c = \bar{Y}$.
- Forward Variable Selection: Given $\hat{\eta}$ fitted to variables in \mathcal{P}
 - \bigcirc Set $\mathcal{S} = \emptyset$, SE = SE $(\eta_c, \eta_c) = 0$, and SE $_0 = SE(\hat{\eta} \eta_c)$
 - For $j \in \mathcal{P} \setminus \mathcal{S}$, add $x_{(j)}$ to \mathcal{S} one at a time and calculate the resulting $SE(\tilde{\eta}, \eta_c)$; retain the largest $SE(\tilde{\eta}^*, \eta_c)$ associated with $x_{(*)}$.
 - If $(SE(\tilde{\eta}^*, \eta_c) SE)/SE_0 > \delta_0$, add $x_{(*)}$ to S and update $SE = SE(\tilde{\eta}^*, \eta_c)$. Otherwise, stop.
 - \bigcirc If SE/SE $_0 < 1 \delta$, go to Step 2. Otherwise, stop.
- ▶ Default values $(\delta, \delta_0) = (.01, .002)$ are used to control selection size.

- ▶ To select $S \subseteq \mathcal{P}$, one may use square error projection, which is designed to "test" $H_0: \eta \in \mathcal{H}_0$ versus $H_a: \eta \in \mathcal{H}_0 \oplus \mathcal{H}_1$.
- ▶ Given $\hat{\eta} \in \mathcal{H}_0 \oplus \mathcal{H}_1$, minimize $\mathsf{KL}(\hat{\eta}, \eta)$ over $\eta \in \mathcal{H}_0$ to get $\tilde{\eta}$. Inspect $\mathsf{KL}(\hat{\eta}, \eta_c) = \mathsf{KL}(\hat{\eta}, \tilde{\eta}) + \mathsf{KL}(\tilde{\eta}, \eta_c)$ for some η_c degenerate. (Gu 2004)
- We use $\mathsf{KL}(g,h) = \mathsf{SE}(g,h) = rac{1}{n} \sum_i ig(g(x_i) h(x_i) ig)^2$ and $\eta_c = ar{Y}$.
- lacktriangle Forward Variable Selection: Given $\hat{\eta}$ fitted to variables in \mathcal{P}
 - \bigcirc Set $\mathcal{S} = \emptyset$, SE = SE $(\eta_c, \eta_c) = 0$, and SE $_0 = SE(\hat{\eta} \eta_c)$
 - For $j \in \mathcal{P} \setminus \mathcal{S}$, add $x_{(j)}$ to \mathcal{S} one at a time and calculate the resulting $SE(\tilde{n}, n_r)$; retain the largest $SE(\tilde{n}^*, n_r)$ associated with x_{rec} .
 - If $(SE(\tilde{\eta}^*, \eta_c) SE)/SE_0 > \delta_0$, add $x_{(*)}$ to S and update $SE = SE(\tilde{\eta}^*, \eta_c)$. Otherwise, stop.
 - If $SE/SE_0 < 1 \delta$, go to Step 2. Otherwise, stop.
- ▶ Default values $(\delta, \delta_0) = (.01, .002)$ are used to control selection size.

- ▶ To select $S \subseteq \mathcal{P}$, one may use square error projection, which is designed to "test" $H_0: \eta \in \mathcal{H}_0$ versus $H_a: \eta \in \mathcal{H}_0 \oplus \mathcal{H}_1$.
- ▶ Given $\hat{\eta} \in \mathcal{H}_0 \oplus \mathcal{H}_1$, minimize $\mathsf{KL}(\hat{\eta}, \eta)$ over $\eta \in \mathcal{H}_0$ to get $\tilde{\eta}$. Inspect $\mathsf{KL}(\hat{\eta}, \eta_c) = \mathsf{KL}(\hat{\eta}, \tilde{\eta}) + \mathsf{KL}(\tilde{\eta}, \eta_c)$ for some η_c degenerate. (Gu 2004)
- ▶ We use $KL(g,h) = SE(g,h) = \frac{1}{n} \sum_i (g(x_i) h(x_i))^2$ and $\eta_c = \bar{Y}$.
- lacktriangle Forward Variable Selection: Given $\hat{\eta}$ fitted to variables in $\mathcal P$
 - \bigcirc Set $\mathcal{S} = \emptyset$, SE = SE $(\eta_c, \eta_c) = 0$, and SE $_0 = SE(\hat{\eta} \eta_c)$.
 - ⊚ For $j \in \mathcal{P} \setminus \mathcal{S}$, add $x_{(j)}$ to \mathcal{S} one at a time and calculate the resulting $SE(\tilde{n}, n_*)$: retain the largest $SE(\tilde{n}^*, n_*)$ associated with x_* .
 - If $(SE(\tilde{\eta}^*, \eta_c) SE)/SE_0 > \delta_0$, add $x_{(*)}$ to S and update $SE = SE(\tilde{\eta}^*, \eta_c)$. Otherwise, stop.
 - Old If $SE/SE_0 < 1 \delta$, go to Step 2. Otherwise, stop.
- ▶ Default values $(\delta, \delta_0) = (.01, .002)$ are used to control selection size.

- ▶ To select $S \subseteq \mathcal{P}$, one may use square error projection, which is designed to "test" $H_0: \eta \in \mathcal{H}_0$ versus $H_a: \eta \in \mathcal{H}_0 \oplus \mathcal{H}_1$.
- ▶ Given $\hat{\eta} \in \mathcal{H}_0 \oplus \mathcal{H}_1$, minimize $\mathsf{KL}(\hat{\eta}, \eta)$ over $\eta \in \mathcal{H}_0$ to get $\tilde{\eta}$. Inspect $\mathsf{KL}(\hat{\eta}, \eta_c) = \mathsf{KL}(\hat{\eta}, \tilde{\eta}) + \mathsf{KL}(\tilde{\eta}, \eta_c)$ for some η_c degenerate. (Gu 2004)
- ▶ We use $KL(g,h) = SE(g,h) = \frac{1}{n} \sum_{i} (g(x_i) h(x_i))^2$ and $\eta_c = \overline{Y}$.
- ▶ Forward Variable Selection: Given $\hat{\eta}$ fitted to variables in \mathcal{P} ,
 - Set $S = \emptyset$, $SE = SE(\eta_c, \eta_c) = 0$, and $SE_0 = SE(\hat{\eta} \eta_c)$.
 - ② For $j \in \mathcal{P} \setminus \mathcal{S}$, add $x_{\langle j \rangle}$ to \mathcal{S} one at a time and calculate the resulting $SE(\tilde{\eta}, \eta_c)$; retain the largest $SE(\tilde{\eta}^*, \eta_c)$ associated with $x_{\langle * \rangle}$.
 - If $(SE(\tilde{\eta}^*, \eta_c) SE)/SE_0 > \delta_0$, add $x_{(*)}$ to S and update $SE = SE(\tilde{\eta}^*, \eta_c)$. Otherwise, stop.
 - If $SE/SE_0 < 1 \delta$, go to Step 2. Otherwise, stop.
- ▶ Default values $(\delta, \delta_0) = (.01, .002)$ are used to control selection size.

- ▶ To select $S \subseteq \mathcal{P}$, one may use square error projection, which is designed to "test" $H_0: \eta \in \mathcal{H}_0$ versus $H_a: \eta \in \mathcal{H}_0 \oplus \mathcal{H}_1$.
- ▶ Given $\hat{\eta} \in \mathcal{H}_0 \oplus \mathcal{H}_1$, minimize $\mathsf{KL}(\hat{\eta}, \eta)$ over $\eta \in \mathcal{H}_0$ to get $\tilde{\eta}$. Inspect $\mathsf{KL}(\hat{\eta}, \eta_c) = \mathsf{KL}(\hat{\eta}, \tilde{\eta}) + \mathsf{KL}(\tilde{\eta}, \eta_c)$ for some η_c degenerate. (Gu 2004)
- ▶ We use $KL(g,h) = SE(g,h) = \frac{1}{n} \sum_{i} (g(x_i) h(x_i))^2$ and $\eta_c = \bar{Y}$.
- ▶ Forward Variable Selection: Given $\hat{\eta}$ fitted to variables in \mathcal{P} ,
 - ① Set $S = \emptyset$, $SE = SE(\eta_c, \eta_c) = 0$, and $SE_0 = SE(\hat{\eta} \eta_c)$.
 - ② For $j \in \mathcal{P} \setminus \mathcal{S}$, add $x_{\langle j \rangle}$ to \mathcal{S} one at a time and calculate the resulting $SE(\tilde{\eta}, \eta_c)$; retain the largest $SE(\tilde{\eta}^*, \eta_c)$ associated with $x_{\langle * \rangle}$.
 - If $(SE(\tilde{\eta}^*, \eta_c) SE)/SE_0 > \delta_0$, add $x_{(*)}$ to S and update $SE = SE(\tilde{\eta}^*, \eta_c)$. Otherwise, stop.
 - ① If $SE/SE_0 < 1 \delta$, go to Step 2. Otherwise, stop
- ▶ Default values $(\delta, \delta_0) = (.01, .002)$ are used to control selection size.

- ▶ To select $S \subseteq \mathcal{P}$, one may use square error projection, which is designed to "test" $H_0: \eta \in \mathcal{H}_0$ versus $H_a: \eta \in \mathcal{H}_0 \oplus \mathcal{H}_1$.
- ▶ Given $\hat{\eta} \in \mathcal{H}_0 \oplus \mathcal{H}_1$, minimize $\mathsf{KL}(\hat{\eta}, \eta)$ over $\eta \in \mathcal{H}_0$ to get $\tilde{\eta}$. Inspect $\mathsf{KL}(\hat{\eta}, \eta_c) = \mathsf{KL}(\hat{\eta}, \tilde{\eta}) + \mathsf{KL}(\tilde{\eta}, \eta_c)$ for some η_c degenerate. (Gu 2004)
- ▶ We use $KL(g,h) = SE(g,h) = \frac{1}{n} \sum_{i} (g(x_i) h(x_i))^2$ and $\eta_c = \bar{Y}$.
- ▶ Forward Variable Selection: Given $\hat{\eta}$ fitted to variables in \mathcal{P} ,
 - ① Set $S = \emptyset$, $SE = SE(\eta_c, \eta_c) = 0$, and $SE_0 = SE(\hat{\eta} \eta_c)$.
 - ② For $j \in \mathcal{P} \setminus \mathcal{S}$, add $x_{\langle j \rangle}$ to \mathcal{S} one at a time and calculate the resulting $SE(\tilde{\eta}, \eta_c)$; retain the largest $SE(\tilde{\eta}^*, \eta_c)$ associated with $x_{\langle * \rangle}$.
 - If $(SE(\tilde{\eta}^*, \eta_c) SE)/SE_0 > \delta_0$, add $x_{(*)}$ to S and update $SE = SE(\tilde{\eta}^*, \eta_c)$. Otherwise, stop.
 - ① If $SE/SE_0 < 1 \delta$, go to Step 2. Otherwise, stop
- ▶ Default values $(\delta, \delta_0) = (.01, .002)$ are used to control selection size.

- ▶ To select $S \subseteq \mathcal{P}$, one may use square error projection, which is designed to "test" $H_0: \eta \in \mathcal{H}_0$ versus $H_a: \eta \in \mathcal{H}_0 \oplus \mathcal{H}_1$.
- ▶ Given $\hat{\eta} \in \mathcal{H}_0 \oplus \mathcal{H}_1$, minimize $\mathsf{KL}(\hat{\eta}, \eta)$ over $\eta \in \mathcal{H}_0$ to get $\tilde{\eta}$. Inspect $\mathsf{KL}(\hat{\eta}, \eta_c) = \mathsf{KL}(\hat{\eta}, \tilde{\eta}) + \mathsf{KL}(\tilde{\eta}, \eta_c)$ for some η_c degenerate. (Gu 2004)
- ▶ We use $KL(g,h) = SE(g,h) = \frac{1}{n} \sum_{i} (g(x_i) h(x_i))^2$ and $\eta_c = \overline{Y}$.
- ▶ Forward Variable Selection: Given $\hat{\eta}$ fitted to variables in \mathcal{P} ,
 - ① Set $S = \emptyset$, $SE = SE(\eta_c, \eta_c) = 0$, and $SE_0 = SE(\hat{\eta} \eta_c)$.
 - ② For $j \in \mathcal{P} \setminus \mathcal{S}$, add $x_{\langle j \rangle}$ to \mathcal{S} one at a time and calculate the resulting $SE(\tilde{\eta}, \eta_c)$; retain the largest $SE(\tilde{\eta}^*, \eta_c)$ associated with $x_{\langle * \rangle}$.
 - If $(SE(\tilde{\eta}^*, \eta_c) SE)/SE_0 > \delta_0$, add $x_{(*)}$ to \mathcal{S} and update $SE = SE(\tilde{\eta}^*, \eta_c)$. Otherwise, stop.
 - If $SE/SE_0 < 1 \delta$, go to Step 2. Otherwise, stop.
- ▶ Default values $(\delta, \delta_0) = (.01, .002)$ are used to control selection size.

- ▶ To select $S \subseteq \mathcal{P}$, one may use square error projection, which is designed to "test" $H_0: \eta \in \mathcal{H}_0$ versus $H_a: \eta \in \mathcal{H}_0 \oplus \mathcal{H}_1$.
- ▶ Given $\hat{\eta} \in \mathcal{H}_0 \oplus \mathcal{H}_1$, minimize $\mathsf{KL}(\hat{\eta}, \eta)$ over $\eta \in \mathcal{H}_0$ to get $\tilde{\eta}$. Inspect $\mathsf{KL}(\hat{\eta}, \eta_c) = \mathsf{KL}(\hat{\eta}, \tilde{\eta}) + \mathsf{KL}(\tilde{\eta}, \eta_c)$ for some η_c degenerate. (Gu 2004)
- ▶ We use $KL(g,h) = SE(g,h) = \frac{1}{n} \sum_{i} (g(x_i) h(x_i))^2$ and $\eta_c = \bar{Y}$.
- ▶ Forward Variable Selection: Given $\hat{\eta}$ fitted to variables in \mathcal{P} ,
 - ① Set $S = \emptyset$, $SE = SE(\eta_c, \eta_c) = 0$, and $SE_0 = SE(\hat{\eta} \eta_c)$.
 - ② For $j \in \mathcal{P} \setminus \mathcal{S}$, add $x_{\langle j \rangle}$ to \mathcal{S} one at a time and calculate the resulting $SE(\tilde{\eta}, \eta_c)$; retain the largest $SE(\tilde{\eta}^*, \eta_c)$ associated with $x_{\langle * \rangle}$.
 - If $(SE(\tilde{\eta}^*, \eta_c) SE)/SE_0 > \delta_0$, add $x_{(*)}$ to \mathcal{S} and update $SE = SE(\tilde{\eta}^*, \eta_c)$. Otherwise, stop.
 - If $SE/SE_0 < 1 \delta$, go to Step 2. Otherwise, stop.
- ▶ Default values $(\delta, \delta_0) = (.01, .002)$ are used to control selection size.

Variable Screening

▶ To screen variables given S, fit $\hat{\eta}_j$ of form $\eta_\emptyset + \sum_{k \in S \cup \{j\}} \eta_k(x_{i\langle k \rangle})$ via the minimization of

$$\frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \sum_{k} \eta_k(x_{i\langle k \rangle}) \right)^2 + \lambda \sum_{k} \theta_k^{-1} \int_0^1 \left(\eta_k''(x_{\langle j \rangle}) \right)^2 dx_{\langle k \rangle},$$
 and rank variables by SE($\hat{\eta}_i, \eta_c$).

- lacktriangle For the initial screening, use $\mathcal{S}=\emptyset$ in above
- ▶ Doable, fully nonparametric, but can be time-consuming!
- ightharpoonup Initialization: Perform the following to obtain the initial \mathcal{P} .
 - $igcup_0$ Form \mathcal{P}_0 using the top p^* variables from the initial screening
 - \bigcirc Given $\hat{\eta}$ fitted to \mathcal{P}_0 , select $\mathcal{S}_0 \subseteq \mathcal{P}_0$
 - \bigcirc Rank variables in \mathcal{S}_0^c to obtain \mathcal{P} , and form $\mathcal{P} = \mathcal{S}_0 \cup \mathcal{P}$.
- ▶ The size of \mathcal{P}_0 can be large, say $p^* = n/4$.
- ▶ The size of $\tilde{\mathcal{P}}$ should be moderate, say 5.

Variable Screening

▶ To screen variables given S, fit $\hat{\eta}_j$ of form $\eta_\emptyset + \sum_{k \in S \cup \{j\}} \eta_k(x_{i\langle k \rangle})$ via the minimization of

$$\frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \sum_{k} \eta_k(x_{i\langle k \rangle}) \right)^2 + \lambda \sum_{k} \theta_k^{-1} \int_0^1 \left(\eta_k''(x_{\langle j \rangle}) \right)^2 dx_{\langle k \rangle},$$
 and rank variables by SE($\hat{\eta}_i, \eta_c$).

- ▶ For the initial screening, use $S = \emptyset$ in above.
- ▶ Doable, fully nonparametric, but can be time-consuming!
- ightharpoonup Initialization: Perform the following to obtain the initial \mathcal{P} .
- \bigcirc Form \mathcal{P}_0 using the top p^* variables from the initial screening
 - \bigcirc Given $\hat{\eta}$ fitted to \mathcal{P}_0 , select $\mathcal{S}_0 \subseteq \mathcal{P}_0$
 - \bigcirc Rank variables in \mathcal{S}_0^c to obtain \mathcal{P} , and form $\mathcal{P} = \mathcal{S}_0 \cup \mathcal{P}$.
- ▶ The size of \mathcal{P}_0 can be large, say $p^* = n/4$.
- ▶ The size of $\tilde{\mathcal{P}}$ should be moderate, say 5.

Variable Screening

▶ To screen variables given S, fit $\hat{\eta}_j$ of form $\eta_\emptyset + \sum_{k \in S \cup \{j\}} \eta_k(x_{i\langle k \rangle})$ via the minimization of

$$\frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \sum_{k} \eta_k(x_{i\langle k \rangle}) \right)^2 + \lambda \sum_{k} \theta_k^{-1} \int_0^1 \left(\eta_k''(x_{\langle j \rangle}) \right)^2 dx_{\langle k \rangle},$$
 and rank variables by SE($\hat{\eta}_i, \eta_c$).

- ▶ For the initial screening, use $S = \emptyset$ in above.
- ▶ Doable, fully nonparametric, but can be time-consuming!
- \blacktriangleright Initialization: Perform the following to obtain the initial ${\cal P}$.
 - O Form \mathcal{P}_0 using the top p^* variables from the initial screening
 - \bigcirc Given $\hat{\eta}$ fitted to \mathcal{P}_0 , select $\mathcal{S}_0 \subseteq \mathcal{P}_0$
 - \bigcirc Rank variables in \mathcal{S}_0^c to obtain \mathcal{P} , and form $\mathcal{P} = \mathcal{S}_0 \cup \mathcal{P}$.
- ▶ The size of \mathcal{P}_0 can be large, say $p^* = n/4$.
- ▶ The size of $\tilde{\mathcal{P}}$ should be moderate, say 5.

$$\frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \sum_{k} \eta_k(x_{i\langle k \rangle}) \right)^2 + \lambda \sum_{k} \theta_k^{-1} \int_0^1 \left(\eta_k''(x_{\langle j \rangle}) \right)^2 dx_{\langle k \rangle},$$
 rank variables by SE($\hat{\eta}_i, \eta_c$).

- ▶ For the initial screening, use $S = \emptyset$ in above.
- ▶ Doable, fully nonparametric, but can be time-consuming!
- ▶ Initialization: Perform the following to obtain the initial \mathcal{P} .
 - Form \mathcal{P}_0 using the top p^* variables from the initial screening.
 - ② Given $\hat{\eta}$ fitted to \mathcal{P}_0 , select $\mathcal{S}_0 \subseteq \mathcal{P}_0$.
 - ◎ Rank variables in S_0^c to obtain \ddot{P} , and form $P = S_0 \cup \ddot{P}$.
- ▶ The size of \mathcal{P}_0 can be large, say $p^* = n/4$.
- ▶ The size of $\tilde{\mathcal{P}}$ should be moderate, say 5.

$$\frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \sum_{k} \eta_k(x_{i\langle k \rangle}) \right)^2 + \lambda \sum_{k} \theta_k^{-1} \int_0^1 \left(\eta_k''(x_{\langle j \rangle}) \right)^2 dx_{\langle k \rangle},$$
 rank variables by SE($\hat{\eta}_i, \eta_c$).

- ▶ For the initial screening, use $S = \emptyset$ in above.
- ▶ Doable, fully nonparametric, but can be time-consuming!
- ▶ Initialization: Perform the following to obtain the initial \mathcal{P} .
 - **(a)** Form \mathcal{P}_0 using the top p^* variables from the initial screening.
 - ② Given $\hat{\eta}$ fitted to \mathcal{P}_0 , select $\mathcal{S}_0 \subseteq \mathcal{P}_0$.
 - ③ Rank variables in S_0^c to obtain $\tilde{\mathcal{P}}$, and form $\mathcal{P} = S_0 \cup \tilde{\mathcal{P}}$.
- ▶ The size of \mathcal{P}_0 can be large, say $p^* = n/4$.
- ▶ The size of $\tilde{\mathcal{P}}$ should be moderate, say 5.

$$\frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \sum_{k} \eta_k(x_{i\langle k \rangle}) \right)^2 + \lambda \sum_{k} \theta_k^{-1} \int_0^1 \left(\eta_k''(x_{\langle j \rangle}) \right)^2 dx_{\langle k \rangle},$$
 rank variables by SE($\hat{\eta}_i, \eta_c$).

- ▶ For the initial screening, use $S = \emptyset$ in above.
- ▶ Doable, fully nonparametric, but can be time-consuming!
- ▶ Initialization: Perform the following to obtain the initial \mathcal{P} .
 - **①** Form \mathcal{P}_0 using the top p^* variables from the initial screening.
 - ② Given $\hat{\eta}$ fitted to \mathcal{P}_0 , select $\mathcal{S}_0 \subseteq \mathcal{P}_0$.
 - ③ Rank variables in \mathcal{S}_0^c to obtain $\tilde{\mathcal{P}}$, and form $\mathcal{P} = \mathcal{S}_0 \cup \tilde{\mathcal{P}}$.
- ▶ The size of \mathcal{P}_0 can be large, say $p^* = n/4$.
- ▶ The size of \mathcal{P} should be moderate, say 5.

$$\frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \sum_k \eta_k(x_{i\langle k \rangle}) \right)^2 + \lambda \sum_k \theta_k^{-1} \int_0^1 \left(\eta_k''(x_{\langle j \rangle}) \right)^2 dx_{\langle k \rangle},$$
 rank variables by SE($\hat{\eta}_i, \eta_c$).

- ▶ For the initial screening, use $S = \emptyset$ in above.
- Doable, fully nonparametric, but can be time-consuming!
- ▶ Initialization: Perform the following to obtain the initial \mathcal{P} .
 - **①** Form \mathcal{P}_0 using the top p^* variables from the initial screening.
 - ② Given $\hat{\eta}$ fitted to \mathcal{P}_0 , select $\mathcal{S}_0 \subseteq \mathcal{P}_0$.
 - ③ Rank variables in \mathcal{S}_0^c to obtain $\tilde{\mathcal{P}}$, and form $\mathcal{P} = \mathcal{S}_0 \cup \tilde{\mathcal{P}}$.
- ▶ The size of \mathcal{P}_0 can be large, say $p^* = n/4$.
- ▶ The size of \hat{P} should be moderate, say 5.

$$\frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \sum_{k} \eta_k(x_{i\langle k \rangle}) \right)^2 + \lambda \sum_{k} \theta_k^{-1} \int_0^1 \left(\eta_k''(x_{\langle j \rangle}) \right)^2 dx_{\langle k \rangle},$$
 rank variables by SE($\hat{\eta}_i, \eta_c$).

- lacksquare For the initial screening, use $\mathcal{S}=\emptyset$ in above.
- ▶ Doable, fully nonparametric, but can be time-consuming!
- ▶ Initialization: Perform the following to obtain the initial \mathcal{P} .
 - **①** Form \mathcal{P}_0 using the top p^* variables from the initial screening.
 - ② Given $\hat{\eta}$ fitted to \mathcal{P}_0 , select $\mathcal{S}_0 \subseteq \mathcal{P}_0$.
 - ③ Rank variables in \mathcal{S}_0^c to obtain $\tilde{\mathcal{P}}$, and form $\mathcal{P} = \mathcal{S}_0 \cup \tilde{\mathcal{P}}$.
- ▶ The size of \mathcal{P}_0 can be large, say $p^* = n/4$.
- ightharpoonup The size of $\tilde{\mathcal{P}}$ should be moderate, say 5.

- Forward Addition: Given the converged S from iterative selection, weaker variables may be further added.
 - ① Screen variables in S^c to obtain the top one, say $x_{(*)}$.
 - ② Fit $\hat{\eta}_*$ to $S \cup \{x_{(*)}\}$ and project $\hat{\eta}_*$ into S to obtain $\tilde{\eta}_*$.
 - ① If $SE(\hat{\eta}_*, \tilde{\eta}_*)$ exceeds a threshold, add $x_{(*)}$ to \mathcal{S} , go to Step 1. Otherwise stop.
- A pool of "null" $SE(\hat{\eta}_*, \tilde{\eta}_*)$ values can be obtained by decoupling Y_i from x_i via permutation, based on which one may set the threshold.

▶ The empirical threshold only works after S has captured most of the "signal" in the data.

- Forward Addition: Given the converged $\mathcal S$ from iterative selection, weaker variables may be further added.
 - **①** Screen variables in S^c to obtain the top one, say $x_{(*)}$.
 - ② Fit $\hat{\eta}_*$ to $\mathcal{S} \cup \{x_{\langle * \rangle}\}$ and project $\hat{\eta}_*$ into \mathcal{S} to obtain $\tilde{\eta}_*$.
 - ① If $SE(\hat{\eta}_*, \tilde{\eta}_*)$ exceeds a threshold, add $x_{(*)}$ to \mathcal{S} , go to Step 1. Otherwise stop.
- A pool of "null" $SE(\hat{\eta}_*, \tilde{\eta}_*)$ values can be obtained by decoupling Y_i from x_i via permutation, based on which one may set the threshold.

▶ The empirical threshold only works after S has captured most of the "signal" in the data.

- Forward Addition: Given the converged $\mathcal S$ from iterative selection, weaker variables may be further added.
 - **①** Screen variables in S^c to obtain the top one, say $x_{(*)}$.
 - ② Fit $\hat{\eta}_*$ to $S \cup \{x_{(*)}\}$ and project $\hat{\eta}_*$ into S to obtain $\tilde{\eta}_*$.
 - ① If $SE(\hat{\eta}_*, \tilde{\eta}_*)$ exceeds a threshold, add $x_{(*)}$ to \mathcal{S} , go to Step 1. Otherwise stop.
- A pool of "null" $SE(\hat{\eta}_*, \tilde{\eta}_*)$ values can be obtained by decoupling Y_i from x_i via permutation, based on which one may set the threshold.

► The empirical threshold only works after S has captured most of the "signal" in the data.

- Forward Addition: Given the converged S from iterative selection, weaker variables may be further added.
 - **①** Screen variables in S^c to obtain the top one, say $x_{(*)}$.
 - ② Fit $\hat{\eta}_*$ to $S \cup \{x_{(*)}\}$ and project $\hat{\eta}_*$ into S to obtain $\tilde{\eta}_*$.
 - If SE($\hat{\eta}_*$, $\tilde{\eta}_*$) exceeds a threshold, add $x_{(*)}$ to S, go to Step 1. Otherwise stop.
- A pool of "null" $SE(\hat{\eta}_*, \tilde{\eta}_*)$ values can be obtained by decoupling Y_i from x_i via permutation, based on which one may set the threshold.

► The empirical threshold only works after S has captured most of the "signal" in the data.

- Forward Addition: Given the converged $\mathcal S$ from iterative selection, weaker variables may be further added.
 - **①** Screen variables in S^c to obtain the top one, say $x_{(*)}$.
 - ② Fit $\hat{\eta}_*$ to $S \cup \{x_{(*)}\}$ and project $\hat{\eta}_*$ into S to obtain $\tilde{\eta}_*$.
 - If $SE(\hat{\eta}_*, \tilde{\eta}_*)$ exceeds a threshold, add $x_{(*)}$ to \mathcal{S} , go to Step 1. Otherwise stop.
- A pool of "null" $SE(\hat{\eta}_*, \tilde{\eta}_*)$ values can be obtained by decoupling Y_i from x_i via permutation, based on which one may set the threshold.

▶ The empirical threshold only works after S has captured most of the "signal" in the data.

- Forward Addition: Given the converged S from iterative selection, weaker variables may be further added.
 - **①** Screen variables in S^c to obtain the top one, say $x_{(*)}$.
 - ② Fit $\hat{\eta}_*$ to $S \cup \{x_{(*)}\}$ and project $\hat{\eta}_*$ into S to obtain $\tilde{\eta}_*$.
 - If $SE(\hat{\eta}_*, \tilde{\eta}_*)$ exceeds a threshold, add $x_{(*)}$ to \mathcal{S} , go to Step 1. Otherwise stop.
- A pool of "null" $SE(\hat{\eta}_*, \tilde{\eta}_*)$ values can be obtained by decoupling Y_i from x_i via permutation, based on which one may set the threshold.
- ▶ For each variable $x_{i\langle j\rangle}$ in \mathcal{S}^c , permute $i^* = \pi(i)$ to obtain $x_{i\langle *\rangle} = x_{i^*\langle j\rangle}$.
- ▶ Fit $\hat{\eta}_*$ to $\mathcal{S} \cup \{x_{(*)}\}$, project $\hat{\eta}_*$ into \mathcal{S} , and obtain $\mathsf{SE}(\hat{\eta}_*, \tilde{\eta}_*)$.
- ▶ The empirical threshold only works after S has captured most of the "signal" in the data.

- Forward Addition: Given the converged S from iterative selection, weaker variables may be further added.
 - **①** Screen variables in S^c to obtain the top one, say $x_{(*)}$.
 - ② Fit $\hat{\eta}_*$ to $S \cup \{x_{(*)}\}$ and project $\hat{\eta}_*$ into S to obtain $\tilde{\eta}_*$.
 - If $SE(\hat{\eta}_*, \tilde{\eta}_*)$ exceeds a threshold, add $x_{(*)}$ to \mathcal{S} , go to Step 1. Otherwise stop.
- A pool of "null" $SE(\hat{\eta}_*, \tilde{\eta}_*)$ values can be obtained by decoupling Y_i from x_i via permutation, based on which one may set the threshold.
- For each variable $x_{i\langle j\rangle}$ in S^c , permute $i^* = \pi(i)$ to obtain $x_{i\langle *\rangle} = x_{i^*\langle j\rangle}$.
- ▶ Fit $\hat{\eta}_*$ to $S \cup \{x_{(*)}\}$, project $\hat{\eta}_*$ into S, and obtain $SE(\hat{\eta}_*, \tilde{\eta}_*)$.
- ▶ The empirical threshold only works after S has captured most of the "signal" in the data.

- Forward Addition: Given the converged $\mathcal S$ from iterative selection, weaker variables may be further added.
 - **①** Screen variables in S^c to obtain the top one, say $x_{(*)}$.
 - ② Fit $\hat{\eta}_*$ to $S \cup \{x_{(*)}\}$ and project $\hat{\eta}_*$ into S to obtain $\tilde{\eta}_*$.
 - If $SE(\hat{\eta}_*, \tilde{\eta}_*)$ exceeds a threshold, add $x_{(*)}$ to \mathcal{S} , go to Step 1. Otherwise stop.
- A pool of "null" $SE(\hat{\eta}_*, \tilde{\eta}_*)$ values can be obtained by decoupling Y_i from x_i via permutation, based on which one may set the threshold.
- For each variable $x_{i\langle j\rangle}$ in \mathcal{S}^c , permute $i^* = \pi(i)$ to obtain $x_{i\langle *\rangle} = x_{i^*\langle j\rangle}$.
- ▶ Fit $\hat{\eta}_*$ to $\mathcal{S} \cup \{x_{(*)}\}$, project $\hat{\eta}_*$ into \mathcal{S} , and obtain $\mathsf{SE}(\hat{\eta}_*, \tilde{\eta}_*)$.
- ▶ The empirical threshold only works after S has captured most of the "signal" in the data.

Outline

- Problem and Method
 - Nonparametric Sparse Regression
 - Iterative Variable Selection
 - Estimation, Selection, and Screening
 - Forward Addition
- 2 Empirical Studies
 - Simulation Settings
 - Empirical Performances

- Simulations are conducted on some standard test examples in the literature. (Lin & Zhang 2006, Fan et al 2011, etc)

$$Y = 5g_{1}(x_{\langle 1 \rangle}) + 3g_{2}(x_{\langle 1 \rangle}) + 4g_{3}(x_{\langle 1 \rangle}) + 6g_{4}(x_{\langle 1 \rangle}) + \sqrt{1.74} \epsilon;$$

$$Y = g_{1}(x_{\langle 1 \rangle}) + g_{2}(x_{\langle 2 \rangle}) + g_{3}(x_{\langle 3 \rangle}) + g_{4}(x_{\langle 4 \rangle})$$

$$+ 1.5\{g_{1}(x_{\langle 5 \rangle}) + g_{2}(x_{\langle 6 \rangle}) + g_{3}(x_{\langle 7 \rangle}) + g_{4}(x_{\langle 8 \rangle})\}$$

$$+ 2\{g_{1}(x_{\langle 9 \rangle}) + g_{2}(x_{\langle 10 \rangle}) + g_{3}(x_{\langle 11 \rangle}) + g_{4}(x_{\langle 12 \rangle}) + \sqrt{.5184} \epsilon.$$

June 5, 2014

- ► Simulations are conducted on some standard test examples in the literature. (Lin & Zhang 2006, Fan et al 2011, etc)
- ▶ Two test functions based on univariate g_1 , g_2 , g_3 , g_4 , and $\epsilon \sim N(0,1)$:

$$\begin{split} Y &= 5g_{1}(x_{\langle 1 \rangle}) + 3g_{2}(x_{\langle 1 \rangle}) + 4g_{3}(x_{\langle 1 \rangle}) + 6g_{4}(x_{\langle 1 \rangle}) + \sqrt{1.74}\,\epsilon; \\ Y &= g_{1}(x_{\langle 1 \rangle}) + g_{2}(x_{\langle 2 \rangle}) + g_{3}(x_{\langle 3 \rangle}) + g_{4}(x_{\langle 4 \rangle}) \\ &+ 1.5\{g_{1}(x_{\langle 5 \rangle}) + g_{2}(x_{\langle 6 \rangle}) + g_{3}(x_{\langle 7 \rangle}) + g_{4}(x_{\langle 8 \rangle})\} \\ &+ 2\{g_{1}(x_{\langle 9 \rangle}) + g_{2}(x_{\langle 10 \rangle}) + g_{3}(x_{\langle 11 \rangle}) + g_{4}(x_{\langle 12 \rangle}) + \sqrt{.5184}\,\epsilon. \end{split}$$

- ▶ Three designs: $x_{(i)} = (w_i + \alpha u)/(1 + \alpha)$, for w_i , $u \sim U(0,1)$ and $\alpha = 0,1,3$
- ▶ One hundred replicates each with n = 400 and p = 100, 1000.

- Simulations are conducted on some standard test examples in the literature. (Lin & Zhang 2006, Fan et al 2011, etc)
- ▶ Two test functions based on univariate g_1 , g_2 , g_3 , g_4 , and $\epsilon \sim N(0,1)$:

$$Y = 5g_{1}(x_{\langle 1 \rangle}) + 3g_{2}(x_{\langle 1 \rangle}) + 4g_{3}(x_{\langle 1 \rangle}) + 6g_{4}(x_{\langle 1 \rangle}) + \sqrt{1.74} \epsilon;$$

$$Y = g_{1}(x_{\langle 1 \rangle}) + g_{2}(x_{\langle 2 \rangle}) + g_{3}(x_{\langle 3 \rangle}) + g_{4}(x_{\langle 4 \rangle})$$

$$+ 1.5\{g_{1}(x_{\langle 5 \rangle}) + g_{2}(x_{\langle 6 \rangle}) + g_{3}(x_{\langle 7 \rangle}) + g_{4}(x_{\langle 8 \rangle})\}$$

$$+ 2\{g_{1}(x_{\langle 9 \rangle}) + g_{2}(x_{\langle 10 \rangle}) + g_{3}(x_{\langle 11 \rangle}) + g_{4}(x_{\langle 12 \rangle}) + \sqrt{.5184} \epsilon.$$

- Simulations are conducted on some standard test examples in the literature. (Lin & Zhang 2006, Fan et al 2011, etc)
- ▶ Two test functions based on univariate g_1 , g_2 , g_3 , g_4 , and $\epsilon \sim N(0,1)$:

$$\begin{split} Y &= 5g_{1}(x_{\langle 1 \rangle}) + 3g_{2}(x_{\langle 1 \rangle}) + 4g_{3}(x_{\langle 1 \rangle}) + 6g_{4}(x_{\langle 1 \rangle}) + \sqrt{1.74}\,\epsilon; \\ Y &= g_{1}(x_{\langle 1 \rangle}) + g_{2}(x_{\langle 2 \rangle}) + g_{3}(x_{\langle 3 \rangle}) + g_{4}(x_{\langle 4 \rangle}) \\ &+ 1.5\big\{g_{1}(x_{\langle 5 \rangle}) + g_{2}(x_{\langle 6 \rangle}) + g_{3}(x_{\langle 7 \rangle}) + g_{4}(x_{\langle 8 \rangle})\big\} \\ &+ 2\big\{g_{1}(x_{\langle 9 \rangle}) + g_{2}(x_{\langle 10 \rangle}) + g_{3}(x_{\langle 11 \rangle}) + g_{4}(x_{\langle 12 \rangle}) + \sqrt{.5184}\,\epsilon. \end{split}$$

- ▶ Three designs: $x_{(i)} = (w_i + \alpha u)/(1 + \alpha)$, for $w_i, u \sim U(0, 1)$ and $\alpha = 0, 1, 3$.
- ▶ One hundred replicates each with n = 400 and p = 100, 1000.

- Simulations are conducted on some standard test examples in the literature. (Lin & Zhang 2006, Fan et al 2011, etc)
- ▶ Two test functions based on univariate g_1 , g_2 , g_3 , g_4 , and $\epsilon \sim N(0,1)$:

$$\begin{split} Y &= 5g_{1}(x_{\langle 1 \rangle}) + 3g_{2}(x_{\langle 1 \rangle}) + 4g_{3}(x_{\langle 1 \rangle}) + 6g_{4}(x_{\langle 1 \rangle}) + \sqrt{1.74} \, \epsilon; \\ Y &= g_{1}(x_{\langle 1 \rangle}) + g_{2}(x_{\langle 2 \rangle}) + g_{3}(x_{\langle 3 \rangle}) + g_{4}(x_{\langle 4 \rangle}) \\ &+ 1.5 \big\{ g_{1}(x_{\langle 5 \rangle}) + g_{2}(x_{\langle 6 \rangle}) + g_{3}(x_{\langle 7 \rangle}) + g_{4}(x_{\langle 8 \rangle}) \big\} \\ &+ 2 \big\{ g_{1}(x_{\langle 9 \rangle}) + g_{2}(x_{\langle 10 \rangle}) + g_{3}(x_{\langle 11 \rangle}) + g_{4}(x_{\langle 12 \rangle}) + \sqrt{.5184} \, \epsilon. \end{split}$$

- ▶ Three designs: $x_{(i)} = (w_i + \alpha u)/(1 + \alpha)$, for $w_i, u \sim U(0, 1)$ and $\alpha = 0, 1, 3$.
- ▶ One hundred replicates each with n = 400 and p = 100, 1000.

- ► The numbers look okay for the independent and the mildly correlated designs, but not so good for the highly correlated design.
- But are TP and FP the only performance measures here?

	d = 4		d = 12	
	TP	FP	TP	FP
$\alpha = 0$	4.00, (4,4)	0.03, (0,1)	10.82, (9,12)	0.03, (0,1)
	4.00, (4,4)	0.03, (0,1)	11.58, (9,12)	0.03, (0,1)
$\alpha = 1$	3.99, (3,4)	0.15, (0,2)	9.18, (6,11)	0.18, (0,2)
	4.00, (4,4)	0.09, (0,2)	9.97, (8,12)	0.12, (0,2)
$\alpha = 3$	3.23, (2,4)	0.19, (0,2)	5.54, (4,8)	0.11, (0,2)
	3.79, (2,4)	0.02, (0,1)	6.42, (5,9)	0.08, (0,1)

- ► The numbers look okay for the independent and the mildly correlated designs, but not so good for the highly correlated design.
- But are TP and FP the only performance measures here?

	d = 4		d = 12	
	TP	FP	TP	FP
$\alpha = 0$	4.00, (4,4)	0.03, (0,1)	10.82, (9,12)	0.03, (0,1)
	4.00, (4,4)	0.03, (0,1)	11.58, (9,12)	0.03, (0,1)
$\alpha = 1$	3.99, (3,4)	0.15, (0,2)	9.18, (6,11)	0.18, (0,2)
	4.00, (4,4)	0.09, (0,2)	9.97, (8,12)	0.12, (0,2)
$\alpha = 3$	3.23, (2,4)	0.19, (0,2)	5.54, (4,8)	0.11, (0,2)
	3.79, (2,4)	0.02, (0,1)	6.42, (5,9)	0.08, (0,1)

- ► The numbers look okay for the independent and the mildly correlated designs, but not so good for the highly correlated design.
- But are TP and FP the only performance measures here?

	d = 4		d=12	
	TP	FP	TP	FP
$\alpha = 0$	4.00, (4,4)	0.03, (0,1)	10.82, (9,12)	0.03, (0,1)
	4.00, (4,4)	0.03, (0,1)	11.58, (9,12)	0.03, (0,1)
$\alpha = 1$	3.99, (3,4)	0.15, (0,2)	9.18, (6,11)	0.18, (0,2)
	4.00, (4,4)	0.09, (0,2)	9.97, (8,12)	0.12, (0,2)
$\alpha = 3$	3.23, (2,4)	0.19, (0,2)	5.54, (4,8)	0.11, (0,2)
	3.79, (2,4)	0.02, (0,1)	6.42, (5,9)	0.08, (0,1)

- ► The numbers look okay for the independent and the mildly correlated designs, but not so good for the highly correlated design.
- ▶ But are TP and FP the only performance measures here?

- ► For estimation performance, one may compare the MSE of the selected model with that of the perfect selection.
- ▶ When FP=0, one may use square error projection to assess the prediction performance of the selected model.

- ► For estimation performance, one may compare the MSE of the selected model with that of the perfect selection.
- ▶ When FP=0, one may use square error projection to assess the prediction performance of the selected model.

- ► For estimation performance, one may compare the MSE of the selected model with that of the perfect selection.
- ▶ When FP=0, one may use square error projection to assess the prediction performance of the selected model.
- ▶ Left: Ratio of $\sum_{i} (\hat{\eta}(x_i) \eta(x_i))^2$.
- ▶ Right: $SE(\hat{\eta}, \tilde{\eta})/SE(\hat{\eta}, \eta_c)$, for $\hat{\eta}$ the "perfect" fit and $\tilde{\eta}$ its projection in S.

- For estimation performance, one may compare the MSE of the selected model with that of the perfect selection.
- ▶ When FP=0, one may use square error projection to assess the prediction performance of the selected model.
- ▶ Left: Ratio of $\sum_{i} (\hat{\eta}(x_i) \eta(x_i))^2$.
- ▶ Right: $SE(\hat{\eta}, \tilde{\eta})/SE(\hat{\eta}, \eta_c)$, for $\hat{\eta}$ the "perfect" fit and $\tilde{\eta}$ its projection in S.

Behind the Scene

```
[1] "p=100"
[1] "initial"
[1] "X12" "X8" "X71" "X10" "X11" "X74"
[1] "phase 1"
[1] "X12" "X8"
               "X11" "X10" "X7"
[1] "phase 2"
[1] "X12" "X8" "X11" "X10" "X7" "X3"
[1] "X12" "X8" "X11" "X10" "X7" "X3"
                                        "X4"
[1] "p=1000"
[1] "initial"
[1] "X968" "X662" "X367" "X242" "X195" "X3"
[1] "phase 1"
[1] "X12" "X8" "X11" "X195" "X4"
[1] "X12" "X8" "X11" "X10" "X4" "X6"
[1] "X12" "X8" "X11" "X10" "X4"
[1] "phase 2"
[1] "X12" "X8" "X11" "X10" "X4" "X3"
```

- ► Comparable performance, but *much* slower
- Can handle highly correlated x's (to a degree).
- Can handle interaction terms?

- ▶ Comparable performance, but *much* slower.
- ► Can handle highly correlated x's (to a degree).
- Can handle interaction terms?

- ▶ Comparable performance, but *much* slower.
- Can handle highly correlated x's (to a degree).
- Can handle interaction terms?

- Comparable performance, but much slower.
- Can handle highly correlated x's (to a degree).
- Can handle interaction terms?

- ▶ Size of $\tilde{\mathcal{P}}$ increasing with p, collinearity, or both?
- Adaptive choices of (δ, δ_0) ?
- Extension to non-Gaussian regression.
- ► Theory?
- Speeding up screening skipping CV, saving basis?

- ▶ Size of $\tilde{\mathcal{P}}$ increasing with p, collinearity, or both?
- Adaptive choices of (δ, δ_0) ?
- Extension to non-Gaussian regression.
- ► Theory?
- Speeding up screening skipping CV, saving basis?

- ▶ Size of $\tilde{\mathcal{P}}$ increasing with p, collinearity, or both?
- ▶ Adaptive choices of (δ, δ_0) ?
- Extension to non-Gaussian regression.
- ► Theory?
- Speeding up screening skipping CV, saving basis?

- ▶ Size of $\tilde{\mathcal{P}}$ increasing with p, collinearity, or both?
- Adaptive choices of (δ, δ_0) ?
- Extension to non-Gaussian regression.
- ► Theory?
- Speeding up screening skipping CV, saving basis?

- ▶ Size of $\tilde{\mathcal{P}}$ increasing with p, collinearity, or both?
- Adaptive choices of (δ, δ_0) ?
- Extension to non-Gaussian regression.
- Theory?
- ▶ Speeding up screening skipping CV, saving basis?

- ▶ Size of $\tilde{\mathcal{P}}$ increasing with p, collinearity, or both?
- Adaptive choices of (δ, δ_0) ?
- Extension to non-Gaussian regression.
- Theory?
- Speeding up screening skipping CV, saving basis?

The End

Thank You!