

ENERGY CONSUMPTION PREDICTION

PROJECT BY:

KAINAT AIJAZ - R1J01U

VAIDEHEE KORE - CZYJFC

PROBLEM STATEMENT

The primary problem is understanding and predicting energy consumption patterns to optimize energy usage, reduce wastage, and better plan energy production.

Colab Book link

PROPOSED AI SOLUTION

To develop an Al-based model that accurately predicts energy consumption based on historical data and specific input parameters (e.g., time of day). Enable informed decision-making for energy providers and consumers to optimize usage and reduce wastage.

DATA COLLECTION & ANALYSIS

Dataset Details:

-Household power consumption dataset from Kaggle (CSV)

-Include many features for accurate prediction such as:

Date, Time, Global Active Power, Voltage, Submetering values.

DATA PREPROCESSING

- Data Cleaning: Filled out all the missing values in any column.
- Feature Engineering: Combined Date and Time column to create a new DateTime column, extracted time based features such as time and day of the week.
- Normalized energy consumption columns for better model performance

DATA PREPROCESSING

- Divided dataset into training (80%) and testing (20%)
- Set X (input variable) to be Time of the day and Y (target variable) to Global Active Power.

MODEL SELECTION

Simple but less accurate for non-linear trends.

LINEAR REGRESSION

Better accuracy by capturing complex patterns.

NEURAL NETWORKS

MODEL TRAINING

- Trained both the models using date time and energy features.
- Calculated MSE and R-squared error from both the models to evaluate performance.
- Visualized and compared the performance using residual plots and heatmap.

nevt

MODEL PERFORMANCE

CHOSEN SOLUTION

- Final Decision: Implemented a Neural Network model.
- Reason: Best balance of accuracy and practical applicability.

DECISION IMPLEMENTATION

• Implemented the solution using trained neural network model by taking input time of the day from the user and predict energy consumption at that specific time.

Tools used: Python, Google Colab, Gemini

APPLICATIONS AND IMPACT

- Use Case: Energy providers can optimize distribution.
- Benefits: Reduce energy waste, save costs, improve sustainability.