Modelling monotonic and non-monotonic attribute dependencies with embeddings: A theoretical analysis

Steven Schockaert

School of Computer Science & Informatics Cardiff University, Cardiff, UK SchockaertS1@cardiff.ac.uk

Motivating example

Motivating example

Motivating example

has-wings \land has-feathers \land can-fly \rightarrow is-bird

Steven Schockaert: Modelling monotonic and non-monotonic attribute dependencies with embeddings: A theoretical analysis. AKBC 2021

An encoder-decoder view

$Emb(a_1,,a_n)$	$Lab(\mathbf{e})$	Monotonic	Non-mon.
$rac{1}{n}\sum_{i}\mathbf{a_{i}}$	$\{b \mathbf{e} \cdot \tilde{\mathbf{b}} \ge \lambda_b\}$	X	×
$\frac{1}{n}\sum_{i}\mathbf{a_{i}}$	$\{b d(\mathbf{e}, \tilde{\mathbf{b}}) \le \theta_b\}$	X	×
$rac{\sum_i \mathbf{a_i}}{\ \sum_i \mathbf{a_i}\ }$	$\{b \mathbf{e} \cdot \tilde{\mathbf{b}} \ge \lambda_b\}$	×	×
$egin{aligned} rac{\sum_{i}^{n}\mathbf{a_{i}}}{\ \sum_{i}\mathbf{a_{i}}\ } \ rac{\sum_{i}\mathbf{a_{i}}}{\ \sum_{i}\mathbf{a_{i}}\ } \end{aligned}$	$\{b \mid d(\mathbf{e}, \tilde{\mathbf{b}}) \le \theta_b\}$	X	×
$\arg\max_{\mathbf{e}} \sum_{i} \log \sigma(\mathbf{e} \cdot \mathbf{a_i}) + \kappa \ \mathbf{e}\ ^2$	$\{b \mathbf{e} \cdot \tilde{\mathbf{b}} \ge \lambda_b\}$	X	×
$\arg \max_{\mathbf{e}} \sum_{i} \log \sigma(\mathbf{e} \cdot \mathbf{a_i}) + \kappa \ \mathbf{e}\ ^2$	$\{b \mid d(\mathbf{e}, \tilde{\mathbf{b}}) \le \theta_b\}$	X	×
$rac{1}{n}\sum_i \mathbf{a_i}$	$\{b \mid \text{ReLU}(\mathbf{e}) \cdot \mathbf{b} \ge 0\}$	✓	✓
$a_1\odot\odot a_n$	$\{b \mathbf{e} \cdot \tilde{\mathbf{b}} \ge 0\}$	\checkmark	\checkmark
$a_1\odot\odot a_n$	$\{b \mathbf{e} \cdot \mathbf{b} \ge 0\}$	X	X
$\max(\mathbf{a_1},,\mathbf{a_n})$	$\{b \mid \mathbf{b} \leq \mathbf{e}\}$	✓	×

Steven Schockaert: Modelling monotonic and non-monotonic attribute dependencies with embeddings: A theoretical analysis. AKBC 2021