NMM 2276B Final Examination

Prof. Blaine Chronik Prof. Najeh Zarir

April 10, 2022 10:00 AM
– 01:00 PM; 180 minutes

Print Name:	Student N	Student Number: UWO email/ user ID:	
Signature:	UWO email/		
Exam seating: Room	Row:	Seat:	
	tion questions on pages	3-10. For each question, show yo	
k in full detail. Unjustified and ddition to the question pages, the		or no credit.	
Cover page: Please fill your infor you enter your name, student nu	rmation on the cover page bumber, and email ID. In add s must be identical to the n	perfore the start of the exam. Make surdition, enter the exam room code, seat numbers you received in PostEM on the ed space.	
Below these instructions on the cissues with the exam.	cover page, there is an empe	ty box which you can use flag potentia	
Page number 8 has been left blan	nk intentionally. Use it for	extra work if you wish.	
The last page (No. 13) contains write your name on it and submit		free to detach the sheet but you must	
	ne and student ID on each	blank pages are provided as part ch page that is not stapled with t	
s is a closed-book closed-notes	s exam. No books, notes ned off, on your person	s or electronic devices allowed. during the exam will be consider ce investigation.	
This space is for you to flag poten	ntial issues with any question	ns.	

This page is intentionally left blank.

Problem 1: Gradient, Divergence, and Curl.

Part 1a. Find a vector that gives the direction in which the given function increases most rapidly at the indicated point. Find the maximum rate of change.

$$F(x,y) = xy \cdot e^{(x-y)}$$
 at (5,5)

Part 1b. Calculate $\nabla \bullet (\nabla \times \mathbf{F})$ for

$$\mathbf{F}(x,y,z) = x^2 y \,\hat{\mathbf{i}} + xy^2 \,\hat{\mathbf{j}} + 2xyz \,\hat{\mathbf{k}}$$

Part 1c. Let **a** be a constant vector and $\mathbf{r} = x\,\hat{\mathbf{i}} + y\,\hat{\mathbf{j}} + z\,\hat{\mathbf{k}}$. Verify that:

$$\nabla \times (\mathbf{a} \times \mathbf{r}) = 2\mathbf{a}$$

Problem 2: Line Integration.

Part 2a. Show that the given line integral is independent of path.

$$\int_{(-1,1)}^{(0,0)} \mathbf{F} \cdot d\mathbf{r}$$
 for $\mathbf{F} = (5x + 4y)\hat{\mathbf{i}} + (4x - 8y^3)\hat{\mathbf{j}}$

Part 2b. Evaluate the integral by finding a potential function evaluated at the integration limits.

Part 2c. Evaluate the integral explicitly using any path between the endpoints.

Problem 3: Green's Theorem.

Use Green's Theorem to calculate the work done by the given force ${\bf F}$ around the closed curve shown below.

$$\mathbf{F}(x,y) = -xy^2\,\mathbf{\hat{i}} + x^2y\,\mathbf{\hat{j}}$$

Figure 1: Integration path for Problem 3

Problem 4: Stoke's Theorem.

Verify Stoke's Theorem for the following vector field, curve, and surface.

$$\mathbf{F}(x,y,z) = xy\,\mathbf{\hat{i}} + 2yz\,\mathbf{\hat{j}} + xz\,\mathbf{\hat{k}}$$

Figure 2: Curve and Surface for Problem 4

Problem 5: Divergence Theorem.

Use the Divergence Theorem to find the total outward flux of the following vector field through the given closed surface defining region D.

$$\mathbf{F}(x, y, z) = 15x^2y\,\hat{\mathbf{i}} + x^2z\,\hat{\mathbf{j}} + y^4\,\hat{\mathbf{k}}$$

D the region bounded by x+y=2, z=x+y, z=3, y=0

Figure 3: Surface and Volume for Problem 5

Problem 6: Fourier Series and Integrals.

1. Expand the function $f(x) = 2 + x^2, -\pi \le x \le \pi$ in an appropriate cosine or sine series.

2. Use an appropriate sine or cosine integral to represent the function

$$f(x) = \begin{cases} 2x, & |x| < 3\pi \\ 0, & |x| > 3\pi \end{cases}$$

Problem 7: Fourier Transforms.

Use the definition of the cosine Fourier transform pair

$$\mathcal{F}_c\{f(x)\} = \int_0^\infty f(x)\cos(\alpha x)dx = F(\alpha)$$
$$\mathcal{F}_c^{-1}\{F(\alpha)\} = \frac{2}{\pi} \int_0^\infty F(\alpha)\cos(\alpha x)d\alpha = f(x)$$

to:

1. find
$$f(x)$$
 if

$$F(\alpha) = \left\{ \begin{array}{ll} 1 - \alpha, & 0 \leq \alpha \leq 1 \\ 0, & \alpha > 1 \end{array} \right.$$

2. Show that your result in part (a) can be used to show that:

$$\int_0^\infty \frac{\sin^2 x}{x^2} dx = \frac{\pi}{2}$$

[Hint: Evaluate $F(\alpha)$ for some appropriate α . You may need to use $\cos(2\theta) = \cos^2\theta - \sin^2\theta$]

This page is intentionally left blank.

This page is intentionally left blank.

Formula Sheet

Trigonometric identities:

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\sin(a-b) = \sin a \cos b - \cos a \sin b$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\cos(a-b) = \cos a \cos b + \sin a \sin b$$

Fourier Series

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{p} x + b_n \sin \frac{n\pi}{p} x \right)$$

$$\mathbf{a}_0 = \frac{1}{p} \int_{-p}^p f(x) \, dx$$

$$\mathbf{a}_n = \frac{1}{p} \int_{-p}^p f(x) \cos \frac{n\pi}{p} x \, dx$$

$$\mathbf{b}_n = \frac{1}{p} \int_{-p}^p f(x) \sin \frac{n\pi}{p} x \, dx$$

Fourier Cosine and Sine Series

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi}{p} x$$

$$\mathbf{a}_0 = \frac{2}{p} \int_0^p f(x) dx$$

$$\mathbf{a}_n = \frac{2}{p} \int_0^p f(x) \cos \frac{x\pi}{p} x dx$$

$$\mathbf{f}(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi}{p} x,$$

$$\mathbf{b}_n = \frac{2}{p} \int_0^p f(x) \sin \frac{n\pi}{p} x dx$$

Fourier Integral

$$f(x) = \frac{1}{\pi} \int_0^{\infty} \left[A(\alpha) \cos(\alpha x) + B(\alpha) \sin(\alpha x) \right] d\alpha$$

$$\mathbf{A}(\alpha) = \int_{-\infty}^{+\infty} f(x) \cos(\alpha x) dx$$

$$\mathbf{B}(\alpha) = \int_{-\infty}^{+\infty} f(x) \sin(\alpha x) dx$$

For even functions:
$$f(x) = \frac{2}{\pi} \int_0^\infty A(\alpha) \cos(\alpha x) d\alpha$$

For odd functions: $f(x) = \frac{2}{\pi} \int_0^\infty A(\alpha) \sin(\alpha x) d\alpha$
Where $A(\alpha) = \int_0^{+\infty} f(x) \cos(\alpha x) dx$ and $B(\alpha) = \int_0^{+\infty} f(x) \sin(\alpha x) dx$.

Fundamental Theorem for Line Integrals (with special requirements for F):

$$\int_{C} \mathbf{F} \bullet d\mathbf{r} = \int_{C} \nabla \phi \cdot d\mathbf{r} = \phi(B) - \phi(A)$$

Green's Theorem in the Plane:

$$\oint_C P \cdot dx + Q \cdot dy = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

Stoke's Theorem:

$$\oint_C \mathbf{F} \bullet d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \bullet \mathbf{n} \, dS$$

Divergence Theorem:

$$\iint_{S} (\mathbf{F} \bullet \mathbf{n}) \ dS = \iiint_{D} \nabla \bullet \mathbf{F} \ dV$$

Surface Integral detail (example for single case, other cases are similar):

$$\iint_{S} G(x, y, z) dS = \iint_{R} G(x, y, f(x, y)) \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^{2} + \left(\frac{\partial f}{\partial y}\right)^{2}} dA$$