Logarithms

```
If v = 10^k, then \log_{10}(v) = k.
```

The name "log" is short for "logarithm". This operator was introduced by John Napier in his 1614 book titled *Mirifici logarithmorum canonis descriptio (A Description of the Wonderful Table of Logarithms)*.

The logarithm operator is the inverse of exponentiation: 10^k is 10 raised to the power k, $\log(10^k)$ is k. The number 10 is called the *base* of the logarithm. Besides the notation $\log_{10}(v)$, one sees $\log_{10}v$ and, when the base is obvious from the context, $\log(v)$ and $\log v$. In Java, $\log_{10}(v)$ can be calculated using function Math. $\log 10(v)$.

Another commonly used base is e, the mathematical constant 2.71828... whose value is the limit as n approaches infinity of $(1 + 1/n)^n$. In Java, use Math.E for e and Math.log(v) for $\log_e(v)$. Although e and $\log e$ are extremely important in mathematics, they are not used much in dealing with data structures, and we won't mention them again.

Log base 2, that is, $\log_2(...)$, arises when analyzing the time or space complexities of several algorithms. We discuss only what you need to know about $\log_2(...)$ to understand its use in analyzing these time and space complexities. From now on, we use the notation $\log v$ for $\log_2(v)$.

Processing the bits of a positive integer

Recall (look at JavaHyperText entry "binary number system") that the number 2^k for k a natural number is 1 followed by k 0's. For example, $2^5 = 32_{10} = 100000_2$. Therefore, any integer v in the range $2^{k-1} \le v < 2^k$ requires exactly k bits. Thus, v requires $ceil(\log v)$ bits, where ceil is the ceiling function, which raises its argument, if necessary, to the next highest integer. (In Java, use function Math.ceil.)

```
Suppose v = 10. Then \log v = 3.321928094887362... and ceil(\log v) = 4. Suppose v = 16. Then \log v = 4 and ceil(\log v) = 4.
```

Because of this, we see that v requires $O(\log v)$ bits when written in binary.

Algorithms that halve an integer

Binary search, sorting method *merge sort*, and an efficient exponentiation algorithm all work (roughly) by continually halving an integer. So, let us consider any algorithm that starts with $v = 2^k$ (with k a natural number 0, 1, 2, ...) and at each step cuts v in half, stopping when v = 1. After one step, $v = 2^{k-1}$; after two steps, $v = 2^{k-2}$; and so on. Exactly k steps will be done. That's $\log v$ steps.

The algorithm can also be executed when v is not a power of 2 but lies in this range: $2^{k-1} < v < 2^k$. Halving will be done using Java **int** arithmetic, v/2. After one step, we have $2^{k-2} \le v < 2^{k-l}$, after two steps, $2^{k-3} \le v < 2^{k-2}$, and so on. Again, k steps will be executed.

From this, we infer that this halving algorithm executes exactly $ceil(\log v)$ steps, which is $O(\log v)$ steps. We will use this to help develop the time or space complexities of the aforementioned algorithms.

Algorithms that double an integer

Let $n = 2^p$, so $\log n = p$. Value p need not be an integer. Consider an algorithm that starts with **int** $k = 1 = 2^0$ and doubles it until $k \ge n$ for a given integer n. Thus, k takes on the values 2^0 , 2^1 , ..., $2^{ceil(p)}$. Variable k gets doubled $ceil(p) = ceil(\log n)$ times. That's $O(\log n)$ times.

An important identity

Here is an identity concerning logarithms:

```
\log_{10} x = (\log_2 x) / (\log_2 10) = (\log_2 x) / (3.321928094887362...)
```

From this, we infer that $\log_{10} x$ is $O(\log_2 x)$ and $\log_2 x$ is $O(\log_{10} x)$.

The importance of logarithmic versus linear algorithms

Suppose we have two algorithms for searching an array of size n. One takes linear time, O(n), and the other takes logarithmic time, $O(\log n)$. Suppose $n = 32768 = 2^{15}$. The linear-time algorithm could take roughly 32768 steps, the logarithmic algorithm only 15. What a difference!