M1C03 Lecture 21 More set operations

Jeremy Lane

Nov 3, 2021

Announcement(s)

- Assignment 3 due Friday.
- Quiz 3 due Friday.
- Test 1 solutions are posted.

Overview

Basic identities.

Associative and distributive properties (and non-property)

Finite intersections and unions.

Reference: Lakins, 4.2, 4.3.

Definitions Recap

Let A and B be sets.

$$A \subseteq B$$
 if $(\forall x)(x \in A \implies x \in B)$.

$$A = B$$
 if $(\forall x)(x \in A \iff x \in B)$. Equivalently, $A \subseteq B$ and $B \subseteq A$.

The union of A and B is $A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$

The intersection of A and B is $A \cap B = \{x \mid x \in A \text{ and } x \in B\}.$

The *complement of* A *in* B is $B - A = \{x \mid x \in B \text{ and } x \notin A\}.$

The *complement of* A (in the universe \mathcal{U}) is $\overline{A} = \mathcal{U} - A = \{x \mid x \notin A\}$.

The Cartesian product of A and B is $A \times B = \{(x,y) \mid x \in A \text{ and } y \in A\}.$

Example

Let $A=\{1\}$, $B=\{2\}$, $C=\{3\}$, $D=\{4\}$. Draw the following sets.

- $\bullet \ (A\times B)\cup (C\times D).$
- $\bullet \ (A \cup C) \times (B \cup D).$

Properties of Cartesian product

Theorem (Lakins, Theorem 4.2.9)

Let A, B, C, and D be sets. Then:

- **2** (× distributes over \cup) $A \times (B \cup C) = (A \times B) \cup (A \times C)$.
- $(\times \textit{ distributes over } \cap) \ A \times (B \cap C) = (A \times B) \cap (A \times C).$
- $\bullet \ \, (\times \ \, \textit{commutes with} \, \, \cap) \, (A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D).$
- $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D).$

Basic identities for union, intersection, and complement

Theorem (cf. Lakins, Theorem 4.2.6)

Let A and B be subsets of some universal set \mathcal{U} . Then:

- $A \cup \emptyset = A.$
- $A \cap \emptyset = \emptyset.$
- $A \cap \overline{A} = \emptyset.$
- $\bullet A \cap B \subseteq A \subseteq A \cup B.$
- $\overline{\overline{A}} = A.$

"Order of operations" properties

Theorem (cf. Lakins, Theorem 4.2.6)

Let A, B, and C be subsets of some universal set $\mathcal U$. Then:

- $\bullet \ \ \textit{(} \cup \ \textit{distributes over} \cap \textit{)} \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

Let $n \geq 1$ and let A_1, \ldots, A_n be sets.

$$\bigcup_{i=1}^{n} A_{i} = A_{1} \cup A_{2} \cup \dots \cup A_{r}$$

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \dots \cup A_n \qquad \bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \dots \cap A_n$$

Example

Let $A_i = [2i, 2i + 1]$.

Theorem (cf. Lakins, Theorem 4.3.2)

For all positive integers $n \ge 1$, if A and B_1, \ldots, B_n are sets, then:

 \bigcirc (\cap distributes over finite \cup)

$$A \cap \left(\bigcup_{i=1}^{n} B_i\right) = \bigcup_{i=1}^{n} (A \cap B_i).$$

 \bigcirc (\cup distributes over finite \cap)

$$A \cup \left(\bigcap_{i=1}^{n} B_i\right) = \bigcap_{i=1}^{n} (A \cup B_i).$$

Proof of 1

Theorem (cf. Lakins, Theorem 4.3.2)

For all positive integers $n \geq 2$, if A_1, \ldots, A_n are subsets of a universe \mathcal{U} , then:

(finite de Morgan 1)

$$\overline{\left(\bigcup_{i=1}^{n} A_i\right)} = \bigcap_{i=1}^{n} \overline{A_i}.$$

(finite de Morgan 2)

$$\overline{\left(\bigcap_{i=1}^{n} A_i\right)} = \bigcup_{i=1}^{n} \overline{A_i}.$$

Let $n \geq 1$ and let A_1, \ldots, A_n be sets. Then,

$$\bigcup_{i=1}^n A_i = \{x \mid \text{ exists } i \in \{1,\dots,n\}, \text{ such that } x \in A_i\}$$

and

$$\bigcap_{i=1}^n A_i = \{x \mid \text{ for all } i \in \{1, \dots, n\}, \, x \in A_i\}.$$