Analysing your imaging data

Australian Course in Advanced Neuroscience

5th July 2023

George Stuyt

From raw video to descriptive data

CalmAn an open source tool for scalable

Andrea Giovannucci¹*, Johannes Friedrich^{1,2,3}, Pat Gunn¹, Jérémie Kalfon⁴†, Brandon L Brown⁵, Sue Ann Koay⁶, Jiannis Taxidis⁷, Farzaneh Najafi⁸,

Jeffrey L Gauthier⁶, Pengcheng Zhou^{2,3}, Baljit S Khakh^{5,9}, David W Tank⁶,

calcium imaging data analysis

Dmitri B Chklovskii¹, Eftychios A Pnevmatikakis¹*

ARTICLES

Cellpose: a generalist algorithm for cellular segmentation

Simultaneous Denoising, Deconvolution,

and Demixing of Calcium Imaging Data

Carsen Stringer, Tim Wang, Michalis Michaelos and Marius Pachitariu □ ☑

MIN1PIPE: A Miniscope 1-Photon-Based Calcium

Imaging Signal Extraction Pipeline

Iournal of Neuroscience Methods

Volume 291, 1 November 2017, Pages 83-94

NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data

Eftychios A. Pnevmatikakis A M. Andrea Giovannucci

NeuroResource

OnACID: Online Analysis of Calcium Imaging Data in Real Time

Andrea Giovannucci†

Cell Reports

Johannes Friedrich†*

Matthew Kaufman

Anne K. Churchlandi

Dmitri Chklovskii†

Liam Paninski*

Eftychios A. Pnevmatikakis†2

NEUROINFORMATICS

SIMA: Python software for analysis of dynamic fluorescence imaging data

Patrick Kaifosh *, Jeffrey D. Zaremba, Nathan B. Danielson and Attila Losonczy

Department of Neuroscience, Columbia University in the City of New York, New York, NY, USA

Zhe Dong¹, William Mau¹, Yu Feng¹, Zachary T Pennington¹, Lingxuan Chen¹, Yosif Zaki¹, Kanaka Rajan¹, Tristan Shuman¹, Daniel Aharoni²*, Denise J Cai¹*

Pre-processing vs analysis

Pre-processing

- The "pre" analysis
- Data extraction
- Technical

Analysis

- Comparisons
- Statistics
- Inference

Imaging pipelines are like beer

The well known

Public release, easy, polished

The boutique

Public release

The homebrew

Precise, programming required

Agenda

- Pre-processing
 - Motion correcting a video
 - Classify regions of video as distinct objects
 - Extract fluorescence signals from regions
 - Normalise fluorescence signals
- Other important technical considerations

- Quantification/Analysis
 - Mean fluorescence
 - Event detection
 - Deconvolution
- Hands on example
 - DFF calculation
 - Interactive Google Colab

The goal of pre-processing: data extraction

Three key steps to pre-processing

Alignment

Removing movement from a video Also called "registration", "motion correction"

Movement is a problem

- Mouse movement
 - Arm movement while grooming
 - Licking
 - Heartbeat
 - · Weight shifting
- Rig movement
 - Bumping table
 - Door closing (!)
- Water ingestion causing brain expansion

Preventing movement should happen at the prep

- Ex vivo
 - Sample mounting on plate
- In vivo
 - Robust headfix setup
 - Pressure on brain from coverslip

Test acquisition I did for a new rig

Phase/cross correlation

- Images can be Fourier transformed
- Amplitude = spatial/geometric information
- Phase = location information

filtering/fourier.html

rice amplitude

Image alignment process

- Loop through all frames in a video
- Essentially the same thing as applying every possible shift to the image and correlating that to the template image
- Computationally expensive-ish

Alignment applied to calcium imaging

 Raw frame is moved by the x-y coordinates as determined in the correlation matrix

An example of alignment failure: Restriction of maximum alignment shift

Frame (red) What phase correlation sees

Template (green)

Non-rigid registration

- Larger-scale brain deformation over time
- Computationally more expensive
- Lower-zoom increases chance you'll need to use non-rigid

https://github.com/flatironinstitute/NoRMCorre

The output

Segmentation

Also called "classification" or even "spatial footprint identification"

Region of interest (ROI)

- We can see objects fluorescing, so how do we define them?
- One method was/is to hand draw

Building an intuition for an analytical workhorse: dimensionality reduction

Non-negative matrix factorisation

Factorise a data matrix into a feature matrix and a weight matrix

Figure 1: Decomposition of the CBCL face database, MIT Center For Biological and Computation Learning (2429 gray-level 19-by-19 pixels images) using r = 49 as in [79].

Bill Connelly's example of NNMF

http://www.billconnelly.net/?p=534

Pnevmatikakis et al. (Neuron 2016)

Parameter tuning

- Automated segmentation methods all involve parameters to be tuned to your experiment
- Number of iterations to run
- Assumed spatial extent of the objects
- Thresholds for correlation/activity amount

Overall output

- Identity of which pixel belongs to which ROI
- Or something else for more complex methods
- Probably requires some manual sorting for real vs junk

Fluorescence extraction

A fluorescence trace

• Consider how changing the ROI changes the average

Source of contamination/artefact

- Neurons overlapping each other
- *neuropil*: a dense network of interwoven nerve fibres and their branches and synapses, together with glial filaments.
- Background fluorescence
- Brain movement
- Noise

Neuropil: a segmentation addendum

 Finding neuropil fluorescence requires an ROI i.e. segmentation

Fluorescence normalisation: DFF $=\frac{\Delta F}{F}=\frac{F-F_0}{F_0}$

Miscalculating F0

Applying a rolling method for normalisation

Three key steps to pre-processing

Things to consider

- Experimental parameters
 - Imaging system e.g., FOV size, image scale, imaging method*
 - Labelling strategy e.g., sensor kinetics, nature of objects with fluorescence
 - Activity of objects e.g., low/high, clustered/un-clustered events
- Processing/data systems
 - Storage location e.g., local/drive/server, available storage amount
 - Processing machine i.e., computational power

An opinion on employing complex tools

Having used and developed these algorithms in our own lab for our own data, we find ourselves often unwilling to use a complex method for potential small gains in performance, particularly if the method may introduce additional confounds, known or unknown.

Stringer and Pachitariu (Current Opinion in Neurobiology 2019)

*the developers of the algorithmically relatively simple suite2p

Other items

Tips and tricks

Programming

• Ya need it

Quality check: Realise. Real eyes. Real lies. — Tupac (?)

Visualisation

- Raw video examinations
- Raw trace examinations

Things to be quality checked

- Alignment performance: viewing videos, plotting offsets
- Z-drift: slow alignment offset drift, raw value baseline shift in ROIs
- Fluorescence extraction
- Normalisation performance

The problem of data exclusion

- 1. Identifying data that should be excluded
- 2. Preventing/removing the data from the pipeline

IMO: later is generally better, and explicit/tracked removal is essential

Time and space are limited

- Raw data coming out can be ~50GB/hour at (512x512 30 fps 16bit)
- Storage of the outputs of computationally expensive processes is common
- Data read/write speed can be a key bottleneck when handling imaging data depending on your setup

File and computer technicalities

- Loading files is a time bottleneck
 - Loading method can matter
 - SSD storage with USB 3.0 plz
- Secrets of raw data

Misreading datatypes int 16 li-Bit Integer uint 16

[-32,768 + 32,767]

[0 65,535]

https://slideplayer.com/slide/7556788/

- GitHub is basically cloud storage for text/code
- All of the calcium imaging tools that are being made are being shared by GitHub
- README.md should explain everything
- There should be a link to documentation, often stored at readthedocs.io for larger projects
- Examples of usage are typically in a examples/ or notebooks/ folder

image.sc -- internet at its finest

What is the forum's mission? (from image.sc's FAQ)

- The goal is to embrace the diversity of the scientific imaging community, while fostering independent learning:
- Enable people to ask "how do I do X?" without prior knowledge of these various software programs.
- Improve the cross-visibility of software packages.
- Make searching for previous discussions simpler.
- Give users access to a wide breadth of experts on various softwares.
- Give experts a place to have detailed discussions about elements of the software.
- Educate software developers on the capabilities of the various projects being discussed, so that they can improve the links between tools, and develop features that are more likely to be novel.
- Encourage open science and reproducible research by advocating for open tools and their interoperability.
- Foster not only scientific independent thinking, but just as importantly, independent learning 10. We want to not only teach people how to fish 17, but teach them how to learn.

Quantification aka analysis

Core analysis methods

Everything begins from DFF traces

Fluorescence itself as a metric

- Average or integral across epochs
- In theory, no information is lost

Mesa, Waters & de Vries (2021)

Time specificity could be janky

- Long tails result in "misattributed" activity
- Task with cue can produce start of trial events

Event detection

- Specific to the dynamics of the calcium fluorescence you are observing
- Go to Methods to find those boutique specifics

Deconvolution

Convolution

You convolve a signal with a kernel to produce its convolution

https://commons.wikimedia.org/wiki/File:Convolution_of_spiky_function_with_box2.gif

- Try out a demo: https://phiresky.github.io/convolution-demo/
 - Use sawtooth kernel and impulse train signal, see what happens

Deconvolving calcium fluorescence

- Fluorescence signal is known
- Kernel can be determined*
- Spike train is unknown

Deconvolution of calcium fluorescence is the extraction of the underlying "spikes" that generated the fluorescence pattern.

Spike * deconvolution

Deconvolution may be highly method dependent

- Deconvolution algorithm try to fit a kernel to the given fluorescence timecourse
- Real traces can have non-random artefact

Evans, Peterson & Humphries (2020)

Remember Tupac: use your eyes

Average

Demo location

- https://github.com/ogeesan/ACAN-2023-Imaging-Workshop
- fiji.sc

Notebook (from last year)

https://github.com/ogeesan/ACAN-2022-Imaging-Workshop

- 1. Open Notebook
- 2. Runtime > Run all

