Non-Negative Matrix Factorization

Schwartz

August 14, 2017

How do you make a data scientist?

Numerical Scripting Inference Predictive Business Creative Problem 2 Literacy Coding Estimation Modeling Acumen Thinking Solving

Mathematics Degree Statistics Degree Economics Degree Computer Science Degree Data Science Immersive Independent Self Study Workshops and Lectures Community Engagement

Objectives

NMF

- versus SVD
- non-negative
- parts-based model

Uses

- learn/interpret latent reduced dimensionality features driving data
- soft cluster samples by latent features

Estimating NMF

- gradient descent
- alternating least squares (ALS)
- multiplicative updating

What is NMF?

Singular Value Decomposition (SVD):

$$X_{n \times p} = \bigcup_{n \times n} \sum_{n \times p} \bigvee_{p \times p}^{T}$$

$$\approx \bigcup_{n \times k} \sum_{k \times k} \bigvee_{k \times p}^{T}$$

What is NMF?

Singular Value Decomposition (SVD):

$$X_{n \times p} = \bigcup_{n \times n} \sum_{n \times p} \bigvee_{p \times p}^{T}$$

$$\approx \bigcup_{n \times k} \sum_{k \times k} \bigvee_{k \times p}^{T}$$

Non-Negative Matrix Factorization (NMF):

$$X_{n \times p} \approx W_{n \times k} H_{k \times p}$$
$$X_{ij}, W_{i'j'}, H_{i*j*} \ge 0$$

What is NMF?

Singular Value Decomposition (SVD):

$$\begin{array}{c}
X_{n \times p} = \bigcup_{n \times n} \sum_{n \times p} \bigvee_{p \times p}^{T} \\
\approx \bigcup_{n \times k} \sum_{k \times k} \bigvee_{k \times p}^{T}
\end{array}$$

Non-Negative Matrix Factorization (NMF):

$$X_{n \times p} \approx W_{n \times k} H_{k \times p}$$
$$X_{ij}, W_{i'j'}, H_{i*j*} \ge 0$$

So NMF is just SVD

- just drop the middle matrix and keep all the numbers positive

Keep all the numbers positive why?

Scores	item 1	item 2	 item p
user 1			
user 2			
:			
user n			

$$= \underset{n \times k}{W} \underset{k \times p}{H}$$

$$X \\ n \times p$$

Keep all the numbers positive why?

Scores	item 1	item 2	 item p
user 1			
user 2			
:			
user n			

$$= \underset{n \times k}{W} \underset{k \times p}{H}$$

$$X \\ n \times p$$

What are some recommender systems you know about, and what kind of numbers are used in those ratings, typically?

Keep all the numbers positive why? Because we can

Scores	item 1	item 2	 item <i>p</i>	
user 1				= M
user 2				- vv
:				$n \times n$
user n				

$$X \\ n \times p$$

What are some recommender systems you know about, and what kind of numbers are used in those ratings, typically?

Keep all the numbers positive why? Because we can

Scores	item 1	item 2	 item <i>p</i>	
user 1				
user 2				
:				
user n				

$$= \underset{n \times k}{W} \underset{k \times p}{H}$$

$$X \\ n \times p$$

What are some recommender systems you know about, and what kind of numbers are used in those ratings, typically?

What about $\underset{n \times k}{W}$ and $\underset{k \times p}{H}$?

Keep all the numbers positive why? Because we can

Scores	item 1	item 2	 item p
user 1			
user 2			
:			
user n			

$$= \underset{n \times k}{W} \underset{k \times p}{H}$$

$$X \\ n \times p$$

What are some recommender systems you know about, and what kind of numbers are used in those ratings, typically?

What about $\underset{n \times k}{W}$ and $\underset{k \times p}{H}$?

"parts-based model"

\geq 0: what is the NMF "parts based model"?

$$\begin{aligned} & \underset{\textbf{n} \times \textbf{p}}{\textbf{X}} \approx \underset{\textbf{n} \times \textbf{k}}{\textbf{W}} \quad \underset{\textbf{k} \times \textbf{p}}{\textbf{H}} & & \hat{\textbf{X}}_{ij} = \overset{\textbf{1} \times \textbf{k}}{\textbf{W}_{i}} & \overset{\textbf{k} \times \textbf{1}}{\textbf{H}_{\cdot j}} \\ & X_{ij}, W_{i'j'}, H_{i^*j^*} \geq 0 \end{aligned}$$

\geq 0: what is the NMF "parts based model"?

$$\begin{split} \underset{n \times p}{\overset{\boldsymbol{X}}{\sim}} &\approx \underset{n \times k}{\overset{\boldsymbol{W}}{\sim}} \underset{k \times p}{\overset{\boldsymbol{H}}{\sim}} & \hat{\boldsymbol{X}}_{ij} = \overset{1 \times k}{W_{i}}. \overset{k \times 1}{\overset{\boldsymbol{H}}{\sim}} \\ \boldsymbol{X}_{ij}, W_{i'j'}, H_{i^{*}j^{*}} \geq 0 \end{split}$$

	protein	carbs	fat	fiber	vitamins		(individuals	diet imp	lication	s)	
=1	•	dividuals f	ood inta	,	- . x	food 1 food 2	protein	carbs	fat	fiber	vitamins
'						: food <i>k</i>		(food	contrib	utions)	

- every user i gets "amounts" of k factors (food): W's ith row
- ▶ factors k may contribute to item j (feature): H's jth column
- "agreement" in factors for user i and item j determines X_{ij}

\geq 0: what is the NMF "parts based model"?

$$\begin{aligned} & \underset{\textbf{n} \times \textbf{p}}{\textbf{X}} \approx \underset{\textbf{n} \times \textbf{k}}{\textbf{W}} \quad \underset{\textbf{k} \times \textbf{p}}{\textbf{H}} & & \hat{\textbf{X}}_{ij} = \overset{\textbf{1} \times \textbf{k}}{\textbf{W}_{i}}. \ \overset{\textbf{k} \times \textbf{1}}{\textbf{H}_{.j}} \\ & X_{ij}, W_{i'j'}, H_{i^{*}j^{*}} \geq 0 \end{aligned}$$

- every user i gets "amounts" of k factors (food): \underline{W} 's ith row
- ▶ factors k may contribute to item j (feature): H's jth column
- "agreement" in <u>factors</u> for <u>user</u> i and <u>item</u> j determines X_{ij}
- everything being positive provides this "parts-based model"

Example: NMF Topic Modeling for NLP

	word 1	word 2	 word p
doc 1			
doc 2			
: doc n			

		topic 1	 topic k			word 1	 word p
d	oc 1				topic 1		
= d	oc 2			×	:		
	:				topic <i>k</i>		
d	oc n						

- ▶ Identifies latent "topics" or features driving word appearance
- ► Says what words each of the topics are comprised of (cool!)
- ► Gives topic similarity (how?) for documents (soft clustering)

$$X_{n \times p} \approx W_{n \times k} H_{k \times p}$$

$$X_{n \times p} \approx W_{n \times k} H_{k \times p}$$

$$\sum_{i,j} (X_{ij} - \hat{X}_{ij})^2 = \sum_{i,j} (X_{ij} - W_{i}. H_{ij})^2$$

$$X_{n \times p} \approx W_{n \times k} H_{k \times p}$$

$$\sum_{i,j} (X_{ij} - \hat{X}_{ij})^2 = \sum_{i,j} (X_{ij} - W_{i.} H_{.j})^2$$

▶ What *i* and *j* do we use to evaluate this on?

Scores	item 1	item 2	 item <i>p</i>
user 1			
user 2			
:			
user n			

$$X_{n \times p} \approx W_{n \times k} H_{k \times p}$$

$$\sum_{i,j} (X_{ij} - \hat{X}_{ij})^2 = \sum_{i,j} (X_{ij} - W_{i.} H_{.j})^2$$

▶ What *i* and *j* do we use to evaluate this on?

Scores	item 1	item 2	 item p
user 1			
user 2			
:			
user n			

What's interesting about this compared to SVD?

$$X_{n \times p} \approx W_{n \times k} H_{k \times p}$$

$$\sum_{i,j} (X_{ij} - \hat{X}_{ij})^2 = \sum_{i,j} (X_{ij} - W_{i.} H_{.j})^2$$

▶ What *i* and *j* do we use to evaluate this on?

Scores	item 1	item 2	 item p
user 1			
user 2			
:			
user n			

What's interesting about this compared to SVD?

Gradient Descent

$$\frac{\partial}{\partial W_{i'k}} \sum_{i,j} (X_{ij} - W_{i\cdot} H_{\cdot j})^2 = \sum_{j} -2(X_{i'j} - W_{i'k} H_{kj}) H_{kj}$$

$$\frac{\partial}{\partial H_{kj'}} \sum_{i,j} (X_{ij} - W_{i\cdot} H_{\cdot j})^2 = \sum_{i} -2(X_{ij'} - W_{ik} H_{kj'}) W_{ik}$$
subject to $W_{ii}, H_{i'j'} \ge 0$

Gradient Descent

$$\begin{split} \frac{\partial}{\partial W_{i'k}} \sum_{i,j} (X_{ij} - W_{i\cdot} \ H_{\cdot j})^2 &= \sum_{j} -2(X_{i'j} - W_{i'k} \ H_{kj}) H_{kj} \\ \frac{\partial}{\partial H_{kj'}} \sum_{i,j} (X_{ij} - W_{i\cdot} \ H_{\cdot j})^2 &= \sum_{i} -2(X_{ij'} - W_{ik} \ H_{kj'}) W_{ik} \\ \text{subject to } W_{ij}, H_{i'j'} &\geq 0 \end{split}$$

- ► Alternating Lease Squares (ALS)
 - 0. Initialize H and W with H_{ii} , $W_{i'i'} > 0$
 - 1. Update $H_{\cdot j}$ using OLS: $X_{\cdot j} = \mathbf{W}H_{\cdot j} + \epsilon_{\cdot j}$

$$\left[\begin{array}{ccc} & & \\ & \downarrow & \\ & & \end{array}\right] = \left[\begin{array}{ccc} \longrightarrow \longrightarrow \\ \longrightarrow \longrightarrow \\ \longrightarrow \longrightarrow \end{array}\right] \left[\begin{array}{ccc} & \downarrow \\ & \downarrow \\ & \downarrow \end{array}\right]$$

2. Update W_i using OLS: $X_{i\cdot}^T = \mathbf{H}^T W_{i\cdot}^T + \epsilon_{i\cdot}^T$

- 3. If $H_{ij} < 0$ set $H_{ij} = 0$; if $W_{i'j'} < 0$ set $W_{i'j'} = 0$
- 4. Evaluate stopping criterion: return to step 1 if check fails (What stopping criterion might we use?)

- ► Lee and Seung's "multiplicative update rules"
 - 0. Initialize H and W with H_{ij} , $W_{i'j'} > 0$
 - 1. Update W and H with

$$W'_{ik} = W_{ik} \frac{(XH^T)_{ik}}{(WHH^T)_{ik}} \qquad H'_{kj} = H_{kj} \frac{(W^TX)_{kj}}{(W^TWH)_{kj}}$$

Evaluate stopping criterion: return to step 1 if check fails (What stopping criterion might we use?)

- ► Lee and Seung's "multiplicative update rules"
 - 0. Initialize H and W with H_{ij} , $W_{i'j'} > 0$
 - 1. Update W and H with

$$W'_{ik} = W_{ik} \frac{(XH^T)_{ik}}{(WHH^T)_{ik}} \qquad H'_{kj} = H_{kj} \frac{(W^TX)_{kj}}{(W^TWH)_{kj}}$$

Evaluate stopping criterion: return to step 1 if check fails (What stopping criterion might we use?)

What is doing this?

- ► Recall the OLS estimate $\hat{\beta} = (X^T X)^{-1} X^T Y$ Which looks a lot like, e.g., $\hat{H}_{kj} = \frac{(W^T X)_{kj}}{(W^T W)_{kj}}$
- So the update looks a lot like $H'_{kj} = H_{kj} \frac{\dot{H}_{kj}}{H}$ so if the new estimate is increased/decreased relative to the current value then the estimate is increase/decrease by that proportion; but this change in H will result in a change in \hat{W} the next time, which will again change \hat{H} the next next time...

Wrap Up

Both do Unsupervised Dimensionality Reduction, but

	SVD/PCA	NMF
NA's	Nope	Yep
Estimation	Non-iterative	Iterative
Coefficients	Orthogonal, $+/-$ coefficients	only + coefficients
Interpretation	Linear combination	"Parts-based"
k	Skree plot All of those as well \rightarrow	Cross-validation Permutation testing Cophenetic correlation Interpretability

Go look at all the other instructors jupyter notebooks demoing this all