PMATH347S18 - Groups & Rings

Johnson Ng

May 25, 2018

Table of Contents

1	Lect	ure 1 N	May 02nd 2018	9
	1.1	Introd	luction	. 9
		1.1.1	Numbers	. 9
		1.1.2	Matrices	. 10
2	Lect	ure 2 N	May 04th 2018	13
	2.1	Introd	luction (Continued)	. 13
		2.1.1	Permutations	. 13
3	Lect	ure 3 N	May 07th 2018	19
	3.1	Group	ps	. 19
		3.1.1	Groups	. 19
4	Lect	ure 4 N	May 09 2018	25
	4.1	Group	ps (Continued)	. 25
		4.1.1	Groups (Continued)	. 25
		4.1.2	Cayley Tables	. 26
	4.2	Subgr	oups	. 28
		4.2.1	Subgroups	. 28
5	Lect	ure 5 N	May 11th 2018	29
	5.1	Subgr	oups (Continued)	. 29
		5.1.1	Subgroups (Continued)	. 29
6	Lect	ure 6 N	May 14th 2018	33
	6.1	Subgr	roups (Continued 2)	33
		6.1.1	Alternating Groups	33
		6.1.2	Order of Elements	35
7			May 16th 2018	37
	7.1	Subgr	roups (Continued 3)	37
		711	Order of Floments (Continued)	217

4 TABLE OF CONTENTS - TABLE OF CONTENTS

		7.1.2	Cyclic Groups	40
8	Lect	ure 8 M	lay 18th 2018	41
	8.1	Subgro	oups (Continued 4)	41
		8.1.1	Cyclic Groups (Continued)	41
9	Lect	ure 9 M	lay 22nd 2018	45
	9.1	Subgro	oups (Continued 5)	45
		9.1.1	Examples of Non-Cyclic Groups	45
	9.2	Norma	al Subgroup	46
		9.2.1	Homomorphism and Isomorphism	46
		9.2.2	Cosets and Lagrange's Theorem	49
10	Lect	ure 10 l	May 23rd 2018	53
	10.1	Norma	al Subgroup (Continued)	53
		10.1.1	Cosets and Lagrange's Theorem (Continued)	53
		10.1.2	Normal Subgroup	55
11	Lect	ure 11 l	May 25th 2018	57
			al Subgroup (Continued 2)	
			Normal Subgroup (Continued)	
12	Inde	ex		63
13	List	of Sym	bols	65

List of Definitions

1	Injectivity	13
2	Surjectivity	13
3	Bijectivity	13
4	Permutations	13
5	Order	14
6	Groups	19
7	Abelian Group	19
8	General Linear Group	21
9	Cayley Table	26
10	Subgroup	28
11	Special Linear Group	30
12	Center of a Group	30
13	Transposition	33
14	Odd and Even Permutations	34
15	Cyclic Groups	36
16	Order of an Element	37
18	Dihedral Group	45
19	Homomorphism	46
20	Isomorphism	47
21	Coset	49
22	Indev	E1

6 TABLE OF CONTENTS - TABLE OF CONTENTS

23	Normal Subgroup											55
24	Product of Groups											60
25	Normalizer											61

List of Theorems

Proposition 1		14
Proposition 2	Properties of S_n	16
Theorem 3	Cycle Decomposition Theorem	17
Proposition 4	Group Identity and Group Element Inverse	19
Proposition 5		22
Proposition 6	Cancellation Laws	25
Proposition 7		27
Proposition 8	Intersection of Subgroups is a Subgroup	31
Proposition 9	Finite Subgroup Test	31
Theorem 10	Parity Theorem	33
Theorem 11	Alternating Group	34
Proposition 12	Cyclic Group as A Subgroup	36
Proposition 13	Properties of Elements of Finite Order	37
Proposition 14	Property of Elements of Infinite Order	39
Proposition 15	Orders of Powers of the Element	39
Proposition 16	Cyclic Groups are Abelian	40
Proposition 17	Subgroups of Cyclic Groups are Cyclic	41
Proposition 18	Other generators in the same group	42
Theorem 19	Fundamental Theorem of Finite Cyclic Group	s 4
Proposition 20	Properties of Homomorphism	46
Proposition 21	Isomorphism as an Equivalence Relation	47

8 TABLE OF CONTENTS - TABLE OF CONTENTS

Proposition 22	Properties of Cosets	50
Theorem 23	Lagrange's Theorem	53
Corollary 24		54
Corollary 25		55
Corollary 26		55
Proposition 27	Normality Test	57
Proposition 28	Subgroup of Index 2 is Normal	59
Lemma 29	Product of Groups as a Subgroup	60
Proposition 30	Product of Normal Subgroups is Normal .	61

1 Lecture 1 May 02nd 2018

1.1 Introduction

1.1.1 Numbers

The following are some of the number sets that we are already familiar with:

$$\mathbb{N} = \{1, 2, 3, ...\} \qquad \mathbb{Z} = \{.., -2, -1, 0, 1, 2, ...\}$$

$$\mathbb{Q} = \left\{\frac{a}{b} : a \in \mathbb{Z}, b \in \mathbb{N}\right\} \qquad \mathbb{R} = \text{ set of real numbers}$$

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}, i = \sqrt{-1}\} = \text{ set of complex numbers}$$

For $n \in \mathbb{Z}$, let \mathbb{Z}_n denote the set of integers modulo n, i.e.

$$\mathbb{Z}_n = \{[0], [1], ..., [n-1]\}$$

where the [r], $0 \le r \le n-1$, are the congruence classes, i.e.

$$[r] = \{ z \in \mathbb{Z} : z \equiv r \mod n \}$$

These sets share some common properties, e.g. + and \times . Let's try to break that down to make further observation.

NOTE THAT for $R = \mathbb{N}$, \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , or \mathbb{Z}_n , R has 2 operations, i.e. addition and multiplication.

Addition If $r_1, r_2, r_3 \in R$, then

- (closure) $r_1 + r_2 \in R$
- (associativity) $r_1 + (r_2 + r_3) = (r_1 + r_2) + r_3$

Also, if $R \neq \mathbb{N}$, then $\exists 0 \in R$ (the **additive identity**) such that

$$\forall r \in R \quad r+0=r=0+r.$$

Also, $\forall r \in R$, $\exists (-r) \in R$ such that

$$r + (-r) = 0 = (-r) + r.$$

Multiplication For $r_1, r_2, r_3 \in R$, we have

- (closure) $r_1r_2 \in R$
- (associativity) $r_1(r_2r_3) = (r_1r_2)r_3$

Also, $\exists 1 \in R$ (a.k.a the mutiplicative identity), such that

$$\forall r \in R \quad r \cdot 1 = r = 1 \cdot r.$$

Finally, for $R = \mathbb{Q}$, \mathbb{R} , or \mathbb{C} , $\forall r \in R$, $\exists r^{-1} \in R$ such that

$$r \cdot r^{-1} = 1 = r^{-1} \cdot r$$
.

Note that for $R = \mathbb{Z}_n$, where $n \in \mathbb{Z}$, not all $[r] \in \mathbb{Z}_n$ have a multiplicative inverse. For example, for $[2] \in \mathbb{Z}_4$, there is no $[x] \in \mathbb{Z}_4$ such that [2][x] = [1].

1.1.2 Matrices

For $n \in \mathbb{N} \setminus \{1\}$, an $n \times n$ matrix over \mathbb{R}^2 is an $n \times n$ array that can be expressed as follows:

2
 \mathbb{R} can be replaced by \mathbb{Q} or \mathbb{C} .

$$A = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

where for $1 \le i, j \le n$, $a_{ij} \in \mathbb{R}$. We denote $M_n(\mathbb{R})$ as the set of all $n \times n$ matrices over \mathbb{R} .

As in Section 1.1.1, we can perform addition and multiplication on $M_n(\mathbb{R})$.

¹ This is best proven using techniques introduced in MATH135/145.

Matrix Addition Given $A = [a_{ij}], B = [b_{ij}], C = [c_{ij}] \in M_n(\mathbb{R})$, we define matrix addition as

$$A + B = [a_{ij} + b_{ij}],$$

which immediately gives the **closure property**, since $a_{ij} + b_{ij} \in \mathbb{R}$ and hence $A + B \in M_n(\mathbb{R})$. Also, by this definition, we also immediately obtain the associativity property, i.e.

$$A + (B + C) = (A + B) + C.$$

We define the zero matrix as

$$0 = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}.$$

Then we have that 0 is the additive identity, i.e.

$$A + 0 = A = 0 + A$$
.

Finally, $\forall A \in M_n(\mathbb{R}), \exists (-A) \in M_n(\mathbb{R})$ (the additive inverse) such that

$$A + (-A) = 0 - (-A) + A.$$

Note that in this case, we also have that the operation is commutative, i.e.

$$A + B = B + A$$
.

Matrix Multiplication Given $A = [a_{ij}], B = [b_{ij}], C = [c_{ij}] \in M_n(\mathbb{R}),$ we define the matrix multiplication as

$$AB = [d_{ij}]$$
 where $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \in \mathbb{R}$.

Clearly, $AB \in M_n(\mathbb{R})$, i.e. it is closed under matrix multiplication. Also, we have that, under such a defintion, matrix multiplication is associative, i.e.

$$A(BC) = (AB)C.$$

Define the identity matrix, $I \in M_n(\mathbb{R})$, as follows:

$$I = egin{bmatrix} 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ dots & dots & dots \ 0 & 0 & \dots & 1 \end{bmatrix}.$$

Then we have that *I* is the **multiplicative identity**, since

$$AI = A = IA$$
.

However, contrary to matrix addition, $\forall A \in M_n(\mathbb{R})$, it is not always true that $\exists A^{-1} \in M_n(\mathbb{R})$ such that

$$AA^{-1} = I = A^{-1}A.$$

Also, we can always find some $A, B \in M_n(\mathbb{R})$ such that

$$AB \neq BA$$
,

i.e. matrix multiplication is not always commutative.

THE COMMON PROPERTIES of the operations from above: **closure**, **associativity**, **and existence of an inverse**, are not unique to just addition and multiplication. We shall see in the next lecture that there are other operations where these properties will continue to hold, e.g. **permutations**.

This is especially true if the **determinant** of A is 0.

2 Lecture 2 May 04th 2018

2.1 Introduction (Continued)

2.1.1 *Permutations*

Definition 1 (Injectivity)

Let $f: X \to Y$ be a function. We say that f is **injective** (or **one-to-one**) if $f(x_1) = f(x_2)$ implies $x_1 = x_2$.

Definition 2 (Surjectivity)

Let $f: X \to Y$ be a function. We say that f is surjective (or onto) if $\forall y \in Y \ \exists x \in X \ f(x) = y$.

Definition 3 (Bijectivity)

Let $f: X \to Y$ be a function. We say that f is bijective if it is both injective and surjective.

Definition 4 (Permutations)

Given a non-empty set L, a permutation of L is a bijection from L to L. The set of all permutations of L is denoted by S_L .

Example 2.1.1

Consider the set $L = \{1, 2, 3\}$, which has the following 6 different permuta-

tions:

$$\begin{pmatrix}
1 & 2 & 3 \\
1 & 2 & 3
\end{pmatrix} \quad
\begin{pmatrix}
1 & 2 & 3 \\
1 & 3 & 2
\end{pmatrix} \quad
\begin{pmatrix}
1 & 2 & 3 \\
2 & 1 & 3
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 1
\end{pmatrix} \quad
\begin{pmatrix}
1 & 2 & 3 \\
3 & 1 & 2
\end{pmatrix} \quad
\begin{pmatrix}
1 & 2 & 3 \\
3 & 2 & 1
\end{pmatrix}$$

FOR $n \in \mathbb{N}$, we denote $S_n := S_{\{1,2,...,n\}}$, the set of all permutations of $\{1,2,...,n\}$. Example 2.1.1 shows the elements of the set S_3 .

Definition 5 (Order)

The **order** of a set A, denoted by |A|, is the cardinality of the set.

Example 2.1.2

We have seen that the order of S_3 , $|S_3|$ is 6 = 3!.

Proposition 1

$$|S_n| = n!$$

Proof

 $\forall \sigma \in S_n$, there are n choices for $\sigma(1)$, n-1 choices for $\sigma(2)$, ..., 2 choices for $\sigma(n-1)$, and finally 1 choice for $\sigma(n)$.

Do elements of S_n share the same properties as what we've seen in the numbers? Given $\sigma, \tau \in S_n$, we can **compose** the 2 together to get a third element in S_n , namely $\sigma\tau$ (wlog), where $\sigma\tau: \{1,...,n\} \to \{1,...,n\}$ is given by $\forall x \in \{1,...,n\}$, $x \mapsto \sigma(\tau(x))$.

It is important to note that $:: \sigma, \tau$ are **both bijective**, $\sigma\tau$ is also bijective. Thus, together with the fact that $\sigma\tau : \{1,...,n\} \to \{1,...,n\}$, we have that $\sigma\tau \in S_n$ by definition of S_n .

 $\therefore \forall \sigma, \tau \in S_n$, $\sigma\tau, \tau\sigma \in S_n$, but $\sigma\tau \neq \tau\sigma$ in general. The following is an example of the stated case:

Note

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$
 indicates the bijection $\sigma: \{1,2,3\} \rightarrow \{1,2,3\}$ with $\sigma(1)=1, \sigma(2)=3$ and $\sigma(3)=2.$

Example 2.1.3

Let

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$
, and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$.

Compute $\sigma \tau$ and $\tau \sigma$ to show that they are not equal.

Solution

$$\sigma \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}$$
 but $\tau \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}$

Perhaps what is interesting is the question of: when does commu**tativity occur?** One such case is when σ and τ have support sets that are disjoint¹.

On the other hand, the associative property holds², i.e.

$$\forall \sigma, \tau, \mu \in S_n \ \sigma(\tau \mu) = (\sigma \tau) \mu$$

The set S_n also has an identity element³, namely

$$\varepsilon = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix}$$

Finally, $\forall \sigma \in S_n$, since σ is a bijection, we have that its inverse function, σ^{-1} is also a bijection, and thus satisfies the requirements to be in S_n . We call $\sigma^{-1} \in S_n$ to be the inverse permutation of σ , such that

$$\forall x, y \in \{1, ..., n\} \quad \sigma^{-1}(x) = y \iff \sigma(y) = x.$$

It follows, immediately, that

$$\sigma(\sigma^{-1}(x)) = x \wedge \sigma^{-1}(\sigma(y)) = y.$$

... We have that

$$\sigma\sigma^{-1} = \varepsilon = \sigma^{-1}\sigma.$$

Example 2.1.4

Find the inverse of

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 2 & 3 \end{pmatrix}$$

Solution

By rearranging the image in ascending order, using them now as the object

¹ This is proven in A₁

Exercise 2.1.1

Prove this as an exercise.

Exercise 2.1.2

Verify that the given identity element is indeed the identity, i.e.

$$\forall \sigma \in S_n \ \sigma \varepsilon = \sigma = \varepsilon \sigma.$$

and their respective objects as their image, construct

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 1 & 2 \end{pmatrix}.$$

It can easily (although perhaps not so prettily) be shown that

$$\sigma \tau = \varepsilon = \tau \sigma$$
.

With all the above, we have for ourselves the following proposition:

Proposition 2 (Properties of S_n)

We have

- 1. $\forall \sigma, \tau \in S_n \ \sigma \tau, \tau \sigma \in S_n$.
- 2. $\forall \sigma, \tau, \mu \in S_n \ \sigma(\tau \mu) = (\sigma \tau) \mu$.
- 3. $\exists \varepsilon \in S_n \ \forall \sigma \in S_n \ \sigma \varepsilon = \sigma = \varepsilon \sigma$.
- 4. $\forall \sigma \in S_n \ \exists ! \sigma^{-1} \in S_n \ \sigma \sigma^{-1} = \varepsilon = \sigma^{-1} \sigma.$

Consider

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 1 & 7 & 6 & 9 & 4 & 2 & 5 & 8 & 10 \end{pmatrix} \in S_{10}$$

If we represent the action of σ geometrically, we get

that σ can be **decomposed** into one 4-cycle, $\begin{pmatrix} 1 & 3 & 7 & 2 \end{pmatrix}$, one 2-cycle, $\begin{pmatrix} 4 & 6 \end{pmatrix}$, one 3-cycle, $\begin{pmatrix} 5 & 9 & 8 \end{pmatrix}$, and one 1-cycle, $\begin{pmatrix} 10 \end{pmatrix}$.

Note that these cycles are (pairwise) disjoint, and we can write⁴

⁴ We generally do not include the 1-cycle and assume that by excluding them, it is known that any number that is supposed to appear loops back to themselves.

$$\sigma = \begin{pmatrix} 1 & 3 & 7 & 2 \end{pmatrix} \begin{pmatrix} 4 & 6 \end{pmatrix} \begin{pmatrix} 5 & 9 & 8 \end{pmatrix}$$

Note that we may also write

$$\sigma = \begin{pmatrix} 4 & 6 \end{pmatrix} \begin{pmatrix} 5 & 9 & 8 \end{pmatrix} \begin{pmatrix} 1 & 3 & 7 & 2 \end{pmatrix}
= \begin{pmatrix} 6 & 4 \end{pmatrix} \begin{pmatrix} 9 & 8 & 5 \end{pmatrix} \begin{pmatrix} 7 & 2 & 1 & 3 \end{pmatrix}$$

It is interesting to note that the cycles can rotate their "elements" in a cyclic manner, i.e.

$$\begin{pmatrix} 1 & 3 & 7 & 2 \end{pmatrix} = \begin{pmatrix} 7 & 2 & 1 & 3 \end{pmatrix} \neq \begin{pmatrix} 1 & 2 & 7 & 3 \end{pmatrix}.$$

Although the decomposition of the cycle notation is not unique (i.e. you may rearrange them), each individual cycle is unique, and is proven below⁵.

Theorem 3 (Cycle Decomposition Theorem)

If $\sigma \in S_n$, $\sigma \neq \varepsilon$, then σ is a product of (one or more) disjoint cycles of length at least 2. This factorization is unique up to the order of the factors.

Note (Convention)

Every permutation in S_n can be regarded as a permutation of S_{n+1} by fixing the permutation of n + 1. Therefore, we have that

$$S_1 \subseteq S_2 \subseteq \ldots \subseteq S_n \subseteq S_{n+1} \subseteq \ldots$$

⁵ See bonus question of A₁. Proof will be included in the notes once the assignment is over.

3 Lecture 3 May 07th 2018

3.1 Groups

3.1.1 *Groups*

Definition 6 (Groups)

Let G be a set and * an operation on $G \times G$. We say that G = (G, *) is a group if it satisfies¹

- 1. Closure: $\forall a, b \in G \quad a * b \in G$
- 2. Associativity: $\forall a, b, c \in G$ a * (b * c) = (a * b) * c
- 3. Identity: $\exists e \in G \ \forall a \in G \ a * e = a = e * a$
- 1 Inverse: $\forall a \in G \ \exists h \in G \ a * h = e = h * a$

¹ If you wonder why the uniqueness is not specified for **Identity** and **Inverse**, see Proposition 4.

Definition 7 (Abelian Group)

A group G is said to be abelian if $\forall a, b \in G$, we have a * b = b * a.

Proposition 4 (Group Identity and Group Element Inverse) Let G be a group and $a \in G$.

- 1. The identity of G is unique.
- 2. The inverse of a is unique.

Proof

1. If $e_1, e_2 \in G$ are both identities of G, then we have

$$e_1 \stackrel{(1)}{=} e_1 * e_2 \stackrel{(2)}{=} e_2$$

where (1) is because e_2 is an identity and (2) is because e_1 is an identity.

2. Let $a \in G$. If $b_1, b_2 \in G$ are both the inverses of a, then we have

$$b_1 = b_1 * e = b_1 * (a * b_2) \stackrel{(1)}{=} e * b_2 = b_2$$

where (1) is by associativity.

Example 3.1.1

The sets $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, and $(\mathbb{C}, +)$ are all abelian, wehre the additive identity is 0, and the additive inverse of an element r is (-r).

Note

 $(\mathbb{N},+)$ is not a group for neither does it have an identity nor an inverse for any of its elements.

Example 3.1.2

The sets (\mathbb{Q},\cdot) , (\mathbb{R},\cdot) and (\mathbb{C},\cdot) are **not** groups, since 0 has no multiplicative inverse in \mathbb{Q}, \mathbb{R} or \mathbb{C} .

We may define that for a set S, let $S^* \subseteq S$ contain all the elements of S that has a multiplicative inverse. For example, $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$. Then, (\mathbb{Q},\cdot) , (\mathbb{R},\cdot) and (\mathbb{C},\cdot) are groups and are in fact abelian, where the multiplicative identity is 1 and the multiplicative of an element r is $\frac{1}{r}$.

Example 3.1.3

The set $(M_n(\mathbb{R}), +)$ is an abelian group, where the additive identity is the zero matrix, $0 \in M_n(\mathbb{R})$, and the additive inverse of an element $M = [a_{ij}] \in M_n(\mathbb{R})$ is $-M = [-a_{ij}] \in M_n(\mathbb{R})$.

Consider the set $M_n(\mathbb{R})$ under the matrix mutiplication operation that we have introduced in Lecture 1 May 02nd 2018. We found that

the identity matrix is

$$I = egin{bmatrix} 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ dots & dots & dots \ 0 & 0 & \dots & 1 \end{bmatrix} \in M_n(\mathbb{R}).$$

But since not all elements of $M_n(\mathbb{R})$ have a multiplicative inverse², $(M_n(\mathbb{R}), \cdot)$ is not a group.

² The multiplicative inverse of a matrix does not exist if its determinant is 0.

WE CAN TRY to do something similar as to what we did before: by excluding the elements that do not have an inverse. In this case, we exclude elements whose determinant is 0. We define the following set

Definition 8 (General Linear Group)

The general linear group of degree n over \mathbb{R} is defined as

$$GL_n(\mathbb{R}) := \{ M \in M_n(\mathbb{R}) : \det M \neq 0 \}$$

Note that : det $I = 1 \neq 0$, we have that $I \in GL_n(\mathbb{R})$. Also, $\forall A, B \in GL_n(\mathbb{R})$, we have that $\because \det A \neq 0 \land \det B \neq 0$,

$$\det AB = \det A \det B \neq 0$$
,

and therefore $AB \in GL_n(\mathbb{R})$. Finally, $\forall M \in GL_n(\mathbb{R}), \exists M^{-1} \in GL_n(\mathbb{R})$ such that

$$MM^{-1} = I = M^{-1}M$$

since det $M \neq 0$. \therefore ($GL_n(\mathbb{R})$, ·) is a group.

SINCE we have introduced permutations in Lecture 2 May 04th 2018, we shall formalize the purpose of its introduction below.

Example 3.1.4

Consider S_n , the set of all permutations on $\{1, 2, ..., n\}$. By Proposition 2, we know that S_n is a group. We call S_n the symmetry group of degree n. For $n \geq 3$, the group S_n is not abelian³.

Now that we have a fairly good idea of the basic concept of a

³ Let us make this an exercise.

Exercise 3.1.1

For $n \geq 3$, prove that the group S_n is not abelian.

group, we will now proceed to look into handling multiple groups. One such operation is known as the **direct product**.

Example 3.1.5

Let G and H be groups. Their direct product is the set $G \times H$ with the component-wise operation defined by

$$(g_1, h_1) * (g_2, h_2) = (g_1 *_G g_2, h_1 *_H h_2)$$

where $g_1, g_2 \in G$, $h_1, h_2 \in H$, $*_G$ is the operation on G, and $*_H$ is the operation on H.

The **closure** and **associativity** property follow immediately from the definition of the operation. The identity is $(1_G, 1_H)$ where 1_G is the identity of G and 1_H is the identity of H. The inverse of an element $(g_1, h_1) \in G \times H$ is (g_1^{-1}, h_1^{-1}) .

By induction, we can show that if G_1 , G_2 , ..., G_n are groups, then so is $G_1 \times G_2 \times ... \times G_n$.

To facilitate our writing, use shall use the following notations:

Notation

Given a group G and $g_1, g_2 \in G$, we often denote its identity by 1, and write $g_1 * g_2 = g_1g_2$. Also, we denote the unique inverse of an element $g \in G$ as g^{-1} .

We will write $g^0 = 1$. Also, for $n \in \mathbb{N}$, we define

$$g^n = \underbrace{g * g * \dots * g}_{n \text{ times}}$$

and

$$g^{-n} = (g^{-1})^n$$

With the above notations,

Proposition 5

Let G be a group and $g,h \in G$. We have

1.
$$(g^{-1})^{-1} = g$$

2.
$$(gh)^{-1} = h^{-1}g^{-1}$$

Exercise 3.1.2

Prove Proposition 5 as an exercise

3.
$$g^n g^m = g^{n+m}$$
 for all $n, m \in \mathbb{Z}$

4.
$$(g^n)^m = g^{nm}$$
 for all $n, m \in \mathbb{Z}$

Warning

In general, it is not true that if $g,h \in G$, then $(gh)^n = g^nh^n$. For

$$(gh)^2 = ghgh$$
 but $g^2h^2 = gghh$.

The two are only equal if and only if G is abelian.

4 Lecture 4 May 09 2018

4.1 Groups (Continued)

4.1.1 Groups (Continued)

Proposition 6 (Cancellation Laws)

Let G be a group and $g,h,f \in G$. Then

- 1.(a) (Right Cancellation) $gh = gf \implies h = f$
 - (b) (Left Cancellation) $hg = fg \implies h = f$
- 2. The equation ax = b and ya = b have unique solution for $x, y \in G$.

Proof

1.(a) By left multiplication and associativity,

$$gh = gf \iff g^{-1}gh = g^{-1}gf \iff h = f$$

(b) By right multiplication and associativity,

$$hg = fg \iff hgg^{-1} = fgg^{-1} \iff h = f$$

2. Let $x = a^{-1}b$. Then

$$ax = a(a^{-1}b) = (aa^{-1})b = b.$$

If $\exists u \in G$ *that is another solution, then*

$$au = b = ax \implies u = x$$

by Left Cancellation. The proof for ya = b is similar by letting $y = ba^{-1}$

4.1.2 Cayley Tables

For a finite group, defining its operation by means of a table is sometimes convenient.

Definition 9 (Cayley Table)

Let G be a group. Given $x, y \in G$, let the product xy be an entry of a table in the row corresponding to x and column corresponding to y. Such a table is called a **Cayley Table**.

Note

By Cycle Decomposition Theorem 6, the entries in each row (and respectively, column) of a Cayley Table are all distinct.

Example 4.1.1

Consider the group $(\mathbb{Z}_2, +)$. Its Cayley Table is

where note that we must have [1] + [1] = [0]; otherwise if [1] + [1] = [1] then [1] does not have its additive inverse, which contradicts the fact that it is in the group.

Example 4.1.2

Consider the group $\mathbb{Z}^* = \{1, -1\}$. Its Cayley Table (under multiplication) is

$$\begin{array}{c|cccc} \mathbb{Z}^* & 1 & -1 \\ \hline 1 & 1 & -1 \\ -1 & -1 & 1 \\ \end{array}$$

If we replace 1 by [0] and -1 by [1], the Cayley Tables of \mathbb{Z}_2 and \mathbb{Z}^* are the same. In thie case, we say that \mathbb{Z}_2 and \mathbb{Z}^* are isomorphic, which we denote by $\mathbb{Z}_2 \cong \mathbb{Z}^*$.

Example 4.1.3

Given $n \in \mathbb{N}$, the Cyclic Group of order n is defined by

$$C_n = \{1, a, a^2, ..., a^{n-1}\}$$
 with $a^n = 1$.

We write $C_n = \langle a : a^n = 1 \rangle$ and a is called a generator of C_n . The Cayley *Table of* C_n *is*

C_n	1	а	a^2	a^{n-2}	a^{n-1}
1	1	а	a^2	 a^{n-2}	$\overline{a^{n-1}}$
а	а	a^2	a^3	a^{n-1}	1
a^2	a ²	a^3	a^4	1	а
	:				
	a^{n-2}		1	a^{n-4}	a^{n-3}
a^{n-1}	a^{n-1}	1	а	a^{n-3}	a^{n-2}

Proposition 7

Let G be a group. Up to isomorphism, we have

1. if
$$|G| = 1$$
, then $G \cong \{1\}$.

2. if
$$|G| = 2$$
, then $G \cong C_2$.

3. *if*
$$|G| = 3$$
, then $G \cong C_3$.

4. if |G| = 4, then either $G \cong C_4$ or $G \cong K_4 \cong C_2 \times C_2$.

 K_n is known as the Klein n-group

- 1. If |G| = 1, then it can only be $G = \{1\}$ where 1 is the identity element.
- 2. $|G| = 2 \implies G = \{1, g\}$ with $g \neq 1$. The Cayley Table of G is thus

$$\begin{array}{c|ccc}
G & 1 & g \\
\hline
1 & 1 & g \\
g & g & 1
\end{array}$$

where we note that $g^2 = 1$; otherwise if $g^2 = g$, then we would have g = 1 by Cycle Decomposition Theorem 6, which contradicts the fact that $g \neq 1$. Comparing the above Cayley Table with that of C_2 , we see that $G = \langle g : g^2 = 1 \rangle \cong C_2$.

3.
$$|G| = 3 \implies G = \{1, g, h\}$$
 with $g \neq 1 \neq h$ and $g \neq h$. We can then

start with the following Cayley Table:

We know that by Cycle Decomposition Theorem 6, $gh \neq g$ and $gh \neq h$. Thus gh = 1. Similarly, we get that hg = 1.

<u>Claim:</u> Entries in a row (or column) must be distinct. Suppose not. Then say $g^2 = 1$. But since gh = 1, by Cycle Decomposition Theorem 6, we have that h = g, which is a contradiction.

With that, we can proceed to fill in the rest of the entries: with $g^2 = h$ and $h^2 = g$. Therefore,

Recall that the Cayley Table for C_3 is:

$$\begin{array}{c|ccccc} C_3 & 1 & a & a^2 \\ \hline 1 & 1 & a & a^2 \\ a & a & a^2 & 1 \\ a^2 & a^2 & 1 & a \\ \end{array}$$

 $\therefore G \cong C_3$ (by identifying g = a and $h = a^2$).

4. Proof will be added once assignment 1 is over

4.2 Subgroups

4.2.1 Subgroups

Definition 10 (Subgroup)

Let G be a group and $H \subseteq G$. If H itself is a group, then we say that H is a subgroup of G

5 *Lecture 5 May 11th 2018*

5.1 Subgroups (Continued)

5.1.1 Subgroups (Continued)

Note (Recall: definition of a subgroup)

Let G be a group and $H \subseteq G$. If H itself is a group, then we say that H is a subgroup of G.

Note

Since G is a group, $\forall h_1, h_2, h_3 \in H \subseteq G$, we have $h_1(h_2h_3) = (h_1h_2)h_3$. So H is a subgroup of G if it satisfies the following conditions, which we shall hereafter refer to as the Subgroup Test.

Subgroup Test

- 1. $h_1h_2 \in H$
- $2. 1c \in E$
- 3. $\exists h_1^{-1} \in H \text{ such that } h_1 h_1^{-1} = 1_G$

Example 5.1.1

Given a group G, it is clear that $\{1\}$ and G are both subgroups of G.

Example 5.1.2

We have the following chain of groups:

$$(\mathbb{Z},+)\subseteq (\mathbb{Q},+)\subseteq (\mathbb{R},+)\subseteq (\mathbb{C},+)$$

Note that the identity in H must also be the identity in G. This is because if $h_1, h_1^{-1} \in H$, then $h_1 h_1^{-1} = 1_H$, but $h_1, h_1^{-1} \in G$ as well, and so $h_1 h_1^{-1} = 1_G$. Thus $1_H = 1_G$.

Recall that the general linear group is defined as:

$$GL_n(\mathbb{R}) = (GL_n(\mathbb{R}), \cdot) = \{A \in M_n(\mathbb{R}) : \det A \neq 0\}$$

Definition 11 (Special Linear Group)

The **special linear group** of order n of \mathbb{R} is defined as

$$SL_n(\mathbb{R}) = (SL_n(\mathbb{R}), \cdot) = \{A \in M_n(\mathbb{R}) : \det A = 1\}$$

Example 5.1.3

Clearly, $SL_n(\mathbb{R}) \subseteq GL_n(\mathbb{R})$. Note that the identity matrix I must be in $SL_n(\mathbb{R})$ since $\det I = 1$. Also, $\forall A, B \in SL_n(\mathbb{R})$, we have that

$$\det AB = \det A \det B = 1$$

 $\therefore AB \in SL_n(\mathbb{R})$. Also, since $\det A^{-1} = \frac{1}{\det A} = 1$, we also have that $^{-1} \in SL_n(\mathbb{R})$. We see that $SL_n(\mathbb{R})$ satisfies the **Subgroup Test**, and hence it is a subgroup of $GL_n(\mathbb{R})$.

Definition 12 (Center of a Group)

Given a group G, the the center of a group G is defined as

$$Z(G) = \{ z \in G : \forall g \in G \ zg = gz \}$$

Example 5.1.4

For a group G, Z(G) is an abelian subgroup of G.

Proof

Clearly, $1_G \in \overline{Z(G)}$. Let $y, z \in G$. $\forall g \in G$, we have that

$$(yz)g = y(zg) = y(gz) = (yg)z = (gy)z = g(yz)$$

Therefore $yz \in Z(G)$ and so Z(G) is closed under its operation. Also, $\forall hinG$, we can write $h = (h^{-1})^{-1} = g^{-1}$. Since $z \in Z(G)$, we have that

 $\forall g \in G$,

$$zg = gz \iff (zg)^{-1} = (gz)^{-1} \iff g^{-1}z^{-1} = z^{-1}g^{-1}$$

 $\iff hz^{-1} = z^{-1}h$

Therefore $z^{-1} \in Z(G)$. By the **Subgroup Test**, it follows that Z(G) is a subgroup of G.

Finally, since $Z(G) \subseteq G$, by its definition, we have that $\forall x, y \in Z(G)$, $x, y \in G$ as well, and we have that xy = yx. Therefore, Z(G) is abelian.

Proposition 8 (Intersection of Subgroups is a Subgroup)

Let H and K be subgroups of a group G. Then their intersection

$$H \cap K = \{g \in G : g \in H \land g \in K\}$$

is also a subgroup of G.

Proof

Since H and K are subgroups, we have that $1 \in H$ and $1 \in K$ and hence $1 \in H \cap K$. Let $a, b \in H \cap K$. Since H and K are subgroups, we have that $ab \in H$ and $ab \in K$. Therefore, $ab \in H \cap K$. Similarly, since $a^{-1} \in H$ and $a^{-1} \in K$, $a^{-1} \in H \cap K$. By the **Subgroup Test**, $H \cap K$ is a subgroup of G.

Proposition 9 (Finite Subgroup Test)

If H is a finite nonempty subset of a group G, then H is a subgroup if and only if H is closed under its operation.

This result says that if H is a finite nonempty subset, then we only need to prove that it is closed under its operation to prove that it is a subgroup. The other two conditions in the **Subgroup** Test are automatically implied.

The forward direction of the proof is trivially true, since H must satisfy the closure property for it to be a subgroup.

For the converse, since $H \neq \emptyset$, let $h \in H$. Since H is closed under its

operation, we have that

$$h, h^2, h^3, ...$$

are all in H. Since H is finite, not all of the h^n 's are distinct. Then, $\forall n \in \mathbb{N}$, there must $\exists m \in \mathbb{N}$ such that $h^n = h^{n+m}$. Then by Cycle Decomposition Theorem 6, $h^m = 1$ and so $1 \in H$. Also, because $1 = h^{m-1}h$, we have that $h^{-1} = h^{m-1}$, and thus the inverse of h is also in H. Therefore, H is a subgroup of G as requried.

6 Lecture 6 May 14th 2018

6.1 Subgroups (Continued 2)

6.1.1 Alternating Groups

Recall that $\forall \sigma \in S_n$, with $\sigma \neq \varepsilon$, σ can be uniquely decomposed (up to the order) as disjoint cycles of length at least 2. We will now present a related concept.

Definition 13 (Transposition)

A transposition $\sigma \in S_n$ is a cycle of length 2, i.e. $\sigma = \begin{pmatrix} a & b \end{pmatrix}$, where $a, b \in \{1, ..., n\}$ and a negb.

Example 6.1.1

We have that1

$$\begin{pmatrix} 1 & 2 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix} \begin{pmatrix} 4 & 5 \end{pmatrix}$$

Also, we can show that2

$$\begin{pmatrix} 1 & 2 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 5 \end{pmatrix} \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix} \tag{6.1}$$

Observe that the factorization into transpositions are **not unique or disjoint**. However, the following property is true.

Theorem 10 (Parity Theorem)

If a permutations σ *has* 2 *factorizations*

$$\sigma = \gamma_1 \gamma_2 \dots \gamma_r = \mu_1 \mu_2 \dots \mu_s$$
,

¹ If we apply the permutations on the right hand side, we have that

Exercise 6.1.1

Show that Equation 6.1 is true.

Exercise 6.1.2

Play around with the same idea and create a few of your own transpositions. Note that you will only be able to get an odd number of tranpositions (why?). where each γ_i and μ_i are transpositions, then $r \equiv s \mod 2$.

Proof

This is the bonus question in A2. Proof shall be included after the end of the assignment.

Definition 14 (Odd and Even Permutations)

A permutation σ is even (or odd) if it can be written as a product of an even (or odd) number of transpositions. By Parity Theorem 10, a permutation must either be even or odd, but not both.

Theorem 11 (Alternating Group)

For $n \geq 2$, let A_n denote the set of all even permutations in S_n . Then

- 1. $\varepsilon \in A_n$
- 2. $\forall \sigma, \tau \in A_n \ \sigma \tau \in A_n \ \text{and} \ \exists \sigma^{-1} \in A_n \ \text{such that} \ \sigma \sigma^{-1} = \varepsilon = \sigma^{-1} \sigma$
- 3. $|A_n| = \frac{1}{2}n!$

Note

From items 1 and 2, we know that A_n si a subgroup of S_n . A_n is called the alternating subgroup of degree n.

Proof

- 1. We have that $\varepsilon = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix}$. Thus ε is even and so $\varepsilon \in A_n$.
- 2. $\forall \sigma, \tau \in A_n$, we may write

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_r$$
 and $\tau = \tau_1 \tau_2 \dots \tau_s$,

where σ_i , τ_i are transpositions, and r, s are even integers. Then

$$\sigma\tau = \sigma_1\sigma_2\ldots\sigma_r\tau_1\tau_2\ldots\tau_s$$

is a product of (r + s) transpositions, and thus $\sigma \tau$ is even. Thus $\sigma \tau \in A_n$.

For the inverse, note that since σ_i is a transposition, we have that $\sigma_i^2 = \varepsilon$ and thus $\sigma_i^{-1} = \sigma_i$. It follows that

$$\sigma^{-1} = (\sigma_1 \sigma_2 \dots \sigma_r)^{-1}$$

$$= \sigma_r^{-1} \sigma_{r-1}^{-1} \dots \sigma_2^{-1} \sigma_1^{-1}$$

$$= \sigma_r \sigma_{r-1} \dots \sigma_2 \sigma_1$$

which is an even permutation and

$$\sigma\sigma^{-1} = \sigma_1\sigma_2\dots\sigma_r\sigma_r\dots\sigma_2\sigma_1 = \varepsilon.$$

Thus $\exists \sigma^{-1} \in A_n$ such that it is the inverse of σ .

3. Let O_n denote the set of odd permutations in S_n . Then we have $S_n =$ $A_n \cup O_n$, and by the Parity Theorem, we have that $A_n \cap O_n = \emptyset$. Since $|S_n| = n!$, to prove that $|A_n| = \frac{1}{2}n!$, it suffices to show that $|A_n| = |O_n|$.

Let $\gamma = \begin{pmatrix} 1 & 2 \end{pmatrix}$ and $f: A_n \to O_n$ such that $f(\sigma) = \gamma \sigma$. Since σ is even, $\gamma \sigma$ is odd, and so f is well-defined.

Also, if $\gamma \sigma_1 = \gamma \sigma_2$, then by Cancellation Laws, $\sigma_1 = \sigma_2$, and hence f is injective.

Finally, $\forall \tau \in O_n$, we have that $\gamma \tau = \sigma \in A_n$. Note that

$$f(\sigma) = \gamma \sigma = \gamma \gamma \tau = \tau.$$

Therefore, f is surjective.

It follows that $|A_n| = |O_n|$.

For the proof of 3, we know that $|S_n|$ = n!, which is twice of the suggested order of A_n . Since we took out the even permutations of S_n , we just need to make the rest of the permutations, the odd permutations, into a set and prove that A_n and this new set has the same size. One way to show this is by creating a bijection between the two.

Also, note that the set of all odd permutations of S_n is not a group, since

- there is no identity element in this set; and
- this set is not closed under map composition.

We have shown that ε is an even permutation, and so by the Parity Theorem, it cannot be an odd permutation, and there is only one identity in S_n . The set is not closed under map composition since if we compose two odd permutations, we would get an even permutation, which does not belong to this set.

Order of Elements 6.1.2

Notation

If G is a group and $g \in G$, we denote

$$\langle g \rangle = \{ g^k : k \in \mathbb{Z} \}.$$

Note that $1 = g^0 \in \langle g \rangle$.

If $x = g^m$, $y = g^n \in \langle g \rangle$ where $m, n \in \mathbb{Z}$, then

$$xy = g^m g^n = g^{m+n} \in \langle g \rangle$$

and we have $\exists x^{-1} = g^{-m} \in \langle g \rangle$ such that

$$xx^{-1} = g^m g^{-m} = g^0 = 1.$$

Along with the **Subgroup Test**, we have the following proposition:

Proposition 12 (Cyclic Group as A Subgroup)

If G *is a group and* $g \in G$ *, then* $\langle g \rangle$ *is a subgroup of* G*.*

Definition 15 (Cyclic Groups)

Let G be a group and $g \in G$. Then we call $\langle g \rangle$ the cyclic subgroup of G generated by g. If $G = \langle g \rangle$ for some $g \in G$, then we say that G is a cyclic group, and g is a generator of G.

7 *Lecture 7 May 16th 2018*

7.1 Subgroups (Continued 3)

7.1.1 Order of Elements (Continued)

Example 7.1.1

Consider $(\mathbb{Z}, +)$. Note that $\forall k \in \mathbb{Z}$, we can write $k = k \cdot 1 = \underbrace{1 + 1 + \ldots + 1}_{k \text{times}}$. So we have that $(\mathbb{Z}, +) = \langle 1 \rangle$. Similarly, we would have $(\mathbb{Z}, +) = \langle -1 \rangle$.

However, observe that $\forall n \in \mathbb{Z}$ with $n \neq \pm 1$, there is no $k \in \mathbb{Z}$ such that $k \cdot n = 1$. Therefore, ± 1 are the only generators of \mathbb{Z} .

Let G be a group and $g \in G$. Suppose $\exists k \in \mathbb{Z}$ with $k \neq 0$ such that $g^k = 1$. Then $g^{-k} = (g^k)^{-1} = 1$. Thus wlog, we can assume that $k \geq 1$. By the Well Ordering Principle, $\exists n \in \mathbb{N}$ such that n is the smallest, such that $g^n = 1$.

With that, we may have the following definition:

Definition 16 (Order of an Element)

Let G be a group and $g \in G$. If n is the smallest positive integer such that $g^n = 1$, we say that the order of g is n, denoted by o(g) = n.

If no such n exists, then we say that g has infinite order and write $o(g) = \infty$.

Proposition 13 (Properties of Elements of Finite Order)

Let G be a group with $g \in G$ where $o(g) = n \in \mathbb{N}$. Then

- 1. $g^k = 1 \iff n|k$;
- 2. $g^k = g^m \iff k \equiv m \mod n$; and
- 3. $\langle g \rangle = \{1, g, g^2, ..., g^{n-1}\}$ where each g^i is distinct from others.

Proof

1. (\Leftarrow) If n|k, then k = nq for some $q \in \mathbb{Z}$. Then

$$g^k = g^{nq} = (g^n)^q = 1^q = 1$$

(\Longrightarrow) Suppose $g^k=1$. Since $k\in\mathbb{Z}$, the Division Algorithm, we can write k=nq+r with $q,r\in\mathbb{Z}$ and $0\leq r< n$. Note $g^n=1$. Thus

$$g^r = g^{k-nq} = g^k(g^n)^{-q} = 1 \cdot 1 = 1.$$

Since $0 \le r < n$, we must have that r = 0. Thus $n \mid k$.

2. $(\Longrightarrow) g^k = g^m \implies g^{k-m} = 1 \stackrel{by \ 1}{\Longrightarrow} n | (k-m) \iff k \equiv m \mod n$

 $(\Leftarrow) k \equiv m \mod n \implies \exists q \in \mathbb{Z} \ k = qnm$. The result follows from 1.

3. (\supseteq) is clear by definition of $\langle g \rangle = \{g^k : k \in \mathbb{Z}\}.$

To prove (\subseteq) , let $x = g^k \in \langle g \rangle$ for some $k \in \mathbb{Z}$. By the Division Algorithm, k = nq + r for some $q, r \in \mathbb{Z}$ and $0 \le r < n$. Then

$$x = g^k = g^{nq+r} = g^{nq}g^r \stackrel{by}{=}^1 g^r.$$

Since $0 \le r < n$, we have that $x \in \{1, g, g^2, ..., g^{n-1}\}$. Thus $\langle g \rangle = \{1, g, g^2, ..., g^{n-1}\}$.

It remains to show that all the elements in $\langle g \rangle$ are distinct. Suppose $g^k = g^m$ for some $k, m \in \mathbb{Z}$ with $0 \le k, m < n$. By 2, we have that $k \equiv m \mod 2$. Therefore, k = m.

We can also use 1 by the fact that $g^{k-m} = 1$ from assumption to complete the uniqueness proof.

Proposition 14 (Property of Elements of Infinite Order)

Let G be a group, and $g \in G$ such that $o(g) = \infty$. Then

- 1. $g^k = 1 \iff k = 0$;
- 2. $g^k = g^r \iff k = m$;
- 3. $\langle g \rangle = \{..., g^{-2}, g^{-1}1, g, g^2, ...\}$ where each g^i is distinct from others.

Proof

It suffices to prove 1, since 2 easily becomes true with 1, and 2 \implies 3.

1. $(\iff) g^0 = 1$

 (\Longrightarrow) Suppose for contradiction that $g^k=1$ for some $k\in\mathbb{Z}$ $k\neq0$. Then $g^{-k} = (g^k)^{-1} = 1$. Then we can assume that $k \ge 1$. This, however, implies that o(g) is finite, which contradicts our assumption. Thus k = 0.

 $g^k = g^m \iff g^{k-m} = 1 \stackrel{by \ 1}{\iff} k - m = 0 \iff k = m$

Proposition 15 (Orders of Powers of the Element)

Let G be a group, and $g \in G$ with $o(g) = n \in \mathbb{N}$. We have that

$$\forall d \in \mathbb{N} \ d \mid n \implies o(g^d) = \frac{n}{d}$$

Proof

Let $k = \frac{n}{d}$. Note that $(g^d)^k = g^n = 1$. It remains to show that k is the smallest such positive integer. Suppose $\exists r \in \mathbb{N} \ (g^d)^r = 1$. Since o(g) = n, then $n \mid dr$. Then $\exists q \in \mathbb{Z} \ dr = nq$ by definition of divisibility. \therefore n = dk and $d \neq 0$, we have

$$dr = dkq \stackrel{d \neq 0}{\Longrightarrow} r = kq \implies r > k \quad \because r, k \in \mathbb{N} \implies q \in \mathbb{N}$$

7.1.2 Cyclic Groups

Recall the definition of a cyclic groups.

Definition 17 (Cyclic Groups)

Let G be a group and $g \in G$. Then we call $\langle g \rangle$ the cyclic subgroup of G generated by g. If $G = \langle g \rangle$ for some $g \in G$, then we say that G is a cyclic group, and g is a generator of G.

Proposition 16 (Cyclic Groups are Abelian)

All cyclic groups are abelian.

Proof

Note that a cyclic group G is of the form $G = \langle g \rangle$. So

$$\forall a, b \in G \ \exists m, n \in \mathbb{Z} \ a = g^m \land b = g^n$$
$$a \cdot b = g^m g^n = g^{m+n} = g^{n+m} = g^n g^m = b \cdot a$$

8 Lecture 8 May 18th 2018

8.1 Subgroups (Continued 4)

8.1.1 Cyclic Groups (Continued)

Note

Consider the converse of Proposition 16: Are abelian groups cyclic? **No!** For example, $K_4 \cong C_2 \times C_2$ is abelian but not cyclic, since no one element can generate the entire group.

Proposition 17 (Subgroups of Cyclic Groups are Cyclic)

Every subgroup of a cyclic group is cyclic.

Proof

Let $G = \langle g \rangle$ and H be a subgroup of G.

$$\begin{split} H &= \{1\} \implies H = \langle \ 1 \ \rangle \\ H &\neq \{1\} \implies \exists k \neq 0 \in \mathbb{Z} \ g^k \in H \\ &\implies g^{-k} \in H \quad (\because H \text{ is a group }) \end{split}$$

We may assume that $k \in \mathbb{N}$. By the Well Ordering Principle, let $m \in \mathbb{N}$ be the smallest positive integer such that $g^m \in H$. We will now show that $H = \langle g^m \rangle$.

$$g^{m} \in H \implies \langle g^{m} \rangle \subseteq H$$

$$\therefore H \subseteq G = \langle g \rangle \quad \forall h \in H \ \exists k \in \mathbb{Z} \ h = g^{k}$$
Division Algorithm: $\exists a, r \in \mathbb{Z} \ 0 \le r < m \quad k = r$

Division Algorithm: $\exists q, r \in \mathbb{Z} \ 0 \le r < m \quad k = mq + r$

$$h = g^k \implies g^r = g^{k-mq} = g^k(g^m)^{-q} = g^k(1) \in H$$

 $r \neq 0 \implies \exists 0 < r < m \quad g^r \in H \quad f \quad m \text{ is the smallest +ve integer}$ $\implies g^k \in \langle g^m \rangle \implies H \subseteq \langle g^m \rangle$

Finally,

$$\langle g^m \rangle \subseteq H \wedge H \subseteq \langle g^m \rangle \implies H = \langle g^m \rangle$$

Proposition 18 (Other generators in the same group)

Let
$$G = \langle g \rangle$$
 with $o(g) = n \in \mathbb{N}$. We have

$$G = \langle g^k \rangle \iff \gcd(k, n) = 1$$

and n are coprimes, then g^k is also a generator of G.

Proof

For (\Longrightarrow) ,

$$G = \langle g^k \rangle \implies g \in \langle g^k \rangle \implies \exists x \in \mathbb{Z} \quad g = g^{kx}$$

$$\implies 1 = g^{kx-1} \implies n \mid (kx-1) \quad (\because Proposition \ 13)$$

$$\implies \exists y \in \mathbb{Z} \quad kx - 1 = ny \quad (\because Division \ Algorithm)$$

$$\implies 1 = kx + ny$$

Then

$$\therefore 1 \mid kx \land 1 \mid ny \land 1 = kx + ny$$
$$\gcd(k, n) = 1 \qquad (\because \gcd(Characterization))$$

For (\Leftarrow) , note that $g \in G \implies \langle g^k \rangle \subseteq G$. It suffices to show that

$$G \subseteq \langle g^k \rangle$$
, i.e. $g \in \langle g^k \rangle$.

$$\gcd(k,n) = 1 \implies \exists x, y \in \mathbb{Z} \ 1 = kx + ny \quad (\because Bezout's Lemma)$$
$$\implies g = g^1 = g^{kx + ny} = (g^k)^x (g^n)^y = (g^k)^x \in \langle g^k \rangle$$

Theorem 19 (Fundamental Theorem of Finite Cyclic Groups) Let $G = \langle g \rangle$ with $o(g) = n \in \mathbb{N}$.

- 1. H is a subgroup of $G \implies \exists d \in \mathbb{N} \ d \mid n$ $H = \langle g^d \rangle \implies |H| \mid n$.
- 2. $k \mid n \implies \langle g^{\frac{k}{n}} \rangle$ is the unique subgroup of G of order k.

This is a significant result that classifies the structure of a cyclic group (hence its name). The theorem tells us that for a group with finite order, it has only finitely many subgroups, and the order of each of these subgroups are multiples of n. Inversely, there are no subgroups of *G* where its order is some integer that does not divide n. **Note:** It is clear that $d \in \mathbb{N}$ and $d \le n$.

In a sense, this theorem is more powerful than Proposition 17.

Proof

1. Note

Proposition 17
$$\implies \exists m \in \mathbb{N} \ H = \langle g^m \rangle$$

Let $d = \gcd(m, n)$. Want to show that $H = \langle g^d \rangle$.

$$d = \gcd(m, n) \implies d \mid m \implies \exists k \in \mathbb{Z} \ m = dk$$

$$\implies g^m = g^{dk} = (g^d)^k \in \langle g^d \rangle \implies H \subseteq \langle g^d \rangle$$

$$d = \gcd(m, n) \implies \exists x, y \in \mathbb{Z} \ d = mx + ny \ (\because Bezout's Lemma)$$

$$\implies g^d = g^{mx + ny} = (g^m)^x (g^n)^y = (g^m)^x (1) \in H$$

$$\implies \langle g^d \rangle \subseteq H$$

$$\therefore H = \langle g^d \rangle$$

Note: $d = \gcd(m, n) \implies d \mid n \implies |H| = o(g^d) = \frac{n}{d}$ \therefore Proposition 15. Thus |H| | n.

2. Let K be a subgroup of G with order k such that $k \mid n$. By 1, we have $K = \langle g^d \rangle$ with $d \mid n$. Note that

$$k = |K| \stackrel{(1)}{=} o(g^d) \stackrel{(2)}{=} \frac{n}{d}$$

where (1) is by Proposition 13 and (2) is by Proposition 15. Thus $d = \frac{n}{k}$ and $K = \langle g^{\frac{n}{k}} \rangle$

9 *Lecture 9 May 22nd 2018*

9.1 Subgroups (Continued 5)

9.1.1 Examples of Non-Cyclic Groups

Example 9.1.1

The Klein 4-group is

$$K_4 = \{1, a, b, c\}$$
 where $a^2 = b^2 = c^2 = 1$ and $ab = c$.

We may also write

$$K_4 = \langle a, b : a^2 = 1 = b^2, ab = ba \rangle.$$

Note that we can replace (a, b) by (a, c) or (b, c).

Example 9.1.2

The symmetric group of degree 3 is

$$S_3 = \{\varepsilon, \sigma, \sigma^2, \tau, \tau\sigma, \tau\sigma^2\}$$

where $\sigma^3=\epsilon=\tau^2$ and $\sigma\tau=\tau\sigma^2.$ We may also express S_3 as

$$S_3 = \langle \sigma, \tau : \sigma^3 = \varepsilon = \tau^2, \sigma \tau = \tau \sigma^2 \rangle$$

Definition 18 (Dihedral Group)

For $n \ge 2$, the **dihedral group** of order 2n is

$$D_{2n} = \{1, a, ..., a^{n-1}, b, ba, ..., b^{n-1}\}$$

where $a^n = 1 = b^2$ and aba = b. Note that a represents a rotation of $\frac{2\pi}{n}$ radians, and b represents a reflection through the x-axis

Recall from Assignment 1 that the dihedral group is a set of rigid motions for transforming a regular polygon back to its original position while changing the index of its vertices.

Example 9.1.3

We may write the dihedral group as

$$D_{2n} = \langle a, b : a^n = 1 = b^2, aba = b \rangle$$

Exercise 9.1.1

Prove the following:

- 1. $D_4 \cong K_4$
- 2. $D_6 \cong S_3$

9.2 Normal Subgroup

9.2.1 Homomorphism and Isomorphism

Definition 19 (Homomorphism)

Let G, H be groups. A mapping

$$\alpha: G \to H$$

is called a **homomorphism** if $\forall a, b \in G$,¹

$$\alpha(ab) = \alpha(a)\alpha(b).$$

¹ Note that ab uses the operation of G while $\alpha(a)\alpha(b)$ uses the operation of H.

Example 9.2.1 (A classical example)

Consider the determinant map:

$$\det: GL_n(\mathbb{R}) \to \mathbb{R}^*$$
 given by $A \to \det A$

Since

$$\det AB = \det A \det B$$

we have that the determinant map is a homomorphism.

Note that \mathbb{R}^* is the set of real numbers that has a multiplicative inverse.

This is a classical example to show a homomorphism, especially since the group $GL_n(\mathbb{R})$ uses matrix multiplication while \mathbb{R}^* uses regular arithmetic multiplication.

Proposition 20 (Properties of Homomorphism)

Let $\alpha: G \to H$ be a group homomorphism. Then

1.
$$\alpha(1_G) = 1_H$$

2.
$$\forall g \in G \ \alpha(g^{-1}) = \alpha(g)^{-1}$$

3.
$$\forall g \in G \ \forall k \in \mathbb{Z} \ \alpha(g^k) = \alpha(g)^k$$

Proof

1. Note that

$$\alpha(1_G)\alpha(g) = \alpha(1_G \cdot g) = \alpha(g) = \alpha(g \cdot 1_G) = \alpha(g)\alpha(1_G)$$

Thus it must be that $\alpha(1_G) = 1_H$ for only the identity of H satisfies this equation.

2. Since H is a group, we know that

$$1_H = \alpha(g)\alpha(g)^{-1}.$$

Now with part 1, we have that

$$\alpha(g)\alpha(g^{-1}) = \alpha(gg^{-1}) = \alpha(1_G) = 1_H = \alpha(g)\alpha(g)^{-1}.$$

By Proposition 6, we have that $\alpha(g^{-1}) = \alpha(g)^{-1}$.

3. This is simply a result of applying the definition repeatedly, which we can then perform an induction procedure to complete the proof.

Definition 20 (Isomorphism)

Let G, H be groups. Consider a mapping

$$\alpha: G \to H$$

We say that α is an **isomorphism** if it is a homomorphism and bijective.

If α is an isomorphism, we say that G is **isomorphic to** to H, or that *G* and *H* are *isomorphic*, and denote that by $G \cong H$.

Proposition 21 (Isomorphism as an Equivalence Relation)

- 1. (Reflexive) The identity map $G \to G$ is an isomorphism.
- 2. (Symmetric) If $\sigma: G \to H$ is an isomorphism, then the inverse map $\sigma^{-1}: H \to G$ is also an isomorphism.

3. (Transitive) If $\sigma: G \to H$ and $\tau: H \to K$, then the composition map $\tau \sigma: G \to K$ is also an isomorphism.

Proof

1. The identity map is clearly bijective. For all $g_1, g_2 \in G$, we have that

$$\alpha(g_1g_2) = g_1g_2 = \alpha(g_1)\alpha(g_2).$$

Thus the identity map is a homomorphism, and hence an isomorphism.

2. Since σ is a bijective map, its inverse σ^{-1} exists and is also a bijective map. Since σ is bijective, we have that

$$\forall h_1, h_2 \in H \ \exists ! g_1, g_2 \in G \ \sigma(g_1) = h_1, \sigma(g_2) = h_2.$$

Note that since σ has a bijective inverse, we also have

$$g_1 = \sigma^{-1}(h_1)$$
 and $g_2 = \sigma^{-1}(h_2)$.

Then since σ is a homomorphism,

$$\sigma^{-1}(h_1h_2) = \sigma^{-1}(\sigma(g_1)\sigma(g_2)) = \sigma^{-1}(\sigma(g_1g_2))$$
$$= g_1g_2 = \sigma^{-1}(h_1)\sigma^{-1}(h_2).$$

3. We know that the composition map of two bijective map is bijective. Let $g_1, g_2 \in G$, then since both τ and σ are homomorphisms

$$\tau\sigma(g_1g_2)=\tau(\sigma(g_1)\sigma(g_2))=\tau\sigma(g_1)\tau\sigma(g_2),$$

where we note that $\sigma(g_1), \sigma(g_2) \in H$.

Example 9.2.2

Let
$$\mathbb{R}^+ = \{r \in \mathbb{R} : r \geq 0\}$$
. Show that $(\mathbb{R}, +) \cong (\mathbb{R}^+, \cdot)$.

Solution

Consider the map

$$\alpha: (\mathbb{R}, +) \to (\mathbb{R}^+, \cdot) \quad r \mapsto e^r,$$

where e is the natural exponent. Note that the exponential map from $\mathbb R$ to

 \mathbb{R}^+ is bijective². Also, $\forall r,s \in \mathbb{R}$ we have that

$$\alpha(r+s) = e^{r+s} = e^r e^s = \alpha(r)\alpha(s).$$

Therefore, α is an isomorphism and $(\mathbb{R}, +) \cong (\mathbb{R}^+, \cdot)$.

Example 9.2.3

Show that $(\mathbb{Q}, +) \not\cong (\mathbb{Q}^*, \cdot)$.

Solution

Suppose, for contradiction, that $\tau:(\mathbb{Q},+)\to(\mathbb{Q}^*,\cdot)$ is an isomorphism. In particular, we have that τ is onto. Then $\exists q \in \mathbb{Q}$ such that $\tau(q) = 2$. Let $\tau(\frac{q}{2}) = \alpha$. Since τ is an isomorphism, we have

$$\alpha^2 = \tau(\frac{q}{2})\tau(\frac{q}{2}) = \tau(\frac{q}{2} + \frac{q}{2}) = \tau(q) = 2.$$

But that implies that $\alpha = \sqrt{2}$, which is clearly not rational. Thus, we know that there is no such τ and

$$(\mathbb{Q},+)\not\cong(\mathbb{Q}^*,\cdot)$$

as required.

9.2.2 Cosets and Lagrange's Theorem

Definition 21 (Coset)

Let H be a subgroup of a group G.

 $\forall a \in G \quad Ha = \{ha : h \in H\}$ is the right coset of H generated by a and

 $\forall a \in G \quad aH = \{ah : h \in H\}$ is the left coset of H generated by a

Note

Note that 1H = H = H1. Also, since a1 = a and $1 \in H$, we have that $a \in aH$, and similarly so for $a \in Ha$.

In general, aH and Ha are not subgroups of G. See example

Also, in general, $aH \neq Ha$, since not all groups are abelian.

² The image of the map covers all positive real numbers while taking all real numbers, which is the perfect candidate as a map here.

Proposition 22 (Properties of Cosets)

Let H be a subgroup of G, and let $a, b \in G$. Then

1.
$$Ha = Hb \iff ab^{-1} \in H$$
. In particular, $Ha = H \iff a \in H$.

2.
$$a \in Hb \implies Ha = Hb$$
.

3. $Ha = Hb \vee Ha \cap Hb = \emptyset$. Then the distinct right cosets of H forms a partition of G.⁴

We can create an analogued version of this proposition for the left cosets.

Proof

1. For (\Longrightarrow) ,

$$Ha = Hb \implies a = 1a \in Ha = Hb$$

 $\implies \exists h \in H \ a = hb$
 $\implies ab^{-1} = h \in H.$

For
$$(\iff)$$
,

$$ab^{-1} \in H \implies \forall h \in H \ ha = h(ab^{-1})b \in Hb$$

 $\implies Ha \subseteq Hb$
 $ab^{-1} \in H \implies (ab^{-1})^{-1} = ba^{-1} \in H$
 $\implies \forall h \in H \ hb = h(ba^{-1})a \in Ha$
 $\implies Hb \subseteq Ha$

Let b = 1. Then

$$Ha = H \iff a \in H \qquad \because 1^{-1} = 1$$

2. Note

$$a \in Hb \implies \exists h \in H \ a = hb \implies ab^{-1} \in H \stackrel{by 1}{\Longrightarrow} Ha = Hb$$

 3 $\stackrel{\vee}{=}$ XOR

⁴ Note that this is true because by definition, we iterate over all elements of *G* to construct the cosets of the subgroup *H*. The earlier part of this statement implies that cosets must be distinct (otherwise, they are the same set), and so if we take the union of these cosets, by iterating through all elements of *G*, we get that

$$\bigcup_{a \in G} Ha = G.$$

Summarizing the above argument, we observe that the distinct cosets partitions *G*.

3. Trivially, if $Ha \cap Hb = \emptyset$, we are done.

$$Ha \cap Hb \neq \emptyset$$

 $\implies \exists x \in Ha \cap Hb$
 $\implies (x \in Ha \stackrel{by 1}{\implies} Hx = Hb) \land (x \in Hb \stackrel{by 1}{\implies} Hx = Hb)$
 $\implies Ha = Hb$

By Proposition 22, we have that *G* can be written as a disjoint union of cosets of a subgroup H. We now define the following terminology that we shall use for the upcoming content.

Definition 22 (Index)

Let H be a subgroup of a group G. We call the number of disjoint cosets of H in G as the index of H in G, and denote this number by [G:H].

10 Lecture 10 May 23rd 2018

10.1 Normal Subgroup (Continued)

10.1.1 Cosets and Lagrange's Theorem (Continued)

Theorem 23 (Lagrange's Theorem)

Let H be a subgroup of a finite group G. Then

$$|H| \mid |G|$$
 and $[G:H] = \frac{|G|}{|H|}$

Proof

Since G is finite, there can only be finitely many cosets of H. Let k = [G:H] and $Ha_1, Ha_2, ..., Ha_k$ be the distinct right cosets of H in G. By Proposition 22, we have that these cosets partition G, i.e.

$$G = \bigcup_{i=1}^{k} Ha_i.$$

Note that by the definition of a right coset, the map

$$H \rightarrow Hb$$
 defined by $h \mapsto hb$

is a surjection from H to Hb. By Cancellation Laws, the map is injective, since if $hb_1 = hb_2$, then $b_1 = b_2$. Therefore, for i = 1, ..., k,

$$|H| = |Ha_i|$$

Then we have

$$|G| = k |H| \implies |H| \mid |G| \land [G:H] = k = \frac{|G|}{|H|}$$

Corollary 24

- 1. If G is a finite group and $g \in G$, then $o(g) \mid G$.
- 2. If G is a finite group and |G| = n, then $g^n = 1$.

Proof

- 1. Let $H = \langle g \rangle$. Then by Lagrange's Theorem 23, $o(g) = |H| \mid |G|$.
- 2. For some $g \in G$, let $o(g) = m \in \mathbb{Z} \setminus \{0\}$. Then by 1, $m \mid n$ and so $g^n = (g^m)^{\frac{n}{m}} = 1$.

Note

Let $n \in \mathbb{N} \setminus \{1\}$. Euler's Totient Function, or more generally written as Euler's ϕ -function is defined as

$$\phi(n) \equiv \Big| \big\{ k \in \{1, ..., n-1\} : \gcd(k, n) = 1 \big\} \Big|. \tag{10.1}$$

Note that the set \mathbb{Z}_n^* under multiplication has a similar definition to the set on the RHS, since the only numbers from 1 to n that has an inverse are those that are coprime with n. Thus $\phi(n) = |\mathbb{Z}_n^*|$.

With Corollary 24, we have Euler's Theorem that states that

$$\forall a \in \mathbb{Z} \ \gcd(a, n) = 1 \implies a^{\phi(n)} \equiv 1 \mod n.$$
 (10.2)

If n = p where p is some prime number, then Euler's Theorem implies Fermat's Little Theorem, i.e. $a^{p-1} \equiv 1 \mod p$.

Corollary 25

If p is prime, then every group G of order p is cyclic. In fact, $g = \langle g \rangle$ fpr $g \neq 1 \in G$. Hence, the only subgroup of G are $\{1\}$ and G itself.

Proof

There's something that I'd like to make sure before putting down this proof

Corollary 26

Let H and K be finite subgroups of G. If gcd(|H|, |K|) = 1, then $H \cap$ $K = \{1\}.$

Proof

Since $H \cap K$ is a subgroup of H and of K, by Lagrange's Theorem 23, $|H \cap K|$ $|H| \wedge |H \cap K|$ |K|. By assumption that gcd(|H|, |K|) = 1, we have that $|H \cap K| = 1$, and hence $|H \cap K| = \{1\}$.

and |K|. But gcd(|H|, |K|) = 1

10.1.2 Normal Subgroup

We have seen that given H is a subgroup of a group G and $g \in G$, gHand *Hg* are generally not the same.

Definition 23 (Normal Subgroup)

Let H be a subgroup of a group G. If $\forall g \in G$, we have Hg = gH, then we say that H is a normal subgroup of G, and write

 $H \triangleleft G$

Example 10.1.1

 $\{1\} \triangleleft G$ and $G \triangleleft G$.

56 Lecture 10 May 23rd 2018 - Normal Subgroup (Continued)

Example 10.1.2

The center, Z(G), of a group G is an abelian group. By Definition 23,

$$Z(G) \triangleleft G$$

Example 10.1.3

If G is abelian, then every subgroup of G is normal in G.

Proposition (Normality Test)

Let H be a subgroup of G. The following are equivalent:

- 1. *H* ⊲ *G*;
- 2. $\forall g \in G \quad gHg^{-1} \subseteq H$;
- 3. $\forall g \in G \quad gHg^{-1} = H^2$

² This means that

 $H \triangleleft G \iff H$ is the only conjugate of H

11 Lecture 11 May 25th 2018

The following theorem is useful for A2. The proof is not provided in this lecture, but expect the corollary to be restated and proven in a later lecture.

Corollary

Let G be a finite group and $H, K \triangleleft G, H - K = \{1\}$ and |H| |K| = |G|. Then $G \cong H \times K$.

11.1 Normal Subgroup (Continued 2)

11.1.1 Normal Subgroup (Continued)

Note (Recall)

Recall the definition of a normal subgroup as in Definition 23. Let H be a subgroup of G. If gH = Hg for all $g \in G$, then $H \triangleleft G$.

Proposition 27 (Normality Test)

Let H be a subgroup of a group G. The following are equivalent:

- 1. *H* ⊲ *G*
- 2. $\forall g \in G \ gHg^{-1} \subseteq H$
- 3. $\forall g \in G \ gHg^{-1} = H$

Note

Note that item 3 is indeed a stronger statement that item 2. But since the statements are equivalent, while using the Normality Test, if we can show that item 2 is true, item 3 is automatically true.

Proof

 $(1) \implies (2)$:

$$x \in gHg^{-1} \implies \exists h \in H \ x = ghg^{-1}$$

 $\implies \exists h_1 \in H \ gh = h_1g \quad \because gh \in gH = Hg$
 $\implies x = ghg^{-1} = h_1gg^{-1} = h_1 \in H$
 $\implies gHg^{-1} \subseteq H$

 $(2) \implies (3)$:

$$(2) \implies \forall g \in G \quad gHg^{-1} \subseteq H$$

$$\implies \exists g^{-1} \in G \quad g^{-1}Hg \subseteq H$$

$$\implies H \subseteq gHg^{-1}$$

$$\stackrel{(2)}{\implies} gHg^{-1} = H$$

 $(3) \implies (1)$

$$(3) \implies \forall g \in G \quad gHg^{-1} = H$$

$$\implies \forall x \in gH \quad xg^{-1} \in gHg^{-1} = H$$

$$\implies x \in Hg \quad \because gg^{-1} = 1$$

$$\implies gH \subseteq Hg$$

Using a similar argument, we would have $Hg \subseteq Hg$. *And so* gH = Hg *as required.*

Example 11.1.1

Let $G = GL_n(\mathbb{R})$ and $H = SL_n(\mathbb{R})$.¹ For $A \in G$ and $B \in H$ we have

 $\det ABA^{-1} = \det A \det B \det A^{-1} = \det A(1) \frac{1}{\det A} = 1.$

Thus $\forall A \in G$, $ABA^{-1} \in H$. By Proposition 27, $H \triangleleft G$, i.e. $SL_n(\mathbb{R}) \triangleleft GL_n(\mathbb{R})$.²

¹ Recall Definition 8 and Definition 11.

Note

The normality is true for any field, not iust \mathbb{R} .

Proposition 28 (Subgroup of Index 2 is Normal)

$$\forall H \text{ subgroup of } G \land [G:H] = 2 \implies H \triangleleft G$$

Proof

Let $a \in G$.

$$a \in H \implies aH = Ha$$

 $a \notin H \implies G = H \cup Ha \implies Ha = G \setminus H \implies Proposition 22$
 $a \notin H \implies G = H \cup aH \implies aH = G \setminus H \implies Proposition 22$

That implies that aH = Ha for any $a \in G$. Hence, by Proposition 27, $H \triangleleft G$.

Example 11.1.2

Let A_n be the Alternating Group contained by S_n .³ By Proposition 28, since $[S_n:A_n]=2$ because $S_n=A_n\cup O_n$ and O_n is a coset of A_n , we have that

³ Recall the definition of alternating group from Theorem 11 and S_n from Definition 4

$$A_n \triangleleft S_n$$
.

Example 11.1.3

Let

$$D_{2n} = \{1, a, a^2, ..., a^{n-1}, b, ba, ba^2, ..., ba^{n-1}\}$$

be the **Dihedral Group** of order 2n. Since $[D_{2n}: \langle a \rangle] = 2,4$ we have that

$$\langle a \rangle \triangleleft D_{2n}$$
 : Proposition 27.

⁴ The coset of $\langle a \rangle$ is $b \langle a \rangle$.

Let *H* and *K* be subgroups of a group *G*. Recall an earlier discussion: $H \cap K$ is the largest subgroup contained in both H and K.

What is the "smallest" subgroup that contains both *H* and *K*? Since $H \cap K$ is the largest, it makes sense to think about $H \cup K$. However,

$$H \cup K$$
 is a subgroup of $G \iff H \subseteq K \vee K \subseteq H$

While we know that $H \cup K$ can indeed be such a subgroup, the price of the restriction is too high, since it is overly restrictive.

A more "useful" construction turns out to be the **product** of the

subgroups.

Definition 24 (Product of Groups)

$$HK := \{hk : h \in H, k \in K\}$$

However, HK is not necessarily a subgroup. For example, for $h_1k_1, h_2k_2 \in HK$, it is not necessary that $h_1k_1h_2k_2 \in HK$, since k_1h_2 is not necessarily equal to h_2k_1 .

Lemma 29 (Product of Groups as a Subgroup)

Let H and K be subgroups of G. The following are equivalent:

- 1. HK is a subgroup of G
- 2. $HK = KH^{5}$
- 3. KH is a subgroup of G

⁵ If one of *H* or *K* is normal, then the lemma immediately kicks in.

Proof

It suffices to prove $(1) \iff (2)$, since $(1) \iff (3)$ simply through exchanging H and K.

(1) \implies (2): Let $kh \in KH$ such that $k \in K$ and $h \in H$. Their inverses are $k^{-1} \in K$ and $h^{-1} \in H$, since K and H are groups. Note that

$$kh = (h^{-1}k^{-1})^{-1} \in HK \quad \because HK \text{ is a subgroup of } G.$$

Therefore $kh \in HK$, which implies $KH \subseteq HK$. By a similar argument, we can arrive at $HK \subseteq KH$ and so HK = KH.

(2) \implies (1): Note that $1 = 1 \cdot 1 \in HK$. For all $hk \in HK$, $(hk)^{-1} = k^{-1}h^{-1} \in KH = HK$. For $h_1k_1, h_2k_2 \in HK$, note that $k_1h_2 \in KH = HK$, so there exists $hk \in HK$ such that $k_1h_2 = hk$. Therefore,

$$h_1k_1h_2k_2 = h_1hkk_2 \in HK.$$

By the Subgroup Test, HK is a subgroup of G.

Proposition 30 (Product of Normal Subgroups is Normal)

Let H and K be subgroups of G.

- 1. $H \triangleleft G \lor K \triangleleft G \implies HK = KH$ is a subgroup of G
- 2. $H, K \triangleleft G \implies HK = KH \triangleleft G$

Proof

1. Without loss of generality, suppose $H \triangleleft G$. Then

$$HK = \bigcup_{k \in K} Hk = \bigcup_{k \in K} kH = KH$$
 (11.1)

By Lemma 29, HK = KH is a subgroup of G.

2. Suppose $H, K \triangleleft G$. Then

$$\forall g \in G \ \forall hk \in HK \ g^{-1}(hk)g = (g^{-1}hg)(g^{-1}kg) \in HK$$

Thus $gHKg^{-1} \subseteq HK$. Thus by Proposition 27, we have that $HK \triangleleft G$.

Note

Note that Equation (11.1) is a weaker statement than the regular normality that we have defined, since it only requires all elements of K to work instead of the entire G.

With that, we define the following notion:

Definition 25 (Normalizer)

Let H be a subgroup of G. The **normalizer of** H, denoted by $N_G(H)$, is defined to be

$$N_G(H) := \{ g \in G : gH = Hg \}$$

Note

By the above definition, we immediately see that $H \triangleleft G \iff N_G(H) = G$ by Equation (11.1). Observe that since we only needed kH = Hk in Equation (11.1) for all $k \in K$, we have that $k \in N_G(H)$.

We shall now provide the following corollary which shall be proven in the next lecture.

Corollary

Let H and K be subgroups of a group G.

$$K \subseteq N_G(H) \lor H \subseteq N_G(K) \implies HK = KH$$
 is a subgroup of G

12 Index

Abelian Group, 19 additive identity, 10 Alternating Group, 34, 59 associativity, 9

Bijectivity, 13

Cayley Table, 26 Center of a Group, 30 closure, 9 Coset, 49 Cycle Decomposition Theorem, 17 Cyclic Group, 27, 36, 40

Dihedral Group, 45, 59 direct product, 22

Equivalence Relation, 47 Euler's ϕ -function, 54 Euler's Theorem, 54 Euler's Totient Function, 54 Even Permutations, 34 Fermat's Little Theorem, 54 Finite Subgroup Test, 31

General Linear Group, 21, 58 generator, 36, 40 Groups, 19

Homomorphism, 46

Index, 51
Injectivity, 13
inverse permutation, 15
isomorphic, 47
isomorphic to, 47
Isomorphism, 47

Klein n-group, 27

Lagrange's Theorem, 53

mutiplicative identity, 10

Normal Subgroup, 55 Normality Test, 57 Normalizer, 61

Odd Permutations, 34 one-to-one, 13 onto, 13 Order, 14 Order of an Element, 37

Parity Theorem, 33 Permutations, 13 Product of Groups, 60

Special Linear Group, 30, 58 Subgroup, 28 Subgroup Test, 29 Surjectivity, 13 symmetry group, 21

Transposition, 33

13 List of Symbols

$M_n(\mathbb{R})$	set of $n \times n$ matrices over \mathbb{R}
\mathbb{Z}_n^*	set of integers modulo n ; each element has its multiplicative inverse
S_n	symmetry group of degree n
D_{2n}	dihedral group of degree n ; a subset of S_n
K_n	Klein n-group
A_n	alternating group of degree n ; a subset of S_n
$ D_{2n} $	order of the dihedral group; the size of the dihedral group
$\begin{pmatrix} 1 & 2 & \dots & n \end{pmatrix}$	An n-cycle
det A	determinant of matrix A
$GL_n(\mathbb{R})$	general linear group of degree n;
	the set that contains elements of $M_n(\mathbb{R})$ with non-zero determinant
$SL_n(\mathbb{R})$	special linear group of order <i>n</i> ;
	the set that contains elements of $GL_n(\mathbb{R})$ with determinant of 1
Z(G)	center of group G
$\langle g \rangle$	cyclic group with generator g
$n \mid d$	n divides d