Convex optimization exercises - GD

Subgradients

Gradient Descent can work even if gradients do not always exist, by using socalled *subgradients* instead. For a convex f, g_x is a subgradient of f at x if $f(y) \geq \langle g_x, y - x \rangle$ for all y. We use $\partial f(x)$ to denote the set of all subgradients at x (called *subdifferential*). We showed in the lecture that $\partial f(x) \neq \emptyset$, except possibly when x lies on the boundary of dom(f). The next few exercises explore subgradients in more detail.

Exercise 1. Show that if f is differentiable at x, then $\partial f(x) = {\nabla f(x)}$. **Note:** The converse is also true for convex f and x in the interior of dom(f), but we will not prove it.

Exercise 2. Show that $\partial f(x)$ is always a convex set.

Exercise 3. Show that if f is L-Lipschitz, then for any $x \in dom(f)$ and $g_x \in \partial f(x)$, we have $||g_x|| \leq L$.

It can be shown that for x in the interior of both $dom(f_1)$ and $dom(f_2)$ we have $\partial(f_1+f_2)(x)=\partial f_1(x)+\partial f_2(x)$. It can also be shown (with analogous assumptions) that for $f(x)=\max(f_1,\ldots,f_k)(x)$ we have $\partial f(x)=\operatorname{conv}(\bigcup_{i:f_i(x)=f(x)}\partial f_i(x))$. Proofs are a bit harder than you might expect.

Exercise 4. Consider the function $f(x) = \gamma \max x_i + \frac{\alpha}{2}||x||_2$. What is $\partial f(x)$? (this function appears in the lecture a few times)

Exercise 5. Show that for a convex f, x^* is a global minimizer of f iff $0 \in \partial f$.

Exercise 6. Use the previous exercise to characterize the global optimum points of $f(x) = \frac{1}{2}||Ax - b||_2^2 + \lambda ||x||_1$.