1

Assignment 16

Vimal K B - AI20MTECH12001

Download the latex-tikz codes from

https://github.com/vimalkb007/EE5609/tree/master/Assignment_16

1 PROBLEM

(UGC-june2015,77):

Consider non-zero vector spaces V_1, V_2, V_3, V_4 and linear transformations $\phi_1 : V_1 \to V_2, \phi_2 : V_2 \to V_3, \phi_3 : V_3 \to V_4$ such that $Ker(\phi_1) = \{0\}$, $Range(\phi_1) = Ker(\phi_2)$, $Range(\phi_2) = Ker(\phi_3)$, $Range(\phi_3) = V_4$. Then

- 1) $\sum_{i=1}^{4} (-1)^{i} dim \mathbf{V_{i}} = 0$
- 2) $\sum_{i=2}^{4} (-1)^{i} dim \mathbf{V_{i}} > 0$
- 3) $\sum_{i=1}^{4} (-1)^{i} dim \mathbf{V_i} < 0$
- 4) $\sum_{i=1}^{4} (-1)^{i} dim \mathbf{V_{i}} \neq 0$

2 DEFINITION AND RESULT USED

Kernel and Nullity	Given a linear transformation $L: \mathbf{V} \to \mathbf{W}$ between we vector spaces \mathbf{V} and \mathbf{W} , the kernel of L is the set of all vectors \mathbf{v} of \mathbf{V} for which $L(\mathbf{v}) = 0$, where 0 denotes the zero vector in \mathbf{W} . i.e.
	$Ker(L) = \{ \mathbf{v} \in \mathbf{V} \mid L(\mathbf{v}) = 0 \}$
	Nullity of the linear transformation is the dimension of the kernel of the linear transformation i.e.
	nullity(L) = dim(Ker(L))
Range and Rank	Given a linear transformation $L: \mathbf{V} \to \mathbf{W}$ between we vector spaces \mathbf{V} and \mathbf{W} , the range of L is the set of all vectors \mathbf{w} in \mathbf{W} given as
	$Range(L) = \{ \mathbf{w} \in \mathbf{W} \mid \mathbf{w} = L(\mathbf{v}), \mathbf{v} \in \mathbf{V} \}$
	The rank of a linear transformation L is the dimension of it's range, i.e.
	rank(L) = dim(Range(L))

Rank-Nullity Theorem	Let V , W be vector spaces, where V is finite dimensional. Let $L: V \to W$ be a linear transformation. Then
	$rank(L) + nullity(L) = dim(\mathbf{V})$

3 Solution

Inference from $Ker(\phi_1) = \{0\}$ the Given Data \implies *nullity*(ϕ_1) = 0 $Range(\phi_1) = Ker(\phi_2)$ $\implies rank(\phi_1) = nullity(\phi_2)$ $Range(\phi_2) = Ker(\phi_3)$ $\implies rank(\phi_2) = nullity(\phi_3)$ $Range(\phi_3) = \mathbf{V_4}$ $\implies rank(\phi_3) = dim(\mathbf{V_4})$ Now talking about the linear transformations we can use rank-nullity theorem to determine the corresponding dimensions of the vector space. $\phi_1: \mathbf{V_1} \to \mathbf{V_2}$ $\implies rank(\phi_1) + nullity(\phi_1) = dim(\mathbf{V_1})$ $\implies rank(\phi_1) = dim(\mathbf{V_1})$ (:: $nullity(\phi_1) = 0$) $\phi_2: \mathbf{V_2} \to \mathbf{V_3}$ $\implies rank(\phi_2) + nullity(\phi_2) = dim(\mathbf{V_2})$ $\Rightarrow rank(\phi_2) + rank(\phi_1) = dim(\mathbf{V_2}) \qquad (\because rank(\phi_1) = nullity(\phi_2))$ \Rightarrow rank(\phi_2) + dim(\mathbf{V_1}) = dim(\mathbf{V_2}) \quad (\tau rank(\phi_1) = dim(\mathbf{V_1})) $\phi_3: \mathbf{V_3} \to \mathbf{V_4}$ $\implies rank(\phi_3) + nullity(\phi_3) = dim(\mathbf{V_3})$

	∴ this statement is False .
Option 4	It is given that
	$\sum_{i=1}^4 (-1)^i \ dim \ \mathbf{V_i} \neq 0$
	$\implies -dim(\mathbf{V_1}) + dim(\mathbf{V_2}) - dim(\mathbf{V_3}) + dim(\mathbf{V_4}) \neq 0$
	This is contrary to our original derived equation i.e.
	$dim(\mathbf{V_4}) + dim(\mathbf{V_2}) - dim(\mathbf{V_1}) - dim(\mathbf{V_3}) = 0$
	∴ this statement is False .
Conclusion	From our observation we see that
	Options 1) and 2) are True.

4 Example

Linear Transforms Example	Let $\phi_1 : \mathbf{R}^2 \to \mathbf{R}^3$ defined as $\phi_1 \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \right\} = \begin{pmatrix} x_1 - x_2 \\ x_1 + x_2 \\ x_2 \end{pmatrix}$
	$\implies \phi_1 \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \right\} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$
	For the above transformation ϕ_1 the kernel and the range are
	$Ker(\phi_1) = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$
	$Range(\phi_1) = \left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\1\\1 \end{pmatrix} \right\}$
	Let $\phi_2 : \mathbf{R}^3 \to \mathbf{R}^3$ defined as $\phi_2 \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \right\} = \begin{pmatrix} x_1 - x_2 + 2x_3 \\ 2x_1 - 2x_2 + 4x_3 \\ 3x_1 - 3x_2 + 6x_3 \end{pmatrix}$

$$\implies \phi_2 \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \right\} = \begin{pmatrix} 1 & -1 & 2 \\ 2 & -2 & 4 \\ 3 & -3 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

For the above transformation ϕ_2 the kernel and the range are

$$Ker(\phi_2) = \left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\1\\1 \end{pmatrix} \right\}$$

$$Range(\phi_2) = \left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix} \right\}$$

In the above two transformations ϕ_1 and ϕ_2 , we can see the following conditions being satisfied

$$Ker(\phi_1) = \{0\}, Range(\phi_1) = Ker(\phi_2)$$

Let $\phi_3: \mathbf{R}^3 \to \mathbf{R}^2$ defined as

$$\phi_3 \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \right\} = \begin{pmatrix} x_1 + x_2 - x_3 \\ 2x_1 + \frac{1}{2}x_2 - x_3 \end{pmatrix}$$

$$\implies \phi_2 \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \right\} = \begin{pmatrix} 1 & 1 & -1 \\ 2 & \frac{1}{2} & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

For the above transformation ϕ_3 the kernel and the range are

$$Ker(\phi_3) = \left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix} \right\}$$

$$Range(\phi_3) = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix} \right\}$$

With the above ϕ_3 transformation we were able to satisfy the other conditions as well i.e.

$$Range(\phi_2) = Ker(\phi_3), Range(\phi_3) = \mathbf{V_4}$$

Now, when we can check whether the derived equation statisfies or not. That is,

$$-dim(\mathbf{V}_1) + dim(\mathbf{V}_2) - dim(\mathbf{V}_3) + dim(\mathbf{V}_4)$$

$$\implies -dim(\mathbf{R}^2) + dim(\mathbf{R}^3) - dim(\mathbf{R}^3) + dim(\mathbf{R}^2)$$

$$\implies -2 + 3 - 3 + 2 = 0$$

: the condition is getting satisfied.