Medical Imaging RANZCR CLIP

Paolo Sofia, Matteo Carollo

Similar approaches - classification

We started our work taking into consideration this initial approach. Unfortunately, due to the limited time available, we simplified this approach, using a single model and attached a different head for each label group.

Similar approaches: distillation

We took inspiration also from other proposed method on kaggle, such as this one. We simplified our model by training a simple siamese net and then we fine tuned the model.

Our work - Dataset

Dataset issue:

- Unbalanced labels
- Data leakage

Solution:

- Compute weights for each label
- Split train and validation set by patient maintaining the same label distribution

Our work - Models, Losses, Optimizers comparison

Our initial approach was to compare different CNN, loss functions and optimizers to find the best combination of them

CNN

- Resnet18
- Resnet101
- Resnest50
- Inception V3
- Densenet169
- EfficientNetB2
- Xception

LOSS FUNCTIONS

- BCE
- Weighted BCE
- Weighted BCE + L1
- Weighted BCE + L2
- Weighted BCE + L1 L2
- ELR
- Focal Loss

OPTIMIZERS

- Adam
- Adam w. Decaying Momentum
- SGD w. Decaying Momentum
- Yogi
- Adabound
- Adabelief

Our work - Other approaches

Siamese Net

- 2 stages training
 - 1. Train siamese net
- 2. Transfer learning siamese net weights to original net

Multi headead net

Different Head for each group of labels

Architecture - EfficientNet B2

It has the best tradeoff between speed and performance

How it works:

- Inverted residual block
- Squeeze and excitation block

Results - Optimizer

Adam is less stable, but it is faster to converge and achieves best results, so we
chose it as optimizer. Then we used Adabelief for a second stage training as it
behaves better in proximity of the minima

Results - Models

 EfficientNetB5 has slightly better performance than EfficientNetB2, but it is larger and and slower, so we chose EfficientNetB2 also to avoid overfitting.

Results - EfficientNet B2

BCE
WBCE
BCE_L1
BCE_L2
BCE_ELASTIC
WELR
FOCAL_LOSS

- ⊸ AUC
- → Training 0.9575
- → Validation 0.93

- → Area MCC
- → Training 0.5585
- → Validation 0.4962

Conclusion

 The model used is very simple, but performance are good, even though, with better design of either siamese net or multi headed net, higher scores could be achieved.

- Compared to other models on kaggle, our performance may appear inferior, but on kaggle they focus on winning competition, ignoring three important aspects:
 - Data leakage
 - Loss functions
 - Noise as data augmentation technique

Future work

Instance segmentation Distillation methods Multi headed net

Use the annotations to use model using also of the head, or use instance segmentation annotation data and then classify the segmented images

dataset Use teacher-student Improve the design

a different model for each group of data and then the concatenate results. In this case the models does not share the weights

Thanks for your attention

