Calcul matriciel et applications linéaires

Institut Denis Poisson

February 9, 2024

Définition (Matrices)

On note $M(m, n, \mathbb{R})$ l'ensemble des matrices à m lignes et n colonnes à coefficients réels :

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{pmatrix} = (A_{ij})_{1 \leq i \leq m, 1 \leq j \leq n}.$$

Définition (Matrices)

On note $M(m, n, \mathbb{R})$ l'ensemble des matrices à m lignes et n colonnes à coefficients réels :

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{pmatrix} = (A_{ij})_{1 \leq i \leq m, 1 \leq j \leq n}.$$

Deux matrices $A, B \in M(m, n, \mathbb{R})$ sont égales si tous leur coefficients coïncident : $A_{ij} = B_{ij} \ \forall i, j$.

Définition (Matrices)

On note $M(m, n, \mathbb{R})$ l'ensemble des matrices à m lignes et n colonnes à coefficients réels :

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{pmatrix} = (A_{ij})_{1 \leq i \leq m, 1 \leq j \leq n}.$$

Deux matrices $A, B \in M(m, n, \mathbb{R})$ sont égales si tous leur coefficients coïncident : $A_{ij} = B_{ij} \ \forall i, j$. La matrice transposée de A notée A^T est la matrice $A^T \in M(n, m, \mathbb{R})$ définie par $(A^T)_{ij} = (A)_{ji} \ \forall 1 \leq i \leq n, \ 1 \leq j \leq m$.

Définition (Matrices)

On note $M(m, n, \mathbb{R})$ l'ensemble des matrices à m lignes et n colonnes à coefficients réels :

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{pmatrix} = (A_{ij})_{1 \leq i \leq m, 1 \leq j \leq n}.$$

Deux matrices $A, B \in M(m, n, \mathbb{R})$ sont égales si tous leur coefficients coïncident : $A_{ij} = B_{ij} \ \forall i, j$. La matrice transposée de A notée A^T est la matrice $A^T \in M(n, m, \mathbb{R})$ définie par $(A^T)_{ij} = (A)_{ji} \ \forall 1 \leq i \leq n, \ 1 \leq j \leq m$. Si m = n on note aussi $M(m, n, \mathbb{R}) = M_n(\mathbb{R})$ et on parle de "matrice carrée" $A = (A_{ij})_{1 \leq i, j \leq n}$. Si A est carrée et $A^T = A$ alors A est dite symétrique.

Exemple

$$A=egin{pmatrix} 1&2&3\1&4&9 \end{pmatrix}\in M(2,3,\mathbb{R}) \implies A^T=egin{pmatrix} 1&1\2&4\3&9 \end{pmatrix}\in M(3,2,\mathbb{R}).$$

$$B = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix} \implies B^T = \begin{pmatrix} 1 & 3 \\ 2 & -5 \end{pmatrix};$$

donc B est carrée $(B \in M_2(\mathbb{R}))$ mais elle n'est pas symétrique.

Opérations sur les matrices

Définition (Somme de matrices de même taille)

Soit $A, B \in M(m, n, \mathbb{R})$. La somme de A et B, notée A + B est la matrice de $M(m, n, \mathbb{R})$ définie par :

$$(A+B)_{ij}=A_{ij}+B_{ij} \qquad \forall 1\leq i\leq m, 1\leq j\leq n.$$

La matrice nulle est la matrice 0 dont les entrées sont toutes 0. La matrice opposée de A notée -A est la matrice de $M(m,n,\mathbb{R})$ dont les entrées sont les opposées de celles de A:

$$(-A)_{ij} = -(A)_{ij} \qquad \forall 1 \leq i \leq m, 1 \leq j \leq n.$$

Proposition (Propriétés de la somme de matrices)

Si $A, B, C \in M(m, n, \mathbb{R})$ on a :

- \bullet $A + B = B + A \in M(m, n, \mathbb{R})$ (commutativité de la somme),
- ② A + 0 = A et $A + (-A) = 0 \in M(m, n, \mathbb{R})$ (élément neutre),
- **③** $(A+B)+C=A+(B+C)\in M(m,n,\mathbb{R})$ (associativité).

Exemple

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 4 & 9 \end{array} \right), B = \left(\begin{array}{ccc} -1 & -2 \\ -1 & -4 \end{array} \right), C = \left(\begin{array}{ccc} -1 & -1 & 1 \\ 2 & -4 & -8 \end{array} \right).$$

Alors:

$$A + B$$

Exemple

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 4 & 9 \end{array}\right), B = \left(\begin{array}{ccc} -1 & -2 \\ -1 & -4 \end{array}\right), C = \left(\begin{array}{ccc} -1 & -1 & 1 \\ 2 & -4 & -8 \end{array}\right).$$

Alors:

A + B n'est pas défini!

Exemple

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 4 & 9 \end{array} \right), B = \left(\begin{array}{ccc} -1 & -2 \\ -1 & -4 \end{array} \right), C = \left(\begin{array}{ccc} -1 & -1 & 1 \\ 2 & -4 & -8 \end{array} \right).$$

Alors:

A + B n'est pas défini!

$$A + C$$

Exemple

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 4 & 9 \end{array} \right), B = \left(\begin{array}{ccc} -1 & -2 \\ -1 & -4 \end{array} \right), C = \left(\begin{array}{ccc} -1 & -1 & 1 \\ 2 & -4 & -8 \end{array} \right).$$

Alors:

A + B n'est pas défini!

$$A+C=\left(\begin{array}{ccc}0&1&4\\3&0&1\end{array}\right),$$

Exemple

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 4 & 9 \end{array} \right), B = \left(\begin{array}{ccc} -1 & -2 \\ -1 & -4 \end{array} \right), C = \left(\begin{array}{ccc} -1 & -1 & 1 \\ 2 & -4 & -8 \end{array} \right).$$

Alors:

$$A+C=\left(\begin{array}{ccc}0&1&4\\3&0&1\end{array}\right),$$

$$B + C$$

Exemple

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 4 & 9 \end{array} \right), B = \left(\begin{array}{ccc} -1 & -2 \\ -1 & -4 \end{array} \right), C = \left(\begin{array}{ccc} -1 & -1 & 1 \\ 2 & -4 & -8 \end{array} \right).$$

Alors:

A + B n'est pas défini!

$$A+C=\left(\begin{array}{ccc}0&1&4\\3&0&1\end{array}\right),$$

B + C n'est pas défini!

Exemple

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 4 & 9 \end{array} \right), B = \left(\begin{array}{ccc} -1 & -2 \\ -1 & -4 \end{array} \right), C = \left(\begin{array}{ccc} -1 & -1 & 1 \\ 2 & -4 & -8 \end{array} \right).$$

Alors:

A + B n'est pas défini!

$$A+C=\left(\begin{array}{ccc}0&1&4\\3&0&1\end{array}\right),$$

B + C n'est pas défini!

$$A-C$$

Exemple

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 4 & 9 \end{array} \right), B = \left(\begin{array}{ccc} -1 & -2 \\ -1 & -4 \end{array} \right), C = \left(\begin{array}{ccc} -1 & -1 & 1 \\ 2 & -4 & -8 \end{array} \right).$$

Alors:

A + B n'est pas défini!

$$A+C=\left(\begin{array}{ccc}0&1&4\\3&0&1\end{array}\right),$$

B + C n'est pas défini!

$$A-C=\left(\begin{array}{ccc}2&3&2\\-1&8&17\end{array}\right).$$

Test

Exercice

Soit
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 et $B = \begin{pmatrix} -1 & 0 & 0 \\ -1 & -1 & -2 \end{pmatrix}$. Alors $A + B$

est:

- 2 (1 2 3),
 4 6 11),
- o n'est pas défini,
- aucune des précédentes.

Opérations sur les matrices

Définition (Produit d'une matrice par un scalaire)

Soit $A \in M(m, n, \mathbb{R})$ et $\lambda \in \mathbb{R}$. La matrice $\lambda A \in M(m, n, \mathbb{R})$ est celle dont les entrées sont celles de A multipliées par λ :

$$(\lambda A)_{ij} = \lambda (A)_{ij} \quad \forall 1 \leq i \leq m, 1 \leq j \leq n.$$

Proposition (Propriétés du produit par scalaire)

Si A, B, $C \in M(m, n, \mathbb{R})$ et $\lambda, \mu \in \mathbb{R}$ on a :

- $(\lambda \mu) \mathbf{A} = \lambda(\mu \mathbf{A}) \in \mathbf{M}(\mathbf{m}, \mathbf{n}, \mathbb{R}).$

Test

Exercice

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}. Alors A - 2B =$$

- $\begin{pmatrix} 1 & 0 & 3 \\ -1 & 4 & 7 \end{pmatrix}$

- aucune des précédentes.

$\overline{M(m,n,\mathbb{R})}$ est un espace vectoriel

Les propriétés de la somme de matrices et du produit par scalaire se résument par le résultat suivant :

Théorème

 $M(m, n, \mathbb{R})$ est un espace vectoriel réel.

Remarque

Soit E_{ij} la matrice élémentaire dont les entrées sont 0 sauf l'entrée à la ligne i et colonne j qui est 1.

Alors on peut vérifier que la famille $\{E_{ij}, 1 \le i \le m, 1, \le j \le n\}$ est libre et génératrice pour $M(m, n; \mathbb{R})$, donc une base.

On a alors $\underline{\dim(M(m,n,\mathbb{R}))} = \underline{\qquad}$.

$\overline{M(m,n,\mathbb{R})}$ est un espace vectoriel

Les propriétés de la somme de matrices et du produit par scalaire se résument par le résultat suivant :

Théorème

 $M(m, n, \mathbb{R})$ est un espace vectoriel réel.

Remarque

Soit E_{ij} la matrice élémentaire dont les entrées sont 0 sauf l'entrée à la ligne i et colonne j qui est 1.

Alors on peut vérifier que la famille $\{E_{ij}, 1 \le i \le m, 1, \le j \le n\}$ est libre et génératrice pour $M(m, n; \mathbb{R})$, donc une base.

On a alors $\dim(M(m, n, \mathbb{R})) = mn$.

Définition (Produit de matrices)

Soit $A \in M(m, n, \mathbb{R})$ et $B \in M(n, \ell, \mathbb{R})$. Alors on peut définir une matrice notée $AB \in M(m, \ell, \mathbb{R})$ dont le $(ij)^{\grave{e}me}$ coefficient est :

$$(AB)_{ij} = \sum_{k=1}^n A_{ik} B_{kj}.$$

Définition (Produit de matrices)

Soit $A \in M(m, n, \mathbb{R})$ et $B \in M(n, \ell, \mathbb{R})$. Alors on peut définir une matrice notée $AB \in M(m, \ell, \mathbb{R})$ dont le $(ij)^{\grave{e}me}$ coefficient est :

$$(AB)_{ij} = \sum_{k=1}^n A_{ik} B_{kj}.$$

ATTENTION: on ne peut pas multiplier deux matrices si le nombre de colonnes de la première n'est pas égal au nombre de lignes de la deuxième.

Définition (Produit de matrices)

Soit $A \in M(m, n, \mathbb{R})$ et $B \in M(n, \ell, \mathbb{R})$. Alors on peut définir une matrice notée $AB \in M(m, \ell, \mathbb{R})$ dont le $(ij)^{\grave{e}me}$ coefficient est :

$$(AB)_{ij} = \sum_{k=1}^n A_{ik} B_{kj}.$$

ATTENTION: on ne peut pas multiplier deux matrices si le nombre de colonnes de la première n'est pas égal au nombre de lignes de la deuxième.

Exemple

Si $A \in M(2,3,\mathbb{R}), B \in M(4,2,\mathbb{R})$ et $C \in M(3,4,\mathbb{R})$, alors:

- **1** AB n'est pas défini, mais $BA \in M(4,3,\mathbb{R})$.
- **2** $AC \in M(2,4,\mathbb{R})$, mais CA n'est pas défini.
- **3** BC n'est pas défini, mais $CB \in M(3,2,\mathbb{R})$.

Définition (Produit de matrices)

Soit $A \in M(m, n, \mathbb{R})$ et $B \in M(n, \ell, \mathbb{R})$. Alors on peut définir une matrice notée $AB \in M(m, \ell, \mathbb{R})$ dont le $(ij)^{\grave{e}me}$ coefficient est :

$$(AB)_{ij} = \sum_{k=1}^n A_{ik} B_{kj}.$$

ATTENTION: on ne peut pas multiplier deux matrices si le nombre de colonnes de la première n'est pas égal au nombre de lignes de la deuxième.

Remarque

Si $A, B \in M_n(\mathbb{R})$ alors $AB \in M_n(\mathbb{R})$ et aussi $BA \in M_n(\mathbb{R})$.

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 3 & 0 \\ 5 & 2 \\ 0 & 1 \end{pmatrix},$$

$$(AB)_{12} = \sum_{k=1}^{3} A_{1k} B_{k2} =$$

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

$$A = \left(\begin{array}{ccc} 1 & 1 & 2 \\ 0 & 1 & 0 \end{array}\right), B = \left(\begin{array}{ccc} 3 & 0 \\ 5 & 2 \\ 0 & 1 \end{array}\right),$$

$$(AB)_{12} = \sum_{k=1}^{3} A_{1k} B_{k2} = A_{11} B_{12} + A_{12} B_{22} + A_{13} B_{32} = 0 + 2 + 2 = 4,$$

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

$$A = \left(\begin{array}{ccc} 1 & 1 & 2 \\ 0 & 1 & 0 \end{array}\right), B = \left(\begin{array}{ccc} 3 & 0 \\ 5 & 2 \\ 0 & 1 \end{array}\right),$$

$$(AB)_{12} = \sum_{k=1}^{3} A_{1k} B_{k2} = A_{11} B_{12} + A_{12} B_{22} + A_{13} B_{32} = 0 + 2 + 2 = 4,$$

$$(AB)_{11} = \sum_{k=1}^{3} A_{1k} B_{k1} =$$

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

$$A = \left(\begin{array}{ccc} 1 & 1 & 2 \\ 0 & 1 & 0 \end{array}\right), B = \left(\begin{array}{ccc} 3 & 0 \\ 5 & 2 \\ 0 & 1 \end{array}\right),$$

$$(AB)_{12} = \sum_{k=1}^{3} A_{1k} B_{k2} = A_{11} B_{12} + A_{12} B_{22} + A_{13} B_{32} = 0 + 2 + 2 = 4,$$

$$(AB)_{11} = \sum_{k=1}^{3} A_{1k} B_{k1} = A_{11} B_{11} + A_{12} B_{21} + A_{13} B_{31} = 3 + 5 + 0 = 8,$$

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

$$A = \left(\begin{array}{ccc} 1 & 1 & 2 \\ 0 & 1 & 0 \end{array}\right), B = \left(\begin{array}{ccc} 3 & 0 \\ 5 & 2 \\ 0 & 1 \end{array}\right),$$

$$(AB)_{12} = \sum_{k=1}^{3} A_{1k} B_{k2} = A_{11} B_{12} + A_{12} B_{22} + A_{13} B_{32} = 0 + 2 + 2 = 4,$$

$$(AB)_{11} = \sum_{k=1}^{3} A_{1k} B_{k1} = A_{11} B_{11} + A_{12} B_{21} + A_{13} B_{31} = 3 + 5 + 0 = 8,$$

$$AB = \begin{pmatrix} 8 & 4 \\ 5 & 2 \end{pmatrix}.$$

Test

Exercice

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}.$$

Alors AB =

- o aucune des précédentes.

Propriétés du produit de matrices

Proposition

Soit $A \in M(m, n, \mathbb{R}), B, B' \in M(n, \ell, \mathbb{R}), C \in M(\ell, \rho, \mathbb{R})$. Alors :

- \bullet A(BC) = (AB)C (associativité).
- 2 A(B+B') = AB + AB' et (B+B')C = BC + B'C.

Propriétés du produit de matrices

Proposition

Soit $A \in M(m, n, \mathbb{R}), B, B' \in M(n, \ell, \mathbb{R}), C \in M(\ell, p, \mathbb{R})$. Alors :

- \bullet A(BC) = (AB)C (associativité).
- 2 A(B+B') = AB + AB' et (B+B')C = BC + B'C.

Remarque

ATTENTION: le produit n'est pas commutatif. Même si $A, B \in M_n(\mathbb{R})$ on n'a pas en général que AB = BA.

Le cas des matrices carrées

Définition (La matrice identité)

Soit $I_n \in M_n(\mathbb{R})$ la matrice qui est zéro hors de la diagonale et 1 sur la diagonale :

$$I_{n} = \left(\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 1 \end{array}\right).$$

Le cas des matrices carrées

Définition (La matrice identité)

Soit $I_n \in M_n(\mathbb{R})$ la matrice qui est zéro hors de la diagonale et 1 sur la diagonale :

$$I_n = \left(\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 1 \end{array}\right).$$

Lemme

Si
$$A \in M(m, n, \mathbb{R})$$
 alors $I_m A = A$ et $AI_n = A$.

Exercice

Soit
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. A-t-on $AB = BA$?

- Oui et vous savez le montrer.
- Vous pensez que oui mais vous ne savez pas le montrer.
- Non et vous savez le montrer.
- Vous pensez que non mais vous ne savez pas le montrer.
- Vous ne savez pas.

Matrices inversibles

Définition (Matrices inversibles)

Une matrice $A \in M_n(\mathbb{R})$ (donc carrée) est inversible s'il existe une autre matrice notée $A^{-1} \in M_n(\mathbb{R})$ telle que l'on a:

$$AA^{-1} = I_n = A^{-1}A.$$

L'ensemble des matrices inversibles dans $M_n(\mathbb{R})$ est noté $GL_n(\mathbb{R})$.

Lemme

Si l'inverse de A existe elle est unique. L'inverse de I_n est I_n .

Exemple

$$Si A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} \implies A^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & \frac{1}{2} \end{pmatrix}.$$

En effet on a bien

$$\left(\begin{array}{cc}1&2\\0&2\end{array}\right)\left(\begin{array}{cc}1&-1\\0&\frac{1}{2}\end{array}\right)=\left(\begin{array}{cc}1&0\\0&1\end{array}\right).$$

Exemple

$$Si A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} \implies A^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & \frac{1}{2} \end{pmatrix}.$$

En effet on a bien

$$\left(\begin{array}{cc}1&2\\0&2\end{array}\right)\left(\begin{array}{cc}1&-1\\0&\frac{1}{2}\end{array}\right)=\left(\begin{array}{cc}1&0\\0&1\end{array}\right).$$

Exemple

Il y a des matrices non nulles qui ne sont pas inversibles. Par exemple

$$A = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right)$$

n'est pas inversible.

Applications linéaires

Définition

Soit E, F deux e.v. réels. Une application $f : E \to F$ est dite application linéaire (AL) si $\forall \lambda \in \mathbb{R}$ et $\forall u, v \in E$ on a : $f(\lambda u + v) = \lambda f(u) + f(v)$. Cela se reformule aussi comme suit :

Une AL $f: E \rightarrow E$ est aussi dite un endomorphisme.

Applications linéaires

Définition

Soit E, F deux e.v. réels. Une application $f : E \to F$ est dite application linéaire (AL) si $\forall \lambda \in \mathbb{R}$ et $\forall u, v \in E$ on a : $f(\lambda u + v) = \lambda f(u) + f(v)$. Cela se reformule aussi comme suit :

- $\forall \lambda \in \mathbb{R}, \forall u \in E \text{ on a } f(\lambda u) = \lambda f(u).$

Une AL $f: E \rightarrow E$ est aussi dite un endomorphisme.

Exemple

Soit $E = F = \mathbb{R}$.

- $f(x) = \cos(x)$ n'est pas linéaire car $\cos(u+v) \neq \cos(u) + \cos(v)$ (par exemple $\cos(0+0) = 1 \neq \cos(0) + \cos(0) = 2$).
- ② $f(x) = x^2$ n'est pas linéaire car en général $f(u+v) = (u+v)^2 = u^2 + v^2 + 2uv \neq u^2 + v^2 = f(u) + f(v)$.

Applications linéaires

Définition

Soit E, F deux e.v. réels. Une application $f: E \to F$ est dite application linéaire (AL) si $\forall \lambda \in \mathbb{R}$ et $\forall u, v \in E$ on a : $f(\lambda u + v) = \lambda f(u) + f(v)$. Cela se reformule aussi comme suit :

- **○** $\forall u, v \in E \text{ on a } f(u+v) = f(u) + f(v).$
- $\forall \lambda \in \mathbb{R}, \forall u \in E \text{ on a } f(\lambda u) = \lambda f(u).$

Une AL $f: E \to E$ est aussi dite un endomorphisme.

Exemple

Soit $E = F = \mathbb{R}$.

- f(x) = 2x + 1 n'est pas linéaire car $f(u+v) = 2(u+v) + 1 \neq 2u + 1 + 2v + 1 = f(u) + f(v)$.
- ② f(x) = 2x est linéaire car si $\lambda, u, v \in \mathbb{R}$, on a bien $f(\lambda u + v) = 2(\lambda u + v) = 2\lambda u + 2v = \lambda f(u) + f(v)$.

Lemme

Si $f: \mathbb{R}^n \to \mathbb{R}$ est linéaire, alors il existe des coefficients $a_1, \ldots, a_n \in \mathbb{R}$ tels que

$$f(x_1,...x_n) = a_1x_1 + a_2x_2 + ...a_nx_n.$$

Plus généralement, si $f = \mathbb{R}^n \to \mathbb{R}^m$ est linéaire en notant $f(x_1, \ldots x_n) = (f_1(x_1, \ldots x_n), f_2(x_1, \ldots x_n), \cdots, f_m(x_1, \ldots x_n)),$ alors chacune des $f_i : \mathbb{R}^n \to \mathbb{R}$ est linéaire où $1 \le i \le m$.

Exemple

La fonction $f: \mathbb{R}^3 \to \mathbb{R}^2$ donnée par

$$f(x_1, x_2, x_3) = \left(x_1 + 3x_2, x_2 - \frac{x_3}{4}\right)$$

est linéaire car ses deux composantes $f_1(x_1, x_2, x_3) = x_1 + 3x_2$ et $f_2(x_1, x_2, x_3) = x_2 - \frac{x_3}{4}$ le sont.

Exemple

La fonction $f: \mathbb{R}^3 \to \mathbb{R}^2$ donnée par

$$f(x_1, x_2, x_3) = \left(x_1 + 3x_2, x_2 - \frac{x_3}{4}\right)$$

est linéaire car ses deux composantes $f_1(x_1, x_2, x_3) = x_1 + 3x_2$ et $f_2(x_1, x_2, x_3) = x_2 - \frac{x_3}{4}$ le sont. En effet:

Exemple

La fonction $f: \mathbb{R}^3 \to \mathbb{R}^2$ donnée par

$$f(x_1, x_2, x_3) = \left(x_1 + 3x_2, x_2 - \frac{x_3}{4}\right)$$

est linéaire car ses deux composantes $f_1(x_1, x_2, x_3) = x_1 + 3x_2$ et $f_2(x_1, x_2, x_3) = x_2 - \frac{x_3}{4}$ le sont. En effet:

• $f_1(x_1, x_2, x_3) = a_1x_1 + a_2x_2 + a_3x_3$ avec $a_1 = 1$, $a_2 = 3$ et $a_3 = 0$.

Exemple

La fonction $f: \mathbb{R}^3 \to \mathbb{R}^2$ donnée par

$$f(x_1, x_2, x_3) = \left(x_1 + 3x_2, x_2 - \frac{x_3}{4}\right)$$

est linéaire car ses deux composantes $f_1(x_1, x_2, x_3) = x_1 + 3x_2$ et $f_2(x_1, x_2, x_3) = x_2 - \frac{x_3}{4}$ le sont. En effet:

- $f_1(x_1, x_2, x_3) = a_1x_1 + a_2x_2 + a_3x_3$ avec $a_1 = 1$, $a_2 = 3$ et $a_3 = 0$.
- $f_2(x_1, x_2, x_3) = b_1x_1 + b_2x_2 + b_3x_3$ avec $b_1 = 0$, $b_2 = 1$ et $b_3 = -\frac{1}{4}$.

1 Symétrie centrale $C: E \rightarrow E, u \mapsto -u$.

- **1** Symétrie centrale $C: E \rightarrow E, u \mapsto -u$.
- **2** Homothétie $H_{\lambda}: E \to E, u \mapsto \lambda u$.

- **1** Symétrie centrale $C: E \rightarrow E, u \mapsto -u$.
- 2 Homothétie $H_{\lambda} : E \to E$, $u \mapsto \lambda u$.
- **Solution** A Réflexion d'axe Oy: $S_y: \mathbb{R}^2 \to \mathbb{R}^2$, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} -x \\ y \end{pmatrix}$.

- **1** Symétrie centrale $C: E \rightarrow E, u \mapsto -u$.
- 2 Homothétie $H_{\lambda} : E \to E$, $u \mapsto \lambda u$.
- **S** Réflexion d'axe Oy: $S_y : \mathbb{R}^2 \to \mathbb{R}^2$, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} -x \\ y \end{pmatrix}$.
- 4 Réflexion d'axe Ox: $S_x : \mathbb{R}^2 \to \mathbb{R}^2$, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x \\ -y \end{pmatrix}$.

- **1** Symétrie centrale $C: E \rightarrow E, u \mapsto -u$.
- 2 Homothétie $H_{\lambda} : E \to E$, $u \mapsto \lambda u$.
- **1** Réflexion d'axe Oy: $S_y : \mathbb{R}^2 \to \mathbb{R}^2$, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} -x \\ y \end{pmatrix}$.
- 4 Réflexion d'axe Ox: $S_x : \mathbb{R}^2 \to \mathbb{R}^2$, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x \\ -y \end{pmatrix}$.
- $\begin{array}{l} \textbf{§} \quad \text{R\'eflexion p.r. \`a la droite } y = x \colon \mathcal{S}_{\pi/4} : \mathbb{R}^2 \to \mathbb{R}^2, \\ \binom{x}{y} \mapsto \binom{y}{x}. \end{array}$

- **1** Symétrie centrale $C: E \rightarrow E, u \mapsto -u$.
- **2** Homothétie $H_{\lambda}: E \to E$, $u \mapsto \lambda u$.
- **1** Réflexion d'axe Oy: $S_y : \mathbb{R}^2 \to \mathbb{R}^2$, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} -x \\ y \end{pmatrix}$.
- **4** Réflexion d'axe $Ox: S_x: \mathbb{R}^2 \to \mathbb{R}^2, \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x \\ -y \end{pmatrix}$.
- Sefflexion p.r. à la droite y = x: $S_{\pi/4} : \mathbb{R}^2 \to \mathbb{R}^2$, $\binom{x}{y} \mapsto \binom{y}{x}$.

Test

Exercice

Soit
$$f(x_1, x_2, x_3) = (x_1 + 2x_2, x_3^2 - x_1, x_3 - 2x_1)$$
. Alors:

- $f: \mathbb{R}^3 \to \mathbb{R}^3$ est linéaire,
- 2 $f: \mathbb{R} \to \mathbb{R}^3$ est linéaire,
- 3 $f: \mathbb{R} \to \mathbb{R}^3$ n'est pas linéaire,
- $f: \mathbb{R}^3 \to \mathbb{R}$ n'est pas linéaire,
- $f: \mathbb{R}^3 \to \mathbb{R}^2$ est linéaire,
- 6 $f: \mathbb{R}^3 \to \mathbb{R}^3$ n'est pas linéaire,
- aucune des précédentes.

Noyau et image d'une application linéaire

Définition

Soit E, F deux e.v. réels et soit $f : E \to F$ une application linéaire. Alors :

- Le noyau de f est $Ker(f) := \{u \in E : f(u) = 0_F\} \subset E$.
- 2 L'image de f est $Im(f) := \{f(u) : u \in E\} \subset F$.

Lemme

Si $f: E \to F$ est linéaire, alors Ker(f) est un ssev de E et Im(f) un ssev de F.

Proposition

- **1** Une AL $f: E \to F$ est injective ssi $Ker(f) = \{0_E\}$.
- 2 f est surjective ssi Im(f) = F.
- **3** f est bijective ssi $Ker(f) = \{0_E\}$ et dim(E) = dim(F).

Proposition

- **1** Une AL $f: E \to F$ est injective ssi $Ker(f) = \{0_E\}$.
- 2 f est surjective ssi Im(f) = F.
- of est bijective ssi $Ker(f) = \{0_E\}$ et dim(E) = dim(F).

Une application linéaire bijective est aussi appelée un isomorphisme.

Proposition

- Une AL $f: E \to F$ est injective ssi $Ker(f) = \{0_E\}$.
- 2 f est surjective ssi Im(f) = F.
- of est bijective ssi $Ker(f) = \{0_E\}$ et dim(E) = dim(F).

Une application linéaire bijective est aussi appelée un isomorphisme.

Proposition

Si E est de dimension finie, alors Im(f) est de dimension finie.

Proposition

Soit $f: E \to F$ un isomorphisme d'espaces vectoriels. Si E (resp. F) est de dimension finie, alors F (resp. E) l'est aussi, et $\dim E = \dim F$.

Proposition

Soit $f: E \to F$ un isomorphisme d'espaces vectoriels. Si E (resp. F) est de dimension finie, alors F (resp. E) l'est aussi, et dim $E = \dim F$.

Théorème

Soit $f: E \to F$ une appli. linéaire, avec E et F de dim. finie. Supposons $\dim E = \dim F$. Alors les assertions suivantes sont équivalentes :

- f est bijective;
- 2 f est injective;
- f est surjective.

Composition et inverse

Proposition

Soient E, F, G trois espaces vectoriels, et $f : E \to F$ et $g : F \to G$ des appli. linéaires. Alors la composée $g \circ f : E \to G$ est une appli. linéaire.

Composition et inverse

Proposition

Soient E, F, G trois espaces vectoriels, et $f: E \to F$ et $g: F \to G$ des appli. linéaires. Alors la composée $g \circ f: E \to G$ est une appli. linéaire.

Proposition

Soit $f : E \to F$ un isomorphisme. Alors $f^{-1} : F \to E$ est un isomorphisme.

Rang d'une application linéaire

Définition (Rang d'une application linéaire)

Le rang de f est la dimension de $\operatorname{Im} f$. On note $\operatorname{rg}(f) = \dim \operatorname{Im} f$.

Rang d'une application linéaire

Définition (Rang d'une application linéaire)

Le rang de f est la dimension de $\operatorname{Im} f$. On note $\operatorname{rg}(f) = \dim \operatorname{Im} f$.

Proposition

Si E et F sont de dimension finie, alors $rg(f) \le min(dim E, dim F)$.

Rang d'une application linéaire

Définition (Rang d'une application linéaire)

Le rang de f est la dimension de $\operatorname{Im} f$. On note $\operatorname{rg}(f) = \dim \operatorname{Im} f$.

Proposition

Si E et F sont de dimension finie, alors $rg(f) \le min(\dim E, \dim F)$.

Théorème (Théorème du rang)

 $Si \dim E < \infty$, alors $\dim E = \dim(\operatorname{Ker} f) + \operatorname{rg}(f) = \dim \operatorname{Ker} f + \dim(\operatorname{Im} f)$.

Applications linéaires et matrices

Lemme

Soit $\mathcal{B} := (v_1, \dots, v_m)$ une base de E et $f : E \to F$ une AL. Alors f est uniquement déterminée par les vecteurs $f(v_i)$, $i = 1 \dots m$.

Applications linéaires et matrices

Lemme

Soit $\mathcal{B} := (v_1, \dots, v_m)$ une base de E et $f : E \to F$ une AL. Alors f est uniquement déterminée par les vecteurs $f(v_i)$, $i = 1 \dots m$.

Démonstration

Si $v \in E$ alors il existe des coordonnées uniques $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ telles que $v = \sum_i \lambda_i v_i$. Mais alors par linéarité on a

$$f(\mathbf{v}) = f\left(\sum_{i} \lambda_{i} \mathbf{v}_{i}\right) = \sum_{i} f(\lambda_{i} \mathbf{v}_{i}) = \sum_{i} \lambda_{i} f(\mathbf{v}_{i}).$$

Donc pour calculer f(v), il suffit de connaître les coordonnées λ_i de v dans la base \mathcal{B} et les vecteurs $f(v_i) \in \mathcal{F}$.

Applications linéaires et matrices

Lemme

Soit $\mathcal{B} := (v_1, \dots, v_m)$ une base de E et $f : E \to F$ une AL. Alors f est uniquement déterminée par les vecteurs $f(v_i)$, $i = 1 \dots m$.

Définition (Matrice d'une AL dans des bases)

Soit E, \mathcal{B} et f comme avant et $\mathcal{R}:=(w_1,\ldots,w_n)$ une base de F. Alors il existe des constantes uniques $M_{ij}, 1 \leq i \leq n$, $1 \leq j \leq m$ telles que l'on ait pour tout $j = 1 \ldots m$:

$$f(v_j) = \sum_{i=1}^n M_{ij} w_i.$$

On appelle la matrice $M \in M(n, m, \mathbb{R})$ ayant M_{ij} comme entrées la matrice de f dans les bases \mathcal{B} et \mathcal{R} . Elle est aussi notée

$$M=[f]_{\mathcal{B}}^{\mathcal{R}}.$$

Exemple

Soit
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 l'application définie par $f(x, y) = (x + y, y)$.

Soit aussi
$$\mathcal{B} = \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right)$$
 et can la base canonique.

$$[f]_{can}^{can} =$$

$$[f]^{can}_{\mathcal{B}} =$$

$$[f]_{can}^{\mathcal{B}} =$$

Exemple

Soit
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 l'application définie par $f(x, y) = (x + y, y)$.

Soit aussi
$$\mathcal{B} = \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right)$$
 et can la base canonique.

$$[f]_{can}^{can} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

$$[f]^{can}_{\mathcal{B}} =$$

$$[f]_{can}^{\mathcal{B}} =$$

Exemple

Soit
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 l'application définie par $f(x, y) = (x + y, y)$.

Soit aussi
$$\mathcal{B} = \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right)$$
 et can la base canonique.

$$[f]_{can}^{can} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

$$[f]_{\mathcal{B}}^{can} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix},$$

$$[f]_{can}^{\mathcal{B}} =$$

Exemple

Soit
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 l'application définie par $f(x, y) = (x + y, y)$.

Soit aussi
$$\mathcal{B} = \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right)$$
 et can la base canonique.

$$[f]_{can}^{can} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

$$[f]_{\mathcal{B}}^{can} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix},$$

$$[f]_{can}^{\mathcal{B}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Les applications linéaires forment un espace vectoriel

Proposition

Soit $f, g : E \to F$ deux applications linéaires et $\lambda \in \mathbb{R}$. Alors les applications qui à tout vecteur $\mathbf{v} \in E$ associent :

- le vecteur $f(v) + g(v) \in F$,
- le vecteur $\lambda f(v) \in F$,

sont linéaires. Elles sont notées respectivement f + g et λf . Cela munit l'espace des applications linéaires de E dans F (noté $\mathcal{L}(E,F)$) de la structure d'espace vectoriel.

Proposition

Soient $f, g : E \to F$ des appli. linéaires, $\mathcal B$ base de $E, \mathcal B'$ base de F. Alors

- $\bullet \ [f+g]_{\mathcal{B}}^{\mathcal{B}'}=[f]_{\mathcal{B}}^{\mathcal{B}'}+[g]_{\mathcal{B}}^{\mathcal{B}'}$
- $\bullet \ [\lambda f]_{\mathcal{B}}^{\mathcal{B}'} = \lambda [f]_{\mathcal{B}}^{\mathcal{B}'}$

Proposition

Soient $f, g : E \to F$ des appli. linéaires, $\mathcal B$ base de $E, \mathcal B'$ base de F. Alors

- $\bullet [f+g]_{\mathcal{B}}^{\mathcal{B}'}=[f]_{\mathcal{B}}^{\mathcal{B}'}+[g]_{\mathcal{B}}^{\mathcal{B}'}$
- $\bullet \ [\lambda f]_{\mathcal{B}}^{\mathcal{B}'} = \lambda [f]_{\mathcal{B}}^{\mathcal{B}'}$

Proposition

Soient $f: E \to F$ et $g: F \to G$ des appli. linéaires, $\mathcal{B}, \mathcal{B}', \mathcal{B}''$ des bases resp. de E, F et G. Alors $[g \circ f]_{\mathcal{B}} = [g]_{\mathcal{B}'}^{\mathcal{B}'}[f]_{\mathcal{B}}^{\mathcal{B}'}$.

Si $A \in M_{n,n}(\mathbb{K})$, on définit A^p pour $p \in \mathbb{N}$ par $A^0 = I_n$ et $A^{p+1} = A^p A$.

Si
$$A \in M_{n,n}(\mathbb{K})$$
, on définit A^p pour $p \in \mathbb{N}$ par $A^0 = I_n$ et $A^{p+1} = A^p A$.

Proposition

Soient $f: E \to E$ une appli. linéaire et \mathcal{B} une base de E. Pour tout $p \in \mathbb{N}$, si $f^p = \underbrace{f \circ f \circ \cdots \circ f}_{p \text{ facteurs}}$, on a $[f^p]_{\mathcal{B}}^{\mathcal{B}'} = ([f]_{\mathcal{B}}^{\mathcal{B}'})^p$.

Théorème

Soient E, F des espaces vect. de même dimension finie, $f: E \to F$ une appli. linéaire, \mathcal{B} base de E, \mathcal{B}' base de F, et $A = [f]_{\mathcal{B}}^{\mathcal{B}'}$.

- f est bijective si et seulement si A est inversible.
- Dans ce cas, $[f^{-1}]_{B'}^{B} = A^{-1}$.

Noyau et matrices

Soit $f: E \to F$ une AL, \mathcal{B} une base de E et \mathcal{R} une base de F. Alors tout vecteur $u \in E$ (resp. $f(u) \in F$) est identifié par ses coordonnées dans la base \mathcal{B} (resp. \mathcal{R}).

$$u\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_m \end{pmatrix}$$
 (resp. $f(u)\begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix}$). Notons $\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_m \end{pmatrix} \in M(m, 1, \mathbb{R})$ la matrice colonne des coordonnées.

Lemme

$$u\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_m \end{pmatrix} et f(u)\begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix} \implies [f]_{\mathcal{B}}^{\mathcal{R}}\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_m \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix}.$$
En particulier on a

$$u \in \mathit{Ker}(f) \iff [f]^{\mathcal{R}}_{\mathcal{B}} \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_m \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Noyau et matrices

Définition

On appelle noyau d'une matrice $A \in M(m, n, \mathbb{R})$ (noté Ker(A))

l'ensemble des vecteurs
$$X \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 tels que $AX = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$.

Proposition

Une matrice $A \in M_n(\mathbb{R})$ est inversible si et seulement si son noyau est

$$\operatorname{Ker}(A) = \left\{ \left(\begin{array}{c} 0 \\ \vdots \\ 0 \end{array} \right) \right\}.$$

Matrices et systèmes linéaires

Soit
$$A = (A_{ij}) \in GL(n)$$
, $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$. Alors le

système linéaire

$$AX = B$$

est dit système de Cramer et il admet exactement une solution :

$$X=A^{-1}B.$$

Rang d'une matrice

Définition

Soit $A \in M(n, m, \mathbb{R})$. On appelle rang(A) la dimension du sous-espace vectoriel de \mathbb{R}^n engendré par les colonnes C_1, \ldots, C_m de A.

Théorème

- $rang(A) = dim(Vect(L_1, ..., L_n))$, où L_i sont les lignes de A.
- 2 $rang(A) \leq min(m, n)$.
- rang(A) est le nombre de lignes non nulles quand on a fini l'algorithme de Gauss (on obtient une matrice triangulaire à la fin de l'algorithme!).

Soit

$$A = \left(\begin{array}{ccc} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{array}\right).$$

Calculons le rang de A par l'algorithme de Gauss:

Soit

$$A = \left(\begin{array}{ccc} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{array}\right).$$

Calculons le rang de *A* par l'algorithme de Gauss:

$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & -1 & -3 \end{pmatrix} \begin{matrix} L_2 - L_1 \\ L_3 - 2L_1 \end{matrix}$$

Soit

$$A = \left(\begin{array}{ccc} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{array}\right).$$

Calculons le rang de *A* par l'algorithme de Gauss:

$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & -1 & -3 \end{pmatrix} \begin{pmatrix} L_2 - L_1 \\ L_3 - 2L_1 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & -4 \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & -4 \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & -4 \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & -4 \end{pmatrix}$$

Soit

$$A = \left(\begin{array}{ccc} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{array}\right).$$

Calculons le rang de *A* par l'algorithme de Gauss:

$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & -1 & -3 \end{pmatrix} \begin{matrix} L_2 - L_1 \\ L_3 - 2L_1 \end{matrix}$$
$$\rightarrow \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & -4 \end{pmatrix} \begin{matrix} L_3 + L_2 \end{matrix}$$

La matrice obtenue à la fin est bien triangulaire et le nombre de lignes non nulles est égal à 3. D'où rang(A) = 3.

Rang et inverse

Proposition

Soit $A \in M_n(\mathbb{R})$. Les assertions suivantes sont équivalentes :

- **1** A est inversible (i.e. $A \in GL(n)$),
- ② $Ker(A) = \{0\},$
- rang(A) = n,

Exemple: calcul de l'inverse par l'algorithme de Gauss

Soit

$$A = \left(\begin{array}{ccc} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{array}\right).$$

Calculons l'inverse de *A* par l'algorithme de Gauss:

Exemple: calcul de l'inverse par l'algorithme de Gauss

Soit

$$A = \left(\begin{array}{ccc} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{array}\right).$$

Calculons l'inverse de *A* par l'algorithme de Gauss:

$$\left(\begin{array}{ccc|c} 1 & 1 & 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 1 & 0 \\ 2 & 1 & 1 & 0 & 0 & 1 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & -1 & -3 & -2 & 0 & 1 \end{array}\right) \rightarrow$$

Exemple: calcul de l'inverse par l'algorithme de Gauss

Soit

$$A = \left(\begin{array}{ccc} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{array}\right).$$

Calculons l'inverse de *A* par l'algorithme de Gauss:

$$\left(\begin{array}{ccc|ccc} 1 & 1 & 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 1 & 0 \\ 2 & 1 & 1 & 0 & 0 & 1 \end{array}\right) \rightarrow \left(\begin{array}{cccc|cccc} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & -1 & -3 & -2 & 0 & 1 \end{array}\right) \rightarrow$$

$$\left(\begin{array}{ccc|cccc}
1 & 1 & 2 & 1 & 0 & 0 \\
0 & 1 & -1 & -1 & 1 & 0 \\
0 & 0 & -4 & -3 & 1 & 1
\end{array}\right) \rightarrow \left(\begin{array}{cccccccc}
1 & 1 & 2 & 1 & 0 & 0 \\
0 & 1 & -1 & -1 & 1 & 0 \\
0 & 0 & 1 & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4}
\end{array}\right)$$

Calcul de l'inverse par l'algorithme de Gauss

Maintenant on applique l'algorithme du bas vers le haut:

$$\begin{pmatrix}
1 & 1 & 2 & 1 & 0 & 0 \\
0 & 1 & -1 & -1 & 1 & 0 \\
0 & 0 & 1 & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
0 & 1 & 0 & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\
0 & 0 & 1 & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4}
\end{pmatrix}$$

Calcul de l'inverse par l'algorithme de Gauss

Maintenant on applique l'algorithme du bas vers le haut:

$$\left(\begin{array}{ccc|c} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & 1 & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 & -\frac{1}{2} & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \\ 0 & 0 & 1 & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \end{array}\right)$$

$$\left(\begin{array}{ccc|c}
1 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
0 & 1 & 0 & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\
0 & 0 & 1 & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4}
\end{array}\right) \to \left(\begin{array}{ccc|c}
1 & 0 & 0 & -\frac{1}{4} & -\frac{1}{4} & \frac{3}{4} \\
0 & 1 & 0 & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\
0 & 0 & 1 & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4}
\end{array}\right)$$

Calcul de l'inverse par l'algorithme de Gauss

Maintenant on applique l'algorithme du bas vers le haut:

$$\left(\begin{array}{ccc|c} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & 1 & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\ 0 & 0 & 1 & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \end{array}\right)$$

$$\left(\begin{array}{cc|cccc} 1 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\ 0 & 0 & 1 & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \end{array}\right) \rightarrow \left(\begin{array}{cccccc} 1 & 0 & 0 & -\frac{1}{4} & -\frac{1}{4} & \frac{3}{4} \\ 0 & 1 & 0 & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\ 0 & 0 & 1 & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \end{array}\right)$$

$$\implies A^{-1} = \begin{pmatrix} -\frac{1}{4} & -\frac{1}{4} & \frac{3}{4} \\ -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\ \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \end{pmatrix}.$$