Teoria da Computação

Lema do Bombeamento e Operações Regulares

Aula 04

Prof. Felipe A. Louza

Roteiro

- 🚺 Lema do Bombeamento para Linguagens Regulares
 - Limitações dos AFs
 - Enunciado do Lema do Bombeamento
 - Linguagens Não-Regulares
- Operações sobre Linguagens
 - Operações Regulares
 - Fecho sobre as Operações Regulares
 - Outras Operações
- 3 Referências

Roteiro

- 🚺 Lema do Bombeamento para Linguagens Regulares
 - Limitações dos AFs
 - Enunciado do Lema do Bombeamento
 - Linguagens Não-Regulares
- Operações sobre Linguagens
 - Operações Regulares
 - Fecho sobre as Operações Regulares
 - Outras Operações
- 3 Referências

Para entender o poder computacional dos AFs precisamos entender suas limitações:

 Vamos ver que certas linguagens não podem ser reconhecidas por nenhum AF.

Exemplo:

$$L_1 = \{a^n b^n, n \ge 0\}$$

• Precisamos de um AF que "lembre" quantos a's foram vistos a medida que processamos $w = w_1 w_2 \dots w_i \dots w_n$

• Vamos ver que <u>não é possível</u> reconhecer $L_1 = \{a^n b^n, n \ge 0\}$ com nenhum AF!

Exemplo:

$$L_1 = \{a^n b^n, n \ge 0\}$$

• Precisamos de um AF que "lembre" quantos a's foram vistos a medida que processamos $w = w_1 w_2 \dots w_i \dots w_n$

• Vamos ver que <u>não é possível</u> reconhecer $L_1 = \{a^n b^n, n \ge 0\}$ com nenhum AF!

Logo, L não é uma Linguagem Regular.

Exemplo:

$$L_1 = \{a^n b^n, n \ge 0\}$$

 Precisamos de um AF que "lembre" quantos a's foram vistos a medida que processamos w = w₁ w₂ ... w_i ... w_n

- Vamos ver que <u>não é possível</u> reconhecer $L_1 = \{a^n b^n, n \ge 0\}$ com nenhum AF!
 - Logo, L <u>não é</u> uma Linguagem Regular.

Atenção:

 Nem sempre uma linguagem que "parece requerer" um AF com memória ilimitada realmente precisa.

Exemplo

 $L_2=\{w\ | w\in\{0,1\}^*\ ext{e}\ w\ ext{cont\'em um n\'umero igual de 01 e 10}\}$ $w=101\in L_2,\ ext{mas}\ w'=1010
otin L_2.$

Atenção:

 Nem sempre uma linguagem que "parece requerer" um AF com memória ilimitada realmente precisa.

Exemplo:

$$L_2=\{w\mid w\in\{0,1\}^*\ ext{e}\ w\ ext{cont\'em}\ ext{um}\ ext{n\'umero}\ ext{igual}\ ext{de}\ 01\ ext{e}\ 10\}$$
 $w=101\in L_2,\ ext{mas}\ w'=1010
otin L_2.$

Exemplo:

$$L_2=\{w\mid w\in\{0,1\}^*\ {
m e}\ w\ {
m cont\'em}\ {
m um}\ {
m n\'umero}\ {
m igual}\ {
m de}\ 01\ {
m e}\ 10\}$$

$${
m r_2}=(1^+0^*1^+)^*+(0^+1^*0^+)^*$$

Logo L_2 é uma Linguagem Regular.

Exemplo:

$$L_2 = \{ w \mid w \in \{0,1\}^* \text{ e } w \text{ cont\'em um n\'umero igual de } 01 \text{ e } 10 \}$$

$$\mathbf{r_2} = (1^+0^*1^+)^* + (0^+1^*0^+)^*$$

Logo L_2 é uma Linguagem Regular.

 $L_2 = L(N_2)$

Para mostrar que L é uma Linguagem Regular:

 É suficiente apresentar algum dos formalismos para reconhecer/gerar a linguagem:

Para provar que L não é uma Linguagem Regular:

 Vamos utilizar uma técnica conhecida como Lema do Bombeamento.

Para mostrar que L é uma Linguagem Regular:

• É suficiente apresentar algum dos formalismos para reconhecer/gerar a linguagem:

Para provar que *L* não é uma Linguagem Regular:

 Vamos utilizar uma técnica conhecida como Lema do Bombeamento.

Roteiro

- 🚺 Lema do Bombeamento para Linguagens Regulares
 - Limitações dos AFs
 - Enunciado do Lema do Bombeamento
 - Linguagens Não-Regulares
- Operações sobre Linguagens
 - Operações Regulares
 - Fecho sobre as Operações Regulares
 - Outras Operações
- Referências

Lema do Bombeamento

Se L é uma <u>Linguagem Regular</u>, então existe um <u>número p</u>, chamado de comprimento do bombeamento, tal que, para qualquer palavra $\underline{w \in L}$, com $|w| \ge p$, \underline{w} pode ser dividida em w = xyz, satisfazendo:

- $w' = \underline{xy^i z} \in L, \text{ para qualquer } i \ge 0;$
- **2** |y| > 0, e
- $|\underline{xy}| \leq p.$

Relembrando:

- |y| representa o tamanho da cadeia y.
- $y^i = \underbrace{yyy \dots y}_i$

Provado em 1959 por Michael Rabin e Dana Scott¹, ambos receberam o ACM Turing Award em 1976.

11

¹Ambos foram orientados por Alonzo Church.

Ideia do Lema:

- Se L é uma LR, então ela aceita um AFD M com p estados.
- Se o AFD M reconhece w, com $|w| \ge p$, obrigatoriamente² o AFD assume alguma estado q mais de uma vez, ou seja, existe um ciclo que passa por q.
- Logo, \underline{w} pode ser dividida em $w = \underline{xyz}$, com |y| > 0 e $|xy| \le p$.

12

²Pelo princípio da casa dos pombos

Ideia do Lema:

- Se L é uma LR, então ela aceita um AFD M com p estados.
- Se o AFD M reconhece w, com $|w| \ge p$, obrigatoriamente² o AFD assume alguma estado q mais de uma vez, ou seja, existe um ciclo que passa por q.
- Logo, \underline{w} pode ser dividida em w = xyz, com |y| > 0 e $|xy| \le p$.

12

²Pelo princípio da casa dos pombos.

Ideia do Lema:

- Se L é uma LR, então ela aceita um AFD M com p estados.
- Se o AFD M reconhece w, com $|w| \ge p$, obrigatoriamente² o AFD assume alguma estado q mais de uma vez, ou seja, existe um ciclo que passa por q.
- Logo, \underline{w} pode ser dividida em w = xyz, com |y| > 0 e $|xy| \le p$.
 - Portanto, qualquer cadeia $\underline{xy'z}$, para $i \ge 0$, é aceita pelo AFD M, isto é, $xy^iz \in L$.

²Pelo princípio da casa dos pombos.

Ideia do Lema:

- Se L é uma LR, então ela aceita um AFD M com p estados.
- Se o AFD M reconhece w, com $|w| \ge p$, obrigatoriamente² o AFD assume alguma estado q mais de uma vez, ou seja, existe um ciclo que passa por q.
- Logo, \underline{w} pode ser dividida em $w = \underline{xyz}$, com |y| > 0 e $|xy| \le p$.
 - Portanto, qualquer cadeia $\underline{xy^iz}$, para $i \ge 0$, é aceita pelo AFD M, isto é, $\underline{xy^iz} \in \underline{L}$.

²Pelo princípio da casa dos pombos.

Prova do Lema:

- Seja $M = (Q, \Sigma, \delta, q_0, F)$ um AFD com \underline{p} estados que reconhece a linguagem L.
- Seja $w = w_1 w_2 \dots w_n$ uma cadeia em L, com $|w| = n \ge p$.
- Considere a sequência de estados $\underline{r_1, r_2, \dots, r_{n+1}}$ nos quais M passa ao processar w, de forma que:

$$\delta(r_i, w_i) = r_{i+1}$$

ou seja,

Prova do Lema:

- Seja $M = (Q, \Sigma, \delta, q_0, F)$ um AFD com \underline{p} estados que reconhece a linguagem L.
- Seja $w = w_1 w_2 \dots w_n$ uma cadeia em L, com $|w| = n \ge p$.
- Considere a sequência de estados $\underline{r_1, r_2, \dots, r_{n+1}}$ nos quais M passa ao processar w, de forma que:

ou seia.

Prova do Lema:

- Seja $M = (Q, \Sigma, \delta, q_0, F)$ um AFD com \underline{p} estados que reconhece a linguagem L.
- Seja $w = w_1 w_2 \dots w_n$ uma cadeia em L, com $|w| = n \ge p$.
- Considere a sequência de estados $\underline{r_1, r_2, \dots, r_{n+1}}$ nos quais M passa ao processar w, de forma que:

$$\delta(r_i, w_i) = r_{i+1}$$

ou seja,

Prova do Lema: (continuação)

• Temos que $|r_1, r_2, \dots, r_{n+1}| = n+1$, que é pelo menos $\underline{p+1}$ já que $|w| \ge p$.

- Então, pelo princípio da casa dos pombos, pelo menos dois estados devem ser o mesmo entre os primeiros p + 1 estados.
- Suponha que $r_i = r_k$, para $1 \le j < k \le p+1$:

 $r_1, r_2, \ldots, r_j, \ldots, r_k, \ldots, r_{n+1}$

Prova do Lema: (continuação)

• Temos que $|r_1, r_2, \dots, r_{n+1}| = n+1$, que é pelo menos $\underline{p+1}$ já que $|w| \ge p$.

- Então, pelo princípio da casa dos pombos, pelo menos dois estados devem ser o mesmo entre os primeiros p + 1 estados.
- Suponha que $r_i = r_k$, para $1 \le i \le k \le p+1$:

 $r_1, r_2, \ldots, r_j, \ldots, r_k, \ldots, r_{n+1}$

Prova do Lema: (continuação)

• Temos que $|r_1, r_2, \dots, r_{n+1}| = n+1$, que é pelo menos $\underline{p+1}$ já que $|w| \ge p$.

- Então, pelo princípio da casa dos pombos, pelo menos dois estados devem ser o mesmo entre os primeiros p + 1 estados.
- Suponha que $r_i = r_k$, para $1 \le j < k \le p+1$:

$$r_1, r_2, \ldots, r_{\mathbf{i}}, \ldots, r_{\mathbf{k}}, \ldots, r_{n+1}$$

Prova do Lema: (continuação)

• O caminho $\underline{\delta}(r_1, w)$ está ilustrado na figura abaixo:

Dessa forma:

Prova do Lema: (continuação)

• O caminho $\underline{\delta}(r_1, w)$ está ilustrado na figura abaixo:

Dessa forma:

Prova do Lema: (continuação)

Agora, considere $x = w_1 \dots w_{j-1}$, $y = w_j \dots w_{k-1}$ e $z = w_k \dots w_n$, então temos que:

- **1** O AFD M deve aceitar qualquer cadeia xy^iz , para $i \ge 0$.
- |y| > 0, já que $j \neq k$.
- $|xy| \le p$, já que $k \le p + 1$.

Portanto

Prova do Lema: (continuação)

Agora, considere $x = w_1 \dots w_{j-1}$, $y = w_j \dots w_{k-1}$ e $z = w_k \dots w_n$, então temos que:

- **1** O AFD M deve aceitar qualquer cadeia xy^iz , para $i \ge 0$.
- |y| > 0, já que $j \neq k$.
- $|xy| \le p$, já que $k \le p + 1$.

 $r_1, r_2, \ldots, r_j, \ldots, r_k, \ldots, r_{n+1}$

Portanto:

$$xy^iz \in L$$

Exemplo do Lema:

$$L_3 = \{ab^n a \mid n \ge 0\}$$

• Sabemos que *L*₃ é regular:

- Pelo *Lema do bombeamento* podemos reescrever $\underline{w = xyz \in L_3}$ com $|w| \ge p$ e, nesse caso p = 3, tal que:
 - ① $w = xy^iz \in L_3$, para qualquer $i \ge 0$
 - **2** |y| > 0;

Exemplo do Lema:

$$L_3 = \{ab^n a \mid n \ge 0\}$$

• Sabemos que *L*₃ é regular:

- Pelo *Lema do bombeamento* podemos reescrever $\underline{w = xyz \in L_3}$, com $|w| \ge p$ e, nesse caso p = 3, tal que:

 - 2 |y| > 0; e
 - $|xy| \leq p.$

$$a\underline{b}a \rightarrow \{aa, a\underline{b}a, a\underline{bb}a, a\underline{bbb}a, \dots\}$$

 $a\underline{b}bba \to \{abba, a\underline{b}bba, a\underline{b}bbba, a\underline{b}bbbba, ...\}$ $ab\underline{b}bbbba \to \{abbbbba, ab\underline{b}bbbba, ab\underline{b}bbbba, ab\underline{b}bbbba, ...\}$

Exemplo do Lema:

$$L_3 = \{ab^n a \mid n \ge 0\}$$

• Sabemos que *L*₃ é regular:

- Pelo *Lema do bombeamento* podemos reescrever $\underline{w = xyz \in L_3}$, com $|w| \ge p$ e, nesse caso p = 3, tal que:

 - 2 |y| > 0; e
 - $|xy| \leq p.$

$$a\underline{b}a \rightarrow \{aa, a\underline{b}a, a\underline{bb}a, a\underline{bbb}a, \dots\}$$

 $a\underline{b}bba \rightarrow \{abba, a\underline{b}bba, a\underline{bbb}bba, a\underline{bbb}bba, \dots\}$

 $ab\underline{b}bbbba o \{abbbbbba, ab\underline{b}bbbba, ab\underline{bb}bbbba, ab\underline{bbb}bbbba, \dots$

Exemplo do Lema:

$$L_3 = \{ab^n a \mid n \ge 0\}$$

• Sabemos que *L*₃ é regular:

- Pelo *Lema do bombeamento* podemos reescrever $\underline{w = xyz \in L_3}$, com $|w| \ge p$ e, nesse caso p = 3, tal que:

 - |y| > 0; e
 - $|xy| \leq p.$

```
a\underline{b}a \rightarrow \{aa, a\underline{b}a, a\underline{bbb}a, a\underline{bbb}a, \dots\}
a\underline{b}bba \rightarrow \{abba, a\underline{b}bba, a\underline{bb}bba, a\underline{bbb}bba, \dots\}
ab\underline{b}bbbba \rightarrow \{abbbbba, ab\underline{b}bbbba, ab\underline{bbb}bbba, \dots\}
```

Exemplo do Lema:

$$L_3 = \{ab^n a \mid n \ge 0\}$$

• Sabemos que *L*₃ é regular:

- Pelo *Lema do bombeamento* podemos reescrever $\underline{w = xyz \in L_3}$, com $|w| \ge p$ e, nesse caso p = 3, tal que:

 - 2 |y| > 0; e
 - $|xy| \leq p.$

$$a\underline{b}a \rightarrow \{aa, a\underline{b}a, a\underline{bbb}a, a\underline{bbb}a, \dots\}$$

$$a\underline{b}bba \rightarrow \{abba, a\underline{b}bba, a\underline{bb}bba, a\underline{bbb}bba, \dots\}$$

$$ab\underline{b}bbbba \rightarrow \{abbbbba, ab\underline{b}bbbba, ab\underline{bb}bbba, ab\underline{bbb}bbba, \dots\}$$

Algumas divisões possíveis de \underline{w} produzem cadeias fora de L_3 , ex: $w = \mathcal{E}_{\underline{ab}}a$.

Importante:

O lema do bombeamento **não é** uma condição necessária e suficiente para a regularidade de uma linguagem:

- Se o lema não é satisfeito para $L \implies L$ não é regular.
- Mas se o lema é satisfeito para L, então L pode ou não ser regular.

Vamos usar o **Lema do Bombeamento** para provar que uma linguagem L não é regular.

Uso do Lema do Bombeamento:

Lema L é uma $LR \rightarrow \exists$ propriedades do bombeamento

Uso \nexists propriedades do bombeamento \rightarrow L não é uma LR

Para cada caso, iremos construir uma prova por absurdo.

Relembrando: Se $P \rightarrow Q$ então $\neg Q \rightarrow \neg P$ (Contrapositiva)

Vamos usar o **Lema do Bombeamento** para provar que uma linguagem L não é regular.

Uso do Lema do Bombeamento:

Lema L é uma $LR \rightarrow \exists$ propriedades do bombeamento

Uso \nexists propriedades do bombeamento $\rightarrow L$ não é uma LR

Para cada caso, iremos construir uma prova por absurdo.

Vamos usar o Lema do Bombeamento para provar que uma linguagem L não é regular.

Uso do Lema do Bombeamento:

Lema L é uma $LR \rightarrow \exists$ propriedades do bombeamento

Uso \nexists propriedades do bombeamento $\rightarrow L$ não é uma LR

Para cada caso, iremos construir uma prova por absurdo.

Antes, vamos pensar no seguinte caso:

• E se a linguagem L possui apenas palavras com tamanho menor do que p? $L_4 = \{a^nb^n \mid n < 5\}$

Por vacuidade, todos os casos do lema para |w| \geq p s\tilde{a}o verdadeiros

 Nesses casos em que L possui apenas |w| limitado, sempre podemos construir um AFD para reconhecer L:

$$\xrightarrow{a} \xrightarrow{(g_1)} \xrightarrow{a} \xrightarrow{(g_2)} \xrightarrow{a} \xrightarrow{(g_3)} \xrightarrow{a} \xrightarrow{(g_4)} \xrightarrow{a} \xrightarrow{(g_5)} \xrightarrow{a} \xrightarrow{(g_5)} \xrightarrow{b} \xrightarrow{(g_5)} \xrightarrow{b} \xrightarrow{(g_5)} \xrightarrow{b} \xrightarrow{(g_5)} \xrightarrow{a} \xrightarrow{(g_5)} \xrightarrow{(g_$$

Corolário

Toda linguagem L finita é uma Linguagem Regular.

verdadeiros.

Antes, vamos pensar no seguinte caso:

• E se a linguagem L possui apenas palavras com tamanho menor do que p? $L_4 = \{a^nb^n \mid n < 5\}$

– Por vacuidade, todos os casos do lema para $|w| \geq p$ são

 Nesses casos em que L possui apenas |w| limitado, sempre podemos construir um AFD para reconhecer L:

Corolário

Toda linguagem L finita é uma Linguagem Regular.

Antes, vamos pensar no seguinte caso:

• E se a linguagem L possui apenas palavras com tamanho menor do que p? $L_4 = \{a^n b^n \mid n \le 5\}$

- Por vacuidade, todos os casos do lema para |w| > p são verdadeiros.

 Nesses casos em que L possui apenas | w | limitado, sempre podemos construir um AFD para reconhecer L:

Antes, vamos pensar no seguinte caso:

 E se a linguagem L possui apenas palavras com tamanho menor do que p?

$$L_4 = \{a^n b^n \mid n \le 5\}$$

- Por vacuidade, todos os casos do lema para $|w| \ge p$ são verdadeiros.
- Nesses casos em que L possui apenas |w| limitado, sempre podemos construir um AFD para reconhecer L:

Corolário:

Toda linguagem L finita é uma Linguagem Regular.

Roteiro

- 🚺 Lema do Bombeamento para Linguagens Regulares
 - Limitações dos AFs
 - Enunciado do Lema do Bombeamento
 - Linguagens Não-Regulares
- Operações sobre Linguagens
 - Operações Regulares
 - Fecho sobre as Operações Regulares
 - Outras Operações
- 3 Referências

$$L_5 = \{a^n b^n \mid n \ge 0\}$$

$$L_5 = \{a^n b^n \mid n \ge 0\}$$

$$L_5 = \{a^n b^n \mid n \ge 0\}$$

- Pelo *Lema do bombeamento* reescrevemos w = xyz, tal que:
 - $w = xy^iz \in L_5$, para qualquer $i \ge 0$;
 - ② |y| > 0; e
 - $||xy|| \leq p.$
- Casos:

$$L_5 = \{a^n b^n \mid n \ge 0\}$$

- Pelo *Lema do bombeamento* reescrevemos w = xyz, tal que:

 - |y| > 0;
- Casos

$$L_5 = \{a^n b^n \mid n \ge 0\}$$

- Pelo *Lema do bombeamento* reescrevemos w = xyz, tal que:
 - $w = xy^iz \in L_5$, para qualquer $i \ge 0$;
 - 2 |y| > 0; e
 - $|xy| \leq p$.
- Casos

$$L_5 = \{a^n b^n \mid n \ge 0\}$$

- Pelo *Lema do bombeamento* reescrevemos w = xyz, tal que:
 - $w = xy^iz \in L_5$, para qualquer $i \ge 0$;
 - 2 |y| > 0; e
 - $3 |xy| \leq p.$
- Casos:

$$L_5 = \{a^n b^n \mid n \ge 0\}$$

- Pelo Lema do bombeamento reescrevemos w = xyz, tal que:

 - |y| > 0; e
 - $|xy| \leq p.$
- Casos:
 - Vamos supor que \underline{y} contém apenas a's:
 - Vamos supor que y contém apenas b's:
 - Vamos supor que $y = a \dots ab \dots b$:

$$L_5 = \{a^n b^n \mid n \ge 0\}$$

- Pelo Lema do bombeamento reescrevemos w = xyz, tal que:
 - $w = xy^iz \in L_5$, para qualquer $i \ge 0$;
 - 2 |y| > 0; e
 - $3 |xy| \leq p.$
- Casos:
 - Vamos supor que y contém apenas a's:
 - − Neste caso, $\underline{xy^2z}$ tem mais a's do que b's, e $xy^2z \notin L_5 \leftarrow$ Contradição
 - Vamos supor que y contém apenas b's:
 - Vamos supor que $y = a \dots ab \dots b$:

$$L_5 = \{a^n b^n \mid n \ge 0\}$$

- Pelo Lema do bombeamento reescrevemos w = xyz, tal que:

 - 2 |y| > 0; e
 - $3 |xy| \leq p.$
- Casos:
 - Vamos supor que \underline{y} contém apenas a's:
 - − Neste caso, xy^2z tem mais a's do que b's, e $xy^2z \notin L_5$ ← Contradição!
 - Vamos supor que y contém apenas b's:
 - Vamos supor que $y = a \dots ab \dots b$:

$$L_5 = \{a^n b^n \mid n \ge 0\}$$

- Pelo Lema do bombeamento reescrevemos w = xyz, tal que:

 - |y| > 0; e
 - $|xy| \leq p.$
- Casos:
 - Vamos supor que \underline{y} contém apenas a's:
 - − Neste caso, xy^2z tem mais a's do que b's, e $xy^2z \notin L_5 \leftarrow$ Contradição!
 - Vamos supor que y contém apenas b's:
 - − Da mesma forma, $xy^2z \notin L_5$. ← Contradição!
 - Vamos supor que $y = a \dots ab \dots b$:

$$L_5 = \{a^n b^n \mid n \ge 0\}$$

- Pelo Lema do bombeamento reescrevemos w = xyz, tal que:

 - 2 |y| > 0; e
 - $3 |xy| \leq p.$
- Casos:
 - Vamos supor que \underline{y} contém apenas a's:
 - − Neste caso, xy^2z tem mais a's do que b's, e $xy^2z \notin L_5 \leftarrow$ Contradição!
 - Vamos supor que y contém apenas b's:
 - Da mesma forma, xy²z ∉ L₅. ← Contradição!
 - Vamos supor que $y = a \dots ab \dots b$:

$$L_5 = \{a^n b^n \mid n \ge 0\}$$

Suponha que L_5 é regular, e p o comprimento de bombeamento, considere $w = \mathbf{a}^p \mathbf{b}^p \in L_5$, com $|w| \ge p$.

- Pelo Lema do bombeamento reescrevemos w = xyz, tal que:

 - |y| > 0; e
 - $3 |xy| \leq p.$
- Casos:
 - Vamos supor que \underline{y} contém apenas a's:
 - − Neste caso, xy^2z tem mais a's do que b's, e $xy^2z \notin L_5 \leftarrow$ Contradição!
 - Vamos supor que y contém apenas b's:
 - Da mesma forma, xy²z ∉ L₅. ← Contradição!
 - Vamos supor que $y = a \dots ab \dots b$:

 $xy^2z=x$ $a\dots ab\dots b$ $a\dots ab\dots b$ $z\notin L_5$. \leftarrow Contradição!

$$L_5 = \{a^nb^n \mid n \ge 0\}$$

Suponha que L_5 é regular, e p o comprimento de bombeamento, considere $w = \mathbf{a}^p \mathbf{b}^p \in L_5$, com $|w| \ge p$.

- Pelo *Lema do bombeamento* reescrevemos w = xyz, tal que:

 - |y| > 0; e
 - $3 |xy| \leq p.$
- Casos:
 - Vamos supor que \underline{y} contém apenas a's:
 - − Neste caso, xy^2z tem mais a's do que b's, e $xy^2z \notin L_5 \leftarrow$ Contradição!
 - Vamos supor que y contém apenas b's:
 - Da mesma forma, $xy^2z \notin L_5$. ← Contradição!
 - Vamos supor que $y = a \dots ab \dots b$:
 - $-xy^2z = x \underline{a \dots ab \dots b} \underline{a \dots ab \dots b} z \notin L_5. \leftarrow$ Contradição!

 \nexists propriedades do bombeamento \rightarrow L não é uma LR

$$L_5 = \{a^nb^n \mid n \ge 0\}$$

Suponha que L_5 é regular, e p o comprimento de bombeamento, considere $w = \mathbf{a}^p \mathbf{b}^p \in L_5$, com $|w| \ge p$.

- Pelo *Lema do bombeamento* reescrevemos w = xyz, tal que:

 - |y| > 0; e
 - $|xy| \leq p.$
- Casos:
 - Vamos supor que \underline{y} contém apenas a's:
 - − Neste caso, xy^2z tem mais a's do que b's, e $xy^2z \notin L_5 \leftarrow$ Contradição!
 - Vamos supor que y contém apenas b's:
 - Da mesma forma, $xy^2z \notin L_5$. ← Contradição!
 - Vamos supor que $y = a \dots ab \dots b$:
 - $-xy^2z = x$ <u>a...ab...b</u> <u>a...ab...b</u> z ∉ L₅. ← Contradição!

 \nexists propriedades do bombeamento \rightarrow L não é uma LR

$$L_6 = \{ww \mid w \in \{0,1\}^*\}$$

Suponha que L_6 é regular, e p o comprimento de bombeamento, considere $w = 0^p 10^p 1 \in L_6$, com $|w| \ge p$.

- Pelo Lema do bombeamento reescrevemos w = xyz, tal que
 - ① $w = xy^iz \in L_6$, para qualquer $i \ge 0$;
 - |y| > 0; e
 - $|xy| \leq p.$
- Casos

Pela condição (3): $|sy| \le
ho \implies y$ contém apenas 0's s

$$L_6 = \{ww \mid w \in \{0,1\}^*\}$$

- Pelo Lema do bombeamento reescrevemos w = xyz, tal que
 - ① $w = xy^iz \in L_6$, para qualquer $i \ge 0$;
 - |y| > 0; e
- Casos
 - Pela condição (3): $|xy| \le p \implies y$ contêm apenas 0's

$$L_6 = \{ ww \mid w \in \{0,1\}^* \}$$

- Pelo *Lema do bombeamento* reescrevemos w = xyz, tal que:

 - 2 |y| > 0; e
 - $|xy| \leq p.$
- Casos

$$L_6 = \{ ww \mid w \in \{0,1\}^* \}$$

- Pelo *Lema do bombeamento* reescrevemos w = xyz, tal que:

 - |y| > 0; e
 - $|xy| \leq p.$
- Casos:
 - Pela condição (3): $|xy| \le p \implies y$ contém apenas 0's
 - Logo, para $i \ge 2$, $xy^iz \notin L_6$ ← Contradição!
 - Por exemplo, $xy^2z = 0...00...000...001$ 0...01 ∉ L_6

$$L_6 = \{ww \mid w \in \{0,1\}^*\}$$

- Pelo *Lema do bombeamento* reescrevemos w = xyz, tal que:

 - |y| > 0; e
 - $|xy| \le p.$
- Casos:
 - Pela condição (3): $|xy| \le p \implies \underline{y}$ contém apenas 0's
 - Logo, para $i \ge 2$, $xy^iz \notin L_6$ ← Contradição!
 - Por exemplo, $xy^2z = 0...00...00...0010...01$ ∉ L_6

$$L_6 = \{ww \mid w \in \{0,1\}^*\}$$

Suponha que L_6 é regular, e p o comprimento de bombeamento, considere $w=0^p10^p1\in L_6$, com $|w|\geq p$.

- Pelo *Lema do bombeamento* reescrevemos w = xyz, tal que:
 - $w = xy^iz \in L_6$, para qualquer $i \ge 0$;
 - |y| > 0; e
 - $|xy| \leq p.$
- Casos:
 - Pela condição (3): $|xy| \le p \implies \underline{y}$ contém apenas 0's
 - Logo, para $i \ge 2$, $xy^iz \notin L_6$ ← Contradição!
 - Por exemplo, $xy^2z = 0...00...00...0010...01$ ∉ L_6

 \nexists propriedades do bombeamento ightarrow L não é uma LR

$$L_6 = \{ ww \mid w \in \{0,1\}^* \}$$

Suponha que L_6 é regular, e p o comprimento de bombeamento, considere $w=0^p10^p1\in L_6$, com $|w|\geq p$.

- Pelo Lema do bombeamento reescrevemos w = xyz, tal que:

 - |y| > 0; e
 - $|xy| \leq p.$
- Casos:
 - Pela condição (3): $|xy| \le p \implies \underline{y}$ contém apenas 0's
 - Logo, para $i \ge 2$, $xy^iz \notin L_6$ ← Contradição!
 - Por exemplo, $xy^2z = 0...00...00...0010...01$ ∉ L_6

 \nexists propriedades do bombeamento \rightarrow L não é uma LR

Roteiro

- Lema do Bombeamento para Linguagens Regulares
 - Limitações dos AFs
 - Enunciado do Lema do Bombeamento
 - Linguagens Não-Regulares
- Operações sobre Linguagens
 - Operações Regulares
 - Fecho sobre as Operações Regulares
 - Outras Operações
- 3 Referências

Roteiro

- Lema do Bombeamento para Linguagens Regulares
 - Limitações dos AFs
 - Enunciado do Lema do Bombeamento
 - Linguagens Não-Regulares
- Operações sobre Linguagens
 - Operações Regulares
 - Fecho sobre as Operações Regulares
 - Outras Operações
- 3 Referências

Definição:

Sejam A e B duas linguagens. Definimos as seguintes operações sobre linguagens:

- **① União**: $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$
- **②** Concatenação: $AB = \{xy \mid x \in A \text{ e } y \in B\}$
- **① Estrela**: $A^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ e cada } x_i \in A\}$

Exemplos

• Considere $A = \{ legal, ruim \} e B = \{ garoto, garota \}$:

Definição:

Sejam A e B duas linguagens. Definimos as seguintes *operações sobre linguagens*:

- **1 União**: $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$
- **②** Concatenação: $AB = \{xy \mid x \in A \text{ e } y \in B\}$
- **3** Estrela: $A^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ e cada } x_i \in A\}$

Exemplos

• Considere $A = \{ legal, ruim \} e B = \{ garoto, garota \}$:

Definição:

Sejam A e B duas linguagens. Definimos as seguintes *operações sobre linguagens*:

- **1 União**: $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$
- **2** Concatenação: $AB = \{xy \mid x \in A \text{ e } y \in B\}.$
- **Solution Estrela**: $A^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ e cada } x_i \in A \}$

Exemplos

• Considere $A = \{ legal, ruim \} \in B = \{ garoto, garota \} :$

Definição:

Sejam A e B duas linguagens. Definimos as seguintes *operações sobre linguagens*:

- **1 União**: $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$
- **2** Concatenação: $AB = \{xy \mid x \in A \text{ e } y \in B\}.$
- **3** Estrela: $A^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ e cada } x_i \in A\}.$

Exemplos

• Considere $A = \{ legal, ruim \} \in B = \{ garoto, garota \} :$

Definição:

Sejam A e B duas linguagens. Definimos as seguintes *operações sobre linguagens*:

- **1 União**: $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$
- **2** Concatenação: $AB = \{xy \mid x \in A \text{ e } y \in B\}.$
- **3** Estrela: $A^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ e cada } x_i \in A\}.$

Exemplos:

• Considere $A = \{ legal, ruim \} \in B = \{ garoto, garota \} :$

Definição:

Sejam A e B duas linguagens. Definimos as seguintes *operações sobre linguagens*:

- **1 União**: $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$
- **2** Concatenação: $AB = \{xy \mid x \in A \text{ e } y \in B\}.$
- **3** Estrela: $A^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ e cada } x_i \in A\}.$

- Considere $A = \{ legal, ruim \} e B = \{ garoto, garota \}$:
 - $A \cup B = \{ \text{legal}, \text{ruim}, \text{garoto}, \text{garota} \}$
 - \bigcirc $AB = \{$ legalgaroto, legalgarota, ruimgaroto, ruimgarota

Definição:

Sejam A e B duas linguagens. Definimos as seguintes *operações sobre linguagens*:

- **1 União**: $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$
- **2** Concatenação: $AB = \{xy \mid x \in A \text{ e } y \in B\}.$
- **3** Estrela: $A^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ e cada } x_i \in A\}.$

- Considere $A = \{ legal, ruim \} e B = \{ garoto, garota \}$:

 - \bigcirc $AB = \{$ legalgaroto, legalgarota, ruimgaroto, ruimgarota

Definição:

Sejam A e B duas linguagens. Definimos as seguintes *operações sobre linguagens*:

- **1 União**: $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$
- **2** Concatenação: $AB = \{xy \mid x \in A \text{ e } y \in B\}.$
- **3** Estrela: $A^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ e cada } x_i \in A\}.$

- Considere $A = \{ legal, ruim \} e B = \{ garoto, garota \}$:

 - $AB = \{legalgaroto, legalgarota, ruimgaroto, ruimgarota\}$

Definição:

Sejam A e B duas linguagens. Definimos as seguintes *operações sobre linguagens*:

- **1 União**: $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$
- **2** Concatenação: $AB = \{xy \mid x \in A \text{ e } y \in B\}.$
- **3** Estrela: $A^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ e cada } x_i \in A\}.$

- Considere $A = \{ legal, ruim \} e B = \{ garoto, garota \}$:

 - ② AB = {legalgaroto, legalgarota, ruimgaroto, ruimgarota}

Definição

Dizemos que uma coleção de objetos $X = \{x_1, x_2, \dots, x_n\}$ é **fechada** sobre uma operação o se quando aplicamos essa operação a membros da coleção:

$$x_i \circ x_j = x_k$$

obtemos objetos da mesma coleção $x_i, x_j, x_k \in X$.

Definição

Dizemos que uma coleção de objetos $X = \{x_1, x_2, \dots, x_n\}$ é **fechada** sobre uma operação o se quando aplicamos essa operação a membros da coleção:

$$x_i \circ x_j = x_k$$

obtemos objetos da mesma coleção $x_i, x_j, x_k \in X$.

- Considere o conjunto dos números naturais $\mathbb{N} = \{1, 2, \dots\}$:
 - **1** N é fechado sobre a operação de **multiplicação**, já que para quaisquer $x, v \in \mathbb{N}$, x * v está em \mathbb{N} .
 - ② Entretanto, $\mathbb N$ não é fechado sobre a **divisão**, pois 1 e 2 estão em $\mathbb N$, mas 1/2 não está.

Definição

Dizemos que uma coleção de objetos $X = \{x_1, x_2, \dots, x_n\}$ é **fechada** sobre uma operação o se quando aplicamos essa operação a membros da coleção:

$$x_i \circ x_j = x_k$$

obtemos objetos da mesma coleção $x_i, x_j, x_k \in X$.

- Considere o conjunto dos números naturais $\mathbb{N} = \{1, 2, \dots\}$:
 - ① \mathbb{N} é fechado sobre a operação de multiplicação, já que para quaisquer $x, y \in \mathbb{N}$, x * y está em \mathbb{N} .
 - ② Entretanto, N não é fechado sobre a divisão, pois 1 e 2 estão em N, mas 1/2 não está.

Definição

Dizemos que uma coleção de objetos $X = \{x_1, x_2, \dots, x_n\}$ é **fechada** sobre uma operação o se quando aplicamos essa operação a membros da coleção:

$$x_i \circ x_j = x_k$$

obtemos objetos da mesma coleção $x_i, x_j, x_k \in X$.

- Considere o conjunto dos números naturais $\mathbb{N} = \{1, 2, \dots\}$:
 - ¶ é fechado sobre a operação de multiplicação, já que para quaisquer x, y ∈ N, x * y está em N.
 - ② Entretanto, $\mathbb N$ não é fechado sobre a **divisão**, pois 1 e 2 estão em $\mathbb N$, mas 1/2 não está.

Vamos ver que as Linguagens Regulares são fechadas sobre as operações de União, Concatenação e Estrela.

- Isso significa que podemos "formar" Linguagens Regulares a partir de outras com essas operações.
- Essas operações são chamadas de Operações Regulares

Vamos ver que as Linguagens Regulares são fechadas sobre as operações de União, Concatenação e Estrela.

- Isso significa que podemos "formar" Linguagens Regulares a partir de outras com essas operações.
- Essas operações são chamadas de Operações Regulares.

Roteiro

- Lema do Bombeamento para Linguagens Regulares
 - Limitações dos AFs
 - Enunciado do Lema do Bombeamento
 - Linguagens Não-Regulares
- Operações sobre Linguagens
 - Operações Regulares
 - Fecho sobre as Operações Regulares
 - Outras Operações
- 3 Referências

Teorema:

A classe das Linguagens Regulares é fechada sobre a operação de **União**.

Em outras palavras, se A_1 e A_2 são linguagens regulares, o mesmo vale para $A_1 \cup A_2 = \{x \mid x \in A_1 \text{ ou } x \in A_2\}.$

Ideia da prova:

• Sejam N_1 e N_2 os AFN_Es que reconhecem as linguagens A_1 e A_2 .

• Vamos construir um novo AFN $_{\mathcal{E}}$ N que aceita uma cadeia w se N_1 ou N_2 aceita w.

Ideia da prova:

• Sejam N_1 e N_2 os AFN $_{\mathcal{E}}$ s que reconhecem as linguagens A_1 e A_2 .

• Vamos construir um novo AFN $_{\mathcal{E}}$ N que aceita uma cadeia w se N_1 ou N_2 aceita w.

Ideia da prova (continuação):

• O AFN_E N tem um novo estado inicial que ramifica para os estados inicias de N_1 e N_2 com arcos- \mathcal{E} :

- Não-determinísmo:
 - O novo AFN $_{\mathcal{E}}$ "adivinha" qual dos autômatos aceita a entrada. Se N_1 ou N_2 aceitar, N também aceitará.

Prova:

- Suponha que:
 - $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ reconhece A_1 ; e - $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ reconhece A_2 .
- Construa $N = (Q, \Sigma, \delta, q_0, F)$ para reconhecer $A_1 \cup A_2$.
 - $Q = \{q_0\} \cup Q_1 \cup Q_2$
 - Q_0 é o estado inicial
 - **3** Os estados de aceitação são $F = F_1 \cup F_2$

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \\ \delta_2(q, a) & q \in Q_2 \\ \{q_1\} \cup \{q_2\} & q = q_0 \text{ e } a = \mathcal{E} \\ \varnothing & q = q_0 \text{ e } a \neq \mathcal{E} \end{cases}$$

Por construção, é fácil ver que N aceita $w \iff N_1$ ou N_2 aceitam w.

Teorema:

A classe das Linguagens Regulares é fechada sobre a operação de **Concatenação**.

Em outras palavras, se A_1 e A_2 são linguagens regulares, o mesmo vale para $A_1A_2=\{xy\mid x\in A_1\text{ e }y\in A_2\}.$

Ideia da prova:

• Sejam N_1 e N_2 os AFN_Es que reconhecem as linguagens A_1 e A_2 .

• Vamos construir um novo AFN $_{\mathcal{E}}$ N que aceita w se a primeira parte dela (prefixo) for aceita por N_1 e a segunda parte (sufixo) for aceito por N_2 .

- O estado inicial do AFN $_{\mathcal{E}}$ N é o mesmo de N_1 .
- Os estados em F_1 tem arcos- \mathcal{E} para q_2 .
- $F = F_2$.

 $A_1A_2 = \{ w \mid w = w_1w_2 \text{ com } w_1 \in A_1 \text{ e } w_2 \in A_2 \}$

- O estado inicial do AFN $_{\mathcal{E}}$ N é o mesmo de N_1 .
- Os estados em F_1 tem arcos- \mathcal{E} para q_2 .
- $F = F_2$.

- O novo AFN_E aceita qualquer cadeia que pode ser dividida em duas partes, a primeira aceita por N_1 e a segunda por N_2 .
- Não-determinismo:

$$A_1A_2 = \{ w \mid w = w_1w_2 \text{ com } w_1 \in A_1 \text{ e } w_2 \in A_2 \}$$

Ideia da prova (continuação):

- O estado inicial do AFN_{\mathcal{E}} N é o mesmo de N_1 .
- Os estados em F_1 tem arcos- \mathcal{E} para q_2 .
- $F = F_2$.

- O novo AFN_E aceita qualquer cadeia que pode ser dividida em duas partes, a primeira aceita por N_1 e a segunda por N_2 .
- Não-determinísmo:

Podemos pensar que N "adivinha" onde dividir w

$$A_1A_2 = \{ w \mid w = w_1w_2 \text{ com } w_1 \in A_1 \text{ e } w_2 \in A_2 \}$$

- O estado inicial do AFN $_{\mathcal{E}}$ N é o mesmo de N_1 .
- Os estados em F_1 tem arcos- \mathcal{E} para q_2 .
- $F = F_2$.

- O novo AFN_E aceita qualquer cadeia que pode ser dividida em duas partes, a primeira aceita por N_1 e a segunda por N_2 .
- Não-determinísmo:
 - Podemos pensar que N "adivinha" onde dividir w.

$$A_1A_2 = \{ w \mid w = w_1w_2 \text{ com } w_1 \in A_1 \text{ e } w_2 \in A_2 \}$$

Prova:

Suponha que:

-
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 reconhece A_1 ; e
- $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ reconhece A_2 .

- Construa $N = (Q, \Sigma, \delta, q_1, F)$ para reconhecer $A_1 \cup A_2$.

 - Q_1 é o estado inicial
 - **3** Os estados de aceitação são $F = F_2$

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ e } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ e } a \neq \mathcal{E} \\ \delta_1(q,a) \cup \{q_2\} & q \in F_1 \text{ e } a = \mathcal{E} \\ \delta_2(q,a) & q \in Q_2 \end{cases}$$

Por construção, é fácil ver que N aceita $w \iff N_1$ aceita um prefixo de $w \in N_2$ aceita o sufixo restante.

Teorema:

A classe das Linguagens Regulares é fechada sobre a operação de **Estrela**.

Em outras palavras, se A_1 é uma linguagem regular, o mesmo vale para $A_1^* = \{x_1 x_2 \dots x_k \mid k \geq 0 \text{ e cada } x_i \in A\}.$

Ideia da prova:

• Seja N_1 o AFN_{\mathcal{E}} que reconhece a linguagem A_1 .

• Vamos construir um novo AFN $_{\mathcal{E}}$ N que aceita w se ela puder ser "quebrada" em várias partes e N_1 aceite cada uma das partes

Ideia da prova (continuação):

- O AFN $_{\mathcal{E}}$ N tem um novo estado inicial com um arco- \mathcal{E} para q_1 .
- Adicionamos arcos-E retornando para q₁ a partir de todos os estados q¡ ∈ F₁.
- *N* deve aceitar \mathcal{E} , por isso $q_0 \in F$

Não-determinismo

$$A_1^* = \{x_1x_2\dots x_k \mid k \geq 0 \text{ e cada } x_i \in A\}$$

Ideia da prova (continuação):

- O AFN $_{\mathcal{E}}$ N tem um novo estado inicial com um arco- \mathcal{E} para q_1 .
- Adicionamos arcos-E retornando para q₁ a partir de todos os estados qᵢ ∈ F₁.
- N deve aceitar \mathcal{E} , por isso $q_0 \in$

$$\rightarrow \boxed{q_0} \qquad \stackrel{\mathcal{E}}{\longrightarrow} \qquad \stackrel{\tilde{\partial}(q_1,w)}{\longrightarrow} \qquad \stackrel{\tilde{f}_1}{\longrightarrow} \qquad \stackrel{\tilde{f}_1}{\longrightarrow} \qquad \stackrel{\tilde{f}_2}{\longrightarrow} \qquad \stackrel{\tilde{f}_3}{\longrightarrow} \qquad \stackrel{\tilde{f}_4}{\longrightarrow} \qquad \stackrel{\tilde{f}_4}{\longrightarrow} \qquad \stackrel{\tilde{f}_4}{\longrightarrow} \qquad \stackrel{\tilde{f}_4}{\longrightarrow} \qquad \stackrel{\tilde{f}_4}{\longrightarrow} \qquad \stackrel{\tilde{f}_5}{\longrightarrow} \qquad \stackrel{\tilde{$$

Não-determinismo:

$$A_1^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ e cada } x_i \in A\}$$

- O AFN $_{\mathcal{E}}$ N tem um novo estado inicial com um arco- \mathcal{E} para q_1 .
- Adicionamos arcos-E retornando para q₁ a partir de todos os estados qᵢ ∈ F₁.
- N deve aceitar \mathcal{E} , por isso $q_0 \in F$. $\underbrace{\mathcal{E}}_{q_0} \underbrace{\hat{\mathcal{E}}_{q_1}}_{q_1} \underbrace{\hat{\mathcal{E}}_{q_1,w}}_{q_1} \underbrace{\hat{\mathcal{E}}_{q_1,w}}_{q_1}$
- Não-determinismo

$$A_1^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ e cada } x_i \in A\}$$

- O AFN $_{\mathcal{E}}$ N tem um novo estado inicial com um arco- \mathcal{E} para q_1 .
- Adicionamos arcos-E retornando para q₁ a partir de todos os estados qᵢ ∈ F₁.
- *N* deve aceitar \mathcal{E} , por isso $q_0 \in F$.

- Não-determinísmo:
 - No final de N_1 a máquina tem a opção de voltar ao estado q_1 e ler a outra parte de w.

 $A_1^* = \{x_1x_2\dots x_k \mid k \geq 0 \text{ e cada } x_i \in A\}$

- O AFN $_{\mathcal{E}}$ N tem um novo estado inicial com um arco- \mathcal{E} para q_1 .
- Adicionamos arcos-E retornando para q₁ a partir de todos os estados qᵢ ∈ F₁.
- N deve aceitar \mathcal{E} , por isso $q_0 \in F$.

- Não-determinísmo:
 - No final de N_1 a máquina tem a opção de voltar ao estado q_1 e ler a outra parte de w.

$$A_1^* = \{x_1x_2\dots x_k \mid k \ge 0 \text{ e cada } x_i \in A\}$$

Prova:

Suponha que:

-
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 reconhece A_1 .

- Construa $N = (Q, \Sigma, \delta, q_0, F)$ para reconhecer A_1^* .
 - **1** $Q = Q_1 \cup \{q_0\}$
 - Q_0 é o estado inicial
 - **3** $F = F_1 \cup \{g_0\}$

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ e } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ e } a \neq \mathcal{E} \\ \delta_1(q,a) \cup \{q_1\} & q \in F_1 \text{ e } a = \mathcal{E} \\ \{q_1\} & q = q_0 \text{ e } a = \mathcal{E} \\ \varnothing & q = q_0 \text{ e } a \neq \mathcal{E} \end{cases}$$

Por construção, é fácil ver que N aceita $w \iff N_1$ aceita w por partes

$$W_1 W_2 \dots W_k, W_{k+1} W_{k+2} \dots W_{2k}, \dots$$

Roteiro

- Lema do Bombeamento para Linguagens Regulares
 - Limitações dos AFs
 - Enunciado do Lema do Bombeamento
 - Linguagens Não-Regulares
- Operações sobre Linguagens
 - Operações Regulares
 - Fecho sobre as Operações Regulares
 - Outras Operações
- 3 Referências

Outras Operações

Vamos ver que as Linguagens Regulares também são fechadas para outras operações sobre linguagens:

- **①** Complemento: $\Sigma^* A = \{x \mid x \in \Sigma^* \text{ e } x \notin A\}.$
- **②** Intersecção: $A \cap B = \{x \mid x \in A \text{ e } x \in B\}$

1

 $[\]Sigma^*$ são todas as palavras que podem ser geradas pelo alfabeto Σ .

Outras Operações

Vamos ver que as Linguagens Regulares também são fechadas para outras operações sobre linguagens:

- **① Complemento**: $\Sigma^* A = \{x \mid x \in \Sigma^* \text{ e } x \notin A\}.$
- **2** Intersecção: $A \cap B = \{x \mid x \in A \text{ e } x \in B\}.$

1

 $[\]Sigma^*$ são todas as palavras que podem ser geradas pelo alfabeto Σ .

Fecho sobre a operação de **Complemento** $\Sigma^* - A_1$

Teorema:

A classe das Linguagens Regulares é fechada sobre a operação de **Complemento**.

Em outras palavras, se $A_1 \subseteq \Sigma^*$ é uma linguagem regular, o mesmo vale para $\overline{A_1} = \Sigma^* - A_1 = \{x \mid x \in \Sigma^* \text{ e } x \notin A_1\}.$

Fecho sobre a operação de **Complemento** $\Sigma^* - A_1$

Ideia da prova:

• Seja $M_1 = (Q, \Sigma, \delta, q_0, F)$ um AFD que reconhece a linguagem $A_1 \subset \Sigma^*$.

• Vamos construir um novo AFD M_1' tal que as condições ACEITA/REJEITA de M_1 sejam invertidas para reconhecer $\overline{A_1} = \Sigma^* - A_1$.

Ideia da prova:

• Seja $M_1 = (Q, \Sigma, \delta, q_0, F)$ um AFD que reconhece a linguagem $A_1 \subset \Sigma^*$.

• Vamos construir um novo AFD M_1' tal que as condições ACEITA/REJEITA de M_1 sejam invertidas para reconhecer $\overline{A_1} = \Sigma^* - A_1$.

Ideia da prova: (continuação)

- Para isso, vamos inverter os estados <u>finais</u> em <u>não-finais</u>, e vice-versa.
- Adicionamos um novo estado q_{end} , tal que $\delta'(q,a) = q_{end}$ sempre que $\delta(q,a) = \bot$ em M.

No diagrama acima, \clubsuit são os símbolos $a \in \Sigma$ para os quais não existem transições $\delta(q,a)$, e \bigstar são todos os símbolos de Σ .

Ideia da prova: (continuação)

- Para isso, vamos inverter os estados <u>finais</u> em <u>não-finais</u>, e vice-versa.
 (ex. w = 111 ∈ A₁ e w = 01 ∈ A₁).
- Adicionamos um novo estado q_{end} , tal que $\delta'(q,a) = q_{end}$ sempre que $\delta(q,a) = \bot$ em M.

No diagrama acima, \clubsuit são os símbolos $a \in \Sigma$ para os quais não existem transições $\delta(q,a)$, e \bigstar são todos os símbolos de Σ .

Ideia da prova: (continuação)

- Para isso, vamos inverter os estados <u>finais</u> em <u>não-finais</u>, e vice-versa.
 (ex. w = 111 ∈ A₁ e w = 01 ∈ A₁).
- Adicionamos um novo estado q_{end} , tal que $\delta'(q, a) = q_{end}$ sempre que $\delta(q, a) = \bot$ em M.

46

No diagrama acima, \clubsuit são os símbolos $a \in \Sigma$ para os quais não existem transições $\delta(q,a)$, e \bigstar são todos os símbolos de Σ .

Ideia da prova: (continuação)

- Para isso, vamos inverter os estados <u>finais</u> em <u>não-finais</u>, e vice-versa.
 (ex. w = 111 ∈ A₁ e w = 01 ∈ A₁).
- Adicionamos um novo estado q_{end} , tal que $\delta'(q, a) = q_{end}$ sempre que $\delta(q, a) = \bot$ em M.

Funcionamento:

- O novo AFD M_1' aceita w sempre que M_1 rejeita w, portanto $L(M_1') = \overline{A_1} = \Sigma^* - A_1$.

No diagrama acima, \clubsuit são os símbolos $a \in \Sigma$ para os quais não existem transições $\delta(q,a)$, e \bigstar são todos os símbolos de Σ .

Ideia da prova: (continuação)

- Para isso, vamos inverter os estados <u>finais</u> em <u>não-finais</u>, e vice-versa.
 (ex. w = 111 ∈ A₁ e w = 01 ∈ A₁).
- Adicionamos um novo estado q_{end} , tal que $\delta'(q, a) = q_{end}$ sempre que $\delta(q, a) = \bot$ em M.

- Funcionamento:
 - O novo AFD M_1' aceita w sempre que M_1 rejeita w, portanto $L(M_1') = \overline{A_1} = \Sigma^* A_1$.

No diagrama acima, \clubsuit são os símbolos $a \in \Sigma$ para os quais não existem transições $\delta(q, a)$, e \bigstar são todos os símbolos de Σ .

Prova:

- Suponha que:
 - $M_1 = (Q, \Sigma, \delta, q_0, F)$ reconhece A_1 .
- Construa $M_1' = (Q', \Sigma, \delta', q_0, F')$ para reconhecer $\overline{A_1} = \Sigma^* A_1$:

 - Q q_0 é o estado inicial
 - **3** Os estados de aceitação são F' = Q' F

$$\delta'(q, a) = \begin{cases} \delta(q, a) & \delta(q, a) \neq \bot \\ q_{end} & \delta(q, a) = \bot \\ q_{end} & q = q_{end} \end{cases}$$

Por construção, é fácil ver que M_1' aceita $w \iff M_1$ rejeita w, com $w \in \Sigma^*$.

Teorema:

A classe das Linguagens Regulares é fechada sobre a operação de Intersecção.

Em outras palavras, se A_1 e A_2 são linguagens regulares, o mesmo vale para $A_1 \cap A_2 = \{x \mid x \in A_1 \text{ e } x \in A_2\}.$

Ideia da prova:

• Sejam N_1 e N_2 os AFN ε s que reconhecem as linguagens A_1 e A_2 .

Como construir um AFN_E N que aceita uma cadeia w ← N₁ e
 N₂ aceitam w???

Prova:

- Sejam A_1 e A_2 linguagens regulares.
 - Lei de De Morgan:

$$A_1 \cap A_2 = \overline{A_1 \cup A_2}$$

 E como já foi verificado a classe das Linguagens Regulares é fechada para complemento e união

Prova:

- Sejam A_1 e A_2 linguagens regulares.
 - Lei de *De Morgan*:

$$A_1 \cap A_2 = \overline{\overline{A_1} \cup \overline{A_2}}$$

 E como já foi verificado a classe das Linguagens Regulares é fechada para complemento e <u>união</u>

Prova:

- Sejam A_1 e A_2 linguagens regulares.
 - Lei de *De Morgan*:

$$A_1 \cap A_2 = \overline{\overline{A_1} \cup \overline{A_2}}$$

 E como já foi verificado a classe das Linguagens Regulares é fechada para complemento e união

Prova:

- Sejam A_1 e A_2 linguagens regulares.
 - Lei de *De Morgan*:

$$A_1 \cap A_2 = \overline{\overline{A_1} \cup \overline{A_2}}$$

 E como já foi verificado a classe das Linguagens Regulares é fechada para complemento e união

Fim

Dúvidas?

Roteiro

- Lema do Bombeamento para Linguagens Regulares
 - Limitações dos AFs
 - Enunciado do Lema do Bombeamento
 - Linguagens Não-Regulares
- Operações sobre Linguagens
 - Operações Regulares
 - Fecho sobre as Operações Regulares
 - Outras Operações
- Referências

Referências

Referências:

- 1 "Introdução à Teoria da Computação" de M. Sipser, 2007.
- "Introdução à Teoria de Autômatos, Linguagens e Computação" de J. E. Hopcroft, R. Motwani, e J. D. Ullman, 2003.
- Materiais adaptados dos slides do Prof. Evandro E. S. Ruiz, da USP.