Logică Matematică și Computațională Examen parțial din preliminariile algebrice

Claudia MURESAN

cmuresan@fmi.unibuc.ro, claudia.muresan@unibuc.ro, c.muresan@yahoo.com Universitatea din București, Facultatea de Matematică și Informatică, București 11–12 Decembrie 2021

Fiecare student trebuie să trimită lucrarea sa, într–un singur fișier PDF, semnat cu numele în clar, seria și anul din care face parte, ca răspuns la această temă MS Teams colectivă.

Nu uitați să dați **Turn in** în MS Teams după ce submiteți lucrarea de examen. Orice întrebare privind subiectele îmi va fi adresată printr—o postare pe canalul General al echipei MS Teams a cursului, iar în cazul în care se referă la ultimul exercițiu fără o consultare prealabilă cu colegii.

(Punctaj: 3 puncte în total)

Fiecare dintre primele patru exerciții: **0,25 puncte**; al cincilea exercițiu: **2 puncte**. Fiecare subpunct al fiecărui exercițiu are același punctaj între subpunctele acelui exercitiu.

Ca de obicei, voi desemna structurile algebrice și prin mulțimile lor suport, și se va înțelege din context între ce structuri pe aceste mulțimi sunt definite morfismele. Să ne amintim că, pentru orice mulțimi A și B și orice funcție $f:A\to B$, corestricția $f:A\to f(A)$ este surjectivă.

corestricția $f:A\to f(A)$ este surjectivă. Pentru orice poset (P,\leq) , folosim notațiile uzuale < și \prec pentru relația de ordine strictă, respectiv relația de succesiune asociată lui \leq , \geq pentru inversa lui \leq și || pentru relația de incomparabilitate în posetul (P,\leq) : $||=P^2\setminus(\leq\cup\geq)$. Voi folosi notația \oplus pentru suma ordinală sau suma alipită din cursurile de anul acesta: notația $P\oplus Q$ se aplică unui poset (P,\leq) cu un maxim 1^P și unui poset (Q,\leq) cu un minim 0^Q și reprezintă posetul obținut prin alipirea lui 1^P cu 0^Q , identificându-le, fără muchie intermediară (vedeți în curs definiția riguroasă).

Definiție

Fie (P, \leq) un poset.

Dacă $a, b \in P$, astfel încât $a \le b$, atunci intervalul lui (P, \le) mărginit de a și b este submulțimea lui P notată cu $[a, b]_P$ și definită prin:

$$[a,b]_P = \{u \in P \mid a \le u \le b\}.$$

O submulțime convexă a lui (P, \leq) este o submulțime $S \subseteq P$ cu proprietatea că, odată cu două elemente comparabile ale lui (P, \leq) , include și intervalul mărginit de ele, adică, pentru orice $x, y \in S$, dacă $x \leq y$, atunci $[x, y]_P \subseteq S$. În particular, orice interval al lui (P, \leq) este o submulțime convexă a lui (P, \leq) .

Lista de subiecte

Exercițiu (pentru acest exercițiu este permis să vă consultați între voi)

Fie A și B mulțimi nevide, iar $f:A\to B$ o funcție. Să se demonstreze că:

- dacă f este injectivă, iar $(B_i)_{i \in I}$ este o partiție a lui B, atunci $(f^{-1}(B_i))_{i \in I}$ este o partiție a lui A;
- ② dacă f este surjectivă, iar $(A_i)_{i \in I}$ este o partiție a lui A, atunci $(f(A_i))_{i \in I}$ este o partiție a lui B.

Exercițiu (pentru acest exercițiu este permis să vă consultați între voi)

Fie (P, \leq) și (Q, \leq) poseturi nevide, iar $f: P \to Q$ un morfism de poseturi. Să se demonstreze că:

- dacă T este o submulțime convexă a lui Q, atunci $f^{-1}(T)$ este o submulțime convexă a lui P;
- ② dacă f este surjectivă, iar S este o submulțime convexă a lui P, atunci f(S) este o submulțime convexă a lui Q.

Exercițiu (pentru acest exercițiu este permis să vă consultați între voi)

Fie (P, \leq) un poset. Să se demonstreze că:

- **1** < 0 <=< 0 <=<:
- ② dacă posetul P este finit, atunci $\prec \circ \leq = \leq \circ \prec = <$.

Exercițiu (pentru acest exercițiu este permis să vă consultați între voi)

Fie (P, \leq) un poset. Pentru fiecare $a \in P$, notăm cu $[a) = \{x \in P \mid a \leq x\}$ și cu $\operatorname{Succ}(a) = \{x \in P \mid a \prec x\}$.

Considerăm următoarea relație binară pe P:

$$\rho = \{(x,y) \in P^2 \mid [x) \cap [y) \cap (\{x,y\} \cup \operatorname{Succ}(x) \cup \operatorname{Succ}(y)) = \emptyset\}.$$

Să se demonstreze că:

- ② dacă (P, \leq) este o latice (Ore) finită (și nevidă), iar ρ este nevidă, atunci laticea P este nedistributivă.

În enunțul următor, pentru fiecare student, gij este tripletul de cifre care precedă numele studentului în lista de la finalul acestui set de subiecte, h=10*g+i este numărul format din primele două dintre aceste cifre, iar $k=\begin{cases}h,&\text{dacă}\ h\neq j,\\-1,&\text{dacă}\ h=j.\end{cases}$

Exercițiu (partea individuală a subiectului fiecărui student)

Considerăm laticile (M_k, \leq) și (M_j, \leq) date prin diagramele Hasse de mai jos. Fie L_k duala laticii M_k , iar laticea L_j definită în funcție de paritatea lui k astfel:

$$L_j = egin{cases} \mathcal{L}_2 \oplus \mathit{M}_j, & \mathsf{dac}\ \ 2|k, \\ \mathit{M}_j \oplus \mathcal{L}_2, & \mathsf{altfel}, \end{cases}$$
 unde \mathcal{L}_2 este lanțul cu exact 2 elemente.

Să se deseneze diagramele Hasse ale laticilor L_k și L_j și să se eticheteze elementele acestor latici pe aceste diagrame, apoi:

- să se enumere toate sublaticile lui S_k ale lui L_k și S_j ale lui L_j care sunt (izomorfe cu) produse directe de lanțuri și sunt maximale relativ la această proprietate, adică, pentru orice sublatici T_k a lui L_k și T_j a lui L_j , avem: dacă $S_k \subsetneq T_k$, atunci T_k nu este (izomorfă cu) un produs direct de lanțuri, iar, dacă $S_j \subsetneq T_j$, atunci T_j nu este (izomorfă cu) un produs direct de lanțuri;
- ② să se enumere toate sublaticile distributive maximale ale lui L_j , adică toate sublaticile S_j ale lui L_j care sunt latici distributive și au proprietatea că, dacă T_j este o sublatice a lui L_j cu $S_j \subsetneq T_j$, atunci laticea T_j nu este distributivă;
- **3** pentru fiecare dintre sublaticile S_j ale lui L_j enumerate la punctul ① și fiecare dintre sublaticile S_j ale lui L_j enumerate la punctul ②, să se enumere toate morfismele surjective de latici de la L_k la S_j , iar, dacă nu există astfel de morfisme pentru una dintre aceste latici S_j , să se precizeze acest lucru;
- pentru fiecare dintre sublaticile S_k ale lui L_k enumerate la punctul ①, să se enumere toate morfismele injective de latici de la S_k la L_j , iar, dacă nu există astfel de morfisme pentru una dintre aceste latici S_k , să se precizeze acest lucru.

Să se enumere laticile cerute la punctele ① și ② desenându–le diagramele Hasse, cu nodurile etichetate

Să se enumere morfismele cerute la punctele ③ și ④ reprezentându-l pe fiecare în parte cu săgeți, ca mai jos, dar cu nodurile diagramelor Hasse etichetate (fie desenând de mână lizibil astfel de diagrame, fie editându-le):

În afară de aceste diagrame de latici și morfisme, nu este necesară nicio altă justificare la acest exercițiu.

Fiecare student care dă acest examen și nu se regăsește în lista de mai jos va proceda în felul următor: va anunța printr—o postare pe canalul General al acestei echipe MS Teams că preia primul subiect nealocat din lista de mai jos; dacă numerele subiectelor alocate sunt $1, 2, \ldots, n$, atunci următorul subiect preluat va fi n+1; nerespectarea acestei reguli de alocare a propriului subiect individual va duce la anularea lucrării de examen.

• Grupa 141:

număr subiect, nume student:
016. Mihai G.C. Dragos-Vasile
017. Mechie V.V. Daria-Elena
018. Moisii A. Lucian
019. Moraru I. Cristian-Marian
020. Nadu D. Toma
021. Olaeriu V. Vlad-Mihai
022. Paralescu S.J. Flavia-Patricia
023. Podani C. Teodor-Mircea
024. Pomparau C. Renato-Emil
025. Popescu E.C. Mihaela-Maria
026. Rada O. Paul
027. Rus R.V. Alexandru
028. Oprea R.I. Mihai-Stefan
029. Olaeriu V. Vlad-Mihai
030. Oprea V.T. Tudor

• Grupa 143:

număr subiect, nume student:	număr subiect, nume student:
031. Al Havez Nabil	076. Merealbe D. Cris-Briana
032. Besliu F. Radu-Stefan	077. Militaru G. Mihai-Alexandru
033. Cazacu D. Cristian-Gabriel	078. Nafornita R.C. Adrian-Valentin
034. Chiricuta G. Marina-Anca	079. Nechita R. Maria-Ilinca
035. Cringanu F.D. Denis-Florin	050. Niculita M.A. Cristiana-Teodora
036. Cristea M. Petru-Theodor	051. Panaite N. Danut-Alexandru
037. Crivoi L. Carla	052. Pasare G. Roxana-Francisca
038. Cucos V. Maria-Marianita	053. Paun D. Andreea-Alexandra
039. Dilirici G. MihaiLung L. Alexandra	054. Petre F. Vasile-Eduard
040. Dumitru V.M. Paul-Valentin	055. Stanciu I. Ioan-Carol
041. Florea N. Madalin-Alexandru	056. Tanasa G.M. Florin-Petrisor
042. Gheorghe D. Robert-Mihai	057. Tanase M. Stefan-Lucas
043. Ghetoiu G. Gheorghe-Laurentiu	058. Tillinger T. Marius-Petru
044. Hutan D. Mihai-Alexandru	059. Totolici T. Alexandru-Gabriel
045. Lung L. Alexandra	060. Velciu A. Razvan-Gabriel

2021-2022. Semestrul I

• Anul I Informatică ID grupa 1:

număr subiect, nume student:	număr subiect, nume student:
061. Avramescu M. Robert-Valentin	073. Paraipan A. George
062. Cardos I. Maria-Teodora	074. Pauna A.C. Rares-Andrei-Alexandru
063. Cojocari C. Valeriu	075. Petcu F. David
064. Gemene G. Adrian-Marian	076. Petcu A. Gabriela-Camelia
065. Ghita A. Alexandru-Stefan	077. Petreus L. Victor-Bogdan
066. Herdes-Suceveanu G. Bogdan	078. Roman V. Eduard-Emanuel
067. Iosub F. Erling-Madalin	079. Rotaru O. Ada
068. Jianu S. Radu	080. Rusan S. V. Adrian-Ionut
069. Manta I. Ciprian-Nicolae	081. Selaru C. Marius-Nicolae
070. Matei L. Teodor Paul	082. Toma R. Alexandru Silviu
071. Oprea A.G. Mihai-Daniel	083. Turcan G. Cristian
072. Pantiru L. Dragos-George	084. Voicea C. Maria-Amalia

• Anul I Informatică ID grupa 2:

număr subiect, nume student:	număr subiect, nume student:
085. Albu I. Adrian	098. Oprea I. Alexandru
086. Balalau M.G. Mihai	099. Otelea V. Vasile Robert
087. Baltatescu C. Elena-Ecaterina	100. Popa M. Erminia Petra
088. Banu H.V. Marius-Andrei	101. Pruna V. Diana-Andreea
089. Circu S.D. Catalin Gherasim	102. Raianu C. Ovidiu-Stefan
090. Cojanu M. Mihaela	103. Stanciu V. Olivian-Vasile
091. Coteata V. Andrei	104. Stancu V. Theodor
092. Crisan G.E. Andreea-Georgiana	105. Sisiu M. Sorin-Marian
093. Despa M.E. Catalin-Daniel	106. Tarcuta G. Georgiana-Viorica
094. Eremencu I. Marius-Adrian	107. Tudorache A. Radu Tiberiu
095. Ionascu N. Augustin Ionut	108. Ursu G. Carol
096. Limbosanu F.E Denisa Bianca	109. Voichici N. Gabriel
097. Mazilu V.S. Andrei	