Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claims 1-3 CANCELED

4. (previously presented) A compound comprising the structure of formula I: wherein:

- Ring A is optionally substituted with one to five substituents selected from
 - a) a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy; or
 - b) a halogen or trihaloalkyl;
- Ring B comprises at least one structure denoted by R_a and R_b which represent an ortho-quinone moiety (-(C=O)-(C=O)-), ortho-catechol (-(C-OH)-(C-OH)-) or ortho-catechol pro-drug moiety (-(C-O-Prodrug moiety)-(C-O-Prodrug moiety)-); and the remaining carbons of Ring B are optionally substituted with one to five substituents selected from
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - b) a halogen or trihaloalkyl:
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinyl, or vinyloxy; or
 - d) an OH, or a C₁, C₂, C₃, C₄ or C₅ primary, secondary, or tertiary alcohol;

- e) nitro; and
- Bridge X is an alkene (-CR₉=CR₁₀-), wherein R_9 and R_{10} are alternatively H, alkyl, amino, amido, cyano, hydroxyl, or carboxyl;

provided that said compound is not combretastatin A1 or a salt, ester, or prodrug thereof

Claims 5 - 9 CANCELED

10. (currently amended) A compound comprising a quinone, quinone prodrug, or a pharmaceutically acceptable salt form thereof having one of the following general structures:

$$R_3$$
 R_4
 R_5
 R_6
 R_7
 R_8
 R_8
 R_8

lla: or

HO
$$R_6$$
 R_7 R_6 R_8 R_8 R_8 R_9

IIb: wherein:

- a. at least one of R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 or and R_8 are the same or different and are selected from:
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;

- ii) a halogen or trihaloalkyl;
- iii) a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinyl, or vinyloxy; or
- iv) an OH, or a C₁, C₂, C₃, C₄ or C₅ primary, secondary, or tertiary alcohol; or and the remaining R₁, R₂, R₃, R₄, R₅, R₆, R₇, or R₈ are H; and
- X is an alkene (-CR₉=CR₁₀-), wherein R₉ and R₁₀ are alternatively H, alkyl, amino, amido, cyano, hydroxyl, or carboxyl

provided that said compound is not combretastatin A1 or a salt, ester, or prodrug thereof.

11. (canceled)

- 12. (currently amended) The compound of claim 44 10, wherein X is an ethylene group (-CH=CH-), and Rings A and B are in a cis (Z) isomeric configuration.
- 13. (original) The compound of claim 12, wherein R₂, R₃ and R₄ are methoxy.
- 14. (previously presented) The compound of claim 13, wherein R₈ is selected from:
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - ii) a halogen or trihaloalkyl;
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinyl, or vinyloxy;
 - iv) an OH, or a C_1 , C_2 , C_3 , C_4 or C_5 primary, secondary, or tertiary alcohol; or
 - v) nitro;
- and the remaining R_1 , R_5 , R_6 , and R_7 are H.
- 15. (original) The compound of claim 14, wherein R₈ is OH or –O-CH₂-CH=CH₂.
- 16. (original) The compound of claim 4, wherein said catechol is a biooxidative agent which is oxidatively activated in vivo to form a quinone capable of participating in a redox cycling reaction to form one or more Reactive Oxygen Species ("ROS").

Claims 17-33 CANCELED

34. (currently amended) A composition of the following formula (V):

$$R_8$$
 R_7
 R_6
 R_4
 R_7
 R_6
 R_4
 R_7
 R_8
 R_8
 R_8
 R_9
 R_9

wherein

- a. Z is an ethylene (-CH=CH-) bridge in the cis (Z) isomeric configuration;
- b. R₁ and R₂ are OH or a prodrug form thereof:
- c. at least one of R₃, R₄, R₅, R₆, R₇, R₈, and R₉ are optionally the same or different and selected from
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - ii) a halogen or trihaloalkvl:
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinvl, or vinvloxy; or
 - iv) an OH, or a C₁, C₂, C₃, C₄ or C₅ primary, secondary, or tertiary alcohol;
 - v) nitro: and

the remaining R₃, R₄, R₅, R₆, R₇, R₈ and R₉ are hydrogen, provided that said compound is not combretastatin A1 or prodrug thereof.

- 35. (original) The composition of claim 34, wherein at least three of R_6 , R_7 , R_8 , and R_9 are not hydrogen.
- 36. (original) The composition of claim 35, wherein R₆, R₇ and R₈ are the same.
- 37. (original) The composition of claim 36, wherein R_6 , R_7 and R_8 are methoxy.

- 38. (currently amended) The composition of claim 37, wherein R₃ is
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - ii) a halogen or trihaloalkyl;
 - iii) a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinyl, or vinyloxy:
 - iv) an OH, or a C₁, C₂, C₃, C₄ or C₅ primary, secondary, or tertiary alcohol; or
 - ψi <u>v</u>) oxo, lower alkanoyl, thio, sulfonyl, sulfonamide, nitro, nitrosyl, cyano, carboxy, carbamyl, aryl, or heterocycle; and
- R₄, R₅, and R₉ are hydrogen.
- 39. (previously presented) The composition of claim 38, wherein R_3 is $-CH_3$, $-CH_2CH_3$, $-CCH_2CH_3$, -F, -F, -F, $-CF_3$, $-CB_7$, $-CH_2-CH_2-CH_2$, $-CH_2-CH_2-CH_2$, $-NO_2$, -cyano, or -carboxy.
- 40. (original) The composition of claim 39, wherein R₆, R₇, and R₈ are F.
- 41. (currently amended) The composition of claim 40, wherein R₃ is
 - i) a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - ii) a halogen or trihaloalkyl;
 - iii) a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinyl, or vinyloxy;
 - iv) an OH, or a C₁, C₂, C₃, C₄ or C₅ primary, secondary, or tertiary alcohol;
 - ψi <u>v</u>) oxo, lower alkanoyl, thio, sulfonyl, sulfonamide, nitro, nitrosyl, cyano, carboxy, carbamyl, aryl, or heterocycle; and
- R₄, R₅, and R₉ are hydrogen.
- 42. (previously presented) The composition of claim 41, wherein R₃ is –CH₃, -CH₂CH₃, -OCH₂CH₃, -F, -Br, -CF₃, -CBr₃, -OH, -O-CH₂-CH=CH₂, -CH₂-CH=CH₂, -NO₂, -cyano, -carboxy, or –benzyl.

Claims 43-56 CANCELED

- 57. (original) A composition selected from the group consisting of 6-[(Z)-2-(3,4,5-Trimethoxyphenyl) vinyl]-1,2-dihydroxybenzene, 3-Ethyl-6-[(Z)-2-(3,4,5-trimethoxyphenyl)vinyl]-1,2-dihydroxybenzene, 3-Methyl-6-[(Z)-2-(3,4,5-trimethoxyphenyl)vinyl]-1,2-dihydroxybenzene, 4-Bromo-6-[(Z)-2-(3,4,5-trimethoxyphenyl)vinyl]-1,2-dihydroxybenzene, 4-Phenyl-6-[(Z)-2-(3.4.5-trimethoxyphenyl)vinyl]-1.2-dihydroxybenzene. 3-Allyl-6-[(Z)-2-(3,4,5-trimethoxyphenyl)vinyl]-1,2-dihydroxybenzene, 4-Fluoro-6-[(Z)-2-(3,4,5-trimethoxyphenyl)vinyl]-1,2-dihydroxybenzene, 2,3,4-Trihydroxy-6-[(Z)-2(3,4,5-trimethoxyphenyl)vinyl]-benzene, 2.3-Dihydroxy-4-ethoxy-6-[(Z)-2-(3.4.5-trimethoxyphenyl)vinyl]-benzene. 2,3-Dihydroxy-4-allyloxy-6-[(Z)-2-(3,4,5-trimethoxyphenyl)vinyl]-benzene. 4-Nitro-6-[(Z)-2-(3,4,5-trimethoxyphenyl)vinyl]-2,3-dihydroxybenzene, 2',3'dihydroxy -3,5 dichloro4,4'-dimethoxy-(Z)-stilbene, 2'.3' dihydroxy-4'-methoxy-3.4.5-trifluoro-(Z)-stilbene. 2,3-Dihydroxy-4-methoxy-[(Z)-2-(3,4,5-trimethoxyphenyl) Beta-lactam]-benzene, 2',3' diphosphate-3,4,5-trimethoxy-(Z)-stilbene, tetrasodium salt; 3',4' diphosphate-3,4,5-trimethoxy-(Z)-stilbene, tetrasodium salt; and combinations thereof.
- 58.(previously presented) The compound of claim 4, wherein X is an ethylene group (-CH=CH-), and Rings A and B are in a cis (Z) isomeric configuration