Activity 22 Trigonometric identities

1. RTP:
$$\sin A \sin 2A = -2\cos^3 A + 2\cos A$$

LHS = $\sin A \sin 2A$
= $2\cos A \sin^2 A$
= $2\cos A(1 - \cos^2 A)$
= $-2\cos^3 A + 2\cos A$
= RHS

2. RTP:
$$\tan x + \cot x = 2\csc 2x$$

LHS = $\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}$

EITS =
$$\frac{\cos x}{\cos x} + \frac{\sin x}{\sin x}$$

= $\frac{\cos^2 x + \sin^2 x}{\cos x \sin x}$
= $\frac{1}{\cos x \sin x}$
= $\frac{2}{2\sin 2x}$
= RHS

3. RTP:
$$(\cos \theta + \sin \theta)(\cos \theta - \sin \theta) = 2\cos^2 \theta - 1$$

LHS =
$$\cos^2 \theta - \sin^2 \theta$$

= $\cos^2 \theta - (1 - \cos^2 \theta)$
= $2\cos^2 \theta - 1$
= RHS

RTP:
$$2\sin\left(\frac{P+Q}{2}\right)\cos\left(\frac{P-Q}{2}\right) = \sin P + \sin Q$$

$$\begin{split} & \text{LHS} = 2 \bigg(\sin \frac{P}{2} \cos \frac{Q}{2} + \cos \frac{P}{2} \sin \frac{Q}{2} \bigg) \bigg(\cos \frac{P}{2} \cos \frac{Q}{2} + \sin \frac{P}{2} \sin \frac{Q}{2} \bigg) \\ &= 2 \cos^2 \frac{Q}{2} \cos \frac{P}{2} \sin \frac{P}{2} + 2 \sin^2 \frac{P}{2} \cos \frac{Q}{2} \sin \frac{Q}{2} + 2 \cos^2 \frac{P}{2} \cos \frac{Q}{2} \sin \frac{Q}{2} + 2 \sin^2 \frac{Q}{2} \cos \frac{P}{2} \sin \frac{P}{2} \\ &= \cos^2 \frac{Q}{2} \bigg(2 \cos \frac{P}{2} \sin \frac{P}{2} \bigg) + \sin^2 \frac{P}{2} \bigg(2 \cos \frac{Q}{2} \sin \frac{Q}{2} \bigg) + \cos^2 \frac{P}{2} \bigg(2 \cos \frac{Q}{2} \sin \frac{Q}{2} \bigg) + \sin^2 \frac{Q}{2} \bigg(2 \cos \frac{P}{2} \sin \frac{P}{2} \bigg) \\ &= \cos^2 \frac{Q}{2} \sin P + \sin^2 \frac{P}{2} \sin Q + \cos^2 \frac{P}{2} \sin Q + \sin^2 \frac{Q}{2} \sin P \\ &= \sin P \bigg(\cos^2 \frac{Q}{2} + \sin^2 \frac{Q}{2} \bigg) + \sin Q \bigg(\sin^2 \frac{P}{2} + \cos^2 \frac{P}{2} \bigg) \\ &= \sin P + \sin Q \\ &= \text{RHS} \end{split}$$