Batch Gradient Descent (GD) Algorithm for Linear SVM

Following is the loss/cost function for the Linear SVM model.

$$J = \frac{1}{2} \vec{w}^T \vec{w} + C \sum_{i=1}^{N} \xi_i$$

The loss/cost is measured by ξ_i . Its range is:

$$\xi_i \ge 0$$

$$\xi_i \ge 1 - y_i(\vec{w}^T \vec{x}_i + b)$$

Hence, the loss ξ_i can be expressed using a **max** (.) function, which is known as the **Hinge loss** function.

$$\xi_i \ge \max\{0, 1 - y_i(\vec{w}^T\vec{x}_i + b)\}\$$

Using hinge loss, the Linear SVM cost function is given by:

$$J = \frac{1}{2} \vec{w}^T \vec{w} + C \sum_{i=1}^{N} \max \{0, 1 - y_i (\vec{w}^T \vec{x}_i + b)\}$$

Here ξ_i represents the deviation from the margin. For most of the data points that are away from both margins have their $\xi_i = 0$.

Only for the support vectors (that are on the decision surface, hence non-separable): $\xi_i > 0$

The goal of GD is to reduce the number of support vectors with $\xi_i > 0$.

Thus, we can reformulate the cost function by using only the support vectors, as follows.

$$J = \frac{1}{2} \vec{w}^T \vec{w} + C \left[\sum \left(\frac{1 - \vec{t}_{sv} * \vec{x}_{sv} \cdot \vec{w}}{1 - \vec{t}_{sv} \cdot \vec{w}} \right) - b * \sum \vec{t}_{sv} \right]$$

Here, \vec{X}_{sv} contains the support vectors and \vec{t}_{sv} contains the labels of the support vectors. Using the Gradient Descent (GD) algorithm, we minimize this cost function. Calculation of \vec{X}_{sv} and \vec{t}_{sv} are shown below.

Calculate the Support Vectors

First, we state the decision rule for a single sample \vec{x} :

- If $\vec{w}^T \cdot \vec{x} + b \ge 1$; then class = positive (+1), otherwise negative (-1).

We assume the class labels (+1 or -1) for the entire dataset \vec{X} are stored in a 1D vector \vec{t} .

The decision boundary is perpendicular to \vec{w} and its displacement from the origin is controlled by the bias b.

For the entire dataset \vec{X} and class label vector \vec{t} (represents the class labels -1/+1 of each sample in the dataset), the decision rule can be written as follows.

$$\vec{t} * (\vec{w}^T \cdot \vec{x} + b) \ge 1$$

For sample i, if $t_i = +1$ (belongs to positive class), then

$$\vec{w}^T \cdot \vec{x} + b \ge 1$$

However, if $t_i = -1$ (belongs to negative class), then

$$\vec{w}^T \cdot \vec{x} + b \leq -1$$

From the above decision rule, we derive the fact that the support vectors that reside on the decision surface satisfy the following equation:

$$\vec{t} * (\vec{w}^T . \vec{x} + b) < 1$$

In matrix notation:

$$(\vec{t} * \vec{x}) \cdot \vec{w} < 1$$
 $\vec{t} * (\vec{x} \cdot \vec{\omega} + b) < 1$

We will use this equation to compute the support vectors.

The derivative of the cost function with respect to the weight vector \vec{w} and the intercept/bias b:

Note, in the calculation of $\nabla_{\overrightarrow{w}}J$, we need to take the sum of each column of \overrightarrow{X}_{sv} (a column represents a component of \overrightarrow{w}). The sum will give a 1D row vector of dimension d (it is the dimension of \overrightarrow{w}). We need to reshape this vector as a 1D column vector to match the dimension of \overrightarrow{w} , which is a 1D column vector.

Finally, we update both \vec{w} and b.

$$\overrightarrow{w} := \overrightarrow{w} - \eta * \nabla_{\overrightarrow{w}} J$$

$$b := b - \eta * \nabla_b J$$

Gradient Descent Algorithm Pseudocode for Linear SVM

Initialize the weight vector \vec{w} with small random numbers and the scalar intercept/bias b with zero.

Then, iterate the following steps until a stopping criterion or max number of epochs is fulfilled.

1. Find the support vector matrix \vec{X}_{sv} and their label vector \vec{t}_{sv} using the following equation.

$$(\vec{t} * \vec{X}) \vec{w} < 1 \qquad \ \ \, + (\vec{X} \vec{w} + \vec{b}) \leq 1$$

2. Compute the cost J:

st J:

$$J = \frac{1}{2} \vec{w}^T \vec{w} + C \left[\sum (1 - \vec{k}_{SV} \cdot \vec{w}) - b * \sum \vec{t}_{SV} \right]$$

3. Compute the derivative of the cost function with respect to the weight vector \vec{w} and the intercept/bias b:

$$\nabla_{\vec{w}}J = \vec{w} - C * \sum_{\vec{x} \in \mathcal{X}} \vec{x}_{sv} \xrightarrow{f_{sv}} \vec{x}_{sv}$$

$$\nabla_b J = -C * \sum \vec{t}_{sv}$$

4. Update both \vec{w} and b.

$$\vec{w} := \vec{w} - \eta * \nabla_{\vec{w}} J$$

$$b := b - \eta * \nabla_b J$$