Project 2

Louis Chang (hungyic), hungyic@andrew.cmu.edu

Task 0

EchoServerUDP.java

```
public class EchoServerUDP{
    public static void main(String args[]) {
        DatagramSocket aSocket = null;
        byte[] buffer = new byte[1000];
            System.out.println("The UDP server is running.");
            aSocket = new DatagramSocket(6789);
            DatagramPacket request = new DatagramPacket (buffer,
buffer.length);
                aSocket.receive(request);
                byte[] requestData = new byte[request.getLength()];
                System.arraycopy(request.getData(), 0, requestData, 0,
request.getLength());
                String requestString = new String(request.getData(), 0,
request.getLength());
                System.out.println("Echoing: "+requestString);
                DatagramPacket reply = new DatagramPacket(requestData,
requestData.length, request.getAddress(), request.getPort());
                aSocket.send(reply);
                if ("halt!".equals(requestString)) {
        } catch (SocketException e) {
            System.out.println("Socket: " + e.getMessage());
        } catch (IOException e) {
            System.out.println("IO: " + e.getMessage());
        } finally {
            if(aSocket != null) {
                System.out.println("UDP Server side quitting");
                aSocket.close();
```

```
public class EchoClientUDP{
    public static void main(String args[]) {
        DatagramSocket aSocket = null;
            System.out.println("The UDP client is running.");
            InetAddress aHost = InetAddress.getByName("localhost");
            int serverPort = 6789;
            aSocket = new DatagramSocket();
            BufferedReader typed = new BufferedReader(new
InputStreamReader(System.in));
            while ((nextLine = typed.readLine()) != null) {
                byte[] m = nextLine.getBytes();
                DatagramPacket request = new DatagramPacket(m, m.length,
aHost, serverPort);
                aSocket.send(request);
                byte[] buffer = new byte[1000];
                DatagramPacket reply = new DatagramPacket(buffer,
buffer.length);
                aSocket.receive(reply);
                byte[] replyData = new byte[reply.getLength()];
                System.arraycopy(reply.getData(), 0, replyData, 0,
reply.getLength());
                String replyMsg = new String(replyData);
                if ("halt!".equals(replyMsg)) {
        } catch (SocketException e) {
            System.out.println("Socket Exception: " + e.getMessage());
        } catch (IOException e) {
            System.out.println("IO Exception: " + e.getMessage());
        } finally {
                System.out.println("UDP Client side quitting");
                aSocket.close();
```


Task 1

EchoServerUDP.java

```
import java.io.IOException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.SocketException;
public class EchoServerUDP {
    public static void main(String[] args){
        Scanner scanner = new Scanner(System.in);
        DatagramSocket aSocket = null;
        byte[] buffer = new byte[1000];
            System.out.println("The UDP server is running.");
            System.out.println("Please enter the port number:");
            int port = scanner.nextInt();
            aSocket = new DatagramSocket(port);
            DatagramPacket request = new DatagramPacket(buffer,
buffer.length);
                aSocket.receive(request);
                byte[] requestData = new byte[request.getLength()];
                System.arraycopy(request.getData(), 0, requestData, 0,
request.getLength());
                String requestString = new String(request.getData(), 0,
request.getLength());
                System.out.println("Echoing: "+requestString);
                DatagramPacket reply = new DatagramPacket (requestData,
requestData.length, request.getAddress(), request.getPort());
                aSocket.send(reply);
                if ("halt!".equals(requestString)) {
        } catch (SocketException e) {
            System.out.println("Socket: " + e.getMessage());
        } catch (IOException e) {
            System.out.println("IO: " + e.getMessage());
        } finally {
            if(aSocket != null) {
                System.out.println("UDP Server side quitting");
                aSocket.close();
```

```
}
}
```

EchoClientUDP.java

```
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.DatagramPacket;
import java.net.InetAddress;
import java.net.SocketException;
public class EchoClientUDP{
    public static void main(String[] args) {
        DatagramSocket aSocket = null;
        Scanner scanner = new Scanner(System.in);
            System.out.println("The UDP client is running.");
            System.out.println("Please enter the port number:");
            int port = scanner.nextInt();
            InetAddress aHost = InetAddress.getByName("localhost");
            aSocket = new DatagramSocket();
            String nextLine;
            BufferedReader typed = new BufferedReader(new
InputStreamReader(System.in));
            while ((nextLine = typed.readLine()) != null) {
                byte[] m = nextLine.getBytes();
                DatagramPacket request = new DatagramPacket(m, m.length,
aHost, port);
                aSocket.send(request);
                byte[] buffer = new byte[1000];
                DatagramPacket reply = new DatagramPacket (buffer,
buffer.length);
                aSocket.receive(reply);
                byte[] replyData = new byte[reply.getLength()];
                System.arraycopy(reply.getData(), 0, replyData, 0,
reply.getLength());
                String replyMsg = new String(replyData);
                System.out.println("Reply from server: " + replyMsg);
                if ("halt!".equals(replyMsg)) {
```

```
}
}

catch (SocketException e) {
    System.out.println("Socket Exception: " + e.getMessage());
} catch (IOException e) {
    System.out.println("IO Exception: " + e.getMessage());
} finally {
    if(aSocket != null) {
        System.out.println("UDP Client side quitting");
        aSocket.close();
    }
}
}
```

EavesdropperUDP.java

```
import java.net.*;
public class EavesdropperUDP {
   public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        DatagramSocket serverSocket = null;
        DatagramSocket clientSocket = null;
            System.out.println("EavesdropperUDP is running.");
            System.out.println("Please enter the server port number:");
            int serverPort = scanner.nextInt(); // Server port
            System.out.println("Please enter the eavesdropper port
number:");
            int eavesdropperPort = scanner.nextInt(); // Eavesdropper port
            System.out.println("Listening on port: " + eavesdropperPort +
            serverSocket = new DatagramSocket(eavesdropperPort);
            clientSocket = new DatagramSocket();
            byte[] buffer = new byte[1000];
            while (true) {
                DatagramPacket clientPacket = new DatagramPacket(buffer,
buffer.length);
```

```
String message = new String(clientPacket.getData(), 0,
clientPacket.getLength());
                System.out.println("Received from client: " + message);
                if (message.contains("like")
&& !message.contains("dislike")) {
                    message = message.replaceFirst("like", "dislike");
                byte[] modifiedMessage = message.getBytes();
                InetAddress serverAddress =
InetAddress.getByName("localhost");
                DatagramPacket serverPacket = new
DatagramPacket (modifiedMessage, modifiedMessage.length, serverAddress,
serverPort);
                clientSocket.send(serverPacket);
                byte[] responseBuffer = new byte[1000];
                DatagramPacket responsePacket = new
DatagramPacket(responseBuffer, responseBuffer.length);
                clientSocket.receive(responsePacket);
                String response = new String(responsePacket.getData(), 0,
responsePacket.getLength());
                System.out.println("Received from server: " + response);
                InetAddress clientAddress = clientPacket.getAddress();
                int clientPort = clientPacket.getPort();
                DatagramPacket replyPacket = new
DatagramPacket(responseBuffer, responsePacket.getLength(), clientAddress,
clientPort);
                serverSocket.send(replyPacket);
        } catch (SocketException e) {
           System.out.println("Socket: " + e.getMessage());
        } catch (IOException e) {
            System.out.println("IO: " + e.getMessage());
        } finally {
            if (serverSocket != null) serverSocket.close();
            if (clientSocket != null) clientSocket.close();
```

The screenshots below are about my client, server, and eavesdropper consoles. They show the results of general commands, replacing "like" as "dislike", and "halt!" to terminate only client and server.

Project2Task1ThreeConsoles

Task 2

Project2Task2Client

```
import java.io.IOException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
public class AddingClientUDP {
    private static int serverPort;
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.println("The client is running.");
        System.out.println("Please enter server port: ");
        serverPort = scanner.nextInt();
        System.out.println();
            String input = scanner.next();
            if ("halt!".equalsIgnoreCase(input)) {
                System.out.println("Client side quitting.");
                int valueToAdd = Integer.parseInt(input);
                int sum = add(valueToAdd);
                System.out.println("The server returned " + sum + ".");
            } catch (IOException e) {
                System.out.println("IO Exception: " + e.getMessage());
            } catch (NumberFormatException e) {
                System.out.println("Please enter a valid integer or
        scanner.close();
    public static int add(int i) throws IOException {
        DatagramSocket aSocket = null;
            aSocket = new DatagramSocket();
            InetAddress aHost = InetAddress.getByName("localhost");
            byte[] sendData =
java.nio.ByteBuffer.allocate(4).putInt(i).array();
            DatagramPacket request = new DatagramPacket(sendData,
            aSocket.send(request);
            byte[] buffer = new byte[4];
            DatagramPacket reply = new DatagramPacket(buffer,
buffer.length);
```

```
aSocket.receive(reply);
    return java.nio.ByteBuffer.wrap(reply.getData()).getInt();
} finally {
    if (aSocket != null) aSocket.close();
}
}
```

Project2Task2Server

```
import java.io.IOException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.SocketException;
public class AddingServerUDP {
    public static void main(String[] args) {
        DatagramSocket aSocket = null;
        try {
            System.out.println("Server started");
            aSocket = new DatagramSocket(6789);
                DatagramPacket request = new DatagramPacket (buffer,
buffer.length);
                aSocket.receive(request);
                // 直接從接收到的字節數組中解析整數值
                int receivedValue =
java.nio.ByteBuffer.wrap(request.getData()).getInt();
                int newSum = add(receivedValue);
                System.out.println("Adding: " + receivedValue + " to " +
                System.out.println("Returning sum of " + newSum + " to
                byte[] replyData =
java.nio.ByteBuffer.allocate(4).putInt(newSum).array();
                DatagramPacket reply = new DatagramPacket(replyData,
replyData.length, request.getAddress(), request.getPort());
                aSocket.send(reply);
        } catch (SocketException e) {
            System.out.println("Socket: " + e.getMessage());
        } catch (IOException e) {
            System.out.println("IO: " + e.getMessage());
        } finally {
            if(aSocket != null) {
                System.out.println("UDP Server side quitting");
                aSocket.close();
```

```
private static int add(int value) {
    sum += value;
    return sum;
}
```

Project2Task2ClientConsole

Task 3

Project2Task3Client

```
import java.io.IOException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.nio.ByteBuffer;
public class RemoteVariableClientUDP {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.println("The client is running.");
        System.out.println("Please enter server port: ");
        serverPort = scanner.nextInt();
        System.out.println();
        while (true) {
            System.out.println("1. Add a value to your sum.");
            System.out.println("2. Subtract a value from your sum.");
            System.out.println("3. Get your sum.");
            System.out.println("4. Exit client");
            int operation = scanner.nextInt();
            int value = 0;
            if (operation == 1 || operation == 2) {
                System.out.println("Enter the value to " + (operation ==
                value = scanner.nextInt();
            } else if (operation == 3) {
            } else if (operation == 4) {
                System.out.println("Client side quitting.");
                System.out.println("Invalid option.");
            System.out.println("Enter your ID: ");
            int id = scanner.nextInt();
                int result = calculate(id, operation, value);
                System.out.println("The result is " + result + ".\n");
            } catch (IOException e) {
                throw new RuntimeException(e);
```

```
scanner.close();
    public static int calculate(int id, int operation, int value) throws
IOException {
        DatagramSocket aSocket = null;
            aSocket = new DatagramSocket();
            InetAddress aHost = InetAddress.getByName("localhost");
            ByteBuffer byteBuffer = ByteBuffer.allocate(1024);
            byteBuffer.putInt(id).putInt(operation).putInt(value);
            byte[] sendData = byteBuffer.array();
            DatagramPacket request = new DatagramPacket(sendData,
sendData.length, aHost, serverPort);
            aSocket.send(request);
            byte[] buffer = new byte[4];
            DatagramPacket reply = new DatagramPacket(buffer,
buffer.length);
            aSocket.receive(reply);
            return java.nio.ByteBuffer.wrap(reply.getData()).getInt();
        } finally {
            if (aSocket != null) aSocket.close();
```

Project2Task3Server

```
import java.io.IOException;
import java.net.DatagramSocket;
import java.net.SocketException;
import java.nio.ByteBuffer;
import java.util.Map;
import java.util.TreeMap;
public class RemoteVariableServerUDP {
    private static final Map<Integer, Integer> map = new TreeMap<>();
    public static void main(String[] args) {
        DatagramSocket aSocket = null;
        byte[] buffer = new byte[1000];
            System.out.println("Server started");
            aSocket = new DatagramSocket(6789);
                DatagramPacket request = new DatagramPacket(buffer,
buffer.length);
                aSocket.receive(request);
                ByteBuffer byteBuffer = ByteBuffer.wrap(request.getData(),
0, request.getLength());
```

```
int id = byteBuffer.getInt();
                int operation = byteBuffer.getInt();
                int value = byteBuffer.getInt();
                int result = 0;
                switch (operation) {
                        result = add(id, value);
                        result = subtract(id, value);
                        result = get(id);
                        throw new IllegalArgumentException("Invalid
operation: " + operation);
                System.out.println("Operation: " + operation + " on " + id
                System.out.println("Returning sum of " + result + " to
                byte[] replyData =
java.nio.ByteBuffer.allocate(4).putInt(result).array();
                DatagramPacket reply = new DatagramPacket(replyData,
replyData.length, request.getAddress(), request.getPort());
                aSocket.send(reply);
        } catch (SocketException e) {
            System.out.println("Socket: " + e.getMessage());
        } catch (IOException e) {
            System.out.println("IO: " + e.getMessage());
                System.out.println("UDP Server side quitting");
                aSocket.close();
        int sum = map.getOrDefault(id, 0);
        sum += value;
       map.put(id, sum);
        return sum;
       int sum = map.getOrDefault(id, 0);
        sum -= value;
       map.put(id, sum);
        return sum;
```

```
private static int get(int id) {
    int sum = map.getOrDefault(id, 0);
    return sum;
}
```

Project2Task3ServerConsole

Task 4

Project2Task4Client

```
import com.google.gson.Gson;
import jsonObj.req.*;
import java.io.IOException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.SocketException;
import java.util.Arrays;
   final String host = "localhost";
   static Scanner scanner = new Scanner(System.in);
   public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
       System.out.println("The client is running.");
       System.out.println();
            NeuralNetworkRequest req;
            int userSelection = client.menu();
            if (userSelection == 0) { // Display the current truth
                req = new GetCurrentRangeRequest();
                System.out.println("Enter the four results of a 4 by 2
                double range1 = scanner.nextDouble();
                double range2 = scanner.nextDouble();
                double range3 = scanner.nextDouble();
                double range4 = scanner.nextDouble();
                req = new SetCurrentRangeRequest(range1, range2, range3,
range4);
            } else if (userSelection == 2) { // Perform a single
                req = new TrainRequest(1);
            } else if (userSelection == 3) {    // Perform n training
```

```
System.out.println("Enter the number of training sets.");
                int steps = scanner.nextInt();
                req = new TrainRequest(steps);
            } else if (userSelection == 4) {     // Test with a pair of
                System.out.println("Enter a pair of doubles from a row of
                double input1 = scanner.nextDouble();
                double input2 = scanner.nextDouble();
                req = new TestRequest(input1, input2);
                System.out.println("Client side quitting.");
                System.out.println("Invalid option.");
            String resStr = client.sendRequest(req);
            if (resStr.contains(NeuralNetworkResponse.STATUS OK)) { //
(resStr.contains(NeuralNetworkResponse. GET CURRENT RANGE)) { // Get the
                    GetCurrentRangeResponse rangeRes =
gson.fromJson(resStr, GetCurrentRangeResponse.class);
                    double[][] userTrainingSets =
rangeRes.getUserTrainingSets();
                    System.out.println("Working with the following truth
table");
                    for (double[] userTrainingSet : userTrainingSets) {
System.out.println(Arrays.toString(userTrainingSet));
(resStr.contains(NeuralNetworkResponse.SET CURRENT RANGE)) { // Set the
                    SetCurrentRangeResponse setRes = qson.fromJson(resStr,
SetCurrentRangeResponse.class);
                    System.out.println("The range has been set.");
                } else if (resStr.contains(NeuralNetworkResponse.TRAIN))
                    TrainResponse trainRes = gson.fromJson(resStr,
TrainResponse.class);
                    System.out.println("Training complete. Error: " +
trainRes.getError());
                    System.out.println("After " + trainRes.getSteps() + "
training steps, our error " + trainRes.getError());
                } else if (resStr.contains(NeuralNetworkResponse.TEST))
                    TestResponse testRes = gson.fromJson(resStr,
TestResponse.class);
```

```
System.out.println("The range value is approximately
 testRes.getRange());
                System.out.println("Error!");
        scanner.close();
   private int menu() {
        System.out.println("Using a neural network to learn a truth
        System.out.println("0. Display the current truth table.");
        System.out.println("1. Provide four inputs for the range of the
        System.out.println("2. Perform a single training step.");
        System.out.println("3. Perform n training steps. 10000 is a
       System.out.println("4. Test with a pair of inputs.");
       System.out.println("5. Exit program.");
       return scanner.nextInt();
   private String sendRequest(NeuralNetworkRequest req) {
        DatagramSocket aSocket = null;
            aSocket = new DatagramSocket();
            InetAddress aHost = InetAddress.getByName(host);
            String jsonStr = gson.toJson(req);
jsonStr.getBytes(java.nio.charset.StandardCharsets.UTF 8);
            DatagramPacket request = new DatagramPacket(sendData,
sendData.length, aHost, serverPort);
           aSocket.send(request);
            byte[] buffer = new byte[1000];
            DatagramPacket reply = new DatagramPacket(buffer,
buffer.length);
            aSocket.receive(reply);
            return new String(reply.getData(), 0, reply.getLength());
        } catch (IOException e) {
            throw new RuntimeException(e);
            if (aSocket != null) aSocket.close();
```

Project2Task4Server

```
import com.google.gson.Gson;
import jsonObj.req.NeuralNetworkRequest;
```

```
import jsonObj.req.SetCurrentRangeRequest;
import jsonObj.req.TrainRequest;
import jsonObj.res.*;
import neuronObj.NeuronLayer;
import java.io.IOException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
public class NeuralNetworkServer {
    public static void main(String args[]) {
        List<Double[][]> userTrainingSets = new ArrayList<>(Arrays.asList(
                new Double[][]{{0.0, 0.0}, {0.0}},
                new Double[][]{{0.0, 1.0}, {0.0}},
                new Double[][]{{1.0, 0.0}, {0.0}},
                new Double[][]{{1.0, 1.0}, {0.0}}
        ));
        NeuralNetwork neuralNetwork = new NeuralNetwork(2, 5, 1, null,
        Random rand = new Random();
        List<Double> userTrainingInputs;
        List<Double> userTrainingOutputs;
        DatagramSocket aSocket = null;
        byte[] buffer = new byte[1000];
            System.out.println("The Neural Network server is running.");
```

```
aSocket = new DatagramSocket(6789);
           DatagramPacket request = new DatagramPacket (buffer,
buffer.length);
           while(true) {
               aSocket.receive(request);
               byte[] requestData = new byte[request.getLength()];
               System.arraycopy(request.getData(), 0, requestData, 0,
request.getLength());
               String requestString = new String(request.getData(), 0,
request.getLength());
               System.out.println(requestString);
               NeuralNetworkResponse response;
double[][] responseData = new double[4][3];
                      responseData[r][0] =
userTrainingSets.get(r)[0][0];
                      responseData[r][1] =
userTrainingSets.get(r)[0][1];
                      responseData[r][2] =
userTrainingSets.get(r)[1][0];
                   response = new GetCurrentRangeResponse(responseData);
(requestString.contains(NeuralNetworkRequest.SET CURRENT RANGE)) {
                   SetCurrentRangeRequest req =
gson.fromJson(requestString, SetCurrentRangeRequest.class);
                   userTrainingSets = new ArrayList<> (Arrays.asList(
                          new Double[][]{{0.0, 0.0}, {req.getVal1()}},
                          new Double[][]{{0.0, 1.0}, {req.getVal2()}},
new Double[][]{{1.0, 0.0}, {req.getVal3()}},
                          new Double[][]{{1.0, 1.0}, {req.getVal4()}}
                   neuralNetwork = new NeuralNetwork(2, 5, 1, null, null,
                   response = new SetCurrentRangeResponse();
TrainRequest req = gson.fromJson(requestString,
TrainRequest.class);
                   int n = req.getIterations();
                      userTrainingInputs =
```

```
Arrays.asList(userTrainingSets.get(random choice)[0]);
                        userTrainingOutputs =
Arrays.asList (userTrainingSets.get(random choice)[1]);
                        neuralNetwork.train(userTrainingInputs,
userTrainingOutputs);
                    double error =
neuralNetwork.calculateTotalError(userTrainingSets);
                    response = new TrainResponse(n, error);
(requestString.contains(NeuralNetworkRequest.TEST)) { // Test the neural
                    TestRequest req = gson.fromJson(requestString,
TestRequest.class);
                    double input0 = req.getVal1();
                    double input1 = req.getVal2();
                    List<Double> testUserInputs = new
ArrayList<> (Arrays.asList(input0, input1));
                    List<Double> userOutput =
neuralNetwork.feedForward(testUserInputs);
                    response = new TestResponse(userOutput.get(0));
                    response = new ErrorResponse();
                String resJsonStr = gson.toJson(response);
                byte[] replyData =
resJsonStr.qetBytes(java.nio.charset.StandardCharsets.UTF 8);
                DatagramPacket reply = new DatagramPacket(replyData,
replyData.length, request.getAddress(), request.getPort());
                aSocket.send(reply);
        } catch (SocketException e) {
            System.out.println("Socket: " + e.getMessage());
        } catch (IOException e) {
            System.out.println("IO: " + e.getMessage());
        } finally {
                System.out.println("UDP Server side quitting");
                aSocket.close();
```

AND

Server

```
/Users/louischang/Library/Java/JavaVirtualMachines/openjdk-
```

20.0.1/Contents/Home/bin/java -javaagent:/Applications/IntelliJ

IDEA.app/Contents/lib/idea_rt.jar=54744:/Applications/IntelliJ IDEA.app/Contents/bin -

Dfile.encoding=UTF-8 -Dsun.stdout.encoding=UTF-8 -Dsun.stderr.encoding=UTF-8 -

classpath /Users/louischang/Library/CloudStorage/OneDrive-

andrew.cmu.edu/DS/Project2/Project2Task4/out/production/Project2Task4:/Users/louischang/Library/CloudStorage/OneDrive-

andrew.cmu.edu/DS/Project2/Project2Task4/libs/gson-2.10.1.jar NeuralNetworkServer

The Neural Network server is running.

Request: {"request": "getCurrentRange"}

Response:

{"userTrainingSets":[[0.0,0.0,0.0],[0.0,1.0,0.0],[1.0,0.0,0.0],[1.0,1.0,0.0]],"response":"getCurrentRange","status":"OK"}

Request: {"val1":0.0,"val2":0.0,"val3":0.0,"val4":1.0,"request":"setCurrentRange"}

Response: {"response": "setCurrentRange", "status": "OK"}

Request: {"iterations":1,"request":"train"}

Response: {"steps":1,"error":1.1084549190399549,"response":"train","status":"OK"}

Request: {"iterations":10000,"request":"train"}

Response:

{"steps":10000,"error":0.0017290011127243906,"response":"train","status":"OK"}

Request: {"val1":0.0,"val2":1.0,"request":"test"}

Response: {"range":0.028391682068385715,"response":"test","status":"OK"}

Request: {"val1":1.0,"val2":1.0,"request":"test"}

Response: {"range":0.9563219554569747,"response":"test","status":"OK"}

Client

/Users/louischang/Library/Java/JavaVirtualMachines/openjdk-

20.0.1/Contents/Home/bin/java -javaagent:/Applications/IntelliJ

IDEA.app/Contents/lib/idea_rt.jar=54748:/Applications/IntelliJ IDEA.app/Contents/bin -

Dfile.encoding=UTF-8 -Dsun.stdout.encoding=UTF-8 -Dsun.stderr.encoding=UTF-8 -classpath /Users/louischang/Library/CloudStorage/OneDrive-andrew.cmu.edu/DS/Project2/Project2Task4/out/production/Project2Task4:/Users/louischang/Library/CloudStorage/OneDrive-andrew.cmu.edu/DS/Project2/Project2Task4/libs/gson-2.10.1.jar NeuralNetworkClient

The client is running.

Using a neural network to learn a truth table.

Main Menu

- 0. Display the current truth table.
- 1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 1 1 0.
- 2. Perform a single training step.
- 3. Perform n training steps. 10000 is a typical value for n.
- 4. Test with a pair of inputs.
- 5. Exit program.

0

Working with the following truth table

[0.0, 0.0, 0.0]

[0.0, 1.0, 0.0]

[1.0, 0.0, 0.0]

[1.0, 1.0, 0.0]

Using a neural network to learn a truth table.

- 0. Display the current truth table.
- 1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 1 1 0.
- 2. Perform a single training step.

- 3. Perform n training steps. 10000 is a typical value for n.
- 4. Test with a pair of inputs.
- 5. Exit program.

1

Enter the four results of a 4 by 2 truth table. Each value should be 0 or 1.

0001

The range has been set.

Using a neural network to learn a truth table.

Main Menu

- 0. Display the current truth table.
- 1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 1 1 0.
- 2. Perform a single training step.
- 3. Perform n training steps. 10000 is a typical value for n.
- 4. Test with a pair of inputs.
- 5. Exit program.

2

Training complete. Error: 1.1084549190399549

After 1 training steps, our error 1.1084549190399549

Using a neural network to learn a truth table.

- 0. Display the current truth table.
- 1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 1 1 0.
- 2. Perform a single training step.
- 3. Perform n training steps. 10000 is a typical value for n.
- 4. Test with a pair of inputs.

5. Exit program.

3

Enter the number of training sets.

10000

Training complete. Error: 0.0017290011127243906

After 10000 training steps, our error 0.0017290011127243906

Using a neural network to learn a truth table.

Main Menu

- 0. Display the current truth table.
- 1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 1 1 0.
- 2. Perform a single training step.
- 3. Perform n training steps. 10000 is a typical value for n.
- 4. Test with a pair of inputs.
- 5. Exit program.

4

Enter a pair of doubles from a row of the truth table. These are domain values.

01

The range value is approximately 0.028391682068385715

Using a neural network to learn a truth table.

- 0. Display the current truth table.
- 1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 1 1 0.
- 2. Perform a single training step.
- 3. Perform n training steps. 10000 is a typical value for n.
- 4. Test with a pair of inputs.

5. Exit program.
4
Enter a pair of doubles from a row of the truth table. These are domain values.
1
1
The range value is approximately 0.9563219554569747
Using a neural network to learn a truth table.
Main Menu
0. Display the current truth table.
1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 1 1 0.
2. Perform a single training step.
3. Perform n training steps. 10000 is a typical value for n.
4. Test with a pair of inputs.
5. Exit program.
5
Client side quitting.
Process finished with exit code 0
OR
Server
/Users/louischang/Library/Java/JavaVirtualMachines/openjdk-20.0.1/Contents/Home/bin/java -javaagent:/Applications/IntelliJ IDEA.app/Contents/lib/idea_rt.jar=54820:/Applications/IntelliJ IDEA.app/Contents/bin - Dfile.encoding=UTF-8 -Dsun.stdout.encoding=UTF-8 -Dsun.stderr.encoding=UTF-8 - classpath /Users/louischang/Library/CloudStorage/OneDrive-andrew.cmu.edu/DS/Project2/Project2Task4/out/production/Project2Task4:/Users/louisch

```
ang/Library/CloudStorage/OneDrive-
andrew.cmu.edu/DS/Project2/Project2Task4/libs/gson-2.10.1.jar NeuralNetworkServer
The Neural Network server is running.
Request: {"request":"getCurrentRange"}
Response:
{"userTrainingSets":[[0.0,0.0,0.0],[0.0,1.0,0.0],[1.0,0.0,0.0],[1.0,1.0,0.0]],"response":"getCu
rrentRange","status":"OK"}
Request: {"val1":0.0,"val2":1.0,"val3":1.0,"val4":1.0,"request":"setCurrentRange"}
Response: {"response": "setCurrentRange", "status": "OK"}
Request: {"iterations":1,"request":"train"}
Response: {"steps":1,"error":0.3972011875805595,"response":"train","status":"OK"}
Request: {"iterations":10000,"request":"train"}
Response:
{"steps":10000,"error":0.0011188945284393045,"response":"train","status":"OK"}
Request: {"val1":0.0,"val2":0.0,"request":"test"}
Response: {"range":0.03627045832220423,"response":"test","status":"OK"}
Request: {"val1":1.0,"val2":0.0,"request":"test"}
Response: {"range":0.9787818305142123,"response":"test","status":"OK"}
Request: {"val1":0.0,"val2":1.0,"request":"test"}
Response: {"range":0.9786271552897065,"response":"test","status":"OK"}
Request: {"val1":1.0,"val2":1.0,"request":"test"}
Response: {"range":0.9960969623832302,"response":"test","status":"OK"}
```

Client

/Users/louischang/Library/Java/JavaVirtualMachines/openjdk-20.0.1/Contents/Home/bin/java -javaagent:/Applications/IntelliJ IDEA.app/Contents/lib/idea_rt.jar=54824:/Applications/IntelliJ IDEA.app/Contents/bin - Dfile.encoding=UTF-8 -Dsun.stdout.encoding=UTF-8 -Dsun.stderr.encoding=UTF-8 -

classpath /Users/louischang/Library/CloudStorage/OneDrive-andrew.cmu.edu/DS/Project2/Project2Task4/out/production/Project2Task4:/Users/louischang/Library/CloudStorage/OneDrive-andrew.cmu.edu/DS/Project2/Project2Task4/libs/gson-2.10.1.jar NeuralNetworkClient

The client is running.

Using a neural network to learn a truth table.

Main Menu

- 0. Display the current truth table.
- 1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 1 1 0.
- 2. Perform a single training step.
- 3. Perform n training steps. 10000 is a typical value for n.
- 4. Test with a pair of inputs.
- 5. Exit program.

0

Working with the following truth table

[0.0, 0.0, 0.0]

[0.0, 1.0, 0.0]

[1.0, 0.0, 0.0]

[1.0, 1.0, 0.0]

Using a neural network to learn a truth table.

- 0. Display the current truth table.
- 1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 1 1 0.
- 2. Perform a single training step.

- 3. Perform n training steps. 10000 is a typical value for n.
- 4. Test with a pair of inputs.
- 5. Exit program.

1

Enter the four results of a 4 by 2 truth table. Each value should be 0 or 1.

0111

The range has been set.

Using a neural network to learn a truth table.

Main Menu

- 0. Display the current truth table.
- 1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 1 1 0.
- 2. Perform a single training step.
- 3. Perform n training steps. 10000 is a typical value for n.
- 4. Test with a pair of inputs.
- 5. Exit program.

2

Training complete. Error: 0.3972011875805595

After 1 training steps, our error 0.3972011875805595

Using a neural network to learn a truth table.

- 0. Display the current truth table.
- 1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 1 1 0.
- 2. Perform a single training step.
- 3. Perform n training steps. 10000 is a typical value for n.
- 4. Test with a pair of inputs.

5. Exit program.

3

Enter the number of training sets.

10000

Training complete. Error: 0.0011188945284393045

After 10000 training steps, our error 0.0011188945284393045

Using a neural network to learn a truth table.

Main Menu

- 0. Display the current truth table.
- 1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 1 1 0.
- 2. Perform a single training step.
- 3. Perform n training steps. 10000 is a typical value for n.
- 4. Test with a pair of inputs.
- 5. Exit program.

4

Enter a pair of doubles from a row of the truth table. These are domain values.

00

The range value is approximately 0.03627045832220423

Using a neural network to learn a truth table.

- 0. Display the current truth table.
- 1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 1 1 0.
- 2. Perform a single training step.
- 3. Perform n training steps. 10000 is a typical value for n.
- 4. Test with a pair of inputs.

5. Exit program.

4

Enter a pair of doubles from a row of the truth table. These are domain values.

10

The range value is approximately 0.9787818305142123

Using a neural network to learn a truth table.

Main Menu

- 0. Display the current truth table.
- 1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 1 1 0.
- 2. Perform a single training step.
- 3. Perform n training steps. 10000 is a typical value for n.
- 4. Test with a pair of inputs.
- 5. Exit program.

4

Enter a pair of doubles from a row of the truth table. These are domain values.

01

The range value is approximately 0.9786271552897065

Using a neural network to learn a truth table.

- 0. Display the current truth table.
- 1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 1 1 0.
- 2. Perform a single training step.
- 3. Perform n training steps. 10000 is a typical value for n.
- 4. Test with a pair of inputs.
- 5. Exit program.

Enter a pair of doubles from a row of the truth table. These are domain values.

11

The range value is approximately 0.9960969623832302

Using a neural network to learn a truth table.

Main Menu

- 0. Display the current truth table.
- 1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 1 1 0.
- 2. Perform a single training step.
- 3. Perform n training steps. 10000 is a typical value for n.
- 4. Test with a pair of inputs.
- 5. Exit program.

5

Client side quitting.

Process finished with exit code 0

XOR

Server

/Users/louischang/Library/Java/JavaVirtualMachines/openjdk-

20.0.1/Contents/Home/bin/java -javaagent:/Applications/IntelliJ

IDEA.app/Contents/lib/idea_rt.jar=54878:/Applications/IntelliJ IDEA.app/Contents/bin -

Dfile.encoding=UTF-8 -Dsun.stderr.encoding=UTF-8 -

classpath /Users/louischang/Library/CloudStorage/OneDrive-

andrew.cmu.edu/DS/Project2/Project2Task4/out/production/Project2Task4:/Users/louischang/Library/CloudStorage/OneDrive-

andrew.cmu.edu/DS/Project2/Project2Task4/libs/gson-2.10.1.jar NeuralNetworkServer

```
The Neural Network server is running.
```

```
Request: {"request":"getCurrentRange"}
```

Response:

```
{"userTrainingSets":[[0.0,0.0,0.0],[0.0,1.0,0.0],[1.0,0.0,0.0],[1.0,1.0,0.0]],"response":"getCurrentRange","status":"OK"}
```

```
Request: {"val1":0.0,"val2":1.0,"val3":1.0,"val4":0.0,"request":"setCurrentRange"}
```

Response: {"response": "setCurrentRange", "status": "OK"}

Request: {"iterations":1,"request":"train"}

Response: {"steps":1,"error":0.8333599643312776,"response":"train","status":"OK"}

Request: {"iterations":10000,"request":"train"}

Response: {"steps":10000,"error":0.008496602731396057,"response":"train","status":"OK"}

Request: {"val1":0.0,"val2":0.0,"request":"test"}

Response: {"range":0.07884362892839757,"response":"test","status":"OK"}

Request: {"val1":1.0,"val2":0.0,"request":"test"}

Response: {"range":0.937885306189667,"response":"test","status":"OK"}

Request: {"val1":1.0,"val2":1.0,"request":"test"}

Response: {"range":0.05837590189499034,"response":"test","status":"OK"}

Client

/Users/louischang/Library/Java/JavaVirtualMachines/openjdk-

20.0.1/Contents/Home/bin/java -javaagent:/Applications/IntelliJ

IDEA.app/Contents/lib/idea_rt.jar=54885:/Applications/IntelliJ IDEA.app/Contents/bin -

Dfile.encoding=UTF-8 -Dsun.stdout.encoding=UTF-8 -Dsun.stderr.encoding=UTF-8 -

classpath /Users/louischang/Library/CloudStorage/OneDrive-

andrew.cmu.edu/DS/Project2/Project2Task4/out/production/Project2Task4:/Users/louischang/Library/CloudStorage/OneDrive-

andrew.cmu.edu/DS/Project2/Project2Task4/libs/gson-2.10.1.jar NeuralNetworkClient

The client is running.

Using a neural network to learn a truth table.

Main Menu

- 0. Display the current truth table.
- 1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 $\,1\,$ 1 $\,$ 0.
- 2. Perform a single training step.
- 3. Perform n training steps. 10000 is a typical value for n.
- 4. Test with a pair of inputs.
- 5. Exit program.

n

Working with the following truth table

[0.0, 0.0, 0.0]

[0.0, 1.0, 0.0]

[1.0, 0.0, 0.0]

[1.0, 1.0, 0.0]

Using a neural network to learn a truth table.

Main Menu

- 0. Display the current truth table.
- 1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 1 1 0.
- 2. Perform a single training step.
- 3. Perform n training steps. 10000 is a typical value for n.
- 4. Test with a pair of inputs.
- 5. Exit program.

1

Enter the four results of a 4 by 2 truth table. Each value should be 0 or 1.

0110

The range has been set.

Using a neural network to learn a truth table.

Main Menu

- 0. Display the current truth table.
- 1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 1 1 0.
- 2. Perform a single training step.
- 3. Perform n training steps. 10000 is a typical value for n.
- 4. Test with a pair of inputs.
- 5. Exit program.

2

Training complete. Error: 0.8333599643312776

After 1 training steps, our error 0.8333599643312776

Using a neural network to learn a truth table.

Main Menu

- 0. Display the current truth table.
- 1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 1 1 0.
- 2. Perform a single training step.
- 3. Perform n training steps. 10000 is a typical value for n.
- 4. Test with a pair of inputs.
- 5. Exit program.

3

Enter the number of training sets.

10000

Training complete. Error: 0.008496602731396057

After 10000 training steps, our error 0.008496602731396057

Using a neural network to learn a truth table.

Main Menu

- 0. Display the current truth table.
- 1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 1 1 0.
- 2. Perform a single training step.
- 3. Perform n training steps. 10000 is a typical value for n.
- 4. Test with a pair of inputs.
- 5. Exit program.

4

Enter a pair of doubles from a row of the truth table. These are domain values.

00

The range value is approximately 0.07884362892839757

Using a neural network to learn a truth table.

Main Menu

- 0. Display the current truth table.
- 1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 1 1 0.
- 2. Perform a single training step.
- 3. Perform n training steps. 10000 is a typical value for n.
- 4. Test with a pair of inputs.
- 5. Exit program.

4

Enter a pair of doubles from a row of the truth table. These are domain values.

10

The range value is approximately 0.937885306189667

Using a neural network to learn a truth table.

Main Menu

- 0. Display the current truth table.
- 1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 1 1 0.
- 2. Perform a single training step.
- 3. Perform n training steps. 10000 is a typical value for n.
- 4. Test with a pair of inputs.
- 5. Exit program.

4

Enter a pair of doubles from a row of the truth table. These are domain values.

11

The range value is approximately 0.05837590189499034

Using a neural network to learn a truth table.

Main Menu

- 0. Display the current truth table.
- 1. Provide four inputs for the range of the two input truth table and build a new neural network. To test XOR, enter 0 1 1 0.
- 2. Perform a single training step.
- 3. Perform n training steps. 10000 is a typical value for n.
- 4. Test with a pair of inputs.
- 5. Exit program.

5

Client side quitting.

Process finished with exit code 0