## Proiectare logică

### Curs 6

## Metode de proiectare cu circuite MSI și LSI. Hazardul combinațional

Cristian Vancea

https://users.utcluj.ro/~vcristian/PL.html

### Cuprins

- Proiectare CLC cu circuite MSI Exerciții
- Circuite LSI (Large Scale Integration) uzuale
- Proiectare CLC cu circuite LSI
- Circuite VLSI (Very Large Scale Integration) uzuale
- Hazardul combinațional

#### Sinteza funcțiilor booleene cu DCD și MUX – Exerciții



Notă: Se pot implementa mai multe funcții cu același decodificator.

#### Sinteza funcțiilor booleene cu DCD și MUX – Exerciții

$$\operatorname{Ex}_{2}: n = 3 \ f_{1} = (a_{0} \cdot a_{1}) + (a_{0} \oplus \overline{a_{1}}) + a_{2}$$

#### Implementare cu MUX 4:1



|                                                                                                       |                                                                      |                                             |   | <i></i>               |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------|---|-----------------------|
| $ \begin{array}{c} 1 \longrightarrow \\ a_2 \longrightarrow \\ a_2 \longrightarrow \\ 1 \end{array} $ | X <sub>0</sub><br>X <sub>1</sub><br>X <sub>2</sub><br>X <sub>3</sub> | MUX<br>4:1<br>S <sub>1</sub> S <sub>0</sub> | y | $\longrightarrow f_1$ |
| mune                                                                                                  | 137                                                                  | $a_1 a_0$                                   |   |                       |

 $\begin{bmatrix} 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$ 

 $a_2 a_1 a_0 | j$ 

4 1 0 0 1

5 1 0 1 1

6 1 1 0 1

7 1 1 1 |

| Obs: Se grupează    | după val   | orile com  | une |
|---------------------|------------|------------|-----|
| ale variabilelor ap | olicate pe | selecțiile | MU  |

### Implementare cu MUX 8:1





#### Sinteza funcțiilor booleene cu DCD și MUX – Exerciții

$$\operatorname{Ex}_3$$
:  $n = 2$   $f = (\overline{a_0} + a_1) \oplus \overline{a_1}$ 

#### Implementare cu MUX 2:1



 $a_1 \xrightarrow{X_0} \underbrace{\text{MUX}}_{1 \xrightarrow{\text{2:1}}} y \xrightarrow{f}$ 

 $\begin{array}{c|cccc}
a_1 & a_0 & f \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 \\
2 & 1 & 0 & 1
\end{array}$ 

Obs: Se grupează după valorile comune ale variabilelor aplicate pe selecțiile MUX.

#### Implementare cu MUX 4:1

 $a_0$ 



Obs<sub>1</sub>: Când toate variabilele se aplică pe selecțiile MUX datele de intrare în MUX se pot lua din tabelul de adevăr.

Obs<sub>2</sub>: Pe liniile de date se aplică întotdeauna numai 0 sau 1.

### Circuite LSI (Large Scale Integration) uzuale

- LSI au peste 500 tranzistoare integrate.
- Exemple de circuite LSI :
  - Memorii ROM (Read Only Memory)
  - Unități PLA (Programmable Logic Array)

#### Circuite LSI uzuale – Memorii ROM

- Sunt memorii nevolatile conținutul stabilit din fabricație nu se modifică în lipsa alimentării; Read Only Memory (ROM) la funcționare conținutul doar se citește.
- Conţin 2 niveluri de circuite:
  - Nivelul 1 decodificator (DCD);
  - Nivelul 2 matrice de porți logice și conexiuni care implementează cuvintele de memorie. 1 rând din matrice ⇔ 1 cuvânt de memorie.
- Intrările ROM coincid cu intrările DCD și codurile aplicate se numesc adrese. Pentru fiecare adresă se activează o linie de ieșire a DCD, care generează amplasarea la ieșirea ROM a unui cuvânt de memorie asociat.
- leşirile ROM sunt three-state (o linie poate fi 0, 1 sau Z înaltă impedanță) => se pot conecta împreună ieşirile mai multor memorii: doar o memorie va fi activă restul având ieşirile în înaltă impedanță.
- Are o intrare de activare numită  $\overline{En}$  (Enable) sau  $\overline{CS}$  (Chip Select). Memoria inactivă ( $\overline{En}=1$ ) are ieșirile în înaltă impedanță (Z).



### Buffere 3-state



• Dacă este activ ( $\overline{\rm En}=0$ ) permite trecerea semnalului de la intrarea I la ieșirea O. 0



• Dacă este în înaltă impedanță ( $\overline{\rm En}=1$ ) nu permite trecerea semnalului între intrarea I și ieșirea O.



 Se pot conecta mai multe ieșiri cu buffer 3-state. Se vor evita conflictele (0 și 1 concomitent) pe linia comună. Exemple de situații posibile:



#### Circuite LSI uzuale – Memorii ROM

- Organizarea memoriei:
  - n numărul de biți de adresă => numărul de cuvinte de memorie =  $2^n$ ;
  - b numărul de biți ai unui cuvânt de memorie (de obicei putere a lui 2);
  - Adresa n : DCD  $\vdots$   $2^n : b$   $\vdots$   $2^n : b$   $\vdots$   $2^n : b$   $\vdots$  3-state
    - se poate mări capacitatea folosind mai multe memorii:

Ex<sub>1</sub>: Mărirea cuvântului de memorie de la 2 la 4 biți la ROM cu 256 cuvinte



#### Circuite LSI uzuale – Memorii ROM

- Organizarea memoriei:
  - n numărul de biți de adresă => numărul de cuvinte de memorie =  $2^n$ ;
  - b numărul de biți ai unui cuvânt de memorie (de obicei putere a lui 2);



se poate mări capacitatea folosind mai multe memorii:

Ex<sub>2</sub>: Dublarea numărului de cuvinte de la 256 la 512 la ROM cu 2 biți / ieșire



#### Circuite LSI uzuale – Memorii ROM

Ex<sub>3</sub>: 4 x numărul de cuvinte + 4 x numărul de biți / cuvânt => ROM 1024x8 (1KB)



#### Circuite LSI uzuale – Memorii ROM

#### Aplicații specifice:

- Memorie de (micro)instrucțiuni sau de date;
- Conversie de coduri;
- Stocare coduri de caractere;
- Generare secvențe de impulsuri predefinite;
- Implementare CLC cu număr mare de variabile de intrare și ieșire.

#### Sinteza funcțiilor booleene cu memorii ROM

- Nu necesită minimizarea funcțiilor; are la bază aducerea funcțiilor de implementat la forma canonică disjunctivă (FCD) deoarece:
  - Variabilele de intrare se aplică pe liniile de adresă ale memoriei => la nivelul DCD se implementează toți mintermii ca intrări ale matricei.
  - Conținutul matricei este configurat încât să determine disjuncția SAU a mintermilor necesari în implementarea funcției. Fiecare bit de ieșire va reprezenta o funcție de implementat.

#### • Etape:

- 1. Stabilirea dimensiunii memoriei potrivite; dacă este necesar se pot utiliza mai multe memorii de dimensiune redusă pentru obținerea unei capacități suficiente.
- 2. Stabilirea tabelului de adevăr al memoriei ⇔ configurarea matricei de cuvinte de memorie (harta de biţi) în conformitate cu funcţiile de implementat.

13

#### Sinteza funcțiilor booleene cu memorii ROM

$$\operatorname{Ex}_1$$
:  $n = 4$   $f_0 = \sum (0,1,2,3,6,9,11,12,14)$ ,  $f_1 = \sum (1,2,3,5,7)$ ,  $f_2 = \sum (11)$ 

#### 1. Alegerea capacității memoriei

$$2^n \times b = 2^4 \times 4 = 16 \times 4$$



Obs: Chiar dacă avem 3 funcții, b trebuie ales ca putere a lui 2. Deci b=4 ieșiri => o ieșire va fi ignorată (în acest caz  $D_3$ ).

#### Sinteza funcțiilor booleene cu memorii ROM

$$\operatorname{Ex}_1$$
:  $n = 4$   $f_0 = \sum (0,1,2,3,6,9,11,12,14)$ ,  $f_1 = \sum (1,2,3,5,7)$ ,  $f_2 = \sum (11)$ 

- 2. Configurarea tabelului de adevăr al memoriei (harta de biți):
- se pune 1 pe coloana asociată funcției în dreptul mintermilor constituenți și 0 în rest;
- se poate înscrie orice în coloana pentru ieșirea ignorată D<sub>3</sub>.

Obs: Fiecare rând asociat unei adrese va reprezenta conținutul unui cuvânt de memorie.

| _     |       | - `   |       |       | , , <u>, , , , , , , , , , , , , , , , , </u> | <b>—</b> `    |             |  |  |  |  |
|-------|-------|-------|-------|-------|-----------------------------------------------|---------------|-------------|--|--|--|--|
| A     | ٩dı   | res   | е     | C     | Cuvinte de memorie                            |               |             |  |  |  |  |
| $A_3$ | $A_2$ | $A_1$ | $A_0$ | $D_3$ | $D_2=f_2$                                     | $D_{1}=f_{1}$ | $D_0 = f_0$ |  |  |  |  |
| 0     | 0     | 0     | 0     | Χ     | 0                                             | 0             | 1           |  |  |  |  |
| 0     | 0     | 0     | 1     | Χ     | 0                                             | 1             | 1           |  |  |  |  |
| 0     | 0     | 1     | 0     | Х     | 0                                             | 1             | 1           |  |  |  |  |
| 0     | 0     | 1     | 1     | Χ     | 0                                             | 1             | 1           |  |  |  |  |
| 0     | 1     | 0     | 0     | Χ     | 0                                             | 0             | 0           |  |  |  |  |
| 0     | 1     | 0     | 1     | Х     | 0                                             | 1             | 0           |  |  |  |  |
| 0     | 1     | 1     | 0     | Χ     | 0                                             | 0             | 1           |  |  |  |  |
| 0     | 1     | 1     | 1     | Χ     | 0                                             | 1             | 0           |  |  |  |  |
| 1     | 0     | 0     | 0     | Χ     | 0                                             | 0             | 0           |  |  |  |  |
| 1     | 0     | 0     | 1     | Χ     | 0                                             | 0             | 1           |  |  |  |  |
| 1     | 0     | 1     | 0     | Χ     | 0                                             | 0             | 0           |  |  |  |  |
| 1     | 0     | 1     | 1     | Χ     | 1                                             | 0             | 1           |  |  |  |  |
| 1     | 1     | 0     | 0     | Χ     | 0                                             | 0             | 1           |  |  |  |  |
| 1     | 1     | 0     | 1     | Χ     | 0                                             | 0             | 0           |  |  |  |  |
| 1     | 1     | 1     | 0     | Χ     | 0                                             | 0             | <b>1</b>    |  |  |  |  |
| 1     | 1     | 1     | 1     | Х     | 0                                             | 0             | 0           |  |  |  |  |

#### Sinteza funcțiilor booleene cu memorii ROM

 $\operatorname{Ex}_1: n = 4 \ f_0 = \sum (0,1,2,3,6,9,11,12,14), f_1 = \sum (1,2,3,5,7), f_2 = \sum (11)$ 

Dacă nu avem la dispoziție memoria necesară ci doar memorii mai mici (ex. ROM 8x2) sunt necesari pașii 3 și 4.

Pasul 3. Se construiește memoria necesară ROM 16x4 cu memoriile ROM

8x2 disponibile.



#### Sinteza funcțiilor booleene cu memorii ROM

$$\operatorname{Ex}_1$$
:  $n = 4$   $f_0 = \sum (0,1,2,3,6,9,11,12,14)$ ,  $f_1 = \sum (1,2,3,5,7)$ ,  $f_2 = \sum (11)$ 

Pasul 4. Se distribuie conținutul memoriei mari ROM 16x4 pe memoriile disponibile și se construiește harta de biți pentru fiecare ROM 8x2 utilizat.

| $A_3A_2A_1A_0 \mid D_3$ | $D_2 - f_2$ | $D_1=f_1$ | $D_0 - f_0$ | $A \xrightarrow{A_2A_1A_0} D_1 \xrightarrow{D_0} \xrightarrow{A_2A_1A_0} D_1 \xrightarrow{D_0} B$ |
|-------------------------|-------------|-----------|-------------|---------------------------------------------------------------------------------------------------|
| 0 0 0 0 X               | 0           | 0         | 1           | 0 0 0   X 0 0 0 0 0 1                                                                             |
|                         |             |           |             | 0 0 1   X 0 0 0 1   1 1                                                                           |
| 0 0 0 1 X               | 0           | 1         | 1           | 0 1 0 X 0 0 1 0 1 1                                                                               |
| 0 0 1 0 X               | 0           | 1         | 1           | 0 1 1 X 0 0 1 1 1 1                                                                               |
| 0 0 1 1 X               | 0           | 1         | 1           |                                                                                                   |
| 0 1 0 0 X               | 0           | 0         | 0           | 1 0 0 X 0 1 0 0 0                                                                                 |
|                         |             |           |             | 1 0 1 X 0 1 0 1 1 0                                                                               |
| 0 1 0 1 X               | 0           | 1         | 0           | 1 1 0 X 0 1 1 0 0 1                                                                               |
| 0 1 1 0 X               | 0           | 0         | 1           | 1 1 1 X 0 1 1 1 1 0                                                                               |
| 0 1 1 1 X               | 0           | 1         | 0           |                                                                                                   |
| 1 0 0 0 X               | 0           | 0         | 0           | $C = A_2 A_1 A_0   D_1   D_0 = A_2 A_1 A_0   D_1   D_0$                                           |
| 1 0 0 1 X               | 0           | 0         | 1           | 0 0 0   X 0 0 0 0 0 0                                                                             |
|                         |             |           |             | 0 0 1 X 0 0 0 1 0 1                                                                               |
|                         | 0           | 0         | 0           | 0 1 0 X 0 0 1 0 0 0                                                                               |
| 1 0 1 1 X               | 1           | 0         | 1           | 0 1 1 X 1 0 1 1 0 1                                                                               |
| 1 1 0 0 X               | 0           | 0         | 1           |                                                                                                   |
| 1 1 0 1 X               | 0           | 0         | 0           | 1 0 0 X 0 1 0 0 0 1                                                                               |
| 1 1 1 0 X               | 0           | 0         | 1           | 1 0 1   X 0 1 0 1 0 0                                                                             |
|                         |             |           |             | 1 1 0 X 0 1 1 0 0 1 <sub>17</sub>                                                                 |
| 1 1 1 1 X               | 0           | 0         | 0           | 1 1 1 X 0 1 1 1 0 0                                                                               |

### Sinteza funcțiilor booleene cu memorii ROM

$$\operatorname{Ex}_{2}: n = 3 \ f_{0} = x_{2} + (x_{1} \cdot \overline{x_{0}}), f_{1} = x_{1} \oplus x_{2}$$

$$f_{0} \stackrel{\operatorname{FCD}}{\Longrightarrow} \sum (2,4,5,6), f_{1} \stackrel{\operatorname{FCD}}{\Longrightarrow} \sum (2,3,4,5)$$

1. Alegerea capacității memoriei  $2^n \times b = 2^3 \times 2 = 8 \times 2$ 



| $x_2$ | $x_1$ | $x_0$ | $f_1$ | $f_0$ |
|-------|-------|-------|-------|-------|
| 0     | 0     | 0     | 0     | 0     |
| 0     | 0     | 1     | 0     | 0     |
| 0     | 1     | 0     | 1     | 1     |
| 0     | 1     | 1     | 1     | 0     |
| 1     | 0     | 0     | 1     | 1     |
| 1     | 0     | 1     | 1     | 1     |
| 1     | 1     | 0     | 0     | 1     |
| 1     | 1     | 1     | 0     | 0     |

2. Configurarea tabelului de adevăr

| $A_2$ | $A_1$ | $A_0$ | $D_{1}=f_{1}$ | $D_0 = f_0$ |
|-------|-------|-------|---------------|-------------|
| 0     | 0     | 0     | 0             | 0           |
| 0     | 0     | 1     | 0             | 0           |
| 0     | 1     | 0     | 1             | 1           |
| 0     | 1     | 1     | 1             | 0           |
| 1     | 0     | 0     | 1             | 1           |
| 1     | 0     | 1     | 1             | 1           |
| 1     | 1     | 0     | 0             | 1           |
| 1     | 1     | 1     | 0             | 0           |

#### Circuite LSI uzuale – Unități PLA

Conțin 2 niveluri de logică programabilă: un șir de porți ȘI, un șir de porți SAU.
 Porțile ȘI și SAU au mai multe intrări:



• leşirile PLA sunt three-state. Există intrare de activare numită  $\overline{CS}$  (Chip Select). Circuitul inactiv ( $\overline{CS}=1$ ) are ieşirile în înaltă impedanță (Z).



### Circuite LSI uzuale – Unități PLA

- Structura PLA:
  - n linii de intrare;
  - p porți ȘI cu n intrări fiecare => maxim p termeni elementari;
  - m linii de ieşire => m porţi SAU cu maxim p intrări fiecare.



### Circuite LSI uzuale – Unități PLA

#### Aplicații specifice:

- Microprogramare;
- Conversie de coduri;
- Generare coduri de caractere;
- Implementare seturi de funcții.

#### Sinteza funcțiilor booleene cu unități PLA

- Necesită aducerea funcțiilor la forma disjunctivă minimă (FDM) pentru a reduce numărul de conexiuni necesare. Ca urmare:
  - La nivelul matricei de conexiuni ŞI se generează termenii elementari.
  - La nivelul matricei de conexiuni SAU se realizează disjuncția SAU a termenilor elementari.

#### • Etape:

- 1. Exprimarea funcțiilor în forma disjunctivă minimă (FDM) "sumă de produse".
- 2. Realizarea legăturilor la nivelul matricelor de conexiuni ȘI și SAU.

Obs: Dacă funcțiile au termeni elementari comuni, aceștia se implementează o singură dată.

#### Sinteza funcțiilor booleene cu unități PLA

$$\operatorname{Ex}_1: n = 4 \ f_0 = \sum (0,1,2,3,6,9,11,12,14), f_1 = \sum (1,2,3,5,7), f_2 = \sum (11)$$

#### 1. Minimizarea funcțiilor la FDM

|         | $x_1 x_0$ | 00 | 01 | 11 | 10 |
|---------|-----------|----|----|----|----|
|         | 00        | 1  | 1  | 1  | 1  |
| $f_0$ : | 01        | 0  | 0  | 0  | 1  |
|         | 11 _      | 1  | 0  | 0  | 1  |
|         | 10        | 0  | 1  | 1  | 0  |
|         | -         |    |    |    |    |

$$f_0^{\text{FDM}}(\overline{x_3} \cdot \overline{x_2}) + (\overline{x_2} \cdot x_0) + (x_3 \cdot x_2 \cdot \overline{x_0}) + (x_2 \cdot x_1 \cdot \overline{x_0})$$

| $x_3x_2$ | 00             | 01                   | 11                                                   | 10                                                                         |
|----------|----------------|----------------------|------------------------------------------------------|----------------------------------------------------------------------------|
| 00       | 0              | 1                    | 1                                                    | 1                                                                          |
| 01       | 0              | 1                    | 1                                                    | 0                                                                          |
| 11       | 0              | 0                    | 0                                                    | 0                                                                          |
| 10       | 0              | 0                    | 0                                                    | 0                                                                          |
|          | 00<br>01<br>11 | 00 0<br>01 0<br>11 0 | 00     0       01     0       11     0       0     0 | 00     0     1     1       01     0     1     1       11     0     0     0 |

$$f_1^{\text{FDM}} = (\overline{x_3} \cdot x_0) + (\overline{x_3} \cdot \overline{x_2} \cdot x_1) \, \boldsymbol{f_2}$$

|   | $x_3x_2$ $x_1x_0$ | 00 | 01 | 11 | 10 |
|---|-------------------|----|----|----|----|
|   | 00                | 0  | 0  | 0  | 0  |
| • | 01                | 0  | 0  | 0  | 0  |
|   | 11                | 0  | 0  | 0  | 0  |
|   | 10                | 0  | 0  | 1  | 0  |

$$f_2^{\text{FDM}} = x_3 \cdot \overline{x_2} \cdot x_1 \cdot x_0$$

#### Sinteza funcțiilor booleene cu unități PLA

$$\operatorname{Ex}_1: n = 4 \ f_0 = \sum (0,1,2,3,6,9,11,12,14), f_1 = \sum (1,2,3,5,7), f_2 = \sum (11)$$

#### 2. Realizarea conexiunilor

$$f_0 = (\overline{x_3} \cdot \overline{x_2}) + (\overline{x_2} \cdot x_0) + (\overline{x_3} \cdot \overline{x_2} \cdot x_1) + (\overline{x_3} \cdot x_2) + (\overline{x_3} \cdot \overline{x_2} \cdot x_1) + (\overline{x_3} \cdot \overline{x_2} \cdot x_1) + (\overline{x_3} \cdot \overline{x_2} \cdot x_2) + (\overline{x_3} \cdot \overline{x_2} \cdot x_1) + (\overline{x_3} \cdot \overline{x_2} \cdot x_2) + (\overline{x_3} \cdot x_2) + (\overline$$

 $f_0 = (\overline{x_3} \cdot \overline{x_2}) + (\overline{x_2} \cdot x_0) + (x_3 \cdot x_2 \cdot \overline{x_0}) + (x_2 \cdot x_1 \cdot \overline{x_0})$   $f_1 = (\overline{x_3} \cdot x_0) + (\overline{x_3} \cdot \overline{x_2} \cdot x_1)$   $f_2 = (\overline{x_3} \cdot x_0) + (\overline{x_3} \cdot \overline{x_2} \cdot x_1)$   $f_3 = (\overline{x_3} \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_1)$   $f_4 = (\overline{x_3} \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_1)$   $f_5 = (\overline{x_3} \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_1)$   $f_7 = (\overline{x_3} \cdot x_2 \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_1)$   $f_8 = (\overline{x_3} \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_1)$   $f_8 = (\overline{x_3} \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_1)$   $f_8 = (\overline{x_3} \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_1)$   $f_8 = (\overline{x_3} \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_1)$   $f_8 = (\overline{x_3} \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_1)$   $f_8 = (\overline{x_3} \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_1)$   $f_8 = (\overline{x_3} \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_1)$   $f_8 = (\overline{x_3} \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_1)$   $f_8 = (\overline{x_3} \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_1)$   $f_8 = (\overline{x_3} \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_1)$   $f_8 = (\overline{x_3} \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_1)$   $f_8 = (\overline{x_3} \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_1)$   $f_8 = (\overline{x_3} \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_1)$   $f_8 = (\overline{x_3} \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_1)$   $f_8 = (\overline{x_3} \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_1)$   $f_8 = (\overline{x_3} \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_1)$   $f_8 = (\overline{x_3} \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_1 \cdot x_2 \cdot x$ 





$$f_1 = (\overline{x_3} \cdot x_0) + (\overline{x_3} \cdot \overline{x_2} \cdot x_1)$$
 FDM  
=  $\overline{x_3} \cdot (x_0 + \overline{x_2} \cdot x_1)$  Nu este FDM



#### Circuite VLSI (Very Large Scale Integration) uzuale

- Prezintă un grad extins de integrare.
- Exemple de circuite VLSI:
  - CPLD (Complex Programmable Logic Device);
  - FPGA (Field Programmable Gate Array).



#### Hazardul combinațional

$$\operatorname{Ex}_1$$
:  $n = 4$   $f = \sum (1,3,5,7,8,9,12,13)$ 

| $x_3x_2$ $x_1x_0$ | 00 | 01 | 11 | 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------|----|----|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00                | 0  | 1  | 1  | 0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 01                | 0  | 1  | 1  | 0  | $f \stackrel{\text{FDM}}{\Longrightarrow} \overline{x_3} \cdot x_0 + x_3 \cdot x_0 + x_0 $ |
| 11                | 1  | 1  | 0  | 0  | <i>j</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10                | 1  | 1  | 0  | 0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

• Obs: Dacă  $T_1$ ,  $T_2$ , ...,  $T_k$  sunt termeni elementari obținuți după minimizare în FDM, atunci f se implementează cu SAU peste aceștia:

• Orice modificare a variabilelor de intrare  $x_i$  poate să genereze modificarea unuia sau mai multor termeni elementari  $T_i$  cu întârzieri diferite  $\Delta_j$ .

#### Hazardul combinațional

$$\text{Ex}_{1}: n = 4 \ f = \sum (1,3,5,7,8,9,12,13) =$$

$$\xrightarrow{\text{FDM}} \overline{x_{3}} \cdot x_{0} + x_{3} \cdot \overline{x_{1}}$$





#### grupuri adiacente

|                   |    | _  |    |    |
|-------------------|----|----|----|----|
| $x_3x_2$ $x_1x_0$ | 00 | 01 | 11 | 10 |
| 00                | 0  | 1  | 1  | 0  |
| 01                | 0  | 1  | 1  | 0  |
| 11                | 1  | 1  | 0  | 0  |
| 10                | 1  | 1  | 0  | 0  |

 $\Delta_h$  - perioada de hazard combinațional Obs: Hazardul apare când grupurile asociate termenilor elementari sunt vecine pe linii sau coloane în Diagrama Karnaugh și nu se intersectează.<sup>27</sup>

#### Hazardul combinațional

**Definiție**: Hazardul combinațional – comportare temporară greșită a CLC în care ieșirea are valoare necorespunzătoare cu modificările aduse intrărilor, datorită întârzierilor din circuit.

#### Tipuri:

- Static când se modifică o variabilă –> se poate elimina.
- De funcție când se modifică mai multe variabile –> eliminare dificilă/imposibilă.

#### Hazardul combinațional

#### Soluție pentru eliminarea hazardului static

Pas<sub>1</sub>: Se identifică toate grupările utilizate pentru FDM care sunt vecine și nu

se intersectează (adiacente).

 $\operatorname{Ex}_1$ : n = 4  $f = \sum (1,3,5,7,8,9,12,13)$ 

| $x_3x_2$ $x_1x_0$ | 00 | 01 | 11             | 10 |
|-------------------|----|----|----------------|----|
| 00                | 0  | 1  | $\int_{1}^{1}$ | 0  |
| 01                | 0  | 1  | 1              | 0  |
| 11                | 1  | 1  | 0              | 0  |
| 10                | 1  | 1  | 0              | 0  |

Pas<sub>2</sub>: Dacă există astfel de grupări se adaugă un număr minim de grupări dreptunghiulare maximale de 1 care realizează unirea lor. Grupările trebuie să conțină un număr de celule putere a lui 2.

Se adaugă termenii corespunzători la FDM.

$$f = \overline{x_3} \cdot x_0 + x_3 \cdot \overline{x_1} + \overline{x_1} \cdot x_0$$

| $x_3x_2$ $x_1x_0$ | 00                       | 01 | 11 | 10 |
|-------------------|--------------------------|----|----|----|
| 00                | 0                        | 1  | L  | 0  |
| 01                | 0                        | 1  | 1  | 0  |
| 11                | 1                        | 1  | 0  | 0  |
| 10                | <del></del> <del>-</del> | 1  | 0  | 0  |

### Hazardul combinațional

$$f = \overline{x_3} \cdot x_0 + x_3 \cdot \overline{x_1} + \overline{x_1} \cdot x_0 \longrightarrow$$







=> Hazardul static nu mai apare!

### Hazardul combinațional



| $x_3x_2$ $x_1x_0$ | 00 | 01 | 11 | 10 |
|-------------------|----|----|----|----|
| 00                | 0  | 1  | 1  | 1  |
| 01                | 1  | 1  | 0  | 0  |
| 11                | 1  | 0  | 0  | 0  |
| 10                | 0  | 0  | 1  | 1  |

### Hazardul combinațional

$$\operatorname{Ex}_{3}: n = 4 \ f = \sum (2,3,5,10,11,13) =$$

$$\stackrel{\operatorname{FDM}}{\Longrightarrow} \overline{x_{2}} \cdot x_{1} + x_{2} \cdot \overline{x_{1}} \cdot x_{0}$$





| $x_3x_2$ $x_1x_0$ | 00 | 01 | 11 | 10 |
|-------------------|----|----|----|----|
| 00                | 0  | 0  | 1  | 1  |
| 01                | 0  | 1  | 0  | 0  |
| 11                | 0  | 1  | 0  | 0  |
| 10                | 0  | 0  | 1  | 1  |

FDM nu prezintă hazard static deoarece nu există grupări vecine.

#### Hazardul combinațional

Soluție alternativă - se întârzie citirea rezultatului un interval de timp suficient de mare încât valorile pe liniile de ieșire să se stabilizeze:

- Lentă;
- Sigură rezolvă hazardul combinațional static și de funcție;
- Consum redus de resurse (nu apar termeni suplimentari).