2. Noções elementares de conjuntos (continuação)

Seja $f: A \longrightarrow B$ uma função e seja C um conjunto qualquer. A *imagem de* C *por* f é o conjunto

$$f(C) = \{y : \exists x \in C : f(x) = y\}.$$

A imagem recíproca de C por f é o conjunto

$$f^{\leftarrow}(C) = \{x \in A : f(x) \in C\}.$$

Dados dois números inteiros n e k, chamamos combinações de n, k a k, ao número

$$\binom{n}{k} = \frac{n!}{k!(n-k)!},$$

convencionando que $\binom{n}{k} = 0$ caso algum dos números n, k, ou n - k seja negativo.

Exercícios e problemas

1. Considere as funções

$$f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R} \quad \mathbf{e} \quad g, h, j: \mathbb{R} \longrightarrow \mathbb{R}$$

definidas por

$$f(x) = \frac{1}{x},$$
 $g(x) = -x$
 $h(x) = 3x - 2,$ $j(x) = x^{2}.$

Calcule

- (a) $(f \circ h)(\frac{1}{2});$
- (b) $(h \circ f)(\frac{1}{3});$
- (c) $(j \circ h \circ f \circ g)(4)$;
- (d) $(j \circ j \circ j)(2)$;
- (e) $(h \circ h \circ j \circ f)(3)$.
- Sejam f, g, h e j as funções definidas na pergunta anterior. Calcule as expressões gerais de
 - (a) $f \circ g$;
 - (b) $q \circ f$;
 - (c) $h \circ j$;
 - (d) $j \circ h$;

- (e) $f \circ g \circ h$;
- (f) $f \circ f$;
- (g) $g \circ g$;
- (h) $h \circ h$;
- (i) $j \circ j$.
- Encontre uma expressão geral para a função inversa de cada uma das seguintes funções reais de variável real.
 - (a) k(x) = 2x + 3;
 - (b) $l(x) = x^3 2$;
 - (c) $m(x) = (x-2)^3$;
 - (d) $n(x) = \sqrt[3]{x} + 7$.
- 4. Considere a função $p: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $p(x) = (x-3)^2 1$. Calcule os seguintes conjuntos (faça um esboço do gráfico se ajudar):
 - (a) $p({2,3,4,5});$
 - (b) p([5,7]);
 - (c) p([-1,4[);
 - (d) $p^{\leftarrow}(\{3,15\});$
 - (e) $p^{\leftarrow}(\{-2,-1,0\});$
 - (f) $p^{\leftarrow}([0,8[);$
 - (g) $p^{\leftarrow}([-5,3[);$
 - (h) $p^{\leftarrow}([-7, -2])$.
- 5. Seja $f: S \longrightarrow T$.
 - (a) Mostre que $f(f^{\leftarrow}(B)) \subseteq B$, para qualquer $B \subseteq T$.
 - (b) Mostre que $A \subseteq f^{\leftarrow}(f(A))$, para qualquer $A \subseteq S$.
 - (c) Mostre que

$$f^{\leftarrow}(B_1 \cap B_2) = f^{\leftarrow}(B_1) \cap f^{\leftarrow}(B_2),$$

para quaisquer $B_1, B_2 \subseteq T$.

- (d) Em que condições se dá a igualdade na alínea (5a)?
- (e) Em que condições se dá a igualdade na alínea (5b)?

- 6. Seja $f: S \longrightarrow T$. Das seguintes afirmações, diga quais são verdadeiras. Para estas, apresente uma demonstração. Para as falsas, apresente um contraexemplo.
 - (a) $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$, para quaisquer $A_1, A_2 \subseteq S$.
 - (b) $f(A_1 \setminus A_2) = f(A_1) \setminus f(A_2)$, para quaisquer $A_1, A_2 \subseteq S$.
 - (c) Se $f(A_1) = f(A_2)$, então $A_1 = A_2$.
- 7. Considere a sucessão $(a_n)_{n\in\mathbb{N}}$ definida por $a_n = \frac{n-1}{n+1}$.
 - (a) Calcule os seis primeiros termos da sucessão.
 - (b) Calcule $a_{n+1} a_n$, para $0 \le n \le 4$.
 - (c) Mostre que $a_{n+1} a_n = \frac{2}{(n+1)(n+2)}$, para cada $n \in \mathbb{N}$.
- 8. Construa as primeiras 11 linhas do triângulo de Pascal e assinale os números ímpares. Construíndo mais linhas se necessário, tente encontrar um padrão conhecido.
- 9. Calcule:
 - (a) $\frac{7!}{5!}$;
 - (b) $\frac{10!}{6!4!}$;
 - (c) $\frac{9!}{9!0!}$;
 - (d) $\frac{8!}{4!}$;
 - (e) $\frac{1111!}{1110!}$;
 - (f) $\sum_{s=0}^{5} s!$;
 - (g) $\sum_{i=1}^{10} (-1)^i$;
 - (h) $\sum_{i=7}^{101} (-1)^i$;
 - (i) $\sum_{l=0}^{3} (l^2+1)$;
 - (j) $\left(\sum_{l=0}^{3} l^2\right) + 1;$
 - (k) $\prod_{r=1}^{n} (r-3)$, para n=2, n=3, n=4 e
 - (l) $\prod_{m=1}^{n} \frac{m+1}{m}$, para n=2, n=3, n=4 e n=77;
 - (m) $\prod_{t=6}^{6} t$.
 - (n) $\binom{7}{6}$.

- (o) $\binom{7}{1}$.
- (p) $\binom{444}{443}$.
- (q) $\binom{444}{120} \binom{444}{324}$.
- 10. Simplifique:
 - (a) $\frac{n!}{(n-1)!}$;
 - (b) $\frac{(n!)^2}{(n-1)!(n+1)!}$.
- 11. Mostre que para quaisquer naturais a, b,

$$\binom{a}{b} + \binom{a}{b+1} = \binom{a+1}{b+1}.$$

12. Considere as sucessões $(s_n)_{n\in\mathbb{N}}$, $(t_n)_{n\in\mathbb{N}}$ e $(r_n)_{n\in\mathbb{N}}$ definidas por

$$s_n = \prod_{k=0}^{n} {n \choose k}; \quad t_n = \frac{s_{n+1}}{s_n}; \quad r_n = \frac{t_{n+1}}{t_n}.$$

- (a) Calcule a expressão geral das sucessões $(t_n)_{n\in\mathbb{N}}$ e $(r_n)_{n\in\mathbb{N}}$.
- (b) Calcule $\lim_{n\to+\infty} r_n$.