Ordenação e fila de prioridade

MO417 - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

"Prioridade é uma função do contexto."

Stephen R. Covey.

Ordenação por seleção

Selecionando o próximo menor

Vamos ordenar usando ideia diferente:

- Suponha que o sub-vetor A[1...i-1] esteja ordenado.
- ► Também, suponha que max $A[1 ... i 1] \le \min A[i ... n]$.
- Substituímos a posição A[i] pelo mínimo em A[i ... n].

Antes de substituir:

1						i				n	
20	25	35	40	44	55	70	80	99	65	85	

Após substituir:

1						i				n
20	25	35	40	44	55	65	80	99	70	85

Pseudocódigo de SELECTION-SORT

$\mathring{\mathbf{A}}$ lgoritmo: Selection-Sort(A, n)

```
1 para i \leftarrow 1 até n-1

2 | min \leftarrow i

3 | para j \leftarrow i+1 até n

4 | se A[j] < A[min]

5 | min \leftarrow j

6 | A[i] \leftrightarrow A[min]
```

Teorema (Invariante)

Ao início de cada iteração:

- 1. A[1...i-1] está ordenado.
- 2. $A[1...i-1] \leq A[i...n]$.

Complexidade de Selection-Sort

SE	LECTION-SORT (A, n)	Tempo	
1	para $i \leftarrow 1$ até $n-1$	$\Theta(n)$	
2	$min \leftarrow i$	$\Theta(n)$	
3	para $j \leftarrow i + 1$ até n	$\Theta(n^2)$	
4	$\mathbf{se}\ A[j] < A[min]$	$\Theta(n^2)$	
5	$min \leftarrow j$	$\Theta(n^2)$	
6	$A[i] \leftrightarrow A[min]$	$\Theta(n)$	

Consumo de tempo no pior caso? $\Theta(n^2)$. E no melhor caso?

Uma versão alternativa

Podemos reescrever esse algoritmo:

- Ordenamos a partir do final.
- Selecionamos o MAIOR remanescente.
- ▶ Refatoramos com uma sub-rotina MAXIMUM.

Revendo a complexidade

Algoritmo: Selection-Sort(A, n)

```
para i \leftarrow n até 2
```

2 $max \leftarrow MAXIMUM(A, i)$ 3 $A[i] \leftrightarrow A[max]$

- ▶ Suponha que MAXIMUM(A, i) leva tempo O(t(i)).
- Então o tempo total é:

$$T(n) = \sum_{i=2}^{n} O(t(i)) \le \sum_{i=2}^{n} O(t(n)) = O(n \cdot t(n))$$

Vamos tentar otimizar a rotina MAXIMUM(A, i).

O algoritmo HEAP-SORT

Vamos estudar a FILA DE PRIORIDADE:

- ▶ É uma estrutura de dados também chamada de max-heap.
- ▶ Implementa MAXIMUM com tempo $O(\log n)$.
- ▶ Usando um heap, podemos ordenar em $O(n \log n)$.
- Esse algoritmo de ordenação é chamado de heapsort.

Representando um heap

Um heap é uma **ÁRVORE BINÁRIA** armazenada em vetor A[1...n]:

- Filhos de um nó i:
 - O filho esquerdo é 2i.
 - ▶ O filho direito é 2i + 1.
- Pais:
 - ▶ O pai de um nó $i \in \left| \frac{i}{2} \right|$.
 - O nó 1 não tem pai.
- Folhas:
 - Um nó i é folha se não tiver filhos, i.e., se 2i > n.
 - As folhas são |n/2| + 1, ..., n 1, n.

Exemplo de um heap

Árvore completa

Um heap é uma árvore COMPLETA:

- ▶ Cada nível $\ell = 0, 1, 2, ...$ tem 2^{ℓ} nós (a não ser o último).
- Se i está no nível ℓ , o número nós nos níveis anteriores é:

$$2^0 + 2^1 + \dots + 2^{\ell-1} = 2^{\ell} - 1$$

Então os nós do nível ℓ são índices:

$$2^{\ell}, 2^{\ell} + 1, 2^{\ell} + 2, \dots, 2^{\ell+1} - 1$$

Árvore completa

Teorema (Nível de um nó)

O nível de um nó de índice i é $\lfloor \log_2 i \rfloor$.

► Se *i* está no nível ℓ , então:

Assim, $\ell = \lfloor \log_2 i \rfloor$.

Portanto, a altura da árvore é $\lfloor \log_2 n \rfloor$.

Max-heaps

Definição

Um heap A[1...n] é chamado de **MAX-HEAP** se cada nó tiver valor maior que seus filhos, i.e., para cada i,

- ► $A[i] \ge A[2i]$ e $A[i] \ge A[2i+1]$.
- Essa restrição é a PROPRIEDADE DE MAX-HEAP.
- O valor da raiz é um máximo do heap.
- Cada subárvore também é um max-heap.

Consertando um max-heap

- Suponha que as subárvores 2i e 2i + 1 são max-heaps.
- Como transformar a subárvore i em um max-heap?

Algoritmo: MAX-HEAPIFY(A, n, i)

```
1 e \leftarrow 2i
```

$$2 d \leftarrow 2i + 1$$

3 major
$$\leftarrow i$$

4 se
$$e \le n$$
 e $A[e] > A[maior]$

5 maior
$$\leftarrow e$$

6 se
$$d \le n$$
 e $A[d] > A[maior]$

7 maior
$$\leftarrow d$$

8 se maior
$$\neq i$$

9
$$A[i] \leftrightarrow A[\text{maior}]$$

10 MAX-HEAPIFY
$$(A, n, maior)$$

Correção de MAX-HEAPIFY

Lema

MAX-HEAPIFY transforma a subárvore i em max-heap.

Ideia para demonstração: indução na altura h do nó i.

- ▶ Se h = 0, então i é folha e o algoritmo está correto.
- Considere um nó i com altura h > 0.
- Suponha que o algoritmo funciona para árvores menores.
 - Antes da linha 8, temos $A[maior] \ge A[i], A[2i], A[2i+1]$.
 - Após a linha 9, temos $A[i] \ge A[2i], A[2i+1]$.
 - Segue que A[i] é máximo no vetor.
 - Pela hipótese de indução, MAX-HEAPIFY transforma a subárvore com raiz maior em max-heap.
 - Segue que i é max-heap.

Complexidade de Max-Heapify

	Ma	X-HEAPIFY (A, n, i)	Tempo
-	1	<i>e</i> ← 2 <i>i</i>	$\Theta(1)$
	2	$d \leftarrow 2i + 1$	$\Theta(1)$
	3	$maior \leftarrow i$	$\Theta(1)$
	4	se $e \le n$ e $A[e] > A[i]$	$\Theta(1)$
	5	$maior \leftarrow e$	O(1)
	6	se $d \le n$ e $A[d] > A[maior]$	$\Theta(1)$
	7	$maior \leftarrow d$	O(1)
	8	se maior $\neq i$	$\Theta(1)$
	9	$A[i] \leftrightarrow A[maior]$	O(1)
	10	MAX-HEAPIFY $(A, n, maior)$	T(h-1)

O tempo de execução é $T(h) = T(h-1) + \Theta(1) = O(h)$.

Construindo um max-heap

Podemos consertar um vetor inteiro:

- ▶ Recebemos um vetor A[1...n] desorganizado.
- Cada folha já é um heap.
- Consertamos o penúltimo nível.
- Depois o antepenúltimo.
- Assim por diante.

Algoritmo: BUILD-MAX-HEAP(A, n)

- 1 para $i \leftarrow \lfloor n/2 \rfloor$ até 1
- 2 MAX-HEAPIFY (A, n, i)

Análise de Build-Max-Heap

Algoritmo: BUILD-MAX-HEAP(A, n)

1 para $i \leftarrow \lfloor n/2 \rfloor$ até 1

2 MAX-HEAPIFY (A, n, i)

Teorema (Invariante)

No início de cada iteração, i + 1, ..., n são raízes de max-heaps.

Complexidade

- ▶ Uma análise rápida leva a $T(n) = n \cdot O(\log n) = O(n \log n)$.
- ▶ Na verdade mostraremos que T(n) é LINEAR!

Complexidade de BUILD-MAX-HEAP

Análise mais cuidadosa:

- Seja k a altura da árvore inteira:
 - ► Temos 1 nó de altura k.
 - Temos 2 nós de altura k-1.
 - Temos 4 nós de altura k-2.
 - Assim por diante.
- ▶ Uma chamada de MAX-HEAPIFY leva tempo O(h).
- Vamos somar os tempos de todas as chamadas.

Complexidade de BUILD-MAX-HEAP (cont)

Seja $k = \lfloor \log_2 n \rfloor$ a altura da árvore inteira, então:

$$T(n) \leq \sum_{k=1}^{k} 2^{k-h} \cdot O(h) = O(2^{k}) \sum_{k=1}^{k} \frac{h}{2^{h}}.$$

Note que:

$$\sum_{h=1}^{k} \frac{h}{2^h} = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^k}$$

$$1 - \frac{1}{2^k} < 1$$

$$+ \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^k}$$

$$\frac{1}{2} - \frac{1}{2^k} < \frac{1}{2}$$

$$+ \frac{1}{2^3} + \dots + \frac{1}{2^k}$$

$$\frac{1}{4} - \frac{1}{2^k} < \frac{1}{4}$$

Ou seja,

$$T(n) \le O(2^k) \sum_{k=0}^{k-1} \frac{1}{2^k} \le O(2^k) \cdot \sum_{k=0}^{\infty} \frac{1}{2^k} = O(2^k) \cdot 2 = O(n).$$

O algoritmo HEAP-SORT

```
Algoritmo: HEAP-SORT(A, n)
```

- 1 BUILD-MAX-HEAP(A, n)
- 2 para $m \leftarrow n$ até 2
- $3 \quad A[1] \leftrightarrow A[m]$
- 4 MAX-HEAPIFY (A, m-1, 1)

Análise de HEAP-SORT

Algoritmo: HEAP-SORT(A, n)

- 1 BUILD-MAX-HEAP(A, n)
- 2 para $m \leftarrow n$ até 2
- $A[1] \leftrightarrow A[m]$
- 4 MAX-HEAPIFY (A, m-1, 1)

Lema (Invariantes)

No início de cada iteração vale:

- 1. A[1...m] é um max-heap.
- 2. A[m+1...n] é crescente.
- 3. $A[1...m] \leq A[m+1]$.

Complexidade de HEAP-SORT

HE	AP-SORT(A, n)	Tempo
1	BUILD-MAX-HEAP (A, n)	$\Theta(n)$
2	para $m \leftarrow n$ até 2	$\Theta(n)$
3	$A[1] \leftrightarrow A[m]$	$\Theta(n)$
4	MAX-HEAPIFY $(A, m-1, 1)$	$n \cdot O(\log n)$

Consumo de tempo no pior caso? $O(n \log n)$.

FILA DE PRIORIDADES

Filas de prioridades

Definição

Uma **FILA DE PRIORIDADES** é um tipo abstrato de dados que consiste de uma coleção S de itens com prioridades associadas e permite as operações:

- ► MAXIMUM(S) devolve um elemento de maior prioridade.
- ightharpoonup EXTRACT-MAX(S) remove um elemento de maior prioridade.
- ▶ INCREASE-KEY(S, x, p) aumenta a prioridade de x para p.
- ▶ INSERT(S, x, p) insere um elemento x com prioridade p.

Implementação com max-heap

Algoritmo: HEAP-MAX(A, n)

1 devolva A[1]

Complexidade de tempo: $\Theta(1)$.

Algoritmo: HEAP-EXTRACT-MAX(A, n)

- $1 A[1] \leftarrow A[n]$
- 2 $n \leftarrow n-1$
- 3 Max-Heapify (A, n, 1)

Complexidade de tempo: $O(\log n)$.

Implementação com max-heap

Algoritmo: HEAP-INCREASE-KEY(A, i, chave)

```
1 A[i] \leftarrow chave
```

2 enquanto
$$i > 1$$
 e $A[\lfloor i/2 \rfloor] < A[i]$

$$\begin{array}{c|c}
3 & A[i] \leftrightarrow A[\lfloor i/2 \rfloor] \\
4 & i \leftarrow \lfloor i/2 \rfloor
\end{array}$$

Complexidade de tempo: $O(\log n)$.

Algoritmo: MAX-HEAP-INSERT(*A*, *n*, *chave*)

- $1 n \leftarrow n + 1$
- $2 A[n] \leftarrow -\infty$
- 3 HEAP-INCREASE-KEY(A, n, chave)

Complexidade de tempo: $O(\log n)$.

Ordenação e fila de prioridade

 $\mathsf{MO417}$ - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

