绪论

- 1. 经典物理学的困难:
 - (a) 动量-能量关系: $E = \sqrt{m_0^2 c^4 + c^2 p^2}$;
 - (b) 相对论质能关系: $E = \frac{m_0 c^2}{\sqrt{1 \frac{v^2}{c^2}}}$
 - (c) Wien law: $\rho_v dv = bv^3 e^{-\frac{av}{T}} dv$;
 - (d) Rayleigh-Jeans law: $\rho_v dv = \frac{8\pi v^3}{c^3} k_B T dv, k_B$ Boltzmann constant;
- 2. Planck 假设:
 - (a) 构成黑体的原子的性能和谐振子一样, 以给定的频率振荡;
 - (b) 黑体辐射空腔中振子的振动能量并不像经典理论所主张的那样和 振幅平方成正比呈连续变化, 而是和振子的频率成正比并且只能 取分立值;
 - (c) Planck law: $\rho_v dv = \frac{8\pi h v^3}{c^3} \frac{1}{e^{\frac{hv}{k_bT}} 1} dv$;
 - (d) Planck constant: $h = 6.62559 \times 10^{-34} J$ · s;
- 3. 爱因斯坦关系:
 - (a) $E = hv = \overline{h}\omega$;

(b)
$$\vec{p} = \frac{E}{c}\vec{n} = \bar{h}\vec{k}, \bar{h} = \frac{h}{2\pi} = 1.054 \times 10^{-34} J \cdot s;$$

- 4. 德布罗意关系: $\omega = \frac{E}{\hbar}, k \square = \frac{\vec{p}}{\hbar}$;
- 5. 原子结构的波尔理论:
 - (a) 氢原子光谱: $v = R_H c \left(\frac{1}{m^2} \frac{1}{n^2} \right), n > m, R_H = 1.09677576 \times 10^7 m^{-1};$
 - (b) 波尔假设:
 - i. 电子在原子中只能在某些特定的轨道上运动;
 - ii. 处于定态的电子的角动量必须是 $\bar{h} = \frac{h}{2\pi}$ 的整数倍;
 - iii. 电子可以由一个定态跃迁到另一个定态,产生辐射的吸收或发射;
- 6. 经典与量子的界限:

- (a) 若在所研究的问题中能够认为 $h \to 0$, 则波和粒子便截然分开, 波粒二象性现象可以忽略;
- (b) 若 h 在其中起重要作用,则认为是量子现象;