

Extreme Classification

A New Paradigm for Ranking & Recommendation

Manik Varma Microsoft Research

Classification

Pick one

Label 1

Label 2

Pick one

Label 1

Label 2

Label 3

•••

Label L

Multi-class

Pick all that apply

Label 1

Label 2

Label 3

•••

Label L

Multi-label

Binary

Extreme Multi-label Learning

Learning with millions of labels

Predict the set of monetizable Bing queries that might lead to a click on this ad

MLRF: Multi-label Random Forests [Agrawal, Gupta, Prabhu, Varma WWW 2013]

Research Problems

- Defining millions of labels
- Obtaining good quality training data
- Training using limited resources
- Log time and log space prediction
- Obtaining discriminative features at scale
- Performance evaluation
- Dealing with tail labels and label correlations
- Dealing with missing and noisy labels
- Statistical guarantees
- Applications

Extreme Multi-label Learning - People

Which people are present in this selfie?

Extreme Multi-label Learning – Wikipedia

Labels: Living people, American computer scientists, Formal methods people, Carnegie Mellon University faculty, Massachusetts Institute of Technology alumni, Academic journal editors, Women in technology, Women computer scientists.

Reformulating ML Problems

Ranking or recommending millions of items

FastXML

A Fast, Accurate & Stable
Tree-classifier for eXtreme
Multi-label Learning

Yashoteja Prabhu (IIT Delhi) Manik Varma (Microsoft Research)

FastXML

- Logarithmic time prediction in milliseconds
 - Ensemble of balanced tree classifiers
- Accuracy gains upto 25% over competing methods
 - Nodes partitioned using nDCG
- Upto 1000x faster training over the state-of-the-art
 - Alternating minimization based optimization
 - Proof of convergence to a stationary point

Extreme Multi-Label Learning

Problem formulation

X: Users

Y: Items

Extreme Multi-Label Learning

Problem formulation

Tree Based Extreme Classification

Prediction in logarithmic time

Tree Based Extreme Classification

Prediction in logarithmic time

FastXML Architecture

FastXML

- Logarithmic time prediction in milliseconds
 - Ensemble of balanced tree classifiers
- Accuracy gains upto 25% over competing methods
 - Nodes partitioned using nDCG
- Upto 1000x faster training over the state-of-the-art
 - Alternating minimization based optimization
 - Proof of convergence to a stationary point

FastXML Architecture

Learning to Partition a Node

Learning to Partition a Node

$$\min_{\mathbf{w}} \|\mathbf{w}\|_1 - C \sum_{i \in \text{Users}} \text{nDCG}(\mathbf{x}_i, \mathbf{y}_i, \mathbf{w})$$

X: Space of Users

FastXML

- Logarithmic time prediction in milliseconds
 - Ensemble of balanced tree classifiers
- Accuracy gains upto 25% over competing methods
 - Nodes partitioned using nDCG
- Upto 1000x faster training over the state-of-the-art
 - Alternating minimization based optimization
 - Proof of convergence to a stationary point

Optimizing nDCG

- nDCG is hard to optimize
 - nDCG is non-convex and non-smooth
 - Large input variations → No change in nDCG
 - Small input variations → Large changes in nDCG

nDCG
$$\propto$$
 like $(i, \mathbf{r}_1) + \sum_{l=2}^{L} \frac{\text{like}(i, \mathbf{r}_l)}{\log(l+1)}$

like
$$(i, \mathbf{r}_l) = \begin{cases} 1 \text{ If user } i \text{ likes the item with rank } \mathbf{r}_l \\ 0 \text{ otherwise} \end{cases}$$

Optimizing nDCG

$$\min_{\mathbf{w}} \|\mathbf{w}\|_{1} - C \sum_{i \in \text{Users}} \text{nDCG}(\mathbf{x}_{i}, \mathbf{y}_{i}, \mathbf{w})$$

Optimizing nDCG – Reformulation

$$\operatorname{Min}_{\mathbf{w},\boldsymbol{\delta},\mathbf{r}^{\pm}} \|\mathbf{w}\|_{1} + \sum_{i} C_{\delta}(\delta_{i}) \log \left(1 + e^{-\delta_{i}\mathbf{w}^{t}\mathbf{x}_{i}}\right) - C_{r} \sum_{i} \operatorname{nDCG}(\mathbf{r}^{\delta_{i}})^{t} N_{\mathbf{y}_{i}} \mathbf{y}_{i}$$

Optimizing nDCG — Initialization

$$\operatorname{Min}_{\mathbf{w},\boldsymbol{\delta},\mathbf{r}^{\pm}} \|\mathbf{w}\|_{1} + \sum_{i} C_{\delta}(\delta_{i}) \log \left(1 + e^{-\delta_{i}\mathbf{w}^{t}\mathbf{x}_{i}}\right) - C_{r} \sum_{i} \operatorname{nDCG}(\mathbf{r}^{\delta_{i}})^{t} N_{\mathbf{y}_{i}} \mathbf{y}_{i}$$

 $\delta_i \sim \text{Bernoulli}(0.5), \forall i$

Optimizing nDCG — Initialization

$$\operatorname{Min}_{\mathbf{w},\boldsymbol{\delta},\mathbf{r}^{\pm}} \|\mathbf{w}\|_{1} + \sum_{i} C_{\delta}(\delta_{i}) \log \left(1 + e^{-\delta_{i}\mathbf{w}^{t}\mathbf{x}_{i}}\right) - C_{r} \sum_{i} \operatorname{nDCG}(\mathbf{r}^{\delta_{i}})^{t} N_{\mathbf{y}_{i}} \mathbf{y}_{i}$$

 $\delta_i \sim \text{Bernoulli}(0.5), \forall i$

Optimizing nDCG — Initialization

$$\operatorname{Min}_{\mathbf{w},\boldsymbol{\delta},\mathbf{r}^{\pm}} \|\mathbf{w}\|_{1} + \sum_{i} C_{\delta}(\delta_{i}) \log \left(1 + e^{-\delta_{i}\mathbf{w}^{t}\mathbf{x}_{i}}\right) - C_{r} \sum_{i} \operatorname{nDCG}(\mathbf{r}^{\delta_{i}})^{t} N_{\mathbf{y}_{i}} \mathbf{y}_{i}$$

$$\mathbf{r}^{\pm *} = \operatorname{rank}\left(\sum_{i: \delta_i = \pm 1} N_{\mathbf{y}_i} \mathbf{y}_i\right)$$

Optimizing nDCG – Repartitioning Users

$$\operatorname{Min}_{\mathbf{w},\boldsymbol{\delta},\mathbf{r}^{\pm}} \|\mathbf{w}\|_{1} + \sum_{i} C_{\delta}(\delta_{i}) \log \left(1 + e^{-\delta_{i}\mathbf{w}^{t}\mathbf{x}_{i}}\right) - C_{r} \sum_{i} \operatorname{nDCG}(\mathbf{r}^{\delta_{i}})^{t} N_{\mathbf{y}_{i}} \mathbf{y}_{i}$$

$$\delta_i^* = \operatorname{sign}(v_i^- - v_i^+)$$

$$v_i^{\pm} = C_{\delta}(\pm 1) \log \left(1 + e^{\mp \mathbf{w}^t \mathbf{x}_i}\right) - C_r \operatorname{nDCG}(\mathbf{r}^{\pm})^t N_{\mathbf{y}_i} \mathbf{y}_i$$

Optimizing nDCG – Repartitioning Users

$$\operatorname{Min}_{\mathbf{w},\boldsymbol{\delta},\mathbf{r}^{\pm}} \|\mathbf{w}\|_{1} + \sum_{i} C_{\delta}(\delta_{i}) \log \left(1 + e^{-\delta_{i}\mathbf{w}^{t}\mathbf{x}_{i}}\right) - C_{r} \sum_{i} \operatorname{nDCG}(\mathbf{r}^{\delta_{i}})^{t} N_{\mathbf{y}_{i}} \mathbf{y}_{i}$$

$$\delta_i^* = \operatorname{sign}(v_i^- - v_i^+)$$

$$v_i^{\pm} = C_{\delta}(\pm 1) \log(1 + e^{\mp \mathbf{w}^t \mathbf{x}_i}) - C_r \operatorname{nDCG}(\mathbf{r}^{\pm})^t N_{\mathbf{y}_i} \mathbf{y}_i$$

Optimizing nDCG – Reranking Items

$$\operatorname{Min}_{\mathbf{w},\boldsymbol{\delta},\mathbf{r}^{\pm}} \|\mathbf{w}\|_{1} + \sum_{i} C_{\delta}(\delta_{i}) \log \left(1 + e^{-\delta_{i}\mathbf{w}^{t}\mathbf{x}_{i}}\right) - C_{r} \sum_{i} \operatorname{nDCG}(\mathbf{r}^{\delta_{i}})^{t} N_{\mathbf{y}_{i}} \mathbf{y}_{i}$$

$$\mathbf{r}^{\pm *} = \operatorname{rank}\left(\sum_{i: \delta_i = \pm 1} N_{\mathbf{y}_i} \mathbf{y}_i\right)$$

Optimizing nDCG

$$\operatorname{Min}_{\mathbf{w},\boldsymbol{\delta},\mathbf{r}^{\pm}} \|\mathbf{w}\|_{1} + \sum_{i} C_{\delta}(\delta_{i}) \log \left(1 + e^{-\delta_{i}\mathbf{w}^{t}\mathbf{x}_{i}}\right) - C_{r} \sum_{i} \operatorname{nDCG}(\mathbf{r}^{\delta_{i}})^{t} N_{\mathbf{y}_{i}} \mathbf{y}_{i}$$

Optimizing nDCG — Hyperplane Separator

$$\operatorname{Min}_{\mathbf{w},\boldsymbol{\delta},\mathbf{r}^{\pm}} \|\mathbf{w}\|_{1} + \sum_{i} C_{\delta}(\delta_{i}) \log \left(1 + e^{-\delta_{i}\mathbf{w}^{t}\mathbf{x}_{i}}\right) - C_{r} \sum_{i} \operatorname{nDCG}(\mathbf{r}^{\delta_{i}})^{t} N_{\mathbf{y}_{i}} \mathbf{y}_{i}$$

Data Set Statistics

Small data sets

Data Set	# of Training Points	# of Test Points	# of Dimensions	# of Labels
Delicious	12,920	3,185	500	983
MediaMill	30,993	12,914	120	101
RCV1-X	781,265	23,149	47,236	2,456
BibTeX	4,880	2,515	1,836	159

Large data sets

Data Set	# of Training Points (M)	# of Test Points (M)	# of Dimensions (M)	# of Labels (M)
WikiLSHTC	1.89	0.47	1.62	0.33
Ads-430K	1.12	0.50	0.088	0.43
Ads-1M	3.92	1.56	0.16	1.08
Ads-9M	70.46	22.63	2.08	8.84

Results on Small Data Sets

Large Data Sets - WikiLSHTC

Dataset Statistics				
Training Points	1,892,600			
Features	1,617,899 (sparse)			
Labels	325,056			
Test Points	472,835			

Test Time (millisec)

Large Data Sets - Ads

Ads-430K

Ads-1M

Ads-9M

Training Times in Hours Versus Cores

Conclusions

- Extreme classification
 - Tackle applications with millions of labels
 - A new paradigm for recommendation
- FastXML
 - Significantly higher prediction accuracy
 - Can train on a single desktop
- Publications and code
 - WWW13, KDD14, NIPS15 paperps
 - Code and data available from my website

Unbiased Performance Evaluation

Himanshu Jain (IIT Delhi) Yashoteja Prabhu (IIT Delhi) Manik Varma (Microsoft Research)

Traditional Loss/Gain Functions

- Hamming loss
- Subset 0/1 loss
- Precision
- Recall

- F-score
- Jaccard distance

history leader us citizen people usa politics 19th century born america writer usa politician thinker us history american war philosopher

usa	usa	president	president	usa
first president	president	cuban missile crisis	founding fathers of the us	president
founding fathers of the us	emancipation proclamation	project apollo	declaration of independence	attack on pearl harbour
american revolutionary war	assassinated	assassinated	acquisition of louisiana	great depression
whiskey rebellion	abolition of slavery	-	american revolutionary war	-

Average # of Positive Labels per Point

+ve labels are more important than –ve ones

Missing Labels

Labels: Living people, American computer scientists, Formal methods people, Carnegie Mellon University faculty, Massachusetts Institute of Technology alumni, Academic journal editors, Women in technology, Women computer scientists.

Tail Labels

- # of relevant labels > # of prediction slots
- Not all positive labels are equally important

Extreme Loss/Gain Functions

- Accuracy handle biased ground truth
- Rareness / Novelty
- Diversity
- Explainability

Research Problems

- Applications
- Obtaining good quality training data
- Log time and space training and prediction
- Obtaining discriminative features at scale
- Extreme loss functions
- Performance evaluation
- Dealing with tail labels and label correlations
- Dealing with missing and noisy labels
- Explore/exploit for tail labels
- Statistical guarantees
- Fine-grained classification

Acknowledgements

Rahul Agrawal Kush Bhatia Shilpa G. **Archit Gupta** Himanshu Jain Prateek Jain Abhishek Kadian Purushottam Kar Abhirup Nath Ambuj Tewari C. Yeshwanth

Ranking and Recommendation

Traditional approaches – content based methods

$$h: (X, Y) \rightarrow \{\times, \checkmark\}$$

Ranking and Recommendation

Traditional approaches – matrix factorization

Traits

Matrix

Attributes

Multiple Iterations - Ads-430K

Tree Imbalance

Variants of FastXML - Small Data Sets

Variants of FastXML - Large Data Sets

Random Tree Selection

