

6th Annual GLOBAL BIG DATA CONFERENCE

Santa Clara

AUG 28th, AUG 29th & AUG 30st 2018

Santa Clara Convention Center, 5001 Great America Parkway, Santa Clara, CA.

www.globalbigdataconference.com

Twitter: @bigdataconf

#GBDC

Intro to Image Classification and PYTORCH

OFFICIAL DOCS

Python

https://docs.python.org/2.7/

Anaconda

https://www.anaconda.com/download/

PyTorch

https://pytorch.org/

GITHUB LINKS

Al Workshop Installation Guides

https://github.com/AccelAI/AI-Workshop-Installation-Guides

Intro to Image Captioning

https://github.com/latinxinai/Intro-Image-Captioning

Intro to PyTorch
https://github.com/latinxinai/Intro-Image-Captio
ning/blob/master/Intro to CV in Pytorch.ipynb

Laura N Montoya 💢

I am a futurist, scientist, engineer, and social impact entrepreneur.

You can find me at...

@quickresolute

info@accel.ai

www.lauranmontoya.com

AGENDA

Main Concepts

- 1. What is computer vision?
- 2. How do we classify images?
- 3. What is a classifier?
- 4. How does a computer classify images?
- 5. 7 Steps in Machine Learning
- 6. CV Challenges

- 7. Models
- 8. Evaluation & Tuning

Applied Al Lab

- 1. Intro to PyTorch
- 2. CNN

Vision

An exponential evolution...

Computer Vision

Machine Vision

Embedded Systems

Human Vision

How do we see the world?

MIT neuroscientists find the brain can identify images seen for as little as 13 milliseconds ©

PERCEPTRON = SINGLE LAYER

Classification

What is an ML classifier?

INPUT > CLASSIFIER > OUTPUT

Machine Learning

LINEAR CLASSIFIERS

WEIGHTS & BIASES

Computer Vision

How do computers see the world?

ML Steps

7 Steps in Machine Learning

MACHINE LEARNING PROCESS

Face	Hair Color	Lips	Nose	Skin Lightness (chromaticities)	Label
1	blonde	slightly vertically thin upper and lower lips	thin to slightly wider nose	Highest % lightness	European
2	black	thicker	wider nose and nostrils	Lowest % lightness	African
3	black	longer upper lip	slightly wider nose and nostrils	Higher % yellow	Asian

DATA PREPARATION

Challenges

What could possibly go wrong?

VIEWPOINT VARIATION

ILLUMINATION

DEFORMATION

OCCLUSION

BACKGROUND CLUTTER

VARIATION

Models

What is the best model?

CHOOSING A MODEL

PyTorch Models

https://pytorch.org/docs/stable/torchvision/models.html

- AlexNet
- VGG
- ResNet
- SqueezeNet
- DenseNet
- Inception v3

PYTÖRCH

TRAINING YOUR OWN MODEL

Millions of images in hundreds of categories

Access to multiple GPUs

• A few weeks (2-3 for Image Net) to spare

Convolutional Arithmetic

https://github.com/vdumoulin/conv_arithmetic

Convolutional Arithmetic

1,	1,0	1,1	0	0
0,0	1,	1,0	1	0
0,,1	0,0	1,1	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

Convolved Feature

Evaluation & Tuning

How do we improve accuracy?

EVALUATION

HYPERPARAMETERS

Choices about the algorithm that we set rather than learn.

Problem Dependent

Trial and Error Experimentation

- ➤ Idea #1 Choose parameters that work best on Dataset
- Idea #2 Split data into train and test, choose hyperparameters that work best on test data
- ➤ Idea #3 Split data into **train**, **validation**, and **test**; choose hyperparameters on validation and evaluate on test

Which option will tell you how your algorithm is performing on unseen data?

CROSS VALIDATION

INFERENCE

Applied Lab

What are we working on today?

Accel.AI

(Re)TRAINING - TRANSFER LEARNING

APPLIED AI LAB

Image Classification in PyTorch https://github.com/latinxinai/Intro-Image-Captioning

Lowering the barriers to entry in engineering artificial intelligence...

We focus on integrating AI and Social Impact through training, study sessions, and events with a focus on mindfulness and Applied AI engineering.

Our target audience includes underrepresented groups in tech, social justice advocates, and those experiencing job loss due to automation.

THANKS!

Any questions?

You can find me at @quickresolute / info@accel.ai

REFERENCES

<u>Irene Chen A Beginner's Guide to Deep Learning PyCon</u>
2016

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

Stanford CS231n: Computer Vision

http://news.mit.edu/2014/in-the-blink-of-an-eye-0116

How Vision Works

Deep Learning Book

The genetics of the human face: identification of large effect single gene variants

Characterising the variations in ethnic skin colours: a new calibrated data base for human skin

Beauty Analysis: Face Variations by Ethnic Group