More Applications of Optimality Condition Theory

Yinyu Ye

Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye

Sparse-Least-Squares: Quasi-Norm Regularization

Consider the problem:

$$\mathsf{Minimize}_x \quad f_p(\mathbf{x}) := \|A\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{x}\|_p^p \tag{1}$$

where data $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, and parameter $0 \le p < 1$.

 $\|\mathbf{x}\|_p$ with $0 is called quasi-norm of vector <math>\mathbf{x}$. When p = 0:

$$\|\mathbf{x}\|_0^0 := \|\mathbf{x}\|_0 := |\{j: x_j \neq 0\}|$$

that is, the number of nonzero entries in x.

More general model: for $q \ge 1$

$$\mathsf{Minimize}_x \quad f_{qp}(\mathbf{x}) := \|A\mathbf{x} - \mathbf{b}\|_q^q + \lambda \|\mathbf{x}\|_p^p$$

Constrained Quasi-Norm Minimization

One may consider another related problem:

Minimize
$$\|\mathbf{x}\|_p^p = \sum_{1 \leq j \leq n} |x_j|^p$$
 (2) Subject to $A\mathbf{x} = \mathbf{b}$.

Or

Minimize
$$p(\mathbf{x}) = \sum_{1 \leq j \leq n} x_j^p$$
 Subject to $A\mathbf{x} = \mathbf{b},$ (3) $\mathbf{x} \geq \mathbf{0},$

Application and Motivation

The original goal is to minimize $\|\mathbf{x}\|_0^0 = |\{j: x_j \neq 0\}|$, the size of the support set of \mathbf{x} , for

- Sparse image reconstruction
- Sparse signal recovering
- Compressed sensing

which is known to be an NP-Hard problem.

Theory of Constrained L_p Minimization I

Theorem 1 (The first order bound) Let x^* be any local minimizer of (1) and

$$\ell_j = \left(\frac{\lambda p}{2\|\mathbf{a}_j\|\sqrt{f_p(\mathbf{x}^*)}}\right)^{\frac{1}{1-p}},$$

where a_j is the jth column of A. Then, the following property holds:

for each
$$j, \quad x_j^* \in (-\ell_j, \ell_j) \quad \Rightarrow \quad x_j^* = 0.$$

Moreover, the number of nonzero entries in x^* is bounded by

$$\|\mathbf{x}^*\|_0 \le \min\left(m, \frac{f_p(\mathbf{x}^*)}{\lambda \ell^p}\right);$$

where $\ell = \min\{\ell_j\}$.

Sketch of Proof

Let \mathbf{x}^* be a local minimizer. Then it remains a minimizer after eliminating those variables whose values are zeros. For the nonzero-value variables, they must still satisfy the first-order KKT conditions:

$$2\mathbf{a}_j^T(A\mathbf{x}^* - \mathbf{b}) + \lambda p(|x_j^*|^{p-1} \cdot \operatorname{sign}(x_j^*)) = 0.$$

Thus,

$$|x_j^*|^{1-p} \ge \frac{\lambda p}{2\|\mathbf{a}_j\| \|A\mathbf{x}^* - \mathbf{b}\|} \ge \frac{\lambda p}{2\|\mathbf{a}_j\| \sqrt{f_p(\mathbf{x}^*)}}.$$

Now we show the second part of the theorem. Again,

$$\lambda \|\mathbf{x}^*\|_p^p \le \|A\mathbf{x}^* - \mathbf{b}\| + \lambda \|\mathbf{x}^*\|_p^p = f_p(\mathbf{x}^*).$$

From the first part of this theorem, any nonzero entry of \mathbf{x}^* is bounded from below by ℓ so that we have the desired result.

Theory of Constrained L_p Minimization II

Theorem 2 (The second order bound) Let x^* be any local minimizer of (1), and

$$\kappa_j = \left(rac{\lambda p(1-p)}{2\|\mathbf{a}_j\|^2}
ight)^{rac{1}{2-p}}, j \in \mathcal{N}.$$
 Then the following property holds:

for each
$$j$$
, $x_j^* \in (-\kappa_j, \kappa_j) \Rightarrow x_j^* = 0$.

Again, we remove zero-value variables from \mathbf{x}^* and the remain variables must still satisfy the second-order KKT condition for a local minimizer of (1):

$$\nabla^2 f_p(\mathbf{x}) = 2A^T A - \lambda p(1-p) \operatorname{Diag}(|x_j^*|^{p-2}) \succeq \mathbf{0}.$$

Then all diagonal entries of the Hessian must be nonnegative, which gives the proof.

Theory of Constrained L_p Minimization III

- The first-order theorem indicates that the lower the objective value, the sparser the solution cardinality bound. Also, for λ sufficiently large but finite, the number of nonzero entries in any local minimizer reduces to 0.
- The result of the second-order theorem depends only on λ and p. In practice, one would typically choose p=1/2.
- The two theorems establish relations between model parameters p, λ and the desired degree of sparsity of the solution. In particular, it gives a guidance on how to choose the combination of λ and p.
- Later, we would show that a second-order KKT solution of (1) would be relatively easy to compute, either in theory or practice.

Sparse Portfolio Selection: Quasi-Norm Regularization

Recall the modern portfolio selection problem:

minimize
$$\mathbf{x}^T V \mathbf{x}$$
 subject to $\mathbf{r}^T \mathbf{x} \geq \mu,$ $\mathbf{e}^T \mathbf{x} = 1, \ \mathbf{x} \ \geq \ \mathbf{0},$

where expect-value vector ${\bf r}$ and co-variance matrix V are given, and ${\bf e}$ is the vector of all ones.

In shorting-allowed models, constraint $x \geq 0$ is dropped; and it is replaced by $||x||_1 \leq 1 + \delta$ for some $\delta > 0$, where δ controls the leverage of the portfolio.

But the final solution of the model are typically dense ...

A Quasi-Norm Regularized Model

We now consider

minimize
$$\mathbf{x}^T V \mathbf{x} + \mathbf{c}^T \mathbf{x} + \lambda ||\mathbf{x}||_p$$
 subject to $\mathbf{e}^T \mathbf{x} = 1, \ \mathbf{x} \geq \mathbf{0},$

where we removed the linear expectation constraint for simplicity. Also for simplicity, we fix p=1/2 in the analysis.

One may consider more complicated regularization model:

minimize
$$\mathbf{x}^T V \mathbf{x} + \mathbf{c}^T \mathbf{x} + \lambda ||\mathbf{x}||_p$$
 subject to $\mathbf{e}^T \mathbf{x} = 1, \ ||\mathbf{x}|| \le 1 + \delta.$

Theory of the Quasi-Norm Regularized Model

Theorem 3 (The second order theorem) Let \mathbf{x}^* be any second-order KKT solution (after removing zero-value entries), P^* be the support of \mathbf{x}^* and $K = |P^*|$, and V^* be the corresponding covariance sub-matrix. Furthermore, let

$$\kappa_j = V_{jj}^* - \frac{2}{K} (V^* \mathbf{e})_j + \frac{1}{K^2} (\mathbf{e}^T V^* \mathbf{e}), \ j \in P^*,$$

which are the diagonal entries of matrix $\left(1 - \frac{1}{K} \mathbf{e} \mathbf{e}^T\right) V^* \left(1 - \frac{1}{K} \mathbf{e} \mathbf{e}^T\right)$. Then the following properties hold:

- $(K-1)K^{3/2} \leq \frac{4}{\lambda} \sum_{j \in P^*} \kappa_j$.
- If there is $\kappa_j=0$, then K=1 and $x_j^*=1$; otherwise,

$$x_j^* \ge \left(\frac{\lambda(1-\frac{1}{K})^2}{4\kappa_j}\right)^{2/3}.$$

In the proof, we only consider variables $j \in P^*$. The second-order condition requires that the Hessian of the Lagrangian function

$$V^* - \frac{\lambda}{4} \mathrm{Diag} \left[(x_j^*)^{-3/2} \right]$$

must be positive semidefinite in the null space of $\mathbf{e} \in R^K$. Or, the projected Hessian matrix

$$\left(I - \frac{1}{K} \mathbf{e} \mathbf{e}^T\right) \left(V^* - \frac{\lambda}{4} \mathrm{Diag}\left[(x_j^*)^{-3/2}\right]\right) \left(I - \frac{1}{K} e e^T\right) \succeq \mathbf{0},$$

must be positive semidefinite.

Thus, the jth diagonal entry of the projected Hessian matrix

$$\kappa_j - \frac{\lambda}{4} \left((x_j^*)^{-3/2} \left(1 - \frac{2}{K} \right) + \frac{\sum_k (x_k^*)^{-3/2}}{K^2} \right) \ge 0,$$
(4)

and the trace of projected Hessian matrix

$$\sum_{k} \kappa_{k} - \frac{\lambda}{4} \frac{K - 1}{K} \sum_{k} (x_{k}^{*})^{-3/2} \ge 0.$$

The quantity $\sum_k (x_k^*)^{-3/2}$, with $\sum_k x_k^* = 1, \ x_k^* \geq 0$ achieves its minimum at $x_k^* = 1/K$ for all k with the minimum value $K \cdot K^{3/2}$. Thus,

$$\frac{\lambda}{4}(K-1)K^{3/2} \le \sum_{k} \kappa_k,$$

or

$$(K-1)K^{3/2} \le \frac{4\sum_k \kappa_k}{\lambda},$$

which complete the proof of the first item.

Again, from (4) we have

$$\frac{\lambda}{4} \left((x_j^*)^{-3/2} \left(1 - \frac{2}{K} \right) + \frac{\sum_k (x_k^*)^{-3/2}}{K^2} \right) \le \kappa_j.$$

Yinyu Ye, Stanford

Or

$$\frac{\lambda}{4} \left((x_j^*)^{-3/2} \left(1 - \frac{1}{K} \right)^2 + \frac{\sum_{k,k \neq j} (x_k^*)^{-3/2}}{K^2} \right) \le \kappa_j,$$

which implies

$$\frac{\lambda}{4}(x_j^*)^{-3/2} \left(1 - \frac{1}{K}\right)^2 \le \kappa_j.$$

Hence, if any $\kappa_j=0$, we must have K=1 and x_j^* is the only non-zero entry in \mathbf{x}^* so that $x_j^*=1$. Otherwise, we have the desired second statement in the Theorem.

The Hardness I

Question: As for deciding the global minimal value, is L_2-L_p easier to solve than L_2-L_0 ?

Theorem 4 The global minimal value of either the L_q-L_p or constrained L_p minimization problem is strongly NP-hard to decide for any given $0 \le p < 1$, $q \ge 1$ and $\lambda > 0$.

The NP-Hard Class: a class of problems don't have any "provably efficient" algorithm up to now. To prove a problem, say A, is NP-Hard, it is efficient to reduce a known NP-Hard problem B to solving problem A. In other words, if you can solve A efficiently, then you can solve problem B efficiently.

More Precise Statement

Theorem 5 It is (strongly) NP-hard to decide the global minimal objective value of problem:

$$\textit{Minimize} \quad p(\mathbf{x}) = \sum_{1 \le j \le n} x_j^p$$

Subject to
$$A\mathbf{x} = \mathbf{b}$$
,

$$\mathbf{x} \geq \mathbf{0}$$
,

or

$$\textit{Minimize} \quad p(\mathbf{x}) = \sum_{1 \le j \le n} |x_j|^p$$

Subject to
$$A\mathbf{x} = \mathbf{b}$$
.

Proof of the NP-hardness

An instance of the partition problem can be described as follows: given a set S of integers or rational numbers $\{a_1, a_2, \ldots, a_n\}$, is there a way to partition S into two disjoint subsets S_1 and S_2 such that the sum of the numbers in S_1 equals the sum of the numbers in S_2 ?

Let vector $\mathbf{a} = (a_1, a_2, \dots, a_n) \in \mathbb{R}^n$. Then, we consider the following reduced minimization problem in form (3):

Minimize
$$P(\mathbf{x}, \mathbf{y}) = \sum_{1 \leq j \leq n} (x_j^p + y_j^p)$$

Subject to $\mathbf{a}^T(\mathbf{x} - \mathbf{y}) = 0,$
 $x_j + y_j = 1, \ \forall j,$
 $\mathbf{x}, \mathbf{y} \geq \mathbf{0}.$

Proof continued

From the strict concavity of the objective function,

$$x_j^p + y_j^p \ge x_j + y_j = 1, \ \forall j,$$

and they are equal if and only if $(x_j=1,y_j=0)$ or $(x_j=0,y_j=1)$. Thus, $P(\mathbf{x},\mathbf{y})=n$ for any (continuous) feasible solution; and if there is a feasible solution pair (\mathbf{x},\mathbf{y}) such that $P(\mathbf{x},\mathbf{y})\leq n$, it must be true $x_j^p+y_j^p=1=x_j+y_j$ for all j so that (\mathbf{x},\mathbf{y}) is a binary solution, $(x_j=1,y_j=0)$ or $(x_j=0,y_j=1)$, which generates an equitable partition of the entries of \mathbf{a} .

On the other hand, if the entries of ${\bf a}$ has an equitable partition, then the reduced problem must have a binary solution pair $({\bf x},{\bf y})$ such that $P({\bf x},{\bf y})=n$. Therefore, it is NP-hard to decide if there is a feasible solution $({\bf x},{\bf y})$ such that its objective value $P({\bf x},{\bf y})=n$.

Proof continued

For the same partition problem, consider the following reduced minimization problem in form (2):

Minimize
$$\sum_{1\leq j\leq n}(|x_j|^p+|y_j|^p)$$
 Subject to
$$\mathbf{a}^T(\mathbf{x}-\mathbf{y})=0,$$

$$x_j+y_j=1,\ \forall j.$$

Note that this problem has no non-negativity constraints on variables (\mathbf{x}, \mathbf{y}) . However, for any feasible solution (\mathbf{x}, \mathbf{y}) of the problem, we still have

$$|x_j|^p + |y_j|^p \ge x_j + y_j = 1, \ \forall j.$$

This is because when $x_j + y_j = 1$, the minimal value of $|x_j|^p + |y_j|^p$ is 1, and it equals 1 if and only if $(x_j = 1, y_j = 0)$ or $(x_j = 0, y_j = 1)$.