UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

Prof^a. Karla Lima

Construções Geométricas — Avaliação P1

1	
2	
Total	

Matemática

- 06 de julho de 2023
- (1) Descreva como se dá a construção de cada um dos entes geométricos abaixo, baseando-a em propriedades da Geometria Plana.
 - (a) Transportar um ângulo a partir de uma dada semirreta.
 - (b) Traçar, a partir de um ponto $P \notin r$, uma reta perpendicular a uma reta r dada.
 - (c) Traçar, a partir de um ponto $P \in r$, uma reta perpendicular a uma reta r dada.
 - (d) Traçar, a partir de um ponto $P \notin r$, uma reta paralela a uma reta r dada.
 - (e) Traçar a mediatriz de um segmento \overline{AB} dado.
 - (f) Construa o arco capaz de um ângulo $C\hat{E}D$ sobre um segmento \overline{AB} dados.
 - (g) Trace uma reta tangente a uma circunferência de raio r e centro O, passando por um ponto P exterior à mesma.
 - (h) Traçar a bissetriz de um ângulo $A\hat{O}B$ dado.

Na questão 2, você vai descrever algumas construções. Para tal, não há necessidade de descrever as construções elementares feitas na questão anterior. Tome como exemplo a construção abaixo:

Para construir um triângulo retângulo, dado um cateto \overline{AB} e um ângulo adjacente ao mesmo igual à 30°, fazemos como a seguir.

i) Sendo o segmento \overline{AB} um cateto, construímos uma reta perpendicular à esse segmento, em A, gerando o vértice em que o ângulo é reto.

ii) No outro extremo B do segmento, transportamos o ângulo de 30° .

iii) Por fim, o outro vértice deve ser marcado na interseção entre a reta perpendicular e o outro lado do ângulo de 30° , que não seja o cateto dado, obtendo o triângulo desejado.

- (2) Explique como se dão as construções abaixo, sem a necessidade de repetir as construções já feitas na questão 1.
 - (a) Construa um triângulo isósceles, dada a base e o ângulo oposto à base.
 - (b) Desenhe uma reta r e dois pontos A e B situados num mesmo semiplano determinado por r. Determine o ponto P sobre a reta r de forma que a soma AP+PB seja igual à μ unidades.
 - (c) Construa um paralelogramo, sendo conhecidas as medidas de um de seus lados, da diagonal maior e do ângulo oposto à ela.
 - (d) Construir um triângulo retângulo isósceles conhecendo a soma das medidas da hipotenusa com a de um de seus catetos.

Gabarito

2. (a) Primeiro, construímos o arco capaz do ângulo dado, sobre o segmento dado:

Depois, utilizamos a mediatriz construída no processo do arco capaz, para servir de mediatriz (bissetriz e altura) do triângulo isósceles pedido:

Ao ponto de interseção entre a mediatriz do segmento dado e o arco capaz construído, ligamos aos extremos A e B gerando um triângulo isósceles:

O triângulo obtido é realmente isósceles. Basta verificar que os triângulos retângulos AHF e BHF são congruentes, pelo caso LAL: $\overline{AH} = \overline{HB}$, $A\hat{H}F = B\hat{H}F$ e o lado \overline{HF} é um lado em comum aos dois triângulos citados.

- (b) ANULADA (Enunciado diferente do proposto no meu gabarito.) Como a solução depende muito do segmento dado, prefiro anular o item.
- (c) Primeiro, construímos o arco capaz do ângulo dado, sobre o segmento dado:

Depois escolhemos um dos extremos da diagonal para transportar o lado \overline{AB} , com o outro extremo no arco capaz:

Assim, \overline{JC} é o outro lado do paralelogramo, que para ser completado basta traçar uma paralela a \overline{JC} a partir do ponto D e uma paralela ao lado \overline{DJ} , a partir de C:

Nosso paralelogramo está completo, com o vértice K na interseção das paralelas:

(d) Um triângulo isósceles tem os ângulos da base congruentes. Logo, como temos um ângulo de 90°, os ângulos da base devem medir 45°.

Seja \overline{AB} o segmento que representa a soma da hipotenusa com um dos catetos. O objetivo é obter a configuração abaixo:

Construindo um triângulo com vértices B, C e D, o ângulo B deve medir 22.5° , pois $\triangle CDB$ é isósceles e os ângulos da base devem somar 45° , uma vez que $C\hat{D}B = 180^{\circ} - 45^{\circ} = 135^{\circ}$:

Com essas informações, podemos efetuar a nossa construção. A partir do extremo A, construímos um ângulo de 45° e a partir de B um ângulo de 22.5° :

Na interseção entre os lados dos ângulos construídos, o ponto C, construímos uma reta perpendicular ao lado \overline{AC} :

Como a soma dos ângulos internos é igual a 180°, devemos ter $C\hat{D}A=45^\circ,$ sendo o triângulo retângulo ACD isósceles:

Com o ângulo $C\hat{D}B=135^\circ$, devemos ter $D\hat{C}B=180^\circ-135^\circ-22.5^\circ=22.5^\circ$, e o triângulo CDB também é isósceles:

Portanto, o triângulo retângulo isósceles construído ACDtem como soma da hipotenusa com um cateto da forma

$$\overline{AD} + \overline{CD} = \overline{AD} + \overline{DB} = \overline{AB}$$

como queríamos.