Σχεδίαση Τελεστικού Ενισχυτή

Κουκουλέτσου Αικατερίνη 10218

Θεωρητική Ανάλυση

Η εργασία αποτελείται από δύο μέρη, την θεωρητική ανάλυση του κυκλώματος του τελεστικού ενισχυτή στο περιβάλλον Matlab και στην πρακτική προσομοίωση και επίλυση του με το πρόγραμμα Spice.

Οι αριθμητικές τιμές ,σύμφωνα με την εκφώνηση, προκύπτουν συναρτήσει του ΑΕΜ και για ΑΕΜ ίσο με 10218 είναι οι εξής:

C_L	$2 + 0.01 \cdot \xi pF$	2.18pF
SR	$> 18 + 0.01 \cdot \xi \frac{V}{\mu S}$	$> 18.18 \frac{V}{\mu S}$
V_{DD}	$1.8 + 0.003 \cdot \xi V$	1.854V
V_{SS}	$-1.8 + 0.003 \cdot \xi V$	-1.854V
GB	$> 7 + 0.01 \cdot \xi MHz$	> 7.18MHz
A	$> 20 + 0.01 \cdot \xi dB$	> 20.18dB
P_{diss}	$< 50 + 0.01 \cdot \xi mW$	< 50.18 mW

Επιλέγω ο τελεστικός ενισχυτής που θα σχεδιάσω να έχει είσοδο p_{mos} γιατί έτσι μεγιστοποιείται το Slew Rate και μεγιστοποιείται η διαγωγιμότητα του τρανζίστορενισχυτή της 2η ς βαθμίδας.

Όσον αφορά τις αριθμητικές τιμές των υπόλοιπων δεδομένων, που δεν αναφέρονται στον παραπάνω πίνακα αλλά είναι απαραίτητες για την επίλυση του αλγόριθμου του τελεστικού, αυτές είναι σύμφωνα με το pdf παραμέτρων για τελεστικό ενισχυτή τεχνολογίας 0.35 ίσες με $k_n=175\mu A/V^2$, $k_p=60\mu A/V^2$, $\lambda_n=0.05V^{-1}$, $\lambda_p=0.15V^{-1}$, $V_{tn}=0.5V$, $V_{tp}=-0.6V$, $C_{ox}=4.6fF/\mu m^2$, $Vin(min)=-100\cdot 10^{-3}V$ και $Vin(max)=100\cdot 10^{3}V$.

Ο τελεστικός ενισχυτής που καλούμαστε να σχεδιάσουμε είναι τεχνολογίας 0.35 mos. Το μήκος καναλιού L για τα τρανζίστορ πρέπει να είναι τουλάχιστον διπλάσιο από το 0.35 για να αποφευχθούν προβλήματα με τα όρια των ρευμάτων. Επομένως επιλέγουμε $L=1\mu m$.

Υπολογισμός Ελάχιστης Χωρητικότητας Miller

Για τον υπολογισμό της ελάχιστης χωρητικότητας $Miller(C_C)$ θα τοποθετήσουμε τον δεύτερο πόλο p_2 του συστήματος σε 2.2 φορές υψηλότερη συχνότητα από το GB για να πετύχουμε περιθώριο φάσης μεγαλύτερο από 60° . Επομένως θα έχουμε

$$C_C > 0.22 \cdot C_L$$

άρα $C_C > 0.4796pF$. Θα επιλέξουμε $C_C = 0.5pF$.

Υπολογισμός του Slew Rate

Εφόσον έχουμε προδιαγραφή για το Slew Rate, $SR>18.18V/\mu S$. Καθορίζουμε το ρεύμα πόλωσης από τον τύπο

$$I_5 = SR \cdot C_C$$

. Από την προδιαγραφή του slew rate προχύπτει ότι $I_5 \geq 9.09 \mu A$. Επιλέγουμε $I5 = 10 \mu A$.

Γεωμετρικά χαρακτηριστικά του τρανζίστορ 3

Για κύκλωμα με είσοδο p_{mos} , για το κάτω όριο εισόδου ισχύει

$$V_{in(min)} = V_{SS} + \sqrt{((\frac{I_5}{\beta_3}))} + V_{t_{03}(max)} - |Vt_{01}|_{(min)}$$

Το τρανζίστορ 3 είναι n_{mos} επομένως

$$\beta = K_n \cdot \frac{W_3}{L_3} = K_n \cdot S_3$$

Καθορίζουμε τον λόγο $\frac{W_3}{L_3}$ με χρήση της προδιαγραφής για θετική περιοχή κοινού σήματος εισόδου (p_{mos}) . Άρα με αντικατάσταση της δεύτερης σχέσης στην πρώτη και λύνοντας ως προς S_3 προκύπτει

$$S_3 = \frac{W_3}{L_3} = \frac{I_5}{k_n \cdot [V_{in(min)} - V_{ss} - V_{to_3(max)} + |V_{to_1|(min)}|^2}$$

Επομένως μετά από πράξεις προχύπτει $S_3=0.02<1$. Βάζουμε το S_3 ίσο με την μονάδα. Πρέπει S_3 να είναι ίσο με S_4 άρα $S_4=1$. Εφόσον θεωρούμε $L=1\mu m$ συνεπάγεται $W_3=W_4=1\mu m$.

Έλεγχος για τον πόλο p_3

Στην συνέχεια, πραγματοποιείται έλεγχος που αφορά τον πόλο p_3 . Θέλουμε να εξασφαλίσουμε πως ο πόλος p_3 θα είναι αρχετά μεγάλος έτσι ώστε να μην επικρατεί και άρα η συμπεριφορά του συστήματός μας να καθορίζεται από τον πόλο p_2 . Πρέπει επομένως να ισχύει $p_3>10\cdot GB$. Από τις προδιαγραφές ζητείται GB>7.18MHz. Άρα από τον τύπο:

$$p_3 = \frac{gm_3}{2 \cdot C_{gs3}} = \frac{\sqrt{2 \cdot k_n \cdot \frac{W_3}{L_3} \cdot I_3}}{2 \cdot 0.667 \cdot W_3 \cdot L_3 \cdot C_{ox}} = 12.7 \cdot 10^9 rad/s$$

έχουμε $p_3 = 2021, 84MHz \gg 10 \cdot 7.18 = 71.8MHz$ και άρα πληρεί την προδιαγραφή.

Γεωμετρικά Χαρακτηριστικά των τρανζίστορ 1 και 2

Στην συνέχεια, καθορίζουμε την διαγωγιμότητα των τρανζίστορ εισόδου και των λόγων $\frac{W_1}{L_1}$ και $\frac{W_2}{L_2}$, σύμφωνα με τον τύπο

$$gm_1 = GB \cdot C_C \Rightarrow S_1 = S_2 = \frac{gm_2^2}{k_2 \cdot I_5}$$

$$gm_1 = 7.18 \cdot 10^6 \cdot 2 \cdot \pi \cdot 0.5 \cdot 10^{-12} = 22.5452 \mu S.$$

Άρα θα έχω
$$S_1 = S_2 = \frac{(22.5452 \cdot 10^{-6})^2}{60 \cdot 10^{-6} \cdot 10 \cdot 10^{-6}} = 0.8471 \mu m$$

άρα επιλέγω $S_1 = S_2 = 1$ και για $L_1 = L_2 = 1 \mu m$ ισχύει $W_1 = W_2 = 1 \mu m$.

Γεωμετρικά Χαρακτηριστικά του τρανζίστορ 5

Βρίσκουμε την

$$V_{DS5} = V_{in(min)} - V_{SS} - \sqrt{\frac{I_5}{k_p \cdot S_1}} - V_{t1(max)} = 1.795V \ge 100mV$$

Και μετά υπολογίζουμε

$$\frac{W_5}{L_5} = 2 \cdot \frac{I_5}{k_p \cdot V_{DS5}^2} = 0.085$$

άρα επιλέγω $S_5=1$ και άρα έχω $W_5=1\mu m.$

Γεωμετρικά Χαρακτηριστικά του τρανζίστορ 6

Θα πρέπει

$$gm_6 \ge 10 \cdot gm_1 \Rightarrow gm_6 \ge 225.452\mu S$$
$$gm_4 = \sqrt{2 \cdot k_n \cdot S_4 \cdot I_4} = 41.83\mu S$$

$$V_{sg4} = V_{sg6} \Rightarrow S_6 = S_4 \cdot \frac{gm_6}{gm_4} = 5.3897$$

Άρα θα έχουμε $S_6=6$ και $W_6=6\mu m$.

$$I_6 = \frac{gm_6^2}{2 \cdot k_6 \cdot S_6} = 24.204 \mu A$$

Γεωμετρικά Χαρακτηριστικά του τρανζίστορ 7

$$S_7 = \frac{I_6}{I_5} \cdot S_5 = 2.42$$

Άρα $S_7 = 3$ και $W_7 = 3 \mu m$.

Έλεγχος προδιαγραφών κέρδους και ισχύος

$$A_u = \frac{2 \cdot g m_2 \cdot g m_6}{I_5 \cdot (\lambda_2 + \lambda_3) \cdot I_6 \cdot (\lambda_6 + \lambda_7)} = 1050 V/V$$

Ισχύει ότι 1050V/V = 60.42dB > 20.18dB άρα ικανοποιείται η προδιαγραφή.

$$P_{diss} = (I_5 + I_6) \cdot (V_{DD} + |V_{SS}|) = 0.126.82 mW < 50.18 mW$$

Script στο Matlab

```
% Variable initialization
kn = 175 * 10^{(-6)};
kp = 60 * 10^{(-6)};
lp = 0.15;
ln = 0.05;
vin_min = -100 * 10^{(-3)};
vin_max = 100 * 10^{(-3)};
vdd = 1.854;
vss = -1.854;
vtn = 0.5;
vtp = -0.6;
vtn_max = vtn + 0.15;
vtn_min = vtn - 0.15;
vtp_max = vtp + 0.15;
vtp_min = vtn - 0.15;
Cox = 2.47 * 10 ^ (-3);
1 = 1 * 10^{(-6)};
gb = 7.18 * 10^{6};
Miller Capacitance Cc
c1 = 2.18 * 10^{(-12)};
cc = 0.22 * cl;
\operatorname{disp}(\operatorname{"Cc} > \operatorname{"} + \operatorname{cc});
cc = round(10^13*cc)/10^13;
disp("We choose to round up Cc to " + cc);
% Slew Rate and I reference
sr = 18.18 * 10^6;
disp("SR >= " + sr);
i5 = sr * cc;
disp("I5 >= " + i5);
i5 = (fix(i5 * 10^6) + 1) * 10^(-6);
disp("5 = "+i5);
% S3 and s4
s3 = i5/(kn*(vin_min - vss - vtn_max + abs(vtp_min))^2);
if s3 < 1
     s3 = 1;
end
```

```
disp("s3 = s4 = " + s3);
s4 = s3;
w3 = s3 * 1;
w4 = s4 * 1;
% p3
p3 = (sqrt(2 * kn * (w3/1) * (i5/2))) / (2 * 0.667 * w3 * 1 * Cox);
disp("p3 = "+ p3 + " rad/s");
\operatorname{disp}("p3 = "+ p3 * 0.1592 * 10 ^ (-6) + " \operatorname{MHz}");
if p3*0.1592*10^{(-6)} > 10*gb*10^{(-6)}
     disp("p3 > 71.8 \text{ MHz"});
end
\% s1 and s2
gm1 = gb * 2 * 3.14 * cc;
disp("gm1 = "+ gm1);
s1 = gm1 ^ 2 / (kp * i5);
if s1 < 1
     s1 = 1;
disp("s1 = s2 = " + s1);
s2 = s1;
w1 = s1 * 1;
w2 = s2 * 1;
\% s5
vds5 = vin_min - vss - sqrt(i5/(kp*s1)) - vtp;
s5 = 2*(i5/(kp*vds5^2));
if s5 < 1
    s5 = 1;
end
disp("s5 = " + s5);
w5 = s5 * 1;
% s6
gm6 = 10*gm1;
disp("gm6 = " + gm6 + " S ");
gm4 = sqrt(2*kn*s4*(i5/2));
s6 = fix(s4 * (gm6/gm4)) + 1;
i6 = gm6^2/(2 * kn * s6);
disp("gm4 = " + gm4 + " S ");
disp("s6 = " + s6);
disp("i6 = " + i6 + " A");
w6 = s6 * 1;
% s7
s7 = fix((i6/i5) * s5) + 1;
disp("s7 = " + s7);
w7 = s7 * 1;
%% A
```

Προσομοίωση

Figure 1: Κύκλωμα Τελεστικού Ενισχυτή στο Spice.

Υπολογισμός Slew Rate

Όπως φαίνεται από το διάγραμμα και από τον πίνακα τιμών, η προδιαγραφή για το SR ικανοποιείται αφού προκύπτει $SR=1.6843T\frac{V}{S}$ το οποίο είναι μεγαλύτερο από $18.18\frac{V}{\mu S}$ που απαιτείται.

Figure 2: Διάγραμμα V εισόδου και εξόδου.

Figure 3: Διάγραμμα Slew Rate.

Trace Color	Trace Name	Y1	Y2	Y1 - Y2	Y1(Cursor1)	- Y2(Cursor2)	-4.0000		
	X Values	4.5796u	0.000	4.5796u	Y1 - Y1(Cursor1)	Y2 - Y2(Cursor2)	Max Y	Min Y	Avg Y
CURSOR 1,2	V(Q2:g)	-2.0000	2.0000	-4.0000	0.000	0.000	2.0000	-2.0000	0.000
	MAX(D(V(CL:2)))	1.6883T	1.6883T	0.000	1.6883T	1.6883T	1.6883T	1.6883T	1.6883T

Figure 4: Πίνακας τιμών για το SR.

Κέρδος, Gainbandwidth και Περιθώριο Φάσης

Από το διάγραμμα κέρδους και περιθωρίου φάσης φαίνεται πως η τιμή του κέρδους είναι 23.417db>20.18db οπότε πληρεί την προδιαγραφή. Φαίνεται επίσης πως το GB είναι ίσο με 4.0754MHz<7.18MHz και το περιθώριο φάσης είναι 180-98=82 και άρα δεν ικανοποιούν τις προδιαγραφές.

Figure 5: Διάγραμμα κέρδους.

Trace Color	Trace Name	Y1	Y2	Y1 - Y2	Y1(Cursor1)	- Y2(Cursor2)	-21.895u		
	X Values	642.554	1.0000	641.554	Y1 - Y1(Cursor1)	Y2 - Y2(Cursor2)	Max Y	Min Y	Avg Y
CURSOR 1,2	DB(V(CL:2))	23.417	23.417	-21.895u	0.000	0.000	23.417	23.417	23.417

Figure 6: Πίνακας τιμών για το κέρδος.

Trace Color	Trace Name	Y1	Y2	Y1 - Y2	Y1(Cursor1)	- Y2(Cursor2)	-23.182		
	X Values	4.0754M	1.0000	4.0754M	Y1 - Y1(Cursor1)	Y2 - Y2(Cursor2)	Max Y	Min Y	Avg Y
CURSOR 1,2	DB(V(CL:2))	234.525m	23.417	-23.182	0.000	0.000	23.417	234.525m	11.826

Figure 7: Πίνακας τιμών για το GainBandwidth.

Figure 8: Διάγραμμα κέρδους και περιθωρίου φάσης.

X Values 4.2725M 1.0000 4.2725M Y1 - Y1(Cursor1) Y2 - Y2(Cursor2) Max Y Min Y Avg Y DB(V(CL:2)) -183.179m 23.417 -23.600 98.124 23.417 23.417 -183.179m 11.617 CURSOR 1,2 P(V(CL:2)) -98.307 -202.919u -98.307 0.000 0.000 -202.919u -98.307 -49.154	Trace Color	Trace Name	Y1	Y2	Y1 - Y2	Y1(Cursor1)	- Y2(Cursor2)	-98.307		
		X Values	4.2725M	1.0000	4.2725M	Y1 - Y1(Cursor1)	Y2 - Y2(Cursor2)	Max Y	Min Y	Avg Y
CURSOR 1,2 P(V(CL:2)) -98.307 -202.919u -98.307 0.000 0.000 -202.919u -98.307 -49.154		DB(V(CL:2))	-183.179m	23.417	-23.600	98.124	23.417	23.417	-183.179m	11.617
	CURSOR 1,2	P(V(CL:2))	-98.307	-202.919u	-98.307	0.000	0.000	-202.919u	-98.307	-49.154

Figure 9: Πίναχας τιμών για το περιθώριο φάσης.

Μιχρορυθμίσεις - Tuning

Φαίνεται το νέο κύκλωμα που προκύπτει μετά από τις ρυθμίσεις. Οι αλλαγές που έγιναν αφορούν τα γεωμετρικά χαρακτηριστικά των τρανζίστορ 1, 2, 6 και 7 καθώς και την πηγή ρεύματος I reference και την τιμή της χωρητικότητας Miller.

Figure 10: Νέο κύκλωμα τελεστικού ενισχυτή.

Προδιαγραφή για το Slew Rate

Προκειμένου να μετρήσω το Slew Rate, χρησιμοποιώ μια πηγή τετραγωνικών παλμών με V1=2, V2=-2, TD=0, TR=1f, TF=1f, PER=10u και PW=5u. Τοποθετώ έναν Voltage Marker στην είσοδο και έναν στην έξοδο του τελεστικού ενισχυτή και κάνω Time Domain Analysis για t=0.2ms.

Κάνω add trace και επιλέγω MAX(D(V(CL:2))) για να πάρω την μέγιστη τιμή του Slew Rate. Όπως φαίνεται και από τον πίνακα τιμών, προκύπτει μέγιστη τιμή ίση με $10.467T\frac{V}{s}$ άρα το Slew Rate πληρεί την προδιαγραφή.

Αμέσως μετά, κάνω θερμοκρασιακή ανάλυση (Temperature Sweep) για Τ ίσο με -40 °C, 20 °Cκαι 85 °C. Λαμβάνω τα ακόλουθα αποτελέσματα. Ελέγχω τις τιμές από τον πίνακα και προκύπτει MAX(D(V(CL:2))) 10.419T, 10.396T και 10.381T αντίστοιχα, επομένως φαίνεται πως η προδιαγραφή του Slew Rate ικανοποιείται και για όλες τις ζητούμενες θερμοκρασίες.

Figure 11: Γραφική παράσταση της τάσης V στην είσοδο και στην έξοδο του τελεστικού ενισχυτή.

Figure 12: Γραφική παράσταση της μέγιστης τιμής του slew rate.

Trace Color	Trace Name	Y1	Y2	Y1 - Y2	Y1(Cursor1)	- Y2(Cursor2)	0.000		
	X Values	6.1477u	0.000	6.1477u	Y1 - Y1(Cursor1)	Y2 - Y2(Cursor2)	Max Y	Min Y	Avg Y
CURSOR 1,2	MAX(D(V(Q6:d)))	10.467T	10.467T	0.000	0.000	0.000	10.467T	10.467T	10.467T
	V(Q2:g)	2.0000	1.8400	160.000m	-10.467T	-10.467T	2.0000	1.8400	1.9200

Figure 13: Πίναχας Τιμών.

Figure 14: Θερμοκρασιακή ανάλυση.

Figure 15: Γραφική παραάσταση της μέγιστης τιμής του slew rate για διάφορες θερμοκρασίες

Trace Color	Trace Name	Y1	Y2	Y1 - Y2	Y1(Cursor1)	- Y2(Cursor2)	0.000		
	X Values	3.9771u	0.000	3.9771u	Y1 - Y1(Cursor1)	Y2 - Y2(Cursor2)	Max Y	Min Y	Avg Y
CURSOR 1,2	MAX(D(V(Q6:d)))	10.419T	10.419T	0.000	0.000	0.000	10.419T	10.419T	10.419T
	MAX(D(V(Q6:d)))	10.396T	10.396T	0.000	-23.336G	-23.336G	10.396T	10.396T	10.396T
	MAX(D(V(Q6:d)))	10.381T	10.381T	0.000	-38.951G	-38.951G	10.381T	10.381T	10.381T

Figure 16: Πίνακας τιμών για διάφορες θερμοκρασίες.

Προδιαγραφή κέρδους

Προκειμένου να μετρήσω το κέρδος, αλλάζω την πηγή και επιλέγω μία AC Voltage Source με $V_{AC}=1$ και $V_{DC}=0$. Κάνω AC Sweep και επιλέγω Logarithmic Type και 40 σημεία ανά δεκάδα, για συχνότητες από 1 έως $1\mathrm{e}{+10}$.

Επιλέγω από την γραμμή εντολών το $PSpice \Rightarrow Markers \Rightarrow Advanced \Rightarrow db$ $Magnitude\ of\ Voltage\ και τον τοποθετώ στην έξοδο του τελεστικού.$

Ελέγχω τον πίνακα τιμών και βρίσκω το κέρδος ίσο με $24.957db \geq 20.18db$, επομένως πληρεί την προδιαγραφή.

Αμέσως μετά, κάνω θερμοκρασιακή ανάλυση και λαμβάνω τα ακόλουθα αποτελέσματα. Η τιμή του κέρδους φαίνεται να είναι 29.615, 25.108 και 21.617 για τιμές θερμοκρασίας ίσες με -40, 25 και 85 °Cαντίστοιχα, άρα η προδιαγραφή που αφορά το κέρδος πληρείται για όλες τις ζητούμενες θερμοκρασίες.

Figure 17: Νέο κύκλωμα τελεστικού ενισχυτή.

Figure 18: Γραφική παράσταση κέρδους.

Trace Color	Trace Name	Y1	Y2	Y1 - Y2	Y1(Cursor1)	- Y2(Cursor2)	-46.290n		
	X Values	409.600	1.0000	408.600	Y1 - Y1(Cursor1)	Y2 - Y2(Cursor2)	Max Y	Min Y	Avg Y
CURSOR 1,2	DB(V(Q6:d))	24.957	24.957	-46.290n	0.000	0.000	24.957	24.957	24.957

Figure 19: Πίνακας τιμών για το κέρδος.

Figure 20: Θερμοχρασιαχή ανάλυση για το χέρδος.

Trace Color	Trace Name	Y1	Y2	Y1 - Y2	Y1(Cursor1)	- Y2(Cursor2)	-24.730		
	X Values	55.154M	1.0000	55.154M	Y1 - Y1(Cursor1)	Y2 - Y2(Cursor2)	Max Y	Min Y	Avg Y
CURSOR 1,2	DB(V(Q6:d))	4.8851	29.615	-24.730	0.000	0.000	29.615	4.8851	17.250
	DB(V(Q6:d))	111.863m	25.108	-24.996	-4.7732	-4.5076	25.108	111.863m	12.610
	DB(V(Q6:d))	-4.0200	21.617	-25.637	-8.9052	-7.9985	21.617	-4.0200	8.7983

Figure 21: Πίνακας τιμών για την θερμοκρασιακή ανάλυση.

Προδιαγραφή κέρδους - εύρους ζώνης

Στο ίδιο διάγραμμα κέρδους, μετράω το Gainbandwidth, την συχνότητα δηλαδή όπου η τιμή του κέρδους γίνεται 0. Φαίνεται από τον πίνακα τιμών πως προκύπτει $GB=55.154MHz\geq7.18MHz$ και άρα ικανοποιείται η προδιαγραφή.

Από την θερμοκρασιακή ανάλυση προκύπτει GB=80.259 για -40,~GB=54.445 για 20 και GB=38.895 για 85. Επομένως η προδιαγραφή κέρδους - εύρους ζώνης ικανοποιείται για όλες τις θερμοκρασίες.

Figure 22: Γραφική παράσταση για το κέρδος εύρους ζώνης.

×III										
1										
	Trace Color	Trace Name	Y1	Y2	Y1 - Y2	Y1(Cursor1)	- Y2(Cursor2)	-25.001		
		X Values	55.154M	1.0000	55.154M	Y1 - Y1(Cursor1)	Y2 - Y2(Cursor2)	Max Y	Min Y	Avg Y
	CURSOR 1,2	DB(V(Q6:d))	-44.464m	24.957	-25.001	0.000	0.000	24.957	-44.464m	12.456

Figure 23: Πίνακας τιμών για το κέρδος εύρους ζώνης.

Figure 24: Θερμοχρασιαχή ανάλυση για το κέρδος εύρους ζώνης.

Προδιαγραφή για το περιθώριο φάσης

Χωρίς να κλείσω το παράθυρο της προσομοίωσης, επιλέγω από την γραμμή εντολών $plot\Rightarrow Add\ Plot\ to\ Window\ και στο νέο παράθυρο που σχηματίζεται κάνω <math>Add\ Trace$ και επιλέγω P(V(CL:2)).

Για να μετρήσω το περιθώριο φάσης, βλέπω την τιμή που έχει όταν το κέρδος A είναι ίσο με το 0 και αφαιρώ την τιμή αυτή, από τις 180° . Όπως φαίνεται από τον πίνακα τιμών, έχω περιθώριο φάσης ίσο με 180° - 127° = 53° .

Θέλω ιδανικά, το περιθώριο φάσης να είναι μεταξύ 45° - 60° οπότε ικανοποιείται η προδιαγραφή.

Στην θερμοκρασιακή ανάλυση για -40 °Cπροκύπτει περιθώριο φάσης $180^\circ-136^\circ=44$ °. Αντίστοιχα, για θερμοκρασία 25° Cπροκύπτει $180^\circ-127^\circ=53^\circ$ και για 85° C, $180^\circ-120^\circ=60$ °επομένως είμαστε μέσα στα επιθυμητά όρια.

Figure 25: Γραφική παράσταση για το περιθώριο φάσης.

Trace Color	Trace Name	Y1	Y2	Y1 - Y2	Y1(Cursor1)	- Y2(Cursor2)	-127.422		
	X Values	55.503M	1.0000	55.503M	Y1 - Y1(Cursor1)	Y2 - Y2(Cursor2)	Max Y	Min Y	Avg Y
	DB(V(Q6:d))	-120.162m	24.957	-25.077	127.302	24.957	24.957	-120.162m	12.418
CURSOR 1,2	P(V(CL:2))	-127.422	-15.285u	-127.422	0.000	0.000	-15.285u	-127.422	-63.711

Figure 26: Πίνακας τιμών για το περιθώριο φάσης.

Figure 27: Θερμοκρασιακή ανάλυση για το περιθώριο φάσης.

Προδιαγραφή για την κατανάλωση ισχύος

Με βάση αυτές τις τιμές, ελέγχω αν ικανοποιείται και η προδιαγραφή για την κατανάλωση ισχύος. Από την σχέση

$$P_{diss} = (I_5 + I_6) \cdot (V_{DD} + |V_{SS}|)$$

Επομένως, για $I_5 = 12 \cdot 10^{-6}, \; I_6 = 213 \cdot 10^{-6}$ και $V_{DD} = |V_{SS}| = 1.854$

Figure 28: Κύκλωμα τελεστικού με ετικέτες για τις τιμές ρευμάτων.

προχύπτει $P_{diss} = 0.8343 \cdot 10^{-3} mW < 50.18 mW$ και άρα ο σχεδιασμός πληρεί την προδιαγραφή.

Πηγή Widlar

Αντικαθιστώ την ιδανική πηγή με Widlar και μετά από μικρορυθμίσεις πετυχαίνω το ίδιο ρεύμα που έδινε η ιδανική.

Οι αλλαγές που έγιναν αφορούν τα τρανζίστορ 13 και 14 και την αντίσταση R και συγκεκριμένα, επιλέγεται τιμή $W_3=W_4=11um$ και R=0.125k.

Εννοείται πως οι τιμές των υπολοίπων τρανζίστορ δεν πειράχτηκαν κατά την διάρκεια του tuning και άρα είναι W=1um και L=1um.

Εφόσον πετυχαίνω ίδιο ρεύμα και τα ρεύματα στα υπόλοιπα τρανζίστορ ϑ α είναι ίδια και άρα και οι προσομοιώσεις.

Figure 29: Κύκλωμα τελεστικού με πηγή Widlar.

Σ υγκεντρωτικός πίνακας τιμών

Στοιχείο	Αρχική Τιμή	Τελική Τιμή
W_1	$1\mu m$	$5\mu m$
L_1	$1\mu m$	$2\mu m$
W_2	$1\mu m$	$5\mu m$
L_2	$1\mu m$	$2\mu m$
W_3	$1\mu m$	$1\mu m$
L_3	$1\mu m$	$1\mu m$
W_4	$1\mu m$	$1\mu m$
L_4	$1\mu m$	$1\mu m$
W_5	$1\mu m$	$1\mu m$
L_5	$1\mu m$	$1\mu m$
W_6	$6\mu m$	13m
L_6	$1\mu m$	$1\mu m$
W_7	$3\mu m$	$8\mu m$
L_7	$1\mu m$	$1\mu m$
W_8	$1\mu m$	$1\mu m$
L_8	$1\mu m$	$1\mu m$
I_5	$10\mu A$	$12\mu A$
C_C	0.5pF	0.025pF

Table 1: Πίνακας αρχικών - τελικών τιμών.