Lending Club Case Study

Gurumoorthi Ramanathan

Primary Analysis

- → Data Understanding & Exploration
- + We have 111 columns with 39717 entries
- + There are some un-necessary columns which may not help us to analysis the defaults, Let's filter out only the useful columns for the analysis such as,
 - loan status
 - loan_amnt
 - funded_amnt
 - funded_amnt_inv
 - Grade
 - sub_grade

- emp_length
- annual_inc
- Purpose
- total_acc
- open_acc
- home_ownership

- term
- int_rate
- addr_state
- verification_status
- total_pymnt
- issue_d

pub_rec_bankruptcies

- + Goal is to predict the defaulters, So the "Current" status loan entries will not help us in such case, Let's **eliminate** the entries having "Current" status in loan_status.
- + Now we have narrow down the variables to 17.

Null Values & Normalization

- + We have **1033** null values null values in emp_length
- + The values have been filled with most common values in the column that is "10+ years"
- + Since the **emp_length** represent the total no of experience the employee (borrower) holds.

 Considering this as numeric let's normalize this **variable to numeric**.
- + Same normalization has been processed for **term** variable

loan_status	0
loan_amnt	0
funded_amnt	0
funded_amnt_inv	0
int_rate	0
grade	0
sub_grade	0
term	0
emp_length	<mark>103</mark> 3
annual_inc	0
purpose	0
total_acc	0
open_acc	0
home_ownership	0
addr_state	0
verification_status	0
total_pymnt	0
dtype: int64	

term emp_length			
36	months	10+ years	
60	months	< 1 rear	
36	months	10+ years	
36	months	10+ years	
60	nonths	1 rear	
36	nonths	3 years	
60	nonths	8 years	
36	months	9 years	
60	nonths	4 years	
60	months	< 1 rear	

term	emp_length
36	10
60	0
36	10
36	10
36	3
60	8
36	9
60	4
60	0
60	5

Conti...

- + Considering the **sub_grade** represents the grade number along the grade, Let's make this values to numeric by slicing
- + int_rate represent the rate of interest for the loan. Let's normalize this as interval group (0-8%, 8-12% and so on)
- + Similarly, "home_ownership" variables has 3 NONE values, considering the numbers let's remove the NONE valued entries from the data frame.
- + Issue date has month-year, let's create a new columns to separate the month and year

int_rate	gra	ade	sub_gr	ade
10.65%		В		В2
15.27%		С		C4
15.96%		С		C5
13.49%		С		C1
7.90%		Α		A4
15.96%		С		C5
18.64%		Ε		E1
21.28%		F		F2
12.69%		В		B5
14.65%		С		C3

grade	sub_grade	int_rate_interval
В	2	8-12%
С	4	12-16%
С	5	12-16%
С	1	12-16%
А	4	0-8%
С	5	12-16%
Е	1	16-20%
F	2	20-24%
В	5	8-12%
С	3	12-16%

Year	Month
Dec	11

Conti...

+ annual_inc has multiple values, let's narrow it down

with interval values

+ Same for Loan amount

loan_amnt_int	loan_status	annual_inc_int	annual_inc
0-5000	Fully Paid	15000-30000	24000.0
0-5000	Charged Off	15000-30000	30000.0
0-5000	Fully Paid	0-15000	12252.0
5000-10000	Fully Paid	45000-60000	49200.0
0-5000	Fully Paid	30000-45000	36000.0
5000-10000	Fully Paid	45000-60000	47004.0
0-5000	Fully Paid	45000-60000	48000.0
5000-10000	Charged Off	30000-45000	40000.0
5000-10000	Charged Off	0-15000	15000.0
5000-10000	Fully Paid	60000- 75000	72000.0

Outliers

- + By visualizing the "annual_inc", annual income of the borrow into boxplot, it's clearly shows us that the column has some outliers.
- + Also, the quantiles against the variable shows that the values after 90% seems to be dropped.
- + Let's take the values below 90% to remove the outliers.

```
0.50
         58860.28
0.60
         65004.00
0.70
         75000.00
0.75
         82000.00
0.80
         90000.00
0.85
        100000.00
0.90
        115000.00
        140004.00
0.95
Name: annual_inc, dtype: float64
```


Visualizations

All/the variables have almost similar values

Univariate Analysis (Loan Amount)

Most of the loans were given between 5000 to 15000

Conti.. Univariate Analysis (Interest Rate)

Interest rate ratio is high between 10.0% to 15.0%

Conti.. Univariate Analysis (annual Income)

Interest rate ratio is high between 10.0% to 15.0%

Conti.. Univariate Analysis (Due term)

Due term is high on 36 months, whereas charged off values were similar for each

Conti.. Univariate Analysis (Home Ownership)

- + Applicants mostly from Rented and Mortgage
- + Notable thing is that those two variables having high no of Charged Off borrowers than others

Bivariate Analysis (Defaulter vs Annual Inc)

- + Borrowers earning 0 to 15000 annually has a highest rate of Defaulters
- + Borrowers earning more than 75K+ are likely to be not defaulters

Conti.. Bivariate Analysis (Defaulter vs Grade)

Borrowers from G and F grade were found to be highest defaulters

Conti.. Bivariate Analysis (Defaulter vs Purpose)

The purpose for "Small business" has high rate of defaulters compare to others

Conti.. Bivariate Analysis (Defaulter vs Interest Rate Range)

Interest rate more than 20% has the highest defaulters compare to others

Conti.. Bivariate Analysis (Defaulter vs Bank rupts)

borrowers are defaulters who has been defaulted before and that has ratio of more than 40%

Conti.. Bivariate Analysis (Defaulter vs Address State)

More than 60% of borrowers were charged off in NE state

Bivariate Analysis – Box Plot (Purpose vs Interest Rate)

- + The loan amount obtained for small business purpose has the highest median, 95th percentile, and 75th percentile values of any reason.
- + whereas house seems to be 2nd and Credit card seems to be as 3rd line

Conti..Bivariate Analysis – Box Plot (Due Term vs Interest Rate)

Higher the term duration higher the interest rate

Conti.. Bivariate Analysis – Box Plot (Due Term vs Interest Rate)

As loan amount increases. Interest rate increase

Conti.. Bivariate Analysis – Box Plot (Annual Income vs Grade)

Charged off borrowers earning less annual income than the other one each

Correlation between Continuous variables

The more annual income, the more chance of loan amount sanctioned

Business terms against loan status

