From classical to good quantum LDPC codes.

D. Ponarovsky¹

Master-Exam-Huji.

Faculty of Computer Science Hebrew University of Jerusalem

• Brif Review of Coding.

 $\bullet\,$ Brif Review of Coding. Tanner and Expander codes.

- Brif Review of Coding. Tanner and Expander codes.
- Quantum Error Correction Codes.

- Brif Review of Coding. Tanner and Expander codes.
- Quantum Error Correction Codes.
- Good Classical Locally Testabile Codes and Good Qauntum LDPC.

Classical: 1001011110101 100101

Quantum: 1001011110101110101 100101

Classical: 1001011110101 100101

Quantum: 1001011110101110101 100101

Quantum: $|10010111101011110101\rangle$ $|100101\rangle$

Quantum Encoding.

Quantum Encoding.

Quantum Encoding.

Idea I - (Uncertainty) Clouds as States.

CSS Code.

'Idea II' - Tanner Checks are 'Too Much' Interdependence.

'Idea III' - Impossibility of Both C_X , C_Z being Good.

Quantum Tanner Code Construction.

Proving Strategy.