

Explanation as a Watermark: Towards Harmless and Multi-bit Model Ownership Verification via Watermarking Feature Attribution

Shuo Shao*, Yiming Li*™, Hongwei Yao, Yiling He, Zhan Qin™, Kui Ren

The State Key Laboratory of Blockchain and Data Security, Zhejiang University

shaoshuo_ss@zju.edu.cn

Paper

Code

Application of Deep Neural Networks

Face Recognition

Self-driving Vehicles

Chatbot

Weather Forecast

Deep Neural Networks (DNNs) has been widely applied to various domains!

Application of Deep Neural Networks

Training high-performance DNNs is a costly and resource-intensive work!

DNN should be regarded as an important intellectual property of its developer!

Copyright Infringement on DNNs

Unauthorized Commerce

File Inversion

Model Stealing Attack

- ➤ **Unauthorized Commerce:** Adversary may illegally leverage the copies of open-source models for commercial purpose.
- File Inversion: Adversary may inverse the file of the model and acquire its parameters and architecture.
- Model Stealing Attack: Adversary may utilize a dataset to query the model and train its own surrogate model to steal the functionality of the victim model.

Model Ownership Verification

Model Ownership Verification: determine whether the suspicious model belongs to a model developer.

Model Watermarking

Model watermarking is a <u>critical</u> and <u>widely adopted</u> solution for model ownership verification.

- Watermark embedding.
- Watermark extraction and ownership verification.

White-box Model Watermarking

White-box model watermarking directly embed the watermark into the parameters!

Drawback: need white-box access to the model during verification.

Black-box Model Watermarking: Backdoor-based

Existing black-box model watermarking methods are mostly based on backdoor attacks.

Backdoor Attack: The backdoored model will predict wrong labels when a specific pattern appears.

Black-box Model Watermarking: Backdoor-based

Q: Why using the backdoor as a watermark?

A: The backdoor watermark is <u>stealthy</u> and can be verified through <u>black-box access</u>.

Progress of Backdoor Watermarks

Backdoor-based watermarks has become the <u>primary</u> and <u>cutting-edge</u> methods!

Limitations of Backdoor Watermark

However, backdoor-based watermarks suffer from <u>harmfulness</u> and <u>ambiguity</u>.

Why Backdoor Watermarks Face Such Limitations?

Such limitations stem from the zero-bit nature of backdoor watermarks.

Why harmful: Backdoor watermarks depend on changing the predictions.

Why ambiguous: Zero-bit Watermark can easily be forged by the adversary.

Our Insight

Does there exist an <u>alternative space</u> for <u>multi-bit</u> watermark embedding without impacting model predictions?

Explanation as a Watermark (EaaW)

Yes! We can utilize the space of explanation for multi-bit watermark embedding!

Watermark Embedding

Three stages in EaaW:

(1) Watermark embedding; (2) watermark extraction; (3) ownership verification.

The loss function of watermark embedding:

$$\min_{\boldsymbol{\Theta}} \mathcal{L}_1(f(\boldsymbol{\mathcal{X}} \cup \boldsymbol{\mathcal{X}}_T, \boldsymbol{\Theta}), \boldsymbol{\mathcal{Y}} \cup \boldsymbol{\mathcal{Y}}_T) + r_1 \cdot \mathcal{L}_2(\operatorname{explain}(\boldsymbol{\mathcal{X}}_T, \boldsymbol{\mathcal{Y}}_T, \boldsymbol{\Theta}), \boldsymbol{\mathcal{W}}).$$
 Utility loss Watermark loss

Utility loss: the loss function used in the primitive task.

Watermark loss: Hinge-like loss to embed the watermark, as follows ($\mathcal{W} \in \{-1, 1\}^k$).

$$\mathcal{L}_2(\boldsymbol{\mathcal{E}}, \boldsymbol{\mathcal{W}}) = \sum_{i=1}^k \max(0, \varepsilon - \boldsymbol{\mathcal{E}}_i \cdot \boldsymbol{\mathcal{W}}_i), \boldsymbol{\mathcal{E}} = \operatorname{explain}(\boldsymbol{\mathcal{X}}_T, \boldsymbol{\mathcal{Y}}_T, \boldsymbol{\Theta}).$$

Watermark Extraction

Firstly, get the explanation of the trigger sample:

$$\widetilde{\mathbf{W}} = \operatorname{explain}(\mathcal{X}_T, \mathcal{Y}_T, \Theta).$$

Then, binarize the explanation to get the final watermark:

$$\widetilde{\mathbf{W}}_i = \operatorname{bin}(\widetilde{\mathbf{W}}_i) = \begin{cases} 1, \ \widetilde{\mathbf{W}}_i \ge 0 \\ -1, \widetilde{\mathbf{W}}_i < 0 \end{cases}.$$

Key in our method: How to Design the function $explain(\cdot)$?

Feature Attribution

The feature attribution methods in XAI (explainable artificial intelligence) can help!

Insight of LIME

Our watermark extraction method is inspired by <u>LIME</u> (local interpretable model-agnostic explanation).

Local Sampling

Step 1 (Local sampling): generate masked samples \mathcal{X}_m

$$\mathcal{X}_m = M \otimes \mathcal{X}_T$$
.

Model Inference and Evaluation

Step 2 (Model inference and evaluation): evaluate the output of the masked samples.

First, get the predictions of the masked samples.

$$\mathbf{p} = f(\mathcal{X}_m; \Theta).$$

Second, evaluate the predictions using a specific <u>metric function</u> $\mathcal{M}(\cdot)$.

$$\boldsymbol{v} = \mathcal{M}(\boldsymbol{p}, \mathcal{Y}_T).$$

Explanation Generation

Step 3 (Explanation generation): calculate the importance score and generate the explanation.

Utilize the Ridge Regression to calculate the importance score and weight matrix $\widetilde{m{W}}$.

$$\widetilde{\boldsymbol{W}} = (M^T M + \lambda I)^{-1} M^T \boldsymbol{v}.$$

Hypothesis-test-based Ownership Verification

Task: comparing the extracted watermark $\widetilde{\mathcal{W}}$ and the original watermark \mathcal{W} .

The problem can be formalized as a hypothesis test, as follows.

Proposition 1. Let $\widetilde{\mathcal{W}}$ be the watermark extracted from the suspicious model, and \mathcal{W} is the original watermark. Given the null hypothesis $H_0:\widetilde{\mathcal{W}}$ is independent of \mathcal{W} and the alternative hypothesis $H_1:\widetilde{\mathcal{W}}$ has an association or relationship with \mathcal{W} , the suspicious model can be claimed as an unauthorized copy if and only if H_0 is rejected.

Specifically, we utilize <u>Pearson's chi-square test</u> to calculate the p-value of the above test.

Experiments: Results on Image Classification Models

TABLE I: The testing accuracy (Test Acc.), the p-value of the hypothesis test, and watermark success rate (WSR) of embedding the watermark into image classification models via EaaW. 'Length' signifies the length of the embedded watermark.

Dataset	Length	Metric↓ Trigger→	No WM	Noise	Abstract	Unrelated	Mask	Patch	Black-edge
		Test Acc.	90.54	90.49	90.53	90.49	90.46	90.38	90.37
	64	p-value	/	10^{-13}	10^{-13}	10^{-13}	10^{-13}	10^{-13}	10^{-13}
		WSR	/	1.000	1.000	1.000	1.000	1.000	1.000
		Test Acc.	90.54	90.53	90.54	90.28	90.49	90.11	90.35
CIFAR-10	256	p-value	/	10^{-54}	10^{-54}	10^{-54}	10^{-54}	10^{-54}	10^{-54}
		WSR	/	1.000	1.000	1.000	1.000	1.000	1.000
	1024	Test Acc.	90.54	90.39	90.47	90.01	90.38	89.04	89.04
		p-value	/	10^{-222}	10^{-222}	10^{-207}	10^{-222}	10^{-218}	10^{-222}
		WSR	/	1.000	1.000	0.989	1.000	0.998	1.000
	64	Test Acc.	76.38	75.80	76.04	76.00	75.98	75.76	75.78
		p-value	/	10^{-13}	10^{-13}	10^{-13}	10^{-13}	10^{-13}	10^{-13}
		WSR	/	1.000	1.000	1.000	1.000	1.000	1.000
		Test Acc.	76.38	75.86	75.96	76.36	76.06	76.06	75.60
ImageNet	256	p-value	/	10^{-54}	10^{-54}	10^{-54}	10^{-54}	10^{-54}	10^{-54}
		WSR	/	1.000	1.000	1.000	1.000	1.000	1.000
		Test Acc.	76.38	75.40	76.22	75.26	75.74	73.48	72.84
	1024	p-value	/	10^{-222}	10^{-222}	10^{-219}	10^{-222}	10^{-219}	10^{-222}
		WSR	/	1.000	1.000	0.999	1.000	0.999	1.000

Our EaaW can embed a watermark of over 1024 bits to the image classification models without significantly compromising the utility of the models.

Experiments: Results on Text Generation Models

TABLE III: The perplexity (PPL), the p-value of the hypothesis test, and watermark success rate (WSR) of embedding a watermark into text generation models via EaaW.

Dataset	$Length \rightarrow$	No WM	32	48	64	96	128
	PPL	43.33	46.97	47.88	48.59	48.78	51.09
wikitext	p-value	/	10^{-7}	10^{-10}	10^{-13}	10^{-20}	10^{-27}
	WSR	/	1.000	1.000	1.000	48.78 10 ⁻²⁰ 1.000 47.52 10 ⁻²⁰ 1.000 45.52 10 ⁻²⁰ 1.000 44.85	1.000
	PPL	43.75	44.28	44.76	45.41	47.52	49.61
bookcorpus	p-value	/	10^{-7}	10^{-10}	10^{-13}	10^{-20}	10^{-27}
	WSR	/	1.000	1.000	1.000	48.78 3 10 ⁻²⁰ 1.000 47.52 3 10 ⁻²⁰ 1.000 3 45.52 3 10 ⁻²⁰ 1.000 44.85 3 10 ⁻²⁰	1.000
	PPL	39.49	40.98	42.41	42.68	45.52	48.99
ptb-text-only	p-value	/	10^{-7}	10^{-10}	10^{-13}	10^{-20}	10^{-27}
	WSR	/	1.000	1.000	1.000	1.000	1.000
	PPL	42.07	44.21	44.24	44.48	44.85	47.99
lambada	p-value	/	10^{-7}	10^{-10}	10^{-13}	10^{-20}	10^{-27}
	WSR	/	1.000	1.000	1.000	1.000	1.000

Our EaaW is also applicable for <u>text generation models and LLMs</u> and successfully embed 128bit watermark into the models.

Experiments: Visualization

Visualization of the trigger samples and the extracted watermarks.

Experiments: Resistance to Removal Attacks

The results demonstrate that our EaaW is resistant to watermark removal attack.

Experiments: Resistance to Adaptive Attacks

We consider two different scenarios of adaptive attacks:

Overwriting Attack: the adversary has no knowledge of the trigger samples and the watermark.

$$\min_{\Theta} \mathcal{L}_1(f(\mathcal{X},\Theta),\mathcal{Y}) + r_1 \cdot \mathcal{L}_2\left(\operatorname{explain}(\widetilde{\mathcal{X}_T},\widetilde{\mathcal{Y}_T},\Theta,\boldsymbol{\mathcal{W}}')\right).$$

Unlearning Attack: the adversary <u>knows the embedded watermark</u>, but has no knowledge of the trigger samples.

$$\min_{\Theta} \mathcal{L}_1(f(\mathcal{X},\Theta),\mathcal{Y}) - r_1 \cdot \mathcal{L}_2\left(\exp \operatorname{lain}(\widetilde{\mathcal{X}_T},\widetilde{\mathcal{Y}_T},\Theta,\boldsymbol{\mathcal{W}}) \right).$$

Experiments: Resistance to Adaptive Attacks

TABLE V: Watermark success rate (WSR) of the original watermark (dubbed 'Ori. WM') and the adversary's new watermark (dubbed 'New WM'), the log p-value, and functionality evaluation (test accuracy or PPL) of ResNet-18 and GPT-2 against overwriting attack and unlearning attack.

Model↓	Metric↓	Before	After Overwriting	After Unlearning
ResNet-18	Test Acc.	75.72	69.18	73.62
	p-value	10^{-222}	10^{-134}	10^{-127}
	WSR of Ori. WM	1.000	0.899	0.888
	WSR of New WM	/	0.815	/
	PPL	48.99	50.29	48.96
GPT-2	p-value	10^{-27}	10^{-18}	10^{-24}
GP1-2	WSR of Ori. WM	1.000	0.906	0.969
	WSR of New WM	/	0.883	1

Our EaaW is resistant to both the overwriting attack and the unlearning attack!

Experiments: Comparison to Backdoor Watermarks

TABLE VI: The watermark success rate (WSR), the harmless degree H (larger is better), and test accuracy (Test Acc.) using the backdoor-based model watermarking method and EaaW in the image classification task.

	T 4.1	TD-1	NT-	[2.6]		T.T	1-4-1 [6	C1	14-	-1- F1.F1		D-4	-l- rcc1		D1-	-1 1	
Dataset	Length /	Trigger→	1	ise [36]			lated [6			sk [15]			ch [66]			ck-edge	
	Trigger Size	Method↓	Test Acc.	H	WSR	Test Acc.	H	WSR	Test Acc.	H	WSR	Test Acc.	H	WSR	Test Acc.	H	WSR
		No WM	90.54	/	/	90.54	/	/	90.54	/	/	90.54	/	/	90.54	/	/
	64	Backdoor	90.38	89.74	1.000	88.74	88.10	1.000	90.34	89.71	0.984	84.28	83.64	1.000	86.24	85.60	1.000
		EaaW	90.49	90.48	1.000	90.49	90.48	1.000	90.46	90.47	1.000	90.38	90.39	1.000	90.37	90.38	1.000
		No WM	90.54	/	/	90.54	/	/	90.54	/	/	90.54	/	/	90.54	/	/
CIFAR-10	256	Backdoor	90.33	87.77	1.000	87.99	85.43	1.000	90.28	87.72	1.000	90.11	87.75	1.000	90.07	87.51	1.000
		EaaW	90.53	90.52	1.000	90.28	90.27	1.000	90.49	90.50	1.000	90.11	90.12	1.000	90.35	90.36	1.000
	1024	No WM	90.54	/	/	90.54	/	/	90.54	/	/	90.54	/	/	90.54	/	/
		Backdoor	90.19	80.19	0.977	88.14	77.93	0.997	90.17	79.93	1.000	90.03	79.79	1.000	89.81	79.57	1.000
		EaaW	90.39	90.38	1.000	90.01	90.00	0.989	90.38	90.39	1.000	89.04	89.05	0.998	89.04	89.05	1.000
	64	No WM	76.38	/	1	76.38	/	/	76.38	/	/	76.38	/	/	76.38	/	/
		Backdoor	73.16	72.67	0.766	75.94	75.30	1.000	75.06	74.42	1.000	74.18	73.54	1.000	73.96	73.32	1.000
		EaaW	75.80	75.79	1.000	76.00	75.99	1.000	75.98	75.99	1.000	75.76	75.77	1.000	75.78	75.79	1.000
		No WM	76.38	/	/	76.38	/	/	76.38	/	/	76.38	/	/	76.38	/	/
ImageNet	256	Backdoor	73.70	71.14	1.000	75.92	73.36	1.000	74.08	71.52	1.000	70.34	67.80	0.992	71.10	68.59	0.980
		EaaW	75.86	75.85	1.000	76.36	76.35	1.000	76.06	76.07	1.000	76.06	76.07	1.000	75.60	75.61	1.000
		No WM	76.38	/	/	76.38	/	/	76.38	/	/	76.38	/	/	76.38	/	/
	1024	Backdoor	73.56	64.22	0.912	75.86	65.62	1.000	74.86	64.62	1.000	73.92	63.68	1.000	74.32	64.08	1.000
		EaaW	75.40	75.39	1.000	75.26	75.25	0.999	75.74	75.75	1.000	73.48	73.49	0.999	72.84	72.85	1.000

Harmless degree *H*:

$$H = \frac{1}{|\mathcal{X} \cup \mathcal{X}_T|} \sum_{x \in \mathcal{X} \cup \mathcal{X}_T} \mathbb{I}\{f(x; \Theta) = g(x)\}.$$

Our EaaW is more harmless than the backdoor-based watermarks!

Experiments: Label-only Scenario

Dataset	c during embedding↓	c during extraction \downarrow							
Dataset	c during embedding.	256	512	1024	2048	4096			
	256	0.566	0.590	0.605	0.594	0.633			
	512	0.516	0.676	0.664	0.672	0.695			
ImageNet	1024	0.563	0.625	0.734	0.770	0.758			
	2048	0.516	0.629	0.789	0.895	0.852			
	4096	0.488	0.582	0.703	0.824	0.945			

In label-only scenario, some information is lost.

We can increase the number of masked samples to compensate the information loss!

Our EaaW is still effective in the label-only scenario!

Conclusion

Our Contributions:

- > A novel model watermarking paradigm, EaaW, to embed watermarks into explanations.
- An effective watermark embedding and extraction method inspired by LIME.

Our Advantages:

- Outstanding <u>effectiveness</u> and <u>harmlessness</u>.
- Only need <u>black-box access</u> to the suspicious model.
- <u>Resistance</u> to watermark removal attacks and ambiguity attacks.
- Good <u>applicability</u> to models of various modalities and tasks, e.g., image classification models or LLMs.

Future Works

> Extension to other tasks and modalities.

Theoretical guarantee of model watermarking (e.g., robustness or watermark capacity).

More effective and efficient XAI-based methods for watermark embedding.

THANK YOU FOR LISTENING!

Email: shaoshuo_ss@zju.edu.cn

Paper

