Differential Geometry HW3

段奎元 SID: 201821130049

dkuei@outlook.com

October 22, 2018

1. A tensor is **decomposable** if it is the tensor product of several vectors. Is every tensor decomposable? Prove or give a counter example.

SOLUTION: No. Assume that V^* is a 2-dimensional dual vector space over \mathbb{R} with a basis $\{e_1, e_2\}$. For a tensor $v \otimes w \in V^* \otimes V^*$, there exist $x \in \mathbb{R}^4$ such that

$$v \otimes w = (e_1 \otimes e_1, e_1 \otimes e_2, e_2 \otimes e_1, e_2 \otimes e_2) \cdot x.$$

If $v \otimes w$ is decomposable, $\exists a_1e_1 + a_2e_2, b_1e_1 + b_2e_2 \in V^*$ such that

$$v \otimes w = (a_1e_1 + a_2e_2) \otimes (b_1e_1 + b_2e_2)$$

= $a_1b_1e_1 \otimes e_1 + a_1b_2e_1 \otimes e_2 + a_2b_1e_2 \otimes e_1 + a_2b_2e_2 \otimes e_2$
= $(e_1 \otimes e_1, e_1 \otimes e_2, e_2 \otimes e_1, e_2 \otimes e_2) \cdot (a_1b_1, a_1b_2, a_2b_1, a_2b_2)^T$.

Then $x = (a_1b_1, a_1b_2, a_2b_1, a_2b_2)^T$. Every tensor is decomposable means every $x \in \mathbb{R}^4$ has the later form; this is not true. For example, x = (0, 1, 1, 1), then $a_1b_1 = 0$ infers $a_1 = 0$ or $b_1 = 0$; hence $a_1b_2 = 0$ or $a_2b_1 = 0$, but $x_2 = x_3 = 1 \neq 0$. Contradiction!

2. Calculate the induce metric of an ellipsoid surface,

$$S_2^n = \{x \in \mathbb{R}^{n+1} \mid 4x_0^2 + \sum_{i=1}^n x_i^2 = 1\} \hookrightarrow \mathbb{R}^{n+1}.$$

SOLUTION: Denote $N=(1/2,0,\cdots,0), S=(-1/2,0,\cdots,0)\in S_2^n, V_1=S_2^n\setminus\{N\}, V_2=S_2^n\setminus\{S\}.$ $\{V_1,V_2\}$ is an open cover of S_2^n . Define the stereographic projection $X:\mathbb{R}^n\to V_1,Y:\mathbb{R}^n\to V_2,$

$$X(\vec{x}) = \frac{1}{1 + \vec{x}^2} (\frac{\vec{x}^2 - 1}{2}, 2\vec{x}),$$
$$Y(\vec{x}) = \frac{1}{1 + \vec{y}^2} (\frac{1 - \vec{y}^2}{2}, 2\vec{y})$$

where $\vec{x} \in \mathbb{R}^n$, $(a, 2\vec{x}) \in \mathbb{R}^{n+1}$ for any $a \in \mathbb{R}$, $\vec{y} = \frac{\vec{x}}{\vec{x}^2}$.

Denote the induce metrics of (X, \mathbb{R}^n) , (Y, \mathbb{R}^n) as g^+, g^- respectively, the tagent vector $\frac{\partial}{\partial x_\alpha} \in T\mathbb{R}^{n+1}$ as $e_\alpha = (0, \dots, 1, \dots, 0)$ (the α -th component is 1 and all other components are 0) for $0 \le \alpha \le n$. Then in $V_1 = X(\mathbb{R}^n)$,

$$dX(\frac{\partial}{\partial x_i}) = \frac{\partial X}{\partial x_i} = \frac{1}{(\vec{x}^2 + 1)^2} (2x_i, 2\delta_{1i}(\vec{x}^2 + 1) - 4x_1x_i, \dots, 2\delta_{ni}(\vec{x}^2 + 1) - 4x_nx_i)$$

for $1 \le i \le n$. Then

$$g_{ij}^{+} = \langle \frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \rangle_X = \langle dX(\frac{\partial}{\partial x_i}), dX(\frac{\partial}{\partial x_j}) \rangle_{\mathbb{R}^{n+1}} = \langle \frac{\partial X}{\partial x_i}, \frac{\partial X}{\partial x_i} \rangle$$

$$= \frac{4x_i x_j}{(\vec{x}^2 + 1)^4} + \sum_{k=1}^n \frac{(2\delta_{ki}(\vec{x}^2 + 1) - 4x_k x_i)(2\delta_{kj}(\vec{x}^2 + 1) - 4x_k x_j)}{(\vec{x}^2 + 1)^4}$$

$$= \frac{4\delta_{ij}(\vec{x}^2 + 1)^2 - 12x_i x_j}{(\vec{x}^2 + 1)^4}.$$

Hence we get

$$g^{+} = g_{ij}^{+} dx_{i} dx_{j}$$

$$= \frac{4\delta_{ij}(\vec{x}^{2} + 1)^{2} - 12x_{i}x_{j}}{(\vec{x}^{2} + 1)^{4}} dx_{i} dx_{j}.$$

Similarly,

$$g^{-} = \frac{4\delta_{ij}(\vec{y}^2 + 1)^2 - 12y_iy_j}{(\vec{y}^2 + 1)^4} dy_i dy_j.$$

On $V_1 \cap V_2$,

$$g^{-} = \frac{4\delta_{ij}(\vec{y}^{2}+1)^{2} - 12y_{i}y_{j}}{(\vec{y}^{2}+1)^{4}} dy_{i} dy_{j}$$

$$= \frac{4\delta_{ij}(1/\vec{x}^{2}+1)^{2} - 12x_{i}x_{j}/\vec{x}^{4}}{(1/\vec{x}^{2}+1)^{4}\vec{x}^{4}} dx_{i} dx_{j}$$

$$= \frac{4\delta_{ij}(\vec{x}^{2}+1)^{2} - 12x_{i}x_{j}}{(\vec{x}^{2}+1)^{4}} dx_{i} dx_{j}$$