Árvores Rubro-Negras (Vermelho-Preta)

Árvores Rubro-Negras

- Árvore Binária de Pesquisa (ABP) com nodos coloridos de vermelho e preto
 - Árvore balanceada
 - Qualquer caminho da raiz até as folhas, nenhum caminho será maior que duas vezes o comprimento de qualquer outro
 - Aproximadamente balanceada
 - Número menor de rotações/reestruturações
 - Comparada com AVL

Estrutura da Árvore

- Cada nodo contem os seguintes campos:
 - Chave
 - Ponteiro para subárvores esquerda
 - Ponteiro para subárvores direita
 - Cor

- Propriedade
 - Todo nodo da árvore é ou vermelho ou preto

Estrutura da Árvore

- Cada nodo contem os seguintes campos:
 - Chave
 - Ponteiro para subárvores esquerda
 - Ponteiro para subárvores direita

- Cor

- Propriedade
 - Todo nodo da árvore é ou vermelho ou preto

Propriedades

- I. Todo nodo é vermelho ou preto
- II. A raiz é preta
- III. Toda folha (nil) é preta
- IV. Se um nodo é vermelho, então ambos os seus filhos são pretos
- V. Para cada nodo, todos os caminhos desde um nodo até as folhas descendentes contêm o mesmo número de nodos pretos

BALANCEAMENTO

6 nil nil

nil nil nil

Propriedades - RESUMO

- RAIZ
 - A raiz é preta
- NODOS EXTERNOS
 - Todo nodo externo é preto
- NODOS INTERNOS
 - Os filhos de um nodo vermelho são pretos
- PROFUNDIDADE
 - Todos os nodos externos têm a mesma profundidade preta que é definida como o número de ancestrais pretos menos 1

INSERÇÃO

Inserção

- Encontra a posição na árvore
 - Substitui nil pelo nodo com 2 filhos nil
- Primeiro nodo (RAIZ)
 - PRETO
- demais nodos
 - VERMELHO

50

6 nil nil

nil nil

nil nil nil

Inserção

- Encontra a posição na árvore
 - Substitui nil pelo nodo com 2 filhos nil
- Primeiro nodo (RAIZ)
 - PRETO
- demais nodos
 - VERMELHO

20

Inserção

- Encontra a posição na árvore
 - Substitui nil pelo nodo com 2 filhos nil
- Primeiro nodo (RAIZ)
 - PRETO
- demais nodos
 - VERMELHO

Inserção – regra básica

- Encontra a posição na árvore
 - Substitui *nil* pelo nodo a ser inerido
 - Novo nodo possui 2 filhos nil
- Primeiro nodo (RAIZ)
 - PRETO
- demais nodos
 - VERMELHO

Caso 1

• Pai é preto

Caso 1

• pai é preto – 55

- insere vermelho
50

40

40

40

40

10

45

nil nil nil nil nil nil nil

Caso 2

• pai é vermelho 12

Se **pai** não é raiz

- seu avô é preto (óbvio)
- verificar a cor do tio
- ⇒ 2 casos

60

nil

Caso 2.1

• tio é vermelho 12 Alterar as cores pai, tio e do avô

Caso 2.1

• tio é vermelho 12 Alterar as cores pai, tio e do avô

Caso 2.1 – Exceção RAIZ é avô

• tio é vermelho 12 Alterar as cores pai, tio e do avô

Caso 2.1 – Exceção RAIZ é avô

• tio é vermelho 12 Alterar as cores pai, tio e do avô

Avô é raiz – altera para preto

Caso 2.2 (A) - rotação direita

• tio é preto

Caso 2.2 (A) - rotação direita

• tio é preto

Caso 2.2 (A) - rotação direita

• tio é preto

Caso 2.2 (B) - rotação esquerda

• tio é preto

Caso 2.2 (B) - rotação esquerda

• tio é preto

Caso 2.2 (B) - rotação esquerda

• tio é preto

Caso 2.2 (C) - rotação dupla direita

• tio é preto

Caso 2.2(C) - rotação dupla direita

• tio é preto

Caso 2.2 (C) - rotação dupla direita

• tio é preto

Caso 2.2 (D) - rotação dupla esquerda

• tio é preto

Caso 2.2 (D) - rotação dupla esquerda

Problema:

DUPLO VERMELHO

• tio é preto

Caso 2.2 (D) - rotação dupla esquerda

• tio é preto

Inserção - resumo

- Raiz
 - Preto
- Demais filhos
 - vermelhos
- Caso 01 pai preto
 - Insere vermelho
- Caso 02 pai vermelho
 - Tio Vermelho
 - troca cor pai, tio, avô
 - Tio Preto
 - rotação e troca de cores

Remoção

- Remoção nodo intermediário
 - Não há problema porque as cores permanecem iguais Existe apenas a troca de valores
- Nodo Vermelho
 - Ok! Não altera o balanceamento da árvore
- Nodo Preto
 - PROBLEMA

Problema: **DUPLO PRETO**

Caso 0

Nodo vermelho

Caso 01

• Irmão preto – filho vermelho

Caso 01

• Irmão preto – filho vermelho

Caso 01

• Irmão preto – filho vermelho

Caso 01

• Irmão preto - filho vermelho

Caso 02

• Irmão preto – dois filhos pretos

Caso 02

• Irmão preto – dois filhos pretos

Caso 02

• Irmão preto – dois filhos pretos

Caso 02

• Irmão preto – dois filhos pretos

Trocar Cor

Caso 03

• Irmão vermelho

Caso 03

• Irmão vermelho

Rotação

Demos

- http://webpages.ull.es/users/jriera/Docencia/AVL/ AVL%20tree%20applet.htm
- http://people.ksp.sk/~kuko/bak/

