

Welcome to DSCI 101

Introduction to Data Science

Week 1-8 Review

- Exploratory Data Analysis (EDA)
 - understanding your data
- EDA goals and techniques
 - 5 key properties and 3 main aspects to explore
 - univariate, bivariate and multivariate analysis
 - feature engineering

Week 9 Preview

- Introduction to Probability
 - random variable
 - probability distribution
- Statistical Inference
 - Important concepts: Population and parameters, Sample and statistics
 - Sampling distribution and empirical distribution
 - Fundamental Theorem of Statistics
- Quantify uncertainty with Bootstrap

Probability and Statistics

Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc.

Random Event

- A random event
 - collection of outcome of some random process
 - sample space of all possible outcomes
- Set operations
 - complement: A and A^c , same as logical operator **negate**
 - union: $A \cup B$, same as logical operator **or**
 - intersection: $A \cap B$, same as logical operator **and**
- Examples: flip a coin, throw a die, etc.

Basic probability rules

- 1) General rule:
 - $0 \le \mathbb{P}(A) \le 1$ for any event A
 - in particular, $\mathbb{P}(\phi) = 0$ for empty set, and $\mathbb{P}(S) = 1$ for entire sample space
- 2) Addition rule: A or B
 - $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$
 - $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ if they are mutually exclusive (or disjoint)
- 3) Multiplication rule: A and B
 - $\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B \mid A)$ (B conditioned on A) = $\mathbb{P}(B) \times \mathbb{P}(A \mid B)$
 - $\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B)$ if they are independent

Review of probability sampling

- Knowing what's your population
- Knowing the probability of selecting any subgroup in the population
- Remember df. sample()?
- Difference between sampling with and without replacement
 - real world population is finite, so it's always without replacement
 - but when population is huge compared to sample size, with replacement is a close enough approximation of reality

Random variable

- A random variable is a variable whose values depend on some random event outcome.
- Mathematically, a random variable is a **function that maps** a random event outcome to a real number.

• Toss a coin is NOT a random variable, but this mapping is.

Probability distributions

• A random variable is associated with a probability distribution.

• all the values and all the associated probabilities

• all probabilities must sum up to 1

A random

event

Outcome 1 \longrightarrow Value 1 \longrightarrow \mathcal{P}_1 Outcome 2 \longrightarrow Value 2 \longrightarrow \mathcal{P}_2 Outcome k \longrightarrow Value k \longrightarrow \mathcal{P}_k

sum up to 1.

Types of random variables and distributions

- Same as discrete vs. continuous numerical variable types
- Discrete: you can count the different values of the r.v.
- Continuous: you can not!
- focus almost exclusively on discrete distributions, and one continuous
- more in a calculus-based probability course!

Common discrete distributions

- Bernoulli(p)
 - A r.v. takes value 1 with probability p and value 0 with probability 1-p
- Binomial (n, p)
 - A r.v. which is sum of n independent Bernoulli(p) r.v.'s
- Bernoulli(p) = Binomial (1, p)

- Uniform on a finite set of k different values and equal p=1/k
 - For example: roll a fair die

Numpy.random

- Simulation allows you to generate random samples from a specified probability distribution
- np.random.dist_name(dist_parameter_values, sample_size)
- Examples:
 - np.random.binomial(n=1, p=0.5, size=100)
 - np.random.binomial(n=100, p=0.2, size=1)
 - np.random.randint(low=1, high=11, size=3)

Normal distribution

- A continuous distribution with two parameters: mean and variance
- Possible values: all real numbers
- Symmetrical and bell-shaped
- Mean μ :
 - the center / symmetrical line
- Variance (sd) σ^2 :
 - the spread out

Normal distribution

The standard normal curve

$$\phi(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2}, \quad -\infty < z < \infty$$

- A beautiful formula (that we won't use at all)
- A special case of normal:
 - $\mu = 0$
 - $\sigma^2 = 1$
- Any normal distributions can be converted to standard normal
 - also known as z-score

The 2 SD rule

- Some convention:
 - yellow = usual values
 - blue = extreme values (two tails)
- Area represents probability!
 - middle area with $\mathbb{P} = 95\%$
 - tail areas with $\mathbb{P} = 5\%$
- Applies to any normal distributions!

Birthday Problem

- The **birthday problem** asks for the probability that, in a set of *n* randomly chosen people, at least two will share a birthday.
 - what is your guess?
- How do we approach this problem using computer simulation?
 - simulate a random event repeatedly (a large number of times)
 - use long term proportion as approx. probability
 - this is called Monte Carlo simulation

Inferential Statistics: important concepts

- Population distribution
 - a census!
- Parameters: a quantity associated with population distribution
 - you will know this if you have a census!
- Random probability sample
 - to make inference about the population

Empirical distribution

- "Empirical": based on the observations of your random sample
- Empirical distribution:
 - assume sample size of N observations (number of rows)
 - each observation has equal probability 1/N
- Bar plot and histogram of sample data
 - represent the empirical distribution
 - count values for each category or each bin
 - each observation counts as 1/N!

Sampling distribution

- Statistic: a quantity associated with your random sample
 - anything you can calculate based on your data
 - sample mean, sample median, sample SD, sample IQR...
- Sampling distribution of a statistic
 - different values and associated probabilities based on ALL possible random samples from the population
- Simulate the sampling distribution
 - repeatedly draw random samples doable with simulation!

Why do we care?

- A statistic can approximate the population parameter
 - use sample mean to approximate population mean
- However, we know if we get a different sample, the sample mean could have come out different, but how different???
 - need to quantify the uncertainty → sampling distribution
- Quantify the uncertainty using simulation → simulate the sampling distribution

How to make statistical inference?

Simulate a statistic

- Computer is good at doing repetitive tasks!
- Figure out code to compute the statistic based on one sample
- Repeat: draw a random sample -> compute the statistics
- After enough repetitions, you will have
 - the (approx.) sampling distribution of that statistic
 - everything you need to know about that statistic

Simulate a statistic – pseudo code

- For a fixed sample size N:
 - 1.Draw a random sample of size N
 - 2. Calculate the statistic of interest based on one random sample
- Repeat 1&2 many many times... (A For statement in Python)
- Visualize: histogram of the simulated statistic
 - the sampling distribution of your statistic!!! (with large enough repetition)

Where to get another sample?

- What did you notice about the simulation we just did?
- We know the population distribution!
- But in the real world, we don't......
- To collect another sample data requires time and money...lots of them for many samples
- Stuck?

The Bootstrap

- A technique to generate more random samples from one original sample.
- Huh???
- Theoretical justification: the Fundamental Theorem of Statistics
 - if your sample is large and random
 - the empirical distribution of your data ≈ the population distribution
- So we sample from the empirical distribution!

How???

- Remember what is the empirical distribution of your data?
- From the original sample of N observations:
 - to generate a **bootstrap resample**
 - draw N (the same sample size) observations at random with replacement
- If you are confused, think about:
 - how do you sample from a discrete uniform distribution, like a die?
 - what happens if you draw N observation without replacement?

Illustration

Real world

When Not to use Bootstrap

- When your original sample is NOT large and random!
 - very small sample size
 - highly dependent samples
- When the dataset you have is poor in quality,
 - not much you can do with it.....

"Garbage in, garbage out"

Your analysis is as good as your data.

Confidence Interval

- Interval estimate of the population parameter
- 90% is called the confidence level
 - "middle" 90% of the sampling distribution
 - higher confidence → wider intervals (trade-off)
- The confidence is in the process that generated the interval
 - it generates a "good" interval about 90% of the times

Take away message

- Probability is fun!
 - using simulation to figure out probability is more fun!
- Statistical inference is all about quantifying uncertainty
 - confidence intervals!!!
- Figuring out sampling distribution mathematically is super hard!
 - thanks to bootstrap and simulation

