기계학습기초및 응용 Machine Learning

o. 과목 소개

Kookmin University, Seoul, Korea

본 자료는 해당 수업의 교육 목적으로만 활용될 수 있음. 일부 내용은 다른 교재와 논문으로부터 인용되었으며, 모든 저작권은 원 교재와 논문에 있음.

Class logistics

- time and place
 - 10:00~12:00, Sat.
 - Room 447, Bldg. future
- instructor: Prof. Jaekoo Lee
 - jaekoo@kookmin.ac.kr
 - Machine intelligence(MI) lab. [인공지능 연구실]
 - Create Al that turns imagination into reality!
 - Office hours (@Dorm B-609): any time, any where!

- Youngjun Yoo(junyoog6@kookmin.ac.kr)
- course materials: ecampus.kookmin.ac.kr
- Class schedule
 - ▶ 15 weeks

But, current situtation

제목 2020학년도 1학기 학사일정 변경에 따른 온라인 수업 안내	글쓴이 윤보람
날짜 20.03.13	조회수 1257
담당부서 교무팀 중	담당자

2020학년도 1학기 학사일정 변경에 따른 온라인 수업 안내

1. 개강일 및 강의실 수업 일정

- 코로나19에 대응하여 2020학년도 1학기 개강 및 종강 일정을 변경하고 1~4주차 모든 수업을 온라인으로 진행
- 과목별 수업운영방법, 계획 수업계획서 및 eCampus(가상대학)에서 반드시 확인

구분	일정	비고
개강일	3.16.(월)	2주 연기
강의실수업(출석수업) 시작일	4.13.(월)	개강 초 4주분 수업을 온라인으로 진행

- * 실험실습 과목 등 온라인 수업이 진행 불가한 필수 집합 교육은 별도 출석 보강수업으로 진행될 수 있음.
- * 상기 일정은 향후 코로나19 진행상황에 따라 변경될 수 있음.

2. 2020학년도 1학기 온라인 수업 안내

- 온라인 강의시스템 eCampus 바로가기: ecampus.kookmin.ac.kr
- eCampus(가상대학) 이용 안내 및 어플리케이션 다운로드 : 매뉴얼은 eCampus 이용안내 > 온라인 강의안내 참조

구분	PC 버전	안드로이드용	아이폰용
eCampus(가상대학)	<u>바로가기</u>	<u>다운로드 클릭</u>	<u>다운로드 클릭</u>
실시간 화상강의(ZOOM)	다운로드 클릭	다운로드 클릭	<u>다운로드 클릭</u>
소통채널 K·PUSH+	-	<u>다운로드 클릭</u>	<u>다운로드 클릭</u>

Class objectives

- main objectives:
 - understand fundamentals of machine learning
 - have hands-on experience (using cloud API)
 - motivate to learn recent breakthroughs in machine learning

Prerequisites

- this class:
 - intended to be the first course in machine learning
- prerequisites
 - familiarity with programming (e.g., Python)
 - a basic understanding of computational system
 - calculus, probability, statistics and linear algebra

Textbook

- Learning from Data
 - by Yaser S. Abu-Mostafa
- Deep learning
 - by Goodfellow, Bengio, and Courville
- 패턴인식, 기계학습
 - ▶ by 오일석
- Data Science on the GCP
 - by Valliappa Lakshmanan
- Stanford CS231N class materials

Software and library

- Python
 - using Jupyter Notebook
 - python.org
- scikit-learn
 - NumPy + SciPy + matplotlib
 - scikit-learn.org
- PyTorch
 - deep learning
 - pytorch.org
- Anaconda or Docker
 - data science platform / application container platform
 - anaconda.com / docker.com
- Cloud platform
 - AWS
 - ▶ GCP

Syllabus (tentative)

Week	Contents	
1	수업 소개	
2	인공지능, 기계학습 개념 ।	
3	인공지능, 기계학습 개념 ॥	
4	인공 신경망 I	
5	인공 신경망 II	
6	PYTHON 및 PYTORCH 실습	
7	심층 학습	
8	심층 학습 II	
9	중간 시험	
10	NVIDIA DLI 실습	
11	Cloud Platform 활용 I	
12	Cloud Platform 활용 II	
13	Cloud Platform 활용 III	
14	Kaggle 실습	
15	초청 강연	

Performance evaluation

- 3 hands-on experience (45%)
- midterm (30%)
- class contribution (15%)
- class attendance (10%)

Final remarks

absolutely no negotiation for your final grades!

Artificial Intelligence: Past, Present and Future

Jaekoo Lee¹

¹ Ph.D., Assistant Professor, School of Software, College of Computer Science jaekoo@kookmin.ac.kr

Kookmin University, Seoul, Korea

Mar. 20, 2020

Outline

- Introduction
- Artificial intelligence:
 - Definition and Categorization
 - Past
 - Present
 - Examples of remarkable results
 - Hot topics
 - Research and technology trends
 - Future
 - Watch out for 2020
 - Discussion of action items and preparations
- Conclusion
- Question and Answer

Introduction

Intelligent Machines

Nvidia CEO: Software Is Eating the World, but AI Is Going to Eat Software

Jensen Huang predicts that health care and autos are going to be transformed by artificial intelligence.

Artificial intelligence

AlphaGo by DeepMind: Rebirth of Al

Artificial intelligence

Evolution of AlphaGo

- ▶ 2017년: 바둑 은퇴
- ▶ 현재: 인공지능 기술을 활용하여 환자 진단과 치료 도움

"놀이터를 떠나 인간 삶으로 들어온 언공치능"

Artificial intelligence

- Al in production
 - Speech recognition
 - Recommender systems
 - Autonomous driving
 - Real-time object recognition
 - Robotics
 - Real-time language translation
 - Many more...

Artificial intelligence: Definition

- Artificial intelligence (AI):
 - the simulation of human intelligence processes by machines (computer systems)

- include (major components of AI)
 - learning (the acquisition of information and rules for using the information),
 - reasoning (using rules to reach approximate or definite conclusions),
 - knowledge,
 - language understanding, and
 - self-correction
- ► Goal:
 - A machine that thinks or acts like a human

Artificial intelligence: Categorization

Field of artificial intelligence

- Key elements of learning
 - Gray box: can be learned from data

Artificial intelligence: Problems

Categories of AI problems

A brief timeline of historical events in AI

Machine learning

Tribe	Origins	Master Algorithm
Symbolists	Logic, philosophy	Inverse deduction
Connectionists	Neuroscience	Backpropagation
Evolutionaries	Evolutionary biology	Genetic programming
Bayesians	Statistics	Probabilistic inference
Analogizers	Psychology	Kernel machines

- Deep learning (or representation learning)
 - Neural network with multiple levels of non-linear operations
 - More than one stage of non-linear feature classification
 - Each stage: a kind of trainable feature transform
 - Hierarchy of representations with increasing level of abstraction

Image

pixel → edge → texton → motif → part → object

Text

character \rightarrow word \rightarrow word group \rightarrow clause \rightarrow sentence \rightarrow story

<u>Speech</u>

sample \rightarrow spectral band \rightarrow sound \rightarrow ... \rightarrow phone \rightarrow phoneme \rightarrow word \rightarrow

Reasons for deep learning's success

Today, Al can

Today, AI can

- Hot topics
 - Capsule networks:
 - emulating the brain's visual processing strengths
 - Deep reinforcement learning (DRL):
 - interacting with the environment to solve real problems
 - Generative adversarial networks (GANs):
 - pairing neural nets to spur learning and lighten the processing load
 - Lean and augmented data learning:
 - addressing the labeled data challenge
 - Automated machine learning (AutoML):
 - model creation without programming
 - Hybrid learning models:
 - combining approaches to model uncertainty (e.g., Bayesian deep learning, Bayesian GANs)
 - Explainable artificial intelligence:
 - understanding the black box
 - Deep learning on graphs:
 - Deep learning for 3D structured data (e.g., protein)

- Deep reinforcement learning (DRL) = deep learning + reinforcement learning
 - Reinforcement learning (RL): a general-purpose framework for decision-making

- Hot topics: automated machine learning (AutoML)
 - CLOUD AUTOML by Google:
 - training custom machine learning models with minimum effort
 - Learning to learn

- Hot topics: deep learning on graphs
 - AlphaFold by DeepMind: using AI for scientific discovery

Research and technology trends

Wait, let's watch a video!

Artificial intelligence: Future

Artificial intelligence: Future

Watch out for 2020

- Al into real life and business.
 - Changing the fundamental structure of small industry
 - e.g., factory, health-care, farm
- Convergence of IoT and AI at the edge
 - Synergizing with 5G
- Interoperability among neural networks becomes key
 - Easy development and deployment of AI
- Automated machine learning will gain prominence
 - Automating the end-to-end process of applying AI to real-world problems

Conclusion

- This class:
 - intended to be the first course in machine learning
- Prerequisites
 - familiarity with programming
 - calculus, probability, statistics, and linear algebra
 - a basic understanding of computational system
- Objectives:
 - understand fundamentals of machine learning
 - have hands-on experience
 - motivate to learn recent breakthroughs in machine learning

Question and Answer

If you have any comments,

suggestions or questions then please do let me know!

For more information, contact me

jaekoo@kookmin.ac.kr