An Application of the Hasse-Weil Bound to Rational Functions over Finite Fields

Annamaria lezzi
(Joint work with Xiang-dong Hou)

Department of Mathematics and Statistics University of South Florida

AGC²T - CIRM, Marseille

Question

Let \mathbb{K} be a field and $\overline{\mathbb{K}}$ be its algebraic closure.

Let $f(X), g(X) \in \mathbb{K}(X)$ be two rational functions:

$$f(X) = \frac{A(X)}{B(X)}, \quad A(X), B(X) \in \mathbb{K}[X], B(X) \neq 0;$$

$$g(X) = \frac{P(X)}{Q(X)}, \quad P(X), Q(X) \in \mathbb{K}[X], \ Q(X) \neq 0.$$

?

Under which conditions does there exist $h(X) \in \mathbb{K}(X)$ such that

$$f(X) = g(h(X))?$$

Facts about rational functions

Let

$$f(X) = \frac{A(X)}{B(X)} \in \mathbb{K}(X)$$

with gcd(A, B) = 1. We define the **degree** of f to be

$$\deg f = \max\{\deg A, \deg B\}.$$

When deg(f) > 0, we have:

$$\mathbb{K}(X)$$

$$\left.\begin{array}{c} \mathbb{K}(X) \\ \mathbb{K}(f(X)) \end{array}\right|$$

The question in geometrical terms

Let $\mathbb{P}^1 = \mathbb{P}^1(\overline{\mathbb{K}})$ be the projective line over $\overline{\mathbb{K}}$.

A rational function $f \in \mathbb{K}(X)$ induces a \mathbb{K} -morphism of degree $\deg(f)$:

$$\phi_f: \mathbb{P}^1 \to \mathbb{P}^1$$
.

In particular $\phi_f(\mathbb{P}^1(\mathbb{K})) \subseteq \mathbb{P}^1(\mathbb{K})$, or equivalently f induces a map $\mathbb{K} \cup \{\infty\} \rightarrow \mathbb{K} \cup \{\infty\} .$

Under which conditions does there exist a \mathbb{K} -morphism $\phi_h: \mathbb{P}^1 \to \mathbb{P}^1$ such that the following diagram commutes:

$$\begin{array}{c}
\mathbb{P}^1 \xrightarrow{\phi_f} \mathbb{P}^1 \\
\downarrow^{\phi_h} \xrightarrow{\phi_g} \mathbb{P}^1
\end{array}$$

Some necessary conditions

If $f = g \circ h$ then

- $f(\mathbb{K} \cup \{\infty\}) \subseteq g(\mathbb{K} \cup \{\infty\});$
- $\deg(g)|\deg(f)$.

Is the converse true? Of course not!

Example

$$\mathbb{K} = \mathbb{R}$$
: $f(X) = X^3$, $g(X) = X^3 + 1$.

However...

lf

- $\mathbb{K} = \mathbb{F}_q$,
- g satisfies certain conditions and
- q is sufficiently large,

then

$$f(\mathbb{K} \cup \{\infty\}) \subseteq g(\mathbb{K} \cup \{\infty\}) \Rightarrow f = g \circ h,$$

for some $h \in \mathbb{K}(X)$.

We will prove this result by using a generalization of the Hasse-Weil bound:

THE

BOUND

Hasse-Weil and Aubry-Perret bounds

Theorem (Hasse-Weil bound - 1948)

Let X be a smooth, absolutely irreducible, projective and algebraic curve of genus g defined over \mathbb{F}_q , then

$$|\sharp X(\mathbb{F}_q) - (q+1)| \le 2g\sqrt{q}$$

Theorem (Aubry-Perret bound - 1996)

Let X be a smooth absolutely irreducible, projective and algebraic curve of arithmetic genus π defined over \mathbb{F}_q , then

$$|\sharp X(\mathbb{F}_q) - (q+1)| \leq 2\pi \sqrt{q}$$

The case of plane curves

Let $F(X, Y, Z) \in \mathbb{F}_q[X, Y, Z]$ be a homogeneous polynomial of degree d. Consider the plane projective algebraic curve:

$$V_{\mathbb{P}^2(\overline{\mathbb{F}}_q)}(F) = \{(x:y:z) \in \mathbb{P}^2(\overline{\mathbb{F}}_q): F(x,y,z) = 0\}.$$

- $V_{\mathbb{P}^2(\overline{\mathbb{F}}_q)}(F)$ is absolutely irreducible if and only if F is absolutely irreducible (i.e. it is irreducible over $\overline{\mathbb{F}}_q[X,Y,Z]$).
- $V_{\mathbb{P}^2(\overline{\mathbb{F}}_q)}(F)$ has arithmetic genus $\pi=rac{(d-1)(d-2)}{2}$.

Corollary (Aubry-Perret bound)

Assume that $F(X,Y,Z) \in \mathbb{F}_q[X,Y,Z]$ is an absolutely irreducible homogeneous polynomial of degree d>0. Let

$$V_{\mathbb{P}^2(\mathbb{F}_q)}(F) = \{(x:y:z) \in \mathbb{P}^2(\mathbb{F}_q) : F(x,y,z) = 0\}.$$

Then

$$|\sharp V_{\mathbb{P}^2(\mathbb{F}_q)}(F) - (q+1)| \le (d-1)(d-2)\sqrt{q}.$$

From projective to affine

Let $F(X, Y) \in \mathbb{F}_q[X, Y]$ be a polynomial of degree d. We denote

$$V_{\mathbb{F}_q^2}(F) := \{(x, y) \in \mathbb{F}_q^2 : F(x, y) = 0\}$$

Corollary (Aubry-Perret bound - affine version)

Assume that $F(X,Y) \in \mathbb{F}_q[X,Y]$ is an absolutely irreducible polynomial of degree d>0, then

$$q+1-(d-1)(d-2)\sqrt{q}- extbf{d} \leq \sharp V_{\mathbb{F}_q^2}(F) \leq q+1+(d-1)(d-2)\sqrt{q}$$

As a consequence of Bézout theorem, we have also:

Proposition

Assume that $F(X,Y) \in \mathbb{F}_q[X,Y]$ is an **irreducible** polynomial of degree d > 0 which is **not** absolutely **irreducible**, then

$$\sharp V_{\mathbb{F}_q^2}(F) \leq \frac{1}{4}d^2.$$

Now back to our problem

Let

$$f(X) = \frac{A(X)}{B(X)}, \quad g(X) = \frac{P(X)}{Q(X)} \in \mathbb{F}_q(X),$$

with gcd(A(X), B(X)) = gcd(P(X), Q(X)) = 1. We have:

$$f=g\circ h, ext{ for some } h(X)\in \mathbb{F}_q(X).$$

$$\updownarrow$$

$$\frac{A(X)}{B(X)}=\frac{P(h(X))}{Q(h(X))}, ext{ for some } h(X)\in \mathbb{F}_q(X)$$

$$\updownarrow$$

The polynomial

$$F(X,Y) = A(X)Q(Y) - B(X)P(Y) \in \mathbb{F}_q[X][Y]$$
has a root Y in $\mathbb{F}_q(X)$.

An example

$$f(X) = X^{2} + \frac{1}{X^{2}} = \frac{X^{4} + 1}{X^{2}} \qquad g(X) = X + \frac{1}{X} = \frac{X^{2} + 1}{X}$$

$$F(X, Y) = (X^{4} + 1)Y - X^{2}(Y^{2} + 1) =$$

$$= X^{4}Y + Y - X^{2}Y^{2} - X^{2} =$$

$$= (X^{2} - Y)(X^{2}Y - 1).$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Roots of $F(X, Y)$ in $\mathbb{F}_{q}(X)$:
$$Y = X^{2} \quad \text{or} \quad Y = \frac{1}{X^{2}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$f(X) = g(X^{2}) \quad \text{or} \quad f(X) = g\left(\frac{1}{X^{2}}\right)$$$$

Now back to our problem

$$F(X,Y) = A(X)Q(Y) - B(X)P(Y) \in \mathbb{F}_q[X,Y]$$

Write

$$F(X,Y)=p_1(X,Y)\cdots p_r(X,Y),$$

where $p_i(X, Y)$ is irreducible in $\mathbb{F}_q[X, Y]$ for all i.

If there exists $1 \le i \le r$ such that $\deg_Y(p_i(X, Y)) = 1$ then we are **done!** Indeed we would have

$$p_i(X, Y) = R(X)Y + S(X), \quad R(X), S(X) \in \mathbb{F}_q[X]$$

and
$$Y = -\frac{S(X)}{R(X)} \in \mathbb{F}_q(X)$$
 is a root of $F(X, Y)$.

This is the case if

- (1) for all i, $\deg_Y(p_i(X,Y)) > 0$; \checkmark consequence of $\gcd(A,B) = 1$.
- (2) there exists $1 \le i \le r$ such that $\deg_Y(p_i(X, Y)) < 2$. Under which conditions is (2) true?

The theorem

Theorem (Hou, I.)

Assume that two rational functions $f(X), g(X) \in \mathbb{F}_q(X) \setminus \mathbb{F}_q$ with $\deg(f) = d$ and $\deg(g) = \delta$ satisfy the following conditions.

- (a) $f(\mathbb{F}_q \cup \{\infty\}) \subset g(\mathbb{F}_q \cup \{\infty\});$
- (b) For each $a\in\mathbb{F}_q\cup\{\infty\},\ |\{x\in\mathbb{F}_q\cup\{\infty\}:g(x)=g(a)\}|>\frac{\delta}{2};$
- (c) $q \geq (d+\delta)^4$.

Then there exists $h(X) \in \mathbb{F}_q(X)$ such that f(X) = g(h(X)).

Sketch of the proof

- (a) $f(\mathbb{F}_q \cup \{\infty\}) \subset g(\mathbb{F}_q \cup \{\infty\}).$
- (b) For each $a \in \mathbb{F}_q \cup \{\infty\}$, $|\{x \in \mathbb{F}_q \cup \{\infty\} : g(x) = g(a)\}| > \frac{\delta}{2}$.
- (c) $q \geq (d + \delta)^4$.

$$F(X,Y) = A(X)Q(Y) - B(X)P(Y) = p_1(X,Y) \cdots p_r(X,Y)$$
$$\sharp V_{\mathbb{F}_q^2}(F) = |\{(x,y) \in \mathbb{F}_q \times \mathbb{F}_q : f(x) = g(y)\}|$$

Assume by contradiction that $\deg_Y(p_i(X,Y)) \ge 2$ for all $i \Rightarrow r \le \left\lfloor \frac{\delta}{2} \right\rfloor$.

- (a) and (b) imply $\sharp V_{\mathbb{F}_q^2}(F) \geq q\left(\left|\frac{\delta}{2}\right|+1\right) d \geq q\left(r+1\right) d.$
- Aubry-Perret bound implies

$$\sharp V_{\mathbb{F}_q^2}(F) \leq \sum_{i=1}^r \sharp V_{\mathbb{F}_q^2}(p_i) \leq r(q+1) + \sqrt{q}r\left(\frac{d+\delta}{r} - 1\right)\left(\frac{d+\delta}{r} - 2\right).$$

When $q \ge (d + \delta)^4$, i.e. (c), we get a contradiction!

A slight generalization

Sometimes it may be difficult to prove (or it is not true) that:

(a)
$$f(x) \in g(\mathbb{F}_q \cup \{\infty\})$$
 for all $x \in \mathbb{F}_q \cup \{\infty\}$,

(b)
$$|\{x \in \mathbb{F}_q \cup \{\infty\} : g(x) = g(a)\}| > \frac{\delta}{2}$$
, for each $a \in \mathbb{F}_q \cup \{\infty\}$.

Nevertheless we have a similar result if

(a')
$$|\{x \in \mathbb{F}_q : f(x) \notin g(\mathbb{F}_q)\}| = o(q),$$

$$\left(\mathsf{b}'\right)\ \left|\left\{a\in\mathbb{F}_q:|g^{-1}(g(a))|\leq \tfrac{\delta}{2}\right\}\right|=o(q).$$

Indeed (a') and (b') imply that, when q is sufficiently large, there is a constant $0<\epsilon\leq 1$ such that

$$\sharp V_{\mathbb{F}_q^2}(F) = |\{(x,y) \in \mathbb{F}_q \times \mathbb{F}_q : f(x) = g(y)\}| \ge q\left(\left\lfloor \frac{\delta}{2} \right\rfloor + \epsilon\right)$$

A slight generalization

Theorem (Hou, I.)

Let $f(X), g(X) \in \mathbb{F}_q(X) \setminus \mathbb{F}_q$ be such that $\deg(f) = d$ and $\deg(g) = \delta$. If there is a constant $0 < \epsilon \le 1$ such that

(a)
$$|\{(x,y) \in \mathbb{F}_q \times \mathbb{F}_q : f(x) = g(y)\}| \ge q(\left|\frac{\delta}{2}\right| + \epsilon),$$

(b)
$$q \ge (d+\delta)^4/\epsilon^2$$
,

then there exists $h(X) \in \mathbb{F}_q(X)$ such that f(X) = g(h(X)).

Example. Let q be even and let $f \in \mathbb{F}_q(X)$ be such that $\text{Tr}_{\mathbb{F}_q/\mathbb{F}_2}(f(x)) = 0$ for all $x \in \mathbb{F}_q$ with $f(x) \neq \infty$. Then

$$|\{(x,y)\in\mathbb{F}_q\times\mathbb{F}_q:f(x)=y^2+y\}|\approx 2q\geq q(1+\epsilon).$$

By the above theorem, when q is sufficiently large, there exists $h \in \mathbb{F}_q(X)$ such that $f(X) = h(X)^2 + h(X)$.

Examples of g such that...

$$\left|\left\{a\in\mathbb{F}_q:|g^{-1}(g(a))|\leq rac{\delta}{2}
ight\}
ight|=o(q).$$

Note that if g induces a linear map $\mathbb{F}_q \to \mathbb{F}_q$ or a group homomorphism $\mathbb{F}_q^* \to \mathbb{F}_q^*$, then it is enough that

$$|\ker(g)| > \frac{\delta}{2}.$$

Example 1

Let $\mathbb{F}_r \subset \mathbb{F}_q$ and let $g(X) = X^r - X$. In this case, g induces an \mathbb{F}_r -linear map $\mathbb{F}_q \to \mathbb{F}_q$ whose kernel is \mathbb{F}_r .

Example 2

Let $d \mid q-1$ and let $g(X) = X^d$. In this case, g induces a group homomorphism $\mathbb{F}_q^* \to \mathbb{F}_q^*$ whose kernel is of size d.

Generalization to multivariate rational functions

?

Given $f(X_1,\ldots,X_n)\in\mathbb{F}_q(X_1,\ldots,X_n)$ and $g(X)\in\mathbb{F}_q(X)$, under which conditions does there exist $h(X_1,\ldots,X_n)\in\mathbb{F}_q(X_1,\ldots,X_n)$ such that $f(X_1,\ldots,X_n)=g(h(X_1,\ldots,X_n))$?

In geometrical terms the problem is equivalent to find conditions under which there exists a \mathbb{F}_q -rational map $\phi_h:\mathbb{P}^n\to\mathbb{P}^1$ such that the following diagram commutes:

$$\begin{array}{c} \mathbb{P}^n \xrightarrow{\phi_f} \mathbb{P}^1 \\ \downarrow^{\phi_h}^{\phi_g} \end{array} \longrightarrow \mathbb{P}^1$$

$$\mathbb{P}^1$$

In this case one has to study a polynomial in n+1 variables

$$F(X_1,\ldots,X_n,Y)\in \mathbb{F}_q[X_1,\ldots,X_n,Y].$$

The Lang-Weil bound

Theorem (Lang-Weil bound - 1954)

Let $F(X_1, ..., X_n) \in \mathbb{F}_q[X_1, ..., X_n]$ be absolutely irreducible of degree d. Then

$$\left| \sharp V_{\mathbb{F}_q^n}(F) - q^{n-1} \right| \le (d-1)(d-2)q^{n-3/2} + c(n,d)q^{n-2},$$

where c(n, d) is a constant depending only on n and d.

Cafure and Matera provided an explicit expression for the constant c(n, d):

Theorem (Cafure, Matera - 2006)

Let $F(X_1, ..., X_n) \in \mathbb{F}_q[X_1, ..., X_n]$ be absolutely irreducible of degree d. Then

$$\left|\sharp V_{\mathbb{F}_q^n}(F)-q^{n-1}\right|\leq (d-1)(d-2)q^{n-3/2}+5d^{13/3}q^{n-2}.$$

Main result for multivariate rational functions

Theorem (Hou, I.)

Let $\mathbf{X} = (X_1, \dots, X_n)$ and let $f(\mathbf{X}) \in \mathbb{F}_q(\mathbf{X}) \setminus \mathbb{F}_q$ and $g(X) \in \mathbb{F}_q(X) \setminus \mathbb{F}_q$ be such that $\deg f = d$ and $\deg g = \delta$. If there is a constant $0 < \epsilon \le 1$ such that

(a)
$$|\{(\mathbf{x},y)\in\mathbb{F}_q^n imes\mathbb{F}_q: f \text{ is defined at } \mathbf{x} \text{ and } f(\mathbf{x})=g(y)\}|\geq q^n\Big(\left|\frac{\delta}{2}\right|+\epsilon\Big),$$

(b)
$$q \ge 7.8(d+\delta)^{13/3}/\epsilon^2$$
,

then $f = g \circ h$ for some $h \in \mathbb{F}_q(\boldsymbol{X})$.

Remark: If $f(X) \in \mathbb{F}_q(X) \setminus \mathbb{F}_q$ and $g(X) \in \mathbb{F}_q(X) \setminus \mathbb{F}_q$ are such that

$$\left|\left\{a\in\mathbb{F}_q:|g^{-1}(g(a))|\leq\frac{\deg g}{2}\right\}\right|=o(q)$$

and

$$|\{\mathbf{x} \in \mathbb{F}_q^n : f(\mathbf{x}) \notin g(\mathbb{F}_q)\}| = o(q^n),$$

then (a) is satisfied for a suitable $\epsilon > 0$ when q is sufficiently large.

