Data Mining with Spare Grids

Seminar: Computational Aspects of Machine Learning

Sebastian Kreisel October 17, 2015

Technische Universität München

Overview

- Motivation for Sparse Grids
- Sparse Grids: Basics
- Sparse Grids: Machine Learning
- Examples with Data Sets
- Parallelization and Implementation

Motivation for Sparse Grids

Grid based approaches in ML

- Discretizes the space into a grid
- Basis-functions around grid points, not data points

Motivation for Sparse Grids

Suitable for

- Big datasets
- Easily/automatically classifiable data
- Medical, seismic, commercial data

Curse of dimensionality

- The volume of a space is exponential in it's dimensions
- The amount of training data required becomes unmanageable
 - because of lacking computational/storage capacities
 - because data acquisition is expensive
- Becomes relevant for d > 3
- Applies to full-grid discretization

1. Function to discretize

2. Full, regular grid

3. Basis function (standard hat function)

4. Coefficient α (Surplus)

Sum over all basis functions

Sum over all basis functions

Full grid discretization in one dimension

- 1. A function f(x) to discretize
- 2. Grid points indexed by $i \in \{1, 2, \dots\}$
- 3. Basis functions; i.e. hat function $\phi(x) = \max(1 |x|, 0)$
- 4. Coefficients α_i (Surpluses)

$$f(x) \approx \hat{f}(x) = \sum_{i} \alpha_{i} \phi_{i}(x)$$

d > 1 dimensions

- Grid points as d-tuple, i.e. (1,3,1)
- Tensor product over one dimensional basis functions

$$\phi_i(\vec{x}) = \prod_{j=1}^d \phi_{i,j}(x_j)$$

$$f(\vec{x}) \approx \hat{f}(\vec{x}) = \sum_{i} \alpha_{i} \phi_{i}(\vec{x})$$

Full grid with d = 2

Full grid discretization $\hat{f}(\vec{x})$

Full grid with d = 2

Full grid discretization $\hat{f}(\vec{x})$

Summary

- Grid points $i \in \{1, 2, ..., N\}^d$ defining $\phi_i(x)$
- For d > 1: **product** of 1D basis functions:

$$\phi_i(\vec{x}) = \prod_{j=1}^d \phi_{i,j}(x_j)$$

• Sum over all weighted basis functions:

$$\hat{f}(\vec{x}) = \sum_{i=1}^{N} \alpha_i \phi_i(\vec{x})$$

Hierarchical Basis

Hierarchical basis (vs nodal basis)

- Grouping grid points into levels $I \in \{1, 2, 3, ..., n\}$
- Basis function by index **and** level: $\phi_{I,i}(x)$

$$\hat{f}(x) = \sum_{I \le n, i \in G_I} \alpha_{I,i} \cdot \phi_{I,i}(x)$$

Hierarchical Basis

Hierarchical vs. nodal basis

Full grid discretization: Hierarchical basis

Full grid discretization: Hierarchical basis

Basis function subspaces

- Combination of levels and dimensions
- Notion of hierarchical subspaces
- Defined by the levels of detail in all dimensions $(I_x, I_y, ...)$

Hierarchical grid points

Hierarchical subspaces

Sparse grid – Changes

- Throwing away certain subspaces
- Finding those is a *a-priori* solvable optimization problem
- The resulting grid is now sparse

Profit

- Reducing the computational effort "a lot"
- Maintaining "high" accuracy

A sparse grid

Boundary and smoothness

- Boundaries need special treatment
- The function needs to be sufficiently smooth
 D²f needs to be bounded

Adaptivity

- A-posteriori modifications to better fit the function
- Picking a single grid point and adding level of detail around it
- Prone to overfitting and huge computational effort

Summary

- Hierarchical basis through grouping grid points into levels
- · Creating "subspaces" through combination of levels in dimensions
- Selecting and combining subspaces

To keep in mind

- Smoothness requirement for f(x)
- Boundary treatment
- Accuracy–effort trade-off
- Adaptivity options (a-posteriori)

Sparse Grids - Data Mining

Machine learning tasks

- Classification
- Regression

Training-data

$$X = \{x^{(i)} \mid x^{(i)} \in [0,1]^d\}_{i=1}^M$$

$$Y = \{y^{(i)} \mid y^{(i)} \in \mathbb{R}\}_{i=1}^{M}$$

Sparse Grids - Data Mining

Least squares

$$\hat{c} = \arg\min_{f} \left(\frac{1}{M} \sum_{i=1}^{M} (y_i - f(x_i))^2 + \lambda ||\nabla f|| \right)$$

Sparse Grids – Data Mining

Sparse grid setting

- Do least squares in a sparse grid setting ("space")
- Discretize \hat{c} using a sparse grid

Least squares: Sparse gird discretized

$$\hat{c} = \arg\min_{\alpha} \left(\frac{1}{M} \sum_{i=1}^{M} \left(y_i - \sum_{j} \alpha_j \phi_j(\mathbf{x}_i) \right)^2 + \lambda \sum_{j} \alpha_j^2 \right)$$

Sparse Grids - Data Mining

Matrix formulation

$$\left(\frac{1}{M}BB^{T} + \lambda I\right)\alpha = \frac{1}{M}By$$

$$\mathbb{R}^{N\times M}\ni B=\begin{bmatrix}\phi_1(x^{(1)})&\ldots&\phi_1(x^{(M)})\\\vdots&\ddots&\vdots\\\phi_N(x^{(1)})&\ldots&\phi_N(x^{(M)})\end{bmatrix}$$

Sparse Grids – Data Mining

Observations

- $BB^T \in \mathbb{R}^{N \times N}$ where N = number of grid points
- Number of freedom not dependent on M
- Linear scaling in M