

Teoria dos Grafos e Computabilidade

— Lógica Proposicional —

Silvio Jamil F. Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais - PUC Minas

Teoria dos Grafos e Computabilidade

— Princípios da Lógica Proposicional —

Silvio Jamil F. Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais - PUC Minas

Princípios da Lógica Proposicional

Lógica Ramo da Filosofia, Matemática e Ciência da Computação que trata das inferências válidas .

Princípios da Lógica Proposicional

Lógica Ramo da Filosofia, Matemática e Ciência da Computação que trata das inferências válidas .

Princípios da Lógica Proposicional

Lógica Ramo da Filosofia, Matemática e Ciência da Computação que trata das inferências válidas .

A lógica estuda a preservação da verdade durante uma argumentação .

Hipóteses verdadeiras

Conclusões verdadeiras

As regras da lógicas são essenciais na construção de provas matemáticas, pois dão significados às afirmações matemáticas.

Asserção uma declaração (afirmação, sentença declarativa).

Proposição uma asserção que é verdadeira (V) ou falsa (F), mas não ambos.

Valor verdade resultado da avaliação de uma proposição (V ou F).

Asserção uma declaração (afirmação, sentença declarativa).

Proposição uma asserção que é verdadeira (V) ou falsa (F), mas não ambos.

Valor verdade resultado da avaliação de uma proposição (V ou F).

- \triangleright 2 + 3 = 5
- ⇒ 3 não é um número impar
- ▷ A Terra é arredondada
- $\triangleright x > 5$
- Esta declaração é falsa
- Você fala francês?
- ▷ Paris é a cidade mais linda?

Asserção uma declaração (afirmação, sentença declarativa).

\triangleright	2 + 3 = 5	(asserção)
\triangleright	3 não é um número impar	(asserção)
\triangleright	A Terra é arredondada	(asserção)
\triangleright	<i>x</i> > 5	(asserção)
\triangleright	Esta declaração é falsa	(asserção)

Proposição uma asserção que é verdadeira (V) ou falsa (F), mas não ambos.

\triangleright	2 + 3 = 5	(proposição))
\triangleright	3 não é um número impar	(proposição))
\triangleright	A Terra é arredondada	(proposição))

Valor verdade resultado da avaliação de uma proposição (V ou F).

\triangleright	2 + 3 = 5	(V)
\triangleright	3 não é um número impar	(F)
\triangleright	A Terra é arredondada	(V)

Asserção uma declaração (afirmação, sentença declarativa).

Proposição uma asserção que é verdadeira (V) ou falsa (F), mas não ambos.

Valor verdade resultado da avaliação de uma proposição (V ou F).

\triangleright	2 + 3 = 5	(asserção, proposição, V)
\triangleright	3 não é um número impar	(asserção, proposição, F)
\triangleright	A Terra é arredondada	(asserção, proposição, V)
\triangleright	<i>x</i> > 5	(asserção, mas não é proposição)
\triangleright	Esta declaração é falsa	(asserção, mas não é proposição)
\triangleright	Você fala francês?	(nem asserção, nem proposição)
\triangleright	Paris é a cidade mais linda?	(nem asserção, nem proposição)

Uma proposição é uma sentença declarativa (uma sentença que estabelece um fato) que pode ser verdadeira ou falsa, mas não ambos.

Uma proposição é uma sentença declarativa (uma sentença que estabelece um fato) que pode ser verdadeira ou falsa, mas não ambos.

Sentenças declarativas – proposições

► Belo Horizonte é a capital de Minas Gerais

Uma proposição é uma sentença declarativa (uma sentença que estabelece um fato) que pode ser verdadeira ou falsa, mas não ambos.

Sentenças declarativas – proposições

► Belo Horizonte é a capital de Minas Gerais (proposição verdadeira)

Uma proposição é uma sentença declarativa (uma sentença que estabelece um fato) que pode ser verdadeira ou falsa, mas não ambos.

- ► Belo Horizonte é a capital de Minas Gerais (proposição verdadeira)
- ► Roma é a capital da França

Uma proposição é uma sentença declarativa (uma sentença que estabelece um fato) que pode ser verdadeira ou falsa, mas não ambos.

- ► Belo Horizonte é a capital de Minas Gerais (proposição verdadeira)
- ► Roma é a capital da França (proposição falsa)

Uma proposição é uma sentença declarativa (uma sentença que estabelece um fato) que pode ser verdadeira ou falsa, mas não ambos.

- ► Belo Horizonte é a capital de Minas Gerais (proposição verdadeira)
- ► Roma é a capital da França (proposição falsa)
- 1+1=2

Uma proposição é uma sentença declarativa (uma sentença que estabelece um fato) que pode ser verdadeira ou falsa, mas não ambos.

- ► Belo Horizonte é a capital de Minas Gerais (proposição verdadeira)
- ► Roma é a capital da França (proposição falsa)
- ▶ 1+1=2 (proposição verdadeira)

Uma proposição é uma sentença declarativa (uma sentença que estabelece um fato) que pode ser verdadeira ou falsa, mas não ambos.

- ► Belo Horizonte é a capital de Minas Gerais (proposição verdadeira)
- ► Roma é a capital da França (proposição falsa)
- ▶ 1+1=2 (proposição verdadeira)
- 1+1=3

Uma proposição é uma sentença declarativa (uma sentença que estabelece um fato) que pode ser verdadeira ou falsa, mas não ambos.

SENTENÇAS DECLARATIVAS - PROPOSIÇÕES

- ► Belo Horizonte é a capital de Minas Gerais
- ► Roma é a capital da França
- 1+1=2
- 1+1=3

(proposição verdadeira)

(proposição falsa)

(proposição verdadeira)

(proposição falsa)

Uma proposição é uma sentença declarativa (uma sentença que estabelece um fato) que pode ser verdadeira ou falsa, mas não ambos.

SENTENÇAS DECLARATIVAS — PROPOSIÇÕES

- ► Belo Horizonte é a capital de Minas Gerais (proposição verdadeira)
- ► Roma é a capital da França (proposição falsa)
- $lackbox{ }1+1=2$ (proposição verdadeira)
- ▶ 1+1=3 (proposição falsa)

Sentenças — não são proposições

▶ Que horas são?

Uma proposição é uma sentença declarativa (uma sentença que estabelece um fato) que pode ser verdadeira ou falsa, mas não ambos.

SENTENÇAS DECLARATIVAS — PROPOSIÇÕES

- ► Belo Horizonte é a capital de Minas Gerais (proposição verdadeira)
- ► Roma é a capital da França (proposição falsa)
- lacksquare 1+1=2 (proposição verdadeira)
- ightharpoonup 1+1=3 (proposição falsa)

SENTENÇAS - NÃO SÃO PROPOSIÇÕES

► Que horas são? (não é uma sentença declarativa)

Uma proposição é uma sentença declarativa (uma sentença que estabelece um fato) que pode ser verdadeira ou falsa, mas não ambos.

Sentenças declarativas – proposições

- ► Belo Horizonte é a capital de Minas Gerais (proposição verdadeira)
- ► Roma é a capital da França (proposição falsa)
- lacksquare 1+1=2 (proposição verdadeira)
- ightharpoonup 1+1=3 (proposição falsa)

Sentenças – não são proposições

- ▶ Que horas são? (não é uma sentença declarativa)
- x + 1 = 4

Uma proposição é uma sentença declarativa (uma sentença que estabelece um fato) que pode ser verdadeira ou falsa, mas não ambos.

Sentenças declarativas – proposições

- ► Belo Horizonte é a capital de Minas Gerais (proposição verdadeira)
- ► Roma é a capital da França

(proposição falsa)

► 1 + 1 = 2

(proposição verdadeira)

1+1=3

(proposição falsa)

Sentenças – não são proposições

▶ Que horas são?

(não é uma sentença declarativa)

x + 1 = 4

(não é verdadeiro nem falso)

Variáveis Proposicionais

Variáveis proposicionais Em Lógica, as proposições podem ser denotadas por símbolos, tais como p, q, r, . . . , os quais são chamados de **variáveis proposicionais**.

EXEMPLOS

- ▶ p: o Sol está brilhando hoje.
- ightharpoonup q: 2 + 3 = 5
- ▶ t: Belo Horizonte é a capital de Minas Gerais
- ▶ u: São Paulo é a capital do Brasil

Proposições Compostas

Novas proposições podem ser construídas a partir de proposições existentes

Obtenção de **proposições compostas**

Proposições Compostas

Novas proposições podem ser construídas a partir de proposições existentes

Obtenção de **proposições compostas**

Negação A sentença: "Não é verdade que p"

- ▶ é uma outra proposição
- ► chamada de a negação de p.
- Notação: ¬p, ~ p, not p

Negação A sentença: "Não é verdade que p"

- ▶ é uma outra proposição
- ► chamada de a negação de p.
- ► Notação: ¬p, ~ p, not p

EXEMPLOS

- ▶ p: 2+3>1¬p: 2+3 não é maior do que 1, (ou $2+3 \le 1$)
- ▶ q : "Hoje é quarta-feira"
 - $\neg q$: "Não é verdade que hoje é quarta-feira", ou
 - $\neg g$: "Hoje não é guarta-feira"

- Negação A sentença: "Não é verdade que p"
 - ▶ é uma outra proposição
 - ► chamada de a negação de p.
 - ► Notação: ¬p, ~ p, not p

A partir da definição

- ▶ se p é Verdadeiro, então $\neg p$ é Falso
- ▶ se p é Falso, então $\neg p$ é Verdadeiro

Negação A sentença: "Não é verdade que p"

- ▶ é uma outra proposição
- ► chamada de a negação de p.
- ► Notação: ¬p, ~ p, not p

A partir da definição

- ▶ se p é Verdadeiro, então $\neg p$ é Falso
- ▶ se p é Falso, então $\neg p$ é Verdadeiro

Tabela verdade da negação

Fornece os valores verdade de uma proposição composta em termos dos valores verdade de suas partes componentes.

determinação dos valores verdade de proposições construídas a partir de sentenças mais simples.

Questions?

- Lógica Proposicional
- Princípios da LógicaProposicional –

Teoria dos Grafos e Computabilidade

— Conectivos Lógicos —

Silvio Jamil F. Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory - IMScience Pontifical Catholic University of Minas Gerais - PUC Minas

Conectivos Lógicos

Operador negação constrói uma nova proposição a partir de uma única proposição existente.

Conectivos operadores lógicos usados para formar novas proposições a partir de duas ou mais proposições já existentes.

Conectivos Lógicos

Operador negação constrói uma nova proposição a partir de uma única proposição existente.

Conectivos operadores lógicos usados para formar novas proposições a partir de duas ou mais proposições já existentes.

Conjunção (operação "e"):

- Notação: $p \wedge q$, $p \in q$, p and q
- ► Definição:

р	q	$p \wedge q$
V	V	V
V	F	F
F	V	F
F	F	F

Conectivos Lógicos

Operador negação constrói uma nova proposição a partir de uma única proposição existente.

Conectivos operadores lógicos usados para formar novas proposições a partir de duas ou mais proposições já existentes.

Conjunção (operação "e"):

- Notação: $p \wedge q$, $p \in q$, p and q
- ▶ Definição:

Disjunção (operação "ou inclusivo"):

- Notação: $p \lor q$, p ou q, p or q
- ▶ Definição:

q	$p \lor q$
V	V
F	V
V	V
F	F
	V F V

Exemplos de conjunção $(p \land q)$

- ▶ p: hoje é terça-feira
 - q: está chovendo hoje
 - $p \wedge q$: hoje é terça-feira e está chovendo hoje
- ▶ p: 2 < 3
 - q: -5 > -8
 - $p \land q$: 2 < 3 e -5 > -8

Exemplos de conjunção $(p \land q)$

- ▶ p: hoje é terça-feira
 - q: está chovendo hoje
 - $p \wedge q$: hoje é terça-feira e está chovendo hoje
- ▶ p: 2 < 3
 - q: -5 > -8
 - $p \land q$: 2 < 3 e -5 > -8

Exemplos de disjunção $(p \lor q)$

- ▶ p: 2 é um inteiro positivo
 - q: $\sqrt{2}$ é um número racional
 - $p \lor q$: 2 é um inteiro positivo ou $\sqrt{2}$ é um número racional
- ▶ *p*: $2 + 3 \neq 5$
 - q: Belo Horizonte é a capital do Rio de Janeiro
 - $p \lor q$: $2 + 3 \neq 5$ ou Belo Horizonte é a capital do Rio de Janeiro

DISJUNÇÃO EXCLUSIVA (OPERAÇÃO "XOR")

- ▶ Notação: $p \oplus q$, p xor q, p ou q (mas não ambos)
- ► Definição:

$$\begin{array}{c|cccc} p & q & p \oplus q \\ \hline V & V & F \\ V & F & V \\ F & V & V \\ F & F & F \end{array}$$

► V quando exatamente um dos dois é V

CONDICIONAL OU IMPLICAÇÃO (SE p, ENTÃO q)

- ▶ Notação: $p \rightarrow q$
- ► Definição:

$$\begin{array}{c|cccc} p & q & p \rightarrow q \\ \hline V & V & V \\ V & F & F \\ F & V & V \\ F & F & V \end{array}$$

- ► V quando:
 - ▶ p e q são ambos V
 - ▶ p é F (não importando q)

Sejam p e q duas proposições .

A afirmação condicional ou implicação p o q e a afirmação se p, então q

- ▶ p é chamada de hipótese , antecedente, ou premissa,
- ▶ q é chamada de conclusão ou consequente.

Sejam p e q duas proposições

A afirmação condicional ou implicação p o q e a afirmação se p, então q

- ▶ p é chamada de hipótese , antecedente, ou premissa,
- ▶ q é chamada de conclusão ou consequente.

FORMAS DE

- ▶ se p, então q
- ▶ p é condição suficiente para q
- ▶ q é condição necessária para p
- ▶ p somente se q
- ▶ q é conseqüência lógica de p

EXEMPLO

"Fogo é uma condição necessária para fumaça"

"Se há fumaça, então há fogo"

- ▶ o antecedente (ou hipótese) é: "Há fumaça"
- ▶ o conseqüente (ou conclusão) é: "Há fogo"

Indique o antecedente e o conseqüente

- "Se a chuva continuar, o rio vai transbordar".
- "Uma condição suficiente para a falha de uma rede é que a chave geral páre de funcionar".
- ▶ "Os abacates só estão maduros quando estão escuros e macios".

Proposição condicional

A implicação $p \rightarrow q$ pode ser entendida como uma promessa:

Se você me garantir p, eu te garanto q.

Quebra da promessa A promessa só é quebrada quando você me garantir p e eu não te garantir q em troca.

Mantida A promessa é mantida quando você me garante p e eu te garanto q, ou quando você não me garante p (e neste caso eu sou livre para te garantir q ou não sem quebrar a promessa).

Proposição condicional

A implicação $p \rightarrow q$ pode ser entendida como uma promessa:

Se você me garantir p, eu te garanto q.

Quebra da promessa A promessa só é quebrada quando você me garantir p e eu não te garantir q em troca.

Mantida A promessa é mantida quando você me garante p e eu te garanto q, ou quando você não me garante p (e neste caso eu sou livre para te garantir q ou não sem quebrar a promessa).

Se eu for eleito, eu vou abaixar os impostos

Falsa A proposição é falsa se eu for eleito e não abaixar os impostos.

Verdadeira Se eu não for eleito, eu posso abaixar os impostos ou não, sem assim quebrar minha promessa. Logo, se eu não for eleito, a proposição condicional é verdadeira independentemente de se eu abaixar os impostos ou não.

Observação

Linguagem usual a implicação $p \rightarrow q$ supõe uma relação de causa e efeito entre p e q.

"Se fizer sol amanhã, eu vou à praia".

Lógica $p \rightarrow q$ diz apenas que não teremos p verdadeiro e q falso ao mesmo tempo.

"Se hoje é domingo, então 2+2=5".

Observação

Linguagem usual a implicação $p \rightarrow q$ supõe uma relação de causa e efeito entre p e q.

"Se fizer sol amanhã, eu vou à praia".

Lógica $p \rightarrow q$ diz apenas que não teremos p verdadeiro e q falso ao mesmo tempo.

"Se hoje é domingo, então 2+2=5".

Note que se p é F, então $p \rightarrow q$ é V para qualquer q

"Uma falsa hipótese implica em qualquer conclusão".

Exemplo 1

"Se 2+2=5, então no Brasil não há corrupção".

Exemplo 2

Quando é que a implicação "Se hoje é terça-feira, então 2+3=6" é Verdadeira?

- ▶ Se $p \rightarrow q$ é uma condicional. então:
 - lacktriangle o **converso** de p o q é a implicação q o p
 - ▶ o **inverso** de $p \rightarrow q$ é a implicação $\neg p \rightarrow \neg q$
 - lacktriangle a **contrapositiva** de p o q é a implicação $\neg q o \neg p$

- ▶ Se $p \rightarrow q$ é uma condicional. então:
 - lacktriangle o **converso** de p o q é a implicação q o p
 - ▶ o **inverso** de $p \rightarrow q$ é a implicação $\neg p \rightarrow \neg q$
 - lacktriangle a **contrapositiva** de p o q é a implicação $\neg q o \neg p$

SE MURILO É MINEIRO, ENTÃO MURILO É BRASILEIRO.

- ▶ $q \rightarrow p$: "Se Murilo é brasileiro, então Murilo é mineiro"
- ▶ $\neg p \rightarrow \neg q$: "Se Murilo não é mineiro, Murilo não é brasileiro"
- ▶ $\neg q \rightarrow \neg p$: "Se Murilo não é brasileiro, Murilo não é mineiro"

BICONDICIONAL OU EQUIVALÊNCIA $(p o q \land q o p)$

:

- Notação: p ↔ q
- ► Definição:

- ► V somente quando:
 - ▶ p e q têm o mesmo valor verdade

O Bicondicional

FORMAS DE EXPRESSAR $p \leftrightarrow q$

- ▶ p se, e somente se, q
- ▶ p é necessário e suficiente para q
- ightharpoonup se p então q, e conversamente

Exemplo 3

a equivalência "3 > 2 se e somente se 0 < 3-2" é Verdadeira?

- ▶ p: 3 > 2 (V)
- ▶ q: 0 < 3 2 (V)
- ▶ logo: $p \leftrightarrow q$ é Verdadeira

Proposições Compostas

Definição de Proposições Compostas

Podem ter muitas partes componentes, cada parte sendo uma sentença representada por alguma variável proposicional. Estas proposições são construídas com o auxílio dos conectivos lógicos.

Exemplo 4

$$r: p \rightarrow [q \land (p \rightarrow q)]$$

$$s: \neg(p \leftrightarrow q) \leftrightarrow [(p \land \neg q) \lor (q \land \neg p)]$$

$$t: [\neg p \land (p \lor q)] \rightarrow q$$

Ordem de precedência

Em uma expressão composta, a ordem de aplicação (precedência) dos operadores é:

- 1. negação: ¬
- 2. conjunção: ∧
- 3. disjunção: V
- 4. implicação: →
- 5. implicação dupla: ↔

Exemplo 5

- 1. $p \vee \neg q \wedge r$ é equivalante à $p \vee ((\neg q) \wedge r)$
- 2. $p \rightarrow q \lor r$ é equivalante à $p \rightarrow (q \lor r)$

Tabelas verdade de proposições compostas

A sentença: $s: p \rightarrow [q \land (p \rightarrow r)]$

- envolve 3 proposições independentes
- ▶ logo, há 2³ = 8 situações possíveis:

р	q	r	$p ightarrow [q \wedge (p ightarrow r)]$
V	V	V	?
V	V	F	?
V	F	V	?
V	F	F	?
F	V	V	?
F	V	F	?
F	F	V	?
F	F	F	?

Questions?

- Lógica Proposicional
- Conectivos Lógicos –

Teoria dos Grafos e Computabilidade

— Tabelas verdade e equivalência lógica —

Silvio Jamil F. Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais - PUC Minas

- A <u>tabela verdade</u> de uma proposição composta de *n* variáveis proposicionais é obtida por:
 - 1. as primeiras *n* colunas da tabela devem ser rotuladas com as variáveis proposicionais
 - outras colunas servirão para combinações intermediárias
 - sob cada uma das primeiras colunas, lista-se os
 possíveis conjuntos de valores verdade das variáveis proposicionais
 - 3. para cada linha, computa-se os valores verdade restantes

Exemplo 6

Tabela verdade de $(p \lor q) \to (r \leftrightarrow p)$: (1/3)

Exemplo 6

Tabela verdade de $(p \lor q) \to (r \leftrightarrow p)$: (2/3)

р	q	r	$p \lor q$	$r \leftrightarrow p$
V	V	V	V	V
V	V	F	V	F
V	F	V	V	V
V	F	F	V	F F
F	V	V	V	F
V F F F	V	F	V	V
F	F	V	F	F
F	F	F	F	V

Exemplo 6

Tabela verdade de $(p \lor q) \to (r \leftrightarrow p)$: (3/3)

р	q	r	$p \lor q$	$r \leftrightarrow p$	$\boxed{(p \lor q) \to (r \leftrightarrow p)}$
V	V	V	V	V	V
V	V	F	V	F	F
V	F	V	V	V	V
V	F	F	V	F	F
F	V	V	V	F	F
F	V	F	V	V	V
F	F	V	F	F	V
F	F	F	F	V	V

Exemplo 7

Tabela verdade de $(p \to q) \leftrightarrow (\neg q \to \neg p)$: (1/3)

Exemplo 7

Tabela verdade de $(p \to q) \leftrightarrow (\neg q \to \neg p)$: (2/3)

p	q	$p \rightarrow q$	$\neg q$	$\neg p$	otag abla q ightarrow abla p
V	V	V	F	F	V
V	F	F	V	F	F
F	V	V	F	V	V
F	F	V	V	V	V

Exemplo 7

Tabela verdade de $(p \to q) \leftrightarrow (\neg q \to \neg p)$: (3/3)

equivalentes

Classificação de Proposições Compostas

- **Tautologia** proposição que é **sempre V** (para todas as possíveis situações).
 - ▶ Exemplo: $p \lor \neg p$ (verifique!)
- **Contradição (ou absurdo)** : proposição que é **sempre F** (em todas as possíveis situações).
 - ▶ Exemplo: $p \land \neg p$ (verifique!)
- Contingência proposição que **pode ser V ou F**, dependendo dos valores verdade de suas variáveis proposicionais.
 - ► Nem tautologia nem contradição.

- ▶ Se $p \leftrightarrow q$ é uma tautologia , as proposições p e q são ditas logicamente equivalentes.
 - Notação: p ⇔ q
- ▶ Se $p \Leftrightarrow q$, os dois lados são simplesmente diferentes modos de construir a mesma sentença.
- ► Um importante recurso usado na argumentação lógica é a substituição de uma proposição por outra que seja equivalente.

Determinação da equivalência por meio de Tabelas Verdade.

Determinação da equivalência por meio de Tabelas Verdade.

Exemplo 8

Mostre que $\neg(p \lor q)$ e $\neg p \land \neg q$ são equivalentes. (2/3)

Determinação da equivalência por meio de Tabelas Verdade.

Mostre que $r : \neg (p \lor q)$ e $s : \neg p \land \neg q$ são equivalentes. (3/3)

р	q	$p \lor q$	$\neg p$	$\neg q$		$\mid \neg p \wedge \neg q \mid$	$r \leftrightarrow s$
V	V	V	F	F	F	F	V
V	F	V	F	V	F	F	V
F	V	V	V	F	F	F	V
F	F	F	V	V	V	V	V

Algumas Equivalências importantes

Equivalência	Nome das leis
$p \lor p \Leftrightarrow p$	Idempotência
$p \wedge p \Leftrightarrow p$	
$\neg (\neg p) \Leftrightarrow p$	Dupla negação
	Comutatividade
$p \wedge q \Leftrightarrow q \wedge p$	
	Associatividade
$(p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r)$	
$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$	Distributividade
$p \wedge (q \vee r) \Leftrightarrow (p \wedge q) \vee (p \wedge r)$	
$\overline{ \neg (p \land q) \; \Leftrightarrow \; \neg p \; \lor \neg q}$	Leis de De Morgan
$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$	

Uso das equivalências

Exemplo 9

- ▶ $p \lor q$: "O rio é raso ou poluído."
- $ightharpoonup \neg (p \lor q)$: ??
- ▶ pelas leis de De Morgan:

$$\neg(p \lor q) \Leftrightarrow \neg p \land \neg q$$

► logo:

$$\neg(p \lor q)$$
: "O rio não é raso E não é poluído."

Note que $\neg(p \lor q)$ não é equivalente a

O rio não é raso OU não é poluído.

Aplicações de lógica proposicional

A lógica tem importantes aplicações na Matemática, Ciência da Computação, e diversas outras disciplinas

- tradução de sentenças em linguagem natural, frequentemente ambíuas, para uma linguagem precisa,
- ► especificação de circuitos lógicos,
- solução de quebra-cabeças (o que é essencial para inteligência artificial),
- ▶ automatização do processo de construção de provas matemáticas,

Traduzindo Sentenças para Lógica

Exemplo 10

Encontrar a proposição que traduz a seguinte sentença:

Você não pode andar de patins se você tem menos do que 1,20m, a não ser que você tenha mais do que 16 anos'

- ▶ Definindo:
 - q: "você pode andar de patins"
 - r: "você tem menos do que 1,20m"
 - s: "você tem mais do que 16 anos"
- ▶ a sentença pode ser traduzida por:

$$p: (r \wedge \neg s) \rightarrow \neg q$$

Especificação de sistemas

Traduzir sentenças de linguagem natural para linguagem lógica é parte essencial da especificação de sistemas de hardware e software.

Exemplo 11

Expresse a especificação como uma proposição composta

A resposta automática não pode ser enviada quando o sistema de arquivos está cheio'

- ► Definindo:
 - q: "a resposta automática pode ser enviada"
 - r: "o sistema de arquivos está cheio"
- ► a especificação pode ser traduzida por:

$$p: r \rightarrow \neg q$$

Questions?

Lógica Proposicional

Tabelas verdade e equivalência
 lógica –