CS573 Data Privacy and Security

Anonymization methods

Li Xiong

Today

- Recap/Taxonomy of Anonymization
 - Microdata anonymization
- Microaggregation based anonymization

Taxonomy of Anonymization

- Problem Settings/scenarios
- Types of data
- Anonymization techniques
- Information metrics

Problem Settings/Scenarios

- One-time single provider release (base setting)
- Multiple release publishing
- Continuous release publishing
- Collaborative/distributed publishing
 - Slawek's lecture

Types of data

- Relational data (tabular data)
- High dimensional transaction data
 - E.g.Market basket, web queries
- Moving objects data (temporal/spatial data)
 - E.g. Location based services
- Textual data
 - E.g. Medical documents, James' lecture

Types of Attributes

- Continuous: attribute is numeric and arithmetic operations can be performed on it
- Categorical: attribute takes values over a finite set and standard arithmetic operations don't make sense
 - Ordinal: ordered range of categories
 - ≤, min and max operations are meaningful
 - Nominal: unordered
 - only equality comparison operation is meaningful

Anonymization methods

- Non-perturbative: don't distort the data
 - Generalization
 - Suppression
- Perturbative: distort the data
 - Microaggregation/clustering
 - Additive noise
- Anatomization and permutation
 - De-associate relationship between QID and sensitive attribute

Measuring Privacy/Utility tradeoff

- How to measure two goals?
- k-Anonymity: a dataset satisfies k-anonymity for k > 1 if at least k records exist for each combination of quasi-identifier values
- Assuming k-anonymity is enough protection against disclosure risk, one can concentrate on information loss measures

Information Metrics

- General purpose metrics
- Special purpose metrics
- Trade-off metrics

General Purpose Metrics

- General idea: measure "similarity" between the original data and the anonymized data
- Minimal distortion metric (Samarati 2001; Sweeney 2002, Wang and Fung 2006)
 - Charge a penalty to each instance of a value generalized or suppressed (independently of other records)
- ILoss (Xiao and Tao 2006)
 - Charge a penalty when a specific value is generalized

General Purpose Metrics cont.

- Discernibility Metric (DM) (K-OPTIMIZE, Mondrian, I-diversity ...)
 - Charge a penalty to each record for being indistinguishable from other records
- Average Equivalence Group size
 - What's the optimal equivalence group size?

Special Purpose Metrics

- Application dependent
- Classification: Classification metric (CM) (lyengar 2002)
 - Charge a penalty for each record suppressed or generalized to a group in which the record's class is not the majority class
- Query
 - Query error: count queries
 - Query imprecision: overlapped range

Today

- Recap/Taxonomy of Anonymization
- Microaggregation based anonymization

Critique of Generalization/Suppression

- Satisfying k-anonymity using generalization and suppression is NP-hard
- Computational cost of finding the optimal generalization
- How to determine the subset of appropriate generalizations
 - semantics of categories and intended use of data
 - •e.g., ZIP code:
 - -{08201, 08205} -> 0820* makes sense
 - -{08201, 05201} -> 0*201 doesn't

- How to apply a generalization
 - •globally
 - -may generalize records that don't need it
 - •locally
 - -difficult to automate and analyze
 - number of generalizations is even larger
- Generalization and suppression on continuous data are unsuitable
 - a numeric attribute becomes categorical and loses its numeric semantics, e.g. age

- How to optimally combine generalization and suppression is unknown
- Use of suppression is not homogenous
 - suppress entire records or only some attributes of some records
 - blank a suppressed value or replace it with a neutral value

Microaggregation/Clustering

Two steps:

- Partition original dataset into clusters of similar records containing at least k records
- For each cluster, compute an aggregation operation and use it to replace the original records
 - e.g., mean for continuous data, median for categorical data

Advantages

- a unified approach, unlike combination of generalization and suppression
- Near-optimal heuristics exist
- Doesn't generate new categories
- Suitable for continuous data without removing their numeric semantics

Reduces data distortion

- *K*-anonymity requires an attribute to be generalized or suppressed, even if all but one tuple in the set have the same value.
- Clustering allows a cluster center to be published instead, "enabling us to release more information."

What is Clustering?

- Finding groups of objects (clusters)
 - Objects similar to one another in the same group
 - Objects different from the objects in other groups

Clustering Applications

Marketing research

Quality: What Is Good Clustering?

- Agreement with "ground truth"
- A good clustering will produce high quality clusters with
 - Homogeneity high <u>intra-class</u> similarity

Bad Clustering vs. Good Clustering

Similarity or Dissimilarity between Data Objects

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

Euclidean distance

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{ip} - x_{jp}|^2)}$$

Manhattan distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

Minkowski distance

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + ... + |x_{ip} - x_{jp}|^q)}$$

Weighted

Other Similarity or Dissimilarity Metrics

$$\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{if} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots \\ x_{n1} & \dots & x_{nf} & \dots & x_{np} \end{bmatrix}$$

Pearson correlation

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}.$$

Cosine measure
$$\frac{X_{i} \bullet X_{j}}{\|X_{i}\| \cdot \|X_{j}\|}$$

KL divergence, Bregman divergence, ...

Different Attribute Types

- To compute $|x_{i_f} x_{j_f}|$
 - -f is numeric (interval or ratio scale)
 - Normalization if necessary
 - Logarithmic transformation for ratio-scaled values

$$x_{if} = Ae^{Bt} \qquad y_{if} = \log(x_{if})$$

- f is ordinal

• Mapping by rank
$$Z_{if} = \frac{Y_{if} - 1}{M_{f} - 1}$$

- − f is nominal
 - Mapping function

$$|x_{if} - x_{jf}| = 0$$
 if $x_{if} = x_{jf}$, or 1 otherwise

• Hamming distance (edit distance) for strings

Clustering Approaches

• Partitioning approach:

- Construct various partitions and then evaluate them by some criterion, e.g.,
 minimizing the sum of square errors
- Typical methods: k-means, k-medoids, CLARANS

• <u>Hierarchical approach</u>:

- Create a hierarchical decomposition of the set of data (or objects) using some criterion
- Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEON

• <u>Density-based approach</u>:

- Based on connectivity and density functions
- Typical methods: DBSACN, OPTICS, DenClue

Others

Partitioning Algorithms: Basic Concept

Partitioning method: Construct a partition of a database D of n objects into a set of k clusters, s.t., the sum of squared distance is minimized

$$\sum_{i=1}^k \sum_{p \in C_i} (p - m_i)^2$$

- Given a k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: k-means and k-medoids algorithms
 - <u>k-means</u> (MacQueen'67): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

K-Means Clustering: Lloyd Algorithm

- Given k, and randomly choose k initial cluster centers
- Partition objects into k nonempty subsets by assigning each object to the cluster with the nearest centroid
- Update centroid, i.e. *mean point* of the cluster
- Go back to Step 2, stop when no more new assignment

The K-Means Clustering Method

Example

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram representing a hierarchy of nested clusters
 - Clustering obtained by cutting at desired level

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)

Agglomerative Clustering Algorithm

- 1. Compute the proximity matrix
- 2. Let each data point be a cluster
- 3. Repeat
- 4. Merge the two closest clusters
- 5. Update the proximity matrix
- **6.** Until only a single cluster remains

Starting Situation

Start with clusters of individual points and a

proximity matrix

Proximity Matrix

Intermediate Situation

How to Define Inter-Cluster Similarity

	p1	p2	р3	p4	p 5	<u> </u>
p1						
p2						
р3						
p4						
p5						

Proximity Matrix

Distance Between Clusters

- Single Link: smallest distance between points
- Complete Link: largest distance between points
- Average Link: average distance between points
- Centroid: distance between centroids

Clustering for Anonymization

- Are they directly applicable?
- Which algorithms are directly applicable?
 - K-means; hierarchical

Anonymization And Clustering

k-Member Clustering Problem

- From a given set of n records, find a set of clusters such that
 - Each cluster contains at least k records, and
 - The total intra-cluster distance is minimized.
- The problem is NP-complete

Anonymization using Microaggregation or Clustering

- Practical Data-Oriented Microaggregation for Statistical Disclosure Control, Domingo-Ferrer, TKDE 2002
- Ordinal, Continuous and Heterogeneous k-anonymity through microaggregation, Domingo-Ferrer, DMKD 2005
- Achieving anonymity via clustering, Aggarwal, PODS 2006
- Efficient k-anonymization using clustering techniques, Byun, DASFAA 2007

Multivariate microaggregation algorithm

- MDAV-generic: Generic version of MDAV algorithm (Maximum Distance to Average Vector) from previous papers
- Works with any type of data (continuous, ordinal, nominal), aggregation operator and distance calculation

MDAV-generic(R: dataset, k: integer) while $|R| \ge 3k$

- 1. compute average record ~x of all records in R
- 2. find most distant record x_r from $\sim x$
- 3. find most distant record x_s from x_r
- 4. form two clusters from k-1 records closest to x_r and k-1 closest to x_s
- 5. Remove the clusters from R and run MDAV-generic on the remaining dataset

end while if $3k-1 \le |R| \le 2k$

- 1. compute average record ~x of remaining records in R
- 2. find the most distant record x_r from $\sim x$
- 3. form a cluster from k-1 records closest to $\sim x$
- 4. form another cluster containing the remaining records else (fewer than 2k records in R) form a new cluster from the remaining records

MDAV-generic for continuous attributes

- use arithmetic mean and Euclidean distance
- standardize attributes (subtract mean and divide by standard deviation) to give them equal weight for computing distances
- After MDAV-generic, destandardize attributes

MDAV-generic for categorical attributes

 The distance between two oridinal attributes a and b in an attribute V_i:

$$\bullet d_{ord}(a,b) = (|\{i| \le i < b\}|) / |D(V_i)|$$

- -i.e., the number of categories separating a and b divided by the number of categories in the attribute
- The distance between two nominal attributes is defined according to equality: 0 if they're equal, else 1

Empirical Results

- Continuous attributes
 - From the U.S. Current Population Survey (1995)
 - 1080 records described by 13 continuous attributes
 - Computed k-anonymity for k = 3, ..., 9 and quasiidentifiers with 6 and 13 attributes
- Categorical attributes
 - From the U.S. Housing Survey (1993)
 - Three ordinal and eight nominal attributes
 - Computed k-anonymity for k = 2, ..., 9 and quasiidentifiers with 3, 4, 8 and 11 attributes

IL measures for continuous attributes

- IL1 = mean variation of individual attributes in original and k-anonymous datasets
- IL2 = mean variation of attribute means in both datasets
- IL3 = mean variation of attribute variances
- IL4 = mean variation of attribute covariances
- IL5 = mean variation of attribute Pearson's correlations
- IL6 = 100 times the average of IL1-6

Quasi- identifier							
length	k	IL_1	IL_2	IL_3	IL_4	IL_5	IL
6	3	0.131	0	0	0.036	0.007	3.48
6	6	0.174	0	0	0.075	0.013	5.24
6	9	0.203	0	0	0.129	0.017	6.98
6	12	0.185	0	0	0.166	0.020	7.42
13	3	0.907	0	0	0.058	0.016	19.62
13	6	1.389	0	0	0.134	0.032	31.10
13	9	1.535	0	0	0.161	0.039	34.70
13	12	1.564	0	0	0.164	0.046	35.48

- MDAV-generic preserves means and variances (IL2 and IL3)
- The impact on the non-preserved statistics grows with the quasiidentifier length, as one would expect
- For a fixed-quasi-identifier length, the impact on the non-preserved statistics grows with k

Anonymization using Microaggregation or Clustering

- Practical Data-Oriented Microaggregation for Statistical Disclosure Control, Domingo-Ferrer, TKDE 2002
- Ordinal, Continuous and Heterogeneous k-anonymity through microaggregation, Domingo-Ferrer, DMKD 2005
- Achieving anonymity via clustering, Aggarwal, PODS 2006
- Efficient k-anonymization using clustering techniques, Byun, DASFAA 2007

Distance between two categorical values

- Equally different to each other.
 - 0 if they are the same
 - 1 if they are different
- Relationships can be easily captured in a taxonomy tree.

Taxonomy tree of Country

Armed-Forces Teacher Doctor Salesman Tech-Support

Taxonomy tree of Occupation

Distance between two categorical values

Definition

Let D be a categorical domain and TD be a taxonomy tree defined for D. The normalized distance between two values v_i , $v_j \in D$ is defined as:

Taxonomy tree of Country

$$\delta_C(v_1, v_2) = H(\Lambda(v_i, v_j)) / H(T_D)$$

where Λ (x, y) is the subtree rooted at the lowest common ancestor of x and y, and H(T) represents the height of tree T.

Example:

The distance between India and USA is 3/3 = 1.

The distance between India and Iran is 2/3 = 0.66.

Cost Function - Information loss (IL)

• The amount of distortion (i.e., information loss) caused by the generalization process.

Note: Records in each cluster are generalized to share the same quasiidentifier value that represents every original quasi-identifier value in the cluster.

— Definition: Let $e = \{r_1, \ldots, r_k\}$ be a cluster (i.e., equivalence class). Then the amount of information loss in e, denoted by IL(e), is defined as:

$$IL(e) = |e| \cdot D(e)$$

$$D(e) = \sum_{i=1,...,m} \frac{(MAX_{N_i} - MIN_{N_i})}{|N_i|}$$

$$+ \sum_{j=1,...,n} \frac{H(\Lambda(\cup_{C_j}))}{H(T_{C_j})}$$

where |e| is the number of records in e, |N| represents the size of numeric domain N, $\Lambda(\cup_{c_i})$ is the subtree rooted at the lowest common ancestor of every value in \cup_{c_i} , and H(T) is the height of tree T.

Cost Function - Information loss (IL)

Example

	Age	Country	Occupation	Salary	Diagnosis
r1	41	USA	Armed-Forces	≥50K	Cancer
r2	57	India	Tech-support	<50K	Flu
r3	40	Canada	Teacher	<50K	Obesity
r4	38	Iran	Tech-support	≥50K	Flu
r5	24	Brazil	Doctor	≥50K	Cancer
r6	45	Greece	Salesman	<50K	Fever

Taxonomy tree of Country

Cluster e1

Age	Country	Occupation	Salary	Diagnosis
41	USA	Armed-Forces	≥50K	Cancer
40	Canada	Teacher	<50K	Obesity
24	Brazil	Doctor	≥50K	Cancer

$$IL(e_1) = 3 \cdot D(e_1)$$

 $D(e_1) = \frac{(41-24)/33 + (2/3) + 1}{(2/3) + 1} = 2.1818...$
 $IL(e_1) = 3 \cdot 2.1818... = 6.5454...$

Cluster e2

Age	Country	Occupation	Salary	Diagnosis
41	USA	Armed-Forces	≥50K	Cancer
57	India	Tech-support	<50K	Flu
24	Brazil	Doctor	≥50K	Cancer

$$IL(e_2) = 3 \cdot D(e_2)$$

 $D(e_2) = (57-24)/33 + (3/3) + 1 = 3$
 $IL(e_2) = 3 \cdot 3 = 9$

Greedy Algorithm

- Find k-member clusters, one cluster at a time
- Assign remaining <k points to the previous clusters

Greedy k-member clustering algorithm

```
Function greedy k member clustering (S, k)
                                                               Function find best record (S, c)
Input: a set of records S and a threshold value k.
                                                               Input: a set of records S and a cluster c.
Output: a set of clusters each of which contains at least k
                                                               Output: a record r \in S such that IL(c \cup \{r\}) is minimal.
records.
                                                                    1. n = |S|;
        if(|S| \le k)

 min = ∞;

        return S:
                                                                    3. best = null;
         end if:
                                                                    4. for(i = 1,...n)
    4.
                                                                    5. r = i-th record in S:
        result = \emptyset;
                                                                    6. diff = IL(c \cup \{r\}) - IL(c);
       r = a randomly picked record from S;
                                                                           if (diff < min)
       while (|S| \ge k)
                                                                              \min = \text{diff}:
    8. r = the furthest record from r:
                                                                    9.
                                                                              best = r:
           S = S - \{r\}:
    9.
                                                                    10.
                                                                           end if:
    10. c = \{r\};
                                                                    11. end for:
    11. while (|c| < k)
                                                                    12. return best:
    12. r = find\_best\_record(S, c);
13. S = S - \{r\};
                                                               End:
    14. c = c \cup \{r\};
                                                               Function find best cluster (C, r)
                                                               Input: a set of clusters C and a record r.
    15.
           end while:
    16.
           result = result \cup \{c\};
                                                               Output: a cluster c \in C such that IL(c \cup \{r\}) is minimal.
    17. end while:
                                                                    1. n = |C|;
    18. while (|S| \neq 0)

 min = ∞:

    19. r = a randomly picked record from S;
                                                                    3. best = null:
    20.
           S = S - \{r\};
                                                                    4. for(i = 1,...n)

 c = find best cluster(result, r);

                                                                    5. c = i-th cluster in C:
           c = c \cup \{r\}:
                                                                           diff = IL(c \cup \{r\}) - IL(c);
    23. end while:
                                                                    7. if(diff < min)
    24. return result;
                                                                             min = diff;
End:
                                                                              best = c;
                                                                           end if:
                                                                    11. end for:
                                                                    12. return best:
```

End:

classification metric (CM)

 preserve the correlation between quasi-identifier and class labels (non-sensitive values)

$$CM = \sum_{all\ rows} Penalty(row\ r) / N$$

Where N is the total number of records, and Penalty(row r) = 1 if r is suppressed or the class label of r is different from the class label of the majority in the equivalence group.

Experimentl Results

- Experimental Setup
 - Data: Adult dataset from the UC Irvine Machine Learning Repository
 - 10 attributes (2 numeric, 7 categorical, 1 class)
 - Compare with 2 other algorithms
 - Median partitioning (Mondrian algorithm)
 - *k*-Nearest neighbor

Experimentl Results

Figure 9: Information Loss Metric

Figure 10: Discernibility Metric

Figure 11: Classification Metric

Figure 12: Execution Time

Conclusion

- Transforming the k-anonymity problem to the k-member clustering problem
- Overall the Greedy Algorithm produced better results compared to other algorithms at the cost of efficiency