

Variabel Kompleks (VARKOM)

Pertemuan 25 : Deret dan Transformasi

Fourier (Bagian III)

Oleh: Team Dosen Varkom S1-TT

Versi: November 2018

Faculty of Electrical Engineering, Telkom University

Tujuan Perkuliahan

- 1 Mempelajari tentang Fungsi Periodik (Bagian I)
- 2 Mempelajari Deret Fourier Fungsi Periodik (Bagian II)
- Mempelajari tentang Transformasi Fourier beserta sifat-sifatnya (Bagian III)
- Transformasi Fourier mempelajari tentang inverse transformasi Fourier (Bagian IV)

Daftar Isi

1 Transformasi Fourier

2 Transformasi Fourier

Fungsi-fungsi dasar

Transformasi Fourier adalah salah satu transformasi terpenting pada teknik Telekomunikasi.

- Transformasi Fourier memindahkan fungsi atau sinyal pada ranah waktu ke ranah frekuensi
- 2 Hasil transformasi pada ranah frekuensi dapat dikembalikan ke ranah waktu dengan invers Transformasi Fourier
- Hasil transformasi pada ranah frekuensi menyatakan gambaran komponen frekuensi (rendah, sedang, dan tinggi) dari fungsi ranah waktu.
- Transformasi Fourier dipakai pada kuliah-kuliah lanjut seperti Pengolahan Sinyal, Sistem Komunikasi, dan sebagainya.
- Sebelum Transformasi Fourier dipelajari, perlu direview beberapa fungsi dasar.

Beberapa fungsi dasar:

No	Nama Fungsi	Notasi
1	Fungsi Impulse (Delta Dirac)	$f(t) = \delta(t)$
2	Fungsi unit step	f(t) = u(t)
3	Fungsi ramp	f(t) = t
4	Fungsi eksponen	$f(t) = e^{at}$
5	Fungsi sinus	$f(t) = \sin at$
6	Fungsi kosinus	$f(t) = \cos at$

1). Fungsi Impulse (Delta Dirac): $f(t) = \delta(t)$

Didefinisikan sebagai:

$$f(t) = \delta(t) = \begin{cases} 0 & \text{untuk } t \neq 0 \\ \infty & \text{untuk } t = 0 \\ \int_{-\infty}^{\infty} \delta(t) dt = 1 \end{cases}$$

Gambar:

1). Fungsi Impulse (Delta Dirac): $f(t) = \delta(t)$

Secara konsep dapat dipahami bahwa:

- **1** Fungsi $\delta(t)$ adalah fungsi impulse yang terjadi pada t=0
- 2 Tingginya sangat tinggi (secara teori ∞)
- 3 Luasnya 1 satuan.

Dengan demikian, dapat digeneralisasi bahwa fungsi:

$$f(t) = 2\delta(t)$$

adalah

- 1 sinyal impulse yang terjadi pada t=0
- 2 tingginya $2\infty = \infty$
- 3 luasnya 2 satuan.

1). Fungsi Impulse (Delta Dirac): $f(t) = \delta(t)$

Secara konsep dapat dipahami bahwa:

- Fungsi $\delta(t)$ adalah fungsi impulse yang terjadi pada t=0
- 2 Tingginya sangat tinggi (secara teori ∞)
- 3 Luasnya 1 satuan.

Dengan demikian, dapat digeneralisasi bahwa fungsi:

$$f(t) = 2\delta(t)$$

adalah

- 1 sinyal impulse yang terjadi pada t=0
- 2 tingginya $2\infty = \infty$
- 3 luasnya 2 satuan.

Bentuk impulse yang lebih umum dinyatakan dengan:

$$f(t)=k\delta(t-t_0)$$

 $k\delta(t-t_0)$ menyatakan:

- 1 Sinyal impulse yang terjadi di $t = t_0$
- 2 Tingginya k∞
- 3 Luasnya : k satuan

Beberapa contoh:

2). Fungsi unit step f(t) = u(t)

Fungsi unit step didefinisikan sebagai:

$$f(t) = \begin{cases} 1 & \text{untuk} & t \ge 0 \\ 0 & \text{untuk} & t < 0 \end{cases}$$

2). Fungsi unit step

Beberapa ilustrasi:

2). Fungsi unit step

Fungsi unit step sering digunakan untuk menyatakan kapan suatu sinyal 'switched on'. (Disebut juga fungsi terpotong)

3). Fungsi ramp

Fungsi Ramp: f(t) = t u(t) adalah fungsi terpotong dari f(t) = t

4). Fungsi eksponen

 $f(t) = e^{at}$ dan bentuk terpotongnya: $f(t) = e^{at} u(t)$

5). Fungsi Sinus dan bentuk terpotongnya

$$f(t) = \sin(at) \operatorname{dan} f(t) = \sin(at)u(t)$$

6). Fungsi Kosinus dan bentuk terpotongnya

$$f(t) = \cos(at) \operatorname{dan} f(t) = \cos(at)u(t)$$

Transformasi Fourier dari fungsi f(t) dinotasikan sebagai F(iw) dengan: ¹

$$F(iw) = \int_{-\infty}^{\infty} f(t) \cdot e^{-iwt} dt$$

Dengan diagram panah:

$$f(t) \xrightarrow{\text{Transformasi Fourier}} F(iw)$$

Ranah waktu

Ranah frekuensi

Transformasi Fourier mentransformasikan fungsi pada ranah waktu (t) ke ranah frekuensi w. $(i = \sqrt{-1})$

¹Notasi lain dari transformasi Fourier adalah F(is), $F(i\Omega)$, F(w) dan sebagainya.

Contoh 1: Tentukan transformasi Fourier dari $f(t) = \delta(t)$

Jawab:

$$F(iw) = \int_{-\infty}^{\infty} \delta(t) \cdot e^{iwt} dt = \int_{-\infty}^{\infty} \delta(t) \cdot e^{iw0} dt = \int_{-\infty}^{\infty} \delta(t) \cdot 1 dt = 1$$

Jadi :
$$f(t) = \delta(t) \rightarrow F(iw) = 1$$

Fungsi dasar yang lain dapat dihitung transformasinya dan hasil-hasilnya ditabelkan seperti slide selanjutnya.

Tabel Transformasi Fourier beberapa fungsi dasar:

No	Nama Fungsi	f(t)	F(iw)
1	Impulse	$\delta(t)$	1
2a	Satuan	1	$2\pi\delta(w)$
2b	Unit step	u(t)	$\frac{1}{iw} + \pi \delta(iw)$
3	Ramp	t u(t)	$-\frac{1}{w^2} + \pi \delta'(w)$
4	Eksponen terpotong	$e^{at} u(t)$	<u>1''</u> iw−a
5a	sinus	sin at	$i\pi \left[\delta(\mathbf{w}+\mathbf{a})-\delta(\mathbf{w}-\mathbf{a})\right]$
5b	sinus terpotong	sin at u(t)	$\frac{a}{(iw)^2+a^2}$
6a	kosinus	cos at	$\pi \left[\delta(\mathbf{w}+\mathbf{a})+\delta(\mathbf{w}-\mathbf{a})\right]$
6b	kosinus terpotong	$\cos at u(t)$	$\frac{iw}{(iw)^2+a^2}$

Contoh 1: Transformasi Fourier dari

$$f(t) = \sin \pi t$$

adalah

$$F(iw) = i\pi \left[\delta(w - \pi) - \delta(w + \pi)\right]$$

(Tabel, No 5a)

Contoh 2: Transformasi Fourier dari

$$f(t) = e^{-4t}u(t)$$

adalah

$$F(iw) = \frac{1}{iw - (-4)} = \frac{1}{iw + 4}$$

(Tabel, No 4)

Contoh 3: Transformasi Fourier dari

$$f(t) = \sin 20\pi t \, u(t)$$

adalah

$$F(iw) = \cdots \cdots \cdots$$

Contoh 4: Transformasi Fourier dari

$$f(t) = \cos 20\pi t \ u(t)$$

adalah

$$F(iw) = \cdots \cdots \cdots$$

Sifat-sifat Transformasi Fourier

Diketahui : $f_1(t) \rightarrow F_1(iw)$ dan $f_2(t) \rightarrow F_2(iw)$, maka berlaku

No	Nama Sifat	f(t)	F(iw)
1	Linier	$a f_1(t) + b f_2(t)$	$aF_1(w)+bF_2(w)$
2	Penskalaan waktu	f(at)	$\frac{1}{ a }F(\frac{iw}{a})$
3	Pergeseran waktu	$f(t-t_0)$	$F(w-t_0)$
4	Pergeseran frekuensi	$e^{at}f(t)$	F(iw - a)
5	Perkalian dengan t	t f(t)	i d F(iw) dw
6	Turunan waktu	$\frac{df(t)}{dt}$	(iw) F(iw)
7	Modulasi	$f(t)\cos at$	$\frac{1}{2}\left[F(iw+a)+F(iw-a)\right]$
8	Konvolusi ²	$f_1(t) * f_2(t)$	$\overline{F}_1(iw) F_2(iw)$

²Topik konvolusi akan dibahas tersendiri pada MK Pengolahan Sinyal

Contoh 5: Tentukan transformasi Fourier dari

$$f(t) = e^{2t} \sin \pi t \ u(t)$$

Jawab: Diketahui:

$$\sin \pi t \, u(t) \to \frac{\pi}{(iw)^2 + \pi^2}$$

Dengan menggunakan Sifat 4 diperoleh:

$$e^{2t} \sin \pi t \, u(t) \to \frac{\pi}{(iw-2)^2 + \pi^2}$$

Contoh 6: Tentukan transformasi Fourier dari

$$f(t) = e^{2t} \cos \pi t \, u(t)$$

Jawab: Diketahui:

$$\cos \pi t \, u(t) \rightarrow \cdots$$

Dengan menggunakan Sifat 4 diperoleh:

$$e^{2t}\cos \pi t u(t) \rightarrow \cdots$$

Contoh 7: Tentukan transformasi Fourier dari

$$f(t) = t e^{2t} u(t)$$

Jawab:

Diketahui:

$$e^{2t} u(t) \rightarrow \cdots$$

Dengan menggunakan Sifat diperoleh:

$$t e^{2t} u(t) \rightarrow \cdots$$

Contoh 8: Tentukan transformasi Fourier dari

$$f(t) = t \sin 5t u(t)$$

Jawab:

Diketahui:

$$\sin 5t u(t) \rightarrow \cdots$$

Dengan menggunakan Sifat diperoleh:

$$t \sin 5t u(t) \rightarrow \cdots$$

Latihan

Dengan menggunakan tabel dan sifat-sifat transformasi, tentukan Transformasi Fourier dari fungsi-fungsi berikut:

1
$$f(t) = u(t-2)$$

2
$$f(t) = u(t) - u(t-2)$$

3
$$f(t) = (1+t)u(t)$$

4
$$f(t) = 5 \sin 2t \, u(t)$$

6
$$f(t) = 5 \cos \sqrt{2}t \, u(t)$$

6
$$f(t) = 3 \sin \sqrt{2}t \, u(t) + 4 \cos \sqrt{2}t \, u(t)$$

$$f(t) = e^{-t} \cos 2t \, u(t)$$

8
$$f(t) = e^{-t} \sin 2t \, u(t)$$

9
$$f(t) = t e^{-t} \sin 2t u(t)$$

$$\mathbf{0} f(t) = t e^{-t} \cos 2t u(t)$$