## **SOT23 P-CHANNEL ENHANCEMENT MODE VERTICAL DMOS FET**

SP

ISSUE 2 - SEPTEMBER 1995 Q

PARTMARKING DETAIL —

**BSS84** 



## ABSOLUTE MAXIMUM RATINGS.

| PARAMETER                                   | SYMBOL                           | VALUE       | UNIT |
|---------------------------------------------|----------------------------------|-------------|------|
| Drain-Source Voltage                        | V <sub>DS</sub>                  | -50         | V    |
| Continuous Drain Current                    | I <sub>D</sub>                   | -130        | mA   |
| Pulsed Drain Current                        | I <sub>DM</sub>                  | -520        | mA   |
| Gate-Source Voltage Peak                    | V <sub>GS</sub>                  | ±20         | V    |
| Power Dissipation at T <sub>amb</sub> =25°C | P <sub>TOT</sub>                 | 360         | mW   |
| Operating and Storage Temperature Range     | t <sub>j</sub> :t <sub>stg</sub> | -55 to +150 | °C   |

## **ELECTRICAL CHARACTERISTICS (at Tamb = 25°C).**

|                                         |                     |      | uiiib    |            |                          |                                                                     |
|-----------------------------------------|---------------------|------|----------|------------|--------------------------|---------------------------------------------------------------------|
| PARAMETER                               | SYMBOL              | MIN. | TYP.     | MAX.       | UNIT                     | CONDITIONS.                                                         |
| Drain-Source<br>Breakdown Voltage       | BV <sub>DSS</sub>   | -50  |          |            | V                        | V <sub>GS</sub> =0V, I <sub>D</sub> =0.25mA                         |
| Gate-Source<br>Threashold Voltage       | V <sub>GS(th)</sub> | -0.8 | -1.5     | -2.0       | V                        | $V_{DS}=V_{GS}$ , $I_{D}=-1mA$                                      |
| Zero gate Voltage<br>Drain Current      | I <sub>DSS</sub>    |      | -1<br>-2 | -15<br>-60 | μ <b>Α</b><br>μ <b>Α</b> | $T_{j}$ =25 °C $T_{j}$ =125 °C $V_{DS}$ =-50V, $V_{GS}$ =0V(2)      |
|                                         |                     |      |          | -100       |                          | $T_{j}$ =25 $^{\circ}$ C $V_{DS}$ =-25V, $V_{GS}$ =0V               |
| Gate-Source Leakage<br>Current          | I <sub>GSS</sub>    |      | -1       | -10        | nA                       | $\begin{array}{l} V_{GS}=\pm 20V \\ V_{DS}\!\!=\!\!0V \end{array}$  |
| Drain Source On-State<br>Resistance (1) | R <sub>DS(on)</sub> |      | 6        | 10         | Ω                        | V <sub>GS</sub> =-5V<br>I <sub>D</sub> =-100mA                      |
| Forward<br>Transconductance (1)<br>(2)  | 9 <sub>fs</sub>     | 0.05 | 0.07     |            | S                        | V <sub>DS</sub> =-25V<br>I <sub>D</sub> =-100mA                     |
| Input Capacitance (2)                   | C <sub>iss</sub>    |      | 40       |            |                          | V <sub>GS</sub> =0V                                                 |
| Output Capacitance                      | C <sub>oss</sub>    |      | 15       |            | pF                       | V <sub>DS</sub> =-25V<br>f=1MHz                                     |
| Reverse Transfer<br>Capacitance (2)     | C <sub>rss</sub>    |      | 6        |            |                          |                                                                     |
| Turn-On Time t <sub>on</sub>            | td(on)              |      | 10       |            |                          | $V_{DD}$ =-30V $I_{D}$ =-0.27A $V_{GS}$ =-10V $R_{GS}$ =50 $\Omega$ |
|                                         | t <sub>r</sub>      |      | 10       |            | ns                       |                                                                     |
| Turn-Off Time t <sub>off</sub>          | t <sub>d(off)</sub> |      | 18       |            | R <sub>G</sub>           |                                                                     |
|                                         | t <sub>f</sub>      |      | 25       |            |                          |                                                                     |

<sup>(1)</sup> Measured under pulsed conditions. Pulse width = 300 $\mu$ s. Duty cycle 2% (2) Sample test.

## www.s-manuals.com