UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE ECONOMIA RURAL

ERU 626 - ECONOMETRIA I Segundo Semestre/2010

AULA PRÁTICA Nº 3- "Dados em Painel"

Ana Carolina Campana Nascimento Fernanda Maria de Almeida

1. DADOS EM PAINEL

Dados em painel consistem na combinação de série temporal e seção cruzada, isto é, têm-se dados de várias unidades medidas ao longo do tempo. Considerando um conjunto de dados com i = 1, 2, ..., N unidades e t = 1, 2, ..., T períodos de tempo, o modelo geral será:

$$Y_{it} = \alpha_i + X_{it}\beta + \varepsilon_{it} \tag{1}$$

em que α_i representa os efeitos específicos, ou características, das unidades que não variam ao longo do tempo e ε_{it} o termo de erro.

Este modelo gera dois modelos típicos que são estimados de acordo com as pressuposições que fazemos a respeito da possível correlação entre o termo de erro e as variáveis explicativas X_{ii} : modelo de efeitos fixos e modelo de efeitos aleatórios.

a) Modelo de Efeitos Fixos:

$$Y_{it} = \alpha_i + \beta X_{it} + \varepsilon_{it} \tag{2}$$

A principal característica deste modelo é tratar os α_i 's como variáveis aleatórias não observadas e correlacionadas com algum X_{ii} .

b) Modelo de Efeitos Aleatórios:

$$Y_{it} = \alpha_i + \beta X_{it} + u_{it} \tag{3}$$

O estimador de efeitos aleatórios considera o erro combinado, isto é, $u_{it} = v_i + \varepsilon_{it}$ e pressupõe que v_i é iid com variância σ_v^2 e que ε_{it} é iid com variância σ_ε^2 . Pode-se mostrar que $V(u_{it}) = \sigma_v^2 + \sigma_\varepsilon^2$ e que $Cov(u_{it}, u_{is}) = \sigma_v^2$, $t \neq s$. Logo, $\rho_u = Cor(u_{it}, u_{is}) = \frac{\sigma_v^2}{\sigma_v^2 + \sigma_\varepsilon^2}$, para todo $t \neq s$. Assim, o modelo de EA tem como

pressuposição correlação serial no erro (correlação igual em todos lags). O estimador de efeitos aleatórios é um estimador de MQG que considera a correlação entre os erros de cada unidade.

Exemplo:

Considere os dados do trabalho de Y. Grunfeld, cujo objetivo era verificar como o investimento real bruto (Y) depende do valor real da empresa (x2) e do estoque real do capital (x3). Os dados são do período de 1935 a 1954 e correspondem a informações de quatro empresas (GE, US, GM e WEST), ou seja, tem-se 4 unidades de corte transversal e 20 períodos. Este exemplo está na página 514 do Gujarati.

Tabela 1 – Investimento de quatro empresas, 1935-1954 (p.515, Gujarati)

						<i>′</i>			y . (p.e		3	
ano	id	empresa	у	x2	x3		ano	id	empresa	у	x2	x3
1935	1	GE	33.1	1170.6	97.8		1935	3	US	209.9	1362.4	53.8
1936	1	GE	45	2015.8	104.4		1936	3	US	355.3	1807.1	50.5
1937	1	GE	77.2	2803.3	118		1937	3	US	469.9	2673.3	118.1
1938	1	GE	44.6	2039.7	156.2		1938	3	US	262.3	1801.9	260.2
1939	1	GE	48.1	2256.2	172.6		1939	3	US	230.4	1957.3	312.7
1940	1	GE	74.4	2132.2	186.6		1940	3	US	361.6	2202.9	254.2
1941	1	GE	113	1834.1	220.9		1941	3	US	472.8	2380.5	261.4
1942	1	GE	91.9	1588	287.8		1942	3	US	445.6	2168.6	298.7
1943	1	GE	61.3	1749.4	319.9		1943	3	US	361.6	1985.1	301.8
1944	1	GE	56.8	1687.2	321.3		1944	3	US	288.2	1813.9	279.1
1945	1	GE	93.6	2007.7	319.6		1945	3	US	258.7	1850.2	213.8
1946	1	GE	159.9	2208.3	346		1946	3	US	420.3	2067.7	232.6
1947	1	GE	147.2	1656.7	456.4		1947	3	US	420.5	1796.7	264.8
1948	1	GE	146.3	1604.4	543.4		1948	3	US	494.5	1625.8	306.9
1949	1	GE	98.3	1431.8	618.3		1949	3	US	405.1	1667	351.1
1950	1	GE	93.5	1610.5	647.4		1950	3	US	418.8	1677.4	357.8
1951	1	GE	135.2	1819.4	671.3		1951	3	US	588.2	2289.5	341.1
1952	1	GE	157.3	2079.7	726.1		1952	3	US	645.2	2159.4	444.2
1953	1	GE	179.5	2371.6	800.3		1953	3	US	641	2031.3	623.6
1954	1	GE	189.6	2759.9	888.9		1954	3	US	459.3	2115.5	669.7
1935	2	GM	317.6	3078.5	2.8		1935	4	WEST	12.93	191.5	1.8
1936	2	GM	391.8	4661.7	52.6		1936	4	WEST	25.9	516	0.8
1937	2	GM	410.6	5387.1	156.9		1937	4	WEST	35.05	729	7.4
1938	2	GM	257.7	2792.2	209.2		1938	4	WEST	22.89	560.4	18.1
1939	2	GM	330.8	4313.2	203.4		1939	4	WEST	18.84	519.9	23.5
1940	2	GM	461.2	4643.9	207.2		1940	4	WEST	28.57	628.5	26.5
1941	2	GM	512	4551.2	255.2		1941	4	WEST	48.51	537.1	36.2
1942	2	GM	448	3244.1	303.7		1942	4	WEST	43.34	561.2	60.8
1943	2	GM	499.6	4053.7	264.1		1943	4	WEST	37.02	617.2	84.4
1944	2	GM	547.5	4379.3	201.6		1944	4	WEST	37.81	626.7	91.2
1945	2	GM	561.2	4840.9	265		1945	4	WEST	39.27	737.2	92.4
1946	2	GM	688.1	4900	402.2		1946	4	WEST	53.46	760.5	86
1947	2	GM	568.9	3526.5	761.5		1947	4	WEST	55.56	581.4	111.1
1948	2	GM	529.2	3245.7	922.4		1948	4	WEST	49.56	662.3	130.6
1949	2	GM	555.1	3700.2	1020.1		1949	4	WEST	32.04	583.8	141.8
1950	2	GM	642.9	3755.6	1099		1950	4	WEST	32.24	635.2	136.7
1951	2	GM	755.9	4833	1207.7		1951	4	WEST	54.38	732.8	129.7
1952	2	GM	891.2	4924.9	1430.5		1952	4	WEST	71.78	864.1	145.5
1953	2	GM	1304.4	6241.7	1777.3		1953	4	WEST	90.08	1193.5	174.8
1954	2	GM	1486.7	5593.6	2226.3	_	1954	4	WEST	68.6	1188.9	213.5

PASSOS PARA ESTIMAÇÃO NO STATA:

1º) Organização dos dados

No Excel, os dados devem seguir a estrutura da Tabela 1, isto é, ordena-se os dados de acordo com a série temporal para cada unidade de seção cruzada. Note que as unidades de seção cruzada (empresas) são enumeradas, uma vez que o Stata não reconhece textos (nome das unidades).

2º) Declaração dos dados no programa

Após a organização dos dados e inserção dos mesmos no programa, deve-se declarar no programa a variável referente à série de tempo e a referente às unidades. No caso do exemplo em questão, a variável tempo é *ano* e a variável unidade é *id*. Para isso, temos três opções:

i) Barra de ferramentas:

ii) Comando 1:

xtset id ano, yearly

O termo yearly é pra indicar que a série é anual.

. xtset id ano, yearly panel variable: id (strongly balanced) time variable: ano, 1935 to 1954 delta: 1 year

- iii) Comando 2:
- . tis ano
- . iis id

3º) Modelo pool

Nesse modelo, todos os coeficientes são constantes ao longo do tempo e entre indivíduos e a forma de estimação é o habitual MQO.

. reg y x2 x3	3						
Source	SS	df		MS		Number of obs	
Model Resi dual	4849457. 37 1560689. 67	2 77		728. 69 68. 697		F(2, 77) Prob > F R-squared Adj R-squared	= 0.0000 = 0.7565
Total	6410147. 04	79	81141. 1018			Root MSE	= 0.7502
у	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
x2 x3 _cons	. 1100955 . 3033932 -63. 30413	. 0137 . 0492 29. 6	957	8. 02 6. 15 -2. 14	0. 000 0. 000 0. 036	. 0827563 . 2052328 - 122. 2735	. 1374348 . 4015535 -4. 334734

4º) Modelo de regressão de efeitos fixos ou de variáveis binárias de mínimos quadrados

i) Caso em que coeficientes angulares são constantes, mas o intercepto varia entre as unidades, isto é:

$$Y_{it} = \beta_{1i} + \beta_2 X_{2it} + \beta_3 X_{3it} + \varepsilon_{it} \tag{4}$$

No Stata, o passo inicial é a criação de dummies para cada uma das unidades:

Note que com o comando **tabulate** foram criadas quatro novas variáveis, uma *dummy* para cada empresa: d1, d2, d3 e d4.

Label	
	1.0000
	2.0000
	3.0000
id==	4.0000
	id== id== id== id==

Agora é só rodar o modelo:

. reg y x2 x3	3 d2 d3 d4							
Source	SS	df		MS		Number of obs		80
Model Resi dual	5990684. 14 419462. 898	5 74		136. 83 . 41754		F(5, 74) Prob > F R-squared Adj R-squared	=	211. 37 0. 0000 0. 9346 0. 9301
Total	6410147. 04	79	8114	1. 1018		Root MSE	=	75. 289
у	Coef.	Std.	Err.	t	P> t	[95% Conf.	Ιn	terval]
x2 x3 d2 d3 d4 _cons	. 1079481 . 3461617 161. 5722 339. 6328 186. 5665 - 245. 7924	. 0175 . 0266 46. 45 23. 98 31. 56 35. 8	3645 5639 3633 3681	6. 17 12. 98 3. 48 14. 16 5. 92 -6. 86	0. 000 0. 000 0. 001 0. 000 0. 000 0. 000	. 0730608 . 2930315 69. 00583 291. 839 123. 7879 - 317. 1476	2 3 2	1428354 3992918 54. 1386 87. 4266 49. 3452 74. 4371

Obs: a variável d1 foi deixada como referência (evitar problema da multicolinearidade perfeita). Caso sejam utilizadas as 4 *dummies*, o Stata dropará uma automaticamente.

ii) Caso em que coeficientes angulares são constantes, mas o intercepto varia ao longo do tempo (uma *dummy* para cada ano), isto é:

$$Y_{it} = \beta_1 + \beta_2 X_{2it} + \beta_3 X_{3it} + \sum_{t=1}^{20} \alpha_t ano_t + \varepsilon_{it}$$
 (5)

. tabulate ano, gen (ano)									
ano	Freq.	Percent	Cum.						
1935	4	5. 00	5. 00						
1936	4	5. 00	10.00						
1937	4	5. 00	15.00						
1938	4	5. 00	20.00						
1939	4	5. 00	25. 00						
1940	4	5. 00	30.00						
1941	4	5. 00	35. 00						
1942	4	5. 00	40.00						
1943	4	5. 00	45. 00						
1944	4	5. 00	50.00						
1945	4	5. 00	55. 00						
1946	4	5. 00	60.00						
1947	4	5. 00	65.00						
1948	4	5. 00	70.00						
1949	4	5. 00	75.00						
1950	4	5. 00	80.00						
1951	4	5. 00	85.00						
1952	4	5. 00	90.00						
1953	4	5. 00	95.00						
1954	4	5. 00	100. 00						
Total	80	100. 00							

. 1	reg y x2 x3	3 ano1-ano19							
	Source	SS	df		MS		Number of obs F(21, 58)		80 9. 27
	Model Resi dual	4938658. 06 1471488. 98	21 58		74. 193 D. 4997		Prob > F R-squared Adj R-squared	= 0. = 0.	9. 27 0000 7704 6873
	Total	6410147. 04	79	81141	1. 1018		Root MSE		9. 28
	y	Coef.	Std.	Err.	t	P> t	[95% Conf.	Inter	val]
	x2	. 1159174	. 01	817	6. 38	0.000	. 0795462	. 152	2886
	x3	. 2696593	. 0833	411	3. 24	0.002	. 1028339	. 436	4847
	ano1	21. 02495	129. 7		0. 16	0. 872	- 238. 7329	280.	
	ano2	- 14. 03424	133. 1		-0.11	0. 916	- 280. 6535	252.	
	ano3	- 58. 41449	135. 1		- 0. 43	0. 667	- 329. 0113	212.	
	ano4	- 48. 66584	126. 5		- 0. 38	0. 702	- 301. 9483	204.	
	ano5	- 96. 80262	128. 0		- 0. 76	0. 453	- 353. 0243	159.	
	ano6	- 36. 10807	129.		-0. 28	0. 781	- 294. 5618	222.	
	ano7	21. 16647	127. 7		0. 17	0. 869	- 234. 5062	276.	
	ano8	30. 29937	124. 1		0. 24	0. 808	- 218. 2653		. 864
	ano9	- 12. 76907	124. 8		-0.10	0. 919	- 262. 6847	237.	
	ano10	- 17. 82782	125. 6		-0.14	0. 888	- 269. 3431	233.	
	ano11	- 38. 96994	126.		-0.31	0. 760	- 292. 7257	214.	
	ano12	26. 90836	125. 7		0. 21	0. 831	- 224. 8062		. 623
	ano13	27. 81252	119. 3		0. 23	0. 817	- 211. 0954	266.	
	ano14	26. 05879	117. 3		0. 22	0. 825	- 208. 7969	260.	
	ano15	- 28. 65514	116. 2		- 0. 25	0. 806	- 261. 4479	204.	
	ano16	- 20. 3938	115. 8		-0.18	0. 861	- 252. 3874	211.	
	ano17	. 9819593	116. 2		0. 01	0. 993	- 231. 733	233.	
	ano18	21. 96068	114. 6 113.		0. 19 0. 35	0. 849 0. 729	- 207. 6005	251. 266.	
	ano19	39. 43192					- 187. 6448		
	_cons	- 56. 33982	99. 75	401	- 0. 56	0. 574	- 256. 0169	143.	33/3

ii) Caso em que coeficientes angulares são constantes, mas o intercepto varia com os indivíduos e com o tempo (uma *dummy* para cada empresa e para cada ano).

. reg y x2 x3	d2-d4 ano1-a	no19				
Source	SS	df	MS		Number of obs F(24, 55)	
Model Resi dual	6082748. 11 327398. 928		47. 838 . 70778		Prob > F R-squared Adj R-squared	= 0.0000 = 0.9489
Total	6410147. 04	79 8114	1. 1018		Root MSE	= 77. 154
у	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
x2	. 129307	. 0274237	4. 72	0.000	. 0743487	. 1842653
x3	. 3672492	. 0416591	8. 82	0.000	. 2837625	. 450736
d2	105. 2457	67. 68668	1. 55	0. 126	- 30. 40141	240. 8929
d3	341. 1008	24. 8116	13. 75	0.000	291. 3773	390. 8244
d4	220. 324	41. 16781	5. 35	0.000	137. 8219	302. 8262
ano1	134. 3636	72. 00957	1. 87	0.067	- 9. 946798	278. 674
ano2	87. 3297	66. 46131	1. 31	0. 194	- 45. 86174	220. 5211
ano3	29. 58592	66. 10801	0. 45	0. 656 0. 474	- 102. 8975	162. 0693
ano4	48. 12215	66. 82507	0. 72	0. 4/4	-85. 79829	182. 0426
ano5 ano6	- 7. 886558 51. 85022	63. 9173 63. 78342	- 0. 12 0. 81	0. 420	- 135. 9797 - 75. 9746	120. 2066 179. 6751
ano7	107. 7241	63. 45228	1. 70	0. 420	- 19. 43706	234. 8854
ano8	118, 3592	64. 92635	1. 70	0. 093	- 19. 43706 - 11. 75613	248. 4745
ano9	71. 99879	63. 47345	1. 13	0. 262	- 55. 20486	199, 2024
ano10	68. 47821	63. 65855	1. 08	0. 287	- 59. 09638	196, 0528
ano11	44. 28525	62. 83216	0. 70	0. 484	-81. 63321	170. 2037
ano12	104. 1942	61. 82815	1. 69	0. 098	- 19. 71216	228. 1006
ano13	100, 1916	62. 87224	1. 59	0. 117	- 25. 80715	226. 1904
ano14	92. 30316	63. 16828	1. 46	0. 150	- 34, 2889	218. 8952
ano15	31. 20783	62. 10854	0. 50	0. 617	- 93. 26046	155. 6761
ano16	35. 80472	61, 1856	0. 59	0. 561	- 86. 81396	158. 4234
ano17	47. 8422	57. 53413	0. 83	0. 409	- 67. 45878	163. 1432
ano18	57. 96435	56. 39349	1. 03	0. 309	- 55. 05073	170, 9794
ano19	54. 01372	54. 99911	0. 98	0. 330	- 56. 20695	164. 2344
_cons	- 359. 5819	82. 63602	- 4. 35	0. 000	- 525. 1882	- 193. 9756

Outras opções de modelos seria considerar que todos os coeficientes variam entre os indivíduos, isto é, utilizar *dummies* de inclinação. Todavia, deve-se ter cautela quanto ao uso de *dummies*, uma vez que um grande número delas reduz os graus de liberdade, além de aumentar a possibilidade de multicolinearidade.

Quanto à escolha entre o modelo da equação pool e cada uma das especificações apresentadas anteriormente, utiliza-se o teste F restrito.

5°) Modelo de efeitos fixos

. xtreg y x2 x3	, fe							
Fixed-effects (within) regression Group variable: \mathbf{id}					of obs = of groups =			
R-sq: within between overall	0.7304			Obs per	group: min = avg = max =	20.0		
corr(u_i, Xb)	= -0. 1001			F(2 , 74) Prob > I	= ? =			
у	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]		
x2 x3 _cons	. 1079481 . 3461617 -73. 84946	. 0175089 . 0266645 37. 52291	6. 17 12. 98 - 1. 97	0. 000 0. 000 0. 053	. 0730608 . 2930315 -148. 6155	. 1428354 . 3992918 . 9165759		
sigma_u 139.05116 sigma_e 75.288894 rho .77329633 (fraction of variance due to u_i)								
F test that all u_i =0: $F(3, 74) = 67.11$ Prob > F = 0.0000								

Os diferentes valores de R^2 indicam como o modelo se ajusta dentro das unidades (R^2_{within}), entre unidades ($R^2_{between}$) e no geral ($R^2_{overall}$). O termo $sigma_u$ é o

erro padrão de α_i e $sigma_e$ é o erro padrão de ε_{ii} ($sigma_e$). A expressão rho é uma estimativa da relação $Corr(\varepsilon_{ii}\varepsilon_{is}) = \frac{\sigma_{\alpha}^2}{\sigma_{\alpha}^2 + \sigma_{\varepsilon}^2}$, ou seja, a razão da variância de α_i para a variância do erro composto. O teste F na última linha é o teste utilizado para verificar se o modelo pool é mais adequado que o modelo de efeitos fixos (Ho: modelo pool é preferível ao modelo de efeitos fixos).

Efeitos fixos para unidades:

Efeitos fixos para tempo:

Para que o Stata reconheça que ele deve calcular o efeito fixo na variável de tempo, deve-se setar: **iis** para a variável de tempo e **tis** para a variável cross-section. Ou seja:

- . tis id
- . iis ano
- . qui xtreg y x2 x3, fe
- . predict ano_fe, u
- . list ano_fe

		41.	28. 87476
	ano_fe	42.	- 6. 184439
	uno_10	43.	- 50. 56469
1	28, 87476		
1.		44.	- 40. 81604
2.	- 6. 184439	45.	- 88. 95282
3.	- 50. 56469		
4.	- 40. 81604	46.	- 28. 25827
5.	- 88. 95282	47.	29. 01627
		48.	38. 14917
6.	- 28, 25827	49.	-4. 919267
7.	29. 01627		
		50.	- 9. 978021
8.	38. 14917		
9.	- 4. 919267	51.	-31. 12014
10.	- 9. 978021	52.	34. 75816
		53.	35. 66232
11.	-31. 12014	54.	33, 90859
12.	34. 75816	55.	- 20. 80534
13.	35. 66232	33.	- 20. 00334
14.	33. 90859	56.	- 12. 544
15.	- 20. 80534	57.	8. 831759
		58.	29. 81048
16.	- 12. 544	59.	47. 28172
17.	8. 831759	60.	7. 849801
18.	29. 81048		
19.	47. 28172	61.	28, 87476
20.	7. 849801	62.	- 6. 184439
۵0.	7.043001		
21.	00 07470	63.	- 50. 56469
	28. 87476	64.	-40.81604
22.	- 6. 184439	65.	- 88. 95282
23.	- 50. 56469		
24.	- 40. 81604	66.	- 28. 25827
25.	- 88. 95282	67.	29. 01627
		68.	38, 14917
26.	- 28. 25827	69.	-4. 919267
27.	29. 01627	70.	-9. 978021
28.	38. 14917	70.	- 9. 9/0021
29.	-4. 919267	~.	04 40044
		71.	-31. 12014
30.	- 9. 978021	72.	34. 75816
		73.	35. 66232
31.	- 31. 12014	74.	33. 90859
32.	34. 75816	75.	- 20. 80534
33.	35. 66232		
34.	33, 90859	76.	- 12. 544
35.	- 20. 80534	70.	8. 831759
55.	20.00034	77.	
36.	- 12. 544		29. 81048
		79.	47. 28172
37.	8. 831759	80.	7. 849801
38.	29. 81048	ļ	
39.	47. 28172		
40.	7. 849801		

6°) Modelo de efeitos aleatórios

- . tis ano
- . iis id
- . xtreg y x2 x3, re

. xtreg y x2 x3, re		
Random-effects GLS regression Group variable: id	Number of obs = Number of groups =	80 4
R-sq: within = 0.8068 between = 0.7303 overall = 0.7554	Obs per group: min = avg = max =	20 20. 0 20
Random effects $u_i \sim \textbf{Gaussian}$ $corr(u_i, X) = \textbf{0}$ (assumed)	Wald chi 2(2) = Prob > chi 2 =	317. 79 0. 0000

y	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
x2 x3 _cons	. 1076555 . 3457104 - 73. 03529	. 0168169 . 0265451 83. 94957	6. 40 13. 02 - 0. 87	0. 000 0. 000 0. 384	. 0746949 . 2936829 - 237. 5734	. 140616 . 3977378 91. 50284
sigma_u sigma_e rho	152. 15823 75. 288894 . 80332024	(fraction	of varia	nce due t	o u_i)	

7°) Escolha entre pool, efeitos fixos e efeitos aleatórios

Para realizar a escolha entre os modelos, utiliza-se os seguintes testes:

i) Teste de Chow

H0: modelo restrito (pooled)

H1: modelo irrestrito (efeitos fixos)

A estatística do teste F da linha inferior da estimativa de efeitos fixos, bem como seu respectivo p-valor indica que o modelo de efeitos fixos é melhor que o pool.

. xtreg y x2 x3, fe								
					of obs of group	= os =	80 4	
R-sq: within = 0.8068 between = 0.7304 overall = 0.7554 Obs per group: min = avg = max =							20 20. 0 20	
$corr(u_i, Xb) = \textbf{-0.1001}$							202.00	
у	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]	
x2 x3 _cons	. 1079481 . 3461617 -73. 84946	. 0175089 . 0266645 37. 52291	6. 17 12. 98 - 1. 97	0. 000 0. 000 0. 053	. 0730 . 2930 - 148. 6	315	. 1428354 . 3992918 . 9165759	
sigma_u sigma_e rho	139. 05116 75. 288894 . 77329633	(fraction	of varia	nce due to	o u_i)			
F test that all $u_i = 0$: $F(3, 74) = 67.11$ Prob > F = 0.0000								

ii) Teste de Hausman

H0: modelo de efeitos aleatórios

. qui xtreg y x2 x3, fe. estimates store fe

H1: modelo de efeitos fixos

```
. qui xtreg y x2 x3, re
. estimates store re
. hausman fe re

--- Coefficients --- (b) (B) (b-B) sqrt(diag(V_b-V_B))
fe re Difference S.E.

x2 .1079481 .1076555 .0002928 .0048738 .3461617 .3457104 .0004513 .0025204

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg
Test: Ho: difference in coefficients not systematic
chi2(2) = (b-B)'[(V_b-V_B)^(-1)](b-B)
Prob>chi2 = 0.9678
```

Pela estatística do teste de hausman, tem-se que o modelo de efeitos aleatórios é melhor que o de efeitos fixos.

iii) Teste LM de Breusch-Pagan

H0: modelo pooled

H1: modelo de efeitos aleatórios

O resultado do teste indica que efeitos aleatórios são preferíveis ao modelo pool.

8º) Detecção de autocorrelação e heterocedasticidade em painel

i) autocorrelação (teste de Wooldridge)

Instalação: findit xtserial, clicar em st0039 e depois click here to install

Rejeita-se a hipótese nula de ausência de autocorrelação.

ii) Teste de Wald para heterocedasticidade em grupo (efeitos fixos)

Instalação: findit xttest3, clicar em st0004 e depois click here to install

```
. qui xtreg y x2 x3, fe
. xttest3
Modified Wald test for groupwise heteroskedasticity
in fixed effect regression model
HO: sigma(i)^2 = sigma^2 for all i
chi2 (4) = 240.33
Prob>chi2 = 0.0000
```

Rejeita-se a hipótese nula de ausência de heterocedasticidade.

A correção desses problemas pode ser feita por estimações considerando erros padrão robustos ou por bootstrap.