Folha 6B - Integral de Riemann

1. Sabendo que $\int_{1}^{4} f(x) dx = 3$ e que $\int_{2}^{4} f(x) dx = 5$, determine:

(a) $\int_{1}^{4} f(t) dt$; (b) $\int_{4}^{2} f(t) dt$; (c) $\int_{1}^{2} f(x) dx$; (d) $\int_{1/2}^{2} f(2x) dx$.

2. Seja $f:[0,5]\longrightarrow \mathbb{R}$ a função representada na figura ao lado. Recorrendo ao significado geométrico do integral em termos de área, calcule

3. Apresente um exemplo de:

(a) uma função $f: [0,2] \longrightarrow \mathbb{R}$ tal que $\int_0^2 f(x) dx = 0$ e $f(x) \neq 0, \forall x \in [0,2];$

(b) duas funções $f, g: [0, 2] \longrightarrow \mathbb{R}$ tais que $\int_0^2 f(x) dx = \int_0^2 g(x) dx$ e $f(x) \neq g(x)$, $\forall x \in [0, 2].$

4. Calcule os seguintes integrais definidos:

(a) $\int_{0}^{3} \sqrt{9-x^2} \ dx$;

(b) $\int_0^1 \ln(x^2+1)dx$;

(c) $\int_0^{\pi} x \sin x \ dx$;

(d) $\int_0^{\sqrt{2}/2} \arcsin x \ dx$;

(e) $\int_{-2}^{2} \sqrt{|x|} dx$;

(f) $\int_{-1}^{1} \frac{1}{1+x^2} dx$;

(g)
$$\int_3^4 \frac{1-4x^3}{x-x^4} dx$$
;

(h)
$$\int_0^{\frac{\pi}{2}} \sin 2x \cos 5x \ dx;$$

(i)
$$\int_0^1 x \arctan x^2 dx$$
;

(j)
$$\int_0^3 2 - |x| \ dx$$
;

(k)
$$\int_0^2 \frac{2x-1}{(x-3)(x+1)} \ dx;$$

$$(1) \int_{-3}^{2} \sqrt{|x|} \ dx;$$

(m)
$$\int_{e}^{e^2} \frac{\ln(\ln x^2)}{x} dx;$$

(n)
$$\int_0^8 \frac{\sqrt[3]{x}}{\sqrt[3]{x^2} + 1} dx;$$

(o)
$$\int_0^{2\pi} |\cos x| \ dx;$$

(p)
$$\int_{-1}^{2} x|x| \ dx;$$

(q)
$$\int_0^1 g(x) dx$$
, com $g(x) = \begin{cases} x & \text{se } 0 \le x \le \frac{1}{2}, \\ -x & \text{se } \frac{1}{2} < x \le 1; \end{cases}$

(r)
$$\int_0^1 \frac{1}{(1+x^2)^2} dx$$
, utilizando a mudana de varivel definida por $x=\operatorname{tg} t$.