Time Series Forecasting for SFO Air Passengers

2023-06-14

1. Load Packages

```
library(fpp3)
## — Attaching packages ·
                                                                         fpp3
0.5 —
## √ tibble
                 3.2.1

√ tsibble

                                          1.1.3
## √ dplyr
                 1.1.2

√ tsibbledata 0.4.1

## √ tidyr
                 1.3.0

√ feasts
                                          0.3.1
## √ lubridate

√ fable

                 1.9.2
                                           0.3.3
## √ ggplot2

√ fabletools 0.3.3

                 3.4.2
## — Conflicts
                                                                   fpp3_confli
cts —
## X lubridate::date()
                           masks base::date()
## X dplyr::filter()
                           masks stats::filter()
## X tsibble::intersect() masks base::intersect()
## X tsibble::interval() masks lubridate::interval()
## X dplyr::lag()
                           masks stats::lag()
## X tsibble::setdiff()
                           masks base::setdiff()
## X tsibble::union()
                           masks base::union()
library(tsibble)
library(readr)
library(tseries)
## Registered S3 method overwritten by 'quantmod':
     as.zoo.data.frame zoo
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
       last_plot
## The following object is masked from 'package:stats':
##
##
      filter
```

```
## The following object is masked from 'package:graphics':
##
## layout
library(knitr)
library(officedown)
```

2. Load data from SFO air passenger .csv file

```
## Rows: 50,730
## Columns: 12
## $ operating airline
                               <chr> "ATA Airlines", "ATA Airlines", "ATA A
irli…
## $ operating_airline_iata_code <chr> "TZ", "TZ", "TZ", "AC", "AC", "CA", "C
## $ published airline
                                 <chr> "ATA Airlines", "ATA Airlines", "ATA A
irli…
## $ published airline iata code <chr>> "TZ", "TZ", "TZ", "AC", "AC", "CA", "C
                                  <chr> "Domestic", "Domestic", "Domestic", "I
## $ geo_summary
nter...
                                  <chr> "US", "US", "Canada", "Canada",
## $ geo region
"Asi...
## $ activity type code
                                  <chr> "Deplaned", "Enplaned", "Thru / Transi
## $ price_category_code
                                  <chr> "Low Fare", "Low Fare", "Low Fare", "O
ther...
                                  <chr> "Terminal 1", "Terminal 1", "Terminal
## $ terminal
1", ...
                                  <chr> "B", "B", "B", "B", "B", "G", "G", "A"
## $ boarding area
, "A...
                                  <dbl> 27271, 29131, 5415, 35156, 34090, 6263
## $ passenger_count
, 55...
## $ year
                                  <date> 2005-07-01, 2005-07-01, 2005-07-01, 2
005-...
```

3. Data Exploration

- 3.1.1.1. Air Passengers Traffic at SFO
- 3.1.1.2. Air Passengers Traffic at SFO by Activity Type

3.1.1.3. Air Passengers Traffic at SFO by Geography

```
## Warning in RColorBrewer::brewer.pal(N, "Set2"): minimal value for n is 3,
returning requested palette with 3 different levels
## Warning in RColorBrewer::brewer.pal(N, "Set2"): minimal value for n is 3,
returning requested palette with 3 different levels
```

3.1.1.4. Geo Summary by Passengers

Selecting by percent

3.1.1.5. Top 10 Operating Airlines by Percentage

Table 1: sfo_top_passenger table

operating_airline	total	percent
United Airlines	338.15071	30.1%
SkyWest Airlines	95.37713	8.5%
United Airlines - Pre 07/01/2013	89.15942	7.9%
American Airlines	80.36718	7.2%
Delta Air Lines	79.17331	7%
Southwest Airlines	73.45913	6.5%
Virgin America	66.76843	5.9%
Alaska Airlines	52.80735	4.7%
JetBlue Airways	30.02645	2.7%
US Airways	18.45011	1.6%

4. Data Transformation

4.1.1.1. Convert to tisbble format *Table 2:* sfo_passenger table

year	total
2010 Jan	5.570932
2010 Feb	5.030722
2010 Mar	6.211916
2010 Apr	6.278118
2010 May	6.760710
2010 Jun	7.225772

4.1.1.2. Box-Cox transformation for lambda

Monthly SFO Air Passengers with λ =1.69

Note: We tried implementing Box-Cox transformation, but it did not have much impact on the final results, hence while applying final model fitting we used non transformed data.

4.1.1.3. Decomposition using STL

Decomposition of SFO Air Passengers using STL

4.1.1.4. KPSS test for differencing

kpss_stat

kpss_pvalue

0.6012911	0.02251899
ndiffs	
1	

p-value (0.02) is significant. Reject null hypothesis. It indicate that the series is not stationary. Therefore a number difference required to make a time series stationary.

4.1.1.5. Dickey-Fuller test

```
## [1] 0.3541204
```

4.1.1.6. Split train and test set

```
## [1] "Train Min: 2010 Jan Train Max: 2021 Dec"
## [1] "Test Min: 2022 Jan Test Max: 2022 Dec"
```

4.1.1.7. Examine ACF and PACF plots for the differenced

```
## Warning: Removed 1 row containing missing values (`geom_line()`).
## Warning: Removed 1 rows containing missing values (`geom_point()`).
```



```
## Warning: Removed 12 rows containing missing values (`geom_line()`).
## Warning: Removed 12 rows containing missing values (`geom_point()`).
```


5. Model Fitting

5.1.1.1. Fit the models (ets, arima)

Model name Orders

Model name	Orders
Ets_auto	<ets(a,ad,a)></ets(a,ad,a)>
Ets_ses	<ets(a,a,n)></ets(a,a,n)>
Ets_hw_mul	<ets(m,a,m)></ets(m,a,m)>
Ets_damped_add	<ets(a,ad,a)></ets(a,ad,a)>
Ets_damped_mul	<ets(a,ad,m)></ets(a,ad,m)>
Arima_stepwise	<arima(1,0,2)(2,0,0)[12] mean="" w=""></arima(1,0,2)(2,0,0)[12]>
Arima_search	<arima(1,0,2)(2,0,0)[12] mean="" w=""></arima(1,0,2)(2,0,0)[12]>
Arima_311	<arima(3,1,1)(2,0,0)[12]></arima(3,1,1)(2,0,0)[12]>
Arima_410	<arima(4,1,0)(0,0,2)[12]></arima(4,1,0)(0,0,2)[12]>
Arima_012	<arima(0,1,2)(0,0,2)[12]></arima(0,1,2)(0,0,2)[12]>
Arima012011	<arima(0,1,2)(0,1,1)[12]></arima(0,1,2)(0,1,1)[12]>

Model name	Orders
Arima210011	<arima(2,1,0)(0,1,1)[12]></arima(2,1,0)(0,1,1)[12]>
Arima011011	<arima(0,1,1)(0,1,1)[12]></arima(0,1,1)(0,1,1)[12]>
Arima212011	<arima(2,1,2)(0,1,1)[12]></arima(2,1,2)(0,1,1)[12]>
Arima210111	<arima(2,1,0)(1,1,1)[12]></arima(2,1,0)(1,1,1)[12]>

6. Model Evaluation Metrics

6.1.1.1. Accuracy measures of the forecast

Warning: The future dataset is incomplete, incomplete out-of-sample data will be treated as missing.

24 observations are missing between 2023 Jan and 2024 Dec

.model	.type	RMSE	MAE	MAPE
Ets_ses	Test	1.717613	1.634137	35.92445
Ets_damped_mul	Test	1.795588	1.673425	37.11414
Arima011011	Test	1.800386	1.659921	35.86206
Arima012011	Test	1.813586	1.674685	36.15545
Arima210011	Test	1.820583	1.679460	36.38118
Arima210111	Test	1.923835	1.738153	38.92653
Arima212011	Test	1.985007	1.800789	40.93028
Ets_auto	Test	2.191658	1.918942	44.33543
Ets_damped_add	Test	2.191658	1.918942	44.33543
Arima_012	Test	2.637478	1.853172	29.97824
Arima_410	Test	2.671977	1.882842	30.48522
Arima_search	Test	2.733989	1.847116	29.07042
Arima_stepwise	Test	2.733989	1.847116	29.07042
Arima_311	Test	3.079463	2.311271	39.14233
Ets_hw_mul	Test	3.311143	2.515613	63.20995

- RMSE (Root Mean Squared Error): measures the average difference between the forecasted and the actual values, taking into account the squared differences.
- The lowest RMSE indicates better accuracy.

6.1.1.2. Summary report for fitted time series models

Warning in report.mdl_df(selected_models): Model reporting is only support
ed
for individual models, so a glance will be shown. To see the report for a
specific model, use `select()` and `filter()` to identify a single model.

.model	AIC	AICc	BIC
Arima012011	250.7273	251.0448	262.2281
Arima210011	252.4017	252.7191	263.9025
Arima011011	253.9418	254.1308	262.5674
Ets_damped_mul	585.9072	591.3792	639.3638
Ets_ses	670.4162	670.8510	685.2653

AICc (Akaike Information Criterion corrected): a lowest AICc value indicates a best-fitting model.

6.1.1.3. Ljung-Box test

Series: total

Model: ARIMA(0,1,2)(0,1,1)[12]

##

.model	lb_stat	lb_pvalue	
Arima012011	11.14494	0.1324204	

For non-seasonal component, ARIMA(0,1,2) has 2 MA terms, for seasonal ARIMA(0,1,1) has 0 MA term estimated. Therefore the degree of freedom should be 5.

Since the p-value > 5%, not reject H0 at a significant level. The residuals could be considered white noise series and the model has adequately captured the underlying data.

6.1.1.4. Model selection and forecast

2015 Jan

0 -2010 Jan

2020 Jan

year

2025 Jan

[1] 5.155015 4.517561 5.251238 5.018928 5.594702 6.259479 6.739579 6.7650 69

```
## [9] 5.652866 5.992561 5.458187 5.673563 4.981288 4.387225 5.120902 4.8885 92
## [17] 5.464365 6.129142 6.609243 6.634733 5.522530 5.862225 5.327850 5.5432 26
## [25] 4.850952 4.256889 4.990566 4.758255 5.334029 5.998806 6.478907 6.5043 96
## [33] 5.392194 5.731889 5.197514 5.412890
```

6.1.1.5. Inverse root test

This inverse toot test implies that the model is stable and a good fit to the data. Also the model has capturing the underlying patterns of the time series.