Laboratorium 11

Odszumianie sygnału funkcji przy użyciu FFT – splot funkcji

Bartosz Balawender

30.05.2021

1.Cel ćwiczenia

Celem ćwiczenia było wygładzenie zaszumionego sygnału za pomocą szybkiej transformaty Fouriera (FFT).

2.Opis problemu

Naszym zadaniem na laboratoriach było odszumienie sygnału danego funkcją korzystając z FFT:

$$f(t) = f_0(t) + \Delta$$

Gdzie:

- $f_0(t) = \sin(\omega t) + \sin(2\omega t) + \sin(3\omega t)$
- Δ jest liczbą pseudolosową z zakresu [-0.5, 0.5]

Jako wynik powinniśmy z funkcji f(t) powinniśmy otrzymać funkcję zbliżoną do $f_0(t)$

3. Opis metody

Splot dwóch funkcji możemy zdefiniować jako:

$$(f \cdot g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau) d\tau$$

Gdzie funkcja f(t) jest sygnałem, a funkcja g(t) jest to funkcja wagowa, to w takim wypadku splot tych dwóch funkcji możemy traktować jako uśrednienie sygnału funkcji f(t) funkcją wagową g(t). Do przeprowadzenia obliczeń używamy szybkiej transformaty Fouriera:

$$FFT\{f(t) * g(t)\} = FFT\{f\} \cdot FFT\{g\} = f(k) \cdot g(k)$$
$$f * g = FFT^{-1}\{f(k) \cdot g(k)\}$$

Jako parametry początkowe przyjęliśmy:

- N = 2^k, gdzie k = 8, 10, 12 i jest ilością węzłów (zmienia się w zależności od podanej ilości węzłów)
- T = 1.0 okres drgań
- t_{max} = 3T maksymalny okres czasu trwania sygnału
- dt = t_{max} / N krok czasowy
- σ = T/20 wartość potrzebna do funkcji Gaussa

Jako funkcję wagową przyjęliśmy funkcje Gaussa o wzorze:

$$g_0(t) = \frac{1}{\sigma\sqrt{2 \cdot \Pi}} e^{\left(-\frac{t^2}{2\sigma^2}\right)}$$

Po ustawieniu warunków początkowych zaczęliśmy od wypełnienia 3 wektorów o długości [2 * N] zgodnie z następującymi wzorami:

- $f(2 \cdot i 1) = f_0(t) + \Delta$ w parzystych komórkach wektora f wpisujemy wartości rzeczywiste sygnału dla kolejnych chwil czasowych $t_1 = dt \cdot (i 1)$, (i = 1,2,3..,N-1)
- $f(2 \cdot i) = 0$ parzystych komórkach wektora f wpisujemy 0 (i = 1,2,3..,N-1)

Poza wektorem f tworzymy dwa wektory g1 oraz g2, które są "połówkami" pełnej funkcji gaussowskiej, ponieważ będziemy operować dla chwil czasowych $t \in [0, t_{max}]$:

- $g_1(2 \cdot i 1) = g_2(2 \cdot i) = g_0(t)$
- $g_1(2 \cdot i 1) = g_2(2 \cdot i) = 0$

Gdy mamy już tak zdefiniowane funkcję, możemy przejść do obliczania transformat FFT funkcji f(t) oraz g(t). Transformaty funkcji $g_1(k)$ liczymy stosując wzór:

$$g_1(k) = FFT\{g(t > 0)\} = \frac{1}{N} \sum_{i=1}^{N} g(t_i) \exp\left(-\frac{2\Pi lki}{N}\right)$$

Natomiast licząc transformatę $g_2(k)$ należy zmienić znak przy t na " – " ze względu na symetrię:

$$g_2(k) = FFT\{g(t < 0)\} = \frac{1}{N} \sum_{i=1}^{N} g(t_i) \exp\left(+\frac{2\Pi lki}{N}\right) = FFT^{-1}\{g(t > 0)\}$$

A więc do wyliczenia splotu należy użyć sumy tych dwóch transformat:

$$g(k) = g_1(k) + g_2(k) = FFT\{g(t)\} + FFT^{-1}\{g(t)\}$$

Następnie, wiemy, że w tablicach trzymających wartości funkcji f(t) oraz g(t) naprzemiennie umieściliśmy wartości rzeczywiste i urojone liczb zespolonych. A więc, aby obliczyć splot musimy obliczyć iloczyn dwóch liczby zespolonych ($z_1=a_1+b_1$ oraz $z_2=a_2+b_2$) zgodnie ze wzorami :

$$a_{1} = f[2 \cdot i - 1] //Re\{f(k_{i})\}$$

$$b_{1} = f[2 \cdot i] //Im\{f(k_{i})\}$$

$$a_{2} = g[2 \cdot i - 1] //Re\{g(k_{i})\}$$

$$b_{2} = g[2 \cdot i] //Im\{g(k_{i})\}$$

$$f[2 \cdot i - 1] = a_{1} \cdot b_{1} - a_{2} \cdot b_{2}$$

$$f[2 \cdot i] = a_{1} \cdot b_{1} + a_{2} \cdot b_{2}$$

Po wykonaniu powyższych operacji naszą tablicę $f[\]$ należy poddać transformacji odwrotnej (FFT⁻¹), aby uzyskać rzeczywistą tablicę zawierającą splot.

4.Wyniki

Na poniższych wykresach przedstawiony jest obliczony za pomocą FFT splot ("denoised") zestawiony z analityczną funkcją f_0 oraz z jej zaszumioną wersją, czyli f przed modyfikacjami.

Wykres 1. Zestawienie wyników z analityczną funkcją dla k = 8, N = 2^8 węzłów

Wykres 3. Zestawienie wyników z analityczną funkcją dla k = 12, $N = 2^{12}$ węzłów

Możemy również zauważyć, że wykresy wraz ze wzrostem liczby węzłów stają się coraz dokładniejsze. Dla k =10, 12 wykres można już uznać za wystarczająco gładki.

Wykresy sygnału niezaburzonego oraz znormalizowanego splotu nie pokrywają się dla każdej wartości t_i . Jest to spowodowane nieodpowiednim dobraniem odchylenia standardowego funkcji wagowej g. Gdy "sigma" będzie zbyt mała, nasze przekształcenie będzie dokładniejsze, lecz jego wykres utraci gładkość, z drugiej strony jeśli przyjmiemy za ten parametr wartość zbyt dużą nasz wynik będzie za bardzo odbiegał o prawidłowego.

5. Wnioski

Po otrzymanych wynikach można stwierdzić, że odszumianie sygnału przy użyciu splotu funkcji, który obliczamy za pomocą FFT jest bardzo dobrym narzędziem i pozwala na otrzymani satysfakcjonujących rezultatów. Trzeba jednak pamiętać, że aby otrzymać poprawne wyniki należy o staranne dopasowanie odchylenia standardowego funkcji gaussowskiej oraz ustawić możliwie jak największą liczbę węzłów w celu otrzymania jak najgładszej funkcji.