Manual para uso do programa eDNAnalyzer

O software é dividido em duas partes "Processamento inicial e aplicação do threshold" e "Construção das tabelas de resultados consolidados", cada uma dessas com um arquivo de entrada específico.

Processamento inicial e aplicação do threshold

Esse processo irá separar a tabela proveniente da etapa de atribuição taxonômica, calculará o *threshold* de *contigs* (valor padrão 0,05%) para cada amostra sequenciada, salvará uma lista com o *threshold* de cada amostra de sequenciamento, eliminará as OTUS que estiverem abaixo do *threshold* e salvará uma nova tabela com as OTUS eliminadas.

Arquivo de entrada:

Monte uma tabela (em formato .xlsx ou .csv) contendo os resultados da atribuição taxonômica com as seguintes colunas:

- Amostra_sequenciamento (identificação das amostras de sequenciamento)
- Area_amostrador (indicando a área de coleta e o amostrador; certifiquese de que tanto as áreas quanto os amostradores sejam identificados de forma não ambígua para evitar erros durante a separação. Use um underscore para separar a área do amostrador: área_amostrador).
- Ponto (indicando o ponto de coleta)
- N contigs (número de contigs da OTU)
- Taxon (táxon definido a partir da atribuição taxonômica).

Outras colunas com nomes diferentes também podem ser incluídas sem problema, como mostrado no exemplo a seguir:

Amostra_sequenciamento	Tag	Area_amostrador	Ponto	Alíquota	Otu	N_contigs	id_%	Taxon
C1	TA	A1_MC	1	1	. 1	89654	100	Alouatta belzebul
C1	TA	A1_MC	1	1	2	542	100	Bos taurus
C1	TA	A1_MC	1	1	. 3	20	98.45	Bradypus variegatus
C1	TB	A1_MC	1	2	1	75234	100	Homo sapiens
C1	TB	A1_MC	1	2	2	400	99.95	Alouatta belzebul
C1	TB	A1_MC	1	2	3	45	98.98	Coendou prehensilis
C2	TA	A2_MC	2	1	. 1	47219	100	Homo sapiens
C2	TA	A2_MC	2	1	2	371	100	Bos taurus
C2	TB	A2_MC	2	2	1	65597	100	Sapajus flavius
C2	TB	A2_MC	2	2	2	586	97.56	Coendou sp.
C3	TA	A1_MQ	1	0	1	56076	100	Alouatta belzebul
C3	TA	A1_MQ	1	0	2	692	98.45	Gracilianus agilis
C3	TB	A1_MQ	2	0	1	66490	100	Homo sapiens
C3	TB	A1_MQ	2	0	2	293	98.68	Alouatta belzebul
C3	TB	A1_MQ	2	0	3	198	96.45	Didelphis sp.
C4	TA	A1_AG	1	0	1	79758	99.78	Bos taurus
C4	TA	A1_AG	1	0	2	550	100	Sylvilagus brasiliensis
C4	TA	A1_AG	1	0	3	60	98.45	Bradypus variegatus
C4	TB	A2_AG	1	0	1	71586	100	Homo sapiens
C4	TB	A2_AG	1	0	2	509	100	Alouatta belzebul

A partir daqui abra o programa e siga os seguintes passos:

Passo 1: Selecione o idioma

Passo 2: Você pode acessar o manual do programa clicando no botão "Abrir manual"

Passo 3: Clique no botão "Processamento da inicial a aplicação do threshold"

Passo 4: Selecione a tabela

Assim que selecionar o arquivo o seu caminho será exibido, confira se está tudo certo.

Passo 5: O valor padrão para o *threshold* é de 0,05%, porém se desejar usar outro valor informe na caixa de texto usando ponto (.) como separador decimal

Passo 6: Clique em "RODAR"

Processamento primário e threshold	- □ x							
Processamento inicial e aplicação de threshold								
Selecione um arquivo:	Clique para selecionar							
Arquivo selecionado C:/Users/leow/OneDrive/CEP/resultados_seq_dez23/resultados_16s.xlsx								
Indique o threshold em porcentagem: (use ponto como separador decimal, valor padrão 0.05)								
RODAR								

- Passo 7: Salve a tabela com o processamento que foi feito através do threshold.
- Passo 8: Salve a tabela com as OTUs que foram eliminadas.
- **Passo 9:** Salve a tabela com a lista de *threshold* calculados por amostra de sequenciamento.

Todas as tabelas podem ser salvas em formato .xlsx e .csv.

Dessa forma você terá uma tabela semelhante a tabela que utilizou como arquivo de entrada, porém com a remoção das OTUs com a quantidade de contigs abaixo do threshold.

Construção das tabelas de resultados consolidados

Esse processo irá criar tabelas com os resultados, as listas de espécies com o seu número de detecções e de *contigs*. As tabelas poderão ser geradas separando as listas por amostrador, por área ou por ambos.

Arquivo de entrada: O arquivo de entrada é a tabela (em formato .xlsx ou .csv) com os resultados do processo anterior levemente alterada, deverá ser acrescentada uma coluna nomeada **OTUFinal**, que deverá conter a atribuição taxonômica definitiva após revisão dos resultados do processo anterior.

A partir daqui siga os seguintes passos:

Passo 1: Clique no botão "Construção das tabelas de resultados consolidados"

Passo 2: Selecione a tabela

Assim que selecionar o arquivo o seu caminho será exibido, confira se está tudo certo.

Passo 3: Após isso, selecione com qual critério deseja separar seus resultados, por amostrador, por área ou por ambos.

Passo 4: Caso tenha selecionado a opção "Amostrador", indique no próximo campo como identificou seus amostradores na tabela, separe-os por um Enter, de maneira que figuem um debaixo do outro.

Se não selecionou a opção "Amostrador" no passo anterior deixe esse campo em branco.

Passo 5: Clique em "RODAR"

Passo 6: Salve a tabela com uma lista geral de táxons.

Passo 7: Salve as tabelas com as listas finais filtradas de acordo com as escolhas. Para salvar em formato .csv escolha a opção de salvar no formato .zip, assim as tabelas serão geradas em um arquivo compactado.

Todas as tabelas podem ser salvas em formato .xlsx e .csv.

Dessa forma você terá tabelas com sua lista final de táxons com informações sobre o número de *contigs* que aquele táxon apresentou e quantas vezes foi detectado.