## 圆的性质-1

## 一、知识要点

记号和约定:设  $Pow(P,\omega) = OP^2 - R^2$  为点 P 对圆  $\omega$  的幂,其中 O,R 分别为  $\omega$  的圆心和 半径。设 O(ABC) 为  $\triangle ABC$  的外接圆。

性质 1. (四点共圆的等价条件) 如图,ABCD 四点共圆等价于下列六个条件中的任意一个:  $\angle BAC = \angle BDC$ ,  $\angle ABD = \angle ACD$ ,  $\angle ADB = \angle ACB$ ,  $\angle DAC = \angle DBC$ ,  $\angle ABC = \pi - \angle ADC$ ,  $\angle BAD = \pi - \angle BCD$ 。 它们可以划分成三组: 第 1、2 个,第 3、4 个,第 5、6 个。每组的两个条件等价是平凡的,不同组之间的条件等价不平凡,需要使用 ABCD 四点共圆来推导。



定理 1. (圆幂定理) (1) 相交弦定理,切割线定理,割线定理可以统一表述为: 过平面任意一点 P 任作一直线与圆  $\omega$  交于点 A, B, 则  $\overline{PA} \cdot \overline{PB} = \operatorname{Pow}(P, \omega)$ ,上式左边为线段的有向长度之积; (2) 上述命题的逆命题也成立: 设直线 AB 与直线 CD 交于点 P,且  $\overline{PA} \cdot \overline{PB} = \overline{PC} \cdot \overline{PD}$ ,则 A, B, C, D 四点共圆。

性质 2. 设两圆  $\odot O_1$ ,  $\odot O_2$  相交于 A,B 两点,过 B 点作一直线分别交两圆于 C,D,作另一直线分别交两圆于 E,F,则  $\triangle ACD \hookrightarrow \triangle AEF \hookrightarrow \triangle AO_1O_2$ ,  $\triangle AEC \hookrightarrow \triangle AFD$ 。

定理 2. (根轴定理) 若两圆圆心不重合,则到这两个圆的幂相等的点的轨迹是一条直线,称为这两圆的根轴。两圆的根轴垂直于两圆的连心线。当两圆相交时,它们的根轴为两圆公共弦所在直线。当两圆相切时,它们的根轴是过切点的公切线。





定理 3. (根心定理) 对平面上任意三个非同心的圆,它们两两之间的根轴共三条直线要么重合,要么平行,要么交于一点。

推论 1. (Davis 引理)在 $\triangle ABC$ 中, $A_1,A_2$ 在BC上, $B_1,B_2$ 在CA上, $C_1,C_2$ 在AB上,且满足  $A_1,A_2,B_1,B_2$  四点共圆, $A_1,A_2,C_1,C_2$  四点共圆, $B_1,B_2,C_1,C_2$  四点共圆。则  $A_1,A_2,B_1,B_2,C_1,C_2$  六点共圆。



定理 4. (三角形的密克定理)  $\triangle ABC$  中,D,E,F 分别在直线 BC,CA,AB 上,则  $\bigcirc (AEF)$  ,  $\bigcirc (BFD)$ , $\bigcirc (CDE)$  交于一点 P , 称为  $\triangle ABC$  (中关于点 D,E,F )的密克点。

定理 5. (四边形的密克定理) 四边形 ABCD 中, AB 交 CD 于点 E , AD 交 BC 于点 F ,则  $\odot(ABE)$ , $\odot(CDE)$ , $\odot(ADF)$ , $\odot(BCF)$  交于一点 M ,称为四边形 ABCD 的密克点。事实上,此时 M 为  $\triangle ABF$  中关于点 C ,D ,E 的密克点。



性质 3. A,B,C,D 四点共圆当且仅当 M 在 EF 上。

## 二、例题精讲

例 1. (Conway 圆)如图,点 D,E,F,G,H,I 分别在  $\triangle ABC$  三边延长线上,且  $AD=AE=BC\ , \quad BF=BG=AC\ , \quad CH=CI=AB\ .$  求证: D,E,F,G,H,I 六点共 圆。

例 2. 过圆内接四边形各边中点作对边垂线,则四条垂线交于一点。



例 3. AH 为  $\triangle ABC$  的边 BC 上的高,D 为 BC 的中点,L 为 AD 的中点, $\bigcirc (DLH)$  与 BL,CL 分别交于点 N 和 M 。求证:LH,BM,CN 交于一点。

例 4.  $\triangle ABC$ 外接圆为 $\bigcirc O$ , M 为 AB 中点, $\bigcirc O$  的直径 KL 垂直于 AB 。一个过 M ,L 的圆与 KC 交于 P ,Q ( P 更靠近 C )。  $\triangle KMQ$  的外接圆与 LQ 的延长线交于点 R 。求证: A ,B ,P ,R 四点共圆。



例 5.  $\triangle ABC$ 中, $AB \neq AC$ ,O 为它的外心, $\angle BAC$  的平分线与BC 交于点D,点E 与点D 关于BC 中点M 对称。过D,E 分别作BC 的垂线,与AO,AD 分别交于点X,Y。求证:B,X,C,Y四点共圆。

例 6. (八点圆定理) 如图, $AC \perp BD \mp O$ ,过O作四边形ABCD各边的垂线分别交各组对边于点E,E',F,F',G,G',H,H'。求证:上述八点共圆。



例 7. (江泽民定理)任意一个五角星,每个角上交出一个小三角形,作出五个三角形的外接圆,考察相邻两圆除去边上交点之外的另一个交点,共五个点。求证:这五点共圆。例 8. 若  $\triangle ABC$  中 D, E, F 分别在 BC, CA, AB 上,且  $\triangle ABC$   $\backsim \triangle DEF$  。求证:

 $BC \leq 2EF$ 



例 9. 以 $\triangle ABC$ 的边 AB 为直径作圆,交  $BC \mp D$ ,交  $\angle BAC$  的平分线于 E 。过 C 作直线 AE 的垂线,垂足为 F ,点 M 是 BC 的中点。求证: D, E, F, M 四点共圆。

例 10.  $\bigcirc O_1$ 与 $\bigcirc O_2$ 相交于A,B两点,过A作任一直线分别再交 $\bigcirc O_1$ , $\bigcirc O_2$ 于C和D,过C作 $\bigcirc O_1$ 的切线,过D作 $\bigcirc O_2$ 的切线,两切线相交于P。点E在线段CD上,AC=DE。求证: $\angle CPB=\angle DPE$ 。



例 11.  $\Box ABCD$  的对角线相交于O,圆  $c_1$  经过点 A 和O,且与 BD 相切,圆  $c_2$  经过点 B 和O,且与 AC 相切, $c_1$  与  $c_2$  相交于O 和P, $c_1$  交 AD 于A 和Q, $c_2$  交 BC 于B 和R 。 求证:点 O 是  $\triangle PQR$  的外心。

例 12. A,B,C,D四点共圆,过C和D作任一圆分别交直线AD,BD于E,F (均不与D 重合),过E作AB的平行线交直线BD于G。求证:  $\frac{BF}{FG} = \frac{BC}{CD} \cdot \frac{AD}{AB}$ 。



例 13.  $\bigcirc O_1$ 与 $\bigcirc O_2$ 相交于P和Q,直线AB与 $\bigcirc O_1$ 相切于A,与 $\bigcirc O_2$ 相切于B。过P作 $\bigcirc O_1$ 的切线交 $\bigcirc O_2$ 于C,直线AP与BC相交于R。求证:直线BP,BR均与 $\triangle PQR$ 的外接圆相切。

例 14. 给定  $\triangle ABC$ , M 是边 BC 上的动点,线段 BM 的中垂线与直线 AB 相交于 P ,线段 CM 的中垂线与直线 AC 相交于 Q 。求证:  $\bigcirc (APQ)$  经过一个异于 A 的定点。

