Science of Science Summer School School Day 4: Deep Learning Recurrent Neural Networks

Daniel E. Acuna
Syracuse University

Agenda

- Pytorch
- Defining a model in Pytorch
- Multilayer perceptron
- Future steps

Spark does not have modern layers, activations, and optimization methods

- Modern deep learning uses other type of layers:
 - Convolutional Layers
 - Recurrent layers
 - Pooling layers
- Other types of activations that do not get stuck during learning
 - Rectified Linear Unit (ReLU)
 - Tangential Hyperbolic (Tanh)
- Other optimization algorithms:
 - ADAM, AdaGrad, RMSProp

```
b = w1 * a

c = w2 * a

d = (w3 * b) + (w4 * c)

L = f(d)
```

```
b = w1 * a

c = w2 * a

d = (w3 * b) + (w4 * c)

L = f(d)
```

$$b = w1 * a$$

 $c = w2 * a$
 $d = (w3 * b) + (w4 * c)$
 $L = f(d)$

$$b = w1 * a$$

 $c = w2 * a$
 $d = (w3 * b) + (w4 * c)$
 $L = f(d)$

$$b = w1 * a$$

 $c = w2 * a$
 $d = (w3 * b) + (w4 * c)$
 $L = f(d)$

$$dL/dc = dL/dd * dd/dc$$

What about dL / da?

$$b = w1 * a$$

 $c = w2 * a$
 $d = (w3 * b) + (w4 * c)$
 $L = f(d)$

What about dL / da?

$$b = w1 * a$$

 $c = w2 * a$
 $d = (w3 * b) + (w4 * c)$
 $L = f(d)$

We have two paths L->d->b->a and L->d->c->a so we add them:

dL/da = dL/dd dd/dc dc/da + dL/dd dd/db db/da

Software

 Computer packages for deep learning automatically compute and store these derivative graphs

Tensorflow (Google)

- You have to predefine your computation ("similar" to Spark Dataframes)
- You find bugs only after you execute your code
- Client-server architecture: Python client – C server
- It is the most well-developed, production-ready, and popular
- It is hard to debug and do research on.

Pytorch (Facebook)

- Everything is in Python
- Eager execution mode: easy to debug
- Dynamic computation graph: it is built as you create your variables
- Easy to try new ideas: heavily used in research

A graph is created on the fly

from torch.autograd import Variable

W_h = Variable(torch.randn(20, 20)) W x = Variable(torch.randn(20, 10))

x = Variable(torch.randn(1, 10))
prev h = Variable(torch.randn(1, 20))

Pytorch

- You can install it from https://pytorch.org/
- In notebook.acuna.io, you have to install it using:

pip install torch torchvision

 Unfortunately, you might have to do this if your server is shutdown by Kubernetes

Demo

Recurrent neural networks

Recurrent neural networks

• Some data has temporal structure in them

Recurrent neural networks (2)

- We hope to understand the temporal structure in the data
- X is the input
- A is the temporal dynamics of the network
- *h* is the output of the network

Recurrent neural networks: simple

$$\mathbf{h}^{(4)} = f(f(\mathbf{h}^{(1)}, \mathbf{x}^{(2)}), \mathbf{x}^{(3)}), \mathbf{x}^{(4)})$$

For example
$$\mathbf{h}_t = \phi \left(W \mathbf{x}_t + U \mathbf{h}_{t-1} \right),$$

RNN: a problem with gradients

• Image this:

We alternate between the following two equations:

$$\overline{h^{(t)}} = \overline{z^{(t+1)}} w$$

$$\overline{z^{(t)}} = \overline{h^{(t)}} \phi'(z^{(t)})$$

$$= \frac{\partial h^{(T)}}{\partial h^{(1)}} \overline{h^{(T)}}$$

$$= \frac{\partial h^{(T)}}{\partial h^{(1)}} \overline{h^{(T)}}$$

• Lets assume that activation is linear, then $\frac{\partial h^{(T)}}{\partial h^{(1)}} = w^{T-1}$

Long short-term memory: problems with RNN

Credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long short-term memory

• There is a memory cell C that retains information through time

Credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long short-term memory: the core idea

• We selectively choose to *forget* information

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

Long short-term memory: the core idea

We selectively choose to input new information

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Long short-term memory: the core idea

• The new cell will be a combination of what we retain from the past cell and what we input into the cell

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Applications of RNN

- Language modeling
- Time series analysis
- Automatic caption generation from images
- Automatic text generation from text prompt

Citation worthiness

Modeling citation worthiness by using attention-based bidirectional long short-term memory networks and interpretable models

Tong Zeng^{1,2} · Daniel E. Acuna²

Received: 31 October 2019 / Published online: 28 March 2020 © Akadémiai Kiadó, Budapest, Hungary 2020

Fig. 1 Citation worthiness prediction problem. For a given sentence (S_n) , the goal of the task is to predict whether it needs a citation. The prediction task may use the section, the previous and next sentences (i.e., S_{n-1} and S_{n+1}) for such prediction

Data

Table 2 Characteristics of the ACL-ARC dataset, whole PMOA-CITE dataset and a sample of PMOA-CITE which contains one million sentences

Items	ACL-ARC	PMOA-CITE	PMOA-CITE sample
Articles	N/A	2,075,208	6,754
Sections	N/A	9,903,173	32,198
Paragraphs	N/A	62,351,079	202,047
Sentences	1,228,052	309,407,532	1,008,042
Sentences without citations	1142275	249,138,591	811,659
Sentences with citations	85777	60,268,941	196,383
Average characters per sentence	131	132	132
Average words per sentence	22	20	20

Architecture

Fig. 4 The architecture of the proposed attention-based BiLSTM neural network

Performance

Table 4 The performance of models on the PMOAS dataset. The hyper-parameters of our models are chosen on the validation set and the performances reported are based on a hold-out testing set

Model	Precision	Recall	F_1
Att-BiLSTM _{sdp}	0.900	0.764	0.827
$Att-BiLSTM_{dp}$	0.886	0.788	0.834
Att-BiLSTM _{cos}	0.883	0.795	0.837
Contextual-Att-BiLSTM _{sdp}	0.907	0.797	0.848
Contextual-Att-BiLSTM _{dp}	0.908	0.807	0.854
Contextual-Att-BiLSTM _{cos}	0.907	0.811	0.856

In bold, we highlight the best performance

Interpreting results with logistic regression

Term	Feature importance	Sign of influence
Results	0.0174270	-
Methods	0.0128930	-
Materials	0.0059190	-
Case	0.0024290	-
Report	0.0014750	100
Experimental	0.0010170	_
Authors	0.0008160	-
Conclusion	0.0007460	_
Presentation	0.0006070	_
Contributions	0.0006050	1-1

The plus sign (+) means the feature has a positive influence on the citation worthiness. The minus sign (-) means the feature has a negative influence on the citation worthiness

Table 9 Term (uni-gram or bi-gram) importance of the section type

Term	Feature importance	Sign of influence
Introduction	0.027079	+
Intro	0.015247	+
Background	0.008828	+
Discussion	0.003698	+
Cancer	0.00155	+
Mechanisms	0.001328	+
Cells	0.000695	+
Role	0.000562	+
Cell	0.000521	+
Receptors	0.000379	+

New developments

- Transformers and attention
 - No need to sequentially predict all can be done in one step
 - "attention" mechanism idea taken from the brain
- https://deepai.org/machine-learning-model/text-generator