

Introduction to AI & Machine Learning

Job Connector Program

How Are You Feeling Today?

Let us know in chat

Outline

- What is AI & Machine Learning?
- Real-world Applications of Al & ML
- Bias & Ethics in AI & ML
- Hands On: Exploring Al Tools

AI & Machine Learning

Definition

What is AI & Machine Learning?

And, why people keep talking about it?

What is AI & Machine Learning?

Al is the ability of a computer system to **perform tasks that typically require human intelligence**, such as learning, problem-solving, and decision-making

What is Machine Learning?

ML is the subset of Al that focuses on the creation of models that can learn from data without the need to be explicitly programmed

Al is Not Always ML

Traditional Programming vs ML

Let's say we want to build a system to predict a salary for a new employee based on their role and years of experience.

In **traditional programming**, we would write a bunch of if-else statements.

```
def predict salary (role, education, university, experience, location):
   if role == 'Manager':
        if education == 'Master':
            if university == 'Top Tier':
                if experience > 5:
                    return 25000
                else:
                    return 22000
            else:
                if experience > 5:
                    return 22000
                else:
                    return 20000
        elif education == 'Bachelor':
            if experience > 5:
                return 20000
            else:
                return 18000
   elif role == 'Data Scientist':
        if university == 'Top Tier':
            if experience > 3:
                return 20000
```


Generated Rule Using ML

in **ML**, instead of writing the rules ourselves, we feed the algorithm historical employee data — including role, experience, and actual salary.

Role	Education	University	Experience	Location	Salary
Manager	Master	Top Tier	6	Jakarta	25000
Data Scientist	Bachelor	Mid Tier	2	Bandung	16000
Software Engineer	Bachelor	Top Tier	3	Jakarta	15000
Intern	Diploma	Low Tier	0	Surabaya	4000

How Does a ML Model Learn?

To enable the model to learn, it must undergo "training". This involves showing it data so it can understand and form a relationship between the data and the expected result. This relationship takes shape in the form of coefficients or parameters, much like how we tweak a musical equalizer to achieve optimal sound.

Coefficients & Parameters

The relationship between Centimeters and Inches is given by the formula:

$$A * Inch + B = Cm$$

The learning process of the model consists of applying an algorithm **to derive the values of A and B** from the **observed data** of Centimeters and Inches.

Inch	Cm	
1 Inch	2.54	
2 Inch	5.08	> observed data
3 Inch	7.62	observed data
4 Inch	10.16	
A Inch	A* Inch + B	model (that we're going to tr

This Algorithm (known as the ML algorithm) is applied iteratively over all the data (sometimes more than once) to find the parameters A and B.

2.54 * Inch +
$$0 = Cm$$
 Trained Model (that we're going to train)

After several iterations of the algorithm, we obtain a trained model capable of generalizing the relationship between centimeters and inches for any new observations.

What is Deep Learning?

DL is an ML technique that **uses deep neural networks to learn from data**. A neural network is a type of ML model made up of many layers of interconnected nodes that adjust as they are exposed to data

What is & Why Neural Network?

A neural network is a computational model **inspired by the neuron** (nerve cells in a human brain), designed to process data and make decisions. It is mathematically proven to solve more complex ML tasks.

History of Al

The history of AI

1940s-1 950s

Foundations of AI

In the 1940s, the first artificial neurons were conceptualised. The 1950s introduced us to the Turing Test and the term "Artificial Intelligence.

1960s-1 970s

Early Development

The 60s and 70s brought the birth of ELIZA, simulating human conversation, and Dendral, the first expert system, showcasing the early potentials of Al.

1980s

Al Winter & Expert Systems

The 80s faced reduced Al funding but saw the inaugural National Conference on Al. The backpropagation concept rejuvenated neural networks.

1990s

Revival & Emergence of ML

The 90s witnessed IBM's Deep Blue defeating chess champion Garry Kasparov and the inception of the LOOM project, laying the foundations for GenAl.

2000s

The Genesis of Generative Al

Geoffrey Hinton propelled deep learning into the limelight, steering Al toward relentless growth and innovation.

2010s

Rise of Al

In 2011, IBM Watson won "Jeopardy!", highlighting Al's language skills. The 2010s marked major Al milestones, including pioneering work in Image recognition and the birth of GANs in 2014, followed by OpenAl's founding in

2020s

GenAl Reaches New Horizons

At the start of this decade, we've seen significant strides in GenAl, notably with OpenAl's GPT-3 and DALL-E. 2023 welcomed advanced tools like ChatGPT-4 and Google's Bard, alongside Microsoft's Bing Al, enhancing accessibility and reliability of information.

What Can Al Do - and What It Can't

Al shines in problems that have **clear objectives and patterns to learn from** (even if it's a complex one).

What Al Can Do Well

Al Strengths	Examples	
Pattern Recognition	Image classification, speech-to-text, face recognition	
Prediction	Stock prices, customer churn, disease risk	
Automation	Replacing repetitive tasks (e.g., invoice processing)	
Natural Language Processing (NLP)	Chatbots, translation, sentiment analysis	
Personalization	Netflix, Spotify, TikTok recommendations	
Anomaly Detection	Fraud detection, machine fault detection	
Data Insight Discovery	Finding correlations in large datasets (e.g., in marketing analytics)	

What Al Can't (or Shouldn't) Do

Al still has big limitations — especially in **understanding, reasoning, or adapting** like humans can.

Al Limitations	Why It's a Problem	Example	
Needs Data	Can't learn without lots of clean data	New problems with little historical data	
Bias & Fairness Issues	Learns and amplifies bias from data	Hiring systems preferring one gender	
Explainability	Hard to understand why it made a decision	Black-box deep learning models	
Fails in Novel Situations Doesn't adapt well to unexpected events		Self-driving car in a snowstorm	
Emotion & No real understanding of human feelings Empathy		Can simulate emotion, but doesn't feel it	

So, When to Use it?

Use AI when the problem is:

- Data-rich (historical examples exist)
- Repetitive or predictable
- Goal-oriented (e.g., maximize clicks, minimize cost)
- Time-saving at scale

Not good for:

- Problems with high uncertainty and low data
- Moral or ethical decisions (e.g., "Should this person get parole?")
- Creative tasks without clear criteria (Al can help, but not replace humans)

In Summary...

	Artificial Intelligence (AI)*	Machine Learning (ML)	Deep Learning (DL)
Definition	The broad field of making machines simulate human intelligence.	A subset of AI where machines learn from data to make predictions.	A subset of ML that uses neural networks with many layers to learn complex patterns.
Use Cases	- Chatbots - Smart assistants (Siri, Alexa) - Robotics	- Email spam detection - Fraud detection - Price prediction	Face recognitionAutonomous vehiclesMedical image analysis
Tools	- IBM Watson - Google Al - OpenAl APIs	- scikit-learn - XGBoost - AutoML platforms	- TensorFlow - PyTorch - Keras
Differences	General term; includes logic-based or rule-based systems	Learns from structured data with training algorithms	Learns from large data using deep neural networks; excels in unstructured data (images, audio, etc.)

^{*} Al is so broad, it includes ML & DL. The use cases & tools mentioned is what commonly used today and it may overlap with ML & DL

AI & Machine Learning

Real-world Applications

Why TikTok Feels Addictive? It's Al

How Does Google Know It's You in Every Photo?

How Does Waze Know the Fastest Way?

Other Al Usecases

Use Case	Industry	Company
Personalized Content Recommendation	Entertainment	Netflix, YouTube
Fraud Detection	Finance & Banking	Dana
Customer Service Chatbots	Retail & E-Commerce	Shopee, Tokopedia
Predictive Maintenance	Manufacturing	Astra
Autonomous Vehicles	Automotive	Tesla
Dynamic Pricing	Travel & Hospitality	Gojek, Traveloka
Disease Diagnosis (e.g. cancer)	Healthcare	IBM Watson Health
Route Optimization	Transportation	Waze, Grab
Personalized Learning	Education	Duolingo, Squirrel Al
Al-based Hiring & Screening	HR Tech	LinkedIn
Smart Home Automation	Consumer Electronics	Google Nest, Amazon Echo

AI & Machine Learning

Bias & Ethics

What is Bias in Al

Bias in Al means the system produces unfair, inaccurate, or discriminatory outcomes

Why it Happens?

Bias in Al usually because of the data it learned from. We have a term called **"Garbage In Garbage Out"** — If training data has bias, the Al will learn and reflect that bias.

Examples of Al Bias

Hiring Algorithm

An Al tool trained on past resumes learned to favor male applicants over female

Facial Recognition

Some systems misidentified Black faces as guilty more often than white

Credit Scoring

People from certain zip codes were unfairly denied loans

Why Ethics in Al Matters

In this AI era, AI systems affect people's lives, jobs, privacy, and freedoms. Without ethics, AI can:

- Invade privacy (e.g., surveillance tools)
- Spread misinformation (e.g., deepfakes)
- Reinforce inequality (biased decisions)
- Reduce transparency (black-box models with no explanation)

AI & Machine Learning

Hands On: Exploring Al Tools

Ask Anything!Using ChatGPT

Ask Anything! Using ChatGPT

- 1. Go to <u>https://chat.openai.com</u>
- 2. **Login or Sign Up** with your email or Google account.
- 3. In the chat box, **try the following prompts**:
 - a. "Plan a 3-day trip to Bali for under \$300"
 - b. "Explain how a neural network works to a 10-year-old"
 - c. "Write a polite follow-up email for a job application"

4. **Explore**:

- a. Try writing your own prompt!
- b. Ask questions from your field or hobby (e.g., marketing, design, education, finance).

Generate Your Product ImageUsing Dall-E

Generate Your Product Image Using Dall-E

- Go to
 to https://chat.openai.com
- 2. Login (same as ChatGPT).
- 3. In the prompt box, try this:
 - a. "Generate an eco-friendly leather backpack displayed on a white studio background"
 - b. "Generate a refreshing summer drink on a beach table, highly detailed, vibrant colors"
 - c. "Generate modern wireless earbuds placed on a marble surface, minimalist style"
- 4. Click the **image tab** to see the visual generation.
- 5. Modify your prompt to customize style, color, setting, or product type.

Image Classification Using Teachable Machine by Google

Teachable Machine

Train a computer to recognize your own images, sounds, & poses.

A fast, easy way to create machine learning models for your sites, apps, and more – no expertise or coding required.

Image Classification Using Teachable Machine by Google

- 1. Create an Image Project
- 2. Record 2–3 categories using webcam (e.g., hand gestures)
 - a. Class 1 = "Thumbs up"
 - b. Class 2 = "Thumbs down"
- Train the model
- 4. Test it live using their webcam

Chat with Your Docs Using NotebookLM

■ NotebookLM Plus

Overview NotebookLM Plus

Think Smarter, Not Harder

The ultimate tool for understanding the information that matters most to you, built with Gemini 2.0

Try NotebookLM

Chat with Your Docs Using NotebookLM

- 1. **Upload a PDF** (e.g. <u>Introduction to Al.pdf</u>)
- 2. Ask:
 - a. "Summarize this document in 3 bullet points"
 - b. "Generate quiz questions from this document"
 - c. "Give me a metaphor to explain this Al concept to kids"

AI & Machine Learning

Q&A Session

Thank You!