读书进度:

目前已经把第八章看完。

负责了8.1.3节的讲解。

交流过程:

1. 为什么提升树模型中没有权值?

交流:提升树中各个基学习器的关系是递进关系,不像 AdaBoost 算法中是并列关系,可以有权重。提升树模型中的权值默认是从树桩递减的。

2. AdaBoost 如何拓展至多分类问题?

交流: AdaBoost 算法好像只适合于二分类 无法扩展成多分类,需要通过把多分类问题转化为多个二分类问题来实现。提升树可以实现多分类。

3. 提升方法中分类器过多是否会出现过拟合状况? 有正则化方法吗?

为了防止Adaboost过拟合,我们通常也会加入正则化项,这个正则化项我们通常称为步长 (learning rate)。定义为 ν ,对于前面的弱学习器的迭代

$$f_m(x) = f_{m-1}(x) + \alpha_m G_m(x)$$

如果我们加上了正则化项,则有:

$$f_m(x) = f_{m-1}(x) + \nu \alpha_m G_m(x)$$

 ν 的取值范围为 $0 \le \nu \le 1$ 。对于同样的训练集学习效果,较小的 ν 意味着我们需要更多的弱学习器的迭代次数。通常我们用步长和迭代最大次数一起来决定算法的拟合效果。

学习体会:

通过第八章的学习,了解了AdaBoost算法。AdaBoost算法是一种提升算法,它通过强学习算法与弱学习算法等价的条件,来将一系列的弱分类器组合成一个强分类器。误差小的权值大,误差大的权值小。AdaBoost算法的误差有

界,呈现指数下降的趋势,并且具有适应性,能适应弱分类器各自的训练误差率。AdaBoost算法是前向分步算法的一个实现,每一步只学习一个一个基函数及其系数,逐步优化目标函数。通过例题的数据计算可以看出AdaBoost算法的强大之处,仅用三次简单基函数的迭代便拟合了复杂的模型。

Х	У	G1	G2	G3	f1=0.4236G1	f2=0.4236G1+0.6496G2	f3=0.4236G1+0.6496G2+0.7514G3
0	1	1	1	-1	0.4326	1.0822	0.3308
1	1	1	1	-1	0.4326	1.0822	0.3308
2	1	1	1	-1	0.4326	1.0822	0.3308
3	-1	-1	1	-1	-0.4326	0.217	-0.5344
4	-1	-1	1	-1	-0.4326	0.217	-0.5344
5	-1	-1	1	-1	-0.4326	0.217	-0.5344
6	1	-1	1	1	-0.4326	0.217	0.9684
7	1	-1	1	1	-0.4326	0.217	0.9684
8	1	-1	1	1	-0.4326	0.217	0.9684
9	-1	-1	-1	1	-0.4326	-1.0822	-0.3308

下周目标:

看完第九章并负责一部分的讲解。