

Teoria. Enunciare il Teorema di Lagrange.

Utilizzando tale risultato dimostrare che, per ogni x > 1,

 $\ln x < x - 1$ .



È possibile fornire un esempio di 4 vettori linearmente indipendenti in  $\mathbb{R}^3$ ? Motivare la risposta.

Teoria. Enunciare e dimostrare il Teorema di Weierstrass.

| 5. Enunciare e dimostrare il Teorema di nullità più rango.                                               |
|----------------------------------------------------------------------------------------------------------|
| 6. Discutere le principali condizioni necessarie o sufficienti per la convergenza di una serie numerica. |
|                                                                                                          |
|                                                                                                          |
|                                                                                                          |

- 5. Dimostrare che la successione  $a_n = \left(1 + \frac{1}{n}\right)^n$  converge a un numero, detto e, finito e compreso tra 2 e 3.
- 6. Discutere la forma cartesiana, trigonometrica ed esponenziale dei numeri complessi.

5. Enunciare e dimostrare il Teorema sulla rappresentazione matriciale delle applicazioni lineari da  $\mathbb{R}^m$  a  $\mathbb{R}^n$ .

6. Discutere il concetto di convergenza di una successione, esponendo i principali risultati al riguardo.

| 5. | Dimostrare che una serie assolutamente convergente è convergente.                                                  |
|----|--------------------------------------------------------------------------------------------------------------------|
| 6. | Discutere il concetto di diagonalizzabilità di una matrice quadrata, esponendo i principali risultati al riguardo. |
|    |                                                                                                                    |

| 5. | Dare la definizione di integrale inferiore ed enunciarne le principali proprietà.                                                        |
|----|------------------------------------------------------------------------------------------------------------------------------------------|
|    | Dare entrambe le definizioni di funzione continua, mostrarne l'equivalenza ed enunciare le principali proprietà delle funzioni continue. |
|    |                                                                                                                                          |

|      | Enunciare e dimostrare il Teorema di nullità più rango.  Discutere le principali condizioni necessarie o sufficienti per la convergenza di una serie numerica. |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2021 |                                                                                                                                                                |
|      |                                                                                                                                                                |

| 5. | Dimostrare che una funzione è derivabile in un punto $x_0$ se e solo se essa è ivi differenziabile.  |
|----|------------------------------------------------------------------------------------------------------|
| 6. | Discutere il concetto di integrale inferiore ed enunciare i risultati più significativi al riguardo. |



| 5. | Dimostrare che le successioni monotone ammettono limite.                                                          |
|----|-------------------------------------------------------------------------------------------------------------------|
| 6. | Discutere il concetto di integrale generalizzato per funzioni non limitate o definite su intervalli non limitati. |
|    |                                                                                                                   |



| 5. | Dimostrare | che | le | successioni | monotone | ammettono | limite. |
|----|------------|-----|----|-------------|----------|-----------|---------|
|----|------------|-----|----|-------------|----------|-----------|---------|

 Dare la definizione di serie numerica convergente ed enunciare i principali criteri per la convergenza di una serie a termini positivi.

| 4. | Enunciare e dimostrare il teorema di valutazione per l'integrale definito.            |
|----|---------------------------------------------------------------------------------------|
| 5. | Discutere il concetto di sviluppo di Taylor, enunciandone le principali applicazioni. |
|    |                                                                                       |
|    |                                                                                       |
|    |                                                                                       |



| 5. | Enunciare e | dimostrare la | proprietà | della media | per l | l'integrale i | nferiore. |
|----|-------------|---------------|-----------|-------------|-------|---------------|-----------|
|----|-------------|---------------|-----------|-------------|-------|---------------|-----------|

 Dare le definizioni di serie convergente, divergente, indeterminata. Discutere le principali condizioni necessarie e quelle sufficienti per la convergenza di una serie numerica.

- Enunciare e dimostrare la formula per la matrice inversa di una matrice quadrata invertibile.
- 6. Discutere il concetto di spazio vettoriale e quello di base e dimensione di uno spazio vettoriale. Dire, sempre nel contesto di uno spazio vettoriale, cos'è un prodotto scalare e cosè una norma, indicandone le principali proprietà.

- (4 punti) Enunciare e dimostrare il teorema di nullità più rango.
- (4 punti) Discutere i concetti di spazio vettoriale, base e dimensione, e successivamente indicare le principali proprietà degli spazi vettoriali dotati di prodotto scalare.

- 5. (punti 4) Enunciare e dimostrare il teorema di derivazione della funzione composta.
- (punti 4) Discutere il concetto di formula di Taylor con resto di Peano e con resto di Lagrange, enunciando i principali risultati al riguardo e discutendone le applicazioni.





 (punti 4) Dare le due definizioni equivalenti di funzione continua in un punto, ed enunciare le principali proprietà delle funzioni continue.





| 5. | (punti 7) Discutere la definizione di funzione continua, enunciando poi le principali proprietà delle funzioni continue.<br>Enunciare e dimostrare infine il Teorema di Weierstrass. |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                                                      |
|    |                                                                                                                                                                                      |

5. Dire cosa significa che  $\lim_{x\to x_0} f(x) = l$ , distinguendo i casi  $l \in \mathbb{R}$  e  $l = \pm \infty$  (è richiesta la definizione precisa). Dimostrare poi, in base alla definizione, che

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$