

두 개의 포인터로 배열을 빠르게 탐색하는 알고리즘입니다. 코딩 테스트에선 주로 효율성을 보는 문제에 활용됩니다.

이와 더불어 투 포인터와 함께 자주 활용되는 누적 합, 슬라이딩 윈도우에 대해서도 알아봅니다.

이런 문제가 있다고 해봅시다.

그냥 더해도 되지만…

더할 때마다 시간 복잡도 O(n) 만약 배열의 크기가 10,000일 때, 구하고자 하는 구간이 1,000,000개만 돼도… 총 연산 횟수 100억

A[0]부터 A[i]까지의 합

A[i]부터 A[j]까지의 합

A[i]부터 A[j]까지의 합

A[i]부터 A[j]까지의 합

기본 문제

/<> 11659번: 구간 합 구하기 4 - Silver 3

문제

● 수 N개가 주어질 때, i번째 수부터 j번째 수까지의 합은?

제한 사항

- N, M은 1 <= N, M <= 100,000
- 입력되는 정수 k는 1 <= k <= 1,000

예제 입력

5354321132455

예제 출력

12 9 1

기본 문제

/<> 11659번: 구간 합 구하기 4 - Silver 3

문제

• 수 N개가 주어질 때, i번째 수부터 j번째 수까지의 합은?

제한 사항

- N, M은 1 <= N, M <= 100,000
- 입력되는 정수 k는 1 <= k <= 1,000

순차 탐색으로 구현하면 최대 연산 횟수 100,000 * 100,000(=100억)으로 시간초과

예제 입력

5354321132455

예제 출력

12 9 1

누적 합은 아까 해봤으니까!

누적 합을 사용하지 않고 구간 합을 빠르게 구하는 방법은?

공통되는 부분이 보이시나요?

공통되는 부분이 보이시나요?

공통되는 부분이 보이시나요?

슬라이딩 윈도우

슬라이딩 윈도우

$$A[1]+A[2]+A[3]$$

= $k1 = k0-A[0]+A[3]$

슬라이딩 윈도우

기본 문제

/<> 21921번 : 블로그 - Silver 3

문제

- N일간의 방문자 수가 주어진다.
- 연속된 X일 동안 가장 많이 들어온 방문자 수와 그 기간의 수는 몇 개인가?
- * 최대 방문자 수가 0명이라면 SAD를 출력

제한 사항

- N, X는 1 <= X <= N <= 250,000
- 방문자 수 k는 0 <= k <= 8,000

예제 입력 1

5 2 1 4 2 5 1 예제 입력 2

75 1111151 예제 입력 3

53 00000

예제 출력 1

7

예제 출력 2

9

예제 출력 3

SAD

이제 본론에 들어가봅시다!

이제 본론에 들어가봅시다!

투 포인터

Two Pointer

- 2개의 포인터로 배열을 탐색하며 빠르게 답을 찾는 알고리즘
- 주로 반복문(while)으로 구현
- 일반적으로 시간 복잡도 O(n²)의 문제를 시간 복잡도 O(n)로 풀 수 있음
- 투 포인터 탐색 방법은 크게 2개로 나눌 수 있음
 - 1. 2개의 포인터가 다른 위치에서 시작하여 서로에게 다가가는 방향으로 탐색
 - 2. 2개의 포인터가 같은 위치에서 시작하여 같은 방향으로 이동하며 탐색
- 1번 방식은 일반적으로 배열이 정렬됐을 때에만 성립하는 경우가 많음
- 슬라이딩 윈도우는 2개의 포인터 사이의 거리를 고정하고, 2번 방식으로 탐색한 것과 같음

기본 문제

/<> 2470번 : 두 용액 - Gold 5

문제

● 두 개의 서로 다른 용액을 혼합해, 합이 0에 가까운 용액을 만들어라

제한 사항

- 용액의 수 N은 2 <= N <= 100,000
- 용액의 특성값 k는 -1e9 <= k <= 1e9 (-10억 ~ 10억)

예제 입력

5 -2 4 -99 -1 98

예제 출력

-99 98

생각해보기

정렬이 됐다고 치면… 맨 왼쪽에는 가장 작은 값이 존재 맨 오른쪽에는 가장 큰 값이 존재 오른쪽으로 갈 수록 값이 커지고 왼쪽으로 갈 수록 값이 작아진다

Ans = 76

Left + Right =
$$76$$

Ans = 76

0보다 크니까 숫자를 줄이자!

Left + Right =
$$74$$

Ans = 74

Left + Right = 37

Ans = 37

Left + Right =
$$-26$$

Ans = -26

Left + Right =
$$-26$$

Ans = -26

0보다 작으니까 숫자를 키우자!

서로 다른 두 용액이어야 하므로 break

76보다 큰 값임이 보장되기 때문에 Left 포인터를 옮길 필요 없음

기본 문제

/<> 1644번 : 소수의 연속합 – Gold 3

문제

- 자연수 N이 주어진다
- 연속된 소수의 합이 N이 되는 경우의 수는?

제한 사항

● N은 1 <= N <= 4,000,000

예제 입력 1

20

예제 입력 2

41

예제 출력 1

0

예제 출력 2

3

기본 문제

/<> 1644번 : 소수의 연속합 – Gold 3

문제

- 자연수 N이 주어진다
- 연속된 소수의 합이 N이 되는 경우의 수는?

제한 사항

● N은 1 <= N <= 4,000,000

연속된 소수? 연속된 배열의 원소! 예제 입력 1

20

예제 입력 2

41

예제 출력 1

0

예제 출력 2

3

• (예제) 연속된 소수의 합이 41

(예제) 연속된 소수의 합이 41

Left ~ Right = 2

41보다 작으니까 범위를 늘리자!

• (예제) 연속된 소수의 합이 41

• (예제) 연속된 소수의 합이 41

• (예제) 연속된 소수의 합이 41

(예제) 연속된 소수의 합이 41

(예제) 연속된 소수의 합이 41

이제 어디로 가지? 둘 다 한 칸씩 옮기자!

• (예제) 연속된 소수의 합이 41

• (예제) 연속된 소수의 합이 41

• (예제) 연속된 소수의 합이 41

(예제) 연속된 소수의 합이 41

(예제) 연속된 소수의 합이 41

응용 문제

/<> 10025번 : 게으른 백곰 - Silver 4

문제

- 얼음 양동이들이 x좌표마다 놓여 있고, 각 양동이 안에는 g씩의 얼음이 들어 있다
- 백곰 앨버트가 자리를 잡으면 그로부터 좌우로 k만큼 떨어진 양동이까지 닿을 수 있다
- 앨버트가 최적의 자리를 골랐을 때의 얼음의 합을 구하여라
- 즉, 얼음들의 합의 최댓값을 구하여라

제한 사항

- 얼음 양동이 개수 N은 1 <= N <= 100,000
- 얼음 양동이 좌표 X는 0 <= X <= 1,000,000
- 얼음 무게 g는 1 <= g <= 10,000
- 입력 범위 K는 1 <= K <= 2,000,000

예제 입력

43

47

10 15

22

5 1

예제 출력

11

몰래 보세요

Hint

- 1. 오늘 다룬 누적합, 슬라이딩 윈도우, 투 포인터 중 무엇일까요?
- 2. K라는 구간은 변하지 않고, 정해져 있네요!
- 3. 그리고 구간 내의 모든 양동이를 고려해야 해요

마무리

정리

- 다양한 경우에서 배열의 탐색 효율을 높이기 위해 사용되는 투 포인터 알고리즘!
- 두개의 포인터 사이의 거리가 고정된다면 슬라이딩 윈도우!
- 포인터가 가까워지는 방법(left < right)과 멀어지는 방법(left <= right)이 있음
- 가까워지는 방법은 보통 중복이 없고, 정렬된 배열에만 사용 가능함. 두 개의 포인터가 가리키는 값만 고려
- 멀어지는 방법은 두 개의 포인터가 가리키는 값 사이의 모든 값을 고려
- 효율성 테스트 문제로 아주 많이 출제됨

3문제 이상 선택

- /<> 2473번 : 세 용액 Gold 4
- * 2020 카카오 인턴십 : 보석 쇼핑 Level 3
- 1253번 : 좋다 Gold 4
- /<> 1484번 : 다이어트 Gold 4
- /<> 2531번 : 회전 초밥 Silver 1

과제 마감일

코드리뷰 0 마감

~ 4월 30일 토요일 낮 12시

코드리뷰 X 마감

~ 4월 30일 토요일 밤 12시 (30일에서 5월 1일로 넘어가는 자정)

추가제출 마감

~ 5월 1일 일요일 밤 12시 (5월 1일에서 5월 2일로 넘어가는 자정)