Feedback Control System Characteristics

Rajini M. Assistant Professor, Department of ECE, PES University.

Note Title

27-09-2021

$$\frac{Y(s)}{R(g)} = \frac{G(s)}{1 + G(s)}$$

$$E(s) = R(s) - \gamma(s)$$

$$= R(s) \left(1 - \frac{\gamma(s)}{R(s)}\right)$$

Let $\frac{Y(s)}{R(s)} = T(s)$ — Closed loop transfer function

the steady state error,

$$e_{SS} = \lim_{t \to \infty} e(t) = \lim_{S \to 0} g(s)$$

$$e_{SS} = \lim_{S \to 0} g(s) (1 - T(s))$$

$$C_{SS} = \lim_{S \to 0} SR(S) \left(1 - \frac{G(S)}{1 + G(S)}\right)$$

$$e_{s_s} = \lim_{s \to 0} \frac{g(s)}{1+g(s)}$$

Step Leput
$$R(s) = \frac{1}{s}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{1 + 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{1}{1 + 6(s)}$$

$$e_{ss} = \frac{1}{1 + \lim_{A \to 0} 6(s)}$$

$$e_{ss} = \frac{1}{1 + \lim_{A \to 0} 6(s)} = \frac{1}{1 + kp}$$
Where, $k_p = \lim_{A \to 0} 6(s) = \frac{1}{1 + kp}$

$$Raup Leput : R(s) = \frac{1}{s}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{1 + 6(s)}$$

$$= \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{1 + 6(s)}$$

$$= \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

$$e_{ss} = \lim_{A \to 0} \frac{\delta \times \frac{1}{s}}{\delta + \delta 6(s)}$$

0 - 1
$e_{ss} = \frac{1}{\lim_{s \to 0} s \in (s)} = \frac{1}{k_{v}}$
K _V = lim & G(s) Static Velocity earn Constant.
Parabolic input! R(s) = 1/s3
$e_{ss} = \lim_{s \to 0} \frac{s \times 1/s^3}{1 + G(s)}$
$C_{SS} = \frac{1}{\lim_{S \to 0} S^2 G(S)}$
$C_{SS} = \frac{1}{\lim_{S \to 0} S^2 G(S)} = \frac{1}{Ka}$
Ka = lim s'G(s) Static acceleration ceror constant
General Shueline of G(S)
$G(s) = K(8+2_1)(8+2_m)$ $S^{N}(s+p_1)(8+p_n)$
The team S^N in the denominator representing a pole of unitiplicity N at origin (no of integrators) denotes the 'TYPE' of the
type 0 - No poles at origin type 1 - one pole at origin type $: 0:$ $\lim_{S \to 0} G(s) = \underbrace{K \times_1 \times_2 \times \dots \times \times_m}_{S \to 0} = K'$ Rajihi M. PESU
$\lim_{x \to \infty} G(s) = \underbrace{K z_1 x z_2 x \dots x z_m}_{K \to \infty} = K'$
Rajini M., PESU

		Step	p input	Ramp	1	Parabo	lic
	type	Kp	ess	K,	ess	Ica e	rss
	0	k ¹	_{/ +k}	0	Ь	0	ю
	1	100	0	k'	/ _K '	0	>
	2	to	0	1 00	0	k!	1/k 1
				•			/ N
	Determine the	160	-d	Ρ_	Cunit -	amb ianub 3	من
	and without e	TTOT TA	g te contro	<u>حد</u> ا ادر ، ر	Tiven 3	= 0.6 / with k	_ WITA
		Og 1	_	+ Ske	6		
				<u>s+2</u>	10 5		
•							
	Without . Le						
		= <u>10</u> 8(8+2)					
		•					
	With Ce G(s)	= 10[1+ RKe)				
		: (1+ s					
	. 9007.2	3(8					
	without ke:	•					
		G(s)	= 10	-			
			8(8+2				
		k _p =	lim G(s)) = 10			
	Unit Chen	len =	ا = (
	Unit Step Engut	-43	b				
	•	K _v =	lim 89	(s) = l	im B.	$\times \frac{10}{g(b+2)} =$	- 5
		,	N-70	7.	4 0	816+21	
	Unit Rang	ess =	1 = 1/5				
	U-Grace						
	with ke: K	e = D·18					
		6 (s)	= 10(1	+ 0.183)	•		
		Cp = lim	G(s) =	⊳ , PES	1.1		
		e _{ss} = 1	IJITIL IVI. O	, PES	U		
	i contraction of the contraction						

$$k_{v} = \lim_{s \to 0} s \operatorname{G(s)} = \lim_{s \to 0} s \operatorname{\frac{10[1+0.18a]}{8(8+2)}}$$
 $k_{v} = 5$
 $e_{v} = \frac{1}{5}$
 $\Rightarrow PD$ controller can't Reduce steady state exposion reduces peak overshoot s also bettling time.

The following is the model of a sacing verbicle that affect the acceptation s speed othorizate. The speed of the cas is separated by the model shows s speed s speed

Mp = Rajin Mr., PESU

Mp =
$$\left(\frac{e^{\pi \sqrt{1-e^{\pi}}}}{e^{\pi \sqrt{1-e^{\pi}}}}\right)$$

= $e^{\pi \times 0.334}/\sqrt{1-0.23e^{\pi}}$
Mp = 0.304
7. Mp = 62.44 %.

Sequel foralysis.

Respectively.

Res

$$Y_{i}(s) = \frac{G_{c}(s) G(s)}{1 + G_{c}(s) G(s)} R(s)$$

$$Y_{a}(s) = \frac{G(s)}{1 + G_{c}(s)G(s)}$$

$$V_{3}(s) = -G_{c}(s)G(s)$$
 $V_{3}(s) = -G_{c}(s)G(s)$
 $V_{3}(s) = -G_{c}(s)G(s)$
 $V_{3}(s) = -G_{c}(s)G(s)$

$$Y(s) = Y_1(s) + Y_2(s) + Y_3(s)$$

$$\pm (s) = R(s) - Y(s)$$
= $\left(1 - \frac{G_{c}G}{1 + G_{c}G}\right)R(s) - \frac{G}{1 + G_{c}G}$
 $\frac{G_{c}G}{1 + G_{c}G}$
 $\frac{G_{c}G}{1 + G_{c}G}$
 $\frac{G_{c}G}{1 + G_{c}G}$
 $\frac{G_{c}G}{1 + G_{c}G}$

Let
$$L(s) = G_c(s) G(s)$$
 — Loop gain
$$E(s) = \frac{1}{1 + L(s)} \text{ with i M} PESIT_d(s) + \frac{L(s)}{1 + L(s)} N(s)$$

$$E(s) = \frac{1}{1 + L(s)} R(H) M PESUTa(s) + \frac{L(s)}{1 + L(s)} N(s)$$

Let sensitively function

$$S(A) \stackrel{\triangle}{=} \frac{1}{1+L(S)}$$

Complementary function

$$C(S) = L(S)$$

$$1+L(S)$$

$$S(S) + C(S) = 1$$

$$1+L(S)$$

$$1+L(S)$$

$$= 1$$

$$E(S) = S(S) R(S) - G(S) S(S) T_{of}(S) + C(S) N(S)$$

$$\Rightarrow 1 L(S) \Rightarrow \text{ effect of } T_{of} \text{ in low frey}$$

$$\downarrow L(S) \Rightarrow \text{ effect of } N \text{ in high frequency range}$$

Open loop:

$$T_{of}(S) = T_{of}(S) + T_{of}(S) + T_{of}(S) + T_{of}(S)$$

$$E(S) = R(S) - Y(S)$$

$$Y(S) = G(S)G(S) R(S) + G(S) T_{of}(S) + G(S) T_{of}(S)$$

$$E(S) = R(S) - G(S)G(S) R(S) - G(S) T_{of}(S) + G(S) T_{of}$$

Sensitivity to parameter variations: G(s) -> G(s) + AG(s)
Open boop system: Let Td (s) =0 Small perturbation
${R(s) + \Delta G(s)} \rightarrow Y(s) + \Delta Y(s)$
$Y(S) + \Delta Y(S) = (G(S) + \Delta G(S)) R(S)$
$E(s) + \Delta E(s) = R(s) - (Y(s) + \Delta Y(s))$
$\Delta E(s) = R(s) - (G(s) + \Delta G(s)) R(s) - E(s)$
$= R(s) - (G(s) + \Delta G(s))R(s) - (R(s) - Y(s))$
$= \chi(s) - (q(s) + sq(s)) \chi(s) - (\chi(s) - q(s))$
$\Delta E(s) = R(s) - (G(s) + \Delta G(w)R(s) - R(s) + G(s)R(s)$
$\Delta E(s) = -\Delta G(s) R(s)$
=> DE(s) is directly proportional to paramete
ΔE(s) = - ΔG(s) R(s) ⇒ ΔE(s) is directly proportional to parameter =) Open loop systems are sensitive to parameter variations
Close loop system: Tol (s) = 0, N(s) =0
$\frac{1}{R(s)} + \Delta Y(s) + \Delta Y(s)$
N(C) 1 AN(D) - (C) (C(C) 1 AC(C))
$Y(s) + \Delta Y(i) = \frac{G_{c}(s)(G(s) + \Delta G(s))}{1 + G_{c}(s)(G(s) + \Delta G(s))} R(s)$
$ + G_{c}(s) (G(s) + \Delta G(s))$ $E(s) + \Delta E(s) = R(s) - (Y(s) + \Delta Y(s))$
ROTTEDED - ROTTED
ECS)+DECS) = (1 - GC (G+&G) \ RCS)
$E(S) + \Delta E(S) = \left(1 - \frac{G_{c}(G + \Delta G)}{1 + G_{c}(G + \Delta G)}\right) R(S)$
T 0-2 . APC >
$E(s) + \Delta E(s) = \frac{1}{1 + G_L(G_1 + \Delta G_1)}$
$\Delta E(s) = \frac{1}{R(s)} - E(s)$ Rajiliti (4) (4+12) E(s) - Y(s)

$$\Delta E(S) = \frac{1}{1 + G_{c}(q + b q)} R(S) - R(S) + \frac{G_{c} G_{c}}{1 + G_{c} G_{c}} R(S)$$

$$\Delta E(S) := -\Delta G(S) G_{c}(L) R(S)$$

$$(1 + G_{c}(q + b q)) R(S)$$

$$ARL G_{c}(S) \Delta G(S) \ll G_{c}(S) G_{c}(S) R(S)$$

$$ARL G_{c}(S) \Delta G(S) \approx -\Delta G(S) G_{c}(S) R(S)$$

$$ARC G_{c}(S) \approx -\Delta G(S) G_{c}(S) R(S)$$

$$ARC G_{c}(S) = -\Delta G(S) G_{c}(S) R(S)$$

$$\Delta E(S) \approx -\Delta G(S) R(S)$$

$$\Delta E(S) \approx -\Delta G(S)$$

Closed loop transfer $T(s) = \frac{G(s)G_{c}(s)}{}$ 1+9(5)4(5) 9,(5) $S_{q}^{T} = \frac{\partial T(s)}{\partial G(s)} \times \frac{G(s)}{G(s)}$ 1+ G(5) H(5)Gc(5) $\frac{\partial 7(s)}{\partial g(s)} = \frac{\left(1 + g(s) H(s) g_{c}(s)\right) G_{c}(s) - G(s) G_{c}(s) G_{c}(s) H(s)}{\left(1 + g(s) H(s) G_{c}(s)\right)^{2}}$ = $\frac{G_{c}(s)}{(1+G(s)H(s)G_{c}(s))^{2}}$ $S_{q}^{T} = \frac{S_{c}(s)}{(1+G(s)H(s)G_{c}(s))^{2}} \times \frac{1+G(s)H(s)G_{c}(s)}{G_{c}(s)}$ ST = 1 1 + G(s)H(s) Gc(s) To find the sensitivity wat 'a' parameter Sx = DT x Dx T $= \frac{\partial T}{\partial G} \frac{\partial G}{\partial x} \frac{x}{T} \times \frac{G}{G}$ $= \frac{\partial T}{\partial G} \times \frac{G}{T} \qquad \frac{\partial G}{\partial \alpha} \times \frac{\alpha}{G}$ $S_{\alpha}^{T} = S_{G}^{T} S_{\alpha}^{G}$

• A closed loop system is used to track the sun to obtain maximum power from a photovoltaic array. The tracking system may be represented by

$$G(s) = \frac{100}{\tau s + 1}$$
 where $\tau = 3$ seconds nominally

- a) Calculate the sensitivity of this system for a small change in $\tau \longrightarrow S^{\tau}$
- b) Calculate the time constant of the closed loop system response

$$S_{\mathbf{t}}^{\mathsf{T}} = S_{\mathsf{q}}^{\mathsf{T}} S_{\mathsf{t}}^{\mathsf{q}}$$

$$S_{L}^{6} = \frac{\partial}{\partial z} \left(\frac{100}{25+1} \right) \times \frac{z}{100}$$

$$S^{G} = -TS$$

$$TS+1$$

$$S_{T}^{T} = \frac{1}{1 + \frac{100}{25 + 1}} \times - \frac{75}{25 + 1}$$

$$S_{z}^{T} = - TS$$

$$TS + IOI$$

$$S_{c}^{7} = -3S$$

$$3S+101$$

$$T(s) = \frac{100/101}{3/1013+1}$$

Time constant = 3/107

Distrubance signals in feedback control system

DC Motor

La is negligable compared to Ra = 1 \(\text{LastR} \) \(\text{Ra} \)

Earon: $E(s) = R(s) - \omega(s)$ Let R(s) = 0, we will analyse the effect of disturbance

$$E(s) = - w(s)$$

$$E(s) = -W(s)$$

$$= Ra T_{d}(s)$$

$$(J_{s} + R_{s})R_{a} + K_{s}R_{s}$$

Let $T_d(s) = D$ Rajini M., PESU(t) = D t >0 _ dieturbanen Signal

Steady state error $e_{SS} = \lim_{t \to \infty} e(t) = \lim_{S \to 0} S E(S)$

$$C_{SS} = DRa = - \omega(\infty)$$
 K_1K_2+BRa

The steady state value of the error cannot be reduced as the values of Ra, B, K, E, are fixed for the DC motor => Distribunce upon the open loop system cannot be reduced.

Moving summer 2 ahead the block k $\frac{1}{10} \frac{1}{10} \frac$ wis) K2 + K1 +(5)

$$G_1(s) = \frac{|K_a||}{|K_a|}$$
 $G_2(s) = \frac{1}{|J|s+|B|}$ $H(s) = \frac{|K_2|+|K_4|K_a|}{|K_a|}$

$$E(s) = R(s) - W(s)$$

$$= - W(s)$$

$$W(s) = -\frac{G_2(s)}{l+G_1G_2H} \qquad T_d(s)$$

$$\frac{l+G_1G_2H}{l+G_1G_2H} \qquad G_1G_2H \gg l$$

$$E(s) = -W(s) = \frac{g_2}{G_1/f_2H} \qquad T_d(s)$$

$$E(s) = \frac{l}{G_1/f_2H} \qquad T_d(s)$$

$$E(s) = \frac{l}{G_1/f_2H} \qquad \frac{g_1(s)}{g_1/f_2H} \qquad \frac{g_1(s)}{g_1/f_$$

step response :. Vals) = Va

Va-amplitude of the Voltage

$$W(s) = \frac{k_1 V_0}{S(JR_0 + BR + k_1 k_2)}$$

$$W(k) = A + C$$

$$S = JR_aS + (BR_a + k_1k_2)$$

$$W(S) = \frac{k_1V_a}{k'} \times \frac{1}{S} - \frac{k_1V_a \times JR_a/k'}{JR_aS + k'}$$

$$JR_aS + k'$$

$$\omega(s) = \frac{k_1 V_a}{k'} \frac{1}{S} - \frac{k_1 V_a / k'}{S + k' / TR_a}$$

$$\frac{1}{W(t)} = \frac{k_i Va}{k_i} \left(1 - \frac{k_i JRe}{e} \right), \quad t \ge 0$$

$$W(\xi) = \frac{k_1 V_0}{BR_0 + k_1 k_2} \left(\left(- \frac{BR_0 + k_1 k_2}{JR_0} \right) + \frac{BR_0 + k_1 k_2}{JR_0} \right)$$

=) Transient Response (ta, tp, Mp) cannot be changed as

B. Ra, K, , K2 & J are fined for DC Motor.

$$R(S) = \frac{k_{0}k_{1}}{|(JS+8)R_{0}+k_{1}k_{2}+k_{1}k_{2}k_{4}k_{4})}$$

$$R(S) = \frac{k_{0}k_{1}}{|(JS+8)R_{0}+k_{1}k_{2}+k_{1}k_{1}k_{2}k_{4}k_{4})}$$

$$W(S) = \frac{k_{0}k_{1}}{|(JS+8)R_{0}+k_{2}+k_{1}k_{1}k_{2}k_{4}k_{4})}$$

$$W(S) = \frac{k_{0}k_{1}}{|(S+8)R_{0}+k_{1}|} = \frac{k_{0}k_{1}}{|(S+8)R_{0}+k_{1}|}$$

$$C = \frac{k_{0}k_{1}}{|(S+8)R_{0}+k_{1}|} = \frac{k_{0}k_{1}}{|(S+8)R_{0}+k_{1}|}$$

$$U(S) = \frac{k_{0}k_{1}}{|(S+8)R_{0}+k_{1}|} = \frac{k_{0}k_{1}}{|(S+8)R_{0}+k_{1}|}$$

$$W(S) = \frac{k_{0}k_{1}}{|(S+8)R_{0}+k_{1}|} = \frac{k_{0}k_{1}}{|(S+8)R_{0}+k_{1}|} = \frac{k_{0}k_{1}}{|(S+8)R_{0}+k_{1}|}$$

$$W(S) = \frac{k_{0}k_{1}}{|(S+8)R_{0}+k_{1}|} = \frac{k_{0}k_{1}}{|(S+8)R_{0}+k_{1}|}$$

$$K_p = \lim_{R \to 0} G(s) = \frac{k}{16}$$

$$C_{55} = \frac{t}{1+k/l_{1}}$$
b) What should be the value of K such that earn
$$C_{55} = 0.01. \text{ let } A = 1$$

$$0.01 = \frac{1}{1+k/l_{16}}$$

$$k = 1584$$
2. Let $G(5) = \frac{10}{8(24+1)}$ where $C = 0.001$ see .

(a) Calculate C_{65} (Step light is K)
b) Calculate the Required K in order to Incirclain $C_{15} = 0.1$ mm for a samp light (0 cm/s $R(5) = \frac{0.1}{5^2}$
a) $C_{55} = \lim_{n \to \infty} (R(5) - \frac{1}{1} + \frac{10}{1} + \frac{10}{1}$

	$0.1 \times 10^{-3} = 0.1$						
	10 K						
	K = 100						
3,	Consider a unity feedback system.						
	Consider a unity feedback system.						
	R(s) + - K + (s)						
	a) Calculate ess of the closed loop due to step input $T_{J}(s) = 0$						
	b) calculate steady state responer $Y_{SL} = \lim_{t \to \infty} Y(t)$ when $T_{OL}(S) = \frac{1}{2} \int_{SL} \frac{1}{t} dt$						
	t + 000						
	k R(s) = 0						
	$\frac{7(s) = \frac{Y(s)}{R(s)}}{R(s)} = \frac{k}{g(g+10)+k}$						
	R(s) Td(s) =0 8(8+10)+k						
	Y(s) \\ \frac{1}{8(8+10)} \\ \						
	T_1(s) P(c)= 82+108+K + 1+						
	-K						
	a) $7_{1}(s)=0$ $C_{S}=\lim_{s\to\infty} RE(s)=\lim_{s\to\infty} R(s) R(s)$						
	a) $T_{1}(s)=0$ $C_{C_{S}}=\lim_{R\to 0}RE(s)=\lim_{R\to 0}S\left(1-T(s)\right)RKS$						
	$C_{SS} = (1 - T(0)) = 1 - \frac{k}{k} = 0$						
	·						
	6) $R(s) = 0$ $g_{ss} = \lim_{s \to 0} 8 Y(s) = \lim_{s \to 0} 8 \times \frac{1}{s^2} = $						
	b) $R(s) = 0$ $f(s) = \lim_{R \to 0} 8 \times (s) = \lim_{R \to 0} 8 \times \frac{1}{8^2 + 108 + K} = \lim_{R \to 0} \frac{8 \times 1/3}{8^2 + 108 + K}$						
	Essor. with respect to distrebance $E(s) = Y(s) \Big _{R(s)=0}$						
	E(S) = Y(S) $R(S) = 0$						
	Cos = len & E(s) = lim & y(s) = yss = 1/k						
	Crs = lim & E(s) = lim & y(s) = yss = 1/k Increase 'k' Rufficiently large such that earns with respect to distribute To Risji small. PESU						
	to distribune To Resilianal PESU						

Steady state error: ess

$$\frac{Y(s)}{R(s)} = \frac{Z(s)}{1 + Z(s)}$$

$$\frac{Z(s)}{1+Z(s)} = \frac{G(s)}{1+G(s)+(s)}$$

$$\frac{G(s)}{1+G(s)+H(s)} = Z(s)\left(1-\frac{G(s)}{1+G(s)+H(s)}\right)$$

$$=) \quad Z(s) = \frac{G(s)}{1 + G(s)(H(s) - G(s))}$$

$$E(s) = R(s) - \gamma(s)$$

$$= R(s) \cdot \left(1 - \frac{\gamma(s)}{R(s)}\right)$$

Let
$$\frac{Y(i)}{R(i)} = T(i)$$
 — Closed loop transfer function

 For the system shown in figure below evaluate the static error constants and find the expected steady state errors for the standard step, ramp and parabolic inputs.

$$K_{p} = \lim_{s \to 0} G(s)$$

$$K_{p} = \lim_{s \to 0} \left(\frac{100(s+2)(s+5)}{s^{2}(s+8)(s+12)}\right)$$

$$K_{p} = \infty$$

$$K_{v} = \lim_{s \to 0} sG(s)$$

$$K_{v} = \infty$$

$$K_{u} = \lim_{s \to 0} s^{2}G(s)$$

$$K_{u} = \lim_{s \to 0} \left(\frac{100s^{2}(s+2)(s+5)}{s^{2}(s+8)(s+12)}\right)$$

$$K_{u} = \left(\frac{100(0+2)(0+5)}{(0+8)(0+12)}\right) = 10.4$$

$$e_{ss} = \frac{1}{1 + K_p} = 0$$

$$e_{ss} = \frac{1}{K_v} = 0$$

$$e_{ss} = \frac{1}{K_v} = 0.09$$

Determine the static error constants of the system represented by the OLTF with unity feedback

$$G(s) = \frac{k(s+2)}{s(s^3+7s^2+12s)}$$

Also determine the type & order of the system. Find the ess for a unit parabolic

Sol: type = 2, order of the system. Find the
$$\frac{1}{3}$$
 to $\frac{1}{3}$ t

$$\frac{e_{ss} = \frac{2}{k_U} = \frac{1}{\infty}}{k_U} = 0$$

$$\frac{R(s)}{s} = \frac{8}{s^2}$$

- Consider the unity feedback system shown. The system has two parameters, the controller gain K and the constant K_1 in the process.
- A) calculate the sensitivity of CLTF to changes in K_1

$$\frac{7(s) = \frac{y(s)}{R(s)}}{\frac{x}{R(s)}} = \frac{\frac{x}{s}}{\frac{s(s+x_1)}{s(s+x_1)}}$$

$$S_{K_{1}}^{T} = \frac{\partial T}{\partial K_{1}} \cdot \frac{K_{1}}{T}$$

$$= -\frac{1}{2} \cdot \frac{K_{1}}{K_{1}} \cdot \frac{K_{1}}{T}$$

$$= -\frac{1}{2} \cdot \frac{K_{1}}{K_{1}} \cdot \frac{K_{1}}{K_{2}} \cdot \frac{K_{1}}{K_{1}} \cdot \frac{K_{1}}{K_{2}} \cdot \frac{K_{1}}{K_{1}} \cdot \frac{K_{1}}{K_{2}} \cdot \frac{K_{1}}{K_{1}} \cdot \frac{K_{1}}{K_{2}} \cdot \frac{K_{1}}{K_{1}} \cdot \frac{K_{1}}{K_{$$

$$= \frac{-3K_1}{S^2 + K_1 S + K}$$

make k as luge as possible, To tac sk,

Determine the type, order, earor constants & ess for unit step input

$$G(s) = \frac{100}{S(S+10)}$$
 H(s) = $\frac{1}{S+5}$

$$Z(s) = \frac{100 / 8(8+10)}{1 + \frac{100}{8(8+10)}}$$

$$1 + \frac{100}{8(8+10)} \times \frac{1}{s+5} - \frac{100}{8(8+10)}$$

$$DETF \qquad Z(s) = \frac{100(5+6)}{8^{\frac{3}{2}} + 155^{\frac{3}{2}} - 50s - 400}$$

$$Lipe - O$$

$$CLIF \qquad T(s) = \frac{2}{(1+2)}$$

$$= \frac{100(8+5)}{(8^{\frac{3}{2}} + 15s^{\frac{3}{2}} - 50s - 400 + (008 + 500))}$$

$$ORDER - 2$$

$$k_p = \lim_{8 \to 0} Z(s)$$

$$= -5/4$$

$$k_v = \lim_{8 \to 0} 8Z(s)$$

$$= 0 \qquad = 0$$

$$for slep \qquad C_{ss} = \frac{1}{1+k_p}$$

$$C_{ss} = \frac{4}{4-5} = -4$$

CLTF

