SDDP.jl

Stochastic dual dynamic programming in Julia

Oscar Dowson

Department of Industrial Engineering and Management Sciences Northwestern

October 23, 2018

Outline

 $\frac{Northwestern}{\text{ENGINEERING}}$

Some background

Risk

SDDP.jl tutorial

Outline

 $\frac{Northwestern}{\text{ENGINEERING}}$

Some background

Risk

SDDP.jl tutorial

Northwestern ENGINEERING

► A high milk price was forecast.

Northwestern ENGINEERING

- A high milk price was forecast.
 - ► Farmers don't get paid for milk on delivery

- A high milk price was forecast.
 - Farmers don't get paid for milk on delivery
 - ► After each year, they are back-paid an end-of-season milk price

- A high milk price was forecast.
 - ► Farmers don't get paid for milk on delivery
 - ► After each year, they are back-paid an *end-of-season* milk price
 - We can forecast the end-of-season price during the year

- A high milk price was forecast.
 - Farmers don't get paid for milk on delivery
 - ► After each year, they are back-paid an *end-of-season* milk price
 - ▶ We can *forecast* the end-of-season price during the year
 - But with high uncertainty

- A high milk price was forecast.
 - Farmers don't get paid for milk on delivery
 - ► After each year, they are back-paid an *end-of-season* milk price
 - ▶ We can *forecast* the end-of-season price during the year
 - But with high uncertainty
- So the farmer kept a high number of cows,

- A high milk price was forecast.
 - Farmers don't get paid for milk on delivery
 - ► After each year, they are back-paid an *end-of-season* milk price
 - We can forecast the end-of-season price during the year
 - But with high uncertainty
- ▶ So the farmer kept a high number of cows,
- and they had plenty of feed so they didn't buy more.

- A high milk price was forecast.
 - ► Farmers don't get paid for milk on delivery
 - ► After each year, they are back-paid an *end-of-season* milk price
 - We can forecast the end-of-season price during the year
 - But with high uncertainty
- ▶ So the farmer kept a high number of cows,
- and they had plenty of feed so they didn't buy more.
- But, a wet year had left paddocks damaged.

- A high milk price was forecast.
 - ► Farmers don't get paid for milk on delivery
 - ► After each year, they are back-paid an *end-of-season* milk price
 - ▶ We can *forecast* the end-of-season price during the year
 - But with high uncertainty
- So the farmer kept a high number of cows,
- and they had plenty of feed so they didn't buy more.
- But, a wet year had left paddocks damaged.
- 30 years of experience said: we can't have a bad Summer, Autumn, Winter, AND Spring

- A high milk price was forecast.
 - ► Farmers don't get paid for milk on delivery
 - ► After each year, they are back-paid an *end-of-season* milk price
 - ▶ We can *forecast* the end-of-season price during the year
 - But with high uncertainty
- So the farmer kept a high number of cows,
- and they had plenty of feed so they didn't buy more.
- ▶ But, a wet year had left paddocks damaged.
- 30 years of experience said: we can't have a bad Summer, Autumn, Winter, AND Spring right?

The dairy farmer problem

maximise: revenue from milk production less operating costs

by deciding: the number of cows to farm

the quantity of grass to feed

the quantity of supplement to feed

when to dry-off the herd

subject to: obtaining a high Body Condition Score at the end

of the season

uncertainty in grass growth uncertainty in the milk price

POWDER

Northwestern ENGINEERING

The milk Production Optimizer incorporating Weather Dynamics and Economic Risk

To learn more about this, come to my talk Wednesday, October 31, 2018 @ 2:00 p.m. Room 274 Animal Sciences Bldg.

Outline

 $\frac{Northwestern}{\text{ENGINEERING}}$

Some background

Risk

SDDP.jl tutorial

Why care about risk?

If the tail matters more than the average.

- ► For a farmer, bad years mean cows starve or you go bankrupt and lose your farm
- ► For electricity generators, bad years mean blackouts in cities
- ▶ In finance, bad years mean losing all your money

Static Risk Measures

Definition

A $\emph{risk measure}~\mathbb{F}$ is a function that maps a random variable to a real number.

Definition

A *risk measure* \mathbb{F} is a function that maps a random variable to a real number.

Math

We restrict our attention to random variables with a finite sample space $\Omega := \{z_1, z_2, \dots, z_K\}$ equipped with a sigma algebra of all subsets of Ω and respective (strictly positive) probabilities $\{p_1, p_2, \dots, p_K\}$.

We denote the random variable with the uppercase Z.

Definition

The Average Value-at-Risk at the β quantile (AV@R_{1- β}) is:

$$\mathsf{AV@R}_{1-\beta}[Z] = \inf_{\zeta} \left\{ \zeta + \frac{1}{\beta} \sum_{k=1}^{K} p_k (z_k - \zeta)_+ \right\},\,$$

where $(x)_+=\max\{0,x\}$. (Rockafellar and Uryasev 2002) Note that when $\beta=1$, AV@R_{1- β}[Z] = $\mathbb{E}[Z]$, and $\lim_{\beta\to 0}$ AV@R_{1- β}[Z] = $\max[Z]$.

Definition

A coherent risk measure is a risk measure \mathbb{F} that satisfies the axioms of Artzner et al. 1999. For two discrete random variables Z_1 and Z_2 , each with drawn from a sample space with K elements, the axioms are:

- ▶ **Monotonicity**: If $Z_1 \leq Z_2$, then $\mathbb{F}[Z_1] \leq \mathbb{F}[Z_2]$.
- ▶ **Sub-additivity**: For Z_1 , Z_2 , then $\mathbb{F}[Z_1 + Z_2] \leq \mathbb{F}[Z_1] + \mathbb{F}[Z_2]$.
- ▶ Positive homogeneity: If $\lambda \ge 0$ then $\mathbb{F}[\lambda Z] = \lambda \mathbb{F}[Z]$.
- ▶ Translation equivariance: If $a \in \mathbb{R}$ then $\mathbb{F}[Z+a] = \mathbb{F}[Z]+a$.

Positive homogeneity and sub-additivity give:

▶ **Convexity**: For $\lambda \in [0,1]$, $\mathbb{F}[\lambda Z_1 + (1-\lambda)Z_2] \leq \lambda \mathbb{F}[Z_1] + (1-\lambda)\mathbb{F}[Z_2]$.

We can also define coherent risk measures in terms of *risk sets*. That is, a coherent risk measure \mathbb{F} has a dual representation that can be viewed as taking the expectation of the random variable with respect to the worst probability distribution within some set \mathfrak{A} of possible distributions:

$$\mathbb{F}[Z] = \sup_{\xi \in \mathfrak{A}} \mathbb{E}_{\xi}[Z] = \sup_{\xi \in \mathfrak{A}} \sum_{k=1}^{K} \xi_k z_k, \tag{1}$$

where $\mathfrak A$ is a convex subset of:

$$\mathfrak{P} = \left\{ \xi \in \mathbb{R}^K : \sum_{k=1}^K \xi_k = 1, \; \xi \geq 0 \right\}.$$

Static Risk Measures

If $\mathfrak A$ is a singleton, containing only the original probability distribution, then the risk measure $\mathbb F$ is equivalent to the expectation operator.

Static Risk Measures

If $\mathfrak{A} = \left\{ \xi \in \mathfrak{P} \mid \xi_k \leq \frac{p_k}{\beta}, \ k = 1, 2, \dots, K \right\}$, then the risk measure \mathbb{F} is equivalent to $\mathsf{AV@R}_{1-\beta}$.

If $\mathfrak{A} = \mathfrak{P}$, then \mathbb{F} is the Worst-case risk measure.

From static to dynamic risk measures. There are three main views:

End-of-horizon: most natural

See, e.g., Pflug and Pichler 2016; Baucke, Downward, and Zakeri 2018

$$\mathbb{F}[Z_1, Z_2, Z_3] = \mathbb{F}_{\omega_1, \omega_2, \omega_3}[Z_1 + Z_2 + Z_3]$$

Nested: easiest to compute

See, e.g., Ruszczyński 2010; Philpott, de Matos, and Finardi 2013

$$\mathbb{F}[Z_1, \underline{Z_2}, \underline{Z_3}] = \mathbb{F}_{\omega_1}[Z_1 + \mathbb{F}_{\omega_2|\omega_1}[\underline{Z_2} + \mathbb{F}_{\omega_3|\omega_1,\omega_2}[\underline{Z_3}]]]$$

Expected conditional: a compromise

See, e.g., Homem-de-Mello and Pagnoncelli 2016

$$\mathbb{F}[Z_1, Z_2, Z_3] = \mathbb{F}_{\omega_1}[Z_1] + \mathbb{E}_{\omega_1}[\mathbb{F}_{\omega_2|\omega_1}[Z_2] + \mathbb{E}_{\omega_2|\omega_1}[\mathbb{F}_{\omega_3|\omega_1,\omega_2}[Z_3]]]$$

End-of-horizon risk measure

$$\mathbb{F}[Z_1, \frac{\mathsf{Z}_2}{\mathsf{Z}_3}] = \mathbb{F}_{\omega_1, \omega_2, \omega_3}[Z_1 + \frac{\mathsf{Z}_2}{\mathsf{Z}_3}]$$

Nested risk measure

$$\mathbb{F}[Z_1, Z_2, Z_3] = \mathbb{F}_{\omega_1}[Z_1 + \mathbb{F}_{\omega_2|\omega_1}[Z_2 + \mathbb{F}_{\omega_3|\omega_1,\omega_2}[Z_3]]]$$

Recall our favourite dynamic programming recursion:

$$V_{t}(x_{t}, \omega_{t}) = \min_{u_{t}} C_{t}(x_{t}, u_{t}, \omega_{t}) + \mathbb{E}_{\substack{\omega_{t+1} \in \Omega_{t+1} \\ \omega_{t+1} \in \Omega_{t+1}}} [V_{t+1}(x_{t+1}, \omega_{t+1})]$$
s.t. $x_{t+1} = T_{t}(x_{t}, u_{t}, \omega_{t})$
 $u_{t} \in U_{t}(x_{t}, \omega_{t}),$

where the decision-rule $\pi_t(x_t, \omega_t)$ takes the value of u_t in the optimal solution.

Recall our favourite dynamic programming recursion:

$$V_{t}(x_{t}, \omega_{t}) = \min_{u_{t}} C_{t}(x_{t}, u_{t}, \omega_{t}) + \mathbb{F}_{\substack{\omega_{t+1} \in \Omega_{t+1} \\ \omega_{t+1} \in \Omega_{t+1}}} [V_{t+1}(x_{t+1}, \omega_{t+1})]$$
s.t. $x_{t+1} = T_{t}(x_{t}, u_{t}, \omega_{t})$
 $u_{t} \in U_{t}(x_{t}, \omega_{t}),$

where the decision-rule $\pi_t(x_t, \omega_t)$ takes the value of u_t in the optimal solution.

Recall

Given an original probability distribution $\{p_1, p_2, \ldots, p_K\}$ and a coherent risk measure \mathbb{F} , there exists a *changed* probability distribution $\{\xi_1, \xi_2, \ldots, \xi_K\}$ such that $\mathbb{F}[Z] = \mathbb{E}_{\xi}[Z]$.

Proposition

Proposition

Proposition

Proposition

So what is this saying?

To obtain a cut for $\mathbb{F}_{\omega_{t+1} \in \Omega_{t+1}}[V_{t+1}(x_{t+1}, \omega_{t+1})]$

- ▶ We can go and solve the t+1 stage problems to obtain an objective value $\bar{\theta}_{\omega_{t+1}}$ and a dual vector $\lambda_{\omega_{t+1}}$ for each realization of ω_{t+1} .
- Normally, we take the expectation of these to get the cut

$$egin{aligned} heta_{t+1} \geq \mathbb{E}[ar{ heta}_{\omega_{t+1}}] + \mathbb{E}[\lambda_{\omega_{t+1}}]^{ op}(x_{t+1} - ar{x}_{t+1}) \end{aligned}$$

Instead, we compute ξ according to $\bar{\theta}_{\omega_{t+1}}$ and then take the risk-adjusted expectation to get the cut

$$\theta_{t+1} \geq \mathbb{E}_{\varepsilon}[\bar{\theta}_{\omega_{t+1}}] + \mathbb{E}_{\varepsilon}[\lambda_{\omega_{t+1}}]^{\top}(x_{t+1} - \bar{x}_{t+1})$$

Outline

 $\frac{Northwestern}{\text{ENGINEERING}}$

Some background

Risk

SDDP.jl tutorial

POWDER

Northwestern ENGINEERING

POWDER

Northwestern ENGINEERING

Do these nested risk measures make sense? Remember how the *end-of-horizon* risk measure made the most sense:

$$\mathbb{F}[X_1, X_2, X_3] = \mathbb{F}[X_1 + X_2 + X_3]$$

But we actually used the *nested* risk measure:

$$\mathbb{F}[X_1, X_2, X_3] = \mathbb{F}[X_1 + \mathbb{F}[X_2 + \mathbb{F}[X_3 \mid X_1, X_2] \mid X_1]]$$

What is the interpretation of a nested risk measure? This can lead to perverse, counter-intuitive results!

References I

- Philippe Artzner et al. "Coherent Measures of Risk". In: *Mathematical Finance* 9.3 (1999), pp. 203–228.
- Regan Baucke, Anthony Downward, and Golbon Zakeri. "A Deterministic Algorithm for Solving Multistage Stochastic Minimax Dynamic Programmes". In: Optimization Online (2018). URL: http://www.optimization-online.org/DB_FILE/2018/02/6449.pdf.
- Tito Homem-de-Mello and Bernardo K. Pagnoncelli. "Risk Aversion in Multistage Stochastic Programming: A Modeling and Algorithmic Perspective". In: European Journal of Operational Research 249.1 (2016), pp. 188–199.
- Georg Ch. Pflug and Alois Pichler. "Time-Inconsistent Multistage Stochastic Programs: Martingale Bounds". In: European Journal of Operational Research 249.1 (2016), pp. 155–163.

References II

- Andy Philpott, Vitor de Matos, and Erlon Finardi. "On Solving Multistage Stochastic Programs with Coherent Risk Measures". In: Operations Research 61.4 (2013), pp. 957–970.
- Tyrrell R. Rockafellar and Stanislav P. Uryasev. "Conditional Value-at-Risk for General Loss Distributions". In: *Journal of Banking and Finance* 26 (2002), pp. 1443–1471.
- Andrzej Ruszczyński. "Risk-Averse Dynamic Programming for Markov Decision Processes". In: *Mathematical Programming* 125.2 (2010), pp. 235–261.