

Eletrônica Digital II

Aula I – Máquina de Estado

Prof. MSc. Bruno de Oliveira Monteiro

O projeto de contadores Binários Síncronos tem como objetivo adquirir habilidades para projetar <u>Máquina de Estados</u> digitais (ME). As ME que estudaremos dispõem de um elemento de temporização que requer a armazenagem de informação de estado. Este elemento de temporização é um <u>Contador Binário Síncrono</u>.

- → Conforme vimos anteriormente um Contador Binário Síncrono possui duas partes:
 - → Registrador Binário Síncrono, controlado por clk(clocks) pelos flancos (positivos ou negativos);
 - → Lógica Combinacional de Entrada, usada para alimentar as entradas dos flipflops, essa lógica determina o próximo estado.

Para projetar um Contador Binário Síncrono, devemos:

- a) Selecionar o flip-flop desejado (FF-RS, FF-JK, FF-T ou FF-D);
- b) Traçar o Diagrama de Estado (DE), que determinará a sequência do contador. O DE é simplesmente um fluxo lógico do contador que apresenta o estado que devem assumir;

Exemplo 1: Vamos montar uma Máquina de estado usando o contador binário Síncrono com FF-JK, capaz de contar de (0 - 3 - 1 - 2 - 0)

1° passo: Identificar quantos FF-JK serão necessários.

2° passo: E montar o Diagrama de Estado (DE) (0 - 3 - 1 - 2 - 0).

Exemplo: Vamos montar um contador binário Síncrono, capaz de contar de (0 - 3 - 1 - 2 - 0)

3° passo: Vamos montar uma tabela contendo os estados anteriores e estado final;

Estado Anterior (Qa)		Estado F		
Q1	Q0	Q1	Q0	
0	0	1	1	0→3
0	1	1	0	1→2
1	0	0	0	2→0
1	1	0	1	3→1

4°Passo: Vamos montar a tabela de alimentação das entradas dos FF-JK, de acordo com a tabela do Qa e Qf dos estados:

Estado A (Qa)	Anterior	Estado (Qf)	Final	FF-JK		FF-JK (0)
Q1	Q0	Q1	Q0	J	/ K1	J0	K0
Ō	0	1	1	1	*	1	*
0	1	1	0	1	*	*	1
1	0	0	0	*	1	0	*
1	1	0	1	*	1	*	0

Ça	Qf	Co.	K
O	0	0	*
O	1	1	*
1	О	*	1
1	1	*	O

5°Passo: Montar o Mapa de Karnaught de cada saída:

Estado Anterior (Qa)		Estado Final (Qf)		-JK (1)		FF-JK (0)	
Q1	Q0	Q1	Q0	J1	K1	J0	K0
0	0	1	1	1	*	1	*
0	1	1	0	1	*	*	1
1	0	0	0	*	1	0	*
1	1	0	1	*	1	*	0

6°Passo: Montar o circuito

Finalizou!
Esse circuito irá contar de 0 até 3 e retornar o processo!

$$J1 = 1$$

$$K1 = 1$$

Exemplo 2: Vamos montar uma Máquina de estado usando o contador binário Síncrono com FF-D, capaz de contar de (0 - 3 - 1 - 2 - 0)

$$(0-3-1-2-0)$$

1° passo: Identificar quantos FF-D serão necessários.

2° passo: E montar o Diagrama de Estado (DE) (0 - 3 - 1 - 2 - 0).

3° passo: Vamos montar uma tabela contendo os estados anteriores e estado final;

Estado Anterior (Qa)		Estado F			
	Q1	Q0	Q1	Q0	
	0	0	1	1	0→3
	0	1	1	0	1→2
	1	0	0	0	2 → 0
	1	1	0	1	3 → 1

4°Passo: Vamos montar a tabela de alimentação das entradas dos FF-JK, de acordo com a tabela do Qa e Qf dos estados;

Estado Anterio	r (Qa)	Estado (Qf)	Final	F D (1)	FF-D (0)
Q1	Q0	Q1	Q0	D1	D0
0	0	1	1	1	1
0	1	1	0	1	0
1	0	0	0	0	0
1	1	0	1	0	1

Qa	Qf	D
O	0	0
O	1	1
1	O	O
1	1	1

5°Passo: Montar o Mapa de Karnaught de cada saída:

Estado Anterio	r (Qa)	Estado (Qf)	Final	F-D (1)		FF-D (0)	
Q1	Q0	Q1	Q0		D1		D0
0	0	1	1		1		1
0	1	1	0		1		0
1	0	0	0		0		0
1	1	0	1		0		1

6°Passo: Monte o circuito

D1=Q1′ D0= Q1′Q0′+Q1Q0

Exercício 1:

1) Monte um Contador Binário Síncrono, com FF-JK, capaz de contar de 0 até 7

$$(0 - 2 - 5 - 7 - 6 - 4 - 3 - 1 - 0 \dots)$$

Exercício 1:

Estado Anterior (Qa)	Estado Final (Qf)	FF- JK2	FF-JK1	FF-JK0
Q2 Q1 Q0	Q2 Q1 Q0	J2 K2	J1 K1	J0 K0
0 0 0	0 1 0	0 *	1 *	0 *
0 0 1	0 0 0	0 *	0 *	* 1
0 1 0	1 0 1	1 *	* 1	1 *
0 1 1	0 0 1	0 *	* 1	* 0
1 0 0	0 1 1	* 1	1 *	1 *
1 0 1	1 1 1	* 0	1 *	* 0
1 1 0	1 0 0	* 0	* 1	0 *
1 1 1	1 1 0	* 0	* 0	* 1

Qa	Qf	J	K
O	O	0	*
O	1	1	*
1	O	*	1
1	1	*	O

Exercício 1:

J2=Q1Q0′ K2=Q1′Q0′

J1=Q2+Q0' K1=Q2'+Q0'

J0	Q1′Q0′	Q1′Q0	Q1Q0	Q1Q0′
Q2′	0	*	*	1
Q2		*)	*	0

J0=Q2Q1'+Q2'Q1 K0=Q2'Q1'+Q2Q1

Exercício 1:

Exercício 2)

Monte um Contador Binário Síncrono, FF-T capaz de contar de (0 - 2 - 4 - 6 - 7 - 5 - 3 - 1 - 0....)

Exercício 3)

Monte um Contador Binário Síncrono, FF-D capaz de contar de (0 - 5 - 1 - 3 - 7 - 2 - 6 - 4 - 0....)

Bons Estudos

Prof. MSc. Bruno de Oliveira Monteiro

