<u>Proof.</u>(i)+(ii) holds true because -A is a generator of a semigroup. (ii)+(i): We have to show that one (hence each) operator T(t), $t \ge 0$ is invertible. Obviously this is true if ϕ is bijective. At first we assume that ϕ is surjective, that is, $K = K_{\infty}$. By Thm.4.4 we have that $\phi \mid K_{\infty}$ is injective if (ii) is true. Thus ϕ is bijective. Now we assume that ϕ is injective. We have to show that $\phi \mid K = K_{\infty}$. By Thm.4.4 we have $\phi \mid K_{\infty} = K_{\infty}$ for some s, whenever (ii) is true. Given $\phi \mid K_{\infty} = K_{\infty}$ for some s, whenever (iii) is true. Given $\phi \mid K_{\infty} = K_{\infty}$ such that $\phi \mid K_{\infty} = K_{\infty}$.

In the following example we consider semiflows related to ordinary differential equations on \mathbb{R}^n . In case there exists a corresponding global flow, it induces a group on $C_0(\mathbb{R}^n)$ in a canonical way. Even if there is no global flow, one can construct semigroups governed by a semiflow, and apply Thm.4.4(a) in order to describe the spectrum. These examples can be easily extended to differential equations on manifolds (see Sec.18.2 of Dieudonné (1971)).

Example 4.6. Suppose $F:\mathbb{R}^n\to\mathbb{R}^n$ is continuously differentiable. We denote the maximal flow corresponding to the differential equation y'=F(y) by ϕ_O . In general, ϕ_O is only defined on an open subset of $\mathbb{R}\times\mathbb{R}^n$ which contains $\{0\}\times\mathbb{R}^n$. For $\mathbf{x}\in\mathbb{R}^n$ there exist $\underline{\mathbf{t}}_{\mathbf{x}}$ and $\overline{\mathbf{t}}_{\mathbf{x}}$ such that

$$\begin{array}{lll} \text{(4.11)} & -\infty \leq \underline{t}_{\mathbf{x}} < 0 < \overline{t}_{\mathbf{x}} \leq \infty \ ; \\ & \phi_{_{\mathbf{O}}}(\mathsf{t}, \mathsf{x}) & \text{is defined if} \ \underline{t}_{\mathbf{x}} < \mathsf{t} < \overline{t}_{\mathbf{x}} \ ; \\ & \text{if} \ \overline{t}_{\mathbf{x}} < \infty \ (\underline{t}_{\mathbf{x}} > -\infty) \ \text{then} \ \left| \phi_{_{\mathbf{O}}}(\mathsf{t}, \mathsf{x}) \right| \ + \infty \ \text{as} \ \mathsf{t}^{\dagger} \overline{t}_{\mathbf{x}} \ (\mathsf{t}^{\dagger} \underline{t}_{\mathbf{x}}) \ . \end{array}$$

For details see Sect. 18.2 of Dieudonné (1971)

(a) If ϕ_O is a global flow, i.e., if ϕ_O is defined on $\mathbb{R} \times \mathbb{R}^n$, then one has a corresponding (semi-)group on $C_O(\mathbb{R}^n)$. If F is differentiable, its generator is the closure of A_1 which is defined as follows (cf. B-II,Ex.3.15):

(4.12)
$$A_1 f = (F | grad f) := \sum F_i \cdot \partial_i f$$
 with domain $D(A_1) := \{ f \in C^1 : supp f \text{ is compact} \}$.

 ϕ_O can be uniquely extended to a flow $\widetilde{\phi}_O$ on $\mathbb{R}^n\cup\{\infty\}$ by defining $\widetilde{\phi}_O(t,\infty):=\infty$ for all $t\in\mathbb{R}$. ϕ_O and $\widetilde{\phi}_O$ satisfy condition (c) of Thm.4.4 .