MATH 2305: Discrete Mathematics

Janak Joshi, Dallas College, Fall 2024

1	Logic and Proots	2
	1.1 Propositional Logic	
	1.3 Predicates and Quantifiers	
	1.4 Nested Quantifiers	
	1.5 Rules of Inference	
	1.6 Introduction to Proofs	
	1.7 Proof Methods and Strategy	2
2	Sets, Functions, Sequences, Sums, and Matrices	3
	2.1 Sets	
	2.2 Set Operations	
	2.3 Functions	
	2.4 Sequences and Summations	3
3	Algorithms	4
	3.1 Algorithms	4
		_
4	Number Theory and Cryptography	5 5
	4.1 Divisibility and Modular Arithmetic	
	4.3 Primes and Greatest Common Divisors	
	4.4 Solving Congruences	
5	Induction and Recursion	6
	5.1 Mathematical Induction	
	5.2 Strong Induction and Well-Ordering	
	5.4 Recursive Algorithms	
	5.4 Recursive Algorithms	Ü
6	Counting	7
	5.1 The Basics of Counting	
	6.2 The Pigeonhole Principle	
	6.3 Permuations and Combinations	
	6.4 Binomial Coefficients and Identities	
	0.5 Generalized Fermidations and Combinations	'
7	Discrete Probability	8
	7.1 An Introduction to Discrete Probability	8
8	Advanced Counting Techniques	9
U	8.1 Applications of Recurrence Relations	9
	8.2 Inclusion-Exclusion	9
9	Relations	10
	9.1 Relations and Their Properties	10
10	Graphs	11
-	10.1 Graphs and Graph Models	11
	10.2 Graph Terminology and Special Types of Graphs	11
11	Tuona	10
11	Trees 11.1 Introduction to Trees	12 12
	III.I milloduction to mees	12

1 Logic and Proofs

- 1.1 Propositional Logic
- 1.2 Propositional Equivalences
- 1.3 Predicates and Quantifiers
- 1.4 Nested Quantifiers
- 1.5 Rules of Inference
- 1.6 Introduction to Proofs
- 1.7 Proof Methods and Strategy

2 Sets, Functions, Sequences, Sums, and Matrices

- 2.1 **Sets**
- 2.2 Set Operations
- 2.3 Functions
- 2.4 Sequences and Summations

3 Algorithms

3.1 Algorithms

4 Number Theory and Cryptography

- 4.1 Divisibility and Modular Arithmetic
- 4.2 Integer Representation and Algorithms
- 4.3 Primes and Greatest Common Divisors
- 4.4 Solving Congruences

5 Induction and Recursion

- 5.1 Mathematical Induction
- 5.2 Strong Induction and Well-Ordering
- 5.3 Recursive Defintions and Structural Induction
- 5.4 Recursive Algorithms

6 Counting

- 6.1 The Basics of Counting
- 6.2 The Pigeonhole Principle
- **6.3** Permuations and Combinations
- 6.4 Binomial Coefficients and Identities
- 6.5 Generalized Permuations and Combinations

7 Discrete Probability

7.1 An Introduction to Discrete Probability

8 Advanced Counting Techniques

- 8.1 Applications of Recurrence Relations
- 8.2 Inclusion-Exclusion

9 Relations

9.1 Relations and Their Properties

10 Graphs

- 10.1 Graphs and Graph Models
- 10.2 Graph Terminology and Special Types of Graphs

11 Trees

11.1 Introduction to Trees