

| 编  | 制   | 沈胜文 |
|----|-----|-----|
| 审  | 核   |     |
| 批  | 准   |     |
| 实施 | 责任人 |     |

# Amendment history 修改历史记录

| 版本号 | 修改说明 | 修改批准人 | 修改人 | 日期        | 签收人 |
|-----|------|-------|-----|-----------|-----|
| 101 | 创建文档 |       | 沈胜文 | 2008-3-21 |     |
| 102 | 修改   |       | 沈胜文 | 2008-4-11 |     |
|     |      |       |     |           |     |
|     |      |       |     |           |     |
|     |      |       |     |           |     |
|     |      |       |     |           |     |



| 编  | 制   | 沈胜文 |
|----|-----|-----|
| 审  | 核   |     |
| 批  | 准   |     |
| 实施 | 责任人 |     |

# Table of Contents 目录

| 1. Introduction 简介              | 3  |
|---------------------------------|----|
| 1.1. Objective 编写目的             | 3  |
| 1.2. Background 背景              | 3  |
| 1.3. Terms & Abberviation 术语&缩写 | 3  |
| 1.4. Reference Material 参考资料    | 4  |
| 2. Rules 规则                     | 4  |
| 2.1. Name Rules 命名规则            | 4  |
| 2.2. Illuminate 说明              | 4  |
| 2.3. Note Rules 注释规则            |    |
| 2.4. File Structure 文件结构        | 5  |
| 3. Structure Of Routines 程序结构   | 6  |
| 3.1. Overview 总述                | 6  |
| 3.2. Routines List 函数列表         | 7  |
| 4. Global Description 全局描述      | 7  |
| 4.1. Global Type 全局类型           | 7  |
| 4.2. Global Error 全局错误码         | 8  |
| 5. Routines Detail 函数细节         | 9  |
| 5.1. Mu_Crc32File               | 9  |
| 5.2. Mu_Crc32Segment            | 13 |
| 5.3. Mu_Md5File                 |    |
| 5.4. Mu Md5Segment              | 19 |



| 编  | 制   | 沈胜文 |
|----|-----|-----|
| 审  | 核   |     |
| 批  | 准   |     |
| 实施 | 责任人 |     |

# 1. Introduction 简介

# 1.1. Objective 编写目的

本文档是在《CRC-32 MD5概要设计》的基础上,就文件或分段完整性校验所需要的扩展库,进行详细设计而完成的详细设计说明;

在 MuFTAD 项目中,涉及二种不同的校验方式: CRC 和 MD5,对此,在本设计文档中,将会详细说明二者的实现;

在概要设计文档中,介绍了待校验文件的内容,因此,针对具体的校验内容, 必须提供具体的校验方法;

本文档将尽可能详尽地说明相关数据结构的设计和开发,但是设计和开发不相符之处,需讨论决定,并且修改本文档;

最终的设计以代码为准;

# 1.2. Background 背景

本程序是法电 MuFTAD 项目的一部分,提供内容完整性校验。但是程序按扩展库的形式组织和开发,以使得该程序独立于本项目,方便于其他项目的使用和移植;

本软件的提出者:沈胜文本软件的开发者:沈胜文

本软件的用 户: MuFTAD 和微元其他项目

### 1.3. Terms & Abberviation 术语&缩写

Terms&Abbreviation 术语&缩写 Description 解释



| 编  | 制   | 沈胜文 |
|----|-----|-----|
| 审  | 核   |     |
| 批  | 准   |     |
| 实施 | 责任人 |     |

| CRC     | 循环冗余检验(Cyclic Redundant Check),使原始数据通过某种算法,得到一个新的数据,而这个数据与原数据有着固有的内在关系。把原数据和新数据组合在一起,使得新数据具有自我校验功 |
|---------|---------------------------------------------------------------------------------------------------|
|         | 能;                                                                                                |
|         | md5的全称是 message-digest                                                                            |
| MD5     | algorithm 5, MD5的典型应用是对一段信                                                                        |
|         | 息(Message)产生信息摘要                                                                                  |
|         | (Message-Digest),以防止被篡改。                                                                          |
|         | OpenSSL 是一个开放源代码的实现                                                                               |
| openssl | 了 SSL 及相关加密技术的软件包,由加                                                                              |
|         | 拿大的 Eric Yang 等发起编写的。                                                                             |

# 1.4. Reference Material 参考资料

CRC-32 MD5 概要设计 AN42-循环冗余检验(CRC)原理与实现1.1.pdf 并行 CRC\_32校验码生成算法研究及其实现.pdf openssl.org

# 2. Rules 规则

### 2.1. Name Rules 命名规则

该程序的建立不仅仅是为了 MuFTAD 项目,我们希望其能为微元其他项目提供服务,因此在开发过程中,对其按照扩展库的形式进行组织和开发,所有的函数形如: Mu\_XXXX();

# 2.2. Illuminate 说明

针对每个程序,都必须注明其开发目的,开发者,开发时间,等等。以下字段必须被包含于程序的开头部分。

/\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

- \* ====Microunit Techonogy Co,.LTD.====
- \* File Name:



| 编  | 制   | 沈胜文 |
|----|-----|-----|
| 审  | 核   |     |
| 批  | 准   |     |
| 实施 | 责任人 |     |

| *    | CRC        | 2-32 & MD5.c                                               |
|------|------------|------------------------------------------------------------|
| *    |            |                                                            |
| * De | escription | :                                                          |
| *    |            |                                                            |
| *    | Use th     | ne Routines contained in this file, to checksum the files, |
| *    | or the     | segment of the file.                                       |
| *    |            |                                                            |
| * Re | vision H   | istory:                                                    |
| *    |            | ·                                                          |
| *    | 20-3       | -2008 ver1.0                                               |
| *    |            |                                                            |
| *Au  | thor:      |                                                            |
| *    |            |                                                            |
| *    | ssw        | (fzqing@gmail.com)                                         |
| *    |            |                                                            |
| *    |            | ***PROTECTED BY COPYRIGHT***                               |
| ***  | ******     | *********************                                      |

### 2.3. Note Rules 注释规则

程序中的各个函数均需要明确注释其功能,并能简要描述其实现,及注意点。 特别应该注意的是:在描述时,应该详细包括对锁,输入和输出进行详细说明。 可参考模板

/\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*
\*Description:

\* This Function checksum the crc-32,

\* Value pointer;

\*Input:

\* filename: the file name , which stored programs

\*Output:

\* Pointer:

\*LOCK:

\* NONE

\*Modify:

\* ssw (fzqing@gmail.com 10-3-2008)

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

# 2.4. File Structure 文件结构

[注意]:

1、此为整个项目的文件组织方式;



| 编  | 制   | 沈胜文 |
|----|-----|-----|
| 审  | 核   |     |
| 批  | 准   |     |
| 实施 | 责任人 |     |



./src/include: 文件夹,包含该项目中的所有头文件;

./src/main:文件夹,包含所有按法电《do3c00\_SoftProtocol\_0.1.0\_RC1》流程所开发的程序;

./src/xml: 文件夹,包含项目中所需要的 xml 处理库函数源代码:

./src/crc\_md5:文件夹,包含项目中所需要的校验函数源代码,包括 CRC 和MD5校验代码;

./src/http\_s:文件夹,包含项目中所需要的与服务器交互的方式,包括HTTP(s)GET、POST方式;

./src/lib: 文件夹,用于存储编译所生成的 xml、http 和 https、crc/md5库。软件编译连接时使用该文件夹下的库;

./src/make: 文件,总的编译入口;

#### [注意]:

1、各对应文件夹下的源文件按需要添加,但是所作修改必须对 makefile 文件作相应的修改,以正确编译;

# 3. Structure Of Routines 程序结构

### 3.1. Overview 总述

待开发的各程序之间是相互独立的,它们为项目 MuFTAD 中的其他部分服务,按功能可以分为如下二类:

1、CRC-32校验

使用 CRC-32对完整的文件或是文件分段进行完整性校验;

#### 2、MD5校验

使用 MD5散列算法,对完整的文件或是文件分段进行完整性校验;



| 编  | 制   | 沈胜文 |
|----|-----|-----|
| 审  | 核   |     |
| 批  | 准   |     |
| 实施 | 责任人 |     |

### 3.2. Routines List 函数列表

# 4. Global Description 全局描述

# 4.1. Global Type 全局类型

### 4.1.1. Macro 宏定义

#define MAX\_CRC\_LEN 1023 #define unit\_fast32\_t unsigned int

### 4.1.2. Structure 结构体

static uint\_fast32\_t CRC32\_Tab[256] = 0x00x04C11DB7, 0x09823B6E, 0x0D4326D9, 0x130476DC, 0x17C56B6B, 0x1A864DB2, 0x1E475005, 0x2608EDB8, 0x22C9F00F, 0x2F8AD6D6, 0x2B4BCB61, 0x350C9B64, 0x31CD86D3, 0x3C8EA00A, 0x384FBDBD, 0x4C11DB70, 0x48D0C6C7, 0x4593E01E, 0x4152FDA9, 0x5F15ADAC, 0x5BD4B01B, 0x569796C2, 0x52568B75, 0x6A1936C8, 0x6ED82B7F, 0x639B0DA6, 0x675A1011, 0x791D4014, 0x7DDC5DA3, 0x709F7B7A, 0x745E66CD, 0x9823B6E0, 0x9CE2AB57, 0x91A18D8E, 0x95609039, 0x8B27C03C, 0x8FE6DD8B, 0x82A5FB52, 0x8664E6E5, 0xBE2B5B58, 0xBAEA46EF, 0xB7A96036, 0xB3687D81, 0xAD2F2D84, 0xA9EE3033, 0xA4AD16EA, 0xA06C0B5D, 0xD4326D90, 0xD0F37027, 0xDDB056FE, 0xD9714B49, 0xC7361B4C, 0xC3F706FB, 0xCEB42022, 0xCA753D95, 0xF23A8028, 0xF6FB9D9F, 0xFBB8BB46, 0xFF79A6F1, 0xE13EF6F4, 0xE5FFEB43, 0xE8BCCD9A, 0xEC7DD02D, 0x34867077, 0x30476DC0, 0x3D044B19, 0x39C556AE, 0x278206AB, 0x23431B1C, 0x2E003DC5, 0x2AC12072, 0x128E9DCF, 0x164F8078, 0x1B0CA6A1, 0x1FCDBB16, 0x018AEB13, 0x054BF6A4, 0x0808D07D, 0x0CC9CDCA, 0x7897AB07, 0x7C56B6B0, 0x71159069, 0x75D48DDE, 0x6B93DDDB, 0x6F52C06C, 0x6211E6B5, 0x66D0FB02, 0x5E9F46BF, 0x5A5E5B08, 0x571D7DD1, 0x53DC6066, 0x4D9B3063, 0x495A2DD4, 0x44190B0D, 0x40D816BA, 0xACA5C697, 0xA864DB20, 0xA527FDF9, 0xA1E6E04E, 0xBFA1B04B, 0xBB60ADFC, 0xB6238B25, 0xB2E29692, 0x8AAD2B2F, 0x8E6C3698,



| 编  | 制   | 沈胜文 |
|----|-----|-----|
| 审  | 核   |     |
| 批  | 准   |     |
| 实施 | 责任人 |     |

0x832F1041, 0x87EE0DF6, 0x99A95DF3, 0x9D684044, 0x902B669D, 0x94EA7B2A, 0xE0B41DE7, 0xE4750050, 0xE9362689, 0xEDF73B3E, 0xF3B06B3B, 0xF771768C, 0xFA325055, 0xFEF34DE2, 0xC6BCF05F, 0xC27DEDE8, 0xCF3ECB31, 0xCBFFD686, 0xD5B88683, 0xD1799B34, 0xDC3ABDED, 0xD8FBA05A, 0x690CE0EE, 0x6DCDFD59, 0x608EDB80, 0x644FC637, 0x7A089632, 0x7EC98B85, 0x738AAD5C, 0x774BB0EB, 0x4F040D56, 0x4BC510E1, 0x46863638, 0x42472B8F, 0x5C007B8A, 0x58C1663D, 0x558240E4, 0x51435D53, 0x251D3B9E, 0x21DC2629, 0x2C9F00F0, 0x285E1D47, 0x36194D42, 0x32D850F5, 0x3F9B762C, 0x3B5A6B9B, 0x0315D626, 0x07D4CB91, 0x0A97ED48, 0x0E56F0FF, 0x1011A0FA, 0x14D0BD4D, 0x19939B94, 0x1D528623, 0xF12F560E, 0xF5EE4BB9, 0xF8AD6D60, 0xFC6C70D7, 0xE22B20D2, 0xE6EA3D65, 0xEBA91BBC, 0xEF68060B, 0xD727BBB6, 0xD3E6A601, 0xDEA580D8, 0xDA649D6F, 0xC423CD6A, 0xC0E2D0DD, 0xCDA1F604, 0xC960EBB3, 0xBD3E8D7E, 0xB9FF90C9, 0xB4BCB610, 0xB07DABA7, 0xAE3AFBA2, 0xAAFBE615, 0xA7B8C0CC, 0xA379DD7B, 0x9B3660C6, 0x9FF77D71, 0x92B45BA8, 0x9675461F, 0x8832161A, 0x8CF30BAD, 0x81B02D74, 0x857130C3, 0x5D8A9099, 0x594B8D2E, 0x5408ABF7, 0x50C9B640. 0x4E8EE645, 0x4A4FFBF2, 0x470CDD2B, 0x43CDC09C, 0x7B827D21, 0x7F436096, 0x7200464F, 0x76C15BF8, 0x68860BFD, 0x6C47164A, 0x61043093, 0x65C52D24, 0x119B4BE9, 0x155A565E, 0x18197087, 0x1CD86D30, 0x029F3D35, 0x065E2082, 0x0B1D065B, 0x0FDC1BEC. 0x3793A651, 0x3352BBE6, 0x3E119D3F, 0x3AD08088, 0x2497D08D, 0x2056CD3A, 0x2D15EBE3, 0x29D4F654, 0xC5A92679, 0xC1683BCE, 0xCC2B1D17, 0xC8EA00A0, 0xD6AD50A5, 0xD26C4D12, 0xDF2F6BCB, 0xDBEE767C, 0xE3A1CBC1, 0xE760D676, 0xEA23F0AF, 0xEEE2ED18, 0xF0A5BD1D, 0xF464A0AA, 0xF9278673, 0xFDE69BC4, 0x89B8FD09, 0x8D79E0BE, 0x803AC667, 0x84FBDBD0, 0x9ABC8BD5, 0x9E7D9662, 0x933EB0BB, 0x97FFAD0C, 0xAFB010B1, 0xAB710D06, 0xA6322BDF, 0xA2F33668, 0xBCB4666D, 0xB8757BDA, 0xB5365D03, 0xB1F740B4

**}**; [注意]:

1、该CRC32校验表来自Linux工具代码cheksum.c

# 4.2. Global Error 全局错误码

[注意]:

- 1、该错误码应该被放在一个单独的,只用来定义错误的头文件中:
- 2、该头文件定义为: mu\_error.h

#define NO MUERROR 0 #define MUERROR\_BUFFER\_EMPTY -1



| 编  | 制   | 沈胜文 |
|----|-----|-----|
| 审  | 核   |     |
| 批  | 准   |     |
| 实施 | 责任人 |     |

#define MUERROR\_OVER\_LEN -10 #define MUERROR\_READ\_FILE -11 #define MUERROR\_NOT\_MATCH -12

# 5. Routines Detail 函数细节

### 5.1. Mu\_Crc32File

### 5.1.1. Name 函数名称

int Mu\_Crc32File(int fd, unsigned int crc32)

# 5.1.2. Description 函数描述

本函数用于校验文件的完整性,使用 CRC32方式完成。函数对 fd 文件句柄 所关联的文件内的所有内容,与 crc32一并进行 CRC32运算,返回校验状态;

本函数对进行校验的文件不作任何修改,并且在校验完毕后,也不关闭该文件句柄,该操作由调用者完成;

为了提高校验效率,使用查表法完成,CRC32表见4.1.章节所述;

### **5.1.3. Function** 功能

用 CRC-32的校验方式对整个文件内容进行校验,以函数返回值的形式返回校验结果;

# 5.1.4. Capability 性能

产用查表方式,以提高 CRC-32的校验速度;



| 编  | 制   | 沈胜文 |
|----|-----|-----|
| 审  | 核   |     |
| 批  | 准   |     |
| 实施 | 责任人 |     |

# 5.1.5. Input 输入

fd: 待校验文件的文件句柄;

crc32: 待校验文件的 CRC 值, 同原文件一起校验文件的完整性;

# 5.1.6. Output 输出

校验状态值;

[注意]:

1、可以参考4.2. 章节;

# 5.1.7. Arithmetic 算法

CRC-32 查表法在实现原理:

本字节后的 CRC 码等于上一字节余式 CRC 码的低8位左移8位后,再加上一字节 CRC 右移24位(也即 CRC 的高8位)和本字节之和后所求得的 CRC 码;

核心代码如下:

 $crc = (crc << 8) \land crctab[((crc >> 24) \land *cp++) \& 0xFF];$ 

[注意]:

1、本章节所说的和是指机器语言中的异或运算;



| 编  | 制   | 沈胜文 |
|----|-----|-----|
| 审  | 核   |     |
| 批  | 准   |     |
| 实施 | 责任人 |     |

# 5.1.8. Process Flow 处理流程



# 5.1.9. Pseudocode 伪代码

```
int Mu_Crc32File(int fd, unsigned int crc32)
{
    unsigned int crc = 0;
    unsigned char buf[MAX_CRC_LEN + 1];
    unsigned char *cp =NULL;
    unsigned char temp;
    size_t bytes_read;
    size_t length = 0;

int i;

memset(buf, 0, MAX_CRC_LEN + 1);
    while((bytes_read = read(fd, buf, MAX_CRC_LEN)) > 0){
        cp = buf;
    }
}
```



| 编  | 制   | 沈胜文 |
|----|-----|-----|
| 审  | 核   |     |
| 批  | 准   |     |
| 实施 | 责任人 |     |

```
if(length + bytes_read < length){
            //file is too long
            return MUEOVL;
        }
        length += bytes_read;
        while(bytes_read --)
            crc = (crc << 8)^{CRC32}_{Tab}[((crc >> 24)^{*cp} + &0xFF];
        //memset(buf, 0, MAX_CRC_LEN + 1);
        if(feof(fp))
            break;
   }
   if(feof(fp)){
        do error
        return MUEEOF;
   }
   i = 4;
   while(i){
        temp = (crc32 >> ((i-1)*8))\&0xFF;
        crc = (crc << 8)^CRC32\_Tab[((crc >> 24)^temp\&0xFF];
   }
   if(0 == crc)
        return crc;
   else
        return MUNMAH;
}
```

# 5.1.10. Interface 接口

略

# 5.1.11. Malloc 存储分配

函数使用局部变量,申请栈中空间,函数将文件中内容读取到该空间,进行 CRC 校验,在结束后,自动将内存区域归还系统;



| 编  | 制   | 沈胜文 |
|----|-----|-----|
| 审  | 核   |     |
| 批  | 准   |     |
| 实施 | 责任人 |     |

#### 5.1.12. Restrict 限制

略

### 5.1.13. Test 测试

准备一个待检测的文件,用工具得到其 CRC32值; 写一个单独的调用函数,按函数规定赋给参数,测试函数是否校验正确;

### 5.1.14. Unsolve 未解决情况

略

# 5.2. Mu\_Crc32Segment

### 5.2.1. Name 函数名称

int Mu Crc32Segment(int fd, off t seek, size t length, unsigned int crc32)

# 5.2.2. Description 函数描述

本函数用于校验文件分段的完整性,使用 CRC32方式完成。函数对 fd 文件 句柄所关联的文件内,从 seek 标识位置开始,length 长度的内容及 crc32的值一并进行 CRC32运算,返回校验状态:

本函数对进行校验的文件不作任何修改,并且在校验完毕后,也不关闭该文件句柄,该操作由调用者完成;

为了提高校验效率,使用查表法完成,CRC32表见4.1.章节所述;

### **5.2.3. Function** 功能

用 CRC-32的校验方式对文件内的部分内容进行校验,以函数返回值的形式返回校验结果;



| 编  | 制   | 沈胜文 |
|----|-----|-----|
| 审  | 核   |     |
| 批  | 准   |     |
| 实施 | 责任人 |     |

# 5.2.4. Capability 性能

采用查表方式,以提高 CRC-32的校验速度;

# 5.2.5. Input 输入

fd: 待校验文件的文件句柄;

crc32: 待校验文件的 CRC 值, 同原文件一起校验文件的完整性;

seek: 标识待检验分段在文件中的起始位置;

length: 标识进行检验时,需要输入的总的字符数;

# **5.2.6. Output** 输出

校验状态值;

[注意]:

1、可以参考4.2. 章节;

# 5.2.7. Arithmetic 算法

同5.1.7.中说明

# 5.2.8. Process Flow 处理流程

同5.1.8.中说明

[注意]:

1、在文件读取上稍的不同;

# 5.2.9. Pseudocode 伪代码

```
int Mu_Crc32Segment(int fd, off_t seek, size_t length, unsigned int crc32)
{
    unsigned int crc = 0;
    unsigned char buf[MAX_CRC_LEN + 1];
    unsigned char *cp =NULL;
```



}

#### 杭州微元科技有限公司 MuFTAD CRC MD5详细设计 MU-KD-080004-3F-102

| 编     | 制 | 沈胜文 |
|-------|---|-----|
| 审     | 核 |     |
| 批     | 准 |     |
| 实施责任人 |   |     |

```
size_t bytes_read;
size_t len = 0;
int i;
memset(buf, 0, MAX_CRC_LEN + 1);
seek(fp, seek, SEEK_SET);
while((bytes_read = read(fd, buf, MAX_CRC_LEN)) > 0){
    cp = buf;
    if(len + bytes_read < len){
        //file is too long
        return MUEOVL;
    if(len + bytes_read > length)
        bytes\_read = length - len;
    len += bytes_read;
    while(bytes_read --)
        crc = (crc << 8)^{CRC32} Tab[((crc >> 24)^{*cp} + &0xFF];
    memset(buf, 0, MAX_CRC_LEN + 1);
    if(feof(fp) || (len == length))
        break;
}
if(ferror(fp) || (len != length)){
    do error
    return MUERAD;
}
i = 4;
while(i){
    temp = (crc32 >> ((i-1)*8))\&0xFF;
    crc = (crc << 8)^CRC32\_Tab[((crc >> 24)^temp\&0xFF];
}
if(0 == crc)
    return crc;
else
    return MUEMAH;
```



| 编  | 制   | 沈胜文 |
|----|-----|-----|
| 审  | 核   |     |
| 批  | 准   |     |
| 实施 | 责任人 |     |

# **5.2.10. Interface** 接口

略

### 5.2.11. Malloc 存储分配

同5.1.11.中说明

# 5.2.12. Restrict 限制

略

#### 5.2.13. Test 测试

同5.1.13.中说明

### 5.2.14. Unsolve 未解决情况

略

# 5.3. Mu\_Md5File

# 5.3.1. Name 函数名称

int Mu\_Md5File(int fd, char \*md5)

# 5.3.2. Description 函数描述

本函数使用 MD5方式校验文件的完整性。函数对 fd 文件句柄所关联的文件内的所有内容进行 MD5运算,将动算结果与参数值 md5比较,返回校验状态;

本函数对进行校验的文件不作任何修改,并且在校验完毕后,也不关闭该文件句柄,该操作由调用者完成;



| 编  | 制   | 沈胜文 |
|----|-----|-----|
| 审  | 核   |     |
| 批  | 准   |     |
| 实施 | 责任人 |     |

MD5校验使用 openssl 库完成;

# **5.1.3. Function** 功能

用 MD5的校验方式对整个文件内容进行校验,以函数返回值的形式返回校验结果;

# 5.1.4. Capability 性能

略;

# 5.1.5. Input 输入

fd: 待校验文件的文件句柄;

md5: 待校验文件的 MD5值, 同原文件一起校验文件的完整性;

# **5.1.6. Output** 输出

校验状态值;

[注意]:

1、可以参考4.2. 章节;

# 5.1.7. Arithmetic 算法

略

# 5.1.8. Process Flow 处理流程

略

### 5.1.9. Pseudocode 伪代码

```
int Mu_Md5File(int fd, char *md5)
```



}

#### 杭州微元科技有限公司 MuFTAD CRC MD5详细设计 MU-KD-080004-3F-102

| 编  | 制   | 沈胜文 |
|----|-----|-----|
| 审  | 核   |     |
| 批  | 准   |     |
| 实施 | 责任人 |     |

```
char ouput[33] = \{```'\};
MD5_CTX context;
size_t len = 0;
size_t bytes_reaed;
int retval = MUOK;
unsigned char buf[MAX_CRC_LEN + 1];
unsigned char digest[16];
Md5Init(&context);
memset(buf, 0, MAX_CRC_LEN + 1);
while((bytes_read = read(fd, buf, MAX_CRC_LEN)) > 0){
    if(len + bytes_read < len){
        //file is too long
        return MUEOVL;
    }
    len += bytes_read;
    Md5Update(&context, buf, bytes_read);
    memset(buf, 0, MAX_CRC_LEN + 1);
    if(feof(fp))
        break;
}
if(ferror(fp)){
    do error
    return MUEEOF;
}
MD5Final(digest, &context);
for(int i = 0; i < 16; i++){
    sprintf(&(ouput[2*i], "%02x", (unsigned char)digest[i]);
    sprintf(\&(ouput[2*i+1], "%02x", (unsigned char)(digest[i]<<4));
}
retval = strncmp(output, md5, 32);
return retval;
```



| 编  | 制   | 沈胜文 |
|----|-----|-----|
| 审  | 核   |     |
| 批  | 准   |     |
| 实施 | 责任人 |     |

# **5.3.10. Interface** 接口

略

# 5.3.11. Malloc 存储分配

同5.1.11.中说明

# 5.3.12. Restrict 限制

略

# 5.3.13. Test 测试

同5.1.13.中说明

# 5.3.14. Unsolve 未解决情况

略

# 5.4. Mu\_Md5Segment

创建函数接口 int Mu\_Md5Segment(int fd, off\_t seek, size\_t length, char \*md5)

具体实现参考5.2和5.3.章节