

Mecânica e Campo Eletromagnético

DEPARTAMENTO DE FÍSICA

Ano letivo 2019/2020

TRABALHO 1: DINÂMICA DE TRANSLAÇÃO

Objetivos

- Estudar o movimento retilíneo de um corpo, no plano horizontal.
- Determinar, experimentalmente, o valor da aceleração da gravidade, g.

1. INTRODUÇÃO

Considere dois corpos de massas m_1 e m_2 (considerados como pontos materiais) ligados entre si por um fio que passa através da gola de uma roldana, como ilustra a Figura 1.

Figura 1. Esquema da montagem experimental.

Admitindo que o corpo de massa m_1 desliza, sem atrito, sobre a superfície horizontal e desprezando o atrito entre o fio e a roldana e entre a roldana e o seu eixo, assim como a massa do fio e da roldana, o seu movimento é uniformemente acelerado e a variação da posição na direção do movimento é dada por:

$$s = s_0 + v_0(t - t_0) + \frac{1}{2}a(t - t_0)^2$$
(1)

onde s_0 e v_0 representam, respetivamente, a posição e a velocidade em $t=t_0$ e a é a aceleração dada por

$$a = \frac{m_2}{(m_1 + m_2)}g$$
 (2)

2. PREPARAÇÃO DO TRABALHO¹

Analise a Figura 2 e responda às questões seguintes.

- 1. Complete a legenda do gráfico (Figura 2), identificando qual das curvas corresponde à variação temporal da velocidade e da posição de um corpo que se desloca com movimento uniformemente acelerado.
- 2. Estime o valor das constantes s_0 , t_0 , v_0 e a, equação (1). Justifique.

Figura 2. Resultados experimentais da variação temporal da posição e da velocidade de um corpo em movimento uniformemente acelerado numa direção específica.

- 3. Para o caso do movimento dos corpos ilustrado na Figura 1, a aceleração a que estão sujeitos é descrita pela equação (2). Com o objetivo de determinar o valor da aceleração ($a\pm\Delta a$), linearize a expressão (1), considerando a velocidade inicial nula.
- 4. Escreva as expressões que lhe permitem calcular o valor da aceleração $a\pm\Delta a$, partindo dos parâmetros da reta, nomeadamente declive e ordenada na origem $(m\pm\Delta m \ e \ b\pm\Delta b)$.
- 5. Escreva as equações que lhe permitem calcular a aceleração da gravidade $g\pm\Delta g$, a partir da determinação de $a\pm\Delta a$.

2

¹ Se tiver dúvidas consulte o docente nas aulas OT.

3. PROCEDIMENTO EXPERIMENTAL

A Figura 3 mostra uma fotografia da montagem experimental. Identifique os elementos indicados.

- Calha metálica com régua
- Carro deslizante (de massa m_1)
- Sonar
- ▶ Roldana; fio; argolas metálicas (de mas:

Figura 3. Fotografia da montagem experimental disponível na aula.

- Familiarize-se com o programa de aquisição de dados, efetuando alguns testes preliminares (ver folha de instruções em anexo).
- 2. Monte a experiência de acordo com a Figura 3, utilizando como corpo deslizante o carro fornecido (m_1 , sem massa adicional) e com o corpo suspenso (m_2), um gancho com duas ou três argolas metálicas ($6 < m_2 < 9$ g). Meça e registe o valor das massas m_1 e m_2 .
- 3. Garanta que a calha está horizontal; previna a existência de atrito entre a calha e o carro, e entre o fio e a roldana; confirme que a esponja amortecedora está colocada no final da calha.
- 4. Coloque o carro na posição 15 cm. Inicie o programa de aquisição de dados e deixe o carro deslizar sobre a calha. Interrompa a aquisição de dados, quando o carro atingir a esponja.
- 5. Efetue uma análise qualitativa dos resultados obtidos, utilizando as representações gráficas de s(t) e v(t) do programa de aquisição de dados. Se necessário, refine as condições experimentais e repita a experiência.
- 6. Identifique o instante t_0 e selecione um conjunto adequado de 10 pares de valores (tempo e posição).

4. ANÁLISE E TRATAMENTO DE DADOS

Com base nesta secção, deverá preparar o relatório preliminar <u>obrigatoriamente</u> entregue ao docente no final da aula.

- Usando os dados experimentais adquiridos na aula, represente-os graficamente, utilizando as expressões
 linearizadas na preparação do trabalho. Represente as barras de erro associadas às variáveis x e y.
- Aplicando o método MMDQ, determine a melhor reta e escreva a respetiva equação na forma $y = (m \pm \Delta m)x + (b \pm \Delta b)$. Represente-a no gráfico anterior.
- Determine, a partir dos parâmetros da reta, o valor da aceleração do movimento ($a\pm\Delta a$).
- A partir de a, determine a aceleração da gravidade g e o respetivo erro Δg . Comente o valor obtido. (sugestão: analise a precisão do resultado experimental $g \pm \Delta g$ e verifique se este pode ser considerado idêntico ao valor real (considere $g_{REAL} = 9,80\pm0,01 \text{ m.s}^{-2}$).

Conclusões:

- o Identifique as possíveis fontes de erros experimentais e sugira processos de as eliminar ou reduzir, de forma a aumentar a precisão e exatidão dos resultados obtidos.
- Considere a equação (1). Se a massa do corpo em queda for muito maior do que a massa do corpo a deslizar sem atrito, o que acontece à aceleração do movimento? Qual o tipo de movimento, neste caso?

BIBLIOGRAFIA

- [1] Serway, R. A., Physics for Scientist and Engineers with modern Physics, 2000, Saunder College Publishing.
- [2] Alonso & Finn, Física um curso universitário, vol. 1, 3ª edição, editora Edgard Blucher, 1981: Cap.5 e 7.
- [3] R. Resnick e D. Halliday, *Física*, vol. 2, 4ª ed.. editora Livros Técnicos e Científicos, 1990.
- [4] Tipler: Física, vol.1, 2ª edição, editora Guanabara, 1982: Cap.2 e 4.