Matriz unitaria

19. La matriz compleja A de $n \times n$ se llama unitaria si $A^* = A^{-1}$. Demuestre que la matriz

$$A = \begin{pmatrix} \frac{1+i}{2} & \frac{3-2i}{\sqrt{26}} \\ \frac{1+i}{2} & \frac{-3+2i}{\sqrt{26}} \end{pmatrix}$$
es unitaria.

- **20.** Demuestre que A es unitaria si y sólo si las columnas de A forman una base ortonormal en \mathbb{C}^n .
- **21.** Demuestre que si A es unitaria, entonces $|\det A| = 1$.
- 22. A hermitiana significa que $A = A^*$, y U unitaria significa que $U^{-1} = U^*$. Entonces

$$(U^{-1}AU)^* = U^*A^*(U^{-1}) = U^{-1}A(U^*)^* = U^{-1}AU$$

por tanto, $U^{-1}AU$ es hermitiana. Demuestre que si A es hermitiana y U unitaria, entonces la matriz $U^{-1}AU$ es hermitiana.

- 23. Demuestre que el producto de dos matrices hermitianas A y B es una matriz hermitiana si y sólo si A y B conmutan.
- **24.** Sea A una matriz de $n \times n$ con componentes complejas. En \mathbb{C}^n , si $\mathbf{x} = (c_1, c_2, \dots, c_n)$ y $\mathbf{y} = (d_1, d_2, \dots, d_n)$, defina el producto interno $\langle \mathbf{x}, \mathbf{y} \rangle = c_1 \overline{d}_1 + c_2 \overline{d}_2 + \dots + c_n \overline{d}_n$. (Vea el ejemplo 6.3.2.) Pruebe que $\langle A\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, A^*\mathbf{y} \rangle$.
- *25. Demuestre que cualesquiera dos espacios vectoriales complejos con producto interno de la misma dimensión (finita) son isométricamente isomorfos.

EJERCICIOS CON MATLAB 7.5

- a) (Lápiz y papel) Considere la definición de isometría y explique, usando geometría, por qué la rotación respecto al origen y la reflexión a través de una recta determinada por un vector de longitud 1 en R² son isometrías.
 - b) Elija tres valores para un ángulo θ y verifique para cada uno que la representación matricial (respecto a la base canónica) de la rotación positiva por un ángulo θ es una matriz ortogonal. Genere tres vectores aleatorios v de longitud 1. Para cada uno, verifique que la representación matricial (respecto a la base canónica) de la reflexión a través de v es una matriz ortogo-
 - c) (Lápiz y papel) Pruebe en general que la representación matricial de una rotación es una matriz ortogonal y que la representación matricial de una reflexión es una matriz ortogonal.

nal. Refiérase al problema 4 de MATLAB 7.3 para el análisis de la reflexión.

d) La teoría de isometrías de \mathbb{R}^2 en \mathbb{R}^2 implica que una reflexión a través de un vector \mathbf{v} de longitud 1 debe ser una reflexión a través del eje x seguida de una rotación. Un vector de longitud 1 se puede representar como $(\cos(\alpha)\sin(\alpha))^{\mathsf{T}}$. Genere un vector aleatorio \mathbf{w} y divídalo entre su longitud para producir un vector \mathbf{v} de longitud 1. Encuentre a mediante alpha $= a \tan(v(2)/v(1))$ (si la primera componente de \mathbf{v} es cero, entonces $\alpha = \pm \frac{\pi}{2}$). Encuentre la representación matricial F de una reflexión a través de \mathbf{v} y verifique que F = RX, donde R es la representación matricial para una rotación positiva de $\theta = 2\alpha$, y X es la representación matricial de una reflexión respecto al eje x. Repita para otros dos vectores \mathbf{w} .