Université Constantine 2

Faculté des Nouvelles Technologies Département d'Informatique Fondamentale et ses Applications — IFA

Développement d'une approche de distribution des espaces d'états basé sur la théorie de jeux : Application au model checking distribué

Présenté par: Karimou Seyni Ibrahim

Encadrés par

Pr. Djamel Eddine SAIDOUNI, Dr. Bouneb Zine El Abidine.

Directeur de mémoire Co-encadreur

29. Juni 2019

SOMMAIRE

- 1. Introduction
- 1.1 Definition
- 2. Problématique
- 2.1 Definition
- 3. Contribution
- 3.1 Definition
- 4. Conclusion
- 4.1 Definition

Introduction

1.1. Definition

Définition

formales System

Ein System welches Regeln enthält, mit deren Hilfe sich mathematische Aussagen beweisen lassen und mit denen aus bereits bewiesenen Aussagen neue Aussagen abgeleitet werden können.

- ► A Aussage
- ► T formales System

$$\neg \exists A: T \rightarrow A \land T \rightarrow \neg A$$

<u>Problématique</u>

2.1. Definition

Définition

formales System

Ein System welches Regeln enthält, mit deren Hilfe sich mathematische Aussagen beweisen lassen und mit denen aus bereits bewiesenen Aussagen neue Aussagen abgeleitet werden können.

- A Aussage
- ► T formales System

$$\neg \exists A: T \rightarrow A \land T \rightarrow \neg A$$

Contribution

3.1. Definition

Définition

formales System

Ein System welches Regeln enthält, mit deren Hilfe sich mathematische Aussagen beweisen lassen und mit denen aus bereits bewiesenen Aussagen neue Aussagen abgeleitet werden können.

- A Aussage
- ► T formales System

$$\neg \exists A: T \rightarrow A \land T \rightarrow \neg A$$

Conclusion

4. Conclusion

Introduction

O

Problématique

O

Contribution

O

Conclusion

O

O

O

4.1. Definition

Définition

formales System

Ein System welches Regeln enthält, mit deren Hilfe sich mathematische Aussagen beweisen lassen und mit denen aus bereits bewiesenen Aussagen neue Aussagen abgeleitet werden können.

- A Aussage
- ► T formales System

$$\neg \exists A: T \rightarrow A \land T \rightarrow \neg A$$

 Introduction
 Problématique
 Contribution
 Conclusion

 .○○
 ○○
 ○○
 ○○

4. Conclusion 4.1. Definition

► Large number of possible parameter-value combinations

 Introduction
 Problématique
 Contribution
 Conclusion

 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○</

4. Conclusion 4.1. Definition

- ▶ Large number of possible parameter-value combinations
- ► Hard to find the optimal parameters

4. Conclusion Introduction Problématique Contribution Conclusion

4.1. Definition

- ▶ Large number of possible parameter-value combinations
- ► Hard to find the optimal parameters
- ▶ Which parameters should be changed and by how much.

4. Conclusion Introduction Problématique Contribution Conclusion

4.1. Definition

- ▶ Large number of possible parameter-value combinations
- ► Hard to find the optimal parameters
- ▶ Which parameters should be changed and by how much.
- muliticollinearity or high correlation between parameter values

4. Conclusion Introduction Problématique Contribution Conclusion

4.1. Definition

- ▶ Large number of possible parameter-value combinations
- Hard to find the optimal parameters
- ▶ Which parameters should be changed and by how much.
- muliticollinearity or high correlation between parameter values
- ▶ Which criteria for evaluating the difference between observed and simulated runoff.

