# COMPARATIVE ANALYSIS OF CONVOLUTIONAL NEURAL NETWORKS (CNNS) FOR DEEPFAKE DETECTION

Jeet Kumar Hood College M.S. Cybersecurity Fall 2024

# INTRODUCTION

Rise of Al-Generated Content

Need for Detection Methods

Challenges in Detection





### LITERATURE REVIEW

DEEPFAKE TECHNOLOGY

ROLES OF CNNS IN DETECTION (ROSSLER 2019 AND DOLHANSKY, 2020)

RESEARCH OBJECTIVE

• RESNET (HE, 2016)

• EFFICIENTNET (TAN & LE, 201

### BACKGROUND



- Deepfake Detection
- Neural Networks
- Convolutional Neural Networks
- Comparative Metrics



### METHODOLOGY



### ANALYSIS

- 1. Comparison for efficacy
- 2. ResNet50 and EfficientNetV2B0
- 3. Performance Metrics
  - a. Training
    - 1) Accuracy
    - 2) Loss
  - b. Validation
    - 1) Accuracy
    - 2) Loss
  - c. Training time





### RESNET50 MODEL

- 1. Fixed depth of 50 layers
- 2. Residual blocks and skip connections







### EFFICIENTNETV2B0

- 1. Lightweight architecture and depth-wise convolutions
- 2. Less parameters enabling efficiency





## RESULTS

| Model            | Parameters | Final Validation Accuracy | Training Time per<br>Epoch |
|------------------|------------|---------------------------|----------------------------|
| ResNet50         | 23M        | 88.41%                    | 45 secs                    |
| EfficientNetV2B0 | 5.9M       | 79.57%                    | 15 secs                    |



### DISCUSSION

### ResNet50

- •Higher validation accuracy: 88.41%
- •Gradual learning improvement
- Strong generalization

### EfficientNetV2B0

- •Lower validation accuracy: 79.88%
- •Faster learning and quicker convergence
- Limited generalization

**Key Tradeoff – Accuracy vs Efficiency** 



### CONCLUSION

**Key Findings** 

**Significance and Contributions** 

Implications for future research

**Final Thoughts** 



# THANK YOU