1. Introduction

1.1 Overview

1.2 Machine Learning Types

The Relationship Between LLMs and Other Types of Artificial Intelligence

KNOWABLE

1.3 Deep Learning (DL)

1.3 Why is Deep Learning so popular? ->

1. Learns Multi-level Representations

Learning has become so popular

1.6 Neural Networks

An example of a neuron showing the input ($x_1 - x_n$), their corresponding weights ($w_1 - w_n$), a bias (b) and the activation function f applied to the weighted sum of the inputs.

Model	Multi-Layer Perceptron (MLP)
Theorem	Universal Approximation Theorem
Formula (Shallow)	$f(\mathbf{x}) \approx \sum_{i=1}^{N(\epsilon)} a_i \sigma(\mathbf{w}_i \cdot \mathbf{x} + b_i)$
Model (Shallow)	fixed activation functions on nodes learnable weights on edges
Formula (Deep)	$MLP(\mathbf{x}) = (\mathbf{W}_3 \circ \sigma_2 \circ \mathbf{W}_2 \circ \sigma_1 \circ \mathbf{W}_1)(\mathbf{x})$
Model (Deep)	(c)

$$\sigma(x) = \frac{1}{1+e^{-x}}$$

