Causal Inference

a summary

Contents

1 Ge	neral		3		Marginal Structural Models	6
		Causal Roadmap	3	2.1	Traditional Methods	6
		Average Causal Effect	3		Stratification	6
		Target Trial	3		Outcome Regression	6
		Identifiability Conditions	3		Propensity Score Methods	6
		Effect Modification	3		Instrumental Variable Estimation	6
		Interaction	4		Causal Survival Analysis	6
		NPSEM	4	2.2	G-Methods	7
		Causal DAG	4		G-Methods	7
		Noncausal DAGs	4		Standardization	7
		SWIGs	4		IP Weighting	7
		Confounding	4		G-Estimation	8
		Selection Bias 4	2.3	Doubly Robust Methods	8	
		Measurement Bias	4		Double-Robustness	8
		Random Variabilty	5		Machine Learning	8
		Time-Varying Treatments	5		Advantages	8
		Sequential Identifiability	5		Influence Curve	8
		Treatment-Confounder Feedback	5		Simple Plug-In Estimator	9
		Causal Mediation	5		Augmented IP Weighting (AIPTW)	9
2 Mo	odels		6		TMLE	9
		Modeling	6		LTMLE	9
		Variable Selection	6		TMLE advanced	9
		Super Learning	6		AIPTW	10

General 1

Causal Roadmap (Petersen and van der Laan, 2014) systematic approach linking causality to statistical procedures

- 1. Specifying Knowledge. structural causal model (unifying counterfactual language, structural equations, & causal graphs): a set of possible data-generating processes, expresses background knowledge and its limits
- 2. Linking Data. specifying measured variables and sampling specifics (latter can be incorporated into the model)
- 3. Specifying Target. define hypothetical experiment: decide
 - 1. variables to intervene on: one (point treatment), multiple (longitudinal, censoring/missing, (in)direct effects)
 - 2. intervention scheme: static, dynamic, stochastic
 - 3. counterfactual summary of interest: absolute or relative. marginal structural models, interaction, effect modification
 - 4. population of interest: whole, subset, different population
- 4. Assessing Identifiability. are knowledge and data sufficient to derive estimand and if not, what else is needed?
- 5. Select Estimand. current best answer: knowledge-based assumptions + which minimal convenience-based asspumptions (transparency) gets as close as possible
- 6. Estimate. choose estimator by statistical properties, nothing
- 7. Interpret. hierarchy: statistical, counterfactual, feasible intervention, randomized trial

Average Causal Effect $E[Y^{a=1}] \neq E[Y^{a=0}]$ $\mathbf{E}\left[Y^{a}\right] = \sum_{y} y p_{Y^{a}}(y) \qquad \qquad \text{(discrete)}$

$$= \int y f_{Y^a}(y) dy \qquad \text{(continuous)}$$

individual causal effect $Y_i^{a=1} \neq Y_i^{a=0}$ generally unidentifiable null hypothesis: no average causal effect

sharp null hypothesis: no causal effect for any individual **notation** A, Y: random variables (differ for individuals); a, y: particular values; counterfactual $Y^{a=1}$: Y under treatment a=1stable unit treatment value assumption (SUTVA) Y_i^a is well-defined: no interference between individuals, no multiple versions of treatment (weaker: treatment variation irrelevance) causal effect measures typically based on means

$$\begin{array}{l} \textit{risk difference:} \; \Pr\left[Y^{a=1}=1\right] - \Pr\left[Y^{a=0}=1\right] \\ \textit{risk ratio:} \; \frac{\Pr\left[Y^{a=1}=1\right]}{\Pr\left[Y^{a=0}=1\right]} \\ \textit{odds ratio:} \; \frac{\Pr\left[Y^{a=1}=1\right] / \Pr\left[Y^{a=1}=0\right]}{\Pr\left[Y^{a=0}=1\right] / \Pr\left[Y^{a=0}=0\right]} \\ \end{array}$$

number needed to treat (NNT) to save 1 life: -1/risk difference sources of random error: sampling variability (use consistent estimators), nondeterministic counterfactuals

association compares E[Y|A=1] and E[Y|A=0], causation compares $E[Y^{a=1}]$ and $E[Y^{a=0}]$ (whole population)

 ${\bf Target} \ \ {\bf Trial} \quad {\bf emulating} \ {\bf an} \ {\bf ideal} \ {\bf randomized} \ {\bf experiment}$ explicitly formulate target trial & show how it is emulated \rightarrow less vague causal question, helps spot issues

missing data problem unknown counterfactuals randomized experiments: missing completely at random \rightarrow exchangeability (= exogeneity as treatment is exogenous) ideal randomized experiment: no censoring, double-blind, well-defined treatment, & adherence \rightarrow association is causation pragmatic trial: no placebo/blindness, realistic monitoring

PICO (population, intervention, comparator, outcome): some components of target trial

three types of causal effects:

 $intention-to-treat\ effect\ (effect\ of\ treatment\ assignment)$ per-protocol effect (usually dynamic when toxicity arises) other intervention effect (strategy changed during follow-up)

controlled direct effects: effect of A on Y not through B natural direct effect A on Y if $B^{a=0}$ (cross-world quantity) principal stratum effect A on Y for subset with $B^{a=0} = B^{a=1}$

crossover experiment: sequential treatment & outcome t=0,1individual causal effect $Y_{it}^{a_t=1}-Y_{it}^{a_t=0}$ only identifiable if: no carryover effect, effect ⊥ time, outcome ⊥ time

time zero if eligibility at multiple t (observational data): earliest, random t, all t (adjust variance with bootstrapping) grace periods: usually treatment starts x months after first eligible, if death before: randomly assign strategy/copy into both

Identifiability Conditions hold in ideal experiments **consistency** counterfactuals correspond to data $Y = Y^A$: if A = a, then $Y^a = Y$ for each individual

- precise definition of Y^a via specifying a (sufficiently well-defined a maybe impossible (effect of DNA before it was discovered), relies on expert consensus)
- linkage of counterfactuals to data (a must be seen in data) **positivity** $Pr[A = a|L = l] > 0 \ \forall l \text{ with } Pr[L = l] > 0;$

$$f_L(l) \neq 0 \Rightarrow f_{A|L}(a|l) > 0 \ \forall a, l$$

- structural violations (inference not on full population)
- random variability (smooth over with parametric models) can sometimes be empirically verified (if all is seen in data) exchangeability unverifiable without randomization
- marginal: $Y^a \perp \!\!\!\perp A \stackrel{\frown}{=}$ randomized experiment, counterfactuals are missing completely at random (MCAR)
- conditional: $Y^a \perp \perp A \mid L \cong$ conditionally randomized, counterfactuals are missing at random (MAR)

alternative definition: $\Pr[A = 1|Y^{a=0}, L] = \Pr[A = 1|L]$ additional conditions:

 $correct \ measurement \ mismeasurement \ of \ A, Y, L \ results \ in \ bias$ $correct \ model \ specification \ models \xrightarrow{may} \ misspecification \ bias$

Effect Modification A on Y varies across levels of Vnull average causal effect \neq null causal effect per subgroup population characteristics: causal effect measure is actually "effect in a population with a particular mix of effect modifiers" transportability: extrapolation of effect to another population (issues: effect modification, versions of treatment, interference) effects conditional on V may be more transportable types: additive/multiplicative scale, qualitative (effect in opposite directions)/quantitative, surrogate/causal calculation:

- $\bullet \ stratify$ by V then standardize/IP weight for L,
- L as matching factor (ensures positivity, difficult if high-dimensional L)

collapsibility: causal risk difference and ratio are weighted averages of stratum-specific risks, can not be done for odds ratio **Interaction** effects of joint interventions A and E

$$\Pr\left[Y^{1,1} = 1\right] - \Pr\left[Y^{0,1} = 1\right] \neq \Pr\left[Y^{1,0} = 1\right] - \Pr\left[Y^{0,0} = 1\right]$$

A and E have equal status and could also be considered a combined treatment AE, exchangeability for both is needed additive scale (above): ">" superadditive and "<" subadditive; multiplicative scale: ">" super- and "<" submultiplicative difference to effect modification: if E is randomly assigned methods coincide, but V can not be intervened on as E can monotonicity effect is either nonnegative or nonpositive $\forall i$ sufficient component-cause framework pedagogic model response types for binary A: helped, immune, hurt, doomed; for binary A and E: 16 types (minimal) sufficient causes:

- (minimal) U_1 together with A=1 ensure Y=1
- (minimal) U_2 together with A=0 ensure Y=1 sufficient cause interaction: A and E appear together in a minimal sufficient cause

 \mathbf{NPSEM} nonparamentric structural equation model

$$V_m = f_m(pa_m, \epsilon_m)$$

counterfactuals are obtained recursively, e.g. $V_3^{v_1} = V_3^{v_1}, V_2^{v_1}$ implies any variable can be intervened on aka finest causally interpreted structural tree graph (FCISTG) additional assumption \cap FCISTG \Rightarrow causal Markov condition:

- fully randomized (FFRCISTG): $V_m^{\bar{v}_{m-1}} \perp \!\!\! \perp V_j^{\bar{v}_{j-1}}$ if \bar{v}_{j-1} subvector of \bar{v}_{m-1}

NPSEM-IE \Rightarrow FFRCISTG (assume DAGs represent latter) NPSEM-IE assume crossworld independencies \rightarrow unverifiable

Causal DAG draw assumptions before conclusions rules: arrow means direct causal effect for at least one i, absence means sharp null holds, all common causes are on the graph neglects: direction of cause (harmful/protective), interactions convention: time flows from left to right causal Markov assumption: any variable (v) | its direct causes $(pa_j) \perp \!\!\! \perp$ its non-descendants $(\neg v_j) \Leftrightarrow Markov factorization$

$$f(v) = \prod_{j=1}^{M} f(v_j | pa_j)$$

d-separation (d for directional): a pathway in a DAG is ...

- blocked if collider or conditioned on non-collider
- opened if conditioned on collider or descendent of collider 2 variables are d-separated if all connecting paths are blocked under causal Markov: d-separation ⇒ independence under faithfulness: independence ⇒ d-separation faithfulness: effects don't cancel out perfectly discovery: process of learning the causal structure; requires faithfulness, but even with it is often impossible

Noncausal DAGs (Hernán and Robins, 2023) Y^a has to be well-defined (identifiability), what about Y^l (if $L \to Y$)? if Y^l is not well-defined, but $L \to Y$, then the graph is not causal statistical interpretation: only $A \to Y$ is causal, the rest simply encodes conditional independencies, but why should a DAG corresponding to the study variables even exist then? hidden factor: L is only a surrogate for H, with Y^h well-defined, however, L being a surrogate can introduce bias pragmatic approach: "cause" as a primary concept which does not need explanation in terms of well-defined interventions (approach is in need of mathematical theory)

 $\mathbf{SWIGs} \quad single \ world \ intervention \ graphs$

counterfactual graphic approach: A turns into A|a, the left (right) side inherits incoming (outgoing) arrows (intervention with A=a); all outcomes of A get a superscript a, e.g. Y^a ; more than one intervention possible, dynamic strategies require additional arrows from L to a

A and Y^a are d-separated for $L \to Y^a \perp \!\!\!\perp A|L$ (for FFRCISTG)

Confounding bias due to common cause of A & Y not in L randomization prevents confounding

backdoor criterion: all backdoor paths are blocked by L & no

backdoor path: noncausal path A to Y with arrow into A

descendants of A in $L \Rightarrow$ conditional exchangeability $Y^a \perp \!\!\!\perp A | L \Rightarrow L$ fulfills backdoor criterion if faithful (FFRCISTG) confounders in observational studies: occupational factors (healthy worker bias), clinical decisions (confounding by indication/channeling), lifestyle, genetic factors (population stratification), social factors, environmental exposures given a DAG, confounding is an absolute, confounder is relative surrogate confounders in L may reduce confounding bias negative outcome controls: if A and Y share a common cause U: measure effect for Y_0 (before treatment) and Y_1 (after), subtract (assumption of additive equi-confounding)

front door criterion using the full mediator
$$M$$
: $\Pr[Y^a = 1] = \sum_m \Pr[M = m | A = a] \sum_{a'} \Pr[Y = 1 | M = m, A = a'] \Pr[A = a']$

Selection Bias bias due to common effect of A & Y in L = conditioning on collider (can't be fixed by randomization) examples: informative censoring, nonresponse bias, healthy worker bias, volunteer bias; often M-bias $(A \leftarrow U_1 \rightarrow L \leftarrow U_2 \rightarrow Y)$ solution: target $Y^{A,C}$, AC fulfills identifiability conditions, if competing events, interventions may not be well-defined multiplicative survival model: $\Pr[Y=0|E=e,A=a]=g(e)h(a) \rightarrow$ no interaction between E and A on the multiplicative scale; if Y=0 is conditionally independent, then Y=1 can't be as $\Pr[Y=1|E=e,A=a]=1-g(e)h(a) \rightarrow$ conditioning on a collider could be unbiased if restricted to certain levels (Y=0)

Measurement Bias aka information bias measurements X^* of variables X can be included in DAG independent errors U if $f(U_A, U_Y) = f(U_A)f(U_Y)$ nondifferential A: if $f(U_A|Y) = f(U_A)$; Y: $f(U_Y|A) = f(U_Y)$ mismeasurement \to bias, if: $A \to Y$ or dependent or differential reverse causation bias caused by e. g. recall bias: independent but differential A (caused by $Y \to U_A$)

misclassified treatment: assignment Z does not determine A exclusion restriction: ensure $Z \not\to Y$, e.g. via double-blinding

- per-protocol effect: either as-treated (→ confounded) or restricted to protocol adhering individuals (→ selection bias)
- intention-to-treat effect (→ measurement bias): advantages:
 Z is randomized, preserves null (if exclusion restriction holds), = underpowered α-level test of the null (only if monotonicity; underpowered may be problematic if treatment safety is tested)

sometimes mismeasurement doesn't matter as the measurement is of interest (Hernán and Robins, 2023)

Random Variabilty quantify uncertainty due to small n CI: e. g. Wald CI = $\hat{\theta} \pm 1.96 \times se(\hat{\theta})$, calibrated if it contains 95 % of estimands (>: conservative, <: anticonservative) large sample CI: converge to 95 % vs. small-sample: always valid honest: $\exists n \text{ where coverage} \geq 95\%$, valid: large-sample & honest inference: either restrict inference to sample (randomizationbased inference) or inference on super-population **super-population:** generally a fiction, but \rightarrow simple statistical properties (where does the variability of the distribution come from: assumption population is sampled from super-population) conditionality principle: inference should be performed conditional on ancillary statistics (e.g. L-A association) as

$$\mathcal{L}(Y) = f(Y|A, L)f(A|L)f(L)$$

exactly ancillary A, L: f(Y|A, L) depends on parameter of interest, but f(A, L) does not share parameters with f(Y|A, L)approximately ancillary: ... does not share all parameters ... continuity principle: also condition on approximate ancillaries curse of dimensionality: difficult to do conditionality principle

Time-Varying Treatments compare 2 treatments

treatment history up to k: $\bar{A}_k = (A_0, A_1, ..., A_k)$

shorthand: always treated $\bar{A} = \bar{1}$, never treated $\bar{A} = (\bar{0})$

static strategy: $g = [g_0(\bar{a}_{-1}), ..., g_K(\bar{a}_{K-1})]$

dynamic strategy: $g = [g_0(\bar{l}_0), ..., g_K(\bar{l}_K)]$

stochastic strategy: non-deterministic g

optimal strategy is where $E[Y^g]$ is maximized (if high is good)

Sequential Identifiability sequential versions of exchangability: $Y^g \perp \!\!\! \perp A_k | \bar{A}_{k-1} \ \forall g, k = 0, 1, ..., K$ $conditional\ exchange ability:$

$$\left(Y^{g},L_{k+1}^{g}\right)\perp \perp A_{k}|\bar{A}_{k-1}=g\left(\bar{L}_{k}\right),\bar{L}^{k}\;\forall g,k=0,1,...,K$$

positivity: $f_{\bar{A}_{k-1},\bar{L}_k}(\bar{a}_{k-1},\bar{l}_k) \neq 0 \Rightarrow$

$$f_{A_k|\bar{A}_{k-1},\bar{L}_k}(a_k|\bar{a}_{k-1},\bar{l}_k) > 0 \ \forall (\bar{a}_{k-1},\bar{l}_k)$$

consistency:

$$Y^{\bar{a}}=Y^{\bar{a}^*}$$
 if $\bar{a}=\bar{a}^*;$ $Y^{\bar{a}}=Y$ if $\bar{A}=\bar{a};$

$$\bar{L}_k^{\bar{a}} = \bar{L}_k^{\bar{a}^*}$$
 if $\bar{a}_{k-1} = \bar{a}_{k-1}^*$; $\bar{L}_k^{\bar{a}} = \bar{L}_k$ if $\bar{A}_{k-1} = \bar{a}_{k-1}$

generalized backdoor criterion (static strategy): all backdoors into A_k (except through future treatment) are blocked $\forall k$ static sequential exchangeability for $Y^{\bar{a}}$

$$Y^{\bar{a}} \perp\!\!\!\perp A_k | \bar{A}_{k-1}, \bar{L}_k \quad \text{ for } k = 0, 1, ..., K$$

use SWIGs to visually check d-separation

time-varying confounding $E[Y^{\bar{a}}|L_0] \neq E[Y|A=\bar{a},L_0]$

Treatment-Confounder Feedback $A_0 \rightarrow L_1 \rightarrow A_1$: an unmeasured U influencing L_1 and Y turns L_1 into a collider; traditional adjustment (e.g. stratification) biased: use g-methods g-null test sequential exchangeability & sharp null true \Rightarrow $Y^g = Y \forall g \Rightarrow Y \perp \perp A_0 \mid L_0 \& Y \perp \perp A_1 \mid A_0, L_0, L_1$; therefore: if last two independences don't hold, one assumption is violated **g-null theorem:** $E[Y^g] = E[Y]$, if the two independences hold (⇒ sharp null: only if strong faithfulness (no effect cancelling))

Causal Mediation (Hernán and Robins, 2023)

 $A \longrightarrow M \longrightarrow Y$ seen as longitudinal with k_0 : A and k_1 : M **decomposition** of $E[Y^{a=1}] - E[Y^{a=0}]$ into cross-world quan-

• pure (aka natural) direct effect (upper path)
$$\mathbf{E} \left[Y^{a=1,M^{a=0}} \right] - \mathbf{E} \left[Y^{a=0,M^{a=0}} \right]$$

• total (aka natural) indirect effect (lower path)

$$\mathbf{E}\left[Y^{a=1,M^{a=1}}\right] - \mathbf{E}\left[Y^{a=1,M^{a=0}}\right]$$

mediation formula under NPSEM-IE (requires $Y^{a=1,m}$ \perp $M^{a=0}$ cross-world independence)

$$\mathrm{E}\left[Y^{a=1,M^{a=0}}\right] = \sum_{m} \mathrm{E}\left[Y|A=1,M=m\right] \Pr\left[M=m|A=0\right]$$

interventional interpretation

additional assumptions:

$$A \xrightarrow{N} \xrightarrow{O} \xrightarrow{M} Y$$

thick arrows are deterministic

two assumptions: no $N \to Y$ and no $O \to M$ ("no controlled direct effect" assumptions)

Models 2

Modeling data are a sample from the target population

e. g. E[Y|A = a]estimand: quantity of interest. e. g. $\widehat{\mathbf{E}}[Y|A=a]$ estimator:function to use,

estimate: apply function to data, e.g. 4.1

model: a priori restriction of joint distribution/dose-response curve; assumption: no model misspecification (usually wrong) **non-parametric estimator:** no restriction (saturated model) = Fisher consistent estimator (entire population data \rightarrow true value) parsimonious model: few parameters estimate many quantities bias-variance trade-off:

wiggliness $\uparrow \rightarrow$ misspecification bias \downarrow , CI width \uparrow

Variable Selection can induce bias if L includes: (decendant of) collider: selection bias under the null noncollider effect of A: selection bias under the alternative mediator: overadjustment for mediators temporal ordering is not enough to conclude anything bias amplification: e.g. by adjusting for an instrument Z (can also reduce bias)

Super Learning (Van der Laan et al., 2007, 2011) oracle selector: select best estimator of set of learners Z_i discrete super learner: select algorithm with smallest cross-validated error (converges to oracle for large sample size) super learner: improves asymptotically on discrete version $logit(Y = 1|Z) = \sum_{i} \alpha_i Z_i$, with $0 < \alpha_i < 1$ and $\sum \alpha_i = 1$ weights α_i are determined inside the cross-validation; for the prediction, Z_i trained on the full data set are used

Marginal Structural Models association is causation in the IP weighted pseudo-population

can be cross-validated itself to check for overfitting (unlikely)

associational model $E[Y|A] = \text{causal model } E[Y^a]$ step 1: estimate/model f[A|L] (and f[A]) \rightarrow get $(S)W^A$ step~2: estimate regression parameters for pseudo-population effect modification variables V can be included (e.g. $\beta_0 + \beta_1 a + \beta_2 V a + \beta_3 V$; technically not marginal anymore), $SW^A(V) = \frac{f[A|V]}{f[A|L]}$ more efficient than SW^A

2.1Traditional Methods

Stratification calculate risk for each stratum of Lonly feasible if enough data per stratum

Outcome Regression often assume no effect modification $E[Y^{a,c=0}|L] = \beta_0 + \beta_1 a + \beta_2 aL + \beta_3 L = E[Y|A, C=0, L]$ faux marginal structural model as no IP weighting $SW^A(L) = 1$ for ATE only β_1, β_2 of interest, the rest are nuisance parameters

Propensity Score Methods $Pr[A = 1|L] =: \pi(L)$

 $\Rightarrow A \perp \!\!\!\perp L | \pi(L)$ (definition of a balancing score); can be modelled

- stratification: create strata with similar $\pi(L)$ (e.g. deciles), but the average $\pi(L)$ might still be different in some strata
- standardization: use $\pi(L)$ instead of L to standardize
- matching: find close (\rightarrow bias-variance trade-off) values of $\pi(L)$, positivity issues arise often

propensity models don't need to predict well, just ensure exchangeability (good prediction leads to positivity problems)

Instrumental Variable Estimation Lunmeasured surrogate/proxy instruments can be used

instrumental conditions:

- 1. relevance condition: $Z \not\perp\!\!\!\perp A$, meaning Z is associated with A (weak association (F-statistic < 10) \rightarrow weak instrument)
- 2. exclusion restriction: Z affects Y at most through A(a) population level: $E[Y^{z,a}] = E[Y^{z',a}]$ (sometimes enough)
 - (b) individual level: $Y_i^{z,a} = Y_i^{z',a} = Y_i^{a}$
- 3. exchangeability: Z and Y have no shared causes
 - (a) marginal: $Y^{a,z} \perp \!\!\! \perp Z$ (typically enough)
 - (b) joint: $\{Y^{z,a}; a \in [0,1], z \in [0,1]\} \perp \!\!\! \perp Z$
- 4. (not needed for an instrument, just the IV estimand below)
 - (a) effect homogeneity: (i) constant effect $A \to Y \ \forall i$ (ii) constant average effect $A \to Y \ \forall A$ (iii) no additive effect modifiers (iv) additive Z-A association is constant across L
 - (b) monotonicity: $A^{z=1} \ge A^{z=0} \ \forall i$ (more credible than 4a)

common instruments: (physician's) general preference, access to/price of A, genetic factors (Mendelian randomization) **bounds:** binary outcome ATE [-1,1] (width 2) $\overset{data}{\rightarrow}$ (width 1) natural bounds need 2a,3a (width Pr[A=1|Z=0] + Pr[A=0|Z=1]) sharp bounds require 2a,3b (narrower than natural bounds) IV estimand ATE: intention-to-treat ÷ measure of compliance (1,2b,3a,4a): ATE; (1,2b,3a,4b): ATE in compliers binary Z: $\frac{\mathrm{E}[Y|Z=1]-\mathrm{E}[Y|Z=0]}{\mathrm{E}[A|Z=1]-\mathrm{E}[A|Z=0]}$, continuous Z: $\frac{Cov(Y,Z)}{Cov(A,Z)}$; can be calculated as two-stage-least-squares estimator: 1. E[A|Z] 2. $E[Y|Z] = \beta_0 + \beta_1 \hat{E}[A|Z]$ 3. $\hat{\beta}_1$ is IV estimate disadvantages: often leads to wide CI, small violations of

regression discontinuity design: if threshold in L exists which determines A perfectly + assumption of continuity in $L \rightarrow \text{jump}$ in Y at threshold is the causal effect (if no effect modification by L); a fuzzy variant also exists (Hernán and Robins, 2023)

Causal Survival Analysis time-to-event data additional censoring due to administrative end of follow-up competing events (often death): censoring (assume population with death abolished) or not (after death, chance of event is zero, but what is the effect of A?) \rightarrow create composite event survival quantities k is a time point, T is time of event

• survival at k: $Pr[T > k] =: Pr[D_k = 0]$

conditions can lead to large biases

- risk at k: $1 \Pr[T > k] = \Pr[T \le k] = \Pr[D_k = 1]$
- hazard at k: $\Pr[T = k | T > k-1] = \Pr[D_k = 1 | D_{k-1} = 0],$ hazard ratio is paradoxical due to in-built selection bias

modeling: some options

- Kaplan-Meier aka product limit formula (nonparametric): $\Pr[D_k = 0] = \prod_{m=1}^k \Pr[D_m = 0 | D_{m-1} = 0]$
- parametric e. g. log hazards model:
 - use *IP weigths* SW^A in structural marginal model $\operatorname{logit} \Pr \left[D_{k+1}^{a,\bar{c}=\bar{0}} = 0 | D_k^{a,\bar{c}=\bar{0}} = 0 \right] = \beta_{0,k} + \beta_1 a + \beta_2 ak$
 - $standardize (\prod_{k} 1-)$ parametric hazards model $\Pr[D_{k+1} = 1 | D_k = 0, C_k = 0, L, A]$ weighting across L

- structural nested cumulative failure time model (CFT): $\frac{\Pr[D_k^a=1|L,A]}{\Pr[D_k^a=0=1|L,A]}=\exp\left[\gamma_k(L,A;\psi)\right]$ (log-linear has no upper $\lim_{\to} 1 \to \text{rare failure } \uparrow$; if \downarrow , use a survival model (CST)), use g-estimation like with AFT
- accelerated failure time model (AFT) with g-estimation: $T_i^a/T_i^{a=0} = \exp(-\psi_1 a - \psi_2 a L_i)$, exchangeability for C is guaranteed via artificial censoring (include only individuals who would not have been censored either way)

time-varying two options based on g-methods as examples standardization (plug-in estimate): risk is $\Pr\left[D_{k+1}^{\bar{a},\bar{c}=\bar{0}}=1\right] = \sum_{\bar{l}_k} \sum_{j=0}^k \Pr\left[D_{j+1}=0|\bar{A}_j=\bar{a}_j,\bar{L}_j=\bar{l}_j,\bar{D}_j=0\right] \times$ $\prod_{s=1}^{j} \left\{ \Pr \left[D_{s} = 0 | \bar{A}_{s-1} = \bar{a}_{s-1}, \bar{L}_{s-1} = \bar{l}_{s-1}, \bar{D}_{s-1} = 0 \right] \times \right\}$

IP weighting: fit a pooled logistic hazard model with timevarying weights $W_k^{\bar{A}} = \prod_{m=0}^k \frac{1}{f(A_m | \bar{A}_{m-1}, \bar{L}_m)}$

2.2G-Methods

 ${\bf G\text{-}Methods} \quad \textit{g} \textbf{e} \textbf{neralized treatment contrasts: adjust for}$ (surrogate) confounders L

- standardization: two types of g-formula
- IP weighting: also g-formula
- g-estimation: not needed unless longitudinal

standardization and IP weighting are equivalent, but if modeled, different "no misspecification" assumptions: outcome model (standardization), treatment model (IP weighting)

big g-formula not all methods use (sequential) exchangeability

- problem: DAG is known, but unmeasured variables exist
- solution: include un- & measured variables in big g-formula → derive alternative effect identification methods using only d-separation (e.g. front door formula)

it can always be determined, if the DAG allows for identification with the big g-formula (Hernán and Robins, 2023)

censoring: measure joint effect of A and C with $E[Y^{a,c=0}]$ standardization $E[Y|A=a] = \int E[Y|L=l, A=a, C=0] dF_L[l]$

$$\begin{array}{ll} \textit{IP weights} & W^{A,C} = W^A \times W^C & \text{(uses } n) & \text{or} \\ & SW^{A,C} = SW^A \times SW^C & \text{(uses } n^{c=0}) \end{array}$$

g-estimation only adjusts for confounding \rightarrow use IP weights

time-varying censoring \bar{C} : monotonic type of missing data

$$\mathbf{standardization:} \int \!\! f(y|\bar{a},\bar{c} = \bar{0},\bar{l}) \prod_{k=0}^{K} dF\left(l_{k}|\bar{a}_{k-1},c_{k-1} = 0,\bar{l}_{k-1}\right)$$

IP weighting:

$$SW^{\bar{C}} = \prod_{k=1}^{K+1} \frac{1 \cdot \Pr\left(C_k = 0 | \bar{A}_{k-1}, C_{k-1} = 0\right)}{\Pr\left(C_k = 0 | \bar{A}_{k-1}, C_{k-1} = 0, \bar{L}_k\right)}$$

Standardization plug-in (or parametric if so) g-formula

$$\mathrm{E}\left[Y^{a}\right] = \overbrace{\mathrm{E}\left[\mathrm{E}\left[Y|A{=}a,L{=}l\right]\right]}^{\mathrm{conditional\ expectation}} = \overbrace{\int}^{\mathrm{joint\ density\ estimator}}_{\mathrm{A}} \left[Y|L=l,A=a\right]f_{L}\left[l\right]dl$$

weighted average of stratum-specific risks; unknowns can be estimated non-parametrically or modeled

no need to estimate $f_L[l]$ /integrate as empirical distribution can be used: estimate outcome model \rightarrow predict counterfactuals on whole dataset \rightarrow average the results (\rightarrow CI by bootstrapping) for discrete $L \to [Y|A=a] = \sum_l \to [Y|L=l, A=a] \Pr[L=l]$

time-varying standardize over all possible \bar{l} -histories simulates joint distribution of counterfactuals $(Y^{\bar{a}}, \bar{L}^{\bar{a}})$ for \bar{a} joint density estimator (jde)

discrete:
$$\mathrm{E}\left[Y^{\bar{a}}\right] = \sum_{\bar{l}} \mathrm{E}\left[Y|\bar{A} = \bar{a}, \bar{L} = \bar{l}\right] \prod_{k=0}^{K} f\left(l_{k}|\bar{a}_{k-1}, \bar{l}_{k-1}\right)$$

continuous:
$$\int f(y|\bar{a},\bar{l}) \prod_{k=0}^{K} f\left(l_k|\bar{a}_{k-1},\bar{l}_{k-1}\right) dl$$

for stochastic strategies multiply with $\prod_{k=0}^{K} f^{int}\left(a_k | \bar{a}_{k-1}, \bar{l}_k\right)$

estimation (Young et al., 2011; Schomaker et al., 2019)

- 1. model $f(l_k|\bar{a}_{k-1},\bar{l}_{k-1})$ and $E[Y|\bar{A}=\bar{a},\bar{L}=\bar{l}]$
- 2. simulate data forward in time: at k = 0: use empirical distribution of L_0 (observed data) at k > 0: set $\bar{A} = \bar{a}$, draw from models estimated in 1.
- 3. calculate mean of $\hat{Y}_{K,i}^{\bar{a}}$ (bootstrap for CI)

iterated conditional expectation (ice)

$$\mathrm{E}\left[Y_{T}^{\bar{a}}\right] = \mathrm{E}\left[\mathrm{E}\left[\mathrm{E}\left[...\mathrm{E}\left[Y_{T}|\bar{A}_{T-1}=\bar{a}_{T-1},\bar{L}_{T}\right]...|\bar{A}_{0}=a_{0},L_{1}\right]|L_{0}\right]\right]$$

estimation (Schomaker et al., 2019)

- 1. model inside out: $Q_T = \mathbb{E}\left[Y_T | \bar{A}_{T-1}, \bar{L}_T\right]$ to $Q_0 = \mathbb{E}\left[Q_1 | \bar{L}_0\right]$, predict Q_t with $\bar{A} = \bar{a}$ in each step
- 2. calculate mean of $\hat{Q}_{0,i}^{\bar{a}}$ (bootstrap for CI)

g-null paradox even if the sharp null holds, model misspecification can lead to it being falsely rejected

$$\begin{array}{l} \text{Proof: for } L_0 \to A_0 \to Y_0 \to L_1 \to A_1 \to Y_1, \ \bar{a} = (a_0, a_1) \\ \text{E} \left[Y_1^{\bar{a}} \right] \overset{\text{CE}}{=} \text{E} \left[\text{E} \left[Y_1^{\bar{a}} | A_0 \! = \! a_0, L_0 \right] \right] \\ \text{(ice)} \quad \overset{\text{CE}^*}{=} \text{E} \left[\text{E} \left[\text{E} \left[Y_1 | \bar{L}, \bar{A} \! = \! \bar{a}, Y_0 \right] | A_0 \! = \! a_0, L_0 \right] \right] \\ \quad \overset{\text{LTP}}{=} \text{E} \left[\sum_{l_1} \text{E} \left[Y_1 | A_0 \! = \! a_0, \bar{L}, Y_0 \right] \Pr \left[l_1 | a_0, l_0, y_0 \right] \right] \\ \quad \overset{\text{LTP}}{=} \sum_{l_0} \left[\sum_{l_1} \text{E} \left[Y_1 | A_0 \! = \! a_0, \bar{L}, Y_0 \right] \Pr \left[l_1 | a_0, l_0, y_0 \right] \right] \Pr \left[l_0 \right] \\ \text{(jde)} \quad \overset{\text{sum}}{=} \sum_{\bar{l}} \text{E} \left[Y_1 | A_0 \! = \! a_0, \bar{L}, Y_0 \right] \Pr \left[l_1 | a_0, l_0 \right] \Pr \left[l_0 \right] \\ \text{CE: conditional expectation; *: exchangeability;} \\ \text{LTP: law of total probability} \end{array}$$

$$\mathbf{E}\left[Y^{a}\right]=\mathbf{E}\left[\frac{I(A=a)Y}{f\left[A|L\right]}\right];W^{A}=\frac{1}{f\left[A|L\right]};SW^{A}=\frac{f(A)}{f\left[A|L\right]}$$

unknowns can be estimated non-parametrically or modeled **pseudo-population:** everyone is treated & untreated $(L \not\to A)$ FRCISTG (fully randomized causally interpreted structured graph): probability tree for $L \to A \to Y$, can be used to calculate/visualize simulation of values for A

for discrete A, L f[a|l] = Pr[A = a, L = l]

estimators: Horvitz-Thompson; Hajek (modified version) stabilized weights SW^A should have an average of 1 (check!)

 \rightarrow pseudo-population same size \rightarrow CI width \downarrow

$$W^{\bar{A}} = \prod_{k=0}^{K} \frac{1}{f(A_k | \bar{A}_{k-1}, \bar{L}_k)}; \quad SW^{\bar{A}} = \prod_{k=0}^{K} \frac{f(A_k | \bar{A}_{k-1})}{f(A_k | \bar{A}_{k-1}, \bar{L}_k)}$$

G-Estimation (additive) structural nested models

logit Pr
$$\left[A = 1 | H(\psi^{\dagger}), L\right] = \alpha_0 + \alpha_1 H(\psi^{\dagger}) + \alpha_2 L$$

 $H(\psi^{\dagger}) = Y - \psi_{\dagger} A$

find ψ^{\dagger} which renders $\alpha_1 = 0$; 95 %-CI: all ψ^{\dagger} for which p > 0.05closed-form solution for linear models

derivation: $H(\psi^{\dagger}) = Y^{a=0}$

logit
$$\Pr\left[A = 1|Y^{a=0}, L\right] = \alpha_0 + \alpha_1 Y^{a=0} + \alpha_2 L$$

 $Y^{a=0}$ unknown, but because of exchangeability α_1 should be zero

$$Y^{a=0} = Y^a - \psi_1 a$$

equivalent to $Y^{a=0} = Y^{a=1} - \psi_1$, but using no counterfactuals structural nested mean model

$$\begin{array}{ll} \text{additive:} & \operatorname{E}\left[Y^a-Y^{a=0}|A=a,L\right] &=\beta_1 a\left(+\beta_2 a L\right) \\ \\ \text{multiplicative:} & \log\left(\frac{\operatorname{E}\left[Y^a|A=a,L\right]}{\operatorname{E}\left[Y^{a=0}|A=a,L\right]}\right) &=\beta_1 a\left(+\beta_2 a L\right) \\ \\ \text{multiplicative is preferred if } Y \text{ always positive, but does not} \end{array}$$

extend to longitudinal case

semi-parametric: agnostic about β_0 and effect of $L \to \text{robust} \uparrow$ no time-varying: no nesting; model equals marginal structural models with missing β_0, β_3 (unspecified "no treatment")

sensitivity analysis: unmeasured confounding $(\alpha_1 \neq 0)$ can be examined: do procedure for different values of $\alpha_1 \to \text{plot } \alpha_1 \text{ vs.}$ $\psi^{\dagger} \rightarrow \text{how sensitive is estimate to unmeasured confounding?}$ **effect modification:** add V in both g-estimation equations doubly robust estimators exist

time-varying nested equations: for each time kstrutural nested mean models separate effect of each a_k

$$E\left[Y^{\bar{a}_{k-1},a_{k},\underline{0}_{k+1}} - Y^{\bar{a}_{k-1},\underline{0}_{k+1}} | \bar{L}^{\bar{a}_{k-1}} = \bar{l}_{k}, \bar{A}_{k-1} = \bar{a}_{k-1}\right] = a_{k}\gamma_{k} \left(\bar{a}_{k-1}, \bar{l}_{k}, \beta\right)$$

calculations

$$H_k\left(\psi^{\dagger}\right) = Y - \sum_{j=k}^{K} A_j \gamma_j \left(\bar{A}_{j-1}, \bar{L}_j, \psi^{\dagger}\right)$$

function γ_j can be, e.g. constant (ψ_1) , time-varying only $(\psi_1 +$ $\psi_2 k$), or dependent on treatment/covariate history

logit Pr
$$\left[A_k = 1 | H_k \left(\psi^{\dagger}\right), \bar{L}_k, \bar{A}_{k-1}\right] =$$

$$\alpha_0 + \alpha_1 H_k \left(\psi^{\dagger} \right) + \alpha_2 w_k \left(\bar{L}_k, \bar{A}_{k-1} \right)$$

find α_1 that is closest to zero

a closed form estimator exists for the linear case

2.3 Doubly Robust Methods

Double-Robustness (Hernán and Robins, 2023) g-formula: either treatment model f(L) or outcome model b(L)or appropriately combine both: "two chances to get it right" all doubly robust estimators

- involve a correction of outcome $\hat{b}(L)$ using the treatment $\hat{f}(L)$
- have a bias depending on a product of the errors $\frac{1}{\pi(l)} \frac{1}{\hat{\pi}(l)}$ and $b(l) - \hat{b}(l)$ known as second order bias

time-varying: multiple robustness for k = 0, 1, ...KK+2 robustness: consistent, if \hat{f}_0 to \hat{f}_l and \hat{b}_{l+1} to \hat{b}_K are 2^{K+1} robustness: consistent, if for each k, either \hat{f}_k or \hat{b}_k are

Machine Learning L is high-dimensional one could use lasso or ML for IP weighting/standardization but: ML does not guarantee elimination of confounding and has largely unknown statistical properties: how to get CI? sample splitting: train estimators on training sample T_r , use resulting estimators for doubly robust method on estimation sample (CIs on estimation sample are valid, but n halved) cross-fitting: do again the other way round, average the two estimates, get CI via bootstrapping [alternatively: split into Msamples, use one sample for estimation and M-1 for training \rightarrow improved finite sample behavior (Hernán and Robins, 2023)] asymptotic behavior for valid (Wald) CI we need:

- a bias much smaller than $c \cdot 1/\sqrt{n}$, which is how the se typically scales (use doubly robust methods for small bias)
- asymptotic normality (for Wald CI)
- for a doubly robust estimator ψ_{dr} , we need sample splitting, otherwise $\hat{b}(l)$ and $\hat{f}(l)$ are correlated with ψ_{dr} if $\hat{b}(l)$ and $\hat{f}(l)$ are consistent and $E[\hat{\psi} - \psi | T_r]/se(\hat{\psi})$ converges to $0 \to \hat{\psi}$ with sample splitting is asymptotically normal and unbiased → CI is calibrated (Hernán and Robins, 2023) problems: unclear choice of algorithm, is bias small enough?

Advantages (Van der Laan et al., 2011) **consistent** if either \bar{Q}_0 or g_n are consistent (doubly robust): $\forall \epsilon > 0, P \in \mathcal{M} : \Pr_P \left[|\hat{\theta}_n - \theta(P)| > \epsilon \right] \to 0 \text{ as } n \to \infty$

collaboratively doubly robust: g_n only needs predictors of Y, as it does not try to fit g_0 well, but improve the fit of \bar{Q}_n^* asymptotic unbiasedness if either \bar{Q}_0 or g_0 are consistent, super learning makes \bar{Q}_0 and g_n max. asymptotically unbiased asymptotic efficiency if both \bar{Q}_0 and g_n are consistent: achieves Cramer-Rao bound of minimum possible asymptotic variance (requires asymptotic unbiasedness) asymptotic linearity if either \bar{Q}_0 or g_n are consistent:

means estimator behaves like empirical mean

- bias converges to zero at rate smaller than $1/\sqrt{n}$
- \bullet for large n estimator is approximately normally distributed

Influence Curve (Hampel, 1974; Van der Laan et al., 2011; Zepeda-Tello et al., 2022) how robust is an estimator?

$$IC_{T,P_n}(O) = \lim_{\epsilon \to 0} \frac{T\left[(1-\epsilon)\,P_n + \epsilon \delta_O \right] - T(P_n)}{\epsilon}$$
 for estimator T and distribution P_n with $0 < \epsilon < 1$

can also be rewritten as

$$IC_{T,P_n} = \frac{d}{d\epsilon}T\left[(1 - \epsilon)P_n + \epsilon \delta_O \right] = \frac{d}{dP_n}T\left(\delta_O - P_n \right)$$

last part is a *directional derivative* at P_n (empirical probability measure that puts mass 1/n on O_i) in direction $(\delta_O - P_n)$ $\overline{IC}(P_0) = 0$ and $Var(IC(P_0))$ is the asymptotic variance of the standard estimator $\sqrt{n}(\psi_n - \psi_0)$, therefore $Var(\hat{\Psi}(P_n)) = \frac{Var_{IC}}{n}$ **efficient IC:** an estimator is asymptotically efficient \Leftrightarrow its influence curve is the efficient influence curve $IC(O) = D^*(O)$ estimand written as a function of θ , i.e. $\psi := \phi(\theta)$, we know the variance of $\hat{\theta}$, but what is the variance of $\hat{\psi}$

classical delta method: (under regularity conditions) distribution of $\phi(\hat{\theta})$ can be approximated as a normal with a variance proportional to ϕ 's rate of change at θ :

$$\sqrt{n} \left(\phi(\hat{\theta}_n) - \phi(\mu) \right) \stackrel{\text{approx}}{\sim} \text{N} \left(0, \phi'(\theta) \sigma^2 \right)$$

which allows for Wald-type CI: $\hat{\theta}_n \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{\phi'(\theta)\sigma^2}{n}}$ (very similar to central limit theorem)

Taylor's approximation requirements:

• univariate ϕ : differentiable at θ

- multivariate ϕ : $\exists \partial_v \phi(\theta)$ (directional derivative)
- functional ϕ (function of functions): $\exists \partial_v \phi(\theta)$ & coincides with one-sided directional (Hadamard) derivatives $(\stackrel{*}{=} \nabla \phi(\theta)^T v)$

first order Taylor (rearranged†): $\phi(\hat{\theta}_n) \stackrel{\sim}{\approx} \phi(\theta) \stackrel{\sim}{+} \partial_{v:=\hat{\theta}-\theta} \phi(\theta)$ classical delta method: if $\{r_n\}_{n=1}^{\infty}$ with $\lim_{n\to\infty} r_n = \infty$, where $r_n(\hat{\theta}_n - \theta)$ converges to $Z \sim N(0, 1)$ (e.g. $r_n = \sqrt{n/\sigma^2}$), then

$$r_n \left(\phi(\hat{\theta}_n) - \phi(\theta) \right) \stackrel{\uparrow *}{\approx} \nabla \phi(\theta)^T r_n (\hat{\theta}_n - \theta) \stackrel{d}{\to} \nabla \phi(\theta)^T Z$$

$$\Rightarrow \operatorname{Var}\left[\phi(\hat{\theta}_n) - \phi(\theta)\right] = \operatorname{Var}\left[\phi(\hat{\theta}_n)\right] \approx \frac{1}{r_n^2} \operatorname{Var}\left[\nabla \phi(\theta)^T Z\right]$$

functional delta: $r_n(\hat{\theta}_n - \theta) \stackrel{d}{\to} Z \Rightarrow r_n(\phi(\hat{\theta}_n) - \phi(\theta)) \stackrel{d}{\to} \partial_Z \phi(\theta)$ **influence function:** $\psi = \phi(\mathbb{P}_X)$ is a functional

estimations rate of change for \mathbb{P}_X to Q, where $Q = \mathbb{1}_{\{Y\}}$

$$\operatorname{IF}_{\phi,\mathbb{P}_X}(Y) := \partial_{Q-\mathbb{P}_X}\phi(\mathbb{P}_X) = \lim_{h \downarrow 0} \frac{\phi\left((1-h)\mathbb{P}_X + hQ\right) - \phi(\mathbb{P}_X)}{h}$$

interpretation: rate of change if distribution deviates from \mathbb{P}_X to Q = one observation Y, assigns probability 1 to X taking value Yuse delta: $\phi(\hat{\mathbb{P}}_X) \approx \phi(\mathbb{P}_X) + \mathrm{IF}_{\phi,\mathbb{P}_X}(Y)$, if $(\hat{\theta}_n - \theta) \stackrel{n \to \infty}{\sim} \mathrm{N}(.,.)$

$$\hat{\psi}_n - \psi = \phi(\hat{\theta}_n) - \phi(\theta) \overset{\text{approx}}{\sim} \text{N}\left(0, \text{Var}[\text{IF}_{\phi, \mathbb{P}_Y}(Y)]\right),$$

where $\widehat{\operatorname{Var}}[\operatorname{IF}_{\phi,\mathbb{P}_X}(Y)] = \frac{1}{n} \sum_{i=1}^n \left(\operatorname{IF}_{\phi,\mathbb{P}_X}(X_i)\right)^2$, which is the classical S^2 estimator since the mean is known (= 0)

using the delta method (general case)

- 1. determine asymptotic distribution of $v := r_n(\hat{\theta}_n \theta)$
- 2. define ϕ and compute Hadamard derivative
- 3. multiply asymptotic distribution with Hadamard derivative, then estimate the variance

Simple Plug-In Estimator
1. fit outcome regression with variable $R = \begin{cases} +W^A & \text{if } A=1 \\ -W^A & \text{if } A=0 \end{cases}$ 2. standardize by averaging

time-varying k + 2 robust estimator (related to TMLE)

- 1. estimate $\hat{f}(A_m|\bar{A}_{m-1},\bar{L}_m)$ (e. g. logistic model), use it to calculate at each time m: $\widehat{W}^{\bar{A}_m} = \prod_{k=0}^m \frac{1}{\widehat{f}(A_k|\bar{A}_{k-1},\bar{L}_k)}$ and modified IP weights at m: $\widehat{W}^{\bar{A}_{m-1,a_m}} = \frac{\widehat{W}^{\bar{A}_{m-1}}}{\widehat{f}(a_m|\bar{A}_{m-1},\bar{L}_m)}$
- 2. with $\widehat{T}_{K+1} := Y$, recursively for m = K, K 1, ..., 0: (a) fit outcome regression on \widehat{T}_{m+1} with variable $\widehat{W}^{\bar{A}_m}$ (b) calculate \widehat{T}_m using the outcome model with $\widehat{W}^{\bar{A}_{m-1,a_m}}$
- 3. calculate standardized mean outcome $\widehat{\mathbf{E}}[Y^{\bar{a}}] = \mathbf{E}[\widehat{T}_0]$

Augmented IP Weighting (AIPTW) (Hernán and Robins, 2023)

$$\hat{\mathbf{E}}[Y^a] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{\mathbb{1}(A=a)Y}{\hat{f}(A|L)} - \left(\frac{\mathbb{1}(A=a)}{\hat{f}(A|L)} - 1 \right) \hat{b}(a,L) \right]$$

Relationship between AIPTW and TMLE for causal effect:

$$\hat{\psi}_{1,AIPTW} - \hat{\psi}_{0,AIPTW} = P_n \left[\hat{b}(1,L) \right] - P_n \left[\hat{b}(0,L) \right]$$

$$-P_{n} \left[\frac{\{\mathbb{1}(A=1) - \mathbb{1}(A=0)\} \left(Y - \hat{b}(A, L)\right)}{\hat{f}(A|L)} \right]^{\dagger}$$

using the IRLS estimate for $b(A, L; \beta, \theta) = \phi \left[m(A, L; \beta) + \theta \left\{ \frac{1(A=1) - 1(A=0)}{\hat{f}(A|L)} \right\} \right]$ with canonical link ϕ sets the last part[†] to zero (as the score equation for θ)

TMLE (Van der Laan et al., 2011)

targeted maximum likelihood estimation

$$O = (W, A, Y) \sim P_0$$

target $\Psi(P_0) = \Psi(\bar{Q}_0, Q_{W,0}) = \psi_0$,

often: $E_{W,0}[E_0(Y|A=1,W)-E_0(Y|A=0,W)]$

first step: outcome model $\bar{Q}_n^0(A, W)$ estimating \bar{Q}_0 (part of P_0)

- super learning is often used here, but leads to a biased estimate
- not all of f(Y|A, W) needs to be estimated, just the relevant portion, typically average outcome $E_0(Y|A,W) \to \text{efficiency} \uparrow$ **second step:** update $\bar{Q}_n^0(A, W)$ to $\bar{Q}_n^1(A, W)$ using treatment model g_n estimating $g_0 = P_0(A|W)$
- 1. model g_n , super learning is a popular choice here, too
- 2. calculate n clever covariates: $H_n^*(A, W) = \begin{cases} \frac{1}{g_n(1|W)} & \text{if } A_i = 1\\ \frac{1}{g_n(0|W)} & \text{if } A_i = 0 \end{cases}$
- 3. update \bar{Q}_n^0 , by estimating ϵ_n with offset logistic regression: $\operatorname{logit} \bar{Q}_{n}^{1}(A, W) = \operatorname{logit} \bar{Q}_{n}^{0}(A, W) + \epsilon_{n} H_{n}^{*}(A, W)$ (converges after first update), then calculate counterfactuals
- goal: bias reduction, get optimal bias-variance trade-off
- $\bullet\,$ removes all asymptotic bias, if consistent estimator is used here third step: use empirical distribution for $Q_{W,0}$ in a substitution estimator, e. g.: $\psi_n^{TMLE} = \frac{1}{n} \sum_{i=1}^n \left[\bar{Q}_n^1(1,W_i) - \bar{Q}_n^1(0,W_i) \right]$ advantages: loss-based (does not only solve efficient influence curve estimating equation, but also uses a loss and working model preserving global constraints), well-defined (as a loss-based learner), substition estimator (respects global constraints \rightarrow more robust to outliers and sparsity)

closed form inference based on the influence curve:

$$IC_n^*(O_i) = \underbrace{\left[\frac{\mathbb{1}(A_i = 1)}{g_n(1, W_i)} - \frac{\mathbb{1}(A_i = 0)}{g_n(0, W_i)}\right] \left[Y - \bar{Q}_n^1(A_i, W_i)\right]}_{b} + \underbrace{\bar{Q}_n^1(1, W_i) - \bar{Q}_n^1(0, W_i) - \psi_{TMLE, n}}$$

TMLE sets the mean of the IC, \overline{IC}_n , to zero (b has already mean zero, see third step, the first part of a is the clever covariate) sample variance is then: $S^2(IC_n) = \frac{1}{n} \sum_{i=1}^n (IC_n(o_i) - \bar{IC}_n)^2$ standard error of estimator: $\sigma_n = \sqrt{\frac{S^2(IC_n)}{r}}$ 95% CI: $\psi_{TMLE,n} \pm z_{0.975} \frac{\sigma_n}{\sqrt{n}}$; p-value: $2 \left[1 - \Phi \left(\left| \frac{\psi_{TMLE,n}}{\sigma_{-} / \sqrt{\sigma_{-}}} \right| \right) \right]$

LTMLE longitudinal

for t = T, ..., 1:

- 1. model $E(Y_t|\bar{A}_{t-1},\bar{L}_t)$ (fit on individuals that are uncensored and alive at t-1
- 2. plug in $\bar{a}_{t-1} = \bar{d}_{t-1}$; use regression from 1 to predict outcome at time t, ie. $\bar{Y}_t^{\bar{d}_t}$
 - 3. update estimate with

 $Y_t = offset(step2resultint) + \epsilon \times clevercovariate$: predict $\bar{Y}_t^{\bar{d}_t}$ (alternatively the clever covariate can be used as a weight)

4. $\hat{\psi}_T = \text{mean of } \bar{Y}_1^{\bar{d}_1}$

TMLE advanced (Van der Laan et al., 2011)

targeted minimum loss-based estimation

target parameter $\Psi: \mathcal{M} \to \mathbb{R}$, with \mathcal{M} the statistical model used

- 1. compute its pathwise derivative at P and corresponding canonical gradient $D^*(P)$ (efficient influence curve: a function of O with mean zero under P)
- 2. define loss function L() s.t. $P \to E_0 L(P)$ is minimized at true P_0 (or just relevant Q)
- 3. for a P in model \mathcal{M} define a parametric working model $\{P(\epsilon):\epsilon\}$ s.t. $P(\epsilon=0)=P$ and a "score" $\frac{d}{d\epsilon}L(P(\epsilon))$: score (or linear combination of its components) equals $D^*(P)$ at P (or just relevant Q)
- 4. with initial estimate P_n^0 , compute $\epsilon_n^0 = \arg\min_{\epsilon} \sum_{i=1}^n L(P_n^0(\epsilon))(O_i)$, calculate first iteration $P_n^1 = P_n^0(\epsilon_n^0)$, repeat until $\epsilon_n^k = 0$ (or just relevant Q)

5. get TMLE estimate ψ_0 as the substitution estimator pluggint P_n^* into Ψ

6. TMLE olves the efficient influence curve equation $0 = \sum_{i=1}^{n} D^*(P_n^*)(O_i) \to \text{esymptotic linearity and efficiency}$

 $\mathcal{L}(O) = \overbrace{\Pr(Y|A,W)}^{Q_Y} \overbrace{\Pr(A|W)}^{g} \overbrace{\Pr(W)}^{Q_W} : g \text{ itself is not needed as}$

 $\mathcal{L}(O) = \Pr(Y|A, W) \Pr(A|W) \Pr(W)$: g itself is not needed we intervene on treatment, but it can help improving the estimate of Q_Y

H(A,W) depends on target parameter and loss function but is a function of the propensitiy score update initial fit $\bar{Q}_n^* = \bar{Q}_n^0 + \hat{\epsilon} H(A,W)$

valid inference, good finite sample performance,

H(A,W) comes from the influence curve, targeting ensures mean of efficient influence curve $D^*(P)$ is zero TMLE solves $P_n D^*(P_n^*) = 0$

TMLE is a substitution estimator $\psi_n^{TMLE} = \tfrac{1}{2} \sum_{i=1}^n \bar{Q}_n^*(1,W_i) - \tfrac{1}{2} \sum_{i=1}^n \bar{Q}_n^*(0,W_i) \text{ therefore mean of b is zero}$

targeting step makes sure a also has mean zero MLE solves $\sum_{i=1}^n H(A_i,W_i) \left[Y_i - \bar{Q}_n^*(A_i,W_i) \right] = 0$ where $\bar{Q}_n^*(A_i,W_i) = \hat{\epsilon}H(A,W) + \bar{Q}_n^0$ therefore obvious choice: $H(A,W) = \frac{A}{g(1,W)} - \frac{1-A}{g(0,W)}$ influence curve based inference: asymptotic linearity $\sqrt{n} \left(\psi_n^{TMLE} - \psi_0 \right) \overset{D}{\to} \mathrm{N}(0,\sigma^2)$

 ${f AIPTW}$ augmented inverse probability of treatment weighting

disadvantages (Van der Laan et al., 2011): ignores global constraints \rightarrow often unstable under sparsity, sometimes not well-defined

References

If no citation is given, the information is taken from the book (Hernán and Robins, 2020)

- Hampel, F. R. (1974). The influence curve and its role in robust estimation. *Journal of the american statistical association*, 69(346):383–393.
- Hernán, M. A. and Robins, J. M. (2020). Causal inference: what if. Boca Raton: Chapman & Hall/CRC.
- Hernán, M. A. and Robins, J. M. (2023). Causal inference: what if. Boca Raton: Chapman & Hall/CRC.
- Petersen, M. L. and van der Laan, M. J. (2014). Causal models and learning from data: integrating causal modeling and statistical estimation. *Epidemiology (Cambridge, Mass.)*, 25(3):418–426.
- Schomaker, M., Luque-Fernandez, M. A., Leroy, V., and Davies, M.-A. (2019). Using longitudinal targeted maximum likelihood estimation in complex settings with dynamic interventions. *Statistics in medicine*, 38(24):4888–4911. ISBN: 0277-6715 Publisher: Wiley Online Library.
- Van der Laan, M. J., Polley, E. C., and Hubbard, A. E. (2007). Super learner. Statistical applications in genetics and molecular biology, 6(1). Article 24.
- Van der Laan, M. J., Rose, S., et al. (2011). Targeted learning: causal inference for observational and experimental data, volume 4. Springer.
- Young, J. G., Cain, L. E., Robins, J. M., O'Reilly, E. J., and Hernán, M. A. (2011). Comparative effectiveness of dynamic treatment regimes: an application of the parametric g-formula. *Statistics in biosciences*, 3:119–143.
- Zepeda-Tello, R., Schomaker, M., Maringe, C., Smith, M. J., Belot, A., Rachet, B., Schnitzer, M. E., and Luque-Fernandez, M. A. (2022). The delta-method and influence function in medical statistics: a reproducible tutorial. arXiv preprint arXiv:2206.15310.