Blatt 7

Ausgabe: Di, 11.06.19

Besprechung: Di, 18.06.19

Übungsbetreuung: Seraina Glaus (seraina.glaus@kit.edu) (Raum 12/08 - Geb. 30.23)

## Aufgabe 1: Doppelspalt



- (a) Leite mit Hilfe der Skizze die Formel  $\Delta s = a \frac{d}{e}$  für den Doppelspalt her.
- (b) Begründe, dass für  $\Delta s = n\dot{\lambda}$ ,  $(n=0,1,2,\dots)$  am Punkt A Intensitätsmaxima und für  $\Delta s = (n-\frac{1}{2})\dot{\lambda}$ ,  $(n=1,2,3,\dots)$  am Punkt A Intensitätsminima auftreten.
- (c) Ein Doppelspalt mit dem Spaltmittenabstand d=4.91  $\dot{1}0^{-4}$  m wird von parallelem monochromatischem Licht beleuchtet. Auf einem Schirm im Abstand e=2.00 m zum Spalt ist das erste Nebenmaximum im Abstand  $a_1=1.70$  mm zum Hauptmaximum zu beobachten. Berechne die Wellenlänge  $\lambda$  des Lichts.

## Aufgabe 2: Kommutatoren

Der Kommutator zweier Operatoren A und B sei definiert als

$$[A, B] = AB - BA.$$

Zeigen Sie folgende Eigenschaften des Kommutators der Operatoren A, B, C:

(a) Antisymmetrie:

$$[A,B] = -[B,A] ,$$

(b) (Bi-)Linearität:

$$[\lambda A + B, C] = \lambda [A, C] + [B, C] ,$$

(c) Jacobi-Identität:

$$[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0,$$

(d) Produktregel:

$$[A, BC] = [A, B] C + B [A, C]$$
.

## Aufgabe 3: Quantentheorie

- (a) Eine Lichtquelle der Leistung 100 W sendet monochromatisches Licht der Wellenlänge  $\lambda=6,63\times 10^{-5}\,\mathrm{cm}$  aus. Bestimmen Sie die Anzahl der Lichtquanten, die in einer Sekunde emittiert werden. Benutzen Sie für die Energie eines Lichtquants  $E_{\gamma}=\hbar\omega=2\pi\hbar c/\lambda=hc/\lambda$ , mit  $c=2,9979\cdot 10^8\,\mathrm{m/s}$  und  $h=6,6261\cdot 10^{-34}\,\mathrm{Js}$ , um schließlich die Leistung  $P_{\gamma}=E_{\gamma}/t$  pro t=1s zu bestimmen. Rechnen Sie dies in die Einheit W um und vergleichen Sie dann mit der Gesamtleistung der Lichtquelle um die Anzahl der Lichtquanten zu bestimmen.
- (b) Strahlung der Wellenlänge  $\lambda = 290 \,\mathrm{nm}$  trifft auf eine Metalloberfläche mit der Austrittsarbeit  $W = 4,05 \,\mathrm{eV}$ . Welches Potential ist erforderlich, um die energiereichsten Photoelektronen zu stoppen? Benutzen Sie die Formel für den Photoelektrischen Effekt  $E_e = \hbar\omega W = hc/\lambda W$ , um die kinetische Energie  $E_e$  der austretenden Elektronen in der Einheit eV zu berechnen, mit  $h = 6,6261 \cdot 10^{-34} \,\mathrm{Js} \, \hat{=} \, 4,1357 \cdot 10^{-15} \,\mathrm{eVs}.$
- (c) Wie groß ist die de Broglie-Wellenlänge eines Elektrons mit einer Energie von 6 eV (nichtrelativistisch) bzw. mit einer Energie von 200 MeV (hochrelativistisch)? Für die de Broglie-Wellenlänge gilt  $p=h/\lambda$ . Bezüglich der Energien gilt nichtrelativistisch  $E_{kin}=p^2/2m$  und hochrelativistisch  $E_{kin}=pc$ .