Dynamic Programming (DP)

```
DP = subproblems + reuse
DP = recursion + memorization
time = no. of subproblems * time per subproblem (treating recursive calls as O(1))
Fabonacci numbers: F_1=F_2=1, F_n=F_{n-1}+F_{n-2} — O(n)
Naive algorithm:
fib(n):
   if n ≤ 2:
      f = 1
   else:
      f = fib(n-1) + fib(n-2)
   return f
Memorized DP algorithm:
memo = {}
fib(n):
   if n in memo:
      return memo(n)
   if n ≤ 2:
      f = 1
   else:
      f = fib(n-1) + fib(n-2)
   memo[n] = f
   return f
Runtime: O(n)
Bottom-up DP algorithm:
fib = []
for k = 1 to n:
   if k ≤ 2:
      f = 1
   else:
      f = fib[k-1] + fib[k-2]
```

return fib[n]

Here we use O(n) memory, we can reduce it to O(1).

```
Rod Cutting — O(n^2)
```

There are 2^{n-1} ways of cutting the rod, since we can each cut or not cut at each of the n-1 postitions. (Considering permutations 1+1+2 and 1+2+1 are the same, $2^{\Theta(\sqrt{n})}$)

```
optimal revenue r_n=p_i+r_{n-i}
r_n = max(p_1 + r_{n-1}, p_2 + r_{n-2}, ..., p_n + r_0) where we define r_0 = 0
CUTROD(n)
if n = 0:
   return 0
q = -\infty
for i = 1 to n:
   q = max(q, p_i + CUTROD(n-i))
return q
Runtime: T(n) = 1 + \sum_{j=0}^{n-1} T(j) = 2^n
CUTROD(n)
if n in memo:
   return memo[n]
if n = 0:
   return 0
q = -\infty
for i = 1 to n:
   q = max(q, p_i + CUTROD(n-i))
memo[n] = q
return q
Runtime: no. of subproblems * time per subproblem = n \cdot \Theta(n) = \Theta(n^2)
```

Bottom-up version

```
\begin{split} r[0] &= 0 \\ \text{for } j = 1 \text{ to } n \text{:} \\ q &= -\infty \\ \text{for } i = 1 \text{ to } j \text{:} \\ &\quad \text{if } q < p[i] + r[j-1] \text{:} \\ &\quad q = p[i] + r[j-1] \\ &\quad s[j] = i \\ &\quad r[j] = q \\ m &= n \\ \text{while } m > 0 \text{:} \\ &\quad \text{print}(s[m]) \\ &\quad m = m - s[m] \\ \text{return } r[n] \\ \text{Remark: It is easy to also output the actual partition.} \end{split}
```

Another possible solution $r_n = \max_{i \leq j} (r_{i-1} + P_{j-i+1} + r_{n-j})$, $O(n^3)$

Longest Common Subsequence — O(nm)

Given strings $X=x_{1...m}$, $Y=y_{1...n}$, find the (length of) the longest common subsequenc LCS HYPERLINKING

DOLPHINSPEAK

Subproblems: for each prefix (i=0, 1, ..., m) of X and each prefix (i=0, 1, ..., m) of Y, what is LCS?

Optimal substructure: $X=x_{1...m}, Y=y_{1...n}$, $z=z_{1...k}$

- 1. If $x_m=y_n$, then $z_k=x_m=y_n$, then z_{j-1} is the LCS of x_{m-1} , $\ y_{j-1}$
- 2. If $x_m \neq y_n$, then
 - a. If $z_k
 eq x_m$, then z_{j-1} is the LCS of x_{m-1} , $\ y_j$
 - b. If $z_k
 eq y_n$, then z_{j-1} is the LCS of x_m , $\ y_{n-1}$

Proof 1. If $Z_k \neq X_m$, then we could append $X_m = y_n$ to end of Z_n in contradiction.

Therefore $Z_k = X_m = y_n$. $\overline{M}_1 = Z_{k-1}$ is a common subsequence of X_{m-1} and Y_{m-1} .

If it is not the langest, then there is another common subseq of length $\neq k$, and by appending $Z_k = X_m = y_n$, we get a common subseq of $X_m = X_m = y_n$, we get a common subseq of $X_m = X_m = y_n$, we get a common subseq of $X_m = X_m =$

Rucurrence:

$$C[i,j] = egin{cases} 0 & i=j=0 \ C[i-1,j-1]+1 & i,j>0, x_i=y_j \ max(C[i-1,j],C[j-1,i]) & i,j>0, x_i
eq y_j \end{cases}$$

Runtime: O(nm) subproblems → O(nm)

Knapsack — O(nS)

- ullet list of n items each of size s_i and value v_i
- ullet knapsack of size S
- · find maximum value
- 1. Subproblems: items 1,...,i and remaining capacity $X \leq S$ $\theta(n \cdot S)$ subproblems
- 2. Guess: is item i in or not?
- 3. Recurrence: $DP(X,i) = max(DP(X,i-1),DP(X-S_i,i-1)+v_i)$
- 4. Runtime: $\theta(n \cdot S)$