Stochastic Differential Equations

Sankarasubramanian Ragunathan

389851

RWTH Aachen

- **1** Scope of the Project
- 2 Introduction to Generalized Langevin Equation Introduction Mathematical Model Model Complications and Solutions Extended Variable GLE
- Numerical Schemes for Solving GLE Numerical Schemes

Scope of the Project

- What? Generalized Langevin Dynamics is a modeling technique that can be used to model anomalous diffusive phenomena observed in viscoelastic fluid flow and in biological systems.
 - Why? Anomalous diffusion problems: Langevin model fails to capture sub-diffusive and super-diffusive behavior which the GLE succeeds in capturing. But GLE is Non-Markovian i.e. memory kernel depends on the history of velocity. This issue is overcome by using Extended Variable GLE that considers a finite dimensional subspace for the memory kernel.
- Where? Applications of GLE include but are not restricted to micro-rheology, biological systems, nuclear quantum effects and systems in which anomalous diffusion arise.
 - **How?** Study Extended Variable GLE using Prony series approximation. Accuracy of Implicit/Explicit Euler and Splitting Numerical schemes are also tested to find out the optimal scheme. Study the sensitivity of the solution to the changes in the parameters of the extended variable GLE.

Introduction

- What? Langevin Dynamics: Large particles in a bath of small particles, motion of large particles directly integrated while the dynamics of small particles are "averaged out".
 - Why? *Molecular Dynamics* simulations involving all particles is computationally expensive. Langevin Equation model is computationally cheaper.

Drawback

Anomalous diffusion problems arising due to *Power Law* behavior of solute-solvent systems cannot be solved.

Solution

Generalized Langevin Equation (GLE)

- (a) Big Particles interacting with Smaller Particles
- (b) Sub-diffusive and Super-diffusive behavior of solute-solvent systems

4□ → 4□ → 4 = → 4 = → 9 < 0 4/1</p>

Mathematical Model

The velocity term of GLE is based on *Ornstein-Uhlenbeck* process.

GLE Equations

$$dX(t) = V(t)dt (1)$$

$$MdV(t) = \underbrace{F^{c}(X(t))dt}_{\text{Conservative}} - \underbrace{\int_{0}^{t} \Gamma(t-s)V(s)dsdt}_{\text{Temporally}} + \underbrace{F^{r}(t)dt}_{\text{Random Correlated}}$$
Force due to Non-Local Drag (F^{d}) Force given by Potential Force FDT
$$X(0) = X_{0}, \qquad V(0) = V_{0} \qquad \text{(Initial Conditions)}$$
(2)

Note:

 $m{F}^r$ and $m{F}^d$ are characterized by the memory kernel consistent with FDT.

Mathematical Model

Theorem

FDT (Fluctuation Dissipation Theorem) states that the equilibration to a temperature, T, requires that the two-time correlation of $\mathbf{F}^r(t)$ and $\Gamma(t)$ be related as:

$$\langle \boldsymbol{F}_{i}^{r}(t+s), \boldsymbol{F}_{j}^{r}(t) \rangle = k_{B}T\Gamma(s)\delta_{ij}, \quad s \geq 0$$
 (4)

where k_B is the Boltzmann's Constant and δ_{ij} is the Kronecker Delta.

Note:

- ${m F}^d(t)$ depends on the velocity history unlike in Langevin Equation where it depends on the velocity at that instant.
- The random forces are not just delta correlated but are correlated by the memory kernel. Memory Kernel choice and approximation important based on the problem to be studied.

Model Complications and Solutions

Complications

- 1 Storage of subset of the time history of V(t).
- **2** Sequence of $\boldsymbol{F}^r(t)$ given by FDT.
- Numerical SDE solution should converge in distribution.

Solution

Using extended variable Prony Series for Memory Kernel.

$$\Gamma(t) pprox \sum_{k=1}^{N_k} rac{c_k}{ au_k} \exp\left[-rac{t}{ au_k}
ight], \qquad t \geq 0$$
 (5)

where N_k is the number of terms used in approximating the memory kernel.

Using a suitable integration scheme for the numerical method.

Model Complications and Solutions

Why use extended variable Prony Series?

- Approximation of memory kernel to map Non-Markovian GLE to Markovian system of N_k variables.
- Typically used for modelling Power Law based decay/growth as observed in sub/super diffusive systems.

Importance of choice of integration scheme?

- Conservation of moments of variables of interest such as displacement and velocity (usual variables of interest for MD simulations)
- Convergence of **GLE** to Langevin equation in the limit of small τ_k as observed in theory.

Extended Variable GLE

Main Extended Variable GLE Equations

$$m_i dV_i(t) = F_i^c(\mathbf{X}(t))dt + \sum_{k=1}^{N_k} S_{i,k} dt$$
 (6)

$$dX_i(t) = V_i(t)dt (7)$$

$$dS_{i,k}(t) = -\frac{1}{\tau_k} S_{i,k}(t) dt - \frac{c_k}{\tau_k} V_i(t) dt + \frac{1}{\tau_k} \sqrt{2k_B T c_k} dW_{i,k}(t) \tag{8} \label{eq:state}$$

Auxiliary Extended Variable GLE Equations

$$S_{i,k}(t) = Z_{i,k}(t) + F_{i,k}(t)$$
 (9)

$$dZ_{i,k}(t) = -\frac{1}{\tau_k} Z_{i,k}(t) dt - \frac{c_k}{\tau_k} V_i(t) dt \qquad \qquad Z_{i,k}(t) = -\int_0^t \frac{c_k}{\tau_k} \exp\left[-\frac{(t-s)}{\tau_k}\right] V_i(s) ds \ \ (10)$$

$$dF_{i,k}(t) = -\frac{1}{\tau_k}F_{i,k}(t)dt + \frac{1}{\tau_k}\sqrt{2k_BTc_k}dW_{i,k}(t) \qquad \left\langle F_{i,k}(t+s), F_{i,k}(t) \right\rangle = k_BT\frac{c_k}{\tau_k} \exp\left[-\frac{s}{\tau_k}\right] \tag{11}$$

$$F_i^T(t) = \sum_{k=1}^{N_k} F_{i,k}(t)$$
 (12)

Numerical Schemes

Numerical Schemes:

- Explicit Euler Scheme.
- Splitting Scheme.

Assumptions:

- Uniform time-step size, Δt , where $N_t \Delta t = T_{\rm tot}$ ($T_{\rm tot}$ represents the total time of the simulation and N_t represents the # of time-steps.)
- All N_p particles are seeded with the same constant $\boldsymbol{X}(0)$ and $\boldsymbol{V}(0)$ (Note: We could also seed the initial conditions based on the p.d.f if known.)
- The composite variable $S_{i,k}(t)$ is assumed to be zero initially.

Numerical Schemes

Explicit Euler Scheme

Input: X(0), V(0), S(0)

Output: $\hat{\boldsymbol{X}}(t)$, $\hat{\boldsymbol{V}}(t)$

1: for n=0 to N_t do

2:
$$V_i^{n+1} = V_i^n + \frac{\Delta t}{m_i} F_i^c(\mathbf{X}^n) + \frac{\Delta t}{m_i} \sum_{k=1}^{N_k} S_{i,k}^n$$

3:
$$X_i^{n+1} = X_i^n + \Delta t V_i^n$$

1:
$$S_{i,k}^{n+1} = \left(1 - \frac{\Delta t}{\tau_L}\right) S_{i,k}^{n} - \frac{c_k \Delta t}{\tau_L} V_i^n + \frac{1}{\tau_L} \sqrt{2k_B T c_k} \Delta W_{i,k}$$

 \triangleright Advance V(t) by a full step \triangleright Advance X(t) by a full step

Advance X(t) by a full step

 \triangleright Advance $\boldsymbol{S}(t)$ by a full step

5: end for

Splitting Scheme

Input: X(0), V(0), S(0)

Output: $\hat{\boldsymbol{X}}(t), \hat{\boldsymbol{V}}(t)$

1: for n=0 to N_t do

2:
$$V_i^{n+1/2} = V_i^n + \frac{\Delta t}{2m_i} F_i^c(\mathbf{X}^n) + \frac{\Delta t}{2m_i} \sum_{k=1}^{N_k} S_{i,k}^n$$

3:
$$X_i^{n+1} = X_i^n + \Delta t V_i^{n+1/2}$$

4:
$$S_{i,k}^{n+1} = \theta_k S_{i,k}^n - (1 - \theta_k) c_k V_i^{n+1/2} + \alpha_k \sqrt{2k_B T c_k} \Delta W_{i,k}$$

5:
$$V_i^{n+1} = V_i^{n+1/2} + \frac{\Delta t}{2m_i} F_i^c \left(\mathbf{X}^{n+1} \right) + \frac{\Delta t}{2m_i} \sum_{k=1}^{N_k} S_{i,k}^{n+1}$$

riangleright Advance $oldsymbol{V}(t)$ by a half step

 $hd Advance ~oldsymbol{X}(t)$ by a full step

 ${\ \vartriangleright\ }$ Advance ${\boldsymbol S}(t)$ by a full step

riangleright Advance $oldsymbol{V}(t)$ by a half step

<□ > <□ > <□ > < = > < ± > < ± > < ± < > < 11/11