Trabajo Práctico Nº 1

Algoritmos Evolutivos (2024) – CEIA

Por: Sevann Radhak Triztan sevann.rahdak@gmail.com

EJERCICIOS.

- **1.** Mediante un algoritmo genético desarrollado en Python, encontrar el valor máximo de la función $y = x^2$. Indicar en el informe el resultado de la solución encontrada (valor de "x") si se ejecuta el algoritmo 10 lanzamientos. Los parámetros del algoritmo son:
 - Selección por Ruleta
 - Intervalo de la variable de decisión: [0, 31] ∈ Z
 - Aplicar elitismo: Si
 - Gen de cruza monopunto aleatorio
 - Probabilidad de cruce 0.92
 - Probabilidad de mutación 0.1
 - Tamaño de la población: 4
 - Generaciones: 10

SOLUCION

1. En este punto se describe la implementación y resultados obtenidos de un algoritmo genético diseñado para optimizar el valor de una función cuadrática $f(x)=x^2$, donde x es un valor representado por un cromosoma binario.

URL del repositorio donde se encuentra el algoritmo resuelto: https://github.com/sevann-radhak/UBA-AE/blob/main/TP1/TP1-ej1.ipynb

Implementación:

El algoritmo utiliza selección por ruleta, cruce de un solo punto, y una tasa de mutación para evolucionar la población a lo largo de varias generaciones. Se aplicó un enfoque de elitismo para asegurar que los mejores individuos de una generación se mantuvieran en la población.

Resultados:

Los resultados de las 10 ejecuciones del algoritmo se resumen en la tabla a continuación, donde cada ejecución muestra el mejor individuo encontrado y su aptitud:

Ejecución	Mejor solución <i>x</i>	Aptitud $y = x^2$
1	31	961
2	30	900
3	30	900
4	30	900
5	31	961
6	31	961
7	30	900
8	31	961
9	31	961
10	30	900

Conclusiones:

El algoritmo genético logró encontrar soluciones óptimas consistentemente, con la mayoría de las ejecuciones convergiendo al valor máximo de x=31, que corresponde a la aptitud más alta de 961. Esto demuestra que la configuración utilizada fue efectiva para este problema en particular.