DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL

MTH6312 - MÉTHODES STATISTIQUES D'APPRENTISSAGE

Devoir nº 1 - Automne 2024

Date de remise : 27 septembre avant 23h55 (en pdf dans Moodle)

DIRECTIVES:

- ✓ Remettre un rapport en PDF. Inclure dans votre rapport le code R ou Python que vous avez utilisé.
- ✓ Lors de la correction, il sera tenu compte de la clarté des démarches ainsi que la qualité de la présentation de votre rapport.
- ✓ Tout cas de soupçon de fraude sera automatiquement reporté à la Division académique du Comité de discipline étudiante. Une des sanctions minimales possibles est une note F à ce cours.

QUESTION Nº 1 (8 points)

On dispose de n observations indépendantes, de la forme $\{(x_i, y_i), i = 1, ..., n\}$. On considère ici que p = 1 (c-à-d x_i est un scalaire).

Les sous questions suivantes sont indépendantes l'une de l'autre. Veuillez répondre à chacune d'elles en justifiant votre réponse selon le contexte donné.

1.a) (2 points) Déterminer l'estimateur du maximum de vraisemblance (e.v.m) $\hat{\theta}_{evm}$ de θ si étant donné x_i , y_i est distribuée selon la fonction de densité

$$f(y_i|\theta,x_i) = \begin{cases} 2(x_i\theta)^2 y_i^3 \exp\left\{-\theta x_i y_i^2\right\} & \text{si } y_i \ge 0, \ x_i > 0 \\ 0 & \text{sinon,} \end{cases}$$

où $\theta > 0$ est un paramètre. Donner le nom et les paramètres de la distribution asymptotique de $\hat{\theta}_{evm}$.

1.b) (2 points) Déterminer l'estimateur du maximum de vraisemblance (e.v.m) $\hat{\theta}_{evm}$ de θ si, étant donné x_i , y_i est distribuée selon une loi de Pascal de paramètre x_i et θ . Précisément la fonction de masse de y_i est

$$p(y_i \mid \theta, x_i) = \begin{cases} \begin{pmatrix} y_i - 1 \\ x_i - 1 \end{pmatrix} \theta^{x_i} (1 - \theta)^{y_i - x_i} & \text{si } y_i = x_i, x_i + 1, \dots \\ 0 & \text{sinon,} \end{cases}$$

où $0 < \theta < 1$ est un paramètre, et x_i est un entier tel que $x_i \ge 1$.

Préciser le nom et les paramètres de la distribution asymptotique de $\hat{ heta}_{evm}$.

1.c) (4 points) En reprenant le contexte de la question **1.b)** ci-dessus, on considère une distribution a *priori* de θ , de fonction de densité

$$\pi(\theta) = \begin{cases} 2(1-\theta) & \text{si } 0 < \theta < 1 \\ 0 & \text{sinon.} \end{cases}$$

- **1.c1)** Déterminer l'estimateur MAP de θ , $\hat{\theta}_{Map}$.
- **1.c2)** Déterminer l'estimateur de Bayes de θ , $\hat{\theta}_{Bayes}$, en considérant une fonction de perte quadratique. Comparer brièvement les deux estimateurs $\hat{\theta}_{Map}$ et $\hat{\theta}_{Bayes}$.

QUESTION Nº 2 (12 points)

On dispose de n observations indépendantes, de la forme $\{(\mathbf{x}_i, y_i), i = 1, ..., n\}$. On considère ici que p = 1 (c-à-d x_i est un scalaire). Les coefficients $w_1, ..., w_n$ sont tels que $w_i \ge 0$ et on suppose que $\sum_{i=1}^n w_i = 1$. Les sous questions 2.a) et 2.b) suivantes sont indépendantes l'une de l'autre.

2.a) (1 point) Déterminer l'estimateur des moindres carrés $\hat{\beta}$ défini par

$$\hat{\beta} = \operatorname{argmin} RSS_1(\beta), \text{ où } RSS_1(\beta) = \sum_{i=1}^n (y_i - \beta x_i)^2.$$

2.b) (2 points) Déterminer les estimateurs des moindres carrés $\hat{\beta}_0$ et $\hat{\beta}_1$ définis par

$$(\hat{\beta}_0, \hat{\beta}_1) = \operatorname{argmin} RSS_2(\beta_0, \beta_1), \text{ où } RSS_2(\beta_0, \beta_1) = \sum_{i=1}^n w_i (y_i - \beta_0 - \beta_1 x_i)^2.$$

On considère à présent les n = 11 observations suivantes :

i	1	2	3	4	5	6	7	8	9	10	11
x_i	2,12	2,25	4,23	4,98	4,76	4,22	3,09	2,73	2,44	4,32	3,41
y_i	20,3	27,6	35,4	39,2	32,7	36,5	26,7	28,8	23,9	37,3	25,8
w_i	1/24	1/12	1/48	7/48	1/24	1/12	1/6	5/48	1/12	7/48	1/12

- **2.c) (1 point)** Produire le diagramme de dispersion (ou *Scatter Plot*) pour les 11 observations. Donner ensuite les valeurs numériques des estimateurs obtenus aux sous questions 2.a) et 2.b).
- **2.d) (2 points)** Tracer le graphe de $RSS_1(\beta)$ en fonction de β (en considérant un intervalle approprié pour β). Comparer le point optimal $\hat{\beta}$ indiqué par le graphe avec la solution calculée algébriquement à la sous-question 2.c) et commenter brièvement.
- **2.e)** (4 points) En considérant un intervalle approprié pour β_0 et un intervalle approprié pour β_1 , tracer les courbes de niveau de la fonction $RSS_2(\beta_0,\beta_1)$ (voir un exemple à la page 46 de ISLr). Comparer le point optimal $(\hat{\beta}_0,\hat{\beta}_1)$ indiqué par les courbes de niveau avec la solution calculée algébriquement à la sous-question 2.c) et commenter brièvement.
- **2.f) (2 points)** En utilisant une procédure appropriée d'optimisation de votre choix (de R ou Python), procéder à la minimisation numérique des sommes de carrés $RSS_1(\beta)$, $RSS_2(\beta_0, \beta_1)$ et $RSS_3(\beta_0, \beta_1, \beta_2)$, où $RSS_3(\beta_0, \beta_1, \beta_2) = \sum_{i=1}^n (y_i \beta_0 \beta_1 x_i \beta_2 x_i^2)^2$.

Comparer la solution d'optimisation numérique avec votre solution exacte pour $RSS_1(\beta)$ et $RSS_2(\beta_0, \beta_1)$.