

Gas Turbine Power Plants

Dingyi Shen (LR & FS, 25%) Fan Yi (LR & FS, 25%) Jesse Li (LR & FS, 25%) Ruijie Cao (LR & FS, 25%)

Combustion Chamber

Figure 2. Combustion Chamber. [2]

Function:

The combustion chamber is the area inside the engine where the fuel/air mixture is compressed and then ignited.

Figure 1. Gas (combustion) turbine power plant. [1]

Current Problems

- Low efficiency:
 - 40-45% of fuel energy is converted into a useful work.^[3]
 - Remaining fuel energy in form of heat losses is transferred to environment.
 - One possible solution to decrease heat losses from the engine is by insulation of combustion.
 - Plan: Study the application of thermal barrier coating (TBC) on combustion chamber as a major method to reduce the heat loss, and design a system with an improved efficiency.

Project Prospects (Method: TBC)

Goal Parameter	Efficiency
Current Efficiency	40-45% ^[3]
Target Efficiency	Increased by at least 3%
Design Variable(s) to be Manipulated in this Project to Attain Target	Coating material ^[4] (Thermal conductivity), Coating thickness ^[5]
Constraint	Operating temperature > 870 °C [6]

References

- [1] "How a Combustion Turbine Plant Works," TVA.com [Online]. Available: https://www.tva.com/energy/our-power-system/natural-gas/how-a-combustion-turbine-plant-works. [Accessed: 13-Sep-2020].
- [2] Soares, C., 2015, Gas turbines: a handbook of air, land and sea applications, Elsevier, Amsterdam.
- [3] Diego, V. (2014). Thermal barrier coatings for efficient combustion.
- [4] Singh, P., Kaurase, K. P. and Soni, G.: Study of Materials used in Gas Turbine engine and swirler in combustion chamber, International Journal of Advance Research and Innovative Ideas in Education, 1(1), 39–46, 2015.
- [5] Alam, T., Kumar, B. and Babu, M. N.: Ceramic coating effect on IC engine performance, Proceedings of the International Conference on Nanotechnology for Better Living, doi:10.3850/978-981-09-7519-7nbl16-rps-250, 2016.
- [6] Chen, L., Wu, P., Song, P., Feng, J., 2018. Potential thermal barrier coating materials: RE 3 NbO 7 (RE =La, Nd, Sm, Eu, Gd, Dy) ceramics. Journal of the American Ceramic Society 101, 4503–4508. doi:10.1111/jace.15798

