Nitasha Jhala Jingyan Yang

20/11/2020

Contents

INTRODUCTION

META-ANALYSIS DATA

MODELING HETEROGENEITY

MRA RESULTS

CONCLUSION

INTRODUCTION

META-ANALYSIS DATA

MODELING HETEROGENEITY

MRA RESULTS

CONCLUSION

Introduction

Conditional Cash Transfer:

- Conditional: Condionalities, usually related to health and education
- Cash: Receipients have more freedom of choices to make expenditure decisions
- Objectives: Reduce poverty in the short & long run

Engel's Law

 This curve is violated in extreme poverty cases

INTRODUCTION

META-ANALYSIS DATA

MODELING HETEROGENEITY

MRA RESULTS

CONCLUSION

Overview of Studies

▶ In the final list: 11 studies from 9 different CCT programs.

Author	Method	Dependent Variable	Total observations	Country	Start Year
Hoddinott & Skoufias (2004)	FE Regression	log(total calories)	13142	Mexico	1998
Hidrobo et. al. (2013)	ANCOVA	dollars (food consumption)	2087	Ecuador	2011
Gilligan et. al (2014)	FE	log(dollars)	2111	Uganda	2007
Garcia (2017)	FE	Fraction of food consumption	11394	Peru	2005
Maluccio & Flores (2004)	DiD	Annual average on per capita food expenditure	5236	Nicaragua	2000
Attanasio & Mesnard (2006)	DiD	log(food consumption)	12200	Colombia	2002
Ahmed, Hoddinot, Roy & Sraboni (2019)	ANCOVA	Monthly food consumption per capital	4895	Bngladesh	2012
Attanasio, O. et al. (2004)	Propensity Score Matching	monthly food consumption per household in pesos	11462	Colombia	2002
Naiara Sperandio et.al.(2017)	Propensity Score Matching + the nearest-neighbor pairing algorithm	Northeast: caloric consumption	4259	Brazil	2003
Melba V. Tutor (2014)	Propensity Score Matching	food expenditure (Nearest neighbor N=1)	5252	Philippine	2007
James Riccio (2013)	OLS	Food security $(1 = low; 4 = high)$	1982	USA	2007
Manuela Angelucci et al (2000)	Decements Coope Matchine	Log consumption	7.320	Merrico	1008

Synthesizing Effect Sizes

Standardize the Effect Sizes

Mostly: Partial Correlation

$$p.c. = t/\sqrt{t^2 + df}$$

Few: Mean Difference

$$g = t \times \sqrt{\frac{1}{n_e} + \frac{1}{n_c}}$$

Random-Effects Model

Analyzing Effect Sizes

Detecting Outliers

(Baujat Plot)

Find a study with negative effect size

Publication Bias

(Funnel Plot)

Find a highly asymmetrical form

INTRODUCTION

META-ANALYSIS DATA

MODELING HETEROGENEITY

MRA RESULTS

CONCLUSION

The MRA Model

We model heterogeneity using the following MRA model (Stanley et al.,2013):

$$r_{ij} = \beta_1 + \sum \beta_k Z_{ki} + \beta_0 S E_{ij} + \epsilon_{ij}$$

- where r is the standardized effect size
- i= 41 estimates
- j=11 studies
- Z = vector of explanatory variables
- inverse variance of the effect sizes used as weights
- clustered standard errors at study level

- ► Measures of Total Consumption
- Country
- Wealth of the household
- Duration of the experiment
- ► Frequency of Transfers
- Geographical Fixed Effects
- ► Targeting Women
- Household Head Characteristics
- ► Food Diversity
- Basis of Conditional Cash Transfer(CCT): School.CT and Awareness.CT.
- Rural/Urban Divide and Well-functioning Markets
- Publication

Meta Regression Variable Definitions

Statistic	Definition	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
Total.Consumption	= 1 if included in the study	41	0.252	0.446	-0.196	-0.040	0.200	1.132
Duration	= duration of study in months	39	29.723	20.947	5.844	12.088	36.163	108.044
Cash	= 1 if included in the study	40	0.339	0.464	-0.184	-0.024	0.852	1.185
Rural_urban	= 1 if included in the study	41	0.200	0.472	-0.199	-0.115	0.168	1.190
Wealth	= 1 if included in the study	41	0.825	0.392	-0.173	0.825	1.077	1.197
Age	= 1 if included in the study	40	0.755	0.468	-0.175	0.637	1.114	1.195
Food.Diversity	= 1 if included in the study	40	0.479	0.518	-0.168	0.012	1.046	1.198
Head.Education	= 1 if included in the study	40	0.862	0.350	-0.183	0.854	1.079	1.161
Head.Gender	= 1 if included in the study	40	0.936	0.293	-0.134	0.884	1.092	1.193
Geographical.FE	= 1 if included in the study	40	0.492	0.480	-0.197	0.070	0.983	1.178
Markets	= 1 if included in the study	41	0.161	0.393	-0.196	-0.071	0.172	1.160
Cash_percent	= cash as a percentage of total consumption	37	0.204	0.251	-0.008	0.096	0.202	1.004
Published	= 1 if included in the study	41	0.862	0.378	-0.164	0.825	1.119	1.191
Frequency	=number of transfers per year	33	10.217	3.294	0.652	10.990	11.892	12.923
School.CT	= 1 if conditioned on school attendance	41	0.802	0.368	-0.112	0.821	1.055	1.172
Awareness.CT	= 1 if conditioned on awareness workshop attendance	41	0.756	0.445	-0.197	0.816	1.042	1.180
Women. Targeted	= 1 if women targeted in the study	41	0.306	0.493	-0.194	-0.022	0.851	1.186
n	=number of observations	41	6,663.763	4,751.545	1,053.123	4,261.446	7,321.479	26,598.860
d	= effect size	41	0.040	0.059	-0.214	0.018	0.066	0.144

INTRODUCTION

META-ANALYSIS DATA

MODELING HETEROGENEITY

MRA RESULTS

CONCLUSION

MRA Results

	Dependent variable:				
		d			
		OLS		coefficies	
	m	(2)	co	(4)	
ash_sercest		0.029	0.106	0.194	
		(0.176)	(0.342)	(0.0003)	
Swation		0.0003	-0.0004	-0.001	
		(0.0004)	(0.000)	(0.00000	
requency		-0.003	-0.005	-0.004**	
		(0.002)	(0.007)	(0.00001	
ichool CT		-0.032	-0.045	0.009***	
		(0.028)	(0.049)	(0.0000)	
Appropriate CT		0.045"	0.049	0.064***	
		(0.024)	(0.031)	(0.00002	
Vomes Targeted		0.005	0.012	-0.005***	
		(0.009)	(0.043)	(0.00004	
lotal Consumption			-0.021	-0.007	
			(0.015)	(0.00001	
lucal_urban			-0.005	-0.007	
			(0.027)	(0.00002	
Wealth			0.012	0.005	
			(0.024)	(0.00002	
lgo.			-0.002	0.007	
			(0.035)	(0.00001	
ood Diversity			-0.003	0.004	
			(0.043)	(0.00005	
lead Education			-0.007	-0.031	
			(0.052)	(0.0001)	
lead.Gender			0.004	-0.005***	
			(0.043)	(0.0001)	
Geographical FE			-0.015	-0.032***	
			(0.013)	(0.00001	
farlets			-0.025	-0.005***	
			(0.045)	(0.0001)	
Sublished			-0.020	-0.039**	
			(0.027)	(0.00002	
Led	1.185*	1.027	2.131	3.365	
	(0.629)	(1.156)	(1.571)	(0.003)	
Constant	0.007	-0.011	0.039	-0.022***	
	(0.016)	(0.051)	(0.186)	(0.0002)	
Sternations	41	20	28		
P	0.006	0.673	0.829		
Adjusted R ² Insidual Std. Error	0.062 1.330 (df = 39)	0.559 0.594 (df = 20)	0.535 0.610 (df = 10)		
Statistic	3.665' (df = 1; 39)	5.883*** (df = 20)	2.827" (df = 17; 10)		

- ➤ Column 1: Stanley's (2008) FAT-PET test results
- Column 2: program characteristics such as Cash_percent, Duration, Frequency, School.CT, Awareness.CT and Women.Targeted
- Column 3: study characteristics such as Total. Consumption, Rural_urban, Wealth, Age, Food. Diversity, Head. Education, Head. Gender, Geographical. FE, Markets and Published.
- ► Column 4: robust estimates
- Key Results
 - ► Cash Value: +ve effect
 - Duration and Frequency of cash transfers: poor implementation?
 - Basis of Conditional Cash Transfer(CCT) : +ve effect
 - ► Econometric Specification: statistical significance, explain 82% of the variance
 - Average Effect of CCTs on Food Consumption: 4%

INTRODUCTION

META-ANALYSIS DATA

MODELING HETEROGENEITY

MRA RESULTS

CONCLUSION

- Conservative effect size 4%, could be a false positive (Stanley, 2019)
- Duration, frequency, and monetary scope of program matter
- ► Always control for geographical fixed effects
- Importance of demographic characteristics of the household head
- Mandatory nutritional awareness workshops as effective tools of behavior change
- A replicable framework to evaluate future research (Stanley, 2001).
- Cash transfer sizes not truly comparable
- Engel curve not analysed sticky or temporary behaviours?
- Need to fund and publish replication RCT's
- ► Thanks!

INTRODUCTION

META-ANALYSIS DATA

MODELING HETEROGENEITY

MRA RESULTS

CONCLUSION

References

- Gilligan, Daniel O.; Hidrobo, Melissa; Hoddinott, John F.; Roy, Shalini; and Schwab, Benjamin. 2014. Much ado about modalities: Multicountry experiments on the effects of cash and food transfers on consumption patterns. Selected Paper prepared for presentation at the Agricultural Applied Economics Association's 2014 AAEA Annual Meeting, Minneapolis, Minnesota, July 27-29, 2014. Milwaukee, WI, USA: Agricultural and Applied Economics Association (AAEA). http://purl.ump.edu/171159.
- Stanley, T. D. (2001). Wheat from chaff: Meta-analysis as quantitative literature review. Journal of economic perspectives, 15(3), 131-150.
- Stanley, Tom D., and Hristos Doucouliagos. "Practical Significance, Meta-Analysis and the Credibility of Economics." (2019).
- Stanley, T.D., Doucouliagos, H., Giles, M., Heckemeyer, J.H., Johnston, R.J., Laroche, P., Nelson, J.P., Paldam, M., Poot, J., Pugh, G. and Rosenberger, R.S., 2013. Meta-analysis of economics research reporting guidelines. Journal of economic surveys, 27(2), pp.390-394.
- Stanley, Tom D., and Hristos Doucouliagos. "Practical Significance, Meta-Analysis and the Credibility of Economics." (2019).
- https://bookdown.org/MathiasHarrer/Doing_Meta_Analysis_in_R/

Nitasha Jhala Jingyan Yang

20/11/2020

