Ćwiczenia z ANALIZY NUMERYCZNEJ

Lista nr 6

13 listopada 2024 r.

Zajęcia 19 listopada 2024 r. Zaliczenie listy **od 5 pkt.**

- L6.1. 1 punkt Uzasadnij, że schemat Hornera jest algorytmem numerycznie poprawnym.
- L6.2. 1 punkt Sformułuj i udowodnij algorytm Clenshawa obliczania wartości wielomianu

$$w(x) = \frac{1}{2}c_0T_0(x) + c_1T_1(x) + c_2T_2(x) + \dots + c_nT_n(x)$$

w punkcie x, gdzie c_0, c_1, \ldots, c_n są dane, a T_n oznacza n-ty wielomiany Czebyszewa.

- **L6.3.** 2 punkty Niech T_n (n = 0, 1, ...) oznacza n-ty wielomian Czebyszewa.
 - (a) Podaj postać potęgową wielomianu T_5 .
 - (b) Jakimi wzorami wyrażają się współczynniki wielomianu T_n przy x^n i x^{n-1} ?
 - (c) Korzystając z faktu, że dla dowolnego x z przedziału [-1,1] n-ty $(n \ge 0)$ wielomian Czebyszewa wyraża się wzorem $T_n(x) = \cos(n \arccos x)$:
 - i. sprawdź, że $|T_n(x)| \le 1 \quad (-1 \le x \le 1; n \ge 0);$
 - ii. wyznacz wszystkie punkty ekstremalne n-tego wielomianu Czebyszewa, tj. rozwiązania równania $|T_n(x)|=1$;
 - iii. udowodnij, że wielomian Czebyszewa T_{n+1} $(n \ge 0)$ ma n+1 zer rzeczywistych, pojedynczych, leżących w przedziale (-1,1).
- **L6.4.** 2 punkty Wykaż, że dla dowolnych $k, l \in \mathbb{N}$ oraz $x \in \mathbb{R}$ zachodzi

$$T_{kl}(x) = T_k(T_l(x)).$$

Wykorzystaj podaną zależność do opracowania **szybkiego algorytmu** wyznaczania wartości wielomianu Czebyszewa **wysokiego** stopnia niebędącego liczbą pierwszą.

L6.5. 1 punkt Podaj postać Lagrange'a wielomianu interpolacyjnego dla danych

- **L6.6.** 1 punkt Niech będzie $f(x) = 2024x^8 1977x^6 + 1945x^3 + 1989x^2 + 1410x$.
 - (a) Wyznacz wielomian stopnia ≤ 8 interpolujący funkcję f w punktach $-2024,\ 1977,\ -1918,\ \cos(2),\ 1981,\ -1939,\ 1791,\ 1918,\ \ln(2).$
 - (b) Wyznacz wielomian drugiego stopnia, interpolujący funkcję f w punktach -2, -1, 0.
- **L6.7.** I punkt Sprawdź, że wielomian $L_n \in \Pi_n$ interpolujący funkcję f w parami różnych n+1 węzłach x_0, \ldots, x_n można zapisać w postaci

$$L_n(x) = \sum_{k=0}^{n} f(x_k) \frac{p_{n+1}(x)}{(x - x_k)p'_{n+1}(x_k)},$$

gdzie
$$p_{n+1}(x) := (x - x_0)(x - x_1) \cdots (x - x_n).$$

L6.8. 1 punkt Niech dany będzie wielomian $w_n(x) := (x-1)(x-2)\cdots(x-n) \in \Pi_n$, gdzie $n \in \mathbb{N}$. Jak wiadomo, język programowania PWO++ ma bogatą bibliotekę funkcji i procedur numerycznych. Wśród nich znajduje się procedura FactorPoly2Chebyshev(n) znajdująca z dokładnością bliską maszynowej taki wektor liczb rzeczywistych $[a_0^{(n)}, a_1^{(n)}, \dots, a_n^{(n)}]$, że

$$w_n(x) = \sum_{k=0}^{n} {'a_k^{(n)} \cdot T_k(x)},$$

gdzie T_k oznacza k-ty wielomian Czebyszewa. Krótko mówiąc: procedura ta wyznacza współczynniki postaci Czebyszewa wielomianu w_n . Niestety ma ona pewną wadę, a mianowicie — stopień n nie może być większy niż 2024. Wykorzystując procedurę FactorPoly2Chebyshev tylko raz, zaproponuj efektywną metodę znajdowania postaci Czebyszewa wielomianu w_{2025} , tj. obliczania współczynników $a_k^{(2025)}$ $(0 \le k \le 2025)$.

(-) Paweł Woźny