FFM234, Klassisk fysik och vektorfält -Veckans tal

Christian Forssén, Institutionen för fysik, Chalmers

Aug 10, 2019

Här följer ledtrådar till två roliga, men kluriga, uppgifter från kapitel 5: Indexnotation.

5.5.10

Bevisa den Stokes-analoga satsen

$$\oint\limits_{\partial S} d\vec{r} \times \vec{v} = \int_S (d\vec{S} \times \vec{\nabla}) \times \vec{v}.$$

Visa att ett val av ytan S i xy-planet reproducerar Greens formel.

Hint.

- \bullet Bilda ett vektorfält $\vec{F}=\vec{a}\times\vec{v},$ där \vec{a} är ett godtyckligt, men konstant vektorfält.
- Teckna Stokes sats för detta nya vektorfält \vec{F} . Målet är sedan att skriva både VL och HL av Stokes sats som \vec{a} gånger en integral. För att nå dit får man skriva om några kryssprodukter för vilket man med fördel kan använda indexformalism.
- Målet är alltså att komma fram till att

$$-\vec{a}\cdot\oint\limits_{\partial S}d\vec{r}\times\vec{v}=-\vec{a}\cdot\int_{S}(d\vec{S}\times\vec{\nabla})\times\vec{v}.$$

 \bullet Eftersom det sambandet skall gälla för godtyckligt fält \vec{a} så måste integralerna vara lika.

5.5.11

Visa att arean av en plan yta omsluten av en kurva C är

$$A = \frac{1}{2} \left| \oint_C \vec{r} \times d\vec{r} \right|.$$

Hint.

- $\bullet\,$ Lägg ett koordinatsystem så att den plana yt
an ligger ixy-planet.
- Notera sedan att $\vec{r} \times d\vec{r}$ är en vektor som pekar i z-riktningen. Eftersom vi skall ha absolutvärdet av integralen kan vi få fram vektorns enda komponent genom att skalärmultiplicera med \hat{z} .
- Notera att $\vec{z} \cdot (\vec{r} \times d\vec{r}) = d\vec{r} \cdot (\hat{z} \times \vec{r})$.
- Då kommer man till en punkt där man kan utnyttja Stokes sats.
- Sedan får man utnyttja indexformalism för att skriva om den dubbla kryssprodukten. Notera att vektorn \hat{z} kan skrivas som δ_{3l} med indexformalism (detta skall ju tolkas som tre komponenter, l=1,2,3, där bara den tredje är nollskild och lika med 1).