Типы дисков, используемые в СХД

Протокол	Описание
IDE/ATA	 Популярный интерфейс, используемый для подключения жестких и оптических дисков Версия Ultra DMA/133 протокола ATA поддерживает пропускную способность 133 Мбайт/с
Serial ATA	 Последовательная версия спецификации IDE/ATA обычно используется для внутренних подключений Обеспечивает скорость передачи данных до 16 Гбит/с (стандарт 3.2)
SCSI	 Популярный стандарт, используемый для подключения вычислительной системы к системе хранения Поддерживает до 16 устройств на одной шине Версия Ultra-640 обеспечивает скорость передачи данных до 640 Мбайт/с
SAS	 Последовательный протокол «точка-точка», заменяющий параллельный протокол SCSI Поддерживает скорость передачи данных до 12 Гбит/с (SAS 3.0)
FC	 Широко используемый протокол для высокоскоростного обмена данными между вычислительной системой и системой хранения Обеспечивает последовательную передачу данных, осуществляемую по медному и/или волоконно-оптическому кабелю Последняя версия интерфейса Fibre Channel «16FC» позволяет передавать данные со скоростью до 16 Гбит/с
IP	 Существующая сеть на основе протокола IP используется для обмена данными между системами хранения Примеры: протоколы iSCSI и FCIP

SCSI

SCSI (англ. Small Computer Systems Interface, произносится скази) — интерфейс, разработанный для объединения на одной шине различных по своему назначению устройств, таких как жёсткие диски, накопители на магнитооптических дисках, приводы CD, DVD, стримеры

Концепции и адресация SCSI устройств

- стандарта SCSI
 - SE single-ended,
 - LVD low-voltage-differential интерфейс дифференциальной шины низкого напряжения (+большая скорость)
 - HVD high-voltage-differential интерфейс дифференциальной шины высокого напряжения (+большое растояние)
- Типы шины
 - Узкий" ("Narrow") 8-битные данные
 - "Широкий" ("Wide") 16-битные данные
- SCSI цепочки
- SCSI терминаторы
- SCSI таргет адреса

7 (более высокий приоритет) -----> 0 ---> 15 -----> 8 (более низкий приоритет)

Адресация SCSI устройств

HOST . CHANNEL . TARGET . LUN SCSI Lun (0x00 ... Oxff) SCSI Target (0x00 ... SCSI-Bus per HBA (0x00/0x01 for

commands

Serial Attached SCSI (SAS)

- компьютерный интерфейс, разработанный для обмена данными с такими устройствами, как жёсткие диски, накопители на оптическом диске и т. д.
- SAS использует последовательный интерфейс для работы с непосредственно подключаемыми накопителями (англ. Direct Attached Storage (DAS) devices).
- SAS разработан для замены параллельного интерфейса SCSI и позволяет достичь более высокой пропускной способности, чем SCSI.
- управления SAS-устройствами используются команды SCSI.

Cравнение SAS и параллельного SCSI

- SAS использует последовательный протокол (меньшее количество сигнальных линий)
- Интерфейс SCSI использует общую шину. SAS использует соединения точка-точка
- SAS не нуждается в терминации шины
- SAS поддерживает большое количество устройств (> 16384)
- SAS поддерживает высокие скорости передачи данных (1,5, 3,0 6,0 или 12 Гбит/с)

Комутация устройств в SAS

SCSI-3 Standards Architecture

Последовательность команд

НЖМД

НЖМД

Преобразования между CHS и LBA

 Кортежи CHS можно преобразовать в адреса LBA и обратно по следующим формулам:

$$LBA(c, h, s) = (c \cdot H + h) \cdot S + s - 1$$

$$s = (LBA \mod S) + 1$$

$$h = \frac{LBA - (s - 1)}{S} \mod H$$

$$c = \frac{LBA - (s - 1) - h \cdot S}{H \cdot S}$$

 где с — номер цилиндра, h - номер головки, s - номер сектора, H — число головок, S — число секторов на дорожке, mod — операция взятия остатка от деления.

Если диск и BIOS используют LBA, но в какой-то момент требуется получить адрес в формате C/H/S, то используется схема, зависящая только от размера диска:

Размер диска	Секторов/доро жку	Головки	Цилиндры
1 < X ≤ 504 MiB	63	16	X/(63*16*512)
504 MiB < X ≤ 1008 MiB	63	32	X/(63*32*512)
1008 MiB < X ≤ 2016 MiB	63	64	X/(63*64*512)
2016 MiB < X ≤ 4032 MiB	63	128	X/(63*128*512)
4032 MiB < X ≤ 8032.5 MiB	63	255	X/(63*255*512)

Последовательный и случайный доступ

- RPM Revolutions Per Minute
 - 5,400 RPM (5.4K) Rotational Latency 5.56 ms
 - 7,200 RPM (7.2K) Rotational Latency 4.17 ms
 - 10,000 RPM (10K) Rotational Latency 3.00 ms
 - 15,000 RPM (15K) Rotational Latency 2.00 ms
- Disk Service Time
 - Время, затраченное на диске, чтобы завершить запрос ввода / вывода
 - времени поиска (Seek Time)
 - задержки из-за вращения диска (Rotational Latency)
 - скорости передачи данных (Data Transfer Rate)

Время обработки диска = время поиска + задержка из-за вращения диска + время передачи данных

Время поиска

- Время, необходимое для позиционирования головки чтения/записи
- Чем меньше времени занимает поиск, тем быстрей проходят операции вводавывода
- Характеристики времени поиска:
 - время для полного оборота;
 - среднее время поиска;
 - время для перехода с дорожки на дорожку.
- Время поиска диска указывается его производителем

Задержка из-за вращения диска

- Время, необходимое пластине для вращения и позиционирования данных в головке чтения/записи
- Зависит от скорости вращения шпинделя
- Средняя задержка из-за вращения диска
 - Половина времени, необходимого для полного оборота
 - Для «Х» об/мин задержка диска вычисляется в миллисекундах по формуле:

$$=\frac{(\frac{1}{2} \times 1000)}{(\frac{X}{60})} = \frac{500}{(\frac{X}{60})} = \frac{30000}{X}$$

Скорость передачи данных

- Среднее количество данных, которое диск может доставить в НВА-адаптер за единицу времени
 - Скорость внутренней передачи: скорость, с которой данные перемещаются с поверхности пластины во внутренний буфер диска
 - Скорость внешней передачи: скорость, с которой данные перемещаются через интерфейс в НВА-адаптер

Размер блока	Т=5мс+(0.5*250об/с) +РазмерБлока/40МБ	IOPS=1/T	MB/S=IOPS*Размер Блока
4	7,1	141	0,6
8	7,2	139	1,1
16	7,4	135	2,2
32	7,8	128	4,1
64	8,6	116	7,4
128	10,2	98	12,5
256	13,4	75	19,1

Сравнение использования контроллера вводавывода и времени отклика

На базе основополагающих правил производительности жестких дисков:

Время обслуживания

- Среднее времяотклика = (1 Использование)
 Время, необходимое контроллеру для обработки операций ввода-вывода
- Для приложений с высокими требованиями к производительности дисками обычно используется меньше 70% производительности обслуживания операций вводавывода

Последовательность обработки запросов

Конструкция системы хранения на основе требований приложений и производительности жестких дисков

Количество дисков, необходимое для удовлетворения потребности приложения в емкости (DC):

Dc = Общая необходимая емкость

Емкость одного диска
Количество дисков, необходимое для удовлетворения потребности приложения в производительности (DP):

> Dp = Сгенерированные приложением IOPS при максимальной рабочей нагрузке IOPS, обслуживаемые одним диском

Количество операций ввода-вывода в секунду (S), обслуживаемых диском, зависит от времени обслуживания диска (T_s):

> Размер блока данных Ts = Вре мя поиска + — (Скорость вращения диска/60) Скорость передачи данных

- TS это время на завершение операции ввода-вывода, поэтому количество операций ввода-вывода в секунду (S), обслуживаемых диском, равняется (1/TS)
 - Для приложений, требовательных к производительности (S)= $0.7 X \frac{1}{T}$

Необходимый для приложения диск = Maкc. (DC, DP)

Упрощенная структура сектора жесткого диска

- 1. Адресный маркер
- 2. Адрес сектора
- 3. Контрольная сумма для проверки целостности адреса
- 4. 512 байт данных пользователя
- 5. ЕСС-код коррекции ошибок данных
- 6. Контрольная сумма данных
- 7. Байты пробела

T10-DIF Data Integrity Field

An extra 8-byte Data Integrity Field (DIF) is added to the standard 512-byte disk block

2 bytes Guard field: CRC of the data block

2 bytes App field: Application specific field

4 bytes Ref: Least significant bit of a Logical Block Address (LBA)

Advanced Format

Проблема выравнивания

SSD

SSS - Solid State Storage. All things solid state!

SSC - Solid State Card
Better known as either
"PCI flash"
"PCI card flash"

SSD - Solid State Drive Solid state technology disguised as a spinning disk drive

SSD

SLC	MLC	TLC
1	11	111
	11	110
т	10	101
	10	100
0	01	011
	01	010
	00	001
	00	000

NAND flash type	SLC	MLC	TLC
Bits per cell	1	2	3
P/E Cycles	100,000	3,000	1,000
Read Time	25us	50us	~75us
Program Time	200-300us	600-900us	~900-1350us
Erase Time	1.5-2ms	3ms	~4.5ms

	15k rpm SAS HDD	Enterprise SSD
		200 GB or 400 GB
KB random reads (1/O per sec or IOPS)	280 at < 25 ms	36,445 at < 3 ms
KB random writes (IOPS)	240 at < 25 ms	15,515 at < 3 ms
28 KB sequential reads (MB/s)	138 at < 25 ms	425 at < 25 ms
28 KB sequential writes (MB/s)	26 at < 25 ms	230 at < 25 ms

Self-encrypting drives: SED

