МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Статистические методы обработки экспериментальных данных»

Тема: Формирование и первичная обработка выборки. Ранжированный и интервальный ряды.

Студент гр.8382	 Нечепуренко Н.А.
Студент гр.8382	 Терехов А.Е.
Преподаватель	Середа АВ.И.

Санкт-Петербург

Цели работы.

Ознакомление с основными правилами формирования выборки и подготовки выборочных данных к статистическому анализу.

Постановка задачи.

Осуществить формирование репрезентативной выборки заданного объема из имеющейся генеральной совокупности экспериментальных данных. Осуществить последовательное преобразование полученной выборки в ранжированный, вариационный и интервальный ряды. Применительно к интервальному ряду построить и отобразить графически полигон, гистограмму и эмпирическую функцию распределения для абсолютных и относительных частот. Полученные результаты содержательно проинтерпретировать.

Порядок выполнения работы.

- 1. Выбрать программное обеспечение или язык программирования и обосновать его выбор.
- 2. Выбрать двумерную генеральную совокупность, предварительно согласовав её с преподавателем. Указать, откуда была взята генеральная совокупность и предоставить ссылку.
- 3. Из генеральной совокупности сформировать выборку заданного объёма в соответствии с полученным от преподавателя номером. Указать, каким образом была сформирована выборка и какого вида она получилась.
- 4. Последовательно преобразовать выборку в ранжированный, вариационный и интервальный ряды. Результаты содержательно проинтерпретировать и сделать выводы.

- 5. Для интервального ряда абсолютных частот построить и отобразить графически полигон, гистограмму и эмпирическую функцию. Сделать выводы.
- 6. Аналогичные действия выполнить для интервального ряда относительных частот. Сравнить результаты и сделать выводы.

Основные теоретические положения.

Генеральная совокупность — это совокупность всех объектов или наблюдений, относительно которых исследователь намерен делать выводы при решении конкретной задачи. В ее состав включаются все объекты, которые подлежат изучению.

Выборка или *выборочная совокупность* — часть генеральной совокупности элементов, которая охватывается экспериментом.

Репрезентативность выборки описывает способность выборочных данных отражать структурные свойства совокупности, из которой они были извлечены. Т.е. даёт ответ на вопрос: можно ли в исследовании заменить совокупность на выборку без значимого ухудшения результатов анализа. Выделяют качественную и количественную репрезентативность. Для оценки репрезентативности выборки могут быть использованы как статистические, так и не статистические методы.

Вариационный ряд — это набор значений признака и их частот. Ранжированный ряд — это упорядоченные (по возрастанию или убыванию) значения признака. Интервальный ряд — это совокупность интервалов изучаемого признака, числа измерений, попадающих в выбранный интервал и/или частот попадающих значений относительно объема выборки.

Полигон ряда частот представляет собой линию, состоящую из точек (x_i, f_i) , где x_i – значение середины i-того интервала, f_i – соответствующая

частота.

Гистограмма частот — графическое представление распределения частот исследуемого признака, образуемое соприкасающимися прямоугольниками, основаниями которых служат интервалы классов, а площади пропорциональны частотам этих классов. Более формально, пусть X_1,\ldots,X_n - выборка, имеем разбиение $-\infty < a_0 < a_1 < \cdots < a_{k-1} < a_k < \infty$,

$$n_i = \sum_{j=1}^n \mathbb{1}_{\{X_j \in (a_{i-1}, a_i]\}}, i = 1, \dots, k$$

тогда

$$h(x) = \frac{n_i}{n\Delta a_i}, \Delta a_i = a_i - a_{i-1}, i = 1, \dots k$$

называется нормализованной гистограммой.

Эмпирической функцией распределения называется функция равная:

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{x_i < x\}}$$

Эмпирическую функцию можно также строить по интервалам.

Выполнение работы.

Для выполнения работы был выбран язык Python3 и среда Jupyter Notebook с сервисом Google Colab.

В качестве двумерной генеральной совокупности был выбран средний рост в сантиметрах мужчин и женщин по странам мира. Датасет был предоставлен пользователем Мајућаіп на сайте *kaggle.com*. Из датасета были отобраны первые 110 строк (110 стран, в которых в среднем самые высокие мужчины) согласно варианту и столбцы с ростом мужчин и женщин в сантиметрах.

Таким образом, была получена следующая двумерная выборка (см. табл. 1).

Tаблица 1-Bыборка среднего роста в сантиметрах мужчин и женщин

M	F	M	F	M	F	M	F	M	F
183.78	170.36	183.3	169.96	182.79	168.66	182.47	167.47	182.1	168.91
181.89	169.47	181.19	167.96	181.17	168.81	181.02	167.12	180.98	167.2
180.98	166.62	180.76	166.8	180.74	168.29	180.72	167.63	180.69	165.78
180.57	166.48	180.48	166.45	180.46	166.67	180.28	166.18	180.15	166.89
179.72	166.11	179.48	163.06	179.26	165.81	179.09	163.4	179.04	164.5
178.96	163.67	178.84	165.53	178.84	165.72	178.77	164.67	178.75	164.73
178.73	164.33	178.7	165.99	178.69	166.93	178.6	164.49	178.52	166.93
178.46	165.07	178.32	167.31	178.32	166.52	178.21	163.94	177.82	164.73
177.72	164.66	177.49	165.3	177.19	167.03	177.09	167.55	177.03	165.66
176.97	164.32	176.94	163.31	176.85	161.69	176.65	164.52	176.59	162.55
176.43	165.52	176.43	160.88	176.39	162.56	176.36	161.8	176.35	161.18
176.18	163.92	176.11	162.03	176.06	166.08	176.03	163.38	175.98	162.22
175.98	163.24	175.9	162.47	175.73	162.41	175.66	163.46	175.62	161.18
175.59	162.96	175.52	163.23	175.5	161.74	175.11	166.08	175.05	161.28
175.04	162.35	175.02	161.99	174.96	160.1	174.84	159.46	174.83	160.62
174.76	161.22	174.69	161.22	174.65	161.21	174.57	160.88	174.51	162.26
174.42	161.81	174.42	163.82	174.4	163.46	174.38	162.95	174.37	162.83
174.37	161.23	174.32	161.56	174.17	164.58	174.08	160.53	174.07	162.23
174.04	160.36	174.0	161.37	173.98	164.28	173.84	161.4	173.81	159.76
173.79	158.75	173.71	162.78	173.67	159.85	173.56	160.13	173.53	160.04
173.53	160.7	173.5	161.3	173.27	160.72	173.16	162.06	173.01	158.94
172.88	159.42	172.76	158.29	172.75	160.55	172.23	160.58	172.15	159.57

Построим ранжированные ряды для роста мужчин и женщин (см. табл. 2 и 3).

Таблица 2 – Ранжированный ряд роста мужчин

172.15	172.23	172.75	172.76	172.88
173.01	173.16	173.27	173.5	173.53
173.53	173.56	173.67	173.71	173.79
173.81	173.84	173.98	174.0	174.04
174.07	174.08	174.17	174.32	174.37
174.37	174.38	174.4	174.42	174.42
174.51	174.57	174.65	174.69	174.76
174.83	174.84	174.96	175.02	175.04
175.05	175.11	175.5	175.52	175.59
175.62	175.66	175.73	175.9	175.98
175.98	176.03	176.06	176.11	176.18
176.35	176.36	176.39	176.43	176.43
176.59	176.65	176.85	176.94	176.97
177.03	177.09	177.19	177.49	177.72
177.82	178.21	178.32	178.32	178.46
178.52	178.6	178.69	178.7	178.73
178.75	178.77	178.84	178.84	178.96
179.04	179.09	179.26	179.48	179.72
180.15	180.28	180.46	180.48	180.57
180.69	180.72	180.74	180.76	180.98
180.98	181.02	181.17	181.19	181.89
182.1	182.47	182.79	183.3	183.78
	·			·

Таблица 3 – Ранжированный ряд роста женщин

159.57 159.76 159.85 160.04 160	9.46 9.1 9.58
160.13 160.36 160.53 160.55 160	0.58
160.62 160.7 160.72 160.88 160	0.88
161.18 161.18 161.21 161.22 161	1.22
161.23 161.28 161.3 161.37 161	1.4
161.56 161.69 161.74 161.8 161	1.81
161.99 162.03 162.06 162.22 162	2.23
162.26 162.35 162.41 162.47 162	2.55
162.56 162.78 162.83 162.95 162	2.96
163.06 163.23 163.24 163.31 163	3.38
163.4 163.46 163.46 163.67 163	3.82
163.92 163.94 164.28 164.32 164	1.33
164.49 164.5 164.52 164.58 164	1.66
164.67 164.73 164.73 165.07 165	5.3
165.52 165.53 165.66 165.72 165	5.78
165.81 165.99 166.08 166.08 166	5.11
166.18 166.45 166.48 166.52 166	5.62
166.67 166.89 166.93 166	5.93
167.03 167.12 167.2 167.31 167	7.47
167.55 167.63 167.96 168.29 168	3.66
168.81 168.91 169.47 169.96 170	0.36

Построим вариационные ряды для мужчин и женщин (см. табл. 4 и 5).

Таблица 4 – Вариационный ряд роста мужчин

x_i	f_i								
172.15	1.0	172.23	1.0	172.75	1.0	172.76	1.0	172.88	1.0
173.01	1.0	173.16	1.0	173.27	1.0	173.5	1.0	173.53	2.0
173.56	1.0	173.67	1.0	173.71	1.0	173.79	1.0	173.81	1.0
173.84	1.0	173.98	1.0	174.0	1.0	174.04	1.0	174.07	1.0
174.08	1.0	174.17	1.0	174.32	1.0	174.37	2.0	174.38	1.0
174.4	1.0	174.42	2.0	174.51	1.0	174.57	1.0	174.65	1.0
174.69	1.0	174.76	1.0	174.83	1.0	174.84	1.0	174.96	1.0
175.02	1.0	175.04	1.0	175.05	1.0	175.11	1.0	175.5	1.0
175.52	1.0	175.59	1.0	175.62	1.0	175.66	1.0	175.73	1.0
175.9	1.0	175.98	2.0	176.03	1.0	176.06	1.0	176.11	1.0
176.18	1.0	176.35	1.0	176.36	1.0	176.39	1.0	176.43	2.0
176.59	1.0	176.65	1.0	176.85	1.0	176.94	1.0	176.97	1.0
177.03	1.0	177.09	1.0	177.19	1.0	177.49	1.0	177.72	1.0
177.82	1.0	178.21	1.0	178.32	2.0	178.46	1.0	178.52	1.0
178.6	1.0	178.69	1.0	178.7	1.0	178.73	1.0	178.75	1.0
178.77	1.0	178.84	2.0	178.96	1.0	179.04	1.0	179.09	1.0
179.26	1.0	179.48	1.0	179.72	1.0	180.15	1.0	180.28	1.0
180.46	1.0	180.48	1.0	180.57	1.0	180.69	1.0	180.72	1.0
180.74	1.0	180.76	1.0	180.98	2.0	181.02	1.0	181.17	1.0
181.19	1.0	181.89	1.0	182.1	1.0	182.47	1.0	182.79	1.0
183.3	1.0	183.78	1.0	-	-	-	-	-	-

Таблица 5 – Вариационный ряд роста женщин

x_i	f_i								
158.29	1.0	158.75	1.0	158.94	1.0	159.42	1.0	159.46	1.0
159.57	1.0	159.76	1.0	159.85	1.0	160.04	1.0	160.1	1.0
160.13	1.0	160.36	1.0	160.53	1.0	160.55	1.0	160.58	1.0
160.62	1.0	160.7	1.0	160.72	1.0	160.88	2.0	161.18	2.0
161.21	1.0	161.22	2.0	161.23	1.0	161.28	1.0	161.3	1.0
161.37	1.0	161.4	1.0	161.56	1.0	161.69	1.0	161.74	1.0
161.8	1.0	161.81	1.0	161.99	1.0	162.03	1.0	162.06	1.0
162.22	1.0	162.23	1.0	162.26	1.0	162.35	1.0	162.41	1.0
162.47	1.0	162.55	1.0	162.56	1.0	162.78	1.0	162.83	1.0
162.95	1.0	162.96	1.0	163.06	1.0	163.23	1.0	163.24	1.0
163.31	1.0	163.38	1.0	163.4	1.0	163.46	2.0	163.67	1.0
163.82	1.0	163.92	1.0	163.94	1.0	164.28	1.0	164.32	1.0
164.33	1.0	164.49	1.0	164.5	1.0	164.52	1.0	164.58	1.0
164.66	1.0	164.67	1.0	164.73	2.0	165.07	1.0	165.3	1.0
165.52	1.0	165.53	1.0	165.66	1.0	165.72	1.0	165.78	1.0
165.81	1.0	165.99	1.0	166.08	2.0	166.11	1.0	166.18	1.0
166.45	1.0	166.48	1.0	166.52	1.0	166.62	1.0	166.67	1.0
166.8	1.0	166.89	1.0	166.93	2.0	167.03	1.0	167.12	1.0
167.2	1.0	167.31	1.0	167.47	1.0	167.55	1.0	167.63	1.0
167.96	1.0	168.29	1.0	168.66	1.0	168.81	1.0	168.91	1.0
169.47	1.0	169.96	1.0	170.36	1.0	-	-	-	-

Построим интервальные ряды для соответствующих наблюдений. Для

вычисления числа интервалов воспользуемся формулой

$$k=1+3.322lgn\mapsto 7$$

Длина интервала вычисляется как $\frac{x_{\max}-x_{\min}}{k}$ и равна 1.66 и 1.72 для мужчин и женщин соответственно.

Интервальные ряды приведены в таблицах 6 и 7 соответственно. Таблица 6 – Интервальный ряд роста мужчин

x_i	[172.15,	[173.81,	[175.47,	[177.13,	[178.79,	[180.45,	[182.11,
	173.81)	175.47)	177.13)	178.79)	180.45)	182.11)	183.78]
f_i	16	26	25	15	10	14	4
$\frac{f_i}{n}$	0.145	0.236	0.227	0.136	0.091	0.127	0.036

Таблица 7 – Интервальный ряд роста женщин

x_i	[158.29,	[160.01,	[161.73,	[163.46,	[165.18,	[166.91,	[168.63,
	160.01)	161.73)	163.46)	165.18)	166.91)	168.63)	170.36]
f_i	8	24	26	16	19	11	6
$\frac{f_i}{n}$	0.073	0.218	0.236	0.145	0.173	0.1	0.055

В результате построения ранжированного ряда для мужчин было установлено, что максимальный средний рост в выборке равен 183.78 см, минимальный — 172.15. Для женщин максимальный средний рост составил 170.36 см, минимальный — 158.29.

При построении вариационного ряда было установлено, что большинство значений уникальные, было получено 8 и 7 коллизий соответственно.

Интервальные ряды позволяют оценить распределение исследуемых величин. Для наглядной оценки построим полигоны и гистограммы распределений (см. рис. ниже).

Рисунок 1 – Полигон абсолютных частот, мужчины

Рисунок 2 – Полигон относительных частот, мужчины

Рисунок 3 – Гистограмма абсолютных частот, мужчины

Рисунок 4 – Гистограмма относительных частот, мужчины

Рисунок 5 – Полигон абсолютных частот, женщины

Рисунок 6 – Полигон относительных частот, женщины

Рисунок 7 – Гистограмма абсолютных частот, женщины

Рисунок 8 – Гистограмма относительных частот, женщины

Так как выборка была ограничена 110 странами из более чем 200, и были выбраны в среднем самые высокие, вполне ожидаемо полигоны имеют ярко выраженный «горб», но также есть дополнительный, менее выраженный горб в правом лепестке, у мужчин в районе 180 см, у женщин в районе 166.

Также построим функции распределения (см. рис. 9 и 10).

Рисунок 9 – Функция распределения, мужчины

Рисунок 10 – Функция распределения, женщины

Выводы.

В результате выполнения работы была сформирована выборка роста мужчин и женщин в сантиметрах. Для заданной выборки были построенные ранжированный ряд, вариационный и интервальный. На основе интервальных рядов были построены полигоны и гистограммы абсолютных и относительных частот. Также были построены функции распределения.

ПРИЛОЖЕНИЕ А. ИСХОДНЫЙ КОД ПРОГРАММЫ.

```
from math import log10
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
SIZE = 110
N INT = int(1 + 3.322 * log10(SIZE))
def pretty print by 5 (series):
    step = 5
    for i in range(SIZE // step):
        print(*series[i * step: i * step + step].tolist(), sep="\
           t&\t", end="\t\\\\\hline\n")
def pretty print by 10 (series1, series2):
    series1 = series1.tolist()
    series2 = series2.tolist()
    series = list(zip(series1, series2))
    series = [y \text{ for } x \text{ in series for } y \text{ in } x]
    step = 10
    for i in range(SIZE * 2 // step):
        print(*series[i * step:i * step + step], sep=" & ", end
           ="\\\\\hline\n")
def intervals(series, width):
    beg = []
    end = []
```

```
avg = []
    count1 = []
    count2 = []
    for i interval in range (N INT):
        b = series.min() + width * i interval
        beg.append(b)
        e = series.min() + width * (i interval + 1)
        end.append(e)
        avg.append((b + e) / 2)
        count1.append(len(series[series.between(b, e)]))
        count2.append(len(series[series.between(b, e)]) / SIZE)
    print(*list(zip([round(num, 3) for num in beg], [round(num,
       3) for num in end])), sep="\t")
    print(*[round(num, 3) for num in avg], sep="\t")
    print(*count1, sep="\t")
    print(*[round(num, 3) for num in count2], sep="\t")
    return list(zip(avg, count1, count2))
data = pd.read csv('https://raw.githubusercontent.com/
   nechepurenkoN/spbetu2022 stats methods/master/cropped sample.
   csv')
male = data.iloc[:SIZE, 1]
female = data.iloc[:SIZE, 2]
print("ALL")
pretty print by 10 (male, female)
print("MALE")
pretty print by 5 (male)
print("FEMALE")
pretty print by 5(female)
```

```
sorted male = male.sort values()
sorted female = female.sort values()
print("MALE")
pretty print by 5 (sorted male)
print("FEMALE")
pretty print by 5 (sorted female)
unique, counts = np.unique(male, return counts=True)
male var = pd.DataFrame((unique, counts))
unique, counts = np.unique(female, return counts=True)
female var = pd.DataFrame((unique, counts))
print("MALE")
pretty print by 10(male var.iloc[0, :], male var.iloc[1, :])
print("FEMALE")
pretty print by 10(female var.iloc[0, :], female var.iloc[1, :])
print(N INT)
male int width = (sorted male.iloc[-1] - sorted male.iloc[0]) /
  N INT
female int width = (sorted female.iloc[-1] - sorted female.iloc
   [0]) / N INT
print(f"MALE INT WIDTH = {male int width}")
print(f"FEMALE INT WIDTH = {female int width}")
def histograms (sorted series, int width, color):
    hist = intervals(sorted series, int width)
    plt.plot([str(round(x[0], 2)) for x in hist], [x[1] for x in
      hist], c=color)
```

```
plt.grid(True)
plt.xlabelСередина("интервала")
plt.ylabel Частота ("")
plt.title
plt.show()
plt.plot([str(round(x[0], 2)) for x in hist], [x[2] for x in
  hist], c=color)
plt.grid(True)
plt.xlabelСередина(" интервала")
plt.ylabel4acrora("")
plt.show()
plt.bar([str(round(x[0], 2)) for x in hist], [x[1] for x in
  hist], color=color)
plt.grid(axis="y")
plt.xlabelСередина("интервала")
plt.ylabel Частота ("")
plt.show()
plt.bar([str(round(x[0], 2)) for x in hist], [x[2] for x in
  hist], color=color)
plt.grid(axis="y")
plt.xlabelСередина(" интервала")
plt.ylabel Частота ("")
plt.show()
hist, edges = np.histogram(sorted series, bins=N INT)
Y = hist.cumsum() / SIZE
for i in range(len(Y)):
    plt.plot([edges[i], edges[i + 1]], [Y[i], Y[i]], c=color)
for i in range (len(Y) - 1):
    plt.plot([edges[i + 1], edges[i + 1]], [Y[i], Y[i + 1]],
       c=color, ls=":")
plt.grid()
plt.xlabel("x")
```

```
plt.ylabel("f(x)")
plt.show()

histograms(sorted_male, male_int_width, "blue")
histograms(sorted_female, female_int_width, "#ff00ee")
```