

Cours d'algèbre linéaire

Chapitre 1 : Polynômes

Licence GLSI

Semestre : S1

Abdessattar LAFI

Table des matières

1	Pol	ynômes	1
	1.1	Généralités sur les polynômes	1
		1.1.1 Définitions	1
		1.1.2 Degré d'un polynôme	2
	1.2	Division euclidienne	4
	1.3	Division selon les puissances croissantes	6
	1.4	Racines d'un polynôme	6
	1.5	Factorisation	7
		1.5.1 Factorisation dans $\mathbb{C}[X]$	7
		1.5.2 Factorisation dans $\mathbb{R}[X]$	7
		153 Ordre de multiplicité	8

Chapitre 1

Polynômes

1.1 Généralités sur les polynômes

1.1.1 Définitions

Dans ce chapitre \mathbb{K} désignera \mathbb{R} ou \mathbb{C} .

Définition 1.1.1. (Polynômes)

Un polynôme à coefficients dans \mathbb{K} est une expression de la forme

$$P(X) = a_0 + a_1 X + \dots + a_n X^n = \sum_{i=0}^n a_i X^i,$$

avec $n \in \mathbb{N}$ et $a_0, a_1, \ldots, a_n \in \mathbb{K}$.

- L'ensemble des polynômes est noté $\mathbb{K}[X]$.
- Les a_i sont appelés les **coefficients** du polynôme.
- Si tous les coefficients a_i sont nuls, P est appelé le **polynôme nul**, il est noté 0.

Exemple 1.1.1.

- $X^3 5X + \frac{3}{4}$ est un polynôme.
- $X^2 + \sqrt{2X} 1$ n'est pas un polynôme.
- $\frac{X^3-X+1}{X+13}$ n'est pas un polynôme.

Définition 1.1.2. (Opérations sur $\mathbb{K}[X]$)

On définit les opérations suivantes sur les polynômes : Soient les polynômes $P = a_0 + a_1X + ... + a_nX^n \in \mathbb{K}[X], \ Q = b_0 + b_1X + ... + b_mX^m \in \mathbb{K}[X]$ et le scalaire $\lambda \in \mathbb{K}$:

$$P + Q = \sum_{i=0}^{\max(n,m)} (a_i + b_i) X^i$$

$$\lambda . P = \lambda . a_0 + \lambda . a_1 X + \dots + \lambda . a_n X^n = \sum_{i=0}^n \lambda . a_i X^i$$

$$P \times Q = \sum_{k=0}^{n+m} c_k X^k \text{ où } c_k = \sum_{j=0}^k a_j b_{k-j}.$$

Avec la généralisation $a_k = 0 \ \forall k \ge n+1, \ b_k = 0 \ \forall k \ge m+1.$

1.1.2 Degré d'un polynôme

Définition 1.1.3.

Les polynômes comportant un seul terme non nul (du type a_kX^k) sont appelés **monômes**.

Définition 1.1.4. (Degré d'un polynôme, terme dominant)

Soit un polynôme $P = a_0 + ... + a_p X^p \in \mathbb{K}[X]$ avec $a_p \neq 0$.

- On appelle $\operatorname{degr\'e} \operatorname{de} P$ et on note $\operatorname{deg}(P)$ l'entier p.
- Par convention, le degré du polynôme nul est $-\infty$.
- On appelle **terme dominant de** P le monôme a_pX_p . Le coefficient a_p est appelé le **coefficient dominant** de P.
- Si le coefficient dominant est $a_p = 1$, on dit que P est un polynôme unitaire.
- Un polynôme de la forme $P = a_0$ avec $a_0 \in \mathbb{K}$ est appelé un polynôme **constant**. Si $a_0 \neq 0$, son degré est 0.

Théorème 1.1.1. (Degré d'un produit, degré d'une somme)

Soient $P, Q \in \mathbb{K}[X]$, on a:

$$(i) \ \deg(P+Q) \leq \max \left(\deg(P), \deg(Q)\right).$$

(ii)
$$deg(P \times Q) = deg(P) + deg(Q)$$
.

Preuve

- (i) Si P=Q=0 alors $degP=degQ=-\infty$ et $deg(P+Q)=-\infty$ et la formule est prouvée dans ce cas.
 - Si P ou Q est non nul alors, supposant, quitte à interchanger P et Q, que $P \neq 0$, on a : $P = \sum_{k=0}^{n} a_k X^k$, $Q = \sum_{k=0}^{n} b_k X^k$ où $n = \max (deg(P), deg(Q))$ et où les a_k pour $k \in \{1, ..., n\}$ ne sont pas tous nuls (en l'occurence, les b_k peuvent être tous nuls). On a donc :

$$P + Q = \sum_{k=0}^{n} (a_k + b_k) X^k.$$

Si $a_n + b_n \neq 0$ alors,

$$deg(P+Q) = \max(deg(P), deg(Q))$$

et sinon

$$deg(P+Q) \le \max(deg(P), deg(Q)).$$

(ii) • Si P = 0 ou Q = 0 alors PQ = 0. Ainsi,

$$deg(PQ) = -\infty = degP + degQ.$$

• Sinon, on suppose que : $P = \sum_{k=0}^{n} a_k X^k$, $Q = \sum_{k=0}^{m} b_k X^k$ où $a_n \neq 0$ et où $b_m \neq 0$. Par conséquent, n = degP et m = degQ. Soit $k \in \{0, ..., n+m\}$. Notons c_k le coefficient d'indice k dans PQ. D'après la définition du produit de deux polynômes, on a : $c_k = \sum_{j=0}^{k} a_j b_{k-j}$.

Nécessairement, $deg(PQ) \leq m + n$. Mais le coefficient d'indice m + n dans PQ est $a_n b_m \neq 0$.

Donc,

$$deg(P \times Q) = deg(P) + deg(Q).$$

Remarque 1.1.1.

$$Si\ deg(P) \neq deg(Q),\ alors\ deg(P+Q) = \max (deg(P), deg(Q)).$$

Exemple 1.1.2.

Soient $P, Q \in \mathbb{K}[X]$.

- Si par exemple $P = 3X^4$ et $Q = -3X^4$, alors on obtient que $deg(P + Q) = deg(0) = -\infty < \max(deg(P), deg(Q))$.
- Si par exemple P = 2X 5 et $Q = -2X + 3X^4$, alors on obtient que $deg(P + Q) = deg(-5 + 3X^4) = 4 = \max(deg(P), deg(Q))$.

Définition 1.1.5. (Composition de deux polynômes)

Soient deux polynômes $P, Q \in \mathbb{K}[X]$. On suppose que $P = a_0 + a_1X + ... + a_nX^n$. On définit le polynôme composé de Q par P, noté $P \circ Q$, par :

$$P \circ Q = \sum_{k=0}^{n} a_k Q^k.$$

Proposition 1.1.1.

Soient deux polynômes non nuls $P, Q \in \mathbb{K}[X]$. Alors :

$$deg(P \circ Q) = deg(P) \times deg(Q).$$

Preuve Supposons que $P = a_0 + a_1 X + ... + a_n X^n$. Comme $P \neq 0$, on a $a_n \neq 0$. Alors $P \circ Q = \sum_{k=0}^n a_k Q^k$ et $deg(P \circ Q) = degQ^n = ndegQ = degP \times degQ$ car $Q \neq 0$.

1.2 Division euclidienne

Définition 1.2.1. (Divisibilité)

Soient deux polynômes $A, B \in \mathbb{K}[X]$. On dit que A divise B ou que B est un multiple de A si et seulement si il existe $Q \in \mathbb{K}[X]$ tel que B = QA. On le note $A \mid B$. On dit qu'un diviseur de A est trivial s'il est de la forme λA ou bien λ avec λ un scalaire non nul.

Exemple 1.2.1.

- (X-1) divise $X^2 2X + 1$. En effet : $X^2 2X + 1 = (X-1)^2$.
- (X-1) divise $X^2 1$. En effet : $X^2 1 = (X-1)(X+1)$.
- (1-X) divise $1-X^{n+1}$. En effet: $1-X^{n+1}=(1+X+X^2+...+X^n)(1-X)$.

Proposition 1.2.1.

Soient A, B, $C \in \mathbb{K}[X]$.

- (i) Si $A \mid B$ et $B \mid A$, alors il existe $\lambda \in \mathbb{K}^*$ tel que $A = \lambda B$.
- (ii) $Si A \mid B \ et \ B \mid C \ alors \ A \mid C$.
- (iii) Si $C \mid A$ et $C \mid B$ alors $C \mid (AU + BV), \forall U, V \in \mathbb{K}[X]$.

Définition 1.2.2.

On dit qu'un polynôme P est irréductible si $degP \geq 1$ et tous les diviseurs de P sont triviaux. Autrement dit, si un polynôme A divise P, alors $A = \lambda \in \mathbb{K}$, soit $A = \lambda P$, $\lambda \in \mathbb{K}$.

Théorème 1.2.1. (Division euclidienne des polynômes) Soient $A, B \in \mathbb{K}[X]$, avec $B \neq 0$, alors il existe un unique polynôme Q et il existe un unique polynôme R tels que :

$$A = BQ + R$$
 et $deqR < deqB$.

Q est appelé le **quotient** et R le **reste** et cette écriture est la **division euclidienne** de A par B.

Notez que la condition degR < degB signifie R = 0 ou bien $0 \le degR < degB$.

Enfin R = 0 si et seulement si $B \mid A$.

Preuve Unicité. Si A = BQ + R et A = BQ' + R', alors B(Q - Q') = R' - R. Or deg(R' - R) < degB. Donc Q' - Q = 0. Ainsi Q = Q', d'où aussi R = R'.

Existence. On montre l'existence par récurrence sur le degré de A.

- Si degA = 0 et degB > 0, alors A est une constante, on pose Q = 0 et R = A. Si degA = 0 et degB = 0, on pose $Q = \frac{A}{B}$ et R = 0.
- On suppose l'existence vraie lorsque $degA \leq n-1$. Soit $A = a_n X^n + ... + a_0$ un polynôme de degré n $(a_n \neq 0)$. Soit $B = b_m X^m + ... + b_0$ avec $b_m \neq 0$. Si n < m on pose Q = 0 et R = A.

Si $n \ge m$ on écrit $A = B \cdot \frac{a_n}{b_m} X^{n-m} + A_1$ avec $deg A_1 \le n-1$. On applique l'hypothèse de récurrence à A_1 : il existe Q_1 , $R1 \in \mathbb{K}[X]$ tels que $A_1 = BQ_1 + R_1$ et $deg R_1 < deg B$. Il vient:

$$A = B\left(\frac{a_n}{b_m}X^{n-m} + Q_1\right) + R_1.$$

Donc $Q = \frac{a_n}{b_m} X^{n-m} + Q_1$ et $R = R_1$ conviennent.

Exemple 1.2.2. Si $A = 2X^4 - X^3 - 2X^2 + 3X - 1$ et $B = X^2 - X + 1$. Alors on trouve $Q = 2X^2 + X - 3$ et R = -X + 2. On n'oublie pas de vérifier qu'effectivement A = BQ + R.

1.3 Division selon les puissances croissantes

Théorème 1.3.1. (Division selon les puissances croissantes)

Soient A et B deux polynômes à coefficients dans \mathbb{K} . On suppose que le terme constant de B n'est pas nul et on note p un entier supérieur ou égal au degré de B. Il existe un unique couple de polynômes (Q,R) tels que

$$A = BQ + X^{p+1}R$$
 et $deqQ < p$.

$$\operatorname{Par \ exemple}: \underbrace{1+3X+2X^2-7X^3}_{A} = \underbrace{(1+X-2X^2)}_{B}\underbrace{(1+2X+2X^2-5X^3)}_{Q} + X^4\underbrace{(9-10X)}_{R}.$$

1.4 Racines d'un polynôme

Définition 1.4.1.

A chaque polynôme $P(X) = a_0 + a_1X + ... + a_nX^n \in \mathbb{K}[X]$, on associe la fonction

$$\widehat{P}: \mathbb{K} \longrightarrow \mathbb{K}$$

$$x \longmapsto a_0 + a_1 x + \dots + a_n x^n$$

appellée fonction polynomiale de P et on dit que $a \in \mathbb{K}$ est une racine de P si et seulement si $\widehat{P}(a) = 0$, dans la suite on notera P(a) au lieu de $\widehat{P}(a)$.

Proposition 1.4.1.

Soient $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$: a est une racine de P si et seulement si X - a divise P.

Preuve Effectuons la division euclidienne de P par X-a:P=(X-a)Q+R où le degR < deg(X-a). Le polynôme R est donc soit le polynôme nul soit le polynôme constant. L'évaluation en a indique que : R=R(a)=P(a)=0. On déduit la proposition.

Remarques 1.4.1. (i) Un polynôme, non nul de degré $n \in \mathbb{N}$ admet au maximum n racines.

(ii) Tout polynômes qui admet un nombre de racines supérieur strictement à son degré est nul, en particulier tout polynôme qui admet une infinité de racines est nul

1.5 Factorisation

1.5.1 Factorisation dans $\mathbb{C}[X]$

Théorème 1.5.1. (de d'Alembert-Gauss)

Tout polynôme non constant de $\mathbb{C}[X]$ admet une racine.

Corollaire 1.5.1.

Les polynômes irréductibles de $\mathbb{C}[X]$ sont exactement de degré 1. En particulier, dans $\mathbb{C}[X]$ tout polynôme P de degré $n \geq 1$ se factorise sous la forme suivante :

$$P(X) = \lambda \prod_{k=1}^{n} (X - a_i),$$

avec $\lambda \in \mathbb{C}$ et $\forall k \in \{1, ..., n\}, a_k \in \mathbb{C}$.

Par exemple,
$$X^2 + 1 = (X + i)(X - i)$$
 et $X^2 + X + 1 = (X - j)(X - \overline{j})$.

1.5.2 Factorisation dans $\mathbb{R}[X]$

Proposition 1.5.1.

Soit a une racine d'un polynôme $P \in \mathbb{R}[X]$. Alors \overline{a} est aussi une racine de P.

Preuve Si $P \in \mathbb{R}[X]$ et si $a \in \mathbb{C}$, alors $P(\overline{a}) = \overline{P(a)}$ et par conséquent si $a \in \mathbb{C}$ est une racine de P alors \overline{a} est une racine de P.

Théorème 1.5.2.

Dans $\mathbb{R}[X]$, tout polynômes de degré $n \geq 1$ se factorise sous la forme :

$$P(X) = \lambda \prod_{k=1}^{m} (X - a_k) \prod_{l=1}^{p} (X^2 + \alpha_l X + \beta_l),$$

 $o\dot{u} \ \lambda \in \mathbb{R}, \ \forall k \in \{1, ..., m\} \ a_k \in \mathbb{R} \ et \ \forall l \in \{1, ..., p\} \ \alpha_l^2 - 4\beta_l < 0, \ m + 2p = n.$

Preuve Le résultat est evident pour un polynôme de degré 0 ou 1. Si $degP \geq 2$, on applique l'algorithme suivant :

Si P admet une racine réelle a, alors il existe un polynôme $Q \in \mathbb{R}[X]$ tel que P = (X - a)QSinon (théorème de d'Alembert-Gauss) P admet une racine complexe $a \in \mathbb{C}$. Par conséquent \overline{a} est aussi une racine de P. Donc $P = (X^2 - 2\Re(a)X + |a|^2)Q$, où $Q \in \mathbb{R}[X]$ et $\Delta = -4Im(a)^2 < 0$.

On remarquera que $X^2 + 1$ et $X^2 + X + 1$ sont irréductible dans $\mathbb{R}[X]$ mais pas dans $\mathbb{C}[X]$ et sur $\mathbb{R}[X]$ le polynôme $P = (X^2 + 1)(X^2 + X + 1)$ n'est pas irréductible et qu'il ne possède pas de racines.

1.5.3 Ordre de multiplicité

Définition 1.5.1.

Si $a \in \mathbb{K}$ est une racine du polynôme $P \in \mathbb{K}[X]$, le plus grand entier $m \geq 1$ tel que $(X-a)^m$ divise P est appelé ordre de multiplicité de la racine a.

Proposition 1.5.2.

Soit $P \in \mathbb{K}[X]$ un polynôme de degré $n \geq 1$. Si P admet r racines 2 à 2 distinctes a_1, a_2, \ldots, a_r dans \mathbb{K} , d'ordre de multiplicité m_1, m_2, \ldots, m_r alors $m_1 + m_2 + \ldots + m_r \leq n$.

Par exemple, dans $\mathbb{R}[X]$, le polynôme $P = (X^2 + 3)(X - 1)^2(X + 2)$ est de degré 5 et possède une racine simple et une racine double $(1 + 2 = 3 \le 5)$. Dans $\mathbb{C}[X]$ le polynôme P possède 4 racines trois simples et un double et $P = (X + i\sqrt{3})(X - i\sqrt{3})(X - 1)^2(X + 2)$.

Définition 1.5.2.

Un polynôme non constant est dit sindé si la somme des ordres de multiplicité de ses racines est égale au degré de ce polynôme.