## Untitled

### O. Denas

October 15, 2016

Let t = abbaba and s=ab.

We have

| i | $t\_i$ | MS | ms    | runs | h |
|---|--------|----|-------|------|---|
| 0 | a      | 2  | 2 001 | NaN  | 1 |
| 1 | b      | 1  | 0.1   | 1    |   |
| 2 | b      | 1  | 1 01  | 0    | 3 |
| 3 | a      | 2  | 2 001 | 0    | 4 |
| 4 | b      | 1  | 0 1   | 1    |   |
| 5 | a      | 1  | 1 01  | 0    | 6 |
|   |        |    |       |      |   |

and

| i | s_i | SA_s  | BWT_s | ss_i | SA_ss | BWT_ss |
|---|-----|-------|-------|------|-------|--------|
| 0 | a   | 2 #   | b     | b    | 2 #   | a      |
| 1 | b   | 0 ab# | #     | a    | 1 a # | #      |
| 2 | #   | 1  b# | a     | #    | 0 ba# | b      |

#### Algorithm I

[5] 
$$w = a(1, 1) \longrightarrow ba(-, -) p(w) = e(0, 2) \longrightarrow b(2, 2)$$

[4] 
$$w = b(2, 2) \longrightarrow ab(1, 1) runs[4] = 1$$

[3] 
$$w = ab(1, 1) \longrightarrow bab(-, -) p(w) = e(0, 2) \longrightarrow b(2, 2)$$

[2] 
$$w = b(2, 2) \longrightarrow bb(-, -) p(w) = e(0, 2) \longrightarrow b(2, 2)$$

[1] 
$$w = b(2, 2) \longrightarrow ab(1, 1) runs[1] = 1$$

#### Algorithm II

[0] 
$$w = a(1, 1) \longrightarrow ba(2, 2) \longrightarrow bba(-, -) h* = 2 p(ba) = e(0, 2) e(0, 2) \longrightarrow b(2, 2) k' = 2 h* - k - MS[0] + 1 = 2 --> 001$$

[2] 
$$w = b(2, 2) \longrightarrow ab(-, -)$$
  $h* = 3$   $p(b) = e(0, 2)$   $e(0, 2) \longrightarrow b(2, 2)$   $k' = 3$   $h* - k - MS[0] + 1 = 1 \longrightarrow 01$ 

[3] 
$$w = a(1, 1) \longrightarrow ba(2, 2) \longrightarrow aba(-, -)$$
  $h* = 5$   $p(ba) = e(0, 2)$   $e(0, 2) \longrightarrow a(1, 1)$   $k' = 5$   $h* - k - MS[0] + 1 = 2 \longrightarrow 001$ 

# Scratch notes

