International TOR Rectifier

IRF540N

HEXFET® Power MOSFET

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated

Description

Advanced HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	33	
$I_D @ T_C = 100^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	23	Α
I _{DM}	Pulsed Drain Current ①	110	
P _D @T _C = 25°C	Power Dissipation	130	W
	Linear Derating Factor	0.87	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
I _{AR}	Avalanche Current①	16	Α
E _{AR}	Repetitive Avalanche Energy①	13	mJ
dv/dt	Peak Diode Recovery dv/dt 3	7.0	V/ns
T_J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.15	
R _{θCS}	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient		62	

IRF540N

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

V _{(BR)DSS} Drain-to-Source Breakdown Voltage 100 — — V V _{GS} = 0V, I _D = 250μA Δ/ _{(BR)DSS} ΔT _J Breakdown Voltage Temp. Coefficient — 0.12 — V/°C Reference to 25°C, I _D = 1mA RDS(on) Static Drain-to-Source On-Resistance — 44 mΩ V _{GS} = 10V, I _D = 16A ⊕ V _{GS(th)} Gate Threshold Voltage 2.0 — 4.0 V V _{DS} = 50V, I _D = 16A ⊕ g _{IS} Forward Transconductance 21 — — S V _{DS} = 50V, I _D = 16A ⊕ l _{DSS} Drain-to-Source Leakage Current — — 25 — V _{DS} = 50V, V _{DS} = 0V l _{DSS} Drain-to-Source Leakage Current — — 250 µA V _{DS} = 100V, V _{GS} = 0V l _{GSS} Gate-to-Source Forward Leakage — — 100 nA V _{DS} = 80V, V _{DS} = 20V Q _g Gate-to-Source Reverse Leakage — — 71 nC I _D = 16A Q _g Gate-to-Source Charge — — 11 —							<u> </u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Parameter	Min.	Тур.	Max.	Units	Conditions
R _{DS} (on) Static Drain-to-Source On-Resistance — 44 mΩ V _{GS} = 10V, I _D = 16A @ V _{GS} (th) Gate Threshold Voltage 2.0 — 4.0 V V _{DS} = V _{GS} , I _D = 250µA gls Forward Transconductance 21 — — S V _{DS} = 50V, I _D = 16A @ V _{DS} = 50V, I _D = 16A @ V _{DS} = 50V, I _D = 16A @ V _{DS} = 50V, I _D = 16A @ V _{DS} = 50V, I _D = 16A @ V _{DS} = 50V, I _D = 16A @ V _{DS} = 100V, V _{GS} = 0V V _{DS} = 100V, V _{GS} = 0V V _{DS} = 80V, V _{DS} = 20V V _{DS} = 80V V _{DS} = 10V, See Fig. 6 and 13 V _{DD} = 50V I _D = 16A V _{DS} = 80V V _{DS} = 10V, See Fig. 6 and 13 V _{DD} = 50V I _D = 16A V _{DS} = 10V, See Fig. 6 and 13 V _{DD} = 50V I _D = 16A V _{DS} = 10V, See Fig. 10 @ V _{DS} = 10V, See Fig. 10 @ Every = 10V, See Fig. 10 Every = 10V, See	V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$ \begin{array}{c} V_{\text{CS(III)}} \\ V_{\text{CS(III)}} \\ V_{\text{GS(III)}} \\ V_{\text{GS}} \\ V_{\text{DS}} \\ V_{DS$	$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.12		V/°C	Reference to 25°C, I _D = 1mA
Gris Forward Transconductance 21 S V _{DS} = 50V, I _D = 16A ⊕ V _{DS} = 80V, V _{GS} = 0V I _{DSS} Drain-to-Source Leakage Current 25 250 I _{GSS} Gate-to-Source Forward Leakage 100 Gate-to-Source Reverse Leakage 100 Gate-to-Source Reverse Leakage 100 Q _g Total Gate Charge 14 Q _{gs} Gate-to-Source Charge 14 Q _{gd} Gate-to-Drain ("Miller") Charge 21 t _(fon) Turn-On Delay Time 11 t _r Rise Time 35 t _f Fall Time 35 t _f Fall Time 35 L _S Internal Source Inductance 1960 C _{oss} Output Capacitance 250 C _{rss} Reverse Transfer Capacitance 40 F 1.0MHz, See Fig. 5	R _{DS(on)}	Static Drain-to-Source On-Resistance			44	mΩ	V _{GS} = 10V, I _D = 16A ④
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	g _{fs}	Forward Transconductance	21			S	V _{DS} = 50V, I _D = 16A④
Cate-to-Source Forward Leakage	Inno	Drain to Source Leekage Current			25		V _{DS} = 100V, V _{GS} = 0V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	טאטי	Brain to Godice Leakage Guiterit			250	μΛ	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 150$ °C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Gate-to-Source Forward Leakage			100	nΛ	V _{GS} = 20V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IGSS	Gate-to-Source Reverse Leakage			-100	''^	V _{GS} = -20V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Qg	Total Gate Charge			71		I _D = 16A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q _{gs}	Gate-to-Source Charge			14	nC	$V_{DS} = 80V$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q _{gd}	Gate-to-Drain ("Miller") Charge			21		V_{GS} = 10V, See Fig. 6 and 13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{d(on)}	Turn-On Delay Time		11			V _{DD} = 50V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _r	Rise Time		35] no	$I_D = 16A$
L _D Internal Drain Inductance — 4.5 — nH L _S Internal Source Inductance — 7.5 — nH C _{iss} Input Capacitance — 1960 — Coss Output Capacitance — 250 — PF f = 1.0MHz, See Fig. 5	t _{d(off)}	Turn-Off Delay Time		39		115	$R_G = 5.1\Omega$
L _D Internal Drain Inductance — 4.5 — nH 6mm (0.25in.) from package and center of die contact C _{iss} Input Capacitance — 1960 — 250 — C _{rss} Reverse Transfer Capacitance — 40 — pF f = 1.0MHz, See Fig. 5	t _f	Fall Time		35			V_{GS} = 10V, See Fig. 10 \oplus
L _S Internal Source Inductance — 7.5 — nH from package and center of die contact C _{iss} Input Capacitance — 1960 — V _{GS} = 0V C _{oss} Output Capacitance — 250 — V _{DS} = 25V C _{rss} Reverse Transfer Capacitance — 40 — pF $f = 1.0$ MHz, See Fig. 5		Internal Prain Industrance		4.5 -	_		Between lead,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LD	Internal Drain Inductance					6mm (0.25in.)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L _S	Internal Source Inductance		7.5		ПП	from package
					_		and center of die contact
C_{rss} Reverse Transfer Capacitance — 40 — pF $f = 1.0$ MHz, See Fig. 5	C _{iss}	Input Capacitance	_	1960			V _{GS} = 0V
	Coss	Output Capacitance		250			$V_{DS} = 25V$
	C _{rss}	Reverse Transfer Capacitance		40		pF	f = 1.0MHz, See Fig. 5
E _{AS} Single Pulse Avalanche Energy 700 185 mJ I _{AS} = 16A, L = 1.5mH	E _{AS}	Single Pulse Avalanche Energy2		700⑤	185©	mJ	I _{AS} = 16A, L = 1.5mH

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions									
Is	Continuous Source Current			33		MOSFET symbol									
	(Body Diode)		- 33	A	showing the										
I _{SM}	Pulsed Source Current				440	110		integral reverse							
	(Body Diode)①												110		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.2	V	$T_J = 25$ °C, $I_S = 16A$, $V_{GS} = 0V$ ④									
t _{rr}	Reverse Recovery Time		115	170	ns	$T_J = 25$ °C, $I_F = 16A$									
Q _{rr}	Reverse Recovery Charge		505	760	nC	di/dt = 100A/µs ④									
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)													

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\begin{tabular}{ll} \hline @ Starting $T_J=25^\circ$C, $L=1.5mH$\\ $R_G=25\Omega, I_{AS}=16A.$ (See Figure 12) \\ \hline \end{tabular}$
- $\label{eq:loss_def} \begin{tabular}{ll} $I_{SD} \leq 16A, \ di/dt \leq 340A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\ $T_J \leq 175^{\circ}C$ \end{tabular}$
- 4 Pulse width \leq 400 μ s; duty cycle \leq 2%.
- ⑤ This is a typical value at device destruction and represents operation outside rated limits.
- $^{\circ}$ This is a calculated value limited to T_J = 175°C .

IRF540N

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

IRF540N International Internat

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area www.irf.com

International

TOR Rectifier

IRF540N

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRF540N International ICTR Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* Reverse Polarity of D.U.T for P-Channel

^{***} $V_{GS} = 5.0V$ for Logic Level and 3V Drive Devices

Fig 14. For N-channel HEXFET® power MOSFETs

IRF540N

International TOR Rectifier

Package Outline TO-220AB

Dimensions are shown in millimeters (inches)

Part Marking Information TO-220AB

EXAMPLE: THIS IS AN IRF1010

WITH ASSEMBLY LOT CODE 9B1M

Data and specifications subject to change without notice.

This product has been designed and qualified for the industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.03/01

This datasheet has been download from:

 $\underline{www.datasheet catalog.com}$

Datasheets for electronics components.