Digitaltechnik Wintersemester 2024/2025 Vorlesung 13

Inhalt

Programme

Befehle

Register

Datenpfade

Steuerung

Addierer

Speicher

Inverter

Vorstärkor

Transistoren

Filter

LIND Gatter

1 SystemVerilog Abschluss und Ausblick

2 Vorzeichenbehaftete Binärzahlen (Forts.)

3 Darstellung von reellen Zahlen

Harris 2016 Kap. 4.10, 1.4.6, 5.3

Anwendungs-	>"hello
oftware	world!"

Betriebssysteme Gerätetreiber

Architektur **Example**

Mikroarchitektur

tur 😽

Digital- oschaltungen

Analogschaltungen

Bauteile

utelle 🥰

Physik

Dioden

Elektronen

Abgabefrist für Hausaufgabe F zu Vorlesungen 11 und 12 nächste Woche Freitag 23:59!

Wöchentliches Moodle-Quiz nicht vergessen!

Agenda

1 SystemVerilog Abschluss und Ausblick

Anwendungs->"hello software

world!"

Betriebssysteme

Gerätetreiber

Programme

Architektur **Architektur**

Befehle Register

Datenpfade

Steuerung Addierer

Speicher

Mikroarchitektur

Logik

Digital-

+

schaltungen o

LIND Gatter Inverter

Analogschaltungen

Vorstärkor Filter

Bauteile

Transistoren Dioden

Physik

Flektronen

Von HDL zu Hardware Beispiel: FPGA Toolflow


```
moore.sv
    module moore (input
                         logic CLK, RST, A,
                   output logic Y):
 3
      logic [1:0] state, nextstate;
       always_ff @(posedge CLK) begin
        if (RST) begin
 7
          state <= 2'd0:
        end else begin
10
          state <= nextstate;
11
        end
12
      end
13
14
      // next state logic
15
      always_comb case (state)
16
        2,40:
                 nextstate = A ? 2'd1 : 2'd0:
17
        2'd1: nextstate = A ? 2'd1 : 2'd2:
18
        2'd2: nextstate = A ? 2'd3 : 2'd0:
19
        2'd3: nextstate = A ? 2'd1 : 2'd2:
20
        default: nextstate = 2'd0:
21
      endcase
22
23
      // output logic
24
      assign Y = (state == 2'd3):
25
26
    endmodule
```


Von HDL zu Hardware Beispiel: FPGA Toolflow

HLS: High-Level Synthesis, HDL: Hardware Description Language, PAR: Place and Route, BA: Bat Algorithm, SDF: Standard Delay File

Von HDL zu Hardware

- Simulation des funktionalen/zeitlichen Verhaltens der beschriebenen Schaltung
 - berechnete Ausgaben zu vorgegebenen Eingaben werden auf Korrektheit geprüft
 - ⇒ Fehlersuche einfacher (billiger) als in realer Hardware
- Synthese übersetzt Hardware-Beschreibungen in Netzliste
- Netzliste
 - beschreibt die Schaltungselemente (Logikgatter) und die Verbindungsknoten
 - entspricht Registertransferebene
 - kann auf Gatter-Bibliothek einer konkreten Zielarchitektur abgebildet werden (Technology-Mapping)
 - wenige CMOS-Basisgatter für Application-Specific Integrated Circuits (ASICs)
 - wenige kleine Lookup-Tabellen für Field-Programmable Gate Arrays (FPGAs)
- WICHTIG: für effiziente Hardware-Beschreibung muss HDL-Programmierer:in immer die Zielarchitektur im Auge behalten

Simulation vs. Synthese

- alle SystemVerilog Konstrukte sind grundsätzlich simulierbar
- aber nicht alle Simulatoren unterstützen den kompletten Sprachstandard
- nicht synthetisierbar sind z.B.:
 - Signalinitialisierung bei der Deklaration
 - initial Blöcke
 - explizite Verzögerungen (z.B. #1;)
 - die meisten Funktionen wie z.B. \$display, \$time

Wichtige HDL Standards

- Very High-Speed Integrated Circuits Hardware Description Language (VHDL)
 - vom US Department of Defense maßgeblich gefördert
 - IEEE Standard 1076 (1987, 1993, 2002, 2008)
 - Erweiterung:
 - 1998: VHDL-AMS (Analog and Mixed-Signal)
- Verilog HDL
 - von Gateway Design Automation (Cadence) zur Simulation entwickelt
 - IEEE Standard 1364 (1995, 2001)
 - Erweiterung:
 - 1998: Verilog-AMS (Analog and Mixed-Signal)
 - 2002: SystemVerilog (Verifikation)

Aktuelle Tendenz: Höhere Abstraktionslevel

- SystemC
 - C++ Klassenbibliothek
 - erlaubt besonders schnelle Simulation
- Constructing Hardware in a Scala Embedded Language (Chisel)
 - von UC Berkeley
 - durch Einbettung in Scala (funktionales Java) sehr flexibel
- BlueSpec-Verilog (BSV)
 - vom MIT, aber inzwischen kommerzialisiert
 - erbt Abstraktionsniveau von funktionalem Haskell
- High-Level-Synthese: low-level Verilog/VHDL aus abstrakten Anwendungsbeschreibungen (bspw. in C, Java, Matlab) erzeugen
- ⇒ Schritt von Beschreibung zur Ausführung (Semantic Gap) wird immer größer

Unterschied SystemVerilog vs. Verilog

- SystemVerilog ist Weiterentwicklung von Verilog (für Verifikation)
- Verilog immer noch weiter verbreitet
- im Rahmen der Veranstaltung nur wenige Unterschiede zu Verilog:
 - Verilog hat separate Datentypen statt logic
 - wire für Zuweisungen per assign
 - reg für Zuweisungen in always Blöcken
 - Verilog hat keine spezifischen always Blöcke für
 - Flip-Flops (always_ff): always @(posedge clk)
 - Latches (always_latch): always @(clk, d)
 - kombinatorische Logik (always_comb): always @*
- ⇒ i.d.R. ist SystemVerilog leichter verständlich

Ausblick

- Viele Sprachkonstrukte k\u00f6nnen in kurzer Einf\u00fchrung nicht behandelt werden
 - Tasks, Funktionen und Programme
 - Klassen und Vererbung
 - Verifikationsunterstützung
 - fork und join
 - Events
 - Präprozessor
 - ...
- ⇒ bei tieferem Interesse weitere Literatur verwenden

Agenda

1 SystemVerilog Abschluss und Ausblick

2 Vorzeichenbehaftete Binärzahlen (Forts.)

3 Darstellung von reellen Zahlen

Anwendungs->"hello software

Programme

Betriebssysteme

Gerätetreiber

Architektur **Example**

Befehle Register

Datenpfade

Steuerung

Mikroarchitektur $\begin{array}{|c|c|} \hline \longleftrightarrow \\ \hline \end{array}$

9 9

Logik o-

Addierer Speicher

Digitalschaltungen

UND Gatter Inverter

Analogschaltungen

Verstärker Filter

Bauteile

Transistoren Dioden

Physik

Elektronen

Definition: Zweierkomplement

Die Funktion s_k bildet eine Bitfolge der Breite $k \in \mathbb{N}$ auf eine ganze Zahl ab:

$$s_k: (a_{k-1} \dots a_1 a_0) \in \mathbb{B}^k \mapsto a_{k-1} \cdot (-2^{k-1}) + \sum_{i=0}^{k-2} a_i \cdot 2^i \in \mathbb{Z}$$

$$s_8(0110\ 1100_2) = 2^6 + 2^5 + 2^3 + 2^2$$
 $s_8(1001\ 0100_2) = -2^7 + 2^4 + 2^2$ $= 64 + 32 + 8 + 4$ $= 108_{10}$ $= -108_{10}$

Definition: Vorzeichen und Betrag

Die Funktion vb_k bildet eine Bitfolge der Breite $k \in \mathbb{N}$ auf eine ganze Zahl ab:

$$\mathsf{vb}_k: (a_{k-1}\dots a_1 a_0) \in \mathbb{B}^k \mapsto (-1)^{a_{k-1}} \cdot \sum_{i=0}^{k-2} \mathsf{a}_i \cdot 2^i \in \mathbb{Z}$$

$$\begin{array}{lll} \mathsf{vb}_8(0110\ 1100_2) = (-1)^0 \cdot (2^6 + 2^5 + 2^3 + 2^2) & \mathsf{vb}_8(1110\ 1100_2) = (-1)^1 \cdot (2^6 + 2^5 + 2^3 + 2^2) \\ &= 1 \cdot (64 + 32 + 8 + 4) & = (-1) \cdot (64 + 32 + 8 + 4) \\ &= 108_{10} & = -108_{10} \end{array}$$

Ganze Zahlen als Vorzeichen und Betrag

- niedrigstwertige Stelle: a₀
- höchstwertige Stelle: a_{k-1}
- kleinste darstellbare Zahl: $(-1)^1 \cdot \sum_{i=0}^{k-2} 1 \cdot 2^i = -(2^{k-1} 1)$
- lacksquare größte darstellbare Zahl: $(-1)^0 \cdot \sum_{i=0}^{k-2} 1 \cdot 2^i = +(2^{k-1}-1)$
- Anzahl der darstellbaren Werte: $2^k 1$
- nicht eindeutig (doppelte Darstellung für Null: ±0)

	Zweierkomplement	Vorzeichen und Betrag
108 ₁₀	0110 1100 ₂	0110 11002
-108_{10}	1001 01002	1110 1100 ₂
Erstes Bit	$Vorzeichen\; (1 \Rightarrow negativ)$	$Vorzeichen\; (1 \Rightarrow negativ)$
Weitere Bits	?	Betrag
Darstellbare Werte	2^k	$2^{k} - 1$
Kompatibel mit unsigned Addition?	Ja	Nein
	1	1 1 1 1 1 (Übertrag)
	0 1 1 0 1 1 0 0 (108)	0 1 1 0 1 1 0 0 (108)
	+ 10010100 (-108)	+ 1 1 1 0 1 1 0 0 (-108)
	= 00000000 = 0 ✓	= 0 1 0 1 1 0 0 0 \(\neq 0 \)

Vergleich der binären Zahlendarstellungen Für k=4

$\mathbb Z$		Zweierkomplement: s_k $\{-2^{k-1}, \dots, 2^{k-1} - 1\}$	Vorzeichen/Betrag: vb_k $\{-2^{k-1}+1,\dots,2^{k-1}-1\}$
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8	1111 1110 1101 1101 1100 1011 1000 0111 0110 0101 0101 0100 0011 0010 0001	0111 0110 0101 0101 0001 0001 0000 1111 1110 1100 1011 1010 1001	0111 0110 0101 0101 0101 0011 0010 0001 0000 1000 1001 1010 1011 1100 1101 1110

Vergleich der binären Zahlendarstellungen Für k=3

Agenda

1 SystemVerilog Abschluss und Ausblick

2 Vorzeichenbehaftete Binärzahlen (Forts.)

3 Darstellung von reellen Zahlen

Anwendungs->"hello software

Programme

Betriebssysteme

Gerätetreiber

Architektur **Example**

Befehle Register Datenpfade

Mikroarchitektur

→

←→ Steuerung

Logik

4 √ + ×

Addierer Speicher

Digitalschaltungen

°**D**°

UND Gatter

Analogschaltungen

Verstärker Filter

Bauteile

Transistoren Dioden

Physik

Elektronen

Darstellung von reellen Zahlen: Probleme

- Bisher: Darstellung von ganzen Zahlen (\mathbb{Z})
- Ganzzahlen in vielen Anwendungen nicht ausreichend
- Wie $\frac{3}{4}$, π , e, $\sqrt{2}$ darstellen?
- Problem: Selbst [0, 1] unendlich groß
- ⇒ Nur einige Werte darstellen, Runden

Reelle Zahlen in Binärdarstellung Definition und Umrechnung Binär zu Dezimal

Definition: verallgemeinertes vorzeichenloses Stellenwertsystem

Für eine Basis $b \in \mathbb{N} \land b \geq 2$ ist $Z_b := \{0, 1, \dots, b-1\}$ die Menge der verfügbaren Ziffern. Die Funktion $u_{b,k,\ell}$ bildet eine Ziffernfolge der Breite $k+\ell \in \mathbb{N}$ auf eine reelle Zahl ab:

$$u_{b,k,\ell}: (a_{k-1} \dots a_1 a_0 a_{-1} \dots a_{-\ell}) \in Z_b^{k+\ell} \mapsto \sum_{i=-\ell}^{k-1} a_i \cdot b^i \in \mathbb{R}_{\geq 0}$$

dezimal:
$$6.75_{10} = 6 \cdot 1 + 7 \cdot 0.1 + 5 \cdot 0.01$$

= $6 \cdot 10^{0} + 7 \cdot 10^{-1} + 5 \cdot 10^{-2}$

Reelle Zahlen in Binärdarstellung Umrechnung Dezimal zu Binär am Beispiel 34.55₁₀

Vorkommastellen

VOIK	OIIIIII	astellell
		Rest
34	/2	
17	/2	0
8	/2	1
4	/2	0
2	/2	0
1	/2	0
0		1
		•

Reste von unten nach oben ablesen

$$\Rightarrow$$
 34₁₀ = 10 0010₂

. 11 . .

NachkommasVorkomma	teller 	1	
Verkennia			
		0.55	.2
1	+	0.1	.2
0	+	0.2	.2
0	+	0.4	.2
0	+	0.8	.2
1	+	0.6	.2
1	+	0.2	.2
0	+	0.4	.2

. . .

■ Vorkomma von **oben nach unten** ablesen

$$\Rightarrow$$
 0.55₁₀ = 0.1000 1100 1100 ...₂ = 0.10 $\overline{00}$ 11₂

$$\Rightarrow$$
 34.55₁₀ = 10 0010.10 $\overline{00}$ 11₂

Reelle Zahlen in Binärdarstellung Umrechnung Dezimal zu Binär

$$22.375_{10} = ?$$

		Rest	
22	/2		
11	/2	0	
5	/2	1	
2	/2	1	
1	/2	0	
0		1	

Vorkomma			
		0.375	·2
0	+	0.75	.2
1	+	0.5	.2
1	+	0.0	·2

$$22.4_{10} = ?$$

Vorkomma			
		0.4	·2
0	+	0.8	.2
1	+	0.6	.2
1	+	0.2	.2
0	+	0.4	.2
0	+	0.8	.2

$$\Rightarrow$$
 22.375₁₀ = 1 0110.011₂

$$\Rightarrow$$
 22.4₁₀ = 1 0110. $\overline{0110}_2$

Ansatz 1 für Darstellung von reellen Zahlen: Festkommazahlen

- Position des Kommas bleibt konstant
- Beispiel: Dezimalsystem, 3 Vorkomma-, und 2 Nachkommastellen
- Kosten von 274.24€
- Lösung: Stattdessen als 27424 Cent repräsentieren
- ⇒ 274.24€= 27424€· 10^{-2} , allgemein $n \cdot 2^{-\ell}$
 - Zahl "wie ohne Komma" speichern, aber letzte ℓ Stellen als Nachkommastellen interpretieren (speichere 27424)
 - Zusätzliche Nachkommastellen werden abgeschnitten (evtl. runden)
 - Addition wie bei Ganzzahlen
 - Bei Multiplikation ergeben sich 2ℓ Nachkommastellen \Rightarrow Runden!

Ansatz 2 für Darstellung von reellen Zahlen: Gleitkommazahlen

- Position des Kommas kann wandern
- Angabe der Position des Kommas in Exponentenschreibweise
- Anforderung: Geringer relativer Rundungsfehler $\Delta x/x$
- Lösung: Wissenschaftliche Notation, z.B. 2.7424 · 10²€, 5.1337 · 10⁻⁴²
- \Rightarrow Komma stets rechts der höchstwertigen Stelle $\neq 0$
 - Speichere Mantisse 2.7424 und Exponent 2 (und Vorzeichen)
 - Zu viele Nachkommastellen in Mantisse abschneiden (evtl. runden)
 - Standartisierte Darstellung in IEEE 754 als single precision (float) und double precision (double)
 - Industriestandard, Hardwareimplementierung in praktisch jedem PC

IEEE 754 Zahlendarstellung

1	bit	8 bits	23 bits
	5	<i>e</i> ₇ <i>e</i> ₆ <i>e</i> ₅ <i>e</i> ₄ <i>e</i> ₃ <i>e</i> ₂ <i>e</i>	$_{1} e_{0} f_{22} f_{21} f_{20} f_{19} f_{18} f_{17} f_{16} f_{15} f_{14} f_{13} f_{12} f_{11} f_{10} f_{9} f_{8} f_{7} f_{6} f_{5} f_{4} f_{3} f_{2} f_{1} f_{0}$
V	Z	Exponent	Mantisse

 $(-1)^{s} \cdot 1.f \cdot 2^{e-\mathrm{bias}}$

IEEE 754 Umrechnung IEEE 754 zu Dezimalzahl

1 bit		5	bit	S	10 bits											
0	1	0	1	1	1	0	0	0	1	0	0	1	0	0	1	
VZ		Ex	one	ent						Man	tisse	Э				
$(-1)^s \cdot 1.f \cdot 2^{e-\text{bias}}$ (bias = 15, Exponent selber ist vorzeichenlos!)																
$(-1)^{0} \cdot 1.0001001001_{2} \cdot 2^{10111_{2}-15}$																
$= 1.0001001001_2 \cdot 2^{23-15}$																
	$=1.0001001001_2\cdot 2^8$															
				=	= 10	0010	0010	.012	2							
				=	= 2 ⁸	+ 2	4 +	$2^{1} +$	- 2	2						

= 256 + 16 + 2 + 0.25 = 274.25

- Stelle 34.25₁₀ gemäß dem IEEE 754 16-bit Gleitkommastandard dar $(-1)^s \cdot 1.f \cdot 2^{e-\text{bias}}$ (bias = 15)
- Wandele in Binärzahl um:
 - $34.25_{10} = 100010.01_2 = 1.0001001 \cdot 2^5$
- 2 Trage Felder des 16-bit Gleitkommawortes ein
 - Vorzeichen: 0 (positiv)
 - 5 Bits für Exponent: $5 + bias = 5 + 15 = 20_{10} = 10100_2$
 - 10 Bits für Bruchanteil: 0001001 000

1 bit	_							_	_	bit				
0	1 0	1	0	0	0	0	0	1	0	0	1	0	0	0
VZ	Exp	100	nei	nt				M	an	tis	SSE	9		_

Hier: Addition von zwei positiven IEEE 754 Zahlen

- 1 Vorzeichen, Exponent und Mantisse extrahieren
- 2 Mantissen um führende 1 ergänzen
- 3 (Fallunterscheidung nach Vorzeichen; Hier: Zwei positive Zahlen)
- 4 Exponenten vergleichen, nichtnegative Differenz bestimmen
- 5 Größeren Exponenten übernehmen
- Mantisse von kleinerem Exponenten um Exponentendifferenz nach rechts shiften
- Mantissen addieren
- Resultierende Mantisse falls notwendig normalisieren (Rechtsshift, Exponent entsprechend anpassen)
- 9 Ergebnis runden
- Vorzeichenbit (0), Exponent und Mantisse zu IEEE 754 Zahl zusammenfassen

IEEE 754 Details

- Rundungs-Modi: Down, Up, Towards Zero, To Nearest (ties to even),...
- Overflows $(\pm \infty)$, Underflows (0)

■ Übliche Wahl der Parameter:

Format	Bits	Exponent	Mantisse	Bias
Single Precision	32	8	23	127
Double Precision	64	11	52	1023

■ Sonderformate:

S	00	00	±0
S	00	xx	denormalisierte Zahl ($\pm 0.xx \cdot 2^{1-{ m bias}}$)
S	11	00	$\pm\infty$
S	11	1xx	silent NaN
S	11	$0xx \neq 0$	signalling NaN

..

IEEE 754 Rundungsfehler Achtung beim Rechnen mit IEEE 754!

Zusammenfassung und Ausblick

- 1 SystemVerilog Abschluss und Ausblick
- 2 Vorzeichenbehaftete Binärzahlen (Forts.)
- 3 Darstellung von reellen Zahlen

nächste Vorlesung beinhaltet

- Klausurorganisation
- Abschluss Digitaltechnik
- Ausblick
- Fragen im Plenum

Hausaufgabe F zu Vorlesungen 11 und 12 muss bis nächste Woche Freitag 23:59 abgegeben werden. Wöchentliches Moodle-Quiz nicht vergessen! Anwendungs->"hello software

Programme

Betriebssysteme

Gerätetreiber Befehle

Register

Datenpfade

Steuerung

Addierer

Speicher

Inverter

Vorstärkor

Filter

LIND Gatter

Architektur

Mikroarchitektur

Logik

→

....

√+

Digital-

...

Analog-

altungen 🖖

Bauteile

e - 🗘

Physik

Dioden

Elektronen

Transistoren