Espaces vectoriels normés et applications linéaires continues

- 1. Soit $A \in M_n(\mathbb{R})$.
 - (a) Montrer que $R = \sup_{\|x\|=1} \|Ax\|$ et $\rho = \inf_{\|x\|=1} \|Ax\|$ sont atteints.
 - (b) Soient $\lambda_1, \dots, \lambda_n$ les valeurs propres complexes de A. Est-ce que $R = \max |\lambda_i|$ et $\rho = \min |\lambda_i|$?
 - (c) Si A est symétrique, montrer en considérant le problème d'optimisation sous contrainte $\sup_{\|x\|^2=1} {}^t x A x$ que A admet une valeur propre réelle. En déduire qu'une matrice symétrique réelle est diagonalisable en base orthonormée.
- 2. Sur $\mathbb{R}[X]$, comparer les deux normes suivantes : $\|\cdot\|_{\infty}$ (plus grand coefficient en module) et $\|P\|_h = \sum |a_k|/(1+k)$ (norme OK?).
- 3. Théorème de Riesz.
 - (a) Montrer que les normes sont équivalentes en dimension finie. Indice : montrer que les compacts pour $\|\cdot\|_{\infty}$ sont les fermés bornés.
 - (b) Soit E un evn et $M \subset E$ un sev fermé différent de E. Montrer que pour tout $\epsilon > 0$, il existe $u \in E$ de norme 1 tel que $d(u, M) \ge 1 \epsilon$.
 - (c) En déduire que si E est de dimension infinie, sa boule unité fermée n'est pas compacte. Un sous-espace vectoriel de dimension finie est fermé, OK?
- 4. Soit $E = (\mathcal{C}([0,1],\mathbb{R}), \|\cdot\|_{\infty})$. Est-ce que l'application $\phi : E \to \mathbb{R}$ définie par $\phi(f) = \int_0^{1/2} f \int_{1/2}^1 f$ est continue ? Si oui, est-ce que sa norme est atteinte ? Quid si $E = (L^{\infty}([0,1],\mathbb{R}), \|\cdot\|_{\infty})$?
 - (\star) Pour aller plus loin : en déduire que $(\mathcal{C}([0,1],\mathbb{R}),\|\cdot\|_{\infty})$ n'est pas réflexif.
- 5. Soit $p, q \in [1, +\infty]$ tels que p < q.
 - (a) On définit

$$\ell^p = \left\{ (x_n)_n \in \mathbb{R}^{\mathbb{N}} \mid \sum_{n=0}^{+\infty} |x_n|^p < +\infty \right\},\,$$

muni de la norme $||(x_n)||_p = (\sum |x_n|^p)^{\frac{1}{p}}$. Y a-t-il une inclusion entre ℓ^p et ℓ^q ? Si oui, est-ce que l'injection est continue?

- (b) Soit μ une mesure finie sur un espace X. Y a-t-il une inclusion entre $L^p(X,\mu)$ et $L^q(X,\mu)$? Si oui, est-ce que l'injection est continue?
- 6. Soit Ω un ouvert de \mathbb{R}^d . Pour tout $\alpha > 0$ et toute fonction $f: \Omega \to \mathbb{R}$, on définit

$$|f|_{\alpha} = \sup_{\substack{x,y \in \Omega \\ x \neq y}} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}.$$

On considère ensuite l'espace de Hölder $C^{0,\alpha}(\Omega)=\Big\{f\in C^0(\Omega)\mid |f|_\alpha+||f||_\infty<+\infty\Big\}.$

- (a) Soit $f \in C^{0,\alpha}(\Omega)$, montrer que f se prolonge de manière unique en une fonction \overline{f} continue sur $\overline{\Omega}$ et que $\overline{f} \in C^{0,\alpha}(\overline{\Omega})$.
- (b) On suppose Ω borné.
 - i. Montrer que si $\alpha < \alpha'$ alors $C^{0,\alpha'}(\Omega) \subset C^{0,\alpha}(\Omega)$.
 - ii. On suppose de plus que Ω est convexe. Montrer que si $f \in C^1(\Omega)$ et Df est borné alors $f \in C^{0,\alpha}(\Omega)$ pour tout $\alpha < 1$.
 - iii. Montrer que si $\alpha>1$ alors $C^{0,\alpha}(\Omega)$ est constitué de fonctions localement constantes.
- (c) On note $||.||_{C^{0,\alpha}} = |.|_{\alpha} + ||.||_{\infty}$. Montrer que $(C^{0,\alpha}(\Omega), ||.||_{C^{0,\alpha}})$ est un espace de Banach.
- (d) On suppose de nouveau que Ω est borné. Montrer que l'injection $(C^{0,\alpha}(\Omega),||.||_{C^{0,\alpha}}) \hookrightarrow (C^0(\overline{\Omega}),||.||_{\infty})$ est compacte (c'est-à-dire que de toute suite bornée pour $||.||_{C^{0,\alpha}}$, on peut extraire une sous-suite convergente pour $||.||_{\infty}$).

Baire et quelques conséquences

- 7. (a) Montrer qu'un espace métrique complet X vérifie la propriété de Baire : toute intersection dénombrable d'ouverts denses dans X est dense dans X.
 - (b) Montrer qu'un espace vectoriel normé admettant une base infinie dénombrable n'est pas complet.
 - (c) Montrer qu'il n'existe pas de partition dénombrable de [0, 1] avec des fermés.
 - (d) Montrons que l'ensemble des fonctions continues et nulle part dérivables est dense dans $(\mathcal{C}^0([0,1],\mathbb{R}),\|\cdot\|_{\infty})$:
 - i. On définit pour chaque n l'ensemble

$$F_n = \left\{ f \in \mathcal{C}^0([0,1], \mathbb{R}), \exists x \in [0,1], \forall y \in [0,1], |f(x) - f(y)| \le n|x - y| \right\}.$$

Montrer que F_n est un fermé d'intérieur vide.

- ii. Montrer que si f est dérivable en un point, elle appartient à un F_n . Conclure.
- (e) Soit $f \in \mathcal{C}^{\infty}(R)$ tel que pour tout point x, il existe un entier k vérifiant $f^{(k)}(x) = 0$ Monter que f est un polynôme.
- (f) Savez-vous montrer qu'il n'existe aucune fonction de \mathbb{R} dans \mathbb{R} dont les points de continuité sont exactement les rationnels ?

Théorèmes de Banach

- 8. Soient E et F deux espaces de Banach. Soit (T_n) une suite d'applications linéaires continues de E dans F telle que, pour tout $x \in E$, $(T_n x)$ converge vers une limite notée Tx.
 - (a) Montrer que $x \mapsto Tx$ est linéaire.
 - (b) Montrer que sup $||T_n|| < +\infty$. En déduire que T est continue.
 - (c) Montrer que

$$||T|| \leq \liminf_{n \to +\infty} ||T_n||.$$

- $9. \ Application \ ouverte$
 - (a) Énoncer le théorème de l'application ouverte.
 - (b) En déduire que si E et F sont deux Banach et si $T:E\to F$ est une application linéaire bijective et continue, sa réciproque est continue.
 - (c) Soit E un espace vectoriel muni de deux normes $||.||_1$ et $||.||_2$ telles que $(E, ||.||_1)$ et $(E, ||.||_2)$ soit des espaces de Banach. Montrer que s'il existe C > 0 telle que

$$\forall x \in E, \quad ||x||_1 \leqslant C||x||_2,$$

alors les deux normes $||.||_1$ et $||.||_2$ sont équivalentes.

- 10. Autour du graphe fermé. On considère $T: \begin{pmatrix} L^2\left([0,1],\mathbb{R}\right), \|\cdot\|_{L^1} \end{pmatrix} \xrightarrow{} \begin{pmatrix} L^2\left([0,1],\mathbb{R}\right), \|\cdot\|_{L^2} \end{pmatrix}$.
 - (a) Vérifier que $\|\cdot\|_{L^1}$ est une norme sur $L^2([0,1],\mathbb{R})$.
 - (b) Montrer que le graphe de T est fermé.
 - (c) Montrer que T n'est pas continu.
 - (d) Est-ce que $(L^2, \|\cdot\|_{L^1})$ est complet ?
- 11. Avec Banach-Steinhaus et Ascoli uniforme.

Soit $E = (\mathcal{C}([0,1],\mathbb{R}), \|\cdot\|_{\infty})$. On va montrer le résultat suivant : si F est un sev fermé de E tel que tout élément de F est dérivable, alors F est de dimension finie.

(a) Si
$$x_0 \in [0,1]$$
 est fixé, on définit $T_y: \begin{cases} E \to \mathbb{R} \\ f \mapsto \frac{f(y)-f(x_0)}{y-x_0} \end{cases}$. Montrer qu'il existe $M>0$ tel que

$$\forall f \in F, \quad \forall y \in [0,1] \setminus \{x_0\}, \qquad |T_y(f)| \le M||f||_{\infty}.$$

- (b) Montrer que pour tout $x_0 \in [0,1]$, la boule unité fermée de F forme une famille équicontinue en x_0 .
- (c) Montrer que la boule unité fermée de F est une partie compacte de F et conclure.