PCA is meant to transform the data into projections onto principal components

	Original Dataset						Transformed Dataset				
Sno	V1	V2	V3		Vn	Sno	PC1	PC2	PC3		PCn
S1	x11	x12	x13		x1n	S1	p11	p12	p13		p1n
S2	x21	x22	x23		x2n	S2	p21	p22	p23		p2n
S3	x31	x32	x33		x3n	S3	p31	p32	p33		p3n
S4	x41	x42	x43		x4n	S4	p41	p42	p43		p4n
S5	x51	x52	x53		x5n	S5	p51	p52	p53	**	p5n
S6	x61	x62	x63		x6n	S6	p61	p62	p63		p6n
S7	x71	x72	x73		x7n	S7	p71	p72	p73		p7n
S8	x81	x82	x83	000	x8n	S8	p81	p82	p83		p8n
)							
Sm	xm1	xm2	xm3		xmn	Sm	pm1	pm2	pm3		pmn

Number of components that explain the cumulative variance is obtained from the Scree plot

Sample Dataset that has data for 6 mouse and plotting Gene1 and Gene 2

Compute the average of Gene1 and Gene2

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6		With the average values, we can calculate the center	
Gene 1	10	11	8	3	2	1	Gene 2	of the data.	
Gene 2	6	4	5	3	2.8	1	>	⟨ —— X	

Shifting the origins to the average of the two data points

Compute the average of Gene1 and Gene2

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6		With the average values, we can calculate the center	
Gene 1	10	11	8	3	2	1	Gene 2	of the data.	
Gene 2	6	4	5	3	2.8	1	>	⟨ —— X	

This line is called PC1

Gene 2

SS(distances for PC1) = Eigenvalue for PC1

 $\sqrt{\text{Eigenvalue for PC1}}$ = Singular Value for PC1

...and the square root of the **Eigenvalue for PC1** is called the **Singular Value for PC1**.

$$d_{1}^{2} + d_{2}^{2} + d_{3}^{2} + d_{4}^{2} + d_{5}^{2} + d_{6}^{2} = \text{sum of squared distances} = SS(distances)$$

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	10	11	8	3	2	1
Gene 2	6	4	5	3	2.8	1
Gene 3	12	9	10	2.5	1.3	2

