Отчет о выполнении лабораторной работы 3.2.2 Резонанс напряжений в последовательном контуре

Костылев Влад, Б01-208

28 октября 2023 г.

Аннотация

Цель работы: исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, получение амплитудно-частотных и фазовочастотных характеристик, определение основных параметров контура.

В работе используются: генератор сигналов, источник напряжения, нагрузкой которого является последовательный колебательный контур с переменной ёмкостью, двухканальный осциллограф, цифровые вольтметры.

1 Теоретическая справка

Свободные колебания

Рассмотрим последовательный колебательный контур без источника ЭДС. Пусть напряжение на конденсаторе меняется по закону U=U(t). Тогда, согласно второму правилу Кирхгофа, сумма падений напряжений равна 0:

$$L\frac{dI}{dt} + U + RI = 0$$

Ток через конденсатор определяется из соотношения

$$I = \frac{dq}{dt} = C\frac{dU}{dt}$$

Тогда получим дифференциальное уравнения второго порядка, описывающее *свободные* колебания в линейной системе:

$$LC\frac{d^2U}{dt^2} + RC\frac{dU}{dt} + U = 0$$

Данное уравнение можно переписать в виде:

$$\ddot{U} + 2\gamma \dot{U} + \omega_0^2 U = 0$$

где введены обозначения $\gamma = \frac{R}{2L} - \kappa o$ фициент затухания, $\omega_0 = \frac{2\pi}{T_0} = \frac{1}{\sqrt{LC}} - c$ обственная частота колебательной системы, $T_0 = 2\pi \sqrt{LC} - nepuod$ собственных колебаний.

Найдём решение однородного дифференциального уравнения с постоянными коэффициентами. Запишем характеристическое уравнение:

$$\lambda^2 + 2\gamma\lambda + \omega_0^2 = 0$$

$$D_1 = \frac{D}{4} = \gamma^2 - \omega_0^2$$

В зависимости от знака дискриминанта квадратного уравнения возможны три случая.

1. Затухающие колебания.

Рассмотрим случай, когда $D_1 < 0$. Тогда $0 < \gamma < \omega_0$, что эквивалентно

$$0 < R < 2\sqrt{\frac{L}{C}} = R_{\kappa p}$$

Сопротивление $R_{\kappa p}=2\sqrt{\frac{L}{C}}$ называется критическим, а $\rho=\sqrt{\frac{L}{C}}$ – волновым.

В рассматриваемом случае характеристическое уравнение имеет два комплексных корня

$$\lambda_{1,2} = -\gamma \pm j\sqrt{\omega_0^2 - \gamma^2}$$

Величину $\omega = \sqrt{\omega_0^2 - \gamma^2}$ называют частотой свободных колебаний. Решением уравнения будет

$$U(t) = U_1 \cdot e^{-\gamma t} \cdot e^{-j\omega t} + U_2 \cdot e^{-\gamma t} \cdot e^{j\omega t}$$

где U_1 и U_2 – произвольные постоянные.

Полученное уравнение можно представить в виде

$$U(t) = U_0 e^{-\gamma t} sin(\omega t + \varphi_0)$$

Данное уравнение является гармоническим с фазой $\omega t + \varphi_0$ и экспоненциально убывающей амплитудой $U_0 e^{-\gamma t}$.

С точки зрения математики данный колебательный процесс не периодичен. Тем не менее функция U(t) обращается в ноль или достигает экстремумов через один и тот же промежуток времени, который называю $nepuodom\ samyxaowww$ колебаний.

2. Критический режим.

Рассмотрим случай, когда $D_1 = 0$. Тогда

$$\gamma = \omega_0$$

Характеристическое уравнение имеет один корень

$$\lambda = -\gamma$$

Решением исходного уравнения будет

$$U(t) = U_0 e^{-\gamma t}$$

где U_0 – постоянная, определяемая из начальных условий.

Заметим, что данный режим физически не реализуем, так как равенство $\gamma = \omega_0$ не может быть выполнено точно. Данный случай нужно рассматривать как переходный между затухающими колебаниями и апериодическим режимом.

3. Апериодический режим.

Рассмотрим случай, когда $D_1 > 0$. Тогда $0 < \omega_0 < \gamma$. Характеристическое уравнение имеет два действительных корня

$$\lambda_{1,2} = -\gamma \pm \sqrt{\omega_0^2 - \gamma^2}$$

Решением дифференциального уравнения будет

$$U(t) = e^{-\gamma t} \cdot (U_1 e^{-\alpha t} + U_2 e^{\alpha t})$$

где U_1 и U_2 – произвольные постоянные.

Характеристики затухающих колебаний

Важными характеристиками колебательных систем являются добротность Q и логарифмический декремент d.

Логарифм отношения амплитуд колебаний в двух последовательных максимумах называется логарифмическим декрементом

$$d = \ln\left(\frac{A_n}{A_{n+1}}\right)$$

Определив положения последовательных максимумов из формулы 1, можно получить следующее соотношение

$$d = \gamma T$$

где T – период затухающих колебаний.

Постоянной времени затухания τ называется время, за которое амплитуда колебаний убывает в e раз. Коэффициент затухания и постоянная времени связаны соотношением

$$\tau = \frac{1}{\gamma}$$

Из уравнений 1 и 1 следует, что логарифмический декремент можно определить как число полных колебаний $N=\frac{\tau}{T}$ за время затухания τ :

$$d = \frac{1}{N}$$

Добротностью колебательной системы Q называется

$$Q \equiv \frac{\pi}{d} = \frac{\pi}{\gamma T} = \frac{\omega}{2\gamma}$$

Чем выше добротность колебательной системы, тем меньше будут потери энергии. Докажем данное утверждение.

Амплитуда колебаний напряжение за период уменьшается в $e^{\gamma T}$ раз. Полная энергия системы W определяется как максимальная энергия электрического поля конденсатора или магнитного поля индуктивности

$$W = \frac{CU^2}{2} = \frac{LI^2}{2}$$

Из этого соотношения видно, что за период энергия системы уменьшается как квадрат амплитуды в $e^{2\gamma T}$ раз. Тогда потери энергии системы равно

$$\Delta W = W(t_0) - W(t_0 + T) = (1 - e^{-2\gamma T})W(t_0)$$

Если затухание мало, то есть $\gamma T\ll 1\Rightarrow Q\gg 1$, то экспоненту можно разложить по формуле Тейлора

$$\Delta W \approx 2\gamma TW$$

$$\frac{W}{\Delta W} = \frac{1}{2\gamma T} = \frac{1}{2\pi}Q$$

Таким образом, добротность с энергетической точки зрения определяет отношении энергии системы к потерям за период.

Вынужденные колебания

Если в цепь последовательного колебательного контура включен гармонический источник ЭДС $\varepsilon(t) = \varepsilon_0 \cos{(\omega t)}$, то

$$\ddot{U} + 2\gamma \dot{U} + \omega_0^2 U = \frac{\varepsilon_0}{LC} \cos(\omega t)$$

Решением неоднородного дифференциального уравнения будет сумма однородного и частного решений

$$U_{o \delta u}(t) = U_{o \partial n}(t) + U_{uacm}(t)$$

Решением однородного уравнения будут затухающие колебания

$$U_{o\partial n}(t) = U_0 e^{-\gamma t} \sin(\omega t + \varphi_0)$$

Частное решение неоднородного уравнения будем искать в виде:

$$U_{uacm}(t) = Ae^{j\omega t}$$

Неоднородность уравнения в комплексной форме равна

$$\varepsilon = \frac{\varepsilon_0}{LC} e^{j\omega t}$$

Подставив частное решение в исходное уравнение находим

$$U_{uacm}(t) = \frac{\varepsilon_0 e^{j\omega t}}{LC(\omega_0^2 + 2j\gamma\omega - \omega^2)}$$

Решением является только действительная часть, тогда

$$U_{uacm}(t) = \frac{\varepsilon_0}{LC} \frac{1}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\omega^2 \gamma^2}} \cos\left(\omega t - \arctan\frac{2\omega\gamma}{\omega_0^2 - \omega^2}\right)$$

Итого уравнением вынужденных колебаний будет

$$U(t) = U_0 e^{-\gamma t} \sin(\omega t + \varphi_0) + \frac{\varepsilon_0}{LC} \frac{1}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\omega^2 \gamma^2}} \cos\left(\omega t - \arctan\frac{2\omega\gamma}{\omega_0^2 - \omega^2}\right)$$

Заметим, что амплитуда однородного решения убывает экспоненциально, а амплитуда частного решения остается постоянной. Поэтому, через большой промежуток времени, напряжение будет изменяться по закону $U(t) \approx U_{uacm}(t)$. Итого, установившимися вынужденными колебаниями будут гармонические колебания с частотой вынуждающей ЭДС.

Резонанс в последовательном колебательном контуре

Рассмотрим последовательный колебательный контур. Пусть к нему подключен идеальный источник ЭДС, обладающий бесконечно малым внутренним сопротивлением, задающий во внешней цепи напряжение, изменяющееся по гармоническому закону $\varepsilon = \varepsilon_0 \cos{(\omega t + \phi_0)}$.

Методом комплексных амплитуд определим зависимости напряжения и тока на элементах цепи:

$$U_{C} = \varepsilon_{0} \frac{\rho}{Z_{0}} \frac{\omega_{0}}{\omega} \cos(\omega t - \varphi_{C})$$

$$U_{L} = \varepsilon_{0} \frac{\rho}{Z_{0}} \frac{\omega}{\omega_{0}} \cos(\omega t - \varphi_{L})$$

$$I = \frac{\varepsilon_{0}}{Z_{0}} \cos(\omega t - \varphi_{I})$$

$$Z_{0} = R \sqrt{1 + \left[\frac{\rho}{R} \left(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega}\right)\right]^{2}}$$

$$\varphi_{I} = \arctan\left[\frac{\rho}{R} \left(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega}\right)\right]$$

$$\varphi_{C} = \varphi_{I} + \frac{\pi}{2}$$

$$\varphi_{L} = \varphi_{I} - \frac{\pi}{2}$$

Далее будем рассматривать высокодобротный колебательный контур вблизи резонансной частоты $Q \approx \frac{\rho}{R} \gg 1$. Тогда полученные уравнения можно упростить:

$$U_C = \frac{Q\varepsilon_0\omega_0}{\omega\sqrt{1 + (\tau\Delta\omega)^2}}\cos(\omega t - \varphi_C)$$

$$U_L = \frac{Q\varepsilon_0\omega}{\omega_0\sqrt{1 + (\tau\Delta\omega)^2}}\cos(\omega t - \varphi_L)$$

$$I = \frac{\varepsilon_0}{R\sqrt{1 + (\tau\Delta\omega)^2}}\cos(\omega t - \varphi_I)$$

$$Z_0 = R\sqrt{1 + (\tau\Delta\omega)^2}$$

$$\varphi_I = \operatorname{arctg} \tau\Delta\omega$$

При резонансе $\omega = \omega_0$, $\Delta \omega = 0$ формулы принимают еще более наглядный вид:

$$I = \frac{\varepsilon_0}{R} \cos(\omega_0 t - \varphi_I)$$

$$U_L = Q\varepsilon_0 \cos(\omega_0 t - \varphi_L)$$

$$U_C = Q\varepsilon_0 \cos(\omega_0 t - \varphi_C)$$

$$\varphi_I = 0$$

$$\varphi_C = \frac{\pi}{2}$$

$$\varphi_L = -\frac{\pi}{2}$$

Из полученных соотношений следует, что напряжение на конденсаторе U_C отстает от внешнего тока по фазе на $\frac{\pi}{2}$. Напряжение на индуктивности опережает внешний ток по фазе на $\frac{\pi}{2}$.

Напряжение на конденсаторе и индуктивности в Q раз больше внешнего напряжения. Поэтому резонанс в последовательном колебательном контуре называют резонансном напряжений.

Экспериментальная установка

В данной работе изучаются резонансные явления в последовательном колебательном контуре (резонанс напряжений). Синусоидальный сигнал от генератора поступает на вход управляемого напряжением источника напряжения, собранного на операционном усилителе.

В колебательный контур установки добавлен постоянный резистор R, снижающий его добротность. Это сделано для упрощения процедур получения и обработки резонансных кривых. Таким образом, суммарное активное сопротивление контура принимается равным

$$R_{\Sigma} = R + R_L + R_S$$

Добротность контуров тем не менее остаётся достаточно высокой, чтобы можно было пользоваться классическими формулами:

$$Q = \frac{\rho}{R_{\Sigma}} = \frac{\omega_0 L}{R_{\Sigma}} = \frac{1}{\omega_0 C R_{\Sigma}} \gg 1$$

При резонансе, когда для высокодобротного контура можно положить $\omega=\omega_0$, выражения для модулей комплексных амплитуд тока и напряжения на ёмкости и их фаз принимают простой вид:

$$I(\omega_0) = \frac{E}{R_{\Sigma}}, \ U_C(\omega_0) = QE, \ U_L(\omega_0) = QE$$

2 Используемое оборудование

В работе используются: генератор сигналов, источник напряжения, нагрузкой которого является последовательный колебательный контур с переменной ёмкостью, двухканальный осциллограф, цифровые вольтметры.

3 Результаты измерений и обработка данных

n	С_п, нФ	f_0, Гц	U_c, B	E, B	L, мкГн	Q	rho, Ом	R_sum, OM	R_S_max, Om	R_L, Om	I, MA
1	24,8	32265	2,5426	0,1	982,12	25,43	199,00	7,83	0,199001801	4,13	0,01278
2	33,2	27923	2,2665	0,0998	979,53	22,71	171,77	7,56	0,171767184	3,89	0,01320
3	47,6	23340	1,9532	0,0997	977,85	19,59	143,33	7,32	0,143328499	3,67	0,01363
4	57,5	21213	1,8004	0,0997	979,96	18,06	130,55	7,23	0,130548059	3,60	0,01379
5	68	19557	1,668	0,0996	974,92	16,75	119,74	7,15	0,11973723	3,53	0,01393
Среднее значение					978,88			3,76	-		
Случ. Погрешность					1,995			0,196	-		
										S 77	

$$\omega_0 L = rac{1}{\omega_0 C} \quad U_C(\omega_0) = Q \mathcal{E}_0, \quad I(\omega_0) = rac{U_R}{R} = rac{\mathcal{E}_0}{R_\Sigma} \quad Q = rac{
ho}{R_\Sigma} = rac{\omega_0 L}{R_\Sigma} = rac{1}{\omega_0 C R_\Sigma} \quad R_S = rac{\operatorname{tg} \delta}{\omega C}$$

											f_0
С5, нФ	f_0, Гц	f, Гц	10093	11227	12095	13979	15292	16250	17778	18448	19557
68	23340	U_c, B	0,1339	0,1463	0,1586	0,1996	0,2491	0,3095	0,5255	0,7675	1,668
			20977	22049	23227	24387	25440	26683	28001	29224	
			0,6327	0,3662	0,244	0,1807	0,145	0,1165	0,0956	0,0816	
											f_0
СЗ, нФ	f_0, Гц	f, Гц	14066	15116	16174	17600	18767	19635	20670	21810	23340
47,6	23340	U_c, B	0,1535	0,168	0,1871	0,2241	0,2715	0,3248	0,4306	0,6894	1,9532
			24153	25205	26680	27540	28955	29480	31160	32230	
			1,1867	0,6005	0,3307	0,2583	0,1876	0,1697	0,129	0,1113	

С5, нФ	f_0, Гц	f/f_0	0,516081	0,574065552	0,618449	0,714782	0,78191952	0,830904535	0,909035	0,943294	1
68	23340	U_c, B	0,080276	0,087709832	0,095084	0,119664	0,14934053	0,185551559	0,315048	0,460132	1
			1,072608	1,127422406	1,187657	1,24697	1,30081301	1,364370814	1,431764	1,494299	
			0,379317	0,219544365	0,146283	0,108333	0,08693046	0,069844125	0,057314	0,048921	
											f_0
С3, нФ	f_0, Гц	f, Гц	0,602656	0,64764353	0,692973	0,75407	0,80407027	0,84125964	0,885604	0,934447	1
47,6	23340	U_c, B	0,078589	0,086012697	0,095792	0,114735	0,13900266	0,166291214	0,220459	0,352959	1
			1,034833	1,079905741	1,143102	1,179949	1,24057412	1,263067695	1,335047	1,380891	
			0,607567	0,307444194	0,169312	0,132245	0,09604751	0,086883064	0,066045	0,056983	

$$\frac{1}{Q_3} = x_{y=0.7} - x_{y=0.7} = 1.023 - 0.978 \Rightarrow Q_3 = 22, 22 \pm 2, 47$$

$$\frac{1}{Q_5} = x_{y=0.7} - x_{y=0.7} = 1.029 - 0.978 \Rightarrow Q_5 = 19, 6 \pm 3, 23$$

По данному графику рассчитаем добротность:

$$\frac{1}{Q_3} = x_{y=1/4} - x_{y=3/4} = 1.028 - 0.981 \Rightarrow Q_3 = 21, 28 \pm 2, 71$$

$$\frac{1}{Q_5} = x_{y=1/4} - x_{y=3/4} = 1.032 - 0.976 \Rightarrow Q_5 = 17, 86 \pm 2, 53$$

Даже похоже на то, что рассчитали ранее :)

4 Заключение

В заключение можно сказать, что в данной лабораторной работе мы научились исследованию резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, получению амплитудно-частотных и фазово-частотных характеристик, определению основных параметров контура.