Service Manual & parts list

ELECTRONIC

KEYBOARD

CZ-1

CZ-1

CASIO.

CAUTION:

When the connector o (from the lithium battery) is disconnected, all the sound data in the Memory Bank are cleared. When this happens, initialize the unit by the following procedures.

- 1. Turn the power switch off and press INITIALIZE button.
- 2. Turn the power switch on, then the display indicates;

SYSTEM ALL INITIALIZE(Y/N)?

3. While pushing INITIALIZE button, press YES button on the data entry section of the panel.
All the Memory Bank data are initialized, then the display shows:

SYSTEM INITIALIZED !!

CONTENTS CZ-1 Service Menual	Celli Fiche i
1. SCHEMATIC DIAGRAM	-
1-1. Main PCB (A) M5154-MA1M, IF	
1-2. Main PCB / 3) M5154-MA1M	
1-3. Stereo Chorus Circuit PCB M5154-MA2M	
1-4. MIDI Control & Amp. Block PCB M5154-MA3M, AS1M	
1-6. LED Drive Circuit PCB M5154-MA4M	
1-6. Power Supply Circuit PCB M5154-PS1, PS2%	
1-7. Panel Block PCB (A) M5154-CN1M, CN3M	- - - - - - - - - -
1-8. Panel Block PCB (B) M5154-CN2M	
1-9. Keyboard PCB M571-KY1M, KY3M, M5177-KY2M	9 3-B7
2. WIRING DIAGRAM	10 3-B9
3. PCB VIEW & MAJOR CHECKPOINTS	
3-1. PCB M5154-MA1M	11 3-Bl1
3-2. PCB M5154-MA2M	
4. MAJOR WAVEFORMS	13 3-C1
5. BLOCK DIAGRAM	16 3-C4
6. DIGITAL CIRCUIT BLOCK DIAGRAM	17 3-C6
7. CPU (µPD7810H)	
7-1. Pin Functions of Main CPU	18 3-C7
7-2. Pin Functions of Sub CPU	
8. MAIN RAM & ROM ACCESSES	
	22 5-011
10. CPU INTERFACE LSI (MB64H173)	
10-1. Function of Each Block	
10-2. Data Transfer Procedures	0 0.4
	29 3-D4
11. KEYBOARD	
11-1. Key Touch Speed Detection	
11-2. Key Matrix	••
11-3. Pin Functions of Key Touch Control LSI (MSM6200)	
11-4. Pin Functions of Key Interface LSI (μPD8049HC)	
11-5. Key Touch Data Communication	
11-6. After Touch Control Circuit	
12. DATA CLOCK PULSE GENERATOR	
13. LED DRIVING CIRCUITS	
15. MUSIC LSIs ACCESSES	41 3-E2

CZ-1 Service Manual

17.	D	AC (Jigital to Analog Converter) CIRCUIT	3-E4
18.	E	CPANDER CIRCUIT44	3-E5
19.	SA	AMPLE & HOLD CIRCUIT46	3-E7
20.	51	TEREO CHORUS CONTROL CIRCUITS	
)-1.	Block Diagram	3-E8
20)-2.	Signal Function	
20	.3 .	Circuit Function	3-E9
20	4 .	Line-out Circuit	3-E9
21.	SI	TEREO CHORUS CIRCUIT	
21	l-1.	Block Diagram	3-E11
21	·2.	Function of Each Block51	3-E13
21	.3 .	Three-Phase LFO (Low Frequency Oscillator)	3-E14
21	4 .	VCO (Voltage Controlled Oscillator)	3-F1
21	ŀ 5 .	BBD (Bucket Brigade Device)54	3-F2
21	-6 .	Compressor and Expander Circuits	3–F3
22.	0	UTPUT VOLUME CONTROL CIRCUIT56	3-F4
23.	R	ESET CIRCUIT	3-F5
24.	M	IDI INTERFACE CIRCUIT58	3-F6
25.	A	DJUSTMENT	
29	5-1.	DAC Offset Voltage Adjustment	3-F7
2	5-2.	VSS1 Voltage Adjustment (Power Source for MSM6200)	3- F7
	5 ∙3 .	LCD Brightness Adjustment	• • •
	54.	After Touch Adjustment	
	5.5.	VCA Offset Voltage Adjustment	
	5- 6 .		3-F8
2:	5-7.	Volume Adjustment	3-F9
		Parts List62	3-F10
		Parts Diagrams	3-G11/1:
			B4,B7,B10
		Operation Manual	4-C1
		Technical News Bulletin / 85	5-A13
			:v=n43
		Preset Tone Data Fiche 5	
		System MIDI Pushushus	

1. SCHEMATIC DIAGRAM

1-1. Main PCB (A) M5154-MA1M, IF

1.

SCHEMATIC DIAGRAM

1-1. Main PCB (A) M5154-MA1M, IF

G

н

ı

3. Stereo Chorus Circuit PCB M5154-MA2M

1-3. Stereo Chorus Circuit PCB M5154-MA2M

4

5

-

6,

DEFE

D

٤.

Ī

G

 \mathbf{H}

١<

2

3

5

,

D Ε 2 FUSE AA : USA .universal type 3 MT4 14 2504 UL TSC 2A 125V F2 : UL TSC 0 5A 125V 63 F 4 CA INCTE CA : DE7150FZ103PVAI 4 5 7E -154 - 1841 PLA6021A ESESTI IAA.AE.AF ō **≑** 2 ≑ ESE379 144 100V 1294 PCB - M5154 - P51 225¥ 7 PP ······ е NOTE . .VCC : Pesitive Power Supply tor Anding Circuit 1-154 for Analog Circuit 1-154: tor Digital Circuit 1-5v Positive Power Supply
The tweet 1+54 Positive Pever Supply 9 Positive Power Supply for D/A Converter 1-5v

DAS : D/A Converter Ground DG1 : Digitel Ground DG2 : Digital Ground : Analog Ground : Frame Ground

CC FC

.1. ١K IK T6 2 14 2501745 (15 OV) } 1001 2 2K 1 5# PLABOZIA 54VB10-40091F06 ESE371 144 4E AF ESE379 144 2 ÷ 1024 1294 52VB10-40091FG3 PCB - M5154 - P51 1 (AO 61) 800 RD16682-11-1 · •15¥ CRM100FH11-J-10: (-20v) (1-154. 1.54 PCB-M5154-P52M ٠5٧ .54

G

D

INCTE: CA : DE7150FZ103PVAI

NOTE:

*VCC: Positive Power Supply
tor Analog Circuit 1*15V

*VCC: Megative Power Supply
tor Analog Circuit 1*15V

*VDC: Megative Power Supply
tor Digital Circuit 1*5V

*VDL1: Positive Power Supply
tor LED Driver 1*5V

*VDL2: Positive Power Supply
tor LED 1*5V

*VDL2: Positive Power Supply
tor LED 1*5V

*VDL3: Positive Power Supply
tor DA Converter 1*5V

DAG: D/A Converter Ground

DG1: Digital Ground

*FG: Frame Ground

8

9

10

_

C

C

Ε

F

Ċ

C

Ε

F

C.

-

!

. - 6 -

_

.

! S

16

Ε

=

S

-

-

:

•

-7 -

.

V.

Ð

·

2. WIRING DIAGRAM

NOTE: 1. Wire Color Codes

 R : Red
 W : White
 BL: Blue

 Y : Yellow
 GR: Green
 PP: Purple

 BK: Black
 BR: Brown
 O : Orange

 GY: Gray
 PK: Pink
 E : Shielded wire

2. Terminal Readings

3. Voltage Levels

VDD	+5V	For digital circuits
VDL1	+5V	For LED driving
VDL2	+5∨	For LED driving (rises to +5V approximately 830 milliseconds after Power ON)
VDAC	+5V	For DAC (Digital to Analog Converter)
+VCC	+15V	For analog circuits
-VCC	- 15V	For analog circuits
DG	0V	Digital ground
FG	0V	Frame ground
DAG	0V	DAC ground
CG	0V	Analog ground
VBR	+5V at Powe +3V at Powe	

3. PCB VIEW & MAJOR CHECKPOINTS

3-1. PCB M5154-MA1M

4. MAJOR WAVEFORMS

Notes: Photographs marked (M) show stored waveforms in a memory scope.

The analog waveforms were observed via a 28 Kohm resistor.

Probe reduction; 10:1

(1) µPD7810H clock pulse PCB M5154-MA1M TC74HC04P-2 pin 2 0.1پا&/div, 0.2V/div

2 pp D8049HC clock pulse 3 pp D933AC clock pulse PCB M5154-MA1M TC74HC04P-1 pin 11 0.1µ\$/div, 0.2V/div

- 4 µPD7810H WR signal PCB M5154-MA1M μPD7810H (SUB) pin 45 BuS/div, 0.2V/div
- (5) µPD4464C CE signal PCB M5154-MA1M μPD4464C-15L-1 pin 20 SuS/div, 0.2V/div

- (6) Key common signal PCB M5177-KY2M Refer to page 9 0.2mS/div, 0.2V/div
- 7 Key input signal PCB M5177-KY2M Refer to page 9 0.2mS/div, 0.2V/div

- (8) µPD933AC DOE signal (9) DAC output PCB M5154-MA1M PCB M5154-1 µPD933AC pin 12 2mS/div, 0.5V/div
- PCB M5154-MA1M TL082-1 pin 1 div, 0.5V/div/گير10

Tone: Flute, Key: C4

- 10 DAC output PCB M5154-MA1M TL082-1 pin 1 5mS/div, 0.2V/div
- 1 Expander circuit output PCB M5154-MA1M TL082-1 pin 7 5mC,div, 50mV/div

Tone: Flute, Key: C4

- PCB M5154-MA1M μPD933AC (M) pin 12 10µS/div, 0.2V/div
- 12 µPD933AC (M) DOE signal (3 µPD933AC (M) SH signal PCB M5154-MA1M μPD933AC (M) pin 13 10µS/div, 0.2V/div

- PCB M5154-MA1M ₽D933AC(M) pin 13 0.1 S/div, 0.2 V/div
- 14 pp D933AC (M) SH signal (15) Sample/Hold circuit output PCB M5154-MA1M TL082-2 pin 7 0.1م/div, 2V/div

Tone: Flute, Key: C7

- (B) pD933AC (M) SH signal PCB M5154-MA1M μPD933AC(M) pin 13 10uS/div, 0.2V/div
- 17 µPD933AC(S) SH signal (B) LFO1 output PCB M5154-MA1M μPD933AC(S) pin 13 اکير5/div, 0.2V/div
- PCB M5154-MA2M Refer to page 12 0.55/div, 0.1V/div
- 19 LFO2 output PCB M5154-MA2M Refer to page 12 0.5\$/div, 0.1V/div

- 20 DAC output PCB M5154-MA1M TL082-1 pin 1 0.5mS/div, 0.2V/div
- 2) Stereo chorus output PCB M5154-MA2M PCB M5154-4 LA6462D-5 pin 7 0.5mS/div, 5mV/div

Tone: Flute, Key: A3

- PCB M5154-MA1M TL082-1 pin 1 0.5mS/div, 0.2V/div
- 23 LINE-OUT putput A/A+B LINE-OUT terminal 0.5mS/div 10mV/div

Tone: Flute, Key: A3, Volume: Max., Stereo chorus: OFF

6. DIGITAL CIRCUIT BLOCK DIAGRAM

CZ-1 employs five control LSIs for quick processing.

(1) Nain CPU Block

The block mainly controls operation of the digital circuits.

Main CPU Controls keys, switch scanning, memory devices and MIDI.

Main ROM Contains program for system execution.

Main RAM Has work area for system execution and stores operation memories and tone name data.

Key interface LSI A buffer for data communication between CPU and Key touch control LSI.

Key touch control LSI ... Detects key entry and initial key touch speed.

(2) Sub CPU Block

The block mainly controls music LSIs.

Sub CPU Controls music LSIs and memory devices.

Sub ROM Contains program for system execution and data for preset tones.

Sub RAM (1) ... Stores data area for created sound.

Sub RAM (2) ... Work area for system execution.

Music LSIs Refer to page 42.

(3) CPU Interface LSI ... Interfaces between Main CPU and Sub CPU.

7. CPU (µPD7810H)

As CPU (µPD7810H) does not have a internal ROM, it accesses control data for system execusion from a external ROM directly.

Main CPU and Sub CPU have different functions.

7-1. Pin Functions of Main CPU

91- N-	Taminal Name	In/Out	Function
Pin No.	Terminal Name		
1~8 .	PA0(S0) ~ PA7(S7)	in/Out	Data bus for LCD and RAM pack. Signal PAO~PA3 also generate key common signal.
9	PBO (SYC)	in	Synchronous signal from CPU interface LSI (MB64H173).
11	PB2 (INT)	Out	Sub CPU interrupt signal.
12	PB3 (CONT)	In/Out	Control signal between Main and Sub CPUs.
13	P84 (RCE)	Out	Chip enable signal for RAM pack.
14	PB5 (RS)	Out	Control signal for LCD unit.
15	PB6 (R/W)	Out	Read/Write signal for RAM pack and LCD unit.
16	PB7 (LE)	Out	Enable signal for LCD unit.
17	PC0 (TXD)	Out	MIDI (Musical Instrument Digital Interface) data output.
18	PC1 (RXD)	In	MIDI data input.
19	PC2 (SCK)	In	MIDI clock pulse input.
20	PC3 (INT49)	In	Interrupt signal from Key interface LSI (#PD8049HC).
21	PC4 (CNT49)	Out	Control signal of Key Interface LSI (µPD8049HC).
22	PC5 (CI)	In	Timing signal of data transmission between Main CPU and Key touch control LSI (MSM6200).
24	PC7 (TST)	Out	Check signal for internal ROM/RAM of Key interface LSI (μ PD8049HC) at power ON.
26	INT1 (X896)	in	Interrupt signal from Sub CPU.
28	RESET	In	Reset signal input. CPU internal circuits are initialized when the terminal receives a LOW level pulse at power ON.
31	X1	In	15MHz clock pulse input.
32	Vss		Ground (0V) source.
33	AVss		Ground (OV) source for internal ADC (Analog to Digital Converter)
34	AN0	In	Modulation wheel input. Voltage level from modulation wheel is converted into digital data by built-in ADC.
35	AN1	In	Pitch bender wheel input. Voltage level from pitch bender wheel is converted into digital data by built-in ADC.
38	AN2	In	After touch sensor input. Voltage level from after touch sensor is converted into digital data by built-in ADC.
42	VAREF		Reference voltage (+5V) for built-in ADCs.
43	AVœ		+5V power source for built-in ADCs.
44	AD.	Out	Read signal output. Drops to LOW when Main CPU reads data from peripheral devices.

Pin No.	Terminal Name	In/Out	Function
45	WA	Out	Write signal output. Drops to LOW when Main CPU writes data into peripheral devices.
46	ALE	Out	Address latch enable signal output. Data signals D0~D7 become address signals A0~A7 when the terminal rises to HIGH.
47~64	PFO (A8) ~ PF7 (A15)	Out	Upper address signals (A8 ~ A15).
55~62	PD0 (D0) ~ PD7 (D7)	In/Out	Data signals (D0 ~ D7).
63, 64	VDD, Vcc		+5V power source.

7-2. Pin Functions of Sub CPU

Pin No.	Terminal Name	In/Out	Function
1~8	PA0 (L0) ~ PA7 (L7)	Out	LED drive signals output.
9	P80	In	Interrupt request signal input from Master Music LSI.
10	P81	In	Interrupt request signal input from Slave Music LSI.
11	PB2	Out	Master Music LSI chip select signal output.
12	P83	Out	Slave Music LSI chip select signal output.
13	PB4	Out	Write enable signal for Music LSIs.
14 -	P85	Out	ID (Interrupt Disable) signal output. When Sub CPU is busy, it sends ID signal to Music LSIs so as not to be interrupted.
16	PB6 (LDC)	Out	Stays HIGH level for approximately 830 milliseconds after power switch is turned on in order to avoid mis-lighting of LEDs and shock noise on power UP.
17	PC0 (L11)	Out	LED drive signal output.
18	PC1 (SYC)	In	Synchronous signal from Main CPU.
19	PC2 (CONT)	In/Out	Control signal between Main and Sub CPUs.
20	PC3 (INT2)	In	Interrupt signal from Music LSIs.
22~24	PC5 (L8) ~ PC7 (L10)	Out	LED drive signals output.
26	INT1	In	Interrupt signal from Main CPU.
28	RESET	In	Reset signal input. The terminal receives a LOW level pulse at power ON. CPU internal circuits are initialized then.
31	X1	In	15MHz clock pulse input.
32	Vss		Ground (0V) source.
44	RD	Out	Read signal output. Drops to LOW when Sub CPU reads data from peripheral devices.
45	WR	Out	Write signal output. Drops to LOW when Sub CPU writes data into peripheral devices.
46	ALE	Out	Address latch enable signal output. Data signals D0~D7 become address signals ASO~AS7 when the terminal rises to HIGH.

Pin No.	Terminal Name	In/Out	Function
47~64	PFO (AS8) ~ PF7 (AS15)	Out	Upper address signals (AS8 ∼ AS15).
55~62	PD0 (DS0) ~ PD7 (DS7)	In/Out	Data signals (DSO ~ DS7).
63, 64	VDD, Vœ		+5V power source.

Data Read and Write Timing Chart

Data Read

Data Write

8. MAIN RAM & ROM ACCESSES

H-high level, L-low level, X-irrelevant

8K byte of Main RAM is the data area as written on page 17.

The RAM is backed up by +VBR (3V) of lithium battery.

The capacity of Main ROM is 32K byte and containts program for the system execution. Lower address bus $(A0 \sim A7)$ is provided from CPU interface LSI (MB74H178).

When signal ALE from Main CPU rises to HIGH, data bus (D0 \sim D7) becomes address bus (A0 \sim A7) in CPU interface LSI (MB74H178). Upper address bus A8 \sim A15 is directly supplied from Main CPU.

Chip select signals are from signals A13 ~ A15.

Chip selection	A13	A14	A15	WR	RD
Main RAM	LOW	LOW	HIGH	H or L	HIGH
Main ROM	-	-	LOW	-	LOW

 $\mu PD4464C-15L$ is an BK byte RAM while $\mu PD23C128EC$ is a 16K byte ROM.

Refer to page 17 for the functions of each device.

In the same procedures as for Main CPU, lower address bus (ASO \sim AS7) is generated from data bus (DSO \sim DS7) in CPU interface LSI (MB64H173) when signal ALE is HIGH. Upper address bus (AS8 \sim AS15) are provided from Sub CPU directly.

Chip select signals are generated from signals AS8, AS14 and AS15.

'LS138 FUNCTION TABLE

Chip selection	ASB	AS14	AS15	WR	RD
RAM-1	LOW	HIGH	LOW	L or H	HIGH
RAM-2	HIGH	HIGH	LOW	LorH	HIGH
ROM	-	LOW	HIGH	-	LOW

	- 18	(PUT	1		OUTPUTS										
EN	BLE	8	ELEC	CT	1		0	UIR	J1 5						
Gī	63.	С	•	A	YO	٧١	Y2	Y3	74	75	Y6	. 77			
٦. ⁻	×	×	×	×	H	H	H	Ħ	H	H	H	н			
L	×	×	×	×	H	н	H	H	H	H	H	H			
н		L	L	L	1 6	H	H	H	н	H	н	H			
H	L	L	L	H	H	L	н	H	H	H	н	H			
H		L	н	L	14	н	L	H	H	м	H	н			
H	L	L	H	H	H	H	H	L	н	H	H	H			
H	L	H	L	L	H	H	H	H	L	н	H	H			
н	L	H	L	H	H	н	H	H	H	L	H	H			
H	L.	H	H	L	l H	н	H	H	H	Ä	L	H			
н	i.	H	H	H	l H	H	H	H	H	H	Ň	î.			

^{*}G2 = G2A + G2B H= high level, L=leve level, X=irreleven

10. CPU INTERFACE LSI (MB64H173)

10-1. Function of Each Block

F/F 1 — Set by the clock pulse '0' and signal R2 from SUB CPU, and generates signal SYC which synchronizes MAIN and SUB CPUs.

FUNCTION TABLE

	INPUT									
PRESET	CLEAR	CLOCK	D	0	ã					
L	н	×	X	н	L					
н	L	×	×	L	H					
L	L	×	×	H.	н•					
н	н	t	н	Н	L					
н	н	†	L	L	н					
н	н	L	×	مها	ā.					

Decoder 1 — Generates clock pulses for the latches from signals A0 \sim A3, A14, A15, \overline{PD} and \overline{WR} .

FUNCTION TABLE

EN	ABLE		ELE(OUTPUT							
G١	<u>g</u> 3.	C	•	A	YO	YI	Y2	Y3	Y4	Y5	Y6	Y7		
X	H	×	×	X	Н	Н	Н	н	H	H	H	Н		
L	×	×	×	×	н	H	н	H	H	н	H	н		
H	L	L	L	L	L	н	H	H	H	H	H	H		
H	L	L	L	H	н	L	H	H	H	H	H	H		
н	L	L	н	L	н	H	L	H	н	H	H	H		
H	L	L	н	H	н	н	H	L	H	H	H	н		
н	L	н	L	L	н	H	H	H	L	H	H	H		
H	L	н	L	H	н	H	H	H	H	L	H	H		
H	L	н	н	L	н	H	H	H	H	н	L	н		
н	L	н	H	н	н	н	H	H	H	н	н	L		

[•]G2 • G2A • G28

Latch 1 — Converts MAIN CPU's data bus (D0 \sim D7) into address bus A0 \sim A7, and generates clock pulses '0' \sim '5'.

Latch 2 - For data transfer from MAIN CPU to SUB CPU.

Latch 3 - Transfers data from pitch bender and modulator wheel to SUB CPU.

Latch 4 - For data transfer from SUB CPU to MAIN CPU.

Latch 5 - Converts SUB CPU's data bus (DSO ~ DS7) into address bus ASO ~ AS7.

FUNCTION TABLE (EACH LATCH)

	INPUT		OUTPUT
δc	ENABLE C	0	0
L	н	н	н
L	н	L	L
L	L	×	Q.
н	×	×	Z

Latch 1 and 5

FUNCTION TABLE (EACH FLIP-FLOP)

	INPUT		OUTPUT
ου	CLK	D	0
L	1	н	н
L	t	L	L
_	L	×	۱ ۹۰
	×	×	Z

Larch 2 ~ 4

10-2. Data Transfer Procedures

- 25 -

- (1) Pitch Bender & Modulator SUB CPU.
- 1 Voltage level from the pitch bender or the modulator is converted into digital data in the CPIJ's built-in ADC (Analog to Digital Converter) and output from data bus (D0 ~ D7).
- (2) The data is entered into CPU Interface LSI.
- (3) Sending signal R1, SUB CPU sets Latch 3 and reads data periodically.
- (2) MAIN CPU SUB CPU.
- 1) Via Latch 1 and Decoder 1, MAIN CPU drops clock pulse '0' to LOW level. By clock pulse '0', F/F 1 is preset to rise signal SYC.
- 2) MAIN CPU puts data on data bus D0 ~ D7, and at the same time, clock pulse '0' rises to HIGH level.
 - At the rising edge of clock pulse '0', data from MAIN CPU is set in Latch 2.
- 3 MAIN CPU interrupts SUB CPU from terminal PB2, and simultaneously generates signal CONT from terminal PB3.
- 4 Generating signal R2 from Decoder 3, SUB CPU reads the data from Latch 2 via data bus DSO ~ DS7.
- 5 SUB CPU sends signal ACK to MAIN CPU via Decoder 3 and F/F 2.

 Upon receipt of signal ACK, MAIN CPU confirms that SUB CPU has received the data and generates signal \$16 in Decoder 2.
- 6 When all the data have sent to SUB CPU by repeating the above procedures 1 ~ 5, MAIN CPU drops signal CONT to LOW.
- 7 Confirming that both CONT and SYC are LOW, SUB CPU determines that all the data have been received.

- (3) SUB CPU MAIN CPU.
- 1) In the same procedures as stated in the item (2), MAIN CPU sends "Request Command" that inquires SUB CPU to transmit data.
- 2 SUB CPU puts data on data bus DSO ~ DS7 and sets the data in Latch 4 by signal W1. SUB CPU then presets F/F 2 by pulse φ4, causing signal X896 to be entered in MAIN CPU.
- 3 Acknowledging that data is set in Latch 4 by signal X896, MAIN CPU generates clock pulse '2', causing data from SUB CPU to be put on MAIN CPU data bus D0 ~ D7.
- 4 After receiving data, MAIN CPU sends SUB CPU an interrupt signal from terminal PB2, and by interrupt signal, SUB CPU confirms that the data is received by MAIN CPU.
- (5) Repeating the above procedures (2)~ (4) SUB CPU sends the next data to MAIN CPU.

(4) Key and switch scanning

Receiving a key common signal from data bus, MAIN CPU discriminates a key or a switch input.

- 1 From signals PA0 ~ PA3 of MAIN CPU, 4-line to 16-line decoder 74LS154P-2 generates key common signals KC0 ~ KC11.
- 2 When a switch is put, one of the input signals KIO ~ KI5 (for switches) is entered in CPU Interface LSI MB64H173.
- 3 MAIN CPU generates the clock pulse '4' (for switches), causing the tristate buffers to be opened.
- 4 The input pulse is entered into data bus.
- (5) Discriminating the contents of the data bus, MAIN CPU determines which switch is pushed.

		IN	TU											001	PUT						
GI	G2	0	С	8	A	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
L	L	L	L	L	L	L	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н
L	L	L	L	L	н	н	L	н	н	н	н	н	н	н	н	н	н	н	н	н	н
-	L	L .	L	н	L	н	н	L	н	н	н	н	н	H	н	н	μ	н	н	н	н
-	L	-	L	Н	н	H	H	н	L	н	н	н	н	н	н	н	H	н	н	н	н
-	Ļ	-	н	Ļ	L	н	н	н	н	L	Н	н	н	н	н	н	н	н	н	н	н
-	٠.	١.	Н	Ŀ	Н	Н	н	Н	н	н	L	н	н	н	н	н	н	н	н	н	H
١.	L	-	H	н	L	н	н	н	н	н	Н	L	н	н	н	н	н	н	н	н	н
-	L	-	H	Н	Н	н	н	н	н	н	Н	н	L	н	н	н	Н	н	н	н	H
-	Ļ	H	Ļ	Ļ	L	Н	н	н	н	н	Н	н	н	L	н	н	н	H	н	н	н
-		H	Ļ	L	н	Н	н	н	н	H	н	H.	н	н	L	н	н	н	H	н	н
1 5		H	Ļ	н	L	H	н	н	H	H	H	н	Н	н	н	L	н	н	н	н	H
-		H		н	H	H	н	Н	н	H	н	н	н	н	н	H	L	н	н	н	н
١.		H	H	Ŀ	Ľ	H	H	Н	Н	н	н	н	н	н	н	н	н	L	н	H	н
-	Ļ	H	Н	L	H	H	Н	н.	H	н	Н	н	н	н	н	н	н	Н	L	н	н
-		H	Н	Н	Ŀ	H	Н	H	н	H	н	н	H	н	Н	н	н	н	н	L	н
1 -	L	H	Н	Н	Н	H	Н	н	Н	Н	H	н	H	Н	Н	н	Н	Н	н	н	L
1 5	н	X	X	X	X	H	H	н	H	H	Н	н	н	н	Н	н	н	Н	н	H	н
"	Ŀ	X	X	×	X	H	н	н	н	н	Н	н	H	н	н	н	H	H	н	н	н
LH	н	×	×	×	X	н	н	H	н	н	н	Н	н	Н	Н	Н	н	Н	Н	Н	H

74LS154P Function Table

10-3. Switch Matrix

	KI 5	KI 4	KI 3	KI 2	KI 1	KI O
KC 0	MIDI SOLO		OPERATION MEMORY	KEY SPLIT	TONE MIX	NORMAL
KC 1	CARTRIDGE	EXCHANGE	MASTER TUNE	KEY TRANSPOSE	GLIDE ON/OFF	PORTAMENTO ON/OFF
KC 2	BANK F	BANK E	BANK D	BANK C	BANK B	BANK
KC 3	BANK H	BANK G	MEMORY 8	MEMORY 7	MEMORY 6	MEMORY 5
KC 4	MEMORY 4	MEMORY 3	MEMORY 2	MEMORY 1	YES	NO +
KC 5	VALUE A	VALUE V SAVE	ENV. POINT END	ENV. POINT SUSTAIN	PAGE UP	PAGE DOWN
KC 6	CARTRIDGE SAVE/LOAD	NAME	PORTAMENTO	GLIDE	BEND RANGE	WHEEL/ AFTER TOUCH
KC 7	NOISE	RING	LINE SELECT	VIBRATO	OCTAVE	INITIALIZE
KC 8	DCA 1 ENV	DCA 1 KEY FOLLOW	DCW 1 ENV	DCW 1 KEY FOLLOW	DCO 1 ENV	DCO 1 WAVE FORM
KC 9	DCA 3	DCA 2 KEY FOLLOW	DCW 2 ENV	DCW 2 KEY FOLLOW	DCO 1 ENV	DCO 1 WAVE FORM
KC10	DETUNE	PARAMETER COPY	DCA 2 LEVEL	DCA 1 LEVEL	DCA 2 VELOCITY	OCA 1 VELOCITY
KC11	SUSTAIN PEDAL	PROTECT ON/OFF	MODULATION ON/OFF	WRITE	COMPARE/ RECALL	MIDI ON/OFF
KC12						PACK DETECTION

11. KEYBOARD

CZ-1 varies the sound volume in accordance with the key touch speed and depression strength.

11-1. Key Touch Speed Detection

Each key has two key contact switches S1 and S2.

Fig. 11-1

When a key is hit, S1 turns on first, then S2.

The interval time between turning on of S1 and S2 varies according to the touch speed of the key.

LSI MSM 6200 detects the time interval and determines the key touch speed.

Some RC (resistor and capacitor) integrating circuits are connected to the MSM6200 and when switch S1 turns on, the RC circuit starts to discharge. The discharging stops when S2 turns on.

The MSM 6200 also contains an ADC (Analog to Digital Converter) and changes the voltage Vc of the RC circuits into a 5-bit digital signal which is sent to the CPU as key entry and hitting speed data.

*CA JUUUUUUUUUUU

- 30 -

11-2. Key Matrix

11-3. Pin Functions of Key Touch Control LSI (MSM6200)

Pin No.	Terminal Name	In/Out	Function	
1~8	i'R6 ~ IC8	In/Out	External RC discharging circuit inputs and outputs.	
10	REF		Reference voltage (+5V).	
11	AG		Analog ground.	
20	01	Out	Interrupt request signal output. When LOW, MSM6200 interrupts the CPU.	
25~28	02 ~ 05	Out	Upper 4-bit data bus.	
29~32	101 ~ 104	In/Out	Lower 4-bit data bus. <u>Q2</u> Q3 Q4 Q5 IQ1 IQ2 IQ3 <u>IQ4</u>	
			MSB LSB	
34	12	In	ALE (Address Latch Enable) signal input. When HGIH, address in MSM6200 is assigned.	
35	13	In	WR signal input. When LOW, data or address can be written in MSM6200.	
36	14	In	RD signal input. When LOW, CPU reads data from MSM6200.	
37	15	In	CS (chip select) signal input. When LOW, communications between the CPU and MSM6200 is possible.	
39	i 10	in	Reset signal input. LOW: Active. At power on, receives a reset signal to initialize MSM6200's internal circuits.	
40	VDD		+5 volt source.	
43	PGI	In	Clock pulse (2.47 MHz) input.	
45	VSS2		Ground (0 voit) source.	
46	VSS1		+2.25 volt source.	
47~60	KC2B~KC1A	Out	Key common signal outputs.	
58~68	K8 ~ K38	in	Key input terminals.	
91~100	IR1 ~ ICS	In/Out	External CR circuits inputs and outputs.	

11-4. Pin Functions of Key Interface LSI (µPD8049HC)

Pin No.	Terminal Name	In/Out	Function
1	TO	In	Clock pulse input for data read/write.
2	XTAL1	In	8.96 MH clock pulse input.
4	RESET	in	At power ON, the terminal stays LOW level for a while in order to initialize internal circuits.
6	INT	In	Interrupt signal input from MSM6200.
8	RD	Out	Read signal output. Key interface LSI reads data from MSM6200 when terminal is LOW.
10	WR	Out	Write signal output. Key interface LSI writes data or address in MSM8200 when terminal is LOW.
11	ALE	Out	ALE (Address Latch Enable) signal output. Address in MSM6200 is assigned when HIGH level.

Pin No.	Terminal Name	In/Out	Function
12~19	DB0 ~ DB7	In/Out	Data bus (D0 ~ D7) between MSM6200.
20	Vss		Ground (0V) source.
26	VDD		+5V source.
27~34	P10~P17	Out	Data bus (D0 ~ D7) between Main CPU.
36	P25 (CNT49)	In	Control signal input from CPU.
37	P26 (INT49)	Out	Interrupt signal output to CPU.
38	P27 (WR49)	Out	Timing pulse output for data read/write.
39	T1 (TST)	In	Test signal input. Key interface LSI does selfcheck of internal RAM/ROM at LOW.
40	vcc		+5V source.

11-5. Key Touch Data Communication

(1) Block Diagram

Key touch control LSI fetches the data of key entry and key touch speed from keyboard, then the data are transmitted to Main CPU via Key interface LSI which is a buffer.

The Key interface LSI quicken the data communication between the Key touch control LSI and the CPU.

(2) Timing chart from MSM6200 to μ PD8049HC

For sending mainly key entry and initial touch data.

(3) Timing chart from µPD8049HC to MSM6200

For sending mainly request command of key entry and key touch speed data.

(4) Timing chart from µPD8049HC to MSM6200

For transmitting mainly key entry and key touch speed data in this process.

11-6. After Touch Control Circuit

- (1) When the after touch sensor is pressed harder, its resistance becomes lower dropping the voltage level of terminal AN2.
- (2) Main CPU convertes analog signal into digital data in the internal ADC (Analog to Digital ... Converter), then output the data to DAC (Digital to Analog Converter) block.
- (3) These data are converted to analog signal by DAC block.
- (4) The output voltage VC is input to VCA (M5241L) on PCB AS1M, to vary the amplitude of the VCA.

Note: Construction of after touch sensor.

After touch sensor is a sheet of silicon rubber in which carbon particles are inlaid.

While no force is applied, the resistance between the both sides is infinity. However, when it is pressed hard, the density of the carbon becomes high causing its resistance to be as small as $10 \sim 30$ ohms.

The silicon rubber is put between two thin metal plates.

12. DATA CLOCK PULSE GENERATOR

Terminel	Clock	Function	
Y6 #16		Clock pulse for interrupt from Sub CPU to Main CPU.	
Y7~Y11	♦17~♦18	Clock pulse for LED drive circuit.	
Y12	ø1C	Clock pulse of control signal for stereo circuit.	
		Enable signal of buffer (SN74LS240N) and reset pulse of Flip/Flop (SN74LS74) for key data transmission.	
Y14, Y15	41E, 41F	ALE (Address Latch Enable) signal for RAM pack,	

13. LED DRIVING CIRCUITS

Combining the signals A0 \sim A3, decoder 74LS154P-1 generates signals ϕ 17 \sim ϕ 1A which : \approx 1atches 74LS174N-1 \sim 5.

For lighting the LED "NORMAL", MAIN CPU raises signal D0 which is inverted to LOW level.

Then, Main CPU generates clock signal ϕ 17 from signals A0 \sim A3.

DO (= LOW) is set in latch SN74LS174N-1 dropping signal LM70 LOW.

The LED "NORMAL" is lit since its anode is connected to VDL2 (+5V).

These LEDs are controlled by Sub CPU.

For example, when Sub CPU wishes to light the "BANK-A" LED, it drops all the signals L8 ~ L11. Y0 output of Decoder 5 drops to LOW, causing the LED to be lit.

14. ANALOG CIRCUIT BLOCK DIAGRAM

(1) PD (Phase Distortion) Sound Block

Music LSI Two LSIs generate digital PD sound signals as show below.

Mode	NORMAL	TONE MIX	KEY SPLIT
μPD933AC-1 (Master)	TONE 1		LOW
μPD933AC-2 (Slave)	Mix	TONE 2	UPPER

DAC (Digital to Analog Converter)

.... Mixes the two different digital signals and converts into an analog signal.

Expander Circuit Music LSIs' outputs are contracted to obtain a wide dynamic range of amplitude. Expander circuit reforms it into a proper waveform.

Sample/Hold Circuit . . . Removes a high frequency noise called as glitch contained in the DAC output. Also separates the master and slave waveforms.

(2) After Touch Block

After touch effect gives variation of amplitude and modulation to the output sound. After touch sensor under the keyboard varies its resistance from infinity to approximately 10ohm by means of pressure strength. The change of the resistance is input to Music LSIs or VAC circuit via main CPU.

The CZ-1 is able to set the depth of the effects by parameter (0 \sim 15).

After touch effect	Flow of after touch signal		
Modulation	Sensor → Main CPIJ → Music LSIs		
Amplitude	Sensor → Main CPU → After touch control circuit → VCA circuit		

(3) Stereo Chorus Block

Gives stereo effect to the output sound. ON/OFF of stereo effect is input by panel switch. The stereo chorus effect can be set individually even in Tone Mix or Key Split mode.

Ex.	Mode	Stereo effect ON/OFF		
	Tone mix	Tone 1: ON,	Tone 2: OFF	
	Key split	LOW: OFF,	UPPER: ON	

(4) VCA (Voltage Controlled Amplifier)

Receives voltage which are converted from the resistance value of Main VR, Foot VR, or after touch sensor.

In accordance with the voltage level, this block vary the amplitude of the sound.

15. MUSIC LSI: ACCESSES

CZ-1 employs two Music LSIs, Master LSI and Slave LSI, which are controlled by SUB CPU.

16. PIN FUNCTION OF MUSIC LSI (µPD933AC)

Pin No.	Terminel Name	In/Out	Function	
1	WE	In	Write enable terminal. At LOW, the LSI receives data from SUB CPU.	
2	WS	in	Write strobe terminal. SUB CPU writes data into Music LSI at the rising edge of the signal.	
3	RQ	Out	Request signal terminal. At LOW.	
4	ĪĎ	in	Interrupt disenable terminal. At LOW, the LSI receives interrupt mask signal.	
6	m/s	in	Master or Slave determination terminal. When LOW, the LSI becomes Slave LSI while it becomes Master LSI when the terminal is HIGH.	
7	SYC	In/Out	Synchronous signal input/output terminal. The synchronous signal is sent from Master LSI to Slave LSI.	
8	CLK	ln	4.48 MHz clock pulse input.	
10	GND		Ground (0V) source.	
11	RST	In	Reset signal input. Normally the terminal stays LOW. At power ON, the terminal rises to HIGH level for a while and the internal circuits of the LSI are initialized.	
12	DOE	In/Out	Data output enable terminal. At HIGH, digital sound signals are output from Master LSI while Slave LSI outputs sound signal at LOW level.	
13	SH	Out	40 KHz sampling signal for Sample & Hold circuit.	
15~17	DO1 ~ DO?	Out	Control signals for Expander circuit.	
18~29	DO4 ~ DO15	Out	12-bit digital sound signals.	
30	VDD		+5V power source.	
31~38	D87 ~ D80	In/Out	8-bit data bus between Music LSIs and SUB CPU.	
39	<u>cs</u>	In	Chip select terminal. At LOW, the LSI is designated by SUB CPU.	
40	RD	In	Read data terminal. At LOW, the LSI sends data to SUB CPU.	

17. DAC (Digital to Analog Converter) CIRCUIT

The two Music LSIs output different waveforms. When signal DOE is HIGH, Master LSI outputs a waveform while Slave LSI outputs a waveform at LOW level of DOE.

Note: As the following figure is an illustration for a principle of the time sharing, the actual waveforms differ.

Master/Slave LSI are digital signals, not analog ones.

18. EXPANDER CIRCUIT

In order to extend the dynamic range of the melody signal, a part of DAC output waveform is contracted and expanded by Expander Circuit.

In accordance with the voltage levels of the signals DO1, DO2 and DO3, one of the input channels is turned on.

By the resistors connected to each channel, the amplitude of DAC output varies from 1 to 1/16.

Thus, output of DAC is expanded in accordance with the voltage levels of signals DO1, DO2 and DO3.

19. SAMPLE & HOLD CIRCUIT

The block eliminates a high frequency noise called as "Glitch" which appears at the end of the stepped waveform.

When signal SH from Master LSI is HIGH, the switch X in TC4053 is contacted with the terminal OX. This causes the input signal to pass through. At this time, the voltage level of the waveform is charged in the Hold Capacitor.

On the other hand, while a glitch appears on the waveform, the switch X is contacted with the terminal IX. This results in cutting off the glitch. Although no signal comes out of TC4053, the input of the opamp keeps the same voltage level by discharging of the Hold Capacitor.

Sampling or holding the slave waveform is performed by the same procedures using signal SH from Slave LSI and switch Z.

20. STEREO CHORUS CONTROL CIRCUIT

20-1. Block Diagram

20-2. Signal Function

- 1 MLL, MLR Left (Right) analog melody signal of DAC output.
- ② MLTH, MRTH Left (Right) analog melody signal of original sound.
 (Not through Stereo Chorus circuit)
- (Not through Stereo Chorus circuit)
- (4) BOUT L, BOUT R ... Left (Right) analog melody signal of Stereo Chorus sound. (Through Stereo Chorus circuit)
- (5) MTH Mixed (L+R) analog melody signal of original sound for Stereo Chorus sound.
- 6 OUT L, OUT R Stereo Chorus sound. (BOUT L (R) + MTH)

20-3. Circuit Function

- ① Decoder for Stereo Chorus Generates control signals for the analog switch. (SN74LS174N-2)
- (2) Analog switch Selects whether or not passing the melody signal through (TC4053BP) Stereo Chorus circuits.
- (3) BBD (MN3209) Bucket Brigade Device for Stereo Chorus effect.
- (4) Output Amp. Mixes the stereo or monaural signals.

20-4. Line-out Circuit

- 1 Stereo sounds are output only when output plugs are connected to both A/A+B and B terminals, while mixed sound is heard when output plug is connected only one terminal.
 - Note: When output plug is connected at B terminal, mixed sound B/A+B is also output.
- 2 The relay eliminates a shock noise at power ON/OFF. Voltage level VDL2 is controlled by signal LDC from terminal PB6 of Sub CPU. (Refer to page 19)

The following table shows combinations of the analog switch and the LINE-OUT terminal output in each mode.

MODE	Stereo Chorus	LINE-OUT terminal output A/A+B (OUT-R) B (OUT-L)		Stereo Chorus VR O: Effective		Analog switch TC4053			Melody signal output			O : Output X : No output		
MODE	ON/OFF			X : No effective		np.	-	×	utp Y	_	MATH	MLTH	ммтн	MTH, B OUT
NORMAL	ON	OUT L + OUT R	OUT L + OUT R	0	н	н	н	1	1	1	×	×	×	٥
NORMAL	OFF	ммтн	ммтн	×	L	н	Н	1	ī	0	×	×	0	×
	TONE 1: ON	OUT L + OUT R	OUT L + OUT R	TONE 1: 0	Ī.,	Ī.,	Ī.,	Ι.	,	,				
	TONE 2: ON	001 E + 001 R	001 E + 001 N	TONE 2: 0	"	H	"	'	'	'	×	×	×	•
	TONE 1: ON	OUT R + MRTH	OUTL	TONE 1: 0	L	L	н	Γ,		,				
TONE	TONE 2: OFF			TONE 2: X	_	_	"	Ľ	٦	ľ	٥	×	×	•
MIX	TONE 1: OFF	OUT R	OUT L + MLTH	TONE 1: X		н	Γ.	٥	,	,				
	TONE 2: ON			TONE 2: 0	"	"	١	ľ	l'	Ι'	×	٥	×	0
	TONE 1: OFF	MRTH	MLTH	TONE 1: X		Ι.	Ι.					_		
	TONE 2: OFF			TONE 2: X	٦	۲	-	P	٥	٥	٥	•	×	×
	UPPER : ON	OUT L + OUT R		UPPER : O			Ī.,	Ι.		Ι.				
	LOWER: ON	001 E + 001 K	OUT L + OUT R	LOWER. O	Ŧ	H	H	'	Ľ	Ľ	×	×	×	•
	UPPER: ON	OUT R	OUT L + MLTH	UPPER : O	I	н		0	,	Ι.				
KEY	LOWER: OFF		OU! E + ME! H	LOWER: X	_	_	٦	١	'	'	×	0	×	•
SPAIT	UPPER : OFF	OUT R + MLTH	OUT L	UPPER : X	н		н	,	0	Ι.				
	LOWER: ON	CO. R. WEIR	001 6	LOWER: O	7	-	7	Ι'.	3	'	0	×	×	•
	UPPER : OFF	MLTH	MRTH	UPPER : X		Γ.	_	0						
	LOWER: OFF		MATH	LOWER: X	-		•	٦	٥	١	٥	0	×	×

Note: 1 When connecting both A/A+8 and B output of LINE-OUT terminal.

21. Stereo Chorus Circuit 21.1.BLOCK DIAGRAM

21-2. Function of Each Block

Analog switch (TC4053BP)	-	Determines whether or not passing melody signal through Stereo Chorus circuits. (Controlled by CPU)
Filter A	-	As the BBD does not pass signals which exceed 20KHz, this block is a low-pass filter whose cutoff frequency is 20KHz.
Compressor	-	In accordance with input signal level, this block controls the amplitude. When the input signal is small, the circuit amplifies the signal whereas the amplitude becomes smaller when the input is a large-level waveform. The block is used for reducing the noise.
Three-Phase LFOs	-	Generates low-frequency triangle signals of 0.56Hz and 7,14Hz. The three outputs differ 120 degrees in phase.
VCOs	-	Voltage Controlled Oscillator which generates the clock pulses for the BBDs. Their oscillation frequencies vary in accordance with the input voltage level.
BBDs	-	Bucket Brigade Device. Stereo chorus effect is given by delaying the right or the left sound.
Filter B	-	Since the output signal of the BBD carries a noise caused by clock pulses, the filter removes the noise.
Expander	-	Functions contrary to the Compressor. This circuit is also used for reducing the noise.

21-3. Three-Phase LFO (Low Frequency Oscillator)

The left figure shows three inverters serially connected. If LOW level input enters the circuit, the output becomes HIGH level. Because of the transfer characteristic of the inverter, the inverted input voltage appears on the output with a time lag.

Hence, the circuit oscillates and the oscillation frequency is determined by the time lag.

The following shows the actual circuit of the Three-Phase LFO. The time lag is controlled by the parallel connected capacitor and the resistors.

Model CZ-1 employs two LFOs whose oscillation frequencies are 0.56 Hz and 7.14 Hz. The output differs 120 degrees in phase.

Both 0.56 Hz and 7.14 Hz triangle waveforms are mixed to give variational delays of the sound in the BBD.

Ti.e 0.56 Hz and 7.14 Hz waveforms are mixed in the ratio of 10:1 as they pass through 18Kohm and 180Kohm resistors, respectively.

21-4. VCO (Voltage Controlled Oscillator)

The VCO is an oscillator whose oscillation frequency varies in accordance with the input voltage level.

In the left figure, the voltage levels of the A-OUT and the B-OUT are opposite.

- (1) When A-OUT is HIGH, B-OUT drops to LOW.
- (2) From A-OUT, electric current flows into B-IN via a differentiation circuit.

As a result, the voltage of B-IN drops gradually while the A-IN voltage gradually rises.

- (3) When B-IN becomes lower than the threshold level, B-OUT rises to HIGH. When A-IN becomes higher than the threshold level, A-OUT drops to LOW.
- (4) The circuit oscillates repeating the above operations.

The following shows the actual circuit of VCO. When control terminal (A) is GND (zero volt), it takes approximately 15 microseconds for the differentiation circuit to reach the threshold voltage.

When the voltage of (A) is 2 volts, it takes only 9 microseconds to reach the threshold level.

As VCO receives a triangle waveform from the Three-Phase LFO, it oscillates from 55.6 KHz to 33.3 KHz in accordance with the voltage level of LFO output.

21-5. BBD (Bucket Brigade Device)

The BBD contains serial-connected delay elements. The input signal is shifted one step per one clock pulse.

The clock pulse is generated in the VCO, and as it varies from 33.3 KHz to 55.6 KHz, the delay time varies.

Model CZ-1 employs three BBDs in order to give better stereo effect.

21-6. Compressor and Expander Circuits

If a sound signal passes through the BBD, a noise is carried on the signal especially when the input level of the signal is low.

When a low signal does not pass through the Compressor and the Expander;

When a low signal passes through the Compressor and the Expander;

Thus, the S/N ratio of the circuit is heightened.

The VCA mixer output is controlled

by foot VR, main VR, and after touch sensor, and varies its output voltage in negative logic. Besides, VCA control signal is also varied by Amp. or after touch parameter.

		Pressure of after	Amp	Amp./After touch parameter						
	Main VR	touch sensor	15	~	8	~	0			
VCA	Min.	No pressure	-4.6V	~	-3.6V	~	-2.5V			
control	Max.	No pressure	-2.0V	~	-1.0V	~	+0.2V			
signal	Max.	Max. pressure	+0.2V	~	+0.2V	~	+0.2V			

23. RESET CIRCUIT

The following circuit is Reset (power fail detection) circuit which generates power ON/OFF reset pulse for peripheral LSIs (CPUs, Music LSIs, Key interface LSI, and Key touch control LSI), to protect recorded data in the RAM's.

24. MIDI INTERFACE CIRCUIT

MIDI (Musical Instrument Digital Interface) is an international standard for external control of electronic musical instruments. In other words, standardized input and output terminals are equipped with musical instruments, rhythm machines, sequencers, etc. and music information which the machines send and receive via these terminals is made compatible by certain formatting. This standard enables a musical instrument to connect, synchronize, and sequence (memorize) to other models and even to other makes.

Serial data informations from other instruments comes in from MIDI-IN terminal and enters MAIN CPU's PC1 terminal via photo coupler PC900.

Serial data informations from other instruments comes in from MIDI-IN terminal and enters MAIN CPU's PC1 terminal via photo coupler PC900.

Thus, CZ-1 is not electrically connected with any external instruments to cut electric noises. Input signal also goes out MIDI THRU terminal through a photo coupler and two inverters.

MAIN CPU transmirs MIDI data from PCO terminal.

25. ADJUSTMENT

25-1. DAC Offset Voltage Adjustment

- (1) Connect a digital vo.tmeter between pin 13 of DAC BA9221 and pin 1 of opamp TL082-1.
 - (Refer to check point (A) on page 11)
- (2) While the test unit is not producing any sound, adjust VR3 so that the digital voltmeter reading is -3 ± 3mV.

Note: Be sure to use a digital voltmeter.

25-2. VSS1 Voltage Adjustment (Power Source for MSM6200)

- (1) Measure VDD (+5V) accurately.
- (2) Connect a digital voltmeter between pin 5 of opamp M4558-2 and ground DPG. (Refer to check point (B) on page 11)
- (3) Adjust VR1 so that Vss1 is 2.25 ± 0.05 V.

Note: Be sure to use a digital voltmeter.

25-3. LCD Brightness Adjustment

Turn the VR2 on PCB MA1M all the way counter clockwise.

25-4. After Touch Adjustment

Turn the VR4 on PCB MA1M all the way clockwise.

25-5. VCA Offset Voltage Adjustment

(1) Connect a digital voltmeter as indicated in the following table. (Refer to checkpoing © and D on page 4)

Connection point	VR to be adjusted
Pin 1 of opamp and pin 3 of VCA (GND)	VR2
Pin 7 of opemp and pin 3 of VCA (GND)	

(2) While the test unit is not producing any sound, adjust VR2 and VR3 so that digital voltmeter reading is 0±3mV.

Note: Be sure to use a digital voltmeter.

25-6. BBD Adjustment

(1) Connect an oscilloscope as shown in the table below. (Refer to checkpoint E, F and G on page 12)

Connection point (MA2M PCB)	Adjustment VR
Conter terminal of VR1 and pin 1 of BBD MN3209-1 (GND)	VR1
Center terminal of VR2 and pin 1 of BBD MN3209-2 (GND)	VR2
Center terminal of VR3 and pin 1 of BBD MN3209-3 (GND)	VR3

MA2M PCB

(2) Set the oscilloscope on AC range, 0.1V/div, and 10µS/div, then observe the waveforms.

(3) Adjust each VR for the minimum width of the waveform.

25-7. Volume Adjustment

- (1) Keep pressing "INITIALIZE" button, depress "DC01 WAVEFORM", "DC01 ENVELOPE", "DCW1 KEY FOLLOW", "DCW1 ENVELOPE", "DCA1 KEY FOLLOW", "DCA1 ENVELOPE", "DETUNE", and "OCTAVE" buttons on "NORMAL" mode.
- (2) Depress "DCW1 ENVELOPE" and then "END" buttons.
- (3) Choose 1+1' by "LINE SELECT" button.
- (4) Set the volume control to its maximum and the stereo chorus volume to its minimum.
- (5) Connect a digital voltmeter and a register of $47K\Omega$ between the ground and LINE-OUT terminal (either A/A+B or B output).
- (6) Depressing the key A3, adjust 50K VR on the PCB M5153-AS1M so that the voltmeter reading is 340mV ± 20mV.

2) Refer to current Technical News Bulletins for price code values.

CZ-1	Parta Li	st			_ 	т
item	Code No.	Part Name	Specification	O,tA	Price Code	Rank
	(1) M515	-MA1M PCB ASS'Y				
	2002 1420	LSI (Melody LSI)	µРD933AC	2	BA	В
÷	2010 0105	LSI (Key interface LSI)	µРD8049HC-672	1	UA	В
÷	2010 0112	LSI (RAM)	μPD4464C-15L	3	AW	В
*	2010 0322	LSI (CPU)	PD7810HG·36	2	ВВ	: B
\$	2010 1176	LSI (Main ROM)*New Version	µРD27С256С-20А15	1	AV	, В
•	2010 0336	LSI (Sub ROM)	μPD23C128EC-036	1 1	AS	. B
-	2001 0525	C MOS IC	MB64H173	1 1	AU	A
	2100 3786	C MOS IC	TC40H004P		AE	A
	2100 4029	C MOS IC	TC4051BP	11	AG	A
	2100 4472	C MOS IC	TC74HCU04P	2	AE	A
	21116092		TC74HC32P	1.1	AE	A
	2100 3255	MOS IC	TC4049BP	1 1	AE	; _A
	2100 3808		TC40538P		AI	A
	2111 2496	ic	SN74LS174N	3	AK	: A
	2111 2615	ic	SN74LS05N	1	AF	. A
	2110 3756	Binolar IC	SN74LSO4N	2	AF	i A
	2111 2160	1 - 1	SN74LS32N	2	AF	A
	2111 2178	Bipolar IC	SN74LS74AN	2	AG	. A
	2111 2194	Bipolar IC	SN74LS138N	1	AG	A
	2111 2283	· ·	SN74LS08N	1	AF	: _A
	2:11 5177		SN74LS240N	1	AK	A
	2111 5291	Bipolar IC	SN74LS139N	1	AH	· A
	2111 5509	Bipolar IC	SN74LS374N	1	AN	A
	21210013	Monolithic IC (NJM455800)	8A4558CA	2	AD	A
	;	, , , , , , , , , , , , , , , , , , , ,		! ⁻		А
	21209244	Monolithic IC	TL082 (TL082CP)	3	AF	A
	2122 0221	D/A Converter	BA9221	1,1	AP	; A
	2184 1014	Bipolar IC	HD74LS154P	2	AH	A
	22009010	Transistor	! 2SA933	5	AD	; A
	22209035	Transistor	2SC1740	6	AD	. д
	2301 0291	 Diode	1SS270	9	**	С
	23103273	Zener diode	RD5.6E		AA	A
	23104512		AD3.3E	1	AA	Ä
tı	3025 0063	Capacitor EMI filter	DST306-56FZ103Z	,	AC	X
	38001752 2520 1485	Lithium Battery Ceramic oscillator	BR2032-1HM CSA2.00MK	,	AG AG	A
Û	2590 0007	Ceramic oscillator	CSA2.47MG	1, 1	AE	i

Note: # — New parts

O'ty — Quantity used per unit

*Old Version Main ROM (UPD23C256E-133)

CZ-1	Parts	List
------	-------	------

tem	Code No.	Part Name	Specification	Q'ty	Price Code	Ran
	2520 3194	Crystal oscillator	HC-18/U-8960KHz	,	AH	С
ŵ	2590 0042	Crystal oscillator	NR-18-15.000MHz	1	AG	C
	2760 2177	Trimmer VR (10Kohm)	V8K4-11B10K	3	AB	В
	2760 2258	Trimmer VR (200ohm)	V8K4-11B200	1	AB	8
	3020 2147	Ferrite beads	BL02RN2-R62	7	AB	X
	0002 8723	Carbon film resistor	R-20-100-J (1/5W, 100ahm, ±5%)	2	N/A	X
	0002 8724	Cart on film resistor	R-20-220-J (1/5W, 220ohm, ±5%)	1		
	0002 8725	Carbon film resistor	R-20-560-J (1/5W, 560ohm, ±5%)	2	·	1
	0002 8726	Carbon film resistor	R-20-1KJ (1/5W, 1Kohm, ±5%)	49		
	0002 8727	Carbon film resistor	R-20-2.2K-J (1/5W,2.2Kohm,±5%)	2		
	0002 8729	Carbon film resistor	R-20-10K-J (1/5W, 10Kohm, ±5%)	6		i
	0002 8730	Carbon film resistor	R-20-33KJ (1/5W, 33Kohm, ±5%)	1		
	0002 8731	Carbon film resistor	R-20-47K-J (1/5W, 47Kohm, ±5%)	2	!	
	0002 8733	Carbon film resistor	R-20-100K-J (1/5W, 100Kohm, ±5%)	1	:	
	0002 8736	Carbon film resistor	R-20-1M-J(1/5W, 1Mohm, ±5%)	6		
	0002 8737	Carbon film resistor	R-20-1.8K-J(1/5W,1.8Kchm,±5%)	1		
	0002 8946	Carbon film resistor	R-20-3.3K-J (1/5W, 3.3Kohm, ±5%)	24		:
	0002 8951	Carbon film resistor	R-20-12KJ (1/5W, 12Kohm, ±5%)	3		!
	0002 8953	Carbon film resistor	R-20-120K-J (1/5W, 10Kohm, ±5%)	. 2		
	0002 8954	Carbon film resistor	R-20-5.6K-J(1/5W, 5.6Kohm, ±5%)	3		•
	0002 8956	Carbon film resistor	R-20-22K-J (1/5W, 22Kohm, ±5%)	1	1	
	0002 8960	Carbon film resistor	R-20-56-J (1/5W, 56ohm, ±5%)	1		
	0002 9000	Carbon film resistor	R-20-820-J (1/5W, 820ohm, ±5%)	3 ;		
	0002 9001	Carbon film resistor	R-20-22-J (1/5W, 22ohm, ±5%)	1 :		
	0002 9002	Carbon film resistor	R-20-15KJ (1/5W, 15Kohm, ±5%)	1	į	
	0002 9003	Carbon film resistor	R-20-1.2K-J (1/5W, 1.2Kohm, ±5%)	1		:
	0002 9004	Carbon film resistor	R-20-270K-J (1/5W, 270ahm, ±5%)	2		
	0002 9005	Carbon film resistor	R-20-330K-J (1/5W, 330Kohm, ±5%)	'		
	0002 9006	Carbon film resistor	R-20-8.2KJ (1/5W, 8.2Kohm, ±5%)	1		!
	0002 9007	Carbon film resistor	R-20-47-J (1/5W, 47ohm, ±5%)	1		
	0002 9019	Carbon film resistor	R-20-12KJ (1/5W, 12Kohm, ±5%)	1		
*	0002 9021	Carbon film resistor	R-20-6.8K-J(1/5W, 6.8Kohm, ±5%	2		
	0002 9024	Carbon film resistor	R-20-1.5KJ (1/5W, 1.5Kohm, ±5%	1		- 1

Note: # - New parts
Q'ty - Quantity used per unit

CZ-1 Parts List

item	Code No.	Part Name	Specification	Q'ty	Price Code	Rank
	0002 9104	Carbon film resistor	R-20-330-J (1/5W, 330chm, ±5%)	1	N/A	X
÷	0002 9253	Carbon film resistor	R-20-25K-G(1/5W, 25kohm, ±2%)	5	1 1	i 1
*	0002 9254	Carbon film resistor	R-20-82J (1/5W, 82ohm, ±5%)	1		
÷	0002 9255	Carbon film resistor	R-20-50K-G (1/5W, 50Kohm, ±2%)	7		
	0002 9027	Metal film resistor	CRB20FX5K (1/5W, 5Kohm, ±1%)	5		
	0002 9028	Metal film resistor	CRB20FX10K (1/5W, 10Kohm, ±1%)	3		
	0002 9029	Metal film resistor	CRB20FX5.6K (1/5W, 5.6Kohm, ±1%)	2	:	
	0002 9030	Metal film resistor	CRB20FX2.7K (1/5W, 2.7Kohm, ±1%)	1		
	0002 8886	Electrolytic capacitor	50RE2-1 (50V, 1µF, ±20%)	3	1	;
	0002 8887	Electrolytic capacitor	16RE2·100 (16V, 100μF, ±20%)	2		
i	0002 8888	Electrolytic capacitor	6.3RE2-100 (6.3V, 100µF, ±20%)	4		:
	0002 8965	Electrolytic capacitor	6.3RE2-470 (6.3V, 470µF, ±20%)	3		
1	0002 9063	Electrolytic c pacitor	16RE2-10 (16V, 10µF, ±20%)	4		1
÷	0002 9064	Electrolytic capacitor	6.3RE2-47 (6.3V, 47µF, ±20%)	1		İ
٠	0002 9257	Electrolytic capacitor	16RE2-33 (16V, 33µF, ±20%)	1	İ	
1	2804 9013	Electrolytic capacitor	50RNBBP1 (50V, 1µF, ±20%)	1	!	
ļ	0002 9250	Ceramic capacitor	HE40SJCH300J (50V, 30pF, ±5%)	2	1	;
	2818 0012	Ceramic capacitor	HE40SJYB101K (50V, 100pF, ±10%)	3		!
	2818 0055	Ceramic capacitor	HE40SJYB221K (50V, 220pF, ±10%)	3		
	2818 2040	Ceramic capacitor	HE40SJYF103Z (50V, 0.01µF, *80%)	17	!	į
	2818 3054	Ceramic capacitor	HE80SJCH101J (50V, 100pF, ±5%)	2	i	!
	2818 3097	Ceramic capacitor	HE40SJCH220J (50V, 22pF, ±5%)	2		
Ì	2818 3119	Ceramic capacitor	HE40SJCH150J(950V, 15pF, ±5%	2		i
	2818 6045	Ceramic capacitor	HE40SJSL680K(50V, 68pF, ±10%)	1		
	2818 6191	Ceramic capacitor	HE40SJSL220K(50V, 22pF,±10%)	1		
	2860 1069	Three polarity capacitor	i DS310-56D223S (50V, 0.022μF, ±20%)	32	j	:
	0002 9027	Metal film resistor	CRB20FX5K(1/5W, 5Kohm, ±1%)	5	į.	i
	0002 9028	Metal film resistor	CRB20FX5K(1/5W, 5Kohm, ±1%)	3		İ
	0002 9029	Metal film resistor	CRB20FX5.6K (1/5W, 5.6Kohm, ±1%)	2		.
	2720 3671	Module resistor	MS2238F (1/16[W], 2.2Kohm, ±20%)	1	V	11/

item	Code No.	Part Name	Specification	Q'ty	Price Code	Rank
	27202811	Module resistor	MS4736F (MS4736) (1/16[W], 4.7Kohm, ±20%)	1	AB	С
•	2725 0014	Module resistor	MS33210F (1/16[W], 3.3Kohm, ±20%)	2	AC	c
	27201962	Module resistor	MS2238F (MS2238) (1/16[W], 22Kohm, ±20%)	1	AB	C
	3500 3371	Connector 29	IL-G-2P-S3T2-E	1	AA	i x
	3500 3401	Connector-4P	IL-G-4P-S3T2-E	1	AB	: x
	3500 3673	Pin ass'v 10P	IL-G-10P-S3T2-E	1	AB	x
	3500 7032	P C B connector	5229-13-CPB	1	-	x
	3500 7075	P C B connector	5229-19-CPB	1	_	x
	3500 7491	P C B connector 14P	IL-G-14P-S3T2-E	2 !	i AD	. X
	3500 7505	P C B connector 6P	IL-G-6P-S3T2-E	1	AC	i x
	3500 7505	Pin	RT-01T01.0B	2	:	· x
	3500 8495	1P connector	SMF-1P-6-M157			×
٠	3501 C028	P C B connector	ZC-015	2		×
-	3511 0879	P C B connector	5299-14-CPB	1 1	: _	X
	3511 3887	P C B connector	5229-20-CPB	5	-	΄ χ
	(2) M515	 4-ma2m pcb ass" 	! Y			
	2100 3662	MOS IC	TC4069UBP	3	AE	٦
	2100 3808	IC	TC4053BP	1.	: AI	A
	2100 7692	MOS IC (BBD)	MN3209	. 3	AL	A
	21103322	Bipolar IC	SN74LS1.5N(SN7407N)	¦ 1	AE	A
	21210013	Monolithic IC	BA4558CA (NJM4558DD)	4	AD	A
살	2114 0021	Monolithic IC	LA6462D	5	ΛE	. А
	2002 1144	LSI (Expander)	μPD1571C	2	AM	: B
	22209035	Transistor	2SC1740	4	, AD	: A
	2301 0291	Diode	188270	21	AA	С
	2760 2177	Trimmer VR	V8K4-11B10K	3	AB	В
	0002 8723	Carbon film resistor	R-20-100-J (1/5W, 100ohm, ±5%)	2	N/A	: X
	0002 8726	Carbon film resistor	R-20-1K-J (1/5W, 1Kohm, ±5%)	18		: 1
	0002 8728	Carbon film resistor	R-20-4.7K-J(1/5W, 4.7Kehm, ±5%	3		
	0002 8729	Carbon film resistor	R-20-10K-J (1/5W, 10Kohm, ±5%)	11		
	0002 8730	Carbon film resistor	R-20-33K-J (1/5W, 33Kohm, ±5%)	6		
	0002 8731	Carbon film resistor	R-20-47KJ (1/5W, 47Kohm, ±5%)	6		

Note: # - New parts

Q'ty - Quantity used per unit

CZ-1	Parts	List
------	-------	------

Item	Code No.	Part Name	Specification	Q'ty	Price Code	Rank
	0002 8704	Carbon film resistor	R-20-150K-J (1/5W, 150Kohm, ±5%)	9	N/A	X
	0002 8735	Carbon film resistor	R-20-220K-J (1/5W, 220Kohm, ±5%)	4		
	0002 8738	Carbon film resistor	R-20-1M-J(1/5W, 1Mohm, ±5%)	1		
	0002 8738	Carbon film resistor	R-20-39K-J (1/5W, 39Kohm, ±5%)	2		
	0002 8946	Carbon film resistor	R-20-3.3K-J (1/5W, 3.3Kohm, ±5%)	5		
	0002 8947	Carbon film resistor	R-20-68K-J (1/5W, 68Kohm, ±5%)	3	!	:
	0002 8956	Carbon film resistor	R-20-22KJ (1/5W, 22Kohm, ±5%)	18	1	į
	0002 8957	Carbon film resistor	R-20-56KJ (1/5W, 56Kohm, ±5%)	4 :		;
	0003 8958	Carbon film resistor	R-20-560K-J (1/5W, 560Kohm, ±5%)	3		
	0002 8959	Carbon film resistor	R-2C-2.2M-J (1/5W, 2.2Mohm, ±5%)	3		
	0002 8963	Carbon film resistor	R-20-18K-J (1/5W, 18Kohm, ±5%)	7		i
	0002 9001	Carbon film resistor	R-20-22-J (1/5W, 22ohm, ±5%)	3		
	0002 9002	Carbon film resistor	R-20-15K-J (1/5W, 15Kohm, ±5%)	3 !	1	:
	0002 9003	Carbon film resistor	R-20-1.2K-J(1/5W, 1.2Kohm, ±5%)	1	:	:
	0002 9007	Carbon film resistor	R-20-47-J (1/5W, 47ohm, ±5%)	1	: :	:
	0002 9011	Carbon film resistor	R-20-27K-J (1/5W, 27Kohm, ±5%)	8	!	i
	· 0002 9023 ·	Carbon film resistor	R-20-180K-J (1/5W, 180Kohm, ±5%)	7		!
	0002 8886	Electrolytic capacitor	50RE2-1 (50V, 1µF, ±20%)	3	ļ	:
	0002 8888	Electrolytic capacitor	, 16RE2-100 (16V, 100µF, ±20%)	2		
	0002 9063	Electrolytic capacitor	16RE2-10 (16V, 10µF, ±20%)	10	1	
	0002 9111	Electrolytic capacitor	16RE2-47 (16V, 47µF, ±20%)	8	:	j
	0002 9258	Elect. olytic capacitor	16RNBBP3R3	7		;
			(16V, 3.3µF, ±20%)	!	!	
	2804 9013	Electrolytic capacitor	50RNBBP1 (50V, 1µF, ±20%)	10	•	į
	2805 2210	Electrolytic capacitor	16RE2-470-S1 (16V, 470μF)	1	İ	i
교	0002 9261	Ceramic cupacitor	HE60SJSL151K (50V, 150pF, ±10%)	2		; ;
	2818 2040	Ceramic capacitor	: HE70SJYF103Z 	2		
	2818 3259	Ceramic capacitor	HE11SJCH221J (50V, 220pF, ±5%)	6		
	2818 6053	Ceramic capacitor	HE50SJSL101K (50V, 100pF, ±20%)	6		
	2919 0280	Ceramic capacitor	HE60SJSL181K (50V, 180pF, ±20%)	2	/	1

Note:

□ New parts

O'ty — Quantity used per unit

7-1	Parts	List
W-1	aila	DIO

item &	Code No. 0002 9264	Part Name	Specification	Q'ty	Price Code	Rank
ŵ	0002 9264			1 1	i _	
1 !	1	Mylar capacitor	AMZ123K50 (50V, 0.012μF, ±10%)	4	N/A	¥
	2830 6024	Mylar capacitor	AMZ\02K50 (50V, 1000pF, ±10%)	6		
	2830 6032	Mylar capacitor	AMZ-103K50 (50V, 0.01µF, ±20%)	1		
	2830 6075	Mylar capacitor	AM-222K50 (50V, 2200pF, ±20%)	2		
	2830 6172	Mylar capacitor	AMZ-183K-50 (50V, 0.018µF, ±20%)	1		
	2830 6181	Mylar capacitor	AMZ-822K50 (50V, 8200pF, ±20%)	3		
	2830 6681	Mylar capacitor	AMZ-123K50 (50V, 0.012μF, ±20%)	4	✓	
	3500 3428	Pin ass'y 9P	IL-G-9P-S3T2-E	11	AC	×
	3501 0084	Connector :4P	IL-14P-22-M154	1	-	×
	3841 0661	Low pass filter	LPF-M152-17K	2	AE	8
		4-MA3M PCB ASS'Y				
1 1	21103783		SN74LS04N	1	AF	A
	222090 15		2SC1740	1	AD	A
	22303251	!	2SD400	1	AD	A
	23002086	Ciode	1\$\$254T	1	AA	' C
*	3025 06.7	Capacitor, EMI Filter	DST306-568222M (50V, 2200pF, ±20%)	2	AC	8
*		Capacitor, EMI Filter	DST306-56FZ103Z (50V, 0.01µF, ⁺⁸⁰ %)	1	AC	8
	2400 5062	The Cost Pict	PC900	1	AH	A
	2860 1060	Thine polarity capacitor	DS310-56D223S (50V, 0.022µF, ±20%)	2	N/A	X
	3020 2147	Ferrite beads	PLO2PN2-R62	• 4	AB	×
	0002 8723	Carbon film resistor	H-20-100-J (1,5Y/, 10Cohm, ±5%)	1	N/A	X
	0002 8724	Carbon film resistor	R-20-22-J (1/5W, 22ohm, ±5%)	6		.
	0002 8773	Carbon film resistor	R-20-10KJ (1/5W, 10Kohm, ±5%)	1		'

Note:

- New parts

O'ty — Quantity used per unit

CZ-1 Parts List

Item	Code No.	Part Name	Specification	Q'ty	Price Code	Rani
	0002 9012	Carbon film resistor	R-20-33-J (1/5W, 33ohm, ±5%)	1	N/A	X
	0002 9018	Carbon film resistor	R-20-270-J (1/5W, 270ohm, ±5%)	1		
	0002 9058	Carbon film resistor	R-20-10-J (1/5W, 10ohm, ±5%)	1		
	0002 8888	Electrolytic capacitor	6.3RE2-100 (6.3V, 100µF, ±20%)	2		
	2807 1248	Electrolytic capacitor	16RE2-47 (16V, 47µF, ±20%)	1		
	2807 1256	Electrolytic capacitor	50RE2-4R7 (50V, 4.7μF, ±≌0%)	1		
	2818 6053	Ceral is expecitor	HE50SJSL101K (50V, 100pF, ±10%)	2		
	2830 6083	Mylar capacitor	AMZ-223K50 (50V, 0.022µF, ±10%)	1		
	3420 2338	Slide switch (protect)	SSY 322	1	AE	В
	3500 3991	Piness'y 2P	IL-G-2P-S3T2-E	1	j AA	×
•	3501 0091	Connector 6P	IL-6P-74-M154	1	-	×
	3612 0541	Din jack MIDI	TCS4650-01-1211	3	AE	×
	3841 1217	Booster	EL-M172A	1	AK	×
	(4) M515	 				
	212:0013	Monolithic IC	BA4558CA (NJM4558DD)	1	AD	A
*	2114 0021	Monolithic IC	LA6462D	2	AE	A
÷	2114 0028	Monolithic IC (VCA)	M52411	1 :	HA	م ا
	2120 6571	IC (Power Amp.)	LA4170	1	AF	4
	22209035	Transistor	2SC1740 .	2	AD	۵ ا
	23010291	D-ode	1SS270	1	, AA	0
	23103176	Zener diade	RD10E	1	AA	,
	2760 2177	Sami fixed resistor	V8K4-11B10K	2	AB	
	2760 2215	Seni fired resistor	V8K4-11B20K	1	AB	6
	3020 2147		BL02RN2-R62	8 ,	AB	,
٠	3025 0063	Capacitor, EMI Filter	DST306-56FZ103Z (50V, 0.01µF, +80%)	4	AC	6
٠	3122 0028	Reley	G2VN-237PL	1	AK	8
	0002 8726	Cerbon film resistor	R-20-1K-J (1/5W, iKohm, ±5%)	6	N/A	0

Note: # - New parts
O'ty - Quantity used per unit

CZ,-	1	Pa	rts	Li	st

<u> </u>	Parts Lis	st	·			
Item	Code No.	Part Name	Specification	Q'ty	Price Code	Rank
	0002 8728	Carbon film resistor	R-20-4.7K-J (1/5W, 4.7Kohm, ±5%)	1	N/A	X
	0002 8729	Carbon film resistor	R-20-10K-J (1/5W, 10Kohm, ±5%)	15		
	0002 8730	Carbon film resistor	R-20-33K-J (1/5W, 33Kohm, ±5%)	1		' ;
	0002 8731	Carbon film resistor	R-20-47K-J (1/5W, 47Kohm, ±5%)	2	ıİ	
	0002 8733	Carbon film resistor	R-20-100K-J (1/5W, 100Kohm, ±5%)	2 .		!
	0002 8738	Carbon film resistor	R-20-39KJ (1/5W, 39Kohm, ±5%)	1 1		•
	0002 8946	Carbon film resistor	R-20-3.3K-J (1/5W, 3.3Kohm, ±5%)	2		
	0002 8947	Carbon film resistor	R-20-68K-J (1/5W, 68Kohm, ±5%)	1 1		
	0002 8950	Carbon film resistor	R-20-680-J (1/5W, 680ohm, ±5%)	1 1		
	0002 8951	Carbon film resistor	R-20-12K-J (1/5W, 12Kohm, ±5%)	4	i l	
	0002 8956	Carbon film resistor	R-20-22K-J (1/5W, 22Kohm, ±5%)	2 :	4	
	0002 8957	Carbon film resistor	R-20-56KJ (1/5W, 56Kohm, ±5%)			
	0002 8961	Carbon film resistor	R-20-390K-J (1/5W, 390Kohm, ±5%)	2	•	
	0002 8962	Carbon film resistor	R-20-6.8K-J (1/5W, 6.8Kohm, ±5%)	2		
	0002 9002	Carbon film resistor	R-20-15KJ (1/5W, 15Kohm, ±5%)	i 4		
	0002 9017	Carbon film resistor	R-20-2.7K-J (1/5W, 2.7Kohm, ±5%)	2		
*	0002 9061	Carhon film resistor	: R-20-30K-J (1/5W, 30Kahm, ±5%)	. 2		
	0002 9256	Carbon film resistor	R-20-29-J (1,5W, 39ohm, ±5%)	· 2		
	0002 8718	Electrolytic capacitor	: 16RE2-330 (16V, 330µF, ±20%)	2.		
	0002 8887	Electrolytic capacitor	16RE2-100 (16V, 100µF, ±20%)	. 2	•	•
	9063	Electrolytic capacitor	16RE2-10 (16V. 10µF, ±20%)	3		•
*	2800 9098	Electrolytic capacitor	6.3RE2-1000-S1 (6.3V, 1000µF, ±20%)	1	1	
	2804 9013	Electrolytic capacitor	50RN88P1 (50V, 1µF, ±20%)	8		
	3807 9188	Electrolytic capacitor	16RNBBP4R7 (16V, 4.7µF, ±20%)	1	i	
	2807 9340	Electrolytic capacitor	18RNBBP10 (16V, 10µF, ±20%)	2		
	2805 2216	Electrolyric capacitor	16RE2-470-S(16RE, 470µF, ±20%)	3		
	2807 1248	Electrolytic capacitor	16RE2-47 (16V, 47µF, ±20%)	1	. •	
	2818 2040	Ceramic capacitor	HE70SJYF103Z (50V, 0.01μF, ±80%)	4		٠
	2819 0283	Ceramic capacitor	HE60SJSL 151K (50V, 150µF, ±10%)	2		; '
	2830 6032	Mylar capacitor	AMZ-103K50 (50V, 0.01µF, ±20%)	2		•
	2830 6041	Mylar capacitor	AMZ-104K50 (50V, 0.1µF, ±20%)	1		
•	3500 7636	oin ass'y 6P	IL-G-6P-S3L2-E	1	AC	×
삽	3501 0105	Connector 5P	IL-5P-77-M154	1	_	×

Note:

□ — New parts

Q'ty — Quantity used per unit

CZ-1 Parts List

Item	Code No.	Part Name	Specification	Q'ty	Price Code	Rank
÷	3501 0112	Connector 9P	IL-9P-28-M154	1	-	×
	3612 0584	Jack Linsout	YK821-5012	2	AD	В
	3612 0592	Jack Headphone	YKB21-5002	1 !	AD	В
	3612 0631	Jack Foot VR/Sustain	YK821-5014	2	AC	В
	5430 0107	Nut	YKV11-0095	5	-	X
	6904 0450	Jack holder	м31362-1	1	-	×
	(5) M515	4-MA4M PCB ASS'Y				
	2111 2194	Bipolar IC	SN74LS138N	2	AN	A
	2111 2496	Bipolar IC	SN74LS174N	5	AK	A
	2184 1014	Bipolar IC	HD74LS154P	1	AH	A
	0002 8726	Carbon film resistor	R-20-1K-J (1/5W, 1Kohm, ±5%)	7	N/A	X
	2860 1069	Capacitor	DS310-56D223S (50V, 0.022µF)	8	, N/A	X
☆	3501 0098	Connector 3P	IL-3P-32-M154	1 1	j -	×
÷	3725 0175	PC joiner	PCJ-UV-14-180	11	AG	×
	37250182	PC joiner	PCJ-UV-13-205	1	AG	×
	37210679	PC joiner	PCJ-JPSS-16-135 (16-142)	1	AE	×
*	37210309	PC joiner	PCJ-JPSS-16-125 (16-130)	. 2	AD	x
¢	3725 0203	PC joiner	PCJ-JVU-17-158	1 1	AF	×
	6002 0248	Joiner holder G545	P4260-1	2	_	×
	(6) M515	4-CN1M PCB ASS'Y				
	2301 0291	Diode	1SS270	30	AA	c
	2320 9811	LED	LN266RPT	31	AB	В
	0002 9016	Carbon film resistor	R-20-390-J (1/5W, 390ohm, ±5%)	31	N/A	x
	3410 1710	Push switch	KHC10302	30	AB	В
•	37211028	PC joiner M154E	PCJ-UV-20-230 (20-330)	1	. AH	×
	6215 1340	Joiner holder E92	E41909-2	1		×
	(7) ME45	- 4-CN2M PCB ASS'Y				
	(// M315				1	l
	2114 0021	Monolithic IC	LA6462D	1	AE	A
	23010291	Diode	1SS270	36	AA	C
	2320 9811	LED	LN266RPT	30	AB	8

Note: \$\preceq\$ - New parts
Q'ty - Quantity used per unit

CZ-1	l P	ar	ts	Li	3	t
------	-----	----	----	----	---	---

<u>cz-1</u>	Parts Lis	t				
item	Code No.	Part Name	Specification	Q'ty	Price Code	Rank
	0002 8723	Carbon film resistor	R-20-100-J (1/5W, 100ohm, ±5%)	1	N/A	x
	9002 8726	Carbon film resistor	R-20-1K-J (1/5W, 1Kohm, ±5%)	2	1	!
	0002 8729	Carbon film resistor	R·20-10K·J (1/5W, 10Kahm, ±5%)	1	1	11
	0002 8734	Carbon film resistor	R·20-150KJ (1/5W, 150Kohm, ±5%)	1		
	0002 9016	Carbon film resistor	R-20-390-J (1/5W, 390ohm, ±5%)	30		
	0002 9002	Carbon film resistor	R-20-15K-J (1/5W, 15Kehm, ±5%)	5		
	0002 8963	Carbon film resistor	R-20-18K-J (1/5W, 18Kohm, ±5%)	2	1	
1	2770 9605	VR Main	EWA-NF0X05B14	1	AE	В
1	2770 9761	Slide VR Steres Choru	EWA-NA1X05B54	11	AE.	В
	3410 1710	Push switch	KHC10902	36	l AB	В
	3501 0126	6P Connector M154B	IL-6P-21-M154	1	1 -	×
	3501 0133	8P Connector M154A	IL-8P-30-M154	1	-	×
	(8) M515	 4-CN3M PCB ASS'Y 				
	2301 0291	Diode	1\$\$270	4	' M	C
	3410 1710	Push switch	KHC10902	4	, AB	8
	37210636	PC joiner M154J	PCJ-JPSS-15-35 (15-32)	2	AB	×
	(9) M517	7-KEY BOARD PCB	ASS'Y			
	2004 0815	LSI (Key touch control LSI)	MSM8200GS-1L	1	BE	A
	2300 1021	Diode	1S2075K	94	AA	С
1	2301 0291	Diode	1SS270	28	AA	С
	0002 9262	Carbon film resistor	R-20-100K-G (1/5W, 100Kohm, ±2%)	8	: N/A .	X
	0002 8733	Carbon film resistor	R-20-100-J (1/5W, 100ohm, ±5%)	1 ,		
	0002 8726	Carbon film resistor	R-20-1K-J (1/5W, 1Kohm, ±5%)	1		! :
	0002 8957	Carbon film resistor	R-20-56KJ (1/5W, 56Kohm, ±5%)	2	1	
	0002 9063	Electrolytic capacitor	16RE2-10 (16V, 10µF, ±20%)	2	i l	
	2818 2040	Ceramic capacitor	HE70SJYF103Z (50V, 10000pF, +80%)	2		
	0002 9263	Mylar capacitor	AMZ-104J50 (50V, 100000pF, ±5%)	8		
	3721 0032	PC joiner M71A	PCJ-UV-19-90	1	AF	×
<u> </u>	3721 0041	PC joiner M71B	PCJ-JVU-16-22	2	AB	×

Note: # - New parts
Q'ty - Quantity used per unit

CZ-1 Parts List

tem	Code No.	Part Name	Specification	Q'ty	Price Code	Ran
	6215 1340	Joiner holder E92	E41909-2	1	-	×
	6905 6980	Parallel wire M177KY	M42591-1	1	-	×
	43072420	Blank PCB M571-KY1M	M2822A-1	1	AQ	×
	43072440	Blank PCB M571-KY3M	M2823A-1	1	AQ	×
	4307 4290	Blank PCB M5177- KY2M	M21246-1	1	AN	×
	(10) POW	ER SUPPLY ASS'Y				
	3012 0007	Transformer	TE-154-1M1	1,1	ВВ	8
	6901 6470	Transformer fixing plate	M4887-1	1 1	-	×
	36001160	Voltage selector	ESE-371	1	AE	c
	(11) M51	54-PS1 PCB ASS'Y				
	2818 2601	Ceramic capacitor	DE7150FZ103PVA1	2	N/A	,
	3020 2236	Line filter	PLA8021A	1	A	
	3510 2680	Pin ass'y 2P	5277-02A		_	;
	36402331	Fuse holder	UF-0033°1	2	AA	,
	3670 1161	Receptacle	NC-174	1	AD	0
	6901 5580	Receptacle fixing plate	M4850-1	1	-	,
				1		,
	(12) M51	54-PS2M PCB ASS'Y			İ	
	21208647	Monolithic IC	NJM78M15A (UA78M15H)	1	AG	4
	22105078	Transistor	258632	2	, AD	1
	22303023	Transistor	2SD313	2	AD	1
	22009010	Transistor	2SA933	1	AD	1
	22209035	Transistor	2SC1740	4 ;	AD	1
	2301 0097	Diode	152473	1	1 44	0
	23103168	Zener diode	RD8.2E	1	AA	1
	23103273	Zener diode	RD5.6E	1	AA	
	23103249	Zener diode	RD6.2E	2	AB	
	23102323	Zener diode	RD16E	1	AA	1
	23102455	Zener diode	RD18E	1	AA	
	23301075	Diode stack	S4VB10-4009 (S4VB10)	1	AE	. 0
	23009102	Diode stack	S2VB10-4009 (S2VB10)	1	AD	
	2605 0063	Metal film resistor	CRH100FH11-J-0.47	2	N/A	1
	36302534 36302526	ruse Fuse	0.5A(S) 2.0A(S)	2	AC AC	1
	2605 0070	Metal film resistor	CRH100FH11-J-100	111	N/A	

Note: # — New parts

O'ty — Quantity used per unit

CZ-1 Parts List

Item	Code No.	Part Name	Specification	Q'ty	Price Code	Rani
	2600 9715	Carbon film resistor	R-25-100KJ (1/4W, 100Kohm, ±5%)	,	N/A	X
	2600 5311	Carbon film resistor	R-25-1.5K-J (1/4W, 1.5Kohm, ±5%)	1		
	2600 5515	Carbon film resistor	R-25-1.8K-J (1/4W, 1.8Kohm, ±5%)	1		
	2600 2516	Carbon film resistor	R-25-100-J (1/4W, 100ohm, ±5%)	2		!
	2601 5715	Carbon film resistor	R-25-4.7-J(1/4W, 4.7ohm, ±5%)	1		
	2600 4314	Carbon film resistor	R-25-560-J (1/4W, 560ohm ±5%)	2	!	1
	2600 5710	Carbon film resistor	R-25-2.2K-J(1/4W, 2.2Kohm, ±5%)	1		
	2600 5116	Carbon film resistor	R-25-1.2K-J(1/4W, 1.2Kohm, ±5%)	1		
	2600 1111	Carbon film resistor	R-25-27-J (1/4W, 27ohm, ±5%)	1	1	ł
	2800 9196	Electrolytic capacitor	16LP3-4700 (16V, 4,700µF, ±20%)	1	,	
•	2805 2210	Electrolytic capacitor	16RE2-470-S1 (16V, 470µF, ±20%)	2		ı
	2805 2383	Electrolytic capacitor	35RE2-1000-S1 (35V, 1000μF, ±20%)	2		'
	0002 9259	Electrolytic capacitor	25RE2-220 (25V, 220µF, ±20%)	1 .		
	0002 8886	Electrolytic capacitor	50RE2-1 (50V, 1µF, ±20%)	1		į
	0002 8720	Electrolytic capacitor	6.3RE2-470 (6.3V, 470µF, ±20%)	3	1	
	2805 2180	Electrolytic capacitor	10RE2-220 (10V, 220µF, ±20%)	3 '		
	3500 3355	Pin ass'y 3P	IL-G-3P-S3T2-E	1,	AA	×
	3500 7610	Pin ass'y 5P	IL-G-5P-S3T2-E	1	AA	×
	3501 0119	10P Connector M154	IL-10P-81-M154		-	¦×
	36402331	Fuse holder	UF-0033#01	6	AA	i x
	6904 6382	Heat sink 153	M42191B-1	,	-	i x
	6907 4370	Wire ass'y	M42750°1	,	_	. x
	6910 9160	Heat sink	M41852-1	1	-	×
	(13) UPP	ER CASE UNIT				
1	6901 3860	Sponge J	M4630-7	,	_	×
2	6904 6140	DIN jack holder 153	M31619	1	_	×
a 3	6907 4621	Upper case sub ass'y	M32143A*1	1	BG	С
÷ 4	6907 4631	Upper panel sub ass'y	M1972A*1	1	ВТ	C
☆ 5	6907 4640	PCB cover R	M32173-1		-	×
÷ 6	6907 4650	PCB cover L	M32174-1	1, 1	_	×

Note: # - New parts

Q'ty - Quantity used per unit

CZ-1 Parts List

Item	Code No.	Part Name	Specification	Q'ty	Price Code	Rank
	(14) PAC	K CASE ASS'Y				
9	6904 5950	Pack case sub ass'y	M31651°1	1	_	С
10	6904 6090	Pack lower case	M31621-1	1	-	c
11	6904 6100	Pack house holder	M42129-1	1	-	ˈ ×
12	69115310	RAM pack cover	M31489-1	1	AC	С
13	6911 5320	Pack cover shaft	M41948-1	11	-	×
14	6911 5330	Spring	M41947-1	1	j AA	c
15	0002 8824	PE washer	M41951A-1	2	_	C
16	3510 6481	Connector	PS30PE-S4LT1-PN1	1	AP	Ċ
☆17	3725 0224	PC joiner	SMCD-15-180	2	AF	. c
a 18	4307 5450	PCB M5154-IF	M42747·1	1	AC	C
19	6276 8118	Jumper wire	A3732B-13	2	-	C
	(15) UPP	 Er panel sub as	s Y			
20	6902 6250	Slide VR blind	M41215	2	_	×
÷21	6905 2120	VR knob	M31622-2	1	AC	, в
\$22	6907 4770	Key top set 154-1	M32147°1 (16pcs)	1	AH	С
+23	6907 4780	Key top 154-2	M32148*2 (16pcs)	1	AH	С
±24	6907 4790	Key top set 154-3	M32149°3 (2pcs)	1	AH	¦ c
*25	6907 4800	Key top set 154-4	M32150°1 (4pcs)	1	НА	; C
#76	6907 4810	Key top set 154-5	M32151*1 (3pcs)	1	HA	С
_	1	Key top set 154-6	M32152°1 (4pcs)	1	AH	c
±28	6907 4830	Key top set 154-7	M32153°1 (17pcs)	1	АН	, С
÷29	6907 4840	Key top set 154-8	M32154*1 (8pcs)		AH	·C
	(16) LCD	UNIT				i
⇔30	3301 0014	EL	KA137A	1	ΔÜ	8
\$31	3335 0014	LCD ass'y	LM550LT (includes item 30)	1	BQ	A
⇒32	3501 0147	14P connector M154B	IL-14P-28-M154	1	-	×
⇒33	6907 4740	LCD holder	M32021-1	1 1	AF	×
o 34	6910 1730	LCD tape	M4696-1	11	-	×
	(17) POW	 ER SWITCH ASS'Y			ĺ	
35	3440 5255	Power switch	SDJ1S	1	AI	8
36	3501 0140	2P connector M154C	5285-2P-22-M154	1	· -	×

Note: # - New parts

O'ty - Quantity used per unit

Item	Code No.	Part Name	Specification	Q'ty	•	Price Code	Rank
	(18) SIDE	PLATE R ASS'Y					
±37	6907 4600	Side plate R sub ass'y	M32140*1	1		AW	x
38	5430 0115	Bit insert nut	FB-4001	2		-	×
	(19) LOW	ER CASE ASSY					
40	6902 1690	Insulator sheet	M41197-1	,		_	×
41	6910 4230	LCD holder	M4880-1	2	l	-	×
±42	6907 4590	Lower case sub ass'y	M21364*1	1		BW	С
	(20) SIDE	PLATE L ASS'Y					
÷43	6907 4700	Side plate L sub ass'y	M32145°1	,		AX	×
46	2770 6843	Volume	VM10W520A-50KB	2		АН	В
447	3501 0154	4P connector M154A	IL-4P-116-M154	1		-	×
48	6904 0420	Bender spring	M14737-1	1	1	AB	×
49	6904 6110	Bender knob	M31620-1	2	-	AD	С
50	6904 6120	Bender chassis 153	M42128-1	2		-	×
51	6504 7020	Feit 153	M42360-1	2	ļ	-	×
52	6911 5250	Bender chassis B	M41946	2		-	×
	(21) KEY	PLATE SET	WEIGHTS				
53	6903 7710	White key CF	M31269-1	10		AF	С
54	6903 7720	White key BE	M31271-1	10		AF	С
55	6903 7730	White key D	M31270-1	5		AF	С
56	6903 7740	White key G	M31272-1	5		AF	c
57	6903 7750	White key A	M31273-1	5		AF	c
58	6903 7760	White key S	M31274-1	1		AF	C
59	6903 7770	Black key	M31275-1	25		AF	C
60	6903 7780	KB spring TR	M41630-1	25		AA	×
61	6903 9880	K8 spring TR	M41630-2	36		AA	×

62 6904 0551

63 6904 6470

* 64 6904 6480

Note: # - New parts

O'ty - Quantity used per unit

65 6907 4720 Upper case stopper

Weight WN

1

36

25

Rank A: Essential
B: Stock recommended
C: Others
X: No stock recommended

AB

AB

X

X

×

С

M31279A-1

M42334-1

M42335-1

M32023-1

tem	Code No.	Part Name	Specification	Q'ty	Price Code	Rank
⇔ 68	3501 0161	2P connector M154A	IL-2P-80-M154	1	-	x
⇔67	6907 4861	Element AFS	M32088-1	2	AQ	×
±68	6907 4871	Element AFS	M32088-2	1	AK	×
⇔69	6907 4881	Housing AFS	M32089-1	1 1	НА	×
⇒ 70	6907 4891	Electrode plate	M42685-1	2	AH	×
⇔71	6907 4901	Damper	M42686-1	1	AF	×
72	6903 7661	Rubber switch E	M31276A-1	4	AF	8
73	6903 7671	Rubber switch F	M31277A-1	1	AF	8
74	6903 7680	KB guide A	M31317-1	4	-	×
76	6903 7890	KB guide B	M31318-1	1 1	i -	×
77	6904 0580	Damping tape A	M31460-1	4	-	×
78	6904 0590	Damping tape B	M31461-1	1	-	×
79	6904 0600	Black seal	M31462-1	5	-	×
⇔80	6903 7520	KB shassis	M2870D*1	1 1	-	×

Note: A — New parts Q'ty — Quantity used per unit Other Parts				Rank	A: Essential B: Stock recommended C: Others X: No stock recommended		
	69046430	Power Cord Dust Cover Plug Cord Set	UC901-001 M31736-1 6.3MPP-L33OH-9		1 1 1	AO AK AN	X X X

-111-

