|75| P1 Guirlandes électriques

Dans ce problème, on cherche à optimiser l'alimentation électrique d'un système comportant deux guirlande électriques G_1 et G_2 , chacune étant modélisée par un conducteur ohmique de résistance identique $R_1 = R_2 = R$.

La première guirlande est dédiée à un fonctionnement continu. La seconde est associée avec un interrupteur S en série qui bascule de manière périodique afin de produire un clignotement.

On supposera dans ce problème que la puissance lumineuse fournie par ces guirlandes est proportionnelle à la puissance électrique qu'elles reçoivent.

I/A Système de base

On considère dans un premier temps le circuit ci-contre alimenté par un générateur réel de f.e.m. E et de résistance interne r. Les expressions demandées ne feront intervenir que E,r et R.

FIGURE

On considère que l'interrupteur S est ouvert.

1	Quelle est la puissance reçue $\mathcal{P}_{2,o}$ par la seconde guirlande G_2 ?
	Réponse
	solu
2	Établir l'expression du courant i_o passant à travers le générateur puis l'expression de la puissance électrique $\mathcal{P}_{1,o}$ reçue par la guirlande G_1 .
	Réponse
	solu �
	On considère désormais que l'interrupteur S est fermé.
3	Établir l'expression du courant i_f passant à travers le générateur.
	Réponse —
	solu
4	À l'aide d'un pont diviseur de courant, déterminer les expressions de $i_{1,f}$ et $i_{2,f}$.
	Réponse —
	solu
	<u></u>
5	Quelles sont alors les puissances $\mathcal{P}_{1,f}$ et $\mathcal{P}_{2,f}$ reçues par les deux guirlandes?
	Réponse —
	solu
	Comparaisons des 2 situations.
6	La puissance reçue par la première guirlande est-elle identique dans les deux situations étudiées (S ouvert et fermé)? Sachant qu'elle ne doit pas clignoter, est-ce un problème? Expliquer.
	Réponse —
	solu 🔷
7	Comment doit-on choisir r par rapport à R pour limiter le problème? Cette condition est-elle vérifiée pour $r = R = 1 \Omega$?
	Réponse —
	solu
	\wedge

I/B Système amélioré

On considère maintenant le circuit ci-dessous afin de limiter la variation de puissance électrique reçue par la première guirlande, donc la variation du courant i_1 .

Une bobine d'inductance L a donc été ajoutée en série avec la première guirlande. L'interrupteur S est ouvert de manière périodique pour $t \in \left[0; \frac{T}{2}\right[$ et fermé pour $t \in \left[\frac{T}{2}; T\right[$.

FIGURE.

8	En régime stationnaire	(permanent	continu), donn	er le schéma équivalent	du nouveau montage
---	------------------------	------------	----------------	-------------------------	--------------------

— Réponse —

__ **\(\rightarrow \)**

──

solu

On se place juste avant la fermeture de l'interrupteur, c'est-à-dire en $t = \frac{T}{2}$, et on admet que le régime stationnaire a été atteint.

9 Déterminer la valeur de $i_1\left(\frac{T}{2}\right)$. En déduire la valeur de $i_1\left(\frac{T}{2}\right)$.

—— Réponse

solu

10 Déterminer les valeurs de $i_2\left(\frac{T}{2}\right)$ et $i_2\left(\frac{T}{2}\right)$.

— Réponse —

solu

On considère l'intervalle $\left[0; \frac{T}{2}\right]$, lorsque l'interrupteur est ouvert.

Établir l'équation différentielle dont i_1 est solution sur l'intervalle $\left[0; \frac{T}{2}\right[$. On fera apparaître un temps caractéristique τ_o .

Réponse —

On s'intéresse maintenant à l'intervalle $\left[\frac{T}{2};T\right[$, lorsque l'interrupteur est fermé.

 $\boxed{12}$ Montrer que i_1 est solution de l'équation différentielle suivante :

$$\frac{\mathrm{d}i_1}{\mathrm{d}t} + \frac{i_1}{\tau_f} = \frac{E}{L\left(1 + \frac{r}{R}\right)} \quad \text{avec} \quad \tau_f = \frac{L\left(1 + \frac{r}{R}\right)}{2r + R}$$

Réponse —

solu

Donner la forme générale $i_1(t)$ de la solution de cette équation différentielle. On ne cherchera pas à déterminer la constante intervenant dans la solution.

— Réponse –

- 🔷 –

solu

On étudie expérimentalement les variations du courant $i_1(t)$ en mesurant la tension aux bornes de la guirlande G_1 à l'aide d'un oscilloscope et on obtient le résultat suivant pour deux valeurs différentes de l'inductance L. La résistance R vaut 2 Ω et la résistance r vaut 1 Ω .

- 🔷 -

FIGURE

Parmi les deux bobines d'inductance L_a et L_b , laquelle permet d'atteindre le régime stationnaire mentionné dans les questions 8 à 10?

_____ Réponse –

solu

15	Retrouver, par lecture graphique, la valeur de L_a .
	Réponse
	solu
	<u> </u>
16	Justifiez que $L_b \gg L_a$, sans chercher à déterminer sa valeur.
	Réponse —
	solu
	<u> </u>
17	Quelle est la valeur de l'inductance à retenir parmi L_a et L_b pour minimiser les variations de puissance reçue par la première guirlande?
	Réponse —
	solu
	^