Федеральное государственное автономное образовательное учреждение высшего образования «Научно-образовательная корпорация ИТМО»

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия

Отчёт по лабораторной работе №8

По дисциплине «Математическая статистика» (четвёртый семестр) Метод наименьших квадратов и сглаживание экспериментальных зависимостей

Студент:

Дениченко Александр Разинкин Александр Соколов Анатолий

Практик:

Милованович Екатерина Воиславовна

Цель работы

Цель работы:

Используя метод наименьших квадратов, требуется сгладить предложенную табличную зависимость их при помощи формул. Помимо этого, следует вычислить невязки с точностью до сотых и отобразить на графике табличные данные и сглаживающую кривую. Предварительно зависимость следует линеаризовать.

Данные

Таблица данных:

x(i)	0	0.2	0.5	1	1.5	2	2.5	3	3.5	4	4.5
y(i)	1	0.833	0.667	0.5	0.4	0.333	0.286	0.25	0.222	0.2	0.18

Решение при помощи обратной формулы

Требуется сгладить при помощи формулы и вычислить невязки до тысячных.

$$z = \frac{1}{a + bt}$$

Линеаризуем формулу:

$$\frac{1}{z} = a + bt$$

$$y = \frac{1}{z}, \quad x = t$$

x	0	0.2	0.5	1	1.5	2	2.5	3	3.5	4	4.5
y	1	1.2	1.5	2	2.5	3.033	3.497	4	4.545	5	5.556

На основе полученной таблицы найдём точечную оценку линейной модели.

$$y = \tilde{a} + \tilde{b}x$$

Метод наименьших квадратов:

$$S(a_0, a_1) = \sum_{i=1}^{n} (y_i - \tilde{y}(x_i))^2 = \sum_{i=1}^{11} (y_i - \tilde{a} - \tilde{b}x_i)^2 - min$$

Найдём экстремум:

$$\begin{cases} \frac{\partial S}{\partial a} = -2\left(\sum_{i=1}^{11} y_i - 11\tilde{a} - \tilde{b}\sum_{i=1}^{11} x_i\right) = 0\\ \frac{\partial S}{\partial ab} = -2\left(\sum_{i=1}^{11} x_i y_i - \tilde{a}\sum_{i=1}^{11} x_i - \tilde{b}\sum_{i=1}^{11} x_i^2\right) = 0\\ \sum_{i=1}^{11} x_i = 21.7\\ \sum_{i=1}^{11} y_i = 33.326\\ \sum_{i=1}^{11} x_i^2 = 69.29\\ \sum_{i=1}^{11} x_i y_i = 91.9405 \end{cases}$$

После подсчёта сумм получили систему:

$$\begin{cases} 11\tilde{a} + 21.7\tilde{b} = 33.326\\ 21.7\tilde{a} + 69.29\tilde{b} = 91.9405 \end{cases}$$

Подсчитали неизвестные:

$$\begin{cases} \tilde{a} \approx 1.414 \\ \tilde{b} \approx 0.884 \end{cases}$$

Подставили коэффиценты и получили точечную оценку:

$$\tilde{y} = 1.414 + 0.884x$$

В итоге получили точечную оценку

$$\tilde{z} = \frac{1}{1.414 + 0.884t}$$

Вычисленные значения полученной оценки и невязки.

t	0	0.2	0.5	1	1.5	2	2.5	3	3.5	4	4.5
z	1	0.833	0.667	0.5	0.4	0.33	0.286	0.25	0.22	0.2	0.18
\tilde{z}	0.707	0.629	0.539	0.435	0.365	0.314	0.276	0.246	0.222	0.202	0.1855
ϵ	0.293	0.204	0.128	0.065	0.035	0.016	0.01	0.004	-0.002	-0.002	-0.0055

График 1. Обратная модель

Решение при помощи дробной формулы

Требуется сгладить при помощи формулы и вычислить невязки до тысячных.

$$z = \frac{t}{a + bt}$$

Линеаризуем формулу:

$$z = \frac{t}{a+bt}$$

$$\frac{1}{z} = \frac{a+bt}{t} = \frac{a}{t} + b$$

$$z^{-1} = at^{-1} + b$$

$$y = z^{-1}, x = t^{-1}$$

x				0.667		0.4	0.333	0.286	0.25	0.222
y	1.2	1.5	2	2.5	3.033	3.497	4	4.545	5	5.556

На основе полученной таблицы найдём точечную оценку линейной модели.

$$y = \tilde{b} + \tilde{a}x$$

Метод наименьших квадратов:

$$S(a, b) = \sum_{i=1}^{n} (y_i - \tilde{y}(x_i))^2 = \sum_{i=1}^{10} (y_i - \tilde{b} - \tilde{a}x_i)^2 - min$$

Найдём экстремум:

$$\begin{cases} \frac{\partial S}{\partial a} = -2 \left(\sum_{i=1}^{10} y_i - 10\tilde{b} - \tilde{a} \sum_{i=1}^{10} x_i \right) = 0 \\ \frac{\partial S}{\partial b} = -2 \left(\sum_{i=1}^{10} x_i y_i - \tilde{b} \sum_{i=1}^{10} x_i - \tilde{a} \sum_{i=1}^{10} x_i^2 \right) = 0 \end{cases}$$

$$\sum_{i=1}^{11} x_i = 10.658$$

$$\sum_{i=1}^{11} y_i = 32.826$$

$$\sum_{i=1}^{11} x_i^2 = 31.160$$

$$\sum_{i=1}^{11} x_i y_i = 20.697$$

После подсчёта сумм получили систему:

$$\begin{cases} 10\tilde{b} + 10.658\tilde{a} = 32.826 \\ 10.658\tilde{b} + 31.160\tilde{a} = 20.697 \end{cases}$$

Подсчитали неизвестные:

$$\begin{cases} \tilde{b} \approx 4.05 \\ \tilde{a} \approx -0.72 \end{cases}$$

Подставили коэффиценты и получили точечную оценку:

$$\tilde{y} = 4.05 - 0.72x$$

В итоге получили точечную оценку

$$\tilde{z} = \frac{t}{-0.72 + 4.05t}$$

Вычисленные значения полученной оценки и невязки.

t	0.2	0.5	1	1.5	2	2.5	3	3.5	4	4.5
z	0.833	0.667	0.5	0.4	0.33	0.286	0.25	0.22	0.2	0.18
\tilde{z}	2.222	0.383	0.300	0.280	0.271	0.266	0.262	0.260	0.258	0.257
ϵ	-1.389	0.284	0.200	0.120	0.059	0.020	-0.012	-0.040	-0.058	-0.077

График 2. Дробная модель

Решение при помощи степенной формулы

Требуется сгладить при помощи формулы и вычислить невязки до тысячных.

$$z = at^b$$

Линеаризуем формулу:

$$z = at^{b}$$

$$ln \ z = ln \ at^{b} = ln \ a + ln \ t^{b} = ln \ a + bln \ t$$

$$ln \ z = ln \ a + bln \ t$$

$$y = ln \ z, \ x = ln \ t, c = ln \ a$$

x	-1.609	-0.693	0	0.405	0.693	0.916	1.099	1.253	1.386	1.504
y	-0.182	-0.405	-0.693	-0.916	-1.109	-1.252	-1.386	-1.514	-1.609	-1.715

На основе полученной таблицы найдём точечную оценку линейной модели.

$$y = \tilde{c} + \tilde{b}x$$

Метод наименьших квадратов:

$$S(a, b) = \sum_{i=1}^{n} (y_i - \tilde{y}(x_i))^2 = \sum_{i=1}^{10} (y_i - \tilde{c} - \tilde{b}x_i)^2 - min$$

Найдём экстремум:

$$\begin{cases} \frac{\partial S}{\partial a} = -2 \left(\sum_{i=1}^{10} y_i - 10\tilde{c} - \tilde{b} \sum_{i=1}^{10} x_i \right) = 0 \\ \frac{\partial S}{\partial b} = -2 \left(\sum_{i=1}^{10} x_i y_i - \tilde{c} \sum_{i=1}^{10} x_i - \tilde{b} \sum_{i=1}^{10} x_i^2 \right) = 0 \end{cases}$$

$$\sum_{i=1}^{11} x_i = 4.954$$

$$\sum_{i=1}^{11} y_i = -10.781$$

$$\sum_{i=1}^{11} x_i^2 = 11.513$$

$$\sum_{i=1}^{11} x_i y_i = -9.943$$

После подсчёта сумм получили систему:

$$\begin{cases} 10\tilde{c} + 4.954\tilde{a} = -10.781\\ 4.954\tilde{b} + 11.513\tilde{a} = -9.943 \end{cases}$$

Подсчитали неизвестные:

$$\begin{cases} \tilde{b} \approx -0.826 \\ \tilde{a} \approx -0.508 \end{cases}$$

Подставили коэффиценты и получили точечную оценку:

 $\tilde{a} \approx 0.438$

В итоге получили точечную оценку

$$\tilde{z} = 0.438t^{-0.508}$$

Вычисленные значения полученной оценки и невязки.

t	0.2	0.5	1	1.5	2	2.5	3	3.5	4	4.5
z	0.833	0.667	0.5	0.4	0.33	0.286	0.25	0.22	0.2	0.18
$ ilde{z}$	0.992	0.623	0.438	0.356	0.308	0.275	0.251	0.232	0.217	0.204
ϵ	-0.159	0.044	0.062	0.044	0.022	0.011	-0.001	-0.012	-0.017	-0.024

График 3. Степенная модель

Решение при помощи экспоненциальной формулы

Требуется сгладить при помощи формулы и вычислить невязки до тысячных.

$$z = ae^{bt}$$

Линеаризуем формулу:

$$z = ae^{bt}$$

$$ln \ z = ln \ ae^b = ln \ a + ln \ e^{bt} - ln \ a + bt$$

$$ln \ z = ln \ a + bt$$

$$y = ln \ z; \ x = t; \ c = ln \ a$$

x	0	0.2	0.5	1	1.5	2	2.5	3	3.5	4	4.5
y	0	-0.182	-0.405	-0.693	-0.916	-1.109	-1.252	-1.386	-1.514	-1.609	-1.715

На основе полученной таблицы найдём точечную оценку линейной модели.

$$y = \tilde{c} + \tilde{b}x$$

Метод наименьших квадратов:

$$S(a, b) = \sum_{i=1}^{n} (y_i - \tilde{y}(x_i))^2 = \sum_{i=1}^{11} (y_i - \tilde{c} - \tilde{b}x_i)^2 - min$$

Найдём экстремум:

$$\begin{cases} \frac{\partial S}{\partial a} = -2\left(\sum_{i=1}^{11} y_i - 11\tilde{c} - \tilde{b}\sum_{i=1}^{11} x_i\right) = 0\\ \frac{\partial S}{\partial b} = -2\left(\sum_{i=1}^{11} x_i y_i - \tilde{c}\sum_{i=1}^{11} x_i - \tilde{b}\sum_{i=1}^{11} x_i^2\right) = 0\\ \sum_{i=1}^{11} x_i = 21.7 \end{cases}$$

$$\sum_{i=1}^{11} y_i = -10.781$$

$$\sum_{i=1}^{11} x_i^2 = 69.29$$

$$\sum_{i=1}^{11} x_i y_i = -31.266$$

После подсчёта сумм получили систему:

$$\begin{cases} 11\tilde{c} + 21.7\tilde{a} = -10.781 \\ 21.7\tilde{b} + 69.29\tilde{a} = -31.266 \end{cases}$$

Подсчитали неизвестные:

$$\begin{cases} \tilde{c} \approx -0.307 \\ \tilde{b} \approx -0.355 \end{cases}$$

Подставили коэффиценты и получили точечную оценку:

$$\tilde{a} \approx 0.734$$

В итоге получили точечную оценку

$$\tilde{z} = 0.734e^{-0.355t}$$

Вычисленные значения полученной оценки и невязки.

	t	0	0.2	0.5	1	1.5	2	2.5	3	3.5	4	4.5
ſ	z	1	0.833	0.667	0.5	0.4	0.33	0.286	0.25	0.22	0.2	0.18
	\tilde{z}	0.734	0.684	0.615	0.515	0.431	0.361	0.302	0.253	0.212	0.177	0.149
ſ	ϵ	0.266	0.149	0.052	-0.015	-0.031	-0.031	-0.016	-0.003	0.008	0.023	0.031

График 4. Экспоненциальная модель

Вывод

Используя метод наименьших квадратов, сгладили предложенную табличную зависимость при помощи формул. Помимо этого, вычислили невязки с точностью до сотых и отобразить на графике табличные данные и сглаживающую кривую.