ASSIGNMENT 2: MATH. PHYS. 3 (PEU 455)

Due October 21st

- Arfken (7th edition)
- Exercises: 8.4.1.
- If the photon had a non-zero mass $(m_{\gamma} \neq 0)$, the Coulomb potential would be replaced by the **Yukawa potential**

$$V(\mathbf{r}) = \frac{-e^2}{4\pi\epsilon_0} \frac{e^{-\mu r}}{r},$$

where $\mu = m_{\gamma}c/\hbar$. With a trial wavefunction of your own devising, estimate the ground state energy of the Hydrogen atom with this potential. Assume $\mu a \ll 1$, and give your answer correct to order $(\mu a)^2$, where a is the Bohr radius.

• Consider a function f(x,t) of the two variable x,t. Now define the new coordinates

$$u = x + t,$$
 $v = x - t.$

- (i) Describe the lines of constant u and the lines of constant v
- (ii) Show that the lines of constant u are perpendicular to the lines of constant v
- (iii) Write df in terms of $\frac{\partial}{\partial u}$, $\frac{\partial}{\partial v}$
- (iv) Now replace t by iy and write df in terms of $\frac{\partial}{\partial z}$, $\frac{\partial}{\partial \bar{z}}$.
- Write the two-dimensional Laplace equation $\nabla^2 \phi(x,y) = 0$ in terms of $\frac{\partial}{\partial z}, \frac{\partial}{\partial z^*}$ and then write it's general solution.

¹These coordinates are called light-cone coordinates in the context of Minkowski geometry.