Kapitel 5: Verkehrslenkung im Internet

- 5.1 Übersicht
- 5.2 Adressen
- 5.3 Lokale Netze: Bridges und Switches
- 5.4 Intra-Domain Routing
- 5.5 Inter-Domain Routing
- 5.6 Internet Protocol (IPv4)
- **5.7 Network Address Translation (NAT)**
- 5.8 IPv6
- 5.9 Mobilitätsunterstützung
- 5.10 Zusammenfassung

IPv4 Adresszuteilung

- IPv4 Adressraum ist zu klein
 - 2³² also ungefähr 4.3 Milliarden Adressen
 - weniger als eine Adresse pro Person
- Teile der Welt haben den zugeteilten Adressraum vollständig ausgeschöpft

verbleibende IPv4
Adressen
(Anzahl /8s)

/8=16777216 Adressen

IPv4 Verbrauch

Mangel an IPv4 Adressen

- Problem: Internet-Provider vergeben nur eine IPv4-Adresse pro Haushalt
 - zusätzliche IPs kosten extra
 - keine zusätzlichen IPs vorhanden
 - Anzahl von Geräten mit IP Adresse im Haushalt wächst stetig, Explosion in den letzten Jahren
 - Laptops, Desktops, TV, Blu-Ray-Player, Spiel-Konsole, Tablets,
 Smartphones, eReaders, Kameras, etc.
 - Faktor 10-100 durch IoT erwartet
 - Wie gehen alle Devices online?
- Problem gilt generell
 - Internet Provider haben mehr Kunden als IP Adressen
 - Firmen benötigen mehr IP Adressen als sie vom ISP bekommen
- Zusätzlich: Privacy
 - feste öffentliche IP macht Identifikation einfach

Private IP Netze

- Idee: Definieren einen privaten IP-Adressbereich, der vom Rest des Netzes getrennt und nicht sichtbar ist
 - Private IP Adressen werden für internes Routing (im Haushalt) und vor allem auf dem lokalen Rechner (zur Identifikation in Sockets) verwendet
 - Spezieller Router als Schnittstelle zwischen LAN und WAN, der die internen Adressen von außen erreichbar macht
 - NAT: Network Address Translation
- Eigenschaften von privaten IPs
 - nicht weltweit eindeutig, können mehrfach wiederverwendet werden
 - DSL Kunden eines Providers haben tendenziell das gleiche private Netz
 - normalerweise aus dem Bereich der nicht-routebaren Adressen
- Typische private IP Adressen:
 - -10.0.0.0 10.255.255.255
 - -172.16.0.0 172.31.255.255
 - -192.168.0.0 192.168.255.255

NAT – Network Address Translation

Prinzip von NAT

Private Network

Source: 192.168.0.1

Dest: 74.125.228.67

Internet

Source: 66.31.210.69

Dest: 74.125.228.67

Private Address

192.168.0.1:2345

Public Address

66.31.210.69:2345

192.168.0.1

66.31.210.69

74.125.228.67

Source: 74.125.228.67

Dest: 192.168.0.1

Source: 74.125.228.67 Dest: 66.31.210.69

Prinzip von NAT

Private Network

Source: 192.168.0.1

Dest: 74.125.228.67

Was wenn 192.168.0.2 auch einen Socket mit Port 2345 aufmacht?

3.00

Dest: 74.125.228.67

Private Address

192.168.0.1:2345

Public Address

66.31.210.69:2345

192.168.0.1

66.31.210.69

74.125.228.67

410.69

Source: 74.125.228.67

Dest: 192.168.0.1

Source: 74.125.228.67

Dest: 66.31.210.69

Prinzip von NAT

NAT und NAPT

- NAT: Network Address Translation
 - Abbildung von privater auf öffentliche Adresse
- NAPT: Network and Port Address Translation
 - Abbildung von private IP Adresse+Port auf öffentliche Adresse + Port

66.31.210.69

192.168.0.1

192.168.0.2

_	
-	
_	

Private Address	Public Address
192.168.0.1:2345	66.31.210.69:50000
192.168.0.1:3001	66.31.210.69:50001
192.168.0.2:2345	66.31.210.69:60000
192.168.0.2:7023	66.31.210.69:60001

HT WI GN

NAT und NAPT

- NAT: Network Address Translation
 - Abbildung von privater auf öffentliche Adresse
- NAPT: Network and Port Address Translation
 - Abbildung von privatem Adresse+Port-Paar auf öffentliches Adresse+Port-Paar

NAT als Firewall

Port Forwarding

NAT Hole Punching

- Problem: Kommunikation von zwei Hosts (Sykpe-Anwendungen), die sich beide hinter NATs befinden und es ist kein "statisches" Port Forwarding konfiguriert
- Hole Punching: NAT Einträge für die Kommunikation generieren

Lösungsansätze auf Anwendungsschicht:

- STUN
- TURN

STUN

- STUN: Session Traversal Using NAT
- Prinzip: Rückgabe der globalen IP Adresse durch Anfrage an Server und Rückmeldung als Payload
 - dient zum Testen der Art von NAT
 - IP Adresse kann z.B. einem Server mitgeteilt werden

- TURN: Traversal Using Relays around NAT
- Prinzip: Öffnen eines NAT Ports und Mitteilung über TURN Server

(1) Knoten nehmen Verbindung mit TURN Server auf, um IP-Adresse des NAT Gateways des Kommunikationspartners zu erfahren sowie einen Ziel-Port zu vereinbaren.

(2) Kommunikation mit Ziel-NAT-Gateway bewirkt Eintrag in NAT Table. Kommunikation wird von Ziel-NAT geblockt.

(3) Aufforderung an gegenüber, Nachricht auf offenen Port zu schicken.

(4) Nachricht auf "offenem" NAT-Port.

(5) Verbindung ist aufgebaut und bi-direktionale Kommunikation ist möglich.

Unterschiedliche NAT-Typen

Full Cone NAT:

- Konsistentes Mapping von internem Adress+Port-Paar zu öffentlichem Adress+Port-Paar.
- Weiterleitung von Paketen erfolgt ohne Überprüfung des Remote-Hosts

Restricted Cone NAT:

 wie Full Cone NAT, aber Pakete von externem Host werden nur weitergeleitet, wenn der interne Host bereits Pakete an diesen gesendet hat

Port Restricted Cone NAT:

 wie Restricted Cone NAT aber Pakete werden hier nur weitergeleitet, wenn der interne Host vorher Pakete an das Adress+Port-Paar des Remote Hosts gesendet hat.

Unterschiedliche NAT-Typen

Symmetric NAT:

- kein konsistentes Mapping von internem Adress+Port-Paar zu öffentlichem Adress+Port-Paar sondern socket-spezifisches Mapping
 - ein internes Adress+Port-Paar wird für verschiedene Ziel-Adress+Port-Paare auf unterschiedliche öffentliche Adress+Port-Paare abgebildet
- gilt auch für UDP
- Aufbau einer Verbindung zwischen zwei Hosts ist nicht möglich, wenn sich beide hinter Symmetric NATs befinden
- Einziger Ausweg: Relaying aller Pakete z.B. über TURN Server
- beispielsweise bei Skype (aber nicht über TURN Server)

HT WI GN

Full Cone NAT

- (1) S: 192.168.0.1:50000, D: 1.1.1.4:100 → S: 66.31.210.69:6000, D: 1.1.1.4:100
 - NAT Table Entry 1
- (2) S: 1.1.1.4:100, D: $66.31.210.69:6000 \rightarrow S:1.1.1.4:100$, D: 192.168.0.1:50000
- (3) S: 1.1.1.4:200, D: 66.31.210.69:6000 → S:1.1.1.4:200, D: 192.168.0.1:50000
- (4) S: 1.1.1.4:100, D: 66.31.210.69:5000 → blocked
- (5) S: 1.1.1.5:200, D: 66.31.210.69:6000 → S:1.1.1.5:200, D: 192.168.0.1:50000

NAT Table

1. $192.168.0.1:50000 \Leftrightarrow 66.31.210.69:6000$ (allow ALL to 66.31.210.69:6000)

HT WI GN

Restricted Cone NAT

- (1) S: 192.168.0.1:50000, D: 1.1.1.4:100 → S: 66.31.210.69:6000, D: 1.1.1.4:100
 - NAT Table Entry 1
- (2) S: 1.1.1.4:100, D: $66.31.210.69:6000 \rightarrow S:1.1.1.4:100$, D: 192.168.0.1:50000
- (3) S: 1.1.1.4:200, D: 66.31.210.69:6000 → S:1.1.1.4:200, D: 192.168.0.1:50000
- (4) S: 1.1.1.5:100, D: 66.31.210.69:6000 → blocked

NAT Table

1. 192.168.0.1:50000 ⇔66.31.210.69:6000 (allow 1.1.1.4:* to 66.31.210.69:6000)

IT WI GN

Port Restricted Cone NAT

- (1) S: 192.168.0.1:50000, D: 1.1.1.4:100 \rightarrow S: 66.31.210.69:6000, D: 1.1.1.4:100
 - NAT Table Entry 1
- (2) S: 1.1.1.4:100, D: $66.31.210.69:6000 \rightarrow S:1.1.1.4:100$, D: 192.168.0.1:50000
- (3) S: 1.1.1.4:200, D: 66.31.210.69:6000 → blocked
- (4) S: 192.168.0.1:50000, D: 1.1.1.4:200 → S: 66.31.210.69:6000, D: 1.1.1.4:200
 - NAT Table Entry 2
- (5) S: 1.1.1.4:200, D: 66.31.210.69:6000 → S:1.1.1.4:200, D: 192.168.0.1:50000

NAT Table

- 1. 192.168.0.1:50000 ⇔66.31.210.69:6000 (allow 1.1.1.4:100 to 66.31.210.69:6000)
- 2. $192.168.0.1:50000 \Leftrightarrow 66.31.210.69:6000$ (allow 1.1.1.4:200 to 66.31.210.69:6000)

IT WI GN

Symmetric NAT

- (1) S: 192.168.0.1:50000, D: 1.1.1.4:100 → S: 66.31.210.69:6000, D: 1.1.1.4:100
 - NAT Table Entry 1
- (2) S: 1.1.1.4:100, D: 66.31.210.69:6000 → S:1.1.1.4:100, D: 192.168.0.1:50000
- (3) S: 1.1.1.4:200, D: 66.31.210.69:6000 → blocked
- (4) S: 192.168.0.1:50000, D: 1.1.1.4:200 → S: 66.31.210.69:7000, D: 1.1.1.4:200
 - NAT Table Entry 2
- (5) S: 1.1.1.4:200, D: 66.31.210.69:6000 → blocked

NAT Table

- 1. 192.168.0.1:50000 ⇔66.31.210.69:6000 (allow 1.1.1.4:100 to 66.31.210.69:6000)
- 2. 192.168.0.1:50000 ⇔66.31.210.69:7000 (allow 1.1.1.4:200 to 66.31.210.69:7000)

IT WI GN

Symmetric NAT

- (1) S: 192.168.0.1:50000, D: 1.1.1.4:100 → S: 66.31.210.69:6000, D: 1.1.1.4:100
 - NAT Table Entry 1
- (2) S: 1.1.1.4:100, D: $66.31.210.69:6000 \rightarrow S:1.1.1.4:100$, D: 192.168.0.1:50000
- (3) S: 1.1.1.4:200, D: 66.31.210.69:6000 → blocked
- (4) S: 192.168.0.1:50000, D: 1.1.1.4:200 → S: 66.31.210.69:7000, D: 1.1.1.4:200
 - NAT Table Entry 2
- (5) S: 1.1.1.4:200, D: 66.31.210.69:6000 → blocked

NAT Table

- 1. 192.168.0.1:50000 ⇔66.31.210.69:6000 (allow 1.1.1.4:100 to 66.31.210.69:6000)
- 2. 192.168.0.1:50000 ⇔66.31.210.69:7000 (allow 1.1.1.4:200 to 66.31.210.69:7000)

 Ziel: Kommunikation 192.168.0.1:5000 hinter NAT 1 mit 192.168.0.2:5000 hinter NAT 2 (Ports müssen nicht gleich sein)

- Hosts hinter NAT kontaktieren Rendezvous (Turn) Server
- Rendezvous Server lernt offene Ports kennen, auf denen Verbindung stattfinden soll und weiß, dass
 - 192.168.0.1:5000 auf 66.31.210.69 gemappt wird

 Rendezvous Server mappt (wie auch immer) die Verbindungswünsche der beiden Hosts und teilt ihnen den offenen Port des jeweiligen Remote Hosts mit

- Host hinter NAT 1 schickt Paket an von TURN-Server erhaltenes Adress-Port-Paar
 - Paket wird von NAT 2 geblockt
 - Eintrag in NAT 1 wird erzeugt

NAT 1 Table

192.168.0.1:5000 \$\ 66.31.210.69:1234

allow 59.1.72.13:5678 to 66.31.210.69:1234

- Host hinter NAT 2 schickt Paket an von TURN-Server erhaltenes Adress-Port-Paar
 - Paket wird von NAT 1 weitergeleitet
 - Eintrag in NAT 2 wird erzeugt

NAT 1 Table

192.168.0.1:5000 \$\ 66.31.210.69:1234 allow 59.1.72.13:5678 to 66.31.210.69:1234

NAT 2 Table

192.168.0.2:5000 ⇔ 59.1.72.13:5678 allow 66.31.210.69:1234 to 59.1.72.13:5678

TURN with Symmetric NAT

 Rendezvous Server mappt (wie auch immer) die Verbindungswünsche der beiden Hosts und teilt ihnen den offenen Port des jeweiligen Remote Hosts mit

TURN with Symmetric NAT

- Host hinter NAT 1 schickt Paket an von TURN-Server erhaltenes Adress-Port-Paar
 - Paket wird von NAT 2 geblockt
 - Eintrag in NAT 1 wird erzeugt, aber mit anderem öffentlichem Adress+Port-Paar

NAT 1 Table

192.168.0.1:5000 ⇔66.31.210.69:**4321**

allow 59.1.72.13:5678 to 66.31.210.69:4321

TURN with Symmetric NAT

- Host hinter NAT 2 schickt Paket an von TURN-Server erhaltenes Adress-Port-Paar
 - Paket wird von NAT 1 geblockt
 - Eintrag in NAT 2 wird erzeugt aber mit anderem Adress+Port-Paar
- Keine Kommunikation möglich

NAT 1 Table

192.168.0.1:5000 \$\ 66.31.210.69:4321 allow 59.1.72.13:5678 to 66.31.210.69:4321

NAT 2 Table

192.168.0.2:5000 \Leftrightarrow 59.1.72.13:8765 allow 66.31.210.69:1234 to 59.1.72.13:8765

TURN Lösung für Symmetric NAT

Relaying aller Pakete über TURN Server

NAT 1 Table

192.168.0.1:5000 \$\ 66.31.210.69:1234 allow 1.1.1.1:100 to 66.31.210.69:1234

NAT 2 Table

192.168.0.2:5000 ⇔ 59.1.72.13:5678 allow 1.1.1.1:100 to 59.1.72.13:5678

TURN Lösung für Symmetric NAT

Relaying aller Pakete über TURN Server, sehr teuer

NAT 1 Table

192.168.0.1:5000 ⇔66.31.210.69:1234 allow 1.1.1.1:100 to 66.31.210.69:1234

NAT 2 Table

192.168.0.2:5000 ⇔ 59.1.72.13:5678 allow 1.1.1.1:100 to 59.1.72.13:5678

NAT: Zusammenfassung

- NA(P)T ermöglicht Kommunikation von privatem Netz mit dem Internet
- Abbildung von privater Adresse auf öffentliche Adresse
 - öffentliche/private ISP IP -> private Kunden IP
 - öffentliche ISP IP -> private ISP IP
 - auch zwischen IPv4 und IPv6
 - meist Abbildung zwischen Adress+Port-Paaren
- Eingeschränkte Kontaktaufnahme von außen:
 - Full Cone, Restrict Cone, Port-Restricted Cone NAT
 - Symmetric NAT
- Konkataufnahme möglich über
 - Konfiguration im NAT mit Port Forwarding
 - UDP Hole Punching (STUN, TURN)
 - Relaying: Kommunikation über einen Server, der nicht hinter einem NAT sitzt (Skype, P2P)

NAT 444

- Typisch: LSN und CPE NAT
 - Large Scale NAT (LSN): Public IPv4 auf Private IPv4 (ISP Ebene)
 - Customer Premises Equipment (CPE) NAT: Private IPV4 (ISP) auf private IPv4 (Home)

