Digital IC Design

Lecture 6:

Low Power Design Techniques for DIC

黃柏蒼 Po-Tsang (Bug) Huang bughuang@nycu.edu.tw

International College of Semiconductor Technology National Chiao Tung Yang Ming University

CMOS Energy & Power Equations

$$E = C_L V_{DD}^2 P_{0\rightarrow 1} + t_{sc} V_{DD} I_{peak} P_{0\rightarrow 1} + V_{DD} I_{leakage}$$

$$f_{0\to 1} = P_{0\to 1} * f_{clock}$$

$$P = C_L V_{DD}^2 f_{0\rightarrow 1} + t_{sc} V_{DD} I_{peak} f_{0\rightarrow 1} + V_{DD} I_{leakage}$$

 Dynamic power Short-circuit Leakage power power

Low Power Design Methodologies

Power and Energy Design Space

	Constant Throughput/Latency	Throu		/ariable hput/Latency	
Energy	Design Time	Non-active Modules		Run Time	
Active	Parallelism, pipeline Reduced switching activity Scaled V _{dd} Transistor sizing Multi-V _{dd}	Cl	ock Gating	DFS, DVS, DFVS (Dynamic Freq, Voltage Scaling) (PWM)	
Leakage	Transistor stacking + Multi-V _T	Power Gating Multi-V _{dd} Variable V _T		+ Variable V _⊤	

Design Abstraction Stack

A very rich set of design parameters to consider! It helps to consider options in relation to their abstraction layer.

System/Application Choice of algorithm Software Concurrency, Power Control (Micro-)Architecture Parallel, Pipeline, Configurable Logic logic family, standard cell, custom Circuit Sizing, supply, thresholds Bulk, SOI Device

Active Power Reduction - Switching

$$P = \alpha \cdot f_{clk} \cdot C_L \cdot V^2$$

- Reduce switching activity
 - Conditional execution
 - ◆ Data gating
 - ◆ Clock gating
 - Glitch reduction
 - Conditional precharge for dynamic circuits
 - Turn off inactive blocks
 - ◆ Reduce toggling of high capacitance nodes buses

Active Power Reduction - Frequency

$$P = \alpha \cdot f_{clk} \cdot C_L \cdot V^2$$

- Frequency reduction with the same performance
 - ◆ Use parallelism
 - ◆ Time borrowing technique
 - ◆ Pipeline retiming technique
 - ◆ Less pipeline stages
 - ◆ Use double-edge flip-flops
 - Multi-clock domain
 - Asynchronous circuits
 - Globally asynchronous locally synchronous (GALS)
 - Self-timed circuits

Active Power Reduction - Capacitance

$$P = \alpha \cdot f_{clk} \cdot C_L \cdot V^2$$

- Reduce switching capacitance
 - ◆ Minimize diffusion, wire and gate loading
 - Minimize loading in high activity factor nodes (clocks, dynamic circuits)
 - ◆ Coupling-aware wire routing
 - ◆ Use more efficient layout technique
 - Buffer insertion
 - ◆ Reduce long wires

Active Power Reduction - Voltage

$$P = \alpha \cdot f_{clk} \cdot C_L \cdot V^2$$

- Supply voltage scaling is slowing down
- Thresholds don't scale
- Voltage reduction
 - ◆ Technology scaling
 - Dynamic voltage scaling (DVS)
 - ◆ Multi-Vdd Design
 - Power domain
 - ◆ Low-voltage design
 - On-chip integrated voltage regulation module (VRM)

Principles for Active Power Reduction

- Prime choice : Reduce voltage!
 - Recent years have seen an acceleration in supply voltage reduction
 - ◆ Design at very low voltages still open question
- Reduce switching activity
- Reduce physical capacitance

Design Techniques for Coupling Effect

- Widen the pitch between adjacent lines
- Routing wires by different metal layers
- Change the geometrical shape of interconnects
- Bus coding schemes
- Phase coding schemes
- Add shielding lines

Power of Interconnects

- Interconnect consumes >50% of dynamic power in a micro-processor
- 90% of interconnect power is in 10% of interconnect

Low Power Interconnect	BW (Ghz)	Swing (V)	Normalized Energy
Basic (no scaling)	>1	1	1
Low swing (Single-ended)	< 0.25	0.6	0.6
Differential Pair	>1	0.05	0.8
Capacitive	<0.25	0.05	0.2

Low Swing Bus & Level Converter

- Delay of INV1 does not increase
- INV2 is placed near 9:1 MUX to increase noise immunity
- Level conversion is done by a domino 9:1 MUX

Clock Domains and Clock Gating

Clock distribution & clock gating reduce active power

Clock Domains

 On-chip clock distribution generates multiple synchronous phase aligned clock domains

Clock Gating

- ◆ IP Core Level clock gating disables clocks to whole IP blocks that are not currently being used
- ◆ Register Level clock gating disables clock to unused portions of IP blocks during each operation or instruction cycle

Clock Gating

- Requires careful skew control
 - ◆ Well handled in today's EDA tool

Clock Gating Design

- Save power by gating the clock when data activity is low
- Widest used switching power reduction technique
- Requires early EN signal arrival, as well as detailed timing and logic validation

Clock Gating in Verilog

Conditional Clocking Flip-Flop

■ FF does not consume active power when the data input does not change its state

Power Comparisons of CCFF

- Taking into account the overhead of the auxiliary circuits, the flip-flop consumes less power than the conventional flip-flops when the data transition probability is less than 55%.
- Issues: leakage, setup time

		conventional	conditional clk
Power	P _{LH/HL}	1.00	0.35
	P _{LL/HH}	1.28	0.00
Delay (ps)	CP-to-Q	82	86
	Setup	84	199
	Hold	-72	-195
Area		1.00	1.33

Latch Clustering

- Minimize the capacitive loading on local clock buffers by clustering latches around them
 - ◆ Tradeoff between latch placement flexibility and clock power saving
 - Reduction in clock skew between capturing and launching latch compensates for loss in latch placement flexibility

Power Saving of Clock gating

- 90% of flip-flops were gated.
- 70% power reduction by clock-gating alone

Voltage Scaling Trends

- Vcc scaling has been driven by power and oxide reliability
- Gate overdrive is decreasing with each technology generation
- VT is scaling very slowly
- Vcc scaling trend is decreasing due to performance concerns

Controlling VDD and VTH

Active		Stand-by			
Dual-V _{TH}		MTCMOS			
Vтн hopping		VTCMOS			
Dual-V _{DD}		Boosted gate MOS			
V _{DD} hopping					
Software-hardware cooperation			Technology-circuit cooperation		
	Dual-VTH VTH hopping Dual-VDD VDD hopping	Dual-VTH VTH hopping Dual-VDD VDD hopping Te cooperation	Dual-VTH MTCMOS VTH hopping VTCMOS Dual-VDD Boosted gate I VDD hopping		

- MTCMOS : Multi-Threshold CMOS
- VTCMOS : Variable Threshold CMOS
 - Multiple : spatial assignment
 - ◆ Variable : temporal assignment

Cell-Level Dual-VDD Approach

- Use reduced voltage VDDL in non-critical paths
- Apply original voltage VDDH to timing critical path

Challenges: minimize # of level converters by clustering

Row-Based Cell-Level Dual-VDD

- P&R tool determines which row should be VDDL
- Clock tree synthesis using VDDL clock buffers

25% power reduction demonstrated on H.264 video codec core

Row-by-row layout architecture with Dual-Vdd

Multiple Supply Voltages

- Multiple Supplies in a Block
 - Only the critical path cells work on Higher Vdd.
 - ◆ Level conversion at different places within the block.
 - ◆ Implementation and Physical Design Challenges. Not trivial with standard-cell based design.
- Block Level Supply Assignment
 - "Voltage Islands"
 - ◆ Higher throughput/Lower latency functions are implemented in higher Vdd.
 - ◆ Separate Supply distribution grids, Level conversion performed at Block Boundaries.

Voltage Islands

- What's Voltage Islands?
 - ◆ Regions supplied through separate, dedicated power feeds
- Power Saving through Reduced Voltage
 - Goal is to define groupings of circuit or macros within a systemon-a-chip which can be powered by a lower supply while maintaining the required frequency and offering lower power consumption.

Voltage Island Concept

- Tradeoff between power and delay by running function blocks at different voltages.
- Can use mix of low and high V_t to balance performance and leakage
- Switch off inactive blocks to reduce leakage power
- Requires IP standards for power management, clock gating, etc.

Multiple voltage Domain

Legend:

PLL

S. Rusu, ISSCC 2006

Frequency Scaling

Dynamic Voltage Scaling (DVS)

- Dynamically scale energy/operation with throughput.
- Always minimize speed → minimize average energy/operation.
- Extend battery life up to 10x with the exact same hardware!

Dynamic Voltage & Frequency Scaling

- Process requirements
 - Enough voltage excursion & characterization
 - Low leakage level (Tasks take long to execute)

Adaptive Supply Voltages

Exploit data dependent computation times to vary the supply

Software-Hardware Cooperation

If you don't need to hustle, relax and save power.

Measured System Performance & Energy

Dynamic operation can increase energy efficiency > 10x.

V_{DD}-Hopping

- Application slicing and software feedback guarantee real-time operations.
- Two hopping level are sufficient.

Challenge: Design over Wide Range of Voltages

- Circuit design constraints. (Functional verification)
- Circuit delay variation. (Timing verification)
- Noise margin reduction. (Power grid, coupling)
- Delay sensitivity. (Local power distribution)

Design verification complexity similar to high-performance processor design @ fixed VDD

Multi-Mode Multi-Corner

- Corner: defined as a set of libraries characterized for process, voltage and temperature variations.
 - Corners are not dependent on functional settings
 - ◆ To capture variations in the manufacturing process, along with expected variations in the **voltage and temperature** of the environment in which the design will operate.
- Mode: defined by a unique set of clocks, supply voltages, and timing constraints in similar operating conditions.
 - ◆ It can also have annotation data, such as SDF or parasitic files.

MCMM (or MMMC) Optimization

- MCMM optimization is useful for designs that can operate in many modes such as test mode, low-power active mode, stand-by mode and so on.
- Used along with specification of power intent in the Unified Power Format (UPF), it serves as the key enabling technology for performing dynamic voltage and frequency scaling (DVFS) design realization

Timing Margins

The setup and hold times must be analyzed simultaneously for different combinations of library models, voltages, and interconnect (RC) corners.

	Single Core Design			Core + 1 Island				Core + 2 Islands				
	Lib	Core	RC	Lib	Core	Vdd1	RC	Lib	Core	Vdd1	Vdd2	RC
Setup1	Max	1.2	Max	Max	1.2	0.9	Max	Max	1.2	0.9	0.9	Max
Setup2	Max	1.2	Min	Max	1.2	0.9	Min	Max	1.2	0.9	0.9	Min
Hold1	Min	1.8	Min	Min	1.8	1.5	Min	Min	1.8	1.5	1.5	Min
Hold2	Min	1.8	Max	Min	1.8	1.5	Max	Min	1.8	1.5	1.5	Max
Setup1		_	_	Max	1.2	0	Max	Max	1.2	0	1.2	Max
Setup2	1-	_	_	Max	1.2	0	Min	Max	1.2	0	1.2	Min
Hold1	-		-	Min	1.8	0	Min	Min	1.8	0	1.8	Min
Hold2		_	_	Min	1.8	0	Max	Min	1.8	0	1.8	Max
Setup1	_	_	_	_	-	_	_	Max	1.2	0.9	1.2	Max
Setup2	_			_		_	-	Max	1.2	0.9	1.2	Min
Hold1	-	-	-	_	-	-	-	Min	1.8	1.5	1.8	Min
Hold2	-	-	-	1—	-	_	_	Min	1.8	1.5	1.8	Max
Setup1		_	_	_	_	_	_	Max	1.2	0	0.9	Max
Setup2	-	_	_	_	-	-	_	Max	1.2	0	0.9	Min
Hold1	_	_	_	_	_	_	_	Min	1.8	0	1.5	Min
Hold2	-	-	-	-	=	-	_	Min	1.8	0	1.5	Max

Example: Mentor Olympus-SoC

- Variation-Based Timing Closure
- MCMM Clock Tree Synthesis
- MCMM Signal Integrity Closure
- Routing for Manufacturability and Yield
- High-Capacity Architecture

Features of MCMM Optimization

- Patented MCMM optimization during all steps
- Fast routing with full 40/28 nm rule support
- Sign-off quality timing analysis and optimization
- Extremely fast and accurate, on-the-fly parasitic extraction
- Floorplanning, rapid design feasibility and constraint debugging
- Best-in-class, CTS-aware standard cell and macro placement
- MCMM CTS for robust, low-power clock trees
- MCMM SI to concurrently compute delay shift and glitch for any number of mode/corner scenarios in a single pass
- Advanced physical synthesis with built-in OCV and CPPR
- Handles multi-million gate designs hierarchical or flat with faster runtimes

Physical design flow for multi-voltage designs

Power-aware CTS with smart clock gate placement, slew shaping, register clumping, and concurrent MCMM optimization that ensures a balanced clock tree with the minimum number of clock buffers.

Long-Le Transistors

- All transistors can be either nominal or long-Le
- Most library cell are available ir both flavors
- Long-Le transistors are about 10% slower, but have 3x lower leakage
- All paths with timing slack use long-Le transistors
- Initial design uses only long channel devices

Long-Le Transistors Usage

Long channel devices average usage

◆ Cores – 54%

High-V₊ Transistors

■ IBM's Power Processors are leveraging triple V_t process option

Leakage Reduction Circuit Techniques

Body Bias

Stack Effect

Sleep Transistor

Body Bias Leakage Reduction

Scalability of Reverse Body Bias

Reverse body bias is less effective with technology scaling

Stack Forcing

- Force one transistor into a two transistor stack with the same input load
- Can be applied to gates with timing slack
- Tradeoff between transistor leakage and speed

Stack Effect

Normalized leakage in stacked MOS

Structure	Without DIBL	With DIBL		
OFF -	1	1		
OFF -	0.5	~0.1		

Using Multiple Thresholds

- Cell-by-cell V_t assignment
 - ◆ Not block level
- Allow us to minimize leakage
- Achieve all-low-V_t performance

Dual VT Domino

Techniques for Burst Mode Computation

- Multiple V_t technology
 - ◆ High V_t transistor sizing issue
 - Preserving state requires extra transistors

MTCMOS

Boosted-Gate MOS (BGMOS)

Standby Mode Leakage Suppression

- Disconnect inactive logic from supply in standby
- Multi-threshold with high V_t header/footer
 - Gate & sub-threshold Leakage current suppression
- Multi-oxide with thick-oxide header/footer
 - ◆ Gate leakage current suppression
- Header/footer gate voltage
 - ◆ Overdrive increase frequency
 - Under-drive reduce leakage
- Header/footer well bias
 - ◆ Forward bias increase frequency
 - ◆ Reverse bias reduce leakage

Stand-by Leakage Reduction

Through technology-circuit cooperation

Technology provides multiple kinds of MOSFET's and designers make use of the gift.