BOSTON COLLEGE

DOCTORAL THESIS

On the use of Coarse Grained Thermodynamic Landscapes to Efficiently Estimate Kinetic Pathways for RNA Molecules

Author:
Evan Senter

Dr. Peter Clote

Supervisor:

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

in the

Clote Lab Department of Biology

Monday 27^{th} July, 2015

Declaration of Authorship

I, Evan Senter, declare that this thesis titled, 'On the use of Coarse Grained Thermodynamic Landscapes to Efficiently Estimate Kinetic Pathways for RNA Molecules' and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.
- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signea:		
Date:		

BOSTON COLLEGE

Abstract

Dr. Peter Clote Department of Biology

Doctor of Philosophy

On the use of Coarse Grained Thermodynamic Landscapes to Efficiently
Estimate Kinetic Pathways for RNA Molecules

by Evan Senter

Abstract

Acknowledgements

 ${\bf Acknowledgements}$

Contents

\mathbf{D}	eclar	ation of Authorship	i
\mathbf{A}	bstra	ct	ii
A	cknov	wledgements	iii
C	onter	nts	iv
Li	st of	Figures	vi
Li	st of	Tables	xi
1 2	1.1	roduction Thesis Organization	1 1 2
3		ofinder	3
	3.1	Introduction	3
	3.2	3.1.1 Organization	$\frac{4}{4}$
	3.2 3.3	The Ribofinder pipeline	$\frac{4}{5}$
	5.5	3.3.1 Step 1: Candidate selection	6
		3.3.1.1 Detecting Aptamers with Infernal	6
		3.3.1.2 Detecting Expression Platforms with TransTermHP	7
		3.3.2 Step 2: Structural prediction	8
		3.3.2.1 Notation for Representing Abstract RNA Shapes	8
		3.3.2.2 Constrained Folding to Predict Switch Structures	10
		3.3.3 Step 3: Candidate curation	12
	3.4	Using Ribofinder against the RefSeq database	12
	3.5	Extending beyond guanine riboswitches	12
4	FFT	Tbor Thor	13
	4.1	Introduction	13

Contents

7	Disc	cussion	97
		6.4.1 Pearson correlation coefficients for various kinetics packages	91
	6.4	Benchmarking data for computational comparison	. 89
		6.3.4.2 Approximating equilibrium time from occupancy curves .	. 85
		6.3.4.1 Population occupancy curves with FFTeq	. 85
		6.3.4 Approximate equilibrium time with FFTeq	. 84
		6.3.3 Exact equilibrium time with RNAeq	. 82
		6.3.2 Approximate mean first passage time with FFTmfpt	
		6.3.1 Exact mean first passage time with RNAmfpt	. 76
	6.3	Software within the Hermes suite	
		6.2.2 Equilibrium time	68
		6.2.1 Mean first passage time	65
	6.2	Traditional approaches for kinetics	65
		6.1.1 Organization	65
	6.1	Introduction	64
6	Her	mes	64
	5.4	Performance characteristics of FFTbor2D	. 57
		5.3.3 Polynomial interpolation to evaluate $\mathcal{Z}_{i,j}(x)$	
		5.3.2 Optimization due to complex conjugates	
		5.3.1 Optimization due to parity condition	
	5.3	Acceleration of the FFTbor2D algorithm	
		5.2.3 Polynomial interpolation	45
		5.2.2 Recursions to compute the polynomial $\mathcal{Z}_{i,j}(x)$. 42
		5.2.1 Definition of the partition function $\mathbf{Z}_{1,n}^{x,y}$. 41
	5.2	Derivation of the FFTbor2D algorithm	
		5.1.1 Organization	
	5.1	Introduction	
5	$\mathbf{FF}\mathbf{I}$	$\Gamma \mathrm{bor}\mathbf{2D}$	39
	4.6	Performance characteristics of FFTbor	. 38
	4.5	Coarse-grained kinetics with FFTbor	
	4.4	Benchmarking and performance considerations	
		4.3.3 Polynomial interpolation to evaluate $\mathcal{Z}_{i,j}(x)$	
		4.3.2 Recursions to compute the polynomial $\mathcal{Z}_{i,j}(x)$	
		4.3.1 Definition of the partition function $\mathbf{Z}_{1,n}^k$. 18
	4.3	Derivation of the FFTbor algorithm	
	4.2	Formalization of the problem	14
		4.1.1 Organization	. 14
		4.1.1 Organization	

List of Figures

4.1	Caption here	26
4.2	Rfam consensus structures (Rfam) and minimum free energy (MFE) secondary structures for two thiamine pyrophosphate (TPP) riboswitch aptamers, chosen at random from RF00059 Rfam family seed alignment?. Using pairwise BLAST?, there is no sequence similarity, although the secondary structures are very similar, as shown in this figure. From left to right: (A) Rfam consensus structure for BX842649.1/277414–277318. (B) MFE structure for BX842649.1/277414–277318. (C) Rfam consensus structure for AACY022101973.1/389–487. (D) Rfam consensus structure	
	for AACY022101973.1/389–487.	31
4.3	Output from FFTbor on two randomly selected thiamine pyrophosphate riboswitch (TPP) aptamers, taken from the Rfam database?. The x -axis represents base pair distance from the minimum free energy structure for each given sequence; the y -axis represents Boltzmann probabilities $p(k) = \mathbf{Z}^k/\mathbf{z}$, where \mathbf{Z}^k denotes the sum of Boltzmann factors or all secondary structures, whose base pair distance from the MFE structure is exactly k . (Left) The 97 nt sequence BX842649.1/277414–277318 appears to have a rugged energy landscape near its minimum free energy structure, with distinct low energy structures that may compete with the MFE structure during the folding process. (Right) The 99 nt sequence, AACY022101973.1/389–487 appears to have a smooth energy landscape near its MFE structure, with no distinct low energy structures to might compete with the MFE structure. Based on the FFTbor output or structural profile near MFE structure \mathcal{S}^* , one might expect folding time for the first sequence to increase due to competition from metastable structures, while one might expect the second sequence to have rapid folding time. Computational Monte Carlo folding experiments bear out this fact. Kinfold? simulations clearly show that the second sequence folds at	
	least four times more quickly than the first sequence. See section 4.5 for	90
	details	32

List of Figures vii

4.4	This figure represents the graphical output of FFTbor, when the empty structure is chosen as initial structure S^* . The x -axis represents the number of base pairs per structure, taken over the ensemble of all secondary structures for the given RNA sequence; the y -axis represents Boltzmann probability $p(k) = \mathbf{Z}^k/\mathbf{z}$, where \mathbf{Z} is the partition function for all secondary structures having exactly k base pairs. (Left) For the selenocysteine (SECIS) element AB030643.1/4176–4241 from Rfam family RF00031, the standard deviation σ of the number of base pairs, taken over the ensemble of all secondary structures, is 0.727618, while the logarithm base 10 of the mean first passage time ($\log_{10}(\text{MFPT})$) is 4.75. (Center) For the selenocysteine (SECIS) element AL645723.11/192421–192359 from Rfam family RF00031, the standard deviation σ of the number of base pairs, taken over the ensemble of all secondary structures, is 2.679446, while $\log_{10}(\text{MFPT})$ is 5.69. Among the 61 sequences in the seed alignment of RF00031, AB030643.1/4176–4241 was the fastest
	folder, while AL645723.11/192421–192359 was the slowest folder. (Right) Superimposition of output of FFTbor for two TPP riboswitch aptamers: the 97 nt sequence BX842649.1/277414–277318 and the 99 nt sequence AACY022101973.1/389–487, both obtained when taking the empty structure for the initial structure \mathcal{S}^* . The mean μ for the FFTbor structural profile near the empty structure is 23.0203 [resp. 27.5821], the standard deviation σ for the FFTbor structural profile is 2.22528791 [resp. 1.98565959], and the Kinfold MFPT is 311,075.06 [resp. 61,575.69] for the TPP riboswitch aptamer AB030643.1/4176–4241 [resp. AL645723.11/192421
	192359]. The right panel of this figure should be compared with Figure 4.3. These anecdotal results bear up the correlation between standard deviation σ and $\log_{10}(\text{MFPT})$ described in 4.1
4.5	Run times in seconds for RNAbor and FFTbor, on random RNA of length $20, 40, 60, \ldots, 300$ in step size of 20 nt. Each algorithm was run with the empty initial structure \mathcal{S}^* , see rows RNAbor (empty), FFTbor (empty), and with the minimum free energy structure as the initial structure \mathcal{S}^* , see rows RNAbor (MFE) and FFTbor (MFE). Note that for both RNAbor and FFTbor, the run time increases when \mathcal{S}^* is the MFE structure, rather than the empty structure. Notice the radical improvement in the run time
	of FFTbor over that of RNAbor
5.1	Pseudocode to compute the m most significant digits for probabilities $p_{rn+s} = \mathbf{Z}_{1,n}^{r,s}/\mathbf{z}$. In our implementation, due to numerical stability issues in the FFT engine, precision parameter m has an upper bound of 27—only the $\lfloor \log_{10}(2^m) \rfloor = 8$ most significant digits are computed with FFTbor2D. It is well-known that the FFT requires $O(N \log N)$ time to solve the inverse discrete Fourier transform for a polynomial of degree N . In our case, $N = n^2$, and so the FFT requires time $O(n^2 \log n)$ 47

List of Figures viii

5.2	Pseudocode to compute the m most significant digits for probabilities	
	$p_{r\cdot(N+1)+s} = \mathbf{Z}_{1,n}^{r,s}/\mathbf{z}$. In our implementation, due to numerical stability issues in the FFT engine, precision parameter m has an upper bound of	
	27—only the $\lfloor \log_{10}(2^m) \rfloor = 8$ most significant digits are computed with	
	FFTbor2D. It is well-known that the FFT requires $O(N \log N)$ time to	
	solve the inverse discrete Fourier transform for a polynomial of degree N .	
	In our case, $N = n^2$, and so the FFT requires time $O(n^2 \log n)$	56
5.3	Run time in seconds for RNA2Dfold and FFTbor2D on random RNA se-	
	quences of length 20–200 nt, where sequence generation and choice of	
	metastable structures \mathcal{A}, \mathcal{B} is described in the text. Beyond a length of	50
E 1	approximately 80 nt, FFTbor2D is demonstrably faster	59
5.4	Logarithm of run time in seconds for RNA2Dfold and FFTbor2D on random RNA sequences of length less than 200 nt, for same data as that in Figure	
	5.3. By taking \log_{10} of the run times, crossover points are apparent, where	
	FFTbor2D is faster than RNA2Dfold. For very small sequences, RNA2Dfold	
	is faster, though since both programs converge in a fraction of a second,	
	this difference is of no practical consequence	60
5.5	(Top) Standard deviation of run times of RNA2Dfold and FFTbor2D as	
	a function of sequence length n. (Bottom) Minimum and maximum run	
	times for RNA2Dfold and FFTbor2D. For each collection of 100 random sequences of length n , the minimum and maximum run time for a sequence	
	of that length was computed. Taken together, these figures clearly show	
	the run time dependence of RNA2Dfold on particular sequences, while	
	the run time of FFTbor2D depends only on sequence length, rather than	
	sequence details	61
5.6	2D projection of energy landscape for Spliced Leader (SL) RNA from L .	
	collosoma, having sequence and metastable secondary structures: $s =$	
	AACUAAAACAAUUUUUGAAGAACAGUUUCUGUACUUCAUUGGUAUGUAGAGACUUC $\mathcal{A}=$	
	((((((((((((((((((((((((((((((((
	(((((((((((((((((((((((((((((((((
	x-axis [resp. y -axis] represents base pair distance between metastable	
	structure \mathcal{A} [resp. \mathcal{B}], while the z-axis represents the ensemble free energy	
	$-RT \log \mathbf{Z}^{x,y}$, where $\mathbf{Z}^{x,y}$ is computed in FFTbor2D by $\mathbf{Z}^{x,y} = p(x,y) \cdot \mathbf{Z}$.	
	Low energy positions (x, y) correspond to high Boltzmann probability	
	positions. The left panel depicts a heat map of the ensemble free energy,	
	while the right panel depicts a contour map with level curves. In analogy	
	with mountain climbing, one expects an optimal path to follow along the	
	valley regions in traversing the landscape from \mathcal{A} to \mathcal{B} . Data produced with FFTbor2D; graphics produced using Mathematica	62
	"" 11 11 12 12 12, Stupines produced using mannematica	02

List of Figures ix

5.7	2D projection of energy landscape for Spliced Leader (SL) RNA from $L.\ collosoma$, as in Figure 5.6, except that in the right panel, ensemble free energy $-RT\log \mathbf{Z}^{x,y}$ is computed from the values of $\mathbf{Z}^{x,y}$ output by RNA2Dfold, while in the right panel, ensemble free energy is computed from the values $\mathbf{Z}^{x,y} = p(x,y) \cdot \mathbf{Z}$, where values $p(x,y)$ are output by RNA2Dfold. The loss of detail in the 2D energy landscape is caused uniquely by working with probabilities $p(x,y)$, rather than partition function values $\mathbf{Z}^{x,y}$. Data produced with RNA2Dfold; graphics produced using Mathematica	. 63
6.1	The function Metropolis implements a discrete time simulation of folding trajectories for a Markov chain	. 69
6.2	The function GILLESPIE implements a continuous time simulation of fold-	
	ing trajectories for a Markov process	. 75
6.3	Overall organization of Hermes. FFTbor2D, RNAmfpt, and RNAeq are three distinct software packages we have developed, which compile into both standalone executables and archive files, providing an API that allow novel applications development using source from each of the packages, without having to copy-and-paste relevant functions. The applications FFTmfpt and FFTeq are C++ wrappers that use data structures and functions from FFTbor2D, RNAmfpt and RNAeq. FFTmfpt computes the mean first passage time (MFPT) for an RNA secondary structure to fold from an initial structure, such as the empty structure or a given metastable structure, into a target structure, such as the minimum free energy (MFE) structure or possibly the Rfam? consensus structure. FFTeq uses spectral decomposition to compute the equilibrium time and the fraction of the population of RNA structures that are equal to a given target structure, as a function of time.	. 77
6.4	Population occupancy curves computed with FFTeq for the 56 nt conformational switch $L.\ collosoma$ spliced leader RNA, with sequence AACUAAAAC GACUUC. The dot bracket format for the MFE structure, as computed by version 2.1.7 of RNAfold -d0, is	((())))))))));

List of Figures x

6.5	The function ESTIMATEEQUILIBRIUM computes the smallest $t_0 > t'$, such	
	that for $t \in \{t_0 + t_{\Delta}, t_0 + t_{2\Delta}, t_0 + t_{3\Delta}, t_0 + t_{4\Delta}\}$, the absolute difference	
	$ p(t)[x_{\infty}] - p(t_0)[x_{\infty}] < \epsilon \text{ and } p(t')[x_{\infty}] - p(T_{\max})[x_{\infty}] \approx \delta .$ If t' is	
	already in equilibrium, we relax the constraint that $t_0 > t'$ and instead	
	find the first $t_0 < t'$ that satisfies the equilibrium requirements within	
	the window w . SoftBound is a helper function that uses binary search	
	to find the starting time t' from which the window starts. WINDOWEQ	
	returns a boolean value if the state of interest x varies by no more than	00
0.0	ϵ across the window w starting at time t	88
6.6	Example of the differences in using the simple sliding window approach	
	(green) versus the approach outlined in Algorithm ?? (blue). There are	
	two representative sequences shown from the benchmarking dataset de-	
	scribed in Section ??, sequence #146 (Left) and #427 (Right). Note that	
	the $p(t)$ for the approach from Algorithm ?? is much closer to the com-	
	puted Boltzmann probability—the correlation across the dataset of 1,000	
	sequences is 0.9997	89
6.7	(Left) Histogram of free energies of secondary structures of ACGCGACGUGCACC	GCACGU,
	which range from -6.5 to $+25$ kcal/mol, with mean of 10.695 kcal/mol.	
	(Right) Minimum free energy structure of the 54 nt Peach Latent Mosaic	
	Viroid (PLMVd) AJ005312.1/282-335, which is identical to the consen-	
	sus structure from Rfam 11.0 ?. RNAfold from Vienna RNA Package	
	2.1.7 with energy parameters from the Turner 1999 model were used,	
	since the minimum free energy structure determined by the more recent	
	Turner 2004 energy parameters does not agree with the Rfam consen-	
	sus structure—see?. Positional entropy, a measure of divergence in the	
	base pairing status at each positions for the low energy ensemble of struc-	
	tures, is indicated by color, using the RNA Vienna Package utility script	
	relplot.pl	91
6.8	(Left) Histogram of Kinfold folding times for 20-mer CCGAUUGGCGAAAGGCCAC	C.
	The mean [resp. standard deviation] of 10,000 runs of Kinfold for this	
	20-mer is 538.37 [resp. 755.65]. Note the close fit to the exponential dis-	
	tribution, (Right) Mean minus standard deviation $(\mu - \sigma)$, mean (μ) , and	
	mean plus standard deviation $(\mu + \sigma)$ of the logarithm of Kinfold folding	
	times, taken over 10,000 runs for each of the 1,000 sequences from the	
	benchmarking set of 20-mers. For graphical illustration, we have sorted	
	the log folding times in increasing order	92
6.9	Scatter plots of the natural logarithm of times from RNAmfpt versus	02
0.5	RNAeq($Left$) and for Kinfold versus RNAeq($Right$)	94
6 10	Scatter plots of the natural logarithm of times from RNAmfpt versus	01
0.10	•	94
6 11	Kinfold(Left) and for RNAmfpt versus FFTmfpt (Right)	9 4
0.11	Scatter plots of the natural logarithm of times from Kinfold versus	05
	$FFTmfpt(\mathit{Left}) \text{ and for } FFTmfpt \text{ versus } FFTeq(\mathit{Right}). \ldots \ldots \ldots$	95

List of Tables

List of Tables xii

Pearson correlation between various aspects of selenocysteine insertion sequences from the seed alignment of Rfam family RF00031?. For each of the 61 RNA sequences, we ran FFTbor, starting from empty initial structure S^* , and we ran a Monte Carlo folding algorithm, developed by E. Freyhult and P. Clote (unpublished). Using the Monte Carlo algorithm, we determined the mean first passage time (MFPT), defined as the average taken over 50 runs, of the number of Monte Carlo steps taken to fold the empty structure into the MFE structure, where an absolute upper bound of 5 million steps was allowed in the simulation. From the output of FFTbor, we computed (1) the mean number (μ) of base pairs per structure, taken over the ensemble of all secondary structures for the given sequence, (2) the standard deviation (σ) of the number of base pairs per structure, (3) the coefficient of variation $\frac{\sigma}{u}$, (4) the RNA sequence length n, and (5) the minimum free energy (MFE). Additionally, we computed the logarithm base 10 of mean first passage time ($\log_{10}(MFPT)$), taken over 50 Monte Carlo runs per sequence (log base 10 of the standard deviation of number of Monte Carlo steps per run was approximately 9% of $\log_{10}(MFPT)$ on average). The table shows the correlation between each of these aspects. Some correlations are obvious — for example, (i)the standard deviation σ is highly correlated with the coefficient of variation $\frac{\sigma}{\mu}$; (ii) the mean μ is negatively correlated with the coefficient of variation $\frac{\sigma}{\mu}$; (iii) the mean μ is negatively correlated with the minimum free energy (MFE) — if most low energy structures in the ensemble have many base pairs, then it is likely that the minimum free energy is very low (i.e. since MFE is negative, the absolute value of MFE increases); (iv) sequence length is negatively correlated with MFE — as sequence length increases, the minimum free energy (MFE) decreases. However, it may appear surprising that (v) the mean μ number of base pairs per structure is independent of MFPT (correlation -0.036291124), although (vi) MFE is correlated with MFPT (correlation 0.399015556) — i.e. from (iii), lower MFE is correlated with a larger average μ number of base pairs per structure, from (vi) higher MFE is correlated with longer folding time, but from (v) the average μ number of base pairs per structure is independent of folding time. The most important insight from this table is that (vii) standard deviation σ is correlated with mean first passage time — the correlation is statistically significant, with one-tailed p-value List of Tables xiii

Table of Pearson correlation coefficients for various methods to compute or approximate RNA secondary structure folding kinetics. Lower [resp. upper triangular entries are with [resp. without] the Hastings correction for Markov chain probability matrices. The methods are: RNAmfpt (mean first passage time, computed by matrix inversion for the Markov chain consisting of all secondary structures, with move allowed between structures differing by one base pair), RNAeq (equilibrium time, computed by spectral decomposition of a rate matrix comprising all secondary structures to compute population fraction P(t) at time t), Kinfold (an implementation of Gillespie's Algorithm to approximate refolding pathways using an event-based Monte Carlo simulation), FFTmfpt (mean first passage time for Markov chain consisting of "grid point" states (x, y) with probability $P(x,y) = \sum_{S} exp(-E(S)/RT)/Z$, computed by FFTbor2D, where the sum is taken over structures having base pair distance x to the empty structure and y to the MFE structure, RNA2Dfold (mean first passage time, computed as previously explained, but using RNA2Dfold in place of FFTbor2D to compute P(x,y), FFTbor (mean first passage time, computed for the Markov chain consisting of states $0, 1, \ldots, n$, for which $P(x) = \sum_{S} \exp(-E(S)/RT)/Z$, where the sum is taken over all secondary structures whose base pair distance is x from the MFE structure), BarriersEq (equilibrium time, computed using spectral decomposition on the Markov process consisting of "grid point" states output from Barriers), and FFTeq (equilibrium time, computed in the same fashion as BarriersEq using a Markov process derived from the energy landscape

96

Introduction

Introduced in 1958, the central dogma of biology has been an excellent model for the biological flow of information, much as Newtonian classical mechanics stood the test of time for over 200 years. But just as Einstein's revolutionary principle of relativity have upended our understanding of space in a way unheard of since Copernicus, recent research has gone to confirm that for all our scientific progress, the cell still holds fundamental mysteries, and even the central dogma isn't sacred.

1.1 Thesis Organization

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

Background

Ribofinder

3.1 Introduction

In this chapter, we present the Ribofinder program—a pipeline to facilitate the detection of putative guanine riboswitches across genomic data. The Ribofinder tool operates in three stages. First we use Infernal and TransTermHP to detect putative aptamers and expression platforms, two distinct components of riboswitches described in section 3.2. After coalescing this data into a pool of candidate riboswitches, we use RNAfold with constraints based on experimental data to compute the two distinct structural conformations—'gene on' and 'gene off'. In the third and final stage, we leverage FoldAlign to measure the similarity between our candidate pool and a canonical guanine riboswitch well studied in the literature, the xpt G-box riboswitch from Bacillus subtilis.

3.1.1 Organization

This chapter is organized in the following fashion. After providing background on the structural components of a riboswitch alongside their biological significance, we outline the deficiencies in the 'state of the art' software when as it relates specifically to riboswitch detection. We then move on to outline the three stages of Ribofinder: candidate selection, structural prediction, and candidate curation. Having described the approach of the software, we move on to present our findings in using Ribofinder to detect guanine riboswitches across the bacterial RefSeq database. Finally, we provide brief commentary on possible extensions of the algorithm to locate other flavors of riboswitches, of which adenine-sensitive aptamers are a straightforward extension.

3.2 Background

Riboswitches are regulatory mRNA elements that modulate gene expression via structural changes induced by the direct sensing of a small-molecule metabolite. Most often found in bacteria, riboswitches regulate diverse pathways including the metabolism and transport of purines, methionine, and thiamin amongst others. The structure of a riboswitch includes an aptamer domain—involved in the direct sensing of the small-molecule—and an expression platform whose structure changes upon the aptamer binding the metabolite. Because of the discriminatory nature of metabolite sensing, groups have had great success in finding representative examples of aptamers across a diverse collection of bacterial species; RFam 12.0 currently contains 26 different families of aptamers involved in different metabolic pathways. Whereas there exists strong sequence

and structural similarity within the aptamer of a riboswitch family, the expression platform is highly variable, and thus challenging to capture using traditional SCFG-based
approaches. For this reason databases such as RFam only contain the aptamer portion
of the riboswitch, and there exists no database providing sequences including expression
platforms, necessary for capturing the 'on' and 'off' conformations of this regulatory
element. We have developed a new pipeline—called Ribofinder—which can detect putative riboswitches including their expression platforms and likely conformational structures across a wide collection of genomic sequences.

3.3 The **Ribofinder** pipeline

At the time of our retrieval (Tuesday 25^{th} November, 2014 at 09:14), the RefSeq database hosted by NCBI comprised 5,121 complete bacterial genomes with corresponding genomic annotations. In order to both detect putative full riboswitches across this collection of data as well as filter the candidates down to a number tractable for experimental validation, we developed a novel pipeline which takes a three-tiered approach to candidate selection. Our approach is to a identify a pool of candidate riboswitches across genomic data; b perform a coarse-grained filtering of the candidate pool based on structural characteristics; and finally c fine-grained curation of the candidates based on a collection of measures and pairwise similarity.

In the following discussion, we describe the application of **Ribofinder** to identify unannotated G-box purine riboswitches; guanine-sensing cis-regulatory elements which modulate the expression of genes involved in purine biosynthesis.

3.3.1 Step 1: Candidate selection

The RefSeq data we used for analysis contains $5{,}121$ annotated bacterial genomes across $2{,}732$ different organisms, totaling over $9.5*10^9$ bases. We used the program Infernal to determine the coordinates of putative aptamer structures within the RefSeq genomes, and TransTermHP to locate candidate rho-independent transcription terminators.

3.3.1.1 Detecting Aptamers with Infernal

Infernal uses a stochastic context-free grammar (SCFG) with a user-provided multiple sequence alignment (MSA) to efficiently scan genomic data for RNA homologs, taking into consideration both sequence and structural conservation. Using the purine aptamer MSA from RFam 12.0 (RF00167), Infernal (v1.1.1, default options) detects 1,537 significant hits having E-value <= 0.01. Because Infernal leverages the concept of a 'local end'—a large insertion or deletion in the alignment at reduced cost—it is possible for the software to return a significant hit whose aligned structure does not have the canonical three-way junction observed in all purine riboswitches. Ribofinder prunes these truncated Infernal hits by converting the alignment structure into a parse tree, and only permitting trees of sufficient complexity to contain a multiloop (described further in 3.3.2.1). The pyrimidine residue abutted next to the P1 stem in the J3-1 junction differentiates between guanine and adenine-sensing riboswitches by binding the complimentary purine ligand; for our interest in G-box riboswitches exclusively we require the presence of a cytosine at this residue. In total, using Infernal with these additional filters yields 1,280 G-box aptamers across 555 unique organisms (note: here and elsewhere I define a 'unique organism' as having a unique taxonomy ID).

3.3.1.2 Detecting Expression Platforms with TransTermHP

TransTermHP detects rho-independent terminators in bacterial genomes in a context-sensitive fashion by leveraging the protein annotations available in PTT data. These terminator sequences canonically have a stable hairpin loop structure immediately preceding a run of 5+ uracil residues, the combination of which causes the ribosomal machinery to stall and dissociate from the transcript. TransTermHP performs a genomic scan to determine candidate loci with this motif, and returns scored hits. The scoring system considers both structural homology and the genomic contextual information available in the PTT file. Across our collection of bacterial genomes acquired from NCBI RefSeq data, TransTermHP identified 2,752,469 rho-independent terminators using the default filters.

Due to the spatially-mediated structural regulation of purine riboswitches, whereby ligand interaction with the aptamer domain induces local structural rearrangement in the expression platform, we paired aptamers with corresponding terminators by minimizing the genomic distance, with an upper bound of 200 nucleotides between the end of the aptamer domain and start of the terminator. This approach yields 577 candidate riboswitches, 81 of which have multiple rho-independent terminators within range of a putative aptamer produced by Infernal. For these, we simply pair the closest TransTermHP hit with the aptamer domain.

3.3.2 Step 2: Structural prediction

3.3.2.1 Notation for Representing Abstract RNA Shapes

Given an RNA sequence $\mathbf{s} = a_1, a_2, \dots, a_n$, where positions a_i are drawn from the collection of single-letter nucleotide codes, i.e. $\{A, U, G, C\}$, it is possible to describe a corresponding secondary structure \mathcal{S} compatible with \mathbf{s} using the dot-bracket notation. In this notation, each nucleotide a_i has a corresponding state s_i , where s_i is denoted as a ': if unpaired and a '(' [resp. ')'] if the left [resp. right] base in a basepair. Given any two basepairs (i,j) and (k,l) in \mathcal{S} , then $i < k < j \iff i < l < j$; pseudoknots are not permitted in the structure. A secondary structure taking this form is said to have balanced parentheses, and can additionally be represented using a context-free grammar such as:

$$S \to S \cdot | \cdot S | (S) | SS | \epsilon \tag{3.1}$$

The grammar from (3.1) can be used to generate a parse tree \mathcal{T} for \mathcal{S} . The benefit of working with \mathcal{T} over \mathcal{S} is that the parse tree offers an abstract representation of secondary structure shape independent of sequence length, permitting us to classify and eventually constrain a large collection of sequences having variable length which are all expected to have the same abstract tree shape. This is analogous to what the Giegerich lab refers to as their 'type 5' structural abstraction using the RNAshapes tool. Every node in \mathcal{T} represents a helix in \mathcal{S} , and internally tracks the indices of both its beginning (i,j) and closing (k,l) basepair. We use a level-order naming convention to refer to

helices within the parse tree, whereby a position \mathbf{p}_1 references the first child of the root node, $\mathbf{p}_{1,2}$ references the second child of \mathbf{p}_1 , and generally $\mathbf{p}_{i_1,i_2,\dots,i_n}$ refers to the i_n th child of $\mathbf{p}_{i_1,i_2,\dots,i_{n-1}}$. To reference specific nucleotides in the context of their location relative to a helix, we use the opening and closing basepairs (i,j) and (k,l) as landmarks. Thus, $\mathbf{p}_1(l)$ is the index in \mathcal{S} of the right-hand side closing basepair of \mathbf{p}_1 . We use the notation \mathbf{t}_i to refer to the subtree of \mathcal{T} whose root is \mathbf{p}_i .

Finally, we introduce the concept of a tree signature. The tree signature for a tree \mathcal{T} is a list of the node depths when traversed in a depth-first pre-order fashion. To provide a concrete example, consider the following experimentally validated xpt G-box riboswitch from Bacillus subtilis subsp. subtilis str. 168 (NC_000964.3 2320197-2320054) with corresponding gene-off structure:

The RNAshapes 'type 5' representation for this structure is [[][]][][] (note the coalesced left bulge in the hairpin immediately downstream the closing multiloop stem, at helix p_2) and the tree signature for this parse tree of the structure is [0, 1, 2, 2, 1, 1]. We leverage the notion of abstract structural filtering initially to ensure that all Infernal aptamer hits have a tree signature of [0, 1, 2, 2], which represents a three-way junction, and that the binding site for the guanine ligand $p_1(l-1) = C$. These filters, in

combination with the proximal terminator hairpins produced by TransTermHP yield the

aforementioned 577 candidate guanine riboswitches for which we then try to produce reasonable gene-on and off structures.

3.3.2.2 Constrained Folding to Predict Switch Structures

To restrict our search to unannotated G-box riboswitches, and further ensure that we are not re-detecting sequences based off the RFam covariance model provided to Infernal, we constrain our search to those RefSeq organisms not represented in the RFam seed alignment. 503 of the 577 candidates, or 87.18% represent putative unannotated riboswitches not represented by RF00167.

The gene-off structure S_{off} for a G-box riboswitch is the easier of the two to find computationally, since the terminator loop is exceptionally thermodynamically stable. In the gene-on conformation S_{on} , the P1 stem of the multiloop partially dissociates and an anti-terminator loop forms between the region immediately 3' of the P1 stem and what was the left-hand side of the terminator loop. This truncated P1 stem, which closes the three-way junction in the aptamer, is exceptionally unstable based on present energy models available for structural folding, and requires special treatment to reconstitute in our final structures.

The software RNAfold (v2.1.8) allows for the folding of RNA molecules with 'loose' constraints. In this model of constrained folding, the resulting structure produced by the software guarantees not to explicitly invalidate any user-provided constraints, but does not guarantee all constraints will be satisfied in the resulting structure. For each of the candidate guanine riboswitches, having $\mathcal{T}_{Infernal}$ and $\mathcal{T}_{TransTermHP}$, we build the following constraint masks:

G-box gene-off constraint mask

G-box gene-on constraint mask

Prohibit basepairing upstream of $\mathbf{p}_1(i)$ and downstream of $\mathbf{p}_2(l)$.

Force basepairs and unpaired regions in t_1 , with the exception of p_1 .

Prohibit formation of p_1 stem, which closes the three-way junction.

Force basepairs and unpaired regions in t_2 .

Require m nucleotides starting from $\mathfrak{p}_1(l+3)$ to pair to the right, where $m=len(\mathfrak{p}_2),$ and require the left-hand side of the \mathfrak{p}_2 helix to pair to the left. Disallow pairing downstream of $\mathfrak{p}_2(j).$

These constraint masks are run using the command-line flags -d 0 -P rna_turner1999.par to disable dangles and use the Turner 1999 energies respectively. Experimental evidence using inline probing suggests that the 'on' conformation of the G-box riboswitch has a reduced P1 stem length of 3 base pairs; in practice we were unable to force RNAfold to respect this constraint regardless of command-line options specified. For this reason we reconstitute the P1 stem in both structures after constrained folding, having length equivalent to it the Infernal P1 stem (resp. 3 basepairs) in the gene-off (resp. gene-on) structure.

This difficulty with RNAfold can be shown by using the constraint-produced structures as exhaustive constraints themselves. All unpaired nucleotides in \mathcal{S}_{off} and \mathcal{S}_{on} are notated by a ' \mathbf{x} ' and all base pairs by 'O' for the 5' and 3' side of the pair respectively to form new constraints mask \mathcal{C}_{off} and \mathcal{C}_{on} , having all bases' state explicitly specified. By refolding all 577 candidate sequences with \mathcal{C}_{off} and \mathcal{C}_{on} using the same options as before, only 463 (or 80.24%) of the resulting structures from \mathcal{C}_{off} have the tree signature prefix

[0, 1, 2, 2, 1], and just 21 (or 3.64%) of the $C_{\rm on}$ structures correctly re-fold their multiloop.

3.3.3 Step 3: Candidate curation

Until now, we have described our approach for generating the 503 guanine riboswitch candidates in RefSeq, alongside their gene-on and off structures. Unfortunately the experimental validation of all 503 candidates is not tractable, so it was necessary to reduce this collection again to a more manageable size, while only keeping the most promising candidates.

3.4 Using **Ribofinder** against the RefSeq database

3.5 Extending beyond guanine riboswitches

FFTbor

4.1 Introduction

In this chapter, we present the FFTbor algorithm and accompanying software. FFTbor is a novel algorithm developed with the intent of efficiently computing the Boltzmann probability of those structures whom, for a given input RNA sequence s, differ by k base pairs. By leveraging polynomial interpolation via the Fast Fourier Transform, this algorithm runs in $O(n^4)$ time and $O(n^2)$ space, a significant improvement over its predecessor. The accompanying software which implements this algorithm has been used to predict the location of expression platforms for putative riboswitches in genomic data, and to evaluate the correlation between kinetic folding speed and landscape ruggedness.

4.1.1 Organization

This chapter is organized in the following fashion. First, we provide background on the problem which **FFTbor** aims to address, as well as a brief overview of existing approaches. We follow by a formal explanation of the problem, and proceed to describe how the energy landscape is coarsified into discrete bins. We then develop the recursions for the parameterized partition function using the Nussinov-Jacobson energy model, which allows us to exposé the novel aspects of the algorithm. After developing the recursions, we indicate how they can be reformulated as a polynomial whose coefficients $c_k = \mathbf{Z}_{1,n}^k$. We then describe how the Fast Fourier Transform can be employed to efficiently compute the coefficients c_k , finishing our description of the underlying algorithm. Then we proceed to present an application of **FFTbor**, in the area of RNA folding kinetics.

4.2 Formalization of the problem

FFTbor aims to compute the coefficients p_0, \ldots, p_{n-1} of the polynomial

$$p(x) = p_0 + p_1 x + p_2 x^2 + \dots + p_{n-1} x^{n-1}, \tag{4.1}$$

where p_k is defined as $p_k = \frac{Z_k}{Z}$. We employ the Fast Fourier Transform to compute the inverse Discrete Fourier Transform on values y_0, \ldots, y_{n-1} , where $y_k = p(\omega^k)$ and $\omega = e^{2\pi i/n}$ is the principal complex nth root of unity and p(x) is defined in equation (4.1). By leveraging complex nth roots of unity in conjunction with the inverse Discrete

Fourier Transform the we subvert numeric instability issues observed with both Lagrange interpolation and Gaussian elimination.

Consider an RNA sequence $\mathbf{s} = s_1, \ldots, s_n$, where $s_i \in \{A, U, G, C\}$, i.e. a sequence of nucleotides. We can describe a secondary structure \mathcal{S} which is compatible with \mathbf{s} as a collection of base pair tuples (i, j), where $1 \le i \le i + \theta < j \le n$ and $\theta \ge 0$ (generally taken to be 3), the minimum number of unpaired bases in a hairpin loop due to steric constraints.

To more simply develop the underlying recursions for **FFTbor**, we introduce a number of constraints on the base pairs within S. Firstly, we require that each base pair is either a Watson-Crick or G-U wobble, i.e. base pair (i, j) for sequence s has corresponding nucleotides (s_i, s_j) , which are restricted to the set

$$\mathbb{B} = \{ (A, U), (U, A), (G, C), (C, G), (G, U), (U, G) \}. \tag{4.2}$$

With this constraint satisfied we say that S is *compatible* with s, and for the remainder of this chapter will only consider those structures which are compatible with s. Secondly, we insist that given two base pairs (i,j),(x,y) from S, $i=x\iff j=y$ (bases have at most one partner). Finally, we require that $i< x< j\iff i< y< j$ (no pseudoknots are allowed). While pseudoknots have been shown to be present in some biologically relevant RNAs, their inclusion greatly complicates the recursive decomposition of the structure, and thus it is common to ignore them.

Provided two secondary structures \mathcal{S}, \mathcal{T} , we can define a notion of distance between them. There are a number of different definitions of distance used across the literature; we will use *base pair distance* for **FFTbor**. Base pair distance is defined as the symmetric difference between the sets \mathcal{S}, \mathcal{T} :

$$d_{\rm BP}(\mathcal{S}, \mathcal{T}) = |\mathcal{S} \cup \mathcal{T}| - |\mathcal{S} \cap \mathcal{T}|. \tag{4.3}$$

Given this definition of distance, two structures S and T are said to be k-neighbors if $d_{\mathrm{BP}}(S,T)=k$. It is important to note that the notion of base pair distance is also applicable to restrictions of secondary structures on the subsequence $\mathbf{s}_{i,j}$, i.e. $S_{[i,j]}=\{(x,y): i \leq x < y \leq j, (x,y) \in S\}$.

For a restriction of base pairs for a given structure $S_{[i,j]}$, $T_{[i,j]}$ is said to be a k-neighbor of $S_{[i,j]}$ if

$$d_{\mathrm{BP}}(\mathcal{S}_{[i,j]}, \mathcal{T}_{[i,j]}) = |\{(x,y) : i \le x < y \le j, (x,y) \in \mathcal{S} - \mathcal{T}\mathrm{or}(x,y) \in \mathcal{T} - \mathcal{S}\}| = k. \quad (4.4)$$

4.3 Derivation of the **FFTbor** algorithm

Given an RNA sequence $\mathbf{s} = s_1, \dots, s_n$ and compatible secondary structure \mathcal{S}^* , let \mathbf{Z}^k denote the sum of the Boltzmann factors $\exp(-E(\mathcal{S})/RT)$ of all k-neighbors \mathcal{S} of \mathcal{S}^* ; i.e.

$$\mathbf{Z}^{k} = \mathbf{Z}_{1,n}^{k} = \sum_{\substack{S \text{ such that} \\ d_{\mathrm{BP}}(S,S^{*})=k}} e^{\frac{-E(S)}{RT}}$$

$$\tag{4.5}$$

where E(S) denotes the Turner (nearest neighbor) energy of S, R = 0.00198 kcal/mol denotes the universal gas constant and T denotes absolute temperature. From this, it follows that the full partition function is defined as

$$\mathbf{Z} = \mathbf{Z}_{1,n} = \sum_{k=0}^{n} \mathbf{Z}_{1,n}^{k} \tag{4.6}$$

since the base pair distance between \mathcal{S}^* and \mathcal{S} is at most

$$d_{\mathrm{BP}}(\mathcal{S}^*, \mathcal{S}) \le |\mathcal{S}^*| + \lfloor \frac{n-\theta}{2} \rfloor \le n.$$
 (4.7)

We can then define the Boltzmann probability of all k-neighbors of \mathcal{S}^* as

$$p(k) = \frac{\mathbf{Z}_{1,n}^k}{\mathbf{Z}_{1,n}}.\tag{4.8}$$

By visualizing the probabilities p_k as a function of k, we generate a coarse grained view of the one-dimensional energy landscape of s with respect to S^* . When S^* is taken to be the minimum free energy structure for example, one would anticipate to see a peak at k = 0, with additional peaks implying additional metastable structures; local energy minima which could suggest an energetic trap while folding.

4.3.1 Definition of the partition function $\mathbf{Z}_{1,n}^k$

For the rest of the paper, we consider both s as well as the secondary structure S^* on s to be fixed. We now recall the recursions from Freyhult et al. ? to determine the partition function $\mathbf{Z}_{i,j}^k$ with respect to the Nussinov-Jacobson energy E_0 model ?, defined by -1 times the number of base pairs; i.e. $E_0(S) = -1 \cdot |S|$. Although we describe here the recursions for the Nussinov-Jacobson model, for the sake of simplicity of exposition, both RNAbor ? as well as our current software FFTbor, concern the Turner energy model, consisting of free energy parameters for stacked bases, hairpins, bulges, internal loops and multiloops.

The base case for $\mathbf{Z}_{i,j}^k$ is given by

$$\mathbf{Z}_{i,j}^{0} = 1, \text{ for } i \le j,$$
 (4.9)

since the only 0-neighbor to a structure S^* is the structure S^* itself, and

$$\mathbf{Z}_{i,j}^{k} = 0$$
, for $k > 0, i \le j \le i + \theta$, (4.10)

since the empty structure is the only possible structure for a sequence shorter than $\theta + 2$ nucleotides, and so there are no k-neighbors for k > 0. The recursion used to compute $\mathbf{Z}_{i,j}^k$ for k > 0 and $j > i + \theta$ is

$$\mathbf{Z}_{i,j}^{k} = \mathbf{Z}_{i,j-1}^{k-b_0} + \sum_{\substack{(s_r, s_j) \in \mathbb{B}, \ w+w'=k-b(r)}} \sum_{w+w'=k-b(r)} \exp(-E_0(r,j)/RT) \cdot \mathbf{Z}_{i,r-1}^{w} \mathbf{Z}_{r+1,j-1}^{w'}, \tag{4.11}$$

where $E_0(r,j) = -1$ if positions r,j can pair in sequence \mathbf{s} , and otherwise $E_0(r,j) = +\infty$. Additionally, $b_0 = 1$ if j is base-paired in $\mathcal{S}^*_{[i,j]}$ and 0 otherwise, and $b(r) = d_{\mathrm{BP}}(\mathcal{S}^*_{[i,j]}, \mathcal{S}^*_{[i,r-1]} \cup \mathcal{S}^*_{[r+1,j-1]} \cup \{(r,j)\}$). This holds since in a secondary structure $T_{[i,j]}$ on s_i, \ldots, s_j that is a k-neighbor of $\mathcal{S}^*_{[i,j]}$, either nucleotide j is unpaired in [i,j] or it is paired to a nucleotide r such that $i \leq r < j$. In this latter case it is enough to study the smaller sequence segments [i,r-1] and [r+1,j-1] noting that, except for (r,j), base pairs outside of these regions are not allowed, since there are no pseudoknots. In addition, for $d_{\mathrm{BP}}(\mathcal{S}^*_{[i,j]}, T_{[i,j]}) = k$ to hold, it is necessary for w + w' = k - b(r) to hold, where $w = d_{\mathrm{BP}}(\mathcal{S}^*_{[i,r-1]}, T_{[i,r-1]})$ and $w' = d_{\mathrm{BP}}(\mathcal{S}^*_{[r+1,j-1]}, T_{[r+1,j-1]})$, since b(r) is the number of base pairs that differ between $\mathcal{S}^*_{[i,j]}$ and a structure $T_{[i,j]}$, due to the introduction of the base pair (r,j).

Given RNA sequence s and compatible initial structure S^* , we define the polynomial

$$\mathcal{Z}(x) = \sum_{k=0}^{n} c_k x^k \tag{4.12}$$

where coefficients $c_k = \mathbf{Z}_{1,n}^k$. Moreover, because of equation (4.7) and the fact that the minimum number of unpaired bases in a hairpin loop θ is 3, we know that $c_n = 0$, so that $\mathcal{Z}(x)$ is a polynomial of degree strictly less than n. If we evaluate the polynomial $\mathcal{Z}(x)$ for n distinct values

$$\mathcal{Z}(a_1) = y_1, \dots, \mathcal{Z}(a_n) = y_n, \tag{4.13}$$

then the Lagrange polynomial interpolation formula guarantees that $\mathcal{Z}(x) = \sum_{k=1}^{n} y_k P_k(x)$, where the polynomials $P_k(x)$ have degree at most n-1 and are given by the Lagrange formula

$$P_k(x) = \frac{\prod_{i \neq k} (x - x_i)}{\prod_{i \neq k} (x_k - x_i)}.$$
 (4.14)

Since the polynomials $P_k(x)$ can be explicitly computed, it follows that we can compute the coefficients c_k of polynomial $\mathcal{Z}(x)$. As we describe below, the evaluation of $\mathcal{Z}(x)$ for a fixed value of x can be done in time $O(n^3)$ and space $O(n^2)$. It follows that the coefficients $c_k = \mathbf{Z}_{1,n}^k$ can be computed after n evaluations of $\mathcal{Z}(x)$, where the space for each evaluation of $\mathcal{Z}(x)$ is re-used; hence these evaluations can be performed in time $O(n^4)$ and space $O(n^2)$. Finally, Lagrange interpolation is clearly computable in time $O(n^3)$. Although this approach is theoretically sound, there are severe numerical stability issues related to the interpolation method ?, the choice of values a_1, \ldots, a_n in the interpolation, and floating point arithmetic (round-off error) related to the astronomically large values of the partition functions $\mathbf{Z}_{1,n}^k$, for $0 \le k < n$. After many unsuccessful approaches including scaling we obtained excellent results by interpolating the polynomial p(x), defined in equation (4.1), rather than the polynomial $\mathcal{Z}(x)$, defined in equation (4.12), and performing interpolation with the Fast Fourier Transform (FFT) ? where $\alpha_0, \ldots, \alpha_{n-1}$ are chosen to be complex nth roots of unity, $\alpha_k = e^{2\pi i k/n}$. One advantage

of the FFT is that interpolation can be performed in $O(n \log n)$ time, rather than the cubic time required by using the Lagrange formula (4.14) or by Gaussian elimination. Fewer numerical operations implies increased numerical stability in our application.

4.3.2 Recursions to compute the polynomial $\mathcal{Z}_{i,j}(x)$

Given an initial secondary structure \mathcal{S}^* of a given RNA sequence \mathbf{s} , our goal is to compute

$$\mathbf{Z}_{1,n}^{k} = \sum_{\substack{S \text{ such that} \\ d_{\mathrm{BP}}(S, S^{*}) = k}} e^{\frac{-E_{0}(S)}{RT}}$$

$$\tag{4.15}$$

where S can be any structure compatible with s. As previously mentioned, the recurrence relation for RNAbor with respect to the Nussinov energy model E_0 is

$$\mathbf{Z}_{i,j}^{k} = \mathbf{Z}_{i,j-1}^{k-b_0} + \sum_{\substack{s_r s_j \in \mathbb{B}, \\ i \le r < j}} \left(e^{\frac{-E_0(r,j)}{RT}} \sum_{w+w'=k-b(r)} \mathbf{Z}_{i,r-1}^{w} \mathbf{Z}_{r+1,j-1}^{w'} \right)$$
(4.16)

where $E_0(r,j) = -1$ if r and j can base-pair and otherwise $+\infty$, and $b_0 = 1$ if j is base paired in $\mathcal{S}_{[i,j]}^*$ and 0 otherwise, and $b(r) = d_{\mathrm{BP}}(\mathcal{S}_{[i,j]}^*, \mathcal{S}_{[i,r-1]}^* \cup \mathcal{S}_{[r+1,j-1]}^* \cup \{(r,j)\})$. The following theorem shows that an analogous recursion can be used to compute the polynomial $\mathcal{Z}_{i,j}(x)$ defined by

$$\mathcal{Z}_{i,j}(x) = \sum_{k=0}^{n} c_k(i,j) x^k$$
(4.17)

where

$$c_k(i,j) = \mathbf{Z}_{i,j}^k = \sum_{\substack{\mathcal{S} \text{ such that} \\ d_{BP}(\mathcal{S}, \mathcal{S}_{[i,j]}^*) = k}} e^{\frac{-E_0(\mathcal{S})}{RT}}.$$
(4.18)

Here, in the summation, S runs over structures on s_i, \ldots, s_j , which are k-neighbors of the restriction $S_{[i,j]}^*$ of initial structure S^* to interval [i,j], and $E_0(S) = -1 \cdot |S|$ denotes the Nussinov-Jacobson energy of S.

Theorem 4.1. Let s_1, \ldots, s_n be a given RNA sequence. For any integers $1 \le i \le j \le n$, let

$$\mathcal{Z}_{i,j}(x) = \sum_{k=0}^{n} c_k x^k$$
 (4.19)

where

$$c_k(i,j) = \mathbf{Z}_{i,j}^k. \tag{4.20}$$

Then for $i \leq j \leq i + \theta$, $\mathcal{Z}_{i,j}(x) = 1$ and for $j > i + \theta$ we have the recurrence relation

$$\mathcal{Z}_{i,j}(x) = \mathcal{Z}_{i,j-1}(x) \cdot x^{b_0} + \sum_{\substack{s_r s_j \in \mathbb{B}, \\ i \le r < j}} \left(e^{\frac{-E_0(r,j)}{RT}} \cdot \mathcal{Z}_{i,r-1}(x) \cdot \mathcal{Z}_{r+1,j-1}(x) \cdot x^{b(r)} \right). \tag{4.21}$$

where $b_0 = 1$ if j is base-paired in $S_{[i,j]}^*$ and 0 otherwise, and $b(r) = d_{BP}(S_{[i,j]}^*, S_{[i,r-1]}^* \cup S_{[r+1,j-1]}^* \cup \{(r,j)\})$.

Proof. First, some notation is necessary. Recall that if F is an arbitrary polynomial [resp. analytic] function, then $[x^k]F(x)$ denotes the coefficient of x^k [resp. the kth Taylor coefficient in the Taylor expansion of F]. For instance, in equation (4.1), $[x^k]p(x) = p_k$, and in equation (4.12), $[x^k]\mathcal{Z}(x) = c_k(i,j)$.

By definition, it is clear that $\mathcal{Z}_{i,j}(x) = 1$ if $i \leq j \leq i + \theta$, where we recall that $\theta = 3$ is the minimum number of unpaired bases in a hairpin loop. For $j > i + \theta$, we have

$$[x^{k}]\mathcal{Z}_{i,j}(x) = c_{k}(i,j) = \mathbf{Z}_{i,j}^{k}$$

$$= \mathbf{Z}_{i,j-1}^{k-b_{0}} + \sum_{r=i}^{j-1} \sum_{k_{0}+k_{1}=k-b(r)} e^{\frac{-E_{0}(r,j)}{RT}} \cdot \mathbf{Z}_{i,r-1}^{k_{0}} \cdot \mathbf{Z}_{r+1,j-1}^{k_{1}}$$

$$= [x^{k-b_{0}}]\mathcal{Z}_{i,j-1}(x)$$

$$+ \sum_{r=i}^{j-1} \sum_{k_{0}+k_{1}=k-b(r)} e^{\frac{-E_{0}(r,j)}{RT}} \cdot \left\{ [x^{k_{0}}]\mathcal{Z}_{i,r-1}(x) \right\} \cdot \left\{ [x^{k_{1}}]\mathcal{Z}_{r-1,j-1}(x) \right\}$$

$$= [x^{k-b_{0}}]\mathcal{Z}_{i,j-1}(x)$$

$$+ \sum_{r=i}^{j-1} \sum_{k_{0}+k_{1}=k-b(r)} e^{\frac{-E_{0}(r,j)}{RT}} \cdot [x^{k_{0}+k_{1}}]\mathcal{Z}_{i,r-1}(x)\mathcal{Z}_{r-1,j-1}(x).$$

$$(4.22)$$

By induction, the proof of the theorem now follows.

Notice that if one were to compute all terms of the polynomial $\mathcal{Z}_{1,n}(x)$ by explicitly performing polynomial multiplications, then the computation would require $O(n^5)$ time and $O(n^3)$ space. Instead of explicitly performing polynomial expansion in variable x, we instantiate x to a fixed complex number $\alpha \in \mathbb{C}$, and apply the following recursion for this instantiation:

$$\mathcal{Z}_{i,j}(\alpha) = \mathcal{Z}_{i,j-1}(\alpha) \cdot \alpha^{b_0} + \sum_{\substack{(s_r, s_j) \in \mathbb{B}, \\ i \le r < j}} \left(e^{\frac{-E_0(r,j)}{RT}} \cdot \mathcal{Z}_{i,r-1}(\alpha) \cdot \mathcal{Z}_{r+1,j-1}(\alpha) \cdot \alpha^{b(r)} \right). \tag{4.23}$$

In this fashion, we can compute $\mathcal{Z}(\alpha) = \mathcal{Z}_{1,n}(\alpha)$ in $O(n^3)$ time and $O(n^2)$ space. For n distinct complex values $\alpha_0, \ldots, \alpha_{n-1}$, we can compute and save only the values $\mathcal{Z}(\alpha_0), \ldots, \mathcal{Z}(\alpha_{n-1})$, each time re-using the $O(n^2)$ space for the next computation of $\mathcal{Z}(\alpha_k)$. It follows that the computation resources used to determine the (column) vector

$$\mathbf{Y} = (y_0, \dots, y_{n-1})^{\mathrm{T}} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \end{pmatrix}$$

$$(4.24)$$

where $y_0 = \mathcal{Z}(\alpha_0), \dots, y_{n-1} = \mathcal{Z}(\alpha_{n-1})$ is thus quartic time $O(n^4)$ and quadratic space $O(n^2)$.

4.3.3 Polynomial interpolation to evaluate $\mathcal{Z}_{i,j}(x)$

Let $\omega = e^{2\pi i/n}$ be the principal complex nth root of unity. Recall that the Vandermonde matrix V_n is defined to be the $n \times n$ matrix, whose i, j entry is $\omega^{i \cdot j}$; i.e.

$$V_{n} = \begin{pmatrix} 1 & 1 & 1 & \dots & 1\\ 1 & \omega & \omega^{2} & \dots & \omega^{n-1}\\ 1 & \omega^{2} & \omega^{4} & \dots & \omega^{2(n-1)}\\ 1 & \omega^{3} & \omega^{6} & \dots & \omega^{3(n-1)}\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \dots & \omega^{(n-1)(n-1)} \end{pmatrix}$$
(4.25)

The Fast Fourier Transform is defined to be the $O(n \log n)$ algorithm to compute the Discrete Fourier Transform (DFT), defined as the matrix product $\mathbf{Y} = V_n \mathbf{A}$:

$$\begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{pmatrix} = V_n \cdot \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{pmatrix}$$

$$(4.26)$$

On page 837 of ?, it is shown that the (i,j) entry of V_n^{-1} is $\frac{\omega^{-ji}}{n}$ and that

$$a_j = \frac{1}{n} \sum_{k=0}^{n-1} y_k \,\omega^{-kj} \tag{4.27}$$

for j = 0, ..., n - 1.

Since we defined \mathbf{Y} in equation (4.24) by $\mathbf{Y} = (y_0, \dots, y_{n-1})^{\mathrm{T}}$, where $y_0 = \mathcal{Z}(\alpha_0), \dots, y_{n-1} = \mathcal{Z}(\alpha_{n-1})$ and $\alpha_k = \omega^k e^{2\pi i k/n}$, it follows that the coefficients $c_k = \mathbf{Z}_{1,n}^k$ in the polynomial $\mathcal{Z}(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1}$ defined in equation (4.12) can be computed, at least in principle, by using the Fast Fourier Transform. It turns out, however, that the values of $\mathbf{Z}_{1,n}^k$ are so astronomically large, that the ensuing numerical instability makes

even this approach infeasible for values of n that exceed 56 (data not shown). Nevertheless, our approach can be modified as follows. Define \mathbf{Y} by $\mathbf{Y} = (y_1, \dots, y_n)^{\mathrm{T}}$, where $y_1 = \frac{\mathcal{Z}(\alpha_1)}{\mathcal{Z}(x)}, \dots, y_n = \frac{\mathcal{Z}(\alpha_n)}{\mathcal{Z}(x)}$, and \mathbf{Z} is the partition function defined in equation (4.6). Using the Fast Fourier Transform to compute the inverse Discrete Fourier Transform, it follows from equation (4.27) that we can compute the probabilities p_0, \dots, p_{n-1} that are coefficients of the polynomial $p(x) = p_0 + p_1 x + \dots + p_{n-1} x^{n-1}$ defined in equation (4.1). For genomics applications, we are only interested in the m most significant digits of each p_k , as described in the pseudocode on the following page.

Pseudocode for FFTbor

Purpose: Computes the m most significant digits of probabilities $p_k = \mathbf{Z}_{1,n}^k/\mathbf{z}$ Input: RNA sequence $\mathbf{s} = s_1, \dots, s_n$, secondary structure \mathcal{S}^* of \mathbf{s} , integer mOutput: Probabilities $p_k = \mathbf{Z}_{1,n}^k/\mathbf{z}$ to m significant digits for $k = 0, \dots, n-1$

```
1 function FFTBOR(\mathbf{s}, \mathcal{S}^*, m)
           n \leftarrow length(\mathbf{s})
 2
           for k \leftarrow 0, n-1 do
                                                                          \triangleright Compute all complex nth roots of unity
 3
                \omega_k \leftarrow \exp(\frac{2\pi i k}{n})
 4
           end for
 5
           for k \leftarrow 0, n-1 do
                                                                                                         \triangleright Note that \mathcal{Z}(\omega_0) = \mathbf{Z}
 6
                y_k \leftarrow 10^m \cdot \frac{\mathcal{Z}(\omega_k)}{\mathcal{Z}(\omega_0)}
 7
           end for
 8
           for k \leftarrow 0, n-1 do
                                                                               \triangleright Compute IDFT from equation (4.27)
 9
                a_k \leftarrow \frac{1}{n} \sum_{j=0}^{n-1} y_j \, \omega^{-kj}
10
                p_k \leftarrow 10^{-m} \cdot |a_k|
                                                                                        \triangleright Truncate to m significant digits
11
12
           end for
                                                            \triangleright Return all p_k for 0 \le k < n, from equation (4.8)
           return p_0, \ldots, p_{n-1}
13
14 end function
```

FIGURE 4.1: Caption here

4.4 Benchmarking and performance considerations

In this subsection, we show that we need only evaluate the polynomial $\mathcal{Z}(x)$, as defined in equation (4.12), for n/2 of the complex nth roots of unity. It is first necessary to recall the definition of complex conjugate. Recall that the complex conjugate of z is denoted by \overline{z} ; i.e. if z = a + bi where $a, b \in \mathbb{R}$ are real numbers and $i = \sqrt{-1}$, then $\overline{z} = a - bi$.

Lemma 4.2. If $\mathcal{Z}(x)$ is the complex polynomial defined in equation (4.12), then for any complex nth root of unity α , it is the case that $\mathcal{Z}(\overline{\alpha}) = \overline{\mathcal{Z}(\alpha)}$. In other words, if α is a complex nth root of unity of the form a + bi, where $a, b \in \mathbb{R}$ and b > 0, and if $\mathcal{Z}(a + bi) = A + Bi$ where $A, B \in \mathbb{R}$, then it is the case that

$$\mathcal{Z}(a-bi) = A - Bi. \tag{4.28}$$

Proof. Letting $i=\sqrt{-1}$, if $\theta=\frac{2\pi}{n}$, then $\omega=e^{i\theta}=\cos(\theta)+i\sin(\theta)$ is the principal complex nth root of unity, and $e^{(0)\cdot i\theta}=1=\omega^0,\ldots,e^{(n-1)\cdot i\theta}=\omega^{n-1}$ together constitute the complete collection of all complex nth roots of unity—i.e. the n unique solutions of of the equation $x^n-1=0$ over the field $\mathbb C$ of complex numbers. Clearly, for any $1\leq k< n,\ e^{-ik\theta}=1\cdot e^{-ik\theta}=e^{2\pi i}\cdot e^{-ik\theta}=e^{i(2\pi-k\theta)}=e^{i(n\theta-k\theta)}=e^{i\theta(n-k)}$. Moreover, if $\omega^k=e^{ik\theta}=a+bi$ where b>0, then we have $e^{-ik\theta}=a-bi$. It follows that for any complex nth root of unity of the form a+bi, where b>0, the number a-bi is also an complex nth root of unity.

Recall that $\mathcal{Z}(x) = \sum_{k=0}^{n} c_k x^k$, where $c_k \in \mathbb{R}$ are real numbers representing the partition function $\mathbf{Z}_{1,n}^k$ over all secondary structures of a given RNA sequence s_1, \ldots, s_n , whose base pair distance from initial structure \mathcal{S}^* is k. Thus, in order to prove the lemma, it suffices to show that for all values $k = 0, \ldots, n-1$, if a + bi is a complex nth root of unity, where $a, b \in \mathbb{R}$ and b > 0, and if $(a + bi)^k = C + Di$ where $C, D \in \mathbb{R}$, then $(a - bi)^k = C - Di$. Indeed, we have the following.

$$(a+bi)^m = \sum_{k=0}^m \binom{m}{k} a^{m-k} \cdot (bi)^k$$

$$(bi)^k = \begin{cases} b^k & \text{if } k \equiv 0 \bmod 4 \\ ib^k & \text{if } k \equiv 1 \bmod 4 \\ -b^k & \text{if } k \equiv 2 \bmod 4 \\ -ib^k & \text{if } k \equiv 3 \bmod 4 \end{cases}$$

$$(4.29)$$

$$(a-bi)^m = \sum_{k=0}^m \binom{m}{k} a^{m-k} \cdot (-bi)^k$$

$$(-bi)^k = \begin{cases} b^k & \text{if } k \equiv 0 \bmod 4 \\ -ib^k & \text{if } k \equiv 1 \bmod 4 \\ -b^k & \text{if } k \equiv 2 \bmod 4 \\ ib^k & \text{if } k \equiv 3 \bmod 4 \end{cases}$$

$$(4.30)$$

It follows that each term of the form $a^{m-k} \cdot (bi)^k$, for k = 0, ..., m, is the complex conjugate of $a^{m-k} \cdot (-bi)^k$, and thus $(a+bi)^m$ is the complex conjugate of $(a-bi)^m$. Since $\mathcal{Z}(a+bi)$ is a sum of terms of the form $c_k(a+bi)^k$, it follows that $\mathcal{Z}(a-bi)$ is the complex conjugate of $\mathcal{Z}(a+bi)$. This completes the proof of the lemma.

Lemma 4.2 immediately entails that we need only to evaluate $\mathcal{Z}(x)$ on n/2 many of the complex nth roots of unity—namely, those of the form a + bi, where $b \geq 0$. The remaining values of $\mathcal{Z}(x)$ are obtained by taking conplex conjugates of the first n/2 values. This, along with a precomputation of powers of the complex nth roots of unity, leads to an enormous performance speed-up in our implementation of **FFTbor**.

4.5 Coarse-grained kinetics with **FFTbor**

The output of FFTbor, as shown in Figure 4.3, is a probability distribution, where the x-axis represents the base pair distance from an arbitrary, but fixed secondary structure S^* , and the y-axis represents the Boltzmann probability $p(k) = \frac{\mathbf{Z}^k}{\mathbf{Z}}$ that a secondary structure has base pair distance k from S^* . Arguably, this probability distribution is an accurate one-dimensional projection of the rugged, high dimensional energy landscape near structure S^* , of the sort artistically rendered in the well-known energy landscape depicted in Figure 1 of ?. A hypothesis behind theoretical work in biomolecular folding theory in ? is that kinetic folding slows down as the energy landscape becomes more rugged. This is borne out in our computational experiments for RNA using FFTbor, as reported in Figure 4.3.

We randomly chose two TPP riboswitch aptamers from the seed alignment for Rfam family RF00059. The first sequence has EMBL accession code BX842649.1/277414–277318 and is comprised of the 97 nt sequence ACCUGACGCUAGGGGUGUUGG UGAAUUCACCGACUGAGAAUAACCCUUUGAACCUGAUAGAGAUAAUGCUC GCGCAGGGAAGCAAGAAUAGAAAGAU, while the second sequence has EMBL accession code AACY022101973.1/389–487 and is comprised of the 99 nt sequence UAU

AAGUCCAAGGGGUGCCAAUUGGCUGAGAUGGUUUUAACCAAUCCCUUUGA ACCUGAUCCGGUUAAUACCGGCGUAGGAAUGGAUUUUCUCUACAGC. Rfam consensus and minimum free energy structures for both sequences are depicted in Figure 4.2. Despite the fact that there is no sequence homology according to pairwise BLAST ?, this figure clearly demonstrates that consensus and minimum free energy structures closely resemble each other, and that the structures of both TPP riboswitch aptamers are quite similar, with the exception of the leftmost hairpin loop [resp. multiloop]. The MFE structures differ from the consensus structures principally by the addition of base pairs not determined by covariation in the Rfam alignment. Indeed, if we let S_0, S_1 denote the Rfam consensus structure resp. MFE structure for the 97 nt sequence with EMBL accession code BX842649.1/277414–277318, then $S_0 \setminus S_1$ has 4 base pairs, and $S_1 \setminus S_0$ has 7 base pairs. If we let T_0, T_1 denote the Rfam consensus structure resp. MFE structure for the 99 nt sequence with EMBL accession code AACY022101973.1/389–487, then $T_0 \setminus T_1$ has 1 base pair, and $T_1 \setminus T_0$ has 5 base pairs.

We ran **FFTbor** on each of the TPP riboswitch aptamer sequences, with the MFE structure of each sequence taken as the initial structure S^* for that sequence. For the first sequence, BX842649.1/277414–277318, the **FFTbor** output suggests that there are low energy structures at a distance from the MFE structure, which might compete with the MFE structure and hence slow the kinetics of folding. In contrast, for the second sequence, AACY022101973.1/389–487, the **FFTbor** output suggests that there are no such competing low energy structures, hence the second sequence should fold more quickly than the first.

To test the hypothesis that folding is slower for rugged energy landscapes, we ran the

FIGURE 4.2: Rfam consensus structures (Rfam) and minimum free energy (MFE) secondary structures for two thiamine pyrophosphate (TPP) riboswitch aptamers, chosen at random from RF00059 Rfam family seed alignment?. Using pairwise BLAST?, there is no sequence similarity, although the secondary structures are very similar, as shown in this figure. From left to right: (A) Rfam consensus structure for BX842649.1/277414–277318.

(B) MFE structure for BX842649.1/277414–277318. (C) Rfam consensus structure for AACY022101973.1/389–487. (D) Rfam consensus structure for AACY022101973.1/389–487.

kinetic folding software, Kinfold?, on each of the two TPP riboswitch aptamer sequences, BX842649.1/277414–277318 and AACY022101973.1/389–487, to determine the mean first passage time (MFPT) to fold into the MFE structure, when starting from the empty structure. In this computational experiment, we took MFPT to be the average number of Monte Carlo steps taken by Kinfold, each step consisting of the addition or removal of a single base pair (or shift — see?), to fold the empty structure into the MFE structure, where the average was taken over 30 runs, with an absolute maximum number of Monte Carlo steps taken to be 500,000. The first sequence, BX842649.1/277414–277318, converged within 500,000 steps only for 20 out of 30 runs. Assigning the maximum step count of 500,000 for the 10 runs that did not converge, we found a mean first passage time of 311,075.06 steps for this sequence. The second sequence, AACY022101973.1/389–487, converged within 500,000 steps in 29 out of 30 runs, and we found a mean first passage time of 61,575.69 steps for this sequence. From

FIGURE 4.3: Output from FFTbor on two randomly selected thiamine pyrophosphate riboswitch (TPP) aptamers, taken from the Rfam database?. The xaxis represents base pair distance from the minimum free energy structure for each given sequence; the y-axis represents Boltzmann probabilities $p(k) = \mathbf{z}^k/\mathbf{z}$, where \mathbf{Z}^k denotes the sum of Boltzmann factors or all secondary structures, whose base pair distance from the MFE structure is exactly k. (Left) The 97 nt sequence BX842649.1/277414-277318 appears to have a rugged energy landscape near its minimum free energy structure, with distinct low energy structures that may compete with the MFE structure during the folding process. (Right) The 99 nt sequence, AACY022101973.1/389-487 appears to have a smooth energy landscape near its MFE structure, with no distinct low energy structures to might compete with the MFE structure. Based on the FFTbor output or structural profile near MFE structure S^* , one might expect folding time for the first sequence to increase due to competition from metastable structures, while one might expect the second sequence to have rapid folding time. Computational Monte Carlo folding experiments bear out this fact. Kinfold? simulations clearly show that the second sequence folds at least four times more quickly than the first sequence. See section 4.5 for details.

computational experiments of this type, it is suggestive that FFTbor may prove useful in synthetic biology, where one would like to design rapidly folding RNA molecules that fold into a designated target structure.

In order to more systematically determine the relation between kinetic folding speed and the ruggedness of an energy landscape near the MFE structure, we need to numerically quantify ruggedness. To this end, in the following we define the notion of expected base

pair distance to a designated structure. Let \mathcal{S}^* be an arbitrary secondary structure of the RNA sequence $\mathbf{s} = s_1, \dots, s_n$. The expected base pair distance to \mathcal{S}^* is defined by

$$E[\{d_{\mathrm{BP}}(\mathcal{S}, \mathcal{S}^*) : \mathcal{S} \in \mathbb{S}(s_1, \dots, s_n)\}] = \sum_{\mathcal{S}} P(\mathcal{S}) \cdot d_{\mathrm{BP}}(\mathcal{S}, \mathcal{S}^*)$$
(4.31)

where $\mathbb{S}(s_1,\ldots,s_n)$ denotes the set of secondary structures for $\mathbf{s}=s_1,\ldots,s_n,\,P(\mathcal{S})=\frac{\exp(-E(\mathcal{S})/RT)}{\mathbf{Z}}$ is the Boltzmann probability of \mathcal{S} , and $d_{\mathrm{BP}}(\mathcal{S},\,\mathcal{S}^*)$ denotes base pair distance between \mathcal{S} and \mathcal{S}^* . If we run FFTbor on an input sequence \mathbf{s} and secondary structure \mathcal{S}^* , then clearly $E[\{d_{\mathrm{BP}}(\mathcal{S},\,\mathcal{S}^*):\mathcal{S}\in\mathbb{S}(s_1,\ldots,s_n)\}]=\sum_k k\cdot p(k)$, where $p(k)=\frac{\mathbf{Z}^k}{\mathbf{Z}}$, obtained from the program output. If \mathcal{S}^* is the empty structure, then FFTbor output is simply the probability distribution of the number of base pairs per secondary structure, taken over the Boltzmann ensemble of all structures.

For the benchmarking assay, we took all 61 selenocysteine insertion sequence (SECIS) sequences from the seed alignment of Rfam family RF00031?. Average length was 64.32 ± 2.83 nt. For each sequence, we ran both FFTbor (when starting from the empty structure rather than the MFE structure) and a Monte Carlo folding algorithm, developed by E. Freyhult and P. Clote (unpublished). Using the Monte Carlo algorithm, we determined the mean first passage time (MFPT), defined as the average taken over 50 runs, of the number of Monte Carlo steps taken to fold the empty structure into the MFE structure, where an absolute upper bound of 5 million steps was allowed in the simulation.

As described above, **FFTbor** output is simply the probability distribution for the number of base pairs per structure, taken over the ensemble of all secondary structure for the input RNA sequence. Surprisingly, we found that there is a significant correlation of

0.48436192 with one-tailed p-value of 0.00018249 between the standard deviation of the FFTbor output (when starting from the empty structure) and logarithm base 10 of the mean first passage time.

	μ	σ	σ/μ	n	MFE	$\log_{10}(\mathrm{MFPT})$
μ	1					
σ	-0.4372	1				
σ/μ	-0.6914	0.9437	1			
n	0.7077	-0.1590	-0.3646	1		
MFE	-0.5695	0.7395	0.7596	-0.3685	1	
$\log_{10}(\mathrm{MFPT})$	-0.0363	0.4844	0.3762	0.4059	0.3990	1

Table 4.1: Pearson correlation between various aspects of selenocysteine insertion sequences from the seed alignment of Rfam family RF00031?. For each of the 61 RNA sequences, we ran FFTbor, starting from empty initial structure \mathcal{S}^* , and we ran a Monte Carlo folding algorithm, developed by E. Freyhult and P. Clote (unpublished). Using the Monte Carlo algorithm, we determined the mean first passage time (MFPT), defined as the average taken over 50 runs, of the number of Monte Carlo steps taken to fold the empty structure into the MFE structure, where an absolute upper bound of 5 million steps was allowed in the simulation. From the output of FFTbor, we computed (1) the mean number (μ) of base pairs per structure, taken over the ensemble of all secondary structures for the given sequence, (2) the standard deviation (σ) of the number of base pairs per structure, (3) the coefficient of variation $\frac{\sigma}{\mu}$, (4) the RNA sequence length n, and (5) the minimum free energy (MFE). Additionally, we computed the logarithm base 10 of mean first passage time ($\log_{10}(MFPT)$), taken over 50 Monte Carlo runs per sequence (log base 10 of the standard deviation of number of Monte Carlo steps per run was approximately 9% of $\log_{10}(MFPT)$ on average). The table shows the correlation between each of these aspects. Some correlations are obvious for example, (i) the standard deviation σ is highly correlated with the coefficient of variation $\frac{\sigma}{\mu}$; (ii) the mean μ is negatively correlated with the coefficient of variation $\frac{\sigma}{\mu}$; (iii) the mean μ is negatively correlated with the minimum free energy (MFE) if most low energy structures in the ensemble have many base pairs, then it is likely that the minimum free energy is very low (i.e. since MFE is negative, the absolute value of MFE increases); (iv) sequence length is negatively correlated with MFE as sequence length increases, the minimum free energy (MFE) decreases. However, it may appear surprising that (v) the mean μ number of base pairs per structure is independent of MFPT (correlation -0.036291124), although (vi) MFE is correlated with MFPT (correlation 0.399015556) — i.e. from (iii), lower MFE is correlated with a larger average μ number of base pairs per structure, from (vi) higher MFE is correlated with longer folding time, but from (v) the average μ number of base pairs per structure is independent of folding time. The most important insight from this table is that (vii) standard deviation σ is correlated with mean first passage time — the correlation is statistically significant, with one-tailed p-value of 0.00018249.

FIGURE 4.4: This figure represents the graphical output of FFTbor, when the empty structure is chosen as initial structure S^* . The x-axis represents the number of base pairs per structure, taken over the ensemble of all secondary structures for the given RNA sequence; the y-axis represents Boltzmann probability $p(k) = \mathbf{Z}^k/\mathbf{Z}$, where **Z** is the partition function for all secondary structures having exactly k base pairs. (Left) For the selenocysteine (SECIS) element AB030643.1/4176-4241 from Rfam family RF00031, the standard deviation σ of the number of base pairs, taken over the ensemble of all secondary structures, is 0.727618, while the logarithm base 10 of the mean first passage time $(\log_{10}(MFPT))$ is 4.75. (Center) For the selenocysteine (SECIS) element AL645723.11/192421-192359 from Rfam family RF00031, the standard deviation σ of the number of base pairs, taken over the ensemble of all secondary structures, is 2.679446, while $\log_{10}(MFPT)$ is 5.69. Among the 61 sequences in the seed alignment of RF00031, AB030643.1/4176-4241 was the fastest folder, while AL645723.11/192421–192359 was the slowest folder. (Right) Superimposition of output of FFTbor for two TPP riboswitch aptamers: the 97 nt sequence BX842649.1/277414-277318 and the 99 nt sequence AACY022101973.1/389-487, both obtained when taking the empty structure for the initial structure \mathcal{S}^* . The mean μ for the **FFTbor** structural profile near the empty structure is 23.0203 [resp. 27.5821], the standard deviation σ for the FFTbor structural profile is 2.22528791 [resp. 1.98565959], and the **Kinfold** MFPT is 311,075.06 [resp. 61, 575.69] for the TPP riboswitch aptamer AB030643.1/4176–4241 [resp. AL645723.11/192421-192359. The right panel of this figure should be compared with Figure 4.3. These anecdotal results bear up the correlation between standard deviation σ and $\log_{10}(MFPT)$ described in 4.1.

In the right panel of Figure 4.4, we applied FFTbor to each of the two randomly chosen TPP riboswitch aptamers BX842649.1/277414–277318 and AACY022101973.1/389–487, starting from the empty reference structure $S^* = \emptyset$. The mean for the FFTbor structural

profile near the empty structure is $\mu_1 = 23.0203$ [resp. $\mu_2 = 27.5821$], the standard deviation σ for the FFTbor structural profile is $\sigma_1 = 2.22528791$ [resp. $\sigma_2 = 1.98565959$], and the Kinfold MFPT is 311,075.06 [resp. 61,575.69] for the TPP riboswitch aptamer AB030643.1/4176–4241 [resp. AL645723.11/192421–192359]. This anecdotal evidence supports the hypothesis that small standard deviation in FFTbor distribution is correlated with fast folding.

Additionally, we randomized the TPP riboswitches BX842649.1/277414–277318 and AACY022101973.1/389–487 by using our implementation of the Altschul-Erikson dinucleotide shuffle algorithm ?, and then applied FFTbor to these sequences, starting from the empty structure. The mean μ_1 and standard deviation σ_1 for the FFTbor distribution for randomized BX842649 are respectively $\mu_1 = 19.93$ and $\sigma_1 = 2.88$, while those for randomized AACY022101973 are $\mu_2 = 24.39$ and $\sigma_2 = 24.00$. Running Kinfold, with a maximum of 500,000 steps with 30 replicates (as explained in the text), we found that for randomized BX842649, all 30 runs converged yielding a mean first passage time (MFPT) of 13,022.58 with standard deviation of 15,221.78. In contrast for randomized AACY022101973, only 15 out of 30 runs converged within 500,000 steps, and discounting these nonconvergent data, we obtain an average mean first passage time (MFPT) of 94,446.93 with standard deviation of 157,107.43. This additional test provides more anecdotal evidence supporting our hypothesis that small standard deviation σ in FFTbor probability density is correlated with fast folding, as measured by MFPT.

This notion of correlation between the coarse-grained energy landscape and kinetics is what motivates the work described in Chapters 5 and 6, where a more detailed explanation of kinetics is provided, and additional evidence is provided to support this

claim.

4.6 Performance characteristics of **FFTbor**

FIGURE 4.5: Run times in seconds for RNAbor and FFTbor, on random RNA of length $20, 40, 60, \ldots, 300$ in step size of 20 nt. Each algorithm was run with the empty initial structure \mathcal{S}^* , see rows RNAbor (empty), FFTbor (empty), and with the minimum free energy structure as the initial structure \mathcal{S}^* , see rows RNAbor (MFE) and FFTbor (MFE). Note that for both RNAbor and FFTbor, the run time increases when \mathcal{S}^* is the MFE structure, rather than the empty structure. Notice the radical improvement in the run time of FFTbor over that of RNAbor.

Chapter 5

FFTbor2D

5.1 Introduction

In this chapter, we present the FFTbor2D algorithm and accompanying software. FFTbor2D, like FFTbor described in Chapter 4, is an algorithm which computes the paramerized partition function for an input RNA sequence s. FFTbor2D computes the two-dimensional coarse energy landscape for s given two compatible input secondary structures \mathcal{A} and \mathcal{B} , where position (x,y) on the discrete energy landscape corresponds to the Boltzmann probability for those structures \mathcal{S} which have $d_{\mathrm{BP}}((,\mathcal{S}),\mathcal{A})=x$ and $d_{\mathrm{BP}}((,\mathcal{S}),\mathcal{B})=y$ (where $d_{\mathrm{BP}}(,i)$ s as defined in equation 4.3). By again leveraging the Fast Fourier Transform, FFTbor2D runs in $O(n^5)$ time and only uses $O(n^2)$ space—a significant improvement over previous approaches. This permits the output energy landscape to be used in a high-throughput fashion to analyze folding kinetics; a topic covered in detail in Chapter 6.

5.1.1 Organization

This chapter is organized in the following fashion. Because the history for this work arises naturally from the history provided in Section ??, we provide only a brief background and immediately fall into a technical discussion of the underlying algorithm. We first develop the recursions for the Nussinov energy model for expository clarity, the underlying implementation uses the more complicated and robust Turner energy model. Recursions in place, we then move to show how these lead to a single variable polynomial P(x) whose coeffecients can be computed by the inverse Discrete Fourier Transform, and map to the 2D energy landscape. We describe two exploitations of P(x), a parity condition and complex conjugates which further reduce the runtime by a factor of 4. Finally, we contrast this software against RNA2Dfold, and outline the performance characteristics of both softwares and highlight the benefits and drawbacks of both. We elect to refrain from describing applications of FFTbor2D until Chapter 6, where the software is applied to quickly approximate mean first passage time and equilibrium time for the folding of RNA molecules between any two distinct, user provided structures \mathcal{A}, \mathcal{B} .

5.2 Derivation of the FFTbor2D algorithm

For expository clarity, we describe FFTbor2D and all recursions in terms of the Nussinov energy model ? (same as in Chapter 4), where the energy $E_0(i,j)$ of a base pair (i,j) is defined to be -1, and the energy E(S) of a secondary structure S is -1 times the number |S| of base pairs in structure S. Nevertheless, the implementation of FFTbor2D involves the full Turner energy model ?, where free energy E(S) depends on negative,

stabilizing energy contributions from base stacking, and positive, destabilizing energy contributions due to loss of entropy in loops.

5.2.1 Definition of the partition function $\mathbf{Z}_{1,n}^{x,y}$

Given reference secondary structures \mathcal{A}, \mathcal{B} of a given RNA sequence $\mathbf{s} = s_1, \dots, s_n$, our goal is to compute

$$\mathbf{Z}_{1,n}^{x,y} = \sum_{\substack{\mathcal{S} \text{ such that} \\ d_{\text{BP}}(\mathcal{S}, \mathcal{A}) = x, d_{\text{BP}}(\mathcal{S}, \mathcal{B}) = y}} e^{\frac{-E(\mathcal{S})}{RT}}$$
(5.1)

for all $0 \le x, y < n$, where R is the universal gas constant, T is absolute temperature, E(S) denotes the free energy of S, and S ranges over all secondary structures that are compatible with s. As mentioned, we emphasize that for expository reasons alone, the Nussinov energy model is used in the recursions in this paper, although full recursions and the implementation of FFTbor2D, like FFTbor, involve the Turner energy model.

For any secondary structure S of s, and any values $1 \leq i \leq j \leq n$, the restriction $S_{[i,j]}$ is defined to be the collection of base pairs of S, lying within interval [i,j]; i.e. $S_{[i,j]} = \{(k,\ell) : i \leq k < \ell \leq j\}$. In ?, Lorenz et al. generalized the dynamic programming recursions of our earlier work ?, to yield recursions for the partition function $\mathbf{Z}_{i,j}^{x,y}$ in equation (5.1). In the context of the Nussinov model, $\mathbf{Z}_{i,j}^{x,y}$ is equal to

$$\mathbf{Z}_{i,j-1}^{x-\alpha_{0},y-\beta_{0}} + \sum_{\substack{s_{k},s_{j} \in \mathbb{B}, \\ i \leq k < j}} \left(e^{\frac{-E_{0}(k,j)}{RT}} \sum_{u+u'=x-\alpha(k)} \sum_{v+v'=y-\beta(k)} \mathbf{Z}_{i,k-1}^{u,v} \cdot \mathbf{Z}_{k+1,j-1}^{u',v'} \right)$$
(5.2)

where $\alpha_0 = 1$ if j is base paired in $\mathcal{A}_{[i,j]}$ and 0 otherwise, $\beta_0 = 1$ if j is base paired in $\mathcal{B}_{[i,j]}$ and 0 otherwise, $E_0(k,j) = -1$ if k,j can base-pair (see equation 4.2), and otherwise $E_0(k,j) = 0$, and $\alpha(k) = d_{\mathrm{BP}}(\mathcal{A}_{[i,j]}, \mathcal{A}_{[i,k-1]} \cup \mathcal{A}_{[k+1,j-1]} \cup \{(k,j)\})$, and $\beta(k) = d_{\mathrm{BP}}(\mathcal{B}_{[i,j]}, \mathcal{B}_{[i,k-1]} \cup \mathcal{B}_{[k+1,j-1]} \cup \{(k,j)\})$.

5.2.2 Recursions to compute the polynomial $\mathcal{Z}_{i,j}(x)$

Given RNA sequence $\mathbf{s} = s_1, \dots, s_n$ and two arbitrary, but fixed reference structures \mathcal{A}, \mathcal{B} , we define the *polynomial*

$$\mathcal{Z}(x) = \sum_{r=0}^{n-1} \sum_{s=0}^{n-1} z_{rn+s} x^{rn+s}$$
 (5.3)

where (constant) coefficients

$$z_{rn+s} = \mathbf{Z}_{1,n}^{r,s} = \sum_{\substack{\mathcal{S} \text{ such that} \\ d_{BP}(\mathcal{S}, \mathcal{A}) = r, d_{BP}(\mathcal{S}, \mathcal{B}) = s}} e^{\frac{-E(\mathcal{S})}{RT}}$$

$$(5.4)$$

where E(S) denotes the free energy of S. If we evaluate the polynomial $\mathcal{Z}(x)$ at n^2 distinct pairs of values a_0, \ldots, a_{n^2-1} in

$$\mathcal{Z}(a_0) = y_0, \dots, \mathcal{Z}(a_{n^2-1}) = y_{n^2-1},$$
 (5.5)

then Lagrange polynomial interpolation (equation 4.14) guarantees that we can determine the coefficients c_{rn+s} of $\mathcal{Z}(x)$, for $0 \le r, s < n$. Due to technical difficulties concerning numerical robustness observered while working on the **FFTbor** software (Chapter 4), we will perform polynomial interpolation by using Vandermonde matrices and the Fast Fourier Transform (FFT).

The following theorem shows that a recursion, analogous to equation (5.2), can be used to compute the polynomial $\mathcal{Z}_{i,j}(x)$ defined by

$$\mathcal{Z}_{i,j}(x) = \sum_{r=0}^{n-1} \sum_{s=0}^{n-1} z_{rn+s}(i,j) \cdot x^{rn+s} = \sum_{k=0}^{n^2-1} z_k(i,j) \cdot x^k$$
 (5.6)

where

$$z_{rn+s}(i,j) = \mathbf{Z}_{i,j}^{r,s} = \sum_{\substack{\mathcal{S} \text{ such that} \\ d_{\mathrm{BP}}(\mathcal{S}, \mathcal{A}) = r, d_{\mathrm{BP}}(\mathcal{S}, \mathcal{B}) = s}} e^{\frac{-E(\mathcal{S})}{RT}}.$$
(5.7)

Here, in the summation, S runs over structures on s_i, \ldots, s_j , which are r-neighbors of the restriction $\mathcal{A}_{[i,j]}$ of reference structure \mathcal{A} to interval [i,j], and simultaneously S-neighbors of the restriction $\mathcal{B}_{[i,j]}$ of reference structure \mathcal{B} to interval [i,j].

Theorem 5.1. Let s_1, \ldots, s_n be a given RNA sequence. For any integers $1 \le i < j \le n$, let

$$\mathcal{Z}_{i,j}(x) = \sum_{r=0}^{n-1} \sum_{s=0}^{n-1} z_{rn+s} x^{rn+s}$$
(5.8)

where

$$z_{rn+s}(i,j) = \mathbf{Z}_{i,j}^{r,s}. \tag{5.9}$$

Inductively we define $\mathcal{Z}_{i,j}(x)$ to equal

$$\mathcal{Z}_{i,j-1}(x) \cdot x^{\alpha_0 n + \beta_0} + \tag{5.10}$$

$$\sum_{\substack{s_k, s_j \in \mathbb{B}, \\ i < k < j}} \left(e^{\frac{-E_0(k,j)}{RT}} \cdot \mathcal{Z}_{i,k-1}(x) \cdot \mathcal{Z}_{k+1,j-1}(x) \cdot x^{\alpha(k)n+\beta(k)} \right)$$

$$(5.11)$$

where $\alpha_0 = 1$ if j is base-paired in $\mathcal{A}_{[i,j]}$ and 0 otherwise, $\beta_0 = 1$ if j is base-paired in $\mathcal{B}_{[i,j]}$ and 0 otherwise, and $\alpha(k) = d_{BP}(\mathcal{A}_{[i,j]}, \mathcal{A}_{[i,k-1]} \cup \mathcal{A}_{[k+1,j-1]} \cup \{(k,j)\})$, $\beta(k) = d_{BP}(\mathcal{B}_{[i,j]}, \mathcal{B}_{[i,k-1]} \cup \mathcal{B}_{[k+1,j-1]} \cup \{(k,j)\})$.

The proof is given in supplementary information.

Note that if one were to compute all terms of the polynomial $\mathcal{Z}_{1,n}(x)$ by explicitly performing polynomial multiplications, then the computation would require $O(n^7)$ time and $O(n^4)$ space, the same time complexity of ?. Instead of explicitly performing polynomial expansion in variable x, we instantiate x to a complex number $\rho \in \mathbb{C}$, and apply the following recursion, by setting $\mathcal{Z}_{i,j}(\rho)$ equal to

$$\mathcal{Z}_{i,j-1}(\rho) \cdot \rho^{\alpha_0 n + \beta_0} + \sum_{\substack{(s_k, s_j) \in \mathbb{B}, \\ i \le k \le j}} \left(e^{\frac{-E_0(k,j)}{RT}} \cdot \mathcal{Z}_{i,k-1}(\rho) \cdot \mathcal{Z}_{k+1,j-1}(\rho) \cdot \rho^{\alpha(k)n + \beta(k)} \right)$$
(5.12)

Note that this approach is similar to what we do in FFTbor—specifically equation (4.23)—however notationally we will use the variable ρ instead of α , to avoid confusion. In this fashion, we can compute $\mathcal{Z}(\rho) = \mathcal{Z}_{1,n}(\rho)$ in $O(n^3)$ time and $O(n^2)$ space. For n^2 distinct complex numbers ρ_i where $0 \le i \le n^2 - 1$, we can compute and save only the values $\mathcal{Z}(\rho_0), \ldots, \mathcal{Z}(\rho_{n^2-1})$, each time re-using the $O(n^2)$ space for the next computation of $\mathcal{Z}(\rho_i)$. It follows that the computation resources used to determine the (column) vector

$$\mathbf{Y} = (y_0, \dots, y_{n^2 - 1})^{\mathrm{T}} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n^2 - 1} \end{pmatrix}$$
 (5.13)

where

 $y_0 = \mathcal{Z}(\rho_0), \dots, y_{n^2-1} = \mathcal{Z}(\rho_{n^2-1})$ are thus quintic time $O(n^5)$ and quadratic space $O(n^2)$.

5.2.3 Polynomial interpolation

Our plan is to determine the coefficients of the polynomial $\mathcal{Z}(x)$ in equation (5.3) by polynomial interpolation. For reasons of numerical stability, we instead determine the coefficients of the polynomial p(x), defined by

$$p(x) = \sum_{r=0}^{n-1} \sum_{s=0}^{n-1} p_{rn+s} x^{rn+s} = \sum_{r=0}^{n-1} \sum_{s=0}^{n-1} \frac{\mathbf{Z}_{1,n}^{rn+s}}{\mathbf{Z}} x^{rn+s},$$
 (5.14)

where the Fast Fourier Transform (FFT) is used to implement the interpolation of the coefficients using the inverse Discrete Fourier Transform (DFT), as described in Section 5.3.3. The following pseudocode describes how to compute the m most significant digits for probabilities $p_{rn+s} = \frac{\mathbf{Z}_{1,n}^{r,s}}{\mathbf{Z}}$. It is well-known that the FFT requires $O(N \log N)$ time to solve the inverse Discrete Fourier Transform for a polynomial of degree N. In our case, $N = n^2$, and so the computation involving the FFT requires time $O(n^2 \log n)$.

The pseudocode for the algorithm to compute p(x) is given in Figure ??. In the next section, we explain a highly non-trivial improvement of this algorithm to reduce time by a factor of 4.

5.3 Acceleration of the **FFTbor2D** algorithm

Recall that if a+bi is a complex number, where a,b are real values and i denotes $\sqrt{-1}$, then the complex conjugate of a+bi, denoted by $\overline{a+bi}$ is defined to be a-bi. Recall that a complex nth root of unity is a number whose nth power equals one. Moreover, $e^{2\pi i/n}$ is the principal complex nth root of unity; i.e. $\{e^{2\pi ik/n}: k=0,\ldots,n-1\}$ is a set of pairwise distinct complex nth roots of unity. We have the following.

Lemma 5.2. Let \mathcal{A}, \mathcal{B} denote two distinct, arbitrary but fixed, secondary structures of RNA sequence \mathbf{s} , let \mathcal{S} range over all secondary structures of \mathbf{s} , and let d_0 denote $d_{BP}(\mathcal{A}, \mathcal{B})$. If $x = d_{BP}(\mathcal{A}, \mathcal{S})$ and $y = d_{BP}(\mathcal{S}, \mathcal{B})$, then $y \in \{d_0 - x + 2k : k = 0, \dots, x\}$.

Pseudocode for FFTbor2D

Purpose: Computes the m most significant digits of probabilities $p_{rn+s} = \mathbf{Z}_{1,n}^{r,s}/\mathbf{z}$ Input: RNA sequence $\mathbf{s} = s_1, \dots, s_n$, secondary structures \mathcal{A} , \mathcal{B} of \mathbf{s} , integer mOutput: $p_{rn+s} = \mathbf{Z}_{1,n}^{r,s}/\mathbf{z}$ to $\lfloor \log_{10}(2^m) \rfloor$ significant digits for $r, s = 0, \dots, n-1$

```
1 function FFTBOR2D(s, \mathcal{A}, \mathcal{B}, m)
 2
           n \leftarrow length(\mathbf{s})
           for k \leftarrow 0, n^2 - 1 do
                                                                            \triangleright Compute all complex n^2-roots of unity
 3
                \omega_k \leftarrow \exp(\frac{2\pi i k}{n^2})
 4
          end for
 5
           for k \leftarrow 0, n^2 - 1 do
                                                                                                          \triangleright Note that \mathcal{Z}(\omega_0) = \mathbf{Z}
 6
                y_k \leftarrow 2^m \cdot \frac{\mathcal{Z}(\omega_k)}{\mathcal{Z}(\omega_0)}
 7
           end for
 8
          for k \leftarrow 0, n^2 - 1 do
 9
                                                                                ▷ Compute IDFT from equation (5.27)
                a_k \leftarrow \frac{1}{n} \sum_{j=0}^{n^2 - 1} a_j \, \omega^{-kj}
10
                p_k \leftarrow 2^{-m} \cdot |a_k|
                                                                                         \triangleright Truncate to m significant digits
11
           end for
12
                                                                                              \triangleright Return all p_k for 0 \le k < n^2
           return p_0, \ldots, p_{n^2-1}
13
14 end function
```

FIGURE 5.1: Pseudocode to compute the m most significant digits for probabilities $p_{rn+s} = \mathbf{Z}_{1,n}^{r,s}/\mathbf{z}$. In our implementation, due to numerical stability issues in the FFT engine, precision parameter m has an upper bound of 27—only the $\lfloor \log_{10}(2^m) \rfloor = 8$ most significant digits are computed with FFTbor2D. It is well-known that the FFT requires $O(N \log N)$ time to solve the inverse discrete Fourier transform for a polynomial of degree N. In our case, $N = n^2$, and so the FFT requires time $O(n^2 \log n)$.

It follows that if $x = d_{BP}(\mathcal{A}, \mathcal{S})$ and $y = d_{BP}(\mathcal{S}, \mathcal{B})$, then the only possible values for (x, y) are $(0, d_0), (1, d_0 - 1), (1, d_0 + 1), (2, d_0 - 2), (2, d_0), (2, d_0 + 2), (3, d_0 - 3), (3, d_0 - 1), (3, d_0 + 1), (3, d_0 + 3), \dots$ As a corollary, we have the parity condition, that

$$d_{BP}(\mathcal{A}, \mathcal{S}) + d_{BP}(\mathcal{S}, \mathcal{B}) \equiv d_{BP}(\mathcal{A}, \mathcal{B}) \bmod 2$$
 (5.15)

first noticed in ?, as well as the triangle inequality $d_{BP}(\mathcal{A}, \mathcal{S}) + d_{BP}(\mathcal{S}, \mathcal{B}) \geq d_{BP}(\mathcal{A}, \mathcal{B})$ for base pair distance, probably folklore. Lorenz et al. ? exploited the parity condition and the triangle inequality by using sparse matrix methods to improve on the efficiency of the naïve implementation of the $O(n^7)$ time and $O(n^4)$ space algorithm to compute the partition function, $\mathbf{Z}_{1,n}^{r,s}$, and minimum free energy structure, $MFE_{1,n}^{r,s}$, over all structures having base pair distance r to \mathcal{A} and \mathcal{S} to \mathcal{B} . The following lemma is not difficult to establish.

Lemma 5.3. If $\mathcal{Z}(x)$ is the complex polynomial defined in equation (5.3), then for any complex nth root of unity α , it is the case that $\mathcal{Z}(\overline{\alpha}) = \overline{\mathcal{Z}(\alpha)}$.

Lemma 5.4. Let $\mathcal{Z}(x)$ be defined by equation (5.3), and let $\alpha \in \mathbb{C}$ be any complex number. If the base pair distance between reference structures \mathcal{A}, \mathcal{B} is even, then $\mathcal{Z}(-\alpha) = \mathcal{Z}(\alpha)$, while if the distance is odd, then $\mathcal{Z}(-\alpha) = -\mathcal{Z}(\alpha)$.

Lemma 5.5. Suppose that M is evenly divisible by 4, $\nu = \exp(\frac{2\pi i}{M})$ is the principal M-root of unity, and $\frac{M}{4} < k \leq \frac{M}{2}$. Then

$$\nu^{k} = -(\nu^{-(M/2-k)}) = -\overline{\nu^{M/2-k}}.$$
(5.16)

Lemma 5.2 is proved by simple induction; Lemma 5.3 is proved by a computation involving binomial coefficients; Lemma 5.4 is immediate by the parity observation above, resulting from Lemma 5.2; Lemma 5.5 is elementary, relying on Euler's formula and trigonometric addition formulas. Details proofs of Lemmas 5.3, 5.4, 5.5 can be found in supplementary information.

Lemma 5.2 entails that either all even coefficients, or all odd coefficients of $\mathcal{Z}(x)$ are zero, and so by a variable change described in detail below, we require only half the number of evaluations of $\mathcal{Z}(x)$, in order to perform polynomial interpolation. Lemma 5.3 entails that we require only half again the number of evaluations of $\mathcal{Z}(x)$, since the remainder can be inferred by taking the complex conjugate. Lemma 5.2 and Lemma 5.3, along with a precomputation of powers of the complex roots of unity, lead to a large performance speed-up in our implementation of FFTbor2D—by a factor of 4 or more.

5.3.1 Optimization due to parity condition

Let n denote the length of RNA sequence s, and let N denote the least *even* integer greater than or equal to n. Since N is even, we have $(r+s) \equiv (r \cdot (N+1) + s) \mod 2$. For distinct fixed structures \mathcal{A}, \mathcal{B} , let $\pi_1(k) = \lfloor \frac{k}{N+1} \rfloor$, and $\pi_2(k) = k \mod (N+1)$, and define the polynomial

$$\mathcal{Z}(x) = \sum_{r=0}^{N} \sum_{s=0}^{N} z_{rN+s} x^{rN+s}
\stackrel{(N+1)^2 - 1}{= \sum_{k=0}^{N} z_{\pi_1(k) \cdot (N+1) + \pi_2(k)}} x^{\pi_1(k) \cdot (N+1) + \pi_2(k)}
\stackrel{(N+1)^2 - 1}{= \sum_{k=0}^{N} z_k x^k}$$
(5.17)

where for the last equality, we have used the fact that $k = \pi_1(k) \cdot (N+1) + \pi_2(k)$, well-known from row major order of a 0-indexed 2-dimensional array.

Consider the coefficients of the polynomial

$$\mathcal{Z}(x) = \sum_{r=0}^{N} \sum_{s=0}^{N} z_{rN+s} x^{rN+s} = \sum_{k=0}^{(N+1)^2 - 1} z_k x^k.$$
 (5.18)

Since N is even, the parity of r+s equals the parity of r(N+1)+s, hence it follows from the parity condition that either (i) all coefficients z_1, z_3, z_5, \ldots of odd parity are zero, or (ii) all coefficients z_0, z_2, z_4, \ldots of even parity are zero. To simplify notation, in the remainder of this subsection, let M be the least integer greater than or equal to $(N+1)^2$ that is evenly divisible by 4, and let $M_0 = M/2$. We will assume that $\mathcal{Z}(x) = \sum_{k=0}^{M-1} z_k x^k$, whereupon coefficients $z_k = 0$ for $k > (N+1)^2$.

Case 1: All coefficients z_k of odd parity in equation (5.18) are zero.

In this case, we have $\mathcal{Z}(x) = \sum_{k=0}^{M_0-1} z_{2k} x^{2k}$. But then $\mathcal{Z}(x) = Y(u) = \sum_{k=0}^{M_0-1} b_k u^k$, where we have made a variable change $u = x^2$, and coefficient changes $b_k = a_{2k}$. By evaluating $M_0 = \frac{M}{2}$ many complex M_0 -roots of unity, we can use polynomial interpolation to determine all coefficients b_k of the polynomial

$$Y(u) = \sum_{k=0}^{M_0 - 1} b_k u^k = \sum_{k=0}^{M_0 - 1} z_{2k} x^{2k}.$$
 (5.19)

Since $Y(x^2) = \mathcal{Z}(x)$, we have $Y(\exp(\frac{2\pi ik}{M/2})) = Y(\exp(\frac{4\pi ik}{M})) = \mathcal{Z}(\exp(\frac{2\pi ik}{M}))$, hence we can use the previous recursions (5.10) to evaluate $\mathcal{Z}(\exp(\frac{2\pi ik}{M}))$. Instead of performing M evaluations of $\mathcal{Z}(x)$ at M-roots of unity, this requires only $M_0 = M/2$ evaluations of Y(u) at M_0 -roots of unity; i.e. only half the number of evaluations of $\mathcal{Z}(x)$ are necessary

to obtain the coefficients of Y(x). But then, we immediately obtain the full polynomial $\mathcal{Z}(x)$, since its coefficients of odd parity are zero.

Case 2: All coefficients z_k of even parity in equation (5.18) are zero.

In this case, z_0, z_2, z_4, \ldots are zero, so $\mathcal{Z}(x) = \sum_{k=0}^{M/2-1} z_{2k+1} x^{2k+1}$. But then $\mathcal{Z}(x) = x \cdot Y(u)$, where $Y(u) = \sum_{k=0}^{M_0-1} b_k u^k$, where we have made a variable change $u = x^2$, and coefficient changes $b_k = z_{2k+1}$. Similarly to Case 1, we can interpolate the M_0 coefficients of the polynomial $Y(u) = \sum_{k=0}^{M_0-1} b_k u^k$ by evaluating M_0 many complex M_0 -roots of unity. Since $\mathcal{Z}(x) = x \cdot Y(x^2)$, $Y(x^2) = x^{-1} \cdot \mathcal{Z}(x)$, so $Y(\exp(\frac{2\pi i k}{M/2})) = Y(\exp(\frac{4\pi k i}{M})) = \exp(\frac{-2\pi i k}{M}) \cdot \mathcal{Z}(\exp(\frac{2\pi i k}{M}))$, employing the previous recursions (5.10) to evaluate $\mathcal{Z}(\exp(\frac{2\pi i k}{M}))$. Note, that unlike the Case 1, since $\mathcal{Z}(x) = x \cdot Y(x^2)$, we have $Y(x^2) = \frac{\mathcal{Z}(x)}{x}$, which explains the presence of additional factor $\exp(\frac{-2\pi i k}{M})$ in Case 2. Thus, instead of performing M evaluations of $\mathcal{Z}(x)$ at M-roots of unity, we perform only $M_0 = \frac{M}{2}$ evaluations of Y(u) at M_0 -roots of unity; i.e. only half the number of evaluations of $\mathcal{Z}(x)$ are necessary to obtain the coefficients of Y(x). But then, we immediately obtain the full polynomial $\mathcal{Z}(x)$, since $\mathcal{Z}(x) = x \cdot Y(x^2)$, and the coefficients of $\mathcal{Z}(x)$ of even parity are zero.

In the following, we will need the observation, that if the parity of base pair distance $d_{\mathrm{BP}}(\mathcal{A}, \mathcal{B})$ between \mathcal{A}, \mathcal{B} is even, then

$$Y(x^2) = \mathcal{Z}(x) \tag{5.20}$$

while if the parity is odd, then

$$Y(x^2) = \frac{1}{x} \cdot \mathcal{Z}(x). \tag{5.21}$$

5.3.2 Optimization due to complex conjugates

As before, let M be the the least number evenly divisible by 4, which is greater than or equal to $(N+1)^2$, let $M_0 = \frac{M}{2}$, let $\nu = \exp(\frac{2\pi i}{M})$ and $\omega = \nu^2 = \exp(\frac{2\pi i 2}{M}) = \exp(\frac{2\pi i}{M_0})$. Clearly, ν is a principal complex M-root of unity, while ω is a principal complex M_0 -root of unity. Evaluate \mathcal{Z} for each M_0 -root of unity that belongs to the first quadrant, and apply Lemma 5.3 to infer the values of \mathcal{Z} for each M_0 -root of unity that belongs to the fourth quadrant. More precisely, we compute $\mathcal{Z}(\nu^k)$, for $k = 0, \dots, \frac{M_0}{2}$, and by Lemmas 5.3, 5.4, 5.5 infer that for $k = \frac{M_0}{2} + 1, \dots, M_0 - 1$, we have $\mathcal{Z}(\nu^k) = -1^{d_0} \cdot \overline{\mathcal{Z}(\nu^{M_0 - k})}$, where $d_0 = d_{\mathrm{BP}}(\mathcal{A}, \mathcal{B})$. This is justified in the following.

By induction on $k = \frac{M_0}{2} + 1, \dots, M_0 - 1$, we have

$$Y(\omega^{k}) = Y(\nu^{2k})$$

$$= \begin{cases} \mathcal{Z}(\nu^{k}) & \text{if } d_{\mathrm{BP}}(\mathcal{A}, \, \mathcal{B}) = 0 \bmod 2 \\ \frac{1}{\nu^{k}} \cdot \mathcal{Z}(\nu^{k}) & \text{if } d_{\mathrm{BP}}(\mathcal{A}, \, \mathcal{B}) = 1 \bmod 2 \end{cases}$$

$$= \begin{cases} \mathcal{Z}(-\overline{\nu^{(M_{0}-k)}}) & \text{if } d_{\mathrm{BP}}(\mathcal{A}, \, \mathcal{B}) = 0 \bmod 2 \\ \nu^{-k} \cdot \mathcal{Z}(-\overline{\nu^{(M_{0}-k)}}) & \text{if } d_{\mathrm{BP}}(\mathcal{A}, \, \mathcal{B}) = 1 \bmod 2 \end{cases}$$

$$= \begin{cases} \mathcal{Z}(\overline{\nu^{(M_{0}-k)}}) & \text{if } d_{\mathrm{BP}}(\mathcal{A}, \, \mathcal{B}) = 0 \bmod 2 \\ \nu^{-k} \cdot \mathcal{Z}(\overline{\nu^{(M_{0}-k)}}) & \text{if } d_{\mathrm{BP}}(\mathcal{A}, \, \mathcal{B}) = 1 \bmod 2 \end{cases}$$

$$= \begin{cases} \overline{\mathcal{Z}(\nu^{(M_{0}-k)})} & \text{if } d_{\mathrm{BP}}(\mathcal{A}, \, \mathcal{B}) = 1 \bmod 2 \\ -\nu^{-k} \cdot \overline{\mathcal{Z}(\nu^{(M_{0}-k)})} & \text{if } d_{\mathrm{BP}}(\mathcal{A}, \, \mathcal{B}) = 1 \bmod 2 \end{cases}$$

Line 1 follows by definition, since $\omega = \nu^2$; line 2 follows by equations (5.20) and (5.21); line 3 follows by Lemma 5.5; line 4 follows by Lemma 5.4. Thus if $d_{BP}(\mathcal{A}, \mathcal{B})$ is even, then

$$y_k = Y(\omega^k) = \begin{cases} \mathcal{Z}(\nu^k) & \text{for } k = 0, \dots, \frac{M_0}{2} \\ \overline{\mathcal{Z}(\nu^{M_0 - k})} & \text{for } k = \frac{M_0}{2} + 1, \dots, M_0 - 1 \end{cases}$$
(5.23)

while if $d_{\mathrm{BP}}(\mathcal{A}, \mathcal{B})$ is odd, then

$$y_k = Y(\omega^k) = \begin{cases} \nu^{-k} \cdot \mathcal{Z}(\nu^k) & \text{for } k = 0, \dots, \frac{M_0}{2} \\ -\nu^{-k} \cdot \overline{\mathcal{Z}(\nu^{M_0 - k})} & \text{for } k = \frac{M_0}{2} + 1, \dots, M_0 - 1 \end{cases}$$
(5.24)

It follows that values y_0, \ldots, y_{M_0-1} can be obtained by only $\frac{M}{4}$ evaluations of $\mathcal{Z}(x)$.

5.3.3 Polynomial interpolation to evaluate $\mathcal{Z}_{i,j}(x)$

Now let $M_0 = \frac{M}{2}$, let $\nu = \exp(\frac{2\pi i}{M})$ be the principal M-root of unity, and $\omega = \nu^2 = \exp(\frac{2\pi i}{M/2}) = \exp(\frac{2\pi \cdot 2i}{M})$ be the principal M_0 -root of unity. Recall that the Vandermonde matrix V_{M_0} is defined to be the $M_0 \times M_0$ matrix, whose i, j entry is $\omega^{i \cdot j} = \nu^{2i \cdot j}$; i.e.

$$V_{M_0} = \begin{pmatrix} 1 & 1 & 1 & \dots & 1\\ 1 & \omega & \omega^2 & \dots & \omega^{M_0 - 1}\\ 1 & \omega^2 & \omega^4 & \dots & \omega^{2(M_0 - 1)}\\ 1 & \omega^3 & \omega^6 & \dots & \omega^{3(M_0 - 1)}\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ 1 & \omega^{M_0 - 1} & \omega^{2(M_0 - 1)} & \dots & \omega^{(M_0 - 1)(M_0 - 1)} \end{pmatrix}$$
(5.25)

As described in Chapter 4, the Fast Fourier Transform is the $O(n \log n)$ algorithm, which computes the Discrete Fourier Transform (DFT), defined as the matrix product $\mathbf{Y} = V_{M_0} \mathbf{A}$:

$$\begin{pmatrix}
y_0 \\
y_1 \\
y_2 \\
\vdots \\
y_{M_0-1}
\end{pmatrix} = V_n \cdot \begin{pmatrix}
a_0 \\
a_1 \\
a_2 \\
\vdots \\
a_{M_0-1}
\end{pmatrix}$$
(5.26)

The (i,j) entry of $V_{M_0}^{-1}$ is $\frac{\omega^{-ji}}{M_0}$ and that

$$a_j = \frac{1}{M_0} \sum_{k=0}^{M_0 - 1} y_k \,\omega^{-kj} = \frac{1}{M_0} \sum_{k=0}^{M_0 - 1} y_k \,\nu^{-2kj}$$
 (5.27)

for $j = 0, \dots, M_0 - 1$.

Since we defined \mathbf{Y} in equation (5.13) by $\mathbf{Y} = (y_0, \dots, y_{M_0-1})^{\mathrm{T}}$, where $y_0 = \mathcal{Z}(\alpha_0), \dots$, $y_{M_0-1} = \mathcal{Z}(\alpha_{M_0-1})$ and $\alpha_k = \omega^k \exp(\frac{k \cdot 2\pi i}{M_0})$, it follows that the coefficients $z_k = \mathbf{Z}_{1,n}^{\pi_1(k),\pi_2(k)}$ in the polynomial $\mathcal{Z}(x) = z_0 + z_1 x + \dots + z_M x^M$ defined in (5.3) can be computed using the FFT. However, in practice we encounter the same issues of numerical instability observed in Section 4.3.3, and adopt a similar approach to compute the m most significant digits of $\frac{\mathbf{Z}_{1,n}^{\pi_1(k),\pi_2(k)}}{\mathbf{Z}}$, where the partition function $\mathbf{Z} = \sum_{S} \exp(-E(\mathcal{S})/RT)$ satisfies $\mathbf{Z} = \sum_{x,y} \mathbf{Z}_{1,n}^{x,y}$. This leads to numerical stability, allowing FFTbor2D to compute the m most significant digits of $p(x,y) = \frac{\mathbf{Z}_{1,n}^{x,y}}{\mathbf{Z}}$. Pseudocode for FFTbor2D which includes the performance enhancements described in Section 5.3 follows below.

Pseudocode for improved FFTbor2D

```
Purpose: Computes the m most significant digits of probabilities p_{r\cdot(N+1)+s} = \mathbf{Z}_{1,n}^{r,s}/\mathbf{z}

Input: RNA sequence \mathbf{s} = s_1, \dots, s_n, secondary structures \mathcal{A}, \mathcal{B} of \mathbf{s}, integer m

Output: p_{r\cdot(N+1)+s} = \mathbf{Z}_{1,n}^{r,s}/\mathbf{z} to \lfloor \log_{10}(2^m) \rfloor significant digits for r, s = 0, \dots, N
```

```
1 function FFTBOR2D IMPROVED(\mathbf{s}, \mathcal{A}, \mathcal{B}, m)
          n \leftarrow length(\mathbf{s})
          N \leftarrow n + (n \bmod 2)
          M \leftarrow (N+1)^2 + ((N+1)^2 \bmod 4)
          M_0 \leftarrow \frac{M}{2}
          for k \leftarrow 0, (N+1)^2 - 1 do
                                                                                    \triangleright Note that k \leftarrow \pi_1(k) \cdot M + \pi_2(k)
 6
               \pi_1(k) \leftarrow \lfloor \frac{k}{N+1} \rfloor
 7
                \pi_2(k) \leftarrow k \bmod (N+1)
 8
          end for
 9
          for k \leftarrow 0, M-1 do
10
                                                             \triangleright Compute all complex M and M_0-roots of unity
                \nu_k \leftarrow \exp(\frac{2\pi i k}{M})
11
                if k < M_0 then
12
                     \omega_k \leftarrow \exp(\frac{2\pi i k}{M_0})
13
14
                end if
          end for
15
          for k \leftarrow 0, M_0 - 1 do
16
                if d_{BP}(\mathcal{A}, \mathcal{B}) \mod 2 = 0 then
                                                                                                        \triangleright From equation (5.23)
17
                      if k \leq \frac{M_0}{2} then
18
                           y_k \leftarrow \mathcal{Z}(\nu^k)
19
                      else
20
                           y_k \leftarrow \overline{\mathcal{Z}(\nu^{M_0-k})}
21
                      end if
22
23
                else
                                                                                                        \triangleright From equation (5.24)
                     if k \leq \frac{M_0}{2} then
24
                           y_k \leftarrow \nu^{-k} \cdot \mathcal{Z}(\nu^k)
25
                      else
26
                           y_k \leftarrow -\nu^{-k} \cdot \overline{\mathcal{Z}(\nu^{M_0-k})}
27
                      end if
28
                end if
29
          end for
30
```

```
\triangleright Note that \mathcal{Z}(\nu_0) = \mathbf{Z}
31
          for k \leftarrow 0, M_0 - 1 do
               y_k \leftarrow 2^m \cdot \frac{y_k}{\mathcal{Z}(\nu_0)}
32
          end for
33
          for k \leftarrow 0, M_0 - 1 do
                                                                            \triangleright Compute IDFT from equation (5.27)
34
                a_k \leftarrow \frac{1}{M_0} \sum_{k=0}^{M_0 - 1} y_k \omega^{-kj}
35
          end for
36
          for k \leftarrow 0, M-1 do
37
                                                              \triangleright Change the polynomial back to degree M-1
                if d_{BP}(\mathcal{A}, \mathcal{B}) \mod 2 = 0 then
38
                     if k \mod 2 = 0 then
39
40
                           p_{\pi_1(k)\cdot(N+1)+\pi_2(k)} \leftarrow a_{k/2}
                     \mathbf{else}
41
42
                           p_{\pi_1(k)\cdot(N+1)+\pi_2(k)} \leftarrow 0
                     end if
43
44
                else
                     if k \mod 2 = 0 then
45
46
                           p_{\pi_1(k)\cdot(N+1)+\pi_2(k)} \leftarrow 0
                     else
47
48
                           p_{\pi_1(k)\cdot(N+1)+\pi_2(k)} \leftarrow a_{\frac{k-1}{2}}
                     end if
49
                end if
50
          end for
51
          for k \leftarrow 0, (N+1)^2 - 1 do
52
                                                                                     \triangleright Truncate to m significant digits
               p_k \leftarrow 2^{-m} \cdot |p_k|
53
54
          end for
                                                                            \triangleright \text{ Return all } p(r,s) = p_{r \cdot (N+1)+s} = \frac{\mathbf{Z}_{1,n}^{r,s}}{\mathbf{Z}}
          return p_0, \ldots, p_{(N+1)^2-1}
56 end function
```

FIGURE 5.2: Pseudocode to compute the m most significant digits for probabilities $p_{r\cdot(N+1)+s} = \mathbf{Z}_{1,n}^{r,s}/\mathbf{z}$. In our implementation, due to numerical stability issues in the FFT engine, precision parameter m has an upper bound of 27—only the $\lfloor \log_{10}(2^m) \rfloor = 8$ most significant digits are computed with FFTbor2D. It is well-known that the FFT requires $O(N \log N)$ time to solve the inverse discrete Fourier transform for a polynomial of degree N. In our case, $N = n^2$, and so the FFT requires time $O(n^2 \log n)$.

5.4 Performance characteristics of FFTbor2D

To perform comparative benchmarking between RNA2Dfold and FFTbor2D, we took precision parameter m=8, and proceeded as follows. For each sequence length $n=20,25,30,\ldots,300$, we generated 100 random sequences using probability 0.25 for each nucleotide A, C, G, U. For a given RNA sequence s, the metastable structure \mathcal{A} was taken to be the MFE structure of s. Using RNAbor, we determined that value $k_0 \geq 10$, for which partition function \mathbf{Z}^{k_0} constitutes a visible peak in the graphical output — see Figure 2 and 3 of ? for an example. Subsequently, metastable structure \mathcal{B} was taken to be that structure having minimum free energy over all structures, whose base pair distance from \mathcal{A} was k_0 .

For all $0 \le x, y \le n$, RNA2Dfold and FFTbor2D were benchmarked in the computation of all Boltzmann probabilities $p(x,y) = \frac{\mathbf{Z}^{x,y}}{\mathbf{Z}}$, where x [resp. y] represents base pair distance to metastable structure \mathcal{A} [resp. \mathcal{B}]. Care was taken for both software to employ the same energy model (Turner99 energy model, no dangles, suppression of minimum free energy structure computations for RNA2Dfold) and the same number of parallel threads (8 threads using OpenMP). Nonetheless, there are slight differences in the energy models—namely, RNA2Dfold includes mismatch penalties for multiloop stems and for exterior loops, while FFTbor2D does not. Even in the computation of the partition function Z, for spliced leader RNA from L. collosoma of length 56 nt, RNA2Dfold -d0 obtains a value of -9.660419 kcal/mol, while FFTbor2D obtains -9.660543 kcal/mol; similarly, for attenuator RNA of length 73 nt, RNA2Dfold -d0 obtains a value of -22.171785 kcal/mol, while FFTbor2D obtains -22.173213 kcal/mol. Note that the straightforward calculation

of the partition function, following McCaskill's algorithm? makes no use of the FFT engine, and thus the differences cannot be due to floating point or precision issues.

For benchmarking purposes, to allow for a fair comparison of FFTbor2D with RNA2Dfold, we restricted therange of x, y in the same manner as done in the source code of RNA2Dfold. In that code, parameters K [resp. L] are defined respectively to be the sum of the number of base pairs in reference structure \mathcal{A} [resp. \mathcal{B}] plus the number of base pairs in the maximum matching (Nussinov) structure which contains no base pair of \mathcal{A} [resp. \mathcal{B}]. For $x \geq K, y \geq L$, both RNA2Dfold and FFTbor2D set p(x, y) = 0. For the benchmarking results displayed in Figures 5.3, 5.4, 5.5, the values x, y are restricted in FFTbor2D to $0 \leq x, y \leq \max(K, L)$, while $0 \leq x \leq K$ and $0 \leq y \leq L$ in RNA2Dfold.

Figure 5.3 depicts average run time of RNA2Dfold and FFTbor2D as a function of RNA sequence length, for random RNA sequences of lengths 20–200 and their metastable structures \mathcal{A}, \mathcal{B} , as previously explained. We see that both programs have roughly comparable run times for sequences of length up to approximately 80 nt, while FFTbor2D is demonstrably faster for longer sequences. Figure 5.4 presents \log_{10} run time as a function of sequence length, in order to more clearly determine the crossover point in performance. RNA2Dfold is marginally faster for sequences of length up to roughly 80 nt, though the difference is in the millisecond range. Figure 5.5 shows that the standard deviation of run times on random sequences is tiny for FFTbor2D compared with RNA2Dfold, where standard deviation increases rapidly as a function of sequence length. This figure shows that run time of RNA2Dfold depends on sequence details, as well as sequence length, while the run time of FFTbor2D depends only on sequence length.

Time benchmarking (each point is the average of 100 sequences)

FIGURE 5.3: Run time in seconds for RNA2Dfold and FFTbor2D on random RNA sequences of length 20–200 nt, where sequence generation and choice of metastable structures \mathcal{A}, \mathcal{B} is described in the text. Beyond a length of approximately 80 nt, FFTbor2D is demonstrably faster.

Time benchmarking (each point is the log average of 100 sequences)

FIGURE 5.4: Logarithm of run time in seconds for RNA2Dfold and FFTbor2D on random RNA sequences of length less than 200 nt, for same data as that in Figure 5.3. By taking \log_{10} of the run times, crossover points are apparent, where FFTbor2D is faster than RNA2Dfold. For very small sequences, RNA2Dfold is faster, though since both programs converge in a fraction of a second, this difference is of no practical consequence.

FIGURE 5.5: (Top) Standard deviation of run times of RNA2Dfold and FFTbor2D as a function of sequence length n. (Bottom) Minimum and maximum run times for RNA2Dfold and FFTbor2D. For each collection of 100 random sequences of length n, the minimum and maximum run time for a sequence of that length was computed. Taken together, these figures clearly show the run time dependence of RNA2Dfold on particular sequences, while the run time of FFTbor2D depends only on sequence length, rather than sequence details.

FIGURE 5.6: 2D projection of energy landscape for Spliced Leader (SL) RNA from $L.\ collosoma$, having sequence and metastable secondary structures:

The x-axis [resp. y-axis] represents base pair distance between metastable structure \mathcal{A} [resp. \mathcal{B}], while the z-axis represents the ensemble free energy $-RT\log \mathbf{Z}^{x,y}$, where $\mathbf{Z}^{x,y}$ is computed in FFTbor2D by $\mathbf{Z}^{x,y} = p(x,y) \cdot \mathbf{Z}$. Low energy positions (x,y) correspond to high Boltzmann probability positions. The left panel depicts a heat map of the ensemble free energy, while the right panel depicts a contour map with level curves. In analogy with mountain climbing, one expects an optimal path to follow along the valley regions in traversing the landscape from \mathcal{A} to \mathcal{B} . Data produced with FFTbor2D; graphics produced using Mathematica.

FIGURE 5.7: 2D projection of energy landscape for Spliced Leader (SL) RNA from L. collosoma, as in Figure 5.6, except that in the right panel, ensemble free energy $-RT \log \mathbf{Z}^{x,y}$ is computed from the values of $\mathbf{Z}^{x,y}$ output by RNA2Dfold, while in the right panel, ensemble free energy is computed from the values $\mathbf{Z}^{x,y} = p(x,y) \cdot \mathbf{Z}$, where values p(x,y) are output by RNA2Dfold. The loss of detail in the 2D energy landscape is caused uniquely by working with probabilities p(x,y), rather than partition function values $\mathbf{Z}^{x,y}$. Data produced with RNA2Dfold; graphics produced using Mathematica.

Chapter 6

Hermes

6.1 Introduction

In this chapter, we present the Hermes software suite—a collection of programs aimed at evaluating the kinetic properties of RNA molecules. Provided a coarse-grained energy landscape generated by FFTbor2D (described in Chapter 5), we present software which computes both the mean first passage time and equilibrium time for this discretized energy landscape. We also provide software which computes the exact kinetics for an RNA molecule, however since this requires exhaustive enumeration of all secondary structures—which is known to be an exponential quantity for the length of the RNA in consideration—the full kinetics are not expected to be practical for anything beyond a sequence of trivial length. The software in Hermes presents a practical application of the energy landscapes computed by the FFTbor2D algorithm. Contrasted against the other kinetics software in the field, Hermes offers similar accuracy with unparalleled

performance which opens up the possibility for large-scale kinetic analysis *in silico*, which we expect to be of use for synthetic design.

6.1.1 Organization

This chapter is organized in the following fashion. We begin by providing background on the state-of-the-art approaches for kinetic analysis of RNAs. From there, we move into a technical discussion of two traditional approaches for kinetics, computation of the mean first passage time and the equilibrium time. With this foundation in place, we proceed to discuss the high-level organization of the Hermes software package, and describe in detail each of the four underlying programs which comprise the kinetics suite. We then move on to present comparitive benchmarking of Hermes against other methods, before finally concluding with some remarks on the accuracy and applicability of Hermes to computational RNA design.

6.2 Traditional approaches for kinetics

To better understand the underlying algorithms behind the software, we describe two traditional approaches in kinetics.

6.2.1 Mean first passage time

Consider a physical process, which when monitored over time, yields the stochastic sequence q_0, q_1, q_2, \ldots of discrete, observed states. If the transition from state q_t to q_{t+1} depends only on q_t at time t and not on the historical sequence of prior states visited,

as often assumed in the case of protein or RNA folding, then a Markov chain provides a reasonable mathematical model to simulate the process.

A first-order, time-homogeneous Markov chain $\mathbb{M}=(Q,\pi,P)$ is given by a finite set $Q=\{1,\ldots,n\}$ of states, an initial probability distribution $\pi=(\pi_1,\ldots,\pi_n)$, and the $n\times n$ transition probability matrix $P=(p_{i,j})$. At time t=0, the initial state of the system is $q_t=i$ with probability π_i , and at discrete time $t=1,2,3,\ldots$, the system makes a transition from state i to state j with probability $p_{i,j}$; i.e. the conditional probability $Pr[q_{t+1}=j|q_t=i]=p_{i,j}$. Define the population occupancy frequency of visiting state i at time t by $p_i(t)=Pr[q_t=i]$. Denote $p_{i,j}^{(t)}=Pr[q_t=j|q_0=i]$ and notice that the (i,j)-th entry of the t-th power P^t of matrix P equals $p_{i,j}^{(t)}$.

The mean first passage time (MFPT) or hitting time for the Markov chain M, starting from initial state x_0 and proceeding to the target state x_∞ , is defined as the sum, taken over all paths ρ from x_0 to x_∞ , of the path length $length(\rho)$ times the probability of path ρ , where $length(\rho_0, \ldots, \rho_n)$ is defined to be n. In other words, $MFPT = \sum_{\rho} Pr[\rho] \cdot length(\rho)$, where the sum is taken over sequences $\rho = \rho_0, \ldots, \rho_n$ of states where $\rho_0 = x_0$ and $\rho_n = x_\infty$, and no state is visited more than once in the path ρ .

Given the target state x_{∞} , MFPT can be exactly determined by computing the inverse $(I - P_{x_{\infty}}^{-})^{-1}$, where I is the $(n-1) \times (n-1)$ identity matrix and $P_{x_{\infty}}^{-}$ denotes the $(n-1) \times (n-1)$ matrix obtained from the Markov chain transition probability matrix P, by deleting the row and column with index x_{∞} . Letting \mathbf{e} denote the $(n-1) \times 1$ column vector consisting entirely of 1's, it can be shown that mean first passage time from state x_0 to state x_{∞} is the x_0 -th coordinate of column vector $(I - P_{x_{\infty}}^{-})^{-1} \cdot \mathbf{e}$?.

The stationary probability distribution $p^* = (p_1^*, \dots, p_n^*)$ is a row vector such that $p^* \cdot P = p^*$; i.e. $p_j^* = \sum_i^n p_i^* \cdot p_{i,j}$, for all $1 \leq j \leq n$. It can be shown that the stationary probability p_i^* is the limit, as m tends to infinity, of the frequency of visiting state i in a random walk of length m on Markov chain M. It is well-known that the stationary distribution exists and is unique for any finite aperiodic irreducible Markov chain ?.

The Metropolis Monte Carlo algorithm ? can be used to simulate a random walk from initial state x_0 to target state x_∞ , when energies are associated with the states, as is the case in macromolecular folding, where free energies can be determined for protein and RNA conformations from mean field theory, quantum theory, or experimental measurements. In such cases, a move set defines the set N_x of conformations reachable in unit time from conformation x, and the transition probability matrix $P = (p_{x,y})$ is defined as follows:

$$p_{x,y} = \begin{cases} \frac{1}{|N_x|} \cdot \min\left(1, \exp\left(-\frac{E(y) - E(x)}{RT}\right)\right) & \text{if } y \in N_x \\ 1 - \sum_{k \in N_x} p_{x,k} & \text{if } x = y \\ 0 & \text{if } y \notin N_x, \text{ and } x \neq y \end{cases}$$
(6.1)

If $p_x^* \cdot p_{x,y} = p_y^* \cdot p_{y,x}$ holds for all distinct $x, y \in Q$, then detailed balance is said to hold, or equivalently the Markov chain M is said to be reversible. If transitional probabilities are defined as in equation (6.1), and if neighborhood size is constant $(|N_x| = |N_y|)$ for all x, y, then it is well-known that the stationary probability distribution $p^* = (p_1^*, \dots, p_n^*)$ is the Boltzmann distribution; i.e.

$$p_k^* = \frac{\exp(-E(k)/RT)}{Z} \tag{6.2}$$

where E(k) is the energy of conformation k at temperature T, R is the universal gas constant, T is absolute temperature, and the partition function $Z = \sum_{k=1}^{n} \exp(-E(k)/RT)$ is a normalization constant ??. If neighborhood size is not constant, as in the case where states are RNA secondary structures and transitions are restricted to the addition or removal of a single base pair, then by Hasting's trick, an equivalent Markov chain can be defined which satisfies detailed balance—see equation (??).

Following Anfinsen's experimental work on the denaturation and refolding of bovine pancreatic ribonuclease?, the native conformation is assumed to be the ground state having minimum free energy. These results justify the use of the Monte Carlo Algorithm?? in macromolecular kinetics and structure prediction.

The mean first passage time from state x to state y can be approximated by repeated runs of the Monte Carlo algorithm. In particular, Šali, Shakhnovich, and Karplus used such Monte Carlo simulations to investigate the Levinthal paradox of how a protein can fold to its native state within milliseconds to seconds. By repeated Monte Carlo simulations using a protein lattice model, Šali et al. observed that a large energy difference between the ground state and the first misfolded state appears to be correlated with fast folding.

6.2.2 Equilibrium time

A continuous time $Markov\ process\ \mathbb{M}=(Q,\pi,P(t))$ is given by a finite set $Q=\{1,\ldots,n\}$ of states, the initial probability distribution π , and the $n\times n$ matrix $P(t)=(p_{i,j}(t))$ of probability transition functions.

Pseudocode for the Metropolis Monte Carlo algorithm

Purpose: Compute discrete time t to move from x_0 to x_∞ , with upper limit of T_{max}

INPUT: Starting state x_0 , target state x_∞ and upper bound on time T_{max}

OUTPUT: Discrete time t taken to reach x_{∞} from x_0

```
1 function Metropolis(x_0, x_\infty, T_{\text{max}})
        t \leftarrow 0
 3
        x \leftarrow x_0
        while x \neq x_{\infty} AND t < T_{\text{max}} do
 4
            y \in N_x
 5
            if E(y) < E(x) then
 6
                                                                                            ▶ Greedy move
 7
                 x \leftarrow y
 8
             else
                                                                                        ▶ Metropolis move
                 z \in (0,1)
 9
                 if z < \exp(-\frac{E(y) - E(x)}{RT}) then
10
11
                 end if
12
            end if
13
            t \leftarrow t + 1
14
        end while
15
        return t
16
                                                 \triangleright Return discrete time t to travel from x_0 to x_{\infty}
17 end function
```

FIGURE 6.1: The function Metropolis implements a discrete time simulation of folding trajectories for a Markov chain.

Letting q_t denote the state at (continuous) time t, the probability that the initial state q_0 at time 0 is k is π_k , while

$$p_{i,j}(t) = Pr[q_t = j|q_0 = i]. (6.3)$$

The matrix P'(t) of derivatives, defined by

$$P'(t) = \begin{pmatrix} \frac{dp_{1,1}}{dt}(t) & \dots & \frac{dp_{1,n}}{dt}(t) \\ \vdots & \ddots & \vdots \\ \frac{dp_{n,1}}{dt}(t) & \dots & \frac{dp_{n,n}}{dt}(t) \end{pmatrix}, \tag{6.4}$$

can be shown to satisfy

$$P'(t) = P(t) \cdot R \tag{6.5}$$

where $R = (r_{i,j})$ is an $n \times n$ rate matrix with the property that each diagonal entry is -1 times the row sum

$$r_{i,i} = -\sum_{j \neq i} r_{i,j}. (6.6)$$

Define the population occupancy distribution $p(t) = (p_1(t), \dots, p_n(t))$ by

$$p_i(t) = Pr[q(t) = i] = \sum_{k=1}^{n} \pi_k p_{k,i}(t)$$
(6.7)

where q(t) denotes the state of the Markov process at (continuous) time t.

In the case of macromolecular folding, where Markov process states are molecular conformations and conformational energies are available, it is typical to define the rate matrix $R = (r_{x,y})$ as follows:

$$r_{x,y} = \begin{cases} \min\left(1, \exp\left(-\frac{E(y) - E(x)}{RT}\right)\right) & \text{if } y \in N_x \\ -\sum_{k \in N_x} p_{x,k} & \text{if } x = y \\ 0 & \text{if } y \notin N_x, \text{ and } x \neq y \end{cases}$$

$$(6.8)$$

The master equation is defined by the matrix differential equation

$$\frac{dp(t)}{dt} = p(t) \cdot R \tag{6.9}$$

or equivalently, for all $1 \le x \le n$,

$$\frac{dp_x(t)}{dt} = \sum_{y=1}^n (p_y(t) \cdot r_{y,x} - p_x(t) \cdot r_{x,y}) = \sum_{x \neq y} (p_y(t) \cdot r_{y,x} - p_x(t) \cdot r_{x,y}).$$
 (6.10)

As in the case of Markov chains, $p^* = (p_1^*, \dots, p_n^*)$ is defined to be the stationary distribution if $p^* \cdot P(t) = p^*$; i.e. $p_k^* = Pr[q(0) = k]$ implies that $Pr[q(t) = k] = p_k^*$ for all $t \in \mathbb{R}$ and $1 \le k \le n$. Define the equilibrium distribution $p^* = (p_1^*, \dots, p_n^*)$ to be the unique solution for p(t), when the master equation (6.10) is set to equal zero; i.e.

$$\sum_{x \neq y} p_x^* \cdot r_{x,y} = \sum_{x \neq y} p_y^* \cdot r_{y,x}.$$
 (6.11)

If the equilibrium distribution exists, then necessarily it is equal to the stationary distribution. A Markov process is said to satisfy detailed balance if $p_x^* \cdot r_{x,y} = p_y^* \cdot r_{y,x}$, for all $1 \le x, y \le n$, where the rate matrix $R = (r_{x,y})$.

The rate equation R for is usually defined as in (6.8) for Markov processes which model macromolecular folding, hence it is easy to see that such Markov processes satisfy detailed balance and moreover that the equilibrium distribution is the Boltzmann distribution; i.e. $p_x^* = \exp(-E(x)/RT)$ for all $1 \le x \le n$. Since detailed balance ensures that the eigenvalues of the rate matrix R are real, one can solve the matrix differential equation (6.10) by diagonalizing the rate matrix, and thus obtain the solution

$$p(t) = \sum_{k=1}^{n} c_k \mathbf{v}_k e^{\lambda_k t}$$
(6.12)

where $p(t) = (p_1(t), \dots, p_n(t))$, and the values c_k are determined by the initial population occupancy distribution p(0) at time 0. Here \mathbf{v}_k denotes the kth eigenvector and λ_k the kth eigenvalue. In particular, $c_k = (p(0) \cdot T^{-1})_k$, where the j-th row of T is the j-th left eigenvector of R, and p(0) is the population occupancy distribution at time t = 0. If the eigenvalues are labeled in decreasing order, then $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$, and the largest eigenvalue $\lambda_1 = 0$ has eigenvector p^* , corresponding to the equilibrium population occupancy distribution, which in this case is the Boltzmann distribution. The remaining n - 1 eigenvalues are negative, and their corresponding eigenvectors correspond to nonequilibrium kinetic relaxation modes.

In our software Hermes, we prefer to work with column vectors and right eigenvectors due to our usage of the GSL scientific computing library, and so the population occupancy frequency p(t) is defined to be the column vector $p(t) = (p_1(t), \dots, p_n(t))^T$. Let $\mathbf{P} = (p_1(0), \dots, p_n(0))^T$ be the column vector of initial population occupancy probabilities, $\mathbf{t}^1, \dots, \mathbf{t}^n$ be the right eigenvectors and $\lambda_1, \dots, \lambda_n$ be the corresponding right eigenvalues

of the transpose R^{T} of the rate matrix. Letting T be the $n \times n$ matrix, whose columns are $\mathbf{t}^1, \dots, \mathbf{t}^n$, using standard matrix algebra ?, it can be shown that

$$p(t) = \sum_{j=1}^{n} (T^{-1}\mathbf{P}(0))_{j} \mathbf{t}^{j} e^{\lambda_{j} t}.$$
 (6.13)

or for a single state i,

$$p_i(t) = \sum_{j=1}^n \sum_{k=1}^n \left(T_{ij} \, T_{jk}^{-1} \, \mathbf{P}_k(0) \right)_j e^{\lambda_j t}. \tag{6.14}$$

If we assume that the initial population starts in a single state i', i.e. $\mathbf{P}_{i'}(0) = 1$, equation 6.14 can be simplified to

$$p_i(t) = \sum_{j=1}^{n} T_{ij} T_{ji'}^{-1} e^{\lambda_j t}.$$
 (6.15)

The equilibrium time can be directly computed by using a nonlinear solver to solve for t in

$$p^* = \sum_{j=1}^n (T^{-1}\mathbf{P}(0))_j \,\mathbf{t}^j \,e^{\lambda_j t}$$
 (6.16)

where $p^* = (p_1^*, \dots, p_n^*)^{\mathrm{T}}$ and $p_k^* = \frac{\exp(-E(k)/RT)}{\mathbf{Z}}$. However, we have found it more expedient to compute the *equilibrium time* as the smallest t_0 , such that for $t \in \{t_0 + 1, t_0 + 2, t_0 + 3, t_0 + 4\}$, the absolute difference $|p(t)[x_\infty] - p(t_0)[x_\infty]| < \epsilon$, for $\epsilon = 10^{-4}$,

where x_{∞} is the target RNA structure (usually taken to be the minimum free energy structure, though this is not necessary for the software). We provide a more detailed explanation of the reasoning behind this decision in Section 6.3.4.2.

In ? Gillespie described a very influential algorithm to simulate a finite Markov process. The pseudocode, is given in Algorithm ??. Though Gillespie's original application was for chemical kinetics, Flamm et al. adapted the method for the kinetics of RNA secondary structure folding, as implemented in Kinfold ??.

6.3 Software within the **Hermes** suite

The Hermes software package was developed on the Macintosh OS X operating system (10.9.2–10.11) and should work with any Unix-like platform (Ubuntu, Debian, and CentOS were tested). We make the source code freely available under the MIT License in two locations. Our lab hosts the latest stable version of the code at http://bioinformatics.bc.edu/clotelab/Hermes and a fully version-controlled copy at https://github.com/evansenter/hermes. The data and figures presented in this article were generated with the source code hosted at the first URL, and we make no guarantee as to the stability of development branches in our Git repository.

External dependencies for the software include a C [resp. C++] compiler supporting the GNU99 language specification [resp. C++98], FFTW implementation of Fast Fourier Transform ? ($\geq 3.3.4$) http://www.fftw.org/, Gnu Scientific Library GSL (≥ 1.15) http://www.gnu.org/software/gsl/, Vienna RNA Package ? ($\geq 2.0.7$) http://www.viennarna.at, and any corresponding sub-packages included with the aforementioned software. For a more detailed explanation of both external dependencies and installation

Pseudocode for the Gillespie algorithm

Purpose: Compute continuous time t to move from x_0 to x_∞ , with a limit of T_{max}

INPUT: Starting state x_0 , target state x_{∞} and upper bound on time T_{max}

OUTPUT: Continuous time t taken to reach x_{∞} from x_0

```
1 function GILLESPIE(x_0, x_\infty, T_{\text{max}})
         t \leftarrow 0
 3
         x \leftarrow x_0
         while x \neq x_{\infty} AND t < T_{\text{max}} do
 4
               0 \to \Phi
 5
                                                                                               \triangleright \Phi is the flux out of x
              for y \in N_x do
 6
                   r_{x,y} \leftarrow \min\left(1, \exp(-\frac{E(y) - E(x)}{RT})\right)
 7
                   \Phi \leftarrow \Phi + r_{x,y}
 8
              end for
 9
              for y \in N_x do
10
                   r_{x,y} \leftarrow \frac{r_{x,y}}{\Phi}
11
              end for
12
               z_1 \in (0,1)
13
              t \leftarrow t + \left(-\frac{1}{\Phi}\ln(z_1)\right)
                                                                  \triangleright Update t to reflect time spent in state x
14
              z_2 \in (0,1)
15
              s \leftarrow 0
16
              for y \in N_x do
                                                             \triangleright Use roulette wheel to select new state for x
17
                    s \leftarrow s + r_{x,y}
18
                    if z_2 \leq s then
19
                         x \leftarrow y
20
                         break
21
                    end if
22
               end for
23
         end while
24
         return t
                                                   \triangleright Return continuous time t to travel from x_0 to x_{\infty}
26 end function
```

Figure 6.2: The function Gillespie implements a continuous time simulation of folding trajectories for a Markov process.

instructions, refer to the 'DOCS.pdf' file at the web site outlining the configuration and compilation process for the Hermes suite.

Hermes is organized into three independent directories: FFTbor2D, RNAmfpt, and RNAeq (see Figure 6.3). These packages compile into both standalone executables and archive files. The archives provide an API which allow the development of novel applications using source from across the Hermes package without having to copy-and-paste relevant functions. We provide two such examples of this in the ext subdirectory: FFTmfpt and FFTeq. These applications are simple C++ wrappers that use functions from FFTbor2D, RNAmfpt and RNAeq to replicate a pipeline of executable calls without having to deal with intermediary data transformation, I/O between calls or slow-down due to a scripting language wrapper such as Python, Perl or R. We believe the API that Hermes provides via its archives to be one of the exciting aspects of this software for other developers—the C++ sourcecode comprising FFTmfpt is only 56 lines of code (LOC) and FFTeq is only 58 LOC.

6.3.1 Exact mean first passage time with RNAmfpt

RNAmfpt computes the mean first passage time (MFPT), sometimes referred to as the hitting time of a Markov chain, by using matrix inversion ?—see Section 6.2.1. The program takes as input a comma separated value (CSV) file containing the non-zero positions and values of a 2D probability grid; i.e. a CSV format file having columns i, j, and p. The first two columns, i and j correspond to the θ -indexed row-ordered position in the probability grid, and the final column p is the stationary probability $p_{i,j}$. From

FIGURE 6.3: Overall organization of Hermes. FFTbor2D, RNAmfpt, and RNAeq are three distinct software packages we have developed, which compile into both standalone executables and archive files, providing an API that allow novel applications development using source from each of the packages, without having to copy-and-paste relevant functions. The applications FFTmfpt and FFTeq are C++ wrappers that use data structures and functions from FFTbor2D, RNAmfpt and RNAeq. FFTmfpt computes the mean first passage time (MFPT) for an RNA secondary structure to fold from an initial structure, such as the empty structure or a given metastable structure, into a target structure, such as the minimum free energy (MFE) structure or possibly the Rfam? consensus structure. FFTeq uses spectral decomposition to compute the equilibrium time and the fraction of the population of RNA structures that are equal to a given target structure, as a function of time.

this input, the probability transition matrix is constructed using equation 6.24 and the mean first passage time is computed by matrix inversion.

Given RNA sequence \mathbf{s} and secondary structure x, let N(x) denote the set of neighboring secondary structures of \mathbf{s} , whose base pair distance with x is one. Define the Markov chain $\mathcal{M}(\mathbf{s}) = (\mathcal{S}, P)$, where \mathcal{S} denotes the set of all secondary structures of \mathbf{s} , $p^*(x)$ is the stationary probability of structure x, defined by $p^*(x) = \exp(-E(x)/RT)/\mathbf{Z}$,

 $\mathbf{Z} = \sum_{x} \exp(-E(x)/RT)$, and the transition probability matrix $P = (p_{x,y})$ is defined either with or without the Hastings modification as follows.

With the Hastings modification,

$$p_{x,y} = \begin{cases} \frac{1}{|N(x,y)|} \cdot \min\left(1, \frac{p^*(y)}{p^*(x)} \cdot \frac{N(x)}{N(y)}\right) & \text{if } y \in N(x) \\ 0 & \text{if } x \neq y, y \notin N(x) \\ 1 - \sum_{k \in N(x)} p_{x,k} & \text{if } x = y \end{cases}$$
(6.17)

Without the Hastings modification,

$$p_{x,y} = \begin{cases} \frac{1}{|N(x,y)|} \cdot \min\left(1, \frac{p^*(y)}{p^*(x)}\right) & \text{if } y \in N(x) \\ 0 & \text{if } x \neq y, y \notin N(x) \\ 1 - \sum_{k \in N(x)} p_{x,k} & \text{if } x = y \end{cases}$$

$$(6.18)$$

The exact value of mean first passage time (MFPT) can be computed as follows. Let x_0 [resp. x_∞] denote the empty structure [resp. MFE structure] for sequence \mathbf{s} (here we have implicitly identified integer indices with secondary structures). Let \tilde{P}_{x_∞} be the matrix obtained from P by removal of the row and column with index x_∞ , and I denote the $(n-1)\times (n-1)$ identity matrix, where $n=|\mathcal{S}|$ is the number of secondary structures of \mathbf{s} . Let e denote the vector of size n-1, each of whose coordinates is 1. It is well-known? that for each $k\neq x_\infty$, the kth coordinate of the vector $(I-\tilde{P}_{x_\infty})^{-1}\cdot \mathbf{e}$ is exactly equal to the mean first passage time from the structure with index k to the target structure x_∞ . In particular, the MFPT from the empty structure to the MFE structure is computable by applying matrix inversion using a computational library such as the GSL.

Since this computation of the mean first passage time is mathematically exact, we consider that MFPT to be the *gold standard* value for RNA folding kinetics.

Because this program was designed with the original intent of handling 2D-probability grids, all vertexes are uniquely identified by index tuples (which conceptually correspond to positioning in a 2D array). However, it is trivial to use this code with both 1D-probability grids such as those produced by FFTbor? or arbitrary transition matrices without any change to the underlying implementation. The software additionally provides many options for defining the format of the input as well as the structure of the graph underlying the Markov chain.

Due to our interest in efficiently estimating MFPT using coarse grained 2D energy landscapes, the default input for RNAmfpt (and RNAeq) is a 2D probability grid, as described
above. We additionally allow as alternative input an energy landscape (whereby transition probabilities are defined as in equation 6.1). Some of the options to influence the
underlying transition matrix include the option to force a fully connected graph (useful
in cases where there is no non-zero path between the start / end state) or to enforce detailed balance. Finally, RNAmfpt also accepts as input the probability transition matrix,
a stochastic matrix with row sums equal to 1, and computes the mean first passage time
for the corresponding Markov chain.

6.3.2 Approximate mean first passage time with FFTmfpt

FFTmfpt approximates the mean first passage time of a given RNA sequence folding from input structure \mathcal{A} to \mathcal{B} , by computing exactly the mean first passage time from state $(0, d_0)$ to state $(d_0, 0)$ in the 2D probability grid obtained from running FFTbor2D.

Here, d_0 is the base pair distance between structures \mathcal{A}, \mathcal{B} , and the MFPT is computed for the Markov chain, whose states are the non-empty 2D probability grid points, and whose transition probabilities are defined by $p_{(x,y),(x',y')} = \frac{P(x',y')}{P(x,y)}$.

More formally, given an RNA sequence \mathbf{s} , starting structure \mathcal{A} , and target structure \mathcal{B} , we proceed in the following fashion. Let $d_{\mathrm{BP}}(\mathcal{A}, \mathcal{B})$ denote the base pair distance between structures \mathcal{A}, \mathcal{B} . Then $\mathbf{Z}_{x,y} = \sum_{\mathcal{S}} \exp(-E(\mathcal{S})/RT)$, where the sum is over structures \mathcal{S} , such that $d_{\mathrm{BP}}(\mathcal{A}, \mathcal{S}) = x$, and $d_{\mathrm{BP}}(\mathcal{B}, \mathcal{S}) = y$; as well the partition function $\mathbf{Z} = \sum_{\mathcal{S}} \exp(-E(\mathcal{S})/RT)$, where the sum is over all secondary structures \mathcal{S} of the sequence \mathbf{s} .

Let $d_0 = d_{BP}(\mathcal{A}, \mathcal{B})$, the base pair distance between initial structure \mathcal{A} and target structure \mathcal{B} . Let n denote the length of sequence \mathbf{s} . Define the Markov chain $\mathcal{M}_1(\mathbf{s}) = (Q_1, P_1)$, where

$$Q_1 = \{(x, y) : 0 \le x, y \le n, (x + y \mod 2) = (d_0 \mod 2),$$

$$(d_0 \le x + y), (x \le d_0 + y), (y \le d_0 + x)\}.$$

$$(6.19)$$

For reference, we say that the parity condition holds for (x, y) if

$$(x + y \bmod 2) = (d_0 \bmod 2). \tag{6.20}$$

We say that the *triangle inequality* holds for (x, y) if

$$(d_0 \le x + y), (x \le d_0 + y), (y \le d_0 + x)$$
 (6.21)

Since we allow transitions between secondary structures that differ by exactly one base pair, Markov chain transitions are allowed to occur only between states $(x, y), (u, v) \in Q_1$, such that $u = x \pm 1$, $v = y \pm 1$. However, we have found that for some RNA sequences, there is no non-zero probability path from $(0, d_0)$ to $(d_0, 0)$ (corresponding to a folding pathway from structure \mathcal{A} to \mathcal{B}). Since FFTbor2D computes probabilities p(x, y) by polynomial interpolation using the Fast Fourier Transform, any probability less than 10^{-8} is set to 0. Also with RNA2Dfold, it may arise that there is no non-zero probability path from structure $(0, d_0)$ to $(d_0, 0)$.

To address this situation, we proceed as follows. Let $\epsilon = 10^{-8}$ and for all $(x, y) \in Q_1$, modify probabilities p(x, y) by

$$p(x,y) = \frac{p(x,y) + \epsilon/|Q_1|}{1 + \epsilon}.$$
(6.22)

This operation corresponds to adding the negligeable value of $\epsilon=10^{-8}$ to the total probability, thus ensuring that there are paths of non-zero probability between any two states. After this ϵ -modification and renormalization, when using the Hastings modification, the transition probabilities P((u,v)|(x,y)) are given by

$$P((u,v)|(x,y)) = \begin{cases} \frac{1}{|N(x,y)|} \cdot \min\left(1, \frac{p(u,v)}{p(x,y)} \cdot \frac{N(x,y)}{N(u,v)}\right) & \text{if } (u,v) \in N(x,y) \\ 0 & \text{if } (u,v) \neq (x,y), (u,v) \notin N(x,y) \\ 1 - \sum_{(k,\ell) \in N(x,y)} P((k,\ell)|(x,y)) & \text{if } (u,v) = (x,y) \end{cases}$$
(6.23)

Here the set N(x,y) of adjacent neighbors is defined by $N(x,y)=\{(u,v)\in Q_1: u=x\pm 1,v=y\pm 1\}$, and the stationary probability p(x,y) is obtained from FFTbor2D.

Without the Hastings modification, the transition probabilities P((u,v)|(x,y)) are instead given by

$$P((u,v)|(x,y)) = \begin{cases} \frac{1}{|N(x,y)|} \cdot \min\left(1, \frac{p(u,v)}{p(x,y)}\right) & \text{if } (u,v) \in N(x,y) \\ 0 & \text{if } (u,v) \neq (x,y), (u,v) \notin N(x,y) \\ 1 - \sum_{(k,\ell) \in N(x,y)} P((k,\ell)|(x,y)) & \text{if } (u,v) = (x,y) \end{cases}$$
(6.24)

As we report in Section 6.4.1, given an RNA sequence \mathbf{s} , if \mathcal{A} is the empty structure and \mathcal{B} the MFE structure of \mathbf{s} , then FFTmfpt output is well correlated with the exact MFPT in folding the empty structure to the MFE structure, where transitions between structures involve the addition or removal of a single base pair.

6.3.3 Exact equilibrium time with RNAeq

RNAeq computes the population proportion of a user-provided structure over arbitrary time units. Like RNAmfpt, this program takes as input a comma separated value (CSV) file containing the non-zero positions and values of a 2D probability grid. From this input a rate matrix is constructed for the underlying Markov process. Alternatively,

RNAeq can accept as input an arbitrary rate matrix. Performing spectral decomposition of the column-ordered rate matrix that underlies the corresponding Markov process, RNAeq computes either the equilibrium time or population occupancy frequencies.

Define the continuous Markov process $\mathcal{M} = (\mathcal{S}, R)$, where \mathcal{S} is defined as in Section 6.3.1, R is the *rate matrix* defined by

$$k_{x,y} = \begin{cases} \min\left(1, \frac{p^*(y)}{p^*(x)}\right) & \text{if } y \in N(x) \\ 0 & \text{if } x \neq y, y \notin N(x) \\ -\sum_{k \in N(x)} p_{x,k} & \text{if } x = y \end{cases}$$
 (6.25)

Clearly the rate matrix satisfies detailed balance; i.e. $p^*(x) \cdot k_{x,y} = p^*(y) \cdot k_{y,x}$ for all distinct $x, y \in \mathcal{S}$. In fact, the rate matrix for Markov processes is usually defined as above, precisely to ensure detailed balance, which then implies that all eigenvalues of the rate matrix are real, thus permitting explicit solution of the population occupancy frequency for all states. We additionally considered a Hastings correction for the rate matrix, where $k_{x,y} = \min(1, \frac{p^*(y)}{p^*(x)} \cdot \frac{N(x)}{N(y)})$. The correlation in Table 6.1 for equilibrium time computed from this modified rate matrix is somewhat better than without the Hastings correction. However, the Hastings correction is never used for rate matrices, hence we only consider the usual definition of rate matrix given in equation (6.25).

RNAeq can additionall call the Vienna RNA Package program RNAsubopt?, with a user-specified upper bound to the energy difference with the minimum free energy. With this option, the rate matrix is constructed for the Markov process, whose states consist of all the structures returned by RNAsubopt, and the equilibrium time or population

occupancy frequencies are computed. Due to the time and memory required for this option, we do not expect it to be used except for small sequences.

6.3.4 Approximate equilibrium time with FFTeq

FFTeq allows an investigator to efficiently estimate population kinetics for a sequence folding between two arbitrary, but fixed, structures. The transition rate matrix underlying the Markov process necessary for eigendecomposition is derived from the 2D energy landscape. Vertices in the rate matrix represent a subset of structures compatible with the input sequence as modeled by FFTbor2D (in a fashion similar to FFTmfpt, explained in Section 6.3.2), which makes the graph size more tractable than structural sampling with RNAsubopt using RNAeq, even with constraints.

This method consists of computing the equilibrium time from the master equation for the coarse-grain Markov process $\mathcal{M} = (Q_1, R)$, where Q_1 is defined in equation (6.19), and the rate matrix R = (k((x, y), (u, v))) is defined by

$$k((u,v),(x,y)) = \begin{cases} \min\left(1, \frac{p(u,v)}{p(x,y)}\right) & \text{if } (u,v) \in N(x,y) \\ 0 & \text{if } (u,v) \neq (x,y), (u,v) \notin N(x,y) \\ -\sum_{(k,\ell)\in N(x,y)} P((k,\ell)|(x,y)) & \text{if } (u,v) = (x,y) \end{cases}$$
(6.26)

Equilibrium time is then computed for this Markov process using equation 6.12.

6.3.4.1 Population occupancy curves with FFTeq

Population occupancy curves provide valuable visual insight into the folding kinetics of RNA molecules. Equation 6.14 describes a computation for the probability distribution $p(t) = (p_1(t), \dots, p_n(t))^{\mathrm{T}}$ of all states $1 \leq x \leq n$ at time t. Rather than plot p(t) as a function of t, we find it more visually impactful to plot $p(\log_{10}(t))$, which yields the sinusoidal curves seen in Figure 6.4.

6.3.4.2 Approximating equilibrium time from occupancy curves

The computation of an equilibrium time value from the eigendecomposition of the rate matrix is a rather thorny issue. While in principle a nonlinear solver can be used to compute the equilibrium time t (from equation 6.16), in practice due to what we believe to be numeric instability issues the approach was intractable. For this reason, we estimate the equilibrium time from the population occupancy curve, an approach also taken by **treekin**? Our first approximation of equilibrium time involved using a sliding window approach, where we compute the smallest t_0 , such that for $t \in \{t_0 + t_{\Delta}, t_0 + t_{2\Delta}, t_0 + t_{3\Delta}, t_0 + t_{4\Delta}\}$, the absolute difference $|p(t)[x_{\infty}] - p(t_0)[x_{\infty}]| < \epsilon$, for $\epsilon = 10^{-4}$ and step size t_{Δ} . In systems where there are local energy minima, this approach has the drawback of prematurely indicating equilibrium, as seen in Figure 6.6. To address this concern, we introduce the concept of δ , ϵ equilibrium.

Given a starting state i', target state i, and user definable parameters $w=5, t_{\Delta}=10^{-3}, \delta=10^{-3}$ and $\epsilon=10^{-4}$, we compute the estimated equilirium using the following algorithm.

FFTbor2D folding kinetics for L. collosoma spliced leader RNA

FIGURE 6.4: Population occupancy curves computed with FFTeq for nt conformational switch L. collosoma spliced leader RNA, AACUAAAACAAUUUUUGAAGAACAGUUUCUGUACUUCAUUGGUAUGUAGA with sequence GACUUC. The dot bracket format for the MFE struc-2.1.7of ture, computed by version RNAfold -d0, is as with free energy -8.6 kcal/mol, while that of the alternate suboptimal structure energy -7.5 kcal/mol. In the case of the MFE structure, the equilibrium occupancy $P(t_{\infty})$, which Hermes approximates as 0.17893806 should equal the Boltzmann probability 0.17909227, since the MFE structure is the only structure at distance x_0 [resp. y_0] from the reference structures \mathcal{A} (empty structure) [resp. \mathcal{B} (MFE structure)]. As well, if there are few other low energy structures at the same base pair distance x_1 [resp. y_1] from \mathcal{A} [resp. \mathcal{B}] as that of the alternate suboptimal structure, then we expect that the occupancy probability 0.03003426 for the (x_1, y_1) be approximately the Boltzmann probability 0.03005854 of the alternate structure.

Pseudocode for estimating equilibrium time

Purpose: Estimate time $\log_{10}(t)$ at which state x_0 appears within ϵ of equilibrium

Input: States $x_0, x_\infty; T_{\min}, T_{\max}; w = 5, t_{\Delta} = 10^{-3}, \delta = 10^{-3}, \epsilon = 10^{-4}$

OUTPUT: Time $\log_{10}(t)$ at which $p_{x_{\infty}}(10^t)$ varies by no more than ϵ within w

```
1 function EstimateEquilibrium(x_0, x_\infty, T_{\min}, T_{\max}, t_\Delta, \delta, \epsilon, w)
         t \leftarrow \text{SOFTBOUND}(x_{\infty}, T_{\min}, T_{\max}, t_{\Delta}, \delta, s)
 3
         if WindowEq(x_{\infty}, t, t_{\Delta}, w, \epsilon) then
              while t > T_{\min} AND WINDOWEQ(x_{\infty}, t, t_{\Delta}, w, \epsilon) do
                   t \leftarrow t - t_{\wedge}
              end while
 6
         end if
 7
         while t < T_{\text{max}} AND NOT WINDOWEQ(x_{\infty}, t, t_{\Delta}, w, \epsilon) do
 8
              t \leftarrow t + t_{\Delta}
 9
         end while
10
         if t = T_{\min} then
                                                                    \triangleright x doesn't leave equilibrium after T_{\min}
11
12
              \mathbf{return}\ -\infty
         else if t = T_{\text{max}} then
                                                                 \triangleright x doesn't reach equilibrium before T_{\text{max}}
13
              return \infty
14
         else
15
16
              return t
17
         end if
18 end function
```

```
19 function SOFTBOUND(i, T_{\min}, T_{\max}, t_{\Delta}, \delta, s)
          i_{\infty} \leftarrow p_i(10^{T_{\text{max}}})
                                                                                                    \triangleright From equation 6.15
         t \leftarrow T_{\min} + \frac{T_{\max} - T_{\min}}{2}
21
          t' \leftarrow T_{\text{max}}
22
         while |t - t'| > t_{\Delta} do
                                                                  \triangleright Binary search for time t within \delta of T_{\max}
23
               t_{\text{temp}} \leftarrow t
24
               if |p_i(10^t) - p_i(10^{t'})| > \delta then
25
                    t \leftarrow t + s * \frac{|t - t'|}{2}
                                                         \triangleright s is 1 [resp. -1] for the right [resp. left] bound
26
               else
27
                    t \leftarrow t - s * \frac{|t - t'|}{2}
28
               end if
29
               t' \leftarrow t_{\text{temp}}
30
          end while
31
         return t
32
33 end function
34 function WINDOWEQ(x, t, t_{\Delta}, w, \epsilon) \triangleright Is x within \epsilon of equilibrium for [t, t_{(w-1)\Delta}]
          for i \leftarrow 1, w - 1 do
35
               if |p_x(10^{t+t_{i\Delta}}) - p_x(10^t)| > \epsilon then
36
                    return false
37
               end if
38
          end for
39
          return true
40
41 end function
```

FIGURE 6.5: The function ESTIMATEEQUILIBRIUM computes the smallest $t_0 > t'$, such that for $t \in \{t_0 + t_\Delta, t_0 + t_{2\Delta}, t_0 + t_{3\Delta}, t_0 + t_{4\Delta}\}$, the absolute difference $|p(t)[x_\infty] - p(t_0)[x_\infty]| < \epsilon$ and $|p(t')[x_\infty] - p(T_{\max})[x_\infty]| \approx \delta|$. If t' is already in equilibrium, we relax the constraint that $t_0 > t'$ and instead find the first $t_0 < t'$ that satisfies the equilibrium requirements within the window w. SoftBound is a helper function that uses binary search to find the starting time t' from which the window starts. WindowEQ returns a boolean value if the state of interest x varies by no more than ϵ across the window w starting at time t.

In using the approach outlined in Figure ??, the correlation between $p_{x_{\infty}}(t_0)$ and $\frac{\exp(-E(x_{\infty})/RT)}{\mathbf{Z}}$ is 0.9997, and visual inspection of the estimated equilibrium times (Figure 6.6) are much better than the naïve approach used by **treekin**. We also allow

defining the equilibrium time to be the smallest t_0 , such that for $t \in \{t_0 + t_\Delta, t_0 + t_{2\Delta}, t_0 + t_{3\Delta}, t_0 + t_{4\Delta}\}$, the absolute difference $|p(t)[x] - p(t_0)[x]| < \epsilon$ for all $x \in Q$ using Algorithm ??; however, results suggest that this definition is inferior to the consideration of a single single target state i, perhaps due to numerical instability issues when Q is taken to be the set of all secondary structures for sequences in the benchmarking set described later.

FIGURE 6.6: Example of the differences in using the simple sliding window approach (green) versus the approach outlined in Algorithm ?? (blue). There are two representative sequences shown from the benchmarking dataset described in Section ??, sequence #146 (Left) and #427 (Right). Note that the p(t) for the approach from Algorithm ?? is much closer to the computed Boltzmann probability—the correlation across the dataset of 1,000 sequences is 0.9997.

6.4 Benchmarking data for computational comparison

In this section, we describe a benchmarking set of 1,000 small RNAs used to benchmark the previously described kinetics methods in a comparative study. To ensure that mean first passage time can be computed from $(I - P_{x_{\infty}}^{-})^{-1} \cdot \mathbf{e}$ by using matrix inversion, that spectral decomposition of the rate matrix is possible, and to ensure that **Kinfold**

simulations would provide sufficient statistics, we generated a collection of 1,000 random RNA sequences of length 20 nt, each having expected compositional frequency of 1/4 for A,C,G,U, and each having at most 2,500 distinct secondary structures, such that the minimum free energy is less than or equal to -5.5 kcal/mol.

For example, one of the 1,000 sequences is ACGCGACGUGCACCGU with minimum free energy structure(((((((...)))))) having free energy of -6.4 kcal/mol. Statistics for the free energies of the 2,453 secondary structures of this 20-mer are the following: mean is 10.695, standary deviation is 4.804, maximum is 25.00, minimum is -6.40. A histogram for the free energy of all secondary structures of ACGCGACGUGCACCGCACGU is depicted in the left panel of Figure 6.7. The right panel of the same figure depicts the minimum free energy structure of the 54 nt hammerhead type III ribozyme from Peach Latent Mosaic Viroid (PLMVd), discussed later. This secondary structure is identical to the consensus structure from Rfam 11.0 ?.

Figure 6.8 displays the mean and standard deviation for Kinfold simulations of folding time for each of the 1,000 RNA sequences from our benchmarking data. For each sequence, the mean and standard deviation of the time required to fold the empty structure to the MFE structure were computed from 10,000 Kinfold runs, each run with an upper bound of 10⁸ Monte Carlo steps, thus ensuring that all simulations converged. The sequences were then sorted by increasing folding time mean. Standard deviation exceeded the mean in 83.9% of the 1,000 cases, indicating the enormous variation between separate Kinfold runs, even for 20 nt RNA sequences having at most 2,500 secondary structures. In our opinion, Kinfold is an expertly crafted implementation of Gillespie's

FIGURE 6.7: (Left) Histogram of free energies of secondary structures of ACGCGACGUCCACGU, which range from -6.5 to +25 kcal/mol, with mean of 10.695 kcal/mol. (Right) Minimum free energy structure of the 54 nt Peach Latent Mosaic Viroid (PLMVd) AJ005312.1/282-335, which is identical to the consensus structure from Rfam 11.0 ?. RNAfold from Vienna RNA Package 2.1.7 with energy parameters from the Turner 1999 model were used, since the minimum free energy structure determined by the more recent Turner 2004 energy parameters does not agree with the Rfam consensus structure—see ?. Positional entropy, a measure of divergence in the base pairing status at each positions for the low energy ensemble of structures, is indicated by color, using the RNA Vienna Package utility script relplot.pl.

algorithm for an event driven Monte Carlo simulation of one-step RNA secondary structure folding. From the standpoint of biophysics and physical chemistry, there is no more reliable simulation method, except of course the exact computation of mean first passage time using linear algebra. Nevertheless, the enormous time required for reliable Kinfold estimations and the large standard deviations observed point out the need for a faster method to approximate folding time.

6.4.1 Pearson correlation coefficients for various kinetics packages

In this section, we display the correlation between 1 the gold standard method RNAmfpt, both with and without the Hastings modification using equations (??) and (??), 2

FIGURE 6.8: (Left) Histogram of Kinfold folding times for 20-mer CCGAUUGGCGAAAGGCCACC. The mean [resp. standard deviation] of 10,000 runs of Kinfold for this 20-mer is 538.37 [resp. 755.65]. Note the close fit to the exponential distribution, (Right) Mean minus standard deviation ($\mu - \sigma$), mean (μ), and mean plus standard deviation ($\mu + \sigma$) of the logarithm of Kinfold folding times, taken over 10,000 runs for each of the 1,000 sequences from the benchmarking set of 20-mers. For graphical illustration, we have sorted the log folding times in increasing order.

the platinum standard method Equilibrium, 3 the silver standard method Kinfold, 4 FFTmfpt with and without the Hastings modification using equations (??) and (??), 5 FFTeq which computes equilibrium time for the 2D-grid, 6 RNA2Dfold with and without the Hastings modification using equations (??) and (??). Correlations with [resp. without] the Hastings modification are summarized in the lower [resp. upper] triangular portion of Table 6.1. It is clear that correlations between the mathematically exact methods RNAmfpt, RNAeq, and approximation methods Kinfold, FFTmfpt, FFTeq, RNA2Dfold are improved when using the Hastings correction.

Figures 6.9, 6.10, 6.11 depict scatterplots for kinetics obtained by some of the algorithms above. The left panel of Figure 6.9 shows a scatter plots for gold standard RNAmfpt versus platinum standard RNAeq, with correlation value 0.5652. The right panel of the same figure shows a scatter plot for Kinfold versus RNAeq, with correlation 0.7814.

Note the persence of two clusters in this and some of the other scatter plots. Cluster A consists of RNA sequences whose folding time, as determined by RNAmfpt or RNAeq, is rapid—specifically, the natural logarithm of the MFPT is at most 7.5. Cluster B consists of the remaining RNA sequences, whose folding time is longer than that of cluster A. There are no significant differences between RNA sequences in clusters A and B with respect to GC-content, sequence logo, minimum free energy, number of secondary structures, etc. The left panel of Figure 6.10 shows the scatter plot for RNAmfpt versus Kinfold, with correlation 0.7933, and the right panel shows the scatter plot for RNAmfpt versus FFTmfpt, with correlation 0.6035. Figure 6.11 shows scatter plots for FFTmfpt versus Kinfold(Left) and for FFTmfpt versus FFTeq(Riqht), with respective correlation values 0.7608 and 0.9589. Kinfold obviously provides a better correlation with the exact value of mean first passage time; however, since the standard deviation of Kinfold runs is as large as the mean, accurate kinetics estimates from Kinfold require prohibitively large computational time—indeed, in? reliable kinetics for phe-tRNA from yeast were obtained by 9,000 Kinfold simulations, each for 10⁸ steps, requiring 3 months of CPU time on an Intel Pentium 4 running at 2.4 GHz under Linux. Although the correlation value of 0.6035 between RNAmfpt and FFTmfpt is much less than that obtained by Kinfold, the runtime required by our method FFTmfpt is measured in seconds, even for moderate to large RNAs. For this reason, we advocate the use of FFTmfpt in synthetic biology screens to design RNA sequences having certain desired kinetic properties. Once promising candidates are found, it is possible to devote additional computational time to Kinfold simulations for more accurate kinetics.

Figure 6.9: Scatter plots of the natural logarithm of times from RNAmfpt versus RNAeq(Left) and for Kinfold versus RNAeq(Right).

Figure 6.10: Scatter plots of the natural logarithm of times from RNAmfpt versus Kinfold(Left) and for RNAmfpt versus FFTmfpt (Right).

FIGURE 6.11: Scatter plots of the natural logarithm of times from Kinfold versus FFTmfpt(Left) and for FFTmfpt versus FFTeq(Right).

Hastings (Yes\No)	RNAmfpt	RNAeq	Kinfold	FFTmfpt	RNA2Dfold	FFTbor	BarriersEq	FFTeq
RNAmfpt	1	0.5683	0.7945	0.5060	0.5110	0.5204	0.5280	0.4472
RNAeq	0.5798	1	0.7814	0.7043	0.7025	0.5080	0.5979	0.6820
Kinfold	0.7933	0.7507	1	0.7312	0.7358	0.6241	0.6328	0.6445
FFTmfpt	0.6035	0.7935	0.7608	1	0.9980	0.5485	0.8614	0.9589
RNA2Dfold	0.6076	0.7919	0.7655	0.9983	1	0.5584	0.8538	0.9515
FFTbor	0.5416	0.5218	0.6241	0.5748	0.5855	1	0.3450	0.4229
BarriersEq	0.6346	0.6578	0.6328	0.8310	0.8217	0.3450	1	0.9149
FFTeq	0.5614	0.7916	0.6966	0.9670	0.9590	0.4757	0.8940	1

Table 6.1: Table of Pearson correlation coefficients for various methods to compute or approximate RNA secondary structure folding kinetics. Lower [resp. upper] triangular entries are with [resp. without] the Hastings correction for Markov chain probability matrices. The methods are: RNAmfpt (mean first passage time, computed by matrix inversion for the Markov chain consisting of all secondary structures, with move allowed between structures differing by one base pair), RNAeq (equilibrium time, computed by spectral decomposition of a rate matrix comprising all secondary structures to compute population fraction P(t) at time t), Kinfold (an implementation of Gillespie's Algorithm to approximate refolding pathways using an event-based Monte Carlo simulation), FFTmfpt (mean first passage time for Markov chain consisting of "grid point" states (x, y) with probability $P(x, y) = \sum_{S} exp(-E(S)/RT)/Z$, computed by FFTbor2D, where the sum is taken over structures having base pair distance x to the empty structure and y to the MFE structure, RNA2Dfold (mean first passage time, computed as previously explained, but using RNA2Dfold in place of FFTbor2D to compute P(x, y)), FFTbor (mean first passage time, computed for the Markov chain consisting of states $0, 1, \ldots, n$, for which $P(x) = \sum_{S} \exp(-E(S)/RT)/Z$, where the sum is taken over all secondary structures whose base pair distance is x from the MFE structure), BarriersEq (equilibrium time, computed using spectral decomposition on the Markov process consisting of "grid point" states output from Barriers), and FFTeq (equilibrium time, computed in the same fashion as BarriersEq using a Markov process derived from the energy landscape output by FFTbor2D).

Chapter 7

Discussion

Bibliography