Homework Assignment 1

Matthew Tiger

February 5, 2016

Problem 1. To be comprehensive, the second derivative test for two-variable functions f = f(x, y) studied in Calculus III should contain (among others) the cases:

- a. D(a,b) > 0 and $f_{xx}(a,b) = 0$,
- b. D(a,b) = 0 and $f_{xx}(a,b) = 0$.

Why aren't these cases considered? Explain.

Solution. Throughout, we assume that $f:S\subset\mathbb{R}^2\to\mathbb{R}$ and that $f\in C^2(S)$ so that $f_{xy}(a,b)=f_{yx}(a,b)$. Therefore,

$$D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - f_{xy}(a,b)f_{yx}(a,b)$$

= $f_{xx}(a,b)f_{yy}(a,b) - f_{xy}(a,b)^{2}$.

- a. To illustrate that this case can never happen, suppose to the contrary that D(a,b) > 0 and $f_{xx}(a,b) = 0$. Since $D(a,b) = f_{xx}(a,b)f_{yy}(a,b) f_{xy}(a,b)^2$, we see that $0 < D(a,b) = -f_{xy}(a,b)^2$ which is a contradiction since $f_{xy}(a,b)^2 > 0$. Therefore, this case cannot happen.
- b. Now suppose that D(a,b) = 0 and $f_{xx}(a,b) = 0$. As $D(a,b) = f_{xx}(a,b)f_{yy}(a,b) f_{xy}(a,b)^2$, it is true under our supposition that $f_{xy}(a,b)^2 = 0$, i.e. $f_{xy}(a,b) = 0$. We cannot conclusively state whether the point is a local extrema or saddle point as the function could be increasing or decreasing in the direction of x or y.

To illustrate, take as an example $f_1(x,y) = -x^4 - y^4$ and $f_2(x,y) = x^4 + y^4$. Note that f_1 and f_2 both satisfy D(a,b) = 0 and $f_{xx}(a,b) = 0$ for the point (a,b) = (0,0). However, upon further inspection f_1 obtains a local maximum at (0,0), yet f_2 obtains a local minimum at (0,0). Thus, two different results occur for two different functions in the case where D(a,b) = 0 and $f_{xx}(a,b) = 0$ and we conclude that the test is inconclusive in such cases.

Problem 2. Recall that

- (a,b) is called an absolute maximum of f = f(x,y) on a domain $D \subset \mathbb{R}^2$ if $f(x,y) \leq f(a,b)$ for every $(x,y) \in D$.
- (The Extreme Value Theorem) If f is continuous and D is closed and bounded, then f attains both an absolute maximum value and an absolute minimum value.
- a. Describe in steps (and in words) how one finds absolute extrema for a two-variable function f = f(x, y) on a closed bounded $D \subset \mathbb{R}^2$.
- b. Apply your procedure derived in (a) to find absolute extrema for $f(x,y) = 2x^3 + xy^2 + 5x^2 + y^2$ over the rectangle $D := \{(x,y) \mid -2 \le x \le 3, 0 \le y \le 2\}$.

Solution. a. The steps below outline the process to obtain the absolute extreme for a two-variable, continuous function f = f(x, y) on a closed bounded $D \subset \mathbb{R}^2$.

I. First, identify the critical points of the function, i.e. find the points (x_i, y_i) such that

$$\nabla f(x_i, y_i) = \langle f_x(x_i, y_i), f_y(x_i, y_i) \rangle = \langle 0, 0 \rangle$$

or such that $f_x(x_i, y_i)$ or $f_y(x_i, y_i)$ do not exist.

- II. Suppose that S_f is the set of critical points obtained in step I. Then $P = S_f \cap D$ is the set of possible points at which the function f obtains its absolute minimum and maximum on the closed bounded domain D.
- III. Note that our function satisfies the assumptions of The Extreme Value Theorem and as a result, using the set P obtained in step II, $\max f(P)$ is the absolute maximum of the function f and $\min f(P)$ is the absolute minimum of the function f.
- b. Let $f(x,y) = 2x^3 + xy^2 + 5x^2 + y^2$ where $f: D = \{(x,y) \mid -2 \le x \le 3, 0 \le y \le 2\} \to \mathbb{R}^2$. Then

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle = \langle 2x(3x+5) + y^2, 2y(x+1) \rangle.$$

Note that $f_y(x,y)=0$ if x=-1 or y=0 as the real numbers form a field and thus form an integral domain. Also note that $f_x(x,y)=0$ if x=-1 and $y=\pm 2$ or x=-5/3 and y=0 or x=0 and y=0. Thus, $\nabla f(x,y)=\langle 0,0\rangle$ if $(x,y)\in\{(-5/3,0),(-1,-2),(-1,2),(0,0)\}=S_f$. Since the partial derivatives of f exist everywhere, the set S_f contains every critical point of the function f.

Now, $P = S_f \cap D = \{(-5/3, 0), (-1, 2), (0, 0)\}$ and $f(P) = \{125/27, 3, 0\}$. Therefore, the absolute maximum of f is max f(P) = 125/27 which occurs at the point (-5/3, 0) and the absolute minimum of f is min f(P) = 0 which occurs at the point (0, 0).

Problem 3. Consider the optimization problem:

Min (Max)
$$f(x_1, x_2, \dots, x_n)$$
subject to
$$g_1(x_1, x_2, \dots, x_n) = k_1$$

$$g_2(x_1, x_2, \dots, x_n) = k_2$$

$$\vdots$$

$$g_m(x_1, x_2, \dots, x_n) = k_m$$

- a. Formulate the Lagrangean and describe how we should proceed in order to solve such a problem.
- b. Find the relative extrema of f(x, y, z) = x + 2y + 3z subject to $x y + z = 1, x^2 + y^2 = 1$. Solution.

Problem	4.	Solve the shipping	probler	n studied	in MATH	111 if we	replace the	constrai	nt
$x + 2y \le$	100	by the constraint	x + 2y	$\leq 625/6$.	Use Math	nematica	to (at least)	graph t	he
feasible se	t.								

 \Box

Problem 5. Suppose that f, f_1, f_2 are convex functions and $a \geq 0$.	Prove that af and
$f_1 + f_2$ are convex functions.	
Solution.	

Problem 6. For $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ we define its *epigraph* as the set

epi
$$f = \{(x, \beta) \in \mathbb{R}^n \times \mathbb{R} | f(x) \leq \beta\} \subset \mathbb{R}^{n+1}$$
.

Prove that f is convex if and only if epi f is convex.

Solution. \Box