Homework 10: Hybrid Systems Simulation

24-760 Robot Dynamics & Analysis Fall 2021

Name:			
rvame.			

Problem 1) Falling Ball

Consider a point particle that can make plastic frictionless impact with several constraints. Assume the particle is mass 1 and gravity is 9.8. Let the constraints be $a_1(x, y) = y$, $a_2(x, y) = x + y + 1$, and $a_3(x, y) = (x - 2)^2 + (y - 1)^2 - 2$.

- 1.1) What is the hybrid dynamical system for this problem? That is, what are all of the components of $\mathcal{H} = (\mathcal{J}, \Gamma, \mathcal{D}, \mathcal{F}, \mathcal{G}, \mathcal{R})$? Consider both impact (IV complementarity) and liftoff (FA complementarity) transitions. You may limit the hybrid system to only the feasible transitions ($\tilde{\Gamma}$ instead of Γ). For simplicity, assume the particle does not impact multiple constraints at once from the unconstrained mode.
- 1.2) Simulate the system in Matlab using ode45 and an event function. The odefun should capture the continuous dynamics \mathcal{F} , while the event function detects the guard conditions \mathcal{G} . Apply the reset function outside of the ode45 execution. You may want to make separate Matlab functions to calculate $a, A, \dot{A}, \mathcal{F}, \mathcal{R}$, the block matrix inverse, etc. To solve the complementarity problems, CP_{IV} and CP_{FA} , you do not need to use a computationally efficient algorithm, simply check the complementarity conditions for all possible modes (modes in the local scope, \mathcal{I}) and return the (hopefully unique) mode that satisfies the constraints. Here are two pages documenting these Matlab features:

https://www.mathworks.com/help/matlab/ref/ode45.html

https://www.mathworks.com/help/matlab/math/ode-event-location.html

Hint: Start with just a single constraint a_1 , and then add in a_2 and a_3 . If your simulation is missing events, you may want to try using the MaxStep option.

1.3) Run four simulations starting at (0,5), (-1.5,5), (1.5,5), and (1,5) with zero velocity. Run each simulation for 5 seconds. What contact mode transitions occur and at what times?