MSA Scoring Based on MSA Transformer

Group lianyh, tengyue & yangxch

MSA Input Preprocessing

- Read names, sequences and scores
 - shape of MSA input: [num_sequence, sequence_len]
- Remove insertions (lowercase letters) of sequences
- Subsampling MSAs
 - subsample >256 sequences to 256 sequences per MSA
 - HH-Filter: >256 to ≈256 sequences
 - hhfilter -i input.a3m -o filtered.a3m -diff 256
 - Diversity Maximizing: ≈256 to 256 sequences
 - greedily pick sequence with max hamming distance
 - result shape: [256, sequence_len]

MSA Embeddings from MSA Transformer

- Use esm.pretrained.esm_msa1b_t12_100M_UR50S()
- Convert MSA Input to Batch Input
 - convert letters to numeric tokens
 - Add <begin_of_sequence> token and paddings for each sequence
 - result shape: [batch_size, 256, 1+sequence_len]
- Obtain MSA embeddings from MSA Transformer
 - MSA Transformer uses embedding_size = 768
 - model output shape: [batch_size, 256, 1+sequence_len, 768]
 - we extract the query sequence and discard <begin_of_sequence>
 - result embedding shape: [sequence_len, 768] for each MSA

MSA Scoring Network

- Now we have [sequence_len, 768] embedding for each MSA
 - consider it as a feature map (image) and feed into CNN
 - however, for experiment, we average it over the sequence_len axis
 - result shape: a 768-dim vector for each MSA
- For experiment, we simply train a MLP
 - input 768-dim vector -> Fully-Connected Layers -> output score
 - reach 0.00826 train MSE loss after 30 epochs
 - prediction accuracy on test set: 0.9579 after 20 epochs

MSA Scoring Network

- Reach 0.00826 train MSE loss after 30 epochs
- Test accuracy: 0.9579
 - 91 correct out of 95 pairs of MSA
 - high from the first training epoch
- Naïve baseline for comparison:
 - output MSA with more sequences
 - baseline test acc: 0.7789
 - a great boost!

MSA Scoring Network

Some correctly predicted pairs:

```
256x 194 y_gt:0.9624 y_pred:90.7269 50x 133 y_gt:0.2689 y_pred:40.9198 206x 194 y_gt:0.5687 y_pred:62.0711 256x 465 y_gt:0.7737 y_pred:70.7444 48x 93 y_gt:0.6630 y_pred:67.0188 256x 465 y_gt:0.5517 y_pred:49.1714 256x 93 y_gt:0.2038 y_pred:32.6395
```

Some wrongly predicted pairs:

Future Work

- Try other (combinations of) pipelines:
 - other MSA embedding representations, like a feature map instead of vector
 - other network structures, like deep CNN instead of MLP
- Focus on comparing MSAs of the same query sequence
 - like T1024-D1_xxx, T1011-D2_xxx as we would like in the test set
 - might try pairwise loss or triplet loss for MSAs of same query sequence
 - Instead of blindly fitting arbitrary MSA with its score
- Improve explainability
 - try more weakly supervised model?
 - try to apply some XAI methods

Pairwise Cross-Entropy Loss

- T1024-D1_base_fm 0.96112 *y*₁
- T1024-D1_aug_fm $0.70208 y_2$

$$\Delta = \Pr(y_1 > y_2) = \operatorname{sigmoid}(y_1 - y_2)$$

$$\hat{\Delta} = \hat{\Pr}(y_1 > y_2) = \operatorname{sigmoid}(\hat{y}_1 - \hat{y}_2)$$

$$L = -\Delta \log(\hat{\Delta}) - (1 - \Delta) \log(1 - \hat{\Delta})$$

Triplet Loss

- Current regression model cannot score MSAs >90 well
- Anchor: T1024-D1_cov50_fm 94.43
- Positive: T1024-D1_base_fm 96.112
- Negative: T1024-D1_rand9_fm 58.42

$$L = max(0, \text{margin} + d(x_{\text{anchor}}, x_{\text{positive}}) - d(x_{\text{anchor}}, x_{\text{negative}}))$$