## Modelsim 独立仿真 vivado带 IP 核的工程

Tools: Vivado 2015.4 && Modelsim 10.2

—— By 我有风衣

在使用 vivado 进行工程代码仿真时,有 2 种方法可实现功能仿真。第一种是在 vivado 下直接调用 Modelsim 进行功能仿真,另外一种是单独使用 Modelsim 进行功能仿真。

一般对于在 vivado 下使用了 IP 核的工程,此时直接调用 Modelsim 进行仿真会方便很多,这时首先按照下图所示的方法, 先编译好 vivado 的仿真库, 再进行相关设置, 即可用 vivado 直接调用 Modelsim 进行功能仿真。

但是打开 vivado 本身电脑就会比较卡顿,当工程较大时,再调用 Modelsim 仿真有时候会非常慢,因此本文会结合一个简例 (fifo\_test.xpr),介绍直接利用 Modelsim 仿真 vivado带 IP 核的工程。

首先说明如何在 vivado 下直接调用 Modelsim 进行功能仿真

(1) 首先用 vivado的 Tools下的 Compile Simulation Libraries编译 vivado仿真库



一般在 Modelsim 的安装目录下新建一个文件夹,比如 D:\modeltech64\_10.2\vivado\_libs\_201504。接着在 Compile Simulation Libraries 下进行相关设置后点击 Compile。

| Compile Simulation Libraries                                                                     |                      |                                        |              |  |  |  |
|--------------------------------------------------------------------------------------------------|----------------------|----------------------------------------|--------------|--|--|--|
| Specify the                                                                                      | options for compile  | _sinlib command.                       | A            |  |  |  |
| Simulator:                                                                                       | NodelSim *           |                                        |              |  |  |  |
| Language:                                                                                        | All v                |                                        |              |  |  |  |
| Library:                                                                                         | All                  |                                        |              |  |  |  |
| Family:                                                                                          | All                  |                                        |              |  |  |  |
| Advanced                                                                                         |                      |                                        |              |  |  |  |
| Compiled library location:                                                                       |                      | D:/modeltech64_10.2/vivade_libs_201504 | O -          |  |  |  |
| Simulator executable path:                                                                       |                      | D:/modeltech64_10.2/win64              | O -          |  |  |  |
| Miscellaneous options:                                                                           |                      |                                        |              |  |  |  |
| Overwrite the current pre-compiled libraries                                                     |                      |                                        |              |  |  |  |
| Con                                                                                              | pile 32-bit librarie |                                        |              |  |  |  |
| <u>V</u> erbese                                                                                  |                      |                                        |              |  |  |  |
| Command: _libs_201504} -simulator_exec_path {D:/nodeltech64_10.2/win64} -library all -family all |                      |                                        |              |  |  |  |
|                                                                                                  |                      | Co                                     | ngile Cancel |  |  |  |

接着等待编译结束。一般 i7 的电脑几分钟就编译好了(本人的电脑是 i7 4790 + 16G 内存,嘻嘻),编译完成后会在 D:\modeltech64\_10.2\vivado\_libs\_201504 下生成大约 2.5G 左右的仿真库文件。接着在 vivado 下进行仿真设置。图中划线的地方注意根据你自己的设置来 确定。主要是仿真激励文件的指定(tb\_fifo\_test)、编译库文件的位置指定(D:\modeltech64\_10.2\vivado\_libs\_201504)。



设置好后,在 vivado 直接点击仿真,如下图划线地方所示。



点击后, Modelsim 启动,仿真如下图所示。代码是测试 FIFO,连续写入 0~254 即 255个数据后开始连续读出 0~254 个数据。



我们还可以打开 Modelsim 的 Library 页,看看该仿真涉及到了哪些仿真库,如下图所示。

| fifo_generator_v13_0_1 | Library | msim/fifo_generator_v13_0_1         |
|------------------------|---------|-------------------------------------|
| securelp               | Library | D:\modeltech64_10.2\vivado_libs_201 |
| + simprims_ver         | Library | D:\modeltech64_10.2\vivado_libs_201 |
| <b>→</b> unifast       | Library | D:\modeltech64_10.2\vivado_libs_201 |
| + It unifast_ver       | Library | D:\modeltech64_10.2\vivado_libs_201 |
| unimacro unimacro      | Library | D:\modeltech64_10.2\vivado_libs_201 |
| unimacro_ver           | Library | D:\modeltech64_10.2\vivado_libs_201 |
| → unisim               | Library | D:\modeltech64_10.2\vivado_libs_201 |
| + unisims_ver          | Library | D:\modeltech64_10.2\vivado_libs_201 |

从上图中看出路径在 D:\modeltech64\_10.2\vivado\_libs\_201504 下的仿真库都是通过

Compile Simulation Libraries 生成的,而有个 **fifo\_generator\_V13\_0\_1** 是工程里的 sim 文件里的,该 IP的仿真文件在 msim 库里,这个就是下面直接调用 Modelsim 进行功能仿真的关键。

| // | 分割线 |  |
|----|-----|--|
|----|-----|--|

## (2)下面说明如何只用 Modelsim 对该 fifo\_test 工程进行功能仿真

首先还是先建立上述 fifo\_test 的 vivado 工程,目的是生成 IP 核对应的库仿真文件,这里的是 FIFO IP核,因此在 msim 文件夹下会出现 fifo\_generator\_V13\_0\_1 这个仿真库文件。具体路径如下图所示。



路径如下:

E:\prj\_temp\fifo\_test\fifo\_test\fifo\_test.sim\sim\_1\behav\msim\fifo\_generator\_v13\_0\_1 , 个人根据自己的实际情况做参考修改

接着首先在 Modelsim 下新建工程,取名 tb\_fifo\_test , 指定好 Project Location , 如下图 所示。



添加仿真文件 , Add Exting Files。



如下图所示,添加以下三个文件, **fifo\_mod.v** 是调用 vivado 生成的 IP 核模块文件, fifo\_test.v 是功能测试模块代码, 即工程顶层文件, tb\_fifo\_test.v 是测试激励文件。 接着全编译。



在点击 Simulation 时,设置仿真库的路径位置,这个位置也是 vivado 在生成 IP 核时生成的。如下图所示,路径如下,上面提过。

E:\prj\_temp\fifo\_test\fifo\_test\fifo\_test.sim\sim\_1\behav\msim\fifo\_generator\_v13\_0\_1



添加好后,再在 Design 标签下点击 tb\_fifo\_test ,进行仿真。你会得到和直接在 vivado 下调用 Modelsim 进行仿真时一样的仿真波形图。