Probability and Statistics MA-202 Summary

Reference

• Rohatgi, V. K., & Saleh, A. M. E. (2015). An Introduction to Probability and Statistics. John Wiley & Sons.

Random Variable

Recall that for an experiment with sample space Ω , a random variable X (usually denoted by capital letters) is a real-valued function $X:\Omega\to\mathbb{R}$ such that pre-image of every interval in \mathbb{R} is an event of Ω .

For example,

- If in the study of the ecology of a lake, X, the r.v. may be depth measurements at randomly chosen locations. Then X is a random variable. The range for X is the minimum depth possible to the maximum depth possible
- Tossing a coin three times,

$\Omega = \{HHH, HHT, HTH, HTT, TTT, TTH, THT, THH\}$

Define: $X: \Omega \to \mathbb{R}$ as number of heads. Then, X is a random variable with support (possible values or range) $\{0,1,2,3\}$

Given an experiment and the corresponding set of possible outcomes (the sample space), a random variable associates a particular number with each outcomes. Mathematically a random variable

denoted by X is a real valued function from Ω to \mathbb{R} , i.e, $X:\Omega\to\mathbb{R}$.

Distribution Function

A real-valued function F defined on $(-\infty, \infty)$ that is

- a) Non-Decreasing: If x < y, then $F(x) \le F(y)$.
- b) Right Continuous: $F(x^+) := \lim_{h\to 0} F(x+h) = F(x)$ for all $x \in \mathbb{R}$.
- c) $\lim_{x\to-\infty} F(x) = 0$.
- d) $\lim_{x\to\infty} F(x) = 1$.

is called a distribution function.

- F is non-decreasing and can have only jump discontinuities.
- F(x) can be
 - a step function
 - an absolutely continuous function
 - a mix of above

Cumulative Distribution Function (CDF)

Let X be a random variable defined over (Ω, \mathcal{F}, P) . Define a point function $F_X(\cdot)$ on $(-\infty, \infty)$ as follows:

$$F_X(x) = P(\omega \in \Omega : X(\omega) \le x) = P(X \le x), \quad \forall \ x \in \mathbb{R}.$$

The function $F_X(\cdot)$ is called the distribution function of RV X. One can prove that $F_X(\cdot)$ is indeed a distribution function.

Based on $F_X(\cdot)$ (i.e., pure jumps, absolutely continuous or mix of these), we can classify X as discrete, continuous or mixed type random variable.²

Discrete Random Variable

Definition 1. An RV X defined on (Ω, \mathcal{F}, P) is said to be of the discrete type, or simply discrete, if there exists a countable set $E \subseteq \mathcal{S}$ such that $P\{X \in E\} = 1$. Let X take on the value x_i , with

¹For a more formal and precise definition, refer the book mentioned above.

²One can alternatively define random variables directly, without referring to $F_X(x)$.

probability p_i (i = 1, 2, ...). We have

$$P\{\omega : X(\omega) = x_i\} = p_i,$$

Then, $\sum_{i=1}^{\infty} p_i = 1$ and $p_i \ge 0$ for all i.

Remark 1. The points of E that have positive mass are called jump points or points of increase of the DF of X, and their probabilities are size of jumps of the DF.

Definition 2. The collection of numbers $\{p_i\}$ satisfying $P\{X = x_i\} = p_i \geq 0$, for all i and $\sum_{i=1}^{\infty} p_i = 1$ is called the probability mass function (PMF) of RV X.

The CDF $F_X(\cdot)$ of X is given by:

$$F_X(x) = P(X \le x) = \sum_{\{i: x_i \le x\}} p_i.$$

Example 1. Consider again the experiment of tossing a coin three times. Define: $X : \Omega \to \mathbb{R}$ as number of heads. That is,

$$P(X = 1) = P(HTT, THT, TTH) = 3/8$$

 $P(X = 2) = P(HHT, HTH, THH) = 3/8$
 $P(X = 0) = P(TTT) = 1/8$
 $P(X = 3) = P(HHH) = 1/8$.

Example 2. Suppose a game is to be played by throwing a fair die. The rules are as follows:

x	0	1	2	3
P(X=x)	1/8	3/8	3/8	1/8

- you win 1 Rs. if face 2 turns up.
- you win 2 Rs. if face 4 turns up.
- you lose 1.5 Rs. if face 6 turns up.
- you neither win nor lose if any other face turns up.

Define X as a random variable giving the amount won on any throw of die. What is the support of X? Find the corresponding PMF?

Solution: Clearly, X can take values $\{-1.5, 0, 1, 2\}$ which implies that X is a discrete random variable.

$$P(X = 1) = P(face \ 2 \ turns \ up) = 1/6$$

 $P(X = 2) = P(face \ 4 \ turns \ up) = 1/6$
 $P(X = -1.5) = P(face \ 6 \ turns \ up) = 1/6$
 $P(X = 0) = P(either \ of faces \ 1,3,5 \ turn \ up) = 3/6.$

Continuous Random Variable

Let X be an RV defined on (Ω, \mathcal{F}, P) with DF F. Then X is said to be of the continuous type (or simply, continuous) if F is absolutely continuous, that is, if there exists a nonnegative function f(x) such that for every real number x we have

$$F(x) = \int_{-\infty}^{x} f(t)dt.$$

The function f is called the probability density function (PDF) of the RV X.

Note that $f \ge 0$ and satisfies $\lim_{x \to +\infty} F(x) = F(+\infty) = \int_{-\infty}^{\infty} f(t)dt = 1$.

Let a and b be any two real numbers with a < b. Then

$$P\{a < X < b\} = \int_{a}^{b} f(t)dt.$$

Note that F'(x) = f(x).

Remark 2. In the discrete case, P(X = a) is the probability that X takes the value a. In the continuous case, f(a) is not the probability that X takes the value a. Indeed, if X is of the continuous type, it assumes every value with probability 0.

Corollary 1. Let X be a random variable defined over (Ω, \mathcal{F}, P) , $F_X(\cdot)$ its distribution function and $a, b \in \mathbb{R}$ with a < b. We define the following notation,

$$F_X(x-) := \lim_{h \to 0} F_X(x-h) = P(X < x).$$

Further, we have

- a) $P(X = a) = P(X \le a) P(X < a) = F_X(a) F_X(a^-)$, i.e., size of the jump in F_X at a. Note that for a continuous random variable, P(X = a) = 0, \forall a (since F_X is continuous for a continuous random variable).
- b) $P(a < X \le b) = P(X \le b) P(X \le a) = F_X(b) F_X(a)$.
- c) $P(a < X < b) = P(X < b) P(X \le a) = F_X(b^-) F_X(a) = F_X(b) F_X(a) P(X = b)$.
- d) $P(a \le X < b) = P(X < b) P(X < a) = F_X(b^-) F_X(a^-) = F_X(b) F_X(a) P(X = b) + P(X = a).$
- e) $P(a \le X \le b) = P(X \le b) P(X \le a) = F_X(b) F_X(a^-) = F_X(b) F_X(a) + P(X = a)$.