How predictable is extinction?

Forecasting species survival at million-year timescales

Peter D Smits, Seth Finnegan

Department of Integrative Biology, University of California - Berkeley

Foundational assertion of conservation paleobiology

By studying the past, we can better predict the future.

What are we predicting?

Extinction is hard to predict, but is important to conservation decisions.

Predicting extinction

➤ A taxon with a greater than average global geographic range is likely to survive for longer than a taxon with less than average global geographic range.

Predicting extinction

- ► A taxon with a greater than average global geographic range is likely to survive for longer than a taxon with less than average global geographic range.
- ► A taxon's global geographic range can change over time.

Predicting extinction

- ➤ A taxon with a greater than average global geographic range is likely to survive for longer than a taxon with less than average global geographic range.
- A taxon's global geographic range can change over time.
- What happens to extinction risk as a taxon changes geographic range? How is extinction risk impacted if that taxon's global geographic range has recently increased or decreased?

Data being analyzed

How we're analyzing the data

- Encoding the past
 - Change in geographic range between current observation and previous observation.
 - Average global temperature at time of previous observation (Mg/Ca isotope).
 - ▶ Age in millions of years at time of observation.
- Explore model adequacy using posterior predictive distribution.
- ► Estimate out-of-sample predictive performance using *k*-fold cross-validation.

Measuring performance: Reciever Operating Characteristic

		Actual class	
		1	0
Predicted class	1	TRUE	FALSE
		POSITIVE	POSITIVE
	0	FALSE	TRUE
		NEGATIVE	NEGATIVE

Measuring performance: Reciever Operating Characteristic

(wikimedia)

Measuring performance: Reciever Operating Characteristic

A conceptual model for predicting extinction

In-sample predictive performance, full dataset

In-sample predictive performance, by time

Cross-validation results, full dataset

Cross-validation results, by time

Summary

Conclusions

Acknowledgements

A statistical model for predicting extinction

$$\begin{split} t_i &\sim \mathsf{Bernoulli}(\Theta) \\ \Theta_i &= \mathsf{logit}^{-1}(X_i B_{w[i], p[i]} + A_{d[i], p[i]}) \\ B_{w,p} &\sim \mathit{MVN}(\alpha_p, \Sigma_B) \\ \alpha_p &\sim \mathit{MVN}(\mu, \Sigma_\alpha) \\ A_{w,p} &\sim \mathit{MVN}(\delta_p, \Sigma_A) \\ \delta_p &\sim \mathsf{N}(0, \sigma_\delta) \\ &\qquad \qquad \begin{cases} \mathit{N}(0, 10) & \text{if } d = 1 \\ \mathit{N}(-1, 3) & \text{if } d = 2 \, \Sigma_B \\ \mathit{N}(0, 3) & \text{if } d > 2 \end{cases} &= \mathit{diag}(\tau_B) \Omega_B \mathit{diag}(\tau_B) \\ \Sigma_\alpha &= \mathit{diag}(\tau_\alpha) \Omega_\alpha \mathit{diag}(\tau_\alpha) \\ \Sigma_A &= \mathit{diag}(\tau_A) \Omega_A \mathit{diag}(\tau_A) \\ \tau_B &\sim C^+(5) \\ \tau_\alpha &\sim C^+(5) \end{split}$$

Effects of age on extinction risk, by phylum

