Don't Hold Your Breath

Mammalian Adaptations to High Altitudes

Emily Jones
BSCI 440
23 September 2013

Outline

- What can go wrong: acute mountain sickness, HAPE, & HACE
- Human adaptations: Tibetans & Andeans
- Animal adaptations: yaks vs. cattle

Atmospheric Gases

Dalton's Law: $P_t = P_{O2} + P_{N2} + P_x$

Altitude (feet)	Atmospheric Pressure (mm/Hg)	PAO ₂ (mm/ Hg)	PVO ₂ (mm/ Hg)	Pressure Differential (mm/Hg)	Blood Saturation (%)
Sea Level	760	100	40	60	98
10,000	523	60	31	29	87
18,000	380	38	26	12	72
22,000	321	30	22	8	60
25,000	282	7	4	3	9
35,000	179	0	0	0	0

Partial Pressure of Oxygen

Carotid Body and Medulla

DRG = Dorsal respiratory group

NTS = Nucleus tractus solitarius

© 2013 Pearson Education, Inc.

Acute Mountain Sickness: fatigue, nausea, dizziness, headache, rapid pulse, dyspnea

- Hypoxemia, hypocapnia, & alkalosis
- Acetazolamide for prophylaxis
 Why?
- Caused by decreased ventilation drive & erythrocytosis
 - people with AMS have lower minute ventilation, higher expired CO₂, & lower arterial O₂
 - Hb > 200 g/L, Hct > 65%, and arterial O_2 < 85%
 - Maximum oxygen intake decreases 20-30%

Acclimatization

- ↑Erythropoietin → ↑hematocrit and hemoglobin
 - at high enough concentrations, can increase blood viscosity enough to compromise vasculature & decrease tissue oxygenation
- ↑2,3-DPG
- ?

Why would this help?

Hemoglobin

Acclimatization

- ↑Erythropoietin → ↑hematocrit and hemoglobin
 - at high enough concentrations, can increase blood viscosity enough to compromise vasculature & decrease tissue oxygenation
- ↑2,3-DPG
- †renal excretion of bicarbonate

Renal compensation for respiratory alkalosis: excrete bicarbonate

Acclimatization

- ↑Erythropoietin → ↑hematocrit and hemoglobin
 - at high enough concentrations, can increase blood viscosity enough to compromise vasculature & decrease tissue oxygenation
- ↑2,3-DPG
- †renal retention of bicarbonate
- Maximum oxygen intake increases to nearly normal levels over 1 year
- Proposed mechanism:
 † carotid chemoreceptor activity

High Altitude Cerebral & Pulmonary Edema (HACE/HAPE)

- Symptoms: confusion, decreased consciousness, grey complexion, coughing
- Pulmonary edema from vaso
- Cerebral edema from vaso
- Treat with anti-inflammatory & phosphodiesterase inhibitor (reduces pulmonary artery pressure)

Pulmonary Vasoconstriction

Local control mechanisms attempt to match ventilation and perfusion.

(a) Normally perfusion of blood past alveoli is matched to alveolar ventilation to maximize gas exchange.

(b) Ventilation-perfusion mismatch caused by under-ventilated alveoli.

(c) Local control mechanisms try to keep ventilation and perfusion matched.

(d) Bronchiole diameter is mediated primarily by CO₂ levels in exhaled air passing through them.

Gas composition	Bronchioles	Pulmonary arteries	Systemic arteries
P _{CO2} increases	Dilate	(Constrict)*	Dilate
P _{CO2} decreases	Constrict	(Dilate)	Constrict
P _{O2} increases	(Constrict)	(Dilate)	Constrict
P _{O2} decreases	(Dilate)	Constrict	Dilate

^{*} Parentheses indicate weak responses.

CO = MAP/TPR

Arteriole A → Increased → Increased total peripheral constricts resistance († R_A) resistance († TPR)

- 2 ↑ TPR × Cardiac Increased mean output (CO) arterial pressure (↑ MAP)
- 3 ↑ MAP → baroreceptors fire → baroreceptor reflex

Assuming that tissue blood flow is matched to tissue need and does not need to change:

Baroreceptor reflex → Decreased cardiac output (↓ CO)
 ↑ TPR × ↓ CO = MAP restored to normal

2013 Pearson Education, Inc.

Comparing altitudes: HACE effects

Andeans & Tibetans

Populated since 11,00 years ago Average elevation: 4000m (13,000ft)

Populated since 25,000 years ago Average elevation: 4900m (16,000ft)

Highlanders

- Denser capillary beds
- Higher 2,3-DPG

- ? Why would this help?
- Exercise capacity is better than lowlanders at high elevation, but not as good as lowlanders at sea level
- Limits: no human habitation above 6000m

Andeans & Tibetans

- Andeans have higher [Hb] than lowlanders at sea level
- Tibetans have a higher ventilation rate (15 L/min vs 10.5 L/min)
- Tibetans have increased NO Why would this help?
- Both have heavier babies than expected due to increased NO (Tibetans) and increased gestational ventilation (Andeans), but also have high rates of diseases associated with low fetal oxygen (schizophrenia & epilepsy)
- Overall, Andeans have higher arterial O₂

High Altitude Animals: Yaks vs. Cattle

Varying altitude

- Switch conditions
- Brisket Disease
 - Right side heart failure
 - Pulmonary hypertension

What is different in Yaks?

Yaks

Hypoxic response is reduced in yaks vs cattle

- Larger heart
- Large lungs
- Large chest

Cellular Response

- Glycolysis
- Shift processes
- Necrosis

Genetic response

- VEGF
- NO
- Erythropoietin

HIF-1

- Hypoxia-inducing factor 1
- Produced in normoxia and hypoxia
 - Normoxia: polyubiquitinylated
 - Hydroxylase destroys HIF-α in presence of O₂
- Stimulates:
 - VEGF
 - Erythropoietin

VEGF

- Vascular Endothelial Growth Factor
- Angiogenesis
- NO synthesis

Angiogenesis

NO

Erythropoietin

- Released by kidney under hypoxic conditions
- Bone marrow
- Increases red blood cell count

LDH-1

CH₃—C—COOH DH CH₃—CH—COOH NAD+

Lactate dehydrogenase

Pyruvate

Lactate

- Pyruvate → Lactate
- LDH-1 variant with higher Km value

Recap

- Morphology (physical structures)
- Sensitivity
- Genetic