スなる。でmax { 入ス(+(1大)な, 入生(+しト)りょう 二入ス(+しト))な

 $\chi: \chi_1 \leq \max\{\chi_1, y_1\}$ $\chi \leq \max\{\chi_2, y_2\}$

 $\int (\lambda \chi_1 + (L \lambda \chi_2)) = \chi \chi_1 + (L \lambda \chi_2)$ $\leq \chi_1 + \chi_2 + (L \lambda) \max \{ \chi_2, \chi_2 \}$ $= \chi_1 + (L \lambda) + (L$

八fix,y)是四函数

(b) $f(x,y) = ln(e^{x}+e^{y})$ $\frac{f(x,y)}{f(x,y)} = ln(e^{x}+e^{y})$

$$\nabla f(xy) = \begin{bmatrix} \frac{e^{x}}{e^{x}+e^{y}} & \frac{e^{y}}{e^{x}+e^{y}} \end{bmatrix}^{T}$$

$$\nabla^{2}f(x_{1}y) = \begin{bmatrix} \frac{e^{x}e^{y}}{(e^{x}+e^{y})^{2}} & -\frac{e^{x}e^{y}}{(e^{x}+e^{y})^{2}} \\ -\frac{e^{x}e^{y}}{(e^{x}+e^{y})^{2}} & \frac{e^{x}e^{y}}{(e^{x}+e^{y})^{2}} \end{bmatrix}$$

$$= \frac{e^{x}e^{y}}{(e^{x}+e^{y})^{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \quad \text{$\frac{1}{2}$}^{\sharp} \text{$\text{Expire}}$$

$$\therefore f(x_{1}y) \text{$\frac{1}{2}$} \text{$\text{Paps}}$$

2. $f(X) = -3X^2 + 24-6X + (1), XG[0,25]$

黄色分割法:

k ak-bk 0 25 1 15.45 2 9.5481	ak 0 0	bk 25 15.45	tk' 9.55	15.45	f(tk')	f(tk)
1 15.45 2 9.5481	0	15.45	9.55	15.45	00.0075	
2 9.5481	0		9.55	15.45	CC 2075	
	0	100010000000000000000000000000000000000		10.40	-66.3275	-381.3875
	0	9.5481	5.9019	9.5481	23.98376917	-66.25968083
3 5.9007	258 0	5.9007258	3.6473742	5.9007258	39.87326706	23.99998238
4 3.6466	48544 2.25407	7256 5.9007258	2.254077256	3.646648544	34.4454759	39.87347174
5 2.2536	288 2.25407	7256 4.50770605	6 3.647097	4.507706056	39.87334562	37.40820915
6 1.3927	12599 3.11496	3457 4.50770605	6 3.114963457	3.646819854	39.17421866	39.8734237

$$PP X^{7} = 3.8113, f(X^{7}) = 39.746$$

Libonaci = 2:

		δ=8%+25=2,	n=6,Fn=13	Ÿ	-	1		4	
k F	Fn-k	Fn-k+1	ak-bk	ak	bk	tk'	tk	f(tk')	f(tk)
0	13	21	25	0	25	VIS		100000	
1	8	13	15.38461538	0	15.38461538	9.615384615	15.38461538	-68.67455621	-376.7514793
2	5	8	9.615384615	0	9.615384615	5.769230769	9.615384615	25.76331361	-68.67455621
3	3	5	5.769230769	0	5.769230769	3.846153846	5.769230769	39.69822485	25.76331361
4	2	3	3.846153846	1.923076923	5.769230769	1.923076923	3.846153846	31.44378698	39.69822485
5	1	2	_			3.846153846	3.846153846	39.69822485	39.69822485

$$t_5 = 3-8462$$
, fits) = 39.6982.

flts) > flts)

· 取最终区间[1.923], 3-8465)

$$X^{+}=\pm (1.9231+3-8465)=2.8848$$
, $f(X^{+})=38.3455$

ふ 登七二十一T 、 Xコセナサ

非精确搜急的 Coldstein法:

①选择以1,0<m(<m)<1,0=0,60=2T, K=0

比如此处选风) V=2,m:=0.3, $m_{\nu}=0.7$ 风) $\{1,(t)=\{10\}+m_{\nu}\{10\}=-0.3t$ $\{1,(t)=(10)+m_{\nu}\{10\}t=-0.7t$, $t_0=T$

- ② 计算中th), 考中th) 与引起, 到③. 各则,全和一和, bk+1=tk,到④.
- 3 若 P(tk) g2(tk), 停止进飞, 输出tk, 6叫, ② Qk+1=tk, bk+1=bk, 到②、
- @ & tk+1 = 05 (ak+1+bk+1), 3M @.
- ⑤ 用 K+1 精代K, 回到 ②.
- 1. 判断以下函数是否为凸函数,并给出理由。
 - (a) $f(x,y) = \max(x,y), x,y \in \mathbb{R}$.
 - (b) $f(x,y) = \ln(e^x + e^y), \ x, y \in \mathbb{R}$.
- 2. 分别用黄金分割法和斐波那契法求函数

$$f(x) = -3x^2 + 21.6x + 1$$

在区间[0,25]上的极大值和极大点,要求最后的区间长度不大于初始区间的8%。

3. 给出用Goldstein法对 $f(x) = \sin(x)$ 在区间 $x \in [\pi, 3\pi]$ 上做非精确搜索的步骤。