This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the application of: Duelli et al.

Group Art Unit: 2874

Application Number:

10/098,585

Filed: March 15, 2002

Examiner: WOOD, Kevin S.

For:

COMPACT OPTICAL FIBER COUPLER

DECLARATION UNDER 37 CFR 1.131

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

City of Santa Rosa State of California,

I, Andrew T. Taylor, declare that all statements made of my own knowledge are true, and that all statements made on information and belief are believed to be true:

- I am an applicant of the above-identified patent application and an inventor of the subject 1. matter described and claimed therein.
- 2. Prior to February 17, 2001, I conceived the idea in the United States, of coupling a compact optical fiber as described and claimed in the application and diligently worked on this idea until it was reduced to practice. All actions noted hereafter took place in the United States.
- 3. Attached to this declaration and marked as exhibit A is a copy of co-inventor and coapplicant, Markus Duelli's, lab notes showing coupling configurations for the claimed fiber optic coupling assembly with distances L > 220 micrometer and diameters d < 30 micrometer. The lab notes are dated from March 29, 2000 to April 10, 2000. By the latter date, Markus Duelli had determined the preferred working distance (L) and diameters (d) as claimed. From the date of March 29, 2000 onward, my co-applicants and I diligently worked toward reduction to practice of this invention.

- 4. Attached to this declaration and marked as exhibit B is a copy of my lab notes showing an initial sketch of the claimed invention. The notes are dated May 12, 2000. The notes illustrate essential elements of the claimed invention. What is shown is a fiber optic coupling assembly comprising:
- a) a first optical waveguide having a first terminal end,
- b) a section of graded index fiber,

wherein the first terminal end of said graded index fiber is in optical communication with the first terminal end of the first optical waveguide

whereby an optical beam propagating from the first terminal end of the first optical waveguide and exiting the second terminal end of the graded index fiber is reduced to a diameter d at distance from the terminal end of the graded index fiber L, wherein d is less than about 20 microns and L is greater than about 220 microns.

In claim 1 of the instant invention d is defined to be less than about 30 microns and L is greater than about 220 microns. These dimensions correspond to the coupling configurations in Markus Duelli's initial lab notes of March/April 2000.

- 5. Subsequent calculations to determine the required grin parameter to realize certain working distances and diameters were used to generate the specifications for the custom Grin fiber. On June 16, 2000 Markus Duelli prepared a working paper entitled "Specifications for Custom Grin-Fiber" showing a Custom Multimode Fiber (CMMF) index. Copies of the calculations and a copy of Markus Duelli's working paper dated June 16, 2000, which indicates the specifications for the custom Grin fiber, are enclosed herewith as exhibit C.
- 6. In a continuous effort to reduce this invention to practice applicants diligently proceeded, and in July of 2000, just shortly after the specifications for the Grin fiber were determined, the fiber tubes required to build a prototype of the claimed invention, were ordered. E-mail correspondence between myself and supplier, FiberCore Jena Gmbh, dated between June 24, 2000 and July 16, 2000 and subsequent proof of delivery dated September 15, 2000, are attached herewith as exhibit D.
- 7. Attached as exhibit E is a copy of co-applicant and co-inventor, Leland Black's lab notes detailing the test results with commercial multimode fiber. The lab notes are dated July 31, 2000.

- 8. In September 2000 the invention was reduced to practice when prototypes of the invention were built and tested. A copy of my lab notes dated September 21, 2000, detailing the first measurements of spot size (diameter d) for different grin lengths of the first prototypes built, are attached herewith as exhibit F.
- 9. Between September 28, 2000 and January 2, 2001, applicants developed the cleave process with CMMF and optimized the assembly process. Lab Notes by Leland Black, coapplicant and co-inventor, Bob Hallock, and myself, dated September 28, 2000, November 13, 2000 and January 2, 2001, detailing the design and testing are attached herewith as exhibit G.
- 10. Attached to this declaration and marked as exhibit H, is a copy of an e-mail dated November 15, 2000 from Leland Black to Bob Hallock and attached files, detailing the manufacturing process and optical performance of the MEMS Optical Sub-Assembly, and the current optical assembly process.
- 11. Applicants demonstrated due diligence by filing a provisional patent application for the claimed invention on March 16, 2001.
- 12. Because of the extensive effort required to develop a functioning prototype of the claimed invention, it is believed that no undue delay occurred.
- 13. I acknowledge that willful false statements and the like are punishable by fine and/or imprisonment, and may jeopardize the validity of the application or any patent issuing therefrom.

Sworn at the city of Santa Rosa in the State of California, this twenty-fourth day of March, 2004

Andrew T. Taylor

Andrew T. Taylor

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the application of: Duelli et al.

Group Art Unit: 2874

Application Number:

10/098,585

Filed: March 15, 2002

Examiner: WOOD, Kevin S.

For:

COMPACT OPTICAL FIBER COUPLER

DECLARATION UNDER 37 CFR 1.131

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

City of Santa Rosa State of California,

- I. Markus Duelli, declare that all statements made of my own knowledge are true, and that all statements made on information and belief are believed to be true:
- 1. I am an applicant of the above-identified patent application and an inventor of the subject matter described and claimed therein.
- 2. Prior to February 17, 2001, I conceived the idea in the United States, of coupling a compact optical fiber as described and claimed in the application and diligently worked on this idea until it was reduced to practice. All actions noted hereafter took place in the United States.
- 3. Attached to this declaration and marked as exhibit A is a copy of my lab notes showing coupling configurations for the claimed fiber optic coupling assembly with distances L > 220 micrometer and diameters d < 30 micrometer. The lab notes are dated from March 29, 2000 to April 10, 2000. By the latter date, I had determined the preferred working distance (L) and diameters (d) as claimed. From the date of March 29, 2000 onward, my co-applicants and I diligently worked toward reduction to practice of this invention.
- 4. Attached to this declaration and marked as exhibit B is a copy of co-applicant and co-inventor, Andrew Taylor's lab notes showing an initial sketch of the claimed invention. The

notes are dated May 12, 2000. The notes illustrate essential elements of the claimed invention. What is shown is a fiber optic coupling assembly comprising:

- a) a first optical waveguide having a first terminal end,
- b) a section of graded index fiber,

wherein the first terminal end of said graded index fiber is in optical communication with the first terminal end of the first optical waveguide

whereby an optical beam propagating from the first terminal end of the first optical waveguide and exiting the second terminal end of the graded index fiber is reduced to a diameter d at distance from the terminal end of the graded index fiber L, wherein d is less than about 20 microns and L is greater than about 220 microns.

In claim 1 of the instant invention d is defined to be less than about 30 microns and L is greater than about 220 microns. These dimensions correspond to the coupling configurations in my initial lab notes of March/April 2000.

- 5. Subsequent calculations to determine the required grin parameter to realize certain working distances and diameters were used to generate the specifications for the custom Grin fiber. On June 16, 2000 I prepared a working paper entitled "Specifications for Custom Grin-Fiber" showing a Custom Multimode Fiber (CMMF) index. Copies of the calculations and a copy of my working paper dated June 16, 2000, which indicates the specifications for the custom Grin fiber, are enclosed herewith as exhibit C.
- 6. In a continuous effort to reduce this invention to practice applicants diligently proceeded, and in July of 2000, just shortly after the specifications for the Grin fiber were determined, the fiber tubes required to build a prototype of the claimed invention, were ordered. E-mail correspondence between Andrew Taylor and supplier, FiberCore Jena Gmbh, dated between June 24, 2000 and July 16, 2000 and subsequent proof of delivery dated September 15, 2000, are attached herewith as exhibit D.
- 7. Attached as exhibit E is a copy of co-applicant and co-inventor, Leland Black's lab notes detailing the test results with commercial multimode fiber. The lab notes are dated July 31, 2000.

- 8. In September 2000 the invention was reduced to practice when prototypes of the invention were built and tested. A copy of Andrew Taylor's lab notes dated September 21, 2000, detailing the first measurements of spot size (diameter d) for different grin lengths of the first prototypes built, are attached herewith as exhibit F.
- 9. Between September 28, 2000 and January 2, 2001, applicants developed the cleave process with CMMF and optimized the assembly process. Lab Notes by Andrew Taylor, Leland Black and co-applicant and co-inventor, Bob Hallock, dated September 28, 2000, November 13, 2000 and January 2, 2001, detailing the design and testing are attached herewith as exhibit G.
- 10. Attached to this declaration and marked as exhibit H, is a copy of an e-mail dated November 15, 2000 from Leland Black to Bob Hallock and attached files, detailing the manufacturing process and optical performance of the MEMS Optical Sub-Assembly, and the current optical assembly process.
- 11. Applicants demonstrated due diligence by filing a provisional application for the claimed invention on March 16, 2001.
- 12. Because of the extensive effort required to develop a functioning prototype of the claimed invention, it is believed that no undue delay occurred.
- 13. I acknowledge that willful false statements and the like are punishable by fine and/or imprisonment, and may jeopardize the validity of the application or any patent issuing therefrom.

Sworn at the city of Santa Rosa in the State of California, this twenty-fourth day of March, 2004

Markus Duell

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the application of: Duelli et al.

Group Art Unit: 2874

Application Number:

10/098,585

Filed: March 15, 2002

Examiner: WOOD, Kevin S.

For:

COMPACT OPTICAL FIBER COUPLER

DECLARATION UNDER 37 CFR 1.131

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

City of Santa Rosa State of California,

- I, Robert W. Hallock, declare that all statements made of my own knowledge are true, and that all statements made on information and belief are believed to be true:
- I am an applicant of the above-identified patent application and an inventor of the subject matter described and claimed therein.
- 2. Prior to February 17, 2001, I conceived the idea in the United States, of coupling a compact optical fiber as described and claimed in the application and diligently worked on this idea until it was reduced to practice. All actions noted hereafter took place in the United States.
- 3. Attached to this declaration and marked as exhibit A is a copy of co-inventor and co-applicant, Markus Duelli's, lab notes showing coupling configurations for the claimed fiber optic coupling assembly with distances L > 220 micrometer and diameters d < 30 micrometer. The lab notes are dated from March 29, 2000 to April 10, 2000. By the latter date, Markus Duelli had determined the preferred working distance (L) and diameters (d) as claimed. From the date of March 29, 2000 onward, my co-applicants and I diligently worked toward reduction to practice of this invention.

- 4. Attached to this declaration and marked as exhibit B is a copy of co-applicant and co-inventor, Andrew Taylor's lab notes showing an initial sketch of the claimed invention. The notes are dated May 12, 2000. The notes illustrate essential elements of the claimed invention. What is shown is a fiber optic coupling assembly comprising:
- a) a first optical waveguide having a first terminal end,
- b) a section of graded index fiber,

wherein the first terminal end of said graded index fiber is in optical communication with the first terminal end of the first optical waveguide

whereby an optical beam propagating from the first terminal end of the first optical waveguide and exiting the second terminal end of the graded index fiber is reduced to a diameter d at distance from the terminal end of the graded index fiber L, wherein d is less than about 20 microns and L is greater than about 220 microns.

In claim 1 of the instant invention d is defined to be less than about 30 microns and L is greater than about 220 microns. These dimensions correspond to the coupling configurations in Markus Duelli's initial lab notes of March/April 2000.

- 5. Subsequent calculations to determine the required grin parameter to realize certain working distances and diameters were used to generate the specifications for the custom Grin fiber. On June 16, 2000 Markus Duelli prepared a working paper entitled "Specifications for Custom Grin-Fiber" showing a Custom Multimode Fiber (CMMF) index. Copies of the calculations and a copy of Markus Duelli's working paper dated June 16, 2000, which indicates the specifications for the custom Grin fiber, are enclosed herewith as exhibit C.
- 6. In a continuous effort to reduce this invention to practice applicants diligently proceeded, and in July of 2000, just shortly after the specifications for the Grin fiber were determined, the fiber tubes required to build a prototype of the claimed invention, were ordered. E-mail correspondence between Andrew Taylor and supplier, FiberCore Jena Gmbh, dated between June 24, 2000 and July 16, 2000 and subsequent proof of delivery dated September 15, 2000, are attached herewith as exhibit D.
- 7. Attached as exhibit E is a copy of co-applicant and co-inventor, Leland Black's lab notes detailing the test results with commercial multimode fiber. The lab notes are dated July 31, 2000.

8. In September 2000 the invention was reduced to practice when prototypes of the invention were built and tested. A copy of Andrew Taylor's lab notes dated September 21, 2000, detailing the first measurements of spot size (diameter d) for different grin lengths of the first prototypes built, are attached herewith as exhibit F.

9. Between September 28, 2000 and January 2, 2001, applicants developed the cleave process with CMMF and optimized the assembly process. Lab Notes by Andrew Taylor, Leland Black and myself, dated September 28, 2000, November 13, 2000 and January 2, 2001, detailing the design and testing are attached herewith as exhibit G.

10. Attached to this declaration and marked as exhibit H, is a copy of an e-mail dated November 15, 2000 from Leland Black to myself and attached files, detailing the manufacturing process and optical performance of the MEMS Optical Sub-Assembly, and the current optical assembly process.

11. Applicants demonstrated continuous due diligence by filing a provisional application for the claimed invention on March 16, 2001.

12. Because of the extensive effort required to develop a functioning prototype of the claimed invention, it is believed that no undue delay occurred.

13. I acknowledge that willful false statements and the like are punishable by fine and/or imprisonment, and may jeopardize the validity of the application or any patent issuing therefrom.

Sworn at the city of Santa Rosa in the State of California, this twenty-fourth day of March, 2004

Robert W. Hallock

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the application of: Duelli et al.

Group Art Unit: 2874

Application Number:

10/098,585

Filed: March 15, 2002

Examiner: WOOD, Kevin S.

For:

COMPACT OPTICAL FIBER COUPLER

DECLARATION UNDER 37 CFR 1.131

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

City of Santa Rosa State of California,

- I, Leland Black, declare that all statements made of my own knowledge are true, and that all statements made on information and belief are believed to be true:
- 1. I am an applicant of the above-identified patent application and an inventor of the subject matter described and claimed therein.
- 2. Prior to February 17, 2001, I conceived the idea in the United States, of coupling a compact optical fiber as described and claimed in the application and diligently worked on this idea until it was reduced to practice. All actions noted hereafter took place in the United States.
- 3. Attached to this declaration and marked as exhibit A is a copy of co-inventor and co-applicant, Markus Duelli's, lab notes showing coupling configurations for the claimed fiber optic coupling assembly with distances L > 220 micrometer and diameters d < 30 micrometer. The lab notes are dated from March 29, 2000 to April 10, 2000. By the latter date, Markus Duelli had determined the preferred working distance (L) and diameters (d) as claimed. From the date of March 29, 2000 onward, my co-applicants and I diligently worked toward reduction to practice of this invention.

- 4. Attached to this declaration and marked as exhibit B is a copy of co-applicant and co-inventor, Andrew Taylor's lab notes showing an initial sketch of the claimed invention. The notes are dated May 12, 2000. The notes illustrate essential elements of the claimed invention. What is shown is a fiber optic coupling assembly comprising:
- a) a first optical waveguide having a first terminal end,
- b) a section of graded index fiber,

130

wherein the first terminal end of said graded index fiber is in optical communication with the first terminal end of the first optical waveguide

whereby an optical beam propagating from the first terminal end of the first optical waveguide and exiting the second terminal end of the graded index fiber is reduced to a diameter d at distance from the terminal end of the graded index fiber L, wherein d is less than about 20 microns and L is greater than about 220 microns.

In claim 1 of the instant invention d is defined to be less than about 30 microns and L is greater than about 220 microns. These dimensions correspond to the coupling configurations in Markus Duelli's initial lab notes of March/April 2000.

- 5. Subsequent calculations to determine the required grin parameter to realize certain working distances and diameters were used to generate the specifications for the custom Grin fiber. On June 16, 2000 Markus Duelli prepared a working paper entitled "Specifications for Custom Grin-Fiber" showing a Custom Multimode Fiber (CMMF) index. Copies of the calculations and a copy of Markus Duelli's working paper dated June 16, 2000, which indicates the specifications for the custom Grin fiber, are enclosed herewith as exhibit C.
- 6. In a continuous effort to reduce this invention to practice applicants diligently proceeded, and in July of 2000, just shortly after the specifications for the Grin fiber were determined, the fiber tubes required to build a prototype of the claimed invention, were ordered. E-mail correspondence between Andrew Taylor and supplier, FiberCore Jena Gmbh, dated between June 24, 2000 and July 16, 2000 and subsequent proof of delivery dated September 15, 2000, are attached herewith as exhibit D.
- 7. Attached as exhibit E is a copy of my lab notes detailing the test results with commercial multimode fiber. The lab notes are dated July 31, 2000.

- 8. In September 2000 the invention was reduced to practice when prototypes of the invention were built and tested. A copy of Andrew Taylor's lab notes dated September 21, 2000, detailing the first measurements of spot size (diameter d) for different grin lengths of the first prototypes built, are attached herewith as exhibit F.
- 9. Between September 28, 2000 and January 2, 2001, applicants developed the cleave process with CMMF and optimized the assembly process. Lab Notes by Andrew Taylor, coapplicant and co-inventor, Bob Hallock, and myself, dated September 28, 2000, November 13, 2000 and January 2, 2001, detailing the design and testing are attached herewith as exhibit G.
- 10. Attached to this declaration and marked as exhibit H, is a copy of an e-mail dated November 15, 2000 from myself to Bob Hallock and attached files, detailing the manufacturing process and optical performance of the MEMS Optical Sub-Assembly, and the current optical assembly process.
- 11. Applicants demonstrated due diligence by filing a provisional patent application for the claimed invention on March 16, 2001.
- 12. Because of the extensive effort required to develop a functioning prototype of the claimed invention, it is believed that no undue delay occurred.
- 13. I acknowledge that willful false statements and the like are punishable by fine and/or imprisonment, and may jeopardize the validity of the application or any patent issuing therefrom.

Sworn at the city of Santa Rosa in the State of California, this twenty-fourth day of March, 2004

Leland Black

	BOOK NO.	
Work dontinued from Page		
svikk design:	r = 12 pm (beam disemble = 24	(man)
for -0.3 dB :	merlion loss => working distance = 156 per distance la mirea = 78 per	
		() (lee 1)
for -0.5 dB is	=> 77° between fibers (more than for to	on E
	diplance le mireon = 100 p	Molevance!)
→ for 2×2 swil	L TEC-fiber not fearable.	
	- br 1x2 milh:	
2	asymmetrie set-ey	
2.3: 90° behour	fiber 1-3 and min. distance 30 pm	
dist	6 minor = 84 pm = dist le fiber 2 la. 156 - 84 pm = 72	6 le
and y	rossille!	G
SIGNATURE 1 50 11.	Work continue	DATE 3/29/2000
DISCLOSED TO AND UNDERSTOOD 2	Y DATE WITNESS	DATE

using lensed fiber we need 140° between fiber 1-3. Can we do bette with TEC-fibers? 140° between 1-3 = distance la micro = 39 un distance mieroi - filer 2 = 117 pm 117 pm su need an Mittente of 60° between => TEC fibers with 1 = 12 pm would allow a slightly letter (colorer) ongle between the file. concern will TEC-files:-con sire bolerana - AR - coaling. - return lass : - ongle polishing ! Possible 1x2 configuration: Design 1 Work continued to Page 1 (2) 3/30/2000 1626 WITNESS DATE

العدا لدي الدي moder un. Herk continued from Page main concern in this set-up: lateral movement of the beam during switching ringing calculations for guadinimo - fiber: spot sire on mirror: 15 pm mæinum vorhing distance (yot vir on grad-len < 80 pm) minimum angle lehun fiber (vill 10 um distance between neighborning fiber): 6.50 inore the following parameter: ongle between filers: 10°

⇒ injul angle on mirror 5° (≈ PDL neglechable vorking distance: 800 um · filer - 15 - filer distance: 1500 3/30/2000 DAYE WITHESS

e.g.: X = \$10 pm, d = 30° => d = \$1.34 pm e = 10° = d = ± 0.152 mm of for small angles this movement is not of qual concern. d=0.15 pm causes en siddilional loss of 0.02 dB for d = 1.5 pm this los increases to 0.17 dB! Hovever this rideways motion of the bearn can be area; oled by using Design 2: Design 2 SIGNATURE 3/30/2000 DATE WINDSS

OCLI PROJECT NO. DOOK NO. geometric limitations: beam size 15 pm = shakic misson size: 30 pm equals size of moving menor save distance between moving and static minor: 50 june (seconding to Minyso) a) angle between fibers: 30°, PDL (Morelical) = 0.007 dB four of beam between the his micros; 15.2 jun 250 beam vaist or grad - lens: Work communed to Page 4/10/2000 . Witness LIVEL

6) angle between fiber 10° PDL < 1.10-3 focus in between the two mirrors beam waist on minor: 15.2 jum beam vaint at form: 15 par 15 um beam raint of gin-lin: 106 jun too big should be 6 60% of gin dianche beam reaist et prin lins: 75 pm reorking distance: 800 um estimated invention for fundand Gadiosimo: < 1dB including Fresnel losses Marken Duelli 4/10/2000

spot size [um]	7	10.57	\circ	0	10.68	10.73	10.79	10.86	10.94	11.03	11.13	11.25	11.37	11.51	11.66	11.82	12.00	12.20	12.41	12.64	12.89	13.16	13.45	13.76	14.10	14.47	14.87	15.30	15.76	16.27	16.82	17.41	18.05	18.74	19.49	20.29	21.14	2	3
spo	= g 1mmz = 1	10.57	5	0	10.62	10.64	10.67	10.70	10.73	10.77	10.82	10.87	10.92	10.98	11.05	11.12	11.19	11.27	11.35	11.45	11.54	11.65	11.76	11.87	12.00	12.13	12.26	12.41	12.57	12.73	12.90	13.08	13.28	13.48	13.70	13.92	14.16	14.42	14.69
7	_ L	-0.02E-04	.81E-0	.42E	0	-3.66E-03	-4.29E-03	-4.93E-03	-5.58E-03	-6.24E-03	-6.91E-03	-7.61E-03	-8.32E-03	-9.04E-03	-9.79E-03	-1.06E-02	-1.14E-02	-1.22E-02	-1.30E-02	-1.39E-02	-1.48E-02	-1.57E-02	-1.66E-02	-1.76E-02	-1.85E-02	-1.95E-02	-2.04E-02	-2.12E-02	-2.19E-02	-2.25E-02	-2.27E-02	-2.26E-02	-2.20E-02	-2.07E-02	-1.87E-02	-1.56E-02	-1.16E-02	-6.83E-03	-1.48E-03
7	_ C	-0.34E-04 -1.27E-03	.91E-0	Ŷ	.19E-0	-3.84E-03	-4.49E-03	-5.15E-03	-5.82E-03	-6.50E-03	-7.19E-03	-7.89E-03	-8.60E-03	-9.32E-03	-1.01E-02	-1.08E-02	-1.16E-02	-1.24E-02	-1.32E-02	-1.41E-02	-1.49E-02	-1.58E-02	-1.67E-02	-1.77E-02	-1.87E-02	-1.97E-02	-2.08E-02	-2.19E-02	-2.31E-02	-2.43E-02	-2.55E-02	-2.68E-02	-2.82E-02	-2.96E-02	-3.10E-02	-3.25E-02	-3.41E-02	-3.56E-02	-3.72E-02
Ç	- L	-0.37E-04 -1.32E-03	.97E-0	-2.63E-03	-3.30E-03	-3.96E-03	-4.63E-03	-5.30E-03	-5.97E-03	-6.65E-03	-7.34E-03	-8.03E-03	-8.72E-03	-9.43E-03	-1.01E-02	-1.09E-02	-1.16E-02	-1.23E-02	-1.31E-02	-1.38E-02	-1.46E-02	-1.54E-02	-1.62E-02	-1.70E-02	-1.78E-02	-1.86E-02	-1.95E-02	-2.04E-02	-2.13E-02	-2.22E-02	-2.31E-02	-2.41E-02	-2.51E-02	-2.61E-02	-2.72E-02	-2.82E-02	-2.93E-02	-3.05E-02	-3.17E-02
_	- <	-0.0z -12.05	8.1	-24.21	-30.36	-36.58	-42.87	-49.26	-55.76	-62.39	-69.15	-76.07	-83.16	-90.43	-97.91	-105.61	-113.54	-121.71	-130.13	-138.81	-147.73	-156.88	-166.22	-175.68	-185.18	-194.54	-203.56	-211.89	-219.09	-224.51	-227.29	-226.32	-220.23	-207.47	•	-156.22	-116.41	-68.32	-14.84
n throw [um]	5 7 0 	-12.69	0	-25.46	-31.90	-38.38	-44.93	-51.54	-58.22	-65.00	-71.88	-78.87	-85.99	-93.25	-100.66	-108.24	-116.00	-123.96	-132.14	-140.56	-149.23	-158.18	-167.43	-177.01	-186.93	-197.22	-207.92	-219.04	-230.61	-242.65	-255.19	-268.24	-281.81	-295.88	~	-325.42	-340.71	56.1	-371.52
beg	- 6 7 9	ے ز	7.	-26.34	-32.96	-39.61	-46.28	-52.99	-59.74	-66.54	-73.38	-80.28	-87.25	-94.28	-101.38	-108.57	-115.84	-123.21	•	•	-145.95	-153.77	-161.72	-169.81	-178.06	-186.47	-195.06	03.	12.	21	-231.37	-241.00	-250.90	61.	71.5	-282.27	-293.35	04,7	-316.60
1	ש ט	20.00	30.00	40.00	20.00	00.09	0	•	90.00	100.00	110.00	120.00	30	40	50	9	20	80	190.00	8	210.00	220.00	230.00	240.00	250.00	260.00	270.00	80	290.00	8	310.00	320.00	30	40	•	9	370.00	80.	390.00
	4 00 E	.00E-0	3.00E-03	4.00E-03	•		.00E-0	.00E-0	Q	.00E-0	o O	0E-0	.30E-0	.40E-0	.50E-0	.60E	1.70E-02	1.80E-02	1.90E-02	.00E	2.10E-02	.20E-0	.30E	.40E	.50E	.60E	O	.80E	.90E	.00E-0	.10E-0	.20E-0	.30E-0	.40E-0	.50E-0	.60E-0	.70E-0	.80E-0	3.90E-02
>	•	- 2	က	4	2	9	7	∞	တ	9	7	12	13	14			17		10	20	21	22	23	24	25	26	27	28	29		31	32	33					38	39

no.

÷ .

•

24.67	<u>0</u> .0	7.5	_•	9.0	2.2	4.1	6.1	7.8	9.7	1.7	2.0	4.	സ	ထ	ω	•	7.2	5.6	ဖ	ထ	30.05	ι.	$\overline{}$	9	Ŋ	23.03	ω	ω	0.0	19.27	ι.		17.24	16.66		9		7	3	14.00	9	13.36
4	15.27	Ŋ	0	N	Θ.	Ö			18.46	0.	9.5	•	7	4	S	0	23.86	7	~	ထ		Ġ				35.91	38.00	40.19	Ni.	44.90	4	Ö	•	Q.	58.97	61.31	62.84	63.57		Si	4	9.1
0 - 36	9.13E-03	.36E-0	71	.97E	.14E-0	2.24E-02	2.27E-02	2.26E-02	2.22E-02	*-	.08E-0	.99E-0	.90E-0	.81E-0	.71E-0	2E-0	.53	.44E-0	S	E-0	.18E-0	.10E-0	0	.44E-0	۲.	တ	Ċ	0E-0	.93E-0	∞	3E-0	.00E-0	.37E-0	2.75E-03	2.14E-03	3	9.27E-04	.25	•	-8.79E-04	.48E-0	-2.09E-03
.86E-	-4.00E-02	-4.12E-02	-4.21E-02		-4.24E-02	-4.13E-02	-3.90E-02	-3.53E-02	-2.98E-02	•	-1.37E-02	.70	.56		2.47E-02	.15	3.65E-02	တ	$\overline{}$	4.25E-02	.25	9	0	.96E-0	.82	.67	2	.36	.21E-0	90.	2E-0	.78E-0	.65E-0	.52	2.39E-02	2.27E-02	2.16E-02	2.05E-02	1.94E-02	1.84E-02	Ш	5E-0
.29E-0	.41E-0	.55E-0	.68E-0	.82E		-4.12E-02	-4.28E-02	-4.45E-02	-02	-4.80E-02	-05	-02	-5.39E-02	-5.61E-02	-5.84E-02	.08E	-6.33E-02	-6.59E-02	-6.87E-02	-7.16E-02	-7.46E-02	.77E	-8.09E-02	.41E	-8.74E-02	-9.05E-02	-9.35E-02	-9.61E-02	-9.82E-02	-9.93E-02	30E	.68E-0	.20E-0	.40E	-7.20E-02	.58E-0	-3.58E-02	-1.29E-02	1.10E-02	3.40E-02	Ш	.08E-0
	1 .3	35.	1.3	97.	214.27	223.76			222.28	95	08.17	47	90.26			61.90						98.60				79.87						96	3.71	7.52	1.40	.32	9.27	3.25	-2.77	-8.79	-14.84	6
	-400.23	-412.23	-421.28	ب	-423.96	-413.09	90.	•	97.9	25	-136.54	-37.02	65.59	162.76	247.35	315.11	364.92	398.08	417.20	425.28	425.13	419.12	409.11	396.50	382.30	367.25	351.83	336.40	321.18	306.31	291.89	277.95	264.53	251.63	239.23	227.32	215.88	204.88	194.30	184.11	•	4.8
Λ α.α	41.4	-354.53	Ψ.	-382.20	-396.86		-427.99	-444.56	-461.86	-479.93	-498.85	-518.65	-539.40	-561.16	-583.98	-607.92	-633.04	-659.37	-686.94	-715.73	-745.71	<u>~</u>	-808.69	-841.17	-873.68	-905.43	-935.26	4	/	92.7	0	89	20.3	တ	0	58.	57.	-129.20	$\overline{}$	40.4	543.57	08.4
S	1 0	420.00	430.00	440.00	450.00	460.00	•	•	•	0	510.00	520.00	30	40	550.00	•	220.00	580.00	290.00	00.009	610.00	620.00	630.00	640.00	650.00	9	\mathbf{O}	00.089	90	8	10	20.	30	40	50	60.	0	80	790.00	800.00		820.00
	.10E-0	4.20E-02	4.30E-02	4.40E-02	4.50E-02	.60E-0	.70E-0	.80E-0	4.90E-02	.00E-0	.10E-0	5.20E-02	.30E	.40E-0	.50E	.60E-0	.70E	.80E	.90E	.00E	.10E	6.20E-02	.30E	.40E	.50E	6.60E-02	.70E	.80E	.90E	.00E-0	.10E	.20E-0	.30E-0	.40E-0	.50E-0	.60E	.70E-0	.80E		.00E-0	.10E-0	8.20E-02
40			43	44	45	46	47	48	49	20	51	55	53	54	52	26	22	28	29	9	61	62	63	64	65	99	29	89	69	20	71	72	73	74	75	92	77	78	79	80	. 81	82

•

•

13.08	12.82		12.35		တ	1	9	11.47	11.33	11.21		0	10.92	10.84	10.77	~	10.67	10.63	Θ.	10.58	10.57	10.57	10.57	10.59	10.61	10.65	10.69	10.74	10.81	10.88	10.96	11.06	11.16	11.28	11.41	11.55	11.70		12.06	12.26		12.71
56.22	3.5	Ö	7.6	45.15	42.48	40.37	38.17	36.07	34.11	32.32	9.0	29.30	8.0	26.93	5.8	4	23.93	3.0	22.27	1.5	∞	20.19	S.	19.03	ις.	0	17.55	17.11	16.70	16.32	15.96	15.62	15.30	14.99	14.71	14.44	14.18	13.94		13.50	13.29	13.10
-2.70E-03	-3.32E-03	5E-	Ŋ	-5.22E-03	-5.88E-03	-6.55E-03	-7.23E-03	-7.93E-03	9	8E-0	-1.01E-02	-1.09E-02	-1.17E-02	ထ	-1.34E-02	က	-1.52E-02	-1.61E-02	-1.71E-02	-1.80E-02	-1.90E-02	-1.99E-02	-2.08E-02	-2.15E-02	-2.22E-02	Ŋ	-2.27E-02	-2.24E-02	-2.15E-02	-1.99E-02	-1.74E-02	0	-9.52E-03	-4.41E-03	1.05E-03	6.42E-03	1.13E-02	1.53E-02	1.84E-02		19E-0	2.26E-02
1.56E-02	1.47E-02	8E-0	0E-0	1.22E-02	1.14E-02	1.06E-02	9.86E-03	9.12E-03	8.40E-03	7.69E-03	6.99E-03	က	•	9	4.31E-03	•	0	.37	1.73E-03	0	.56	7.	τ-	4	0	.73E-0	က	-4.02E-03	9	-5.34E-03	0	69	-7.38E-03	-8.09E-03	œί	-9.53E-03	-1.03E-02	-1.10E-02	-1.18E-02	-1.26E-02	E-0	3E-0
.32E-0	.15E-0	.65E-	.89E-0	Q.	.83E-0	9.63E-02	9.38E-02	9.08E-02	.76E-0	.44E	.11E	.79E	7.48E-02	Ò	368 .	.62E-0	.35E	.10E	5.86E-02	5.63E	5.41E	5.20E	5.00E	4.81E	4.63E	4.46E	4.29E	4.13E	.98E	3E-0	.69E	.56E-0	ш	•	.18E	.06E	2.94E-02	2.83E-02	2.72E-02	2.62E-02	2.52E-02	.42E-0
7.0	3.2	ത്	5.8	-52.24	-58.79	-65.48	-72.31	3	4	-93.85	-101.43	2	3	-125.55	-134.09	-142.88	-151.91	-161.16	-170.56	-180.06	-189.51	-198.75	-207.50	-215.38	-221.85	-226.18	-227.39	-224.24	15.2	-198.93	3.7	9.0	5.1	4	\mathbf{O}	64.21	112.86	153.40	184.45	206.12	219.48	26.0
55.6	6.7	38.1	29.8		113.80	90	98.56			76.90	69.94	63.09	56.34	49.68	43.09	36.56	30.09	23.67	17.28	10.91	4.56	-1.78	∞	-14.48	-20.86	-27.26	~	-40.21	۲.	-53.40	$\overline{}$	တ	-73.83	∞	0	-95.31	2.7	-110.39	-118.21	-126.23	-134.47	2.9
31.5	Si	65.3	9.0	993.07	0	963.35	937.50	907.89	876.25	843.77	S	79.2	48	0	689.18	661.52	632.09	609.88	585.84	562.93	541.09	520.27	500.39	481.41	463.27	445.91	429.28	413.35	398.05		- •	355.59	342.47	329.80	Ŋ	05.7	9	83.1	272.35	61.	251.70	41.
830.00	840.00	850.00	860.00	870.00	880.00	890.00	900.00	910.00	920.00	930.00	940.00	950.00	960.00	970.00	80	00.066	000	1010.00	1020.00	1030.00	040	1050.00	090	020	1080.00	060	100	110	120	130	140	150	9	170	180	1190.00	200	1210.00	1220.00	1230.00	1240.00	
8.30E-02	8.40E-02	0-30	8.60E-02	8.70E-02	8.80E-02	8.90E-02	9.00E-02	Ó	9.20E-02	9.30E-02	9.40E-02	.50E-0	9.60E-02	.70E-0	9.80E-02	9.90E-02	1.00E-01	1.01E-01	1.02E-01	1.03E-01	1.04E-01	1.05E-01	1.06E-01	.07E	.08E	.09E	1.10E-01	.1 H	1.12E-01	.13E	.14E	.15E	.16E	1.17E-01	.18E	1.19E-01	1.20E-01	1.21E-01	1.22E-01	1.23E-01	1.24E-01	1.25E-01
83	84	85	86	87	. 88	88	06	91		93	94	95	96	26	86	66	100		102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	. 118	119	120	121	122	123	124	125

12.96	13.23	13.53	13.85	14.20	14.58	14.98	15.42	15.90	16.42	16.98	17.58	18.24	18.95	19.71	20.52	21.41	22.51	23.72	25.05	26.46	27.91	29.23	31.04	32.71
12.92	12.74	12.58	12.42	12.28	12.14	12.01	11.88	11.76	11.65	11.55	11.45	11.36	11.28	11.20	11.12	11.05	10.99	10.93	10.87	10.82	10.78	10.74	10.70	10.67
2.27E-02	2.25E-02	2.20E-02	2.13E-02	2.04E-02	1.95E-02	1.86E-02	1.76E-02	1.67E-02	1.58E-02	1.48E-02	1.40E-02	1.31E-02	1.22E-02	1.14E-02	1.06E-02	9.85E-03	9.10E-03	8.37E-03	7.66E-03	6.97E-03	6.29E-03	5.63E-03	4.98E-03	4.34E-03
-1.52E-02	-1.61E-02	-1.70E-02	-1.80E-02	-1.90E-02	-2.00E-02	-2.11E-02	-2.22E-02	-2.34E-02	-2.46E-02	-2.59E-02	-2.72E-02	-2.86E-02	-3.00E-02	-3.15E-02	-3.30E-02	-3.45E-02	-3.60E-02	-3.76E-02	-3.90E-02	-4.04E-02	-4.15E-02	-4.23E-02	-4.26E-02	-4.22E-02
2.32E-02	2.23E-02	2.14E-02	2.05E-02	1.96E-02	1.87E-02	1.79E-02	1.70E-02	1.62E-02	1.54E-02	1.47E-02	1.39E-02	1.31E-02	1.24E-02	1.16E-02	1.09E-02	1.02E-02	9.48E-03	8.78E-03	8.08E-03	7.39E-03	6.71E-03	6.03E-03	5.35E-03	4.68E-03
227.36	224.84	219.59	212.51	204.25	195.28	185.93	176.44	166.97	157.62	148.45	139.51	130.81	122.37	114.18	106.23	98.52	91.02	83.73	76.63	69.69	62.92	56.29	49.78	43.38
-151.71	-160.74	-170.08	-179.75	-189.78	-200.18	-210.99	-222.23	-233.93	-246.11	-258.80	-271.99	-285.70	-299.91	-314.60	-329.68	-345.04	-360.49	-375.76	-390.41	-403.82	-415.12	-423.09	-426.08	-421.94
232.12	222.71	213.51	204.53	195.75	187.15	178.73	170.47	162.36	154.39	146.57	138.86	131.28	123.80	116.42	109.14	101.95	94.84	87.80	80.83	73.93	67.08	60.28	53.53	46.81
1260.00	1270.00	1280.00	1290.00	1300.00	1310.00	1320.00	1330.00	1340.00	1350.00	1360.00	1370.00	1380.00	1390.00	1400.00	1410.00	1420.00	1430.00	1440.00	1450.00	1460.00	1470.00	1480.00	1490.00	1500.00
1.26E-01	1.27E-01	1.28E-01	1.29E-01	1.30E-01	1.31E-01	1.32E-01	1.33E-01	1.34E-01	1.35E-01	1.36E-01	1.37E-01	1.38E-01	1.39E-01	1.40E-01	1.41E-01	1.42E-01	1.43E-01	1.44E-01	1.45E-01	1.46E-01	1.47E-01	1.48E-01	1.49E-01	1.50E-01
126		128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150


```
2.94E-03
        3.14E-03
                 3.06E-03
                                   2.80E-03
                                            2.68E-03
                                                     2.53E-03
                                                              2.41E-03
                                                                       2.27E-03
                                                                                2.18E-03
                                                                                         2.07E-03
                                                                                                  1.97E-03
                                                                                                                                              1.57E-03
                                                                                                                                                                                                                                        1.19E-03
                                                                                                                                                                                                                                                 1.17E-03
                                                                                                                                                                                                                                                                   1.13E-03
                                                                                                          1.87E-03
                                                                                                                   1.77E-03
                                                                                                                            1.70E-03
                                                                                                                                     1.63E-03
                                                                                                                                                        1.52E-03
                                                                                                                                                                 1.47E-03
                                                                                                                                                                          1.42E-03
                                                                                                                                                                                   1.38E-03
                                                                                                                                                                                            1.34E-03
                                                                                                                                                                                                     1.30E-03
                                                                                                                                                                                                              1.27E-03
                                                                                                                                                                                                                       1.24E-03
                                                                                                                                                                                                                                1.21E-03
                                                                                                                                                                                                                                                           1.15E-03
                                                                                                                                                                                                                                                                                     1.10E-03
                                                                                                                                                                                                                                                                                               1.09E-03
                                                                                                                                                                                                                                                                                                                 1.07E-03
                                                                                                                                                                                                                                                                                                                                    1.06E-03
                                                                                                                                                                                                                                                                                                                                                     1.06E-03
                                                                                                                                                                                                                                                                                                                                                                       1.06E-03
                                                                                                                                                                                                                                                                             1.11E-03
                                                                                                                                                                                                                                                                                                        1.08E-03
                                                                                                                                                                                                                                                                                                                          1.07E-03
                                                                                                                                                                                                                                                                                                                                            1.06E-03
                                                                                                                                                                                                                                                                                                                                                              1.06E-03
                                                                                                                                                                                                                                                                                                                                                                                 1.06E-03
                                                                                                                                                                                                                                                                                                                                                                                         1.07E-03
       2.61E-03
                          2.89E-03
                                                             3.61E-03
                                                                                3.97E-03
2.47E-03
                2.75E-03
                                   3.06E-03
                                           3.23E-03
                                                     3.42E-03
                                                                       3.78E-03
                                                                                        4.11E-03
                                                                                                  4.20E-03
                                                                                                           4.24E-03
                                                                                                                    4.24E-03
                                                                                                                            4.18E-03
                                                                                                                                     4.08E-03
                                                                                                                                              3.92E-03
                                                                                                                                                       3.73E-03
                                                                                                                                                                3.56E-03
                                                                                                                                                                          3.36E-03
                                                                                                                                                                                   3.18E-03
                                                                                                                                                                                                              2.71E-03
                                                                                                                                                                                                                      2.57E-03
                                                                                                                                                                                            3.00E-03
                                                                                                                                                                                                     2.85E-03
                                                                                                                                                                                                                                2.43E-03
                                                                                                                                                                                                                                         2.30E-03
                                                                                                                                                                                                                                                  2.19E-03
                                                                                                                                                                                                                                                                                     1.85E-03
                                                                                                                                                                                                                                                                                                                                    1.56E-03
                                                                                                                                                                                                                                                                                                                                            1.52E-03
                                                                                                                                                                                                                                                                                                                                                                       1.40E-03
                                                                                                                                                                                                                                                                                                                                                                                         1.34E-03
                                                                                                                                                                                                                                                           2.09E-03
                                                                                                                                                                                                                                                                    2.01E-03
                                                                                                                                                                                                                                                                             1.93E-03
                                                                                                                                                                                                                                                                                               1.79E-03
                                                                                                                                                                                                                                                                                                        1.72E-03
                                                                                                                                                                                                                                                                                                                 1.67E-03
                                                                                                                                                                                                                                                                                                                                                      1.48E-03
                                                                                                                                                                                                                                                                                                                                                              1.44E-03
                                                                                                                                                                                                                                                                                                                                                                                1.37E-03
                                                                                                                                                                                                                                                                                                                          1.61E-03
                                                             1.75E-03
       1.53E-03
                          .59E-03
                                   .63E-03
                                            1.67E-03
                                                                       1.80E-03
                                                                               1.85E-03
                                                                                        1.90E-03
                                                                                                 1.95E-03
                                                                                                          2.01E-03
                                                                                                                            2.15E-03
                                                    1.71E-03
                                                                                                                   2.08E-03
                                                                                                                                     2.22E-03
                                                                                                                                              2.30E-03
                                                                                                                                                       2.39E-03
                                                                                                                                                                 2.48E-03
                                                                                                                                                                          2.58E-03
                                                                                                                                                                                   2.68E-03
                                                                                                                                                                                            2.80E-03
                                                                                                                                                                                                     2.92E-03
                                                                                                                                                                                                              3.06E-03
                                                                                                                                                                                                                       3.22E-03
                                                                                                                                                                                                                               3.40E-03
                                                                                                                                                                                                                                        3.59E-03
                                                                                                                                                                                                                                                 3.80E-03
                                                                                                                                                                                                                                                                                                       5.33E-03
                                                                                                                                                                                                                                                           4.02E-03
                                                                                                                                                                                                                                                                    4.23E-03
                                                                                                                                                                                                                                                                             4.49E-03
                                                                                                                                                                                                                                                                                               5.03E-03
                                                                                                                                                                                                                                                                                                                          5.90E-03
                                                                                                                                                                                                                                                                                                                                   6.13E-03
                                                                                                                                                                                                                                                                                                                                                     6.36E-03
                                                                                                                                                                                                                                                                                                                                                                       6.29E-03
                                                                                                                                                                                                                                                                                                                                                                                6.15E-03
                                                                                                                                                                                                                                                                                                                                                                                         5.92E-03
                                                                                                                                                                                                                                                                                     4.75E-03
                                                                                                                                                                                                                                                                                                                 5.60E-03
                                                                                                                                                                                                                                                                                                                                            6.28E-03
                                                                                                                                                                                                                                                                                                                                                              6.39E-03
                                                                                                                   17.75
                                                            24.10
22.74
                                                                                                                                                                          14.18
                                                                                                                                                                                   13.75
                                                                                                                                                                                           13.36
                                                                                                                                                                                                                                                                                                        10.80
                                           26.82
25.34
                                                                                                 19.65
                                                                                                          18.66
                                                                                                                            16.95
                                                                                                                                     16.32
                                                                                                                                              15.72
                                                                                                                                                                 14.65
                                                                                                                                                                                                     13.00
                                                                                                                                                                                                             12.68
                                                                                                                                                                                                                                                                             11.14
                                                                                                                                                                                                                                                                                                                 10.72
                          29.44
                                  27.98
                                                                                                                                                       15.17
                                                                                                                                                                                                                       12.38
                                                                                                                                                                                                                                                 11.66
                                                                                                                                                                                                                                                          11.47
                                                                                                                                                                                                                                                                    11.30
                                                                                                                                                                                                                                                                                               10.90
                                                                                                                                                                                                                                                                                                                          10.66
                                                                                                                                                                                                                                                                                                                                            10.58
                                                                                                                                                                                                                                                                                                                                                                       10.58
                                                                                        20.71
                                                                                                                                                                                                                                12.11
                                                                                                                                                                                                                                        11.87
                                                                                                                                                                                                                                                                                                                                   10.61
                                                                                                                                                                                                                                                                                                                                                                                         10.66
                                                                                                                                                                                                                                                                                      11.01
                                                                                                                                                                                                                                                                                                                                                     10.57
                                                                                                                                                                                                                                                                                                                                                              10.57
                                                                                                                                                                                                                                                                                                                                                                                10.61
```

```
1.07E-03
                          1.10E-03
                                                                                                                                             .46E-03
        1.08E-03
                 1.09E-03
                                  1.11E-03
                                                                     1.19E-03
                                           1.13E-03
                                                    1.15E-03
                                                            1.16E-03
                                                                              1.21E-03
                                                                                       1.24E-03
                                                                                                                  1.33E-03
                                                                                                1.27E-03
                                                                                                          1.30E-03
                                                                                                                           .37E-03
                                                                                                                                    .41E-03
                                                                                                                                                     .51E-03
                                                                                                                                                               .57E-03
                                                                                                                                                                       .63E-03
                                                                                                                                                                                1.69E-03
                                                                                                                                                                                        1.77E-03
                                                                                                                                                                                                 1.86E-03
                                                                                                                                                                                                          1.96E-03
                                                                                                                                                                                                                   2.06E-03
                                                                                                                                                                                                                            2.17E-03
                                                                                                                                                                                                                                     2.26E-03
                                                                                                                                                                                                                                                       2.52E-03
                                                                                                                                                                                                                                             2.40E-03
                                                                                                                                                                                                                                                                2.67E-03
                                                                                                                                                                                                                                                                        2.79E-03
                                                                                                                                                                                                                                                                                 2.93E-03
                                                                                                                                                                                                                                                                                          3.05E-03
                                                                                                                                                                                                                                                                                                            3.17E-03
                                                                                                                                                                                                                                                                                                                     3.19E-03
                                                                                                                                                                                                                                                                                                   3.13E-03
                                                                                                                                                                                                                                                                                                                             3.16E-03
                                                                                                                                                                                                                                                                                                                                                3.01E-03
                                                                                                                                                                                                                                                                                                                                                         2.88E-03
                                                                                                                                                                                                                                                                                                                                                                 2.75E-03
                                                                                                                                                                                                                                                                                                                                                                          2.62E-03
                                                                                                                                                                                                                                                                                                                                       3.11E-03
1.31E-03
       1.28E-03
                1.26E-03
                         1.23E-03
                                  1.21E-03
                                           1.20E-03
                                                    1.18E-03
                                                             1.16E-03
                                                                      1.15E-03
                                                                              1.13E-03
                                                                                       1.12E-03
                                                                                                1.11E-03
                                                                                                        1.10E-03
                                                                                                                  1.09E-03
                                                                                                                          1.08E-03
                                                                                                                                    1.08E-03
                                                                                                                                            1.07E-03
                                                                                                                                                     1.07E-03
                                                                                                                                                                                                 .06E-03
                                                                                                                                                                                                                   .06E-03
                                                                                                                                                              .06E-03
                                                                                                                                                                      1.06E-03
                                                                                                                                                                                .06E-03
                                                                                                                                                                                        1.06E-03
                                                                                                                                                                                                          .06E-03
                                                                                                                                                                                                                            .06E-03
                                                                                                                                                                                                                                     .06E-03
                                                                                                                                                                                                                                             .07E-03
                                                                                                                                                                                                                                                      .07E-03
                                                                                                                                                                                                                                                                        1.09E-03
                                                                                                                                                                                                                                                                                                                                                                          1.25E-03
                                                                                                                                                                                                                                                                .08E-03
                                                                                                                                                                                                                                                                                 1.10E-03
                                                                                                                                                                                                                                                                                          1.11E-03
                                                                                                                                                                                                                                                                                                   1.12E-03
                                                                                                                                                                                                                                                                                                            1.13E-03
                                                                                                                                                                                                                                                                                                                              I.15E-03
                                                                                                                                                                                                                                                                                                                                      1.17E-03
                                                                                                                                                                                                                                                                                                                                               1.19E-03
                                                                                                                                                                                                                                                                                                                                                                 1.23E-03
                                                                                                                                                                                                                                                                                                                    1.14E-03
                                                                                                                                                                                                                                                                                                                                                        1.21E-03
                                                                                                                                                                                                                                                                                                                                                                                   .27E-03
       5.36E-03
                         4.77E-03
                 5.06E-03
                                  4.52E-03
                                           4.25E-03
                                                    4.04E-03
                                                            3.82E-03
                                                                     3.61E-03
                                                                              3.41E-03
                                                                                      3.23E-03
                                                                                               3.07E-03
                                                                                                        2.93E-03
                                                                                                                 2.81E-03
                                                                                                                          2.69E-03
                                                                                                                                   2.59E-03
                                                                                                                                                                      2.23E-03
                                                                                                                                                                                2.15E-03
                                                                                                                                                                                                                                                                                                                                                                                  .31E-03
                                                                                                                                            2.49E-03
                                                                                                                                                     2.39E-03
                                                                                                                                                              2.31E-03
                                                                                                                                                                                        2.08E-03
                                                                                                                                                                                                 2.02E-03
                                                                                                                                                                                                          1.96E-03
                                                                                                                                                                                                                   1.90E-03
                                                                                                                                                                                                                                                                                 1.60E-03
                                                                                                                                                                                                                           1.85E-03
                                                                                                                                                                                                                                     1.80E-03
                                                                                                                                                                                                                                             1.75E-03
                                                                                                                                                                                                                                                      1.71E-03
                                                                                                                                                                                                                                                               .67E-03
                                                                                                                                                                                                                                                                        .63E-03
                                                                                                                                                                                                                                                                                          1.56E-03
                                                                                                                                                                                                                                                                                                   .53E-03
                                                                                                                                                                                                                                                                                                            1.50E-03
                                                                                                                                                                                                                                                                                                                     .47E-03
                                                                                                                                                                                                                                                                                                                             1.44E-03
                                                                                                                                                                                                                                                                                                                                      1.42E-03
                                                                                                                                                                                                                                                                                                                                               1.39E-03
                                                                                                                                                                                                                                                                                                                                                        .37E-03
                                                                                                                                                                                                                                                                                                                                                                 .35E-03
                                                                                                                                                                                                                                                                                                                                                                         1.33E-03
       10.80
                 10.89
                         11.00
                                                    11.45
                                                            11.64
                                                                     1.86
                                                                             2.09
                                                                                      2.36
                                                                                               12.65
                                                                                                                         13.72
                                                                                                                                                    15.12
                                                                                                                                                                               16.90
                                                                                                                 13.33
                                                                                                                                   14.15
                                                                                                                                            14.61
                                                                                                                                                              15.68
                                                                                                                                                                                        17.68
                                                                                                                                                                                                 18.58
                                                                                                        12.97
                                                                                                                                                                                                                   20.62
                                                                                                                                                                                                                           21.69
                                                                                                                                                                                                                                             23.99
                                                                                                                                                                      16.27
                                                                                                                                                                                                                                    22.62
                                                                                                                                                                                                                                                      25.22
                                                                                                                                                                                                                                                                        27.90
                                                                                                                                                                                                                                                                                                           31.74
                                                                                                                                                                                                                                                                                                                             31.62
                                                                                                                                                                                                                                                                                                                                               30.10
                                                                                                                                                                                                          19.57
                                                                                                                                                                                                                                                               26.71
                                                                                                                                                                                                                                                                                                                                      31.05
                                                                                                                                                                                                                                                                                                                                                        28.80
                                                                                                                                                                                                                                                                                                                                                                 27.50
                                                                                                                                                                                                                                                                                 .33
                                                                                                                                                                                                                                                                                          30.51
                                                                                                                                                                                                                                                                                                   31.31
                                                                                                                                                                                                                                                                                                                     .94
                                                                                                                                                                                                                                                                                                                                                                          26.17
                                                                                                                                                                                                                                                                                                                                                                                  .75
                                                                                                                                                                                                                                                                                 29.
```

ens as a function of grin length:

Boom moiot and hoom midth token at 4/20 inter-its level and action. Of the control of the contro
--

																			•																		
2*r [μm]	10.63	10.82	11.17	11.68	12.23	12.87	13.64	14.38	15.29	16.18	17.05	18.06	19.05	20.03	•	တ	တ	ထ	24.83	25.83	26.81	•	28.74	29.68	30.60	31.51	2	33.25	34.08	34.89	35.68	36.43		37.90	38.68	39.42	40.14
_	10.57	10.58	10.60	10.62	10.66	10.70	10.75	10.81	10.87	10.94		11.12	11.22	11.33	11.45	11.58	11.72	11.88	12.04	12.22	12.41	12.62	12.84	13.08	13.34	13.62	13.92	14.24	14.58	14.95	15.35	15.78	16.24	16.74	17.28	17.86	18.49
WD/2 [μm]	-6.41	-12.84	•	5	- ;	•	-45.35	-51.99	-58.70	LC)	က	-79.32		-93.58	00.9	-108.35	-115.97	က်	-131.71	-139.86	-148.23	-156.84	S	-174.81	-184.22	-193.94		~	-225.24	-236.47	-248.15	9	-272.97	-286.18	-299.97	4	-329.37
	10	20	30	40	20	09	20	80	90		110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300			330	340			370

grin length 830+-20 micrometer working distance 550+-50 micrometer waist diameter 16.4 +- 1 micrometer	grin length 990+-20 micrometer working distance 238+-50 micrometer waist diameter 11.8 +- 1 micrometer	ກ Grin fiber: 47.3 micrometer = 59% of core diameters 0%)		
Working point for 1x2 design:	Working point for 2x2 design:	Largest beam width in Grin fiber: (would like to stay <60%)		
40.81 41.44 42.00 42.50 42.90	43.41 43.99 44.36 44.71	45.12 45.47 45.75 46.32	46.30 46.53 46.78 47.01 47.33	47.33 47.27 47.27 47.20 47.20 47.35 47.35 47.35 46.07 46.07 46.07 46.07 47.91 47.91 43.02 43.03 41.04 40.38
19.17 19.90 20.69 21.54 22.45	23.45 24.68 26.03 27.49	29.06 30.67 32.17 34.34	36.04 38.29 40.33 42.38 44.40	45.88 46.77 46.77 46.95 46.95 46.95 40.92 33.83 34.86 32.83 34.86 32.83 32.83 32.83 34.86 32.83 34.86 36.79 26.53 26.53 26.53 26.53 27.86 27.76 27.86
-345.04 -361.35 -378.30 -395.84 -413.91	-432.36 -450.97 -469.41 -487.17	-503.52 -517.40 -527.37 -531.44	-527.00 -510.83 -479.26 -428.65 -356.31 -261.82	-251.82 -148.29 -22.80 104.60 223.38 325.20 405.52 463.63 521.49 529.61 529.61 529.61 475.83 457.56 438.97 402.21 384.46 367.30
380 390 400 410	430 440 450 460	470 480 490 500	510 520 530 540 550	550 570 580 600 620 630 650 770 720 720 720 730 740 750

	တ	38.18	4.	ල (တ	Ψ.	34.37	33.55	32.70	31.82	30.93	30.01	29.08	28.13	27.16	26.18	25.18	24.18	23.25	22.30	21.34	20.38	19.40	18.41	17.41	$\mathbf{\omega}$	15.61	14.71	13.91	13.15	12.44	11.87	11.34	10.91		10.57	10.59	10.74	11.00	4
0	7.4	•	4.	ص ۱	ري	0	14.71	14.36	0	<u>~</u>	13.44	13.17	တ	12.70	12.49	12.29	12.10	11.93	11.77	11.63	11.49	11.37	11.26	11.15	11.06	10.97	10.90	10.83	<u>~</u>	<u>~</u>	10.67	10.64	10.61	10.59	10.57	10.57	10.57	10.58	•	10.61
6	05	₹	77.6	64. 5	52	40.5	29	18		97	187.64	178.12	168.90	59	151.26	142.81	3	126.55	118.71	111.04	103.53	96.16	88.93	81.82	74.82	67.91	61.10	54.37	47.70	$\overline{}$	34.55	28.04	21.57	15.12	•	2.28	4.13	-10.55	Q.	က်
	810	820	830	840	850	860	870	880	830	006	910	920	930	940	950	096	970	980	066	1000	1010	1020	1030	1040	1050	1060	1070	1080	1090	1100	1110	1120	1130	1140	1150	1160	1170	1180	9	1200

.

For a fixed working distance of 550 +- 50 micrometer and varying the g-parameter, we get the following grin lengths and waist diameters:

•	Ē	5.35	5.41	4.48	15.6	5.64	5.72	5.82	5.88	16	90.9	6.13	6.22	16.3	16.4	16.5	6.56	6.68	6.75	6.82	96.9	7.05
•	2*w0 [µm	15	÷	-	•	7	7	7	7		7	7	7	•	•	`	7	7	7	7	7	-
		_	_	<u>~</u> 1	~ 1	-+	10	(0	~	•	_	~			<u> </u>			.	_	٥,		
•	EE,	920	911	305	892	884	875	866	858	849	841	833	825	817	808	801	794	786	779	772	764	757
•	grin lengths [μm]																					
	leng																					
•	grın																					
,		2.5	.52	2.54	.56	2.58	2.6	2.62	2.64	2.66	2.68	2.7	2.72	2.74	92.	.78	2.8	2.82	2.84	2.86	2.88	2.9
•	[mm-1]		7	7	~	7		~	7	7	8		7	7	7	8		7	7	7	7	
	E E																					

Beam throw (=fiber-to-fiber working distance/2), beam waist (2*w0), and beam width (2*r) at exit of grin lens as a function of grin length: Beam waist and beam width taken at 1/e2 intensity level, wavelength=1550nm, SMF28 - grin fiber assembly g = 4.2778 mm-1, n0=1.471, NA=0.267, core diam=85 micrometer (used in **Gradissimo** fibers)

		,		
	12.14 12.71 13.40 14.89 15.68 17.38	18.20 19.02 19.83 20.63 21.42 22.21 23.70		28.54 28.91 29.22 29.44 29.96 30.05 29.98
[µm] 0.57 0.60 0.64 0.70		12.47 12.79 13.14 13.97 14.95		22.72 23.87 25.27 26.36 27.71 28.79 29.88 29.88
WD/2 [μm] -5.96 -11.93 -17.94 -23.98	-30.08 -36.25 -42.50 -48.85 -55.32 -61.91 -68.65	-82.02 -89.88 -97.34 -105.01 -112.90 -120.99 -129.29	46.3 55.0 63.6 72.1 80.0 87.2 93.0	-198.03 -195.16 -187.04 -172.28 -149.67 -118.61 -79.56 -34.45
	3 5 8 8 9 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	150 150 160 170 180 200	210 220 230 240 250 250 270 280	300 310 320 330 340 350 350

30.03

29.71

60.32

380

30.01 29.68 29.63 29.33 29.00 28.67	27.92 27.58 26.97 26.96 25.23 24.01 22.54 21.77 20.98 20.98 20.98 19.37 16.90 16.06 13.73	12.39 11.83 11.32 10.91 10.58 10.58 10.95 11.37 11.30 13.06
29.15 28.23 26.97 25.80 24.51 23.24	20.98 20.01 19.00 18.04 17.16 15.76 14.17 12.94 12.93 11.37 11.37 11.37	10.82 10.74 10.67 10.62 10.59 10.62 10.68 10.84 10.95 11.07
102.36 137.07 163.37 181.45 192.33	n o u n r m c u u u u u u u u u u u u u u u u u u	7 9 0 4 8 7 K 9 Y + 7 K 9 9
390 400 410 420 440	. 460 470 480 510 520 530 580 580 580 600 610 620 630 650	∞ 0 0 $-$ 0 \times 4 \times 0 \times 0 0 $-$

.

.

•

.

•

•

.

•

14.57	15.30	16.16	17.01	17.84	18.66	19.47	20.28	21.07	21.86	22.64	23.38	24.09	24.73	25.29	25.97	26.52	27.05	27.64
11.22	11.40	11.59	11.81	12.06	12.34	12.64	12.98	13.36	13.77	14.23	14.72	15.26	15.83	16.45	17.26	18.15	19.12	20.13
-52.46	-59.00	-65.67	-72.50	-79.49	-86.67	-94.04	-101.62	-109.41	-117.41	-125.62	-134.03	-142.59	-151.24	-159.91	-168.44	-176.63	-184.19	-190.68
820	830	840	820	860	870	880	890	006	910	920	930	940	920	096	970	980	066	1000

the National

.1

Beam throw (=fiber-to-fiber working distance/2), beam waist (2*w0), and beam width (2*r) at exit of grin lens as a function of grin length: Beam waist and beam width taken at 1/e2 intensity level, wavelength=1550nm, SMF28 - grin fiber assembly g = 5.65 mm-1, n0=1.486, NA=0.2, core diam=50 micrometer (Corning InfiniCor CL2000)

000
(1)
1
<

r [nm]		7.	0.	11.43	11.93	12.47	13.04	13.64	14.26	14.93	15.62	-	16.92	17.58	18.26	18.88	19.36	19.96	20.44	20.94	21.20	$\overline{}$		\sim	22.34	22.48	22.47	22.45	22.48	22.45	22.21	22.03	21.67		21.05	9	20.30
2*w0 [μm] 2	10.58	9		10.79	10.91	11.07	11.26	11.48	11.73	12.02	က	7	₹.	13.53	14.04	14.69	15.39	16.11	7	17.63	3	19.27	0	20.92	21.65	22.14	က	2.4	22.32	21.98	21.39	20.56	19.76	18.90	18.03	•	16.51
WD/2 [μm]	-5.25	0.5	5.8	-21.12	-26.48	-31.89	-37.35	-42.88	-48.47	-54.11	-59.79	-65.48	-71.13	-76.70	Ō.	-87.11	-91.63	က	-97.99	-99.04		-94.13	\mathbf{Q}	-75.74	-60.41		တ	4.7	•	49.23	66.99	80.66	90.21	96.02	89.86	ω.	97.11
ength [μm]	; -	20	30	40	50	09	20	80	06	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300	310	\sim	330	4	2	9	370

19.70	19.19	18.64	17.99	17.31	16.67	16.02	15.35	14.65	14.01	13.40	12.81	12.25	11.73	11.25	10.92	10.70	10.59	10.57	10.67	10.87	11.16	11.62	12:14	12.69	13.28	13.88	14.51	15.21	15.89	16.54	17.17	17.85	18.51	19.09	19.55	20.20	Ö.	20.94	21.30	1.6	22.00
	15.10	14.42	13.80	13.37	12.95	ĸ.	12.22	11.90		11.39	11.18	11.00	10.86	10.74	10.66	10.60	O	10.57	10.59	10.64	10.72	10.83	10.97	11.14	11.34	11.57	11.84	12.15	12.49	12.87	13.28	•	14.29	14.96	15.67	16.38	16.99	17.87	18.70	19.60	20.36
	89.91	S	79.97	74.51	68.90	3.2		51.87	46.25	40.68	35.18	29.73	24.34	19.00	13.70	8.42	3.17	-2.08	-7.34	-12.61	-17.90	-23.24	-28.62	0	-39.54	-45.09	-50.70	-56.36	-62.05	~	-73.36	-78.85	-84.11	8.9	-93.22	-96.57	-98.62	-98.90	-96.81	•	-82.97
380	390	400	410	420	430	440	450	460	470	480	490	200	510	520	530	540	220	260	220	280	230	009	610	620	630	640	650	099	670	089	069	200	710	720	730	740			770	∞	200

•

•

•

.

22.13	22.42	22:49	22.45	22.46	22.49	22.39	22.05	21.94	21.62	21.22	20.82	20.48	20.09	19.42	18.99	18.39	17.72	17.04	16.42	15.76
21.24	21.88	22.27	22.43	22.42	22.21	21.78	21.09	20.17	19.45	18.50	17.71	16.84	16.25	15.54	14.83	14.17	13.62	13.20	12.80	12.42
-70.16	-53.22	-32.66	-9.64	14.13	36.79	56.74	72.92	84.93	92.93	97.41	99.01	98.35	96.02	92.48	88.09	83.14	77.83	72.30	66.65	26.09
800	810	820	830	840	850	860	870	880	890	006	910	920	930	940	950	096	970	980	066	1000

•

.

•

•

.

•

.

Beam throw (=fiber-to-fiber working distance/2), beam waist (2*w0), and beam width (2*r) at exit of grin lens as a function of grin length: Beam waist and beam width taken at 1/e2 intensity level, wavelength=1550nm, SMF28 - grin fiber assembly or CL1000)

2*w0 [µm] 2*r [µm]
WD/2 [μm]
grin length [μm]

[µm] 10.62				11.82	12.34	12.89	13.47	14.07	14.68	15.29	15.90	16.46	16.95	17.59	18.09	18.55	18.90	19.28	19.56	19.87	20.09	20.31	20.34	20.32	20.34	20.34	20.20	19.87	19.72	19.40	19.00	18.78	18.18	17.81	17.20	16.65
2*r 8	က		7	တ	4	က	_	0	2	7	~ t	က	~	G	7	2	G	0	₹†	~	₹+	8	5	~	7	တ	5	_	5	0	_	7	(0	<u>ග</u>	2	4
*w0 [µm] 10.58	9.	10.7		10.96	11.1	11.36	11.6	11.90	7	ι.	12.94	13.43	14.02	14.66	15.27	15.82	16.56	17.30	18.04	18.72	•	19.93	20.2	20.32	20.2	20.06	9	19.0	18.2	17.60	16.7	16.1	15.46		Si	13.6
2 2		62	75	74	22	1.1	81	34	83	73	48	98	60.	32	33	39	91	32	43	7	40	.66	32	39	.80	37	99.	46	04	22	43	10	90.	74		26
WD/2 [μm] -4.9	-9.6	4	-19.	-24.	-29.	-34	-39.8	-44.8	-49.8	-54.7	-59.	-63.	-68.	$\overline{}$	-74.33	-75.8	-75.9	-73.9	-69.4	-62.0	-51.4	—	•	<u>ښ</u>	4	31.8	46.6	58.	. 67.(N.	•		S	72.	တ	65.
[µm]	20	30	40	20	09	20	80	90	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300	310	320	330	340	350	Q	370
ngth																																				

16.11	•	• •	14.29	13.69	13.10	12.54	12.01	11.52	11.12	10.85	10.66	10.57	10.59	10.70	10.91		11.64	12.14	12.68	က	œί	14.45	5.0	S	9	16.76	17.36	17.94	Si	8.7	9.0	4	ထ	19.95	0	0	0.3	0	20.35	0.2	20.00
13.08	2.7	က	•	11.71	11.45	3	11.03	10.87	7	9	10.59	0.5	10.57	9.0	0	0.7	10.91	11.07	11.28	$\overline{}$	11.79	12.10	$\boldsymbol{\alpha}$	\sim	ന	13.80	14.42	15.05	15.57		16.97	17.80	18.41	19.20	19.78	20.13	20.30	20.31	20.16	•	9
61.18	56.51	51.66	$\mathbf{\omega}$	41.68	O	•	$\mathbf{\omega}$	$\overline{}$	16.63	~	6.74	•		•	2.9	!	-22.89	∞	-32.91	-37.95	-42.98	-47.99	-52.93	-57.75	-62.35	-66.62	0	(T)	-75.47	-76.11	4	4.7	-65.12	-55.70	-43.09	-27.62	-10.14	8.12		Ŋ	54.46
380	390	400		420	430	. 440	450	460	470	480	490	200	510	520	530	540	550	260	570	580	290	009	610	620	630	640	650	099	~	680	တ	200	710	720	730		750	160			

•

•

•

19.83	19.44	19.15	18.78	18.37	17.99	17.43	16.81	16.32	15.74	15.13	14.52	13.91	13.32	12.75	12.20	11.70	11.24	10.94	10.72	10.59
18.51	17.87	17.07	16.38	15.61	15.12	14.49	13.86	13.28	12.85	12.48	12.14	11.82	11.54	11.30	11.09	10.92	10.79	10.68	10.61	10.57
64.23	70.86	74.66	76.08	75.62	73.72	70.77	67.07	62.85	58.27	53.47	48.54	43.54	38.51	33.47	28.45	23.44	18.46	13.51	8.57	3.64
800	810	820	830	840	850	860	870	880	890	006	910	920	930	940	950	096	970	980	066	1000

•

•

Beam throw (=fiber-to-fiber working distance/2), beam waist (2*w0), and beam width (2*r) at exit of grin lens as a function of grin length: Beam waist and beam width taken at 1/e2 intensity level, wavelength=1550nm, SMF28 - grin fiber assembly g = 1.633 mm-1, n0=1.487, NA=0.15, core diam=125 micrometer (Grin-Rod)

												-							,								
2*r [μm] 10.82		12.96	14.54	16.30	18.38	20.39	22.46	24.70	26.94	29.17	31.39	33.59	35.77	37.92	40.05	42.14	44.20	46.22	48.19	50.13	52.01	53.85	55.64	57.37	59.05	99.09	62.22
2*w0 [μm]		10.62	10.65	10.71	10.77	10.84	10.93	11.03	11.14	11.27	11.42	11.57	11.75	11.95	12.16	12.39	12.65	12.93	13.24	13.58	13.95	14.35	14.80	15.28	15.82	16.42	17.07
WD/2 [µm] -13.21	-26.44	-39.73	-53.10	-66.57	-80.19	-93.97	-107.95	-122.16	-136.64	-151.42	-166.55	-182.06	-198.01	-214.44	-231.41	-248.98	-267.22	-286.21	-306.03	-326.78	-348.56	-371.49	-395.71	-421.37	-448.66	-477.79	-508.97
grin length [μm]	40	09	80	100	120	140	160	180	200	220	240	260	280	300	320	340	360	380	400	420	440	460	480	200	520	540	260

73.63 74.58 75.12 75.69 75.96 76.55 76.34	. ^ & ^ & ^ \ 0 0 0 0 11 13 4 18 73 7 7 0 0	52 53 53 53 53 53 53 53 53 53 53 53 53 53
30.36 32.96 35.91 39.82 44.52 49.80 55.67 62.63	1 0 0 7 0 1 4 7 0 0 0 0 0 0 0 0 0 4 0 7 0 0 0 0 0 0	20.77 20.77 19.73 18.80 17.97 17.92 16.55 14.89 14.44 13.65 13.65 12.99
-1020.50 -1103.40 -1193.07 -1287.16 -1379.54 -1456.58 -1490.55 -1431.05	203. 741. -75. 613. 613. 399. 397. 397. 212. 960. 890. 769.	- O O O O O O 4 4 O O O O ~ O O ~ O
760 780 800 820 840 860 880	980 980 1080 1080 1180 1220 1220	1280 1300 1320 1340 1440 1460 1520 1520 1580

working distance: 802 - 580 micrometer grin length: 1.44 -1.54 mm

possible working points for 1x2 design:

waist diameter: 15 - 13 micrometer

working distance: 620 - 230 micrometer waist diameter: 13.3 - 11 micrometer possible working points for 2x2 inline design: grin length: 1.52 - 1.75mm

Largest beam diameter in the Grin rod: 80 micrometer = 64% of Grin diameter, (we would like to stay below 60%).

40.49	36.22	31.85	29.64	27.41	25.17	22.93	20.81	18.80	16.74	14.92	13.29	11.94	10.93	10.58	10.73	11.49	12.62	14.14
12.21	11.79	11.45	11.30	11.17	11.05	10.95	10.86	10.78	10.72	10.66	10.62	10.59	10.57	10.57	10.57	10.58	10.61	10.65
235.05 217.96	201.42	69	154.57	139.72	125.18	110.92	68.96	83.07	69.43	55.92	42.53	29.23	15.99	2.78	-10.43	-23.65	-36.93	-50.27
1600 1620	1640	1680	1700	1720	1740	1760	1780	1800	1820	1840	1860	1880	1900	1920	1940	1960	1980	2000

~

•

Specifications for Custom Grin-fiber

The on-axis refractive index has to closely match the refractive index of SMF-28. SMF-28: $n_{\rm eff} = 1.4682$ at 1550nm

Custom Grin-fiber on axis refractive index: $1.467 < n_0 < 1.47$ at 1550nm

Grin profile:

Buffer 250 μm , cladding diameter 125 μm , core diameter 80 μm .

DI 1 :Those me datails we discussed!

Technical worlder burnary: Un Heins, ect. 166:

Andrew Taylor 07/16/2000 08:40:26 PM

There is sherry on 1% dig in the middle (~ / pm vide) of a 62.5 pm core, but this dip instrumets.

To:

CC:

MEMS

Subject: Completion of first round of communication with FiberCore

 $n_o = 1.4815$ $n_{dod} = 1.4729$ we submitted to them:

nour on axis index spec) $n_{dod} = 1.4729$ $n_{dod} = 1.4729$

Team,

Here are the final comments from FiberCore on the specs we submitted to them:

- $NA = 0.16 \ 0.02 (n \sim 9 \ 10-3)$
- Undoped cladding (in future they will be able to do this and hit our on axis index spec)
- Ge/P doped core
- Profile spec $g = (2.70 \ 0.15) \text{mm-1}$
- small layer related index variations possible
- small central dip possible

and

\$5/meter, 1 km minimum

An invitation to review the specs we sent, the quote and lead time, and the amount we need to order follows this email.

Regards, Andrew

"BOB SEBESTO" <BOBSEBESTO@prodigy.net> on 07i16/2000 09:06:22 AM

To:

Andrew Taylor/Saro/OCLI@OCLI

CC:

Subject: Fw: OCLI Information

Andrew:

Attached are our final comments regarding the fiber. These are basically the FCJ specifications. If they are acceptable, please email me your order and we will begin processing it. By the way, we will also need the standard credit references (3 references and a bank) to open your account.

Regards,

Bob Sebesto

- Comments on OLCI spec.doc

Forwarded by Andrew Taylor/Saro/OCLI on 07/16/2000 08:29 PM ---

"BOB SEBESTO" <BOBSEBESTO@prodigy.net> on 07/11/2000 12:35:41 PM

Crin fiber NA: NA = no. g. @

 $n^2 = n_0^2 (1 - q^2 r)$

=) n ~ n. (1-82r)

no = on exis reparlie index

a = con radius

g = gin porameter

To: Andrew Taylor/Saro/OCLI@OCLI cc: "Lothar Brehm"

*brehm.fcj@t-online.de>

Subject:

Andrew:

Following up our recent telephone conversation, to follow is the information regarding the fiber we can provide. This is the closest we can come to your original requirements until our new process is up and running. At that time we may be able to produce the tubes required (fluorine doped) which would give you the on-axis refractive index close to the refractive index of SMF-28.

- 1.. Maximum refractive index difference between cladding and center of the core of nearly 9*10^-3 is o.k.
- 2.. Based on undoped cladding material the on-axis refractive index is essentially higher than the refractive index of SMF-28.

 Pricing and delivery will be:

Price: \$ 5.00/meter

Minimum Order: 1,000 meters Delivery: 8 - 10 weeks ARO

After review, please let me know if you require any additional information and how you would like to proceed.

Regards,

Bob Sebesto
Director, Sales and Marketing
FiberCore, Inc.

Andrew Taylor 07/11/2000 02:13:16 PM

To:

"BOB SEBESTO" <BOBSEBESTO@prodigy.net>

CC:

Bob Hallock/Saro/OCLI@OCLI, Markus Duelli/Saro/OCLI@OCLI

Subject: Re: Fiber Specifications 7/11/00

Bob,

Thank you for the technical feedback, pricing and lead time information regarding the requested set of fiber specifications. Based on your email below, we have modified our original specs to not match the on-axis SMF-28 index. I understand that FiberCore may be able to match the on-axis SMF-28 index. when your newly patented process to make depressed tubes in-house becomes available. Until then, we would like to get fiber drawn with the following specs (see attachment below for printable version):

Optical Specifications

 $g = 2.70 +/- 0.01 \text{ mm}^{-1}$

On-axis refractive index to match as closely as possible that of SMF-28 fiber (see attachment for index profile)

Dimensional Specifications

Core Diameter: 80 micron ± 2 micron Cladding Diameter: 125 micron ± 1 micron Core-Clad Concentricity: < 2 micron Cladding Non-circularity < 2% Core Non-circularity < 5% Coating Geometry: 245 micron ± 5 micron Fiber Length: > 10 m lengths

Mechanical Specifications

Proof Test: 0.7 GPa

Standard Duel Coating Draw

FiberCore Specifications_

Please let me know if we need to make any additional modifications, or if I can issue a PO. Best Regards, Andrew

OCLI Proprietary

"BOB SEBESTO" <BOBSEBESTO@prodigy.net> on 07/11/2000 12:35:41 PM

"BOB SEBESTO" <BOBSEBESTO@prodigy.net> on 07/11/2000 12:35:41 PM

To:

Andrew Taylor/Saro/OCLI@OCLI

CC:

"Lothar Brehm" brehm.fcj@t-online.de

Subject:

Andrew:

Following up our recent telephone conversation, to follow is the information regarding

the fiber we can provide. This is the closest we can come to your original requirements until our new process is up and running. At that time we may be able to produce the tubes required (fluorine doped) which would give you the on-axis refractive index close to the refractive index of SMF-28.

- 1.. Maximum refractive index difference between cladding and center of the core of nearly 9*10^-3 is o.k.
- 2.. Based on undoped cladding material the on-axis refractive index is essentially higher than the refractive index of SMF-28.

 Pricing and delivery will be:

Price: \$ 5.00/meter

Minimum Order: 1,000 meters Delivery: 8 - 10 weeks ARO

After review, please let me know if you require any additional information and how you would like to proceed.

Regards,

Pob Sebesto Director, Sales and Marketing FiberCore, Inc.

Andrew Taylor 07/11/2000 11:07:51 AM

To:

Bob Hallock/Saro/OCLI@OCLI, Markus Duelli/Saro/OCLI@OCLI, Don Friedrich/Saro/OCLI@OCLI, Bryant Hichwa/Corporate/OCLI@OCLI

CC:

Subject: FiberCore Update with cost and lead times

Team,

Below is the correspondence to date we have had with Robert Sebesto of FiberCore. In the most recent email below he indicates they can/will draw fiber for us:

- 1) Adjustments on index profile we asked for that causes a Δn on axis (the supply of depressed clad tubes appears to be limited)
- 2) \$5 a meter, 1 km minimum
- 3) 8-10 week lead time

We can do 1 of 3 things:

- 1) Buy as is.....
- 2) Re-send GRIN profile without asking for a depressed index cladding, but matched on axis
- 3) Look for a different supplier (only other company I am aware of that will do custom orders was SSOC, Spectran Specialty Optics Corporation, which is now owned by Lucent and thus may not be willing to do such small orders these days; I do have a contact inside which I have not pursued in Mike O'Connor at (860) 678-6534)

I recommend we try #2 above ASAP. Additionally, we should keep our correspondence going with Sebesto for future business as he believes they will be able to do our original GRIN profile with their newly patented process (which comes online in a few months) using a F doped cladding. Please keep in mind this chunk of business is small potatoes for FiberCore (or any other fiber manufacturer). Robert indicated to me they will do 12 million in sales this year with another 20 million on the books that they don't have the capacity for......

Regards, Andrew

--- Forwarded by Andrew Taylor/Saro/OCLI on 07/11/2000 10:34 AM -----

"BOB SEBESTO" <BOBSEBESTO@prodigy.net> on 07/11/2000 12:35:41 PM

To: Andrew Taylor/Saro/OCLI@OCLI

Subject:

Andrew:

Following up our recent telephone conversation, to follow is the information regarding the fiber we can provide. This is the closest we can come to your original requirements until our new process is up and running. At that time we may be able to produce the tubes required (fluorine doped) which would give you the on-axis refractive index close to the refractive index of SMF-28.

- 1.. Maximum refractive index difference between cladding and center of the core of nearly 9*10^-3 is o.k.
- 2.. Based on undoped cladding material the on-axis refractive index is essentially higher than the refractive index of SMF-28.

Pricing and delivery will be:

Price: \$ 5.00/meter

Minimum Order: 1,000 meters Delivery: 8 - 10 weeks ARO

After review, please let me know if you require any additional information and how you would like to proceed.

Regards,

Bob Sebesto Director, Sales and Marketing FiberCore, Inc.

"BOB SEBESTO" <BOBSEBESTO@prodigy.net> on 06/27/2000 11:29:18 PM

To: Andrew Taylor/Saro/OCLI@OCLI

cc: "Dr. Wolfgang Haemmerle" <haemmerle@fibercore.de>, "Lothar Brehm" <bre>brehm.fc;@t-online.de>

Subject: Re: Custom preform/fiber for OCLI

Andrew:

I am traveling with our V.P. of Operations this week and I will review the new specification with him tomorrow and let you know if any additional changes need to be made or discussed.

Regards,

Bob Sebesto

---- Original Message ----

From: Andrew Taylor
To: BOB SEBESTO

Cc: Chuck DeLuca ; Lothar Brehm ; haemmerle@fibercore.de ; John Olson ; Bob Hallock

Sent: Tuesday, June 27, 2000 4:28 PM Subject: Re: Custom preform/fiber for OCLI

Robert,

The attached information is considered OCLI propietary and is submitted pursuant to the NDA between CCLI and FiberCore, Inc. dated 6/15/00. Please review the latest set of specifications (given in the FiberCore Specifications_1.doc below) and communicate back to us:

- 1) What specs can/can ,t be met; please suggest changes to specs which can be met when possible to do so
- 2) Please provide us with an estimation of cost; formal RFQ not necessary at this time
- 3) Please provide us with estimated lead times

Please contact me directly at (707) 525-7177 if you have any questions.

Best Regards, Andrew

(See attached file: FiberCore FAX3.doc) (See attached file: FiberCore Specifications_1.doc)

PS I also sent you a 2 page eFax with the aforementioned information:

"BOB SEBESTO" <BOBSEBESTO@prodigy.net> on 06/24/2000 09:22:32 PM

To: Andrew Taylor/Saro/OCLI@OCLI

cc: "Chuck DeLuca" <FBCE2CDL@aol.com>, "Lothar Brehm" <brehm.fcj@t-online.de>

Subject: Fw: Special preform/fiber for Olli

Andrew:

To follow is the response from our plant regarding the special preform you requested. As discussed, we may be able to produce the required tubes with our new process, but this would not be available until late this year. If you would like to make any changes to your requirements which could possibly enable us to provide preforms, please let me know and I will pass it on to the right people.

In the interim, if you would like a copy of our standard multimode preform specification, please advise and I will fax it to you.

Sincerely,

Bob Sebesto Director, Sales and Marketing FiberCore, Inc.

---- Original Message ----From: Wolfgang Haemmerle

To: Charles DeLuca Cc: Mohd Aslami

Sent: Monday, June 19, 2000 E:52 AM Subject: Special preform/fiber for Olli

I see the following problem for making such a special fiber:

- a.. based on the sent picture the needed index difference for the graded index profile is nearly 9*10^-3
- b.. the core/clad index difference for the SMF-28 is nearly 4.5*10^-3 (standard SMF with only Ge doped core and undoped cladding, index difference core/clad nearly 4.5*10^-3).
- c.. that means the cladding should have for the special GRIN fiber a negative index difference of $(9*10^-3 4.5*10^-3 4.5*10^-3=0)$.
- d. such a high index depression of -4.5*10^-3 is impossible to make with Standard-MCVD, if possible with a improved MCVD only a grave with a narrow width

can be made.

e.. such low index substrate tubes are at this time not available (only F-320 with a index difference of $-1.2*10^-3$).

f.. no tolerances are known for the profile parameters, the core diameter, the index difference

In the meantime it would be desireable to get the unknown tolerances for the different GRIN-fiber parameters.

Best Regards,
Wolfgang Haemmerle

Research & Development Tel: +49-3641-610 160 Fax: +49-3641-610 101

email: haemmerle@fibercore.de

FiberCore Jena GmbH

- att1.htm

FiberCore Jena GmbH

INFOGLAS

Göschwitzer Str. 20, 07745 Jena

Tel.:

49 - 3641 / 6 10 140

E-Mall: pinter@fibercore.de

Fax: 49 - 3641 / 6 10 101

			•
Fax:	001 707 525 7846	Date:	15.09.00
То:	Optical Coating Laboratory, Inc. Santa Rosa / USA	From:	Hans-Freimut Pinter Sales
Attn.:	Mrs. Lee Anne Seaman	Сору:	Bob Sebesto
Ref:	Dispatch details	Pages:	1+1

Dear Mrs. Seaman,

we would like to announce the dispatch of one box with optical fiber in accordance with your PO 109002 dated 07/19/2000 by FEDEX today. Please refer to the following tracking No.:

8214 0439 9191

Please find the characterization data of the used preform together with the fiber refractive index profile enclosed.

We thank you very much for the order, hope to continue our technical and commercial relation.

Best regards

Hans-Freimut Pinter

Sales

185 TH SZLICE	PROVE	2 2 H = 23.				Work continued to Page
BOOK NO	7#15 POINT 7	1	3.5.			
Work continued from Page	5 THAT A TOTAL			2		SCENTIFIC BINDERY PRODUCTIONS CHICAGO 60605 MADE IN 115A SIGNATURE
		(1. See.)		\$	8	38
5 · · · · · · · · · · · · · · · · · · ·			2			
5. 4 meter 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	5.52 d	SAmp 77 all	**************************************			•

PROJECT NO. BOOK NO W SPLICI

86

OCLI PROJECT NO Spot Size Medsurement PROJECT NO BOOK NO Toth continued from Page	
3/4 pitch CMMF-5MF, 80cm	ore, opties Beam radius
fihir# length #fringes Dz	S . Sp. T Size
2600 10 2590 10	1.16 um 10 5.36 10 5.30
cospet size = 10.61 um - continued on next page-	
FATURE A	Work continued to Page 30
Andrey Taylor Onis	9/21/00

OCLI

PROJECT	MO.	19	8	8	9
to but amy and are a	and the same of	• •		_	•

المعالم المساسون	oot Size N		ment	BOC	N NO		30	: :	Roge	radius	
iber#	GRIN	मिरी	190.	Δ ₂	:	0.		.	at	waist	
# 8	2158	um 2		426		233		10		112	•
				43 7		231		10	, , , , , , , , , , , , , , , , , , , ,	\$7	C
		10	Managed the section of the court of the	313.3	1	232	\$	10	4	.97	C
The second second second second		64 .un 5.65 41	i i	S = 3						garage de la company de la com	- C
o S	pot size	3 9	1.94 1	1m	ž 0.	60 L	//4				C
9	21852	um I	3	833		188		10		5-08	G
			3	834		189	*	10	- 12,4 21 mg .	5.10	G
	Annual of the state of the stat			872	440	1895	-	10		.06	G :
1w, =	5.29	Aw.	= 2	3.23		. 5 =	500	er.		en e	G
1 500	t size =	10.1	Lum.	recen	344	in Sedin	• I may be consumpted opposite the consumpted opposite				e:
10	1930-41	n	2	X54	a	723		1308	10	The same of the same and the same of the s	G
American American			2	6 X8	t instruction disposition.	713 704	u. fua morar j	1316	10	7.06	C
					2713	***************************************	The state of the s	07.667	10	7.02	
Jw, =	8-50 um	sw.z	= 9	50 um		1	um	MANAGE AND STREET			- C
	spot siz	, =	14.04	um	4	0.43	ym				e e
	~ contin		-	- diagram			and the second s	A			G.
W. ICS WIPT MO	posticky checked s					A A A A A A A A A A A A A A A A A A A	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	k contin	ued to	Page 3 /	
L. L	Andrew	Tac	207	······································	-page-page-page-page-page-page-page-page	us a-sseigen ein eeften maanaa	-			9/21/	100
CLIS OTO AT	O UNUE ISTOCK		Julia	***************************************	i .iiv.	erns in wine apolice concension that the	na kirangé ané inganapananangai kang	and account to the state of the	restance of the state of the st	04.5	

	PROJECT	NO.	1	9889
11	 1			

	TITLE Sp	ot size Me	asure in e	int sook	MO. 1130		
	aunius hovi	é from Page 3	:	*		:	en e
	fiber #	6RIN	# fringes	٥,	0,	· · · · · · · · · · · · · · · · · · ·	Beam radius
		Levigth				;	at waist lum
	11	1938	0	1724	598	8	7.01
				1693	620	8	7.36
				1704	605	8	7. 18
3			,-	1707	607.667	8	7.18
	$\Delta w_{i} = 1$	1.24, DW-	= 15.7	2. 45 = 50	um		The second secon
	Spol	5/20 =	14.36.un	1 2 07	941		The same and the s
		and the same of th					
	tNote: du	e to small	D, 1	IFO ceme	asuring #		, , , , , , , , , , , , , , , , , , , ,
-u ;		1938	0	2280	996	10	7.69
				2263	984	10	7.72
7				2273	1003	10	7.77
			2	272 9	194,33	10	7.72
į	1 Ju =	7-61 , SW	, = 8.54	1 15:50	ym		
)	100 - 100 00 - 100 000 00 00 00 00 00 00 00 00 00 00 0			and the same of the same of the same		· · · · · · · · · · · · · · · · · · ·	
3	spot si	ze = 15.4	4 um =	0.52 un		· fa · · · · · · · · · · · · · · · · · ·	3
3				. AC. 1211			
	#12	1934	2 3	3058 1	846 11		8.14
3)			3	1060 1	810 10		.89
3	Aw, = 18.13	/1)) &	m 3	070 1	324 10		7.92
)	$\Delta i v_z = 6.4$	morning for a come from the time was a consequent	306.	2.67 18	26.67 10	· \$4,444.000 is \$1,444 \$1,444.000	
	spot :	s/ze =	487	15:974	us 1 0.7	120 45	
	2 71 1			^			
3	Note	e Broin	had a t	unny sh	ape		
	A Change was the	UNS CHICAGO 60332					
-31			!		The second secon	ork continued	to fage 32
3	And Marines	drew T	ay/b-	7			4/21/00
Λ.			1.7	•			

JANG HEIDERSTOND BY

30

1 11 7

S Optical Sub-Assembly

Manufacturing Process and Optical Performance

iitation Beam Size Lim

manager () Angustan

Electrostatic MEMS mirror actuator

Minimum fiber trench

depth: 81 µm

diameter has to be larger than 3.54 x beam waist aist at mirror $(1/e^2$ -intensity radius) = 9.9 µm For excess loss < 0.05dB mirror ⇒ maximum projected beam w

MEMS Product Developme

Соптрапрывления

Optics Solution

- custom Grin fiber assembly fibers) Single mode fibe (30 degree angle between

MEMS Product Development

Company Private

Optics Solution - Con't

Gradient index profile:

其中的**有效**的 经工程 化三氢基子

$$n(r) := n_0 \left(1 - \frac{g^2}{2} \cdot r^2 \right)$$

$$g = 2.7 \text{ mm}^{-1}$$

 $n_0 = 1.469 \text{ (a) } \lambda = 1.55 \mu\text{m}$

Return loss (4 degree angle cleave): 76 dB without AR 82 dB with 1% AR

MEMS Product Development

Company Private

Working Distance Fiber-to-Fiber

(30 degree angle between fibers)

126 µm diameter fibers touch at a working distance of 480 µm ⇒ fiber -to-fiber working distance >480 µm

MEMS Product Development

Company Private

Fabrication Tolerances

A CONTRACTOR OF THE PROPERTY O

(30 degree angle between fibers) Single mode fiber - custom Grin fiber assembly

coupling loss [dB]

MEMS Product Development

Alignment Tolerances

rs) Single mode fiber - custom Grin fiber assembly (30 degree angle between fibe

Company Private

JDS Uniphase

MEMS Product Developme

Loss Budget Calculations

The second secon

Assumptions:

- 1) Errors (lateral, axial misalignment, mirror verticality,...) are normally distributed 2) Errors are independent
 - Errors are independent

loss with standard deviations ⇒ distribution of insertion

MEMS Product Development

Loss Budget

Single mode fiber - custom Grin fiber assembly

Fiber misalignment

stdev of insertion loss

$$\Rightarrow$$
 0.013 dB

MEMS mirror losses

- mirror verticality:
$$90^{\circ} \pm 0.5^{\circ} (\pm 0.25^{\circ})$$

$$\Rightarrow$$
 < 0.001 dB
 \Rightarrow 0.585 dB (0.148 dB)

- SMF-Grin fiber core alignment:
$$\pm 1 \text{ } \mu\text{m}(\pm 0.5 \text{ } \mu\text{m}) \Rightarrow 0$$

Total loss =
$$\sqrt{\sigma_{axial}^2 + \sigma_{lateral}^2 + \sigma_{rotational}^2 + \dots + H_{gold} + H_{Fresnel} = 0.83 \text{ dB} (0.4 \text{ dB})$$

MEMS Product Development

Optics Sub-Assembly

MEMS Product Development

. 200

Optics Sub-Assembly Work Instructions

1. ABOUT THIS DOCUMENT

1.1. PURPOSE

This document identifies the equipment, establishes the process and details the validation of optical sub-assemblies for MEMS 1x2 and 2x2 switch construction.

1.2. SCOPE

This procedure applies to the construction and validation of 250 μm fiber-based optical subassemblies for use in MEMS switches.

1.3. REVISION CONTROL

When any part of this procedure requires amendment, the document shall be reissued in its entirety. Requests for changes shall be addressed to the MEMS development Design Control Board (DCB).

ORIGINATOR	Bob Hallock Leland Black
REASON	Draft Draft
DATE	05 Oct 03 Nov 00
REV	1 1

MEMS Product Development

Optics Sub-Assembly Work Instructions

1. PROCEDURE

- Perform 'Arc Check' with a piece of SMF and CMMF at the beginning of each shift
- 1.2. Cut 6 inch piece of CMMF
- 1.3. Strip 2 inches of buffer from CMMF
- 1.4. Place into fiber holder
- 1.5. Clean CMMF using ultrasonic cleaner
- 1.6. Place #1 spacer block to left of fiber clamp, Ericsson cleaver
- 1.7. Mount fiber holder to left of cleaver (left of spacer block)
- 1.8. Center fiber in guide on right cleaver clamp
- 1.9. Secure right cleaver clamp
- 1.10. Do Not Close left cleaver clamp
- 1.11. Apply tension (lever)
- 1.12. Cleave fiber

MEMS Product Development

Optics Sub-Assembly Flowchar

MEMS Product Development

JDS Uniphase
Company Private

Fig-1

fiber

Optics Sub-Assembly Layout

- Mount fiber in small bobbin; leave two pigtails exposed
- End customer removes the bobbin
- fiber using thermal mechanical strippers Strip single mode
- se distance from end of strip. Use lock to locate this cleave. Cleave fiber preci ground 416 SS bl
- Fuse to custom multi mode grin fiber using cladding fiber alignment.
- Index (?) and angle cleave multi mode. Use a second larger 416 SS block to achieve grin length.

Optics Sub-Assembly Con't

- a GO / NO GO test station Test optics with
- If optics are unacceptable, rework.
- Load fiber into AR coating tooling.
- Coat fibers
- Retest optics
- until assembly into chip. Store in dry box

Multimode 'Grin' Optic to Fusion Splice SMF28 Fibe

- Cladding alignment between SM and MM fiber.
- Fiber clamp is along for the ride during splice step.

MEMS Product Development

eave Fiber nbly Tooling Optical Assen

Clamp

Spacer

Block

Stainless steel spacer block and tension cleaver

> Interferometer instrumer inspect cleaved surface

Direct Optical Research Company

Company Private I JDS Uniphase

MEMS Product Developme

Optical Sub-Assembly Cycle Times

- ptics including optical inspection. 3 minutes per o
- Does not include yield. Currently ~80% for fiber cleave, fiber anneal and length.
- optical GO/NO GO test for insertion just optical inspection with DORC. **Need to develop** loss. Currently
- Any yield loss others then those listed above should be systematic errors, not random.
- Example: core concentricity, 'GRIN' profile change.

Splice bump

HighWave Gradissimo purchased fibers. Would not fit into fiber trenches due to bump at splice location.

- Initial internally manufactured optics exhibited similar problem.
- Current solution: during fusion arc 'pull' on fibers to reduce bump.
- Future addition: add relief area to sides and bottom of fiber trench to assure t with splice joint. there is no contact

MEMS Product Development

Cleaver Comparison

MEMS Product Development

1 IDS Uniphase

Company Private

'Off the Shelf' 50µm Multimode GRIN Fiber Standard

a special of comments.

MEMS Product Development

Length 'Grin' Fiber Cleave Standard MIM

SMF-MMF GRIN Length

MEMS Product Development

I JDS Uniphase

Standard MM Fibe Free Space Insertion Loss Transmission

.....

• No AR coating on these optics

MEMS Product Development

J. I JDS Uniphase

iber Return Loss Standard MIM

No. of the second of the secon

MEMS Product Development

AR Coating

- Initial tooling near complete.
- hours, coating chamber only (no Cycle time 1.5 to 2 loading).
- ies per set of tooling. 78 optical assembl
- capable per coating run. 4 or 6 tooling units
- ur to load complete coating chamber. ical assembly loading time 10 sec per part opt estimation.

After AR Coating Return

Before and After AR Coating A Return Loss SMF-MMF MEMS Optics

I I JDS Uniphase

Company Private

MEMS Product Development

Temperature Dependant Insertion Loss Fiber - Standard MIM

Chip ID	Delta Insertion	Loss	Between -5°C and 70°C (dB)
020-E1		-0.10	
025-E1		-0.28	
J10-E1		-1.68	
K20-E1		90.0-	
P15-F1		-0.03	
K15-F1		-0.03	
J15-F1		-0.23	
P20-F1		90.0-	
E10-E1		-0.03	
SW1		90.0-	
Average	-0.26	J. / gp	0.003
Average w/o J10-E1	-0.10	D₀ / gp	0.001
The Michael	-0.10	2 / 20	1

 Initial testing indicates a temperature stable design. Additional work
to be performed
to understand
to understand
outlaying points

MEMS Product Development

n Multimode GRIN Fiber Custom 80µr

1 IDS Uniphase

Company Private

MEMS Product Development

- CMMF ving Difficulties Straight Clea

Qualitative picture of difficulty with cleave.
Required 'GRIN' length = ~800µm.

• Example of Good

Cleave:

Example of Bad

MEMS Product Development

Annealed CMMF Optics

- flat, smooth cleave surfaces, we had anneal the CMMF in the area of the 'GRIN' cleave. In order to achieve
- ram setup for 4 'cleaning arcs' to be energy. Fusion splicer prog used as the anneal
- 500 µm is the maximum single input movement for the fusion splicer.
- To anneal closer to cleave length would require additional operator inputs.

MEMS Product Development

Modeling of CMMF with center dip

The second secon

Refractive index profile

refractive index dip: 6 µm diameter

$$\Delta n = -0.0011$$

best working distance: ideal WD + 60 µm

insertion loss:

- ideal infinite Grin profile: -0 dB
- with 80um core diameter: -0.038 dB
- with center dip: -0.226 dB

MEMisional insertion loss: 0.188 dB

Far-field intensity distribution

Mode profile at receiving SMF
—— ideal —— with index dip

Modeling of CMMF with center dip

Company of the Compan

Refractive index profile

Far-field intensity distribution

refractive index dip: 6 µm diameter

 $\Delta n = -0.0011$

refractive index profile shifted by 1 µm off center

JDS Uniphase

Company Private

MEMS Product Development

Modeling of CMMF with center dip

The state of the s

Refractive index profile

refractive index dip: 3 um diameter

 $\Delta n = -0.0011$

best working distance: ideal WD + 16 μm

 \Rightarrow additional insertion loss: < 0.045 dB

refractive index dip: 6 μ m diameter $\Delta n = -0.0004$

best working distance: ideal WD + 24 µm

refractive index

⇒ additional insertion loss: < 0.05dB

MEMS Product Development

= 15.39 µm +/- 1.52 µm CMMF-SMF 3/4

Beam MFD at D, Spot Size

MEMS Product Developme

CMMF-SMF 3/4 Pitch Optic Beam MFD at D₂ Spot Size = 15.39 µm +/- 1.52 µm

I JDS Uniphase

MEMS Product Development

CMMF-SMF 1/4 Pitch

heory comparison Experiment

2000 1500 Grin length [um] 1000 500

Target values:

(30 deg)

 $g = 2.85 \text{mm}^{-1}$

 $g = 2.95 \text{mm}^{-1}$

grin length: 770um,

WD = 550 um, spot size =

Requested

Delivered

grin length: 740um, WD = 550um, spot size = 17.4um

J JDS Uniphase

MEMS Product Developme

CMMF 'Grin' Lengths

Have made a few other

		GRIN Length
ID	Type	(mm)
1	750-C-CMMF-SMF-80	757.1
2	750-C-CMMF-SMF-80	760.1
3	750-C-CMMF-SMF-80	750.2
4	750-C-CMMF-SMF-80	754.0
5	150-C-CMMF-SMF-80	743.0
9	150-C-CMMF-SMF-80	749.6
7	750-C-CMMF-SMF-80	753.0
8	750-C-CMMF-SMF-80	756.5
6	750-C-CMMF-SMF-80	7.83.7
10	750-C-CMMF-SMF-80	755.1
		GRIN length
	Average:	753.2
	Stdev:	4.76
	Max:	760.1
	Min:	743.0
	Range:	17.1

consistency as shims

sets of optics did not

exhibit the same

consistency. Many

sets with similar

were used to vary the

grin length and this

resulted in optics not

optimized for

consistent grin length.

Company Private

MEMS Product Development

Coupling Fiber to Fiber CMMF Optical in V Groove

850 mm 'GRIN' fiber

MEMS Product Development

Coupling Fiber to Fiber on't CMMF Optical in V Groove

Peak value

-0.64 -0.94 -0.75 -0.5 -1.6 -1.3 6.0-**-0.6 -0.9** -1.2 -1.2 -0.8 0.31 -0.7 7. Range Stdev.

Company Private

MEMS Product Development

n 'GRIN' fiber

715 µr

Coupling Fiber to Fiber CIMIMF Optical in Chip

OCTI-17(OCLI-170B Epoxy	Fully cured in
# QI	In-chip without adhesive	chip
C1	e/u	-1.11
B6-08	-1.03	-1.11
B6-D12	82.0-	89.0-
B6-G08	-1.13	1.01
B5-L04	-0.82	n/a
Avg.	-0.94 dB	-0.98 dB
Stdev.	0.17 dB	0.20 dB
Range	0.35 dB	0.43 dB

- OCLI-170B epoxy use discontinued due to low adhesion strength.
- Coupling loss greater then next slide due to being initial coupling work not due to epoxy.

MEMS Product Development

Soupling Fiber to Fiber CMMF Optical in Chip Con't

OCLI-46	OCLI-46A Epoxy	Fully cured in
# QI	In-chip without adhesive	chip
B5-F04	-0.62	95.0-
B6-D04	-1.12	-1.2
B5-F08	-0.83	62.0-
B5-C08	-0.74	82.0-
B5-C04	-0.77	62'0-
B5-F12	-0.85	88.0-
B2-E15	-0.71	86.0-
B3-J15	-0.61	62.0-
B1-E15	-0.59	9.0-
Avg.	-0.76 dB	-0.82 dB
Stdev.	0.16 dB	0.19 dB
Range	0.53 dB	0.64 dB

- OCLI-46A epoxy used due to increased adhesion strength and higher Tg.
- Coupling loss better then previous slide due to improved optical sub-assemblies and further chip assembly experience.

MEMS Product Development

Dependence - CMMF Optics emperature

	Delta IL over	r Temperature (-5°C to 70°C)	re (-5°C to	(D.0Z
	Cycle 1	Cycle 2	Cycle 3	Cycle 4
E10-E1	0.03			
P20-F1	90.0			
C1	0.49	0.07	0.08	
B6-08	0.20	0.16	0.15	0.16
B6-D12	0.09	0.07	0.08	
B6-G08	0.11	0.11	0.13	
B5-L04	0.11	0.11		
B5-F04	0.10	0.10	0.12	
B5-F08	0.40 *	0.10	0.05	
B5-C04	* 06.0			
B5-F12	0.10	60.0		
B2-E15	0.13	0.12		
B3-115	0.07			
B1-E15	0.04			
Avg.	0.20 dB	0.10 dB	0.10 dB	0.16 dB
Stdev.	0.24 dB	0.03 dB	0.04 dB	
Range	0.87 dB	0.09 dB	0.10 dB	
0	Overall Average	0.15 dB		
Overall	Overall Average w/o *	0.11 dB		
	* believed these parts were incorrectly loaded into	arts were incorr	ectly loaded i	into
	temperature chamber, fiber pinched in port inducing excess loss and instability	amber, fiber pinch d instability	ed in port ind	ucing
MEMS	Product	Development	14	
	20000		2	

• In addition:

1 part build andtemperature testedon bench with curein place cartridgeheater:

• 0.04 dB IL change amb to 150°C (cure temp)

• 0.01 dB IL change amb to 70°C

JDS Uniphase

Cleave Angle Return Loss

lus AR-coating results in 65dB return loss 3-deg angle cleave pl

MEMS Product Development

Splice Return loss CMMF

	₽	Measurement	P1	P2	S	ပ	RL
splice 1A	~	26.70	57.90	1.20	1.96	59.86	59.52 dB
=	7	26.60	58.00	1.40	1.19	59.19	
splice 2A	~	26.70	57.90	1.20	1.96	59.86	64.01 dB
=	7	57.70	57.90	0.20	10.26	68.16	
splice 3A	_	55.30	57.90	2.60	-2.15	52.75	55.75 dB
=	7	55.30	57.90	2.60	-2.15	52.75	
splice 4A	$\overline{}$	26.70	57.90	1.20	1.96	59.86	61.52 dB
=	7	57.30	57.90	09.0	5.28	63.18	
		Average	60.20 dB				

I JDS Uniphase

MEMS Product Development

Angle Cleaving

							•			_								
	Angle	3.63°	3.63°	3.48°	3.78°		3.33°	3.78°	3.48°	3.78°	3.48°	3.33°	3.48°	3.56°	0.17°	3.78°	3.33°	0.45°
	Fringes	24	24	23	25		22	25	23	25	23	22	23	23.5	1.13	25.0	22.0	3.0
GRIN	Length (um)	765.5	772.4	756.5	765.5	733.9	746.8	6.097	766.5	757.5	745.5	759.1	757.5	757.3	10.71	772.4	733.9	38.5
	Type	750-C-CMMF-SMF-80	Average:	Stdev:	Max:	Min:	Range:											
	Ω	_	2	3	4	5	9	7	8	6	10	11	12				,	

- Angle ≠3.0° because 1 fringe = 0.151° rather then previously believed 0.125°
- New target fringe count = 20
- GRIN length inconsistency due to shims used to achieve ~760µm length

MEMS Product Development

Optics Reversibility

		Signal	Signal	
PART#	Chip ID	Input/Output (dB)	Output/Input (dB)	Delta
1	C1	-1.12	-1.09	-0.03
2	B5_L04	-0.83	-0.85	0.02
3	B3_J15	62.0-	22.0-	-0.02
4	B2_E15	-1.05	-1.04	-0.01
2	B5_F12	-0.92	-0.93	0.01
9	B5_F04	-0.64	-0.62	-0.02
7	B1_E15	9.0-	69.0-	0.03
8	B6_G08	-0.91	-0.93	0.02
	Avg.	-0.86	-0.86	0.00
	Stdev.	0.18	0.17	0.02
	Range	0.52	0.47	90.0

- Tests indicate that there is not a issue related to the reversibility of the optical sub-assembly
- Overall loss number too high, later data indicates better and more consistent coupling.

MEMS Product Development

id to reduce etalon effects mission, with index PDL in transi matching flu

Test ID	W.D.	I.L.	P.D.L.
_	~ 615	1.64	0.02
2	~ 750	1.40	0.02
3	006 ~	0.57	0.03
4	006 ~	0.46	0.02
2	~ 650	0.69	0.02
9	~ 750	99.0	0.03
7	~ 650	0.61	0.02
8	~ 650	0.49	0.04
	Avg.	0.82 dB	0.02 dB
	Stdev.	0.45 dB	0.01 dB

- PDL of optical subassembly appears to not be an issue.
- Need to verify with actual AR coated parts.
- PDL effects due to optical bonding to chip unknown at this time, as well as PDL off the mirror.

MEMS Product Development

Engineering Tests Optics

The first control of the control of

Enginee	asel buil	Engineering lests - Werrs - Optics			
	Index				
Test#	Date				
Number:	Started:	Trtle:	By:	status	Key word 1
1	30-May-00	IMT 2x2 Optical Power Variation over Temperature	70	Complete	Insertion Loss
2	6-Jun-00	Repeat IMT 2x2 Optical Power Variation over Temperature	TO	Complete	
3	12-Jun-00	IMT 2x2 Optical Power Variation over Temperature (6 Neuschatel switches)	TO	Complete	
4	13-Jul-00	Gradissimo Fiber diameters and lengths using Wyco (Working distance = 600 um)	E	Complete	Gradissimo
5	18-Jul-00	Gradissimo Fiber diameters and lengths using Wyco (Working distance = 800 um)	R B	Complete	Gradissimo
9	18-Jul-00	Return Loss of Single Mode to Multi Mode Splice	EB ET	Complete	Return Loss
7	6-Jun-00	IMT Nueschatel Asemblied 2x2 Insertion Loss	(LB	Complete	Insertion Loss
29	24-Oct-00	Grin Length Study, Tension Setting of Tension Cleaver	JC, LB	writing up	Gin Length
8	25-Oct-00	Insertion Loss over Temperature using CMMF (C1.0 program)	DM	Complete	Temperature
81	6-Nov-00	Transmission study, consistency of signal for input and output	DM	Complete	Transmission
83	7-Nov-00	Insertion Loss over Temperature using CMMF (C1.2 program)	DM	In Process	Temperature

MEMS Product Development

vs. Wavelength Insertion Loss Assumptions

• mode field radius w₀ of SMF given by:

$$w_0(\lambda) = a \cdot \left(0.65 + \frac{1.619}{V^{1.5}} + \frac{2.879}{V^6}\right)$$

$$V(\lambda) = \frac{2\pi}{\lambda} a \cdot NA$$

with a = $4.1 \mu m$, SMF-28 core radius; NA = 0.12, SMF-28 numerical aperture

dispersion of on axis refractive index n₀:

$$n_0(\lambda) = C_0 + C_1 \lambda$$

$$g(\lambda) = \sqrt{-2 \cdot \frac{D_0 + D_1 \lambda + D_2 \lambda^2}{n_0(\lambda)}}$$

This model does not take into account any AR-coating or absorption.

MEMS Product Development

Wavelength Insertion Loss Parameters

Wavelength range: 1250 - 1650 nm

Mode field diameter: 8.85 - 11.05 µm,

On-axis refractive index n₀: 1.4836 - 1.4788,

Grin parameter g (≡rootA): 2.705 - 2.699 mm⁻¹

 $2w_0(1310) = 9.13 \mu m, 2w_0(1550) = 10.42 \mu m$ $n_0(1.55) = 1.48$

 $g(1.55) = 2.7 \text{ mm}^{-1}$

MEMS Product Development

vs. Wavelength Insertion Loss Results

The state of the s

3

•7

Optimum working distance for λ=1.55μm

wavelength [µm]

MEMS Product Development

Maximum insertion loss change over 1250 - 1650nm wavelength range: ΔIL < 0.005dB

Flatness highly dependent on misalignments (as seen in the two figures below).

wavelength [µm]

J IDS Uniphase

Actual Wavelength Dependence

MEMS Product Development

JDS Uniphase

JOS Uniphase

Optical-Chip Assembly MEM

Current Process

Assembly Process Current Optical

- transmission in fiber trenches without epoxy Align fibers in
- Record optimum alignment insertion loss.
- Remove fibers and apply epoxy
- fer from glass slide to fiber. Epoxy trans
- Align fibers
- UV tack
- en for 150°C cure for 1/2 hour. Transfer to over
- re in place cartridge heater being made Parts for cu

Assembly pictures Current Optica

MEMS Product Development

I JDS Uniphase

Assembly pictures con' Surrent Optica

MEMS Product Development

Assembly pictures con' Current Optica

MEMS Product Development

I JDS Uniphase

Optical Assembly Cycle Times

- 10 minutes for set of optics in transmission
- Includes baselining equipment, splicing in optics, aligning in chip w/o and w/ epoxy, & UV cure.
- Angle cleaved optics will likely have negligible effects on cycle time as current optics are rotationally aligned.
- 1x2 and 2x2 switches will result in 2-3 time increase in cycle time.
- cle time for actual switch ~ 30 **Estimated** cy minutes

/ I JDS Uniphase