Object Detection in Al2Thor Environment

Lecturer: Dr. Nguyễn Đỗ Văn

Team members:

Hoàng Giang Trần Minh Đức Đỗ Đình Hiếu

Table of content

- I. Introduction
- II. YOLO
- III. RetinaNet
- IV. Training and inference tricks

I. Introduction

Why object detection?

- A crucial task in Al
- Pre-trained models availability
- Large amount of dataset for training and evaluation
- Large amount of techniques for improving accuracy

II. YOLO

1. Why YOLOv3?

- Fast, real-time
- Acceptable accuracy

1. Why YOLOv3?

"You Only Look Once"

Figure 1: The YOLO Detection System. Processing images with YOLO is simple and straightforward. Our system (1) resizes the input image to 448×448 , (2) runs a single convolutional network on the image, and (3) thresholds the resulting detections by the model's confidence.

• Darknet-53 (vs. 19 in YOLOv2)

Backbone	Top-1	Top-5	Bn Ops	BFLOP/s	FPS
Darknet-19 [15]	74.1	91.8	7.29	1246	171
ResNet-101[5]	77.1	93.7	19.7	1039	53
ResNet-152 [5]	77.6	93.8	29.4	1090	37
Darknet-53	77.2	93.8	18.7	1457	78

	Type	Filters Size		Output		
	Convolutional	32	3×3	256×256		
,	Convolutional	64	$3 \times 3/2$	128 × 128		
	Convolutional	32	1 × 1			
1×	Convolutional	64	3×3			
	Residual			128 × 128		
,	Convolutional	128	$3 \times 3/2$	64 × 64		
	Convolutional	64	1 × 1			
2x	Convolutional	128	3×3			
	Residual			64 × 64		
	Convolutional	256	$3 \times 3/2$	32×32		
	Convolutional	128	1 × 1			
8×	Convolutional	256	3×3			
	Residual			32×32		
	Convolutional	512	$3 \times 3/2$	16 × 16		
	Convolutional	256	1 × 1			
8×	Convolutional	512	3×3			
	Residual			16 × 16		
	Convolutional	1024	$3 \times 3/2$	8 × 8		
	Convolutional	512	1 × 1			
4x	Convolutional	1024	3×3			
	Residual			8 × 8		
	Avgpool		Global			
	Connected		1000			
	Softmax					

Table 1. Darknet-53.

- Make detections at three different scales at three different places.
- -> Better at detecting smaller objects (smaller stride smaller objects)
- 3 anchor boxes at each scale.
- Predicts 10x number of boxes by YOLOv2.

Result

	backbone	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
Two-stage methods							
Faster R-CNN+++ [5]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [8]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [6]	Inception-ResNet-v2 [21]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [20]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
One-stage methods							
YOLOv2 [15]	DarkNet-19 [15]	21.6	44.0	19.2	5.0	22.4	35.5
SSD513 [11, 3]	ResNet-101-SSD	31.2	50.4	33.3	10.2	34.5	49.8
DSSD513 [3]	ResNet-101-DSSD	33.2	53.3	35.2	13.0	35.4	51.1
RetinaNet [9]	ResNet-101-FPN	39.1	59.1	42.3	21.8	42.7	50.2
RetinaNet [9]	ResNeXt-101-FPN	40.8	61.1	44.1	24.1	44.2	51.2
YOLOv3 608×608	Darknet-53	33.0	57.9	34.4	18.3	35.4	41.9

3. Terminologies

- Stride of network (or layer) is the ratio by which it downsamples the input (YOLOv3: 3 stride: 32, 16, 8)
- mAP: mean Average Precision
- (Intersection over union) IoU = overlap/union : measures the overlap between 2 boundaries (prediction vs ground truth)

III. RetinaNet

1. Class imbalance problem

- Two-stage detector (Faster R-CNN):
 - Stage 1: Region proposal network narrows down the number of candidate object locations to a small number (e.g. 1-2k).
 - Stage 2: Use OHEM (online-hard example mining) for training classifier network.
 - -> There is manageable class balance between foreground and background.
- One-stage detector (Yolo, SSD):
 - Suffers from class imbalance problem.

1. Class imbalance problem

- The training procedure is dominated by easily classified background examples.
- It is typically addressed via bootstrapping or hard example mining. But they are not efficient enough.

2. Focal loss

- The loss function is reshaped to down-weight easy examples and thus focus training on hard negatives.
- A modulating factor $(1-p_t)^{\Lambda}\gamma$ is added to the Cross Entropy (CE) Loss where γ is tested from [0,5] in the experiment.

$$ext{FL}(p_t) = -lpha_t (1-p_t)^{\gamma} \log p_t$$

$$ext{ } oldsymbol{\cdot} p_t = egin{cases} p & y = 1 \\ 1-p & y = -1 \end{cases}$$

$$ext{ } oldsymbol{\cdot} lpha_t = egin{cases} lpha & y = 1 \\ 1-lpha & y = -1 \end{cases}$$

2. Focal loss

• Properties:

- When an example is misclassified and p_t is small, the modulating factor is near 1 and the loss is unaffected. As $p_t \rightarrow 1$, the factor goes to 0 and the loss for well-classified examples is down-weighted.
- The focusing parameter γ smoothly adjusts the rate at which easy examples are down-weighted. When $\gamma = 0$, FL is equivalent to CE. When γ is increased, the effect of the modulating factor is likewise increased.

3. RetinaNet

An efficient in-network feature pyramid combined with anchor boxes

- Backbone:
 - ResNet is used for deep feature extraction.
 - FPN is used on top of ResNet for constructing a rich multi-scale feature pyramid from one single resolution input image.
- Classification and Box regression subnet:
 - Fully Convolutional Network attached to each FPN level.

3. RetinaNet

• Focal loss hyper-parameters: \circ Choose γ : $\gamma = 2$

NOTE: RetinaNet is relatively robust to $\gamma \in [0.5, 5]$

 \circ Choose α : $\alpha=0.25$

NOTE: lpha should be decreased slightly as γ is increased

Weights initialization

- ullet Weights: white Gaussian with standard deviation σ for some σ
- ullet Bias of all new conv layers (except the final one) in RetinaNet: b=0
- ullet Bias of the final layer of the classification subnet: $b=-\lograc{1-\pi}{\pi}$
 - \circ Meaning: at the start of training, every anchor should be labeled as foreground with confidence π

3. RetinaNet

- Optimization:
 - Optimizer: synchronized SGD
 - Data augmentation: horizontal image flipping
 - Loss function:
 - Classification: focal loss
 - \circ Regression: smooth L_1 loss

4. Comparision

Speed versus Accuracy Tradeoff

IV. Training and inference tricks

1. Training

- Observations
 - The amount available data is too small.
 - The models should be robust to transformations like translation, scaling, etc.
- Data augmentation
 - Translation
 - Scaling
 - Gaussian noise
 - Random flip
 - Color blend

2. Inference

- Ensembling: use an ensemble of some models (YOLO and RetinaNet)
- Tricks:
 - Multi-scale detection
- Results combination:
 - Assign weights to each of the models based on their validating accuracy.
 - Use Non-Max Weighted (NMW) instead of Non-Max Suppression (NMS).

Model ensembling

• Model weight:

$$w_i = rac{\exp(s_i)}{\exp(s_1) + \exp(s_2)} \ orall i \in \{1,2\}$$

• Bounding box score:

$$b_i = w_1 p_1 + w_2 p_2$$

Non-max weighted

ullet Non-max suppression: $B_{
m pre} = B_{rg \max_i b_i}$

Non-max weighted:

$$B_{ ext{pre}} = rac{\sum_i c_i B_i}{\sum_i c_i}$$
 where $c_i = b_i \cdot ext{IoU}(B_i, B_{rg \max_i b_i})$

Thanks for listening

Have a good day!