Utorok 18:00

Riešenie 3. zadania

SYNTÉZA SEKVENČNÝCH LOGICKÝCH OBVODOV

Navrhnite synchrónny sekvenčný obvod so vstupom x a výstupom y s nasledujúcim správaním: na výstupe Y bude 1 vždy vtedy, ak sa (zo začiatočného stavu) vo vstupnej postupnosti vyskytne postupnosť **110000** (postupnosti sa môžu prekrývať). Vlastné riešenie overte progr. prostriedkami ESPRESSO a LogiSim (príp LOG alebo FitBoard).

Úlohy:

- 1) V pamäťovej časti použite minimálny počet preklápacích obvodov **JK-PO**.
- 2) Navrhnuté B-funkcie v tvare MDNF overte programom pre ESPRESSO. Pri návrhu B-funkcií klaďte dôraz na skupinovú minimalizáciu funkcií.
- 3) Optimálne riešenie (treba zhodnotiť, ktoré riešenie je lepšie a prečo) vytvorte obvod s členmi NAND (výhradne NAND, t.j. ani žiadne NOT).
- 4) Výslednú schému nakreslite v simulátore LogiSim (príp. LOG alebo FitBoard) a overte simuláciou.
- 5) Riešenie vyhodnoť te (zhodnotenie zadania, postup riešenia, vyjadrenie sa k počtu logických členov).

Utorok 18:00

Riešenie

Zadaná postupnosť: 110000

Prechodová tabuľka pre automat typu Moore

	Nový stav		Čo je splnené?		
stav	x=0	x=1	Y		
S0	S0	S 1	0	Nič	
S 1	S0	S2	0	"1"	
S2	S 3	S2	0	"11"	
S 3	S4	S 1	0	"110"	
S4	S5	S 1	0	"1100"	
S5	S6	S 1	0	"11000"	
S6	S0	S 1	1	"110000"	

Zostrojíme prechodový graf stavového automat typu Moore

Prechodový graf typu Moore (hodnota hrany reprezentuje hodnotu vstupnej premennej/hodnotu výstupnej premennej).

Utorok 18:00

Kódovanie stavov

			z3		
		z 2			
	S0	S2	S 3	S1	
z1	S4	S6	X	S5	

Stav	$z_1z_2z_3$
S0	000
S1	001
S2	010
S3	011
S4	100
S5	101
S6	110

Prechodová tabuľka pre automat Moore po dosadení zakódovaných stavov

	Nový	Y	
stav	x=0	x=1	
000	000	001	0
001	000	010	0
010	011	010	0
011	100	001	0
100	101	001	0
101	110	001	0
110	000	001	1

Budiace funkcie pre D preklápacie obvody (D-PO) a výstupná funkcia

			z3	
		z2		
_	000	011	100	000
z 1	101	000	XXX	110
	001	001	XXX	001
X	001	010	001	010
		D1,D2,D3		

 Emma Macháčová, ID: 103037 Utorok 18:00

			z3	
		z2		_
_	0	1	0	0
z 1	0	0	X	1
	0	0	X	0
X	0	1	0	1
		D2		
			z3	
		z2		=

				Z3	
			z2		_
		0	1	0	0
	z 1	1	0	X	0
		1	1	X	1
X		1	0	1	0
			D3		

			z3		
		z2		_	
	0	0	0	0	
z 1	0	1	X	0	
Y = Z1.Z2					

Utorok 18:00

Budiace funkcie pre JK preklápacie obvody (JK-PO)

		$z \rightarrow Z$ J	K	
			X	
			X	
		1-> <u>0</u> X	1	
			0	
			<u></u>	
			Z3	
		Z2		•
_	0	0	1	0
Z1	X	0 X X	X	X X
	X X 0	X	X	
X	0	0	0	0
		$J1 = \bar{X}.Z2.Z$		
			Z3	
		Z2		•
_	X	X	X	X
Z1	X 0 1 X	1	X	0
		1	X	1
X		X	X	X
	K1 =	= (!X.Z1.Z2) -		
			Z3	
		Z2	1	-
	0	X X X	X	0
Z 1	0	X	X	1
		X	X X	0
X	0			1
	J2 =	X.!Z1.Z3.+!.		
			Z3	
		Z2		•
Ī	X	0	1	X
Z1	X	1	X	X
_	X X X X	1	X	
X	X	0	1	X
	K2 = (!X.Z)	(2.Z3) + (X.!Z3)	(Z3) + (Z1.Z2)	2)

Utorok 18:00

				<u>Z3</u>		
			Z2		_	
		X	X	1	1	
Z	1	X	X	X	1	
		X	X	X	0	
X		X	X	0	1	
V2 = V + 71 + 72 + 72 + 1 V						

K3 = X.!Z1.!Z2.Z3 + !X

Espresso

```
# vstup
                                      # vystup
.i 4
                                      Y = (Z1\&Z2);
.o 6
.ilb X Z1 Z2 Z3
                                      J1 = (!X\&Z2\&Z3);
.ob J1 K1 J2 K2 J3 K3
                                      K1 = (Z1\&Z2) \mid (X\&!Z2);
.type fr
.p 16
0000 0-0-0-
                                      J2 = (X\&!Z1\&!Z2\&Z3) | (!X\&Z1\&Z3);
0001 0-0--1
0010 0--01-
                                      K2 = (Z1\&Z2) | (Z3);
0011 1--1-1
0100 -00-1-
                                     J3 = (!X\&!Z1\&Z2) | (Z1\&!Z2) | (X\&Z1) | (X\&!Z2);
0101 -01--1
0110 -1-10-
                                      K3 = (X\&!Z1\&!Z2\&Z3) | (!X);
0111 -----
1000 0-0-1-
                                      Výstup z Espressa vyšiel rozdielne ako môj, výstup z Espressa použil
1001 0-1--1
                                      menej NAND členov
1010 0--00-
1011 0--1-0
1100 -10-1-
1101 -10--0
1110 -1-11-
1111 -----
.e
```

Emma Macháčová, ID: 103037 Utorok 18:00

Prepis na NAND s využitím Shefferovej operácie:

$$Y = Z1.Z2 = (Z1 \uparrow Z2) \uparrow (Z1 \uparrow Z2)$$

$$J1 = !X.Z2.Z3 = ((X \uparrow) \uparrow Z2 \uparrow Z3) \uparrow ((X \uparrow) \uparrow Z2 \uparrow Z3)$$

$$K1 = X.!Z2 + Z1.Z2 = (X \uparrow (Z2 \uparrow)) \uparrow (Z1 \uparrow Z2)$$

$$J2 = X.!Z1.Z3 + !X.Z1.Z3 = (X \uparrow (Z1 \uparrow) \uparrow Z3) \uparrow ((X \uparrow) \uparrow Z1 \uparrow Z3)$$

$$K2 = !X.Z2.Z3 + X.!Z1.Z3 + Z1.Z2$$

$$= ((X \uparrow) \uparrow Z2 \uparrow Z3) \uparrow (X \uparrow (Z1 \uparrow) \uparrow Z3) \uparrow (Z1 \uparrow Z2)$$

$$J3 = Z1.!Z2 + X.Z1 + !X.!Z1.Z2 + X.!Z2$$

$$= (Z1 \uparrow (Z2 \uparrow)) \uparrow (X \uparrow Z1) \uparrow ((X \uparrow) \uparrow (Z1 \uparrow) \uparrow Z2) \uparrow (X \uparrow (Z2 \uparrow))$$

 $= ((Z1 \uparrow) \uparrow (Z2 \uparrow)) \uparrow ((X \uparrow) \uparrow Z1 \uparrow Z3) \uparrow ((X \uparrow) \uparrow (Z1 \uparrow) \uparrow Z2)$

K3 = !Z1.!Z2 + !X.Z1.Z3 + !X.!Z1.Z2

Vyjadrenie k počtu logických členov obvodu: 17 členov NAND a 3 preklápacie obvody JK.

Vyjadrenie k počtu vstupov do logických členov obvodu: 54 vstupov (42 v kombinačnej časti a 12 v pamäťovej)

Emma Macháčová, ID: 103037 Utorok 18:00

Utorok 18:00

Zhodnotenie

Navrhli sme synchrónny sekvenčný obvod so vstupom x a výstupom y tak, že na výstupe Y bude 1 vždy vtedy, ak sa (zo začiatočného stavu) vo vstupnej postupnosti vyskytne postupnosť **110000** s tým, že postupnosti sa môžu prekrývať. Použili sme automat typu Moore. V pamäťovej časti sme použili minimálny počet JK-PO obvodov. Riešenie sme overili prostriedkami ESPRESSO a simuláciou v programe LOGISIM. Výsledný obvod má 17 logických členov NAND, a 54 vstupov (42 v kombinačnej časti a 12 v pamäťovej)