Série d'exercices

Exercice 1

- Répondre par vrai ou faix
 - \square La caractéristique $U_{PN} = f(I)$ d'un générateur est une fonction linéaire.
 - \square La puissance mécanique produite par un moteur électrique est : $P_m = E'$. I
 - ☐ La puissance dissipée par effet joule dans un récepteur électrique linéaire est proportionnelle au carré de l'intensité du courant qui le traverse.
 - ☐ La puissance électrique fournie par un générateur à un circuit électrique résistif est la même soit les conducteurs ohmiques sont montés en série ou en dérivations.
 - ☐ La puissance électrique fournie par un générateur à un circuit augmente en augmentant la résistance du circuit.

Exercice 2

Le montage électrique ci-contre comporte un générateur électrique ($E=18V, r=25\Omega$) et un électrolyseur ($E'=6V, r'=30\Omega$). On fait fonctionner ce montage électrique pendant

une durée: $\Delta t = 12min$

- Par application de la loi d'additivité des tensions, calculer
 l'intensité du courant débitée par le générateur.
- 2 Calculer l'énergie électrique totale du générateur.
- **3** Calculer l'énergie dissipée par effet dans le générateur et déduire l'énergie électrique reçue par l'électrolyseur.
- 4 Calculer l'énergie chimique produite par l'électrolyseur.
- 6 Calculer la puissance dissipée par effet joule dans le circuit.
- 6 Calculer l'énergie dissipée par effet joule dans l'électrolyseur.
- Déduire le rendement du circuit.

Exercice 3

On considère le circuit électrique ci-contre qui comporte :

- Deux conducteurs ohmiques de résistances $R_1 = 80\Omega$ et $R_2 = 100\Omega$
- Un générateur électrique $(E = 40, r = 20\Omega)$
- Un interrupteur *K*

Lorsqu'on ferme l'interrupteur K, le générateur débite un courant d'intensité I = 200mA

- 1 Calculer la puissance électrique totale du générateur.
- **2** Calculer la puissance dissipée par effet joule dans le générateur.
- **3** Déduire la puissance dissipée par effet Joule dans les deux conducteurs .
- **4** Calculer la valeur de la résistance **R**2

Série d'exercices

Exercice 4

On soulève un corps solide (S) de masse $\mathbf{m} = 25 \, Kg$ à une vitesse constante à l'aide d'un moteur, constitué d'une poulie (P) de rayon $R = 10 \, cm$ susceptible de tourner sans frottement autour d'un axe fixe (Δ) passant par son centre, et enrouler par un fil inextensible et de masse négligeable. (figure $\mathbf{0}$)

Le corps (S) parcoure la distance d = 10m pendant une durée $\Delta t = 8s$

Le moteur est alimenté par un générateur idéal de force électromotrice : E = 76V

- O Calculer la vitesse du corps (S) et déduire la vitesse angulaire de la poulie.
- 2 Le calculer le poids du corps (5) et déduire l'intensité de la tension du fil.
- $oldsymbol{0}$ Calculer le moment du couple du moteur et déduire sa puissance mécanique P_m .
- ① Le rendement du moteur est $\rho' = 66\%$ et sa force contre électromotrice est E' = 25V Calculer la puissance reçue par le moteur et l'intensité du courant qui le traverse.
- 6 Calculer la puissance totale du générateur et déduire la résistance totale du circuit.

Exercice 5

Pour étudier l'influence de l'association des conducteurs sur la puissance électrique fournie par un générateur, on réalise les deux montages électriques schématisés ci-dessous.

Données: $R = 90\Omega$, $r = 30\Omega$, E = 15V

- Répondre aux questions suivantes pour les deux montages
 - a Exprimer la résistance équivalente des trois conducteurs en fonction de R.

- **b** Exprimer l'intensité du courant en fonction de R , r et E et calculer sa valeur.
- c Trouver l'expression de la puissance électrique fournie par le générateur en fonction de R, r et E et calculer sa valeur.
- 2 Comparer la puissance fournie par le générateur pour les deux montages . Déduire

Exercice 6

Pour étudier l'influence de la résistance sur la puissance électrique fournie par un générateur, on réalise le montage électrique schématisé ci-dessous. On change la valeur de la résistance du rhéostat et à chaque fois en mesure la tension aux bornes du générateur et celle de l'intensité du courant qui le traverse, l'ensemble des résultats obtenues ont permis de tracer la courbe

 $P_e = f(R_{th})$ qui représente les variations de la puissance fournie par le générateur en fonction de la résistance du rhéostat.

- **1** Trouver l'expression de la puissance «électrique fournie par le générateur en fonction de R_{th} , R_P , r et E
- **2** En exploitant la courbe $P_e = f(R_{th})$ déterminer :
 - a La fore électromotrice du générateur.
 b La résistance interne du générateur.
 - c La valeur de la résistance R_p

