PHLAG - the Pipeline for Hubble Legacy Archive Grism data

Martin Kümmel,

R. Albrecht, R. Fosbury, W. Freudling, J. Haase R. Hook, H. Kuntschner, A. Micol, M. Rosa, D. Sforna, J. Walsh

Space Telescope-European Coordinating Facility

Oct 16th, 2006

Overview

- 1. Why do we need a Hubble Legacy Archive?
- 2. Why slitless spectroscopy as ST-ECF contribution?
- 3. HST slitless spectroscopy
- 4. Method of reducing slitless spectroscopic data
- 5. PHLAG
- 6. The Modules of PHLAG
- 7. Status

1. Why do we need a Hubble Legacy Archive?

- HST is getting old
- HST scientists are getting older
- Knowledge is drifting away
- Pixel archive → archive with high level data products
- See also:
 - Talk by B. Whitmore
 - Poster by R. Albrecht
 - BOF session

2. Why slitless spectroscopy as ST-ECF contribution?

- Large experience with HST spectroscopy
- Development of NICMOSlook
- ST-ECF is responsible for ACS slitless spectroscopy (calibration and aXe software)
- Experience in the production of high level science products (UDF HRC Parallels, GOODS, GRAPES, PEARS)
- VO and archive expertise
 - → All premises are there

3. HST slitless spectroscopy

Main data sources:

Channel	Disperser	Wavelength Range	Resolution	FOV
		[Å]	[Å/pixel]	["]
ACS/WFC	G800L	5500 – 10500	38.5	202x202
ACS/HRC	G800L	5500 – 10500	23.5	29x26
ACS/HRC	PR200L	1600 – 3900	20 [@2500Å]	29x26
ACS/SBC	PR130L	1250 - 1800	7 [@1500Å]	35x31
ACS/SBC	PR110L	1150 – 1800	10 [@1500Å]	35x31
NIC3	G141	11000 – 19000	80	51x51

- **Further available:** NIC3/G096, NIC3/G206, STIS/G750L, STIS/PRISM, WFPC1/GRISM
- After SM4: WFC3

4. Method of reducing slitless spectroscopic data

- Spectroscopy with slits: aperture (slit/mask) defines a framework for trace definition and wavelength calibration
- Slitless spectroscopy: no such framework ⇒ objects and their position unknown
- Need for a 'reference position' to base framework for every object for spectral extraction
 - ⇒ direct image to derive a reference position for every object

reference point X

y = f(x)

trace

ACS HRC G800L

reference point

The axe strategy

- •Direct image ⇒ source list
- -Association between one direct and one grism image
- Source list projected onto grism image
- Source list + calibration + grism image
 - \Rightarrow spectral extraction

5. PHLAG

- Developed for NICMOS G141 pilot project
- Modular, not monolithic; consists of a series of reduction steps
- Uses external software: SExtractor, pyraf,
 MultiDrizzle, aXe, aXe2web
- Implemented in Python
- Flexible:

6. The Modules of PHLAG

- 1. data preparation
- 2. data retrieval
- 3. background
- 4. image combination
- 5. object detection
- 6. spectral extraction
- 7. visualization
- 8. quality control
- 9. metadata
- 10. data ingestion

Data preparation/data retrieval/background

- Find a grism image association
- Find the corresponding association of direct images
- Select the "best" filter
- Find the association between grism images and direct images
- Determine the best strategy for grism image background

Image combination

- "Best" filter
- Using MultiDrizzle
- Standard settings

Object detection

- SExtractor
- Conservative settings
- Prime aim: get all objects for spectroscopy
- "Reasonable" photometry
- Boundary objects, splitting still problematic

Spectral extraction

Example of a spectral extraction

input

intermediate steps

local backgr.

ADASS XVI Martin Kümmel

extracted spectrum

Readjustment of trace

- Filter wheel position is not reproducible
- Unstable trace
- Individual trace solution for every grism image
- Fitting of object traces

Readjustment of trace

- Filter wheel position is not reproducible
- Unstable trace
- Individual trace solution for every grism image
- Fitting of object traces

Readjustment of wavelength

original

readjusted

Visualization

- Create browsable web pages using aXe2web
- For inspection purposes
- For better information handling
- Not part of the products for the HLA

Quality control

- Consistency checks (photometry ←→ spectroscopy)
- Flagging
- Selection of the pipeline products

Metadata

- Post-processing of the spectra
- Collect/compute metadata:
 - Positions from object catalogues
 - SNR-estimates derived from spectra
 - **...**
- VO compatibility: IVOA spectral model 0.98c

Data ingestion

Store pipeline products in the HLA

7.Status

- Start in early 2006
- Now: most modules implemented
- To be done:
 - quality control, metadata, ingestion
 - finding best parameters, enhancing data quality
 - Improvements through trending

