

GROUPS

Why

We further drop conditions on the structure of the binary operations, and study only the algebraic structure of addition over the integers.

Definition

A group is an $algebra(G, \circ)$ for which $\circ: G \times G \to G$ is associative, has an identity element in G, and has inverse elements. A group is a *commutative* group (or abelian group) if \circ is commutative. A group is a *finite group* if G is a finite set.

Additive groups

Suppose that $(R, +, \cdot)$ is ring. Then (R, +) is a commutative group. Conversely, suppose (G, +) is a commutative group. Define multiplication on S by $a \cdot b = 0$ for all $a, b \in R$. Then $(S, +, \cdot)$ is a ring, called the *zero ring* of (G, +). For this reason, it is customary to write + for the operations \circ when handling commutative groups.

Group Operations

Along with the group operation, we call the function which maps an element to its inverse element the *group operations*.

