UC Berkeley

Department of Statistics

STAT 210A: Introduction to Mathematical Statistics

Problem Set 1- Solutions

Issued: September 2

Due: September 9

Problem 1.1

Due to independence, the joint distribution function of $(X_1,...,X_n)$ could be written as:

$$P(x_1, ..., x_n) = \prod_{i} e^{-\lambda_i} \frac{\lambda_i^{x_i}}{x_i!} \mathbf{1}(x_i \in N)$$

$$= \left(\prod_{i} \frac{\mathbf{1}(x_i \in N)}{x_i!}\right) \exp\{\sum_{i} x_i \ln \lambda_i - \sum_{i} \lambda_i\}$$

$$= \left(\prod_{i} \frac{\mathbf{1}(x_i \in N)}{x_i!}\right) \exp\{\alpha \sum_{i} x_i + \beta \sum_{i} x_i t_i - \sum_{i} e^{\alpha + \beta t_i}\} [\text{plug in definition of } \lambda_i].$$

It is belongs to a two-parameter exponential family, where $T_1 = \sum_i X_i$ and $T_2 = \sum_i t_i X_i$.

Problem 1.2

(a) To show Y has a density wrt μ , we need to show P_Y is absolutely continuous wrt to μ which is to say for any set A, $\mu(A) = 0$ leads to $P_{\theta}(Y \in A) = 0$. By definition, $P_{\theta}(Y \in A) = P_{\theta}(X \in A | X \in S) = P_{\theta}(X \in A \cap S)/P_{\theta}(X \in S) \leq P_{\theta}(X \in A)/P_{\theta}(X \in S)$, the last quantity equals 0 because $P_{\theta}(X)$ is absolutely continuous to μ . Therefore $P_{\theta}(Y \in A) = 0$ if $\mu(A) = 0$, then the RadonNikodym theorem tells us that Y has a density wrt μ . By similar argument as above the density should be:

$$q_{\theta}(y) = \frac{1}{\int_{S} P_{\theta}(x) dx} h(y) \exp\{\sum_{i} \eta_{i}(\theta) T_{i}(y) - B(\theta)\} \mathbf{1}(y \in S).$$

(b) Notice that

$$q_{\theta}(y) = h(y)\mathbf{1}(y \in S) \exp\{\sum_{i} \eta_{i}(\theta)T_{i}(y) - (B(\theta) - \log \int_{S} P_{\theta}(x)dx)\}, \ \theta \in \Omega$$

which indicates $\{q_{\theta}\}$ forms an exponential family.

Problem 1.3

(a)
$$\forall \varepsilon > 0$$
, $\mathbb{P}\{|M_n - \theta| \ge \varepsilon\} = \mathbb{P}\{M_n \le \theta - \varepsilon\} = \left(\frac{\theta - \varepsilon}{\theta}\right)^n \to 0 \text{ as } n \to \infty.$

(b) For
$$x \in [0, \theta]$$
, $F(x) = \mathbb{P}(M_n \le x) = \left(\frac{x}{\theta}\right)^n$.
Thus, density of M_n : $f(x) = \frac{n}{\theta} \left(\frac{x}{\theta}\right)^{n-1} \mathbf{1}(0 \le x \le \theta)$
 $Bias = \theta - \mathbb{E}(M_n) = \theta - \int_0^\theta \frac{n}{\theta^n} x^n dx = \frac{1}{n+1} \theta$
 $Variance = \mathbb{E}(M_n^2) - \mathbb{E}(M_n)^2 = \int_0^\theta \frac{n}{\theta^n} x^{n+1} dx - \left(\frac{n}{n+1}\theta\right)^2 = \left(\frac{n}{n+2} - \frac{n^2}{(n+1)^2}\right) \theta^2$.

(c)
$$Risk = Bias^2 + Variance = \left(\frac{n}{n+2} - \frac{n-1}{n+1}\right)\theta^2 = \frac{2\theta^2}{(n+1)(n+2)}$$

Problem 1.4

Define

$$A(\eta) = \log \int x^2 \exp\{-\eta x\} d\mu(x) = \log \left(\sum_{i=1}^{\infty} i^2 \exp\{-\eta i\}\right)$$

the last equality is because μ is counting measure. By the sum of geometric series, if $\eta > 0$, $\sum_{i=1} \exp\{-\eta i\} = 1/(e^{\eta} - 1)$. Taking derivative of both sides yields $\sum_{i=1} i^2 \exp\{-\eta i\} = e^{\eta}(e^{\eta} + 1)/(e^{\eta} - 1)^3$ which is finite. And it is easy to see that when $\eta \leq 0$, $A(\eta) > \infty$. So the natural parameter space is $\{\eta, \eta > 0\}$ and $\log A(\eta) = \log \left(e^{\eta}(e^{\eta} + 1)/(e^{\eta} - 1)^3\right)$.

Theorem 2.4 ensures the existence of moments, and from the remark below theorem 2.4 we know that $A(\eta)' = -EX$ and accordingly $A(\eta)'' = Var(X)$. So $EX = (4e^{\eta} + e^{2\eta} + 1)/(e^{2\eta} - 1)$ and $Var(X) = 4e^{\eta}(e^{\eta} + e^{2\eta} + 1)/(e^{2\eta} - 1)^2$.

Problem 1.5

- (a) Not identifiable. Pick $\theta_1 = (\mu_1, \mu_2, \dots, \mu_p, \nu, \sigma)$ and $\theta_2 = (\mu_1 + \nu, \mu_2 + \nu, \dots, \mu_p + \nu, 0, \sigma)$ and notice that they result in the same distribution;
- (b) Not identifiable. Pick $\theta = (1,1)$ and $\theta_2 = (2,2)$ and notice they give rise to the same distribution;
- (c) Identifiable.(except the case $\sigma^2 = 0$) For $\theta_1 = (\sigma_1, \alpha_1)$ we have $\operatorname{var}(X_i) = \sigma_1^2$ and $\operatorname{cov}(X_i, X_{i-1}) = \alpha_1 \sigma_1^2$. Suppose $\mathbb{P}_{\theta_1} = \mathbb{P}_{\theta_2}$. We have $\sigma_2^2 = \operatorname{var}_{\theta_2}(X_i) = \operatorname{var}_{\theta_1}(X_i) = \sigma_1^2$, hence $\sigma_1 = \sigma_2$. Furthermore, $\alpha_2 \sigma_2^2 = \operatorname{cov}_{\theta_2}(X_i, X_{i-1}) = \operatorname{var}_{\theta_1}(X_i, X_{i-1}) = \alpha_1 \sigma_1^2$, yielding $\alpha_1 = \alpha_2$. Hence $\mathbb{P}_{\theta_1} = \mathbb{P}_{\theta_2} \Rightarrow \theta_1 = \theta_2$ proving identifiability.

Problem 1.6

From the distribution of \mathbf{X} , we have:

$$\mathbb{P}_{\theta}(\mathbf{X} = \mathbf{x}) = \exp\left[\left(\sum_{i=1}^{n} x_i\right) \log(\theta) - n\theta\right] \frac{1}{x_1! x_2! \cdots x_n!}$$

(a) We have:

$$\mathbb{P}_{\theta} \left(\mathbf{X} = \mathbf{x} | T(\mathbf{X}) = S \right) = \frac{\mathbb{P}_{\theta} \left(\mathbf{X} = \mathbf{x} \text{ and } T(\mathbf{X}) = S \right)}{\mathbb{P}_{\theta} \left(T(\mathbf{X}) = S \right)}$$

From the properties of the Poisson distribution: $T(\mathbf{X}) = \sum_{i=1}^{n} X_i \sim \text{Poisson}(n\theta)$:

$$\mathbb{P}_{\theta}(T(\mathbf{X}) = S) = \exp[S\log(n\theta) - n\theta] \frac{1}{S!}$$

Furthermore:

$$\mathbb{P}_{\theta} \left(\mathbf{X} = \mathbf{x} \text{ and } T(\mathbf{X}) = S \right) = \mathbb{I} \left(\sum_{i=1}^{n} x_i = S \right) \exp \left[\left(\sum_{i=1}^{n} x_i \right) \log(\theta) - n\theta \right] \frac{1}{x_1! x_2! \cdots x_n!}$$

$$= \mathbb{I} \left(\sum_{i=1}^{n} x_i = S \right) \exp \left[S \log(\theta) - n\theta \right] \frac{1}{x_1! x_2! \cdots x_n!}$$

which yields:

$$\mathbb{P}_{\theta} \left(\mathbf{X} = \mathbf{x} | T(\mathbf{X}) = S \right) = \exp \left[-S \log(n) \right] \frac{S!}{x_1! x_2! \cdots x_n!} \cdot \mathbb{I} \left(\sum_{i=1}^n x_i = S \right)$$
$$= \left(\frac{1}{n} \right)^S \frac{S!}{x_1! x_2! \cdots x_n!} \cdot \mathbb{I} \left(\sum_{i=1}^n x_i = S \right)$$

which does not involve θ proving sufficiency of T.

(b) Define:

$$g(S, \theta) = \exp \left[S \log(\theta) - n\theta \right]$$

 $h(x) = \frac{1}{x_1! x_2! \cdots x_n!}$

It is then possible to write $\mathbb{P}_{\theta}(\mathbf{X} = \mathbf{x})$ as: $\mathbb{P}_{\theta}(\mathbf{X} = \mathbf{x}) = g(T(\mathbf{X}), \theta)h(x)$ so sufficiency of T follows from the factorization theorem.