Estructuras Algebraicas

Grupos y Anillos

Sea $A \neq \emptyset$.

Llamamos operación binaria en A o también ley de composición binaria en A al dar, a cada par $(a,b) \in A$ un elemento $a \circ b \in A$

Definición (Operación Asociativa)

Sean (A, \circ) un conjunto detado de una operación binaria. Diremos que \circ es asociativa si:

$$a \circ (b \circ c) = (a \circ b) \circ c$$

Un conjunto A dotado de una operación se denomina un *monoide*. Se suele decir sobre A que está definida una estructura de monoide.

Definición (Semigrupo)

Un monoide asociativo (o sea donde la operación es asociativa) se denomina semigrupo.

Definición (Operación conmutativa)

Sea (A, \circ) un conjunto dotado de una operación binaria. Diremos que \circ es conmutativa si:

$$a\circ b=b\circ a$$

Para todo $a, b \in A$.

Definición (Elemento Neutro)

Sea (A, \circ) un conjunto dotado de una operación binaria. Se denomina elemento neutro de \circ (o también elemento **identidad**) de (A, \circ) a todo elemento $e \in A$ tal que

$$a \circ e = e \circ a = a$$

para cualquier $a \in A$.

Definición (Inversible)

Diremos que a es inversible a izquierda (en A), o que tiene un opuesto (o un inverso) a izquierda en A si existe $c \in A$ tal que

$$c \circ a = \epsilon$$

. Análogamente para inversible a derecha.

Asimismo, decimos que es inversible si

$$\exists t \in A: a \circ t = t \circ a = e$$

Proposición

Sea (A, \circ) un semigrupo con elemento neutro e. Entonces $a \in A$ es inversible si y sólo si es inversible a izquierda y a derecha.

Corolario

Si a es inversible, su inverso en único.

Notación

a' es el opuesto de a

Proposición

(i) si $a,c\in A$ son inversibles también lo es su producto y vale la igualdad:

$$(a \circ b)' = c' \circ a'$$

(ii) si a es inversible, entonces:

$$(a')' = a$$

.

Definición (Grupo)