TUTORIAL: CHANNEL CODING

EC5.102: Information & Communication

Arti Yardi

March 26, 2025

- 1. Find the systematic generator matrix G and the parity check matrix H for the following linear block codes:
 - (a) the (n, k = 1) repetition code
 - (b) the (n, k = n 1) single parity code
 - (c) the (n = 7, k = 4) Hamming code
- 2. Find the expressions for the parity bits and write the parity check matrix H for the $(n=2^m-1,k=2^m-m-1)$ Hamming code, for m=4.
- 3. Find the relation between generator matrix G and parity check matrix H for a linear block code.
- 4. Consider the linear code defined by the generator matrix $G = (I_k \mid \mathbf{1})$, where $\mathbf{1}$ denotes an all-one column vector of length k.
 - (a) What is the dimension and rate of this code?
 - (b) Describe the set of all codewords of this code. Obtain the codewords corresponding to the message vector $(1,0,1,0,\ldots,0)$ of length k. (Note: The ellipsis '...' here denotes 0 sequence, as it is sandwiched between two 0s).
 - (c) What are the set of parity check equations for this code? Obtain a parity check matrix of this code.
- 5. Consider a linear code defined by the parity check matrix $H = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$.
 - (a) What is the rate of this code?
 - (b) Find a generator matrix for this code.
 - (c) List the codewords for this code.

Solutions

- 1. Find below $G = [I_k \mid A]$ for each part; write $H = [A^T \mid I_{n-k}]$.
 - (a) For the (n, 1) repetition code, $G = \underbrace{(1 \mid 1 \dots 1)}_{n \text{ times}}$.
 - (b) For the (n, n-1) single parity code, $G = (I_n \mid \mathbf{1}_n)$, where $\mathbf{1}$ is an all-one column vector. For example, for n = 3, $G = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$.
 - (c) For the (7,4) Hamming code, $G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$.
- 2. Refer to the figure below.

Figure 1: Hamming code for m=4

The parity equations are then given as:

$$P_{1} = D_{1} \oplus D_{2} \oplus D_{4} \oplus D_{5} \oplus D_{7} \oplus D_{9} \oplus D_{11}$$

$$P_{2} = D_{1} \oplus D_{3} \oplus D_{4} \oplus D_{6} \oplus D_{7} \oplus D_{10} \oplus D_{11}$$

$$P_{3} = D_{2} \oplus D_{3} \oplus D_{4} \oplus D_{8} \oplus D_{9} \oplus D_{10} \oplus D_{11}$$

$$P_{4} = D_{5} \oplus D_{6} \oplus D_{7} \oplus D_{8} \oplus D_{9} \oplus D_{10} \oplus D_{11}$$

- 3. For $G = [I_k \mid A]$, we have $H = [A^T \mid I_{n-k}]$.
 - $c_n = u_k G_{k \times n}$ is the codeword for message sequence u.
 - For a codeword \boldsymbol{c} , we have $H_{(n-k)\times n}\boldsymbol{c}_n^T = 0$.
 - We thus get $H(\mathbf{u}G)^T = HG^T\mathbf{u}^T = 0 \implies HG^T = 0$. This means that the rows of H are orthogonal to the rows of G.
- 4. (a) The dimension of the code is k and the rate is $R = \frac{k}{n} = \frac{k}{k+1}$.

- (b) The codewords follow from $\mathbf{c} = \mathbf{u}G$. Thus, the set of codewords is the set of all vectors $(u_1, u_2, \dots, n_k, \bigoplus_{i=1}^k u_i)$, where $u_i \in \{0, 1\}$ and $\bigoplus_{i=1}^k u_i$ is modulo 2. For the message vector $(1, 0, 1, 0, \dots, 0)$, the codeword is $(1, 0, 1, 0, \dots, 0, 1)$.
- (c) The parity check equation is $u_{k+1} = \bigoplus_{i=1}^k u_i$, and $H = \underbrace{\begin{pmatrix} 1 & 1 & \dots & 1 \end{pmatrix}}_{n+1 \text{ times}}$.
- 5. (a) The rate of the code is $R = \frac{k}{n} = \frac{4}{7}$.
 - (b) Rearranging the columns of H, we get it in the form $H = [A^T \mid I_{n-k}]$ as

$$H = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}. \text{ Then, } G = [I_k \mid A] = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}.$$

(c) Using $\mathbf{c} = \mathbf{u}G$, where, \mathbf{u} is of the form (u_1, u_2, u_3, u_4) the codewords are of the form $(u_1, u_2, u_3, u_4, u_1 \oplus u_2 \oplus u_4, u_2 \oplus u_3 \oplus u_4, u_1 \oplus u_2 \oplus u_3)$.