Многократно перепрограммируемые ПЗУ, у которых ранее записанную инфор мацию стирают, подавая электрические импульсы, называются электрически стираемые перепрограммируемые ПЗУ (ЭСППЗУ или EEPROM).

В вычислительной технике и автоматике микросхемы ЭСППЗУ используются реже, чем ППЗУ с плавкими перемычками и СППЗУ с УФ-стиранием. Объясняется это более высокой стоимостью первых по сравнению с двумя последними типами ПЗУ.

БИС ЭСППЗУ применяются, к примеру, в программируемых калькуляторах для хранения программ вычислений, составленных самим пользователем. При этом все устройства управления работой ЭСППЗУ в режимах записи, считывания, стирания информации располагаются в одном блоке вместе с ИМС, и для замены информации ее не нужно извлекать из блока. Когда срок хранения данных в ЭСППЗУ истекает, проводят цикл общего стира-

12

11

30,9

0,3

15

ключ

11×1,25=13,75 00

(I)

Тип	Информац. емкость	Статические параметры											Динамические параметры							Емкость			Кол-во циклов пере-	зна	Обо зна-	
	организац. бит бит/разр.	хранение				считывание				запись		стира- ние		хранение		считы— вание		запись		стира- ние	200			зап.		че-
		Icc	lcct	lpR	UPR	Icc	I _{cc1}	IPR	UPR	IPR	U _{PR}	I _{PR}	UPR	t _{SG2}	t _{SG1}	t _{A(A)}	t _{RCV}	tw	twcv	t _{CL}	Свх	Свых	Сн	No	пус	
		мА	мА мА	В	мА	мА	мА	В	мА	В	мА	В	час	час	мкс	мкс	мс	мс	С	пФ	пФ	пФ	1	Корпус		
KP558PP1	2048 256x8	20	-	20	-30	20	-	20	-30	20	- 30	20	-30	-	3000	5	12,2	5	-	5·10 ⁻³	10	15	300	10 ⁴	1	1
KP558PP2(A) (5)	16384 2048x8	70	-	30	5	100	- 83,	30	5	30	18	30	18	4 4 3	5000		0,6 0,95		10,2	(D).	15	25	350	104	1	2
KM558PP3	65536 8192x8	20	1	2,5	24	80	_	2,5	0	10	24	2,5	18	5000	15000	0,43	0,5	5	5,6	20	5	12	250	10 ²	II	3
K573PP2	16384 2048x8	50	-	. 9	5	100	-	18	5	75	22	75	22	20·10 ³	20·10 ³	0,35	-	50	-	50	8	10	100	104	111	4
KP1609PP1	16384 2048x8	35	_	5	5	90	-	9	5	15	21	15	21	5·10 ³	5 лет	0,3	-/3	12	15	12	10	10	100	104	111	5
КР1609PP2(A) (Б)	65536 8192x8	34	-	5	21	90	-	5	21	8	21	8	21	15·10 ³	10 лет	0,28 0,42		0,2	22 52	-	10	10	100	10 ⁴	11	6
КР1609PP3(A) (Б)	65536 8192x8	34	-	5	5	90	-	5	5	8	21	8	21	15·10 ³	10 лет	0,23		0,2	22 52	-	10	10	100	10 ⁴	11	6
КР1611PP1(A) (Б)	65536 8192x8	60	-	20	5	110	-	20	5	20	18,5	20	18,5	10 ³	15·10 ³	0,25 0,35		10	11	0,2	10	12	100	10 ³	IV	7
KP1801PP1	65536 4096x16	40	-	2,5	5	85	-	-	5	10	24	5	18	5·10 ³	15·10 ³	0,55	0,7	5	5,5	20	5	12	-	25	V	8
KP1601PP1	4096 1024x4	15	30	8,5	0	46	35	11	0	11	-32	11	-32	500	3000	1,8	20	50	-	200	7	10	400	104	V	9
KP1601PP3	16384 2048x8	25	40	6	0	51	45	6	ó	10	-36	10	-36	500	3000	1,6	2	10	-	100	7	10	400	104	IV	10

В таблице применены условные обозначения:

Ісс, Іссі, Ірг — токи потребления от соответствующих источни-KOB (UCC, UCCI, UPR):

tsg2 — время хранения информации во включенном состоянии;

tsg1 — время хранения информации в выключенном состоянии;

ta(A) — время выборки адреса;

trcv — длительность цикла считывания;

tw — длительность импульса записи (программирования);

twcv — длительность цикла записи (программирования);

tcl — длительность импульса стирания;

Свх — емкость входная;

Свых — емкость выходная;

Сн — емкость нагрузки.

Примечание.

Напряжение питания: $Ucc=5\pm0.25$ B, $Ucc=-12\pm0.6$ B;

Входное напряжение лог. 1:2,4 В \leq U¹вх \leq 5,25 В. Входное напряжение лог. 0:-0.3 В \leq U⁰вх \leq 5,25 В. Входное напряжение лог. 0:-0.3 В \leq U⁰вх \leq 0,6 В. Входной ток лог. 0 и 1:1⁰⁽¹⁾вх \leq 10 мкА. Выходное напряжение лог. 1:U¹вых \geq 2,4 В.

Выходное напряжение лог. $0:U^0$ вых $\leq 0,4$ В.

Выходной ток лог. $1:1^1$ вых $\leq 0,1$ мА.

Выходной ток лог. $0:1^{0}$ вых $\leq 1,6$ мА.

В. АНДРЕЕВ

Фотоаппараты давних выпусков (как исправные, так и неисправные]: «Горизонт», «ФТ-2» «Спорт», «Репортер», «Восход», «Нарцисс», «Момент», «Спутник», «Москва», «Искра», «Ленинград», «Киев», ранние «ФЭД» и «Зоркий», германскую «Лейку» и другие иностранные. Новые «Киев-88ТТЛ», «Зенит-автомат», «Практика», «Пентакон», любой японский. Книги и каталоги по старой фотоаппаратуре.

Старинные микроскоп, бинокль, подзорную трубу, часы, барометр, другие приборы и инструменты; коллекцию старинных открыток, марки авиапочты (возможен обмен на литературу по моделизму, истории науки и техники, художественную].

В целях упрощения переписки прошу указать в письме техническое состояние, сохранность и реальную стоимость предлагаемых вами предметов.

129515, Москва, И-515. До востребования, Гукову В. В.

Неновый автомобиль любой марки. Предметы из бронзы. 119435, Москва. До востребования, Шу-хову В. Ф. Тел. 215-24-36.

Новый трактор Т-16, Т-25, МТЗ-082, МТЗ-05. 202353, Эстония, г. Пыльтсама, аб. ящик 17. Паулус Т. К.

ПРОДАЮ

Цифровой дозиметр радиоактивности (с гарантией 6 мес.); Авто SOS-устройство, позволяющее запеленговать угнанный автомобиль [с гарантией]. 160002, г. Вологда, 2, ул. Ярославская, 16а, кв. 39.

МЕНЯЮ

Высылаю и обмениваюсь программами к компьютеру «БК-0010 ЭЛЕКТРОНИКА»: игры, редакторы, Ассемблер, самоучитель английского языка и другие. 210009, Витебск, 2, Артиллерийская, 33. Тишутину Ф. Т.