НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ» ФАКУЛЬТЕТ ІНФОРМАТИКИ ТА ОБЧИСЛЮВАЛЬНОЇ ТЕХНІКИ Кафедра автоматизованих систем обробки інформації та управління

3BIT

до лабораторної роботи №4 з дисципліни «Інтелектуальний аналіз даних»

Виконав:

студент гр. IC-32 Капорін Р. М.

ЗАВДАННЯ

В процессе предоставления кредита банки заинтересованы в изучении платежеспособности будущего потребителя кредита. Цель этого изучения - моделирование или предсказание вероятности, с которой претендент на кредит может быть отнесен к привлекательным или непривлекательным клиентам.

Методы, описанные в этом примере, демонстрируют построение кредитноскоринговой модели с помощью STATISTICA Data Miner - системы для проведения интеллектуального анализа данных, позволяющей идентифицировать входы или предикторы, которые отделяют рискованных клиентов от всех остальных. Предиктивные методы, успешно применяемые на тестовых данных, и в дальнейшем могут быть использованы для предсказания новых рискованных клиентов.

Рис. 1 - Графік значимості предикторів для залежної змінної «кредитоздатність»

Рис. 2 - Приклад структури робочої області DataMiner

	Classification matrix (CreditScoring.sta in Workbook1. Response: Credit Rating Model: CHAID			
	Observed	Predicted bad	Predictedgood	Row Total
Number	bad	179	121	300
Column Percentage		57.74%	17.54%	
Row Percentage		59.67%	40.33%	
Total Percentage		17.90%	12.10%	30.00%
Number	good	131	569	700
Column Percentage		42.26%	82.46%	
Row Percentage		18.71%	81.29%	
Total Percentage		13.10%	56.90%	70.00%
Count	All Group:	310	690	1000
Total Percent		31.00%	69.00%	

Рис. 3 - Дерево рішень СНАІО для кредитоздатності

Рис. 4 - Матриця класифікації

Рис. 4 - Візуалізація матриці класифікації

Рис. 5 - Карта виграшів для кредитоздатності = погано

	Summary of Deployment (Error rates) (CreditScoring.sta in Workbook1.stw)			
	BoostTreeModel	RandomForest		
		Model		
Error rate	0,270000	0,255000		

Рис. 6 - Загальний результат помилок

СПОЖИВЧИЙ КРЕДИТНИЙ СКОРИНГ

1. Побудова моделі

Відкриємо CreditScoring2.sta. Застосуємо аналіз нейронних мереж. Основною ціллю буде тип ризику, несуттєвими даними – вік клієнта, а важливими даними – Number of Loans (к-сть займів), How Paid (скільки заплатили), Monthly Income (Місячний прибуток), Income Range (діапазон прибутків), Mortgage (іпотека).

Рис. 1.1 – Налаштування інструменту «Побудова моделі»

2. Налаштування параметрів

Задамо значення мінімуму і максимуму нейронів: 2 і 13 відповідно. Вкажемо кількість мереж для навчання — 100. А для збереження — 5.

Рис. 2.1 – Завдання параметрів

Отримали результати: точність моделі – 65%.

Рис. 2.2 – Отримання результатів з похибками

Отримали наступні прогнози.

Case	Type of Risk	Type of Risk - Output	
		1. MLP 2290-3-3	
name	Target		
105	Good Profit	Good Profit	
106	Good Profit	Good Profit	
107	Bad Loss	Good Profit	
108	Good Profit	Good Profit	
109	Bad Profit	Bad Loss	
110	Bad Profit	Good Profit	
111	Bad Loss	Good Profit	
112	Good Profit	Good Profit	
115	Bad Loss	Good Profit	
117	Bad Loss	Good Profit	
119	Good Profit	Good Profit	
120	Bad Loss	Good Profit	
121	Bad Profit	Bad Loss	
122	Bad Loss	Good Profit	
125	Good Profit	Good Profit	
127	Bad Profit	Bad Loss	
128	Bad Profit	Good Profit	
129	Good Profit	Good Profit	
130	Good Profit	Good Profit	
131	Good Profit	Good Profit	
132	Bad Profit	Bad Loss	
133	Good Profit	Good Profit	
135	Bad Profit	Bad Loss	
136	Good Profit	Good Profit	
137	Bad Profit	Good Profit	

Рис. 2.3 – Прогноз

3. Виконання аналогічних налаштувань моделі для CreditRisk.sta

В даному випадку цільовим ϵ Credit Standing. Важливими ϵ статус активів, кредитна історія, кількість місяців вкладу активів, збережені активи.

Рис. 3.1 – Завдання параметрів

Отже, точність моделі – 70%.

Рис. 3.2 – Отримання результатів з похибками

	Predictions spreadsheet for Credit Standing (CreditRisk.sta) Samples: Train				
Case	Credit Standing	Credit Standing - Output	Credit Standing - Output		
name	Target	1. MLP 60-9-2	2. MLP 60-14-2		
2	Bad	Bad	Bad		
3	Bad	Bad	Good		
4	Bad	Good	Good		
5	Good	Bad	Bad		
6	Good	Good	Good		
8	Good	Good	Good		
10	Bad	Good	Good		
11	Bad	Bad	Good		
12	Good	Good	Good		
13	Good	Bad	Bad		
14	Bad	Bad	Bad		
15	Good	Good	Good		
16	Good	Good	Bad		
17	Bad	Bad	Bad		
18	Good	Bad	Bad		
19	Good	Good	101 Good		
22	Bad	Bad	Bad		
24	Bad	Good	Good		
25	Good	Good	Good		
27	Bad	Bad	Good		
28	Good	Good	Good		
29	Good	Bad	Bad		
31	Bad	Bad	Bad		
32	Good	Good	Good		
34	Good	Good	Good		

Рис. 3.3 – Прогноз

ВИСНОВОК

Під час виконання даної лабораторної роботи я навчилася використовувати інструменти Data Mining та застосувала набуті навички на побудові споживчої кредитної оцінки ризиків (скорингу).