# Integer Multiplication and Division

ICS 233

Computer Architecture and Assembly Language
Dr. Aiman El-Maleh

College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals

#### Outline

- Unsigned Multiplication
- Signed Multiplication
- Faster Multiplication
- Unsigned Division
- Signed Division
- Multiplication and Division in MIPS

# Unsigned Multiplication

Paper and Pencil Example:

Multiplicand Multiplier

$$1100_2 = 12$$
×  $1101_2 = 13$ 

1100 0000 1100 1100

Binary multiplication is easy

 $0 \times \text{multiplicand} = 0$ 

1 × multiplicand = multiplicand

Product

$$10011100_2 = 156$$

- m-bit multiplicand × n-bit multiplier = (m+n)-bit product
- Accomplished via shifting and addition

#### Version 1 of Multiplication Hardware

❖ Initialize Product = 0

Multiplicand is zero extended





# Multiplication Example (Version 1)

- Consider:  $1100_2 \times 1101_2$ , Product =  $10011100_2$
- ❖ 4-bit multiplicand and multiplier are used in this example
- Multiplicand is zero extended because it is unsigned

| Iteration |                                     | Multiplicand | Multiplier         | Product                  |  |
|-----------|-------------------------------------|--------------|--------------------|--------------------------|--|
| 0         | Initialize                          | 00001100     | 110 <mark>1</mark> | _ 00000000               |  |
|           | Multiplier[0] = 1 => ADD            |              |                    | + → 00001100             |  |
|           | SLL Multiplicand and SRL Multiplier | 00011000     | 0110               |                          |  |
| 2         | Multiplier[0] = 0 => Do Nothing     |              |                    | _ 00001100               |  |
|           | SLL Multiplicand and SRL Multiplier | 00110000     | 0011               |                          |  |
| 2         | Multiplier[0] = 1 => ADD            |              |                    | - <b>+ &gt;</b> 00111100 |  |
| 3         | SLL Multiplicand and SRL Multiplier | 01100000     | 0001               |                          |  |
| 4         | Multiplier[0] = 1 => ADD            |              |                    | +→ 10011100              |  |
|           | SLL Multiplicand and SRL Multiplier | 11000000     | 0000               |                          |  |

#### Observation on Version 1 of Multiply

- Hardware in version 1 can be optimized
- Rather than shifting the multiplicand to the left

Instead, shift the product to the right

Has the same net effect and produces the same results

- Reduce Hardware
  - ♦ Multiplicand register can be reduced to 32 bits only
  - ♦ We can also reduce the adder size to 32 bits
- One cycle per iteration
  - ♦ Shifting and addition can be done simultaneously

## Version 2 of Multiplication Hardware

Product = HI and LO registers, HI=0



# Refined Version of Multiply Hardware



# Multiply Example (Refined Version)

- Consider:  $1100_2 \times 1101_2$ , Product =  $10011100_2$
- ❖ 4-bit multiplicand and multiplier are used in this example
- ❖ 4-bit adder produces a 5-bit sum (with carry)

| Iteration |                                    | Multiplicand Carry |            | Product = HI, LO |  |
|-----------|------------------------------------|--------------------|------------|------------------|--|
| 0         | Initialize (LO = Multiplier, HI=0) | 1100               |            | 0000 1101        |  |
|           | LO[0] = 1 => ADD                   | +-                 | <b>→</b> 0 | 1100 1101        |  |
| '         | Shift Right Product = (HI, LO)     | 1100               |            | 0110 0110        |  |
| 2         | LO[0] = 0 => Do Nothing            |                    |            |                  |  |
|           | Shift Right Product = (HI, LO)     | 1100               |            | 0011 0011        |  |
| 2         | LO[0] = 1 => ADD                   | +-                 | <b>→</b> 0 | 1111 0011        |  |
| 3         | Shift Right Product = (HI, LO)     | 1100               |            | 0111 1001        |  |
| 4         | LO[0] = 1 => ADD                   | +-                 | <b>→</b> 1 | 0011 1001        |  |
|           | Shift Right Product = (HI, LO)     | 1100               |            | 1001 1100        |  |

#### Next...

- Unsigned Multiplication
- Signed Multiplication
- Faster Multiplication
- Unsigned Division
- Signed Division
- Multiplication and Division in MIPS

#### Signed Multiplication

- So far, we have dealt with unsigned integer multiplication
- Version 1 of Signed Multiplication
  - Convert multiplier and multiplicand into positive numbers
    - If negative then obtain the 2's complement and remember the sign
  - Perform unsigned multiplication
  - ♦ Compute the sign of the product
  - ♦ If product sign < 0 then obtain the 2's complement of the product</p>

#### Refined Version:

- Use the refined version of the unsigned multiplication hardware
- ♦ When shifting right, extend the sign of the product
- ♦ If multiplier is negative, the last step should be a subtract

# Signed Multiplication (Pencil & Paper)

Case 1: Positive Multiplier

Multiplicand 
$$1100_2 = -4$$
Multiplier  $\times 0101_2 = +5$ 
Sign-extension 
$$1111100$$
Product 
$$11101100_2 = -20$$

Case 2: Negative Multiplier

```
Multiplicand
                    1100_2 = -4
                    1101_2 = -3
Multiplier
                           (2's complement of 1100)
               00100
Product
               00001100_2 = +12
```

## Signed Multiplication Hardware

Similar to Unsigned Multiplier Start ❖ ALU produces a 33-bit result LO=Multiplier, HI=0 Multiplicand and HI are sign-extended = 0♦ Sign is the sign of the result LO[0]? Multiplicand First 31 iterations: HI = HI + Multiplicand Last iteration: HI = HI – Multiplicand 32 bits 32 bits add, sub 33-bit ALU Shift Right Product = (HI, LO) 1 bit 33 bits 32 bits 3 No shift right 32<sup>nd</sup> Repetition? sign HI LO Control Yes write 64 bits Done LO[0]

## Signed Multiplication Example

- **!** Consider:  $1100_2$  (-4) ×  $1101_2$  (-3), Product =  $00001100_2$
- Multiplicand and HI are sign-extended before addition
- Last iteration: add 2's complement of Multiplicand

| Iteration |                                      | Multiplicand | Sign       | Product = HI, LO |
|-----------|--------------------------------------|--------------|------------|------------------|
| 0         | Initialize (LO = Multiplier)         | 1100         |            | 0000 1101        |
|           | LO[0] = 1 => ADD                     | +-           | <b>→</b> 1 | 1100 1101        |
|           | Shift Product = (HI, LO) right 1 bit | 1100         |            | 1110 0110        |
| 2         | LO[0] = 0 => Do Nothing              |              |            |                  |
|           | Shift Product = (HI, LO) right 1 bit | 1100         |            | _ 1111 0011      |
| 2         | LO[0] = 1 => ADD                     | +-           | <b>→</b> 1 | 1011 0011        |
| 3         | Shift Product = (HI, LO) right 1 bit | 1100 _       |            | <u> </u>         |
| 4         | LO[0] = 1 => SUB (ADD 2's compl)     | 0100 +-      | <b>→</b> 0 | 0001 1001        |
|           | Shift Product = (HI, LO) right 1 bit |              |            | 0000 1100        |

#### Next...

- Unsigned Multiplication
- Signed Multiplication
- Faster Multiplication
- Unsigned Division
- Signed Division
- Multiplication and Division in MIPS

#### Faster Multiplication Hardware

- ❖ 32-bit adder for each bit of the multiplier
  - ♦ 31 adders are needed for a 32-bit multiplier
  - ♦ AND multiplicand with each bit of multiplier
  - ♦ Product = accumulated shifted sum
- Each adder produces a 33-bit output
  - ♦ Most significant bit is a carry bit
  - ♦ Least significant bit is a product bit
  - ♦ Upper 32 bits go to next adder
- Array multiplier can be optimized
  - ♦ Carry save adders reduce delays
  - ♦ Pipelining further improves the speed



#### Carry Save Adders

- Used when adding multiple numbers (as in multipliers)
- All the bits of a carry save adder work in parallel
  - ♦ The carry does not propagate as in a ripple-carry adder
  - This is why the carry save adder is much faster than ripple-carry
- A carry save adder has 3 inputs and produces two outputs
  - ♦ It adds 3 numbers and produces partial sum and carry bits



Ripple Carry Adder



Carry Save Adder

## Consider Adding: S = A + B + C + D









#### Next...

- Unsigned Multiplication
- Signed Multiplication
- Faster Multiplication
- Unsigned Division
- Signed Division
- Multiplication and Division in MIPS

# Unsigned Division (Paper & Pencil)

Divisor 
$$1011_2 = 19$$
 Quotient  $11011_2 = 217$  Dividend

-1011 10: 101 1010 10100

Try to see how big a number can be subtracted, creating a digit of the quotient on each attempt

Dividend = Quotient × Divisor + Remainder  $217 = 19 \times 11 + 8$ 

-1011 1001 10011 -1011

Binary division is accomplished via shifting and subtraction

 $1000_2 = 8$ 

Remainder

## First Division Algorithm & Hardware

#### Initialize:

- → Remainder = Dividend (0-extended)
- $\Rightarrow$  Quotient = 0



Start 1. Shift the Divisor Right 1 bit Shift the Quotient Left 1 bit Difference = Remainder – Divisor ≥ () < 0 Difference? 2. Remainder = Difference Set least significant bit of Quotient No 32<sup>nd</sup> Repetition? Yes Done

# Division Example (Version 1)

- Consider: 1110<sub>2</sub> / 0011<sub>2</sub> (4-bit dividend & divisor)
- Quotient =  $0100_2$  and Remainder =  $0010_2$
- ❖ 8-bit registers for Remainder and Divisor (8-bit ALU)

| Iteration |                                 | Remainder | Divisor  | Difference | Quotient |
|-----------|---------------------------------|-----------|----------|------------|----------|
| 0         | Initialize                      | 00001110  | 00110000 |            | 0000     |
| 4         | 1: SRL, SLL, Difference         | 00001110  | 00011000 | 11110110   | 0000     |
| l         | 2: Diff < 0 => Do Nothing       |           |          |            |          |
| 2         | 1: SRL, SLL, Difference         | 00001110  | 00001100 | 00000010   | 0000     |
|           | 2: Rem = Diff, set Isb Quotient | 00000010  |          |            | 0001     |
| 2         | 1: SRL, SLL, Difference         | 00000010  | 00000110 | 11111100   | 0010     |
| 3         | 2: Diff < 0 => Do Nothing       |           |          |            |          |
| 4         | 1: SRL, SLL, Difference         | 0000010   | 00000011 | 11111111   | 0100     |
|           | 2: Diff < 0 => Do Nothing       |           |          |            |          |

#### Observations on Version 1 of Divide

- Version 1 of Division hardware can be optimized
- Instead of shifting divisor right,

Shift the remainder register left

Has the same net effect and produces the same results

- Reduce Hardware:
  - ♦ Divisor register can be reduced to 32 bits (instead of 64 bits)
  - ♦ ALU can be reduced to 32 bits (instead of 64 bits).
  - ♦ Remainder and Quotient registers can be combined

#### Refined Division Hardware

# Observation:

♦ Shifting remainder left does the same as shifting the divisor right

#### Initialize:

set Isb



24

Start

1. Shift (Remainder, Quotient) Left

Difference = Remainder – Divisor

#### Division Example (Refined Version)

- ❖ Same Example: 1110₂ / 0011₂ (4-bit dividend & divisor)
- $\clubsuit$  Quotient = 0100<sub>2</sub> and Remainder = 0010<sub>2</sub>
- ❖ 4-bit registers for Remainder and Divisor (4-bit ALU)

| Iteration |                                 | Remainder | Quotient             | Divisor | Difference |
|-----------|---------------------------------|-----------|----------------------|---------|------------|
| 0         | Initialize                      | 0000      | 1110                 | 0011    |            |
|           | 1: SLL, Difference              | 0001      | - 1100               | 0011    | 1110       |
|           | 2: Diff < 0 => Do Nothing       |           |                      |         |            |
|           | 1: SLL, Difference              | 0011      | 1000                 | 0011    | 0000       |
| 2         | 2: Rem = Diff, set Isb Quotient | 0000      | 1 0 0 <mark>1</mark> |         |            |
|           | 1: SLL, Difference              | 0001      | - 0010               | 0011    | 1110       |
| 3         | 2: Diff < 0 => Do Nothing       |           |                      |         |            |
| 1         | 1: SLL, Difference              | 0010      | - 0100               | 0011    | 1111       |
| 4         | 2: Diff < 0 => Do Nothing       |           |                      |         |            |

#### Next...

- Unsigned Multiplication
- Signed Multiplication
- Faster Multiplication
- Unsigned Division
- Signed Division
- Multiplication and Division in MIPS

#### Signed Division

- Simplest way is to remember the signs
- Convert the dividend and divisor to positive
  - ♦ Obtain the 2's complement if they are negative
- Do the unsigned division
- Compute the signs of the quotient and remainder
  - ♦ Quotient sign = Dividend sign XOR Divisor sign
  - → Remainder sign = Dividend sign
- Negate the quotient and remainder if their sign is negative
  - ♦ Obtain the 2's complement to convert them to negative

# Signed Division Examples

1. Positive Dividend and Positive Divisor

2. Positive Dividend and Negative Divisor

$$\Rightarrow$$
 Example: +17 / -3 Quotient = -5 Remainder = +2

3. Negative Dividend and Positive Divisor

$$\Rightarrow$$
 Example: -17 / +3 Quotient = -5 Remainder = -2

4. Negative Dividend and Negative Divisor

$$\Rightarrow$$
 Example: -17 / -3 Quotient = +5 Remainder = -2

The following equation must always hold:

Dividend = Quotient × Divisor + Remainder

#### Next...

- Unsigned Multiplication
- Signed Multiplication
- Faster Multiplication
- Unsigned Division
- Signed Division
- Multiplication and Division in MIPS

#### Multiplication in MIPS

- Two Multiply instructions
  - \$s1,\$s2 Signed multiplication ♦ mult
  - ♦ multu \$s1,\$s2 **Unsigned multiplication**
- ❖ 32-bit multiplication produces a 64-bit Product
- Separate pair of 32-bit registers
  - ♦ HI = high-order 32-bit
  - ♦ LO = low-order 32-bit.
  - → Result of multiplication is always in HI & LO
- Moving data from HI/LO to MIPS registers

  - ♦ mflo Rd (move from LO to Rd)



#### Division in MIPS

- Two Divide instructions
  - ♦ div \$s1,\$s2

Signed division

- **Unsigned division**
- Division produces quotient and remainder
- Separate pair of 32-bit registers
  - ♦ HI = 32-bit remainder

  - ♦ If divisor is 0 then result is unpredictable
- Moving data to HI/LO from MIPS registers

  - ♦ mtlo Rs (move to LO from Rs)



# Integer Multiply/Divide Instructions

| Instruction |        | Meaning                 | Format     |                 |                 |                 |   |      |
|-------------|--------|-------------------------|------------|-----------------|-----------------|-----------------|---|------|
| mult R      | Rs, Rt | Hi, Lo = $Rs \times Rt$ | $op^6 = 0$ | Rs <sup>5</sup> | Rt <sup>5</sup> | 0               | 0 | 0x18 |
| multu R     | Rs, Rt | Hi, Lo = $Rs \times Rt$ | $op^6 = 0$ | Rs <sup>5</sup> | Rt <sup>5</sup> | 0               | 0 | 0x19 |
| div R       | Rs, Rt | Hi, Lo = Rs / Rt        | $op^6 = 0$ | Rs <sup>5</sup> | Rt <sup>5</sup> | 0               | 0 | 0x1a |
| divu R      | Rs, Rt | Hi, Lo = Rs / Rt        | $op^6 = 0$ | Rs <sup>5</sup> | Rt <sup>5</sup> | 0               | 0 | 0x1b |
| mfhi R      | ₹d     | Rd = Hi                 | $op^6 = 0$ | 0               | 0               | Rd <sup>5</sup> | 0 | 0x10 |
| mflo R      | ₹d     | Rd = Lo                 | $op^6 = 0$ | 0               | 0               | Rd <sup>5</sup> | 0 | 0x12 |
| mthi R      | Rs     | Hi = Rs                 | $op^6 = 0$ | Rs <sup>5</sup> | 0               | 0               | 0 | 0x11 |
| mtlo R      | Rs     | Lo = Rs                 | $op^6 = 0$ | Rs <sup>5</sup> | 0               | 0               | 0 | 0x13 |

- Signed arithmetic: mult, div (Rs and Rt are signed)

  - ♦ LO = 32-bit quotient and HI = 32-bit remainder of division
- Unsigned arithmetic: multu, divu (Rs and Rt are unsigned)
- NO arithmetic exception can occur

#### Integer to String Conversion

- Objective: convert an unsigned 32-bit integer to a string
- How to obtain the decimal digits of the number?
  - → Divide the number by 10, Remainder = decimal digit (0 to 9).
  - ♦ Convert decimal digit into its ASCII representation ('0' to '9')
  - ♦ Repeat the division until the quotient becomes zero
  - ♦ Digits are computed backwards from least to most significant
- Example: convert 2037 to a string

```
quotient = 203 remainder = 7 char = '7'

→ Divide 2037/10
```

#### Integer to String Procedure

```
# int2str: Converts an unsigned integer into a string
# Parameters: $a0 = integer to be converted
            $a1 = string pointer (can store 10 digits)
int2str:
  move $t0, $a0 # $t0 = dividend = integer value
  li $t1, 10 # $t1 = divisor = 10
  addiu $a1, $a1, 10 # start at end of string
  sb $zero, 0($a1) # store a NULL byte
convert:
  divu $t0, $t1  # LO = quotient, HI = remainder
  mflo $t0
                    # $t0 = quotient
  mfhi $t2
                    # $t2 = remainder
  ori $t2, $t2, 0x30 # convert digit to a character
  addiu $a1, $a1, -1 # point to previous char
  sb $t2, 0($a1) # store digit character
  bnez $t0, convert # loop if quotient is not 0
  ir $ra
```