What this presentation will do?

In the presentation, I will tell you about...

- 1. what did I do.
- 2. what am I going to do.

What did I do?

- 1. I modularised the code: DeenaGendoo Generate MVA DNF.R
- 2. I added the Logging.R feature.
- 3. I automated the computation of DNF.
- 4. I read and tried to understand the following codes:
 - 1. DeenaGendoo_Generate_MVA_DNF.R 🗸
 - 2. DeenaGendoo_PermutationTestAndFiltering.R 🗸

What did I modularise?

```
Preprocessing
--- Dependencies.R
--- FunctionsBank.R
--- Logger.R
```

- Dependencies.R do all the package loading/installing.
- FunctionBank.R contains all the operations function, including the dnf generation process: get_dnf(...)
- Logger.R is created for better debugging.

Let's talk about the Logging. R feature.

I develop it from log4r.

log4r-package

package:log4r

R Documentation

A simple logging system for R, based on log4j.

Description:

logr4 provides an object-oriented logging system that uses an API roughly equivalent to log4j and its related variants.

Why logging?

- Retain execution history.
- Generate report.

How does it look like?

see the following * . log file snapshot.

DNF automation

DNF automation is done by get_dnf(), a custom function:

It returns the following list.

```
dnf <- list(
    "pathway" = pathway_name,
    "common_genes" = common_genes,
    "strc_layer" = strcAffMat,
    "sens_layer" = sensAffMat,
    "pert_layer" = pertAffMat,
    "integreated_network" = integrtStrctSensPert
)</pre>
```

- The function depends on min_num_common_genes between pertData and the pathway_genes
- min_num_common_genes is specified by user

min_num_common_genes must be >= 2 for computing the correlation
matrix, otherwise there is error.

Implementation 📌

Essentially, It is 2 for loop:

- create a empty list: DNFs
- 2. get all file path of *.gmt under Data/GMT directory
- 3. for each * . gmt:
 - 1. load and read the *.gmt
 - 2. for each pathway in the *.gmt:

```
1. dnf <- get_dnf(pathway ...)</pre>
```

1. if num_common_gene <

min_num_common_genes

1. skip the pathway and continue

- 2. add dnf to DNFs
- 4. save DNFs to DNFs.RData
- 5. generate DNFs_report.log.

DNFs report

Setting: minimum number of common genes = 2

Realistically though, I would only keep pathways that have a minimum of **5 genes** Deena, 2021

Setting: minimum number of common genes = **5**

what am I going to do?

I will...

- continue reading DeenaGendoo_PermutationTestAndFiltering.R
- try to
 - Re-execute permutation testing & z-score calculation
 - Generate top drug hits against query drugs

Thank you for your attention