CEE 260/MIE 273: Probability and Statistics in Civil Engineering Lecture M3c: Lognormal and Exponential Distributions

Jimi Oke

UMassAmherst

College of Engineering

September 26, 2025

Outline

- Introduction
- 2 The lognormal distribution
- Secondary Exponential distribution
- Outlook

Introduction

•00

• The PDF of the normal distribution (parameters μ and σ^2) is given by

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$
 (1)

• The parameters of a normal distribution $N(\mu, \sigma^2)$ correspond to its mean and variance, respectively.

Introduction

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$
 (1)

- The parameters of a normal distribution $N(\mu, \sigma^2)$ correspond to its mean and variance, respectively.
- There is no closed-form solution to the integral of the normal CDF

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$
 (1)

- The parameters of a normal distribution $N(\mu, \sigma^2)$ correspond to its mean and variance, respectively.
- There is no closed-form solution to the integral of the normal CDF
- Instead, it is customary to standardize a normal variable to its "Z-score":

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$
 (1)

- The parameters of a normal distribution $N(\mu, \sigma^2)$ correspond to its mean and variance, respectively.
- There is no closed-form solution to the integral of the normal CDF
- Instead, it is customary to standardize a normal variable to its "Z-score":

$$Z = \frac{X - \mu}{\sigma} \tag{2}$$

• The PDF of the normal distribution (parameters μ and σ^2) is given by

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$
 (1)

- The parameters of a normal distribution $N(\mu, \sigma^2)$ correspond to its mean and variance, respectively.
- There is no closed-form solution to the integral of the normal CDF
- Instead, it is customary to standardize a normal variable to its "Z-score":

$$Z = \frac{X - \mu}{\sigma} \tag{2}$$

• The mean and variance of the standard normal distribution are 0 and 1, respectively.

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$
 (1)

- The parameters of a normal distribution $N(\mu, \sigma^2)$ correspond to its mean and variance, respectively.
- There is no closed-form solution to the integral of the normal CDF
- Instead, it is customary to standardize a normal variable to its "Z-score":

$$Z = \frac{X - \mu}{\sigma} \tag{2}$$

- The mean and variance of the standard normal distribution are 0 and 1, respectively.
- The symbol Φ ("phi") is used to represent the CDF of the standard normal distribution, whose values can be looked up in a table.

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$
 (1)

- The parameters of a normal distribution $N(\mu,\sigma^2)$ correspond to its mean and variance, respectively.
- There is no closed-form solution to the integral of the normal CDF
- Instead, it is customary to standardize a normal variable to its "Z-score":

$$Z = \frac{X - \mu}{\sigma} \tag{2}$$

- The mean and variance of the standard normal distribution are 0 and 1, respectively.
- The symbol Φ ("phi") is used to represent the CDF of the standard normal distribution, whose values can be looked up in a table.
- In MATLAB, the normcdf(x, mu, sigma) and norminv(p, mu, sigma)
 can be used to compute probabilities and inverse CDFs of the normal
 distribution, respectively.

Introduction

000

• First convert the random variable to its Z-score

Introduction

0.00

- First convert the random variable to its Z-score
- Find the corresponding value in the table

Introduction

0.00

- First convert the random variable to its Z-score
- Find the corresponding value in the table

0.00

Lognormal distribution

Introduction

000

- Lognormal distribution
- Relationship between lognormal and normal distributions

- Lognormal distribution
- Relationship between lognormal and normal distributions
- Exponential distribution

- Lognormal distribution
- Relationship between lognormal and normal distributions
- Exponential distribution
- Memoryless property of exponential distribution

PDF

PDF

PDF

$$f_X(x) = \frac{1}{(\sigma x)\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{\ln(x) - \mu}{\sigma}\right)^2} \quad x \ge 0$$
 (3)

PDF

$$f_X(x) = \frac{1}{(\sigma x)\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{\ln(x) - \mu}{\sigma}\right)^2} \quad x \ge 0$$
 (3)

PDF

$$f_X(x) = \frac{1}{(\sigma x)\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{\ln(x) - \mu}{\sigma}\right)^2} \quad x \ge 0$$
 (3)

PDF

$$f_X(x) = \frac{1}{(\sigma x)\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{\ln(x) - \mu}{\sigma}\right)^2} \quad x \ge 0$$
 (3)

Let $X \sim \mathcal{LN}(\mu, \sigma^2)$

Let $X \sim \mathcal{LN}(\mu, \sigma^2)$

Mean

Let $X \sim \mathcal{LN}(\mu, \sigma^2)$

Mean

The mean of X is given by

Let $X \sim \mathcal{LN}(\mu, \sigma^2)$

Mean

The mean of X is given by

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{4}$$

Let $X \sim \mathcal{LN}(\mu, \sigma^2)$

Mean

The mean of X is given by

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{4}$$

Median

Let $X \sim \mathcal{LN}(\mu, \sigma^2)$

Mean

The mean of X is given by

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{4}$$

Median

The median of X is:

Let $X \sim \mathcal{LN}(\mu, \sigma^2)$

Mean

The mean of X is given by

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{4}$$

Median

The median of X is:

$$Median(X) = e^{\mu}$$
 (5)

Variance

Let $X \sim \mathcal{LN}(\mu, \sigma^2)$

Mean

The mean of X is given by

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{4}$$

Median

The median of X is:

$$Median(X) = e^{\mu}$$

Variance

The variance of X is given by:

(5)

Let $X \sim \mathcal{LN}(\mu, \sigma^2)$

Mean

The mean of X is given by

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{4}$$

Median

The median of X is:

$$Median(X) = e^{\mu}$$

(5)

Variance

The variance of X is given by:

$$\mathbb{V}(X) =$$

Mean, median and variance of a lognormal distribution

Let $X \sim \mathcal{LN}(\mu, \sigma^2)$

Mean

The mean of X is given by

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{4}$$

Median

The median of X is:

$$Median(X) = e^{\mu}$$

(5)

Variance

$$V(X) = (e^{\sigma^2} - 1)e^{(2\mu + \sigma^2)}$$
 (6)

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

Solution

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

Solution

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

Solution

$$Median(X) = e^{\mu}$$

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

Solution

$$Median(X) = e^{\mu}$$
$$5 = e^{\mu}$$

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

Solution

$$Median(X) = e^{\mu}$$

$$5 = e^{\mu}$$

$$\implies \ln(5) =$$

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

Solution

$$Median(X) = e^{\mu}$$

$$5 = e^{\mu}$$

$$\implies \ln(5) = \mu$$

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

Solution

First, we find the parameter μ :

$$Median(X) = e^{\mu}$$

$$5 = e^{\mu}$$

$$\implies \ln(5) = \mu$$

... The mean is given by

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

Solution

First, we find the parameter μ :

$$Median(X) = e^{\mu}$$

$$5 = e^{\mu}$$

$$\implies \ln(5) = \mu$$

... The mean is given by $\mathbb{E}(X) = e^{\mu + \frac{1}{2}\sigma^2}$

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

Solution

First, we find the parameter μ :

$$Median(X) = e^{\mu}$$

$$5 = e^{\mu}$$

$$\implies \ln(5) = \mu$$

... The mean is given by $\mathbb{E}(X) = e^{\mu + \frac{1}{2}\sigma^2} = e^{\ln(5) + 0.21}$

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

Solution

$$Median(X) = e^{\mu}$$

$$5 = e^{\mu}$$

$$\implies \ln(5) = \mu$$

$$\therefore \text{ The mean is given by } \mathbb{E}(X) = e^{\mu + \frac{1}{2}\sigma^2} = e^{\ln(5) + 0.21}$$

$$= 5(e^{0.21})$$

The incubation period of the COVID-19 infection is assumed to be lognormally distributed with a median of about 5 days and $\sigma^2 = 0.42$. What are the mean and variance of its distribution?

Solution

$$\begin{array}{rcl} \textit{Median}(X) & = & e^{\mu} \\ 5 & = & e^{\mu} \\ & \Longrightarrow \ln(5) & = & \mu \\ \therefore \text{ The mean is given by } \mathbb{E}(X) & = & e^{\mu + \frac{1}{2}\sigma^2} = e^{\ln(5) + 0.21} \\ & = & 5(e^{0.21}) = \boxed{6.17 \text{ days}} \end{array}$$

Solution (cont.)

Solution (cont.)

Solution (cont.)

$$\mathbb{V}(X) = (\exp(\sigma^2) - 1) (\exp[2\mu + \sigma^2])$$

Solution (cont.)

$$V(X) = (\exp(\sigma^2) - 1) (\exp[2\mu + \sigma^2])$$

= (\exp(0.42) - 1)(\exp(2\ln(5) + 0.42))

Solution (cont.)

$$V(X) = (\exp(\sigma^2) - 1) (\exp[2\mu + \sigma^2])$$

$$= (\exp(0.42) - 1)(\exp(2\ln(5) + 0.42))$$

$$= \boxed{19.86 \text{ days}^2}$$

• A random variable X is lognormally distributed with the **parameters** μ and σ^2 if $\ln(X)$ is normally distributed with the same parameters.

• A random variable X is lognormally distributed with the parameters μ and σ^2 if $\ln(X)$ is normally distributed with the same parameters.

$$X \sim \mathcal{LN}(\mu, \sigma^2)$$

• A random variable X is lognormally distributed with the parameters μ and σ^2 if $\ln(X)$ is normally distributed with the same parameters.

$$X \sim \mathcal{LN}(\mu, \sigma^2) \implies \ln(X) \sim \mathcal{N}(\mu, \sigma^2)$$
 (7)

• A random variable X is lognormally distributed with the parameters μ and σ^2 if $\ln(X)$ is normally distributed with the same parameters.

$$X \sim \mathcal{LN}(\mu, \sigma^2) \implies \ln(X) \sim \mathcal{N}(\mu, \sigma^2)$$
 (7)

• A random variable X is lognormally distributed with the parameters μ and σ^2 if $\ln(X)$ is normally distributed with the same parameters.

$$X \sim \mathcal{LN}(\mu, \sigma^2) \implies \ln(X) \sim \mathcal{N}(\mu, \sigma^2)$$
 (7)

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

• A random variable X is lognormally distributed with the parameters μ and σ^2 if $\ln(X)$ is normally distributed with the same parameters.

$$X \sim \mathcal{LN}(\mu, \sigma^2) \implies \ln(X) \sim \mathcal{N}(\mu, \sigma^2)$$
 (7)

$$X \sim \mathcal{N}(\mu, \sigma^2) \implies$$

• A random variable X is lognormally distributed with the parameters μ and σ^2 if $\ln(X)$ is normally distributed with the same parameters.

$$X \sim \mathcal{LN}(\mu, \sigma^2) \implies \ln(X) \sim \mathcal{N}(\mu, \sigma^2)$$
 (7)

$$X \sim \mathcal{N}(\mu, \sigma^2) \implies e^X \sim \mathcal{L}\mathcal{N}(\mu, \sigma^2)$$
 (8)

• A random variable X is lognormally distributed with the parameters μ and σ^2 if $\ln(X)$ is normally distributed with the same parameters.

$$X \sim \mathcal{LN}(\mu, \sigma^2) \implies \ln(X) \sim \mathcal{N}(\mu, \sigma^2)$$
 (7)

• Conversely, a random variable X is normally distributed with the parameters μ and σ^2 then e^X is lognormally distributed with the same parameters.

$$X \sim \mathcal{N}(\mu, \sigma^2) \implies e^X \sim \mathcal{L}\mathcal{N}(\mu, \sigma^2)$$
 (8)

• If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $\mu = \mathbb{E}(X)$ and $\sigma^2 = \mathbb{V}(X)$

• A random variable X is lognormally distributed with the parameters μ and σ^2 if $\ln(X)$ is normally distributed with the same parameters.

$$X \sim \mathcal{LN}(\mu, \sigma^2) \implies \ln(X) \sim \mathcal{N}(\mu, \sigma^2)$$
 (7)

$$X \sim \mathcal{N}(\mu, \sigma^2) \implies e^X \sim \mathcal{L}\mathcal{N}(\mu, \sigma^2)$$
 (8)

- If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $\mu = \mathbb{E}(X)$ and $\sigma^2 = \mathbb{V}(X)$
- However, $X \sim \mathcal{LN}(\mu, \sigma^2)$, then $\mu = E(\ln(X))$ and $\sigma^2 = \mathbb{V}(\ln(X))$

• A random variable X is lognormally distributed with the parameters μ and σ^2 if $\ln(X)$ is normally distributed with the same parameters.

$$X \sim \mathcal{LN}(\mu, \sigma^2) \implies \ln(X) \sim \mathcal{N}(\mu, \sigma^2)$$
 (7)

$$X \sim \mathcal{N}(\mu, \sigma^2) \implies e^X \sim \mathcal{L}\mathcal{N}(\mu, \sigma^2)$$
 (8)

- If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $\mu = \mathbb{E}(X)$ and $\sigma^2 = \mathbb{V}(X)$
- However, $X \sim \mathcal{LN}(\mu, \sigma^2)$, then $\mu = E(\ln(X))$ and $\sigma^2 = \mathbb{V}(\ln(X))$

Relationship between normal and lognormal (cont.)

Relationship between normal and lognormal (cont.)

Positive skewness of lognormal distribution

Positive skewness of lognormal distribution

The lognormal distribution is positively skewed

Positive skewness of lognormal distribution

- The lognormal distribution is positively skewed
- Its mean is always greater than its median

Positive skewness of lognormal distribution

- The lognormal distribution is positively skewed
- Its mean is always greater than its median

Positive skewness of lognormal distribution

- The lognormal distribution is positively skewed
- Its mean is always greater than its median

$$P(a < X \le b) =$$

$$P(a < X \le b) = \frac{1}{\sigma x \sqrt{2\pi}}$$

$$P(a < X \le b) = \frac{1}{\sigma x \sqrt{2\pi}} \int_a^b e^{-\frac{1}{2} \left(\frac{\ln(x) - \mu}{\sigma}\right)^2} dx \tag{9}$$

Given a r.v. X that is lognormally distributed with parameters μ and σ^2 :

$$P(a < X \le b) = \frac{1}{\sigma x \sqrt{2\pi}} \int_a^b e^{-\frac{1}{2} \left(\frac{\ln(x) - \mu}{\sigma}\right)^2} dx \tag{9}$$

Substituting $z = \frac{\ln(x) - \mu}{\sigma}$

$$P(a < X \le b) = \frac{1}{\sigma x \sqrt{2\pi}} \int_a^b e^{-\frac{1}{2} \left(\frac{\ln(x) - \mu}{\sigma}\right)^2} dx \tag{9}$$

Substituting
$$z = \frac{\ln(x) - \mu}{\sigma} \implies$$

Given a r.v. X that is lognormally distributed with parameters μ and σ^2 :

$$P(a < X \le b) = \frac{1}{\sigma x \sqrt{2\pi}} \int_a^b e^{-\frac{1}{2} \left(\frac{\ln(x) - \mu}{\sigma}\right)^2} dx \tag{9}$$

Given a r.v. X that is lognormally distributed with parameters μ and σ^2 :

$$P(a < X \le b) = \frac{1}{\sigma x \sqrt{2\pi}} \int_a^b e^{-\frac{1}{2} \left(\frac{\ln(x) - \mu}{\sigma}\right)^2} dx \tag{9}$$

$$P(a < X \leq b)$$

Given a r.v. X that is lognormally distributed with parameters μ and σ^2 :

$$P(a < X \le b) = \frac{1}{\sigma x \sqrt{2\pi}} \int_{a}^{b} e^{-\frac{1}{2} \left(\frac{\ln(x) - \mu}{\sigma}\right)^{2}} dx \tag{9}$$

$$P(a < X \le b) = \frac{1}{\sqrt{2\pi}} \int_{(\ln(a) - \mu)/\sigma}^{(\ln(b) - \mu)/\sigma}$$

Given a r.v. X that is lognormally distributed with parameters μ and σ^2 :

$$P(a < X \le b) = \frac{1}{\sigma x \sqrt{2\pi}} \int_a^b e^{-\frac{1}{2} \left(\frac{\ln(x) - \mu}{\sigma}\right)^2} dx \tag{9}$$

$$P(a < X \le b) = \frac{1}{\sqrt{2\pi}} \int_{(\ln(a) - \mu)/\sigma}^{(\ln(b) - \mu)/\sigma} e^{-\frac{1}{2}z^2} dz$$
 (10)

Given a r.v. X that is lognormally distributed with parameters μ and σ^2 :

$$P(a < X \le b) = \frac{1}{\sigma x \sqrt{2\pi}} \int_a^b e^{-\frac{1}{2} \left(\frac{\ln(x) - \mu}{\sigma}\right)^2} dx \tag{9}$$

Substituting $z = \frac{\ln(x) - \mu}{\sigma} \implies dx = \sigma x dz$, we obtain:

$$P(a < X \le b) = \frac{1}{\sqrt{2\pi}} \int_{(\ln(a) - \mu)/\sigma}^{(\ln(b) - \mu)/\sigma} e^{-\frac{1}{2}z^2} dz$$
 (10)

Given a r.v. X that is lognormally distributed with parameters μ and σ^2 :

$$P(a < X \le b) = \frac{1}{\sigma x \sqrt{2\pi}} \int_a^b e^{-\frac{1}{2} \left(\frac{\ln(x) - \mu}{\sigma}\right)^2} dx \tag{9}$$

Substituting $z = \frac{\ln(x) - \mu}{\sigma} \implies dx = \sigma x dz$, we obtain:

$$P(a < X \le b) = \frac{1}{\sqrt{2\pi}} \int_{(\ln(a) - \mu)/\sigma}^{(\ln(b) - \mu)/\sigma} e^{-\frac{1}{2}z^2} dz$$
 (10)

$$P(a < X \leq b)$$

Given a r.v. X that is lognormally distributed with parameters μ and σ^2 :

$$P(a < X \le b) = \frac{1}{\sigma x \sqrt{2\pi}} \int_a^b e^{-\frac{1}{2} \left(\frac{\ln(x) - \mu}{\sigma}\right)^2} dx \tag{9}$$

Substituting $z = \frac{\ln(x) - \mu}{\sigma} \implies dx = \sigma x dz$, we obtain:

$$P(a < X \le b) = \frac{1}{\sqrt{2\pi}} \int_{(\ln(a) - \mu)/\sigma}^{(\ln(b) - \mu)/\sigma} e^{-\frac{1}{2}z^2} dz$$
 (10)

$$P(a < X \le b) = \Phi\left(\frac{\ln b - \mu}{\sigma}\right)$$

Given a r.v. X that is lognormally distributed with parameters μ and σ^2 :

$$P(a < X \le b) = \frac{1}{\sigma x \sqrt{2\pi}} \int_a^b e^{-\frac{1}{2} \left(\frac{\ln(x) - \mu}{\sigma}\right)^2} dx \tag{9}$$

Substituting $z = \frac{\ln(x) - \mu}{\sigma} \implies dx = \sigma x dz$, we obtain:

$$P(a < X \le b) = \frac{1}{\sqrt{2\pi}} \int_{(\ln(a) - \mu)/\sigma}^{(\ln(b) - \mu)/\sigma} e^{-\frac{1}{2}z^2} dz$$
 (10)

$$P(a < X \le b) = \Phi\left(\frac{\ln b - \mu}{\sigma}\right) -$$

Given a r.v. X that is lognormally distributed with parameters μ and σ^2 :

$$P(a < X \le b) = \frac{1}{\sigma x \sqrt{2\pi}} \int_a^b e^{-\frac{1}{2} \left(\frac{\ln(x) - \mu}{\sigma}\right)^2} dx \tag{9}$$

Substituting $z = \frac{\ln(x) - \mu}{\sigma} \implies dx = \sigma x dz$, we obtain:

$$P(a < X \le b) = \frac{1}{\sqrt{2\pi}} \int_{(\ln(a) - \mu)/\sigma}^{(\ln(b) - \mu)/\sigma} e^{-\frac{1}{2}z^2} dz$$
 (10)

$$P(a < X \le b) = \Phi\left(\frac{\ln b - \mu}{\sigma}\right) - \Phi\left(\frac{\ln a - \mu}{\sigma}\right) \tag{11}$$

The lifetime X of a major oil platform equipment is lognormally distributed with a Median(X) = 6 months and $\sigma = 0.30$. To ensure 95% reliability, determine the desired interval x_0 for maintenance.

The lifetime X of a major oil platform equipment is lognormally distributed with a Median(X) = 6 months and $\sigma = 0.30$. To ensure 95% reliability, determine the desired interval x_0 for maintenance.

The lifetime X of a major oil platform equipment is lognormally distributed with a Median(X) = 6 months and $\sigma = 0.30$. To ensure 95% reliability, determine the desired interval x_0 for maintenance.

Solution

Given: $\mu = \ln 6 = 1.792$ and $\sigma = 0.30$, we want to find x_0 such that:

The lifetime X of a major oil platform equipment is lognormally distributed with a Median(X) = 6 months and $\sigma = 0.30$. To ensure 95% reliability, determine the desired interval x_0 for maintenance.

Solution

Given: $\mu = \ln 6 = 1.792$ and $\sigma = 0.30$, we want to find x_0 such that:

$$P(X > x_0) = 1 - P(X \le x_0) =$$

The lifetime X of a major oil platform equipment is lognormally distributed with a Median(X) = 6 months and $\sigma = 0.30$. To ensure 95% reliability, determine the desired interval x_0 for maintenance.

Solution

Given: $\mu = \ln 6 = 1.792$ and $\sigma = 0.30$, we want to find x_0 such that:

$$P(X > x_0) = 1 - P(X \le x_0) = 0.95$$

The lifetime X of a major oil platform equipment is lognormally distributed with a Median(X) = 6 months and $\sigma = 0.30$. To ensure 95% reliability, determine the desired interval x_0 for maintenance.

Solution

Given: $\mu = \ln 6 = 1.792$ and $\sigma = 0.30$, we want to find x_0 such that:

$$P(X > x_0) = 1 - P(X \le x_0) = 0.95$$

Thus:

$$\Phi\left(\frac{\ln(x_0)-1.792}{0.30}\right) =$$

The lifetime X of a major oil platform equipment is lognormally distributed with a Median(X) = 6 months and $\sigma = 0.30$. To ensure 95% reliability, determine the desired interval x_0 for maintenance.

Solution

Given: $\mu = \ln 6 = 1.792$ and $\sigma = 0.30$, we want to find x_0 such that:

$$P(X > x_0) = 1 - P(X \le x_0) = 0.95$$

Thus:

$$\Phi\left(\frac{\ln(x_0) - 1.792}{0.30}\right) = 0.05$$

$$\frac{\ln x_0 - 1.792}{0.30} = \Phi^{-1}(0.05)$$

$$\frac{\ln x_0 - 1.792}{0.30} = \Phi^{-1}(0.05)$$

 $\ln x_0 - 1.792 =$

$$\frac{\ln x_0 - 1.792}{0.30} = \Phi^{-1}(0.05)$$

$$\ln x_0 - 1.792 = 0.30[-\Phi^{-1}(0.95)]$$

$$\begin{array}{cccc} \frac{\ln x_0 - 1.792}{0.30} & = & \Phi^{-1}(0.05) \\ \ln x_0 - 1.792 & = & 0.30[-\Phi^{-1}(0.95)] \\ & \ln x_0 & = & 1.792 + 0.30(-1.65) \end{array}$$

$$\frac{\ln x_0 - 1.792}{0.30} = \Phi^{-1}(0.05)$$

$$\ln x_0 - 1.792 = 0.30[-\Phi^{-1}(0.95)]$$

$$\ln x_0 = 1.792 + 0.30(-1.65)$$

$$= 1.792 - 0.495 =$$

$$\begin{array}{ccc} \frac{\ln x_0 - 1.792}{0.30} & = & \Phi^{-1}(0.05) \\ \ln x_0 - 1.792 & = & 0.30[-\Phi^{-1}(0.95)] \\ \ln x_0 & = & 1.792 + 0.30(-1.65) \\ & = & 1.792 - 0.495 = 1.297 \end{array}$$

Solution

$$\begin{array}{ccc} \frac{\ln x_0 - 1.792}{0.30} & = & \Phi^{-1}(0.05) \\ \ln x_0 - 1.792 & = & 0.30[-\Phi^{-1}(0.95)] \\ \ln x_0 & = & 1.792 + 0.30(-1.65) \\ & = & 1.792 - 0.495 = 1.297 \end{array}$$

Therefore, the required inspection interval is:

$$x_0 =$$

Solution

$$\begin{array}{ccc} \frac{\ln x_0 - 1.792}{0.30} & = & \Phi^{-1}(0.05) \\ \ln x_0 - 1.792 & = & 0.30[-\Phi^{-1}(0.95)] \\ \ln x_0 & = & 1.792 + 0.30(-1.65) \\ & = & 1.792 - 0.495 = 1.297 \end{array}$$

Therefore, the required inspection interval is:

$$x_0 = e^{1.297} =$$

Solution

$$\begin{array}{ccc} \frac{\ln x_0 - 1.792}{0.30} & = & \Phi^{-1}(0.05) \\ \ln x_0 - 1.792 & = & 0.30[-\Phi^{-1}(0.95)] \\ \ln x_0 & = & 1.792 + 0.30(-1.65) \\ & = & 1.792 - 0.495 = 1.297 \end{array}$$

Therefore, the required inspection interval is:

$$x_0 = e^{1.297} = 3.66$$
 months

Modeling probabilities of elapsed times

Consider the random variable X which represents the *number of arrivals* at a restaurant within a given time interval.

Consider the random variable X which represents the *number of arrivals* at a restaurant within a given time interval.

Consider the random variable X which represents the *number of arrivals* at a restaurant within a given time interval.

• The probability of X in t time units can be modeled by the Poisson distribution with a rate parameter λt

Consider the random variable X which represents the *number of arrivals* at a restaurant within a given time interval.

• The probability of X in t time units can be modeled by the Poisson distribution with a rate parameter λt

Now consider the variable Y representing the elapsed time between successive arrivals.

Consider the random variable X which represents the number of arrivals at a restaurant within a given time interval.

• The probability of X in t time units can be modeled by the Poisson distribution with a rate parameter λt

Now consider the variable Y representing the elapsed time between successive arrivals.

 What is the probability the time between the third and fourth arrivals is less than y minutes, for instance?

Consider the random variable X which represents the *number of arrivals* at a restaurant within a given time interval.

• The probability of X in t time units can be modeled by the Poisson distribution with a rate parameter λt

Now consider the variable Y representing the elapsed time between successive arrivals.

- What is the probability the time between the third and fourth arrivals is less than y minutes, for instance?
- This is modeled by the exponential distribution with parameter λ .

Definition

Definition

Definition

$$f_X(x) =$$

Definition

$$f_X(x) = \lambda e^{-\lambda x}$$

Definition

$$f_X(x) = \lambda e^{-\lambda x} \qquad x > 0 \tag{12}$$

Definition

$$f_X(x) = \lambda e^{-\lambda x} \qquad x > 0 \tag{12}$$

$$F_X(x) =$$

$$F_X(x) = P(X \le x)$$

$$F_X(x) = P(X \le x) = \int_0^x \lambda e^{-\lambda t} dt$$

$$F_X(x) = P(X \le x) = \int_0^x \lambda e^{-\lambda t} dt$$

 $F_X(x) = 1 - e^{-\lambda x}$

$$F_X(x) = P(X \le x) = \int_0^x \lambda e^{-\lambda t} dt$$

 $F_X(x) = 1 - e^{-\lambda x}$

The CDF of the exponential distribution is derived as:

$$F_X(x) = P(X \le x) = \int_0^x \lambda e^{-\lambda t} dt$$

 $F_X(x) = 1 - e^{-\lambda x}$

Note that $P(X \le x) = 1 - e^{-\lambda x}$,

The CDF of the exponential distribution is derived as:

$$F_X(x) = P(X \le x) = \int_0^x \lambda e^{-\lambda t} dt$$

 $F_X(x) = 1 - e^{-\lambda x}$

Note that $P(X \le x) = 1 - e^{-\lambda x}$, while $P(X > x) = 1 - (1 - e^{-\lambda x}) = e^{-\lambda x}$

Let $X \sim \mathsf{Exponential}(\lambda)$.

Let $X \sim \mathsf{Exponential}(\lambda)$.

Mean

The mean of X is given by:

Let $X \sim \mathsf{Exponential}(\lambda)$.

Mean

The mean of X is given by:

 $\mathbb{E}(X)$

(13)

Mean and variance of the exponential distribution

Let $X \sim \mathsf{Exponential}(\lambda)$.

Mean

The mean of X is given by:

$$\mathbb{E}(\mathsf{X}) = rac{1}{\lambda}$$

Let $X \sim \mathsf{Exponential}(\lambda)$.

Mean

The mean of X is given by:

$$\mathbb{E}(X) = \frac{1}{\lambda}$$

(13)

Variance

The variance of X is given by:

Let $X \sim \mathsf{Exponential}(\lambda)$.

Mean

The mean of X is given by:

$$\mathbb{E}(X) = \frac{1}{\lambda}$$

(13)

Variance

The variance of X is given by:

$$\mathbb{V}(X)$$

Let $X \sim \mathsf{Exponential}(\lambda)$.

Mean

The mean of X is given by:

$$\mathbb{E}(X) = \frac{1}{\lambda}$$

(13)

Variance

The variance of X is given by:

$$\mathbb{V}(X) =$$

Let $X \sim \mathsf{Exponential}(\lambda)$.

Mean

The mean of X is given by:

$$\mathbb{E}(X) = \frac{1}{\lambda}$$

(13)

Variance

The variance of X is given by:

$$\mathbb{V}(X) = \frac{1}{\lambda^2}$$

(14)

Example 3: Waiting for a flight

Example 3: Waiting for a flight

The delay time T of a flight is exponentially distributed wtih $\lambda=2$ (delays per hour).

Example 3: Waiting for a flight

The delay time T of a flight is exponentially distributed wtih $\lambda=2$ (delays per hour). Answer the following questions:

- (a) What is the mean delay (waiting) time, $\mathbb{E}(T)$?
- **(b)** What is the variance of the delay time V(T)?
- (c) Find the probability that a flight will be delayed by no more than 10 minutes.
- (d) Assuming you have been waiting for a flight for an hour, what is the probability that the flight will be delayed for an additional 30 minutes? (i.e. Find P(T>1.5|T>1)).

Example 3: Waiting for a flight (cont.)

Example 3: Waiting for a flight (cont.)

Solution

(a) The mean delay is given by

Solution

$$E(T) =$$

Solution

$$E(T) = \frac{1}{\lambda}$$

Solution

$$E(T) = \frac{1}{\lambda} = \frac{1}{2}$$

Solution

$$E(T) = \frac{1}{\lambda} = \frac{1}{2} = \boxed{0.5 \text{hr}}$$

Solution

(a) The mean delay is given by

$$E(T) = \frac{1}{\lambda} = \frac{1}{2} = \boxed{0.5 \text{hr}}$$

Solution

(a) The mean delay is given by

$$E(T) = \frac{1}{\lambda} = \frac{1}{2} = \boxed{0.5 \text{hr}}$$

$$\mathbb{V}(T) = \frac{1}{\lambda^2}$$

Solution

(a) The mean delay is given by

$$E(T) = \frac{1}{\lambda} = \frac{1}{2} = \boxed{0.5 \text{hr}}$$

$$\mathbb{V}(T) = \frac{1}{\lambda^2} = \frac{1}{2^2} =$$

Solution

(a) The mean delay is given by

$$E(T) = \frac{1}{\lambda} = \frac{1}{2} = \boxed{0.5 \text{hr}}$$

$$\mathbb{V}(T) = \frac{1}{\lambda^2} = \frac{1}{2^2} = \boxed{0.25 \text{hr}^2}$$

22 / 27

Solution

Solution

$$P\left(T \leq \frac{1}{6}\right) = 1 - e^{-\lambda \cdot \frac{1}{6}}$$

Solution

$$P\left(T \le \frac{1}{6}\right) = 1 - e^{-\lambda \cdot \frac{1}{6}} = 1 - e^{-2\left(\frac{1}{6}\right)}$$

Solution

$$P\left(T \le \frac{1}{6}\right) = 1 - e^{-\lambda \cdot \frac{1}{6}} = 1 - e^{-2\left(\frac{1}{6}\right)}$$

$$= 1 - e^{-\frac{1}{3}}$$

Solution

$$P\left(T \le \frac{1}{6}\right) = 1 - e^{-\lambda \cdot \frac{1}{6}} = 1 - e^{-2\left(\frac{1}{6}\right)}$$
$$= 1 - e^{-\frac{1}{3}} = \boxed{0.283}$$

Solution

Solution

$$P(T > (0.5+1)|T > 1) = P(T > 1.5|T > 1)$$

Solution

$$P(T > (0.5+1)|T > 1) = P(T > 1.5|T > 1)$$

$$= \frac{P((T > 1.5) \cap (T > 1))}{P(T > 1)}$$

Solution

$$P(T > (0.5 + 1)|T > 1) = P(T > 1.5|T > 1)$$

$$= \frac{P((T > 1.5) \cap (T > 1))}{P(T > 1)}$$
 (mult. rule)

Solution

$$P(T > (0.5 + 1)|T > 1) = P(T > 1.5|T > 1)$$

$$= \frac{P((T > 1.5) \cap (T > 1))}{P(T > 1)}$$
 (mult. rule)
$$= \frac{P(T > 1.5)}{P(T > 1)}$$

Solution

$$P(T > (0.5 + 1)|T > 1) = P(T > 1.5|T > 1)$$

$$= \frac{P((T > 1.5) \cap (T > 1))}{P(T > 1)}$$
 (mult. rule)
$$= \frac{P(T > 1.5)}{P(T > 1)}$$

$$= \frac{e^{-2(1.5)}}{e^{-2(1)}}$$

Solution

$$P(T > (0.5 + 1)|T > 1) = P(T > 1.5|T > 1)$$

$$= \frac{P((T > 1.5) \cap (T > 1))}{P(T > 1)}$$
 (mult. rule)
$$= \frac{P(T > 1.5)}{P(T > 1)}$$

$$= \frac{e^{-2(1.5)}}{e^{-2(1)}} = e^{-2[1.5 - 1.0]}$$

Solution

$$P(T > (0.5 + 1)|T > 1) = P(T > 1.5|T > 1)$$

$$= \frac{P((T > 1.5) \cap (T > 1))}{P(T > 1)}$$
 (mult. rule)
$$= \frac{P(T > 1.5)}{P(T > 1)}$$

$$= \frac{e^{-2(1.5)}}{e^{-2(1)}} = e^{-2[1.5 - 1.0]}$$

$$= e^{-2(0.5)}$$
 (= $P(T > 0.5)$)

Solution

$$P(T > (0.5 + 1)|T > 1) = P(T > 1.5|T > 1)$$

$$= \frac{P((T > 1.5) \cap (T > 1))}{P(T > 1)}$$
 (mult. rule)
$$= \frac{P(T > 1.5)}{P(T > 1)}$$

$$= \frac{e^{-2(1.5)}}{e^{-2(1)}} = e^{-2[1.5 - 1.0]}$$

$$= e^{-2(0.5)}$$
 (= $P(T > 0.5)$)
$$= e^{-1}$$

Solution

$$P(T > (0.5 + 1)|T > 1) = P(T > 1.5|T > 1)$$

$$= \frac{P((T > 1.5) \cap (T > 1))}{P(T > 1)}$$
 (mult. rule)
$$= \frac{P(T > 1.5)}{P(T > 1)}$$

$$= \frac{e^{-2(1.5)}}{e^{-2(1)}} = e^{-2[1.5 - 1.0]}$$

$$= e^{-2(0.5)}$$
 (= $P(T > 0.5)$)
$$= e^{-1} = \boxed{0.37}$$

This leads us to an important property of the exponential distribution

This leads us to an important property of the exponential distribution

Memoryless property

$$P(T > t + s | T > s) =$$

This leads us to an important property of the exponential distribution

Memoryless property

$$P(T > t + s | T > s) = P(T > t)$$

$$\tag{15}$$

This leads us to an important property of the exponential distribution

Memoryless property

$$P(T > t + s | T > s) = P(T > t)$$

$$\tag{15}$$

That is, it does not matter from which time the waiting begins (i.e. conditioning); the probability of an elapsed time remains the same.

• **Lognormal distribution:** $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$

• **Lognormal distribution:** $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$

• Lognormal distribution: $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$ Mean:

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{16}$$

• Lognormal distribution: $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$ Mean:

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{16}$$

Variance:

$$\mathbb{V}(X) =$$

• Lognormal distribution: $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$ Mean:

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{16}$$

Variance:

$$V(X) = (e^{\sigma^2} - 1)e^{(2\mu + \sigma^2)}$$
(17)

• **Exponential distribution**: $X \sim \text{Exponential}(\lambda)$

Lognormal distribution: $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$ Mean:

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{16}$$

Variance:

$$V(X) = (e^{\sigma^2} - 1)e^{(2\mu + \sigma^2)}$$
 (17)

Exponential distribution: $X \sim \text{Exponential}(\lambda)$

PDF:
$$f_X(x) =$$

• Lognormal distribution: $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$ Mean:

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{16}$$

Variance:

$$V(X) = (e^{\sigma^2} - 1)e^{(2\mu + \sigma^2)}$$
(17)

• **Exponential distribution**: $X \sim \text{Exponential}(\lambda)$

PDF:
$$f_X(x) = \lambda e^{-\lambda x}$$
,

Lognormal distribution: $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$ Mean:

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{16}$$

Variance:

$$V(X) = (e^{\sigma^2} - 1)e^{(2\mu + \sigma^2)}$$
(17)

Exponential distribution: $X \sim \text{Exponential}(\lambda)$

PDF:
$$f_X(x) = \lambda e^{-\lambda x}, \quad x > 0$$
 (18)
CDF: $F_X(x) = P(X < x) =$

Lognormal distribution: $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$ Mean:

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{16}$$

Variance:

$$V(X) = (e^{\sigma^2} - 1)e^{(2\mu + \sigma^2)}$$
(17)

Exponential distribution: $X \sim \text{Exponential}(\lambda)$

PDF:
$$f_X(x) = \lambda e^{-\lambda x}, \quad x > 0$$
 (18)
CDF: $F_X(x) = P(X < x) = 1 - e^{-\lambda x},$

• Lognormal distribution: $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$ Mean:

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{16}$$

Variance:

$$V(X) = (e^{\sigma^2} - 1)e^{(2\mu + \sigma^2)}$$
(17)

• **Exponential distribution**: $X \sim \text{Exponential}(\lambda)$

PDF:
$$f_X(x) = \lambda e^{-\lambda x}, \quad x > 0$$
 (18)

CDF:
$$F_X(x) = P(X \le x) = 1 - e^{-\lambda x}, \quad x > 0$$
 (19)

Lognormal distribution: $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$ Mean:

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{16}$$

Variance:

$$V(X) = (e^{\sigma^2} - 1)e^{(2\mu + \sigma^2)}$$
(17)

Exponential distribution: $X \sim \text{Exponential}(\lambda)$

PDF:
$$f_X(x) = \lambda e^{-\lambda x}, \quad x > 0$$
 (18)

CDF:
$$F_X(x) = P(X \le x) = 1 - e^{-\lambda x}, \quad x > 0$$
 (19)

Mean:

$$\mathbb{E}(X) = \frac{1}{\lambda} \tag{20}$$

Lognormal distribution: $X \sim \mathcal{LN}(\mu, \sigma^2)$ CDF: $F_X(x) = P(X \le x) = \Phi((\ln(x) - \mu)/\sigma)$ Mean:

$$\mathbb{E}(X) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)} \tag{16}$$

Variance:

$$V(X) = (e^{\sigma^2} - 1)e^{(2\mu + \sigma^2)}$$
(17)

Exponential distribution: $X \sim \text{Exponential}(\lambda)$

PDF:
$$f_X(x) = \lambda e^{-\lambda x}, \quad x > 0$$
 (18)

CDF:
$$F_X(x) = P(X \le x) = 1 - e^{-\lambda x}, \quad x > 0$$
 (19)

Mean:

$$\mathbb{E}(X) = \frac{1}{\lambda} \tag{20}$$

Variance:

$$\mathbb{V}(X) = \frac{1}{\sqrt{2}} \tag{21}$$

• Ensure your submission is strictly a script saved with the .m extension

Outlook

- Ensure your submission is strictly a script saved with the .m extension
- MATLAB can only execute a script if it is in the current folder.

Outlook

- Ensure your submission is strictly a script saved with the .m extension
- MATLAB can only execute a script if it is in the current folder. Otherwise you may get a message like the one below:

Outlook

- Ensure your submission is strictly a script saved with the .m extension
- MATLAB can only execute a script if it is in the current folder. Otherwise
 you may get a message like the one below:

- Ensure your submission is strictly a script saved with the .m extension
- MATLAB can only execute a script if it is in the current folder. Otherwise you may get a message like the one below:

If so, simply click on Change Folder or move the file to the current folder you are in. Finally, always make sure the path of a file being read by a script is valid from its location, otherwise you will have to deal with "File not found" errors.

24-hour open-resource examination

- 24-hour open-resource examination
- Available for download via Canvas on Wednesday, October 16th at 10:00 AM

- 24-hour open-resource examination
- Available for download via Canvas on Wednesday, October 16th at 10:00 AM
- Due by October 21st at 11:59 PM

- 24-hour open-resource examination
- Available for download via Canvas on Wednesday, October 16th at 10:00 AM
- Due by October 21st at 11:59 PM
- Exam length will be similar to previous midterms or the practice exam(s) available on Canvas.

- 24-hour open-resource examination
- Available for download via Canvas on Wednesday, October 16th at 10:00 AM
- Due by October 21st at 11:59 PM
- Exam length will be similar to previous midterms or the practice exam(s) available on Canvas.
- Exam is designed to be completed in 2-3 hours or less.

- 24-hour open-resource examination
- Available for download via Canvas on Wednesday, October 16th at 10:00 AM
- Due by October 21st at 11:59 PM
- Exam length will be similar to previous midterms or the practice exam(s) available on Canvas.
- Exam is designed to be completed in 2-3 hours or less. The 24-hr window gives you flexibility and time to plan, organize and check your work before submission.

- 24-hour open-resource examination
- Available for download via Canvas on Wednesday, October 16th at 10:00 AM
- Due by October 21st at 11:59 PM
- Exam length will be similar to previous midterms or the practice exam(s) available on Canvas.
- Exam is designed to be completed in 2-3 hours or less. The 24-hr window gives you flexibility and time to plan, organize and check your work before submission.
- You can use your calculator/computer (Matlab/Python) to compute probabilities (as long as you indicate how you obtained your answer).