Advanced MOSFETs and Novel Devices

Dr.-Ing. Josef Biba

3. Tutorial & Exercise

Threshold Voltage

Threshold Voltage – Band diagram MOSFET

 E_V

Assume:

- No work function difference between metal and semiconductor.
- Resistivity of the insulator is infinite.
- No oxide charges.

Fig. 2 Energy-band diagrams of ideal MIS diodes at V = 0. (a) n-type semiconductor. (b) p-type semiconductor.

Fig. 3 Energy-band diagrams for ideal MIS diodes when $V \neq 0$, for the following cases: (a) accumulation; (b) depletion; (c) inversion.

Threshold Voltage – Definition

Definition: band bending at the Si-SiO₂-Interface is equal to $2^*\psi_B$

=> concentration of minority exceeds outnumbers the concentration of majority carriers in the bulk silicon

$$V_{\rm T} = \phi_{\rm MS} \pm \frac{Q''_{\rm OX}}{C''_{\rm OX}} \pm \frac{Q''_{\rm Depl}}{C''_{\rm OX}} \pm /2\psi_{\rm B}$$

Threshold Voltage – Exercise

Determine the threshold voltage V_T for a n-channel MOSFET with different gate metallization (Al, Cu, n- and p-poly Si) for two different channel dopings (5e17 cm⁻³ and 5e18 cm⁻³) at room temperature. The thickness of the gate oxide is 3 nm. Oxide charges can be considered zero.

Threshold Voltage – Exercise

Determine the threshold voltage V_T for a n-channel MOSFET with different gate metallization (Al, Cu, n- and p-poly Si) for two different channel dopings (5e17 cm⁻³ and 5e18 cm⁻³) at room temperature. The thickness of the gate oxide is 3 nm. Oxide charges can be considered zero.

Physical Constants	е	ϵ_0	k _B
	1.6E(-19) As	8.85E(-14) F/cm	8.6E(-5) eV/K

Parameters	E g	χ	ε _r	n _i
Si	1.12 eV	4.05 V	11.9	1.45e10 cm ⁻³
SiO ₂	8.8 eV	1.00 V	3.9	-

Metal	Al	Cu	<i>n</i> -poly Si	<i>p</i> -poly Si
φ _M -χ _{Si}	- 0.06 V	0.63 V	0.0 V	1.12 V

Threshold Voltage – Exercise

*V*_⊤ Results

	Al	Cu	<i>n</i> -poly Si	<i>p</i> -poly Si
$N_{\rm A} = 5e17 {\rm cm}^{-3}$				
$N_{\rm A} = 5e18 {\rm cm}^{-3}$				

Major Design Parameters for V_T :

- Channel doping
- Work function of gate metallization
- Oxide thickness

$$V_T = \left| \frac{q_{Depl}^{"}}{c_{ox}^{"}} \right| + \left| 2\Psi_B \right| + \Phi_{MS} - \frac{q_{Ox}^{"}}{c_{Ox}^{"}}$$

N-channel MOSFET

Oxide charges:

$$Q_{Ox}^{"}=0\Rightarrow\frac{Q_{Ox}^{"}}{C_{Ox}^{"}}=0$$

Workfunction difference:

$$\Phi_{MS} = \Phi_M - \left(X_{Si} + \frac{E_g}{2 q} + |\Psi_B| \right)$$

Electrostatic bulk potential:

$$\Psi_B = \frac{k_B T}{q} \cdot \ln(\frac{N_{dop}}{n_i})$$

Normalized Capacitor:

$$C = \epsilon_0 \; \epsilon_r \; rac{A}{d}$$
 $C''_{Ox} = rac{c_{Ox}}{A} = rac{\epsilon_0 \; \epsilon_{SiO_2}}{d_{ox}}$

Space charge:

$$Q_{Depl}^{"} = \int_{0}^{w_{max}} \rho_{S}(x) dx = w_{max} e N_{A}$$

Depletion region:

$$w_{max} = \sqrt{\frac{4 \epsilon_0 \epsilon_{Si} |\Psi_B|}{e N_A}}$$

Using different gate metals

We can see that the threshold voltage can be adjusted by the metal

Changing the doping of the polysilicon gate

V_T calculations for a symmetric CMOS-Inverter

