Measure Theory: Exercises (not for credit)

Josephine Evans

November 22, 2021

Question 1. Use the inequality $(x-y)^2 \ge 0$ to show that $xy \le (x^2+y^2)/2$.

Question 2. Draw a graph of the function $t=s^{p-1}$. Let L be the are underneath the graph and above the s-axis and U be the area above the graph and to the right of the t-axis. Compute the areas of $L \cap \{s: 0 \le s \le x\}$ and $U \cap \{t: 0 \le t \le x\}$ and draw these two sets on your picture. Use this to show that $xy \le x^p/p + y^q/q$.

Question 3. Let (E, \mathcal{E}, μ) be a finite measure space and let $p_1 \leq p_2$ show that if $f \in L^{p_2}$ then $f \in L^{p_1}$.

Question 4. Let X be a random variable. Prove the identity

$$\mathbb{E}(|X|^p) = \int_0^\infty px^{p-1} \mathbb{P}(|X| > x) \mathrm{d}x.$$

You may switch the order of integration without justification (we'll do it next week). Hence show that if for all q > p we have $\mathbb{P}(|X| > x) = O(x^{-q})$ as $x \to \infty$ then $X \in L^p$. (Recall that X is a measurable function from a probability space to \mathbb{R} , \mathbb{P} is the measure on this space and \mathbb{E} is the notation for integrating with respect to \mathbb{P} .