Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Currently Amended) A compound of formula (I), or a pharmaceutically acceptable salt or prodrug thereof

$$R_4$$
 R_2
 R_3
 R_4
 R_2
 R_3

wherein X and X' are independently selected from taken together form $-C(R_5)_2$, O, -S, $N(R_5)$, or taken together form $-C(R_5)-C(R_5)$, $-C(R_5)-N(R_5)$, $-N(R_5)$ or N=N;

Y' is $-N(R_5)$ -;

 $Z ext{ is } C(R_5)_2$, O, S or $N(R_5)$, or forms a covalent single or double bond between X' and Y', or Z together with X' or Y' forms $C(R_5) = C(R_5)$, $C(R_5) = N$, $N = C(R_5)$, $N(R_5) = N = N = N$;

wherein when Z is O, S or $N(R_5)$, X' and Y' are $C(R_5)_2$;

when X is O, S or $N(R_5)$, X' is $C(R_5)_2$;

when Y is O, S or $N(R_5)$, Y is $C(R_5)_2$; or

X or Y together with the carbon atom bearing the phenyl group form a double bond wherein which ever of X or Y forms part of the double bond is selected from $C(R_5)$ and N;

 R_1 is selected from hydrogen, C_{1-20} alkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, $(A)_nC(O)R_6$, $(A)_nC(S)R_6$, $(A)_nS(O)R_6$, $(A)_nS(O)_2R_6$, $(A)_nOR_7$, $(A)_nSR_7$, $(A)_nN(R_8)$, $(A)_nC(=NR_9)R_{10}$ and $(A)_nR_{11}$, or when X or Y together with the carbon atom bearing the phenyl group form a double bond, R_1 is absent;

 R_2 and R_4 are independently selected from hydrogen, C_{1-3} alkyl and $(A)_m R_{12}$;

 R_3 is selected from C_{1-3} alkyl, $(A)_m R_{12}$, $(A)_m$ aryl and $(A)_m$ heterocyclyl;

 R_5 is selected from hydrogen, C_{1-20} alkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, $(A)_nC(O)R_6$, $(A)_nC(S)R_6$, $(A)_nS(O)R_6$, $(A)_nS(O)_2R_6$, $(A)_nOR_7$, $(A)_nSR_7$, $(A)_pN(R_8)$, $(A)_nC(=NR_9)R_{10}$ and $(A)_nR_{11}$;

 R_6 is selected from hydrogen, $C_{1\text{-}20}$ alkyl, $C_{2\text{-}20}$ alkenyl, $C_{2\text{-}20}$ alkynyl, OH, OC₁₋₁₀alkyl, OC₂₋₁₀alkenyl, OC₂₋₁₀alkynyl, O(A)_qR₁₁, SH, SC₁₋₁₀alkyl, SC₂₋₁₀alkenyl, SC₂₋₁₀alkynyl, S(A)_qR₁₁, N(R₁₃)₂, [NH-CH(R₁₄)C(O)]_s-OH, [NH-CH(R₁₄)C(O)]_s-OC₁₋₃alkyl, [sugar]_s and (A)_qR₁₁;

 $R_7 \text{ is selected from hydrogen, } C_{1\text{-}20} \text{alkyl, } C_{2\text{-}20} \text{alkenyl, } C_{2\text{-}20} \text{alkynyl, } (A)_q R_{11}, C(O)H, \\ C(O)C_{1\text{-}10} \text{alkyl, } C(O)C_{2\text{-}10} \text{alkenyl, } C(O)C_{2\text{-}10} \text{alkynyl, } C(O)\text{-aryl, } C(O)(A)_q R_{11}, C(O)_2 H, \\ C(O)_2 C_{1\text{-}10} \text{alkyl, } C(O)_2 C_{2\text{-}10} \text{alkenyl, } C(O)_2 C_{2\text{-}10} \text{alkynyl, } C(O)_2\text{-aryl, } C(O)_2 (A)_q R_{11}, C(S)H, \\ C(S)C_{1\text{-}10} \text{alkyl, } C(S)C_{2\text{-}10} \text{alkenyl, } C(S)C_{2\text{-}10} \text{alkynyl, } C(S)\text{-aryl, } C(S)(A)_q R_{11}, C(S)OH, \\ C(S)C_{1\text{-}10} \text{alkyl, } C(S)C_{2\text{-}10} \text{alkenyl, } C(S)C_{2\text{-}10} \text{alkynyl, } C(S)\text{-aryl, } C(S)(A)_q R_{11}, C(S)OH, \\ C(S)C_{1\text{-}10} \text{alkyl, } C(S)C_{2\text{-}10} \text{alkenyl, } C(S)C_{2\text{-}10} \text{alkynyl, } C(S)\text{-aryl, } C(S)(A)_q R_{11}, C(S)OH, \\ C(S)C_{1\text{-}10} \text{alkyl, } C(S)C_{2\text{-}10} \text{alkenyl, } C(S)C_{2\text{-}10} \text{alkynyl, } C(S)\text{-aryl, } C(S)(A)_q R_{11}, C(S)OH, \\ C(S)C_{1\text{-}10} \text{alkyl, } C(S)C_{2\text{-}10} \text{alkenyl, } C(S)C_{2\text{-}10} \text{alkynyl, }$

$$\begin{split} &C(S)OC_{1\text{-}10}alkyl,\,C(S)OC_{2\text{-}10}alkenyl,\,C(S)OC_{2\text{-}10}alkynyl,\,C(S)O\text{-}aryl,\,C(S)O(A)_qR_{11},\\ &S(O)_tH,\,S(O)_tC_{1\text{-}10}alkyl,\,S(O)_tC_{2\text{-}10}alkenyl,\,S(O)_tC_{2\text{-}10}alkynyl,\,S(O)_t\text{-}aryl,\,S(O)_t(A)_qR_{11},\\ &[C(O)CH(R_{14})NH]_s\text{-}H,\,[C(O)CH(R_{14})NH]_s\text{-}C_{1\text{-}10}alkyl,\,[C(O)CH(R_{14})NH]_s\text{-}C_{2\text{-}10}alkenyl,\\ &[C(O)CH(R_{14})NH]_s\text{-}C_{2\text{-}10}alkynyl,\,[C(O)CH(R_{14})NH]_s\text{-}aryl,\,[C(O)CH(R_{14})NH]_s\text{-}(A)_qR_{11}\\ &and\,[sugar]_s; \end{split}$$

each R_8 is independently selected from R_7 and $NHC(=NR_{15})NH_2$;

 R_9 is selected from hydrogen and C_{1-6} alkyl;

 R_{10} is selected from C_{1-6} alkyl, NH_2 , $NH(C_{1-3}$ alkyl), $N(C_{1-3}$ alkyl)₂, OH, OC_{1-3} alkyl, SH and SC_{1-3} alkyl;

 R_{11} is selected from OH, OC_{1-6} alkyl, OC_{1-3} alkyl-O- C_{1-3} alkyl, O-aryl, O-heterocyclyl, $O[C(O)CH(R_{14})NH]_sH$, [sugar]_s, SH, SC_{1-6} alkyl, SC_{1-3} alkyl-O- C_{1-3} alkyl, S-aryl, S-heterocyclyl, $S[C(O)CH(R_{14})NH]_sH$, halo, $N(R_{15})_2$, $C(O)R_{16}$, CN, $C(R_{17})_3$, aryl and heterocyclyl;

R₁₂ is selected from OH, SH, NH₂, halo, NO₂, C(R₁₇)₃, OC(R₁₇)₃ and CN;

each R_{13} is independently selected from hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl and $(A)_q R_{11}$;

 R_{14} is the characterising group of an amino acid;

each R_{15} is independently selected from hydrogen, C_{1-6} alkyl, C_{1-3} alkoxy C_{1-3} alkyl, aryl and heterocyclyl;

 R_{16} is selected from C_{1-3} alkyl, OH, C_{1-3} alkoxy, aryl, aryloxy, heterocyclyl and heterocyclyloxy;

each R₁₇ is independently selected from hydrogen and halogen;

A is optionally substituted methylene wherein when n > 1, any two adjacent A groups are optionally interrupted by -O-, -S- or $-N(R_{15})$ -;

where n is 0 or an integer selected from 1 to 20;

m is 0 or an integer selected from 1 to 3;

p is an integer selected from 1 to 20;

q is an integer selected from 1 to 10

s is an integer selected from 1 to 5;

t is an integer selected from 1 or 2; and

wherein each alkyl, alkenyl, alkynyl, aryl and heterocyclyl may be optionally substituted.

2. (Currently Amended) A compound according to claim 1 of formula (II), wherein

Y is -CH-; and

X is -CH-; or a pharmaceutically acceptable salt or prodrug thereof

$$R_1$$
 R_1
 R_2
 R_3

wherein X and Y are independently selected from O-, -S-, N(R₅) and C(R₅)₂-;

Z is $-C(R_s)_2$ or is a covalent bond between adjacent methylene groups;

 $R_{1}\text{-is selected from hydrogen, }C_{1-20}\text{alkyl, }C_{2-20}\text{alkenyl, }C_{2-20}\text{alkynyl, }(A)_{n}C(O)R_{67},\\ (A)_{n}C(S)R_{67},(A)_{n}S(O)R_{67},(A)_{n}S(O)_{2}R_{67},(A)_{n}OR_{77},(A)_{n}SR_{77},(A)_{n}N(R_{8}),(A)_{n}C(=NR_{9})R_{10}\\ \text{and }(A)_{n}R_{11};$

R₂ and R₄ are independently selected from hydrogen, C₁₋₃alkyl and (A)_mR_{1,2};

R₃ is selected from C₁₋₃alkyl, (A)_mR₁₂, (A)_maryl and (A)_mheterocyclyl;

 $R_{5} \text{ is selected from hydrogen, } C_{1-20} \text{alkyl, } C_{2-20} \text{alkenyl, } C_{2-20} \text{alkynyl, } (A)_{n} C(O) R_{67}, \\ (A)_{n} C(S) R_{67}, (A)_{n} S(O) R_{67}, (A)_{n} S(O)_{2} R_{67}, (A)_{n} OR_{77}, (A)_{n} SR_{77}, (A)_{p} N(R_{8}), (A)_{n} C(=NR_{9}) R_{10} \\ \text{and } (A)_{n} R_{117};$

 $R_6 \text{ is selected from hydrogen, } C_{1-20} \text{alkyl, } C_{2-20} \text{alkenyl, } C_{2-20} \text{alkynyl, } \text{OH, } \text{OC}_{1-10} \text{alkyl, } C_{2-10} \text{alkenyl, } \text{OC}_{2-10} \text{alkenyl, } \text{OC}_{2-10} \text{alkynyl, } \text{O(A)}_q R_{11}, \text{SH, } \text{SC}_{1-10} \text{alkyl, } \text{SC}_{2-10} \text{alkenyl, } \text{SC}_{2-10} \text{alkynyl, } \text{SC}_{2-10} \text{alkyn$

 $R_{7} \text{ is selected from hydrogen, } C_{1-20} \text{alkyl, } C_{2-20} \text{alkenyl, } C_{2-20} \text{alkynyl, } (A)_{q} R_{11}, C(O) H, \\ C(O)C_{1-10} \text{alkyl, } C(O)C_{2-10} \text{alkenyl, } C(O)C_{2-10} \text{alkynyl, } C(O) \text{ aryl, } C(O)(A)_{q} R_{11}, C(O)_{2} H, \\ C(O)_{2}C_{1-10} \text{alkyl, } C(O)_{2}C_{2-10} \text{alkenyl, } C(O)_{2}C_{2-10} \text{alkynyl, } C(O)_{2} \text{-aryl, } C(O)_{2}(A)_{q} R_{11}, C(S) H, \\ C(S)C_{1-10} \text{alkyl, } C(S)C_{2-10} \text{alkenyl, } C(S)C_{2-10} \text{alkynyl, } C(S) \text{ aryl, } C(S)(A)_{q} R_{11}, C(S) O H, \\ C(S)OC_{1-10} \text{alkyl, } C(S)OC_{2-10} \text{alkenyl, } C(S)OC_{2-10} \text{alkynyl, } C(S)O \text{-aryl, } C(S)O(A)_{q} R_{11}, \\ S(O)_{1}H, S(O)_{1}C_{1-10} \text{alkyl, } S(O)_{1}C_{2-10} \text{alkenyl, } S(O)_{1}C_{2-10} \text{alkynyl, } S(O)_{1} \text{-aryl, } S(O)_{1}(A)_{q} R_{11}, \\ [C(O)CH(R_{14})NH]_{s} H, [C(O)CH(R_{14})NH]_{s} C_{1-10} \text{alkyl, } [C(O)CH(R_{14})NH]_{s} C_{2-10} \text{alkenyl, } [C(O)CH(R_{14})NH]_{s} (A)_{q} R_{11}, \\ [C(O)CH(R_{14})NH]_{s} C_{2-10} \text{alkynyl, } [C(O)CH(R_{14})NH]_{s} \text{-aryl, } [C(O)CH(R_{14})NH]_{s} (A)_{q} R_{11}, \\ [C(O)CH(R_{14})NH]_{s} C_{2-10} \text{alkynyl, } [C(O)CH(R_{14})NH]_{s} \text{-aryl, } [C(O)CH(R_{14})NH]_{s} (A)_{q} R_{11}, \\ [C(O)CH(R_{14})NH]_{s} C_{2-10} \text{alkynyl, } [C(O)CH(R_{14})NH]_{s} \text{-aryl, } [C(O)CH(R_{14})NH]_{s} (A)_{q} R_{11}, \\ [C(O)CH(R_{14})NH]_{s} C_{2-10} \text{alkynyl, } [C(O)CH(R_{14})NH]_{s} \text{-aryl, } [C(O)CH(R_{14})NH]_{s} (A)_{q} R_{11}, \\ [C(O)CH(R_{14})NH]_{s} C_{2-10} \text{alkynyl, } [C(O)CH(R_{14})NH]_{s} \text{-aryl, } [C(O)CH(R_{14})NH]_{s} (A)_{q} R_{11}, \\ [C(O)CH(R_{14})NH]_{s} C_{2-10} \text{-alkynyl, } [C(O)CH(R_{14})NH]_{s} \text{-aryl, } [C(O)CH(R_{14})NH]_{s} (A)_{q} R_{11}, \\ [C(O)CH(R_{14})NH]_{s} C_{2-10} \text{-alkynyl, } [C(O)CH(R_{14})NH]_{s} (A)_{q} R_{11}, \\ [C(O)CH(R_$

each R₈ is independently selected from R₇ and NHC(=NR₁₅)NH₂;

Ro is selected from hydrogen and C₁₋₆alkyl;

 R_{10} is selected from C_{1-6} alkyl, NH_2 , $NH(C_{1-3}$ alkyl), $N(C_{1-3}$ alkyl)₂, OH, OC_{1-3} alkyl, SH and SC_{1-3} alkyl;

 R_{++} is selected from OH, OC_{1-6} alkyl, OC_{1-3}

R₁₂ is selected from OH, SH, NH₂, halo, NO₂, C(R₁₇)₃, OC(R₁₇)₃ and CN;

each R_{13} is independently selected from hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl and $(A)_{e}R_{11}$;

R₁₄ is the characterising group of an amino acid;

each R₁₅ is independently selected from hydrogen, C₁₋₆alkyl, C₁₋₃alkoxyC₁₋₃alkyl, aryl and heterocyclyl;

R₁₆ is selected from C₁₋₃alkyl, OH, C₁₋₃alkoxy, aryl, aryloxy, heterocyclyl and heterocyclyloxy;

each R₁₇ is independently selected from hydrogen and halogen;

A is optionally substituted methylene wherein when n > 1, any two adjacent A groups are optionally interrupted by O_{-} , S_{-} or $N(R_{15})$;

where n is 0 or an integer selected from 1 to 20;

m is 0 or an integer selected from 1 to 3;

p is an integer selected from 1 to 20;

q is an integer selected from 1 to 10

s is an integer selected from 1 to 5;

t is an integer selected from 1 or 2; and

wherein each alkyl, alkenyl, alkynyl, aryl and heterocyclyl may be optionally substituted.

3. (Currently Amended) A compound according to claim 1 or 2 wherein R_5 is C_{1-20} alkyl

X is O, S, NH-or-CH₂;

Y is O. S or NR5-;

Z forms a covalent bond between adjacent methylene groups;

 $R_{+} \text{ is selected from $C_{1,20} \text{alkyl, $C_{1,20} \text{alkenyl, O ($A)}_{q}$-$C_{1,6} \text{alkyl, O ($A)}_{q}$-heterocyclyl, O ($A)}_{q}$-sugar, O ($A)}_{q}$-Q[C(O)CH(R_{1,4})NH]_{s}$-$H$, $(A)}_{n}$-QC_{1,20} \text{alkenyl, $(A)}_{n}$-QC(O) -20 \text{a$

R₂ is hydrogen, C₁₋₃alkyl, OH, SH, NH₂, NO₂, CF₃, halo or CN;

R₃ is hydrogen, C₁-C₃alkyl, -(CH₂)_mNH₂, -(CH₂)_m OH, -(CH₂)_m CF₃, -(CH₂)_m SH or a 5 or 6 membered heterocyclic group, wherein m is 0 or an integer from 1 to 3;

R4 is hydrogen, C1 alkyl, OH, SH, NH2, NO2, CF2, halo or CN;

A is unsubstituted methylene or mono substituted methylene.

4. (Currently Amended) A compound according to <u>any one of claims 1 to 3</u> claim 2 wherein

 $Y is O , S or N(R_5);$

Z forms a covalent bond between adjacent methylene groups;

 $R_{+} \text{ is } C_{+} - C_{20} \text{alkyl}, C_{2} - C_{20} \text{alkenyl}, C_{2} - C_{20} \text{alkynyl}, (A)_{n} C(O) R_{6}, (A)_{n} C(S) R_{6}, (A)_{n} S(O) R_{6}, (A)_{n} S(O) R_{6}, (A)_{n} S(O)_{2} R_{6},$

R₂ is hydrogen, methyl, OH, OCH₃, SH, NH₂, NO₂, CF₃, halo or CN;

 R_3 is C_{1-3} alkylor $OC(R_{17})_3$, $(CH_2)_m NH_2$, $(CH_2)_m OH$, $(CH_2)_m SH$ or heterocyclyl where m is defined above;

R₄ is hydrogen, methyl, OH, OCH₃, SH, NH₂, NO₂, CF₃, CF₃, halo or CN.

5. (Currently Amended) A compound according to elaim 2 claim 1 wherein the compound is 4-(4-Methoxyphenyl)-1-(3-methylbutyl)-1*H*-pyrazole

X is O or NH:

Y is O or N(R₁₈) where R₁₈ is selected from hydrogen, C₁₋₂₀alkyl, C₁₋₂₀alkenyl, C₁₋₂₀alkenyl, and (CH₂), R₁₁ where R₁₁ and n are defined above;

Z forms a covalent bond between adjacent methylene groups;

R₂ is hydrogen, halomethyl, OH, OCH₃, SH, NH₂, NO₂ or CN;

R₃ is hydrogen, C₁₋₃alkyl, (CH₂)_mNH₂, (CH₂)_mOH or (CH₂)_mCF₃ or heterocyclyl where m is defined above;

R₄ is hydrogen, methyl, OH, OCH₃, SH, NH₂, NO₂ or CN.

6. (Currently Amended) A compound according to claim 1 wherein the compound is 1-(3-Methylbutyl)-4-(4-methylphenyl)-1*H*-pyrazole of formula (III)

$$R_1$$
 R_3
 R_3

wherein

X is O or NH;

Y is O or $N(R_{18})$ where R_{18} is defined above;

R₃ is hydrogen, NH₂, OH;

R₄ is hydrogen, methyl, OCH₃, or OH.

7-39. (Cancelled)

- 40. (Previously Presented) A pharmaceutical composition comprising a compound according to claim 1 and a pharmaceutically acceptable carrier, diluent or excipient.
- 41. (Original) A pharmaceutical composition according to claim 40 further comprising a glucocorticoid.

42-46. (Cancelled)