Thevenin's Theorem

Thevenin's theorem states that any <u>Two terminal linear network</u> or circuit can be represented with an equivalent network or circuit, which consists of a <u>Voltage source in Series with a Resistor</u>. It is known as <u>Thevenin's equivalent circuit</u>.

For this presentation we shall restrict ourselves to using only independent sources

Application:

Let us say that we need to find the voltage across and current through a given load resistance (across AB) in the following network which is composed of several current and voltage sources interconnected with each other.

Steps Involved:

- **Step 1** Consider the circuit diagram by opening the terminals.
- **Step 2** Find Thevenin's voltage **V**_{Th}.
- **Step 3** Find Thevenin's resistance R_{Th} across the open terminals.
- Step 4 Draw the Thevenin's equivalent circuit.

Example:

Q. Find the current flowing through 20 Ω resistor by first finding a **Thevenin's equivalent circuit** to the left of terminals A and B.

Step 1 - Opening the terminals

Remove the 20 Ω resistor from the network by opening the terminals A & B.

Step 2 - Calculation of Thevenin's voltage V_{Th}.

Nodal analysis:

Nodal equation at node 1:

$$\frac{V_1-20}{5}+\frac{V_1}{10}-4=0$$

$$\Rightarrow 3V_1 - 80 = 0$$

$$\Rightarrow \frac{2V_1 - 40 + V_1 - 40}{10} = 0$$

$$\Rightarrow V_1 = \frac{80}{3} V$$

The voltage across series branch 10 Ω resistor is

$$V_{10\Omega} = (-4)(10) = -40V$$

The KVL equation around second mesh is: $V_1 - V_{10\Omega} - V_{Th} = 0$

Substituting $V\mathbf{1}$ and $V\mathbf{10}\Omega$ in above equation:

$$rac{80}{3} - (-40) - V_{Th} = 0$$

$$V_{Th} = rac{80 + 120}{3} = rac{200}{3} V$$

Step 3 - Calculation of Thevenin's resistance R_{Th}.

$$R_{Th} = (rac{5 imes 10}{5+10}) + 10 = rac{10}{3} + 10 = rac{40}{3} \Omega$$

Step 4 - The Thevenin's equivalent circuit is placed to the left of terminals A & B.

$$l = \frac{V_{Th}}{R_{Th} + R}$$

$$l = \frac{\frac{200}{3}}{\frac{40}{3} + 20} = \frac{200}{100} = 2A$$