CSC236 Worksheet 2 Solution

Hyungmo Gu

April 29, 2020

Question 1

• <u>Statement:</u> Any full binary tree with at least 1 node has more leaves than internal nodes.

Rough Work:

Let n be the total number of nodes in a full binary tree.

We will prove the statement by complete induction on n.

- 1. Base Case (n = 1)
- 2. Base Case (n=2)
- 3. Base Case (n=3)
- 4. Inductive Step

Notes:

- Complete Induction
 - * Statement: $\forall i \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n < i \Rightarrow A(n) \Rightarrow \forall i \in \mathbb{N}, \ A(i)$
 - * Statement Alt.: $\left(\forall n \in \mathbb{N}, \left[\bigwedge_{k=0}^{k=n-1} P(k) \right] \Rightarrow P(n) \right) \Rightarrow \forall n \in \mathbb{N}, P(n)$

Simple Example 1:

Statement: $\forall n \in \mathbb{N}, n \geq 0 \Rightarrow 10 \mid (n^5 - n)$

We will prove the statement by strong induction on n.

1. Base Case (n=0)

Let n = 0.

We need to prove $10 \mid (n^5 - n)$ is true when n = 0. That is, there exists $k \in \mathbb{Z}$ such that $(n^5 - n) = 10k$.

Let k = 0.

Starting from the left hand side, using the fact n = 0, we can write

$$(n^5 - n) = 0 \tag{1}$$

Then, because we know 10k = 0, we can conclude

$$(n^5 - n) = 10k (2)$$

2. Base Case (n=1)

Let n=1.

We need to prove $10 \mid (n^5 - n)$ is true when n = 1. That is, there exists $k \in \mathbb{Z}$ such that $(n^5 - n) = 10k$.

Let k = 0.

Starting from the left hand side, using the fact n = 0, we can write

$$(n^5 - n) = 1 - 1 (3)$$

$$=0 (4)$$

Then, because we know 10k = 0, we can conclude

$$(n^5 - n) = 10k \tag{5}$$

3. Inductive Step

Assume $k \geq 1$. Assume that for all natural number i satisfying $0 \leq i \leq k$, $10 \mid (i^5 - i)$. That is, $\exists d \in \mathbb{Z}, (i^5 - i) = 10d$.

We need to prove $\exists \tilde{d} \in \mathbb{Z}$ such that $((k+1)^5 - (k+1)) = 10\tilde{d}$.

Let
$$\tilde{d} = c + (k-1)^4 + 4 \cdot (k-1)^3 + 8 \cdot (k-1)^2 + 8 \cdot (k-1) + 3$$
.

Starting from $((k+1)^5 - (k+1))$, using binominal theorem, we can write,

$$(k+1)^{5} - (k+1) = \left[(k-1) + 2 \right]^{5} - \left[(k-1) + 2 \right]$$

$$= \sum_{b=0}^{5} {5 \choose b} (k-1)^{5-b} \cdot 2^{b}$$

$$= (k-1)^{5} + 10 \cdot (k-1)^{4} + 40 \cdot (k-1)^{3} +$$

$$80 \cdot (k-1)^{2} + 80 \cdot (k-1) + 32 - \left[(k-1) + 2 \right]$$

$$= \left[(k-1)^{5} - (k-1) \right] + 10 \cdot (k-1)^{4} +$$

$$40 \cdot (k-1)^{3} + 80 \cdot (k-1)^{2} + 80 \cdot (k-1) + 30$$

$$(9)$$

(The reason why k-1 is chosen instead of k-2 and k-3 is because of the last term $2^5=32$, i.e 32-2=30)

Then, because we know $0 \le k-1 \le k$ and $10 \mid (k-1)^5 - (k-1)$ from the header, we can write $\exists c \in \mathbb{Z}$ such that $(k-1)^5 - (k-1) = 10c$, and

$$(k+1)^5 - (k+1) = 10c + 10 \cdot (k-1)^4 + 40 \cdot (k-1)^3 + 80 \cdot (k-1)^2 + 80 \cdot (k-1) + 30$$
(10)

$$(k+1)^5 - (k+1) = 10 \cdot \left[c + (k-1)^4 + 4 \cdot (k-1)^3 + 8 \cdot (k-1)^2 + 8 \cdot (k-1) + 3 \right]$$
(11)

(12)

Then, because we know $\tilde{d} = c + (k-1)^4 + 4 \cdot (k-1)^3 + 8 \cdot (k-1)^2 + 8 \cdot (k-1) + 3$ from the header, we can conclude

$$(k+1)^5 - (k+1) = 10\tilde{d}$$
 (13)

Question 2

Question 3