Name Clusur

EE-3221-11 - Dr. Durant - Quiz 2 Winter 2017-'18, Week 2

- (2 points) Consider a 3 Hz cosine wave, $x(t) = \cos(2\pi \times 3 \times t)$. Plot the magnitude of $X(\Omega)$ for this signal.
- 2. (2 points) Plot the magnitude of the sampled spectrum of the above signal, $X_s(\Omega)$ for fs = 5 Hz. Note that the Nyquist criterion is not satisfied, so aliasing occurs.
- (2 points) Based on your previous plot, what aliased frequency appears?
- (2 points) Derive an expression for the sampled signal x(n) using the given fs; this will not have impulses, just finite values.
- (2 points) Explain why it is impossible to exactly represent a square wave in a DSP system. (Hint: Table 5.2, Line 12)

$$(1) \times (1) = \pi \left[\delta(1 - 3 + 2) + \delta(1 + 3 + 4 + 2) \right]$$

$$(1) \times (1) = \pi \left[\delta(1 - 3 + 2) + \delta(1 + 3 + 4 + 2) \right]$$

$$(2) \times (1) = \pi \left[\delta(1 - 3 + 2) + \delta(1 + 3 + 4 + 2) \right]$$

) Scale by Ts=5 (not required for fell codit).
Images @ k.SH= : Sk=3

 $2Hz(75\pm3)$

3
$$2Hz$$
 $(\mp 5\pm 3)$
 (4) $+=nT_S=\frac{n}{5}$ $\times (n)=\frac{(2\pi \times 3 \times \frac{n}{5})}{(2\pi \times 3)}=\frac{(6\pi n)}{5}$ $=\cos(\frac{6\pi n}{5})=\cos(\frac{-4\pi n}{5})=\cos(\frac{4\pi n}{5})$ $=\cos(\frac{4\pi n}{5})=\cos(\frac{4\pi n}{5})$

(5) A sharp edge/instantaneous output change requires infinitely high frequencies, violating Nyquist.

Name Auswers

EE-3221-41 - Dr. Durant - Quiz 2 Winter 2017-'18, Week 2

- 1. (2 points) Consider an 8 Hz sine wave, $x(t) = \sin(2\pi \times 8 \times t)$. Plot the magnitude of $X(\Omega)$ for this signal.
- 2. (2 points) Plot the magnitude of the sampled spectrum of the above signal, $X_s(\Omega)$ for fs = 10 Hz. Note that the Nyquist criterion is not satisfied, so aliasing occurs.
- 3. (2 points) Based on your previous plot, what aliased frequency appears?
- 4. (2 points) Derive an expression for the sampled signal x(n) using the given fs; this will not have impulses, just finite values.
- 5. (2 points) Explain why it is impossible to exactly represent a one-sided exponential decay in a DSP system. (Hint: Table 5.2, Line 7)

All have area TT. Ts = 10TT (not regid. For full credit)

$$(4) + = 0.75 = \frac{1}{15} = \frac{1}{10} \times (0) = 0.00 \times (0) = 0.00 \times (0) = 0.00 \times (0.600) = 0.00 \times (0.600) = 0.000 \times (0.600) = 0.0000 \times (0.600) = 0.00$$

Table 5.1 **Basic Properties of Fourier Transform**

	Time Domain	Frequency Domain
Signals and constants	$x(t), y(t), z(t), \alpha, \beta$	$X(\Omega), Y(\Omega), Z(\Omega)$
Linearity	$\alpha x(t) + \beta y(t)$	$\alpha X(\Omega) + \beta Y(\Omega)$
Expansion/contraction in	$x(\alpha t), \alpha \neq 0$	$\frac{1}{ \alpha }X(\frac{\Omega}{\alpha})$
time		
Reflection	x(-t)	$X(-\Omega)$
Parseval's energy relation	$E_x = \int_{-\infty}^{\infty} x(t) ^2 dt$	
Duality	X(t)	$2\pi x(-\Omega)$
Time differentiation	$\left \frac{d^{n} 1(t)}{dt^{n}}, n \geq 1 \right $ integer	
Frequency differentiation	-jtx(t)	$\frac{dX(\Omega)}{d\Omega}$
Integration	$\int_{-\infty}^{L} x(t')dt'$	$\frac{X(\Omega)}{A\Omega} + \pi X(0)\delta(\Omega)$
Time shifting	$x(t-\alpha)$	$e^{-j\alpha\Omega}X(\Omega)$
Frequency shifting	$e^{i\Omega(t)}x(t)$	$\chi(\Omega - \Omega_0)$
Modulation	$x(1)\cos(\Omega_c t)$	$0.5[X(\Omega - \Omega_c) + X(\Omega + \Omega_c)]$
Periodic signals	$x(t) = \sum_{k} X_{k} e^{ik \Omega_{k} y}$	$X(\Omega) = \sum_{k} 2\pi X_{k} \delta(\Omega - k\Omega_{0})$
Symmetry	x(t) real	$ X(\Omega) = X(-\Omega) $
		$\angle X(\Omega) = -\angle X(-\Omega)$
Convolution in time	$z(t) = [x \cdot y](t)$	$Z(\Omega) = X(\Omega)Y(\Omega)$
Windowing/Multiplication	x(t)y(t)	$\frac{1}{2\pi}[X*Y](\Omega)$
Cosine transform	x(t) even	$X(\Omega) = \int_{-\infty}^{\infty} x(t) \cos(\Omega t) dt$, real
Sine transform	x(t) odd	$X(\Omega) = -i \int_{-\infty}^{\infty} x(t) \sin(\Omega t) dt$, imaginury

Table 5.2

(6)

(9)

 $(13) \frac{\sin(\Omega_{Q^{\prime}})}{g_{\prime}}$

(14) $x(t)\cos(\Omega_0 t)$

Fourier Transform Pairs

 $A, -\infty < t < \infty$ $Ae^{-at}u(t), a > 0$

 $Ate^{-at}u(t), a > 0$ $e^{-a|t|}, a > 0$

(10) $\cos(\Omega_0 t)$, $-\infty < t < \infty$

(11) $\sin(\Omega_0 t)$, $-\infty < t < \infty$

(12) $p(t) = A[u(t+\tau) - u(t-\tau)], \tau > 0$ $2A\tau \frac{\sin(\Omega \tau)}{\Omega \tau}$

	Function of Time	Function of Ω
1)	$\delta(t)$	1
2)	$\delta(t-\tau)$	$e^{-j\Omega\tau}$
3)	u(t)	$\frac{1}{\Omega} + \pi \delta(\Omega)$
4)	u(-t)	$\frac{-1}{j\Omega} + \pi\delta(\Omega)$
5)	sign(t) = 2[u(t) - 0.5]	2

 $2\pi A\delta(\Omega)$

 $\pi[\delta(\Omega-\Omega_0)+\delta(\Omega+\Omega_0)]$

 $-j\pi[\delta(\Omega-\Omega_0)-\delta(\Omega+\Omega_0)]$

 $P(\Omega) = u(\Omega + \Omega_0) - u(\Omega - \Omega_0)$

 $0.5[X(\Omega - \Omega_0) + X(\Omega + \Omega_0)]$

 $\frac{A}{R\Omega + a}$ $\frac{A}{(i\Omega + a)^2}$