Dinamikus forgalomirányítás

- -A forgalomirányítást a router végzi. A router feladata a különböző hálózatok összekapcsolása és az adatforgalom irányítása.
- -Router részei:
 - CPU
 - Operációs rendszer
 - Memóriák (ROM, RAM, NVRAM, FLASH)
- -A forgalomirányító táblák segítségével mindig a "legjobb" útvonalat próbálja választani. (show ip route)
- -Hálózat jellemzői:
 - Topológia (bővíthetőség)
 - Költség (fenntartási, fejlesztési)
 - Biztonság (létkérdés)
 - Elérhetőség (24 órában)
 - Megbízhatóság

Statikus	Dinamikus
Előnyök: Nem hirdeti magát Adminisztratív távolsága 1 kevésbé erőforrás igényes útvonal előreismert	Előnyök: • Kényelmesebb • Nem kell ismerni az egész hálózatot • Hibákat képes kezelni (javítani)
 Hátrányok: Nehézkes a beállítása Érzékeny a hibákra A hálózat mérete befolyásolja a kezdeti konfigurálás bonyolultságát A hálózat változtatása/bővítése rendszergazdát igényel Karbantartásához, működtetéséhez, a teljes hálózat ismerete szükséges 	 Hátrányok: Hirdeti önmagát, és a hálózatokat amiket ismer (sebezhetőség) CPU igényes (routerek kommunikációja)
Fajtái: • Hagyományos statikus útvonal • Alapértelmezett útvonal • Összevont útvonal • Lebegő útvonal	Fajtái: RIP IGRP, EIGRP OSPF IS-IS BGP

-RIP (Routing Information Protocoll):

- Távolság alapú
- 15 ugrásig lát
- Frissítések: UDP protokoll
- 520-as porton kommunikálnak
- AD: 120

RIPv1	RIPv2
-szórásos címet használja (255.255.255.255) • 30 mp-ként	-D osztályú IP címeket használja -Van hitelesítés amitől biztonságosabb
-Nem tudja kezelni a VLSM-et -Nem tudja kezelni a CIDR-t	-Tudja kezelni a VLSM-et -Tudja kezelni a CIDR-t

-IGRP, EIGRP:

- Távolság alapú
- A RIP-pel szemben már számol a sávszélességgel, és nem csak az ugrások számát nézi
- AD: 90

IGRP	EIGRP
-szórásos címet használja (255.255.255.255) -Nem tudja kezelni a VLSM-et -Nem tudja kezelni a CIDR-t	-244.0.0.10-csoportos címek -Tudja kezelni a VLSM-et -Tudja kezelni a CIDR-t -Csak a változást hirdeti - "Hello csomag"- nem változott semmi • 90 mp-ként -Gyors konvergencia

-OSPF (Open Path First):

- Kapcsolat alapú
- Minden pontnak ad egy számtani értéket az alapján, hogy milyen kábel van bekötve, ezzel jelezve az útvonal "jóságát"

- Majd az értékeket összeadva választja ki a "legjobb" útvonalat amerre a csomagot majd küldeni fogja
- Felépíti a saját OSPF fáját (minden router megcsinálja), és a térképet küldi tovább, így ameddig OSPF van a routereken addig a routerek az összes hálózatot fogják ismerni.
- Sok router esetén AREA-kat hoz létre
- Fő tulajdonságok:
 - Osztály nélküli (v1)
 - Hatékony
 - Hamar reagál a hálózat változásaira
 - Gyors konvergencia
 - Skálázhatóság
 - o Biztoság- Hitelesítés
- 3 táblával dolgozik:
 - routing table
 - o neighbour table
 - o topology table (minden útvonal szerepel itt, és csak a "legjobb" kerül be a routing táblába)
- "Hello csomag": 10 mp-ként küldi ki, és ha 40 mp-n belül nem kap választ, akkor törli a szomszédsági táblából az adott routert, és hálózatait.
- Adatbázis leíró csomag (ebben érkezik a szomszéd router ismerete)
- DR router (vezér router)
 - 1. Akinek legkisebb az ID-ja
 - 2. Legkisebb loopback cím
 - 3. Legkisebb ip cím
 - A módosulásokat csak ő hirdeti
- AD: 110