Name:	
VIP ID:	

- Write your name and VIP ID in the space provided above.
- The test has four (4) pages, including this one.
- Enter your answer in the box(es) provided.
- You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given in parentheses at the right of the problem number.
- No books or notes may be used on this test.
- An approved calculator may be used on this test.

Page	Max. points	Your points
2	30	
3	49	
4	21	
Total	100	

Problem 1. (5 pts each) Find the derivative of the following functions:

(a)
$$f(x) = 56$$

$$f'(x) =$$

(b)
$$y = t + \sqrt{t}$$

$$y'(t) =$$

(c)
$$f(x) = e^x + 2^x + 3 \cdot 3^x$$

$$f'(x) =$$

(d)
$$f(x) = \ln x - \ln \pi$$

$$f'(x) =$$

Problem 2 (10 pts). The function in the figure below has f(6) = 31 and f'(6) = 2.1. Find the coordinates of the points A, B and C.

$$A = (,), \qquad B = (,), \qquad C = (,)$$

Problem 3. (7 pts each) Find the derivative of the following functions:

(a)
$$f(x) = \sqrt{\frac{1}{x^{39}}}$$

$$f'(x) =$$

(b)
$$y = 6t^5 - 10\sqrt{t} + \frac{9}{t}$$

$$y'(t) =$$

(c)
$$f(x) = (2^x + x^5)(3 - \ln x)$$

$$f'(x) =$$

(d)
$$f(x) = \frac{x^8 + 2}{x}$$

$$f'(x) =$$

(e)
$$f(x) = \ln(8 - e^{-x})$$

$$f'(x) =$$

(f)
$$f(x) = (6 + \ln x)^{0.6}$$

$$f'(x) =$$

(g)
$$f(x) = 2e^{7x} + e^{-x^6}$$

$$f'(x) =$$

Problem 4 (7 pts). Find an equation for the tangent line to the graph of $f(x) = 3x^2 - 5x + 6$ at x = 1.

$$y =$$

Problem 5 (7 pts). Find an equation for the tangent line to the graph of $f(x) = (2x^2 - 1)(3x + 4)$ at x = 0.

$$y =$$

Problem 6 (7pts). For what x-values is the tangent line to the graph of $f(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 - 6x + 4$ a horizontal line?

$$x =$$