Theoretical Quantum Optics

Problem Sheet

Lecturer: Prof. Dr. Igor Lesanovsky

Semester: Winter 23/24

Sheet: 5 **Hand-out:** 9.11.23 **Hand-in:** 16.11.23

Problem 11. Symmetric order and the Wigner function

The Wigner function for a harmonic oscillator can be defined as,

$$W_{\mathrm{h.o}}(\alpha, \alpha^*) = \frac{1}{\pi^2} \int \mathrm{d}^2 \beta \, \, \mathrm{e}^{-\beta \alpha^* + \beta^* \alpha} \mathrm{Tr} \big(\mathrm{e}^{-|\beta|^2/2} \mathrm{e}^{\beta a^\dagger} \mathrm{e}^{-\beta^* a} \rho \big),$$

where $\alpha, \beta \in \mathbb{C}$ and $d^2\beta = d\beta d\beta^*$ is the integration over the complex plane.

- **a.** Determine the Wigner function $W_{\text{c.s.}}(\alpha, \alpha^*)$ corresponding to a coherent state $|\alpha_0\rangle$ with density operator $\rho_{\text{c.s.}} = |\alpha_0\rangle\langle\alpha_0|$.
- **b.** Show that for a harmonic oscillator in a coherent state $|\alpha_0\rangle$ that,

$$\frac{\langle \alpha_0 | a^{\dagger} a + a a^{\dagger} | \alpha_0 \rangle}{2} = \int d^2 \alpha \ W_{\text{c.s.}}(\alpha, \alpha^*) |\alpha|^2,$$

holds, where $W_{\text{c.s.}}(\alpha, \alpha^*)$ is the Wigner function corresponding to the coherent state.

Problem 12. Shift operator and quasi-probability distributions

Show that for the shift operator,

$$D(\alpha) = e^{-|\alpha|^2/2} e^{\alpha a^{\dagger}} e^{-\alpha^* a}$$

we have,

$$\operatorname{Tr}(D(\alpha)) = \pi \delta^{(2)}(\alpha)$$
 and $\operatorname{Tr}(D(\alpha)D^{\dagger}(\beta)) = \pi \delta^{(2)}(\alpha - \beta),$

where $\delta^{(2)}(\alpha)$ is the Dirac delta function in the complex plane,

$$\delta^{(2)}(\alpha) = \frac{1}{\pi^2} \int d^2 \xi \ e^{\alpha \xi^* - \alpha^* \xi},$$

that is, $\delta^{(2)}(\alpha) = \delta(a)\delta(b)$ with $\alpha = a + ib$ for $a, b \in \mathbb{R}$.

Problem 13. Space inversion and time reversal for the Wigner function

Determine how the Wigner function,

$$W(q,p) = \frac{1}{2\pi\hbar} \int d\xi \, e^{-ip\xi/\hbar} \langle q + \xi/2 | \rho | q - \xi/2 \rangle, \qquad (13.1)$$

transforms under the following transformations.

- **a.** Space inversion, $q \mapsto -q$.
- **b.** Time reversal, $t \mapsto -t$.

Hint: Decompose ρ into a mixture of pure states $|\psi_i\rangle$ and find out how the wavefunction $\psi(q)$ transforms in these situations. Recall that time reversal will result in $\langle q|\rho(-t)|q'\rangle = \langle q|\rho(t)|q'\rangle^*$ due to the anti-unitarity of the time reversal operator which results from classical requirements imposed on the operator.