PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-297612

(43)Date of publication of application: 29.10.1999

(51)Int.CI.

H01L 21/027 G02B 13/18 G02B 13/24 G03F 7/20

(21)Application number: 10-111507

(71)Applicant:

NIKON CORP

(22)Date of filing:

07.04.1998

(72)Inventor:

KOBAYASHI MISAKO

(54) PROJECTION OPTICAL SYSTEM AND PROJECTION ALIGNER

(57)Abstract:

PROBLEM TO BE SOLVED: To excellently correct an aberration and secure a large numerical aperture while securing a large projection area in a projection optical system, by providing only a single aspheric lens surface, setting a focal length of a group of first to sixth lenses and a distance between an object surface and an image surface, and satisfying a specific condition.

SOLUTION: From a reticle R side, L11 to L64 are constituted by a first lens group having a positive refracting power, a second lens group having a negative refracting power, a third lens group having a positive refracting power, a fourth lens group having a negative refracting power, a fifth lens group having a positive refracting power, and a sixth lens group having a positive refracting power. Further, when the first to sixth lens groups have a focal length of f1 and a distance between an object surface and an image surface of L, conditions of f1/L<0.7, 0.1<f6/L<0.7, 0.15<f2/f4<4, and 0.05\f3/f5\12 are satisfied.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-297612

(43)公開日 平成11年(1999)10月29日

(51) Int.Cl. ⁶		識別記号	F I
HO1L 2	21/027		H01L 21/30 515D
G02B	13/18		G 0 2 B 13/18
1	13/24		13/24
G 0 3 F	7/20	5 2 1	G 0 3 F 7/20 5 2 1
			審査請求 未請求 請求項の数14 FD (全 19 頁)
(21)出願番号		特願平10-111507	(71)出願人 000004112
			株式会社ニコン
(22)出願日		平成10年(1998)4月7日	東京都千代田区丸の内3丁目2番3号
			(72) 発明者 小林 美佐子
			東京都千代田区丸の内3丁目2番3号 株
			式会社ニコン内
		•	(74)代理人 弁理士 猪熊 克彦

(54) 【発明の名称】 投影光学系および投影露光装置

(57)【要約】

【課題】広い投影領域を確保しつつ収差が良好に補正され、しかも大きな開口数を確保することができる投影光 学系を提供する。

【解決手段】少なくとも2種類以上のガラス材を使用し、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第6レンズ群とを有する投影光学系において、該投影光学系は、非球面レンズ面*を少なくとも1面有し、且つ、第1($i=1\sim6$)レンズ群の焦点距離をfiとし、物体面から像面までの距離をLとするとき、 $f_1/L<0.7$ 、 $0.15<f_2/f_4<4$ 、及び $0.05<f_3/f_5<12$ なる条件を満足する。

【特許請求の範囲】

【請求項1】少なくとも2種類以上のガラス材を使用し、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、正の屈折力を有する第6レンズ群とを有する投影光学系において、該投影光学系は、非球面レンズ面を少なくとも1面有し、且つ、以下の条件を満足することを特徴とする投影光学系。

 $f_1/L < 0.7$

 $0.1 < f_6/L < 0.7$

0. $1.5 < f_2/f_4 < 4$

0. $0.5 < f_3/f_5 < 1.2$

但し、f₁:前記第1レンズ群の焦点距離

f₂:前記第2レンズ群の焦点距離

f₃:前記第3レンズ群の焦点距離

f4:前記第4レンズ群の焦点距離

f₅:前記第5レンズ群の焦点距離

f₆:前記第6レンズ群の焦点距離

L:物体面から像面までの距離

である。

【請求項2】前記非球面レンズ面は、前記第4レンズ群 又は第5レンズ群に配置されたことを特徴とする請求項 1記載の投影光学系。

【請求項3】前記第1レンズ群は、少なくとも3枚の正レンズを有し、

前記第5レンズ群は、少なくとも5枚の正レンズと、少なくとも1枚の負レンズとを有し、

前記第6レンズ群は、互いにアッベ数が異なり且つ物体側から順に正レンズ L_{CP} と負レンズ L_{CN} とからなる組み合わせレンズを少なくとも1組有することを特徴とする請求項1又は2記載の投影光学系。

【請求項4】前記第2レンズ群は、少なくとも2枚の負レンズと、少なくとも1枚の正レンズとを有し、

前記第3レンズ群は、少なくとも2枚の正レンズを有 1

前記第4レンズ群は、少なくとも2枚の負レンズを有することを特徴とする請求項3記載の投影光学系。

【請求項5】以下の条件を満足する請求項3又は4記載の投影光学系。

 $0.1 < \nu_{CN} / \nu_{CP} < 0.95$

但し、v_{cp}:前記正レンズ L_{cp}のアッベ数

 ν_{CN} : 前記負レンズ L_{CN} のアッベ数

である。

【請求項6】前記第6レンズ群は、前記組み合わせレンズを2組有し、いずれの組み合わせレンズも前記(5)式を満足することを特徴とする請求項5記載の投影光学系。

【請求項7】前記第1レンズ群は、物体側から順に像側

に凹面を向けた負レンズ \mathbf{L}_{AN} と物体側に凸面を向けた正レンズ \mathbf{L}_{AN} とからなる負正組み合わせレンズを有し、該負正組み合わせレンズの前記負レンズ \mathbf{L}_{AN} と正レンズ \mathbf{L}_{AN} は互いに隣接して配置され、両レンズ \mathbf{L}_{AN} 、 \mathbf{L}_{AP} によって構成される空気レンズは第 1 レンズ群の中央に位置するレンズ又は空気レンズよりも物体側に位置し、且つ

以下の条件を満足することを特徴とする請求項 $1\sim6$ のいずれか1項記載の投影光学系。

 $|r_{AN2}/r_{AP1}| < 6$

 $0.1 < \nu_{AN} / \nu_{AP} < 0.95$

但し、r_{AN2}:前記負レンズL_{AN}の第2面の曲率半径

r_{AP1}:前記正レンズL_{AP}の第1面の曲率半径

VAN:前記負レンズLANのアッベ数

ν_{AP}:前記正レンズ L_{AP}のアッベ数

である。

【請求項8】前記第1レンズ群は、物体側から順に物体側に凸面を向けた正レンズ L_{BP} と像側に凹面を向けた負レンズ L_{EN} とからなる正負組み合わせレンズを有し、該正負組み合わせレンズの前記正レンズ L_{EP} と負レンズ L_{EN} は互いに隣接して配置され、両レンズ L_{EP} 、 L_{EN} によって構成される空気レンズは第1レンズ群の中央に位置するレンズ又は空気レンズよりも像側に位置し、且つ、以下の条件を満足することを特徴とする請求項1~7のいずれか1項記載の投影光学系。

 $(|r_{BP2}| - |r_{BN1}|) / (|r_{BP2}| + |r_{BN1}|)$ < 1.0

 $0.1 < v_{BN} / v_{BP} < 0.95$

但し、r_{BP2}:前記正レンズL_{BP}の第2面の曲率半径

r_{BN1}:前記負レンズL_{BN}の第1面の曲率半径

ν_{BP}:前記正レンズ L_{BP}のアッベ数

 ν_{BN} : 前記負レンズ L_{BN} のアッベ数

である。

【請求項9】以下の条件を満足する請求項1~8のいずれか1項記載の投影光学系。

 $n_{3Pm} > n_{5P}$ ···· (10)

但し、 n_{3Pm} : 前記第3レンズ群に含まれる少なくとも 1枚の正レンズの屈折率

 n_{SP} : 前記第 5 レンズ群に含まれる全ての正レンズの屈 折率の平均値

である。

【請求項10】以下の条件を満足する請求項1~9のいずれか1項記載の投影光学系。

 $n_{34P} > n_{34N}$ (11)

但し、n₃₄ : 前記第3レンズ群と第4レンズ群に含まれる全ての正レンズの屈折率の平均値

 n_{34N} : 前記第 3 レンズ群と第 4 レンズ群に含まれる全 ての負レンズの屈折率の平均値

である。 【請求項11】以下の条件を満足する請求項1~10の いずれか1項記載の投影光学系。

0. 003 $< NA_2 \times Y/L < 0.1$

但し、NA₂:投影光学系の像側開口数

Y:最大像高

L:物体面から像面までの距離

である。

【請求項12】前記第1レンズ群の第1レンズの第1面は物体側に凹に形成され、第1レンズ群の第2レンズは負レンズによって形成され、且つ、以下の条件を満足する請求項 $1\sim11$ のいずれか1項記載の投影光学系。

 $|f_{11}/f_1| > 0.25$

但し、 \mathbf{f}_{11} : 前記第1レンズ群の第1レンズの焦点距離 \mathbf{f}_{1} : 前記第1レンズ群の焦点距離 である。

【請求項13】前記第1レンズ群の第1レンズの第1面は物体側に凹に形成され、第1レンズ群の第2レンズは正レンズによって形成され、且つ、以下の条件を満足する請求項 $1\sim11$ のいずれか1項記載の投影光学系。

 $r_1/f_1 < -0.4$

 $r_1/f_2 > 0.7$

但し、 \mathbf{r}_1 : 前記第 1 レンズ群の第 1 レンズの第 1 面の 曲率半径

f₁: 前記第1レンズ群の焦点距離

 f_2 : 前記第 2 レンズ群の焦点距離である。

【請求項14】投影原版上のパターンを照明する照明光 ♥≤×

少なくとも2種類以上のガラス材を使用し、前記投影原版側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、正の屈折力を有する第6レンズ群とを有し、前記パターンを感光基板の感光面上に転写する投影光学系とを有する投影露光装置において、

前記投影光学系は、非球面レンズ面を少なくとも1面有 し、且つ、以下の条件を満足することを特徴とする投影 露光装置。

 $f_1/L < 0.7$

 $0.1 < f_6/L < 0.7$

0. $1.5 < f_2/f_4 < 4$

0. $0.5 < f_3/f_5 < 1.2$

但し、 f :: 前記第 1 レンズ群の焦点距離

f₂:前記第2レンズ群の焦点距離

f₃:前記第3レンズ群の焦点距離

f4: 前記第4レンズ群の焦点距離

f₅:前記第5レンズ群の焦点距離

f₆:前記第6レンズ群の焦点距離

L:前記パターン面から感光面までの距離

である。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、物体の像を像面上に投影する投影光学系に関し、特に、半導体素子や液晶表示素子を製造する工程で使用するに好適な投影光学系に関するものである。

[0002]

【従来の技術】半導体素子や液晶表示素子は多数の工程を経て製造されるが、そのうちの主要な工程にフォトリソグラフィー工程がある。同工程では、レチクル、マスクなどの投影原版上のパターンを、ウエハ、ガラスプレートなどの感光基板上に転写するために、投影光学系が使用される。このフォトリソグラフィー工程では、複数回にわたって、レチクルパターンをウエハ上に転写している。ここで、従来のミドルレイヤー露光機は、比較的広い露光領域を確保しつつ収差を良好に補正するために、像側NA(開口数)が比較的小さくなっていた。また、セミクリティカルなパターンを転写するときには、比較的広い露光領域を確保しつつ収差を良好に補正し、しかも大きなNAを確保するために、走査型露光装置が使用されている。

[0003]

【発明が解決しようとする課題】近年の転写バターンの 微細化に伴い、ミドルレイヤー露光機にも、広い露光領域を確保しつつ、高いNAをも確保することが要求されるようになってきた。この要求を満たすには、走査型露光装置を使用すれば良い。しかし走査型露光装置では、一時に露光される実際の露光領域は狭く、レチクルとき同期走査することにより、見かけ上広い露光領域を確保するものであるから、装置全体の構成が複雑にならざるをえない。したがって、走査型露光装置でよって焼き付けるための、コンバクトで高性能な投影レンズ系が望まれるところとなっている。本発明は、広い投影領域を確保しつつ収差が良好に補正され、しかも大きな開口数を確保することができる投影光学系と、これを備えた投影露光装置を提供することを課題とする。

[0004]

【課題を解決するための手段】本発明は上記の課題を解決するためになされたものであり、すなわち、少なくとも2種類以上のガラス材を使用し、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第3レンズ群と、真の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、正の屈折力を有する第5レンズ群と、正の屈折力を有する第5レンズ群と、正の屈折力を有する第5レンズ群と、正の屈折力を有する第5レンズ群と、正の屈折力を有する第5レンズ群と、エの屈折力を有する第5レンズ群と、エの屈折力を有する第5レンズ群と、カース

 f_i : 第iレンズ群の焦点距離 ($i=1\sim6$)

L:物体面から像面までの距離

としたときに、

 $f_1/L < 0.7$ (1) 0. $1 < f_6/L < 0.7$ (2) 0. $15 < f_2/f_4 < 4$ (3) 0. $05 < f_3/f_5 < 12$ (4)

なる条件を満足することを特徴とする投影光学系である。本発明はまた、この投影光学系を備えた投影露光装置である。

【0005】正の屈折力を持つ第1レンズ群は、テレセ ントリック性を維持しながら、主に歪曲収差の補正に寄 与している。すなわち第1レンズ群で正の歪曲収差を発 生させることにより、第2レンズ群以降のレンズ群にて 発生する負の歪曲収差をバランス良く補正している。負 の屈折力を持つ第2レンズ群及び正の屈折力を持つ第3 レンズ群は、この2つの群において逆望遠系を形成し、 投影光学系の全長を短くすることに寄与している。ま た、負の屈折力を持つ第2レンズ群及び第4レンズ群 は、主にペッツバール和の補正に寄与し、像面の平坦化 を図っている。それぞれ正の屈折力を持つ第5レンズ群 及び第6レンズ群は、負の歪曲収差の発生を抑えつつ、 像面側での高NA化に対応するために、特に球面収差の 発生を極力抑えることに寄与している。ガラス材は少な くとも2種類使用する。これは、色収差を良好に補正す るためである。尚、色収差を更に良好に補正しつつ、か つ、コンパクトな投影光学系を得るためには、ガラス材 を3種類以上使用することが好ましい。

【0006】条件式(1)は、主に歪曲収差をバランスよく補正するためのものである。条件式(1)の上限を超えると、負の歪曲収差が大きく発生するため、好ましくない。条件式(2)は、コンパクトな光学系において、広NAかつ広露光領域を実現するための第6レンズ群の屈折力を規定するものである。条件式(2)の下限を超えると、負の歪曲収差及びコマ収差の発生が大きくなり、像の悪化を招くため、好ましくない。また、第5レンズ群に負担がかかり、結果として球面収差の悪化を招き、全体の良好な収差バランスを悪化させるため、好ましくない。一方、条件式(2)の上限を超えると、第6レンズ群全体の正屈折力が弱くなりすぎ、結果的に投影レンズ全系の長大化を招くため、好ましくない。

【0007】条件式(3)は、主にペッツバール和を小さく(0に近く)して、広い露光領域を確保しつつ、像面湾曲を良好に補正するためのものである。条件式

(3)の下限を越えると、第4レンズ群の屈折力が第2レンズ群の屈折力に対して相対的に弱くなるため、正のペッツバール和が大きく発生する。逆に、条件式 (3)の上限を越えると、第2レンズ群の屈折力が第4レンズ群の屈折力に対して相対的に弱くなるため、同様に正のペッツバール和が大きく発生し、いずれも好ましくない。条件式 (4) は、バランスよく球面収差とコマ収差を補正しつつコンパクトな投影光学系を実現するための条件を規定するものである。条件式 (4)の上限を超え

ると、負の球面収差が大きく発生する結果、全体の良好な収差バランスを維持できない。逆に、条件式 (4)の下限を超えると、コマ収差が大きく発生する結果、全体の良好な収差バランスを維持できない。

【0008】上記の各効果を得るためには、第1レンズ群は、少なくとも3枚の正レンズを有し、第5レンズ群は、少なくとも5枚の正レンズと少なくとも1枚の負レンズとを有し、第6レンズ群は、互いにアッベ数が異なり且つ物体側から順に正レンズ L_{CP} と負レンズ L_{CN} とからなる組み合わせレンズを少なくとも1組有することが好ましい。更には、第2レンズ群は、少なくとも2枚の 負レンズと少なくとも1枚の正レンズを有し、第3レンズ群は、少なくとも2枚の正レンズを有し、第4レンズ群は、少なくとも2枚の自レンズを有することが好ましい。

【0009】次に、本発明においては、少なくとも1面の非球面レンズ面が用いられているが、この非球面は、第4レンズ群又は第5レンズ群に配置することが好ましい。すなわち第4レンズ群中に非球面を配置することによって、球面レンズのみで構成された明るい光学系で残存しがちな画角に関する収差、特にサジタル方向のコマ収差を抑えることが可能となる。この場合、非球面としては凹面を用い、レンズ周辺で屈折力を弱める形状とすることが好ましい。

【0010】また、第5レンズ群中に非球面を配置することによって、高NAに関する収差、特に高次の球面収差を補正することが可能となる。この場合、凸面の非球面を用いるときには、レンズ周辺で屈折力を弱める形状にすることが好ましく、凹面の非球面を用いるときには、レンズ周辺で屈折力を強める形状にすることが好ましい。なお、第4レンズ群中のレンズ面であっても、より像側のレンズ面を非球面とすれば、同じ効果を得ることができる。つまり高NAで広い露光領域の投影光学系を構成するには、少なくとも第4レンズ群中又は第5レンズ群中に非球面形状のレンズ面を配置することが収差補正上好ましい。

【0011】また、第4レンズ群又は第5レンズ群以外のレンズ群に非球面を採用しても、収差補正に有効である。例えば、第1レンズ群に非球面を用いると、主に歪曲収差を補正することができる。第2レンズ群に非球面を用いると、主に入射瞳の収差(物体高に対応する入射瞳位置のずれ)を小さくすることができる。第3レンズ群又は第6レンズ群に非球面を用いると、主にコマ収差を補正することができる。なお、上記各群の光学要素の一部が平行平面板のように屈折力を持たない光学要素であっても、その平行平面板を非球面形状にすれば同様の効果を得ることができる。

【0012】次に、本発明の第6レンズ群は、互いにアッペ数が異なり且つ物体側から順に正レンズ L_{CP} と負レンズ L_{CP} とからなる組み合わせレンズを少なくとも1組

有することが好ましいが、その際、

ν_{CP}:正レンズ L_{CP}のアッベ数

ν_{CN}:負レンズ L_{CN}のアッベ数

としたとき、

0. $1 < \nu_{CN} / \nu_{CP} < 0.95$ •••• (5)

なる条件を満たすことが好ましい。

【0013】また、第6レンズ群は、前記組み合わせレ ンズを2組有し、いずれの組み合わせレンズも条件式 (5)を満たすことが一層好ましい。条件式(5)は、 大きなNAと広い露光領域の全体について、色収差を良 好に補正するものである。また、第6レンズ群の構成 は、歪曲収差及びコマ収差の補正にも大きく寄与してい

【0014】次に、本発明の第1レンズ群は、物体側か ら順に像側に凹面を向けた負レンズLanと物体側に凸面 を向けた正レンズLapとからなる負正組み合わせレンズ を有し、この負正組み合わせレンズの前記負レンズLAN と正レンズLapは互いに隣接して配置され、この負正組 み合わせレンズは第1レンズ群内の物体側に近い側に配 置され(より正確には、両レンズLAN、LAPによって構 成される空気レンズは第1レンズ群の中央に位置するレ ンズ又は空気レンズよりも物体側に位置し)、且つ、

> $(|r_{BP2}| - |r_{BN1}|) / (|r_{BP2}| + |r_{BN1}|) < 1.0$ (8)

0. $1 < \nu_{BN} / \nu_{BP} < 0$. 95

なる条件を満たすことが好ましい。条件式(6)~

(9) は、物体に近い側において、広い露光領域内の全 域で倍率色収差を良好に補正しうる現実的な解を与える ための条件であり、したがってこれらの条件式の範囲を 逸脱すると、倍率色収差を良好に補正できなくなる。

【0016】次に、本発明においては、

пэрт: 第3レンズ群に含まれる少なくとも1枚の正レ ンズの屈折率

n_{5P}:第5レンズ群に含まれる全ての正レンズの屈折率 の平均値

とするとき、

 $n_{3Pm} > n_{5P}$ \cdots (10)

なる条件を満たすことが好ましい。一般に、軸上色収差 を補正するために異常分散性をもつ光学材料が使用され るが、軸上色収差を効率よく補正するためには、その光 学材料は光線高の高いところに配置するのが好ましい。 そのため、これらの光学材料は主に凸レンズとして第5 レンズ群に配置されるが、これらの光学材料は屈折率が 低いため、これらの光学材料を多用すると、ペッツバー ル和が0から離れて像面補正が困難となり、また光学系 コンパクト化の観点からも好ましくない。条件式(1

> 0. $0.03 < NA_2 \times Y/L < 0.1$ (12)

なる条件を満たすことが好ましい。

【0019】条件式(12)は、物理的に可能かつ現実 に製造上コスト優位性のある投影光学系の条件を規定す r_{ANZ}:負レンズL_{AN}の第2面の曲率半径

r_{AP1}:正レンズ L_{AP}の第1面の曲率半径

VAN:負レンズLANのアッベ数

VAP:正レンズ LAPのアッベ数

としたとき、

 $|r_{AN2}/r_{AP1}| < 6$

 \cdots (6)

···· (7) 0. $1 < \nu_{AN} / \nu_{AP} < 0.95$

なる条件を満たすことが好ましい。

【0015】また、本発明の第1レンズ群は、物体側か ら順に物体側に凸面を向けた正レンズLmと像側に凹面 を向けた負レンズLmとからなる正負組み合わせレンズ を有し、この正負組み合わせレンズの前記正レンズLpp と負レンズLRNは互いに隣接して配置され、この正負組 み合わせレンズは第1レンズ群内の像側に近い側に配置 され (より正確には、両レンズ L_{RP}、 L_{RN}によって構成 される空気レンズは第1レンズ群の中央に位置するレン ズ又は空気レンズよりも像側に位置し)、且つ、

但し、r_{BP2}:正レンズL_{BP}の第2面の曲率半径

r_{BN1}:負レンズL_{BN}の第1面の曲率半径

ν_{BP}:正レンズ L_{BP}のアッベ数

ν_{BN}:負レンズ L_{BN}のアッベ数

としたとき、

 \cdots (9)

0)は、第3レンズ群においては、これらの光学材料を 含む低屈折率光学材料の使用を極力避けることを意味す る。したがって条件式(10)を満たさないと、コンパ クトな光学系を得ることが困難になる。

【0017】次に、本発明においては、

n₃₄₀:第3レンズ群と第4レンズ群に含まれる全ての

正レンズの屈折率の平均値

n_{34N}:第3レンズ群と第4レンズ群に含まれる全ての 負レンズの屈折率の平均値

とするとき、

 $\cdots (11)$ $n_{34P} > n_{34N}$

なる条件を満たすことが好ましい。条件式(11)を満 たすことにより、コンパクトな光学系において、ペッツ バール像面をさらに良好かつ効果的に補正することがで

【0018】次に、本発明においては、

NA₂:投影光学系の像側開口数

Y:最大像高

L:物体面から像面までの距離

とするとき、

るものである。条件式(12)の上限を超えると、良好 な収差を保つことが要求される露光領域全体において、 全体の良好な収差バランスを維持できない。また、条件 式 (12) の下限を超えると、投影光学系が長大化し、現実的な解ではない。なお、投影光学系内に非球面を用いたことによる効果を充分活かして、よりコンパクトな投影光学系を実現するためには、条件式 (12) の下限は 0.088とすることが好ましい。

【0020】次に、本発明においては、第1レンズ群の第1レンズの第1面は物体側に凹に形成され、第1レンズ群の第2レンズは負レンズによって形成され、且つ、

 f_{11} :第1レンズ群の第1レンズの焦点距離

 f_1 : 第1レンズ群の焦点距離 とするとき、

 $|f_{11}/f_1| > 0.25$ (13)

なる条件を満たすことが好ましい。条件式(13)は、 倍率色収差の補正に極力影響を与えることなく、主に歪曲収差を良好に補正するための現実的な解を与える範囲 を規定する。また、第1レンズ第1面の凹面によって、 射出瞳位置を像位置からより遠くすることができる。

【0021】他方、第1レンズ群の第1レンズの第1面は物体側に凹に形成され、第1レンズ群の第2レンズは 正レンズによって形成され、且つ、

r₁:第1レンズ群の第1レンズの第1面の曲率半径

f₁:第1レンズ群の焦点距離

f₂:第2レンズ群の焦点距離

とするとき、

 $r_1/f_1 < -0.4$ (14)

 $r_1/f_2 > 0.7$ (15)

なる条件を満たす構成とすることもできる。

【0022】条件式(13)の場合には、第2レンズが条件式(6)、(7)における負レンズ L_{AN} に対応し、すなわち倍率色収差補正の役割を担っていたから、第1レンズは専ら歪曲収差の補正と射出瞳位置の調整の役割を担うことができた。しかし、条件式(14)、(15)の場合には、第1レンズと第2レンズが、それぞれ条件式(6)、(7)における負レンズ L_{AN} と正レンズ L_{AN} に対応し、すなわち倍率色収差補正の役割を担う。したがって歪曲収差の補正や射出瞳位置の調整は、第1レンズ群内の他のレンズや、第2レンズ群によって行うことになる。条件式(14)、(15)は、そのために必要な条件を規定するものであり、同条件を満たさないと、歪曲収差の補正や射出瞳位置の調整が困難となる。【0023】

【発明の実施の形態】本発明の実施の形態を図面によって説明する。図1は本発明による投影光学系を用いた投影露光装置の一実施例を示す。照明光学系1より発した露光光は、レチクルステージ2上に載置されたレチクルRを均一に照明する。レチクルRのパターン面PAを透過した露光光は、投影光学系3によって、ウエハステージ4上に載置されたウエハWの感光面に、パターンPAの像を結像する。こうしてレチクル上のパターンPAがウエハWの感光面に転写される。

【0024】図2、図5、図8及び図11は、それぞれ本発明による投影光学系の第1、第2、第3及び第4実施例のレンズ構成図を示している。各実施例の投影光学系とも、レチクルR上のパターンをウエハWの感光面に投影するものであり、その主要諸元は、

NA₂(像側開口数):0.57

β (投影倍率):1/4

Y (最大像高):21mm (露光領域の直径は42m

m)

λ(基準波長):365.0nm

△ λ (波長幅) : ± 3 n m

である。

【0025】各実施例の投影光学系とも、レチクルR側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、正の屈折力を有する第6レンズ群とからなる。また開口絞りASは、第4レンズ群と第5レンズ群の間に設けられている。また、各実施例とも、複数種類のガラス材を使用しており、1面の非球面レンズ面(図中、*印を付した面)を第4レンズ群に持っている。

【0026】第1実施例の第1レンズ群は、レチクルR 側に凹面を向けたメニスカス負レンズL」、ウエハW側 に凹面を向けたメニスカス負レンズ L₁₂、3枚の両凸レ ンズL₁₃、L₁₄、L₁₅、及びウエハW側に凹面を向けた メニスカス負レンズL16からなる。第2レンズ群は、両 凸レンズ L₂₁、 2 枚の両凹レンズ L₂₂、 L₂₃、及びレチ クルR側に凹面を向けたメニスカス負レンズLyaからな る。第3レンズ群は、レチクルR側に凹面を向けたメニ スカス正レンズL31、レチクルR側に凹面を向けたメニ スカス負レンズ L_{32} 、レチクルR側に凹面を向けたメニ スカス正レンズ L_{33} 、及び2枚の両凸レンズ L_{34} 、 L_{35} からなる。第4レンズ群は、両凸レンズ \mathbf{L}_{41} 、ウエハ \mathbf{W} 側に凹面を向けた2枚のメニスカス負レンズ L42、 L_{43} 、2枚の両凹レンズ L_{44} 、 L_{45} 、及びレチクルR側 に凹面を向けたメニスカス正レンズ L_{46} からなる。第5 レンズ群は、レチクルR側に凹面を向けたメニスカス正 レンズ L_{51} 、両凸レンズ L_{52} 、レチクルR側に凹面を向 けたメニスカス負レンズL₅₃、ウエハW側に凹面を向け たメニスカス負レンズ L_{54} 、2枚の両凸レンズ L_{55} 、L56、及びウエハW側に凹面を向けたメニスカス正レンズ L₅₇からなる。第6レンズ群は、ウエハW側に凹面を向 けたメニスカス正レンズ L₆₁、ウエハW側に凹面を向け

【0027】第2実施例は、第1レンズ群第1レンズがレチクルR側に凹面を向けたメニスカス正レンズ L_{11} によって形成され、第1レンズ群第2レンズが両凹レンズ

たメニスカス負レンズ L₆₂、ウェハW側に凹面を向けた

メニスカス正レンズ \mathbf{L}_{63} 、及びウエハW側に凹面を向け

たメニスカス負レンズ L₆₄からなる。

 L_{12} によって形成され、第4レンズ群第1レンズがウエハW側に凹面を向けたメニスカス正レンズ L_{41} によって形成されている点を除き、第1実施例と同じである。

【0028】第3実施例の第1レンズ群は、両凹レンズ L_{11} 、2枚の両凸レンズ L_{12} 、 L_{13} 、ウエハW側に凹面 を向けた2枚のメニスカス正レンズ L14、 L15、 及びウ エハW側に凹面を向けたメニスカス負レンズLi6からな る。第2レンズ群は、両凸レンズ L_{21} 、3枚の両凹レン ズL₂₂、L₂₃、L₂₄、及び両凸レンズL₂₅からなる。第 3レンズ群は、レチクルR側に凹面を向けたメニスカス 正レンズ L31、2枚の両凸レンズ L22、L33、及びウエ ハW側に凹面を向けたメニスカス正レンズLaからな る。第4レンズ群は、ウエハW側に凹面を向けた2枚の メニスカス負レンズ Lat、Lao、2枚の両凹レンズ L_{43} 、 L_{44} 、及び両凸レンズ L_{45} からなる。第5レンズ 群は、レチクルR側に凹面を向けたメニスカス正レンズ L_{51} 、2枚の両凸レンズ L_{52} 、 L_{53} 、レチクルR側に凹 面を向けたメニスカス負レンズ L54、両凸レンズ L55、 及びウエハW側に凹面を向けたメニスカス正レンズ L₅₆ からなる。第6レンズ群は、ウエハW側に凹面を向けた メニスカス正レンズLg、両凹レンズLg、両凸レンズ L_{63} 、両凹レンズ L_{64} 、及びウエハW側に凹面を向けた メニスカス正レンズ L 65からなる。第4実施例は、第3 実施例と同様に形成されている。

【0029】このうち、各実施例とも、レンズ L_{61} が前記した正レンズ L_{CP} に対応し、レンズ L_{62} が負レンズL

 c_N に対応する。更に、レンズ L_{63} も正レンズ L_{CP} に対応し、レンズ L_{64} も負レンズ L_{CN} に対応する。すなわち第6レンズ群は、前記した組み合わせレンズを2組有する。また、第1実施例と第2実施例では、レンズ L_{12} と L_{13} がそれぞれ前記した負レンズ L_{AN} と正レンズ L_{AP} に対応し、第3実施例と第4実施例では、レンズ L_{11} と L_{12} がそれぞれ負レンズ L_{AN} と正レンズ L_{AP} に対応する。また、各実施例とも、レンズ L_{15} と L_{16} がそれぞれ前記した正レンズ L_{BP} と負レンズ L_{BN} に対応する。

 $\nu = (n-1) / (n_{-}-n_{+})$

n_: 入一 △ 入における屈折率

 n_+ : $\lambda + \Delta \lambda$ における屈折率

によって定義している。

【0031】また第1欄No中*印を付したレンズ面は 非球面を示し、非球面レンズ面についての第2欄rは、 頂点曲率半径である。非球面の形状は、

$$z(y) = \frac{y^2/r}{1 + \sqrt{1 - (1 + \kappa)y^2/r^2}} + Ay^4 + By^6 + Cy^8 + Dy^{10}$$

y:光軸からの高さ

z:接平面から非球面までの光軸方向の距離

r:頂点曲率半径

κ:円錐係数

A、B、C、D:非球面係数

によって表わしており、 [非球面データ] に円錐係数 κ と非球面係数A、B、C、Dを示した。

[0032]

【表1】

面係数	•					
Νο	r	d	n	ν		
0	∞	75.711588			R	
1	-560.52361	22.646845	1.51183	631.11	$L_{11}(N)$	
2	-597.19192	1.109233				
3	2796.88016	13.865415	1.61265	277.85	$L_{12}(N)$	$L_{\mathtt{AN}}$
4	303.67789	13.175357				
5	443.18647	36.686155	1.46393	717.04	$L_{13}(P)$	$L_{\mathtt{AP}}$
6	-289.81658	0.462181				
7	245.01051	35.773192	1.51183	631.11	$L_{14}(P)$	
8	-935.07502	0.462181				
9	215.77051	32.283789	1.51183	631.11	$L_{15}(P)$	L_{BP}
10	-1411.49344	0.924361				
11	6281.07629	10.500000	1.61265	277.85	$L_{16}(N)$	$L_{\scriptscriptstyle BN}$
12	125.70265	21.708595				
13	359.36002	24.033590	1.61548	458.63	$L_{21}(P)$	
14	-318.42861	0.462181				

	-836.77257		1.50442	554.31	$L_{zz}(N)$	
16	136.44453		1 51100	004 44	- ()	
17	-231.85488		1.51183	631.11	$L_{23}(N)$	
18 19	274.68052 -169.35603	25.126079 16.213110	1.46393	717.04	T (N)	
20	-109.33003	23.092857	1.40000	111.04	$L_{24}(N)$	
21	-1850.11314		1.61548	458.63	L ₃₁ (P)	
22	-253.98164		1.01010	100.00	D 31(1)	
23	-141.36237		1.47458	539.97	L ₃₂ (N)	
24	-237.45747	1.217593			- 32 ()	
25	-2117.42903	24.957747	1.61548	458.63	L ₃₃ (P)	
26	-336.57384	0.462181				
27	1255.96000	28.219456	1.61548	458.63	$L_{34}(P)$	
28	-415.96245	0.462181		-		
29	333.63763	29.500000	1.61548	458.63	$L_{35}(P)$	
30	-1908.14787	2.660876				
31	248.79832	31.063871	1.61548	458.63	$L_{41}(P)$	
32	-23479.61750	1.087555				
33	6559.57756	16.280979	1.50442	554.31	$L_{42}(N)$	
34	436.94786	6.344350	4 45450	~ 00 0=	- 4>	
35	882.99247		1.47458	539.97	$L_{43}(N)$	
36	138.75391	32.413514	1 61065	977 05	T (N)	
37	-225.06862 242.61373	11.092332	1.61265	277.85	$L_{44}(N)$	
38 *39	-140.21068	29.472767 10.367598	1.61265	277 85	L ₄₅ (N)	
40	1350.73328	7.263517	1.01203	211.00	L 45(N)	
41	-873.17180	24.553932	1.51183	631.11	L ₄₆ (P)	
42	-266.17433	1.734113	1.01100	001.11	246(1)	
43	_	25.152725			ΑS	
44	-940.80486	23.317417	1.61548	458.63	$L_{51}(P)$	
45	-215.08725	0.483043			V.	
46	455.49713	43.775022	1.46393	717.04	$L_{52}(P)$	
47	-326.23770	10.473409				
48	-261.92042	20.798123	1.61265	277.85	$L_{53}(N)$	
49	-394.04567	7.000000				
50	691.74753	21.075431	1.61265	277.85	$L_{54}(N)$	
51	320.53860	5.546166				
52	369.74440	41.596245	1.46393	717.04	$L_{55}(P)$	
53	-647.05271	0.462181			_	
54	622.43484	29.579552	1.46393	717.04	$L_{56}(P)$	
55	-694.21526	1.000000	1 40000	F1F 04	I (D)	
56	184.87220	31.355648	1.46393	717.04	L ₅₇ (P)	
57	389.67979	4.688174	1 51100	621 11	T (D)	т.
58 50	129.95615	41.424851	1.51183	631.11	$L_{61}(P)$	L _{CP}
59 60	277.75711	4.621805	1 61965	277.85	T (M)	т
61	306.56586 89.39697	24.722637 24.833212	1.61265	211.00	$L_{62}(N)$	L _{CN}
62	96.38614	45.042703	1.51183	631.11	L ₆₃ (P)	L CP
63	1848.72202	1.000000	1.01100	001.11	£63(1)	T Cb
64	1007.48113	42.472466	1.50442	554.31	L ₆₄ (N)	L _{CN}
91	1001.10110	15.112100	1.00174	001.01	- 64 (14)	CN

```
65
                               353.70429
                                              3.924362
                       66
                                  \infty
                                             13.621805
                                                                                W
                     [非球面データ]
                     N \circ = 39
                                 \kappa = 0.0
                                            A = -0.779527 \times 10^{-9}
                                                                       B = 0.232875 \times 10^{-12}
                                             C = 0.695185 \times 10^{-17}
                                                                      D = 0.671026 \times 10^{-20}
                     [条件式対応値]
                     (1) f<sub>1</sub>/L=0.327
                     (2) f_6/L = 0.363
                     (3) f_2/f_4=1.35
                     (4) f<sub>3</sub>/f<sub>5</sub>=1.01
                     (5) \nu_{CN}/\nu_{CP} = 0.440; 0.878
                     (6) | r_{AN2} / r_{AP1} | = 0.685
                     (7) \nu_{AN} / \nu_{AP} = 0.387
                     (8) (|r_{BP2}| - |r_{BN1}|) / (|r_{BP2}| + |r_{BN1}|) = -0.633
                     (9) \nu_{BN} / \nu_{BP} = 0.440
                     (1\ 0)\ n_{3Pm}=1.61548,\ n_{5P}=1.494
                     (11) n_{34P} = 1.598, n_{34N} = 1.536
                     (1\ 2)\ NA_2 \times Y/L = 0.00961
                     (13) | f_{11}/f_1| = 55.19
                     (14) 適用なし
                     (15)適用なし
[0033]
                                                                【表2】
                     Νo
                                 r
                                               d
                                                             n
                       0
                                 \infty
                                            75.331260
                                                                                R
                       1
                             -827.98436
                                            22.646845
                                                          1.51183
                                                                      631.11
                                                                               L_{11}(P)
                       2
                             -629.12537
                                             1.109233
                       3
                           -49672.13540
                                            13.865415
                                                          1.61265
                                                                      277.85
                                                                               L_{12}(N)
                                                                                         L_{\mathtt{AN}}
                       4
                              302.00000
                                            16.631831
                       5
                              417.99165
                                            38.404161
                                                          1.46393
                                                                      717.04 L_{13}(P) L_{AP}
                       6
                             -286.20535
                                             0.462181
                       7
                              270.00000
                                            32.577871
                                                          1.51183
                                                                      631.11 L_{14}(P)
                       8
                            -1071.80362
                                             0.462181
                       9
                              206.49981
                                            34.018987
                                                          1.51183
                                                                      631.11 L_{15}(P) L_{BP}
                            -1406.69909
                      10
                                             0.924361
                                            10.500000
                      11
                             3165.27594
                                                          1.61265
                                                                      277.85 L_{16}(N) L_{BN}
                      12
                              126.56023
                                            22.496462
                      13
                              391.93241
                                            23.832057
                                                          1.61548
                                                                      458.63 L_{21}(P)
                             -307.37150
                      14
                                             0.462181
                      15
                             -793.13448
                                            12.941054
                                                          1.50442
                                                                      554.31 L_{22}(N)
                      16
                              137.75349
                                            34.944724
                      17
                             -215.00000
                                            12.941054
                                                          1.51183
                                                                      631.11 L_{23}(N)
                      18
                              293.50015
                                            25.109121
                                                                      717.04 L_{24}(N)
                      19
                                                          1.46393
                             -167.96525
                                            15.820899
                      20
                             -997.19101
                                            21.883907
                                                                      458.63 L_{31}(P)
                      21
                            -1858.44272
                                            46.642524
                                                          1.61548
                      22
                             -244.83458
                                            24.289258
                                                                      539.97
                      23
                             -138.91200
                                            18.487220
                                                          1.47458
                                                                               L_{32}(N)
                      24
                             -233.56678
                                             1.046877
                      25
                            -2082.11272
                                                                      458.63 L_{33}(P)
                                            24.957747
                                                          1.61548
                      26
                             -333.34638
                                             0.462181
```

·27	1269.69072	28.849751	1.61548	458.63	L ₃₄ (P)	
28	-415.96245	0.462181				
29	334.91585	29.368446	1.61548	458.63	$L_{35}(P)$	
30	-1687.44880	2.993737				
31	249.21212	31.357225	1.61548	458.63	$L_{41}(P)$	
32	20105.74792	1.000000				
33	4047.72901	16.511582	1.50442	554.31	$L_{42}(N)$	
34	423.15524	5.865626				
35	812.61591	14.789776	1.47458	539.97	$L_{43}(N)$	
36	137.82869	33.079053				
37	-210.00000	11.092332	1.61265	277.85	$L_{44}(N)$	
38	249.70870	28.207701				
*39	-141.03159	10.760543	1.61265	277.85	$L_{45}(N)$	
40	1293.04110	7.256599				
41	-893.51707	24.806692	1.51183	631.11	$L_{46}(P)$	
42	-268.94121	1.849245				
43	_	25.107582			AS	
44	-918.86927	23.355686	1.61548	458.63	$L_{51}(P)$	
45	-213.06690	0.483043				
46	468.74844	43.569113	1.46393	717.04	$L_{52}(P)$	
47	-322.72600	7.467766				
48	-261.87745	20.798123	1.61265	277.85	$L_{53}(N)$	
49	-392.77333	6.657594				
50	689.43962	21.075431	1.61265	277.85	$L_{54}(N)$	
51	320.57911	5.546166				
52	369.74440	41.596245	1.46393	717.04	$L_{55}(P)$	
53	-647.05271	0.462181				
54	619.51094	29.579552	1.46393	717.04	$L_{56}(P)$	
55	-692.62236	1.000000				
56	184.87220	31.249270	1.46393	717.04	$L_{57}(P)$	
57		4.362319				
58	130.04891	41.345178	1.51183	631.11	$L_{61}(P)$	$\rm L_{\it CP}$
59	280.55580	4.621805				
60	309.41136	24.506037	1.61265	277.85	$L_{62}(N)$	$L_{ ext{CN}}$
61		25.480490				
62	96.20383	45.146535	1.51183	631.11	$L_{63}(P)$	$\rm L_{\it CP}$
63	1848.72202	1.000000				
64	892.07419	42.465562	1.50442	554.31	$L_{64}(N)$	$\rm L_{\it CN}$
65	352.06713	3.924362				
66	∞	13.621805			W	
	面データ]					
N o =	$\kappa = 0.0$					
		C = 0.1564	134×10^{-16}	D = 0.9	006171×1	0-20
[条件	式対応値]					

[条件式対応値]

- (1) $f_1/L = 0.321$
- (2) $f_6/L = 0.356$
- $(3) f_2/f_4=1.33$
- $(4) f_3/f_5=1.00$
- (5) $\nu_{CN} / \nu_{CP} = 0.440$; 0.878

```
(6) | r_{AN2} / r_{AP1} | = 0.723
                    (7) \nu_{AN} / \nu_{AP} = 0.387
                    (8) (|r_{BP2}| - |r_{BN1}|) / (|r_{BP2}| + |r_{BN1}|) = -0.370
                    (9) \nu_{BN} / \nu_{BP} = 0.440
                    (10) n_{3Pm} = 1.61548, n_{5P} = 1.494
                    (1\ 1)\ n_{34P}=1.598,\ n_{34N}=1.213
                    (12) NA_2 \times Y / L = 0.00961
                    (1 3) | f_{11}/f_1| = 12.34
                    (14) 適用なし
                    (15) 適用なし
[0034]
                                                               【表3】
                    Νo
                                              d
                                \mathbf{r}
                                                            \mathbf{n}
                       0
                                \infty
                                            85.006400
                                                                              R
                       1
                           -1848.31943
                                            21.000000
                                                         1.61299
                                                                     277.50
                                                                              L_{i1}(N)
                                                                                        L_{AN}
                      2
                                            11.776824
                              371.84209
                       3
                              892.31150
                                            34.000000
                                                         1.50442
                                                                     554.31
                                                                              L_{12}(P)
                      4
                           -1401.04452
                                             0.960063
                       5
                            1376.44231
                                            47.540022
                                                         1.61551
                                                                     458.31
                                                                             L_{13}(P)
                      6
                            -311.54263
                                             0.960063
                      7
                              192.07975
                                            34.700292
                                                         1.61551
                                                                     458.31
                                                                              L_{14}(P)
                      8
                            1226.05340
                                             0.960063
                      9
                             251.63935
                                            26.933098
                                                         1.61551
                                                                     458.31
                                                                              L_{15}(P)
                                                                                        L_{BP}
                      10
                            3192.83151
                                             1.000000
                      11
                            3000.00000
                                           20.378976
                                                         1.61299
                                                                     277.50
                                                                              L_{.16}(N)
                      12
                              110.11451
                                           23.433801
                      13
                             293.89072
                                           32.696222
                                                         1.48746
                                                                     675.15
                                                                             L_{21}(P)
                            -287.28092
                      14
                                            0.960063
                      15
                           -2880.52371
                                           16.377244
                                                         1.61551
                                                                     458.31
                                                                             L_{22}(N)
                      16
                              127.60010
                                           33.086367
                      17
                            -161.20539
                                           14.148950
                                                                     458.31
                                                         1.61551
                                                                             L_{23}(N)
                      18
                             502.78381
                                           30.784330
                      19
                            -105.17786
                                            13.852945
                                                         1.61551
                                                                     458.31
                                                                             L_{24}(N)
                            6399.89522
                     20
                                            5.138838
                     21
                            6223.14094
                                           36.181903
                                                         1.48746
                                                                     675.15
                                                                             L_{25}(P)
                     22
                            -161.10995
                                            0.480032
                     23
                            -323.64830
                                           25.921709
                                                         1.61551
                                                                     458.31 L_{31}(P)
                     24
                            -190.80278
                                            0.480032
                     25
                            3966.92072
                                           33.602216
                                                         1.61551
                                                                    458.31
                                                                            L_{32}(P)
                     26
                            -363.22615
                                            0.480032
                     27
                             429.03811
                                           46.900000
                                                         1.61551
                                                                    458.31 L_{33}(P)
                     28
                           -1583.03005
                                            0.480032
                     29
                                           32.883639
                             226.47272
                                                         1.61551
                                                                    458.31 L_{34}(P)
                     30
                            1256.86213
                                            0.480032
                      31
                             222.53085
                                           27.828033
                                                         1.61551
                                                                    458.31
                                                                             L_{41}(N)
                      32
                             138.51455
                                            0.960063
                     33
                             138.06181
                                           22.362652
                                                         1.61299
                                                                    277.50
                                                                             L_{42}(N)
                     34
                                           36.250355
                             118.45479
                     35
                            -290.16789
                                           12.960855
                                                         1.61299
                                                                    277.50
                                                                             L_{43}(N)
                     36
                             250.54330
                                           31.040748
                    *37
                            -140.92049
                                           12.960855
                                                         1.61299
                                                                    277.50
                                                                             L_{44}(N)
```

```
39
                               823.67505
                                              22.081456
                                                            1.48746
                                                                        675.15 L<sub>45</sub>(P)
                       40
                              -757.22146
                                               8.488440
                       41
                                              21.110024
                                                                                  AS
                       42
                              -421.69106
                                              23.041519
                                                            1.48746
                                                                        675.15
                                                                                L_{51}(P)
                       43
                              -212.25342
                                               0.480032
                                              29.759708
                       44
                              1360.01767
                                                            1.48746
                                                                        675.15 L_{52}(P)
                       45
                              -265.46122
                                               0.480032
                       46
                               768.05064
                                              26.881772
                                                            1.61551
                                                                        458.31
                                                                                L_{53}(P)
                       47
                              -576.03798
                                              20.447527
                              -217.87602
                       48
                                              22.081456
                                                            1.61299
                                                                        277.50 L<sub>54</sub>(N)
                       49
                              -402.32048
                                               0.480032
                       50
                                              53.000000
                               609.15717
                                                            1.61551
                                                                        458.31 L_{55}(P)
                       51
                              -482.86923
                                               0.480032
                       52
                               198.79561
                                              34.632296
                                                            1.48746
                                                                        675.15 L_{56}(P)
                       53
                               730.40073
                                               0.480032
                       54
                               150.65377
                                              52.914637
                                                            1.48746
                                                                        675.15 L_{61}(P)
                                                                                           L<sub>CP</sub>
                       55
                              6961.50010
                                               2.886589
                       56
                             -4502.08206
                                              15.361013
                                                            1.61299
                                                                        277.50
                                                                                 L_{62}(N)
                                                                                           L_{\,\text{CN}}
                       57
                               111.23674
                                              11.137576
                       58
                               174.57007
                                              28.734981
                                                            1.48746
                                                                        675.15
                                                                                 L_{63}(P)
                                                                                           L_{CP}
                       59
                              -580.00000
                                               0.960063
                       60
                             -1439.21059
                                              17.675644
                                                            1.61299
                                                                        277.50
                                                                                 L_{64}(N)
                                                                                           L_{cn}
                       61
                               185.76015
                                               7.765253
                       62
                                85.01034
                                              46.117068
                                                            1.48746
                                                                        675.15 L<sub>65</sub>(P)
                       63
                               364.60024
                                               1.701328
                       64
                                   \infty
                                              16.030397
                                                                                 W
                      [非球面データ]
                     No = 37
                                 \kappa = 0.0
                                             A = 0.111669 \times 10^{-8}
                                                                        B = 0.224930 \times 10^{-12}
                                              C = 0.228194 \times 10^{-17}
                                                                        D = 0.490033 \times 10^{-20}
                      [条件式対応值]
                      (1) f_1/L = 0.298
                      (2) f_6/L = 0.355
                      (3) f_2/f_4=1.29
                      (4) f<sub>3</sub>/f<sub>5</sub>=0.966
                      (5) \nu_{CN}/\nu_{CP}=0.411; 0.411
                      (6) | r_{AN2} / r_{AP1} | = 0.417
                      (7) \nu_{AN} / \nu_{AP} = 0.501
                      (8) (|\mathbf{r}_{BP2}| - |\mathbf{r}_{BN1}|) / (|\mathbf{r}_{BP2}| + |\mathbf{r}_{BN1}|) = 0.0311
                      (9) \nu_{BN} / \nu_{BP} = 0.605
                      (10) n_{3Pm} = 1.61551, n_{5P} = 1.539
                      (11) n_{34P}=1.590, n_{34N}=1.614
                      (12) NA_2 \times Y/L = 0.00962
                      (13) 適用なし
                      (14) r_1/f_1=-4.99
                      (15) r_1/f_2=15.28
[0035]
                                                                  【表4】
                      Νo
                                  r
                                                d
                                                              n
                        0
                                                                                 R
                                             83.672944
```

38

1400.00000

1.000000

1	-2405.43872	17.501714	1.61299	277.50	$L_{11}(N)$	$L_{\scriptscriptstyle AN}$
2 3	408.08291	11.908440	1 50449	EC 4 01	I (D)	
4	1155.38955 -1202.08870	33.523971 0.960063	1.50442	554.31	$L_{12}(P)$	L_{AP}
5	1160.03840	53.000000	1.61551	458.31	L ₁₃ (P)	
6	-329.89077	0.960063	1.01001	100.01	L ₁₃ (1)	
7	210.00000	41.935873	1.61551	458.31	L ₁₄ (P)	
8	2531.35786	0.960063			2 14(2)	
9	281.03668	29.718289	1.61551	458.31	L ₁₅ (P)	L_{BP}
10	1425.62013	1.000000				
11	1229.18375	20.484681	1.61299	277.50	$L_{16}(N)$	$L_{\mathtt{BN}}$
12	111.80247	21.740735				
13	317.44048	29.174399	1.48746	675.15	$L_{21}(P)$	
14	-278.69677	0.960063				
15	-1472.45926	14.500000	1.61551	458.31	$L_{22}(N)$	
16	135.66008	33.042382				
17	-152.00000	12.755868	1.61551	458.31	$L_{23}(N)$	
18	561.59661	30.013413				
19	-105.32590	13.852945	1.61551	458.31	$L_{24}(N)$	
20	6146.78624	4.587657				
21	6724.64787	36.244896	1.48746	675.15	$L_{25}(P)$	
22	-160.10170	0.480032	1 01551	450.91	7 (D)	
23	-319.21153	25.921709	1.61551	458.31	$L_{31}(P)$	
24 25	-187.80552 4658.21717	0.480032 33.602216	1 61551	450 21	T (D)	
26	-360.91321	0.480032	1.61551	458.31	$L_{32}(P)$	
27	429.03811	46.030346	1.61551	458.31	L ₃₃ (P)	
28	-1516.86698	0.480032	1.01001	100.01	133(1)	
29	226.47272	32.847588	1.61551	458.31	L ₃₄ (P)	
30	1295.56272	0.480032			- 34(-)	
31	215.76647	27.820278	1.61551	458.31	$L_{41}(N)$	
32	154.37979	0.960063				
33	155.31496	22.357471	1.61299	277.50	$L_{42}(N)$	
34	117.62878	36.361393				
35	-279.64217	12.960855	1.61299	277.50	$L_{43}(N)$	
36	259.13984	30.698432				
∗ 37	-141.61496	12.960855	1.61299	277.50	$L_{44}(N)$	
38	1796.11970	1.061541				
39	953.14656	22.081456	1.48746	675.15	$L_{45}(P)$	
40	-744.12126	8.189495				
41	_	20.811079			AS	
42	-396.98290	23.041519	1.48746	675.15	$L_{51}(P)$	
43	-208.41263	0.480032				
44	1360.01767	29.742381	1.48746	675.15	$L_{52}(P)$	
45	-262.75635	0.480032			- (-)	
46	768.05064	26.881772	1.61551	458.31	$L_{53}(P)$	
47	-576.03798	20.486147	1 (1000	077 50	T /N\	
48	-218.52323	22.081456	1.61299	277.50	$L_{54}(N)$	
49	-410.10155	0.480032				

```
595.21024
                       48.206288
                                     1.61551
                                                 458.31 L_{55}(P)
  51
        -484.98835
                         0.480032
  52
         205.00000
                       34.546835
                                     1.48746
                                                 675.15 L_{56}(P)
         722.28041
  53
                         0.480032
  54
         152.17595
                       52.783505
                                     1.48746
                                                 675.15 L_{61}(P) L_{CP}
  55
         5815.60214
                         2.919968
  56
       -5571.47687
                       15.361013
                                     1.61299
                                                 277.50
                                                          L_{62}(N) L_{CN}
         117.93960
                       11.206261
  57
  58
         192.41333
                       28.372969
                                     1.48746
                                                 675.15 L_{63}(P) L_{CP}
  59
        -720.89206
                         0.960063
                                                 277.50 L_{64}(N) L_{CN}
  60
       -3102.47583
                       17.892281
                                     1.61299
  61
         198.47493
                        7.947277
  62
           87.92087
                       46.541528
                                     1.48746
                                                 675.15 L_{65}(P)
  63
          372.68087
                        1.701328
  64
             \infty
                       16.803495
                                                          W
「非球面データ]
No = 37
            \kappa = 0.0
                       A = 0.126757 \times 10^{-8}
                                                 B = 0.224476 \times 10^{-12}
                        C = -0.131816 \times 10^{-17}
                                                 D = 0.521760 \times 10^{-20}
```

[条件式対応値]

- (1) f₁/L=0.299
- (2) $f_6/L = 0.343$
- $(3) f_2/f_4=1.24$
- (4) $f_3/f_5=0.959$
- (5) $\nu_{CN}/\nu_{CP}=0.411$; 0.411
- (6) $| r_{AN2} / r_{AP1} | = 0.353$
- $(7) \nu_{AN} / \nu_{AP} = 0.501$
- (8) $(|r_{BP2}| |r_{BN1}|) / (|r_{BP2}| + |r_{BN1}|) = 0.0739$
- $(9) \nu_{BN} / \nu_{BP} = 0.605$
- (10) $n_{3Pm} = 1.61551$, $n_{5P} = 1.539$
- (11) $n_{34P}=1.590$, $n_{34N}=1.614$
- $(1\ 2)\ NA_2 \times Y/L = 0.00966$
- (13) 適用なし
- $(14) r_1/f_1 = -6.49$
- $(15) r_1/f_2=20.38$

【0036】図3に第1実施例の球面収差、非点収差、及び歪曲収差を示し、図4に同実施例の横収差を示す。 非点収差図中、点線Mはメリジオナル像面を表し、実線 Sはサジタル像面を表す。同様に、図6と図7に第2実 施例の諸収差を示し、図9と図10に第3実施例の諸収差を示し、図12と図13に第4実施例の諸収差を示す。各収差図より明らかなように、各実施例とも優れた 結像性能を有することが分かる。

【0037】なお、上述の各実施例では、i線(365 nm)の露光光を供給する水銀ランプを光源として用いた例を示したが、これに限ることなく、例えばg線(435 nm)の露光光を供給する水銀ランプ、193 nm,248 nmの光を供給するエキシマレーザー等の極紫外光源を用いたものに適用しうる。さらに、上述の各実施例の投影光学系は、図1に示すように一括露光方式の露光装置に用いられるものとして示したが、本発明の

投影光学系は、これに限ることなく、例えば、レチクルRのパターンをウエハW上に走査露光する走査型露光装置に適用することもできる。一括露光型を採用するか、又は走査露光型を採用するかは、全体のシステムコンセプトによって決まるものであり、本発明は、投影露光システム系においての選択肢を大幅に広げることを意味する。

[0038]

【発明の効果】以上のように本発明により、広い投影領域を確保しつつ収差が良好に補正され、しかも大きな開口数を確保することができる投影光学系と、これを備えた投影露光装置が提供された。

【図面の簡単な説明】

【図1】本発明による投影光学系を適用する投影露光装置の一実施例を示す概略構成図

【図2】本発明による投影光学系の第1実施例を示す断

面図

【図3】第1実施例の球面収差、非点収差、及び歪曲収 差図

【図4】第1実施例の横収差図

【図5】第2実施例を示す断面図

【図6】第2実施例の球面収差、非点収差、及び歪曲収

差図

【図7】第2実施例の横収差図

【図8】第3実施例を示す断面図

【図9】第3実施例の球面収差、非点収差、及び歪曲収

差図

【図10】第3実施例の横収差図

【図11】第4実施例を示す断面図

【図12】第4実施例の球面収差、非点収差、及び歪曲

収差図

【図13】第4実施例の横収差図

【符号の説明】

1 …照明光学系

2…レチクルステー

ジ

3…投影光学系

4…ウエハステージ

R…レチクル

P A…パターン面

W…ウエハ

L₁₁~L₆₅…レンズ

【図1】

【図2】

【図3】

L₁₂ L₁₄ L₁₆ L₂₂ L₂₄ L₃₂ L₃₄ L₄₁ L₄₅ L₅₁ L₅₃ L₅₅ L₅₇ L₆₂
L₁₁ L₁₃ L₁₅ L₂₁ L₂₃ L₃₁ L₃₃ L₃₅ L₄₂ L₄₄ L₄₆ L₅₂ L₅₄ L₅₆ L₆₁ L₆₃

R L_{AP} L_{BN}

* AS

* L_{CP}

* L_{CP}

【図5】

【図6】

【図8】

【図9】

【図10】 【図13】 368.0nm 365.0nm ----- 368.0nm - 365.0nm Y = 21.0-- 362.0nm Y = 21.0362.0nm 0.005 0.005 -0.005 -0.005 Y = 14.7Y = 14.70.005 0.005 -0.005 -0.005 Y = 0.0Y = 0.00.005 0.005 -0.005 -0.005

L₁₁ L₁₃ L₁₅ L₂₁ L₂₃ L₂₅ L₃₂ L₃₁ L₄₃ L₄₅ L₅₆ L₆₂ L₆₁ L₆₃ L₆₅ L₆₁ L₆₃ L₆₅ L₆₁ L₆₃ L₆₅ L₆₁ L₆₄ L₆₅ L₆₅ L₆₁ L₆₄ L₆₅ L₆₁ L₆₄ L₆₅ L₆₅ L₆₅ L₆₁ L₆₄ L₆₅ L₆₅

【図11】

