明細書

無線通信装置及びMCS決定方法 技術分野

[0001] 本発明は、AMC(Adaptive Modulation and Channel Coding)制御を行う無線通信 装置及びMCS決定方法に関する。

背景技術

- [0002] 従来、特許文献1に開示されているように、伝搬路状態に応じて適応的に変調方式 を決定し、決定した変調方式を用いて通信を行うことが広く知られている。
- [0003] また、無線通信の分野では、高速大容量な下りチャネルを複数の通信端末装置が 共有し、基地局装置から通信端末装置にパケットを伝送する下り高速パケット伝送方 式が開発されている。非特許文献1には、この下り高速パケット伝送方式であるHSD PA (High Speed Downlink Packet Access) における適応変復調・誤り訂正符号化と ハイブリッドARQのスループット特性について記載されている。
- [0004] HSDPAでは情報伝送速度を向上させるために、伝搬路の状態に応じて変調方式 及び誤り訂正符号の符号化率を適応的に制御するAMC技術や、誤り訂正符号化と 組み合わせて効率的な再送を行うハイブリッドARQ(Automatic Repeat Request)技術、さらには、伝搬路の状態に応じてデータを送信するユーザを高速に切り替えるスケジューリング技術の適用が検討されている。
- [0005] AMCは、伝搬環境が良好なほど、高速な変調方式と符号化率の高い誤り訂正符号とを適用することにより伝送レートを向上させる。具体的には、通信端末装置が下り回線の伝搬路状態をフレーム毎に推定し、推定結果を基地局装置に通知する。そして、基地局装置はその推定結果に基づいて最適な変調方式と符号化率を決定し、パケット伝送を行う。なお、変調方式と符号化率の組み合わせをMCS (Modulation and Coding Scheme)といい、MCSにはレベルが付けられている。すなわち、低い多値数の変調方式と低い符号化率の組み合わせはMCSレベルが低く、高い多値数の変調方式と高い符号化率の組み合わせはMCSレベルが低く、高い多値数の変調方式と高い符号化率の組み合わせはMCSレベルが高い。MCSに用いられる変調方式は、例えば、QPSK、8PSK、16QAM、64QAMの4種類とし、符号化率

は、例えば、レートマッチングを用いて1/3~1の間とする。

[0006] AMCは、MCSレベルの決定及びその決定方法、さらに、回線品質の推定精度によって、スループット特性が影響を受ける。

特許文献1:特開平7-250116号公報

非特許文献1:T. Asai, K. Higuchi, and M. Sawahashi"Experimental Evaluations on Throughput Performance of Adaptive Modulation and Channel Coding and Hybrid ARQ in HSDPA,"TECHNICAL REPORT OF IEICE RCS2002-178(2002-10).

発明の開示

発明が解決しようとする課題

- [0007] しかしながら、通信端末装置での回線品質の推定精度が低い場合、実際の回線品質を反映していないため、最適なMCSの選択が行えなくなり、スループットを向上させることができない。特に、回線品質の推定精度が低いため、回線品質推定値の分散が大きい場合、選択されるMCSレベルが大きく変動することになる。このため、基地局装置が通信端末装置での回線品質の推定結果を受信してからMCSを決定していては、制御遅延が生じてしまい、実際の回線品質を反映することができない。よって、回線品質に応じた最適なMCSを選択することができず、スループットを向上させることができない。
- [0008] 本発明の目的は、回線品質の推定精度が低いため、回線品質推定値の分散が大きい場合でも、スループットを向上させる無線通信装置及びMCS決定方法を提供することである。

課題を解決するための手段

[0009] 本発明の無線通信装置は、変更可能な符号化率で送信データを符号化する符号 化手段と、複数の変調方式のうちいずれかの変調方式で変調する変調手段と、所定 の変動幅が予め定められ、回線品質に応じたMCSレベルを暫定的に求め、暫定的 に求めたMCSレベルと前回制御時に用いたMCSレベルとを比較し、そのレベル差 が前記変動幅内にある場合、暫定的に求めたMCSレベルに決定する一方、前記レ ベル差が前記変動幅を越える場合に、前回制御時に用いたMCSレベルに対するレ ベル差を前記変動幅に制限したMCSレベルを決定し、決定したMCSレベルとなる ように前記符号化手段及び前記変調手段を制御する制御手段と、を具備する構成を採る。

[0010] この構成によれば、暫定的に求めたMCSレベルと前回制御時に用いたMCSレベルとのレベル差が所定の変動幅内であれば、暫定的に求めたMCSレベルに決定し、前記レベル差が所定の変動幅を越えれば、前回制御時に用いたMCSレベルに対するレベル差を所定の変動幅に制限したMCSレベルを決定することにより、MCSレベルの変動を緩やかにすることができるので、回線品質の推定精度が低いため、回線品質推定値の分散が大きい場合でも、実際の回線品質に応じたMCSを用いることになるので、スループットを向上させることができる。また、MCSレベルを迅速に決定することができるので、制御遅延を減少させることができる。

発明の効果

[0011] 本発明によれば、暫定的に求めたMCSレベルと前回制御時のMCSレベルとのレベル差が所定の変動幅内にあれば、暫定的に求めたMCSレベルを今回制御時のMCSレベルに決定し、前記レベル差が所定の変動幅を越えれば、前回制御時のMCSレベルに対するレベル差を所定の変動幅に制限したMCSレベルを今回制御時のMCSレベルに決定することにより、回線品質推定値の分散が大きい場合でも、スループットを向上させることができる。

図面の簡単な説明

- [0012] [図1]本発明の実施の形態1に係る無線通信装置の構成を示すブロック図 [図2]本発明の実施の形態1におけるMCS制御部の内部構成を示すブロック図 [図3]本発明の実施の形態1におけるMCSテーブルを示す図 [図4]MCS決定手順を示すフロー図 [図5]MCS決定方法によるシミュレーション結果 [図6]本発明の実施の形態2に係る送信装置の構成を示すブロック図
 - 発明を実施するための最良の形態
- [0013] 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
- [0014] (実施の形態1) 図1は、本発明の実施の形態1に係る無線通信装置の構成を示すブロック図である

- 。この図において、ターボ符号化器101は、送信データをターボ符号化し、符号化後の信号をレートマッチング部103に出力する。
- [0015] MCS制御部102は、回線品質推定値であるSIR (Signal to Interference Ratio)値に基づいてMCSの決定を行い、レートマッチング部103と変調部105を制御する。 MCS制御部102の詳細については後述する。
- [0016] レートマッチング部103は、MCS制御部102で決定されたMCSとなるように、ターボ符号化器101から出力された信号にレートマッチ処理を行い、レートマッチ後の信号をインタリーバ104に出力する。インタリーバ104は、レートマッチング部103から出力された信号を所定のパターンに従って配列を並べ替え(インタリーブ)、インタリーブ後の信号を変調部105に出力する。なお、ターボ符号化器101及びレートマッチング部103は、符号化手段として機能する。
- [0017] 変調部105は、MCS制御部102の制御に従って、インタリーバ104から出力された信号をQPSK、8PSK、16QAM、64QAMのいずれかで変調し、変調後の信号を送信処理部106に出力する。送信処理部106は、変調部105から出力された信号に所定の送信処理を行い、アンテナ107を介して通信相手に送信する。
- [0018] 図2は、本発明の実施の形態1におけるMCS制御部102の内部構成を示すブロック図である。この図において、MCS(SIR)取得部201は、通信相手から通知されたSIR値に対応するMCSレベルをMCSテーブル202から取得する。このMCSレベルを暫定的なMCSレベル(MCS(SIR))とし、MCS(SIR)を大小比較部204に出力する。
- [0019] MCSテーブル202は、変調方式及び符号化率が組み合わされたテーブルを保持している。テーブルの具体例を図3に示す。図3は、実施の形態1におけるMCSテーブルを示す図である。この図が示すように、変調方式と符号化率、さらにMCSレベルが対応付けられている。具体的には、MCSレベル=(変調方式、符号化率)で表すと、MCSレベル1=(QPSK、1/2)、MCSレベル2=(8PSK、1/2)、MCSレベル3=(16QAM、1/2)、MCSレベル4=(64QAM、1/2)が対応付けられている。参考までに、各MCSレベルにおける1シンボル当たりのビット数は、MCSレベル1〜4でそれぞれ、「1」、「1.5」、「2」、「3」となる。

- [0020] MCS(p)記憶部203は、前回制御時に用いられたMCSレベル(MCS(p))を記憶 し、大小比較部204に出力する。
- [0021] 大小比較部204は、MCS(SIR)取得部201から出力されたMCS(SIR)と、MCS (p)記憶部203から出力されたMCS(p)との大小比較を行い、比較結果をMCS決定部205に出力する。
- [0022] MCS決定部205は、大小比較部204から出力された比較結果に基づいて、MCS (p)に対して予め定められた変動幅に収まるMCSレベルを決定し、決定したMCSレベルに相当する変調方式及び符号化率をMCSテーブル202から検索し、レートマッチング部103と変調部105を制御する。なお、MCS決定部205は、決定したMCSレベルをMCS(p)記憶部203に出力し、MCS(p)記憶部203は記憶していたMCS(p)を新たに決定されたMCSレベルに更新する。
- [0023] 次に、MCS制御部102のMCS決定方法について説明する。図4は、MCS決定手順を示すフロー図である。この図において、ステップ(以下、「ST」と省略する)401では、MCS(SIR)取得部201が通信相手により求められたSIR値を取得し、ST402では、取得したSIR値と所定の閾値S1,S2,S3(S1<S2<S3)との閾値判定が行われ、MCSレベル(MCS(SIR))が求められる。具体的には、MCS(SIR)取得部201が取得したSIR値が閾値S1以下のとき、MCS(SIR)=1とし、SIR値が閾値S1より大きく、かつ、閾値S2以下のとき、MCS(SIR)=2とする。また、SIR値が閾値S2より大きく、かつ、閾値S3以下のとき、MCS(SIR)=3とし、SIR値が閾値S3より大きいとき、MCS(SIR)=4とする。
- [0024] ST403では、大小比較部204において、ST402で求められたMCS(SIR)が前回のMCS制御時に用いられたMCSレベル(MCS(p))を越えるか否かが判定され、越える場合にはST404に移行し、ST404において、MCS決定部205は今回のMCS制御に用いるMCSレベルをMCS(p)より1つ上げ、MCS決定手順を終了する。MCS(SIR)がMCS(p)を越えない場合にはST405に移行する。
- [0025] ST405では、大小比較部204において、MCS(SIR)がMCS(p)と等しいか否か が判定され、等しい場合にはST406に移行し、ST406において、MCS決定部205 は今回のMCS制御に用いるMCSレベルをMCS(p)と同じにし、MCS決定手順を

終了する。MCS(SIR)がMCS(p)と等しくない場合、すなわち、MCS(SIR)がMCS(p)より小さい場合、ST407に移行し、ST407において、MCS決定部205は今回のMCS制御に用いるMCSレベルをMCS(p)より1つ下げ、MCS決定手順を終了する。

- [0026] このように、MCSを決定する際に、通信相手から通知されたSIR値に基づいて暫定的に求められたMCSレベル(MCS(SIR))と前回用いられたMCSレベル(MCS(p))との変動幅(レベル差)が1以内に収まるように決定することにより、MCSレベルの変動を緩やかにすることができるため、回線品質の推定精度が低く、SIR値の分散が大きい場合でも、実際の回線品質の変動は小さいことが多いので、実際の回線品質に応じたMCSを決定することになり、スループットを向上させることができる。
- [0027] 上述したMCS決定方法によるシミュレーション結果を図5に示す。図5において、 横軸はMCSレベルを示し、縦軸は各MCSレベルが決定された回数を示している。 また、白抜きのグラフは理想SIR値でMCS決定を行った場合を示し、網掛けのグラフはMCS(SIR)のみでMCS決定を行った場合(従来方法)を示し、さらに、黒塗りのグラフは変動幅に制約を設けた場合、すなわち、今回用いられるMCSレベルと前回用いられたMCSレベルとの差を1以内に制約する場合を示している。
- [0028] ここで、例えば、MCSレベル2について見てみると、理想SIR値で決定された回数がおよそ300回であり、従来方法で決定された回数がおよそ200回となり、その差10 0回が誤判定されたものである。これに対し、変動幅に制約を設けた場合に決定された回数はおよそ250回であり、誤判定の回数を50回に低減している。他のMCSレベルについても同様であり、変動幅に制約を設けることにより、誤判定の回数を半減させることができる。
- [0029] このように、本実施の形態によれば、回線品質の推定精度が低く、回線品質推定値の分散が大きい場合でも、実際の回線品質の変動は小さいものと想定し、MCSレベルの変動幅を所定数以内に収めることにより、回線品質を考慮しつつもその影響を全て反映させず、また、回線品質の変動を緩やかにすることができるため、実際の回線品質に応じたMCSを決定することになり、スループットを向上させることができる。また、MCSレベルを迅速に決定することができるので、制御遅延を減少させることが

できる。

- [0030] なお、本実施の形態では、MCSレベルを4段階とし、MCSレベルの変動幅を1以内に制約した場合について説明したが、本発明はこれに限らず、任意に設定することができる。
- [0031] また、MCSレベルの変動幅を2,3,…,などに制約する場合、MCS(SIR)とMCS (p)とのレベル差が制約した値以内に収まる場合、MCS(SIR)を今回用いるMCS レベルに決定する。
- [0032] (実施の形態2)

実施の形態1では、回線品質の変動が小さいものと想定し、MCS(SIR)とMCS(p)とのレベル差を所定の変動幅内に制限する場合について説明したが、本実施の形態では、フェージングの影響により回線品質の変動が大きい場合について説明する

- [0033] 図6は、本発明の実施の形態2に係る送信装置の構成を示すブロック図である。ただし、図6が図1と共通する部分は、図1と同一の符号を付し、その詳しい説明は省略する。
- [0034] fd検出部601は、ドップラー周波数(fd)を検出し、検出したfdを変動幅決定部602 に通知する。
- [0035] 変動幅決定部602は、fd検出部601から通知されたfdに基づいて、MCSの変動幅を決定し、決定した変動幅をMCS制御部603に通知する。具体的には、fdが小さい場合には変動幅を小さくし、fdが大きい場合には変動幅を大きくする。これは、fdが小さい場合はフェージングが遅いことを表しており、回線品質の変動は緩やかであり、fdが大きい場合はフェージングが速いことを表しており、回線品質の変動は急峻であることによる。
- [0036] MCS制御部603は、SIR値から暫定的に求められたMCSレベル(MCS(SIR))と 前回の制御時に用いられたMCSレベル(MCS(p))との大小比較を行い、比較結果 に基づいて、MCS(p)に対して変動幅決定部602から通知された変動幅で増加又 は減少させることによりMCSを決定する。
- [0037] このように本実施の形態によれば、ドップラー周波数に応じたMCSの変動幅を決

定し、この変動幅で前回の制御時に用いられたMCSレベルより増加又は減少させることにより、フェージングの影響で回線品質の変動が大きい場合でも、回線品質の変動に追従することができるので、スループットを向上させることができる。

- [0038] なお、上述した各実施の形態では、回線品質としてSIR値を用いて説明したが、本 発明はこれに限らず、SNR(Signal to Noise Ratio)、CQI(Channel Quality of Indicator)など、回線品質を表す指標であれば何でもよい。
- [0039] 本発明の第1の態様は、変更可能な符号化率で送信データを符号化する符号化 手段と、複数の変調方式のうちいずれかの変調方式で変調する変調手段と、所定の 変動幅が予め定められ、回線品質に応じたMCSレベルを暫定的に求め、暫定的に 求めたMCSレベルと前回制御時に用いたMCSレベルとを比較し、そのレベル差が 前記変動幅内にある場合、暫定的に求めたMCSレベルに決定する一方、前記レベ ル差が前記変動幅を越える場合に、前回制御時に用いたMCSレベルに対するレベ ル差を前記変動幅に制限したMCSレベルを決定し、決定したMCSレベルとなるよう に前記符号化手段及び前記変調手段を制御する制御手段と、を具備する無線通信 装置である。
- [0040] この構成によれば、暫定的に求めたMCSレベルと前回制御時に用いたMCSレベルとのレベル差が所定の変動幅内であれば、暫定的に求めたMCSレベルに決定し、前記レベル差が所定の変動幅を越えれば、前回制御時に用いたMCSレベルに対するレベル差を所定の変動幅に制限したMCSレベルを決定することにより、MCSレベルの変動を緩やかにすることができるので、回線品質の推定精度が低いため、回線品質推定値の分散が大きい場合でも、実際の回線品質に応じたMCSを用いることになるので、スループットを向上させることができる。また、MCSレベルを迅速に決定することができるので、制御遅延を減少させることができる。
- [0041] 本発明の第2の態様は、上記態様において、ドップラー周波数を検出する検出手段と、検出されたドップラー周波数に応じて、前回制御時に用いられたMCSレベルに対する変動幅を決定する決定手段と、を具備し、前記制御手段は、決定された変動幅でMCSレベルを決定する無線通信装置である。
- [0042] この構成によれば、ドップラー周波数に応じた変動幅でMCSレベルを決定すること

により、フェージングの影響で回線品質の変動が大きい場合でも、回線品質の変動 に追従することができるので、スループットを向上させることができる。

- [0043] 本発明の第3の態様は、上記態様において、前記決定手段が、ドップラー周波数が高い場合には変動幅を大きくし、ドップラー周波数が小さい場合には変動幅を小さくする無線通信装置である。
- [0044] この構成によれば、ドップラー周波数が高い場合にはフェージングが速いので、回線品質の変動が大きいため、MCSレベルの変動幅を大きくすることにより、回線品質の変動に追従することができ、ドップラー周波数が低い場合にはフェージングが遅いので、回線品質の変動が小さいため、MCSレベルの変動幅を小さくすることにより、回線品質の推定精度が低い場合でも、スループットを向上させることができる。
- [0045] 本発明の第4の態様は、所定の変動幅が予め定められ、回線品質に応じたMCSレベルを暫定的に求め、暫定的に求めたMCSレベルと前回制御時に用いたMCSレベルとを比較し、そのレベル差が前記変動幅内にある場合、暫定的に求めたMCSレベルに決定する一方、前記レベル差が前記変動幅を越える場合に、前回制御時に用いたMCSレベルに対するレベル差を前記変動幅に制限したMCSレベルを決定するMCS決定方法である。
- [0046] この方法によれば、暫定的に求めたMCSレベルと前回制御時に用いたMCSレベルとのレベル差が所定の変動幅内であれば、暫定的に求めたMCSレベルに決定し、前記レベル差が所定の変動幅を越えれば、前回制御時に用いたMCSレベルに対するレベル差を所定の変動幅に制限したMCSレベルを決定することにより、MCSレベルの変動を緩やかにすることができるので、回線品質の推定精度が低いため、回線品質推定値の分散が大きい場合でも、実際の回線品質に応じたMCSを用いることになるので、スループットを向上させることができる。また、MCSレベルを迅速に決定することができるので、制御遅延を減少させることができる。
- [0047] 本明細書は、2003年11月7日出願の特願2003-378552に基づくものである。こ の内容は全てここに含めておく。

産業上の利用可能性

[0048] 本願発明にかかる無線通信装置及びMCS制御方法は、前回制御時のMCSレベ

ルと今回制御時のMCSレベルとの差が所定の変動幅内に収まるようにMCSを決定 することにより、回線品質推定値の分散が大きい場合でも、スループットを向上させる という効果を有し、AMC制御を行う無線通信装置に適用することができる。

請求の範囲

[1] 変更可能な符号化率で送信データを符号化する符号化手段と、 複数の変調方式のうちいずれかの変調方式で変調する変調手段と、

所定の変動幅が予め定められ、回線品質に応じたMCSレベルを暫定的に求め、 暫定的に求めたMCSレベルと前回制御時に用いたMCSレベルとを比較し、そのレベル差が前記変動幅内にある場合、暫定的に求めたMCSレベルに決定する一方、 前記レベル差が前記変動幅を越える場合に、前回制御時に用いたMCSレベルに対 するレベル差を前記変動幅に制限したMCSレベルを決定し、決定したMCSレベル となるように前記符号化手段及び前記変調手段を制御する制御手段と、

を具備する無線通信装置。

[2] ドップラー周波数を検出する検出手段と、

検出されたドップラー周波数に応じて、前回制御時に用いられたMCSレベルに対 する変動幅を決定する決定手段と、

を具備し、

前記制御手段は、決定された変動幅でMCSレベルを決定する請求項1に記載の 無線通信装置。

- [3] 前記決定手段は、ドップラー周波数が高い場合には変動幅を大きくし、ドップラー 周波数が小さい場合には変動幅を小さくする請求項2に記載の無線通信装置。
- [4] 所定の変動幅が予め定められ、回線品質に応じたMCSレベルを暫定的に求め、 暫定的に求めたMCSレベルと前回制御時に用いたMCSレベルとを比較し、そのレベル差が前記変動幅内にある場合、暫定的に求めたMCSレベルに決定する一方、 前記レベル差が前記変動幅を越える場合に、前回制御時に用いたMCSレベルに対 するレベル差を前記変動幅に制限したMCSレベルを決定するMCS決定方法。

[図1]

[図2]

[図3]

MCSレベル	変調方式	符号化率	1シンボル当りの ビット数
1	QPSK	R=1/2	l
2	8PSK	R=1/2	1.5
3	16QAM	R=1/2	7
4	64QAM	R=1/2	8

[図4]

[図5]

[図6]

国際調査報告 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl7 H04L27/00, H04B 7/26, H04B 7/005 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) H04B 7/24-7/26, H04L 1/00, H04L 1/08- 1/24 Int. Cl7 H04L27/00-27/38, H04Q 7/00-7/38最小限資料以外の資料で調査を行った分野に含まれるもの 1926年-1996年 日本国実用新案公報 日本国公開実用新案公報 1971年-2005年 日本国登録実用新案公報 1994年-2005年 日本国実用新案登録公報 1996年-2005年 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) 関連すると認められる文献 関連する 引用文献の 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 カテゴリー* JP 2003-259437 A(松下電器産業株式会社), Α 2003.09.12, [0081] - [0086], [0110] - [0116],第 1図, 第3図, 第4図, 第10図, 第11図 (ファミリーなし) JP 2003-298498 A (日本電気株式会社), 1-4 Α 2003.10.17,【0038】-【0050】,第5図,第7図 &WO 2003/084099 A1 &IP 2003-318861 A JP 2003-198426 A (三菱電機株式会社), 2, 3 Α パテントファミリーに関する別紙を参照。 区欄の続きにも文献が列挙されている。 の日の後に公表された文献 引用文献のカテゴリー 「T」国際出願日又は優先日後に公表された文献であって 「A」特に関連のある文献ではなく、一般的技術水準を示す 出願と矛盾するものではなく、発明の原理又は理論 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以 日若しくは他の特別な理由を確立するために引用する 上の文献との、当業者にとって自明である組合せに 文献(理由を付す) よって進歩性がないと考えられるもの 「O」口頭による開示、使用、展示等に言及する文献 「&」同一パテントファミリー文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 国際調査報告の発送^日25. 1. 2005 国際調査を完了した日 07.01.2005 5K 3149 特許庁審査官(権限のある職員) 国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 藤井 浩 郵便番号100-8915 電話番号 03-3581-1101 内線 3555 東京都千代田区段が関三丁目4番3号

C(続き).	関連すると認められる文献	08.4t-7- A
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
N/49 4	2003.07.11, [0016], [0021] - [0024], [0052] -	7,000
	【0053】,【0056】-【0057】,第7図,第8図(ファミリーなし)	
•		
•		
•		·
•		
,		
,	·	
•		
		· ·
		,
· .		
,		
,		
	·	
	·	
1		<u> </u>