Project Proposal

Andres Espinosa

March 31, 2025

1 Project Description

Python LP Solver: This project will focus on building an LP solver in **python** from scratch. The project will use **numpy** as the linear algebra package behind the solver, but everything else will be implemented from scratch.

2 Methodology

For me to complete this project, I think this is the best way to approach the problem.

- 1. First, create a simplex_phase_2 method which will take a feasible initial \mathbf{x}_0 as well as $\mathbf{A}, \mathbf{b}, \mathbf{c}$ and return the optimal solution to the problem x^* . Some different variations on the entering variable algorithm are listed below. I will also investigate how these algorithms perform on different problem sizes.
 - Steepest descent picking the value with the greatest negative value to enter the basis.
 - Bland's Rule picking the variable with the first negative value as the entering variable.
 - Secretary's rule I want to try using the Secretary's rule, where you do the first $\frac{1}{e}$ proportion of variables, and pick the one with first value greater than that. I expect this won't work super well but I read that it is supposed to be the most efficient way to find the optimal sequential choice.
- 2. Second, create a simplex_phase_1 method which will take in any of the parameters $\mathbf{A}, \mathbf{b}, \mathbf{c}$ and return a feasible start (or an output stating that the problem is infeasible). I expect that this phase 1 simplex method will create the arbitrary variables \mathbf{h} and then call the simplex phase 2 to solve it. It will identify infeasibility as a solution to the auxiliary problem that is not $\mathbf{1}^{\top}\mathbf{h} = 0$.
- 3. Third, and likely the most complex part of this project, I will implement a python module called lp_reductions.py that will take any LP and turn it into standard form. In order to accomplish this, I plan to do the following:
 - (a) Implement a class of Variable and Expression. Variables will track the variables of a problem. It will probably have some methods like intermediate, non-negative, etc that will be helpful for the below things. Expression will track the equalities and objective function of a problem. Each variable will be assumed to be a vector \mathbb{R}^n and each expression be an affine matrix inequality or equality.

- (b) Accept an arbitrary number of $\mathbf{A}_i \mathbf{x}_i = \mathbf{b}_i$, $\mathbf{x}_i \succeq 0$ equations. Implement a condense_standard_forms function that will take the arbitrary number of affine matrix equalities and concatenate into one $\mathbf{A}\mathbf{x} = \mathbf{b}$, $\mathbf{x} \succeq 0$ problem.
- (c) Implement a function lower_ineq_to_eq. This function should take in the expression $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ and add slack variables to turn it into $\mathbf{A}_s\mathbf{x}_s = \mathbf{b}_s$
- (d) Implement a function greater_ineq_to_lower_ineq. This function will turn $Ax \succeq b$ into $-Ax \leq -b$
- (e) Implement a function convert_objective_to_standard_form. This function will take a maximization problem max $\mathbf{c}^{\top}\mathbf{x}$ and convert it into a minimization problem min $-\mathbf{c}^{\top}\mathbf{x}$, which is the standard form for LP solvers.
- (f) Implement a function that will combine any linear combinations of matrix vector multiplications. $\mathbf{A}_0\mathbf{x}_0 + \mathbf{A}_1\mathbf{x}_1 + \dots \mathbf{A}_n\mathbf{x}_n = \mathbf{A}_{tot}\mathbf{x}_{tot}$ where

$$\mathbf{A}_{tot} = egin{bmatrix} \mathbf{A}_0 & \mathbf{A}_1 & \dots & \mathbf{A}_n \end{bmatrix}, \mathbf{x}_{tot} = egin{bmatrix} \mathbf{x}_0 \\ \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}$$

- (g) Implement a function bound_all_vars which will accept a $\mathbf{A}\mathbf{x} = \mathbf{b}$ and if it is not already bounded by non-negativity, it will split it into x^+, x^- and make them non-negative.
- 4. Finally, put this altogether by testing it with some available toy and real-world LP problems with accessible data.