CMSE381 - Practice problems for the final exam

- 1. (SVM) For the following dataset, if I was given the information that the classification hyperplane has a slope of -1. (a) Could you help to figure out the equation of the MMC?
 - (b) what should the label be for the red class?
 - (c) Please use the equation to find M, the value of the margin.
 - (d) What is the main difference between MMC and SVC?
 - (e) If I want to let $M = \sqrt{2}$. Then how many support vectors would I have?
 - (f) For each of the support vectors, what is the smallest value for the associated slack variable?

(g) Find the inner product representation of the SVC

(h) Using the kernel $K(x,y) = e^{-\frac{\|x-y\|_2^2}{2}}$ to replace the inner product found in the previous problem, what is prediction of SVM for the new input x = [1, 5]?

- 2. (Decision Tree for classification) (a) which of the following classification tree is preferred during pruning with an $\alpha = 0.1$?
 - Tree 1: three leaves (L_1, L_2, L_3) , training samples classified to L_1 has labels (-1, 1, 1), those classified to L_2 has labels (-1, 1), those classified to L_3 has labels (1, 1)
 - Tree 2: two leaves (L_1, L_2) , training samples classified to L_1 has labels (-1, 1, 1, 1), those classified to L_2 has labels (-1, 1, 1).

3. (Neural Network) (a) Draw the diagram for a neural net with input data points with p=2 (i.e., (X_1,X_2)), two units in the hidden layer and two units in the output layer with the following β and $\beta^{(2)}$ matrices as weights for the first and second layer (last columns are the bias, β_{ij} is the weight associated with X_i and A_j),

$$\beta = \begin{pmatrix} 1 & 0 & -2 \\ -3 & 1 & 0 \end{pmatrix} \qquad \beta^{(2)} = \begin{pmatrix} 0 & -2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

and using the activation function

$$g(z) = (z)_{+} = \begin{cases} 0 & \text{if } z < 0 \\ z & \text{else.} \end{cases}$$

(b) What is the output Y for the new point (2,1)?

	(c) Add a softmax layer to the end of the network, what is the predicted Y value for the new point $(2,1)$ now?
	(d) How many parameters are trained by the computer in this setup?
4.	(Convolutional Neural Network) (a) Draw a sketch of a CNN which
	 takes as input a 36 × 36 black and white image, applies a convolution layer with three filter matrices of size 5 × 5, applies a 2 × 2 max pool layer, flattens the result into a vector.

Be sure to label all sizes of matrices.

5. For the following input "image" matrix X, we convolve with the matrix F resulting in the matrix A.

$$X = \begin{bmatrix} 6 & 5 & -1 & 5 & 4 \\ -6 & 2 & 4 & 0 & 5 \\ 5 & 2 & 1 & 4 & 3 \\ 3 & 2 & -2 & -1 & -6 \\ 5 & 0 & 2 & 2 & 1 \end{bmatrix}, \qquad F = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \qquad A = \begin{bmatrix} 18. & 7. & 9. & 18. \\ 0. & 11. & 8. & 13. \\ 11. & 2. & ???? & 4. \\ 7. & 0. & -2. & -12. \end{bmatrix}$$

(a) What value goes in the missing spot in matrix A?

(b) If we apply a 2x2 max pooling layer to the matrix A, what would the resulting matrix be?

(c) If we apply the ReLU function to every entry in the A matrix, what would the resulting matrix be?