

Overview

- 1. Introduction
- 2. EDA
- 3. Preprocessing
- 4. Models
- 5. XAI

Introduction

Introduction

A short introduction to our project

The dataset is about bankruptcy prediction of Polish companies. The bankrupt companies were analyzed in the period 2000-2012, while the still operating companies were evaluated from 2007 to 2013.

Basing on the collected data five classification cases were distinguished, that depends on the forecasting period:

- ▶ 1st Year: 271 bankrupted companies, 6756 firms that did not bankrupt
- ▶ 2nd Year: 400 bankrupted companies, 9773 firms that did not bankrupt
- 3rd Year: 495 bankrupted companies, 10008 firms that did not bankrupt
- ▶ 4th Year: 515 bankrupted companies, 9277 firms that did not bankrupt
- 5th Year: 410 bankrupted companies, 5500 firms that did not bankrupt

EDA

Distribution of target classes

▶ We had to deal with strongly unbalanced classes

EDAMissing values

► Half of rows contained some missing values

EDAOutliers

Every single feature had strongly skew distribution

Preprocessing

Preprocessing

What we did?

- Drop 3 column, which had more than 5% of missing values
- Delete rows, which had more than 7 missing values (about 200 rows)
- Cut outliers to quantiles: 0.025 from left and 0.975 from right
- ► Impute missing values with column medians
- Standardize features by removing the mean and scaling to unit variance

Preprocessing

What we tried?

- No column was correlated with target variable
- But there were groups of strongly correlated columns
- We generated all strong correlated groups and keep only one column from group
- ► That didn't have positive impact on models

Overview

- Our goal was to maximize f1-score
- ► We tried:
 - logistic regression
 - support vector machine
 - random forest
 - xgboost
- First two models gave us very poor results
- ▶ We performed hyper-parameter tuning on random forest and xgboost

RandomForest

Training set			
precision	0.3699		
recall	0.7387		
f1	0.4930		

Test set			
precision	0.2679		
recall	0.5204		
f1	0 3538		

Models XGBoost

	Training	Test	Validation
precision	0.9881	0.7247	0.6576
recall	1.000	0.5012	0.4675
f1	0.9940	0.5926	0.5465

XGBoost

- XGBoost model seems a little bit overfitted
- Attempts to prevent overfitting had negative impact on test model score

XAI Shap summary plot

XAI Variable importance

Variable Importance

Summary

- Problems with data:
 - unbalanced classes
 - missing values
 - outliers
 - domain-specific language
- ► Objective: maximize f1-score
- ▶ Best model: XGBoost with 0.55 score on validation set
- Important features:
 - current assets inventory) / short-term liabilities
 - gross profit (in 3 years) / total assets
 - ▶ total costs / total sales
 - ▶ sales / total assets