Yang Yu

August 06, 2018

Cs361_Final_pt1

ID: 23141168

X1=0.2314

X2=0.1168

Algorithm:

1. Calculate the number of intersection points of the two ellipses and Classification of the relative positions

Image from: Hughes, Gary B., and Mohcine Chraibi. "Calculating Ellipse Overlap Areas."

$$(x - x1)^2 + 2y^2 = 1$$
 --a
 $(x + x2)^2 + 4y^2 = 1$ --b

$$->2(x-x1)^2 - (x+x2)^2 = 1$$

->>2(x - 0.2314)² - (x + 0.1168)² = 1
→x^2 - 1.1592 x - 0.90655 = 0

→ $x \approx -0.535069$

I use online plot to check the two ellipses' position

Transversal at 2 Points

Step2:

Use trapezoidal rule to calculate
$$(x-0.2314)^2+2y^2=1$$
 y=0 \rightarrow x=-0.7686 left bond of ellipse(red) $(x+0.1688)^2+4y^2=1$ y=0 \rightarrow x=0.8312 right bond of ellipse(blue) x \approx -0.535069(intersection point)

$$y=\sqrt{\frac{1-(x-0.2314)^2}{2}}$$
 [a,b]=[-0.7686,--0.535069] -I1

```
y=\sqrt{\frac{1-(x+0.1168)^2}{4}} [a,b]=[-0.535069,0.8312]—I2 x-axis symmetry result= (I1+I2)*2
```

output:

n	I1	12	(11+12)*2
10	0.0718	0.5875	1.3186
20	0.0723	0.5894	1.3233
30	0.0724	0.5879	1.3243
40	0.0725	0.5899	1.3246
80	0.0725	0.5900	1.3250
160	0.0725	0.5900	1.3251
10000	0.0725	0.5900	1.3251

According to the form we can see when $n \ge 160$ the result will not change.

```
1. // area two ellipses.cpp : Defines the entry point for the console application. // //Calculate
    the area enclosed between the two ellipses, to 4 decimal places // C++ program to implement T
    rapezoidal rule
2. #include "stdafx.h"
3. #include < stdio.h > #include < cmath > #include < iostream > #include < string > using namesp
    ace std; // A function whose definite integral's // approximate value is computed using Trapez
   oidal rule
4. float x1 = 0.2314; //first four digits of id
5. float x2 = 0.1168; //last four digits of id //
   float y1(float x) { // Declaring the function f(x) = y=V((1 - (x-0.2314)^2)/2)
7.
        return sqrt((1 - pow((x - x1), 2)) / 2);
8.
   }
9. float y2(float x) { // Declaring the function f(x) = y=V((1 - (x+0.1168)^2)/2)
10.
            return sqrt((1 - pow((x + x2), 2)) / 4);
11.
        } // Function to evalute the value of integral
12. float trapezoidal_1(float a, float b, float n) { // Grid spacing
13.
        float h = (b - a) / n; // Computing sum of first and last terms // in above formula
14.
        float s = y1(a) + y1(b); // Adding middle terms in above formula
        for (int i = 1; i < n; i++) s += 2 * y1(a + i * h); // h/2 indicates (b-
15.
   a)/2n. Multiplying h/2 // with s.
16.
        return (h / 2) * s;
17. }
18. float trapezoidal 2(float a, float b, float n) { // Grid spacing
           float h = (b - a) / n; // Computing sum of first and last terms // in above formula
19.
20.
            float s = y2(a) + y2(b); // Adding middle terms in above formula
21.
            for (int i = 1; i < n; i++) s += 2 * y2(a + i * h); // h/2 indicates (b-
   a)/2n. Multiplying h/2 // with s.
22.
            return (h / 2) * s;
23.
       } // Driver program to test above function
24. int main() {
25.
       float x1 = 0.2314; //first four digits of id
        float x2 = 0.1168; //last four digits of id // Range of definite integral
26.
     float a1 = -0.7686; //[-0.7686, -0.535069]
27.
```

```
28.
         float b1 = -0.535069;
29. float a2 = -0.535069; //[ -0.535069, 0.8312]
30.
         float b2 = 0.8312; // Number of grids. Higher value means // more accuracy
31. int n = 6;
32.
         for (int i = 10; i <= 1e4; i += 10) {</pre>
33.
             cout << i << endl;</pre>
             printf("Value of integral_1 is %6.4f\n", trapezoidal_1(a1, b1, i));
printf("Value of integral_2 is %6.4f\n", trapezoidal_2(a2, b2, i));
34.
35.
36.
             printf("Value of (I1+I2)*2 is %6.4f\n", (trapezoidal_1(a1, b1, i) + trapezoidal_2(a2,
    b2, i)) * 2);
37.
         printf("\n");
38.
39.
        system("pause");
40.
         return 0;
41.}
```