MATH 571

Taught by Tom Weston Scribed by Ben Burns

UMass Amherst

Spring 2022

CONTENTS

1 First Exam 1

2 Factorization by difference of squares

1

1 First Exam

Covers through today

- Discrete Logs
- Diffie-Hellman Key Exchange
- Shanks Algorithm
- RSA
- Factorization (p-1 method, trial division, difference of squares)

Example 1. Fiven a few explicity congruences $c_{\mathfrak{i}} \equiv \mathfrak{a}_{\mathfrak{i}}^2 \pmod{\mathfrak{n}}$ explain how you can find a factor of \mathfrak{n}

Practice exam by Thursday

Format of Exam: Around 4 questions, 2 proof, 2 computation, no calculator

2 FACTORIZATION BY DIFFERENCE OF SQUARES

- (1) Find lots of congruences $a_1^2 \equiv c_i \pmod{n}$ with c_i product of small primes. Fix small number B, and require all prime factors $p \leqslant B$
- (2) Elimination: Find a subset of these congruences which multiply to give $x^2 \equiv y^2 \pmod{n}$ (\mathbb{F}_2 linear algebra)
- (3) Compute $gcd(x \pm y, n)$, hope its a proper factors of n

Review finding kernel, Gaussian Elimination \mathbb{F}_2 , book of (2)

Algorithm: Find numbers a such that $a^2 \pmod{n}$ is a product of small primes

$$m = \lfloor \sqrt{n} \rfloor + 1$$
. Try $a = m, m + 1, m + 2, \dots$, $a^2 \pmod{n} = a^2 - n$.

This is relatively small since $\alpha \approx \sqrt{n}$, so has a better chance of factoring into small primes

$$Q(x) = x^2 - n$$

Looking at x = m, m + 1, m + 2, we find $x^2 \equiv Q(x) \pmod{n}$, where $x^2 = a_i$ and $Q(x) = c_i$.

Problem: Given n, a, how do you determine if $Q(a) = a^2 - n$ is a product of small primes without factoring?

Remark 2. Roughly half of primes will never be factors of Q(a)

Why? Suppose p|Q(a) for some a. Then $p|a^2 - n \implies a^2 \equiv n \pmod{p} \implies n$ is a square mod p.

Fix odd prime p

Definition 3. Given $t \in \mathbb{F}_p$ such that $t \neq 0$, we say t is a quadratic residue mod p if $\exists s \in \mathbb{F}_p$ such that $s \equiv s^2 \pmod{p}$

For example, p = 11

"Squares are always squares" - :D

There are always exactly $\frac{p-1}{2}$ squares and $\frac{p-1}{2}$ non-squares

Definition 4 (Legendre Symbol). $\left(\frac{t}{p}\right) = +1$ if t square mod p, -1 if t non-square, 0 if $t = 0 \pmod{p}$.

Remark 5. The quadratic resides of \mathbb{F}_p are the even powers of any generator g.

Fix a generator $g \in \mathbb{F}_p$. Fix $t \in \mathbb{F}_p$. Write $t = g^e$ for some e s.t $0 \leqslant e \leqslant p-1$. If e is even then $t = (g^{e/2})^2 \implies \left(\frac{t}{p}\right) = 1$. Since this already gives (p-1)/2 squares for $e = 0, 2, 4, \dots p-3$, so it follows that e odd $\implies \left(\frac{t}{p}\right) = -1$.

Definition 6 (Properties of Legendre Symbol). (1) $\left(\frac{t}{p}\right) \equiv t^{\frac{p-1}{2}} \pmod{p}$

$$(2) \left(\frac{st}{p}\right) = \left(\frac{s}{p}\right) \left(\frac{t}{p}\right)$$

(3)
$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = 1 \text{ if } p \equiv 1 \pmod{4}, -1 \text{ is } p \equiv 3 \pmod{4}$$

Proof:

- (1) FLT for squares, polynomial counting argument for non-squares
- (2) right side of (1) is multplicative, so left side has to be as well

(3)

Definition 7 (Quadratic Reciprocity Law). Let p, q be distinct odd positive primes. Then $\left(\frac{p}{q}\right) = \frac{q}{p}(-1)^{\frac{p-1}{2}}\frac{q-1}{2}$.

Equivalently, if either p or q is congruent to 1 mod 4, then the reciprocity holds. Else, they are negations.

Definition 8 (Quadratic Sieve). brr