[$\S 2.1$] 1. (a) $\{-1, 1\}$

- (d) Ø
- 2b. $\{x \in \mathbb{Z} \mid |x| \leq 3\}$ where \mathbb{Z} is the set of integers and |x| is the absolute value of x
- 3. (a) The second is a subset of the first. From New York to New Delhi, all nonstop airline flights are also airline flights, but some airline flights have stops, so the first is not a subset of the second.
 - (c) The first is a subset of the second. All flying squirrels are also living creatures that can fly. Many living creatures that can fly are not flying squirrels, so the second is not a subset of the first.
- 7. (a) Yes. 2 is in the domain (real numbers) and is an integer greater than 1.
 - (c) Yes. The elements of this set are 2 and {2}.
 - (e) No. The elements of this set are $\{2\}$ and $\{2, \{2\}\}$.
- 9. (a) False. \emptyset contains no elements, by definition.
 - (b) False. The only element of $\{0\}$ is 0, which is not \emptyset .
 - (c) False. There are no proper subsets of \emptyset .
 - (d) True. \emptyset is a proper subset of any nonempty set.
 - (e) False. The only element of $\{0\}$ is 0, which is not $\{0\}$.
 - (f) False. The sets are equal, so neither is a proper subset of the other.
 - (g) True. Any set is a subset of itself.

12.

14.

where U is the universal set.

- 19. (a) $\boxed{1}$. The only element is a.
 - (b) $\boxed{1}$. The only element is $\{a\}$.

- (c) 2. The two elements are a and $\{a\}$.
- (d) 3. The three elements are a, $\{a\}$, and $\{a, \{a\}\}$.
- 23. (b) 16. $\{\emptyset, a, \{a\}, \{\{a\}\}\}\$ has 4 elements, so its powerset has 2^4 elements.
 - (c) $2. \mathcal{P}(\mathcal{P}(\emptyset)) = \{\emptyset, \{\emptyset\}\}.$
- 32. (a) $A \times B \times C = \{(a, x, 0), (a, x, 1), (a, y, 0), (a, y, 1), (a, y, 1),$ (b, x, 0), (b, x, 1), (b, y, 0), (b, y, 1),(c, x, 0), (c, x, 1), (c, y, 0), (c, y, 1)
 - (b) $C \times B \times A = \{(0, x, a), (0, x, b), (0, x, c), (0, y, a), (0, y, b), (0, y, c), (0,$ (1, x, a), (1, x, b), (1, x, c), (1, y, a), (1, y, b), (1, y, c)
 - (c) $C \times A \times B = \{(0, a, x), (0, a, y), (0, b, x), (0, b, y), (0, c, x), (0, c, y), (0, x), ($ (1, a, x), (1, a, y), (1, b, x), (1, b, y), (1, c, x), (1, c, y)
 - (d) $B \times B \times B = \{(x, x, x), (x, x, y), (x, y, x), (y, x, x), (y,$ (x, y, y), (y, x, y), (y, y, x), (y, y, y)
- 36. mnp. $A \times B \times C$ consists of all ordered triples (a, b, c) where $a \in A$, $b \in B$, and $c \in C$. Since there are m possibilities for a, n possibilities for b, and p possibilities for c, the total number of ordered triples (a, b, c) is the product of m, n, p.
- 41. (a) "The square of any real number is not -1." True. The square of any real number is nonnegative.
 - (d) "There exists a real number equal to the square of itself." True. For example, $0 = 0^2$.
- [§2.2] 2. (a) $A \cap B$
 - (b) $A \cap \overline{B}$
 - (c) $A \cup B$
 - (d) $\overline{A \cap B}$ [this is the complement of (a)]
 - 3. (a) $\{0, 1, 2, 3, 4, 5, 6\}$
 - (b) {3}
 - (c) $\{1, 2, 4, 5\}$
 - (d) $\{0,6\}$
 - 9. (a) $A \cup \overline{A} = \{x \mid \underbrace{(x \in A) \lor (x \notin A)}_{\text{always true}}\} = U$ (b) $A \cap \overline{A} = \{x \mid \underbrace{(x \in A) \land (x \notin A)}_{\text{impossible}}\} = \emptyset$

(b)
$$A \cap \overline{A} = \{x \mid \underbrace{(x \in A) \land (x \notin A)}_{\text{impossible}}\} = \emptyset$$

12. The other laws in Table 1 can be applied to the left hand side of the equation to show it equals the right hand side:

$$\begin{array}{ll} A \cup (A \cap B) = (A \cup A) \cap (A \cup B) & \text{distributive law} \\ &= A \cap (A \cup B) & \text{idempotent law} \\ &= A & \text{second absorption law} \end{array}$$

18. (b) It suffices to show that if x belongs to $(A \cap B \cap C)$ then x also belongs to $(A \cap B)$. Suppose $x \in (A \cap B \cap C)$. Then, by definition,

$$(x \in A) \land (x \in B) \land (x \in C),$$

which implies, by simplification,

$$(x \in A) \land (x \in B).$$

Hence $x \in (A \cap B)$. \square

(c) It suffices to show that if x belongs to (A - B) - C then x also belongs to A - C. Suppose $x \in (A - B) - C$. Then, by the definition of difference,

$$(x \in A - B) \land (x \notin C).$$

Equivalently, by the same definition,

$$(x \in A) \land (x \notin B) \land (x \notin C),$$

which implies, by simplification,

$$(x \in A) \land (x \notin C).$$

Hence $x \in A - C$. \square

- 29. (a) B is a subset of A, since this union implies B contains no elements not in A.
 - (b) A is a subset of B, since this intersection implies every common element is in A.
 - (c) A and B are disjoint, since there was no element in B that existed in A.
 - (d) A and B are any two sets. This is an identity (commutative law).
 - (e) A and B are equal. Since

$$A - B = \{x \in A \mid x \notin B\},\$$

$$B - A = \{x \in B \mid x \notin A\}.$$

and neither $(x \in A) \land (x \notin A)$ nor $(x \in B) \land (x \notin B)$ is ever possible, both differences result in the empty set;

$$A - B = B - A \implies A - B = \emptyset = B - A$$

which implies every element in A is in B, and vice versa.

50. (a) $A_1 = \{1, 2, 3, ...\}$, $A_2 = \{2, 3, 4, ...\}$, $A_3 = \{3, 4, 5, ...\}$, ..., so the generalized union is $A_1 = \mathbb{Z}^+$ and the generalized intersection is the empty set because no element is common to every set in the collection.

$$\bigcup_{i=1}^{\infty} A_i = \mathbb{Z}^+ \qquad \bigcap_{i=1}^{\infty} A_i = \emptyset$$

(b) $A_1 = \{0,1\}$, $A_2 = \{0,2\}$, ..., so the generalized union is \mathbb{N} , the set of nonnegative integers, and the generalized intersection is $\{0\}$ because 0 is the only number in every set in the collection

$$\bigcup_{i=1}^{\infty} A_i = \mathbb{N} \qquad \bigcap_{i=1}^{\infty} A_i = \{0\}$$

(c) $A_1 = (0, 1), A_2 = (0, 2), \ldots$, so the generalized union is $(0, \infty) = \mathbb{R}^+$ and the generalized intersection is $A_1 = (0, 1)$ which is the only set that is a subset of every set in the collection.

$$\bigcup_{i=1}^{\infty} A_i = \mathbb{R}^+ \qquad \bigcap_{i=1}^{\infty} A_i = (0,1)$$

(d) $A_1 = (1, \infty), A_2 = (2, \infty), \ldots$, so the generalized union is $A_1 = (1, \infty)$ and the generalized intersection is the empty set because no element is common to every set in the collection.

$$\bigcup_{i=1}^{\infty} A_i = (1, \infty) \qquad \bigcap_{i=1}^{\infty} A_i = \emptyset$$