29 Example (Linear Regression With More Than One Feature) Linear regression networks with d features

can be expressed in matrix form as the function

$$f(X) = Xw = \hat{y}$$

where

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1d} & 1 \\ x_{21} & x_{22} & \dots & x_{2d} & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nd} & 1 \end{pmatrix}, \ \mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \\ b \end{pmatrix}, \ \hat{\mathbf{y}} = \begin{pmatrix} \hat{y_1} \\ \hat{y_2} \\ \vdots \\ \hat{y_n} \end{pmatrix}$$

Columns $j, j = 1, 2, \ldots, d$, of the data matrix **X** contain the n values of the jth feature. w_j is the network weight of the jth feature. The last column corresponds to the bias and can be interpreted as a special feature whose value is always equal to 1.

- 30 Example (Linear Regression for Red Wine)
 - (a) Load the data set wine_quality_red.csv into a dataframe. Assume wine quality is the feature to be predicted. How many input features does the data set contain? How many data points?
 - (b) Determine the feature weights and bias that minimize MSE. <u>Hint</u>: Add a column of 1's to the data matrix **X** to represent the bias. Then solve the normal equations to obtain the optimal weights and bias.
 - (c) Compare RMSE of the linear regression network with the RMSE of a simple bias network.

- 31 Example (Red Wine Training vs Testing RMSE)
 Shuffle then split the red wine dataset into two datasets, 80% for training and 20% for testing. Train on the training set and compute RMSE for training and testing sets. Which do you expect to be larger training
- 32 Definition (One-Hot-Encoding)

RMSE or testing RMSE?

One-Hot-Encoding is a procedure that converts categorical data into numerical data that can be used as input to machine learning algorithms. The converted data can be interpreted as a probability distribution.

33 Example (One-Hot-Encoding Abalone)
Data Source⁴

Abalone is a type of snail. How accurately can the age of abalone be predicted from physical measurements? Data on the features listed in the table below is given in the file Abalone.csv.

feature	measurement	description
sex	M, F, I	male, female or infant
length	mm	longest shell measurement
diameter	mm	perpendicular to length
height	mm	with meat in shell
weight_whole	gms	whole abalone
weight_shucked	gms	weight of meat
weight_viscera	gms	gut weight (after bleeding)
weight_shell	gms	after being dried
rings		+1.5 gives the age in years

34 Definition (Feature Engineering)

Feature engineering is a process of creating new features from old ones in an effort to improve the performance of a machine learning al-

⁴Marine Resources Division, Marine Research Laboratories-Taroona, Department of Primary Industry and Fisheries, GPO Box 619F, Hobart, Tasmania 7001, Australia