Overview Fisika, Review Vektor, Posisi, Kecepatan, dan Percepatan

Sparisoma Viridi

Nuclear Physics and Biophysics Research Division

Department of Physics, Institut Teknologi Bandung, Bandung 40132, Indonesia

20220824-v2 | https://doi.org/10.5281/zenodo.7017837

Kerangka

- Topik, Subtopik, Capaian Belajar
- Referensi
- Vektor
- Vektor satuan
- Penjumlahan vektor
- Perkalian vektor

- Pengurangan vektor
- Ilustrasi

Topik, Subtopik, Capaian Belajar

Topik dan subtopik

Topik

Kinematika Benda Titik

Subtopik

Overview Fisika, Review Vektor, Posisi, Kecepatan dan Percepatan

Harry Mahardika (Koord.), "Satuan Acara Perkuliahan Matakuliah Fisika Dasar IA (FI – 1101) Semester I 2022-2023", Prodi Sarjana Fisika, FMIPA, ITB, 18 Aug 2022, url https://cdn-edunex.itb.ac.id/39012-Elementary-Physics-IA/106799-W01-Kinematika-Benda-Titik/46817-Kampus-SAP-Review/1661119628985_SAP-FIDAS-1A-2022-2023-ver-180822.pdf [20220824]

Tujuan Instruksional Khusus

- Pemahaman konsep-konsep vektor
- Pemahaman penggunaan konsep-konsep vektor
- Pemahaman konsep posisi, kecepatan dan percepatan baik secara grafis maupun secara rumusan (persamaan) matematik

Referensi

Referensi dalam pustaka utama

Bab 2, 3, 13

J. Walker, D. Halliday, R. Resnick, "Principle of Physics", 10th edition, International student version, John Wiley & Sons, Oct 2015.

ISBN 9788126552566

url https://isbnsearch.org/isbn/9788126552566

11th Edition, Global Edition

Table of Content

```
url https://www.wiley.com/en-gb/Halliday+and+Resnick's+Principles+of+Physics,+11th+Edition,+Global+Edition-p-9781119454014#content-section
```

Chapter 2

2 Motion Along a Straight Line 11

- 2-1 Position, Displacement, and Average Velocity 11
- 2-2 Instantaneous Velocity and Speed 16
- 2-3 Acceleration 18
- 2-4 Constant Acceleration 21
- 2-5 Free-Fall Acceleration 25
- 2-6 Graphical Integration in Motion Analysis 27

Review & Summary 28 Problems 29

Chapter 3

3 Vectors 34

3-1 Vectors and Their Components 34

3-2 Unit Vectors, Adding Vectors By Components 40

3-3 Multiplying Vectors 44

Review & Summary 49 Problems 50

Chapter 13

13 Gravitation 302

13-1 Newton's Law of Gravitation 302

13-2 Gravitation and The Principle of Superposition 305

13-3 Gravitation Near Earth's Surface 307

13-4 Gravitation Inside Earth 310

13-5 Gravitational Potential Energy 312

13-6 Planets and Satellites: Kepler's Laws 316

13-7 Satellites: Orbits and Energy 319

13-8 Einstein and Gravitation 322

Review & Summary 324 Problems 325

Vektor

Vektor

- Digambarkan dengan garis panah
- Besar (panjang garis) dan arah (arah panah)

Notasi

- Suatu vektor \vec{r} dinyatakan dengan besar r dan arah \hat{r} $\vec{r} = r \, \hat{r}$
- Dalam koordinat 2-d terdapat komponen pada arah x dan y $\vec{r} = r(\cos\theta \,\hat{x} + \sin\theta \,\hat{y}) = x \,\hat{x} + y \,\hat{y}$
- Dengan demikian

$$\hat{r} = \cos\theta \,\hat{x} + \sin\theta \,\hat{y}$$
 $x = r\cos\theta$ $y = r\sin\theta$

Komponen vektor

Dalam sistem koordinat kartesian 2-d

$$\vec{r} = x \hat{x} + y \hat{y}$$

Dalam sistem koordinat kartesian 3-d

$$\vec{r} = x\,\hat{x} + y\,\hat{y} + z\,\hat{z}$$

Atau secara umum dalam koordinat kartesian 3-d

$$\vec{a} = a_x \,\hat{x} + a_y \,\hat{y} + a_z \,\hat{z}$$

Besar vektor

- Selalu bernilai positif
- Diperoleh dari

$$r = |\vec{r}|$$

Dihitung dengan

$$|\vec{r}| = \sqrt{\vec{r} \cdot \vec{r}}$$

 Digunakan operasi perkalian titik dua buah vektor yang disimbolkan dengan ·

Arah vektor

- Dinyatakan terhadap suatu rujukan tertentu
- Dalam koordinat 2-d, variabel heta
 - Terhadap sumbu x
 - Berlawanan arah putar jarum jam (counter clockwise, CCW)

•
$$\vec{r} = r_x \hat{x} + r_y \hat{y}$$

$$= r \cos \theta \, \hat{x} + r \sin \theta \, \hat{y}$$

$$= x \hat{x} + y \hat{y}$$

Vektor satuan

Vektor satuan

Dilambangkan dengan variabel bertopi ^ (hat)

$$\hat{i}, \hat{j}, \hat{k}$$
 $\hat{e}_x, \hat{e}_y, \hat{e}_z$ $\hat{x}, \hat{y}, \hat{z}$ $\hat{r}, \hat{\theta}, \hat{\varphi}$ \hat{n} $\hat{r}, \hat{v}, \hat{a}$ $\hat{F}, \hat{p}, \hat{E}, \hat{B}, \hat{g}, \hat{\tau}, \hat{L}, \dots$

Sebuah vektor khusus yang besarnya satu satuan

$$|\hat{n}| = 1$$

Penjumlahan vektor

Penjumlahan vektor

- Dua buah besaran fisis hanya bisa dijumlahan bila memiliki dimensi (satuan) yang sama
- Vektor hanya dapat dijumlahkan dengan vektor
- Menjumlahkan komponen-komponen vektor

$$\vec{A} = a_x \hat{x} + a_y \hat{y} + a_z \hat{z} \qquad \vec{B} = b_x \hat{x} + b_y \hat{y} + b_z \hat{z} \qquad \vec{C} = c_x \hat{x} + c_y \hat{y} + c_z \hat{z}$$

$$\vec{C} = \vec{A} + \vec{B}$$

$$c_x = a_x + b_x$$
 $c_y = a_y + b_y$ $c_z = a_z + b_z$

Vektor resultan

 Resultan atau hasil penjumlahannya adalah vektor baru yang menghubungkan titik awal vektor pertama dan titik akhir vektor kedua

Besar vektor resultan

- Besar vektor resultan $\vec{C} = \vec{A} + \vec{B}$ dapat diperoleh dengan $C = \sqrt{A^2 + B^2 + 2AB\cos\theta}$ dengan θ adalah sudut antara vektor \vec{A} dan \vec{B}
- Hal ini dapat diperoleh dengan menggunakan perkalian titik dan besar suatu vektor
- Cara ini tidak memberikan arah vektor resultan C

Pengurangan vektor

Pengurangan vektor

 Pengurangan vektor dapat diperoleh dengan cara yang sama dengan penjumlahan vektor dengan mengubah arah vektor keduanya

$$\vec{B} \rightarrow -\vec{B}$$

Dengan demikian

$$\cos\theta \rightarrow -\cos\theta$$

Perkalian vektor

Perkalian vektor dengan skalar

- Arah vektor tetap
- Panjang vektor berubah

- Suatu vektor $\vec{v} = v_x \hat{x} + v_y \hat{y} + v_x \hat{z}$
- Ingin dicari $\vec{p} = m\vec{v}$ dengan m skalar
- Akan diperoleh

$$p_x = mv_x$$

$$p_x = mv_x$$
 $p_y = mv_y$

$$p_z = mv_z$$

Perkalian titik (dot product)

Mengalikan komponen-komponen vektornya, yang mengikuti

$$\hat{x} \cdot \hat{x} = 1$$

$$\hat{x} \cdot \hat{x} = 1$$
 $\hat{y} \cdot \hat{y} = 1$ $\hat{z} \cdot \hat{z} = 1$

$$\hat{z} \cdot \hat{z} = 1$$

$$\hat{x} \cdot \hat{y} = \hat{y} \cdot \hat{x} = 0$$

$$\hat{\mathbf{y}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{y}} = 0$$

$$\hat{z} \cdot \hat{x} = \hat{x} \cdot \hat{z} = 0$$

Perkalian silang (cross product)

• Mengalikan komponen-komponennya, yang mengikuti

$$\hat{x} \times \hat{y} = \hat{z}$$

$$\hat{\mathbf{y}} \times \hat{\mathbf{x}} = -\hat{\mathbf{z}}$$

$$\hat{\mathbf{y}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}}$$

$$\hat{z} \times \hat{y} = -\hat{x}$$

$$\hat{z} \times \hat{x} = \hat{y}$$

$$\hat{x} \times \hat{z} = -\hat{y}$$

Ilustrasi

Gerak parabola

Dalam rumusan vektor, posisi benda setiap saat

$$\vec{r}(t) = x(t)\hat{x} + y(t)\hat{y}$$

$$= (x_0 + v_{0x}t)\hat{x} + (y_0 + v_{0y}t - \frac{1}{2}gt^2)\hat{y}$$

Posisi awal

$$\vec{r}(0) = x_0 \hat{x} + y_0 \hat{y}$$

Gerak parabola (lanj.)

Dalam rumusan vektor, kecepatan benda setiap saat

$$\vec{v}(t) = v_x(t)\hat{x} + v_y(t)\hat{y}$$
$$= v_{0x}\hat{x} + (v_{0y} - gt)\hat{y}$$

Kecepatan awal

$$\vec{v}(0) = v_{0x} \hat{x} + v_{0y} \hat{y}$$

Gerak parabola (lanj.)

Dalam rumusan vektor, percepatan benda setiap saat

$$\vec{a}(t) = a_x(t)\hat{x} + a_y(t)\hat{y}$$
$$= -g \hat{y}$$

Percepatan awal

$$\vec{a}(0) = -g \hat{y}$$

Gerak melingkar beraturan

Posisi setiap saat

$$\vec{r}(t) = (x_c + R\cos\omega t)\hat{x} + (y_c + R\sin\omega t)\hat{y}$$

Kecepatan setiap saat

$$\vec{v}(t) = -\omega R \sin \omega t \, \hat{x} + \omega R \cos \omega t \, \hat{y}$$

Percepatan setiap saat

$$\vec{a}(t) = -\omega^2 R \cos \omega t \, \hat{x} - \omega^2 R \sin \omega t \, \hat{y}$$

Terima kasih