PRAKTIKUM 3

IMAGE ENHANCEMENT DENGAN PENGOLAHAN TITIK

Materi

- Image Enhancement
- Pengolahan Titik (*Point Processing*)
- Arithmatic Processing
- Histogram Equalization

Tujuan Praktikum

 Mahasiswa dapat melakukan enhancement pada citra dengan point processing terutama dengan arithmetic processing.

A. Penyajian

Image enhancement adalah proses peningkatkan kualitas citra agar hasilnya dapat lebih **baik** dari citra awal untuk aplikasi tetentu. Kriteria **baik** tergantung pada aplikasi dan problem secara visual maupun secara otomatis (untuk aplikasi selanjutnya). Terdapat dua kategori pada image enhancement yang dapat dilihat pada Gambar 3.1.

Gambar 3.1. Image Enhancement

Point Processing

Point processing merupakan operasi yang paling sederhana, namun juga merupakan operasi pengolahan citra yang paling sering digunakan. *Point processing* dilakukan untuk mengubah nilai piksel tertentu yang hanya melibatkan satu piksel saja (tidak menggunakan jendela ketetanggaan). Beberapa contoh *point processing*:

- Arithmetic Processing,
- Logical Processing,
- Histogram Equalization,
- Histogram Specification,
- Contrast Stretching and,
- intensity Transformation.

Arithmetic Processing

Brightness dan kontras citra dapat dikendalikan oleh operasi aritmatika. Operasi aritmatika meliputi penambahan, pengurangan, perkalian, dan membagi nilai-nilai pixel dengan beberapa nilai konstan. Fungsi aritmatika pada nilai-nilai pixel RGB adalah:

• Addition of a constant: Increases Brightness

• **Subtraction of a constant**: Decreases Brightness

• Multiplication by a constant: Increases contrast

• **Division by a constant:** Decreases contrast

Pada OpenCV dikenal beberapa fungsi aritmatik sebagai berikut:

1. Add

```
void add(
    Mat src1,
    Mat src2,
    Mat dst
);
Atau
```

```
Mat dst = src1 + src2;

Menambahkan citra dengan konstanta (citra 1 channel)

Mat dst = src1 + value;

Menambahkan citra dengan konstanta (citra 3 channel)

Mat dst = src1 + Scalar(value1,value2,value3)
```

2. Subtraction

```
void subtract(
    Mat src1,
    Mat src2,
    Mat dst
);
```

Atau

Mat dst = src1 - src2;

Mengurangi citra dengan konstanta (citra 1 channel)

Mat dst = src1 - value;

Mengurangi citra dengan konstanta (citra 3 channel)

Mat dst = src1 - Scalar(value1, value2, value3);

3. Multiply

```
Mat::mul(InputArray src, double scale=1);
    Mengalikan dengan konstanta
    Mat dst = src1.mul(scale);
```

Atau

Mat dst = src1*scale;

Mengalikan dengan citra lain

```
Mat dst = src1.mul(src2);
```

Mengalikan dengan citra lain dan menggunakan konstanta

```
Mat dst = src1.mul(src2, scale);
```

4. Division

```
void divide(
    Mat src1,
    Mat src2,
    Mat dst,
    double scale = 1
);

Membagi citra dengan konstanta
    Mat dst = src1/scale;
    Membagi citra dengan citra lain
    Mat dst = src1/src2;
```

Pada fungsi-fungsi aritmatik tersebut semua array harus memiliki tipe dan ukuran yang sama.

B. LATIHAN

 Membuat program penambahan dan pengurangan setiap nilai piksel pada citra dengan sebuah konstanta c dan program pengkalian dan pembagian setiap nilai piksel pada citra dengan sebuah konstanta s.

aritmatik.cpp

```
#include <cv.h>
#include <highgui.h>

using namespace cv;

int main()
```

```
{
      Mat original = imread("kunyit.jpg");
      int c = 50, s = 2;
      //proses penambahan
      Mat addIm = original + Scalar(c,c,c);
      //proses pengurangan
      Mat subIm = original - Scalar(c,c,c);
      //proses pengkalian
      Mat mulIm = original * s;
      //proses pembagian
      Mat divIm = original / s;
      //menampilkan citra
      imshow("original", original);
      imshow("addImage", addIm);
      imshow("subImage", subIm);
      imshow("mulImage", mulIm);
      imshow("divImage", divIm);
      waitKey(0);
      return 0;
}
```

Output aritmatik.cpp

2. Menambahkan dua buah citra dengan mengunakan operasi aritmatika.

addImage.cpp

```
#include <cv.h>
#include <highgui.h>
using namespace cv;

int main(){
    //baca citra
    Mat img1 = imread("gambar1.jpg");
    Mat img2 = imread("gambar2.jpg");
    Mat addIm;

    //penambahan dua citra
    addIm = img1 + img2;

    imshow("citra", addIm);
    waitKey(0);
    return 0;
}
```

output addImage.cpp

Nama :

NRP :

Nama Dosen :

Nama Asisten:

C. Lembar Kerja Praktikum

Buatlah sebuah fungsi imageDiff dengan algoritme sebagai berikut.

- 1. Baca dua citra (citra Cameraman.jpg dan citra Equalized.jpg) yang telah di sediakan di LMS.
- 2. Ubah dua citra tersebut menjadi grayscale
- 3. Masukkan kedua citra tersebut ke fungsi imageDiff
- 4. Kemudian hitung nilai rata-rata intensitas setiap citra tersebut
- 5. Setelah itu lakukan pengubahan tiap nilai intensitas piksel citra dengan ketentuan sebagai berikut:
 - Jika nilai intensitas piksel dibawah rata-rata, kalikan dengan angka 0.5
 - Jika nilai intensitas piksel diatas rata-rata atau sama dengan rata-rata, kalikan dengan angka 2
- 6. Lakukan proses pengurangan antara citra Cameraman dan citra Equalized
- 7. Tampilkan hasilnya

Setelah itu berikan penjelasan singkat terhadap citra yang dihasilkan.

Hasil yang diharapkan

Contoh program

```
#include <cv.h>
#include <highgui.h>
using namespace cv;
Mat imageDiff(Mat img1, Mat img2)
{
   Mat output;
   . . .
   return output;
}
int main()
{
   Mat img1, img2, output;
   output = imageDiff(img1,img2);
   return 0;
}
```