

CS 372 Lecture #25

The network layer

- hardware functions
 - routing and forwarding
- forwarding tables

Note: Many of the lecture slides are based on presentations that accompany *Computer Networking: A Top Down Approach*, 6th edition, by Jim Kurose & Keith Ross, Addison-Wesley, 2013.

The network layer functions

Router architecture overview

Two key router functions: routing and forwarding

- Determine route (more later on algorithms/protocols)
- forward datagrams from incoming to outgoing link

Input Port Functions

- Queuing: if datagrams arrive faster than forwarding rate into switch fabric
- Lookup: given datagram destination, lookup output port using <u>forwarding table</u> in input port memory
- Forwarding: forward to appropriate output port

Input Port Queuing

- Fabric slower than combined input ports
 - queuing may occur at any of the input ports
 - output port contention
 - Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward
- queuing delay and loss due to input buffer overflow

Switching fabric functions

- Transfer datagram to selected output port
- Prevent collisions

Output Port Functions

Network layer (out):

 Queuing required (at each output port) if datagrams arrive from fabric faster than the link's transmission rate

Output port queueing

- Output link's transmission rate slower than switching fabric
 - queuing may occur at any of the output ports
 - overloading of individual output ports
- queuing delay and loss due to output port buffer overflow

Too much traffic on one output port

Datagram forwarding table

4 billion IP addresses, so rather than list individual destination address list range of addresses (aggregate table entries)

Forwarding table

IPv4 has 4 billion possible entries

Examples:

Longest prefix matching

Forwarding Table	
Prefix Match	Link Interface
11001000 00010111 00010	0
11001000 00010111 00011000	1
11001000 00010111 00011	2
otherwise	3

Examples:

Destination address: 200.23.24.170 11001000 00010111 00011000 10101010	Which interface?	1
Destination address: 200.23.25.155 11001000 00010111 00011001 10011011	Which interface?	2
Destination address: 200.23.22.161 11001000 00010111 00010110 10100001	Which interface?	0
Destination address: 200.23.15.153 11001000 00010111 00001111 10011001	Which interface?	3

Summary

Lecture #25

- routing, forwarding
- Router architecture
 - input/output ports
 - switching fabric
 - queuing (at input/output ports)
 - routing (forwarding) tables
- longest prefix matching