The Hip Exoskellie

MCG 4322 - Computer Aided Design

Presented by Group 13:

Dmytro Lomovtsev - 7944601

Yousef Bader - 7623716

Philippe Shouldice - 7710710

Michael Botros - 8327615

Agenda

- Introduction
- Gait assist strategies
- Full Design
- Sub Assemblies: Main, Timing, Thigh, Hip and
 Waist
- Simulation and Validation
- Parametrization: GUI
- Conclusion

Introduction

- Target user seniors over 65 without significant lower limb joint diseases.
- Target action:
 - Provide up to 8% stance phase energy assistance in sagittal plane.
 - Stabilize hip joint to a safe range of motion.
- Adaptable design level, incline, and stair gait assistance.

Sagittal Gait Strategy: Level Ground

Gait Assist Strategies

Introduction

Sub Assemblies

Simulation

Parametrization

Sagittal Gait Strategy: Incline Ascent

Introduction Gait Assist Strategies

Sub Assemblies

Simulation

Parame trization

Sagittal Gait Strategy: Stair Ascent

Gait Assist Strategies

Sub Assemblies

Simulation

Parame trization

Frontal Gait Strategy: Level

Main Energy Subsystem

Introduction

Gait Assist Strategies

Sub Assemblies

Simulation

Parametrization

Main Energy Subsystem

Gait Assist Strategies Sub Assemblies

Simulation

Parametrization

Functions:

Introduction

- Control the pawl, engaging it and disengaging it depending on phase of gait
- Change gait modes (level, incline, stairs)

Gait Assist Strategies Sub Assemblies

Simulation

Parametrization

Introduction

Gait Assist Strategies

Sub Assemblies

Simulation

Parametrization

duction Gait Assi Strategie Sub Assemblies

Simulation

Parametrization

Assemblies

Thigh Subsystem

Functions:

- Connect to the thigh belt to transfer energy to and from the main spring
- Connect to the timing system to rotate timing disks

Waist Subsystem

Gait Assistance Gait Assistanc

Sub Assemblies

Simulation

Parame trization

Waist Subsystem

Female

oduction Gait Ass Strategie Sub Assemblies

Simulation

Parametrization

Waist Subsystem

troduction Gait Assis

Sub Assemblies

Simulation

Parame trization

Simulation and Validation

- Three elderly gait data sets:
 - Law (2013) stair ascent
 - Vickers (2008) incline gait
 - Winter (1990) flat gait
- MATLAB simulation and optimization
 - Kinematics
 - Dynamics
 - Stresses
- SolidWorks FEA

Simulation and Validation - Device assist

Introduction Gait Assist Strategies

Sub Assemblies

Simulation

Parametrization

Parametrization: GUI

Gait Assist Strategies

Sub Assemblies

Simulation

Parametrization

Conclusion

Takeaway:

Works for stairs, sometimes works for incline and flat

Future work:

- Further optimization of device mass and size
- Improve power transfer system efficiency

Questions

Question? Comments?

Simulation and Validation - Data Example

Introduction Gait

Gait Assist Strategies

Sub Assemblies

Simulation

Parametrization

Simulation and Validation - Device assist

roduction Gait Assist Strategies

Sub Assemblies

Simulation

Parametrization