Introduction to Machine Learning

Evaluation: Resampling

Learning goals

- Understand how resampling techniques extend the idea of simple train-test splits
- Understand the ideas of cross-validation, bootstrap and subsampling
- Understand what pessimistic bias means

RESAMPLING

- Aim: Assess performance of learning algorithm.
- Make training sets large (to keep the pessimistic bias small), and reduce variance introduced by smaller test sets through many repetitions / averaging of results.

CROSS-VALIDATION

- Split the data into *k* roughly equally-sized partitions.
- Use each part once as test set and join the k-1 others for training
- Obtain *k* test errors and average.

Example: 3-fold cross-validation:

CROSS-VALIDATION - STRATIFICATION

Stratification tries to preserve the distribution of the target class (or any specific categorical feature of interest) in each fold.

Example of stratified 3-fold cross-validation:

CROSS-VALIDATION

- 5 or 10 folds are common
- k = n is known as leave-one-out (LOO) cross-validation
- Estimates of the generalization error tend to be pessimistically biased size of the training sets is n (n/k) < n bias increases as k gets smaller.
- The k performance estimates are dependent because of the structured overlap of the training sets.
 - \Rightarrow Variance of the estimator increases for very large k (close to LOO), when training sets nearly completely overlap.
- Repeated k-fold CV (multiple random partitions) can improve error estimation for small sample sizes.

BOOTSTRAP

The basic idea is to randomly draw B training sets of size n with replacement from the original training set $\mathcal{D}_{\text{train}}$:

We define the test set in terms of out-of-bag observations $\mathcal{D}^b_{\mathsf{test}} = \mathcal{D}_{\mathsf{train}} \setminus \mathcal{D}^b_{\mathsf{train}}$.

BOOTSTRAP

- Typically, B is between 30 and 200.
- The variance of the bootstrap estimator tends to be smaller than the variance of k-fold CV.
- The more iterations, the smaller the variance of the estimator.
- Tends to be pessimistically biased (because training sets contain only about 63.2% of the unique observations).
- Bootstrapping framework allows for inference (e.g. detect significant performance differences between learners).
- Extensions exist for very small data sets that also use the training error for estimation: B632 and B632+.

SUBSAMPLING

- Repeated hold-out with averaging, a.k.a. Monte Carlo CV
- Similar to bootstrap, but draws without replacement
- Typical choices for splitting: 4/5 or 9/10 for training

- The smaller the subsampling rate, the larger the pessimistic bias.
- The more subsampling repetitions, the smaller the variance.

RESAMPLING DISCUSSION

In ML we fit, at the end, a model on all our given data.

Problem: We need to know how well this model performs in the future, but no data is left to reliably do this.

⇒ Approximate using hold-out / CV / bootstrap / resampling estimate

But: pessimistic bias because we don't use all data points

Final model is (usually) computed on all data points.

RESAMPLING DISCUSSION

- 5CV or 10CV have become standard
- Do not use hold-out, CV with few iterations, or subsampling with a low subsampling rate for small samples, since this can cause the estimator to be extremely biased, with large variance.
- If *n* < 500, use repeated CV
- A \mathcal{D} with $|\mathcal{D}| = 100.000$ can have small-sample properties if one class has few observations
- Research indicates that subsampling has better properties than bootstrapping. The repeated observations can cause problems in training.

Einführung in das Statistische Lernen

Evaluation: Measures for Binary Classification: ROC Measures

Learning goals

- Understand why accuracy is not an optimal performance measure for imbalanced labels
- Understand the different measures computable from a confusion matrix
- Be aware that each of these measures has a variety of names

IMBALANCED BINARY LABELS

Classify all as "no disease" (green) \rightarrow high accuracy.

Accuracy Paradox

IMBALANCED COSTS

Classify incorrectly as "no disease" \rightarrow very high cost

CONFUSION MATRIX

- +: "positive" class
- -: "negative" class
- n_+ : number of observations in +
- n_: number of observations in −

LABELS: ROC METRICS

From the confusion matrix (binary case), we can calculate "ROC" metrics.

		True Class y		
		+	_	
Pred.	+	TP	FP	$PPV = \frac{TP}{TP + FP}$
ŷ	_	FN	TN	$NPV = \frac{TN}{FN+TN}$
		$TPR = \frac{TP}{TP+FN}$	$TNR = \frac{TN}{FP+TN}$	Accuracy = $\frac{TP+TN}{TOTAL}$

- True Positive Rate: How many of the true 1s did we predict as 1?
- True Negative Rate: How many of the true 0s did we predict as 0?
- Positive Predictive Value: If we predict 1 how likely is it a true 1?
- Negative Predictive Value: If we predict 0 how likely is it a true 0?

HISTORY ROC

ROC = receiver operating characteristics

Initially developed by electrical engineers and radar engineers during World War II for detecting enemy objects in battlefields.

http://media.iwm.org.uk/iwm/mediaLib//39/media-39665/large.jpg

Still has the funny name.

LABELS: ROC

Example

		A ctual Class y		
		Positive	Negative	
\hat{y}	Positive	True Positive (TP) = 20	False Positive (FP) = 180	Positive predictive value = TP / (TP + FP) = 20 / (20 + 180) = 10 %
Pred.	Negative	False Negative (FN) = 10	True Negative (TN) = 1820	Negative predictive value = TN / (FN + TN) = 1820 / (10 + 1820) ≈ 99.5 %
			True Negative Rate = TN / (FP + TN) = 1820 / (180 + 1820) = 91%	

MORE METRICS AND ALTERNATIVE TERMINOLOGY

Unfortunately, for many concepts in ROC, 2-3 different terms exist.

		True condition				
	Total population	Condition positive	Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Accuracy Σ True positive + Σ Total po	Σ True negative
Predicted	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery Σ False μ Σ Predicted con	positive
condition	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = $\frac{\Sigma}{\Sigma}$ False negative $\frac{\Sigma}{\Sigma}$ Predicted condition negative	Negative predicti = $\frac{\sum \text{True r}}{\sum \text{Predicted cor}}$	negative
		True positive rate (TPR), Recall, Sensitivity, probability of detection $\frac{\sum \text{True positive}}{\sum \text{Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$ Specificity (SPC),	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio (DOR) = LR+ IR-	F ₁ score = 1 Recall + Precision
		False negative rate (FNR), Miss rate = Σ False negative Σ Condition positive	Selectivity, True negative rate (TNR) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = FNR TNR	LK-	2

► Clickable version/picture source

► Interactive diagram

LABELS: F₁-MEASURE

A measure that balances two conflicting goals

- Maximising Positive Predictive Value
- Maximising True Positive Rate

is the harmonic mean of PPV and TPR:

$$F_1 = 2 \frac{PPV \cdot TPR}{PPV + TPR}$$

Note: still doesn't account for the number of true negatives.

LABELS: F₁-MEASURE

Tabulated F_1 -Score for different TPR (rows) and PPV (cols) combinations.

```
0.0 0.2 0.4 0.6 0.8 1.0

0.0 0 0.00 0.00 0.00 0.00 0.00

0.2 0 0.20 0.27 0.30 0.32 0.33

0.4 0 0.27 0.40 0.48 0.53 0.57

0.6 0 0.30 0.48 0.60 0.69 0.75

0.8 0 0.32 0.53 0.69 0.80 0.89

1.0 0 0.33 0.57 0.75 0.89 1.00
```

- \rightarrow Tends more towards the lower of the 2 combined values.
 - TPR = 0 or $PPV = 0 \Rightarrow F_1$ of 0
 - Predicting always "neg": F₁ = 0
 - Predicting always "pos": $F_1 = 2PPV/(PPV+1) = 2n_+/(n_++n)$, which will be rather small, if the size of the positive class n_+ is small.

Einführung in das Statistische Lernen

Evaluation: Measures for Binary Classification: ROC Visualization

Learning goals

- Understand the ROC curve
- Be able to compute a ROC curve manually
- Understand the definition of AUC and what a certain value of AUC means (and what not!)

LABELS: ROC SPACE

Plot True Positive Rate and False Positive Rate:

$$TPR = \frac{TP}{TP+FN}$$

$$FPR = \frac{FP}{FP+TN}$$

LABELS: ROC SPACE

- The best classifier lies on the top-left corner
- The diagonal \approx random labels (with different proportions). Assign positive x as "pos" with 25% probability \rightarrow TPR = 0.25. Assign negative x as "pos" with 25% probability \rightarrow FPR = 0.25.

LABELS: ROC SPACE

In practice, we should never obtain a classifier below the diagonal.

Inverting the predicted labels (0 \to 1 and 1 \to 0) will result in a reflection at the diagonal.

LABEL DISTRIBUTION IN TPR AND FPR

TPR and FPR are insensitive to the class distribution:

Not affected by changes in the ratio n_+/n_- (at prediction).

Example 1:

Proportion $n_+/n_- = 1$

Exam	ple	2:
_,	ρ. υ	

Proportion $n_+/n_-=2$

	Actual Positive	Actual Negative
Pred. Positive	40	25
Pred. Negative	10	25

	Actual Positive	Actual Negative
Pred. Positive	80	25
Pred. Negative	20	25

$$MCE = 35/100$$

TPR = 0.8

FPR = 0.5

$$MCE = 45/150 = 30/100$$

TPR = 0.8

FPR = 0.5

Note: If class proportions differ during training, the above is not true. Estimated posterior probabilities can change!

FROM PROBABILITIES TO LABELS: ROC CURVE

Remember: Both probabilistic and scoring classifiers can output classes by thresholding.

$$h(\mathbf{x}) := [\pi(\mathbf{x})) \ge c]$$
 or $h(\mathbf{x}) = [f(\mathbf{x}) \ge c]$

To draw a ROC curve:

Iterate through all possible thresholds c

→ Visual inspection of all possible thresholds / results

#	Truth	Score
1	Pos	0.95
2	Pos	0.86
3	Pos	0.69
4	Neg	0.65
5	Pos	0.59
6	Neg	0.52
7	Pos	0.51
8	Neg	0.39
9	Neg	0.28
10	Neg	0.18
11	Pos	0.15
12	Neg	0.06

$$c = 0.9$$

$$\rightarrow$$
 TPR = 0.167

$$\rightarrow$$
 FPR = 0

#	Truth	Score
1	Pos	0.95
2	Pos	0.86
3	Pos	0.69
4	Neg	0.65
5	Pos	0.59
6	Neg	0.52
7	Pos	0.51
8	Neg	0.39
9	Neg	0.28
10	Neg	0.18
11	Pos	0.15
12	Neg	0.06

$$c = 0.85$$

$$\rightarrow$$
 TPR = 0.333

$$\rightarrow$$
 FPR = 0

Truth	Score
Pos	0.95
Pos	0.86
Pos	0.69
Neg	0.65
Pos	0.59
Neg	0.52
Pos	0.51
Neg	0.39
Neg	0.28
Neg	0.18
Pos	0.15
Neg	0.06
	Pos Pos Pos Neg Pos Neg Pos Neg Neg Neg

$$c = 0.66$$

$$\rightarrow$$
 TPR = 0.5

$$\rightarrow$$
 FPR = 0

#	Truth	Score
1	Pos	0.95
2	Pos	0.86
3	Pos	0.69
4	Neg	0.65
5	Pos	0.59
6	Neg	0.52
7	Pos	0.51
8	Neg	0.39
9	Neg	0.28
10	Neg	0.18
11	Pos	0.15
12	Neg	0.06

$$c = 0.6$$

$$\rightarrow$$
 TPR = 0.5

$$\rightarrow$$
 FPR = 0.167

#	Truth	Score
1	Pos	0.95
2	Pos	0.86
3	Pos	0.69
4	Neg	0.65
5	Pos	0.59
6	Neg	0.52
7	Pos	0.51
8	Neg	0.39
9	Neg	0.28
10	Neg	0.18
11	Pos	0.15
12	Neg	0.06
	0	

$$c = 0.55$$

$$\rightarrow$$
 TPR = 0.667

$$\rightarrow$$
 FPR = 0.167

#	Truth	Score
1	Pos	0.95
2	Pos	0.86
3	Pos	0.69
4	Neg	0.65
5	Pos	0.59
6	Neg	0.52
7	Pos	0.51
8	Neg	0.39
9	Neg	0.28
10	Neg	0.18
11	Pos	0.15
12	Neg	0.06

$$c = 0.3$$

$$\rightarrow$$
 TPR = 0.833

$$\rightarrow$$
 FPR = 0.5

#	Truth	Score
1	Pos	0.95
2	Pos	0.86
3	Pos	0.69
4	Neg	0.65
5	Pos	0.59
6	Neg	0.52
7	Pos	0.51
8	Neg	0.39
9	Neg	0.28
10	Neg	0.18
11	Pos	0.15
12	Neg	0.06

- The closer the curve to the top-left corner, the better
- If ROC curves cross, a different model can be better in different parts of the ROC space

AUC: AREA UNDER ROC CURVE

- The AUC (in [0,1]) is a single metric to evaluate scoring classifiers
- AUC = 1: Perfect classifier
- AUC = 0.5: Randomly ordered

AUC: AREA UNDER ROC CURVE

Interpretation: Probability that classifier ranks a random positive higher than a random negative observation

PARTIAL AUC

- Sometimes it can be useful to look at a specific region under the ROC curve ⇒ partial AUC (pAUC).
- Examples: focus on a region with low FPR or a region with high TPR:

