Enriched Grothendieck topologies under change of base

Ariel E. Rosenfield

University of California, Irvine

Abstract

In the presence of a monoidal adjunction $F \dashv G : \mathcal{V}_1 \leftrightarrows \mathcal{V}_2$ between locally finitely presentable Bénabou cosmoi, we examine the behavior of \mathcal{V}_2 -Grothendieck topologies on a \mathcal{V}_2 -category \mathcal{C} , and that of their constituent covering sieves, under the change of enriching category induced by G. We prove in particular that when G is faithful and G is an object of G, G induces an injection from the poset of G-sieves on G-sieves on

Introduction

This work was inspired by the hunt for good notions of functorial spectra for noncommutative structures, and particularly by a family of results of the following flavor:

Theorem [Rey12]. Suppose we have a functor $F: \mathsf{Ring}^\mathsf{op} \to \mathsf{Set}$ which is an extension of the Zariski spectrum on commutative rings, in the sense that the diagram

commutes. Then $F(\mathsf{Mat}_{n\times n}(\mathbb{C}))=\varnothing$ when $n\geq 3$.

Similar obstructions arise for the Zariski spectrum viewed as a functor into spaces, locales, or toposes, as well as for other spectra. All of these results are corollaries of the main theorem from [vdBH14], which roughly says that obstructions in one category must persist in another under certain conditions on the limit behavior of a pair of 'transporting' functors.

In [Rey24], the maximal spectrum

$$\mathsf{cAff}_k^\mathsf{op} \xrightarrow{\mathsf{Max}} \mathsf{Set}$$

was extended, in a weak sense, to a certain nice class of noncommutative k-algebras via the finite dual coalgebra construction

$$\mathsf{Alg}_k^\mathsf{op} \stackrel{(-)^\circ}{-\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-} \mathsf{Coalg}_k \; ,$$

viewed as a $Coalg_k$ -enriched functor. This result, together with earlier results of [KSo9] and [Bruo8], suggest that for an algebra A, we can imagine A° as a "quantized" version of the maximal spectrum, and $Coalg_k$ as a category of "quantized sets."

This success inspires hope that a similar approach could yield an extension of the Zariski spectrum

$$cRing^{op} \xrightarrow{Spec} Topos$$
,

or some restriction of it, to a sufficiently nice class of noncommutative rings. The current work is part of an endeavor to locate a suitable category of "quantized Grothendieck topoi."

Enriched Grothendieck topologies

For convenience, we recall some useful definitions:

Change of base for enrichment

Suppose given two closed symmetric monoidal categories $\mathcal{V}_1, \mathcal{V}_2$, and a lax monoidal functor

$$G: \mathcal{V}_2 \to \mathcal{V}_1,$$

which we will often refer to as a change of base.

- Given a \mathcal{V}_2 -category \mathcal{C} , G induces a \mathcal{V}_1 -category $G_*\mathcal{C}$ whose objects are the same as those of \mathcal{C} and whose hom-objects are $G_*\mathcal{C}(x,y) := G(\mathcal{C}(x,y))$.
- Given a \mathcal{V}_2 -functor $A: \mathcal{C} \to \mathcal{D}$, G induces a \mathcal{V}_1 -functor G_*A whose action on objects is $x \mapsto Ax$ and with

$$(G_*A)_{xy} := G(A_{xy}) : G_*\mathcal{C}(x,y) \to G_*\mathcal{D}(Ax,Ay).$$

Locally presentable categories

An object X in a category $\mathcal V$ is called **finitely presentable** if $\mathcal V(X,-)$ preserves filtered colimits. $\mathcal V$ is called **locally finitely presentable** if

- \mathcal{V} has small colimits;
- the subcategory \mathcal{V}_{fp} of finitely presentable objects is essentially small; and
- every object of ${\cal V}$ is a filtered colimit of finitely presentable objects

A **separating family** for \mathcal{V} is a family $\{X_{\alpha}\}_{\alpha\in A}$ of objects of \mathcal{V} such that the family $\{\mathcal{V}(X_{\alpha},-):\mathcal{V}\to\mathsf{Set}\}_{\alpha\in A}$ of hom-functors is jointly faithful.

\mathcal{V} -Grothendieck topologies

Let $\mathcal V$ be a locally finitely presentable, closed symmetric monoidal category, and let $\mathcal C$ be a $\mathcal V$ -category.

- A **sieve** on an object $U \in \mathcal{C}$ is a \mathcal{V} -subfunctor of $\mathcal{C}(-,U)$; i.e., a \mathcal{V} -functor R with a \mathcal{V} -natural transformation $R \Rightarrow \mathcal{C}(-,U)$ in which every component is monic.
- [BQ96] A \mathcal{V} -Grothendieck topology on \mathcal{C} is, to each object $U\in\mathcal{C}$, the assignment of a family J(U) of sieves on U such that
- $\mathsf{a.}\,\mathcal{C}(-,U)\in J(U);$
- b. For any G in a dense generating family for $\mathcal V$, any map $f:G\to \mathcal C(V,U)$, and any $R\in J(U)$, the pullback $f^*(R)$ defined by

$$f^*(R) \longrightarrow \{G, R\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{C}(-, V) \longrightarrow \{G, \mathcal{C}(-, U)\}$$

is an element of J(V);

c. For $S \in J(U)$ and a subobject R of $\mathcal{C}(-,U)$ such that $f^*(R) \in J(V)$ for any $f: G \to S(V)$, we have $R \in J(U)$.

Work in Progress

To avoid the obstructions following from [vdBH14], we'd like to be able to tell whether or not a \mathcal{V} -Grothendieck topology somehow reduces to an ordinary (i.e., Set-enriched) Grothendieck topology. The current work develops methods for comparing Grothendieck topologies over different enriching categories, not just for a change of base $\mathcal{V} \to \mathsf{Set}$, but for a general change of base $\mathcal{V}_2 \to \mathcal{V}_1$, where $\mathcal{V}_1, \mathcal{V}_2$ are locally finitely presentable, closed symmetric monoidal categories

Below, let C be a V_2 -category, and suppose given a lax monoidal functor $G: V_2 \to V_1$.

Proposition A. (Sieves are preserved under change of base) If G is faithful, V_2 -naturality of

$$\{\alpha_x : * \to \mathcal{D}(Ax, Bx)\}$$

is equivalent to \mathcal{V}_1 -naturality of

$$\{G\alpha_x: * \to G_*\mathcal{D}(Ax, Bx)\}.$$

Proposition B. (A V_2 -sieve is uniquely a V_1 -sieve) If G is faithful and preserves monomorphisms, there is an injective morphism of posets

$$\beta: \mathsf{Sub}(\mathcal{C}(-,U)) \to \mathsf{Sub}(G_*\mathcal{C}(-,U)).$$

With $\mathcal{V}_1, \mathcal{V}_2$, and \mathcal{C} as above, we now consider a monoidal adjunction

$$\mathcal{V}_1 \overset{F}{\underbrace{\smile}} \mathcal{V}_2$$
.

This allows us to make use of a correspondence outlined in [BT91] between the respective separating families for \mathcal{V}_1 and \mathcal{V}_2 . Theorems C and D, below, are the analogues of Props. A and B for Grothendieck topologies, which allow us to make the comparison we want, and whose proofs are in progress. Theorem E requires an example yet to be found.

Theorem C. For a V_2 -Grothendieck topology J on C, the assignment to each object $U \in G_*(C)$ of the family

$$\{G_*R:R\in J(U)\}$$

of \mathcal{V}_1 -sieves on U is a \mathcal{V}_1 -Grothendieck topology.

Status. Proof is straightforward but technical; the author is currently mired in notation issues.

Theorem D. There is an injection \mathcal{B} from the (possibly large) set of \mathcal{V}_2 -Grothendieck topologies on \mathcal{C} to the (possibly large) set of \mathcal{V}_1 -Grothendieck topologies on $G_*\mathcal{C}$.

Idea for proof. Leverage a bijection outlined in [BQ96] between the collection of \mathcal{V} -Grothendieck topologies on \mathcal{C} and \mathcal{V} -localizations of $[\mathcal{C}^{op}, \mathcal{V}]$.

Theorem E. There exist V_1, V_2 , and C as above such that the maps β in Prop. A and B in Theorem D are not injective.

Idea for proof. Look at cases where any separating family for \mathcal{V}_2 contains at least two objects; for example, $\mathcal{V}_2 = \mathsf{Ch}_{\bullet}(\mathcal{A})$ for \mathcal{A} an abelian category.

Future questions

Contact Information:

Rowland Hall 440R

Department of Mathematics

- What should a $\mathcal V$ -Grothendieck pretopology on $\mathcal C$ be?
- \diamond For this, I'd need a sufficiently general notion of a " \mathcal{V} -enriched pullback." Can I find such a thing?
- What are the images of β and \mathcal{B} under different conditions on G? When these maps are injective, what extra conditions on a sieve or Grothendieck topology guarantee that it is in the image?
- What are some specific use cases for these results (specific $\mathcal{V}_1, \mathcal{V}_2$, and \mathcal{C})?
- ♦ I don't know enough geometry yet to know where to look!

References

- BQ96] Francis Borceux and Carmen Quinteiro. A theory of enriched sheaves. *Cahiers Topologie Géom. Différentielle Catég.*, 37(2):145–162, 1996.
- [Bruo8] Lieven Le Bruyn. Noncommutative geometry and dual coalgebras, 2008.
- [BT91] Reinhard Börger and Walter Tholen. Strong, regular and dense generators. *Cahiers Topologie Géom. Dif-férentielle Catég.*, 32(3):257–276, 1991.
- KSo9] M. Kontsevich and Y. Soibelman. Notes on A_{∞} -algebras, A_{∞} -categories and non-commutative geometry. In *Homological mirror symmetry*, volume 757 of *Lecture Notes in Phys.*, pages 153–219. Springer, Berlin, 2009.
- [Rey12] Manuel L. Reyes. Obstructing extensions of the functor Spec to noncommutative rings. *Israel J. Math.*, 192(2):667–698, 2012.
- [Rey24] Manuel L. Reyes. The finite dual coalgebra as a quantization of the maximal spectrum. *J. Algebra*, 644:287–328, 2024.
- [vdBH14] Benno van den Berg and Chris Heunen. Extending obstructions to noncommutative functorial spectra. *Theory Appl. Categ.*, 29:No. 17, 457–474, 2014.

Acknowledgements

Thanks to my thesis advisor Manny Reyes for patiently listening to all my half-formed thoughts.