■ Chapitre 7 ■

Variables aléatoires discrètes

Notation.

- $\blacksquare (\Omega, \mathscr{F}, \mathbb{P})$ désigne un espace probabilisé.
- $\blacksquare X, Y$ désignent des variables aléatoires discrètes.

I. Variables aléatoires

I.1 Loi d'une variable aléatoire

Définition 1 (Variable aléatoire discrète).

Une variable aléatoire discrète est une fonction $X: \Omega \to E$ telle que

- (i). $X(\Omega)$ est fini ou dénombrable;
- (ii). Pour tout $x \in X(\Omega)$, l'ensemble $X^{-1}(\{x\})$ est un élément de \mathscr{F} .

La variable aléatoire X est une variable aléatoire réelle si E est une partie de \mathbb{R} .

Exercice 1.

- **1.** Pour chacun des exemples suivants, déterminer les ensembles Ω et E. Soient $n \in \mathbb{N}^*$ et $i \in [1, n]$. On lance un dé équilibré à 6 faces n fois et on considère la variable aléatoire
 - a) X_i : résultat du *i*-ème lancer.
 - **b)** S: somme de tous les lancers.
- **2.** Soient n et p deux entiers naturels. Déterminer le nombre de variables aléatoires définies de $(\llbracket 1,n \rrbracket, \mathscr{P}(\llbracket 1,n \rrbracket))$ dans $(\llbracket 1,p \rrbracket, \mathscr{P}(\llbracket 1,p \rrbracket))$.
- **3.** Soit $A \in \mathscr{P}(\Omega)$. Montrer que $\mathbb{1}_A$ est une variable aléatoire si et seulement si $A \in \mathscr{F}$.

Notations.

Soient $A \subset X(\Omega)$ et $x \in X(\Omega)$.

Exercice 2. Soit X une variable à valeurs réelles, $a \in \mathbb{R}$ et $t \ge 0$. Relier l'événement $\{X \le a\}$ à **1.** $\{-tX \ge -ta\}$.

Définition 2 (Loi).

Soit X (resp. Y) une variable aléatoire discrète définie sur $(\Omega, \mathscr{F}, \mathbb{P})$ (resp. $(\widetilde{\Omega}, \widetilde{\mathscr{F}}, \widetilde{\mathbb{P}})$).

(i). La loi de X, notée \mathbb{P}_X , est la probabilité définie sur $(E, \mathscr{P}(E))$ par

$$\forall x \in E, \mathbb{P}_X(\{x\}) = \mathbb{P}(X = x).$$

- (ii). Deux variables aléatoires X et Y sont de même loi, noté $X \sim Y$, si $X(\Omega) = Y(\widetilde{\Omega})$ et pour tout $x \in E$, $\mathbb{P}(X = x) = \widetilde{\mathbb{P}}(Y = x)$.
- (iii). S'il existe $c \in E$ tel que $\mathbb{P}(X = c) = 1$, la variable aléatoire X est presque sûrement constante.

Notation.

La loi de X désigne indifféremment la mesure de probabilité \mathbb{P}_X sur $\mathscr{P}(E)$, la fonction f_X qui à tout x de E associe $\mathbb{P}(X=x)$, ou si E est fini le vecteur $(\mathbb{P}(X=x))_{x\in E}$. Le terme de distribution de probabilité est un synonyme de loi de probabilité.

Exercice 3.

- 1. On reprend les notations de l'Exercice 1.
 - **a)** Pour tout $i \in [1, n]$, déterminer la loi de X_i .
 - **b)** Montrer que X_1 et X_2 suivent la même loi.
 - c) Déterminer la loi de $X_2 X_1$.
 - **d)** Dans le cas où n=2, déterminer la loi de S.
 - **2.** Soit $A \subset X(\Omega)$. Exprimer $\mathbb{P}(X \in A)$ en fonction de la loi de X.

Théorème 1.

Soit $f: X(\Omega) \to E$. Alors, $f \circ X$ est une variable aléatoire, notée f(X), et

$$\forall y \in f(X(\Omega)), \mathbb{P}_{f(X)}(\{y\}) = \mathbb{P}_X(f^{-1}(\{y\})).$$

Exercice 4. On reprend les notations de l'Exercice 1. Déterminer la loi de $(X_2 - X_1)^2$.

Théorème 2 (Admis).

Soient E un ensemble au plus dénombrable et $(p_x)_{x\in E}$ une famille de réels positifs tels que $\sum_{x\in E} p_x = 1$. Il existe un espace probabilisé $(\Omega, \mathscr{F}, \mathbb{P})$ et une variable aléatoire X tels que

$$X(\Omega) = E$$
 et $\forall x \in E, \mathbb{P}(X = x) = p_x$.

I.2 Exemples

Définition 3 (Loi uniforme).

Soit $E = \{x_1, \ldots, x_n\}$. Une variable aléatoire X suit la loi uniforme sur E, noté $X \sim \mathcal{U}(E)$, $\operatorname{si} X(\Omega) = \{x_1, \dots, x_n\} \text{ et}$

$$\forall i \in [1, n], \ \mathbb{P}(X = x_i) = \frac{1}{n}.$$

Exercice 5. Décrire un modèle où cette loi apparaît naturellement.

Définition 4 (Loi de BERNOULLI).

Soit $p \in [0,1]$. Une variable aléatoire X suit la loi de Bernoulli de paramètre p, noté $X \sim \mathcal{B}(p)$, $\text{si } X(\Omega) = \{0, 1\} \text{ et }$

$$\mathbb{P}(X = 1) = p = 1 - \mathbb{P}(X = 0).$$

Exercice 6. Décrire un modèle où cette loi apparaît naturellement.

Définition 5 (Loi géométrique).

Soit $p \in]0,1[$. Une variable aléatoire X suit la loi géométrique de paramètre p, noté $X \sim \mathcal{G}(p)$, $\operatorname{si} X(\Omega) = \mathbb{N}^* \operatorname{et}$

$$\forall k \in \mathbb{N}^*, \, \mathbb{P}(X = k) = p(1 - p)^{k - 1}.$$

Exercice 7. On considère n lancers indépendants d'une pièce de monnaie qui renvoie pile avec probabilité $p \in]0,1[$. Pour tout entier naturel n, on note A_n : le n-ème lancer renvoie pile et, pour tout $\omega \in \{P, F\}^{\mathbb{N}^*}$, on note $T(\omega) = \inf\{n \in \mathbb{N} : \omega \in A_n\}$ le temps d'attente du premier succès, où inf $\emptyset = +\infty$.. Déterminer, pour tout $n \in \mathbb{N}^*$, $\mathbb{P}(T = n)$, puis $\mathbb{P}(T = +\infty)$.

Théorème 3 (Absence de mémoire).

Soit X une variable aléatoire discrète à valeurs dans \mathbb{N}^* . Alors, X suit une loi géométrique si et seulement si

$$\forall (n,k) \in \mathbb{N}^2, \mathbb{P}(X > n + k | X > n) = \mathbb{P}(X > k).$$

Définition 6 (Loi binomiale).

Soient $p \in [0,1]$ et $n \in \mathbb{N}^*$. Une variable aléatoire X suit la loi binomiale, noté $X \sim \mathcal{B}(n,p)$, si $X(\Omega) = [0,n]$ et

$$\forall k \in [0, n], \mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}.$$

Exercice 8.

- 1. Décrire un modèle où cette loi apparaît naturellement.
- **2.** Loi multinomiale. On considère n lancers consécutifs d'un dé à 3 faces numérotées 1, 2, 3 dont les probabilités d'occurrence sont p, q et 1 p q. On note X le vecteur constitué du nombre de 1, de 2 et de 3 accumulés au cours de ces n lancers. Déterminer la loi de X. Généraliser ce résultat à un dé à m faces.

Définition 7 (Loi de POISSON).

Soit $\lambda \in \mathbb{R}_+^*$. Une variable aléatoire X suit la loi de Poisson de paramètre λ , noté $X \sim \mathscr{P}(\lambda)$, si $X(\Omega) = \mathbb{N}$ et

$$\forall k \in \mathbb{N}, \mathbb{P}(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}.$$

Théorème 4 (Approximation d'une POISSON par une binomiale).

Soient $\lambda > 0$ et $(p_n)_{n \in \mathbb{N}} \in [0, 1]^{\mathbb{N}}$ telle que $\lim_{n \to +\infty} np_n = \lambda$. Pour tout entier naturel n, soit X_n une variable aléatoire de loi binomiale de paramètres (n, p_n) . Alors,

$$\lim_{n \to \infty} \mathbb{P}(X_n = k) = e^{-\lambda} \frac{\lambda^k}{k!}.$$

I.3 Fonctions de répartition d'une variable aléatoire réelle

Définition 8 (Fonction de répartition).

Soit X une variable aléatoire réelle discrète. La fonction de répartition de X est la fonction F_X définie pour tout réel x par $F_X(x) = \mathbb{P}(X \leq x)$.

Exercice 9. Soit X le nombre de piles obtenues lors du lancer d'une pièce de monnaie biaisée. Représenter graphiquement F_X .

Propriétés 1.

Soient X une variable aléatoire réelle discrète.

- (i). F_X est croissante.
- (ii). $\lim_{x \to +\infty} F_X(x) = 1$ et $\lim_{x \to -\infty} F_X(x) = 0$.

Exercice 10. Soit F_X la fonction de répartition d'une variable aléatoire X réelle.

1. Montrer que F_X est continue à droite et admet une limite à gauche en tout point.

2. Pour tout $x \in \mathbb{R} \backslash X(\Omega)$, montrer que F_X est continue en x.

3. On note $X(\Omega) = \{x_i, i \in I\}$ où I est au plus dénombrable et les (x_i) sont triés par ordre croissant. Exprimer, pour tout $i \in I$, la quantité $\mathbb{P}(X = x_i)$ en fonction de $F_X(x_i)$ et de $F_X(x_{i-1})$.

4. Soient X (resp. Y) des variables aléatoires réelles discrètes de fonctions de répartition F_Y (resp. F_Y). Montrer que $F_X = F_Y$ si et seulement si X et Y ont même loi.

II. Loi conjointe, Indépendance

Notation.

■ X et Y désignent deux variables aléatoires discrètes définies sur un même espace probabilisé $(\Omega, \mathscr{F}, \mathbb{P})$.

II.1 Loi conjointe

Définition 9 (Loi conjointe).

Si $X(\Omega) \subset E$ et $Y(\Omega) \subset F$, alors la loi conjointe du couple (X,Y) est la fonction définie sur $E \times F$ par $f_{X,Y} : (x,y) \mapsto \mathbb{P}((X=x) \cap (Y=y))$.

Propriété 2 (Marginales).

Soit $f_{X,Y}$ la loi de conjointe du couple (X,Y). Les lois lois marginales du couple (X,Y) satisfont :

$$f_X(x) = \sum_y f_{X,Y}(x,y)$$
$$f_Y(y) = \sum_y f_{X,Y}(x,y)$$

Exercice 11.

1. Loi de Benford. Soient D_1 et D_2 deux variables aléatoires à valeurs dans $[1,9] \times [0,9]$ de loi conjointe

$$\mathbb{P}(\{D_1 = d_1\} \cap \{D_2 = d_2\}) = \log_{10}\left(1 + \frac{1}{d_2 + 10d_1}\right).$$

- a) Avec les notations de l'exercice précédent, déterminer la première loi marginale du couple (D_1, D_2) .
 - **b)** Vérifier que $\mathbb{P}((D_1, D_2) \in [1, 9] \times [0, 9]) = 1$.
- 2. Soient $\lambda > 0$ et X, Y deux variables aléatoires à valeurs dans N telles que

$$\forall (i,j) \in \mathbb{N}^2, \ \mathbb{P}(\{X=i\} \cap \{Y=j\}) = a \frac{(i+j)\lambda^{i+j}}{i!j!}.$$

- a) Déterminer les lois marginales de (X, Y).
- **b)** Déterminer a.
- c) Déterminer la loi de X + Y.
- **3.** Lors d'une suite d'épreuves de Bernoulli indépendantes de probabilité de succès $p \in]0,1[$, on note X (resp. Y) le rang du premier (resp. second) succès. Déterminer la loi de (X,Y) et en déduire les lois de X puis de Y.

4. Construire deux couples (X,Y) et $(\widetilde{X},\widetilde{Y})$ tels que $X\sim\widetilde{X},\,Y\sim\widetilde{Y}$ mais (X,Y) et $(\widetilde{X},\widetilde{Y})$ n'ont pas même loi.

Définition 10 (Loi conditionnelle).

La loi conditionnelle de Y sachant X=x, notée $f_{Y|X}(\cdot|x)$ est définie, pour tout x tel que $\mathbb{P}(X=x)>0$ par $f_{Y|X}(\cdot|x):y\mapsto \mathbb{P}(Y=y|X=x)$.

Exercice 12. En reprenant le **3.** de l'exercice précédent, déterminer, pour $i \ge 1$ et pour tout $k \ge 2$, la loi conditionnelle de...

1. . . .
$$X$$
 sachant $\{Y = k\}$.

2. ...
$$Y - i$$
 sachant $\{X = i\}$.

Propriété 3.

Soit $x \in X(\Omega)$. Alors,

$$(i) \quad f_{X,Y} = f_{X|Y} \cdot f_Y.$$

(ii).
$$\mathbb{P}(X = x) = \sum_{y \in Y(\Omega)} \mathbb{P}(Y = y) \cdot \mathbb{P}(X = x | Y = y)$$
.

Exercice 13. Soient $X \sim \mathcal{P}(\lambda)$ et Y une variable aléatoire telle que la loi conditionnelle de Y sachant $\{X = n\}$ est une loi binomiale de paramètre (n, p). Déterminer la loi de Y.

II.2 Indépendance

Définition 11 (Indépendance).

Les variables aléatoires X et Y sont indépendantes si, pour tout couple $(x, y) \in X(\Omega) \times Y(\Omega)$, les événements $\{X = x\}$ et $\{Y = y\}$ sont indépendants.

Définition 12 (Schéma de BERNOULLI).

Soit $p \in [0, 1]$. Une épreuve de Bernoulli de paramètre p est une expérience aléatoire qui admet deux issues : le succès avec paramètre p et l'échec avec paramètre 1 - p.

Un sch'ema de Bernoulli à n épreuves est une suite de n d'expériences de Bernoulli identiques et indépendantes.

Exercice 14. Soit N une variable aléatoire suivant une loi de Poisson de paramètre λ . On réalise une suite de N épreuves de Bernoulli de probabilité de succès égale à p. On note X (resp. Y) le nombre de succès (resp. d'échecs) obtenus lors de ces lancers. Montrer que X et Y sont indépendantes.

Théorème 5.

Les variables aléatoires X et Y sont indépendantes si et seulement si pour tout $A \subset X(\Omega)$ et $B \subset Y(\Omega)$,

$$\mathbb{P}\left(\left\{X\in A\right\}\cap\left\{Y\in B\right\}\right)=\mathbb{P}\left(X\in A\right)\mathbb{P}\left(Y\in B\right).$$

Corollaire 6.

Soient X et Y deux variables aléatoires indépendantes, g une fonction définie sur $X(\Omega)$ et h une fonction définie sur $Y(\Omega)$. Alors, g(X) et h(Y) sont indépendantes.

Théorème 7 (Somme de v.a. indépendantes).

Soient X et Y deux variables aléatoires indépendantes à valeurs entières. Alors,

$$\forall n \in \mathbb{N}, \mathbb{P}(X+Y=n) = \sum_{k=0}^{n} \mathbb{P}(X=k) \mathbb{P}(Y=n-k).$$

Exercice 15.

- **1.** Soient $X \sim \mathcal{B}(n,p)$ et $Y \sim \mathcal{B}(m,p)$ indépendantes. Déterminer la loi de X+Y.
- **2.** Soient $X \sim \mathcal{P}(\lambda)$ et $Y \sim \mathcal{P}(\mu)$ indépendantes. Déterminer la loi de X + Y.

Définition 13 (Indépendance mutuelle).

Soit $(X_i)_{i\in I}$ une famille de variables aléatoires discrètes. La famille $(X_i)_{i\in I}$ est une famille de variables aléatoires indépendantes si pour toute famille $(x_i)_{i\in I}$, les événements $(\{X_i = x_i\})_{i\in I}$ sont mutuellement indépendants.

Exercice 16.

- 1. Montrer que si (X_1, \ldots, X_n) sont mutuellement indépendantes, alors elles sont deux à deux indépendantes.
- **2.** Soient (X_1, \ldots, X_n) des variables aléatoires indépendantes de lois géométriques de paramètres respectifs p_1, \ldots, p_n .
 - a) Soit $Z = \max\{X_1, \ldots, X_n\}$. Calculer la fonction de répartition puis la loi de Z.
 - **b)** Montrer que $Y = \min \{X_1, \dots, X_n\}$ suit une loi géométrique.
- **3. Lemme des coalitions.** Soient (X_1, \ldots, X_n) des variables aléatoires indépendantes et f, g deux fonctions. Alors, $f(X_1, \ldots, X_p)$ et $g(X_{p+1}, \ldots, X_n)$ sont indépendantes.

Théorème 8 (Admis).

Soient $(\mathbb{P}_i)_{i\in\mathbb{N}}$ une suite de lois de probabilités discrètes. Il existe un espace probabilisé $(\Omega, \mathscr{F}, \mathbb{P})$ et une suite $(X_n)_{n\in\mathbb{N}}$ de variables aléatoires sur $(\Omega, \mathscr{F}, \mathbb{P})$ indépendantes telles que pour tout $n\in\mathbb{N}$, la loi de X_n soit égale à \mathbb{P}_n .

Exercice 17. Identifier deux exemples d'application de ce théorème.

III. Moments d'une variable aléatoire réelle

Notation.

■ X, Y désignent deux variables aléatoires réelles discrètes définies sur un même espace probabilisé $(\Omega, \mathscr{F}, \mathbb{P})$.

III.1 Espérance

Définition 14 (Espérance).

Soient X une variable aléatoire discrète réelle et $X(\Omega) = \{x_k, k \in \mathbb{N}\}$. Si la série $\sum_{k \in \mathbb{N}} x_k \mathbb{P}(X = x_k)$ est absolument convergente, l'espérance, ou moyenne, de X, notée $\mathbb{E}[X]$, est le réel

$$\mathbb{E}[X] = \sum_{k=0}^{+\infty} x_k \mathbb{P}(X = x_k).$$

Si $\mathbb{E}[X] = 0$, la variable aléatoire est *centrée*.

Exercice 18.

- 1. Déterminer l'espérance d'une variable aléatoire de loi . . .
 - a) ... constante presque sûrement.

d) ... binomiale.

b) ... uniforme sur [0, n].

e) ... de Poisson.

c) ...de Bernoulli.

- 2. Montrer que toute variable aléatoire presque sûrement bornée admet une espérance.
- 3. Déterminer une variable aléatoire qui n'admet pas d'espérance.

Propriété 4.

Soit X une variable aléatoire discrète à valeurs entières et admettant une espérance. Alors,

$$\mathbb{E}[X] = \sum_{n=1}^{+\infty} \mathbb{P}(X \geqslant n).$$

Exercice 19. Déterminer l'espérance d'une variable aléatoire suivant une loi géométrique.

Propriété 5 (Probabilité & Espérance).

Pour tout $A \in \mathscr{F}$, $\mathbb{P}(A) = \mathbb{E}[\mathbb{1}_A]$.

Théorème 9 (Théorème de transfert).

Soient X une variable aléatoire discrète et f définie sur $X(\Omega) = \{x_n, n \in \mathbb{N}\}$ à valeurs réelles. Alors, f(X) est d'espérance finie si et seulement si $\sum \mathbb{P}(X = x_n) f(x_n)$ converge absolument. Dans ce cas,

$$\mathbb{E}[f(X)] = \sum_{n=0}^{+\infty} f(x_n) \mathbb{P}(X = x_n).$$

Propriétés 6.

Soit X une variable aléatoire discrète réelle admettant une espérance et $a \in \mathbb{R}$.

(i).
$$\mathbb{E}[1] = 1$$
.

$$(iii)$$
. $|\mathbb{E}[X]| \leq \mathbb{E}[|X|]$.

(ii). Si
$$X \geqslant 0$$
, alors $\mathbb{E}[X] \geqslant 0$.

Théorème 10 (Inégalité de MARKOV).

Soit X une variable aléatoire réelle discrète admettant une espérance. Pour tout $\varepsilon > 0$,

$$\mathbb{P}(|X| \geqslant \varepsilon) \leqslant \frac{\mathbb{E}[|X|]}{\varepsilon}.$$

Exercice 20.

- 1. Une pièce biaisée renvoie face avec probabilité 1/10. Cette pièce est lancée successivement 200 fois. Déterminer une majoration de la probabilité qu'elle renvoie face au moins 120 fois.
- 2. Dans une journée, un postier trie en moyenne 10 000 lettres par jour. Majorer la probabilité qu'il traite au moins 15 000 lettres aujourd'hui.

III.2 Lois conjointes

Propriété 7 (Linéarité de l'espérance).

Soient X, Y deux variables aléatoires réelles discrètes admettant une espérance et $a \in \mathbb{R}$. Alors,

$$\mathbb{E}[aX + Y] = a\mathbb{E}[X] + \mathbb{E}[Y].$$

Exercice 21.

- **1.** Retrouver l'égalité $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$ puis revisiter la formule du crible.
- **2. Croissance.** Montrer que si $X \leq Y$ sont deux variables aléatoires admettant une espérance, alors $\mathbb{E}[X] \leq \mathbb{E}[Y]$.

Définition 15 (Moment d'ordre *k*).

Soit k un entier positif. Le moment d'ordre k de X est, lorsqu'il est défini, le réel $\mathbb{E}[X^k]$.

Exercice 22

1. Donner un exemple de variable aléatoire admettant une espérance finie mais pas de moment d'ordre 2.

2. Déterminer le moment d'ordre 2 d'une variable aléatoire suivant une loi géométrique.

3. Montrer que si $r \leq s$, alors toute variable aléatoire admettant un moment d'ordre s admet un moment d'ordre r.

4. Montrer que si X et Y admettent des moments d'ordre 2, alors XY admet une espérance.

Théorème 11 (Inégalité de CAUCHY-SCHWARZ).

Soient X, Y deux variables aléatoires réelles discrètes possédant un moment d'ordre 2. Alors, XY admet une espérance et

$$|\mathbb{E}[XY]| \leqslant \sqrt{\mathbb{E}[X^2]} \cdot \sqrt{\mathbb{E}[Y^2]}.$$

Exercice 23. Étudier le cas d'égalité dans l'inégalité de Cauchy-Schwarz.

Théorème 12 (Espérance & Indépendance).

Soient X et Y deux variables aléatoires réelles indépendantes. Alors,

$$\mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y].$$

Exercice 24. Soient $n \in \mathbb{N}$, $(X_k)_{1 \le k \le n}$ une suite de variables aléatoires indépendantes suivant une loi de Bernoulli de paramètre $p \in [0,1]$ et $S_n = \sum_{k=1}^n X_k$. Déterminer $\mathbb{E}\left[(S_n - np)^3\right]$.

III.3 Variance

Définition 16 (Moment, Variance).

Soit X une variable aléatoire discrète réelle. Si X admet un moment d'ordre 2, la variance de X, notée $\mathbb{V}(X)$ ou Var(x), est le réel

$$\mathbb{V}(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right].$$

Si $\mathbb{V}(X) = 1$, la variable aléatoire est *réduite*.

Exercice 25. Déterminer la variance d'une variable aléatoire de loi . . .

1. ... constante presque sûrement.

4. . . . binomiale.

2. ... uniforme sur [0, n].

5. . . . de Poisson.

3. . . . de Bernoulli.

6. ... géométrique.

Propriétés 8.

Soient X une variable aléatoire discrète réelle admettant un moment d'ordre 2 et $a, b \in \mathbb{R}$.

- (i). $\mathbb{V}(X) \ge 0$ avec égalité si et seulement si X est presque sûrement constante.
- (ii). KÖNIG-HUYGENS. $\mathbb{V}(X) = \mathbb{E}[X^2] \mathbb{E}[X]^2$.
- (iii). $\mathbb{V}(aX + b) = a^2 \mathbb{V}(X)$.

Définition 17 (Écart-type).

Soit X une variable aléatoire réelle discrète admettant un moment d'ordre 2. L'écart-type de X, noté $\sigma(X)$, est le réel $\sqrt{\mathbb{V}(X)}$.

Exercice 26. Soit X une variable aléatoire discrète réelle admettant un moment d'ordre 2. Montrer que $\frac{X - \mathbb{E}[X]}{\sigma(X)}$ est centrée et réduite.

Théorème 13 (Inégalité de BIENAYMÉ-TCHEBYCHEV).

$$\mathbb{P}(|X - \mathbb{E}[X]| \geqslant \varepsilon) \leqslant \frac{\mathbb{V}(X)}{\varepsilon^2}.$$

Exercice 27.

- 1. Un postier traite en moyenne 10 000 lettres par jour avec une variance de 2 000.
 - a) Minorer la probabilité qu'il traite entre 8 000 et 12 000 lettres aujourd'hui.
 - b) Majorer la probabilité qu'il traite plus de 15 000 lettres aujourd'hui.
- **2.** Soient $g: \mathbb{R}_+ \to \mathbb{R}_+^*$ une fonction strictement croissante (par exemple, exp, $x \mapsto x^2$) et X une variable aléatoire telle que g(X) admette une espérance. Montrer que

$$\forall a > 0, \mathbb{P}(|X| \geqslant a) \leqslant \frac{\mathbb{E}[g(|X|)]}{g(a)}.$$

Définition 18 (Covariance)

Soient X, Y deux variables aléatoires réelles discrètes admettant des moments d'ordre 2. La covariance de X et Y, notée $\mathscr{C}ov(X,Y)$ est le réel

$$\mathscr{C}ov\left(X,Y\right) = \mathbb{E}\left[\left(X - \mathbb{E}[X]\right) \cdot \left(Y - \mathbb{E}[Y]\right)\right].$$

Si $\mathscr{C}ov(X,Y)=0$, les variables aléatoires sont décorrélées.

Lorsque les variables aléatoires ne sont pas constantes presque sûrement, le coefficient de corrélation de X et Y est la quantité

$$\rho(X,Y) = \frac{\mathscr{C}ov\left(X,Y\right)}{\sqrt{\mathbb{V}\left(X\right)\cdot\mathbb{V}\left(Y\right)}}$$

Propriétés 9.

Soient X et Y deux variables aléatoires discrètes admettant un moment d'ordre 2.

- (i). $\mathscr{C}ov(X,Y) = \mathscr{C}ov(Y,X)$.
- (ii). $\mathscr{C}ov(aX + b, Y) = a \cdot \mathscr{C}ov(X, Y)$.
- (iii). $\mathscr{C}ov(X, X) = \mathbb{V}(X)$. (iv). $\mathscr{C}ov(X, Y) = \mathbb{E}[X \cdot Y] \mathbb{E}[X] \cdot \mathbb{E}[Y]$. (v). $\rho(X, Y) \in [-1, 1]$.
- (vi). Si X et Y sont indépendantes, alors $\mathscr{C}ov(X,Y)=0$.

Exercice 28.

- **1.** Montrer que $\rho(X,Y) \in \{-1,1\}$ si et seulement s'il existe a, b, c réels tels que $\mathbb{P}(aX+bY=$ c) = 1.

2. Soient X et Y deux variables aléatoires indépendantes de loi de Bernoulli de paramètre $\frac{1}{2}$. Montrer que X + Y et |X - Y| sont dépendantes mais décorrélées.

III.4 Somme de variables aléatoires

Théorème 14 (Variance d'une somme).

Soient X_1, \ldots, X_n des variables aléatoires discrètes réelles admettant un moment d'ordre 2. Alors,

$$\mathbb{V}\left(\sum_{k=1}^{n} X_{k}\right) = \sum_{k=1}^{n} \mathbb{V}\left(X_{k}\right) + 2 \sum_{1 \leq i < j \leq n} \mathscr{C}ov\left(X_{i}, X_{j}\right).$$

Théorème 15 (Somme & Indépendance).

Soit (X_1, \ldots, X_n) une famille de variables aléatoires réelles discrètes admettant un moment d'ordre 2 et indépendantes deux à deux. Alors,

$$\mathbb{V}\left(\sum_{k=1}^{n} X_{k}\right) = \sum_{k=1}^{n} \mathbb{V}\left(X_{k}\right).$$

Exercice 29. Soit $(X_i)_{i \in [\![1,n]\!]}$ une suite de variables aléatoires indépendantes et de loi Bernoulli de paramètre p. On note $S_n = \sum_{i=1}^n X_i$.

- **1.** Déterminer $\mathbb{V}(S_n)$ et retrouver la variance d'une loi binomiale.
- **2.** Déterminer $\mathbb{E}\left[(S_n np)^4\right]$.

Théorème 16 (Loi faible des grands nombres).

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes deux à deux possédant un moment d'ordre 2. On suppose que ces variables aléatoires ont même espérance $m = \mathbb{E}[X_1]$ et variance $\sigma = \mathbb{V}(X_1)$. Alors, pour tout $\varepsilon > 0$,

$$\lim_{n \to +\infty} \mathbb{P}\left(\left| \frac{1}{n} \sum_{i=1}^{n} X_i - m \right| \geqslant \varepsilon \right) = 0.$$

Exercice 30. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires mutuellement indépendantes suivant toutes une loi de Bernoulli de paramètre $p\in]0,1[$. On note \forall $n\in\mathbb{N}^*$, $Y_n=X_n+X_{n+1}$ et $M_n=\frac{1}{n}\sum_{i=1}^n Y_i$.

- 1. Les variables aléatoires (Y_n) sont-elles mutuellement indépendantes?
- **2.** Calculer l'espérance et la variance de M_n .
- 3. Énoncer la loi faible des grands nombres. Peut-on démontrer un résultat analogue ici?

IV. Résumé concernant les lois classiques

En notant q = 1 - p.

Nom	Paramètres	$X(\Omega)$	$\bigg \mathbb{P}\left(X=k\right)$	$\bigg \mathbb{E}\left[X\right]$	$\mathbb{V}(X)$	G_X	ρ
Constante	c	{c}	1	c	0	$t^c \ (c \in \mathbb{N})$	$+\infty$
Uniforme	$a < b \in \mathbb{N}$	$\llbracket a,b rbracket$	$\frac{1}{b-a+1}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2-1}{12}$	$\frac{t^a - t^{b+1}}{(b-a+1)(1-t)}$	$+\infty$
Bernoulli	$p \in]0,1[$	{0,1}	p (k = 1)	p	pq	q + pt	$+\infty$
Binomiale	$(n,p)\in \mathbb{N}\times]0,1[$	$\llbracket 0, n rbracket$	$\binom{n}{k} p^k q^{n-k}$	np	npq	$(q+pt)^n$	$+\infty$
Géométrique	$p \in]0,1[$	N*	pq^{k-1}	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pt}{1-qt}$	$\frac{1}{q}$
Poisson	$\lambda \in \mathbb{R}_+^{\star}$	N	$\frac{\mathrm{e}^{-\lambda}\lambda^k}{k!}$	λ	λ	$e^{\lambda(t-1)}$	$+\infty$

69

Le problème du collectionneur

Exercice 31. On considère un jeu de cartes constitué de N cartes distinctes numérotées de 1 à N. Les cartes peuvent être achetées, à l'unité, dans un emballage opaque. On suppose que, lors de l'achat, chacune des cartes peut être obtenue avec équiprobabilité.

- 1. On note Y le nombre de cartes à acheter pour obtenir la carte numéro 1. Déterminer la loi de Y.
- **2.** Soit $n \in \mathbb{N}^*$. On note Y_n le nombre de cartes à acheter avant d'obtenir, pour la première fois, exactement n cartes numérotées 1. Déterminer la loi de Y_n . Cette loi est la loi binomiale négative. On note $X_0 = 0$ et X_i le nombre de cartes à acheter pour obtenir exactement i cartes distinctes. Pour tout $i \in [1, N]$, on note $T_i = X_i X_{i-1}$.
- **3.** Déterminer la loi de T_1 .
- **4.** Pour tout $i \in [1, N]$, déterminer la loi de T_i .

On note $T = \sum_{i=1}^{N} T_i$ le nombre de cartes à acheter pour obtenir la collection complète des N cartes.

5. Déterminer $\mathbb{E}[T]$ et en déduire un équivalent de $\mathbb{E}[T]$ lorsque N tend vers $+\infty$.

↑ Programme officiel (PCSI)

Probabilités - B - Variables aléatoires sur un univers fini (p. 31)

➡ Programme officiel (PSI)

Probabilités - B - Variables aléatoires discrètes (p. 21) - sauf c
) Variables aléatoires à valeurs dans $\mathbb N$

Mathématiciens

HUYGENS Christiaan (14 avr. 1629 à La Haye-8 juil. 1695 à La Haye). **BERNOULLI** Jacob (6 jan. 1655 à Basel-16 août 1705 à Basel).

KÖNIG Johann Samuel (31 juil. 1712 à Büdingen-21 août 1757 à Zuilenstein).

Poisson Siméon Denis (21 juin 1781 à Pithiviers-25 avr. 1840 à Sceaux).

CAUCHY Augustin-Louis (21 août 1789 à Paris-23 mai 1857 à Sceaux).

BIENAYMÉ Irénée-Jules (28 août 1796 à Paris-19 oct. 1878 à Paris).

TCHEBYCHEV Pafnouti Lvovitch (16 mai 1821 à Borovsk-8 déc. 1894 à St Pétersbourg).

SCHWARZ Hermann (25 jan. 1843 à Hermsdorf-30 nov. 1921 à Berlin).

Markov Andrei Andreyevich (14 juin 1856 à Ryazan-20 juil. 1922 à St Pétersbourg).

Benford Frank (29 mai 1883 à Johnstown-4 déc. 1948 à Schenectady).