UNIX_Exercise

Angela Bunning

BCB 546

Spring 2017

This is my repo for the UNIX homework for BCB546

• First thing I did was to create a new repo on my github for the specific assignment and used git clone https://github.com/abunning4/UNIX_Exercise.git to clone my repo to my desktop

Navigating my Repo

- All the final 40 files are in the Final Files directory on github and within that directory the 40 files are divided by ?/? (question data) and -/- (dash data)
 - both the teosinte and maize are in the those two files
- All the files generated to get to the final files are in a directory named Intermediate Files

Data Inspection

```
    fang_et_al_genotypes.txt
```

```
    wc lines: 2783 / words: 2744038 / bytes: 11051939
```

o file size by du -h: 11 M (11 megabytes)

o number of columns using awk: 986

2. snp position.txt

```
• wc : lines: 984 / words: 13198 / bytes: 82763
```

o file size by du -h: 84K (84 kilobytes)

• number of columns using awk: 15

Data Processing

- · First, the maize and teosinte data using
 - grep "ZMMIL" fang_et_al_genotypes.txt >> maize_genotypes_fang.txt for each genotype an put them into two files:

 maize_genotypes_fang.txt and teosinte_genotypes_fang.txt
- I then used the awk command Dr. Hufford wrote for the class to transform both the maize_genotypes_fang.txt and teosinte_genotypes_fang.txt files.
- cut was used to excise the columns needed from snp_position.txt --> columns for SNP ID, Chromosome, Position
 - cut -f 1,3,4 snp_position.txt > cut_snp_position

- 1,3,4 = SNP ID column, Chromosome column, Position column
- The common column between each transposed genotype data for maize and teosinte and the cut snp position file is the SNPID/SampleID
 - These files are already sorted appropriately, and therefore can be joined without sort at this time
- The join command was used to merge each individual transposed genotype files with the cut snps file.
 - \circ \$ join -t \$'\t' -1 1 -2 1 cut_snp_position.txt transposed_teosinte_genotypes.txt > joined_teosinte_snp.txt
 - o join -t \$'\t' -1 1 -2 1 cut_snp_position.txt transposed_maize_genotypes.txt > joined_maize_snp.txt
- The sort command is then used to sort each joined maize snp and teosinte snp increasing chromosome number
- awk was then used to pull out the each chromosome and put it in a new file
 - Example command: awk -F \t '\$2=="1"' sorted joined maize snp.txt > chr1 maize question.txt
 - chromosome was in column 2, and I was pulling out chromosome 1
 - This was completed for every chromosome in both maize and teosinte to generate ten files for the ?/? data
- In each of these chromosome specific files, the sort function was used to order them in ascending chromosome position value
 - Example command: sort -k 3,3 chr1 teosinte question.txt > chr1 teosinte sorted question.txt
 - This was completed for every chromosome for maize and teosinte
- the sed function was then used to generate the data files replacing the ?/? with -/-
 - Example command: sed 's/\?/\-/g' chr10_teosinte_sorted_question.txt > chr10_teosinte_sorted_dash.txt
 - This was completed for every chromosome for teosinte and maize