

第二題:觀光 (Sightseeing)

問題敍述

ACM 王國有 n 個城鎮,這些城鎮編號為 $1,2,\ldots,n$ 。其中某些城鎮之間建有**雙向通行**的公路。已知任兩個城鎮之間都可以經過一連串公路互相來往,而且對於任一城鎮,若想不重複經過某些公路抵達任何另一個城鎮,其路線是唯一的。換句話說,整個 ACM 王國其城鎮之間的公路連結狀況為一個樹狀結構。

有鑒於城鎮規模大小不同,每天造訪該城鎮的遊客人數也不盡相同。根據歷史資料,ACM 王國的政府掌握了遊客數的數據資料:編號為i的城鎮,其一整年下來造訪該地的期望旅客數為 A_i 人。現在 ACM 王國的政府想要推動大旅行計劃。這個大旅行計劃,其目的是希望平衡各城鎮間的觀光收益,打算將各個城鎮的觀光人數,由當前的 A_i 人調整為 B_i 人。因為僅是在各城鎮間調動遊客人數,全國的觀光人潮在大規模移動之後,並不會因此增加或就此減少,所以此大旅行計劃保證了 $A_1 + A_2 + \cdots + A_n = B_1 + B_2 + \cdots + B_n$ 。

至於具體上,要如何調整觀光人數呢?政府打算與運輸公司簽訂了一項BOT(建造-營運-轉移)案,簽下這份合約的運輸公司,會從觀光人口過剩的地方,安排計程車、遊覽車、三輪車或是人力車等任何方式,將觀光人潮半推半就地送至其他城鎮觀光。而運輸公司需要花費的成本,可以定義為將所有觀光客在城鎮間移動距離之總和。

最小成本其實不難計算,因此被許多運輸公司認定這個 BOT 案件沒有太多利潤,興趣缺缺。ACM 王國的政府為了增添廠商意願,決定補助一些機票錢來引誘運輸公司前來簽約。具體補助方案如下:

首先,政府會事先公布給運輸公司 q 對相異城鎮配對 $(x_1,y_1),(x_2,y_2),\ldots,(x_q,y_q)$ 。接下來,運輸公司可以在與政府簽約時,選定一個**非負整數** k。然後,政府會隨意從 q 對城鎮配對中選定其中一對城鎮 (X,Y),並且提供運輸公司 k 張**免費**單人單程機票。然而,運輸公司在領取這些機票時,必須要決定這 k 張機票是「從城鎮 X 飛往城鎮 Y」還是「從城鎮 Y 飛往城鎮 X」。這 k 張機票必須有相同的出發城鎮與目的地城鎮。每一張機票可以在任一時刻被使用,但是政府要求這 k 張機票 **都必須在這一整年之中被用完**。為了最小化成本,運輸公司此時會根據政府選定的城鎮配對,在「k 張 $X \to Y$ 機票」與「k 張 $Y \to X$ 機票」兩種選擇之中,選取達成**運輸觀** 光客且用掉所有機票之最少成本所對應的機票。

請注意,這些機票不見得總是得給觀光客使用,你可以假設每一個城鎮都有足夠多的居民。 為了消耗機票,你其實可以讓這些居民搭上飛機,然後叫計程車再把他們載回居住地的。只不 過運輸公司必須負擔將居民送回居住地的成本。

現在,政府已經釋出了標案中的q對相異城鎮配對。你身為樂樂運輸公司的頭號員工,任務是要找到一個k值來最大化「政府在最差情形下選擇的城鎮配對,運輸公司能夠省下來的費用」,並且輸出在此時公司可以因此**省下多少錢**。若有多個k值可選,則輸出最小的k值。

輸入格式

輸入的第一列有兩個正整數 n,q,以一個空白隔開。

接下來有n-1列,每一列分別有三個正整數 u_i, v_i, w_i ,代表城鎮 u_i 與城鎮 v_i 之間有一條長度為 w_i 的公路。

接下來有n列,每一列有兩個非負整數 A_i 與 B_i ,代表城鎮i目前的觀光人數為 A_i 、目標之觀光人數為 B_i 。

接下來有q列,每一列有兩個正整數 x_i, y_i ,代表政府事先公布的相異城鎮配對。

輸出格式

請輸出兩個整數:樂樂運輸公司在簽約時選定的 k 值,以及此時藉由政府補助 k 張機票後可以省下的成本。

測資限制

- $1 \le n \le 10^6 \circ$
- $1 \le q \le 10^6 \circ$
- $1 \le u_i, v_i \le n$, $u_i \ne v_i$, 而且輸入之公路保證形成樹狀結構。
- $1 \le w_i \le 1000 \circ$
- $0 \le A_i, B_i \le 1000 \circ$
- $A_1 + A_2 + \cdots + A_n = B_1 + B_2 + \cdots + B_n \circ$
- $1 \leq x_i, y_i \leq n$, $x_i \neq y_i$ \circ
- 對所有的 $i \neq j$ 皆有 $(x_i, y_i) \neq (x_i, y_i)$ 。

輸入範例1

- 6 2
- 1 2 2
- 2 3 1
- 3 4 3
- 4 5 2
- 5 6 1
- 0 12
- 32 0
- 10 0
- 0 20
- 0 13

3 0

1 4

3 6

輸出範例1

20 40

輸入範例 2

3 2

1 2 2

2 3 3

50 0

0 80

30 0

1 2

2 3

輸出範例 2

36 72

範例 2 的説明

範例 2 中,一開始沒有機票補助時的總成本是 $50 \times 2 + 30 \times 3 = 190$ 。我們選取 k = 36 後,若政府選擇 (X,Y) = (1,2),則我們選擇機票方向為 $1 \to 2$,這讓我們省下 $36 \times 2 = 72$ 的成本;若政府選擇 (X,Y) = (2,3),則我們選擇機票方向為 $3 \to 2$,這讓我們省下 $30 \times 3 - 6 \times 3 = 72$ 的成本(多出來的 6 張機票必須指派 6 位 3 號城鎮的居民消耗掉,再讓他們每人花 3 單位的成本送回家)。不難發現這個 k 是運輸公司的最佳選擇。好比說,若 k = 35,則政府選擇 (X,Y) = (1,2) 時只能省 $35 \times 2 = 70$ 的成本;若 k = 37,則政府選擇 (X,Y) = (2,3) 時只能省 $50 \times 3 - 7 \times 3 = 69$ 的成本。

2020年國際資訊奧林匹亞研習營:第二次模擬測驗

評分説明

本題共有4組測試題組,條件限制如下所示。每一組可有一或多筆測試資料,該組所有測試資料皆需答對才會獲得該組分數。

子任務	分數	額外輸入限制
1	7	$q=1$,且 (x_1,y_1) 是直接以某條公路相連的城鎮配對。
2	16	$n, q \leq 500$,且總遊客數 ≤ 500 。
3	32	$n \leq 10^5$, $q = 1$,且所有城鎮連接成一條鏈(path)。而 (x_1, y_1) 這對城鎮是鏈的兩端。
4	45	無額外限制。