1 Cel ćwiczenia

Wyznaczenie modułu Younga dla różnych materiałów na podstawie pomiaru prędkości rozchodzenia się fali dźwiękowej w pręcie.

2 Wstęp teoretyczny

Fala podłużna w pręcie powstaje na skutek chwilowego wychylenia się fragmentu pręta z położenia równowagi i następujących po nim drgań. Drgania te, dzięki sprężystości ośrodka, mogą być przekazywane dalej i mogą rozchodzić się po całym ośrodku. Szybkość rozchodzenia się fali zależy od bezwładności i sprężystości ośrodka, w którym się rozchodzi.

Wykonując to doświadczenie skorzystamy ze wzoru:

$$v = \sqrt{\frac{E}{\rho}} \tag{1}$$

gdzie

E - moduł Younga,

 ρ - gęstość ośrodka,

Przekształcając powyższy wzór otrzymujemy:

$$E = \rho v^2 \tag{2}$$

Fala padająca i fala odbita w pręcie, interferują ze sobą tworząc falę stojącą. Odległość między węzłami fali stojącej stanowi połowę jej długości

$$l = \frac{1}{2}\lambda\tag{3}$$

Znając częstotliwość fali f oraz odległość l między węzłami można obliczyć prędkość fali

$$v = 2lf \tag{4}$$

Prowadzi to do wyrażenia na moduł Younga

$$E = \rho f^2 \lambda^2 \tag{5}$$

3 Układ pomiarowy

- 1. Komputer stacjonarny Dell z systemem Windows XP i mikrofonem
- 2. Zainstalowane oprogramowanie Zelscope.
- 3. Zestaw czterech prętów (stalowy, mosiężny, aluminiowy oraz ze stopu...)
- 4. Suwmiarka
- 5. Miarka w rolce o podziałce 1mm
- 6. Młotek
- 7. Waga o dokładności 1g

4 Metoda pomiaru

- 1. W celu wyznaczenia gęstości poszczególnych materiałów należy zważyć i zmierzyć próbki wykonane z tych samych materiałów z których wykonane są pręty bądź same pręty, jeśli nie ma odpowiadających im próbek.
- 2. Ustawić mikrofon przy wybranym pręcie.

- 3. Uderzyć (z wyczuciem) mlotkiem w koniec pręta podwieszonego na dwóch niciach. Zaobserwować jaki obraz powstaje na oscyloskopie w programie Zelscope (odczyt obrazu po szybkiej transformacie Fouriera FFT).
- 4. Zarejestrować obraz z widocznymi harmonicznymi
- 5. Na podstawie otrzymanej długości fali wyliczyć średnią prędkość dźwięku w danym materiale oraz oszacować niepewność wyznaczenia prędkości dźwięku.
- 6. Wyliczyć moduł Younga dla danego materiału.
- 7. Punkty 3-8 powtarzać dla kolejnych prętów.

5 Wyniki pomiarów

3.6	3.6	0 1 11
Materiał	Masa pręta[g]	Gęstość
Stop nr1	31	7,77
Mosiądz	74	8,4
Aluminium	24	2,55
Stop nr 2	12	7,4

Nr harmonicznej	Częstotliwość f [Hz]	Długość fali[m]	Prędkość fali[m/s]
1	1382	3,604	4980,728
2	2882	1,802	5193,364

Nr harmonicznej	Częstotliwość f [Hz]	Długość fali[m]	Prędkość fali[m/s]
1	1647	2	3294
2	3411	1	3411

Nr harmonicznej	Częstotliwość f [Hz]	Długość fali[m]	Prędkość fali[m/s]
1	2411	2	4822
2	4911	1	4911

Nr harmonicznej	Częstotliwość f [Hz]	Długość fali[m]	Prędkość fali[m/s]
1	1382	3,6	4975,2
2	2882	1,8	5187,6

6 Opracowanie wyników

Dla obliczeń błędów pomiaru przyjęto następujące niepewności:

Dla długości pręta: u(l) = 1[mm]Dla promienia: u(r) = 0, 1[mm]Dla masy próbki:u(m) = 1[g]Dla częstotliwości:u(f) = 25[Hz]

Niepewność gęstości:

$$u(\rho) = \sqrt{\left(\frac{\partial \rho}{\partial m} u(m)\right)^2 + \left(\frac{\partial \rho}{\partial l} u(l)\right)^2 + \left(\frac{\partial \rho}{\partial r} u(r)\right)^2} = \sqrt{\left(\frac{1}{l \Pi r^2} u(m)\right)^2 + \left(\frac{-m}{l^2 \Pi r^2} u(l)\right)^2 + \left(\frac{-2m}{l \Pi r^3} u(r)\right)^2}$$

Niepewność długości fali:

$$u(\lambda) = \sqrt{\left(\frac{2}{n}u(l)\right)^2}$$

Niepewność prędkości fali:

$$u(v) = \sqrt{\left(\frac{\partial v}{\partial f}u(f)\right)^2 + \left(\frac{\partial v}{\partial \lambda}u(\lambda)\right)^2} = \sqrt{\left(\lambda u(f)\right)^2 + \left(fu(\lambda)\right)^2}$$

Niepewność modułu Younga:

$$u(E) = \sqrt{\left(\frac{\partial E}{\partial \rho}u(\rho)\right)^2 + \left(\frac{\partial E}{\partial v}u(v)\right)^2} = \sqrt{\left(v^2u(\rho)\right)^2 + \left(2\rho vu(v)\right)^2}$$

7 Podsumowanie

Wyznaczone wartości g zgadzają się ze wartością tabelaryczną tylko dla pomiaru dla stałej długości wahadła. Jest to spowodowane większą ilością prób dla takich samych warunków dzięki czemu można było w znacznym stopniu zmniejszyć wpływ reakcji człowieka który mógł być kluczowy dla tak niewielkich okresów drgań w przypadku zmiennej długości wahadła. Na dokładność wyników miał także wpływ poruszania się punktu materialnego który nie zawsze poruszał się tylko w jednej płaszczyźnie.