

ACADEMICS

Document ID	2023-24/RPSIT/AI&DS/LM/02	Document Name	Lab Manual
Subject Name	Machine Learning Laboratory	Subject Code	AD3461
Department	Artificial Intelligence & Data Science	Year / Sem	II / IV

Ex. No. 1:

For a given set of training data examples stored in a .CSV file, implemen and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistenwith the training examples.

Aim:

To implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training example stored in a .CSV file.

Algorithm:

Input: Dataset (features and target class)

Output: Specific hypothesis (specific h), General hypotheses (general h)

- 1. Load Dataset from 'Ex1 data.csv'
- 2. Separate 'concepts' (features) and 'target' (class labels) from Dataset
- 3. Initialize specific h with the first instance of concepts
- 4. Initialize general h with a list containing a hypothesis as general as possible (all "?")
- 5. For each instance and its corresponding target in the Dataset:
 - a. If target is "yes" (positive example):
 - i. For each feature in specific h:
 - If the feature value does not match the instance's feature value, set it to "?"
 - ii. Update each hypothesis in general h:
 - Set the feature to "?" if it does not match the instance
 - iii. Prune general h:
 - Keep only those hypotheses that are as general as or more general than specific h
 - b. If target is "no" (negative example):
 - i. Initialize a temporary list general h new
 - ii. For each hypothesis in general h:
 - For each feature in the hypothesis:
 - If the feature is "?", generate new hypotheses for each possible value except the

instance's value

• If the feature specifies a value different from the instance, copy the hypothesis to

general h new

- iii. Update general h to be general h new
- iv. Prune general h:
 - Keep only those hypotheses that are at least as general as specific h

- 6. Final Pruning of general h:
- a. Remove completely general hypotheses (all "?") from general_h, as they don't contribute to distinguishing instances
- 7. Return specific_h and general_h as the final specific and general hypotheses consistent with the training data

End Algorithm

Programe:

```
import numpy as np
2
     import pandas as pd
3
     # Load data
     data = pd.read_csv('Ex1_data.csv')
     concepts = np.array(data.iloc[:, :-1])
     target = np.array(data.iloc[:, -1])
     def candidate_elimination(concepts, target):
10
     ----n_features = concepts.shape[1]
11
     specific_h = concepts[0].copy()
12
     ····general_h·=·[["?"·for·_·in·range(n_features)]]
13
     for i, instance in enumerate(concepts):
14
     ·····if·target[i]·==·"yes":
15
16
     ·····for·x·in·range(n_features):
17
     .....# For positive instances, update S and G
18
     if instance[x] != specific_h[x]:
19
     .....specific h[x] =- '?'
20
     .....for g in general_h:
21
     .....q[x] =- '?'
22
     general_h = [g for g in general_h if all(feature == '?' or feature == specific_h[x] for x, feature
23
     in enumerate(q))]
24
     ····else:
25
     ····· # For a negative instance, refine G
26
     general_h_new = []
27
     .....for g in general_h:
28
     .....for x in range(n_features):
29
         \cdots if \cdot g[x] := \cdot "?":
30
            for val in np.unique(concepts[:, x]):
31
                ·····if·instance[x]·!= val:
32
                  g_new = g.copy()
                  g_new[x] = val
33
34
                 .....if g_new not in general_h_new:
35
                general_h_new.append(g_new)
36
         elif g[x] != instance[x]:
         general_h_new.append(g.copy())
37
38
         general_h = general_h_new.copy()
39
     .....general_h = [g for g in general_h if any(all(feature == '?' or feature == s for feature, s in zip(g,
40
     specific_h)) for s in specific_h)]
41
42
     ···# Final pruning to remove overly general hypotheses in G
43
     ····general_h·=·[g·for·g·in·general_h·if·g·!=·["?"·for·_·in·range(n_features)]]
44
     return specific_h, general_h
45
46
     s_final, g_final = candidate_elimination(concepts, target)
     print("Final Specific Hypothesis:", s_final)
     print("Final General Hypotheses:", g_final)
```

Data Set Used (Ex1 data.csv):

Sky, Temp, Humidity, Wind, Water, Forecast, Enjoy Sport sunny, warm, normal, strong, warm, same, yes sunny, warm, high, strong, warm, same, yes rainy, cold, high, strong, warm, change, no sunny, warm, high, strong, cool, change, yes

Output:

Final Specific Hypothesis: ['sunny' 'warm' '?' 'strong' '?' '?']

Final General Hypotheses: [['sunny', '?', '?', '?', '?', '?'], ['?', 'warm', '?', '?', '?', '?']]