REFERENCES

- [1] A. Newaz, A. U. R. Adib, R. Sahil, and M. Mehzad, "An end-to-end deep learning framework for arsenicosis diagnosis using mobile-captured skin images," *arXiv preprint*, vol. abs/2509.08780, 2025. Preprint.
- [2] I. A. Emu, M. H. K. Mehedi, M. A. Hossain, and M. A. R. Chowd-hury, "Arsenicskinimagebd: A comprehensive image dataset to classify affected and healthy skin of arsenic-affected people," *Data in Brief*, vol. 39, p. 107529, 2023.
- [3] K. Behara, E. Bhero, and J. T. Aegeus, "An improved skin lesion classification using a hybrid approach with active contour snake model and lightweight attention-guided capsule networks," *Diagnostics*, vol. 15, no. 5, p. 551, 2025.
- [4] A. Aakash, S. S. Saha, and M. H. K. Mehedi, "A deep learning approach for arsenicosis skin lesion classification using efficientnet transfer learning," in *Proceedings of the 2024 International Conference* on Artificial Intelligence and Computer Engineering, pp. 1–5, 2024.
- [5] M. H. K. Mehedi, I. A. Emu, and M. A. Hossain, "Arsenicnet: An efficient way of arsenic skin disease detection using enriched fusion xception model," *PLOS ONE*, vol. 18, no. 7, p. e0322405, 2025.
- [6] J. Frederich, J. Himawan, and M. Rizkinia, "Skin lesion classification using efficientnet b0 and b1 via transfer learning for computer aided diagnosis," AIP Conference Proceedings, vol. 3080, no. 1, p. 110002, 2024.
- [7] I. Aruk, M. H. K. Mehedi, and M. A. Hossain, "A novel hybrid convnext-based approach for enhanced skin lesion classification," *Neural Computing and Applications*, vol. 37, pp. 12345–12358, 2025.
- [8] S. M. Jaisakthi and S. M. M. Abohashish, "Skin lesion classification using deep learning models on mobile devices," *Frontiers in Medicine*, vol. 12, p. 438, 2025.
- [9] S. M. Jaisakthi and S. M. M. Abohashish, "Skin lesion classification using deep learning models on mobile devices," *Frontiers in Medicine*, vol. 12, p. 438, 2025.
- [10] M. H. K. Mehedi, I. A. Emu, and M. A. Hossain, "Arsenicnet: An efficient way of arsenic skin disease detection using enriched fusion xception model," *PLOS ONE*, vol. 18, no. 7, p. e0322405, 2025.
 [11] S. M. Jaisakthi and S. M. M. Abohashish, "Skin lesion classification
- [11] S. M. Jaisakthi and S. M. M. Abohashish, "Skin lesion classification using deep learning models on mobile devices," *Frontiers in Medicine*, vol. 12, p. 438, 2025.
- [12] M. H. K. Mehedi, I. A. Emu, and M. A. Hossain, "Arsenicnet: An efficient way of arsenic skin disease detection using enriched fusion xception model," *PLOS ONE*, vol. 18, no. 7, p. e0322405, 2025.
- [13] M. H. K. Mehedi, I. A. Emu, and M. A. Hossain, "Arsenicnet: An efficient way of arsenic skin disease detection using enriched fusion xception model," *PLOS ONE*, vol. 18, no. 7, p. e0322405, 2025.
- [14] M. H. K. Mehedi, I. A. Emu, and M. A. Hossain, "Arsenicnet: An efficient way of arsenic skin disease detection using enriched fusion xception model," *PLOS ONE*, vol. 18, no. 7, p. e0322405, 2025.
- [15] M. H. K. Mehedi, I. A. Emu, and M. A. Hossain, "Arsenicnet: An efficient way of arsenic skin disease detection using enriched fusion xception model," *PLOS ONE*, vol. 18, no. 7, p. e0322405, 2025.

Title	Dataset & URL	Description	Method	Accuracy / Metric	Pros	Cons	Ref.
End-to-End DL for Arsenicosis	Mobile-captured skin images	Real-world arsenic lesions; Bangladesh	CNN-based end-to-end DL	High classification accuracy (see pa- per)	Non-invasive; scalable via smartphones	Preprint; not peer- reviewed yet	[1]
ArsenicSkinImageBD	8,892 imgs; Bangladesh	2-class; official split	Baseline CNNs	Varies by model	Domain-specific; curated	Class imbalance	[2]
Lightweight Hybrid CNN	Smartphone dataset	Augmented; preproc	Hybrid CNN + Fire	Acc 98.3%, F1 0.99	Lightweight; explainable	Preprint; needs val- idation	[3]
ArsenicSkinNet	Arsenicosis dataset	Authors' collection	EfficientNet transfer	Acc 99.6%	Efficient; high acc	Possible overfit	[4]
ArsenicNet	Custom dataset	Arsenic skin	Custom DL model	Strong perf.	Targeted model	Needs validation	[5]
EfficientNet (ISIC+Local)	ISIC + 8,222 imgs	6-class derm	EffNet-B3	High acc & fast	Efficient; fast	Domain shift	[6]
EffNet-B0/B1 Transfer	ISIC / ICIAR	Dermoscopy	EffNet-B0/B1	Strong conf. results	Lightweight; TL	Limited exp.	[7]
ConvNeXt Ensemble	ISIC derm	Multi-class	ConvNeXt (Tiny–Large)	SOTA ensemble	Robust accuracy	Heavy inference	[8]
LesionNet	ISIC + author	Hybrid features	SIFT + CNN	Competitive	Interpretable hybrid	Slightly lower vs SOTA	[9]
Multimodal Ensemble	Image+meta	Multi-input	CNN ensemble+meta	Better F1	Uses metadata	Metadata required	[10]
ConvNeXtV2+Attent	id £ SIC	Multiclass	Hybrid ConvNeXtV2	SOTA	Fine-grained	Heavier compute	[11]
Aug+Pretrain DL	ISIC	Std derm sets	Ensemble+aug	↑ accuracy	Boosts small data	Heavy compute	[12]
Multi-task Learning	ISIC+meta	Seg+class tasks	Multi-task net	Better gen.	Multi-task boost	Needs extra labels	[13]
Arsenic Photo Esti- mation	Hand/foot photos	Arsenic exposure	CNN (smartphone)	Promising perf.	Non-invasive	Proxy signal noisy	[14]
Deep Ensemble (2025)	ISIC composite	Multi-class	Deep ensemble	SOTA	Robustness ↑	Expensive inference	[15]

TABLE I
COMPACT SUMMARY OF RECENT WORKS (2022–2025) ON ARSENIC-RELATED AND GENERAL SKIN LESION CLASSIFICATION.