1 Matrices

1.1 Définition

Un matrice de *taille* $n \times p$ (n lignes et p colonnes) :

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,j} & \dots & a_{1,p} \\ a_{2,1} & a_{2,2} & \dots & a_{2,j} & \dots & a_{2,p} \\ \dots & \dots & \dots & \dots & \dots \\ a_{i,1} & a_{i,2} & \dots & a_{i,j} & \dots & a_{i,p} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n,1} & a_{n,2} & \dots & a_{n,j} & \dots & a_{n,p} \end{pmatrix} \quad \text{ou} \quad A = \left(a_{i,j}\right)_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}}$$

L'ensemble de telles matrices est noté $M_{n,p}(\mathbb{K})$.

— Si n=p (même nombre de lignes que de colonnes), la matrice est dite *matrice carrée*. On note $M_n(\mathbb{K})$ au lieu de $M_{n,n}(\mathbb{K})$.

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{pmatrix}$$

Les éléments $a_{1,1}, a_{2,2}, \ldots, a_{n,n}$ forment la **diagonale principale**.

— La matrice (de taille $n \times p$) dont tous les coefficients sont des zéros est appelée la *matrice nulle* et est notée $0_{n,p}$ ou plus simplement 0.

Définition (Somme de deux matrices). Soient A et B deux matrices ayant la même taille $n \times p$. Leur *somme* C = A + B est la matrice de taille $n \times p$ définie par

$$c_{ij} = a_{ij} + b_{ij}.$$

Définition (Produit d'une matrice par un scalaire). Le produit d'une matrice $A = (a_{ij})$ de $M_{n,p}(\mathbb{K})$ par un scalaire $\alpha \in \mathbb{K}$ est la matrice (αa_{ij}) formée en multipliant chaque coefficient de A par α . Elle est notée $\alpha \cdot A$ (ou simplement αA).

1.2 Multiplication de matrices

Le produit AB de deux matrices A et B est défini si et seulement si le nombre de colonnes de A est égal au nombre de lignes de B.

Définition (Produit de deux matrices). Soient $A=(a_{ij})$ une matrice $n\times p$ et $B=(b_{ij})$ une matrice $p\times q$. Alors le produit C=AB est une matrice $n\times q$ dont les coefficients c_{ij} sont définis par :

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$$

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ik}b_{kj} + \dots + a_{ip}b_{pj}$$
.

Proposition.

- 1. A(BC) = (AB)C: associativité,
- 2. A(B+C) = AB + AC et (B+C)A = BA + CA: distributivité,
- 3. $A \cdot 0 = 0$ et $0 \cdot A = 0$.

Pièges à éviter

- Premier piège. Le produit de matrices n'est pas commutatif en général.
- Deuxième piège. AB = 0 n'implique pas A = 0 ou B = 0.
- Troisième piège. AB = AC n'implique pas B = C.

La matrice carrée suivante est la ${\it matrice}$ ${\it identit\'e}$:

$$I_n = \left(\begin{array}{cccc} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{array}\right)$$

Proposition. Si A est une matrice $n \times p$, alors

$$I_n \cdot A = A$$
 et $A \cdot I_p = A$.

Puissance

Si $A \in M_n(\mathbb{K})$ est une matrice carrée, on peut multiplier une matrice carrée par elle-même : on note $A^2 = A \times A$, $A^3 = A \times A \times A$. La formule de récurrence est $A^0 = I_n$ et $A^{p+1} = A^p \times A$ pour tout $p \in \mathbb{N}$.

1.3 Inverse d'une matrice : définition

Définition (Matrice inverse). Soit A une matrice carrée de taille $n \times n$. S'il existe une matrice carrée B de taille $n \times n$ telle que

$$AB = I$$
 et $BA = I$,

on dit que A est *inversible*. On appelle B l'*inverse de A* et on la note A^{-1} . Il suffit en fait de vérifier une seule des conditions AB = I ou bien BA = I. L'ensemble des matrices inversibles de $M_n(\mathbb{K})$ est noté $GL_n(\mathbb{K})$.

Proposition.

- Si A est inversible, alors son inverse est unique.
- Soit A une matrice inversible. Alors A^{-1} est aussi inversible et on a : $(A^{-1})^{-1} = A$
- Soient A et \overline{B} deux matrices inversibles de même taille. Alors AB est inversible et $(AB)^{-1} = B^{-1}A^{-1}$. Il faut bien faire attention à l'inversion de l'ordre l
- Soient A et B deux matrices de $M_n(\mathbb{K})$ et C une matrice inversible de $M_n(\mathbb{K})$. Alors l'égalité AC = BC implique l'égalité A = B.

1.4 Inverse d'une matrice : calcul

Considérons la matrice $2 \times 2 : A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Proposition. Si $ad - bc \neq 0$, alors A est inversible et

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Méthode de Gauss pour inverser les matrices

La méthode pour inverser une matrice A consiste à faire des opérations élémentaires sur les lignes de la matrice A jusqu'à la transformer en la matrice identité I. En pratique, à côté de la matrice A que l'on veut inverser, on rajoute la matrice identité pour former un tableau $(A \mid I)$. Sur les lignes de cette matrice augmentée, on effectue des opérations élémentaires jusqu'à obtenir le tableau $(I \mid B)$. Et alors $B = A^{-1}$.

Ces opérations élémentaires sur les lignes sont :

- 1. $L_i \leftarrow \lambda L_i$ avec $\lambda \neq 0$: on peut multiplier une ligne par un réel non nul (ou un élément de $\mathbb{K} \setminus \{0\}$).
- L_i ← L_i + λL_j avec λ ∈ K (et j ≠ i) : on peut ajouter à la ligne L_i un multiple d'une autre ligne L_i.
- 3. $L_i \longleftrightarrow L_j$: on peut échanger deux lignes.

1.5 Inverse d'une matrice : systèmes linéaires

$$\underbrace{\left(\begin{array}{ccc} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{array}\right)}_{A} \quad \underbrace{\left(\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array}\right)}_{Y} \quad = \quad \underbrace{\left(\begin{array}{c} b_1 \\ b_2 \\ \vdots \\ b_n \end{array}\right)}_{P}.$$

Proposition. Si la matrice A est inversible, alors la solution du système linéaire AX = B est unique et est :

$$X = A^{-1}B$$

1.6 Matrices triangulaires, transposée...

Soit A une matrice de taille $n \times n$. On dit que A est triangulaire inférieure si ses éléments au-dessus de la diagonale sont nuls, autrement dit :

$$i < j \implies a_{ij} = 0.$$

Une matrice triangulaire inférieure a la forme suivante :

$$\begin{pmatrix} a_{11} & 0 & \cdots & \cdots & 0 \\ a_{21} & a_{22} & \ddots & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & \ddots & 0 \\ a_{n1} & a_{n2} & \cdots & \cdots & a_{nn} \end{pmatrix}$$

On dit que *A* est *triangulaire supérieure* si ses éléments en-dessous de la diagonale sont nuls, autrement dit :

$$i > j \implies a_{ij} = 0.$$

Une matrice triangulaire supérieure a la forme suivante :

$$\begin{pmatrix} a_{11} & a_{12} & \dots & \dots & a_{1n} \\ 0 & a_{22} & \dots & \dots & a_{2n} \\ \vdots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & a_{nn} \end{pmatrix}$$

Une matrice qui est triangulaire inférieure et triangulaire supérieure est dite diagonale. Autrement dit : $i \neq j \implies a_{ij} = 0$.

Théorème. Une matrice A de taille $n \times n$, triangulaire, est inversible si et seulement si ses éléments diagonaux sont tous non nuls.

Soit *A* la matrice de taille $n \times p$

$$A = \left(\begin{array}{cccc} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{array} \right).$$

Définition. On appelle *matrice transposée* de A la matrice A^T de taille $p \times n$ définie par :

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1p} & a_{2p} & \dots & a_{np} \end{pmatrix}.$$

Autrement dit : le coefficient à la place (i,j) de A^T est a_{ji} . Ou encore la i-ème ligne de A devient la i-ème colonne de A^T (et réciproquement la j-ème colonne de A^T est la j-ème ligne de A).

Notation : La transposée de la matrice A se note aussi souvent ${}^t\!A$.

Théorème.

1.
$$(A+B)^T = A^T + B^T$$

2.
$$(\alpha A)^T = \alpha A^T$$

3.
$$(A^T)^T = A$$

$$4. \quad (AB)^T = B^T A^T$$

5. Si A est inversible, alors A^T l'est aussi et on a $(A^T)^{-1} = (A^{-1})^T$.

Notez bien l'inversion : $(AB)^T = B^T A^T$.

Définition. La *trace* d'une matrice carrée $A \in M_n(\mathbb{K})$ est le nombre obtenu en additionnant les éléments diagonaux de A. Autrement dit,

$$tr A = a_{11} + a_{22} + \dots + a_{nn}.$$

Théorème. Soient A et B deux matrices $n \times n$. Alors :

1.
$$\operatorname{tr}(A+B) = \operatorname{tr}A + \operatorname{tr}B$$
,

2.
$$tr(\alpha A) = \alpha tr A pour tout \alpha \in \mathbb{K}$$
,

$$3. \quad \operatorname{tr}(A^T) = \operatorname{tr} A,$$

4.
$$tr(AB) = tr(BA)$$

Définition. Une matrice A de taille $n \times n$ est *symétrique* si elle est égale à sa transposée, c'est-à-dire si $A = A^T$, ou encore si $a_{ij} = a_{ji}$ pour tout $i, j = 1, \ldots, n$. Les coefficients sont donc symétriques par rapport à la diagonale.

Définition. Une matrice A de taille $n \times n$ est *antisymétrique* si $A^T = -A$, c'est-à-dire si $a_{ij} = -a_{jj}$ pour tout i, j = 1, ..., n.