Non-probabilistic supervised classification

Machine Learning

Introduction

Algorithms:

- Artificial Neural Network
- 2. k-Nearest Neighbors
- 3. Rule Induction
- 4. Support Vector Machines
- 5. Classification Trees

Evaluation:

- 1. Accuracy: overall correctness of the model's predictions.
- 2. Precision: proportion of true positive to positive predictions.
- Recall: proportion of true positive predictions to actual positive instances.
- 4. F1 Score: mean of precision and recall, providing a balance between the two.
- 5. AUC-ROC: Area Under the ROC Curve, used to assess the model's discrimination ability in distinguishing between positive and negative instances.

Feature selection:

- 1. All variables
- Univariate filter
- Multivariate filter
- 4. Wrapper

Goal: Predict Heart disease

Dataset

Centers for Disease Control and Prevention. Annual telephone surveys to collect health data of U.S. residents. 319,795 entries and 18 columns.

Preprocessing:

- Numerical to categorical using Label encoding and One-hot encoding
- Removed outliers
- Normalized

Due to the nature of the dataset, it was unbalanced so i balanced and still had enough data to work with

Result: 52,296 entries and 24 columns Split into training and test sets 80 / 20 %

Feature selection

- All variables
- Univariate filter: Gain ratio evaluation and a ranker with a threshold of 0.05 p-value.
- Multivariate filter: Correlation-based Feature Selection and GreedyStepwise.
- Wrapper: ClassifierSubsetEval with a GreedyStepwise algorithm. Subset of the data of 5000 entries.

Variable	Univariate	Multivariate	Wrapper KNN	Wrapper RIPPER	Wrapper SVM	Wrapper ANN	Wrapper TREE
BMI							
Smoking							
AlcoholDrinking							
Stroke							
PhysicalHealth							
MentalHealth							
DiffWalking							
AgeCategory							
Diabetic							
PhysicalActivity							
GenHealth							
SleepTime							
Asthma							
KidneyDisease							
SkinCancer							
Sex_Female							
Sex_Male							
Race_American							
Race_Asian							
Race_Black							

Results: KNN

Two classes: K an odd number and set as sqrt(N)/2.

- K = 103

- K = 51

Filters improved results but not high impact overall.

Feature Selection	Precision	Recall	F-Measure	ROC Area	Accuracy
All variables	0.755	0.755	0.755	0.827	75.4685%
Univariate	0.757	0.753	0.752	0.829	75.3442%
Multivariate	0.767	0.750	0.749	0.821	76.4532%
Wrapper	0.767	0.765	0.765	0.838	76.5392%

Results: RIPPER

```
(GenHealth >= 0.75) and (AgeCategory <= 0.09375) and (Stroke <= 0) => HeartDisease=No (1980.0/88.0) (GenHealth >= 0.75) and (AgeCategory <= 0.40625) and (Stroke <= 0) => HeartDisease=No (3840.0/332.8) (GenHealth >= 0.5) and (AgeCategory <= 0.25) and (Stroke <= 0) => HeartDisease=No (1577.0/154.0) (GenHealth >= 0.5) and (AgeCategory <= 0.484375) and (Stroke <= 0) => HeartDisease=No (3114.0/773.0) (GenHealth >= 0.5) and (AgeCategory <= 0.484375) and (Stroke <= 0) => HeartDisease=No (3114.0/773.0) (GenHealth >= 0.75) and (AgeCategory <= 0.71875) and (Diabetic <= 0) and (Stroke <= 0) => HeartDisease=No (1457.0/283.0) (GenHealth >= 0.75) and (AgeCategory <= 0.71875) and (Diabetic <= 0) and (Stroke <= 0) => HeartDisease=No (182.0/1041.0) (AgeCategory <= 0.76875) and (Diabetic <= 0) and (GenHealth >= 1) and (Stroke <= 0) => HeartDisease=No (935.0/407.0) (Diabetic <= 0) and (AgeCategory <= 0.5625) and (Stroke <= 0) and (GenHealth >= 1) and (KidneyDisease <= 0) => HeartDisease=No (260.0/106.0) (GenHealth >= 0.75) and (Diabetic <= 0) and (AgeCategory <= 0.875) and (Stroke <= 0) and (GenHealth >= 1) and (KidneyDisease <= 0) => HeartDisease=No (2213.0/593.0) (GenHealth >= 0.75) and (Diabetic <= 0) and (AgeCategory <= 0.796875) and (Stroke <= 0) => HeartDisease=No (2213.0/593.0) (GenHealth >= 0.75) and (Diabetic <= 0) and (AgeCategory <= 0.796875) and (Stroke <= 0) => HeartDisease=No (2213.0/593.0) (DiffMalking <= 0) and (AgeCategory <= 0.328125) and (Stroke <= 0) => HeartDisease=No (570.0/164.0) => HeartDisease=No (22238.0/6364.0)
```

Number of Rules : 12

- Higher values of GenHealth are associated with lower likelihood of heart disease.
- Younger individuals are generally less likely to have heart disease.
- Absence of a previous stroke is indication of lower risk for heart disease.
- Other variables have less influence on the prediction of heart disease.

Feature Selection	Precision	Recall	F-Measure	ROC Area	Accuracy
All variables	0.764	0.761	0.761	0.788	76.109%
Univariate	0.753	0.750	0.749	0.781	75.0191%
Multivariate	0.765	0.763	0.762	0.790	76.2906%
Wrapper	0.763	0.761	0.760	0.790	76.0803%

Results: ANN and SVM

One hidden layer multilayer perceptron

Feature Selection	Precision	Recall	F-Measure	ROC Area	Accuracy
All variables	0.764	0.764	0.763	0.839	76.3576%
Univariate	0.746	0.742	0.742	0.826	74.2447%
Multivariate	0.761	0.758	0.758	0.840	75.8317%
Wrapper	0.758	0.755	0.755	0.839	75.5354%

Feature Selection	Precision	Recall	F-Measure	ROC Area	Accuracy
All variables	0.770	0.769	0.769	0.769	76.9216%
Univariate	0.755	0.754	0.754	0.754	75.392%
Multivariate	0.767	0.766	0.766	0.766	76.6157%
Wrapper	0.766	0.765	0.765	0.765	76.4818%

Results: J48

- <u>AgeCategory</u>: first to split the data. Multiple times in different branches of the tree, significant impact.
- GenHealth: Used in multiple splits, significant impact.
- <u>Stroke</u>, <u>DiffWalking</u>, <u>KidneyDisease</u>, <u>Diabetic</u>: Few splits in the tree. Provides additional information.

Feature Selection	Precision	Recall	F-Measure	ROC Area	Accuracy
All variables	0.748	0.747	0.747	0.785	74.6845%
Univariate	0.756	0.765	0.764	0.838	75.3537%
Multivariate	0.768	0.766	0.765	0.821	76.5679%
Wrapper	0.754	0.753	0.753	0.794	75.3155%

Conclusion

- Similar performance across different feature selection techniques.

 The impact of feature selection techniques on model performance is not significant. Most of the variables are relevant.

- The J48 model generally lower results.

- Overall best one is SVM using all attributes.

Feature Selection	Model	Precision	Recall	F-Measure	ROC Area	Accuracy
	KNN	0.755	0.755	0.755	0.8274	75.4685 %
A11	RIPPER	0.764	0.761	0.761	0.788	76.109 %
variables	SVM	0.770	0.769	0.769	0.769	76.9216 %
	ANN	0.764	0.764	0.763	0.839	76.3576 %
	J48	0.748	0.747	0.747	0.785	74.6845 %
	KNN	0.757	0.753	0.752	0.829	75.3442 %
	RIPPER	0.753	0.750	0.749	0.781	75.0191 %
Univariate	SVM	0.755	0.754	0.754	0.754	75.392 %
	ANN	0.746	0.742	0.742	0.826	74.2447 %
	J48	0.756	0.765	0.764	0.838	75.3537 %
	KNN	0.767	0.750	0.749	0.821	76.4532 %
	RIPPER	0.765	0.763	0.762	0.790	76.2906 %
Multivariate	SVM	0.767	0.766	0.766	0.766	76.6157 %
	ANN	0.761	0.758	0.758	0.840	75.8317 %
	J48	0.768	0.766	0.765	0.821	76.5679 %
	KNN	0.767	0.765	0.765	0.838	76.5392 %
	RIPPER	0.763	0.761	0.760	0.790	76.0803 %
Wrapper	SVM	0.766	0.765	0.765	0.765	76.4818 %
	ANN	0.758	0.755	0.755	0.839	75.5354 %
	J48	0.754	0.753	0.753	0.794	75.3155 %

References

- [1] KamilPytlak. Personal Key Indicators of Heart Disease. Data retrieved from Kaggle,https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease. 2021.
- [2] Pedro Larrañaga, Concha Bielza. Feature Subset Selection.
- [3] Pedro Larrañaga, Concha Bielza. K-nearest neighbours.
- [4] Pedro Larrañaga, Concha Bielza. Rule induction.
- [5] Pedro Larrañaga, Concha Bielza. Support vector machines.
- [6] Pedro Larrañaga, Concha Bielza. Artificial neural networks.
- [7] Pedro Larrañaga, Concha Bielza. Classification trees.