MATH 8090:

Whitney Huang, Clemson University

9/21-9/23/2021

Contents

NOAA wind data example
Load and plot the data
"Estimate" ϕ using sample ACF and center the data
One-step-ahead forecast
Fill in missing value example
Simulate an AR(-0.9)
Let's remove some data to illustrate how to fill in missing values using forecasting algorithm
Fill in "missing" values
Prediction Errors from Best Linear Predictor
Ireland wind data case study
Load and plot the data
Deseasonalization: Harmonic Regression
ACF Plots: Original and Deseasonalized Series
Apply transformation to make wind speed more Gaussian like
Now take square roots of the original data and deseasonalize again!
Checking Normality ACF/PACF
Model identification, fitting, and selection
Let's first fit an $AR(1)$
Fit an AR(2) model
Fit an ARMA(1,1) model
Use AIC to conduct model selection
Forecasting
Visualizing the Forecasts
References

NOAA wind data example

This example is taken from Don Percival's time series course (UW Stat 519).

The one-step-ahead forecast of an AR(1) process is:

$$P_n X_{n+1} = \hat{\mu} + \hat{\phi}(X_n - \hat{\mu}),$$

where $\hat{\phi}$ is our estimate of ϕ , and $\hat{\mu}$ is an estimate of μ .

Load and plot the data

Wind Speed Time Series

"Estimate" ϕ using sample ACF and center the data

```
acf.ws <- acf(ws, lag.max = 40, plot = FALSE)$acf
phi.ws <- acf.ws[2] # this is an estimate for the coefficient of AR(1)

gen.whh.ar <- function(h, phi){
   p.2 <- phi^2; p.2h <- p.2^h
   -2 * h * p.2h + (1 - p.2h) * (1 + p.2) / (1 - p.2)
}

plot.ACFbartlettAR <- function(ts, n.lags = 40){
   n.ts <- length(ts)
   lags <- 1:n.lags
   acf.est <- acf(ts, lag.max = n.lags, plot = FALSE)$acf[-1]
   acf.model <- acf.est[1]^lags
   plot(lags, acf.est, type = "h", xlab = "h (lag)",</pre>
```

```
ylab = "ACF", ylim = c(-1, 1),
         main = "Model & Sample ACFs & 95% Confidence Bounds", las = 1)
    points(lags, acf.est, pch = "*")
    points(lags, acf.model, col = "red")
    CI.AR <- 1.96 * sqrt(sapply(lags, function(h) gen.whh.ar(h, acf.est[1]))) / sqrt(n.ts)
    lines(lags, acf.est + CI.AR, col = "red", lty = 2)
    lines(lags, acf.est - CI.AR, col = "red", lty = 2)
    abline(h = 0, lty = "dashed")
    CI.IID <- rep(1.96 / sqrt(n), n.lags)</pre>
    lines(lags, -CI.IID, col = "gray", lty = 2)
    lines(lags, CI.IID, col = "gray", lty = 2)
    legend("bottomleft", legend = c("IID", "AR(1)"), lty = "dashed",
           col = c("gray", "red"), bty = "n")
}
par(mgp = c(2, 1, 0), mar = c(3.5, 3.5, 1.4, 0.6))
plot.ACFbartlettAR(ws)
```

Model & Sample ACFs & 95% Confidence Bounds


```
## Altyernatively, we can estiamte phi using MLE
(phi_hat <- arima(ws, order = c(1, 0, 0)))</pre>
```

```
##
## Call:
## arima(x = ws, order = c(1, 0, 0))
##
## Coefficients:
## ar1 intercept
```

```
## 0.906 -1.1136
## s.e. 0.037 0.6035
##
## sigma^2 estimated as 0.4615: log likelihood = -132.99, aic = 271.99
ws.centered <- ws - xbar_ws</pre>
```

One-step-ahead forecast

[1] 0.4629379

```
var(ws) # sample variance
```

[1] 2.50251

Fill in missing value example

Simulate an AR(-0.9)

Let's remove some data to illustrate how to fill in missing values using forecasting algorithm

```
ar1.ts.subsampled <- ar1.ts
ar1.ts.subsampled[seq(2, 100, 2)] <- NA
par(las = 1, mgp = c(2, 1, 0), mar = c(3.5, 3.5, 1.4, 0.6))
plot(ar1.ts.subsampled, xlab = "Time", type = "b", ylab = expression(x[t]),
    main = expression(paste("Subsampled ", phi, " = -0.9 AR(1) ", x[1], ", ",x[3], ",.")),
    cex = 0.5, col = alpha("blue", 0.8), pch = 16)</pre>
```

Subsampled $\phi = -0.9 \text{ AR}(1) x_1, x_3,...$

Fill in "missing" values

```
\begin{split} \hat{X}_2 &= \phi(X_1 + X_3)/(1 + \phi^2) \\ \text{MSPE} &= \frac{\sigma^2}{1 + \phi^2} \\ \text{ar1.ts.predicted} &<- \text{ ar1.ts} \\ \text{ar1.ts.predicted[seq(2, 98, 2)] } &<- \text{-0.9} * (\text{ar1.ts[seq(1, 97, 2)] + ar1.ts[seq(3, 99, 2)]) } / \text{ 1.81} \\ \text{ar1.ts.predicted[100] } &<- \text{ NA} \end{split} \begin{aligned} \text{par(las = 1, mgp = c(2, 1, 0), mar = c(3.5, 3.5, 1.4, 0.6))} \\ \text{plot(ar1.ts.predicted, col = alpha("blue", 0.4), xlab = "Time", type = "l", ylab = expression(x[t]), cex = 0.5)} \\ \text{xs } &<- \text{seq(2, 98, 2)} \\ \text{points(xs, ar1.ts.predicted[xs], pch = 19, col = "red", cex = 0.5)} \end{aligned}
```

Prediction Errors from Best Linear Predictor

Ireland wind data case study

Load and plot the data

Deseasonalization: Harmonic Regression

```
## create harmonic terms
Harmonic <- function(year, K){</pre>
  t <- outer(2 * pi * year, 1:K)
  return(cbind(apply(t, 2, cos), apply(t, 2, sin)))
}
harmonics <- Harmonic(year, 4)</pre>
## fit a harmonic regression
harm.model <- lm(rosslare ~ harmonics)</pre>
summary(harm.model)
##
## Call:
## lm(formula = rosslare ~ harmonics)
##
## Residuals:
##
       Min
                1Q Median
                                        Max
                                 3Q
##
  -10.854 -3.378 -0.492
                              2.839
                                     20.829
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                            0.112316 103.135
## (Intercept) 11.583744
                                             < 2e-16 ***
                1.686674
                                      10.621
                                              < 2e-16 ***
## harmonics1
                            0.158807
## harmonics2 -0.436067
                            0.158807
                                      -2.746
                                              0.00609 **
## harmonics3 -0.060841
                            0.158807 -0.383 0.70168
```

```
-0.252191
                                     -1.588 0.11245
## harmonics4
                           0.158807
## harmonics5
                0.412367
                           0.158872
                                      2.596
                                             0.00952 **
                0.003881
## harmonics6
                           0.158872
                                      0.024
                                             0.98051
                0.107255
                           0.158872
## harmonics7
                                      0.675
                                            0.49970
## harmonics8
                0.217883
                           0.158872
                                      1.371
                                            0.17041
##
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.801 on 1818 degrees of freedom
## Multiple R-squared: 0.0677, Adjusted R-squared: 0.0636
## F-statistic: 16.5 on 8 and 1818 DF, p-value: < 2.2e-16
par(bty = "L", mar = c(3.6, 3.6, 0.5, 0.6), mgp = c(2, 1, 0), las = 1)
plot(year, rosslare, type = "1",
     xlab = "year", ylab = "Wind speed (knots)", col = "grey")
lines(year, fitted(harm.model), lwd = 2)
```


ACF Plots: Original and Deseasonalized Series

```
par(bty = "L", mar = c(3.6, 3.6, 0.5, 0.6), mgp = c(2, 1, 0), las = 1,
    mfrow = c(2, 1))
acf(rosslare, lag.max = 365 * 2, xlab = "", ylab = "Sample ACF", main = "")
acf(resid(harm.model), lag.max = 365 * 2, xlab = "Lag in days",
    ylab = "Sample ACF", main = "")
```


Apply transformation to make wind speed more Gaussian like

Now take square roots of the original data and deseasonalizeagain!

```
## now we start again from the beginning with a sqrt transformation
sqrt.rosslare <- sqrt(rosslare)</pre>
## refit the periodicity, without the intercept term
harm.model <- lm(sqrt.rosslare ~ harmonics[, 1:4] - 1)</pre>
summary(harm.model)
##
  lm(formula = sqrt.rosslare ~ harmonics[, 1:4] - 1)
##
## Residuals:
##
      Min
              1Q Median
                            3Q
                                   Max
   1.149 2.846 3.317 3.800
                                5.656
##
##
##
  Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
## harmonics[, 1:4]1 0.242704
                                 0.112557
                                             2.156
                                                     0.0312 *
                                            -0.507
## harmonics[, 1:4]2 -0.057059
                                  0.112557
                                                     0.6123
## harmonics[, 1:4]3 0.003434
                                  0.112557
                                             0.031
                                                     0.9757
## harmonics[, 1:4]4 -0.032795
                                  0.112557
                                            -0.291
                                                     0.7708
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.403 on 1823 degrees of freedom
```


Checking Normality ACF/PACF

Model identification, fitting, and selection

Let's first fit an AR(1)

```
## Fit an AR(1) model
ar1.model <- arima(sqrt.rosslare.ds, order = c(1, 0, 0))</pre>
## summarize the model
ar1.model
##
## Call:
## arima(x = sqrt.rosslare.ds, order = c(1, 0, 0))
##
##
  Coefficients:
##
            ar1
                  intercept
##
         0.4044
                     3.3251
## s.e. 0.0214
                     0.0253
##
## sigma^2 estimated as 0.4149: log likelihood = -1788.91, aic = 3583.82
par(bty = "L", mar = c(3.6, 3.6, 0.5, 0.6), las = 1, mgp = c(2.2, 1, 0))
acf(sqrt.rosslare.ds, main = "")
acf_true <- ARMAacf(ar = c(ar1.model$coef[1]), lag.max = 32)[-1]</pre>
points(1:32, acf_true, col = "red")
```



```
1.0
                                                 0.05
    8.0
                                               Sample PACF
0.0
    0.6
Sample ACF
    0.4
                                                -0.05
    0.2
   0.0
                              20
                         15
                                   25
                                                              5
                                                                             20
          0
                5
                                        30
                                                         0
                                                                   10
                                                                        15
                                                                                  25
                    10
                                                                                       30
                      lag (day)
                                                                      lag (day)
## Carry out the Box-Pierce test
Box.test(ar1.resids, lag = 32, type = "Ljung-Box")
##
##
    Box-Ljung test
##
## data: ar1.resids
## X-squared = 53.656, df = 32, p-value = 0.009603
Fit an AR(2) model
## Fit an AR(2) model
ar2.model <- arima(sqrt.rosslare.ds, order = c(2, 0, 0))</pre>
## summarize the model
ar2.model
##
## Call:
## arima(x = sqrt.rosslare.ds, order = c(2, 0, 0))
## Coefficients:
##
                           intercept
            ar1
                      ar2
                 -0.0911
##
         0.4413
                              3.3252
## s.e. 0.0233
                   0.0233
                              0.0231
##
## sigma^2 estimated as 0.4115: log likelihood = -1781.32, aic = 3570.65
```

```
par(bty = "L", mar = c(3.6, 3.6, 0.5, 0.6), las = 1, mgp = c(2.2, 1, 0))
acf(sqrt.rosslare.ds, main = "")
acf_true <- ARMAacf(ar = c(ar2.model$coef[1:2]), lag.max = 32)[-1]
points(1:32, acf_true, col = "red")</pre>
```



```
1.0
                                                 0.06
                                                 0.04
    8.0
                                               Sample PACF
0.00
0.00
0.02
   0.6
Sample ACF
    0.4
    0.2
                                                -0.04
                                                -0.06
    0.0
                              20
                                   25
                                                                             20
                5
                                                              5
                         15
                                        30
                                                                        15
                                                                                  25
                                                                                       30
           0
                    10
                                                         0
                                                                   10
                                                                      lag (day)
                       lag (day)
## Carry out the Box-Pierce test
Box.test(ar2.resids, lag = 32, type = "Ljung-Box")
##
    Box-Ljung test
##
##
## data: ar2.resids
## X-squared = 36.852, df = 32, p-value = 0.2544
Fit an ARMA(1,1) model
## Fit an ARMA(1,1) model
arma11.model <- arima(sqrt.rosslare.ds, order = c(1, 0, 1))
## summarize the model
arma11.model
##
## Call:
## arima(x = sqrt.rosslare.ds, order = c(1, 0, 1))
## Coefficients:
##
                          intercept
            ar1
                     ma1
                 0.2521
                             3.3250
##
         0.1947
## s.e. 0.0556 0.0553
                             0.0233
##
## sigma^2 estimated as 0.4108: log likelihood = -1779.92, aic = 3567.83
```

```
par(bty = "L", mar = c(3.6, 3.6, 0.5, 0.6), las = 1, mgp = c(2.2, 1, 0))
acf(sqrt.rosslare.ds, main = "")
acf_true <- ARMAacf(ar = arma11.model$coef[1], ma = arma11.model$coef[2], lag.max = 32)[-1]
points(1:32, acf_true, col = "red")
  1.0 -
  0.8 -
  0.6 -
  0.2
  0.0
          0
                      5
                                 10
                                                        20
                                             15
                                                                   25
                                                                               30
                                              Lag
## extract the residuals
arma11.resids <- resid(arma11.model)</pre>
## time series plot of the residuals
par(bty = "L", mar = c(3.6, 3.6, 0.5, 0.6), las = 1, mgp = c(2.2, 1, 0),
    mfrow = c(1, 2)
plot(year, arma11.resids, type = "l", xlab = "year",
```

ylab = "ARMA(1,1) residuals", lwd = 0.6, col = "gray")

qqnorm(arma11.resids, main = "", cex = 0.75); qqline(arma11.resids)

abline(h = 0, lty = 2)

Normal Q-Q plot for the residuals


```
1.0
                                                 0.06
                                                 0.04
    8.0
                                                 0.02
                                              Sample PACF
0.00
0.02
   0.6
Sample ACF
    0.4
    0.2
                                                -0.04
                                                -0.06
    0.0
                              20
                                   25
                                                                            20
               5
                                                             5
                         15
                                        30
                                                                       15
                                                                                 25
                                                                                      30
          0
                    10
                                                        0
                                                                  10
                                                                     lag (day)
                      lag (day)
## Carry out the Box-Pierce test
Box.test(arma11.resids, lag = 32, type = "Ljung-Box")
##
    Box-Ljung test
##
##
## data: arma11.resids
## X-squared = 33.09, df = 32, p-value = 0.4137
Fit an ARMA(2,1) model
## Fit an ARMA(2,1) model
arma21.model <- arima(sqrt.rosslare.ds, order = c(2, 0, 1))
## summarize the model
arma21.model
##
## Call:
## arima(x = sqrt.rosslare.ds, order = c(2, 0, 1))
## Coefficients:
##
                                  intercept
            ar1
                    ar2
                             ma1
##
         0.0674
                 0.0584
                          0.3785
                                     3.3247
## s.e. 0.1693 0.0772 0.1665
                                     0.0236
##
## sigma^2 estimated as 0.4107: log likelihood = -1779.66, aic = 3569.32
```

```
par(bty = "L", mar = c(3.6, 3.6, 0.5, 0.6), las = 1, mgp = c(2.2, 1, 0))
acf(sqrt.rosslare.ds, main = "")
acf_true <- ARMAacf(ar = arma21.model$coef[1:2], ma = arma11.model$coef[3], lag.max = 32)[-1]</pre>
points(1:32, acf_true, col = "red")
  1.0 -
  0.8 -
  0.6
  0.2
  0.0
          0
                      5
                                 10
                                                        20
                                             15
                                                                    25
                                                                               30
                                              Lag
## extract the residuals
arma21.resids <- resid(arma21.model)</pre>
## time series plot of the residuals
par(bty = "L", mar = c(3.6, 3.6, 0.5, 0.6), las = 1, mgp = c(2.2, 1, 0),
    mfrow = c(1, 2)
plot(year, arma21.resids, type = "1", xlab = "year",
     ylab = "ARMA(2,1) residuals", lwd = 0.6, col = "gray")
```

abline(h = 0, lty = 2)

Normal Q-Q plot for the residuals

qqnorm(arma21.resids, main = "", cex = 0.75); qqline(arma21.resids)


```
AIC.to.AICC <- function (aic, n, npars) {
  aic - 2 * npars * ( 1 - n/(n-1-npars))
# calculate the length of the time series
n <- length(sqrt.rosslare.ds)</pre>
# Here are the AIC values
ar1.model$aic
## [1] 3583.817
ar2.model$aic
## [1] 3570.65
arma11.model$aic
```

```
## [1] 3567.833
arma21.model$aic
## [1] 3569.319
# convert the AIC values to AICC values.
AIC.to.AICC(ar1.model$aic, n, 2)
## [1] 3583.824
AIC.to.AICC(ar2.model$aic, n, 3)
## [1] 3570.663
AIC.to.AICC(arma11.model$aic, n, 3)
## [1] 3567.847
AIC.to.AICC(arma21.model$aic, n, 4)
## [1] 3569.341
Forecasting
## How many days will we predict into the future?
h <- 31
## Predict 'h' days into the future using the ARMA(1,1) model.
sqrt.rosslare.forecast <- predict(arma11.model, h)</pre>
sqrt.rosslare.forecast$pred
## Time Series:
## Start = 1828
## End = 1858
## Frequency = 1
## [1] 3.136357 3.288312 3.317896 3.323656 3.324778 3.324996 3.325039 3.325047
## [9] 3.325049 3.325049 3.325049 3.325049 3.325049 3.325049 3.325049 3.325049
## [17] 3.325049 3.325049 3.325049 3.325049 3.325049 3.325049 3.325049 3.325049
## [25] 3.325049 3.325049 3.325049 3.325049 3.325049 3.325049 3.325049
sqrt.rosslare.forecast$se
## Time Series:
## Start = 1828
## End = 1858
## Frequency = 1
## [1] 0.6409755 0.7020359 0.7042464 0.7043300 0.7043332 0.7043333 0.7043333
## [8] 0.7043333 0.7043333 0.7043333 0.7043333 0.7043333 0.7043333 0.7043333
## [15] 0.7043333 0.7043333 0.7043333 0.7043333 0.7043333 0.7043333
## [22] 0.7043333 0.7043333 0.7043333 0.7043333 0.7043333 0.7043333
## [29] 0.7043333 0.7043333 0.7043333
## define the forecast variable
forecast <- sqrt.rosslare.forecast$pred</pre>
## The plus or minus value is the z critical value
## times the standard error for the forecast
plus.or.minus <- qnorm(0.975) * sqrt.rosslare.forecast$se</pre>
lower <- forecast - plus.or.minus</pre>
```

```
upper <- forecast + plus.or.minus
## Define the prediction time
fyear <- 1970 + (0:(h - 1)) / 365.25</pre>
```

Visualizing the Forecasts

```
par(bty = "L", mar = c(3.6, 3.6, 0.75, 0.6), las = 1, mgp = c(2.4, 1, 0),
   mfrow = c(3, 1)
## Show the data for 1969 onwards
plot(year[year>1969], sqrt.rosslare.ds[year>1969], type="1",
     xlim=c(1969, max(fyear)), col="grey", xlab="year",
     ylab="")
## Add the BLUP, along with the prediction limits
lines(fyear, forecast, lwd=2)
lines(fyear, lower, lty=2, lwd=2)
lines(fyear, upper, lty=2, lwd=2)
## add a horizontal line at the mean
abline(h=mean(sqrt.rosslare.ds), lty=3)
title("Forecasts for the deseasonalized square root wind speed")
## now add the seasonality estimate for the first 31 days in a year.
adj.forecast <- fitted(harm.model)[1:h] + sqrt.rosslare.forecast$pred</pre>
## adjust the lower and upper values of the interval
lower <- adj.forecast - plus.or.minus</pre>
upper <- adj.forecast + plus.or.minus</pre>
## Show the data for 1969 onwards
plot(year[year>1969], sqrt.rosslare[year>1969], type="1",
     xlim=c(1969, max(fyear)), col="grey", xlab="year", ylab="")
title("Forecasts for the square root wind speed")
## Add the BLUP, along with the prediction limits
lines(fyear, adj.forecast, lwd=2)
lines(fyear, lower, lty=2, lwd=2)
lines(fyear, upper, lty=2, lwd=2)
## We square everything (forecast, lower limit, and upper limit)
## to get the forecast on the original wind speed (knots) scale.
## Show the data for 1969 onwards
plot(year[year>1969], rosslare[year>1969], type="l",
     xlim=c(1969, max(fyear)), col="grey", xlab="year", ylab="")
title("Forecasts for the wind speed")
## Add the BLUP, along with the prediction limits
lines(fyear, adj.forecast^2, lwd = 2)
```


References