Pump It Up Project

Machine Learning Prediction of Status of Waterpoints

Author: Mercy Ngila

The problem

Client: Government of Tanzania In partnership with UNICEF

Problem Statement

- Water shortage in Tanzania has been a problem for years now.
- As part of its Vision 2025, the Government of Tanzania has pledged to increase access to improved sanitation to 95 per cent by 2025.
- UNICEF is working with the Tanzanian Government and development partners on ensuring sustainable and equitable access to safe drinking water in rural and periurban areas.
- Nangila Analytics, has been contracted to create a machine learning (ML) model to predict conditions of water points in the region

Objectives

Objective 1

To build a ML model that predicts the conditions of water pumps with an acceptably high accuracy.

Objective 2

To compare different ML models predictions to achieve highest accuracy

Objective 3

To advice on the best investment strategy

Data

- Data from Taarifa Water points dashboard
- Aggregated data from the Tanzania Ministry of Water

Key Factors

- Water Points Status
- Water Quality
- Extraction Types
- Regional Distribution

Status

- There are more functional waterpoints
- Water points that need repair are fairly few
- A significant amount of water points are non functional

Water Quality

- There are different ranges of qualities of water for functional water points.
- Most of them have soft water though
- Some functional water points have water with fluoride contents

Extraction Types

- Water pumps relying on gravity and hand pumps are the most functional.
- Technologically advanced water pumps seem to have more non functionals e.g. motor pump
- It would be a great idea to explore if fuel shortage or maintenance could be a causal factor.

Regional Distribution

- Iringa has the highest number of functional water pumps.
- Most regions have more functional than non functional
- The ratio of functional need repair water pumps is smaller for all regions

Best Model

- Random Forest Model
- Accuracy = 80.03%

Conclusion

Summary

- The best model accuracy provides great insights on that aids planning, prioritising and investment.
- There are different qualities of water in the different functional pumps though most have soft water
- All waterpoints with huge investment costs are functional
- Gravity and Hand pump water pumps are the most functional
- It is concerning that there the number of non functional water pumps is a lot

Recommendations

Priority could be placed on high population areas to get more access to water and monitoring their water pumps.

Recommendation 5

More research could be done to understand what causes water pumps to be non functional. This could help avoid setting up new water pumps in areas where there were already.

The End