Теоретичен изпит по ТВМС при Д. Дончев, 23 юни 2016г.

спец. "Приложна математика"

<u>Задача 1.</u> Нека за събитията A и B е дадено, че $P(A) = \frac{1}{3}$ и $P(B) = \frac{1}{2}$. Да се намери вероятността $P(\overline{A} \cap B)$, ако:

- а) А и В са независими;
- б) А ⊂ В;
- $\mathsf{B)}\;\mathsf{P}(A\cap B)=\frac{1}{8}.$

<u>Задача 2.</u> Нека A и B са произволни събития и P(A)=1 и P(B)=1. Да се докаже, че $P(A \cap B)=1$.

<u>Задача 3.</u> Посочете свойства на функцията на разпределение $F_X(x)$:

- 1.
- 2.
- 3.

...

<u>Задача 4.</u> Напишете неравенството на Чебишов. Ако EX=0, DX=4 колко е най-голямата стойност на $P(|X| \ge 8)$?

<u>Задача 5.</u> Опишете модел, в който случайната величина $X \in Ge(\frac{1}{6})$.

<u>Задача 6.</u> На чертеж е дадена графиката на $X \in N(10;9)$. На същия чертеж да се построи графиката на $Y \in N(5;16)$.

<u>Задача 7.</u> Ако X и Y са независими и EX=1, DX= $\frac{1}{2}$, EY= -1, DY=2, то колко е E((X+1)².(Y-1)²)?

<u>Задача 8.</u> Какво е квартил? Да се пресметне първи квартил на $X \in \mathcal{E}x(2)$.

<u>Задача 9.</u> X_k ∈ N(k;2) за k=1,2,3. Да се намери разпределението на $\frac{X_1+X_2+X_3}{3}$.

Задача 10. Формулирайте и докажете закона за големите числа.

Задача 11. Построете хистограма по данните:

Интервал	от 0 до 3	от 3 до 5	от 6 до 7	от 7 до 8	от 8 до 12
Честота	10	15	10	12	16

<u>Задача 12.</u> Какво е доверителен интервал? Какъв е доверителния интервал за математическото очакване на случайна величина с нормално разпределение с неизвестна дисперсия?