104-1 Midterm, CSIE, NTPU

Advanced Algorithms (高等演算法)

Date: 2015/12/01

Class:

ID:

Name:

- 1. (10%) Please briefly describe the Merge Sort algorithm, and analyze its worst-case time complexity for sorting n numbers with the Recursion Tree method.
- 2. (10%) Solve each following recurrence for T(n).
 - (a) T(n) = 4T(n/2) + n (3%)
 - (b) $T(n) = 4T(n/2) + n^2 (3\%)$
 - (c) $T(n) = 4T(n/2) + n^3 (4\%)$
- 3. (10%) 1234²³⁴⁵ mod 100 = ? Calculate by hand (without any calculator) efficiently.
- 4. (15%) Consider the following recursive function where the global variable *count* is initialized to 0 and input *n* is a positive integer.
 - (a) Find out the asymptotic time complexity in Θ -notation. (5%)
 - (b) Find out the asymptotic space complexity in Θ -notation. (5%)
 - (c) Express the final value of count as a function of n. (5%)

Rec-x(n)
$$\begin{cases}
6 & 34 & 46 \\
6 & 34 & 46
\end{cases}$$

$$\begin{cases}
6 & 34 & 46 \\
7 & 6
\end{cases}$$

$$\begin{cases}
6 & 34 & 46 \\
7 & 6
\end{cases}$$

$$\begin{cases}
7 & 6 & 6
\end{cases}$$

$$\begin{cases}
7 & 6 & 6
\end{cases}$$

$$\begin{cases}
7 & 6 & 6
\end{cases}$$

$$\begin{cases}
8 & 6 & 6
\end{cases}$$

```
Rec-x(n)
{

if (n=1) or (n=2) then

count \leftarrow count + 1

else
{

Rec-x(n-2)

Rec-x(n-2)

Rec-x(n-1)

count \leftarrow count + 1

}
}
```

(10%) A linear consecutive-k-out-of-n system consists of n nodes arranged in a line, where the system fails if and only if some k consecutive nodes fail. A circular consecutive-k-out-of-n system consists of n nodes arranged on a circle, where the system fails if and only if some k consecutive nodes fail. Suppose the nodes are statistically independent and the reliability of node i is p_i for any $i \in \{1, 2, ..., n\}$ (node i functions with probability p_i and fails with probability $1 - p_i$). Let $R_L(i, j, k)$ denote the reliability of the linear consecutive-k-out-of-n subsystem consisting of nodes i, i + 1, i + 2, ..., j. $R_C(i, j, k)$ denote the reliability of the circular consecutive-k-out-of-n subsystem consisting of nodes i, i + 1, i + 2, ..., j.

- (a) Express $R_L(1,n,k)$ with $R_L(1,n-1,k)$ and $R_L(1,n-k-1,k)$. (5%)
- (b) Express $R_C(1,n,k)$ with some $R_L(1,?,k)$ terms. (5%)

5/3/38/19/94/35/10/13/6

- 6. (10%) What are the main differences between Randomized Algorithms and Non-Randomized Algorithms?
- 7. (15%) Let m and n be positive integers such that 1 < m < n. Given a procedure Unbiased_RBG that outputs an unbiased random bit which will be 0 or 1 with equal probability, 1/2, please
 - (a) Design an algorithm, Biased_RBG, with calls of subroutine Unbiased-RBG to output 1 with probability m/(m+n) and 0 with probability n/(m+n). (5%)
 - (b) Prove that your algorithm is correct. (5%)
 - (c) What's the expected running time of your algorithm as a function of m and n? (5%)
- 8. (10%) Consider the following program segment.

$$i \leftarrow 2$$

 $x \leftarrow 3$
while $(i < n)$ do
{
 $i \leftarrow i \times i$
 $x \leftarrow x + 1$
}

- (a) Find the time complexity (in Θ notation) of this program segment. (5%)
- (b) Express the final value of x as a function of n. (5%)
- 9. (10%) Write the SELECT() algorithm to output the i-th smallest element of the input array in worst-case time complexity O(n) when given an array of n elements and an index integer i.

3446	34 34 36 256	96 16 76		96 76
36	36	36		366
36 16 896	76 76 896	36		16
96 96 76 46	96 96 16 46	16 96 -36	36 34 44 8 24	36
16 16 6	16666	(2/2)	2.4	36444