SKB Baryon Visualization: Data Extraction Summary

Document Analysis Overview

This document summarizes the mathematical foundations and data extracted from four PDF documents for the SKB (Spacetime Klein Bottle) baryon visualization project:

- Maxwell_Derivation_SKB_Update_7_18 (1).pdf Maxwell equations derivation from topological flux relations
- 2. Proton Model.pdf Detailed proton model as composite SKB
- 3. Core.pdf Complete geometric unification framework
- 4. Ontology.pdf Topological ontology and categorical framework

1. Parametric Equations for Klein Bottles (Quarks)

Primary Klein Bottle Construction

4D Spacetime Construction:

```
(t, x, y, z) ~ (t + T, -x, y, z)
```

3D Visualization Parameters (extracted for web rendering):

```
x = (2 + \cos(u/2) * \sin(v) - \sin(u/2) * \sin(2*v)) * \cos(u) * scale + offset_x

y = (2 + \cos(u/2) * \sin(v) - \sin(u/2) * \sin(2*v)) * \sin(u) * scale + offset_y

z = \sin(u/2) * \sin(v) + \cos(u/2) * \sin(2*v) * scale + offset_z
```

Parameter Ranges:

- u ∈ [0, 2π]
- $-v \in [0, 2\pi]$
- scale = $0.8 \times (1 progress \times 0.7)$
- segments: 30×30 for smooth rendering

Metric Structure

Isolated SKB Metric:

```
ds^{2} = -f(r)dt^{2} + g(r)dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) + h(r)(dt - \alpha d\phi)^{2}
```

2. Mathematical Formulations

Holonomy (Color and Charge Determination)

Primary Formula:

$$\theta_q = 2\pi k / 3 + \delta_q$$

Parameters:

- $k \in \{1, 2\}$ for quarks (determines base holonomy)
- δ_q : electromagnetic correction ($\sim \alpha$, fine structure constant)

Specific Values:

- Up quark: $\theta_u = 2\pi/3 + 0.10$ - Down quark: $\theta_d = 4\pi/3 - 0.20$

Flux Quantization

Charge Formula:

$$Q = (1/2\pi) \phi F$$

- Integration over ∂K_p (3D hypersurface boundary)
- F: electromagnetic field strength 2-form

Quantized Charges:

- Up quark: $Q_u = +2/3 e$
- Down quark: Q d = -1/3 e

Mass Quantization

Bohr-Sommerfeld Condition:

Mass Formula:

$$m_n = 2\pi n\hbar / (c^2T)$$

CTC Period:

$$T = 2\pi \ell P / \sqrt{n}$$

Where $\ell_P = \sqrt{(\hbar G/c^3)} \approx 1.616 \times 10^{-35} \text{ m}$

Bordism Classes

Classification: Ω_2 ^(Pin⁻) = \mathbb{Z}_2

Pin- Condition:

$$W_2(TK) + W_1^2(TK) = \emptyset \in H^2(K; \mathbb{Z}_2)$$

3. Baryon Properties Tables

Proton (uud)

Property	Value	Formula/Description
Quark Content	u, u, d	Two up, one down
Total Charge	+e	2(+2/3) + (-1/3) = +1
Mass	938.3 MeV/c²	2m_u + m_d + E_binding
Binding Energy	-928.7 MeV	Topological gluing energy
k (odd quarks)	1	Bordism classification
Bordism Class	0 (mod 16)	Trivial class (stable)
Charge Radius	~0.8 fm	ħ/(M_p c)

Neutron (udd)

Property	Value	Formula/Description
Quark Content	u, d, d	One up, two down
Total Charge	0	(+2/3) + 2(-1/3) = 0
Mass	939.6 MeV/c²	m_u + 2m_d + E_binding
k (odd quarks)	2	Bordism classification
Bordism Class	0 (mod 16)	Trivial class (stable)

4. Quark Properties (Complete Table)

Quark	Mass (MeV/c²)	Charge	n	k	δ	Holonomy
up	2.3	+2/3 e	1	1	+0.10	2π/3 + δ_u
down	4.8	-1/3 e	1	2	-0.20	$4\pi/3 + \delta_d$
charm	1275	+2/3 e	2	1	+0.08	2π/3 + δ_c
strange	95	-1/3 e	2	2	-0.15	4π/3 + δ_s
top	173000	+2/3 e	3	1	+0.05	2π/3 + δ_t
bottom	4180	-1/3 e	3	2	-0.12	$4\pi/3 + \delta_b$

Color Encoding: Quaternionic units (i, j, k) represent color axes

5. Merger Dynamics and Causal Compensation

Animation Parameters

Initial Configuration:

Scale Evolution:

```
scale(t) = 0.8 × (1 - progress × 0.7)
progress = frame / totalFrames
```

Causal Compensation Equations

External Causality:

Internal Consistency:

```
[\nabla_{\mu}, \nabla_{\nu}]\psi = R_{\mu\nu} \psi
```

Gluing Compatibility:

 $\Phi^*\omega_C = -\omega_K \text{ on } \partial K$

Confinement Energy

Separation Energy:

$$E_{sep}(r) = \sigma \cdot r$$

Where $\sigma = (1/2\pi) \int |T_{\mu\nu}|^2 \, \sqrt{(-g)} \, \, d^2\xi$ (causal string tension)

6. Constants, Coefficients, and Parameters

Fundamental Constants

Constant	Symbol	Value	Formula
Planck Length	ℓ_P	1.616 × 10 ⁻³⁵ m	√(ħG/c³)
Fine Structure	α	1/137.036	e²/(4πε₀ħc)
Elementary Charge	е	1.602 × 10 ⁻¹⁹ C	-
Reduced Planck	ħ	1.055 × 10 ⁻³⁴ J⋅s	-
Speed of Light	С	2.998 × 10 ⁸ m/s	-

Visualization Parameters

Flux Vectors:

- Proton: $num_arrows = [7, 7, 3]$, $flux_lengths = [0.33, 0.33, 0.17]$
- Neutron: $num_arrows = [7, 3, 3]$, $flux_lengths = [0.33, 0.17, 0.17]$

Rotation Speeds (energy as motion):

- Up quark: 0.1 rad/frame
- Down quark: 0.05 rad/frame

Color Scheme:

- Up quarks: Red (#FF4444)
- Down quarks: Blue (#4444FF)
- Color mixing: Green (#44FF44) for neutron visualization

7. Pin- Gluing Conditions and Topological Invariants

Pin- Structure Definition

Exact Sequence:

 $1 \stackrel{\textstyle \square}{\rightarrow} \mathbb{Z}_2 \stackrel{\textstyle \square}{\rightarrow} Pin^{\textstyle \square}(3,1) \stackrel{\textstyle \square}{\rightarrow} 0(3,1) \stackrel{\textstyle \square}{\rightarrow} 1$

Smooth Gluing Requirements

- 1. **Topological Compatibility**: $w_2 + w_1^2 = 0$ on both manifolds
- 2. **Metric Matching**: $\phi^*g_2 = g_1$ on boundary intersection
- 3. Pin-Bundle Compatibility: $\Phi * P_2 | \partial K_2 \cong P_1 | \partial K_1 \otimes L$
- 4. Holonomy Cancellation: $\phi * h_1 = h_2^{-1}$

Color Confinement Condition

Quaternionic Holonomy Product:

```
\prod_{i=1}^{3} (\cos(\theta_i/2) + q_i \sin(\theta_i/2)) = 1
```

Physical Interpretation: Only color-neutral combinations (where the product equals identity) can exist as stable composites.

Topological Invariants

Fundamental Group:

```
\pi_1(K) = \langle a, b \mid aba^{-1} = b^{-1} \rangle
```

Stiefel-Whitney Classes:

- w1: Measures non-orientability
- w2: Pin- structure obstruction

Cohomology Class:

8. Maxwell's Equations Emergence

Homogeneous Equations

From Flux Conservation:

- 1. dF = $0 \rightarrow \nabla \cdot B = 0$ (no magnetic monopoles)
- 2. dF = $0 \rightarrow \nabla \times E = -\partial B/\partial t$ (Faraday's law)

Inhomogeneous Equations

From Defect Sources:

- 1. $d(\star F) = \mu_0 J \rightarrow \nabla \cdot E = \rho/\epsilon_0$ (Gauss's law)
- 2. $d(\star F) = \mu_0 J \rightarrow \nabla \times B = \mu_0 J + \mu_0 \epsilon_0 \partial E / \partial t$ (Ampère-Maxwell)

Key Insight: Maxwell's equations emerge from topological flux relations without gauge postulates.

Implementation Ready Data

All extracted data has been organized into three structured files:

- 1. skb mathematical foundations.json Complete mathematical framework
- 2. skb_visualization_data.json Web application parameters and presets
- 3. **SKB_Baryon_Mathematical_Framework.md** Comprehensive documentation

These files contain all necessary:

- Parametric equations for 3D Klein bottle rendering
- Animation parameters for merger dynamics
- Flux vector configurations
- Material properties and colors
- UI control specifications
- Physics constants and formulas
- Analysis table data

The data is structured for direct integration into the Three.js web application, with proper scaling, positioning, and timing parameters for smooth baryon merger animations.