Insect-Inspired Motion Detection System

Speaker: Wei-Tse Kao

Advisor: Chung-Chuan Lo

Date: 2019.11.28

Motion vision: How we detect a moving object?

Introduction: motion detection in biological system

- Modeling the neuron connectivity in retina and visual cortex.
- Response in preferred direction.
- Principles of visual motion detection :
 - Two inputs
 - Non-linear Interaction (time delay)
 - Asymmetry

Motion detection in biological system

- Modeling the neuron connectivity in retina and visual cortex.
- Response in preferred direction.
- Principles of visual motion detection :
 - Two inputs
 - Non-linear Interaction (time delay)
 - Asymmetry

Full Hassenstein-Reichardt

Motion detection in biological system

• Evidence found in fly optic lobe and rabbit retina.

Takemura, Shin-ya, et al. Elife 6 (2017)

Kim, J. S., et al *Nature* (2014).

Motion detection model and its response

Motion detection model and its response

Motion detection model and its response

Full Hassenstein-Reichardt

Reichardt-Hassenstein Model (1956)

- Detect correlation between the two adjacent points.
- Consists of two symmetrical subunits.
- Computed by following processing steps:
 - Time delay with low-pass filter.
 - Multiplication other subunit.
 - Compute correlation by subtractor.

Introduction: Optical Flow

- Optical Flow (OF) describes the relative motion field caused by camera relative to the objects.
- Calculate the motion between two image frames.
- Widely use in robotic navigation control, video processing.

Motivation

- Investigate the difference between motion detection model and optical flow.
- Design a low power consumption motion estimation method.

Preliminary: Lucas-Kanade method

- Brightness constancy constraint:

$$I(x, y, t) = I(x + \Delta x, y + \Delta y, t + \Delta t)$$

• Constraint equation: $I(x,y,t) = I(x+\Delta x,y+\Delta y,t+\Delta t)$ $\Delta t \rightarrow I(x+\Delta x,y+\Delta y,t+\Delta t)$

Take Taylor expansion:

$$I(x + \Delta x, y + \Delta y, t + \Delta t) = I(x, y, t) + \frac{\partial I}{\partial x} \Delta x + \frac{\partial I}{\partial y} \Delta y + \frac{\partial I}{\partial t} \Delta t$$

$$I_x V_x + I_y V_y = -I_t$$

Lucas-Kanade method

Assumption: The flow is essentially constant in a

local neighbourhood of the pixel.

$$I_x(q_1)V_x + I_y(q_1)V_y = -I_t(q_1)$$

$$I_x(q_2)V_x + I_y(q_2)V_y = -I_t(q_2)$$

:

$$I_x(q_n)V_x+I_y(q_n)V_y=-I_t(q_n)$$

$$egin{bmatrix} V_x \ V_y \end{bmatrix} = egin{bmatrix} \sum_i I_x(q_i)^2 & \sum_i I_x(q_i)I_y(q_i) \ \sum_i I_y(q_i)I_x(q_i) & \sum_i I_y(q_i)^2 \end{bmatrix}^{-1} egin{bmatrix} -\sum_i I_x(q_i)I_t(q_i) \ -\sum_i I_y(q_i)I_t(q_i) \end{bmatrix}$$

Preliminary: Borst's Model(2018)

- Biophysics model base on connectome data.
- Describe as a passive membrane circuit.
- Visual signal process through high-pass and low-pass filter.

$$V_m = \frac{E_{exc}g_{exc} + E_{inh}g_{inh}}{g_{exc} + g_{inh} + g_{leak}}$$

Spatial-temporal filter Reichardt (STR) model

- (1) Spatial filter with Gabor filter.
- (2) Time-delay by 1st low-pass filter.
- (3) Correlation by multiplication.
- (4) Subtractor to computer motion response.

Spatial filter – Gabor function

$$g(x, y; \lambda, \theta, \psi, \sigma, \gamma) = \exp\left(-\frac{x'^2 + \gamma^2 y^2}{2\sigma^2}\right) \cos\left(2\pi \frac{x'}{\lambda} + \psi\right)$$

λ: sinusoidal wave

θ: orientation of Gabor function.

ψ: the phase of sinusoidal function

σ: standard deviation of the Gaussian function

γ: ellipticity

0.50

Spatial-temporal filter Reichardt (STR) model

Image processed by Gabor filter

$$A(x, y, t) = I(x, y, t) * g(x, y)$$

temporal filter – 1st lowpass filter

$$B(t) = A(t)/\tau + (1\tau)B(t-1)$$

Multiplication and Subtractor

$$R(t) = A_2(t) \cdot B_1(t) - A_1(t) \cdot B_2(t)$$

Design a STR model with velocity selectivity

Low-pass filter have cutoff frequency

$$f_c = \frac{1}{2\pi\tau_a}$$

• In digital filter time constat

$$\tau_a = \frac{T_s(1-\tau)}{\tau}$$

• Velocity $v=\frac{f_t}{f_x}$ STR model with velocity selectivity $v=\frac{\lambda_g \tau}{2\pi T_s(1-\tau)}$

Internal response and output -Prefer direction

Internal response and output -null direction

Internal response and output -Prefer direction

Internal response and output -Prefer direction

Visual Stimulus Method

- We apply 320 x 240 sine grating video.
- Velocity (pixel per frame) equals the temporal frequency divided by the spatial frequency.

$$v = \frac{f_t}{f_s}$$

	Range
temporal frequency (f_t)	$2^{-10} \sim 2^{-1} (1/\text{frame})$
spatial frequency (f_x)	$2^{-7} \sim 2^{-2}$ (1/pixel)
velocity(v)	$2^{-6} \sim 2^4$ (pixel/frame)

Linearity of each method

Borst's model

Reichardt model

LK-method model

Response of each method

Working dynamic range of each method

Borst's model

Reichardt model

LK-method model

Velocity selectivity of STR model

Testing with real image sequence

 Use two STR model to estimate vertical and horizontal motion

Motion estimation

Original image

STR model response

Original image

STR model response

Original image

STR model response

Time complexity analyze

A m x n image with window size w

Solution of Lucas-Kanade method:

$$\begin{bmatrix} V_x \\ V_y \end{bmatrix} = \begin{bmatrix} \sum_i I_x^2 & \sum_i I_x I_y \\ \sum_i I_y I_x & \sum_i I_y^2 \end{bmatrix}^{-1} \begin{bmatrix} -\sum_i I_x I_t \\ -\sum_i I_y I_t \end{bmatrix}$$

the time complexity is $O(5mnw^2)$

For a STR model, calculating Gabor filter with window size w, the the time complexity is $O(4mnw^2)$

Discussion

- Drawback:
 - Brightness contrast effect the accuracy of detection model.
 - Low frame rate cause the distortion
- Different from optical flow, motion detection model response at a rage of spatiotemporal frequency.
- Have higher efficiency, suitable parallel computing.

Acknowledgement

Thanks for listening!

Speaker: Wei-Tse Kao

Advisor: Chung-Chuan Lo

Date: 2019.12.23

Limitation of optical Flow: Aperture Problem

• The motion of a one-dimensional spatial structure cannot be determined unambiguously if it is viewed through a small aperture.

Original image

RH model response

Result 1: Motion Detection V.S. Optical Flow (wavelength)

14 12 motion detection response $v = 2^4$ 2 0 -2 -10time frequency (power of 2)

Normal flow

Result 1: Motion Detection V.S. Optical Flow (wavelength)

Result 1: Motion Detection V.S. Optical Flow (wavelength)

Borst, Å., & Helmstae ofter, M. (2015). Common circuit design in fly and mammalian motion vision. *nature neuroscience*, *18*(8), 1067.

Motion Detection Model: Borst(2018) and Strother, et al(2017).

Takemura, Shin-ya, et al. Elife 6 (2017)

Borst, A. et al. PLoS computational biol, 14(6) (2018).

Strother, A. et al. Neuron, 14(6) (2017).