V. ESPACES VECTORIELS NORMÉS

Norme

- 1) Existe-t-il une norme N sur l'espace vectoriel $\mathbb{R}^{\mathbb{R}}$ des applications de \mathbb{R} dans \mathbb{R} telle qu'une suite de fonctions de \mathbb{R} dans \mathbb{R} converge au sens de N si et seulement si elle converge uniformément? Indication: étudier la suite de fonctions $(f_n \colon x \mapsto \frac{x}{n+1})_{n>0}$.
- 2) Soient $a_1 > 0$, ..., $a_n > 0$. Les applications suivantes sont-elles des normes? $M: \mathbb{R}^n \to \mathbb{R}^+ ; N: \mathbb{R}^n \to \mathbb{R}^+ ; P: \mathbb{R}^2 \to \mathbb{R}^+$. $(x_1,...,x_n) \mapsto \sum_{i=1}^n a_i |x_i| \qquad (x_1,...,x_n) \mapsto \max_{1 \le i \le n} a_i |x_i| \qquad (x_1,x_2) \mapsto \begin{cases} |x_1| & \text{si } x_1 \ne 0 \\ |x_2| & \text{si } x_1 = 0 \end{cases}$
- 3) a) Soient E un espace vectoriel, N une norme sur E et $\varphi: E \to E$ une application linéaire. À quelle condition $x \mapsto N(\varphi(x))$ est-elle une norme sur E?
 - b) Dans le cas où $E = \mathbb{R}^2$, $N = \| \|_1$ et φ est la rotation vectorielle de \mathbb{R}^2 d'angle $\frac{\pi}{4}$, quelle norme $N \circ \varphi$ obtient-on?
- 4) Soit E un espace vectoriel sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On considère une application $N: E \to \mathbb{R}^+$ vérifiant :
 - (i) $\forall v \in E \ N(v) = 0 \iff v = 0$;
 - (ii) $\forall v \in E \quad \forall \lambda \in \mathbb{K} \quad N(\lambda v) = |\lambda| N(v).$

On pose $\widetilde{B} := \{ v \in E \mid N(v) \le 1 \}$.

Montrer que N est une norme si et seulement si \widetilde{B} est convexe.

- 5) Toute norme N sur \mathbb{R}^2 possède-t-elle la propriété suivante : $\forall x = (x_1, x_2) \in \mathbb{R}^2 \quad \forall y = (y_1, y_2) \in \mathbb{R}^2 \quad \left(\, |x_1| \leq |y_1| \text{ et } |x_2| \leq |y_2| \Longrightarrow N(x) \leq N(y) \, \right) ?$
- 6) On pose : $\|(x_1, x_2)\|_{\frac{1}{2}} = (|x_1|^{\frac{1}{2}} + |x_2|^{\frac{1}{2}})^2$ pour tout $(x_1, x_2) \in \mathbb{R}^2$. La fonction $\| \|_{\frac{1}{2}}$ détermine-t-elle une norme sur \mathbb{R}^2 ?
- 7) Les normes $P = \sum_{k=0}^{n} a_k X^k \mapsto \|P\|_1 = \sum_{k=0}^{n} |a_k|$ et $P \mapsto \|P\|_{L^{\infty}([0,1])} = \sup_{x \in [0,1]} |P(x)|$ sur $\mathbb{R}[X]$ sont-elles équivalentes?

Application linéaire continue

- 8) On considère l'espace vectoriel $E = \mathbb{C}[X]$ muni de la norme $P = \sum_{k=0}^{n} a_k X^k \mapsto \|P\|_1 = \sum_{k=0}^{n} |a_k|$. Continuité, et lorsque c'est le cas norme, des applications linéaires suivantes? $\varphi_1 \colon E \longrightarrow \mathbb{C}$ où $x_0 \in \mathbb{C}$ est fixé; $\varphi_2 \colon E \longrightarrow \mathbb{C}$; $\varphi_3 \colon E \longrightarrow E$. $P \longmapsto P(x_0)$ $P \longmapsto \int_0^1 P(t) \, \mathrm{d}t$ $P \longmapsto P'$
- 9) On considère l'espace vectoriel $F = \mathcal{C}([0,1],\mathbb{C})$ muni de la norme $||f||_1 = \int_0^1 |f(t)| \, dt$. Continuité, et lorsque c'est le cas norme, des applications linéaires suivantes? $\psi_1 \colon F \longrightarrow \mathbb{C} \quad ; \quad \psi_2 \colon F \longrightarrow \mathbb{C} \quad ; \quad \psi_3 \colon F \longrightarrow F \quad .$ $f \longmapsto f(0) \qquad f \longmapsto \int_0^1 f(t) \, dt \qquad f \longmapsto \left(x \mapsto \int_0^x f(t) \, dt\right)$

- 10) On se place dans $G = \mathscr{C}([0,1],\mathbb{R})$ muni de la norme $\| \cdot \|_{\infty}$ de la convergence uniforme. On note H le sous-espace vectoriel de G formé des applications dérivables de [0,1] dans \mathbb{R} . Les applications linéaires $A: g \in G \mapsto g(0)$ et $B: h \in H \mapsto h'(0)$ sont-elles continues?
- 11) Soit φ une forme linéaire sur l'espace vectoriel $\mathscr{C}([0,1],\mathbb{R})$ muni de la norme $\|\cdot\|_{\infty}$. On suppose que φ prend des valeurs positives sur les fonctions positives. Montrer que φ est continue.
- 12) Montrer qu'une forme linéaire f sur un espace vectoriel normé réel E est continue si et seulement si son noyau est fermé.

Indication : quand $f \neq 0$ et Ker f est fermé, fixer $e \in E$ tel que f(e) = 1 puis vérifier que tout $x \in \mathcal{C}_E$ Ker f a un multiple dans e + Ker f donc hors d'une boule ouverte centrée en 0.

13) On fixe une norme $\| \|$ sur \mathbb{R}^{n_0} , $n_0 \ge 1$. On lui associe la norme $\| \| \|$ sur $\mathfrak{M}(n_0, \mathbb{R})$ définie par : $\|A\| := \sup_{\substack{X \in \mathbb{R}^{n_0} \\ X \neq 0}} \frac{\|AX\|}{\|X\|} \quad \text{pour } A \in \mathfrak{M}(n_0, \mathbb{R}).$ Soit $N \in \mathfrak{M}(n_0, \mathbb{R})$ tel que $\|N\| < 1$.
a) Prouver que : I - N est inversible et $\sum_{k=0}^{n} N^k \underset{n \to +\infty}{\longrightarrow} (I - N)^{-1}$ (étudier la différence).

- b) La série $(\sum N^n)_{n\geq 0}$ est-elle absolument convergente?
- 14) Soit $n \in \mathbb{N}$ tel que $n \geq 2$. On appelle norme de Frobenius et note $\| \cdot \|_F$ la norme image de la norme $\| \|_2$ sur \mathbb{R}^{n^2} par la bijection linéaire canonique de \mathbb{R}^{n^2} sur $\mathfrak{M}(n,\mathbb{R})$:

$$||A||_F := \left(\sum_{i=1}^n \sum_{j=1}^n |a_{i,j}|^2\right)^{\frac{1}{2}}$$
 quand $A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in \mathfrak{M}(n, \mathbb{R}).$

- a) Montrer que $\| \ \|_F$ vérifie : $\|AB\|_F \le \|A\|_F \|B\|_F$ pour tous $A, B \in \mathfrak{M}(n, \mathbb{R})$.
- b) Montrer que $\| \cdot \|_F$ n'est pas issue, comme dans l'exercice précédent, d'une norme $\| \cdot \|$ sur \mathbb{R}^n .

Espaces de suites

- 15) Démontrer qu'il existe une forme linéaire non-continue sur l^2 . Indication: on admet que tout sous-espace vectoriel d'un espace vectoriel a un supplémentaire.
- 16) On note : $c_0 := \{(a_n)_{n \ge 0} \in \mathbb{C}^{\mathbb{N}} \mid a_n \xrightarrow[n \to \infty]{} 0\}.$ On munit ce sous-espace vectoriel de l^{∞} de la norme $\| \|_{\infty}$

Montrer qu'on définit une bijection linéaire qui conserve la norme $\Phi: l^1 \to (c_0)'$ en posant :

$$\Phi(y) = f_y$$
 pour tout $y = (y_n)_{n \ge 0} \in l^1$, où $f_y(x) = \sum_{n=0}^{+\infty} x_n y_n$ quand $x = (x_n)_{n \ge 0} \in c_0$.

Indication: associer à un $f\in (c_0)'$ la suite $y=(y_n)_{n\geq 0}:=\left(f(\delta_n)\right)_{n\geq 0}^{(\star)}$ et majorer la valeur de f au point $x^{(m)} := \sum_{0 \le k \le m} \frac{|y_k|}{y_k} \, \delta_k \quad (m \in \mathbb{N})$ en utilisant la continuité de f.

Application bilinéaire continue

17) On considère le produit terme à terme de deux suites bornée, lui-même borné :

$$\pi \colon \begin{array}{ccc} l^{\infty} \times l^{\infty} & \longrightarrow & l^{\infty} \\ \left((x_n)_{n \geq 0}, (y_n)_{n \geq 0} \right) & \longmapsto & (x_n y_n)_{n \geq 0} \end{array}$$

Ce produit π est-il continu?

(*) À chaque
$$n \in \mathbb{N}$$
, on associe: $\delta_n = (0, 0, \dots, \underbrace{1}_{n^{\text{ème}} \text{ terme}}, 0, \dots)$.