Exponentiation

Description

Problems involving the computation of exact values of very large magnitude and precision are common. For example, the computation of the national debt is a taxing experience for many computer systems.

This problem requires that you write a program to compute the exact value of \mathbf{R}^n where \mathbf{R} is a real number ($0 < \mathbf{R} \le 99.999$) and \mathbf{n} is an integer such that $0 < \mathbf{n} \le 1000$.

Input

The input contains multiple test cases and terminated by end of file. Each test case contains two numbers R and n in a single line. The R value will occupy columns 1 through 6, followed by a space, then the second value n.

There are at most 30 test cases.

Output

The output will consist of one line for each line of input giving the exact value of Rⁿ. Leading zeros should be suppressed in the output. Insignificant trailing zeros must not be printed. Don't print the decimal point if the result is an integer.

Sample Input

```
8.0000 5
95.123 12
0.4321 20
5.1234 15
6.7592 9
98.999 10
1.0100 12
```

Sample Output

```
32768
548815620517731830194541.89902534341571597353596722186985
2721
```

.00000005148554641076956121994511276767154838481760200726 351203835429763013462401

43992025569.928573701266488041146654993318703707511666295 476720493953024

29448126.764121021618164430206909037173276672

90429072743629540498.107596019456651774561044010001

1.126825030131969720661201