

- ★ Super Low Gate Charge
- ★ Green Device Available
- ★ Excellent Cdv/dt effect decline
- ★ Advanced high cell density Trench technology

Product Summary

BVDSS	RDSON	ID		
120V	120 mΩ	15A		

Description

The XR15N12 is the highest performance trench N-ch MOSFETs with extreme high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The XR15N12 meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

TO252-3L Pin Configuration

Absolute Maximum Ratings (Tc=25°C unless otherwise specified)

Parameter	Symbol	Value	Unit		
Drain-Source Voltage	V _{DS}	120	V		
Gate-Source Voltage	V _{GS}	±20	V		
Continuous Drain Current	T _C =25°C	lp	15	A	
Continuous Brain Current	T _C =100°C	טו	9.2		
Pulsed Drain Current ¹	Ірм	58	Α		
Single Pulse Avalanche Energy ²	EAS	20	mJ		
Total Power Dissipation Tc=25°C		P _D	66	W	
Operating Junction and Storage Tempera	TJ, TSTG	-55 to 150	°C		

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance from Junction-to-Ambient ³	Reja	30	°C/W
Thermal Resistance from Junction-to-Case	R _θ Jc	1.9	°C/W

Electrical Characteristics (T_J = 25°C, unless otherwise noted)

Parameter		Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static Characteristics								
Drain-Source Breakdown Voltage		V _{(BR)DSS}	$V_{(BR)DSS}$ $V_{GS} = 0V$, $I_D = 250\mu A$		-	_	V	
Gate-body Leakage curren	t	Igss	V _{DS} = 0V, V _{GS} = ±20V	-	-	±100	nA	
Zero Gate Voltage Drain	T _J =25°C	IDSS	V _{DS} = 120V, V _{GS} = 0V	-	-	1	μA	
Current	T _J =100°C			-	-	100		
Gate-Threshold Voltage	l	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1	2	3	V	
D : 0 D : 1	4		V _{GS} = 10V, I _D = 10A	-	120	160	_	
Drain-Source On-Resistan	ce ⁴	R _{DS(on)}	V _{GS} = 4.5V, I _D = 6A	-	125	170	mΩ	
Forward Transconductance	p ⁴	g fs	V _{DS} = 10V, I _D = 10A	-	14.5	-	S	
Dynamic Characteristi	CS ⁵			•			•	
Input Capacitance		Ciss		-	1076	-		
Output Capacitance		Coss	$V_{GS} = 0V, V_{DS} = 60V,$ f = 1MHz	-	27	-	pF	
Reverse Transfer Capacitance		C _{rss}		-	20	-		
Gate Resistance		Rg	f=1MHz	-	1.1	-	Ω	
Switching Characterist	cics ⁵	1		•				
Total Gate Charge		Qg		-	23	-	nC	
Gate-Source Charge		Q _{gs}	$V_{GS} = 10V, V_{DS} = 60V,$ $I_{D} = 10A$	-	3.5	-		
Gate-Drain Charge		\mathbf{Q}_{gd}		-	5	-		
Turn-On Delay Time		t _{d(on)}		-	10.8	-	ns ns	
Rise Time		t _r	V _{GS} = 10V, V _{DD} = 60V,	-	5.2	-		
Turn-Off Delay Time		t _{d(off)}	$R_G = 3\Omega$, $I_D = 10A$	-	32.6	-		
Fall Time		t f		-	5.8	-		
Drain-Source Body Diode Characteristics								
Diode Forward Voltage ⁴	Diode Forward Voltage ⁴		I _S = 10A, V _{GS} = 0V	-	-	1.2	V	
Continuous Source Current T _C =25°C		Is	-	-	-	15	Α	

Notes:

- 1. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C.
- 2. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V, L=0.4mH, I_{AS} =10A.
- 3. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper, The value in any given application depends on the user's specific board design.
- 4. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%.
- 5. This value is guaranteed by design hence it is not included in the production test.

Typical Characteristics

Test Circuit

Figure A. Gate Charge Test Circuit & Waveforms

Figure B. Switching Test Circuit & Waveforms

Figure C. Unclamped Inductive Switching Circuit & Waveforms

Package Mechanical Data TO252-3L

	Dimensions							
Ref.	Millimeters			Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α	2.10		2.50	0.083		0.098		
A2	0		0.10	0		0.004		
В	0.66		0.86	0.026		0.034		
B2	5.18		5.48	0.202		0.216		
С	0.40		0.60	0.016		0.024		
C2	0.44		0.58	0.017		0.023		
D	5.90		6.30	0.232		0.248		
D1		5.30REF		0.209REF				
E	6.40		6.80	0.252		0.268		
E1	4.63			0.182				
G	4.47		4.67	0.176		0.184		
Н	9.50		10.70	0.374		0.421		
L	1.09		1.21	0.043		0.048		
L2	1.35		1.65	0.053		0.065		
V1		7°			7°			
V2	0°		6°	0°		6°		

Reel Spectification-TO252-3L

	Dimensions						
Ref.		Millimete	ers	Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
W	15.90	16.00	16.10	0.626	0.630	0.634	
E	1.65	1.75	1.85	0.065	0.069	0.073	
F	7.40	7.50	7.60	0.291	0.295	0.299	
D0	1.40	1.50	1.60	0.055	0.059	0.063	
D1	1.40	1.50	1.60	0.055	0.059	0.063	
P0	3.90	4.00	4.10	0.154	0.157	0.161	
P1	7.90	8.00	8.10	0.311	0.315	0.319	
P2	1.90	2.00	2.10	0.075	0.079	0.083	
A0	6.85	6.90	7.00	0.270	0.271	0.276	
В0	10.45	10.50	10.60	0.411	0.413	0.417	
K0	2.68	2.78	2.88	0.105	0.109	0.113	
Т	0.24		0.27	0.009		0.011	
t1	0.10			0.004			
10P0	39.80	40.00	40.20	1.567	1.575	1.583	