$12a_{0818} \ (K12a_{0818})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 4.70557 \times 10^{47} u^{41} + 1.02379 \times 10^{48} u^{40} + \dots + 2.35995 \times 10^{48} b - 1.46322 \times 10^{48}, \\ &- 2.68217 \times 10^{48} u^{41} - 8.92209 \times 10^{48} u^{40} + \dots + 6.29321 \times 10^{48} a - 9.88859 \times 10^{49}, \\ &u^{42} + 4u^{41} + \dots + 65u + 16 \rangle \\ I_2^u &= \langle 431u^{34} a - 1267u^{34} + \dots + 287a - 903, \ -3u^{34} a + 24u^{34} + \dots + 3a + 14, \ u^{35} + 4u^{34} + \dots + 3u + 1 \rangle \\ I_3^u &= \langle 16a^3 + b + 3a - 6, \ 4a^4 - 3a^3 + a^2 - 2a + 1, \ u - 1 \rangle \\ I_4^u &= \langle b - 1, \ -2u^3 - 2u^2 + 2a + 2u + 3, \ u^5 + u^4 - 2u^3 - u^2 + u - 1 \rangle \\ I_5^u &= \langle -a^5 + 2a^4 + 8a^3 - 27a^2 + 11b + 20a + 4, \ a^6 - 5a^5 + 9a^4 - 4a^3 - 2a^2 + a + 1, \ u - 1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 127 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 4.71 \times 10^{47} u^{41} + 1.02 \times 10^{48} u^{40} + \dots + 2.36 \times 10^{48} b - 1.46 \times 10^{48}, \ -2.68 \times 10^{48} u^{41} - 8.92 \times 10^{48} u^{40} + \dots + 6.29 \times 10^{48} a - 9.89 \times 10^{49}, \ u^{42} + 4 u^{41} + \dots + 65 u + 16 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.426201u^{41} + 1.41773u^{40} + \dots + 26.1957u + 15.7131 \\ -0.199393u^{41} - 0.433818u^{40} + \dots - 8.03052u + 0.620022 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.226808u^{41} + 0.983916u^{40} + \dots + 18.1651u + 16.3331 \\ -0.199393u^{41} - 0.433818u^{40} + \dots - 8.03052u + 0.620022 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.226808u^{41} + 0.983916u^{40} + \dots + 18.1651u + 16.3331 \\ -0.199393u^{41} - 0.433818u^{40} + \dots - 8.03052u + 0.620022 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.130478u^{41} - 0.589048u^{40} + \dots - 7.93921u - 10.8045 \\ 0.214517u^{41} + 0.476122u^{40} + \dots + 8.74596u - 0.0471007 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.00615099u^{41} + 0.0315685u^{40} + \dots + 2.33674u + 0.767602 \\ 0.0725771u^{41} + 0.173370u^{40} + \dots + 2.50038u + 1.45174 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.213738u^{41} - 0.514758u^{40} + \dots + 2.50038u + 1.45174 \\ 0.0448717u^{41} - 0.0100936u^{40} + \dots - 0.439227u - 0.620256 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.382659u^{41} + 1.46025u^{40} + \dots + 24.9207u + 21.9393 \\ 0.0557291u^{41} + 0.360679u^{40} + \dots + 2.82601u + 7.24218 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.111846u^{41} + 0.317186u^{40} + \dots + 11.7593u + 0.621293 \\ 0.0138015u^{41} - 0.0198181u^{40} + \dots - 0.199133u - 0.618692 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $1.14636u^{41} + 3.75809u^{40} + \cdots + 70.7450u + 50.8762$

Crossings	u-Polynomials at each crossing
c_1, c_2, c_4	$u^{42} - 4u^{41} + \dots - 65u + 16$
c_3, c_7	$u^{42} + 12u^{40} + \dots + 800u - 256$
c_5, c_6	$32(32u^{42} - 80u^{41} + \dots - 4u^2 + 1)$
c_8, c_9, c_{11} c_{12}	$u^{42} - 5u^{41} + \dots - 9u - 1$
c_{10}	$u^{42} + 6u^{41} + \dots + 23552u + 4096$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$y^{42} - 40y^{41} + \dots - 2401y + 256$
c_3, c_7	$y^{42} + 24y^{41} + \dots - 54272y + 65536$
c_5, c_6	$1024(1024y^{42} - 12544y^{41} + \dots - 8y + 1)$
c_8, c_9, c_{11} c_{12}	$y^{42} + 21y^{41} + \dots - 57y + 1$
c_{10}	$y^{42} - 12y^{41} + \dots - 370147328y + 16777216$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.382277 + 0.955337I		
a = -1.66113 + 0.73518I	-7.2700 - 13.9728I	-5.21740 + 8.75518I
b = 0.53625 - 1.35310I		
u = 0.382277 - 0.955337I		
a = -1.66113 - 0.73518I	-7.2700 + 13.9728I	-5.21740 - 8.75518I
b = 0.53625 + 1.35310I		
u = 1.036130 + 0.136384I		
a = 0.31397 + 1.71197I	-0.378272 - 0.672845I	8.32593 - 8.18018I
b = -0.698855 + 0.209140I		
u = 1.036130 - 0.136384I		
a = 0.31397 - 1.71197I	-0.378272 + 0.672845I	8.32593 + 8.18018I
b = -0.698855 - 0.209140I		
u = -0.176431 + 0.920219I		
a = -0.089233 + 0.806500I	-1.94168 - 4.58363I	-2.67478 + 9.67087I
b = 0.260719 - 1.022000I		
u = -0.176431 - 0.920219I		
a = -0.089233 - 0.806500I	-1.94168 + 4.58363I	-2.67478 - 9.67087I
b = 0.260719 + 1.022000I		
u = 1.16532		
a = -0.690948	-2.22469	-4.45330
b = 0.111472		
u = 0.906961 + 0.760300I		
a = -0.164799 - 0.716064I	-8.82177 + 8.14344I	-7.68661 - 4.52240I
b = 0.451974 + 1.333990I		
u = 0.906961 - 0.760300I		
a = -0.164799 + 0.716064I	-8.82177 - 8.14344I	-7.68661 + 4.52240I
b = 0.451974 - 1.333990I		
u = -1.201200 + 0.145400I		
a = -0.872305 - 0.102731I	-4.65035 + 8.25878I	-8.8821 - 11.5403I
b = 0.574673 + 1.022490I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.201200 - 0.145400I		
a = -0.872305 + 0.102731I	-4.65035 - 8.25878I	-8.8821 + 11.5403I
b = 0.574673 - 1.022490I		
u = 0.518201 + 1.133520I		
a = 0.589570 - 0.397152I	-4.92726 - 4.44307I	-10.0669 + 11.2674I
b = -0.152757 + 1.101360I		
u = 0.518201 - 1.133520I		
a = 0.589570 + 0.397152I	-4.92726 + 4.44307I	-10.0669 - 11.2674I
b = -0.152757 - 1.101360I		
u = 0.391460 + 0.629294I		
a = 2.37670 + 0.71559I	1.03974 - 1.89674I	-9.71636 + 10.18048I
b = -1.257320 - 0.163098I		
u = 0.391460 - 0.629294I		
a = 2.37670 - 0.71559I	1.03974 + 1.89674I	-9.71636 - 10.18048I
b = -1.257320 + 0.163098I		
u = 1.28899		
a = -0.386397	-1.06374	-15.9330
b = -1.24413		
u = -0.520433 + 0.480903I		
a = -1.54139 + 0.22846I	-3.67601 + 8.64693I	-1.18407 - 7.85838I
b = 0.486493 + 1.206120I		
u = -0.520433 - 0.480903I		
a = -1.54139 - 0.22846I	-3.67601 - 8.64693I	-1.18407 + 7.85838I
b = 0.486493 - 1.206120I		
u = -1.369360 + 0.103398I		
a = 1.140050 - 0.314674I	-2.55620 + 3.08969I	0
b = -1.010040 - 0.754348I		
u = -1.369360 - 0.103398I		
a = 1.140050 + 0.314674I	-2.55620 - 3.08969I	0
b = -1.010040 + 0.754348I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.381130 + 0.223245I		
a = -0.587328 + 0.140475I	-5.21752 + 3.92091I	0
b = 0.398228 - 0.245218I		
u = -1.381130 - 0.223245I		
a = -0.587328 - 0.140475I	-5.21752 - 3.92091I	0
b = 0.398228 + 0.245218I		
u = -1.46546 + 0.23954I		
a = 0.778883 - 0.741783I	-4.97209 + 5.11669I	0
b = -1.44538 + 0.24251I		
u = -1.46546 - 0.23954I		
a = 0.778883 + 0.741783I	-4.97209 - 5.11669I	0
b = -1.44538 - 0.24251I		
u = 1.22748 + 0.83655I		
a = -0.546316 + 0.174607I	-6.99380 - 2.96639I	0
b = 0.091410 - 1.130240I		
u = 1.22748 - 0.83655I		
a = -0.546316 - 0.174607I	-6.99380 + 2.96639I	0
b = 0.091410 + 1.130240I		
u = 0.208756 + 0.468070I		
a = -1.034920 - 0.197444I	-0.189441 - 1.194630I	-3.03902 + 4.48079I
b = 0.106914 + 0.216906I		
u = 0.208756 - 0.468070I		
a = -1.034920 + 0.197444I	-0.189441 + 1.194630I	-3.03902 - 4.48079I
b = 0.106914 - 0.216906I		
u = 1.49536 + 0.19812I		
a = -1.070210 - 0.916497I	-10.2159 - 11.2963I	0
b = 0.49427 - 1.35780I		
u = 1.49536 - 0.19812I		
a = -1.070210 + 0.916497I	-10.2159 + 11.2963I	0
b = 0.49427 + 1.35780I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.50308 + 0.37191I		
a = -1.59621 + 0.46175I	-13.3178 + 18.7741I	0
b = 0.59118 + 1.39047I		
u = -1.50308 - 0.37191I		
a = -1.59621 - 0.46175I	-13.3178 - 18.7741I	0
b = 0.59118 - 1.39047I		
u = 0.103524 + 0.426968I		
a = 2.10169 - 1.36256I	2.10350 - 1.31837I	6.89891 - 1.71793I
b = -0.922128 + 0.404344I		
u = 0.103524 - 0.426968I		
a = 2.10169 + 1.36256I	2.10350 + 1.31837I	6.89891 + 1.71793I
b = -0.922128 - 0.404344I		
u = -1.56428 + 0.38662I		
a = 0.947107 - 0.401179I	-11.6070 + 9.8095I	0
b = -0.300179 - 1.217090I		
u = -1.56428 - 0.38662I		
a = 0.947107 + 0.401179I	-11.6070 - 9.8095I	0
b = -0.300179 + 1.217090I		
u = -0.333406 + 0.020280I		
a = -0.65169 + 1.58358I	0.54776 - 1.46692I	5.66103 + 4.76123I
b = -0.387814 + 0.633347I		
u = -0.333406 - 0.020280I		
a = -0.65169 - 1.58358I	0.54776 + 1.46692I	5.66103 - 4.76123I
b = -0.387814 - 0.633347I		
u = -1.67473 + 0.04568I		
a = -0.132515 - 0.361034I	-18.2575 - 5.2882I	0
b = 0.27984 - 1.41003I		
u = -1.67473 - 0.04568I		
a = -0.132515 + 0.361034I	-18.2575 + 5.2882I	0
b = 0.27984 + 1.41003I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.69220 + 0.30592I		
a = 0.394986 + 0.353146I	-8.08716 - 1.02616I	0
b = -0.031137 + 1.135330I		
u = 1.69220 - 0.30592I		
a = 0.394986 - 0.353146I	-8.08716 + 1.02616I	0
b = -0.031137 - 1.135330I		

II.
$$I_2^u = \langle 431u^{34}a - 1267u^{34} + \dots + 287a - 903, -3u^{34}a + 24u^{34} + \dots + 3a + 14, u^{35} + 4u^{34} + \dots + 3u + 1 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -2.59639au^{34} + 7.63253u^{34} + \cdots - 1.72892a + 5.43976 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2.59639au^{34} + 7.63253u^{34} + \cdots - 0.728916a + 5.43976 \\ -2.59639au^{34} + 7.63253u^{34} + \cdots - 1.72892a + 5.43976 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2.59639au^{34} + 7.63253u^{34} + \cdots - 1.72892a + 5.43976 \\ -2.59639au^{34} + 7.63253u^{34} + \cdots - 1.72892a + 5.43976 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -6.19880au^{34} - 4.53916u^{34} + \cdots - 3.90964a - 4.43675 \\ -6.31627au^{34} - 2.84639u^{34} + \cdots + 4.71988a - 2.97892 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 6.56325au^{34} - 15.4307u^{34} + \cdots + 2.74398a - 3.80422 \\ -0.0391566au^{34} - 6.60241u^{34} + \cdots + 0.0632530a - 2.68072 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{7}{2}u^{34} - \frac{17}{2}u^{33} + \cdots - 9u - \frac{3}{2} \\ \frac{14}{4}u^{34} + \frac{57}{4}u^{33} + \cdots + 9u + \frac{19}{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 7.63253au^{34} + 1.94277u^{34} + \cdots + 5.43976a + 2.70783 \\ 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{7}{2}u^{34} + \frac{19}{2}u^{33} + \cdots + 2u + \frac{7}{25} \\ \frac{31}{4}u^{34} + \frac{83}{4}u^{33} + \cdots + 12u + \frac{72}{25} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $10u^{34} + \frac{55}{2}u^{33} + \dots + \frac{39}{2}u + \frac{13}{2}$

Crossings	u-Polynomials at each crossing
c_1, c_2, c_4	$(u^{35} - 4u^{34} + \dots + 3u - 1)^2$
c_{3}, c_{7}	$(u^{35} - u^{34} + \dots - 28u - 8)^2$
c_5, c_6	$u^{70} - 2u^{69} + \dots - 215264236u + 17305121$
c_8, c_9, c_{11} c_{12}	$u^{70} + 12u^{69} + \dots + 4u + 1$
c_{10}	$(u^{35} - 2u^{34} + \dots - 2u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y^{35} - 34y^{34} + \dots + 19y - 1)^2$
c_{3}, c_{7}	$(y^{35} + 21y^{34} + \dots + 16y - 64)^2$
c_5, c_6	$y^{70} - 34y^{69} + \dots - 9709459310743048y + 299467212824641$
c_8, c_9, c_{11} c_{12}	$y^{70} + 46y^{69} + \dots + 60y^2 + 1$
c_{10}	$(y^{35} - 12y^{34} + \dots + 10y - 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.787288 + 0.599387I		
a = -0.086494 + 0.987313I	-4.38053 + 3.19486I	-5.71319 - 2.77080I
b = -0.409191 - 1.343070I		
u = 0.787288 + 0.599387I		
a = -1.38411 - 1.00877I	-4.38053 + 3.19486I	-5.71319 - 2.77080I
b = 0.940264 + 0.111257I		
u = 0.787288 - 0.599387I		
a = -0.086494 - 0.987313I	-4.38053 - 3.19486I	-5.71319 + 2.77080I
b = -0.409191 + 1.343070I		
u = 0.787288 - 0.599387I		
a = -1.38411 + 1.00877I	-4.38053 - 3.19486I	-5.71319 + 2.77080I
b = 0.940264 - 0.111257I		
u = 0.863463 + 0.435553I		
a = 0.206812 - 0.579701I	-3.64066 - 1.76625I	-4.73044 + 2.55261I
b = -0.094077 + 1.102490I		
u = 0.863463 + 0.435553I		
a = -0.608026 + 1.260340I	-3.64066 - 1.76625I	-4.73044 + 2.55261I
b = 0.255940 - 0.178870I		
u = 0.863463 - 0.435553I		
a = 0.206812 + 0.579701I	-3.64066 + 1.76625I	-4.73044 - 2.55261I
b = -0.094077 - 1.102490I		
u = 0.863463 - 0.435553I		
a = -0.608026 - 1.260340I	-3.64066 + 1.76625I	-4.73044 - 2.55261I
b = 0.255940 + 0.178870I		
u = 0.378284 + 0.838154I		
a = -1.85036 - 0.34075I	-3.07931 - 8.20034I	-2.93623 + 7.67757I
b = 1.101690 + 0.020192I		
u = 0.378284 + 0.838154I		
a = 1.75417 - 0.92177I	-3.07931 - 8.20034I	-2.93623 + 7.67757I
b = -0.56291 + 1.37198I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.378284 - 0.838154I		
a = -1.85036 + 0.34075I	-3.07931 + 8.20034I	-2.93623 - 7.67757I
b = 1.101690 - 0.020192I		
u = 0.378284 - 0.838154I		
a = 1.75417 + 0.92177I	-3.07931 + 8.20034I	-2.93623 - 7.67757I
b = -0.56291 - 1.37198I		
u = 0.535823 + 0.722828I		
a = -0.45702 - 1.35557I	-7.75853 - 2.44036I	-9.20394 + 3.90896I
b = 0.46606 + 1.42298I		
u = 0.535823 + 0.722828I		
a = -2.20201 + 0.82058I	-7.75853 - 2.44036I	-9.20394 + 3.90896I
b = 0.60727 - 1.30342I		
u = 0.535823 - 0.722828I		
a = -0.45702 + 1.35557I	-7.75853 + 2.44036I	-9.20394 - 3.90896I
b = 0.46606 - 1.42298I		
u = 0.535823 - 0.722828I		
a = -2.20201 - 0.82058I	-7.75853 + 2.44036I	-9.20394 - 3.90896I
b = 0.60727 + 1.30342I		
u = 1.11802		
a = -6.86583 + 4.96782I	-5.44402	2.06430
b = 0.077086 - 1.008870I		
u = 1.11802		
a = -6.86583 - 4.96782I	-5.44402	2.06430
b = 0.077086 + 1.008870I		
u = 0.334838 + 0.781483I		
a = 0.611108 - 0.709436I	-2.04839 - 2.67684I	-0.78426 + 2.93641I
b = -0.266376 + 0.028486I		
u = 0.334838 + 0.781483I		
a = -1.28426 + 0.62029I	-2.04839 - 2.67684I	-0.78426 + 2.93641I
b = 0.127641 - 1.040230I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.334838 - 0.781483I		
a = 0.611108 + 0.709436I	-2.04839 + 2.67684I	-0.78426 - 2.93641I
b = -0.266376 - 0.028486I		
u = 0.334838 - 0.781483I		
a = -1.28426 - 0.62029I	-2.04839 + 2.67684I	-0.78426 - 2.93641I
b = 0.127641 + 1.040230I		
u = -1.293330 + 0.022996I		
a = -0.965695 - 0.118945I	-3.19397 + 3.04539I	-6.49856 - 3.07346I
b = 0.830183 - 0.558253I		
u = -1.293330 + 0.022996I		
a = 0.672369 + 0.296675I	-3.19397 + 3.04539I	-6.49856 - 3.07346I
b = -0.711919 - 0.891888I		
u = -1.293330 - 0.022996I		
a = -0.965695 + 0.118945I	-3.19397 - 3.04539I	-6.49856 + 3.07346I
b = 0.830183 + 0.558253I		
u = -1.293330 - 0.022996I		
a = 0.672369 - 0.296675I	-3.19397 - 3.04539I	-6.49856 + 3.07346I
b = -0.711919 + 0.891888I		
u = 1.331630 + 0.151400I		
a = 0.358567 - 0.966943I	-4.74191 - 0.58793I	-2.80279 + 0.I
b = -0.094807 + 0.186756I		
u = 1.331630 + 0.151400I		
a = -1.56667 - 1.15669I	-4.74191 - 0.58793I	-2.80279 + 0.I
b = 0.033995 - 1.083710I		
u = 1.331630 - 0.151400I		
a = 0.358567 + 0.966943I	-4.74191 + 0.58793I	-2.80279 + 0.I
b = -0.094807 - 0.186756I		
u = 1.331630 - 0.151400I		
a = -1.56667 + 1.15669I	-4.74191 + 0.58793I	-2.80279 + 0.I
b = 0.033995 + 1.083710I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.40486		
a = -0.474895 + 1.101280I	-9.85232	-9.92120
b = 0.54790 + 1.37862I		
u = 1.40486		
a = -0.474895 - 1.101280I	-9.85232	-9.92120
b = 0.54790 - 1.37862I		
u = 1.403830 + 0.145115I		
a = 0.98126 + 1.19495I	-5.78377 - 5.84473I	0
b = -0.49226 + 1.38247I		
u = 1.403830 + 0.145115I		
a = -0.252994 - 0.344206I	-5.78377 - 5.84473I	0
b = 1.053300 - 0.058898I		
u = 1.403830 - 0.145115I		
a = 0.98126 - 1.19495I	-5.78377 + 5.84473I	0
b = -0.49226 - 1.38247I		
u = 1.403830 - 0.145115I		
a = -0.252994 + 0.344206I	-5.78377 + 5.84473I	0
b = 1.053300 + 0.058898I		
u = 0.374463 + 0.419722I		
a = -2.06448 + 2.38148I	-3.71944 - 1.17044I	-1.16678 + 5.64189I
b = -0.028461 + 1.098670I		
u = 0.374463 + 0.419722I		
a = 4.28644 + 4.59791I	-3.71944 - 1.17044I	-1.16678 + 5.64189I
b = -0.059654 - 0.866754I		
u = 0.374463 - 0.419722I		
a = -2.06448 - 2.38148I	-3.71944 + 1.17044I	-1.16678 - 5.64189I
b = -0.028461 - 1.098670I		
u = 0.374463 - 0.419722I		
a = 4.28644 - 4.59791I	-3.71944 + 1.17044I	-1.16678 - 5.64189I
b = -0.059654 + 0.866754I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.46236 + 0.17601I		
a = 1.51571 - 0.46270I	-9.77721 + 3.48149I	0
b = -0.367348 + 0.819468I		
u = -1.46236 + 0.17601I		
a = 0.43467 - 1.63292I	-9.77721 + 3.48149I	0
b = -0.091480 - 1.230270I		
u = -1.46236 - 0.17601I		
a = 1.51571 + 0.46270I	-9.77721 - 3.48149I	0
b = -0.367348 - 0.819468I		
u = -1.46236 - 0.17601I		
a = 0.43467 + 1.63292I	-9.77721 - 3.48149I	0
b = -0.091480 + 1.230270I		
u = -1.45963 + 0.29677I		
a = 0.624599 + 0.193615I	-7.83682 + 6.58963I	0
b = -0.552157 - 0.070918I		
u = -1.45963 + 0.29677I		
a = -1.35152 + 0.58488I	-7.83682 + 6.58963I	0
b = 0.249550 + 1.142520I		
u = -1.45963 - 0.29677I		
a = 0.624599 - 0.193615I	-7.83682 - 6.58963I	0
b = -0.552157 + 0.070918I		
u = -1.45963 - 0.29677I		
a = -1.35152 - 0.58488I	-7.83682 - 6.58963I	0
b = 0.249550 - 1.142520I		
u = -0.166758 + 0.470101I		
a = -1.10634 - 1.04351I	-0.05478 - 1.72545I	3.36392 + 2.52233I
b = -0.266545 + 0.867095I		
u = -0.166758 + 0.470101I		
a = -1.20153 + 0.96877I	-0.05478 - 1.72545I	3.36392 + 2.52233I
b = 0.368166 + 0.304402I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.166758 - 0.470101I		
a = -1.10634 + 1.04351I	-0.05478 + 1.72545I	3.36392 - 2.52233I
b = -0.266545 - 0.867095I		
u = -0.166758 - 0.470101I		
a = -1.20153 - 0.96877I	-0.05478 + 1.72545I	3.36392 - 2.52233I
b = 0.368166 - 0.304402I		
u = -0.261262 + 0.408522I		
a = -0.881409 + 0.809220I	-0.43566 + 3.77887I	2.70186 - 3.89618I
b = 0.850553 - 0.149091I		
u = -0.261262 + 0.408522I		
a = 2.21730 - 0.24123I	-0.43566 + 3.77887I	2.70186 - 3.89618I
b = -0.502121 - 1.163120I		
u = -0.261262 - 0.408522I		
a = -0.881409 - 0.809220I	-0.43566 - 3.77887I	2.70186 + 3.89618I
b = 0.850553 + 0.149091I		
u = -0.261262 - 0.408522I		
a = 2.21730 + 0.24123I	-0.43566 - 3.77887I	2.70186 + 3.89618I
b = -0.502121 + 1.163120I		
u = -1.48269 + 0.31831I		
a = -0.841244 + 0.661850I	-9.0790 + 12.3988I	0
b = 1.235650 - 0.053997I		
u = -1.48269 + 0.31831I		
a = 1.53656 - 0.44667I	-9.0790 + 12.3988I	0
b = -0.65200 - 1.43728I		
u = -1.48269 - 0.31831I		
a = -0.841244 - 0.661850I	-9.0790 - 12.3988I	0
b = 1.235650 + 0.053997I		
u = -1.48269 - 0.31831I		
a = 1.53656 + 0.44667I	-9.0790 - 12.3988I	0
b = -0.65200 + 1.43728I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.52211 + 0.12323I		
a = -0.684628 + 0.572571I	-12.01000 - 1.04091I	0
b = 1.063560 - 0.479442I		
u = -1.52211 + 0.12323I		
a = -0.247279 + 0.320973I	-12.01000 - 1.04091I	0
b = -0.24344 + 1.56604I		
u = -1.52211 - 0.12323I		
a = -0.684628 - 0.572571I	-12.01000 + 1.04091I	0
b = 1.063560 + 0.479442I		
u = -1.52211 - 0.12323I		
a = -0.247279 - 0.320973I	-12.01000 + 1.04091I	0
b = -0.24344 - 1.56604I		
u = -1.51902 + 0.23855I		
a = -1.50135 + 0.36894I	-14.4705 + 5.9201I	0
b = 0.78842 + 1.32634I		
u = -1.51902 + 0.23855I		
a = 0.181610 + 0.009514I	-14.4705 + 5.9201I	0
b = 0.45096 - 1.59114I		
u = -1.51902 - 0.23855I		
a = -1.50135 - 0.36894I	-14.4705 - 5.9201I	0
b = 0.78842 - 1.32634I		
u = -1.51902 - 0.23855I		
a = 0.181610 - 0.009514I	-14.4705 - 5.9201I	0
b = 0.45096 + 1.59114I		
u = -0.207771		
a = -0.50303 + 3.16268I	-4.65443	-2.49720
b = 0.346555 + 1.166320I		
u = -0.207771		
a = -0.50303 - 3.16268I	-4.65443	-2.49720
b = 0.346555 - 1.166320I		

III.
$$I_3^u = \langle 16a^3 + b + 3a - 6, \ 4a^4 - 3a^3 + a^2 - 2a + 1, \ u - 1 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -16a^{3} - 3a + 6 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -16a^{3} - 2a + 6 \\ -16a^{3} - 3a + 6 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 8a^{3} - 2a^{2} + 2a - 3 \\ 20a^{3} - 3a^{2} + 4a - 8 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 12a^{3} - a^{2} + 2a - 5 \\ 36a^{3} - 3a^{2} + 7a - 13 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ 32a^{3} - 4a^{2} + 5a - 12 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 8a^{3} - 2a^{2} + 2a - 3 \\ 24a^{3} - 2a^{2} + 6a - 8 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ 32a^{3} - 4a^{2} + 5a - 12 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-24a^3 + 5a^2 9a + 7$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^4$
c_3, c_7	u^4
C4	$(u+1)^4$
c_5, c_6	$u^4 - 2u^3 + 3u^2 - u + 1$
c_8, c_9	$u^4 + u^2 + u + 1$
c_{10}	$u^4 - 3u^3 + 4u^2 - 3u + 2$
c_{11}, c_{12}	$u^4 + u^2 - u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3, c_7	y^4
c_5, c_6	$y^4 + 2y^3 + 7y^2 + 5y + 1$
c_8, c_9, c_{11} c_{12}	$y^4 + 2y^3 + 3y^2 + y + 1$
c_{10}	$y^4 - y^3 + 2y^2 + 7y + 4$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -0.286541 + 0.697356I	-0.66484 + 1.39709I	-1.91043 - 4.25783I
b = 0.547424 + 0.585652I		
u = 1.00000		
a = -0.286541 - 0.697356I	-0.66484 - 1.39709I	-1.91043 + 4.25783I
b = 0.547424 - 0.585652I		
u = 1.00000		
a = 0.661541 + 0.046758I	-4.26996 + 7.64338I	-3.62082 - 1.58240I
b = -0.547424 - 1.120870I		
u = 1.00000		
a = 0.661541 - 0.046758I	-4.26996 - 7.64338I	-3.62082 + 1.58240I
b = -0.547424 + 1.120870I		

IV.
$$I_4^u = \langle b-1, -2u^3 - 2u^2 + 2a + 2u + 3, u^5 + u^4 - 2u^3 - u^2 + u - 1 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + u^{2} - u - \frac{3}{2} \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} + u^{2} - u - \frac{1}{2} \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} + u^{2} - u + \frac{1}{2} \\ 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{4}u^{3} - \frac{3}{4}u \\ -\frac{1}{2}u^{3} + \frac{1}{2}u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} - 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} + u^{2} - u - \frac{1}{2} \\ 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $\frac{17}{4}u^4 + \frac{15}{4}u^3 \frac{17}{4}u^2 + \frac{1}{2}u + \frac{7}{4}u^3$

Crossings	u-Polynomials at each crossing
c_1, c_2	$u^5 + u^4 - 2u^3 - u^2 + u - 1$
<i>c</i> ₃	$u^5 - u^4 + 2u^3 - u^2 + u - 1$
C ₄	$u^5 - u^4 - 2u^3 + u^2 + u + 1$
c_5	$32(32u^5 + 48u^4 + 32u^3 + 4u^2 - 2u - 1)$
	$32(32u^5 - 48u^4 + 32u^3 - 4u^2 - 2u + 1)$
	$u^5 + u^4 + 2u^3 + u^2 + u + 1$
c_{8}, c_{9}	$(u+1)^5$
c_{10}	u^5
c_{11}, c_{12}	$(u-1)^5$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1$
c_{3}, c_{7}	$y^5 + 3y^4 + 4y^3 + y^2 - y - 1$
c_5, c_6	$1024(1024y^5 - 256y^4 + 512y^3 - 48y^2 + 12y - 1)$
c_8, c_9, c_{11} c_{12}	$(y-1)^5$
c_{10}	y^5

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.21774		
a = 0.570903	-0.756147	12.1740
b = 1.00000		
u = 0.309916 + 0.549911I		
a = -2.26766 - 0.21690I	1.31583 - 1.53058I	1.52646 - 1.80092I
b = 1.00000		
u = 0.309916 - 0.549911I		
a = -2.26766 + 0.21690I	1.31583 + 1.53058I	1.52646 + 1.80092I
b = 1.00000		
u = -1.41878 + 0.21917I		
a = -0.767792 + 0.471915I	-4.22763 + 4.40083I	-2.48831 - 2.71046I
b = 1.00000		
u = -1.41878 - 0.21917I		
a = -0.767792 - 0.471915I	-4.22763 - 4.40083I	-2.48831 + 2.71046I
b = 1.00000		

$$\text{V. } I_5^u = \\ \langle -a^5 + 2a^4 + 8a^3 - 27a^2 + 11b + 20a + 4, \ a^6 - 5a^5 + 9a^4 - 4a^3 - 2a^2 + a + 1, \ u - 1 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.0909091a^{5} - 0.181818a^{4} + \dots - 1.81818a - 0.363636 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.0909091a^{5} - 0.181818a^{4} + \dots - 0.818182a - 0.363636 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.0909091a^{5} - 0.181818a^{4} + \dots - 0.818182a - 0.363636 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.363636a^{5} + 1.72727a^{4} + \dots + 0.272727a + 0.454545 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.363636a^{5} + 1.72727a^{4} + \dots + 0.727273a - 0.454545 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.454545a^{5} - 1.90909a^{4} + \dots - 1.09091a - 0.818182 \\ -0.181818a^{5} + 1.36364a^{4} + \dots - 1.36364a - 0.272727 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ 0.272727a^{5} - 0.545455a^{4} + \dots - 1.45455a - 1.09091 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ 0.272727a^{5} - 0.545455a^{4} + \dots + 0.272727a + 0.454545 \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ 0.272727a^{5} - 0.545455a^{4} + \dots - 1.45455a - 1.09091 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-\frac{1}{11}a^5 + \frac{2}{11}a^4 + \frac{30}{11}a^3 - \frac{93}{11}a^2 + \frac{31}{11}a + \frac{15}{11}$$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^6$
c_3, c_7	u^6
c_4	$(u+1)^6$
c_{5}, c_{6}	$u^6 - 3u^5 + 4u^4 - 2u^3 + 1$
c_{8}, c_{9}	$u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1$
c_{10}	$(u^3 + u^2 - 1)^2$
c_{11}, c_{12}	$u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^6$
c_{3}, c_{7}	y^6
c_5, c_6	$y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1$
c_8, c_9, c_{11} c_{12}	$y^6 + 3y^5 + 4y^4 + 2y^3 + 1$
c_{10}	$(y^3 - y^2 + 2y - 1)^2$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0.836473 + 0.439023I	-1.91067 + 2.82812I	-0.28809 - 2.59975I
b = -0.713912 + 0.305839I		
u = 1.00000		
a = 0.836473 - 0.439023I	-1.91067 - 2.82812I	-0.28809 + 2.59975I
b = -0.713912 - 0.305839I		
u = 1.00000		
a = -0.376271 + 0.256441I	-1.91067 - 2.82812I	-0.28809 + 2.59975I
b = 0.498832 - 1.001300I		
u = 1.00000		
a = -0.376271 - 0.256441I	-1.91067 + 2.82812I	-0.28809 - 2.59975I
b = 0.498832 + 1.001300I		
u = 1.00000		
a = 2.03980 + 1.11514I	-6.04826	-12.42382 + 0.I
b = -0.284920 - 1.115140I		
u = 1.00000		
a = 2.03980 - 1.11514I	-6.04826	-12.42382 + 0.I
b = -0.284920 + 1.115140I		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2	$((u-1)^{10})(u^5 + u^4 + \dots + u - 1)(u^{35} - 4u^{34} + \dots + 3u - 1)^2$ $\cdot (u^{42} - 4u^{41} + \dots - 65u + 16)$
c_3	$u^{10}(u^5 - u^4 + \dots + u - 1)(u^{35} - u^{34} + \dots - 28u - 8)^2$ $\cdot (u^{42} + 12u^{40} + \dots + 800u - 256)$
c_4	$((u+1)^{10})(u^5 - u^4 + \dots + u + 1)(u^{35} - 4u^{34} + \dots + 3u - 1)^2$ $\cdot (u^{42} - 4u^{41} + \dots - 65u + 16)$
C ₅	$1024(u^{4} - 2u^{3} + 3u^{2} - u + 1)(32u^{5} + 48u^{4} + 32u^{3} + 4u^{2} - 2u - 1)$ $\cdot (u^{6} - 3u^{5} + 4u^{4} - 2u^{3} + 1)(32u^{42} - 80u^{41} + \dots - 4u^{2} + 1)$ $\cdot (u^{70} - 2u^{69} + \dots - 215264236u + 17305121)$
c_6	$1024(u^{4} - 2u^{3} + 3u^{2} - u + 1)(32u^{5} - 48u^{4} + 32u^{3} - 4u^{2} - 2u + 1)$ $\cdot (u^{6} - 3u^{5} + 4u^{4} - 2u^{3} + 1)(32u^{42} - 80u^{41} + \dots - 4u^{2} + 1)$ $\cdot (u^{70} - 2u^{69} + \dots - 215264236u + 17305121)$
<i>C</i> 7	$u^{10}(u^5 + u^4 + \dots + u + 1)(u^{35} - u^{34} + \dots - 28u - 8)^2$ $\cdot (u^{42} + 12u^{40} + \dots + 800u - 256)$
c_8, c_9	$(u+1)^{5}(u^{4}+u^{2}+u+1)(u^{6}-u^{5}+2u^{4}-2u^{3}+2u^{2}-2u+1)$ $\cdot (u^{42}-5u^{41}+\cdots-9u-1)(u^{70}+12u^{69}+\cdots+4u+1)$
c_{10}	$u^{5}(u^{3} + u^{2} - 1)^{2}(u^{4} - 3u^{3} + \dots - 3u + 2)(u^{35} - 2u^{34} + \dots - 2u + 1)^{2}$ $\cdot (u^{42} + 6u^{41} + \dots + 23552u + 4096)$
c_{11}, c_{12}	$(u-1)^{5}(u^{4}+u^{2}-u+1)(u^{6}+u^{5}+2u^{4}+2u^{3}+2u^{2}+2u+1)$ $\cdot (u^{42}-5u^{41}+\cdots-9u-1)(u^{70}+12u^{69}+\cdots+4u+1)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$((y-1)^{10})(y^5 - 5y^4 + \dots - y - 1)(y^{35} - 34y^{34} + \dots + 19y - 1)^2$ $\cdot (y^{42} - 40y^{41} + \dots - 2401y + 256)$
c_3,c_7	$y^{10}(y^5 + 3y^4 + \dots - y - 1)(y^{35} + 21y^{34} + \dots + 16y - 64)^2$ $\cdot (y^{42} + 24y^{41} + \dots - 54272y + 65536)$
c_5, c_6	$1048576(y^{4} + 2y^{3} + 7y^{2} + 5y + 1)$ $\cdot (1024y^{5} - 256y^{4} + 512y^{3} - 48y^{2} + 12y - 1)$ $\cdot (y^{6} - y^{5} + 4y^{4} - 2y^{3} + 8y^{2} + 1)(1024y^{42} - 12544y^{41} + \dots - 8y + 1)$ $\cdot (y^{70} - 34y^{69} + \dots - 9709459310743048y + 299467212824641)$
c_8, c_9, c_{11} c_{12}	$(y-1)^{5}(y^{4}+2y^{3}+3y^{2}+y+1)(y^{6}+3y^{5}+4y^{4}+2y^{3}+1)$ $\cdot (y^{42}+21y^{41}+\cdots-57y+1)(y^{70}+46y^{69}+\cdots+60y^{2}+1)$
c_{10}	$y^{5}(y^{3} - y^{2} + 2y - 1)^{2}(y^{4} - y^{3} + 2y^{2} + 7y + 4)$ $\cdot (y^{35} - 12y^{34} + \dots + 10y - 1)^{2}$ $\cdot (y^{42} - 12y^{41} + \dots - 370147328y + 16777216)$