點膠製程改良 之實驗設計與 資料分析方法 研究計畫

計畫主持人:蘇南誠教授 學生:侯威志

指導老師:張升懋教授 林孟璇

陳秉洋教授 韓明澄

One-way and Two-way ANOVA

- 生活例子介紹
- 名詞定義

One way & Two way

ANOVA

- One-way ANOVA
- ANOVA的假設檢定
- ANOVA的分析步驟
- Two-way ANOVA
- 重點摘要

當我們想要有好的睡眠品質,有什麼可能因素影響呢?

枕頭軟硬

室內溫度

床墊軟硬

年齡層

環境音量

Block Design

Factorial Design

2^k Factorial Design

Blocking in 2^k Factorials Sequential Experiment

兩個對我來說可控的因素

室內溫度

床墊軟硬

那我們有什麼選擇呢?

Introduction

One way & Two way

ANOVA

Factor(因子\分類變數)

指**感興趣的自變數**,會影響應變數的結果。

生活例子:

若想研究不同室內溫度對睡眠品質的影響,此時「室內溫度」就是因子。

千如案例:

若想研究不同膠體重量對點膠製程的電感值良率影響,此時「膠體重量」就是因子。

Introduction

Level(水準)

One way & Two way

ANOVA

因子中的每一個可能取值稱為一個水準。

生活例子:

若想研究3種不同室內溫度,分別為28°C、26°C、24°C 這3種溫度去用冷氣控制,此時就有3個水準。

千如案例:

若想研究3種不同膠體重量,分別為0.016g、0.017g、0.018g這3種重量能去設定,此時就有3個水準。

Introduction

• ANOVA(Analysis of Variance, 變異數分析)

Goal:

One way & Two way

ANOVA

用來檢測**多組平均值**之間是否存在顯著差異,通常比較不同水準的數據平均值是否相同。

Remarks:

```
比較一種水準時使用t-test;
兩種水準時使用Two sample t-test or ANOVA;
超過兩種水準時使用ANOVA。
```

One-way ANOVA(單因子變異數分析)

比較單一個因子中不同水準的平均值之間,是否存在顯著差異。

生活例子:

One way & Two way

ANOVA

回到一開始的小故事,我們所要追求的是讓自己有好的睡眠品質。

在這裡我們先加入一個因子為「室內溫度」, 分別檢測在28°C、26°C、24°C 這3種溫度 (水準)中,哪種溫度下平均而言最能讓你 好好地睡眠休息!

One-way ANOVA(單因子變異數分析)

比較單一個因子中不同水準的平均值之間,是否存在顯著差異。

One way & Two way

ANOVA

我們設計了一個實驗,研究不同膠體重量 (0.016g、0.017g、0.018g)對於點膠製程的 電感值良率影響。

使用One-way ANOVA可以檢測此3種膠體重量之間對於電感值平均良率的影響,在不同膠體重量之中是否對良率存在顯著差異。

ANOVA的假設檢定

 $H_0: \mu_1 = \mu_2 = \dots = \mu_a$

One way & Two way

ANOVA

 H_1 : At least one mean is different

此 H_0 假設即為各水準平均數皆相同,我們會希望能看到拒絕 H_0 的假設。

以 One-way ANOVA 舉例,若能成功拒絕 H_0 的假設,代表在膠體重量這因子中,不同膠體重量的水準對於電感值有不同的良率,我們就能進而去分析使最高良率的膠體重量。

ANOVA

ANOVA的假設檢定

- 假設有 a 個因子(在One-way ANOVA, a=1)。
- 在每個因子中, 有 n 個觀察值。
- *N = an* · 代表全部有 *N* 個觀察值。
- 模型假設: $y_{ij} = \mu + \tau_i + \varepsilon_{ij}, \begin{cases} i = 1, 2, ..., a \\ j = 1, 2, ..., n \end{cases}$

 μ = an overall mean, τ_i = ith treatment effect, ε_{ii} = experimental error, $NID(0, \sigma^2)$

ANOVA

ANOVA的假設檢定

The Analysis of Variance Table for the Single-Factor, Fixed Effects Model

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	$\boldsymbol{F_0}$
	$SS_{\text{Treatments}}$			
Between treatments	$= n \sum_{i=1}^{a} (\bar{y}_{i.} - \bar{y}_{})^2$	a - 1	$MS_{\mathrm{Treatments}}$	$F_0 = \frac{MS_{\text{Treatments}}}{MS_E}$
Error (within treatments)	$SS_E = SS_T - SS_{\text{Treatments}}$	N-a	MS_E	-
Total	$SS_{T} = \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{})^{2}$	N-1		

ANOVA的假設檢定

$$H_0: \mu_1 = \mu_2 = \dots = \mu_a$$

One way & Two way

ANOVA

 H_1 : At least one mean is different

- F_0 在 H_0 為真的分配為 $F_{a-1,a(n-1)}$ 。
- 當 $F_0 > F_{\alpha,a-1,a(n-1)}$ 時(其中 α 是顯著水準),我們拒絕 H_0 的假設,說明在不同膠體重量對於點膠製程的電感值有不同的良率,就能再找出使良率最高的膠體重量。

ANOVA分析步驟

引進重複實驗 定義應變數、 建立ANOVA 進行F檢定, 因子、水準 的模型假設 看是否拒絕 H_0 數據 不同膠體重量下, 成功拒絕 H_0 會有不同良率 增加樣本數, 無法拒絕 H_0 或將水準範圍增大

Two-way ANOVA(雙因子變異數分析)

Factorial Design

比較**兩個因子**中水準之間對於應變數的影響,並探討因子間的**交 互作用項**。

生活例子:

在這裡除了有「室內溫度」,再加入**第二個因子**為「床墊軟硬」,此時我們擁有床墊偏硬、偏軟兩種選擇(兩個水準)。

這時我們就能檢測在不同室內溫度、及其床墊軟硬不同下,對於睡眠品質是否有顯著影響。並檢查此兩種因子,是否具有像是「溫度28°C配床墊硬」、「26°C配床墊軟」等交互作用項。

Two-way ANOVA(雙因子變異數分析)

比較**兩個因子**中水準之間對於應變數的影響,並探討因子間的**交 互作用項**。

我們一開始除了有「膠體重量」,再加入**第二個因子**為「環境溫度」,並假設有20°C、30°C兩種溫度(兩個水準)。

千如案例:

One way & Two way

ANOVA

此時我們可以使用Two-way ANOVA,研究不同膠體重量及其環境溫度在不同水準之間,對於點膠製成的電感值良率是否有顯著影響。並檢查此兩種因子,是否具有像是「膠體重量0.016g配環境溫度20°C」、「膠體重量0.017g配環境溫度30°C」等交互作用項。

重點摘要

One way & Two way

ANOVA

• 使用時機的比較 我們現在有哪些方法?這些方法背後所需條件為何?

Factorial Design

- 我們關注什麼問題 應變數為何?我們有哪些因子、水準?
- 想知道什麼結果 在One-way ANOVA方法下,這些水準平均值是否顯著不同? 在Two-way ANOVA方法下,這些因子的水準是否對應變數有 顯著影響?因子間是否存在交互作用?

ANOVA

Block Design (區組設計)報告大綱

Block Design基本概念

Factorial Design

One way & Two way

ANOVA

將變數根據相似特徵劃分為區集(Blocks)來控制潛在的外在變數, 讓外在條件盡量達到一致,減少系統性變異(如時間、地點或樣品差 異)的影響。在相同區集進行對比,可以降低隨機變異,提升統計檢 定力和結果的精確性。

關鍵要素: 1. Response (應變數)

- 2. Treatment (處理)
- Block(區集)

例子

實驗情境:研究各種外在因子,對睡眠品質與長短的影響。

例子

結構:不同年齡下,床墊軟硬VS睡眠時長。

Block 年輕族群 中年族群 (40歲以上)

Treatment 軟床墊 硬床墊

Response 睡眠時長

無Block Design風險

- 無法有效控制隨機的變數
- 增加結果的變異量

無法控制變異

結果不精確

- 太多誤差雜質納入實驗 誤差
- 誤差過多導致分析結果 偏移

- 錯誤判定Treatment對 實驗的效果
- 增加假陽性風險

誤判主要變數效果

Block Design的步驟

ANOVA

Block Design 的常見類型與實例

Block/Treatment	0.016g	0.018g
人員1	良率1	良率2
人員 2	良率3	良率4

Block Design 的常見類型與實例

Block	Treatment	Response
操作員1	0.016g	良率1
操作員2	0.018g	良率2

Block Design 的常見類型與實例

溫度/操作員	操作員A	操作員B	操作員C
20°C	0.016g	0.017g	0.018g
25°C	0.017g	0.018g	0.016g
30°C	0.018g	0.016g	0.017g

Factorial Design 因子設計

- 概念介紹
- 舉例

One way & Two way

ANOVA

- 因子設計的優缺點
- 無重複實驗的問題與解決方法

影響睡眠的因素?

室溫 棉被厚薄程度 床的軟硬程度 攝取咖啡因 因子

睡眠時間長度

應變數

自變數

Factorial Design 概念介紹

基本定義:不只關心一種因子對應變數的影響,而是同時分析兩個或 多個因子的影響。實驗中的所有因素的可能組合都會被測試。

• 主效果(Main Effect): 改變某因子的水準所引起的反應變化。

• 交互作用(Interaction):一個因子對應變數的效應受到另一個因子

的不同的影響。

One way & Two way

ANOVA

因子	水準
室溫	22 \ 23 \ 24 \ 25 \ 26 \ 27 \ 28
棉被厚薄程度	輕薄、適中、厚實
床的軟硬程度	非常軟、軟、適中、硬、非常硬
攝取咖啡因與否	是、否

Factorial Design 舉例

棉被的厚薄程度對於睡眠時間的影響 會受到**室溫**的改變而有所不同

棉被厚薄程度和**室溫**之間 存在**交互作用**

ANOVA

Factorial Design 舉例

以兩個因子的因子設計為例,假設現在的製程型態為**半自動**,並假設現在的塗膠人員只有一人時,欲**分析膠體重量和環境溫度對於電感值良率的影響**。

ANOVA

Factorial Design 舉例

以兩個因子的因子設計為例,假設現在的製程型態為**半自動**,並假設現在的塗膠人員只有一人時,欲**分析膠體重量和環境溫度對於電感值良率的影響**。

ANOVA

Factorial Design 優缺點

適合分析有**多個因子**的實驗 優點 ANOVA 檢測顯著性 可透過 Response Surface Methodology 來視覺化結果 因子數量越多則實驗的設計和分析的複雜度越高 若存在複雜的交互作用則解釋會變得更困難 缶夬黑占 沒有重複實驗的情況會使ANOVA過程出問題

ANOVA

Factorial Design 有重複實驗

膠體重量 (g)	環境溫度 (° C)					
	2	9	3	0	3	1
0.016	76	75	77	81	76	90
0.016	72	83	68	72	78	79
0.017	69	71	74	87	81	81
	87	78	75	89	68	81
0.018	86	70	89	87	73	68
	72	76	78	79	78	79

環境溫度與膠體重量各水準組合所對應的電感值良率 (%) 實驗結果記錄舉例

ANOVA

Factorial Design 無重複實驗

膠體重量 (g)	環境溫度 (° C)			
	29	30	31	
0.016	76	77	76	
0.017	69	74	81	
0.018	86	89	73	

環境溫度與膠體重量各水準組合所對應的電感值良率 (%) 實驗結果記錄舉例

ANOVA

Factorial Design 無重複實驗

問題

- 無法估計誤差變異
- 無法進行 ANOVA
- 錯誤假設不存在交互作用造成過度擬合

解決方法

- 使用 Tukey Nonadditivity Test 額外估計交互作用
- 利用高階交互作用項估計誤差

因子設計的特例 - 2k Factorial Design

Factorial Design

- 概念介紹
- 特性

One way & Two way

ANOVA

- 分析步驟
- 無重複實驗解決方法

ANOVA

2^k Factorial Design 概念介紹

Factorial Design

• 基本定義:當**資源有限下,水準只有兩種**,並且因子數量為兩個以上 的實驗。分析因子之間對於應變數的影響與其因子之間的交互作用的 實驗設計方法。

• k:因子數量;2:水準數量

因子	水準
室溫	22 \ 23 \ 24 \ 25 \ 26 \ 27 \ 28
棉被厚薄程度	輕薄、適中、厚實
床的軟硬程度	非常軟、軟、適中、硬、非常硬
攝取咖啡因與否	是、否

k = 4 個因子、每個因子各有 2 個水準

因子	水準	
室溫	24 \ 27	
棉被厚薄程度	輕薄、厚實	
床的軟硬程度	軟、硬	
攝取咖啡因與否	是、否	

2^k Factorial Design 特性

每個因子只有兩種水準,因此**可以用最少的實驗次數**來進行完整的因子設計實驗。

適合當不確定哪些因子對結果有顯著影響時的實驗,允許在**較 少的實驗次數內**同時檢測主效應與交互作用。

常用於**工業實驗**,找出對過程性能有重要影響的因子。

ANOVA

2^k Factorial Design 分析步驟

Estimate Factor Effects

估計每個因子的主效應和交互作用

Formulate Model

將估計完的因子效應來建立迴歸模型

Statistical Test, ANOVA

變異數分析,檢定各效應**顯著性**

Refine the Model

細化模型,使其更有解釋能力

Analysis Residuals, Graphical

殘差分析 - 確保符合模型假設

Interpret Results

基於ANOVA和殘差分析去解釋結果

2k Factorial Design 無重複實驗解決方法

解決方法

• 透過常態機率圖將不顯著的因子作為**誤差項**,使其 ANOVA 可以進行並檢驗因子的顯著性。

Block Design

- Optimal Design
 - 避免因子的水準之間變化過小導致增加誤差而掩蓋因子的效用。
 - 選擇**較大範圍的水準變化**以確保因子的效用更容易被檢 測到。

常態機率圖 (Normal Probability Plot)

Blocking in Two-Level Factorials(兩水準因子實驗中的區集)大綱

基礎概念 例子 Blocking in Two-**Level Factorial** Designs 比較 應用

Blocking in Two-Level Factorial Designs 概念

One way & Two way

ANOVA

定義

在兩水準因子設計(Two-Level Factorial Designs)中引入區集(Blocking)來控制不可控的**因子**。將變數限制在區集內,能夠有效地降低實驗誤差,更準確地估計Treatment效應。提升了對**主要效應**及其**交互作用**的檢測力,增強結果的**統計效力**與推論的準確性。

關鍵要素:原先眾多因子裡,劃分出非重點變數,促成Block概念。

ANOVA

Blocking in Two-Level Factorial Designs 例子

自變數

性別 室溫 棉被厚薄程度 年齡 床的軟硬程度 季節 攝取咖啡因 地區 因子 區集

應變數

睡眠時間長度

有無Blocking的比較

特點 有 Blocking 的兩水準析因設計

沒有 Blocking 的兩水準析因設計

外在變異控制

有效控制外在變異,限 制變異影響 沒有控制外在變異可能影響 實驗結果

誤差變異

誤差變異較小,分析更 精確 誤差變異大,**處理**效應可能 被掩蓋

設計複雜程度

較為複雜,需要劃分區 集並隨機分配

簡單,不需要劃分區集和考 慮外在變異

有無Blocking的比較

有無Blocking的比較

總結

有 Blocking 的兩水準析因設計

沒有 Blocking 的兩水準析因設計

適合有明顯變異時,能有效減少 誤差變異,提升檢測效應的精度, 雖然設計和資源需求較高,但適 合更複雜的實驗環境。 適合變異影響較小、實驗條件較 為一致的情況,設計和執行較簡 單,但可能因背景變異而影響實 驗結果的準確性。

Blocking in Two-Level Factorials應用

One way & Two way

背景: 工廠點膠對電感值良率受因子因素影響。

目標: 研究兩個因子溫度(高、低)和壓力(高、低)對電感值良率的影響。

外在變異: 操作人員作為 Block 來控制這個不可控的變數。

人員(Block)	溫度	壓力	結果
人員1	高	高	結果1
人員1	高	低	結果2
人員1	低	高	結果3
人員1	低	低	結果4
人員2	高	高	結果5
人員2	高	低	結果6
人員2	低	高	結果7
人員2	低	低	結果8

Sequential Experiment大綱

Sequential Experiment 基礎概念

Factorial Design

One way & Two way

ANOVA

實驗中根據已獲得的中期結果動態調整後續實驗條件或設計。相較於傳統實驗 設計中事先確定所有實驗條件的固定架構,具更大的靈活性,能根據逐步累積 的數據作出當下的決策。這一方法 提高實驗資源利用效率,並能更快收斂到有 效結果,從而提高研究的精確性和效力。

- 資源有限的情況(如2K有太多因子)
- 不確定性高的實驗(動態調整減少不確定影響)
- 模型非線性效應或極值問題(涉及拋物線的情況允許實驗者通過逐步擬合模 型來逼近最佳點)

Sequential Experiment 例子

結構:研究不同枕頭對睡眠品質的影響,有五種枕頭(A,B,C,D,E)可以選擇,但不確定應該測試哪兩種枕頭,來研究對睡眠品質的影響。

RSM方法介紹

One way & Two way

ANOVA

RSM方法用於建模和優化複雜系統。核心目的是找到多個自變量影響下的 應變數(如產品質量、產量等)的最優解。適用於解決多因子優化的問題。

- 關鍵要素: 1. 二次模型 (Second-Order Model)
 - 最陡上升法
 - 優化與求解

不使用RSM的風險

難以找到 最佳條件

RSM 可以用來優化結果,幫助找到因素的最佳組合。

可能無法在範圍內找到 最佳的組合。,即使找 到了有顯著效果組合, 可能還有更好的組合。

非線性影響被忽略

非線性的特性,可能導致對變數顯著性的低估 或錯誤判斷。

實驗範圍不足

使用簡單的實驗設計, 會缺少探索更廣泛的實 驗範圍 反應曲面法會包含極限 水準和中心點,可以更 全面地探索實驗範圍。

RSM使用步驟、時機與優缺點

- 1. 定義問題與變數
- 2. 因子篩選與初始設計
- 3. 最陡上升法尋找最佳區域
- 4. 建立二次模型
- 5. 優化應變數
- 6. 驗證結果

使用因子篩選獲取有用的因子。

RSM使用步驟、時機與優缺點

時機:

One way & Two way

ANOVA

- 1. 應變數存在曲面效應時
- 2. 尋找最優操作條件
- 3. 多變量且變量之間存在交互作用時

優缺點:

- 優點:資源節約與效率高、可進行 全局優化、應用領域廣。
- 缺點:需假設曲面是二次模型、計算成本較高、不穩定系統可能無法提供準確的優化。

RSM應用

One way & Two way

ANOVA

背景: 工廠點膠對電感值良率受溫度與壓力因素影響。

目標: 溫度20°到30°、壓力20 Pa到40 Pa。

- 1. 選擇了幾個實驗點進行初步的試驗,通過最陡上升法找到一個改進方向。
- 2. 選不同的溫度和壓力組合進行實驗,並收集產量數據,擬合了一個二次模型。
- 3. 根據模型,通過數學求解(如偏導數為零)找到最佳的角度和壓力組合。
- 4. 確定最佳解後進行額外實驗,發現產量達最大值,驗證了模型的準確性。