Cadenas de Markov Infinitas y Filas de Espera

Rodrigo Maranzana

Repaso: Cadenas de Markov de tiempo continuo

Si intentamos achicar el paso del parámetro t, en la probabilidad de transición:

Repaso: Cadenas de Markov de tiempo continuo

https://www.mecalux.com.ar/blog/robot-de-picking

tiempo

Repaso: matriz generadora infinitesimal

$$Q = \begin{bmatrix} q_{aa} & q_{ab} & q_{ac} & \cdots & q_{an} \\ q_{ba} & q_{bb} & q_{bc} & \cdots & q_{bn} \\ q_{ca} & q_{cb} & q_{cc} & \cdots & q_{cn} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ q_{na} & q_{nb} & q_{nc} & \cdots & q_{nn} \end{bmatrix}$$

Las tasas q_{ij} de cada componentes son escalares, representan la tasa de transición o de saltos entre estados.

Repaso: grafo y matriz generadora

$$Q = \begin{bmatrix} -\sum_{j \neq a} q_{aj} & q_{ab} & q_{ac} & \cdots & q_{an} \\ q_{ba} & -\sum_{j \neq b} q_{bj} & q_{bc} & \cdots & q_{bn} \\ q_{ca} & q_{cb} & -\sum_{j \neq c} q_{cj} & \cdots & q_{cn} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ q_{na} & q_{nb} & q_{nc} & \cdots & -\sum_{j \neq n} q_{nj} \end{bmatrix}$$

Repaso: Cadenas de Markov de tiempo continuo

Clasificación por estados:

- Estado finito
- Estado infinito

- Es una cadena de markov de estado infinito.
- Las tasas de transición (λ) caracterizan la distribución de Poisson subyacente.
- Proceso de conteo, en donde el tiempo entre eventos sigue una distribución exponencial.
- Se genera un proceso estocástico monótono creciente.
- Los estados se definen por la cantidad de eventos generados.

Proceso de conteo:

Matriz generadora:

$$Q = \begin{bmatrix} -\lambda & \lambda & 0 & \cdots \\ 0 & -\lambda & \lambda & \cdots \\ 0 & 0 & -\lambda & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Ejemplos de aplicaciones:

- Conteo de fallas en un proceso/máquina.
- Conteo de llamados a un servicio.
- Finanzas: riesgo de default. Pricing de credit default swaps. La tasa de eventos se conoce como "hazard rate" y se estima la probabilidad de sobrevivir o de defaultear.

Proceso de Nacimiento y Muerte

- Es una cadena de markov de estado infinito.
- Los estados se definen por la cantidad de eventos generados.
 - Los nacimientos incrementan el conteo.
 - Las muertes restan al conteo.

Proceso de Nacimiento y Muerte

Matriz generadora:

$$Q = \begin{bmatrix} -\lambda & \lambda & 0 & 0 & \cdots \\ \mu & -\lambda - \mu & \lambda & 0 & \cdots \\ 0 & \mu & -\lambda - \mu & \lambda & \cdots \\ 0 & 0 & \mu & -\lambda - \mu & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \qquad q_{ij} = \begin{cases} \lambda & Si \ j = i + 1 \\ \mu & Si \ j = i - 1 \\ 0 & Si \ |i - j| > 1 \\ -\sum_{j \neq a} q_{aj} & Si \ i = j \end{cases}$$

$$q_{ij} = \begin{cases} \lambda & Si \ j = i + 1 \\ \mu & Si \ j = i - 1 \\ 0 & Si \ |i - j| > 1 \\ -\sum_{j \neq a} q_{aj} & Si \ i = j \end{cases}$$

Estado estacionario

$$[\boldsymbol{p_0} \quad \boldsymbol{p_1} \quad \boldsymbol{p_2} \quad \boldsymbol{p_3} \quad \dots] \begin{bmatrix} -\lambda & \lambda & 0 & 0 & \cdots & 1 \\ \mu & -\lambda - \mu & \lambda & 0 & \cdots & 1 \\ 0 & \mu & -\lambda - \mu & \lambda & \cdots & 1 \\ 0 & 0 & \mu & -\lambda - \mu & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Armando sistema de ecuaciones:

$$-p_{0}\lambda + p_{1}\mu = 0$$

$$p_{0}\lambda - p_{1}(\lambda + \mu) + p_{2}\mu = 0$$

$$p_{1}\lambda - p_{2}(\lambda + \mu) + p_{3}\mu = 0$$
...
$$p_{n-2}\lambda - p_{n-1}(\lambda + \mu) + p_{n}\mu = 0$$
...
$$\sum_{n} p_{n} = 1$$

Estado estacionario

Si despejamos cada ecuación:

$$-p_0 \lambda + p_1 \mu = 0$$

$$p_0 \lambda - p_1 (\lambda + \mu) + p_2 \mu = 0$$

$$p_1 \lambda - p_2 (\lambda + \mu) + p_3 \mu = 0$$

$$p_{n-2}\lambda - p_{n-1}(\lambda + \mu) + p_n\mu = 0$$

$$\sum_{n} p_n = 1$$

$$p_2 = p_1 \frac{\lambda}{\mu}$$

$$p_2 = p_1 \frac{\lambda}{\mu} \qquad p_2 = \left(p_0 \frac{\lambda}{\mu}\right) \frac{\lambda}{\mu}$$

$$p_n = p_{n-1} \frac{\lambda}{\mu}$$

$$p_n = p_0 \left(\frac{\lambda}{\mu}\right)^n$$

Estado estacionario

Esta expresión nos permite calcular la probabilidad del sistema, de estar en un estado determinado "n", conociendo la probabilidad de estar vacío.

$$p_n = p_0 \left(\frac{\lambda}{\mu}\right)^n$$

Introducción a Filas de Espera

Representación de filas de espera

Arribo de agentes

Despacho de agentes

Tasa de arribos

Representación de filas de espera

Podemos representar las filas como un proceso de markov de nacimiento y muerte.

- lacktriangle Las tasas de nacimiento son arribos de agentes: λ
- ullet Las tasas de muerte son despachos de agentes: μ

Los estados del sistema es la cantidad de agentes en el sistema.

Representación de filas de espera

Configuraciones de filas de espera: servidores

Múltiples servidores:

$$\lambda$$

Configuraciones de filas de espera: capacidad

Capacidad de fila infinita

Capacidad de fila finita

Configuraciones de filas de espera: fuente

Fuente finita

Permite codificar la configuración de una fila.

1/2/3/4/5/6

1/2/3/4/5/6

Naturaleza del proceso de arribo, ej:

- M: Los tiempos de diferencia de arribo independientes e idénticamente distribuidos (iid) siguiendo una distribución exponencial.
- D: Los tiempos de diferencia de arribo son iid y deterministas
- E_k: Los tiempos de diferencia de arribo son iid con distribución de Erlang con parámetro k.
- GI: Son iid y gobernados por una distribución general.

1/2/3/4/5/6

Naturaleza del servicio:

- M: Los tiempos de servicio son independientes e idénticamente distribuidos (iid) siguiendo una distribución exponencial.
- D: Los tiempos de servicio son iid y deterministas
- E_k: Los tiempos de servicio son iid con distribución de Erlang con parámetro k.
- GI: Los tiempos de servicio son iid y gobernados por una distribución general.

1/2/3/4/5/6

Número de servidores en paralelo.

1/2/3/4/5/6

Disciplina de la fila:

- FCFS: First come, first served
- LCLS: Last come, first served
- SIRO: Served in random order
- SPT: Shortest processing time first
- PR: Service according to priority

1/2/3/4/5/6

Cantidad de clientes que puede tener el sistema (esperando + servicio)

1/2/3/4/5/6

Tamaño de la fuente donde se extraen los clientes.

 $M/M/1/FCFS/\infty/\infty$

 $M/M/3/FCFS/25/\infty$

- Arribos $\sim Exp(\lambda)$
- Servicio $\sim Exp(\mu)$
- 1 servidor
- Primero llegado primero servido (FCFS)
- Capacidad infinita del sistema
- Fuente infinita

Se suele abreviar a: M/M/1

- Arribos $\sim Exp(\lambda)$
- Servicio $\sim Exp(\mu)$
- 3 servidores
- Primero llegado primero servido (FCFS)
- Capacidad de 25 personas
- Fuente infinita

Se suele abreviar a: M/M/1/25

Métricas: factor de tráfico

Es la relación entre la tasa de arribos y despachos. Si "M" es la cantidad de servidores.

$$\rho = \frac{\lambda}{M\mu}$$

Casos:

 $\rho \geq 1$ sistema inestable.

 $\rho < 1$ sistema estable.

Métricas y parámetros: factor de tráfico

Cantidad de clientes promedio:

- En la fila: L_a [unidades o agentes]
- En el sistema: L_s o L[unidades o agentes]

Tiempo de espera promedio:

- En la fila: W_q [unidad de tiempo]
- En el sistema: W_s o W [unidad de tiempo]

Probabilidad de estado (que hayan "i" agentes): P(X = i)

Caso M/M/1

Factor de tráfico:

$$\rho = \frac{\lambda}{\mu}$$

$$P_0 = 1 - \rho = 1 - \frac{\lambda}{\mu}$$

Probabilidad de sistema con "n" agentes:

$$P_n = P_0 \rho^n$$

Métricas y parámetros: factor de tráfico

Cantidad de clientes promedio

En el sistema:

$$L = \lambda W$$
(Ley de Little)

$$L = \lambda W \qquad L = L_q + \rho$$

$$L = \frac{\rho}{1 - \rho}$$

En la fila:

$$L_q = \lambda W_q$$

$$L_q = \lambda W_q$$
 $L_q = \frac{\lambda^2}{\mu(\mu - \lambda)}$

Tiempo de espera promedio

■ En el sistema:

$$W = \frac{1}{\mu - \lambda}$$

$$W = \frac{1}{\mu - \lambda} \qquad W = W_{q} + \frac{1}{\mu}$$

■ En la fila:

$$W_{q} = W - \frac{1}{u}$$

$$\mathbf{W_q} = \mathbf{W} - \frac{1}{\mu}$$
 $\mathbf{W_q} = \frac{\lambda}{\mu(\mu - \lambda)}$

$$W_{q} = \frac{L_{q}}{\lambda}$$

Ejemplo inicial

A una unidad de empaquetado llegan 35 unidades por hora. La media de servicio de cada unidad es de 1 minuto.

La distribución de tiempo entre arribos es exponencial y la capacidad de la fila infinita.

- 1- Escribir la notación de Kendall y representar el sistema.
- 2- Factor de tráfico.
- 3- Probabilidad de sistema ocioso.
- 4- Número promedio de unidades en la fila.
- 5- Tiempo promedio de unidades esperando.
- 5- Clientes atendidos por hora.

1) Notación de Kendall y representación

$M/M/1/FCFS/\infty/\infty$ (M/M/1)

- Arribos $\sim Exp(\lambda)$
- Servicio $\sim Exp(\mu)$
- 1 servidor
- Primero llegado primero servido (FCFS)
- Capacidad infinita del sistema
- Fuente infinita

$$\lambda = 35 u/h$$
$$\mu = 60 u/h$$

2) Factor de tráfico

$$\rho = \frac{\lambda}{\mu} = \frac{35}{60} = 0.58$$

3) Probabilidad de sistema ocioso

$$P_0 = 1 - \rho = 1 - \frac{\lambda}{\mu}$$

$$P_0 = 1 - \frac{35}{60} = 0.41\hat{6}$$

La probabilidad de encontrar el sistema ocioso es de 41.66%

4) Número promedio de unidades en la fila

$$L_q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{35^2}{60(60 - 35)} = 0.8166 \text{ unidades}$$

5) Tiempo promedio de unidades esperando

$$W_q = \frac{L_q}{\lambda} = \frac{0.8166}{35} = 0.0233 \ horas = 1.39 \ min$$

6) Clientes atendidos por hora

a) calculamos la cantidad promedio en el servidor:

$$L_s - L_q = \rho$$

b) multiplicamos por la capacidad operativa del servidor:

$$\rho\mu = 0.58 * 60 = 35 \text{ clientes/hora}$$

6) Clientes atendidos por hora

Otra forma de entenderlo:

 μ es la capacidad operativa total.

Dado que $\mu > \lambda$

Los clientes atendidos por hora son $\lambda = 35$ clientes/hora

Caso: Supply Chain Modelling

Fig. 1: Queuing formulation of the network of processes

- Modelización con red de filas de espera.
- Casos límite.
- Casos equivalentes.
- Medición de performance.

Fuente: Bahskar (2010) "Modeling a supply chain using a network of queues" (https://www.sciencedirect.com/science/article/pii/S0307904X09003382#bib29)

T indicates Transport

Caso: Factorio (2020)

- Asignación de recursos.
- Supply Chain.
- Optimización de redes logísticas.
- Balanceo de línea.

Fuente: https://store.steampowered.com/app/427520/Factorio/?l=spanish

Little's Law in Factorio: https://johanneshoff.com/little-factorio/

