

REKAYASA PERANGKAT LUNAK

Romindo, Reska Mayefis, Tri Yusnanto, Nono Heryana, Jamaludin, Allans Prima Aulia, Angga Aditya Permana, Sitti Aisa, Johni S Pasaribu, Wahyuddin S, Fredy AH Sihombing

REKAYASA PERANGKAT LUNAK

Romindo
Reska Mayefis
Tri Yusnanto
Nono Heryana
Jamaludin
Allans Prima Aulia
Angga Aditya Permana
Sitti Aisa
Johni S Pasaribu
Wahyuddin S
Fredy AH Sihombing

REKAYASA PERANGKAT LUNAK

Penulis:

Romindo
Reska Mayefis
Tri Yusnanto
Nono Heryana
Jamaludin
Allans Prima Aulia
Angga Aditya Permana
Sitti Aisa
Johni S Pasaribu
Wahyuddin S
Fredy AH Sihombing

ISBN: 978-623-8102-96-9

Editor: Dr.Safrizal.,ST.,MM,.M.Kom Diana Purnama Sari, S.E., M.E. Penyunting: Tri Putri Wahyuni, S.Pd

Desain Sampul dan Tata Letak : Atyka Trianisa, S.Pd

Penerbit : PT GLOBAL EKSEKUTIF TEKNOLOGI Anggota IKAPI No. 033/SBA/2022

Redaksi:

Jl. Pasir Sebelah No. 30 RT 002 RW 001 Kelurahan Pasie Nan Tigo Kecamatan Koto Tangah Padang Sumatera Barat

Website: www.globaleksekutifteknologi.co.id

Email: globaleksekutifteknologi@gmail.com

Cetakan pertama, 17 Januari 2023
Hak cipta dilindungi undang-undang
Dilarang memperbanyak karya tulis ini dalam bentuk
dan dengan cara apapun tanpa izin tertulis dari penerbit.

KATA PENGANTAR

Segala Puji dan syukur kehadirat Allah SWT dalam segala kesempatan. Sholawat beriring salam dan doa kita sampaikan kepada Nabi Muhammad SAW. Alhamdulillah atas Rahmat dan Karunia-Nya penulis telah menyelesaikan Buku Rekayasa Perangkat Lunak ini.

Proses penulisan buku ini berhasil diselesaikan atas kerjasama tim penulis. Demi kualitas yang lebih baik dan kepuasan para pembaca, saran dan masukan yang membangun dari pembaca sangat kami harapkan.

Penulis ucapkan terima kasih kepada semua pihak yang telah mendukung dalam penyelesaian buku ini. Terutama pihak yang telah membantu terbitnya buku ini dan telah mempercayakan mendorong, dan menginisiasi terbitnya buku ini. Semoga buku ini dapat bermanfaat bagi masyarakat Indonesia.

Padang, 17 Januari 2023

Penulis

DAFTAR ISI

KATA PENGANTAR	i
DAFTAR ISI	ii
DAFTAR GAMBAR	vi
DAFTAR TABEL	viii
BAB 1 PENDAHULUAN	1
1.1 Pendahuluan	1
1.2 Pengertian Perangkat Lunak Dan Rekayasa	
Perangkat Lunak	1
1.3 Karakteristik Perangkat Lunak	5
1.4 Kualitas Perangkat Lunak	6
1.5 Konsep Rekayasa Sistem	7
DAFTAR PUSTAKA	11
BAB 2 PROSES PERANGKAT LUNAK	13
2.1 Pendahuluan	13
2.2 Pengertian Proses Perangkat Lunak	14
2.3 Proses Perangkat Lunak	15
2.3.1 Waterfall Model	17
2.3.2 Evolutionary Model	19
2.3.3 Increment Model	20
2.3.4 Spiral Model	21
DAFTAR PUSTAKA	
BAB 3 PENGEMBANGAN PERANGKAT LUNAK AGI	LE 25
3.1 Perangkat Lunak	25
3.2 Definisi Metode A <i>gile</i>	29
3.3 Faktor Manusia pada Agile Process Model	31
3.4 Cara Kerja Metode Agile	32
3.5 Model Proses <i>Agile</i>	34
3.6 Tahapan Metode Agile	54
3.7 Kelebihan Metode Agile	
3.8 Kekurangan Metode Agile	56
3.9 Kesimpulan	56

DAFTAR PUSTAKA	58
BAB 4 REKAYASA PERSYARATAN PERANGKAT	
LUNAK	61
4.1 Pendahuluan	61
4.2 Definisi	65
4.2.1 Definisi Persyaratan	65
4.2.1 Definisi Rekayasa Persyaratan	66
4.3 Level dan Jenis Persyaratan	
4.4 Manajemen Persyaratan	
4.5 Aktivitas Persyaratan dalam Siklus Hidup Sistem.	
DAFTAR PUSTAKA	
BAB 5 DESAIN DAN IMPLEMENTASI	75
5.1 Pendahuluan	
5.2 Konsep Dasar Desain	75
5.3 Konsep Dasar Implementasi	78
5.4 Penerapan Desain dan Implementasi pada	
Perancangan Sistem Perangkat Lunak	81
5.4.1 Desain dan Implementasi Sistem Informasi	
Pelayanan Kesehatan Masyarakat	81
5.4.2 Desain dan Implementasi Sistem Informasi	
Akademik	86
DAFTAR PUSTAKA	
BAB 6 PENGUJIAN PERANGKAT LUNAK	93
6.1 Pengujian Perangkat Lunak	93
6.2 Level Pengujian Perangkat Lunak	95
6.3 Metode Pengujian Perangkat Lunak	
6.4 Pendekatan Pengujian Perangkat Lunak	101
DAFTAR PUSTAKA	105
BAB 7 EVOLUSI PERANGKAT LUNAK	
7.1 Pendahuluan	107
7.2 Prinsip dan Konsep	
7.2.1 Perubahan Korektif	
7.2.2 Perubahan Adaptif	109

7.2.3 Perubahan Perfektif	109
7.2.4 Perubahan Preventif	110
7.3 Proses Evolusi Perangkat Lunak	111
7.4 Dinamika Evolusi Perangkat Lunak	114
7.5 Pemeliharaan Sistem Perangkat Lunak	115
DAFTAR PUSTAKA	
BAB 8 SISTEM YANG DAPAT DIANDALKAN	119
8.1 Pendahuluan	119
8.2 Pemodelan	119
8.3 Defenisi <i>Uml</i>	120
8.2.1 Diagram – Diagram <i>UML</i>	121
8.4 Tahapan Perancangan Sebuah Sistem	127
DAFTAR PUSTAKA	
BAB 9 REKAYASA KEANDALAN	131
9.1 Pendahuluan	131
9.2 Keandalan Perangkat Lunak	133
9.3 Kegagalan Perangkat Lunak vs Kegagalan Pera	ngkat
Keras	134
9.4 Mengapa Perangkat Lunak Gagal?	137
9.5 Keandalan Software dan Sistem	139
9.6 Teknik, Model dan Metrik	142
9.6.1 Model Keandalan Black Box	147
9.6.2 Model Keandalan Berbasis Arsitektur	
(White Box)	148
DAFTAR PUSTAKA	
BAB 10 TEKNIK KEAMANAN	155
10.1 Keamanan Komputer	155
10.2 Segitiga CIA (CIA Triad)	155
10.2.1 Confidentiality	156
10.2.2 Integrity	157
10.2.3 Availability	158
10.3 Teknik Keamanan Komputer	158
10.3.1 Firewall	158

10.3.2 Intrusion Detection System	161
10.3.3 Software Antivirus	163
10.4 Metode Keamanan Komputer	
DAFTAR PUSTAKA	166
BAB 11 MODEL DAN METODE DALAM TEKNIK	
KETAHANAN REKAYASA PERANGKAT LUNAK	169
11.1 Pendahuluan	169
11.2 Konsep Rekayasa Sistem	170
11.3 Pemodelan Sistem	172
11.3.1 Analisis	172
11.3.2 Berkomunikasi	172
11.3.3 Prediksi	172
11.3.4 Pengendalian	172
11.3.5 Simulasi	172
11.4 Metodologi Pengembangan Perangkat Lunak	173
11.5 Kelebihan Dan Kelemahan SDLC	180
11.5 Pengertian Dan Ragam Metodologi Pengembang	gan 182
11.6 Pentingnya Metodologi Pengembangan Perangka	at
Lunak	187
DAFTAR PUSTAKA	190
BIODATA PENULIS	

DAFTAR GAMBAR

Gambar 2.1 : Gambaran Umum Proses	15
Gambar 2.2 : Gambaran Umum Proses Perangkat	
Lunak	15
Gambar 2.3: Siklus Waterfall Model	18
Gambar 2.4: Siklus Evolutionary Model	19
Gambar 2.5: Siklus Increment Model	
Gambar 2.6: Siklus Spiral Model	22
Gambar 2.7 : Agile Process	23
Gambar 3.1: Ilustrasi Perangkat Lunak	25
Gambar 3.2 : Ilustrasi Kerjasama	
Gambar 3.3: Extreme Programming	34
Gambar 3.4: Ilustrasi Metode Crystal	37
Gambar 3.5 : Adaptive Software Development	40
Gambar 3.6: Dynamic Systems Development Method	42
Gambar 3.7: Ilustrasi Metode SCRUM	
Gambar 3.8 : Ilustrasi Prinsip Lean Software	
Development	47
Gambar 3.9 : Ilustrasi Agile	
Gambar 3.10: Ilustrasi Tahapan Agile	54
Gambar 4.1 : Hubungan antara beberapa jenis	
informasi persyaratan	68
Gambar 5.1: Metode Waterfall	
Gambar 5.2 : Diagram use case	82
Gambar 5.3: Diagram Activity	83
Gambar 5.4 : Diagram Sequence	84
Gambar 5.5 : Digaram class	85
Gambar 5.6 : Antarmuka ketersediaan kamar dan	
dokter jaga	86
Gambar 5.7 : Diagram use case	
Gambar 5.8: Aktivity diagram	
Gambar 5.9: Gambar tampilan form pengisian KRS	

Gambar 6.1 : Ilustrasi Pengujian Perangkat Lunak	93
Gambar 6.2: Ilustrasi Pengujian Perangkat Lunak	94
Gambar 6.3: Ilustrasi Pengujian Perangkat Lunak	97
Gambar 6.4: Ilustrasi Pengujian White Box	101
Gambar 6.5: Ilustrasi Pengujian Black Box	103
Gambar 7.1 : Potensi hubungan antara perubahan	
perangkat lunak	111
Gambar 7.2: Proses evolusi perangkat lunak	112
Gambar 7.3: Tahapan impelentasi perubahan	113
Gambar 7.4: Prediksi pemeliharaan	116
Gambar 7.5: Distribusi usaha pemeliharaan	117
Gambar 9.1 : Kurva Keandalan Perangkat Lunak	
(Software Reliability Curve)	136
Gambar 9.2 : Kurva Keandalan Perangkat Keras	
(Hardware Reliability Curve)	137
Gambar 10.1: Segitiga CIA	156
Gambar 10.2 : Firewall	159
Gambar 10.3: Ilustrasi firewall dalam sebuah jaringan	160
Gambar 10.4: Taknonomi Firewall	161
Gambar 10.5 : Cara kerja IDS	162

DAFTAR TABEL

Tabel 4.1 : Alasan Kegagalan Proyek	63
Tabel 4.2: Faktor Keberhasilan Proyek	63
Tabel 4.3: Faktor Keberhasilan Proyek	64
Tabel 4.4: Beberapa jenis informasi persyaratan	67
Tabel 6.1: Perbedaan Verifikasi dan Validasi	100
Tabel 7.1: Hukum Lehman	114
Tabel 8.1 : Simbol – simbol use case diagram	122
Tabel 8.2 : Simbol – simbol Class diagram	123
Tabel 8.3: Simbol – simbol Sequence diagram	125

BAB 4 REKAYASA PERSYARATAN PERANGKAT LUNAK

Oleh Nono Heryana

4.1 Pendahuluan

Persyaratan (requirement) adalah atribut yang diperlukan mengidentifikasi dalam sistem, pernyataan vang suatu kemampuan, karakteristik, atau faktor kualitas suatu sistem agar memiliki nilai dan kegunaan bagi pelanggan atau pengguna. Persyaratan penting karena menyediakan dasar untuk semua pekerjaan pengembangan berikutnya. Setelah persyaratan ditetapkan, pengembang memulai pekerjaan teknis lainnya: desain sistem, pengembangan, pengujian, implementasi, dan operasi. Persyaratan ini harus dipenuhi oleh sistem atau komponen sistem untuk memenuhi standar, spesifikasi atau dokumen formal lainnya. Rekavasa merupakan bagian persyaratan dari penting perangkat bertuiuan pengembangan lunak yang untuk mengumpulkan kualitas, menganalisis persyaratan mendokumentasikannya untuk implementasi selanjutnya baris program dengan cara yang tepat untuk mencapai fungsionalitas yang diinginkan dan memenuhi persyaratan pengguna (Rehman, Khan and Riaz, 2013).

Proses ini merupakan tahapan yang kritis dan kompleks untuk pengembangan perangkat lunak karena diversifikasi dalam persyaratan yang diperoleh dan karena perubahan yang cepat dalam persyaratan. Sangat sulit untuk mengembangkan persyaratan yang akurat yang tetap konsisten dalam sistem yang kompleks, sebagian besar besar dan kesalahan

fungsionalitas perangkat lunak terkait dengan kesalahan yang dilakukan pada saat pengumpulan persyaratan (requirement gathering), karena dasar untuk setiap proyek dan teknologi berubah dengan cepat sehingga rekayasa persyaratan yang efektif merupakan jantung pacu yang mendefinisikan apa dibutuhkan stakeholder baik itu pengguna, pelanggan, suplier, pengembang ataupun bisnis dari sistem baru yang potensial dan juga apa yang dibutuhkan sistem untuk memenuhi persyaratan itu serta mengikuti arus kompleksitas sistem yang meningkat.

Proses persyaratan tidak rumit atau mahal (Young, 2004). Namun, persyaratan dibutuhkan untuk apapun ukuran proyeknya, sangat penting bahwa suatu proyek atau organisasi memiliki proses persyaratan yang ditetapkan dan didokumentasikan. Sifat komponen spesifik dari proses yang ditentukan dapat ditingkatkan berdasarkan pengalaman.

Persyaratan dibuat untuk dipahami semua orang dengan belakang. berbagai latar umumnya macam persyaratan dideskripsikan dalam bahasa yang sederhana dan universal, disinilah letak tantangannya. Untuk men-capture persyaratan atau masalah secara lengkap dan tidak ambigu, rekayasa persyaratan merupakan bagian integral dari siklus hidup pengembangan perangkat lunak karena dasar untuk mengembangkan perangkat lunak yang sukses bergantung pada pemahaman persyaratannya sejak awal. Rekayasa persyaratan melibatkan sejumlah proses untuk mengumpulkan persyaratan sesuai dengan persyaratan dan tuntutan pengguna dan pemangku kepentingan produk perangkat lunak. Setelah dikomunikasikan dan disetujui, persyaratan mendorong aktifitas proyek, namun persyaratan para *stakeholder* mungkin banyak dan beragam bahkan bisa menimbulkan berbagai macam konflik. Menurut (Dick, Hull and lackson, 2017) Persyaratan menjadi dasar untuk:

- Perencanaan Proyek;
- Manajemen Risiko;

- Trade off;
- Acceptance Testing;
- Change Control.

Alasan yang umum untuk kegagalan proyek bukanlah hal teknis. Standish Group telah membuat laporan CHAOS terkait keberhasilan dan kegagalan sebuah proyek sejak tahun 1994. Tabel 4.1 & tabel 4.2 menunjukkan alasan utama kegagalan proyek dan faktor keberhasilan proyek pada tahun 1995.

Tabel 4.1: Alasan Kegagalan Proyek (Standish Group, 1995)

	Alasan Kegagalan	Persentase
**	Persyaratan tidak lengkap	13,1%
**	Kurangnya keterlibatan pengguna	12,4%
	Kurangnya sumberdaya	10,6%
*	Ekspektasi yang tidak realistis	9,9%
**	Kurangnya dukungan eksekutif	9,3%
	Perubahan persyaratan/spesifikasi	8,7%
**	Kurangnya perencanaan	8,1%
**	Tidak membutuhkannya lagi	7,5%

Sumber: Dick et al. 2017

Tabel 4.2: Faktor Keberhasilan Proyek (Standish Group, 1995)

	Faktor Keberhasilan	Persentase
**	Keterlibatan Pengguna	15,9%
	Dukungan Manajemen	13,9%

	Faktor Keberhasilan	Persentase
**	Pernyataan persyaratan yang jelas	13,0%
	Perencanaan yang tepat	9,6%
*	Ekspektasi yang realistis	8,2%
	Milestone yang lebih kecil	7,7%
	Staff yang kompeten	7,2%
*	Kepemilikan	5,3%

Sumber: Dick et al. 2017

Faktor keberhasilan proyek dari periode yang sama tidak berbanding terbalik dengan faktor kegagalan (lihat tabel 4.2). dukungan manajemen dan perencanaan yang tepat, terlihat penting disini. Semakin besar proyek, semakin lama jadwalnya dan semakin tinggi kemungkinan gagalnya.

Tabel 4.3 : Faktor Keberhasilan Proyek (Standish Group, 1995)

	Faktor Keberhasilan	Persentase
*	Dukungan manajemen eksekutif	20%
**	Keterlibatan pengguna	15%
	Optimalisasi	15%
	SDM yang terampil	13%
	Keahlian Manajemen Proyek	12%
*	Agile Proses	10%
**	Tujuan bisnis yang jelas	6%
*	Kematangan emosional	5%

Faktor Keberhasilan	Persentase
Eksekusi	3%
Alat dan infratruktur	1%

Sumber: Dick et al. 2017

Tabel 4.3 diatas ini menunjukkan data kriteria keberhasilan proyek tahun 2015. Selama bertahun-tahun cara standish mengkorelasikan data merekamembuahkan hasil karena ada sedikit perubahan, tetapi faktor-faktor yang mendasarinya tetap dan relatif tidak berubah.

4.2 Definisi

4.2.1 Definisi Persyaratan

Brian Lawrence (1997) dalam (Wiegers and Beatty, 2013) menyarankan persyaratan adalah "segala sesuatu yang mendorong pilihan desain". Ini menandakan bahwa ada banyak informasi yang terkandung dalam definisi ini. Lagi pula inti dari rekayasa persyaratan adalah membuat pilihan desain yang tepat yang akhirnya akan memenuhi persyaratan pelanggan.

Definisi lain adalah bahwa persyaratan adalah properti yang harus dimiliki suatu produk untuk memberikan nilai tambah kepada pemangku kepentingan *(stakeholders)*. Sedangkan menurut (Sommerville, 2016) persyaratan adalah spesifikasi yang harus diimplementasikan yang mendeskripsikan bagaimana sistem harus berprilaku, properti atau atribut sistem yang mungkin jadi kendala dalam proses pengembangan sistem.

Persyaratan juga mencakup pandangan pengguna tentang karakteristik eksternal dari sistem dan pandangan pengembang tentang karakteristik internal dari sistem. Menurut (Koelsch, 2016) Persyaratan bisa berubah secara signifikan dari saat pertama kaliditentukan hingga sistem itu selesai.

4.2.1 Definisi Rekayasa Persyaratan

Istilah rekayasa persyaratan terlalu sempit jika disamakan dengan analisis kebutuhan yang hanya salah satu kegiatan dalam disiplin ilmu yang lebih luas. Rekayasa persyaratan menggunakan pendekatan yang sistematis dimana pengembang perangkat lunak mengumpulkan persyaratan dari berbagai sumber mengimplementasikannya kedalam proses pengembangan perangkat lunak (Pandey, Suman and Ramani, 2010). Kegiatan rekayasa persyaratan mencakup seluruh sistem dan siklus hidup pengembangan perangkat lunak. Jika dilihat lebih detail terkait definisi rekayasa persyaratan yang dikemukakan oleh (Dick, Hull and Jackson, 2017) yang menyatakan bahwa rekayasa persyaratan adalah bagian dari rekayasa sistem yang berkaitan dengan proses menemukan. mengembangkan, melacak. menganalisis, mengkualifikasi, mengkomunikasikan dan mengelola persyaratan yang mendefinisikan sistem pada tingkat abstraksi.

Dari definisi tersebut dapat disimpulkan bahwa Rekayasa persyaratan merupakan bagian penting dari proses rekayasa perangkat lunak, karena hampir semua aktivitas dalam proses pengebangan sistem membutuhkan suatu rekayasa persyaratan untuk mencapai tujuan tertentu. Rekayasa persyaratan (Aurum and Wohlin, 2005) mengacu pada semua aktivitas siklus hidup sistem yang terkait dengan persyaratan yang mencakup pengumpulan, pendokumentasian dan pengeloaan persyaratan.

4.3 Level dan Jenis Persyaratan

Pada bagian ini disajikan beberapa definisi yang digunakan untuk istilah-istilah yang biasa ditemui dalam domain persyaratan.

Tabel 4.4 • Reherana ienis informasi nersyaratan

	Tabel 4.4: Beberapa jenis informasi persyaratan			
No.	Istilah	Definisi		
1	Persyaratan Bisnis	Tujuan bisnis tingkat tinggi dari organisasi yang harus dilakukan untuk memenuhi tujuan organisasi		
2	Aturan Bisnis	Sebuah kebijakan, pedoman, standar, atau peraturan yang mendefinisikan atau membatasi berbagai aspek bisnis		
3	Batasan	Batasan terkait opsi yang tersedia bagi pengembang untuk desain dan konstruki suatu produk		
4	Persyaratan Eksternal Interface	Mendeskripsikan koneksi antar sistem perangkat lunak dan pengguna, sistem lain atau perangkat keras		
5	Fitur	Satu atau lebih kemampuan sistem yang terkait secara logis yang memberikan nilai kepada pengguna dan dideskripsikan oleh serangkaian persyaratan fungsional		
6	Persyaratan Fungsional	Deskripsi prilaku yang akan ditunjukkan oleh sistem dalam kondisi tertentu		
7	Persyaratan Non- fungsional	Deskripsi properti atau karakteristik yang harus ditunjukkan oleh sistematau batasan yang harus dihormatinya		
8	Atribut Kualitas	Semacam persyaratan non-fungsional yang menggambarkan layanan atau karakteristik kinerja dari suatu produk		
9	Persyaratan Sistem	Persyaratan tingkat atas untuk produk yang berisi beberapa sub sistem, yang dapat berupa semua perangkat lunak atau perangkat lunak dan perangkat keras		

N	o.	Istilah	Definisi
1	0	Persyaratan Pengguna	Tujuan atau tugas yang harus dilakukan oleh pengguna tertentu dengan sistem, atau atribut produk yang diinginkan

Sumber: Wiegers et al. 2013

Persyaratan perangkat lunak mencakup tiga level yang berbeda yaitu persyaratan bisnis, persyaratan pengguna, dan persyaratan fungsional. Selain itu, setiap sistem memiliki bermacam-macam persyaratan nonfungsional. Gambar 4.1 mengilustrasikan cara berpikir terkait berbagai jenis persyaratan, model ini tidak mencakup semuanya tetapi memberikan gambaran untuk mengatur pengetahuan persyaratan yang ditemui.

Gambar 4.1 : Hubungan antara beberapa jenis informasi persyaratan

(Sumber: Wiegers et al, 2013)

Pada gambar 4.1 bentuk oval mewakili jenis informasi persyaratan dan persegi Panjang menunjukkan dokumen untuk menyimpan informasi tersebut. Panah solid menunjukkan bahwa jenis informasi tertentu biasanya 'disimpan di' dalam dokumen yang ditunjuk tanda panah. Aturan bisnis dan persyaratan sistem disimpan secara terpisah dari persyaratan perangkat lunak, seperti dalam katalog aturan bisnis atau spesifikasi persyaratan sistem. Panah putus-putus menunjukkan bahwa satu jenis informasi adalah 'berasal dari' atau 'mempengaruhi' persyaratan lainnya. Persyaratan data tidak ditampilkan secara eksplisit dalam diagram diatas.

4.4 Manajemen Persyaratan

Semua proyek pengembangan memiliki persyaratan yang merupakan dasar untuk desain. Aktifitas manajemen persyaratan mencakup hal-hal berikut :

- 1. eluruh proyek.
- 2. Mendefinisikan baseline persyaratan, snapshot dalam waktu yang mewakili seperangkat persyaratan fungsional dan nonfungsional yang disepakati, ditinjau dan disetujui, seringkali untuk rilis produk atau iterasi pengembangan tertentu.
- 3. Evaluasi dampak perubahan persyaratan yang diusulkandan memasukkan perubahan yang disetujui kedalam proyek dengan cara yang terkendali.
- 4. Menjaga rencana proyek terkini sesuai dengan persyaratan.
- 5. Menegosiasikan komitmen baru berdasarkan perkiraan dampak perubahan persyaratan.
- 6. Mendefinisikan hubungan dan dependensi yang ada antara persyaratan.
- 7. Menelusuri persyaratan individu ke desain yang sesuai, kode sumber dan pengujian.

Melacak status persyaratan dan mengubah aktivitas disManajemen persyaratan bukanlah sarana untuk menahan perubahan atau mempersulit perubahan. Tetapi lebih kepada untuk mengantisipasi dan mengakomodir perubahan sesuai dengan harapan untuk meminimalkan dampak gangguan pada proyek pengambangan perangkat lunak.

4.5 Aktivitas Persyaratan dalam Siklus Hidup Sistem

Aktivitas yang berhubungan dengan persyaratan terutama terkait dengan pengumpulan persyaratan dan mengelola perubahan persyaratan sepanjang siklus hidup pengembangan sistem (Young, 2004). Namun, pada kenyataanya ada beberapa aktivitas terkait kebutuhan lain yang perlu ditangani dalam siklus hidup pengembangan sistem yang terdiri atas aktivitas-aktivitas:

- 1. Mengidentifikasi pemangku kepentingan (stakeholder): aktivitas initermasuk siapa saja yang memiliki kepentingan dalam sistem atau kualitas yang dimilikinya yang memenuhi kebutuhan tertentu.
- 2. Mendapatkan pemahaman tentang kebutuhan pelanggan dan pengguna untuk sistem yang direncakan dan harapan mereka: aktivitas ini sering disebut elisitasi persyaratan.
- 3. Mengidentifikasi Persyaratan: mendefiniskan kebutuhan bisnis atau persyaratan bisnis merupakan kegiatan penting karena faktor kunci dalam keberhasilan suatu sistem adalah sejauh mana sistem itu mendukung kebutuhan bisnis dan memfasilitasi organisasi dalam mencapainya.
- 4. Mengklarifikasi dan menyatakan kembali persyaratan: hal ini ini dilakukan untuk memastikan bahwa persyaratan tersebut menggambarkan kebutuhan nyata pelanggan dan dalam bentuk yang dapat dipahami dan digunakan oleh pengembang sistem.

- 5. Menganalisis Persyaratan: Hal ini dilakukan untuk memastikan bahwa persyaratan tersebut didefinisikan dengan baik dan sesuai dengan kriteria persyaratan yang baik.
- 6. Definisi Persyaratan dengan cara yang memiliki arti yang sama bagi semua pemangku kepentingan: perhatikan bahwa setiap kelompok pemangku kepentingan mungkin memiliki perspektif yang sangat berbeda dari sistem dan persyaratan sistem.
- 7. Menentuka Persyaratan: hal ini diperlukan, termasuk semua detail yang tepat dari setiap persyaratan sehingga dapat dimasukkan kedalam dokumen spesifikasi atau dokumen lainnya, tergantung ukuran proyek.
- 8. Memprioritaskan persyaratan: semua persyaratan tidak sama pentingnya bagi pelanggan dan pengguna sistem yang direncanakan. Ada yang kritis, ada yang berprioritas relatif tinggi, ada yang berprioritas normal atau rata-rata dan bahkan ada juga yang memiliki prioritas lebih rendah. Memprioritaskan persyaratan begitu penting karena tidak pernah ada cukup waktu ataupun uang untuk melakukan sistem dikembangkan. semua hal dalam yang Memprioritaskan membantu memastikan bahwa jumlah investasi yang tepat dilakukan dalam memenuhi berbagai kebutuhan pelanggan.
- 9. Persyaratan turunan: ada beberapa persyaratan yang muncul karena desain sistem baru, tetapi tidak memberikan manfaat langsung kepada *end user*.
- 10. Persyaratan Partisi: mengkategorikan persyaratan sebagai persyaratan yang dapat dipenuhi oleh perangkat keras, perangkat lunak, pelatihan dan dokumentasi.
- 11. Mengalokasikan persyaratan: mengalokasikan persyaratan ke berbagai subsistem dan komponen sistem.

- 12. Pelacakan persyaratan: kemampuan untuk melacak setiap persyaratan yang dipenuhi atau tidak, sehingga bisa diverifikasi setiap persyaratan sedang ditangani. Hal ini paling sering dilakukan menggunakan alat persyaratan yang otomatis.
- 13. Mengelola Persyaratan: hal ini dilakukan untuk dapat menambah, menghapus dan memodifikasi persyaratan selama fase desain sistem, pengembangan, integrasi, pengujian, penerapan, dan operasi. Repositori persyaratan terdiri dari satu set artefak dan database.
- 14. Pengujian dan verifikasi: proses pemeriksaan persyaratan, desain, kode, rencana pengujian dan produk sistemuntuk memastikan bahwa persyaratan terpenuhi.
- 15. Memvalidasi persyaratan: ini merupakan proses untuk mengonfirmasi bahwa persyaratan nyata diimplementasikan dalam sistem yang di *deliver*. Validasi urutan persyaratan harus diprioritaskan karena dana yang tersedia terbatas.

DAFTAR PUSTAKA

- Aurum, A. and Wohlin, Claes. 2005. *Engineering and managing software requirements*. Springer.
- Dick, J., Hull, E. and Jackson, K. 2017. *Requirements engineering*. Springer International Publishing. Available at: https://doi.org/10.1007/978-3-319-61073-3.
- Koelsch, G. (2016) *Requirements Writing for System Engineering*. Apress. Available at: https://doi.org/10.1007/978-1-4842-2099-3.
- Pandey, D., Suman, U. and Ramani, A.K. 2010. 'An effective requirement engineering process model for software development and requirements management', *Proceedings-2nd International Conference on Advances in Recent Technologies in Communication and Computing, ARTCom 2010*, pp. 287–291. Available at: https://doi.org/10.1109/ARTCOM.2010.24.
- Rehman, T. ur, Khan, M.N.A. and Riaz, N. 2013. 'Analysis of Requirement Engineering Processes, Tools/Techniques and Methodologies', *International Journal of Information Technology and Computer Science*, 5(3), pp. 40–48. Available at: https://doi.org/10.5815/ijitcs.2013.03.05.
- Sommerville, I. 2016. *Software engineering (10th edition), Pearson Education Limited.*
- Wiegers, K. and Beatty, J. 2013. *Software Requirements, Third Edition*. Microsoft Press.
- Young, R.R. 2004. *The Requirements Engineering Handbook*. Boston: Artech House.