Standardization and Normalization

- Standardization and Normalization are two methods to convert data values into same scale
- · It is also called scaling of data
- In the data we have many columns are there, each column has different units as well as different values
- · For example you have age and salary, age is very minimal number two digit number
- · And salary is kind of 5 digit number
- When you multiply 2 digit number with 5 digit number it involves some complexity
- · Imagine you are multiplying both are single digit number, this involves less complexity
- · Scaling converts all the data into a same scale
- Standardization:
 - It is also called Z-score or Z-scale
 - It ranges -3 to 3
 - The mean =0 and std=1

$$Z = rac{x - \mu}{\sigma}$$

Normalization

- Min max scalar
- Normalization converts data into 0 to 1 range
- min value =0 and max value =1
- It mainly use in Deep learning for the image scaling
- Generally images are color images the pixel value ranges from 0 to 255
- We Normalize the values into 0 to 1
- The value might be change but information never change

$$x_{scaled} = rac{x - x_{min}}{x_{max} - x_{min}}$$

Import the packages

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

Read the data

```
In [2]: file_location="C:\\Users\\omkar\\OneDrive\\Documents\\Data science\\Naresh
    visa_df=pd.read_csv(file_location)
    visa_df.head()
```

_		\sim \sim	
()11	+1	· '	٠.
Ou			

	case_id	continent	education_of_employee	has_job_experience	requires_job_training	no_
0	EZYV01	Asia	High School	N	N	
1	EZYV02	Asia	Master's	Υ	N	
2	EZYV03	Asia	Bachelor's	N	Υ	
3	EZYV04	Asia	Bachelor's	N	N	
4	EZYV05	Africa	Master's	Υ	N	
4						

Z-score

- step-1: we read a specific column (Prevailing_Wage)
- step-2: calculate mean of the column
- step-3: calculate std of the column
- step-4: Nr= column-mean
- step-5: Nr/std

```
In [8]: mean=visa_df['prevailing_wage'].mean()
    std=visa_df['prevailing_wage'].std()
    Nr=visa_df['prevailing_wage']-mean
    out=Nr/std
    visa_df['prevailing_wage_Zscore']=out
```

In [10]: visa_df[['prevailing_wage','prevailing_wage_Zscore']]

Out[10]:

	prevailing_wage	prevailing_wage_Zscore
0	592.2029	-1.398510
1	83425.6500	0.169832
2	122996.8600	0.919060
3	83434.0300	0.169991
4	149907.3900	1.428576
25475	77092.5700	0.049923
25476	279174.7900	3.876083
25477	146298.8500	1.360253
25478	86154.7700	0.221504
25479	70876.9100	-0.067762

25480 rows × 2 columns

```
In [13]:
         max_original=visa_df['prevailing_wage'].max()
         max_z=visa_df['prevailing_wage_Zscore'].max()
         max_original,max_z
Out[13]: (319210.27, 4.634101837909902)
In [14]: visa df['prevailing wage'].idxmax()
         # prevailing wage column has maximum value at 21077 ID
Out[14]: 21077
In [15]: visa_df['prevailing_wage_Zscore'].idxmax()
         # prevailing_wage_Zscore column has maximum value at 21077 ID
Out[15]: 21077
In [17]:
         visa_df.iloc[[21077]]
Out[17]:
                   case_id continent education_of_employee has_job_experience requires_job_trainin
          21077 EZYV21078
                                             High School
                                                                      Ν
                               Asia
In [18]:
         min_original=visa_df['prevailing_wage'].min()
         min_z=visa_df['prevailing_wage_Zscore'].min()
         print(min original,min z)
         print(visa_df['prevailing_wage'].idxmin())
         print(visa_df['prevailing_wage_Zscore'].idxmin())
         2.1367 -1.4096818992891214
         20575
         20575
```

Influential outliers

- Generaly Outlier means very very huge observation, very very small observation
- · If we found an observation as outlier before scaling
- · The same observation again found as outlier after scaling
- · Then that observation called influential outlier
- · Some observation before scaling consider as outlier
- · But after scaling it does not fall in outlier creteria
- · At that time we might not consider that observation as outlier
- · Z-score is used to identify influential outliers

```
In [21]: plt.subplot(1,2,1)
    plt.boxplot(visa_df['prevailing_wage'])
    plt.subplot(1,2,2)
    plt.boxplot(visa_df['prevailing_wage_Zscore'])
    plt.show()
```



```
In [30]: **Using package: StandardScalar**
```

Cell In[30], line 1
 Using package: StandardScalar
^

SyntaxError: invalid syntax

Out[24]:

	prevailing_wage	prevailing_wage_Zscore
0	592.2029	-1.398537
1	83425.6500	0.169835
2	122996.8600	0.919079
3	83434.0300	0.169994
4	149907.3900	1.428604
25475	77092.5700	0.049924
25476	279174.7900	3.876159
25477	146298.8500	1.360280
25478	86154.7700	0.221509
25479	70876.9100	-0.067763

25480 rows × 2 columns

Normalization

- · Read the again
- Step-1: Read the column
- Step-2: Calculate min value
- Step-3: Calculate max value
- Step-4: Nr= column-min
- Step-5: Dr= Max-min
- Step-6: out= Nr/Dr
- Step-7: Save in a new column

```
In [27]: file_location="C:\\Users\\omkar\\OneDrive\\Documents\\Data science\\Naresh :
    visa_df=pd.read_csv(file_location)
    min_val=visa_df['prevailing_wage'].min()
    max_val=visa_df['prevailing_wage'].max()
    Nr=visa_df['prevailing_wage']-min_val
    Dr=max_val-min_val
    out=Nr/Dr
    visa_df['prevailing_wage_norm']=out
    visa_df[['prevailing_wage','prevailing_wage_norm']]
```

Out[27]:

_		prevailing_wage	prevailing_wage_norm
	0	592.2029	0.001849
	1	83425.6500	0.261345
	2	122996.8600	0.385312
	3	83434.0300	0.261371
	4	149907.3900	0.469616
	25475	77092.5700	0.241505
	25476	279174.7900	0.874579
	25477	146298.8500	0.458311
	25478	86154.7700	0.269895
	25479	70876.9100	0.222033

25480 rows × 2 columns

In [29]: visa_df.iloc[[20575,21077]]

Out[29]:

_		case_id	continent	education_of_employee	has_job_experience	requires_job_trainii
	20575	EZYV20576	North America	Master's	N	
	21077	EZYV21078	Asia	High School	N	
	4					•

Using package: MinMaxScalar

Out[31]:

	prevailing_wage	prevailing_wage_norm
0	592.2029	0.001849
1	83425.6500	0.261345
2	122996.8600	0.385312
3	83434.0300	0.261371
4	149907.3900	0.469616
25475	77092.5700	0.241505
25476	279174.7900	0.874579
25477	146298.8500	0.458311
25478	86154.7700	0.269895
25479	70876.9100	0.222033

25480 rows × 2 columns

fit_transform

- There are two terms fit and transform
- If you see in z-score
 - x: data
 - mean: mean of data
 - std: std of data
- Will find the value of mean and std, this is called fit
- Once we find the values we need apply on entire data, this is called transform
- fit transform calculate the measurements(parameters or statistic) and apply on data

In []: