

### Universidade Estadual de Campinas IFGW – Física Estatística Computacional

# Solução Lista 3

### Problema (3.4)

Utilizando o algoritmo  $matrix\_square\_final.py$ , para  $\beta$  tendendo a 0 implementamos a Decomposição de Trotter dada por;  $\rho(x,x',\beta)=e^{-V(x)\beta/2}\rho^{livre}(x,x',\beta)e^{-V(x')\beta/2}$ , onde  $\rho^{livre}(x,x',\beta)=\frac{1}{\sqrt{2\pi\beta}}e^{-(x-x')^2/2\beta}$  e  $V(x)=\frac{x^2}{2}$ , obtemos o gráfico de comparação entre a solução exata para a matriz densidade oscilador harmônico e a decomposição de Trotter.



Figura 1



Figura 2



Figura 3

A partir das figuras 1, 2 e 3 podemos observar que conforme beta tende a zero nosso erro diminui e para beta grandes observamos o comportamento quântico onde possuímos elementos de matriz diferente de zero fora da diagonal.

### Problema (3.5)

Utilizando o prochl\_teller\_final.py, obtemos os gráficos abaixo para diferentes valores de  $\chi$  e  $\lambda$ .



Figura 4





Figura 6



Tabela 1 - Valores de função de partição obtidos exatamente e por simulação em função de  $\theta$  para  $\chi$  = 1.1 e  $\lambda$  = 1.2

| Z Simulação | Z Exato   | β        |
|-------------|-----------|----------|
| 453,22602   | 453,09817 | 1,91E-06 |
| 320,2793    | 320,19842 | 3,81E-06 |
| 226,27509   | 226,22409 | 7,63E-06 |
| 159,80647   | 159,77421 | 1,53E-05 |
| 112,80755   | 112,78705 | 3,05E-05 |
| 79,57518    | 79,56211  | 6,10E-05 |
| 56,0769     | 56,06853  | 1,22E-04 |
| 39,46144    | 39,45607  | 2,44E-04 |
| 27,71275    | 27,7093   | 4,88E-04 |
| 19,40532    | 19,4031   | 9,77E-04 |
| 13,53121    | 13,52978  | 0,00195  |
| 9,37773     | 9,37681   | 0,00391  |
| 6,441       | 6,4404    | 0,00781  |
| 4,36481     | 4,36443   | 0,01563  |
| 2,8975      | 2,89725   | 0,03125  |
| 1,86E+00    | 1,86E+00  | 0,0625   |
| 1,13E+00    | 1,13E+00  | 125      |
| 6,23E-01    | 6,23E-01  | 0,25     |
| 2,76E-01    | 2,76E-01  | 0,5      |
| 7,11E-02    | 7,11E-02  | 1        |
| 5,04E-03    | 5,04E-03  | 2        |
| 2,54E-05    | 2,54E-05  | 4        |
| 6,48E-10    | 6,46E-10  | 8        |









Tabela 2 - Valores de função de partição obtidos exatamente e por simulação em função de  $\theta$  para  $\chi$  = 8.1 e  $\lambda$  = 8.2

| Z Simulação | Z Exato   | β        |
|-------------|-----------|----------|
| 446,10327   | 446,09874 | 1,91E-06 |
| 313,20065   | 313,19955 | 3,81E-06 |
| 219,22664   | 219,22636 | 7,63E-06 |
| 152,77881   | 152,77874 | 1,53E-05 |
| 105,79612   | 105,79611 | 3,05E-05 |
| 72,58021    | 72,58021  | 6,10E-05 |
| 49,10465    | 49,10465  | 1,22E-04 |
| 32,528      | 32,528    | 2,44E-04 |
| 20,85194    | 20,85194  | 4,88E-04 |
| 12,68366    | 12,68366  | 9,77E-04 |
| 7,07269     | 7,07269   | 0,00195  |
| 3,39529     | 3,39529   | 0,00391  |
| 1,2457      | 1,2457    | 0,00781  |
| 0,2766      | 0,2766    | 0,01563  |
| 0,02322     | 0,02322   | 0,03125  |
| 2,79E-04    | 2,79E-04  | 0,0625   |
| 6,22E-08    | 6,22E-08  | 125      |
| 3,77E-15    | 3,77E-15  | 0,25     |
| 1,42E-29    | 1,42E-29  | 0,5      |
| 2,02E-58    | 2,02E-58  | 1        |
| 4,10E-116   | 4,10E-116 | 2        |
| 1,68E-231   | 1,68E-231 | 4        |
| 0,00E+00    | 0,00E+00  | 8        |







Figura 14



Figura 15

Tabela 3 - Valores de função de partição obtidos exatamente e por simulação em função de  $\theta$  para  $\chi$  = 15.1 e  $\lambda$  = 15.2

| Z Simulação | Z Exato   | β        |
|-------------|-----------|----------|
| 439,10455   | 439,10217 | 1,91E-06 |
| 306,20695   | 306,2064  | 3,81E-06 |
| 212,24019   | 212,24005 | 7,63E-06 |
| 145,80613   | 145,80609 | 1,53E-05 |
| 98,8507     | 98,85069  | 3,05E-05 |
| 65,6889     | 65,6889   | 6,10E-05 |
| 42,32015    | 42,32015  | 1,22E-04 |
| 25,95157    | 25,95157  | 2,44E-04 |
| 14,67053    | 14,67053  | 4,88E-04 |
| 7,21479     | 7,21479   | 9,77E-04 |
| 2,76805     | 2,76805   | 0,00195  |
| 0,67063     | 0,67063   | 0,00391  |
| 0,06742     | 0,06742   | 0,00781  |
| 0,00121     | 0,00121   | 0,01563  |
| 6,84E-07    | 6,84E-07  | 0,03125  |
| 3,54E-13    | 3,54E-13  | 0,0625   |
| 1,20E-25    | 1,20E-25  | 125      |
| 1,44E-50    | 1,44E-50  | 0,25     |
| 2,09E-100   | 2,09E-100 | 0,5      |
| 4,36E-200   | 4,36E-200 | 1        |
| 0,00E+00    | 0,00E+00  | 2        |
| 0,00E+00    | 0,00E+00  | 4        |
| 0,00E+00    | 0,00E+00  | 8        |

A energia do estado fundamental pode ser calculada da seguinte forma  $E_0^{P-T}=-(1.0/\beta) \times \ln(Z^{P-T}(\beta))$ , onde a função de partição nada mais é que a integral de todos os elementos da diagonal da matriz de densidade, ao realizar esse procedimento obtemos os seguintes valores de energia para  $\chi=1.1$  e  $\Upsilon=1.2$ , E\_simulation = 2.64473527465, e E\_exact = 2.645, que é um valor bem aceitável levando em conta que nossa rotina foi pequena. A partir das figuras 4, 5, 8, 9, 12 e 13 podemos ver a clara convergência da matriz densidade quando a temperatura é pequena ou seja beta grande. A partir dos dados das tabelas também podemos ver que nossa simulação fornece valores bem precisos para função de partição

## Problema (4.11)

Escolhemos a armadilha harmônica de modo que os níveis de energia em cada uma das três direções espaciais são En = n. Onde zk é escrito da forma  $z_k = \left(\frac{1}{1-e^{-k\beta}}\right)^3$  e definimos uma temperatura reduzida como  $T_* = \frac{T}{N^{1/3}}$ . Então executamos o algoritmo <code>bosons\_harmonic\_trap.py</code> e obtemos os gráficos abaixo



Figure 16 – Two-dimensional Snapshot of 733 ideal bosons in a three-dimensional harmonic trap whit  $T_{st}=0.5$ 



Figure 17 - Two-dimensional Snapshot of 1000 ideal bosons in a three-dimensional harmonic trap whit  $T_{st}=0.7$ 



Figure 17 - Two-dimensional Snapshot of 1000 ideal bosons in a three-dimensional harmonic trap whit  $T_{\ast}=0.9$ 

Ao compararmos com a figura 4.23 do livro texto observamos um comportamento muito semelhante e o número máximo de partículas que conseguimos colocar antes de ocorrer a saturação é dado por <N $> = 1.202/<math>\beta^3$ .