Disaster Tweets

Week 5 Check-in

Timeline

Baseline	Improved	Final
Working "simple" model	NLP / Attention	Interactive dashboard
POC Twitter scraping setup	BERT	Clustering mechanism

Business Lifecycle Progress

Twitter Scraping

Scrapers broken

Legacy Web UI removed

Twitter API

Historical tweet access

PhD student, research team, etc.

Twitter Scraping

- Selenium-based
 - Browser window
 - XPaths
- Limitations
 - Maximum number of tweets/search
 - Same tweets every time

1

lang:en until:2020-12-26 since:2020-12-24 -filter:links -

Twitter Scraping

Beirut: 100 tweets

Nashville: 83 tweets

Brunswick Co: 286 tweets

Scraping API

We scrape tweets on an "event" basis. This means that, given a real-world disaster, we can scrape tweets from around that time in the city itself and several other "control" cities.

Output Format

To get the output as a pandas dataframe, call nashville_bombing.toPandas()

The table will look like

key	date	contents	city	city_in_disaster
0	2020-12- 25T15:41:14.000Z	Tweet (presumably) about the event	nashville	1
1	2020-12- 25T21:11:54.000Z	Probably not a disaster tweet	los angeles	0

Performance Evaluation

		Classifier	AUC	Accuracy	F1 Score
0	Logistic	Regression	0.777215	0.782563	0.746634
3		SVM	0.779095	0.796218	0.734247
5		Perceptron	0.754251	0.757878	0.723123
1	Ra	andom Forest	0.756242	0.778361	0.696839
2		AdaBoost	0.733616	0.745798	0.686528
4	Gradient Boosting	Classifier	0.720549	0.750525	0.630350

Next Steps: Looking toward Phase 2...

- Have researched NLP models and specifically BERT in Phase 1
 - Continue to build knowledge base as project moves forward
- In process of configuring environment
 - Getting appropriate tools/libraries set-up
 - Start experimenting with different models