Simon King, FSU Jena Fakultät für Mathematik und Informatik Henicke, Kraume, Lafeld, Max, Rump

Lineare Algebra für *-Informatik FMI-MA0022

Wintersemester 2020/21

Übungsblatt 10

Liveaufgaben (27.–28.01.2021)

Präsenzaufgabe 10.1: Orthogonalisierung

Es sei $[\vec{u}, \vec{v}]$ eine Basis von $V \leq \mathbb{R}^3$. Gesucht ist ein Vektor \vec{w} , so dass $[\vec{u}, \vec{w}]$ eine Basis von V und $\vec{u} \perp \vec{w}$.

- a) Machen Sie sich die Problemstellung durch eine Zeichnung klar.
- b) Geben Sie eine Formel für \vec{w} , ausgedrückt durch \vec{u} und \vec{v} . Nutzen Sie dabei, dass man die senkrechte Projektion (Lotfußpunkt) von \vec{v} auf Span (\vec{u}) mittels des Skalarprodukts berechnen kann.
- c) Suchen Sie nach Beispielen, in denen Rundungsfehler bei Anwendung des Verfahrens aus b) zu erheblichen Fehlern führen würden.
- d) Überlegen Sie sich mindestens zwei weitere geometrische Konstruktionen, mit denen man \vec{w} finden kann.

Präsenzaufgabe 10.2: Tridiagonalisierung

a) Verallgemeinerung eines Beispiels aus der Vorlesung: Sei $\lambda \in \mathbb{K}$, $n \in \mathbb{N}$, $1 \leq d \leq n$. Gesucht ist eine Dreiecksmatrix $A \in M_n(\mathbb{K})$, so dass λ ein Eigenwert von A mit algebraischer Vielfachheit n (d.h. $\chi_A(X) = (X - \lambda)^n$) und geometrischer Vielfachheit d ist. Berechnen Sie auch $(\lambda \mathbb{1}_n - A)^k$ für k = 1, 2, 3, ...

Tipp: Rangformel.

- b) Sei $A \in M_n(\mathbb{K})$ mit $\chi_A(X) = (X \lambda_1)^{d_1} \cdot ... \cdot (X \lambda_k)^{d_k}$ für paarweise verschiedene $\lambda_1, ..., \lambda_k \in \mathbb{K}$ sowie $d_1, ..., d_k \in \mathbb{N}^*$ mit $d_1 + ... + d_k = n$. Zeigen Sie: Es gibt $S \in GL_n(\mathbb{K})$, so dass $S^{-1}AS$ eine obere Dreiecksmatrix
 - ist, auf deren Diagonale jeweils d_i -mal der Wert λ_i steht. **Anleitung:**
 - Sei die erste Spalte von $T \in GL_n(\mathbb{K})$ ein Eigenvektor zum Eigenwert λ_1 ; warum ist $T^{-1}AT = \begin{pmatrix} \lambda_1 & * \\ 0 & A' \end{pmatrix}$ mit $A' \in M_{n-1}(\mathbb{K})$?
 - Warum ist $\chi_{A'}(X) = (X \lambda_1)^{d_1 1} (X \lambda_2)^{d_2} \cdot ... \cdot (X \lambda_k)^{d_k}$?
 - \bullet Folgern Sie nun die Existenz von S mit vollst. Induktion nach n.