Содержание

1	Ура	внени	я первого порядка	3
	$1.\overline{1}$		еления	3
		1.1.1	Обыкновенные дифференциальные уравнения первого	
			порядка	3
		1.1.2	Частное решение обыкновенного дифференциального	
			уравнения первого порядка	3
		1.1.3	Общее решение обыкновенного дифференциального урав-	
			нения первого порядка	3
		1.1.4	Общий интеграл дифференциального уравнения пер-	
			вого порядка	3
		1.1.5	Уравнение с разделяющимися переменными первого	J
		1.1.0	порядка	4
		1.1.6	Обыкновенное дифференциальное уравнение первого	-
		1.1.0	порядка в симметричной форме	4
		1.1.7	Линейное дифференциальное уравнение первого порядка	4
		1.1.8	Задача Коши для дифференциального уравнения пер-	•
		1.1.0	вого порядка	4
	1.2	Teoner	мы и алгоритмы	5
	1.2	1.2.1	Алгоритм решения уравнений с разделяющимися пе-	0
		1.4.1	ременными первого порядка	5
		1.2.2	Метод вариации решния линейного дифференциально-	9
		1.2.2	го уравнения первого порядка	5
		1.2.3	Основная теорема существования и единственности	7
		1.2.3 $1.2.4$	Сведение задачи Коши к интегральному уравнению	7
		1.4.4	Оведение задачи Коши к интегральному уравнению	,
2	Лин	нейные	е дифференциальные уравнения n-го порядка	8
	2.1	_	еления	8
		2.1.1	Линейные дифференциальные уравнения n-го порядка	
			(однородные и неоднородные)	8
		2.1.2	Задача Коши для дифференциального уравнения n-го	
			порядка	8
		2.1.3	Линейно зависимые и линейно независимые функции.	9
		2.1.4	Определитель Вронского функций $\varphi_1(x), \varphi_2(x), \dots, \varphi_m(x)$	
		2.1.5	Фундаментальная система решения	9
		2.1.6	Линейные дифференциальные уравнения с постоянны-	Ü
		2.1.0	ми коэффициентами	9
		2.1.7	Необходимое условие линейной зависимости	10
		2.1.8	Условие линейной независимости решений	10
		2.1.9	Свойство линейности и следствия из него	10
		2.1.3 $2.1.10$	Существование ФСР	11
		2.1.10 $2.1.11$	Вид общего решения однородноого линейного уравнения	11
		2.1.11 $2.1.12$	Вид общего решения неоднородноого линейного уравнения	11
		2.1.12	нения	11

	Обоснование метода вариации	
2.4	Пример: $y^{''} + w^2y = f(x)$	14
2.5	Формула Остроградского-Луивилля	15
2.6	Метод Эйлера (случай простых корней)	16
3 Лин	ейные дифференциаьные уравнения второго порядка	18
	Интегрирование с помощью частного решения	
3.2	Упрощение с помощью замены функции $y'' + \frac{1}{x}y' + (1 - \frac{1}{4x^2})y = 0$	19
3.3	Упрощение с помощью замены переменной $y'' + \frac{1}{2x}y' - \frac{1}{x}y = 0$	19
3.4	Метод степенных рядов $y^{''}-xy=0$	20

1 Уравнения первого порядка

1.1 Определения

1.1.1 Обыкновенные дифференциальные уравнения первого порядка

Определение обыкновенного дифференциального уравнения первого порядка

Обыкновенным дифференциальным уравнением первого порядка называется уравнение вида

$$F(x, y, y') \equiv 0$$

1.1.2 Частное решение обыкновенного дифференциального уравнения первого порядка

Определение частного решения обыкновенного дифференциального уравнения первого порядка

(1) $F(x,y,y') \equiv 0$ — обыкновенное дифференциальное уравнение первого порядка.

Частным решением обыкновенного дифференциального уравнения первого порядка называется непрерывно дифференцируемая функция $\varphi(x)$, при подстановки которой в уравнение (1) получим тождество

$$\varphi^{'}(x) \equiv f(x, \varphi(x))$$

1.1.3 Общее решение обыкновенного дифференциального уравнения первого порядка

Определение общего решения обыкновенного дифференциального уравнения первого порядка

Множество всех решений обыкновенного дифференциального уравнения первого порядка называется его общим решением.

1.1.4 Общий интеграл дифференциального уравнения первого порядка

Пусть (1) y' = f(x,y) — дифференциальное уравнение первого порядка.

Определение общего интеграла дифференциального уравнения первого порядка:

Общее решение уравнения (1) в неявном виде

$$F(x,y) = C$$

называется общим интегралом уравнения (1).

1.1.5 Уравнение с разделяющимися переменными первого порядка

Определение уравнения сразделяющимися переменными первого порядка

Дифференциальным уравннием с разделяющимися переменными первого порядка называется уравнение вида

$$y' = f_1(x)f_2(y),$$

где $f_1(x)$ и $f_2(y)$ — заданные функции.

1.1.6 Обыкновенное дифференциальное уравнение первого порядка в симметричной форме

Определение обыкновенного дифференциального уравнения первого порядка в симметричной форме

Обыкновенное дифференциальное уравнение первого порядка в симметрицной форме имеет вид

$$A(x,y)dx + B(x,y)dy = 0,$$

где A и B — заданные функции двух переменных, причём переменные x и y равноправны.

1.1.7 Линейное дифференциальное уравнение первого порядка

Определение линейного дифференциального уравнения первого порядка

Линейным дифференциальным уравнением первого порядка называется уравнение вида

$$a_0(x)y' + a_1(x)y = f(x),$$

где x — неизвестнвя переменная, y=y(x) — неизывестная функция, $a_0(x)$ и $a_1(x)$ — известные непрерывные функции.

1.1.8 Задача Коши для дифференциального уравнения первого порядка

Определение задачи Коши для дифференциального уравнения первого порядка

Пусть y' = f(x,y) — дифференциальное уравнение первого порядка и $y(x_0) = y_0$ — его начальное условие. Тогда задача Коши для него имеет вид

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

где x_0, y_0 — заданные числа.

1.2 Теоремы и алгоритмы

1.2.1 Алгоритм решения уравнений с разделяющимися переменными первого порядка

1. Переходим к дифференциалам:

$$y' = \frac{dy}{dx}$$
 $\frac{dy}{dx} = f_1(x)f_2(y);$

2. Делим переменные:

$$\frac{dy}{dx} = f_1(x)f_2(y) \quad | \cdot dx \frac{1}{f_2(y)}$$

$$\frac{dy}{f_2(y)} = f_1(x)dx$$

3. Вычисляем интегралы:

$$\int \frac{dy}{f_2(y)} = \int f_1(x)dx + C,$$

где $C\in R$ и $\int rac{dy}{f_2(y)}=F_2(y),\,\int f_1(x)dx=F_1(x).$

Получим:

(3)
$$F_2(y) = F_1(x) + C$$

4. Разрешаем последнее уравнение относительно у:

(4)
$$y = \varphi(x, C), C \in R$$
,

где $\varphi(x,C)$ — общее решение.

5. Other: $\varphi(x,C)$.

1.2.2 Метод вариации решния линейного дифференциального уравнения первого порядка.

Линейное дифференциальное уравнение первого порядка имеет вид:

$$a_0(x)y' + a_1(x)y = f(x),$$

Тогда

$$y' + \frac{a_1(x)}{a_0(x)}y = \frac{f(x)}{a_0(x)}$$

Обозначим $p(x) = \frac{a_1(x)}{a_0(x)}, \quad q(x) = \frac{f(x)}{a_0(x)}$

Следовательно уравнение примет вид:

(1)
$$y' + p(x) = q(x), \quad a \le x \le b$$

Метод вариации произвольной постоянной:

1. Этап:

Найдём общее решение соответствующего (1) однородного уравнения:

$$(2) \quad y' + p(x)y = 0$$

$$y' = -p(x)y$$

$$\frac{dx}{dy} = -p(x)y$$

$$\int \frac{dy}{y} = -\int p(x)dx + C$$

$$\ln|y| = -F_1(x) + C$$

$$y = \pm e^C e^{-F_1(x)}$$

Получим: $y_0 = Ce^{-F_1(x)}$ — общее решение (2).

2. Этап:

Ищем решение (1) в виде:

(3)
$$C(x)e^{-F_1(x)}$$
,

где C(x) — пока неизвестная функция.

$$y' = C'(x)e^{-F_1(x)} + C(x)e^{-F_1(x)}(-p(x))$$

Подставляем в (1):

$$C'^{(x)}e^{-F_1(x)} - C(x)e^{-F_1(x)}p(x) + p(x)C(x)e^{-F_1(x)} = q(x)$$

$$C'(x) = e^{F_1(x)}q(x)$$

$$C(x) = \int e^{F_1(x)}q(x)dx \pm c = F_2(x) + C$$

 Π одставим в (3):

$$y = e^{-F_1(x)}(F_2(x) + C)$$

Таким образом, $y=e^{-F_1(x)}(F_2(x)+C)$ — общее решение уравнения (1).

1.2.3 Основная теорема существования и единственности

Теорема о существовании и единственности решения задачи Коши:

Предположим, что f(x,y) — непрерывная функция и у неё существует непрерывная чатсная производная f'(x,y). Тогда $\forall (x_0,y_0)$ задача Коши имеет единственное решение.

1.2.4 Сведение задачи Коши к интегральному уравнению

Пусть $\varphi(x)$ — решение задачи Коши:

(1)
$$\varphi'(x) \equiv f(x, \varphi(x))$$

(2) $\varphi(x_0) = y_0$

Перепишем (1) в виде:

(3)
$$\varphi'(t) = f(t, \varphi(t))$$

Фиксируем произвольный x и берём интеграл от (3):

$$\varphi' = f(t, \varphi(t)) \quad l \mid \int_{x_0}^x dt$$

$$\varphi(x) - \varphi(x_0) = \int_{x_0}^x f(t, \varphi(t)) dt$$

$$(4) \quad \varphi(x) = y_0 + \int_{x_0}^x f(t, \varphi(t)) dt$$

По определению (4) означает, что $\varphi(x)$ является решением интегрального уравнения

(5)
$$y(x) = y_0 + \int_{x_0}^x f(t, \varphi(t)) dt$$

Все остальные рассуждения обратимы \leftarrow задача Коши \sim уравнению (5).

2 Линейные дифференциальные уравнения nго порядка

2.1 Определения

2.1.1 Линейные дифференциальные уравнения n-го порядка (однородные и неоднородные)

Определение линейного однородного дифференциального уравнения n-го порядка

Однородное дифференциальное уравнение n-го порядка имеет вид:

$$a_0(x)y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \dots + a_n(x)y = 0,$$

где $a_0(x), \ldots, a_n(x)$ — заданные непрерывные функции.

Определение линейного неоднородного дифференциального уравнения n-го порядка

Неоднородное дифференциальное уравнение n-го порядка имеет вид:

$$a_0(x)y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \dots + a_n(x)y = f(x),$$

где $a_0(x), \ldots, a_n(x), f(x)$ — заданные непрерывные функции.

2.1.2 Задача Коши для дифференциального уравнения n-го порядка

(1)
$$y^{(n)+a_1(x)}y^{(n-1)}+\cdots+a_n(x)y=f(x)$$

Определение задачи Коши для дифференциального уравнения n-го порядка

Задача Коши для линейного уравнения (1) имеет вид:

$$\begin{cases} y^{(n)} + a_1(x)y^{(n-1)}(x) + \dots + a_n(x)y = f(x) \\ y(x_0) = y_0 \\ y^{'}(x_0) = y_0^{'} \\ \dots \\ y^{(n-1)}(x_0) = y_0^{(n-1)} \end{cases}$$

где $y(x_0)=y_0,\ldots,y^{(n-1)}(x_0)=y_0^{(n-1)}$ — начальные условия и $x_0,y_0,\ldots,y_0^{(n-1)}$ — заданные числа.

2.1.3 Линейно зависимые и линейно независимые функции

Определение линейно зависимых функций

Функции $\varphi_1(x), \varphi_2(x), \ldots, \varphi_m(x)$ называются линейно зависимыми на отрезке [a,b], если найдутся константы $\alpha_1,\alpha_2,\ldots,\alpha_m$ — числа, не все равные нулю, такие, что линейная комбинация:

$$\alpha_1 \varphi(x) + \dots + \alpha_m \varphi(m) \equiv 0$$

Определение линейно независимых функций

Функции $\varphi_1(x), \dots, \varphi_m(x)$ называются линейно независимыми на отрезке [a,b], если

$$\alpha_1 \varphi_1(x) + \dots + \alpha_m \varphi_m(x) \equiv 0 \Leftrightarrow \alpha_1 = \dots = \alpha_m = 0$$

2.1.4 Определитель Вронского функций $\varphi_1(x), \varphi_2(x), \dots, \varphi_m(x)$

Определение определителя Вронского функций $\varphi_1(x), \varphi_2(x), \dots, \varphi_m(x)$

Определителем Вронского функций $\varphi_1(x), \varphi_2(x), \dots, \varphi_m(x)$ называется:

$$\begin{vmatrix} \varphi_{1}(x) \ \varphi_{2}(x) \ \dots \ \varphi_{m}(x) \\ \varphi_{1}^{'}(x) \ \varphi_{2}^{'}(x) \ \dots \ \varphi_{m}^{'}(x) \\ \dots \\ \varphi_{1}^{(n-1)}(x) \ \varphi_{2}^{(n-1)}(x) \ \dots \ \varphi_{m}^{(n-1)}(x) \end{vmatrix}$$

2.1.5 Фундаментальная система решения

Опредеение фундаментальной системы решений однородного линейного уравнения

 Φ ундаментальной системой решений однородного линейного уравнения l(y)=0 называется:

 $\varphi_1(x), \dots, \varphi_n(x)$ — линейно независимые и их количество совпадает с порядком уравнения.

2.1.6 Линейные дифференциальные уравнения с постоянными коэффициентами

Определение однородного линейного уравнения с постоянными коэффициентами

Линейное однородное уравнение с постоянными коэффициентами имеет вид:

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = 0,$$

где a_0, \ldots, a_n — заданные числа.

Определение неоднородного линейного уравнения с постоянными коэффициентами

Линейное неоднородноре уравнение с постоянными коэффициентами имеет вид:

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = f(x),$$

где a_0, \ldots, a_n — заданные числа.

2.1.7 Необходимое условие линейной зависимости

Теорема (необходимое условие линейной зависимости)

Если функции $\varphi_1(x), \dots, \varphi_n(x)$ — линейно зависимы на [a,b]. Тогда их определитель вронского тождественно равен нулю.

$$\mathbf{W} \equiv 0$$

Доказательство (нужно или нет?:))

2.1.8 Условие линейной независимости решений

Рассмотрим линейное уравнение:

(1)
$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_m(x)y = 0; \quad a \le x \le b$$

Теорема (условие линейной независимости решений линейного уравнения)

Пусть $\varphi_1(x), \dots, \varphi_n(x)$ — линейно независимые решения уравнения (1). Тогда

$$\forall x \in [a, b] \quad \mathbf{W} \neq 0$$

Доказательство (нужно или нет?:))

2.1.9 Свойство линейности и следствия из него

$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_m(x)y = f(x)$$

Обозначим $^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_m(x)y$ как l(y).

Свойство линейности l(y)

$$l(y_1(x) + y_2(x)) = l(y_1(x)) + l(y_2(x));$$

$$l(\sum_{k=1}^{m} \alpha_k \varphi_k(x)) = \sum_{k=1}^{m} \alpha_k l(\varphi_k(x))$$

Следствие свойства линейности

Пусть $\varphi_1(x), \ldots, \varphi_n(x)$ — решения уравнения l(y) = 0. Тогда $\varphi^{\circ}(x) = \alpha_1 \varphi_1(x) + \cdots + \alpha_m \varphi_m(x)$ тоже является решением этого уравнения. Доказательство (нужно или нет?:))

2.1.10 Существование ФСР

Теорема (о существовании ФСР у любого однородного линейного уравнения)

Фундаментальная система решений существует для любого однородного линейного уравнения.

2.1.11 Вид общего решения однородноого линейного уравнения

Рассмотрим однородное линейное уравнение

(1)
$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_m(x)y = 0; \quad a \le x \le b$$

или

$$l(y) = 0$$

Теорема (вид общего решения однородного линейного уравнения)

Пусть $\varphi_1(x), \dots, \varphi_n(x)$ — ФСР. Тогда общее решение уравнения (1) имеет вид:

$$y = c_1 \varphi_1(x) + \dots + c_n \varphi_n(x),$$

где c_1, \ldots, c_n — произвольные константы.

2.1.12 Вид общего решения неоднородноого линейного уравнения

Рассмотрим неоднородное линейное уравнение

(1)
$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_m(x)y = f(x); \quad a \le x \le b$$

или

$$l(y) = f(x)$$

и соответствующее ему однородное линейное уравнение

(2)
$$l(y) = 0$$

Теорема (вид общего решения неоднородного линейного уравнения)

Пусть $\varphi_1(x), \dots, \varphi_n(x) - \Phi$ СР (2) и $y_h(x)$ — частное решение (1). Тогда общее решение уравнения (1) имеет вид:

$$y = c_1 \varphi_1(x) + \dots + c_n \varphi_n(x) + y_h(x),$$

где c_1, \ldots, c_n — произвольные константы.

В $y_h(x)$ вместо h должна стоять буква ч, но латех этого сделать не позволяет.

2.2 Алгоритм метод вариации нахождения частного решения

Метод вариации произвольных постоянных нахождения $y_h(x)$

По теореме о виде общего решения линейного однородного уравнения $y_0=c_1\varphi_1(x)+\cdots+c_n\varphi_n(x)$ — общее решение уравнения l(y)=0.

Будем искать частное решение $y_h(x)$ в виде:

$$y_h(x) = c_1(x)\varphi_1(x) + \dots + c_n(x)\varphi_n(x),$$

где $c_1(x), \ldots, c_n(x)$ — пока неизвестные функции.

Рассмотрим систему уравнений

$$(5) \begin{cases} c_{1}^{'}(x)\varphi_{1}(x) + \dots + c_{n}^{'}(x)\varphi_{n}(x) = 0 \\ c_{1}^{'}(x)\varphi_{1}^{'}(x) + \dots + c_{n}^{'}(x)\varphi_{n}^{'}(x) = 0 \\ c_{1}^{'}(x)\varphi_{1}^{''}(x) + \dots + c_{n}^{'}(x)\varphi_{n}^{''}(x) = 0 \\ \dots \\ c_{1}^{'}(x)\varphi_{1}^{(n-2)}(x) + \dots + c_{n}^{'}(x)\varphi_{n}^{(n-2)}(x) = 0 \\ c_{1}^{'}(x)\varphi_{1}^{(n-1)}(x) + \dots + c_{n}^{'}(x)\varphi_{n}^{(n-1)}(x) = f(x) \end{cases}$$

Пусть $a \le x \le b,$ х — фиксированное \Rightarrow (5) — линейная алгебраическая система относительно $c_i^{'}(x), \quad i=\overline{1,n}$

Определитель системы = $\mathbf{W}(x) \Rightarrow \mathbf{W}(x) \neq 0 \Rightarrow$ по теореме из алгебры (5) имеет единственное решение.

По формулам Крамера:

$$c_1^{'}(x) = \frac{\begin{vmatrix} 0 & \dots \\ \dots & \\ f & \dots \end{vmatrix}}{\mathbf{W}} = \frac{\mathbf{W}_1(x)}{\mathbf{W}(x)}$$

(6)
$$c'_n(x) = \frac{\begin{vmatrix} \dots & 0 \\ \dots & \vdots \\ \dots & f \end{vmatrix}}{\mathbf{W}} = \frac{\mathbf{W}_n(x)}{\mathbf{W}(x)}$$

Таким образом, $c_i^{'}(x)$ $i=\overline{1,n}$ находится по формуле (6) \Rightarrow

$$\Rightarrow$$
 $c_k(x) = \int \frac{\mathbf{W}_k(x)}{\mathbf{W}(x)} dx$

2.3 Обоснование метода вариации

Рассмотрим частный случай n = 2:

(1)
$$y'' + a_1(x)y' + a_2(x)y = f(x)$$

(2) $y'' + a_1(x)y' + a_2(x)y = 0$
 $\varphi_1(x), \varphi_2(x)$

 $-\Phi CP(2)$

$$y_0 = c_1 \varphi_1(x) + c_2 \varphi_2(x)$$
$$y_h = c_1(x)\varphi_1(x) + c_2(x)\varphi_2(x)$$

(5)
$$\begin{cases} c'_{1}(x)\varphi_{1}(x) + c'_{2}(x)\varphi_{2}(x) = 0\\ c'_{1}(x)\varphi'_{1}(x) + c'_{2}(x)\varphi'_{2}(x) = f(x) \end{cases}$$

$$c_1(x) = \int \frac{\mathbf{W_1}(x)}{\mathbf{W}(x)} dx \quad c_2(x) = \int \frac{\mathbf{W_2}(x)}{\mathbf{W}(x)} dx$$

Подставляем $c_1(x)$ и $c_2(x)$ в $(4) \Rightarrow$

Покажем, что полученное y_h является решением (1):

$$\begin{split} y_h^{'} &= c_1^{'}(x)\varphi_1(x) + c_1(x)\varphi_1^{'}(x) + c_2^{'}(x)\varphi_2(x) + c_2(x)\varphi_2^{'}(x) = c_1(x)\varphi_1^{'}(x) + c_2(x)\varphi_2^{'}(x) \\ y_h^{''} &= c_1^{'}(x)\varphi_1^{'}(x) + c_1\varphi_1^{''}(x) + c_2^{'}(x)\varphi_2^{'}(x) + c_2(x)\varphi_2^{''}(x) = f(x) + c_1(x)\varphi_1^{''}(x) + c_2(x)\varphi_2^{''}(x) = y_h^{''} \Rightarrow f(x) + c_1(x)\varphi_1^{''}(x) + c_2(x)\varphi_2^{''}(x) + a_1(x)(c_1(x)\varphi_1^{'}(x) + c_2(x)\varphi_2^{'}(x)) + a_2(x)(c_1(x)\varphi_1(x) + c_2(x)\varphi_2(x)) = f(x) \\ &= f(x) + c_1(x)(\varphi_1^{''}(x) + a_1(x)\varphi_1^{'}(x) + a_2(x)\varphi_1(x)) + a_2(x)(\varphi_2^{''}(x) + a_1(x)\varphi_1^{''}(x) + a_2(x)\varphi_2(x)) = f(x) \end{split}$$
 To есть

$$l(y_h) \equiv f(x)$$

2.4 Пример: $y'' + w^2y = f(x)$

Πρωμερ:

Φανο:

(9
$$\frac{\pi}{3}'' + \frac{1}{10^2}\frac{\pi}{3} = \frac{\pi}{3}(x)$$
; $\alpha = x = b$

W>0

Permine:

1. Permin coordinational coordination of $y = 0$

Faccuses $y = x = b$
 $y = x$

3agour cupyers
$$Y_0 \in [a, b]$$
, beganin B reverbe C_1 :

$$C_1(x) = \frac{1}{w} \int_{x_0}^{x} f(t) \sin wt \, dt$$

Anasoure:

$$C_2(x) = \frac{1}{w} \int_{x_0}^{x} f(t) \cos wt \, dt$$

$$V_0 = \left(-\frac{1}{w} \int_{x_0}^{x} f(t) \sin wt \, dt\right) \cos^2 wx + \left(\frac{1}{w} \int_{x_0}^{x} f(t) \cos wt \, dt\right) \sin wx = \frac{1}{w} \int_{x_0}^{x} \left[-\sin wt \cos wx + \cos wt \sin wx\right] f(t) dt = \frac{1}{w} \int_{x_0}^{x} f(t) \sin wt \, dt$$

3. No teopens 6 conser persently upo-breakly (1) unless by

$$y = C_1 \cos wx + C_2 \sin wx + \frac{1}{w} \int_{x_0}^{x} f(t) \sin w(x-t) \, dt$$

2.5 Формула Остроградского-Луивилля

Пусть $y_1(x), \ldots, y_n(x)$ — решение однородного линейного уравнения: $y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_n(x)y = 0$ $a \le x \le b$.

Рассмотрим определитель Вронского:

$$\mathbf{W}(x) = \begin{vmatrix} y_1(x) & \dots & y_n(x) \\ \dots & \dots & \dots \\ y_1^{(n-1)}(x) & \dots & y_n^{(n-1)}(x) \end{vmatrix} = \sum_{j=1}^{n} (\pm) y_{j_1}^{(k1)}(x) y_{j_2}^{(k2)}(x) \dots y_{j_n}^{(kn)}(x)$$

Сама формула

Пусть x_0 произвольная точка из [a,b]. Тогда:

$$\mathbf{W}(x) = \mathbf{W}(x_0)e^{-\int_{x_0}^x a_1(t)dt}$$

2.6 Метод Эйлера (случай простых корней)

(1)
$$a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = 0$$
,

где a_0, \ldots, a_n — заданные числа.

Метод Эйлера решения однородного линейного уравнения с постоянными коэффициентами (случай простых корней)

1. Ищем частное решение уравнения (1) в виде

$$y(x) = e^{\lambda x},$$

 λ — число.

2. Вычисляем формулы

$$y'(x) = \lambda e^{\lambda x}$$

$$y^{''}(x) = \lambda^2 e^{\lambda x}$$

• •

$$y^{(n)}(x) = \lambda^n e^{\lambda x}$$

3. Подставляем эти формулы в (1):

$$a_0 \lambda^n e^{\lambda x} + a_1 \lambda^{n-1} e^{\lambda x} + \dots + a_n e^{\lambda x} \equiv 0$$
$$e^{\lambda x} (a_0 \lambda^n + \dots + a_n) \equiv 0$$

4. так как $e^{\lambda x} \neq 0$, то

$$y = e^{\lambda x} - --$$

является решением уравнения (1) $\Leftrightarrow \lambda$ является корнем алгебраического уравнения:

$$(2) \quad a_0 \lambda^n + \dots + a_n = 0$$

5. (2) имеет п простых корней $\lambda_1,\dots,\lambda_n\Rightarrow$ функции $y_1=e^{\lambda_1 x},y_2=e^{\lambda_2 x},\dots,y_n=e^{\lambda_n x}$ — решение (1).

6. Поажем, что $e^{\lambda_k x}_{k=1}^n - \Phi$ СР (1) Рассмотрим определитель Вронского **W**

$$\mathbf{W}(x) = \begin{vmatrix} e^{\lambda_1 x} & \dots & e^{\lambda_n x} \\ \lambda_1 e^{\lambda_1 x} & \dots & \lambda_n e^{\lambda_n x} \\ \dots & \dots & \dots \\ \lambda_1^{(n-1)} e^{\lambda_1 x} & \dots & \lambda_n^{(n-1)} e^{\lambda_n x} \end{vmatrix} = e^{\lambda_1 x} e^{\lambda_2 x} \dots e^{\lambda_n x} \begin{vmatrix} 1 & \dots & 1 \\ \lambda_1 & \dots & \lambda_n \\ \dots & \dots & \dots \\ \lambda_1^{(n-1)} & \dots & \lambda_n^{(n-1)} \end{vmatrix} =$$

$$= e^{\lambda_1 x} e^{\lambda_2 x} \dots e^{\lambda_n x} \prod (\lambda_j - \lambda_k) \neq 0 \Rightarrow$$

 $e^{\lambda_k x}_{k=1}^n - \Phi$ CP уравнения (1) \Rightarrow общее решение (1) имеет вид:

$$y = c_1 e^{\lambda_1 x} + \dots + c_n e^{\lambda_n x}$$

3 Линейные дифференциаьные уравнения второго порядка

3.1 Интегрирование с помощью частного решения

(1)
$$y'' + a_1(x)y' + a_2(x)y = f(x)$$

1. Предположим, что g(x) — частное решение уравнения (1). Тогда переходим к новой неизвестной функции u(x) по формуле:

$$y(x) = u(x)g(x)$$

 $y^{'} = u^{'}gug^{'}$
 $(*)y^{''} = u^{''}g + u^{'}g^{'} + u^{'}g^{'} + ug^{''} = u^{''}g + 2u^{'}g^{'} + ug^{''}$

2. Подставляем (*) в (1):

$$u''g + 2u'g' + ug'' + a_1(u'g + ug') + a_2ug = 0$$

$$u''g + (2g' + a_1g + a_1g')u' + (g'' + a_1g' + a_2g)u = 0$$

$$(2) g(x)u'' + b(x)u' = 0$$

3. Замена v(x) = u'(x). Тогда:

(3)
$$g(x)v' + bv = 0$$

4. Решаем (3):

$$v(x) = c_1 \varphi_1(x) - --$$

Общее решение (3).

5. Возвращаем замену:

$$u = c_1 \int \varphi(x)dx + c_2 = c_1 \Phi(x) + c_2$$

6. Возвращаем замену:

Получим:

$$y = c_1 \Phi(x)g(x) + c_2 g(x) - --$$

Общее решение уравнения (1).

3.2 Упрощение с помощью замены функции $y^{''} + \frac{1}{x}y^{'} + (1 - \frac{1}{4x^2})y = 0$

$$y^{"} + \frac{1}{x}y^{'} + (1 - \frac{1}{4x^{2}})y = 0$$

Пусть y(x) = u(x)z(x). Тогда находим u(x) как решение уравнения

$$2u' + \frac{1}{x}$$

$$u' = -\frac{1}{2x}u$$

$$\int \frac{du}{u} = -\frac{1}{2} \int \frac{dx}{x}; \quad \ln|u| = -\frac{1}{2} \ln|x| \Rightarrow u = \frac{1}{\sqrt{x}}$$

$$y(x) = \frac{1}{\sqrt{x}} z(x); \quad u(x) = x^{-\frac{1}{2}}$$

Наше исходное уравнение примет вид:

$$\begin{split} \frac{1}{\sqrt{x}}z^{''} + (\frac{3}{4}x^{-\frac{5}{2}} + \frac{1}{x}(\frac{1}{2})x^{-\frac{3}{2}} + (1 + \frac{1}{\sqrt{x}})\frac{1}{\sqrt{x}})z &= 0\\ z^{''} + \frac{1}{\sqrt{x}}z &= 0\\ z^{''} + z &= 0 \end{split}$$

Other $y = c_1 \frac{\cos x}{\sqrt{x}} + c_2 \frac{\sin x}{\sqrt{x}}$.

3.3 Упрощение с помощью замены переменной $y^{''} + \frac{1}{2x}y^{'} - \frac{1}{x}y = 0$

$$y'' + \frac{1}{2x}y' - \frac{1}{x}y = 0 \quad x \in (0, \infty)$$

Делаем замену $x = \varphi(t), \quad t = \psi(x).$

Выбираем ψ как решение уравнения $\psi^{'}z^{''}+a_{2}(x)z=0$:

$$\psi''(x) + a_1(x)\psi'(x) = 0$$

Обозначим $v(x) = \psi'(x)$. Тогда:

$$v' + \frac{1}{2x}v = 0$$

$$\frac{dv}{v} = -\frac{1}{2x} + c$$

$$\ln|v| = -\frac{1}{2}\ln|x| + c$$

$$v = x^{-\frac{1}{2}}$$

Возвращаем замену:

$$\psi'(x) = x^{-\frac{1}{2}}$$

$$\psi(x) = 2\sqrt{x}$$

Возвращаем замену:

$$t = 2\sqrt{x}$$

$$x = \frac{t^2}{4}, \quad 0 < t < \infty$$

Исходное уравнение переходит в уравнение:

$$(\psi^{'})^{2}(x)z^{''} - \frac{1}{x}z = 0$$

$$\frac{1}{x}z^{\prime\prime} - \frac{1}{x}z = 0$$

$$z^{''} - z = 0$$

линейное уравнение с постоянными коэффициентами.
 Решаем методом Эйлера

$$x^2 - 1 = 0$$

$$x_1 = 1$$
 $x_2 = -1$

$$\begin{cases} z_1 = e^{\lambda_1 t} = e^t \\ z_2 = e^{\lambda_2 t} = e^{-t} \end{cases}$$

$$z = c_1^t + c_2 e^{-t}$$

$$y(*) = y(\frac{t^2}{4}) = z(t) = z(2\sqrt{x}) = y(x)$$

Ответ: $y = c_1 e^{2\sqrt{x}} + c_2 e^{-2\sqrt{x}}$.

3.4 Метод степенных рядов $y^{''} - xy = 0$

Рассмотрим уравнение:

$$y^{''} - xy = 0$$

Метод степенных рядов:

(1)
$$y'' + a_1(x)y' + a_2(x)y = f(x), \quad a \le x \le b$$

Теорема

Предположим, что $a_1(x), a_2(x), f(x)$ — раскладываются в степенной ряд на [a,b]. Тогда любое решение уравнения (1) раскладывается в степенной ряд на [a,b].

Пример

$$(1)y'' - xy = 0, -\infty < x < +\infty$$

$$(2)y(0) = c_1, y'(0) = c_2$$

Решаем задачу Коши 1-2 методом степенных рядов: Ищем решение в виде:

$$(*) \begin{cases} y(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots; \\ y'(x) = a_1 + 2a_2 x^2 + \dots + na_n x^n + \dots = a_1 + \sum_{n=1}^{\infty} (n+1) a_{n+1} x^n \\ y'(x) = \sum_{n=1}^{\infty} (n+1) n a_{n+1} x^{n-1} = \sum_{k=0}^{\infty} (k+2)(k+1) a_{k+2} x^k \end{cases}$$

$$y(0)_{(*)} = a_0 = c_1$$

$$y'(0)_{(*)} = a_1 = c_2$$

Подставим (*) в (1)

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n - x\sum_{k=0}^{\infty} a_k x^k \equiv 0;$$

$$2a_2 + \sum_{n=1}^{\infty} (n+2)(n+1)a_{n+2}x^n - \sum_{n=1}^{\infty} a_{n-1}x^n \equiv 0;$$

$$2a_2 + \sum_{n=1}^{\infty} [(n+2)(n+1)a_{n+2} - a_{n-1}]x^n \equiv 0 = 0 + 0x + 0x^2 + \dots \Leftrightarrow$$

$$\Leftrightarrow 2a_2 = 0; (n+2)(n+1)a_{n+2} - a_{n-1} = 0; n = 1, 2, \dots$$

Таким образом,

(3)
$$a_{n+2} = \frac{a_{n-1}}{(n+2)(n+1)}, \quad n = 1, 2, 3, \dots$$

Пусть k = n - 1. Тогда (3) = (4):

$$(4)a_{k+3} = \frac{a_k}{(k+3)(k+2)}, \quad k = 0, 1, 2, \dots$$

Из (4)

$$a_2 = 0, a_5 = 0, a_8 = 0, \dots$$

$$a_0 = c_1, a_3 = \frac{c_1}{3 * 2}, a_6 = \frac{a_3}{6 * 5}, \dots, a_{3k} = \frac{c_1}{2 * 3 * 5 * 6 * \dots * (3k-1)3k}; k = 0, 1, \dots$$

$$a_1 = c_2, a_4 = \frac{a_1}{3 * 4} = \frac{c_2}{3 * 4}, a_7 = \frac{a_4}{6 * 7}, \dots, a_{3k+1} = \frac{c_2}{3 * 4 * 6 * 7 * \dots * (3k)(3k+1)}$$

$$y = \sum_{n=0}^{\infty} a_n x^n = \sum_{k=0}^{\infty} a_{3k} x^{3k} + \sum_{k=0}^{\infty} a_{3k+1} x^{3k+1} = \sum_{k=0}^{\infty} a_{3k+2} x^{3k+2} =$$

$$= c_1 \sum_{k=0}^{\infty} \frac{x^{3k}}{2*3*5*6*\cdots*(3k-1)3k} + c_2 \sum_{k=0}^{\infty} \frac{x^{3k-1}}{3*4*6*7*(3k)(3k+1)} =$$

$$c_1 y_1(x) + c_2 y_2(x)$$

$$- \Phi \text{CP для (1)}$$