"DIVIDE THE LAND EQUALLY" (Ezekiel 47:14)

Redividing the Cake Erel Segal-Halevi

General Question

How to get from an existing, unfair division:

to a new, fair division:

Detailed Question

- INPUT: Cake C; n agents;
- Each agent j has a value-measure V_j on C.
- Existing division: each j has a piece Z_i in C.
- OUTPUT: allocate to each j a piece X_j in C.
- DESIRED PROPERTIES (r, w are in [0,1]):
- Fairness: For each j, $V_{j}(X_{j}) \ge V_{j}(C) / n$.
- Ownership: For each j, $V_{j}(X_{j}) \ge V_{j}(Z_{j})$.
- *r*-fairness: For each j, $V_{j}(X_{j}) \ge r * V_{j}(C) / n$.
- *w*-ownership: For each j, $V_j(X_j) \ge w * V_j(Z_j)$.
 - Q: What combinations of r, w are attainable?

Unrestricted pieces

- Answer 1. r-fairness and w-ownership can be attained together if-and-only-if $r+w \le 1$.
- "If" Proof idea: Create a convex combination of the existing division with an arbitrary fair division. $O(n^2)$ queries.
- · Caveat. pieces might be disconnected:

1-dimensional cake, connected pieces

Answer 2. If:

- The cake *C* is a 1-dimensional interval.
- •Each piece must be a connected interval. then, r-fairness and w-ownership cannot be attained together for any constant r>0, w>0.

Why? for every r>0 and integer k in $\{1,...,n\}$, there might be k agents who, in any r-fair division, get at most $\sim k/n$ of their old value.

Democratic Ownership

- **Definition**. For every integer k in $\{1,...,n\}$, there are **at least** n-k agents who get **at least** $\sim k/n$ of their old value.
- By previous slide, this is the best we can hope for if we want r-fairness for r>0.

Revised question: what fairness can be attained together with democratic ownership?

1-dimensional cake, connected pieces

Answer 3. If:

- The cake *C* is a 1-dimensional interval.
- Each piece must be a connected interval.
- then, democratic-ownership can be attained together with 1/3-fairness.

Proof idea:

- Divide each Z_j among agents who want it most.
- Pigeon principle: many Z_{j} are thinly-populated.
- Value of agent $j \ge V_j(C)/(2n + \#pieces 1)$.

$$> V_{j}(C)/3n$$
 Redividing the Cake

2-dimensional cakes

New challenge: division might have holes! Rectangle cake and rectangle pieces:

2-dimensional cakes

New challenge: division might have holes! Convex cake and convex pieces:

Allocation-completion step

Rectangle cake and rectangle pieces:

#holes < n.

Allocation-completion step

Convex cake and convex pieces:

Fairness levels attainable together with democratic ownership

The value of agent *j* is at least:

$$V_{j}(C)/(2n + \#pieces - 1).$$

Interval cake and pieces:

•#holes = 0, #pieces = $n \rightarrow 1/3$ -fairness.

Rectangle cake and pieces:

•#holes < n, #pieces $< 2n \rightarrow 1/4$ -fairness.

Convex cake and pieces:

•#holes < 2n, #pieces $< 3n \rightarrow 1/5$ -fairness.

Redividing the Cake

Erel Segal-Halevi

Conclusion

To make fairness practical, we must handle the:
1) existing allocation;
2) geometric requirements.

Thank you very much!

Open Questions

What is the largest *r* such that *r*-fairness is compatible with democratic ownership:

- With 1-D connected intervals? (≥ 1/3).
- With rectangles? (≥ 1/4).
- •With 2-D convex figures? (≥ 1/5).
- With 2-D connected figures?
- With squares?
- With 3-D convex figures?
- With two 1-D intervals per agent?