PCT/DE 00 / 02548

BUNDEREPUBLIK DEUTSCHLAND

097807055

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

DE 00/0254

E 3 U

Aktenzeichen:

199 37 480.5

Anmeldetag:

07. August 1999

Anmelder/Inhaber:

ROBERT BOSCH GMBH, Stuttgart/DE

Bezeichnung:

Vorrichtung zur Überwachung eines Messsystems

eines elektrischen Antriebs

IPC:

H 02 H, H 02 P

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 12. Oktober 2000 Deutsches Patent- und Markenamt

Der Präsident

_Im Auftrag

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH RULE 17.1(a) OR (b)

, aust

06.08.99 Lc/Ep

5

ROBERT BOSCH GMBH, 70442 Stuttgart

10

Vorrichtung zur Überwachung eines Meßsystems eines elektrischen Antriebs

Stand der Technik

15

20

Die Erfindung geht aus von einer Vorrichtung zur Überwachung eines Meßsystems eines elektrischen Antriebs nach der Gattung der unabhängigen Ansprüche. Aus der DE 43 30 823 C2 ist eine Antriebsvorrichtung mit einer Sicherheitseinrichtung für den Sonderbetrieb bekannt. Hierbei ist zur Überwachung des Motors eine redundante Sicherheitseinrichtung vorgesehen, welche in einer Sonderbetriebsart die Drehzahl des Motors auf Einhaltung eines vorgegebenen Höchstwertes überwacht und die Energiezufuhr zum Motor unterbricht, wenn die Drehzahl größer ist als der vorgegebene Höchstwert. Zur Bestimmung der Drehzahl werden zwei verschiedene Signale in

30

zum Motor abgeleitet wird. Überschreitet die erfaßte Drehzahl einen vorgegebenen Höchstwert, wird die Energiezufuhr zum Motor durch Schalten eines einem Netzgleichrichter davorgeschalteten Leistungsschalters sowie durch zusätzliches Abschalten des Wechselrichters unterbrochen. Eine Überwachung des Drehzahlsensors anhand des Stromverlaufs ist

der Weise erfaßt, daß das erste Signal von einem Drehzahlsensor gewonnen wird, und das zweite Signal aus dem zeitlichen Verlauf des hierfür mittels eines weiteren Sensor erfaßten Stromes in wenigstens einer der Phasenzuleitungen

lastabhängig und daher relativ ungenau. Der Erfindung liegt die Aufgabe zugrunde, ein verbessertes Überwachungssystem über den gesamten Drehzahlbereich hinweg anzugeben, das ohne einen weiteren Drehzahlsensor auskommt.

Vorteile der Erfindung

Die erfindungsgemäße Vorrichtung zur Überwachung eines Meßsystems eines elektrischen Antriebs zeichnet sich dadurch
aus, daß eine Signalverarbeitung ein einen Fehler des
Meßsystems anzeigendes Fehlersignal erzeugt in Abhängigkeit
von der Polradspannung. Die Polradspannung verändert sich,
wenn das Meßsystem des elektrischen Antriebs, beispielsweise
ein Drehzahl- oder Positionsgeber, schleift und dadurch ein
Geberversatz auftritt. Insbesondere die flußbildende Komponente der Polradspannung eignet sich als auszuwertende Größe. Der gegenüber dem Normalfall auftretende Geberversatz
zum Polrad verändert die in Feldrichtung induzierte Spannung
und steht auch während des laufenden Betriebs des elektrischen Antriebs zur Verfügung. Es können rechtzeitig Gegenmaßnahmen eingeleitet werden, wenn eine fehlerhafte Geberanordnung erkannt wird.

In einer zweckmäßigen Weiterbildung ist vorgesehen, eine Ausgangsgröße eines Längsstromreglers zur Erzeugung eines Fehlersignals heranzuziehen. Üblicherweise ist zur Regelung einer Synchron- bzw. Asynchronmaschine ein Längsstromregler zur Regelung der flußbildenden Stromkomponente vorgesehen. Aufgrund der zusätzlichen durch den Geberversatz induzierten (Längs) Spannungskomponente bildet sich auch bei dem Längsstromregler eine Regelabweichung. Deshalb kann der Integralanteil des Längsstromreglers als eine einen Geberversatz des Meßsystems anzeigende Größe ausgewertet werden, da der Integralanteil ein Maß ist für die zusätzlich durch den Geberversatz induzierte Längsspannung. Diese Größe steht am

5

10

15

20

30

Regler ohnehin zur Verfügung und muß nicht eigens erzeugt werden.

Eine vorteilhafte Ausgestaltung sieht einen Vergleich der den Geberversatz anzeigenenden Größe mit einem Grenzwert vor, der von den Reglerparametern und/oder den Streckenparametern abhängt. Insbesondere die Totzeitspannung in Folge der Schaltertotzeit der Ansteuerstufe, die induzierte Polradspannung in Folge der Totzeit des Querstromreglers oder die Parameterabweichungen von Induktivitäten und Widerständen können zu Regelabweichungen führen, die den Integralanteil des Längsstromreglers zusätzlich beaufschlagen. Da die Regler- und Streckenparameter in etwa bekannt sind, können sie bei der Wahl des Grenzwerts, mit dem der Integralanteil des Längsstromreglers verglichen wird, berücksichtigt werden. Die Genauigkeit der Fehlererkennung des Meßsystems erhöht sich dadurch.

Eine alternative Ausführungsform zeichnet sich dadurch aus, daß die aus dem Ausgangssignal des Meßsystems abgeleitete Beschleunigung des Antriebs ausgewertet wird. In dem sich anschließenden Vergleich mit bestimmten Grenzwerten wird eine fehlende mechanische Verbindung zwischen dem elektrischen Antrieb und dem Geber erkannt. In einer zweckmäßigen Weiterbildung wird diese Überwachung nur aktiv, wenn der von dem Regler des Antriebs vorgegebene Stromsollwert den maximal zulässigen Stromsollwert erreicht. In diesem Fall kann von einer kritischen Betriebssituation ausgegangen werden, die eventuell durch ein fehlerhaftes Meßssystem ausgelöst worden sein könnte. Diese Ausführungsform kann vorzugsweise als Plausibilitätstest zu anderen Geberüberwachungen parallel ausgeführt werden.

In einer alternativen Ausführung ist zur Überwachung eines Meßsystems eines elektrischen Antriebs ein Drehzahlüber-

10

5

15

20

35

3.0

wachungsmodell vorgesehen, das in Abhängigkeit von bestimmten Eingangsgrößen einen Schätzwert des Ausgangssignals des Meßsystems erzeugt. Treten signifikante Abweichungen mit dem tatsächlichen Ausgangssignal des Meßsystems auf, wird auf ein fehlerhaftes Meßsystem geschlossen.

Bei einer zweckmäßigen Weiterbildung ist eine Auswahlschaltung vorgesehen, die in Abhängigkeit von der geschätzten Drehzahl eine Auswahl der Überwachungsfunktion vorsieht. Bei hohen Drehzahlen kommt das Drehzahlüberwachungsmodell zum Einsatz. Da es bei niedrigen Drehzahlen unwirksam ist, wird für diesen Fall auf die Längsspannungsüberwachung zurückgegriffen. Dadurch wird sichergestellt, daß in jedem Drehzahlbereich ein Fehler des Meßsystems sicher erkannt wird.

Weitere zweckmäßige Weiterbildungen ergeben sich aus weiteren abhängigen Ansprüchen und aus der Beschreibung.

Zeichnung

Die Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im folgenden näher beschrieben.

Es zeigen Figur 1 eine Reglerstruktur mit Überwachungseinrichtung einer Synchronmaschine, Figur 2 eine Reglerstruktur
mit Überwachungseinrichtung einer Asynchronmaschine, Figur 3
ein Blockschaltbild einer Längsspannungsüberwachung, Figur 4
ein regelungstechnisches Ersatzschaltbild der Synchronmaschine im Normalfall, Figur 5 ein regelungstechnisches Ersatzschaltbild der Synchronmaschine im Fehlerfall, Figur 6
ein Blockschaltbild der Überwachungseinrichtung für die
Asynchronmaschine sowie Figur 7 ein Drehzahlüberwachungsmodell.

30

5

10

15

Beschreibung der Ausführungsbeispiele

Ein Drehzahl-Lage-Geber 12 als Meßsystem erfaßt den Polradeines elektrischen Antriebs 10, in dem ersten Ausführungsbeispiel gemäß Figur 1 ein Synchronmotor. Ein Umrichter 14, der von einem Pulsweitenmodulator 16 angesteuert wird, bestromt die drei Phasen des elektrischen Antriebs 10. Bei zwei der drei Phasen sind jeweils Stromsensoren 20 vorgesehen, deren Ausgangssignale II, I3 einer Eingangstransformation 22 zugeführt sind. Die Eingangstransformation 22 erzeugt einen Querstrom-Istwert IQ_IST und einen Längsstrom-Istwert ID IST. Über den ersten Differenzierer 30, dem der zugeführt wird, entsteht die Größe ω , aus Polradwinkel der durch einen Integrator 26 ein Richtungswinkel arphi gebildet wird. Aus dem Richtungswinkel $\,arphi\,$ stellt ein Sinus-Cosinus-Generator 28 die entsprechenden $\sin\left(\varphi\right)$ - und $\cos\left(arphi
ight)$ -Werte der Eingangstransformation 22 und der Ausgangstransformation 18 zur Verfügung. Aus der Ausgangsgröße des ersten Diffenzieres 30 wird über einen Umsetzer 31 ein Sensor-Drehzahlistwert n_sensor gebildet, der sowohl einem zweiten Differenzierer 32 als auch einem zweiten Summationspunkt 42 (mit negativem Vorzeichen) zugeführt wird. Das Ausgangssignal des zweiten Differenzierers 32 dient einem als Plausibilitätstest 34 bezeichneten Schaltungsteil als Eingangsgröße. Der Plausiblitätstest 34 erzeugt ein Plausibilitäts-Fehlersignal 35. Aus der am zweiten Summationspunkt 42 zur Verfügung stehenden Drehzahlabweichung aus Drehzahsollwert n soll und Sensor-Drehzahlistwert n_sensor bildet ein Drehzahlregler 44 einen Querstrom-Sollwert IQ SOLL, der einem dritten Summationspunkt 46, dem Plausibilitätstest 34 sowie einer Entkopplung 50 zugeführt wird. Der von der Eingangstransformation 22 gebildete Querstrom-Istwert IQ_IST dient als Eingangsgröße für den Plausibilitätstest 34 sowie - mit negativem Vorzeichen - für den dritten Summationspunkt 46. Die Regelabweichung von Querstrom-Sollwert IQ_SOLL und

10

5

15

20

30

Querstrom-Istwert IQ_IST wird einem Querstromregler 48 zugeführt, der als PI-Regler ausgeführt ist. An einem vierten Summationspunkt 52 steht die Regelabweichung von Längsstromsollwert ID SOLL und Längsstrom-Istwert ID IST, von der Eingangstransformation 22 erzeugt, als Eingangsgröße für einen Längsstromregler 54 - ebenfalls als PI-Regler ausgeführt zur Verfügung. Der Längsstrom-Sollwert ID SOLL nimmt für die Synchronmaschine den Wert Null an. Er ist ebenfalls der Entkopplung 50 zugeführt. In einem fünften Summationspunkt 56 wird eine Ausgangsgröße der Entkopplung 50 von dem Ausgangssignal des Querstromreglers 48 abgezogen, wodurch man einen Querspannungs-Sollwert UQ SOLL erhält. Analog wird an einem sechsten Summationspunkt 58 ein Längsspannungs-Sollwert UD_SOLL erzeugt. Querspannungs- und Längsspannungs-Sollwerte UQ_SOLL, UD_SOLL bilden die Eingangsgrößen für die Ausgangstransformation 18. Die Ausgangstransformation 18 setzt diese Werte zusammen mit $\sin(\varphi)$ und $\cos(\varphi)$ in zwei weitere Spannungs-Sollwerte US1 Soll, US2 Soll um, die dem Pulsweitenmodulator 16 zugeführt sind.

Das Blockschaltbild gemäß Figur 2 zeigt die Reglerstruktur einer Asynchronmaschine. Sie ist im wesentlichen identisch mit der in Figur 1 gezeigten Reglerstruktur der Synchron-Maschine, allerdings ist der Längsstrom-Sollwert ID_SOLL nicht mehr auf den Wert Null festgelegt, sondern eine Ausgangsgröße eines Spannungsreglers 85. Der Spannungsregler 85 erhält als Eingangsgrößen den Querstromsollwert IQ_SOLL, den Querspannungssollwert UQ_SOLL und den Längsspannungssollwert UD_SOLL. Der Integralanteil I_ANTEIL_D des Längsstromreglers 54 wird einem Längsspannungsregler 87 zugeführt, dessen Ausgangsgröße neben dem Schlupf ω*s und der Ausgangsgröße des Flußmodells 24 dem Summationspunkt 25 als Eingangsgröße dient.

10

5

15

20

Das Ausführungsbeispiel gemäß den Figuren 1 und 2 wird nun präzisiert und erweitert in Figur 3. Der Querstromregler 48 läßt sich darstellen durch eine Parallelschaltung eines Proportionalanteils 60 und eines Integralanteils 61 des Querstromreglers 48. Auch der Längsstromregler 54 besteht aus einem parallel geschalteten Proportionalanteil 63 und einem Integralanteil 64. Der Ausgang des Integrators 64 des Längsstromreglers 54 wird einem Komparator 73 zugeführt, der einen Grenzwert G erhält und ein Längsspannungs-Fehlersignal 75 erzeugt. Aus der Multiplikation der Winkelgeschwindigkeit ω (Winkelgeschwindigkeit des d-q-Koordinatensystems) mit dem verketteten Fluß ψp ergibt sich die Polradspannung Up, die dem fünften Summationspunkt 56 zugeführt wird. Die Entkopplung 50 wird realisiert durch ein erstes Proportionalglied 69 (Ständerwiderstand R_s), ein zweites Proportionalglied 70 (Ständerinduktivität L_s) und ein drittes Proportionalglied 71 (Ständerwiderstand R_s) sowie zwei Multiplizierer 66, 67.

Bei dem regelungstechnischen Ersatzschaltbild der Synchronmaschine im Normalfall gemäß Figur 4 wird einem zehnten Summationspunkt 110 eine Antriebs-Längsspannung Ud zugeführt. Aus der Ausgangsgröße des zehnten Summationspunktes 110 bildet ein PT1-Längsanteil 115 einen Antriebs-Längsstrom Isd, der neben der Winkelgeschwindigkeit ω (Winkelgeschwindigkeit des d-q-Koordinatensystems) einem dritten Multiplizierer 113 als Eingangsgröße dient. Die mit der Ständerinduktivität Ls gewichtete Ausgangsgröße des dritten Multiplizierers 113 dient einem elften Summationspunkt 111 neben einer Antriebs-Querspannung Uq und der negativen Polradspannung Up (qebildet aus dem Produkt von Winkelgeschwindigkeit ω und einem magnetischen Fluß ψ_{P}) mit negativem Vorzeichen als Eingangsgröße. Ein PT1-Queranteil 116 ermittelt aus der Ausgangsgröße des elften Summationspunktes 111 einen Antriebs-Querstrom Isq. Daraus bildet ein die Polpaarzahl p und den magnetischen Fluß ψ_{P} berücksichtigender Proportionalitätsfaktor 118 (3/2*p* ψ_p) eine elektri-

10

5

15

20

3 0

sches Moment Mel, von dem in einem zwölften Summationspunkt 112 ein Lastmoment Mi abgezogen wird. Die resultierende Größe verarbeitet ein Integrator 119, gewichtet mit einem reziproken Massenträgheitsmoment J, zu einer Winkelgeschwindigkeit om des Läufers wird die Winkelgeschwindigkeit om des Läufers mit der Polpaarzahl p (Bezugszeichen 120) multipliziert, ergibt sich die Winkelgeschwindigkeit om (Winkelgeschwindigkeit des d-q-Koordinatensystems). Diese wird den beiden Multiplizieren 113, 114 jeweils als zweite Eingangsgröße zugeführt. Die mit der Ständerinduktivität Ls gewichtete Ausgangsgröße des vierten Multiplizierers 114 verwendet der zehnte Summationspunkt 110 als Eingangsgröße.

5

10

15

20

30

35

Das regelungstechnische Ersatzschaltbild der Synchronmaschine im Fehlerfall gemäß Figur 5 unterscheidet sich von dem in Figur 4 dargestellten Normalfall in folgender Weise. An den elften Summationspunkt 111 wird nunmehr lediglich die mit einem Faktor $\cos(\alpha)$ 117 gewichtete Polradspannung Up (Up = ω * ψ_P) negativ zurückgeführt. α ist der Versatzwinkel des Drehzahl-Lage-Gebers 12, bezogen auf seine ursprüngliche Anordnung im fehlerfreien Betrieb. Durch den Geberversatz α gelangt auch an den zehnten Summationspunkt 110 eine mit dem Faktor $\sin(\alpha)$ 121 gewichtete Polradspannung Up. Die Auswirkungen des Geberversatztes α schlagen sich auch in dem Proportionalitätsfaktor 118 mit dem Faktor $\cos(\alpha)$ nieder.

In Figur 6 ist das Überwachungskonzept der Asynchronmaschine gezeigt. In der Regelung 78 gemäß Figur 2 ist die in Figur 3 dargestellte Längsspannungsüberwachung 79 integriert. Zusätzlich ist ein Drehzahlüberwachungsmodell 89 als Meßsystemmodell vorgesehen, dem die Querspannungs- und Querstrom-Sollwerte UQ_SOLL, IQ_SOLL, der Längsspannungs-Istwert ID_IST sowie der Fluß-Istwert zugeführt sind. Als Ausgangsgröße stellt das Drehzahlüberwachungsmodell 89 die Schätzdrehzahl n_modell einem Vergleicher 91 sowie einem Umschal-

ter 93 zur Verfügung. Der Umschalter 93 erhält ein Modell-Fehlersignal 92 als Ausgangssignal des Vergleichers 91 und das Längsspannungs-Fehlersignal 75 als Ausgangsgröße des Komparators 73 der Längsspannungsüberwachung 79 gemäß Figur 3.

In Figur 7 ist das Drehzahlüberwachungsmodell 89 näher ge-

10

5

15

20

30

35

zeigt. Der Querstrom-Sollwert IQ SOLL gelangt, mit einem Proportionalglied "Rotorwiderstand" 96 gewichtet, an einen ersten Dividierer 99 und über ein Proportionalglied "Statorwiderstand" 95 mit negativem Vorzeichen an einen siebten Summationspunkt 102. Der siebte Summationspunkt 102 erhält außerdem den Querspannungs-Sollwert UQ SOLL als Eingangsgröße und liefert die resultierende Ausgangsgröße einem achten Summationspunkt 103. Dem ersten Dividierer 99 und einem zweiten Dividierer 100 wird der Fluß-Istwert zugeführt. Die Ausgangsgröße des ersten Dividierers 99 wird einem neunten Summationspunkt 104 invertiert aufgeschaltet. Der zweite Dividierer 100 erhält als weitere Eingangsgröße die Ausgangsgröße des achten Summationspunktes 103 und liefert seine Ausgangsgröße sowohl an den neunten Summationspunkt 104 (mit negativem Vorzeichen) als auch - gewichtet mit einem Proportionalglied "Steuinduktivität" 97 - an einen Multiplizierer 105. Der Multiplizierer 105 erhält als weitere Eingangsgröße den Querstrom-Istwert IQ_IST und gibt die resultierende Ausgangsgröße mit negativem Vorzeichen an den achten Summationspunkt 103 ab. Ein Integrierer 107 verarbeitet die Ausgangsgröße des neunten Summationspunktes 104 zu einer Schätzdrehzahl n modell.

Gemäß der Theorie der feldorientierten Regelung einer Synchron- bzw. Asynchronmaschine kann der von den Stromsensoren 20 erfaßte Ständerstrom II, I3 nach Überführung in ein rotorbezogenes orthogonales Zweiphasensystem (d-q-

Koordinatensystem) in zwei Komponenten, nämlich dem Quer-

strom-Istwert IQ IST, und dem Langsstrom-Istwert ID IST aufgeteilt werden. Die Längsstromkomponente ID baut das magnetische Feld der Maschine auf und ist in der gleichen Richtung wie das Feld orientiert. Der Querstrom IQ steht rechtwinklig auf dem Längsstrom ID und bildet mit diesem den Summenstrom, der mit der Umlauffrequenz ω des Felds umläuft. Der Querstrom IQ IST bildet das Drehmoment des elektrischen Antriebs 10, während der Längsstrom ID_IST die flußbildende Stromkomponente darstellt.

10

5

15

20

30

35

Der nachfolgend beschriebene Plausibilitätstest 34 überwacht den Drehzahlregelkreis auf plausible Beschleunigungsdaten dann, wenn der Querstrom-Sollwert IQ SOLL den Maximalstrom I_{max} erreicht, den der Drehzahlregler 44 gerade noch ausgeben darf. Das Antriebssystem wird mit einem maximalen Moment beaufschlagt. Durch zweimaliges Differenzieren des Ausgangssignals des Drehzahl-Lage-Gebers 12 wird die Ist-Beschleunigung a_ist ermittelt. Ist die Ist-Beschleunigung a ist kleiner als eine vorgebbare Minimalbeschleunigung, wird ein Fehlersignal generiert. Der elektrische Antrieb 10 könnte sich im Blockierzustand befinden. Eine entsprechende Anzeige mit der Fehlermeldung "blockiert" kann vorgesehen werden. Besitzt die Istbeschleunigung a ist im Vergleich zu dem Querstrom-Sollwert IQ_SOLL ein nicht korrespondierendes Vorzeichen, wird ebenfalls eine Fehlermeldung erzeugt. In diesem Fall könnte der Drehzahl-Lage-Geber 12 verdreht, oder die Motorzuleitungen falsch angeschlossen sein. Anhand des Querstrom-Istwerts IQ_IST kann eine Unterbrechung der Energieversorgung des Antriebs 10 festgestellt werden, wenn trotz maximal zulässigem Querstrom-Sollwert IQ SOLL kein Querstrom-Istwert IQ IST ermittelt werden kann. Der Plausibilitätstest 34 dient insbesondere der schnellen Reaktion auf einen nicht korrekt justierten Drehzahl-Lage-Geber 12 oder auf eine fehlende mechanische Kopplung zwischen Drehzahl-Lage-Geber 12 und Antrieb 10.

Die nachfolgende Längsspannungsüberwachung 79 nach Figur 3 dient insbesondere der Ermittlung eines schleifenden Drehzahl-Lage-Gebers 12. Ein schleifender Drehzahl-Lage-Geber 12 zeigt eine von der tatsächlichen Drehzahl des Antriebs 10 abweichende Drehzahl an. Für die Synchronmachine wird im Normalfall der Drehzahl-Lage-Geber 12 so auf den Antrieb 10 eingestellt, daß sich bei einem gemessenen Polradwinkel von 0° das Polrad und die Ständerwiderstandsachse der Phase U gegenüberstehen. Eine lockere Verschraubung des Drehzahl-Lage-Gebers 12 führt nun dazu, daß die Polradlage nicht mehr mit der gedachten Längsachse der Stromregelung übereinstimmt. In diesem Fall ist das auf auf das Polrad bezogene Koordinatensystem der Stromregelung um den Geberversatz lphazum Polrad hin verdreht. Für die weitere Berechnung wird zur Vereinfachung angenommen, daß sich der Geberversatz lpha bezogen auf den Polradwinkel ε kaum ändert (α = konst).

Ständerbezogenes Koordinatensystem

20

15

5

10

Normalfall

Fehlerfall

 $\alpha = \emptyset$

 α kontant \neq Ø

 $\Psi_P = \Psi_P \star e^{j \mathcal{E}}$

 $\Psi_{\rm P} = \Psi_{\rm P} * {\rm e}^{{\rm j} \cdot \mathcal{E}} + \alpha$

(1.1)

(1.2.)

30

 $\underline{\mathbf{U}}_{\mathsf{P}} = \mathsf{j} \ \psi_{\mathsf{P}} \star \mathsf{e}^{\mathsf{j} \mathcal{E}} \star \frac{d\varepsilon}{dt}$

 $\underline{\mathbf{U}}_{\mathsf{P}} = \mathsf{j} \ \psi_{\mathsf{P}} \star \mathsf{e}^{\mathsf{j} \mathcal{E}} \star \frac{d\varepsilon}{dt}$

Polradbezogenes Koordinatensystem

Normalfall

Fehlerfall

$$\underline{U}'_{p} = \underline{U}_{p} \star e^{-j \mathcal{E}}$$

$$\underline{\underline{U}}_{p} = \underline{\underline{U}}_{p} \star e^{-j(\mathcal{E}_{p} \cdot \alpha)}$$

$$\underline{\mathbf{U}}_{p} = \mathbf{J}\psi_{p} * \mathbf{e}^{\sharp \mathcal{E}} * \frac{d\varepsilon}{dt}$$

$$\underline{\underline{U}}_{p}^{\prime} = \Im \psi_{p} \star e^{j \varepsilon} \star \frac{d\varepsilon}{dt} \qquad (1.3.) \qquad \underline{\underline{U}}_{p}^{\prime} = j \psi_{p} \star e^{j(\varepsilon + \alpha)} \star \frac{d\varepsilon}{dt} \qquad (1.4.)$$

$$\underline{U}_{p} = jU_{p}$$

$$\underline{\mathbf{U}}_{p} = \mathbf{j}_{\mathbf{U}_{p}} [\cos(\alpha) + \sin(\alpha)]$$

Regelungstechnisches Modell in polradfesten Komponenten

Unter Bezugnahme auf die Figuren 4 (regelungstechnisches Ersatzschaltbild der Synchronmaschine im Normalfall) und Figur 5 (regelungstechnisches Ersatzschaltbild der Synchronmaschine im Fehlerfall) ergeben sich für die beiden Fälle folgende Gleichungen:

15

Normalfall

$$U_d = R_S * I_{SD} + L_S \frac{dI_{Sd}}{dt} - \omega * L_S I_{sq}$$

20

$$U_q = R_S * I_{sq} + L_S \frac{dI_{sq}}{dt} - \omega * L_S * I_{sd} + U_P$$

25

$$U_d = R_S * I_{Sd} + L_S \frac{dl_{Sd}}{dt} - \omega * L_S I_{Sq} - U_P \sin(\alpha)$$

(1.6.)

$$U_q = R_S * I_{sq} + L_S \frac{dl_{sq}}{dt} - \omega * L_S * I_{sd} + U_P \cos(\alpha)$$

 $\operatorname{mit} \ I_{sa} \ U_{a}$ Antriebs-Querstrom- bzw. -spannungskomponente,

I_{sd}, U_d Antriebs-Längsstrom- bzw. -spannungskomponente

ω: Winkelgeschwindigkeit des d-q-Koordinatensystems

 ψ_{P} : Magnetische Fluß, erzeugt durch das permanent erregte Polrad

Ls: Ständerinduktivität

Rs: Statorwiderstand

Im Normalfall (α = 0, kein Versatz des Drehzahl-Lage-Gebers 12) sind die d-q-Koordinatensysteme von Regler 78 und Antrieb 10 identisch. Bei Vernachlässigung des Übertragungsverhaltens des Umrichters 14 stimmen die von der Regelung 78 vorgegebenen Komponeneten UD_SOLL bzw. UQ_SOLL mit den Spannungs-Komponenten im Antrieb 10 Ud bzw. Uq überein.

Im Fehlerfall ($\alpha \neq 0$) sind die d-q-Koordinatensysteme von Regler 78 und Antrieb 10 nicht mehr identisch. Die Quer- und Längskomponenten im Antrieb (Ud, Isd, Uq, Isq) weichen aufgrund des Geberversatztes ($\alpha \neq 0$) von denen im Regler 78 (UD SOLL, ID SOLL, UQ SOLL, IQ SOLL) ab. Die Winkelgeschwindigkeit wm des Läufers wird von dem schleifenden Drehzahl-Lage-Geber 12 erfaßt und nach Multiplikation mit der Polpaarzahl p der Längsspannungsüberwachung 79 gemäß Figur 3 als Winkelgeschwindigkeit ω zugeführt. Die induzierte Spannung $\Psi_{\scriptscriptstyle P}$ * ω (Polradspannung Up) tritt nicht mehr allein in der q-Achse im Regler 78 auf. Dadurch ergibt sich eine signifikante Änderung der Spannung Ud in der d-Achse (um - Up $*sin(\alpha)$). Da der Längsstromregler 54 weiterhin den Längsstrom I_{D} auf Null regelt, ist die Änderung der Spannung Ud in der d-Achse im Spannungssollwert erkennbar. Aufgrund der Beschaffenheit des Längsstromreglers 54 spiegelt sich diese vom Geberversatz (α ≠ 0) herrührende Spannungsänderung im Integrator 64 wieder. Daher eignet sich die Ausgangsgröße des Integrators 64 zur Ermittlung, ob ein Geberversatz aufgetreten ist. Hierzu wird der Ausgangswert des Integrators 64 in dem Komparator 73 mit dem Grenzwert G verglichen. Im Idealfall (Geberver-

20

5

10

15

30

satz α = 0, keine Systemtotzeiten, gleichbleibend genaue Angaben der Modellparameter L_s und R_s) nimmt der Integrator 64 den Wert Null an. Im Normalfall jedoch gibt der Integrator 64 auch ohne Geberversatz (α - 0) ein konstantes Signal ab, das durch die Totzeitspannung (Schaltertotzeit der PWMStufe), die induzierte Polradspannung (in Folge der Totzeit des Längsstromreglers 54) und durch schwankende Modellparameter bedingt ist. Die genannten Parameter können jedoch vorab berechnet werden und in Form des Grenzwerts G berücksichtigt werden. Wird der Grenzwert G um einen bestimmten Wert überschritten, so resultiert der Fehler aus dem Geberversatz α . In diesem Fall wird ein Fehlersignal 75 erzeugt, beispielsweise verbunden mit der Meldung "Schleifender Geber".

Prinzipiell könnte zwar auch der I-Anteil des Querstromreglers 48 zur Geberversatzauswertung herangezogen werden. Unter Umständen wird jedoch eine Vorrausberechnung durch einen schwankenden Querstromsollwert IQ_SOLL erschwert.

Figur 2 zeigt die Reglerstruktur einer Asynchronmaschine. Der wesentliche Unterschied zur Synchronmaschine besteht darin, daß der Längsstrom-Sollwert ID_SOLL nicht fest auf dem Wert Null liegt, sondern in der gezeigten Weise erzeugt wird. Für die Erfindung ist die Art der Erzeugung jedoch nicht wesentlich, sondern soll nur im Zuge der Vollständigkeit erwähnt werden, da sie als Eingangsgrößen der Längsspannungsüberwachung 79 nach Figur 2 dienen. Damit können die Längsspannungsüberwachung 79 gemäß Figur 3 und der Plausibiltitästest 34 auch für die Asynchronmaschine zum Einsatz kommen.

Bei dem Ausführungsbeispiel gemäß Figur 6 ist für die

10

5

15

20

Asynchronmaschine ein duales Meßsystemüberwachungskonzept realisiert. Die Längsspannungsüberwachung 79 ist bei niedrigen Frequenzen identisch mit der der Figur 3.

Aufgrund von Parametertoleranzen (Temperaturabhängigkeit des Läuferwiderstandes, Sättigungserscheinungen) kann dieses Verfahren bei höheren Frequenzen nur fehlerbehaftet angewendet werden. Kompensiert werden diese Parameterabweichungen über eine zusätliche Regelung, die den Transformationswinkel φ so verstellt, daß die induzierte Spannung in der d-Achse Null ist. Dies führt einerseits dazu, daß das Verfahren der Längsspannungsüberwachung 79 bei hohen Drehzahlen nicht angewendet werden kann, anderseits daß auch bei schleifendem Geber 12 die d-q-Koordinatensysteme in der Regelung 78 und im Antrieb 10 ausreichend gut übereinstimmen. Dadurch ist es möglich, aus den internen Größen des Reglers 79 über ein Drehzahlüberwachungsmodell 89 eine ausreichend genaue Drehzahlinformation n modell zu gewinnen. Das Ausgangssignal des Komparators 73 gelangt als Längsspannungs-Fehlersignal 75 an den Umschalter 93. Bei niedrigen Werten des Schätzwertes n modell leitet der Umschalter 93 das Fehlersignal 75 der Längsspannungsüberwachung 79 an den Ausgang als resultierendes Fehlersignal 94 weiter. Andernfalls leitet der Umschalter 93 das von dem Vergleicher 91 generierte Modell-Fehlersignal 92 weiter. Der Vergleicher 91 ermittelt eine signifikante Abweichung des von dem Drehzahl-Lage-Gebers 12 abgegebenen Signals mit dem Ausgangssignal des Drehzahlüberwachungsmodells 89, der Schätzgröße n modell der Ist-Drehzahl. Der Umschalter 93 wird in Abhängigkeit von der Schätzgröße n_modell angesteuert.

Das Drehzahlüberwachungsmodell 89 läßt sich der Figur 7 entnehmen. Es bildet im wesentlichen die Regelstrecke des Antriebs 10 nach. Als Eingangsgrößen werden von dem Regler 78 gebildete Größen verwendet wie der Querstrom-Sollwert

10

5

15

20

30

IQ_SOLL, der Querspannungs-Sollwert UQ_SOLL, der Längsstrom-Istwert ID_IST und der Fluss-Istwert FLUSS_IST. Außerdem fließen Parameter des Antriebs 10 wie Ständerwiderstand 95, Rotorwiderstand 96 oder Ständerindukktivität 97 ein.

06.08.99 Lc/Ep

5

ROBERT BOSCH GMBH, 70442 Stuttgart

10 Ansprüche

- 1. Vorrichtung zur Überwachung eines Meßsystems eines elektrischen Antriebs,
- mit einer Signalverarbeitung (34, 73, 79, 89, 91, 93), die eine sich im Fehlerfall des Meßsystems (12) ändernde Größe mit einem Grenzwert (G, n_modell, n_sensor) vergleicht und in Abhängigkeit von dem Vergleich ein einen Fehler des Meßsystems (12) anzeigendes Fehlersignal (35, 75, 92, 94) erzeugt,

dadurch gekennzeichnet, daß der Signalverarbeitung (34, 73, 79, 89, 91, 93) als die sich im Fehlerfall des Meßsystems (12) ändernde Größe ein Maß für eine Änderung der Polradspannung (Up) des Antriebs (10) zugeführt ist.

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß ein Regler (78) vorgesehen ist, der eine Stellgröße (US1_SOLL, US2_SOLL) zur Ansteuerung des Antriebs (10) erzeugt, wobei der Signalverarbeitung (34, 73, 79, 89, 91, 93) als die sich im Fehlerfall des Meßsystems (12) ändernde Größe eine von dem Regler (78) erzeugte oder davon abhängende Reglergröße (IQ_SOLL, UQ_SOLL, ID_IST, FLUSS_IST) zugeführt ist.

35

3. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Reglergröße ein in einem Längsstromregler (54) und/oder Querstromregeler (48) gebildetes Signal (65) verwendet ist.

5

10

15

20

3.0

- 4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Reglergröße ein Integralanteil (64) verwendet ist.
- 5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Grenzwert (G) von zumindest
 einem Streckenparameter abhängt, der eine Regelabweichung in
 dem Regler (78) bewirkt.
 - 6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Meßsystemmodell (89) vorgesehen ist, das einen zu erwartenden Schätzwert (n_modell) des Meßsystems (12) erzeugt, wobei das Fehlersignal (94) in Abhängigkeit von dem zu erwartenden Schätzwert (n_modell) gebildet wird.
 - 7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Umschalter (93) das Fehlersignal (75) der Signalverarbeitung (79) in Abhängigkeit von dem zu erwartenden Schätzwert (n_modell) weiterleitet.
 - 8. Vorrichtung zur Überwachung eines Meßsystems eines elektrischen Antriebs,
 - mit einem Regler (78), dem zumindest ein Ausgangssignal zumindest eines eine charakteristische Größe des elektrischen Antriebs (10) erfassenden Meßsystems (12, 20) zugeführt ist, und der eine Stellgröße (US1_SOLL, US2_SOLL) zur Ansteuerung des Antriebs (10) erzeugt,

- mit einer Signalverarbeitung (34, 73, 79, 89, 91, 93), der zumindest eine von dem Regler (78) erzeugte Reglergröße (IQ_SOLL, UQ_SOLL, ID_IST, FLUSS_IST) zugeführt ist, wobei die Signalverarbeitung '34, 73, 79, 89, 91, 93) in Abhängigkeit von einem Vergleich der Reglergröße (IQ_SOLL, UQ_SOLL, ID_IST, FLUSS_IST) oder einer von der Reglergröße (IQ_SOLL, UQ_SOLL, UQ_SOLL, ID_IST, FLUSS_IST) abhängenden Größe mit einem Grenzwert (G, n_modell, n_sensor) ein einen Fehler des Meßsystems (12) anzeigendes Fehlersignal (35, 75, 92, 94) erzeugt,

5

10

15

20

30

35

dadurch gekennzeichnet, daß der Signalverarbeitung (34) zumindest ein aus dem Ausgangssignal des Meßsystems (12) abgeleitetes Signal (a_ist) zugeführt ist und die Signalverarbeitung (34) in Abhängigkeit von dem abgeleiteten Signal (a ist) das Fehlersignal (35) erzeugt.

- 9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß als abgeleitetes signal (a_ist) die Beschleunigung verwendet ist.
- 10. Vorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß die Signalverarbeitung (34) aktiviert wird in Abhängigkeit von der Reglergröße (IQ_SOLL).
- 11. Vorrichtung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß die Signalverarbeitung (34) aktiviert wird, wenn die internen Reglergröße (IQ_SOLL) einen bestimmten Wert (IQ_MAX) annimmt, vorzugsweise einen maximal zulässigen Sollwert.
- 12. Vorrichtung nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, daß die Signalverarbeitung (34) in Abhängigkeit von der internen Reglergröße (IQ_IST) das Fehlersignal (35) erzeugt.

13. Vorrichtung zur Überwachung eines Meßsystems eines elektrischen Antriebs, mit einer Signalverarbeitung (34, 73, 79, 89, 91, 93), die eine sich im Fehlerfall des Meßsystems (12) ändernde Größe mit einem Grenzwert (G, n_modell, n_sensor) vergleicht und in Abhängigkeit von dem Vergleich ein einen Fehler des Meßsystems (12) anzeigendes Fehlersignal (35, 75, 92, 94) erzeugt, dadurch gekennzeichnet, daß ein Meßsystemmodell (89) vorgesehen ist, das zumindest einen Schätzwert (n_modell) für ein im fehlerfreien Betrieb des Meßsystems (12) zu erwartendes Ausgangssignal des Meßsystems (12) erzeugt, wobei der Schätzwert (n_modell) der Signalverarbeitung (91) als eine sich im Fehlerfall ändernde Größe zugeführt ist.

14. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Fehlersignal (92, 94) in Abhängigkeit von dem zu erwartenden Schätzwert (n_modell) gebildet ist.

15. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Meßsystem ein Drehzahl-Lage-Geber (12) verwendet ist.

16. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in der Signalverarbeitung ein Vergleicher (91) vorgesehen ist, der ein Fehlersignal (92, 94) erzeugt abhängig von dem Ausgangssignal des Meßsystems (12) und dem zu erwartenden Schätzwert (n modell).

17. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Auswahlvorrichtung (93) vorgesehen ist, die in Abhängigkeit von einer Auswahlgröße eine Auswahl trifft zwischen einer ersten Fehlerüberwachung (79) und einer zweiten Fehlerüberwachung (89, 91).

10

5

15

20

30

18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, daß die Auswahlvorrichtung (93) in Abhängigkeit von dem zu erwartenden Schätzwert (n_modell) eine Auswahl trifft zwischen einer ersten Fehlerüberwachung (79) und einer zweiten Fehlerüberwachung (89, 91).

19. Vorrichtung nach einem der vorhergehenden Ansprüche 13 bis 18, dadurch gekennzeichnet, daß ein Regler (78) vorgesehen ist, der eine Stellgröße (US1_SOLL, US2_SOLL) zur Ansteuerung des Antriebs (10) erzeugt, wobei das Meßsystemmodell (89) den Schätzwert (n_modell) in Abhängigkeit von zumindest einer von dem Regler (78) erzeugten oder davon abhängenden Reglergröße (IQ_SOLL, UQ_SOLL, ID_IST, FLUSS_IST) bildet.

10

5

06.08.99 Lc/Ep

5

ROBERT BOSCH GMBH, 70442 Stuttgart

10

Vorrichtung zur Überwachung eines Meßsystems

Zusammenfassung

Vorrichtung zur Überwachung eines Meßsystems eines elektrischen Antriebs, mit einer Signalverarbeitung, der zumindest ein Ausgangssignal zumindest eines eine charakteristische Größe des elektrischen Antriebs 10 erfassenden Sensors 12, 20, zugeführt ist, die in Abhängigkeit von dem Ausgangssignal ein Überwachungssignal bildet, die das Überwachungssignal mit einem Grenzwert vergleicht, wobei die Signalerfassung bei Unter- oder Überschalten des Grenzwerts ein einen Fehler des Meßsystems 12 anzeigendes Fehlersignal er-

(Figur 1)

zeugt.

f.o. 7