I - Théorème de Thalès

a) Figures-clés:

Les droites (MN) et (BC) sont parallèles.

 $M \in (AB)$

(MN) // (BC)

Le triangle AMN est l'image du triangle ABC homothétie de centre A et de rapport k > 0.

Le triangle AMN est l'image du triangle ABC par une homothétie de centre A et de rapport k < 0.

b) Enoncé du Théorème de Thalès:

Soient ABC et AMN 2 triangles tels que $\{N \in (AC)\}$

on a alors :
$$\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$$

c) Exemples:

Exemple 1:

AM = 30; AB = 80; AC = 20. Les droites (MN) et (BC) sont parallèles. Calculer AN.

<u>Réponse</u>:

Les droites (MN) et (BC) étant parallèles, on peut appliquer le théorème de Thalès dans les triangles AMN et ABC:

$$\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$$

Soit
$$\frac{30}{80} = \frac{AN}{20} = \frac{MN}{BC}$$

Donc $AN \times 80 = 30 \times 20$

Soit AN =
$$\frac{30 \times 20}{80} = \frac{30}{4} = \frac{15}{2} = 7.5$$

Exemple 2:

Calculer IV et JK.

Réponse :

Les droites (UV) et (JK) étant parallèles, on peut appliquer le théorème de Thalès dans les triangles IUV et IJK :

$$\frac{IJ}{IV} = \frac{IK}{IU} = \frac{JK}{UV}$$

Soit :
$$\frac{30}{IV} = \frac{20}{10} = \frac{JK}{10}$$

Donc IV =
$$\frac{10}{20}$$
×30 = 15

Et JK =
$$\frac{20}{10}$$
×10 = 20

Exemple 3. (donné au brevet):

(Allemagne 96)

Le dessin ci-dessous n'est pas en vraie grandeur.

Les droites (NM) et (FG) sont parallèles.

On donne les longueurs suivantes :

EM = 2.5; MN = 4; NG = 7; FG = 12.

Calculer les longueurs MF et EN.

Réponse :

Les droites (MN) et (FG) étant parallèles, on peut appliquer le théorème de Thalès dans les triangles EMN et EFG:

$$\frac{EM}{EF} = \frac{EN}{EG} = \frac{MN}{FG}$$

Donc EF =
$$\frac{FG}{MN}$$
×EM = $\frac{12}{4}$ ×2,5 = 7,5 et MF = EF - EM = 7,5-2,5 = 5

et
$$\frac{EN}{EN + 7} = \frac{4}{12} = \frac{1}{3}$$

3ème

Cours : théorème de Thalès

II - Réciproque du Théorème de Thalès :

a) Théorème :

Si ABC et AMN sont deux triangles tels que : $\begin{cases} A, M, B \text{ et } A, N, C \text{ sont alignés dans cet ordre} \\ \frac{AM}{AB} = \frac{AN}{AC} \\ \text{alors, les droites (MN) et (BC) sont parallèles.} \end{cases}$

b) Exemples

Exemple 1

D'une part
$$\frac{CA}{CE} = \frac{11}{33} = \frac{1}{3}$$
 et d'autre part $\frac{CB}{CF} = \frac{15}{45} = \frac{1}{3}$

Donc
$$\frac{CA}{CE} = \frac{CB}{CF}$$

CAB et CEF sont deux triangles tels que C, A, E et C, B, F sont alignés dans cet ordre et $\frac{CA}{CE}$ = $\frac{CB}{CF}$, donc selon la réciproque du théorème de Thalès les droites (AB) et (EF) sont parallèles.

3^{ème}

Cours : théorème de Thalès

Exemple 2

Démontre que les droites (MN) et (ST) sont parallèles.

On donne OM = 2.8 cm; ON = 5.4 cm; OS = 2.7 cm et OT = 1.4 cm.

D'une part :
$$\frac{OT}{OM} = \frac{1.4}{2.8} = \frac{1}{2}$$
 et $\frac{OS}{ON} = \frac{2.7}{5.4} = \frac{1}{2}$

OST et ONM sont deux triangles tels que S, O, N et T, O, M sont alignés dans cet ordre et $\frac{OT}{OM} = \frac{OS}{ON}$, donc selon la réciproque du théorème de Thalès les droites (MN) et (ST) sont parallèles.

c) Conséquence du théorème de Thalès : montrer que deux droites ne sont pas parallèles

Si ABC et AMN sont deux triangles tels que :

A, M, B et A, N, C sont alignés dans cet ordre

 $\frac{AM}{AB} \neq \frac{AN}{AC}$

alors, les droites (MN) et (BC) ne sont pas parallèles.

Exemple:

On donne AB = 2,5 cm; BC = 3,3 cm; AC = 2,4; CD = 6 cm et CE = 9 cm.

Les droites (ED) et (AB) sont-elles parallèles?

Tuatific la ménance

Justifie la réponse.

3ème

Cours : théorème de Thalès

D'une part :
$$\frac{CA}{CD} = \frac{2.4}{6} = \frac{24}{60} = \frac{12 \times 2}{12 \times 5} = \frac{2}{5}$$

D'autre part :
$$\frac{CB}{CE} = \frac{3.3}{9} = \frac{33}{90} = \frac{11 \times 3}{30 \times 3} = \frac{11}{30}$$

Or
$$\frac{2}{5} = \frac{12}{30} \neq \frac{11}{30}$$
 donc $\frac{CA}{CD} \neq \frac{CB}{CE}$

CAB et CDE sont deux triangles tels que A, C, D et B, C, E sont alignés dans cet ordre et $\frac{CA}{CD}$

 $\neq \frac{CB}{CE}$, donc selon la conséquence du théorème de Thalès les droites (ED) et (AB) ne sont pas parallèles.

Remarque : la conséquence du théorème de Thalès se nomme aussi la contraposée du théorème de Thalès.