CS 170

1. Study Group

None

2. Counting Targets

(a) Define f(s,i) := the number of distinct length-i valid sequences with sum equal to s. Then the answer is f(T, n).

Base cases: $f(s,i) = 0, s \le 0, i > 0$, and $f(s,1) = 1, 1 \le s \le m$. Recurrence: $f(s,i) = \sum_{j=1}^{j=m} f(s-j,i-1)$.

Runtime: $O(T*n*m) = O(m^2n^2)$.

(b) Define $g(s,i) := \sum_{t=1}^{s} f(t,i)$. Then the answer is g(T,n) - g(T-1,n).

Base cases: $g(s, i) = 0, s \le 0, i > 0$, and $g(s, 1) = s, 1 \le s \le m$.

Recurrence: g(s,i) = g(s-1,i) + g(s-1,i-1) - g(s-m-1,i-1).

Runtime: $(T*n) = O(mn^2)$.

3. Knightmare

Algorithm Description:

We use M-bit string to represent the configuration of rows of chessboard (1 means there is knight and 0 otherwise).

We solve the subproblem of the number of the valid configurations of (n-1)*M chessboard and use it to solve the n * M case. Define f(n, u, v) as the number of valid configurations of the first n rows with u being the (n-1)-th row and v being the n-th row.

4. Geometric Knapsack

Refer to the solution.

5. GCD annihilation

Refer to the solution.