Project Proposal

Group2

Caroline Bordin, Erjola Lluka, Jihye Yoon, Sughra Shadab, Supreet Ahuja

Project overview

The project aims to develop machine learning models do

- **Price Prediction:** predict property prices based on features such as location, size, amenities, and market trends. (Supreet Ahuja, Erjola Lluka)
- **Recommendation Systems:** suggest properties to potential buyers or renters based on their preferences, search history. (Jihye Yoon)
- Market Analysis: identify trends, hotspots, and investment opportunities.(Caroline Bordin)
- Visualization and data analysis on Tableau (Sughra Shadab)

Based on key features such as location, number of bedrooms and bathrooms. Leveraging a dataset sourced from Kaggle, we intend to create robust predictive models that **can assist home buyers**, sellers and real estate professionals in making informed decisions

Project plan

Day1, Day 2 (Nov 13, 15)		Day 3(Nov 16)		Day 5 (Nov 22)		Final Day (Nov 22)	
Clean data	Supreet	Work on model	Everyone	Showing visualizatio n to team	Everyone		
				Sending readme to Caroline	Everyone		
proposal	Jihye	Day 4, (Nov 20)		Final editing README	Caroline	Organizing Github repository	Jihye
Save data to sql	Jihye	Showing progress To a team	Jihye, Caroline, Supreet, Erjola	Ppt file	Jihye, Caroline, Supreet, Erjola	final discussion for presentation	Everyone
Select machine learning model	Everyone	Push a model to github	Jihye, Caroline, Supreet, Erjola	Make a script	Everyone	Rehearsal	Everyone
		Work on Tableau	Sughra	Work on Tableau	Sughra	presentation	Everyone

1. Data Collection and Understanding:

- Load and inspect the data from the given CSV file.(Supreet)
- Check for missing values or outliers and handle them. (Supreet)
- Understand the meaning of each column, such as address, price, longitude, latitude, number of rooms, and number of bathrooms.(Everyone)
 - Save the date to SQL (Jihye)

2. Data Preprocessing:(Everyone)

- Decide how to use address information. For example, you may use only the city name or extract geographical features.
 - Convert categorical data to numerical data
 - Scale continuous data like price.

3. Data Visualization and Exploratory Data Analysis (EDA):(Everyone)

- Perform statistical and visual analysis of the data to identify patterns or interesting relationships.
- Examine the distribution of prices, correlations between features, etc.

4. Select Machine Learning Model:(Everyone)

- Depending on the nature of the problem, consider treating it as a regression problem since you want to predict property prices.
 - Consider algorithms such as linear regression, decision trees, random forests, or gradient boosting.

5. Data Splitting:(Everyone)

- Split the entire dataset into training and testing sets to evaluate the model's generalization performance.

6. Model Training:(Everyone)

- Train the selected machine learning model using the training dataset.

7. Model Evaluation: (Everyone)

- Evaluate the model's performance using the test dataset. Metrics like Mean Squared Error (MSE) or R-squared can be used.

8. Model Tuning:(Everyone)

- Adjust hyperparameters of the model or try different models to improve performance.

9. Results Interpretation:(Everyone)

- Interpret the model's prediction results and understand the impact of each feature on property prices.
- Readme file.(Caroline)

10. Presentation preparation(Everyone)

- Decide how we are going to present the model and make a presentation file.
- Work on own script
- Rehearsal for a presentation

Technologies and libraries we plan to use

- Python Pandas
- Python Matplotlib
- HTML/CSS/
- SQL Database
- Tableau
- Scikit-learn