Sabbir Ahmed

DATE: March 10, 2018

MATH 407: HW 06

2.3 1 Consider the following permutations in S_7

Compute the following products:

b $\tau\sigma$

Ans

f $au^{-1}\sigma au$

Ans \square

3 Write \(\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 4 & 10 & 5 & 7 & 8 & 2 & 6 & 9 & 1 \end{pmatrix} \) as a product of disjoint cycles and as a product of transpositions. Construct its associated diagram, find its inverse, and find its order.

Ans \square

5 Let $3 \le m \le n$. Calculate $\sigma \tau^{-1}$ for the cycles $\sigma = (1, 2, \dots, m-1)$ and $\tau = (1, 2, \dots, m-1, m)$ in S_n .

Ans \square

11 Prove that in S_n , with $n \geq 3$, any even permutation is a product of cycles of length three.

Hint: (a,b)(b,c) = (a,b,c) and (a,b)(c,d) = (a,b,c)(b,c,d).

Ans \Box

15 For $\alpha, \beta \in S_n$, let $\alpha \sim \beta$ if there exists $\sigma \in S_n$ such that $\sigma \alpha \sigma^{-1} = \beta$. Show that \sim is an equivalence relation on S_n .

Ans \Box

16 View S_3 as a subset of S_5 , in the obvious way. For $\sigma, \tau \in S_5$, define $\sigma \sim \tau$ if σ	$\tau^{-1} \in S_3$.
a Show that \sim is an equivalence relation on $S_5.$	
Ans	
b Find the equivalence class of (4, 5). Ans	
c Find the equivalence class of (1, 2, 3, 4, 5). Ans	
d Determine the total number of equivalence classes. Ans	