

FUNDAMENTAL PROGRAMMING TECHNIQUES

ASSIGNMENT 1

POLYNOMIAL CALCULATOR

1. Requirements

Design and implement a polynomial calculator with a dedicated graphical interface through which the user can insert polynomials, select the mathematical operation (i.e. addition, subtraction, multiplication, division, derivative, integration) to be performed and view the result.

Note: Consider the polynomials of one variable and integer coefficients.

2. Deliverables

- <u>Solution description document</u> (minimum 2000 words, Times New Roman, 10pt, Single Spacing) organized according to the structure specified in the <u>Laboratory Description</u> document.
- <u>Source files</u> will be uploaded on the personal <u>gitlab</u> account created according to the instructions in the **Lab Resources** document, and following the steps:
 - Create a repository on <u>gitlab</u> named according to the following template
 PT2021_Group_FirstName_LastName_Assignment_1 the repository should be
 placed in the group named according to the template below:
 PT2021_Group_FirstName_LastName
 - Push the source code and the documentation (push the code not an archive with the code)
- Make sure that you give access to your group, to the PT lab assistants. On your Group page, go to: Members → Invite Member → and offer Maintainer rights for the user: utcn.dsrl@gmail.com.

3. Evaluation

The assignment will be graded as follows:

Requirement	Grading
Minimum to pass Use an object-oriented programming design (use encapsulation, define appropriate classes as a result of problem decomposition such as <i>Polynomial</i> and	5 points
 Monomial) Use lists instead of arrays Use foreach instead of for(int i=0) Implement a graphical user interface using Java Swing or JavaFX Implement the addition and subtraction operation Implement classes with maximum 300 lines (except the UI classes) and methods with maximum 30 lines Use the Java naming conventions Good quality documentation addressing all sections from the documentation structure and having at least 2000 words. 	
Use an architectural pattern (e.g. Model View Controller)	1 point
Implement the multiplication operation	0.5 points
Implement the division operation	1 point
Implement the derivative operation	0.5 points
Implement the integration operation	0.5 points
Use regular expressions and pattern matching for extracting the polynomial coefficients	0.5 points
Use Junit for testing	1

4. Bibliography

- Swing:
 - o https://docs.oracle.com/javase/tutorial/uiswing/
- JavaFX
 - o https://docs.oracle.com/javafx/2/get_started/jfxpub-get_started.htm
 - o https://www.baeldung.com/javafx
- Java Regular Expressions
 - o https://docs.oracle.com/javase/tutorial/essential/regex/
 - o https://www.baeldung.com/regular-expressions-java
- Junit:
 - o https://www.vogella.com/tutorials/JUnit/article.html
 - o https://www.baeldung.com/junit-5
- Java naming conventions
 - o https://google.github.io/styleguide/javaguide.html