

Gate problems in DSP

1

Abstract—These problems have been selected from GATE question papers and can be used for conducting tutorials in courses related to the course Digital Signal Processing in practice.

- 1) If the impulse response of a discrete-time system is $h[n] = -5^n u[-n-1]$, then the system function H(z) is equal to
 - (A) $\frac{-z}{z-5}$ and the system is stable
 - (B) $\frac{z}{z-5}$ and the system is stable
 - (C) $\frac{-z}{z-5}$ and the system is unstable
 - (D) $\frac{z}{z-5}$ and the system is unstable
- 2) A sequence x(n) with the z-transform X(z) = $z^4+z^2-2z+2-3z^{-4}$ is applied as an input to a linear,time-invariant system with the impulse response $h(n) = 2\delta(n-3)$ where

$$\delta(n) = \begin{cases} 1, & \text{if } n=0 \\ 0, & \text{otherwise} \end{cases}.$$

The output at n=4 is

- (A) -6**(B)** 0
- (C) 2
- (D) -4

Data for **Q.3-4** are given below. Solve the problems and choose the correct answers. The system under consideration is an RC lowpass filter (RC-LPF) with R=1.0K Ω and C=1.0 μ F

- 3) Let H(f) denote the frequency response of the RC-LPF. Let f_1 be the highest frequency such that $0 \le |f| \le f_1, \frac{|H(f_1)|}{H(0)} \ge 0.95$. Then f_1 (in HZ) is
 - (A) 327.8 (B) 163.9 (C) 52.2 (D) 104.4
- 4) The impulse response h[n]of a linear time-invariant system is given by

h[n] = u[n+3] + u[n-2] - 2u[n-7]where u[n] is the unit step sequence. The above system is

- (A) Stable but not causal
- (B) Stable and Causal
- (C) Causal but unstable
- (D) Unstable and not Causal
- 5) The z-transform of a system is $H(z) = \frac{z}{z-0.2}$. If the ROC IS |z| < 0.2, then the impulse response of the system is

 - (A) $(0.2)^n u[n]$ (C) $-(0.2)^n u[n]$
 - (B) $(0.2)^n u[-n-1]$ (D) $-(0.2)^n u[-n-1]$
- 6) consider the sequence $x[n] = [4-j5 \ 1+j2 \ 4]$ The conjugate anti-symmetric part of the sequence is
 - (A) $[-4 j2.5 \quad j2 \quad 4 j2.5]$
 - (B) $[-j2.5 \ 1 \ j2.5]$
 - (C) $[-j5 \quad j2 \quad 0]$
 - (D) $[-4 \ 1 \ 4]$
- 7) A causal LTI system is described by the difference equation 2y[n] = ay[n-2] - 2x[n] +bx[n-1]

the system is stable only if

- (A) |a| = 2, |b| < 2
- (B) |a| > 2, |b| > 2
- (C) |a| < 2, any value of b

- (D) |b| < 2, any value of a
- 8) The impulse response h[n] of a linear time invariant system is given as

$$h[n] = \begin{cases} -2\sqrt{2}, & \text{if n=1,-1} \\ 4\sqrt{2}, & \text{n=2,-2} \\ 0, & \text{otherwise}. \end{cases}$$

If the input to the above system is the sequence $e^{\frac{jpn}{4}}$, then the ouput is

- (A) $4\sqrt{2}e^{\frac{jpn}{4}}$
- (B) $4\sqrt{2}e^{\frac{-jpn}{4}}$ (D) $-4e^{\frac{jpn}{4}}$
- 9) The region of convergence of Z-transform of the sequence $(\frac{5}{6})^n u(n) - (\frac{6}{5})^n u(-n-1)$ must be

 - (A) $|z| < \frac{5}{6}$ (C) $\frac{5}{6} < |z| < \frac{5}{6}$

 - (B) $|z| > \frac{6}{5}$ (D) $\frac{6}{5} < |z| < \infty$
- 10) A signal $x(n) = sin(\omega_0 n + \phi)$ is the input to a LTI system frequency response $H(e^{j\omega})$. If the ouput of the system is $Ax(n-n_0)$, then the most general form of $\angle H(e^{j\omega})$ will be
 - (A) $-n_0\omega_0 + \beta$ for any arbitary real β
 - (B) $-n_0\omega_0 + 2\pi k$ for any arbitary integer k.
 - (C) $n_0\omega_0 + 2\pi k$ for any arbitary integer k.
 - (D) $-n_0\omega_0 + \phi$
- 11) A system with input x[n] and the ouput y[n] is given as $y[n] = (\sin \frac{5}{6}\pi n)x[n]$. The system is
 - (A) Linear, stable and invertible
 - (B) non-linear, stable and non-invertible
 - (C) linear, stable and non-invertible
 - (D) linear, unstable and invertible
- 12) A 5-point sequence x[n] is given as x[-3] = 1, x[-2] = 1, x[-1] = 0, x[0] =

5, x[1] = 1. Let $X(e^{j\omega})$ denote the discrete -time Fourier transform of x[n]. The value of $\int_{-\pi}^{\pi} X(e^{j\omega}) d\omega$ is:

- (A) 5

- (B) 10π (C) 16π (D) $5+j10\pi$
- 13) The z-transform X[z] of a sequence x[n] is given by $X[z] = \frac{0.5}{1-2z^{-1}}$. It is given that the region of convergence of X[z] includes the unit circle. The value of x[0] is:
 - (A) -0.5 (B) 0
- (C) 0.25 (D) 0.5
- discrete linear 14) A time shift-invariant system has an impulse response h[n] with h[0] = 1, h[1] = -1, h[2] = -2 and zero otherwise. The system is given an input sequence x[n] with x[0] = x[2] = 1, and zero otherwise. The number of nonzero samples in the output sequence y[n], and the value of y[2]are, respectively
 - (A) 5,2
- (C) 6,1
- (B) 6,2
- (D) 5,3
- 15) $\{x(n)\}$ is real-valued periodic sequence with a period N. x(n) and X(k) form N-point.Discrete Fourier Transform (DFT) pairs. The DFT Y(k) of the sequence $y(n) = \frac{1}{N} \sum_{r=0}^{N-1} x(r) x(n+r)$
 - (A) $|X(k)|^2$
 - (B) $\frac{1}{N} \sum_{r=0}^{N-1} X(r) * X(k+r)$
 - (C) $\frac{1}{N} \sum_{r=0}^{N-1} X(r) X(k+r)$
 - **(D)** 0

DATA FOR Q.16 AND 17 In the following network, the switch is closed at $t=0^-$ and the sampling starts from t=0. The sampling frequency is 10Hz.

- 16) The samples x(n) at n=0,1,2,... given by (A) $5(1 - e^{-0.05n})$
 - (B) $5e^{-0.05n}$
 - (C) $5(1-e^{-5n})$
 - (D) $5e^{-5n}$
- 17) The expression and the region of convergence of the z-transform of the sampled signal are (A) $\frac{5z}{z-e^{-5}}$, $|z| < e^{-5}$
 - (B) $\frac{5z}{z-e^{-0.05}}$, $|z| < e^{-0.05}$
 - (C) $\frac{5z}{z-e^{-5}}$, $|z| > e^{-0.05}$
 - (D) $\frac{5z}{z-e^{-5}}$, $|z| > e^{-5}$
- 18) The ROC of Z-transform of the discrete time sequence $x(n) = (\frac{1}{3})^n u(n) - (\frac{1}{2})^n u(-n-1)$ is
 - (A) $\frac{1}{3} < |z| < \frac{1}{2}$ (C) $|z| < \frac{1}{3}$

 - (B) $|z| > \frac{1}{2}$ (D) 2 < |z| < 3
- 19) A system with transfer function H(z) has impulse response h(x) defined as h(2)=1,h(3)=-1and h(k)=0 otherwise. Consider the following statements.

S1: H(z) is a low pass filter

S2: H(z) is a FIR filter

which of the following is correct?

- (A) Only S2 is true
- (B) Both S1 and S2 are false.

- (C) Both S1 and S2 are true, and S2 is a reason for S1
- (D) Both S1 and S2 are true, but S2 is not a reason for S1
- 20) Consider the z-transform $X(z) = 5z^2 + 4z^{-1} +$ $3; 0 < |z| < \infty$. The inverse z-transform x[n]
 - (A) $5\delta[n+2] + 3\delta[n] + 4\delta[n-1]$
 - (B) $5\delta[n-2] + 3\delta[n] + 4\delta[n+1]$
 - (C) 5u[n+2] + 3u[n] + 4u[n-1]
 - (D) 5u[n-2] + 3u[n] + 4u[n+1]
- 21) Two discrete time systems with impulse responses $h_1[n] = \delta[n-1]$ and $h_2[n] = \delta[n-2]$ are cascade. The overall impulse response of the cascaded system is
 - (A) $\delta[n-1] + \delta[n-2]$ (C) $\delta[n-3]$

 - (B) $\delta[n-4]$ (D) $\delta[n-1]\delta[n-2]$
- 22) The transfer function of a discrete time LTI system is given by $H(z) = \frac{2 - \frac{3}{4}z^{-1}}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}}$ Consider the following statements:

S1: The system is stable and causal for $ROC: |z| > \frac{1}{2}$

S2: The system is stable but not causal for $ROC: |z| < \frac{1}{4}$

S3: The system is neither stable nor causal for $ROC: \frac{1}{4} < |z| < \frac{1}{2}$

Which one of the following statements is valid?

- (A) Both S1 and S2 are true.
- (B) Both S2 and S3 are true.
- (C) Both S1 and S3 are true.
- (D) S1,S2 and S3 are all true.
- 23) A system is defined by its impulse response $h(n) = 2^n u(n-2)$. The system is
 - (A) stable and causal

- (B) causal but not stable
- (C) stable but not causal
- (D) unstable and non-causal
- 24) Two systems $H_1(z)$ and $H_2(z)$ are connected in cascade as shown below. The overall output y(n) is the same as the input x(n) with a one unit delay. The transfer function of the second system $H_2(z)$ is

$$X(n) \longrightarrow H_1(z) = \frac{1 - 0.4z^{-1}}{1 - 0.6z^{-1}} \longrightarrow H_2(z) \longrightarrow y(n)$$

- (A) $\frac{(1-0.6z^{-1})}{z^{-1}(1-0.4z^{-1})}$ (C) $\frac{z^{-1}(1-0.4z^{-1})}{(1-0.6z^{-1})}$
- (B) $\frac{z^{-1}(1-0.6z^{-1})}{(1-0.4z^{-1})}$ (D) $\frac{(1-0.4z^{-1})}{z^{-1}(1-0.6z^{-1})}$
- 25) The first 6 points of the 8-point DFT of a real valued sequence are 5,1-j3,0,3-j4,0 and 3+j4. The last two points of the DFT are respectively
 - (A) 0,1-i3
- (C) 1+i3.5
- (B) 0.1+i3
- (D) 1-i3.5
- 26) Let x[n]=x[-n]. Let X(z) be the z-transform of x[n]. If 0.5+j0.25 is a zero of X(z) then one of the following must be a zero of X(z).
 - (A) 0.5 j0.25
- (C) $\frac{1}{0.5-i0.25}$
 - (B) $\frac{1}{0.5+i0.25}$
 - (D) 2 + j4
- 27) The input-output relationship of a causal stable LTI system is given as $y[n] = \alpha y[n-1] + \beta x[n]$ If the impulse response h[n] of this system satisfies the condition $\sum_{n=0}^{\infty} h[n] = 2$, the relationship between α and β is
 - (A) $\alpha = 1 \frac{\beta}{2}$ (C) $\alpha = 2\beta$
 - (B) $\alpha = 1 + \frac{\beta}{2}$ (D) $\alpha = -2\beta$
- discrete-time system is shown in figure. The

zero at the origin has multiplicity 4. The impulse response of the system is h[n]. If h[0] = 1, we can conclude

- (A) h[n] is real for all n
- (B) h[n] is purely imaginary for all n
- (C) h[n] is real for only even n
- (D) h[n] is purely imaginary for only odd n
- 29) Consider the signal $x[n] = 6\delta[n+2] +$ $3\delta[n+1] + 8\delta[n] + 7\delta[n-1] + 4\delta[n-2].$ If $X(e^{j\omega})$ is the discrete-time Fourier transform of x[n]. Then $\frac{1}{\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) sin^2(2\omega) d\omega$ is equal to
- 30) For the discrete-time shown in the figure, the poles of the system function transfer are located at X[n] -Y[n]
 - (A) 2,3
- (C) $\frac{1}{2}, \frac{1}{3}$
- (B) $\frac{1}{2}$, 3
- (D) $2, \frac{1}{3}$
- 28) The pole-zero diagram of causal and stable 31) The DFT of vector $\begin{bmatrix} a & b & c & d \end{bmatrix}$ is the vector $[\alpha \ \beta \ \gamma \ \delta]$. Consider the product

$$[p \ q \ r \ s] = [a \ b \ c \ d] \begin{bmatrix} a \ b \ c \ d \\ d \ a \ b \ c \\ c \ d \ a \ b \\ b \ c \ d \ a \end{bmatrix}$$

The DFT of the vector $[p \ \overline{q} \ r \ s]$ is a scaled version of

(A)
$$\left[\alpha^2 \quad \beta^2 \quad \gamma^2 \quad \delta^2\right]$$

(B)
$$\left[\sqrt{\alpha} \quad \sqrt{\beta} \quad \sqrt{\gamma} \quad \sqrt{\delta}\right]$$

(C)
$$[\alpha + \beta \quad \beta + \delta \quad \gamma + \delta \quad \gamma + \alpha]$$

(D)
$$[\alpha \ \beta \ \gamma \ \delta]$$

32) Two sequences $[a \ b \ c]$ and $[A \ B \ C]$ are related as

$$\begin{bmatrix} A \\ B \\ C \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & W_3^{-1} & W_3^{-2} \\ 1 & W_3^{-2} & W_3^{-4} \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
 Where
$$W_3 = e^{j\frac{2\pi}{3}}$$

If another sequence $[p \ q \ r]$ is derived as

$$\begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & W_3^1 & W_3^2 \\ 1 & W_3^2 & W_3^4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & W_3^2 & 0 \\ 0 & W_3^4 & 0 \end{bmatrix} \begin{bmatrix} \frac{A}{3} \\ \frac{B}{3} \\ \frac{C}{2} \end{bmatrix}$$

Then the relationship between the sequences $[p \ q \ r]$ and $[a \ b \ c]$

a)
$$[p \ q \ r] = [b \ a \ c]$$

b)
$$[p \ q \ r] = [b \ c \ a]$$

c)
$$[p \ q \ r] = [c \ a \ b]$$

$$d) [p q r] = [c b a]$$

- 33) Let h[n] be the impulse response of a discrete-time linear time invariant (LTI) filter. The impulse response is given by $h[0] = \frac{1}{3}$; $h[1] = \frac{1}{3}$; $h[2] = \frac{1}{3}$ and h[n] = 0 for n < 0 and n > 0. Let $H(\omega)$ be the discrete-time Fourier transform (DTFT) of h[n],where ω is the normalized angular frequency in radians. Given that $H(\omega_0) = 0$ and $0 < \omega < \pi$, the value of w_0 (in radians) is equal to ______
- 34) A discrete-time signal $x[n] = \delta[n-3] + 2\delta[n-5]$ has z—transform X(z). If Y(z) = X(-z) is the z— transform of another signal y[n], then

(A)
$$y[n] = x[n]$$
 (C) $y[n] = -x[n]$

(B)
$$y[n] = x[-n]$$
 (D) $y[n] = -x[-n]$

35) The 4-point Discrete Fourier Transform (DFT) of a discrete time sequence 1,0,2,3 is

(A)
$$[0, -2 + 2j, 2, -2 - 2j]$$

(B)
$$[2, 2+2i, 6, -2-2i]$$

(C)
$$[6, 1-3j, 2, 1+3j]$$

(D)
$$[6, -1 + 3i, 0, -1 - 3i]$$