# Design Projects

# MILP Neural Network for Machine Learning

#### **Multi-Layer Perceptron Neural Network**

- Multi-Layer Perceptron Neural Network
  - A. Design Structure of SLP Neural Network
  - B. Sigmoid Neuron



FIGURE 12.18
Design Structure of SLP Neural Network

$$hn_{i} = \frac{1}{1 + exp(-\sum_{j=1}^{784} wh_{ij} \times x_{j} - bh_{i})}$$

$$on_i = \frac{1}{1 + exp(-\sum_{j=1}^{12} wo_{ij} \times x_j - bo_i)}$$

TABLE 8.2

IEEE 754 Format for FP Numbers

| IEEE 154 Format for FF Numbers |          |          |          |          |          |          |
|--------------------------------|----------|----------|----------|----------|----------|----------|
| $\mathbf{FP}$                  | 1.0      | 2.0      | 3.0      | 4.0      | 5.0      | 6.0      |
| $\mathbf{H}\mathbf{W}$         | 3f800000 | 40000000 | 40400000 | 40800000 | 40a00000 | 40c00000 |
| FP                             | 7.0      | 8.0      | 9.0      | 10.0     | 11.0     | 12.0     |
| $\mathbf{H}\mathbf{W}$         | 40e00000 | 41000000 | 41100000 | 41200000 | 41300000 | 41400000 |
| FP                             | -1.0     | -2.0     | -3.0     | -4.0     | -5.0     | -6.0     |
| $\mathbf{H}\mathbf{W}$         | bf800000 | c0000000 | c0400000 | c0800000 | c0a00000 | c0c00000 |
| FP                             | -7.0     | -8.0     | -9.0     | -10.0    | -11.0    | -12.0    |
| HW                             | c0e00000 | c1000000 | c1100000 | c1200000 | c1300000 | c1400000 |

## **Sigmoid Neuron Design**

### Streaming Design on Sigmoid Neurons



$$hn_{i} = \frac{1}{1 + exp(-\sum_{j=1}^{784} wh_{ij} \times x_{j} - bh_{i})}$$

#### FIGURE 12.19 Streaming Design Structure of Hidden-Layer Neuron

$$on_i = \frac{1}{1 + exp(-\sum_{j=1}^{12} wo_{ij} \times x_j - bo_i)}$$



#### **FIGURE 12.20**

Streaming Design Structure of Output-Layer Neuron

- Project #1: Design FP Multiplier-Subtractor (MS)
  - Include the FPU\_ls\_lib.v into your project
  - Design the fp\_ms using the FP multiplier and FP subtractor as design intellectual properties (IPs)
  - Build the simulation environment with test cases below:
    - On input to the FP multiplier is -1.0
    - Feeding in pipelined/consecutive FP 12.0 and -10.0 (dot product) to the multiplier
    - Feeding in pipelined/consecutive FP -2.0 and 2.0 (bias bh\_i) to the subtractor



**FIGURE 12.19** 

| TABLE | 8. | <b>2</b> |
|-------|----|----------|
|-------|----|----------|

| IEEE 754 Format for FP Numbers |          |          |          |          |          |          |
|--------------------------------|----------|----------|----------|----------|----------|----------|
| FP                             | 1.0      | 2.0      | 3.0      | 4.0      | 5.0      | 6.0      |
| HW                             | 3f800000 | 40000000 | 40400000 | 40800000 | 40a00000 | 40c00000 |
| FP                             | 7.0      | 8.0      | 9.0      | 10.0     | 11.0     | 12.0     |
| HW                             | 40e00000 | 41000000 | 41100000 | 41200000 | 41300000 | 41400000 |
| FP                             | -1.0     | -2.0     | -3.0     | -4.0     | -5.0     | -6.0     |
| HW                             | bf800000 | c0000000 | c0400000 | c0800000 | c0a00000 | c0c00000 |
| FP                             | -7.0     | -8.0     | -9.0     | -10.0    | -11.0    | -12.0    |
| HW                             | c0e00000 | c1000000 | c1100000 | c1200000 | c1300000 | c1400000 |

- Project #2: Design FP sequence of Multiplier-Subtractor-Subtractor-Reciprocal (MSSR)
  - Design the fp\_mssr by adding the FP subtractor and FP reciprocal to the Project 1.
  - Build the simulation environment with test cases below:
    - Testing io\_a-1.0 for the second FP subtractor
    - Testing 1.0/io\_a for the FP reciprocal
    - Feeding in pipelined/consecutive FP 12.0 and -10.0 (dot product) to the multiplier

Feeding in pipelined/consecutive FP -2.0 and 2.0 (bias bh\_i) to

the subtractor

**TABLE 8.2** 

| IEEE 754 Format for FP Numbers |          |          |          |          |          |          |
|--------------------------------|----------|----------|----------|----------|----------|----------|
| FP                             | 1.0      | 2.0      | 3.0      | 4.0      | 5.0      | 6.0      |
| HW                             | 3f800000 | 40000000 | 40400000 | 40800000 | 40a00000 | 40c00000 |
| FP                             | 7.0      | 8.0      | 9.0      | 10.0     | 11.0     | 12.0     |
| $\mathbf{H}\mathbf{W}$         | 40e00000 | 41000000 | 41100000 | 41200000 | 41300000 | 41400000 |
| FP                             | -1.0     | -2.0     | -3.0     | -4.0     | -5.0     | -6.0     |
| HW                             | bf800000 | c0000000 | c0400000 | c0800000 | c0a00000 | c0c00000 |
| FP                             | -7.0     | -8.0     | -9.0     | -10.0    | -11.0    | -12.0    |
| $\mathbf{H}\mathbf{W}$         | c0e00000 | c1000000 | c1100000 | c1200000 | c1300000 | c1400000 |



**FIGURE 12.19** 

Streaming Design Structure of Hidden-Layer Neuron

- Project 3: Design FP Dot Product
  - Include the FPU\_ls\_lib.v into your project
  - Design the fp\_dot using the FP multiplier and FP subtractor as design intellectual properties (IPs)
    - The streaming width is four, meaning the input vector size is 4

$$z = [w0, w1, w2, w3] * \begin{bmatrix} x0\\ x1\\ x2\\ x3 \end{bmatrix}$$



$$hn_{i} = \frac{1}{1 + exp(-\sum_{j=1}^{784} wh_{ij} \times x_{j} - bh_{i})}$$

FIGURE 12.19
Streaming Design Structure of Hidden-Layer Neuron

- Project 3: Design FP Dot Product
  - Build the simulation environment with test cases below

• 
$$[w0, w1, w2, w3] * \begin{bmatrix} x0 \\ x1 \\ x2 \\ x3 \end{bmatrix} = [1.0, 2.0, 3.0, 1.0] * \begin{bmatrix} 1.0 \\ 2.0 \\ 2.0 \\ 1.0 \end{bmatrix}$$

• 
$$[w0, w1, w2, w3] * \begin{bmatrix} x0 \\ x1 \\ x2 \\ x3 \end{bmatrix} = [1.0, 2.0, 3.0, 1.0] * \begin{bmatrix} -1.0 \\ -2.0 \\ -1.0 \\ -2.0 \end{bmatrix}$$



$$hn_{i} = \frac{1}{1 + exp(-\sum_{j=1}^{784} wh_{ij} \times x_{j} - bh_{i})}$$

- Project 4: Design a sigmoid neuron using the FPUs provided.
  - Integrate project 2 and 3 as the sigmoid neuron
  - Build the simulation environment with two test cases below

• 
$$[w0, w1, w2, w3] * \begin{bmatrix} x0 \\ x1 \\ x2 \\ x3 \end{bmatrix} = [1.0, 2.0, 3.0, 1.0] * \begin{bmatrix} 1.0 \\ 2.0 \\ 2.0 \\ 1.0 \end{bmatrix}$$

• 
$$[w0, w1, w2, w3] * \begin{bmatrix} x0 \\ x1 \\ x2 \\ x3 \end{bmatrix} = [1.0, 2.0, 3.0, 1.0] * \begin{bmatrix} -1.0 \\ -2.0 \\ -1.0 \\ -2.0 \end{bmatrix}$$

 The bias input bh\_i is FP -2.0 and 2.0 for the two dot products, respectively

#### **Evaluation Rubric**

#### Grading rubric

- Submit your report and the project to Canvas
  - In the report, screenshot the design code, testbench, and the simulation results
- Grading policy
  - Introduction and conclusion (2 pts)
  - Design code (2 pts)
  - Testbench (1 pt)
  - Simulation results
    - All the signals must be *clearly shown* in the screenshot waveform (2 pts)
    - The FP inputs and outputs must be shown in *float32* format (1 pts)
    - The correctness of the simulation results (2 pts)

## Thanks!

CRC Publisher Book: Integrated Circuit Design

Associate Professor, UHCL yangxia@uhcl.edu

Affiliate Faculty, LBL xiaokunyang@lbl.gov