3agara 1.

Даны 2 базиса A=(a, a) и В=(b, b). BEKTOPOT Que, Co, Co, Co 3 againer chouse координатами относительно нек. базиса Е. Halire marpuyy nepexoga (1) TARB, (2) TB >A.

Решение

(1)
$$T_{A \to B} = T_{A \to E} \cdot T_{E \to B} = (T_{E \to A}) \cdot T_{E \to B}$$
,

no cb-ly 3 encaphages no cb-ly 2 encephages

nepexoga (cm, newyord) nepexoga.

1ge $T_{E \to A} = ()$, $T_{E \to B} = ()$

1ge $T_{E \to A} = ()$, $T_{E \to B} = ()$

1ge $T_{E \to A} = ()$, $T_{E \to B} = ()$

1ge $T_{E \to A} = ()$, $T_{E \to B} = ()$

1ge $T_{E \to A} = ()$, $T_{E \to B} = ()$

1ge $T_{E \to A} = ()$, $T_{E \to B} = ()$

1ge $T_{E \to A} = ()$, $T_{E \to B} = ()$

1ge $T_{E \to A} = ()$, $T_{E \to B} = ()$

1ge $T_{E \to A} = ()$, $T_{E \to B} = ()$

1ge $T_{E \to A} = ()$, $T_{E \to B} = ()$

1ge $T_{E \to A} = ()$, $T_{E \to B} = ()$

1ge $T_{E \to A} = ()$, $T_{E \to B} = ()$

1ge $T_{E \to A} = ()$, $T_{E \to B} = ()$

1ge $T_{E \to A} = ()$, $T_{E \to B} = ()$

1ge $T_{E \to A} = ()$, $T_{E \to B} = ()$

1ge $T_{E \to A} = ()$, $T_{E \to B} = ()$

1ge $T_{E \to A} = ()$, $T_{E \to B} = ()$

2) Hargen (TEZA) KAKUM-HURYGE CNOCOSON, Hanp., $(T_{\varepsilon \to A} \mid E) \sim {}^{\to 1} e^{M} \cdot npeoSp.p} \sim (E \mid (T_{\varepsilon \to A})^{-1})$

3) Dogcrahen 2) 6 1).

2) Icn. TB=A=(TA=B)⁻¹, zge TA=B MOT MANNY BA)
Icn. Heelgën TB=A ananonomeo Kak TA=B
B gelichin D. In gonbur.

3agara 2,

Дания 2 базиса $f = (\vec{a}_1, \vec{a}_2)$ и $\mathcal{B} = (\vec{b}_1, \vec{b}_2)$. Векторы $\vec{a}_1, \vec{a}_2, \vec{b}_1, \vec{b}_2$ заданы своими координатами относит. нек, базиса \mathcal{E} . Дания координаты вектора \vec{c}

DOTHOCUT. TOQUEQ B. Hellore Koopg-on Et omescer. Toquea A

2 Harri Koopg-m & omeccer dazuca B.

Решение Лю Ф-лам преобр-я къ векторов

2) Hangën T_{A-B} Kak b zagare 1. 3) Thogarahen 2) b1).

2) Hargën T_{8→A}

Kak B 3ajare 1.
3) Trogcrabry 2) B 1).

Задата (как задата 2 только е гислами).
$$X = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 Вектор \vec{c} имеет координат $X = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ в базисе $\vec{a}_1 = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$, $\vec{a}_2 = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$. Найти его координат в базисе $\vec{c}_1 = \begin{pmatrix} 7 \\ -2 \end{pmatrix}$, $\vec{c}_2 = \begin{pmatrix} -4 \\ 1 \end{pmatrix}$.

Решение.

(1) To populyion upeoop-ex5 bekropes
$$X_B = T_{B \to A} X_A$$
.

2) Hargen map nepexora
$$T_{B\to A}$$
:

 $T_{B\to A} = T_{B\to E} \cdot T_{E\to A} = (T_{E\to B})^{-1}T_{E\to A}$, $ge \mathcal{E}(0)$. (1)

 $T_{E\to B} = \begin{pmatrix} 7 & -4 \\ -2 & 1 \end{pmatrix}$, $T_{E\to A} = \begin{pmatrix} 3 & 72 \\ -2 & -3 \end{pmatrix}$
 $F_{E\to B} = \begin{pmatrix} 7 & -4 \\ 1 & 1 \end{pmatrix}$, $F_{E\to A} = \begin{pmatrix} 3 & 72 \\ -2 & -3 \end{pmatrix}$
 $F_{E\to B} = \begin{pmatrix} 7 & -4 \\ 1 & 1 \end{pmatrix}$, $F_{E\to A} = \begin{pmatrix} 3 & 72 \\ -2 & -3 \end{pmatrix}$
 $F_{E\to B} = \begin{pmatrix} 7 & -4 \\ 1 & 1 \end{pmatrix}$, $F_{E\to A} = \begin{pmatrix} 3 & 72 \\ -2 & -3 \end{pmatrix}$
 $F_{E\to B} = \begin{pmatrix} 7 & -4 \\ 1 & 1 \end{pmatrix}$, $F_{E\to A} = \begin{pmatrix} 3 & 72 \\ -2 & -3 \end{pmatrix}$
 $F_{E\to B} = \begin{pmatrix} 7 & -4 \\ 1 & 1 \end{pmatrix}$, $F_{E\to A} = \begin{pmatrix} 3 & 72 \\ -2 & -3 \end{pmatrix}$
 $F_{E\to B} = \begin{pmatrix} 7 & -4 \\ 1 & 1 \end{pmatrix}$, $F_{E\to A} = \begin{pmatrix} 3 & 72 \\ -2 & -3 \end{pmatrix}$
 $F_{E\to B} = \begin{pmatrix} 7 & -4 \\ 1 & 1 \end{pmatrix}$, $F_{E\to A} = \begin{pmatrix} 3 & 72 \\ -2 & -3 \end{pmatrix}$
 $F_{E\to B} = \begin{pmatrix} 7 & -4 \\ 1 & 1 \end{pmatrix}$, $F_{E\to B} = \begin{pmatrix} 3 & 72 \\ -2 & -3 \end{pmatrix}$

3) Trogerabum 2) 6 1);
$$T_{B\rightarrow A} = \begin{pmatrix} -1 & -4 \\ -2 & -7 \end{pmatrix} \begin{pmatrix} 3 & -2 \\ -2 & -3 \end{pmatrix} = \begin{pmatrix} 5 & 14 \\ 8 & 25 \end{pmatrix}$$

(3) Trogeralin
$$T_{B\to A}$$
 by (2) $u X_A = \binom{1}{1} uy y c_A$, $e (1) : X_B = \binom{5}{8} \binom{14}{25} \binom{1}{1} = \binom{19}{33}$

Ombem:
$$\binom{19}{33}$$
.

N2 Berrop
$$\vec{c} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$
 b sagure $\mathcal{E} = \{\vec{e}_1, \vec{e}_2\}$, $ge \vec{e}_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, $\vec{e}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Harry ero reopgunan b sayuce $\mathcal{E}' = \{\vec{e}_1, \vec{e}_2\}$, $ge \vec{e}_1' = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, $\vec{e}_2' = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$

N4.37.

Ранг системы векторов и размерность её линедног оболочки.

Опр. Лин. оболочкой системой векторов $\vec{q}_1,...,\vec{q}_R$ наз. ине-во H всех лин. комбинаций этих векторов, τ -е. $H = \{\vec{x} = d_1\vec{q}_1 + ... + d_R\vec{q}_R\}$

OSOZN. L(QI,..., QB).

Опр. Рангом системо векторов в лин. пр-ве L нау. размерност лин. оболочки этог системы векторов.

<u>Обози.</u> гд ва, ..., ак з

Т-ма гдал..., дез равен

- 1) marc kon-by nun resabucumoux berropol l'accepte {a, a, a, a, };
- 2) eg A, ye A-enapueja vy KOOPGF a, , ak b enodon baguce L.

 $\sqrt{4.21}$ $\sqrt{3}$ $\sqrt{3$

2) Hayrı panz u bee Eagues (run, odologky)

Решение.

Bepieura « currene:

$$\begin{cases} d_1 + 3d_3 = 0 \\ d_2 + 2d_3 = 0 \end{cases} \begin{cases} d_1 = -3d_3 \\ d_2 = -2d_3 \\ d_3 = d_3 \end{cases} \begin{cases} d_1 = -3C \\ d_2 = -2C, C \in \mathbb{R} \\ d_3 = C \end{cases}$$

$$\begin{pmatrix} d_1 \\ d_2 \end{pmatrix} = \begin{pmatrix} -3 \\ -2 \\ 1 \end{pmatrix} C, CER & Roops. Brise .$$

The peeu cucr. & Bekr. Brise .

Haupunep, npu
$$C=1$$
 $d_1=-3$ $d_2=-2$ $d_3=1$

Transpers Herpub. COOTHOUSEPPELLE $-3\vec{\chi}_1 - 2\vec{\chi}_2 + \vec{\chi}_3 = \vec{\partial} \quad \text{Tem canoism most} \\ \vec{\chi}_1, \vec{\chi}_2, \vec{\chi}_3.$

Сканировано с CamScanner

2) I) Hailgën $rg\{\vec{x}_1,\vec{x}_2,\vec{x}_3\}$ $rg\{\vec{x}_1,\vec{x}_2,\vec{x}_3\} = rgA, rgeA-marpuya yg$ $koopgunar bekropab \vec{x}_6.$ Hailgën rgA.

M -1 1

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 6 \\ 0 & 5 & 10 \\ 4 & 1 & 14 \end{pmatrix} \sim \frac{1}{2} = A^{1}$$

$$2gA'=2$$
 $2gA'=2$
 $2gA=2gA'$
 $3\Rightarrow 2g(\vec{X}_1,\vec{X}_2,\vec{X}_3)=2$

2) $y_1 \Rightarrow \text{marc. Kos-bo run, regahir.}$ bekropob b cucreme $\vec{x}_1, \vec{x}_2, \vec{x}_3$ pabno 2. Inothe gla bekropa $y_1, \vec{x}_2, \vec{x}_3$ nenponopy. $\Rightarrow \text{ux} \text{moxino bsen 3a dayuc neen.}$ oddnorker $L(\vec{x}_1, \vec{x}_2, \vec{x}_3)$.

Orber: rg[x1, x2, x3]=2; x1, x2 unu x1, x3 unu x2, x3.

N4.51. D'Halimu papuleprocmo un elember odonorses $L(\vec{x_1}, \vec{x_2})$ apuquier vreckux bekropob $\vec{x}_1 = (1, 0, 2, -1)$, $\vec{x}_2 = (0, -1, 2, 0)$. (2) Roxagame, rmo $\vec{x} = (1, -1, 4, -1) \in L(\vec{x}_1, \vec{x}_2)$. Pemenne. (9) $\operatorname{dim} L(\vec{x_1}, \vec{x_2}) = \operatorname{rg}(\vec{x_1}, \vec{x_2}), m.e. \operatorname{maxc.} \operatorname{kos-by}$ with regalic beamopol cucmeelles $\{\vec{x_1}, \vec{x_2}\}$. Bekropib beero gba, once непропорциональну \Rightarrow ганд $\{\vec{x}_1, \vec{x}_2\} = 2$ $dimL(x_1,x_2)=2.$ (2) Thou, 2mo $\exists \mathcal{L}_1, \mathcal{L}_2: \vec{X} = \mathcal{L}_1 \vec{X}_1 + \mathcal{L}_2 \vec{X}_2$ (Toya $\vec{X} \in L(\vec{X}_1, \vec{X}_2)$). $\begin{pmatrix} 1 \\ -1 \\ 4 \\ -1 \end{pmatrix} = \mathcal{L}_1 \begin{pmatrix} 1 \\ 0 \\ 2 \\ -1 \end{pmatrix} + \mathcal{L}_2 \begin{pmatrix} 0 \\ -1 \\ 2 \\ 0 \end{pmatrix}$ $\begin{cases} 1 & \text{d} + 0 & \text{d} = 1 \\ 0 & \text{d} - 1 & \text{d} = -1 \\ 2 & \text{d} + 2 & \text{d} = 4 \\ -1 & \text{d} + 0 & \text{d} = -1 \end{cases}$ $(A16) = \begin{pmatrix} 1 & 0 & | & 1 \\ 0 & -1 & | & -1 \\ 2 & 2 & | & -1 \end{pmatrix} + \begin{pmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & 1 \\ 0 & 0 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & 1 \\ 0 & 0 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & 1 \\ 0 & 0 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & 1 \\ 0 & 0 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & 1 \\ 0 & 0 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & 1 \\ 0 & 0 & | & 0 \end{pmatrix}$

 $\sim \begin{pmatrix} 1 & 0 & | & 1 \end{pmatrix}$ Верхёмся к сист. Ур-ий: $\int d_1 = 1$ $\int d_2 = 1$ $\int d_2 = 1$ $\int d_2 = 1$ Сканировано с CamScanner

N4.53 Найти размерность и какой-нибудь базик мнейной обольские системия векторые: $\vec{X}_1 = (1, 1, 1, 1, 0)$ 双=(1,1,-1,-1,-1) $\chi_{3}=(2,2,0,0,-1)$ $\vec{\chi}_{4} = (1, 1, 5, 5, 2)$ $\overrightarrow{X}_{5} = (1, -1, -1, 0, 0).$ rg {xi, ..., xs/= $\dim L(\vec{x}_1,...,\vec{x}_5) =$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 & -1 \\ 1 & 1 & 2 & 1 & -1 \\ 1 & -1 & 0 & 5 & -1 \\ 1 & -1 & 0 & 5 & 0 \\ 0 & -1 & -1 & 2 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 & -1 \\ 0 & 5 & -1 & 0 \\ 0 & -1 & -1 & 2 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & 5 & -1 & 0 & 0 \\ 0 & -1 & -1 & 2 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & 5 & -1 & 0 & 0 \\ 0 & -1 & -1 & 2 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & 5 & -1 & 0 & 0 \\ 0 & -1 & -1 & 2 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & 5 & -1 & 0 & 0 \\ 0 & -1 & -1 & 2 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & 5 & -1 & 0 & 0 \\ 0 & -1 & -1 & 2 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & 5 & -1 & 0 & 0 \\ 0 & -1 & -1 & 2 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & 5 & 0 & 0 \\ 0 & -1 & -1 & 2 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & 5 & 0 & 0 \\ 0 & -1 & -1 & 2 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & 5 & 0 & 0 \\ 0 & -1 & -1 & 2 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & 5 & 0 & 0 \\ 0 & -1 & -1 & 2 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & 5 & 0 & 0 \\ 0 & -1 & -1 & 2 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & 5 & 0 & 0 \\ 0 & -1 & -1 & 2 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 &$ Typulegens mamp. K cmyn. buyy:

(1 1 2 1 1) (-1)]+]

1 1 2 1 -1

1 -1 0 5 -1

1 -1 0 5 0

0 -1 -1 2 0) $\begin{pmatrix}
1 & 1 & 2 & 1 & 1 \\
0 & -1 & -1 & 2 & 0 \\
0 & -2 & -2 & 4 & -2 \\
0 & 0 & 0 & 0 & -2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 & 1 \\
0 & 1 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & -2 \\
0 & 0 & 0 & 0 & 0 & -2
\end{pmatrix}$ $\begin{pmatrix}
1 & 1 & 2 & 1 & 1 \\
0 & 1 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & -2 \\
0 & 0 & 0 & 0 & -2
\end{pmatrix}$ 3 crynensku \Rightarrow rang = $3 \Rightarrow$ dimit Eagueuse crossyst: 1^{12} , $2^{\frac{11}{2}}$, $5^{\frac{11}{2}}$ \Rightarrow

=> dayue num. otonorky: X1, X2, X5

13. Насти базис и dim лин. $\vec{q}_1 = \begin{pmatrix} 7 \\ -6 \\ 3 \end{pmatrix}, \vec{q}_2 = \begin{pmatrix} 1 \\ -9 \\ 3 \end{pmatrix}, \vec{q}_3 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}, \vec{q}_4 = \begin{pmatrix} 1 \\ 10 \\ 5 \end{pmatrix}$ $npcocrpance Ga R^3$