Solution of 2×2 systems of first order linear equations

Consider a system of 2 simultaneous first order linear equations

$$x_1' = ax_1 + bx_2$$

 $x_2' = cx_1 + dx_2$

It has the alternate matrix-vector representation

$$x' = \begin{bmatrix} a & b \\ c & d \end{bmatrix} x.$$

Or, in shorthand x' = Ax, if A is already known from context.

We know that the above system is equivalent to a second order homogeneous linear differential equation. As a result, we know that the general solution contains two linearly independent parts. As well, the solution will be consisted of some type of exponential functions. Therefore, assume that $\mathbf{x} = \mathbf{k} e^{rt}$ is a solution of the system, where \mathbf{k} is a vector of coefficients (of x_1 and x_2). Substitute \mathbf{x} and $\mathbf{x}' = r \mathbf{k} e^{rt}$ into the equation $\mathbf{x}' = A\mathbf{x}$, and we have

$$rke^{rt} = Ake^{rt}$$
.

Since e^{rt} is never zero, we can always divide both sides by e^{rt} and get

$$r \mathbf{k} = A \mathbf{k}$$
.

We see that this new equation is exactly the relation that defines eigenvalues and eigenvectors of the coefficient matrix A. In other words, in order for a function $x = ke^{rt}$ to satisfy our system of differential equations, the number r must be an eigenvalue of A, and the vector k must be an eigenvector of A corresponding to r. Just like the solution of a second order homogeneous linear equation, there are three possibilities, depending on the number of distinct, and the type of, eigenvalues the coefficient matrix A has.

The possibilities are that A has

- I. Two distinct real eigenvalues
- II. Complex conjugate eigenvalues
- III. A repeated eigenvalue

A related note, (from linear algebra,) we know that eigenvectors that each corresponds to a different eigenvalue are always linearly independent from each others. Consequently, if r_1 and r_2 are two different eigenvalues, then their respective eigenvectors k_1 and k_2 , and therefore the corresponding solutions, are always linearly independent.

<u>Case I</u> Distinct real eigenvalues

If the coefficient matrix A has two distinct real eigenvalues r_1 and r_2 , and their respective eigenvectors are k_1 and k_2 . Then the 2×2 system x' = Ax has a general solution

$$x = C_1 k_1 e^{r_1 t} + C_2 k_2 e^{r_2 t}.$$

$$x' = \begin{bmatrix} 2 & 3 \\ 4 & 3 \end{bmatrix} x.$$

We have already found that the coefficient matrix has eigenvalues r = -1 and 6. And they each respectively has an eigenvector

$$k_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \qquad k_2 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}.$$

Therefore, a general solution of this system of differential equations is

$$x = C_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-t} + C_2 \begin{bmatrix} 3 \\ 4 \end{bmatrix} e^{6t}$$

$$\mathbf{x}' = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix} \mathbf{x}, \qquad \mathbf{x}(0) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

The characteristic equation is $r^2 - r - 2 = (r + 1)(r - 2) = 0$. The eigenvalues are r = -1 and 2. They have, respectively, eigenvectors

For r = -1, the system is

$$(A-rI)x = (A+I)x = \begin{bmatrix} 3+1 & -2 \\ 2 & -2+1 \end{bmatrix} x = \begin{bmatrix} 4 & -2 \\ 2 & -1 \end{bmatrix} x = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Solving the bottom equation of the system: $2x_1 - x_2 = 0$, we get the relation $x_2 = 2x_1$. Hence,

$$k_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

For r = 2, the system is

$$(A-rI) x = (A-2I) x = \begin{bmatrix} 3-2 & -2 \\ 2 & -2-2 \end{bmatrix} x = \begin{bmatrix} 1 & -2 \\ 2 & -4 \end{bmatrix} x = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Solving the first equation of the system: $x_1 - 2x_2 = 0$, we get the relation $x_1 = 2x_2$. Hence,

$$k_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Therefore, a general solution is

$$x = C_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t} + C_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t}.$$

Apply the initial values,

$$x(0) = C_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^0 + C_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^0 = \begin{bmatrix} C_1 + 2C_2 \\ 2C_1 + C_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

That is

$$C_1 + 2C_2 = 1$$

 $2C_1 + C_2 = -1$

We find $C_1 = -1$ and $C_2 = 1$, hence we have the particular solution

$$x = -\begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} = \begin{bmatrix} -e^{-t} + 2e^{2t} \\ -2e^{-t} + e^{2t} \end{bmatrix}.$$

<u>Case II</u> Complex conjugate eigenvalues

If the coefficient matrix A has two distinct complex conjugate eigenvalues $\lambda \pm \mu i$. Also suppose k = a + b i is an eigenvector (necessarily has complex-valued entries) of the eigenvalue $\lambda + \mu i$. Then the 2×2 system x' = Ax has a real-valued general solution

$$x = C_1 e^{\lambda t} \left(a \cos(\mu t) - b \sin(\mu t) \right) + C_2 e^{\lambda t} \left(a \sin(\mu t) + b \cos(\mu t) \right)$$

A little detail: Similar to what we have done before, first there was the complex-valued general solution in the form

$$x = C_1 k_1 e^{(\lambda + \mu i)t} + C_2 k_2 e^{(\lambda - \mu i)t}$$

We "filter out" the imaginary parts by carefully choosing two sets of coefficients to obtain two corresponding real-valued solutions that are also linearly independent:

$$u = e^{\lambda t} (a \cos(\mu t) - b \sin(\mu t))$$
$$v = e^{\lambda t} (a \sin(\mu t) + b \cos(\mu t))$$

The real-valued general solution above is just $\mathbf{x} = C_1 \mathbf{u} + C_2 \mathbf{v}$. In particular, it might be useful to know how \mathbf{u} and \mathbf{v} could be derived by expanding the following complex-valued expression (the front half of the complex-valued general solution):

$$k_1 e^{(\lambda + \mu i)t} = (a + bi)e^{\lambda t}e^{(\mu t)i} = e^{\lambda t}(a + bi)(\cos(\mu t) + i\sin(\mu t))$$

$$= e^{\lambda t}(a\cos(\mu t) + ia\sin(\mu t) + ib\cos(\mu t) + i^2b\sin(\mu t))$$

$$= e^{\lambda t}(a\cos(\mu t) - b\sin(\mu t)) + ie^{\lambda t}(a\sin(\mu t) + b\cos(\mu t))$$

Then, u is just the real part of this complex-valued function, and v is its imaginary part.

$$x' = \begin{bmatrix} 2 & -5 \\ 1 & -2 \end{bmatrix} x$$

The characteristic equation is $r^2 + 1 = 0$, giving eigenvalues $r = \pm i$. That is, $\lambda = 0$ and $\mu = 1$.

Take the first (the one with positive imaginary part) eigenvalue r = i, and find one of its eigenvectors:

$$(A - rI) x = \begin{bmatrix} 2 - i & -5 \\ 1 & -2 - i \end{bmatrix} x = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Solving the first equation of the system: $(2 - i)x_1 - 5x_2 = 0$, we get the relation $(2 - i)x_1 = 5x_2$. Hence,

$$k = \begin{bmatrix} 5 \\ 2 - i \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} i = a + bi$$

Therefore, a general solution is

$$x = C_1 e^{0t} \left(\begin{bmatrix} 5 \\ 2 \end{bmatrix} \cos(t) - \begin{bmatrix} 0 \\ -1 \end{bmatrix} \sin(t) \right) + C_2 e^{0t} \left(\begin{bmatrix} 5 \\ 2 \end{bmatrix} \sin(t) + \begin{bmatrix} 0 \\ -1 \end{bmatrix} \cos(t) \right)$$

$$= C_1 \left(\frac{5\cos(t)}{2\cos(t) + \sin(t)} \right) + C_2 \left(\frac{5\sin(t)}{2\sin(t) - \cos(t)} \right)$$

$$\mathbf{x}' = \begin{bmatrix} -1 & -6 \\ 3 & 5 \end{bmatrix} \mathbf{x}, \qquad \mathbf{x}(0) = \begin{bmatrix} 0 \\ 2 \end{bmatrix}.$$

The characteristic equation is $r^2 - 4r + 13 = 0$, giving eigenvalues $r = 2 \pm 3i$. Thus, $\lambda = 2$ and $\mu = 3$.

Take r = 2 + 3i and find one of its eigenvectors:

$$(A - rI) x = \begin{bmatrix} -1 - (2+3i) & -6 \\ 3 & 5 - (2+3i) \end{bmatrix} x = \begin{bmatrix} -3 - 3i & -6 \\ 3 & 3 - 3i \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Solving the second equation of the system: $3x_1 + (3 - 3i)x_2 = 0$, we get the relation $x_1 = (-1 + i)x_2$. Hence,

$$k = \begin{bmatrix} -1+i \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} i = a+bi$$

The general solution is

$$x = C_1 e^{2t} \begin{pmatrix} -1 \\ 1 \end{pmatrix} \cos(3t) - \begin{bmatrix} 1 \\ 0 \end{bmatrix} \sin(3t) + C_2 e^{2t} \begin{pmatrix} -1 \\ 1 \end{bmatrix} \sin(3t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cos(3t)$$

$$= C_1 e^{2t} \begin{pmatrix} -\cos(3t) - \sin(3t) \\ \cos(3t) \end{pmatrix} + C_2 e^{2t} \begin{pmatrix} \cos(3t) - \sin(3t) \\ \sin(3t) \end{pmatrix}$$

Apply the initial values to find C_1 and C_2 :

$$x(0) = C_1 e^0 \left(\begin{bmatrix} -1 \\ 1 \end{bmatrix} \cos(0) - \begin{bmatrix} 1 \\ 0 \end{bmatrix} \sin(0) \right) + C_2 e^0 \left(\begin{bmatrix} -1 \\ 1 \end{bmatrix} \sin(0) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cos(0) \right)$$

$$= C_1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} + C_2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -C_1 + C_2 \\ C_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

Therefore, $C_1 = 2$ and $C_2 = 2$. Consequently, the particular solution is

$$x = 2e^{2t} {-\cos(3t) - \sin(3t) \choose \cos(3t)} + 2e^{2t} {\cos(3t) - \sin(3t) \choose \sin(3t)}$$
$$= e^{2t} {-4\sin(3t) \choose 2\cos(3t) + 2\sin(3t)}$$

<u>Case III</u> Repeated real eigenvalue

Suppose the coefficient matrix A has a repeated real eigenvalues r, there are 2 sub-cases.

(i) If r has two linearly independent eigenvectors k_1 and k_2 . Then the 2×2 system x' = Ax has a general solution

$$\boldsymbol{x} = C_1 \boldsymbol{k}_1 e^{rt} + C_2 \boldsymbol{k}_2 e^{rt}.$$

Note: For 2×2 matrices, this possibility only occurs when the coefficient matrix A is a scalar multiple of the identity matrix. That is, A has the form

$$\alpha \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix}, \quad \text{for any constant } \alpha.$$

Example:
$$x' = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} x.$$

The eigenvalue is r = 2 (repeated). There are 2 sets of linearly independent eigenvectors, which could be represented by any 2 nonzero vectors that are not constant multiples of each other. For example

$$k_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad k_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Therefore, a general solution is

$$x = C_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} e^{2t} + C_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{2t}.$$

(ii) If r, as it usually does, only has one linearly independent eigenvector k. Then the 2×2 system x' = Ax has a general solution

$$\boldsymbol{x} = C_1 \boldsymbol{k} e^{rt} + C_2 (\boldsymbol{k} t e^{rt} + \boldsymbol{\eta} e^{rt}).$$

Where the second vector η is any solution of the nonhomogeneous linear system of algebraic equations

$$(A - rI)\eta = k.$$

$$\mathbf{x}' = \begin{bmatrix} 1 & -4 \\ 4 & -7 \end{bmatrix} \mathbf{x}, \qquad \mathbf{x}(0) = \begin{bmatrix} -2 \\ 1 \end{bmatrix}.$$

The eigenvalue is r = -3 (repeated). The corresponding system is

$$(A-rI) x = \begin{bmatrix} 1+3 & -4 \\ 4 & -7+3 \end{bmatrix} x = \begin{bmatrix} 4 & -4 \\ 4 & -4 \end{bmatrix} x = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Both equations of the system are $4x_1 - 4x_2 = 0$, we get the same relation $x_1 = x_2$. Hence, there is only one linearly independent eigenvector:

$$k = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
.

Next, solve for η :

$$\begin{bmatrix} 4 & -4 \\ 4 & -4 \end{bmatrix} \boldsymbol{\eta} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

It has solution in the form $\eta = \begin{bmatrix} \frac{1}{4} + \eta_2 \\ \eta_2 \end{bmatrix}$.

Choose
$$\eta_2 = 0$$
, we get $\eta = \begin{bmatrix} 1/4 \\ 0 \end{bmatrix}$.

A general solution is, therefore,

$$x = C_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-3t} + C_2 \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} t e^{-3t} + \begin{bmatrix} 1/4 \\ 0 \end{bmatrix} e^{-3t} \right)$$

Apply the initial values to find $C_1 = 1$ and $C_2 = -12$. The particular solution is

$$x = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-3t} - 12 \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} t e^{-3t} + \begin{bmatrix} 1/4 \\ 0 \end{bmatrix} e^{-3t} \right) = \begin{bmatrix} -12t - 2 \\ -12t + 1 \end{bmatrix} e^{-3t}$$

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns

Given:

$$x' = Ax$$
.

First find the two eigenvalues, r, and their respective corresponding eigenvectors, k, of the coefficient matrix A. Depending on the eigenvalues and eigenvectors, the general solution is:

I. Two distinct real eigenvalues r_1 and r_2 :

$$x = C_1 k_1 e^{r_1 t} + C_2 k_2 e^{r_2 t}$$

II. Two complex conjugate eigenvalues $\lambda \pm \mu i$, where $\lambda + \mu i$ has as an eigenvector $\mathbf{k} = \mathbf{a} + \mathbf{b} i$:

$$x = C_1 e^{\lambda t} \left(a \cos(\mu t) - b \sin(\mu t) \right) + C_2 e^{\lambda t} \left(a \sin(\mu t) + b \cos(\mu t) \right)$$

- III. A repeated real eigenvalue *r*:
 - (i) When two linearly independent eigenvectors exist –

$$\mathbf{x} = C_1 \mathbf{k}_1 e^{rt} + C_2 \mathbf{k}_2 e^{rt}.$$

(ii) When only one linearly independent eigenvector exist –

$$\mathbf{x} = C_1 \mathbf{k} e^{rt} + C_2 (\mathbf{k} t e^{rt} + \boldsymbol{\eta} e^{rt}).$$

Note: Solve the system $(A - rI)\eta = k$ to find the vector η .