Cross Ratios

Contents

1	Pro	jective Geometry and Cross ratios	1
	1.1	Cross Ratios	2
	1.2	Cross Ratios on a Conic Section	6
	1.3	Cross Ratios on the Inversive Plane	Ć
	1.4	Invertible functions on the line	(
	1.5	Angles and the circle points	1
	1.6	Polar maps	3
	1.7	Coharmonic points	6
	1.8	Symmetries of the plane	(
	1.9	The Cross Cross Ratio	3
	1.10	A few miscellaneous exercises	6
2	Cro	ss ratios in other geometries 2	7
		Cremona involutions and blow ups	7
		2.1.1 Aside: some basic intersection theory	

1 Projective Geometry and Cross ratios

Definition 1. The projective plane \mathbb{P}^2 is the set of lines through an observation point O in three dimensional space. A projective line l is a plane passing through O, and a projective point P is a line passing through O. If the line defining P is contained in the plane defining l, we say that $P \in l$.

If \mathbb{A}^2 is an ordinary plane which does not pass through O, then we can identify most projective points of \mathbb{P}^2 with ordinary points on \mathbb{A}^2 by taking the intersection of the line defining the projective point with \mathbb{A}^2 . The projective line which is defined by a plane passing through O and parallel to \mathbb{A}^2 is called the *line at infinity*, or the *horizon line*. Projective points contained in the line at infinity are called *infinite points*.

If we take O=(0,0,0), then we can put coordinates on the projective plane as follows. Every projective point P is a line through O and some other point (p,q,r). Then every point on the line defining P is of the form $(\lambda p, \lambda q, \lambda r)$ for some λ . We write P=[p:q:r], where the colons indicate that we only care about the ratios of the coordinates. If \mathbb{A}^2 is the plane z=1, then the ordinary point on \mathbb{A}^2 corresponding to P is $(\frac{p}{r}, \frac{q}{r}, 1)$, or if we ignore the z-coordinate it is just $(\frac{p}{r}, \frac{q}{r})$. If r=0, then P is an infinite point with slope $\frac{q}{p}$.