浙江工业大学 2018 - 2019 学年第一学期 概率论与数理统计试卷

姓名:	_ 学号:	班级:	任课教师:
一. 填空题, 共 22 分,	每空 2 分。		
1. $\frac{1}{5}$ •			
2. <u>3</u> °			
3. <u>2</u> °			
41, _ $\frac{5}{4}$.			
5. <u>2</u> , <u>4</u> 。			
6. <u>0.6826</u> °			
7. <u>29</u> , <u>16</u> , _	<u>32.07</u> °		
二. 选择题, 共 18 分,	每题 3 分。		
1. B			
2. D			
3. D			
4. C			

5. A

6. C

三. 解答题, 共5题, 60分。

1. 解

1)
$$P(X=k) = \frac{C_3^k C_2^{2-k}}{C_5^2}$$
, $\mathbb{P} \begin{bmatrix} X & 0 & 1 & 2 \\ p & 0.1 & 0.6 & 0.3 \end{bmatrix}$;

2)
$$P(X=k,Y=l) = \frac{C_3^k C_2^{2-k}}{C_5^2} \frac{C_{3-k}^l C_2^{2-l}}{C_{5-k}^2}$$
, 即

X Y	0	1	2
0	0.01	0.1	0.1
1	0.06	0.4	0.2
2	0.03	0.1	0

可得
$$P(X < Y) = 0.06 + 0.03 + 0.1 = 0.19$$
。 6 分

2. 解

1)
$$1 = \int_0^1 x + c \, dx = \frac{1}{2} + c \Rightarrow c = \frac{1}{2};$$
 4 $\frac{1}{2}$

$$F_X(x) = \int_{-\infty}^x f(s) \, ds = \begin{cases} 1, & x > 1, \\ \int_0^x s + \frac{1}{2} \, ds = \frac{1}{2}(x + x^2), & 0 \le x \le 1, \\ 0, & x < 0. \end{cases}$$

4分

$$3) y = -\ln x$$
 严格单调, $x = h(y) = e^{-y}$, $0 \le X \le 1$,故 $Y > 0$,

$$f_Y(y) = f_X(h(y))|h'(y)| = \begin{cases} (e^{-y} + \frac{1}{2})e^{-y} = e^{-2y} + \frac{1}{2}e^{-y}, & y > 0, \\ 0, & y \le 0. \end{cases}$$

4分

3. 解

1)

$$1 = \int_0^\infty \int_0^x Ce^{-2x} \, dy \, dx = \frac{C}{2} \int_0^\infty x 2e^{-2x} \, dx = \frac{C}{4},$$

故
$$C=4$$
;

2)

$$f_X(x) = \begin{cases} \int_0^x 4e^{-2x} dy = 4xe^{-2x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$
$$f_Y(y) = \begin{cases} \int_y^\infty 4e^{-2x} dx = 2e^{-2y}, & y > 0, \\ 0, & y \le 0. \end{cases}$$

 $f(x,y) \neq f_X(x)f_Y(y)$,故 X,Y 不独立; 6 分 3)

$$P(X + Y < 2) = \int_0^1 \int_y^{2-y} 4e^{-2x} dx dy$$

=
$$\int_0^1 2[e^{-2y} - e^{-2(2-y)}] dy$$

=
$$[1 - e^{-2}] - [e^{-2} - e^{-4}] = (1 - e^{-2})^2.$$

4分

4. 解

矩估计
$$X \sim G(p)$$
,故 $EX = \frac{1}{p} \Rightarrow p = \frac{1}{EX}$,故 p 的矩估计为 $\hat{p} = (\bar{X})^{-1}$; 4 分 极大似然估计

$$L(p) = \prod_{i=1}^{n} (1-p)^{x_i-1} p,$$

$$\frac{d \ln L}{dp} = \sum_{i=1}^{n} [(x_i - 1)(-\frac{1}{1-p}) + \frac{1}{p}],$$

令 $\frac{d \ln L}{d p} = 0$,解得 p 的极大似然估计 $\hat{p} = (\bar{X})^{-1}$ 。 6 分

5. 解
$$H_0: \sigma = \sigma_0 = 3, H_1: \sigma > \sigma_0$$
 2 分

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = 21.6,$$

4分

拒绝域为
$$(\chi^2_{\alpha}(n-1), \infty)$$
,即 $(24.996, +\infty)$,

不在拒绝域中,故接受原假设,不能认为该设备电压值的标准差显著高于正常水平。 2分