機器視覺期末報告

Motion Prediction

B093022023 林宥辰

基本流程 Processes

物件追蹤 Object Tracking

- 先使用調色軟體找到球體顏 色範圍(HSV)
- 找到影像中位於該顏色範圍之遮罩
- 利用膨脹收縮降噪
- 取得該圖形之幾何中心
- 使用視差找出球體於空間中 的位置。

曲線擬合 Curve Fitting

- 根據經驗建立物理模型
 - 假設為無風環境、無空氣阻力、物體做拋體運動
- 透過已知5點座標進行物理模型之擬合
- 生成預測結果,以例後續運動學分析

物理模型 Modeling

空間中的抛體運動可拆為3個方向之參數式:

$$s_x(t) = x_2t^2 + x_1t + x_0$$

 $s_y(t) = y_1t + y_0$
 $s_z(t) = z_1t + z_0$

寫成矩陣的形式:

$$\mathbf{S} = \begin{bmatrix} x_2 & x_1 & x_0 \\ 0 & y_1 & y_0 \\ 0 & z_1 & z_0 \end{bmatrix} \begin{bmatrix} t^2 \\ t^1 \\ 1 \end{bmatrix}$$
$$\mathbf{S} = \mathbf{S}(t) = \mathbf{Wt}$$

$$S(t) = (x(t), y(t), z(t))$$

物理模型 Modeling

$$\mathbf{\hat{S}} = \mathbf{\hat{W}} \mathbf{t}$$

運動學分析 Kinematic Analysis

- 根據擬合完成的模型, 取其x軸分量為0之t值:

$$\hat{s}_x(t) = \hat{x}_2 t^2 + \hat{x}_1 t + \hat{x}_0 = 0$$

$$t_{landing} = \frac{-\hat{x}_1 \pm \sqrt{\hat{x}_1^2 - 4\hat{x}_2 \hat{x}_0}}{2\hat{x}_2}$$

- 再帶入 $\hat{\mathbf{S}} = \hat{\mathbf{W}} \mathbf{t}$ 即可求得落地點座標
- 末速度可透過對 $\hat{\mathbf{S}} = \hat{\mathbf{W}}_{\mathbf{t}}$ 微分求得:

$$\hat{\mathbf{V}} = \frac{d\hat{\mathbf{S}}}{dt} = \hat{\mathbf{W}} \frac{d\mathbf{t}}{dt}$$
 $\hat{\mathbf{V}} = \frac{\Delta \hat{\mathbf{S}}}{\Delta t}$

- 計算x軸的加速度判斷其結果之合理性

	Take 1	Take2
Landing Point (m)	(0, 0.03, 7.02)	(0., -0.39, 8.85)
Final Velocity (m/s)	(-5.05, -0.04, 9.95) v = 11.15	(-4.96, -0.35, 8.60) v = 9.93
g_x (m/s ²)	-9.81	-7.18

考慮空氣阻力

	Take 1	Take2
Landing Point (m)	(0, 0.03, 6.88)	(0, -0.38, 8.71)
Final Velocity (m/s)	(-5.37, -0.04, 9.95) v = 11.30	(-5.24, -0.35, 8.60) v = 10.08
g_x (<i>m</i> /s²)	-10.61	-7.74

