

REPASO DE ARITMÉTICA MODULAR

ALAN REYES-FIGUEROA CRIPTOGRAFÍA Y CIFRADO DE INFORMACIÓN (AULA 13) 23.SEPTIEMBRE.2021

Hacen su aparición en la obra de Gauss, Disquisitiones Arithmeticae (1801).

Definición

Sean $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$, con n > 1. Definimos $a \equiv b \pmod{n}$ si, y sólo si, $n \mid a - b$. En ese caso, decimos que a **es congruente con** b **módulo** n, o que a y b **son congruentes módulo** n.

En caso contrario, escribirmos $a \not\equiv b \pmod{n}$, y decimos que a y n no son congruentes módulo n.

Ejemplo: $17 \equiv 3 \pmod{7}$, $11 \equiv -4 \pmod{3}$.

Basta calcular que la diferencia entre 17 y 3 es un múltiplo de 7:

17 - 3 = 14 = 2(7) \implies $7 \mid 17 - 3$.

Otra forma de verlo es vía el residuo de la división:

$$\frac{17}{7} = 2 + \frac{3}{7} \implies 17 \equiv 3 \pmod{7}.$$

Propiedades (Propiedades de las Congruencias)

Para cualesquiera enteros $a, b, c, d, k, n \in \mathbb{Z}$, n > 1. se tiene.

- 1. (Reflexividad) $a \equiv a \pmod{n}$,
- **2.** (Simetría) si $a \equiv b \pmod{n}$, entonces $b \equiv a \pmod{n}$,
- 3. (Transitividad) Si $a \equiv b \pmod{n}$, $b \equiv c \pmod{n}$, entonces $a \equiv c \pmod{n}$,
- 4. (Compatibilidad con suma y resta)

$$\begin{cases} a \equiv b \pmod{n} \\ c \equiv d \pmod{n} \end{cases} \Rightarrow \begin{cases} a+c \equiv b+d \pmod{n}, \\ a-c \equiv b-d \pmod{n}, \end{cases}$$

5. (Compatibilidad con producto)

$$\begin{cases} a \equiv b \pmod{n} \\ c \equiv d \pmod{n} \end{cases} \Rightarrow ac \equiv bd \pmod{n},$$

- **6.** Si $a \equiv b \pmod{n}$, entonces $ka \equiv kb \pmod{n}$, para todo $k \in \mathbb{Z}$,
- 7. Si $a \equiv b \pmod{n}$, entonces $a^k \equiv b^k \pmod{n}$, para $k \ge 0$.

8. (Cancelación) Si (n,c) = 1, entonces $ac \equiv bc \pmod{n} \Rightarrow a \equiv b \pmod{n}$.

<u>Prueba</u>: (1.) Para todo $a \in \mathbb{Z}$, $n \in \mathbb{N}$, $n \mid o = a - a \Rightarrow a \equiv a \pmod{n}$.

(2.)
$$a \equiv b \pmod{n} \Rightarrow n \mid b - a \Rightarrow n \mid a - b \mid b \equiv a \pmod{n}$$
.

(3.)
$$n \mid b - a, n \mid c - b \Rightarrow n \mid (b - a) + (c - b) = c - a \Rightarrow a \equiv c \pmod{n}$$
.

(4.)
$$n \mid b - a, n \mid d - c \Rightarrow n \mid (b - a) \pm (d - c) = (b \pm d) - (a \pm c) \Rightarrow a \pm c \equiv b \pm d \pmod{n}$$
.

(5.)
$$n \mid b-a$$
, $n \mid d-c \Rightarrow n \mid (b-a)c$ y $n \mid a(d-c)$. Luego, $n \mid (b-a)c - a(d-c) = bc - ad \Rightarrow ad \equiv bc \pmod{n}$.

(6.) Aplicando (4.)
$$k$$
-veces consecutivas, con $c = a$, $d = b$, se obtiene, $ka \equiv kb \pmod{n}$.

(7.) Aplicando (5.)
$$k$$
-veces consecutivas, con $c = a$, $d = b$, se obtiene, $a^k \equiv b^k \pmod{n}$. Otra alternativa es ver que si $a \equiv b \pmod{n}$, entonces $n \mid b - a$

$$\Rightarrow n \mid (b-a)(b^{k-1} + ab^{k-1} + \ldots + a^{k-2}b + a^{k-1}) = b^k - a^k. \text{ Asi, } a^k \equiv b^k \pmod{n}.$$

(8.) Suponga que
$$ac \equiv bc \pmod n$$
, con $(n,c) = 1$. Entonces $n \mid bc - ac = (b-a)c$. Por el lema de Eulices, como $(n,c) = 1$, entonces $n \mid b-a \Rightarrow a \equiv b \pmod n$.

Obs! Dados $a \in \mathbb{Z}$ y $n \in \mathbb{Z}^+$, por el Algoritmo de la División, existen $q, r \in \mathbb{Z}$ tales que a = qn + r, con $0 \le r < n$. Entonces, por definición de congruencia, $n \mid -qn = r - a$ $\Rightarrow a \equiv r \pmod{n}$. Porque hay n opciones para r, vemos que todo entero es congruente módulo n exactamente con uno de los valores residuos $0, 1, 2, \ldots n - 1$; en particular, $a \equiv 0 \pmod{n}$ si, y sólo si, $n \mid a$.

Definición

El conjunto de n enteros $0, 1, 2, \ldots, n-1$ se denomina el **conjunto de residuos mínimos no negativos** o **residuos canónicos**, módulo n.

En general, una colección de n números enteros a_1, a_2, \ldots, a_n forman un **conjunto completo de residuos** (o un **sistema completo de residuos**) módulo n si cada a_i es congruente a alguno de los números $0, 1, 2, \ldots, n-1$, módulo n.

Ejemplo: -12, -4, 11, 13, 22, 82, 91 constituyen un sistema completo de residuos módulo 7.

Obs! $S = \{a_i\}_{i=1}^n \subset \mathbb{Z}$ es un sistema de residuos módulo $n \Leftrightarrow a_i \not\equiv a_j \pmod{n}$, para $i \neq j$.

Teorema

Para enteros arbitrarios $a, b \in \mathbb{Z}$, $a \equiv b \pmod{n} \Leftrightarrow a \ y \ b \ dejan \ el \ mismo \ residuo \ cuando se divide por n.$

<u>Prueba</u>: (\Rightarrow) Si $a \equiv b \pmod{n}$, de modo que $n \mid b-a$ y b=a+kn para algún entero k. Suponga que en la división entre n, a deja un cierto residuo r; es decir, ab=qn+r, con $0 \le r < n$. Por lo tanto, b=a+kn=(qn+r)+kn=(q+k)n+r, por lo que b tiene el mismo residuo que a.

(\Leftarrow) Por otro lado, suponga que podemos escribir $b=q_1n+r$ y $b=q_2n+r$, con el mismo residuo o $\leq r < n$ Entonces,

$$b-a=(q_2n+r)-(q_1n+r)=(q_2-q_1)n,$$

de modo que $n \mid b - a$. Esto es $a \equiv b \pmod{n}$. \square

Ejemplo: -56 y -11 pueden escribirse como -56 = (-7)9 + 7, -11 = (-2)9 + 7. Esto muestra que $-56 \equiv -11 \pmod{9}$.

Vimos que una de las propiedades básicas de congruencias es que si $ca \equiv cb \pmod{n}$ entonces $a \equiv b \pmod{n}$, siempre que (c, n) = 1. Cuando $(c, n) \neq 1$ la cancelación en general no vale. Por ejemplo, $2(4) \equiv 2(1) \pmod{6}$, pero $4 \not\equiv 1 \pmod{6}$.

Con las precauciones adecuadas, se puede permitir la cancelación

Teorema

Si $ca \equiv cb \pmod{n}$, entonces $a \equiv b \pmod{\frac{n}{d}}$, donde d = (c, n).

<u>Prueba</u>: Por hipótesis, $n \mid cb - ca$ y podemos escribir c(b-a) = cb - ca = kn, para algún $k \in \mathbb{Z}$. Como (c, n) = d, existen enteros primos relativos r, s que satisfacen c = dr, n = ds. Sustituyendo en la ecuación anterior,

$$dr(b-a) = kds$$
 \Rightarrow $r(b-a) = ks$,

de modo que $s \mid r(b-a)$. Como (r,s)=1, el Lema de Euclides garantiza que $s \mid b-a$. Portanto, $a \equiv b \pmod{\frac{n}{d}}$. \square

Corolario

Si ca \equiv cb (mod n), y (c, n) = 1, entonces $a \equiv b \pmod{n}$. \square

Corolario

Si $ca \equiv cb \pmod{p}$, $y \not p \nmid c$, con p primo, entonces $a \equiv b \pmod{p}$.

<u>Prueba</u>: Las condiciones p primo y $p \nmid c$ implican que (c, p) = 1.

Ejemplo: Considere la congruencia $42 \equiv 15 \pmod{27}$. Como (3,27) = 3, debido al teorema anterior podemos "cancelar" el factor 3 en la congruencia. Así $14 = \equiv 5 \pmod{9}$. Una ilustración adicional es la congruencia $-35 \equiv 45 \pmod{8}$. Aquí, 5 y 8 son primos relativos, y podemos cancelar el factor 5 para obtener $-7 \equiv 9 \pmod{8}$.

Obs! En el teorema, no es necesario que $c \not\equiv 0 \pmod{n}$, pues en ese caso tendríamos $c \equiv 0 \pmod{n} \Rightarrow (c,n) = n$, y la conclusión sería $a \equiv b \pmod{1}$, se mantiene automáticamente para todos entero a y b.

Ejemplos

Ejemplo: Hallar el residuo de la división 5³²⁰ entre 13.

Solución:

 $5^4 \equiv 1 \pmod{13}$. Además, los residuos de dividir 5^n por 13 se repiten en ciclos de 4:

Por otro lado, tenemos que $3 \equiv -1 \pmod{4}$, de modo que $3^{20} \equiv (-1)^{20} \equiv 1 \pmod{4}$. Esto es, 3^{20} deja residuo 1 al dividirse por 4. Así, $5^{3^{20}} \equiv 5^1 \equiv 5 \pmod{13}$.

Ejercicio: Hallar el residuo de la división de 3¹⁰⁰⁰ entre 101.

Aplicación: Cálculo de potencias grandes módulo *n*.

Con frecuencia deseamos calcular el valor de una potencia $a^k \pmod{n}$, cuando k es grande. ¿Existe una forma eficiente de obtener este cálculo?

Uno de esos procedimientos, es llamado el **algoritmo exponencial binario**, y se basa en elevar al cuadrado de forma sucesiva, módulo *n*.

Más específicamente, el exponente k se escribe en forma binaria, como

$$k = (a_m a_{m-1} \cdots a_2 a_1 a_0)_2 = \sum_{k=0}^m a_k d^k,$$

y los valores $a^{2^j} \pmod{n}$ se calculan para las potencias de 2, que corresponden a los 1's en la representación binaria de k. Estos resultados parciales luego se multiplican para dar la respuesta final.

Ejemplo: Calcular 5¹¹⁰ (mod 131).

Primero, expresamos el exonente 110 en base 2 como

$$110 = 64 + 32 + 8 + 4 + 2 = 2^6 + 2^5 + 2^3 + 2^2 + 2^1 = (1101110)_2.$$

Obtenemos ahora las potencias de $5^{2^j} \pmod{131}$, correspondientes a los 1's en la representación anterior:

$$5^2 \equiv 25 \pmod{131},$$
 $5^4 \equiv 25^2 \equiv 625 \equiv 101 \pmod{131},$
 $5^8 \equiv 101^2 \equiv 10201 \equiv 114 \pmod{131},$
 $5^{16} \equiv 114^2 \equiv 12996 \equiv 27 \pmod{131},$
 $5^{32} \equiv 27^2 \equiv 729 \equiv 74 \pmod{131},$
 $5^{64} \equiv 74^2 \equiv 5476 \equiv 105 \pmod{131}.$

Multiplicamos ahora los resultados parciales, correspondientes a los 1's en la expansión binaria del exponente

$$5^{110} = 5^{64} \cdot 5^{32} \cdot 5^8 \cdot 5^4 \cdot 5^2 \equiv 105 \cdot 74 \cdot 114 \cdot 101 \cdot 25 \equiv 60 \pmod{131}.$$

Como una variación del procedimiento anterior, se podrían calcular módulo 131, las potencias 5², 5³, 5⁶, 5¹², 5²⁴, 5⁴⁸, 5⁹⁶ para llegar al resultado

$$5^{110} = 5^{96} \cdot 5^{12} \cdot 5^2 \equiv 41 \cdot 117 \cdot 25 \equiv 60 \pmod{131},$$

lo que requeriría menos multiplicaciones.

Algoritmo: (Potenciación Binaria). Inputs: $x, k, n \in \mathbb{N}$ números naturales, k > 0, n > 1, donde x es la base, k es la potencia, y n es el módulo. Outputs: result = $x^k \pmod{n}$. Initialize answer result = 1, # repeat until k becomes o while (v > 0): If (v % 2 == 1): result = (result * x) % n. # binary shift to half y (y = y//2) $V = V \gg 1$. # change x to x2 x = (x*x) % n.return result.