The 43rd Annual ACM

International Collegiate Programming Contest Asia Regional – Seoul Nationwide Internet Competition

Practice Problem A Closest Pair

Time Limit: 1 Second

Given two sets P and Q of finitely many points in the plane, a closest pair of P and Q is a pair (p,q) of points $p \in P$ and $q \in Q$ such that the distance between p and q is the minimum among all pairs (p', q') with $p' \in P$ and $q' \in Q$.

Specifically, in this problem, by the *distance* between two points a and b in the plane, we mean:

$$d(a,b) = |x_a - x_b| + |y_a - y_b|$$

where x_a and y_a denote the x- and y-coordinates of point a, and x_b and y_b denote the x- and y-coordinates of point b. Then, a pair (p, q) with $p \in P$ and $q \in Q$ is a closest pair of P and Q if and only if the following holds:

$$d(p,q) = \min\{d(p',q') \mid p' \in P \text{ and } q' \in Q\}$$

Given two sets P and Q, write a program that computes the distance between a closest pair of P and Q and the number of distinct closest pairs of P and Q.

Note that you can assume the following on the input points in *P* and *Q*:

- 1. All the points in P lie on the horizontal line $y = c_1$ while all the points in Q lie on the horizontal line $y = c_2$ for some integers c_1 and c_2 .
- 2. No two input points in P have the same coordinates; no two input points in Q have the same coordinates.

Input

Your program is to read from standard input. The input consists of four lines. The first line contains two integers, $n \ (1 \le n \le 500,000)$ and $m \ (1 \le m \le 500,000)$, where n is the number of points in set P and m is the number of points in set Q. In the second line, two integers c_1 and $c_2 \ (-10^8 \le c_1, c_2 \le 10^8)$ are given in order, separated by a single space. In the third line, n distinct integers between -10^8 and 10^8 , inclusively, are given, separated by a single space, that are the x-coordinates of the points in set P, while their y-coordinates are all the same as c_1 . In the fourth line, m distinct integers between -10^8 and 10^8 , inclusively, are given, separated by a single space, that are the x-coordinates of the points in set Q, while their y-coordinates are all the same as c_2 .

Output

Your program is to write to standard output. Print exactly one line for the input. The line should contain two integers, separated by a single space, that represent the distance between a closest pair of P and Q and the number of closest pairs of P and Q in this order.

The following shows sample input and output for two test cases.

Sample Input 1 Output for the Sample Input 1

3 4	5 3
1 -3	
3 0 6	
3 0 6 -2 5 4 2	

Sample Input 2 Output for the Sample Input 2

5 5	•	1 1		
1 2				
-4 -	-10 -2 0 -1			
3 18	3 0 1 5			