SISTEM BILANGAN

(review)

1. SISTEM BILANGAN

- Adalah suatu cara untuk mewakili besaran dari suatu item fisik.
- Sistem bilangan yang banyak digunakan adalah sistem bilangan desimal, karena manusia mempunyai 10 jari.
- Lain halnya dengan komputer, logika di komputer diwakili oleh bentuk 2 elemen keadaan, yaitu OFF dan ON

Bit

- Unit terkecil representasi data
- Bit adalah singkatan dari Binary Digi
- Bit disimpan dan dimanipulasi dalam group
 - 8 bits = 1 byte
 - 4 bytes = 1 word (di banyak sistem)
 - 1024 (2¹⁰) bytes disebut Kilobyte

Metrik kuantitas data

Abbreviation	Symbol		Bytes	Power of 2
Bit	Bit			-
Byte	Byte	8 bits	1	20
KiloByte	KB	1024 Bytes	1024	210
MegaByte	MB	1024 KB	1,048,576	2 ²⁰
GigaByte	GB	1024 MB	1,073,741,824	2 ³⁰
TeraByte	ТВ	1024 GB	1,099,511,627,77 6	2 ⁴⁰
Kilobit	Kb	1000 bits	125	
Megabit	Mb	1000 Kb	125,000	

- Sistem bilangan yang dibahas :
 - Sistem bilangan DESIMAL (binary = 10)10 simbol bilangan = 0,1,2,3,4,5,6,7,8,9
 - Sistem bilangan BINARY (binary = 2)2 simbol bilangan = 0,1
 - Sistem bilangan OKTAL (deca = 8)8 simbol bilangan = 0,1,2,3,4,5,6,7
 - Sistem bilangan HEXADESIMAL (hexa = 16)16 simbol bilangan = 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

1.1 Sistem Bilangan Desimal

- Bentuk nilai suatu bilangan desimal dapat berupa integer desimal/pecahan desimal.
- Integer bilangan adalah nilai desimal absolut.

contoh:
$$8598_{10}$$
 $8 \times 10^{0} = 8$ $9 \times 10^{1} = 90$ $5 \times 10^{2} = 500$ $8 \times 10^{3} = 8000 + 100$ absolute value position value $\frac{1}{8598}$

- Absolute value: nilai mutlak dari masing-masingmasing digit bilangan
- Position value: penimbang/bobot dari masingmasing digit, tergantung letak posisinya, yaitu bernilai basis dipangkatkan dengan urutan posisinya.

Posisi digit	Nilai posisi
1	100 = 1
2	$10^1 = 10$
3	$10^2 = 100$
4	$10^3 = 1000$
5	$10^4 = 10000$

Sehingga bilangan <u>8598</u> dapat diartikan :

(8x1000)+(5x100)+(9x10)+(8x1)

1.2 Sistem Bilangan Binary (2)

contoh: 1001

Posisi digit	Nilai posisi	Evaluasi
1	$2^0 = 1$	$1 \times 2^0 = 1$
2	$2^1 = 2$	$0 \times 2^1 = 0$
3	$2^2 = 4$	$0 \times 2^2 = 0$
4	$2^3 = 8$	$1 \times 2^3 = 8$
5	$2^4 = 16$	9

1.3 Sistem Bilangan Oktal (8)

contoh: **5276**

Posisi digit	Nilai posisi	Evaluasi
1	$8^0 = 1$	$6 \times 8^0 = 6$
2	$8^1 = 8$	$7 \times 8^1 = 56$
3	$8^2 = 64$	$2 \times 8^2 = 128$
4	$8^3 = 512$	$5 \times 8^3 = 2560$
5	$8^4 = 4096$	2750

1.4 Sistem Bilangan Hexadesimal (16)

contoh: 2A7

Posisi digit	Nilai posisi	Kesimpulan
1	16 ⁰ = 1	$7 \times 16^0 = 7$
2	$16^1 = 16$	$A \times 16^1 = 160$
3	$16^2 = 256$	$2 \times 16^2 = 512$
4	$16^3 = 4096$	679
5	$16^4 = 65536$	

2. KONVERSI SISTEM BILANGAN

2.1 Konversi Sistem Bilangan Desimal 2.1.1 Konversi ke Binary

syarat : harus dibagi dengan nilai 2, setiap pembagian merupakan digit binary dari bilangan binary hasil konversi.

 $contoh: 45_{10} = 101101_{2}$

2	45	sisa 1 → LSB
2	22	sisa 0
2		sisa 1
2	5	sisa 1
2	2	sisa 0
	1 -	MSB 10110

2.1.2 Konversi ke Oktal

syarat : dibagi dengan 8

 $contoh: 385_{10} = 601_{8}$

8	385	sisa 1
8	48	sisa 0
8	6	601

2.1.3 Konversi ke Hexadesimal

syarat : dibagi dengan 16

 $contoh : 1583_{10} = 62F$

2.2 Konversi Sistem Bilangan Binary

2.2.1 Konversi ke Desimal

Syarat: dikalikan dengan binary 2

contoh:
$$1101_2 = (1x2^0)+(0x2^1)+(1x2^2)+(1x2^3)$$

= $1+0+4+8$
= 13_{10}

2.2.2 Konversi ke Oktal

Syarat: dibentuk dalam 3 digit

contoh:
$$11010100_2 = 324_8$$

 11010100
 $\frac{1}{3}$

2.2.3 Konversi ke Hexadesimal

Syarat: dibentuk dalam 4 digit

contoh:
$$11010100_2 = D4_{16}$$

 $\underbrace{11010100}_{13}$

2.3 Konversi Sistem Bilangan Oktal

2.3.1 Konversi ke Desimal

Syarat : dikalikan dengan 8

$$contoh : 324_8 = (4x8^0)+(2x8^1)+(3x8^2)$$

= $4 + 16 + 192$
= 212_{10}

2.3.2 Konversi ke Binary

Syarat: dibentuk dalam 3 digit bil. binary

contoh:
$$324_8 = 011010100_2$$

 011010100
 3 2 4

2.3.3 Konversi ke Hexadesimal

Syarat : di konversikan ke binary, kemudian dibentuk dalam 4 digit

contoh:
$$324_8 = D4_{16}$$

 11010100
 13

1-1 = 3

2.4 Konversi Sistem Bilangan Hexadesimal

2.4.1 Konversi ke Desimal

Syarat: dikalikan dengan 16

contoh:
$$B6A_{16} = (Ax16^{0})+(6x16^{1})+(Bx16^{2})$$

= $10 + 96 + 2816$
= 2922_{10}

2.4.2 Konversi ke Binary

Syarat: dibentuk dalam 4 digit bil. binary

contoh :
$$D4_{16} = 11010100_2$$

 $\underbrace{11010100}_{D}$

2.4.3 Konversi ke Oktal

Syarat : di konversikan ke binary, kemudian dibentuk dalam 3 digit

contoh:
$$BCA_{16} = D4_{16}$$

$$101111001010$$
5 7 1 2

$$1-0-1-0 = A=10$$

Bilangan pecahan

Desimal

$$5185.68_{10} = 5x10^3 + 1x10^2 + 8x10^1 + 5x10^0 + 6 \times 10^{-1} + 8 \times 10^{-2}$$

= $5x1000 + 1x100 + 8x10 + 5 \times 1 + 6x.1 + 8x.01$

Binary

Bilangan pecahan

Oktal

$$572.6_8 = 5 \times 8^2 + 7 \times 8^1 + 2 \times 8^0 + 6 \times 8^{-1}$$

= $320 + 56 + 16 + 0.75 = 392.75_{10}$

Hexadecimal

$$2A.8_{16} = 2 \times 16^{1} + 10 \times 16^{0} + 8 \times 16^{-1}$$

= $32 + 10 + 0.5 = 42.5_{10}$

Konversi Bilangan pecahan

Desimal ke Biner

Konversi fraksi-fraksi desimal ke biner: kalikan dengan 2 secara berulang sampai fraksi hasil perkalian = 0 (atau sampai jumlah penempatan biner yang diharapkan). Digit kesleuruhan hasil perkalian memrupakan jawaban, dengan yang pertama → MSB, dan yang terakhir →LSB.

Contoh: Konversi 0.3125₁₀ ke biner

