Utilização de Redes Neurais para Previsão de Precipitação em Manaus, Amazonas

IV Escola Regional de Informática - ERIN 2017

por

Nicoli Araújo, Elloá B. Guedes, Maria B. Olivera {npda.eng, ebgcosta, mloliveira}@uea.edu.br

do

Núcleo de Computação Escola Superior de Tecnologia Universidade do Estado do Amazonas Manaus – Amazonas – Brasil

- 1. Apresentação
- 2. Trabalhos Relacionados
- 3. Conjunto de Dados
- 4. Metodologia
- 5. Resultados
- Considerações Finais

Apresentação 2/22

Contextualização e Motivação

▶ Previsão de precipitação

- Implicações: agricultura, enchentes, recursos hídricos, etc.
- Fatores: localização geográfica, topografia, características climáticas, etc.

- Köppen: Tropical de monções
- Equatorial quente e úmido

Apresentação 3/

Contextualização e Motivação

- **▶ Redes Neurais**: modelo de Aprendizado de Máquina (AM)
 - **▶** Elaboração de soluções empíricas
 - Aprendizado a partir de dados
 - Inspirado no sistema nervoso humano
- Trabalhos anteriores Lima & Guedes
 - Utilização de RNAs para previsão da ocorrência de precipitações em Manaus um dia à frente
 - Ausência de estimativas do volume de precipitações

Apresentação 4/22

Contextualização e Motivação

- **▶ Redes Neurais**: modelo de Aprendizado de Máquina (AM)

 - Aprendizado a partir de dados
 - Inspirado no sistema nervoso humano
- Trabalhos anteriores Lima & Guedes
 - Utilização de RNAs para previsão da ocorrência de precipitações em Manaus um dia à frente
 - Ausência de estimativas do volume de precipitações

Objetivo do Trabalho

Prever o **volume mensal** de precipitações em Manaus, Amazonas utilizando Redes Neurais Artificiais

Apresentação 4/22

1. Apresentação

2. Trabalhos Relacionados

3. Conjunto de Dados

4. Metodologia

5. Resultados

Considerações Finais

Trabalhos Relacionados 5/22

Trabalhos Relacionados

- **Lima & Guedes** et al. (2015, 2016)
 - ▶ Previsão de precipitações um dia à frente
 - Tarefa de classificação
 - Time Delay Neural Networks
 - Dados de 1970 a 2010
 - Acurácia: 99.7%

Limitação:

Ausência do volume associado às precipitações

Vantagens:

- Dados advindos de estações meteorológicas
- Utilização de dados defasados
- ➤ Tipo de redes neurais considerado

Trabalhos Relacionados 6/2:

- 1. Apresentação
- 2. Trabalhos Relacionados
- 3. Conjunto de Dados
- 4. Metodologia
- 5. Resultados
- 6. Considerações Finais

Conjunto de Dados 7/22

Conjunto de Dados

- **▶ Período de dados**: 1950 a 2015
 - ♣ 65 anos de dados
 - Volume mensal de precipitações
 - ▶ Departamento de Meteorologia da UEA

- Análise descritiva dos dados
 - Diferentes características a cada mês
 - Presença de outliers
 - Ampla dispersão, etc.

Conjunto de Dados 8/2:

Conjunto de Dados

- Mês com maior volume de precipitação: Março: 321.58mm
- Mês com menor volume de precipitação: Agosto: 54.56mm

Conjunto de Dados 9/

Conjunto de Dados

- **▶ Índices Climáticos**: Niño 1+2, 3, 3.4 e 4
 - Relação com os fenômenos El Niño e La Niña
 - Influência na variabilidade das chuvas na bacia amazônica

▶ TSA: Temperatura na Superfície do Atlântico

Conjunto de Dados 10/22

- 1. Apresentação
- 2. Trabalhos Relacionados
- 3. Conjunto de Dados
- 4. Metodologia
- 5. Resultados
- 6. Considerações Finais

Metodologia 11/22

- Utilização de Séries Temporais
 - Janela de tempo: 6 meses
 - ➤ Precipitação, Índices Niño e TSA
 - Time Delay Neural Networks
 - ➤ Atributos de entrada: 36

- Normalização dos dados
 - $\tilde{\mathbf{N}}(0,1)$
 - Amortizar os dados na mesma escala
 - Precipitação e índices Niño

Metodologia 12/22

- Cálculo da anomalia
 - ightharpoonup Diferença em relação à média histórica: $x_i \overline{x}$
 - Muito adotada na Meteorologia
 - Captura noção de tendência

Metodologia 13/22

- Cálculo da anomalia
 - ightharpoonup Diferença em relação à média histórica: $x_i \overline{x}$
 - Muito adotada na Meteorologia
 - Captura noção de tendência

Abordagem

Prever a classificação da anomalia mensal do volume de precipitações em Manaus, Amazonas

Metodologia 13/23

- Dimensionamento das redes neurais
- ightharpoonup Camada de entrada: $N_i = 36$
- ightharpoonup Camada de saída: $N_0 = 1$
- Camadas ocultas: 1 a 2
- Neurônios nas camadas ocultas: regra da pirâmide geométrica

$$N_{h} = \alpha \sqrt{N_{i} \cdot N_{o}}, \tag{1}$$

- **Resultado**: $3 \le N_h \le 12$

letodologia 14/2

- Outros parâmetros:
 - Função de Ativação: Logística ou Tangente Hiperbólica
 - Épocas: 2000
 - ➤ Taxa de Aprendizado Inicial: 0.001 ou 0.003
 - Fração de Decréscimo: 0.0001 ou 0.01

Resultado do Dimensionamento

136 redes neurais a serem treinadas e testadas para cada mês do ano!

Metodologia 15/23

- Partição do conjunto de dados:
 - ▶ De 1950 a 2000 77%: Treinamento
 - ▶ 10% dos dados de treinamento reservados para validação
 - ▶ De 2001 a 2015 23%: Teste

Métrica de performance: Acurácia

Acuracia(%) =
$$\frac{100}{n} \sum_{t=1}^{n} 1 - |y_t - p_t|$$
 (2)

Metodologia 16/22

- 1. Apresentação
- 2. Trabalhos Relacionados
- 3. Conjunto de Dados
- 4. Metodologia
- 5. Resultados

6. Considerações Finais

Resultados 17/22

Resultados

- ▶ Identificação de uma rede neural para previsão do volume de precipitações em cada mês do ano
- Acurácia média: 92, 16%
- Não foi possível identificar um único modelo de RNAs capaz de capturar todas as características de todos os meses

Contraste com o trabalho de Lima & Guedes

Resultados 18/2

Resultados

Tabela 1: Redes neurais com maior acurácia para previsão do volume de precipitações em Manaus nos diferentes meses do ano.

Mês	Arquitetura	Função de Ativação	Taxa de Aprendizado	Taxa de Decréscimo	Acurácia
1	(37, 9, 1)	Tangente Hiperbólica	0.0001	0.003	0.93
2	(37, 7, 1)	Sigmoidal	0.0001	0.003	0.93
3	(37, 8, 4, 1)	Tangente Hiperbólica	0.0001	0.001	1.00
4	(37, 4, 1)	Tangente Hiperbólica	0.0001	0.001	0.87
5	(37, 8, 1)	Tangente Hiperbólica	0.0100	0.001	0.93
6	(37, 5, 1)	Tangente Hiperbólica	0.0100	0.003	0.87
7	(37, 8, 1)	Tangente Hiperbólica	0.0100	0.003	0.93
8	(37, 6, 6, 1)	Sigmoidal	0.0001	0.003	0.93
9	(37, 8, 4, 1)	Tangente Hiperbólica	0.0001	0.003	1.00
10	(37, 8, 1)	Tangente Hiperbólica	0.0001	0.003	0.87
11	(37, 8, 1)	Tangente Hiperbólica	0.0001	0.001	0.93
12	(37, 9, 3, 1)	Tangente Hiperbólica	0.0100	0.003	0.87

Resultados 19/2

- 1. Apresentação
- 2. Trabalhos Relacionados
- 3. Conjunto de Dados
- 4. Metodologia
- 5. Resultados

6. Considerações Finais

Considerações Finais 20/22

Considerações Finais

Contribuições

- Utilização de Aprendizagem de Máquina para previsão de precipitações
- Defasamento temporal e utilização de índices climáticos
- ▶ Identificação de 12 RNAs, sendo uma para cada mês do ano
- Acurácia média: 92, 16%

Considerações Finais 21/22

Considerações Finais

Contribuições

- ▶ Utilização de Aprendizagem de Máquina para previsão de precipitações
- Defasamento temporal e utilização de índices climáticos
- ▶ Identificação de 12 RNAs, sendo uma para cada mês do ano
- Acurácia média: 92, 16%

Trabalhos Futuros

- Comparar outras técnicas de Aprendizagem de Máquina
- Previsão do volume anual de precipitações

Considerações Finais 21/2:

Utilização de Redes Neurais para Previsão de Precipitação em Manaus, Amazonas

IV Escola Regional de Informática - ERIN 2017

por

Nicoli Araújo, Elloá B. Guedes, Maria B. Olivera {npda.eng, ebgcosta, mloliveira}@uea.edu.br

do

Núcleo de Computação Escola Superior de Tecnologia Universidade do Estado do Amazonas

Manaus - Amazonas - Brasil

Considerações Finais 22/22