_	\mathbf{r}	. 1	TT	• -		
1	RC	กบร	_H11	rwitz		
	1/1	, 4	- 1 1 U			

- 1.1. If a pole exist in left semiplane then it's a unstable system
- 1.2. Poles must appear in even lines for the Routh-Hurwitz
- 1.3. Signal change overwrite every other "minor rule"
- 1.4. Signal change implies pole in right semiplane
- **1.5.** Every pole in the imaginary axis must have a counterpart → multiplicity of 2

1.6.	Null l	ine	appears	only	if a	poly	nomial	divides	another
------	--------	-----	---------	------	------	------	--------	---------	---------

	013370376	annear	in	in odd	degree	polynomi	ial
\rightarrow	aiways	appear	111	ouu	uegree	porymoni	Iai

2. Poles and stability

- 2.1.1. Every single pole in left semi plane \rightarrow stable
- 2.1.2. Any pole in imaginary axis with 1 multiplicity \rightarrow partially stable
- 2.1.3. Any pole in right semi plane/ pole in imaginary axis/ higher multiplicity than 1 \rightarrow unstable

3. Good practices

3.1.1. Place every repeatable element in a line