

Physics-Informed Neural Networks to Solve the Many Electron Time-Dependent Schrödinger Equation

Presented by, Afthash Sahal Ubaid Puzhakkal a1913863

Introduction

- **The Schrödinger equation:** Fundamental equation in quantum mechanics that describes how the wavefunction, Ψ , evolves over time
- Traditional Methods: Analytical methods for simple systems or numerical techniques like Crank-Nicholson method for complex systems
- Project Goal: Solve the Time-Dependent Schrödinger equation (TDSE) using Physics-Informed Neural Networks (PINNs)
- **PINN:** They are a type of neural networks that learns to solve **Partial Differential Equations (PDEs)** by embedding the relevant equations into its loss function

Introduction

- Why PINNs?
 - Grid-free solution
 - No need for large labelled datasets for training: Model learn by satisfying the underlying physical equation using input points
- **Research Problem:** Solving TDSE is challenging and computationally expensive for higher dimensions when using numerical methods like Crank-Nicholson
- **Research Question:** Can PINNs efficiently and accurately solve the TDSE?

Dataset

- No labelled data
- Use random generated data for inputs, x and t
- Time (t): Uniform distribution with the problem's time domain
- Space (x): Uniform distribution for the baseline model and a normal distribution centred around the position of the quantum dot at the given time

Tasks

- Solve Schrödinger equation for:
 - Baseline Model: Electron inside a 1D harmonic oscillator
 - Quantum Dot Model: Electron inside a time-dependent moving quantum dot
 - 2D Quantum Dot: An experiment to check how both Crank-Nicholson and PINN handle higher dimensions
- Training Strategies:
 - Causal Training
 - Normalization Enforcement

Methodology

- Problem Setup
- PINN Model Architecture
- Loss Function
- Training Strategies
- Evaluation Metrics?

Problem Setup

- The **Schrödinger equation:** $i\hbar \frac{\partial \psi(x,t)}{\partial t} = \frac{-\hbar^2}{2m} \frac{\partial^2 \psi(x,t)}{\partial x^2} + V(x,t)\psi(x,t)$
- Where,
 - For baseline model: $V(x) = \frac{1}{2}m\omega^2 x^2$
 - For moving quantum dot model: $V(x,t) = \frac{1}{2}m\omega^2(x x_{qd}(t))^2$
- **Goal:** Predict the wavefunction, $\Psi(x, t)$ using PINNs

PINN Architecture

- Input: x, t
- Output: \mathbf{u} , \mathbf{v} , where $\mathbf{\Psi} = \mathbf{u} + \mathbf{i}\mathbf{v}$
- Fully connected feed forward neural networks:
 - Baseline Model: 6 HL, 512 neurons each
 - Moving Quantum Dot Model: 12 HL, 512 neurons each
- Activation Function:
 - First layer: tanh
 - Rest: SiLU

Loss Function

- Total loss, $L_{total} = \lambda_{pde} L_{pde} + \lambda_{ic} L_{ic} + \lambda_{bc} L_{bc}$
- Physics Loss (PDE loss), L_{pde}:
 - Pesidual, $R_{pde} = i\hbar \frac{\partial \psi(x,t)}{\partial t} + \frac{\hbar^2}{2m} \frac{\partial^2 \psi(x,t)}{\partial x^2} V(x,t)\psi(x,t)$
 - Model output: u, v
 - Physics loss, $L_{pde} = \frac{1}{N_{colloc}} \sum_{pde}^{N_{colloc}} (R_{pde}^{real})^2 + (R_{pde}^{img})^2$
- Initial Condition Loss, L_{ic}
- Boundary Condition Loss, L_{bc}

Training Strategies

- Causal Training:
 - Ensures the model learn in a time ordered manner
- Normalization Enforcement:
 - Force the wavefunction to stay normalized during training
- Both helped improve the accuracy of the moving quantum dot model

Results

- Baseline
- Moving Quantum Dot
 - Vanilla model
 - Causal model
 - Normalization model
- Time-Dependent Model
- 2D Quantum Dot Model

Baseline

Moving Quantum Dot

Causal Training

Normalization Enforcement

Result Comparison

Moving QD Models	$\Delta \Psi^2$ - max	Wavefunction Normalization		Training Time (minutes)
1110 0010		Mean	Standard deviation	(
Vanilla Model	0.03409	0.90468	0.04191	394
Causal Model	0.00607	0.98813	0.00447	381
Norm Model	0.00982	1.00111	0.00023	492

Time-Dependent Model

2D Quantum Dot

Discussion

- PINNs are flexible but they need improvements in handling longer time evolution
- Training strategies such as causal training and normalization enforcement improve the vanilla model
- 2D model showed promise for higher-dimensional problems
- Challenges:
 - Instability over time
 - Training sensitivity to model architecture
 - High computational cost for deeper networks

Conclusion

- Summary: PINNs are capable of solving TDSE
- Real-world use:
 - Quantum computing
 - Material design
- Future works:
 - Hybrid solvers: PINN + Crank-Nicholson
 - Generalization: V_{QD} , ω , V(x, t) etc as inputs

Thank You