Implementing and Evaluating the Efficiency of a Quantum Linear Systems Algorithm

Dhruv Yalamanchi

North Carolina School of Science and Mathematics

Research Objectives

- To implement the HHL algorithm in Qiskit and determine its dependence on input size N, condition number κ , and sparsity s
- To experimentally determine and compare the time complexities for both the HHL algorithm and Gaussian elimination with partial pivoting
- To approximate the threshold ranges for *N* at which the HHL algorithm surpasses the classical algorithm in efficiency

Motivation

• Linear systems of equations play a key role in many areas of science and technology including machine learning, approximation models, and electrical circuit analysis

Figure 1: Bloch sphere representation of a single qubit in an arbitrary superposition state. The red arrow indicates the qubit's statevector.

- Figure 1 illustrates how a pure qubit state $|\psi\rangle$ with $|\alpha|^2+|\beta|^2=1$ can be mapped to a point on the surface of a unit sphere as a superposition of the basis states $|0\rangle$ and $|1\rangle$
- By leveraging properties such as superposition and entanglement, quantum computing has been able to achieve considerable speedups over classical methods for numerous tasks

Quantum Linear Systems Problem (QLSP):

Given the $N \times N$ system

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,N} \\ a_{2,1} & a_{2,2} & \dots & a_{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N,1} & a_{N,2} & \dots & a_{N,N} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{bmatrix}$$

where only $A \in \mathbb{C}^{N \times N}$ and $\vec{b} \in \mathbb{C}^N$ are known, prepare a quantum state $|x\rangle$ proportional to the solution vector \vec{x}

- The Harrow-Hassidim-Lloyd (HHL) algorithm is a quantum algorithm that treats the QLSP when A is sparse and Hermitian
- The complexity and accuracy of the HHL output depend on characteristics such as N and A's sparsity s (defined as the percentage of elements that equal zero) and condition number κ (defined as the ratio of the matrix's largest and smallest eigenvalues)

HHL Algorithm

Input:

- A, an $N \times N$ Hermitian matrix with N distinct eigenvalues $\lambda_j \in \mathbb{R}$ and eigenvectors $|u_j\rangle \in \mathbb{R}^N$
- ullet $ec{b}$, an N-dimensional vector that, when normalized, has coefficients $b_i \in \mathbb{C}$
- n, the number of qubits in the clock register

Procedure:

Figure 2: Quantum circuit diagram for the HHL algorithm. Ancilla register A contains one ancillary qubit upon which we perform the conditional rotation R_y . Clock register C contains the n qubits we use to estimate A's eigenvalues. Input register I contains $\log_2 N$ qubits and will store $|x\rangle$. Slice $|\psi_i\rangle$ indicates the total state after step i. The system is initialized to $|\psi_0\rangle = |0\rangle_A \otimes |0\rangle_C^{\otimes n} \otimes |0\rangle_I = |0\rangle_A |0\rangle_C^{\otimes n} |0\rangle_I$.

(1)
$$|\psi_0\rangle \xrightarrow{\mathsf{Encode}\ |b\rangle\ \mathsf{into}\ \mathsf{register}\ /} |\psi_1\rangle = \sum_{j=0}^{N-1} b_j \, |0\rangle_A \, |0\rangle_C^{\otimes n} \, |u_j\rangle_I$$

(2)
$$|\psi_1\rangle$$
 Perform phase estimation $|\psi_2\rangle = \sum_{j=0}^{N-1} b_j |0\rangle_A |\widetilde{\lambda}_j\rangle_C |u_j\rangle_I$

$$|\psi_{2}\rangle \xrightarrow{\text{Apply controlled rotation}} |\psi_{3}\rangle = \sum_{j=0}^{N-1} b_{j} \left(\sqrt{1 - \frac{\gamma^{2}}{\widetilde{\lambda}_{j}^{2}}} |0\rangle_{A} + \frac{\gamma}{\widetilde{\lambda}_{j}} |1\rangle_{A}\right) \left|\widetilde{\lambda}_{j}\rangle_{C} |u_{j}\rangle_{I}$$

$$|\psi_{3}\rangle \xrightarrow{\text{Uncompute clock register}} |\psi_{4}\rangle = \sum_{j=0}^{N-1} b_{j} \left(\sqrt{1 - \frac{\gamma^{2}}{\widetilde{\lambda}_{j}^{2}}} |0\rangle_{A} + \frac{\gamma}{\widetilde{\lambda}_{j}} |1\rangle_{A}\right) |0\rangle_{C}^{\otimes n} |u_{j}\rangle_{I}$$

(5)
$$\sum_{j=0}^{N-1} \gamma \frac{b_j}{\widetilde{\lambda}_j} |1\rangle_A |0\rangle_C^{\otimes n} |u_j\rangle_I \xrightarrow{\text{Rescale first N elements}} \vec{x} \approx A^{-1} \vec{b}$$

$$|1\rangle_A \text{ subspace of system}$$

Output:

• Solution vector \vec{x}

Qiskit

- Qiskit is an open source software development kit that allows us to work with quantum computers, giving us access to multiple fundamental circuits, algorithms, simulators, and quantum hardware architectures
- We implement a general HHL algorithm circuit and execute it using the statevector simulator provided by Qiskit Aer

Complexity Analyses

- To compare against HHL, we implement Gaussian elimination with partial pivoting (GEPP), one of the most efficient classical linear systems algorithms, in Python
- ullet GEPP computes the exact solution to a linear system by converting A into upper triangular form and then solving using back substitution
- To conduct the complexity analysis for GEPP, we randomly generated different matrices A (of specified sparsity) and vectors \vec{b} for each $N \in \{32, 64, ..., 2048, 4096\}$

Figure 3: Scaling with N for the GEPP algorithm. Both runtime and N are plotted on a logarithmic scale. Lines of best fit are shown for $s=0.75,\,0.80,\,0.85,\,0.90,\,0.95$. In each case, we averaged 30 runs of the GEPP algorithm.

- The lines of best fit shown in Figure 3 are nearly identical with average slope 3.0799 and intercept −8.5719
- Each data set has a correlation r > 0.9998, suggesting that GEPP's runtime (T) scales polynomially in N according to

$$T(N) = (2.6800 \times 10^{-9}) N^{3.0799} \implies T(N) \approx O(N^3)$$

- ullet s and κ had no observable impact on runtime
- To evaluate the HHL algorithm, we randomly generated different Hermitian matrices A (with sparsities specified in Table 1) and vectors \vec{b} for each $N \in \{4, 8, 16, 32\}$

	Class #1	Class #2	Class #3	Class #4
N = 4	12/16	11/16	10/16	9/16
N = 8	56/64	54/64	52/64	50/64
N = 16	240/256	232/256	224/256	216/256
N = 32	992/1024	960/1024	928/1024	896/1024

Table 1: Table of sparsity classes for the HHL algorithm

Figure 4: Scaling with *N* for the HHL algorithm for the four sparsity classes outlined in Table 1. For all graphs, both runtime and *N* are plotted on a logarithmic scale. Lines of best fit are shown for each graph. For each *N* and sparsity class, there are 15 data points.

	Class #1	Class #2	Class #3	Class #4
Correlation	0.9954	0.9972	0.9953	0.9980
Slope	1.6428	1.7381	1.8477	1.9531
Intercept	-0.7411	-1.2061	-1.1404	-1.1852
T(N)	$0.1815 N^{1.6428}$	0.0622 $N^{1.7381}$	$0.0724 N^{1.8477}$	0.0653 $N^{1.9531}$

Table 2: Table summarizing the results from Figure 4(a-d)

Conclusions and Future Work

- The HHL algorithm provided a polynomial speedup over GEPP, running in $O(N^m)$ with 1.5 < m < 2.0 for all four sparsity classes
- Decreasing s resulted in more rapid scaling
- \bullet At all values of N there is a clear positive correlation between κ and runtime
- ullet Decreasing s and raising κ lowered solution accuracy
- Based on our experimental time complexities, HHL would overtake GEPP at approximately $N=2.8\times 10^5, 3.1\times 10^5, 1.1\times 10^6, 6.3\times 10^6$ for sparsity classes #1-#4, respectively
- We aim to assess the HHL algorithm's efficiency and accuracy for larger matrix sizes such as N=64 and N=128 to further support the observed trends in runtime
- We can model the accuracy and runtime tradeoff in the HHL algorithm when we introduce additional clock register qubits

Acknowledgements

- Dr. Jonathan Bennett, NC School of Science and Math
- Dr. Iman Marvian, Duke University
- NCSSM Foundation