

VALORES REGULARES

ALAN REYES-FIGUEROA GEOMETRÍA DIFERENCIAL

(AULA 14) 29.FEBRERO.2024

Puntos y valores regulares

Definición

Dada una función diferenciable $F:U\subseteq\mathbb{R}^n\to\mathbb{R}^m$, U abierto, decimos que $\mathbf{p}\in U$ es un **punto crítico** de F si la derivada $\mathrm{DF}(\mathbf{p}):\mathbb{R}^n\to\mathbb{R}^m$ no es sobreyectiva. La imagen $F(\mathbf{p})\in\mathbb{R}^m$ de un punto crítico se llama un **valor crítico** de F. Un punto $\mathbf{q}\in\mathbb{R}^m$ que no es un valor crítico se llama un **valor regular** de F.

<u>Obs:</u> En el caso que $F: U \subseteq \mathbb{R}^n \to \mathbb{R}$, $\mathbf{p} \in U$ es un punto crítico de F si $DF(\mathbf{p}) = \mathbf{o}$ (la terminología coincide con la de cálculo).

En este caso, como

$$DF(\mathbf{p}) = \begin{pmatrix} \frac{\partial F}{\partial x_1}(\mathbf{p}) & \frac{\partial F}{\partial x_2}(\mathbf{p}) & \dots & \frac{\partial F}{\partial x_n}(\mathbf{p}) \end{pmatrix},$$

decir que $DF(\mathbf{p})$ no es sobreyectiva implica que $\frac{\partial F}{\partial \mathbf{x}_i}(\mathbf{p}) = 0$, $\forall i$.

Portanto, para $\mathbf{q} \in F(U)$, decir que \mathbf{q} es un valor regular de F es equivalente a decir que las derivadas

$$\frac{\partial F}{\partial x_1}(\boldsymbol{p}), \frac{\partial F}{\partial x_2}(\boldsymbol{p}), \dots, \frac{\partial F}{\partial x_n}(\boldsymbol{p}),$$

no se anulan simultáneamente en cualquier punto de la imagen inversa

$$F^{-1}(\mathbf{q}) = \{(x_1, x_2, \dots, x_n) \in U \subset \mathbb{R}^n : F(x_1, x_2, \dots, x_n) = \mathbf{q}\}.$$

En el caso de funciones en \mathbb{R}^3 , $f:\subseteq\mathbb{R}^3\to\mathbb{R}$, basta verificar que las derivadas

$$\frac{\partial f}{\partial x}(\mathbf{p}), \frac{\partial f}{\partial y}(\mathbf{p}), \frac{\partial f}{\partial z}(\mathbf{p}),$$

nunca se anulan en $\mathbf{p} \in f^{-1}(\mathbf{q})$.

Proposición

Sea $f:U\subseteq\mathbb{R}^3\to\mathbb{R}$ una función diferenciable y sea $a\in f(U)$ un valor regular de f. Entonces, $S=f^{-1}(a)$ es una superficie regular.

Prueba:

Sea $\mathbf{p} \in f^{-1}(a)$. Entonces, $Df(\mathbf{p}) = \begin{pmatrix} \frac{\partial f}{\partial x}(\mathbf{p}) & \frac{\partial f}{\partial y}(\mathbf{p}) & \frac{\partial f}{\partial z}(\mathbf{p}) \end{pmatrix} \neq \mathbf{0}$. Sin pérdida, podemos asumir que $\frac{\partial f}{\partial z}(\mathbf{p}) \neq \mathbf{0}$.

Definimos la función $F:U\subseteq\mathbb{R}^3\to\mathbb{R}^3$ por

$$F(x,y,z) = (x,y,f(x,y,z)).$$

Claramente, F es diferenciable (pues f lo es), y su derivada está dada por

$$DF(x,y,z) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{\partial f}{\partial x}(\mathbf{p}) & \frac{\partial f}{\partial y}(\mathbf{p}) & \frac{\partial f}{\partial z}(\mathbf{p}) \end{pmatrix}.$$

Luego, $\det Df(\mathbf{p}) = \frac{\partial f}{\partial \mathbf{z}}(\mathbf{p}) \neq \mathbf{o}$. Por lo tanto, $DF(\mathbf{p})$ es un isomorfismo.

Por el Teorema de la Función Inversa, existen vecindades $V \subseteq U$ de \mathbf{p} y $W \subseteq F(U)$ de $F(\mathbf{p})$, tales que $F|_{V}: V \to W = F(V)$ es un difeomorfismo.

La función inversa $F^{-1}: W \to V$ tiene coordenadas

$$F^{-1}(u,v,w)=(u,v,g(u,v,w)).$$

Esto es x = u, y = v y z = g(u, v, w), para todo $(u, v, w) \in W$.

De nuevo denotemos por $\pi: \mathbb{R}^3 \to \mathbb{R}^2$ la proyección $\pi(x,y,z) = (x,y)$.

Definamos la función $h:\pi(V) \to \mathbb{R}$ por

$$h(x,y) = z = g(u,v,w) = g(x,y,a) = z(F^{-1}(x,y,a)),$$

donde $F^{-1}(x, y, a) = (x, y, f^{-1}(a))$.

Como
$$F(f^{-1}(a) \cap V) = W \cap \{(u, v, w) : w = a\}$$
, concluímos que $G_h = \{(x, y, g(x, y, a))\} = f^{-1}(a) \cap V$.

Así, $f^{-1}(a) \cap V$ es una vecindad coordenada de **p**, y como $f^{-1}(a)$ puede cubrirse por cartas locales, esto muestra que $S^{-1}(a)$ es superficie regular.

Ejemplos

1. Esfera:

La esfera $S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ es una superficie regular.

Considere la función $f(x, y, z) = x^2 + y^2 + z^2 - 1$. Observe que o es un valor regular de f.

2. Toro \mathbb{T}^2 :

El toro bidimensional \mathbb{T}^2 satisface la ecuación

$$z^2 = r^2 - (\sqrt{x^2 + y^2} - R)^2.$$

Haciendo $f(x, y, z) = z^2 + (\sqrt{x^2 + y^2} - R)^2 - r^2$, se puede observar que o es un valor regular de f.