Skewness वि क्रिक राष्ट्रप क्रेंग अवस् P Skewno. Skewed distribusion Symmetric distribusion e Equal Skewed dir tru busion वेडिएक राज्या अला symmetric distri mile Jurit 917 negative Possitive SK 5(-0.5 to 0.5) > Alonost smouth Possitive & Poss tivec aros furgore tendery coranger negatives negative an " U surprise to so moderately surved Positive: - 20000 1 to 8911 OF 1971/2 Walter W. DOSH

c.ofs go sortion negative are positive cooked and

Coficient of skewness !

if Sx = O; Symmetric dist.

SK 5(-0.5 to 0.5) -) Almost symmetic

SK)(0.5 to 1) -> moderately skewed which is positive

Sk (-1 to (-0.5) > Moderately skewed which is negative

SK((-1) -) Highly skewed

k X(1):

which is Doctor.

Calculate Coeff of Skewer I commit or

Comment on the shape of the durini bution

$$Med = 10$$

 $Mean = 8.8$

Standard Division
$$S \cdot D = \sqrt{\frac{\sum (n_i - \bar{n})^2}{n-1}}$$

$$= \sqrt{(10-8.8)^{2}+(2-8.8)^{2}+(1-8.8)^{2}+(20-8.8)^{2}+(1-8.8)^{2}}$$

$$S_{KZ} = \frac{3(8.8.-10)}{7.73}$$

Almost Symtise

Kurtosis

- 1. Lepto Kurtic
 - 2. Meso Kuntic
 - 3. Platy kuntic

Height 3 21m Meso kurtic

Height 3 90 BOTTELL (That SUM Lepto Koutic

plu 3 " u zost u Platy Kut

(5-8) + (5-2) + (5-5)

 μ = moments

JE M & moment

Coefficient of Kontosis!
$$S, 2, 8$$

$$\beta_2 = \frac{\beta M_4}{(M_2)^{\gamma}}$$

$$M_{5} = \frac{\sum_{i=1}^{N} (x_i - \overline{x})^5}{N}$$

$$M_{6} = \frac{(S-5)^6 + (2-5)^4 + (8-5)^6}{N}$$

$$M_{1} = \frac{(S-5)^6 + (2-5)^4 + (8-5)^6}{N}$$

$$M_{2} = \frac{(S-5)^7 + (2-5)^7 + (8-5)^6}{N}$$

(B) Nowable It suit Linear Relation 2005 (A)

Be layoun

Sur (alli, collection and alling colourse sin rineon chause sin rineon chause sin our list colourse sin our list

Chands sur a chands sur analysis obsites

constelation

Koul pearson constellation
$$\mathfrak{I} = \frac{\sum\limits_{i=1}^{n} (n_i - \overline{n})(y_i - \overline{y})}{\sqrt{\sum\limits_{i=1}^{n} (n_i - \overline{n})^{2} \sum\limits_{i=1}^{n} (y_i - \overline{y})^{2}}}$$

J 90 ratue (-1 to+1) 90 300 2000

Cornelation

Conselations | A conselation is a linear stelationship

Coefficient of consielation

Karl Pearson's coefficient of consile lation

$$\Pi = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^{\nu} \sum_{i=1}^{n} (y_i - \overline{y})^{\nu}}}$$

Proporties

- → 1 indiating a perifect negative relationship
- @ 0 indicating no relationship
- @ The size of the connelation indicate the sitneright Of the stelations Rup;

Ex. -0.89 indicates a stronger stelationship than a cofficient of +0.60

- The cloner to 1, the stronger positive linear relations
- 10 The clones to 0, The weake any positive in

C officient Range	Strengtu ot Relationsluip
0.00 - 0.20	very low
0.21 - 0.40	Low
0.41 - 60.60	Moderate
0.61 - 0.80	High Moderate
0.81 - 1.00	Verry High

$$\mathcal{I} = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^{\nu} \sum_{i=1}^{n} (Y_i - \overline{Y})^{\nu}}}$$

$$X = 9.3$$

 $\overline{Y} = 3.7$

1	SUPPly	Demand	$ x_i - \overline{x} $	Y-7.	x; -x̄)(Y,-▽̄)	(x! -x),	(Y,-Ÿ)~	
	5	2	5-4.3 = 0.7	2-3.7 =007 =-1.7	-1.19	0.49	2.89	
	6	4	6-43 =1.7	4-3.7 =0.3			0.90	
	2	5	2-4.3	5-3.7 = 1.3	-2.99	5.29	1.69	
	•				-3.67	8.67	5.48	

$$\frac{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})} (Y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})} (Y_i - \overline{y})}$$

$$z = \frac{-3.67}{6.9} = -0.53$$

Weaken any Positive linear Stelationship

> 1 Indep vari (Edu)

なるなななななななななななんと

DSimple R.A (two variables) ____ Dep. vari(salary)

Supply domand @ Multiple R.A (Mosse than two) - Mosse then - Indep

> 1. Dependent van [salary]

Simple R.A

Estimated simple linear Regression education Model/Line

$$\hat{y} = \hat{\beta} + \hat{\beta}_{i} \times_{i}$$

The pression parameter $\hat{\beta} = \hat{\beta} + \hat{\beta}_{i} \times_{i}$

The pression parameter $\hat{\beta} = \hat{\beta} + \hat{\beta}_{i} \times_{i}$

$$\hat{\beta}_{i} = Slope = \frac{\sum_{i=1}^{n} \left(n_{i} - \overline{n} \right) \left(y_{i} - \overline{y} \right)}{\sum_{i=1}^{n} \left(n_{i} - \overline{n} \right)^{n}}$$

$$\beta = Intercept = \overline{y} - \beta \overline{u}$$

T = 135 T = 12.5	$\beta = \frac{\sum [N_i - \overline{N}] (Y_i - \overline{Y}) 1}{\sum (N_i - \overline{N})}$	ŷ=B+Bn;
7= 12.	B = 7-B7	

Depen(Y) inde (n)

Income	Expenditure	
20	18	$(N-i\kappa)$
×(0.81-s	6	1)+(e.eF)+(e.eo.)=
15	15	68 =
12	11	

G: Determine the Regression line/on the bone of expenditure.

$$\hat{\beta} = \frac{\sum_{i=1}^{n} [(n_i - \bar{n})(y_i - \bar{y})]}{\sum_{i=1}^{n} (n_i - \bar{n})^2} e_{|X|} = e_{|X|} = e_{|X|} = e_{|X|}$$

$$= (20 - 13.5)(18 - 12.5) + (7 - 13.5)(6.6) - 12.5) + (15 - 13.5)(15 - 12.5) + (12 - 13.5)(11 - 12.5)$$

Skewness |
$$S_{K} = \frac{3(\text{mean-Median})}{\text{Standard Division}} \left[S.D = \sqrt{\frac{n}{n-1}} (n_{1} - \overline{n})^{2} \right]$$

Respective Kuthosis
$$B_2 = \frac{\mu_4}{(\mu_2)^{\nu}}$$

$$\mu_{p} = \frac{N}{N} (\mu_1 - \bar{\mu})^p$$

Cosnesselation)
$$P = \frac{\sum_{i=1}^{n} (N_i - \bar{N}) (Y_i - \bar{N}\bar{Y})}{\sum_{i=1}^{n} (N_i - \bar{N})^{r} \sum_{i=1}^{n} (Y_i - \bar{N}\bar{Y})^{r}}$$

Requession amagivsis
$$\hat{\beta} = \hat{\beta} + \hat{\beta} \cdot N_i$$

$$\hat{\beta} = \frac{\sum (N_i - N_i) (Y_i - N_i)}{\sum (N_i - N_i)^2}$$

$$\hat{\beta}_0 = \hat{\beta} \cdot \hat{y} \cdot \hat{\beta} \cdot \hat{N}_i$$

nession amaylysis
$$\hat{\beta} = \hat{\beta}_{o} + \hat{\beta}_{i} N_{i}$$

$$\hat{\beta} = \frac{\sum (n_{i} - \bar{n}) (\gamma_{i} - \bar{n})}{\sum (n_{i} - \bar{n})^{\gamma}}$$

$$\hat{\beta}_{o} = \beta \bar{\gamma} * \hat{\beta}_{i} \bar{N}$$

$$\hat{\beta}_{o} = \beta \bar{\gamma} * \hat{\beta}_{i} \bar{N}$$