Appunti Funzione

Una funzione f è una relazione tra gli insieme di A e B, che sono rispettivamente dominio e codominio, tale che la legge f verifica che:

per ogni a appartenente all'insieme A, esiste una sola b appartenente all'insieme B tale che b=f(a)

$$\forall a \in A, \exists! b \in B : f(a) = b$$

L'immagine

La funzione immagine prende un sottoinsieme di A e ne restituisce il sottoinsieme corrispondente di B, quindi l'insieme delle parti di A fa riferimento all'insieme delle parti di B ($f:P(A)\to P(B)$) e viene definita in questa maniera:

$$f(E) := f(a)|a \in E$$

dove E è un qualsiasi sottinsieme di A, ed f(E) è il sottinsieme di B che contiene tutte le immagini degl'elementi di E.

L'insieme immagine

Se prendiamo tutto l'insieme di A e lo mettiamo in E (invece che solo un sottoinsieme), l'immagine di A sotto la funzione f prende il nome di immagine di f:

$$imf := f(A)$$

questo forma il sottoinsieme di B formato da tutte le immagini degl'elementi A quindi l'insieme immagine si trova all'interno del Coodominio

Controimmagine

La funzione controimmagine, al contrario della funzione immagine va a restituire gli elementi dell'insieme A associati all'elemento dell'insieme B sul quale viene applicata la funzione immagine, quindi l'insieme delle parti di B fa riferimento all'insieme delle parti di A ($f: P(B) \to P(A)$), e si definisce:

$$f^{-1}(F):=a\in A|f(a\in F)$$

L'insieme controimmagine

quindi l'insieme delle controimmagini presenti nel dominio formano l'insieme controimmagine spiegazione grafica:

9 è l'immagine di 1, quindi 1 è la controimmagine di 9; lo stesso vale per 5 e 4 quindi possiamo affermare:

im f(1) = 9

Grafico

Il grafico di una funzione G(f) è il sottoinsieme del prodotto cartesiano tra il dominio ed il codominio AXB (ovvero tutte le coppie possibili tra A e B) e viene definito cosi:

il G(f) è uguale all'insieme di coppie a e b ristretto alle a appartenenti ad A, ed alle b appartenenti a B, dove f(a)=b

$$G(f)=(a,b)|a\in A,b\in B,f(a)=b$$

Iniettiva

Una funzione si dice iniettiva quando nessuna delle ordinate si incorcia con più di un punto della funzione.

Quindi f:A o B si dice iniettiva se per ogni a1,a2 appartenente all' insieme A,a_1 è diverso da a_2 come $f(a_1)$ è diverso da $f(a_2)$

Suriettiva

Una funzione si dice suriettiva quando l'immagine della funzione corrisponde al codominio B; quindi per ogni valore y del codominio vi è un valore x corrispondente della funzione.

quindi f:A o B si dice suriettiva se per ogni b appartenente a B, esiste almeno un' a appartenente ad A tale che f(a)=b

$$\forall b \in B, \exists a \in A: f(a) = b$$

Biettiva / Biunivoca

Una funzione si dice biettiva o biunivoca se è sia iniettiva che suriettiva

per ogni y presente nel codominio (uguale all'immagine della funzione), è presente una sola x corrispondente tale che f(x) = y

$$orall b \in B, \exists ! a \in A : f(a) = b$$

se la funzione è biunivoca possiamo ricavarne l'inversa $f^{-1}(b)=a$ rappresentando la funzione inversa:

$$f^{-1}:B o A, f^{-1}(b)=a\implies f(a)=b$$

⊗ 1 Error in region