Теория категорий

6 сентября 2021 г.

Содержание

Основные определения	3
Примеры на основные определения	3
Ещё определения	4

Основные определения

Определение 1. Kamezopus C — это

- класс ObC, элементы которого называются объектами;
- попарно непересекающиеся множества *морфизмов* $Hom(X,Y)^2$ для любых двух X и Y из $Ob\mathcal{C}$;
- операция композиции \circ : $Hom(Y,Z) \times Hom(X,Y) \to Hom(X,Z)$, удовлетворяющая двум аксиомам.

Аксиомы композиции:

- ассоциативность $(f) = f \circ (g)$;
- для любого A из C^3 существует $id_A \in Hom(A,A)$ такое, что $f_A = f$, $id_A = f$ для любого осмысленного f.

Определение 2. Два объекта X и Y в категории C называются uзоморфнымu, если $\exists f \in Hom(X,Y)$ и $g \in Hom(Y,X)$ такие, что $f = id_Y$, $g = id_X$. f и g в этом случае называются uзоморфизмамu.

Определение 3. Объект A в категории C называется *терминальным* (*инициальным*), если для любого X из C |Hom(X,A)| = 1 (|Hom(A,X)| = 1)

Утверждение 1. Если терминальный (инициальный) объект существует, то он единственен с точностью до единственного изоморфизма.

Доказательство. Пусть A и A' – терминальные объекты, тогда из определения существует единственный f из A в A' и единственный g из A' в A, композиция f в этом случае будет элементом Hom(A',A'), но $id_{A'}$ также элемент этого одноэлементного множества, поэтому $f=id_{A'}$, аналогично $g=id_A$, то есть A и A' изоморфны по определению.

Как можно заметить, инициальный и терминальный объекты подозрительно похожи, для того, чтобы формализовать наше подозрение, введём понятие двойственной (противоположной) категории.

Определение 4. Для категории C определим следующую категорию C^{op} , которую будем называть $\frac{\partial go \ddot{u}cmgeho \ddot{u}}{\partial go \ddot{u}cmgeho \ddot{u}}$: $ObC^{op} = ObC$, $Hom_{C^{op}}(X,Y) = Hom_{C}(Y,X)$, $f^{op} \circ^{op} g^{op} = g$.

Примечание 1. Иницальный объект в C соответсвует терминальному в C^{op} и наоборот.

Примеры на основные определения

Примеры категорий с указанием терминальных и инициальных объектов:

• Sets: ObSets = все множества, Hom(X,Y) = все отображения из X в Y, \circ – обычная композиция отображений. Инициальный объект – \emptyset , терминальный – любой, состоящий из одного элемента (нетрудно проверить, что они действительно попарно изоморфны);

 $^{^{1}}$ Если вдруг даже множество, то такая категория называется *малой*

 $^{^2{}m O}$ бозначение Mor на мой взгляд логичнее, но используется сильно реже

 $^{^{3}}Ob$ по-хорошему писать надо, но оно часто опускается

- Groups, Rings и т.д. морфизмы были определены на первом курсе. В $Vect_F$ и инициальный, и терминальный объект -0;
- *Тор*: объекты топологические пространства, морфизмы непрерывные отображения. Инициальный и терминальный объект такие же, как и для *Sets*;
- *HTop*: *ObHTop* компактно-порождённые топологические пространства, морфизмы непрерывные отображения, профакторизованные по гомотопиям;
- Категория с одним элементом, $Ob\mathcal{C} = X$, морфизмы в этом случае образуют моноид.
- Частичный (пред)порядок на M (ЧУМ), $Ob\mathcal{C} = M$, $Hom(x,y) = \emptyset$, если $x, = \emptyset$, иначе.
- Rels, ObRels = все множества, Hom(X,Y) = все подмножества в $X \times Y$, $R \circ S = \{(x,z) | \exists y \in Y, (x,y) \in S, (y,z) \in T\}$

Ещё определения

Определение 5. Произведением объектов X и Y в категории $\mathcal C$ называется объект $X \times Y$, обладающий следующим универсальным свойством: фиксированы морфизмы $pr_X: X \times Y \to X$ и $pr_Y: X \times Y \to Y$ и для любого объекта Z с морфизмами $f: Z \to X$ и $g: Z \to Y$, существует единственный морфизм $h: Z \to X \times Y$, делающий диаграмму коммутативной: $pr_X \circ h = f$, $pr_Y \circ h = g$.

Пользуясь принципом двойственности можно определить копроизведение, развернув все стрелки.

Определение 6. Копроизведением объектов X и Y в категории $\mathcal C$ называется объект $X \coprod Y$, обладающий следующим универсальным свойством: фиксированы морфизмы i_X : $X \coprod Y \leftarrow X$ и $i_Y: X \coprod Y \leftarrow Y$ и для любого объекта Z с морфизмами $f: Z \leftarrow X$ и $g: Z \leftarrow Y$, существует единственный морфизм $h: Z \leftarrow X \coprod Y$, делающий диаграмму коммутативной: $h \circ i_X = f$, $h \circ i_Y = g$.

Утверждение 2. Если (ко)произведение существует, то оно единственно с точностью до единственного изоморфизма.

Доказательство. Следует из определения через универсальное свойство. Если взять два объекта с этим свойством, то из них будут единственные стрелки в друг друга, а композиция окажется id, подробнее см. утверждение1. Далее подобные доказательства будут полностью опускаться.

Примеры на произведение и копроизведение:

- $Sets: X \times Y$ обычное декартово произведение; $X \coprod Y$ дизъюнктное объединение X и Y^4 ;
- Groups: $G \times H$ опять же декартово произведение; $G \coprod H = G * H$ свободное произведение групп (во втором семестре оно задавалось ровно этим универсальным свойством);
- Top: аналогично Sets;
- $YYM: x \times y = min(x, y), x \coprod y = max(x, y).$

Определим ещё одну важную категорию (пока что в частном случае, когда-нибудь здесь появится значительно более общее определение)

Определение 7. *Категорией стрелки* C/A, где C – категория, а A – объект в ней, называется следующая категория: ObC/A = пары (X, f), где $X \in ObC$, $f \in Hom(X, A)$; $Hom((X, f), (Y, g) = \{h \in Hom(X, Y) | f = g \circ h\}$.

Терминальным объектом в этой категории будет (A, id_A) . Аналогично, развернув стрелки, можно определить категорию $\mathcal{C} \setminus A$

Определение 8. Произведение в категории стрелки называется *расслоённым произведением*.

Рассмотрим примеры расслоённых произведений:

- Sets: $X \times_A Y = \{(x, y) \in X \times Y | f(x) = g(y) \};$
- $Sets^{op}$: $X \coprod_A Y = X \coprod Y / \sim$, где \sim порождено $f(a) \sim g(a)$. В Top это просто склейка:
- Groups: произведение как на Sets, $G \coprod_K H$ свободное произведение с объединённой подгруппой.

Определение 9. Φ унктором F называется отображение между двумя категориями C и D (определённое и на объектах, и на морфизмах) с ожидаемыми свойствами:

- Если $f \in Hom(X,Y)$, то $\mathcal{F}(f) \in Hom(\mathcal{F}(X),\mathcal{F}(Y))$;
- $\mathcal{F}(f \circ q) = \mathcal{F}(f) \circ \mathcal{F}(q);$
- $-\mathcal{F}(id_A) = id_{\mathcal{F}(A)}.$

Примеры функторов:

- $-\pi_1: Top \to Groups;$
- Если M_1 и M_2 моноиды (как категории с одним объектом), тогда \mathcal{F} гомоморфизм моноидов;
- M моноид, $\mathcal{F}: M \to Vect_K$ это выбор векторного пространства и гомоморфизма $M \to End(V)$;
- В ЧУМе функторы монотонные отображения;
- $-\mathcal{F}: \mathbb{1} \to \mathcal{C}$ выбор объекта в \mathcal{C} , а если наоборот, то функтор единственен, то есть одноэлементная категория с одним морфизмом это «терминальная» категория (строгое определение будет позднее).

 $^{^4}$ Для меня странно, что произведение в этом случае существует всегда, а двойственное к нему – нет, но что поделать