flea bit(e)s and pieces

Alexander Maringele

June 15th, 2016

Hofstadter's Law: It always takes longer than you expect, even when you take into account Hofstadter's Law.

— Douglas Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid

- 1 Previously
- 2 Procedure
- 3 Equality
- 4 Bernays-Schönfinkel-Ramsey
- 5 work to do

References

Bruno Dutertre, *Yices 2.2*, Computer-Aided Verification (CAV'2014) (Armin Biere and Roderick Bloem, eds.), Lecture Notes in Computer Science, vol. 8559, Springer, July 2014, pp. 737–744.

G. Sutcliffe, *The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts, v3.5.0*, Journal of Automated Reasoning **43** (2009), no. 4, 337–362.

Goal

Definition (Ordered Resolution)

$$\frac{L \vee C \quad \neg L' \vee D}{(C \vee D)\sigma}$$

where

 $L\sigma$ strictly maximal in $C\sigma$, $\neg L'\sigma$ maximal in $D\sigma$, $\sigma = \text{mgu}(L, L')$.

Definition (Inst-Gen)

$$\frac{L \vee C \quad \neg L' \vee D}{(L \vee C)\sigma \quad (\neg L' \vee D)\sigma}$$

where

$$\operatorname{sel}(L \vee C) = L$$
 $\operatorname{sel}(\neg L' \vee D) = \neg L'$ $\sigma = \operatorname{mgu}(L, L')$

6 / 17

Alexander Maringele flea June 15th, 2016

Example (Resolution)

$$\frac{\mathsf{P}(x) \vee \neg \mathsf{P}(y) \quad \neg \mathsf{P}(\mathsf{a})}{\neg \mathsf{P}(y) \quad \mathsf{P}(\mathsf{b})} \ x \mapsto \mathsf{a}$$

Example (Inst-Gen)

$$\frac{\mathsf{P}(x) \vee \neg \mathsf{P}(y)) \quad \neg \mathsf{P}(\mathsf{a})}{\mathsf{P}(\mathsf{a}) \vee \neg \mathsf{P}(y)} \ x \mapsto \mathsf{a}$$

$$S_1 \bot \supseteq \{\neg \mathsf{P}(\mathsf{a}), \mathsf{P}(\mathsf{b}), \frac{\mathsf{P}(\mathsf{a})}{\mathsf{P}(\mathsf{a})} \vee \neg \mathsf{P}(\bot)\}$$

$$\frac{\mathsf{P}(\mathsf{b}) \quad \mathsf{P}(\mathsf{a}) \vee \neg \mathsf{P}(y)}{\mathsf{P}(\mathsf{a}) \vee \mathsf{P}(\mathsf{b})} \ y \mapsto \mathsf{b}$$

$$S_2 \bot \supseteq \{\neg \mathsf{P}(\mathsf{a}), \mathsf{P}(\mathsf{b}), \mathsf{P}(\mathsf{a}) \vee \neg \mathsf{P}(\mathsf{b})\}$$

 $S_0 \perp = \{ \mathsf{P}(\perp) \vee \neg \mathsf{P}(\perp), \neg \mathsf{P}(\mathsf{a}), \mathsf{P}(\mathsf{b}) \}$

satisfiable

satisfiable

unsatisfiable

$$S = \{C, D, \ldots\} \qquad \exists \theta \ C\theta \subseteq D$$

C subsumes D

$$S$$
 satisfiable \iff $(S \setminus D)$ satisfiable

 θ is proper, $S \perp$ satisfiable $\stackrel{\mathsf{X}}{\Longleftrightarrow} (S \setminus D) \perp$ satisfiable

 θ is renaming, $S\perp$ satisfiable \iff $(S\setminus D)\perp$ satisfiable

Example

$$\begin{aligned} \{\mathsf{P}(x,y),\neg\mathsf{P}(\mathsf{a},z)\} & \quad \{\mathsf{P}(x,y),\neg\mathsf{P}(\mathsf{a},z),\mathsf{P}(\mathsf{a},z)\} \\ \{\mathsf{P}(\bot,\bot),\neg\mathsf{P}(\mathsf{a},\bot)\} & \quad \{\mathsf{P}(\bot,\bot),\neg\mathsf{P}(\mathsf{a},\bot), \textcolor{red}{\mathsf{P}(\mathsf{a},\bot)}\} \end{aligned}$$

- 1 representation of clauses, literals and terms
- 2 fast retrieval of clauses with a selected literal that is unifiable with the negation selected literal of a given clause
- 3 fast retrieval of clauses with a set of literals that is a renamed subset of a given clause

$$\{{}^{^{1:}}\!\mathsf{P}(\mathsf{f}(x,x)),{}^{^{2:}}\!\mathsf{P}(\mathsf{g}(\mathsf{a},x)),{}^{^{3:}}\!\mathsf{P}(\mathsf{f}(y,z)),{}^{^{4:}}\!\mathsf{P}(\mathsf{g}(\mathsf{a},y)),{}^{^{5:}}\!\mathsf{P}(\mathsf{f}(y,x)),{}^{^{6:}}\!\mathsf{P}(\mathsf{g}(y,a))\}$$

$$\neg P(g(b, z)) \mapsto \{P.1.g.1.b, P.1.g.2.*\} \mapsto \{6\} \cap \{2, 4, 6\}$$

Alexander Maringele

$$\ell_1 : \mathsf{P}(\mathsf{f}(x,y)), \ell_2 : \mathsf{P}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))), \ell_3 : \mathsf{P}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a}))$$

$$\ell_1 \mapsto \mathsf{P.f.} *.*$$

$$\ell_2 \mapsto \mathsf{P.f.} *.\mathsf{h.a}$$

$$\ell_3 \mapsto \mathsf{P.f.h.a.a}$$

$$\ell_3 \mapsto \mathsf{P.f.h.a.a}$$

$$\ell_3 \mapsto \mathsf{P.f.h.a.a}$$

$$\ell_3 \mapsto \mathsf{P.f.h.a.a}$$

Implementation

$$\begin{aligned} \text{Clause} &\mapsto (\text{Int, Set of term_t}) \\ \text{term_t} &\mapsto \text{Set of Int} \\ &\quad \text{Int} &\mapsto \text{Clause} \end{aligned}$$

$$S = \{P(a), \neg P(f(a, b)), f(x, b) = x\}$$

$$S \perp = \{P(a), \neg P(f(a, b)), f(\bot, b) = \bot\}$$

$$a \neq y \lor \neg P(a) \lor P(y)$$

unsatisfiable satisfiable P(a), congruence

Schemata

$$x = x \qquad s \neq s$$

$$x \neq y \lor y = x \qquad s \neq t$$

$$x \neq y \lor y \neq z \lor x = z \qquad s \neq t$$

$$x_1 \neq y_1 \lor x_2 \neq y_2 \lor f(x_1, x_2) = f(y_1, y_2) \qquad f(s_1, s_2) \neq f(t_1, t_2)$$

$$x \neq y \lor \neg P(x) \lor P(y) \qquad P(s)$$

$$x \neq y \lor \neg P(x) \lor P(y) \qquad \neg P(s)$$

Lemma

Symmetry and transitivity are consequences of reflexivity and congruence.

Symmetry.

$$\frac{\overline{x_1 \neq y_1 \vee x_2 \neq y_2 \vee x_1 \neq x_2 \vee y_1 = y_2}}{\frac{x \neq y \vee x \neq x \vee x \neq x \vee y = x}{x \neq y \vee y = x}} \, \mathop{\mathsf{R}}^{\mathsf{C}} x_1 \mapsto x, x_2 \mapsto x, y_1 \mapsto y, y_2 \mapsto x$$

Transitivity.

$$\frac{\overline{x_1 \neq y_1 \vee x_2 \neq y_2 \vee x_1 \neq x_2 \vee y_1 = y_2}}{\frac{x \neq x \vee y \neq z \vee x \neq y \vee x = z}{x \neq y \vee y \neq z \vee x = z}} \, \mathop{\mathsf{R}}^{\mathsf{C}} x_1 \mapsto x, x_2 \mapsto y, y_1 \mapsto x, y_2 \mapsto z$$

The Bernays–Schönfinkel-Ramsey class of first-order formulae is a decidable fragment of first-order logic. Each formula in this fragment is equivalent to a satisfiable formula

$$\exists a_1 \dots a_m \forall y_1 \dots y_n F$$

where F is quantifier free and does not contain function symbols.

Example

$$a \neq x \lor Q(a, x), Q(y, b)$$

Remark

In practice the addition of equality axioms reduces the success rates of (instantiation-based) automated theorem provers drastically (even in this segment).

 Alexander Maringele
 flea
 June 15th, 2016
 15 / 17

- migrate to Linux / Swift 3
- integrate unit superposition
- integrate ordered maximal completion
- experiments
- optimizations

