2201-353-353m-453-PCA-PCR-PLS-FA-TidyModeling Class 07a-p

Profs: R. H. French, L. S. Bruckman, P. Leu, K. Davis, S. Cirlos

TAs: W. Oltjen, K. Hernandez, M. Li, M. Li, D. Colvin

07 March, 2023

Contents

7.1.2.1 Class Re	eadings, Assignments, Textbooks Syllabus Topics	l
7.1.2.1.1	Reading, Lab Exercises, SemProjects	l
7.1.2.1.2	Textbooks	2
7.1.2.1.3	Tidyverse Cheatsheets, Functions and Reading Your Code)
7.1.2.1.4	Syllabus	3
7.1.2.2 ISLR6 is	s Model and Variable Selection	3
7.1.2.3 A system	matic/programmatic approach to data-driven modeling	3
7.1.2.4 Tidy Mo	$\operatorname{odeling} \ldots \ldots$	3
7.1.2.4.1	Introduction	3
7.1.2.5 An Exam	mple	ŝ
7.1.2.5.1	Load only the tidymodels library	ŝ
7.1.2.5.2	Pre-process	7
7.1.2.5.3	Data Sampling	7
7.1.2.5.4	Pre-process interface	3
7.1.2.5.5	Execute the pre-processing	J
7.1.2.5.6	Model training	1
7.1.2.5.7	Predictions	2
7.1.2.5.8	Model Validation	3
7.1.2.5.9	Per classifier metrics	1
7.1.2.5.10	Summary	3
7.1.2.6 Links .		3

7.1.2.1 Class Readings, Assignments, Textbooks Syllabus Topics

7.1.2.1.1 Reading, Lab Exercises, SemProjects

- Readings:
 - For today: ISLR8, DL08,09
 - For next class: ISLR9, (R4DS26-30)
- Laboratory Exercises:
 - LE4 given out
 - LE4 due March 9th
- Office Hours: (Class Canvas Calendar for Zoom Link)
 - Wednesdays @ 4:00 PM to 5:00 PM
 - Saturdays @ 3:00 PM to 4:00 PM
 - Office Hours are on Zoom, and recorded
- Semester Projects
 - Office Hours for SemProjs: Mondays at 4pm on Zoom

- DSCI 453 Students Biweekly Updates Due
 - * Update #4 is Due Friday March 10th
- DSCI 453 Students
 - * Next Report Out # is Due ** **
- All DSCI 353/353M/453, E1453/2453 Students:
 - * Peer Grading of Report Out #1 is Due Thursday March 2nd
- Exams
 - * MidTerm: Thursday March 9th, in class or remote, 11:30 12:45 PM
 - · CWRU Spring Break is March 13th to March 17, so NO CLASS
 - * Final: Thursday May 4th, 2023, 12:00PM 3:00PM, Nord 356 or remote

7.1.2.1.2 Textbooks

- $\bullet~$ Text Books for DSCI353/353M/453
 - R4DS: Wickham: R for Data Science
 - ISLR: Intro to Statistical Learning with R, 2nd Ed.
 - DLwR: Deep Learning with R 2nd, Ed., Chollet, Kalinoxski, Allaire,
 - DLGB: Deep Learning, Goodfellow, Bengio, Courville
- Magazine Articles about Deep Learning
 - DL1 to DL12 are "Deep Learning" articles in 3-readings/2-articles/
- Books from DSCI351/351M/451
 - Peng: R Programming for Data Science
 - Peng: Exploratory Data Analysis with R
 - Open Intro Stats, v4
 - R4DS: Wickham: R for Data Science

7.1.2.1.3 Tidyverse Cheatsheets, Functions and Reading Your Code

- Look at the Tidyverse Cheatsheet
 - Tidyverse For Beginners Cheatsheet
 - \ast In the Git/20s-dsci353-353m-453-prof/3-readings/3-CheatSheets/ folder
 - Data Wrangling with dplyr and tidyr Cheatsheet

Tidyverse Functions & Conventions

- The pipe operator %>%
- Use dplyr::filter() to subset data row-wise.
- Use dplyr::arrange() to sort the observations in a data frame
- Use dplyr::mutate() to update or create new columns of a data frame
- Use dplyr::summarize() to turn many observations into a single data point
- Use dplyr::arrange() to change the ordering of the rows of a data frame
- Use dplyr::select() to choose variables from a tibble,
 - * keeps only variables you mention
- Use dplyr::rename() keeps all the variables and renames variables
 - * rename(iris, petal_length = Petal.Length)
- These can be combined using dplyr::group_by()
 - * which lets you perform operations "by group".
- The %in% matches conditions provided by a vector using the c() function
- The **forcats** package has tidyverse functions
 - * for factors (categorical variables)
- The **readr** package has tidyverse functions
 - * to read_..., melt_... col_..., parse_... data and objects

Reading Your Code: Whenever you see

- The assignment operator <-, think "gets"
- The pipe operator, %>%, think "then"

7.1.2.1.4 Syllabus

7.1.2.2 ISLR6 is Model and Variable Selection

- So Regularization is reducing the dimensions / degrees of freedom in a model
 - By choosing fewer variables (e.g. variable selection)
 - By forcing β coefficients towards or to zero (e.g. Lasso)
 - Using constrained functions (e.g. natural splines)
 - By combining variables (e.g. PCA)

So its useful to recognize this need

• And learn all the ways we try to accomplish it

Principal component analysis

Principal component regression

Partial least squares regression

- PCA, PCR, PLS are covered in
 - ISLR 6.3
 - ISLR 10.2

Factor analysis

• Factor Analysis is covered in ESL Chapter 14.7

The similarities and differences among these approaches

- Can be subtle, or fine
- They are very powerful approaches.

7.1.2.3 A systematic/programmatic approach to data-driven modeling

- Its not just building one model
- Its building a series of models
- Using training and testing splits for Validation

So in Lab Exercises

- It was written so that you would do a large number of models
- And be discussing all the modeling choices
- And be able to demonstrate why you chose each choice
- And how, by quantitative statistical metrics,
 - The one you choose is the best one

7.1.2.4 Tidy Modeling

• Using Tidy approaches to enable efficient meta-modeling and model selection

7.1.2.4.1 Introduction

• Lets look at the tidymodels R package

Let frame where tidymodels fit

Day:Date	Foundation	Practicum	Readings(optional)	Due(optional)
w01a:Tu:1/17/23	Markov Cluster	R, Rstudio IDE, Git		(LE0)
w01b:Th:1/19/23	Stat. Learning, Approach	Bash, Git, Class Repo	ISLR1,2 (R4DS-1-3)	
w02a:Tu:1/24/23	Lin. Regr. Bias-Var.	SemProjs; Regr. Ovrvw	ISLR3,(R4DS-4-6)	(LE0:Due) LE1
w02b:Th:1/26/23	Train/Test, Bias vs. Vari.	Tidyverse Review	DL01 DL02 (R4DS-7,8)	
w02Pr:Fr:1/27/23	ADD DROP	DEADLINE		453 Update 1
w03a:Tu:1/31/23	Logistic Regr. Classif	Pred. Analytics, Regr.	DL03,ISLR4	
w03b:Th:2/2/23	LDA/QDA	ggPlot2, Code Expect.	DL04, DL05	LE1:Due, LE2
w03:Sa:2/4/23				LE1:Due
w04a:Tu:2/7/23	Resample Cross-Valid.	ggplot	ISLR5	
w04b:Th:2/9/23	DL, ML Overview	Multilevel Mod.	ISLR6 (R4DS9-16)	
w04Pr:Fr:2/10/23				453 Update 2
w05a:Tu:2/14/23	Resampling: Bootstrap	Bootstrap Mixed Effects	DL2R1, DL06,07	LE2:Due, LE3
w05b:Th:2/16/23	Subset Selec., Shrink.	Dim. Red. PCA	DLwR2	
w05Pr:Fr:2/17/23				453 Rep. Out 1
w06a:Tu:2/21/23	ML with NNs	ggplot, clustering	DLwR3	
w06b:Th:2/23/23	Beyond Linear Modls	Feature Select., Caret	ISLR7 (R4DS22-25)	LE3:Due, LE4
w06Pr:Fr:2/24/23				453 Update 3
w07a:Tu:2/28/23	Dec. Trees, Rand. Forest	Tidy Modeling	ISLR8, DL08,09	
w07b:Th:3/2/23	MidTerm Review, SVM	SVM, SVR, ROC	ISLR9 (R4DS26-30)	Peer Review 1
w08a:Tu:3/7/23	ML Overview	, Keras/TF2, Torch	ISLR10.1,10.2	
w08b:Th:3/9/23	MIDTERM EXAM		DL10,11	LE4:Due LE5
w08Pr:Fr:3/10/23			-	453 Update 4
Tu:3/14/23	SPRING	BREAK	ISLR10.3,10.4	
Th:3/16/23	SPRING	BREAK	ISLR10.5,10.6,	
w09a:Tu:3/21/23	Deep Learning	TF2 Keras Intro		ISLR10.7,10.8, DLwR3
w09b:Th:3/23/23	Computer Vision, CNN	CNN w/TF2, Overfit	DLwR4, DL12,13	
w09Pr:Fr:3/24/23				453 Rep. Out 2
w10a:Tu:3/28/23	Deep Learn Intro	NN Types	DLwR5 Hinton ImageNet	
w10b:Th:3/30/23	DL CNN,RNN ImageNet	NN Types, CNN wTF2		
w10Pr:Fr:3/31/23				
-, - ,				453 Upd.5 &
				PrRev 2
Sa:4/1/23				
Sa:4/1/23 w11a:Tu:4/4/23	Fitting NNs	AUC,Prec,Recall Fruit		PrRev 2
Sa:4/1/23	Fitting NNs NLP, Graphs & ML	AUC,Prec,Recall Fruit	LeCun DL Rev. 2015	PrRev 2
Sa:4/1/23 w11a:Tu:4/4/23		AUC,Prec,Recall Fruit NLP with sequences	LeCun DL Rev. 2015 DLwR6	PrRev 2
Sa:4/1/23 w11a:Tu:4/4/23 w11b:Th:4/6/23	NLP, Graphs & ML			PrRev 2
Sa:4/1/23 w11a:Tu:4/4/23 w11b:Th:4/6/23 w12a:Tu:4/11/23	NLP, Graphs & ML Graphs & ML	NLP with sequences Graph Repr Proc Wrk-		PrRev 2 LE5:Duc LE6
Sa:4/1/23 w11a:Tu:4/4/23 w11b:Th:4/6/23 w12a:Tu:4/11/23 w12b:Th:4/13/23	NLP, Graphs & ML Graphs & ML NLP w attention	NLP with sequences Graph Repr Proc Wrk- flw		PrRev 2 LE5:Duc LE6
Sa:4/1/23 w11a:Tu:4/4/23 w11b:Th:4/6/23 w12a:Tu:4/11/23 w12b:Th:4/13/23 w13a:Tu:4/18/23 w13b:Th:4/20/23 w13Pr:Fr:4/21/23	NLP, Graphs & ML Graphs & ML NLP w attention DL Frameworks Linux Distros XGBoost	NLP with sequences Graph Repr Proc Wrk- flw Explaining DL w Lime	DLwR6	PrRev 2 LE5:Duc LE6 LE6:Duc LE7
Sa:4/1/23 w11a:Tu:4/4/23 w11b:Th:4/6/23 w12a:Tu:4/11/23 w12b:Th:4/13/23 w13a:Tu:4/18/23 w13b:Th:4/20/23 w13Pr:Fr:4/21/23	NLP, Graphs & ML Graphs & ML NLP w attention DL Frameworks Linux Distros XGBoost Tranformers	NLP with sequences Graph Repr Proc Wrkflw Explaining DL w Lime Explain Preds	DLwR6	PrRev 2 LE5:Duc LE6 LE6:Duc LE7 453 Rep. Out 3 Due
Sa:4/1/23 w11a:Tu:4/4/23 w11b:Th:4/6/23 w12a:Tu:4/11/23 w12b:Th:4/13/23 w13a:Tu:4/18/23 w13b:Th:4/20/23 w13Pr:Fr:4/21/23 w14a:Tu:4/25/23 w14b:Th:4/27/23	NLP, Graphs & ML Graphs & ML NLP w attention DL Frameworks Linux Distros XGBoost	NLP with sequences Graph Repr Proc Wrk- flw Explaining DL w Lime	DLwR6	PrRev 2 LE5:Duc LE6 LE6:Duc LE7 453 Rep. Out 3 Due LE7:Due
Sa:4/1/23 w11a:Tu:4/4/23 w11b:Th:4/6/23 w12a:Tu:4/11/23 w12b:Th:4/13/23 w13a:Tu:4/18/23 w13b:Th:4/20/23 w13Pr:Fr:4/21/23	NLP, Graphs & ML Graphs & ML NLP w attention DL Frameworks Linux Distros XGBoost Tranformers	NLP with sequences Graph Repr Proc Wrkflw Explaining DL w Lime Explain Preds	DLwR6	PrRev 2 LE5:Due LE6 LE6:Due LE7 453 Rep. Out 3 Due

Table 1: DSC1353-353M-453 Weekly Syllabus. R4DS-x.y, OISx.y, ISLRx.y, DLwRx.y, DLGBx.y refers to what the syllabus assigned as reading in our textbooks. DLx are deep learning articles. 4

Figure 1: DSCI351-351M-451 Syllabus

Figure 2: Figure 1. Tidy Model Work Flow, from R4DS

• in a data-driven analysis

Lets illustrates what step each package covers.

Developing models is a bit of a more complex

- developing models can benefit from having a tidyverse-friendly interface
- that is where tidymodels package can come in

It is important to clarify that

- the group of packages that make up tidymodels
 - do not implement statistical models themselves.
- Instead, they focus on making all the tasks
 - around fitting the model much easier.
- Those tasks are
 - data pre-processing and
 - results validation.

So tidymodels is an R metapackage

- Similar in this sense to the caret package
- caret Classification and Regression Training

In a way, the Model step itself has sub-steps.

- For these sub-steps, tidymodels provides one or several packages.
- Here we'll look at four tidymodels packages:

The Tidymodel packages

- rsample Different types of re-samples
- recipes Transformations for model data pre-processing
- parsnip A common interface for model creation
- yardstick Measure model performance

The following diagram

- illustrates each modeling step, and
- lines up the tidymodels packages we'll discuss

Pre-Process → Train → Validate

Figure 3: The modeling steps

In a given analysis, a tidyverse package may or may not be used.

- For example, not all projects need to work with time variables,
 - so there is no need to use functions from the hms package.
- The same idea applies to tidymodels.
- Depending on what type of modeling is going to be done,
 - only functions from some its packages will be used.

7.1.2.5 An Example

- Lets use the iris data set for an example.
 - Its data is already imported
 - and sufficiently tidy to move directly to modeling.

7.1.2.5.1 Load only the tidymodels library

- We can just load the tidymodel metapackage
 - Apart from loading its core modeling packages,
 - tidymodels also conveniently loads some tidyverse packages,
 - * including dplyr and ggplot2.
 - Throughout this exercise, we will use some functions out of those packages,
 - * but we don't have to explicitly load them into our R session.

library(tidyverse)

```
## -- Attaching packages ----- tidyverse 1.3.1 --
## v ggplot2 3.4.1
                  v purrr
                          1.0.1
## v tibble 3.1.8
                  v dplyr
                          1.1.0
## v tidvr
          1.3.0
                  v stringr 1.5.0
## v readr
          2.1.3
                  v forcats 1.0.0
## -- Conflicts ----- tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                masks stats::lag()
library(tidymodels)
## -- Attaching packages ------ tidymodels 1.0.0 --
## v broom
              1.0.3
                      v rsample
                                   1.1.1
## v dials
              1.1.0
                      v tune
                                   1.0.1
```

```
1.0.4
## v infer
                        v workflows
                                      1.1.3
## v modeldata 1.1.0
                       v workflowsets 1.0.0
                        v yardstick
## v parsnip
              1.0.4
                                    1.1.0
## v recipes
                1.0.4
## -- Conflicts ----- tidymodels_conflicts() --
## x scales::discard() masks purrr::discard()
## x dplyr::filter() masks stats::filter()
## x recipes::fixed() masks stringr::fixed()
## x dplyr::lag()
                masks stats::lag()
## x yardstick::spec() masks readr::spec()
## x recipes::step() masks stats::step()
## * Dig deeper into tidy modeling with R at https://www.tmwr.org
```

7.1.2.5.2 Pre-process

- This step focuses on making data
 - suitable for modeling by using data transformations.

All transformations can be accomplished

• with dplyr, or other tidyverse packages

Consider using tidymodels packages

• when model development is more heavy and complex.

7.1.2.5.3 Data Sampling

- The rsample::initial_split() function is specially built
 - to separate the data set into a training and testing set.
 - By default,
 - * it holds 3/4 of the data for training
 - * and the rest for testing.
 - That can be changed by passing the **prop** argument.
 - This function generates an rsplit object,
 - * not a data frame.
 - The printed output shows the row count
 - * for testing, training, and total.

```
iris_split <- initial_split(iris, prop = 0.6)
iris_split</pre>
```

```
## <Training/Testing/Total>
## <90/60/150>
```

```
## <90/60/150>
```

To access the observations reserved for training,

• use the training() function.

Similarly, use testing()

• to access the testing data.

```
iris_split %>%
  training() %>%
  glimpse()
```

```
## Rows: 90
## Columns: 5
## $ Sepal.Length <dbl> 5.4, 6.0, 6.1, 6.0, 6.6, 5.8, 6.3, 5.0, 6.2, 6.7, 5.0, 4.~
## $ Sepal.Width <dbl> 3.9, 2.2, 3.0, 3.0, 3.0, 2.6, 2.5, 3.4, 3.4, 3.1, 3.4, 3.~
## $ Petal.Length <dbl> 1.3, 4.0, 4.9, 4.8, 4.4, 4.0, 5.0, 1.6, 5.4, 5.6, 1.5, 1.~
## $ Petal.Width <dbl> 0.4, 1.0, 1.8, 1.8, 1.4, 1.2, 1.9, 0.4, 2.3, 2.4, 0.2, 0.~
                  <fct> setosa, versicolor, virginica, virginica, versicolor, ver~
## $ Species
## Observations: 90
## Variables: 5
## $ Sepal.Length <dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.9, 5.4, 4...
## $ Sepal.Width <dbl> 3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 3.1, 3.7, 3...
## $ Petal.Length <dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.5, 1.5, 1.5, 1.
## $ Petal.Width <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.1, 0.2, 0...
## $ Species
                  <fct> setosa, setosa, setosa, setosa, setosa, setosa, set...
```

These sampling functions

- are courtesy of the rsample package,
- which is part of tidymodels.

7.1.2.5.4 Pre-process interface

- In tidymodels, the recipes package
 - provides an interface that specializes in data pre-processing.

Within the package,

- the functions that start, or execute,
 - the data transformations are named after cooking actions.
- That makes the interface more user-friendly.

For example:

- recipe() Starts a new set of transformations to be applied,
 - similar to the ggplot() command.
 - Its main argument is the model's formula.
- prep() Executes the transformations
 - on top of the data that is supplied
 - (typically, the training data).

Each data transformation is a step.

- Functions correspond to specific types of steps,
 - each of which has a prefix of step_

There are several step_ functions;

- in this example, we will use three of them:
- step_corr()
 - Removes variables
 - that have large absolute correlations with other variables
- step_center()
 - Normalizes numeric data to have a mean of zero
- step scale()
 - Normalizes numeric data to have a standard deviation of one

Another nice feature is that the step can be applied

• to a specific variable,

- groups of variables,
- or all variables.

The all_outcomes() and all_predictors() functions

• provide a very convenient way to specify groups of variables.

For example, if we want the step_corr()

- to only analyze the predictor variables,
- we use step_corr(all_predictors()).
 - This capability saves us from having to enumerate each variable.

In the following example,

- we will put together
 - the recipe(), prep(), and step functions
 - to create a recipe object.
- The training() function
 - is used to extract that data set
 - from the previously created split sample data set.

```
iris_recipe <- training(iris_split) %>%
  recipe(Species ~.) %>%
  step_corr(all_predictors()) %>%
  step_center(all_predictors(), -all_outcomes()) %>%
  step_scale(all_predictors(), -all_outcomes()) %>%
  prep()
```

If we call the iris_recipe object,

- it will print details about the recipe.
- The Operations section describes what was done to the data.
- One of the operations entries in the example
 - explains that the correlation step
 - removed the Petal.Length variable.

iris_recipe

```
## Recipe
##
## Inputs:
##
##
         role #variables
##
      outcome
                        4
##
   predictor
##
## Training data contained 90 data points and no missing data.
##
## Operations:
##
## Correlation filter on Petal.Length [trained]
## Centering for Sepal.Length, Sepal.Width, Petal.Width [trained]
## Scaling for Sepal.Length, Sepal.Width, Petal.Width [trained]
## Data Recipe
##
## Inputs:
##
```

```
## role #variables
## outcome 1
## predictor 4
##
## Training data contained 90 data points and no missing data.
##
## Operations:
##
## Correlation filter removed Petal.Length [trained]
## Centering for Sepal.Length, Sepal.Width, Petal.Width [trained]
## Scaling for Sepal.Length, Sepal.Width, Petal.Width [trained]
```

7.1.2.5.5 Execute the pre-processing

- The testing data can now be transformed
 - using the exact same
 - * steps,
 - * weights,
 - * and categorization
 - used to pre-process the training data.

To do this, another function

- with a cooking term is used: bake().
- Notice that the testing() function is used
 - in order to extract the appropriate data set.

```
iris testing <- iris recipe %>%
  bake(testing(iris_split))
glimpse(iris_testing)
## Rows: 60
## Columns: 4
## $ Sepal.Length <dbl> -1.37182722, -1.49717184, -1.74786107, -1.12113798, -1.24~
## $ Sepal.Width <dbl> 0.21695305, 0.66582143, -0.45634952, -0.00748114, -0.2319~
## $ Petal.Width <dbl> -1.2513777, -1.1236861, -1.2513777, -1.3790693, -1.379069~
## $ Species
                  <fct> setosa, setosa, setosa, setosa, setosa, setosa, setosa, s~
## Observations: 60
## Variables: 4
## $ Sepal.Length <dbl> -1.597601746, -1.138960096, 0.007644027, -0.7949788...
## $ Sepal.Width <dbl> -0.41010139, 0.71517681, 2.06551064, 1.61539936, 0....
## $ Petal.Width <dbl> -1.2085003, -1.2085003, -1.2085003, -1.0796318, -1....
## $ Species
                  <fct> setosa, setosa, setosa, setosa, setosa, setosa, set...
```

Performing the same operation

- over the training data is redundant,
 - because that data has already been prepped.

To load the prepared training data

- into a variable,
 - we use juice().
- It will extract the data
 - from the iris_recipe object.

```
iris_training <- juice(iris_recipe)</pre>
glimpse(iris_training)
## Rows: 90
## Columns: 4
## $ Sepal.Length <dbl> -0.49441489, 0.25765283, 0.38299745, 0.25765283, 1.009720~
## $ Sepal.Width <dbl> 1.78799238, -2.02738885, -0.23191533, -0.23191533, -0.231~
## $ Petal.Width <dbl> -0.99599447, -0.22984488, 0.79168791, 0.79168791, 0.28092~
                  <fct> setosa, versicolor, virginica, virginica, versicolor, ver~
## $ Species
## Observations: 90
## Variables: 4
## $ Sepal.Length <dbl> -0.7949789, -1.0242997, -1.2536205, -1.3682809, -0....
## $ Sepal.Width <dbl> 0.94023245, -0.18504575, 0.26506553, 0.04000989, 1....
## $ Petal.Width <dbl> -1.2085003, -1.2085003, -1.2085003, -1.2085003, -1....
                  <fct> setosa, setosa, setosa, setosa, setosa, setosa, set...
## $ Species
```

7.1.2.5.6 Model training

- In R, there are multiple packages that fit the same type of model.
 - It is common for each package to provide a unique interface.
 - In other words.
 - * things such as an argument for the same model attribute
 - * is defined differently for each package.

For example, the ranger and randomForest packages

- fit Random Forest models.
- In the ranger() function,
 - to define the number of trees we use num.trees.
- In randomForest package,
 - that argument is named ntree.
- It is not easy to switch between packages
 - to run the same model.

Instead of replacing the modeling package,

• tidymodels replaces the interface.

Better said, tidymodels

- provides a single set of functions and arguments
 - to define a model.
- It then fits the model
 - against the requested modeling package.

In the example below,

- the rand_forest() function is used
 - to initialize a Random Forest model.
 - To define the number of trees,
 - the trees argument is used.
- To use the ranger version of Random Forest,
 - the set engine() function is used.
- Finally, to execute the model,
 - the fit() function is used.
- The expected arguments are the formula and data.

• Notice that the model runs

```
- on top of the juiced trained data.
```

```
iris_ranger <- rand_forest(trees = 100, mode = "classification") %>%
  set_engine("ranger") %>%
  fit(Species ~ ., data = iris_training)
```

The payoff is that

- if we now want to run the same model
 - against randomForest,
- we simply change the value in set_engine()
 - to randomForest.

```
iris_rf <- rand_forest(trees = 100, mode = "classification") %>%
  set_engine("randomForest") %>%
  fit(Species ~ ., data = iris_training)
```

It is also worth mentioning that

- the model is not defined
 - in a single, large function with a lot of arguments.
- The model definition is separated
 - into smaller functions
 - such as fit() and set_engine().
- This allows for a more flexible, and easier to learn, interface.

7.1.2.5.7 Predictions

- Instead of a vector,
 - the predict() function
 - * ran against a parsnip model
 - * returns a tibble.
 - By default, the prediction variable
 - * is called .pred_class.
 - In the example, notice that
 - * the baked testing data is used.

predict(iris_ranger, iris_testing)

```
## # A tibble: 60 x 1
##
      .pred_class
##
      <fct>
##
   1 setosa
##
   2 setosa
##
   3 setosa
##
  4 setosa
##
  5 setosa
## 6 setosa
##
   7 setosa
## 8 setosa
## 9 setosa
## 10 setosa
## # ... with 50 more rows
## # A tibble: 60 x 1
      .pred_class
```

```
## <fct>
## 1 setosa
## 2 setosa
## 3 setosa
## 4 setosa
## 5 setosa
## 6 setosa
## 7 setosa
## 8 setosa
## 9 setosa
## 10 setosa
## # ... with 50 more rows
```

It is very easy to add the predictions

- to the baked testing data
- by using dplyr's bind_cols() function.

```
iris_ranger %>%
  predict(iris_testing) %>%
  dplyr::bind_cols(iris_testing) %>%
  glimpse()
## Rows: 60
## Columns: 5
## $ .pred_class <fct> setosa, setosa, setosa, setosa, setosa, setosa, setosa, s~
## $ Sepal.Length <dbl> -1.37182722, -1.49717184, -1.74786107, -1.12113798, -1.24~
## $ Sepal.Width <dbl> 0.21695305, 0.66582143, -0.45634952, -0.00748114, -0.2319~
## $ Petal.Width <dbl> -1.2513777, -1.1236861, -1.2513777, -1.3790693, -1.379069~
## $ Species
                  <fct> setosa, setosa, setosa, setosa, setosa, setosa, setosa, s~
## Observations: 60
## Variables: 5
## $ .pred_class <fct> setosa, setosa, setosa, setosa, setosa, setosa, set...
## $ Sepal.Length <dbl> -1.597601746, -1.138960096, 0.007644027, -0.7949788...
## $ Sepal.Width <dbl> -0.41010139, 0.71517681, 2.06551064, 1.61539936, 0....
## $ Petal.Width <dbl> -1.2085003, -1.2085003, -1.2085003, -1.0796318, -1....
## $ Species
                  <fct> setosa, setosa, setosa, setosa, setosa, setosa, set...
```

7.1.2.5.8 Model Validation

- Use the metrics() function
 - to measure the performance of the model.

It will automatically choose metrics

• appropriate for a given type of model.

The function expects a tibble

- that contains the actual results (truth)
- and what the model predicted (estimate).

```
iris_ranger %>%
  predict(iris_testing) %>%
  bind_cols(iris_testing) %>%
  metrics(truth = Species, estimate = .pred_class)
```

```
## # A tibble: 2 x 3
##
    .metric .estimator .estimate
            <chr>
##
    <chr>
## 1 accuracy multiclass
                          0.917
## 2 kap
            multiclass
                          0.874
## # A tibble: 2 x 3
##
    .metric .estimator .estimate
##
   <chr>
            <chr>
                   <db1>
## 1 accuracy multiclass
                          0.917
## 2 kap multiclass
                          0.874
```

Because of the consistency of the new interface,

- measuring the same metrics
 - against the randomForest model
- is as easy as replacing the model variable
 - at the top of the code.

```
iris rf %>%
  predict(iris_testing) %>%
  dplyr::bind_cols(iris_testing) %>%
  metrics(truth = Species, estimate = .pred_class)
## # A tibble: 2 x 3
##
     .metric .estimator .estimate
##
     <chr>>
             <chr>
                            <dbl>
## 1 accuracy multiclass
                            0.917
## 2 kap
             multiclass
                            0.874
## # A tibble: 2 x 3
##
     .metric .estimator .estimate
##
     <chr>
             <chr>
                            <db1>
                            0.883
## 1 accuracy multiclass
                            0.824
## 2 kap multiclass
```

7.1.2.5.9 Per classifier metrics

- It is easy to obtain the probability
 - for each possible predicted value
 - * by setting the type argument to prob.
 - That will return a tibble
 - * with as many variables
 - * as there are possible predicted values.
 - Their name will default
 - * to the original value name,
 - * prefixed with .pred_.

```
iris_ranger %>%
  predict(iris_testing, type = "prob") %>%
  glimpse()
```

```
## Observations: 60
## Variables: 3
                      <dbl> 0.677480159, 0.978293651, 0.783250000, 0.983972...
## $ .pred setosa
## $ .pred_versicolor <dbl> 0.295507937, 0.011706349, 0.150833333, 0.001111...
## $ .pred_virginica <dbl> 0.02701190, 0.01000000, 0.06591667, 0.01491667,...
Again, use dplyr::bind_cols()
  • to append the predictions
  • to the baked testing data set.
iris_probs <- iris_ranger %>%
  predict(iris testing, type = "prob") %>%
  dplyr::bind_cols(iris_testing)
glimpse(iris_probs)
## Rows: 60
## Columns: 7
                      <dbl> 0.95980556, 0.98407143, 0.93060317, 0.92616270, 0.950~
## $ .pred setosa
## $ .pred_versicolor <dbl> 0.02852778, 0.00900000, 0.06939683, 0.06169444, 0.043~
## $ .pred_virginica <dbl> 0.011666667, 0.006928571, 0.000000000, 0.012142857, 0~
## $ Sepal.Length
                      <dbl> -1.37182722, -1.49717184, -1.74786107, -1.12113798, -~
## $ Sepal.Width
                      <dbl> 0.21695305, 0.66582143, -0.45634952, -0.00748114, -0.~
## $ Petal.Width
                      <dbl> -1.2513777, -1.1236861, -1.2513777, -1.3790693, -1.37~
                      <fct> setosa, setosa, setosa, setosa, setosa, setosa, setosa,
## $ Species
## Observations: 60
## Variables: 7
## $ .pred_setosa
                      <dbl> 0.677480159, 0.978293651, 0.783250000, 0.983972...
## $ .pred_versicolor <dbl> 0.295507937, 0.011706349, 0.150833333, 0.001111...
## $ .pred_virginica <dbl> 0.02701190, 0.01000000, 0.06591667, 0.01491667,...
## $ Sepal.Length
                      <dbl> -1.597601746, -1.138960096, 0.007644027, -0.794...
                      <dbl> -0.41010139, 0.71517681, 2.06551064, 1.61539936...
## $ Sepal.Width
## $ Petal.Width
                      <dbl> -1.2085003, -1.2085003, -1.2085003, -1.0796318,...
## $ Species
                      <fct> setosa, setosa, setosa, setosa, setosa, setosa, ...
Now that everything is in one tibble,
  • it is easy to calculate curve methods.
  • In this case we are using gain_curve().
iris_probs %>%
  gain_curve(Species, .pred_setosa:.pred_virginica) %>%
  glimpse()
## Rows: 137
## Columns: 5
## $ .level
                     <chr> "setosa", "setosa", "setosa", "setosa", "setosa", "set-
## $ .n
                     <dbl> 0, 1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18~
                     <dbl> 0, 1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 16, 17, 17~
## $ .n_events
## $ .percent_tested <dbl> 0.000000, 1.666667, 3.333333, 5.000000, 6.666667, 8.33~
## $ .percent_found <dbl> 0.000000, 5.882353, 11.764706, 17.647059, 23.529412, 2~
## Observations: 141
## Variables: 5
```

<chr> "setosa", "setosa", "setosa", "setosa"...

\$.level

The curve methods

- include an autoplot() function
- $\bullet~$ that easily creates a ${\tt ggplot2}$ visualization.

```
iris_probs %>%
  gain_curve(Species, .pred_setosa:.pred_virginica) %>%
  autoplot()
```


This is an example of a roc_curve().

• roc means "Receiver Operating Characteristic"

- Again, because of the consistency of the interface,
 - only the function name needs to be modified;
 - even the argument values remain the same.

iris_probs %>% roc_curve(Species, .pred_setosa:.pred_virginica) %>% autoplot()

To measured the combined

- single predicted value
 - and the probability of each possible value,
- combine the two prediction modes
 - (with and without prob type).

In this example,

- using dplyr's select()
- makes the resulting tibble easier to read.

```
predict(iris_ranger, iris_testing, type = "prob") %>%
  bind_cols(predict(iris_ranger, iris_testing)) %>%
  bind_cols(select(iris_testing, Species)) %>%
  glimpse()
```

Rows: 60 ## Columns: 5

```
<dbl> 0.95980556, 0.98407143, 0.93060317, 0.92616270, 0.950~
## $ .pred setosa
## $ .pred_versicolor <dbl> 0.02852778, 0.00900000, 0.06939683, 0.06169444, 0.043~
## $ .pred virginica <dbl> 0.011666667, 0.006928571, 0.000000000, 0.012142857, 0~
                      <fct> setosa, setosa, setosa, setosa, setosa, setosa, setosa,
## $ .pred_class
## $ Species
                      <fct> setosa, setosa, setosa, setosa, setosa, setosa, setosa,
## Observations: 60
## Variables: 5
                      <dbl> 0.677480159, 0.978293651, 0.783250000, 0.983972...
## $ .pred setosa
## $ .pred versicolor <dbl> 0.295507937, 0.011706349, 0.150833333, 0.001111...
## $ .pred_virginica <dbl> 0.02701190, 0.01000000, 0.06591667, 0.01491667,...
## $ .pred_class <fct> setosa, setosa, setosa, setosa, setosa, setosa, setosa, ...
## $ Species
                      <fct> setosa, setosa, setosa, setosa, setosa, setosa, ...
```

Pipe the resulting table into metrics().

In this case, specify .pred_class as the estimate.

```
predict(iris_ranger, iris_testing, type = "prob") %>%
  bind_cols(predict(iris_ranger, iris_testing)) %>%
  bind_cols(select(iris_testing, Species)) %>%
  metrics(Species, .pred_setosa:.pred_virginica, estimate = .pred_class)
```

```
## # A tibble: 4 x 3
##
    .metric
                .estimator .estimate
##
    <chr>
                <chr>
                              <dbl>
## 1 accuracy
                              0.917
               multiclass
## 2 kap
               multiclass
                              0.874
## 3 mn_log_loss multiclass
                              0.295
## 4 roc_auc
               hand_till
                              0.970
## # A tibble: 4 x 3
##
    .metric .estimator .estimate
##
    <chr>
               <chr>
## 1 accuracy multiclass
                              0.917
## 2 kap
                multiclass
                              0.874
## 3 mn_log_loss multiclass
                              0.274
## 4 roc auc
              hand till
                              0.980
```

7.1.2.5.10 Summary

• This end-to-end example can serve as a gentle introduction to tidymodels.

The number of functions,

- and options of such functions,
- were kept at a minimum for the purposes of this demonstration,
 - but there is much more that can be done with this wonderful metapackages.

Hopefully, this serves as an initial example

- you can build from
- for automating your data-driven modeling

7.1.2.6 Links

• Background on these topics

Principal Components Analysis

Principal Components Regression
Partial Least Squares Regression
Factor Analysis

Edgar Ruiz, A Gentle Introduction to tidymodels