Data Analysis using Time Series Forecasting for ABC Estate Wines

Name: Aishwariya Hariharan

PGP-DSBA Online September' 23

Date: 02 June 2024

Contents

Business context and objective	5
Data description	6
Exploratory data analysis	7
Data decomposition	9
Performance of models based on RMSE	10
Model building	15
Comparison of model performance	19
Forecasting	20
Insights and recommendations	20

List of Figures

Figure 1: Data description
Figure 2: Plot of data
Figure 3: Data distribution
Figure 4: Yearly sales
Figure 5: Monthly sales
Figure 6: Trend of months across years
Figure 7: Additive decomposition
Figure 8: Splitting the data into train and test
Figure 9: Linear regression model
Figure 10: Simple average model
Figure 11: Moving average
Figure 12: Single exponential smoothening
Figure 13: Double exponential smoothening
Figure 14: Triple exponential smoothening
Figure 15: 1st differencing
Figure 16: ACF plot
Figure 17: PACF plot
Figure 18: ARIMA(2, 0, 1)
Figure 19: ARIMA (2, 1, 2)
Figure 20: Auto SARIMA (0, 0, 2) (2, 0, 2, 12)
Figure 21: SARIMA (1, 2, 2) (1, 1, 2, 12)
Figure 22: Best ARIMA and SARIMA
Figure 23: Forecasting

List of Tables

Table 1:	Samp	le data
----------	------	---------

Table 2: Statistical description

Table 3: RMSE performance

Table 4: Auto ARIMA-AIC

Table 5: Auto SARIMA (0, 0, 2) (2, 0, 2, 12)

Table 6: Model performance comparison

Wine Sales Forecasting

Context

As an analyst at ABC Estate Wines, we are presented with historical data encompassing the sales of different types of wines throughout the 20th century. These datasets originate from the same company but represent sales figures for distinct wine varieties. Our objective is to delve into the data, analyze trends, patterns, and factors influencing wine sales over the century. By leveraging data analytics and forecasting techniques, we aim to gain actionable insights that can inform strategic decision-making and optimize sales strategies for the future.

Objective

The primary objective of this project is to analyze and forecast wine sales trends for the 20th century based on historical data provided by ABC Estate Wines. We aim to equip ABC Estate Wines with the necessary insights and foresight to enhance sales performance, capitalize on emerging market opportunities, and maintain a competitive edge in the wine industry.

Rose wine

Q1. Define the problem and perform Exploratory Data Analysis - - Read the data as an appropriate time series data - Plot the data - Perform EDA - Perform Decomposition

Data Description

Data Dictionary

```
DatetimeIndex: 187 entries, 1980-01-01 to 1995-07-01
Data columns (total 1 columns):

# Column Non-Null Count Dtype
--- 0 Rose 185 non-null float64
dtypes: float64(1)
```

Figure 1: Data description

Table 1: Sample data

Table 2: Statistical description

- The column Rose lists the sales of Rose wine (integer values) from 1980 to 1995, i.e. 15 years.
- There are 187 rows in the data.
- The mean of the data, i.e. the average sales is 90.39
- The median sales is 86.
- There are 2 missing values in the data, which are replaced with the median values.

Exploratory Data Analysis

Plot of the data

• The data shows a strong negative trend with strong seasonality.

Figure 2: Plot of data

Distribution of data

- The data is right-skewed
- Most commonly sold quantity of sales of Sparkling wine is in the range of 10 to 150.

Figure 3: Data distribution

Yearly sales

- There's sharp decline in sales over time.
- There are outlier cases.

Figure 4: Yearly sales

Monthly sales and trend of months across years

The sales of Rose wine are higher towards the end of the year.

Figure 5: Monthly sales

Figure 6: Trend of months across years

Additive decomposition

 Overall negative trend with seasonality varying from -25 to 60 with random residuals

Figure 7: Additive decomposition

Q2. Data Pre-processing - Missing value treatment - Visualize the processed data - Train-test split

There are 2 missing values in the data. They are replace with median values.

Splitting the data into train and test set.

Number of rows in training data = 140 Number of rows in testing data = 60

Figure 8: Splitting the data into train and test

Q3. Model Building - Original Data - - Build forecasting models - Linear regression - Simple Average - Moving Average - Exponential Models (Single, Double, Triple) - Check the performance of the models built

Performance of the models based on RMSE scores

- The RMSE score measures the prediction accuracy. The lower the better.
- The double and triple exponential smoothening model has the lowest RMSE score. Therefore, it tracks the level, trend, and seasonality very well.

	RMSE
Linear Regression Model	17.244390
Simple Average Model :	7.866237
Moving Average Model :	0.200754
Single Exponential Smoothening Model:	17.369614
Double Exponential Smoothening Model	7.094577
Triple Exponential Smoothening Model Additive:	7.252973
Triple Exponential Smoothening Model Multiplicative:	7.252973

Table 3: RMSE performance

Plots forecasting the sales based on the models for sparkling wine

• Linear regression model

Figure 9: Linear regression model

• Simple average

Figure 10: Simple average model

Moving average

Figure 11: Moving average

• Single exponential smoothening

Figure 12: Single exponential smoothening

• Double exponential smoothening

Figure 13: Double exponential smoothening

• Triple exponential smoothening

Figure 14: Triple exponential smoothening

Q4. Check for Stationarity - Check for stationarity - Make the data stationary (if needed)

Using the Augmented Dickey-Fuller Test:

Null Hypothesis: Time series is not stationary Alternative Hypothesis: Time series is stationary

P-value = 0.1696

0.1696 > 0.05

Therefore, the time series is not stationary.

We take the difference of the time series with period = 1 and re-run the test:

Figure 15: 1st differencing

- We observe seasonality even after differencing. This could imply that the variance in the data is increasing.
- We stop differencing at 1 since the data now looks stationary.

Q5. Model Building - Stationary Data

Model building

ACF plot

Figure 16: ACF plot

PACF Plot

Figure 17: PACF plot

p(AR) has 2 significant lags

ARIMA Models

Auto ARIMA

- For an Auto-ARIMA, we calculate the best p and q parameters by looking at the lowest corresponding Akaike Information Criterion (AIC) values.
- Here, the lowest AIC is for (1, 0, 0).

	param	AIC
3	(1, 0, 0)	390.153
4	(1, 0, 1)	391.80992
6	(2, 0, 0)	391.810503
8	(2, 0, 2)	392.029717
7	(2, 0, 1)	393.801803
5	(1, 0, 2)	393.809803
2	(0, 0, 2)	583.596142
1	(0, 0, 1)	659.953646
0	(0, 0, 0)	818.315131

Table 4: Auto ARIMA-AIC

Summary of ARIMA (1, 0, 0)

SARIMAX Results								
Dep. Variable: Rose No. Observations: 140								
Model:		ARIMA(1, 0,	 Log 	Likelihood		-192.077		
Date:	Sur	n, 02 Jun 20	24 AIC			390.153		
Time:		17:04:	38 BIC			398.978		
Sample:		01-31-19	80 HQIC			393.739		
		- 08-31-19	91					
Covariance T	ype:	c	pg					
	coef	std err	z	P> z	[0.025	0.975]		
const	-6.7347	2.937	-2.293	0.022	-12.491	-0.979		
ar.L1	0.9825	0.017	58.723	0.000	0.950	1.015		
sigma2	0.8887	0.111	7.982	0.000	0.671	1.107		
Ljung-Box (L	1) (Q):		0.62	Jarque-Bera	(JB):		0.32	
Prob(Q):	, , , , ,		0.43	Prob(JB):	,		0.85	
Heteroskedas	ticity (H):		1.07	Skew:			0.09	
Prob(H) (two	-sided):		0.83	Kurtosis:			2.86	

Figure 18: ARIMA(1, 0, 0)

Manual ARIMA Model

From ACF and PACF, we get p = 0 and q = 2, with d = 1.

		SARI	MAX Result	S		
Dep. Variab	le:	Ro	======= se No.O	======= bservations	:	140
Model:		ARIMA(0, 1,			•	-0.223
Date:		n, 02 Jun 20	, ,			6.447
Time:		17:04:	38 BIC			15.250
Sample:		01-31-19	80 HQIC			10.024
•		- 08-31-19	91			
Covariance	Type:	0	pg			
=========	:======== :=========		======== =======	======================================		
	coef	std err	z	P> z	[0.025	0.975]
ma.L1	1.9592	67.507	0.029	0.977	-130.352	134.270
ma.L2	0.9970	68.990	0.014	0.988	-134.221	136.215
-:	0.0359	2 459	0.015	0.000	4 700	4 054

Figure 19: ARIMA (0, 1, 2)

RMSE = 9.058

SARIMA Models

Auto SARIMA

• (1, 0, 2) (0, 0, 2, 12) has the lowest SARIMA value.

	param	seasonal	AIC
47	(1, 0, 2)	(0, 0, 2, 12)	316.549662
50	(1, 0, 2)	(1, 0, 2, 12)	318.119201
53	(1, 0, 2)	(2, 0, 2, 12)	318.232699
65	(2, 0, 1)	(0, 0, 2, 12)	318.69132
38	(1, 0, 1)	(0, 0, 2, 12)	318.808599

Table 5: Auto SARIMA (1, 0, 2) (0, 0, 2, 12)

SARIMAX Results								
Dep. Variab Model: Date: Time: Sample:	SARI				Log I	Dbservations: Likelihood		140 -152.275 316.550 332.914 323.190
Covariance	Туре:			opg				
	coef	std err	z	P	> z	[0.025	0.975]	
ar.L1	1.0026	0.006	159.800	0	.000	0.990	1.015	
ma.L1	-0.1448	0.105	-1.380	0	.167	-0.350	0.061	
ma.L2	-0.1102	0.119	-0.928	0	.353	-0.343	0.123	
ma.S.L12	-0.0695	0.095	-0.729	0	.466	-0.256	0.117	
ma.S.L24	-0.0567	0.106	-0.536	0	.592	-0.264	0.151	
sigma2	0.8655	0.121	7.145	0	.000	0.628	1.103	
Ljung-Box (L1) (Q):		0.01	Jarqu	e-Bera	(JB):		==== 0.40
Prob(Q):	•		0.90	Prob(JB):	-		0.82
Heteroskeda	sticity (H):		1.27	Skew:	-			0.14
Prob(H) (tw	o-sided):		0.46	Kurto	sis:			3.07
								====

Figure 20: Auto SARIMA (1, 0, 2) (0, 0, 2, 12)

RMSE = 24.638

Manual SARIMA Model

From ACF and PACF, we get p = 0 and q = 2, with d = 1 and P = 2, D = 1, Q = 2, S = 12

Summary of SARIMA (0, 1, 2) (2, 1, 2, 12)

SARIMAX Results							
Dep. Varia	able:			Rose No.	Observations	::	140
Model:	SAR	IMAX(0, 1,	2)x(2, 1, 2	, 12) Log	Likelihood		-2.986
Date:		-	Sun, 02 Jun	2024 AIC			19.971
Time:			17:	06:00 BIC			39.881
Sample:			01-31	-1980 HQI	C		28.060
			- 08-31	-1991			
Covariance	e Type:			opg			
	coef	std err	Z	P> z	[0.025	0.975]	
ma.L1	0.2131	7447.388	2.86e-05	1.000	-1.46e+04	1.46e+04	
ma.L2	0.0343	1618.164	2.12e-05	1.000	-3171.509	3171.578	
ar.S.L12	-9.698e-06	37.535	-2.58e-07	1.000	-73.568	73.568	
ar.S.L24	-2.366e-05	0.132	-0.000	1.000	-0.258	0.258	
ma.S.L12	4.046e-05	36.861	1.1e-06	1.000	-72.247	72.247	
ma.S.L24	2.077e-05	0.440	4.72e-05	1.000	-0.862	0.862	
sigma2	1.1334	3558.560	0.000	1.000	-6973.517	6975.784	

Figure 21: SARIMA (0, 1, 2) (2, 1, 2, 12)

RMSE = 9.055

Best ARIMA and SARIMA models

Figure 22: Best ARIMA and SARIMA

Q6. Compare the performance of models - - Compare the performance of all the models built - Choose the best model with proper rationale - Rebuild the best model using the entire data - Make a forecast for the next 12 months

Comparison of model performance

	RMSE
Linear Regression Model	17.24
Simple Average Model :	7.87
Moving Average Model :	0.20
Single Exponential Smoothening Model :	17.37
Double Exponential Smoothening Model	7.09
Triple Exponential Smoothening Model Additive:	7.25
Triple Exponential Smoothening Model Multiplica	7.25
Best AR Model :	10.46
Best ARMA Model:	10.00
Best ARIMA Model :	9.06
Best SARIMA Model :	9.05

The double/triple exponential and SARIMA models have the lowest scores.

Forecasting

The overall forecasted sales are trending downwards.

Insights and recommendations

Insights:

- The SARIMA model's parameters reveal a significant seasonal dependency on the sales.
- The 12th order lag residual in the 1st differential series hints the importance of monitoring sales of corresponding months of previous years.
- There is an overall decline in sales over time. The company needs to take immediate actions to prevent further decline and works towards improving sales.

Recommendations:

- Continuously monitor sales trends, seasonal highs and lows.
- Adjust inventory levels and modify marketing strategy accordingly.
- Inventory during year ends must be carefully and strategically managed due to high sales during year end and also increase profitability during this period.
- Identify the root cause for decline in sales over years and reverse the decline of sales.
- Improve product quality, cost, marketing strategies, etc. can help reverse the decline of sales.