Algorytmy Macierzowe

Sprawozdanie I Grupa wtorek 13:00b

Michał Kuszewski i Michał Nożkiewicz

23 października 2023

1 Opis zadania i użyte narzędzia

Naszym zadaniem było zaimplementowanie i dokonanie analizy trzech algorytmów do mnożenia macierzy:

- 1. Algorytm Bineta
- 2. Algorytm Strassena
- 3. Algorytm znaleziony przez AlphaTensor (sztuczną inteligencję firmy DeepMind)

Do realizacji zadania użyliśmy języka Python. Korzystaliśmy z bibliotek numpy, matplotlib, pandas i scipy.

2 Pseudokody Algorytmów

We wszystkich algorytmach będziemy zapisać macierze blokowo, gdzie $A_{i,j}$ oznacza odpowiedni blok macierzy A.

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix}$$

2.1 Algorytm Bineta

W algorytmie Bineta obie macierze są dzielone na na 4 równe podmacierze.

Algorytm 1: Binet Matrix Multiplication

```
Data: Matrices A and B

Result: Matrix C = A \cdot B

1 n = A.size

2 if n = 1 then

3 | return A \odot B;  // element-wise multiplication

4 else

5 | C_{1,1} := Binet(A_{1,1}, B_{1,1}) + Binet(A_{1,2}, B_{2,1})

6 | C_{1,2} := Binet(A_{1,1}, B_{1,2}) + Binet(A_{1,2}, B_{2,2})

7 | C_{2,1} := Binet(A_{2,1}, B_{1,1}) + Binet(A_{2,2}, B_{2,1})

8 | C_{2,2} := Binet(A_{2,1}, B_{1,2}) + Binet(A_{2,2}, B_{2,2})

9 | return C
```

2.2 Algorytm Strassena

W algorytmie Strassena dzielimy wejściowe macierze identycznie jak w algorytmie Bineta.

Algorytm 2: Strassen Matrix Multiplication

```
Data: Matrices A and B
   Result: Matrix C = A \cdot B
 n = A.size
 2 if n=1 then
 \mathbf{3} \mid \mathbf{return} \ A \odot B ;
                                                                           // element-wise multiplication
 4 else
        P_1 := Strassen(A_{1,1} + A_{2,2}, B_{1,1} + B_{2,2})
        P_2 := Strassen(A_{2,1} + A_{2,2}, B_{1,1})
 6
        P_3 := Strassen(A_{1,1}, B_{1,2} - B_{2,2})
        P_4 := Strassen(A_{2,2}, B_{2,1} - B_{1,1})
 8
        P_5 := Strassen(A_{1,1} + A_{1,2}, B_{2,2})
        P_6 := Strassen(A_{2,1} - A_{1,1}, B_{1,1} + B_{1,2})
10
        P_7 := Strassen(A_{1,2} - A_{2,2}, B_{2,1} + B_{2,2})
11
        C_{1,1} := P_1 + P_4 - P_5 + P_7
12
        C_{1,2} := P_3 + P_5
13
        C_{2,1} := P_2 + P_4
14
        C_{2,2} := P_1 - P_2 + P_3 + P_6
15
        return C
16
```

2.3 Algorytm sztucznej inteligencji

W tym algorytmie pierwszą macierz dzielimy na 20 bloków
(4 wierze i 5 kolumn), a drugą maceirz dzielimy na 25 bloków
(5 wierszy i 5 kolumn)

Jako, że cały algorytm zajmuje ponad 100 linijek zapisaliśmy tylko fragment.

Algorytm 3: AlphaTensor Matrix Multiplication

```
Data: Matrices A and B
   Result: Matrix C = A \cdot B
 n = A.size[0]
 2 if n=1 then
                                                                              // element-wise multiplication
 \mathbf{a} \mid \mathbf{return} \ A \odot B ;
 4 else
        H_1 := Ai(A_{3,2}, -B_{2,1} - B_{2,5} - B_{3,1})
        H_2 := Ai(A_{2,2} + A_{2,5} - A_{3,5}, -B_{2,5} - B_{5,1})
 6
        H_{76} := Ai(A_{1,3} + A_{3,3}, -B_{1,1} + B_{1,4} - B_{1,5} + B_{2,4} + B_{3,4} - B_{3,5})
 8
        C_{1,1} := -H_{10} + H_{12} + H_{14} - H_{15} - H_{16} + H_{53} + H_5 - H_{66} - H_7
 9
        C_{2,1} := H_{10} + H_{11} - H_{12} + H_{13} + H_{15} + H_{16} - H_{17} - H_{44} + H_{51}
10
11
        C_{4,5} := -H_{12} - H_{29} + H_{30} - H_{34} + H_{35} + H_{39} + H_{3} - H_{45} + H_{57} + H_{59}
12
        return C
13
```

2.4 Istotne fragmenty implementacji

Jako, że sam kod w pythonie nie różnił się praktycznie niczym od pseudokodu uznaliśmy, że nie ma sensu zamieszczać fragmentów kodu.

3 Analiza algorytmów

Dla każdego z algorytmów dokonaliśmy pomiarów czasu wykonania, a także zliczyliśmy ilość operacji zmiennoprzecinkowych (dodawania i mnożenia). Do danych przedstawionych na wykresie krzywą dopasowaliśmy z użyciem funkcji curve_fit z pakietu scipy.optimize. Założyliśmy, że wyniki pomiarów, są zależne od rozmiarów macierzy zależnością $y=ax^b+\epsilon$, gdzie a i b to szukane parametry, a ϵ to błąd pomiarów. Funkcja curve_fit do wyznaczenia optymalnych parametrów stosuje metodę najmniejszych kwadratów, jest to równoważne temu, że błąd ma rozkład normalny z wartością oczekiwaną równą 0.

3.1 Algorytm Bineta

	Ilość dodawań	Ilość mnożeń	Czas[s]
Rozmiar macierzy [wymiar 1]			
1	0	1	0.000000
2	4	8	0.000100
4	48	64	0.000600
8	448	512	0.006100
16	3840	4096	0.042700
32	31744	32768	0.188100
64	258048	262144	1.976100
128	2080768	2097152	10.197400
256	16711680	16777216	80.757700

Tabela 1: Wyniki pomiarów dla algorytmu Bineta

Rysunek 1: Pomiary ilości operacji dodawania

Rysunek 2: Pomiary ilości operacji mnożenia

Rysunek 3: Pomiary czasu

Rysunek 4: Krzywa dopasowana do pomiaru czasu

Krzywa, którą udało się dopasować do danych jest postaci $y=ax^b$, gdzie a=5.948, a b=2.961. Pokrywa się to z teoretyczną złożonością algorytmu, która wynosi $O(n^3)$.

3.2 Algorytm Strassena

	Ilość dodawań	Ilość mnożeń	Czas[s]
Rozmiar macierzy[wymiar 1]			
1	0	1	0.000000
2	18	7	0.000100
4	198	49	0.000700
8	1674	343	0.006200
16	12870	2401	0.027300
32	94698	16807	0.187400
64	681318	117649	0.955400
128	4842954	823543	6.281100
256	34195590	5764801	46.003400

Tabela 2: Wyniki pomiarów dla algorytmu Strassena

Rysunek 5: Pomiary ilości operacji dodawania

Rysunek 6: Pomiary ilości operacji mnożenia

Rysunek 7: Pomiary czasu

Rysunek 8: Krzywa dopasowana do pomiaru czasu

W algorytmie Strassena widać spadek w ilości wykonanych mnożeń, przy jednoczesnym wzroście wykonanych dodawań. Tym razem parametry miały wartości $a=5.763,\,b=2.866.$ Przy czym teoretyczna złożoność algorytmu Strassena wynosi około $O(n^{2.807}).$

3.3 Algorytm Sztucznej inteligencji

W poprzednich algorytmach testowane macierze były wymiarów $2^k \times 2^k$, gdzie k była liczbą naturalną. Algorytm znaleziony przez AlphaTensor stosuje się jednak do mnożenia macierzy z których jedna ma wymiary $4^k \times 5^k$, a druga $5^k \times 5^k$. Algorytm da się uogólnić do mnożenia macierzy postaci $4^a \times 5^b$ i $5^b \times 5^b$, gdzie $a \neq b$. Lecz jako, że jest to algorytm rekurencyjny, w pewnym momencie rozmiary macierzy będą nieodpowiednie i mnożenie będzie trzeba zakończyć stosując inny algorytm, a to utrudniałoby analizę złożoności takiego algorytmu. Ponadto jako, że dwie macierze mają różne rozmiary, poniżej staramy się znaleźć zależność czasu działania od łącznej liczby elementów w obu macierzach.

	Ilość dodawań	Ilość mnożeń	Czas[s]
Łączna liczba elementów macierzy			
45	540	76	0.001800
1025	52800	5776	0.084700
23625	4272000	438976	5.039200
550625	330456000	33362176	382.081000

Tabela 3: Wyniki pomiarów dla algorytmu AlphaTensor

Rysunek 9: Pomiary ilości operacji dodawania

Rysunek 10: Pomiary ilości operacji mnożenia

Rysunek 11: Pomiary czasu

Rysunek 12: Krzywa dopasowana do pomiaru czasu

Krzywa na ostanim rysunku opisana jest równaniem $y = 4.906 \cdot x^{1.374}$

4 Sprawdzenie poprawności

Poprawność wyników sprawdzaliśmy z użyciem mnożenia macierzy z biblioteki numpy. Wyjściowe macierze ze wszystkich algorytmów były za każdym razem takie same, więc można uznać nasze implementacje za poprawne.

5 Wnioski

Algorytm Strassena okazał się być szybszy od algorytmu Bineta, ze względu na mniejszą ilość mnożeń jaką trzeba wykonać, jednak na ogół jest on i tak wolniejszy od zwykłego algorytmu wykonującego n^2 iloczynów skalarnych. Mimo tego, że algorytm Strassena ma mniejszą teoretyczną złożoność asymptotyczną, to posiada on dość dużą stałą i mnożone macierze muszą być bardzo duże, aby zyskać na używaniu tego algorytmu. Podobnie jest z algorytmem znalezionym przez AlphaTensor. Ma niską teoretyczną złożoność, lecz w większości przypadków jest on niepraktyczny i stosuje się do dość ograniczonej ilości macierzy.

6 Bibliografia

 $\verb|https://www.deepmind.com/blog/discovering-novel-algorithms-with-alphatensor| \\$