Lecture 10 - Unconstrained Optimization

ling

Motivation

Motivation

Imagine you want to find the extrema of a function, what can you do?

$$\max_{\mathbf{x}} f(\mathbf{x}) = x_1^2 + x_2^2 - x_1 x_2$$

- Silliest way: compare every possible value
- Case 1:

$$\mathbf{x} \in \left[\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -2 \\ -1 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right]$$

- Case 2: $\mathbf{x} \in \mathbb{Z}^2$
- Case 3: $\mathbf{x} \in R^2$

General steps for finding extrema of functions

General steps for finding extrema of functions

- Consider boundary
 - Close and Bounded sets
 - Limits
- Consider interior point
 - First Order Necessary condition (FOC)
 - Second Order Necessary and Sufficient condition (SOC)
- Onsider non-differentiable points
 - Check if limit of Newton's quotient exist

$$\lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon}$$

• Tips: check (a) piecewise function, (b) common un-differentiable functions such as |x|

Note

This procedure works for all optimization problems. However, modifications are required when solving (1) single variable (2) multi-variable (3) unconstrained (4) constrained problems.

Consider boundary

Consider boundary

- If boundary is closed and bounded, then simply check the points at boundary $(x \in [a, b])$
- unbounded single variable:
 - Check limits $\lim_{x\to\pm\infty} f(x)$
- unbounded multi-variable:
 - Much more complicated as we need to consider multi-dimension borders.
 - If interested, search up on Coercive functions (a special class of function that ensure the existence of global minimizer)

Consider interior points

Consider interior points

 \bullet Interior points are points falls within the domain S

Consider interior point: FOC

• Single variable:

$$f'(x)=0$$

• Multi-variable:

$$abla f(\mathbf{x}) = egin{pmatrix} rac{\partial}{\partial x_1} \ rac{\partial}{\partial x_2} \ dots \ rac{\partial}{\partial x_n} \end{pmatrix} = \mathbf{0}$$

• Requires solving simultaneous equation

Note on $P \Rightarrow Q$

Why is it called necessary (\Rightarrow) and not sufficient condition (\Leftarrow) ?

- If a point is a minima/maxima (P), then the point has $\nabla f(\mathbf{x}) = 0$ (Q)
- If a point has $\nabla f(\mathbf{x}) = 0$, it could be either (1) minima (2) maxima (3) neither $(Q \not\Rightarrow P)$

Consider interior point: SOC

- Single variable:
 - local min: $f''(x^*) > 0$
 - local max: $f''(x^*) < 0$
 - no result: $f''(x^*) = 0$
 - Inflection point require further changing sign test of f''(x)
 - An inflection point might not be a stationary point (i.e. $f'(x) \neq 0$)
 - If inflection point is also a stationary point, then it is a saddle point
- Multi-variable:
 - local min: $H_f(\mathbf{x}^*) \succ 0$ (positive definite)
 - local max: $H_f(\mathbf{x}^*) \prec 0$ (negative definite)
 - saddle point: indefinite $H_f(\mathbf{x}^*)$ (neither positive nor negative definite)
 - saddle point: neither local minimizer nor a local maximizer

Principal minor: technique to find definiteness of a matrix

Principal minors

The kth principal minor Δ_k of $\mathbf{A}_{n \times n}$ is the determinant of the kth principal submatrix of \mathbf{A} , i.e.

$$\Delta_k = det \begin{bmatrix} a_{11} \cdots a_{1k} \\ \vdots \ddots \vdots \\ a_{k1} \cdots a_{kk} \end{bmatrix}$$

(Leading Principal minor test) Suppose $A \in \mathbb{R}^{n \times n}$ is a symmetric matrix

- ullet A is positive definite if and only if $\Delta_k>0$
 - principal minor is always positive
- **A** is negative definite if and only if $(-1)^k \Delta_k > 0$
 - \bullet principal minor is alternating in sign, with $\Delta_1 < 0$
- Note: no result if $\Delta_k \geq 0$

EC2104 technique

Form
$$A = f_{11}''(x_0, y_0), B = f_{12}''(x_0, y_0), C = f_{22}''(x_0, y_0)$$

- strict local max: $A < 0, AC B^2 > 0$
- strict local max: A > 0, $AC B^2 > 0$
- saddle point: $AC B^2 < 0$
- no result: $AC B^2 = 0$

Observe:

• Hessian matrix is

$$H_f(\mathbf{x}) = \begin{pmatrix} A & B \\ B & C \end{pmatrix}$$

- Principal minors are
 - $\Delta_1 = A$
 - $\Delta_2 = AC B^2$

Comment on finding global optimizer

Comment on finding global optimizer

A few cases you can (theoretically) guarantee to find a global optimizer

- Olosed and Bounded problem
- Convex programming

Beyond these cases, you have to compare all critical points to determine the global optimizer (which is a very challenging task)

Special case: convex function and convex set

- Only if (1) function is convex (2) domain D is convex
 - convex function: $H_f(\mathbf{x}) \succeq 0 \ \forall \mathbf{x} \in D$
 - convex set: for any two points \mathbf{x} , \mathbf{y} in D, the line segment joining \mathbf{x} , \mathbf{y} also lies in D (\mathbf{x} , $\mathbf{y} \in D \Rightarrow \lambda \mathbf{x} + (1 \lambda)\mathbf{y} \in D \ \forall \lambda \in [0, 1]$)
- \mathbf{x}^* is a local minimizer $\Rightarrow \mathbf{x}^*$ is a global minimizer

Technique in EC2104

$$A = f_{11}''(x, y), B = f_{12}''(x, y), C = f_{22}''(x, y)$$

- global maximum: $A \le 0, C \le 0, AC B^2 \ge 0$
- global minimum: $A \ge 0, C \ge 0, AC B^2 \ge 0$

Observe:

• Hessian matrix is

$$H_f(\mathbf{x}) = \begin{pmatrix} A & B \\ B & C \end{pmatrix}$$

- Principal minors are
 - $\Delta_1 = A$
 - $\Delta_2 = AC B^2$

Difference between global and local min/max?

- Must hold true for all x, not just the minimizer x*
- Allow for some "slack" (include equal to)

Comparative Statics

Comparative Statics

Consider

$$\max_{x} f(x) = e^{x} r - x$$
$$x^{*} = \log(r)$$

• What happens if I change hyper-parameter at the optimal solution?

$$\frac{\partial f(x^*,r)}{\partial r}$$

- Envelop Theorem: a shortcut to investigate comparative statics
 - **1** Substitution: solve $\frac{\partial}{\partial r} f^*(r) = \frac{\partial}{\partial r} e^{\log(r)} r \log(r)$
 - 2 Envelop Theorem: solve $\frac{\partial}{\partial r} f(x^*(r), r) = \frac{\partial}{\partial r} e^{x^*} r x^*$

Increasing Transformation

Increasing Transformation

If a transformation is positive monotonic transformation, or strictly increasing transformation, then the optimisation result has

- Same optimal point x^*
- 2 Different optimal functional value $f(x^*)$

Useful for:

- Simplify original optimization problem
- Simplify the transformed optimization problem

Consider:

$$\max_{p} \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$$