Loslager

May 24, 2024

1 Auswahl der Loslager

1.1~ Der Festlager wird hier als Einreihiges Zylinderrollenlager (Kurzzeichen NU 2968 M) ausgewählt.

Quelle: www.skf.com/de/

- 1.1.1 Einreihige Zylinderrollenlager sind für hohe Radiallasten bei hohen Drehzahlen konzipiert.
- 1.1.2 Hohe radiale Tragfähigkeit
- 1.1.3 Reibungsarm
- 1.1.4 Lange Gebrauchsdauer
- 1.1.5 Aufnahme axialer Verschiebungen in beiden Richtungen

1.2 Übersicht

1.2.1 Abmessungen

Merkmal	Wert
Bohrungsdurchmesser	340 mm
Außendurchmesser	460 mm
Breite	72 mm

1.2.2 Leistung

Merkmal	Wert
Dynamische Tragzahl	809 kN
Statische Tragzahl	$1~660~\mathrm{kN}$
Referenzdrehzahl	1400 r/min
Grenzdrehzahl	$1400~\mathrm{r/min}$

Quelle:SKF

1.2.3 Radialfaktor X und Axialfaktor Y

1.2.4

$$A_a = F_a = 0 \ KN$$

1.2.5

$$A_r = F_r = 218.2 \ KN$$

1.2.6 Äußer Durchmesser

$$D_{a,f} = 520 \ mm$$

1.2.7 Innere Durchmesser

$$D_{i.f} = 340 \ mm$$

1.2.8

$$A_a = N_{max} = 0 \ KN$$

1.2.9

$$A_r = Q_{max} = 218.2 \ KN$$

1.2.10 Drehzahl bestimmen:

$$n = 20 \ min^{-1}$$

- 1.2.11 Die dynamische äquivalente Belastung P ist ein rechnerischer Wert,
- 1.2.12 der in Größe und Richtung konstante Radiallast oder Axiallast, Hier gibt es nur eine Radiallast

$$X = 1$$
 $Y = 0$

Aus dem MEII-Skript 2023

$$P_A = X \cdot A_r + Y \cdot A_a = 1 \cdot 218.2 + 0 \cdot 0 = 218.2 \ KN$$

2 Lebensdauerexponent für Rollenlager

- 2.0.1 $C_{r,f} = 809$ KN dynamische Tragzahlen
- **2.0.2** $C_{0r.f} = 1660$ KN statische Tragzahlen

$$L_{10.h_{d.f}} = \frac{16666}{n} \cdot (\frac{C_{rfl}}{P_A})^P = \frac{16666}{20~min^{-1}} \cdot (\frac{809~KN}{218.2~KN})^{(3.3)} = 65732.573~hr$$

$$L_{10.h_{s.f}} = \frac{16666}{n} \cdot (\frac{C_{0.r.f}}{P_{{\scriptscriptstyle A}}})^P = \frac{16666}{20~min^{-1}} \cdot (\frac{1660~N}{218.2~N})^{(3.3)} = 721626.580~hr$$

- 2.1 Modifizierter Lebensdauer Berechnung:
- 2.1.1 Lebensdauerbeiwert für eine Erlebneswahrscheinlichkeit von 90% , $a_1=1$, damit 90% Überlebenswharscheinlichekit gewähreistet wird (Tabelle von Lagerkatalog). Lebensdauerbeiwert für Standard-WälzlagerStahl: Der Lebensdauerbeiwert ist für normale Lagerwerkstoff mit $a_2=1$ zu Wählen
- 2.2 Bezugsviskosität
- 2.2.1 Bezugsviskosität $v_{1.f}$ bei n=20 $\frac{1}{min}$ wird aus dem Diagramm (Skript MEII 2023 S.32) abgelesen:

$$v_{1.f} = 150 \frac{mm^2}{s}$$

3

2.2.2 Und die Betriebsviskosität bei Betriebstemperatur 50 C beträgt:

$$v_f = 110 \ \frac{mm^2}{s}$$

2.2.3 Die Viskositätsverhaltnis ist:

$$k = \frac{v_f}{v_{1.f}} = \frac{110}{150} = 0.733$$

Darasu folgt aus der Tabelle (MEII-Skript 2023 S.31) folgnedes Wert für a_3 =0.9

2.2.4 Mit der Annahme von hochste Sauberkeit wird a3-Lebensdauer von dem Diagramm im Lagerkatalog abgelesen

$$L_{3m.s.f} = a_1 \cdot a_2 \cdot a_{3.1} \cdot L_{10h.s.l} = 1 \cdot 1 \cdot 0.9 \cdot 721626.580 = 649463.922 \ hr$$

$$L_{3m.d.f} = a_1 \cdot a_2 \cdot a_{3.1} \cdot L_{10h.d.f} = 1 \cdot 1 \cdot 0.9 \cdot 65732.573 = 59159.316 \ hr$$