Transformations of Functions and Exponential Functions

January 24, 2017

Mathematical Models

Linear Regression

Function classes

Alice's parents recorded her height every 3 years when she was a child. Find the linear regression. Estimate her height at age 8.

Age (years)	Height (in)
3	36
6	42
9	48
12	60

Classify the function as polynomial, power, rational, algebraic, trigonometric, exponential, or logarithmic.

Classify the function as polynomial, power, rational, algebraic, trigonometric, exponential, or logarithmic.

Outline of Section 1.3 (New Functions from Old)

Vertical and horizontal shifts

Vertical and horizontal stretching

Composition

Commonly seen classes of functions

Horizontal shifts

To shift the graph of y = f(x) to the left by a units, use

$$y = f(x - a)$$

Horizontal shifts

To shift the graph of y = f(x) to the right by a units, use

$$y = f(x + a)$$

Vertical shifts

To shift the graph of y = f(x) up by a units, use

$$y = f(x) + a$$

Vertical shifts

To shift the graph of y = f(x) down by a units, use

$$y = f(x) - a$$

Linear functions

Linear refers to the fact that the graph forms a (straight) line

Slope-intercept form:

$$y = mx + b$$

Point-slope form:

$$y-y_0=m(x-x_0)$$

Linear function example

$$y = \frac{1}{2}x + 4$$

$$y-1=-2(x+2)$$

Example

Find the point-slope form of the line passing through the points (1,2) and (0,3).

Linear models

Given a table of (x, y) data, we can approximate the data with a linear function

This allows us to interpolate between the points and extrapolate beyond them

We can also make inferences about the whole data set

Finding a linear regression using a TI-84

Press the STAT key.

Press Enter on the EDIT menu option

Fill the x values into L1 and the y values into L2.

Go to CALC menu option and select LinReg(ax + b).

This gives you the equation of the line.

Press Y = to see the graph.

Finding a linear regression using Wolfram Alpha

Type in "Linear Regression" and then list your (x, y) pairs, e.g.

Linear Regression [[1, 2], [2, 2], [3, 4]]

The Dallas News reported these attendance numbers from 2014:

Baylor - 46,710

North Texas -19,271

Oklahoma - 85,162

SMU - 21,528

TCU - 44,719

Texas -94,103

Texas A&M -105,123

Texas Tech - 58,934

How much does the size of the school affect football attendence?

The linear regression line is

$$y = 1.3x + 19202$$

Football example: Interpolation

If a new university in Texas had a student population of 10000, what would be the expected football attendance?

Polynomials

A polynomial is a function that looks like

$$y = 2x^5 + 3x^3 - 2x^2 + 3x + 1$$

The general form of a polynomial is

$$y = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where the **coefficients** a_i are just numbers.

The highest exponent of x appearing in the polynomial is called its **degree**.

Quadratic polynomials

Definition

A quadratic polynomial is a polynomial of degree 2.

Example

$$f(x) = 3x^2 - 2x + 1$$

General form

$$f(x) = ax^2 + bx + c$$

Graphs of quadratic functions

Figure 1.4: $f(x) = x^2 + 2x + 2$

Figure 1.5: $f(x) = x^2 - 2x + 1$

Figure 1.6: $f(x) = -x^2 + 2x$

Graphs of more general polynomials

$$y = x^5 - 2x^4 - 10x^3 + 20x^2 + 9x - 18$$

◆ロト ◆問 > ◆恵 > ◆恵 > ・恵 ・ 夕久○

Power functions

Definition

A power function is a function of the form

$$y = x^a$$

where a is a constant.

Three cases:

a is a positive integer.

a is a fraction

a is a negative number.

Power functions with positive integer exponents

FIGURE 11 Graphs of $f(x) = x^n$ for n = 1, 2, 3, 4, 5

Power functions with fractional exponents

$$y = x^{1/2} = \sqrt{x}$$

$$y = x^{1/3} = \sqrt[3]{x}$$

Power functions with negative exponents

Example:

$$y = x^{-1} = \frac{1}{x}$$

Rational functions

Definition

A rational function is a ratio of two polynomials.

Example

$$f(x) = \frac{3x^2 - x + 3}{2x + 1}$$

General form

$$f(x) = \frac{P(x)}{Q(x)},$$

where P(x) and Q(x) are polynomials.

Rational functions

Example:

$$y = \frac{2x^4 - x^2 + 1}{x^2 - 4}$$

Algebraic functions

An **algebraic function** is like rational function, but we also allow taking roots.

Example

$$f(x) = \frac{\sqrt{3x^2 - x}}{3x + 1} + x\sqrt[3]{x - 1}$$

Algebraic functions

Figure :
$$y = \frac{\sqrt{x^2 - 1}}{x + 2}$$

Trig functions

The trig functions are sin(x), cos(x) and their ratios and inverses.

All of them are 2π -periodic

For all x,

$$-1 \le \sin(x) \le 1$$
 and $-1 \le \cos(x) \le 1$

Exponential functions

Definition

An exponential function is a function of the form

$$f(x) = a^x$$

where a is a positive number.

Logarithmic functions

Definition

A logarithmic function is a function of the form

$$f(x) = \log_a x,$$

where a is positive constant.