Análise de dados: Investidores do Tesouro Direto

Neste projeto serão analisados os dados de investidores (pesssoas físicas) do tesouro direto que aderiram ao programa a partir de seu lançamento em janeiro de 2002, com base nos dados (.csv) acessíveis no portal de Dados Abertos disponibilizados pelo Tesouro Nacional Transparente.

O Tesouro Direto é um programa do Tesouro Nacional desenvolvido em parceria com a B3 (antiga BM&F Bovespa) para venda de títulos públicos federais para pessoas físicas pela internet, com o objetivo de captar recursos e financiar as dívidas públicas, permite fazer aplicações com valores muito baixos e oferece liquidez diária.

Demanda da análise

- Analisar a evolução de aderências ao programa e elaborar métricas
- Identificar os perfis e elaborar métricas dos investidores

Indagações a serem respondidas pela análise exploratória dos dados

- 1. Qual o total de novos investidores por ano (2002 a 2021)?
- 2. Qual o total de investidores por estado (01/2002 a 07/2022)?
- 3. Qual o total de investidores em um ranking de 10 cidades (01/2002 a 07/2022)?
- 4. Qual a quantidade de investidores que operaram nos últimos 12 meses (07/2021 a 07/2022)?
- 5. Qual a distribuição de investidores por faixa etária e gênero (01/2002 a 07/2022)?
- 6. Qual a distribuição de investidores por faixa etária, gênero e estado civil (01/2002 e 07/2022)?
- 7. Qual a distribuição de investidores em um ranking de 10 perfis profissionais por gênero (01/2002 a 07/2022)?

Importação de pacotes

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
import gc

from tabulate import tabulate
from statistics import mode

warnings.filterwarnings('ignore')
sns.set_style('darkgrid')
```

Carregamento dos dados

```
df = pd.concat(chunks)
# Informações do dataset como nome das colunas, contagem de linhas, tipo de dados e memória utilizada
df.info(memory_usage='deep')
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 34163675 entries, 0 to 34163674
Data columns (total 10 columns):
    Column
                           Dtype
0
    Codigo do Investidor int64
     Data de Adesao
                           object
    Estado Civil
                           object
3
    Genero
                           object
```

7 Cidade do Investidor object 8 Situacao da Conta object 9 Operou 12 Meses object dtypes: int64(2), object(8)

object

int64

object

Detalhes do dataframe

memory usage: 17.2 GB

Out[3]:

4

Profissao

UF do Investidor

Idade

		Codigo do Investidor	Data de Adesao	Estado Civil	Genero	Profissao	Idade	UF do Investidor	Cidade do Investidor	Situacao da Conta	Operou 12 Meses
149	944493	20966501	14/07/2021	Casado(a) com brasileiro(a) nato(a)	F	ARQUITETO	56	SP	SAO PAULO	А	N
319	922123	6149942	15/09/2020	Solteiro(a)	М	VENDEDOR DE COMÉRCIO VAREJISTA E ATACADISTA	32	ES	PEDRO CANARIO	А	N
300	618927	24501368	20/10/2021	Desquitado(a)	М	GERENTE	45	SP	SALTO	Α	S
220	093381	5303932	11/02/2019	Divorciado(a)	М	OUTROS	46	RJ	DUQUE DE CAXIAS	А	N
288	879087	18773543	30/04/2021	Solteiro(a)	М	ESTUDANTE	20	SP	PIRACICABA	А	N

In [4]: # 5 primeiros registros do dataframe
df.head(5)

Out[4]: Situacao Operou Codigo do Data de UF do Cidade do Estado Civil Genero Profissao Idade da 12 Investidor Adesao Investidor Investidor Conta Meses 1680523 06/07/2021 Desquitado(a) MÉDICO COLATINA Ν SECRETARIO, SAO ESTENÓGRAFO, BERNARDO 1 1680525 28/04/2021 F S Solteiro(a) 48 DATILÓGRAFO, DO RECEPCIO... CAMPO 2 1680527 22/03/2017 Não se aplica M **OUTROS** 32 DF BRASILIA Ν SERVIDO PÚBLICO 3 1680528 28/07/2017 Desquitado(a) PE RECIFE Ν **ESTADUAL**

OUTROS

30

AM

MANAUS

Ν

In [5]: # 5 últimos registros do dataframe

df.tail(5)

1680529 05/05/2022

Solteiro(a)

```
Codigo do
                                                                                     UF do
                                                                                             Cidade do
                                  Data de
                                            Estado
                                                                  Profissao Idade
                                                    Genero
                                                                                                            da
                                                                                                                     12
                     Investidor
                                  Adesao
                                              Civil
                                                                                 Investidor
                                                                                             Investidor
                                                                                                          Conta
                                                                                                                  Meses
                                                                 BIÓLOGO E
                      31198462 21/03/2022 Solteiro(a)
         34163670
                                                                                        RS
                                                                                               VIAMAO
                                                                              25
                                                                                                             Α
                                                                                                                     Ν
                                                                BIOMÉDICO
                                                             TRABALHADOR
                      31199515 21/03/2022 Solteiro(a)
                                                                              22
                                                                                        RJ QUEIMADOS
         34163671
                                                                                                             Α
                                                                                                                     Ν
                                                               AUTÔNOMO
         34163672
                      31199859 21/03/2022 Solteiro(a)
                                                        M ADMINISTRADOR
                                                                              30
                                                                                        SC
                                                                                              JOINVILLE
                                                                                                             Α
                                                                                                                     N
         34163673
                      31199860 21/03/2022 Solteiro(a)
                                                           ADMINISTRADOR
                                                                              60
                                                                                        SC
                                                                                              BRUSQUE
                                                                                                                     Ν
         34163674
                      31200082 21/03/2022 Solteiro(a)
                                                                  OUTROS
                                                                              44
                                                                                              CURITIBA
                                                                                                             Α
                                                                                                                     Ν
In [6]:
         # Quantidade de linhas e colunas
         df.shape
Out[6]: (34163675, 10)
In [7]:
         # Renomeando as colunas
         print(df.columns.to_list())
         df.rename(columns={
              'Codigo do Investidor': 'codigo',
              'Data de Adesao': 'data_adesao',
              'Estado Civil': 'estado_civil',
              'Genero': 'genero',
              'Profissao': 'profissao',
              'Idade': 'idade',
              'UF do Investidor': 'uf',
              'Cidade do Investidor': 'cidade',
              'Situacao da Conta': 'situacao',
              'Operou 12 Meses': 'operacao'
         }, inplace=True)
         print('\n', df.columns.to_list())
         ['Codigo do Investidor', 'Data de Adesao', 'Estado Civil', 'Genero', 'Profissao', 'Idade', 'UF do Investido
         r', 'Cidade do Investidor', 'Situacao da Conta', 'Operou 12 Meses']
          ['codigo', 'data_adesao', 'estado_civil', 'genero', 'profissao', 'idade', 'uf', 'cidade', 'situacao', 'oper
        Tratando os tipos de valores
In [8]:
         # Identificando os tipos de dados das colunas
         df.dtypes
Out[8]: codigo
                          int64
         data_adesao
                         object
        estado_civil
                         object
         genero
                         object
         profissao
                         object
        idade
                          int64
         uf
                         object
         cidade
                         object
         situacao
                         object
        operacao
                         object
         dtype: object
In [9]:
         # Amostra de dados das colunas que terão seus tipos alterados
         df[['codigo', 'data_adesao', 'idade', 'situacao', 'operacao']].sample(5)
```

codigo data_adesao idade situacao operacao

25

32

Ν

Ν

06/11/2018

09/06/2020

Situacao

Operou

Out[5]:

Out[9]:

1987793

15721631 12036887

4310583

```
        codigo
        data_adesao
        idade
        situacao
        operacao

        10223666
        21122060
        20/07/2021
        35
        A
        N

        9596060
        3847968
        05/11/2021
        53
        A
        N

        2572209
        16916221
        31/01/2022
        36
        A
        N
```

```
In [10]:
          # Efetuando as conversões necessárias dos tipos de dados e exibindo novamente as informações das colunas
          df['codigo'] = df['codigo'].astype('int32', errors='ignore')
          df['data_adesao'] = pd.to_datetime(df['data_adesao'], format='%d/%m/%Y')
          df['idade'] = df['idade'].astype('int8', errors='ignore')
          df['situacao'] = df['situacao'].astype('category', errors='ignore')
          df['operacao'] = df['operacao'].astype('category', errors='ignore')
          df.info(memory_usage='deep')
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 34163675 entries, 0 to 34163674
         Data columns (total 10 columns):
         # Column
                           Dtype
         ---
          0
             codigo
                           int32
          1
             data_adesao datetime64[ns]
             estado_civil object
          3
              genero
                           object
             profissao
                            object
          5
              idade
                           int8
          6
             uf
                            object
             cidade
                           object
          8
             situacao
                           category
             operacao
                           category
         dtypes: category(2), datetime64[ns](1), int32(1), int8(1), object(5)
         memory usage: 11.3 GB
```

Tratando valores nulos

Identificando a quantidade de valores nulos

In [11]:

```
df.isnull().sum()
Out[11]: codigo
           data_adesao
                               0
           estado_civil
           genero
           profissao
                               0
           idade
           иf
                               0
           cidade
                              14
           situacao
                               0
           operacao
                               0
           dtype: int64
In [12]:
            # Identificando a quantidade campos preenchidos com espaços
            # Função para identifcar campos preenchidos com espaços
            # param1: dataframe
            # param2: coluna
            ']).value_counts()
                 try:
                      print(param2, ': ', x[1])
                 except:
                      print(param2, ': ', 0)
            verifica_espacos(df, 'codigo')
verifica_espacos(df, 'data_adesao')
verifica_espacos(df, 'estado_civil')
            verifica_espacos(df, 'genero')
            verifica_espacos(df, 'profissao')
verifica_espacos(df, 'idade')
verifica_espacos(df, 'uf')
verifica_espacos(df, 'cidade')
```

```
verifica_espacos(df, 'situacao')
         verifica_espacos(df, 'operacao')
         codigo : 0
         data adesao : 0
         estado_civil : 0
         genero: 0
         profissao: 0
         idade : 0
         uf : 11
         cidade: 0
         situacao: 0
         operacao :
In [13]:
         # Usando o valor mais frequente para preencher os campos da coluna [uf]
         x = mode(df['uf'])
         print('uf : ', x)
         df.loc[df['uf'].isin([' ', ' ', ' ', ' ', ' ']), 'uf'] = x
         verifica_espacos(df, 'uf')
         uf : SP
         uf: 0
In [14]:
         # Usando o valor mais frequente para preencher os campos da coluna [cidade] de acordo com a coluna [estado]
         y = df.groupby('uf')['cidade'].value_counts()
         x = y.loc[x].index[0]
         print('cidade : ', x)
         df['cidade'].fillna(x, inplace=True)
         print('cidade : ', df['cidade'].isnull().sum())
         cidade : SAO PAULO
         cidade: 0
In [15]:
         # Identificando valores inconsistentes na coluna [idade]
         # Registros com valor '0' representam erro no cadastro
         print(df.loc[df['idade'] == 0, 'idade'].value_counts(), '\n')
         # Usando o valor mais frequente para preencher os campos da coluna [idade]
         df.loc[df['idade'] == 0, 'idade'] = mode(df['idade'])
         x = df['idade'].unique()
         print(np.sort(x))
            696
        Name: idade, dtype: int64
                                 7
                                         9 10 11 12 13 14 15 16 17 18
         [ 1
               2
                  3
                      4
                          5
                             6
                                     8
                  21 22 23 24 25 26 27
                                            28
                                                29
          19
              20
                                                    30
                                                       31
                                                           32
                                                               33
                                                                   34
              38 39 40 41 42 43 44 45 46 47 48 49 50 51
          37
                                                                   52
                                                                       53
          55 56 57 58 59
                            60 61 62 63 64 65 66
                                                       67 68 69
                                                                  70 71
                                                                          72
          73
              74
                  75
                     76
                         77
                             78
                                 79 80 81 82
                                               83 84 85
                                                           86 87
                                                                  88
                                                                      89
          91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
          109 110 111 112 113 114 115 116 117 118 119 120 121 122]
```

Removendo registros que não pertencem a pessoas físicas

```
In [16]: # Excluindo colunas que possuem dados que funcionam como indicadores de investidores
# que não são pessoas físicas

print(df.shape)

# Função para identifcar e excluir linhas com valores inválidos
# param1: dataframe
# param2: coluna
# param3: valor inválido
```

```
def exclui_linhas(param1, param2, param3):
    x = param1[param1[param2] == param3]
    param1 = param1.drop(x.index)
    return param1

df = exclui_linhas(df, 'estado_civil', 'Não se aplica')
    df = exclui_linhas(df, 'profissao', 'Não se aplica')
    df = exclui_linhas(df, 'genero', 'N')
    df = exclui_linhas(df, 'genero', 'N')
    df = exclui_linhas(df, 'data_adesao', '01/01/1900')

df.shape

(34163675, 10)
Out[16]: (32838395, 10)
```

Amostra dos dados após tratamento das informações

In [17]: df.sample(10)

Out[17]:		codigo	data_adesao	estado_civil	genero	profissao	idade	uf	cidade	situacao	operacao
	14776217	27903101	2021-12-10	Solteiro(a)	М	VETERINÁRIO E ZOOTECNISTA	30	PA	SANTAREM	А	N
	2371576	3464224	2019-02-27	Desquitado(a)	М	PROPRIETÁRIO DE ESTABELECIMENTO COMERCIAL	40	PE	RECIFE	А	N
	16576766	33904901	2022-06-15	Solteiro(a)	М	ADVOGADO	28	SP	CERQUILHO	А	N
	8188425	27507099	2022-01-03	Solteiro(a)	М	OUTROS	37	MG	BELO HORIZONTE	А	N
	26201540	27817916	2022-04-22	Solteiro(a)	F	TRABALHADOR AUTÔNOMO	25	MG	ESMERALDAS	А	N
	28277189	10800248	2021-04-05	Desquitado(a)	М	ENGENHEIRO	35	SP	SUMARE	А	N
	11549545	25276959	2021-11-04	Solteiro(a)	М	OUTROS TRABALHADORES DE NÍVEL SUPERIOR LIGADOS	34	RJ	BARRA MANSA	А	N
	26804395	13693045	2020-08-27	Solteiro(a)	М	VETERINÁRIO E ZOOTECNISTA	25	SP	HORTOLANDIA	А	N
	17816311	4328973	2018-11-08	Desquitado(a)	М	SERVIDOR PÚBLICO MUNICIPAL	34	GO	GOIANIA	D	N
	1234032	11683306	2020-06-01	Solteiro(a)	М	VENDEDOR PRACISTA, REPRESENTANTE COMERCIAL, CA	20	RJ	BELFORD ROXO	А	N

Criando um dataframe sem contas duplicadas

```
In [18]:
# Um investidor pode ter mais de uma conta em mais de uma instituição financeira habilitada
# a efetuar operações no tesouro direto, logo será criado um dataframe onde só contara
# a primeira conta criada pelo investidor

df_investidores = df.copy()

df_investidores.sort_values(by=['codigo', 'data_adesao'])

df_investidores.drop_duplicates(subset=['codigo'], inplace=True)

df_investidores.shape
```

Criando um dataframe substituindo a idade por faixa etária

```
In [19]:
          # Para melhor resultado em algumas análises será criado outro dataframe onde
          # as idades serão substituídas por faixas etárias
          df_investidores_faixa = df_investidores.copy()
          faixa = [1, 18, 25, 35, 45, 55, 65, df_investidores_faixa['idade'].max()]
          rotulos = ['Menos de 18 anos',
                     '18 a 24 anos',
                     '25 a 34 anos',
                     '35 a 44 anos',
                     '45 a 54 anos',
                     '55 a 64 anos',
                     'Mais de 65 anos']
          df_investidores_faixa['idade'] = pd.cut(
              df_investidores_faixa['idade'], bins=faixa, labels=rotulos)
          df_investidores_faixa = pd.DataFrame(df_investidores_faixa)
          df_investidores_faixa.shape
```

Out[19]: (19110853, 10)

Redefinindo os index dos Dataframes

```
In [20]:
         df.reset index(inplace=True, drop=True)
          df.info(memory_usage='deep')
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 32838395 entries, 0 to 32838394
        Data columns (total 10 columns):
                       Dtype
         # Column
             -----
                           ----
                         int32
         0 codigo
             data_adesao
          1
                          datetime64[ns]
             estado_civil object
                          object
             genero
             profissao
                          object
             idade
                          int8
             uf
                          object
             cidade
                          object
                          category
             situacao
             operacao
                           category
         dtypes: category(2), datetime64[ns](1), int32(1), int8(1), object(5)
         memory usage: 10.9 GB
In [21]:
         df_investidores.reset_index(inplace=True, drop=True)
         df_investidores.info(memory_usage='deep')
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 19110853 entries, 0 to 19110852
         Data columns (total 10 columns):
         # Column
                          Dtype
         0 codigo
                          int32
             data_adesao datetime64[ns]
             estado_civil object
             genero
                           object
             profissao
                          object
          5
             idade
                          int8
             uf
                           object
             cidade
                          object
             situacao
                         category
                           category
             operacao
         dtypes: category(2), datetime64[ns](1), int32(1), int8(1), object(5)
         memory usage: 6.4 GB
In [22]:
         df_investidores_faixa.reset_index(inplace=True, drop=True)
         df_investidores_faixa.info(memory_usage='deep')
         <class 'pandas.core.frame.DataFrame'>
```

```
RangeIndex: 19110853 entries, 0 to 19110852
Data columns (total 10 columns):
   Column
                  Dtype
    codigo
0
                  int32
1
    data_adesao
                 datetime64[ns]
    estado_civil object
3
    genero
                  object
    profissao
                  object
    idade
                  category
    uf
                  object
    cidade
                  object
    situacao
                  category
   operacao
                  category
dtypes: category(3), datetime64[ns](1), int32(1), object(5)
memory usage: 6.4 GB
```

1. Qual o total de novos investidores por ano (2002 a 2021)?

Qual o total de novos investidores que aderiram ao programa por ano, no período de 2002 a 2021, independentemente se o cadastro em algum momento foi desativado e considerando somente a primeira adesão ao tesouro direto.

```
In [23]:
          # Função para criar a coluna [%] no dataframe
          # param1: dataframe
          # param2: coluna que será usada o cálculo
          def coluna_percentual(param1, param2):
              param1['%'] = param1[param2] / param1[param2].sum() * 100
              return param1['%']
          df_temp = df_investidores.copy()
          df_temp['ano'] = df_temp['data_adesao'].dt.year
          df_temp = df_temp.drop(df_temp.loc[df_temp['ano'] == 2022].index)
          df_investidores_ano = df_temp['ano'].value_counts()
          df_investidores_ano = pd.DataFrame(df_investidores_ano)
          df_investidores_ano.sort_index(inplace=True)
          df_investidores_ano.index.names = ['ano']
          df_investidores_ano.rename(columns={'ano': 'qtde'}, inplace=True)
          coluna_percentual(df_investidores_ano, 'qtde')
          df_investidores_ano
```

	-	
ano		
2002	1625	0.010860
2003	5307	0.035468
2004	4170	0.027870
2005	6842	0.045727
2006	9336	0.062396
2007	11138	0.074439
2008	18182	0.121516
2009	12926	0.086389
2010	14971	0.100056
2011	24838	0.166001
2012	21591	0.144300
2013	22734	0.151939
2014	32507	0.217255
2015	82516	0.551482
2016	370189	2.474099
2017	592532	3.960092
2018	945217	6.317206

qtde

Out[23]:

```
      qtde
      %

      ano
      **

      2019
      1932220
      12.913681

      2020
      2421926
      16.186552

      2021
      8431814
      56.352671
```

```
In [24]:
           plt.figure(figsize=(25, 10))
           plot = sns.barplot(x=df_investidores_ano.index,
                                y=df_investidores_ano['qtde'],
                                orient='v', palette=['mediumseagreen'])
           for i in plot.patches:
               plot.annotate(format(i.get_height(), '3.0f'),
                               (i.get_x() + i.get_width() / 2, i.get_height()),
                               ha='center', va='baseline', fontsize=13,
                               xytext=(0, 5), textcoords='offset points')
           plt.axvline(x=12, linestyle='--', color='red', alpha=0.5)
           plt.axvline(x=14.2, linestyle='--', color='red', alpha=0.5)
           plt.axvline(x=16.2, linestyle='--', color='goldenrod')
plt.axvline(x=17.8, linestyle='--', color='red', alpha=0.5)
           plt.text(9.9, 2000000, 'Crise político/econômica', va='center',
                     bbox=dict(facecolor='red', alpha=0.5), fontsize=13)
           plt.text(12.24, 3000000, 'Impeachment de Dilma', va='center',
           bbox=dict(facecolor='red', alpha=0.5), fontsize=13)
plt.text(15.42, 4000000, 'Eleições', va='center', bbox=dict(
               facecolor='goldenrod', alpha=0.5), fontsize=13)
           plt.text(16.1, 5000000, 'Pandemia Covid-19', va='center',
                     bbox=dict(facecolor='red', alpha=0.5), fontsize=13)
           plt.ylim(0, 9000000)
           plt.xticks(size=13)
           plt.yticks(size=13)
           plt.ticklabel_format(style='plain', axis='y')
           plt.xlabel('''
           plt.ylabel('')
           plt.title('\nTotal de novos investidores por ano (2002 a 2021)\n', fontsize=20)
           plt.show(plot)
```


Desde sua criação em **2002** o número de novos inscritos só ultrapassou a marca de 100.000 em **2016** em um **período de 14 anos** com 370.189 adesões, anteriormente em **2014** iniciou-se uma série de **acontecimentos políticos/econômicos que culmiram em uma crise** no país, já em **2017** a marca de meio milhão foi superada quando houve um salto para 592.532 de inscritos, em **2019**, **ano posterior as eleições**, o record de um milhão foi quebrado com um total 1.932.220 cadastros, no ano de **2020** ocorreu a pandemia de Covid-19, com medidas restritivas, lockdown e intensificação do home office encerrando o ano com um total 2.421.926 adesões, no ano seguinte, **2021**, o número de inscritos era de **8.431.814**, ou seja, neste ano houve um aumento de **348%** de novos investidores.

2. Qual o total de investidores por estado (01/2002 a 07/2022)?

Desde que foi criado o programa em janeiro de 2002, qual o total de investidores que efetuaram a adesão ao tesouro direto até julho de 2022.

\cap	1115	-	г	7		٦.	۰
U	u	L	ш	_	J		۰
			-			-	

	estado	qtde	%
uf			
AC	Acre	45501	0.238090
AL	Alagoas	174578	0.913502
AM	Amazonas	266487	1.394428
AP	Amapá	53407	0.279459
ВА	Bahia	895087	4.683658
CE	Ceará	571215	2.988956
DF	Distrito Federal	490326	2.565694
ES	Espírito Santo	379205	1.984239
GO	Goiás	642741	3.363225
MA	Maranhão	292672	1.531444
MG	Minas Gerais	1876814	9.820671
MS	Mato Grosso do Sul	229031	1.198434
MT	Mato Grosso	300086	1.570239
PA	Pará	440188	2.303340
РВ	Paraíba	235554	1.232567
PE	Pernambuco	601598	3.147939
PI	Piauí	157228	0.822716
PR	Paraná	1110137	5.808935
RJ	Rio de Janeiro	1938444	10.143158
RN	Rio Grande do Norte	233309	1.220819
RO	Rondônia	131899	0.690179
RR	Roraima	42865	0.224297
RS	Rio Grande do Sul	945369	4.946765
sc	Santa Catarina	811049	4.243918
SE	Sergipe	149257	0.781006
SP	São Paulo	5997831	31.384423
то	Tocantins	98975	0.517899

```
In [26]: # Função para criar dataframes de estados divididos por regiões
# param1: dataframe
# param2: Lista de estados

def uf_por_regiao(param1, param2):
    df_temp = param1[param1.index.isin(param2)]
```

```
df_temp['%'] = df_temp['qtde'] / df_temp['qtde'].sum() * 100
    return df_temp
sul = ['PR', 'SC', 'RS']
sudeste = ['ES', 'MG', 'RJ', 'SP']
centro_oeste = ['DF', 'GO', 'MS', 'MT']
nordeste = ['AL', 'BA', 'CE', 'MA', 'PB', 'PE', 'PI', 'RN', 'SE']
norte = ['AC', 'AM', 'AP', 'PA', 'RO', 'RR', 'TO']
df_investidores_sul = uf_por_regiao(df_investidores_uf, sul)
df_investidores_sudeste = uf_por_regiao(df_investidores_uf, sudeste)
df_investidores_centro_oeste = uf_por_regiao(df_investidores_uf, centro_oeste)
df_investidores_nordeste = uf_por_regiao(df_investidores_uf, nordeste)
df_investidores_norte = uf_por_regiao(df_investidores_uf, norte)
print('\n REGIÃO NORTE')
print(tabulate(df_investidores_norte, headers='keys', tablefmt='fancy_grid'))
print('\n REGIÃO NORDESTE')
print(tabulate(df_investidores_nordeste, headers='keys', tablefmt='fancy_grid'))
print('\n REGIÃO CENTRO-OESTE')
print(tabulate(df_investidores_centro_oeste, headers='keys', tablefmt='fancy_grid'))
print('\n REGIÃO SUDESTE')
print(tabulate(df_investidores_sudeste, headers='keys', tablefmt='fancy_grid'))
print('\n REGIÃO SUL')
print(tabulate(df_investidores_sul, headers='keys', tablefmt='fancy_grid'))
```

REGIÃO NORTE

uf	estado	qtde	%
AC	Acre	45501	4.2157
AM	Amazonas	266487	24.6902
AP	Amapá	53407	4.9482
PA	Pará	440188	40.7838
RO	Rondônia	131899	12.2205
RR	Roraima	42865	3.97147
ТО	Tocantins	98975	9.17011

REGIÃO NORDESTE

uf	estado	qtde	%
AL	Alagoas	174578	5.27347
ВА	Bahia	895087	27.0378
CE	Ceará	571215	17.2547
MA	Maranhão	292672	8.84072
РВ	Paraíba	235554	7.11536
PE	Pernambuco	601598	18.1724
PI	Piauí	157228	4.74938
RN	Rio Grande do Norte	233309	7.04755
SE	Sergipe	149257	4.5086

REGIÃO CENTRO-OESTE

uf	estado	qtde	%
DF	Distrito Federal	490326	29.4989
GO	Goiás	642741	38.6685
MS	Mato Grosso do Sul	229031	13.7789
MT	Mato Grosso	300086	18.0537

REGIÃO SUDESTE

uf	estado	qtde	%
ES	Espírito Santo	379205	3.72051
MG	Minas Gerais	1876814	18.414
RJ	Rio de Janeiro	1938444	19.0187
SP	São Paulo	5997831	58.8467

REGIÃO SUL

uf	estado	qtde	%
PR	Paraná	1110137	38.7272
RS	Rio Grande do Sul	945369	32.9793
SC	Santa Catarina	811049	28.2935

```
In [27]:
          # Função para gerar gráficos de barras de estados
          # param1: dataframe
          # param2: titulo
          # param3: axis
          # param4: spec
          def graf_estado(param1, param2, param3, param4):
              param3 = fig.add_subplot(param4)
              param3.bar(param1['estado'], param1['%'], color='royalblue')
              param3.set title(param2, fontsize=15)
              for i in param3.patches:
                   ha='center', va='baseline', fontsize=13,
xytext=(0, 5), textcoords='offset points')
              plt.setp(param3.get_xticklabels(), rotation=30, ha='right', fontsize=13)
          df_investidores_sul.sort_values(by='%', ascending=False, inplace=True)
df_investidores_sudeste.sort_values(by='%', ascending=False, inplace=True)
          df_investidores_centro_oeste.sort_values(by='%', ascending=False, inplace=True)
          df_investidores_nordeste.sort_values(by='%', ascending=False, inplace=True)
          df_investidores_norte.sort_values(by='%', ascending=False, inplace=True)
          fig = plt.figure(figsize=(25, 15), constrained_layout=True)
          spec = fig.add_gridspec(2, 3)
          ax00 = ax01 = ax02 = ax10 = ax11 = None
          graf_estado(df_investidores_sul, '\nRegião Sul', ax00, spec[0, 0])
          graf_estado(df_investidores_sudeste, 'Região Sudeste', ax01, spec[0, 1])
          graf_estado(df_investidores_centro_oeste, 'Região Centro-Oeste', ax02, spec[0, 2])
          graf_estado(df_investidores_norte, 'Região Norte', ax10, spec[1, 0])
          graf_estado(df_investidores_nordeste, '\nRegião Nordeste', ax11, spec[1, 1:])
          fig.suptitle(
               'Distribuição de adesões pelos estados por região (%)\n', fontsize=20)
          plt.show()
```


Considerando o perído de **janeiro de 2002 até julho de 2022**, **São Paulo** é o estado com maior número de adesões com 5.997.831 representando aproximadamente **31,39%** do total de **19.110.853** cadastros, seguido de **Rio de Janeiro** com 1.938.444 e **Minas Gerais** com 1.876.814, respectivamente **10,15%** e **9,9%** aproximados, somandos, os três estados da região sudeste, respondem por mais de **51% do total de inscritos** no programa. Na distribuição de adesões por região o cenário é de que na região sul o estado do Paraná responde por 38,73%, na região sudeste São Paulo responde por 58,85%, na região centro-oeste Goiás possui 38,67% dos cadastros, na região norte o Pará concentra 40,78% e a na região nordeste a Bahia detém 27,04%, São Paulo que apresenta a maior diferença na sua região concentrando quase 60% das adesões.

3. Qual o total de investidores em um ranking de 10 cidades (01/2002 a 07/2022)?

Considerando o período de janeiro de 2002 à julho de 2022, quais são as dez cidades onde estão concentradas a maioria dos investidores do tesouro direto.

```
df_temp = df_investidores.copy()
    df_investidores_cidades = df_temp['cidade'].value_counts().nlargest(10)
    df_investidores_cidades = pd.DataFrame(df_investidores_cidades)
    df_investidores_cidades.rename(columns={'cidade': 'qtde'}, inplace=True)
    df_investidores_cidades.index.name = 'cidade'
    coluna_percentual(df_investidores_cidades, 'qtde')

    df_investidores_cidades
```

ut[28]:		qtde	%
	cidade		
	SAO PAULO	2087900	37.371103
	RIO DE JANEIRO	941585	16.853331
	BRASILIA	489633	8.763890
	BELO HORIZONTE	439577	7.867943
	CURITIBA	337603	6.042721
	SALVADOR	323497	5.790239
	FORTALEZA	290827	5.205482
	MANAUS	232041	4.153278
	GOIANIA	226398	4.052274

```
        qtde
        %

        cidade
        217876
        3.899740
```

```
In [29]:
          plt.figure(figsize=(25, 10))
          plot = sns.barplot(x=df_investidores_cidades.index,
                              y=df_investidores_cidades['qtde'],
                              orient='v', palette='hls')
          for i in plot.patches:
              plot.annotate(format(i.get_height(), '3.0f'),
                             (i.get_x()+i.get_width()/2, i.get_height()),
                             ha='center', va='baseline', fontsize=13,
                             xytext=(0, 5), textcoords='offset points')
          plt.ylim(0, 2300000)
          plt.xticks(size=13)
          plt.yticks(size=13)
          plt.ticklabel_format(style='plain', axis='y')
          plt.xlabel('')
          plt.ylabel(''
          plt.title('\nAs 10 cidades com mais investidores (01/2002 a 07/2022)\n', fontsize=20)
          plt.show(plot)
```

As 10 cidades com mais investidores (01/2002 a 07/2022)

A cidade de **São Paulo** é a que mais possui inscritos, com **2.087.900** concentrando mais que o dobro da segunda cidade, **Rio de Janeiro**, com **941.585**, em terceiro está a capital, **Brasília**, com **489.633** e assim seguido pelas cidades de Belo Horizonte, 439.577, Curitiba, 337.603, Salvador, 323.497, Fortaleza, 290.827, Manaus, 232.041, Goiânia, 226.398 e Porto Alegre com 217.876. Todas as regiões do país possuem ao menos um representante no ranking, destaque para região sudeste com três, São Paulo, Rio de Janeiro e Belo Horizonte e a região norte com apenas Manaus a representando.

4. Qual a quantidade de investidores que operaram nos últimos 12 meses (07/2021 a 07/2022)?

Qual a quantidade e percentual de investidores com contas ativas e desativadas que fizeram alguma operação nos últimos 12 meses, período que corresponde de julho de 2021 a julho de 2022.

```
In [30]:

df_temp = df.copy()
    df_temp = df_temp[df_temp['operacao'] == 'S']
    df_temp = df_temp.sort_values(by=['codigo'])
    df_temp.drop_duplicates(subset=['codigo'], inplace=True)
    df_temp = df_temp.groupby(['situacao'])['operacao'].value_counts()
    df_situacao_operacao = pd.DataFrame(df_temp)
    coluna_percentual(df_situacao_operacao, 'operacao')
    df_situacao_operacao.index.names = ['situacao', 'operacao_mes']

print('''
    Os últimos 12 meses correspondem ao período de julho de 2021 a julho de 2022

A = Investidores com conta ativa no tesouro direto
```

```
D = Investidores com conta desativada no tesouro direto
              S = Operou nos últimos 12 meses (07/2021 a 07/2022)
              N = Não operou nos últimos 12 meses (07/2021 a 07/2022)
          df_situacao_operacao
             Os últimos 12 meses correspondem ao período de julho de 2021 a julho de 2022
             A = Investidores com conta ativa no tesouro direto
             D = Investidores com conta desativada no tesouro direto
             S = Operou nos últimos 12 meses (07/2021 a 07/2022)
             N = Não operou nos últimos 12 meses (07/2021 a 07/2022)
Out[30]:
                               operacao
                                              %
         situacao operacao mes
                                1704061 99.125874
                                  15027
                                         0.874126
In [31]:
          df_graf = df_situacao_operacao.reset_index()
          plt.figure(figsize=(7, 7))
          plt.pie(df_graf['%'], labels=df_graf['situacao'], labeldistance=1.3,
                  pctdistance=1.15, explode=(0, 0.1), colors=['#008fd5', '#fc4f30'],
                  autopct='%0.3f%%', startangle=315, textprops=dict(fontsize=15))
          plt.title('\nInvestidores que operaram nos últimos 12 meses (07/2021 a 07/2022)\n', fontsize=20)
          plt.legend(loc='best', bbox_to_anchor=(0.7, 0.1, 0.6, 0.9), labelspacing=1,
                     labels=['A - Ativa', 'D - Desativada'], fontsize=12, title='Conta', title_fontsize=12)
          plt.axis('equal')
          plt.show()
```

Investidores que operaram nos últimos 12 meses (07/2021 a 07/2022)

Com **1.704.061** o que representa **99,126%** das contas ativas de investidores que realizaram algum tipo de operação no programa, o restante **15.027**, cerca de **0,874%** de investidores também efetuaram alguma operação no programa, porém, neste mesmo período suas contas foram desativadas.

5. Qual a distribuição de investidores por faixa etária e gênero (01/2002 a 07/2022)?

Qual a distribuição de investidores (quantidade e percentual) entre janeiro de 2002 à julho de 2022 segmentados pela faixa etária e por gênero (masculino ou feminino).

```
In [32]:
    df_faixa_genero = df_investidores_faixa.copy()

    df_faixa_genero = df_faixa_genero.groupby(['idade'])['genero'].value_counts()
    df_faixa_genero = pd.DataFrame(df_faixa_genero)
    df_faixa_genero.rename(columns={'genero': 'qtde'}, inplace=True)
    coluna_percentual(df_faixa_genero, 'qtde')

    df_faixa_genero
```

Out[32]: qtde %

idade	genero		
Menos de 18 anos	М	252681	1.322304
	F	67951	0.355594
18 a 24 anos	М	3396491	17.774166
	F	877548	4.592294
25 a 34 anos	М	4966369	25.989490
	F	1720120	9.001554
35 a 44 anos	М	3190386	16.695599
	F	1237612	6.476543
45 a 54 anos	М	1303771	6.822760
	F	583427	3.053130
55 a 64 anos	М	617687	3.232416
	F	356404	1.865097
Mais de 65 anos	М	318689	1.667730
	F	220008	1.151323

GÊNERO FEMININO

idade	qtde	%	
Menos de 18 anos	67951	1.34209	
18 a 24 anos	877548	17.33233	
25 a 34 anos	1720120	33.97385	
35 a 44 anos	1237612	24.44390	
45 a 54 anos	583427	11.52319	
55 a 64 anos	356404	7.03929	
Mais de 65 anos	220008	4.34535	

GÊNERO MASCULINO

idade	qtde	%	
Menos de 18 anos	252681	1.79894	

```
18 a 24 anos
                   3396491 24.18107
25 a 34 anos
                   4966369
                             35.35770
35 a 44 anos
                   3190386
                             22.71372
45 a 54 anos
                  1303771
                              9.28210
55 a 64 anos
                              4.39758
                    617687
Mais de 65 anos
                    318689
                              2.26888
```

```
In [34]:
         df_investidores_f['qtde'] = df_investidores_f['qtde'].mul(-1)
         rotulos.reverse()
         rotulos_x = ['3.000.000', '2.000.000', '1.000.000', '0',
                     '1.000.000', '2.000.000', '3.000.000', '4.000.000', '5.000.000']
         plt.figure(figsize=(25, 15), constrained_layout=True)
         plot = sns.barplot(x='qtde', y=df_investidores_m.index,
                          data=df_investidores_m, order=rotulos, palette=['cornflowerblue'])
         plt.xlim(-2500000, 5500000)
         plt.xticks(size=20)
         plt.yticks(size=20)
         plt.ticklabel_format(style='plain', axis='x')
         plt.xlabel('')
         plt.ylabel('')
         plt.title('\nDistribuição dos investidores por gênero e faixa etária\n', fontsize=20)
         plot.set_xticklabels(rotulos_x)
         plt.show()
```


Considerando apenas os gêneros e observando o gráfico, visivelmente as pessoas de **gênero masculino** são predominantemente as que mais investem no tesouro e com **4.966.369** (**35,36%**) na faixa etária de **25 a 34 anos** é a que mais concentra investidores, já as pessoas de **gênero feminino** também na faixa etária de **25 a 34 anos** e com **1.720.120** (**34%**) estão concentradas a maioria dos investidores. No segundo grupo etário que mais investem no tesouro há uma mudança, sendo o **gênero masculino** e na faixa etária de **18 a 24 anos** com **3.396.491** (**24,18%**) e no **gênero feminino** na faixa etária de **35 a 44 anos** com **1.237.612** (**24,44%**).

6. Qual a distribuição de investidores por faixa etária, gênero e estado civil (01/2002 e 07/2022)?

Qual a distribuição de investidores (quantidade) entre janeiro de 2002 à julho de 2022 segmentados pelo estado civil e para cada condição divididos por faixa etária e por gênero (masculino ou feminino).

```
In [35]: df_faixa_genero_civil = df_investidores_faixa.copy()

k = df_faixa_genero_civil['estado_civil'].unique()
k.sort()

df_faixa_genero_civil = df_faixa_genero_civil.groupby(
        ['estado_civil', 'idade'])['genero'].value_counts()

df_faixa_genero_civil = pd.DataFrame(df_faixa_genero_civil)

df_faixa_genero_civil.rename(columns={'genero': 'qtde'}, inplace=True)

for i in k:
    x = df_faixa_genero_civil.loc[i]
    x = x.unstack(0)
    print('\n\n\033[1m' + i.upper() + '\033[0m')
    display(x)
```

CASADO(A) COM BRASILEIRO(A) NATO(A)

qtde

idade	Menos de 18 anos	18 a 24 anos	25 a 34 anos	35 a 44 anos	45 a 54 anos	55 a 64 anos	Mais de 65 anos
genero							
F	41	6147	89390	135351	77175	68297	72784
M	122	8342	150276	271736	153681	106432	84112

CASADO(A) COM BRASILEIRO(A) NATURALIZADO(A)

qtde

idade	Menos de 18 anos	18 a 24 anos	25 a 34 anos	35 a 44 anos	45 a 54 anos	55 a 64 anos	Mais de 65 anos
genero							
F	148	8113	35127	32860	13979	6104	1748
М	243	11677	66216	74643	31166	13391	5784

CASADO(A) COM ESTRANGEIRO(A)

qtde

idade	25 a 34 anos	35 a 44 anos	45 a 54 anos	55 a 64 anos	Mais de 65 anos
genero					
F	2.0	11.0	25.0	18.0	31.0
М	NaN	27.0	36.0	24.0	48.0

DESQUITADO(A)

qtde

idade	Menos de 18 anos	18 a 24 anos	25 a 34 anos	35 a 44 anos	45 a 54 anos	55 a 64 anos	Mais de 65 anos
genero							
F	553	42247	301503	359123	173944	102242	48059
М	2754	179595	1100052	1225005	556558	275099	142916

DIVORCIADO(A)

qtde

idade	Menos de 18 anos	18 a 24 anos	25 a 34 anos	35 a 44 anos	45 a 54 anos	55 a 64 anos	Mais de 65 anos
genero							
F	128	6513	66060	122787	96820	74135	35841
М	253	13191	141811	235234	157308	88308	35235

SEPARADO JUDIC.

qtde

genero							qtde	
idade	Menos de 18 anos	18 a 24 anos	25 a 34 anos	35 a 44 anos	45 a 54 anos	55 a 64 anos	Mais de 65 anos	
genero								
F	4	684	7880	8317	3765	2973	1772	
М	4	764	7166	10306	5269	3310	1976	

SOLTEIRO(A)

qtde

genero							
F	67011	810746	1199126	551836	200998	87814	39434

1301450

359822

110996

3451435

idade Menos de 18 anos 18 a 24 anos 25 a 34 anos 35 a 44 anos 45 a 54 anos 55 a 64 anos Mais de 65 anos

UNIÃO ESTÁVEL

249002

3175360

qtde

37366

idade	Menos de 18 anos	18 a 24 anos	25 a 34 anos	35 a 44 anos	45 a 54 anos	55 a 64 anos	Mais de 65 anos
genero							
F	3	1633	14160	15783	6535	2921	789
М	1	2123	24621	33720	14602	6167	2748

VIÚVO(A)

qtde

idade	Menos de 18 anos	18 a 24 anos	25 a 34 anos	35 a 44 anos	45 a 54 anos	55 a 64 anos	Mais de 65 anos
genero							
F	63	1465	6872	11544	10186	11900	19550
M	302	5/139	2/1792	38265	25329	13960	8504

```
In [36]:
             # Função para gerar gráficos de barras de faixa etária, estado civil e gênero
             # param1: dataframe
             # param2: estado civil
             # param3: axis
             def graf_faixa_estado_genero(param1, param2, param3):
                  sns.barplot(data=param1.loc[param1['estado_civil'] == param2],
                                 x='qtde', y='idade', hue='genero', hue_order=['M', 'F'],
                                 ci=False, orient='horizontal', dodge=True,
                                 ax=param3, palette=['cornflowerblue', 'palevioletred'])
                  param3.tick_params(labelsize=15)
                  param3.set_ylabel('')
                  param3.set_xlabel('')
                  param3.legend()
                  param3.invert_yaxis()
                  param3.set_title(param2, loc='right', fontsize=15)
                  param3.ticklabel_format(style='plain', axis='x')
             fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6), (ax7, ax8), (ax9, ax10)
                    ) = plt.subplots(ncols=2, nrows=5, figsize=(25, 20))
             df_temp = df_faixa_genero_civil.reset_index()
             graf_faixa_estado_genero(df_temp, 'Casado(a) com brasileiro(a) nato(a)', ax1)
             graf_faixa_estado_genero(df_temp, 'Casado(a) com brasileiro(a) naturalizado(a)', ax2)
            graf_faixa_estado_genero(df_temp, 'Casado(a) com estrangeiro(a)', ax3)
graf_faixa_estado_genero(df_temp, 'Desquitado(a)', ax4)
graf_faixa_estado_genero(df_temp, 'Divorciado(a)', ax5)
graf_faixa_estado_genero(df_temp, 'Separado judic.', ax6)
graf_faixa_estado_genero(df_temp, 'Solteiro(a)', ax7)
graf_faixa_estado_genero(df_temp, 'União estável', ax8)
```


Observando cada gráfico de estado civil, segmentado por faixa etária, há apenas duas situaçãoes em que o número de investidores do **gênero feminino é superior ao masculino**, sendo o estado civil de **Divorciado(a)** e na faixa etária de **Mais de 65 anos** com **35.841** sendo que na mesma faixa etária e estado civil do gênero masculino o número de investidores é **35.235**, uma diferença de apenas **606**, porém no caso daqueles declarados como **Viúvo(a)** e novamente na faixa etária de **Mais de 65 anos** com **19.550** e no caso do gênero masculino com **8.504**, com uma diferença bem mais significativa de **11.046** de investidores

7. Qual a distribuição de investidores em um ranking de 10 perfis profissionais por gênero (01/2002 a 07/2022)?

Considerando o período de janeiro de 2002 à julho de 2022, segmentados por gênero (masculino e feminino), quais são os dez perfis profissionais que mais concentram investidores do tesouro direto.

```
return param2
df_temp = df_investidores.copy()
df_temp = df_temp.groupby(['profissao'])['genero'].value_counts()
df_investidores_profissao_f = df_investidores_profissao_m = None
print('\n GÊNERO FEMININO')
df_investidores_profissao_f = profissao_genero(
   df_temp, df_investidores_profissao_f, 'F')
print(tabulate(df_investidores_profissao_f, headers='keys';
               tablefmt='fancy_outline', floatfmt=('', '.0f', '.5f')))
print('\n GÊNERO MASCULINO')
df_investidores_profissao_m = profissao_genero(
    df_temp, df_investidores_profissao_m, 'M')
print(tabulate(df_investidores_profissao_m, headers='keys',
               tablefmt='fancy_outline', floatfmt=('', '.0f', '.5f')))
x = df_investidores['profissao'].unique()
print('\nA quantidade de opções de profissão disponíveis é', np.count_nonzero(x))
```

GÊNERO FEMTNINO

profissao	qtde	%
OUTROS ADMINISTRADOR TRABALHADOR AUTÔNOMO ESTUDANTE AUXILIAR DE ESCRITÓRIO E ASSEMELHADOS PROFESSOR DE PRIMEIRO E SEGUNDO GRAUS VENDEDOR DE COMÉRCIO VAREJISTA E ATACADISTA APOSENTADO (EXCETO FUNCIONÁRIO PÚBLICO) ADVOGADO EMPRESÁRIO	1910865 239297 206637 196132 142454 128393 126281 126217 104301 102291	58.20718 7.28927 6.29440 5.97441 4.33932 3.91100 3.84667 3.84472 3.17713 3.11590

GÊNERO MASCULINO

profissao	qtde	%
OUTROS VENDEDOR PRACISTA, REPRESENTANTE COMERCIAL, CAIXEIRO VIAJANTE AUXILIAR DE ESCRITÓRIO E ASSEMELHADOS ADMINISTRADOR ESTUDANTE VENDEDOR DE COMÉRCIO VAREJISTA E ATACADISTA ENGENHEIRO TRABALHADOR AUTÔNOMO PROPRIETARIO DE MICROEMPRESAS ANALISTA DE SISTEMAS	3279572 831583 817838 814718 641200 510976 412128 331209 300734 291202	39.84338 10.10287 9.93588 9.89797 7.78991 6.20782 5.00692 4.02384 3.65360 3.53780

A quantidade de opções de profissão disponíveis é 158

```
In [38]:
         # Função para criar gráficos de profissões divididos por gêneros
          # param1: dataframe
          # param2: axis
          # param3: cor da barra
          # param4: título do gráfico
          def graf_prof_gen(param1, param2, param3, param4):
              plot = sns.barplot(data=param1, x=param1.index, y='qtde',
                                 ci=False, dodge=True, ax=param2, orient='v', palette=[param3])
              for i in plot.patches:
                  plot.annotate(format(i.get_height(), '.0f'),
                                (i.get_x() + i.get_width()/2, i.get_height()),
                                ha='center', va='baseline', fontsize=13,
                                xytext=(0, 5), textcoords='offset points')
              param2.tick_params(labelsize=13)
              param2.set_ylabel('
              param2.set_xlabel('')
              param2.set_title(param4, loc='center', fontsize=15)
              param2.ticklabel_format(style='plain', axis='y')
              plt.setp(param2.get_xticklabels(), rotation=45, ha='right', fontsize=13)
          fig, (ax1, ax2) = plt.subplots(ncols=2, nrows=1, figsize=(25, 15))
```

Os 10 perfis profissionais dos investidores divididos por gênero

Levando em conta apenas **as dez profissões que mais concetram investidores**, divididos por gênero, temos a denominação **OUTROS** em **1º lugar**, **gênero feminino** com **1.910.865** e **gênero masculino** com **3.279.572**, ou seja, os investidores não se enquadaram em nenhuma das outras 158 opções disponibilizadas no cadastro do tesouro direto, outro ponto a observar é que entre os cinco primeiros, em ambos os gêneros, constam investidores que se declararam **ESTUDANTES**, sendo no grupo de gênero masculino ocupa o **5º lugar** com **641.200** e no grupo de gênero feminino ocupa o **4º lugar** com **196.132** de investidores.