4. Характеризация на регулярните езици. Теорема на Майхил-Нероуд

1 Дефинират се понятията регулярен език, детерминиран краен автомат и автоматен език. Формулира се теоремата на Клини.

Дефиниция 1. Регулярен език

Нека Σ е азбука. Тогава:

- Ø е регулярен език.
- $\{\varepsilon\}$ е регулярен език.
- $\{x\}$ е регулярен език за всяко $x \in \Sigma$.
- ullet Ако L_1 и L_2 са регулярни, тогава и $L_1\cup L_2$, $L_1\cdot L_2$ и L_1^* са регулярни.

Дефиниция 2. Детерминиран краен автомат

Детерминиран краен автомат е $\mathcal{A} = \langle \Sigma, Q, s, \delta, F \rangle$, където:

- \bullet Σ е крайна азбука.
- Q е крайно множество от състояния.
- \bullet $s \in Q$ е начално състояние.
- $\delta: Q \times \Sigma \to Q$ е функция на преходите.
- $F \subseteq Q$ е множество от финални състояния.

Дефиниция 3. δ^*

Нека $\mathcal{A}=\langle \Sigma,Q,s,\delta,F\rangle$ е ДКА, дефинираме функцията $\delta^*:Q\times\Sigma^*\to Q$ чрез индукция по дължината на втория аргумент:

- (база) За всяко състояние $p \in Q$ дефинираме $\delta^*(p,\varepsilon) = p$.
- (индуктивна стъпка) За всяко състояние $p \in Q$ дефинираме $\delta^*(p, \gamma x) = \delta(\delta^*(p, \gamma), x)$.

Дефиниция 4. Нека L е език u $\mathcal{A} = \langle \Sigma, Q, s, \delta, F \rangle$ е ДКА. Казваме, че:

- $\mathcal{L}(\mathcal{A}) = \{ \gamma \in \Sigma^* \mid \delta^*(s, \gamma) \in F \}.$
- A разпознава L, ако $\mathcal{L}(A) = L$.
- ullet L е автоматен, ако съществува ДКА ${\cal B}$, такъв че ${\cal B}$ разпознава L.

Теорема 1. Теорема на Клини

Hека L е произволен език. Тогава L е регулярен точно когато L е автоматен.

2 За език L се дефинира релацията \approx_L по един от следните два начина: (първи начин)

Дефиниция 5. $\alpha^{-1}(L)$

Нека $\alpha \in \Sigma^*$ е произволна фиксирана дума и L е език. Тогава дефинираме

$$\alpha^{-1}(L) = \{ \gamma \mid \alpha \gamma \in L \}$$

Дефиниция 6. \approx_L

За произволен език L дефинираме релацията $\thickapprox_L \subseteq \Sigma^* \times \Sigma^*$ чрез:

$$\alpha \approx_L \beta \iff \alpha^{-1}(L) = \beta^{-1}(L)$$

за всеки две думи $\alpha, \beta \in \Sigma^*$.

3 Доказва се, че \approx_L е релация на еквивалентност и че е дясно инвариантна.

Твърдение 1. Нека L е произволен език. Тогава релацията \approx_L е релация на еквивалентност, тоест е рефлексивна, симетрична и транзитивна.

Доказателство:

- \thickapprox_L е рефлексивна: Нека $\alpha\in \Sigma^*.$ Тогава $\alpha^{-1}(L)=\alpha^{-1}(L)$ и значи $\alpha\thickapprox_L\alpha.$
- \approx_L е симетрична: Нека $\alpha, \beta \in \Sigma^*$ и $\alpha \approx_L \beta$. Тогава $\alpha^{-1}(L) = \beta^{-1}(L)$ и значи $\beta^{-1}(L) = \alpha^{-1}(L)$, откъдето $\beta \approx_L \alpha$.
- \approx_L е транзививна. Нека $\alpha, \beta, \gamma \in \Sigma^*$, $\alpha \approx_L \beta$ и $\beta \approx_L \gamma$. Тогава $\alpha^{-1}(L) = \beta^{-1}(L)$ и $\beta^{-1}(L) = \gamma^{-1}(L)$, откъдето $\alpha^{-1}(L) = \beta^{-1}(L) = \gamma^{-1}(L)$. Последното означава, че $\alpha \approx_L \gamma$.

Твърдение 2. Нека L е произволен език. Тогава релацията \approx_L е дясно инвариантна, тоест за всеки две думи $\alpha \in \Sigma^*$ и $\beta \in \Sigma^*$, такива че $\alpha \approx_L \beta$, е изпълнено, че за всяка дума $\gamma \in \Sigma^*$ е вярно, че $\alpha \gamma \approx_L \beta \gamma$.

Доказателство: Нека $\alpha \approx_L \beta$ и $\gamma \in \Sigma^*$ е произволна дума. Тогава:

$$(\alpha\gamma)^{-1}(L) = \{\omega \mid \alpha\gamma\omega \in L\} = \{\omega \mid \gamma\omega \in \alpha^{-1}(L)\} = \{\omega \mid \gamma\omega \in \beta^{-1}(L)\} = \{\omega \mid \beta\gamma\omega \in L\} = (\beta\gamma)^{-1}(L)$$

4 Доказва се, че ако релацията \approx_L има индекс n, то L се разпознава от тотален краен детерминиран автомат с n състояния.

Дефиниция 7. Каноничен ДКА за L

Hека $pprox_L$ има краен индекс(има краен брой класове на еквивалентност), тогава дефинираме автомата $\mathcal{A}_L = \langle \Sigma, Q_L, s_L, \delta_L, F_L \rangle$, където:

- $Q_L = \{ [\alpha]_{\approx_L} \mid \alpha \in \Sigma^* \}.$
- $s_L = [\varepsilon]_{\approx_L}$.
- $\delta_L([\alpha]_{\thickapprox_L}, x) = [\alpha x]_{\thickapprox_L}$ за всеки $\alpha \in \Sigma^*$ и $x \in \Sigma$.
- $F_L = \{ [\alpha]_{\approx_L} \mid \alpha \in L \}.$

Твърдение 3. 1. За всяка буква $x \in \Sigma$ е изпълнено, че ако $[\alpha]_{\approx_L} = [\beta]_{\approx_L}$, тогава $[\alpha x]_{\approx_L} = [\beta x]_{\approx_L}$ (δ_L е добре дефинирана функция).

- 2. За всяка дума $\alpha \in \Sigma^*$ е изпълнено, че $\delta_L^*(s_L, \alpha) = [\alpha]_{\thickapprox_L}$.
- 3. Ако $[\alpha]_{\thickapprox_L} = [\beta]_{\thickapprox_L}$, тогава $\alpha \in L$ точно когато $\beta \in L$.
- 4. За всяка дума $\beta \in \Sigma^*$ е изпълнено, че $[\beta]_{\thickapprox_L} \in F_L \iff \beta \in L$.

Доказателство:

- 1. Нека $[\alpha]_{\approx_L} = [\beta]_{\approx_L}$, т.е. $\alpha \approx_L \beta$, тогава използвайки, че \approx_L е дясно инвариантна, получаваме, че $\alpha x \approx_L \beta x$, т.е. $[\alpha x]_{\approx_L} = [\beta x]_{\approx_L}$.
- 2. Доказваме с индукция по дължината на α :
 - Ако $|\alpha|=0$, тогава $\alpha=\varepsilon$ и имаме следните равенства:

$$\delta_L^*(s_L, \alpha) = \delta_L^*([\varepsilon]_{\approx_L}, \varepsilon) = [\varepsilon]_{\approx_L}$$

• Ако $|\alpha|=n+1$, т.е. $\alpha=\gamma x$ за някой $\gamma\in\Sigma^*$ и $x\in\Sigma$ с $|\gamma|=n$, тогава:

$$\delta_L^*(s_L,\alpha) = \delta_L^*(s_L,\gamma x) = \delta_L(\delta_L^*(s_L,\gamma),x) = \delta_L([\gamma]_{\approx_L},x) = [\gamma x]_{\approx_L} = [\alpha]_{\approx_L}$$

Индуктивното предположение приложихме при третото равенство.

3. Нека $[\alpha]_{\approx_L} = [\beta]_{\approx_L}$, тогава $\alpha^{-1}(L) = \beta^{-1}(L)$ и получаваме следната верига от еквивалентности:

$$\alpha \in L \iff \varepsilon \in \alpha^{-1}(L) \iff \varepsilon \in \beta^{-1}(L) \iff \beta \in L$$

4. Ако $\beta \in L$, тогава $[\beta]_{\approx_L} \in F_L$ по дефиницията на F_L . Обратно, ако $[\beta]_{\approx_L} \in F_L$, тогава има дума $\alpha \in \Sigma^*$, такава че $[\alpha]_{\approx_L} = [\beta]_{\approx_L}$ и $\alpha \in L$. Но тогава от 3. следва, че $\beta \in L$.

Твърдение 4. Ако релацията \approx_L има краен индекс n, тогава каноничният автомат \mathcal{A}_L (който има n състояния) разпознава L.

Доказателство: Ше докажем, че за всяка дума α е изпълнено, че $\alpha \in L \iff \alpha \in \mathcal{L}(\mathcal{A}_L)$.

Съгласно 4. от Твърдение 3 имаме, че $\alpha \in L \iff [\alpha]_{\approx_L} \in F_L$.

Съгласно 2. от Твърдение 3 имаме, че $[\alpha]_{\approx_L} \in F_L \iff \delta_L^*(s_L, \alpha) \in F_L$.

Съгласно дефиницията на $\mathcal{L}(\mathcal{A}_L)$ имаме, че $\delta_L^*(s_L,\alpha) \in F_L \iff \alpha \in \mathcal{L}(\mathcal{A}_L)$.

5 Доказва се, че ако L се разпознава от тотален краен детерминиран автомат с n състояния, то индексът на релацията \approx_L е не повече от n.

Твърдение 5. Нека $\mathcal{A} = \langle \Sigma, Q, s, \delta, F \rangle$ е ДКА с n състояния, такъв че $\mathcal{L}(\mathcal{A}) = L$. Тогава:

- 1. Ako $\delta^*(s,\alpha) = \delta^*(s,\beta)$, morasa $\alpha \approx_L \beta$, m.e. $[\alpha]_{\approx_L} = [\beta]_{\approx_L}$.
- 2. Индексът на \approx_L е не повече от n.

3

Доказателство:

1. Проследяваме следната верига от еквивалентности:

$$\gamma \in \alpha^{-1}(L) \iff \alpha \gamma \in L \iff \alpha \gamma \in \mathcal{L}(\mathcal{A}) \iff \delta^*(s, \alpha \gamma) \in F \iff \delta^*(\delta^*(s, \alpha), \gamma) \in F \iff \delta^*(\delta^*(s, \beta), \gamma) \in F \iff \delta^*(s, \beta \gamma) \in F \iff \beta \gamma \in \mathcal{L}(\mathcal{A}) \iff \beta \gamma \in L \iff \gamma \in \beta^{-1}(L)$$

Получаваме, че за всяка дума $\gamma \in \Sigma^*$ е изпълнено $\gamma \in \alpha^{-1}(L) \iff \gamma \in \beta^{-1}(L)$, т.е. $\alpha^{-1}(L) = \gamma^{-1}(L)$ и значи $\alpha \approx_L \beta$.

2. Множеството $R = \{\delta^*(s,\alpha) \mid \alpha \in \Sigma^*\}$ от състоянията в \mathcal{A} , достижими от началното състояние s, съдържа не повече от n елемента, понеже $R \subseteq Q$. Дефинираме функцията $f: R \to Q_L$ чрез $f(\delta^*(s,\alpha)) = [\alpha]_{\thickapprox_L}$. f е добре дефинирана поради проверката в 1. и е сюрективна, понеже всеки клас $[\alpha]_{\thickapprox_L}$ е образ на $\delta^*(s,\alpha) \in R$. От сюрективността на f следва, че Q_L съдържа не повече елементи от R, откъдето Q_L съдържа не повече от n елемента. Следователно индексът на \thickapprox_L е най-много n.

 \Box

6 Доказва се, че един език L е регулярен точно тогава, когато релацията \approx_L има краен индекс.

Теорема 2. Теорема на Майхил-Нероуд

Нека L е произволен език. Тогава L е регулярен точно когато $pprox_L$ има краен индекс.

Доказателство: Ако L е автоматен, тогава има ДКА \mathcal{A} , който разпознава L. Съгласно Твърдение 5.2 индексът на \approx_L е не повече от броя състояния на \mathcal{A} , значи е краен.

Обратно, ако \approx_L е краен, тогава съгласно Твърдение 4 езикът L се разпознава от детерминирания краен автомат \mathcal{A}_L , значи L е автоматен.

Заключаваме, че \approx_L има краен индекс точно когато L е автоматен, а съгласно теоремата на Клини (Теорема 1) това се случва точно когато L е регулярен.

4