

Aula 1:

Introdução Mág von Neumani

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

PCS-2302 / PCS-2024 Lab. de Fundamentos de Eng. de Computação

Aula 01

Introdução Máquina de von Neumann

Professores:

Marcos A. Simplício Junior Paulo Sergio Muniz Silva

Monitores:

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Aula 1:

Introdução Máq. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Roteiro

- . Planejamento da disciplina
- 2. Da Máquina de Turing à Máquina de von Neumann
 - a. Visão geral da Máquina de Turing
 - b. Problemas práticos da Máquina de Turing
 - c. Exemplo de uma máquina muito simples na arquitetura von Neumann
 - d. Exemplo de um simulador de uma máquina de von Neumann (MVN)
- 3. Parte Experimental
 - a. Pequenos programas em código da máquina MVN

CS 2302/2024

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Aula 1:

Introdução Máq. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Planejamento da disciplina

Objetivos da disciplina

- Apresentar conceitos fundamentais da engenharia de computação, do ponto de vista do software, tendo os seguintes temas como motivação:
 - Máquina de von Neumann
 - Principais aspectos dos Programas de Sistema
 - Programas de Sistema: programas que d\u00e3o suporte \u00e0 opera\u00e7\u00e3o de um computador (montadores, carregadores, bibliotecas, sistemas operacionais, etc.)

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Aula 1:

Introdução Máq. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Planejamento da disciplina

- Objetivos da disciplina (cont.)
 - Desenvolver alguns programas de sistema para um simulador da Máquina de von Neumann
 - Conhecer os conceitos básicos do paradigma de programação orientada a objetos e entender modelos UML que utilizem estes conceitos
 - Codificar na linguagem Java partes de programas de sistema existentes, implementados segundo o paradigma da orientação a objetos

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Planejamento da disciplina

Método

- Aulas ministradas em laboratório com:
 - Exposição conceitual dos problemas a resolver
 - Realização experimental dos conceitos apresentados para atender à meta da aula (em laboratório e em casa)

Dinâmica das aulas

- Exercícios pedidos em aula: pelo menos uma versão parcial deve ser entregue durante a aula. Correções/melhorias podem ser entregues até a semana seguinte
- Exercícios para casa: não serão formalmente cobrados, mas foram projetados para ajudar a resolver problemas de aulas posteriores

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Planejamento da disciplina

Método de correção:

- Códigos fonte serão avaliados em termos de <u>clareza</u>, facilidade de <u>entrada de parâmetros</u>, e <u>tratamento de erros</u>
- Serão fornecidos conjuntos de <u>entradas e saídas esperadas</u>, para testes: a correção será baseada <u>nestes e possivelmente outros</u> <u>testes</u>
- NÃO será avaliado "o quão próximo do correto está o código": corrigir bugs é tarefa dos alunos, não dos monitores/professores!

Componentes da Avaliação

- Nota de comprometimento (C) avaliação individual
- Nota atribuída aos trabalhos individuais (MP_{ind})
- Nota de relatórios e produtos gerados em grupo (T_{grupo})
- Nota final = (1*C + 4*MP_{ind} + 5*T_{grupo}) / 10

Aula 1:

Introdução Mág, von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Planejamento da disciplina

Aula 1

- Introdução. Máquina de Turing e Máquina de von Neumann.
 Linguagem de Máquina para o simulador MVN
- Exemplos de programas em um simulador da Máquina de von Neumann (MVN).

Aula 2

Descrição do montador absoluto para o simulador MVN.

Aula 3

 Descrição do montador relocável, ligador e relocador para o simulador MVN. Estruturação de código.

Aula 4

 Introdução dos conceitos de OO com exemplos em Java (parte I).

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Aula 1:

Introdução Máq. von Neumann

Autores

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Planejamento da disciplina

Aula 5

 Introdução dos conceitos de OO com exemplos em Java (parte II).

Aula 6

Prova 1 (individual)

Aula 7

 Arquitetura de software do simulador MVN. Os programas de sistema Dumper e Loader (parte I)

Aula 8

 Arquitetura de software do simulador MVN. Os programas de sistema Dumper e Loader (parte II)

Aula 9

- Implementação de um monitor batch elementar para a MVN (parte I)
 - Obs.: monitor batch = um sistema operacional primitivo

Aula 1:

Introdução Máq. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Implementação de um monitor batch elementar para a MVN (parte II)

Planejamento da disciplina

Aula 11

Aula 10

- Implementação de um monitor batch elementar para a MVN (parte III).
- Aula 12
 - Prova 2 (individual)
- Aula 13
 - REC

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Aula 1:

Introdução Máq. von Neumann

Autores

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

2 1

Máquina de Turing

Máquina de Turing: modelo de computação proposto pelo inglês Alan M. Turing em 1936.

Alan M. Turing,

Aula 1:

Introdução Mág, von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Máquina de Turing

- Uma Máquina de Turing compõe-se de:
 - Uma fita infinita, composta de células, cada qual contendo um símbolo de um alfabeto finito disponível (a fita também implementa a memória externa da máquina).
 - Um cursor, que pode efetuar leitura ou escrita em uma célula, ou mover-se para a direita ou para a esquerda.
 - Uma máquina de estados finitos (MEF), que controla o cursor.

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Aula 1:

Introdução Máq. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Computação em uma MT

- Inicialmente a fita contém somente a cadeia de entrada, com o cursor posicionado (por convenção) no início da cadeia (o restante da fita está em branco "b").
- Para armazenar algo, a máquina o grava na fita.
- Se a máquina tentar mover o cursor para a esquerda, estando o cursor posicionado na primeira célula da fita, este não se moverá.
- As saídas aceita e rejeita são obtidas ao entrar a máquina nos estados de aceitação e rejeição, respectivamente.
- Se a máquina não entrar em um estado de aceitação ou de rejeição, continuará sua computação para sempre (loop infinito).

PCS 2302/2024 Laboratório de

Fundamentos da Eng.de Computação

.

Introdução Mág, von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

MT como um Conjunto de Ações

- Uma MT pode ser descrita por um conjunto de ações.
- Ações: (s, i, i', s', d) sendo:
 - s: estado corrente da MEF
 - i: símbolo que está sendo lido na fita
 - i' : símbolo que é gravado na fita, no lugar de i
 - s': próximo estado da MEF
 - d∈ {D,E}, indicando que o cursor pode se mover para a \underline{D} ireita ou para a \underline{E} squerda.

Aula 1:

Introdução Mág, von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Observações sobre a Máquina de Turing

- Uma Máquina de Turing deve ser vista como um computador com um único programa fixo. Para alterar o programa, é preciso construir outra máquina.
- Algumas Máquinas de Turing servem como reconhecedores de linguagens, outras podem computar funções.
- É possível construir uma **Máquina de Turing Universal**, a qual simula a computação de Máquinas de Turing arbitrárias sobre entradas arbitrárias.
- Eliminadas suas limitações de recursos, um computador moderno pode ser visto como um dispositivo similar à Máquina de Turing Universal.

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Aula 1:

Introdução Máq. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Problemas Práticos da Máquina de Turing

- A Máquina de Turing se apresenta, portanto, através de um formalismo poderoso, com fita infinita e apenas quatro operações triviais: ler, gravar, avançar e recuar.
- Isso faz dela um dispositivo detalhista que oferece apenas uma visão microscópica da solução do problema que pretende resolver, não permitindo ao usuário usar abstrações mais expressivas.
- Embora a Máquina de Turing Universal permita uma espécie de programação, o seu código é extenso e a sua velocidade final de execução, muito baixa.

Aula 1:

Introdução Máq. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

A ideia da Máquina de von Neumann

- O Modelo de von Neumann procura oferecer uma alternativa prática, disponibilizando ações mais poderosas e ágeis em seu repertório de operações.
- Isso viabiliza, para os mesmos programas, codificações muito mais expressivas, compactas e eficientes.

John von Neumann (1903-1957)

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Aula 1:

Introdução Máq. von Neumann

Autores

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

A ideia da Máquina de von Neumann

- Para isso, a Máquina de von Neumann utiliza:
 - Memória endereçável, usando acesso aleatório.
 - Programa armazenado na memória, para definir diretamente a função corrente da máquina (ao invés da MEF).
 - Dados representados na memória (ao invés da fita).
 - Codificação numérica binária em lugar da unária.
 - Instruções variadas e expressivas para a realização de operações básicas muito frequentes (ao invés de sub máquinas específicas).
 - Maior flexibilidade para o usuário, permitindo operações de entrada e saída, comunicação física com o mundo real e controle dos modos de operação da máquina.
 - Capacidade de comunicação com dispositivos de entrada e saída (E/S)

Reestruturação: Paulo S. Muniz Silva v.1.0 ago. 2012

Elementos da Arquitetura a Simular

- Nesta disciplina pretende-se simular um *processador muito simples*, porém estruturalmente similar aos disponíveis de fato.
 - Processadores reais costumam incluir mais instruções, registradores adicionais, vários níveis de memória, etc..
- O processador tem um conjunto de elementos físicos de armazenamento de informações:
 - Memória Principal: para armazenar programas e dados.
 - Acumulador (AC): funciona como área de trabalho, para a execução de operações aritméticas e lógicas.
 - Outros registradores auxiliares: empregados em diversas operações intermediárias no processamento dos programas.
- O conjunto de dados neles contidos em cada instante constitui o estado instantâneo do processamento.

Aula 1:

Introdução Mág von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

2

Elementos da Arquitetura a Simular

- Os Registradores Auxiliares são:
 - Registrador de Dados da Memória (MDR) serve como ponte para os dados que trafegam entre a memória e os outros elementos da máquina.
 - Registrador de Endereço da Memória (MAR) indica qual é a origem ou o destino, na memória principal, dos dados contidos no registrador de dados da memória.
 - Registrador de Endereço de Instrução (IC) indica em cada instante qual será a próxima instrução a ser executada pelo processador.
 - Registrador de Instrução (IR) contém a instrução em execução
 - Código de Operação (OP) parte do registrador de instrução que identifica a instrução que está sendo executada
 - Operando da Instrução (OI) complementa a instrução indicando o dado ou o endereço sobre o qual ela deve agir.

Aula 1:

Introdução Mág, von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Funcionamento de um Simulador

Deve-se distinguir entre dois conceitos independentes na lógica de um simulador:

- Comandos de controle do simulador: esta parte do simulador independe da arquitetura do computador que se está simulando. Sua função é orientar a operação do programa simulador e permitir ao usuário observar e alterar o conteúdo dos componentes do processador simulado
 - São executados via linha de comando
- Execução das instruções do processador simulado: esta parte do simulador depende fortemente da arquitetura da máquina simulada. É ela que implementa um modelo da máquina simulada no nível de granularidade mais conveniente desejado em cada caso.
 - São executados na forma de um programa em linguagem de máquina

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Aula 1:

Introdução Máq. von Neumann

Autores

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Comandos de Controle do Simulador

- Para a execução da MVN
 - java -jar mvn.jar
 - Em caso de problemas com caracteres especiais, use: java -Dfile.encoding=cp850 -jar mvn.jar
- Tem-se os seguintes comandos básicos de controle para o programa simulador:
 - i: atribui valores iniciais padrão a todos os elementos importantes do simulador e da arquitetura.
 - p:carrega programas e dados para a memória da máquina simulada.
 - b: ativa/desativa modo de operação passo a passo.
 - r: promove a execução do programa, conforme o modo de operação: execução contínua/uma instrução por vez.
 - m: mostra o conteúdo da memória da máquina simulada.
 - s: permite a adição/remoção de dispositivos de entrada e saída

Aula 1:

Introdução Mág. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Comandos de Controle do Simulador

macbook-de-anarosa-brandao:2013 anarosa\$ java -jar mvn.jar Inicializacao padrao de dispositivos MVN Inicializada

> Escola Politécnica da Universidade de São Paulo PCS2302/PCS2024 - Simulador da Máquina de von Neumann MVN versão 4.5 (Agosto/2011) - Todos os direitos reservados

COMANDO PARÂMETROS OPERAÇÃO

Re-inicializa MVN

[arq] Carrega programa para a memória

[addr] [regs] Executa programa

Ativa/Desativa modo Debug

Manipula dispositivos de I/O

Lista conteúdo dos registradores

[ini] [fim] [arq] Lista conteúdo da memória

Ajuda Finaliza MVN e terminal

>

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Aula 1:

Introdução Máq. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

[run] - Obtenção e Decodificação

Comando r ("run") - Serve para promover a execução do programa, conforme o modo de operação: contínua ou uma instrução por vez

- 1) Determinação da Instrução a Executar
- 2) Fase de Obtenção da Instrução
- Obter na memória, no endereço contido no registrador de Endereço de Instrução, o código da instrução desejada
- 3) Fase de Decodificação da Instrução
- Decompor a instrução em duas partes: o código da instrução e o seu operando, depositando essas partes nos registradores de instrução e de operando, respectivamente.
- Selecionar, com base no conteúdo do registrador de instrução, um procedimento de execução dentre os disponíveis no repertório do simulador (passo 4).

Aula 1:

Introdução Mág, von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

31

[run] – Execução de instrução (1)

4) Fase de Execução da Instrução

- Executar o procedimento selecionado em 3, usando como operando o conteúdo do registrador de operando, preenchido anteriormente.
 - 4.1) Execução da instrução (decodificada em 3)
 - De acordo com o código da instrução a executar (contido no registrador de instrução), executar os procedimentos de simulação correspondentes (detalhados adiante)
 - 4.2) Acerto do registrador de Endereço de Instrução
 - Caso a instrução executada não seja de desvio, incrementar o registrador de Endereço de Instrução a executar. Caso contrário, o procedimento de execução da instrução já terá atualizado convenientemente tal informação.

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Aula 1:

Introdução Máq. von Neumann

Autores

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

[run] - Execução de instrução (2)

- Obs.: Sistema de **numeração e aritmética** adotada: Binário, em complemento de dois
 - representa inteiros e executa operações em 16 bits.
 - o bit mais à esquerda é o bit de sinal (1 = negativo)

Registrador de instrução = 0 (desvio incondicional)

 modifica o conteúdo do registrador de Endereço de Instrução (IC) armazenando nele o conteúdo do registrador de operando (OI)

IC := OI

Registrador de instrução = 1 (desvio se acumulador é zero)

se o conteúdo do acumulador for zero, então modifica o conteúdo do registrador de Endereço de Instrução (IC), armazenando nele o conteúdo do registrador de operando (OI)

Se AC = 0 então IC := OI

senão IC := IC + 1

CS 2302/2024

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

lula 1:

Introdução Mág, von Neumani

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Registrador de instrução = 2 (desvio se negativo)

 se o conteúdo do acumulador (AC) for negativo, isto é, se o bit mais significativo for 1, então modifica o conteúdo do registrador de Endereço de Instrução (IC) armazenando nele o conteúdo do registrador de operando (OI)

[run] – Execução de instrução (3)

Se AC < 0 então IC := OI

senão IC := IC + 1

Registrador de instrução = 3 (constante para acumulador)

 Armazena no acumulador (AC) o número relativo de 12 bits contido no registrador de operando (OI), estendendo seu bit mais significativo (bit de sinal) para completar os 16 bits do acumulador

AC := OI

IC := IC + 1

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Aula 1:

Introdução Máq. von Neumann

Autores

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

34

[run] – Execução de instrução (4)

Registrador de instrução = 4 (soma)

- Soma ao conteúdo do acumulador (AC) o conteúdo da posição de memória indicada pelo registrador de operando MEM[OI]
- Guarda o resultado no acumulador

AC := AC + MEM[OI]

IC := IC + 1

Registrador de instrução = 5 (subtração)

- Subtrai do conteúdo do acumulador (AC) o conteúdo da posição de memória indicada pelo registrador de operando MEM[OI]
- Guarda o resultado no acumulador

AC := AC - MEM[OI]

PCS 2302/2024 Laboratório de

Fundamentos da Eng.de Computação

Devision de la compaña de Constitution de la compaña de Constitution de la compaña de Constitution de Constitu

Registrador de instrução = 6 (multiplicação)

 Multiplica o conteúdo do acumulador (AC) pelo conteúdo da posição de memória indicada pelo registrador de operando MEM[OI]

[run] – Execução de instrução (5)

· Guarda o resultado no acumulador

AC := AC * MEM[OI]

IC := IC + 1

Aula 1:

Introdução Máq. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Registrador de instrução = 7 (divisão inteira)

- Dividir o conteúdo do acumulador (AC) pelo conteúdo da posição de memória indicada pelo registrador de operando MEM[OI]
- Guarda a parte inteira do resultado no acumulador

AC := int (AC / MEM[OI])

IC := IC + 1

*PCS

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Aula 1:

Introdução Máq. von Neumann

Autores

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

[run] - Execução de instrução (6)

Registrador de instrução = 8 (memória para acumulador)

• Armazena no acumulador (**AC**) o conteúdo da posição de memória cujo endereço é o conteúdo do registrador de operando MEM[**OI**]

AC := MEM[OI]

IC := IC + 1

Registrador de instrução = 9 (acumulador para memória)

 Guarda o conteúdo do acumulador (AC) na posição de memória indicada pelo registrador de operando MEM[OI]

MEM[OI] := AC

PCS

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Aula 1:

Introdução Mág, von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

[run] – Execução de instrução (7)

Registrador de instrução = A (desvio para subprograma)

- Armazena o conteúdo do registrador de Endereço de Instrução (IC), incrementado de uma unidade, na posição de memória apontada pelo registrador de operando MEM[OI]
- Armazena no registrador de Endereço de Instrução (IC) o conteúdo do registrador de operando incrementado de uma unidade (OI)

MEM[OI] := IC + 1IC := OI + 1

Registrador de instrução = B (retorno de subprograma)

 Armazena no registrador de Endereço de Instrução (IC) o conteúdo que está na posição de memória apontada pelo registrador de operando MEM[OI]

IC := MEM[OI]

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Aula 1:

Introdução Máq. von Neumann

Autores

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

[run] - Execução de instrução (8)

Registrador de instrução = C (stop)

• Modifica o conteúdo do registrador de Endereço de Instrução (IC) armazenando nele o conteúdo do registrador de operando (OI)

IC := OI

Registrador de instrução = D (input)

- Aciona o dispositivo indicado, fazendo a leitura de dados do mesmo
- · Transfere dado para o acumulador

(solicita dado do dispositivo)

AC := dado de entrada

Introdução

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

[run] – Execução de instrução (9)

Registrador de instrução = E (output)

- Aciona o dispositivo indicado
- Transfere o conteúdo do acumulador (AC) para o dispositivo, esperando que este termine de executar a operação de gravação

dado de saída := AC (aciona dispositivo)

IC := IC + 1

Registrador de instrução = F (supervisor call)

(não implementada: por enquanto esta instrução não faz nada)

Conjunto de registradores da Máquina de von Neumann (MVN)

Operações de Entrada e Saída

OP	Tipo	Dispositivo

D (entrada) ou E (saída)

Aula 1:

Introdução Máq. von Neumann

Eng.de Computação

OP

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Tipo Tipos de dispositivo:

0 = Teclado

1 = Monitor

pode ter até 256 unidades lógicas.

1 = Monitor 2 = Impressora 3 = Disco

Dispositivo Identificação do dispositivo. Pode-se ter vários tipos de dispositivo, ou unidades lógicas (LU). No caso do disco, um arquivo é considerado uma unidade

lógica.

Pode-se ter, portanto, até 16 tipos de dispositivos e, cada um,

PCS 2302/2024 Laboratório de

Laboratório de Fundamentos da Eng.de Computação

Aula 1:

Introdução Máq. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Exemplo de Programa – Prog1 (1)

Problema: Somar o valor de duas variáveis iniciadas com os valores -125₁₀ e 100₁₀, colocando o resultado em outra variável.

```
prog1.mvn
 Soma os valores de duas posições de memória e guarda o
 resultado em outra posição de memória, parando na
  instrução final.
0000 0008 ; Ponto de entrada: pulo para as instruções
; Constantes do programa
0002 \text{ FF83} ; A = 0 \times \text{FF83} (-125)
0004 \ 0064 ; B = 0 \times 0064 (100)
; Variáveis do programa
0006 0000 ; RESULTADO deverá ser 0xFFE7 (-25)
; Instruções do programa
0008 8002 ; Carrega o valor de A no acumulador
000A 4004 ; Adiciona B ao conteúdo do acumulador
000C 9006 ; Armazena o resultado em RESULTADO
000E C00E ; Para em 0x000E
   enderecos
```



```
Exemplo de Programa – Prog2 (2)
            ; Programa principal
            ; Chamando SUBTRAIR (A, B)
            0010 8002 ; Carrega o conteúdo de A no acumulador
PCS 2302/2024
            0012 903C ; Armazena no parâmetro X
Laboratório de
            0014 8004 ; Carrega o conteúdo de B
Fundamentos da
Eng.de Computação
            0016 903E ; Armazena no parâmetro Y
            0018 A040 ; Chama a sub-rotina SUBTRAIR
            001A 9006 ; Armazena o resultado em RESULTADO
            001C C01C ; Para em 0x01C
Introdução
            ; Sub-rotina SUBTRAIR
Autores:
            ; Parâmetros formais
Anna H. R. Costa
Jaime S. Sichman
            003C 0000 ; X
João José Neto
Paulo S. Muniz Silva
            003E 0000 ; Y
Ricardo L. A. Rocha
            ; Corpo da sub-rotina
Reestruturação:
            0040 0000 ; Endereço de retorno
Paulo S. Muniz Silva
            0042 803C ; Carrega o conteúdo de X
v.1.0 ago. 2012
            0044 503E ; Subtrai Y, resultado no ACUMULADOR
            0046 B040 ; Retorna para o endereço contido em 0x040
```


Aula 1:

Introdução Máq. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Algumas práticas de programação (1)

- O conjunto de instruções desta máquina de von Neumann é extremamente limitado, exigindo alguns artifícios para a obtenção dos efeitos necessários:
 - Não há operações lógicas. Tudo deve ser feito com operações aritméticas.
 - Não há endereçamento indireto nem indexado. Tudo deve ser feito alterando-se convenientemente as instruções disponíveis, no próprio programa, antes de executá-las.

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Aula 1:

Introdução Máq. von Neumann

Autores

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Algumas práticas de programação (2)

 Suponha que se deseje ler uma sequência de dados armazenados na memória:

> 034C 034E 0350 0352 end.

0002	
0004	
0006	
0008	
dados	

 Como fazer isto utilizando as instruções presentes nesta máquina de von Neumann?

Introdução

Autores:

Anna H. R. Costa João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação Paulo S. Muniz Silva

v.1.0 ago. 2012

Algumas práticas de programação (3)

 Uma técnica de programação binária, que permite usar uma única instrução para percorrer mais de uma posição de memória, envolve a auto modificação do código. Veja neste exemplo:

```
End. Instr.
              Comentário
0100 8F00
            ; Obtém o endereço de onde se deseja ler o dado
0102 4F02
             ; Compõe o endereço com o código de operação LOAD
0104 9106
             ; Guarda instrução montada para ser executada
0106 0000
              : Executa a instrução recém-montada
              ; Usa o valor do acumulador e altera o conteúdo de 0F00
0108 ......
              ; com o valor do próximo endereço da sequência.
015C 0100
             ; Volta a repetir o procedimento.
0F00 034C
             ; Endereço (034C) de onde se deseja ler o dado
0F02 8000
              ; Código de operação LOAD, com operando 000
```

Notar que o artifício da alteração do código pelo próprio programa, embora condenado pela engenharia de software, é a forma mais prática de percorrer seguências nesta máguina de von Neumann.

Algumas práticas de programação (3a) Automodificação de código

```
prog3.mvn
             Programa de ilustração de auto-modificação do código
            Lê uma sequência de dados contidos entre 034C a 0352
           0000 0100 ; Ponto de entrada: pulo para as instruções
Laboratório de
           0100 8F00 :
                         Obtém o endereço de onde se deseja ler o dado
           0102 4F02; Compõe o endereço com o código de operação LOAD
           0104 9106 ; Guarda instrução montada para ser executada
           0106 0000 ; Executa a instrução recém-montada
Introdução
Máq. von Neumann
           0108 8F00 ; Carrega o endereço da variável na lista
           010A 4348; Soma com a constante 0002 (desloca uma posição)
           010C 9F00 ; Altera o conteúdo de 0F00 com o novo endereço
Anna H. R. Costa
Jaime S. Sichman
          010E 5F04 ;
                         Subtrai com o endereço de parada
João José Neto
Paulo S. Muniz Silva
          0110 1114 ;
                         Se zero, condição de parada, salta para fora
Ricardo L. A. Rocha
           0112 0100 ; Se não zero, volta para o início
Reestruturação:
Paulo S. Muniz Silva
           0114 C114; Termina o programa
v.1.0 ago. 2012
```

Continua no próximo slide...

```
Algumas práticas de programação (3b)
                               Automodificação de código
               0348 0002 ;
                                Constante 0002 (ADDR+1)
PCS 2302/2024
Laboratório de
               ;Lista de valores a serem lidos (variáveis)
Fundamentos da
Eng.de Computação
               034C 0002
               034E 0004
               0350 0006
               0352 0008
Introdução
               OFOO 034C; Endereço (034C) de onde se deseja ler o dado
Autores:
               OF02 8000; Código de operação LOAD, com operando 000
Anna H. R. Costa
Jaime S. Sichman
João José Neto
               0F04 0354; Último endereço a ser lido + 1 (0352 + 0002)
Paulo S. Muniz Silva
Ricardo L. A. Rocha
Reestruturação:
Paulo S. Muniz Silva
v.1.0 ago. 2012
```


ulo 1:

Introdução Máq. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Algumas práticas de programação (4)

- Incrementos e decrementos de variáveis devem ser feitos somando-se ou subtraindo-se as constantes desejadas (tipicamente 1 ou 2) às variáveis alvo.
- Não há instruções específicas para todos os testes.
 Tudo deve ser feito combinando-se as instruções de desvios condicionais e usando-se lógica invertida quando necessário.
- Convém separar sub-rotinas já testadas e muito usadas, bem como variáveis e constantes, dos programas em desenvolvimento.
- O simulador tem suporte para endereçamento de 12bits.

TSP

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Aula 1:

Introdução Máq. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Algumas práticas de programação (5)

- À medida que os programas ficam maiores, é importante planejar uma estruturação do código e criação de sub-rotinas úteis.
- Projete sempre no papel seus programas e simule seu funcionamento no papel antes de utilizar o computador. Economiza-se muito tempo e esforço evitando-se a depuração de erros na base da tentativa e de testes.
- Documente todos os programas desenvolvidos com comentários informativos no código. Ao programar em baixo nível, é muito raro que, passados alguns dias, mesmo o autor consiga lembrar-se exatamente de como funciona o programa que ele próprio criou.
- Projete bem e anote os testes realizados e os resultados esperados. É frequente ter de repeti-los para as novas versões de um programa em desenvolvimento.

Aula 1:

Introdução Máq. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Bibliografia (Programação de Sistemas)

Relíquias Preciosas

Barron, D. W. Assemblers and Loaders (3rd. ed.) MacDonald/Elsevier, 1978

Beck, L. L. System Software - An Introduction to Systems Programming Addison-Wesley, 1996

Calingaert, P. *Assemblers, Compilers and Program Translation* Computer Science Press, 1979 Donovan, J. J. *Systems Programming* McGraw-Hill, 1972

Duncan, F.G. Microprocessor Programming and Software Development Prentice Hall, 1979.

Freeman, P. Software System Principles SRA, 1975

Gear, C. W. Computer Organization and Programming (3rd. ed.) McGraw-Hill, 1980

Graham, R. M. *Principles of Systems Programming* John Wiley & Sons, 1975

Gust, P. Introduction to Machine and Assembly Language Programming Prentice Hall, 1985

Maginnis, J. B. *Elements of Compiler Construction* Appleton-Century-Crofts, Meredith Co., 1972

Presser, L. and White, J. R. Linkers and Loaders ACM Comp. Surveys, vol. 4, n. 3, pp. 149-168, 1972

Rosen, S. (ed.) *Programming Systems and Languages McGraw-Hill*, 1967

Tseng, V. (ed.) Microprocessor Development and Development Systems McGraw-Hill, 1982

Ullman, J. D. Fundamental Concepts of Programming Systems Addison-Wesley, 1976

Wegner, P. Progr. Languages, Inf. Structures and Machine Organization McGraw-Hill, 1968.

Welsh, J. and McKeag, M. Structured System Programming Prentice-Hall, 1980

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Aula 1:

Introdução Máq. von Neumann

Autores

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Referências Bibliográficas

Costa, A. H. R., Sichman, J. S., Tori, R., Brandão, A. A. F.. *Material didático da disciplina PCS2214 – Fundamentos da Engenharia de Computação I*, PCS/EPUSP. São Paulo. 2010-2011.

Sipser, M. *Introduction to the Theory of Computation*. (20. Edition) Course Technology, Boston, MA. 2005.

Leitura complementar:

UM SIMULADOR-INTERPRETADOR PARA A LINGUAGEM DE MÁQUINA DO PATINHO FEIO.

(João José Neto, Aspectos do Projeto de Software de um Minicomputador, Dissertação de Mestrado, EPUSP, S. Paulo, 1975, cap.3)