Chapitre 2

Introduction à l'estimation

Université de Paris Ouest

2012-2013

Sommaire

- 1 Deux exemples pour commencer
- 2 Estimation
- **3** Variance corrigée : pourquoi n-1?
- 4 Conclusion

- $\blacktriangleright \ \, \mathsf{Population} \,\, \mathcal{P} = \{ \,\, \mathsf{Adultes} \,\, \mathsf{français} \,\, \}$
- ► Taille *N* = 45000000
- ightharpoonup Variable : X = "Taille en cm", quantitative

- ▶ Population $P = \{ Adultes français \}$
- ► Taille N = 45000000
- ▶ Variable : X = "Taille en cm", quantitative
- ► Modalités : intervalle [0cm; 300cm]
- 2 paramètres : $\mu = \text{moyenne}$, $\sigma^2 = \text{variance}$.

On cherche à connaître μ et σ^2 .

Problème: N est trop grand!

Accès uniquement à un échantillon de taille 4 :

Accès uniquement à un échantillon de taille 4 :

Dans cet échantillon, moyenne =
$$\frac{174 + 164 + 178 + 168}{4} = 171$$
.

On extrapole ces données à la population entière :

On ne connaît pas μ , mais on peut penser que μ est proche de 171.

Exemple 2 : Sondage pour un référendum

- ▶ Population $P = \{ Adultes français \}$
- ► Taille N = 45000000
- ▶ Variable : X = "réponse au référendum", qualitative

Exemple 2 : Sondage pour un référendum

- ▶ Population $P = \{ Adultes français \}$
- ▶ Taille N = 45000000
- ▶ Variable : X = "réponse au référendum", qualitative
- ► Modalités : oui/non
- ▶ 1 paramètre *p* = proportion de "oui".

On cherche à connaître p.

Problème: N est trop grand!

Exemple 2 : Sondage pour un référendum

Accès uniquement à un échantillon de taille 1000 :

▶ On appelle 1000 adultes au téléphone, 540 disent voter "oui".

On extrapole ces données à la population entière :

On ne connaît pas p, mais on peut penser que p est proche de 0,54.

Sommaire

- Deux exemples pour commencer
- 2 Estimation
 - Principe de l'estimation
 - Estimation pour une variable quantitative
 - Estimation pour une variable qualitative
- **3** Variance corrigée : pourquoi n-1?
- 4 Conclusion

Statistiques descriptives vs Statistiques inférentielles

Définition (Larousse)

L'inférence statistique consiste à induire les caractéristiques inconnues d'une population à partir d'un échantillon.

Statistiques descriptives vs Statistiques inférentielles

Définition (Larousse)

L'inférence statistique consiste à induire les caractéristiques inconnues d'une population à partir d'un échantillon.

Stat. descriptives (L1)	Stat. inférentielles (L2)
 petite population toutes les données on calcule les	 très grande population données d'un échantillon on extrapole à partir de
paramètres	l'échantillon

Estimation de μ pour une variable quantitative

Variable quantitative X, 2 paramètres μ , σ^2 . Échantillon de taille n, observations x_1, x_2, \ldots, x_n .

Définition

L'estimation ponctuelle de la moyenne μ est donnée par la moyenne observée dans l'échantillon

$$\bar{x}=\frac{x_1+x_2+\cdots+x_n}{n}.$$

Attention : μ est inconnue, seule \bar{x} est observée!

Retour sur l'Exemple 1 : estimation de la moyenne

- ▶ Population $P = \{ Français \}$
- ► Taille *N* = 45000000
- $\blacktriangleright \mu = \text{moyenne}$

- ► Échantillon tiré au sort
- ▶ Taille n = 4
- $ightharpoonup ar{x} =$ moyenne observée= 171.

 μ est inconnue, mais on estime μ par la moyenne observée $\bar{x}=171$.

Estimation de σ^2 pour une variable quantitative

Variable quantitative X, 2 paramètres μ , σ^2 , observations x_1, x_2, \ldots, x_n . On note s^2 la **variance observée** :

$$s^{2} = \frac{x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}}{n} - \bar{x}^{2}.$$

Estimation de σ^2 pour une variable quantitative

Variable quantitative X, 2 paramètres μ , σ^2 , observations x_1, x_2, \ldots, x_n . On note s^2 la **variance observée** :

$$s^{2} = \frac{x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}}{n} - \bar{x}^{2}.$$

Définition

L'estimation ponctuelle de la variance σ^2 est donnée par la variance corrigée dans l'échantillon

$$s^{\star 2} = \frac{n}{n-1}s^2.$$

Attention : σ^2 est inconnue, seule s^2 et s^{*2} sont observées !

Estimation de σ^2 pour une variable quantitative

Variable quantitative X, 2 paramètres μ , σ^2 , observations x_1, x_2, \ldots, x_n . On note s^2 la **variance observée** :

$$s^{2} = \frac{x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}}{n} - \bar{x}^{2}.$$

Définition

L'estimation ponctuelle de la variance σ^2 est donnée par la variance corrigée dans l'échantillon

$$s^{\star 2} = \frac{n}{n-1}s^2.$$

Attention : σ^2 est inconnue, seule s^2 et s^{*2} sont observées !

Définition bis

L'estimation ponctuelle de l'écart-type σ est donnée par l'écart-type corrigé $s^* = \sqrt{s^{*2}}$.

Retour sur l'Exemple 1 : estimation de la variance

- $\blacktriangleright \ \, \mathsf{Population} \,\, \mathcal{P} = \{ \,\, \mathsf{Français} \,\, \}$
- ► Taille *N* = 45000000
- $\sigma^2 = \text{variance}$

- ► Échantillon tiré au sort
- ▶ Taille n = 4
- $ightharpoonup s^2 =$ variance observée

Dans l'échantillon,

variance observée
$$s^2 = \frac{174^2 + 164^2 + 178^2 + 168^2}{4} - 171^2 = 29,$$

Retour sur l'Exemple 1 : estimation de la variance

- ▶ Population $P = \{ Français \}$
- ► Taille *N* = 45000000
- $ightharpoonup \sigma^2 = \text{variance}$

- ► Échantillon tiré au sort
- ▶ Taille n = 4
- $ightharpoonup s^2 =$ variance observée
- ► s^{*2} = variance corrigée

Dans l'échantillon,

variance observée
$$s^2 = \frac{174^2 + 164^2 + 178^2 + 168^2}{4} - 171^2 = 29,$$
 variance corrigée $s^{\star 2} = \frac{n}{n-1} s^2 = \frac{4}{3} \times 29.$

 σ^2 est inconnue, mais on estime σ^2 par la variance corrigée $s^{*2} = 38,67$.

Estimation de p pour une variable qualitative

Variable qualitative X à 2 modalités, Un paramètre p= effectif de la 1ère modalité. Échantillon de taille n,

 n_1 = effectif de la 1ère modalité dans l'échantillon.

Estimation de p pour une variable qualitative

Variable qualitative X à 2 modalités, Un paramètre p= effectif de la 1ère modalité. Échantillon de taille n,

 n_1 = effectif de la 1ère modalité dans l'échantillon.

Définition

L'estimation ponctuelle de la proportion p est donnée par la **fréquence** observée f de la première modalité dans l'échantillon :

$$f=\frac{n_1}{n}$$
.

Attention : p est inconnue, seule f est observée!

Retour sur l'Exemple 2

- ▶ Population $P = \{ Français \}$
- ► Taille N = 45000000
- ▶ p = proportion de "oui".

- ► Échantillon tiré au sort
- ▶ Taille *n*= 1000
- f = fréquence observée de "oui".

p est inconnue, mais on estime p par la fréquence observée f=0,54.

Une notation pratique : \sum

 $x_i = la variable du i-ème individu :$

$$x_1 = 174$$
, $x_2 = 164$, $x_3 = 178$, $x_4 = 168$

On note alors

$$\sum x_i = x_1 + x_2 + x_3 + x_4 = 174 + 164 + 178 + 168.$$

(se lit "somme des x_i ")

Une notation pratique : \sum

 $x_i = la variable du i-ème individu :$

$$x_1 = 174$$
, $x_2 = 164$, $x_3 = 178$, $x_4 = 168$

On note alors

$$\sum x_i = x_1 + x_2 + x_3 + x_4 = 174 + 164 + 178 + 168.$$

(se lit "somme des x_i ")

On peut aussi noter

$$\sum x_i^2 = x_1^2 + x_2^2 + x_3^2 + x_4^2 = 174^2 + 164^2 + 178^2 + 168^2.$$

(se lit "somme des x_i au carré")

Un exemple d'exercice avec \sum

La santé des enfants prématurés est mesurée 5 minutes après la naissance par le **score d'Apgar** (une note entre 0 et 10).

Sur 60 nourrissons on recueille des scores x_1, \ldots, x_{60} tels que

$$\sum x_i = 472, \qquad \sum x_i^2 = 3820.$$

Question : Donner une estimation du score moyen et de la variance du score parmi tous les prématurés.

Un exemple d'exercice avec \sum

La santé des enfants prématurés est mesurée 5 minutes après la naissance par le **score d'Apgar** (une note entre 0 et 10).

Sur 60 nourrissons on recueille des scores x_1, \ldots, x_{60} tels que

$$\sum x_i = 472, \qquad \sum x_i^2 = 3820.$$

Question : Donner une estimation du score moyen et de la variance du score parmi tous les prématurés.

- ▶ Variable S ="score", quantitative discrète. 2 paramètres μ, σ^2 .
- ▶ Population $P = \{ \text{ prématurés } \}$, échantillon de taille n = 60.

On estime μ par $\bar{x} = \frac{\sum x_i}{60} \approx 7,87$.

On calcule la **variance observée** $s^2 = \left(\frac{\sum x_i^2}{60} - 7,87^2\right) \approx 1,73.$

On estime σ^2 par la variance corrigée $s^{\star 2} = \frac{60}{59} \left(\frac{\sum x_i^2}{60} - 7,87^2 \right) \approx 1,76$.

Sommaire

- 1 Deux exemples pour commencer
- 2 Estimation
- 3 Variance corrigée : pourquoi n-1?
- 4 Conclusion

Imaginons une population de taille 3 :

$$\mu = 6$$

$$\sigma^2 = \frac{4^2 + 6^2 + 8^2}{3} - 6^2 = 2,66$$

Imaginons une population de taille 3 :

Que donnerait une estimation à partir d'échantillons de taille 2?

Vraies valeurs des paramètres : $\mu = 6, \ \sigma^2 = 2,66$

Considérons toutes les estimations possibles :

Éch.	4; 4	4; 6	4; 8	6; 4	6; 6	6; 8	8; 4	8;6	8;8	moyenne
X	4	5	6	5	6	7	6	7	8	6
s^2	0	1	4	1	0	1	4	1	0	1,33
s*2	0	2	8	2	0	2	8	2	0	2,66

Vraies valeurs des paramètres : $\mu = 6$, $\sigma^2 = 2,66$

Considérons toutes les estimations possibles :

Éch.	4; 4	4; 6	4;8	6; 4	6; 6	6;8	8; 4	8;6	8;8	moyenne
\bar{x}	4	5	6	5	6	7	6	7	8	6
s^2	0	1	4	1	0	1	4	1	0	1,33
s*2	0	2	8	2	0	2	8	2	0	2,66

On voit que s^2 sous-estime la variance.

▶ Il faut corriger s^2 en s^{*2} en multipliant par $\frac{n}{n-1} = \frac{2}{1}$.

Sommaire

- 1 Deux exemples pour commencer
- 2 Estimation
- 3 Variance corrigée : pourquoi n-1?
- 4 Conclusion
 - Notations à retenir

Notations à retenir

Population	Échantillon
 Taille N (parfois inconnue) moyenne μ variance σ² 	 ► Taille n ► moyenne observée x̄ ► variance observée s² ► variance corrigée s*²
 écart-type σ proportion p	 écart-type corrigé s* fréquence observée f

Prochains chapitres

- ► Échantillon suffisamment grand?
- ► Choix de l'échantillon?
- Qualité de l'estimation ?
- ⇒ Besoin d'un modèle statistique