- 1. Decidir cuáles de los siguientes conjuntos tiene supremo y/o máximo. En los incisos (a), (d), (e) y (h) justificar su respuesta dando una demostración.
 - (a) [3, 8).

(b) $(-\infty, \pi)$.

(c) $\{6k \mid k \in \mathbb{Z}\}$.

- (d) $\{1/n \mid n \in \mathbb{N}\}$.
- (e) $\{1/m \mid m \in \mathbb{Z}, m \neq 0\}$.
- (f) $\{3 \frac{1}{n} \mid n \in \mathbb{N}\}$.
- (g) $\left\{ x \in \mathbb{Q} \mid 0 < x < \sqrt{2} \right\}$.
- (h) $\left\{ x \in \mathbb{Q} \mid 0 \le x \le \sqrt{2} \right\}$.
- 2. (a) Escribir la definición de ínfimo y mínimo de un conjunto. Enunciar y demostrar una Proposición sobre el ínfimo, análoga a la que se dio en la teoría para el supremo.
 - (b) Decidir cuales de los conjuntos del ejercicio 1. tiene ínfimo y/o mínimo.
- **3.** Mostrar que si A y B son conjuntos no vacíos de números reales y sup $A = \inf B$, entonces para todo $\varepsilon > 0$ existen $a \in A$ y $b \in B$ tales que $b a < \varepsilon$.
- **4.** Sean f y g funciones acotadas en el intervalo $[\alpha, \beta]$ $(-\infty < \alpha < \beta < \infty)$. Se definen

$$M = \sup\{(f+g)(x) \mid \alpha \le x \le \beta\},\$$

$$M' = \sup\{f(x) \mid \alpha \le x \le \beta\},\$$

$$M'' = \sup\{g(x) \mid \alpha \le x \le \beta\}.$$

Probar $M \leq M' + M''$.

- **5.** Sea $f: [-2,3] \to \mathbb{R}$ la función definida por $f(x) = x^3 + 1$, y sea $P = \{-2, -1, 2, 3\}$. Calcular S(f, P) y S(f, P). Hacer lo mismo con $f(x) = x^2 x 5$.
- **6.** Calcular s(f, P) y S(f, P) en los siguientes casos.
 - (a) $P = \{-3, -2, 0\}$ y $f : [-3, 0] \rightarrow \mathbb{R}$ definida por

$$f(x) = \begin{cases} x+4, & \text{si } -3 \le x < 0, \\ 0, & \text{si } x = 0. \end{cases}$$

(b) $P = \left\{-1,0,\frac{1}{2},1\right\}$ y $f:[-1,1] \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} -x, & \text{si } -1 \le x < 0, \\ x+2, & \text{si } 0 \le x \le 1. \end{cases}$$

- 7. Escribir las sumas inferior y superior de las siguientes funciones en los intervalos indicados. Utilizar una partición tal que la longitud de cada subintervalo sea 1/n.
 - (a) $f(x) = x^2$, en I = [0, 1].
- (b) $f(x) = \frac{1}{x}$, en I = [1, 2].
- 8. Demostrar que $\int_0^b x^3 dx = b^4/4$, considerando particiones en n subintervalos iguales y utilizando la fórmula

$$\sum_{i=1}^{n} i^3 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}.$$

9. Deducir cuáles de las siguientes funciones son integrables sobre [0,2], y cuando sea posible, calcular la integral sin partir el dominio (i.e. sin usar el teorema $\int_a^b f = \int_a^c f + \int_c^b f$).

(a)
$$f(x) = \begin{cases} x, & \text{si } 0 \le x \le 1, \\ x - 2, & \text{si } 1 < x \le 2. \end{cases}$$
 (b) $f(x) = \begin{cases} 0, & \text{si } x \in \mathbb{Q}, \\ x^2, & \text{si } x \notin \mathbb{Q}. \end{cases}$

- 10. Qué funciones tienen la propiedad de que toda suma inferior es igual a toda suma superior?
- 11. (a) Demostrar que si f es integrable sobre [a, b] y f(x) ≥ 0 para todo x ∈ [a, b], entonces ∫_a^b f ≥ 0.
 (b) Demostrar que si f y g son integrables sobre [a, b] y f(x) ≥ g(x) para todo x ∈ [a, b], entonces ∫_a^b f ≥ ∫_a^b g.
 (c) Verificar que ∫₀^{π/2} x sen(x) dx ≤ π²/8.
- **12.** (a) Dar un ejemplo de una función f tal que $f(x) \ge 0$ para todo $x \in [a, b], f(x_0) > 0$
 - para algún $x_0 \in [a, b]$, y $\int_a^b f = 0$. (b) Suponer que f es una función integrable en [a, b] tal que $f(x) \ge 0$ para todo $x \in [a, b]$, y continua en un $x_0 \in [a, b]$ con $f(x_0) > 0$. Probar que $\int_a^b f > 0$.
- 13. Sea f una función acotada sobre [a, b]. Demostrar que si f es continua en [a, b] salvo en $x_0 \in (a, b)$, entonces f es integrable sobre [a, b].
- **14.** Sea f una función no decreciente sobre [a,b], y sea $P=\{t_0,t_1,\ldots,t_n\}$ una partición de [a, b] tal que $t_i - t_{i-1} = \delta$ para todo i.
 - (a) Demostrar que $S(f, P) s(f, P) = \delta(f(b) f(a))$.
 - (b) Demostrar que f es integrable.
 - (c) Dar un ejemplo de una función no decreciente sobre [0, 1] que sea discontinua en una cantidad infinita de puntos.
- 15. Sea f una función integrable en el intervalo [a,b], y sea μ el promedio de f en ese intervalo, es decir,

$$\mu = \frac{\int_a^b f}{b - a}.$$

Mostrar que μ no pertenece necesariamente a la imagen de f.

16. Calcular las siguientes integrales.

(a)
$$\int_a^b (x+y) dx$$
. (b) $\int_a^b \left(\int_a^x (1+t) dz\right) dx$.