This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently amended) A compound of the formula U-V-A-(Alk),-(C(O)-NH),-(Alk),-B

or a pharmaceutically acceptable salt thereof, wherein g, h and j are each independently 0 or 1; provided when h is 0, then g is 0;

each Alk is independently a alkyl radical;

U represents guanidino, $-(G-alkyl)_k-NH-R_1$, $-(G-alkyl)_k-NH-C(Q)-R_1$, $-(G-alkyl)_k-C(Q)-N(R)-R_1$, $-(G-alkyl)_k-NH-C(Q)-N(R)-R_1$, $-(G-alkyl)_k-NH-C(Q)-O-R_1$ or $-(G-alkyl)_k-O-C(Q)-N(R)-R_1$, radical; or U represents a hydroxyalkyl-G-radical which is optionally substituted by a cycloalkyl, aryl, heteroaryl or heterocyclyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

wherein k is 0 or 1;

G represents a bond, O, S or NH;

Q represents O, S, NH, N-CN or N-alkyl;

R is a radical of hydrogen or alkyl;

 R_1 is a radical of alkyl, haloalkyl, $R_{21}R_{22}N$ -alkyl, $R_{21}O$ -alkyl, $R_{21}S$ -alkyl, cycloalkyl, cycloalkyl-alkyl, aryl, aryl-alkyl, heteroaryl-alkyl, heteroaryl-alkyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

wherein R_{21} and R_{22} are each independently a radical of hydrogen, alkyl, haloalkyl, cycloalkyl, alkyl, aryl, aryl-alkyl, heteroaryl-alkyl, heteroaryl-alkyl, heteroaryl-alkyl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_{21} :

each R₂ is independently a halo, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, hydroxy, carboxy, cyano, azido, amidino, guanidino, nitro, amino, alkylamino or dialkylamino radical or two adjacent R₂ radicals on an aryl or heteroaryl radical represent a methylenedioxy, ethylenedioxy or propylenedioxy radical;

V represents a radical of formula

$$\begin{array}{c} W_{1} \\ W_{3} \\ W_{4} \\ W_{3} \\ W_{4} \\ W_{5} \\ W_{5} \\ W_{5} \\ W_{4} \\ W_{5} \\ W_{5} \\ W_{5} \\ W_{4} \\ W_{5} \\ W_{5} \\ W_{5} \\ W_{4} \\ W_{5} \\ W_{4} \\ W_{5} \\ W_{4} \\ W_{5} \\ W_{5} \\ W_{4} \\ W_{5} \\ W_{4} \\ W_{3} \\ W_{4} \\ W_{5} \\ W_{4} \\ W_{5} \\ W_{4} \\ W_{5} \\ W_{4} \\ W_{3} \\ W_{4} \\ W_{5} \\ W_{4} \\ W_{3} \\ W_{4} \\ W_{5} \\ W_{4} \\ W_{3} \\ W_{4} \\ W_{5} \\ W_{4} \\ W_{5} \\ W_{4} \\ W_{5} \\ W_{5} \\ W_{4} \\ W_{5} \\$$

wherein each W_2 , W_3 , W_4 and W_5 is C-R₄; provided the total number of cycloalkyl, aryl, heteroaryl, heterocyclyl, carboxy, -C(O)-O-R₁₉, -C(O)-R₁₉, -C(O)-NH-R₁₉, -C(O)-N(R₁₉)₂ and -R₁₉ radicals in W_2 , W_3 , W_4 and W_5 is 0-2;

each W_s is C-H; and

each R_4 is independently a hydrogen, halo, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, hydroxy, cyano, carboxy, $-C(O)-O-R_{19}$, $-C(O)-NH-R_{19}$, $-C(O)-N(R_{19})_2$, cycloalkyl, cycloalkyl, aryl, aryl, aryl-alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl radical, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ; or two adjacent R_4 radicals taken together with the carbon atoms to which they are attached represent a fused-phenyl or fused-heteroaryl of 5-6 ring members, wherein the phenyl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 ;

R_s, R_s and R_r are each independently a hydrogen, halo, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, hydroxy or cyano radical; or R_s and R_s or R_s and R_r taken together with the carbon atoms to which they are attached represent a fused-phenyl or fused-heteroaryl of 6 ring members, wherein the phenyl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂; or R₃ and R₆ taken together with the carbon atoms to which they are attached represent a fused-heteroaryl of 6 ring members optionally substituted by 1-3 radicals of R₂;

A represents a radical of formula

R₈, R₉, R₁₀, R₁₁, and R₁₂ are each independently a hydrogen or alkyl radical; or -CR₈R₉- represents a -C(O)-;

B represents a radical of formula

wherein (a) R_{15} is a hydrogen or alkyl radical; and R_{17} is (1) an aryl, heteroaryl, -NH-C(O)- R_{19} , -C(O)-NH- R_{19} , -O-C(O)-NH- R_{19} , -NH-C(O)-O- R_{19} , -S(O)₂- R_{19} , -NH-S(O)₂- R_{19} , -S(O)₂-NH- R_{19} or -NH-S(O)₂-NH- R_{19} or -NH-S(O)₂-NH- R_{19} , -C(O)-NH- R_{19} , -NH-C(O)-O- R_{19} , -S(O)₂- R_{19} , -NH-C(O)-NH- R_{19} , -NH-C(O)-O- R_{19} , -S(O)₂- R_{19} , -NH-S(O)₂- R_{19} , -S(O)₂-NH- R_{19} or -NH-S(O)₂-NH- R_{19} ; wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_{2} ; or

(b) R_{17} is a hydrogen or alkyl radical; and R_{15} is (1) an aryl, heteroaryl, cycloalkyl, heterocyclyl, -NH-C(O)- R_{19} , -C(O)-NH- R_{19} , -O-C(O)-NH- R_{19} , -NH-C(O)-O- R_{19} , -S(O)₂- R_{19} , -NH-S(O)₂- R_{19} , -S(O)₂-NH- R_{19} or -NH-S(O)₂-NH- R_{19} radical, or (2) an alkyl radical substituted by a radical of aryl, heteroaryl, cycloalkyl, heterocyclyl, -NH-C(O)- R_{19} , -C(O)-NH- R_{19} , -NH-C(O)-NH- R_{19} , -O-C(O)-NH- R_{19} , -NH-C(O)-O- R_{19} , -S(O)₂- R_{19} , -NH-S(O)₂-NH- R_{19} or -NH-S(O)₂-NH- R_{19} radical; wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_{2} :

provided that when a nitrogen atom is attached to the carbon atom to which R_{15} is attached, then R_{15} is (1) an aryl, heteroaryl, cycloalkyl, heterocyclyl or -C(O)-NH-R₁₉ radical, or (2) an alkyl radical substituted by a radical of aryl, heteroaryl, cycloalkyl, heterocyclyl, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -NH-C(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉;

wherein R₁₉ is a alkyl, cycloalkyl, cycloalkyl, aryl, aryl, aryl-alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

R₁₆ and R₁₈ are each independently a hydrogen or alkyl radical; and

E is a radical of carboxy, amido, tetrazolyl, $-C(O)-O-R_{20}$, $-C(O)-NH-R_{20}$, $-C(O)-NH-S(O)-R_{20}$, $-C(O)-NH-S(O)-R_{20}$, or $-C(O)-NH-C(O)-R_{20}$;

wherein R_{20} is an alkyl, cycloalkyl, aryl, heteroaryl or heterocyclyl radical or an alkyl radical substituted by 1-3 radicals of halo, hydroxy, carboxy, amino, cycloalkyl, aryl, heteroaryl or heterocyclyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ; and

provided that when U represents amidino, -C(Q)-NH-R, or -NH-C(Q)-NH-R, radical, wherein Q represents NH, N-CN or N-alkyl, then at least one of g, h or j is 1.

2. (Previously presented) The compound of Claim 1 or a pharmaceutically acceptable salt thereof, wherein

each Alk is independently a C,-C,, alkyl radical;

U represents guanidino, $-(G_1-C_8 \text{ alkyl}))_k$ -NH-R₁, $-(G_1-C_8 \text{ alkyl}))_k$ -NH-C(Q)-R₁, $-(G_1-C_8 \text{ alkyl}))_k$ -NH-C(Q)-N(R)-R₁, $-(G_1-C_8 \text{ alkyl}))_k$ -NH-C(Q)-O-R₁ or $-(G_1-C_8 \text{ alkyl}))_k$ -O-C(Q)-N(R)-R₁ radical; or U represents a hydroxy(C₁-C₁₂ alkyl)-G- radical which is optionally substituted by a C₃-C₈ cycloalkyl,

aryl, heteroaryl of 5-10 ring members or heterocyclyl of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

Q represents O, S, NH, N-CN or N-(C₁-C₈ alkyl);

R is a radical of hydrogen or C₁-C₈ alkyl;

R₁ is a radical of C₁-C₈ alkyl, halo(C₁-C₈ alkyl) of 1-7 halo radicals, R₂₁R₂₂N-(C₁-C₈ alkyl), R₂₁O-(C₁-C₈ alkyl), R₂₁S-(C₁-C₈ alkyl), C₃-C₈ cycloalkyl, C₃-C₈ cycloalkyl(C₁-C₈ alkyl), aryl, aryl(C₁-C₈ alkyl), heteroaryl of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C₁-C₈ alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

wherein R_{21} and R_{22} are each independently a radical of hydrogen, C_1 - C_8 alkyl, halo(C_1 - C_8 alkyl) of 1-7 halo radicals, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl(C_1 - C_8 alkyl), aryl, aryl(C_1 - C_8 alkyl), heteroaryl of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C_1 - C_8 alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

each R_2 is independently a halo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylthio, halo(C_1 - C_4 alkyl) of 1-5 halo radicals, hydroxy, carboxy, cyano, azido, amidino, guanidino, nitro, amino, C_1 - C_8 alkylamino or di(C_1 - C_8 alkyl)amino radical or two adjacent R_2 radicals on an aryl or heteroaryl radical represent a methylenedioxy, ethylenedioxy or propylenedioxy radical;

each R₃ is independently a hydrogen or C₁-C₆ alkyl radical;

each R₄ is independently a hydrogen, halo, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₆ alkylthio, halo(C₁-C₄ alkyl) of 1-5 halo radicals, hydroxy, cyano, carboxy, -C(O)-O-R₁₉, -C(O)-NH-R₁₉, -C(O)-N(R₁₉)₂, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkyl(C₁-C₄ alkyl), aryl, aryl(C₁-C₄ alkyl), heteroaryl of 5-10 ring members, heteroaryl(C₁-C₄ alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C₁-C₄ alkyl) of 5-8 ring members radical, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂; or two adjacent R₄ radicals taken together with the carbon atoms to

which they are attached represent a fused-phenyl or fused-heteroaryl of 5-6 ring members, wherein the phenyl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂;

 R_s , R_s and R_r are each independently a hydrogen, halo, C_1 - C_s alkyl, C_1 - C_s alkylthio, halo(C_1 - C_4 alkyl) of 1-5 halo radicals, halo(C_1 - C_4 alkoxy) of 1-5 halo radicals, hydroxy or cyano radical; or R_s and R_s or R_s and R_r taken together with the carbon atoms to which they are attached represent a fused-phenyl or fused-heteroaryl of 6 ring members, wherein the phenyl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 ; or R_3 and R_s taken together with the carbon atoms to which they are attached represent a fused-heteroaryl of 6 ring members optionally substituted by 1-3 radicals of R_2 ;

 X_2 is C-H, C-(C_1 - C_4 alkyl), a C_3 - C_8 spirocycloalkyl or spiroheterocyclyl of 5-8 ring members radical; wherein the spirocycloalkyl and spiroheterocyclyl radicals are optionally substituted by an oxo or thiooxo radical and 1-2 radicals of C_1 - C_6 alkyl, halo(C_1 - C_4 alkyl) of 1-5 halo radicals, hydroxy, C_1 - C_6 alkoxy or halo(C_1 - C_4 alkoxy) of 1-5 halo radicals;

R₈, R₉, R₁₀, R₁₁ and R₁₂ are each independently a hydrogen or C₁-C₈ alkyl radical; or -CR₈R₉- represents a -C(O)-;

B represents a radical of formula

wherein (a) R_{15} is a hydrogen or C_1 - C_6 alkyl radical; and R_{17} is (1) an aryl, heteroaryl of 5-10 ring members, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-R₁₉, -S(O)₂-R₁₉, -S(O)₂-R₁₉, -S(O)₂-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-NH-R₁₉ radical, or (2) an C_1 - C_6 alkyl radical substituted by a radical of aryl, heteroaryl of 5-10 ring members, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉; wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂; or

(b) R₁₇ is a hydrogen or C₁-C₆ alkyl radical; and R₁₅ is (1) an aryl, heteroaryl of 5-10 ring members, C₃-C₈ cycloalkyl, heterocyclyl of 5-8 ring members, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉,

-NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉ radical, or (2) an C₁-C₄ alkyl radical substituted by a radical of aryl, heteroaryl of 5-10 ring members, C_3 -C₈ cycloalkyl, heterocyclyl of 5-8 ring members, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉ radical; wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

provided that when a nitrogen atom is attached to the carbon atom to which R_{15} is attached, then R_{15} is (1) an aryl, heteroaryl, cycloalkyl, heterocyclyl or -C(O)-NH-R₁₉ radical, or (2) an alkyl radical substituted by a radical of aryl, heteroaryl, cycloalkyl, heterocyclyl, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -NH-S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉;

wherein R_{19} is a C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl(C_1 - C_6 alkyl), aryl, aryl(C_1 - C_6 alkyl), heteroaryl of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C_1 - C_6 alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

R₁₆ and R₁₈ are each independently a hydrogen or C₁-C₆ alkyl radical; and

 R_{20} is a C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, aryl, heteroaryl of 5-10 ring members or heterocyclyl of 5-8 ring members radical or a C_1 - C_6 alkyl radical substituted by 1-3 radicals of halo, hydroxy, carboxy, amino, C_3 - C_8 cycloalkyl, aryl, heteroaryl of 5-10 ring members or heterocyclyl of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 .

Claim 3 (Canceled).

4. (Currently amended) The compound of Claim 3 Claim 2 or a pharmaceutically acceptable salt thereof, wherein

each Alk is independently a C1-C6 alkyl radical;

V represents a radical of formula

R₈, R₉, R₁₀, R₁₁ and R₁₂ are each independently a hydrogen or methyl radical; or -CR₈R₉- represents a -C(O)-.

5. (Previously presented) The compound of Claim 4 or a pharmaceutically acceptable salt thereof, wherein

each Alk is independently a C₁-C₄ alkyl radical;

U represents guanidino, $-(G-(C_1-C_8 \text{ alkyl}))_k-NH-R_1$, $-(G-(C_1-C_8 \text{ alkyl}))_k-NH-C(Q)-R_1$, $-(G-(C_1-C_8 \text{ alkyl}))_k-NH-C(Q)-N(R)-R_1$, $-(G-(C_1-C_8 \text{ alkyl}))_k-NH-C(Q)-O-R_1 \text{ radical}$;

G represents a bond, O or NH;

Q represents O, S, NH, N-CN or N-(C₁-C₄ alkyl);

R is a radical of hydrogen or C₁-C₄ alkyl;

 R_1 is a radical of C_1 - C_6 alkyl, halo(C_1 - C_6 alkyl) of 1-5 halo radicals, $R_{21}R_{22}N$ -(C_1 - C_6 alkyl), $R_{21}O$ -(C_1 - C_6 alkyl), C_3 - C_8 cycloalkyl, C_3 - C_6 cycloalkyl(C_1 - C_6 alkyl), aryl, aryl(C_1 - C_6 alkyl), heteroaryl of 5-10 ring members, heteroaryl(C_1 - C_6 alkyl) of 5-8 ring members or heterocyclyl(C_1 - C_6 alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

 R_{21} and R_{22} are each independently a radical of hydrogen, C_1 - C_8 alkyl, aryl, aryl(C_1 - C_4 alkyl), heteroaryl of 5-10 ring members or heteroaryl(C_1 - C_4 alkyl) of 5-10 ring members, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 ;

each R_2 is independently a halo, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, halo(C_1 - C_2 alkyl) of 1-5 halo radicals, halo(C_1 - C_2 alkoxy) of 1-5 halo radicals, hydroxy, carboxy, cyano, azido, amidino, guanidino, nitro, amino, C_1 - C_4 alkylamino or di(C_1 - C_4 alkyl)amino radical or two adjacent R_2 radicals on an aryl or heteroaryl radical represent a methylenedioxy, ethylenedioxy or propylenedioxy radical;

each R_4 is independently a hydrogen, halo, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, halo(C_1 - C_2 alkyl) of 1-5 halo radicals, hydroxy, cyano, carboxy, -C(O)-O- R_{19} , -C(O)-NH- R_{19} , -C(O)-N(R_{19})₂, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkyl(C_1 - C_4 alkyl), aryl, aryl(C_1 - C_4 alkyl), heteroaryl of 5-10 ring members, heteroaryl(C_1 - C_4 alkyl) of 5-8 ring members or heterocyclyl(C_1 - C_4 alkyl) of 5-8 ring members radical, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ; and

 R_{20} is a C_1 - C_4 alkyl, aryl or heteroaryl of 5-10 ring members or a C_1 - C_4 alkyl radical substituted by 1-3 radicals of halo, hydroxy, carboxy, amino, aryl, heteroaryl of 5-10 ring members or heterocyclyl of 5-8 ring members, wherein the aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 .

6. (Previously presented) The compound of Claim 5 or a pharmaceutically acceptable salt thereof, wherein

U represents guanidino, -(G-(C₁-C₈ alkyl))_k-NH-R₁, -NH-C(Q)-R₁, -(G-(C₁-C₈ alkyl))_k-C(Q)-N(R)-R₁, -NH-C(Q)-N(R)-R₂, alkyl))_k-C(Q)-N(R)-R₃, alkyl)_k-C(Q)-N(R)-R₃, alkyl)-C(Q)-N(R)-R₃, alkyl)-C(Q)-R₃, alkyl)-C(Q)-R₃, alk

Q represents O or NH;

R is a radical of hydrogen or C₁-C₂ alkyl;

 R_1 is a radical of C_1 - C_6 alkyl, halo(C_1 - C_6 alkyl) of 1-5 halo radicals, $R_{21}R_{22}N$ -(C_1 - C_4 alkyl), $R_{21}O$ -(C_1 - C_4 alkyl), C_3 - C_8 cycloalkyl, C_3 - C_6 cycloalkyl(C_1 - C_4 alkyl), aryl, aryl(C_1 - C_4 alkyl), heteroaryl of 5-10 ring members, heteroaryl(C_1 - C_4 alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C_1 - C_4 alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

 R_{21} and R_{22} are each independently a radical of hydrogen, C_1 - C_6 alkyl, aryl or heteroaryl of 5-10 ring members, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 ;

each R_2 is independently a halo, C_1 - C_2 alkyl, C_1 - C_2 alkoxy, C_1 - C_2 alkylthio, CF_3 -, CF_3 O-, hydroxy, carboxy, cyano, azido, amidino, guanidino, nitro, amino, C_1 - C_2 alkylamino or di(C_1 - C_2 alkyl)amino radical or two adjacent R_2 radicals on an aryl or heteroaryl radical represent a methylenedioxy, ethylenedioxy or propylenedioxy radical;

each W2, W3, W4 and W5 are independently C-R4;

each R_4 is independently a hydrogen, halo, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, halo(C_1 - C_2 alkyl) of 1-5 halo radicals, hydroxy or cyano radical;

A represents a radical of formula

(a) R_{15} is a hydrogen or C_1 - C_2 alkyl radical; and R_{17} is -NH-C(O)- R_{19} , -NH-C(O)-NH- R_{19} , -NH-C(O)-O- R_{19} ,

 R_{19} is a C_1 - C_4 alkyl, aryl, aryl(C_1 - C_4 alkyl), heteroaryl of 5-10 ring members or heteroaryl(C_1 - C_4 alkyl) of 5-10 ring members, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 ;

 R_{16} and R_{18} are each independently a hydrogen or $C_1 - C_4$ alkyl radical;

E is a radical of carboxy, amido, tetrazolyl or -C(O)-O-R₂₀; and

 R_{20} is a C_1 - C_2 alkyl, anyl or heteroaryl of 5-10 ring members or a C_1 - C_2 alkyl radical substituted by 1-3 radicals of halo, hydroxy, carboxy, anyl or heteroaryl of 5-10 ring members, wherein the anyl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 .

7. (Original) The compound of Claim 6 or a pharmaceutically acceptable salt thereof, wherein

Alk is independently a C₁-C₂ alkyl radical;

G represents a bond or NH;

R₂₁ and R₂₂ are each independently a radical of hydrogen, C₁-C₆ alkyl or aryl, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂;

each R₄ is independently a hydrogen, halo, C₁-C₂ alkyl, C₁-C₂ alkoxy, C₁-C₂ alkylthio, CF₃-, CF₃O-, hydroxy or cyano radical;

A represents a radical of formula

(a) R_{15} is a hydrogen or C_1 - C_2 alkyl radical; and R_{17} is -NH-C(O)-O- R_{19} or -NH-S(O)₂- R_{19} radical; or (b) R_{17} is a hydrogen or C_1 - C_2 alkyl radical; and R_{15} is (1) an aryl or heteroaryl of 5-10 ring members, or (2) an C_1 - C_2 alkyl radical substituted by a radical of aryl or heteroaryl of 5-10 ring members; wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 ;

 R_{19} is a C_1 - C_4 alkyl, aryl or aryl(C_1 - C_4 alkyl), wherein the aryl radicals are optionally substituted by 1-3 radicals of R_2 ;

 R_{16} and R_{18} are each independently a hydrogen or C_1 - C_2 alkyl radical;

E is a radical of carboxy or -C(O)-O-R₂₀; and

 R_{20} is a C_1 - C_2 alkyl, aryl or aryl(C_1 - C_2 alkyl) radical, wherein the aryl radicals are optionally substituted by 1-3 radicals of R_2 .

8. (Original) A pharmaceutical composition comprising a compound according to any of Claims 1 to 7 and a pharmaceutically acceptable carrier.

Claims 9 - 18 (Canceled).

19. (Previously added) A method for the treatment of rheumatoid arthritis comprising administering an effective amount of a compound according to Claim 1.