Supplementary Material B

Information Extracted From Each Independent Study (see Table 1 for the coding description)

					Task					Unbiase	d Effect Size	Estimate		
ID	Year	Author	Total N	Background		Examples	Timing	Number of Examples	Degree of Copying	Quantity	Novelty	Variety	Quality	Common- ness Score ^b
					Stu	dies Presenting N	on-Negat	ive Example	es					
1	1992	Purcell & Gero	37	Architecture/ Industrial Design	Design a bicycle rack	Bicycle rack (boot)	Before	1	0.00	0.06	/	/	/	3.67
2	1992	Purcell & Gero	48	Architecture/ Industrial Design	Design a bicycle rack	Bicycle rack (A frame)	Before	1	0.00	0.82	/	/	/	3.83
3	1992	Purcell & Gero	40	Architecture/ Industrial Design	Design a bicycle rack	Bicycle rack (single)	Before	1	0.00	0.36	/	/	/	4.67
4	1992	Purcell & Gero	44	Architecture/ Industrial Design	Design a bicycle rack	Bicycle rack (A frame) (word)	Before	1	0.00	0.42	/	/	/	3.83
5	1992	Purcell & Gero	38	Architecture/ Industrial Design	Design a bicycle rack	Bicycle rack (single) (word)	Before	1	0.00	0.82	/	/	/	4.67
6	1993	Purcell, Williams, Gero, & Colbron	20	Mechanical Engineering	Design a measuring cup for the blind	Measuring cup for the blind (Blind society, new product)	Before	1	0.40	/	/	/	/	4.00
7	1993	Purcell, Williams, Gero, & Colbron	11	Industrial Design	Design a measuring cup for the blind	Measuring cup for the blind(Blind society, new product)	Before	1	0.28	/	/	/	/	4.00
8	1993	Purcell, Williams, Gero, & Colbron	8	Interior Design	Design a measuring cup for the blind	Measuring cup for the blind(Blind society, new product)	Before	1	0.22	/	/	/	/	4.00
9	1993	Smith, Ward, & Schumacher	47	Unspecified	Design a toy	picture example	Before	1	0.55	0.07	/	/	/	3.00
10	2002	Dahl & Moreau	32	Engineering	Design a product that will meet the needs/solve the problems of the commuting diner	drive in window food tray (single)	Before	1	0.39	/	/	-0.25	-0.12	4.67
11	2002	Dahl & Moreau	32	Engineering	Design a product that will meet the needs/solve the problems of the commuting diner	drive in window food tray (multiple)	Before	1	0.51	/	/	-0.31	-1.06	4.67
12	2002	Dahl & Moreau	45	Engineering	Design a product that will meet the	drive in window food tray (single)	Before	1	/	/	-0.61	/	-0.61	4.67

					needs/solve the problems of the commuting diner Design a product	drive in window								
13	2002	Dahl & Moreau	45	Engineering	that will meet the needs/solve the problems of the commuting diner	food tray, cup holder, lunch box, airplane foldout table (multiple)	Before	4	/	/	-0.61	/	-0.61	4.67
14	2006	Pettula & Sipilä	16	Mechanical Engineering	Design an automatic watering device	4 examples	Before	4	/	0.18	-0.64	-0.03	/	3.55
15	2008	Tseng, Moss, Cagan, & Kotovsky	24	Mechanical Engineering	Design a clock	three clocks	Before	3	0.00	0.75	0.92	0.00	/	2.39
16	2008	Tseng, Moss, Cagan, & Kotovsky	24	Mechanical Engineering	Design a clock	Heart rate monitor, cassette tape deck, water meter	Before	3	0.00	0.75	0.00	0.00	/	3.28
17	2008	Tseng, Moss, Cagan, & Kotovsky	24	Mechanical Engineering	Design a clock	Heart rate monitor, cassette tape deck, water meter	After	3	0.00	0.70	0.64	0.61	/	2.39
18	2010	Wilson, Rosen, Nelson, & Yen	13	Mechanical Engineering	Design a device to immobilize a joint	Mutable connective tissue of sea cucumber Variable-stiffness	After	1	/	/	1.18	-0.33	/	2.00
19	2010	Wilson, Rosen, Nelson, & Yen	13	Mechanical Engineering	Design a device to immobilize a joint	behavior of electro- rheological fluids	After	1	/	/	1.57	-1.54	/	2.00
20	2011	Cardoso & Badke-Schaub	30	Industrial Design Engineering	Design a device to help people to pickup a book from a shelf that is out of reach	Device to help people to pickup a book from a shelf that is out of reach (line drawing)	Before	1	0.62	0.00	0.00	-0.21	-0.02	4.67
21	2011	Cardoso & Badke-Schaub	29	Industrial Design Engineering	Design a device to help people to pickup a book from a shelf that is out of reach	Device to help people to pickup a book from a shelf that is out of reach (photo) Freeway power	Before	1	0.62	0.00	0.62	-0.21	-0.03	4.67
22	2011	Chan, et al	20	Mechanical Engineering	Design a device to collect energy from human motion	generator, Apparatus for producing electrical energy from ocean waves (uncommon, near)	After	2	-0.15	0.15	0.34	-0.60	-0.21	2.17
23	2011	Chan, et al	20	Mechanical Engineering	Design a device to collect energy from human motion	Acceleromater, Earthquake isolation floor (uncommon far) Waterwheel-	After	2	0.86	-0.93	0.99	-0.37	-0.42	2.33
24	2011	Chan, et al	19	Mechanical Engineering	Design a device to collect energy from human motion	driven generating assembly, recovery of geothermal energy (common near)	After	2	0.44	-1.18	0.21	-1.53	0.11	2.50

25	2011	Chan, et al	19	Mechanical Engineering	Design a device to collect energy from human motion	Escapement mechanism for pendulum clocks, induction loop vehicle detector (common far) Freeway power	After	2	1.24	-1.18	0.50	-1.09	0.03	2.00
26	2011	Chan, et al	20	Mechanical Engineering	Design a device to collect energy from human motion	generator, Apparatus for producing electrical energy from ocean waves (uncommon, near)	After	2	-0.16	0.62	0.33	-0.04	-0.40	2.17
27	2011	Chan, et al	19	Mechanical Engineering	Design a device to collect energy from human motion	Acceleromater, Earthquake isolation floor (uncommon far) Waterwheel-	After	2	0.16	0.49	1.19	0.00	-0.53	2.33
28	2011	Chan, et al	16	Mechanical Engineering	Design a device to collect energy from human motion	driven generating assembly, recovery of geothermal energy (common near)	After	2	-0.19	0.07	-0.52	-0.53	0.78	2.50
29	2011	Chan, et al	18	Mechanical Engineering	Design a device to collect energy from human motion	Escapement mechanism for pendulum clocks, induction loop vehicle detector (common far)	After	2	0.08	-0.61	0.00	-1.21	-0.07	2.00
30	2011	Lujun	25	Mechanical Engineering	Design a pumping unit for extracting petroleum	a motor drives the roller to rotate forward	Before	1	1.36	-0.21	/	/	1.30	2.67
31	2011	Lujun	25	Mechanical Engineering	Design a pumping unit for extracting petroleum	beam pumping unit	Before	1	1.40	-0.24	/	/	1.25	2.83
32	2011	Lujun	25	Mechanical Engineering	Design a pumping unit for extracting petroleum	rail car move forward and backward to drive suck rods to go up and down	Before	1	1.72	0.17	/	/	1.12	2.50
33	2012	Cardoso, Gonçalves, & Badke-Schaub	29	Industrial Design Engineering	How human transportation will be like in 2050	transportation system (picture)	Before	1	/	0.14	1.01	/	/	4.50
34	2012	Cardoso, Gonçalves, & Badke-Schaub	29	Industrial Design Engineering	How human transportation will be like in 2050	transportation system (word)	Before	1	0.87	0.14	0.28	/	/	4.50
35	2012	Gonçalves, et al.	28	Industrial Design Engineering	How human transportation will be like in 2050	textual related stimuli, example of a transportation concept stimulus, which	Before	1	/	-0.01	0.30	-0.38	/	3.83
36	2012	Gonçalves, et al.	29	Industrial Design Engineering	How human transportation will be like in 2050	contained an excerpt from the book The Wonderful Wizard of Oz by L. Frank	Before	1	/	0.49	0.91	0.49	/	1.50

37	2013a	Fu, et al.	36	Mechanical Engineering	Device to collect energy from human motion	Seat arrangement for sitting furniture Power transmission device for sewing machine Thread clamping device figuring weft threads on jacquard machines Toy vehicle track	After	3	/	/	0.00	/	0.53	2.52
38	2013a	Fu, et al.	36	Mechanical Engineering	Device to collect energy from human motion	Safety ski binding. Compensating rope sheave tie down Hanger tilt mechanism for hanging transportation apparatus Shelter structure Converging sphere joint assembly	After	3	1	/	0.00	1	0.00	2.28
39	2013b	Fu, et al.	23	Mechanical Engineering	Device to collect energy from human motion	Fuel injection apparatus having fuel pressurizing pump Inflating/deflating device for an inflatable air mattress Wireless communication device and signal receiving/transmit ting method Paper guiding arrangement for a business machine	After	4	1	0.27	-0.35	/	/	2.17
40	2013b	Fu, et al.	23	Mechanical Engineering	Device to collect energy from human motion	Photovoltaic cell powered magnetic coil for operation of fluidic circuit flapper Virtual-wheeled vehicle Gray water interface valve systems and methods	After	4	/	-0.26	0.24	1	1	1.75

Alia							Air-blower tidal								
Process Proc							power generation device								
42 2014 Agogue, et al. 66 unspecified ensure that a hen's loss not break Design a device to not height of 10 m does not break Design a device to not height of 10 m does not break Design a device to not height of 10 m does not break Design a device to not height of 10 m does not break Design a device to not height of 10 m does not break Design a device to not height of 10 m does not break Design a device to not height of 10 m does not break Design a device to not height of 10 m does not break Design a device to not height of 10 m does not break Design a device to not height of 10 m does not break Design a device to not height of 10 m does not break Design a device to not height of 10 m does not break Design a device to not height of 10 m does not break Design a device to not height of 10 m does not break Design a device to not height of 10 m does not break Design a device to not height of 10 m does not break Design a device to not height of 10 m does not break Design a beyeld and pressure D	41	2013b	Fu, et al.	23		energy from	power apparatus System for recovering wasted energy from IC engine Method and device for capture, storage, and recirculation of heat energy Water current	After	4	/	-0.46	0.68	/	/	2.33
A	42	2014	Agogue, et al.	66	unspecified	ensure that a hen's egg dropped from a height of 10 m does not break	the egg before	Before	1	/	/	0.42	/	/	3.33
Add 1991 Jansson & Smith 25 Mechanical Engineering Measuring cup for the blind Smith 31 Mechanical Engineering Measuring cup for the blind Spillproof coffer cup Device to measure speed and Professional Engineering Device to measure speed and Professional Enginee	43	2014	Agogue, et al.	65	unspecified	ensure that a hen's egg dropped from a height of 10 m does not break	the fall with a parachute			/	-0.35	0.58	/	/	4.67
Hechanical Engineering Smith S															
45 1991 Smith 31 Engineering Mechanical Engineering Cup Cup Cup Device to measure speed and pressure Purcell, 48 1993 Williams, Gero, & Colbron Purcell, 49 1993 Williams, Gero, & Colbron Purcell, 50 1993 Williams, Gero, & Colbron Purcell, 51 1993 Williams, Gero, & Colbron Purcell, 51 1993 Williams, Gero, & Colbron Purcell, 52 2005 Chrysikou & 60 Prochology Design a bicycle 53 2005 Chrysikou & 60 Prochology Design a bicycle 54 1991 Design the blind	44	1991	Smith	25	Engineering	,	•	Before	1	0.77	0.00	/	/	/	4.17
Hefore 1 0.48 0.00 / / / 3.17 Smith Smith			Smith		Engineering	the blind	the blind					/	,	,	
47 1991 Jansson & Smith Smith Smith Smith Smith Professional Engineer Speed and pressure	46	1991		35				Before	1	0.48	0.00	/	/	/	3.17
Williams, Gero, & Colbron Purcell, Williams, Gero, & Tolor Design Measuring cup for the blind Measur	47	1991		13		speed and	speed and	Before	1	0.92	0.00	/	/	/	2.67
Williams, Gero, & 11 Design the blind the blind Before 1 0.52 / / / / 3.83 To library Gero, & 10 Design the blind the blind Before 1 0.52 / / / / 3.83 To library Gero, & 10 Design the blind the blind blin	48	1993	Williams, Gero, & Colbron	18				Before	1	0.84	/	/	/	/	3.83
Williams, Gero, & 10 Design Heasuring cup for the blind Heasuring cup for Measuring cup for Measuring cup for Gero, & Sero, & Engineering Heasuring cup for the blind Heasuring cup for Measuring cup for the blind Heasuring cup	49	1993	Williams, Gero, &	11				Before	1	0.52	/	/	/	/	3.83
Williams, Gero, & 15 Mechanical Measuring cup for Measuring cup for Before 1 0.72 / / / 3.83 Colbron Chrysikou & 60 Psychology Design a bicycle Before 1 0.72 / / / 4.17	50	1993	Williams, Gero, & Colbron	10				Before	1	0.52	/	/	/	/	3.83
52 2005 Chrysikou & 60 Psychology Design a bicycle Bicycle rack Before 1 0.89 0.04 / / / / / / / / / / / / / / / / / / /	51	1993	Williams, Gero, &	15				Before	1	0.72	/	/	/	/	3.83
	52	2005	Chrysikou &	60	Psychology		Bicycle rack	Before	1	0.89	0.04	/	/	/	4.17

53	2005	Chrysikou & Weisberg	60	Psychology	Design a spillproof coffee cup	Spillproof coffer cup	Before	1	0.81	0.05	/	/	/	3.17
54	2009	Hassard, Blandford, & Cox	32	Interaction Design	Design a bike rack and a spill- proof coffee cup	flawed example (bicycle/spill proof)	Before	1	1.12	/	/	/	/	3.67
55	2009	Hassard, Blandford, & Cox	32	Interaction Design	Design a digital music player and a medicine dispenser problem	flawed example	Before	1	0.97	/	/	/	/	/
56	2013a	Viswanathan & Linsey	21	Mechanical Engineering	Design a device to shell peanut	Device to shell peanuts	Before	1	1.38	-1.18	/	/	/	3.00
57	2013a	Viswanathan & Linsey	17	Mechanical Engineering	Design a device to shell peanut	physical flawed example	Before	1	1.15	0.89	0.07	/	/	2.50
58	2013a	Viswanathan & Linsey	17	Mechanical Engineering	Design a device to shell peanut	pictorial flawed example	Before	1	0.98	-0.18	-0.98	/	/	2.50
59	2013a	Viswanathan & Linsey	21	Mechanical Engineering Faculty	Design a device to shell peanut	Device to shell peanuts	Before	1	0.68	-1.01	/	/	/	2.67

a.An effect size of +/- 0.2 is a small effect, and an effect size of +/- 0.5 is a medium effect (Cohen, 1988).
b The common-ness score ranged from 1 to 5, with a higher score reflecting a more common example (1: very uncommon, 5: very common)