Galois representations for CM counterexample

Daniel Miller

March 30, 2017

Let K/\mathbf{Q} be a finite Galois extension, $\{\theta_{\mathfrak{p}}\}$ a sequence in $(\mathbf{R}/\mathbf{Z})^d$ indexed by primes of K, such that $\left|\sum_{\mathrm{N}(\mathfrak{p})\leqslant x}r(\theta_{\mathfrak{p}})\right|=O(1)$ for all nontrivial $r\in\mathrm{X}^*((\mathbf{R}/\mathbf{Z})^d)$. Suppose $\{\vartheta_{\mathfrak{p}}\}$ is a sequence with $|\vartheta_{\mathfrak{p}}-\theta_{\mathfrak{p}}|_{\infty}\ll\mathrm{N}(\mathfrak{p})^{-\frac{1}{2}}$. We wish to establish a bound $\left|\sum_{\mathrm{N}(\mathfrak{p})\leqslant x}r(\vartheta_{\mathfrak{p}})\right|\ll x^{\frac{1}{2}+\epsilon}$.

Now, Taylor's theorem (the multivariate version) tells us that for any $f \in C^{\infty}((\mathbf{R}/\mathbf{Z})^d)$, we have near (a_1, \ldots, a_d) :

$$f(x_1, \dots, x_d) = f(a_1, \dots, a_d) + \sum_{i=1}^d \frac{\mathrm{d}f}{\mathrm{d}x_i}(a_1, \dots, a_d)(x_i - a_i) + O(|x - a|_\infty^2).$$

In particular, I think we can say that $|f(x) - f(y)| \ll |x - y|$, the implied constant depending on the max of the $\left|\frac{\mathrm{d}f}{\mathrm{d}x_i}\right|_{\infty}$. In particular, we can compute:

$$\left| \sum_{|\mathcal{N}(\mathfrak{p}) \leqslant x} r(\vartheta_{\mathfrak{p}}) \right| \leqslant \left| \sum_{|\mathcal{N}(\mathfrak{p}) \leqslant x} r(\vartheta_{\mathfrak{p}}) \right| + \sum_{|\mathcal{N}(\mathfrak{p}) \leqslant x} |r(\theta_{\mathfrak{p}}) - r(\vartheta_{\mathfrak{p}})|$$

$$\ll 1 + \sum_{|\mathcal{N}(\mathfrak{p}) \leqslant x} |\theta_{\mathfrak{p}} - \vartheta_{\mathfrak{p}}|_{\infty}$$

$$\ll \int_{1}^{x} \frac{\mathrm{d}t}{\sqrt{t}} = \sqrt{x}.$$

Hopefully we can say something similar about discrepancy. Now suppose we have a "fake sequence" $\{\vartheta_{\mathfrak{p}}\}$. We want to construct a Galois representation $\rho \colon G_K \to \left(\mathbf{Z}_l^{\times}\right)^d$, possibly infinitely ramified, such that $\rho(\mathrm{fr}_{\mathfrak{p}}) \in \mathbf{Q}^{\times}$??

$$\rho(\operatorname{fr}_{\mathfrak{p}})/\operatorname{N}(\mathfrak{p})^{\frac{1}{2}}$$
$$(F \otimes \mathbf{Q}_{l})^{\times} \simeq (\mathbf{Q}_{l}^{\times})^{d}$$

Let's consider the case when F is a quadratic CM field, and

$$ST \subset (R_{F/\mathbf{Q}} \mathbf{G}_{\mathrm{m}})^{N_{F/\mathbf{Q}}=1}(\mathbf{C}).$$

Note that $R_{F/\mathbf{Q}} \mathbf{G}_{\mathrm{m}}(\mathbf{C}) = (F \otimes \mathbf{C})^{\times} = (\mathbf{C}^{\times})^{2}$, and $N_{F/\mathbf{Q}}(z_{1}, z_{2}) = z_{1}\overline{z_{2}}$. So ST is a maximal compact subgroup of $\{(z_{1}, \overline{z_{1}}^{-1})\}$ consisting of those $|z_{1}| = 1$. We want a Galois representation $\rho \colon G_{K} \to (F \otimes \mathbf{Q}_{l})^{\times}$ such that $\rho(\mathrm{fr}_{\mathfrak{p}}) \in F$ is 1-Weil. (Maybe? Maybe 0-Weil).

We can assume that K is a CM field. Then $\mathbf{A}_K^{\times}/K^{\times}$ should be a bit easier to understand. We can choose a prime l at which F splits, so that $F \otimes \mathbf{Q}_l = (\mathbf{Q}_l)^2$.

First of all, $\mathbf{A}_K = \mathbf{C} \times \prod' K_{\mathfrak{p}}$, so $\mathbf{A}_K^{\times} = \mathbf{C}^{\times} \times \prod' K_{\mathfrak{p}}^{\times}$. We are interested in maps $\mathbf{A}_K^{\times}/K^{\times}K_{\infty}^{\times} \to F_l^{\times}$.

 $\rho: G_K \to F_l^{\times}$, each $\rho(\operatorname{fr}_{\mathfrak{p}}) \in F$ is \mathfrak{p} -Weil of weight 1. The renormalization $\rho(\operatorname{fr}_{\mathfrak{p}}) \operatorname{N}(\mathfrak{p})^{-1/2}$, which lies in a compact torus in $(\operatorname{R}_{F/\mathbf{Q}} \mathbf{G}_{\operatorname{m}})^{\operatorname{N}_{F/\mathbf{Q}}=1}(\mathbf{C})$, needs to be close to $\vartheta_{\mathfrak{p}}$

Fix a finite prime \mathfrak{p} of K. In the elliptic curve case, $(\mathbf{R}_{F/\mathbf{Q}} \mathbf{G}_{\mathrm{m}})^{\mathbf{N}_{F/\mathbf{Q}}=1}(\mathbf{C}) = \mathbf{C}^{\times}$, with embedding $F^{\times} \hookrightarrow \mathbf{C}^{\times}$. (There are two embeddings, but the subfield is the same.)

We are trying to solve the equation $N_{F/\mathbb{Q}}(x) = N(\mathfrak{p})^{1/2}$.

Make things very explicit. Let $F = \mathbf{Q}(\sqrt{-d})$, which is a well-defined subfield of \mathbf{C} . Fix \mathfrak{p} a finite prime of F; then there is a set $T_{\mathfrak{p}} = \{x \in F : N_{F/\mathbf{Q}}(x) = N(\mathfrak{p})\}$.

In $\mathbf{Q}(i)$, we have $\mathfrak{p}=(1+4i)$, with $\mathrm{N}(\mathfrak{p})=5$. What elements have $|x|=\sqrt{5}$, i.e. $\mathrm{N}(x)=\mathrm{N}(\mathfrak{p})$? In that case, x and 1+4i will differ by a unit. In other words, there are only finitely many such x, and $\#T_{\mathfrak{p}}$ is bounded.

In general, in the quadratic CM case, $|x| = N(x)^{1/2}$, so we are looking at $T_{\mathfrak{p}} = \{x \in F : N_{F/\mathbb{Q}} = N(\mathfrak{p})\}$. If $N(x) = N(\mathfrak{p})$, then the ideal $\mathfrak{p} \mid x$, which means that in fact $\mathfrak{p} = \langle x \rangle$. If \mathfrak{p} is principal, than generators differ by units, and O_F^{\times} is finite.

1 Possible concrete case

Let's address abelian 2-folds with CM. Let $A_{/K}$ be an abelian 2-fold; then $\operatorname{End}_K(A)_{\mathbf{Q}}$ has rank 4 over \mathbf{Q} . If A has CM, then $F = \operatorname{End}_K(A)_{\mathbf{Q}}$ has $[F:\mathbf{Q}]=4$. The field F is totally imaginary, so $\operatorname{rk} O_F^{\times}=1$. The motivic Galois group G_A^1 should be a two-dimensional torus. In particular, we want to "cut out" a two-dimensional subgroup of $(\operatorname{R}_{F/\mathbf{Q}}\mathbf{G}_{\mathrm{m}})^{\operatorname{N}_{F/\mathbf{Q}}=1}$, which is three-dimensional. Let F^+ be the totally real subfield of F. Then $(\operatorname{R}_{F/\mathbf{Q}}\mathbf{G}_{\mathrm{m}})^{\operatorname{N}_{F/F}+1}$ is such a group.

Fix a prime \mathfrak{p} of K. We are looking for prospective "Frobenius at \mathfrak{p} " in F^{\times} , such that for all $\sigma \colon F \hookrightarrow \mathbf{C}$, $|\sigma(x)| = \mathrm{N}(\mathfrak{p})^{1/2}$.

Fundamentally, this is the problem. Let F be a CM field with $[F:\mathbf{Q}]=2g$. Then $\mathrm{rk}\,O_F^\times=g-1$.

Let $\ell \colon F_{\infty} = \mathbf{C}^g \to \mathbf{R}^g$ be the map $\ell(z_1, \dots, z_g) = (\log |z_1|, \dots, \log |z_g|)$. Then $\ell(O_F^{\times})$ is a discrete lattice in $(\mathbf{R}^g)^{\mathrm{tr}=0}$.

2 Product formula

Suppose $\sum x_p p^{-s}$ converges conditionally when $\Re s > 1/2$. We wish to prove that for $x_n = \prod x_p^{v_p(n)}$, the series $\sum a_n n^{-s}$ also converges conditionally when $\Re s > 1/2$. Write supp $(n) \leqslant x$ if all primes dividing n are $\leqslant x$. We know that the product $\prod (1 - x_p p^{-s})^{-1}$ converges conditionally. So, note that

$$\prod_{p \leqslant x} \frac{1}{1 - x_p p^{-s}} = \sum_{\sup (n) \leqslant x} x_n n^{-s} = \sum_{p \leqslant x} x_p p^{-s} + \sum_{\substack{S \subset \{p \leqslant x\} \\ \#S > 1}} \sum_{?}$$

$$\prod_{p \leqslant x} (1 - x_p p^{-s})^{-1} = \prod_{p \leqslant x} \sum_{r \geqslant 0} x_p^r p^{-rs} = \sum_{n \geqslant 1: supp(n) \subset \{p \leqslant x\}} x_n n^{-s}.$$

Question: if $\{p \leqslant x\} = \{p_1, p_2, \dots, p_n\}$, then

$$\sum_{a,b\geqslant 1} x_{p_1}^a x_{p_2}^b p_1^{-as} p_2^{-bs} = \left(\sum_{a\geqslant 1} (x_{p_1} p_1^{-s})^a \right) \left(\sum_{b\geqslant 1} (x_{p_2} p_2^{-s})^b \right)$$

$$= \frac{x_{p_1} p_1^{-s}}{1 - x_{p_1} p_1^{-s}} \frac{x_{p_2} p_2^{-s}}{1 - x_{p_2} p_2^{-s}}$$

$$\leqslant x_{p_1} x_{p_2} p_1^{-s} p_2^{-s}$$

Thus,

$$\sum_{\text{supp}(n) \leqslant x} x_n n^{-s} = \sum_{p \leqslant x} x_p p^{-s} + O\left(\sum_{S \subset \{p \leqslant x\}} p_S^{-\Re s}\right)$$

The question is: does $\sum_{n \leq x} x_n n^{-s}$ converge? We already know that $\sum_{\sup p(n) \leq x} x_n n^{-s}$ converges.

$$\sum_{n \leqslant x} x_n n^{-s} = \sum_{\text{supp}(n) \leqslant x} x_n n^{-s} - \sum_{\text{supp}(n) \leqslant x, n > x} x_n n^{-s}$$

Can we show that $\sum_{\sup(n) \leq x, n > x} x_n n^{-s}$ converges / approaches zero in some way?