ANÁLISE DOS DADOS COM R

Visualização dos Dados e EDA

James R. Hunter, PhD Retrovirologia, EPM, UNIFESP

2024-11-19

VISUALIZAÇÃO DOS DADOS

FLORENCE NIGHTINGALE - DIAGRAMMA DE ROSA

- Demonstrou claramente as causas de mortalidade entre soldados ingleses na guerra de Crimeia
- Gráfico hoje conhecido como "polar axis histogram"

CHARLES MINARD - DIAGRAMA DE FLUXO DO EXÉRCITO DE NAPOLEÃO

- Publicado em 1869
- Diagrama "Sankey" de fluxos

MAPA DE CÓLERA NO SOHO DE LONDRES

- Bomba de agua de Broad Street
- Mapa de John Snow definitivamente mostrou que este surto de cólera veio da agua infectada desta bomba.

JOHN TUKEY ON VISUALIZATION

The simple graph has brought more information to the data analyst's mind than any other device.

O gráfico simples trouxe mais informações à mente do analista dos dados do que qualquer outro dispositivo.

Tópico de suprema importância

EXPLORAÇÃO INICIAL DOS DADOS

- Onde queremos tentamos achar o que os dados estão dizendo
- Principal uso de visualizações
- Série de medidas e gráficos que mostram as variáveis
- Exploração das variáveis
 - Uma por vez (univariada)
 - Tabulações cruzadas de conjuntos de variáveis
- Sempre procurando valores de dados estranhos

DADOS: fute_mod.rds

Conjunto dos dados sobre lesões relacionadas ao futebol nos EUA

```
1 fm <- readRDS(here("fute mod 2020.rds")) %>%
      mutate(age grp = factor(case when(
  3
        age < 18 \sim "youth",
        age < 60 \sim "adult",
  4
        TRUE ~ "elderly"
  5
      ))) %>%
 7 # use relevel to change order of levels
      mutate(age grp = fct relevel(age grp, c("youth", "adult", "elderly")))
  9 glimpse(head(fm))
Rows: 6
Columns: 10
$ case num
             <chr> "160102033", "160106032", "160107304", "160109914", "16011...
$ trmt date
             <date> 2016-01-02, 2016-01-02, 2016-01-01, 2016-01-01, 2016-01-0...
             <dbl> 27, 14, 9, 16, 17, 33
$ age
             <fct> Male, Male, Male, Female, Female, Male
$ sex
$ body part <fct> Foot, Knee, Toe, Wrist, Wrist, Knee
$ diag
             <fct> "Contusion Or Abrasion", "Fracture", "Fracture", "Strain, ...
$ disposition <fct> Released, Released, Released, Released, Released
             <fct> 63, 61, 8, 20, 73, 61
$ psu
$ narrative <chr> "27YOM PLAYING SOCCER COLLIDED WITH ANOTHER PLAYER CONTUSI...
             <fct> adult, youth, youth, youth, adult
$ age grp
```


VARIÁVEL age

```
summarytools::descr(fm$age, stats = "common")
Descriptive Statistics
fm$age
N: 7603
                     age
                   16.38
          Mean
                  8.92
       Std.Dev
           Min
                  0.00
                14.00
        Median
                   85.00
           Max
       N. Valid
                 7603.00
     Pct.Valid
                100.00
```


MIN = 0.00?

```
summarytools::descr(fm$age)
## Descriptive Statistics
## fm$age
## N: 7603
##
##
                            age
##
##
                 Mean
                          16.38
             Std.Dev
##
                           8.92
                  Min
##
                           0.00
                          11.00
##
                   Q1
##
              Median
                          14.00
##
                   Q3
                          17.00
##
                  Max
                          85.00
```


QUEM É ESSA PESSOA COM age = 0?

- UNK AGE MALE WAS HEADBUTTED BY ANOTHER PLAYER WHILE PLAYING SOCCERDX NOSE FX
- Não é um bebezinho; pessoa de idade desconhecida
- Mudar age = 0 para NA
- Existem outros casos com age = 0 ou próximo?

QUANTOS CASOS TÊM IDADE MENOS DE 5 ANOS

Idade em que crianças começam escola

MEDIDAS DE TENDÊNCIA CENTRAL

INTERESSE EM PESSOAS QUE JOGAM FUTEBOL

- Quais tipos de lesões sofrem amadores jogando futebol
- Eliminar casos com idades menos de 5 anos

```
1 fm mk2 <- fm %>%
      filter(age >= 5)
  3 summarytools::descr(fm mk2$age, stats = "common")
Descriptive Statistics
fm mk2$age
N: 7521
                   16.53
          Mean
                  8.86
        Std.Dev
                   5.00
           Min
        Median
                14.00
           Max
                 85.00
       N. Valid
                 7521.00
     Pct.Valid
                 100.00
```


MÉDIAS DE DUAS DISTRIBUIÇÕES

- Média de fm (com pequenas crianças): 16.3786225
- Média de fm_mk2 (sem pequenas crianças):
 16.5261268
- Se removêssemos 82 casos, porque a diferença não é maior?

O QUE É A MÉDIA?

- Um das medidas de tendência central
 - Valores que ficam no meio da distribuição
 - Valores populares
- O centro aritmético de uma distribuição
- Sensível aos valores extremos

VISUALIZAÇÃO CLÁSSICA DE UMA DISTRIBUIÇÃO - HISTOGRAMA

1 hist(fm_mk2\$age)

HISTOGRAMA FOI ÚTIL?

- Não deu muita informação
- Problema de bins
- Apresentação muito feia

SISTEMA GRÁFICO ALTERNATIVO

GRAMMAR OF GRAPHICS - ggplot2

- Um sistema para construir gráficos (que se comunicam muito melhor)
- Um dos primeiros produtos de Hadley Wickham
- Construir seu gráfico camada por camada
- Começar por especificar um conjunto de dados: penguin
 - Variáveis bill_length_mm e body_mass_g

1 ggplot()	

1 ggplot(data = pd)


```
1 ggplot(data = pd, aes(x = bill_length_mm, body_mass_g ))
```



```
1 ggplot(data = pd, aes(x = bill_length_mm, body_mass_g )) +
2 geom_point()
```



```
1 ggplot(data = pd, aes(x = bill_length_mm, body_mass_g )) +
2 geom_point(color = "dodgerblue")
```



```
1 ggplot(data = pd, aes(x = bill_length_mm, body_mass_g, color = body_mass_g)
2 geom_point()
```



```
1 ggplot(data = pd, aes(x = bill_length_mm, body_mass_g, color = species )) +
2 geom_point()
```



```
ggplot(data = pd, aes(x = bill_length_mm, body_mass_g, color = species)) +
geom_point() +
labs(title = "Uma Boa Introdução aos Gráficos de Dispersão", x = "Comprim
y = "Massa Corporal (g)") +
scale_colour_manual(values = c("#800000FF", "#767676FF", "#155F83FF")) +
theme_bw()
```


RECURSOS - ggplot

- Winston Chang, R Graphics Cookbook, 2Ed., https://r-graphics.org
- Kieran Healy, Data Visualization: A Practical Introduction, https://socviz.co
- https://r-graph_gallery.com examples of many types of graphs with explanations and code
- ggplot cheat sheet

HISTOGRAMA DE age

```
avg_age <- mean(fm_mk2$age)
ggplot(data = fm_mk2, aes(x = age)) +
geom_histogram(bins = 30) +
geom_vline(xintercept = avg_age, colour = "darkred", size = 2)</pre>
```


SEGUNDO GRÁFICO QUE MOSTRA DISTRIBUIÇÕES BEM - *BOXPLOT*

source: https://r-graph-gallery.com

BOXPLOTCOM OS DADOS DE FUTEBOL

BOXPLOT DE FUTEBOL COM ggplot

```
fm mk2 |>
     ggplot(mapping = aes(x = age grp, y = age,)) +
     geom boxplot() +
     stat summary(fun = "mean", geom = "point", shape = 23,
 4
 5
                   size = 3, fill = "blue") +
     labs(title = "Idades por Grupo de Idade",
 6
          x = "Grupos de Idade",
          y = "Idade",
 8
 9
          caption = "Texto que explica o gráfico.") +
     theme bw()
10
```


DE ONDE VEIO ESTA INFORMAÇÃO SOBRE A MÉDIA?

6.8.1 Problem

You want to add markers for the mean to a box plot.

6.8.2 Solution

Use stat_summary(). The mean is often shown with a diamond, so we'll use shape 23 with a white fill. We'll also make the diamond slightly larger by setting size = 3 (Figure 6.21):

```
library(MASS) # Load MASS for the birthwt data set

ggplot(birthwt, aes(x = factor(race), y = bwt)) +
    geom_boxplot() +
    stat_summary(fun.y = "mean", geom = "point", shape = 23, size = 3, fill = "white")

#> Warning: The `fun.y` argument of `stat_summary()` is deprecated as of ggplot2 3.3.0.

#> i Please use the `fun` argument instead.

#> This warning is displayed once every 8 hours.

#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was

#> generated.
```


ggplot BOXPLOT-2

- Gostaria de saber onde cai os pontos
 - geom_jitter mostra todos os pontos com um pouco de variação
 - geom_rug mostra os casos individuais numa certa dimensão

```
1 fm mk2 |>
     ggplot(mapping = aes(x = age grp, y = age,)) +
     geom boxplot() +
     stat summary(fun = "mean", geom = "point", shape = 23, size = 3, fill = "blue") +
     geom jitter(alpha = .3, color = "red") +
     geom rug() +
 6
     labs(title = "Idades por Grupo de Idade",
7
          x = "Grupos de Idade",
8
          y = "Idade",
9
          caption = "Texto que explica o gráfico.") +
10
     theme bw()
11
```


LIÇÃO DISSO

- Com muitos pontos, impossível ver a distribuição
- Criar uma versão com só 100 pontos

```
fm mk2 |>
     slice sample(n = 100) |>
     ggplot(mapping = aes(x = age grp, y = age,)) +
     geom boxplot() +
 5
     stat summary(fun = "mean", geom = "point", shape = 23, size = 3, fill = "
     geom jitter(alpha = .3, color = "red") +
 6
     geom rug() +
     labs(title = "Idades por Grupo de Idade",
          x = "Grupos de Idade",
          y = "Idade",
10
          caption = "Texto que explica o gráfico.") +
11
     theme bw()
12
```


ALTERNATIVA DE BOXPLOT – GRÁFICO DE VIOLINO

 Mostra concentrações de dados pela largura da caixa invés de jitter e rug

PLOTAGEM DE DENSIDADE

- Tecnicamente, uma plotagem de densidades de kernels
 - Kernel Density divide a distribuição em partes e calcular a densidade em cada região não-linearmente e recombinar elas para compôr uma curva suave
- Usar body_mass_g para ilustrar

DENSIDADE COM HISTOGRAMA

COMPARAR AS ESPÉCIES

GRÁFICO *RIDGELINE* - EXTENSÃO DE DENSIDADE

- Maneira fácil para comparar as densidades de várias categorias das variáveis
- Precisa instalar ggridges de CRAN

RIDGELINE COM MAIS OOOMPH

- Mudar cores para uma paleta mais agradável
 - Usar ggsci paleta uchicago
- Tirar a legenda desnecessária
- Reduz o tamanho das caudas
- Mostrar os quartis nas curvas de densidade

```
1 library(ggridges)
   pd |>
     ggplot(aes(x = body mass g,
 5
                y = species,
                fill = species)) +
 6
     stat density ridges(quantile lines = TRUE, rel min height = 0.01) +
 7
     scale fill uchicago(palette = "default", alpha = 0.8) +
 8
     guides(fill = FALSE) +
9
     labs(title = "Massa Corporal por Espécie",
10
11
          x =  "Massa Corporal (q)",
          y = "") +
12
13
     theme gray() # default theme for ggplot
```


GRÁFICO *RADAR* - OUTRA MANEIRA DE RETRATAR DIMENSÕES

- Cria um campo circular para mostrar um número de dimensões
- Funciona melhor comparando poucas classes
- Precisa preparar os dados para utilizar este tipo de gráfico
 - Comparando ou a média ou mediana das classes em cada dimensão
 - Vai pôr as dimensões na escala de 0 até 1 utilizando scales::rescale()
- Usa pacote ggradar
 - remotes::install_github("ricardo-bion/ggradar")

RADAR - PREPARAÇÃO DOS DADOS

```
pacman::p load(ggradar, scales)
    pd radar <- pd |>
      tidyr::drop na() |> # NAs can't be processed in ops below
      group by(species) |>
 5
      summarise(
        avg bill length = mean(bill length mm),
        avg bill depth = mean(bill depth mm),
        avg flipper length = mean(flipper length mm),
10
       avg body mass = mean(body mass g)
    ) |>
11
12
    ungroup() >
13
     mutate at(vars(-species), rescale)
14 pd radar
# A tibble: 3 \times 5
  species avg bill length avg bill depth avg flipper length avg body mass
  <chr>
                     <dbl>
                                                       <dbl>
                                                                     <dbl>
                                    <dbl>
1 Adelie
                                    0.979
2 Chinstrap
                                                       0.211
                                                                    0.0194
3 Gentoo
                     0.874
```


CÓDIGO DO GRÁFICO

```
ggpengrad <- pd_radar %>%
ggradar(
font.radar = "arial",
grid.label.size = 5, # Affects the grid annotations (0%, 50%, etc.)
axis.label.size = 3, # Afftects the names of the variables
group.point.size = 3, # Simply the size of the point
legend.title = "Espécie",
plot.title = "Características - Pinguins Palmer",
)
```


RESULTADO

Características - Pinguins Palmer

ÚLTIMO TIPO DE HOJE

INCORPORAR GRÁFICOS COM TESTES ESTATÍSTICOS

- Pacote ggstatsplot precisa instalar da CRAN
- Pacote tem muitos combinações por vários testes
- Diferença entre a média de massa corporal dos especies é significativa?

```
1 library(ggstatsplot)
 2 pd |>
     ggbetweenstats(
       x = species,
      y = body mass q,
 5
       type = "nonparametric",
 6
       p.adjust.method = "bonferroni",
       xlab = "Especie",
       ylab = "Massa Corporal (g)",
9
       title = "Massa Corporal entre Especies",
10
11
       ggtheme = theme bw(),
       package = "ggsci",
12
       palette = "default uchicago"
13
14
```


USO DE PLOTAGENS COM STATS

- Eu uso essas plotagens para minha análise das variáveis, não para a apresentação
- Têm muita informação para apresentações; não simplifica a visualização