Examenul de bacalaureat național 2019

Proba E. c)

Matematică M_pedagogic

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 7

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$4\sqrt{5} - 5\sqrt{3} + 6\sqrt{3} - \sqrt{3} + 5 - 4\sqrt{5} =$	3 p
	$= (4\sqrt{5} - 4\sqrt{5}) + (-5\sqrt{3} + 6\sqrt{3} - \sqrt{3}) + 5 = 5$	2p
2.	f(1)=1+a	2p
	$1+a=8 \Leftrightarrow a=7$	3 p
3.	$2x-1=x^2 \Rightarrow x^2-2x+1=0$	2 p
	x=1, care convine	3 p
4.	Cifra unităților poate fi aleasă în 9 moduri	2p
	Cum cifrele sunt distincte, pentru fiecare alegere a cifrei unităților, cifra zecilor poate fi aleasă în câte 8 moduri, deci se pot forma $9.8 = 72$ de numere	3p
5.	Dreapta d intersectează axa $Ox \Rightarrow y = 0$	2p
	$x-2=0 \Rightarrow x=2$	3 p
6.	$AB^2 + AC^2 = 100 = BC^2 \Rightarrow \Delta ABC$ este dreptunghic în A	3 p
	$\mathcal{A}_{\Delta ABC} = \frac{6 \cdot 8}{2} = 24$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	$(-1)*3 = (-1)\cdot 3 + (-1) + 3 =$	3р
	=-3-1+3=-1	2p
2.	x * y = xy + x + y + 1 - 1 =	2p
	=x(y+1)+(y+1)-1=(x+1)(y+1)-1, pentru orice numere reale x și y	3 p
3.	x*0=(x+1)(0+1)-1=x+1-1=x, pentru orice număr real x	3 p
	0*x = (0+1)(x+1)-1=x+1-1=x, pentru orice număr real x , deci $e=0$ este elementul neutru al legii de compoziție ,,*"	2p
1		
4.	$1*\left(-\frac{1}{2}\right) = (1+1)\left(-\frac{1}{2}+1\right) - 1 = 2 \cdot \frac{1}{2} - 1 = 0$	2p
	$\left(-\frac{1}{2}\right)*1=\left(-\frac{1}{2}+1\right)(1+1)-1=\frac{1}{2}\cdot 2-1=0, \text{ deci } -\frac{1}{2} \text{ este simetricul lui 1 în raport cu legea}$	3 p
	de compoziție "*"	
5.	$x * x = (x+1)^2 - 1$, $x * x * x = (x+1)^3 - 1$, unde x este număr real	2 p
	$(x+1)^3 - 1 = x \Leftrightarrow x(x+1)(x+2) = 0 \Leftrightarrow x = -2 \text{ sau } x = -1 \text{ sau } x = 0$	3 p
6.	Mulțimea numerelor naturale de o cifră are 10 elemente, deci sunt 10 cazuri posibile	2p
	$(n+1)^2 - 1 = 3$ şi, cum n este număr natural, obținem $n = 1$, deci este 1 caz favorabil	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{1}{10}$	1p

SUBIECTUL al III-lea (30 de puncte)

	(So de par	
1.	$A(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	3p
	$\det(A(0)) = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$	2p
2.	$A(1) + A(5) = \begin{pmatrix} -1 & 2 \\ -3 & 4 \end{pmatrix} + \begin{pmatrix} -9 & 10 \\ -15 & 16 \end{pmatrix} = \begin{pmatrix} -10 & 12 \\ -18 & 20 \end{pmatrix} =$	2p
	$=2\begin{pmatrix} -5 & 6 \\ -9 & 10 \end{pmatrix} = 2A(3)$	3p
3.	$A(1) \cdot A(2) = \begin{pmatrix} -1 & 2 \\ -3 & 4 \end{pmatrix} \cdot \begin{pmatrix} -3 & 4 \\ -6 & 7 \end{pmatrix} =$	2p
	$= \begin{pmatrix} -9 & 10 \\ -15 & 16 \end{pmatrix} = A(5)$	3p
4.	$\det(A(a)) = \begin{vmatrix} 1-2a & 2a \\ -3a & 1+3a \end{vmatrix} = (1-2a)(1+3a) - (-3a)2a = 1+a, \text{ unde } a \text{ este număr real}$	3p
	Matricea $A(a)$ este inversabilă $\Leftrightarrow \det(A(a)) \neq 0$, deci $a \in \mathbb{R} \setminus \{-1\}$	2p
5.	$A(a) \cdot A(-1) = \begin{pmatrix} 1 - 2a & 2a \\ -3a & 1 + 3a \end{pmatrix} \cdot \begin{pmatrix} 3 & -2 \\ 3 & -2 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 3 & -2 \end{pmatrix} = A(-1), \text{ pentru orice număr real } a$	3p
	$A(-1) \cdot A(a) = \begin{pmatrix} 3 & -2 \\ 3 & -2 \end{pmatrix} \cdot \begin{pmatrix} 1 - 2a & 2a \\ -3a & 1 + 3a \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 3 & -2 \end{pmatrix} = A(-1), \text{ pentru orice număr real } a$	2p
6.	$\det\left(A\left(n^4\right)\right) = 1 + n^4$	2p
	$1+n^4 < 32 \Leftrightarrow n^4 < 31$ și, cum n este număr natural nenul, obținem $n=1$ sau $n=2$	3p