

ESCALAMIENTO MULTIDIMENSIONAL

ALAN REYES-FIGUEROA
ELEMENTS OF MACHINE LEARNING

(AULA 09) 16.FEBRERO.2023

Dada una matriz de datos $\mathbf{x} \in \mathbb{R}^{n \times d}$, n > d, asociamos a cada vector $\mathbf{x}_i \in \mathbb{R}^d$ de la matriz, un representante $\mathbf{x}_i^* \in \mathbb{R}^r$,(estamos proyectando a un espacio de dimensión menor) de modo que en el nuevo espacio, se preserven las distancias lo mejor posible.

$$\min_{\mathbf{x}_{i}^{*}, \mathbf{x}_{j}^{*}} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(d(\mathbf{x}_{i}, \mathbf{x}_{j})^{2} - d(\mathbf{x}_{i}^{*}, \mathbf{x}_{j}^{*})^{2} \right)^{2}.$$
 (1)

Consideremos las matrices de distancias al cuadrado

$$\mathbb{D}^2 = \left(d(\mathbf{x}_i, \mathbf{x}_j)^2\right), \ \mathbb{D}^{*2} = \left(d(\mathbf{x}_i^*, \mathbf{x}_i^*)^2\right) \in \mathbb{R}^{n \times n}.$$

Con esta notación, la ecuación (1) se escribe como

$$\min_{\mathbf{x}_i^*,\mathbf{x}_i^*} ||\mathbb{D}^2 - \mathbb{D}^{*2}||_F^2.$$

Además, consideramos las matrices de Gram

$$\mathbb{G} = \mathbb{X}\mathbb{X}^{\mathsf{T}} = (\mathbf{x}_{i}^{\mathsf{T}}\mathbf{x}_{i}) = (\langle \mathbf{x}_{i}, \mathbf{x}_{i} \rangle), \ \mathbb{G}^{*} = \mathbb{X}^{*}(\mathbb{X}^{*})^{\mathsf{T}} = ((\mathbf{x}_{i}^{*})^{\mathsf{T}}\mathbf{x}_{i}^{*}) = (\langle \mathbf{x}_{i}^{*}, \mathbf{x}_{i}^{*} \rangle) \in \mathbb{R}^{n \times n}.$$

Tenemos una relación entre distancias y productos internos: Denotamos $q_{ii} = \langle \mathbf{x}_i, \mathbf{x}_i \rangle = \mathbf{x}_i^T \mathbf{x}_i$. Entonces,

$$\begin{array}{lcl} d_{ij}^2 & = & ||\mathbf{x}_i - \mathbf{x}_j||^2 = \langle \mathbf{x}_i - \mathbf{x}_j, \mathbf{x}_i - \mathbf{x}_j \rangle = \langle \mathbf{x}_i, \mathbf{x}_i \rangle - 2\langle \mathbf{x}_i, \mathbf{x}_j \rangle + \langle \mathbf{x}_j, \mathbf{x}_j \rangle \\ & = & g_{ii} - 2g_{ij} + g_{jj}. \end{array}$$

Recordemos que si $\mathbb{J}=I-\frac{1}{n}\mathbf{1}\mathbf{1}^T$, entonces \mathbb{J} es una matriz de proyección, y $\mathbb{X}_c=\mathbb{J}\mathbb{X}$ es la matriz de datos centrados.

Luego,
$$\mathbb{G} = \mathbb{X}\mathbb{X}^\mathsf{T} \ \Rightarrow \ \mathbb{G}_\mathsf{c} = \mathbb{X}_\mathsf{c}\mathbb{X}^\mathsf{T}_\mathsf{c} = (\mathbb{J}\mathbb{X})(\mathbb{J}\mathbb{X})^\mathsf{T} = \mathbb{J}\mathbb{X}\mathbb{X}^\mathsf{T}\mathbb{J}^\mathsf{T} = \mathbb{J}\mathbb{X}\mathbb{X}^\mathsf{T}\mathbb{J} = \mathbb{J}\mathbb{G}\mathbb{J}.$$

Recordemos que la matriz de proyección para un conjunto de n datos, \mathbb{J} , está dada por

$$\mathbb{J}=I_n-\tfrac{1}{n}\mathbf{1}\mathbf{1}^T.$$

Esto es

$$\mathbb{J} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} - \frac{1}{n} \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 1 \end{pmatrix}.$$

Esta matriz sirve para

- centrar la matriz de datos \mathbb{X} , mediante el cálculo $\mathbb{X}_c = \mathbb{J} \mathbb{X}$.
- centrar la matriz de Gram \mathbb{G} , mediante el cálculo $\mathbb{G}_{c} = \mathbb{J} \mathbb{G} \mathbb{J}$.

Si queremos proyectar a un espacio de dimensión r, o $< r \le d$, por el Teorema de Eckart-Young, la solución a este problema está dada de la siguiente forma: Si

$$\mathbb{G}_{c} = USV^{T} = \sum_{i=1}^{d} \sigma_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{T},$$

es la descomposición SVD de \mathbb{G}_c , entonces \mathbb{G}_c^* es

$$\mathbb{G}_{c}^{*} = U_{r} \mathsf{S}_{r} V_{r}^{\mathsf{T}} = \sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\mathsf{T}}.$$

¿Para qué se hace esto?

- No siempre es posible representar datos como vectores.
- Más adelante vamos a hacer el análisis sin referirnos explícitamente a los \mathbf{x}_i . En lugar de ello, usaremos distancias o algún otro tipo de métrica.

Objetivo: Crear coordenadas (sintéticas) en los datos, a partir una matriz de distancias.

Receta para hacer escalamiento multidimensional:

- 1. Dada una matriz de distancias $\mathbb{D} \in \mathbb{R}^{n \times n}$, simétrica, entre n datos.
- 2. Calcular la matriz de productos internos $\mathbb{G}_c = -\frac{1}{2}\mathbb{JDJ}$, con $\mathbb{J} = I_n \frac{1}{n}\mathbf{1}\mathbf{1}^T$.
- 3. Hallar la descomposición SVD de \mathbb{G}_c

$$\mathbb{G}_{c} = U\Sigma V^{\mathsf{T}}.$$

4. Si queremos representar los datos como vectores en \mathbb{R}^k , con 1 $\leq k \leq n$, tomamos la proyección de \mathbb{D} generada por las primeras k columnas de V:

$$\mathbb{X} = \mathbb{D} V[:,:k].$$

Ejemplo: Distancias entre 21 ciudades europeas (en Km).

	Athens	Barcelona	Brussels	Calais	Cologne	Copenhagen	
Athens	0	3313	2963	3175	2762	3276	
Barcelona	3313	0	1318	1326	1498	2218	
Brussels	2963	1318	0	204	206	966	
Calais	3175	1326	204	0	409	1136	
Cologne	2762	1498	206	409	0	760	
Copenhagen	3276	2218	966	1136	760	О	
:	:	÷	÷	÷	÷	÷	٠.

Ejemplo: Idiomas mayas

Matriz de distancias entre idiomas mayas.

Escalamiento multidimensional a 2 dimensiones.

