07/03/2025, 21:39 about:blank

Folha de Dicas: Construindo Modelos de Aprendizado Não Supervisionado

Modelos de aprendizado não supervisionado

Nome do Modelo	Descrição Breve	Sintaxe do Código
UMAP	UMAP (Uniform Manifold Approximation and Projection) é usado para redução de dimensionalidade. Prós: Alto desempenho, preserva a estrutura global. Contras: Sensível a parâmetros. Aplicações: Visualização de dados, extração de características. Hiperparâmetros chave: • n_neighbors: Controla o tamanho do bairro local (padrão = 15). • min_dist: Controla a distância mínima entre pontos no espaço embutido (padrão = 0.1). • n_components: A dimensionalidade da incorporação (padrão = 2).	from umap.umap_ import UMAP umap = UMAP(n_neighbors=15, min_dist=0.1, n_components=2)
t-SNE	t-SNE (t-Distributed Stochastic Neighbor Embedding) é uma técnica de redução de dimensionalidade não linear. Prós: Bom para visualizar dados de alta dimensionalidade. Contras: Computacionalmente caro, propenso a overfitting. Aplicações: Visualização de dados, detecção de anomalias. Hiperparâmetros chave: • n_components: O número de dimensões para a saída (padrão = 2). • perplexity: Equilibra a atenção entre aspectos locais e globais dos dados (padrão = 30). • learning_rate: Controla o tamanho do passo durante a otimização (padrão = 200).	<pre>from sklearn.manifold import TSNE tsne = TSNE(n_components=2, perplexity=30, learning_rate=200)</pre>
PCA	PCA (análise de componentes principais) é usado para redução de dimensionalidade linear. Prós: Fácil de interpretar, reduz ruído. Contras: Linear, pode perder informações em dados não lineares. Aplicações: Extração de características, compressão. Hiperparâmetros chave: • n_components: Número de componentes principais a serem retidos (padrão = 2). • whiten: Se deve escalar os componentes (padrão = False). • svd_solver: O algoritmo para calcular os componentes (padrão = 'auto').	<pre>from sklearn.decomposition import PCA pca = PCA(n_components=2)</pre>
DBSCAN	DBSCAN (Density-Based Spatial Clustering of Applications with Noise) é um algoritmo de agrupamento baseado em densidade. Prós: Identifica outliers, não requer o número de clusters. Contras: Difícil com clusters de densidade variável. Aplicações: Detecção de anomalias, agrupamento de dados espaciais. Hiperparâmetros chave: • eps: A distância máxima entre dois pontos para serem considerados vizinhos (padrão = 0.5). • min_samples: Número mínimo de amostras em um bairro para formar um cluster (padrão = 5).	from sklearn.cluster import DBSCAN dbscan = DBSCAN(eps=0.5, min_samples=5)
HDBSCAN	HDBSCAN (Hierarchical DBSCAN) melhora o DBSCAN ao lidar com clusters de densidade variável. Prós: Melhor manejo de densidades variáveis. Contras: Pode ser mais lento que o DBSCAN. Aplicações: Grandes conjuntos de dados, problemas de agrupamento complexos. Hiperparâmetros chave: • min_cluster_size: O tamanho mínimo dos clusters (padrão = 5). • min_samples: Número mínimo de amostras para formar um cluster (padrão = 10).	import hdbscan clusterer = hdbscan.HDBSCAN(min_cluster_size=5)

about:blank 1/2

07/03/2025, 21:39 about:blank

Nome do Modelo	Descrição Breve	Sintaxe do Código
Agrupamento K- Means	K-Means é um algoritmo de agrupamento baseado em centróides que agrupa dados em k clusters. Prós: Eficiente, simples de implementar. Contras: Sensível aos centróides iniciais dos clusters. Aplicações: Segmentação de clientes, reconhecimento de padrões. Hiperparâmetros chave: • n_clusters: Número de clusters (padrão = 8). • init: Método para inicializar os centróides ('k-means++' ou 'random', padrão = 'k-means++'). • n_init: Número de vezes que o algoritmo será executado com diferentes sementes de centróides (padrão = 10).	from sklearn.cluster import KMeans kmeans = KMeans(n_clusters=3)

Funções associadas usadas

Método	Descrição Breve	Sintaxe do Código
make_blobs	Gera blobs gaussianos isotrópicos para clustering.	<pre>from sklearn.datasets import make_blobs X, y = make_blobs(n_samples=100, centers=2, random_state=42)</pre>
multivariate_normal	Gera amostras de uma distribuição normal multivariada.	<pre>from numpy.random import multivariate_normal samples = multivariate_normal(mean=[0, 0], cov=[[1, 0], [0, 1]], size=100)</pre>
plotly.express.scatter_3d	Cria um gráfico de dispersão 3D usando Plotly Express.	<pre>import plotly.express as px fig = px.scatter_3d(df, x='x', y='y', z='z') fig.show()</pre>
geopandas.GeoDataFrame	Cria um GeoDataFrame a partir de um DataFrame Pandas.	<pre>import geopandas as gpd gdf = gpd.GeoDataFrame(df, geometry='geometry')</pre>
geopandas.to_crs	Transforma o sistema de referência de coordenadas de um GeoDataFrame.	gdf = gdf.to_crs(epsg=3857)
contextily.add_basemap	Adiciona um mapa base a um gráfico de GeoDataFrame para contexto.	<pre>import contextily as ctx ax = gdf.plot(figsize=(10, 10)) ctx.add_basemap(ax)</pre>
pca.explained_variance_ratio_	Retorna a proporção da variância explicada por cada componente principal.	<pre>from sklearn.decomposition import PCA pca = PCA(n_components=2) pca.fit(X) variance_ratio = pca.explained_variance_ratio_</pre>

Autor

<u>Jeff Grossman</u> <u>Abhishek Gagneja</u>

about:blank 2/2