

實驗名稱:實驗	七 根軌跡技巧	成績:_	
組別:			
班級:			
學號:			
姓名:			
日期:年	月 日		

實驗七 根軌跡技巧

目的:練習 MATLAB 的根軌跡設計技巧,由所要求的控制系統規格 配合根軌跡圖及二階近似的方法設計控制系統,並判斷系統 穩定時控制器的 K 值範圍與加入極零點的設計技巧。

使用設備:PC及MATLAB模擬軟體。

實驗步驟:1.開機後進入視窗,找MATLAB點兩下進入系統。

- 2.逐項做實驗項目,並記錄結果。
- 3.做完各實驗項目後關閉 MATLAB 系統,再按關機程序關機,最後關電腦電源。

實驗項目如下:

(題中的未知數 C 等於組別,例如:第5組則 C=5)

1. 下列單位負迴授控制系統,請設計 K 值使超越量為 10%,穩定的 K 值範圍、實際響應的安定時間 T_S 、峰值時間 T_p 、百分比超越量 %OS 分別為多少?設計後的閉迴路轉移函數 $\frac{Y(S)}{R(S)}$ =?系統中

$$G(S) = \frac{K}{S(S+3)(S+4)(S+C+8)}$$
 .

答:穩態誤差 $e_{ss} =$ ____。

超越量有 10%~K = _____ 、 $T_s =$ ____ 、 $T_p =$ ____ 、

% *OS* = _____

穩定的 K 值範圍

轉移函數

 $\frac{Y(S)}{S} =$

R(S)

2. 如圖 1.的系統,穩定的 K 值範圍為何?超越量有 30% 的 K 值?實際響應的安定時間 T_s 、峰值時間 T_p 、百分比超越量%OS 分別為多少?設計後的閉迴路轉移函數 $\frac{Y(S)}{R(S)}$ =?

答:

穩定的 K 值範圍

超越量有 30%~K = _____ 、 $T_s =$ ____ 、 $T_p =$ ____ 、

% OS =

皷	移	派	數
干干	イタ	凹	安人

3. 某系統如圖 2.所示,求(a) 穩定的 K 值範圍 ? (b) 主極點阻尼比為 0.707 的 K 值應設計多少?(c)臨界阻尼時 K 值應設計多少?

答:

(a)	穩定的	K	估豁	臣
(a)	恁处的	\mathbf{L}	狙軋	厓

(b) 主極點阻尼比為
$$0.707$$
 的 $K =$ _____

4. 請設計圖 3.六個自由度的電桿裝配機器人系統 K 的值,使其安定 時間 T_c 最快,實際響應的安定時間 T_c 、峰值時間 T_p 、百分比超越 量%OS 分別為多少?設計後的閉迴路轉移函數 $\frac{Y(S)}{R(S)}$ =?

答:

$$K =$$
_____, $T_s =$ _____, $T_p =$ _____, $\% OS =$ _____

轉移函數

$$\frac{Y(S)}{R(S)} = \frac{}{}$$

5. 圖 4 的系統請設計 PID 控制器使系統的響應規格符合安定時間為 2 秒以下,百分比超越量%OS 小於 5%,設計後 PID 控制器的值 及實際響應的安定時間T。、百分比超越量%OS分別為多少? 答:

$$K_P =$$
 , $K_I =$, $K_D =$, $K_D =$, $K_S =$, $M_S =$,

圖 1

