Si queremos dar una forma canónica debemos pensar en cómo describir el N. Por corolario anterior, si N es nilpotente, existe r > 0 tal que $N^r = 0$ entonces $m_N | x^r$. Con lo cual N es nilpotente si y solo sí $m_N = x^s$ para algún $s \in \mathbb{N}, s \leq n$ si y solo sí $p_N = x^n$ para algún $n = \dim(V)$.

Por teorema de descomposición cíclica, tenemos que si

$$p_r = x^{s_r}, p_{r-1} = x^{s_{r-1}}, \dots p_2 = x^{s_2}, p_1 = x^{s_1} = m_N$$

con $s_r \leq s_{r_1} \leq \cdots \leq s_2 \leq s_1$ tales que $s_r + s_{r_1} + \cdots + s_2 + s_1 = \dim(V) = n$. Existe una base \mathcal{B} tal que

Recíprocamente, las matrices de este tipo dan operadores nilpotentes.

Observación. En general, a menos de equivalencia, hay tantas matrices de tamaño n como lo que se llama particiones de n formas de cubrir a n como suma de números naturales.

Definición. Una matriz bloque elemental de Jordan con valor propio c (asociada a un escalar "c") es la matriz $B \in \mathbb{F}^{n \times n}$ forma:

$$B = \begin{pmatrix} c & 0 & \cdots & 0 \\ 0 & c & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & c \end{pmatrix} \tag{1}$$

Teorema. Sea V un espacio vectorial de dimensión finita y sea $T:V\to V$ tal que m_T es producto de factores lineales entonces existe \mathcal{B} una base de V tal que $[T]_{\mathcal{B}}$ es un bloque de Jordan. La descomposición es única con respecto al tamaño de cada bloque

Operadores Semisimples

Sea $\mathbb{F} = \mathbb{R}$ ó \mathbb{C}

Definición. Sea V un espacio vectorial de dimensión finita sobre el cuerpo \mathbb{F} y sea T un operador lineal sobre V. Se dice que T es **semisimple** si todo subespacio T-invariante tiene un subespacio complementario T-invariante.

Lema. Sea T un operador lineal sobre el espacio vectorial de dimensión finita V y sea $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$ la descomposición prima de T; es decir, si m_T es el polinomio minimal de T y $m_T = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$ es la factorización prima de m_T , entonces es W_j el espacio nulo de $p_j(T)^{r_j}$. Sea W el subespacio de V que es invariante por T. Entonces

$$W = (W \cap W_1) \oplus (W \cap W_2) \oplus \dots (W \cap W_k)$$

Lema. Sea T un operador lineal sobre el espacio vectorial V y sea m_T el polinomio minimal de T. Si m_T es irreducible sobre el cuerpo escalar \mathbb{F} entonces T es semisimple.

Teorema Sea T un operador lineal sobre un espacio rectorial de dimensión finita V. Una condición necesaria y suficiente para que T sea semisimple es que el polinomio minimal m_T de V y sea de la forma $p = p_1 p_2 \cdots p_k$, donde p_1, p_2, \ldots, p_k son polinomios irreducibles distintos sobre el cuerpo escalar \mathbb{F} .

Corolario. Si T es un operador lineal sobre un espacio vectorial de dimensión finita sobre un cuerpo algebraicamente cerrado, T es semisimple si, y solo si, T es diagonalizable.

Espacio Dual

Si V es un espacio vectorial, el conjunto de todos los funcionales lineales sobre V forman, naturalmente, un espacio vectorial. Es el espacio L(V, F).

Se designa este espacio por V^* y se le llama **espacio** dual del V:

$$V^* = L(V, F)$$

Si V es de dimensión finita se puede obtener una descripción muy explícita del espacio dual V^* .

Por el Teorema 5 sabemos algo acerca del espacio V^* :

$$\dim V^* = \dim V.$$

Sea $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ una base de V. Conforme al Teorema 1 existe (para cada i) un funcional lineal único f_i en V tal que

$$f_i(v_j) = \delta_{ij}.$$

De esta forma se obtiene de \mathcal{B} un conjunto de n funcionales lineales distintos f_1, \ldots, f_k , sobre V. Estos funcionales son también linealmente independientes, pues supóngase que

$$f_i = \sum_{i=1}^n c_i f_i$$

Entonces

$$f(v_j) = \sum_{i=1}^{n} c_i f_i(v_j)$$
$$= \sum_{i=1}^{n} c_i \delta_{ij}$$
$$= c_j.$$

En particular, si f es el funcional cero. $f_i(v_j) = 0$ para cada j y, por tanto, los escalares c, son todos ceros. Entonces los f_1, \ldots, f_k , son n funcionales linealmente independientes, y como se sabe que V^* tiene dimensión n, deben ser tales que $\mathcal{B}^* = \{f_1, \ldots, f_k\}$ es una base de V^* . Esta base se llama base dual de \mathcal{B} .

Teorema. Sea V un espacio vectorial de dimensión finita sobre el cuerpo \mathbb{F} y sea $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ una base de V. Entonces existe una única base dual $\mathcal{B}^* = \{f_1, f_2, \dots, f_n\}$ de V^* tal que $f_i(v_j) = \delta_{ij}$. Para cada funcional lineal f sobre V se tiene

$$f(v) = \sum_{i=1}^{n} f_i(v_i) f_i$$

y para cada vector v de V se tiene

$$v = \sum_{i=1}^{n} f_i(v)v_i$$

Definición. Si V es un espacio vectorial sobre el cuerpo \mathbb{F} y $S \subseteq V$, el anulador de S es el conjunto $S^{\circ} = \{f : V \to \mathbb{F} : f(v) = 0 \text{ para todo } v \in S\}.$

Teorema. Sea V un espacio vectorial de dimensión finita sobre el cuerpo \mathbb{F} y sea W un subespacio de V. Entonces

$$\dim W + \dim W^{\circ} = \dim V.$$

Corolario. Si W_1 y W_2 son subespacios de un espacio vectorial de dimención finita, entonces $W_1 = W_2$ si, y solo si, $W_1^{\circ} = W_2^{\circ}$.

Doble Dual

Una pregunta es, ¿si toda base de V^* es la dual de alguna base de V?. Una posibilidad de contestar esta pregunta es considerar V^{**} , espacio dual de V^* .

Si $v \in V$, entonces v induce un funcional lineal L_v , sobre V^* , definido por

$$L_v = f(v)$$

El hecho de que L_v , sea lineal no es más que una reformulación de la definición de las operaciones lineales en V^* :

$$L_v(cf + g) = (cf + g)(v)$$

$$= (cf)(v) + g(v)$$

$$= cf(v) + g(v)$$

$$= cL_v(f) + L_v(g)$$

Si V es de dimensión finita y $v \neq 0$, entonces $L_v \neq 0$. Es decir, existe un funcional lineal f tal que $f(v) \neq 0$.

La demostración es muy simple: Elíjase una base ordenada $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ de V tal que $v_1 = v$, y sea f el funcional lineal que asigna a cada vector en V su primera coordenada en la base ordenada \mathcal{B} .

Teorema. Sea V un espacio vectorial de dimensión finita sobre el cuerpo $\mathbb{F}.$ Para cada vector $v \in V$ se define

$$L_v(f) = f(v) \text{ con } f \in V^*.$$

Entonces $L: V \to V^{**}$ tal que $L(v) = L_v$ es un isomorfismo.

Corolario. Sea V un espacio vectorial de dimensión finita sobre el cuerpo \mathbb{F} . Si L es un funcional lineal en el espacio dual V^* de V, entonces existe un único vector $v \in V$ tal que

$$L(v) = f(v)$$
 para todo $f \in V^*$.

Corolario. Sea V un espacio vectorial de dimensión finita sobre el cuerpo \mathbb{F} . Toda base de V^* es dual de alguna base de V.

Transpuesta de una transformación lineal

Teorema. Sean V y W espacios vectoriales sobre el cuerpo \mathbb{F} . Para toda transformación lineal T de V en W, existe una única transformación lineal $T^T: W^* \to V^*$ tal que

$$(T^T g)(v) = g(Tv)$$

para todo $g \in W^*$ y $v \in V$.

Proposition. $T^T \in \text{hom}_{\mathbb{F}}(W^*, V^*)$.

Teorema. Sean V y W dos espacios vectoriales sobre el cuerpo \mathbb{F} y T una transformación lineal de V en W. Entonces $\ker(T^T) = Im(T)^{\circ}$. Particularmente, si $\dim V$, $\dim W < \infty$ entonces

- (a) $rango(T) = rango(T^T)$.
- (b) $Im(T^T) = (\ker T)^{\circ}$.

Teorema. Sean V y W dos espacios vectoriales sobre el cuerpo \mathbb{F} y dim $(V) = m, \dim(W) = n, \text{ con } m, n < \infty$ tales que $\mathcal{B}_1 = \{v_1, v_2, \dots, v_m\}$ y $\mathcal{B}_2 = \{w_1, w_2, \dots, w_n\}$ sean las bases de V y W, respectivamente. Además $\mathcal{B}_1^* = \{f_1, f_2, \dots, f_m\}$ y $\mathcal{B}_2^* = \{g_1, g_2, \dots, g_n\}$ son las bases duales de \mathcal{B}_1 y \mathcal{B}_2 , respectivamente.

$$\mathcal{B}, \mathcal{C} \to [T]_{\mathcal{BC}} \in \mathbb{F}^{m \times n}$$
$$\mathcal{B}^*, \mathcal{C}^* \to [T^T]_{\mathcal{C}^* \mathcal{B}^*} \in \mathbb{F}^{n \times m}$$

con $T \in \text{hom}_{\mathbb{F}}(V, W)$ entonces $[T^T]_{\mathcal{C}^*\mathcal{B}^*} = [T]_{\mathcal{BC}}^T$

Definición. Sea $A \in \mathbb{F}^{n \times m}$, la transpuesta de A es $A^T \in \mathbb{F}^{m \times n}$, definida por $A_{ij} = A_{ji}$.

Teorema. Sea $A \in \mathbb{F}^{n \times m}$. Entonces el rango de filas de A es igual al rango de columnas de A.

Espacios con Productos Internos

Sea $\mathbb{F} = \mathbb{R}$ ó \mathbb{C}

Definición. Un producto interno sobre \mathbb{F} -espacio vectorial es una funcion $(\cdot|\cdot): V \times V \to \mathbb{F}$ tal que $u, v, w \in V, c \in \mathbb{F}$ tal que

- a) (u + v|w) = (u|w) + (v|w)
- b) (cu|w) = c(u|w)
- c) $(u|w) = \overline{(w|u)}$
- d) $(u|u) > 0 \text{ si } u \neq 0$
- * Es sesquilineal en la segunda entrada

$$\frac{(u|v+cw)}{\overline{c}(u|w)} = \overline{(v+w|u)} = \overline{(v|u)+c(w|u)} = \overline{(u|v)} + \overline{c}(u|w) = (u|v) + \overline{c}(u|w)$$

- i) Para cada $v \in V$, $f_v : V \to \mathbb{F}$ tal que $f_v = (u|v)$ entonces $f_v \in V^*$
- ii) Si $\mathbb{F} = \mathbb{R}$ entonces $\Phi : V \to V^*$, $\Phi(v) = f_v \Rightarrow \Phi$ es un isomorfismo (si dim $V < \infty$).

Definición. $||\cdot||: V \to \mathbb{R}_{\geq 0}$ tal que $||v|| = \sqrt{\langle v, v \rangle}$, norma de V. (* depende del producto interno \langle , \rangle).

Propiedades.

- a) ||cv|| = |c|||v||
- b) $||u+w||^2 = ||u||^2 + 2\Re\langle v, w\rangle + ||w||^2$
- c) $(u|w) = \frac{1}{4} (||u+w||^2 ||u-w||^2 + i||u+w||^2 i||u-u||^2 + i||u+w||^2 + i||u+w||^2 + i||u-u||^2 + i||u-u||^2$
- d) $(u|w) = \frac{1}{4} (||u+w||^2 ||u-w||^2)$ si $\mathbb{F} = \mathbb{R}$.

Teorema. Sean $u, v \in V$.

- $a) |\langle u|v\rangle| \le ||u||.||w||$
- b) $||u+v|| \le ||u|| + ||v||$