COMP 9602: Convex Optimization

Duality (I)

Dr. C. Wu

Department of Computer Science The University of Hong Kong

Roadmap

Theory	convex set convex function standard forms of optimization problems, quasi-convex optimization linear program, integer linear program quadratic program geometric program semidefinite program vector optimization duality
Algorithm	unconstrained optimization equality constrained optimization interior-point method localization methods subgradient method decomposition methods

Duality

Optimization in standard form (not necessarily convex)

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p$

D=dom $f_0 \cap dom f_1$ $\bigcap ... \bigcap dom f_m \cap dom$ $h_1 \cap ... \cap dom h_p$

variable $x \in \mathbf{R}^n$, domain \mathcal{D} , optimal value p^*

□ Lagrangian: $L: \mathbf{R}^n \times \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$, with $\operatorname{dom} L = \mathcal{D} \times \mathbf{R}^m \times \mathbf{R}^p$

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- Lagrange multipliers (Lagrangian dual variables):
 - λ_i is Lagrange multiplier associated with $f_i(x) \leq 0, i = 1, \ldots, m$
 - ν_i is Lagrange multiplier associated with $h_i(x) = 0, i = 1, \dots, p$
- augment fo(x) by weighted sum of constraint functions (penalty functions)

Lagrange dual

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$

$$= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

Lagrange dual problem

$$\max g(\lambda, \nu)$$

subject to:
$$\lambda \succeq 0$$

Note that there is no positive constraint on u

LP and its dual

Standard form LP

minimize
$$c^T x$$
 subject to $Ax = b, \quad x \succeq 0$

Lagrangian:

$$L(x,\lambda,\nu) = c^T x + \nu^T (Ax - b) - \lambda^T x$$
$$= -b^T \nu + (c + A^T \nu - \lambda)^T x$$

Lagrange dual function

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu)$$

Dual problem

$$\begin{array}{ll} \text{maximize} & -b^T \nu \\ \text{subject to} & A^T \nu + c \succeq 0 \end{array}$$

Lagrange dual and conjugate function

Optimization with affine inequality and equality constraints

minimize
$$f_0(x)$$
 subject to $Ax \leq b$, $Cx = d$

Lagrangian dual function

$$g(\lambda, \nu) = \inf_{x \in \text{dom } f_0} (f_0(x) + (A^T \lambda + C^T \nu)^T x - b^T \lambda - d^T \nu)$$

= $-f_0^* (-A^T \lambda - C^T \nu) - b^T \lambda - d^T \nu$

- recall definition of conjugate $f^*(y) = \sup_{x \in \mathbf{dom}\, f} (y^Tx f(x))$ (Slide 21, Convex
- ullet simplifies derivation of dual if conjugate of f_0 is kown

$$f_0(x) = \sum_{i=1}^n x_i \log x_i, \qquad f_0^*(y) = \sum_{i=1}^n e^{y_i - 1}$$

Primal and Lagrange dual problems

Primal problem

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p$

convex or non-convex

Lagrange dual problem

$$\max g(\lambda, \nu)$$

subject to:
$$\lambda \succeq 0$$

a convex optimization problem

- \mathbf{x} is the primal variable, $x \in \mathbf{R}^n$
- optimal value p*

- $oldsymbol{\lambda}$, u : dual variables $\lambda \in \mathbf{R}^m \quad
 u \in \mathbf{R}^p$
 - optimal value d*

Properties of Lagrange dual

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$

$$= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

Property 1: $g(\lambda, \nu)$ is concave on (λ, ν) even if the original problem is not convex

Example: the max cut problem

- Consider an undirected graph G = (V, E). For $S \subset V$, the capacity of S is the number of edges connecting a node in S to a node not in S. Find $S \subset V$ with maximum capacity.
 - adjacency matrix of the graph

$$Q_{ij} = \begin{cases} 1 & \text{if } \{i, j\} \in E \\ 0 & \text{otherwise} \end{cases}$$

lacksquare a cut decided by a vector $x \in \mathbb{R}^n$

$$x_i = \begin{cases} 1 & \text{if } i \in S \\ -1 & \text{otherwise} \end{cases}$$

capacity of the cut

$$c(x) = \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} (1 - x_i x_j) Q_{ij}$$

(1 -
$$x_i x_j = 2$$
 if $\{i, j\}$ is in the cut set)

Example: the max cut problem (cont'd)

\square Primal problem (NP complete even if $Q \succeq 0$)

minimize
$$x^TQx$$
 subject to
$$x_i \in \{\,-1,1\,\} \qquad \text{for all } i=1,\ldots,n$$

the maximum cut is
$$c_{\text{max}} = \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} Q_{ij} - \frac{1}{4} p^{\star}$$

 p^{\star} : the optimal value of primal problem

<=>
$$\begin{array}{c} \text{minimize} & x^TQx \\ \text{subject to} & x_i^2-1=0 \end{array}$$

Example: the max cut problem (cont'd)

Dual problem (SDP)

let
$$\Lambda = \mathbf{diag}(\lambda_1, \dots, \lambda_n)$$

the Lagrangian is

$$L(x,\lambda) = x^T Q x - \sum_{i=1}^n \lambda_i (x_i^2 - 1) = x^T (Q - \Lambda) x + \mathbf{trace} \Lambda$$

the dual is

$$\label{eq:trace} \begin{array}{ll} \operatorname{maximize} & \operatorname{trace} \Lambda \\ \\ \operatorname{subject} \ \operatorname{to} & Q - \Lambda \succeq 0 \end{array}$$

Properties of Lagrange dual (cont'd)

Property 2: $g(\lambda, \nu) \leq f_0(x)$ for every primal feasible x and dual feasible (λ, ν)

Remarks:

- (1) $f_0(x)-g(\lambda,\nu)$: duality gap for (x,λ,ν) , which is alway non-negative p^*-d^* : optimal duality gap
- (2) $d^* \leq p^*$: weak duality

for any optimization problem: convex or not can be used to find a non-trivial lower bound on p*, for difficult primal problems

Example: the max cut problem (cont'd)

Any dual feasible solution gives a lower bound on primal objective value:

for any feasible x

$$x^T Q x \ge x^T \Lambda x = \sum_{i=1}^n \Lambda_{ii} x_i^2 = \mathbf{trace} \Lambda$$

Strong duality

strong duality: $d^* = p^*$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

there exist many types of constraint qualifications Slater's constraint qualification is a famous one

Slater's constraint qualification

strong duality holds for a convex problem

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $Ax=b$

if it is strictly feasible, i.e.,

$$\exists x \in \mathbf{int} \, \mathcal{D}: \qquad f_i(x) < 0, \quad i = 1, \dots, m, \qquad Ax = b$$

Can be refined: linear inequalities do not need to hold with strict inequality

Strong duality theorem for LP

If an LP (in any form) has an optimal solution x^* , then the dual also has an optimal solution y^* , and $C \bar{x}^* = b \bar{y}^*$

Primal

$$\min c^T x$$

subject to:

$$Ax = b$$
$$x \succ 0$$

Dual

$$\max b^T y$$

subject to:

$$A^T y \leq c$$

	Primal				
Dual		has optimum	unbounded	infeasible	
	has optimum	Υ	Ν	Ν	
	unbounded	N	N	Υ	
	infeasible	N	Υ	Υ	

- Reference
 - Chapter 5.1 5.2, Convex Optimization.
- Acknowledgement
 - Some materials are extracted from the slides created by Prof. Stephen Boyd for the textbook
 - Some materials are extracted from the lecture notes of Convex Optimization by Prof. Wei Yu at the University of Toronto