



# Signal and Systems: discretetime signals

\_

## Traitement numérique du signal

Xidian University – April 2021

rl@xidian.edu.cn

#### Plan du cours

- I. Rappels de traitement du signal
- II. Signaux échantillonnés
- III. Signaux numériques et transformée de Fourier Discrète
  - 1. Signaux numériques et définitions
  - 2. La Transformation en Z
  - 3. Transformée de Fourier Discrète et propriétés de la TFD
  - 4. Influence du fenêtrage temporel
- IV. Conversion analogique numérique et bruit de quantification

## 1. Signaux à temps discret

- Echantillonnage à la fréquence  $F_{S}$  de signaux analogiques x(t)
- x(k) suite de nombres qui représente les échantillons  $x(kT_s)$
- L'amplitude est
  - quantifiée (signaux numériques)
  - ou non (signaux échantillonnés)

## Exemples de quelques signaux élémentaires

• Impulsion unité

$$\delta(k) = \begin{cases} 1 & \text{si } k = 0 \\ 0 & \text{ailleurs} \end{cases}$$



$$u(k) = \begin{cases} 1 & \text{si } k \ge 0 \\ 0 & \text{si } k < 0 \end{cases}$$



$$rect_{N}(k) = \begin{cases} 1 & \text{si } 0 \le k \le N - 1 \\ 0 & \text{ailleurs} \end{cases} \xrightarrow{rect_{N}(k)}$$

• Signal exponentiel causal

$$s(k) = a^k . u(k)$$

# Définitions des opérations discrètes utiles en traitement du signal

- Notation : on notera le signal numérique x(k) ou  $x_k$ .
- Les concepts de périodicité, d'énergie et de puissance moyenne des signaux continus sont transposables
  - Energie et puissance moyenne de x(k) (réel ou complexe)

$$E_{x} = \sum_{k=-\infty}^{+\infty} |x_{k}|^{2}$$

$$P_{x} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{k=-N}^{+N} |x_{k}|^{2}$$

• On peut aussi définir des convolutions et corrélations discrètes

#### Produit de convolution

#### • Définition :

$$y(n) = x(n) * g(n) = \sum_{k=-\infty}^{+\infty} x(k)g(n-k)$$

• Ce produit est commutatif, associatif et distributif



## Système de convolution discret (SLIT ou SLID)

• On définit de la même manière un système de convolution discret



```
t=[1:1000];% temps
x=sin(2*pi*t/100)+0.1*randn(1,1000);
% sinus bruité que l'on va filtrer
figure; plot(x);

N=50;% ordre du filtre
h=1/N*ones(1,N); % opérateur de moyenne mobile
% filtre d'ordre N
y=conv(x,h);
% y sortie du système = signal filtré
% convolution du signal x par la
% réponse impulsionnelle du filtre
hold on; plot(y,'r')
```



## Grandeurs d'importances des signaux numériques

|                                                                                     | Signaux à énergie finie                                   | Signaux à puissance finie                                                                      |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Définition                                                                          | $E_{x} = \sum_{k=-\infty}^{+\infty}  x_{k} ^{2} < \infty$ | $P_{x} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{k=-N}^{+N}  x_{k} ^{2} < \infty$             |
| Intercorrélation $R_{xy}(t) = \sum_{n=-\infty}^{+\infty} R_{xy}(n)\delta(t - nT_s)$ | $R_{xy}(n) = \sum_{k=-\infty}^{+\infty} x_{k+n} y_k$      | $R_{xy}(n) = \lim_{N \to +\infty} \left( \frac{1}{2N+1} \sum_{k=-N}^{+N} x_{k+n} y_k \right)$  |
|                                                                                     | $\mathcal{F}\big[R_{xy}\big] = S_{xy}$                    | $\mathcal{F}\big[R_{xy}\big] = S_{xy}$                                                         |
| Autocorrélation $R_{x}(t) = \sum_{n=-\infty}^{+\infty} R_{x}(n)\delta(t-nT_{s})$    | $R_{x}(n) = \sum_{k=-\infty}^{+\infty} x_{k+n} x_{k}$     | $R_{x}(n) = \lim_{N \to +\infty} \left( \frac{1}{2N+1} \sum_{k=-N}^{+N} x_{k+n} x_{k} \right)$ |
|                                                                                     | $R_{x}(0)=E_{x}$                                          | $R_{x}(0) = P_{x}$                                                                             |
|                                                                                     | $\mathcal{F}[R_{x}] = S_{x}$                              | $\mathcal{F}[R_{x}] = S_{x}$                                                                   |

- Une fois numérisé, le signal va subir des opérations (filtrage...)
- Ces opérations peuvent êtres décrites par des systèmes de convolution (ou Systèmes Linéaires et Invariants dans le Temps (SLIT))
- Les SLIT peuvent être programmés grâce à une équation aux différences entre l'entrée  $x_k$  et la sortie  $y_k$   $y_k + a_1 y_{k-1} + \dots + a_{n_a} y_{k-n_a} = b_0 x_k + b_1 x_{k-1} + \dots + b_{n_b} x_{k-n_b}$
- Comme la TF a été introduite pour décrire les équations différentielles sur le plan fréquentiel, on peut introduire de la même manière la transformée en Z pour les équations aux différences.

• On définit la transformée en Z, notée X(z) du signal numérique  $x_k$  par la relation suivante:

$$TZ[x_k] = X(z) = \sum_{k=-\infty}^{+\infty} x_k z^{-k}$$

- z est une variable complexe.
- On rappelle que la transformée de Fourier de  $x_e(t)$  est

$$X_e(f) = \sum_{k=-\infty}^{\infty} x(kT_s)e^{-j2\pi kT_s f} = X(z = e^{j2\pi f T_s})$$

- La transformée en Z possède des propriétés similaires à la TF. Voici les plus importantes:
  - Théorème du retard :

$$TZ[x(k-n)] = z^{-n} \times TZ[x(k)]$$

• Linéarité :

$$TZ[a.x(k) + b.y(k)] = a.TZ[x(k)] + b.TZ[y(k)]$$

• Convolution :

$$TZ[x(k) * y(k)] = TZ[x(k)] \times TZ[y(k)]$$

• Pour un système de convolution, on a donc:



• On peut facilement relier l'équation de récurrence d'un SLIT à sa TZ:

$$\begin{split} TZ[y_k + a_1y_{k-1} + \cdots + a_{n_a}y_{k-n_a}] &= TZ[b_0x_k + b_1x_{k-1} + \ldots + b_{n_b}x_{k-n_b}] \\ TZ[y_k] + a_1.TZ[y_{k-1}] + \cdots + a_{n_a}.TZ[y_{k-n_a}] &= b_0.TZ[x_k] + b_1.TZ[x_{k-1}] + \ldots + b_{n_b}.TZ[x_{k-n_b}] \\ Y(z) + a_1z^{-1}Y(z) + \cdots + a_{n_a}z^{-n_a}Y(z) &= b_0X(z) + b_1z^{-1}X(z) + \cdots + b_{n_b}z^{-n_b}X(z) \end{split} \tag{Inéarité}$$
 
$$Y(z) \left(1 + a_1z^{-1} + \cdots + a_{n_a}z^{-n_a}\right) = X(z) \left(b_0 + b_1z^{-1} + \cdots + b_{n_b}z^{-n_b}\right)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_{n_b} z^{-n_b}}{1 + a_1 z^{-1} + \dots + a_{n_a} z^{-n_a}}$$

#### • A retenir:

- Savoir calculer la réponse fréquentielle d'un système de convolution avec  $z=e^{j2\pi fT_S}$  (voir la fonction freqz de Matlab)
- Savoir relier TZ et équations aux différences pour pouvoir calculer la sortie d'un système de convolution (voir la fonction *filter* de Matlab)

$$y_k + a_1 y_{k-1} + \dots + a_{n_a} y_{k-n_a} = b_0 x_k + b_1 x_{k-1} + \dots + b_{n_b} x_{k-n_b}$$

$$\Leftrightarrow H(z) = \frac{Y(z)}{X(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_{n_b} z^{-n_b}}{1 + a_1 z^{-1} + \dots + a_{n_a} z^{-n_a}}$$

• Les calculateurs n'ont accès qu'à un nombre fini d'échantillons et ne peuvent calculer qu'un nombre fini de valeurs de son spectre.

• En pratique, comment estimer le spectre X(f) d'un signal analogique à partir de son signal échantillonné sur un intervalle de temps borné ?

- On définit donc les coefficients  $\{X_n\}_{n\in\{0,\dots,N-1\}}$  comme la Transformée de Fourier Discrète de  $\{x_k\}_{k\in\{0,\dots,N-1\}}$
- Transformée de Fourier discrète:

$$X_n = \sum_{k=0}^{N-1} x_k e^{-2\pi j \frac{kn}{N}}$$

Transformation inverse:

$$x_{k} = \frac{1}{N} \sum_{n=0}^{N-1} X_{n} e^{2\pi j \frac{kn}{N}}$$

• Combien d'opérations arithmétiques doit effectuer un calculateur pour obtenir les N valeurs de  $X_n$  ?

$$X_n = \sum_{k=0}^{N-1} x_k e^{-2\pi j \frac{kn}{N}}$$

| Support                    | GSM             | CD audio                            |
|----------------------------|-----------------|-------------------------------------|
| Fréquence en Hz            | 8000            | 44100                               |
| Nb d'échantillons en 1 min | ≈ ½ million     | > 2,5 millions                      |
| $\sim N^2$ multiplications | ≈ 230 milliards | > 7 billiards (7.10 <sup>15</sup> ) |

- Il existe un algorithme plus efficace pour calculer la TFD si N est une puissance de 2 ( $N = 2^{M}$ ).
- Cet algorithme s'appelle la FFT (Fast Fourier Transform)
- Au lieu de  $N^2$  multiplications, il en faut  $\frac{N}{2}\log_2(N)$ .



- Il existe un algorithme plus efficace pour calculer la TFD si N est une puissance de 2 ( $N = 2^M$ ).
- Cet algorithme s'appelle la FFT (Fast Fourier Transform)
- Au lieu de  $N^2$  multiplications, il en faut  $\frac{N}{2}\log_2(N)$ .

| Support                                | GSM             | CD audio                            |
|----------------------------------------|-----------------|-------------------------------------|
| Fréquence en Hz                        | 8000            | 44100                               |
| Nb d'échantillons en 1 min             | ≈ ½ million     | > 2,5 millions                      |
| $\sim N^2$ multiplications             | ≈ 230 milliards | > 7 billiards (7.10 <sup>15</sup> ) |
| $\frac{N}{2}\log_2(N)$ multiplications | < 4,6 millions  | < 29 millions                       |

• Dans Matlab, on trouve la fonction FFT :

- Les échantillons  $X_n$  correspondent à N points de  $X_e$  sur la période  $[0,F_s]$
- Sur $[0, \frac{F_S}{2}]$ , on a donc  $X\left(f = \frac{n}{NT_S}\right) = T_S X_e\left(f = \frac{n}{NT_S}\right) = T_S X_n$
- Les points du spectre de X(f) sont calculés avec un pas de  $\frac{1}{NT_S} = \frac{1}{T_a}$
- La largeur de l'intervalle fréquentiel de calcul est  $F_S = \frac{1}{T_S}$
- N échantillons temporels  $x_k \rightarrow N$  points du spectre X



Le théorème de Shannon s'applique:  $|X(f = 4Hz)| = 1,2334 \times 10^{-4} \approx 0$ 

• Echantillonnage de x(t)



$$T_a = 8s, T_s = \frac{1}{8}s \implies N = \frac{T_a}{T_s} = 2^6 = 64$$

• Calcul de  $\{X_n\}_{n\in\{0,...,N-1\}}$  par la fonction fft de Matlab (TFD)



NB:  $0 \leftrightarrow 0 \text{ Hz}$   $63 \leftrightarrow F_S - \frac{F_S}{N}$   $n \leftrightarrow n \frac{F_S}{N}$ 

- Une précision : à quelle fréquence correspond chaque  $X_n$  ?
  - Rappel:  $X_n = X_e(f_n)$  et  $f_n = \frac{n}{NT_s} = n \frac{F_s}{N}$
  - $X_0 = X_e(f_0) = X_e(0)$
  - $X_1 = X_e(f_1) = X_e\left(\frac{1}{NT_s}\right)$
  - $X_2 = X_e(f_2) = X_e\left(\frac{2}{NT_s}\right)$
  - ...
  - $X_n = X_e(f_n) = X_e\left(\frac{n}{NT_s}\right)$
  - ...
  - $X_{N-2} = X(f_{N-2}) = X_e\left(\frac{N-2}{NT_s}\right) = X_e\left(F_s \frac{2}{NT_s}\right)$
  - $X_{N-1} = X(f_{N-1}) = X_e\left(\frac{N-1}{NT_s}\right) = X_e\left(F_s \frac{1}{NT_s}\right)$
  - $X_N = ?$

• Calcul de  $\{X_n\}_{n\in\{0,...,N-1\}}$  par la fonction fft de Matlab (TFD)



$$f_n = \frac{n}{NT_S} = \frac{n}{64 \times \frac{1}{8}} = \frac{n}{8}$$

• Estimation de  $X_e\left(f = \frac{n}{T_a}\right) = X_n$ 



• Passage à  $\{X_n\}_{n\in\left\{-\frac{N}{2},...,\frac{N}{2}-1\right\}}$  par la fonction fftshift de Matlab (TFD)



• Estimation de 
$$X\left(f = \frac{n}{T_a}\right) = T_s X_n$$



• Estimation de 
$$X\left(f = \frac{n}{T_a}\right) = T_s X_n$$



## Utilisation de la TFD



## Propriétés de la TFD

• La TFD possède les propriétés classiques de la TF (mais les calculs se font modulo N)

• Décalage fréquentiel : ou modulation

$$a.x_k + b.y_k \Leftrightarrow a.X_n + b.Y_n$$

• Périodicité : 
$$X_n$$
 est périodique de période  $N$ 
• Linéarité :  $a.x_k + b.y_k \Leftrightarrow a.X_n + b.Y_n$ 
• Décalage temporel :  $y_k = x_{k-n_0} \Leftrightarrow Y_n = X_n.e^{-j2\pi \frac{n}{N}n_0}$ 

$$y_k = x_k \cdot e^{j2\pi \frac{k}{N}n_0} \iff Y_n = X_{n-n_0}$$

## Propriétés de la TFD

Relation de Parseval

Conservation de l'énergie N-1

$$\sum_{k=0}^{N-1} |x_k|^2 = \frac{1}{N} \sum_{n=0}^{N-1} |X_n|^2$$

• Produit de convolution circulaire 循环卷款

$$x_{1}(k) * x_{2}(k) = \sum_{i=0}^{N-1} x_{1}(i).x_{2}(k-i) \iff X_{1}(n).X_{2}(n)$$
$$x_{1}(k).x_{2}(k) \iff \frac{1}{N}X_{1}(n) * X_{2}(n)$$

### Résumé: TFD d'un signal acquis sur N points

• TF à temps continu d'un signal

$$X(f) = \int_{t=-\infty}^{+\infty} x(t)e^{-j2\pi ft}dt$$

- En remplaçant t par  $nT_s$  ( $T_s$ : période d'échantillonnage) et en remplaçant l'intégrale par une somme :
- TF d'un signal échantillonné

$$X_e(f) = \frac{1}{T_s} \sum_{k=-\infty}^{+\infty} X\left(f - \frac{k}{T_s}\right) = \sum_{k=-\infty}^{+\infty} x(kT_s)e^{-j2\pi kT_s f}$$

- Dans le cas d'un calculateur, l'acquisition et le calcul ne peuvent se faire avec un nombre infini d'échantillons. La variable f devient une variable discrète  $\frac{n}{NT_S}$   $\uparrow$   $\stackrel{h}{\longrightarrow}$   $\stackrel{h}{\bigwedge I}$
- TFD d'un signal numérique

$$X_n = \sum_{k=0}^{N-1} x_k e^{-2\pi j \frac{kn}{N}}$$

## 4. Fenêtrage temporel

- Nous avons vu que le fait de travailler avec des signaux numériques impliquait un nombre N fini d'échantillons  $x_k$ .
  - Si le signal est à durée limitée, alors on peut analyser toute l'information contenue dans ce signal à condition d'avoir une durée d'acquisition  $T_a$  suffisamment grande.



## Fenêtrage temporel

- Nous avons vu que le fait de travailler avec des signaux numériques impliquait un nombre N fini d'échantillons  $x_k$ .
  - En cas de durée illimitée, la TFD ne s'applique que sur le signal tronqué.
    - Pour tronquer le signal, on le regarde à travers une fenêtre (produit du signal par une fenêtre temporelle)



 Quel est l'effet de cette troncature sur le spectre du signal qu'on va calculer ?

## Troncature du signal discret

• Fenêtrage temporel sur une durée  $T_a$ 

$$x_{T_a}(t) = x(t) \times rect\left(\frac{t}{T_a}\right) \stackrel{TF}{\Rightarrow} X_{T_a}(f) = X(f) * T_a sinc(T_a f)$$

- Influence dans le domaine fréquentiel
  - Le fenêtrage temporel entraîne une **convolution** des spectres du signal de départ et de la fenêtre.

## Troncature du signal discret

• Exemple sur un signal x sinusoïdal:

$$x(t) = A.\cos(2\pi f_0 t)$$

$$X(f) = A.\frac{\delta(f - f_0) + \delta(f + f_0)}{2}$$

$$X_{T_a}(f) = A.\frac{\delta(f - f_0) + \delta(f + f_0)}{2} * T_a sinc(T_a f)$$

$$X_{T_a}(f) = \frac{A.T_a}{2} \left( sinc(T_a(f - f_0)) + sinc(T_a(f + f_0)) \right)$$



La convolution fréquentielle de X(f) par  $\mathcal{F}\left(rect\left(\frac{t}{T_a}\right)\right)$  aura pour conséquence l'apparition d'ondulations dans le spectre  $X_{T_a}(f)$  et donc dans  $X_{T_a}(n)$  : c'est le problème de résolution



- **Objectif** : Amélioration de l'analyse spectrale par pondération des échantillons
- Réalisation : Remplacement de la fenêtre rectangulaire par une fenêtre dont la TF présente des ondulations plus faibles
  - Chaque type de fenêtre a une réponse en fréquence particulière qui permet de choisir au mieux la « bonne » fenêtre en fonction des applications
  - En général, les résolutions sont d'autant meilleures que le lobe principal est étroit et les lobes secondaires sont de faibles amplitudes

• Pour diminuer l'influence de cette fenêtre de pondération, on peut la modifier et essayer de trouver des fenêtres plus adaptées.

#### Critères de sélection

- Rapport A entre les max du lobe central et lobes secondaires de la TFD des fenêtres
- Atténuation S des lobes secondaires de la TFD des fenêtres
- Largeur du lobe central ΔF

D 主瓣 比值大 A/s 1



- En général, résolutions d'autant meilleures que lobe principal étroit et lobes secondaires de faibles amplitudes
- Mais: diminution de la largeur du lobe principal → augmentation de l'amplitude des lobes secondaires
- Donc : Compromis à trouver

的圣瓣宽度塞小 可山

- Pour diminuer l'influence de cette fenêtre de pondération, on peut la modifier et essayer de trouver des fenêtres plus adaptées.
  - Parmi les fenêtres existantes, on trouve la fenêtre de Hanning:

• 
$$w_{hann}(t) = \left(\frac{1}{2} + \frac{1}{2}\cos\left(\frac{2\pi t}{T_a}\right)\right) \cdot rect\left(\frac{t - T_a/2}{T_a}\right)$$







• Pour  $x(t) = A.\sin(2\pi f_0 t) \times w_{hann}(t)$ :



## Allure temporelle et fréquentielle de quelques fenêtres



• Bilan sur le calcul numérique de la TF d'un signal analogique:



Annexe: Pour aller plus loin ...

- Exemple : signal continu x, tel que  $\forall t \in \mathbb{R} \setminus [0, T_a], x(t) \approx 0$ .
- Mesuré sur  $[0,T_a]$ , échantillonné avec une période d'échantillonnage  $T_s$  telle que  $T_a=NT_s$



• Pour un signal x(t) échantillonné sur une durée  $T_a$  telle que  $T_a = NT_s$ :

$$x_e(t) = \sum_{k=0}^{N-1} x(kT_s)\delta(t - kT_s) \Rightarrow X_e(f) = \sum_{k=0}^{N-1} x(kT_s)e^{-2\pi jkT_s f}$$



• On peut donc en conclure :

$$X_{e}(f) = \frac{1}{T_{s}} \sum_{k=-\infty}^{+\infty} X\left(f - \frac{k}{T_{s}}\right) = \sum_{k=0}^{N-1} x(kT_{s})e^{-2\pi jkT_{s}f}$$

- On sait calculer  $X_e(f)$
- De plus, s'il n'y a pas de repliement de spectre :

$$\forall f \in \left[ -\frac{F_s}{2}, \frac{F_s}{2} \right], X_e(f) = \frac{1}{T_s} X(f)$$



• On peut alors calculer le spectre du signal x qui nous intéresse sur  $\left[-\frac{F_S}{2}, \frac{F_S}{2}\right]$ :

$$\forall f \in \left[ -\frac{F_S}{2}, \frac{F_S}{2} \right], X(f) = T_S \sum_{k=0}^{N-1} x(kT_S)e^{-2\pi jkT_S f}$$

$$\forall f \in \left[ -\frac{F_S}{2}, \frac{F_S}{2} \right], X(f) = T_S \sum_{k=0}^{N-1} x_k e^{-2\pi j k T_S f}$$

#### • Comment choisir le pas d'échantillonnage fréquentiel Δf?

- L'échantillonnage de x(t) se fait à une fréquence  $F_s$  sur une durée de  $NT_s = N/F_s$ .
- La plus petite fréquence mesurable (correspondant à la plus grande période mesurable sur le signal acquis) est donc  $\Delta F_{min} = \frac{F_S}{N} = \frac{1}{NT_S}$ .
- Il est logique de choisir un pas fréquentiel  $\Delta F = \frac{1}{NT_s}$ .
- <u>Finalement, les nombres d'échantillons temporels et fréquentiels calculés sont choisis identiques (Il y en a N)</u>

$$\forall f \in \left[ -\frac{F_S}{2}, \frac{F_S}{2} \right], X(f) = T_S \sum_{k=0}^{N-1} x_k e^{-2\pi j k T_S f}$$

$$\forall f \in \left[ -\frac{F_S}{2}, \frac{F_S}{2} \right], X(f) = T_S \sum_{k=0}^{N-1} x_k e^{-2\pi j k T_S f}$$

• Calcul de 
$$N$$
 valeurs de  $f$  équidistantes dans l'intervalle  $\left[-\frac{F_S}{2}, \frac{F_S}{2}\right]$ : 
$$f = \frac{n}{NT_S} = \frac{n}{N}F_S = \frac{n}{T_a}, avec \ n \in \left\{-\frac{N}{2}, \dots, \frac{N}{2} - 1\right\}$$

• Calcul des valeurs de X(f) nous intéressant :

$$\forall n \in \left\{-\frac{N}{2}, \dots, \frac{N}{2} - 1\right\}, X\left(f = \frac{n}{NT_{s}}\right) = T_{s} \sum_{k=0}^{N-1} x_{k} e^{-2\pi j \frac{kn}{N}}$$

- Le calcul de X(f) se résume donc au calcul de N valeurs de  $X_n$  pour n allant de  $-\frac{N}{2}$  à  $\frac{N}{2}-1$
- Remarque:

$$X_{n+N} = \sum_{k=0}^{N-1} x_k e^{-2\pi j \frac{k(n+N)}{N}} = \sum_{k=0}^{N-1} x_k e^{-2\pi j \frac{kn}{N}} = X_n$$

- $X_e$  est  $F_s$ -périodique et  $X_n$  est N-périodique
- Le calcul de X(f) est donc équivalent au calcul de N valeurs de  $X_n$  pour n allant de 0 à N-1, correspondants à des fréquences allant de 0 à  $F_S-\frac{1}{T_a}$ .

• Pour résumer:

$$\begin{cases} \forall n \in \left\{ -\frac{N}{2}, \dots, -1 \right\}, X \left( f = \frac{n}{NT_{S}} \right) = T_{S}X_{n+N} \\ \forall n \in \left\{ 0, \dots, \frac{N}{2} - 1 \right\}, X \left( f = \frac{n}{NT_{S}} \right) = T_{S}X_{n} \end{cases}$$

- Les points du spectre de X(f) sont calculés avec un pas de  $\frac{1}{NT_S} = \frac{1}{T_a}$
- La largeur de l'intervalle fréquentiel de calcul est  $F_S = \frac{1}{T_S}$
- N échantillons temporels  $x_k \rightarrow N$  points du spectre X