STP16CPC26

Low voltage 16-bit constant current LED sink driver

Datasheet — production data

Features

- 16 constant current output channels
- Adjustable output current through external resistor
- Output current: 5 mA to 90 mA
- ±1% typical current accuracy bit to bit
- Max clock frequency: 30 MHz
- 20 V current generators rated voltage
- 3 5.5 V power supply
- Thermal shutdown for overtemperature protection

Applications

- · Video display panel LED driver
- Special lighting

Description

The STP16CPC26 is a monolithic, low voltage, 16-bit constant current LED sink driver. The device contains a 16-bit shift register and data latches, which convert serial input data into parallel output format. In the output stage sixteen regulated current generators provide 5 mA to 90 mA constant current to drive LEDs. The current is externally adjusted through a resistor. LED brightness can be adjusted from 0% to 100% via $\overline{\text{OE}}$ pin.

The STP16CPC26 guarantees a 20 V driving capability, allowing users to connect more LEDs in series to each current source.

The high 30 MHz clock frequency makes the device suitable for high data rate transmission.

The thermal shutdown (170°C with about 15°C hysteresis) assures protection from overtemperature events.

The STP16CPC26 is housed in four different packages: QSOP24, SO-24, TSSOP-24 and HTSSOP-24 (with exposed pad).

Table 1. Device summary

Order codes	Package	Packaging
STP16CPC26MTR	SO-24	1000 parts per reel
STP16CPC26TTR	TSSOP24	2500 parts per reel
STP16CPC26XTR	TSSOP24 exposed pad	2500 parts per reel
STP16CPC26PTR	QSOP24	2500 parts per reel

Contents STP16CPC26

Contents

1	Pin d	lescription
2	Elect	rical ratings
	2.1	Absolute maximum ratings
	2.2	Thermal data
3	Elect	rical characteristics
4	Simp	olified internal block diagram
5	Туріс	cal application circuit
6	Equi	valent circuits for inputs and outputs
7	Туріс	cal test circuits1
8	Timiı	ng diagrams12
9	Curre	ent generators characteristics1
	9.1	Current setting
	9.2	Current accuracy
	9.3	Generators voltage drop
10	Ther	mal shutdown1
11	Pack	age mechanical data
	11.1	QSOP-24
	11.2	TSSOP24 20
	11.3	SO-24
	11.4	TSSOP24 exposed pad
12	Pack	aging mechanical data2
	12.1	SO-24
	12.2	TSSOP-24 and TSSOP-24 exposed pad

STP160	CPC26	Contents
42	Davisian history	25
13	Revision history	

Pin description STP16CPC26

1 Pin description

Figure 1. Pin connection

Note:

The exposed-pad (if present) should be electrically connected to a metal land electrically isolated or connected to ground.

Table 2. Pin description

Pin N°	Symbol	Name and function
1	GND	Ground terminal
2	SDI	Serial data input terminal
3	CLK	Clock input terminal
4	LE	Latch input terminal
5-20	OUT 0-15	Output terminal
21	ŌĒ	Input terminal of output enable (active low)
22	SDO	Serial data out terminal
23	R-EXT	Input terminal of an external resistor for constant current programing
24	V_{DD}	Supply voltage terminal

STP16CPC26 Electrical ratings

2 Electrical ratings

2.1 Absolute maximum ratings

Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 3. Abs	olute max	imum ratings
--------------	-----------	--------------

		<u> </u>	
Symbol	Parameter	Value	Unit
V_{DD}	Supply voltage	0 to 7	V
V _O	Output voltage	-0.5 to 20	V
Io	Output current	90	mA
V _I	Input voltage	-0.4 to V _{DD} +0.4	V
I _{GND}	GND terminal current	1600	mA
ESD	Electrostatic discharge protection HBM human body model	±2	kV
f _{CLK}	Clock frequency	30	MHz

2.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Value	Unit	
T _A	Operating free-air temperature rang	е	-40 to +125	
T _{OPR}	Operating temperature range		-40 to +150	°C
T _{STG}	Storage temperature range	-55 to +150		
		SO-24	60	
Ь	Thermal resistance junction-case	TSSOP24	85	°C/W
R _{thJA}	(1)	TSSOP24 ⁽²⁾	37.5	C/VV
		QSOP24	72	

^{1.} According with JEDEC standard 51-7B.

^{2.} The exposed pad should be soldered directly to the PCB to realize the thermal benefits.

Electrical characteristics STP16CPC26

3 Electrical characteristics

 $V_{DD} = 3.3 \text{ V} - 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$, unless otherwise specified

Table 5. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vdd	Supply voltage		3		5.5	
V _{IH}	Input voltage high level		0.8*Vdd	-	Vdd	
V _{IL}	Input voltage low level		GND	-	0.2*Vdd	V
V _{OL}	Serial data output voltage	I _{OH} =- 1mA	-	-	0.4	
V _{он}	(SDO) ⁽¹⁾	I _{OL} =+ 1mA	V _{DD} -0.4	ı	-	
l _{ОН}	Output leakage current	Vo = 20V, Outn = OFF	-	ı	0.5	μΑ
ΔI_{OL1}	Current accuracy	Vds=0.3V, Rext=900W, I _{OL} = 22mA	-	±1	±3	%
Δl _{OL2}	channel to channel (2)(3)	Vds=0.6V, Rext=360W, I _{OL} = 55mA	-	±1	±3	/0
DI _{OL3}	Current accuracy	Vds=0.3V, Rext=900W, I _{OL} = 22mA	-	-	±6	%
Δl _{OL4}	device to device (2)	Vds=0.6V, Rext=360W, I _{OL} = 55mA	-	ı	±6	/0
R _{IN} (up)	Pull-up resistor for OE pin		250	500	800	KW
R _{IN} (down)	Pull-down resistor for LE pin		250	500	800	IXVV
IDD(OFF1)		REXT = OPEN OUT 0 to 15 = OFF	-	3	7	
IDD(OFF2)	Supply current (OFF)	REXT = 900W OUT 0 to 15 = OFF	-	7	10	
IDD(OFF3)		REXT = 360W OUT 0 to 15 = OFF	-	11	13.5	mA
IDD(ON1)	Country ourself (ON)	REXT = 900W OUT 0 to 15 = ON	-	7	11	
IDD(ON2)	Supply current (ON)	REXT = 360 Ù OUT 0 to 15 = ON	-	11	15	
%/dV _{DS}	Output current vs. output voltage regulation ⁽⁴⁾	V_{DS} from 1.0V to 3.0V Io = 22mA Io = 55mA	-	±0.1	-	%/V
%/dV _{DD}	Output current vs. supply voltage regulation ⁽⁴⁾	$Io = 22mA; V_{DS} = 0.3V$ $Io = 55mA; V_{DS} = 0.6V$	-	±1	-	%/V
Tsd	Thermal shutdown		-	170	-	
Tsd-hy	Thermal shutdown hysteresis ⁽⁴⁾		-	15	20	°C

Specification referred to T_J from -40 °C to +125 °C. Specification over the -40 to +125 °C T_J temperature range are assured by design, characterization and statistical correlation.

6/31 DocID18469 Rev 5

^{2.} Tested with just one output ON.

^{3.} $\Delta_{IOL+} = ((I_{OLmax} - I_{OLmean}) / I_{OLmean}) * 100, D_{IOL-} = ((I_{OLmin} - I_{OLmean}) / I_{OLmean}) * 100, where I_{OLmean} = (I_{OLout1} + I_{OLout2} + \ldots + I_{OLout16}) / 16$

4. Guaranteed by design.

 V_{DD} = 3.3 V - 5 V, Tj = 25°C, unless otherwise specified

Table 6. Switching characteristics

Symbol	Para	meter	Conditions	Conditions			Max.	Unit
f _{clk}	Clock fr	equency			-	-	30	MHz
tPLH1	CLK - OUTn				-	100	-	
tPLH2	LE - OUTn	Propagation			-	100	-	
tPLH3	OE – OUTn	delay time			-	100	-	
tPLHa	CLK - SDO	("L" to "H")		VDD=3.3V	-	30	-	
tPLHb	CLK - SDO			VDD=5V	-	20	-	
tPHL1	CLK - OUTn	Propagation delay time ("H" to "L")			-	28	-	
tPHL2	LE - OUTn		VDS = 0.8 V		-	28	-	
tPHL3	OE – OUTn		VIH= VDD		-	25	-	
tPHLa	CLK - SDO		VIL= GND	VDD=3.3V	-	30	-	
tPHLb	CLK - 3DO		Rext = 900 Ohm RL = 50 Ohm	VDD=5V	-	20	-	
tw(CLK)	CLK	Pulse width	CL=10pF		20	-	-	
tw(L)	LE				20	-	-	
tw(OE)	OE				150	-	-	ns
t _{su(L)}	Setup tii	me for LE			5	-	-	
t _{h(L)}	Hold tin	ne for LE			5	-	-	
t _{su(D)}	Setup tin	ne for SDI			5	-	-	
t _{h(D)}	Hold tim	e for SDI			10	-	-	
tr ⁽¹⁾	Maximum (CLK rise time			-	-	5000	
tf ⁽¹⁾	Maximum (CLK fall time			-	-	5000	
t _{or1a}	Output rico	time of Vout	VIH= VDD, VIL= GND	VDD=3.3V	-	95	-	
t _{or1b}	Output rise	time or vout	VDS = 0.8V, RL = 50	VDD=5V	-	85	-	
t _{of1a}	Output fall	time of Vout	Ohm	VDD=3.3V	-	40	-	
t _{of1b}	Output faii	time or vout	CL=10pF , lout= 22mA	VDD=5V	-	25	-	
t _{or2a}	Output rico	time of Vout	VIH= VDD, VIL= GND	VDD=3.3V	-	80	-	
t _{or2b}	Output rise	time or vout	VDS = 0.8V, RL = 50	VDD=5V	-	70	-	
t _{of2a}	Output fall	time of Vout	Ohm	VDD=3.3V	1	40	-	
t _{of2b}	Output fall	unie or vout	CL=10pF , lout= 55mA	VDD=5V	-	30	-	
I _{out-ov}		rent turn-on shoot	VDS = 0.6 to 3V CL=10pF; lout= 5 to 60mA		-	-	0	%

Electrical characteristics STP16CPC26

 If devices are connected in cascade and tr or tf is large, it may be critical to achieve the timing required for data transfer between two cascaded devices.

4 Simplified internal block diagram

Figure 2. STP16CPC26 simplified block diagram

5 Typical application circuit

LED common rail voltage Supply voltage OUT1 OUT15 OUT0 VDD SDI Data loaded through serial interface CLK STP16CPC26 LE ŌĒ R-EXT Current setting resistor AM02738v1

Figure 3. Typical application circuit

57

6 Equivalent circuits for inputs and outputs

Input terminals LE and $\overline{\text{OE}}$ have pull-down and pull-up connection respectively. CLK and SDI must be connected to external circuit to fix the logic level.

Figure 4. \overline{OE} terminal V_{DD} \overline{OE} $1 \text{ k}\Omega$ AM02739v1

Figure 5. LE terminal $\begin{array}{c} V_{DD} \\ \hline \\ 1 \text{ k} \Omega \\ \hline \\ 500 \text{ k} \Omega \\ \hline \\ \end{array}$

Figure 6. CLK, SDI terminal

Figure 7. SDO terminal

57

STP16CPC26 Typical test circuits

7 Typical test circuits

Figure 8 and Figure 9 show respectively the typical test circuit used measuring electrical (e.g. input voltage high/low level, output leakage current, supply current, etc.) and switching characteristics (propagation delays, set-up and hold time, rise and fall time of V_{OUT}, etc.).

The resistor R_L and capacitor C_L in parallel connected to each output in *Figure 8* simulate a LED behavior.

Figure 8. Typical test circuit for electrical characteristics

Timing diagrams STP16CPC26

8 Timing diagrams

The timing diagram shown in *Figure 10* and the truth table in *Table 7* explain how to send data to the device. This can be summarized in the following points:

- LE and OE are level sensitive and not synchronized with the CLK signal
- When LE is at low level, the latch circuit holds previous data
- If LE is high level, data present in the shift register are latched
- When $\overline{\text{OE}}$ is at low level, the status of the outputs OUT0 to OUT15 depends on the data in the latch circuits
- With $\overline{\text{OE}}$ at high level, all outputs are switched off independently on the data stored in the latch circuits
- Every rising edge of the CLK signal, a new data on SDI pin is sampled. This data is loaded into the shift register, whereas a bit is shifted out from SDO.

Figure 10. Timing diagram

STP16CPC26 Timing diagrams

CLOCK	LE	OE	Serial-IN	OUT0 OUT7 OUT15 ⁽¹⁾	SDO	
工	Н	L	Dn	Dn Dn - 7 Dn -15	Dn - 15	
」	L	L	Dn + 1	No change	Dn - 14	
工	Н	L	Dn + 2	Dn + 2 Dn - 5 Dn -13	Dn - 13	
7_	Х	L	Dn + 3	Dn + 2 Dn - 5 Dn -13	Dn - 13	
7	Х	Н	Dn + 3	OFF	Dn - 13	

Table 7. Truth table

^{1.} OUTn = ON when Dn = H, OUTn = OFF when Dn = L

Figure 11. Timing for clock signal, serial-in and serial out data

The correct sampling of the data depends on the stability of the data at SDI on the rising edge of the clock signal and it is assured by a proper data setup and hold time (t_{SETUP1} And t_{HOLD}), as shown in *Figure 11*. The same figure shows the propagation delay from CLK to SDO (t_{PLH}/t_{PHL}).

Figure 12 describes the setup times for LE and $\overline{\text{OE}}$ signals (t_{SETUP2} and t_{SETUP3} respectively), the minimum duration of these signals (t_{WLAT} and t_{WENA} respectively) and the propagation delay from CLK to OUT_n , LE to OUT_n and OE to OUT_n ($t_{\text{PLH1}}/t_{\text{PHL1}}$, $t_{\text{PLH2}}/t_{\text{PHL2}}$ and $t_{\text{PLH3}}/t_{\text{PHL3}}$ respectively).

Finally *Figure 13* defines the turn-on and turn-off time (t_r and t_f) of the current generators.

Timing diagrams STP16CPC26

Figure 12. Timing for clock signal serial-in data, latch enable, output enable and outputs

9 Current generators characteristics

9.1 Current setting

The current of all outputs is programmed through an external resistor connected to R-EXT pin, as shown in *Figure 14*.

The curve in *Figure 15* describes the relation between the current and the resistor connected to R-EXT pin, whereas the *Table 8* shows how to set some typical current values.

Figure 14. Resistor for current programming

Figure 15. Output current vs R-EXT resistor

Table 8. Recommended values of Rext for some output current value

Output current [mA]	R _{ext} [Ω] Closer standard value (E24 series) [Ω	
5	4129	4300
10	2005	200
20	999	1000
40	471	470
60	322	330
90	217	220

9.2 Current accuracy

A typical current accuracy of $\pm 1\%$ ($\pm 3\%$ maximum) between channels is guaranteed at 22 mA and 55 mA output current (refer to *Table 6*) and $\pm 6\%$ (maximum) current accuracy between ICs.

9.3 Generators voltage drop

In order to correctly regulate the current, a minimum dropout voltage must be assured across the current generators.

Figure 16 and Table 9 provides just an indicative idea about the dropout voltage to assure over the current range. However it is recommended to use value of V_{DROP} slightly higher than those indicated in Figure 16 and Table 9.

Figure 16. Dropout voltage vs output current

Table 9. Dropout voltage vs output current

Output current [mA]	V _{DROP} @ 3.3V [mV]	V _{DROP} @ 5V [mV]
5	44	44
10	85	85
20	170	170
40	350	330
60	530	500
90	820	770

18/31 DocID18469 Rev 5

STP16CPC26 Thermal shutdown

10 Thermal shutdown

The STP16CPC26 is featured with a thermal shutdown. This protection is triggered if the junction temperature reaches 170°C. When the thermal shutdown is activated, all outputs are turned off independently on the data latched.

Once the temperature decreases (thermal shutdown hysteresis is typically 15°C), the outputs are enabled again and the device keeps on working.

11 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

11.1 QSOP-24

DIMENSIONS IN mm BOTTOM VIEW <u>###AAA##AAA#</u> GAUGE PLANE -*D/2*-// 0.1 C _C 0,25 <u>A</u>1 **b** (24x) SEATING PLANE △ 0.1 C COPLANAR LEADS 13 Ē1 12 TOP VIEW PIN 1 IDENTIFICATION

Figure 17. QSOP-24 package dimensions

Dim.	mm.			inch		
	Min	Тур	Max	Min	Тур	Max
А	1.54	1.62	1.73	0.061	0.064	0.068
A1	0.1	0.15	0.25	0.004	0.006	0.010
A2		1.47			0.058	
b	0.31	0.2		0.012	0.008	
С	0.254	0.17		0.010	0.007	
D	8.56	8.66	8.76	0.337	0.341	0.345
Е	5.8	6	6.2	0.228	0.236	0.244
E1	3.8	3.91	4.01	0.150	0.154	0.158
е		0.635			0.025	
L	0.4	0.635	0.89	0.016	0.025	0.035
h	0.25	0.33	0.41	0.010	0.013	0.016
<	8°	0°				

Table 10. QSOP-24 mechanical data

11.2 TSSOP24

Figure 18. TSSOP24 package dimensions

mm. inch Dim. Min Max Min Max Тур Тур Α 1.1 0.043 Α1 0.05 0.15 0.002 0.006 A2 0.035 0.9 b 0.19 0.30 0.0075 0.0118 0.09 0.20 0.0035 0.0079 С D 7.7 7.9 0.303 0.311 4.3 4.5 0.177 Ε 0.169 0.65 BSC 0.0256 BSC е 6.25 6.5 0.246 0.256 0° 0° 8° Κ 8° 0.50 0.70 0.020 0.028

Table 11. TSSOP24 mechanical data

11.3 SO-24

Figure 19. SO-24 package dimensions

577

Table 12. SO-24 mechanical data

Dim.	mm.			inch		
	Min	Тур	Max	Min	Тур	Max
Α			2.65			0.104
a1	0.1		0.2	0.004		0.008
a2			2.45			0.096
b	0.35		0.49	0.014		0.019
b1	0.23		0.32	0.009		0.012
С		0.5			0.020	
c1	45°(typ.)					
D	15.20		15.60	0.598		0.614
Е	10.00		10.65	0.393		0.419
е		1.27			0.050	
e3		13.97			0.550	
F	7.40		7.60	0.291		0.300
L	0.50		1.27	0.020		0.050
S	8°(max.)					

11.4 TSSOP24 exposed pad

Figure 20. TSSOP24 exposed pad dimensions

Table 13. TSSOP24 exposed pad mechanical data

Dim.	mm					
Dilli.	Min	Тур	Max			
А			1.20			
A1			0.15			
A2	0.8	1.00	1.05			
b	0.19		0.30			
С	0.09		0.20			
D	7.70	7.80	7.90			
D1	4.80	5.00	5.20			
E	6.20	6.40	6.60			
E1	4.30	4.40	4.50			
E2	3.00	3.20	3.40			
е		0.65				
L	0.45	0.60	0.75			
L1		1.00	8°			
k	0		8			
aaa			0.10			

12 Packaging mechanical data

12.1 SO-24

A Pote: Drawing not in scale

Table 14. Tape and reel SO-24

Dim.	mm.			inch		
	Min	Тур	Max	Min	Тур	Max
Α		-	330		-	12.992
С	12.8	-	13.2	0.504	-	0.519
D	20.2	-		0.795	-	
N	60	-		2.362	-	
Т		-	30.4		-	1.197
Ao	10.8	-	11.0	0.425	-	0.433
Во	15.7	-	15.9	0.618	-	0.626
Ko	2.9	-	3.1	0.114	-	0.122
Po	3.9	-	4.1	0.153	-	0.161
Р	11.9	-	12.1	0.468	-	0.476

12.2 TSSOP-24 and TSSOP-24 exposed pad

Figure 22. TSSOP-24 and TSSOP-24 exposed pad tape and reel dimensions

57/

Table 15. TSSOP-24 and TSSOP-24 exposed pad tape and reel

Dim.	mm.			inch		
	Min	Тур	Max	Min	Тур	Max
А		-	330		-	12.992
С	12.8	-	13.2	0.504	-	0.519
D	20.2	-		0.795	-	
N	60	-		2.362	-	
Т		-	22.4		-	0.882
Ao	6.8	-	7	0.268	-	0.276
Во	8.2	-	8.4	0.323	-	0.331
Ko	1.7	-	1.9	0.067	-	0.075
Po	3.9	-	4.1	0.153	-	0.161
Р	11.9	-	12.1	0.468	-	0.476

Revision history STP16CPC26

13 Revision history

30/31

Table 16. Document revision history

Date	Revision	Changes
04-Mar-2011	1	First release
05-Apr-2011	2	Updated Table 6
19-Jul-2012	3	Updated Table 7.
29-Jan-2013	4	Updated characteristics in <i>Table 5: Electrical characteristics</i> and <i>Table 6: Switching characteristics</i> . Minor text changes.
11-Jun-2014	5	Updated template and value Table 13: TSSOP24 exposed pad mechanical data.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID18469 Rev 5

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

STP16CPC26MTR STP16CPC26PTR STP16CPC26TTR STP16CPC26XTR