Homework 2

p39 B.5 and B.6, p40 C.7, p48 A.1, p49 B.4, p50 D.1 and D.3

1. **p39 B.5.** Prove the following is true in every group G, or give a counterexample. For every $x \in G$, there is some $y \in G$ such that $x = y^2$. (This is the same as saying that every element of G has a "square root.")

Solution.

False. There are many groups where this is not true.

Consider the Klein four-group:

*	е	\mathbf{a}	b	\mathbf{c}
е	е	a	b	c
a	a	e	\mathbf{c}	b
b	b	\mathbf{c}	e	\mathbf{a}
\mathbf{c}	с	b	a	e

In the Klein four-group, for any $y \in G$, $y^2 = e$. Thus, this is not true.

2. **p39 B.6.** Prove the following is true in every group G, or give a counterexample. For any two elements x and y in G, there is an element z in G such that y = xz

Solution.

Let
$$x, y \in G$$
. Assume $y = xz$
 $x^{-1}y = x^{-1}xz$
 $x^{-1}y = ez$
 $x^{-1}y = z$

Because $x \in G$, we know $x^{-1} \in G$. Since the group G is closed under the group operation, we know $x^{-1}y \in G$.

Thus we know there exists $z \in G$, where $z = x^{-1}y$, such that y = xz.

3. **p40 C.7.** Assuming that a and b commute, prove the following: ab = ba iff $aba^{-1}b^{-1} = e$

Solution.

- Assume ab = ba, show $aba^{-1}b^{-1} = e$: $(ab)a^{-1} = (ba)a^{-1}$ $aba^{-1} = be = b$ $(aba^{-1})b^{-1} = bb^{-1}$ $aba^{-1}b^{-1} = e$
- Assume $aba^{-1}b^{-1} = e$, show ab = ba $(aba^{-1}b^{-1})b = eb$ $aba^{-1}e = eb$ $aba^{-1} = b$ $aba^{-1}a = ba$ abe = ab = ba
- Thus, ab = ba iff $aba^{-1}b^{-1} = e$

4. **p48 A.1.** Determine whether or not H is a subgroup of G:

$$G = \langle \mathbb{R}, + \rangle, H = \{ \log a : a \in \mathbb{Q}, a > 0 \}$$

Solution.

H is a subgroup of G, because given $x \in H \to x^{-1} \in H$ and given $x, y \in H \to xy \in H$.

5. **p49 B.4.** Show that H is a subgroup of G:

$$G = \langle \mathscr{C}(\mathbb{R}), + \rangle, H = \{ f \in \mathscr{C}(\mathbb{R}) : \int_0^1 f(x) dx = 0 \}$$

Solution.

 $xy \in H$

- Given $x \in H$, show $x^{-1} \in H$: $x \in \mathscr{C}(\mathbb{R}) \int_0^1 f(x) dx = 0$ Since the x^{-1} still satisfies an integral of 0, we know $x^{-1} \in H$.
- Given $x, y \in H$ show $xy \in H$: $x, y \in \mathcal{C}(\mathbb{R})$ $\int_0^1 f(x) dx = 0$ $\int_0^1 f(y) dy = 0$ $\int_0^1 f(x) dx + \int_0^1 f(y) dy = 0$ Thus, since adding the two integrals still produces 0, the result is also in H.
- Since we have shown $x^{-1} \in H$ and $xy \in H$, we can conclude that H is a subgroup of G.

6. **p50 D.1.** Let G be a group

If H and K are subgroups of a group G, prove that $H \cap K$ is a subgroup of G. (Remember that $x \in H \cap K$ iff $x \in H$ and $x \in K$.)

Solution. To prove $H \cap K$ is a subgroup of G, we must show:

if
$$f \in S$$
 then $f^{-1} \in S$
if $f, g \in S$ then $fg \in S$

Let H, K be subgroups of G.

We know by definition that for every $x \in H \cap K$, $x \in H$ and $x \in K$ Since H and K are subgroups, we also know $x^{-1} \in H$ and $x^{-1} \in K$, thus $x^{-1} \in H \cap K$

For $x, y \in H \cap K$, we know $x, y \in H$ and $x, y \in K$

Since H and K are subgroups, they are closed under their operation. Thus $xy \in H$ and $xy \in K$

Thus
$$xy \in H \cap K$$
.

Since we have shown $x^{-1} \in H \cap K$ and $xy \in H \cap K$, we can conclude that $H \cap K$ is a subgroup of G.

7. **p50 D.3.** Let G be a group

By the *center* of a group G we mean the set of all elements of G which commute with every element of G, that is,

$$C = \{a \in G : ax = xa \text{ for every } x \in G\}$$

Prove that C is a subgroup of G.

Solution.

- Given $f \in C$, show $f^{-1} \in C$: Given $f \in C$, $a \in G$, by definition of center, $af = fa \,\forall \, f \in G$ $f^{-1}af = f^{-1}fa$ $f^{-1}af = ea = a$ $f^{-1}aff^{-1} = af^{-1}$ $f^{-1}ae = f^{-1}a = af^{-1}$ Thus, by definition of C, $f^{-1} \in C$
- Given $f, g \in C, a \in G$ show $fg \in C$: We know f(ga) = (ga)f since $ga \in G$ and $f \in C$

$$f(ga) = g(af)$$
, by associativity $f(ga) = (af)g$, since $g \in C$ and $af \in G$ $f(ga) = afg$, thus by definition of C , $fg \in C$

• Since we have shown $f^{-1} \in C$ and $fg \in C$, we can conclude that C is a subgroup of G.