Einführung

Einführung in die Programmierung

Johannes Brauer

2. März 2020

Programme für Computer

Ein Programm ist eine Folge von Anweisungen (Befehlen) an eine Maschine (Rechner, Computer), die von dieser "verstanden" wird und damit ausgeführt werden kann.

Aufbau von Computern

Computer im Wandel der Jahrzehnte

A Computer 58 years ago, and now.

- Ein iPhone enthält ca. 1 Milliarde Transistoren.
- $\bullet\,$ Um diese Rechenleistung mit der Technologie der 1950er Jahre zu bauen, bräuchte es:
 - 1 Milliarde Elektronenröhren
 - 170 vehicle assembly buildings, um sie unterzubringen
 - $-\,\,1$ Terawatt Leistung, um sie zu betreiben
 - -das entspräche 500 2-Gigawatt-Kernkraftwerken für ca. 50 Milliarden Euro
 - das entspräche dem Weltbruttosozialprodukt von 60 Jahren
- \bullet Smartphones realisieren eine Steigerung der Rechenleistung um den Faktor 10^{22} verglichen mit der Technologie vor 60 Jahren.

Welche Fortschritte gibt es in dieser Zeit in der Software?

Was können Computer?

- Problem: Computer können nur sehr simple Dinge tun.
- Beispiel: Der Computer soll 10 mal "piepen". Pseudo-Maschinenprogramm

```
put the number 10 into memory location 0
a if contents of location 0 is negative go to line b
beep
subtract 1 from the number in location 0
go to line a
b ... rest of program ...
```

- Man stelle sich vor, auf diese Weise ein Programm für die Tourenplanung einer Spedition zu schreiben.
- Fällt Ihnen an dem Programm etwas auf?
- Besser wäre, man könnte z. B. schreiben:

```
(dotimes [n 10] (beep))
```

Programmiersprachen

Was ist eine Programmiersprache?

- Damit die Maschine uns "versteht", müssen Programme in einer für sie verständlichen Sprache formuliert werden.
- Programmiersprachen sind formale Sprachen zur Formulierung von Programmen, die auf Rechnern ausführbar sind.

Maschinenorientierte Programmiersprachen

- Zu jeder Maschine gehört eine Liste von Dingen, die sie tun kann:
 - Wasserkocher?
 - MP3-Player?
 - Computer?
- Die vollständige Liste der Dinge (Befehle), die ein Computer tun kann, kann als seine *Maschinensprache* (machine language) bezeichnet werden.
- Maschinencode: interne (ausführbare) Darstellung eines Maschinenprogramms als Bitmuster.
- Assemblersprache (assembly language): Symbolische, textorientierte Darstellung einer Maschinensprache. Ihre Merkmale sind:
 - Die Liste der Befehle ist dieselbe, wie die der Maschinensprache.
 - Symbolische Namen der Befehle
 - Dezimalzahlen, symbolische Adressen.
- Assemblerprogramm, Assemblercode: Programm in Assemblersprache.

BINARY

SOAP

1999015201 0170017301 0141014401	5801610167 7601820185 5001530156	STL RAU MPY	-1 8005	
0154020402 0211014201 0203020602 0192019902 0256015101 0137021301 0201030401 0272017501 0160021703	0501630254 4901720143 1901770235 2201930253 5902610224 6902270183 5702630166 8101840187 2202430146	ALO SLT ALO RAU STU RAL STL RAU	-1 0004 0115)1 8006 -1 8007	8002
0162036902 0155016402 0197018802 000000000 6501640167 6901851822 6901561823 8800010169	3102330136 6002520202 2802290319 0000001830 6901701822 6501880141 8000010162 6580070211	MPY ALO SLT ALO RAU STU RAU FMP	* -1 0004 0096 12 11 SUM	2008
1500390143 6580060235 3500040253 3901740224 2401800183 6901661822 6901871823 4601460204 4601360154 000000004	3500040203 2000390192 1502568002 3202100137 1501470201 6503190272 5200010160 5000010162 0100008000 000000005	STU AXC RSL STU ALO BMI	0001 8007 K L. +4 PUNCH 1.	+3 SUM: I: . PNCHF
0000000179	0000001999			

Problemorientierte Programmiersprachen

- Höhere, problemorientierte Programmiersprache: Formale Sprache zur textuellen Darstellung von Programmen, deren Konstrukte
 - mächtiger als einzelne Maschinenbefehle sind (kürzere "Befehlsliste"),
 - Details der von-Neumann-Architektur verbergen,
 - die Formulierung von Algorithmen unabhängig von einem bestimmten Rechensystem ermöglichen,
 - sich an den Bedürfnissen eines Anwendungsbereichs orientieren.
- \bullet Quell programm (source code): Programm in Hochsprache.

SOAP

FORTRAN

```
STL
                                C 0000
                                        RECTANGULAR MATRIX
RAU
                                         MULTIPLICATION
       8005
                                  0000
                                         DIMENSION A(4.5) .8(5.3)
                                         READ 1 . A.B
READ 1 . N.M.L
ALO
SLT
        0004
                 8002
ALO
                                         DO 4
                                               J= 1 • N
RAU
       0115
STU
                                         SUM = 0.0
        8006
RAL
STL
                                         SUM=SUM+A(I.K)+(K.J)
        8007
RAU
                                         PUNCH 1. SUM. I. J
MPY
                                      8
                                         END
ALO
       -1
SLT
ALO
        0004
                 8002
RAU
        0096
STU
RAU
       12
FMP
FAD
STU
       SUM
AXC
        0001
                15
RSL
        8007
STD
ALO
BMI
       +4
                +3
      PUNCH 1.
                SUM.
                     1. 3
                PNCHE
LDD
```

Die Entwicklung von Programmiersprachen

Wichtige Programmiersprachen

- 1954 57 Fortran (Formula Translation) von J. W. Backus, IBM.
- 1956 62 Lisp (List Processing Language) von J. McCarthy. Funktional, Hauptsprache der Künstlichen Intelligenz
- 1958 60 Algol 60 (Algorithmic Language) von P. Naur u.a.
- 1959 61 Cobol (Common Business Oriented Language), noch heute weit verbreitete Sprache für kommerzielle Anwendungen.

- 1967 Simula 67 von Dahl/Nygaard, erste objektorientierte Sprache
- 1968 71 Pascal von N. Wirth, einfach, strukturierte Programmierung, strenges Typkonzept
- 1970 72 C von D. Ritchie, maschinennah, mit Unixverbunden, für Betriebssystemprogrammierung.
- 1970 80 Smalltalk von Kay/Goldberg/Ingalls, rein objektorientiert.
- 1975 80 Ada von J. Ichbiah/DoD, modular, Prozesse, Ausnahmebehandlung, komplex, militärische Anwendungen.
- 1975 82 Prolog (Programming in Logic) von Colmerauer/Warren, modelliert logisches Schließen, KI-Sprache.
- 1980 Modula-2 von N. Wirth, modular, für Systemprogrammierung.
- 1980 86 C++ von B. Stroustrup, objektorientierte Erweiterung von C.
- 1985 86 Oberon von N. Wirth, objektorientiert, für Systemprogrammierung.
- 1985 88 Eiffel von B. Meyer, objektorientiert
- 1996 Java objektorientiert, ursprünglich eingetragenes Warenzeichen der Firma Sun Microsystems, heute im Besitz von Oracle

neuere C# ähnlich Java. Microsoft, .Net-Plattform

F# funktional. Microsoft, .Net-Plattform

Scala funktionale Erweiterung von Java

Dart Googles JavaScript-Alternative

Clojure Lisp-Dialekt auf der JVM

u.v.a.m.

Syntax, Semantik, Pragmatik von Programmiersprachen

- Syntax legt fest,
 - welche Sprachelemente und -konstrukte es gibt und
 - wie mit ihrer Hilfe korrekte Sätze in der Sprache formuliert werden
 - Syntax = Menge von Regeln, die die Struktur von Programmen bestimmen.
- Semantik einer Programmiersprache
 - legt die Bedeutung syntaktisch korrekter Sätze fest
 - legt fest, welche Wirkung jedes Sprachelement oder -konstrukt im Programmablauf hervorruft.
 - Semantik = Menge von Verhaltensregeln, die die Funktionsweise von Programmen bestimmen.
- Pragmatik
 - Intention des Programmierers mit einem Programm
 - Nutzen der Ausdrucksmöglichkeiten einer Programmiersprache für die Formulierung von Lösungen

Zusammenfassung

• Programmiersprachen sind formale Sprachen, in denen sich für den Menschen verständliche Programme für Rechenmaschinen formulieren lassen. Wichtig sind ihre Syntax, Semantik und Pragmatik.