3. prednáška

Teória množín II

- relácie
 - o operácie nad reláciami
 - o rovnosť
 - o usporiadanost'
- funkcie
 - o zložená funkcia
 - o inverzná funkcia.

Relácie

Definícia. Nech *X* a *Y* sú dve množiny, *relácia R* je definovaná podmnožina karteziánskeho súčinu týchto množín

$$R \subseteq X \times Y$$

Znázornenie relácie R ako podmnožiny karteziánskeho súčinu (vytieňovaná oblasť) dvoch množín X a Y, $R = \{(d,1),(c,2),(b,3),(d,3),(a,4),(c,4)\}$.

Relácia R môže byť alternatívne zadaná pomocou charakteristickej funkcie $R = \{(x, y); \mu_R(x, y) = 1\}$

$$\mu_{R}(x,y) = \begin{cases} 1 & (ak(x,y) \in R) \\ 0 & (ak(x,y) \notin R) \end{cases}$$

Hovoríme o *binárnej relácii*, každý element $(x, y) \in R$ je ohodnotený binárnym číslom $\mu_R(x, y) \in \{0,1\}$.

Definícia 3.2. *Inverzná relácia* R^{-1} (k relácii $R \subseteq X \times Y$) je určená pomocou usporiadaných dvojíc $(y,x) \in X \times Y$, ktorých inverzia patrí do relácie $(x,y) \in R$ $R^{-1} = \{(y,x); (x,y) \in R\}$

Nech $P,Q \subseteq X \times Y$, ktoré sú špecifikované pomocou charakteristických funkcií

$$P = \{(x, y); \mu_P(x, y) = 1\}$$
 a $Q = \{(x, y); \mu_Q(x, y) = 1\}$

Definícia. Relácia $R = P \cup Q$ sa nazýva *zjednotenie relácií* P a Q vtedy a len vtedy, ak platí

$$P \cup Q = \{(x, y); \mu_{P \cup Q}(x, y) = 1\}$$

$$\mu_{P \cup Q}(x, y) = max\{\mu_{P}(x, y), \mu_{Q}(x, y)\}$$

Relácia $R = P \cap Q$ sa nazýva *prienik relácií* P a Q vtedy a len vtedy, ak platí

$$P \cap Q = \{(x, y); \mu_{P \cap Q}(x, y) = 1\}$$

$$\mu_{P \cap Q}(x, y) = min\{\mu_{P}(x, y), \mu_{Q}(x, y)\}$$

Relácia $R = \overline{P}$ sa nazýva *doplnok relácie* P vtedy a len vtedy, ak

$$\overline{P} = \left\{ (x, y); \mu_{\overline{P}}(x, y) = 1 \right\}$$

$$\mu_{\overline{P}}(x, y) = 1 - \mu_{P}(x, y)$$

Nech $X = \{1,2,3\}$ a $Y = \{p,q\}$, relácie P a Q majú tvar

$$P = \{(1,q),(2,p),(3,q)\}\$$
a $Q = \{(1,q),(2,p),(3,p)\}$

Zjednotenie a prienik týchto relácií sú

$$P \cup Q = \{(1,q),(2,p),(3,p),(3,q)\}$$
 a $P \cap Q = \{(1,q),(2,p)\}$

Inverzné relácie sú špecifikované

$$P^{-1} = \{(q,1), (p,2), (q,3)\}\$$
 a $Q^{-1} = \{(q,1), (p,2), (p,3)\}\$

Doplnky k reláciám sú

$$\overline{P} = \{(1, p), (2, q), (3, p)\}\ a\ \overline{Q} = \{(1, p), (2, q), (3, q)\}$$

Grafická repreztentácia relácií a operácií nad reláciami

Maticová reprezentácia relácie

Nech $X = \{x_1, x_2, ..., x_m\}$ a $Y = \{y_1, y_2, ..., y_n\}$ sú dve množiny s mohutnosťami |X| = m resp. |Y| = n. Relácia R špecifikovaná nad týmito množinami má tvar

$$R = \left\{ \left(x_i, y_j \right); \mu_R \left(x_i, y_j \right) = 1 \right\}$$

Definícia. Matica A reprezentuje reláciu R má m riadkov a n stĺpcov, jej maticové elementy sú špecifikované formulou

$$A_{ij} = \mu_R (x_i, y_j) = \begin{cases} 1 & (pre(x_i, y_j) \in R) \\ 0 & (pre(x_i, y_j) \notin R) \end{cases}$$

Maticová reprezentácia relácií P a Q z predchádzajúceho príkladu má tvar

$$P = \{(1,q),(2,p),(3,q)\} \subseteq X \times Y \text{ a } Q = \{(1,q),(2,p),(3,p)\} \subseteq X \times Y$$

$$A_P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}, A_Q = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 0 \end{pmatrix}$$

Kompozícia relácií

Definícia. Kompozícia dvoch relácií $P = \{(x,y); \mu_P(x,y) = 1\} \subseteq X \times Y$ a $Q = \{(y,z); \mu_Q(y,z) = 1\} \subseteq Y \times Z$, označená $R = P \circ Q = \{(x,z); \mu_R(x,z) = 1\}$, je definovaná pomocou charakteristickej funkcie $\mu_R(x,z) = \max_y \min\{\mu_P(x,y), \mu_Q(y,z)\}$

Alternatívne vyjadrenie kompozície dvoch relácií P a Q

$$R = P \circ Q = \{(x, z); x \in X \land z \in Z \land \exists y \in Y : (x, y) \in P \land (y, z) \in Q\}$$

V kompozícii R dva elementy $x \in X$ a $z \in Z$ tvoria usporiadanú dvojicu $(x,z) \in R$ vtedy a len vtedy, ak existuje taký "medzielement" $y \in Y$, pre ktorý platí, že $(x,y) \in P$ a $(y,z) \in Q$.

Znázornenie kompozície dvoch relácií P a Q, výsledná relácia R obsahuje dvojicu (x,z) vtedy a len vtedy, ak existuje taký element $y \in Y$, že platí $(x,y) \in P$ a $(y,z) \in Q$.

Veta 3.1. Nech *P*, *Q* a *R* sú relácie definované nad takými množinami, aby nasledujúce operácie boli prípustné, potom platí

$$(P \circ Q)^{-1} = Q^{-1} \circ P^{-1}$$

$$(P \circ Q) \circ R = P \circ (Q \circ R)$$

$$P \circ (Q \cup R) = (P \circ Q) \cup (P \circ R)$$

$$(Q \cup R) \circ P = (Q \circ P) \cup (R \circ P)$$

$$P \circ (Q \cap R) = (P \circ Q) \cap (P \circ R)$$

$$(Q \cap R) \circ P = (Q \circ P) \cap (R \circ P)$$

$$X = \{x_1, x_2, x_3, x_4\}, Y = \{y_1, y_2, y_3\}, Z = \{z_1, z_2, z_3\}$$

 $P \subset X \times Y, Q \subset Y \times Z$

$$A_P = egin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \ A_Q = egin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Potom relácie P a Q majú tvar

$$P = \{(x_1, y_1), (x_1, y_3), (x_2, y_3), (x_3, y_1), (x_3, y_2), (x_4, y_3), \}$$

$$Q = \{(y_1, z_1), (y_1, z_2), (y_2, z_2), (y_3, z_2), (y_3, z_3)\}$$

Kompozícia týchto relácií má tvar

$$P \circ Q = \{(x_1, z_1), (x_1, z_2), (x_1, z_3), (x_2, z_2), (x_2, z_3), (x_3, z_1), (x_3, z_2), (x_4, z_2), (x_4, z_3)\}$$

Grafická interpretácia týchto relácií je znázornená na obrázku

Vlastnosti relácií

V tomto odseku budeme študovať *relácie* $P \subseteq X \times X$, ktoré sú definované ako podmnožina karteziánskeho súčinu $X \times X$.

Definícia 3.6. Diagonálna relácia sa nazýva:

- (1) reflexivna, $\forall (x \in X)((x,x) \in R)$,
- (2) symetrická, $\forall (x, y \in X)((x, y) \in R \Rightarrow (y, x) \in R)$,
- (3) antisymetrická, $\forall (x, y \in X)((x, y) \in R \land (y, x) \in R \Rightarrow x = y)$,
- (4) tranzitívna, $\forall (x, y, z \in X)((x, y) \in R \land (y, z) \in R \Rightarrow (x, z) \in R)$.

Poznámka. Pre antisymetrickú reláciu platí, že ak elementy $x \neq y$, potom platí implikácia: $(x,y) \in R \Rightarrow (y,x) \notin R$. Dôsledkom tejto vlastnosti je, že ak $(x,y),(y,x) \in R$ pre $x \neq y$, potom relácia R nie je antisymetrická.

Nech $X = \mathbb{R}$ je množina reálnych čísel a diagonálna relácia $P \subseteq X \times X$ má interpretáciu

$$((x,y) \in P) \equiv (x \le y)$$

Takto definovaná relácia P vyhovuje týmto podmienkam:

- (a) relácia P je reflexívna, pre každé reálne číslo $x \in X$ platí $x \le x$, t. j. $(x,x) \in P$,
- (b) relácie P nie je symetrická, pretože pre $x \le y$ neimplikuje $y \le x$,
- (c) relácia P je antisymetrická, z platnosti $x \le y$ a $y \le x$ plynie x = y, a naopak,
- (d) relácia P je tranzitívna, z platnosti $x \le y$ a $y \le z$ plynie $x \le z$.

Nech $X = \{a,b,c,d\}$, diagonálne relácia $P \subseteq X \times X$ je špecifikovaná množinou

$$P = \{(a,a),(a,b),(a,c),(b,a),(b,c),(b,d),(d,d)\}$$

Táto relácia nespĺňa žiadnu vlastnosť z definície 3.6:

- (a) relácia P nie je reflexívna, $(b,b) \notin P$,
- (b) relácia P nie je symetrická, implikácia $(a,c) \in P \Rightarrow (c,a) \in P$ nie je pravdivá,
- (c) relácia P nie je antisymetrická, implikácia (a,b), $(b,a) \in P \Rightarrow (a,a) \in P$ nie je pravdivá,
- (d) relácia P nie je tranzitívna, implikácia $(a,b),(b,d) \in P \Rightarrow (a,d) \in P$ nie je pravdivá.

Interpretácia relácie pomocou orientovaného grafu

Relácia $P \subseteq X \times X$ má diagramatickú interpretáciu pomocou orientovaného grafu, V tomto prípade elementy množiny X sú vrcholy a usporiadané dvojice $(x, y) \in P$ sú orientované hrany, ktoré začínajú v x a končia v y. Vlastnosti diagonálnych relácií majú potom jednoduchú interpretáciu.

Nech $X = \{a,b,c,d\}$, diagonálne relácia $P \subseteq X \times X$ je špecifikovaná množinou

$$P = \{(a,a),(a,b),(a,c),(b,a),(b,c),(b,d),(d,d)\}$$

- (a) Relácia P je *reflexívna*, potom každý vrchol $x \in X$ má slučku orientovanú hranu, ktorá začína a končí v tom istom vrchole.
- (b) Relácia P je **symetrická**, ak vrcholy $x, y \in X$ sú spojené hranou $(x, y) \in P$, potom existuje aj opačná hrana $(y, x) \in P$. V tomto prípade symetrickej relácie, jej grafická interpretácia obsahuje hrany medzi vrcholmi x a y vždy po dvojiciach, t. j. existencia hrany (x, y) implikuje existenciu hrany (y, x), a naopak.
- (c) Relácia P je *antisymetrická*, medzi dvoma rôznymi vrcholmi $x \neq y$ nemôže existovať dvojica hrán (x,y) a (y,x). V prípade, že by existovala, potom z podmienky antisymtričnosti vyplýva, že x = y, čo je v spore s pôvodným predpokladom.
- (d) Relácia P je tranzitívna, z existencie hrán (x, y) a (y, z), ktoré majú spoločný vrchol y a $x \neq z$, vyplýva existencia hrany (x, z)

Nech $X = \{a,b,c,d,e\}$, diagonálna relácia definovaná nad touto množinou je určená grafom

- (1) relácia nie je reflexívna, potrebné slučky neexistujú na vrcholoch c a d,
- (2) relácia je symetrická, ak medzi vrcholmi x a y existuje hrana (x,y), potom existuje aj opačná hrana (y,x),
- (3) relácia nie je antisymetrická, z existencie dvojíc opačne orientovaných hrán na rôznych vrcholoch, nevyplýva rovnosť týchto dvoch vrcholov.
- (4) relácia nie je tranzitívna, pretože existencia hrán (e,a) a (a,d) neimplikuje existenciu hrany (e,d).

Relácia ekvivalentnosti

Definícia. Relácia $P \subseteq X \times X$ sa nazýva *relácia ekvivalentnosti* vtedy a len vtedy, ak je reflexívna, symetrická a tranzitívna.

Reláciu ekvivalentnosti *P* budeme označovať symbolom '~', t. j.

$$\forall (x, y \in X)((x \sim y) =_{def} (x, y) \in P)$$

Pomocou relácie ekvivalentnosti môžeme množinu X rozdeliť na dve disjunktívne podmnožiny $X_1, X_2 \subset X$, kde $X = X_1 \cup X_2$ a $X_1 \cap X_2 = \emptyset$

$$x, y \in X_1 \Rightarrow x \sim y$$

$$x, y \in X_2 \Rightarrow x \sim y$$

$$(x \in X_1) \land (y \in X_2) \Rightarrow (x \nsim y)$$

Nech $X = \mathbb{R}$ je množina reálnych čísel, relácia $P \subseteq X \times X$ je definovaná takto: $((x, y) \in P) \equiv (x^2 = y^2)$

- (1) Relácia P je reflexívna, pretože $x^2 = x^2$, pre každé $x \in \mathbb{R}$,
- (2) relácia P symetrická, pretože $x^2 = y^2$ implikuje $y^2 = x^2$,
- (3) relácia P je tranzitívna, pretože $x^2 = y^2$ a $y^2 = z^2$ implikuje $x^2 = z^2$.

Z tohto vyplýva, že P je relácia ekvivalentnosti.

Definícia. Nech P je relácia ekvivalentnosti nad množinou X a nech $x \in X$. Trieda ekvivalentnosti [x], priradená elementu x, je množina všetkých možných elementov X, ktoré sú ekvivalentné danému elementu x

$$[x] = \{y; x \sim y\}$$

Veta. Nech $P \subseteq X \times X$ je relácia ekvivalentnosti a nech $x, y \in X$. Potom podmienka [x] = [y] je splnená vtedy a len vtedy, ak $x \sim y$.

Veta. Nech $P \subseteq X \times X$ je relácia ekvivalentnosti, potom množina X má disjunktný rozklad pomocou všetkých rôznych tried ekvivalentnosti

$$X = [x] \cup [y] \cup \dots \cup [z]$$

Nech $X = \mathbb{R}$ je množina reálnych čísel, relácia $P \subseteq X \times X$ je definovaná

$$((x, y) \in P) \equiv (integer(x) = integer(y))$$

kde funkcia *integer*(*x*) je definovaná ako maximálne celé číslo, ktoré je menšie alebo rovné reálnemu číslu *x*

$$\mathbb{R} = \bigcup_{i} [i] = \dots [-2] \cup [-1] \cup [0] \cup [1] \cup [2] \dots$$

Relácia čiastočného usporiadania

Pre mnohé množiny je možné definovať reláciu usporiadania jej elementov. Tak napríklad, množina reálnych čísel \mathbb{R} majú prirodzené usporiadanie svojich elementov pomocou relácie ' \leq ' (pozri príklad 3.4). Táto relácia je reflexívna, antisymetrická a tranzitívna.

Definícia. Relácia $P \subseteq X \times X$ sa nazýva *čiastočné usporiadanie* vtedy a len vtedy, ak je reflexívna, antisymetrická a tranzitívna. Množina X spolu s touto reláciou sa nazýva *čiastočne usporiadaná množina (poset*).

(1) Nech $F = \mathcal{P}(A)$ je potenčná množina vzhľadom k množine A. Pomocou množinovej relácie ' \subseteq ' môžeme nad touto množinou F definovať reláciu P tak, že $((X,Y) \in P) =_{def} (X \subseteq Y)$. Ľahko sa presvedčíme, že táto relácia je čiastočne usporiadanie, je reflexívna, antisymetrická a tranzitívna.

(2) Nech $X = \mathbb{N} = \{1,2,3,4,...\}$ je množina prirodzených čísel. Definujme nad touto množinou reláciu $P \subseteq \mathbb{N} \times \mathbb{N}$ pomocou pojmu deliteľnosti; $((m,n) \in P) =_{def} (m \text{ je deliteľné } n)$. Tak napríklad, pre $X = \{1,2,3,4,5,6\}$ relácia P obsahuje dvojice

$$P = \{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(2,1),(3,1),(4,1),(4,2),(5,1),(6,1),(6,2),(6,3)\}$$

Táto relácia je čiastočné usporiadanie, pretože je reflexívna, antisymetrická a tranzitívna.

Maximálny a minimálny element

Definícia. Nech $P \subseteq X \times X$ je čiastočné usporiadanie. *Maximálny element* (ak existuje) $x_{max} \in X$ je určený podmienkou

$$\forall (x \in X)((x_{max}, x) \in P \Longrightarrow (x_{max} = x))$$

Minimálny element (ak existuje) $x_{min} \in X$ je určený podmienkou

$$\forall (x \in X)((x, x_{min}) \in P \Longrightarrow (x_{min} = x))$$

Táto definícia maximálneho elementu $x_{max} \in X$ je založená na podmienke, že neexistuje taký element $x \in X$, ktorý by bol "väčší" ako element x_{max} . Podobne, pre minimálny element $x_{min} \in X$ neexistuje taký element $x \in X$, ktorý by bol menší ako x_{min} .

Študujme množinu $X = \{1,2,3\}$, jej potenčná množina $\mathcal{P}(X)$ obsahuje všetky možné podmnožiny X

$$\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}\}$$

Čiastočne usporiadanie nad touto potenčnou množinou je relácia \subseteq , potom maximálny (minimálny) element je $\{1,2,3\}$ (\emptyset).

Nech pre $X = \{1, 2, 3, 4, 5, 6\}$ relácia P "deliteľnosti" obsahuje dvojice $((m,n) \in P) \equiv (m \text{ je deliteľné } n)$, potom

$$P = \{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(2,1),(3,1),(4,1),(4,2),(5,1),(6,1),(6,2),(6,3)\}$$

Táto relácia je čiastočné usporiadanie, maximálny prvok je 1 a minimálne prvky sú 4, 5 a 6.

Hasseho diagramy

Nech P je čiastočne usporiadaná množina s reláciou $P \subseteq X \times X$. Hovoríme, že element y je pokrytý elementom x vtedy, ak $(x, y) \in P$ a neexistuje taký element z, pre ktorý súčasne platí $(x, z) \in P$ a $(z, y) \in P$

Hasseho diagram relácie čiastočného usporiadania $P \subseteq X \times X$ obsahuje vrcholy, ktoré sú stotožnené s elementmi z X; pričom dva vrcholy $x, y \in X$ sú spojené hranou $(x, y) \in P$ vtedy a len vtedy, ak element y pokrýva element x.

Poznámka: Hasseho diagram relácie čiastočného usporiadanie neobsahuje hrany, ktoré sú dôsledkom tranzitívnosti relácie.

Nakreslite Hasseho diagram relácie čiastočného usporiadania P "deliteľnosti" $X = \{1, 2, 3, 4, 5, 6\}$, relácia obsahuje dvojice

$$((m,n) \in P) \equiv (m \text{ je deliteľné } n)$$

potom

$$P = \{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(2,1),(3,1),(4,1),(4,2),(5,1),(6,1),(6,2),(6,3)\}$$

Hasseho diagram pre množiny $X = \mathcal{P}(\{a,b,c\})$, ktorá je čiastočne usporiadaná pomocou relácie ' \subseteq ' je znázornený na obrázku

Hasseho diagram pre reláciu čiastočného usporiadania P nad konečnou množinou X ukazuje jasne maximálne a minimálne prvky.

Veta. Každá relácia čiastočného usporiadania $P \subseteq X \times X$ obsahuje aspoň jeden minimálny element a aspoň jeden maximálny element.

Nech $a_1 \in X$, ak je tento element minimálny, dôkaz je dokončený. V opačnom prípade existuje $a_2 \in X$ taký, že $(a_2,a_1) \in P$. Element a_2 je buď minimálny alebo ak nie, potom existuje taký element $a_3 \in X$, že $(a_3,a_2) \in P$. Pretože množina X má konečný počet elementov, tento proces predlžovania smerom dole, musí byť v nejakom momente ukončený elementom, ktorý je minimálny. Podobným spôsobom môžeme zostrojiť element, ktorý je maximálny.

Funkcie

Pojem funkcie (alebo zobrazenia) patrí medzi základné pojmy matematiky. V matematike pod funkciou f rozumieme jednoznačný predpis pomocou ktorého každému argumentu x z množiny A priradíme práve jednu funkčnú hodnotu označenú f(x) z množiny B

$$f: A \to B$$

$$f = \{(x, f(x)); x \in A\}$$

Definícia 3.11. Relácia $f \subset A \times B$ sa nazýva *funkcia* vtedy a len vtedy, ak pre každé $x \in A$ existuje práve jedno $y \in B$ také, že $(x, y) \in f$ (podmienka jednoznačnosti)

$$\forall x \exists ! y (x, y) \in f$$

Množina A sa nazýva *obor definície* (alebo len *obor*) funkcie f, $D_f = A$, množina B sa nazýva *koobor* funkcie f. *Obor funkčných hodnôt* funkcie f je množina $H_f = \{f(x); x \in A\} = f(A)$. Ak $(x,y) \in F$, potom x sa nazýva *argument* a y sa nazýva *funkčná hodnota* (*obraz*). Funkcia sa taktiež nazýva *zobrazenie*.

Podmienku jednoznačnosti funkcie môžeme vyjadriť pomocou implikácie $f(x_1) \neq f(x_2) \Rightarrow x_1 \neq x_2$

Znázornenie funkcie $f \subset A \times B$, pre každé $x \in A$ existuje práve jedno $y \in B$ také,

že
$$(x,y) \in f$$
, $f = \{(x_1, y_1), (x_2, y_1), (x_3, y_2), (x_4, y_4), (x_5, y_4)\}$

(znázornenie podmienky jednoznačnosti)

Definícia funkcie nezabezpečuje, aby množina funkčných hodnôt $\{f(x); x \in A\}$ bola totožná s množinou B, vo všeobecnosti platí len

$$B' = f(A) = \{f(x); x \in A\} \subseteq B$$

Definícia. Hovoríme, že dve funkcie $f:A\to B$ a $g:A'\to B'$ sa rovnajú vtedy a len vtedy, ak súčasne platí

(1)
$$A = A'$$
 a $B = B'$,

(2)
$$\forall (x \in A)(f(x) = g(x)).$$

Definícia. Hovoríme, že funkcia $i_A: A \to A$ je *jednotková* vtedy a len vtedy, ak $\forall (x \in A)(i_A(x) = x)$

Obor a obor funkčných hodnôt sú si rovné, $D_{i_A} = H_{i_A} = A$

Zložená funkcia

Majme dve funkcie $f: A \Rightarrow B$ a $g: B \Rightarrow C$, kompozíciou týchto dvoch funkcií vytvoríme novú funkciu $h = f \circ g: A \Rightarrow C$, ktorá sa nazýva zložená funkcia.

Zložená funkcia existuje len vtedy, keď prienik oboru funkčných hodnôt H_f funkcie f a definičného oboru funkcie g je neprázdny, $H_f \cap D_g \neq \emptyset$.

Definícia. Hovoríme, že kompozíciou funkcií $f: A \to B$ a $g: B \to C$ vznikne zložená funkcia $h = f \circ g: A \to C$, vtedy a len vtedy, ak

$$h = f \circ g = \{(x, z) \in A \times C; \exists (y \in B)((x, y) \in f) \land ((y, z) \in g)\}$$

Z tejto definície priamo plynie, že zložená funkcia $h = f \circ g$ existuje len vtedy, ak pre danú dvojicu $(x,z) \in A \times C$ existuje taký element $y \in B$, pre ktorý súčasne platí $(x,y) \in f$ a $(y,z) \in g$, alebo $H_f \cap D_g \neq \emptyset$.

$$f\left(\underbrace{g(z)}_{y}\right) = f(y) = z = f\left[g(z)\right] = x$$

Príklad

Študujme dve funkcie

(1) $f:\mathbb{R}\to\mathbb{R}$, ktorej analytický tvar je $f\left(x\right)=x^2$, jej obor je $D_f=\mathbb{R}$ množina reálnych čísel a obor funkčných hodnôt je $H_f=\left(0,\infty\right)$ množina nezáporných reálnych čísel.

(2) $g:\langle 0,\infty\rangle \to \langle 0,\infty\rangle$, ktorej analytický tvar je $g(x)=\sqrt{x}$, táto má rovnaký obor definície a obor funkčných hodnôt, $D_f=H_f=\langle 0,\infty\rangle$..

Prvá zložená funkcia má tvar $h(x) = g(f(x)) = \sqrt{x^2} = |x|$, jej obor definície je $D_h = \mathbb{R}$ a a obor funkčných hodnôt je $H_h = \langle 0, \infty \rangle$, t. j. zobrazuje množinu reálnych čísel \mathbb{R} na množinu nazáporných reálnych. Priebeh funkcie h(x) = |x| je znázornený na obrázku

Druhá zložená funkcia má tvar $h'(x) = f(g(x)) = (\sqrt{x})^2 = x$, táto funkcia má rovnaký definičný obor a obor funkčných hodnôt, $D_{h'} = H_{h'} = \langle 0, \infty \rangle$, t. j. zobrazuje "lineárne" množinu nezáporných reálnych čísel na tú istú podmnožinu. Priebeh funkcie h'(x) = x je znázornený na obrázku

Zložené funkcie h(x) a h'(x) sa nerovnajú.

Inverzná funkcia

Definícia. Funkcia $f: A \rightarrow B$ sa nazýva *injekcia* (jedno-jednoznačná) vtedy a len vtedy, ak vyhovuje podmienke

$$\forall (x, x' \in A)(x \neq x' \Longrightarrow f(x) \neq f(x'))$$

Injekciu f môžeme vyjadriť silnejšou podmienkou, pretože z definície funkcie vyplýva jej jednoznačnosť $(f(x) \neq f(x') \Rightarrow x \neq x')$, t. j. pre injektívne funkcie platí ekvivalencia

$$\forall (x, x' \in A) ((x \neq x') \equiv (f(x) \neq f(x')))$$

To znamená, že podmienka rôznosti argumentov pre injektívne funkcie je ekvivalentná podmienke rôznosti ich funkčných hodnôt.

Schématické znázornenie injekcie $f: A \rightarrow B$

Ku každému argumentu je priradená práve jedna funkčná hodnota, a taktiež aj naopak, ku každej funkčnej hodnote existuje práve jeden argument. Musíme však poznamenať, že množina *B* môže obsahovať prvky, ktoré nie sú funkčné hodnoty *f*.

Definícia. Injekcia $f: A \to B$ sa nazýva *bijekcia* vtedy a len vtedy, ak pre každý element $y \in B$ existuje taký element $x \in A$, že y = f(x).

Pre bijektívne zobrazenie $f: A \to B$, kde A a B sú konečné množiny platí, že tieto množiny majú rovnakú mohutnosť, |A| = |B|.

Definícia. Nech funkcia $f: A \to B$ je bijekcia. Hovoríme, že funkcia $f^{-1}: B \to A$ je *inverzná* k funkcii f vtedy a len vtedy, ak platí

$$f(f^{-1}(x)) = i_B(x)$$
$$f^{-1}(f(x)) = i_A(x)$$

kde i_X je jednotková funkcia nad doménou X.

Diagram C znázorňuje zloženú funkciu $h = f^{-1} \circ f = i_A : A \to A$, diagram D znázorňuje zloženú funkciu $h' = f \circ f^{-1} = i_B : B \to B$.

Príklad

Zostrojte inverznú funkciu k funkcii $f(x) = \frac{1}{1 + e^{-x}}$

Táto funkcia zobrazuje obor definície doménu $D_f = \mathbb{R}$ na obor funkčných hodnôt $H_f = (0,1)$. Funkcia je monotónne rastúca a vyhovuje asymptotickým podmienkam $f(\infty) = 1$ a $f(-\infty) = 0$. Z monotónnosti vyplýva, že funkcia je bijekcia, čiže k nej existuje inverzná funkcia,

$$f^{-1}(x) = \ln \frac{x}{1-x}$$

Priebehy funkcií (A)
$$f(x) = 1/(1 + e^{-x})$$
 a (B) $f^{-1}(x) = \ln x/(1 - x)$

Na záver budeme počítať zložené funkcie

$$f(f^{-1}(x)) = \frac{1}{1 + exp(-f^{-1}(x))} = \frac{1}{1 + exp(-ln x/(1-x))} = \frac{1}{1 + \frac{1-x}{x}} = x = i_{(0,1)}(x)$$

$$f^{-1}(f(x)) = \ln \frac{f(x)}{1 - f(x)} = \ln \frac{\frac{1}{1 + e^{-x}}}{1 - \frac{1}{1 + e^{-x}}} = \ln \frac{\frac{1}{1 + e^{-x}}}{\frac{e^{-x}}{1 + e^{-x}}} = \ln e^{x} = x = i_{(-\infty,\infty)}(x)$$

