Series de potencias 1 / 9

Series de potencias

2015-04-20 9:00

1 Definición

2 Teoremas

3 Teorema de Taylor

Definición (Serie de potencias)

Una serie de potencias es una serie de la forma:

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n,$$

donde los a_n y z_0 son números complejos.

Lema (Abel-Weierstrass)

Sean $r_0 \ge 0$ y M una constante tal que $|a_n|r_0^n \le M$ para todo $n \ge 0$. Entonces, para cada $r < r_0$ la serie $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converge uniformemente y absolutamente en $D_r = \{z \in \mathbb{C} \mid |z-z_0| \le r\}$.

Lema (Abel-Weierstrass)

Sean $r_0 \ge 0$ y M una constante tal que $|a_n|r_0^n \le M$ para todo $n \ge 0$. Entonces, para cada $r < r_0$ la serie $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converge uniformemente y absolutamente en $D_r = \{z \in \mathbb{C} \mid |z-z_0| \le r\}$.

Teorema (Convergencia de series de potencias)

Dada una serie de potencias $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, existe un único número $R \geq 0$, (posiblemente $+\infty$), llamado radio de convergencia, tal que si $|z-z_0| < R$ la serie converge, y si $|z-z_0| > R$, la serie diverge. Además, la convergencia es uniforme en cada disco cerrado contenido en $D = \{z \in \mathbb{C} \mid |z-z_0| < R\}$.

Corolario

Corolario (Serie es analítica)

Una serie de potencias $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ es una función analítica en su círculo de convergencia

$$D = \{ z \in \mathbb{C} \mid |z - z_0| < R \}.$$

Teorema (Derivación de series de potencias)

Sea

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n,$$

una función analítica dada por una serie de potencias en su círculo de convergencia. Entonces:

Teorema (Derivación de series de potencias)

Sea

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n,$$

una función analítica dada por una serie de potencias en su círculo de convergencia. Entonces:

• $f'(z) = \sum_{n=1}^{\infty} n a_n (z - z_0)^{n-1}$ y la serie para f'(z) tiene el mismo radio de convergencia que la serie para f(z).

Teorema (Derivación de series de potencias)

Sea

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n,$$

una función analítica dada por una serie de potencias en su círculo de convergencia. Entonces:

- $f'(z) = \sum_{n=1}^{\infty} n a_n (z-z_0)^{n-1}$ y la serie para f'(z) tiene el mismo radio de convergencia que la serie para f(z).
- Además, $a_n = \frac{f^{(n)}(z_0)}{n!}$.

Corolario (Unicidad)

Si

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n = f(z) = \sum_{n=0}^{\infty} b_n (z-z_0)^n$$

para todo z en $D(z_0, r)$ con r > 0, entonces $a_n = b_n$ para toda n.

Teorema (Cálculo del radio de convergencia)

Dada la serie de potencias $\sum_{n=0}^{\infty} a_n (z-z_0)^n$:

Teorema (Cálculo del radio de convergencia)

Dada la serie de potencias $\sum_{n=0}^{\infty} a_n (z-z_0)^n$:

• si

$$\lim_{n\to\infty}\frac{|a_n|}{|a_{n+1}|}$$

existe, es igual a R, el radio de convergencia de la serie.

Teorema (Cálculo del radio de convergencia)

Dada la serie de potencias $\sum_{n=0}^{\infty} a_n (z-z_0)^n$:

• si

$$\lim_{n\to\infty}\frac{|a_n|}{|a_{n+1}|}$$

existe, es igual a R, el radio de convergencia de la serie.

• Si $\rho = \lim_{n \to \infty} \sqrt[n]{|a_n|}$ existe, entonces $R = \frac{1}{\rho}$ es el radio de convergencia. $(R = \infty \text{ si } \rho = 0)$.

Teorema (Taylor)

Sea $f: A \to \mathbb{C}$ analítica con $A \subseteq \mathbb{C}$ abierto. Sean $z_0 \in A$ y r > 0 tal que $D_r = \{z \mid |z - z_0| < r\} \subseteq A$. Entonces, para cada $z \in D_r$, la serie:

$$\sum_{n=0}^{\infty} \frac{f^n(z_0)}{n!} (z-z_0)^n$$

converge en A, y además: $\sum_{n=0}^{\infty} \frac{f^n(z_0)}{n!} (z-z_0)^n = f(z)$.

$$\bullet \ e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!},$$

- $\bullet \ e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!},$
- $\sin z = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^{2n-1}}{(2n-1)!}$.

Sea $A \subseteq \mathbb{C}$ abierto y sea $f: A \to \mathbb{C}$. Entonces f es analítica en A si y solo si para cada $z_0 \in A$ existe r > 0 tal que $D(z_0, r) \subseteq A$ y f es igual a una serie de potencias convergente en $D(z_0, r)$.

- $\bullet \ e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!},$
- $\sin z = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^{2n-1}}{(2n-1)!}$.

Observación

Se obtiene otra demostración de que si f tiene un cero de orden k en z_0 , entonces existe una función analítica g tal que $f(z)=(z-z_0)^kg(z)$, donde $g(z_0)\neq 0$.