Recitation Nine: 7/28/2015

Alexis Cuellar Hector J Vazquez Paul A Herold
Ashley G Simon Mael J Le Scouezac Thomas Varner
Audrey B Ricks Mario Contreras Clarissa Sorrells
Carissa R Gadson Michael A Castillo

Objectives:

- 1. Review & Quiz
- 2. Taylor Polynomials & Taylor Series
- 3. Lagrange Remainder & Error
- 4. Infinite Series

1. Review & Quiz!

Procedure to find Area of Polar Graphs 1. Check the ratio $\frac{a}{b}$ to determine type

Inner Loop	Cardiod	Dimple	Convex
$\left \frac{a}{b}\right < 1$	$\left \frac{a}{b}\right = 1$	$1<\left \frac{a}{b}\right <2$	$\left \frac{a}{b}\right \geq 2$
2.Write down general equation: $A = \frac{1}{2} \int_a^b r^2 d\theta$	2.Write down general equation: $A = \frac{1}{2} \int_{a}^{b} r^{2} d\theta$	2.Write down general equation: $A = \frac{1}{2} \int_a^b r^2 d\theta$	2.Write down general equation: $A = \frac{1}{2} \int_a^b r^2 d\theta$
3.Find bounds of Integration: $r = 0 = a + b \sin(\theta)$	3. Use symmetry & find bounds -Solve this for θ_1 $r = a + b = a + b \sin(\theta)$	3. Use symmetry & find bounds -Solve this for θ_1 $r = a + b = a + b \sin(\theta)$	3. Use symmetry & find bounds -Solve this for θ_1 $r = a + b = a + b \sin(\theta)$
Find θ_1 , θ_2 , θ_3			
-Big Loop has bounds $\theta_2 to \theta_3$	-Solve this for θ_2 $r = 0 = a + b \sin(\theta)$	-Solve this for θ_2 $r = 0 = a + b \sin(\theta)$	-Solve this for θ_2 $r = 0 = a \pm b \sin(\theta)$
-Small Loop has bounds $ heta_1$ to $ heta_2$,	Integration from θ_1 to θ_2 , -Muliply answer by two	Integration from θ_1 to $\theta_{2,}$ -Muliply answer by two	Integration from θ_1 to θ_2 , -Muliply answer by two

Example One:

Find the area of the big loop and the inner loop. Set Up Only $r=1+2\cos(\theta)$

Arc Length

Integrating with Respect to X

$$S = \int_{x=a}^{x=b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx$$

Integrating with Respect to Y

$$S = \int_{y=a}^{y=b} \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy$$

Parametric Equations

$$S = \int_{t=a}^{t=b} \sqrt{\left(\frac{dy}{dt}\right)^2 + \left(\frac{dx}{dt}\right)^2} dt$$

Example Two:

Find the arc length of the following: $y = x^2$ on interval [0,3]

Surface Area

Rotating about the x axis

$$S = 2\pi \int_{x=a}^{x=b} f(x) \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

$$S = 2\pi \int_{t=a}^{t=b} y(t) \sqrt{\left(\frac{dy}{dt}\right)^2 + \left(\frac{dx}{dt}\right)^2} dt$$

Rotating about the y axis

$$S = 2\pi \int_{y=a}^{y=b} f(y) \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$$

Parametric Equations

$$S = 2\pi \int_{t=a}^{t=b} x(t) \sqrt{\left(\frac{dy}{dt}\right)^2 + \left(\frac{dx}{dt}\right)^2} dt$$

Example Three:

No Example three! Yay! Quiz Time!

2. Taylor Polynomials & Series

Recall!

Linear Approximations!

$$L(x) = f(a) + f'(a)(x - a)$$

Quadratic Approximations!

$$Q(x) = f(a) + f'(a)(x - a) + \frac{f''(a)(x - a)^2}{2}$$

WOW! These are really Taylor Polynomials of Degrees:
<-Degrees of Linear & Quad ->

Taylor Polynomials are just adding more terms to the quadratic approximation to increase accuracy.

$$P_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)(x - a)^2}{2} + \dots + \frac{f^n(a)(x - a)^n}{n!}$$

Therefore the Taylor Series is:

$$P_n(x) = \underline{\hspace{1cm}}$$

*Wow Matt that makes sense!

Procedure:

- 1. Notice how many degrees you are to set up your taylor polynomial with
- 2. Find the derivatives of the function you are approximating to that degree
- 3. Plug in your value for "a" (aka the x "guess" you are centering your polynomial around)
- 4. Plug into your P(x) to approximate any x value

Note:

-Maclaurin Series are really Taylor Series with "a = 0"

3. Lagrange Error & Remainder

Actual Error:

$$\mathsf{Error} = |f(x) - P_n(x)|$$

Lagrange Error:

$$f(x) = P_n(x) + R_n(x)$$

*Actual Function

*Recall x = a is your starting value

$$R_n(x) = \frac{f^{(n+1)}(z)(x-a)^{(n+1)}}{(n+1)!}$$

Max Lagrange Error:

$$R_{nmax}(x) = max \left| \frac{f^{(n+1)}(z)(c-a)^{(n+1)}}{(n+1)!} \right|$$

-Can have two different Values of Z if we are maximizing

-We must look at $f^{(n+1)}$

Example four:

Find the Max Lagrange Error of the following function:

$$f(x) = \sin(x)$$
 on [0, 0. 1] with $n = 3$

Example Five:

- (a) Find the Taylor polynomial degree 3 for the $y = \frac{1}{(x-4)^2}$ centered at x = 1
- (b)Use the Taylor Polynomial to approximate the function at x = 2
- (c)Find the Lagrange remainder
- (d) Find the Lagrange error bound for the maximum error on the interval [a,2], or [2,a] (depending on which is bigger)
- (e)Find the actual error in the Taylor approximation and show that it is less than or equal to the answer from part (d)

Example Six!: More Taylor!

- (a) Find the Taylor polynomial degree 4 for the $y = \cos(\beta x)$ centered at $x = \frac{\pi}{2}$
- (b)Use the Taylor Polynomial to approximate the function at x = 2
- (c)Find the Lagrange remainder
- (d) Find the Lagrange error bound for the maximum error on the interval [a,2], or [2,a] (depending on which is bigger)
- (e)Find the actual error in the Taylor approximation and show that it is less than or equal to the answer from part (d)

4. Infinite Sequences!

1. What is a sequence?

Example: 1,2,3,4,5,6,7,8,9,10 ... $a_n = n$

Note: If you have a_n you could write out all the terms of a sequence

Alternating Sequences

Term:

Example:

1, -2, 3, -4, 5,

-6

 $(-1)^{n+1} = 1$ st term postive $(-1)^n = 1$ st term negative

 $a_n =$

Convergence:

Test for Convergence:

Take the limit as $n \to \infty$ of a_n

 $\lim_{n\to\infty}a_n = c$

- 1. If **c** = "a number" then sequence converges
- 2. If **c** DNE or if $c = \pm \infty$ then the sequence diverges

Example Seven:

Write the following infinite sequence in terms of a_n

$$\frac{1}{2}$$
, $\frac{1}{5}$, $\frac{1}{8}$, $\frac{1}{11}$, ...

Work Sheet

For the following problems determine whether the following infinite sequences converge or diverge:

1.
$$a_n = 1 + \left(\frac{9}{10}\right)^n$$

$$2. a_n = 2 - \left(-\frac{1}{2}\right)^n$$

3.
$$a_n = \frac{1 + (-1)^n \sqrt{n}}{\left(\frac{3}{2}\right)^n}$$

$$4. a_n = \left(1 + \frac{1}{n}\right)^n$$

$$5. a_n = \frac{(1-n^2)}{2+3n^2}$$

$$6. a_n = \left(\frac{\ln(n)^2}{n}\right)$$

