Efficient DERT

Paper Details

- Paper Title: Efficient DETR: Improving End-to-End Object Detector with Dense Prior
- Publication Date: 3 Apr 2021
- Publisher: Zhuyu Yao, Jiangbo Ai, Boxun Li, Chi Zhang
- Affiliation: Megvii Technology

Motivation

- both DETR and Deformable DETR have a 6-encoder and 6-decoder transformer architecture
- investigate the components of DETRs for understanding their mechanism
- find out random initialization can be improved
- Improve DERT with better initialization

Brief Retrospect of DETR

- Encoder and Decoder
- Initialization of object containers

• Encoder and Decoder

Encoder	Decoder	Decoding loss	AP	AP_{50}	AP ₇₅
3	3	✓	41.5	60.4	44.3
3	1	\checkmark	32.2	51.1	33.7
1	3	\checkmark	39.8	58.2	42.5
1	3		28.3	47.4	29.3

Difference between Encoder and Decoder: Auxiliary loss

- Encoder and Decoder
- Decoder

Decoder layer	1	2	3	4	5	6
AP	32.1	39.4	41.7	42.4	42.7	42.4
AP_{50}	50.8	58.4	60.6	61.5	61.8	61.8
AP_{75}	34.0	41.9	44.4	45.5	45.9	45.6

- Encoder and Decoder
- Decoder
- Initialization of object queries

- Encoder and Decoder
- Decoder
- Initialization of object queries

- Encoder and Decoder
- Decoder
- Initialization of object queries

- Encoder and Decoder
- Decoder
- Initialization of object queries

- Encoder and Decoder
- Decoder
- Initialization of object queries

Initialization	Learnable	Grid	Center	Border	Dense
$AP_{1-\mathrm{dec.}}$	32.1	32.0	21.0	26.0	39.0
$AP_{6-\mathrm{dec.}}$	42.4	42.7	42.8	42.8	-

- Encoder and Decoder
- Decoder
- Initialization of object queries

- Encoder and Decoder
- Decoder
- Initialization of object queries

- Encoder and Decoder
- Decoder
- Initialization of object queries

- Encoder and Decoder
- Decoder
- Initialization of object queries

2-d Ref.	4-d Ref.	Object query	AP	AP_{50}	AP_{75}
			32.1	50.1	34.0
\checkmark			39.0	57.0	42.7
		\checkmark	41.1	60.8	45.0
\checkmark		\checkmark	42.0	60.5	45.6
	\checkmark	\checkmark	43.0	60.9	46.5

Table 4. Initializing reference point and object query with dense prior. 2-d Ref. denotes reference points which are 2-d coordinates and initialized with the center points of region proposals. 4-d Ref. denotes reference points which are 4-d bounding boxes and directly initialized with region proposals. Object queries are initialized with 256-d proposal feature vectors from encoder feature maps.

• Backbone

- Backbone
- Dense part

- Backbone
- Dense part
- Sparse part

- Backbone
- Dense part
- Sparse part

- Backbone
- Dense part
- Sparse part
- Proposals

- Backbone
- Dense part
- Sparse part
- Proposals
- Loss

$$\mathcal{L} = \lambda_{cls} \cdot \mathcal{L}_{cls} + \lambda_{L1} \cdot \mathcal{L}_{L1} + \lambda_{giou} \cdot \mathcal{L}_{giou}$$

Efficient DETR Results

Model	Epochs	GFLOPs	Params (M)	AP	AP ₅₀	AP ₇₅	AP_S	AP_M	AP_L
DETR-R50 [2]	500	86	41	42.0	62.4	44.2	20.5	45.8	61.1
DETR-DC5-R50 [2]	500	187	41	43.3	63.1	45.9	22.5	47.3	61.1
Faster RCNN-FPN-R50 [2]	36	180	42	40.2	61.0	43.8	24.2	43.5	52.0
Deformable DETR-R50 [43]	50	173	40	43.8	62.6	47.7	26.4	47.1	58.0
TSP-FCOS-R50 [32]	36	189	-	43.1	62.3	47.0	26.6	46.8	55.9
TSP-RCNN-R50 [32]	36	188	-	43.8	63.3	48.3	28.6	46.9	55.7
SMCA-R50 [8]	50	152	40	43.7	63.6	47.2	24.2	47.0	60.4
Sparse R-CNN-R50 [31]	36	-	-	44.5	63.4	48.2	26.9	47.2	59.5
Efficient DETR-R50	36	159	32	44.2	62.2	48.0	28.4	47.5	56.6
Efficient DETR*-R50	36	210	35	45.1	63.1	49.1	28.3	48.4	59.0
DETR-R101 [2]	500	152	60	43.5	63.8	46.4	21.9	48.0	61.8
DETR-DC5-R101 [2]	500	253	60	44.9	64.7	47.7	23.7	49.5	62.3
Faster RCNN-FPN-R101 [2]	36	256	60	42.0	62.1	45.5	26.6	45.4	53.4
TSP-FCOS-R101 [32]	36	255	-	44.4	63.8	48.2	27.7	48.6	57.3
TSP-RCNN-R101 [32]	36	254	-	44.8	63.8	49.2	29.0	47.9	57.1
SMCA-R101 [8]	50	218	58	44.4	65.2	48.0	24.3	48.5	61.0
Sparse R-CNN-R101 [31]	36	-	-	45.6	64.6	49.5	28.3	48.3	61.6
Efficient DETR-R101	36	239	51	45.2	63.7	48.8	28.8	49.1	59.0
Efficient DETR*-R101	36	289	54	45.7	64.1	49.5	28.2	49.1	60.2

Efficient DETR Results

Proposals		100	300		500	1000	
Fixed Linear Decrease		43.8	44.2 44.2		44.1 44.0	44.0 44.0	
Agnostic	Specific	Share H	ead	AP	AP ₅₀	AP ₇₅	
√				43.0	60.9	46.5	
\checkmark	\checkmark			43.8	62.0	47.5	
	\checkmark			43.8	61.9	47.4	
	\checkmark	\checkmark		43.8	61.9	47.4	

More Experiments

CrowdHuman Data (Crowded Scenes)

Method	Proposals	AP_{50}	mMR	Recall
Faster-RCNN [27]	-	85.0	50.4	90.24
RetinaNet [20]	-	81.7	57.6	88.6
FCOS [33]	-	86.1	55.2	94.3
ATSS [37]	-	87.1	50.1	94.0
POTO+3DMF+Aux [36]	-	89.2	49.6	96.6
DETR [2]	400	66.12	80.62	-
Deformable DETR [43]	400	86.74	53.98	92.51
Efficient DETR	400	90.68	49.80	97.99
Efficient DETR	100	90.75	48.98	97.94