

M2CAL WORKFLOW CHALLENGE 2016 Fine tuning CNN with HMM smoothing

21th October 2016

Rémi Cadène, Thomas Robert, Nicolas Thome, Matthieu Cord

University Pierre and Marie Curie - LIP6 - MLIA

Context

Videos resolution is 1920×1080 , shot at 25 frames per second at the IRCAD research center in Strasbourg, France.

- 27 training videos ranging from 15mn to 1hour
- 15 test videos

Context

1 of 8 classes for each frames:

- TrocarPlacement
- Preparation
- CalotTriangleDissection
- ClippingCutting
- GallbladderDissection
- GallbladderPackaging
- CleaningCoagulation
- GallbladderRetraction

M2CAI Workflow Goal and Measure

Goal

Online prediction : $P(y|x_i, x_{i-1}, x_{i-2}, ...)$ $x_i := \text{frame } i, \text{ and } y := \text{classes}$

Useful to

- Monitor surgeons
- Trigger automatic actions

Measures

- Jaccard similarity coefficient : $J(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| |A \cap B|}$
- Accuracy top1 : nb frames well classified / nb total frames

Context

1. Frames classifier using Deep Learning

- From Scratch Convolutional Neural Network (CNN)
- Features Extraction CNN
- Fine tuning CNN

2. Smoothing predictions

- 1 Averaging predictions over last 15 frames
- 2 Hidden Markov Model (HMM) as a "temporal denoizer"

Creating a trainset and valset of images

Creating validation set by random split

■ Training set: 22 videos

■ Validation set : 5 videos {2, 9, 10, 13, 27}

Extracting one frame every 25 frames (1 frame per second)

■ Training set: 59,493 images

■ Validation set: 8,062 images

■ Testing set: 28,732 images

Figure 2 - Vgg16 [simonyan2014very], top2 ILSVRC2014

ILSVRC top-5 error on ImageNet

Using representations learned on ImageNet

Pre-trained CNN as Features Extractor

- 1 Extracting features somewhere
- 2 Training a Support Vector Machine

Fine tuning a pre-trained CNN

- Same process than CNN From Scratch
- But smaller learning rate for pre-trained layers

Which CNN to use? Possible in production?

Model	Input	Param.	Depth	Implem.	Forward (ms)	Backward (ms)
Vgg16	224	138M	16	GPU	185.29	437.89
InceptionV3	399	24M	42	GPU	102.21	311.94
ResNet-200	224	65M	200	GPU	273.85	687.48
InceptionV3	399	24M	42	CPU	19918.82	23010.15

Table 1 – Forward+Backward with batches of 20 images.

Possible in production thanks to GPUs!

Comparison of frames classifiers

Model	Туре	Accuracy (%)
InceptionV3	Extraction (repres. of ImageNet)	60.53
InceptionV3	From Scratch (repres. of M2CAI)	69.13
InceptionV3	Fine-tuning (both representations)	79.06
ResNet200	Fine-tuning (both representations)	79.24

Table 2 – Accuracy on the validation set.

Gaussian Hidden Markov Model

HMM on the smoothed predictions over last 15 frames

- Initial state probabilities
- Matrix of probabilities of transition between states
- Gaussian parameters for emissions of observations :

 -> mean and co-variance matrix

Training process

- Counting, Counting
- Counting

Testing process

- Offline testing: Viterbi algorithm to obtain the most likely sequence of states
- Online testing : to predict x_t we apply Viterbi on the sequence $y_1, ..., y_t$

Comparison of temporal smoothing methods

Temporal Method	Accuracy Val (%)	Jaccard Val	Jaccard Test
No Smoothing	79.24	_	_
Avg Smoothing	85.97	74.67	_
Avg + HMM Online	88.90	81.60	71.9
Avg + HMM Offline	93.47	87.59	_

Table 3 – With the predictions of our fine tuned ResNet-200

Visualization

Visualization

Conclusion

Conclusion

- Deep Learning efficient
- Fine Tuning most accurate approach
- HMM is usefull to smooth the predictions

Future work

- Fine tuning CNN on full trainset (not only 80%)
- Ensembling several fine tuned CNNs

Code available: github.com/Cadene/torchnet-m2caiworkflow

References I