Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Факультет информационных технологий и программирования Кафедра компьютерных технологий

Разработка гибридного алгоритма недоминирующей сортировки

Маркина Маргарита Анатольевна Группа M3438

Научный руководитель: к.т.н. доцент кафедры КТ М. В. Буздалов

Предметная область

- Недоминирующая сортировка.
- Многокритериальная задача оптимизации.
- Гибритизация алгоритмов.
- Оценка времени работы в худших случаях.

Введение

- Точка $A = (a_1, ..., a_M)$ доминирует точку $B = (b_1, ..., b_M)$, когда $\forall \ 1 \leq i \leq M : a_i \leq b_i$ и $\exists j : a_i < b_i$.
- Недоминирующая сортировка множества точек S в M-мерном пространстве это процедура, назначающая всем точкам из S ранг.
- Все точки, которые не доминируются ни одной точкой из S, имеют ранг 0.
- Точка имеет ранг i+1, если максимальный ранг среди доминирующих её точек равен i.

Введение

На рисунке 3 фронта: $\{a,b,c,d\}$ имеет ранг 0, $\{e,f\}$ - ранг 1, $\{g,h,i\}$ - ранг 2.

Актуальность

- Многокритериальные эволюционные алгоритмы.
- Задача минимазациии.

Цель исследования

- Выбрать наиболее подходящие алгоритмы.
- Выявить преимущества каждого алгоритма.
- Научиться по входным данным выбирать стратегию.
- Сделать гибридный алгоритм.

Fast + BOS

- Fast Version of the Generalized Jensen Algorithm. Сделать нормельное название TODO
- Best Order Sort.

Fast

- Fast Version of the Generalized Jensen Algorithm.
 - Разделяй и властвуй по N и M.
 - На каждом этапе делим на 3 множества по k_i критерию текущее множество точек.
 - Если все k_i в одном из подмножеств равны между собой, переходим к k_{i-1}
 - Запускаем алгоритм на каждом подмножестве.
 - Картинка ТООО

BOS

- Best Order Sort.
 - ullet M отсортированных списков, i список отсортирован по i критерию.
 - Далее определяем ранг начиная с наиболее подходящих элементов.
 - Во время определения ранга используем уже обработанные точки.
 - Картинка TODO

Асимптотика

- Fast $O(Nlog^{M-1}N)$.
- BOS $O(MNlogN + N^2)$.
- Пояснение ТООО

Гибритизация

• Сделать рисунок иллюстрирующий момент изменения стратегии TODO

Идея

Рассмотреть влияние входные данных на время работы алгоритмов

- Рандомные точки в гиперкубе.
- Точки одного ранга.

Практические результаты

Рандомные точки в гиперкубе

Алгоритм запускался для N = 100 000 раз при $M \in \{4,6,8,10,12,14,16,18,20\}$

Ν	Среднее	Дисперсия	2eN In N	$\frac{16e^2}{7}$ N In N	
10	98.33	36.30	125.18	388.89	
20	269.90	78.11	325.73	1011.91	
30	476.38	121.37	554.72	1723.31	
40	704.24	163.87	802.19	2492.10	
50	950.93	208.66	1063.40	3303.56	
60	1209.98	251.52	1335.55	4149.03	

Практические результаты

Эксперименты

Аааа ааааааа а а аааааа а аааааааа N=2 и N=3, аа ааааааа а $4 \leq N \leq 20$ и, ааааа, аааааа N тоже.

ſ	N	4	5	6	7	8	9	10	11	12
	diff	0.03	0.10	0.15	0.18	0.20	0.21	0.23	0.24	0.25

N	13	14	15	16	17	18	19	20
diff	0.25	0.26	0.27	0.27	0.27	0.28	0.28	0.28

Полученные результаты

- Aaaaaaaa.
- Aaaaaaaa.
- Aaaaaaaa aaaaaa.

Дальнейшие действия

- Рассмотреть входные данные с другими параметрими.
- Понять как оценивать входные данные и предугадывать стратегию.
- Реализовать гибридный алгоритм.

Спасибо за внимание!

Дополнительные материалы

Aaaaa

Пример аааа для ${\it N}=3$