Klausur zur Linearen Algebra I

Im Multiple-Choice-Teil sollen Sie entscheiden, ob die angegebenen Aussagen richtig oder falsch sind. Kreuzen Sie das R an, wenn Sie sie für richtig halten, und das F, wenn Sie sie für falsch halten. In jeder Multiple-Choice-Aufgabe erhalten Sie einen Punkt für jede korrekte Antwort.

Aufgabe 1. Seien X eine Menge, $f: X \to X$ eine Abbildung und $A, B \subset X$ Teilmengen.

- 1. Es gilt stets $f(A \cap B) = f(A) \cap f(B)$.
- 2. Sind $f|_A$ und $f|_B$ surjektiv, so ist auch f surjektiv.
- 3. Ist f injektiv, so gilt $f(X \setminus A) = f(X) \setminus f(A)$.
- 4. Es gilt stets $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.

 $\mathbf{Aufgabe}$ 2. Sei V ein Vektorraum der Dimension 3 und W ein Vektorraum der Dimension 4 und seien

$$v_1, v_2, v_3 \in V$$
 linear unabhängige Vektoren $w_1, w_2, w_3 \in W$ linear unabhängige Vektoren $z_1, z_2, z_3 \in W$ linear abhängige Vektoren

Dann gilt:

- 1. Es gibt genau eine lineare Abbildung $f: V \to W$ mit $f(v_i) = w_i$ für alle i = 1, 2, 3.
- 2. Es gibt genau eine lineare Abbildung $g: W \to V$ mit $g(w_i) = v_i$ für alle i = 1, 2, 3.
- 3. Es gibt genau eine lineare Abbildung $h: V \to W$ mit $h(v_i) = z_i$ für alle i = 1, 2, 3.
- 4. Es gibt wenigstens eine lineare Abbildung $e: W \to V$ mit $e(z_i) = v_i$ für alle i = 1, 2, 3.

Aufgabe 3. Seien V, W endlichdimensionale Vektorräume, und sei $f: V \to W$ eine lineare Abbildung, und $f^{\top}: W^{\top} \to V^{\top}$ die transponierte Abbildung zwischen den Dualräumen.

- 1. Ist f injektiv, so ist f^{\top} stets injektiv.
- 2. Ist f injektiv, so ist f^{\top} stets surjektiv. 3. Ist f surjektiv, so ist f^{\top} stets surjektiv.
- 4. Ist f ein Isomorphismus, so ist f^{\top} stets ein Isomorphismus.

Aufgabe 4. Sei $f \in \text{End}_{\mathbb{R}}(V)$ ein Endomorphismus eines endlichdimensionalen reellen Vektorraums V, so dass gilt $f^2 = 2 \operatorname{id}_V$.

- 1. Der Endomorphismus f ist stets invertierbar.
- 2. Es gilt stets det f = -2.
- 3. Der Endomorphismus f ist stets diagonalisierbar.
- 4. Es gilt stets $\dim_k V = 2$.

In jeder der folgenden Aufgabe gibt es 6 Punkte.

Aufgabe 5. Man berechne die Inverse der Matrix

$$M = \begin{pmatrix} 1 & 2 & 5 \\ 1 & 3 & 7 \\ 2 & 4 & 11 \end{pmatrix}$$

Aufgabe 6. Sei

$$M = \begin{pmatrix} 1 & -2 & -3 & 1 \\ 2 & -4 & 0 & 5 \\ 1 & -2 & -1 & 2 \end{pmatrix} \in \operatorname{Mat}(3 \times 4; \mathbb{R})$$

und bezeichne M auch die durch diese Matrix gegebene lineare Abbildung $\mathbb{R}^4 \to \mathbb{R}^3$.

- (i) Man bestimme eine Basis von $\ker(M)$, und man ergänze diese zu einer Basis von \mathbb{R}^4 .
- (ii) Man bestimme eine Basis von Im(M).
- (iii) Man bestimme alle reellen Lösungen des Gleichungssystems

$$M \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}.$$

Aufgabe 7. In \mathbb{R}^3 seien U, V die Untervektorräume

$$U = \operatorname{span}\left\langle \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\rangle, \qquad V = \operatorname{span}\left\langle \begin{pmatrix} 2\\-1\\-1 \end{pmatrix}, \begin{pmatrix} 0\\1\\2 \end{pmatrix} \right\rangle$$

Man finde einen Endomorphismus $f \in \operatorname{End}_{\mathbb{R}}(\mathbb{R}^3)$ mit $\ker f = U, \operatorname{Im}(f) = V$ und $f^2 = f$, und man schreibe seine Matrix bezüglich der Standardbasis von \mathbb{R}^3 . Ist dieser Endomorphismus eindeutig bestimmt?

Aufgabe 8. Man bestimme das Inverse der Nebenklasse von 16 im Körper \mathbb{F}_{53} .

Aufgabe 9. Sei $A \in Mat(4; \mathbb{Q})$ die Matrix

$$A = \begin{pmatrix} 2 & 0 & 0 & 3 \\ 4 & 2 & 0 & 4 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

- (i) Man berechne das charakteristische Polynom von A.
- (ii) Man bestimme die Eigenwerte und die zugehörigen Eigenvektoren der Matrix A.
- (iii) Ist A triagonalisierbar? Falls so, finde man eine Basis \mathcal{B} , bezüglich derer die Matrix $_{\mathcal{B}}[f]_{\mathcal{B}}$ von der durch A gegebenen linearen Abbildung f obere Dreiecksgestalt hat.

Aufgabe 10. Sei $V = \text{Mat}(2 \times 2; k)$, sei $A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ und sei $f \colon V \to V$ der Endomorphismus definiert durch die Vorschrift

$$f: X \longmapsto AX^{\top},$$

wobei X^{\top} die Transponierte von X ist. Für $k = \mathbb{C}, \mathbb{R}, \mathbb{F}_2$ bestimme man, ob f diagonalisierbar und/oder trigonalisierbar ist.

Aufgabe 11. Man zeige: Ist die Summe $a^3 + b^3 + c^3$ von drei Kubikzahlen durch 7 teilbar, dann ist eine der drei Zahlen a, b oder c durch 7 teilbar.

Aufgabe 12. Sei V ein drei-dimensionaler Vektorraum über einem endlichen Körper \mathbb{F} mit q Elementen.

- (i) Man zeige, dass V genau $q^2 + q + 1$ eindimensionale Untervektorräume hat.
- (ii) Man zeige, dass V genau $2(2+q+q^2)$ Untervektorräume hat.

Aufgabe 13. Man zeige, dass es für $n \ge 2$ in der n-ten symmetrischen Gruppe S_n genau $\frac{n!}{2}$ Permutationen mit Signum +1 und genau $\frac{n!}{2}$ Permutationen mit Signum -1 gibt.

2