

4-Digit 7-Segment Display

Introduction

We used a 7-segment tube before. When we want to display more than one number, then multidigit tube is required. Here we introduce four digital tube, actually each individual 7-segment tube is almost the same as the tube used above. In this experiment, we will use the Arduino to drive a common anode four digital tube.

Four Digits Displays Series

Four digital tube has 12 pins. The upper left is the biggest number 12 pin. Besides the 8-segment we used to display "adbcdefg", there are another 4 pins D1, D2, D3, D4 to be used as the "bit" pins. When the "bit" pins of common anode four digital tube is high level, the corresponding tubes light up. The display principle of four digital tube is that constantly scanning D1, D2, D3, D4, and then the corresponding eight-segment tubes will light up in turn. Due to the residual effect of human eye, so it looks like the four digital tube display at the same time.

With the principle introduced above, we now make a simulated countdown time bomb like the movies do. The bomb will exploded in one minute.

Experiment Principle

The most important purpose of this program is how to scan the four digital tube dynamically. In fact, with the single digital tube display experiment before, the display of four digital tube is quite easy. Due to it is attributed to a common anode tube, first of all, we are going to set D1, D2, D3, D4 to low level, all LED turn out, then we output the truth table of "adbcdefg" to the corresponding gpio port, select the corresponding bit pins and scan constantly. How to implement the 1 minute countdown? In the program, we will continuously get the current time through millis () function and determine whether it is greater than 1000ms. If so compared to the time before, the countdown time minus 1, then it is translated into character string that the Nixie tube displays.

Experiment Purpose

The aim is to display "1234" four characters via dynamically scanning 4-Digit 7-Segment Display.

Component List

- Keywish Arduino UNO R3 Mainboard
- Breadboard
- USB cable
- ◆ 4-Digit 7-Segment Display * 1
- 1k Resistor * 8
- 4.7k Resistor * 4
- Several jumper wires

Schematic Diagram

Wiring of Circuit

arduino Uno	4-Digit 7-Segment Display	
2	9(D0)	
3	14(D1)	
4	8(D2)	
5	12(D3)	
6	13(a)	
7	3(b)	
8	4(c)	
9	10(d)	
10	6(e)	
11	11(f)	
12	15(g)	
13	16(h)	
A0	5(D7)	
A1	2(D6)	
A2	7(D5)	
A3	1(D4)	

Code

```
#include "SegmentDisplay.h"
#define LED A 13  // define Arduino GPIO1 for led a
#define LED B 2 // define Arduino GPIO2 for led b
#define LED C 3
                    // define Arduino GPIO3 for led c
                  // define Arduino GPIO4 for led d
#define LED D 4
                    // define Arduino GPIO5 for led e
#define LED E 5
#define LED_F 6  // define Arduino GPIO6 for led f
#define LED G 7
                    // define Arduino GPIO7 for led g
#define LED H 8  // define Arduino GPIO8 for led h
#define LED D1 9
#define LED D2 10
#define LED D3 11
#define LED D4 12
SegmentDisplay _4Bit_7SegmentDisplay(LED_A, LED_B, LED_C, LED_D, LED_E, LED_F, LED_G,
LED_H, LED_D1, LED_D2, LED_D3, LED_D4);//初始化对象,把显示段和片选引脚初始化
 int ShowTime = 60, count = 0;
void setup()
{
   Serial.begin (9600);
   4Bit 7SegmentDisplay.TurnOffAllLed(); //先熄灭所有发光段
}
void loop()
   if (count++ > 50 )
      ShowTime-- ;
      count = 0;
      Serial.println(ShowTime);
   4Bit 7SegmentDisplay.DisplayChar((int)ShowTime); //不断刷新要显示的数字注意是 int 型
   delay(5);
   if (ShowTime == 0) {
      4Bit 7SegmentDisplay.TurnOffAllLed();
      while (1);
   }
}
```


Notice: The 4 numeric digits are converted into the value of AscII by number2dis, say, we are going to convert "1234", this should be as follows

Loop	numble	bit_base	disp
1	1234	1000	1
2	234	100	2
3	34	10	3
4	4	1	4

Experiment Result

Mblock programming program

Mblock writtes 4-Digit 7-Segment Display program as shown in the figure below:


```
sensor Program

4*7_Segment Pin A 13 B 2 C 3 D 4 E 5 F 6 G 7 H 8 D1 9 D2 10 D3 11 D4 12

set count v to 0

set a v to 60

forever

if count++ > 50 then

change a v by -1

set count v to 0

4*7_Segment Print a

if a = 0 then

4*7_Segment Off
```