Creating Effect Size Plots (ggplot2)

Jacky Choi, MPH

jmc4005@med.cornell.edu

2022-06-23

About

• Effect size plots illustrate the impact of your coefficients in your regression model

• Easy to understand visually and good summary of your findings

Using ggplot2 allows customizable edits and additions

• Can use gtsummary as a quick option

• Code here can be adapted for forest plots, but look into package forestplot

Example

Unadjusted results between several covariates and tumor response

1 https://www.danieldsjoberg.com/bsttfun/reference/as_forest_plot.html

Components

Table

Contains the estimate and CI, the outcomes and/or other variables of interest

• Optionally, cases/events in each substratum, p-values, etc.

Plot

Displays the actual plot associated with the estimate and CI

• Can customize heavily here

Let's use an example and start building the components!

Example

- Retrospective study examining the effect of hip arthroplasty on three separate primary outcomes (related return to OR, unplanned and related readmission, and prolonged LOS) after adjusting for other covariates
- After data cleaning, we obtained 146 patients who underwent hip arthroplasty and 332 patients who did not undergo the procedure

##				cohort	sex	age	bmi	race_new	rtor	readmit	prolonged_los
##	1	No	Hip	Arthroplasty	Male	62	36.41	Asian	0	0	0
##	2	No	Hip	Arthroplasty	Male	50	26.64	White	0	0	0
##	3	No	Hip	Arthroplasty	Female	35	20.20	Asian	0	0	1
##	4	No	Hip	Arthroplasty	Female	54	31.58		0	0	0
##	5		Hip	Arthroplasty	Male	43	30.57	White	0	0	1
##	6	No	Hip	Arthroplasty	Female	53	21.63	White	0	0	0
##	7	No	Hip	Arthroplasty	Female	21	20.25	White	0	0	1
##	8	No	Hip	Arthroplasty	Male	54	40.06	White	0	0	1
##	9		Hip	Arthroplasty	Male	88	17.55	White	0	0	1
##	10	No	Hip	Arthroplasty	Female	49	28.48	Asian	0	0	0

Results

Table 3. Multivariable Logistic Reg Model - Related Return to OR						
Characteristic Estimate ⁷ 95% Cl ⁷ p-v						
Cohort						
No Hip Arthroplasty	_	_				
Hip Arthroplasty	1.05	0.34, 3.00	>0.9			
Sex						
Female	_	_				
Male	0.27	0.09. 0.72	0.014			

Table 4. Multivariable Logistic Reg Model: Unplanned Related Readmission						
Characteristic Estimate ¹ 95% Cl ¹ p-va						
Cohort						
No Hip Arthroplasty	-	_				
Hip Arthroplasty	1.05	0.46, 2.30	>0.9			
Sex						
Female	_	_				
Male	1 02	0.52 2.00	>0.9			

Table 5. Multivariable Logistic Reg Model - Prolonged LOS						
Characteristic	Estimate ¹	95% CI ¹	p-value			
Cohort						
No Hip Arthroplasty	_	_				
Hip Arthroplasty	1.72	0.99, 2.99	0.052			
Sex						
Female	_	_				
Male	0.87	0.54 1.40	0.6			

Table

```
#Set up table
table_df <- data.frame(labels = c("Outcome",
                                    #Outcome 1
                                    "Related Return to OR", " No Hip Arthroplasty", " Hip Arthroplasty",
                                    #Outcome 2
                                    "Unplanned Related Readmission", " No Hip Arthroplasty ", " Hip Arthroplasty ",
                                    #Outcome 3
                                    "Prolonged LOS", " No Hip Arthroplasty ", " Hip Arthroplasty "),
                        eventnum = c("events/N",
                                      #Outcome 1
                                      NA, "21/332", "7/146",
                                      #Outcome 2,
                                      NA, "33/332", "11/146",
                                      #Outcome 3,
                                      NA, "71/332", "44/146"),
                        or_ci = c("aOR (95% CI)",
                                   NA, "--- ", "1.05 (0.34, 3.00)",

NA, "--- ", "1.05 (0.46, 2.30)",

NA, "--- ", "1.72 (0.99, 2.99)"),
                        color = c(NA,
                                   #Outcome 1
                                   "gray95", NA, NA,
                                   #Outcome 2
                                   "gray95", NA, NA,
                                   #Outcome 3
                                   "gray95", NA, NA))
```

Table

labels \$	eventnum [‡]	or_ci ‡	color [‡]
Outcome	events/N	aOR (95% CI)	NA
Related Return to OR	NA	NA	gray95
No Hip Arthroplasty	21/332		NA
Hip Arthroplasty	7/146	1.05 (0.34, 3.00)	NA
Unplanned Related Readmission	NA	NA	gray95
No Hip Arthroplasty	33/332		NA
Hip Arthroplasty	11/146	1.05 (0.46, 2.30)	NA
Prolonged LOS	NA	NA	gray95
No Hip Arthroplasty	71/332		NA
Hip Arthroplasty	44/146	1.72 (0.99, 2.99)	NA

Plot

```
#Set up plot
plot_df <- data.frame(labels = c(table_df$labels),</pre>
                      or = c(NA,
                             #Outcome 1
                             NA, NA, 1.05,
                             #Outcome 2
                             NA, NA, 1.05,
                             #Outcome 3
                             NA, NA, 1.72),
                      or_{low} = c(NA,
                                 #Outcome 1
                                 NA, NA, 0.34,
                                 #Outcome 2
                                 NA, NA, 0.46,
                                 #Outcome 3
                                 NA, NA, 0.99),
                      or_high = c(NA,
                                   #Outcome 1
                                  NA, NA, 3.00,
                                   #Outcome 2
                                  NA, NA, 2.30,
                                   #Outcome 3
                                  NA, NA, 2.99))
```

labels \$	or ‡	or_low [‡]	or_high [‡]
Outcome	NA	NA	NA
Related Return to OR	NA	NA	NA
No Hip Arthroplasty	NA	NA	NA
Hip Arthroplasty	1.05	0.34	3.00
Unplanned Related Readmission	NA	NA	NA
No Hip Arthroplasty	NA	NA	NA
Hip Arthroplasty	1.05	0.46	2.30
Prolonged LOS	NA	NA	NA
No Hip Arthroplasty	NA	NA	NA
Hip Arthroplasty	1.72	0.99	2.99

Join Table and Plot

```
#Join table and plot
table_plot_df <- table_df %>%
  left_join(plot_df, "labels")

#Set labels in final plot
table_plot_df$labels <- factor(table_plot_df$labels, levels = table_plot_df$labels)</pre>
```

labels \$	eventnum 🕏	or_ci ‡	color ‡	or ‡	or_low [‡]	or_high 🕏
Outcome	events/N	aOR (95% CI)	NA	NA	NA	NA
Related Return to OR	NA	NA	gray95	NA	NA	NA
No Hip Arthroplasty	21/332		NA	NA	NA	NA
Hip Arthroplasty	7/146	1.05 (0.34, 3.00)	NA	1.05	0.34	3.00
Unplanned Related Readmission	NA	NA	gray95	NA	NA	NA
No Hip Arthroplasty	33/332		NA	NA	NA	NA
Hip Arthroplasty	11/146	1.05 (0.46, 2.30)	NA	1.05	0.46	2.30
Prolonged LOS	NA	NA	gray95	NA	NA	NA
No Hip Arthroplasty	71/332		NA	NA	NA	NA
Hip Arthroplasty	44/146	1.72 (0.99, 2.99)	NA	1.72	0.99	2.99

```
#ggplot for plot
ggplot(table_plot_df, aes(x = or, y = labels, xmin = or_low, xmax =
    theme(axis.text.y = element_blank(),
        axis.title.y = element_blank(),
        plot.margin = margin(55, -10, 33, 0))
```



```
#ggplot for plot
ggplot(table_plot_df, aes(x = or, y = labels, xmin = or_low, xmax =
    scale_y_discrete(limits = rev(table_plot_df$labels)) +
    theme(axis.text.y = element_blank(),
        axis.title.y = element_blank(),
        plot.margin = margin(55, -10, 33, 0))
```

```
#ggplot for plot
ggplot(table_plot_df, aes(x = or, y = labels, xmin = or_low, xmax =
    scale_y_discrete(limits = rev(table_plot_df$labels)) +
    xlab("Adjusted OR") +
    theme(axis.text.y = element_blank(),
        axis.title.y = element_blank(),
        plot.margin = margin(55, -10, 33, 0))
```

Adjusted OR

```
#ggplot for plot
ggplot(table_plot_df, aes(x = or, y = labels, xmin = or_low, xmax =
    scale_y_discrete(limits = rev(table_plot_df$labels)) +
    xlab("Adjusted OR") +
    ylab("Adjusted OR with 95% Confidence Interval") +
    theme(axis.text.y = element_blank(),
        axis.title.y = element_blank(),
        plot.margin = margin(55, -10, 33, 0))
```



```
#ggplot for plot
ggplot(table_plot_df, aes(x = or, y = labels, xmin = or_low, xmax =
    scale_y_discrete(limits = rev(table_plot_df$labels)) +
    xlab("Adjusted OR") +
    ylab("Adjusted OR with 95% Confidence Interval") +
    geom_vline(xintercept = 1, linetype = 3) +
    theme(axis.text.y = element_blank(),
        axis.title.y = element_blank(),
        plot.margin = margin(55, -10, 33, 0))
```



```
#ggplot for plot
ggplot(table_plot_df, aes(x = or, y = labels, xmin = or_low, xmax =
    scale_y_discrete(limits = rev(table_plot_df$labels)) +
    xlab("Adjusted OR") +
    ylab("Adjusted OR with 95% Confidence Interval") +
    geom_vline(xintercept = 1, linetype = 3) +
    geom_hline(aes(yintercept = labels, colour = color), size = 6.5)
    theme(axis.text.y = element_blank(),
        axis.title.y = element_blank(),
        plot.margin = margin(55, -10, 33, 0))
```



```
#ggplot for table
ggplot(table_plot_df, aes(y = labels))
```



```
#ggplot for table
ggplot(table_plot_df, aes(y = labels)) +
   scale_y_discrete(limits = rev(table_plot_df$labels))
```


Outcome	events/N	aOR (95% CI)
No Hip Arthroplasty	21/332	
Hip Arthroplasty	7/146	1.05 (0.34, 3.00)
No Hip Arthroplasty Hip Arthroplasty	33/332 11/146	1.05 (0.46, 2.30)
No Hip Arthroplasty	71/332	
Hip Arthroplasty	44/146	1.72 (0.99, 2.99)

```
#ggplot for table
ggplot(table_plot_df, aes(y = labels)) +
  scale_y_discrete(limits = rev(table_plot_df$labels)) +
  geom_text(aes(x = 0, label = labels), hjust = 0,
            fontface = ifelse(table_plot_df$labels == "Outcome", "b
           size = ifelse(table_plot_df$labels == "Outcome", 3.5, 3
  geom_text(aes(x = 4, label = eventnum),
           fontface = ifelse(table_plot_df$eventnum == "events/N",
           size = ifelse(table_plot_df$eventnum == "events/N", 3.5
  geom_text(aes(x = 7, label = or_ci), hjust = 1,
           fontface = ifelse(table_plot_df$or_ci == "aOR (95% CI)"
            size = ifelse(table_plot_df$or_ci == "aOR (95% CI)", 3.
  geom_hline(aes(yintercept = labels, colour = color), size = 6.5)
  scale_colour_identity() +
 theme_void() +
 theme(plot.margin = margin(55, -10, 57, 0))
```

Outcome	events/N	aOR (95% CI)
No Hip Arthroplasty	21/332	
Hip Arthroplasty	7/146	1.05 (0.34, 3.00)
No Hip Arthroplasty	33/332	
Hip Arthroplasty	11/146	1.05 (0.46, 2.30)
No Hip Arthroplasty	71/332	
Hip Arthroplasty	44/146	1.72 (0.99, 2.99)

```
#ggplot for table
ggplot(table_plot_df, aes(y = labels)) +
  scale_y_discrete(limits = rev(table_plot_df$labels)) +
  geom_text(aes(x = 0, label = labels), hjust = 0,
            fontface = ifelse(table_plot_df$labels == "Outcome", "b
           size = ifelse(table_plot_df$labels == "Outcome", 3.5, 3
  geom_text(aes(x = 4, label = eventnum),
           fontface = ifelse(table_plot_df$eventnum == "events/N",
           size = ifelse(table_plot_df$eventnum == "events/N", 3.5
  geom_text(aes(x = 7, label = or_ci), hjust = 1,
           fontface = ifelse(table_plot_df$or_ci == "aOR (95% CI)"
            size = ifelse(table_plot_df$or_ci == "aOR (95% CI)", 3.
  geom_hline(aes(yintercept = labels, colour = color), size = 6.5)
  scale_colour_identity() +
 theme_void() +
 theme(plot.margin = margin(55, -10, 57, 0))
```

Outcome	events/N	aOR (95% CI)
No Hip Arthroplasty	21/332	
Hip Arthroplasty	7/146	1.05 (0.34, 3.00)
No Hip Arthroplasty	33/332	
Hip Arthroplasty	11/146	1.05 (0.46, 2.30)
No Hip Arthroplasty	71/332	
Hip Arthroplasty	44/146	1.72 (0.99, 2.99)

Final Figure - ggplot

Use grid.arrange to combine the two ggplot objects

Notes

• You can customize the visual even further (e.g., if you wanted the estimates on the right side of the panel figure)

• It will probably take some adjustments to get the margins between the two figures to line up

