Pretvorbe elektronsko bogatih aromatov pri alternativnih pogojih

*Zoja Žnidarič*Mentor: prof. dr. Marjan Jereb

POVZETEK

V svojem diplomskem delu sem testirala pretvorbo elektronsko bogatih aromatov s karboksilnimi anhidridi in trifluoroocetno kislino (TFA).

Reakcija je trajnostna alternativa klasični reakciji Friedel-Craftsovega aciliranja, saj omogoča sintezo brez uporabe toksičnega in nevarnega katalizatorja AlCl₃.

TFA deluje kot katalizator in topilo hkrati, prav tako pa jo lahko po reakciji ponovno uporabimo in se tako izognemo nepotrebnemu odpadku. Aciliranje sem izvajala na spojinah z različno sterično zahtevnimi funkcionalnimi skupinami. Raziskovala sem tudi vpliv strukture elektronsko revnejših oziroma elektronsko bogatejših aromatov na potek aciliranja aromatskega obroča.

METODOLOGIIA

- Mešanje na sobni temperaturi
- Prekinitev reakcije z dodatkom NaHCO₃
- Ekstrakcija in odstranitev topila
- Analiza z ¹H NMR spektroskopijo
- Čiščenje: prekristalizacija, kolonska kromatografija
- Potrditev strukture s HRMS in IR spektroskopijo

Tabela 1: Primerjava TFA in AlCl₃

Lastnost	TFA	AICI ₃
Vloga	Katalizator in topilo	Katalizator
Nevarnost	Korozivna, vendar manj nevarni stranski produkti	Zelo koroziven, hitro reagira z vlago do HCl
Okoljski vpliv in recikliranje	Možnost recikliranja z destilacijo; manj odpadkov	Težko recikliramo zaradi hidrolize; več odpadkov
Uporaba v sintezi	Primerna za zeleno kemijo	Pogosta v klasičnih sintezah

REZULTATI

Tabela 2: Pregled produktov

Strukturna formula	Izkoristek [%]
O OMe OMe	74,93 %
OMe	92,02 %
O OMe OMe	77,14 %
OMe	65,55 %
OMe O O	91,29 %
OMe OOMe	45,05 %
OMe O O	81,29 %
OMe	2,72 %
	82,56 %
O OMe OMe	13,38 %

ZAKLJUČEK

Aciliranje je bilo uspešno na manj sterično zahtevnih spojinah. Izkoristki so bili dokaj visoki, med 50 in 90 %.

Za manj uspešno se je izkazalo na spojinah, ki vsebujejo estrsko funkcionalno skupino. Čeprav lahko estrska skupina, vezana preko kisika, donira elektrone, je resonančni učinek omejen zaradi elektron-privlačnega učinka karbonilne skupine. Tako se posledično zmanjša tudi aktiviranost aromata.

Temeljna literatura: G. Liu, B. Xu: Hydrogen bond donor solvents enabled metal and halogen-free Friedel– Crafts acylations with virtually no waste stream. *Tetrahedron Lett.* **2018**, *59*, 869–872.

= število ekvivalentov

PRVI TIP REAKCIJE

Na aromatskih spojinah z acetanhidridom v prisotnosti TFA

DRUGITIP REAKCIJE

Na benzojski kislini z 1,3-dimetoksibenzenom v prisotnosti trifluoroacetanhidrida (TFAA) in TFA