Ejercicio 1. Suponga que tenemos un conjunto con m puntos $\{(xi, yi)\}_{i=1}^m$. Escriba el desarrollo para encontrar la mejor parábola, en el sentido de mínimos cuadrados, que ajusta al conjunto de datos. Esto es, escriba el problema que se quiere resolver y el desarrollo para encontrar los coeficientes a,b,c del modelo cuadrático $f(x) = ax^2 + bx + c$, tal que la suma de los cuadrados de las diferencias entre f(xi) y yi es mínima.

El problema que se quiere resolver es el tratar de aproximar la función $\sin(x)$ con $x \in [0,\pi]$, con una función cuadrática, en otras palabras, queremos aproximar o encontrar la parábola más parecida a la función $\sin(x)$ con $x \in [0,\pi]$.

Para resolver esto, acudiremos al método de los mínimos cuadrados. Observamos la función del error que estamos cometiendo al aproximar, esto es: $E(x) = 1/2 \sum (f(xi) - \sin(xi))^2$. Gracias a que queremos aproximar a $\sin(x)$ por medio de una parábola, podemos escribir a $f(x) = ax^2 + bx + c$ como funciones del tipo \sum ai ϕ i(x) con ai igual a los coeficientes a, b y c, y ϕ i(x) las funciones ϕ 1(x) = x^2 , ϕ 2(x) = x y ϕ 3(x)= 1.

De esta manera podemos escribir el error como $E(x) = 1/2 \sum (\sum ai \phi i(x) - \sin(xi))^2$.

Lo que nos gustaría es que la función f(x) y $\sin(x)$ sean lo más parecidas que se pueda, en otras palabras, que el error E(x) sea lo mínimo posible. Así, observamos que la función E(x) puede crecer tanto como guste, y se minímiza en un punto. Para encontrar este punto en el que el error se minimiza, nos fijamos en el gradiente de E(x) y observamos cuando éste sea igual a 0, (la técnica de cálculo 1 para encontrar mínimos y máximos). Este punto nos asegura que es un mínimo, pues como antes mencioné, la función E(x) puede crecer tanto como guste, y no decrece tanto como se guste pues lo que se requiere es aproximarse a una función dada. El error E(x) describe una parábola dónde solo hay un punto mínimo.

Para encontrar el gradiente de E(x) y esto igualarlo a 0, vemos que el error $\varepsilon i = \sum a j \ \phi j(x i) - \sin(x i)$ lo podemos escribir de forma matricial como: $\Phi a - y$, donde y es el vector de $\sin(x i)$, a es el vector $(a,b,c)^T y \Phi$ es la matriz de las funciones $\phi i(x)$, de tal manera que $\varepsilon = \sum a i \ \phi i(x) - \sin(x) = \Phi a - y$, es el vector de errores para cada x i.

De esta manera, E(x) se puede escribir como $\|\varepsilon\|^2 = \varepsilon^T \varepsilon = (\Phi a - y)^T (\Phi a - y)$.

Para encontrar el mínimo, lo que deseamos es que $\nabla E(x) = 0$, pero como $E(x) = (\Phi a - y)^T(\Phi a - y)$, entonces $\nabla E(x) = 2\Phi^T\Phi a - 2\Phi^Ty$, entonces tenemos que si $\nabla E(x) = 0$, implica $2\Phi^T\Phi a - 2\Phi^Ty = 0$, lo que implica que $\Phi^T\Phi a = \Phi^Ty$. Así que tenemos entoces que solamente resolver este sistema de ecuaciones lineales para encontrar el vector $a = (a,b,c)^T$ de los coeficientes de la parábola que más se parece a sin(x).

En nuestro caso se obtiene que debemos resolver el sistema $\Phi^{T}\Phi a = \Phi^{T}y$ dado por:

Resolviendo este sistema con los métodos antes vistos, obtenemos el vector solución (a,b,c), en mi caso, resolví por método de factorización LU si $A=\Phi^T\Phi$ y $b=\Phi^Ty$, entonces resolví Ax=b y obtuve la solución a=x. Ahora sabemos que la parábola que más se parece a $\sin(x)$ es:

$$f(x) = (a,b,c)^{T}(x^{2},x,1) = (-0.4146, 1.3027, -0.445)^{T}(x^{2},x,1).$$

Después ya solamente graficámos para ver que tan parecido son las funciones y listo.