Chavarría-Zamora, Luis Alberto

II P

ILP

Segmentaci

Pipeline

Referencia

Arquitectura de Computadores I

Luis Alberto Chavarría-Zamora

ITCR

lachavarria@tec.ac.cr

22 de agosto de 2023

Chavarría-Zamora, Luis Alberto

Contenido

ILP

ILP

nentaciór

Referencias

1 ILP

2 Segmentación

3 Referencias

Chavarría-Zamora, Luis Alberto

Paralelismo

ILP

Segmentación Pipeline

Referencias

Ténica de programación e implementación en la que se pretende realizar operaciones simultáneamente, con el fin de reducir tiempos de ejecución, en un procesador.

Existen diferentes tipos de paralelismo:

- Paralelismo a nivel de bit.
- Paralelismo a nivel de instrucciones.
- Paralelismo a nivel de datos.
- Paralelismo a nivel de tareas.
- Paralelismo a nivel de hilos.

Chavarría-Zamora, Luis Alberto

ILP

Segmentacion Pipeline

Referencias

Paralelismo a nivel de instrucción (ILP)

Según Hennessy Patterson:

- "...overlap the execution of instructions and improve performance. . . "
- "... is a measure of how many of the instructions in a computer program can be executed simultaneously..."

IF	ID	EX	MEM	WB				
i	IF	ID	EX	MEM	WB			
t .		IF	ID	EX	MEM	WB		
			IF	ID	EX	MEM	WB	
				IF	ID	EX	MEM	WB

Chavarría-Zamora, Luis Alberto

ΙP

Segmentaci

Pipeline

Referencia

Paralelismo a nivel de instrucción (ILP)

Técnica de **paralelismo** basada en la ejecución simultánea de instrucciones.

Posee dos enfoques:

- Paralelismo por hardware (dinámico) ejecución
- Paralelismo por software (estático) compilación

Tipos de ILP:

- Segmentación Pipeline
- Ejecución fuera de orden (OoOE)
- VLIW
- CPU's superescalares

Chavarría-Alberto

Zamora, Luis

ILP - Bloque básico

Corresponde a una sección de código secuencial que no presenta ramificaciones (branches) hasta el final del mismo. En un bloque básico, el flujo de control es secuencial y no se detiene hasta terminar el bloque.

Chavarría-Alberto

Zamora, Luis

ILP - Bloque básico

Corresponde a una sección de código secuencial que no presenta ramificaciones (branches) hasta el final del mismo. En un bloque básico, el flujo de control es secuencial y no se detiene hasta terminar el bloque.

```
= x + y;
if(x > z)
   y = x;
   x++:
else
   z++;
w = x + z;
```

Source Code

$$w = x + z;$$

Basic Blocks

Chavarría-Zamora, Luis Alberto

Tiempo de ejecución en el peor de los casos (WCET)

Tiempo máximo que tarda en ejecutar un código en un hardware específico. Fundamental en sistemas de tiempo real.

- Análisis estático, típicamente.
- x_i puede tener restricciones estructurales y/o dadas por el programador.

Dado un programa con N bloques básicos, donde cada bloque Bi, que posee un tiempo de ejecución máximo c_i , se ejecuta un número de veces x_i , el WCET es:

Chavarría-Zamora, Luis Alberto

ILP

Pipeline

Referencia

Tiempo de ejecución en el peor de los casos (WCET)

Tiempo máximo que tarda en ejecutar un código en un hardware específico. Fundamental en sistemas de tiempo real.

- Análisis estático, típicamente.
- x_i puede tener restricciones estructurales y/o dadas por el programador.

Dado un programa con N bloques básicos, donde cada bloque Bi, que posee un tiempo de ejecución máximo c_i , se ejecuta un número de veces x_i , el WCET es:

$$\sum_{i=1}^{N} c_i \cdot x_i$$

Chavarría-Zamora, Luis Alberto

ILP

Segmentación Pipeline

Referencia

Tiempo de ejecución en el peor de los casos (WCET)

Tiempo máximo que tarda en ejecutar un código en un hardware específico. Fundamental en sistemas de tiempo real.

- Análisis estático, típicamente.
- x_i puede tener restricciones estructurales y/o dadas por el programador.

Dado un programa con N bloques básicos, donde cada bloque Bi, que posee un tiempo de ejecución máximo c_i , se ejecuta un número de veces x_i , el WCET es:

$$\sum_{i=1}^{N} c_i \cdot x_i + 4 * *$$

Chavarría-Alberto

Zamora, Luis

Mejoras ILP mediante Hardware

Técnicas que permiten hacer hardware capaz de procesar mas instrucciones simultáneamente

- Segmentación Pipeline.
- OoOE.
- VLIW.
- Superescalar.
- Especulación*.
- Renombramiento de registros.

Chavarría-Zamora, Luis Alberto

Mejoras ILP mediante Hardware

Técnicas que permiten hacer hardware capaz de procesar mas instrucciones simultáneamente

- Segmentación Pipeline.
- OoOE.
- VLIW.
- Superescalar.
- Especulación*.
- Renombramiento de registros.
- * Tarea moral: Spectre and Meltdown.

Chavarría-Zamora, Luis Alberto

LP

ILP

Segmentació

Pipeline

Referencias

Segmentación - Pipeline

Técnica utilizada en el diseño de CPUs para aumentar el rendimiento, mediante la separación de las etapas en el proceso de ejecución de una instrucción.

Chavarría-Zamora, Luis Alberto

ILP

ILP

Segmentació

Pipeline

Referencias

Segmentación - Pipeline

El objetivo del diseñador del pipeline es balancear la longitud de cada etapa del pipeline.

 $\frac{\text{Time per instruction on unpipelined machine}}{\text{Number of pipe stages}}$

De esta forma se obtiene un speedup teórico de N (número de etapas).

Chavarría-Alberto

Zamora, Luis

Pipeline

Supuestos Pipeline

- Todas las instrucciones pasan por todas las etapas.
- Las etapas no comparten recursos de hardware entre sí.
- El tiempo de propagación entre las etapas es el mismo.
- Las instrucciones son independientes entre sí.
- Las etapas se puede aislar temporalmente.

Chavarría-Alberto

Zamora, Luis

Pipeline

Segmentación - MIPS

 $t_c > max \{t_{IM}, t_{RF}, t_{AIU}, t_{DM}, t_{RW}\}$

Chavarría-Zamora, Luis Alberto

LP

ILP

Segmentació Pipeline

Referencia

Etapas básicas de un pipeline

- Búsqueda de instrucción (IF): Enviar el PC a memoria, traer nueva instrucción, actualizar el PC.
- Decodificación de instrucción (ID): "Traducción de instrucción", lectura de registros operandos.
- Ejecución /Dir efectiva (Ex): Operaciones en ALU: Memoria efectiva, R-R, R-I.
- Acceso a memoria (MEM): Instrucciones L/S.
- Escritura a registros (WB): Escritura de resultados R-R o instrucciones L/S a banco de registros.

Chavarría-Zamora, Luis Alberto

ILP

Segmentaci

Pipeline

Referencia

Pipeline Ideal

	Ciclo de reloj								
Número de instrucción	1	2	3	4	5	6	7	8	9
Instrucción i	IF	ID	EX	MEM	WB				
Instrucción i + 1		IF	ID	EX	MEM	WB			
Instrucción i+2			IF	ID	EX	MEM	WB		
Instrucción i+3				IF	ID	EX	MEM	WB	
Instrucción i+4					IF	ID	EX	MEM	WB

Chavarría-Zamora, Luis Alberto

Pipeline

Uso de hardware

Chavarría-Alberto

Zamora, Luis

Pipeline

Actividad Breakout Rooms

	Ciclo de reloj								
Número de instrucción	1	2	3	4	5	6	7	8	9
Instrucción i	IF	ID	EX	MEM	WB				
Instrucción i $+$ 1		IF	ID	EX	MEM	WB			
Instrucción i+2			IF	ID	EX	MEM	WB		
Instrucción i+3				IF	ID	EX	MEM	WB	
Instrucción i+4					IF	ID	EX	MEM	WB

Asumiendo una estructura pipeline de cinco etapas indique:

- ¿Cuándo puede haber conflicto de recursos si se usara un esquema similar a la máquina de Von Neumann?
- ¿Cuándo puede haber conflicto de recursos si se usara un esquema similar a la máquina de Harvard?

Chavarría-Zamora, Luis Alberto

ILP

ILP

Segmentacio Pipeline

Referencias

Ganancia en desempeño

La ganancia en el desempeño debido al pipeline está dada por

$$\begin{aligned} \text{Speedup from pipelining} &= \frac{\text{Average instruction time unpipelined}}{\text{Average instruction time pipelined}} \\ &= \frac{\text{CPI unpipelined} \times \text{Clock cycle unpipelined}}{\text{CPI pipelined} \times \text{Clock cycle pipelined}} \\ &= \frac{\text{CPI unpipelined}}{\text{CPI pipelined}} \times \frac{\text{Clock cycle unpipelined}}{\text{Clock cycle pipelined}} \end{aligned}$$

Chavarría-Zamora, Luis Alberto

ILP

Pipeline

Referencias

Ejemplo ARM Cortex R52

Figure B-1 Cortex-R52 pipeline

Alberto

Chavarría-Zamora, Luis

Pipeline

Ejemplo ARM Cortex A73

Chavarría-Zamora, Luis Alberto

. .

ILP

Segmentaci

Pipeline

Referencia

Ventajas y desventajas

Ventajas

- Aumenta el rendimiento del CPU.
- Brinda determinismo en ejecución de instrucciones.

Desventajas

- Etapas e instrucciones lentas afectan el rendimiento general
- Mayor complejidad, más hardware.
- Latencia es ligeramente mayor.
- Riesgos

Chavarría-Zamora, Luis Alberto

ILP

Segmentac

Referencias

Referencias

J. Hennesy y D. Patterson (2012)

Computer Architecture: A Quantitative Approach. 5th Edition. Elsevier – Morgan Kaufmann.

J. González y R. García (2019)

Notas de clase de los profesores: Jeferson González y Ronald García.

ARMv8-A Architecture Reference Manual

Intel® 64 and IA-32 architectures software developer's manual combined volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4

Chavarría-Zamora, Luis Alberto

II E

ILP

Segmentacio

Pipeline

Referencias

Arquitectura de Computadores I

Luis Alberto Chavarría-Zamora

ITCR

lachavarria@tec.ac.cr

22 de agosto de 2023