特性描述

TM1910-X是高精度的单通道LED恒流驱动芯片,不需要增加外部电阻设定电流大小,输出电流大小可在 5~65、120mA范围内选择。芯片具有极低的恒流输出转折压降,具有极宽的输入电压范围,具有极高的恒流输出精度和恒流输出稳定度。芯片具有过温保护功能,当芯片结温达到 135℃时,随着芯片温度继续上升,芯片会线性降低输出电流。TM1910-X芯片质量可靠,性能优秀,在各种 LED照明产品中都非常简单易用。

功能特点

- ▶ 单通道恒流LED驱动
- ▶ 5~65mA、120mA, 14 档恒定输出电流选择, 无需外部电阻设定电流
- ➤ 宽输入电压范围: 5V ~ 24V
- ▶ 电源转换效率高达 98%
- ➤ 超低drop-out压降(20mA驱动时,低至300mV)
- ▶ ±5%输出电流精度
- ▶ 电源及负载调变率 0.1%/V
- ▶ 芯片工作温度 -40℃~125℃
- 具有芯片过温保护功能
- ➤ SOT23-3, SOT-89 无铅环保封装

应用领域

标识牌照明(商标、指示牌、仓库存储、停车场等),发光字,灯条,灯带。

@ Titan Micro Electronics www.titanmec.com

管脚定义

管脚功能定义

引脚名称	引脚序号		功能说明	
	S0T23-3	SOT-89		
VP	1	1	电流输出端	
VDD	2	3	芯片电源输入端	
GND	3	2	芯片地	

产品型号

工作温度范围: -40°C to +125°C

产品型号	产品标识	产品封装
TM1910-5	19-5	
TM1910-10	19-10	
TM1910-15	19-15	
TM1910-20	19-20	
TM1910-25	19-25	
TM1910-30	19-30	
TM1910-35	19-35	S0T23-3
TM1910-40	19-40	
TM1910-45	19-45	
TM1910-50	19-50	
TM1910-55	19-55	
TM1910-60	19-60	
TM1910-65	19-65	
TM1910-120	19-120	SOT-89

集成电路系静电敏感器件,在干燥季节或者干燥环境使用容易产生大量静电,静电放电可能会损坏集成电路,天微电子建议采取一切适当的集成电路预防处理措施,不正当的操作焊接,可能会造成ESD损坏或者性能下降,芯片无法正常工作。

© Titan Micro Electronics www.titanmec.com

电气参数

1. 极限工作条件

参数名称	参数符号	7	单位			
VP电压	VP	-0.3∼+28		-0.3∼+28 V		V
电源电压	VDD	-0.3∼+28		V		
输出电流	Ivp		120	mA		
总功耗	Ртот	S0T23-3	300 (TS≤100°C)	mW		
心切代		SOT-89	700 (TS≤100°C)	IIIW		
最大结温	$T_{ ext{JMAX}}$	150		$^{\circ}$		
存储温度	Tstg	−65~+150		${\mathbb C}$		
工作结温	Topt	-40~+125		$^{\circ}\mathbb{C}$		
ESD	ESD (HBM)	4000		V		
	ESD (MM)	200		V		

2. 推荐工作条件

在 Ta=+25℃下测试,除非另有说明						-43 44
参数名称	参数符号	测试条件	最小值	典型值	最大值	单位
电源电压	VDD		5		24	V
静态电流	$I_{\scriptscriptstyle Q}$	VDD≥5V	200	250	300	uA
驱动电流	I_P	VDD≥5V	5		120	mA
驱动电流精度	Iskew	VDD=5V, VP=3V			5	%
输出端漏电流	${ m I}_{ m LK}$	VDD=0, VP=24V		-	1	uA
		VDD≥5V, I _P =20mA		0.3		
最小稳定压降	$V_{P_{MIN}}$	VDD≥5V, I _P =40mA		0.32		V
		VDD≥5V, I _P =60mA		0.35		
驱动电流线性调整	LDR	VDD=5, VP=3∼24V		0.1		%/V
驱动电流负载调整	LNR	VDD=5 \sim 24V, VP=3V		0.1		%/V
驱动电流温度调整	TR	VDD=5V, VP=3V		0.1	_	%10°C
调光频率	$f_{ exttt{REQ}}$	-	0.1		20	KHZ

© Titan Micro Electronics www.titanmec.com

应用信息

典型应用

下图中,VDD的限流电阻Rext: VCC=24V,推荐 $10K\Omega$ — $15K\Omega$; VCC=12V,推荐 $3K\Omega$ — $-5K\Omega$ 。 VP端口负载的LED数量 N_{LED} 是根据LED的压降、VCC的电压以及VP端的恒流电压来计算。 VP端口负载的LED数量 N_{LED} 计算公式如下:

$$N_{LED} = (V_{CC} - V_P) / V_{LED}$$
;

例: V_{CC}=24V, V_{LED}=3V, 取V_D=1V时, N_{LED}=(24V-1V)/3V=7.6, N_{LED}表示串接的LED数量, 即串联 灯数不超过7个。

 V_P 表示TM1910-X的 V_P 端口与芯片GND间的电压(V_P 应高于 I_{VP} 恒流拐点电压)。实际应用中,当 灯条较长,离电源接入点远的位置会存在 V_P CC下降,如果 V_P 没有到达恒流拐点电压,会出现输出达不到额定恒流值,此时可以通过减少串联的灯数以提高 V_P 值,或者增加电源接入点。

电路应用图如下图(A)、(B)。如对极低亮度时灯的一致效果要求高,建议使用下图方案(B)。

图 2 TM1910-X典型应用方案

当单颗芯片输出电流无法满足应用需求时,可以将多个芯片并联使用以实现扩流,如下图所示电路:

www.titanmec.com

PWM调光应用

过温保护:线性降电流

IC 结温过高可能会造成芯片损坏、系统发热着火等不可弥补的损失。过高的结温可能由大电流工作、线路板设计差或环境温度高等因素造成。

TM1910-X 具有过温保护功能。在 TM1910-X 结温上升到 135°C 时,过温保护电路会开始限制芯片输出电流。输出电流在芯片结温达到 160°C 时,输出电流会线性降低到 0。

© Titan Micro Electronics www.titanmec.com

典型工作特性曲线

测试条件: T_J=25℃, VDD=5V, VP=3V。

图 5

@ Titan Micro Electronics www.titanmec.com

IC 封装示意图(大 SOT23-3)

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	1. 15	1. 35	0.045	0.053	
A1	0.05	0.15	0.002	0.006	
A2	1.1	1.2	0.043	0.047	
b	0.3	0.4	0.012	0.016	
c	0.1	0.2	0.004	0.008	
D	2. 92	3.02	0.115	0.119	
Е	1.6	1. 7	0.063	0.067	
E1	2.8	3. 1	0.11	0. 12	
е	0.975 (BSC)		0. 038 (BSC)		
e1	1.95 (BSC)		0. 077 (BSC)		
L	0.35	0.55	0.14	0. 22	
θ	0°	8°	0°	8°	

e Titan Micro Electronics www.titanmec.com

V1.5

IC 封装示意图 (SOT-89)

Symbol	Dimensions In Millimeters		Dimensions In Inches		
ЗУШООТ	Min	Max	Min	Max	
A	1. 400	1.600	0.055	0.063	
b	0. 320	0. 520	0.013	0.020	
b1	0.400	0. 580	0.016	0.023	
С	0.350	0. 440	0.014	0.017	
D	4. 400	4.600	0. 173	0. 181	
D1	1.550 REF.		0.061 REF.		
E	2. 300	2.600	0.091	0. 102	
E1	3. 940	4. 250	0. 155	0. 167	
е	1.500 TYP.		0.060 TYP.		
e1	3.000 TYP.		0.118 TYP.		
L	0.900	1.200	0.035	0.047	

● All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知。)

@ Titan Micro Electronics www.titanmec.com