CS290: Introduction to Algorithmic Game Theory

Week 6.2, Cake Cutting (Dengji ZHAO)

SIST, ShanghaiTech University, China

Recap: The General Setting of Mechanism Design

- A set of n participants/players, denoted by N.
- A mechanism needs to choose some alternative from A
 (allocation space), and to decide a payment for each
 player.
- Each player i ∈ N has a private valuation function
 v_i : A → ℝ, let V_i denote all possible valuation functions for i.
- Let $v = (v_1, \dots, v_n), v_{-i} = (v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_n).$
- Let $V = V_1 \times \cdots \times V_n$, $V_{-i} = V_1 \times \cdots V_{i-1} \times V_{i+1} \times \cdots \times V_n$.

Recap: Social Choice

- A set of n players/voters.
- A set of alternatives A (the candidates).
- Let L be the set of all linear orders on A.
- Each voter i has a preference $\succ_i \in L$, a total order on A (antisymmetric, transitive). $a \succ_i b$ means i prefers a to b.

Cake Cutting

Cake Cutting

Cardinal Preferences

- A divisible resource *C*, say a cake.
- A set of *n* players to share/divide.
- Each player has valuation function v_i , which gives a value for each subset of C.

Question

How to divide the resource fairly?

Fairness

Proportionality Each player receives a piece that he values as at least 1/n of the value of the entire cake.

Envy-freeness Each player receives a piece that he values at least as much as every other piece.

- Two person share one cake.
- One person (the cutter) cuts the cake into two pieces.
- The other person chooses one (the chooser).

- Two person share one cake.
- One person (the cutter) cuts the cake into two pieces.
- The other person chooses one (the chooser).

Quiz

What is the best strategy for the cutter?

- Two person share one cake.
- One person (the cutter) cuts the cake into two pieces.
- The other person chooses one (the chooser).

Quiz

What is the best strategy for the cutter?

 Cut it into two pieces with equal value to him.

- Two person share one cake.
- One person (the cutter) cuts the cake into two pieces.
- The other person chooses one (the chooser).

Quiz

What is the best strategy for the cutter?

 Cut it into two pieces with equal value to him.

Does it satisfy proportionality?

- Two person share one cake.
- One person (the cutter) cuts the cake into two pieces.
- The other person chooses one (the chooser).

Quiz

What is the best strategy for the cutter?

 Cut it into two pieces with equal value to him.

Does it satisfy proportionality? Yes!

- Two person share one cake.
- One person (the cutter) cuts the cake into two pieces.
- The other person chooses one (the chooser).

Quiz

Does it satisfy envy-freeness?

A Cake Cutting Procedure: Last Diminisher

Question

How to extend Divide and Choose to more than two person settings?

- The players being ranged A, B, C, ... N.
- A cuts from the cake an arbitrary part.
- B has now the right, but is not obliged, to diminish the slice cut off.
- Whatever B does, C has the right (without obligation) to diminish still the already diminished (or not diminished) slice, and so on up to N.
- The rule obliges the "last diminisher" to take as his part the slice he was the last to touch.

A Cake Cutting Procedure: Last Diminisher

Quiz

- Does Last Diminisher satisfy proportionality?
- Does Last Diminisher satisfy envy-freeness?

Advanced Reading

 Computational Social Choice by F. Brandt, V. Conitzer and U. Endriss