Learning Arbitrary RDF Dataset Enrichment Graphs Using Pre- & Postcondition Broadcasting

Kevin Dreßler

Institut für Informatik Universität Leipzig

15.02.2019

Outline

- Motivation
- Approach
- Setup
 Setup
- 4 Roadmap

Section 1

Motivation

• Linked Data is becoming more and more important

¹Stats taken from LOD Laundromat. Links estimated.

- Linked Data is becoming more and more important
- Linked Open Data (LOD) Cloud ¹
 - 650k datasets
 - 38 billion triples
 - $n \cdot 10^6$ links (10 < n < 1000)

- Linked Data is becoming more and more important
- Linked Open Data (LOD) Cloud ¹
 - 650k datasets
 - 38 billion triples
 - $n \cdot 10^6$ links (10 < n < 1000)
- Can we use this vast amount of data as is?

¹Stats taken from LOD Laundromat. Links estimated.

- Linked Data is becoming more and more important
- Linked Open Data (LOD) Cloud ¹
 - 650k datasets
 - 38 billion triples
 - $n \cdot 10^6$ links (10 < n < 1000)
- Can we use this vast amount of data as is?

¹Stats taken from LOD Laundromat. Links estimated.

- Linked Data is becoming more and more important
- Linked Open Data (LOD) Cloud ¹
 - 650k datasets
 - 38 billion triples
 - $n \cdot 10^6$ links (10 < n < 1000)
- Can we use this vast amount of data as is?
- Not so easy, due to
 - limited resources

- Linked Data is becoming more and more important
- Linked Open Data (LOD) Cloud ¹
 - 650k datasets
 - 38 billion triples
 - $n \cdot 10^6$ links (10 < n < 1000)
- Can we use this vast amount of data as is?
- Not so easy, due to
 - limited resources
 - unreliable SPARQL endpoints

- Linked Data is becoming more and more important
- Linked Open Data (LOD) Cloud ¹
 - 650k datasets
 - 38 billion triples
 - $n \cdot 10^6$ links (10 < n < 1000)
- Can we use this vast amount of data as is?
- Not so easy, due to
 - limited resources
 - unreliable SPARQL endpoints
 - missing links

- Linked Data is becoming more and more important
- Linked Open Data (LOD) Cloud ¹
 - 650k datasets
 - 38 billion triples
 - $n \cdot 10^6$ links (10 < n < 1000)
- Can we use this vast amount of data as is?
- Not so easy, due to
 - limited resources
 - unreliable SPARQL endpoints
 - missing links
 - application-specific ontologies

¹Stats taken from LOD Laundromat. Links estimated.

- Linked Data is becoming more and more important
- Linked Open Data (LOD) Cloud ¹
 - 650k datasets
 - 38 billion triples
 - $n \cdot 10^6$ links (10 < n < 1000)
- Can we use this vast amount of data as is?
- Not so easy, due to
 - limited resources
 - unreliable SPARQL endpoints
 - missing links
 - application-specific ontologies
- RDF Dataset Enrichment to the rescue!

¹Stats taken from LOD Laundromat. Links estimated.

• RDF Dataset Enrichment: Adding / Deleting triples from an RDF Dataset

RDF Dataset Enrichment: Adding / Deleting triples from an RDF Dataset

Definition **Enrichment Operator**

Let \mathcal{D} be the set of all RDF Datasets. We call a function $o: \mathcal{D}^n \to \mathcal{D}^m$ an Enrichment Operator. We call n the in degree and m the out degree of o.

Definition **Enrichment Graph**

An Enrichment Graph G = (V, E, L) is a Directed Acyclic Labeled Multigraph.

The root vertices $V_r = v \in V$ $\exists u \in V, (u, v) \in E$ of an Enrichment Graph represent input RDF Datasets emitters.

The leaf vertices $V_I = v \in V \mid \exists u \in V, (v, u) \in E$ of an Enrichment Graph represent output RDF Datasets acceptors.

The intermediate vertices $V_i = V \setminus V_r \setminus V_l$ represent Enrichment Operators.

The function $O:V\to\mathcal{O}$ maps vertices to the entities they represent.

An edge $(u, v) \in E \subseteq V \times V$ represents flow of data.

The label function $L: E \to 2^{(\mathbb{N} \times \mathbb{N})}$ induces a mapping from the components of images and arguments of represented entities, i.e. for e = (u, v), an entry of the label multiset $l \in L(e) = (i,j)$ establishes a flow of data from the ith component in the image of O(u) to the *i*th argument of O(v).

Definition **Enrichment Graph** (Continued)

An Enrichment Graph G = (V, E, L) with $\forall e \in E : |L(e)| = 1$ is called an Enrichment Pipeline or a type 0 Enrichment Graph.

An Enrichment Graph G = (V, E, L) with $\exists e \in E : |L(e)| > 1 \land |V_r| = |V_l| = 1$ is called a type 1 Enrichment Graph.

An Enrichment Graph G = (V, E, L) with $\forall e \in E : |L(e)| > 1 \land |V_r| > 1 \land |V_l| = 1$ is called a type 2 Enrichment Graph.

An Enrichment Graph G=(V,E,L) with $\forall e\in E: |L(e)|>1 \land |V_r|>1 \land |V_l|>1$ is called a type 3 Enrichment Graph.

Configuring DEER

- Plugin architecture
- Most Enrichment Operators need parametrization
- Defining an Enrichment Graph requires expert knowledge
- → Use Machine Learning

Existing ML Algorithm in DEER

- Learns type 1 Enrichment Graphs based on Refinement Operators
- Training data: RDF Datasets Source (S) and Target (T)
- Fitness Function: F_1 score over triples
- ullet Iteratively construct Enrichment Graph G from Set of all Enrichment Operators ${\cal O}$
- Set G := nil, B := S
- Until Termination Criterion met:
 - $\forall o \in \mathcal{O}$: o.selfConfig(B, T)
 - $G := G \circ \arg \max_{F_1(T,B')} \{ o' \in \mathcal{O} | B' = (G \circ o')(B) \}$
 - B := G(B)

Analysis of Existing ML Algorithm in DEER

- Good theoretical properties (finite, proper, complete, not redundant)
- But several incorrect implicit assumptions
 - F_1 score over triples is indicative for fitness $\frac{1}{2}$
 - Counterexample: Filtering first
 - Enrichment Operators are independent 4
 - Counterexample: Linking → Dereferencing
 - Training data always contains sufficient information for self-configuration 4
 - possible, but not realistic
 - at least as hard to satisfy as manual configuration
- → Objective of this thesis: develop new approach

Derived Goals

The new Approach should:

- derive proper fitness function
- take interdependency of Enrichment Operators into account
- cope with incomplete information w.r.t. self-configuration
- be applicable for type 0, 1 & 2 Enrichment Graphs

Section 2

Approach

(1) Fixing the Fitness Function

- Weight recall higher than precision (F₂ score)
- Linear combination of F_2 score over triples, URI resources & literals
- Apply fuzzy matching to URI resources & literals

(2) Leveraging Enrichment Operator Interdependency

- ullet avoid local minima o employ genetic programming
- infer possible dependencies using top-down self-configuration
- recursive broadcast algorithm: $broadcast(\mathcal{G}, D_{\perp}, D_{\top})$
 - ullet each o assesses if $D_{ op}$ is a possible postcondition
 - each o reports a number between 0 and 1 based on its assessment
 - ullet if some termination criteria holds, return ${\cal G}$
 - ullet the Enrichment Operators reporting the highest k values are chosen
 - ullet for each chosen Enrichment Operator o_c call $broadcast(\mathcal{G}' = \{G \circ o_c | G \in \mathcal{G}\}, D_{\perp}, o_c^{-1}(D_{\top}))$
- started as: $\forall o \in \mathcal{O} : broadcast(\{\}, S, T)$

(3) Reconstructing Hidden Information for Self-Configuration

• top-down self-configuration reconstructs hidden information!

(4) From Type 0 to Type 2

- Type 0: Base implementation
- Type 1: Extends Type 0
 - Allow branching and merging in inital population generation
 - Force merging at leafs
 - Detect independent Enrichment Operators & parallelize
- Type 2: Theory not finished yet

Section 3

Evaluation Setup

Evaluation Setup

- find use cases for each Enrichment Graph type
- write manual configurations to generate training data
- run each experiment ten times
- record precision, recall, run time, logs
- ullet \rightarrow compare with baseline
- compare complexity of manual and learned Enrichment Graphs

Section 4

Roadmap

Roadmap

- Evaluation of Type 0: 22.02.
- Evaluation of Type 1: 01.03.
- Evaluation of Type 2: 15.03.
- Hand in thesis: 29.03.
- Final presentation: 12.04.
- Official due date: 07.05.

Thank You for Your Attention

