Lecture Notes in Category Theory

Paul Ossientis

December 8, 2019

Contents

1	Category 1.1 Definition	2
2	Functor	3
3	Natural Transformation	4
4	Adjunction 4.1 Definition	5 5

Category

1.1 Definition

Definition 1 We call category any tuple (Ob, Arr, dom, cod, id, o) where:

- (1) Ob is a collection with equality
- (2) Arr is a collection with equality
- (3) $\operatorname{dom} : \operatorname{Arr} \to \operatorname{Ob} is \ a \ map$
- (4) $\operatorname{cod}: \operatorname{Arr} \to \operatorname{Ob} is \ a \ map$
- (5) $id : Ob \rightarrow Arr \ is \ a \ map$
- (6) $\circ : Arr \times Arr \rightarrow Arr \text{ is a partial map}$

with the following properties, given $f, g, h \in Arr$ and $a \in Ob$:

- (1) $g \circ f \text{ is defined } \Leftrightarrow \operatorname{cod}(f) = \operatorname{dom}(g)$
- (2) $\operatorname{cod}(f) = \operatorname{dom}(g) \Rightarrow \operatorname{dom}(g \circ f) = \operatorname{dom}(f)$
- (3) $\operatorname{cod}(f) = \operatorname{dom}(g) \implies \operatorname{cod}(g \circ f) = \operatorname{cod}(g)$
- (4) $\operatorname{dom}\left(\operatorname{id}(a)\right) = a = \operatorname{cod}\left(\operatorname{id}(a)\right)$
- (5) $\operatorname{dom}(f) = a \implies f \circ \operatorname{id}(a) = f$
- (6) $\operatorname{cod}(f) = a \Rightarrow \operatorname{id}(a) \circ f = f$
- (7) $\operatorname{cod}(f) = \operatorname{dom}(g) \wedge \operatorname{cod}(g) = \operatorname{dom}(h) \Rightarrow (h \circ g) \circ f = h \circ (g \circ f)$

Functor

Natural Transformation

Adjunction

4.1 Definition

Definition 2 We call adjunction an ordered pair (F,G) where F is a functor $F: \mathcal{C} \to \mathcal{D}$ and G is a functor $G: \mathcal{D} \to \mathcal{C}$ while \mathcal{C} and \mathcal{D} are two locally-small categories for which there exists a natural isomorphism:

$$\alpha : \mathcal{D} \circ (F \times I_{\mathcal{D}}) \Rightarrow \mathcal{C} \circ (I_{\mathcal{C}^{op}} \times G)$$

in the functor category $[\mathcal{C}^{op} \times \mathcal{D}, \mathcal{S}et]$, where F also denotes $F: \mathcal{C}^{op} \to \mathcal{D}^{op}$.