MMU初始化和使能主要代码如下:

```
void kernel_vmm_enable() {
    write_prrr(0xf0040000);
    LogInfo("[vmm]: Primary Remap Registe writed\n");

    write_ttbcr(0xb0003500);
    LogInfo("[vmm]: ttbcr writed\n");

    write_ttbr0((uint32_t) kernelVMML1PT);
    LogInfo("[vmm]: ttbr0 writed\n");

    mmu_enable();
    LogInfo("[vmm]: vmm enabled\n");
}
```

1.write_prrr函数向内存重映射寄存器写入0xf0040000,对照下图,说明配置的attr3为11RW模式,attr0为0100模式。

	31 24	23 16	15 8	7 0		
MAIR0	Attr3	Attr2	Attr1	Attr0		
MAIR1	Attr7	Attr6	Attr5	Attr4		

Table B4-7 MAIRn.Attrm[7:4] encoding

Attrm[7:4]	Meaning
0000	Strongly-ordered or Device memory, see encoding of Attrm[3:0].
00RW, RW not 00	It is IMPLEMENTATION DEFINED whether the encoding is: UNPREDICTABLE Normal memory, Outer Write-Through ^b Transient.
0100	Normal memory, Outera Non-cacheable.
01RW, RW not 00	It is IMPLEMENTATION DEFINED whether the encoding is: UNPREDICTABLE Normal memory, Outer Write-Back Transient.
10RW	Normal memory, Outer a Write-Through Cacheable b, Non-transient c.
11RW	Normal memory, Outer ^a Write-Back Cacheable ^b , Non-transient ^c .

2.write_ttbcr向转换表基本控制寄存器(ttbcr)写入0xb0003500,对照下图,**表**配置为LPAE模式,ORGN1和IRGN1分别为01模式。

31	30	29-28	27-26	25-24	23	22	21–19	18–16	15–14	13–12	11–10	9–8	7	6	5	4	3	2-0
EAE	IDF	SH1	ORGN1	IRGN1	EPD1	A1	SBZP	T1SZ	SBZP	SH0	ORGN0	IRGN0	EPD0	SBZP	PD1	PD0	SBZP	TOSZ

• EAE - Extended Address Enable. SBZP if LPAE is not supported

Following fields are SBZP if EAE=0

- IDF Implementation Defined
- SH1 Shareability attribute for memory associated with translation table walks using TTBR1.

00	01	10	11
non-shareable	unpredictable	outer shareable	inner shareable

• ORGN1 - Outer cacheability using TTBR1

00	01	10	11
outer non-cacheable	outer write-back write-allocate cacheable	outer write-through cacheable	outer write-back no write-allocate cacheable

• IRGN1 - Inner cacheablility using TTBR1

00	01	10	11	
inner non-cacheable	inner write-back write-allocate cacheable	inner write-through cacheable	inner write-back no write-allocate cacheable	

- EPD1 Disable Page walks with TTBR1. If 0, table walks are performed. Otherwise, a translation fault is generated.
- A1 defines whether TTBR0 or TTBR1 defines the ASID, for 0 and 1 respectively. The ASID is the Address Space Identifier.
- SBZP Should Be Zero or Preserved. This is more commonly called RES0.
- T1SZ The size of the memory region addressed by TTBR1. 2^(32-T1SZ) is the size.
- SH0 like SH1, but for TTBR0.
- ORGN0 ""
- IRGN0 ""
- EPD0 ""

3.write_ttbr0向转换表基址寄存器0写入TLB表基地址kernelVMML1PT

64-bit TTBR0 and TTBR1 format

The bit assignments for the 64-bit implementations of TTBR0 and TTBR1 are identical, and are:

4.mmu_enable代表使能mmu。