Cenário

Buscando modelo com melhor desempenho em projeto de Machine Learning. No primeiro teste:

- Modelo Naive Bayes tem desempenho de 78%
- Modelo Multilayer Perceptron tem desempenho de 80%

Porém, o custo Computacional é o seguinte:

- Naive Bayes: criação do modelo em 3 minutos
- Multilayer Perceptron: criação do modelo em 2 horas

Pergunta:

Existe diferença estatisticamente significante entre os modelos (Naive Bayes: 78% e Multilayer Perceptron: 80%), ou esta diferença é devido ao acaso?

Se estes 2% forem reais, usaremos Multilayer Perceptron. Caso contrário, usaremos Naive Bayes

Solução: Teste de Hipótese Comparando Duas Médias Populacionais

Primeiro passo, coletar amostras aleatórias dos dois casos, ou seja, criar vários modelos de Naive Bayes e de Multilayer Perceptron, e anotar os resultados. Vamos supor que faremos 40 testes com cada algoritmo (a tabela abaixo é o resultado parcial):

Naive Bayes	Multilayer Perceptron
78	80
78	79
78	82
79	79
80	80
79	79
82	78
82	80
78	79
78	82

Observação:

Você precisa usar um processo aleatório de geração de dados de teste e treino para gerar os modelos, caso contrário todos terão o mesmo resultado!

Considerando x (Naive Bayes) e y (Multilayer Perceptron)

Etapas:

Calcular as médias (\overline{X} e \overline{Y}) e e os desvios padrão (s_x , s_y) das amostras

Anotar o tamanho das amostras (40)

•
$$\overline{X} = 79,2$$

•
$$\overline{Y} = 79.8$$

•
$$s_x = 2,61$$

•
$$s_v = 2.31$$

•
$$n_1 = 40$$

•
$$n_2 = 40$$

A hipótese nula é que a diferença da média das duas populações é igual a zero:

$$H_0 = \mu_x - \mu_y = 0$$

Estatística de Teste

$$\frac{\left(\overline{X} - \overline{Y}\right)}{\sqrt{\frac{S_{\mathcal{X}}^2}{n_1} + \frac{S_{\mathcal{Y}}^2}{n_2}}}$$

Solução:

Calcula a diferença entre as médias as amostras: (79,2 - 79,8) = -0,6

Calcula o erro padrão:
$$\sqrt{\frac{S_x^2}{n_1} + \frac{S_y^2}{n_2}} = \sqrt{\frac{6,81}{40} + \frac{5,33}{40}} = 0,54$$

Divisão medias pelo erro padrão: $\frac{-0.6}{0.54} = -1.11$

•
$$\overline{X} = 79,2$$

•
$$\overline{Y} = 79.8$$

•
$$s_y = 2.61$$

•
$$s_y = 2.31$$

•
$$n_1 = 40$$

•
$$n_2 = 40$$

Procurar - 1.11 na tabela Z = 0,1335

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06
3.6	.0002	.0002	.0001	.0001	.0001	.0001	.0001
3.5	.0002	.0002	.0002	.0002	.0002	.0002	.0002
3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003
3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004
3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006
3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008
3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011
2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015
2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021
2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029
2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039
2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069
2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091
2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119
2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250
1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230
10	.1587	.1562	.1539	.1515	.1492	.1469	.1446
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949

```
p = 0,1335
```

Teste não igual (bicaudal): $2 \times p = 0.1335 = 0.267$

Alfa = 0,05

Valor-p 0,267 > 0,05

Conclusão

- Não há evidências para rejeitar H_0
- Não existe uma diferença estatística significante entre Naive Bayes e Multilayer Perceptron

