CMSE 820 HW 1

Hao Lin

September 13, 2018

1 Question 1

$$\mathbb{E}[(Y_0 - \hat{f}(x_0))^2] = \mathbb{E}[((Y_0 - f(x_0)) + (f(x_0) - \hat{f}(x_0)))^2]
= \mathbb{E}[(Y_0 - f(x_0))^2] + 2\mathbb{E}[Y_0 - f(x_0)]\mathbb{E}[f(x_0) - \hat{f}(x_0)] + \mathbb{E}[(f(x_0) - \hat{f}(x_0))^2]
= \mathbb{E}[\epsilon^2] + \mathbb{E}[((\hat{f}(x_0) - \mathbb{E}[\hat{f}(x_0)]) + (\mathbb{E}[\hat{f}(x_0)] - f(x_0))^2]
= \sigma^2 + \mathbb{E}[(\hat{f}(x_0) - \mathbb{E}[\hat{f}(x_0)])^2] + 2(\mathbb{E}[\hat{f}(x_0)] - f(x_0))\mathbb{E}[\hat{f}(x_0) - \mathbb{E}[\hat{f}(x_0)]]
+ (\mathbb{E}[\hat{f}(x_0)] - f(x_0))^2
= \sigma^2 + \text{Var}[\hat{f}(x_0)] + \text{Bias}^2.$$

2 Question 2

By definition,

$$\hat{f}(x_0) = \arg \min_{f} \mathbb{E}[(Y - f(X))^2]
= \arg \min_{f} \int_{\Omega_X} \int_{\Omega_Y} (y - f(x))^2 f_{X,Y}(x, y) \, dx dy
= \arg \min_{f} \int_{\Omega_X} \int_{\Omega_Y} (y - f(x))^2 f_{Y|X}(y|x) f_{X}(x) \, dx dy$$

In order to minimize $\mathbb{E}[(Y - f(X))^2]$ with \hat{f} , we impose that

$$\forall x' \in \Omega_{\mathcal{X}}, \frac{\delta \mathbb{E}[(Y - f(X))^2]}{\delta \hat{f}(x')} = 0,$$

where $\Omega_{\rm X}$ denotes the sample space of X.

$$\forall x' \in \Omega_{X}, \frac{\delta \mathbb{E}[(Y - f(X))^{2}]}{\delta \hat{f}(x')} = -2 f_{X}(x') \int (y - \hat{f}(x')) f_{Y|X}(y|x') dy$$
$$= -2 f_{X}(x') (\mathbb{E}[y|x'] - \hat{f}(x')) = 0.$$

It follows immediately that $\hat{f}(X) = \mathbb{E}[Y|X]$.

3 Question 3

3.1 a.

Let $v \in \mathbb{R}^p$ be a vector such that $\mathbf{X}^T v = 0$.

$$\|\mathbf{y} - \mathbf{X}^{T}(\hat{\beta} + c \cdot v)\| = \|\mathbf{y} - \mathbf{X}^{T}\hat{\beta} + c\mathbf{X}^{T}v\|$$
$$= \|\mathbf{y} - \mathbf{X}^{T}\hat{\beta}\|.$$

Thus, $\hat{\beta} + c \cdot v$ is also a minimizer.

3.2 b.

If $x_1, ..., x_p \in \mathbb{R}^p$ are linearly independent and $p \leq n$, then X is a full rank matrix, which implies that the kernel space $\ker(X) = \{\mathbf{0}\}$. So v can only be $\mathbf{0}$.

3.3 c.

$$\operatorname{rank}(\operatorname{col}(X)) = \operatorname{rank}(X) \le n < p,$$

which implies that $\{x_1, ..., x_p\}$ are not linearly independent, so there exists a non-zero vector $v \in \mathbb{R}^p$ such that

$$\sum_{i=1}^{p} v_i x_i = 0.$$

Equivalently, $X^T v = \mathbf{0}$.

According to (a.), if $\hat{\beta}$ minimizes $\|\mathbf{y} - \mathbf{X}^T \hat{\beta}\|$, then $\forall c \in \mathbb{R}$, $\hat{\beta} + c \cdot v$ also minimizes it. So there are infinitely many linear regression estimates.

Since v is a nonzero vector, there exists a subscript i such that $v_i \neq 0$. Let $\hat{\beta}$ be one of the linear regression estimates. Without loss of generality, assume $\hat{\beta}_{[i]} > 0$, let c be chosen as follows

$$c = \begin{cases} -\hat{\beta}_{[i]}/v_i - 1, \ v_i > 0\\ -\hat{\beta}_{[i]}/v_i + 1, \ v_i < 0 \end{cases}$$

Define another linear regression estimate $\hat{\beta}' := \hat{\beta} + c \cdot v$. One can easily check that $\hat{\beta}_{[i]} \hat{\beta}'_{[i]} < 0$. In this case, the *i*-th coefficient of the estimates have different signs. The behavior of the response function with respect to the *i*-th degree of freedom is not monotonic and is dependent on other degrees of freedom, due to the fact that the *i*-th degree of freedom is a linear combination of the other degrees of freedom.

4 Question 4

$$\hat{\beta} = \mathop{\arg\min}_{\beta} \lVert \mathbf{y} - \beta_{[1]} \mathbb{1} - \tilde{X}^T \beta_{-[1]} \rVert^2 + \lambda \lVert \beta_{-[1]} \rVert^2.$$

Setting the derivative with respect to $\beta_{[1]}$ of the above expression to be 0 yields

$$-2 \sum_{i=1}^{n} (y_i - \beta_{[1]} - x_i^T \beta_{-[1]}) = 0$$

$$\Rightarrow \beta_{[1]} = \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \beta_{-[1]})$$

$$= \frac{1}{n} \sum_{i=1}^{n} y_i - (\frac{1}{n} \sum_{i=1}^{n} x_i^T) \beta_{-[1]}$$

$$= \bar{y} - \mathbf{0} \beta_{-[1]} = \bar{y}.$$

Note that $\frac{1}{n}\sum_{i=1}^{n}x_{i}^{T}=\mathbf{0}$ because \tilde{X}^{T} is centered.

5 Question 5

5.1 a.

Figure 1: Histogram for $\hat{\beta}_{[1]}^{\text{ols}}$

Figure 2: Histogram for $\hat{\beta}^{\rm ridge}_{[1]}$

Figure 3: Histogram for $\hat{\beta}_{[1]}^{\rm ols}$ and $\hat{\beta}_{[1]}^{\rm ridge}$

Conclusions: 1. The predictions from OLS have a greater variance than those from Ridge. 2. The modes of both predictions fall in the [-2,0] bin, where the true $\beta_{[1]}^*$ resides as well.

5.2 b.

Among the 2000 runs, $|\beta_{[1]}^* - \hat{\beta}_{[1]}^{\text{ridge}}| < |\beta_{[1]}^* - \hat{\beta}_{[1]}^{\text{ols}}|$ for 1845 times. That is, about 92.25% of the time, Ridge regression yields a better estimate of $\beta_{[1]}^*$, when compared with ordinary least squares (OLS) regression.