Optimization Methods - Convex Optimization

Bolei Zhang

November 25, 2022

1 Solutions

Theorem 1: Any locally optimal point is also (globally) optimal in the convex optimization problem.

Proof: Suppose that x is locally optimal for a convex optimization problem, i.e., x is feasible and

$$f_0(x) = \inf f_0(z)|z$$
 feasible, $||z - x||_2 \le R$,

for some R > 0. Now suppose that x is not globally optimal, i.e., there is a feasible y such that $f_0(y) < f_0(x)$. Evidently $||y - x||_2 > R$, since otherwise $f_0(x) \le f_0(y)$. Consider the point z given by

$$z = (1 - \theta)x + \theta y, \theta = \frac{R}{2||y - x||_2}$$

Then we have $||z - x||_2 = R/2 < R$, and by convexity of the feasible set, z is feasible. By convexity of f0 we have

$$f_0(z) \le (1 - \theta)f_0(x) + \theta f_0(y) < f_0(x),$$

which is contradiction. Hence there exists no feasible y with $f_0(y) < f_0(x)$, i.e., x is globally optimal.

Problem 1: Consider the following optimization problem:

min
$$f_0(x_1, x_2)$$

 $s.t.$ $2x_1 + x_2 \ge 1$ $x_1 + 3x_2 \ge 1$ $x_1 \ge 0, x_2 \ge 0,$ (1)

Get the feasible set of the above problem. And get the optimal solution set and optimal value w.r.t. different objective functions.

- (1) $f_0(x_1, x_2) = x_1 + x_2;$
- (2) $f_0(x_1, x_2) = -x_1 x_2;$
- (3) $f_0(x_1, x_2) = x_1$;
- (4) $f_0(x_1, x_2) = \max\{x_1, x_2\};$
- (5) $f_0(x_1, x_2) = x_1^2 + 9x_2^2$;

Solution: The feasible set is $\{(x_1, x_2) | 2x_1 + x_2 \ge 1, x_1 + 3x_2 \ge 1, x_1 \ge 0, x_2 \ge 0\}$.

- (1) This is a linear programming problem, the optimal solution is at one of the vertices of the feasible set. The optimal solution is (2/5, 1/5). The optimal value is 3/5;
 - (2) The optimal solution is (∞, ∞) . The optimal value is $-\infty$;
 - (3) The optimal solution set is $\{(x_1, x_2) | x_1 = 0, x_2 \ge 1\}$. The optimal value is 0;
- (4) When $x_1 \ge x_2$, the optimal value is the intersection of $x_1 = x_2$ and $2x_1 + x_2 = 1$, which is (1/3, 1/3), the optimal value is 1/3; When $x_1 \le x_2$, the optimal value and optimal solution is the same.
- (5) As this is a quadratic programming with linear constraints, the optimal solution must be at the border. When $x_2 = 0$, the optimal value is 1. When $x_1 = 0$, the optimal value is 9. When $x_1 + 3x_2 = 1$, the optimal value is 1/2. When $2x_1 + x_2 = 1$, the optimal solution does not satisfy the constraint. Therefore, the optimal solution set is (1/2, 1/6). The optimal value is 1/2.