Problem 2 Write your answers using MS Word or Latex and save it as a single PDF file:

problem2.pdf

Independent Events and Bayes Theorem [20 pts]

1.1. [5 Points] For events A, B prove:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\neg A)P(\neg A)}$$

 $(\neg A \text{ denote the event that A does not occur.})$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Using the law of probability where,

$$P(A) = \sum P(A \cap B_n) = \sum P(A|B_n)P(B_n)$$

Our new function becomes,

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|-A)P(-A)}$$

1.2. Let X, Y, and Z be random variables taking values in $\{0, 1\}$. The following table lists the probability of each possible assignment of 0 and 1 to the variables X, Y, and Z:

	Z = 0		Z = 1		Total
	X = 0	X = 1	X = 0	X = 1	Y=0,Y=1
Y = 0	0.1	0.05	0.1	0.1	0.35
Y = 1	0.2	0.1	0.175	0.175	0.65
	0.3	0.15	0.275	0.275	
X=0,	0.575	0.325	Z=0,	0.45	0.55
X=1			Z=1		

(a) **[5 Points]** Is *X* independent of *Y*? Why or why not?

X is independent if
$$P(X \cap Y) = P(X) * P(Y)$$
,
 $P(X = 0) = 0.1 + 0.05 + 0.1 + 0.175 = 0.575$
 $P(Y = 0) = 0.1 + 0.05 + 0.1 + 0.1 = 0.35$
 $P(X) * P(Y) = 0.575 * 0.35 = .201$
 $P(Y = 0 \cap X = 0) = 0.1 + 0.1 = 0.2$
X is not independent of Y

(b) **[5 Points]** Is *X* conditionally independent of *Y* given *Z*? Why or why not?

X is conditionally independent of Y given Z if
$$P(X|Y \cap Z) = P(X|Z)$$

$$P(X|Z) = \frac{P(X \cap Z)}{P(Z)} = \frac{0.45 * 0.575}{0.45} = 0.575$$

$$P(X|Y \cap Z) = \frac{P(X \cap (Y \cap Z))}{P(Y \cap Z)} = \frac{0.575 * (0.15)}{0.15} = 0.575$$

X is conditionally independent of Y given Z

(c) **[5 Points]** Calculate $P(X \neq Y \mid Z = 0)$.

$$P(X \neq Y|Z = 0) = 0.05 + 0.2 = 0.25$$

