数据库的自然语言接口关键技术研究

胡玮文

华南理工大学

2020/6/2

- 1 背景
- 2 提出的方法
 - SQL 预处理和后处理
 - 上下文编码机制
 - 关系编码机制
- 3 实验
- 4 结论

- 1 背景
- 2 提出的方法
 - SQL 预处理和后处理
 - 上下文编码机制
 - 关系编码机制
- 3 实验
- 4 结论

数据库的自然语言接口

自然语言到 SQL 转换任务

胡玮文 (SCUT) 数据库的自然语言接口 2020/6/2 5

SParC 数据集

- 1 背景
- 2 提出的方法
 - SQL 预处理和后处理
 - 上下文编码机制
 - 关系编码机制
- ③ 实验
- 4 结论

整体架构

图: 模型整体架构

- SQL 中包含冗余的,抽象层次低的结构,将显著影响模型预测的准确率
- EditSQL 的方案为去除 SQL 中最为冗余的 FROM 子句

例

Who are all the party hosts?…

Show the themes of parties they host along with their name.

```
SELECT T3.Party_Theme, T2.Name FROM party_host AS T1
    JOIN host AS T2 ON T1.Host_ID = T2.Host_ID
    JOIN party AS T3 ON T1.Party_ID = T3.Party_ID
```

本文方案

预处理过程

- 解析列引用,将引用表达式替换为"表名.列名"的规范形式
- ② 去除所有 JOIN 子句中的 ON 部分
- 3 去除 FROM 子句中用于多对多关联的 JOIN 子句
- 在 FROM 子句中,去除所有在 SQL 的其他部分引用过的表。若所有表都被去除,则去除整个 FROM 子句。

后处理过程

- 将所有在 SQL 中引用过的表添加到 FROM 子句中。
- ❷ 根据外键关系,将数据库中的所有表构造成无向图,并使用 Kruskal 算法求解包含当前 FROM 子句中的表的最小生成树,根据生成树 的边和节点来重建 JOIN 子句中的 ON 部分。

例

```
SELECT T3.Party_Theme, T2.Name FROM party_host AS T1

JOIN host AS T2 ON T1.Host_ID = T2.Host_ID

JOIN party AS T3 ON T1.Party_ID = T3.Party_ID

转换为

SELECT party.Party_Theme, host.Name
```

- 解析别名 T2, T3 为真正的表名
- party_host 是多对多关联表, host 和 party 表均在 SELECT 子句中被引用过,所以整个 FROM 子句全部被去除。

胡玮文 (SCUT) 数据库的自然语言接口 2020/6/2 11/21

上下文编码机制

EditSQL 使用会话级别 RNN 编码上下文信息

图: EditSQL 编码上下文方案

胡玮文 (SCUT) 数据库的自然语言接口 2020/6/2 12/21

上下文编码机制

BERT 等模型经过大规模无标注文本数据预训练,能更好地理解自然语言的上下文信息,如指代、省略等现象。

图: 本文上下文编码机制

13 / 21

关系编码机制

- 1 背景
- 2 提出的方法
 - SQL 预处理和后处理
 - 上下文编码机制
 - 关系编码机制
- 3 实验
- 4 结论

总体结果

	问题准确率	交互准确率
SyntaxSQL-con	18.5	4.3
CD-Seq2Seq	21.9	8.1
EditSQL with BERT	47.2	29.5
本文模型 with BERT	54.3	34.6
本文模型 with XLNet	58.5	39.6
使用标注的历史 SQL 查询		
EditSQL with BERT	53.4	29.2
本文模型 with BERT	60.7	34.6
本文模型 with XLNet	64.3	39.3

表: SParC 实验总体结果

- "无 FROM"为 EditSQL 所用方案
- "FROM 未引用表"为本文最终采用方案

图: 各种预处理方案对比

消融实验

上下文编码 & 关系编码机制

	问题准确率	交互准确率
本文模型	58.5	39.6
- 上下文编码	54.2	33.9
- 关系编码	57.1	38.9

表: 消融实验结果

实验对比结果

- 上下文编码机制虽然简单,但效果显著
- 关系编码机制带来较小提升

错误分析

- 大多数错误出现在单个 子查询内
- 较高层次的查询骨架错误和较低层次的列选择错误都较多
- 语法错误几乎没有

图: 预测错误分析

- 1 背景
- 2 提出的方法
 - SQL 预处理和后处理
 - 上下文编码机制
 - 关系编码机制
- 3 实验
- 4 结论

结论

工作总结

- 提出了三项简单的改进措施,并实验验证其有效
- 融入最新预训练模型
- 在 SParC 数据集,跨领域上下文相关的自然语言到 SQL 转换任务上,取得了新的最优准确率

工作展望

- 使用类似 ORM 系统的方式,继续改进预处理方案
- 强化关系编码效果
- 数据库自然语言接口系统的进一步研究与实现

◆ロト ◆個ト ◆ 豊ト ◆ 豊 ・ 釣りぐ

21 / 21