

SAR TEST REPORT

FCC ID: 2AHQFU220U229

Product: Feature Mobile Phone

Model No.: U220+

Additional Model No.: U229, U269, U873, N9, B310, K18, Z1

Trade Mark: G'FIVE

Report No.: TCT160311E010

Issued Date: Mar. 25, 2016

Issued for:

Gfive Internet(HK) Limited
5F/Tower E, 9th East , Shangxue Industrial Park, Bantian, Longgang District,
Shenzhen, China

Issued By:

Shenzhen Tongce Testing Lab.

1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China

TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab.

This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

	•			• • • • • • • • • • • • • • • • • • • •
2.1. FACILITIES			(0)	
2.2. LOCATION				
2.3. ENVIRONM	ENT CONDITION:			
Test Result Su	mmary	\		
EUT Description	on			
RF Exposure L	imit			7
SAR Measuren	nent System Configuratio	on		
6.1. SAR MEA	SUREMENT SET-UP	<u>(c)</u>	(,c))	8
6.2. E-FIELD P	ROBE			
6.3. PHANTOM				
			<u> </u>	
			· /	
			<u>(6)</u>	
SAR Test Resu	ılts Summary			24
9.2. Body-Wo	RN 1G SAR DATA			25
Exposure Posi	tion Consideration			26
10.1. EUT ANTE	NNA LOCATION			26
10.2. TEST POS	TION CONSIDERATION		7	26
10.3. SIMULTAN	EOUS TRANSMISSION CONCLU	JSION	<u>(</u>	27
10.4. SAR SIMU	ILTANEOUS TRANSMISSION A	NALYSI		28
10.5. Measurei	MENT UNCERTAINTY (450MH	z-3Hz)		29
•				
-				

1. Test Certification

Report No.: TCT160311E010

Product:	Feature Mobile Phone	
Model No.:	U220+	
Additional Model No.	U229, U269, U873, N9, B310, K18, Z1	
Trade Mark:	G'FIVE CONTRACTOR OF THE CONTR	
Applicant:	Gfive Internet(HK) Limited	
Address:	5F/Tower E, 9th East , Shangxue Industrial Park, Bant Longgang District, Shenzhen, China	ian,
Manufacturer:	Gfive Internet(HK) Limited	
Address:	5F/Tower E, 9th East , Shangxue Industrial Park, Bant Longgang District, Shenzhen, China	ian,
Date of Test:	Mar.14 –Mar. 21, 2016	
SAR Max. Values:	0.52 W/Kg (1g) for Head; 0.56 W/Kg (1g) for Body-worn;	
Applicable Standards:	IEEE1528-2013:Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate in the Human Head from Wireless Communications Devices:Measurement Techniques KDB447498 D01:General RF Exposure Guidance v06 KDB865664 D01:SAR measurement 100MHz to 6GHz v01r04 KDB865664 D02:RF Exposure Reporting v01r02. KDB941225 D01:SAR Procedures v03r01 KDB690783 D01:SAR Listings on Grant v01r03	

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:	Aero Liu.	Date:	Mar. 25, 2016
	Aero Liu		
Reviewed By:	Jone ()	Date:	Mar. 25, 2016
	Joe Zhou		
Approved By:	Tomsin	Date:	Mar. 25, 2016
<u> </u>	Tomsin		

2. Facilities and Accreditations

2.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 572331

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen Tongce Testing Lab. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• CNAS - Registration No.: CNAS L6165

Shenzhen Tongce Testing Lab. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6165.

2.2. Location

Shenzhen Tongce Testing Lab.

Address: 1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China

2.3. Environment Condition:

Temperature:	18°C ~25°C		
Humidity:	35%~75% RH		
Atmospheric Pressure:	1011 mbar	(6)	

3. Test Result Summary

The maximum results of Specific Absorption Rate (SAR) found during test as bellows: <Highest Reported standalone SAR Summary>

Tighteet Reported Standardine of the Sammary						
Exposure Position	Frequency Band	Reported SAR (W/kg)	Equipment Class	Highest Reported SAR (W/kg)		
Head	GSM 850	0.52	PCB	0.52		
1-g SAR	GSM 1900	0.26	1 05	0.02		
Body-worn	GSM 850	0.56	PCB	0.56		
1-g SAR (15 mm Gap)	GSM 1900	0.11	FOD	0.30		

<Highest Reported simultaneous SAR Summary>

Exposure Position	Frequency Band	Highest Reported Simultaneous Transmission SAR (W/kg)
Head 1-g SAR	GSM850+BT	0.70
Body-worn 1-g SAR (15 mm Gap)	GSM850+BT	0.61

Note:

- 1. The highest simultaneous transmission is scalar summation of Reported standalone SAR per FCC KDB 690783 D01 v01r03, and scalar SAR summation of all possible simultaneous transmission scenarios are < 1.6W/kg.
- 2. This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

Page 5 of 74

4. EUT Description

Product Name:	Feature Mobile Phone
Model:	U220+
Additional Model:	U229, U269, U873, N9, B310, K18, Z1
Trade Mark:	G'FIVE
Hardware Version:	CGC45-MB-V1.1
Software Version:	CGC-ANX-V10
Dower Supply	Voltage: 3.7V
Power Supply:	Battery capacity: 1000mAH3.7Wh
	2G
Operation Band:	GSM850, GSM1900
Supported type:	GPRS
Power Class:	GSM850:Power Class 5; GSM1900:Power Class 0
Modulation Type:	GMSK for GPRS;,
GSM Release Version:	R99
GPRS Multislot Class:	12
EGPRS Multislot Class:	N/A
	Bluetooth
Bluetooth Version:	Supported BT2.1+EDR
Modulation:	GFSK(1Mbps) , π /4-DQPSK(2Mbps) , 8-DPSK(3Mbps)
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz

Page 6 of 74

5. RF Exposure Limit

Type Exposure	SAR (W/kg) Uncontrolled Exposure Limit		
Spatial Peak SAR (1g cube tissue for head and trunk)	1.60		
Spatial Peak SAR (10g cube tissue for limbs)	4.00		
Spatial Peak SAR (1g cube tissue for whole body)	0.08		

Note:

- 1. This limit is according to recommendation 1999/519/EC, Annex II (Basic Restrictions)
- 2. Occupational/Uncontrolled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation)

Page 7 of 74

6. SAR Measurement System Configuration

6.1. SAR Measurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System (VPS).

The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch; it sends an "Emergency signal" to the robot controller that to stop robot's moves A computer operating Windows XP.

OPENSAR software Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles to validate the proper functioning of the system.

KUKA SAR Test Sysytem Configuration

6.2. E-field Probe

Report No.: TCT160311E010

The SAR measurement is conducted with the dosimetric probe (manufactured by MVG).

The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

This probe has a built in optical surface detection system to prevent from collision with phantom.

Probe Specification

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available.

Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE5		
Serial Number	SN 07/15 EP248		
Frequency Range of Probe	0.45 GHz-3GHz		
Resistance of Three Dipoles at Connector	Dipole 1:R1=0.180MΩ Dipole 2:R3=0.191MΩ Dipole 3:R3=0.179MΩ		

Photo of E-Field Probe

6.3. Phantom

The SAM Phantom SAM120 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE P1528 and CENELEC EN62209-1, EN62209-2:2010.

The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region.

A cover prevents the evaporation of the liquid.

Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections.

Body SAR testing also used the flat section between the head profiles.

Name: COMOSAR IEEE SAM PHANTOM

S/N: SN 19/15 SAM 120 Manufacture: MVG

TCT通测检测

6.4. Device Holder

In combination with the Generic Twin Phantom SAM120, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications.

The device holder can be locked at different phantom locations (left head, right head, flat phantom).

COMOSAR Mobile phone positioning system

6.5. Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Normi, ai0, ai1, ai2
·	- Conversion factor	ConvFi
	- Diode compression point	Dcpi
Device parameters:	- Frequency	f /
(₂ C	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	0

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the millimetre option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

```
With Vi = compensated signal of channel i (i = x, y, z)
Ui = input signal of channel i (i = x, y, z)
cf = crest factor of exciting field (MVG parameter)
dcpi = diode compression point (MVG parameter)
```

From the compensated input signals the primary field data for each channel can be evaluated: E-field probes: Ei = (Vi / Normi · ConvF)1/2

```
H-field probes: Hi = ( Vi )1/2 · ( ai0 + ai1 f + ai2f2 ) / f

With Vi = compensated signal of channel i (i = x, y, z)

Normi = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)2] for E-field Probes

ConvF = sensitivity enhancement in solution

aij = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei = electric field strength of channel i in V/m
```


Hi

= magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

Etot = (Ex2+ EY2+ Ez2)1/2

The primary field data are used to calculate the derived field units.

SAR = (Etot) $2 \cdot \sigma / (\rho \cdot 1000)$

with SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

σ = conductivity in [mho/m] or [Siemens/m]
ρ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

6.6. Position of the wireless device in relation to the phantom

Handset Reference Points

Ppwe = Etot2 / 3770 or Ppwe = $Htot2 \cdot 37.7$

With Ppwe = equivalent power density of a plane wave in mW/cm2

Etot = total electric field strength in V/m Htot = total magnetic field strength in A/m

Wt Width of the handset at the level of the acoustic

Wb Width of the bottom of the handset

A Midpoint of the width wt of the handset at the level of the acoustic output

B Midpoint of the width wb of the bottom of the handset

Positioning for Cheek / Touch

Positioning for Ear / 15° Tilt

Body Worn Accessory Configurations

To position the device parallel to the phantom surface with either keypad up or down.

To adjust the device parallel to the flat phantom.

To adjust the distance between the device surface and the flat phantom to 15mm or holster surface and the flat phantom to 0 mm.

Illustration for Body Worn Position

Ireless Router (Hotspot) Configurations

Some battery-operated handsets have the capability to transmit and receive internet connectivity through simultaneous transmission of WIFI in conjunction with a separate licensed transmitter. The FCC has provided guidance in KDB Publication 941225 D06 where SAR test considerations for handsets (L x W \geq

9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device with antennas 2.5 cm or closer to the edge of the device, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. Therefore, SAR must be evaluated for each frequency transmission and mode separately and summed with the WIFI transmitter according to KDB 648474 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal.

Page 13 of 74

Illustration for Hotspot Position

Limb-worn device

A limb-worn device is a unit whose intended use includes being strapped to the arm or leg of the user while transmitting (except in idle mode). It is similar to a body-worn device. Therefore, the test positions of 6.1.4.4 also apply. The strap shall be opened so that it is divided into two parts as shown in Figure 9. The device shall be positioned directly against the phantom surface with the strap straightened as much as possible and the back of the device towards the phantom.

If the strap cannot normally be opened to allow placing in direct contact with the phantom surface, it may be necessary to break the strap of the device but ensuring to not damage the antenna.

Test position for limb-worn devices

Page 14 of 74

6.7. Tissue Verification

Report No.: TCT160311E010

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectic are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within $\pm 5\%$ of the target values.

The following materials are used for producing the tissue-equivalent materials.

The fellowing materials are about to producing the testas equivalent materials.							
Ingredients (% of weight)	Head Tissue						
Frequency Band (MHz)	750	835	1800	1900	2450	2600	
Water	39.2	41.45	52.64	55.242	62.7	55.242	
Salt (NaCl)	2.7	1.45	0.36	0.306	0.5	0.306	
Sugar	57.0	56.0	0.0	0.0	0.0	0.0	
HEC	0.0	1.0	0.0	0.0	0.0	0.0	
Bactericide	0.0	0.1	0.0	0.0	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	
DGBE	0.0	0.0	47.0	44.542	36.8	44.452	
Ingredients (% of weight)	Body Tissue						
Frequency Band (MHz)	750	835	1800	1900	2450	2600	
Water	50.3	52.4	69.91	69.91	73.2	64.493	
Salt (NaCl)	1.60	1.40	0.13	0.13	0.04	0.024	
Sugar	47.0	45.0	0.0	0.0	0.0	0.0	
HEC	0.0	1.0	0.0	0.0	0.0	0.0	
Bactericide	0.0	0.1	0.0	0.0	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	
DGBE	0.0	0.0	29.96	29.96	26.7	32.252	

Page 15 of 74

6.8. Tissue Dielectric Parameters

Report No.: TCT160311E010

The liquid used for the frequency range of 100MHz-6G consisted of water, sugar, salt and Cellulose. The liquid has been previously proven to be suited for worst-case. The following Table shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209. The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within $\pm 5\%$ of the target values.

The following materials are used for producing the tissue-equivalent materials

Targets for tissue simulating liquid

Frequency (MHz)	Liquid Type	Liquid Type (σ)	± 5% Range	Permittivity (ε)	± 5% Range
300	Head	0.87	0.83~0.91	45.3	43.04~47.57
450	Head	0.87	0.83~0.91	43.5	41.33~45.68
835	Head	0.90	0.86~0.95	41.5	39.43~43.58
900	Head	0.97	0.92~1.02	41.5	39.43~43.58
1800-2000	Head	1.40	1.33~1.47	40.0	38.00~42.00
2450	Head	1.80	1.71~1.89	39.2	37.24~41.16
3000	Head	2.40	2.28~2.52	38.5	36.58~40.43
5800	Head	5.27	5.01~5.53	35.3	33.54~37.07
300	Body	0.92	0.87~0.97	58.2	55.29~61.11
450	Body	0.94	0.89~0.99	56.7	53.87~59.54
835	Body	0.97	0.92~1.02	55.2	52.44~57.96
900	Body	1.05	1.00~1.10	55.0	52.25~57.75
1800-2000	Body	1.52	1.44~1.60	53.3	50.64~55.97
2450	Body	1.95	1.85~2.05	52.7	50.07~55.34
3000	Body	2.73	2.60~2.87	52.0	49.40~54.60
5800	Body	6.00	5.70~6.30	48.2	45.79~50.61

(εr = relative permittivity, σ = conductivity and ρ = 1000 kg/m3)

6.9. Tissue-equivalent Liquid Properties

Frequency (MHz)	Liquid Type	Test Date	Temp ℃	εr	σ(s/m)
835	Head	14/03/2016	22	41.42	0.87
1900	Head	15/03/2016	22	39.08	1.34
835	Body	14/03/2016	22	54.61	0.98
1900	Body	15/03/2016	22	50.74	1.48

Page 16 of 74

6.10. System Check

Report No.: TCT160311E010

The SAR system must be validated against its performance specifications before it is deployed. When SAR probe and system component or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such component. Reference dipoles are used with the required tissue-equivalent media for system validation.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the OPENSAR system.

System Check Set-up

V /				
vei	rificati	on R	tesu	Its

Frequency Liquid		Measured Value in 100mW (W/kg)		Normalized to 1W (W/kg)		Target Value (W/kg)		Deviation (%)	
(MHz)	Туре	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average	10 g Average
835	Head	0.886	0.570	8.86	5.70	9.60	6.24	-7.71	-8.65
1900	Head	3.576	1.899	35.76	18.99	39.19	20.43	-8.75	-7.05
835	Body	0.949	0.633	9.49	6.33	9.60	6.36	-1.15	-0.47
1900	Body	3.766	1.992	37.66	19.92	38.73	20.48	-2.76	-2.73

Comparing to the original SAR value provided by MVG, the verification data should be within its specification of 10%. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table as below indicates the system performance check can meet the variation criterion and the plots can be referred to Section 10 of this report.

Page 17 of 74

7. Measurement Procedure

Conducted power measurement

For WWAN power measurement, use base station simulator to configure EUT WWAN transition in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No.: TCT160311E010

Read the WWAN RF power level from the base station simulator.

For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band. Connect EUT RF port through RF cable to the power meter or spectrum analyzer, and measure WLAN/BT output power.

Conducted power measurement

Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.

Place the EUT in positions as Appendix B demonstrates.

Set scan area, grid size and other setting on the MVG software.

Measure SAR results for the highest power channel on each testing position.

Find out the largest SAR result on these testing positions of each band.

Measure SAR results for other channels in worst SAR testing position if the Reported SAR or highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

Power reference measurement Area scan Zoom scan Power drift measurement

Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The MVG software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10 g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine. The system always gives the maximum values for 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

Extraction of the measured data (grid and values) from the Zoom Scan.

Calculation of the SAR value at every measurement point based on all stored data.

Generation of a high-resolution mesh within the measured volume.

Interpolation of all measured values form the measurement grid to the high-resolution grid

Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface

Calculation of the averaged SAR within masses of 1g and 10g.

Page 18 of 74

Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties

Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10g. Area scan and zoom scan resolution setting follows KDB 865664 D01 v01r04 quoted below.

			≤ 3 GHz	> 3 GHz		
Maximum distance fro (geometric center of pr			$5\pm1~\mathrm{mm}$	1/2-5-ln(2) ± 0.5 mm		
Maximum probe angle surface normal at the n			30° ± 1°	20° ± 1°		
			≤ 2 GHz: ≤ 15 mm 2 − 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm		
Maximum area scan sp	atial resol	ntion: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above the measurement resolution must be ≤ the correspondin x or y dimension of the test device with at least one measurement point on the test device.			
Maximum zoom scan s	patial reso	lution: Δx_{Zoom} , Δy_{Zoom}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*		
	uniform	grid: Δz _{Zoon} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zeom} (1): between 1 st two points closest to phantom surface	≤4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points		≤ 1.5·Δz _{Zoon} (n-1)			
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD post-processor scan combine and subsequently superpose these measurement data to calculating the multiband SAR.

Page 19 of 74

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

SAR Averaged Methods

In MVG, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1g and 10g cubes, the extrapolation distance should not be larger than 5 mm.

Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In MVG measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for

Page 20 of 74

8. Conducted Output Power

SIM 1										
Band: GSM 850	Burst Av	erage Pow	er (dBm)		Frame-A	Frame-Average Power(dBm)				
Channel	128	190	251	Calculation (dB)	128	190	251			
Frequency	824.2	836.6	848.8	(02)	824.2	836.6	848.8			
GSM(voice)	32.08	32.12	32.86	-9.03	23.05	23.09	23.83			
GRPS (GMSK, 1-slot)	30.37	30.26	30.75	-9.03	21.34	21.23	21.72			
GRPS (GMSK, 2-slot)	29.45	29.35	29.70	-6.02	23.43	23.33	23.68			
GRPS (GMSK, 3-slot)	27.73	27.64	27.85	-4.26	23.47	23.38	23.59			
GRPS (GMSK, 4-slot)	25.75	25.78	25.89	-3.01	22.74	22.77	22.88			
SIM 2										
Band: GSM 850	Burst Av	erage Pow	er (dBm)		Frame-A	verage Pov	ver(dBm)			
Channel	128	190	251	Calculation (dB)	128	190	251			
Frequency	824.2	836.6	848.8	(32)	824.2	836.6	848.8			
GSM(voice)	32.00	32.04	32.78	-9.03	22.97	23.01	23.75			
GRPS (GMSK, 1-slot)	30.29	30.18	30.67	-9.03	21.26	21.15	21.64			
GRPS (GMSK, 2-slot)	29.37	29.27	29.62	-6.02	23.35	23.25	23.60			
GRPS (GMSK, 3-slot)	27.65	27.56	27.77	-4.26	23.39	23.30	23.51			
GRPS (GMSK, 4-slot)	25.67	25.70	25.81	-3.01	22.66	22.69	22.80			

The frame-averaged power is linearly reported the maximum burst averaged power over 8 time slots. The calculated method are shown as below:

The duty cycle "x" of different time slots as below:

Hotline: 400-6611-140 Tel: 86-755-27673339

1 TX slot is 1/8, 2 TX slots is 2/8, 3 TX slots is 3/8 and 4 TX slots is 4/8

Based on the calculation formula:

Frame-averaged power = Burst averaged power + 10 1og (x)

Frame-averaged power (1 TX slot) = Burst averaged power (1 TX slot) - 9.03

Frame-averaged power (2 TX slots) = Burst averaged power (2 TX slots) - 6.02

Frame-averaged power (3 TX slots) = Burst averaged power (3 TX slots) – 4.26

- Frame-averaged power (4 TX slots) = Burst averaged power (4 TX slots) 3.01
- For GPRS multi time slots SAR measurement, when the measured maximum output power levels are within 0.25 dB 2. of each other, test the configuration with the most number of time slots.
- 3. Per KDB447498 D01 v06, the maximum output power channel is used for SAR testing and for further SAR test reduction.
- 4. According to the conducted power as above, the body measurements are performed with 2Txslots for 850MHz for
- 5. For Cause the conducted Power of SIM 2 less than SIM 1, we chose SIM 1 to perform a SAR test.

Page 21 of 74

Fax: 86-755-27673332

http://www.tct-lab.com

SIM 1								
Band: GSM 1900	Burst Av	erage Pow	er (dBm)		Frame-A	verage Pov	ver(dBm)	
Channel	512	661	810	Calculation (dB)	512	661	810	
Frequency	1850.2	1880.0	1909.8	(0.2)	1850.2	1880.0	1909.8	
GSM(voice)	30.08	31.12	29.86	-9.03	21.05	22.09	20.83	
GRPS (GMSK, 1-slot)	29.37	29.26	29.75	-9.03	20.34	20.23	20.72	
GRPS (GMSK, 2-slot)	27.45	27.35	27.70	-6.02	21.43	21.33	21.68	
GRPS (GMSK, 3-slot)	25.73	25.64	25.85	-4.26	21.47	21.38	21.59	
GRPS (GMSK, 4-slot)	23.75	23.78	23.89	-3.01	20.74	20.77	20.88	
SIM 2								
Band: GSM 1900	Burst Av	erage Pow	er (dBm)		Frame-A	verage Pov	e Power(dBm)	
Channel	512	661	810	Calculation (dB)	512	661	810	
Frequency	1850.2	1880.0	1909.8		1850.2	1880.0	1909.8	
GSM(voice)	29.82	30.91	29.67	-9.03	20.79	21.88	20.64	
GRPS (GMSK, 1-slot)	29.11	29.05	29.56	-9.03	20.08	20.02	20.53	
GRPS (GMSK, 2-slot)	27.19	27.14	27.51	-6.02	21.17	21.12	21.49	
GRPS (GMSK, 3-slot)	25.47	25.43	25.66	-4.26	21.21	21.17	21.40	
GRPS (GMSK, 4-slot)	23.49	23.57	23.70	-3.01	20.48	20.56	20.69	

Note:

4. The frame-averaged power is linearly reported the maximum burst averaged power over 8 time slots. The calculated method are shown as below:

The duty cycle "x" of different time slots as below:

1 TX slot is 1/8, 2 TX slots is 2/8, 3 TX slots is 3/8 and 4 TX slots is 4/8

Based on the calculation formula:

Frame-averaged power = Burst averaged power + 10 1og (x)

Frame-averaged power (1 TX slot) = Burst averaged power (1 TX slot) – 9.03

Frame-averaged power (2 TX slots) = Burst averaged power (2 TX slots) – 6.02

Frame-averaged power (3 TX slots) = Burst averaged power (3 TX slots) – 4.26

Frame-averaged power (4 TX slots) = Burst averaged power (4 TX slots) – 3.01

- For GPRS multi time slots SAR measurement, when the measured maximum output power levels are within 0.25 dB of each other, test the configuration with the most number of time slots.
- 6. Per KDB447498 D01 v06, the maximum output power channel is used for SAR testing and for further SAR test reduction.
- According to the conducted power as above, the body measurements are performed with 4Txslots for 1900MHz for GPRS.
- 5. For Cause the conducted Power of SIM 2 less than SIM 1, we chose SIM 1 to perform a SAR test.

Bluetooth										
Mode		GFSK			Pi/4DQPSk	<				
Channel	0	39	78	0	39	78				
Frequency	2402	2441	2480	2402	2441	2480				
Average Power (dBm)	4.51	3.05	3.27	4.26	2.79	3.04				
Mode		8DPSK			BLE					
Channel	0	39	78	0	20	39				
Frequency	2402	2441	2480	2402	2440	2480				
Average Power (dBm)	4.28	2.79	3.01	1	1	1				

Channel	Frequency (GHz)	Max. tune-up Power (dBm)	Max. Power (mW)	Test distance (mm)	Result	exclusion thresholds for 1-g SAR	exclusion thresholds for 10-g SAR
CH 78	2.480	5	3.16	5	1.12	3.0	7.5

- The max. tune-up power was provided by manufacturer, base on the result of note 1, RF exposure evaluation is not required.
- 2. The output power of all data rate were pre-scan, just the worst case (the lowest data rate) of all mode were shown in report.
- 3. When the minimum test separation distance is < 5 mm, a distance of 5 mm according is applied to determine SAR test exclusion.
- 4. Per KDB 447498 D01 v06, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:
 - [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] · [√f(GHz)] ≤ 3.0 for 1-g SAR, where
 - ·f(GHz) is the RF channel transmit frequency in GHz
 - ·Power and distance are rounded to the nearest mW and mm before calculation
 - $\cdot \mbox{The result}$ is rounded to one decimal place for comparison

9. SAR Test Results Summary

Report No.: TCT160311E010

9.1. Head 1g SAR Data

Band	Mode	Test Position	CH.	Freq. (MHz)	Ave. Power (dBm)	Power Drift (%)	Tune-Up Limit (dBm)	Meas. SAR1g (W/kg)	Scaling Factor	Reported SAR1g (W/kg)	Limit (W/Kg)
		Left Cheek	128	824.2	32.86	-0.56	33.00	0.50	1.033	0.52	
0014050	(G)	Left Tilt	128	824.2	32.86	0.33	33.00	0.35	1.033	0.36	
GSM850	Voice	Right Cheek	128	824.2	32.86	-3.21	33.00	0.48	1.033	0.50	
		Right Tilt	128	824.2	32.86	3.22	33.00	0.33	1.033	0.34	
(0)		Left Cheek	661	1880.0	30.12	-4.44	30.50	0.24	1.091	0.26	1.60
00144000		Left Tilt	661	1880.0	30.12	0.65	30.50	0.18	1.091	0.20	
GSM1900	Voice	Right Cheek	661	1880.0	30.12	-0.69	30.50	0.22	1.091	0.24	
		Right Tilt	661	1880.0	30.12	1.32	30.50	0.17	1.091	0.19	

Note:

1. Per KDB 447498 D01 v06, for each exposure position, if the highest output power channel Reported SAR ≤ 0.8W/kg, other channels SAR testing is not necessary.

2. Per KDB 447498 D01 v06, the report SAR is measured SAR value adjusted for maximum tune-up tolerance. Scaling Factor=10^[(tune-up limit power(dBm) - Ave.power power (dBm))/10], where tune-up limit is the maximum rated power among all production units.

Reported SAR(W/kg)=Measured SAR (W/kg)*Scaling Factor.

Fax: 86-755-27673332

http://www.tct-lab.com

Tel: 86-755-27673339

Hotline: 400-6611-140

9.2. Body-Worn 1g SAR Data

Report No.: TCT160311E010

Band	Mode	Test Position with15mm	CH.	Freq. (MHz)	Ave. Power (dBm)	Power Drift (%)	Tune-Up Limit (dBm)	Meas. SAR1g (W/kg)	Scaling Factor	Reported SAR1g (W/kg)	Limit (W/Kg)
(0)	Voice	Front	128	824.2	32.86	1.90	33.00	0.27	1.033	0.28	
	voice	Back	128	824.2	32.86	1.29	33.00	0.36	1.033	0.37	
		Front	251	848.8	29.70	-3.30	30.00	0.43	1.072	0.46	
GSM850		Back	251	848.8	29.70	-3.94	30.00	0.52	1.072	0.56	
ı	GPRS 2 slots	Left	251	848.8	29.70	-4.72	30.00	0.26	1.072	0.28	
	I	Right	251	848.8	29.70	1.47	30.00	0.29	1.072	0.31	
	I	Bottom	251	848.8	29.70	-3.14	30.00	0.04	1.072	0.04	4.00
	Malaa	Front	661	1880.0	30.12	0.31	30.50	0.03	1.091	0.03	1.60
	Voice	Back	661	1880.0	30.12	-3.11	30.50	0.06	1.091	0.07	
		Front	661	1880.0	27.70	-0.73	28.00	0.07	1.072	0.08	
GSM1900	I	Back	661	1880.0	27.70	-0.81	28.00	0.10	1.072	0.11	
	GPRS 2 slots	Left	661	1880.0	27.70	-4.03	28.00	0.02	1.072	0.02	
	ì	Right	661	1880.0	27.70	-0.81	28.00	0.04	1.072	0.04	
	(C)	Bottom	661	1880.0	27.70	-4.09	28.00	0.03	1.072	0.03	

Note:

- Per KDB 447498 D01 v06, for each exposure position, if the highest output power channel Reported SAR ≤ 0.8W/kg, other channels SAR testing is not necessary.
- 2. Per KDB 447498 D01 v06, body-worn use is evaluated with the device positioned at 15 mm from a flat phantom filled with head tissue-equivalent medium.
- 3. Per KDB 447498 D01 v06, the report SAR is measured SAR value adjusted for maximum tune-up tolerance. Scaling Factor=10^[(tune-up limit power(dBm) Ave.power power (dBm))/10], where tune-up limit is the maximum rated power among all production units.

Reported SAR(W/kg)=Measured SAR (W/kg)*Scaling Factor.

10. Exposure Position Consideration

10.1. EUT Antenna Location

10.2. Test Position Consideration

Test Positions										
Mode	Back	Front	Top Side	BottomSide	Right Side	Left Side				
GSM/GPRS	Yes	Yes	No	Yes	Yes	Yes				
ВТ	Yes	Yes	No	Yes	Yes	No				

Note:

1. Per KDB 648474 D04, particular DUT edges were not required to be evaluated for SAR if the antenna-to-edge distance is greater than 2.5cm

Page 26 of 74

Report No.: TCT160311E010

10.3. Simultaneous Transmission Conclusion

Multi-Band Simultaneous Transmission Considerations

According to FCC KDB Publication 447498 D01 v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the EUT are shown in below Figure and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

Report No.: TCT160311E010

Simultaneous Transmission Paths

Simultaneous Transmission Possibilities

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01 v06, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤ 1.6 W/kg. When standalone SAR is not required to be measured, per FCC KDB 447498 D01 v06), the following equation must be used to estimate the standalone 1g SAR and 10g extremity SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR =
$$\frac{\sqrt{f(GHz)}}{7.5(18.75)}$$
 · Max. power of channel, mW Min. Separation Distance, mm

Mode	Max. tune-up	Exposure Position	Head	Body-Worn
Mode	Power (dBm)	Test Distance (mm)	5	15
Bluetooth	5	Estimated SAR (W/kg)	0.149	0.050

Note:

Hotline: 400-6611-140

- When the minimum test separation distance is < 5 mm, a distance of 5 mm according is applied to determine estimated SAR.
- (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[√f(GHz)/x] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

Next to the mouth exposure requires 1-g SAR, and the wrist-worn condition requires 10-g extremity SAR.

The Simultaneous Transmission Possibilities of this device are as below:

Tel: 86-755-27673339

NO.	Configuration	Head	Body-worn
1	GSM+BT	YES	YES

Fax: 86-755-27673332

http://www.tct-lab.com

10.4. SAR Simultaneous Transmission Analysi

Report No.: TCT160311E01	0
--------------------------	---

Test Position			Sca	led	ΣSAR	SPLSR	Remark	
			GSM850	(W/kg)	SPLSK	Remain		
Left Cheek			0.52	0.149	0.669	N/A	N/A	
Head Right Cheek Right Tilt		0.36	0.149	0.509	N/A	N/A		
			0.50	0.149	0.649	N/A	N/A	
		_	0.34	0.149	0.489	N/A	N/A	
	voice	Front	0.28	0.050	0.330	N/A	N/A	
		Back	0.37	0.050	0.420	N/A	N/A	
	GPRS 2slots	Front	0.46	0.050	0.510	N/A	N/A	
Ded. Mass		Back	0.56	0.050	0.610	N/A	N/A	
Body-Wron		Left	0.28	0.050	0.330	N/A	N/A	
		Right	0.31	0.050	0.360	N/A	N/A	
		Тор	1	0.050	0.050	N/A	N/A	
		Bottom	0.04	0.050	0.090	N/A	N/A	
		((C))		C))	(,0			

<u> </u>								
Test Position			Sca	led	□ SAR	SPLSR	Domorto	
			GSM1900 bluethooth		(W/kg)	SPLSK	Remark	
ÇĊ	Left Cheek			0.149	0.409	N/A	N/A	
		Left Tilt	0.20	0.149	0.349	N/A	N/A	
Head	Head Right Cheek Right Tilt		0.24	0.149	0.389	N/A	N/A	
3)			0.19	0.149	0.339	N/A	N/A	
	voice	Front	0.03	0.050	0.080	N/A	N/A	
		Back	0.07	0.050	0.120	N/A	N/A	
ĺχĊ	GPRS 2slots	Front	0.08	0.050	0.130	N/A	N/A	
Dady Mass		Back	0.11	0.050	0.160	N/A	N/A	
Body-Wron		Left	0.02	0.050	0.070	N/A	N/A	
		Right	0.04	0.050	0.090	N/A	N/A	
		Тор	1	0.050	0.050	N/A	N/A	
		Bottom	0.03	0.050	0.080	N/A	N/A	

Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01 v06.

10.5. Measurement Uncertainty (450MHz-3GHz)

Uncertainty Component Description Tol. Prob. Dix. Dix. Q. 1 g 10 g u u u (£ %) (£ %) (£ %) w Measurement System Probe Califoration 7.2.1 5.8 N 1 1 1 5.8 5.8 *** Axial 8 otropy 7.2.1.1 3.5 R √3 (1-c ₂) ^{1/2} (1-c ₃) ^{1/2} 1.43 1.43 *** Hemispherical 8 otropy 7.2.1.1 0.9 R √3 √c ₂ √c ₂ √c ₃ 2.4 2.41 *** Boundary Effect 7.2.1.4 1 R √3 1 1 0.58 0.58 *** Linearity 7.2.1.2 4.7 R √3 1 1 0.58 0.58 *** Modulation response 7.2.1.3 3 N 1 1 1 0.58 0.58 *** Modulation response 7.2.1.3 3 N 1 1 1 0.50 0.58 *** Modulation response 7.2.1.5 0.8 N 1 1 1 0.00 0.00 *** Meagous Effect 7.2.1.7 1.4 R √3 1 1 0.00 0.00 *** Modulation response 7.2.1.5 0.8 N 1 1 1 0.00 0.00 *** Meagous Effect 7.2.1.7 1.4 R √3 1 1 0.50 0.00 *** Modulation response 7.2.1.5 0.8 N 1 1 1 1 0.00 0.00 *** Modulation response 7.2.1.7 1.4 R √3 1 1 0.00 0.00 *** Modulation response 7.2.1.7 1.4 R √3 1 1 0.00 0.00 *** Modulation response 7.2.1.7 1.4 R √3 1 1 0.00 0.00 *** Modulation response 7.2.1.7 1.4 R √3 1 1 0.00 0.00 *** Modulation response 7.2.1.7 1.4 R √3 1 1 0.00 0.00 *** Modulation response 7.2.1.7 1.4 R √3 1 1 0.00 0.00 *** Modulation response 7.2.1.7 1.4 R √3 1 1 0.00 0.00 *** Modulation response 7.2.1.7 1.4 R √3 1 1 0.00 0.00 *** Modulation response 7.2.1.7 1.4 R √3 1 1 0.00 0.00 *** Modulation response 7.2.1.7 1.4 R √3 1 1 0.00 0.00 *** Modulation response 7.2.1.7 1.4 R √3 1 1 0.00 0.00 *** Modulation response 7.2.1.7 1.4 R √3 1 1 0.00 0.00 *** Modulation response 7.2.1.7 1.4 R √3 1 1 0.00 0.00 *** Modulation response 7	UNCERTAINTY EV	ΔΙΙΙΔΤΙΟ	N FC	DR H	IΔN	DSF.	T S A I	? TE	ST.	
Description	ONOLK IAIN II LV	ALUATIC	/N T C	/K 11		DGL	ו סבו	\ IL.	J 1	
Description			Tol.	Prob.		O _I	a	1 g	10 g	
Measurement System	Uncertainte Communet	Di-4i	(± 96)	Dist.	Div.	(1 g)	(10 g)			
Probe Calibration 7.2.1 5.8 N 1 1 1 1 5.8 5.8		Description						(± %)	(± %)	Vį
Axial 5 otropy 7.2.1.1 3.5 R 3 (1-cs) 12 (1-cs) 12 (1-cs) 14 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1		17.04	T = 0	l M	-		4	= 0	= 0	
Hemispherical Is otropy				_	_					
Boundary Effect 7.2.1.4 1 R √3 1 1 0.58 0.58 □ Linearity 7.2.1.2 4.7 R √3 1 1 0.58 0.58 □ Linearity 7.2.1.2 4.7 R √3 1 1 0.58 0.58 □ Modulation response 7.2.1.3 3 N 1 1 0.58 0.58 □ Modulation response 7.2.1.3 3 N 1 1 1 0.58 0.58 □ Readout Electronics 7.2.1.5 0.5 N 1 1 1 0.50 0.50 □ Response Time 7.2.1.6 0 R √3 1 1 0.00 0.00 □ Response Time 7.2.1.7 1.4 R √3 1 1 0.00 0.00 □ Integration Time 7.2.1.7 1.4 R √3 1 1 0.01 0.01 □ RF Ambient Conditions - Nois e 7.2.3.7 3 R √3 1 1 0.01 1.73 1.73 □ RF Ambient Conditions - Reflections 7.2.3.7 3 R √3 1 1 1.73 1.73 □ RF Cobe Positioner Mechanical Tolerance 7.2.1 1.4 R √3 1 1 0.81 0.81 □ Response Time 7.2.1 1.4 R √3 1 1 0.81 0.81 □ Response Time 7.2.1 1.4 R √3 1 1 0.81 0.81 □ Response Time 7.2.2 1 1.4 R √3 1 1 1 0.81 0.81 □ Response Time 7.2.2 1 1.4 R √3 1 1 1 0.81 0.81 □ Respo			_							00
Display Company Comp							_			00
System Detection Limits 7,21.2	Boundary Effect		-			_				00
Modulation response 7,21.3 3	Linearity		_			_	_			00
Readout Electronics			_		NT-STA	_	-		100000000000000000000000000000000000000	00
Resigner Time 7.21.6 0 R √3 1 1 0.00 0.00 □ Integration Time 7.21.7 1.4 R √3 1 1 0.81 0.81 □ RF Ambient Conditions - Noise 7.23.7 3 R √3 1 1 1.73 □ RF Ambient Conditions - Reflections 7.23.7 3 R √3 1 1 1.73 □ RF Ambient Conditions - Reflections 7.23.7 3 R √3 1 1 0.81 0.81 □ RF Ambient Conditions - Reflections 7.23.7 3 R √3 1 1 0.81 0.81 □ RF Ambient Conditions - Reflections 7.22.1 1.4 R √3 1 1 0.81 0.81 □ RF Ambient Conditions - Reflections 7.22.1 1.4 R √3 1 1 0.81 0.81 □ RF Ambient Conditions - Reflections 7.22.1 1.4 R √3 1 1 0.81 0.81 □ RF Ambient Conditions - Reflections 7.22.1 1.4 R √3 1 1 0.81 0.81 □ RF Ambient Conditions - Reflections 7.22.1 1.4 R √3 1 1 0.81 0.81 □ RF Ambient Conditions - Reflections 7.22.1 1.4 R √3 1 1 0.81 0.81 □ RF Ambient Conditions - Reflections 7.22.1 1.4 R √3 1 1 0.81 0.81 □ RF Ambient Conditions - Reflections 7.22.1 1.4 R √3 1 1 0.81 0.81 □ RF Ambient Conditions - Reflections 7.22.1 1.4 R √3 1 1 0.81 0.81 □ RF Ambient Conditions - Reflections 1.7 0.81 0.81 0.81 0.81 □ RF Ambient Conditions - Reflections 1.7 □ RF Ambient Conditions - Reflections 7.22.1 1.4 R √3 1 1 0.81 0.81 0.81 □ RF Ambient Conditions - Reflections 1.7 □ RF Ambient Conditions - Reflections 1.7 □ RF Ambient Conditions - Reflections 1.7 1.4 R √3 1 1 0.81	Modulation response		_			_	_			00
Integration Time	Readout Electronics						-			
Arrival Arri			_			_	-			00
RFAmblent Conditions - Reflections 7.23.7 3						_				00
Probe Positioner Mechanical Tolerance						_	-			00
Tolerance		7.2.3.7	3	R	√3	1	1	1.73	1.73	00
Probe Positioning with respect to Phantom Shell			1.4	R	√3	1	1	0.81	0.81	00
Phantom Shell 7.22.3 1.4 R 1.3 1 1 0.81 0.81	10.00	7.2.2.1	-				-			
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation 7.2.4 Test sample Related Test Sample Positioning 7.2.2.4.2 2.6 N 1 1 1 2.60 2.60 11 1.2.2.4.2 3 N 1 1 1 3.00 3.00 7 1.2.2.4.3 3 N 1 1 1 1 2.89 2.89 ∞ 1.2.2.4.3 3 N 1 1 1 1 2.89 2.89 ∞ 1.2.2.4.3 3 N 1 1 1 1 2.89 2.89 ∞ 1.2.2.4.3 3 N 1 1 1 1 2.89 2.89 ∞ 1.88 2.89 ∞ 1.88 2.89 ∞ 1.88 2.89 ∞ 1.88 2.89 ∞ 1.88 2.89 ∞ 1.88 2.89 ∞ 1.88 2.89 ∞ 1.88 2.89 ∞ 1.88 ∞ 1.89 2.89 ∞ 1.89 2.89 ∞ 1.89 2.89 ∞ 1.89 2.89 ∞ 1.89 2.89 ∞ 2.8			1.4	R	√3	1	1	0.81	0.81	00
Integration Algorithms for Max. SAR 2.3 R √3 1 1 1.33 1.33 ∞		7.2.2.3								
Test sample Related Test Sample Positioning Test Sample Position Test Sample Positioning Test Sa					1-			100 100 100		
Test Sample Related Test Sample Positioning T.22.4.4 Test Sample Positioning T.22.4.2 T.22.4.3 T.23.6 T.23.7 T.23.6 T.23.7 T.23.6 T.23.7 T.2			2.3	R	√3	1	1	1.33	1.33	00
Test Sample Positioning 7,22,4,4 2,6 N 1 1 1 2,60 2,60 11 7,22,4,2 3 N 1 1 1 3,00 3,00 7		7.2.4								
7.22.4.2 3		I===								
Device Holder Uncertainty 7,2,2,4,3 3	Test Sample Positioning		2.6	N.	1	1	1	2.60	2.60	11
Dutput Power Variation - SAR drift measurement 7, 23.6 5 R √3 1 1 2.89 2.89 ∞ SAR scaling 7, 25 2 R √3 1 1 1.15 1.15 ∞ Phantom and Tissue Parameters Phantom Uncertainty (shape and thick ness tolerances) 7, 22.2 4 R √3 1 1 2.31 2.31 ∞ Uncertainty in SAR correction for devisition (in permittivity and conductivity) 2 N 1 1 0.84 2.00 1.68 ∞ conductivity) 7, 2.6 2 N 1 0.78 0.71 1.95 1.78 5 Liquid Conductivity (temperature uncertainty) 7, 2.3.5 4 N 1 0.78 0.71 1.95 1.78 ∞ Liquid Permittivity (temperature uncertainty) 7, 2.3.5 2.5 N 1 0.78 0.71 1.95 1.78 ∞ Liquid Permittivity - measurement uncertainty 7, 2.3.4 5			3	N	1	1	1	3.00	3.00	7
Measurement 7.2.3.6 5		7.2.2.4.3								
SAR scaling 7.25 2			5	R	√3	1	1	2.89	2.89	00
Phantom and Tissue Parameters Phantom Uncertainty (shape and thick ness tolerances) Uncertainty in SAR correction for deviation (in permittivity and conductivity) Toleration (in permittivity) Toleration (in permittivity and conductivity) Toleration (in pe		1.1.75	-	_	-la	4	-	4.45	4.45	
Phantom Uncertainty (shape and thick ness tolerances) 7.2.2.2 Uncertainty in SAR correction for deviation (in permittivity and conductivity) 7.2.6 Liquid Conductivity (temperature uncertainty) Liquid Conductivity - measurement uncertainty Liquid Permittivity (temperature uncertainty) 7.2.3.5 N 1 0.78 0.71 1.95 1.78 5 N 1 0.23 0.26 0.92 1.04 5 Liquid Permittivity (temperature uncertainty) 7.2.3.5 N 1 0.78 0.71 1.95 1.78 ∞ N 1 0.23 0.26 0.92 1.04 5 N 1 0.23 0.26 0.92 1.05 № N 1 0.23 0.26 0.92 1.06 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	-	7.2.5	2	R	13	1	1	1.15	1.15	
thickness tolerances) 7.2.2.2 4		Т	1	1						~
Uncertainty in SAR correction for deviation (in permittivity and conductivity) 7.2.6 Liquid Conductivity (temperature uncertainty) Liquid Conductivity - measurement uncertainty Liquid Permittivity (temperature uncertainty) Liquid Permittivity (temperature uncertainty) 7.2.3.5 N 1 0.78 0.71 1.95 1.78 5 N 1 0.23 0.26 0.92 1.04 5 Liquid Permittivity (temperature uncertainty) Liquid Permittivity (temperature uncertainty) Liquid Permittivity - measurement uncertainty 7.2.3.5 N 1 0.78 0.71 1.95 1.78 ∞ N 1 0.78 0.71 1.95 1.78 ∞ RSS 1.15 1.30 ∞ Expanded Uncertainty RSS 10.63 10.54		7222	4	R	√3	1	1	2.31	2.31	00
deviation (in permittivity and conductivity)		1.2.2.2	_	-						
Description of the property of the person of the property of the person of the perso	The second secon		١ ,	N.			0.04	200	1.00	
Liquid Conductivity (temperature uncertainty) 7.2.3.5 1.0.78		7.26	-	14	1	1	0.64	2.00	1.08	
Description of the image of t	71	7.20	_	_						
Liquid Conductivity - measurement uncertainty		7225	2.5	N	1	0.78	0.71	1.95	1.78	5
1	2.1	7.2.5.5	_	_						
Liquid Permittivity (temperature uncertainty) 7.2.3.5 N 1 0.78 0.71 1.95 1.78 ** Liquid Permittivity - measurement uncertainty 7.2.3.4 S N 1 0.23 0.26 1.15 1.30 ** Combined Standard Uncertainty RSS 10.63 10.54 Expanded Uncertainty RSS 21.08 21.08		7722	4	N	1	0.23	0.26	0.92	1.04	5
1.78 1.78		1.2.5.5	_							
Liquid Permittivity - measurement uncertainty 7.2.3.4 5 N 1 0.23 0.28 1.15 1.30 ** Combined Standard Uncertainty RSS 10.63 10.54 Expanded Uncertainty RSS 21.08 21.08		7225	2.5	N	1	0.78	0.71	1.95	1.78	
Uncertainty 7.2.3.4 5 N 1 0.23 0.20 1.15 1.30 ** Combined Standard Uncertainty RSS 10.63 10.54 Expanded Uncertainty 21.08 21.08		1.2.5.0	_	-						
Combined Standard Uncertainty RSS 10.63 10.54 Expanded Uncertainty k 21.08 21.08		7224	5	N	1	0.23	0.26	1.15	1.30	00
Expanded Uncertainty k 21.28 21.08		1.2.3.4	_	pec				10.62	10.54	
			+	RSS				10.03	10.54	
	(95% CONFIDENCE INTERVAL)			k				21.26	21.08	

Page 29 of 74

		Tol.	Prob.	Div.	c	C.	1 9	10 g	
Uncertainty Component		(± %)	Dist.	DIV.	(19)	(10 g)	U (± %)	u (± %)	v
Measurement System			27.12.00		THE STATE OF		(2 10)	(2 10)	
Probe Calibration	7.2.1	5.8	I N	1	1	1	5.80	5.80	×
Axial Isotropy	7.2.1.1	3.5	R	√3	$(1-c_0)^{1/2}$	(1-c ₂) ¹²	1.43	1.43	×
Hemispherical Isotropy	7.2.1.1	5.9	R	v3	VC.	VC.	2.41	2.41	×
Boundary Effect	7.2.1.4		R	v3	1	1	0.58	0.58	×
Linearity	7.2.1.4	4.7	R	1/3					×
		1	R	V3	1	1	2.71	2.71	× ×
System Detection Limits Modulation response	7.2.1.2 7.2.1.3	0	N	1	1	1	0.58	0.58	×
	7.2.1.5	0.5	N	1	1	1	0.50	0.50	*
Readout Electronics	7.2.1.6	0.5	R	√3	1	1	0.00	0.00	×
Response Time	7.2.1.7		R	1/3					». »:
Integration Time RF Ambient Conditions - Noise	7.2.3.7	1.4		V3	1	1	0.81	0.81	oc
		3	R	V3	1	1	1.73	1.73	»c
RF Ambient Conditions - Refections Probe Positioner Mechanical	7.2.3.7	3	K	13			1.73	1.73	У.
Tolerance	7.2.2.1	1.4	_	v3	1	1	0.04	0.04	×
Probe Positioning with respect to	(.Z.Z. I		R	13			0.81	0.81	х
Phantom Shell	7.2.2.3	1.4	R	v/3	1	1	0.81	0.81	ж
Extrapolation, interpolation and	1.2.2.3		K	15		- 1	0.01	0.01	*
Integration Algorithms for Max. SAR		2.3							
Evaluation	7.2.4	2.3	R	v3	1	1	1.33	1.33	×
Dipole	1.2.4		K	100		VE ALL SECTION	1.55	1.00	20150765
Deviation of experimental source								I	
from numerical source		4	N	1	1	1	4.00	4.00	30
nput Power and SAR drit			14	_			4.00	4.00	*-
measurement	7.2.3.6		R	v3	4	1	2.89	2.89	×
Dipole Axis to Liquid Distance	1.2.5.0	5 2	R	v3	1	1	2.05	2.05	×
Phantom and Tissue Parameters			K	10	- CONTRACTOR - CON	1		Description Ethio	W. W. C.
Phantom Uncertainty (shape and							1	T	
hickness tolerances)		4	R	v3	1	1	2.31	2.31	×
Incertainty in SAR correction for			- 13	-15		- '	2.51	2.01	-
deviation (in permittivity and		2	11	1	1	0.84	2.00	1.68	×
conductivity)	7.2.6	-				0.01	2.00	1.00	
iquid Conductivity (temperature	114.0			-					
incertainty)	7.2.3.5	2.5	N	1	0.78	0.71	1.95	1.78	5
iquid Conductivity - measurement								101	
Incertainty	7.2.3.3	4	N	1	0.23	0.26	0.92	1.04	5
iquid Permittivity (temperature					0.55			4.75	
incertainty)	7.2.3.5	2.5	И	1	0.78	0.71	1.95	1.78	×
iguid Permittivity - measurement					0.55	2.55		4.05	
incertainty	7.2.3.4	5	N	1	0.23	0.26	1.15	1.30	30
Combined Standard Uncertainty			RSS				10.15	10.05	
xpanded Uncertainty									
95% CONFIDENCE INTERVAL)			k			- 1	20.29	20.10	

Page 30 of 74

10.6. Test Equipment List

				Calibration		
Test Equipment	Manufacturer	Model	Serial Number	Calibration Date (D.M.Y)	Calibration Due (D.M.Y)	
PC	Lenovo	H3050	N/A	N/A	N/A	
Signal Generator	Angilent	N5182A	MY47070282	12/09/2015	11/09/2016	
Multimeter	Keithley	MiltiMeter 2000	4078275	12/09/2015	11/09/2016	
Network Analyzer	Agilent	8753E	US38432457	12/09/2015	11/09/2016	
Wireless Communication Test Set	R&S	CMU200	111382	12/09/2015	11/09/2016	
Power Meter	Agilent	E4418B	GB43312526	12/09/2015	11/09/2016	
Power Meter	Agilent	E4416A	MY45101555	12/09/2015	11/09/2016	
Power Meter	Agilent	N1912A	MY50001018	12/09/2015	11/09/2016	
Power Sensor	Agilent	E9301A	MY41497725	12/09/2015	11/09/2016	
Power Sensor	Agilent	E9327A	MY44421198	12/09/2015	11/09/2016	
Power Sensor	Agilent	E9323A	MY53070005	12/09/2015	11/09/2016	
Power Amplifier	PE	PE15A4019	112342	N/A	N/A	
Directional Coupler	Agilent	722D	MY52180104	N/A	N/A	
Attenuator	Chensheng	FF779	134251	N/A	N/A	
E-Field PROBE	MVG	SSE5	SN 07/15 EP248	11/05/2015	10/05/2016	
DIPOLE 835	MVG	SID835	SN 16/15 DIP 0G835-369	11/05/2015	10/05/2016	
DIPOLE 1900	MVG	SID1900	SN 16/15 DIP 1G900-372	11/05/2015	10/05/2016	
Limesar Dielectric Probe	MVG	SCLMP	SN 19/15 OCPG71	06/05/2015	05/05/2016	
Communication Antenna	MVG	ANTA59	SN 39/14 ANTA59	N/A	N/A	
Mobile Phone Position Device	MVG	MSH101	SN 19/15 MSH101	N/A	N/A	
Dummy Probe	MVG	DP66	SN 13/15 DP66	N/A	N/A	
SAM PHANTOM	MVG	SAM120	SN 19/15 SAM120	N/A	N/A	
PHANTOM TABLE	MVG	TABP101	SN 19/15 TABP101	N/A	N/A	
Robot TABLE	MVG	TABP61	SN 19/15 TABP61	N/A	N/A	
6 AXIS ROBOT	KUKA	KR6-R900	501822	N/A	N/A	

Note:

Page 31 of 74

^{1.}N/A means this equipment no need to calibrate 2.Each Time means this device need to calibrate every use time