Memo: Tutorial 4

March 3, 2005

Question 1:

Two leftmost derivations:

 $S \Rightarrow if b then S else S$

- \Rightarrow if b then if b then S else S (replace the first S with if b then S)
- ⇒ if b then if b then a else S (replace the first S with a)
- \Rightarrow if b then if b then a else a (replace the S with a)

 $S \Rightarrow if b then S$

- \Rightarrow if b then if b then S else S (replace S with if b then S else S)
- \Rightarrow if b then if b then a else S (replace the first S a)
- \Rightarrow if b then if b then a else a (replace S with a)

Two different parse trees corresponding to if b then if b then a else a

Question 2:

Grammar: $S \rightarrow aSa \mid B \mid \varepsilon$ $B \rightarrow bB \mid \varepsilon$

Now convert this grammar to Chomsky normal form. First we add a new start variable:

$$S_1 \rightarrow S \\ S \rightarrow aSa \mid B \mid \varepsilon \\ B \rightarrow bB \mid \varepsilon$$

Remove now the ε rules. Remove $S \rightarrow \varepsilon$

$$S_1 \rightarrow S \mid \varepsilon$$

$$S \rightarrow aa \mid aSa \mid B$$

$$B \rightarrow bB \mid \varepsilon$$

Remove $B \rightarrow \varepsilon$ $S_1 \rightarrow S \mid \varepsilon$ $S \rightarrow aa \mid aSa \mid B$

 $B \rightarrow b \mid bB$

Now we remove unit rules. Remove $S_1 \rightarrow S$

$$S_1 \rightarrow aa \mid aSa \mid B \mid \varepsilon$$

$$S \rightarrow aa \mid aSa \mid B$$

$$B \rightarrow b \mid bB$$

Remove $S_1 \rightarrow B$ $S_1 \rightarrow aa \mid aSa \mid b \mid bB \mid \varepsilon$ $S \rightarrow aa \mid aSa \mid B$ $B \rightarrow b \mid bB$

Remove $S \rightarrow B$ $S_1 \rightarrow aa \mid aSa \mid b \mid bB \mid \varepsilon$ $S \rightarrow aa \mid aSa \mid b \mid bB$ $B \rightarrow b \mid bB$

Convert remaining rules in proper from:

$$\begin{array}{l} S_1{\rightarrow}aa \mid AC \mid b \mid DB \mid \varepsilon \\ S{\rightarrow}aa \mid AC \mid b \mid DB \\ B{\rightarrow}b \mid DB \\ C{\rightarrow}SA \\ A{\rightarrow}a \\ D{\rightarrow}b \end{array}$$

Question 3:

$$\begin{smallmatrix} \mid a \mid a \mid b \mid \\ 0 & 1 & 2 & 3 \end{smallmatrix}$$

Since we have S here we can derive aab from S in the given grammar.

Question 4:

Since we have S here the string baba can be derived from S in the given grammar.

Question 5: (Sipser, exercise 2.18(b))

Suppose $L = \{0^n \# 0^{2n} \# 0^{3n} | n \ge 0\}$ is context free and let p be the pumping length. Let $s = 0^p \# 0^{2p} \# 0^{3p}$. Then $|s| = 6p + 2 \ge p$, so according to the pumping lemma s = uvwxy such that:

- 1. $uv^iwx^iy \in L$ for each $i \geq 0$
- 2. |vx| > 0
- $3. |vwx| \leq p$

Notice that v or x can not contain a #, since then uv^2xy^2z will have too many #'s. We can thus assume that $v \neq \#$ and $x \neq \#$.

If $v = \varepsilon$ or $x = \varepsilon$ (by 2 v and x can't both equal ε), $uv^2wx^2y = 0^i\#0^j\#0^k$ and i > p, j = 2p, k = 3p or i = p, j > 2p, k = 3p or i = p, j = 2p, k > 3p. We can thus assume that $v \neq \varepsilon$ and $x \neq \varepsilon$.

It thus follows from 3) that we have the following possibilities for v and x:

- v and x is contained in the 0's before the first # but then $uv^2wx^2y=0^i\#0^{2p}\#0^{3p}$ and i>p, which is not in L.
- v is contained in the 0's before the first # and x is contained in the 0's between the first and second # but then $uv^2wx^2y=0^i\#0^j\#0^{3p}$ with i>p and j>2p, which is not in L.
- Similarly, if v and x is contained between the first and second # or after the second #, or if v is between the first and second # and x after the second # we conclude that $uv^2wx^2y \notin L$.

We conclude that it is not possible to divide s in five pieces with properties (1) - 3). Thus L is not regular.

Question 6: (Sipser, exercise 2.18(c))

Suppose $L = \{r\#s|r \text{ is a substring of } s \text{ where } r, s \in \{a,b\}^*\}$ is context free and let p be the pumping length. Let $s = a^p b^p \# a^p b^p$. Then $|s| = 4p + 1 \ge p$, so according to the pumping lemma s = uvwxy such that:

- 1. $uv^iwx^iy \in L$ for each i > 0
- 2. |vx| > 0
- 3. |vwx| < p

Notice that v or x can not contain a #, since then uv^2xy^2z will have too many #'s. We can thus assume that $v \neq \#$ and $x \neq \#$.

If $v=\varepsilon$, then $x\neq\varepsilon$ (by 2 not both v and x equal ε). Thus if x is before the #, $uv^2wx^2y=r\#s$ with |r|>|s|. Similarly, if x is after the #, $uv^0wx^0y=r\#s$

with |r| > |s|. For $v \neq \varepsilon$ and $x = \varepsilon$ we obtain similarly strings of the form uv^iwx^iy that is not in L. We thus assume that $v \neq \varepsilon$ and $x \neq \varepsilon$.

It follows from 3) that we have the following possibilities for v and x:

- vwx appears before the # but then $uv^2wx^2y \notin L$, since $uv^2wx^2y = r\#s$ and |r| > |s|.
- Similarly, if vwx appears after the #, $uv^0wx^0y \notin L$, since $uv^0wx^0y = r\#x$ and |r| > |s|.
- v appears before the # and x after the #. Then v consits only of b's and x on of a's. But then $uv^2wx^2y=a^pb^i\#a^jb^p$ and i,j>p, thus $uv^2wx^2y\not\in L$.

We conclude that it is not possible to divide s in five pieces with properties 1) - 3). Thus L is not regular.

Question 7: (Sipser, exercise 2.15)

CFL's are closed under union:

Let G_1 be a context-free grammar that generates the CFL L_1 and G_2 be a context-free grammar that generates the CFL L_2 . Assume that S_1 is the start variable for L_1 and S_2 the start variable for L_2 . Also assume that G_1 and G_2 have no variables in common. We can obtain a context grammar G_3 that generates $L_1 \cup L_2$ as follows:

The variables for G_3 are the union of the variables for G_1 and G_2 , but we add a new start variable S_3 . The rules are the union of the rules of G_1 and G_2 , but we add the new rule $S_3 \rightarrow S_1 \mid S_2$.

CFL's are closed under concatenation:

Same as for union, but we add the rule $S_3 \rightarrow S_1 S_2$ instead of $S_3 \rightarrow S_1 \mid S_2$.

CFL's are closed under star:

Let G_1 be a context-free grammar that generates the CFL L_1 . Assume that S_1 is the start variable for L_1 . We can obtain a context grammar G_3 that generates L_1^* as follows:

The variables for G_3 are the same as the variables for G_1 . The rules are the same but we add the rule $S_1 \rightarrow S_1 S_1 \mid \varepsilon$.

Question 8: (Sipser, exercise 2.16)

We use Definition 1.26 (the definition of a regular expression) on p64 of Sipser.

- 1. The regular expression a with $a \in \Sigma$ has an equivalent CFL generated by the grammar $S \rightarrow a$.
- 2. The regular expression ε has an equivalent CFL generated by the grammar $S \rightarrow \varepsilon$.
- 3. The regular expression \emptyset has an equivalent CFL generated by the grammar $S{\to}S$.
- 4. If R_1 and R_2 are regular expressions, and we have CFL's with grammars G_1 and G_2 that are respectively equivalent to R_1 and R_2 , we showed in the previous question how to get a grammar for the union of the two languages.
- 5. We handle concatenation and star similar to union.

Question 9: (Sipser, exercise 2.19)

We may assume that in the derivation of w we first obtain all the necessary n variables, and then in the last n steps we replace the n variables by n terminals. Notice that since rules with variables on the the right hand side are of the form $A \rightarrow BC$, we need (n-1) steps to obtain the n variables. Thus in total we need n + (n-1) = 2n - 1 steps.