

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет" РТУ МИРЭА

Институт информационных технологий (ИТ) Кафедра общей информатики

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 5

построение комбинационных схем, реализующих СДНФ и СКНФ заданной логической функции от 4-х переменных по дисциплине «ИНФОРМАТИКА»

Выполнил студент группы ИКБО-29-20			Хан А.А.
Принял доцент, к.т.н.			Норица В.М.
Практическая работа выполнена	« <u> » </u>	_2020 г.	<u>(подпись студента)</u>
«Зачтено»	«»	2020 г.	<u>(подпись руководителя)</u>

Москва 2020

Содержание

1.	Постановка задачи и персональный вариант	3
2.	Восстановленная таблица истинности и формулы СДНФ и СКНФ	4
3.	Формулы СКНФ и СДНФ	5
4.	Схемы, реализующие СДНФ и СКНФ в общем логическом базисе	6
ВЬ	ЈВОД	7
СГ	ІИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ	8

1. Постановка задачи и персональный вариант

Логическая функция от четырех переменных задана в 16-теричной векторной форме. Восстановить таблицу истинности. Записать формулы СДНФ и СКНФ. Построить комбинационные схемы СДНФ и СКНФ в лабораторном комплексе, используя общий логический базис. Протестировать работу схем и убедиться в их правильности. Функция, задана в 16-теричной форме имеет следующий вид:

$$F(a, b, c, d) = 3AE7_{16}$$

2. Восстановленная таблица истинности и формулы СДНФ и СКНФ

Преобразуем ее в двоичную запись: $0011\ 1010\ 1110\ 0111_2$ — получили столбец значений логической функции, который необходим для восстановления полной таблицы истинности (см. табл.1).

Таблица 1: Таблица истинности

a	b	c	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

3. Формулы СКНФ и СДНФ

Запишем формулу СДНФ, для чего рассмотрим наборы значений тех переменных, на которых функция равна единице. Очевидно, что переменные, равные нулю, надо взять с отрицанием, а переменные, равные единице, без отрицания. В результате мы получим множество совершенных конъюнкций, объединив которые через дизъюнкцию образуем формулу СДНФ (формула 1).

$$F_{c,dH\Phi} = \bar{a} \cdot \bar{b} \cdot c \cdot \bar{d} + \bar{a} \cdot \bar{b} \cdot c \cdot d + \bar{a} \cdot b \cdot \bar{c} \cdot \bar{d} + \bar{a} \cdot b \cdot c \cdot \bar{d} + a \cdot \bar{b} \cdot \bar{c} \cdot \bar{d} + a \cdot \bar{b} \cdot \bar{c} \cdot \bar{d} + a \cdot b \cdot c \cdot \bar{d}$$

$$(1)$$

Запишем формулу СКНФ, для чего рассмотрим наборы значений переменных, на которых функция равна нулю. Очевидно, что переменные, равные единице, надо взять с отрицанием, а переменные, равные нулю, без отрицания. В результате мы получим множество совершенных дизъюнкций, объединив которые через конъюнкцию образуем формулу СКНФ (формула 2).

$$F_{\text{CKH}\Phi} = (a+b+c+d) \cdot (a+b+c+\bar{d}) \cdot (a+\bar{b}+c+\bar{d}) \cdot (a+\bar{b}+\bar{c}+\bar{d}) \cdot (\bar{a}+b+\bar{c}+\bar{d}) \cdot (\bar{a}+b+c+\bar{d}) \cdot (\bar{a}+b+c+\bar{d}) \cdot (\bar{a}+\bar{b}+c+\bar{d})$$

$$(2)$$

4. Схемы, реализующие СДНФ и СКНФ в общем логическом базисе

Построим в лабораторном комплексе комбинационные схемы, реализующие СДН Φ (рис.1) и СКН Φ (рис.2) рассматриваемой функции в общем логическом базисе, протестируем их работу и убедимся в их правильности.

Рис.1 Тестирование схемы СДНФ

Рис.2 Тестирование схемы СКНФ.

Тестирование показало, что все схемы работают правильно.

вывод

В результате выполнения практической работы № 5 были получены основы работы в среде моделирования Logisim, был получен опыт по созданию схем СДНФ и СКНФ по логической функции, заданной в 16-теричной форме.

СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

- 1. Информатика: Методические указания по выполнению практических работ / С.С. Смирнов, Д.А. Карпов М., МИРЭА Российский технологический университет, 2020. 102 с.
- 2. Справочная служба Logisim [Электронный ресурс]. Режим доступа: http://cburch.com/logisim/ru/docs.html, свободный (22.10.2020).