

ICS3213 – Gestión de Operaciones

Sección 3 Primer Semestre 2025

Profesor: Rodrigo A. Carrasco

Avisos

• Hagan una pausa ahora de 5 minutos y contesten el control de la clase del 8 de mayo que está disponible en Canvas en el horario del curso.

Revisión de la clase pasada

- Hemos estudiado cómo planificar en diferentes contextos.
- De sistemas de producción masiva (MRP) a gestión de proyectos complejos (PERT) tenemos herramientas analíticas para analizar esos casos.
- En todos los contextos que hemos visto en el curso hasta ahora, nos hemos visto enfrentados al efecto de la variabilidad.
- Ahora estudiaremos el efecto de la variabilidad en procesos y gestión; con nuevas herramientas para análisis y gestión.

Los efectos de la variabilidad

• La lectura complementaria de esta parte son los capítulos 7 y 8 del libro "Factory Physics" por W. Hopp y M. Spearman, disponible en Canvas.

Impacto de Variabilidad

- Esta en todas partes.
 - ¿Cómo lo enfrentamos en gestión de inventarios?
 - ¿Cómo lo enfrentamos en planificación de proyectos?
- ¿Es buena o mala la variabilidad?
- Trabajamos con el promedio mala idea muchas veces.
- ¿Fuentes de variabilidad?
- Efectos:
 - Ingresos.
 - Costos.

Variabilidad e Incertidumbre

- ¿Son diferentes?
- La demanda.
- La capacidad de mi sistema productivo.
- Es importante notar la diferencia.
- Tipos de variabilidad en la producción y servicios.

Importante

¿Por qué sucede esto? ¿otros ejemplos?

Gestión

• ¿Cómo podemos gestionar la variabilidad?

Variabilidad

• ¿Por qué?

Porque la capacidad no satisface la demanda.

Ejemplo: Sala de Emergencia

- Atiende a una tasa de 10 personas/hora
- Antes de 7pm y después de 9pm, pacientes llegan a una tasa de 5 personas/hora
- Entre las 7pm y 9pm, paciente llegan a tasa de 20 personas por hora

Variabilidad

• ¿Qué sucede?

• En este tipo de casos, podemos "predecir" que sucederá

Variabilidad

- Pero, en otros casos, a pesar de mayor capacidad vemos colas de espera...
- En muchas situaciones, la tasa de llegada no supera la capacidad en el largo plazo y en periodos predecibles, pero si en el corto plazo y por periodos no predecibles.

VARIABILIDAD

Costos en líneas de espera

Más ejemplos

Situación	Llegadas	Servidor	Servicio
Banco	Clientes	Cajero	Depósito, etc.
Hospital	Pacientes	Doctor	Tratamiento
Intersección de tráfico	Autos	Semásforo	Tráfico controlado
Línea de ensamble	Partes	Trabajador	Ensamble

Manejando la física de las colas

Características de líneas de espera

- Población de clientes puede ser finita o infinita
- Patrón de llegada puede ser random
- Clientes pueden ser o no ser pacientes

- Largo de la cola puede ser limitado
- Clientes son servidos en una secuencia FIFO
- Pueden haber más de una cola

- Tiempos de servicio pueden ser random
- Puede haber más de un servidor

Medidas de desempeño

Desempeño del sistema = F(Parámetros del sistema)

- γ Output/Throughput rate
- L Nivel inventario / largo cola
- W Tiempo de espera
- C Tiempo de ciclo
- P_{full} Probabilidad de cola llena

- λ Tasa de llegada
- μ Tasa de servicio
- M Tiempo de servicio
- S Número de servidores
- R Capacidad de la cola (buffer)
- O Utilización de capacidad
- K Clases de servicio
- π Política de servicio

Tipos de líneas de espera

<u>Canal Simple – Una fase</u>

Sistema de servicio

<u>Canal Simple – Multi-fase</u>

Sistema de servicio

Tipos de líneas de espera

Multi-servidor – Una fase

Ejemplo: banco, correo, etc.

Tipos de líneas de espera

Multi-servidor – Multi-fase

Ejemplo: Lavandería, sistema de producción make-to-order, etc

Tipos de líneas de espera: ejemplos

Una fase Multi-fase

Servidor simple

Multi-servidor

Peluquero con
una silla

Ventanillas de cajeros bancos

Admisión en hospitales

Lavado de

auto

Analicemos una cola simple (1 servidor)

Cantidades importantes:

- Tasa llegada: λ (ej: clientes/hr, paquetes/seg, etc)
- Tasa servicio: μ (ej: clientes/hr, etc)
- # unidades en el sistema: L_s
- # unidades en la cola: Lo
- Tiempo en el sistema: W_s (Throughput Time)
- > Tiempo en la cola: W_o
- Utilización del servidor: ρ

Sistema Productivo

- Performance:
 - Tiempo de ciclo de producción o tiempo de flujo. (FT)
 - Work in Progress (WIP)
 - Tasa de produccion (throughput).

- ¿Se puede medir el FT y WIP en espera?
- ¿Cuál es el objetivo? Trade-off.

