0.1 General Information

The files *math.sty* and *preamble.sty* should provide you a simple yet effectie suite of macros for quick writing of mathematical/scientific papers. To properly load them you should include the following in your preamble:

```
1 \usepackage{preamble}
2 \usepackage{math}
```

It is important that you maintain the order of the packags, since math.sty uses some packages included in preamble.sty. Other than providing an extensive list of mathematical operators from math, there are some useful commands in preamble.sty too. The one that I myself use quite often is \col{<color>}{<text>}. Altough xcolor defines \textcolor, it can get kind of "clunky" in tables or similar, so i wrote a shorter command.

0.2 Symbol Index

Symbol	Math-Mode	Result	Symbol	Math-Mode	Result
Symbol			Math-Mode	Result	
		1	Vectors		
Column Vector	\pvec{x_1}{x_2}	$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	Dot-Product	$\label{eq:dotp} $$\det\{x_1\}\{x_2\}$$$	$\langle x_1, x_2 \rangle$
Column Vector		\tvec{x_1}{x_2}{x_3}		$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$	
Row Vector		\rpvec{x_1}{x_2}		$\begin{bmatrix} x_1 & x_2 \end{bmatrix}$	
Row Vector		\rtvec{x_1}{x_2}{x_3}		$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$	
		λ	<i>Matrices</i>		
Matrix	\mat{M}	${f M}$	Matrix (greek letters)	\gmat{M}	$oldsymbol{\phi}$
Determinant	\det	\det			
Row Operation (arrow)	\longleadsto{0.7}	~~~ >	Row Operation	\rtrf{r_2: -2r_1}	$\stackrel{r_2:-2r_1}{\leadsto}$
Matrix-Rank (de)	\Rang	Rang	Matrix-Rank (en)	\Rank	Rank
Matrix-Trace (de)	\Spur	Spur	Matrix-Trace (en)	\Trace	Trace
Adjunct-Matrix	\Adj	Adj	Cofactor-Matrix	\Cof	Cof
Identity-Matrix (de)	\imate	${f E}$	Identity-Matrix (en)	\imati	I

		Calculus	and Functions		
Differential d	\diff	d	Exterior Derivative	\extd	D
Divergence	\divs	div			
Derivative	\der{f}{x}	$\frac{\mathrm{d}f}{\mathrm{d}x}$	Partial Derivative	$\texttt{\per{f}}\{x_1\}$	$\frac{\partial f}{\partial x_1}$
n-th Derivative	$\operatorname{ner}\{f\}\{x\}\{n\}$	$\frac{\mathrm{d}^n f}{\mathrm{d} x^n}$	n-th Partial Derivative	$\pr{f}{x_1}{n}$	$\frac{\partial^n f}{\partial x_1^n}$
Curl (de)	\rot	rot	Curl (en)	\curl	curl
Limit (noarg)	\lims	\lim	Limit	$\lim\{n\}{\inf y}$	$\lim_{n \to \infty}$
Infimum (noarg)	\infs	\inf	Infimum	\inf{M}	$\inf(M)$
Supremum (noarg)	\sups	sup	Supremum	$\sup\{M\}$	$\sup(M)$
Limes Inferior (noarg)	\liminfs	lim inf	Limes Inferior	\liminf{n}{\infty}	$ \lim_{n\to\infty}\inf $
Limes Superior (noarg)	\limsups	\limsup	Limes Superior	$\limsup_{n\to\infty}$	$\limsup_{n\to\infty}$
Function Image (de)	\Bild	Bild	Function Image (en)	\Img	Img
	Ac	dditional Trig	onometric Functions		
Area Sinus hyperbolicus	rea Sinus hyperbolicus \Arsinh		Arsinh	Arsinh	
Area Cosinus hyperbolicus		\Arcosh		Arcosh	
Area Tangens hyperbolicus		\Artanh		Artanh	
Area Cotanges hyperbolic	cus	\	Arcoth	Arcoth	
Arcus Cotanges	\arccot	arccot			
Arcus Secans	\arcsec	arcsec	Arcus Cosecans	\arccsc	arccsc
			Logic		
Bijunction	\bij	\leftrightarrow			
Equivalent	\eqv	\Leftrightarrow	Not Equivalent	\neqv	*
Right Subjunction	\subj	\rightarrow	Left Subjunction	\lsubj	\leftarrow
Not Right Subjunction	\nsubj	×	Not Left Subjunction	\nlsubj	5
Right Implication	\implies	\Rightarrow	Left Implication	\limplies	(
Not Right Implication	\nimplies	*	Not Left Implication	\nlimplies	$\not=$
Symbol for True (de)	\dtrue	W	Symbol for True (en)	\etrue	${ m T}$
Symbol for False (de)	\dfalse	\mathbf{F}	Symbol for False (en)	\efalse	\mathbf{F}
		Eq	nuations		
Should be equal to	\feq	<u>!</u>			
		Co	onstants		
Imaginary Unit	\i	i	Jimaginary Unit (EE)	\j	j
Euler's Number	\e	e			
		Num	ber Theory		
GCD (de)	\ggT	ggT	GCD (en)	\gcd	gcd
LCM (de)	\kgV	kgV	LCM (en)	\lcm	lcm
		Signal	Transforms		
Laplace Transform	\ltr{x}	\overline{x}	Z Transform	\ztr{x}	\tilde{x}

Laplace Transform	$\label{lap} x$	$\mathcal{L}\{x\}(s)$	Laplace Transform (inv)	\ilap{x}	$\mathcal{L}^{(-1)}\{x\}$			
Z-Transform	\zat{x}	$\mathcal{Z}\{x\}(z)$	Z-Transform (inv)	\izat{x}	$\mathcal{Z}^{(-1)}\{x\}$			
Fourier Transform	\frt	$\stackrel{\mathrm{FT}}{\longleftrightarrow}$						
Fourier Transform	$fat{x}$	$\mathcal{F}\{x\}(\omega)$	Fourier Transform (inv)	\ifat{x}	$\mathcal{F}^{(-1)}\{x\}$			
Fourier Series (de)	\frr	$\stackrel{\operatorname{FR}}{\longleftrightarrow}$	Fourier Series (en)	\frs	$\stackrel{\mathrm{FS}}{\longleftrightarrow}$			
DFT	\dft	$\overset{\mathrm{DFT}}{\longleftrightarrow}$	DTFT	\dtft	$\overset{\mathrm{DTFT}}{\longleftrightarrow}$			
Custom TikZ-Symbols for Signal Transforms								
Laplace Transform	\ltransf	○	Laplace Transform (inv)	\Ltransf	•—0			
Z Transform	\ztransf	□─■	Z Transform (inv)	\Ztransf				
Sets								
Natural Numbers	\N	N	Integers	\Z	\mathbb{Z}			
Rational Numbers	\Q	\mathbb{Q}	Irrational Numbers	\I	\mathbb{I}			
Real Numbers	\R	\mathbb{R}	Complex Numbers	\C	\mathbb{C}			
Set of Primes	\P	\mathbb{P}	Transcendental Numbers	\T	\mathbb{T}			
General Field (de)	\K	K	General Field (en)	\F	\mathbb{F}			

Table 1: All symbols and operators from math.sty

As you might have noticed, some of the entries in the table above feature either (de) or (en). These typically refer to language-dependet Operators. A classic example is the Curl of a Vector-Field. In English, the operator is either $\nabla \times \mathbf{V}$ or $\operatorname{curl}(\mathbf{V})$. In German however, the cross-prodcut $\nabla \times \mathbf{V}$ ist referred to as *Rotation von* \mathbf{V}^1 . Hence the Operator $\operatorname{rot}(\mathbf{V})$.

There also exist some limits which take no arguments, which is listed with (noarg). This was mostly done to provide a simple text command for just the operator. If you e.g. just want to write: *The limes superior refers to the largest* ... and want to use the symbol \limsup in text without any subscript.

0.3 A Word on Tables

Tables in LaTeXcan be quite a pain, especially correct vertical spacing and alignemnt. To avoid maximum frustration, the package cellspace is loaded. It allows to define a minimal distance to the top and the bottom of a row. To enable this functionality in your tables, you need to modify your column-list by adding s in front of your column type, e.g. \begin{tabular}{Sc Sl Sr}. Note: If you have simitx loaded² you need to write Cc instead.

The standard value for space to top/bottom is 4pt. You can change this by modifying the corresponding commands in preamble.sty:

- \setlength\cellspacetopline controls the spacing to the top
- \setlength\cellspacebottomline controls the spacing to the bottom

preamble also includes the <code>longtable</code> package. This allows for tables to perform pagebreak. A pagebreak can be manually inserted by typing <code>\pagebreak</code> in the table-contents. In order for this to work, the longtable-environment mustn't be in a table-environment. So wrap your longtable in a center and put the caption as a row element. See <code>readme.tex</code> for an example.

 $^{^{1}}$ Rotation of ${f V}$

²preamble loads this package

0.4 Augmented Matrices and Row Operations

We now support augmented matrices. I took this beautiful solution from Stefan Kottwitz³:

```
1 \makeatletter
2 \renewcommand*\env@matrix[1][*\c@MaxMatrixCols c]{%
3 \hskip -\arraycolsep
4 \let\@ifnextchar\new@ifnextchar
5 \array{#1}}
6 \makeatother
```

I found this solution on StackExchange⁴. This modifies the amsmath-matrix environment, such that you can add a column-specification (like for tables) e.g. [cc|c] and after the second column, a line will be drawn. A simple example:

```
1 \begin{bmatrix}[cc|c]
2 m_{11} & m_{12} & b_1\\
3 m_{21} & m_{21} & b_2
4 \end{bmatrix}
```

Produces:

$$\begin{bmatrix} m_{11} & m_{12} & b_1 \\ m_{21} & m_{21} & b_2 \end{bmatrix}$$

The good part about Kott's solution is, that you can still call \begin{bmatrix} and related without any column-specifications, so the following still works:

```
1 \begin{bmatrix}
2  m_{11} & m_{12} & b_1\
3  m_{21} & m_{21} & b_2
4 \end{bmatrix}
```

Which produces:

$$\begin{bmatrix} m_{11} & m_{12} & b_1 \\ m_{21} & m_{21} & b_2 \end{bmatrix}$$

For Row operations, I found Jake's⁵ solution in this⁶ thread. It allows you to draw a squiggly arrow with a specified length, which is passed as an argument to the call \longleadsto{<length>}.

0.5 Pseudo-Code and Algorithms

preamble.sty defines the language pseudo, which covers some common keywords for pseudo-code. Here are all defined keywords:

```
control:

1) for 2) begin 3) end 4) input

5) if 6) then 7) output 8) return

9) while 10) name

stack/list operations:

1) view 2) push 3) pop 4) insert

5) delete

basic types:

1) bool 2) int 3) float 4) double

5) string 6) data
```

Table 2: Defined Keywords in pseudo

To complete the pseudo-code, I found another beautiful solution here⁷. A simple example:

```
<sup>3</sup>https://tex.stackexchange.com/users/213/stefan-kottwitz[12.3.2021]
```

⁴https://tex.stackexchange.com/questions/2233/whats-the-best-way-make-an-augmented-coefficient-matrix[12.3.2021]

⁵https://tex.stackexchange.com/users/2552/jake[12.3.2021]

⁶https://tex.stackexchange.com/questions/12678/squiggly-arrows-in-tikz/442036#442036[12.3.2021]

⁷https://tex.stackexchange.com/questions/111116/what-is-the-best-looking-pseudo-code-package

```
name: hanoi
input: index n, Rod a, Rod b, Rod c
hanoi(n, a, b, c):
if ( n > 0 ) begin
hanoi(n-1, a, c, b)
move(a, c)
hanoi(n-1, b, a, c)
end
```

Alg 0.5.1: Towers of Hanoi, recursive

The caption-name can be overwritten with a simple renewcommand{algcapname}{<name>}. The environment accepts all lstlisting arguments as-well as caption:

```
begin{algorithm}[language=pseudo,caption={Towers of Hanoi, recursive}]
name: hanoi
input: index n, Rod a, Rod b, Rod c
hanoi(n, a, b, c):
if ( n > 0 ) begin
hanoi(n-1, a, c, b)
move(a, c)
hanoi(n-1, b, a, c)
end
end{algorithm}
```

0.6 Authors Note

Since I am currently studying Information and Computer Engineering, I've only written macros for corresponding fields (i.e. electrical engineering). So currently there are no neat macros for Chemistry or advanced Physics, etc. Since this repository is public you can Issue a feature request and given some time, it should be implemented in a corresponding style.