

Concatenated Tree Construction Demo: Identify Marker Genes

Nina Dombrowski and Kiley Seitz

Abstract

Demo for identifying marker genes using RiboDB.

Citation: Nina Dombrowski and Kiley Seitz Concatenated Tree Construction Demo: Identify Marker Genes. protocols.io

dx.doi.org/10.17504/protocols.io.fa7bihn

Published: 25 Jul 2016

Guidelines

Why important?

- 1. Identify novel taxonomic lineages
- 2. Understanding evolutionary processes (Speciation, Geography, Age of taxa, Endosymbiosis, Tree of Life...)
- 3. Predict function of novel genes (Dsr genes)

An example:

What to use?

- 1. DNA
- 2. RNA
- 3. Protein

Non-coding **DNA** regions: higher mutation rate

 \rightarrow Rapid evolving sequences for close relatives

Proteins: mutate slower (must maintain function)

→ Good for distantly related species

Types of alignments

- 1. Pair-wise alignment
- 2. Multiple alignment
- 3. Local alignment (Identify sub-sequences sharing high similarity)
- 4. Global alignment (Align entire sequences, up to both ends of each sequence)
- 5. Structure-guided alignments (ie. 16s, Takes secondary structure into account)

Problems: possible to align two sequences by different combination of gaps

	<u>_</u>		Human Chimp Gorilla Orang	KRSV KRV KSV KPRV	
human	KRSV	human	KRSV	human	KRSV
chimp	KR-V	chimp	K-RV	chimp	KR-V
gorilla	KS-V	gorilla	K-SV	gorilla	K-SV
orang	KPRV	orang	KPRV	orang	KPRV

Programs for alignments

- ARB (2nd structure)
- MUSCLE
- Geneious
- MEGAN

Tree construction methods

- Distance (Neighbour-joining)
- Maximum Parsimony
- Maximum Likelyhood (ML)
- Bayesian

Distance:

Calculate pairwise distances on alignment

Count number of differences between segs

Phylogenetic tree calculated on distance matrix

+ Fast (many seqs), good for first tree, ok when low distance between sequences

- Sequence info based on 1 parameter, does not account for multiple mutations at one site

Maximum parsimony:

All possible trees determined from each position of the sequence alignment

Each tree gets a score based on number of steps to generate tree

Chosen tree = min. nr. of mutations that could produce the data

- + Uses all data, Good for close evol. distances
- Slow, assumes equal rate of mutations, many scenarios possible

Maximum likelihood:

ML employs a model of evolution, i.e. different rates of transitions/transversion

Probability calculated how each position reflects sequencing data (for all 4 nucleotide sites)

Tree generated that is most likely to have produced the observed data is generated

- + Model of evolution, uses all sequence info, corrects for multiple mutations → good for large evol. distances
- Very slow, depends on model of evolution used

_			
ヒコ	IDC	าวก	•
υay	/esi	ıaıı	

Incorporation of prior information about a parameter

Then calculate the likelihood of a given site after observing some data (posterior probability)

Chose tree with highest posterior probability

- + relatively fast, allows more complex models, gives both tree estimate and measure of uncertainty
- needs to specify prior information, very different run times for different trees

Evolutionary models:

Interpreters of phylogenetic info in a sequence. Each model makes different basic assumptions.

- → Which model for my data?
- → Did my model create reliable data?
 - 1. Aminoacid substitution model
 - 2. Codon based models
 - 3. Models depending on secondary structure

Model selection:

iModelTest2:

http://code.google.com/p/jmodeltest2/

http://jmodeltest.org/

- Several selection criteria employing maximum likelihood (ML) scores
- Free
- Not ideal for Bayesian approaches

Protocol

Step 1.

Commonly → 16S rRNA gene

- + 100,000s of environmental sequences
- + Well developed trees
- 16S rRNA gene tends to break assemblers
- Not always present in MAGs

Step 2.

Concatenated ribosomal markers

- + Increased resolution of phylogeny
- Phylogenetic placements among genomes
- Genes need same evolutionary history

Step 3.

Collect marker genes from reference genomes Hug et al (2016).

→ 16 Ribosomal proteins:

L2, L3, L4, L5, L6, L14, L15, L16, L18, L22, L24, S3, S8, S10, S17, S19

Step 4.

One resource for ribosomal markers: RiboDB

Flavobacteria and Prochlorococcaceae →

RpL14 (uL14), RpL22 (uL22), RpS8 (bS8), RpS18 (uS18)

@ LINK:

https://ribodb.univ-lyon1.fr/ribodb/ribodb-in.cgi

ANNOTATIONS

Elisha Wood-Charlson 05 Aug 2016

Paste in Flavobacteriia (yes, with 2 i's)

Step 5.

Step 6.

Step 7.

Move compressed file to /home/c-debi/ecogeo/phylogenetics

```
cmd COMMAND
```

\$ mv R-PROTS.tar.gz /home/c-debi/ecogeo/phylogenetics

Step 8.

Decompress file:

```
cmd COMMAND
```

\$ tar zxvf R-PROTS.tar.gz

NOTES

Elisha Wood-Charlson 13 Jul 2016

Contains 4 folders - bS18, uL14, uL22, uS8

Each contains a number of files - 3 nucleotide and 3 protein FASTA files

Step 9.

Copy the *_prot.fst files up two directories to /home/ecogeo/phylogenetics

```
cmd COMMAND
$ cp *_prot.fst ../../home/ecogeo/phylogenetics

ANNOTATIONS
```

Navigate to each folder and use:

Elisha Wood-Charlson 05 Aug 2016

\$ cp * prot.fst /home/c-debi/ecogeo/phylogenetics

Step 10.

Clean up header names & repeat:

```
cmd COMMAND
$ cut -f1 -d "~" bS18_prot.fst | sed 's/\.//' | sed 's/|//' > temp1_bS18
$ rm bS18_prot.fst
$ mv temp1_bS18 bS18_prot.fst
```

NOTES

Elisha Wood-Charlson 13 Jul 2016

When renaming:

Check that you get unique names!