Mixture Models

Sargur Srihari srihari@cedar.buffalo.edu

Topics in Mixture Models and EM

- Modeling complex distributions
- K-means algorithm for finding clusters in a data set
- Latent variable view of mixture distributions
- General technique for finding m.l. estimators in latent variable models
- EM Algorithm
- Infinite Mixture Models

Modeling complex distributions

• Complex distribution p(x) of observed variable x

- Can be expressed in terms of a more tractable joint distribution over observed and latent variables p(x,z)
 - Latent variable z with three values can model this distribution
- Distribution of x alone obtained by marginalization

$$p(x) = \sum_{z} p(x, z)$$

- Latent variables allow complicated distributions to be formed from simpler components
 - Gaussian mixtures have latent variables z that are discrete
 - Also called Finite Mixture Models

Gaussian Mixture Model (GMM)

- Linear superposition of Gaussian components
 - Two Gaussians

z has 2 values

Three Gaussians

z has 3 values (data: petal width in Iris)

Since

$$p(x) = \sum_{z} p(x, z) = \sum_{z} p(z)p(x \mid z)$$

We can write (for the mixture of two Gaussians): p(x)=p(z=1)p(x|z=1)+p(z=2)p(x|z=2)

$$p(x)=p(z=1)p(x|z=1)+p(z=2)p(x|z=2)$$

Mixture Model As Unsupervised Learning

- Probabilistic model representing subpopulations within a population
 - Without requiring that the sub-population of the data items be identified (supervised)
- Constructing such models is called unsupervised learning or clustering

Bernoulli Mixture Model

- Handwritten Digit Data (560 × 420 pixels)
 - Mixture Model for digits 0-4 with K= 12
 - Identifies three 0s, two 1s,two 3s, and three 4s

Superimposed data of 12 components

Role of Mixture Models

- Mixture models provide:
 - 1. Framework for building complex probability distributions
 - Complex distribution expressed in terms of tractable joint distribution of observed and latent variables
 - Distribution of observed variables: by marginalization
 - 2. A method for clustering data
 - Unsupervised learning