Инструкция по применению Teachable Machine для создания ИИ по распознаванию рукописных чисел

Шаг 1. Скачать архив с датасетом MNIST

Для этого необходимо зайти на сайт https://rockus.su в раздел «Школа», перейти в пункт «Код будущего» и внизу справа нажать на ссылку «Файлы для скачивания», необходимый архив будет под номером 5.

Шаг 2. Разархивировать скачанный датасет

Поместите файлы из архива на видное место, нам будет нужна папка «MNIST – JPG – testing»

Шаг 3. По инструкции создать классы на сайте Teachable Machine

Каждый класс обозначает тип классификации, то есть то, что ИИ будет определять. Наша задача — создать ИИ, который распознаёт рукописные цифры, следовательно нам нужно 10 классов для цифр от 0 до 9.

Ссылка на обучающее видео по работе с Teachable Machine - https://www.youtube.com/watch?v=xkhEHqLkbbY.

Отличие будет в том, что наши классы будут выглядеть так:

Рисунок 1 - классы в Teachable machine

Далее в каждый класс необходимо загрузить папку с картинками цифр, как в инструкции. Папки с картинками лежат в ранее разархивированной папке «MNIST – JPG – testing».

Шаг 4. Обучить модель и проверить

После обучения по инструкции, необходимо проверить работу ИИ, для этого необходимо загрузить в соответствующую секцию случайную картинку с числом и проверить, правильно ли оно работает.

Рисунок 2 - проверка работы ИИ

Как видим, ИИ работает со 100% точностью.

Шаг 5. Создать python файл по инструкции из видео

Далее, следуем инструкции из видео и создаём python файл, с помощью которого мы будем запускать наш ИИ.

На этапе, где необходимо указать имя файла, который будет распознавать программа, необходимо открыть программу Paint и нарисовать какую-либо цифру, перед этим сделав кисть жирнее.

Рисунок 3 – Paint

С помощью маленького белого квадратика в углу (цифра 1 на рисунке) уменьшите размер изображения до примерных значений 230х230, посмотреть текущий размер можно в строке снизу (цифра 2 на рисунке). Перед рисованием не забудьте сделать кисть толще (цифра 3 на рисунке).

После этого, необходимо сохранить файл и переместить его в папку с файлом Python и моделью. После этого укажите в файле .py название вашей картинки, как это сделано в инструкции.

Шаг 6. Запуск

```
• 1/1 [============ ] - 0s 306ms/step Class: 7 Confidence Score: 1.0
```

После запуска вы должны увидеть результат, который покажет нарисованную вами цифру после слова «Class».