Shukai Du Curriculum Vitae

112 Ewing Hall Phone: 302-966-9862
Department of Mathematical Sciences Email: shukaidu@udel.edu

University of Delaware Website: https://shukaidu.github.io

EDUCATION

University of Delaware

• Ph.D in Applied Mathematics expected to graduate Jun 2020

Advisor: Dr. Francisco-Javier Sayas

Thesis: Generalized projection-based error analysis of hybridizable discontinuous

Galerkin methods

• M.S. in Applied Mathematics 2017

Wuhan University

• M.S. in Computational Mathematics 2015

• B.S. in Pure Mathematics 2012

RESEARCH INTERESTS

• Numerical analysis of partial differential equations

- Finite element and (hybridizable) discontinuous Galerkin method
- Elastic/viscoelastic and electromagnetic waves
- Incompressible Navier-Stokes equations
- Inverse and ill-posed problems

PUBLICATIONS

Peer-reviewed articles

1. T.S. Brown, **S. Du**, H. Eruslu, and F.-J. Sayas. Analysis of models for viscoelastic wave propagation. *Applied Mathematics and Nonlinear Sciences* 3 (2018) 55-96.

DOI: 10.21042/AMNS.2018.1.00006

2. **S. Du**, and F.-J. Sayas. New analytical tools for HDG in elasticity, with applications to elastodynamics. *Mathematics of Computation, in press.*

DOI: 10.1090/mcom/3499

Books

1. **S. Du**, and F.-J. Sayas. An invitation to the theory of the Hybridizable Discontinuous Galerkin Method. *SpringerBriefs in Mathematics* (2019).

DOI: 10.1007/978-3-030-27230-2

Submitted articles

- 1. **S. Du**, and F.-J. Sayas. A unified error analysis of HDG methods for the static Maxwell equations. *Submitted*. Arxiv:1910.01000
- 2. **S. Du**, and F.-J. Sayas. A note on devising HDG+ projections on polyhedral elements. *Submitted*.
- 3. **S. Du**, and N. Du. A factorization of least-squares projection schemes for ill-posed problems. *Submitted*.

In preparation

1. **S. Du**. HDG methods for Stokes equation based on strong symmetric stress formulations. *In preparation*.

PRESENTATIONS

CIAM appliance marking Javas Chata II)19
SIAM sectional meeting, Iowa State U Oct 20	
2. Uniform-in-time optimal convergent HDG method for	
transient elastic waves with strong symmetric stress formulation	
WAVES2019, TU Wien Aug 20)19
3. Hybridizable Discontinuous Galerkin schemes for elastic waves	
ICIAM2019, Valencia July 20)19
4. HDG for transient elastic waves	
WONAPDE2019, U of Concepcion Jan 20)19

Contributed talks

1.	Projection-based analysis of HDG methods with reduced stabilization	
	DelMar Num Day 2019, U of Maryland	May 2019
2.	Projection-based error analysis of HDG methods for transient elastic waves	3
	FEM Circus, U of Delaware	Nov 2018
3.	Devising a tailored projection for a new HDG method in linear elasticity	
	FEM Circus, U of Tennessee	Mar 2018
4.	A new HDG projection and its applications	
	Mid-Atlantic Numerical Analysis Day, Temple U	Nov 2017

Poster presentation

1. Hybridizable Discontinuous Galerkin methods in transient elastodynamics	1
FACM2018, New Jersey Institute of Technology	Aug 2018
2. Building a computational code for 3D viscoelastic wave simulation	
Mid-Atlantic Numerical Analysis Day, Temple U	Nov 2016

AWARDS AND HONORS

University Doctoral Fellowship Award at the University of Delaware	2019
ICIAM2019 travel grant	2019
Graduate Enrichment Fellowship at the University of Delaware	2018
GEMS project fund at the University of Delaware	Summer 2016
National Scholarship for Graduate Students of China	2013
People's Scholarship of Wuhan University	2011
Outstanding Student of Wuhan University	2009-2011

TEACHING EXPERIENCE

Teaching Assistant

 Review of Advanced Mathematical Problems 	
(summer courses offered to incoming graduate students)	2018 Fall
 Analytic Geometry and Calculus C (Math243) 	2016&2017 Fall
 Analytic Geometry and Calculus B (Math242) 	2017 Spring
• Calculus I (Math221)	2018 Spring

International Teaching Assistant (ITA) training program

• Graduated with the highest category of scores (category I)

Summer 2015

Graduate mentor

• GEMS summer research project

Fall 2016

CODING PROJECTS

Hybridizable Discontinuous Galerkin (HDG) methods (based on HDG3D library)

2016 - current

- Build Matlab codes of high order HDG methods on computing cluster for transient elastic/viscoelastic waves and Maxwell equations
- Write documentations with detailed implementation procedures for HDG methods for Maxwell equations

Finite Element Method (FEM)

2016

(based on Team Pancho FEM library)

• Build Matlab codes of high order FEM methods on computing cluster for simulation of viscoelastic waves.

Multiscale modeling

2013 - 2015

• Implement algorithms to calculate Cauchy stress tensor based on micro-scale molecular dynamics information

COMPUTER SKILLS

Theory

Data Structures • Algorithm • Object Oriented Programming

Languages & Software

Matlab • Python • C • C++ • Fortran • openMPI • LISP • Linux Shell

ACTIVITIES

MSRI Summer School on Harmonic Analysis, Park City	Jul 2018
Nonlocal School on Fractional Equations, Iowa State U	Aug 2017
Finite Element Circus, Rutgers U	Apr 2017
Summer School on Applied Mathematics in Beijing University	Jul 2014
Second Pacific Rim Mathematical Association Congress	Jun 2013
International Conference on Mathematical Modeling & Computation	May 2013
Summer School on Statistical Learning and Inference for	
Massive Data in Fudan University	Jul 2012