K-means Clustering

Roger D. Peng, Associate Professor of Biostatistics

Can we find things that are close together?

- ▶ How do we define close?
- How do we group things?
- ▶ How do we visualize the grouping?
- ▶ How do we interpret the grouping?

How do we define close?

- Most important step
 - ▶ Garbage in → garbage out
- Distance or similarity
 - Continuous euclidean distance
 - Continous correlation similarity
 - ► Binary manhattan distance
- ▶ Pick a distance/similarity that makes sense for your problem

K-means clustering

- A partioning approach
 - ► Fix a number of clusters
 - ▶ Get "centroids" of each cluster
 - Assign things to closest centroid
 - Reclaculate centroids
- Requires
 - A defined distance metric
 - A number of clusters
 - An initial guess as to cluster centroids
- Produces
 - Final estimate of cluster centroids
 - An assignment of each point to clusters

K-means clustering - example

```
set.seed(1234); par(mar=c(0,0,0,0))
x <- rnorm(12,mean=rep(1:3,each=4),sd=0.2)
y <- rnorm(12,mean=rep(c(1,2,1),each=4),sd=0.2)
plot(x,y,col="blue",pch=19,cex=2)
text(x+0.05,y+0.05,labels=as.character(1:12))</pre>
```


K-means clustering - starting centroids

K-means clustering - assign to closest centroid

K-means clustering - recalculate centroids

K-means clustering - reassign values

K-means clustering - update centroids

kmeans()

##

► Important parameters: x, centers, iter.max, nstart

[1] 3 3 3 3 1 1 1 1 2 2 2 2

```
dataFrame <- data.frame(x,y)</pre>
kmeansObj <- kmeans(dataFrame,centers=3)</pre>
names(kmeansObj)
## [1] "cluster"
                      "centers"
                                      "totss"
                                                       "withi
## [5] "tot.withinss" "betweenss" "size"
                                                       "iter"
## [9] "ifault"
kmeansObj$cluster
```

kmeans()

```
par(mar=rep(0.2,4))
plot(x,y,col=kmeans0bj$cluster,pch=19,cex=2)
points(kmeans0bj$centers,col=1:3,pch=3,cex=3,lwd=3)
```


Heatmaps

```
set.seed(1234)
dataMatrix <- as.matrix(dataFrame)[sample(1:12),]
kmeansObj <- kmeans(dataMatrix,centers=3)
par(mfrow=c(1,2), mar = c(2, 4, 0.1, 0.1))
image(t(dataMatrix)[,nrow(dataMatrix):1],yaxt="n")
image(t(dataMatrix)[,order(kmeansObj$cluster)],yaxt="n")</pre>
```

Heatmaps

Notes and further resources

- K-means requires a number of clusters
- ► Pick by eye/intuition
- ▶ Pick by cross validation/information theory, etc.
- Determining the number of clusters
- K-means is not deterministic
- ▶ Different # of clusters
- Different number of iterations
- Rafael Irizarry's Distances and Clustering Video
- Elements of statistical learning