

Organizadores

Dagoberto Adriano Rizzotto Justo - UFRGS

Esequia Sauter - UFRGS

Fabio Souto de Azevedo - UFRGS

Leonardo Fernandes Guidi - UFRGS

Matheus Correia dos Santos - UFRGS

Pedro Henrique de Almeida Konzen - UFRGS

Licença

Este trabalho está licenciado sob a Licença Creative Commons Atribui Compartilha Igual 3.0 Não Adaptada. Para ver uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/3.0/ ou envie uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Nota dos organizadores

Este livro vem sendo construído de forma colaborativa desde 2011. Nosso intuito é melhorá-lo, expandi-lo e adaptá-lo às necessidades de um curso de cálculo numérico em nível de graduação. Caso queira colaborar, tenha encontrado erros, tenha sugestões ou reclamações, entre em contato conosco pela lista de emails:

livro_colaborativo@googlegroups.com

Alternativamente, abra um chamado no repositório GitHub do projeto:

https://github.com/livroscolaborativos/CalculoNumerico ou, ainda, envie um email para:

livroscolaborativos@gmail.com

Mais informações também estão disponíveis no página oficial do projeto:

http://www.ufrgs.br/numerico

Prefácio

Este livro busca abordar os tópicos de um curso de introdução ao cálculo numérico moderno oferecido a estudantes de matemática, física, engenharias e outros. A ênfase é colocada na formulação de problemas, implementação em computador da resolução e interpretação de resultados. Pressupõe-se que o estudante domine conhecimentos e habilidades típicas desenvolvidas em cursos de graduação de cálculo, álgebra linear e equações diferenciais. Conhecimentos prévios em linguagem de computadores é fortemente recomendável, embora apenas técnicas elementares de programação sejam real-

mente necessárias. Ao longo do livro, fazemos ênfase na utilização do **software** livre

Scilab para a implementação dos métodos numéricos abordados. Recomendamos que o leitor tenha à sua disposição um computador com o Scilab instalado. Não é necessário estar familiarizado com a linguagem Scilab, mas recomendamos a leitura do Apêndice A, no qual apresentamos uma rápida introdução a este pacote computacional. Alternativamente, existem algumas soluções em nuvem que fornecem acesso ao Scilab via internet. Por exemplo, a plataforma virtual rollApp (https://www.rollapp.com/app/scilab).

Sumário

Prefácio

Capa

Organizadores

Licença

Nota dos organizadores

i

ii

iii

iv

vi

1	Introdução			
2	Arit	mética de máquina		
	2.1	Sistema de numeração e mudança de base		
		2.1.1 Exercícios	18	
	2.2	Representação de números		
		2.2.1 Números inteiros	22	
		2.2.2 Sistema de ponto fixo	30	
		2.2.3 Normalização	32	
		2.2.4 Sistema de ponto flutuante	35	
		2.2.5 A precisão e o epsilon de máquina	42	
		2.2.6 A distribuição dos números	43	
		2.2.7 Exercícios	45	
	2.3	Tipos de Erros		
		2.3.1 Erros de arredondamento	53	
		2.3.2 Exercícios	57	
	2.4	Erros nas operações elementares	60	
	2.5	Cancelamento catastrófico	61	

	2.6	Condicionamento de um problema		
		2.6.1 Exercícios		
	2.7	Mais exemplos		
		2.7.1 Exercícios		
3	Solı	ıção de equações de uma variável 100		
	3.1	Existência e unicidade		
		3.1.1 Exercícios		
	3.2	Método da bisseção		
		3.2.1 Código Scilab: método da bisseção 119		
		3.2.2 Exercícios		
	3.3	Iteração de Ponto Fixo		
		3.3.1 Teorema do ponto fixo		
		3.3.2 Teste de convergência		
		3.3.3 Estabilidade e convergência 143		
		3.3.4 Erro absoluto e tolerância 146		
		3.3.5 Exercícios		
	3.4	Método de Newton-Raphson		

		3.4.1 Interpretação geométrica		
		3.4.2 Análise de convergência 167		
		3.4.3 Exercícios		
	3.5	Método das secantes		
		3.5.1 Interpretação geométrica		
		3.5.2 Análise de convergência		
	3.6	Critérios de parada		
		3.6.1 Exercícios		
	3.7	Exercícios finais		
4	C - 1-			
4	5011	ução de sistemas lineares 211		
	4.1	Eliminação gaussiana		
		4.1.1 Eliminação gaussiana com pivotamento parcial 216		
	4.2	Complexidade de Algoritmos em Álgebra Linear 229		
	4.3	Sistemas triangulares		
		4.3.1 Algoritmo para resolução de um sistema tri-		
		angular superior		

	4.3.2	Algoritmo para resolução de um sistema tri-
		angular inferior
4.4	Fatora	ção LU
	4.4.1	Algoritmo para fatoração LU 245
	4.4.2	Custo computacional para resolver um sis-
		tema linear usando fatoração LU 248
	4.4.3	Custo para resolver m sistemas lineares 250
	4.4.4	Custo para calcular a matriz inversa de A 252
4.5	Condi	cionamento de sistemas lineares 253
	4.5.1	Norma de vetores
	4.5.2	Norma de matrizes
	4.5.3	Número de condicionamento 263
4.6	Métod	os iterativos para sistemas lineares 269
	4.6.1	Método de Jacobi
	4.6.2	Método de Gauss-Seidel 275
	4.6.3	Análise de convergência 280
4.7	Métod	o da potência para cálculo de autovalores 304
4.8	Exercí	cios finais

5	Solu	ıção de sistemas de equações não lineares 315		
	5.1	O método de Newton para sistemas		
		5.1.1 Código Scilab: Newton para Sistemas 332		
	5.2	Linearização de uma função de várias variáveis 334		
		5.2.1 O gradiente		
		5.2.2 A matriz jacobiana		
	_			
6	Inte	erpolação 344		
	6.1	Interpolação polinomial		
	6.2	Diferenças divididas de Newton		
	6.3	Polinômios de Lagrange		
	6.4	Aproximação de funções reais por polinômios inter-		
		poladores		
	6.5	Interpolação linear segmentada		
	6.6	Interpolação cúbica segmentada - spline 378		
		6.6.1 Spline natural		
		6.6.2 Spline fixado		
		6.6.3 Resumo sobre Splines		

7	Aju	ste de	curvas	407	
	7.1	O pro	blema linear	. 411	
	7.2	Ajuste	e polinomial	. 418	
	7.3	Ajuste linear de curvas			
	7.4	Aproximando problemas não lineares por problemas			
		lineare	es	. 432	
8	Der	ivação	e integração numérica	444	
	8.1	Derivação Numérica			
		8.1.1	Aproximação da derivada por diferenças finita	s446	
		8.1.2	Erros de truncamento	452	
		8.1.3	Erros de arredondamento	455	
		8.1.4	Aproximações de alta ordem	. 460	
		8.1.5	Aproximação para a segunda derivada	466	
		8.1.6	Derivada via ajuste ou interpolação	468	
	8.2	Problemas de valor contorno 476		476	
	8.3	Integração numérica			
		8.3.1	Regras de Newton-Cotes	491	

		8.3.2 Regras compostas 509
		8.3.3 O método de Romberg 516
		8.3.4 Ordem de precisão
		8.3.5 Quadratura de Gauss-Legendre 533
	8.4	Exercícios finais
9	Pro	blemas de valor inicial 557
	9.1	Método de Euler
	9.2	Método de Euler melhorado 572
	9.3	Ordem de precisão
		9.3.1 Ordem de precisão do Método de Euler 579
		9.3.2 Ordem de precisão do Método de Euler Me-
		lhorado
	9.4	Convergência
		9.4.1 Convergência do método de Euler 585
		9.4.2 Convergência do método de Euler Melhorado . 586
	9.5	Métodos de Runge-Kutta
		9.5.1 Métodos de Runge-Kutta - Quarta ordem 589

	9.6	Métodos de passo múltiplo - Adams-Bashforth 591		
	9.7	Métodos de passo múltiplo - Adams-Moulton 593		
	9.8	Estabilidade		
	9.9	Exercícios finais		
\mathbf{A}	Ráp	oida Introdução ao Scilab 607		
	A.1	Sobre o Scilab		
		A.1.1 Instalação e Execução 610		
		A.1.2 Usando o Scilab 611		
	A.2	Elementos da linguagem 614		
		A.2.1 Operações matemáticas elementares 616		
		A.2.2 Funções e constantes elementares 617		
		A.2.3 Operadores lógicos 618		
	A.3	Matrizes		
		A.3.1 O operador ":"		
		A.3.2 Obtendo dados de uma matriz 623		
		A.3.3 Operações matriciais e elemento-a-elemento . 628		
	A.4	Estruturas de ramificação e repetição 631		

A.4.2 A instrução de repetição "for"	. 633			
A.4.3 A instrução de repetição "while"	. 635			
A.5 Funções	. 636			
A.6 Gráficos	. 639			
Respostas dos Exercícios 640				
Referências Bibliográficas 64				
Colaboradores				
Índice Remissivo				

A.4.1 A instrução de ramificação "if" 632

Capítulo 1

Introdução

Cálculo numérico é a disciplina que estuda as técnicas para a solução aproximada de problemas matemáticos. Estas técnicas são de natureza analítica e computacional. As principais preocupações normalmente envolvem exatidão e perfórmance.

Aliado ao aumento contínuo da capacidade de computação dispo-

nível, o desenvolvimento de métodos numéricos tornou a simulação computacional de modelos matemáticos uma prática usual nas mais diversas áreas científicas e tecnológicas. As então chamadas simulações numéricas são constituídas de um arranjo de vários esquemas numéricos dedicados a resolver problemas específicos como, por exemplo: resolver equações algébricas, resolver sistemas lineares, interpolar e ajustar pontos, calcular derivadas e integrais, resolver equações diferenciais ordinárias, etc.. Neste livro, abordamos o desenvolvimento, a implementação, utilização e aspectos teóricos de métodos numéricos para a resolução desses problemas.

Os problemas que discutiremos não formam apenas um conjunto de métodos fundamentais, mas são, também, problemas de interesse na engenharia, na física e na matemática aplicada. A necessidade de aplicar aproximações numéricas decorre do fato de que esses problemas podem se mostrar intratáveis se dispomos apenas de meios puramente analíticos, como aqueles estudados nos cursos de cálculo e álgebra linear. Por exemplo, o teorema de Abel-Ruffini nos garante que não existe uma fórmula algébrica, isto é, envolvendo

apenas operações aritméticas e radicais, para calcular as raízes de uma equação polinomial de qualquer grau, mas apenas casos particulares:

- Simplesmente isolar a incógnita para encontrar a raiz de uma equação do primeiro grau;
- Fórmula de Bhaskara para encontrar raízes de uma equação do segundo grau;
- Fórmula de Cardano para encontrar raízes de uma equação do terceiro grau;
- Existe expressão para equações de quarto grau;
- Casos simplificados de equações de grau maior que 4 onde alguns coeficientes são nulos também podem ser resolvidos.

Equações não polinomiais podem ser ainda mais complicadas de resolver exatamente, por exemplo:

$$\cos(x) = x$$
 e $xe^x = 10$

Para resolver o problema de valor inicial

$$y' + xy = x,$$
$$y(0) = 2,$$

podemos usar o método de fator integrante e obtemos $y = 1 + e^{-x^2/2}$. Já o cálculo da solução exata para o problema

$$y' + xy = e^{-y},$$

$$y(0) = 2,$$

não é possível.

Da mesma forma, resolvemos a integral

$$\int_{1}^{2} xe^{-x^2} dx$$

pelo método da substituição e obtemos $\frac{1}{2}(e^{-1}-e^{-2})$. Porém a integral

$$\int_{1}^{2} e^{-x^2} dx$$

não pode ser resolvida analiticamente. A maioria dos modelos de fenômenos reais chegam em problemas matemáticos onde a solução analítica é difícil (ou impossível) de ser

encontrada, mesmo quando provamos que ela existe. Nesse curso propomos calcular aproximações numéricas para esses problemas, que apesar de, em geral, serem diferentes da solução exata, mostra-

remos que elas podem ser bem próximas. Para entender a construção de aproximações é necessário estudar um pouco como funciona a aritmética de computador e erros de arredondamento. Como computadores, em geral, usam uma base binária para representar números, começaremos falando em mudança de base.

Capítulo 2

Aritmética de máquina

2.1 Sistema de numeração e mudança de base

Usualmente, utilizamos o sistema de numeração decimal para representar números. Esse é um sistema de numeração posicional onde a posição do dígito indica a potência de 10 que o dígito está representando.

Exemplo 1. O número 293 é decomposto como

$$293 = 2 \text{ centenas} + 9 \text{ dezenas} + 3 \text{ unidades}$$

= $2 \times 10^2 + 9 \times 10^1 + 3 \times 10^0$.

O sistema de numeração posicional também pode ser usado com outras bases. Vejamos a seguinte definição.

Definição 1 (Sistema de numeração de base b). Dado um n'umero natural b > 1 e o conjunto de s'umbolos $\{1, -1, 0, 1, 2, \dots, b-1\}^a$, a sequência de símbolos $(d_n d_{n-1} \cdots d_1 d_0, d_{-1} d_{-2} \cdots)_b$

representa o número positivo

$$d_n \cdot b^n + d_{n-1} \cdot b^{n-1} + \dots + d_0 \cdot b^0 + d_{-1} \cdot b^{-1} + d_{-2} \cdot b^{-2} + \dots$$

Para representar números negativos usamos o símbolo – a esquerda do numeral.

^aPara b > 10, veja a Observação 1

Observação 1 ($b \ge 10$). Para sistemas de numeração com base $b \ge 10$ é usual utilizar as seguintes notações:

• No sistema de numeração decimal (b = 10), costumamos representar o número sem os parênteses e o subíndice, ou seja, $\pm d_n d_{n-1} \dots d_1 d_0, d_{-1} d_{-2} \dots := \pm (d_n d_{n-1} \dots d_1 d_0, d_{-1} d_{-2} \dots)_{10}$

• Se
$$b>10$$
, usamos as letras A,B,C,\cdots para completar os símbolos: $A=10,\ B=11,\ C=12,\ D=13,\ E=14,$ $F=15.$

Exemplo 2 (Sistema binário). O sistema de numeração em base dois é chamado de binário e os algarismos binários são conhecidos como *bits*, do inglês **binary digits**. Um *bit* pode assumir dois

valores distintos: 0 ou 1. Por exemplo:

$$x = (1001,101)_{2}$$

$$= 1 \cdot 2^{3} + 0 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0} + 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3}$$

$$= 8 + 0 + 0 + 1 + 0,5 + 0 + 0,125 = 9,625$$

Ou seja, $(1001,101)_2$ é igual a 9,625 no sistema decimal.

Exemplo 3 (Sistema quaternário). No sistema quaternário a base b é igual a 4. Por exemplo:

$$(301,2)_4 = 3 \cdot 4^2 + 0 \cdot 4^1 + 1 \cdot 4^0 + 2 \cdot 4^{-1} = 49,5$$

Exemplo 4 (Sistema octal). No sistema octal a base é b=8 e utilizamos os símbolos em $\{0,1,2,3,4,5,6,7\}$. Por exemplo:

$$(1357,24)_8 = 1 \cdot 8^3 + 3 \cdot 8^2 + 5 \cdot 8^1 + 7 \cdot 8^0 + 2 \cdot 8^{-1} + 4 \cdot 8^{-2}$$

= 512 + 192 + 40 + 7 + 0,25 + 0,0625 = 751,3125

a base é b=16 é chamado de sistema hexadecimal. O conjunto de símbolos necessários é $S=\{\text{``,''},-,0,1,2,3,4,5,6,7,8,9},A,B,C,D,E$ Convertendo o número $(E2AC)_{16}$ para a base 10 temos $(E2AC)_{16}=14\cdot 16^3+2\cdot 16^2+10\cdot 16^1+12\cdot 16^0$

Exemplo 5 (Sistema hexadecimal). O sistema de numeração cuja

$$= 57344 + 512 + 160 + 12 = 58028$$

Exemplo 6 (Scilab). O Scilab oferece algumas funções para a conversão de números inteiros em dada base para a base decimal. Por exemplo, temos:

```
-->bin2dec('1001')
ans =
9.
-->hex2dec('451')
ans =
```

1105. -->oct2dec('157')

```
ans =
    111.
-->base2dec('BEBA',16)
ans =
    48826.
```

A partir da Definição 1 acabamos de mostrar vários exemplos de conversão de números de uma sistema de numeração de base b para o sistema decimal. Agora, vamos estudar como fazer o processo inverso. Isto é, dado um número decimal $(X)_{10}$ queremos escrevê-lo em uma outra base b, i.e., queremos obter a seguinte representação:

$$(X)_{10} = (d_n d_{n-1} \cdots d_0, d_{-1} \cdots)_b$$

= $d_n \cdot b^n + d_{n-1} \cdot b^{n-1} + \cdots + d_0 \cdot b^0 + d_{-1} \cdot b^{-1} + d_{-2} \cdot b^{-2} + \cdots$

Separando as partes inteira e fracionária de X, i.e. $X = X^{\dot{1}} + X^{\dot{1}}$, temos:

$$X^{\mathbf{i}} = d_n \cdot b^n + \dots + d_{n-1}b^{n-1} \cdot + d_1 \cdot b^1 + d_0 \cdot b^0$$

$$X^{\mathbf{f}} = \frac{d_{-1}}{b^1} + \frac{d_{-2}}{b^2} + \cdots$$

Nosso objetivo é determinar os algarismos $\{d_n, d_{n-1}, ...\}$.

Primeiramente, vejamos como tratar a parte inteira $X^{\dot{1}}$. Calculando sua divisão por b, temos:

$$\frac{X^1}{b} = \frac{d_0}{b} + d_1 + d_2 b^1 \dots + d_{n-1} \cdot b^{n-2} + d_n \cdot b^{n-1}.$$

Observe que d_0 é o resto da divisão de X^1 por b, pois $d_1 + d_2b^1 \cdots + d_{n-1} \cdot b^{n-2} + d_n \cdot b^{n-1}$ é inteiro e $\frac{d_0}{b}$ é uma fração (lembramos que $d_0 < b$). Da mesma forma, o resto da divisão de $d_1 + d_2b^1 \cdots + d_{n-1} \cdot b^{n-2} + d_n \cdot b^{n-1}$ por b é d_1 . Repetimos o processo até encontrar os símbolos d_0, d_1, d_2, \ldots

Exemplo 7 (Conversão da parte inteira). Vamos escrever o número 125 na base 6. Para tanto, fazemos sucessivas divisões por 6 como

segue:

$$125 = 20 \cdot 6 + 5$$
 (125 dividido por 6 é igual a 20 e resta 5)
= $(3 \cdot 6 + 2) \cdot 6 + 5 = 3 \cdot 6^2 + 2 \cdot 6 + 5$,

logo $125 = (325)_6$.

Estes cálculos podem ser feitos no Scilab com o auxílio das funções modulo e int. A primeira calcula o resto da divisão entre dois números, enquanto que a segunda retorna a parte inteira de um número dado. No nosso exemplo, temos:

Verifique!

Exemplo 8 (Scilab). O Scilab oferece algumas funções para a conversão de números inteiros em dada base para a base decimal. Assim, temos:

```
ans =
    9.
-->hex2dec('451')
 ans =
    1105.
-->oct2dec('157')
 ans
    111.
-->base2dec('BEBA',16)
 ans
    48826.
```

-->bin2dec('1001')

Vamos converter a parte fracionária de um número decimal em uma dada base b. Usando a notação $X=X^{\rm i}+X^{\rm f}$ para as partes inteira e fracionária, respectivamente, temos:

$$bX^{f} = d_{-1} + \frac{d_{-2}}{b} + \frac{d_{-3}}{b^{2}} + \cdots$$

Observe que a parte inteira desse produto é d_{-1} e $\frac{d_{-2}}{b} + \frac{d_{-3}}{b^2} + \cdots$ é a parte fracionária. Quando multiplicamos $\frac{d_{-2}}{b} + \frac{d_{-3}}{b^2} + \cdots$ por b novamente, encontramos d_{-2} . Repetimos o processo até encontrar todos os símbolos.

Exemplo 9 (Conversão da parte fracionária). Escrever o número $125,58\overline{3}$ na base 6. Do exemplo anterior temos que $125=(325)_6$. Assim, nos resta converter a parte fracionária. Para tanto, fazemos sucessivas multiplicações por 6 como segue:

$$0.58\overline{3} = 3.5 \cdot 6^{-1}$$
 (0.58 $\overline{3}$ multiplicado por 6 é igual a 3.5)
= $3 \cdot 6^{-1} + 0.5 \cdot 6^{-1}$
= $3 \cdot 6^{-1} + (3 \cdot 6^{-1}) \cdot 6^{-1}$
= $3 \cdot 6^{-1} + 3 \cdot 6^{-2}$,

logo $0.58\overline{3} = (0.33)_6$. As contas feitas aqui, também podem ser feitas no Scilab. Você sabe como?

Uma maneira de converter um número dado numa base b_1 para uma

base b_2 é fazer em duas partes: primeiro converter o número dado na base b_2 para base decimal e depois converter para a base b_1 .

2.1.1 Exercícios

 ${\bf E}$ 2.1.1. Converta para base decimal cada um dos seguintes números:

a) $(100)_2$ c) $(100)_b$ e) $(AA)_{16}$ g) $(3,12)_5$ b) $(100)_3$ d) $(12)_5$ f) $(7,1)_8$

E 2.1.2. Escreva os números abaixo na base decimal.

L'2.1.2. Escreva os numeros abaixo na base decimar

b) (101,1)₂

a) $(25,13)_8$

 $(101,1)_2$

c) $(12F,4)_{16}$

d) $(11,2)_3$

E 2.1.3. Escreva cada número decimal na base b.

- a) $7,\overline{6}$ na base b=5
- b) $29,1\overline{6}$ na base b=6

E 2.1.4. Escreva cada número dado para a base b.

- a) $(45,1)_8$ para a base b=2
- b) $(21,2)_8$ para a base b = 16c) $(1001,101)_2$ para a base b = 8
- d) $(1001,101)_2$ para a base b = 16
- **E 2.1.5.** Escreva o número x=5,5 em base binária.

E 2.1.6. Escreva o número $x=17{,}109375$ em base hexadecimal (16).

E 2.1.7. Quantos algarismos são necessários para representar o número 937163832173947 em base binária? E em base 7? Dica: Qual é o menor e o maior inteiro que pode ser escrito em dada base com N algarismos?

E 2.1.8. Escreva $x = (12.4)_8$ em base decimal e binária.

2.2 Representação de números

Os computadores, em geral, usam a base binária para representar os números, onde as posições, chamadas de bits, assume as condições "verdadeiro" ou "falso", ou seja, 0 ou 1. Cada computador tem um número de bits fixo e, portanto, representa uma quantidade finita de números. Os demais números são tomados por proximidade àqueles conhecidos, gerando erros de arredondamento. Por exemplo, em aritmética de computador, o número 2 tem representação exata, logo $2^2=4$, mas $\sqrt{3}$ não tem representação finita, logo $(\sqrt{3})^2\neq 3$. Veja isso no Scilab:

```
-->2^2 == 4

ans =

T

-->sqrt(3)^2 == 3

ans =

F
```

2.2.1 Números inteiros

Tipicamente um número inteiro é armazenado num computador como uma sequência de dígitos binários de comprimento fixo denominado registro.

Representação sem sinal

Um registro com n bits da forma $d_{n-1} d_{n-2} \cdots d_1 d_0$ representa o número $(d_{n-1}d_{n-2}...d_1d_0)_2$.

Assim é possível representar números inteiros entre

$$(111...111)_2 = 2^{n-1} + 2^{n-2} + \dots + 2^1 + 2^0 = 2^n - 1.$$

$$\vdots$$

$$(000...011)_2 = 3$$

$$(000...010)_2 = 2$$

$$(000...001)_2 = 1$$

$$(000...000)_2 = 0$$

Exemplo 10. No Scilab,

```
-->uint8( bin2dec('00000011') )
ans = 3
-->uint8( bin2dec('11111110') )
```

ans = 254

Representação com bit de sinal

Exemplo 11. Em um registro com 8 bits, teremos os números

$$(111111111)_2 = -(2^6 + \dots + 2 + 1) = -127$$
:

$$(10000001)_2 = -1$$

$$(10000000)_2 = -0$$

$$(011111111)_2 = 2^6 + \dots + 2 + 1 = 127$$

$$(00000010)_2 = 2$$

$$(00000001)_2 = 1$$
$$(00000000)_2 = 0$$

Representação complemento de dois

mero:

O bit mais significativo (o primeiro à esquerda) representa o coeficiente de -2^{n-1} . Um registro com n bits da forma: $d_{n-1} \mid d_{n-2} \mid \cdots \mid d_{n-2} \mid d_{n-1} \mid d_{n-2} \mid \cdots \mid d_{n-2} \mid d_$

Exemplo 12. O registro com 8 bits [01000011] representa o nú-

Note que todo registro começando com 1 será um número negativo.

$$-0(2^7) + (1000011)_2 = 64 + 2 + 1 = 67.$$

O registro com 8 bits [10111101] representa o número:

$$-1(2^7) + (0111101)_2 = -128 + 32 + 16 + 8 + 4 + 1 = -67.$$

Note que podemos obter a representação de -67 invertendo os dígitos de $67\ \mathrm{em}$ binário e somando 1.

Exemplo 13. Em um registro com 8 bits, teremos os números

 $(111111111)_2 = -2^7 + 2^6 + \dots + 2 + 1 = -1$

$$\vdots
(10000001)_2 = -2^7 + 1 = -127
(10000000)_2 = -2^7 = -128
(01111111)_2 = 2^6 + \dots + 2 + 1 = 127$$

 $(00000010)_2 = 2$

Exemplo 14. No Scilab,

 $(00000001)_2 = 1$ $(00000000)_2 = 0$

-->int8(bin2dec('00000011'))

ans = 3 -->int8(bin2dec('11111110')) ans = -2

2.2.2 Sistema de ponto fixo

O sistema de ponto fixo representa as partes inteira e fracionária do número com uma quantidade fixas de dígitos.

Exemplo 15. Em um computador de 32 bits que usa o sistema de ponto fixo, o registro $\begin{bmatrix} d_{31} & d_{30} & d_{29} & \cdots & d_1 & d_0 \end{bmatrix}$ pode representar o número

• $(-1)^{d_{31}}(d_{30}d_{29}\cdots d_{17}d_{16}, d_{15}d_{14}\cdots d_{1}d_{0})_{2}$ se o sinal for representado por um dígito. Observe que nesse caso o zero possui duas representações possíveis:

е

• $(d_{30}d_{29}\cdots d_{17}d_{16})_2 - d_{31}(2^{15} - 2^{-16}) + (0,d_{15}d_{14}\cdots d_1d_0)_2$ se o sinal do número estiver representado por uma implementação

em complemento de um. Observe que o zero também possui duas representações possíveis:

е

• $(d_{30}d_{29}\cdots d_{17}d_{16})_2 - d_{31}2^{15} + (0,d_{15}d_{14}\cdots d_1d_0)_2$ se o sinal do número estiver representado por uma implementação em complemento de dois. Nesse caso o zero é unicamente representado por

Observe que 16 dígitos são usados para representar a parte fracionária, 15 são para representar a parte inteira e um dígito, o d_{31} , está relacionado ao sinal do número.

2.2.3 Normalização

Os números $h=6.626\times 10^{-34}$ e $N_A=6.0221\times 10^{23}$ não podem ser armazenados na máquina em ponto fixo do exemplo anterior.

Entretanto, a constante

$$h = 6626 \times 10^{-37}$$

$$h = 6.626 \times 10^{-34}$$

$$h = 0.6626 \times 10^{-33}$$

$$h = 0.006626 \times 10^{-31}$$

pode ser escrita de várias formas diferentes. Para termos uma **representação única** definimos como notação normalizada a segunda opção ($1 \le m < 10$) que apresenta apenas um dígito diferente de zero a esquerda do ponto decimal (m = 6.626).

Definição 2. Definimos que

$$x = (-1)^s (M)_b \times b^E$$
,

está na **notação normalizada**^a quando $1 \le (M)_b < b$, onde

- s é o **sinal** (0 para positivo e 1 para negativo),
- E é o expoente,
- b é a base (por ex. 2, 8, 10 ou 16),
- $(M)_b$ é o significando. O **significando** (também chamado de mantissa ou coeficiente) contém os dígitos significativos do número.

^aEm algumas referências é usado $(0.1)_b \le (M)_b < 1$.

Exemplo 16. Os números abaixo estão em notação normalizada:

$$x_1 = (-1.011101)_2 \times 2^{(100)_2}$$

 $x_2 = (-2.325)_{10} \times 10^1$

Exemplo 17. Represente os números $0,00\overline{51}$ e $1205,41\overline{54}$ em um sistema de ponto fixo de 4 dígitos para a parte inteira e 4 dígitos para a parte fracionária. Depois represente os mesmos números utilizando notação normalizada com 7 dígitos significativos.

Solução. As representações dos números $0,00\overline{51}$ e $1205,41\overline{54}$ no sistema de ponto fixo são 0,0051 e 1205,4154, respectivamente. Em notação normalizada, as representações são $5,151515 \cdot 10^{-3}$ e $1,205415 \cdot 10^{3}$, respectivamente.

Observação 2. No Scilab, a representação em ponto flutuante com n dígitos é dada na forma $\pm d_1, d_2 d_3 \dots d_n \times 10^E$. Consulte sobre o comando format!

2.2.4 Sistema de ponto flutuante

O sistema de ponto flutuante não possui quantidade fixa de dígitos para as partes inteira e fracionária do número.

Podemos definir uma máquina F em ponto flutuante de dois modos:

$$F(\beta, |M|, |E|, BIAS)$$
 ou $F(\beta, |M|, E_{MIN}, E_{MAX})$

onde

- β é a base (em geral 2 ou 10),
- |M| é o número de dígitos da mantissa,
- |E| é o número de dígitos do expoente,
- BIAS é um valor de deslocamento do expoente (veja a seguir),
- E_{MIN} é o menor expoente,
- E_{MAX} é o maior expoente.

Considere uma máquina com um registro de 64 bits e base $\beta=2$. Pelo padrão IEEE754, 1 bit é usado para o sinal, 11 bits para o expo-

ente e 52 bits são usados para o significando tal que $s \mid c_{10} \mid c_9$ represente o número (o BIAS = 1023 por definição)

$$x = (-1)^s M \times 2^{c-BIAS},$$

onde a característica é representada por

$$c = (c_{10}c_9 \cdots c_1c_0)_2 = c_{10}2^{10} + \cdots + c_12^1 + c_02^0$$

e o significando por

$$M = (1.m_1 m_2 \cdots m_{51} m_{52})_2.$$

Em base 2 não é necessário armazenar o primeiro dígito (por quê?). Por exemplo, o registro

$$[0| 100\ 0000\ 0000| 1010\ 0000\ 0000...0000\ 0000]$$

representa o número

$$(-1)^0(1+2^{-1}+2^{-3})\times 2^{1024-1023} = (1+0.5+0.125)2 = 3.25.$$

O expoente deslocado

Uma maneira de representar os expoentes inteiros é deslocar todos eles uma mesma quantidade. Desta forma permitimos a representação de números negativos e a ordem deles continua crescente. O expoente é representado por um inteiro sem sinal do qual é deslocado o **BIAS**.

Tendo |E| dígitos para representar o expoente, geralmente o BIAS é predefinido de tal forma a dividir a tabela ao meio de tal forma que o expoente um seja representado pelo sequência [100...000].

Exemplo 18. Com 64 bits, pelo padrão IEEE754, temos que |E|:=11. Assim $(100\ 0000\ 0000)_2=2^{10}=1024$. Como queremos que esta sequência represente o 1, definimos BIAS:=1023, pois

$$1024 - BIAS = 1.$$

Com 32 bits, temos |E|:=8 e BIAS:=127. E com 128 bits, temos |E|:=15 e BIAS:=16383.

Com 11 bits temos

```
[111\ 1111\ 1111] = reservado
[111\ 1111\ 1110] = 2046 - BIAS = 1023_{10} = E_{MAX}
               : =
[100\ 0000\ 0001] = 2^{10} + 1 - BIAS = 2_{10}
[100\ 0000\ 0000] = 2^{10} - BIAS = 1_{10}
[011 \ 1111 \ 1111] = 1023 \ -BIAS = 0_{10}
[011\ 1111\ 1110] = 1022 - BIAS = -1_{10}
               \vdots =
[000\ 0000\ 0001] = 1 - BIAS = -1022 = E_{MIN}
[000\ 0000\ 0000] = reservado
```

O maior expoente é dado por $E_{MAX}=1023$ e o menor expoente é dado por $E_{MIN}=-1022.$

O menor número representável positivo é dado pelo registro

 $[0|000\ 0000\ 0001|0000\ 0000\ 0000...0000\ 0000]$

quando s = 0, c = 1 e $M = (1.000...000)_2$, ou seja,

$$MINR = (1+0)_2 \times 2^{1-1023} \approx 0.2225 \times 10^{-307}.$$

O maior número representável é dado por

 $[0|111\ 1111\ 1110|1111\ 1111\ ...1111\ 1111]$

quando $s=0,\,c=2046$ e $M=(1.1111\ 1111....1111)_2=2-2^{-52},$ ou seja,

 $MAXR = (2 - 2^{-52}) \times 2^{2046 - 1023} \approx 2^{1024} \approx 0.17977 \times 10^{309}.$

Casos especiais

 ${\cal O}$ ${\bf zero}$ é um caso especial representado pelo registro

 $[0|000\ 0000\ 0000|0000\ 0000\ 0000...0000\ 0000]$

Os expoentes **reservados** são usados para casos especiais:

- c = [0000...0000] é usado para representar o zero (se m = 0) e os números subnormais (se $m \neq 0$).
- c = [1111...1111] é usado para representar o infinito (se m = 0) e NaN (se $m \neq 0$).

Os números subnormais¹ tem a forma

$$x = (-1)^s (0.m_1 m_2 \cdots m_{51} m_{52})_2 \times 2^{1-BIAS}.$$

 $^{^{1}\}mathrm{Note}$ que poderíamos definir números um pouco menores que o MINR.

Observação 3. O menor número positivo, o maior número e o menor número subnormal representáveis no Scilab são:

- -->MINR=number_properties('tiny')
 -->MAXR=number_properties('huge')
- -->number_properties('tiniest')

Outras informações sobre a representação em ponto flutuante podem ser obtidas com help number_properties.

2.2.5 A precisão e o epsilon de máquina

A **precisão** p de uma máquina é o número de dígitos significativos usado para representar um número. Note que p = |M| + 1 em binário e p = |M| para outras bases.

O epsilon de máquina, $\epsilon_{mach} = \epsilon$, é definido de forma que $1 + \epsilon$ seja o menor número representável maior que 1, isto é, $1 + \epsilon$ é representável, mas não existem números representáveis em $(1, 1+\epsilon)$.

Exemplo 19. Com 64 bits, temos que o epsilon será dado por

$$1 \to (1.0000 \ 0000....0000)_2 \times 2^0$$

$$\epsilon \to +(0.0000 \ 0000....0001)_2 \times 2^0 = 2^{-52}$$

$$(1.0000 \ 0000....0001)_2 \times 2^0 \neq 1$$

Assim $\epsilon = 2^{-52}$.

2.2.6 A distribuição dos números

Utilizando uma máquina em ponto flutuante temos um número finito de números que podemos representar.

Um número muito pequeno geralmente é aproximado por zero (underflow) e um número muito grande (overflow) geralmente faz o cálculo parar. Além disso, os números não estão uniformemente espaçados no eixo real. Números pequenos estão bem próximos enquanto que números com expoentes grandes estão bem distantes.

Se tentarmos armazenar um número que não é representável, devemos utilizar o número mais próximo, gerando os erros de arredondamento.

Por simplicidade, a partir daqui nós adotaremos b=10.

Observação 4. O chamado modo de exceção de ponto flutuante é controlado pela função ieee. O padrão do Scilab é ieee(0). Estude os seguintes resultados das seguintes operações usando os diferentes modos de exceção:

-->2*number_properties('huge'), 1/2^999, 1/0, 1/-0

2.2.7 Exercícios

E 2.2.1. Explique a diferença entre o sistema de ponto fixo e ponto flutuante.

E 2.2.2. Considere a seguinte rotina escrita para ser usada no Scilab:

```
x=1
while x+1>x
     x=x+1
end
```

Explique se esta rotina finaliza em tempo finito, em caso afirmativo calcule a ordem de grandeza do tempo de execução supondo que cada passo do laço demore $10^{-7}s$. Justifique sua reposta.

2.3 Tipos de Erros

Em geral, os números não são representados de forma exata nos computadores. Isto nos leva ao chamado erro de arredondamento. Quando resolvemos problemas com técnicas numéricas estamos sujeitos a este e outros tipos de erros. Nesta seção, veremos quais são estes erros e como controlá-los, quando possível.

Quando fazemos aproximações numéricas, os erros são gerados de várias formas, sendo as principais delas as seguintes:

- 1. Incerteza dos dados: equipamentos de medição possuem precisão finita, acarretando erros nas medidas físicas.
- 2. Erros de Arredondamento: são aqueles relacionados com as limitações que existem na forma representar números de máquina.
- 3. Erros de Truncamento: surgem quando aproximamos um procedimento formado por uma sequência infinita de passos

através de um procedimento finito. Por exemplo, a definição de integral é dada por uma soma infinita e a aproximamos por um soma finita. O erro de truncamento deve ser analisado para cada método empregado.

Uma questão fundamental é a quantificação dos erros que estamos sujeitos ao computar a solução de um dado problema. Para tanto, precisamos definir medidas de erros (ou de exatidão). As medidas de erro mais utilizadas são o erro absoluto e o erro relativo.

Definição 3 (Erro absoluto e relativo). Seja x um número real $e \ \overline{x}$ sua aproximação. O **erro absoluto** da aproximação \overline{x} é definido como

$$|x-\overline{x}|$$
.

O erro relativo da aproximação \overline{x} é definido como

$$\frac{|x - \overline{x}|}{|x|}, \quad x \neq 0.$$

Observação 5. Observe que o erro relativo é adimensional e, muitas vezes, é dado em porcentagem. Mais precisamente, o erro relativo em porcentagem da aproximação \overline{x} é dado por

$$\frac{|x-\bar{x}|}{|x|} \times 100\%.$$

Exemplo 20. Sejam x=123456,789 e sua aproximação $\bar{x}=123000$. O erro absoluto é

$$|x - \bar{x}| = |123456,789 - 123000| = 456,789$$

e o erro relativo é

$$\frac{|x - \bar{x}|}{|x|} = \frac{456,789}{123456,789} \approx 0,00369999 \text{ ou } 0,36\%$$

Exemplo 21. Sejam y=1,23456789 e $\bar{y}=1,13.$ O erro absoluto é

$$|y - \bar{y}| = |1,23456789 - 1,13| = 0,10456789$$

que parece pequeno se compararmos com o exemplo anterior. Entretanto o erro relativo $\acute{\rm e}$

$$\frac{|y-\bar{y}|}{|y|} = \frac{0.10456789}{1,23456789} \approx 0.08469999$$
ou $8,4\%$

Note que o erro relativo leva em consideração a escala do problema.

Exemplo 22. Observe os erros absolutos e relativos em cada caso

\overline{x}	\bar{x}	Erro absoluto	Erro relativo
$\overline{0,\overline{3}\cdot 10^{-2}}$	$0.3 \cdot 10^{-2}$	$0,\overline{3}\cdot 10^{-3}$	$\frac{0,\overline{3}\cdot 10^{-3}}{0,\overline{3}\cdot 10^{-2}} = 10^{-1} = 10\%$
$0,\overline{3}$	0,3	$0,\overline{3}\cdot 10^{-1}$	$\frac{0,\overline{3}\cdot10^{-1}}{0,\overline{3}} = 10^{-1} = 10\%$
$0,\overline{3}\cdot 10^2$	$0.3 \cdot 10^2$	$0,\overline{3}\cdot 10^1$	$\frac{0.\overline{3}\cdot10^1}{0.\overline{3}\cdot10^2} = 10^{-1} = 10\%$

Outra forma de medir a exatidão de uma aproximação numérica é contar o **número de dígitos significativos corretos** em relação ao valor exato.

Definição 4 (Número de dígitos significativos corretos). A aproximação \overline{x} de um número x tem s **dígitos significativos** corretos quando^a

$$\frac{|x - \overline{x}|}{|x|} < 5 \times 10^{-s}.$$

 a Esta definição é apresentada em [3]. Não existe uma definição única na literatura para o conceito de dígitos significativos corretos, embora não precisamente equivalentes, elas transmitem o mesmo conceito. Uma maneira de interpretar essa regra é: calcula-se o erro relativo na forma normalizada e a partir da ordem do expoente temos o número de dígitos significativos corretos. Como queremos o expoente, podemos estimar s por

$$DIGSE(x,\bar{x}) = s \approx int \left| \log_{10} \frac{|x - \bar{x}|}{|x|} \right|.$$

Exemplo 23. Vejamos os seguintes casos:

a) A aproximação de x=0,333333 por $\overline{x}=0,333$ tem 3 dígitos significativos corretos, pois

$$\frac{|x - \overline{x}|}{|x|} = \frac{0,000333}{0,3333333} \approx 0,000999 \le 5 \times 10^{-3}.$$

b) Considere as aproximações $\bar{x}_1=0.666$ e $\bar{x}_2=0.667$ de x=0.666888. Os erros relativos são

$$\frac{|x - \bar{x}_1|}{|x|} = \frac{|0,666888 - 0,666|}{0,666888} \approx 0,00133... < 5 \times 10^{-3}.$$

$$\frac{|x - \bar{x}_2|}{|x|} = \frac{|0,666888 - 0,667|}{0,666888} \approx 0,000167... < 5 \times 10^{-4}.$$

Note que
$$\bar{x}_1$$
 possui 3 dígitos significativos corretos e \bar{x}_2 possui 4 dígitos significativos (o quarto dígito é o dígito 0 que não aparece a direita, i.e, $\bar{x}_2 = 0.6670$. Isto também leva a conclusão que x_2 aproxima melhor o valor de x do que x_1 pois está mais próximo de x .

c) $\overline{x} = 9,999$ aproxima x = 10 com 4 dígitos significativos corretos, pois

$$\frac{|x - \overline{x}|}{|x|} = \frac{|10 - 9,999|}{10} \approx 0,0000999... < 5 \times 10^{-4}.$$

d) Considere as aproximações $\overline{x}_1 = 1,49$ e $\overline{x}_2 = 1,5$ de x = 1. Da definição, temos que 1,49 aproxima 1 com um dígito significativo correto (verifique), equanto 1,5 tem zero dígito significativo correto, pois:

$$\frac{|1-1.5|}{|1|} = 5 \times 10^{-1} < 5 \times 10^{0}.$$

2.3.1 Erros de arredondamento

Os erros de arredondamento são aqueles gerados quando aproximamos um número real por um número com representação finita. Existem várias formas de arredondar

$$x = \pm d_0, d_1 d_2 \dots d_{k-1} d_k d_{k+1} \dots d_n \times 10^e$$

usando k dígitos significativos. As duas principais são as seguintes:

1. Arredondamento por truncamento (ou corte): aproximamos x por

$$\bar{x} = \pm d_0, d_1 d_2 \dots d_k \times 10^e$$

simplesmente descartando os dígitos d_j com j > k.

2. Arredondamento por proximidade: se $d_{k+1} < 5$ aproximamos x por

$$\bar{x} = \pm d_0, d_1 d_2 \dots d_k \times 10^e$$

senão aproximamos x por²

$$\bar{x} = \pm (d_0, d_1 d_2 \dots d_k + 10^{-k}) \times 10^e$$

Observação 6. Observe que o arredondamento pode mudar todos os dígitos e o expoente da representação em ponto flutuante de um número dado.

Exemplo 24. Represente os números $x_1 = 0.567$, $x_2 = 0.233$, $x_3 = -0.675$ e $x_4 = 0.314159265... \times 10^1$ com dois dígitos significativos por truncamento e arredondamento.

Solução. Vejamos cada caso:

 $^2{\rm Note}$ que essas duas opções são equivalentes a somar 5 no dígito a direita do corte e depois arredondar por corte, ou seja, arredondar por corte

$$\pm (d_0, d_1 d_2 \dots d_k d_{k+1} + 5 \times 10^{-(k+1)}) \times 10^e$$

• Por truncamento:

$$x_1 = 0.56$$
, $x_2 = 0.23$, $x_3 = -0.67$ e $x_4 = 3.1$.

No Scilab, podemos obter a representação de $x_3 = -0.675$ fazendo (verifique):

• Por arredondamento:

$$x_1 = 0.57;$$
 $x_2 = 0.23;$ $x_3 = -0.68$ e $x_4 = 3.1.$

No Scilab, a representação de números por arredondamento é o padrão. Assim, para obtermos a representação desejada de $x_3=0.675$ fazemos: podemos obter a representação de $x_3=-0.675$ fazemos (verifique):

-->format('e',8) -->-0.675

Exemplo 25. O arredondamento de $0,9999 \times 10^{-1}$ com 3 dígitos significativos é $0,1 \times 10^{0}$.

2.3.2 Exercícios

E 2.3.1. Calcule os erros absoluto e relativo das aproximações \bar{x} para x.

a)
$$x = \pi = 3.14159265358979 \cdots$$
 e $\bar{x} = 3.141$

b)
$$x = 1,00001 \text{ e } \bar{x} = 1$$

b) 1788,8544

c)
$$x = 100001 \text{ e } \bar{x} = 100000$$

E 2.3.2. Arredonde os seguintes números para cinco algarismos significativos corretos:

- a) 1,7888544 d) 0,004596632
 - a) 2.1754000 ×

f) 2,1754999

 10^{10}

X

- e) 2,1754999 ×
- c) 0.0017888544 10^{-10}

 ${\bf E}$ 2.3.3. Verifique quantos são os dígitos significativos corretos em cada aproximação $\bar x$ para x.

- a) $x = 2.5834 \text{ e } \bar{x} = 2.6$
- b) $x = 100 \text{ e } \bar{x} = 99$
- ${f E}$ 2.3.4. Represente os números 3276; 42,55 e 0,00003331 com três dígitos significativos por truncamento e arredondamento.
- **E 2.3.5.** Resolva a equação 0.1x 0.01 = 12 usando arredondamento com três dígitos significativos em cada passo e compare com o resultado analítico
- **E 2.3.6.** Calcule o erro relativo e absoluto envolvido nas seguintes aproximações e expresse as respostas com três algarismos significativos corretos.
 - a) x = 3,1415926535898 e $\tilde{x} = 3,141593$

2.4 Erros nas operações elementares

O erro presente relativo nas operações elementares de adição, subtração, multiplicação e divisão é da ordem do epsilon de máquina. Se estivermos usando uma máquina com 64 bits, temos que $\epsilon=2^{-52}\approx 2{,}22E16$.

Este erro é bem pequeno! Assumindo que x e y são representados com todos dígitos corretos, temos aproximadamente 15 dígitos significativos corretos quando fizemos uma das operações $x+y,\,x-y,\,x\times y$ ou x/y.

Mesmo que fizéssemos, por exemplo, 1000 operações elementares em ponto flutuante sucessivas, teríamos no pior dos casos acumulado todos esses erros e perdido 3 casas decimais $(1000 \times 10^{-15} \approx 10^{-12})$. Entretanto, quando subtraímos números muito próximos, os problemas aumentam.

2.5 Cancelamento catastrófico

Quando fazemos subtrações com números muito próximos entre si ocorre o cancelamento catastrófico, onde podemos perder vários dígitos de precisão em uma única subtração.

Exemplo 26. Efetue a operação

$$0.987624687925 - 0.987624 = 0.687925 \times 10^{-6}$$

usando arredondamento com seis dígitos significativos e observe a diferença se comparado com resultado sem arredondamento.

Solução. Os números arredondados com seis dígitos para a mantissa resultam na seguinte diferença

$$0.987625 - 0.987624 = 0.100000 \times 10^{-5}$$

Observe que os erros relativos entre os números exatos e aproximados no lado esquerdo são bem pequenos,

$$\frac{|0,987624687925 - 0,987625|}{|0,987624687925|} = 0,00003159$$

е

$$\frac{|0.987624 - 0.987624|}{|0.987624|} = 0\%,$$

enquanto no lado direito o erro relativo é enorme:

$$\frac{|0,100000 \times 10^{-5} - 0,687925 \times 10^{-6}|}{0,687925 \times 10^{-6}} = 45,36\%.$$

 $\bf Exemplo~27.$ Considere o problema de encontrar as raízes da equação de segundo grau

$$x^2 + 300x - 0.014 = 0,$$

usando seis dígitos significativos.

Aplicando a fórmula de Bhaskara com $a=0.100000\times 10^1,\ b=0.00000$

 $0,300000 \times 10^3$ e $c = 0,140000 \times 10^{-1}$, temos o discriminante:

$$\Delta = b^{2} - 4 \cdot a \cdot c$$

$$= 0,300000 \times 10^{3} \times 0,300000 \times 10^{3}$$

$$+ 0,400000 \times 10^{1} \times 0,100000 \times 10^{1} \times 0,140000 \times 10^{-1}$$

$$= 0,900000 \times 10^{5} + 0,560000 \times 10^{-1}$$

$$= 0,900001 \times 10^{5}$$

e as raízes:

$$x_1, x_2 = \frac{-0.300000 \times 10^3 \pm \sqrt{\Delta}}{0.200000 \times 10^1}$$

$$= \frac{-0.300000 \times 10^3 \pm \sqrt{0.900001 \times 10^5}}{0.200000 \times 10^1}$$

$$= \frac{-0.300000 \times 10^3 \pm 0.300000 \times 10^3}{0.200000 \times 10^1}$$

Então, as duas raízes são:

$$\tilde{x}_1 = \frac{-0,300000 \times 10^3 - 0,300000 \times 10^3}{0,200000 \times 10^1}$$
$$= -\frac{0,600000 \times 10^3}{0,200000 \times 10^1} = -0,300000 \times 10^3$$

e

 $\tilde{x}_2 = \frac{-0.300000 \times 10^3 + 0.300000 \times 10^3}{0.200000 \times 10^1} = 0.000000 \times 10^0$

Agora, os valores das raízes com seis dígitos significativos deveriam ser

$$x_1 = -0.300000 \times 10^3$$
 e $x_2 = 0.466667 \times 10^{-4}$.

Observe que um raiz saiu com seis dígitos significativos corretos, mas a outra não possui nenhum dígito significativo correto.

Observação7. No exemplo anterior b^2 é muito maior que 4ac,ou seja, $b\approx \sqrt{b^2-4ac},$ logo a diferença

$$-b + \sqrt{b^2 - 4ac}$$

estará próxima de zero. Uma maneira padrão de evitar o cancelamento catastrófico é usar procedimentos analíticos para eliminar essa diferença. Abaixo veremos alguns exemplos.

Exemplo 28. Para eliminar o cancelamento catastrófico do exemplo anterior, usamos a seguinte expansão em série de Taylor em torno da origem

$$\sqrt{1-x} = 1 - \frac{1}{2}x + O(x^2).$$

Substituindo na fórmula de Bhaskara, temos:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-b \pm b\sqrt{1 - \frac{4ac}{b^2}}}{2a}$$

$$\approx \frac{-b \pm b\left(1 - \frac{4ac}{2b^2}\right)}{2a}$$

Observe que $\frac{4ac}{b^2}$ é um número pequeno e por isso a expansão faz sentido. Voltamos no exemplo anterior e calculamos as duas raízes

com o nova expressão

$$\tilde{x}_1 = \frac{-b - b + \frac{4ac}{2b}}{2a} = -\frac{b}{a} + \frac{c}{b}$$

$$= -\frac{0,300000 \times 10^3}{0,100000 \times 10^1} - \frac{0,140000 \times 10^{-1}}{0,300000 \times 10^3}$$

$$= -0,300000 \times 10^3 - 0,466667 \times 10^{-4}$$

$$= -0,300000 \times 10^3$$

$$\tilde{x}_{2} = \frac{-b + b - \frac{4ac}{2b}}{2a}$$

$$= -\frac{4ac}{4ab}$$

$$= -\frac{c}{b} = -\frac{-0.140000 \times 10^{-1}}{0.300000 \times 10^{3}} = 0.466667 \times 10^{-4}$$

Observe que o efeito catastrófico foi eliminado.

2.6 Condicionamento de um problema

Nesta seção, utilizaremos a seguinte descrição abstrata para o conceito de "resolver um problema": dado um conjunto de dados de entrada, encontrar os dados de saída. Se denotamos pela variável x os dados de entrada e pela variável y os dados de saída, resolver o problema significa encontrar y dado x. Em termos matemáticos, a resolução de um problema é realizada pelo mapeamento $f: x \to y$, ou simplesmente y = f(x).

É certo que na maioria das aplicações, os dados de entrada do problema, isto é x, não é conhecido com total exatidão, devido a diversas fontes de erros como incertezas na coleta dos dados e erros de arredondamento. O conceito de condicionamento está relacionado com a forma como os erros nos dados de entrada influenciam os dados de saída.

Para fins de análise, denotaremos por x, os dados de entrada com precisão absoluta e por x^* , os dados com erro. Definiremos também a solução y^* , do problema com dados de entrada x^* , ou seja, $y^* =$

 $f(x^*)$. Estamos interessados em saber se os erros cometidos na entrada $\Delta x = x - x^*$ influenciaram na saída do problema $\Delta y = y - y^*$. No caso mais simples, temos que $x \in \mathbb{R}$ e $y \in \mathbb{R}$. Assumindo que f seja

$$f(x + \Delta x) \approx f(x) + f'(x)\Delta x$$

obtemos (subtraindo f(x) dos dois lados)

diferenciável, a partir da série de Taylor

$$\Delta y = f(x + \Delta x) - f(x) \approx f'(x)\Delta x$$

Para relacionarmos os erros relativos, dividimos o lado esquerdo por y, o lado direito por f(x) = y e obtemos

$$\frac{\Delta y}{y} \approx \frac{f'(x)}{f(x)} \frac{x \Delta x}{x}$$

sugerindo a definição de número de condicionamento de um problema.

Definição 5. Seja f uma função diferenciável. O número de condicionamento de um problema é definido como

$$\kappa_f(x) := \left| \frac{xf'(x)}{f(x)} \right|$$

e fornece uma estimativa de quanto os erros relativos na entrada $\left|\frac{\Delta x}{x}\right|$ serão amplificados na saída $\left|\frac{\Delta y}{y}\right|$.

De modo geral, quando f depende de várias variáveis, podemos obter

$$\delta_f = |f(x_1, x_2, ..., x_n) - f(\bar{x}_1, \bar{x}_2, ..., \bar{x}_n)| \approx \sum_{i=1}^n \left| \frac{\partial f}{\partial x_i}(x_1, x_2, ..., x_n) \right| \delta_{x_i}$$

Uma matriz de números de condicionamento também poderia ser obtida como em [5].

Exemplo 29. Considere o problema de calcular \sqrt{x} em x=2. Se usarmos $x^*=1,999,$ quanto será o erro relativo na saída? O erro relativo na entrada é

$$\left| \frac{\Delta x}{x} \right| = \left| \frac{2 - 1,999}{2} \right| = 0,0005$$

O número de condicionamento do problema calcular a raiz é

$$\kappa_f(x) := \left| \frac{xf'(x)}{f(x)} \right| = \left| \frac{x\frac{1}{2\sqrt{x}}}{\sqrt{x}} \right| = \frac{1}{2}$$

Ou seja, os erros na entrada serão diminuídos pela metade. De fato, usando $y=\sqrt{2}=1,\!4142136...$ e $y^*=\sqrt{1,\!999}=1,\!41386...$, obtemos

$$\frac{\Delta y}{y} = \frac{\sqrt{2} - \sqrt{1,999}}{\sqrt{2}} \approx 0,000250031...$$

Exemplo 30. Considere a função $f(x) = \frac{10}{1-x^2}$ e $x^* = 0.9995$ com um erro absoluto na entrada de 0,0001.

Calculando $y^* = f(x^*)$ temos

$$y^* = \frac{10}{1 - (0.9995)^2} \approx 10002,500625157739705173$$

Mas qual é a estimativa de erro nessa resposta? Quantos dígitos significativos temos nessa resposta?

Sabendo que $f'(x) = -10/(1-x^2)^2$, o número de condicionamento é $\begin{vmatrix} xf'(x) \end{vmatrix} = 2x^2 \end{vmatrix}$

$$\kappa_f(x) := \left| \frac{xf'(x)}{f(x)} \right| = \left| \frac{2x^2}{1 - x^2} \right|$$

o que nos fornece para $x^* = 0.9995$,

$$\kappa_f(0,9995) \approx 1998,5$$

Como o erro relativo na entrada é

$$\left| \frac{\Delta x}{x} \right| = \left| \frac{0,0001}{0,9995} \right| \approx 0,00010005...$$

temos que o erro na saída será aproximadamente

$$\left| \frac{\Delta y}{y} \right| \approx \kappa_f(x) \left| \frac{\Delta x}{x} \right| \approx 1998.5 \times 0.00010005... \approx 0.1999$$

ou seja um erro relativo de aproximadamente 19,99%. Note que se usarmos $x_1 = 0,9994$ e $x_2 = 0,9996$ (ambos no intervalo do erro absoluto da entrada) encontramos

$$y_1^* \approx 8335,83$$

 $y_2^* \approx 12520,50$

confirmando a estimativa de 19,99%.

Exemplo 31. Seja $f(x) = x \exp(x)$. Calcule o erro absoluto em se calcular f(x) sabendo que $x = 2 \pm 0.05$.

Solução. Temos que $x \approx 2$ com erro absoluto de $\delta_x = 0.05$. Neste caso, calculamos δ_f , i.e. o erro absoluto em se calcular f(x), por:

$$\delta_f = |f'(x)|\delta_x.$$

Como $f'(x) = (1+x)e^x$, temos:

$$\delta_f = |(1+x)e^x| \cdot \delta_x$$

= |3e^2| \cdot 0.05 = 1.1084.

Portanto, o erro absoluto em se calcular f(x) quando $x=2\pm0.05$ é de 1,084.

Exemplo 32. Calcule o erro relativo ao medir $f(x,y) = \frac{x^2+1}{x^2}e^{2y}$ sabendo que $x \approx 3$ é conhecido com 10% de erro e $y \approx 2$ é conhecido com 3% de erro.

Solução. Calculamos as derivadas parciais de f:

$$\frac{\partial f}{\partial x} = \frac{2x^3 - (2x^3 + 2x)}{x^4}e^{2y} = -\frac{2e^{2y}}{x^3}$$

е

$$\frac{\partial f}{\partial y} = 2\frac{x^2 + 1}{x^2}e^{2y}$$

Calculamos o erro absoluto em termos do erro relativo:

$$\frac{\delta_x}{|x|} = 0.1 \Rightarrow \delta_x = 3 \cdot 0.1 = 0.3$$

$$\frac{\delta_y}{|y|} = 0.03 \Rightarrow \delta_y = 2 \cdot 0.03 = 0.06$$

Aplicando a expressão para estimar o erro em f temos

$$\delta_f = \left| \frac{\partial f}{\partial x} \right| \delta_x + \left| \frac{\partial f}{\partial y} \right| \delta_y$$
$$= \frac{2e^4}{27} \cdot 0.3 + 2\frac{9+1}{9}e^4 \cdot 0.06 = 8.493045557$$

Portanto, o erro relativo ao calcular f é estimado por

$$\frac{\delta f}{|f|} = \frac{8,493045557}{\frac{9+1}{9}e^4} = 14\%$$

Exemplo 33. No exemplo anterior, reduza o erro relativo em x pela metade e calcule o erro relativo em f. Depois, repita o processo reduzindo o erro relativo em y pela metade.

Solução. Na primeira situação temos x=3 com erro relativo de 5% e $\delta_x=0.05\cdot 3=0.15$. Calculamos $\delta_f=7.886399450$ e o erro relativo em f de 13%. Na segunda situação, temos y=2 com erro de 1.5% e $\delta_y=2\cdot 0.015=0.03$. Calculamos $\delta_f=4.853168892$ e o erro relativo em f de 8%. Observe que mesma o erro relativo em f sendo maior, o erro em f é mais significante na função.

Exemplo 34. Considere um triângulo retângulo onde a hipotenusa e um dos catetos são conhecidos a menos de um erro: hipotenusa $a=3\pm0.01$ metros e cateto $b=2\pm0.01$ metros. Calcule o erro absoluto ao calcular a área dessa triângulo.

Solução. Primeiro vamos encontrar a expressão para a área em função da hipotenusa a e um cateto b. A tamanho de segundo cateto c é dado pelo teorema de Pitágoras, $a^2 = b^2 + c^2$, ou seja,

 $A = \frac{bc}{2} = \frac{b\sqrt{a^2 - b^2}}{2}$.

Agora calculamos as derivadas

 $c = \sqrt{a^2 - b^2}$. Portanto a área é

$$\frac{\partial A}{\partial a} = \frac{ab}{2\sqrt{a^2 - b^2}},$$

$$\frac{\partial A}{\partial b} = \frac{\sqrt{a^2 - b^2}}{2} - \frac{b^2}{2\sqrt{a^2 - b^2}},$$

e substituindo na estimativa para o erro δ_A em termos de $\delta_a=0.01$ e $\delta_b=0.01$:

$$\delta_A \approx \left| \frac{\partial A}{\partial a} \right| \delta_a + \left| \frac{\partial A}{\partial b} \right| \delta_b$$

$$\approx \frac{3\sqrt{5}}{5} \cdot 0.01 + \frac{\sqrt{5}}{10} \cdot 0.01 = 0.01565247584$$

Em termos do erro relativo temos erro na hipotenusa de $\frac{0,01}{3} \approx 0.333\%$, erro no cateto de $\frac{0,01}{2} = 0.5\%$ e erro na área de

$$\frac{0,01565247584}{\frac{2\sqrt{3^2-2^2}}{2}} = 0,7\%$$

2.6.1 Exercícios

E 2.6.1. Considere que a variável $x \approx 2$ é conhecida com um erro relativo de 1% e a variável $y \approx 10$ com um erro relativo de 10%. Calcule o erro relativo associado a z quando:

$$z = \frac{y^4}{1 + u^4} e^x.$$

Suponha que você precise conhecer o valor de z com um erro de 0,5%. Você propõe uma melhoria na medição da variável x ou y? Explique.

E 2.6.2. A corrente I em ampères e a tensão V em volts em uma lâmpada se relacionam conforme a seguinte expressão:

$$I = \left(\frac{V}{V_0}\right)^{\alpha},$$

onde α é um número entre 0 e 1 e V_0 é tensão nominal em volts. Sabendo que $V_0=220\pm3\%$ e $\alpha=-0.8\pm4\%$, calcule a corrente e

o erro relativo associado quando a tensão vale $220 \pm 1\%$.

Obs:. Este problema pode ser resolvido de duas formas distintas: usando a expressão aproximada para a propagação de erro e inspecionando os valores máximos e mínimos que a expressão pode assumir. Pratique os dois métodos.

E 2.6.3. A corrente I em ampères e a tensão V em volts em uma lâmpada se relacionam conforme a seguinte expressão:

$$I = \left(\frac{V}{V_0}\right)^{\alpha}$$

Onde α é um número entre 0 e 1 e V_0 é a tensão nominal em volts. Sabendo que $V_0 = 220 \pm 3\%$ e $\alpha = 0.8 \pm 4\%$ Calcule a corrente e o erro relativo associado quando a tensão vale $220 \pm 1\%$. Dica: lembre que $x^{\alpha} = e^{\alpha \ln(x)}$

2.7 Mais exemplos

Exemplo 35. Considere o seguinte processo iterativo:

$$\begin{cases} x_0 = \frac{1}{3} \\ x_{n+1} = 4x_n - 1, & n \in \mathbb{N} \end{cases}.$$

Observe que $x_0 = \frac{1}{3}$, $x_1 = 4 \cdot \frac{1}{3} - 1 = \frac{1}{3}$, $x_2 = \frac{1}{3}$, ou seja, temos uma sequência constante igual a $\frac{1}{3}$. No entanto, ao calcularmos no computador, usando o sistema de numeração 'double', a sequencia obtida não é constante e, de fato, diverge. Faça o teste no Scilab, colocando:

$$-->x = 1/3$$

e itere algumas vezes a linha de comando:

$$-->_{X} = 4*_{X}-1$$

Para compreender o que acontece, devemos levar em consideração que o número $\frac{1}{3}=0,\overline{3}$ possui um representação infinita tanto na base decimal quanto na base binária. Logo, sua representação de máquina incliu um erro de arredondamento. Seja ϵ a diferença entre o valor exato de $\frac{1}{3}$ e sua representação de máquina, isto é, $\tilde{x}_0=\frac{1}{3}+\epsilon$. A sequência efetivamente calculada no computador é:

$$\tilde{x}_{0} = \frac{1}{3} + \epsilon
\tilde{x}_{1} = 4x_{0} - 1 = 4\left(\frac{1}{3} + \epsilon\right) - 1 = \frac{1}{3} + 4\epsilon
\tilde{x}_{2} = 4x_{1} - 1 = 4\left(\frac{1}{3} + 4\epsilon\right) - 1 = \frac{1}{3} + 4^{2}\epsilon
\vdots
\tilde{x}_{n} = \frac{1}{2} + 4^{n}\epsilon$$

Portanto o limite da sequência diverge,

$$\lim_{x \to \infty} |\tilde{x}_n| = \infty$$

Qual o número de condicionamento desse problema?

Exemplo 36. Observe a seguinte identidade

$$f(x) = \frac{(1+x)-1}{x} = 1$$

Calcule o valor da expressão à esquerda para $x=10^{-12}, x=10^{-13}, x=10^{-14}, x=10^{-15}, x=10^{-16}$ e $x=10^{-17}$. Observe que quando x se aproxima do ϵ de máquina a expressão perde o significado. Veja a Figura 2.1 com o gráfico de f(x) em escala logarítmica.

Exemplo 37. Neste exemplo, estamos interessados em compreender mais detalhadamente o comportamento da expressão

$$\left(1 + \frac{1}{n}\right)^n \tag{2.1}$$

quando n é um número grande ao computá-la em sistemas de numeral de ponto flutuante com acurácia finita. Um resultado bem

Figura 2.1: Oi. Eu estou aqui!

conhecido do cálculo nos diz que o limite de (2.1) quando n tende a infinito é o número de Euler:

 $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e = 2{,}718281828459...$

(2.2)

Sabemos também que a sequência produzida por (2.1) é crescente, isto é:

$$\left(1+\frac{1}{1}\right)^1 < \left(1+\frac{1}{2}\right)^2 < \left(1+\frac{1}{3}\right)^3 < \cdots$$

No entanto, quando calculamos essa expressão no Scilab, nos de-

_	=,=====================================	10	2,1101100200210	
3	2,3703703703704	10^{6}	2,7182804690957	
4	2,4414062500000	10^{8}	2,7182817983391	
5	2,4883200000000	10^{10}	2,7182820532348	
6	2,5216263717421	10^{12}	2,7185234960372	
7	2,5464996970407	10^{14}	2,7161100340870	
8	2,5657845139503	10^{16}	1,00000000000000	

2,5811747917132

9

 10^{18}

1,00000000000000

Podemos resumir esses dados no seguinte gráfico de $\left(1+\frac{1}{n}\right)^n$ em função de n:

Observe que quando x se torna grande, da ordem de 10^{15} , o gráfico da função deixa de se crescente e apresenta oscilações. Observe também que a expressão se torna identicamente igual a 1 depois de um certo limiar. Tais fenômenos não são intrínsecos da função $f(x) = (1+1/x)^x$, mas oriundas de erros de arredondamento,

isto é, são resultados numéricos espúrios. A fim de pôr o comportamento numérico de tal expressão, apresentamos abaixo o gráfico da mesma função, porém restrito à região entre 10^{14} e 10^{16} .

Para compreendermos melhor por que existe um limiar N que, quando atingido torna a expressão do exemplo acima identicamente

igual a 1, observamos a sequência de operações realizadas pelo computador:

$$x \to 1/x \to 1 + 1/x \to (1 + 1/x)^x$$
 (2.3)

Devido ao limite de precisão da representação de números em ponto flutuante, existe um menor número representável que é maior do que 1. Este número é 1+eps, onde eps é chamado de épsilon de máquina e é o menor número que somado a 1 produz um resultado superior a 1 no sistema de numeração usado. O épsilon de máquina no sistema de numeração double vale aproximadamente $2,22 \times 10^{-16}$. No Scilab, o epsilon de máquina é a constante eps. Observe que:

```
-->1+%eps
ans =
1.00000000000000002220446
```

Quando somamos a 1 um número positivo inferior ao épsilon de máquina, obtemos o número 1. Dessa forma, o resultado obtido

pela operação de ponto flutuante 1+x para $0 < x < 2,22 \times 10^{-16}$ é 1.

Portanto, quando realizamos a sequência de operações dada em (2.3), toda informação contida no número x é perdida na soma com 1 quando 1/x é menor que o épsilon de máquina, o que ocorre quando $x>5\times 10^{15}$. Assim (1+1/x) é aproximado para 1 e a última operação se resume a 1^x , o que é igual a 1 mesmo quando x é grande.

Um erro comum é acreditar que o perda de significância se deve ao fato de 1/x ser muito pequeno para ser representado e é aproximando para 0. Isto é falso, o sistema de ponto de flutuante permite representar números de magnitude muito inferior ao épsilon de máquina. O problema surge da limitação no tamanho da mantissa. Observe como a seguinte sequência de operações não perde significância para números positivos x muito menores que o épsilon de máquina:

$$x \rightarrow 1/x \rightarrow 1/(1/x) \tag{2.4}$$

compare o desempenho numérico desta sequência de operações para

valores pequenos de x com o da seguinte sequência:

$$x \to 1 + x \to (1 + x) - 1.$$
 (2.5)

Finalmente, notamos que quando tentamos calcular $\left(1+\frac{1}{n}\right)^n$ para n grande, existe perda de significância no cálculo de 1+1/n. Para entendermos isso melhor, vejamos o que acontece no Scilab quando $n=7\times 10^{13}$:

```
-->1/n
ans =
1.428571428571428435D-14
```

```
-->y=1+1/n
y =
```

-->n=7e13

1.00000000000014211D+00

Observe a perda de informação ao deslocar a mantissa de 1/n. Para evidenciar o fenômenos, observamos o que acontece quando tentamos recalcular n subtraindo 1 de 1 + 1/n e invertendo o resultado:

```
-->y-1
ans =
1.421085471520200372D-14
```

```
-->1/(y-1)
ans =
7.036874417766400000D+13
```

Exemplo 38 (Analogia da balança). Observe a seguinte comparação interessante que pode ser feita para ilustrar os sistemas de numeração com ponto fixo e flutuante: o sistema de ponto fixo é como uma balança cujas marcas estão igualmente espaçadas; o sistema de ponto flutuante é como uma balança cuja distância entre

as marcas é proporcional à massa medida. Assim, podemos ter uma balança de ponto fixo cujas marcas estão sempre distanciadas de 100g (100g, 200g, 300g, ..., 1Kg, 1,1Kg,...) e outra balança de ponto flutuante cujas marcas estão distanciadas sempre de aproximadamente um décimo do valor lido (100g, 110g, 121g, 133g, ..., 1Kg, 1,1Kg, 1,21Kg, ...) A balança de ponto fixo apresenta uma resolução baixa para pequenas medidas, porém uma resolução alta para grandes medidas. A balança de ponto flutuante distribui a resolução de forma proporcional ao longo da escala.

Seguindo nesta analogia, o fenômeno de perda de significância pode ser interpretado como a seguir: imagine que você deseje obter o peso de um gato (aproximadamente 4Kg). Dois processos estão disponíveis: colocar o gato diretamente na balança ou medir seu peso com o gato e, depois, sem o gato. Na balança de ponto flutuante, a incerteza associada na medida do peso do gato (sozinho) é aproximadamente 10% de 4Kg, isto é, 400g. Já a incerteza associada à medida da uma pessoa (aproximadamente 70Kg) com o gato é de 10% do peso total, isto é, aproximadamente 7Kg. Esta incerteza é

da mesma ordem de grandeza da medida a ser realizada, tornado o processo impossível de ser realizado, já que teríamos uma incerteza da ordem de 14Kg (devido à dupla medição) sobre uma grandeza de 4Kg.

2.7.1 Exercícios

E 2.7.1. Considere as expressões:

$$\frac{\exp(1/\mu)}{1 + \exp(1/\mu)}$$

(

$$\frac{1}{\exp(-1/\mu) + 1}$$

com $\mu > 0$. Verifique que elas são idênticas como funções reais. Teste no computador cada uma delas para $\mu = 0.1$, $\mu = 0.01$ e $\mu = 0.001$. Qual dessas expressões é mais adequada quando μ é um número pequeno? Por quê?

E 2.7.2. Encontre expressões alternativas para calcular o valor das seguintes funções quando x é próximo de zero.

a)
$$f(x) = \frac{1 - \cos(x)}{x^2}$$

b)
$$g(x) = \sqrt{1+x} - 1$$

c)
$$h(x) = \sqrt{x + 10^6} - 10^3$$

d)
$$i(x) = \sqrt{1 + e^x} - \sqrt{2}$$
 Dica: Faça $y = e^x - 1$

E 2.7.3. Use uma identidade trigonométrica adequada para mostrar que:

$$\frac{1-\cos(x)}{x^2} = \frac{1}{2} \left(\frac{\sin(x/2)}{x/2}\right)^2.$$

Analise o desempenho destas duas expressões no computador quando x vale 10^{-5} , 10^{-6} , 10^{-7} , 10^{-8} , 10^{-9} , 10^{-200} e 0. Discuta o resultado. Dica: Para $|x| < 10^{-5}$, f(x) pode ser aproximada por $1/2 - x^2/24$

E 2.7.4. Reescreva as expressões:

com erro de truncamento inferior a 10^{-22} .

$$\sqrt{e^{2x}+1}-e^x$$
 e $\sqrt{e^{2x}+x^2}-e^x$

de modo que seja possível calcular seus valores para x=100 utilizando a aritmética de ponto flutuante ("Double") no computador.

 ${\bf E}$ 2.7.5. Na teoria da relatividade restrita, a energia cinética de uma partícula e sua velocidade se relacionam pela seguinte fórmula:

$$E = mc^2 \left(\frac{1}{\sqrt{1 - (v/c)^2}} - 1 \right),$$

onde E é a energia cinética da partícula, m é a massa de repouso, v o módulo da velocidade e c a velocidade da luz no vácuo dada por c=299792458m/s. Considere que a massa de repouso $m=9,10938291\times 10^{-31}Kg$ do elétron seja conhecida com erro relativo de 10^{-9} . Qual é o valor da energia e o erro relativo associado a essa grandeza quando $v=0,1c,\ v=0,5c,\ v=0,99c$ e v=0,999c sendo que a incerteza relativa na medida da velocidade é 10^{-5} ?

 ${\bf E}$ 2.7.6. Deseja-se medir a concentração de dois diferentes oxidantes no ar. Três sensores eletroquímicos estão disponíveis para a

medida e apresentam a seguintes respostas:

$$v_1 = 270[A] + 30[B], \quad v_2 = 140[A] + 20[B] \quad \text{e} \quad v_3 = 15[A] + 200[B]$$

as tensões $v_1,\ v_2$ e v_3 são dadas em mVe as concentrações em milimol/l.

a) Encontre uma expressão para os valores de [A] e [B] em termos de v_1 e v_2 e, depois, em termos de v_1 e v_3 . Dica: Se $ad \neq bc$, então a matriz A dada por

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

é inversível e sua inversa é dada por

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

sensores 1 e 2 é de 2% e que a incerteza relativa associada às sensibilidades do sensor 3 é 10%, verifique a incerteza associada à medida feita com o par 1-2 e o par 1-3. Use [A] = [B] = 10 milimol/l. Dica: Você deve diferenciar as grandezas [A] e [B] em relação aos valores das tensões.

b) Sabendo que incerteza relativa associada às sensibilidades dos

Capítulo 3

Solução de equações de uma variável

Neste capítulo buscaremos aproximações numéricas para a solução de **equações de uma variável real**. Observamos que obter uma solução para uma tal dada equação é equivalente a encontrar um

zero de uma função apropriada. Com isso, iniciamos este capítulo discutindo sobre condições de existência e unicidade de raízes de funções de uma variável real. Então, apresentamos o método da bisseção como uma primeira abordagem numérica para a solução de tais equações.

Em seguida, exploramos uma outra abordagem via **iteração do ponto fixo**. Desta, obtemos o **método de Newton**¹, para o qual discutimos sua aplicação e convergência. Por fim, apresentamos o **método das secantes** como uma das possíveis variações do método de Newton.

¹Sir Isaac Newton, 1642 - 1727, matemático e físico inglês.

3.1 Existência e unicidade

O teorema de Bolzano² nos fornece condições suficientes para a existência do zero de uma função. Este é uma aplicação direta do teorema do valor intermediário.

Teorema 1 (Teorema de Bolzano). Se $f:[a,b] \to \mathbb{R}$, y = f(x), é uma função contínua tal que $f(a) \cdot f(b) < 0$, então existe $x^* \in (a,b)$ tal que $f(x^*) = 0$.

Demonstração. O resultado é uma consequência imediata do teorema do valor intermediário que estabelece que dada uma função contínua $f:[a,b]\to\mathbb{R},\ y=f(x),$ tal que f(a)< f(b) (ou f(b)< f(a)), então para qualquer $d\in (f(a),f(b))$ (ou $k\in (f(b),f(a))$) existe $x^*\in (a,b)$ tal que $f(x^*)=k$. Ou seja, nestas notações, se $f(a)\cdot f(b)<0$, então f(a)<0< f(b) (ou f(b)<0< f(a)). Logo,

²Bernhard Placidus Johann Gonzal Nepomuk Bolzano, 1781 - 1848, matemático do Reino da Boêmia.

tomando k = 0, temos que existe $x^* \in (a, b)$ tal que $f(x^*) = k = 0$.

Em outras palavras, se f(x) é uma função contínua em um dado intervalo no qual ela troca de sinal, então ela têm pelo menos um zero neste intervalo (veja a Figura 3.1).

Exemplo 39. Mostre que existe pelo menos uma solução da equação $e^x = x + 2$ no intervalo (-2,0).

Solução. Primeiramente, observamos que resolver a equação $e^x = x + 2$ é equivalente a resolver f(x) = 0 com $f(x) = e^x - x - 2$. Agora, como $f(-2) = e^{-2} > 0$ e f(0) = -2 < 0, temos do teorema de Bolzano que existe pelo menos um zero de f(x) no intervalo (-2,0). E, portanto, existe pelo menos uma solução da equação dada no intervalo (-2,0).

Podemos usar o Scilab para estudarmos esta função. Por exemplo, podemos definir a função f(x) e computá-la nos extremos do intervalo dado com os seguintes comandos:

Figura 3.1: Teorema de Bolzano.

```
-->deff('y=f(x)','y=exp(x)-x-2')

-->f(-2),f(0)

ans =

0.1353353

ans =

- 1.
```

Alternativamente (e com maior precisão), podemos verificar diretamente o sinal da função nos pontos desejados com comando sign:

```
-->sign(f(-2)),sign(f(0))
ans =
1.
ans =
- 1.
```


Quando procuramos aproximações para zeros de funções, é aconselhável isolar cada raiz em um intervalo. Desta forma, gostaríamos de

poder garantir a existência e a unicidade da raiz dentro de um dado intervalo. A seguinte proposição nos fornece condições suficientes para tanto.

Proposição 1. Se $f:[a,b] \to \mathbb{R}$ é um função diferenciável, $f(a) \cdot f(b) < 0$ e f'(x) > 0 (ou f'(x) < 0) para todo $x \in (a,b)$, então existe um único $x^* \in (a,b)$ tal que $f(x^*) = 0$.

Em outras palavras, para garantirmos que exista um único zero de uma dada função diferenciável num intervalo, é suficiente que ela troque de sinal e seja monótona neste intervalo.

Exemplo 40. No Exemplo 39, mostramos que existe pelo menos um zero de $f(x) = e^x - x - 2$ no intervalo (-2,0), pois f(x) é contínua e $f(-2) \cdot f(0) < 0$. Agora, observamos que, além disso, $f'(x) = e^x - 1$ e, portanto, f'(x) < 0 para todo $x \in (-2,0)$. Logo, da Proposição 1, temos garantida a existência de um único zero no intervalo dado.

Podemos inspecionar o comportamento da função $f(x) = e^x - x$ —

2 e de sua derivada fazendo seus gráficos no Scilab. Para tanto, podemos fazer o seguinte teste:

// define f

-->x = linspace(-2,0,50);

cutimos na próxima seção.

-->deff('y = f(x)','y=exp(x)-x-2')

```
-->plot(x,f(x));xgrid // grafico de f

-->deff('y = fl(x)','y=exp(x)-1') // a derivada

-->plot(x,fl(x));xgrid // grafico de f'

A discussão feita nesta seção, especialmente o teorema de Bolzano,

nos fornece os fundamentos para o método da bisseção, o qual dis-
```

3.1.1 Exercícios

E 3.1.1. Mostre que $\cos x = x$ tem solução no intervalo $[0, \pi/2]$.

 ${\bf E}$ 3.1.2. Mostre que $\cos x=x$ tem uma única solução no intervalo $[0,\pi/2].$

E 3.1.3. Interprete a equação $\cos(x) = kx$ como o problema de encontrar a intersecção da curva $y = \cos(x)$ com y = kx. Encontre o valor positivo k para o qual essa equação admite exatamente duas raízes positivas distintas.

E 3.1.4. Mostre que a equação:

$$\ln(x) + x^3 - \frac{1}{x} = 10$$

possui uma única solução positiva.

 ${\bf E}$ 3.1.5. Use o teorema de Bolzano para mostrar que o erro abso-

luto ao aproximar o zero da função $f(x)=e^x-x-2$ por $\overline{x}=-1{,}841$ é menor que $10^{-3}.$

E 3.1.6. Mostre que o erro absoluto associado à aproximação $\overline{x}=1,962$ para a solução exata x^* de:

$$e^x + \sin(x) + x = 10$$

 $\acute{\rm e}$ menor que 10^{-4} .

E 3.1.7. Mostre que a equação

$$\ln(x) + x - \frac{1}{x} = v$$

possui uma solução para cada v real e que esta solução é única.

3.2 Método da bisseção

O **método da bisseção** explora o fato de que uma função contínua $f:[a,b]\to\mathbb{R}$ com $f(a)\cdot f(b)<0$ tem um zero no intervalo (a,b) (veja o teorema de Bolzano 1). Assim, a ideia para aproximar o zero de uma tal função f(x) é tomar, como primeira aproximação, o ponto médio do intervalo [a,b], i.e.:

$$x^{(0)} = \frac{(a+b)}{2}.$$

Pode ocorrer de $f(x^{(0)}) = 0$ e, neste caso, o zero de f(x) é $x^* = x^{(0)}$. Caso contrário, se $f(a) \cdot f(x^{(0)}) < 0$, então $x^* \in (a, x^{(0)})$. Neste caso, tomamos como segunda aproximação do zero de f(x) o ponto médio do intervalo $[a, x^{(0)}]$, i.e. $x^{(1)} = (a + x^{(0)})/2$. Noutro caso, temos $f(x^{(0)}) \cdot f(b) < 0$ e, então, tomamos $x^{(1)} = (x^{(0)} + b)/2$. Repetimos este procedimento até obtermos a aproximação desejada (veja, Figura 3.2).

De forma mais precisa, suponha que queiramos calcular uma aproximação com uma certa precisão TOL para um zero x^* de uma dada

Figura 3.2: Método da bisseção.

função contínua $f:[a,b]\to \mathbb{R}$ tal que $f(a)\cdot f(b)<0.$ Iniciamos, setamos n=0e:

$$a^{(n)} = a$$
, $b^{(n)} = b$ e $x^{(n)} = \frac{a^{(n)} + b^{(n)}}{2}$.

Verificamos o **critério de parada**, i.e. se $f(x^{(n)}) = 0$ ou:

$$\frac{|b^{(n)} - a^{(n)}|}{2} < TOL,$$

então $x^{(n)}$ é a aproximação desejada. Caso contrário, preparamos a próxima iteração n+1 da seguinte forma: se $f(a^{(n)}) \cdot f(x^{(n)}) < 0$, então setamos $a^{(n+1)} = a^{(n)}$ e $b^{(n+1)} = x^{(n)}$; noutro caso, se $f(x^{(n)}) \cdot f(b^{(n)}) < 0$, então setamos $a^{(n+1)} = x^{(n)}$ e $b^{(n+1)} = b^{(n)}$. Trocando n por n+1, temos a nova aproximação do zero de f(x) dada por:

$$x^{(n+1)} = \frac{a^{(n+1)} + b^{(n+1)}}{2}.$$

Voltamos a verificar o critério de parada acima e, caso não satisfeito, iteramos novamente. Iteramos até obtermos a aproximação desejada ou o número máximo de iterações ter sido atingido.

Exemplo 41. Use o método da bisseção para calcular uma solução de $e^x = x + 2$ no intervalo [-2,0] com precisão $TOL = 10^{-1}$.

Solução. Primeiramente, observamos que resolver a equação dada é equivalente a calcular o zero de $f(x) = e^x - x - 2$. Além disso, temos $f(-2) \cdot f(0) < 0$. Desta forma, podemos iniciar o método da bisseção tomando o intervalo inicial $[a^{(0)}, b^{(0)}] = [-2, 0]$ e:

$$x^{(0)} = \frac{a^{(0)} + b^{(0)}}{2} = -1.$$

Apresentamos as iterações na Tabela 3.1. Observamos que a precisão $TOL=10^{-1}$ foi obtida na quarta iteração com o zero de f(x) sendo aproximado por $x^{(4)}=1{,}8125$.

Usando o Scilab neste exemplos, temos:

Tabela 3.1: Iteração do método da bisseção para o Exemplo 41. $x^{(n)} | f(a^{(n)}) f(x^{(n)}) | \underline{|b^{(n)} - a^{(n)}|}$ $b^{(n)}$ $a^{(n)}$ n

				,,,,,,	2	
0	-2	0	-1	< 0	1	
1	-2	-1	-1,5	< 0	0,5	

U	-2	U	-1	< 0	1	
1	-2	-1	-1,5	< 0	0,5	

> 0

< 0

0,125

0,0625

1	-2	-1	-1,5	< 0	0,5	
2	-2	-1,5	-1,75	< 0	0,25	

-2 -1,75 -1,875

-1,875 -1,75 -1,8125

3

4

-->deff('y = f(x)','y = exp(x) - x - 2') -->a=-2, b=0, x=(a+b)/2, TOL = (b-a)/2, sign(f(a)*f(x)) -->b=x, x=(a+b)/2, TOL = (b-a)/2, sign(f(a)*f(x))

e, assim, sucessivamente.

Vamos, agora, discutir sobre a **convergência** do método da bisseção. O próximo Teorema 2 nos garante a convergência do método da bisseção.

Teorema 2 (Convergência do método da bisseção). Sejam f: $[a,b] \to \mathbb{R}$ uma função contínua tal que $f(a) \cdot f(b) < 0$ e x^* o único zero de f(x) no intervalo (a,b). Então, a sequência $\{x^{(n)}\}_{n>=0}$ do método da bisseção satisfaz:

$$|x^{(n)} - x^*| < \frac{b-a}{2^{n+1}}, \quad \forall n \ge 0,$$

i.e., $x^{(n)} \to x^*$ quando $n \to \infty$.

Demonstração. Notemos que, a cada iteração, a distância entre a aproximação $x^{(n)}$ e o zero x^* da função é menor que a metade do tamanho do intervalo $[a^{(n)},b^{(n)}]$ (veja Figura 3.2), i.e.:

$$|x^{(n)} - x^*| < \frac{b^{(n)} - a^{(n)}}{2}.$$

Por construção do método, temos $[a^{(n)},b^{(n)}]\subset [a^{(n-1)},b^{(n-1)}]$ e:

$$b^{(n)} - a^{(n)} = \frac{b^{(n-1)} - a^{(n-1)}}{2}.$$

Desta forma:

$$|x^{(n)} - x^*| < \frac{b^{(n)} - a^{(n)}}{2} = \frac{b^{(n-1)} - a^{(n-1)}}{2^2} = \dots = \frac{b^{(0)} - a^{(0)}}{2^{n+1}}, \quad \forall n \ge 1$$

Logo, vemos que:

$$|x^{(n)} - x^*| < \frac{b-a}{2n+1}, \quad \forall n \ge 0.$$

Observamos que a hipótese de que f(x) tenha um único zero no intervalo não é necessária. Se a função tiver mais de um zero no intervalo inicial, as iterações irão convergir para um dos zeros. Veja o Exercício 43.

Observação 8. O Teorema 2 nos fornece uma estimativa para a convergência do método da bisseção. Aproximadamente, temos:

$$|x^{(n+1)} - x^*| \lesssim \frac{1}{2} |x^{(n+1)} - x^*|.$$

Isto nos leva a concluir que o método da bisseção tem **taxa de convergência** linear.

Exemplo 42. No Exemplo 41, precisamos de 4 iterações do método da bisseção para computar uma aproximação com precisão de 10^{-1} do zero de $f(x) = e^x - x - 2$ tomando como intervalo inicial [a, b] = [-2, 0]. Poderíamos ter estimado o número de iterações **a priori**,

pois, como vimos acima:

$$|x^{(n)} - x^*| \le \frac{b-a}{2^{n+1}}, \quad n \ge 0.$$

Logo, temos:

$$|x^{(n)} - x^*| < \frac{b-a}{2^{n+1}} = \frac{2}{2^{n+1}}$$

= $2^{-n} < 10^{-1} \Rightarrow n > -\log_2 10^{-1} \approx 3{,}32.$

 ${\cal O}$ que está de acordo com o experimento numérico realizado naquele exemplo.

O método da bisseção tem a boa propriedade de garantia de convergência, bem como de fornecer uma simples estimativa da precisão da aproximação calculada. Entretanto, a taxa de convergência linear é superada por outros métodos. A construção de tais métodos está, normalmente, associada a iteração do ponto fixo, a qual exploramos na próxima seção.

3.2.1 Código Scilab: método da bisseção

O seguinte código é uma implementação no Scilab do algoritmo da bisseção. As variáveis de entrada são:

- f função objetivo
- a extremo esquerdo do intervalo de inspeção [a,b]
- b extremo direito do intervalo de inspeção [a,b]
- TOL tolerância (critério de parada)
- N número máximo de iterações

A variável de saída é:

- p aproximação da raiz de f, i.e. $f(p) \approx 0$.
- function [p] = bissecao(f, a, b, TOL, N) i = 1

```
fa = f(a)
while (i \le N)
  //iteracao da bissecao
 p = a + (b-a)/2
 fp = f(p)
 //condicao de parada
  if ((fp == 0) | ((b-a)/2 < TOL)) then
    return p
  end
  //bissecta o intervalo
  i = i+1
  if (fa * fp > 0) then
    a = p
    fa = fp
  else
   b = p
  end
```

end

error ('Num. max. de iter. excedido!')
endfunction

3.2.2 Exercícios

E 3.2.1. Considere a equação $\sqrt{x} = \cos(x)$. Use o método da bisseção com intervalo inicial [a,b] = [0,1] e $x^{(1)} = (a+b)/2$ para calcular a aproximação $x^{(4)}$ da solução desta equação.

E 3.2.2. Trace o gráfico e isole as três primeiras raízes positivas da função:

$$f(x) = 5\sin(x^2) - \exp\left(\frac{x}{10}\right)$$

em intervalos de comprimento 0,1. Então, use o método da bisseção para obter aproximações dos zeros desta função com precisão de 10^{-5} .

Exemplo 43. O polinômio $p(x) = -4 + 8x - 5x^2 + x^3$ tem raízes $x_1 = 1$ e $x_2 = x_3 = 2$ no intervalo [1/2, 3].

a) Se o método da bisseção for usando com o intervalo inicial [1/2, 3], para qual raiz as iterações convergem?

- b) É possível usar o método da bisseção para a raiz x=2? Justifique sua resposta.
- **E 3.2.3.** Mostre que a equação do problema 3.1.7 possui uma solução no intervalo [1, v+1] para todo v positivo. Dica: defina $f(x) = \ln(x) + x \frac{1}{x} v$ e considere a seguinte estimativa:

$$f(v+1) = f(1) + \int_{1}^{v+1} f'(x)dx \ge -v + \int_{1}^{v+1} dx = 0.$$

Use esta estimativa para iniciar o método de bisseção e obtenha o valor da raiz com pelo menos 6 algarismos significativos para v=1,2,3,4 e 5.

E 3.2.4. Considere o seguinte problema físico: uma plataforma está fixa a uma parede através de uma dobradiça cujo momento é dado por:

$$\tau = k\theta$$
,

onde θ é angulo da plataforma com a horizontal e k é uma constante positiva. A plataforma é feita de material homogêneo, seu peso é P e sua largura é l. Modele a relação entre o ângulo θ e o peso P próprio da plataforma. Encontre o valor de θ quando l=1 m, P=200 N, k=50 Nm/rad, sabendo que o sistema está em equilíbrio. Use o método da bisseção e expresse o resultado com 4 algarismos significativos.

E 3.2.5. Considere a equação de Lambert dada por:

$$xe^x = t$$
,

onde t é um número real positivo. Mostre que esta equação possui uma única solução x^* que pertence ao intervalo [0,t]. Usando esta estimativa como intervalo inicial, quantos passos são necessário para obter o valor numérico de x^* com erro absoluto inferior a 10^{-6} quando $t=1,\ t=10$ e t=100 através do método da bisseção? Obtenha esses valores.

E 3.2.6. O polinômio $f(x) = x^4 - 4x^2 + 4$ possui raízes duplas em $\sqrt{2}$ e $-\sqrt{2}$. O método da bisseção pode ser aplicados a f? Explique.

E 3.2.7. O desenho abaixo mostra um circuito não linear envolvendo uma fonte de tensão constante, um diodo retificador e um resistor. Sabendo que a relação entre a corrente (I_d) e a tensão (v_d) no diodo é dada pela seguinte expressão:

$$I_d = I_R \left(\exp\left(\frac{v_d}{v_t}\right) - 1 \right),$$

onde I_R é a corrente de condução reversa e v_t , a tensão térmica dada por $v_t = \frac{kT}{q}$ com k, a constante de Boltzmann, T a temperatura de operação e q, a carga do elétron. Aqui $I_R = 1pA = 10^{-12}$ A, T = 300 K. Escreva o problema como uma equação na incógnita v_d e, usando o método da bisseção, resolva este problema com 3 algarismos significativos para os seguintes casos:

- a) $V = 30 \text{ V e } R = 1 \text{ k}\Omega.$
- b) $V = 3 \text{ V e } R = 1 \text{ k}\Omega.$
- c) $V = 3 \text{ V e } R = 10 \text{ k}\Omega.$
- d) $V = 300 \text{ mV e } R = 1 \text{ k}\Omega.$
- e) $V = -300 \text{ mV e } R = 1 \text{ k}\Omega.$
- f) V = -30 V e $R = 1 \text{ k}\Omega$.
- g) $V = -30 \text{ V e } R = 10 \text{ k}\Omega.$

Dica: $V = RI_d + v_d$.

E 3.2.8. Obtenha os valores de I_d no problema 3.2.7. Lembre que existem duas expressões disponíveis:

$$I_d = I_R \left(\exp\left(\frac{v_d}{v_t}\right) - 1 \right)$$

е

$$I_d = \frac{v - v_d}{R}$$

Faça o estudo da propagação do erro e decida qual a melhor expressão em cada caso.

3.3 Iteração de Ponto Fixo

Nesta seção, discutimos a abordagem da **iteração do ponto fixo** para a solução numérica de equações de uma variável real. Observamos que sempre podemos reescrever uma equação da forma f(x) = 0 (problema de encontrar os zeros de uma função) em uma equação equivalente na forma g(x) = x (**problema de ponto fixo**). Um ponto $x = x^*$ tal que $g(x^*) = x^*$ é chamado de **ponto fixo** da função g(x). Geometricamente, um ponto fixo de uma função é um ponto de interseção entre a reta y = x com o gráfico da função (veja, Figura 3.3).

Exemplo 44. Resolver a equação $e^x = x+2$ é equivalente a resolver f(x) = 0, com $f(x) = e^x - x - 2$. Estes são equivalentes a resolver g(x) = x, com $g(x) = e^x - 2$. Ou seja, temos:

$$e^x = x + 2 \Leftrightarrow e^x - x - 2 = 0 \Leftrightarrow e^x - 2 = x$$

Dada uma função g(x), a **iteração do ponto fixo** consiste em

computar a seguinte sequência recursiva:

$$x^{(n+1)} = g(x^{(n)}), \quad n \ge 1,$$

onde $x^{(1)}$ é uma aproximação inicial do ponto fixo.

Exemplo 45 (Método babilônico). O método babilônico³ é de uma iteração de ponto fixo para extrair a raiz quadrada de um número positivo A, i.e. para resolver a equação $x^2 = A$. Seja r > 0 uma aproximação para \sqrt{A} . Temos três possibilidades:

•
$$r > \sqrt{A} \Longrightarrow \frac{A}{r} < \sqrt{A} \Longrightarrow \sqrt{A} \in \left(\frac{A}{r}, r\right)$$

•
$$r = \sqrt{A} \Longrightarrow \frac{A}{r} = \sqrt{A}$$

•
$$r < \sqrt{A} \Longrightarrow \frac{A}{r} > \sqrt{A} \Longrightarrow \sqrt{A} \in \left(r, \frac{A}{r}\right)$$

³Heron de Alexandria, 10 d.C. - 70 d.C., matemático grego.

Ou seja, uma aproximação melhor para \sqrt{A} está no intervalo entre r e $\frac{A}{r}$ que pode ser aproximada como:

$$x = \frac{r + \frac{A}{r}}{2}$$

Aplicando esse método repetidas vezes, podemos construir a iteração (de ponto fixo):

$$x^{(1)} = r$$
 $x^{(n+1)} = \frac{x^{(n)}}{2} + \frac{A}{2x^{(n)}}, \quad n = 1, 2, 3, \dots$

Por exemplo, para obter uma aproximação para $\sqrt{5}$, podemos iniciar com a aproximação inicial r=2 e A=5. Então, tomamos $x^{(1)}=2$

e daí seguem as aproximações:

$$x^{(2)} = \frac{2}{2} + \frac{2,5}{2} = 2,25$$

$$x^{(3)} = \frac{2,25}{2} + \frac{2,5}{2,25} = 2,2361111$$

$$x^{(4)} = \frac{2,2361111}{2} + \frac{2,5}{2,2361111} = 2,236068$$

$$x^{(5)} = \frac{2,236068}{2} + \frac{2,5}{2,236068} = 2,236068$$

O método babilônico sugere que a iteração do ponto fixo pode ser uma abordagem eficiente para a solução de equações. Ficam, entretanto, as seguintes perguntas:

- 1. Será que a iteração do ponto fixo é convergente?
- 2. Caso seja convergente, será que o limite $x^* = \lim_{n\to\infty} x^{(n)}$ é um ponto fixo?

3. Caso seja convergente, qual é a taxa de convergência?

A segunda pergunta é a mais fácil de ser respondida. No caso de g(x) ser contínua, se $x^{(n)} \to x^* \in \text{Dom}(g)$, então:

$$x^* = \lim_{n \to \infty} x^{(n)} = \lim_{n \to \infty} g(x^{(n-1)}) = g\left(\lim_{n \to \infty} x^{(n-1)}\right) = g(x^*).$$

Antes de respondermos as perguntas acima, vejamos mais um exemplo.

Exemplo 46. Considere o problema de encontrar o zero da função $f(x) = x \exp(x) - 10$. Uma maneira geral de construir um problema de ponto fixo equivalente é o seguinte:

$$f(x) = 0 \Rightarrow \alpha f(x) = 0 \Rightarrow x - \alpha f(x) = x,$$

para qualquer parâmetro $\alpha \neq 0.$ Consideremos, então, as seguintes duas funções:

$$g_1(x) = x - 0.5f(x)$$
 e $g_2(x) = x - 0.05f(x)$.

Notamos que o ponto fixo destas duas funções coincide com o zero de f(x). Construindo as iterações do ponto fixo:

$$x_1^{(n+1)} = g_1(x_1^{(n)})$$
 e $x_2^{(n+1)} = g_2(x_2^{(n)}),$

tomando $x_1^{(1)}=x_2^{(1)}=1,7$, obtemos os resultados apresentados na Tabela 3.2. Observamos que, enquanto, a iteração do ponto fixo com a função $g_1(x)$ ($\alpha=0,5$) parece divergir, a iteração com a função $g_2(x)$ ($\alpha=0,05$) parece convergir.

Afim de estudarmos a convergência da iteração do ponto fixo, apresentamos o Teorema do ponto fixo.

Tabela 3.2: Iterações do ponto fixo para o Exemplo 46.

n	$x_1^{(n)}$	$x_2^{(n)}$
1	1,700	1,700
2	2,047	1,735

2	2,047	1,735
3	-0,8812	1,743
4	4,3013	1,746
5	-149,4	1,746

3.3.1 Teorema do ponto fixo

O Teorema do ponto fixo nos fornece condições suficientes para a existência e unicidade do ponto fixo, bem como para a convergência das iterações do método.

Definição 6. Uma contração é uma função real $g:[a,b] \rightarrow [a,b]$ tal que:

$$|g(x) - g(y)| \le \beta |x - y|, \quad 0 \le \beta < 1.$$

- Observação 9. Seja $g:[a,b] \to [a,b], y=g(x)$.
 - Se g(x) é uma contração, então g(x) função contínua.
 - Se |g'(x)| < k, 0 < k < 1, para todo $x \in [a, b]$, então g(x) é uma contração.

Teorema 3 (Teorema do ponto fixo). Se $g:[a,b] \to [a,b]$ é uma contração, então existe um único ponto $x^* \in [a,b]$ tal que $g(x^*) = x^*$, i.e. x^* é ponto fixo de g(x). Além disso, a sequência $\{x^{(n)}\}_{n\in\mathbb{N}}$ dada por:

$$x^{(n+1)} = g(x^{(n)})$$

converge para x^* para qualquer $x^{(1)} \in [a, b]$.

Demonstração. Começamos demonstrando que existe pelo menos um ponto fixo. Para tal definimos a função f(x) = x - g(x) e observamos que:

$$f(a) = a - g(a) \le a - a = 0$$

e

$$f(b) = b - g(b) \ge b - b = 0$$

Se f(a) = a ou f(b) = b, então o ponto fixo existe. Caso contrário, as desigualdades são estritas e a f(x) muda de sinal no intervalo. Como esta função é contínua, pelo teorema de Bolzano 1, existe um ponto x^* no intervalo (a,b) tal que $f(x^*) = 0$, ou seja, $g(x^*) = x^*$. Isto mostra a existência.

Para provar que o ponto fixo é único, observamos que se x^* e x^{**} são pontos fixos, eles devem ser iguais, pois:

$$|x^* - x^{**}| = |g(x^*) - g(x^{**})| \le \beta |x^* - x^{**}|.$$

A desigual dade $|x^*-x^{**}| \leq \beta |x^*-x^{**}|$ com $0 \leq \beta < 1$ implica $|x^*-x^{**}|=0.$

Para demonstrar a convergência da sequência, observamos que:

$$|x^{(n+1)} - x^*| = |g(x^{(n)}) - x^*| = |g(x^{(n)}) - g(x^*)| \le \beta |x^{(n)} - x^*|.$$

Daí, temos:

$$|x^{(n)} - x^*| \le \beta |x^{(n-1)} - x^*| \le \beta^2 |x^{(n-2)} - x^*| \le \dots \le \beta^n |x^{(0)} - x^*|.$$

Portanto, como $0 \le \beta < 1$, temos:

$$\lim_{n \to \infty} |x^{(n)} - x^*| = 0,$$

ou seja, $x^{(n)} \to x^*$ quando $n \to \infty$.

Exemplo 47. Mostre que o Teorema do ponto fixo se aplica a função $g(x) = \cos(x)$ no intervalo [1/2,1], i.e. que a iteração do ponto fixo converge para a solução da equação $\cos x = x$.

Solução. Basta mostrarmos que:

- a) $g([1/2,1]) \subseteq [1/2,1];$
- b) $|g'(x)| < \beta$, $0 < \beta < 1$, $\forall x \in [1/2, 1]$.

Para provar a), observamos que g(x) é decrescente no intervalo, pelo que temos:

$$0.54 < \cos(1) \le \cos(x) \le \cos(1/2) < 0.88$$

Como $[0,54, 0,88] \subseteq [0,5, 1]$, temos o item a). Para provar o item b), observamos que:

$$g'(x) = -\sin(x).$$

Da mesma forma, temos a estimativa:

$$-0.85 < -\sin(1) \le -\sin(x) \le -\sin(1/2) < -0.47.$$

Assim, |g'(x)| < 0.85 temos a desigualdade com $\beta = 0.85 < 1$. A Tabela 3.3 apresenta o comportamento numérico da iteração do ponto fixo:

$$x^{(1)} = 0.7$$

 $x^{(n+1)} = \cos(x^{(n)}), \quad n \ge 1.$

n	$x^{(n)}$
1	0,700
2	0,765
3	0,721
4	0,751
5	0,731
6	0,744
7	0,735

Tabela 3.3: Iteração do ponto fixo para o Exemplo 47.

3.3.2 Teste de convergência

Seja g:[a,b] uma função $C^0[a,b]$ e $x^*\in(a,b)$ um ponto fixo de g. Então x^* é dito estável se existe uma região $(x^*-\delta,x^*+\delta)$ chamada bacia de atração tal que $x^{(n+1)}=g(x^{(n)})$ é convergente sempre que $x^{(0)}\in(x^*-\delta,x^*+\delta)$.

Proposição 2 (Teste de convergência). Se $g \in C^1[a,b]$ e $|g'(x^*)| < 1$, então x^* é estável. Se $|g'(x^*)| > 1$ é instável e o teste é inconclusivo quando $|g'(x^*)| = 1$.

Exemplo 48. No Exemplo 46 observamos que a função $g_1(x)$ nos forneceu uma iteração divergente, enquanto que a função $g_2(x)$ forneceu uma iteração convergente (veja a Figura 3.4. A razão destes comportamentos é explicada pelo teste da convergência. Com efeito, sabemos que o ponto fixo destas funções está no intervalo [1,6,1,8] e temos:

$$|g_1'(x)| = |1 - 0.5(x+1)e^x| > 4.8, \quad \forall x \in [1.6, 1.8],$$

enquanto:

$$|g_2'(x)| = |1 - 0.05(x+1)e^x| < 0.962, \quad \forall x \in [1.6, 1.8].$$

3.3.3 Estabilidade e convergência

A fim de compreendermos melhor os conceitos de estabilidade e convergência, considere uma função $\Phi(x)$ com um ponto fixo $x^* = g(x^*)$ e analisemos o seguinte processo iterativo:

$$x^{(n+1)} = g\left(x^{(n)}\right)$$
$$x^{(0)} = x$$

Vamos supor que a função g(x) pode ser aproximada por seu polinômio de Taylor em torno do ponto fixo:

$$g(x) = g(x^*) + (x - x^*)g'(x^*) + O\left((x - x^*)^2\right), n \ge 0$$

$$= x^* + (x - x^*)g'(x^*) + O\left((x - x^*)^2\right)$$

$$\approx x^* + (x - x^*)g'(x^*)$$

Substituindo na relação de recorrência, temos

$$x^{(n+1)} = g\left(x^{(n)}\right) \approx x^* + (x^{(n)} - x^*)g'(x^*)$$

Ou seja:

$$(x^{(n+1)} - x^*) \approx (x^{(n)} - x^*)g'(x^*)$$

Tomando módulos, temos:

$$\underbrace{\left| \underline{x^{(n+1)} - x^*} \right|}_{\epsilon_{n+1}} \approx \underbrace{\left| \underline{x^{(n)} - x^*} \right|}_{\epsilon_n} \left| g'(x^*) \right|,$$

onde
$$\epsilon_n = |x^{(n)} - x^*|$$
.

Observação 10. A análise acima, concluímos:

- Se $|g'(x^*)| < 1$, então, a distância de $x^{(n)}$ até o ponto fixo x^* está diminuindo a cada passo.
- Se $|g'(x^*)| > 1$, então, a distância de $x^{(n)}$ até o ponto fixo x^* está aumentando a cada passo.
- Se $|g'(x^*)| = 1$, então, nossa aproximação de primeiro ordem não é suficiente para compreender o comportamento da sequência.

3.3.4 Erro absoluto e tolerância

Na prática, quando se aplica uma iteração como esta, não se conhece de antemão o valor do ponto fixo x^* . Assim, o erro $\epsilon_n = \left| x^{(n)} - x^* \right|$ precisa ser estimado com base nos valores calculados $x^{(n)}$. Uma abordagem frequente é analisar a evolução da diferença entre dois elementos da sequência:

$$\Delta_n = \left| x^{(n+1)} - x^{(n)} \right|$$

A pergunta natural é: Será que o erro $\epsilon_n = \left| x^{(n)} - x^* \right|$ é pequeno quando $\Delta_n = \left| x^{(n+1)} - x^{(n)} \right|$ for pequeno?

Para responder a esta pergunta, observamos que

$$x^* = \lim_{n \to \infty} x^{(n)}$$

 $x^* - x^{(N)} = (x^{(N+1)} - x^{(N)}) + (x^{(N+2)} - x^{(N+1)}) + (x^{(N+3)} - x^{(N+1)})$

portanto:

 $x^{(n+1)} \approx x^* + (x^{(n)} - x^*)q'(x^*)$ $x^{(n)} \approx x^* + (x^{(n-1)} - x^*)q'(x^*)$

Usamos também as expressões:

 $= \sum_{k=0}^{\infty} \left(x^{(N+k+1)} - x^{(N+k)} \right)$

$$x^{(n+1)} - x^{(n)} \approx (x^{(n)} - x^{(n-1)})g'(x^*)$$

Portanto:

$$x^{(N+k+1)} - x^{(N+k)} \approx (x^{(N+1)} - x^{(N)}) (g'(x^*))^k$$

E temos:

$$x^* - x^{(N)} = \sum_{k=0}^{\infty} \left(x^{(N+k+1)} - x^{(N+k)} \right)$$

$$\approx \sum_{k=0}^{\infty} \left(x^{(N+1)} - x^{(N)} \right) \left(g'(x^*) \right)^k$$

$$= \left(x^{(N+1)} - x^{(N)} \right) \frac{1}{1 - g'(x^*)}, \quad |g'(x^*)| < 1$$

Tomando módulo, temos:

$$\left| x^* - x^{(N)} \right| \approx \left| x^{(N+1)} - x^{(N)} \right| \frac{1}{1 - g'(x^*)}$$

$$\epsilon_N \approx \frac{\Delta_N}{1 - g'(x^*)}$$

Observação 11. Tendo em mente a relação $x^{(n+1)}-x^{(n)}\approx (x^{(n)}-x^{(n-1)})g'(x^*)$, concluímos:

- Quando $g'(x^*) < 0$, o esquema é alternante, isto é, o sinal do erro se altera a cada passo. O erro ϵ_N pode ser estimado diretamente da diferença Δ_N , pois o denominador $1 g'(x^*) > 1$.
- Quando $0 < g'(x^*) < 1$, o esquema é monótono e $\frac{1}{1-g'(x^*)} > 1$, pelo que o erro ϵ_N é maior que a diferença Δ_N . A relação será tão mais importante quando mais próximo da unidade for $g'(x^*)$, ou seja, quando mais lenta for a convergência. Para estimar o erro em função da diferença Δ_N , observamos que $g'(x^*) \approx \frac{x^{(n+1)}-x^{(n)}}{x^{(n)}-x^{(n-1)}}$ e

$$|g'(x^*)| \approx \frac{\Delta_n}{\Delta_{n-1}}$$

e portanto

3.3.5 Exercícios

E 3.3.1. Resolver a equação $e^x = x + 2$ é equivalente a calcular os pontos fixos da função $g(x) = e^x + 2$ (veja o Exemplo 44). Use a iteração do ponto fixo $x^{(n+1)} = g(x^n)$ com $x^{(1)} = -1,8$ para obter uma aproximação de uma das soluções da equação dada com 8 dígitos significativos.

E 3.3.2. Mostre que a equação:

$$\cos(x) = x$$

possui uma única solução no intervalo [0,1]. Use a iteração do ponto fixo e encontre uma aproximação para esta solução com 4 dígitos significativos.

E 3.3.3. Mostre que a equação $xe^x = 10$ é equivalente às seguintes equações:

$$x = \ln\left(\frac{10}{x}\right)$$
 e $x = 10e^{-x}$.

Destas, considere as seguintes iterações de ponto fixo:

a)
$$x^{(n+1)} = \ln\left(\frac{10}{x^{(n)}}\right)$$

b)
$$x^{(n+1)} = 10e^{-x^{(n)}}$$

Tomando $x^{(1)} = 1$, verifique se estas sequências são convergentes.

 ${\bf E}$ ${\bf 3.3.4.}$ Verifique (analiticamente) que a única solução real da equação:

$$xe^x = 10$$

é ponto fixo das seguintes funções:

a)
$$g(x) = \ln\left(\frac{10}{x}\right)$$

b)
$$g(x) = x - \frac{xe^x - 10}{15}$$

c)
$$g(x) = x - \frac{xe^x - 10}{10 + e^x}$$

Implemente o processo iterativo $x^{(n+1)}=g(x^{(n)})$ para $n\geq 0$ e compare o comportamento. Discuta os resultados com base na teoria estudada.

 ${\bf E}$ ${\bf 3.3.5.}$ Verifique (analiticamente) que a única solução real da equação:

$$\cos(x) = x$$

é ponto fixo das seguintes funções:

- a) $g(x) = \cos(x)$
- b) $g(x) = 0.4x + 0.6\cos(x)$
- c) $g(x) = x + \frac{\cos(x) x}{1 + \sin(x)}$

Implemente o processo iterativo $x^{(n+1)}=g(x^{(n)})$ para $n\geq 0$ e compare o comportamento. Discuta os resultados com base na teoria estudada. ${\bf E}$ 3.3.6. Encontre a solução de cada equação com erro absoluto inferior a $10^{-6}.$

- a) $e^x = x + 2$ no intervalo (-2,0).
- b) $x^3 + 5x^2 12 = 0$ no intervalo (1,2).
 - c) $\sqrt{x} = \cos(x)$ no intervalo (0,1).

 ${\bf E}$ 3.3.7. Encontre numericamente as três primeiras raízes positivas da equação dada por:

$$\cos(x) = \frac{x}{10 + x^2}$$

com erro absoluto inferior a 10^{-6} .

E 3.3.8. Calcule uma equação da reta tangente a curva $y = e^{-(x-1)^2}$ que passa pelo ponto (3,1/2).

E 3.3.9. Resolva numericamente a inequação:

$$e^{-x^2} < 2x$$

E 3.3.10. Considere os seguintes processos iterativos:

$$a \begin{cases} x^{(n+1)} = \cos(x^{(n)}) \\ x^{(1)} = .5 \end{cases}$$

$$e \qquad (3.1)$$

$$b \begin{cases} x^{(n+1)} = .4x^{(n)} + .6\cos(x^{(n)}) \\ x^{(1)} = .5 \end{cases}$$

Use o teorema do ponto fixo para verificar que cada um desses processos converge para a solução da equação x^* de $\cos(x) = x$. Observe o comportamento numérico dessas sequências. Qual estabiliza mais rápido com cinco casas decimais? Discuta.

Dica: Verifique que $\cos([0.5,1]) \subseteq [0.5,1]$ e depois a mesma identidade para a função $f(x) = .4x + .6\cos(x)$.

E 3.3.11. Use o teorema do ponto fixo aplicado a um intervalo adequado para mostrar que a função $g(x) = \ln(100 - x)$ possui um ponto fixo estável.

E 3.3.12. Na hidráulica, o fator de atrito de Darcy é dado pela implicitamente pela equação de Colebrook-White:

$$\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{\varepsilon}{14.8R_h} + \frac{2.51}{Re\sqrt{f}}\right)$$

onde f é o fator de atrito, ε é a rugosidade do tubo em metros, R_h é o raio hidráulico em metros e Re é o número de Reynolds. Considere $\varepsilon=2mm,\ R_h=5cm$ e Re=10000 e obtenha o valor de f pela iteração:

$$x^{(n+1)} = -2\log_{10}\left(\frac{\varepsilon}{14.8R_h} + \frac{2.51x^{(n)}}{Re}\right)$$

 ${\bf E}$ ${\bf 3.3.13.}~$ Encontre uma solução aproximada para equação algébrica

$$180 - 100x = 0.052 \sinh^{-1}(10^{13}x)$$

com erro absoluto inferior a 10^{-3} usando um método iterativo. Estime o erro associado ao valor de $v = 180-100x = 0.052 \sinh^{-1}(10^{13}x)$

usando cada uma dessas expressões. Discuta sucintamente o resultado obtido. Dica: Este caso é semelhante ao problema 3.2.7.

E 3.3.14. Considere que x_n satisfaz a seguinte relação de recorrência:

$$x_{n+1} = x_n - \beta \left(x_n - x^* \right)$$

onde β e x^* são constantes. Prove que

$$x_n - x^* = (1 - \beta)^{n-1}(x_1 - x^*).$$

Conclua que $x_n \to x^*$ quando $|1 - \beta| < 1$.

E 3.3.15. Considere o seguinte esquema iterativo:

$$\begin{cases} x^{(n+1)} = x_n + q^n \\ x^{(0)} = 0 \end{cases}$$

onde $q = 1 - 10^{-6}$.

a) Calcule o limite

$$x_{\infty} = \lim_{n \to \infty} x^{(n)}$$

analiticamente.

b) Considere que o problema de obter o limite da sequência numericamente usando como critério de parada que $|x^{(n+1)} - x^{(n)}| < 10^{-5}$. Qual o valor é produzido pelo esquema numérico? Qual o desvio entre o valor obtido pelo esquema numérico e o valor do limite obtido no item a? Discuta. (Dica: Você não deve implementar o esquema iterativo, obtendo o valor de $x^{(n)}$ analiticamente)

c) Qual deve ser a tolerância especificada para obter o resultado com erro relativo inferior a 10^{-2} ?

E 3.3.16. Considere o seguinte esquema iterativo:

$$x^{(n+1)} = x^{(n)} - [x^{(n)}]^3, x^{(n)} > 0$$

com $x^{(0)} = 10^{-2}$. Prove que $\{x^{(n)}\}$ é sequência de número reais positivos convergindo para zero. Verifique que são necessários mais de mil passos para que $x^{(n)}$ se torne menor que $0.9x^{(0)}$.

E 3.3.17.

a) Use o teorema do ponto fixo para mostrar que a função $g(x) = 1 - \sin(x)$ possui um único ponto fixo estável o intervalo $[\frac{1}{10}, 1]$. Construa um método iterativo $x^{(n+1)} = g(x^{(n)})$ para encontrar esse ponto fixo. Use o Scilab para encontrar o valor numérico do ponto fixo.

b) Verifique que função $\psi(x) = \frac{1}{2} [x + 1 - \sin(x)]$ possui um ponto fixo x^* que também é o ponto fixo da função g do item a. Use o Scilab para encontrar o valor numérico do ponto fixo através da iteração $x^{(n+1)} = \psi(x^{(n)})$. Qual método é mais rápido?

E 3.3.18. (Esquemas oscilantes)

a) Considere a função g(x) e função composta $\psi(x) = g \circ g = g(g(x))$. Verifique todo ponto fixo de g também é ponto fixo de ψ .

b) Considere a função

$$q(x) = 10 \exp(-x)$$

e função composta $\psi(x)=g\circ g=g\left(g(x)\right)$. Mostre que ψ possui dois pontos fixos que não são pontos fixos de g.

c) No problema anterior, o que acontece quando o processo iterativo $x^{(n+1)} = g(x^{(n)})$ é inicializado com um ponto fixo de ψ que não é ponto fixo de g?

E 3.3.19. Mostre que se f(x) possui uma raiz x^* então a x^* é um ponto fixo de $\phi(x) = x + \gamma(x) f(x)$. Encontre uma condição em $\gamma(x)$ para que o ponto fixo x^* de ϕ seja estável. Encontre uma condição em $\gamma(x)$ para que $\phi'(x^*) = 0$.

 ${\bf E}$ 3.3.20. Considere que $x^{(n)}$ satisfaz a seguinte relação de recorrência:

$$x^{(n+1)} = x^{(n)} - \gamma f(x^{(n)})$$

onde γ é uma constante. Suponha que f(x) possui um zero em x^* . Aproxime a função f(x) em torno de x^* por

$$f(x) = f(x^*) + f'(x^*)(x - x^*) + O\left((x - x^*)^2\right).$$

Em vista do problema anterior, qual valor de γ você escolheria para que a sequência $x^{(n)}$ convirja rapidamente para x^* .

E 3.3.21. Considere o problema da questão 3.2.7 e dois seguintes

esquemas iterativos.

$$A \begin{cases} I^{(n+1)} = \frac{1}{R} \left[V - v_t \ln \left(1 + \frac{I^{(n)}}{I_R} \right) \right], n > 0 \\ I^{(0)} = 0 \end{cases}$$

$$e$$

$$B \begin{cases} I^{(n+1)} = I_R \left[\exp \left(\frac{V - RI^{(n)}}{v_t} \right) - 1 \right], n > 0 \\ I^{(0)} = 0 \end{cases}$$

Verifique numericamente que apenas o processo A é convergente para a, b e c; enquanto apenas o processo B é convergente para os outros itens.

3.4 Método de Newton-Raphson

Nesta seção, apresentamos o **método de Newton-Raphson**⁴⁵ para calcular o zero de funções reais de uma variável real.

Assumimos que x^* é um zero de uma dada função f(x) continuamente diferenciável, i.e. $f(x^*)=0$. Afim de usar a iteração do ponto fixo, observamos que, equivalentemente, x^* é um ponto fixo da função:

$$g(x) = x + \alpha(x)f(x), \quad \alpha(x) \neq 0,$$

onde $\alpha(x)$ é uma função arbitrária que queremos escolher de forma que a iteração do ponto fixo tenha ótima taxa de convergência.

Do Teorema do ponto fixo temos que a taxa de convergência é dada em função do valor absoluto da derivada de g(x). Calculando a derivada temos:

$$g'(x) = 1 + \alpha(x)f'(x) + \alpha'(x)f(x).$$

⁴Joseph Raphson, 1648 - 1715, matemático inglês.

⁵Também chamado apenas de método de Newton.

No ponto $x = x^*$, temos: $q'(x^*) = 1 + \alpha(x^*) f'(x^*) + \alpha'(x^*) f(x^*).$

Como
$$f(x^*) = 0$$
, temos:

$$g'(x^*) = 1 + \alpha(x^*)f'(x^*).$$

Sabemos que o processo iterativo converge tão mais rápido quanto menor for |g'(x)| nas vizinhanças de x^* . Isto nos leva a escolher:

 $q'(x^*) = 0$.

$$\alpha(x^*) = -\frac{1}{f'(x^*)},$$

e, então, temos:

se
$$f'(x^*) \neq 0$$
.

A discussão acima nos motiva a introduzir o método de Newton, cujas iterações são dada por:

$$x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^n)}, \quad n \ge 1,$$

sendo $x^{(1)}$ uma aproximação inicial dada.

3.4.1 Interpretação geométrica

Seja dada uma função f(x) conforme na Figura 3.5. Para tanto, escolhemos uma aproximação inicial $x^{(1)}$ e computamos:

$$x^{(2)} = x^{(1)} - \frac{f(x^{(1)})}{f'(x^{(1)})}.$$

Geometricamente, o ponto $x^{(2)}$ é a interseção da reta tangente ao gráfico da função f(x) no ponto $x=x^{(1)}$ com o eixo das abscissas. Com efeito, a equação desta reta é:

$$y = f'(x^{(1)})(x - x^{(1)}) + f(x^{(1)}).$$

Assim, a interseção desta reta com o eixo das abscissas ocorre quando (y=0):

$$f'(x^{(1)})(x - x^{(1)}) + f(x^{(1)}) = 0 \Rightarrow x = x^{(1)} - \frac{f(x^{(1)})}{f'(x^{(1)})}.$$

Ou seja, dado $x^{(n)}$ a próxima aproximação $x^{(n+1)}$ é o ponto de interseção entre o eixo das abscissas e a reta tangente ao gráfico da função no ponto $x=x^{(n)}$. Observe a Figura 3.5.

3.4.2 Análise de convergência

Seja f(x) um função com derivadas primeira e segunda contínuas tal que $f(x^*) = 0$ e $f'(x^*) \neq 0$. Seja também a função g(x) definida como:

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

Expandimos em série de Taylor em torno de $x = x^*$, obtemos:

$$g(x) = g(x^*) + g'(x^*)(x - x^*) + \frac{g''(x^*)}{2}(x - x^*)^2 + O\left((x - x^*)^3\right).$$

Observamos que:

$$g(x^*) = x^*$$

$$g'(x^*) = 1 - \frac{f'(x^*)f'(x^*) - f(x^*)f''(x^*)}{(f'(x^*))^2} = 0$$

Portanto:

$$g(x) = x^* + \frac{g''(x^*)}{2}(x - x^*)^2 + O((x - x^*)^3)$$

Com isso, temos:

$$x^{(n+1)} = g(x^{(n)}) = x^* + \frac{g''(x^*)}{2}(x^{(n)} - x^*)^2 + O\left((x - x^*)^3\right),$$

ou seja:

$$\left| x^{(n+1)} - x^* \right| \le C \left| x^{(n)} - x^* \right|^2,$$

com constante $C = |g''(x^*)/2|$. Isto mostra que o método de Newton tem **taxa de convergência quadrática**. Mais precisamente, temos o seguinte teorema.

Teorema 4 (Método de Newton). Sejam $f \in C^2([a,b])$ com $x^* \in (a, b) \ tal \ que \ f(x^*) = 0 \ e$:

$$m := \min_{x \in [a,b]} |f'(x)| > 0 \quad e \quad M := \max_{x \in [a,b]} |f''(x)|.$$

Escolhendo $\rho > 0$ tal que:

$$q := \frac{M}{2m}\rho < 1,$$

definimos a bacia de atração do método de Newton pelo con*junto:*

$$K_{\rho}(x^*) := \{x \in \mathbb{R}; \ |x - x^*| \le \rho\} \subset [a, b].$$

Então, para qualquer $x^{(1)} \in K_{\rho}(x^*)$ a iteração do método de

Então, para qualquer $x^{(1)} \in K_{\rho}(x^*)$ a iteração do método de *Newton:*

$$x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(n)})},$$
fornece uma sequência $x^{(n)}$ que converge para x^* , i.e. $x^{(n)} \to x^*$

Demonstração. Para $n \in \mathbb{N}, n \geq 2$, temos:

(3.2) Agora, para estimar o lado direito desta equação, usamos o polinômio de Taylor de grau 1 da função
$$f(x)$$
 em torno de $x = x^{(n)}$, i.e.:

 $x^{n+1} - x^* = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(n)})} - x^* = -\frac{1}{f(x^{(n)})} \left[f(x^{(n)}) + (x^* - x^{(n)}) f'(x^{(n)}) \right]$

 $f(x^*) = f(x^{(n)}) + (x^* - x^{(n)})f'(x^{(n)}) + \int_{-\infty}^{x^*} f''(t)(x^* - t) dt.$ Pela mudança de variável $t = x^{(n)} + s(x^{(n)} - x^*)$, observamos que o

resto deste polinômio de Taylor na forma integral é igual a: $R(x^*, x^{(n)}) := (x^* - x^{(n)})^2 \int_0^1 f'' \left(x^{(n)} + s(x^* - x^{(n)}) \right) (1 - s) \, ds.$

Again de este de garande devivade de
$$f(x)$$
 temes

Assim, da cota da segunda derivada de f(x), temos:

$$|R(x^*, x^{(n)})| \le M|x^* - x^{(n)}|^2 \int_0^1 (1-s) \, ds = \frac{M}{2}|x^* - x^{(n)}|^2.$$
 (3.3)

Se $x^{(n)} \in K_{\rho}(x^*)$, então de (3.2) e (3.3) temos:

Isto mostra que se
$$x^{(n)} \in K_{\rho}(x^*)$$
, então $x^{(n+1)} \in K_{\rho}(x^*)$, i.e. $x^{(n)} \in K_{\rho}(x^*)$ para todo $n \in \mathbb{R}$

(3.4)

 $K_o(x^*)$ para todo $n \in \mathbb{R}$.

Agora, obtemos a estimativa a priori de (3.4.2), pois:

$$|x^{(n)} - x^*| \le \frac{2m}{M} \left(\frac{M}{2m} |x^{(n-1)} - x^*| \right)^2 \le \dots \le \frac{2m}{M} \left(\frac{M}{2m} |x^{(1)} - x^*| \right)^{2^{n-1}}$$

 $|x^{(n+1)} - x^*| \le \frac{M}{2m} |x^{(n)} - x^*|^2 \le \frac{M}{2m} \rho^2 < \rho.$

Logo:

$$|x^{(n)} - x^*| \le \frac{2m}{M} q^{2^{n-1}},$$

donde também vemos que $x^{(n)} \to x^*$ quando $n \to \infty$, pois q < 1. Por fim, para provarmos a estimativa a posteriori tomamos a seguinte expansão em polinômio de Taylor:

$$f(x^{(n)}) = f(x^{(n-1)}) + (x^{(n)} - x^{(n-1)})f'(x^{(n-1)}) + R(x^{(n)}, x^{(n-1)}).$$

Aqui, temos:

$$f(x^{(n-1)}) + (x^{(n)} - x^{(n-1)})f'(x^{(n-1)}) = 0$$

e, então, conforme acima:

$$|f(x^{(n)})| = |R(x^{(n)}), x^{(n-1)}| \le \frac{M}{2} |x^{(n)} - x^{(n-1)}|^2.$$

Com isso e do Teorema do valor médio, concluímos:

$$|x^{(n)} - x^*| \le \frac{1}{m} |f(x^{(n)}) - f(x^*)| \le \frac{M}{2m} |x^{(n)} - x^{(n-1)}|^2.$$

Exemplo 49. Estime o raio ρ da bacia de atração $K_{\rho}(x^*)$ para a função $f(x) = \cos(x) - x$ restrita ao intervalo $[0, \pi/2]$.

Solução. O raio da bacia de atração é tal que:

$$\rho < \frac{2m}{M}$$

ximo tomados em um intervalo [a, b] que contenha o zero da função f(x). Aqui, por exemplo, podemos tomar $[a, b] = [0, \pi/2]$. Como, neste caso, $f'(x) = -\sin(x) - 1$, temos que m = 1. Também, como

onde $m := \min |f'(x)| \in M := \max |f''(x)|$ com o mínimo e o má-

 $f''(x) = -\cos x$, temos M = 1. Assim, concluímos que $\rho < 2$ (lembrando que $K_{\rho}(x^*) \subset [0, \pi/2]$). Ou seja, neste caso as iterações de Newton convergem para o zero de f(x) para qualquer escolha da

aproximação inicial $x^{(1)} \in [0, \pi/2]$.

3.4.3 Exercícios

 ${\bf E}$ ${\bf 3.4.1.}$ Considere o problema de calcular as soluções positivas da equação:

$$tg(x) = 2x^2.$$

- a) Use o método gráfico para isolar as duas primeiras raízes positivas em pequenos intervalos. Use a teoria estudada em aula para argumentar quanto à existência e unicidade das raízes dentro intervalos escolhidos.
- b) Calcule o número de iterações necessárias para que o método da bisseção aproxime cada uma das raízes com erro absoluto inferior a 10^{-8} . Calcule as raízes por este método usando este número de passos.
- c) Calcule cada uma das raízes pelo método de Newton com oito dígitos significativos e discuta a convergência comparando com o item b).

Obs: Alguns alunos encontraram como solução $x_1 \approx 1,5707963$ e $x_2 \approx 4,7123890$. O que eles fizeram de errado?

E 3.4.2. Considere a equação

$$e^{-x^2} = x$$

trace o gráfico com auxílio do Scilab e verifique que ela possui uma raiz positiva. Encontre uma aproximação para esta razão pelo gráfico e use este valor para inicializar o método de Newton e obtenha uma aproximação para a raiz com 8 dígitos significativos. (Use o comando format('v',16) para alterar a visualização no Scilab.)

E 3.4.3. Isole e encontre as cinco primeiras raízes positivas da equação com 6 dígitos corretos através de traçado de gráfico e do método de Newton.

$$\cos(10x) = e^{-x}.$$

Dica: a primeira raiz positiva está no intervalo (0,0.02). Fique atento.

E 3.4.4. Encontre as raízes do polinômio $f(x) = x^4 - 4x^2 + 4$ através do método de Newton. O que você observa em relação ao erro obtido? Compare com a situação do problema 3.2.6.

E 3.4.5. Encontre as raízes reais do polinômio $f(x) = \frac{x^5}{100} + x^4 + 3x + 1$ isolando-as pelo método do gráfico e depois usando o método de Newton. Expresse a solução com 7 dígitos significativos.

E 3.4.6. Considere o método de Newton aplicado para encontrar a raiz de $f(x) = x^3 - 2x + 2$. O que acontece quando $x^{(0)} = 0$? Escolha um valor adequado para inicializar o método e obter a única raiz real desta equação.

E 3.4.7. Justifique a construção do processo iterativo do método de Newton através do conceito de estabilidade de ponto fixo e convergência do método da iteração. Dica: Considere os problemas 3.3.19 e 3.3.20.

E 3.4.8. Entenda a interpretação geométrica ao método de Newton. Encontre uma valor para iniciar o método de Newton aplicado ao problema $f(x) = xe^{-x} = 0$ tal que o esquema iterativo divirja.

E 3.4.9. Aplique o método de Newton à função $f(x) = \frac{1}{x} - u$ e construa um esquema computacional para calcular a inversa de u com base em operações de multiplicação e soma/subtração.

E 3.4.10. Aplique o método de Newton à função $f(x) = x^n - A$ e construa um esquema computacional para calcular $\sqrt[n]{A}$ para A > 0 com base em operações de multiplicação e soma/subtração.

E 3.4.11. Considere a função dada por

$$\psi(x) = \ln\left(15 - \ln(x)\right)$$

definida para x > 0

a) (1.5) Use o teorema do ponto fixo para provar que se x_0 pertence ao intervalo [1,3], então a sequência dada iterativamente

por

$$x^{(n+1)} = \psi(x^{(n)}), n \ge 0$$

converge para o único ponto fixo, x^* , de ψ . Construa a iteração $x^{(n+1)} = \psi(x^{(n)})$ e obtenha numericamente o valor do ponto fixo x^* . Expresse a resposta com 5 algarismos significativos corretos.

b) (1.0) Construa a iteração do método de Newton para encontrar x^* , explicitando a relação de recorrência e iniciando com $x_0 = 2$. Use o Scilab para obter a raiz e expresse a resposta com oito dígitos significativos corretos.

3.5 Método das secantes

O **método das secantes** é uma variação do método de Newton, evitando a necessidade de conhecer-se a derivada analítica de f(x). Dada uma função f(x), a ideia é aproximar sua derivada pela razão fundamental:

$$f'(x) \approx \frac{f(x) - f(x_0)}{x - x_0}, \quad x \approx x_0.$$

Mais precisamente, o método de Newton é uma iteração de ponto fixo da forma:

$$x^{(n+1)} = x^{(n)} - \alpha(x^{(n)})f(x^{(n)}), \quad n \ge 1,$$

onde $x^{(1)}$ é uma aproximação inicial dada e $\alpha(x^{(n)}) = 1/f'(x^{(n)})$. Usando a aproximação da derivada acima, com $x = x^{(n)}$ e $x_0 = x^{(n-1)}$, temos:

$$\alpha(x^{(n)}) = \frac{1}{f'(x^{(n)})} \approx \frac{x^{(n)} - x^{(n-1)}}{f(x^{(n)}) - f(x^{(n-1)})}.$$

Isto nos motiva a introduzir a **iteração do método das secantes** dada por:

$$x^{(n+1)} = x^{(n)} - f(x^{(n)}) \frac{x^{(n)} - x^{(n-1)}}{f(x^{(n)}) - f(x^{(n-1)})}, \quad n \ge 2.$$

Observe que para inicializarmos a iteração acima precisamos de duas aproximações iniciais, a saber, $x^{(1)}$ e $x^{(2)}$. Maneiras apropriadas de escolher estas aproximações podem ser inferidas da interpretação geométrica do método.

Exemplo 50. Encontre as raízes de $f(x) = \cos(x) - x$.

Solução. Da inspeção do gráfico das funções $y=\cos(x)$ e y=x, sabemos que esta equação possui uma raiz em torno de x=0.8. Iniciamos o método com $x_0=0.7$ e $x_1=0.8$.

$x^{(n-1)}$	$x^{(n)}$	m	$x^{(n+1)}$
		$\frac{f(0,8) - f(0,7)}{0,8 - 0,7} =$	$0.8 - \frac{f(0.8)}{-1.6813548} =$
0,7	0,8	-1,6813548	0,7385654
0,8	0,7385654	-1,6955107	0,7390784
0,7385654	0,7390784	-1,6734174	0,7390851
0,7390784	0,7390851	-1,6736095	0,7390851

3.5.1 Interpretação geométrica

Enquanto, o método de Newton está relacionado às retas tangentes ao gráfico da função objetivo f(x), o método das secantes, como o próprio nome indica, está relacionado às retas secantes. Sejam f(x) e as aproximações $x^{(1)}$ e $x^{(2)}$ do zero x^* desta função (veja Figura 3.6). A iteração do método das secantes fornece:

$$x^{(3)} = x^{(2)} - f(x^{(2)}) \frac{x^{(2)} - x^{(1)}}{f(x^{(2)}) - f(x^{(1)})}.$$

De fato, $x^{(3)}$ é o ponto de interseção da reta secante ao gráfico de f(x) pelos pontos $x^{(1)}$ e $x^{(2)}$ com o eixo das abscissas. Com efeito, a equação desta reta secante é:

$$y = \frac{f(x^{(2)}) - f(x^{(1)})}{x^{(2)} - x^{(1)}} (x - x^{(2)}) + f(x^{(2)}).$$

Esta reta intercepta o eixo das abscissas no ponto x tal que y = 0,

i.e.:

1.e.:
$$\frac{f(x^{(2)}) - f(x^{(1)})}{x^{(2)} - x^{(1)}} (x - x^{(2)}) + f(x^{(2)}) \Rightarrow x = x^{(2)} - f(x^{(2)}) \frac{x^{(2)} - x^{(1)}}{f(x^{(2)}) - f(x^{(1)})}$$

3.5.2 Análise de convergência

Uma análise assintótica semelhante aquela feita para o método de Newton nos indica que, para uma função f(x) duas vezes diferenciável, as iterações do método da secante satisfazem:

$$|x^{(n+1)} - x^*| \approx C|x^{(n)} - x^*||x^{(n-1)} - x^*|,$$

para aproximações iniciais suficientemente próximas de x^* , onde $f(x^*)=0$. Além disso, veremos que:

$$|x^{(n+1)} - x^*| \le C|x^{(n)} - x^*|^{1.6}$$

sob certas condições. Ou seja, o método das secantes tem **taxa de convergência superlinear**.

Teorema 5 (Método das secantes). Seja $f \in C^2([a,b])$ uma função com $x^* \in (a,b)$ tal que $f(x^*) = 0$. Sejam, também:

$$m := \min_{x \in [a,b]} |f'(x)| > 0$$
 e $M := \max_{x \in [a,b]} |f''(x)| < \infty$.

Além disso, seja $\rho > 0$ tal que:

$$q := \frac{M}{2m} \rho < 1, \quad K_{\rho}(x^*) := \{ x \in \mathbb{R}; \ |x - x^*| \le \rho \} \subset [a, b].$$

Então, para aproximações iniciais $x^{(1)}, x^{(2)} \in K_{\rho}(x^*)$, com $x^{(1)} \neq x^{(2)}$, temos que as iterações do método das secantes $x^{(n)} \in K_{\rho}(x^*)$, $n \geq 1$, $e x^{(n)} \rightarrow x^*$, quando $n \rightarrow \infty$. Além disso, vale a sequinte estimativa de convergência **a priori**:

$$|x^{(n)} - x^*| \le \frac{2m}{M} q^{\gamma_{n-1}}, \quad n \ge 1,$$

onde $\{\gamma_n\}_{n\in\mathbb{N}}$ é a sequência de Fibonacci^{ab}, bem como vale a estimativa **a posteriori**:

Demonstração. Sejam $n \in \mathbb{N}$, $n \ge 2$, e $x^{(n)}, x^{(n-1)} \in K_{\rho}(x^*)$, tal que $x^{(n)} \ne x^{(n-1)}$, $x^{(n)} \ne x^*$ e $x^{(n-1)} \ne x^*$. Seja, também:

$$g(x^{(n)},x^{(n-1)}) := x^{(n)} - f(x^{(n)}) \frac{x^{(n)} - x^{(n-1)}}{f(x^{(n)}) - f(x^{(n-1)})}.$$

Com isso, temos:

$$g(x^{(n)}, x^{(n-1)}) - x^* = x^{(n)} - f(x^{(n)}) \frac{x^{(n)} - x^{(n-1)}}{f(x^{(n)}) - f(x^{(n-1)})} - x^*$$

$$= \frac{x^{(n)} - x^{(n-1)}}{f(x^{(n)}) - f(x^{(n-1)})} \left\{ (x^{(n)} - x^*) \frac{f(x^{(n)}) - f(x^{(n-1)})}{x^{(n)} - x^{(n-1)}} - f(x^{(n)}) + \frac{f(x^{(n)}) - f(x^{(n-1)})}{x^{(n)} - x^{(n-1)}} - f(x^{(n)}) + \frac{f(x^{(n)}) - f(x^{(n)})}{x^{(n)} - x^{(n-1)}} - \frac{f(x^{(n)}) - f(x^{(n)})}{x^{(n)} - x^{(n)}} - \frac{f(x^{(n)}) - f(x^{(n)})}{x^{(n)}} - \frac{f(x^{(n)}) - f(x^{(n)})}{x^{(n)}} - \frac{f(x^{(n)})$$

Então, da cota assumida para primeira derivada de
$$f(x)$$
 e do Teorema do valor médio, temos:

 $|g(x^{(n)}, x^{(n-1)}) - x^*| \le \frac{|x^{(n)} - x^*|}{m} \left| \frac{f(x^{(n)}) - f(x^{(n-1)})}{x^{(n)} - x^{(n-1)}} - \frac{f(x^{(n)}) - f(x^{(n)})}{x^{(n)} - x^*} \right|$

Agora, iremos estimar este último termo a direita. Para tanto, começamos observando que da expansão em polinômio de Taylor de ordem 0 da função f(x) com resto na forma integral, temos:

$$\frac{f(x^{(n)}) - f(x^{(n-1)})}{x^{(n)} - x^{(n-1)}} = -\int_0^1 \frac{d}{dr} f(x^{(n)} + r(x^{(n-1)} - x^{(n)})) \frac{dr}{x^{(n)} - x^{(n-1)}}$$
$$= \int_0^1 f'(x^{(n)} + r(x^{(n-1)} - x^{(n)})) dr$$

De forma análogo, temos:

$$\frac{f(x^{(n)}) - f(x^*)}{r^{(n)} - r^*} = \int_0^1 f'(x^{(n)} + r(x^* - x^{(n)})) dr$$

Logo, temos:
$$f(x^{(n)}) - f(x^{(n-1)}) \qquad f(x^{(n)}) - f(x^*)$$

 $\frac{f(x^{(n)}) - f(x^{(n-1)})}{x^{(n)} - x^{(n-1)}} - \frac{f(x^{(n)}) - f(x^*)}{x^{(n)} - x^*} =$ (3.6)

 $\int_0^1 \left[f'(x^{(n)} + r(x^{(n-1)} - x^{(n)})) - f'(x^{(n)} + r(x^* - x^{(n)})) \right] dr.$

Agora, novamente temos: $f'(x^{(n)} + r(x^{(n-1)} - x^{(n)})) - f'(x^{(n)} + r(x^* - x^{(n)}))$

$$= \int_0^r \frac{d}{ds} f'(x^{(n)} + r(x^{(n-1)} - x^{(n)}) + s(x^* - x^{(n-1)})) ds$$

=
$$\int_0^r f''(x^{(n)} + r(x^{(n-1)} - x^{(n)}) + s(x^* - x^{(n-1)})) ds(x^* - x^{(n-1)}).$$

Então, retornando à Equação (3.6) e usando a assumida cota para a segunda derivada, obtemos:

 $\left| \frac{f(x^{(n)}) - f(x^{(n-1)})}{r^{(n)} - r^{(n-1)}} - \frac{f(x^{(n)}) - f(x^*)}{r^{(n)} - r^*} \right| \le \frac{M}{2} |x^{(n-1)} - x^*|.$

Agora, retornando à Equação (3.5), obtemos:

$$|g(x^{(n)}, x^{(n-1)}) - x^*| \le \frac{M}{2m} |x^{(n)} - x^*| |x^{(n-1)} - x^*| \le \frac{M}{2m} \rho^2 < \rho.$$

Portanto, concluímos que as iterações do método da secantes $x^{(n)}$ permanecem no conjunto $K_{\rho}(x^*)$, se começarem nele. Além disso,

temos demonstrado que:

$$|x^{(n+1)} - x^*| \le \frac{M}{2m} |x^{(n)} - x^*| |x^{(n-1)} - x^*|.$$

Com isso, temos:

$$\rho_n := \frac{M}{2m} |x^{(n)} - x^*| \Rightarrow \rho_{n+1} \le \rho_n \rho_{n-1}, \quad n \ge 2.$$

Como $\rho_1 \leq q$ e $\rho_2 \leq q$, temos $\rho_n \leq q^{\gamma_{n-1}}$, $n \geq 1$. Isto mostra a estimativa de convergência a priori:

$$|x^n - x^*| \le \frac{2m}{M} q^{\gamma_{n-1}}.$$

Além disso, como $\gamma_n \to \infty$ quando $n \to \infty$ e q < 1, temos que as iterações do método das secantes $x^{(n)} \to x^*$ quando $n \to \infty$. Por fim, mostramos a estimativa de convergência **a posteriori**. Para tanto, da cota assumida para a primeira derivada e do Teorema $|x^{(n)} - x^*| \le \frac{1}{m} |f(x^{(n)} - f(x^*))|$ $= \frac{1}{m} \left| f(x^{(n-1)}) + (x^{(n)} - x^{(n-1)}) \frac{f(x^{(n)}) - f(x^{(n-1)})}{x^{(n)} - x^{(n-1)}} \right|$ $= \frac{1}{m} \left| x^{(n)} - x^{(n-1)} \right| \left| \frac{f(x^{(n)}) - f(x^{(n-1)})}{x^{(n)} - x^{(n-1)}} + \frac{f(x^{(n-1)})}{r^{(n)} - r^{(n-1)}} \right|$

Agora, da iteração do método das secantes: $x^{(n)} = x^{(n-1)} - f(x^{(n-1)}) \frac{x^{(n-1)} - x^{(n-2)}}{f(x^{(n-1)}) - f(x^{(n-2)})},$

temos:

do valor médio, temos, para $n \geq 3$:

 $\frac{f(x^{(n-1)})}{x^{(n)} - x^{(n-1)}} = -\frac{f(x^{(n-1)}) - f(x^{(n-2)})}{x^{(n-1)} - x^{(n-2)}}.$

Logo:

 $|x^{(n)} - x^*| \le \frac{1}{m} |x^{(n)} - x^{(n-1)}| \left| \frac{f(x^{(n-1)}) - f(x^{(n)})}{x^{(n-1)} - x^{(n)}} - \frac{f(x^{(n-1)}) - f(x^{(n-1)})}{x^{(n-1)} - x^{(n-2)}} \right|$

Observamos que o último termo pode ser estimado como feito acima para o termo análogo na Inequação (3.5). Com isso, obtemos a estimativa desejada:

$$|x^{(n)} - x^*| \le \frac{M}{2m} |x^{(n)} - x^{(n-1)}| |x^{(n)} - x^{(n-2)}|.$$

Proposição 3 (Sequência de Fibonacci). A sequência de Fibonacci $\{\gamma_n\}_{n\in\mathbb{N}}$ é assintótica a $\gamma_n \sim \lambda_1^{n+1}/\sqrt{5}$ e:

$$\lim_{n \to \infty} \frac{\gamma_{n+1}}{\gamma_n} = \lambda_1,$$

onde $\lambda_1 = (1+\sqrt{5})/2 \approx 1{,}618$ é a porção áurea.

Demonstração. A sequência de Fibonacci $\{\gamma_n\}_{n\in\mathbb{N}}$ é definida por $\gamma_0=\gamma_1=1$ e $\gamma_{n+1}=\gamma_n+\gamma_{n-1},\ n\geq 1$. Logo, satisfaz a seguinte

equação de diferenças:

$$\gamma_{n+2} - \gamma_{n+1} - \gamma_n = 0, \quad n \in \mathbb{N}.$$

Tomando $\gamma_n = \lambda^n$, $\lambda \neq 0$ temos:

$$\lambda^n \left(\lambda^2 - \lambda - 1 \right) = 0 \Rightarrow \lambda^2 - \lambda - 1 = 0 \Rightarrow \lambda_{1,2} = \frac{1 \pm \sqrt{5}}{2}.$$

Portanto, $\gamma_n=c_1\lambda_1^n+c_2\lambda_2^n$. Como $\gamma_0=\gamma_1=1$, as constantes satisfazem:

$$c_1 + c_2 = 1$$

 $c_1 \lambda_1 + c_2 \lambda_2 = 1$ $\Rightarrow c_1 = \frac{1 + \sqrt{5}}{2\sqrt{5}}, \quad c_2 = -\frac{1 - \sqrt{5}}{2\sqrt{5}}.$

Ou seja, obtemos a seguinte forma explícita para os números de Fibonacci:

$$\gamma_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right].$$

Daí, segue imediatamente o enunciado.

Observação 12. Sob as hipóteses do Teorema 5 e da Proposição 3, temos:

 $\lim_{n \to \infty} \frac{|x^{(n+1)} - x^*|}{|x^{(n)} - x^*|^{\lambda_1}} \le \lim_{n \to \infty} \frac{M}{2m} |x^{(n)} - x^*|^{1 - \lambda_1} |x^{(n-1)} - x^*|$

$$\leq \lim_{n \to \infty} \left(\frac{2m}{M}\right)^{1-\lambda_1} q^{(2-\lambda_1)\lambda_1^n/\sqrt{5}} = 0.$$

Isto mostra que o método das secantes (nestas hipóteses) tem taxa de convergência superlinear ($\lambda_1 \approx 1.6$).

3.6 Critérios de parada

Quando usamos métodos iterativos precisamos determinar um critério de parada. A Tabela 3.4 indica critérios de parada usuais para os métodos que estudamos neste capítulo.

Observação 13. O erro na tabela sempre se refere ao erro absoluto esperado. Nos três últimos métodos, é comum que se exija como critério de parada que a condição seja satisfeita por alguns poucos passos consecutivos. Outros critérios podem ser usados. No métodos das secantes, deve-se ter o cuidado de evitar divisões por zero quando $x_{n+1}-x_n$ muito pequeno em relação à resolução do sistema de numeração.

3.6.1 Exercícios

 ${\bf E}$ 3.6.1. Refaça as questões 3.4.2, 3.4.3, 3.4.4 e 3.4.5, usando o método das secantes.

E 3.6.2. Dê uma interpretação geométrica ao método das secantes. Qual a vantagem do método das secantes sobre o método de Newton?

 ${\bf E}$ 3.6.3. Aplique o método das secantes para resolver a equação

$$e^{-x^2} = 2x$$

 ${\bf E}$ 3.6.4. Refaça o problema 3.2.7 usando o método de Newton e das secantes.

 ${\bf E}$ 3.6.5. Seja dada uma função f(x) duas vezes continuamente diferenciável. Faça uma análise assintótica para mostrar que as

iterações do método das secantes satisfazem:

$$|x^{(n+1)} - x^*| \approx C|x^{(n)} - x^*||x^{(n-1)} - x^*|,$$

para aproximações iniciais $x^{(1)}$ e $x^{(2)}$ suficientemente próximas de x^* , onde $f(x^*) = 0$.

3.7 Exercícios finais

E 3.7.1. A equação

$$\cos(\pi x) = e^{-2x}$$

tem infinitas raízes. Usando métodos numéricos encontre as primeiras raízes dessa equação. Verifique a j-ésima raiz (z_j) pode ser aproximada por j-1/2 para j grande. Use o método de Newton para encontrar uma aproximação melhor para z_j .

 ${\bf E}$ 3.7.2. A corrente elétrica, I, em Ampères em uma lâmpada em função da tensão elétrica, V, é dada por

$$I = \left(\frac{V}{150}\right)^{0.8}$$

Qual a potência da lâmpada quando ligada em série com uma resistência de valor R a uma fonte de 150V quando. (procure erro inferior a 1%)

- a) $R = 0\Omega$
- b) $R = 10\Omega$
- c) $R = 50\Omega$
- d) $R = 100\Omega$
- E) $R = 500\Omega$

E 3.7.3. (Bioquímica) A concentração sanguínea de um medicamente é modelado pela seguinte expressão

$$c(t) = Ate^{-\lambda t}$$

- onde t>0 é o tempo em minutos decorrido desde a administração da droga. A é a quantidade administrada em mg/ml e λ é a constante de tempo em min⁻¹. Responda:
 - a) Sendo $\lambda=1/3,$ em que instantes de tempo a concentração é metade do valor máximo. Calcule com precisão de segundos.

b) Sendo $\lambda=1/3$ e A=100mg/ml, durante quanto tempo a concentração permanece maior que 10mg/ml.

E 3.7.4. Considere o seguinte modelo para crescimento populacional em um país:

$$P(t) = A + Be^{\lambda t}.$$

onde t é dado em anos. Use t em anos e t=0 para 1960. Encontre os parâmetros $A,\ B$ e λ com base nos anos de 1960, 1970 e 1991 conforme tabela:

Ano	população	
1960	70992343	
1970	94508583	
1980	121150573	
1991	146917459	

Use esses parâmetros para calcular a população em 1980 e compare com o valor do censo.

 ${\bf E}$ 3.7.5. Uma boia esférica flutua na água. Sabendo que a boia tem 10ℓ de volume e 2Kg de massa. Calcule a altura da porção molhada da boia.

E 3.7.6. Uma boia cilíndrica tem secção transversal circular de raio 10cm e comprimento 2m e pesa 10Kg. Sabendo que a boia flutua sobre água com o eixo do cilindro na posição horizontal, calcule a altura da parte molhada da boia.

E 3.7.7. Encontre com 6 casas decimais o ponto da curva $y = \ln x$ mais próximo da origem.

E 3.7.8. Um computador é vendido pelo valor a vista de R\$2.000,00 ou em 1+15 prestações de R\$200,00. Calcule a taxa de juros associada à venda a prazo.

 ${\bf E}$ 3.7.9. O valor de R\$110.000,00 é financiado conforme a seguinte programa de pagamentos:

Mês	pagamento
1	20.000,00
2	20.000,00
3	20.000,00
4	19.000,00
5	18.000,00
6	17.000,00
7	16.000,00

Calcule a taxa de juros envolvida. A data do empréstimo é o mês zero.

 ${\bf E}$ 3.7.10. Depois de acionado um sistema de aquecedores, a temperatura em um forno evolui conforme a seguinte equação

$$T(t) = 500 - 800e^{-t} + 600e^{-t/3}.$$

onde T é a temperatura em Kelvin e t é tempo em horas.

- a) Obtenha analiticamente o valor de $\lim_{t\to\infty} T(t)$.
- b) Obtenha analiticamente o valor máximo de T(t) e o instante de tempo quando o máximo acontece
- c) Obtenha numericamente com precisão de minutos o tempo decorrido até que a temperatura passe pela primeira vez pelo valor de equilíbrio obtido no item a.
- c) Obtenha numericamente com precisão de minutos a duração do período durante o qual a temperatura permanece pelo menos 20% superior ao valor de equilíbrio.

E 3.7.11. Encontre os pontos onde a elipse que satisfaz $\frac{x^2}{3} + y^2 = 1$ intersepta a parábola $y = x^2 - 2$.

E 3.7.12. Encontre a área do maior retângulo que é possível inscrever entre a curva $e^{-x^2}(1 + \cos(x))$ e o eixo y = 0.

 ${\bf E}$ 3.7.13. Uma indústria consome energia elétrica de duas usinas fornecedoras. O custo de fornecimento em reais por hora como função da potência consumida em kW é dada pelas seguintes funções

$$C_1(x) = 500 + .27x + 4.1 \cdot 10^{-5}x^2 + 2.1 \cdot 10^{-7}x^3 + 4.2 \cdot 10^{-10}x^4$$

 $C_2(x) = 1000 + .22x + 6.3 \cdot 10^{-5}x^2 + 8.5 \cdot 10^{-7}x^3$

Onde $C_1(x)$ e $C_2(x)$ são os custos de fornecimento das usinas 1 e 2, respectivamente. Calcule o custo mínimo da energia elétrica quando a potência total consumida é 1500kW.

 $\bf E$ 3.7.14. A pressão de saturação (em bar) de um dado hidrocarboneto pelo ser modelada pela equação de Antoine:

$$\ln\left(P^{sat}\right) = A - \frac{B}{T+C}$$

onde T é a temperatura e $A,\,B$ e C são constantes dadas conforme a seguir:

Hidrocarboneto	A	В	С
N-pentano	9.2131	2477.07	-39.94
N-heptano	9.2535	2911.32	-56.51

a) Calcule a temperatura de bolha de uma mistura de N-pentano e N-heptano à pressão de 1.2bar quando as frações molares dos gases são $z_1 = z_2 = 0.5$. Para tal utilize a seguinte equação:

$$P = \sum_{i} z_{i} P_{i}^{sat}$$

b) Calcule a temperatura de orvalho de uma mistura de N-pentano e N-heptano à pressão de 1.2bar quando as frações molares dos gases são $z_1 = z_2 = 0.5$. Para tal utilize a seguinte equação:

$$\frac{1}{P} = \sum_{i} \frac{z_i}{P_i^{sat}}$$

E 3.7.15. Encontre os três primeiros pontos de mínimo da função

$$f(x) = e^{-x/11} + x\cos(2x)$$

para x > 0 com erro inferior a 10^{-7} .

Figura 3.3: Ponto fixo $g(x^*) = x^*$.

Figura 3.5: Interpretação do método de Newton.

Figura 3.6: Método das secantes.

Bisseção $ \begin{array}{c} \text{Linear} \\ (p=1) \end{array} $		$\epsilon_{n+1} = \frac{1}{2}\epsilon$	$\frac{b_n - a_n}{2} < \text{er}$	
Iteração linear	Linear $(p=1)$	$\epsilon_{n+1} \approx \phi'(x^*) \epsilon_n$	$\frac{\frac{ \Delta_n }{1 - \frac{\Delta_n}{\Delta_{n-1}}} < \text{er}}{\Delta_n < \Delta_{n-1}}$	
	Quadrática	1 f"(*)		

Tabela 3.4: Quadro comparativo.

Erro

Método

Convergência

 $\approx 1,618$

Critério de par

 $\epsilon_{n+1} pprox \frac{1}{2} \left| \frac{f'(x^*)}{f'(x^*)} \right| \varepsilon_n^2$ $|\Delta_n| < \text{erro}$ (p = 2)

Newton

$$\sqrt{5}+1$$
 $\sim |f''(x^*)|$

Secante
$$p = \frac{\sqrt{5} + 1}{2}$$
 $\varepsilon_{n+1} \approx \left| \frac{f''(x^*)}{f'(x^*)} \right| \varepsilon_n \varepsilon_{n-1}$ $|\Delta_n| < \varepsilon_n$

 $\approx M \varepsilon_n^{\phi}$

Capítulo 4

Solução de sistemas lineares

Muitos problemas da engenharia, física e matemática estão associados à solução de sistemas de equações lineares. Nesse capítulo, tratamos de técnicas numéricas empregadas para obter a solução desses sistemas. Iniciamos por uma rápida revisão do Método de eliminação gaussiana do ponto de vista computacional. No contexto

de análise da propagação dos erros de arredondamento, introduzimos o método de eliminação gaussiana com pivotamento parcial, bem como, apresentamos o conceito de condicionamento de um sistema linear. Então, passamos a discutir sobre técnicas iterativos, mais especificamente, sobre os métodos de Jacobi e Gauss-Seidel. Considere o sistema de equações lineares:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

onde m é o número de equações e n é o número de incógnitas. Este sistema pode ser escrito na forma matricial:

$$Ax = b$$

onde:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} e b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Salvo especificado ao contrário, assumiremos ao longo deste capítulo que a matriz dos coeficientes A é uma matriz real não-singular.

4.1 Eliminação gaussiana

Lembramos que algumas operações feitas nas linhas de um sistema não alteram a solução:

- 1. Multiplicação de um linha por um número.
- 2. Troca de uma linha por ela mesma somada a um múltiplo de outra.
- 3. Troca de duas linhas.

O processo que transforma um sistema em outro com mesma solução, mas que apresenta uma forma triangular é chamado eliminação gaussiana. A solução do sistema pode ser obtida fazendo substituição regressiva.

Exemplo 51 (Eliminação gaussiana sem pivotamento). Resolva o

sistema

$$x + y + z = 1$$
$$2x + y - z = 0$$
$$2x + 2y + z = 1$$

Solução. A matriz completa do sistema é escrita como

$$\begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 2 & 1 & -1 & | & 0 \\ 2 & 2 & 1 & | & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 0 & -1 & -3 & | & -2 \\ 0 & 0 & -1 & | & -1 \end{bmatrix}$$

Encontramos -z=-1, ou seja, z=1. Substituindo na segunda equação, temos -y-3z=-2, ou seja, y=-1 e finalmente x+y+z=1, resultando em x=1.

4.1.1 Eliminação gaussiana com pivotamento parcial

A eliminação gaussiana com **pivotamento parcial** consiste em fazer uma permutação de linhas de forma a escolher o maior pivô (em módulo) a cada passo.

Exemplo 52 (Eliminação gaussiana com pivotamento parcial). Resolva o sistema

$$x + y + z = 1$$

$$2x + y - z = 0$$

$$2x + 2z + z = 1$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & -1 & 0 \\ 2 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 2 & 1 & -1 & 0 \\ 1 & 1 & 1 & 1 \\ 2 & 2 & 1 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 2 & 1 & -1 & 0 \\ 0 & 1/2 & 3/2 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix} \\
\sim \begin{bmatrix} 2 & 1 & -1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 1/2 & 3/2 & 1 \end{bmatrix} \\
\sim \begin{bmatrix} 2 & 1 & -1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix} \\
\sim \begin{bmatrix} 2 & 1 & -1 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}$$

Encontramos 1/2z=1/2, ou seja, z=1. Substituímos na segunda equação e temos y+2z=1, ou seja, y=-1 e, finalmente 2x+y-z=0, resultando em x=1.

Exemplo 53. Resolva o sistema por eliminação gaussiana com pivotamento parcial.

$$\begin{bmatrix} 0 & 2 & 2 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ 9 \\ 6 \end{bmatrix}$$

Solução. Construímos a matriz completa:

$$\begin{bmatrix} 0 & 2 & 2 & 8 \\ 1 & 2 & 1 & 9 \\ 1 & 1 & 1 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 & 9 \\ 0 & 2 & 2 & 8 \\ 1 & 1 & 1 & 6 \end{bmatrix}$$

Exemplo 54 (Problema com elementos com grande diferença de escala).

$$\left[\begin{array}{cc} \varepsilon & 2 \\ 1 & \varepsilon \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} 4 \\ 3 \end{array}\right]$$

Executamos a eliminação gaussiana sem pivotamento parcial para $\varepsilon \neq 0$ e $|\varepsilon| << 1$:

$$\begin{bmatrix} \varepsilon & 2 & | & 4 \\ 1 & \varepsilon & | & 3 \end{bmatrix} \sim \begin{bmatrix} \varepsilon & 2 & | & 4 \\ 0 & \varepsilon - \frac{2}{\varepsilon} & | & 3 - \frac{4}{\varepsilon} \end{bmatrix}$$

Temos

$$y = \frac{3 - 4/\varepsilon}{\varepsilon - 2/\varepsilon}$$

е

$$x = \frac{4 - 2y}{\varepsilon}$$

Observe que a expressão obtida para y se aproximada de 2 quando ε é pequeno:

$$y = \frac{3 - 4/\varepsilon}{\varepsilon - 2/\varepsilon} = \frac{3\varepsilon - 4}{\varepsilon^2 - 2} \longrightarrow \frac{-4}{-2} = 2$$
, quando $\varepsilon \to 0$.

Já expressão obtida para x depende justamente da diferença 2-y:

$$x = \frac{4 - 2y}{\varepsilon} = \frac{2}{\varepsilon}(2 - y)$$

Assim, quando ε é pequeno, a primeira expressão, implementado em um sistema de ponto flutuante de acurácia finita, produz y=2 e, consequentemente, a expressão para x produz x=0. Isto é, estamos diante um problema de cancelamento catastrófico.

Agora, quando usamos a eliminação gaussiana com pivotamento parcial, fazemos uma permutação de linhas de forma a escolher o maior pivô a cada passo:

$$\begin{bmatrix} \varepsilon & 2 & | & 4 \\ 1 & \varepsilon & | & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & \varepsilon & | & 3 \\ \varepsilon & 2 & | & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & \varepsilon & | & 3 \\ 0 & 2 - \varepsilon^2 & | & 4 - 3\varepsilon \end{bmatrix}$$

Continuando o procedimento, temos:

$$y = \frac{4 - 4\varepsilon}{2 - \varepsilon^2}$$

е

$$x = 3 - \varepsilon y$$

Observe que tais expressões são analiticamente idênticas às anteriores, no entanto, são mais estáveis numericamente. Quando ε converge a zero, y converge a 2, como no caso anterior. No entanto, mesmo que y=2, a segunda expressão produz $x=3-\varepsilon y$, isto é, a aproximação $x\approx 3$ não depende mais de obter 2-y com precisão.

Exercícios

E 4.1.1. Resolva o seguinte sistema de equações lineares

$$x + y + z = 0$$
$$x + 10z = -48$$
$$10y + z = 25$$

Usando eliminação gaussiana com pivotamento parcial (não use o computador para resolver essa questão).

E 4.1.2. Resolva o seguinte sistema de equações lineares

$$x + y + z = 0$$

$$x + 10z = -48$$

$$10y + z = 25$$

Usando eliminação gaussiana com pivotamento parcial (não use o computador para resolver essa questão).

E 4.1.3. Calcule a inversa da matriz

$$A = \left[\begin{array}{rrr} 1 & 2 & -1 \\ -1 & 2 & 0 \\ 2 & 1 & -1 \end{array} \right]$$

usando eliminação gaussiana com pivotamento parcial.

E 4.1.4. Demonstre que se $ad \neq bc$, então a matriz A dada por:

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

é inversível e sua inversa é dada por:

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

E 4.1.5. Considere as matrizes

$$A = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right]$$

 $v = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

e

 $E = \left| \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right|$

e o vetor

a) Resolva o sistema Ax = v sem usar o computador.

b) Sem usar o computador e através da técnica algébrica de sua preferência, resolva o sistema $(A + \varepsilon E)x_{\varepsilon} = v$ considerando $|\varepsilon| << 1$ e obtenha a solução exata em função do parâmetro ε .

- c) Usando a expressão analítica obtida acima, calcule o limite $\lim_{\varepsilon \to 0} x_{\varepsilon}$.
- d) Resolva o sistema $(A + \varepsilon E)x = v$ no Scilab usando pivotamento parcial e depois sem usar pivotamento parcial para valores muito pequenos de ε como $10^{-10}, 10^{-15}, \ldots$ O que você observa?

E 4.1.6. Resolva o seguinte sistema de 5 equações lineares

$$\begin{array}{rcl} x_1-x_2&=&0\\ -x_{i-1}+2.5x_i-x_{i+1}&=&e^{-\frac{(i-3)^2}{20}},\qquad 2\leq i\leq 4\\ 2x_5-x_4&=&0 \end{array}$$

representando-o como um problema do tipo Ax=b no Scilab e usando o comando de contra-barra para resolvê-lo. Repita usando a rotina que implementa eliminação gaussiana.

E 4.1.7. Encontre a inversa da matriz

$$\begin{bmatrix}
 1 & 1 & 1 \\
 1 & -1 & 2 \\
 1 & 1 & 4
 \end{bmatrix}$$

a) Usando eliminação gaussiana com pivotamento parcial à mão.

c) Usando a rotina 'inv()' do Scilab.

4.2 Complexidade de Algoritmos em Álgebra Linear

Dados dois algoritmos diferentes para resolver o mesmo problema, como podemos escolher qual desses algoritmos é o melhor? Se pensarmos em termos de **eficiência** (ou custo computacional), queremos saber qual desses algoritmos consome menos recursos para realizar a mesma tarefa.

Em geral podemos responder essa pergunta de duas formas: em termos de tempo ou de espaço.

Quando tratamos de **eficiência espacial**, queremos saber quanta memória (em geral RAM) é utilizada pelo algoritmo para armazenar os dados, sejam matrizes, vetores ou escalares.

Quando tratamos de **eficiência temporal**, queremos saber quanto tempo um algoritmo leva para realizar determinada tarefa. Vamos nos concentrar nessa segunda opção, que em geral é a mais difícil de ser respondida.

Obviamente o tempo vai depender do tipo de computador utilizado. É razoável de se pensar que o tempo vai ser proporcional ao número de operações de ponto flutuante (flops) feito pelo algoritmo (observe que o tempo total não depende apenas disso, mas também de outros fatores como memória, taxas de transferências de dados da memória para o cpu, redes,...). Entretanto vamos nos concentrar na contagem do número de operações (flops) para realizar determinada tarefa.

No passado (antes dos anos 80), os computadores demoravam mais tempo para realizar operações como multiplicação e divisão, se comparados a adição ou subtração. Assim, em livros clássicos eram contados apenas o custo das operações × e /. Nos computadores atuais as quatro operações básicas levam o mesmo tempo. Entretanto, na maioria dos algoritmos de álgebra linear o custo associado as multiplicações e divisões é proporcional ao custo das somas e subtrações (pois a maioria dessas operações podem ser escritas como a combinação de produtos internos). Dessa forma, na maior parte deste material levaremos em conta somente multiplicações e divisões, a não ser que mencionado o contrário.

Tenha em mente que a ideia é estimar o custo a medida que o tamanho dos vetores e matrizes cresce muito (para n grande).

Exemplo 55 (Produto escalar-vetor). Qual o custo para multiplicar um escalar por um vetor?

Solução. Seja $a \in \mathbf{R}$ e $\vec{x} \in \mathbf{R}^n$, temos que

$$a\vec{x} = [a \times x_1, a \times x_2, ..., a \times x_n] \tag{4.1}$$

usando n multiplicações, ou seja, um custo computacional, C, de

$$C = n \text{ flops.}$$
 (4.2)

Exemplo 56 (Produto vetor-vetor). Qual o custo para calcular o produto interno $\vec{x} \cdot \vec{y}$?

 $\vec{x} \cdot \vec{y} = x_1 \times y_1 + x_2 \times y_2 + \dots + x_n \times y_n$

(4.3)

Solução. Sejam $\vec{x}, \vec{y} \in \mathbf{R}^n$, temos que

Solução. Sejam
$$x, y \in \mathbf{K}^n$$
, temos que

São realizadas n multiplicações (cada produto x_i por y_i) e n-1 somas, ou seja, o custo total de operações é de

$$C := (n) + (n-1) = 2n - 1 \text{ flops}$$
 (4.4)

V

Exemplo 57 (Produto matriz-vetor). Qual o custo para calcular o produto de matriz por vetor $A\vec{x}$?

Solução. Sejam $A \in \mathbf{R}^{n \times n}$ e $\vec{x} \in \mathbf{R}^n$, temos que

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11} \times x_1 + a_{12}x_2 + \dots + a_{1n} \times x_n \\ \vdots \\ a_{n1} \times x_1 + a_{n2}x_2 + \dots + a_{nn} \times x_n \end{bmatrix}$$

$$(4.5)$$

Para obter o primeiro elemento do vetor do lado direito devemos multiplicar a primeira linha de A pelo vetor coluna \vec{x} . Note que esse

é exatamente o custo do produto vetor-vetor do exemplo anterior. Como o custo para cada elemento do vetor do lado direito é o mesmo e temos n elementos, teremos que o custo para multiplicar matrizvetor é¹

$$C := n \cdot (2n - 1) = 2n^2 - n \text{ flops.}$$
 (4.7)

A medida que $n \to \infty$, temos

$$\mathcal{O}(2n^2 - n) = \mathcal{O}(2n^2) = \mathcal{O}(n^2) \text{ flops.}$$
(4.8)

 \wedge

Exemplo 58 (Produto matriz-matriz). Qual o custo para calcular o produto de duas matrizes AB?

$$n \cdot \mathcal{O}(n) = \mathcal{O}(n^2)$$
 flops. (4.6)

¹Contando apenas multiplicações/divisões obtemos

Solução. Sejam $A, B \in \mathbf{R}^{n \times n}$ temos que

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & & & \vdots \\ a_{n1} & & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & a_{1n} \\ \vdots & & & \vdots \\ b_{n1} & & \cdots & b_{nn} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ \vdots & & & \vdots \\ c_{n1} & & \cdots & c_{nn} \end{bmatrix}$$
(4.9)

onde o elemento d_{ij} é o produto da linha i de A pela coluna j de B,

$$d_{ij} = a_{i1} \times b_{1j} + a_{i2} \times b_{2j} + \dots + a_{i2} \times b_{2j}$$
 (4.10)

Note que esse produto tem o custo do produto vetor-vetor, ou seja, 2n-1. Como temos $n \times n$ elementos em D, o custo total para multiplicar duas matrizes \acute{e}^2

$$C = n \times n \times (2n - 1) = 2n^3 - n^2 \text{ flops.}$$
 (4.12)

 2 Contando apenas × e / obtemos

$$n \times n \times (n) = n^3 \text{ flops.}$$
 (4.11)

4.3 Sistemas triangulares

Considere um sistema linear onde a matriz é triangular superior, ou seja,

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

tal que todos elementos abaixo da diagonal são iguais a zero. Podemos resolver esse sistema iniciando pela última equação e isolando x_n obtemos

$$x_n = b_n/a_{nn} (4.13)$$

Substituindo x_n na penúltima equação

$$a_{n-1,n-1}x_{n-1} + a_{n-1,n}x_n = b_{n-1} (4.14)$$

e continuando desta forma até a primeira equação obteremos

e isolando x_{n-1} obtemos

De forma geral, temos que

 $x_1 = (b_1 - a_{12}x_2 \cdots - a_{1n}x_n)/a_{11}$. (4.16)

 $x_i = (b_i - a_{i,i+1}x_{i+1} \cdots - a_{i,n}x_n)/a_{i,i}, \quad i = 2, \dots, n.$

 $x_{n-1} = (b_{n-1} - a_{n-1,n}x_n)/a_{n-1,n-1}$

(4.17)

(4.15)

Algoritmo para resolução de um sistema 4.3.1triangular superior Para resolver um sistema triangular superior iniciamos da última

linha em direção a primeira.

1. function [x]=solveU(U,b) // U:= matriz triangular su 2. n=size(U,1)// b:= vetor

3. x(n)=b(n)/U(n,n)

4. for i=n-1:-1:1

x(i)=(b(i)-U(i,i+1:n)*x(i+1:n))/U(i,i)

5.

6.

7.

end

endfunction

4.3.2 Algoritmo para resolução de um sistema triangular inferior

Para resolver um sistema triangular inferior podemos fazer o processo inverso iniciando da primeira equação.

```
1. function [x]=solveL(L,b) // L: matriz triangular inf
```

2. n=size(L,1)// b: vetor

3. x(1)=b(1)/L(1,1)

4. for i=2:n

x(i)=(b(i)-L(i,1:i-1)*x(1:i-1))/L(i,i)

5.

end 7.endfunction

6.

Custo computacional

Vamos contar o número total de flops para resolver um sistema triangular inferior. Note que o custo para um sistema triangular superior será o mesmo.

Na linha 3, temos uma divisão, portanto 1 flop.

Na linha 5 quando i = 2, temos

$$x(2)=(b(2)-L(2,1:1)*x(1:1))/L(2,2),$$

ou seja, 1 subtração +1 multiplicação + 1 divisão = 3 flops.

Quando i = 3,

$$x(3)=(b(3)-L(3,1:2)*x(1:2))/L(3,3)$$

temos 1 subtração+(2 multiplicações + 1 soma) +1 divisão = 5 flops.

Quando i=4, temos 1 subtração+(3 multiplicações + 2 somas) +1 divisão = 7 flops.

Até que para i = n, temos

$$x(n)=(b(n)-L(n,1:n-1)*x(1:n-1))/L(n,n)$$

com 1 subtração+(n-1 multiplicações + n-2 somas) + 1 divisão,

ou seja, 1 + (n - 1 + n - 2) + 1 = 2n - 1 flops. Somando todos esses custos³ temos que o custo para resolver um sistema triangular inferior é

$$1 + 3 + 5 + 7 + \dots + 2n - 1 = \sum_{k=1}^{n} (2k - 1) = 2\sum_{k=1}^{n} k - \sum_{k=1}^{n} 1 \quad (4.19)$$

e utilizando que a soma dos k inteiros é uma progressão aritmética 4

$$2(n(n+1)/2) - n = n^2 \text{ flops.}$$
 (4.20)

(4.18)

2.0

$$^3{\rm Contando}$$
apenas multiplicações/divisões obtemos
$$(n^2+n)/2~{\rm flops}.$$

⁴Temos que
$$\sum_{k=1}^{n} k = n(n+1)/2$$
, $\sum_{k=1}^{n} 1 = n$

4.4 Fatoração LU

Considere um sistema linear onde a matriz A é densa⁵. Para resolver o sistema, podemos transformar a matriz A nas matrizes L, triangular inferior, e U, triangular superior de tal forma que A = LU. Sendo assim o sistema pode ser reescrito tal que

$$Ax = b$$

$$(LU)x = b$$

$$L(Ux) = b$$

$$Ly = b e Ux = y$$

Assim ao invés de resolvermos o sistema original, devemos resolver um sistema triangular inferior e um sistema triangular superior. A matriz U da fatoração 6 LU é a matriz obtida ao final do escalonamento da matriz A.

 $^{^5{\}rm Diferentemente}$ de uma matriz esparsa, uma matriz densa possui a maioria dos elementos diferentes de zero.

⁶Não vamos usar pivotamento nesse primeiro exemplo.

A matriz L inicia igual a identidade I. Os elementos da matriz L são os múltiplos do primeiro elemento da linha de A a ser zerado dividido pelo pivô acima na mesma coluna.

Por exemplo, para zerar o primeiro elemento da segunda linha de A, calculamos

$$L_{21} = A_{21}/A_{11}$$

e fazemos

$$A_{2,:} \Leftarrow A_{2,:} - L_{21}A_{1,:}$$

Note que usaremos $A_{i,:}$ para nos referenciarmos a linha i de A. Da mesma forma, se necessário usaremos $A_{:,j}$ para nos referenciarmos a linha j de A.

Para zerar o primeiro elemento da terceira linha de A, temos

$$L_{31} = A_{31}/A_{11}$$

e fazemos

$$A_{3,:} \Leftarrow A_{3,:} - L_{31}A_{1,:}$$

até chegarmos ao último elemento da primeira coluna de A.

Repetimos o processo para as próximas colunas, escalonando a matriz A e coletando os elementos L_{ij} abaixo da diagonal⁷.

 $^{^7\}mathrm{Perceba}$ que a partir da segunda coluna para calcular L_{ij} não usamos os elementos de A, mas os elementos da matriz A em processo de escalonamento

4.4.1 Algoritmo para fatoração LU

O algoritmo para fatoração LU pode ser escrito como

```
    function [L,A]=fatoraLU(A)

2.
       n=size(A,1)
3. L=eve(n,n)
4. for j=1:n-1
5.
           for i=j+1:n
6.
               L(i,j) = A(i,j)/A(j,j)
               A(i,j+1:n)=A(i,j+1:n)-L(i,j)*A(j,j+1:n)
7.
8.
               A(i,j)=0
9.
           end
10.
       end
11. endfunction
```

Custo computacional

Podemos analisar o custo computacional reduzindo o problema em problemas menores.

Na linha 4, iniciamos com j=1. Desta forma i varia de 2 até n na linha 5.

A linha 6 terá sempre 1 flop.

A linha 7, com j=1 tem um bloco de tamanho 2:n contabilizando n-1 flops do produto e n-1 flops da subtração.

Nas linhas 6-8 são feitas (2(n-1)+1)=2n-1 flops independente do valor de i. Como i varia de 2 até n, teremos que o bloco é repetido n-1 vezes, ou seja, o custo das linhas 5-9 é

$$(n-1) \times (2(n-1)+1) = 2(n-1)^2 + (n-1) \tag{4.21}$$

Voltamos a linha 4 quando j=2. Das linhas 6-8 teremos n-2 flops (o bloco terá um elemento a menos) que será repetido n-2 vezes, pois i=3:n, ou seja,

$$(n-2) \times (2(n-2)+1) = 2(n-2)^2 + (n-2)$$
 (4.22)

Para
$$j = n - 2$$
, temos $2(2)^2 + 2$.
Finalmente, para $j = n - 1$, temos $2 \cdot 1^2 + 1$.
Somando todos esses custos, temos

Para j = 3, temos $2(n-3)^2 + (n-3)$.

$$(n-1) + 2(n-1)^2 + (n-2) + 2(n-2)^2 + \dots + (2) + 2(2)^2 + 1 + \dots$$

$$= \sum_{k=1}^{n-1} 2k^2 + k$$

$$= \sum_{k=1}^{\infty} 2k + k$$

$$= 2\sum_{k=1}^{n-1} k^2 + \sum_{k=1}^{n-1} k$$

$$= 2\sum_{k=1}^{n-1} k^2 + \sum_{k=1}^{n-1} k$$

$$= 2\frac{(n-1)n(2n-1)}{6} + \frac{n(n-1)}{2}$$

$$= 2\frac{\sum_{k=1}^{k=1} \sum_{k=1}^{k=1}}{6} + \frac{n(n-1)}{2}$$

$$= 2\frac{\binom{k=1}{(n-1)n(2n-1)}}{6} + \frac{n(n-1)}{2}$$

$$2n^3 \quad n^2 \quad n$$

$$= 2\frac{(n-1)n(2n-1)}{6} + \frac{n(n-1)}{2}$$
$$= \frac{2n^3}{3} - \frac{n^2}{2} - \frac{n}{6} \text{ flops.}$$

$$= \frac{2n^3}{3} - \frac{n^2}{3} - \frac{n}{6} \text{ flops.}$$

$$= \frac{2n^3}{3} - \frac{n^2}{2} - \frac{n}{6}$$
 flops.

$$-\frac{\kappa}{2} - \frac{\kappa}{6}$$
 flops.

$$\frac{1}{2} - \frac{1}{6}$$
 flops.

4.4.2 Custo computacional para resolver um sistema linear usando fatoração LU

Para calcularmos o custo computacional de um algoritmo completo, uma estratégia é separar o algoritmo em partes menores mais fáceis de calcular.

Para resolver o sistema, devemos primeiro fatorar a matriz A nas matrizes L e U. Vimos que o custo é

$$\frac{2n^3}{3} - \frac{n^2}{2} - \frac{n}{6}$$
 flops.

Depois devemos resolver os sistemas Ly=b e Ux=y. O custo de resolver os dois sistemas é (devemos contar duas vezes)

$$2n^2$$
 flops.

Somando esses 3 custos, temos que o custo para resolver um sistema linear usando fatoração LU é

$$\frac{2n^3}{3} + \frac{3n^2}{2} - \frac{n}{6}$$
 flops.

Quando n cresce, prevalessem os termos de mais alta ordem, ou

seja,
$$\mathcal{O}(\frac{2n^3}{3} + \frac{3n^2}{2} - \frac{n}{6}) = \mathcal{O}(\frac{2n^3}{3} + \frac{3n^2}{2}) = \mathcal{O}(\frac{2n^3}{3})$$

4.4.3 Custo para resolver m sistemas lineares

Devemos apenas multiplicar m pelo custo de resolver um sistema linear usando fatoração LU, ou seja, o custo será

$$m(\frac{2n^3}{3} + \frac{3n^2}{2} - \frac{n}{6}) = \frac{2mn^3}{3} + \frac{3mn^2}{2} - \frac{mn}{6}$$

e com m = n temos

$$\frac{2n^4}{3} + \frac{3n^3}{2} - \frac{n^2}{6}.$$

Porém, se estivermos resolvendo n sistemas com a mesma matriz A (e diferente lado direito \vec{b} para cada sistema) podemos fazer a fatoração LU uma única vez e contar apenas o custo de resolver os sistemas triangulares obtidos.

Custo para fatoração LU de A: $\frac{2n^3}{3} - \frac{n^2}{2} - \frac{n}{6}$.

Custo para resolver m sistemas triangulares inferiores: mn^2 .

Custo para resolver m sistemas triangulares superiores: mn^2 .

Somando esses custos obtemos

$$\frac{2n^3}{3} - \frac{n^2}{2} - \frac{n}{6} + 2mn^2$$

que quando m=n obtemos

$$\frac{8n^3}{3} - \frac{n^2}{2} - \frac{n}{6}$$
 flops.

4.4.4 Custo para calcular a matriz inversa de A

Como vemos em Álgebra Linear, um método para obter a matriz A^{-1} é realizar o escalonamento da matriz [A|I] onde I é a matriz identidade. Ao terminar o escalonamento, o bloco do lado direito conterá A^{-1} .

Isto é equivalente a resolver n sistemas lineares com a mesma matriz A e os vetores da base canônica $\vec{e}_i = [0,...,0,1,0,....0]^T$ tal que

$$A\vec{x}_i = \vec{e}_i, \qquad i = 1:n$$

onde $\vec{x_i}$ serão as colunas da matriz A inversa, já que AX = I. O custo para resolver esses n sistemas lineares foi calculado na seção anterior como

$$\frac{8n^3}{3} - \frac{n^2}{2} - \frac{n}{6}.$$

Exemplo 59. Qual o melhor método para resolver um sistema linear: via fatoração LU ou calculando a inversa de A e obtendo $x = A^{-1}b$?

4.5 Condicionamento de sistemas lineares

Quando lidamos com matrizes no corpo do números reais (ou complexos), existem apenas duas alternativas: i) a matriz é inversível; ii) a matriz não é inversível e, neste caso, é chamada de matriz singular. Ao lidarmos em aritmética de precisão finita, encontramos uma situação mais sutil: alguns problema lineares são mais difíceis de serem resolvidos, pois os erros de arredondamento se propagam de forma mais significativa que em outros problemas. Neste caso falamos de problemas bem-condicionados e mal-condicionados. Intuitivamente falando, um problema bem-condicionado é um problema em que os erros de arredondamento se propagam de forma menos importante; enquanto problemas mal-condicionados são problemas em que os erros se propagam de forma mais relevante.

Um caso típico de sistema mal-condicionado é aquele cujos coeficiente estão muito próximos ao de um problema singular. Considere o seguinte exemplo:

Exemplo 60. Observe que o sistema

$$\begin{bmatrix} 71 & 41 \\ \lambda & 30 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 100 \\ 70 \end{bmatrix}$$
é impossível quando $\lambda = \frac{71 \times 30}{41} \approx 51{,}95122.$

e impossivei quando
$$\lambda = \frac{1}{41} \approx 51,95122$$
.
Considere os próximos três sistemas:

a)
$$\begin{bmatrix} 71 & 41 \\ 51 & 30 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 100 \\ 70 \end{bmatrix}$$
, com solução
$$\begin{bmatrix} 10/3 \\ -10/3 \end{bmatrix}$$
,

a)
$$\begin{bmatrix} 1 \\ 51 \end{bmatrix} \begin{bmatrix} 1 \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 70 \end{bmatrix}$$
, com solução

$$\begin{bmatrix} 51 & 30 \end{bmatrix} \begin{bmatrix} y \end{bmatrix} = \begin{bmatrix} 70 \end{bmatrix}, \text{ coin sortique}$$

b)
$$\begin{bmatrix} 71 & 41 \\ 52 & 30 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 100 \\ 70 \end{bmatrix}$$
, com solução $\begin{bmatrix} -65 \\ 115 \end{bmatrix}$,

b)
$$\begin{bmatrix} 71 & 41 \\ 52 & 30 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 100 \\ 70 \end{bmatrix}$$
, com solução $\begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$

b)
$$\begin{bmatrix} 52 & 30 \end{bmatrix} \begin{bmatrix} y \end{bmatrix} = \begin{bmatrix} 70 \end{bmatrix}$$
, com solução $\begin{bmatrix} 115 \end{bmatrix}$, c) $\begin{bmatrix} 71 & 41 \\ 52 & 30 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 100,4 \\ 69,3 \end{bmatrix}$, com solução $\begin{bmatrix} -85,35 \\ 150,25 \end{bmatrix}$.

(4.23)

Pequenas variações nos coeficientes das matrizes fazem as soluções ficarem bem distintas, isto é, pequenas variações nos dados de entrada acarretaram em grandes variações na solução do sistema. Quando isso acontece, dizemos que o problema é mal-condicionado.

Precisamos uma maneira de medir essas variações. Como os dados de entrada e os dados de saída são vetores (ou matrizes), precisamos introduzir as definições de norma de vetores e matrizes.

4.5.1 Norma de vetores

Definimos a **norma** L^p , $1 \le p \le \infty$, de um vetor em $v = (v_1, v_2, \dots, v_n \mathbb{R}^n \text{ por:}$

$$||v||_p := \left(\sum_{i=1}^n |v_i|^p\right)^{1/p} = (|v_1|^p + |v_2|^p + \dots + |v_n|^p)^{1/p}, \quad 1 \le p < \infty.$$

Para $p = \infty$, definimos a norma L^{∞} (norma do máximo) por:

$$||v||_{\infty} = \max_{1 \le i \le n} \{|v_j|\}.$$

Proposição 4 (Propriedades de normas). Sejam dados $\alpha \in \mathbb{R}$ um escalar e os vetores $u,v \in \mathbb{R}^n$. Então, para cada $1 \le p \le \infty$, valem as seguintes propriedades:

- a) $||u||_p = 0 \Leftrightarrow u = 0$.
- b) $\|\alpha u\|_p = |\alpha| \|u\|_p$.
- c) $||u+v||_p \le ||u||_p + ||v||_p$ (designaldade triangular).
- d) $||u||_p \to ||u||_\infty$ quando $p \to \infty$.

Demonstração. Demonstramos cada item em separado.

a) Se u = 0, então segue imediatamente da definição da norma L^p , $1 \le p \le \infty$, que $||u||_p = 0$. Reciprocamente, se $||u||_{\infty} = 0$, então, para cada $i = 1, 2, \ldots, n$, temos:

$$|u_i| \le \max_{1 \le i \le n} \{|u_j|\} = ||u||_{\infty} = 0 \Rightarrow u_i = 0.$$

Isto é, u = 0. Agora, se $||u||_p = 0$, $1 \le p < \infty$, então:

$$0 = ||u||_p^p := \sum_{i=1}^n |u_i|^p \le n||u||_{\infty} \Rightarrow ||u||_{\infty} = 0.$$

Logo, pelo resultado para a norma do máximo, concluímos que u=0.

- b) Segue imediatamente da definição da norma L^p , $1 \le p \le \infty$.
- c) Em construção ...
- d) Em construção ...

Exemplo 61. Calcule a norma L^1 , L^2 e L^{∞} do vetor coluna v = (1, 2, -3, 0).

Solução.

$$||v||_1 = 1 + 2 + 3 + 0 = 6$$

 $||v||_2 = \sqrt{1 + 2^2 + 3^2 + 0^2} = \sqrt{14}$
 $||v||_{\infty} = \max\{1,2,3,0\} = 3$

No Scilab podemos computar normas L^p 's de vetores usando o comando norm. Neste exemplo, temos:

```
-->norm(v,1), norm(v,'inf'), norm(v,2)
ans =
6.
ans =
3.
ans =
3.7416574
```


4.5.2 Norma de matrizes

Definimos a norma induzida L^p de uma matriz $A = [a_{i,j}]_{i,j=1}^{n,n}$ da seguinte forma:

$$||A||_p = \sup_{\|v\|_p = 1} ||Av||_p,$$

ou seja, a norma p de uma matriz é o máximo valor assumido pela norma de Av entre todos os vetores de norma unitária.

Temos as seguintes propriedades, se A e B são matrizes, I é a matriz identidade, v é um vetor e λ é um real (ou complexo):

$$||A||_p = 0 \iff A = 0$$

$$||\lambda A||_p = |\lambda|||A||_p$$

$$||A + B||_p \le ||A||_p + ||B||_p$$

 $||Av||_p \le ||A||_p ||v||_p$

$$||AB||_p \le ||A||_p ||B||_p$$

$$||I||_p = 1$$

$$1 = ||I||_p = ||AA^{-1}||_p \le ||A||_p ||A^{-1}||_p$$
 (se A é inversível)

(desigualdade do triângulo)

Casos especiais:

$$||A||_{1} = \max_{j=1}^{n} \sum_{i=1}^{n} |A_{ij}|$$

$$||A||_{2} = \sqrt{\max\{|\lambda| : \lambda \in \sigma(AA^{*})\}}$$

$$||A||_{\infty} = \max_{i=1}^{n} \sum_{j=1}^{n} |A_{ij}|$$

onde $\sigma(M)$ é o conjunto de autovalores da matriz M.

Exemplo 62. Calcule as normas 1, 2 e ∞ da seguinte matriz:

$$A = \begin{bmatrix} 3 & -5 & 7 \\ 1 & -2 & 4 \\ -8 & 1 & -7 \end{bmatrix}$$

Solução.

```
||A||_1 = \max\{12, 8, 18\} = 18

||A||_{\infty} = \max\{15, 7, 16\} = 16

||A||_2 = \sqrt{\max\{0.5865124, 21,789128, 195,62436\}} = 13,98657
```

No Scilab podemos computar normas L^p 's de matrizes usando o comando norm. Neste exemplo, temos:

```
-->A = [3 -5 7;1 -2 4;-8 1 -7];

-->norm(A,1), norm(A,'inf'), norm(A,2)

ans =

18.

ans =

16.

ans =

13.986578
```


4.5.3 Número de condicionamento

O condicionamento de um sistema linear é um conceito relacionado à forma como os erros se propagam dos dados de entrada para os dados de saída, ou seja, se o sistema

$$Ax = y$$

possui uma solução x para o vetor y, quando varia a solução x quando o dado de entrado y varia. Consideramos, então, o problema

$$A(x + \delta_x) = y + \delta_y$$

Aqui δ_x representa a variação em x e δ_y representa a respectiva variação em y. Temos:

$$Ax + A\delta_x = y + \delta_y$$

e, portanto,

$$A\delta_x = \delta_y.$$

Queremos avaliar a magnitude do erro relativo em y, representado por $\|\delta_y\|/\|y\|$ em função da magnitude do erro relativo $\|\delta_x\|/\|x\|$.

$$\frac{\|\delta_x\|/\|x\|}{\|\delta_y\|/\|y\|} = \frac{\|\delta_x\|}{\|x\|} \frac{\|y\|}{\|\delta_y\|}
= \frac{\|A^{-1}\delta_y\|}{\|x\|} \frac{\|Ax\|}{\|\delta_y\|}
\leq \frac{\|A^{-1}\|\|\delta_y\|}{\|x\|} \frac{\|A\|\|x\|}{\|\delta_y\|}
= \|A\|\|A^{-1}\|$$

Assim, definimos o número de condicionamento de uma matriz inversível A como

$$k_p(A) = ||A||_p ||A^{-1}||_p$$

O número de condicionamento, então, mede o quão instável é resolver o problema Ax=y frente a erros no vetor de entrada x.

Obs: O número de condicionamento depende da norma escolhida.

Obs: O número de condicionamento da matriz identidade é 1. **Obs:** O número de condicionamento de qualquer matriz inversível é igual ou maior que 1.

Exercícios

E 4.5.1. Calcule o valor de λ para o qual o problema

$$\begin{cases} 71x + 41y = 10\\ \lambda x + 30y = 4 \end{cases}$$

é impossível, depois calcule os números de condicionamento com norma 1,2 e ∞ quando $\lambda=51$ e $\lambda=52$.

E 4.5.2. Calcule o número de condicionamento da matriz

$$A = \begin{bmatrix} 3 & -5 & 7 \\ 1 & -2 & 4 \\ -8 & 1 & -7 \end{bmatrix}$$

nas normas 1, 2 e ∞ .

E 4.5.3. Calcule o número de condicionamento das matrizes

 $\left[\begin{array}{cc} 71 & 41 \\ 52 & 30 \end{array}\right]$

•

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 4 & 5 & 5 \end{bmatrix}$$
usando as normas 1 2 e ∞

usando as normas $1,2 e \infty$.

E 4.5.4. Usando a norma 1, calcule o número de condicionamento da matriz

$$A = \begin{bmatrix} 1 & 2 \\ 2 + \varepsilon & 4 \end{bmatrix}$$

em função de ε quando $0<\varepsilon<1$. Interprete o limite $\varepsilon\to0$.

E 4.5.5. Considere os sistemas:

 $\begin{cases} 100000x - 9999.99y = -10 \\ -9999.99x + 1000.1y = 1 \end{cases} e \begin{cases} 100000x - 9999.000x \\ -9999.99x + 1000.000x \end{cases}$

$$x_j = \sin(j/10), \quad y_j = j/10 \quad z_j = j/10 - \frac{(j/10)^3}{6}, \quad j = 1, \dots, 10$$

Use o Scilab para construir os seguintes vetores de erro:

$$e_j = \frac{|x_j - y_j|}{|x_j|} \quad f_j = \frac{|x_j - z_j|}{x_j}$$

Calcule as normas 1, 2 e ∞ de e e f

4.6 Métodos iterativos para sistemas lineares

Na seção anterior tratamos de métodos diretos para a resolução de sistemas lineares. Em um **método direto** (por exemplo, solução via fatoração LU) obtemos uma aproximação da solução depois de realizarmos um número finito de operações (só teremos a solução ao final do processo).

Veremos nessa seção dois **métodos iterativos** básicos para obter uma aproximação para a solução de um sistema linear. Geralmente em um método iterativo iniciamos com uma aproximação para a solução (que pode ser ruim) e vamos melhorando essa aproximação através de sucessivas iterações.

4.6.1 Método de Jacobi

O método de Jacobi pode ser obtido a partir do sistema linear

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = y_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = y_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = y_n$$

Isolando o elemento x_1 da primeira equação temos

$$x_1^{(k+1)} = \frac{y_1 - \left(a_{12}x_2^{(k)} + \dots + a_{1n}x_n^{(k)}\right)}{a_{11}}$$
(4.24)

Note que utilizaremos os elementos $x_i^{(k)}$ da iteração k (a direita da equação) para estimar o elemento x_1 da próxima iteração. Da mesma forma, isolando o elemento x_i de cada equação i, para

todo i=2,...,n podemos construir a iteração

$$x_1^{(k+1)} = \frac{y_1 - \left(a_{12}x_2^{(k)} + \dots + a_{1n}x_n^{(k)}\right)}{a_{11}}$$

$$x_2^{(k+1)} = \frac{y_2 - \left(a_{21}x_1^{(k)} + a_{23}x_3^{(k)} + \dots + a_{2n}x_n^{(k)}\right)}{a_{22}}$$

$$\vdots$$

$$x_n^{(k+1)} = \frac{y_2 - \left(a_{n1}x_1^{(k)} + \dots + a_{n,n-2}x_{n-2}^{(k)} + a_{n,n-1}x_{n-1}^{(k)}\right)}{a_{nn}}$$

Em notação mais compacta, o método de Jacobi consiste na iteração

$$x^{(1)} = \operatorname{aproximação inicial}$$

$$x_i^{(k)} = \left(y_i - \sum_{\substack{j=1 \ j \neq i}}^n a_{ij} x_j^{(k)}\right) / a_{ii}$$

Exemplo 63. Resolva o sistema

$$\begin{aligned}
10x + y &= 23 \\
x + 8y &= 26
\end{aligned}$$

usando o método de Jacobi iniciando com $x^{(1)} = y^{(1)} = 0$.

$$x^{(k+1)} = \frac{23 - y^{(k)}}{10}$$

$$y^{(k+1)} = \frac{26 - x^{(k)}}{8}$$

$$x^{(2)} = \frac{23 - y^{(1)}}{10} = 2,3$$

$$y^{(2)} = \frac{26 - x^{(1)}}{8} = 3,25$$

$$x^{(3)} = \frac{23 - y^{(2)}}{10} = 1,975$$

$$y^{(3)} = \frac{26 - x^{(2)}}{8} = 2,9625$$

Código Scilab: Jacobi

```
function [x,deltax]=jacobi(A,b,x,tol,N)
n=size(A,1)
xnew
         =x
convergiu=%F
                            //FALSE;
k=1
while k<=N & ~convergiu
 xnew(1)=(b(1) - A(1,2:n)*x(2:n))/A(1,1)
 for i=2:n-1
    xnew(i)=(b(i) -A(i,1:i-1)*x(1:i-1) ...
                  -A(i,i+1:n)*x(i+1:n) )/A(i,i)
  end
  xnew(n) = (b(n) -A(n,1:n-1)*x(1:n-1))/A(n,n)
  deltax=max(abs(x-xnew))
  if deltax<tol then
```

```
convergiu=%T
                        //TRUE
  end
 k=k+1
                         // atualiza x
 x=xnew
 disp([k,x',deltax]) // depuracao
end
if ~convergiu then
   error('Nao convergiu')
end
endfunction
```

4.6.2 Método de Gauss-Seidel

Assim como no método de Jacobi, no método de Gauss-Seidel também isolamos o elemento x_i da equação i. Porém perceba que a equação para $x_2^{(k+1)}$ depende de $x_1^{(k)}$ na iteração k. Intuitivamente podemos pensar em usar $x_1^{(k+1)}$ que acabou de ser calculado e temos

$$x_2^{(k+1)} = \frac{y_2 - \left(a_{21}x_1^{(k+1)} + a_{23}x_3^{(k)} + \dots + a_{2n}x_n^{(k)}\right)}{a_{22}}$$

Aplicando esse raciocínio podemos construir o método de Gauss-

Seidel como

$$x_1^{(k+1)} = \frac{y_1 - \left(a_{12}x_2^{(k)} + \dots + a_{1n}x_n^{(k)}\right)}{a_{11}}$$

$$x_2^{(k+1)} = \frac{y_2 - \left(a_{21}x_1^{(k+1)} + a_{23}x_3^{(k)} + \dots + a_{2n}x_n^{(k)}\right)}{a_{22}}$$

$$\vdots$$

$$x_n^{(k+1)} = \frac{y_2 - \left(a_{n1}x_1^{(k+1)} + \dots + a_{n(n-1)}x_{n-1}^{(k+1)}\right)}{a_{nn}}$$

Em notação mais compacta, o método de Gauss-Seidel consiste na iteração:

$$x^{(1)} = \operatorname{aproximação inicial}$$
 $x_i^{(k)} = \frac{y_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)}}{a_{ii}}$

Exemplo 64. Resolva o sistema

$$10x + y = 23$$
$$x + 8y = 26$$

usando o método de Guass-Seidel iniciando com $x^{(1)} = y^{(1)} = 0$.

$$x^{(k+1)} = \frac{23 - y^{(k)}}{10}$$

$$y^{(k+1)} = \frac{26 - x^{(k+1)}}{8}$$

$$x^{(2)} = \frac{23 - y^{(1)}}{10} = 2,3$$

$$y^{(2)} = \frac{26 - x^{(2)}}{8} = 2,9625$$

$$x^{(3)} = \frac{23 - y^{(2)}}{10} = 2,00375$$

$$y^{(3)} = \frac{26 - x^{(3)}}{8} = 2,9995312$$

Código Scilab: Gauss-Seidel

```
function [x,deltax]=gauss seidel(A,b,x,tol,N)
n=size(A,1)
xnew
         =x
convergiu=%F
                            //FALSE;
k=1
while k<=N & ~convergiu
 xnew(1)=(b(1) - A(1,2:n)*x(2:n))/A(1,1)
 for i=2:n-1
    xnew(i)=(b(i) -A(i,1:i-1)*xnew(1:i-1) ...
                  -A(i,i+1:n)*x(i+1:n) )/A(i,i)
  end
  xnew(n)=(b(n) -A(n,1:n-1)*xnew(1:n-1))/A(n,n)
  deltax=max(abs(x-xnew))
  if deltax<tol then
```

```
convergiu=%T
                        //TRUE
  end
 k=k+1
                         // atualiza x
 x=xnew
 disp([k,x',deltax]) // depuracao
end
if ~convergiu then
   error('Nao convergiu')
end
endfunction
```

4.6.3 Análise de convergência

Nesta seção, discutimos sobre a análise de convergência de métodos iterativos para solução de sistema lineares. Para tanto, consideramos um sistema linear Ax = b, onde $A = [a_{i,j}]_{i,j=1}^{n,n}$ é a matriz (real) dos coeficientes, $b = (a_j)_{j=1}^n$ é um vetor dos termos constantes e $x = (x_j)_{j=1}^n$ é o vetor incógnita. No decorrer, assumimos que A é uma matriz não-singular.

Geralmente, métodos iterativos são construídos como uma iteração de ponto fixo. No caso de um sistema linear, reescreve-se a equação matricial em um problema de ponto fixo equivalente, i.e.:

$$Ax = b \Leftrightarrow x = Tx + c,$$

onde $T = [t_{i,j}]_{i,j=1}^{n,n}$ é chamada de **matriz da iteração** e $c = (c_j)_{j=1}^n$ de **vetor da iteração**. Construídos a matriz T e o vetor c, o método iterativo consiste em computar a iteração:

$$x^{(k+1)} = Tx^{(k)} + c, \quad n \ge 1,$$

onde $x^{(1)}$ é uma aproximação inicial dada.

Afim de construirmos as matrizes e os vetores de iteração do método de Jacobi e de Gauss-Seidel, decompomos a matriz A da seguinte forma:

$$A = L + D + U$$
,

onde D é a matriz diagonal $D = \text{diag}(a_{11}, a_{22}, \dots, a_{nn})$, i.e.:

$$D := \begin{bmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ 0 & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix},$$

e, respectivamente, L e U são as seguintes matrizes triangular infe-

rior e superior:

$$L := \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ a_{21} & 0 & 0 & \cdots & 0 \\ a_{31} & a_{32} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & 0 \end{bmatrix}, \quad U := \begin{bmatrix} 0 & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & 0 & a_{23} & \cdots & a_{2n} \\ 0 & 0 & 0 & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}.$$

Exemplo 65. Considere o seguinte sistema linear:

$$3x_1 + x_2 - x_3 = 2$$

$$-x_1 - 4x_2 + x_3 = -10$$

$$x_1 - 2x_2 - 5x_3 = 10$$

Escreva o sistema na sua forma matricial Ax = b identificando a matriz dos coeficientes A, o vetor incógnita x e o vetor dos termos constantes b. Em seguida, faça a decomposição A = L + D + U.

Solução. A forma matricial deste sistema é Ax = b, onde:

$$A = \begin{bmatrix} 3 & 1 & -1 \\ -1 & -4 & 1 \\ 1 & -2 & -5 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \text{e} \quad b = \begin{bmatrix} 2 \\ -10 \\ 10 \end{bmatrix}.$$

A decomposição da matriz A nas matrizes L triangular inferior, D diagonal e U triangular superior é:

$$\begin{bmatrix}
3 & 1 & -1 \\
-1 & -4 & 1 \\
1 & -2 & -5
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 \\
-1 & 0 & 0 \\
1 & -2 & 0
\end{bmatrix} + \begin{bmatrix}
3 & 0 & 0 \\
0 & -4 & 0 \\
0 & 0 & -5
\end{bmatrix} + \begin{bmatrix}
0 & 1 & -1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}.$$

No Scilab, podemos construir as matrizes $L,\ D$ e U, da seguinte forma:

```
-->A = [3 1 -1; -1 -4 1; 1 -2 -5];

-->D = eye(A).*A;

-->L = tril(A)-D;

-->U=triu(A)-D;
```


Iteração de Jacobi

Vamos, agora, usar a decomposição discutida acima para construir a matriz de iteração T_J e o vetor de iteração c_J associado ao método de Jacobi. Neste caso, temos:

$$Ax = b \Leftrightarrow (L + D + U)x = b$$

$$\Leftrightarrow Dx = -(L + U)x + b$$

$$\Leftrightarrow x = \underbrace{-D^{-1}(L + U)}_{=:T_I}x + \underbrace{D^{-1}b}_{=:c_J}.$$

Ou seja, a iteração do método de Jacobi escrita na forma matricial é:

$$x^{(k+1)} = T_J x^{(k)} + c_J, \quad k \ge 1,$$

com $x^{(1)}$ uma aproximação inicial dada, sendo $T_J:=-D^{-1}(L+U)$ a matriz de iteração e $c_J=D^{-1}b$ o vetor da iteração.

Exemplo 66. Construa a matriz de iteração T_J e o vetor de iteração c_J do método de Jacobi para o sistema dado no Exemplo 65.

Solução. A matriz de iteração é dada por:

$$T_J := -D^{-1}(L+U) = -\begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & -\frac{1}{4} & 0 \\ 0 & 0 & -\frac{1}{5} \end{bmatrix} \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -\frac{1}{3} & \frac{1}{3} \\ -\frac{1}{4} & 0 & \frac{1}{4} \\ \frac{1}{5} & \frac{2}{5} & 0 \end{bmatrix}$$

$$\begin{bmatrix}
0 \\
-\frac{1}{5}
\end{bmatrix}
\begin{bmatrix}
-1 & 0 & 1 \\
1 & 2 & 0
\end{bmatrix}$$

(L+U)

O vetor da iteração de Jacobi é:

$$c_J := D^{-1}b = \underbrace{\begin{bmatrix} \frac{1}{3} & 0 & 0\\ 0 & -\frac{1}{4} & 0\\ 0 & 0 & -\frac{1}{5} \end{bmatrix}}_{D^{-1}} \underbrace{\begin{bmatrix} 2\\ -10\\ 10 \end{bmatrix}}_{b} = \begin{bmatrix} \frac{2}{3}\\ \frac{5}{2}\\ -2 \end{bmatrix}.$$

No Scilab, podemos computar T_J e c_J da seguinte forma:

$$-->TJ = -inv(D)*(L+U);$$

-->cJ = inv(D)*b:

Iteração de Gauss-Seidel

A forma matricial da iteração do método de Gauss-Seidel também pode ser construída com base na decomposição A=L+D+U. Para tando, fazemos:

$$Ax = b \Leftrightarrow (L + D + U)x = b$$

$$\Leftrightarrow (L + D)x = -Ux + b$$

$$\Leftrightarrow x = \underbrace{-(L + D)^{-1}U}_{=:T_G} x + \underbrace{(L + D)^{-1}b}_{=:c_G}$$

Ou seja, a iteração do método de Gauss-Seidel escrita na forma matricial é:

$$x^{(k+1)} = T_G x^{(k)} + c_G, \quad k \ge 1,$$

com $x^{(1)}$ uma aproximação inicial dada, sendo $T_G:=-(L+D)^{-1}U$ a matriz de iteração e $c_J=(L+D)^{-1}b$ o vetor da iteração.

Exemplo 67. Construa a matriz de iteração T_G e o vetor de iteração c_G do método de Gauss-Seidel para o sistema dado no Exemplo 65.

Solução. A matriz de iteração é dada por:

$$T_G := -(L+D)^{-1}U = --\underbrace{\begin{bmatrix} 3 & 0 & 0 \\ -1 & -4 & 0 \\ 1 & -2 & -5 \end{bmatrix}}_{(L+D)^{-1}} \underbrace{\begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}}_{U} = \begin{bmatrix} 0 & -\frac{1}{3} \\ 0 & \frac{1}{12} \\ 0 & -\frac{1}{10} \end{bmatrix}$$

O vetor da iteração de Gauss-Seidel é:

$$c_G := (L+D)^{-1}b = \underbrace{\begin{bmatrix} 3 & 0 & 0 \\ -1 & -4 & 0 \\ 1 & -2 & -5 \end{bmatrix}}_{(L+D)^{-1}} \underbrace{\begin{bmatrix} 2 \\ -10 \\ 10 \end{bmatrix}}_{b} = \begin{bmatrix} \frac{2}{3} \\ \frac{7}{3} \\ -\frac{28}{10} \end{bmatrix}.$$

No Scilab, podemos computar T_G e c_G da seguinte forma:

```
-->TG = -inv(L+D)*U;
-->cG = inv(L+D)*b;
```


Condições de convergência

Aqui, vamos discutir condições necessárias e suficientes para a convergência de métodos iterativos. Isto é, dado um sistema Ax = b e uma iteração:

$$x^{(k+1)} = Tx^{(k)} + c, \quad k \ge 1,$$

 $x^{(1)}$ dado, estabelecemos condições nas quais $x^{(k)} \to x^*$, onde x^* é a solução do sistema dado, i.e. $x^* = Tx^* + c$ ou, equivalentemente, $Ax^* = b$.

Lema 1. Seja T uma matriz real $n \times n$. O limite $\lim_{k \to \infty} ||T^k||_p = 0$, $1 \le p \le \infty$, se, e somente se, $\rho(T) < 1$.

Demonstração. Aqui, fazemos apenas um esboço da demonstração. Para mais detalhes, veja [8], Teorema 4, pág. 14.

Primeiramente, suponhamos que $||T||_p < 1$, $1 \le p \le \infty$. Como (veja [8], Lema 2, pág. 12):

$$\rho(T) \le ||T||_p,$$

temos $\rho(T) < 1$, o que mostra a implicação.

Agora, suponhamos que $\rho(T)<1$ e seja $0<\epsilon<1-\rho(T)$. Então, existe $1\leq p\leq\infty$ tal que (veja [8], Teorema 3, página 12):

$$||T||_p \le \rho(T) + \epsilon < 1.$$

Assim, temos:

$$\lim_{k \to \infty} ||T^k||_p \le \lim_{k \to \infty} ||T||_p^m = 0.$$

Da equivalência entre as normas segue a recíproca.

$$\lim_{k \to \infty} ||T^k||_p = 0, \quad 1 \le p \le \infty, \Leftrightarrow \lim_{k \to \infty} t_{ij}^k = 0, \quad 1 \le i, j \le n.$$

Lema 2. Se $\rho(T) < 1$, então existe $(I - T)^{-1}$ e:

$$(I-T)^{-1} = \sum_{k=1}^{\infty} T^k.$$

Demonstração. Primeiramente, provamos a existência de $(I-T)^{-1}$. Seja λ um autovalor de T e x um autovetor associado, i.e. $Tx = \lambda x$. Então, $(I-T)x = (1-\lambda)x$. Além disso, temos $|\lambda| < \rho(T) < 1$, logo $(1-\lambda) \neq 0$, o que garante que (I-T) é não singular. Agora, mostramos que $(I-T)^{-1}$ admite a expansão acima. Do Lema 1 e da Observação 14 temos:

$$(I-T)\sum_{k=0}^{\infty} T^k = \lim_{m \to \infty} (I-T)\sum_{k=0}^{m} T^k = \lim_{m \to \infty} (I-T^{m+1}) = I,$$

o que mostra que
$$(I-T)^{-1} = \sum_{k=0}^{\infty} T^k$$
.

Teorema 6. A sequência recursiva $\{x^{(k)}\}_{k\in\mathbb{N}}$ dada por:

$$x^{(k+1)} = Tx^{(k)} + c$$

converge para solução de x = Tx + c para qualquer escolha de $x^{(1)}$ se, e somente se, $\rho(T) < 1$.

Demonstração. Primeiramente, assumimos que $\rho(T) < 1$. Observamos que:

$$x^{(k+1)} = Tx^{(k)} + c = T(Tx^{(k-1)} + c) + c$$

$$= T^{2}x^{(k-1)} + (I+T)c$$

$$\vdots$$

$$= T^{(k)}x^{(1)} + \left(\sum_{k=0}^{k-1} T^{k}\right)c.$$

Daí, do Lema 1 e do Lema 2 temos:

$$\lim_{l \to \infty} x^{(k)} = (I - T)^{(-1)}c.$$

Ora, se x^* é a solução de x = Tx + c, então $(I - T)x^* = c$, i.e. $x^* = (I - T)^{-1}c$. Logo, temos demonstrado que $x^{(k)}$ converge para a solução de x = Tx + c, para qualquer escolha de $x^{(1)}$. Agora, suponhamos que $x^{(k)}$ converge para x^* solução de x = Tx + c,

Agora, suponhamos que $x^{(k)}$ converge para x^* solução de x = Tx + c, para qualquer escolha de $x^{(1)}$. Seja, então, y um vetor arbitrário e $x^{(1)} = x^* - y$. Observamos que:

 $x^* - x^{(k+1)} = (Tx^* + c) - (Tx^{(k)} + c)$

$$= T(x^* - x^{(k)})$$

$$\vdots$$

$$= T^{(k)}(x^* - x^{(1)}) = T^{(k)}y.$$

Logo, para qualquer $1 \le p \le \infty$, temos, :

$$0 = \lim_{k \to \infty} x^* - x^{(k+1)} = \lim_{k \to \infty} T^{(k)} y.$$

Como y é arbitrário, da Observação 14 temos $\lim_{k\to\infty} ||T^{(k)}||_p = 0$, $1 . Então, o Lema 1 garante que <math>\rho(T) < 1$.

Observação 15. Pode-se mostrar que tais métodos iterativos tem taxa de convergência super linear com:

$$||x^{(k+1)} - x^*|| \approx \rho(T)^k ||x^{(1)} - x^*||.$$

Para mais detalhes, veja [8], pág. 61-64.

Exemplo 68. Mostre que, para qualquer escolha da aproximação inicial, ambos os métodos de Jacobi e Gauss-Seidel são convergentes quando aplicados ao sistema linear dado no Exemplo 65.

Solução. Do Teorema 6, vemos que é necessário e suficiente que $\rho(T_J) < 1$ e $\rho(T_G) < 1$. Computando estes raios espectrais, obtemos $\rho(T_J) \approx 0.32$ e $\rho(T_G) \approx 0.13$. Isto mostra que ambos os métodos serão convergentes.

Condição suficiente

Uma condição suficiente porém não necessária para que os métodos de Gauss-Seidel e Jacobi convirjam é a que a matriz seja estritamente diagonal dominante.

Definição 7. Uma matriz A é estritamente diagonal dominante quando:

$$|a_{ii}| > \sum_{\substack{j=1\\i\neq i}}^{n} |a_{ij}|, i = 1,...,n$$

Definição 8. Uma matriz A é diagonal dominante quando

$$|a_{ii}| \ge \sum_{\substack{j=1\\i\neq j}}^{n} |a_{ij}|, i = 1,...,n$$

e para ao menos um i, a_{ii} é estritamente maior que a soma dos elementos fora da diagonal.

Teorema 7. Se a matriz A for diagonal dominante^a, então os métodos de Jacobi e Gauss-Seidel serão convergentes independente da escolha inicial $x^{(1)}$.

 $^a\mathrm{E}$ consequentemente estritamente diagonal dominante.

Se conhecermos a solução exata \boldsymbol{x} do problema, podemos calcular o

erro relativo em cada iteração como:

$$\frac{\|x-x^{(k)}\|}{\|x\|}.$$

Em geral não temos x, entretanto podemos estimar o vetor **resíduo** $r^{(k)} = b - Ax^{(k)}$. Note que quando o erro tende a zero, o resíduo também tende a zero.

Teorema 8. O erro relativo e o resíduo estão relacionados como (veja [3])

$$\frac{\|x - x^{(k)}\|}{\|x\|} \le \kappa(A) \frac{\|r\|}{\|b\|}$$

onde k(A) é o número de condicionamento.

Exemplo 69. Ambos os métodos de Jacobi e Gauss-Seidel são convergentes para o sistema dado no Exemplo 65, pois a matriz dos coeficientes deste é uma matriz estritamente diagonal dominante.

Exercícios

 ${\bf E}$ 4.6.1. Considere o problema de 5 incógnitas e cinco equações dado por

$$x_{1} - x_{2} = 1$$

$$-x_{1} + 2x_{2} - x_{3} = 1$$

$$-x_{2} + (2 + \varepsilon)x_{3} - x_{4} = 1$$

$$-x_{3} + 2x_{4} - x_{5} = 1$$

$$x_{4} - x_{5} = 1$$

- a) Escreva na forma Ax=b e resolva usando eliminação gaussiana para $\varepsilon=10^{-3}$ no Scilab.
- b) Obtenha o vetor incógnita x com $\varepsilon = 10^{-3}$ usando o comando $A \backslash b$.

- c) Obtenha o vetor incógnita x com $\varepsilon=10^{-3}$ usando Jacobi com tolerância 10^{-2} . Compare o resultado com o resultado obtido no item d.
- d) Obtenha o vetor incógnita x com $\varepsilon=10^{-3}$ usando Gauss-Seidel com tolerância 10^{-2} . Compare o resultado com o resultado obtido no item d.
- e) Discuta com base na relação esperada entre tolerância e exatidão conforme estudado na primeira área para problemas de uma variável.

E 4.6.2. Resolva o seguinte sistema pelo método de Jacobi e Gauss-Seidel:

$$\begin{cases} 5x_1 + x_2 + x_3 &= 50 \\ -x_1 + 3x_2 - x_3 &= 10 \\ x_1 + 2x_2 + 10x_3 &= -30 \end{cases}$$

Use como critério de paragem tolerância inferior a 10^{-3} e inicialize com $x^0 = y^0 = z^0 = 0$.

E 4.6.3. Refaça a questão 4.1.6 construindo um algoritmo que implemente os métodos de Jacobi e Gauss-Seidel.

E 4.6.4. Considere o seguinte sistema de equações lineares:

$$x_{1} - x_{2} = 0$$

$$-x_{j-1} + 5x_{j} - x_{j+1} = \cos(j/10), \ 2 \le j \le 10$$

$$x_{11} = x_{10}/2$$
(4.25)

Construa a iteração para encontrar a solução deste problema pelos métodos de Gauss-Seidel e Jacobi. Usando esses métodos, encontre uma solução aproximada com erro absoluto inferior a 10^{-5} .

 ${\bf E}$ 4.6.5. Resolva o problema 4.8.1 pelos métodos de Jacobi e Gauss-Seidel.

E 4.6.6. Faça uma permutação de linhas no sistema abaixo e

resolva pelos métodos de Jacobi e Gauss-Seidel:

$$x_1 + 10x_2 + 3x_3 = 27$$
$$4x_1 + x_3 = 6$$
$$2x_1 + x_2 + 4x_3 = 12$$

4.7 Método da potência para cálculo de autovalores

Consideremos uma matriz $A \in \mathbb{R}^{n,n}$ diagonalizável, isto é, existe um conjunto $\{v_j\}_{j=1}^n$ de autovetores de A tais que qualquer elemento $x \in \mathbb{R}^n$ pode ser escrito como uma combinação linear dos v_j . Sejam $\{\lambda_j\}_{j=1}^n$ o conjunto de autovalores associados aos autovetores tal que um deles seja dominante, ou seja,

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots |\lambda_n| > 0$$

Como os autovetores são LI, todo vetor $x \in \mathbb{R}^n$, $x = (x_1, x_2, ..., x_n)$, pode ser escrito com combinação linear dos autovetores da seguinte forma:

$$x = \sum_{j=1}^{n} \beta_j v_j. \tag{4.26}$$

O método da potência permite o cálculo do autovetor dominante com base no comportamento assintótico (i.e. "no infinito") da sequên-

cia

$$x, Ax, A^2x, A^3x, \dots$$

Por questões de convergência, consideramos a seguinte sequência semelhante à anterior, porém normalizada:

$$\frac{x}{\|x\|}, \frac{Ax}{\|Ax\|}, \frac{A^2x}{\|A^2x\|}, \frac{A^3x}{\|A^3x\|}, \dots,$$

que pode ser obtida pelo seguinte processo iterativo:

$$x^{(k+1)} = \frac{A^k x}{\|A^k x\|}$$

Observamos que se x está na forma (4.26), então $A^k x$ pode ser escrito como

$$A^k x = \sum_{j=1}^n \beta_j A^k v_j = \sum_{j=1}^n \beta_j \lambda_j^k v_j = \beta_1 \lambda_1^k \left(v_1 + \sum_{j=2}^n \frac{\beta_j}{\beta_1} \left(\frac{\lambda_j}{\lambda_1} \right)^k v_j \right)$$

Como
$$\left|\frac{\lambda_j}{\lambda_1}\right| < 1$$
 para todo $j \ge 2$, temos
$$\sum_{i=0}^n \frac{\beta_j}{\beta_1} \left(\frac{\lambda_j}{\lambda_1}\right)^k v_j \to 0.$$

 $\frac{A^k x}{\|A^k x\|} = \frac{\beta_1 \lambda_1^k}{\|A^k x\|} \left(v_1 + O\left(\left| \frac{\lambda_2}{\lambda_1} \right|^k \right) \right)$

(4.27)

Assim

Como a norma de
$$\frac{A^k x}{\|A^k x\|}$$
 é igual a um, temos
$$\left\| \frac{\beta_1 \lambda_1^k}{\|A^k x\|} v_1 \right\| \to 1$$

e, portanto,
$$\left|\frac{\beta_1\lambda_1^k}{\|A^kx\|}\right|\to \frac{1}{\|v_1\|}$$
 Ou sois, so definimes $\alpha^{(k)}=\frac{\beta_1\lambda_1^k}{\|v_1\|}$ então.

Ou seja, se definimos $\alpha^{(k)} = \frac{\beta_1 \lambda_1^k}{\|A^k x\|}$, então $|\alpha^{(k)}| \to 1$

Retornando a (4.27), temos:

$$\frac{A^k x}{\|A^k x\|} - \alpha^{(k)} v_1 \to 0$$

Observe que um múltiplo de autovetor também é um autovetor e, portanto,

$$\frac{A^k x}{\|A^k x\|}$$

é um esquema que oscila entre os autovetores ou converge para o autovetor $v_1.$

Uma vez que temos o autovetor v_1 de A, podemos calcular λ_1 da seguinte forma:

$$Av_1 = \lambda_1 v_1 \implies v_1^T A v_1 = v_1^T \lambda_1 v_1 \implies \lambda_1 = \frac{v_1^T A v_1}{v_1^T v_1}$$

Observe que a última identidade é válida, pois $||v_1|| = 1$ por construção.

Exercícios

E 4.7.1. Calcule o autovalor dominante e o autovetor associado da matriz

$$\begin{bmatrix} 4 & 41 & 78 \\ 48 & 28 & 21 \\ 26 & 13 & 11 \end{bmatrix}$$

Expresse sua resposta com seis dígitos significativos

 ${\bf E}$ 4.7.2. Calcule o autovalor dominante e o autovetor associado da matriz

$$\left[\begin{array}{cc} 3 & 4 \\ 2 & -1 \end{array}\right]$$

usando o método da potência inciando com o vetor $x = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$

E 4.7.3. A norma L_2 de um matriz A é dada pela raiz quadrada do autovalor dominante da matriz A^*A , isto é:

$$||A||_2 = \sqrt{\max\{|\lambda| : \lambda \in \sigma(A^*A)\}} :$$

Use o método da potência para obter a norma L_2 da seguinte matriz:

$$A = \begin{bmatrix} 69 & 84 & 88 \\ 15 & -40 & 11 \\ 70 & 41 & 20 \end{bmatrix}$$

Expresse sua resposta com seis dígitos significativos

 ${\bf E}$ 4.7.4. Os autovalores de uma matriz triangular são os elementos da diagonal principal. Verifique o método da potência aplicada à

$$\left[\begin{array}{ccc} 2 & 3 & 1 \\ 0 & 3 & -1 \\ 0 & 0 & 1 \end{array}\right].$$

4.8 Exercícios finais

E 4.8.1. O circuito linear da figura 4.8.1 pode ser modelado pelo sistema (??). Escreva esse sistema na forma matricial sendo as tensões $V_1,\,V_2,\,V_3,\,V_4$ e V_5 as cinco incógnitas. Resolva esse problema quando V=127 e

a)
$$R_1 = R_2 = R_3 = R_4 = 2 \text{ e } R_5 = R_6 = R_7 = 100 \text{ e } R_8 = 50$$

b) $R_1 = R_2 = R_3 = R_4 = 2 \text{ e } R_5 = 50 \text{ e } R_6 = R_7 = R_8 = 100$

Complete a tabela abaixo representado a solução com 4 algarismos significativos:

Caso	V_1	V_2	V_3	V_4	V_5
a					
b					

Então, refaça este problema reduzindo o sistema para apenas 4 incógnitas $(V_2,\,V_3,\,V_4$ e $V_5).$

E 4.8.2. Resolva os seguintes problemas:

- a) Encontre o polinômio $P(x) = ax^2 + bx + c$ que passa pelos pontos (-1, -3), (1, -1) e (2,9).
- b) Encontre os coeficientes A e B da função $f(x) = A\sin(x) + B\cos(x)$ tais que f(1) = 1.4 e f(2) = 2.8.

c) Encontre a função $g(x) = A_1 \sin(x) + B_1 \cos(x) + A_2 \sin(2x) + B_2 \cos(2x)$ tais que f(1) = 1, f(2) = 2, f(3) = 3 e f(4) = 4.

Capítulo 5

Solução de sistemas de equações não lineares

O método de Newton aplicado a encontrar a raiz x^* da função y=f(x) estudado na primeira área de nossa disciplina consiste em um processo iterativo. Em cada passo deste processo, dispomos

de uma aproximação $x^{(k)}$ para x^* e construímos uma aproximação $x^{(k+1)}$. Cada passo do método de Newton envolve os seguintes procedimentos:

• Linearização da função f(x) no ponto $x^{(k)}$:

$$f(x) = f(x^{(k)}) + (x - x^{(k)})f'(x^{(k)}) + O(|x - x^{(k)}|^2)$$

• A aproximação $x^{(k+1)}$ é definida como o valor de x em que a linearização $f(x^{(k)}) + (x - x^{(k)})f'(x^{(k)})$ passa por zero.

Observação: $y = f(x^{(k)}) + (x - x^{(k)})f'(x^{(k)})$ é a equação da reta que tangencia a curva y = f(x) no ponto $(x^{(k)}, f(x^{(k)}))$. Queremos, agora, generalizar o método de Newton a fim de resolver problemas de várias equações e várias incógnitas, ou seja, encontrar $x_1, x_2, \ldots x_n$ que satisfazem as seguinte equações:

$$f_1(x_1, x_2, \dots, x_n) = 0$$

$$f_2(x_1, x_2, \dots, x_n) = 0$$

$$\vdots$$

$$f_n(x_1, x_2, \dots, x_n) = 0$$

Podemos escrever este problema na forma vetorial definindo o vetor $x=[x_1,x_2,\ldots,x_n]^T$ e a função vetorial

$$F(x) = \begin{bmatrix} f_1(x_1, x_2, \dots, x_n) \\ f_2(x_1, x_2, \dots, x_n) \\ \vdots \\ f_n(x_1, x_2, \dots, x_n) \end{bmatrix}$$

Exemplo 70. Suponha que queiramos resolver numericamente os

seguinte sistema de duas equações e duas incógnitas:

$$\frac{x_1^2}{3} + x_2^2 = 1$$
$$x_1^2 + \frac{x_2^2}{4} = 1$$

Então definimos

$$F(x) = \begin{bmatrix} \frac{x_1^2}{3} + x_2^2 - 1\\ \\ x_1^2 + \frac{x_2^2}{4} - 1 \end{bmatrix}$$

Neste momento, dispomos de um problema na forma F(x) = 0 e precisamos desenvolver uma técnica para linearizar a função F(x). Para tal, precisamos de alguns conceitos do Cálculo II.

Observe que $F(x) - F(x^{(0)})$ pode ser escrito como

$$F(x) - F(x^{(0)}) = \begin{bmatrix} f_1(x_1, x_2, \dots, x_n) - f_1(x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)}) \\ f_2(x_1, x_2, \dots, x_n) - f_2(x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)}) \\ \vdots \\ f_n(x_1, x_2, \dots, x_n) - f_n(x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)}) \end{bmatrix}$$

Usamos a regra da cadeia

$$df_i = \frac{\partial f_i}{\partial x_1} dx_1 + \frac{\partial f_i}{\partial x_2} dx_2 + \dots + \frac{\partial f_i}{\partial x_n} dx_n = \sum_{j=1}^n \frac{\partial f_i}{\partial x_j} dx_j$$

e aproximamos as diferenças por derivadas parciais:

$$f_i(x_1, x_2, \dots, x_n) - f_i(x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)}) \approx \sum_{i=1}^n \frac{\partial f_i}{\partial x_i} \left(x_j - x_j^{(0)} \right)$$

Portanto,

$$F(x) - F(x^{(0)}) \approx \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix} \begin{bmatrix} x_1 - x_1^{(0)} \\ x_2 - x_2^{(0)} \\ \vdots \\ x_n - x_n^{(0)} \end{bmatrix}$$
(5.1)

Definimos então a matriz jacobiana por

	$\frac{\partial f_2}{\partial x_1}$	$\frac{\partial f_2}{\partial x_2}$		$\frac{\partial f_2}{\partial x_n}$					
$J_F = \frac{\partial(f_1, f_2, \dots, f_n)}{\partial(x_1, x_2, \dots, x_n)} =$:	÷	٠.	:					
				$\frac{\partial f_n}{\partial x_n}$					
A matriz jacobiana de uma função ou simplesmente, o Jac									

A matriz jacobiana de uma função ou simplesmente, o Jacobiano de uma função F(x) é a matriz formada pelas suas derivadas parciais:

 $\begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \end{bmatrix}$

$$(J_F)_{ij} = \frac{\partial f_i}{\partial x_i}$$

Nestes termos podemos reescrever (5.1) como

$$F(x) \approx F(x^{(0)}) + J_F(x^{(0)})(x - x^{(0)})$$

Esta expressão é chama de linearização de F(x) no ponto $x^{(0)}$ e generaliza a linearização em uma dimensão dada por $f(x) \approx f(x^{(0)}) + f'(x^{(0)})(x-x^{(0)})$

5.1 O método de Newton para sistemas

Vamos agora construir o método de Newton-Raphson, ou seja, o método de Newton generalizado para sistemas. Assumimos, portanto, que a função F(x) é diferenciável e que existe um ponto x^* tal que $F(x^*)=0$. Seja $x^{(k)}$ uma aproximação para x^* , queremos construir uma nova aproximação $x^{(k+1)}$ através da linearização de F(x) no ponto $x^{(k)}$.

• Linearização da função F(x) no ponto $x^{(k)}$:

$$F(x) = F(x^{(k)}) + J_F(x^{(k)}) (x - x^{(k)}) + O(||x - x^{(k)}||^2)$$

• A aproximação $x^{(k)}$ é definida como o ponto x em que a linearização $F(x^{(k)}) + J_F(x^{(k)})(x - x^{(k)})$ é nula, ou seja:

$$F(x^{(k)}) + J_F(x^{(k)})(x^{(k+1)} - x^{(k)}) = 0$$

Supondo que a matriz jacobina seja inversível no ponto $x^{(k)}$, temos:

$$J_{F}(x^{(k)})(x^{(k+1)} - x^{(k)}) = -F(x^{(k)})$$

$$x^{(k+1)} - x^{(k)} = -J_{F}^{-1}(x^{(k)})F(x^{(k)})$$

$$x^{(k+1)} = x^{(k)} - J_{F}^{-1}(x^{(k)})F(x^{(k)})$$

Desta forma, o método iterativo de Newton-Raphson para encontrar as raízes de F(x)=0 é dado por:

$$\begin{cases} x^{(k+1)} = x^{(k)} - J_F^{-1}(x^{(k)}) F(x^{(k)}), & n \ge 0 \\ x^{(0)} = \text{dado inicial} \end{cases}$$

Observação 16. Usamos subíndices para indicar o elemento de um vetor e super-índices para indicar o passo da iteração. Assim $x^{(k)}$ se refere à iteração k e $x_i^{(k)}$ se refere à componente i no vetor $x^{(k)}$.

Observação 17. A notação $J_F^{-1}\left(x^{(k)}\right)$ enfatiza que a jacobiana deve ser calculada a cada passo.

Observação18. Podemos definir o passo $\Delta^{(k)}$ como

$$\Delta^{(k)} = x^{(k+1)} - x^{(k)}$$

Assim, $\Delta^{(k)} = -J_F^{-1}(x^{(k)}) F(x^{(k)})$, ou seja, $\Delta^{(k)}$ resolve o problema linear:

$$J_F\left(x^{(k)}\right)\Delta^{(k)} = -F(x^{(k)})$$

Em geral, é menos custoso resolver o sistema acima do que calcular o inverso da jacobiana e multiplicar pelo vetor $F(x^{(k)})$.

Exemplo 71. Retornamos ao nosso exemplo inicial, isto é, resolver numericamente os seguinte sistema não-linear:

$$\frac{x_1^2}{3} + x_2^2 = 1$$
$$x_1^2 + \frac{x_2^2}{4} = 1$$

Para tal, definimos a função F(x):

$$F(x) = \begin{bmatrix} \frac{x_1^2}{3} + x_2^2 - 1\\ x_1^2 + \frac{x_2^2}{4} - 1 \end{bmatrix}$$

cuja jacobiana é:

$$J_F = \begin{bmatrix} \frac{2x_1}{3} & 2x_2\\ 2x_1 & \frac{x_2}{2} \end{bmatrix}$$

Faremos a implementação numérica no Scilab. Para tal definimos as funções que implementarão F(x) e a $J_F(x)$

function
$$y=F(x)$$

 $y(1)=x(1)^2/3+x(2)^2-1$
 $y(2)=x(1)^2+x(2)^2/4-1$
endfunction

```
Alternativamente, estas funções poderiam ser escritas como function y=F(x) y=[x(1)^2/3+x(2)^2-1; x(1)^2+x(2)^2/4-1] endfunction y=JF(x) y=[2*x(1)/3 2*x(2); 2*x(1) x(2)/2] endfunction
```

Desta forma, se x é uma aproximação para a raiz, pode-se calcular

a próxima aproximação através dos comandos:

function y=JF(x)

endfunction

y(1,1)=2*x(1)/3 y(1,2)=2*x(2) y(2,1)=2*x(1)y(2,2)=x(2)/2 $delta=-JF(x)\F(x)$ x=x+delta

Ou simplesmente

$$x=x-JF(x)\F(x)$$

Observe que as soluções exatas desse sistema são $\left(\pm\sqrt{\frac{9}{11}},\pm\sqrt{\frac{8}{11}}\right)$.

 $\bf Exemplo~72.$ Encontre uma aproximação para a solução do sistema

$$x_1^2 = \cos(x_1 x_2) + 1$$

 $\sin(x_2) = 2\cos(x_1)$

que fica próxima ao ponto $x_1 = 1.5$ e $x_2 = .5$. **Resp:** (1,3468109, 0,4603195).

Solução. Vamos, aqui, dar as principais ideias para se obter a solução. Começamos definindo a função F(x) por:

$$F(x) = \begin{bmatrix} x_1^2 - \cos(x_1 x_2) - 1\\ \sin(x_2) - 2\cos(x_1) \end{bmatrix}$$

cuja jacobiana é:

$$J_F(x) = \begin{bmatrix} 2x_1 + x_2 \sin(x_1 x_2) & x_1 \sin(x_1 x_2) \\ 2\sin(x_1) & \cos(x_2) \end{bmatrix}$$

No Scilab, podemos implementá-las com o seguinte código:

```
function y=F(x)

y(1) = x(1)^2-cos(x(1)*x(2))-1

y(2) = sin(x(2))-2*cos(x(1))

endfunction
```

```
function y=JF(x)

y(1,1) = 2*x(1)+x(2)*sin(x(1)*x(2))

y(1,2) = x(1)*sin(x(1)*x(2))

y(2,1) = 2*sin(x(1))

y(2,2) = cos(x(2))

endfunction
```

E agora, basta iterar:

$$x=[1.5; .5]$$

 $x=x-JF(x)\backslash F(x)$ (5 vezes)

5.1.1 Código Scilab: Newton para Sistemas

```
function [x] = newton(F, JF, x0, TOL, N)
  x = x0
  k = 1
  //iteracoes
  while (k \le N)
    //iteracao de Newton
    delta = -inv(JF(x))*F(x)
    x = x + delta
    //criterio de parada
    if (norm(delta,'inf')<TOL) then
      return x
    end
    k = k+1
  end
  error('Num. de iter. max. atingido!')
endfunction
```

Exercícios

E 5.1.1. Encontre uma aproximação numérica para o seguinte problema não-linear de três equações e três incógnitas:

$$2x_1 - x_2 = \cos(x_1)$$

$$-x_1 + 2x_2 - x_3 = \cos(x_2)$$

$$-x_2 + x_3 = \cos(x_3)$$

Partindo das seguintes aproximações iniciais:

- a) $x^{(0)} = [1, 1, 1]^T$
- b) $x^{(0)} = [-0.5, -2, -3]^T$
- c) $x^{(0)} = [-2, -3, -4]^T$
- $\mathbf{d}) \ x^{(0)} = [0, \, 0, \, 0]^T$

5.2 Linearização de uma função de várias variáveis

5.2.1 O gradiente

Considere primeiramente uma função $f: \mathbb{R}^n \to \mathbb{R}$, ou seja, uma função que mapeia n variáveis reais em um único real, por exemplo:

$$f(x) = x_1^2 + x_2^2/4$$

Para construirmos a linearização, fixemos uma direção no espaço \mathbb{R}^n , ou seja um vetor v:

$$v = [v_1, v_2, \cdots, v_n]^T$$

Queremos estudar como a função f(x) varia quando "andamos" na direção v a partir do ponto $x^{(0)}$. Para tal, inserimos um parâmetro real pequeno h, dizemos que

$$x = x^{(0)} + hv$$

e definimos a função auxiliar

$$g(h) = f(x^0 + hv).$$

Observamos que a função g(h) é uma função de \mathbb{R} em \mathbb{R} . A linearização de g(h) em torno de h=0 é dada por

$$g(h) = g(0) + hg'(0) + O(h^2)$$

Observamos que $g(h) = f(x^{(0)} + hv)$ e $g(0) = f(x^{(0)})$. Precisamos calcular g'(0):

 $\frac{dx_j}{dh} = v_j$

 $g'(h) = \frac{d}{dh}g(h) = \frac{d}{dh}f(x^{(0)} + hv)$

$$\frac{d}{dh}f(x^{(0)} + hv) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \frac{dx_j}{dh}$$

Observamos que $x_i = x_i^{(0)} + hv_i$, portanto

Observamos que
$$x_j = x_j^2 + nv_j$$
, portanto

Assim:

$$\frac{d}{dh}f(x^{(0)} + hv) = \sum_{j=1}^{n} \frac{\partial f}{\partial x_j} v_j$$

Observamos que esta expressão pode ser vista como o produto interno entre o gradiente de f e o vetor v:

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix} \qquad v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

Na notação cálculo vetorial escrevemos este produto interno como $\nabla f \cdot v = v \cdot \nabla f$ na notação de produto matricial, escrevemos $(\nabla f)^T v = v^T \nabla f$. Esta quantidade é conhecida como **derivada direcional** de f no ponto $x^{(0)}$ na direção v, sobretudo quando ||v|| = 1.

Podemos escrever a linearização $g(h) = g(0) + hg'(0) + O(h^2)$ como

$$f(x^{(0)} + hv) = f(x^{(0)}) + h\nabla^T f(x^{(0)}) v + O(h^2)$$

Finalmente, escrevemos $x = x^{(0)} + hv$, ou seja, $hv = x - x^{(0)}$

$$f(x) = f(x^{(0)}) + \nabla^T f(x^{(0)}) (x - x^{(0)}) + O(\|x - x^{(0)}\|^2)$$

Observação 19. Observe a semelhança com a linearização no caso em uma dimensão. A notação $\nabla^T f(x^{(0)})$ é o transposto do vetor gradiente associado à função f(x) no ponto $x^{(0)}$:

$$\nabla^T f(x^{(0)}) = \left[\frac{\partial f\left(x^{(0)}\right)}{\partial x_1}, \ \frac{\partial f\left(x^{(0)}\right)}{\partial x_2}, \ \cdots, \frac{\partial f\left(x^{(0)}\right)}{\partial x_n} \right]$$

5.2.2 A matriz jacobiana

Interessamo-nos, agora, pela linearização da função $F: \mathbb{R}^n \to \mathbb{R}^n$. Lembramos que F(x) pode ser escrita como um vetor de funções $f_i: \mathbb{R}^{\ltimes} \to \mathbb{R}$:

$$F(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_n(x) \end{bmatrix}$$

Linearizando cada uma das funções f_j , temos:

$$F(x) = \begin{bmatrix} f_1(x^{(0)}) + \nabla^T f_1(x^{(0)}) (x - x^{(0)}) + O(\|x - x^{(0)}\|^2) \\ f_2(x^{(0)}) + \nabla^T f_2(x^{(0)}) (x - x^{(0)}) + O(\|x - x^{(0)}\|^2) \\ \vdots \\ f_n(x^{(0)}) + \nabla^T f_n(x^{(0)}) (x - x^{(0)}) + O(\|x - x^{(0)}\|^2) \end{bmatrix}$$
Vetor coluna

ou, equivalentemente:

$$F(x) = \begin{bmatrix} f_1\left(x^{(0)}\right) \\ f_2\left(x^{(0)}\right) \\ \vdots \\ f_n\left(x^{(0)}\right) \end{bmatrix} + \begin{bmatrix} \nabla^T f_1(x^{(0)}) \\ \nabla^T f_2(x^{(0)}) \\ \vdots \\ \nabla^T f_n(x^{(0)}) \end{bmatrix} \underbrace{\begin{pmatrix} x - x^{(0)} \end{pmatrix}}_{\text{Vetor coluna}} + O(\|x - x^{(0)}\|_{\text{Vetor coluna}})$$

$$\nabla^T f_n(x^{(0)}) \end{bmatrix} \underbrace{\begin{pmatrix} x - x^{(0)} \end{pmatrix}}_{\text{Vetor coluna}} + O(\|x - x^{(0)}\|_{\text{Vetor coluna}})$$
Podemos escrever a linearização de $F(x)$ na seguinte forma mais

Podemos escrever a linearização de F(x) na seguinte forma mais enxuta:

$$F(x) = F\left(x^{(0)}\right) + J_F(x^{(0)})\left(x - x^{(0)}\right) + O\left(\left\|x - x^{(0)}\right\|^2\right)$$

A matriz jacobiana J_F é matriz cujas linhas são os gradientes transpostos de f_j , ou seja:

$$J_F = \frac{\partial (f_1, f_2, \dots, f_n)}{\partial (x_1, x_2, \dots, x_n)} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \dots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$

A matriz jacobiana de uma função ou simplesmente, o Jacobiano de

uma função F(x) é a matriz formada pelas suas derivadas parciais:

$$(J_F)_{ij} = \frac{\partial f_i}{\partial x_i}$$

Exemplo 73. Calcule a matriz jacobiana da função

$$F(x) = \begin{bmatrix} \frac{x_1^2}{3} + x_2^2 - 1\\ \\ x_1^2 + \frac{x_2^2}{4} - 1 \end{bmatrix}$$

$$J_F = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ & & \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} \frac{2x_1}{3} & 2x_2 \\ & & \\ 2x_1 & \frac{x_2}{2} \end{bmatrix}$$

Capítulo 6

Interpolação

Neste capítulo, discutimos sobre problemas de **interpolação**. Mais precisamente, dado um conjunto com n pontos $\{(x_i, y_i) \in \mathbb{R}^2\}_{i=1}^n$ e uma família de funções $\mathcal{F} = \{f : \mathbb{R} \to \mathbb{R}; y = f(x)\}$, o problema de interpolação consiste em encontrar uma função $f \in \mathbb{F}$ tal que:

$$f(x_i) = y_i, \quad i = 1, 2, \dots, n.$$

Chamamos uma tal f(x) de **função interpoladora** dos pontos dados. Ou ainda, dizemos que f(x) interpola os pontos dados.

Exemplo 74. Sejam dados o conjunto de pontos $\{(1,1),(2,2)\}$ e a família de funções $\mathcal{F} = \{f(x) = a + bx; a,b \in \mathbb{R}\}$. Para que uma f(x) na família seja a função interpoladora do conjunto de pontos dados, precisamos que

$$a + bx_1 = y_1$$
 i.e. $a + b = 1$
 $a + bx_2 = y_2$ $a + 2b = 2$

o que nos fornece a=0 e b=1. Então, a função interpoladora é f(x)=x. Os pontos e a reta interpolação estão esboçados na Figura 7.1.

Um problema de interpolação cuja a família de funções constitui-se de polinômios é chamado de problema de interpolação polinomial.

Figura 6.1: Exemplo de interpolação de dois pontos por uma reta, veja o Exemplo 74.

6.1 Interpolação polinomial

Interpolação polinomial é um caso particular do problema geral de interpolação. Nesse caso, a família de funções é constituída de polinômios.

Teorema 9. Seja $\{(x_i,y_i)\}_{i=1}^n$ um conjunto de n pares ordenados de números reais tais que $x_i \neq x_j$ se $i \neq j$, então existe um único polinômio p(x) de grau n-1 ou inferior que passa por todos os pontos dados, isto é, $p(x_i) = y_i, i = 1, \ldots, n$.

Demonstração. Observe que o problema de encontrar os coeficientes $a_1,\,a_2,\ldots,\,a_n$ do polinômio

$$p(x) = a_1 + a_2 x + a_3 x^2 + \dots + a_n x^{n-1} = \sum_{k=1}^{n} a_k x^{k-1}$$

tal que $p(x_i) = y_i$ é equivalente a resolver o sistema linear com n

equações e n incógnitas dado por

$$a_{1} + a_{2}x_{1} + a_{3}x_{1}^{2} + \dots + a_{n}x_{1}^{n-1} = y_{1},$$

$$a_{1} + a_{2}x_{2} + a_{3}x_{2}^{2} + \dots + a_{n}x_{2}^{n-1} = y_{2},$$

$$\vdots$$

$$a_{1} + a_{2}x_{n} + a_{3}x_{n}^{2} + \dots + a_{n}x_{n}^{n-1} = y_{n}.$$

O qual pode ser escrito na forma matricial como

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ a_3 \\ \vdots \\ y_n \end{bmatrix}$$

A matriz envolvida é uma matriz de Vandermonde de ordem n cujo

determinante é dado por

$$\prod_{1 \le i < j \le n} (x_j - x_i)$$

É fácil ver que se as abscissas são diferentes dois a dois, então o determinante é não nulo. Disto decorre que a matriz envolvida é inversível e,portanto, o sistema possui uma solução e esta solução é única.

Exemplo 75. Encontre o polinômio da forma $p(x) = a_1 + a_2 x + a_3 x^2 + a_4 x^3$ que passa pelos pontos

Para encontrar os coeficientes devemos resolver o sistema linear

$$a_1 = 1$$

$$a_1 + a_2 + a_3 + a_4 = 2$$

$$a_1 + 2a_2 + 4a_3 + 8a_4 = 4$$

$$a_1 + 3a_2 + 9a_3 + 27a_4 = 8$$

cuja solução é $a_1=1,\ a_2=\frac{5}{6},\ a_3=0$ e $a_4=\frac{1}{6}$. Portanto

$$p(x) = 1 + \frac{5}{6}x + \frac{1}{6}x^3$$

Esta abordagem direta que fizemos ao calcular os coeficientes do po-

linômio na base canônica se mostra ineficiente quando o número de pontos é grande e quando existe grande discrepância nas abscissas. Neste caso a matriz de Vandermonde é mal condicionada (ver [6]), acarretando um aumento dos erros de arredondamento na solução do sistema.

Uma maneira de resolver este problema é escrever o polinômio em uma base que produza um sistema bem condicionado.

6.2 Diferenças divididas de Newton

Dado um conjunto com n pontos $\{(x_i, y_i)\}_{i=1}^n$, o **método das diferenças divididas de Newton** consiste em construir o polinômio interpolador da forma

$$p(x) = a_1 + a_2(x - x_1) + a_3(x - x_1)(x - x_2) + \cdots + a_n(x - x_1)(x - x_2) \cdots (x - x_{n-1}).$$

Como $p(x_i) = y_i$, i = 1, 2, ..., n, os coeficientes a_i satisfazem o seguinte sistema triangular inferior:

$$a_{1} = y_{1}$$

$$a_{1} + a_{2}(x_{2} - x_{1}) = y_{2}$$

$$a_{1} + a_{2}(x_{3} - x_{1}) + a_{3}(x_{3} - x_{1})(x_{3} - x_{2}) = y_{3}$$

$$\vdots$$

$$a_{1} + a_{2}(x_{n} - x_{1}) + \dots + a_{n}(x_{n} - x_{1}) \cdots (x_{n} - x_{n-1}) = y_{n}$$

Resolvendo de cima para baixo, obtemos

$$a_{1} = y_{1}$$

$$a_{2} = \frac{y_{2} - a_{1}}{x_{2} - x_{1}} = \frac{y_{2} - y_{1}}{x_{2} - x_{1}}$$

$$a_{3} = \frac{y_{3} - a_{2}(x_{3} - x_{1}) - a_{1}}{(x_{3} - x_{1})(x_{3} - x_{2})} = \frac{\frac{y_{3} - y_{2}}{(x_{3} - x_{2})} - \frac{y_{2} - y_{1}}{(x_{2} - x_{1})}}{(x_{3} - x_{1})}$$
...

Note que os coeficientes são obtidos por diferenças das ordenadas divididas por diferenças das abscissas dos pontos dados. Para vermos

isso mais claramente, introduzimos a seguinte notação:

$$f[x_j] := y_j$$

$$f[x_j, x_{j+1}] := \frac{f[x_{j+1}] - f[x_j]}{x_{j+1} - x_j}$$

$$f[x_j, x_{j+1}, x_{j+2}] := \frac{f[x_{j+1}, x_{j+2}] - f[x_j, x_{j+1}]}{x_{j+2} - x_j}$$

$$\vdots$$

$$f[x_j, x_{j+1}, \dots, x_{j+k}] := \frac{f[x_{j+1}, x_{j+2}, \dots, x_{j+k}] - f[x_j, x_{j+1}, \dots, x_{j+k}]}{x_{j+k} - x_j}$$

Chamamos $f[x_j]$ de diferença dividida de ordem zero (ou primeira diferença dividida), $f[x_i,x_j+1]$ de diferença dividida de ordem 1 (ou segunda diferença dividida) e assim por diante.

Uma inspeção cuidadosa dos coeficientes obtidos em (6.2) nos mostra que

$$a_k = f[x_1, x_2, \dots, x_k]$$

Isto nos permite esquematizar o método conforme apresentado na Tabela 6.1.

Exemplo 76. Use o método de diferenças divididas para encontrar o polinômio que passe pelos pontos (-1,3),(0,1),(1,3),(3,43).

j	x_j	$f[x_j]$	$f[x_{j-1}, x_j]$	$f[x_{j-2}, x_{j-1}, x_j]$
1	x_1	$f[x_1]$		
			$f[x_1,x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$ $f[x_2,x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$	
2	x_2	$f[x_2]$		$m{f}[m{x_1,}m{x_2,}m{x_3}] = rac{f[x_2,x_3] - f[x_1,x_2]}{x_3 - x_1}$
			$f[x_2,x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$	
3	x_2	$f[x_2]$		

Tabela 6.1: Esquema de diferenças divididas para um conjunto com três pontos $\{(x_i,y_i)\}_{i=1}^3$.

Solução. Usando o esquema apresentado na Tabela 6.1, obtemos

Portanto, o polinômio interpolador do conjunto de pontos dados é p(x) = 3 - 2(x+1) + 2(x+1)x + (x+1)x(x-1)

ou, equivalentemente, $p(x) = x^3 + 2x^2 - x + 1$.

Exercícios

E 6.2.1. Considere o seguinte conjunto de pontos:

$$(-2, -47), (0, -3), (1,4)(2,41)$$

. Encontre o polinômio interpolador usando os métodos vistos.

E 6.2.2. No Scilab, faça um gráfico com os pontos e o polinômio interpolador do Exercício 6.2.1.

6.3 Polinômios de Lagrange

Outra maneira clássica de resolver o problema da interpolação polinomial é através dos polinômios de Lagrange. Dado um conjunto de pontos $\{x_j\}_{j=1}^n$ distintos dois a dois, definimos os polinômios de Lagrange como os polinômios de grau n-1 que satisfazem

$$L_k(x_j) = \begin{cases} 1, & \text{se } k = j \\ 0, & \text{se } k \neq j \end{cases}$$

Assim, o polinômio de grau n-1 que interpola os pontos dados, tais $p(x_j)=y_j, j=1,\dots,n$ é dado por

$$p(x) = y_1 L_1(x) + y_2 L_2(x) + \dots + y_n L_n(x) = \sum_{k=1}^n y_k L_k(x)$$

Para construir os polinômios de Lagrange, podemos analisar a sua

forma fatorada, ou seja:

$$L_k(x) = c_k \prod_{\substack{j=1\\j\neq i}}^n (x - x_j)$$

onde o coeficiente c_k é obtido da condição $L_k(x_k) = 1$:

$$L_k(x_k) = c_k \prod_{\substack{j=1\\j\neq i}}^n (x_k - x_j) \Longrightarrow c_k = \frac{1}{\prod_{\substack{j=1\\j\neq i}}^n (x_k - x_j)}$$

Portanto,

$$L_k(x) = \prod_{\substack{j=1\\j\neq i}}^n \frac{(x-x_j)}{(x_k-x_j)}$$

Observação 20. O problema de interpolação quando escrito usando como base os polinômios de Lagrange produz um sistema linear diagonal.

Exemplo 77. Encontre o polinômio da forma $p(x) = a_1 + a_2 x + a_3 x^2 + a_4 x^3$ que passa pelos pontos

Escrevemos:

$$L_{1}(x) = \frac{(x-1)(x-2)(x-3)}{(0-1)(0-2)(0-3)} = -\frac{1}{6}x^{3} + x^{2} - \frac{11}{6}x + 1$$

$$L_{2}(x) = \frac{x(x-2)(x-3)}{1(1-2)(1-3)} = \frac{1}{2}x^{3} - \frac{5}{2}x^{2} + 3x$$

$$L_{3}(x) = \frac{x(x-1)(x-3)}{2(2-1)(2-3)} = -\frac{1}{2}x^{3} + 2x^{2} - \frac{3}{2}x$$

$$L_{4}(x) = \frac{x(x-1)(x-2)}{3(3-1)(3-2)} = \frac{1}{6}x^{3} - \frac{1}{2}x^{2} + \frac{1}{3}x$$
Assim temos:

Assim temos:

$$P(x) = 0 \cdot L_1(x) + 1 \cdot L_2(x) + 4 \cdot L_3(x) + 9 \cdot L_4(x) = x^2$$

Exemplo 78. Encontre o polinômio da forma $p(x) = a_1 + a_2 x + a_3 x^2 + a_4 x^3$ que passa pelos pontos

Como as abscissas são as mesmas do exemplo anterior, podemos utilizar os mesmos polinômios de Lagrange, assim temos:

utilizar os mesmos polinomios de Lagrange, assim temos:
$$p(x) = 0 \cdot L_1(x) + 1 \cdot L_2(x) + 0 \cdot L_3(x) + 1 \cdot L_4(x) = \frac{2}{3}x^3 - 3x^2 + \frac{10}{3}x$$

6.4 Aproximação de funções reais por polinômios interpoladores

Teorema 10. Dados n+1 pontos distintos, x_0, x_1, \dots, x_n , dentro de um intervalo [a,b] e uma função f com n+1 derivadas contínuas nesse intervalo $(f \in C^{n+1}[a,b])$, então para cada x em [a,b], existe um número $\xi(x)$ em (a,b) tal que

[a,b], existe um número
$$\xi(x)$$
 em (a,b) tal que
$$f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n),$$

onde P(x) é o polinômio interpolador. Em especial, pode-se dizer que

dizer que
$$|f(x) - P(x)| \le \frac{M}{(n+1)!} |(x - x_0)(x - x_1) \cdots (x - x_n)|,$$

 $M = \max_{x \in \mathcal{X}} |f^{(n+1)}(\xi(x))|$

onde

de grau 2 tal que $P(0) = \cos(0) = 1$, $P(\frac{1}{2}) = \cos(\frac{1}{2})$ e $P(1) = \cos(1)$. Use a fórmula de Lagrange para encontrar P(x). Encontre o erro máximo que se assume ao aproximar o valor de $\cos(x)$ pelo de P(x)

Exemplo 79. Considere a função $f(x) = \cos(x)$ e o polinômio P(x)

no intervalo [0,1]. Trace os gráficos de f(x) e P(x) no intervalo [0,1] no mesmo plano cartesiano e, depois, trace o gráfico da diferença $\cos(x) - P(x)$. Encontre o erro efetivo máximo $|\cos(x) - P(x)|$.

$$P(x) = 1 \frac{\left(x - \frac{1}{2}\right)(x - 1)}{\left(0 - \frac{1}{2}\right)(0 - 1)} + \cos\left(\frac{1}{2}\right) \frac{(x - 0)(x - 1)}{\left(\frac{1}{2} - 0\right)\left(\frac{1}{2} - 1\right)} + \cos(1) \frac{(x - 0)}{(1 - 0)}$$

$$\approx 1 - 0.0299720583066x - 0.4297256358252x^{2}$$

L1=poly([.5 1],'x');L1=L1/horner(L1,0)
L2=poly([0 1] 'x'):L2=L2/horner(L2,0.5)

L2=poly([0 1],'x');L2=L2/horner(L2,0.5) L3=poly([0 .5],'x');L3=L3/horner(L3,1) P=L1+cos(.5)*L2+cos(1)*L3

x=[0:.05:1]

plot(x,cos)
plot(x,horner(P,x),'red')
plot(x,horner(P,x)-cos(x))

 $\sin(1) < 0.85 \text{ e}$ $\max_{x \in [0,1]} \left| x \left(x - \frac{1}{2} \right) (x - 1) \right|$

O polinômio de grau três
$$Q(x) = x\left(x - \frac{1}{2}\right)(x - 1)$$
 tem um mínimo (negativo) em $x_1 = \frac{3+\sqrt{3}}{6}$ e um máximo (positivo) em $x_2 = \frac{3-\sqrt{3}}{6}$. Logo:

Para encontrar o erro máximo, precisamos estimar $|f'''(x)| = |\sin(x)|$

$$\max_{x \in [0,1]} \left| x \left(x - \frac{1}{2} \right) (x - 1) \right| \le \max\{ |Q(x_1)|, |Q(x_2)| \} \approx 0.0481125.$$

Portanto:

$$|f(x) - P(x)| < \frac{0.85}{21} \cdot 0.0481125 \approx 0.0068159 < 7 \cdot 10^{-3}$$

|P(x)-cos(x)|. O mínimo (negativo) de P(x)-cos(x) acontece em $x_1=4,29\cdot 10^{-3}$ e o máximo (positivo) acontece em $x_2=3,29\cdot 10^{-3}$. Portanto, o erro máximo efetivo é $4,29\cdot 10^{-3}$.

Para encontrar o erro efetivo máximo, basta encontrar o máximo de

gral
$$\int_0^1 f(x)dx$$
 pelo valor da integral do polinômio $P(x)$ que coincide com $f(x)$ nos pontos $x_0 = 0$, $x_1 = \frac{1}{2}$ e $x_2 = 1$. Use a fórmula de Lagrange para encontrar $P(x)$. Obtenha o valor de $\int_0^1 f(x)dx$ e encontre uma expressão para o erro de truncamento.

Exemplo 80. Considere o problema de aproximar o valor da inte-

O polinômio interpolador de f(x) é

$$P(x) = f(0)\frac{(x-\frac{1}{2})(x-1)}{(0-\frac{1}{2})(0-1)} + f\left(\frac{1}{2}\right)\frac{(x-0)(x-1)}{(\frac{1}{2}-0)(\frac{1}{2}-1)} + f(1)\frac{(x-0)(x-1)}{(1-0)(x-1)} + f(1)\frac{(x-0)(x-1)}{(1-$$

 $= f(0)(2x^2 - 3x + 1) + f\left(\frac{1}{2}\right)(-4x^2 + 4x) + f(1)(2x^2 - x)$

e a integral de P(x) é:

$$\int_0^1 P(x)$$

 $\int_0^1 P(x)dx = \left[f(0) \left(\frac{2}{3} x^3 - \frac{3}{2} x^2 + x \right) \right]_0^1 + \left[f\left(\frac{1}{2} \right) \left(-\frac{4}{3} x^3 + 2x^2 \right) \right]_0^1$

$$\int_{-1}^{1} D(x) dx =$$

+ $\left[f(1) \left(\frac{2}{3} x^3 - \frac{1}{2} x^2 \right) \right]^1$

 $=\frac{1}{6}f(0) + \frac{2}{3}f(\frac{1}{2}) + \frac{1}{6}f(1)$

 $= f(0)\left(\frac{2}{3} - \frac{3}{2} + 1\right) + f\left(\frac{1}{2}\right)\left(-\frac{4}{3} + 2\right) + f(1)\left(\frac{2}{3} - \frac{1}{2}\right)$

Para fazer a estimativa de erro usando o Teorema 10, e temos

$$\left| \int_{0}^{1} f(x)dx - \int_{0}^{1} P(x)dx \right| = \left| \int_{0}^{1} f(x) - P(x)dx \right|$$

$$\leq \int_{0}^{1} |f(x) - P(x)|dx$$

$$\leq \frac{M}{6} \int_{0}^{1} \left| x \left(x - \frac{1}{2} \right) (x - 1) \right| dx$$

$$= \frac{M}{6} \left[\int_{0}^{1/2} x \left(x - \frac{1}{2} \right) (x - 1) dx \right]$$

$$- \int_{1/2}^{1} x \left(x - \frac{1}{2} \right) (x - 1) dx$$

$$= \frac{M}{6} \left[\frac{1}{64} - \left(-\frac{1}{64} \right) \right] = \frac{M}{192}.$$

Lembramos que $M = \max_{x \in [0,1]} |f'''(x)|$.

Observação 21. Existem estimativas melhores para o erro de truncamento para este esquema de integração numérica. Veremos com mais detalhes tais esquemas na teoria de integração numérica.

Exemplo 81. Use o resultado do exemplo anterior para aproximar o valor das seguintes integrais:

$$a) \int_0^1 \ln(x+1) dx$$

b)
$$\int_0^1 e^{-x^2} dx$$

Solução. Usando a fórmula obtida, temos que

$$\int_0^1 \ln(x+1)dx \approx 0.39 \pm \frac{1}{96}$$
$$\int_0^1 e^{-x^2} dx \approx 0.75 \pm \frac{3.87}{192}$$

Exercícios

E 6.4.1. Use as mesmas técnicas usadas o resultado do Exemplo 80 para obter uma aproximação do valor de:

$$\int_0^1 f(x)dx$$

através do polinômio interpolador que coincide com f(x) nos pontos x = 0 e x = 1.

6.5 Interpolação linear segmentada

Considere o conjunto $(x_i,y_i)_{j=1}^n$ de n pontos. Assumiremos que $x_{i+1} > x_i$, ou seja, as abscissas são distintas e estão em ordem crescente. A função linear que interpola os pontos x_i e x_{i+1} no intervalo i é dada por

$$P_i(x) = y_i \frac{(x_{i+1} - x)}{(x_{i+1} - x_i)} + y_{i+1} \frac{(x - x_i)}{(x_{i+1} - x_i)}$$

O resultado da interpolação linear segmentada é a seguinte função contínua definida por partes no intervalo $[x_1,x_n]$:

$$f(x) = P_i(x), \quad x \in [x_i, x_{i+1}]$$

Exemplo 82. Construa uma função linear por partes que interpola os pontos (0,0), (1,4), (2,3), (3,0), (4,2), (5,0).

A função procurada pode ser construída da seguinte forma:

$$f(x) = \begin{cases} 0\frac{x-1}{0-1} + 1\frac{x-0}{1-0} & , 0 \le x < 1 \\ 4\frac{x-2}{1-2} + 3\frac{x-1}{2-1} & , 1 \le x < 2 \\ 3\frac{x-3}{2-3} + 0\frac{x-2}{3-2} & , 2 \le x \le 3 \end{cases}$$

Simplificando, obtemos:

$$f(x) = \begin{cases} x & , 0 \le x < 1 \\ -x + 5 & , 1 \le x < 2 \\ -3x + 9 & , 2 \le x \le 3 \end{cases}$$

A Figura 6.2 é um esboço da função f(x) obtida. Ela foi gerada no Scilab usando os comandos:

```
//pontos fornecidos
xi = [0;1;2;3;4;5]
```

```
yi = [0;4;3;0;2;0]
//numero de pontos
n = 6
//funcao interpoladora
function [y] = f(x)
  for i=1:n-2
    if ((x>=xi(i)) & (x<xi(i+1))) then
      y = yi(i)*(x-xi(i+1))/(xi(i) - xi(i+1)) ...
          + yi(i+1)*(x-xi(i))/(xi(i+1) - xi(i));
    end
  end
  if ((x>=xi(n-1)) & (x<=xi(n))) then
    y = yi(n-1)*(x-xi(n))/(xi(n-1) - xi(n)) ...
        + yi(n)*(x-xi(n-1))/(xi(n) - xi(n-1));
  end
endfunction
//graficando
```

```
xx = linspace(xi(1),xi(n),500)';
clear yy
for i=1:max(size(xx))
  yy(i) = f(xx(i))
end
```

plot(xi,yi,'r.',xx,yy,'b-')

Figura 6.2: Interpolação linear segmentada.

6.6 Interpolação cúbica segmentada - spl

Dado um conjunto de n pontos $(x_j,y_j)_{j=1}^n$ tais que $x_{j+1} > x_j$, ou seja, as abscissas são distintas e estão em ordem crescente; um spline cúbico que interpola estes pontos é uma função s(x) com as seguintes propriedades:

i Em cada segmento
$$[x_j, x_{j+1}], j = 1, 2, \dots n-1$$
 $s(x)$ é um polinômio cúbico.

ii para cada ponto,
$$s(x_j) = y_j$$
, i.e., o spline interpola os pontos dados.

iii $s(x) \in \mathbb{C}^2$, i.e., é função duas vezes continuamente diferenciável.

Da primeira hipótese, escrevemos

$$s(x) = s_j(x), x \in [x_j, x_{j+1}], \ j = 1, \dots, n-1$$

$$s_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$$

O problema agora consiste em obter os 4 coeficientes de cada um desses n-1 polinômios cúbicos.

Veremos que a simples definição de spline produz 4n-6 equações linearmente independentes:

$$s_j(x_j) = y_j,$$
 $j = 1, ..., n-1$
 $s_j(x_{j+1}) = y_{j+1},$ $j = 1, ..., n-1$
 $s'(x_{j+1}) = s'(x_{j+1}),$ $j = 1, ..., n-2$

 $s'_{i}(x_{i+1}) = s'_{i+1}(x_{i+1}), \quad j = 1, \dots, n-2$ $s_i''(x_{i+1}) = s_{i+1}''(x_{i+1}), \quad j = 1, \dots, n-2$

$$s''_{j}(x_{j+1}) = s''_{j+1}(x_{j+1}), \quad j = 1, \dots, n-2$$

Como

$$s'_{j}(x) = b_{j} + 2c_{j}(x - x_{j}) + 3d_{j}(x - x_{j})^{2}$$
(6.1)

$$s_j(x_{j+1}) = s_{j+1}(x_{j+1}), \quad j = 1, \dots, n-2$$

Como

e
$$s_i''(x) = 2c_i + 6d_i(x - x_i), \tag{6.2}$$

 $a_i = y_i$

temos, para $j = 1, \ldots, n-1$, as seguintes equações

$$a_{j} + b_{j}(x_{j+1} - x_{j}) + c_{j}(x_{j+1} - x_{j})^{2} + d_{j}(x_{j+1} - x_{j})^{3} = y_{j+1},$$

$$b_{j} + 2c_{j}(x_{j+1} - x_{j}) + 3d_{j}(x_{j+1} - x_{j})^{2} = b_{j+1},$$

$$c_{j} + 3d_{j}(x_{j+1} - x_{j}) = c_{j+1},$$

Por simplicidade, definimos

to is simplicitate, definitions
$$h_j=x_{j+1}-x_j$$
 e temos
$$a_j=y_j,$$

$$a_j+b_jh_j+c_jh_j^2+d_jh_j^3=y_{j+1}, \tag{6.3}$$

$$a_{j} = y_{j},$$

$$a_{j} + b_{j}h_{j} + c_{j}h_{j}^{2} + d_{j}h_{j}^{3} = y_{j+1},$$

$$(6.3)$$

(6.3) $b_i + 2c_ih_i + 3d_ih_i^2 = b_{i+1}$

 $c_i + 3d_i h_i = c_{i+1},$

$a_i = y_i$

que podem ser escrita da seguinte maneira

$$d_j = \frac{c_{j+1} - c_j}{3h_i},\tag{6.5}$$

(6.4)

(6.7)

$$b_{j} = \frac{y_{j+1} - y_{j} - c_{j}h_{j}^{2} - \frac{c_{j+1} - c_{j}}{3h_{j}}h_{j}^{3}}{h_{j}},$$

$$= \frac{3y_{j+1} - 3y_{j} - 3c_{j}h_{j}^{2} - c_{j+1}h_{j}^{2} + c_{j}h_{j}^{2}}{3h_{j}}$$

$$= \frac{3y_{j+1} - 3y_{j} - 2c_{j}h_{j}^{2} - c_{j+1}h_{j}^{2}}{3h_{j}}$$

$$(6.6)$$

$$= \frac{3g_{j+1} - 3g_j - 2c_j n_j - c_{j+1} n_j}{3h_j}$$

Trocando o índice
$$j$$
 por $j-1$ na terceira equação $(6.3), j=2,\ldots,n-1$

Trocando o índice
$$j$$
 por $j-1$ na terceira equação (6.3), $j=2,\ldots,n$ 1

1 Trocando o indice
$$j$$
 por $j-1$ na terceira equação $(0.5), j=2,\ldots,n-1$

 $b_{i-1} + 2c_{i-1}h_{i-1} + 3d_{i-1}h_{i-1}^2 = b_i$

e, portanto,

$$\frac{3y_{j} - 3y_{j-1} - 2c_{j-1}h_{j-1}^{2} - c_{j}h_{j-1}^{2}}{3h_{j-1}} + 2c_{j-1}h_{j-1} + c_{j}h_{j-1} - c_{j-1}h_{j-1}
= \frac{3y_{j+1} - 3y_{j} - 2c_{j}h_{j}^{2} - c_{j+1}h_{j}^{2}}{3h_{j}}.$$
(6.8)

Fazendo as simplificações, obtemos:

$$c_{j-1}h_{j-1} + c_j(2h_j + 2h_{j-1}) + c_{j+1}h_j = 3\frac{y_{j+1} - y_j}{h_j} - 3\frac{y_j - y_{j-1}}{h_{j-1}}. (6.9)$$

É costumeiro acrescentar a incógnita c_n ao sistema. A incógnita c_n não está relacionada a nenhum dos polinômios interpoladores. Ela é uma construção artificial que facilita o cálculo dos coeficientes do spline. Portanto, a equação acima pode ser resolvida para $j = 2, \ldots, n-1$.

Para determinar unicamente os n coeficientes c_n precisamos acrescentar duas equações linearmente independentes às n-2 equações

dadas por (6.9). Essas duas equações adicionais definem o tipo de spline usado.

6.6.1 Spline natural

Uma forma de definir as duas equações adicionais para completar o sistema (6.9) é impor condições de fronteira livres (ou naturais), ou seja,

$$S''(x_1) = S''(x_n) = 0.$$

(6.10)

Substituindo na equação (6.2)

$$s_1''(x_1) = 2c_1 + 6d_1(x_1 - x_1) = 0 \Longrightarrow c_1 = 0.$$

е

$$s_{n-1}''(x_n) = 2c_{n-1} + 6d_{n-1}(x_n - x_{n-1}) = 0.$$

Usando o fato que

$$c_{n-1} + 3d_{n-1}h_{n-1} = c_n$$

temos que

$$c_n = -3d_{n-1}(x_n - x_{n-1}) + 3d_{n-1}h_{n-1} = 0.$$

Essa duas equações para c_1 e c_n juntamente com as equações (6.9) formam um sistema de n equações Ac = z, onde

1	0	0	0	 0	0

	1	0	0	0	• • •	0	0
	h_1	$2h_2 + 2h_1$	h_2	0		0	0
A =	0	h_2	$2h_3 + 2h_2$	h_3		0	0
	:	:	:	÷	٠	:	:

 $\begin{bmatrix} 0 & 0 & 0 & \cdots & h_{n-2} & 2h_{n-2} + 2h_{n-1} & h_{n-1} \\ 0 & 0 & 0 & \cdots & 0 & 0 & 1 \end{bmatrix}$

$$c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} \qquad e \qquad z = \begin{bmatrix} 0 \\ 3\frac{y_3 - y_2}{h_2} - 3\frac{y_2 - y_1}{h_1} \\ 3\frac{y_4 - y_3}{h_3} - 3\frac{y_3 - y_2}{h_2} \\ \vdots \\ 3\frac{y_{n-1} - y_{n-2}}{h_{n-2}} - 3\frac{y_{n-2} - y_{n-3}}{h_{n-3}} \\ 0 \end{bmatrix}$$
(6.12)

Observe que a matriz A é diagonal dominante estrita e, portanto, o sistema Ac = z possui solução única. Calculado c, os valores dos a_n , b_n e d_n são obtidos diretamente pelas expressões (6.4), (6.6) e (6.5), respectivamente.

Exemplo 83. Construa um spline cúbico natural que passe pelos pontos (2, 4,5), (5, -1,9), (9, 0,5) e (12, -0,5).

Solução. O spline desejado é uma função definida por partes da

forma:

$$S(x) = \begin{cases} a_1 + b_1(x-2) + c_1(x-2)^2 + d_1(x-2)^3 & , 2 \le x < 5 \\ a_2 + b_2(x-5) + c_2(x-5)^2 + d_2(x-5)^3 & , 5 \le x < 9 \\ a_3 + b_3(x-9) + c_3(x-9)^2 + d_3(x-9)^3 & , 9 \le x \le 12 \end{cases}$$
Os coeficientes c_1 , c_2 e c_3 resolvem o sistema $Ac = z$, onde

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 3 & 2 \cdot 3 + 2 \cdot 4 & 4 & 0 \\ 0 & 4 & 2 \cdot 4 + 2 \cdot 3 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 3 & 14 & 4 & 0 \\ 0 & 4 & 14 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$c = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} \quad \text{e} \quad z = \begin{bmatrix} 0 \\ 3\frac{0.5 - (-1.9)}{4} - 3\frac{(-1.9) - 4.5}{3} \\ 3\frac{-0.5 - 0.5}{3} - 3\frac{0.5 - (-1.9)}{4} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 8.2 \\ -2.8 \\ 0 \end{bmatrix}$$

Observe que c_4 é um coeficiente artificial para o problema. A solução é $c_1 = 0$, $c_2 = 0.7$, $c_3 = -0.4$ e $c_4 = 0$. Calculamos os demais coeficientes usando as expressões (6.4), (6.6) e (6.5):

$$a_1 = y_1 = 4.5$$

 $a_2 = y_2 = -1.9$
 $a_3 = y_3 = 0.5$

$$d_1 = \frac{c_2 - c_1}{3h_1} = \frac{0.7 - 0}{3 \cdot 3} = 0.0777778$$

$$d_2 = \frac{c_3 - c_2}{3h_2} = \frac{-0.4 - 0.7}{3 \cdot 4} = -0.0916667$$

$$d_3 = \frac{c_4 - c_3}{3h_3} = \frac{0 + 0.4}{3 \cdot 3} = 0.0444444$$

$$b_1 = \frac{y_2 - y_1}{h_1} - \frac{h_1}{3}(2c_1 + c_2)$$

$$= \frac{-1.9 - 4.5}{3} - \frac{3}{3}(2 \cdot 0 - 0.7) = -2.8333333$$

$$b_2 = \frac{y_3 - y_2}{h_2} - \frac{h_2}{3}(2c_2 + c_3)$$

$$= \frac{0.5 - (-1.9)}{4} - \frac{4}{3}(2 \cdot 0.7 + 0.4) = -0.7333333$$

$$b_3 = \frac{y_4 - y_3}{h_3} - \frac{h_3}{3}(2c_3 + c_4)$$

$$= \frac{-0.5 - 0.5}{3} - \frac{3}{3}(2 \cdot (-0.4) + 0) = 0.4666667$$

Portanto:

$$S(x) = \begin{cases} 4.5 - 2.833(x - 2) + 0.078(x - 2)^3 & , 2 \le x < 5 \\ -1.9 - 0.733(x - 5) + 0.7(x - 5)^2 - 0.092(x - 5)^3 & , 5 \le x < 9 \\ 0.5 + 0.467(x - 9) - 0.4(x - 9)^2 + 0.044(x - 9)^3 & , 9 \le x \le 12 \end{cases}$$
 No Scilab, podemos utilizar:
$$\mathbf{X} = \begin{bmatrix} 2 & 5 & 9 & 12 \end{bmatrix}$$

 $Y = [4.5 - 1.9 \ 0.5 - 0.5]'$ h = X(2:4) - X(1:3) $A = [1 \ 0 \ 0 \ 0; h(1) \ 2*h(1)+2*h(2) \ h(2) \ 0; \dots$ 0 h(2) 2*h(2)+2*h(3) h(3);0 0 0 1]

z = [0, 3*(Y(3)-Y(2))/h(2)-3*(Y(2)-Y(1))/h(1), ...3*(Y(4)-Y(3))/h(3)-3*(Y(3)-Y(2))/h(2). 0]'

 $c = A \ z$ for i=1:3 a(i) = Y(i)

6.6.2 Spline fixado

Alternativamente, para completar o sistema (6.9), podemos impor condições de contorno fixadas, ou seja,

$$S'(x_1) = f'(x_1)$$

$$S'(x_n) = f'(x_n).$$

Substituindo na equação (6.1)

$$s_1'(x_1) = b_1 + 2c_1(x_1 - x_1) + 3d_j(x_1 - x_1)^2 = f'(x_1) \Longrightarrow b_1 = f'(x_1)$$
(6.14)

$$= b_{n-1} + 2c_{n-1}h_{n-1} + 3d_{n-1}h_{n-1}^2 = f'(x_n)$$

$$= b_{n-1} + 2c_{n-1}h_{n-1} + 3d_{n-1}h_{n-1}^2 = f'(x_n)$$
(6.15)

 $s'_{n-1}(x_n) = b_{n-1} + 2c_{n-1}(x_n - x_{n-1}) + 3d_j(x_n - x_{n-1})^2$

Usando as equações (6.5) e (6.6) para j = 1 e j = n - 1, temos:

Usando as equações (6.5) e (6.6) para
$$j = 1$$
 e $j = n - 1$, temos:

$$2c_1h_1 + c_2h_1 = 3\frac{y_2 - y_1}{h_1} - 3f'(x_1)$$
(6.16)

$$c_{n-1}h_{n-1} + c_nh_{n-1} = 3f'(x_n) - 3\frac{y_n - y_{n-1}}{h_{n-1}}$$
(6.17)

(6.17)

Essas duas equações juntamente com as equações (6.9) formam um sistema de n equações Ac = z, onde

	$\int 2h_1$	h_1	0	0	 0 0 0	0
	h_1	$2h_2 + 2h_1$	h_2	0	 0	0
1 —	0	h_2	$2h_3 + 2h_2$	h_3	 0	0

$$h_1 \quad 2h_2 + 2h_1 \qquad h_2 \qquad 0 \quad \cdots \qquad 0$$
 $0 \qquad h_2 \qquad 2h_3 + 2h_2 \quad h_3 \quad \cdots \qquad 0$

$$A = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & h_{n-2} & 2h_{n-2} + 2h_{n-1} & h_{n-1} \\ 0 & 0 & \cdots & 0 & h_{n-1} & 2h_{n-1} \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & h_{n-1} & 2h_n \end{bmatrix}$$

$$c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} \qquad e \qquad z = \begin{bmatrix} 3\frac{y_2 - y_1}{h_1} - 3f'(x_1) \\ 3\frac{y_3 - y_2}{h_2} - 3\frac{y_2 - y_1}{h_1} \\ 3\frac{y_4 - y_3}{h_3} - 3\frac{y_3 - y_2}{h_2} \\ \vdots \\ 3\frac{y_{n-1} - y_{n-2}}{h_{n-2}} - 3\frac{y_{n-2} - y_{n-3}}{h_{n-3}} \\ 3f'(x_n) - 3\frac{y_n - y_{n-1}}{h_{n-1}} \end{bmatrix}$$

Observe que a matriz A é diagonal dominante estrita e, portanto, o sistema Ac=z possui solução única. Calculado c, os valores dos a_n , b_n e d_n são obtidos diretamente pelas expressões (6.4), (6.6) e (6.5), respectivamente.

Exemplo 84. Construa um spline cúbico com fronteira fixada que interpola a função $y=\sin(x)$ nos pontos $x=0,\ x=\frac{\pi}{2},\ x=\pi,\ x=\frac{3\pi}{2}$ e $x=2\pi.$

O spline desejado passa pelos pontos (0,0), $(\pi/2,1)$, $(\pi,0)$, $(3\pi/2,-1)$

e $(2\pi,0)$ e tem a forma:

$$S(x) = \begin{cases} a_1 + b_1 x + c_1 x^2 + d_1 x^3 & , 0 \le x < \frac{\pi}{2} \\ a_2 + b_2 (x - \frac{\pi}{2}) + c_2 (x - \frac{\pi}{2})^2 + d_2 (x - \frac{\pi}{2})^3 & , \frac{\pi}{2} \le x < \pi \\ a_3 + b_3 (x - \pi) + c_3 (x - \pi)^2 + d_3 (x - \pi)^3 & , \pi \le x < \frac{3\pi}{2} \\ a_4 + b_4 (x - \frac{3\pi}{2}) + c_4 (x - \frac{3\pi}{2})^2 + d_4 (x - \frac{3\pi}{2})^3 & , \frac{3\pi}{2} \le x \le 2\pi \end{cases}$$
Observe que ele satisfaz as condição de contorno $f'(0) = cos(0) = 1$

e $f'(2\pi) = cos(2\pi) = 1$. Os coeficientes c_1 , c_2 , c_3 e c_4 resolvem o sistema Ac = z, onde:

 $A = \begin{bmatrix} \pi & \pi/2 & 0 & 0 & 0 \\ \pi/2 & 2\pi & \pi/2 & 0 & 0 \\ 0 & \pi/2 & 2\pi & \pi/2 & 0 \\ 0 & 0 & \pi/2 & 2\pi & \pi/2 \\ 0 & 0 & 0 & \pi/2 & \pi \end{bmatrix}$

$$c = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \end{bmatrix} \quad \text{e} \quad z = \begin{bmatrix} 3\frac{1-0}{\pi/2} - 3 \cdot 1 \\ 3\frac{0-1}{\pi/2} - 3\frac{1-0}{\pi/2} \\ 3\frac{-1-0}{\pi/2} - 3\frac{0-1}{\pi/2} \\ 3\frac{0-(-1)}{\pi/2} - 3\frac{(-1)-0}{\pi/2} \\ 3 \cdot 1 - 3\frac{0-(-1)}{\pi/2} \end{bmatrix} = \begin{bmatrix} 6/\pi - 3 \\ -12/\pi \\ 0 \\ 12/\pi \\ 3 - 6/\pi \end{bmatrix}$$
 Aqui c_5 é um coeficiente artificial para o problema. A solução é $c_1 = -0.0491874, \ c_2 = -0.5956302, \ c_3 = 0, \ c_4 = 0.5956302 \ e \ c_5 = -0.5956302$

Aqui c_5 e um coenciente artificiar para o problema. A solução e $c_1 = -0.0491874$, $c_2 = -0.5956302$, $c_3 = 0$, $c_4 = 0.5956302$ e $c_5 = 0.0491874$. Calculamos os demais coeficientes usando as expressões (6.4), (6.6) e (6.5):

$$a_1 = y_1 = 0$$
 $a_2 = y_2 = 1$
 $a_3 = y_3 = 0$
 $a_4 = y_3 = -$

$$d_1 = \frac{c_2 - c_1}{3h_1} = \frac{-0.5956302 - (-0.0491874)}{3 \cdot \pi/2} = -0.1159588$$

$$d_2 = \frac{c_3 - c_2}{3h_2} = \frac{0 - (-0.5956302)}{3 \cdot \pi/2} = 0.1263967$$

$$d_3 = \frac{c_4 - c_3}{3h_3} = \frac{0,5956302 - 0}{3 \cdot \pi/2} = 0,1263967$$

$$d_4 = \frac{c_5 - c_4}{3h_4} = \frac{0,0491874 - 0,5956302}{3 \cdot \pi/2} = -0,1159588$$

$$d_4 = \frac{c_5 - c_4}{3h_4} = \frac{0.0491874 - 0.5956302}{3 \cdot \pi/2} = -0.1159588$$

$$b_{2} = \frac{y_{3} - y_{2}}{h_{2}} - \frac{h_{2}}{3}(2c_{2} + c_{3})$$

$$= \frac{0 - 1}{\pi/2} - \frac{\pi/2}{3}(2 \cdot (-0.5956302) + 0) = -0.0128772$$

$$b_{3} = \frac{y_{4} - y_{3}}{h_{3}} - \frac{h_{3}}{3}(2c_{3} + c_{4})$$

$$= \frac{-1 - 0}{\pi/2} - \frac{\pi/2}{3}(2 \cdot 0 + 0.5956302) = -0.9484910$$

$$b_{4} = \frac{y_{5} - y_{4}}{h_{4}} - \frac{h_{4}}{3}(2c_{4} + c_{5})$$

 $= \frac{0 - (-1)}{\pi/2} - \frac{\pi/2}{3} (2 \cdot 0.5956302 + 0.0491874) = -0.0128772$

 $= \frac{1-0}{\pi/2} - \frac{\pi/2}{3} (2 \cdot (-0.0491874) - 0.5956302) = 1$

 $b_1 = \frac{y_2 - y_1}{h_1} - \frac{h_1}{3}(2c_1 + c_2)$

Portanto,

yi = sin(xi)

n = 5

//numero de pontos

disp('Pontos fornecidos:')

$$S(x) = \begin{cases} x - 0.049x^2 - 0.12x^3 & , 0 \le x < \frac{\pi}{2} \\ 1 + -0.01(x - \frac{\pi}{2}) - 0.6(x - \frac{\pi}{2})^2 + 0.13(x - \frac{\pi}{2})^3 & , \frac{\pi}{2} \le x < \pi \\ -0.95(x - \pi) + 0.13(x - \pi)^3 & , \pi \le x < \frac{3\pi}{2} \\ -1 - 0.01(x - \frac{3\pi}{2}) + 0.6(x - \frac{3\pi}{2})^2 - 0.12(x - \frac{3\pi}{2})^3 & , \frac{3\pi}{2} \le x \le 2 \end{cases}$$

$$\text{No Scilab, podemos resolver este problema fazendo:}$$

$$//\text{limpa memoria clear A, B, a, b, c, d}$$

$$//\text{pontos fornecidos}$$

$$\text{xi} = [0; \%\text{pi/2}; \%\text{pi}; 3*\%\text{pi/2}; 2*\%\text{pi}]$$

```
disp([xi, yi])
//vetor h
h = xi(2:n) - xi(1:n-1);
//matriz A
for i=1:n
    for j=1:n
        if ((j==1) & (i==1)) then
            A(i,j) = 2*h(1);
        elseif (i == i-1) then
            A(i,j) = h(i-1);
        elseif ((i>1) & (i< n) & (i==j)) then
            A(i,j) = 2*(h(i) + h(i-1));
        elseif (j==i+1) then
            A(i,j) = h(i);
        elseif ((j==n) & (i==n)) then
            A(i,j) = 2*h(n-1);
        else
            A(i,j) = 0;
```

```
end
    end
end
disp('Matriz A:')
disp(A)
//vetor z
for i=1:n
  if ((i==1)) then
    z(i) = 3*(yi(2)-yi(1))/h(1) - 3*cos(xi(1));
  elseif ((i>1) & (i < n)) then
    z(i) = 3*(yi(i+1)-yi(i))/h(i) ...
           -3*(vi(i) - vi(i-1))/h(i-1);
  elseif (i == n) then
    z(i) = 3*cos(xi(n)) - 3*(yi(n) - yi(n-1))/h(n-1);
  end
end
disp('Vetor z:')
disp(z)
```

```
//coeficientes c
c = inv(A)*z
disp('Coeficientes c:')
disp(c)
//coeficientes a
a = yi(1:n-1);
disp('Coeficientes a:')
disp(a)
//coeficientes b
for j=1:n-1
  b(j) = (3*yi(j+1) - 3*yi(j) - 2*c(j)*h(j)^2 ...
  -c(j+1)*h(j)^2)/(3*h(j));
end
disp('Coeficientes b:')
disp(b)
//coeficientes d
for j=1:n-1
  d(j) = (c(j+1) - c(j))/(3*h(j));
```

```
end
disp('Coeficientes d:')
disp(d)
//spline cubico obtido
function [y] = s(x)
  for i=1:n-2
    if ((x>=xi(i)) & (x<xi(i+1))) then
      y = a(i) + b(i)*(x-xi(i)) ...
          + c(i)*(x-xi(i))^2 + d(i)*(x-xi(i))^3;
    end
  end
  if ((x>=xi(n-1)) & (x<=xi(n))) then
    y = a(n-1) + b(n-1)*(x-xi(n-1)) \dots
        + c(n-1)*(x-xi(n-1))^2 + d(n-1)*(x-xi(n-1))^3:
  end
endfunction
```

6.6.3 Resumo sobre Splines

Dado um conjunto de pontos (x_i,y_i) , $i=1,2,\ldots,n$, um spline cúbico é a seguinte função interpoladora definida por partes:

Definindo-se $h_j = x_{j+1} - x_j$, os coeficientes c_j , $j = 1, 2, \dots, n$, são

	sorução do sistema linear $Ac = z$, onde:							
	$\begin{vmatrix} s_1''(x_1) = 0 & \text{e } s_{n-1}''(x_n) = 0 \end{vmatrix}$			Spline Fixado				
					$s'_1(x_1) = f'(x_1) \in s'_{n-1}(x_n) =$			
		1	,j = i = 1 $,j = i - 1, i < n $ $,j = i, 1 < i < n $ $,j = i + 1, i > 1$		$\left(\begin{array}{c} 2h_1 \end{array}\right)$,j=i		
		h_{i-1}	, j = i - 1, i < n	$a_{i,j} = \langle$	h_{i-1}	,j=i		
	a = J	$2(h_i + h_{i-1})$,j=i,1< i< n		$2(h_i + h_{i-1})$,j=i		
	$a_{i,j} = $	h_i	,j=i+1,i>1		h_i	,j=i		
		1	,j=i=n		$2h_{n-1}$,j=i		
		0	, caso contrário.		0	, caso		
	((

solução do sistema linear $Ac - \gamma$ onde-

 $z_{i} = \begin{cases} 0, & i = 1 \\ 3\frac{y_{i+1} - y_{i}}{h_{i}} - 3\frac{y_{i} - y_{i-1}}{h_{i-1}}, & 1 < i < n \\ 0, & i = n \end{cases} \quad z_{i} = \begin{cases} 3\frac{y_{2} - y_{1}}{h_{1}} - 3f'(x_{1}), & 3\frac{y_{i} - y_{i-1}}{h_{i}}, & 3\frac{y_{i} - y_{i-1}}{h_{i-1}}, & 3\frac{y_{i} - y_{i-1}}{h_{i-1}}$

os coeficientes $a_j,\,b_j$ e $d_j,\,j=1,2,\ldots,n-1,$ são calculados conforme segue:

$$\begin{array}{rcl} a_{j} & = & y_{j} \\ \\ b_{j} & = & \frac{3y_{j+1} - 3y_{j} - 2c_{j}h_{j}^{2} - c_{j+1}h_{j}^{2}}{3h_{j}} \\ \\ d_{j} & = & \frac{c_{j+1} - c_{j}}{3h_{j}} \end{array}$$

Capítulo 7

Ajuste de curvas

Neste capítulo, discutimos sobre problemas de **ajuste de curvas** pelo **método dos mínimos quadrados**. Mais precisamente, dado um conjunto de n pontos $\{(x_i, y_i) \in \mathbb{R}^2\}_{i=1}^n$ e uma família de funções $\mathcal{F} = \{f : \mathbb{R} \to \mathbb{R}; y = f(x)\}$, o problema de ajuste de curvas consiste em encontrar uma função da família de funções dada que melhor se

ajusta aos pontos dados, não necessariamente que os interpola. Aquil, o termo "melhor se ajusta" é entendido no sentido de mínimos quadrados, i.e. buscamos encontrar uma função $f \in \mathcal{F}$ tal que f(x)

$$\min_{f \in \mathcal{F}} \sum_{i=1}^{n} |y_i - f(x_i)|^2,$$

resolve o seguinte problema de minimização

ou seja, f(x) é a função da família \mathcal{F} cujo erro quadrático entre y_i e $f(x_i), i = 1, 2, \ldots, n$, é mínimo.

Exemplo 85. Dados o conjunto de os pontos $\{(1,1,2), (1,5,1,3), (2,2,6)\}$ e a família de retas f(x) = a + bx, podemos mostrar que f(x) = -0.05 + 1.1x é a reta que melhor aproxima os pontos dados no sentido de mínimos quadrados. Os pontos e a reta ajustada esão esboçados na Figura 7.1.

O ajuste no sentido de mínimos quadrados em minimizar a soma do quadrado das diferenças entre a ordenadas y_j e o valor da função

Figura 7.1: Exemplo de um problema de ajuste de uma reta entre três pontos, veja o Exemplo 85.

desejada $f(x_i)$. Ou seja, encontrar a função f(x) tal que

$$R = (f(x_1) - y_1)^2 + (f(x_2) - y_2)^2 + \dots + (f(x_N) - y_N)^2$$
$$= \sum_{j=1}^{N} (f(x_j) - y_j)^2$$

seja o menor possível, que fornece o nome do método como **método** dos mínimos quadrados. Note que o resíduo em x_j é definido como $r_j = |f(x_j) - y_j|$.

7.1 O problema linear

Dado um conjunto de N pontos, desejamos encontrar a reta que melhor se ajusta a esses pontos de tal forma a minimizar o resíduo. Ou seja, encontre a curva $f(x) = a_1 + a_2x$ tal que

$$R(a_1,a_2) = \sum_{j=1}^{N} (f(x_j) - y_j)^2 = \sum_{j=1}^{N} (a_1 + a_2 x_j - y_j)^2$$

seja o menor possível.

O objetivo é encontrar a_1,a_2 e geralmente temos muito mais equações do que incógnitas, i.e.,

$$a_1 + a_2 x_1 = y_1$$

$$a_1 + a_2 x_2 = y_2$$

$$a_1 + a_2 x_3 = y_3$$

$$\vdots = \vdots$$

$$a_N + a_2 x_N = y_N$$

ou simplesmente $V\vec{a} = \vec{y}$.

O mínimo de R ocorre quando quando a derivada primeira é igual a zero:

$$\frac{\partial R}{\partial a_1} = \frac{\partial}{\partial a_1} \sum_{j=1}^{N} (a_1 + a_2 x_j - y_j)^2 = 0$$

$$\frac{\partial R}{\partial a_2} = \frac{\partial}{\partial a_2} \sum_{j=1}^{N} (a_1 + a_2 x_j - y_j)^2 = 0$$

ou seja,

$$2\sum_{j=1}^{N} (a_1 + a_2 x_j - y_j) \cdot 1 = 0$$
$$2\sum_{j=1}^{N} (a_1 + a_2 x_j - y_j) \cdot x_j = 0$$

e isolando as incógnitas temos

$$a_{1} \sum_{j=1}^{N} 1 + a_{2} \sum_{j=1}^{N} x_{j} = \sum_{j=1}^{N} y_{j}$$

$$a_{1} \sum_{j=1}^{N} x_{j} + a_{2} \sum_{j=1}^{N} x_{j}^{2} = \sum_{j=1}^{N} y_{j} x_{j}$$

Na forma matricial obtemos

$$\begin{bmatrix} \sum_{j=1}^{N} 1 & \sum_{j=1}^{N} x_j \\ \sum_{j=1}^{N} x_j & \sum_{j=1}^{N} x_j^2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{N} y_j \\ \sum_{j=1}^{N} x_j y_j \end{bmatrix}$$
Observe que é equivalente ao problema matricial

$$Ma := V^T V a = V^T y \tag{7.2}$$

(7.1)

Teorema 11. A matriz $M = V^T V$ é quadrada de ordem 2 e é inversível sempre que o posto da matriz V é igual a número de colunas m.

Demonstração. Para provar que M é invertível precisamos mostrar que Mv=0 implica v=0 :

$$Mv = 0 \Longrightarrow V^T V v = 0$$

tomando o produto interno da expressão $0 = V^T V v$ com v, temos:

$$0 = \left\langle V^T V v, v \right\rangle = \left\langle V v, V v \right\rangle = \|V v\|^2$$

Então se $Mv=0,\ Vv=0,$ como o posto de V é igual ao número de colunas, v=0.

Lema 3. A matriz $M = V^T V$ é simétrica.

Demonstração. Isso é facilmente provado pelo seguinte argumento:

$$M^{T} = (V^{T}V)^{T} = (V)^{T}(V^{T})^{T} = V^{T}V = M$$

Exemplo 86. Encontre a função do tipo f(x) = ax que melhor se aproxima dos seguintes pontos:

$$(0,-0,1),(1,2),(2,3,7) \in (3,7).$$

Solução. Defina

$$E_q = [f(x_1) - y_1]^2 + [f(x_2) - y_2]^2 + [f(x_3) - y_3]^2 + [f(x_4) - y_4]^2$$

temos que

$$E_q = [f(0) + 0.1]^2 + [f(1) - 2]^2 + [f(2) - 3.7]^2 + [f(3) - 7]^2$$

= $[0.1]^2 + [a - 2]^2 + [2a - 3.7]^2 + [3a - 7]^2$

Devemos encontrar o parâmetro a que minimiza o erro, portanto, calculamos:

$$\frac{\partial E_q}{\partial a} = 2[a-2] + 4[2a-3,7] + 6[3a-7] = 28a - 60,8$$

Portanto o valor de a que minimiza o erro é $a = \frac{60.8}{28}$.

 $x=[0 \ 1 \ 2 \ 3]'$ $v=[-.1 \ 2 \ 3.7 \ 7]'$ plot2d(x,y,style=-4)

Exemplo 87. Encontre a função do tipo f(x) = bx + a que melhor aproxima os pontos:

$$(0, -0,1), (1, 2), (2, 3,7) e (3, 7).$$

Solução.

$$E_q = [f(0) + 0.1]^2 + [f(1) - 2]^2 + [f(2) - 3.7]^2 + [f(3) - 7]^2$$

= $[a + 0.1]^2 + [a + b - 2]^2 + [a + 2b - 3.7]^2 + [a + 3b - 7]^2$

Devemos encontrar os parâmetros a b que minimizam o erro, por isso, calculamos as derivadas parciais:

isso, calculamos as derivadas parciais:
$$\frac{\partial E_q}{\partial a} = 2[a+0,1] + 2[a+b-2] + 2[a+2b-3,7] + 2[a+3b-7]$$

$$\frac{\partial E_q}{\partial b} = 2[a+b-2] + 4[a+2b-3,7] + 6[a+3b-7]$$

 ${\cal O}$ erro mínimo acontece quando as derivadas são nulas, ou seja:

$$8a + 12b = 25,2$$

 $12a + 28b = 60,8$

Cuja solução é dada por a=-0,3 e b=2,3. Portanto a função que procuramos é f(x)=-0,3+2,3x.

7.2 Ajuste polinomial

Dado um conjunto de n pontos, desejamos encontrar o $polin\hat{o}mio$ de grau p que melhor se ajusta a esses pontos de tal forma a minimizar o resíduo, ou seja, encontrar a curva $f(x) = a_1 + a_2x + ... + a_{p+1}x^p$ tal que

$$R(a_1,...,a_{p+1}) = \sum_{j=1}^{N} (f(x_j) - y_j)^2$$
$$= \sum_{j=1}^{N} (a_1 + a_2 x_j + ... + a_{p+1} x_j^p - y_j)^2$$

seja o menor possível.

O objetivo é encontrar as incógnitas a_i que minimizam a soma do quadrado do resíduo.

O mínimo de R encontra-se quando a derivada primeira é igual a

zero:

$$\frac{\partial R}{\partial a_1} = \frac{\partial}{\partial a_1} \sum_{j=1}^n (a_1 + a_2 x_j + \dots + a_{p+1} x_j^p - y_j)^2 = 0$$

$$\vdots = \vdots$$

$$\frac{\partial R}{\partial a_{p+1}} = \frac{\partial}{\partial a_{p+1}} \sum_{j=1}^n (a_1 + a_2 x_j + \dots + a_{p+1} x_j^p - y_j)^2 = 0$$

ou seja,

$$2\sum_{j=1}^{n} (a_1 + a_2 x_j + \dots + a_{p+1} x_j^p - y_j) \cdot 1 = 0$$

$$\vdots = \vdots$$

$$2\sum_{j=1}^{n} (a_1 + a_2 x_j + \dots + a_{p+1} x_j^p - y_j) \cdot x_j^p = 0$$

e isolando as incógnitas temos

$$a_{1} \sum_{j=1}^{n} 1 + a_{2} \sum_{j=1}^{N} x_{j} + \dots + a_{p+1} \sum_{j=1}^{N} x_{j}^{p} = \sum_{j=1}^{N} y_{j}$$

$$\vdots = \vdots$$

$$a_{1} \sum_{j=1}^{n} x_{j}^{p} + a_{2} \sum_{j=1}^{N} x_{j}^{p+1} + \dots + a_{p+1} \sum_{j=1}^{N} x_{j}^{2p} = \sum_{j=1}^{N} y_{j} x_{j}^{p}$$
orma matricial obtemos

Na forma matricial obtemos

$$\begin{bmatrix} \sum 1 & \sum x_j & \cdots & \sum x_j^p \\ \sum x_j & \sum x_j^2 & & \sum x_j^{p+1} \\ \vdots & & \ddots & \vdots \\ \sum x_j^p & \sum x_j^{p+1} & \cdots & \sum x_j^{2p} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_{p+1} \end{bmatrix} = \begin{bmatrix} \sum y_j \\ \sum x_j y_j \\ \vdots \\ \sum x_j^p y_j \end{bmatrix}$$
(7.3)

Na forma matricial temos

$$Ma := V^T V a = V^T y$$

(7.4)

7.3 Ajuste linear de curvas

Seja $f_1(x), f_2(x), \ldots, f_m(x)$ um conjunto de m funções e (x_i, y_i) um conjunto de n pontos. Procuram-se os coeficientes a_1, a_2, \ldots, a_m tais que a função dada por

$$f(x) = a_1 f_1(x) + a_2 f_2(x) + \ldots + a_m f_m(x)$$

minimiza o resíduo dado por

$$R = \sum_{i=1}^{n} [f(x_i) - y_i]^2$$

como $f(x) = \sum_{j=1}^{m} a_j f_j(x)$, temos

$$R = \sum_{j=1}^{n} \left[\sum_{j=1}^{m} a_j f_j(x_i) - y_i \right]^2$$

Este problema é equivalente a resolver pelo métodos dos mínimos

quadrados o seguinte sistema linear:

$$\begin{bmatrix} f_1(x_1) & f_2(x_1) & \cdots & f_m(x_1) \\ f_1(x_2) & f_2(x_2) & \cdots & f_m(x_2) \\ f_1(x_3) & f_2(x_3) & \cdots & f_m(x_3) \\ \vdots & \vdots & \ddots & \vdots \\ f_1(x_n) & f_2(x_n) & \cdots & f_m(x_n) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix}$$

Exemplo 88. Encontre a reta que melhor aproxima o seguinte conjunto de dados:

x_i	y_i
0,01	1,99
1,02	4,55
2,04	7,20
2,95	9,51
3,55	10,82

Solução. Desejamos encontrar os valores de a e b tais que a função f(x) = ax + b melhor se ajusta aos pontos da tabela. Afim de usar o critério dos mínimos quadrados, escrevemos o problema na forma

matricial dada por:

$$\begin{bmatrix} 0,01 & 1 \\ 1,02 & 1 \\ 2,04 & 1 \\ 2,95 & 1 \\ 3,55 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1,99 \\ 4,55 \\ 7,2 \\ 9,51 \\ 10,82 \end{bmatrix}$$

Multiplicamos agora ambos os lados pela transposta:

$$\begin{bmatrix} 0.01 & 1.02 & 2.04 & 2.95 & 3.55 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

o que fornece:

$$\begin{bmatrix} 0.01 & 1.02 & 2.04 & 2.95 & 3.55 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0.01 & 1 \\ 1.02 & 1 \\ 2.04 & 1 \\ 2.95 & 1 \\ 3.55 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

$$\begin{bmatrix} 0.01 & 1.02 & 2 \\ 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 26,5071 & 9,57 \\ 9,57 & 5 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 85,8144 \\ 34,07 \end{bmatrix}$$

A solução desse sistema é a=2,5157653 e b=1,9988251 A tabela abaixo mostra os valores dados e os valores ajustados:

x_i	y_i	$ax_i + b$	$\boxed{ax_i + b - y_i}$
0,01	1,99	2,0239828	0,0339828
1,02	4,55	4,5649057	0,0149057
2,04	7,2	7,1309863	-0.0690137
2,95	9,51	9,4203327	-0,0896673
3,55	10,82	10,929792	0,1097919

Exercícios

E 7.3.1. Encontrar a parábola $y = ax^2 + bx + c$ que melhor aproxima o seguinte conjunto de dados:

x_i	y_i
0,01	1,99
1,02	4,55
2,04	7,2
2,95	9,51
3,55	10,82

e complete a tabela:

x_i	y_i	$ax_i^2 + bx_i + c$	$ax_i^2 + bx_i + c - y_i$
0,01	1,99		
1,02	4,55		
2,04	7,20		
2,95	9,51		
3,55	10,82		

E 7.3.2. Dado o seguinte conjunto de dados $x_i \mid y_i$

	-	
0,0	31	
0,1	35	
0,2	37	
0,3	33	
0,4	28	
0,5	20	
0,6	16	
0,7	15	
0,8	18	
0,9	23	

- Encontre a função do tipo $f(x) = a + b\sin(2\pi x) + c\cos(2\pi x)$ que melhor aproxima os valores dados.
 - Encontre a função do tipo $f(x) = a + bx + cx^2 + dx^3$ que melhor aproxima os valores dados.

7.4 Aproximando problemas não lineares por problemas lineares

Eventualmente, problemas de ajuste de curvas podem recair num sistema não linear. Por exemplo, para ajustar função $y=Ae^{bx}$ ao conjunto de pontos (x_1,y_1) , (x_2,y_2) e (x_3,y_3) , temos que minimizar o resíduo¹

$$R = (Ae^{x_1b} - y_1)^2 + (Ae^{x_2b} - y_2)^2 + (Ae^{x_3b} - y_3)^2$$

ou seja, resolver o sistema

$$\begin{array}{lcl} \frac{\partial R}{\partial A} & = & 2(Ae^{x_1b} - y_1)e^{x_1b} + 2(Ae^{x_2b} - y_2)e^{x_2b} + 2(Ae^{x_3b} - y_3)e^{x_3b} = 0 \\ \frac{\partial R}{\partial b} & = & 2Ax_1(Ae^{x_1b} - y_1)e^{x_1b} + 2Ax_2(Ae^{x_2b} - y_2)e^{x_2b} \\ & + & 2Ax_3(Ae^{x_3b} - y_3)e^{x_3b} = 0 \end{array}$$

 $^{^1\}mathrm{A}$ soma do quadrado dos resíduos.

que é não linear em A e b. Esse sistema pode ser resolvido pelo método de Newton-Raphson, o que pode se tornar custoso, ou mesmo inviável quando não dispomos de uma boa aproximação da solução para inicializar o método.

Felizmente, algumas famílias de curvas admitem uma transformação que nos leva a um problema linear. No caso da curva $y=Ae^{bx}$, observe que $\ln y=\ln A+bx$. Assim, em vez de ajustar a curva original $y=Ae^{bx}$ a tabela de pontos, ajustamos a curva submetida a transformação logarítmica

$$\tilde{y} := a_1 + a_2 \tilde{x} = \ln A + bx.$$

Usamos os pontos $(\tilde{x}_j, \tilde{y}_j) := (x_j, \ln y_j), \ j = 1,2,3$ e resolvemos o sistema linear

$$V^T V \left[egin{array}{c} a_1 \\ a_2 \end{array}
ight] = V^T \left[egin{array}{c} ilde{y}_1 \\ ilde{y}_2 \\ ilde{y}_3 \end{array}
ight],$$

onde

$$A = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \end{bmatrix}$$

Exemplo 89. Encontre uma curva da forma $y = Ae^x$ que melhor ajusta os pontos (1,2), (2,3) e (3,5).

Temos

$$A = \left| \begin{array}{cc} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{array} \right|$$

e a solução do sistema leva em B=0,217442 e b=0,458145. Portanto, $A=e^{0,217442}=1,24289$.

Observação 22. Os coeficientes obtidos a partir dessa linearização são aproximados, ou seja, são diferentes daqueles obtidos quando aplicamos mínimos quadrados não linear. Observe que estamos minimizando $\sum_{i} [\ln y_i - \ln(f(x_i))]^2$ em vez de

 $\sum_{i} [y_i - f(x_i)]^2$. No exemplo resolvido, a solução do sistema não linear original seria A = 1,19789 e B = 0,474348

Observação 23. Mesmo quando se deseja resolver o sistema não linear, a solução do problema linearizado pode ser usada para construir condições iniciais.

A próxima tabela apresenta algumas curvas e transformações que

linearizam o problema de ajuste.

curva	transformação	problema linearizado
$y = ae^{bx}$	$\tilde{y} = \ln y$	$\tilde{y} = \ln a + bx$
$y = ax^b$	$\tilde{y} = \ln y$	$\tilde{y} = \ln a + b \ln x$
$y = ax^b e^{cx}$	$\tilde{y} = \ln y$	$\tilde{y} = \ln a + b \ln x + cx$
$y = ae^{(b+cx)^2}$	$\tilde{y} = \ln y$	$\tilde{y} = \ln a + b^2 + bcx + c^2 x^2$
$y = \frac{a}{b+x}$	$\tilde{y} = \frac{1}{y}$	$\tilde{y} = \frac{b}{a} + \frac{1}{a}x$
$y = A\cos(\omega x + \phi)$	_	$y = a\cos(\omega x) - b\sin(\omega x)$
ω conhecido		$a = A\cos(\phi), b = A\sin(\phi)$

Exemplo 90. Encontre a função f da forma $y = f(x) = A\cos(2\pi x +$

Solução. Usando o fato que $y=A\cos(2\pi x+\phi)=a\cos(2\pi x)-b\sin(2\pi x)$, onde $a=A\cos(\phi)$ e $b=A\sin(\phi)$, $z=[a b]^T$ é solução do problema

 $\quad \text{onde} \quad$

B =	$ \cos(2\pi x_0) \\ \cos(2\pi x_1) \\ \vdots \\ \cos(2\pi x_{10}) $	$-\sin(2\pi x_0)$ $-\sin(2\pi x_1)$ $-\sin(2\pi x_{10})$	=
		(<u>1</u> 0/]	

	1.	0.
	0,8090170	-0,5877853
	0,3090170	-0,9510565
	-0,3090170	-0,9510565
	-0,8090170	-0,5877853
=	-1,0000000	0,0000000
	-0,8090170	0,5877853
	-0,3090170	0,9510565
	0,3090170	0,9510565
	0.8090170	0.5877853

1,0000000 0,0000000

Assim, a = 7,9614704 e b = 11,405721 e obtemos o seguinte sistema:

$$\begin{cases} A\cos(\phi) = 7,9614704 \\ A\sin(\phi) = 11,405721 \end{cases}.$$

Observe que

$$A^2 = 7,9614704^2 + 11,405721^2$$

e, escolhendo $A>0,\,A=13,909546$ e

$$\sin(\phi) = \frac{11,405721}{13,909546} = 0,8199923$$

Assim, como $\cos\phi$ também é positivo, ϕ é um ângulo do primeiro quadrante:

$$\phi = 0.9613976$$

Portanto $f(x)=13,909546\cos(2\pi x+0,9613976)$. Observe que nesse exemplo a solução do problema linear é a mesma do problema não linear. \diamondsuit

Exemplo 91. Encontre a função f da forma $y=f(x)=\frac{a}{b+x}$ que ajusta a tabela de pontos

x_i	y_i
0,0	101
0,2	85
0,4	75
0,6	66
0,8	60
1,0	55
	0,0 0,2 0,4 0,6 0,8

usando uma das transformações tabeladas.

Solução. Usando o fato que $Y=\frac{1}{y}=\frac{b}{a}+\frac{1}{a}x,\ z=\left[\begin{array}{cc} \frac{b}{a}&\frac{1}{a}\end{array}\right]^T$ é solução do problema

 $A^T A z = A^T Y,$

onde

$$A = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \\ 1 & x_5 \\ 1 & x_6 \end{bmatrix} = \begin{bmatrix} 1 & 0,0 \\ 1 & 0,2 \\ 1 & 0,4 \\ 1 & 0,6 \\ 1 & 0,8 \\ 1 & 1,0 \end{bmatrix}$$

e

$$Y = \begin{bmatrix} 1/y_1 \\ 1/y_2 \\ 1/y_3 \\ 1/y_4 \\ 1/y_5 \\ 1/y_6 \end{bmatrix} = \begin{bmatrix} 0,0099010 \\ 0,0117647 \\ 0,0133333 \\ 0,0151515 \\ 0,0166667 \\ 0,0181818 \end{bmatrix}$$

Assim,
$$\frac{1}{a} = 0,0082755$$
 e $\frac{b}{a} = 0,0100288$ e, então, $a = 120,83924$ e $b = 1,2118696$, ou seja, $f(x) = \frac{120,83924}{1,2118696+x}$.

Capítulo 8

Derivação e integração

Capitulo 6

numérica

8.1 Derivação Numérica

Dado um conjunto de pontos $(x_i,y_i)_{i=1}^n$, a derivada $\left(\frac{dy}{dx}\right)_i$ pode ser calculada de várias formas. Na próxima seção trabalharemos com diferenças finitas, que é mais adequada quando as abcissas estão próximas e os dados não sofrem perturbações significativas. Na seção subsequente trataremos os casos quando os dados oscilam via ajuste ou interpolações de curvas.

8.1.1 Aproximação da derivada por diferenças finitas

A derivada $f'(x_0)$ de uma função f(x) no ponto x_0 é

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

Da definição, se $h \neq 0$ é pequeno (não muito pequeno para evitar o cancelamento catastrófico), é esperado que uma aproximação para a derivada no ponto x_0 seja dada por:

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}$$
 (8.1)

Exemplo 92. Calcule a derivada numérica da função $f(x) = \cos(x)$ no ponto x=1 usando $h=0,1,\ h=0,01,\ h=0,001$ e h=0,0001.

 ${\bf Solução}.$ Usando a fórmula de diferenças dada pela Equação (8.1), devemos calcular:

$$f'(x) \approx \frac{\cos(1+h) - \cos(1)}{h}$$

h	$\frac{f(1+h)-f(1)}{h}$
0,1	$\frac{0.4535961 - 0.5403023}{0.1} = -0.8670618$
0,01	$\frac{0,5318607 - 0,5403023}{0,01} = -0,8441584$
0,001	$\frac{0,5403023 - 0,5403023}{0,001} = -0,841741$
0,0001	$\frac{0,5403023 - 0,5403023}{0,0001} = -0,841498$

Tabela 8.1: Exercício 92.

para cada valor de h solicitado, obtemos a Tabela ??. No Scilab, podemos calcular a aproximação da derivada f'(1) com h = 0,1 usando as seguintes linhas de código:

E, similarmente, para outros valores de x_0 e h.

Observe que, no exemplo anterior, quanto menor h, melhor é a aproximação, visto que o valor exato para a derivada é $f'(1) = -\sin(1) = -0.8414710$. Porém, quando $h = 10^{-13}$, a derivada numérica é -0.8404388 (usando aritmética double), resultado pior que aquele para h = 0.0001. Além disso, na mesma aritmética, quando $h = 10^{-16}$ a derivada numérica calculada é zero (cancelamento catastrófico). Isso nos motiva a pensar qual é o melhor h. Essa aproximação para a derivada é denominada diferenças progressivas. A derivada numérica também pode ser aproximada usando definições equivalentes:

$$f'(x_0) \approx \frac{f(x_0) - f(x_0 - h)}{h} = \frac{y_i - y_{i-1}}{h}$$

que é denominada diferenças regressivas ou

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0 - h)}{2h} = \frac{y_{i+1} - y_{i-1}}{2h}$$

que é denominada diferenças centrais.

Exemplo 93. Calcule a derivada numérica da função $f(x) = \cos(x)$ no ponto x = 1 usando diferenças progressivas, diferenças regressivas e diferenças centrais com h = 0,1, h = 0,01 e h = 0,001.

Solução. A tabela abaixo mostra a derivada numérica para cada valor de h.

Diferenças	h=0,1
Progressivas	-0,8670618
Regressivas	$\frac{\cos(1) - \cos(0.9)}{0.1} = -0.8130766$
Centrais	$\frac{\cos(1,1) - \cos(0,9)}{0,2} = -0.8400692$
Diferenças	h=0,01
Progressivas	-0,8441584
Regressivas	$\frac{\cos(1) - \cos(0.99)}{0.01} = -0.8387555$
Centrais	$\frac{\cos(1,01) - \cos(0,99)}{0,02} = -0.8414570$
Diferenças	h=0,01
Progressivas	-0.841741
Regressivas	$\frac{\cos(1) - \cos(0.999)}{0.001} = -0.8412007$ $\cos(1.001) - \cos(0.999)$

8.1.2 Erros de truncamento

Seja $D_{+,h}f(x_0)$ a aproximação da derivada de f em x_0 por diferenças progressivas, $D_{-,h}f(x_0)$ a aproximação por diferenças regressivas e $D_{0,h}f(x_0)$ a aproximação por diferenças centrais, então

$$D_{+,h}f(x_0) - f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - f'(x_0)$$

$$= \frac{f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + O(h^3) - f(x_0)}{h}$$

$$= \frac{h}{2}f''(x_0) + O(h^2) = O(h).$$

 $D_{-,h}f(x_0) - f'(x_0) = \frac{f(x_0) - f(x_0 - h)}{h} - f'(x_0)$

Também:

Analogamente:

 $= \frac{f(x_0) - \left(f(x_0) - hf'(x_0) + \frac{h^2}{2}f''(x_0) + O(h^3)\right)}{2}$

 $= -\frac{h}{2}f''(x_0) + O(h^2) = O(h).$

 $= O(h^2).$

 $= \frac{f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + O(h^3)}{2h} - \frac{f(x_0) - hf'(x_0) + \frac{h^2}{2}f''(x_0) + O(h^3)}{2h} - f'(x_0)$

 $D_{0,h}f(x_0) - f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} - f'(x_0)$

Exemplo 94. Calcule a derivada numérica e o erro de truncamento de $f(x) = e^{-x}$ em x = 1,5 pela fórmula de diferença progressiva para $h = 0,1, \ h = 0,01$ e h = 0,001.

Solução. Como $|f''(x)| = |e^{-x}| < 1$, então $|f'_{+}(x_0) - f'(x_0)| < \frac{h}{2}$.

h	diferenças progressivas	$erro = \frac{h}{2}$
0,1	-0,2123364	0,05
0,01	-0,2220182	0,005
0,001	-0,2230186	0,0005

O valor exato da derivada é f'(1,5) = -0.2231302.

8.1.3 Erros de arredondamento

Para entender como os erros de arredondamento se propagam ao calcular as derivadas numéricas vamos considerar o operador de diferenças finitas progressivas

$$D_{+,h}f(x) = \frac{f(x+h) - f(x)}{h}.$$

Nesse contexto temos o valor exato f'(x) para a derivada, a sua aproximação numérica $D_{+,h}f(x)$ e a representação em número de máquina do operador $D_{+,h}f(x)$ que denotaremos por $\overline{D_{+,h}f(x)}$. Seja $\varepsilon(x,h)$ o erro de arredondamento ao calcularmos a derivada e consideremos

$$\overline{D_{+,h}f(x)} = D_{+,h}f(x)(1+\varepsilon(x,h)) = \frac{f(x+h)-f(x)}{h}(1+\varepsilon(x,h)).$$

Também, consideremos

$$|\overline{f(x+h)} - f(x+h)| = \delta(x,h) \le \delta$$

 ϵ

$$|\overline{f(x)} - f(x)| = \delta(x,0) \le \delta,$$

onde $\overline{f(x+h)}$ e $\overline{f(x)}$ são as representação em ponto flutuante dos números f(x+h) e f(x), respectivamente. A diferença do valor da derivada e sua aproximação representada em ponto flutuante pode

 $\left| f'(x) - \overline{D_{+,h}f(x)} \right| = \left| f'(x) - \frac{f(x+h) - f(x)}{h} (1 + \varepsilon(x,h)) \right|$

$$= \left| f'(x) - \left(\frac{\overline{f(x+h)} - \overline{f(x)}}{h} + \frac{f(x+h) - f(x)}{h} + \frac{f(x) - f(x)}{h} \right) (1+\varepsilon) \right|$$

 $= \left| f'(x) + \left(-\frac{f(x+h) - f(x)}{h} - \frac{\overline{f(x+h)} - f(x)}{h} \right) \right|$

ser estimada da seguinte forma:

$$+\frac{\overline{f(x)}-f(x)}{h}$$
 (1+

 $+ \frac{f(x) - f(x)}{h} (1 + \varepsilon)$

 $\leq \left| f'(x) - \frac{f(x+h) - f(x)}{h} \right| + \left(\left| \frac{f(x+h) - f(x)}{h} \right| \right)$

$$\leq \left| f'(x) - \frac{f(x+h) - f(x)}{h} \right| + \left(\left| \frac{f(x+h) - f(x)}{h} \right| + \left| \frac{\overline{f(x)} - f(x)}{h} \right| \right) |1 + \varepsilon| + \left| \frac{f(x+h) - f(x)}{h} \right| \varepsilon$$

onde

$$M = \frac{1}{2} \max_{x < y \le x+h} |f''(y)|$$

está relacionado com o erro de truncamento.

Esta estimativa mostra que se o valor de h for muito pequeno o erro ao calcular a aproximação numérica cresce. Isso nos motiva a procurar o valor ótimo de h que minimiza o erro.

Exemplo 95. Estude o comportamento da derivada de $f(x) = e^{-x^2}$ no ponto x = 1,5 quando h fica pequeno.

Solução. Segue a tabela com os valores da derivada para vários valores de h.

	0 10	10	10	10-8	10 "
$D_{+,h}f(1,5) = -0.3$	3125246 -0,31616	608 -0,316197	3 -0,3161976	-0,3161977	-0,3161977

h	10^{-10}	10^{-11}	10^{-12}	10^{-13}	10^{-14}	10^{-15}
$D_{+,h}f(1,5)$	-0,3161976	-0,3161971	-0,3162332	-0,3158585	-0,3178013	-0,3747003

h	10^{-2} 10^{-4}		10-6	10-7	10-8	10-9
$D_{+,h}f(1,5)$	-0,3125246	-0,3161608	-0,3161973	-0,3161976	-0,3161977	-0,3161977

Observe que o valor exato é -0.3161977 e o h ótimo é algo entre 10^{-8} e 10^{-9} .

8.1.4 Aproximações de alta ordem

Para aproximar a derivada de uma função f(x) em x_0 , x_1 ou x_2 usaremos os três pontos vizinhos $(x_0, f(x_0))$, $(x_1, f(x_1))$ e $(x_2, f(x_2))$. Uma interpolação usando polinômios de Lagrange para esses três pontos é da forma:

$$f(x) = f(x_0) \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} + f(x_1) \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}$$

 $+ f(x_2)\frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} + \frac{f'''(\xi(x))}{6}(x-x_0)(x-x_1)(x-x_1)$

A derivada de f(x) é

$$f'(x) = f(x_0) \frac{2x - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} + f(x_1) \frac{2x - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)}$$

$$+ f(x_2) \frac{2x - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)}$$

$$+ \frac{f'''(\xi(x))}{6} \left((x - x_1)(x - x_2) + (x - x_0)(2x - x_1 - x_2) \right)$$

$$+ D_x \left(\frac{f'''(\xi(x))}{6} \right) (x - x_0)(x - x_1)(x - x_2).$$
(8.

Trocando x por x_0 , temos $f'(x_0) = f(x_0) \frac{2x_0 - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} + f(x_1) \frac{2x_0 - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)}$

$$+ f(x_2) \frac{2x_0 - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} + \frac{f'''(\xi(x_0))}{6} ((x_0 - x_1)(x_0 - x_2) + (x_0 - x_0)(2x_0 - x_1 - x_2))$$

+ $D_x \left(\frac{f'''(\xi(x_0))}{6} \right) (x_0 - x_0)(x_0 - x_1)(x_0 - x_2).$ Considerando uma malha equiespaçada onde $x_1 = x_0 + h$ e $x_2 =$

 $x_0 + 2h$, temos:

$$x_0 + 2h$$
, temos:

$$f'(x_0) = f(x_0) \frac{-3h}{(-h)(-2h)} + f(x_1) \frac{-2h}{(h)(-h)}$$

$$-h \qquad f'''(\xi(x_0)) \qquad (4.1)(-2h)$$

$$+ f(x_2) \frac{-h}{(2h)(h)} + \frac{f'''(\xi(x_0))}{6} ((-h)(-2h))$$

$$= \frac{1}{h} \left[-\frac{3}{2} f(x_0) + 2f(x_1) - \frac{1}{2} f(x_2) \right] + h^2 \frac{f'''(\xi(x_0))}{3}$$

Similarmente, trocando x por x_1 ou trocando x por x_2 na expressão (8.2), temos outras duas expressões

$$f'(x_1) = \frac{1}{h} \left[-\frac{1}{2} f(x_0) + \frac{1}{2} f(x_2) \right] + h^2 \frac{f'''(\xi(x_1))}{6}$$

$$f'(x_2) = \frac{1}{h} \left[\frac{1}{2} f(x_0) - 2f(x_1) + \frac{3}{2} f(x_2) \right] + h^2 \frac{f'''(\xi(x_2))}{3}$$

 $f'(x_0 + h) = \frac{1}{h} \left[-\frac{1}{2} f(x_0) + \frac{1}{2} f(x_0 + 2h) \right] + h^2 \frac{f'''(\xi(x_0 + h))}{6}$

 $f'(x_0 + 2h) = \frac{1}{h} \left[\frac{1}{2} f(x_0) - 2f(x_0 + h) + \frac{3}{2} f(x_0 + 2h) \right] + h^2 \frac{f'''(\xi(x_0 + h))}{h} + \frac{1}{2} f'''(\xi(x_0 + h)) + \frac{3}{2} f(x_0 + h) + \frac{3}{2} f(x_0 + h) \right] + h^2 \frac{f'''(\xi(x_0 + h))}{h} + h^2 \frac$

 $f'(x_0) = \frac{1}{h} \left[-\frac{3}{2} f(x_0) + 2f(x_0 + h) - \frac{1}{2} f(x_0 + 2h) \right] + h^2 \frac{f'''(\xi)}{\xi}$

ou ainda

$$f'(x_0) = \frac{1}{2h} \left[f(x_0 + h) - f(x_0 - h) \right] + h^2 \frac{f'''(\xi(x_0))}{6}$$
(8.4)

$$f'(x_0) = \frac{1}{2h} \left[f(x_0 - 2h) - 4f(x_0 - h) + 3f(x_0) \right] + h^2 \frac{f'''(\xi(x_0))}{3}$$
Observe que uma das fórmulas é exatamente as diferenças centrais obtida anteriormente.

 $f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + h^2 \frac{f'''(\xi(x_0))}{3(8.3)}$

Analogamente, para construir as fórmulas de cinco pontos tomamos o polinômio de Lagrange para cinco pontos e chegamos a cinco fórmulas, sendo uma delas a seguinte:

$$f'(x_0) = \frac{1}{12h} \left[f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h) \right] + \frac{1}{6}$$
(8.6)

Exemplo 96. Calcule a derivada numérica de $f(x) = e^{-x^2}$ em

x=1.5 pela fórmula de três e cinco pontos para h=0.1, h=0.01e h = 0.001.

Solução. A tabela mostra os resultados:						
	h	h = 0.1	h = 0.01	h=0,		
	diformana prograggives	0.2200442	0.2125246	0.215		

-0.315diferenças progressivas -0.3125240-0,2809448 diferenças regressivas -0.3545920-0.3199024-0.316

-0.3177684

diferenças regressivas
$$-0.3545920$$
 três pontos usando (8.3) -0.3127746

três pontos usando (8.4)

s pontos usando (8.3)
$$-0.3127746$$

três pontos usando
$$(8.5)$$
 -0.3135824 -0.3161665 einco pontos usando (8.6) -0.3162384 -0.31619767

cinco pontos usando (8.6)
$$\begin{vmatrix} -0.3162384 \\ -0.316197677 \end{vmatrix}$$
 $\begin{vmatrix} -0.316197677 \\ -0.316197 \end{vmatrix}$

O valor exato da derivada é f'(1,5) = -0.3161976736856.

-0.316

-0.3161657-0.3162135-0.316

-0.316

8.1.5 Aproximação para a segunda derivada

Para aproximar a derivada segunda, considere as expansões em série de Taylor

de Taylor
$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \frac{h^3}{6}f'''(x_0) + O(h^4)$$

 $f(x_0 - h) = f(x_0) - hf'(x_0) + \frac{h^2}{2}f''(x_0) - \frac{h^3}{6}f'''(x_0) + O(h^4).$ Somando as duas expressões, temos:

$$f(x_0 + h) + f(x_0 - h) = 2f(x_0) + h^2 f''(x_0) + O(h^4)$$

ou seja, uma aproximação de segunda ordem para a derivada segunda em x_0 é

$$f''(x_0) = \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2} + O(h^2) := D_{0,h}^2 f(x_0) + O(h^2)$$

onde
$$D_{0,h}^2 f(x_0) = \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2}.$$

Exemplo 97. Calcule a derivada segunda numérica de $f(x) = e^{-x^2}$ em x = 1.5 para h = 0.1, h = 0.01 e h = 0.001.

Solução. A tabela mostra os resultados:

h	h = 0.1	h = 0.01	h = 0,001	
$D_{0,h}^2 f(1,5)$	0,7364712	0,7377814	0,7377944	

Observe que
$$f''(x) = (4x^2 - 2)e^{-x^2}$$
 e $f''(1,5) = 0.7377946$.

.1.6 Derivada via ajuste ou interpolação

Dado os valores de uma função em pontos $\{(x_i,y_i)\}_{i=1}^N$, as derivadas $\left(\frac{dy}{dx}\right)_i$ podem ser obtidas através da derivada de uma curva que melhor ajusta ou interpola os pontos. Esse tipo de técnica é necessário quando os pontos são muito espaçados entre si ou quando a função oscila muito. Por exemplo, dado os pontos (0,1), (1,2), (2,5), (3,9), a parábola que melhor ajusta os pontos é

$$Q(x) = 0.95 + 0.45x + 0.75x^2.$$

Usando esse ajuste para calcular as derivadas, temos:

$$Q'(x) = 0.45 + 1.5x$$

е

$$y'(x_1) \approx Q'(x_1) = 0.45,$$
 $y'(x_2) \approx Q'(x_2) = 1.95,$ $y'(x_3) \approx Q'(x_3) = 3.45$ e $y'(x_4) \approx Q'(x_4) = 4.95$

Agora olhe o gráfico da seguinte tabela de pontos.

\boldsymbol{x}	y	
0	1,95	
1	1,67	
2	3,71	
3	3,37	
4	5,12	
5	5,79	
6	7,50	
7	7,55	
8	9,33	
9	9,41	
10	11.48	

Observe que as derivadas calculadas por diferenças finitas oscilam

entre um valor pequeno e um grande em cada intervalo e além disso, a fórmula progressiva difere da regressiva significantemente. Por exemplo, por diferenças regressivas $f'(7) \approx \frac{(7,55-7,50)}{1} = 0,05$ e por diferenças progressivas $f'(7) \approx \frac{(9,33-7,55)}{1} = 1,78$. A melhor forma de calcular a derivada aqui é fazer um ajuste de curva. A reta que melhor ajusta os dados da tabela é y = f(x) = 1,2522727 + 0,9655455x. Usando esse ajuste, temos $f'(7) \approx 0,9655455$.

Exercícios

E 8.1.1. Expanda a função suave f(x) em um polinômio de Taylor adequado para obter as seguintes aproximações:

a)
$$f'(x) = \frac{f(x+h) - f(x)}{h} + O(h)$$

b)
$$f'(x) = \frac{f(x) - f(x-h)}{h} + O(h)$$

c)
$$f'(x) = \frac{f(x+h)-f(x-h)}{2h} + O(h^2)$$

d)
$$f''(x) = \frac{f(x+h)-2f(x)+f(x-h)}{h^2} + O(h^2)$$

E 8.1.2. Use os esquemas numéricos do exercício 8.1.1 para aproximar as seguintes derivadas:

- a) f'(x) onde $f(x) = \sin(x)$ e x = 2.
- b) f'(x) onde $f(x) = e^{-x}$ e x = 1.

c) f''(x) onde $f(x) = e^{-x}$ e x = 1.

Use $h=10^{-2}$ e $h=10^{-3}$ e compare com os valores obtidos através da avaliação numérica das derivadas exatas.

E 8.1.3. Use a expansão da função f(x) em torno de x=0 em polinômios de Taylor para encontrar os coeficientes a_1, a_2 e a_3 tais que

a)
$$f'(0) = a_1 f(0) + a_2 f(h) + a_3 f(2h) + O(h^2)$$

b)
$$f'(0) = a_1 f(0) + a_2 f(-h) + a_3 f(-2h) + O(h^2)$$

c)
$$f'(0) = a_1 f(-h_1) + a_2 f(0) + a_3 f(h_2) + O(h^2), |h_1|, |h_2| = O(h)$$

d)
$$f''(0) = a_1 f(0) + a_2 f(h) + a_3 f(2h) + O(h)$$

e)
$$f''(0) = a_1 f(0) + a_2 f(-h) + a_3 f(-2h) + O(h)$$

 ${\bf E}$ 8.1.4. As tensões na entrada, v_i , e saída, v_o , de um amplificador foram medidas em regime estacionário conforme tabela abaixo.

0.	0.5	1.	1.5	2.	2.5	3.	3.5	4.	4.5	5.
0.	1.05	1.83	2.69	3.83	4.56	5.49	6.56	6.11	7.06	8.29

onde a primeira linha é a tensão de entrada em volts e a segunda linha é tensão de saída em volts. Sabendo que o ganho é definido como

$$\frac{\partial v_o}{\partial v_i}$$

Calcule o ganho quando $v_i=1$ e $v_i=4.5$ usando as seguintes técnicas:

- a) Derivada primeira numérica de primeira ordem usando o próprio ponto e o próximo.
- b) Derivada primeira numérica de primeira ordem usando o próprio ponto e o anterior.

- c) Derivada primeira numérica de segunda ordem usando o ponto anterior e o próximo.
- d) Derivada primeira analítica da função do tipo $v_0 = a_1 v_i + a_3 v_i^3$ que melhor se ajusta aos pontos pelo critério dos mínimos quadrados.

Caso	a	b	c	d
$v_i = 1$				
$v_i = 4.5$				

Dica:

y=[0 1.05 1.83 2.69 3.83 4.56 5.49 6.56 6.11 7.06 8.29]

8.2 Problemas de valor contorno

Nesta seção usaremos a aproximação numérica da derivada para resolver problemas de valor de contorno da forma

$$\begin{cases}
-u_{xx} = f(x,u), & a < x < b. \\
u(a) = u_a \\
u(b) = u_b
\end{cases}$$

Resolver numericamente o problema acima exige uma discretização do domínio [a,b], ou seja, dividir o domínio em N partes iguais, definindo

$$h = \frac{b - a}{N}$$

O conjunto de abcissas $x_i, i=1,...,N+1$ formam uma malha para o problema discreto. Nosso objetivo é encontrar as ordenadas $u_i=$

 $u(x_i)$ que satisfazem a versão discreta:

$$\begin{cases}
-\frac{u_{i+1}-2u_i+u_{i-1}}{h^2} = f(x_i,u_i), & 2 \le i \le N. \\
u_1 = u_a \\
u_{N+1} = u_b
\end{cases}$$

O vetor solução $(u_i)_{i=1}^{N+1}$ do problema é solução do sistema acima, que é linear se f for linear em u e não linear caso contrário.

Exemplo 98. Encontre uma solução numérica para o problema de contorno:

contorno:
$$\begin{cases} -u_{xx} + u = e^{-x}, & 0 < x < 1. \\ u(0) = 1 \\ u(1) = 2 \end{cases}$$

Solução. Observe que

$$=\frac{1}{N}$$

e a versão discreta da equação é

$$\begin{cases}
-\frac{u_{i+1}-2u_i+u_{i-1}}{h^2} + u_i = e^{-x_i}, & 2 \le i \le N. \\
u_1 = 1 \\
u_{N+1} = 2
\end{cases}$$

ou seja,

$$\begin{cases} u_1 = 1 \\ -u_{i+1} + (2+h^2)u_i - u_{i-1} = h^2 e^{-x_i}, & 2 \le i \le N. \\ u_{N+1} = 2 \end{cases}$$

que é um sistema linear. A sua forma matricial é:

1	0	0	• • •	0	0	0	u_1		1
-1	$2 + h^2$			0	0	0	u_2		$h^2e^{-x_2}$
0	-1	$2 + h^2$		0	0	0	u_3		$h^2e^{-x_3}$
÷				٠			:	_	:
0	0	0		-1	$2 + h^2$	-1	u_N		$h^2e^{-x_N}$
0	0	0		0	0	1	$\begin{bmatrix} u_{N+1} \end{bmatrix}$		2

Para N=10, temos a seguinte solução:

1,000000
1,0735083
1,1487032
1,2271979
1,3105564
1,4003172
1,4980159
1,6052067
1,7234836
1,8545022
2,000000

Exercícios

E 8.2.1. Considere o seguinte problema de valor de contorno para a equação de calor no estado estacionário:

$$\begin{cases}
-u_{xx} = 32, & 0 < x < 1. \\
u(0) = 5 \\
u(1) = 10
\end{cases}$$

Defina $u_j = u(x_j)$ onde $x_j = (j-1)h$ e $j=1,\ldots,5$. Aproxime a derivada segunda por um esquema de segunda ordem e transforme a equação diferencial em um sistema de equações lineares. Escreva este sistema linear na forma matricial e resolva-o. Faça o mesmo com o dobro de subintervalos, isto é, com malha de 9 pontos.

E 8.2.2. Considere o seguinte problema de valor de contorno para a equação de calor no estado estacionário:

$$\begin{cases}
-u_{xx} = 200e^{-(x-1)^2}, & 0 < x < 2. \\
u(0) = 120 \\
u(2) = 100
\end{cases}$$

Defina $u_j = u(x_j)$ onde $x_j = (j-1)h$ e $j=1,\ldots,21$. Aproxime a derivada segunda por um esquema de segunda ordem e transforme a equação diferencial em um sistema de equações lineares. Resolva o sistema linear obtido.

E 8.2.3. Considere o seguinte problema de valor de contorno para a equação de calor no estado estacionário:

$$\begin{cases}
-u_{xx} = 200e^{-(x-1)^2}, & 0 < x < 2. \\
u'(0) = 0 \\
u(2) = 100
\end{cases}$$

Defina $u_j = u(x_j)$ onde $x_j = (j-1)h$ e $j = 1, \ldots, 21$. Aproxime a derivada segunda por um esquema de segunda ordem, a derivada primeira na fronteira por um esquema de primeira ordem e transforme a equação diferencial em um sistema de equações lineares. Resolva o sistema linear obtido.

E 8.2.4. Considere o seguinte problema de valor de contorno para a equação de calor no estado estacionário com um termo não-linear

de radiação:

$$\begin{cases}
-u_{xx} = 100 - \frac{u^4}{10000}, & 0 < x < 2. \\
u(0) = 0 \\
u(2) = 10
\end{cases}$$

Defina $u_j = u(x_j)$ onde $x_j = (j-1)h$ e $j=1,\ldots,21$. Aproxime a derivada segunda por um esquema de segunda ordem e transforme a equação diferencial em um sistema de equações não lineares. Resolva o sistema obtido. Expresse a solução com dois algarismos depois do separador decimal. Dica: Veja problema 38 da lista 2, seção de sistemas não lineares.

E 8.2.5. Considere o seguinte problema de valor de contorno para a equação de calor no estado estacionário com um termo não-linear

de radiação e um termo de convecção:

$$\begin{cases}
-u_{xx} + 3u_x = 100 - \frac{u^4}{10000}, & 0 < x < 2. \\
u'(0) = 0 \\
u(2) = 10
\end{cases}$$

Defina $u_j = u(x_j)$ onde $x_j = (j-1)h$ e j = 1, ..., 21. Aproxime a derivada segunda por um esquema de segunda ordem, a derivada primeira na fronteira por um esquema de primeira ordem, a derivada primeira no interior por um esquema de segunda ordem e transforme a equação diferencial em um sistema de equações não lineares. Resolva o sistema obtido.

E 8.2.6. Considere o seguinte problema de valor de contorno:

$$\begin{cases}
-u'' + 2u' = e^{-x} - \frac{u^2}{100}, & 1 < x < 4. \\
u'(1) + u(1) = 2 \\
u'(4) = -1
\end{cases}$$

Defina $u_j = u(x_j)$ onde $x_j = 1 + (j-1)h$ e $j = 1, \ldots, 101$. Aproxime a derivada segunda por um esquema de segunda ordem, a derivada primeira na fronteira por um esquema de primeira ordem, a derivada primeira no interior por um esquema de segunda ordem e transforme a equação diferencial em um sistema de equações não lineares. Resolva o sistema obtido.

8.3 Integração numérica

Considere o problema de calcular a área entre uma função positiva, o eixo x e as retas x=a e x=b. O valor exato dessa área é calculada fazendo uma aproximação por retângulos com bases iguais e depois tomando o limite quando o número de retângulos tende ao infinito:

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) h_n,$$

onde $h_n = \frac{b-a}{n}$ é o tamanho da base dos retângulo e $f(x_i)$, $1 \le i \le n$, $a + (i-1)h \le x_i \le a + ih$, é a altura dos retângulos. Essa definição é generalizada para cálculo de integrais num intervalo [a,b]:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i)h_n.$$

A Figura 8.1 mostra um exemplo quando $f(x) = x^2 + 1$, $0 \le x \le 2$. Temos a aproximação por um retângulo com base $h_1 = 2$, depois com dois retângulos de base $h_2 = 1$ e, finalmente com quatro retângulo de bases $h_3 = 0.5$.

Os valores aproximados para a integral são dados na seguinte tabela:

	$h_1 = 2$	$h_2 = 1$	$h_3 = 0.5$	
$\int_0^2 (x^2 + 1) dx$	$h_1 f(1) = 4$	$h_2 f(0,5) + h_2 f(1,5) = 4,5$	4,625	
Observe and				

Observe qu

$$\int_0^2 (x^2 + 1) \, dx = \left[\frac{x^3}{3} + x \right]_0^2 = \frac{8}{3} + 2 = 4,6666667$$

8.3.1 Regras de Newton-Cotes

A integral de uma função num intervalo [a, b], também chamada de quadratura numérica, é aproximada pela soma:

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} a_{i} f(x_{i}),$$

onde x_i , $1 \le i \le n$, são pontos distintos do intervalo [a,b]. Nesta definição, a integral $\int_0^2 (x^2 + 1) dx$ usando uma aproximação por retângulo usa apenas um ponto, o ponto médio do intervalo $(x_1 = 1)$, e a soma se reduz a uma parcela ((2-0)f(1)). A fórmula geral para essa caso, chamado de regra do ponto médio é:

$$\int_{a}^{b} f(x)dx \approx (b-a)f\left(\frac{a+b}{2}\right) := hf(x_1). \tag{8.7}$$

Regra do ponto médio

A regra do ponto médio (8.7) pode ser deduzida mais formalmente usando a expansão de Taylor

$$f(x) = f(x_1) + f'(x_1)(x - x_1) + \frac{f''(\xi(x))}{2}(x - x_1)^2$$

 $\int_{a}^{b} f(x)dx = \int_{a}^{b} f(x_{1})dx + f'(x_{1}) \int_{a}^{b} (x - x_{1})dx + \int_{a}^{b} \frac{f''(\xi(x))}{2} (x - x_{1})^{2} dx$

Usando o teorema do valor médio para integrais e que h = b - a e $x_1 = (a + b)/2$, temos:

$$= hf(x_1) + f'(x_1) \left[\frac{(x - x_1)^2}{2} \right]_a^b + f''(\eta) \left[\frac{1}{6} (x - x_1)^3 \right]_a^b$$

$$= hf(x_1) + f'(x_1) \left[\frac{(b - x_1)^2}{2} - \frac{(a - x_1)^2}{2} \right]$$

$$+ f''(\eta) \left[\frac{1}{6} (b - x_1)^3 - \frac{1}{6} (a - x_1)^3 \right]$$

 $\int_{a}^{b} f(x)dx = hf(x_1) + f'(x_1) \int_{a}^{b} (x - x_1)dx + f''(\eta) \int_{a}^{b} \frac{1}{2} (x - x_1)^2 dx$

para $a < \eta < b$.

 $= hf(x_1) + \frac{h^3 f''(\eta)}{2}.$

Exemplo 99. Use a regra do ponto médio para aproximar a integral

 $\int_{0}^{1} e^{-x^2} dx.$

Depois divida a integral em duas

$$\int_0^{1/2} e^{-x^2} dx + \int_{1/2}^1 e^{-x^2} dx.$$

e aplique a regra do ponto médio em cada uma delas. Finalmente, repita o processo dividindo em quatro integrais. Usando o intervalo [0,1], temos h=1 e $x_1=1/2$. A regra do ponto médio resulta em

$$\int_0^1 e^{-x^2} dx \approx 1 \cdot e^{-1/4} = 0,7788008$$

Usando dois intervalos, [0,1/2] e [1/2,1] e usando a regra do ponto médio em cada um dos intervalos, temos:

$$\int_0^1 e^{-x^2} dx \approx 0.5 \cdot e^{-1/16} + 0.5 \cdot e^{-9/16}) = 0.4697065 + 0.2848914 = 0.75459924 = 0.4697065 + 0.2848914 = 0.4697065 = 0.4697065 + 0.2848914 = 0.4697065 = 0.4697$$

Agora usando quatro intervalos tamos

Agora, usando quatro intervalos, temos
$$\int_0^1 e^{-x^2} dx \approx 0.25 \cdot e^{-1/64} + 0.25 \cdot e^{-9/64} + 0.25 \cdot e^{-25/64} + 0.25 \cdot e^{-49/64} = 0.74$$

Observe que o valor da integral é $\int_{0}^{1} e^{-x^{2}} dx = 0.7468241330.$

A forma natural de obter as regras de integração é usar o polinômio de Lagrange que passa pelo pontos
$$\{(x_i, f(x_i))\}_{i=1}^n$$

$$f(x) = P_n(x) + \text{termo de erro} = \sum_{i=1}^{n} f(x_i) L_i(x) + \prod_{i=1}^{n} (x - x_i)^{\frac{n}{2}} \frac{(x_i)^2}{(n+1)^2}$$

$$f(x) = P_n(x) + \text{termo de erro} = \sum_{i=1}^n f(x_i) L_i(x) + \prod_{i=1}^n (x - x_i) \frac{f^{(n+1)}(\xi(x))}{(n+1)!}$$
 e integramos

e integramos

 $\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} \left[f(x_i) \int_{a}^{b} L_i(x)dx \right] + \frac{1}{(n+1)!} \int_{a}^{b} \prod_{i=1}^{n} (x-x_i) f^{(n+1)}(\xi(x)) dx$

A fórmula de quadratura então é

 $\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n} a_{i}f(x_{i}),$

onde

Regra do Trapézio

O polinômio de Lagrange de primeira ordem que passa por $(x_0, f(x_0))$: $(a,f(a)) \in (x_1,f(x_1)) := (b,f(b)) \text{ \'e dado por }$

$$P_1(x) = f(x_0) \frac{(x - x_0)}{(x_1 - x_0)} + f(x_1) \frac{(x - x_1)}{(x_0 - x_1)} = f(x_0) \frac{(x - x_0)}{h} - f(x_1) \frac{(x - x_0)}{h}$$

onde
$$h = x_1 - x_0$$
. Podemos integrar a função $f(x)$ aproximando-a por esse polinômio:

$$-x_1$$
) $-x_1$

 $\int_{a}^{b} f(x)dx = f(x_0) \int_{a}^{b} \frac{(x - x_0)}{b} dx - f(x_1) \int_{a}^{b} \frac{(x - x_1)}{b} dx$

 $+\frac{1}{24}\int_{0}^{b}(x-x_{0})(x-x_{1})f''(\xi(x))dx.$

unção
$$f(x)$$
 aproximando-

Pelo teorema do valor médio, existe
$$a \leq \eta \leq b$$
 tal que $\int_a^b f(\xi(x))g(x)dx$ $f(\eta) \int_a^b g(x)dx$ e, portanto,
$$\int_a^b f(x)dx = f(x_0) \left[\frac{(x-x_0)^2}{2h} \right]_{x_0}^{x_1} - f(x_1) \left[\frac{(x-x_1)^2}{2h} \right]_{x_0}^{x_1} + \frac{f''(\eta)}{2} \left[\frac{x^3}{3} - \frac{x^2}{2}(x_1+x_0) + x_0x_1x \right]_{x_0}^{x_1}$$

$$= f(x_0) \frac{(x_1-x_0)^2}{2h} + f(x_1) \frac{(x_0-x_1)^2}{2h} + \frac{f''(\eta)}{2} \left(\frac{x_1^3}{3} - \frac{x_1^2}{2}(x_1+x_0) + x_0x_1x_1 - \frac{x_0^3}{3} + \frac{x_0^2}{2}(x_1+x_0) + \frac{x_0^3}{2}(x_1+x_0) + \frac{x_0^3}{2}(x_1+x_0) + \frac{f''(\eta)}{2} \frac{2x_1^3 - 3x_1^2(x_1+x_0) + 6x_1^2x_0 - 2x_0^3 + 3x_0^2(x_1+x_0)}{6} + \frac{h}{2}(f(x_0) + f(x_1)) + \frac{f''(\eta)}{12} \left(x_0^3 - 3x_0^2x_1 + 3x_1^2x_0 - x_1^3 \right) = \frac{h}{2}(f(x_0) + f(x_1)) - \frac{h^3 f''(\eta)}{12}$$

 $\int_{-x^2}^{1}$

$$\int_0^1 e^{-x^2} dx.$$

Exemplo 100. Use a regra do trapézio para aproximar a integral

Depois divida a integral em duas

$$\int_0^{1/2} e^{-x^2} dx + \int_{1/2}^1 e^{-x^2} dx.$$

e aplica a regra do trapézio em cada uma delas. Finalmente, repita o processo dividindo em quatro integrais.

Usando o intervalo [0,1], temos $h=1,\,x_0=0$ e $x_1=1.$ A regra do trapézio resulta em

$$\int_0^1 e^{-x^2} dx \approx \frac{1}{2} (e^0 + e^{-1}) = 0.6839397$$

Usando dois intervalos, [0,1/2] e [1/2,1] e usando a regra do trapézio em cada um dos intervalos, temos:

$$\int_0^1 e^{-x^2} dx \approx \frac{0.5}{2} \left(e^0 + e^{-1/4} \right) + \frac{0.5}{2} \left(e^{-1/4} + e^{-1} \right)$$
$$= 0.4447002 + 0.2866701 = 0.7313703.$$

Agora, usando quatro intervalos, temos

$$\int_0^1 e^{-x^2} dx \approx \frac{0.25}{2} \left(e^0 + e^{-1/16} \right) + \frac{0.25}{2} \left(e^{-1/16} + e^{-1/4} \right)$$

$$+ \frac{0.25}{2} \left(e^{-1/4} + e^{-9/16} \right) + \frac{0.25}{2} \left(e^{-9/16} + e^{-1} \right)$$

$$= 0.7429841$$

Regra de Simpson

A regra de Simpson consiste em aproximar a integral usando três pontos do intervalo:

$$x_0 = a,$$
 $x_1 := \frac{a+b}{2} = x_0 + h$ e $x_2 := b = x_1 + h.$

com h=(b-a)/2. Para isso, o polinômio de Lagrange deve ser uma parábola:

$$P_2(x) = f(x_0) \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + f(x_1) \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + f(x_2) \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}.$$

Se usarmos o mesma metodologia da regra dos trapézios, calcularemos

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} P_{2}(x)dx + \int_{a}^{b} \frac{(x - x_{0})(x - x_{1})(x - x_{2})}{6} f'''(\xi(x))dx$$

O fato é que a regra de Simpson tem ordem cinco e, para isso, usaremos uma abordagem alternativa. Considere o polinômio de Taylor

e obteremos o fórmula de Simpson com um erro de quarta ordem.

$$f(x) = f(x_1) + f'(x_1)(x - x_1) + \frac{f''(x_1)}{2}(x - x_1)^2 + \frac{f'''(x_1)}{6}(x - x_1)^3 + \frac{f^{(4)}(x_1)}{2}(x - x_1)^4 + \frac{f'''(x_1)}{6}(x - x_1)^3 + \frac{f^{(4)}(x_1)}{2}(x - x_1)^4 + \frac{f'''(x_1)}{6}(x - x_1)^3 + \frac{f^{(4)}(x_1)}{6}(x - x_1)^4 + \frac{f'''(x_1)}{6}(x - x_1)^4 +$$

onde
$$x_0 \le \xi(x) \le x_2$$
 e integre no intervalo $[a,b] = [x_0,x_2]$:
$$\int_a^b f(x)dx = \left[f(x_1)(x-x_1) + f'(x_1) \frac{(x-x_1)^2}{2} + \frac{f''(x_1)}{6} (x-x_1)^3 \right]$$

 $+\frac{f'''(x_1)}{24}(x-x_1)^4\bigg|_{x=0}^{x_2}$

Pelo teorema do valor médio, existe $x_0 \le \eta \le x_2$ tal que

$$\int_{a}^{b} f(x)dx = \left[f(x_{1})(x - x_{1}) + f'(x_{1}) \frac{(x - x_{1})^{2}}{2} + \frac{f''(x_{1})}{6}(x - x_{1})^{3} + \frac{f'''(x_{1})}{24}(x - x_{1})^{4} \right]_{x_{0}}^{x_{2}} \\
+ \frac{f^{(4)}(\eta)}{24} \int_{x_{0}}^{x_{2}} (x - x_{1})^{4} dx \\
= \left[f(x_{1})(x - x_{1}) + f'(x_{1}) \frac{(x - x_{1})^{2}}{2} + \frac{f''(x_{1})}{6}(x - x_{1})^{3} + \frac{f'''(x_{1})}{24}(x - x_{1})^{4} \right]_{x_{0}}^{x_{2}} \\
+ \frac{f^{(4)}(\eta)}{120} \left[(x - x_{1})^{5} \right]_{x_{0}}^{x_{2}}$$
Usando o fato que

 $(x_2 - x_1)^3 - (x_0 - x_1)^3 = 2h^3$.

$$(x_2 - x_1)^5 - (x_0 - x_1)^5 = 2h^5,$$

е

temos

 $\int_{a}^{b} f(x)dx = 2hf(x_1) + \frac{h^3}{3}f''(x_1) + \frac{h^5f^{(4)}(\eta)}{60}.$

 $(x_2 - x_1)^4 - (x_0 - x_1)^4 = 0$

Usando a diferenças finitas centrais para a derivada segunda:

$$f''(x_t) = \frac{f(x_0) - 2f(x_1) + f(x_2)}{h^2 + h^2} \frac{h^2}{h^2} f^{(4)}(x_t)$$

$$f''(x_1) = \frac{f(x_0) - 2f(x_1) + f(x_2)}{h^2} + \frac{h^2}{12}f^{(4)}(\eta_1),$$

$$h^2$$
 12^J $(\eta_1)^J$ $x_0 \le \eta_1 \le x_2$, temos

$$x_0 \le \eta_1 \le x_2$$
, temos

$$\int_a^b f(x)dx = 2hf(x_1) + \frac{h^3}{3} \left(\frac{f(x_0) - 2f(x_1) + f(x_2)}{h^2} + \frac{h^2}{12} f^{(4)}(\eta_1) \right)$$

$$\int_{a}^{b} f(x)dx = 2hf(x_{1}) + \frac{h^{3}}{3} \left(\frac{f(x_{0}) - 2f(x_{1}) + f(x_{2})}{h^{2}} + \frac{h^{2}}{12} f^{(4)}(\eta_{1}) \right)$$

$$\int_{a}^{a} f(x)dx = 2hf(x_{1}) + \frac{1}{3} \left(-\frac{h^{2}}{12} \right) + \frac{h^{5}f^{(4)}(\eta)}{60}$$

$$+ \frac{h}{60} = \frac{h}{3} (f(x_0) + 4f(x_1) + f(x_2)) - \frac{h^5}{12} \left(\frac{1}{3} f^{(4)}(\eta_1) - \frac{1}{5} f^{(4)}(\eta_2) \right)$$

Pode-se mostrar que é possível escolher η_2 que substitua η e η_1 com a seguinte estimativa

$$\int_{a}^{b} f(x)dx = \frac{h}{3} \left(f(x_0) + 4f(x_1) + f(x_2) \right) - \frac{h^5}{90} f^{(4)}(\eta_2).$$

Exemplo 101. Use a regra de Simpson para aproximar a integral

$$\int_0^1 e^{-x^2} dx.$$

Depois divida a integral em duas

$$\int_0^{1/2} e^{-x^2} dx + \int_{1/2}^1 e^{-x^2} dx.$$

e aplica a regra de Simpson em cada uma delas.

Usando o intervalo [0,1], temos $h=1/2,\,x_0=0,\,x_1=1/2$ e $x_2=1.$ A regra de Simpson resulta em

$$\int_0^1 e^{-x^2} dx \approx \frac{0.5}{3} (e^0 + 4e^{-1/4} + e^{-1}) = 0.7471804$$

Usando dois intervalos, [0,1/2] e [1/2,1] e usando a regra do trapézio em cada um dos intervalos, temos:

$$\int_0^1 e^{-x^2} dx \approx \frac{0.25}{3} (e^0 + 4e^{-1/16} + e^{-1/4}) + \frac{0.25}{3} (e^{-1/4} + 4e^{-9/16} + e^{-1}) = 0,$$

8.3.2 Regras compostas

Vimos que em todas as estimativas de erro que derivamos, o erro depende do tamanho do intervalo de integração. Uma estratégia para reduzir o erro consiste em particionar o intervalo de integração em diversos subintervalos menores:

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} \int_{x_{i}}^{x_{i+1}} f(x)dx$$

onde $x_i = a + (i-1)h$, h = (b-a)/n e i = 1,2,...,n+1, sendo n o número de subintervalos da partição do intervalo de integração. Depois, aplica-se um método simples de integração em cada subintervalo.

Método composto dos trapézios

A regra composta dos trapézios assume a seguinte forma:

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} \int_{x_{i}}^{x_{i+1}} f(x) dx$$

$$\approx \sum_{i=1}^{n} \frac{x_{i+1} - x_{i}}{2} [f(x_{i}) + f(x_{i+1})]$$

Como $h = x_{i+1} - x_i$, temos:

$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} \sum_{k=1}^{N_{i}} [f(x_{k}) + f(x_{k+1})]$$

$$= \frac{h}{2} [f(x_{1}) + 2f(x_{2}) + 2f(x_{3}) + \dots + 2f(x_{N_{i}}) + f(x_{N_{i}+1})]$$

$$= \frac{h}{2} [f(x_{1}) + f(x_{N_{i}+1})] + h \sum_{i=2}^{N_{i}} f(x_{i})$$

Código Scilab: Trapézio Composto

O código Scilab abaixo é uma implementação do método do trapézio composto para calcular:

$$\int_{a}^{b} f(x) dx = \frac{h}{2} [f(x_1) + f(x_{n+1})] + h \sum_{i=2}^{n} f(x_i) + O(h^3),$$

onde h=(b-a)/n e $x_i=a+(i-1)h$, $i=1,2,\ldots,n+1$. Os parâmetros de entrada são: ${\bf f}$ o integrando definido como uma função no Scilab, ${\bf a}$ o limite inferior de integração, ${\bf b}$ o limite superior de integração, ${\bf n}$ o número de subintervalos desejado. A variável de saída é y e corresponde a aproximação calculada de $\int_a^b f(x) \, dx$.

```
function [y] = trap_comp(f,a,b,n)
h = (b-a)/n
x = linspace(a,b,n+1)
y = h*(f(x(1)) + f(x(n+1)))/2
for i = 2:n
```

```
y = y + h*f(x(i))
end
endfunction
```

Método composto de Simpson

Já a regra composta de Simpson assume a seguinte forma:

$$\int_{a}^{b} f(x) dx = \sum_{k=1}^{n} \int_{x_{k}}^{x_{k+1}} f(x) dx$$

$$\approx \sum_{k=1}^{n} \frac{x_{k+1} - x_{k}}{6} \left[f(x_{k}) + 4f\left(\frac{x_{k+1} + x_{k}}{2}\right) + f(x_{k+1}) \right]$$

onde, como anteriormente, $x_k = a + (k-1)h$, h = (b-a)/n e $i = 1, 2, \dots, n + 1$, sendo n o número de subintervalos da partição do intervalo de integração. Podemos simplificar o somatório acima, escrevendo:

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} \left[f(x_1) + 2 \sum_{i=1}^{n-1} f(x_{2i+1}) + 4 \sum_{i=1}^{n} f(x_{2i}) + f(x_{2n+1}) \right] + O($$
onde agora $h = (h-a)/(2n)$ $x_1 = a + (i-1)h$ $i = 1, 2, \dots, 2n+1$

onde, agora, h = (b-a)/(2n), $x_i = a + (i-1)h$, $i = 1, 2, \dots, 2n+1$.

Código Scilab: Simpson Composto

O código Scilab abaixo é uma implementação do método de Simpson composto para calcular:

$$\int_{a}^{b} f(x) dx = \frac{h}{3} \left[f(x_1) + 2 \sum_{i=1}^{n-1} f(x_{2i+1}) + 4 \sum_{i=1}^{n} f(x_{2i}) + f(x_{2n+1}) \right] + O(0)$$
 onde $h = (b-a)/(2n)$ e $x_i = a + (i-1)h$, $i = 1,2,\ldots,2n+1$. Os parâmetros de entrada são: f o integrando definido como uma função no Scilab, a o limite inferior de integração, f o limite superior

de integração, n o número de subintervalos desejado. A variável de saída é y e corresponde a aproximação calculada de $\int_a^b f(x) dx$.

Exemplo 102. Calcule numericamente a integral

$$\int_0^2 x^2 e^{x^2} dx$$

pelas regras compostas do ponto médio, trapézio e Simpson variando o número de intervalos $N_i = 1, 2, 3, 6, 12, 24, 48, 96.$

	1	5,4365637	218,3926	76,421909
	2	21,668412	111,91458	51,750469
	3	31,678746	80,272022	47,876505
Solução.	6	41,755985	55,975384	46,495785
	12	45,137529	48,865685	46,380248
	24	46,057757	47,001607	46,372373
	48	46,292964	46,529682	46,37187

Trapézios

210 2026

46,411323

Ponto Médio

F 426F627

46,352096

n

96

Simpson

76 491000

46,371838

8.3.3 O método de Romberg

O método de Romberg é um método simplificado para construir quadraturas de alta ordem.

Considere o método de trapézios composto aplicado à integral

$$\int_{a}^{b} f(x)dx$$

Defina I(h) a aproximação desta integral pelo método dos trapézios composto com malha de largura constante igual a h. Aqui $h = \frac{b-a}{N_i}$ para algum N_i inteiro, i.e.:

$$I(h) = \frac{h}{2} \left| f(a) + 2 \sum_{j=2}^{N_i} f(x_j) + f(b) \right|, \quad N_i = \frac{b-a}{h}$$

Teorema 12. Se f(x) é uma função analítica no intervalo (a,b), então a função I(h) admite uma representação na forma

$$I(h) = I_0 + I_2 h^2 + I_4 h^4 + I_6 h^6 + \dots$$

Para um demonstração, veja [4]. Em especial observamos que

$$\int_{a}^{b} f(x)dx = \lim_{h \to 0} I(h) = I_{0}$$

Ou seja, o valor exato da integral procurada é dado pelo coeficiente I_0 .

A ideia central do método de Romberg, agora, consiste em usar a extrapolação de Richardson para construir métodos de maior ordem a partir do métodos dos trapézios para o intervalo (a,b)

Exemplo 103. Construção do método de quarta ordem.

$$\langle h \rangle$$
 h^2 h^4 h^6

 $I(h) = I_0 + I_2 h^2 + I_4 h^4 + I_6 h^6 + \dots$

$$I\left(\frac{h}{2}\right) = I_0 + I_2 \frac{h^2}{4} + I_4 \frac{h^4}{16} + I_6 \frac{h^6}{64} + \dots$$

Usamos agora uma eliminação gaussiana para obter o termo I_0 :

$$\frac{4I(h/2) - I(h)}{3} = I_0 - \frac{1}{4}I_4h^4 - \frac{5}{16}I_6h^6 + \dots$$

Vamos agora aplicar a fórmula para h = b - a,

$$I(h) = \frac{h}{2} [f(a) + f(b)]$$

$$I(h/2) = \frac{h}{4} [f(a) + 2f(c) + f(b)], c = \frac{a+b}{2}$$

$$\frac{4I(h/2) - I(h)}{3} = \frac{h}{3} [f(a) + 2f(c) + f(b)] - \frac{h}{6} [f(a) + f(b)]$$
$$= \frac{h}{6} [f(a) + 4f(c) + f(b)]$$

Observe que esquema coincide com o método de Simpson.

A partir de agora, usaremos a seguinte notação

$$R_{1,1} = I(h)$$

$$R_{2,1} = I(h/2)$$

$$R_{3,1} = I(h/4)$$

$$\vdots$$

$$R_{n,1} = I(h/2^{n-1})$$

Observamos que os pontos envolvidos na quadratura $R_{k,1}$ são os mesmos pontos envolvidos na quadratura R(k-1,1) acrescidos dos pontos centrais, assim, temos a seguinte fórmula de recorrência:

$$R_{k,1} = \frac{1}{2}R_{k-1,1} + \frac{h}{2^{k-1}} \sum_{i=1}^{2^{k-2}} f\left(a + (2i-1)\frac{h}{2^{k-1}}\right)$$

Definimos $R_{k,2}$ para $k \geq 2$ como o esquema de ordem quatro obtido da fórmula do exemplo 103:

$$R_{k,2} = \frac{4R_{k,1} - R_{k-1,1}}{3}$$

Os valores $R_{k,2}$ representam então os valores obtidos pelo método de Simpson composto aplicado a uma malha composta de $2^{k-1} + 1$ pontos.

Similarmente os valores de $R_{k,i}$ são os valores obtidos pela quadratura de ordem 2j obtida via extrapolação de Richardson. Pode-se mostrar que

$$R_{k,j} = R_{k,j-1} + \frac{R_{k,j-1} - R_{k-1,j-1}}{4^{j-1} - 1}.$$

Exemplo 104. Construa o esquema de Romberg para aproximar

o valor de $\int_0^2 e^{-x^2} dx$ com erro de ordem 8			
	55,59815	0,000000	(
O que nos fornece os seguintes resultados:	30,517357	22,157092	(

17,353626

20,644559

17.565086 | 16.538595

Ou seja, temos:

$$\int_0^2 e^{x^2} dx \approx 16,475543$$

usando uma aproximação de ordem 8.

Exemplo 105. Construa o esquema de Romberg para aproximar

o valor de $\int_0^2 x^2 e^{x^2} dx$	dx com erro	de ordem 12	2.	
	218,3926			
	111,91458	76,421909		
	66,791497	51,750469	50.105706	

46,926218

46,604601

46,549028

46,375146

46,371863

O que nos fornece:

Ou seja, temos:

 $\int_{0}^{2} x^{2} e^{x^{2}} dx \approx 46,371847$

51,892538

8.3.4 Ordem de precisão

Todos os métodos de quadratura que vimos até o momento são da forma

$$\int_{a}^{b} f(x)dx \approx \sum_{j=1}^{N} w_{j} f(x_{j})$$

Exemplo 106. (a) Método do trapézio

$$\int_{a}^{b} f(x)dx \approx [f(a) + f(b)] \frac{b - a}{2}$$

$$= \frac{b - a}{2} f(a) + \frac{b - a}{2} f(b)$$

$$:= w_{1}f(x_{1}) + w_{2}f(x_{2}) = \sum_{j=1}^{2} w_{j}f(x_{j})$$

(b) Método do trapézio com dois intervalos

$$\int_{a}^{b} f(x)dx \approx \left[f(a) + 2f\left(\frac{a+b}{2}\right) + f(b) \right] \frac{b-a}{4}$$

$$= \frac{b-a}{4}f(a) + \frac{b-a}{2}f\left(\frac{a+b}{2}\right) + \frac{b-a}{4}f(b)$$

$$:= w_{1}f(x_{1}) + w_{2}f(x_{2}) + w_{3}f(x_{3}) = \sum_{a=0}^{3} w_{j}f(x_{j})$$

(c) Método de Simpson

(c) Metodo de Simpson
$$\int_{a}^{b} f(x)dx \approx \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] \frac{b-a}{6}$$

$$= \frac{b-a}{6}f(a) + \frac{2(b-a)}{3}f\left(\frac{a+b}{2}\right) + \frac{b-a}{6}f(b)$$

$$:= \sum_{a=0}^{3} w_{j}f(x_{j})$$

(d) Método de Simpson com dois intervalos

$$\int_{a}^{b} f(x)dx \approx \left[f(a) + 4f\left(\frac{3a+b}{4}\right) + 2f\left(\frac{a+b}{2}\right) \right]$$

 $:= \sum_{j=1}^{5} w_j f(x_j)$ A principal técnica que temos usado para desenvolver os métodos numéricos é o **polinômio de Taylor**:

 $+ \frac{b-a}{3}f\left(\frac{a+3b}{4}\right) + \frac{b-a}{12}f(b)$

 $+ 4f\left(\frac{a+3b}{4}\right) + f(b) \left[\frac{b-a}{12}\right]$

 $= \frac{b-a}{12}f(a) + \frac{b-a}{3}f(\frac{3a+b}{4}) + \frac{b-a}{6}f(\frac{a+b}{2})$

$$f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n + R_n(x)$$

Integrando termo a termo, temos:

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} a_{0}dx + \int_{a}^{b} a_{1}xdx + \int_{a}^{b} a_{2}x^{2}dx + \dots +
\int_{a}^{b} a_{n}x^{n}dx + \int_{a}^{b} R_{n}(x)dx
= a_{0}(b-a) + a_{1}\frac{b^{2} - a^{2}}{2} + a_{2}\frac{b^{3} - a^{3}}{3} + \dots +
a_{n}\frac{b^{n+1} - a^{n+1}}{n+1} + \int_{a}^{b} R_{n}(x)dx$$

Neste momento, é natural investigar o desempenho de um esquema numérico aplicado a funções do tipo $f(x) = x^n$.

Definição 9. A ordem de precisão ou ordem de exatidão de um esquema de quadratura numérica como o maior inteiro positivo \mathbf{n} para o qual o esquema é exato para todas as funções do tipo x^k com $0 \le k \le n$, ou seja, Um esquema é dito de ordem n se

$$\sum_{j=1}^{n} w_j f(x_j) = \int_a^b f(x) dx, \quad f(x) = x^k, \ k = 0, 1, \dots n$$

ou, equivalentemente:

 $\sum_{j=1}^{n} w_j x_j^k = \int_a^b x^k dx = \frac{b^{k+1} - a^{k+1}}{k+1}, \quad k = 0, 1, \dots n$

Observação 24. Se o método tem ordem 0 ou mais, então

$$\sum_{j=1}^{n} w_j = b - a$$

Exemplo 107. A ordem de precisão do esquema de trapézios é 1:

$$\int_{a}^{b} f(x)dx \approx [f(a) + f(b)] \frac{b-a}{2} = \sum_{j=1}^{2} w_{j} f(x_{j})$$

onde $w_i = \frac{b-a}{2}, x_1 = a \in x_2 = b.$

$$(k=0): \quad \sum_{j=1}^{n} w_j = b - a$$

$$(k=1): \quad \sum_{j=1}^{n} w_j x_j = (a+b) \frac{b-a}{2} = \frac{b^2 - a^2}{2}$$

$$(k=2): \quad \sum_{j=1}^{n} w_j x_j^2 = (a^2 + b^2) \frac{b-a}{2} \neq \frac{b^3 - a^3}{3}$$

Exemplo 108. A ordem de precisão do esquema de Simpson é 3:

$$\int_{a}^{b} f(x)dx \approx \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] \frac{b-a}{6} = \sum_{j=1}^{3} w_{j} f(x_{j})$$

onde $w_1 = w_3 = \frac{b-a}{6}, w_2 = 4\frac{b-a}{6}, x_1 = a, x_2 = \frac{a+b}{2} e x_3 = b$

$$(k=0): \sum_{j=1}^{n} w_j = (1+4+1)\frac{b-a}{6} = b-a$$

$$(k=1): \quad \sum_{j=1}^{n} w_j x_j = (a + 4\frac{a+b}{2} + b)\frac{b-a}{6} = (a+b)\frac{b-a}{2} = \frac{b^2 - a^2}{2}$$

$$(k=2): \quad \sum_{j=1}^{n} w_j x_j^2 = (a^2 + 4\left(\frac{a+b}{2}\right)^2 + b^2)\frac{b-a}{6} = \frac{b^3 - a^3}{3}$$

$$(k=3): \quad \sum_{j=1}^{n} w_j x_j^3 = (a^3 + 4\left(\frac{a+b}{2}\right)^3 + b^3)\frac{b-a}{6} = \frac{b^4 - a^4}{4}$$

$$(k=4): \sum_{j=1}^{n} w_j x_j^4 = (a^4 + 4\left(\frac{a+b}{2}\right)^4 + b^4) \frac{b-a}{6} \neq \frac{b^5 - a^5}{4}$$

Exemplo 109. Encontre os pesos w_j e as abscissas x_j tais que o esquema de dois pontos

$$\int_{-1}^{1} f(x)dx = w_1 f(x_1) + w_2 f(x_2)$$

é de ordem 3.

Solução. Temos um sistema de quatro equações e quatro incógnitas dado por:

$$w_1 + w_2 = 2$$

$$x_1w_1 + x_2w_2 = 0$$

$$x_1^2w_1 + x_2^2w_2 = \frac{2}{3}$$

$$x_1^3w_1 + x_2^3w_2 = 0$$

Da segunda e quarta equação, temos:

$$\frac{w_1}{w_2} = -\frac{x_2}{x_1} = -\frac{x_2^3}{x_1^3}$$

Como $x_1 \neq x_2$, temos $x_1 = -x_2$ e $w_1 = w_2$. Da primeira equação, temos $w_1 = w_2 = 1$. Da terceira equação, temos $-x_1 = x_2 = \frac{\sqrt{3}}{3}$.

Esse esquema de ordem de precisão três e dois pontos chama-se quadratura de Gauss-Legendre com dois pontos:

$$\int_{-1}^{1} f(x)dx = f\left(\frac{\sqrt{3}}{3}\right) + f\left(-\frac{\sqrt{3}}{3}\right)$$

Exemplo 110. Comparação

f(x)	Exato	Trapezio	Simpson	Gauss-L
e^x	$e - e^{-1}$ $\approx 2,35040$	$e^{-1} + e \qquad \frac{e^{-1} + 4e^0 + e^1}{3}$		$e^{-\frac{-1}{3}}$ ≈ 2
$x^2\sqrt{3+x^3}$	$\frac{\frac{16}{9} - \frac{4}{9}\sqrt{2}}{\approx 1,14924}$	3,41421	1,13807	1,
$x^2e^{x^3}$	$\frac{e-e^{-1}}{3} \approx 0.78347$	3,08616	1,02872	0,

8.3.5 Quadratura de Gauss-Legendre

A quadratura de Gauss-Legendre de n pontos é o esquema numérico

$$\int_{-1}^{1} f(x)dx = \sum_{j=1}^{n} w_j f(x_j)$$

cuja ordem de exatidão é 2n-1.

- O problema de encontrar os n pesos e n abscissas é equivalente a um sistema não linear com 2n equações e 2n incógnitas.
- Pode-se mostrar que este problema sempre tem solução e que a solução é única se $x_1 < x_2 < \ldots < x_n$
- As abscissas são das pelos zeros do enésimo polinômio de Legendre, $P_n(x)$.
- Os pesos são dados por

$$w_j = \frac{2}{\left(1 - x_j^2\right) \left[P_n'(x_j)\right]^2}.$$

- Estes dados são tabelados e facilmente encontrados.

n	x_{j}	w_j
1	0	2
2	$\pm \frac{\sqrt{3}}{3}$	1
3	$0 \\ \pm \sqrt{\frac{3}{5}}$	$\frac{8}{9}$ $\frac{5}{9}$
	$-\sqrt{5}$	9
4	$\pm\sqrt{\left(3-2\sqrt{6/5}\right)/7}$	$\frac{18+\sqrt{30}}{36}$
	$\pm\sqrt{(3+2\sqrt{6/5})/7}$	$\frac{18 - \sqrt{30}}{36}$

Exemplo 111. Aproximar

$$\int_{-1}^{1} \sqrt{1+x^2} dx$$

pelo método de Gauss-Legendre com 3 pontos.

Solução.

No Scilab:

$$I_3 = \frac{5}{9}f\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9}f(0) + \frac{5}{9}f\left(\sqrt{\frac{3}{5}}\right) \approx 2,2943456$$

Exemplo 112. Aproximar

$$\int_{-1}^{1} \sqrt{1+x^2} dx$$

pelo método de Gauss-Legendre com 4 pontos.

Solução. I4=
$$f(x4(1))*w4(1)+f(-x4(1))*w4(1)+f(x4(2))*w4(2)$$

Exemplo 113. Aproximar

$$\int_0^1 \sqrt{1+x^2} dx$$

pelo método de Gauss-Legendre com 3, 4 e 5 pontos.

Solução. Para tanto, fazemos a mudança de variáveis u = 2x - 1:

$$\int_0^1 \sqrt{1+x^2} dx = \frac{1}{2} \int_{-1}^1 \sqrt{1+\left(\frac{u+1}{2}\right)^2} du$$

E, então aplicamos a quadratura gaussiana nesta última integral.

 $deff('y=f(u)', 'y=sqrt(1+(u+1)^2/4)/2')$ I3=f(0)*w3(1)+f(x3(2))*w3(2)+f(-x3(2))*w3(2)

I4=f(x4(1))*w4(1)+f(-x4(1))*w4(1)+f(x4(2))*w4(2)+f(-x4(2))

15=f(0)*w5(1)+f(x5(2))*w5(2)+f(-x5(2))*w5(2)+f(x5(3))*w5(

+f(-x5(3))*w5(3)

Exercícios

E 8.3.1. Calcule numericamente as seguintes integrais usando os métodos simples do Ponto médio, Trapézio e Simpson. Calcule também o valor exato usando seus conhecimentos de Cálculo I. Complete a tabela abaixo conforme modelo:

	exato	Ponto médio	Trapéz
$\int_0^1 e^{-x} dx$	$1 - e^{-1} \approx 0.6321206$	$e^{-1/2} \approx 0.6065307$	$\frac{1+e^{-1}}{2} \approx 0.68$
$\int_0^1 x^2 dx$			
$\int_0^1 x^3 dx$			
$\int_0^1 x e^{-x^2} dx$			
$\int_0^1 \frac{1}{x^2 + 1} dx$			
$\int_0^1 \frac{x}{x^2 + 1} dx$			

E 8.3.2. Dados os valores da função f(x), f(2) = 2, f(3) = 4 e f(4) = 8, calcule o valor aproximado de

$$\int_{2}^{4} f(x)dx$$

pelos métodos simples de ponto médio, trapézio e Simpson.

E 8.3.3. Dê a interpretação geométrica dos métodos do ponto médio, trapézio e Simpson. A partir desta construção geométrica, deduza as fórmulas para aproximar

$$\int_{a}^{b} f(x)dx.$$

Verifique o método de Simpson pode ser entendido como uma média aritmética ponderada entre os métodos de trapézio e ponto médio. Encontre os pesos envolvidos. Explique o que são os métodos compostos.

E 8.3.4. Calcule numericamente o valor de $\int_2^5 e^{4-x^2} dx$ usando os métodos compostos do ponto médio, trapézio e Simpson. Obtenha os resultados utilizando, em cada quadratura, o número de pontos indicado.

n	Ponto médio	Trapézios	Simpson
3			
5			
7			
9			

 ${f E}$ 8.3.5. Use as rotinas construídas em aula e calcule numericamente o valor das seguintes integrais usando o método composto

dos trapézios para os seguintes números de pontos: $\int_0^1 e^{-4x^2} dx \mid \int_0^1 \frac{1}{1+x^2} dx$

0.4409931

0.4410288

0.4410277

método de Romberg.

n

17

33

65

$a_3h^3 + a_4h^4$ que melhor se ajusta aos dados, onde $h = \frac{1}{n-1}$. Discuta os resultados com base no teorema envolvido na construção do						
Para cada integrando encontre o função $I(h) = a_0 + a_1h + a_2h^2 + a_1h^2$						
1025		0.4410407	0.7853981	$1.5873015873016 \cdot 10^{-3}$	4.6191723	
513		0.4410406				
257		0.4410405				
129		0.4410400				
65		0.4410377				

 $\int_0^1 x^4 (1-x)^4 dx$

 $\int_0^1 e^{-\frac{1}{2}}$

E 8.3.6. Calcule os valores da quadratura de Romberg de $R_{1,1}$ até $R_{4,4}$ para $\int_0^{\pi} \sin(x) dx$. Não use rotinas prontas neste problema.

E 8.3.7. Sem usar rotinas prontas, use o método de integração de Romberg para obter a aproximação $R_{3,3}$ das seguintes integrais:

- a) $\int_0^1 e^{-x^2} dx$
- b) $\int_0^2 \sqrt{2 \cos(x)} dx$
- c) $\int_0^2 \frac{1}{\sqrt{2-\cos(x)}} dx$

E 8.3.8. Encontre uma expressão para $R_{2,2}$ em termos de f(x) e verifique o método de Romberg $R_{2,2}$ é equivalente ao método de Simpson.

E 8.3.9. Considere o problema de aproximar numericamente o valor de

$$\int_0^{100} \left(e^{\frac{1}{2}\cos(x)} - 1 \right) dx$$

pelo método de Romberg. Usando rotinas prontas, faça o que se pede.

- Calcule R(6,k), $k=1,\ldots,6$ e observe os valores obtidos.
- Calcule R(7,k), k = 1, ..., 6 e observe os valores obtidos.
- Calcule R(8,k), k = 1, ..., 6 e observe os valores obtidos.
- Discuta os resultados anteriores e proponha uma estratégia mais eficiente para calcular o valor da integral.

E 8.3.10. Encontre os pesos w_1 , w_2 e w_3 tais que o esquema de quadratura dado por

$$\int_0^1 f(x)dx \approx w_1 f(0) + w_2 f(1/2) + w_3 f(1)$$

apresente máxima ordem de exatidão. Qual a ordem obtida?

E 8.3.11. Encontre a ordem de exatidão do seguinte método de integração:

$$\int_{-1}^{1} f(x)dx \approx \frac{2}{3} \left[f\left(\frac{-\sqrt{2}}{2}\right) + f(0) + f\left(\frac{\sqrt{2}}{2}\right) \right]$$

E 8.3.12. Encontre a ordem de exatidão do seguinte método de

E 8.3.12. Encontre a ordem de exatidad do seguinte metodo de integração:
$$\int_{-1}^{1} f(x)dx = -\frac{1}{210}f'(-1) + \frac{136}{105}f(-1/2) - \frac{62}{105}f(0) + \frac{136}{105}f(1/2) + \frac{1}{210}f(1/2) + \frac{$$

 ${\bf E}$ 8.3.13. Encontre os pesos $w_1,\ w_2$ e w_3 tal que o método de integração

$$\int_0^1 f(x)dx \approx w_1 f(1/3) + w_2 f(1/2) + w_3 f(2/3)$$

tenha ordem de exatidão máxima. Qual é ordem obtida?

E 8.3.14. Explique por quê quando um método simples tem estimativa de erro de truncamento local de ordem h^n , então o método composto associado tem estimativa de erro de ordem h^{n-1} .

E 8.3.15. Quantos pontos são envolvidos no esquema de quadratura $R_{3,2}$? Qual a ordem do erro deste esquema de quadratura? Qual a ordem de exatidão desta quadradura?

E 8.3.16. Encontre os pesos w_1 e w_2 e as abcissas x_1 e x_2 tais que

$$\int_{-1}^{1} f(x) = w_1 f(x_1) + w_2 f(x_2)$$

quando $f(x)=x^k,\ k=0,1,2,3,$ isto é o método apresente máxima ordem de exatidão possível com dois pontos.

Use esse método para avaliar o valor da integral das seguintes integrais e compare com os valores obtidos para Simpson e trapézio, bom como com o valor exato.

- a) $\int_{-1}^{1} (2 + x 5x^2 + x^3) dx$
- b) $\int_{-1}^{1} e^x dx$
- c) $\int_{-1}^{1} \frac{dx}{\sqrt{x^2+1}}$

 ${\bf E}$ 8.3.17. Encontre os pesos $w_1,\ w_2$ e w_3 tal que o método de integração

$$\int_{-1}^{1} f(x)dx \approx w_1 f\left(-\frac{\sqrt{3}}{3}\right) + w_2 f(0) + w_3 f\left(\frac{\sqrt{3}}{3}\right)$$

tenha ordem de exatidão máxima. Qual é ordem obtida?

E 8.3.18. Encontre aproximações para a seguinte integral via Gauss-Legendre com 2, 3, 4, 5, 6 e 7 pontos e compare com o valor exato

$$\int_{-1}^{1} x^4 e^{x^5} dx.$$

 ${\bf E}$ 8.3.19. Encontre aproximações para as seguintes integrais via Gauss-Legendre com 4 e 5 pontos:

- a) $\int_0^1 e^{-x^4} dx$
- b) $\int_1^4 \log(x + e^x) dx$
- c) $\int_0^1 e^{-x^2} dx$

E 8.3.20. Calcule numericamente o valor das seguintes integrais usando a quadratura de Gauss-Legendre para os seguintes valores de n:

n	$\int_0^1 e^{-4x^2} dx$	$\int_0^1 \frac{1}{1+x^2} dx$	$\int_0^1 x^4 (1-x)^4 dx$	$\int_0^1 e^{-\frac{1}{x^2+1}} dx$
2		· 11w		
3				
4				
5				
8				
10				
12				
14				
16	0.4410407	0.7853982	0.0015873	0.4619172

8.4 Exercícios finais

E 8.4.1. O valor exato da integral imprópria $\int_0^1 x \ln(x) dx$ é dado por

$$\int_0^1 x \ln(x) dx = \left(\frac{x^2}{2} \ln x - \frac{x^2}{4} \right) \Big|_0^1 = -1/4$$

Aproxime o valor desta integral usando a regra de Simpson para $n=3,\ n=5$ e n=7. Como você avalia a qualidade do resultado obtido? Por que isso acontece.

E 8.4.2. O valor exato da integral imprópria $\int_0^\infty e^{-x^2} dx$ é dado por $\frac{\sqrt{\pi}}{2}$. Escreva esta integral como

$$I = \int_0^1 e^{-x^2} dx + \int_0^1 u^{-2} e^{-1/u^2} du = \int_0^1 \left(e^{-x^2} + x^{-2} e^{-1/x^2} \right) dx$$

e aproxime seu valor usando o esquema de trapézios e Simpson para $n=5,\,n=7$ e n=9.

E 8.4.3. Estamos interessados em avaliar numericamente a seguinte integral: $\int_{-1}^{1} u(x) dx dx$

$$\int_0^1 \ln(x) \sin(x) dx$$

cujo valor com 10 casas decimais corretas é -.2398117420.

a) Aproxime esta integral via Gauss-Legendre com
$$n=2, n=3,$$
 $n=4,$ $n=5,$ $n=6$ e $n=7.$

b) Use a identidade

b) Use a identified
$$\int_0^1 \ln(x) \sin(x) dx = \int_0^1 \ln(x) x dx + \int_0^1 \ln(x) \left[\sin(x) - x \right] dx$$
$$= \left(\frac{x^2}{2} \ln x - \frac{x^2}{4} \right) \Big|_0^1 + \int_0^1 \ln(x) \left[\sin(x) - x \right]$$
$$= -\frac{1}{4} + \int_0^1 \ln(x) \left[\sin(x) - x \right] dx$$

e aproxime a integral $\int_0^1 \ln(x) \left[\sin(x) - x \right] dx$ numericamente

via Gauss-Legendre com $n=2,\;n=3,\;n=4,\;n=5,\;n=6$ e n=7.

c) Compare os resultados e discuta levando em consideração as respostas às seguintes perguntas: 1)Qual função é mais bemcomportada na origem? 2)Na segunda formulação, qual porção da solução foi obtida analiticamente e, portanto, sem erro de truncamento?

E 8.4.4. Considere o problema de calcular numericamente a integral $I = \int_{-1}^{1} f(x) dx$ quando $f(x) = \frac{\cos(x)}{\sqrt{|x|}}$.

- a) O que acontece quando se aplica diretamente a quadratura gaussiana com um número impar de abscissas?
- b) Calcule o valor aproximado por quadratura gaussiana com n=2, n=4, n=6 e n=8.

c) Calcule o valor aproximado da integral removendo a singularidade

$$I = \int_{-1}^{1} \frac{\cos(x)}{\sqrt{|x|}} dx = \int_{-1}^{1} \frac{\cos(x) - 1}{\sqrt{|x|}} dx + \int_{-1}^{1} \frac{1}{\sqrt{|x|}} dx$$
$$= \int_{-1}^{1} \frac{\cos(x) - 1}{\sqrt{|x|}} dx + 2 \int_{0}^{1} \frac{1}{\sqrt{x}} dx = \int_{-1}^{1} \frac{\cos(x) - 1}{\sqrt{|x|}} dx + 4$$

n = 8.

d) Calcule o valor aproximado da integral removendo a singularidade, considerando a paridade da função

 $I = 4 + \int_{-1}^{1} \frac{\cos(x) - 1}{\sqrt{|x|}} dx = 4 + 2 \int_{0}^{1} \frac{\cos(x) - 1}{\sqrt{x}} dx = 4 + \sqrt{2}$

e aplicando quadratura gaussiana com n=2, n=4, n=6 e

n = 8.

e aplicando quadratura gaussiana com
$$n=2, n=4, n=6$$
 e $n=8$.

- e) Expandindo a função $\cos(x)$ em série de Taylor, truncando a série depois do n-ésimo termos não nulo e integrando analiticamente.
- f) Aproximando a função cos(x) pelo polinômio de Taylor de grau 4 dado por

$$P_4(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24}$$

e escrevendo

$$I = \int_{-1}^{1} \frac{\cos(x)}{\sqrt{|x|}} dx = \int_{-1}^{1} \frac{\cos(x) - P_4(x)}{\sqrt{|x|}} dx + \int_{-1}^{1} \frac{P_4(x)}{\sqrt{|x|}} dx$$

$$I = \int_{-1} \frac{1}{\sqrt{|x|}} dx = \int_{-1} \frac{1}{\sqrt{|x|}} dx + \int_{-1} \frac{1}{\sqrt{|x|}} dx$$
$$= 2 \int_{0}^{1} \frac{\cos(x) - P_{4}(x)}{\sqrt{x}} dx + 2 \int_{0}^{1} \left(x^{-1/2} - \frac{x^{3/2}}{2} + \frac{x^{7/2}}{24} \right) dx$$

Resolver numericamente Resolver analiticamente **E 8.4.5.** Calcule numericamente o valor das seguintes integrais com um erro relativo inferior a 10^{-4} .

a)
$$\int_0^1 \frac{\sin(\pi x)}{x} dx$$

$$b) \int_0^1 \frac{\sin(\pi x)}{x(1-x)} dx$$

c)
$$\int_0^1 \frac{\sin\left(\frac{\pi}{2}x\right)}{\sqrt{x(1-x)}} dx$$

d)
$$\int_0^1 \ln(x) \cos(x) dx$$

E 8.4.6. Calcule as integrais $\int_0^1 \frac{e^x}{|x|^{1/4}} dx$ e $\int_0^1 \frac{e^{-x}}{|x|^{4/5}} dx$ usando procedimentos analíticos e numéricos.

E 8.4.7. Use a técnica de integração por partes para obter a seguinte identidade envolvendo integrais impróprias:

$$I = \int_0^\infty \frac{\cos(x)}{1+x} dx = \int_0^\infty \frac{\sin(x)}{(1+x)^2} dx.$$

Aplique as técnicas estudadas para aproximar o valor de I e explique por que a integral da direita é mais bem comportada.

E 8.4.8. Resolva a equação

$$x + \int_0^x e^{-y^2} dy = 5$$

com 5 dígitos significativos.

 ${\bf E}$ 8.4.9. O calor específico (molar) de um sólido pode ser aproximado pela teoria de Debye usando a seguinte expressão

$$C_V = 9Nk_B \left(\frac{T}{T_D}\right)^3 \int_0^{T_D/T} \frac{y^4 e^y}{(e^y - 1)^2} dy$$

onde N é a constante de Avogrado dado por $N=6.022\times 10^{23}$ e k_B é a constante de Boltzmann dada por $k_B=1.38\times 10^{-23}$. T_D é temperatura de Debye do sólido.

- a) Calcule o calor específico do ferro em quando T=200K, T=300K e T=400K supondo $T_D=470K.$
- b) Calcule a temperatura de Debye de um sólido cujo calor específico a temperatura de 300K é 24J/K/mol. Dica: aproxime a integral por um esquema numérico com um número fixo de pontos.
- c) Melhore sua cultura geral: A lei de Dulong-Petit para o calor específico dos sólidos precede a teoria de Debye. Verifique que a equação de Debye é consistente com Dulong-Petit, ou seja:

$$\lim_{T \to \infty} C_v = 3Nk_B.$$

Dica: use $e^y \approx 1 + y$ quando $y \approx 0$

Capítulo 9

Problemas de valor inicial

Neste capítulo, desenvolveremos técnicas numérica para aproximar a solução de problemas de valor inical da forma

$$y'(t) = f(y(t),t)$$
 (9.1a)
 $y(t_0) = y_0$ (condição inicial). (9.1b)

A ingógnita de um problema de valor inicial é uma função que satisfaz a equação diferencial (9.1a) e a condição inicial (9.1b).

Exemplo 114. Considere o seguinte problema de valor inicial

$$y(t_0) = 1. \tag{9.2b}$$
 A solução desta equação é dada pela função $y(t) = e^{2t}$ pois $y'(t) =$

y'(t) = 2y(t),

(9.2a)

A solução desta equação e dada pela runção $y(t) = e^{-t}$ pois $y(t) = 2e^{2t} = 2y(t)$ e $y(0) = e^0 = 1$.

Muitos problemas de valor inicial da forma (9.1) não podem ser resolvidos exatamente, ou seja, sabe-se que a solução existe e é única, porém não podemos expressá-la em termos de funções elementares. Por isso é necessário calcular aproximações numéricas. Diversos métodos completamente diferentes estão disponíveis para aproximar uma função real.

Aqui nos limitaremos a estudar métodos que se fundamentam em tentar calcular y(t) em um conjunto finito de valores de t. Esse conjunto de valores para t será denotado por $\{t_i\}_{i=1}^N$, isto é $\{t_1, t_2, t_3, \ldots, t_n\}$

9.1 Método de Euler

Retornemos ao problema de valor inicial (9.1) dado por:

$$y'(t) = f(y(t),t)$$
 (9.3a)
 $y(0) = y_0$ (condição inicial) (9.3b)

O Método de Euler aplicado à solução desse problema consiste em aproximar a derivada y'(t) por um esquema de primeira ordem do tipo

$$y'(t) = \frac{y(t+h) - y(t)}{h} + O(h), \ h > 0.$$

Aqui h é o passo do método, que consideraremos uma constante. Assim temos (9.3) se transforma em:

$$\frac{y(t+h) - y(t)}{h} = f(y(t),t) + O(h)$$
$$y(t+h) = y(t) + hf(y(t),t) + O(h^{2}). \tag{9.4}$$

Definimos, então, $t^{(k)} = (k-1)h$ e $y^{(k)}$ como a aproximação para $y\left(t^{(k)}\right)$ produzida pelo Método de Euler. Assim, obtemos

$$y^{(k+1)} = y^{(k)} + hf(y^{(k)}, t^{(k)})$$
 (aproximação da EDO), (9.5)
 $y^{(1)} = y_0$ (condição inicial). (9.6)

O problema (9.5) consiste em um esquema iterativo, isto é, $y^{(1)}$ é a condição inicial; $y^{(2)}$ pode ser obtido de $y^{(1)}$; $y^{(3)}$, de $y^{(2)}$ e assim por diante, calculamos o termo $y^{(n)}$ apartir do anterior $y^{(n-1)}$.

Exemplo 115. Retornemos ao o problema de valor inicial do exemplo (9.2):

$$y'(t) = 2y(t)$$
$$y(0) = 1$$

Cuja solução é $y(t)=e^{2t}$. O método de Euler aplicado a este problema produz o seguinte esquema:

$$y^{(k+1)} = y^{(k)} + 2hy^{(k)} = (1+2h)y^{(k)}$$
$$y^{(1)} = 1,$$

cuja solução é dada por

$$y^{(k)} = (1+2h)^{k-1}.$$

Como t=(k-1)h, a solução aproximada pelo Método de Euler é

$$y(t) \approx \tilde{y}(t) = (1 + 2h)^{\frac{t}{h}}.$$

Observe que $\tilde{y}(t) \neq y(t)$, mas se h é pequeno, a aproximação é boa, pois

$$\lim_{h \to 0+} (1+2h)^{\frac{t}{h}} = e^{2t}.$$

Vamos agora, analisar o desempenho do Método de Euler usando um exemplo mais complicado, porém ainda simples suficiente para que possamos obter a solução exata:

Exemplo 116. Considere o problema de valor inicial relacionado à equação logística:

$$y'(t) = y(t)(1 - y(t))$$

 $y(0) = 1/2$

Podemos obter a solução exata desta equação usando o método de separação de variáveis e o método das frações parciais. Para tal escrevemos:

$$\frac{dy(t)}{y(t)(1-y(t))} = dt$$

O termo $\frac{1}{y(1-y)}$ pode ser decomposto em frações parciais como $\frac{1}{y} - \frac{1}{1-y}$ e chegamos na seguinte equação diferencial:

$$\left(\frac{1}{y} + \frac{1}{1-y}\right)dy = dt.$$

Integrando termo-a-termo, temos a seguinte equação algébrica relacionando y(t) e t:

$$\ln(y) - \ln(1-y) = t + C$$

Onde C é a constante de integração, que é definida pela condição inicial, isto é, y=1/2 em t=0. Substituindo, temos C=0. O que

resulta em:

$$\ln\left(\frac{y}{1-y}\right) = t$$

Equivalente a

$$\frac{y}{1-y} = e^t$$

 \mathbf{e}

$$y = (1 - y)e^t$$

Colocando o termo y em evidência, encontramos:

$$(1+e^t)y=e^t \eqno(9.7)$$
 E, finalmente, encontramos a solução exata dada por $y(t)=\frac{e^t}{1+e^t}.$

Vejamos, agora, o esquema iterativo produzido pelo método de Euler:

$$y^{(k+1)} = y^{(k)} + hy^{(k)}(1 - y^{(k)}),$$

 $y^{(1)} = 1/2.$

Tabela 9.1: Tabela comparativa enter Método de Euler e solução exata para problema 116.

t	Exato	Euler $h = 0.1$	Euler $h = 0.01$
0	1/2	0,5	0,5
1/2	$\frac{e^{1/2}}{1+e^{1/2}} \approx 0.6224593$	0,6231476	0,6225316
1	$\frac{e}{1+e} \approx 0.7310586$	0,7334030	0,7312946
2	$\frac{e^2}{1+e^2} \approx 0.8807971$	0,8854273	0,8812533
3	$\frac{e^3}{1+e^3} \approx 0.9525741$	0,9564754	0,9529609

Para fins de comparação, calculamos a solução de 116 e de (??) para alguns valores de t e de passo h e resumimos na Tabela 9.1.

No exemplo a seguir, apresentamos um problema envolvendo uma equação não-autônoma, isto é, quando a função f(y,t) depende explicitamente do tempo.

$\bf Exemplo~117.$ Resolva o problema de valor inicial

$$y' = -y + t$$
$$y(0) = 1,$$

cuja solução exata é $y(t) = 2e^{-t} + t - 1$.

O esquema recursivo de Euler fica:

$$y^{(k+1)} = y(k) - hy(k) + ht^{(k)}$$

 $y(0) = 1$

Comparação

t	Exato	Euler $h = 0.1$	Euler $h = 0.01$
0	1	1	1
1	$2e^{-1} \approx 0,7357589$	0,6973569	0,7320647
2	$2e^{-2} + 1 \approx 1,2706706$	1,2431533	1,2679593
3	$2e^{-3} + 2 \approx 2,0995741$	2,0847823	2,0980818

No exemplo 118, mostramos como o Método de Euler pode ser facilmente estendido para problemas envolvendo sistemas de equações diferenciais..

Exemplo 118. Escreva o processo iterativo de Euler para resolver numericamente o seguinte sistema de equações diferenciais

$$x' = -y$$

$$y' = x$$

$$x(0) = 1$$

$$y(0) = 0$$

cuja solução exata é $x(t) = \cos(t)$ e $y(t) = \sin(t)$.

Para aplicar o Método de Euler a um sistema, devemos encarar as diversas incógnitas do sistema como formando um vetor, neste caso,

escrevemos:

$$z(t) = \left[\begin{array}{c} x(t) \\ y(t) \end{array} \right].$$

O sistema é igualmente escrito na forma vetorial:

$$\begin{bmatrix} x^{(k+1)} \\ y^{(k+1)} \end{bmatrix} = \begin{bmatrix} x^{(k)} \\ y^{(k)} \end{bmatrix} + h \begin{bmatrix} -y^{(k)} \\ x^{(k)} \end{bmatrix}.$$

Observe que este processo iterativo é equivalente a:

$$x^{(k+1)} = x^{(k)} - hy^{(k)}$$

 $y^{(k+1)} = y^{(k)} + hx^{(k)}$.

Exemplo 119. Escreva o problema de valor inicial de segunda ordem dado por

$$y'' + y' + y = \cos(t),$$

 $y(0) = 1,$
 $y'(0) = 0,$

como um problema envolvendo um sistema de primeira ordem.

A fim de transformar a equação diferencial dada em um sistema de equações de primeira ordem, introduzimos a substituição w=y', de forma que obteremos o sistema:

$$y' = w$$

$$w' = -w - y + \cos(t)$$

$$y(0) = 1$$

$$w(0) = 0$$

Portanto, o Método de Euler produz o seguinte processo iterativo:

$$y^{(k+1)} = y^{(k)} + hw^{(k)},$$

$$w^{(k+1)} = w^{(k)} - hw^{(k)} - hy^{(k)} + h\cos(t^{(k)}),$$

$$y^{(1)} = 1,$$

$$w^{(1)} = 0.$$

Exercícios

E 9.1.1. Resolva o problema de valor inicial dado por

$$y' = -2y + \sqrt{y}$$
$$y(0) = 1$$

com passo h=0.1 e h=0.01 para obter aproximações para y(1). Compare com a solução exata dada por $y(t)=\left(1+2e^{-t}+e^{-2t}\right)/4$

E 9.1.2. Resolva o problema de valor inicial dado por

$$y' = -2y + \sqrt{z}$$

$$z' = -z + y$$

$$y(0) = 0$$

$$z(0) = 2$$

com passo $h=0.2,\ h=0.02,\ h=0.002$ e h=0.0002 para obter aproximações para y(2) e z(2).

E 9.1.3. Resolva o problema de valor inicial dado por

$$y' = \cos(ty(t))$$
$$y(0) = 1$$

com passo h = 0.1, h = 0.01, h = 0.001, h = 0.0001 e 0,00001 para obter aproximações para y(2).

9.2 Método de Euler melhorado

O método de Euler foi o primeiro método que estudamos e sua principal virtude é a simplicidade. Outros métodos, no entanto, podem apresentar resultados superiores. Vamos apresentar agora uma pequena modificação ao Método de Euler, dando origem a um novo método chamado de Método de Euler Modificado ou Método de Euler Melhorado.

No método de Euler, usamos a seguinte iteração:

$$y^{(k+1)} = y^{(k)} + hf(y^{(k)}, t^{(k)})$$

 $y^{(1)} = y_0 \text{ (condição inicial)}$

A ideia do método de Euler Melhorado é substituir a declividade $f(y^{(k)},t^{(k)})$ pela média aritmética entre $f(y^{(k)},t^{(k)})$ e $f(y^{(k+1)},t^{(k+1)})$, isto é, as declividades avaliadas no início e no fim do intervalo $[t^{(k)},t^{(k+1)}]$.

No entanto, não dispomos do valor de $y^{(k+1)}$ antes de executar o passo. Assim aproximamos esta grandeza pelo valor produzido pelo

Método de Euler original:

$$\tilde{y}^{(k+1)} = y^{(k)} + hf(y^{(k)}, t^{(k)}).$$

De posse desta aproximação, calculamos a média aritmética e, finalmente, com esta média, realizamos o passo do Método de Euler Melhorado. O processo iterativo de Euler Melhorado é, portanto, dado por: $\tilde{y}^{(k+1)} = y^{(k)} + h f(y^{(k)}, t^{(k)})$

$$y^{(1)}=y_0$$
 (condição inicial)
Podemos reescrever este mesmo processo iterativo da seguinte forma:

 $y^{(k+1)} = y^{(k)} + \frac{h}{2} \left[f(y^{(k)}, t^{(k)}) + f(\tilde{y}^{(k+1)}, t^{(k+1)}) \right]$

$$k_1 = hf(y^{(k)}, t^{(k)}),$$
 $k_2 = hf(y^{(k)} + k_1, t^{(k+1)}),$
 $y^{(k+1)} = y^{(k)} + \frac{k_1 + k_2}{2},$
 $y^{(1)} = y_0 \text{ (condição inicial)}.$

e devem ser calculadas a cada passo. Esta notação é compatível com a notação usada nos métodos de Runge-Kutta, uma família de esquemas iterativos para aproximar problemas de valor inicial, da qual o Método de Euler e o Método de Euler Melhorado são casos particulares. Veremos os métodos de Runge-Kutta na seção 9.5.

Aqui k_1 e k_2 são variáveis auxiliares que representam as inclinações

Exercícios

E 9.2.1. Use o Método de Euler melhorado para obter uma aproximação numérica do valor de y(1) quando y(t) satisfaz o seguinte problema de valor inicial

$$y'(t) = -y(t) + e^{y(t)},$$

 $y(0) = 0,$

usando passos h = 0.1 e h = 0.01.

E 9.2.2. Use o Método de Euler e o Método de Euler melhorado para obter aproximações numéricas para a solução do seguinte problema de valor inicial para $t \in [0,1]$:

$$y'(t) = -y(t) - y(t)^{2},$$

 $y(0) = 1,$

usando passo h=0,1. Compare os valores da solução exata dada

por $y(t) = \frac{1}{2e^t - 1}$ com os numéricos nos pontos t = 0, t = 0.1, t = 0.2, t = 0.3, t = 0.4, t = 0.5, t = 0.6, t = 0.7, t = 0.8, t = 0.9, t = 1.0.

9.3 Ordem de precisão

Considere o problema de valor inicial dado por

$$y'(t) = f(y(t),t),$$

$$y(0) = y_0.$$

Nessa seção vamos definir a precisão de um método numérico pela ordem do erro acumulado ao calcular o valor da função em um ponto t_N em função do espaçamento da malha h. Se $y(t_n)$ pode ser aproximado por uma expressão que depende de f, h, $y(t_0)$, $y(t_1)$, \cdots , $y(t_n)$, com erro da ordem de $O(h^{p+1})$, ou seja,

$$y(t_{n+1}) = \mathcal{F}(f, h, y(t_n), y(t_{n-1}), \dots, y_0) + O(h^{p+1})$$
(9.8)

para cada função analítica f, dizemos que o método tem erro de truncamento da ordem de $O(h^p)$ ou **ordem de precisão** p. Essa afirmação faz sentido quando fazemos a seguinte análise informal: para aproximar y_1 , acumulamos erros da ordem $O(h^{p+1})$, para calcular y_2 acumulamos os erros de y_1 e novos erros $O(h^{p+1})$. Para

calcular y_N , acumulamos todos os erros até t_N , ou seja, N vezes $O(h^{p+1})$. Como N=O(1/h), temos que os erros ao calcular y_N são da ordem $O(h^p)$. É verdade que essa análise só vale quando impomos condições de suavidade para f e condições adequada para a expressão $\mathcal{F}(f,h,y(t_n),y(t_{n-1}),\cdots,y_0)$. Para explicar melhor esse pequeno texto, fazemos em detalhes essa operação para o método de Euler na seção 9.3.1.

9.3.1 Ordem de precisão do Método de Euler

Primeiro lembramos da expressão (9.4) que origina a seguinte relação de recorrência:

$$y(t_{n+1}) = y(t_n) + hf(y(t_n), t_n) + O(h^2).$$
 (9.9)

Para entender melhor o motivo de na expressão (9.9) aparecer $O(h^2)$ e o método ser de precisão 1, vamos a seguinte análise informal: observemos que

$$y(t_1) = y(t_0) + hf(y(t_0), t_0) + O(h^2)$$

= $y_0 + hf(y_0, t_0) + O(h^2) = y_1 + O(h^2)$

onde y_i é a aproximação pelo método de Euler para o valor exato $y(t_i)$. Subsequentemente, temos

$$y(t_2) = y(t_1) + hf(y(t_1),t_1) + O(h^2)$$

$$= y(t_1) + hf(y_1 + O(h^2),t_1) + O(h^2)$$

$$= y(t_1) + hf(y_1,t_1) + O(h^2)$$

$$= y_1 + O(h^2) + hf(y_1,t_1) + O(h^2) = y_2 + O(h^2) + O(h^2).$$

onde usamos o primeiro termo da série de Taylor $hf(y_1+O(h^2),t_1) = hf(y_1,t_1) + O(h^3)$ na passagem da segunda para terceira linha. Repetindo sucessivamente o passo anterior, obtemos uma expressão geral para o valor exato $y(t_N)$ em termos do valor aproximado y_N :

$$y(t_N) = y_N + NO(h^2).$$

Como $N = (t_f - t_0)/h$, temos

$$y(t_N) = y_N + \frac{t - t_0}{h}O(h^2) = y_N + O(h), \qquad (9.10)$$

ou seja, o erro entre o valor exato e o aproximado é de ordem h. Uma demonstração mais formal que garante que o erro é limitado por uma expressão que é proporcional a h está discutido na seção 9.4.1.

9.3.2 Ordem de precisão do Método de Euler Melhorado

Para obter o erro de precisão do método de Euler Melhorado vamos calcular o erro de truncamento do método, ou seja, precisamos demonstrar que:

$$y(t+h) = y(t) + \frac{h}{2}f(y(t),t) + \frac{h}{2}f(y(t) + hf(t,y(t))), t+h) + O(h^3)$$
(9.11)
De fato, tomando a diferença do termo da esquerda o os termos da

De lato, tomando a diferença do termo da esquerda o os termos da direita, temos: $a_{i}(t+b) = \left(a_{i}(t) + \frac{h}{f}(a_{i}(t), t) + \frac{h}{$

$$y(t+h) - \left(y(t) + \frac{h}{2}f(y(t),t) + \frac{h}{2}f(y(t) + hf(t,y(t))), t+h\right)$$

$$= y(t) + hy'(t) + \frac{h^2}{2}y''(t) + O(h^3)$$

$$- \left(y(t) + \frac{h}{2}y'(t) + \frac{h}{2}f(y(t) + hf(t,y(t))), t+h\right),$$

onde usamos uma expansão em série de Taylor para y(t + h) e a equação diferencial y'(t) = f(y(t),t). Portanto, $y(t+h) - \left(y(t) + \frac{h}{2}f(y(t),t) + \frac{h}{2}f(y(t) + hf(t,y(t))), t+h\right)$

$$= \frac{h}{2}y'(t) + \frac{h^2}{2}y''(t) - \frac{h}{2}f(y(t) + hf(t,y(t))), t + h) + O(h^3).$$

Agora, usamos a série de Taylor de f(y(t)+hf(y(t),t),t+h) e, torno de(y,t):

$$y(t+h) - \left(y(t) + \frac{h}{2}f(y(t),t) + \frac{h}{2}f(y(t) + hf(t,y(t))), t+h\right)$$

$$y(t+h) - \left(y(t) + \frac{h}{2}f(y(t),t) + \frac{h}{2}f(y(t) + hf(t,y(t))),t + h\right)$$
$$= \frac{h}{2}y'(t) + \frac{h^2}{2}y''(t) + O(h^3)$$

$$y(t+h) - \left(y(t) + \frac{h}{2}f(y(t),t) + \frac{h}{2}f(y(t) + hf(t,y(t))), t+h\right)$$

$$= \frac{h}{2}y'(t) + \frac{h^2}{2}y''(t) + O(h^3)$$

$$-\frac{h}{2}\left(f(y(t),t) + \frac{\partial f(y(t),t)}{\partial t}h + \frac{\partial f(t,y(t))}{\partial y}hf(t,y(t)) + O(h^2)\right).$$

 $y''(t) = \frac{f(y(t),t)}{\partial t} + \frac{f(y(t),t)}{\partial y}y'(t) = \frac{f(y(t),t)}{\partial t} + \frac{f(y(t),t)}{\partial y}f(y(t),t).$

 $y(t+h) - \left(y(t) + \frac{h}{2}f(y(t),t) + \frac{h}{2}f(y(t) + hf(t,y(t))), t+h\right)$

Usando a equação diferencial y'(t) = f(y(t),t) obtemos

 $= \frac{h}{2}y'(t) + \frac{h^2}{2}y''(t) + O(h^3)$

 $-\frac{h}{2}\left(f(y(t),t) + hy''(t) + O(h^2)\right)$

Logo,

$$=\frac{h}{2}y'(t)+\frac{h^2}{2}y''(t)\\ -\frac{h}{2}\left(y'(t)+hy''(t)\right)+O(h^3)=O(h^3)$$
 Portanto, a expressão (9.11) é válida. Logo, usando uma discussão análoga aquela feita na seção 9.3.1 para o método de Euler, concluí-

mos que o método de Euler Melhorado possui ordem de precisão 2.

9.4 Convergência

Em desenvolvimento

9.4.1 Convergência do método de Euler

Em desenvolvimento

9.4.2 Convergência do método de Euler Melhorado

Em desenvolvimento

9.5 Métodos de Runge-Kutta

Os métodos de Runge-Kutta consistem em iterações do tipo:

$$y^{(k+1)} = y^{(k)} + w_1 k_1 + \ldots + w_n k_n$$

onde

 $k_1 = h f(y^{(k)}, t^{(k)})$

```
k_{2} = hf(y^{(k)} + \alpha_{2,1}k_{1}, t^{(k)} + \beta_{2}h)
k_{3} = hf(y^{(k)} + \alpha_{3,1}k_{1} + \alpha_{3,2}k_{2}, t^{(k)} + \beta_{3}h)
\vdots
k_{n} = hf(y^{(k)} + \alpha_{n,1}k_{1} + \alpha_{n,2}k_{2} + \dots + \alpha_{n,n-1}k_{n-1}, t^{(k)} + \beta_{n}h)
```

Os coeficientes são escolhidos de forma que a expansão em Taylor de $y^{(k+1)}$ e $y^{(k)} + w_1k_1 + \ldots + w_nk_n$ coincidam até ordem n+1.

Exemplo 120. O método de Euler melhorado é um exemplo de Runge-Kutta de segunda ordem

$$y^{(n+1)} = y^{(n)} + \frac{k_1 + k_2}{2}$$

onde
$$k_1 = hf(y^{(n)}, t^{(n)})$$
 e $k_2 = hf(y^{(n)} + k_1, t^{(n)} + h)$

9.5.1 Métodos de Runge-Kutta - Quarta ordem

$$y^{(n+1)} = y^{(n)} + \frac{k_1 + 2k_2 + 2k_3 + k_4}{6}$$

onde

 $k_1 = hf(y^{(n)}, t^{(n)})$ $k_2 = hf(y^{(n)} + k_1/2, t^{(n)} + h/2)$ $k_3 = hf(y^{(n)} + k_2/2, t^{(n)} + h/2)$

Este método tem ordem de precisão 4. Uma discussão heurística usando método de Simpson pode ajudar a compreender os estranhos

 $k_4 = h f(y^{(n)} + k_3, t^{(n)} + h)$

$$y(t^{(n+1)}) - y(t^{(n)}) = \int_{t^{(n)}}^{t^{(n+1)}} f(y(s), s) ds$$

 $\approx \frac{h}{6} \left[f\left(y(t^{(n)}), t^{(n)}\right) + 4f\left(y(t^{(n)} + h/2), t^{(n)} + h/2\right) \right]$

+ $f(y(t^{(n)}+h),t^{(n)}+h)$

onde k_1 e k_4 representam as inclinações nos extremos e k_2 e k_3 são duas aproximações diferentes para a inclinação no meio do intervalo.

 $\approx \frac{k_1 + 4\left(\frac{k_2 + k_3}{2}\right) + k_4}{\epsilon}$

9.6 Métodos de passo múltiplo - Adams-Bashforth

O método de Adams-Bashforth consiste de um esquema recursivo do tipo:

$$y^{(n+1)} = y^{(n)} + \sum_{j=0}^{k} w_j f(y^{(n-j)}, t^{(n-j)})$$

Exemplo 121. Adams-Bashforth de segunda ordem

$$y^{(n+1)} = y^{(n)} + \frac{h}{2} \left[3f\left(y^{(n)}, t^{(n)}\right) - f\left(y^{(n-1)}, t^{(n-1)}\right) \right]$$

Exemplo 122. Adams-Bashforth de terceira ordem

$$y^{(n+1)} = y^{(n)} + \frac{h}{12} \left[23f\left(y^{(n)}, t^{(n)}\right) - 16f\left(y^{(n-1)}, t^{(n-1)}\right) + 5f\left(y^{(n-2)}, t^{(n-2)}\right) \right]$$

Exemplo 123. Adams-Bashforth de quarta ordem

$$y^{(n+1)} = y^{(n)} + \frac{h}{24} \left[55f\left(y^{(n)}, t^{(n)}\right) - 59f\left(y^{(n-1)}, t^{(n-1)}\right) + 37f\left(y^{(n-2)}, t^{(n-2)}\right) - 9f\left(y^{(n-3)}, t^{(n-3)}\right) \right]$$

Os métodos de passo múltiplo evitam os múltiplos estágios do métodos de Runge-Kutta, mas exigem ser "iniciados"com suas condições iniciais.

9.7 Métodos de passo múltiplo - Adams-Moulton

O método de Adams-Moulton consiste de um esquema recursivo do tipo:

$$y^{(n+1)} = y^{(n)} + \sum_{j=-1}^{k} w_j f(y^{(n-j)}, t^{(n-j)})$$

Exemplo 124. Adams-Moulton de quarta ordem

$$y^{(n+1)} = y^{(n)} + \frac{h}{24} \left[9f\left(y^{(n+1)}, t^{(n+1)}\right) + 19f\left(y^{(n)}, t^{(n)}\right) - 5f\left(y^{(n-1)}, t^{(n-1)}\right) + f\left(y^{(n-2)}, t^{(n-2)}\right) \right]$$

O método de Adams-Moulton é implícito, ou seja, exige que a cada passo, uma equação em $y^{(n+1)}$ seja resolvida.

9.8 Estabilidade

Consideremos o seguinte problema de teste:

$$\begin{cases} y' = -\alpha y \\ y(0) = 1 \end{cases}$$

cuja solução exata é dada por $y(t) = e^{-\alpha t}$. Considere agora o método de Euler aplicado a este problema com passa h:

$$\begin{cases} y^{(k+1)} = y^{(k)} - \alpha h y^{(k)} \\ y^{(1)} = 1 \end{cases}$$

A solução exata do esquema de Euler é dada por

$$y^{(k+1)} = (1 - \alpha h)^k$$

e, portanto,

$$\tilde{y}(t) = y^{(k+1)} = (1 - \alpha h)^{t/h}$$

Fixamos um $\alpha > 0$, de forma que $y(t) \to 0$. Mas observamos que $\tilde{y}(t) \to 0$ somente quando $|1 - \alpha h| < 1$ e solução positivas somente quando $\alpha h < 1$.

 ${\bf Conclus\~ao}:$ Se o passo h for muito grande, o método pode se tornar instável, produzindo solução espúrias.

Exercícios

E 9.8.1. Resolva o problema 1 pelos diversos métodos e verifique heuristicamente a estabilidade para diversos valores de h.

9.9 Exercícios finais

E 9.9.1. Considere o seguinte modelo para o crescimento de uma colônia de bactérias:

$$\frac{dy}{dt} = \alpha y(A - y)$$

onde y indica a densidade de bactérias em unidades arbitrárias na colônia e α e A são constantes positivas. Pergunta-se:

- a) Qual a solução quando a condição inicial y(0) é igual a 0 ou A?
- b) O que acontece quando a condição inicial y(0) é um número entre 0 e A?
- c) O que acontece quando a condição inicial y(0) é um número negativo?
- d) O que acontece quando a condição inicial y(0) é um número positivo maior que A?

- e) Se A=10 e $\alpha=1$ e y(0)=1, use métodos numéricos para obter tempo necessário para que a população dobre?
- f) Se A=10 e $\alpha=1$ e y(0)=4, use métodos numéricos para obter tempo necessário para que a população dobre?

E 9.9.2. Considere o seguinte modelo para a evolução da velocidade de um objeto em queda (unidades no SI):

$$v' = g - \alpha v^2$$

Sabendo que g=9.8 e $\alpha=10^{-2}$ e v(0)=0. Pede-se a velocidade ao tocar o solo, sabendo que a altura inicial era 100.

 ${\bf E}$ 9.9.3. Considere o seguinte modelo para o oscilador não-linear de Van der Pol:

$$y''(t) - \alpha(A - y(t)^2)y'(t) + w_0^2y(t) = 0$$

onde A, α e w_0 são constantes positivas.

• Encontre a frequência e a amplitude de oscilações quando $w_0=1,\ \alpha=.1$ e A=10. (Teste diversas condições iniciais)

• Estude a dependência da frequência e da amplitude com os parâmetros A, α e w_0 . (Teste diversas condições iniciais)

• Que diferenças existem entre esse oscilador não-linear e o oscilador linear?

E 9.9.4. Considere o seguinte modelo para um oscilador não-linear:

$$y''(t) - \alpha(A - z(t))y'(t) + w_0^2 y(t) = 0$$

$$Cz'(t) + z(t) = y(t)^2$$

onde A, α , w_0 e C são constantes positivas.

• Encontre a frequência e a amplitude de oscilações quando $w_0 = 1$, $\alpha = .1$, A = 10 e C = 10. (Teste diversas condições iniciais)

• Estude a dependência da frequência e da amplitude com os parâmetros $A,~\alpha,~w_0$ e C. (Teste diversas condições iniciais)

E 9.9.5. Considere o seguinte modelo para o controle de temperatura em um processo químico:

$$CT'(t) + T(t) = \kappa P(t) + T_{ext}$$

 $P'(t) = \alpha (T_{set} - T(t))$

onde C, α e κ são constantes positivas e P(t) indica o potência do aquecedor. Sabendo que T_{set} é a temperatura desejada, interprete o funcionamento esse sistema de controle.

- Calcule a solução quando a temperatura externa $T_{ext}=0$, $T_{set}=1000,~C=10,~\kappa=.1$ e $\alpha=.1$. Considere condições iniciais nulas.
- Quanto tempo demora o sistema para atingir a temperatura 900K?

- Refaça os dois primeiros itens com $\alpha = 0.2$ e $\alpha = 1$
- Faça testes para verificar a influência de T_{ext} , α e κ na temperatura final.

E 9.9.6. Considere a equação do pêndulo dada por:

$$\frac{d^2\theta(t)}{dt^2} + \frac{g}{l}\sin(\theta(t)) = 0$$

onde g é o módulo da aceleração da gravidade e l é o comprimento da haste.

Mostre analiticamente que a energia total do sistema dada por

$$\frac{1}{2} \left(\frac{d\theta(t)}{dt} \right)^2 - \frac{g}{l} \cos(\theta(t))$$

é mantida constante.

• Resolva numericamente esta equação para $g=9.8m/s^2$ e l=1m e as seguintes condições iniciais:

$$\theta(0) = 0.5 \text{ e } \theta'(0) = 0.$$

$$\theta(0) = 1.0 \ e \ \theta'(0) = 0.$$

$$\theta(0) = 1.5 e \theta'(0) = 0.$$

$$\theta(0) = 2.0 \ e \ \theta'(0) = 0.$$

$$\theta(0) = 2.5 \ e \ \theta'(0) = 0.$$

$$\theta(0) = 3.0 \text{ e } \theta'(0) = 0.$$

Em todos os casos, verifique se o método numérico reproduz a lei de conservação de energia e calcule período e amplitude.

E 9.9.7. Considere o modelo simplificado de FitzHugh-Nagumo

para o potencial elétrico sobre a membrana de um neurônio:

$$\frac{dV}{dt} = V - V^3/3 - W + I$$

$$\frac{dW}{dt} = 0.08(V + 0.7 - 0.8W)$$

onde I é a corrente de excitação.

- Encontre o único estado estacionário (V_0, W_0) com I = 0.
 - Resolva numericamente o sistema com condições iniciais dadas por (V_0, W_0) e I = 0

$$I = 0.2$$

$$= 0.2$$

$$I = 0.4$$

$$I = 0.8$$

$$I = e^{-t/200}$$

E 9.9.8. Considere o problema de valor inicial dado por

$$\frac{du(t)}{dt} = -u(t) + e^{-t}$$

$$u(0) = 0$$

Resolva analiticamente este problema usando as técnicas elementares de equações diferenciais ordinárias. A seguir encontre aproximações numéricas usando os métodos de Euler, Euler modificado, Runge-Kutta Clássico e Adams-Bashforth de ordem 4 conforme pedido nos itens.

a) Construa uma tabela apresentando valores com 7 algarismos significativos para comparar a solução analítica com as aproximações numéricas produzidas pelos métodos sugeridos. Construa também uma tabela para o erro absoluto obtido por cada método numérico em relação à solução analítica. Nesta última tabela, expresse o erro com 2 algarismos significativos em formato científico. Dica: format('e',8) para a segunda tabela.

	0.5	1.0	1.5	2.0	2.5
Analítico					
Euler					
Euler modificado					
Runge-Kutta Clássico					
Adams-Bashforth ordem 4					
	0.5	1.0	1.5	2.0	2.5
Euler					
Euler modificado					
Runge-Kutta Clássico					
Adams-Bashforth ordem 4					

b) Calcule o valor produzido por cada um desses método para u(1) com passo h=0.1, h=0.05, h=0.01, h=0.005 e h=0.001. Complete a tabela com os valores para o erro absoluto encontrado.

	0.1	0.05	0.01	0.005	0.001
Euler					
Euler modificado					
Runge-Kutta Clássico					
Adams-Bashforth ordem 4					

Apêndice A

Rápida Introdução ao

Apendice A

Scilab

A.1 Sobre o Scilab

Scilab é uma linguagem de programação associada com uma rica coleção de algoritmos numéricos que cobrem muitos aspectos de problemas de computação científica. Do ponto de vista de software, Scilab é uma linguagem interpretada. A linguagem Scilab permite a compilação dinâmica e lincagem com outras linguagens como Fortran e C. Do ponto de vista de licença, Scilab é um software gratuito no sentido que o usuário não paga por ele. Além disso, Scilab é um software de código aberto disponível sobre a licença Cecill [1]. Scilab esta disponível para Linux, Mac Os e Windows. Ajuda online esta disponível em português e muitas outras línguas. Do ponto de vista científico, Scilab começou focado em soluções computacionais para problemas de álgebra linear, mas, rapidamente, o número de aplicações se estendeu para muitas áreas da computação científica.

As informações deste apêndice foram adaptadas do tutorial "Introduction to Scilab" [2], veja-o para maiores informações. Além disso, recomendamos visitar o sítio oficial do Scilab:

http://www.scilab.org/

O manual oficial do Scilab em português pode ser obtido em:

http://help.scilab.org/docs/5.5.2/pt_BR/index.html

.1.1 Instalação e Execução

O Scilab pode ser executado normalmente nos sistemas operacionais Linux, Mac Os e Windows. Muitas distribuições de Linux (Linux Mint, Ubuntu, etc.) têm o Scilab no seu sistema de pacotes (incluindo binário e documentação em várias línguas). Alternativamente, no sítio de internet oficial do Scilab pode-se obter mais versões de binários e documentação para instalação em sistemas Linux. Para a instalação em sistemas Mac Os e Windows, visite sítio de internet oficial do Scilab.

A.1.2 Usando o Scilab

O uso do Scilab pode ser feito de três formas básicas:

- usando o console de modo iterativo;
- usando a função **exec** para executar um código Scilab digitado em um arquivo externo;
- usando processamento bash.

Exemplo 125. Considere o seguinte pseudocódigo:

```
s = "Olá Mundo!". (Sem imprimir na tela o resultado.)
saída(s). (Imprime na tela.)
```

Implemente este pseudocódigo no Scilab: a) usando somente o console do Scilab; b) usando o editor do Scilab e executando o código com a função ${\sf exec}$; c) usando processamento ${\it bash}$.

Solução. Seguem as soluções de cada item:

```
a) No console temos:
   -->s = "Olá Mundo!";
   -->disp(s)
b) Para abrir o editor do Scilab pode-se digitar no prompt:
   -->editor()
   ou, alternativamente:
   -->scinotes
   Então, digita-se no editor o código:
   s = "Olá Mundo!"
   disp(s)
```

salva-se em um arquivo de sua preferência (por exemplo, ~/foo.e e executa-se o código clicando no botão "play" disponível na barra de botões do Scinotes.

c) Para executar o código em processamento bash, digita-se em um editor o código:

```
s = "Olá Mundo!"
disp(s)
```

salva-se em um arquivo de sua preferência (por exemplo, ~/foo.)
e executa-se em um console do sistema usando a linha de comando:

Digite, então, quit para voltar ao prompt do sistema.

A.2 Elementos da linguagem

Scilab é uma linguagem interpretada em que todas as variáveis são matrizes. Uma variável é criada quando um valor é atribuído a ela. Por exemplo:

```
-->x=1
x =
1.
-->y = x * 2
y =
2.
```

a variável **x** recebe o valor **double** 1 e, logo após, na segunda linha de comando, a variável **y** recebe o valor **double** 2. Observamos que o símbolo = significa o operador de atribuição não o de igualdade. O operador lógico de igualdade no Scilab é ==.

Comentários e continuação de linha de comando são usados como no seguinte exemplo:

```
-->//Isto é um comentário
-->x = 1 ..
-->+ 2
```

x = 3.

A.2.1 Operações matemáticas elementares

No Scilab, os operadores matemáticos elementares são os seguintes:

```
+ adição- subtração
```

* multiplicação

```
/ divisão
```

- ^ potenciação (igual a **)
- ' transposto conjugado

A.2.2 Funções e constantes elementares

Várias funções e constantes elementares já estão pré-definidas no Scilab. Por exemplo:

```
-->cos(%pi) //cosseno de pi
ans =
-1.
```

```
-->exp(1) == %e //número de Euler
ans =
T
```

```
-->log(1) //logarítmo natual de 1
ans =
   0.
```

Para mais informações sobre quais as funções e constantes prédefinidas no Scilab, consulte o manual, seções "Funções elementares" e o carácter especial "%".

A.2.3 Operadores lógicos

No Scilab, o valor lógico verdadeiro é escrito como %T e o valor lógico falso como %F. Temos os seguintes operadores lógicos disponíveis:

```
& e lógico
| ou lógico
~ negação
== igualdade
~= diferente
< menor que
> maior que
<= menor ou igual que
>= maior ou igual que
```

Exemplo 126. Se x=2, então x é maior ou igual a 1 e menor que 3?

Solução. No Scilab, temos:

```
-->x=2;

-->(x >= 1) & (x < 3)

ans =
```


A.3 Matrizes

No Scilab, matriz é o tipo básico de dados, a qual é definida por seu número de linhas, colunas e tipo de dado (real, inteiro, lógico, etc.). Uma matriz $A = [a_{i,j}]_{i,j=1}^{m,n}$ no Scilab é definida usando-se a seguinte sintaxe:

$$A = [a11, a12, ..., a1n; ...; am1, am2, ..., amn]$$

Exemplo 127. Defina a matriz:

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \right]$$

Solução. No Scilab, digitamos:

$$-->A = [1 , 2 , 3 ; 4 , 5 , 6]$$

A =

- 1. 2. 3. 4. 5. 6.

A seguinte lista contém uma série de funções que geram matrizes particulares:

matrix identidade eye linspace vetor de elementos linearmente espaçados matriz cheia de uns ones zeros matriz nula

A.3.1 O operador ":"

O operador ":" cria um vetor linha de elementos. A sintaxe:

cria um vetor linha:

$$v = [i, i + s, i + 2s, \dots, i + ns]$$

onde n é o maior inteiro tal que i + ns < j.

Exemplo 128. Veja as seguintes linhas de comando:

A.3.2 Obtendo dados de uma matriz

A função size retorna o tamanho de uma matriz, por exemplo:

nl =

2.

informando que a matriz A tem três linhas e duas colunas.

Existem vários métodos para se acessar os elementos de uma matriz dada A:

• a matriz inteira acessa-se com a sintaxe:

Α

- o elemento da i-ésima linha e j-ésima coluna acessa-se usando a sintaxe:

A(i,j)

• o bloco formado pelas linhas $i_1,\,i_2$ e pelas colunas $j_1,\,j_2$ obtémse usando a sintaxe:

A(i1:i2, j1:j2)

Exemplo 129. Veja as seguintes linhas de comando:

```
-->A = rand(3,4) //gera uma matriz randômica
Α
   0.2113249
               0.3303271
                          0.8497452
                                      0.0683740
   0.7560439
               0.6653811
                          0.6857310
                                      0.5608486
   0.0002211
               0.6283918
                          0.8782165
                                      0.6623569
-->A //mostra toda a matriz A
ans
   0.2113249
               0.3303271
                          0.8497452
                                      0.0683740
   0.7560439
               0.6653811
                          0.6857310
                                      0.5608486
   0.0002211
               0.6283918
                           0.8782165
                                      0.6623569
```

0.6857310

```
-->A(2:3,2:4) //acessa um bloco de A ans =
```

```
      0.6653811
      0.6857310
      0.5608486

      0.6283918
      0.8782165
      0.6623569
```

Definida uma matriz A no Scilab, as seguintes sintaxes são bastante úteis:

A(i:j,k) os elementos das linhas i até j (inclusive) da k

```
A(:,:) toda a matriz
```

```
A(i,j:k) os elementos da i-ésina linha das colunas j até A(i,:) a i-ésima linha da matriz
```

A(:,j) a j-ésima coluna da matriz

A(i,\$) o elemento da i-ésima linha e da última coluna A(\$,j) o elemento da última linha e da j-ésima coluna

Exemplo 130. Veja as seguintes linhas de comando:

```
-->B = rand(4,4)
В
    0.2113249
                 0.6653811
                              0.8782165
                                            0.7263507
    0.7560439
                 0.6283918
                              0.0683740
                                            0.1985144
    0.0002211
                 0.8497452
                              0.5608486
                                            0.5442573
    0.3303271
                 0.6857310
                              0.6623569
                                            0.2320748
-->aux = B(:,2); B(:,2) = B(:,3); B(:,3) = aux
R
    0.2113249
                 0.8782165
                              0.6653811
                                            0.7263507
    0.7560439
                 0.0683740
                              0.6283918
                                            0.1985144
```

0.8497452

0.6857310

0.5442573

0.2320748

0.5608486

0.6623569

0.0002211

0.3303271

A.3.3 Operações matriciais e elemento-a-element

As operações matriciais elementares seguem a mesma sintaxe que as operações elementares de números. Agora, no Scilab, também podemos fazer operações elemento-a-elemento colocando um ponto "." antes da operação desejada.

Aqui, temos as sintaxes análogas entre operações matriciais e operações elemento-a-elemento:

```
+ adição .+ adição elemento-a-elemento
```

```
potenciação .^ potenciação elemento-a-elemento
' transposta conjugada .' transposta (não conjugada)
```

Exemplo 131. Veja as seguintes linhas de comando:

$$-->A = ones (2,2)$$

```
1. 1.
   1. 1.
-->B = 2 * ones (2,2)
B =
```

2. 2.

2. 2.

-->A * B

ans =

4. 4. 4. 4.

-->A .* B ans =

2.
 2.
 2.

A.4 Estruturas de ramificação e repetição

 ${\cal O}$ Scilab contém estruturas de repetição e ramificação padrões de linguagens estruturadas.

A.4.1 A instrução de ramificação "if"

A instrução "if" permite executar um pedaço do código somente se uma dada condição for satisfeita.

Exemplo 132. Veja o seguinte código Scilab:

```
i = 2
if ( i == 1 ) then
    disp ( " Hello ! " )
elseif ( i == 2 ) then
    disp ( " Goodbye ! " )
elseif ( i == 3 ) then
    disp ( " Tchau ! " )
else
    disp ( " Au Revoir ! " )
end
```

Qual é a saída apresentada no console do Scilab? Porquê?

A.4.2 A instrução de repetição "for"

A instrução **for** permite que um pedaço de código seja executado repetidamente.

Exemplo 133. Veja o seguinte código:

```
disp(i)
end
```

O que é mostrado no console do Scilab? Exemplo 134. Veja o seguinte código:

```
for j = 1:2:8
    disp(j)
```

end

for i = 1:5

O que é mostrado no console do Scilab?

```
Exemplo 135. Veja o seguinte código:
for k = 10:-3:1
    disp(k)
end
O que é mostrado no console do Scilab?
Exemplo 136. Veja o seguinte código:
for i = 1:3
    for j = 1:3
        disp([i,j])
    end
end
```

O que é mostrado no console do Scilab?

A.4.3 A instrução de repetição "while"

A instrução while permite que um pedaço de código seja executado repetidamente até que uma dada condição seja satisfeita.

Exemplo 137. Veja o seguinte código Scilab:

```
s = 0
i = 1
while ( i <= 10 )
    s = s + i
    i = i + 1
end</pre>
```

Qual é o valor de s ao final da execução? Porquê?

A.5 Funções

Além das muitas funções já pré-definidas no Scilab, o usuário podemos definir nossas próprias funções. Para tanto, existem duas instruções no Scilab:

- deff
- function

A instrução deff é apropriada para definirmos funções com poucas computações. Quando a função exige um grande quantidade de código para ser definida, a melhor opção é usar a instrução function. Veja os seguintes exemplos:

Exemplo 138. O seguinte código:

$$-->$$
deff('y = f(x)', 'y = x + sin(x)')

define, no Scilab, a função f(x) = x + sen x. Observe que $f(\pi) = \pi$. Confirme isso computando:

```
no Scilab.
Alternativamente, definimos a mesma função com o código:
function [y] = f(x)
y = x + sin(x)
```

Verifique!

endfunction

end endfunction

-->f(%pi)

Exemplo 139. O seguinte código Scilab:

```
function [z] = h(x,y)

if (x < y) then

z = y - x

else

z = x - y
```

define a função:

$$h(x,y) = \begin{cases} y - x & , x < y \\ x - y & , x \ge y \end{cases}$$

Exemplo 140. O seguinte código:

function
$$[y] = J(x)$$

 $y(1,1) = 2*x(1)$
 $y(1,2) = 2*x(2)$
 $y(2,1) = -x(2)*sin(x(1)*x(2))$

$$y(2,2) = -x(1)*sin(x(1)*x(2))$$
endfunction

enarunction

define a matriz jacobiana $J(x_1,x_2) := \frac{\partial(f_1,f_2)}{\partial(x_1,x_2)}$ da função:

$$f(x_1,x_2) = (x_1^2 + x_2^2, \cos(x_1x_2)).$$

A.6 Gráficos

Para criar um esboço do gráfico de uma função de uma variável real y = f(x), podemos usar a função plot. Esta função faz uma representação gráfica de pontos (x_i, y_i) fornecidos. O Scilab oferece uma série de opções para esta função de forma que o usuário pode ajustar várias questões de visualização. Consulte sobre a função plot no manual do Scilab.

Exemplo 141. Veja as seguintes linhas de código:

- -->deff('y = f(x)','y = x .^ 3 + 1')
- -->x = linspace(-2, 2, 100);
- -->plot(x, f(x)); xgrid

Resposta dos Exercícios

Recomendamos ao leitor o uso criterioso das respostas aqui apresentadas. Devido a ainda muito constante atualização do livro, as respostas podem conter imprecisões e erros.

Referências Bibliográficas

- [1] Cecill and free sofware. http://www.cecill.info. Acessado em 30 de julho de 2015.
- [2] M. Baudin. Introduction to scilab. http://forge.scilab.org/ index.php/p/docintrotoscilab/. Acessado em 30 de julho de 2015.
- [3] R.L. Burden and J.D. Faires. *Análise Numérica*. Cengage Learning, 8 edition, 2013.

EDP Sciences, Grenoble, nouvelle Édition edition, 2006.[5] W Gautschi. Numerical analysis: An introduction birkhauser. Barton, Mass, USA, 1997.

[4] J. P. Demailly. Analyse Numérique et Équations Differentielles.

- [6] Walter Gautschi and Gabriele Inglese. Lower bounds for the condition number of vandermonde matrices. *Numerische Mathematik*, 52(3):241–250, 1987/1988.
- http://www.mat.ufrgs.br/~guidi/grad/MAT01169/calculo_numerico.pdf. Acessado em julho de 2016.

 [8] E. Isaacson and H.B. Keller. Analysis of numerical methods.

[7] L.F. Guidi. Notas da disciplina cálculo numérico.

Dover, Ontário, 1994.

[9] R. Rannacher. Einführung in die numerische mathematik (numerik 0). http://numerik.uni-hd.de/~lehre/notes/num0/numerik0.pdf. Acessado em 10.08.2014.

Colaboradores

Aqui você encontra a lista de colaboradores do livro. Esta lista contém somente aqueles que explicitamente se manifestaram a favor de terem seus nomes registrados aqui. A lista completa de colaborações pode ser obtida no repositório GitHub do livro:

https://github.com/livroscolaborativos/CalculoNumerico

Além das colaborações via GitHub, o livro também recebe colaborações via discussões, sugestõese avisos deixados em nossa lista de emails:

${\tt livro_colaborativo@googlegroups.com}$

Estas colaborações não estão listadas aqui, mas podem ser vistas no site do grupo de emails.

Caso encontre algum equívoco ou veja seu nome listado aqui por engano, por favor, entre em contato conosco por email:

livroscolaborativos@gmail.com

ou via o repositório GitHub.

Tabela A.1: Lista de colaboradores				
Nome	Afiliação	E-Mail	$1^{\rm a}$ Contribuição	
Debora Lidia Gisch	-X-	-X-	#63	

Índice Remissivo

derivação, 468
ajuste de curvas, 407
aproximação
de funções, 344, 407
por polinômios, 364

de máquina, 6

ajuste

aritmética

autovalores, 304 cancelamento catastrófico, 61

contração, 135 critério de parada, 112

derivação numérica, 445 diferenças divididas de Newton,

351

eliminação gaussiana, 214 equação logística, 562 equação diferencial

não autônoma, 565	zero, 102
equações	zero de, 101
de uma variável, 100	
erro	integração numérica, 488
absoluto, 47	método composto
relativo, 47	de Simpson, 513
erros, 46	dos trapézios, 510
absoluto, 146	método de Romberg, 516
arredondamento, 455	ordem de precisão, 523
de arredondamento, 53	regra de Simpson, 503
truncamento, 452	regra do ponto médio, 492
estabilidade, 594	regra do trapézio, 497
	regras compostas, 509
fórmula de diferenças finitas, 446	regras de Newton-Cotes, 491
alta ordem, 460	interpolação, 344
central, 466	cúbica segmentada, 378
função, 102	derivação, 468
raiz de, 101	linear segmentada, 373

polinomial, 347	método da potência, 304
iteração do	método das frações parciais, 563
ponto fixo, 128	método das secantes, 101, 179
iteração do ponto fixo, 101	convergência, 184
convergência, 143	método de
estabilidade, 143	Gauss-Seidel, 275
	Jacobi, 270
método	Newton, 162
da bisseção, 110	Newton-Raphson, 162
de Euler, 560	Método de Jacobi
ordem de precisão, 577	matriz de iteração, 285
de Euler melhorado, 572	vetor de iteração, 285
de passo múltiplo	método de Newton, 101
Adams-Bashforth, 591	para sistemas, 323
de Runge-Kutta, 587	método de Newton-Raphson, 162
de quarta ordem, 589	convergência, 167
de separação de variáveis, 563	método de passo múltiplo
método da bisseção, 101	Adams-Moulton, 593

método dos mínimos quadrados, 407 métodos iterativos	L^{∞} , 256 L^{p} , 256 norma de
sistemas lineares, 269 convergência, 280	matrizes, 260 vetores, 256
matriz condicionamento, 253	ordem de precisão, 577
diagonal dominante, 297 jacobiana, 339 matriz de iteração, 280 medida de erro, 47 de exatidão, 47 mudança de base, 7	polinômios de Lagrange, 359 ponto fixo, 128 porção áurea, 191 problema de ponto fixo, 128 problema de valor de contorno, 476
número de condicionamento, 263 norma	problema de valor inicial, 557 quadratura numérica

Gauss-Legendre, 533	operador:, 622
	operadores lógicos, 618
representação	ramificação e repetição, 63
de números, 21	sobre, 608
números inteiros, 22	usando, 611
representação de números	sequência de
inteiros	Fibonacci, 191
bit de sinal, 25 complemento de dois, 27 sem sinal, 23	simulação
	computacional, 2
	numérica, 2
Scilab, 607	sistema de equações
elementos da linguagem, 614	não lineares, 315
funções, 636	sistema de numeração, 7
funções e constantes, 617	sistema linear, 211
gráficos, 639	condicionamento, 253
instalação e execução, 610	sistema numérico
matrizes, 620	de ponto fixo, 30
operações matemáticas, 616	de ponto flutuante, 35

```
ponto fixo
                                      iteração, 280
     normalização, 32
sistemas
    de equações diferenciais, 567
spline, 378
    fixado, 392
    natural, 384
teorema de
    Bolzano, 102
Teorema do
    ponto fixo, 135
teorema do
    ponto fixo, 162
teorema do valor intermediário,
        102
tolerância, 146
vetor de
```