Theorem: Kolmogoro's 0-1 Theorem

Suppose A_1, \ldots are independent events. For any A in the generated tail σ -field, we have either P(A) = 0 or P(A) = 1.

1 Simple Random Variables

Definition: simple random variable

Let (Ω, \mathcal{F}, P) be a probability space. A function $X : \Omega \to \mathbb{R}$ is a **simple** random variable if

- (i) it assumes finitely many values (finite range).
- (ii) For any $x \in \mathbb{R}$,

$${X = x} := {\omega : X(\omega) = x} \in \mathcal{F}.$$

"The inverse image of x under X is in \mathcal{F} ". We say that "X is measurable wrt \mathcal{F} ", or X is \mathcal{F} -measurable.

Definition: indicator random variables

Let A be a set. The **indicator random variable**

$$I_A(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \notin A \end{cases}$$

Theorem

Suppose $A_1, A_2, \ldots, A_n \in \mathcal{F}$ form a finite partition of Ω . Define

$$X(\omega) = \sum_{i=1}^{n} a_i I_{A_i}(\omega).$$

for some fixed $a_1, \ldots, a_n \in \mathbb{R}$. Then X is a simple r.v.

Note. Every simple r.v. can be written in this way.

Theorem

An indicator r.v. $X(\omega) = I_A(\omega)$ is measurable wrt $\mathcal{F} \Rightarrow A \in \mathcal{F}$.

Definition

 (Ω, \mathcal{F}, P) , X a simple r.v. on (Ω, \mathcal{F}, P) . Let $\mathcal{G} \subseteq \mathcal{F}$ be another σ -field. We say that X is measurable wrt \mathcal{G} if for any $x \in \mathbb{R}$, $\{w : X(\omega) = x\} \in \mathcal{G}$.

Note. $\mathcal{G} \subseteq \mathcal{F}$. If X is measurable wrt \mathcal{G} . Then for any $H \subseteq \mathbb{R}$,

$$\{\omega: X(\omega) \in H\} = \bigcup_{x \in H} \{\omega: X(\omega) = x\} \in \mathcal{G}.$$

which might be an uncountable union unless X is simple so it has finite range.

Definition: the sigma-field generated by X

The σ -field generated by X, denoted $\sigma(X)$, is the smallest σ -field wrt which X is measurable.

Note. It is the intersection of a σ -field wrt which X is measurable.

Definition: sigma-field generated by a sequence of r.v.

For a finite or infinite sequence X_1, X_2, \ldots of simple r.v., $\sigma(X_1, X_2, \ldots)$ is the smallest σ -field wrt which each X_i is measurable.

Theorem: 5.1

Let X_1, \ldots, X_n be a finite sequence of simple r.v.s.

(i) The σ -field, $\sigma(X_1,\ldots,X_n)$, consists of all subsets of Ω of the form

$$\{\omega: (X_1(\omega),\ldots,X_n(\omega))\in H\}$$
 for any $H\subseteq\mathbb{R}^n$.

(ii) A simple r.v. Y is measurable wrt $\sigma(X_1, \ldots, X_n)$ if and only if $Y = f(X_1, \ldots, X_n)$ for some $f : \mathbb{R}^n \to \mathbb{R}$.