| Ex.No.2 |                                                |
|---------|------------------------------------------------|
| Date:   | VERIFICATION OF THEVENIN'S AND MAXIMUM POWER   |
|         | VERIFICATION OF THE VENTIN 3 AND MAXIMUM POWER |
|         | TRANSFER THEOREM                               |
|         |                                                |

#### AIM:

(a) To obtain the Thevenin's equivalent circuit across the terminals A and B for the given circuit and to calculate the load current for  $1k\Omega$  load resistance.



(b) To verify the maximum power transfer theorem for the same circuit.

# **APPARATUS REQUIRED:**

| S.No | Name of the apparatus | Range                    | Quantity    |
|------|-----------------------|--------------------------|-------------|
| 1    | RPS                   | (0-30)V                  | 1           |
| 2    | Resistor              | 2.2kΩ,3.3kΩ,4.7kΩ, 5.6kΩ | 1           |
| 3    | Multimeter            |                          | 1           |
| 4    | Decade Resistance box |                          | 1           |
| 5    | Ammeter               | (0-30)mA                 | 1           |
| 6    | Voltmeter             | (0-15)V                  | 1           |
| 7    | Bread board           |                          | 1           |
| 8    | Connecting wires      |                          | As required |

## THEORY:

### (a) Thevenin's Theorem:

This theorem states that a network composed of lumped, linear circuit elements may, for the purposes of analysis of external circuit or terminal behaviour, be replaced by a voltage source V(s) in series with a single impedance.

Thevenin's theorem simplifies the method of finding current through any specified branch. For this purpose we have to find two things:

1. Thevenin's Resistance Rth

# 2. Thevenin's Voltage Vth

### To find Vth



Figure 1.

### To find Rth



Figure 2.

## **Procedure to find Rth**

- 1. Remove the voltage source and short the terminals (named C and D in the circuit diagram).
- 2. Resistance measured between A and B terminals is the Thevenin's resistance.

#### Procedure to find Vth

- 1. Remove the load resistance if any.
- 2. Measure the voltage across the open circuited terminals (here across A B).
- 3. Thevenin's equivalent circuit is obtained by connecting Vth and Rth in series.
- 1. Connect the resistance 1K in series with Thevenin's equivalent circuit and measure current across the load
- 2. Verify the current measured in Thevenin's equivalent circuit and original circuit.

# Thevenin's equivalent circuit



Figure 3.

# (b) Maximum power transfer theorem

The maximum power transfer theorem states that maximum power is delivered from a source to the load resistance when the load resistance is equal to source resistance. (RL = Rth is the condition required for maximum power transfer).

#### **Procedure**

- 1. Connect the circuit as shown in figure 3.
- 2. Vary the load resistance in steps and note down voltage across the load and current flowing through the circuit.
- 3. Calculate power delivered to the load by using formula P=V\*I.
- 4. Draw the graph between resistance and power (resistance on X- axis and power on Y-axis).
- 5. Verify the maximum power is delivered to the load when RL = Rth for DC.

Maximum power transfer calculations:

Load current= I= Vth/ (Rth + RL)

P= Power delivered to load = (Vth / (Rth + RL)) 2 RL

Maximum power transferred = Vth<sup>2</sup>/4RL

#### Tabular column

| S. No. | RL (Ω) | RTH (Ω) | IL(mA) | PL(mW) |
|--------|--------|---------|--------|--------|
| 1      | 1000   | 1948    |        |        |
| 2      | 1950   | 1948    |        |        |
| 3      | 2200   | 1948    |        |        |
| 4      | 3300   | 1948    |        |        |

# Model graph



#### Theoretical calculations:

# To find Vth – Mesh analysis – (Vth = sum of voltage drop across 2.2k and 5.6k ohm resistors)

3.3k

MMM

T2

MMM

T2

MMM

T2

A 170 
$$(1 - 12) + 5600 (1) = 15$$
 $10,300 T_1 - 4700 T_2 = 15$ 
 $10,300 T_1 - 4700 T_2 = 15$ 

Apply kvl enound Much  $2$ ,

3300  $12 + 27200 t_2 + 4700 (12 - 1) = 2$ 
 $-4700 T_1 + 10,200 T_2 = 0$ 

Solving equation land  $2$ .

 $T_1 = 1.844mA$ 
 $T_2 = 8.497 \times 10^{-4} A$ .

 $= 2200 (8.497 \times 10^{-4}) + (5600 \times 1.844 \times 10^{-3})$ 
 $= 1.86934 + 10.3264$ 
 $\sqrt{n} = 12.19574v$ 

Rth is calculated by removing all the sources present in the network

(Current sources are open circuited and voltage sources are short circuited)

# Maximum power transfer theorem

Calculation of load current for IKM reservory

$$T = \frac{V_{R}}{R_{Th} + R_{L}} = \frac{12 \cdot 1957}{(1 \cdot 948 + 1)} = 4 \cdot 1369mA$$

$$P = T_{L}^{2} R_{L}$$

$$= (4 \cdot 1369m)^{2} \times 1000$$

$$= 17 \cdot 1142 mW$$
Maximum Power transferred

Conditions or maximum

$$= V_{RL}$$

$$= V_{RL}$$

$$= (12 \cdot 1957)^{2}$$

$$4 \times 1948$$

$$= 19 \cdot 088mW$$