ES572 - Circuitos Lógicos

Resumo Teórico

23 de agosto de 2021

Conteúdo

1	Intr	odução	0	2
	1.1	Inform	nação	2
	1.2	Entrop	oia	2
	1.3	Codific	cação	2
	1.4	Algorit	tmo de Huffman	3
			cia de Hamming	
			Deteção de Erro de 1 bit	
			Codificação de Hamming (15, 11)	
		1.5.3	Decodificação de Hamming (15, 11)	
2			Digital	6
	2.1	Proces	samento Digital	ϵ
		2.1.1	Conversão Digital	6
	2.2	Dispos	sitivos Combinacionais	6
		2.2.1	Buffer	7

1. Introdução

Apresentação Neste documento será descrito as informações necessárias para compreensão e solução de exercícios relacionados a disciplina 1.0.0.0. Note que este documento são notas realizadas por Guilherme Nunes Trofino, em 23 de agosto de 2021.

1.1. Informação

Definição Informação são dados comunicados ou recebidos que resolvem incertezas sobre um fato ou circunstância específica. Assim, dada uma variável aleatória discreta x com as seguintes condições:

- 1. Possíveis Valores: $x \in \{x_1, ..., x_n\}$;
- 2. Probabilidades Associadas: $\{p_1, ..., p_n\}$;

Desta forma, considera-se $I(x_i)$ que a **Quantidade** de Informação Recebida, medida em bits, será relacionada por:

$$I(x_i) = \log_2\left(\frac{1}{p_i}\right) \tag{1.1.1}$$

Nota-se trata-se de uma informação relacionada apenas ao evento analisado. Além disso, eventos de baixa probabilidade transportam mais informação.

1.2. Entropia

Definição Dada uma variável aleatória x então sua **Entropia** H(x) será a quantidade média de informação recebida ao conhecer seu valor, sendo descrita pela equação abaixo:

$$H(x) = E(I(x)) = \sum_{i=1}^{N} p_i \log_2 \left(\frac{1}{p_i}\right)$$

Onde E(x) representa a **Esperança** da variável x, podendo ser simplificada para:

$$H(x) = -\sum_{i=1}^{N} p_i \log_2 p_i$$
 (1.2.1)

Nota-se que trata-se de uma informação relacionada apenas ao processo analisado:

- 1. Quanto mais baixa, mais previsível;
- 2. Quanto mais alta, mais imprevisível;

1.3. Codificação

Definição Mapeamento **biunívoco**, cada elemento associado a um único contraelemento, entre cadeias de bits e os membros do conjunto de dados a serem condificados. Classificados em:

- 1. Comprimento Fixo: Caso todos os símbolos ocorram com a mesma probabilidade, geralmente utiliza-se este método;
 - (a) Vantagens:
 - i. Todas as folhas possuem a mesma distância da raiz;
 - ii. Acesso Aleatório: Variáveis podem ser lidas em qualquer trecho da codificação;
 - (b) Entropia: Considera-se uma variável aleatória X que assume valores entre N possibilidades equiprováveis será:

$$H(x) = \sum_{i=1}^{N} p_i \log_2\left(\frac{1}{p_i}\right) = \sum_{i=1}^{N} \frac{1}{N} \log_2(N)$$
(1.3.1)

Desta forma, uma codificação **ótima** terá $N=2^k$, onde $k \in \mathbb{N}$.

- 2. **Comprimento Variável:** Caso todos os símbolos não ocorram com a mesma probabilidade, geralmente utiliza-se este método;
 - (a) Vantagens:
 - i. Flexibilidade para se aproximar da codificação ideal;
 - ii. Necessária para compresão de arquivos, como descrito por Huffman;

(b) Entropia: Considera-se uma variável aleatória ${\bf X}$ que assume valores entre N possibilidades equiprováveis será:

$$H(x) = \sum_{i=1}^{N} p_i \log_2 \left(\frac{1}{p_i}\right)$$
 (1.3.2)

Desta forma, uma codificação **ótima** terá:

- i. Codificação Curta: Se x_i tiver uma probabilidade alta;
- ii. Codificação Longa: Se x_i tiver uma probabilidade baixa;
- 3. Codificação Ambígua: Organização não única dos caracteres envolvidos o que pode gerar problemas de interpretação dos dados. Deve ser evitada;

Será necessário evitar codificações ambíguas, pois poderá haver incerteza de informação neste caso. Desta forma, uma árvore binária deve ser criada para validar se a codificação é válida, alocando as variáveis nos terminais das ramificações.

1.4. Algoritmo de Huffman

Definição Algoritmo para construção de uma **Árvore Binária Ótima**, isto é uma codificação que possua entropia próxima a mínima necessária. Aplica-se os seguintes passos:

- Criação de uma sub-árvore com os símbolos de menor probabilidade, associando-a o somatório de suas possibilidades;
- 2. Seleção de dois símbolos ou sub-árvores com menores probabilidades e as combine em uma nova sub-árvore;
 - (a) Caso hajam símbolos ou sub-árvores com mesma probabilidade, escolha arbitrariamente;

Consequência deste algoritmo:

- Todas as codificações apresentam o mesmo comprimento esperado, logo a mesma eficiência, independente dos rótulos empregados para cada ramificação;
- Desempenhos mais próximos da entropia podem ser obtidos com sequências maiores, normalmente aplicadas em algoritmos de compressão como LZW;

Figura 1.1: Representação da Árvore de Huffman

Considera-se como exemplo a seguinte distribuição de probabilidades:

Símbolos	Probabilidade	Codificação
A	30	00
В	30	01
\mathbf{C}	20	10
D	10	110
${f E}$	10	111

Tabela 1: Probabilidades dos Símbolos

1.5. Distância de Hamming

Definição Representa o número de posições nos quais os dígitos correspondentes **diferem** entre si, como representado abaixo:

Original	Palavra Código
0110 0100	01 <mark>0</mark> 0 1 100

Tabela 2: Representação da Distância de Hamming

1.5.1. Deteção de Erro de 1 bit

Definição Criação de palavras código válidas, de modo que um erro de um **único** bit não produza outra palavra de código válida. Desta forma, será necessário uma codificação cuja distância de Hamming entre quaisquer palavras válidas seja de **pelo menos** 2.

Aplicação Adiciona-se um bit em qualquer palavra válida para que o número total de bits 1 seja:

- 1. Paridade Par: Possui um número par de bits 1. Representado com bit 0;
- 2. Paridade Ímpar: Possui um número ímpar de bits 1. Representado com bit 1;

Generalização Considere um símbolo codificado qualquer, para **Detectar** um número E de erros será necessário uma distância mínima de Hamming E+1 entre as palavras de código. Além disso, a **Correção** um número E de erros será necessário uma distância mínima de Hamming 2E+1.

1.5.2. Codificação de Hamming (15, 11)

Definição Organização de dados em 15 bits, 11 bits de dados e 4 bits são redundância. Desta forma, os bits redundantes são suficientes para determinar a posição de qualquer erro de 1 bit presente nos dados.

Aplicação Organize os 11 bits de dados sequencialmente nos espaços brancos de uma matriz 4x4 como representado abaixo:

0	1	2	3
X	p	р	1
4	5	6	7
p	0	1	0
8	9	10	11
p	0	1	0
12	13	14	15
1	0	0	1

Tabela 3: Codificação de Hamming

Na sequência preenche-se os bits de paridade, apresentados nas posições com p, representando a paridade de cada **subgrupo** possuam como representado abaixo:

0	1	2	3
x	0	р	1
4	5	6	7
p	0	1	0
8	9	10	11
p	0	1	0
12	13	14	15
1	0	0	1

0	1	2	3
X	0	0	1
4	5	6	7
p	0	1	0
8	9	10	11
p	0	1	0
12	13	14	15
1	0	0	1

0	1	2	3
X	0	0	1
4	5	6	7
1	0	1	0
8	9	10	11
p	0	1	0
12	13	14	15
1	0	0	1

0	1	2	3
X	0	0	1
4	5	6	7
1	0	1	0
8	9	10	11
1	0	1	0
12	13	14	15
1	0	0	1

Tabela 4: Grupos de Hamming

Neste ponto pode-se detectar e localizar erros de 1 bit. Na sequência preenche-se o bit de paridade do conjunto para paridade do grupo como representado abaixo:

0	1	2	3
1	0	0	1
4	5	6	7
1	0	1	0
8	9	10	11
1	0	1	0
12	13	14	15
1	0	0	1

Tabela 5: Codificação Hamming Estendida

Neste ponto pode-se localizar erros de 2 bits.

1.5.3. Decodificação de Hamming (15, 11)

Definição Interpretação dos dados recebidos na Configuração de Hamming, analisando os 15, ou 16, bits codificados como descrito abaixo:

1. Transmissão Correta:

- (a) Não houve erro nos bits de paridade;
- (b) Não houve erro no bit de paridade do conjunto;

2. Transmissão com Erro de 1 bit:

- (a) Houve erro em pelo menos um dos bits de paridade;
- (b) Houve erro no bit de paridade do conjunto;

3. Transmissão com Erro de 2 bit:

- (a) Houve erro em pelo menos um dos bits de paridade;
- (b) Não houve erro no bit de paridade do conjunto;

2. Abstração Digital

Apresentação Depois de discutido como codificar informações como sequência de bits será necessário elaborar uma forma para codifica-la fisicamente que atenda aos seguintes características:

- 1. **Pequeno:** Necessite de pouco espaço para armazenamento;
- 2. Barato: Economicamente acessível para produção;
- 3. Estável: Não apresentará mudanças durante seu uso;
- 4. Veloz: Fácil de acessar, transformar, combinar, transmitir e armazenar;

No mundo, não quântico, não é digital e são afetados por imperfeições que devem ser consideradas na descrição de modelo de conversão que consigo manter a precisão necessária para aplicação desejada.

2.1. Processamento Digital

Definição Conversão, manipulação e utilização de sinais digitais para interpretação de fenômenos físicos estudados. Isso demandará algumas definições de conceitos descritas na sequência.

2.1.1. Conversão Digital

Definição Inicialmente será necessário determinar como os sinais analógicos, medições reais, serão convertido para sinais digitais para que então possam ser trabalhados, buscando métodos que atendam as condições de codificações como a representada a seguir:

$$V = \begin{cases} 0, & \text{se } V \leq V_{OL} \\ \text{margem de erro,} & \text{se } V_{OL} \leq V \leq V_{IL} \\ \text{zona proíbida,} & \text{se } V_{IL} \leq V \leq V_{IH} \\ \text{margem de erro,} & \text{se } V_{IH} \leq V \leq V_{OH} \\ 1, & \text{se } V \geq V_{OH} \end{cases}$$

$$(2.1.1)$$

Onde:

- 1. Nível Lógico 0: Caso V seja menor ou igual ao **Threshold Low** V_{OL} ;
- 2. Nível Lógico 1: Caso V seja maior ou igual ao Threshold High V_{OH} ;

Note que desta forma o sinal estará protegido de pequenos ruídos pois não poderá passar de um nível lógico para o outro diretamente.

2.2. Dispositivos Combinacionais

Definição Componente eletrônico que atende as seguintes especificações:

- 1. Comunicação: Necessidades para interface com o dispositivo apresentando:
 - (a) Entradas: Ao menos uma entrada digital;
 - (b) Saídas: Ao menos uma saída digital;
- Especificação Funcional: Qualquer saída será obtida por uma combinação possível das entradas válidas;
- 3. Especificação Temporal: Há um Tempo de Propagação t_{PD} mínimo necessário para que o dispositivo calcule a saída a partir de suas entradas válidas;

Além disso, um conjunto de elementos interconectados será combinacional se não viola nenhuma das seguintes regras:

- 1. Condição 1: Cada elemento individual é combinacional;
- 2. Condição 2: Cada entrada é conectada a uma, e apenas uma, saída ou fornecimento externo;
- 3. Condição 3: Não há ciclos diretos;

2.2.1. Buffer

Definição [Funcionamento] [caracteristica de transfer6encia de tensão]

Representação aa

in	out
0	0
1	1

Tabela 6: Tabela Verdade Buffer

Figura 2.1: Porta Lógica Buffer