供参考

2021 秋季 A

—、

1.
$$\frac{21}{64}$$
; 2. 2-2 Φ (1); 3. 2; 4.一定; 5. 0.8; 6. $\pm \sqrt{2}$; 7. $\frac{2}{3}$; 8. 一,

- 二: 9. 不一定
- 二、0.526
- Ξ , 2. 1/2,1/3; 3. $Y \sim U(0,1)$.

四、1.2,
$$f_X(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & 其他 \end{cases}$$
 $f_Y(y) = \begin{cases} 2y, & 0 < y < 1 \\ 0, & 其他 \end{cases}$

$$= \begin{cases} 2z + 2e^{-z} - 2, & 0 \le z < 1 \\ 2e^{-z}, & z \ge 1 \\ 0, & \sharp \ \text{th} \end{cases} + 6$$

- 五、0.0228
- 六、4,29

1.
$$\hat{\theta} = \frac{\overline{X}}{e - \overline{X}}$$
. **2.** $\hat{\theta} = \frac{1}{\frac{1}{n} \sum_{i=1}^{n} \ln X_i - 1}$ **3.** $EX = \frac{e}{2 - \frac{1}{n} \sum_{i=1}^{n} \ln X_i}$

2021 秋季 B

1.
$$\frac{11}{12}$$
 2. e^{-2} **3.** $1/3$; **4.** $\frac{1}{12}$ **5.** $1-\Phi(0.75)$. **6.** $1-\alpha$ **7.**

- 1-Φ(1.2)或者Φ(-1.2)
- = 1/2, 2/5
- $\Xi V \sim U(0,1)$

四、

$oldsymbol{U}$	0	1	2
P	6/9	2/9	1/9

五、F(1,3)

$$\hat{\theta} = \frac{1}{\overline{X}} + 1$$
, $\hat{\theta} = 1 + \frac{1}{\overline{X}}$., $\hat{R} = e^{-\frac{1}{\overline{X}}}$

假设检验例题

一、某织物强力指标 X 的均值 μ_0 =21 公斤.改进工艺后生产一批织物,今从中取 30 件,测得 \bar{x} = 21.55公斤. 假设强力指标服从正态分布 $N(\mu, \sigma^2)$,已知 σ =1.2 公斤.问在显著性水平 α = 0.01 下,新生产织物比过去的织物强力是否有提高? $\sqrt{30}$ = 5.48.

解 提出假设 H_0 : $\mu \leq 21$, H_1 : $\mu > 21$.

选取检验统计量

$$Z=\frac{\overline{X}-21}{\sigma/\sqrt{n}}.$$

构造拒绝域

$$z=rac{\overline{x}-21}{\sigma/\sqrt{n}}\geq z_{lpha}.$$

显著性水平 $\alpha = 0.01$, 查表得 $z_{0.01} = 2.33$.

$$z = \frac{21.55 - 21}{1.2/\sqrt{30}} = 2.51 > 2.33.$$

样本值落入拒绝域,因此,在显著性水平 $\alpha=0.01$ 下,拒绝 H_0 ,接受 H_1 ,认为新生产织物比过去的织物强力有提高.

不同写法

解 提出假设 H_0 : $\mu \leq \mu_0 = 21$, H_1 : $\mu > \mu_0$.

选取检验统计量

$$Z=\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}.$$

构造拒绝域

$$z=rac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}\geq z_{\alpha}.$$

显著性水平 $\alpha=0.01$, 查表得 $z_{0.01}=2.33$. 计算得

$$z = \frac{21.55 - 21}{1.2/\sqrt{30}} = 2.51 > 2.33.$$

样本值落入拒绝域,因此,在显著性水平 $\alpha=0.01$ 下,拒绝 H_0 ,接受 H_1 ,认为新生产织物比过去的织物强力有提高.

- 二、设炮弹的炮口速度(单位:米/秒)服从正态分布,某种炮弹出厂时,其炮口速度的方差为 16. 经过 5 年贮存后,随机抽取该种炮弹 9 发做试验,得样本方差为 $s^2=36$.
- (1) 问能否认为经过 5 年贮存后该种炮弹炮口速度的方差有变化,显著水平 $\alpha=0.10$.
 - (2) 若希望知道经过 5 年贮存后该种炮弹炮口速度的方差是无

变化还是变大,给定原假设为炮口速度的方差无变化,备择假设为方差变大。 针对拒绝域 $W=\{S^2>26.724\}$,问该检验犯第一类错误的概率为多少?

解

(1) 提出假设

$$H_0$$
: $\sigma^2 = \sigma_0^2 = 16$, H_1 : $\sigma^2 \neq \sigma_0^2$.

选取检验统计量

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}.$$

构造拒绝域

$$\chi^2 \le \chi^2_{1-\alpha/2}(n-1)$$
或 $\chi^2 \ge \chi^2_{\alpha/2}(n-1)$.

查表得 $\chi^2_{0.95}(8) = 2.7333$, $\chi^2_{0.05}(8) = 15.507$.

计算得

$$\chi^2 = \frac{(9-1)36}{16} = 18.$$

样本值落入拒绝域,在显著性水平 α = 0.10 下,拒绝 H_0 ,接受 H_1 ,认为经过 5 年贮存后该种炮弹炮口速度的方差有变化.

(2)

假设

$$H_0$$
: $\sigma^2 = 16$, H_1 : $\sigma^2 > 16$.

$$P_{\sigma^2=16}$$
 (拒绝 H_0) = $P_{\sigma^2=16}$ (W)

$$= P_{\sigma^2=16} \{S2 > 26.724\}$$

$$=P_{\sigma^2=16}\left\{\frac{(n-1)S2}{\sigma^2}>\frac{(9-1)\times 26.724}{16}\right\}$$

$$= P_{\sigma^2=16} \left\{ \frac{(n-1)S2}{\sigma^2} > 13.362 \right\}$$
$$= 0.10. \quad (查表得 \chi_{0.10}^2(8) = 13.362.)$$

该检验犯第一类错误的概率为 0.10.

注: C中的三、四、五题分别为作业题(5.10, 6.16, 6.19),为此前问卷调查中反映较难的题目,感谢反馈问题的同学,感谢分享答案的各位同学。

5.10 设随机变量序列 X_1, X_2, \cdots, X_n 独立同分布,共同的概率密度函数为

$$f(x) = \begin{cases} e^{-(x-\alpha)}, x > \alpha, \\ 0, & 其他, \end{cases}$$

其中 $\alpha > 0$ 为常数, 令 $Y_n = \min(X_1, X_2, \dots, X_n)$.

证明 $Y_n \stackrel{P}{\to} \alpha$.

分析 设 $Y_n \sim f_n(x)$. 参见 133-134 页最大值和最小值的分布,可 得 Y_n 的概率密度函数为

$$f_n(x) = egin{cases} ne^{-n(x-lpha)}, x > lpha, \ 0, \qquad 其他. \end{cases}$$
对任意的 $\varepsilon > 0.$

$$1 \ge P(|Y_n - \alpha| < \varepsilon)$$

$$= P(\alpha - \varepsilon < Y_n < \alpha + \varepsilon)$$

$$= \int_{\alpha - \varepsilon}^{\alpha + \varepsilon} f_{Y_n}(x) dx$$

$$= \int_{\alpha}^{\alpha + \varepsilon} n e^{-n(x - \alpha)} dx$$

$$= 1 - e^{-n\varepsilon} \to 1(n \to \infty).$$

$$Y_n \xrightarrow{P} \alpha.$$

6.16 设 X_1, X_2, \cdots, X_n 是来自于总体 X 的样本,且 $X \sim U(a, b)$,分别求顺序统计量 $X_{(1)}, X_{(n)}$ 的概率密度函数.

分析

$$X_{(1)} = \min(X_1, X_2, \dots, X_n),$$

 $X_{(n)} = \max(X_1, X_2, \dots, X_n).$

解

$$X \sim f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b, \\ 0, & 其他. \end{cases}$$
$$F(x) = \begin{cases} 0, & x < a, \\ \frac{x-a}{b-a}, & a \le x < b, \\ 1, & x \ge b. \end{cases}$$

参 见 133-134 页 最 小 值 的 分 布 , 可 得 $X_{(1)}=\min(X_1,X_2,\cdots,X_n)$ 的概率分布函数为

$$F_{min}(z) = 1 - [1 - F(z)]^n$$
,

故 $X_{(1)}$ 的概率密度函数为

$$f_{min}(z) = n[1 - F(z)]^{n-1}f(z) = egin{cases} rac{n(b-z)^{n-1}}{(b-a)^n}, a < z < b, \ 0,$$
 其他.

同理,参见133-134页最大值的分布,可得

 $X_{(n)} = \max(X_1, X_2, \cdots, X_n)$ 的概率密分布函数与概率密度函数,从略.

6.19 设 X_1, X_2, \dots, X_9 是来自于正态总体 X 的样本,且 $X \sim N(1, 9)$.

求(1)
$$P\{\overline{X}>2\}$$
. (2) $P\{X_{(1)}>4\}$, $P\{X_{(n)}<4\}$.

分析

(1)
$$X \sim N(1,9)$$
, $\mu = 1, \sigma^2 = 9$,
$$\overline{X} = \frac{1}{9} \sum_{i=1}^{9} X_i \sim N(1,1),$$

$$\frac{\overline{X} - 1}{1} \sim N(0,1).$$

$$P\{\overline{X} > 2\} = P\left\{\frac{\overline{X} - 1}{1} > \frac{2 - 1}{1}\right\} = 1 - \Phi(1).$$
(2)
$$\frac{X - 1}{3} \sim N(0,1),$$

其分布函数分别为 $\Phi(x)$.

$$P\{X_{(1)} > 4\} = P\{\min(X_1, X_2, \dots, X_9) > 4\}$$
 $= P\{X_1 > 4, X_2 > 4, \dots, X_9 > 4\}$
 $= P\{X_1 > 4\}P\{X_2 > 4\} \dots P\{X_9 > 4\}$ (独立性)
 $= P\{X > 4\}^9$ (同分布)
 $= P\{\frac{X-1}{3} > \frac{4-1}{3}\}^9$
 $= [1 - \Phi(1)]^9$
 $= \dots$ (查表)