DEVOIR SURVEILLÉ 1 B

Calculatrice autorisée Mercredi 24 septembre 2025

EXERCICE 1 (12 POINTS)

1. On a réalisé 900 lancers d'un dé à 4 faces.

Les résultats sont inscrits dans le tableau ci-dessous :

Scores	1	2	3	4
Nombre d'apparitions	200	220	210	270

Déterminer la médiane de cette série. Détails attendus.

2. Le tableau suivant indique le nombre de buts marqués par 32 joueurs d'une équipe de football au cours d'une saison :

Buts marqués	0	1	2	3	4	5	6	7	8
Effectif	3	4	5	6	4	3	3	2	2

Calculer la moyenne et l'écart type de cette série. Détails attendus.

3. On effectue des mesures sur une exploitation agricole qui vend des melons. On a pesé plusieurs melons choisis au hasard :

	Masse (en g)	1100	1150	1200	1250	1300	1350	1400	1450
Ī	Effectif	3	5	8	12	18	20	10	4

- a) Combien de melons ont été pesés?
- b) Comparer les proportions de melons de masse strictement supérieure à 1300 g et de masse strictement inférieure à 1300 g.
- c) La récolte est considérée comme conforme si :
 - l'étendue des masses est inférieure à 400 g;
 - la médiane vaut 1300 g;
 - la moyenne \bar{x} vaut 1300 g à 20 g près;
 - au moins 90% des melons sont dans l'intervalle $[\bar{x}-2\sigma\,;\,\bar{x}+2\sigma]$ où σ est l'écart type des masses.

Que peut-on conclure quant à la conformité de la récolte?

CORRECTION

- 1. On a N=900 lancers. Cumul des effectifs : 200; 420; 630; 900. La médiane correspond à la valeur au rang 450 (milieu de la série). On voit que $420 < 450 \le 630$, donc la médiane vaut 3.
- **2.** Effectif total : N = 32.

Moyenne:

$$\bar{x} = \frac{\sum x_i n_i}{N} = \frac{0 \times 3 + 1 \times 4 + 2 \times 5 + 3 \times 6 + 4 \times 4 + 5 \times 3 + 6 \times 3 + 7 \times 2 + 8 \times 2}{32}$$

$$\bar{x} = \frac{87}{32} \approx 2,72$$

Écart type:

$$\sigma = \sqrt{\frac{\sum n_i (x_i - \bar{x})^2}{N}}$$

$$\sigma = \sqrt{\frac{1}{32} \Big(3(0 - 2,72)^2 + 4(1 - 2,72)^2 + \dots + 2(8 - 2,72)^2 \Big)}$$

$$\sigma \approx 2.18$$

- 3. a) Nombre total de melons : N = 3 + 5 + 8 + 12 + 18 + 20 + 10 + 4 = 80.
 - b) Masse strictement < 1300 g: 3+5+8+12=28 melons sur 80 (35%). Masse strictement > 1300 g: 20+10+4=34 melons sur 80 (42,5%). Les proportions ne sont pas égales.
 - c) Vérification des critères :
 - Étendue: 1450 1100 = 350 < 400
 - Médiane : N/2 = 40 valeur au rang 40. Cumul des effectifs : 3,8,16,28,46... Rang 40 correspond à la masse 1300 g
 - Moyenne:

$$\bar{x} = \frac{1100 \cdot 3 + 1150 \cdot 5 + 1200 \cdot 8 + 1250 \cdot 12 + 1300 \cdot 18 + 1350 \cdot 20 + 1400 \cdot 10 + 1450 \cdot 4}{80} \approx 1315, 6 \text{ g}$$

(dans la tolérance ś20 g)

• Écart type : $\sigma \approx 96,4$ g Intervalle $[\bar{x}-2\sigma,\bar{x}+2\sigma] \approx [1123,2;1508,4]$ Tous les melons sont dans lintervalle 100%>90%

Conclusion : tous les critères sont remplis, donc la récolte est conforme.

EXERCICE 2 (8 POINTS)

On a tracé ci-dessous les courbes de quatre fonctions affines f_1 , f_2 , f_3 et f_4 . Répondre aux questions suivantes en **entourant** la ou les bonnes réponses **sur le sujet**.

- 1. Quel est le coefficient directeur de la fonction f_2 ?
 - A) 3
 - B) $\frac{3}{2}$

- C) -1,5
- D) $\frac{2}{3}$

2. Quel est le coefficient directeur de la fonction f_1 ?

B)
$$-\frac{1}{2}$$

C)
$$0,5$$

3. Quelle est l'ordonnée à l'origine de la fonction f_3 ?

B)
$$-\frac{3}{2}$$

D)
$$-\frac{2}{3}$$

4. Parmi les quatre fonctions, laquelle a un coefficient directeur négatif et une ordonnée à l'origine positive?

A)
$$f_1$$

B)
$$f_2$$

C)
$$f_3$$

D)
$$f_4$$

- **CORRECTION 1.** Coefficient directeur de f_2 : $\frac{2}{3}$ (rép. D).
- **2.** Coefficient directeur de f_1 : -0.5 ou $-\frac{1}{2}$ (rép. B ou C).
- **3.** Ordonnée à lorigine de f_3 : 3 (rép. A).
- **4.** Coefficient directeur négatif et ordonnée à lorigine positive : f_1 (rép. A).