Probabilistic Method and Random Graphs Lecture 9. De-randomization and Second Moment Method

Xingwu Liu

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

¹The slides are mainly based on Chapter 6 of Probability and Computing.

Comments, questions, or suggestions?

A Review of Lecture 8

Principle of probabilistic method

- Counting: Tournament, Ramsey number
- First moment method: Max-3SAT, MIS
 - Expectation argument: $\Pr(X \ge \mathbb{E}[X]) > 0$, $\Pr(X \le \mathbb{E}[X]) > 0$
 - Markov's inequality: $\Pr(X \ge a) \le \frac{\mathbb{E}[X]}{a}$ $\Pr(X \ne 0) = \Pr(X > 0) = \Pr(X \ge 1) \le \mathbb{E}[X]$

A Review of Lecture 8

- How to find a desirable object? By sampling!
- Algorithmic paradigm

A Review of Lecture 8

- How to find a desirable object? By sampling!
- Algorithmic paradigm

First moment method guarantees efficiency

Cool to get an efficient randomized algorithm

Can we derive a deterministic one?

Yes, if expectation argument is used

De-randomization: an example

 MAX-3SAT: Given a 3-CNF Boolean formula, find a truth assignment satisfying the maximum number of clauses

- E.g.:
$$(x_1 \lor x_2 \lor x_3) \land ... \land (\overline{x_1} \lor \overline{x_3} \lor x_4)$$

- Known: at least $\frac{7}{8}n$ clauses can be satisfied
- Randomized algo. to find a good assignment
 - Independently, randomly assign values
 - Succeed if lucky
 - Can we make good choice, rather than pray for luck?

Look closer at the randomized algorithm

- In equivalence, choose values sequentially
- Good choices lead to a good final result
 - Which choice is good?
 - Easy to know with hindsight, but how to predict
 - A tentative approach: always make the choice which allows a good final result
 - Fact: a $\frac{7n}{8}$ expect. means the existence of a $\frac{7}{8}$ -approx.
 - Make the current choice, keeping the expectation $\geq \frac{7n}{8}$
 - Nice, but does such a choice exist? How to find it?

Conditional expectation says yes!

The first step

$$-\frac{7n}{8} = \mathbb{E}[X] = \sum_{v_1} \Pr(x_1 = v_1) \mathbb{E}[X | x_1 = v_1]$$

- There must be v_1 s.t. $\mathbb{E}[X|x_1=v_1] \geq \frac{7n}{8}$
- Likewise, if $\mathbb{E}[X|x_1=v_1,\ldots,x_{k-1}=v_{k-1}]\geq \frac{7n}{8}$, then $\mathbb{E}[X|x_1=v_1,\ldots,x_k=v_k]\geq \frac{7n}{8}$ for some v_k
- Final correctness

$$-X(x_1 = v_1, ..., x_m = v_m) = \mathbb{E}[X|x_1 = v_1, ..., x_m = v_m] \ge \frac{7n}{8}$$

- Given v_1, \dots, v_{k-1} , what's the v_k ?
 - Let v_k s.t. $\mathbb{E}[X|x_1=v_1,\ldots,x_k=v_k]$ is maximized

Deterministic $\frac{7}{8}$ -algorithm for MAX-3SAT

For
$$k=1\cdots m$$
 do
$$x_k = \operatorname{argmax}_{v_k} \mathbb{E}[X|x_1=v_1, \dots x_{k-1}=v_{k-1}, \dots x_k=v_k]$$

Endfor

Cool! And this approach can be generalized

De-randomization via conditional expectation

- Expectation argument ⇒ deterministic algorithm
- Basic idea
 - Expectation argument guarantees existence
 - Sequentially make deterministic choices
 - Each choice maintains the expectation, given the past ones
- Only valid for expectation argument where randomness lies in a sequence of random variables
- What if the expectation is hard to compute?

Example: Turán Theorem

- Any graph G = (V, E) contains an independent set of size at least $\frac{|V|}{D+1}$, where $D = \frac{2|E|}{|V|}$
- Expectation argument: the expected size of an independent set S is at least $\frac{|V|}{D+1}$
- Randomly choose vertices into S one by one

Try the de-randomization routine

Idea of the algorithm (1)

- Choose valid vertices sequentially
- At step t+1, find u to maximize $\mathbb{E}[Q|S^{(t)},u]$
 - $-S^{(t)}$: the independent set at step t
 - -Q: the size of the final independent set
- Hard to compute the expectation \odot

$$-\mathbb{E}[Q] \ge \sum \frac{1}{d(w)+1} \ge \frac{|V|}{D+1}$$

• It suffices to show $\mathbb{E}[Q|S^{(t)}] \ge \frac{|V|}{D+1}$ for any t

Idea of the algorithm (2)

- Note that $\mathbb{E}[Q|S^{(t)}] \ge |S^{(t)}| + \sum_{w \in R^{(t)}} \frac{1}{d(w)+1} \triangleq X^{(t)}$
 - $-R^{(t)}$: set of vertices away from $S^{(t)}$ by distance >1
- $X^{(0)} \ge \frac{|V|}{D+1} \Rightarrow$ it's enough if $X^{(t)}$ is non-decreasing
 - Can we achieve this?
- If at step $t+1, u \in R^{(t)}$ is chosen, $X^{(t+1)} X^{(t)} = 1 \sum_{w \in \Gamma^+(u)} \frac{1}{d(w)+1}$

Can it be non-negative?

- $\mathbb{E}_u[X^{(t+1)} X^{(t)}] \ge 1 \sum_{w \in R^{(t)}} \frac{1}{d(w)+1} \frac{d(w)+1}{|R^{(t)}|} = 0$
- So, there is u s.t. $X^{(t+1)} \ge X^{(t)}$

A deterministic algorithm

- Initialize S to be the empty set
- While there is a vertex $u \notin \Gamma(S)$
 - Add to S such a vertex u which minimizes

$$\sum_{w \in \Gamma^+(u)} \frac{1}{d(w)+1}$$

• Return S

- Paul Turán (1910 –1976)
- Hungarian mathematician
- Founder of
 Probabilistic number theory
 Extremal graph theory
 (in Nazi Camp)

Sample

Big Chromatic Number and Big Girth

- Chromatic number vs local structure
 - Sparse local structure → small chro. number?
 - No! (Erdős 1959)
- One of the first applications of prob. Method
- Theorem: for any integers g, k > 0, there is a graph with girth $\geq g$ and chro. number $\geq k$
- We just prove the special case g=4, i.e. triangle-free

Basic Idea of the Proof

- Randomly pick a graph G from $G_{n,p}$
 - $-\chi(G)$: the chromatic number of G
 - $-\mathbb{I}(G)$: the size of a maximum independent set of G
- With high probability $\mathbb{I}(G)$ is small
 - $-\mathbb{I}(G)\chi(G) \geq n$ implies that $\chi(G)$ is big
- With high probability G has few triangles
- Destroy the triangles while keeping $\mathbb{I}(G)$ small

Proof: $\mathbb{I}(G)$ is small w.h.p.

- S: a vertex set of size $\frac{n}{2k}$
- A_S : S is an independent set

•
$$\Pr\left(\mathbb{I}(G) \ge \frac{n}{2k}\right) = \Pr\left(\bigcup_{S} A_{S}\right)$$

$$\le \binom{n}{n/2k} (1-p)^{\binom{n/2k}{2}}$$

$$< 2^{n} e^{-\frac{pn(n-2k)}{8k^{2}}}$$

which is small if n is large and $p = \omega(n^{-1})$

Proof: triangles are few w.h.p.

• $\mathcal{T}(G)$: the number of triangles of G

•
$$\mathbb{E}[\mathcal{T}(G)] = \binom{n}{3}p^3 < \frac{(np)^3}{6} = \frac{n}{6} \text{ if } p = n^{-\frac{2}{3}}$$

- By Markov ineq., $\Pr\left(\mathcal{T}(G) > \frac{n}{2}\right) \le \frac{1}{3}$
- Recall $\Pr\left(\mathbb{I}(G) \ge \frac{n}{2k}\right) < 2^n e^{-\frac{pn(n-2k)}{8k^2}}$

$$< e^n e^{-\frac{pn^2}{16k^2}} = e^{n-n^{\frac{4}{3}}/16k^2}$$
 if $n > 4k$
 $< e^{-n} < \frac{1}{6}$ if $n^{1/3} \ge 32k^2$

Proof: modification

•
$$\Pr\left(\mathbb{I}(G) < \frac{n}{2k}, \mathcal{T}(G) \le \frac{n}{2}\right) > \frac{1}{2}$$

- Choose G s.t. $\mathbb{I}(G) < \frac{n}{2k}, \mathcal{T}(G) \le \frac{n}{2}$

- Remove one vertex from each triangle of G, resulting in a graph G' with $n' \ge n \mathcal{T}(G)$
- $\mathbb{I}(G') \leq \mathbb{I}(G) < \frac{n}{2k}$
- $\chi(G') \ge \frac{n'}{\mathbb{I}(G')} \ge \frac{n \mathcal{T}(G)}{\frac{n}{2k}} \ge k$

Algorithm for finding such a graph

- Fix $n^{1/3} \ge 32k^2$ and $p = n^{-2/3}$
- Sample G from $G_{n,p}$
- Destroy the triangles

Success probability > ½

Do you have any idea of de-randomizing?

Second moment argument

- Chebyshev Ineq.: $\Pr(|X \mathbb{E}[X]| \ge a) \le \frac{\text{Var}[X]}{a^2}$
- A special case:

$$\Pr(X = 0) \le \Pr(|X - \mathbb{E}[X]| \ge \mathbb{E}[X]) \le \frac{\operatorname{Var}[X]}{(\mathbb{E}[X])^2}$$

- Compare with $\Pr(X \neq 0) \leq \mathbb{E}[X]$ for integer r.v. X
- Typically works when nearly independent
 - Due to the difficulty in computing the variance

An improved version by Shepp

•
$$\Pr(X=0) \le \frac{\operatorname{Var}[X]}{\mathbb{E}[X^2]}$$

• Proof:
$$(\mathbb{E}[X])^2 = (\mathbb{E}[1_{X \neq 0} \cdot X])^2$$

 $\leq \mathbb{E}[1_{X \neq 0}^2] \mathbb{E}[X^2]$
 $= \Pr(X \neq 0) \mathbb{E}[X^2]$
 $= \mathbb{E}[X^2] - \Pr(X = 0) \mathbb{E}[X^2]$

- The inequality is due to $(\int fg)^2 \le \int f^2 \int g^2$
- When $X \ge 0$, $\Pr(X > 0) > \frac{(\mathbb{E}[X])^2}{\mathbb{E}[X^2]}$

Generalizing Shepp's Theorem

- $\Pr(X > \theta \mathbb{E}[X]) \ge (1 \theta)^2 \frac{(\mathbb{E}[X])^2}{\mathbb{E}[X^2]}, \theta \in (0,1)$
- Paley&Zygmund, 1932
- Proof:

$$\mathbb{E}[X] = \mathbb{E}[X1_{X \le \theta \mathbb{E}[X]}] + \mathbb{E}[X1_{X > \theta \mathbb{E}[X]}]$$

$$\leq \theta \mathbb{E}[X] + \left(\mathbb{E}[X^2] \Pr(X > \theta \mathbb{E}[X])\right)^{\frac{1}{2}}$$

Further improvement, tight when X is constant

$$\Pr(X > \theta \mathbb{E}[X]) \ge \frac{(1-\theta)^2 (\mathbb{E}[X])^2}{\operatorname{Var}[X] + (1-\theta)^2 (\mathbb{E}[X])^2}$$
due to $\mathbb{E}[X - \theta \mathbb{E}[X]] \le \mathbb{E}[(X - \theta \mathbb{E}[X]) \mathbf{1}_{X > \theta \mathbb{E}[X]}]$

References

http://www.cse.buffalo.edu/~hungngo/classe
 s/2011/Spring-694/lectures/sm.pdf

http://www.openproblemgarden.org/

 Documentary film of Erdős: N is a Number - A Portrait of Paul Erdős

Thank you!