1 A

演習問題 0.1 (第 1 問). 3 次の実正方行列全体を $M_3(\mathbb{R})$ と表し、これを自然に \mathbb{R} 上のベクトル空間とみなす。実数 a,b,c に対して

$$A = \begin{pmatrix} 1 & 0 & c \\ 0 & 1 & b \\ c & b & a \end{pmatrix}$$

とおく。以下の問に答えよ。

(1) A と可換な行列全体からなる $M_3(\mathbb{R})$ の部分集合 W は、 $M_3(\mathbb{R})$ の部分ベクトル空間をなすことを示せ。

(2) WのR上のベクトル空間としての次元を求めよ。

演習問題 0.1 の解答. [TODO]

- \triangle 演習問題 0.2 (第 2 問). $g(x,y) = y^4 y^6 3(x^2 + x^4)$ とおく。以下の問に答えよ。

(1) $S = \{(x, y) \in \mathbb{R}^2 \mid g(x, y) = g_x(x, y) = g_y(x, y) = 0\}$ を求めよ。

(2) 曲線 $C = \{(x,y) \in \mathbb{R}^2 \setminus S \mid g(x,y) = 0, y > 0\}$ 上で $f(x,y) = x^2 + y^2$ が極値をとる点をすべて求め、その値が極大であるか極小であるかを判定せよ。

演習問題 0.2 の解答. [TODO] 概形を書くと (0,1) しかなさそう?

2 B

△ **演習問題 0.3** (第 8 問). *M*₂(ℝ) を 2 次の実正方行列全体とする。対応

$$\begin{pmatrix} x & z \\ y & w \end{pmatrix} \mapsto (x, y, z, w)$$

により $M_2(\mathbb{R})$ を \mathbb{R}^4 と同一視し、これによって $M_2(\mathbb{R})$ 上に座標 x,y,z,w と標準的なリーマン計量 \langle , \rangle を与える。2 次の実対称行列全体を H とし、写像 $F: M_2(\mathbb{R}) \to H$ を $F(A) = {}^t\!AA$ により定める。ただし ${}^t\!A$ は A の転置行列である。このとき以下の間に答えよ。

- (1) 写像 F の $A \in M_2(\mathbb{R})$ における微分 $(dF)_A$ を求め、F の正則点全体の集合を決定せよ。
- (2) $A \in M_2(\mathbb{R})$ における $M_2(\mathbb{R})$ の接ベクトル X_A を

$$X_A = \frac{d}{dt}(R_t A) \bigg|_{t=0} \in T_A M_2(\mathbb{R})$$

ただし $R_t = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$ と定める。さらに、開部分多様体 $P = \{A \in M_2(\mathbb{R}) \mid \det A > 0\}$ 上の 1 次微分形式 θ を、すべての $A \in M_2(\mathbb{R})$ について次の条件 (a),(b) が満たされるように定める:

- (a) $\theta(X_A) = 1$
- (b) $\langle X_A, V \rangle = 0$ $x \in \mathcal{U} \cup \{0\}$ $x \in \mathcal{U} \cup \{0\}$

ここに、V は A における $M_2(\mathbb{R})$ の接ベクトルであり、 \langle , \rangle は上で定めたリーマン計量である。このとき、微分形式 θ を座標 x,y,z,w を用いて表せ。

(3) 写像 $F: M_2(\mathbb{R}) \to H$ を P へ制限して得られる写像を $\pi: P \to B$ とする。ただし、B = F(P) である。このとき、(2) で定めた微分形式 θ の外微分 $d\theta$ は、像 B 上のある微分形式 ω の π による引き戻し $\pi^*\omega$ に等しいことを証明せよ。

演習問題 0.3 の解答. (1) $(dF)_A$ をチャートに関する行列表示で表す。A の属する $M_2(\mathbb{R})$ のチャートとして

$$\varphi \colon M_2(\mathbb{R}) \to \mathbb{R}, \quad \begin{bmatrix} x & z \\ y & w \end{bmatrix} \mapsto (x, y, z, w)$$
(2.1)

を考え、F(A) の属する H のチャートとして

$$\psi: H \to \mathbb{R}, \quad \begin{bmatrix} a & b \\ b & c \end{bmatrix} \mapsto (a, b, c)$$
 (2.2)

を考える。これらのチャートに関する F の座標表示 $\widehat{F}=\psi\circ F\circ \varphi^{-1}$ は $\widehat{F}:\mathbb{R}^4\to\mathbb{R}^3$, $(x,y,z,w)\mapsto (x^2+y^2,xz+yw,z^2+w^2)$ である。したがって $(dF)_A$ は、チャート φ,ψ に関する行列表示が \widehat{F} の Jacobi 行列

$$\begin{bmatrix} 2x & 2y & 0 & 0 \\ z & w & x & y \\ 0 & 0 & 2z & 2w \end{bmatrix}$$
 (2.3)

となるような \mathbb{R} -線型写像 $T_AM_2(\mathbb{R}) \to T_{F(A)}H$ である。

次に F の正則点全体の集合を決定する。 $A=\begin{bmatrix}x&z\\y&w\end{bmatrix}\in M_2(\mathbb{R})$ に関し、点 A が F の正則点であるための必要十分条件は、 $(J\widehat{F})_{(x,y,z,w)}$ がフルランクとなることである。ここで、 $(J\widehat{F})_{(x,y,z,w)}$ がフルランクでないための

必要十分条件、すなわち
$$(J\widehat{F})_{(x,y,z,w)}$$
 の 3 個の行ベクトルが \mathbb{R} 上 1 次従属となるための必要十分条件は
$$\exists \, s,t \in \mathbb{R} \quad \text{s.t.} \quad (x,y) = s(z,w), \, (z,w) = t(x,y) \tag{2.4}$$

である。これは $\det A=0$ と同値である。したがって、F の正則点全体の集合は $\{A\in M_2(\mathbb{R})\mid \det A\neq 0\}$ である。

$$(2) \quad \text{まず各 } A = \begin{bmatrix} x & z \\ y & w \end{bmatrix} \in M_2(\mathbb{R}) \text{ に対し}$$

$$X_A = \frac{d}{dt}(R_t A) \bigg|_{t=0} = \frac{d}{dt} R_t \bigg|_{t=0} A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} A = \begin{bmatrix} -y & -w \\ x & z \end{bmatrix}$$
 (2.5)

である。 θ の成分表示を求める。そこで計量 \langle , \rangle に関する $T_AM_2(\mathbb{R})$ の直交分解 $T_AM_2(\mathbb{R}) = \mathbb{R}X_A \oplus (\mathbb{R}X_A)^{\perp}$ を考え、 $\mathbb{R}X_A$ の基底 X_A と $(\mathbb{R}X_A)^{\perp}$ の基底 X_A の基底 X_A と $(\mathbb{R}X_A)^{\perp}$ の基底 X_A の基底 X_A と $(\mathbb{R}X_A)^{\perp}$ の基底 X_A の基底 X_A をひとつ選ぶ。すると条件 (a), (b) より

$$\langle X_A, \cdot \rangle \colon X_A \mapsto \|X_A\|^2, \quad b_i \mapsto 0 \quad (i = 1, \dots, 3)$$
 (2.6)

$$\theta_A \colon X_A \mapsto 1, \qquad b_i \mapsto 0 \quad (i = 1, \dots, 3)$$
 (2.7)

が成り立つから $\theta_A = \langle X_A, \cdot \rangle / \|X_A\|^2$ である。したがって、 θ を座標 x,y,z,w を用いて表すと

$$\theta = \frac{1}{x^2 + y^2 + z^2 + w^2} \left(-y \, dx + x \, dy - w \, dz + z \, dw \right) \tag{2.8}$$

となる。

(3) [TODO] よくわからない