# 时间序列第一次作业

### 翁武泰 222018314210008

对 B6 的数据创建时间序列 death\_ts,使用 decompose 函数对 death\_ts 分解,得到如下图较为精准的结果,可与后面方法得到的结果做对比。

```
death_ts <- ts(death_data, frequency = 12, start = c(1973,1))
death_decomposition <- decompose(death_ts)
plot(death_decomposition)</pre>
```

## Decomposition of additive time series



转化数据格式,通过 ggplot 作图得到 1973 年至 1978 年美国在意外事故中的死亡人数数据图。通过观察发现周期 T=12,即一年为一周期。

```
death_tibble <- as_tibble(death_data)
death_tibble <- death_tibble %>% mutate(number = c(1:72))
death_date_frame <- as.data.frame(death_tibble)

ggplot(death_tibble) +
  geom_line(aes(x = number, y = value), color = 'orange') +
  theme_bw()</pre>
```



通过回归模型,对数据进行线性回归和二次回归,得到直线趋势项和二次趋势项如下图所示。其中橙线为数据,红线为趋势项。

```
# linear function regression
model_linear <- lm(formula = value ~ number, data = death_date_frame)</pre>
coefficient_linear <- coefficients(model_linear)</pre>
coefficient_linear
# quadratic function regression
model_quadratic <- lm(formula = value ~ poly(number,2), data = death_date_frame)</pre>
coefficient_quadratic <- coefficients(model_quadratic)</pre>
coefficient_quadratic
ggplot(death_tibble) +
  geom_line(aes(x = number, y = value), color = 'orange') +
  geom_abline(slope = coefficient_linear[2],
              intercept = coefficient_linear[1],
              color = 'red', size = 1) +
  labs(title = 'Death Data and Linear Trend') +
  theme_bw() +
  theme(plot.title = element_text(hjust = 0.5))
```

### Death Data and Linear Trend



### Death Data and Quadratic Trend



用原始数据减去趋势项的估计,以第 k 月的平均值作为季节项 S(k) 的估计,根据课本公式(1.7)计算出  $\hat{S}$ ,再用原始数据减去趋势项数据的估计和季节项的估计得随机项的估计。其中 S1,S2 表示线性回归和二次回归后得到的季节项,T1、T2 和 R1、R2 同理。

| people ‡ | number ‡ | S1 <sup>‡</sup> | T1 ‡     | R1 \$      | S2 <b>‡</b> | T2 <sup>‡</sup> | R2 ‡        |
|----------|----------|-----------------|----------|------------|-------------|-----------------|-------------|
| 9007     | 1        | -791.42567      | 9090.702 | 707.723616 | -3513748    | 9865.552        | 3512889.107 |
| 8106     | 2        | -1543.08312     | 9082.193 | 566.890282 | -3675389    | 16097.470       | 3667397.975 |
| 8928     | 3        | -754.40724      | 9073.684 | 608.723616 | -3840646    | 27484.377       | 3822089.510 |
| 9137     | 4        | -545.06470      | 9065.174 | 616.890282 | -4011637    | 44026.274       | 3976747.379 |
| 10017    | 5        | 324.77785       | 9056.665 | 635.556949 | -4187122    | 65723.162       | 4131415.747 |
| 10826    | 6        | 802.45373       | 9048.156 | 975.390282 | -4368154    | 92575.039       | 4286405.282 |
| 11317    | 7        | 1668.46294      | 9039.647 | 608.890282 | -4553953    | 124581.907      | 4440688.484 |
| 10744    | 8        | 973.30549       | 9031.138 | 739.556949 | -4746469    | 161743.765      | 4595468.852 |
| 9713     | 9        | -67.01863       | 9022.628 | 757.390282 | -4944484    | 204060.612      | 4750136.387 |
| 9938     | 10       | 236.32391       | 9014.119 | 687.556949 | -5146311    | 251532.450      | 4904716.256 |
| 9161     | 11       | -283.16688      | 9005.610 | 438.556949 | -5354115    | 304159.278      | 5059116.958 |
| 8927     | 12       | -21.15766       | 8997.101 | -48.943051 | -5566293    | 361941.096      | 5213279.159 |

```
for (i in 1 : 72) {
  death_tibble[i,3] <- death_tibble[i,1] -</pre>
    (coefficient_linear[2] * death_tibble[i,2]
     + coefficient_linear[1])
death_tibble <- rename(death_tibble, 'S_and_T' = 'value')</pre>
for (i in 0 : 11) {
 sum <- 0
 for (j in 1 :72) {
   if (j %% 12 == i)
     sum <- sum + death_tibble[j,3]</pre>
 sum <- sum / 6
 for (j in 1 :72) {
   if (j %% 12 == i)
      death_tibble[j,4] <- sum</pre>
 }
}
```

```
death_tibble <- rename(death_tibble, 'S' = 'value')</pre>
death_tibble <- rename(death_tibble, 'qwe' = 'S_and_T')</pre>
death_tibble <- rename(death_tibble, 'S_and_T1' = 'S')</pre>
 death_tibble <- rename(death_tibble, 'S1' = 'value')</pre>
death_tibble <- rename(death_tibble, 'people' = 'qwe')</pre>
 for (i in 1 : 72) {
   death_tibble[i,5] <- coefficient_linear[2] * death_tibble[i,2]</pre>
   + coefficient_linear[1]
death_tibble <- rename(death_tibble, 'qwe' = 'number')</pre>
death_tibble <- rename(death_tibble, 'T1' = 'number')</pre>
death_tibble <- rename(death_tibble, 'number' = 'qwe')</pre>
for (i in 1 : 72) {
  death_tibble[i,6] <- death_tibble[i,1] - death_tibble[i,4]</pre>
   - death_tibble[i,5]
death_tibble <- rename(death_tibble, 'qwe' = 'people')
death_tibble <- rename(death_tibble, 'R1' = 'people')
death_tibble <- rename(death_tibble, 'people' = 'qwe')</pre>
death_tibble <- death_tibble[-3]</pre>
for (i in 1 : 72) {
  death_tibble[i,6] <- death_tibble[i,1]</pre>
      - (coefficient_quadratic[3] * death_tibble[i,2]^2
      + coefficient_quadratic[2] * death_tibble[i,2]
      + coefficient_quadratic[1])
death_tibble <- rename(death_tibble, 'qwe' = 'people')
death_tibble <- rename(death_tibble, 'S_and_T2' = 'people')
death_tibble <- rename(death_tibble, 'people' = 'qwe')</pre>
for (i in 0 : 11) {
  sum <- 0
  for (j in 1:72) {
    if (j %% 12 == i)
       sum <- sum + death_tibble[j,6]</pre>
  sum <- sum / 6
  for (j in 1 :72) {
    if (j %% 12 == i)
       death_tibble[j,7] <- sum</pre>
  }
}
```

```
death_tibble <- rename(death_tibble, 'qwe' = 'S_and_T2')</pre>
death_tibble <- rename(death_tibble, 'S2' = 'S_and_T2')</pre>
death_tibble <- rename(death_tibble, 'S_and_T2' = 'qwe')</pre>
for (i in 1 : 72) {
 death_tibble[i,8] <- coefficient_quadratic[3] *</pre>
    death_tibble[i,2]^2
 + coefficient_quadratic[2] * death_tibble[i,2]
 + coefficient_quadratic[1]
death_tibble <- rename(death_tibble, 'qwe' = 'number')</pre>
death_tibble <- rename(death_tibble, 'T2' = 'number')</pre>
death_tibble <- rename(death_tibble, 'number' = 'qwe')</pre>
for (i in 1 : 72) {
 death_tibble[i,9] <- death_tibble[i,1] - death_tibble[i,7]</pre>
 - death_tibble[i,8]
death_tibble <- rename(death_tibble, 'qwe' = 'people')</pre>
death_tibble <- rename(death_tibble, 'R2' = 'people')</pre>
death_tibble <- rename(death_tibble, 'people' = 'qwe')</pre>
death_tibble <- death_tibble[-6]</pre>
death_tibble
```

绘制季节项和随机项如下图所示。其中红色为季节项,橙色为随机项。

```
ggplot(death_tibble) +
geom_line(aes(x = number, y = S1), color = 'red', size = 1) +
geom_line(aes(x = number, y = R1), color = 'orange', size = 1) +
labs(title = 'Seasonal and Random') +
theme_bw() +
theme(plot.title = element_text(hjust = 0.5))
```

# Seasonal and Random 1000 1000 1000 20 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

```
ggplot(death_tibble) +
  geom_line(aes(x = number, y = S2), color = 'red', size = 1) +
  geom_line(aes(x = number, y = R2), color = 'orange', size = 1) +
  labs(title = 'Seasonal and Random') +
  theme_bw() +
  theme(plot.title = element_text(hjust = 0.5))
```

### Seasonal and Random



根据公式(1.9)预测,得到结果并绘制图片如下所示。

```
for (i in 1 : 12) {
    f_tibble[i,2] <- death_tibble[i,6]
    + coefficient_linear[2] * death_tibble[i,2]
    + coefficient_linear[1]
    f_tibble[i,3] <- death_tibble[i,3]
    + coefficient_quadratic[3] * f_tibble[i,1]^2
    + coefficient_quadratic[2] * f_tibble[i,1]
    + coefficient_quadratic[1]
}

f_tibble <- rename(f_tibble, 'F1' = 'S2')
f_tibble <- rename(f_tibble, 'F2' = 'S1')</pre>
```

| month | 1979     | 1979     |
|-------|----------|----------|
| 1     | 8265.502 | 8468.374 |
| 2     | 7512.326 | 7768.417 |
| 3     | 8297.884 | 8610.393 |
| 4     | 8502.508 | 8874.635 |
| 5     | 9366.032 | 9800.978 |
| 6     | 9835.789 | 10336.75 |
| 7     | 10692.28 | 11262.46 |
| 8     | 9986.004 | 10628.61 |
| 9     | 8932.962 | 9651.181 |
| 10    | 9221.986 | 10019.02 |
| 11    | 8686.577 | 9565.633 |
| 12    | 8931.067 | 9895.342 |

```
ggplot(f) +
  geom_line(aes(x = number, y = people1, color = type1)) +
  labs(
    title = 'Now and Future',
    color = 'class'
) +
  theme_bw() +
  theme(plot.title = element_text(hjust = 0.5))
```



```
ggplot(f) +
  geom_line(aes(x = number, y = people2, color = type2)) +
  labs(
    title = 'Now and Future',
    color = 'class'
) +
  theme_bw() +
  theme(plot.title = element_text(hjust = 0.5))
```

