

436 Kato Terrace Fremont, CA 94539 Tel: 510.687.0388 Fax: 510.687-0328

www.TenergyBattery.com

	T			
Product Name:	Li-Poly 3.7V 900mAh Battery			
Product Number:	30515			
Battery Size:	873048			
Battery Chemistry	Li-Polymer			
	Dimensions			
Sign	Item Max (mm)			
А	Tab width	5		
В	Space between Tabs	9		
С	Tab Length 10			
Т	Cell thickness	9.0		
W	Cell width	30.5		
L	Cell length	50		

Specifications:

Item		Specifications	Remark
Typical Capacity		<u>900</u> mAh	25℃, 0.2C5A discharge
Nomina	l Voltage	<u>3.7</u> V	25℃, Average Voltage at 0.2C5A discharge
Charge	Standard	0.2C₅A	Working temperatur : $0{\sim}40^{\circ}\!\mathrm{C}$
Current	Max	1.0C ₅ A	Working temperatur : $0{\sim}40^{\circ}\mathrm{C}$
Charge cut	-off voltage	<u>4.2 ± 0.10</u> V	CC/CV
Continue disc	charge current	20C <u>18</u> A	
Peak discha	orge Current	25C <u>22.5</u> A	Working temperatur : $0{\sim}60^{\circ}\mathrm{C}$
Discharge cut-off voltage		<u>3.0</u> V	
Impedance		\leq 25 m Ω	25℃, AC 1KHz after 50% charge
Weight		≤ <u>25</u> g	

436 Kato Terrace Fremont, CA 94539

Tel: 510.687.0388 Fax: 510.687-0328 www.TenergyBattery.com

	≤1month	-20∼45°C	
Storage			
temperature	≤3month	0∼30°C	Best 20±5℃ for long-time storage
'	/Cmanth	2 0±5℃	best 20±5 C for long-time storage
	≤6month	20±3 C	
Storage	humidity	65±20% RH	

General Performance:

Definition of Standard charging method: At $20\pm5^{\circ}$ C, charging the cell initially with constant current $0.2C_5$ A till voltage 4.2V, then with constant voltage 4.2V till current declines to $0.05C_5$ A.

Item	Test Methods	Performance
0.2C Capacity	After standard charging, laying the battery 0.5h, then discharging at $0.2C_5A$ to voltage 2.75V, recording the discharging time.	≥300min
20C Discharge	After standard charging, laying the battery 0.5h, then discharging at $5C_5A$ to voltage 2.75V, recording the discharging time.	≥ 2.8 min
Cycle Life	Constant current $1C_5A$ charge to 4.2V, then constant voltage charge to current declines to $0.05C_5A$, stay 5min, constant current $1C_5A$ discharge to 2.75V, stay 5min. Repeat above steps till continuously discharging time less than 36min.	≥300times
Capability of keeping electricity	$20\pm5^{\circ}$ C, After standard charging, laying the battery 28days, discharging at $0.2C_5$ A to voltage 2.75V, recording the discharging time.	≥240min

Environment Performance:

Item	Test Methods	Performance
High temperature	After standard charging, laying the battery 4h at 60° C, then discharging at $0.2C_5$ A to voltage 2.75V, recording the discharging time.	≥ 270 min

436 Kato Terrace Fremont, CA 94539 Tel: 510.687.0388 Fax: 510.687-0328

www.TenergyBattery.com

Low temperature	After standard charging, laying the battery 4h at - 20° C, then discharging at $0.2C_5$ A to voltage 2.75V, recording the discharging time.	≥210min
Constant humidity and temperature	After standard charging, laying the battery 48h at $40\pm2^{\circ}$ C, RH 93 ± 2 %. Recording 0.2 C ₅ A discharging time	No distortion No electrolytes leakage ≥270 min
4.4 Temperature shock	After standard charging, battery stored at -20 $^{\circ}$ C for 2 hours, then stored at 50 $^{\circ}$ C for 2 hours. Repeat 10 times.	No electrolytes leakage

Mechanical Performance:

Item	Test Methods	Performance
Vibration	After standard charging, put battery on the vibration table. 30 min experiment from X,Y,Z axis. Scan rate: 1 oct/min; Frequency 10-30Hz, Swing 0.38mm; Frequency 30-55Hz, Swing 0.19mm.	No influence to batteries' electrical performance and appearance.
Collision	After vibration test, batteries were laying on the vibration table about X, Y, Z axis. Max frequency acceleration: 100m/s^2 ; collision times per minutes: 40^80 ; frequency keeping time 16ms; all collision times 1000 ± 10 .	No influence to batteries' electrical performance and appearance.
Drop	Random drop the battery from 10m height onto concrete one times.	No explosion or fire

Safety Test:

Test conditions: The following tests must be measured at flowing air and safety protection conditions. All batteries must standard charge and lay 24h.

Item	Test Methods	Performance
Over charge	At 20 \pm 5 $^{\circ}$ C, charging batteries with constant	No explosion or fire

436 Kato Terrace Fremont, CA 94539

Tel: 510.687.0388 Fax: 510.687-0328 www.TenergyBattery.com

	current 3C₅A to voltage 4.8V, then with constant voltage	
	4.8V till current decline to 0. Stop test till batteries'	
	temperature $10^{\circ}\!$	
Over discharge	At $20\pm5^{\circ}\mathrm{C}$, discharge battery with $0.2\mathrm{C}_{5}\mathrm{A}$	No explosion or fire
a ver allocitation	continuously 12.5h.	THE EMPIRES OF THE
Short-circuit	At 20 \pm 5 $^{\circ}$ C, connect batteries' anode and cathode	No explosion or fire
Short-circuit	by wire which impedance less than $50~\text{m}\Omega_{\odot}$ keep 6h .	NO EXPIOSION OF THE
Extrusion	At 20 \pm 5 $^{\circ}$ C, put the battery in two parallel steal	No explosion or fire
EXTRUSION	broad, add pressure 13kN.	No explosion of fire
	Put the battery in the oven. The temperature of the	
Thermal shock	oven is to be raised at $5\pm1^\circ\!$	No explosion or fire
	temperature of $130\pm2^{\circ}$ and remains 60 minutes.	

Cautions of charge & discharge

Charge

Charging current should be lower than values that recommend below. Higher current and voltage charging may cause damage to cell electrical, mechanical, safety performance and could lead heat generation or leakage.

- (1) Batteries charger should charging with constant current and constant voltage mode;
- (2) Charging current should be lower than (or equal to) 1C₅A;
- (3) Temperature $0\sim45^{\circ}$ C is preferred when charging;
- (4) Charging voltage must be lower than 4.25V.

Discharge

- (1) Temperature $0\sim60^{\circ}$ C is preferred when discharging;
- (2) Discharging voltage must not be lower than 2.75V.

Over-discharge

It should be noted that the cell would be at an over-discharge state by its self-discharge. In order to prevent over-discharge, the cell shall be charged periodically to keeping voltage between 3.6-3.9V. Over-discharge may cause loss of cell performance. It should be noted that the cell would not discharge till voltage lower than 2.5V.

Storage of polymer lithium-ion batteries

The environment of long-time storage:

Temperature: $20\pm5^{\circ}$ C;

436 Kato Terrace Fremont, CA 94539

Tel: 510.687.0388 Fax: 510.687-0328

www.TenergyBattery.com

Humidity: 45-85%;

Batteries were $40\sim60\%$ charged.

The battery had better charge a time per three month during its storage for avoiding over discharge. If storage is long time, please charge the battery with constant current 0.5C₅A for 1 hour so that it has some storage of charge for properly using.

Charge and discharge afresh to active and renew battery energy after storage above 1 year.

In case of over-discharge, batteries should be charged for one time every 3 months while storing. Batteries should be discharged and charged after being stored more than a year in order to activate it and restore energy.

Transportation of polymer lithium-ion batteries

The batteries should transportation with $10\sim50\%$ charged states.

Batteries must be properly packed to avoid short circuiting

Others

- Short-circuit is strictly prohibited. It should damage batteries badly.
- The batteries' tabs are not so stubborn especially for aluminum tabs. Don't bend tabs.
- The batteries must be careful of proceed the operation for it's soft package. Please note cautions below to prevent cells' leakage, heat generation and explosion.
- · Prohibition of disassembly cells;
- Prohibition of cells immersion into liquid such as water or seawater;
- Prohibition of dumping cells into fire;
- Prohibition of using damaged cells. The cells with a smell of electrolyte or leakage must be placed away from fire to avoid firing.

In case of electrolyte leakage contact with skin, eye, physicians shall flush the electrolyte immediately with fresh water and medical advise is to be sought.