Assignment 7

Rushi Shah

March 28, 2018

Problem 1

Let f be a real-valued function defined as $f(x) = x^2$ on $Dom(f) = \mathbb{R}$, and let $\varepsilon > 0$ be given. Find a δ so that $|x - 1| \le \delta$ implies $|f(x) - 1| \le \varepsilon$.

We want to show

$$\begin{split} |f(x)-1| &\leq \varepsilon \\ |x^2-1| &\leq \varepsilon \\ |(x+1)(x-1)| &\leq \varepsilon \\ |(x-1+2))(x-1)| &\leq \varepsilon \\ |x-1+2||x-1| &\leq \varepsilon \\ (|x-1|+|2|)|x-1| &\leq \varepsilon \\ (\delta+2)\delta &\leq \varepsilon \\ \delta^2+2\delta &\leq \varepsilon \end{split}$$

We can solve $\delta^2 + 2\delta \le \varepsilon$ to get an equation for δ in terms of ε . Take $\delta = \sqrt{\varepsilon + 1} - 1$.

Problem 2

Prove that the real-valued function f(x) = 1/x defined on $Dom(f) = [1, \infty)$ is uniformly continuous under the usual Euclidean metric $\rho(x, y) = |x - y|$ on \mathbb{R} .

To show uniform continuity we would like to show that given any $\varepsilon > 0$, we can select a δ independent of x such that $\rho(x,y) \leq \delta \to \rho(f(x),f(y)) \leq \varepsilon$. So consider some $\varepsilon > 0$, and x,y such that $|x-y| \leq \delta$.

$$\begin{split} \rho(f(x),f(y)) &\leq \varepsilon \\ |f(x)-f(y)| &\leq \varepsilon \\ |1/x-1/y| &\leq \varepsilon \\ |\frac{y-x}{xy}| &\leq \varepsilon \\ \frac{|y-x|}{|xy|} &\leq \varepsilon \\ |y-x| &\leq \varepsilon \cdot |x| \cdot |y| \\ \delta &\leq \varepsilon \cdot x \cdot y \\ \delta &\leq \varepsilon \leq \varepsilon \cdot x \cdot y \end{split}$$

Where we know that $\varepsilon \leq \varepsilon \cdot x \cdot y$ since $x, y \in [1, \infty)$. Thus we can select $\delta \leq \varepsilon$ independent of x to satisfy uniform continuity. For example, we can always select $\delta = \varepsilon/2$.

Problem 3

Let (X, σ) be a metric space and x_0 a point in X. Prove that the function $f: X \to \mathbb{R}$ defined as $f(x) = \sigma(x, x_0)$ is continuous under the usual Euclidean metric $\rho(x, y) = |x - y|$ on \mathbb{R} .

To show continuity we would like to show that given any $\varepsilon > 0$, we can select a δ such that $\forall a, b \cdot \sigma(a, b) \le \delta \to |f(a) - f(b)| \le \varepsilon$

We can use the triangle inequality of σ to note that

$$|f(a) - f(b)| \le \varepsilon$$

$$|\sigma(a, x_0) - \sigma(b, x_0)| \le \varepsilon$$

$$|\sigma(a, b)| \le |\sigma(a, x_0) - \sigma(b, x_0)| \le \varepsilon$$

$$\delta < \varepsilon$$

Thus by taking $\delta \leq \varepsilon$, for example $\delta = \varepsilon/2$, we can satisfy the criteria for continuity.

Problem 4

Let (X, ρ_X) and (Y, ρ_Y) be two metric spaces, and $f: X \to Y$ a function with domain Dom(f) = X and range Ran(f) = Y. Prove that f is continuous if and only if $f^{-1}[\tilde{Y}]$ (the preimage of \tilde{Y}) is open for every open set \tilde{Y} in Y.

If f is continuous, then $f^{-1}[\tilde{Y}]$ is open for every open set $\tilde{Y} \in Y$.

Recall that if \exists a limit point a not in set A, then A is open. Also recall that a limit point a is a point such that \exists a non-constant sequence of $\{a_n\} \subseteq A$ such that $\{a_n\} \to a$. Thus we must show that there exists $\{x_n\} \subseteq f^{-1}[\tilde{Y}]$ such that $\{x_n\} \to x$ where $x \notin f^{-1}[\tilde{Y}]$. Consider an open set $\tilde{Y} \in Y$. Since this set is open, there exists some non-constant sequence $\{y_n\} \to y$ where $y \notin \tilde{Y}$ but $\{y_n\} \subseteq \tilde{Y}$. Thus, we can take the preimage of all $\{y_n\}$ to be a non-constant sequence $\{x_n\} \subseteq f^{-1}[\tilde{Y}]$. But, it is also clear that $x = f^{-1}(y) \notin f^{-1}[\tilde{Y}]$ because $y \notin \tilde{Y}$. Because f is continuous, we know that $\{x_n\} \to x$ where $x \notin f^{-1}[\tilde{Y}]$. Thus, we know that $f^{-1}[\tilde{Y}]$ is open.

If for every open set $\tilde{Y} \in Y$ we know that $f^{-1}[\tilde{Y}]$ is open, then f must be continuous.

As shown in class, an equivalent condition for continuity is $\forall \{x_n\} \subseteq X, x_n \to x_0$ implies $f(x_n) \to f(x_0)$. Consider some arbitrary $\{x_n\} \subseteq X$.

Problem 5

Let f be the function on [0,1] given by

$$f(x) = \begin{cases} 1 & \text{if } x \neq \frac{1}{2} \\ 2 & \text{if } x = \frac{1}{2} \end{cases}$$

Prove that f is Riemann integrable and compute $\int_0^1 f(x)dx$. Hint: for each $\varepsilon > 0$, find a partition P so that $U_P(f) - L_P(f) \le \varepsilon$.

Given any ε , we can select the partition $P = \{0, \frac{1}{2} - \frac{\varepsilon}{2}, \frac{1}{2} + \frac{\varepsilon}{2}, 1\}$. Thus

$$U_P(f) = 1\left(\frac{1}{2} - \frac{\varepsilon}{2} - 0\right) + 2\left(\frac{1}{2} + \frac{\varepsilon}{2} - \left(\frac{1}{2} - \frac{\varepsilon}{2}\right)\right) + 1\left(1 - \left(\frac{1}{2} + \frac{\varepsilon}{2}\right)\right)$$
$$= 1 + \varepsilon$$

$$L_P(f) = 1\left(\frac{1}{2} - \frac{\varepsilon}{2} - 0\right) + 1\left(\frac{1}{2} + \frac{\varepsilon}{2} - \left(\frac{1}{2} - \frac{\varepsilon}{2}\right)\right) + 1\left(1 - \left(\frac{1}{2} + \frac{\varepsilon}{2}\right)\right)$$

$$= 1$$

So, $U_P(f) - L_P(f) = 1 + \varepsilon - 1 = \varepsilon$, which by the Riemann integrability test, shows that f is integrable. The value of $\int_0^1 f(x)dx = \sup_P[L_P(f)] = 1$.