Vector Calculus

Dr. Xuan Dieu Bui

School of Applied Mathematics and Informatics, Hanoi University of Science and Technology

Vector Calculus

Scalar Fields

2 Vector Fields

Surface Integrals

Scalar Fields

2 Vector Fields

Dr. Xuan Dieu Bui Vector Calculus I \heartsuit HUST 3/15

Scalar Fields

Definition

Let Ω be an open domain of \mathbb{R}^3 (or \mathbb{R}^2 , too). A function

$$u: \Omega \to \mathbb{R}$$

 $(x, y, z) \mapsto u = f(x, y, z)$

is called a scalar field defined on Ω .

Let c be a constant, then the surface $S = \{(x, y, z) \in \Omega | f(x, y, z) = c\}$ is called the level surface corresponding to c.

Directional Derivatives

Recall:

 $f'_{x} = \lim_{h \to 0} \frac{f(x_0 + h, y_0, z_0) - f(x_0, y_0, z_0)}{h}$ represents the rates of change of f in the direction of \vec{i} .

Problem:

Find the rate of change of f at (x_0, y_0, z_0) in the direction of an arbitrary unit vector u = (a, b, c).

Definition

The directional derivative of f at (x_0, y_0, z_0) in the direction of a unit vector u = (a, b, c) is

$$\frac{\partial f}{\partial u}(x_0, y_0, z_0) := \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb, z_0 + hc) - f(x_0, y_0, z_0)}{h}$$

if this limit exists.

- If $u = \vec{i}$, then $\frac{\partial f}{\partial u}(x_0, y_0, z_0) = \frac{\partial f}{\partial x}(x_0, y_0, z_0)$.
- $\frac{\partial f}{\partial u}(x_0, y_0, z_0)$ represents the rate of change of f at (x_0, y_0, z_0) in the direction of u.

Directional Derivatives vs Partial Derivatives

Theorem

If f(x, y, z) is differentiable at $M_0(x_0, y_0, z_0)$, then f has a directional derivative at M_0 in the direction of any unit vector u and

$$\frac{\partial f}{\partial \vec{u}}(M_0) = \frac{\partial f}{\partial x}(M_0)\cos\alpha + \frac{\partial f}{\partial y}(M_0)\cos\beta + \frac{\partial f}{\partial z}(M_0)\cos\gamma,$$

where $u = (\cos \alpha, \cos \beta, \cos \gamma)$.

Example

Find the directional derivative of the function $f(x, y, z) = x^2y^3z^4$ at the point M(1, 1, 1) in the direction of the vector $\vec{l} = (1, 1, 1)$.

Dr. Xuan Dieu Bui Vector Calculus I ♥ HUST 6 / 15

The Gradient Vector

If f is a function of three variables x, y and z, then the gradient of f is the vector function ∇f defined by

$$\nabla f = \frac{\partial f}{\partial x}\vec{i} + \frac{\partial f}{\partial y}\vec{j} + \frac{\partial f}{\partial z}\vec{k}.$$

Example

Find ∇u , where $u = r^2 + \frac{1}{r} + \ln r$ and $r = \sqrt{x^2 + y^2 + z^2}$.

Directional Derivatives vs The Gradient Vector

If the function f(x, y, z) is differentiable at M_0 , then

$$\frac{\partial f}{\partial u}(M_0) = \nabla f \cdot u.$$

Dr. Xuan Dieu Bui Vector Calculus I \heartsuit HUST 7 / 15

The Gradient Vector

- Suppose we have a function of two or three variables f.
- In what direction does f change fastest and what is the maximum rate of change?

Significance of the Gradient Vector

 $\frac{\partial f}{\partial u}(M_0)$ represents the rates of change of f at M_0 in the direction of \vec{u} .

From the formula $\frac{\partial f}{\partial u}(M_0) = \nabla f \cdot u$ we have that $\left| \frac{\partial f}{\partial u}(M_0) \right|$ attains the maximum value $|\nabla f|$ if $u//\nabla f$.

- The function f increases fastest at M_0 if $u \uparrow \uparrow \nabla f$.
- The function f decreases fastest at M_0 if $u \uparrow \downarrow \nabla f$.

Example

In what direction from O(0,0) does $f = x \sin z - y \cos z$ have the maximum rate of change.

Dr. Xuan Dieu Bui Vector Calculus I ♥ HUST 8 / 15

Surface Integrals

Scalar Fields

Vector Fields

Dr. Xuan Dieu Bui Vector Calculus I ♥ HUST 9 / 15

Vector Fields

Let Ω be an open domain in \mathbb{R}^3 . A vector field on Ω is the function

$$F: \Omega \to \mathbb{R}^3$$

$$M \mapsto \overrightarrow{F} = \overrightarrow{F}(M),$$

where

$$F = P(M)\overrightarrow{i} + Q(M)\overrightarrow{j} + R(M)\overrightarrow{k}.$$

Flux

Let S be an oriented surface and F be a vector field. The quatity

$$\phi = \iint\limits_{\mathcal{L}} F_x dy dz + F_y dz dx + F_z dx dy \tag{1}$$

is called the flux of F across S.

Dr. Xuan Dieu Bui Vector Calculus I \heartsuit HUST 10 / 15

Flux

Example

Let $F = xz^2\overrightarrow{i} + yx^2\overrightarrow{j} + zy^2\overrightarrow{k}$. Find the flux of F across the surface $S: x^2 + y^2 + z^2 = 1$ with the outward direction.

Vector Fields

The Divergence

If $F = P(x, y, z)\vec{i} + Q(x, y, z)\vec{j} + R(x, y, z)\vec{k}$ is a vector field on Ω and $\frac{\partial P}{\partial x}$, $\frac{\partial Q}{\partial y}$ then the divergence of F is the function of three variables defined by dive $F := \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$ i.e.,

dive $F = \nabla \cdot F$.

Solenoidal Vector Field

- A solenoidal vector field (also known as an incompressible vector field, a divergence-free vector field, or a transverse vector field) is a vector field with dive $F(M) = 0 \ \forall M \in \Omega$.
- The flux going into a region equals the flux coming out, i.e., nothing is lost.

Vector Fields

Circulation

Let \mathbb{C} be a closed path in \mathbb{R}^3 . The quatity

$$\int_{\mathbb{C}} Pdx + Qdy + Rdz \tag{2}$$

is called the circulation of F across C.

Example

Let $F = x(y+z)\overrightarrow{i} + y(z+x)\overrightarrow{j} + z(x+y)\overrightarrow{k}$ and L is the intersection between the quatity $x^2 + y^2 + y = 0$ and a half of the sphere $x^2 + y^2 + z^2 = 2$, $z \ge 0$. Prove that the circulation of F across L is equal to 0.

Conservative Vector Fields and Potential Functions

Curl (Rot) Vector

The vector

$$\operatorname{curl} F := \begin{pmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{pmatrix} = \nabla \times F$$

is called the curl of F.

Conservative Vector Fields

A vector field F is called a conservative vector field if it is the gradient of some scalar function, that is, if there exists a function f such that $F = \nabla f$. In this situation f is called a potential function for F.

Theorem

F is a conservative vector field on Ω iff curl $F(M) = 0 \ \forall M \in \Omega$.

Conservative Vector Fields and Potential Functions

Potential Functions

If \overrightarrow{F} is a conservative vector field, then the its potential function is calculated by

$$u = \int_{x_0}^{x} F_x(x, y_0, z_0) dx + \int_{y_0}^{y} F_y(x, y, z_0) dy + \int_{z_0}^{z} F_z(x, y, z) dz + C.$$
 (3)

Example

Which of the following fields are conservative and find their potential functions.

a.
$$F = 5(x^2 - 4xy)\overrightarrow{i} + (3x^2 - 2y)\overrightarrow{j} + \overrightarrow{k}$$
.

b.
$$G = yz\overrightarrow{i} + xz\overrightarrow{j} + xy\overrightarrow{k}$$
.

c.
$$H = (x + y)\overrightarrow{i} + (x + z)\overrightarrow{j} + (z + x)\overrightarrow{k}$$
.