- 1 Differential entropy. Evaluate the differential entropy $h(X) = -\int f \ln f dx$ for the following:
- (a) The exponential density, $f(x) = \lambda e^{-\lambda x}$, $x \ge 0$.
- (b) The Laplace density, $f(x) = \frac{1}{2} \lambda e^{-\lambda |x|}$.
- 2 A Channel has an input ensemble X consisting of numbers +1 and -1 used with the probabilities $P_X(+1)=P_X(-1)=1/2$. The output y is the sum of the input x and an independent noise random variable Z with the probability density $P_Z(z)=1/4$ for $-2 < z \le 2$ and $P_Z(z)=0$ eslewhere. In other words, the conditional probability density of y conditional on x is given $P_{Y|X}(y/x)=1/4$ by for $-2 < y-x \le 2$ and $P_{Y|X}(y/x)=0$ elsewhere.
- (a) Find and sketch the output probability density for the channel.
- (b) Find I(X;Y).
- (c) Suppose the output is transformed into a discrete processed output u defined by u=1 for y>1; u=0 for $-1< y\le 1$; u=-1 for $y\le -1$. Find I(X;U).