CS 6160 Cryptology Lecture 12: Constructing MACs & CCA-secure schemes

Maria Francis

October 16, 2020

A Fixed-Length (single block) MAC

- Pseudorandom Funtions are a natural tool for constructing MACs.
- i.e. PRFs is a MAC. $Verify_k(m, t) = 1$ iff $t = F_k(m)$.
- Intuition:
 - ► Forging a tag on a unknown/new message requires A to correctly guess the output of a PRF at a new point.
 - ► This is only negligibly greater than guessing the value of a random function which is $2^{-\ell(n)}$.
- Output length of F_k should be big enough.
 - ▶ If $Pr[MAC forge_{\Pi, \mathcal{A}}(1^n)] = \epsilon$, then \mathcal{A} can break the PRF with advantage $\mathcal{O}(\epsilon \frac{1}{2^{\ell(n)}})$ where $\ell(n)$ is the output length/block length of F_k .
 - ▶ If $f \in Func_n$ is used then probability of forgery, $\epsilon = 2^{-\ell(n)}$.

Security Proof

- Like previous cases involving PRFs we use the Random Function model,

random one (
$$f \in Func_n$$
), to get $\overline{\Pi} = (\overline{Gen}, \overline{MAC}, \overline{Verify})$, is

- We then analyze the security of $\overline{\Pi}$.
- For any message $m \notin \mathcal{Q}$, t = f(m) is uniformly distributed in $\{0,1\}^n$ and thus we have,

$$Pr[MAC - forge_{A,\overline{\Pi}}(1^n) = 1] \leq 2^{-n}.$$

- What we need to show then is :

$$|Pr[MAC - forge_{\mathcal{A}, \overline{\square}}(1^n) = 1]$$

 $-Pr[MAC - forge_{\mathcal{A}, \overline{\square}}(1^n) = 1]| \le \operatorname{negl}(n)$

Working with f is not very different

- Note that when we have the two previous equations, we have the required final result,

$$Pr[MAC - forge_{\mathcal{A}, \mathbf{\Pi}}(1^n) = 1] \le 2^{-n} + negl(n).$$

- So now back to showing (2): we have to build a distinguisher D that distinguishes F_k and f.
- D emulates the message authentication experiment for $\mathcal A$ and sees if $\mathcal A$ succeeds in outputting a valid tag on a new message.
- If yes, D guesses that its oracle is the PRF F_k , else it guess it is $f \in Func_n$.

Distinguisher D

- When ${\mathcal A}$ outputs (m,t) at the end, D does the following:
 - ▶ Query \mathcal{O} with m and gets response \overline{t} .
 - ▶ If $t = \overline{t}$ and A has never queried m before then D outputs 1 else 0.
- *D* runs in polynomial time.
- If D's oracle is PRF, then the view of \mathcal{A} when it runs as D's subroutine is the same as in $MAC forge_{\mathcal{A},\Pi}(1^n)$. D outputs 1 when $MAC forge_{\mathcal{A},\Pi}(1^n) = 1$.

$$Pr[D^{F_k()}(1^n)=1]=Pr[MAC-forge_{\mathcal{A},\Pi}(1^n)=1].$$

Similarly for $f(D^{f()}(1^n) = 1)$ and $MAC - forge_{A,\overline{\Pi}}(1^n)$.

MAC for Multiple-Block Messages

- For messages longer than one block.
- Using MAC for single block we can build multiple-block but it is inefficient. We will see that.
- From a PRF, build a PRF that takes inputs that are of length greater than a single block.
- See how abstracting ideas helps! Seeing AES/DES as PRFs or stream ciphers as PRGs helps us them as building blocks for other primitives.

MAC for Multiple-Blocks

- Before we get to our simple (but inefficient) solution let us eliminate basic ideas:
- What happens when we authenticate each block separately?
 - ► Block reordering attack will go undetected.
- We add a sequence number i to each block. $t_i = MAC_k(i \circ m_i) \ \forall i$.
 - ► Truncation attack: drop blocks at the end.
- We add total length of message ℓ in bits, $t_i = MAC_k(\ell \circ i \circ m_i) \ \forall i$.
 - Mix-and-match attack: adversary combines blocks from different messages.
 - ▶ \mathcal{A} obtains tags t_1, \ldots, t_d and t'_1, \ldots, t'_d on $m = m_1, \ldots, m_d$ and $m' = m'_1, \ldots, m'_d$ resply. \mathcal{A} outputs a valid tag $t_1, t'_2, t_3, t'_4, \ldots$ on the message $m_1 m'_2, m_3, m'_4, \ldots$
 - ► Use a random message identifier!

MAC for Multiple-Block Messages – Simple Solution

- That is a block $B_i = (r, \ell, i, M_i)$, r message identifier, ℓ is the total message length, i the sequence number and M_i the message.
- $MAC(m) = (r, (MAC(B_i)_{i=1,...,t}.$
- What are the uses of all these components?
 - ► r prevents mixing of the blocks from two messages,
 - \blacktriangleright ℓ prevents dropping, and
 - ► *i* prevents rearranging
- Inefficient as tag length increases with message length.
- We do not consider its formal security proof.

CBC-MAC

- Widely used in practice. Secure for messages of fixed length, but not secure in general case.

Attacks are possible by extending a previous signed message.

CBC-MAC for fixed-length messages

- Let F be a PRF and fix length function $\ell > 0$.
- MAC: On input $k \in \{0,1\}^n$ and m of length $\ell(n) \cdot n$,
 - $ightharpoonup t_0=0^n$ and parse m as $\overline{m=m_1,\cdots,m_\ell,\,|m_\ell|=n}$.
 - For i = 1 to ℓ : Set $t_i := F_k(t_{i-1} \oplus m_i)$.
 - $ightharpoonup t_{\ell}$ is the tag.
- *Verify*: If m is not of length $\ell(n) \cdot n$ then output 0 else output 1 iff $t = MAC_k(m)$.

CBC-MAC

Theorem

Let ℓ be a polynomial. If F is a PRF, then the above construction is a secure MAC for messages of length $\ell(n) \cdot n$.

We do not go into the details of the proof.

Why cannot the above construction just be extended to arbitrary multiples of *n*? The construction is only secure when the length of the message being authenticated is fixed and agreed upon indadvance by the honest parties! – (Practice Question!)

CBC-MAC

- Unlike first case, here we can authenticate longer messages.
- CBC-MAC very similar to CBC, but there are differences:
 - ► CBC uses random IV for security while CBC-MAC uses no IV or rather a fixed value 0ⁿ for security. (Practice q)
 - ► CBC outputs all intermediate values not CBC-MAC. If it outputs all the {t_i} it is no longer secure. (Practice q)

CBC-MAC for arbitrary(poly) length

messages

- We still want to produce a single block tag and the MAC should be secure if the underlying function is a PRF.
- Prepend the message m with its length |m| and then do basic CBC-MAC. Appending |m| to the end is not secure. (Assignment q)
- Change the scheme so that Gen chooses two independent keys k_1 and k_2 . To authenticate m:
 - $ightharpoonup t = CBC MAC_{k_1}(m)$
 - $\overline{t} := F_{k_2}(t)$ the actual tag for m.
- You can authenticate without knowing message length in advance but you need two keys not desirable.
- These variations are called CMAC and EMAC.
- MAC from a hash function instead of a PRF HMAC!Later!

Authenticated Encryption

- Can any CPA scheme Π_E (with k_E key) and any MAC scheme Π_M (with k_M key) give us authenticated encryption? No! They need to combined in a certain way else the result can be insecure even if the underlying tools are secure!

- Three natural approaches:
 - 1. Encrypt-and-authenticate: Π_E and Π_M work in parallel. For a plaintext m, the ciphertext $\langle c, t \rangle$ is formed in this way:

$$c \leftarrow Enc_{k_E}(m)$$
 and $t \leftarrow MAC_{k_M}(m)$.

2. Authenticate-then-encrypt: For *m*, *c* is computed as:

$$t \leftarrow MAC_{k_M}(m)$$
 and $c \leftarrow Enc_{k_E}(m \circ t)$

3. Encrypt-then-authenticate: For *m*, *c* is computed as:

$$c \leftarrow Enc_{k_E}(m)$$
 and $t \leftarrow MAC_{k_M}(c)$

What can go wrong?

- 1. No secrecy. $t \leftarrow MAC_{k_M}(m)$ can leak m to Eve.
- 2. A specific attack is possible where the *Verify* fails not just when the tag is not valid but also when there is a bad padding (See 3.7.2. In Katz and Lindell textbook)
- 3. This approach is sound and results in an authenticated encryption scheme as long as the MAC is a strong MAC.
- 4. We omit the proof.

CCA-secure Vs Authenticated Encryption

- Encryption with authentication implies CCA-secure encryption!
- Modifying ciphertexts in a CCA is linked to message integrity.
- Can there be CCA-secure SKE schemes that are not unforgeable? - Yes! (Practice q)
- But most constructions of CCA satisfy the stronger definition of authenticated encryption. I.e, why use a CCA-secure scheme that is not an authenticated encryption scheme, when any construction satisfying the latter is more efficient than constructions achieving the former?
- But conceptually different: CCA looks at ${\cal A}$ that can interfere and in MACs we are looking for message integrity.
- In Public Key systems the difference is more pronounced.