

Melacak Sampah Plastik dengan Analisis Laut Lagrangian Menggunakan OceanParcels

Muh. Nur Hidayat

Pembimbing 1: Prof. Dr. Ir. Syamsul Rizal Pembimbing 2: Prof. Dr. Marwan Ramli, M.Si.

July 20, 2022

Seminar Proposal

Daftar Isi

Table of Contents

Daftar Isi

Pendahulua

Latar Belakang dan Rumusan Masalah Tujuan Penelitian

Urgensi dan Kebaruan

Manfaat Penelitian

i ii ijauai Piistaka

Persamaan Gerak Fluida Persamaan Navier-Stoke: 3 Dimensi

Analisis Laut Lagrangian OceanParcels

Arakawa C-grid

Penelitian Domain Penelitia

Domain Penelitian

Data Penelitian

Prosedur Penelitian

Pendahuluan

- Latar Belakang dan Rumusan Masalah
- Tujuan Penelitian
- Urgensi dan Kebaruan Penelitian
- Manfaat Penelitian
- Tinjauan Pustaka
 - Persamaan Gerak Fluida
 - Persamaan Navier-Stokes 3 Dimensi
 - Analisis Laut Lagrangian
 - OceanParcels
 - Arakawa C-grid
- Metodologi Penelitian
 - Domain Penelitian
 - Data Penelitian
 - Prosedur Penelitian

Muh. Nur Hidayat July 20, 2022 2/41

Latar Belakang dan Rumusan Masalah I

Latar Belakang dan Rumusan Masalah

Tuiuan Penelitian

Urgensi dan Kebaruan

Manfaat Penelitian

Persamaan Gerak Fluida

Analisis Laut Lagrangian OceanParcels

Arakawa C-grid

Data Penelitian Prosedur Penelitian

Pellentesque interdum sapien sed nulla. Proin tincidunt. Aliquam volutpat est vel massa. Sed dolor lacus, imperdiet non, ornare non, commodo eu, negue. Integer pretium semper justo. Proin risus. Nullam id quam. Nam negue. Duis vitae wisi ullamcorper diam conque ultricies. Quisque ligula. Mauris vehicula.

Muh. Nur Hidavat July 20, 2022

Latar Belakang dan Rumusan Masalah II

Daftar Isi

Pendahuluar

Latar Belakang dan Rumusan Masalah

Tujuan Penelitian Urgensi dan Kebaruan

Manfaat Penelitian

Tinjauar

Persamaan Gerak Fluida Persamaan Navier-Stoke

Analisis Laut Lagrangian

Arakawa C-gri

Metodologi Penelitian

Domain Penelitian

Data Penelitian

Prosedur Penelitian

Figure: Distribusi sampah plastik di laut (Ritchie & Roser, 2018)

Muh. Nur Hidayat July 20, 2022 4/41

Latar Belakang dan Rumusan Masalah III

Latar Belakang dan Rumusan Masalah

Tuiuan Penelitian

Urgensi dan Kebaruan

Manfaat Penelitian

Persamaan Gerak Fluida

Analisis Laut Lagrangian

Arakawa C-grid

Data Penelitian Prosedur Penelitian

Nunc sed pede. Praesent vitae lectus. Praesent neque justo, vehicula eget, interdum id, facilisis et, nibh. Phasellus at purus et libero lacinia dictum. Fusce aliquet. Nulla eu ante placerat leo semper dictum. Mauris metus. Curabitur lobortis. Curabitur sollicitudin hendrerit nunc. Donec ultrices lacus id ipsum.

Muh. Nur Hidavat July 20, 2022

Tujuan Penelitian

Daftar Isi

Pendahuluar

Latar Belakang dan Rumusan Masalah

Tujuan Penelitian

Urgensi dan Kebaruan Penelitian Manfaat Penelitian

Tinjauar Bustaka

Persamaan Gerak Fluida Persamaan Navier-Stoke: 3 Dimensi Analisis Laut Lagrangian

Arakawa C-grid

Domain Penelitian
Data Penelitian
Prosedur Penelitian

- Menginvestigasi sebaran sampah mikroplastik yang berasal dari perairan Aceh
- Mengkaji model numerik analisis laut lagrangian
- Mencari hubungan antara kecepatan zonal dan meridional, dan gaya angin terhadap lintasan mikroplastik.

Muh. Nur Hidayat July 20, 2022 6/41

Urgensi dan Kebaruan Penelitian

Daftar Isi

Pendahuluar

Latar Belakang dan Rumusan Masalah Tujuan Penelitian

Urgensi dan Kebaruan Penelitian

Manfaat Penelitian

Tinjauan

Persamaan Gerak Fluida Persamaan Navier-Stoke: 3 Dimensi

Analisis Laut Lagrangian OceanParcels

Metodolog

Domain Penelitian

Data Penelitian Prosedur Penelitian

- Untuk mengetahui cara kerja dari alat yang digunakan + analisis matematis terkait penelitian lanjutan
- Aplikasi OceanParcels dalam domain penelitian belum pernah diteliti sebelumnya
- Untuk mengetahui hubungan-hubungan gaya yang bekerja di dalamnya.

Muh. Nur Hidayat July 20, 2022 7/41

Manfaat Penelitian

Daπar Isi

Pendahuluan Latar Belakang dan

Rumusan Masalah Tujuan Penelitian

Urgensi dan Kebaruan Penelitian

Manfaat Penelitian

Duetaka

Persamaan Gerak Fluida Persamaan Navier-Stokes 3 Dimensi Analisis Laut Lagrangian OceanParcels

Arakawa C-grid

Domain Penelitian
Data Penelitian
Prosedur Penelitian

Diharapkan mampu menjawab salah satu tantangan terkait sampah plastik dan cara penanggulangannya dengan mengetahui sebaran sampah plastik yang berasal dari wilayah sasaran penelitian.

■ Penjabaran model numerik yang dilakukan akan menambah pengetahuan matematis serta dapat memperoleh gambaran tentang cara kerja model, dan potensi penelitian lanjutan.

Muh. Nur Hidayat July 20, 2022 8/41

Persamaan Gerak Fluida

Daftar Isi

Pondahuluan

Latar Belakang dan Rumusan Masalah

Tujuan Penelitian

Urgensi dan Kebaruan Penelitian

Manfaat Penelitian

Duetaka

Persamaan Gerak Fluida

Persamaan Navier-Stok 3 Dimensi

Analisis Laut Lagrangian OceanParcels

Arakawa C-grid

Domain Peneliti Data Penelitian

Data Penelitian Prosedur Penelitian

Figure: (a) Ilustrasi partikel sebagai sifat fisis fluida. (b) Aliran massa jenis masuk dan keluar (Versteeg & Malalasekera, 2007)

Muh. Nur Hidayat July 20, 2022 9/

Persamaan Navier-Stokes 3 Dimensi I

Daftar Is

Pendanuluan Latar Belakang dan

Rumusan Masalah

Tujuan Penelitian Urgensi dan Kebaruan

Penelitian

Manfaat Penelitian

Duetaka

Persamaan Gerak Fluida Persamaan Navier-Stokes 3 Dimensi

Analisis Laut Lagrangian OceanParcels Arakawa C-grid

Penelitian Domain Penelitis

Data Penelitian Prosedur Penelitian

Model OGCM → persamaan Navier-Stokes:

- Persamaan momentum.
- Persamaan kontinuitas.
- Persamaan konservasi densitas.

Model Navier-Stokes dengan pendekatan nonhidrostatik,

$$P=p+q. (1)$$

Tekanan p dihitung secara diagnostik dari densitas dan percepatan gravitasi g seperti pada persamaan berikut

$$\frac{\partial \mathbf{p}}{\partial z} = -(\rho - \rho_0)g. \tag{2}$$

Sedangkan tekanan q dihitung secara prognostik dalam persamaan momentum (implisit).

Muh. Nur Hidayat July 20, 2022 10/41

Persamaan Navier-Stokes 3 Dimensi II

Daftar Is

Latar Belakang dan

Latar Belakang dan Rumusan Masalah

Tujuan Penelitian

Urgensi dan Kebaruan Penelitian

Vantaat Penelitia

Duetaka

Persamaan Gerak Fluida Persamaan Navier-Stokes 3 Dimensi

Analisis Laut Lagrangian OceanParcels

Penelitian

Data Penelitian

Prosedur Penelitian

Persamaan momentum,

$$\frac{\partial u}{\partial t} + \operatorname{adv}(u) - fv = \frac{-1}{\rho_0} \frac{\partial (p+q)}{\partial x} + \operatorname{diff}(u)$$

$$\frac{\partial v}{\partial t} + \operatorname{adv}(v) + fu = \frac{-1}{\rho_0} \frac{\partial (p+q)}{\partial y} + \operatorname{diff}(v)$$

$$\frac{\partial w}{\partial t} + \operatorname{adv}(w) = \frac{-1}{\rho_0} \frac{\partial (q)}{\partial y} + \operatorname{diff}(w).$$
(3)

dengan persamaan adveksi adv
$$(\psi) = u \frac{\partial \psi}{\partial x} + v \frac{\partial \psi}{\partial y} + w \frac{\partial \psi}{\partial z}$$
 dan persamaan difusi diff $(\psi) = \frac{\partial}{\partial x} (A_H \frac{\partial \psi}{\partial x}) + \frac{\partial}{\partial y} (A_H \frac{\partial \psi}{\partial y}) + \frac{\partial}{\partial z} (A_Z \frac{\partial \psi}{\partial z})$

Muh. Nur Hidayat July 20, 2022 11/41

Persamaan Navier-Stokes 3 Dimensi III

Daftar Is

Latar Belakang dan

Rumusan Masalah Tujuan Penelitian Urgensi dan Kebaruan

Manfaat Penelitian

Tinjauar

Persamaan Gerak Fluida Persamaan Navier-Stokes 3 Dimensi

Analisis Laut Lagrangian OceanParcels Arakawa C-grid

Domain Peneliti

Data Penelitian Prosedur Penelitian

Persamaan kontinuitas,

$$\frac{\partial u}{\partial t} + \frac{\partial v}{\partial t} + \frac{\partial w}{\partial t} = 0.$$
 (4)

Tekanan dinamis pada lapisan permukaan berdasarkan persamaan kontinuitas,

$$\frac{\partial q_{s}}{\partial t} = \rho_{0}g_{i} \times \left(\frac{\left(\partial \left(H\langle u\rangle\right)}{\partial x} + \frac{\left(\partial \left(H\langle v\rangle\right)}{\partial y}\right)}{\partial y}\right)$$
(5)

Persamaan konservasi densitas,

$$\frac{\partial \rho}{\partial t} + \text{adv}(\rho) = \text{diff}(\rho) \tag{6}$$

Muh. Nur Hidayat July 20, 2022 12/41

Analisis Laut Lagrangian I

Daftar Is

Pendahulu

Latar Belakang dan Rumusan Masalah Tujuan Penelitian

Urgensi dan Kebaruan Penelitian

Manfaat Penelitian

Tinjauan

Persamaan Gerak Fluida Persamaan Navier-Stoke:

Analisis Laut Lagrangian

Arakawa C-grid

Penelitian Domain Peneliti

Data Penelitian Prosedur Penelitian

Konsep yang digunakan untuk mensimulasikan pergerakan air di lautan,

■ Pendekatan Lagrangian.

Pergerakan partikel dinyatakan dan diobservasi sebagai fungsi waktu dan dianggap bahwa kerangka acuan bergerak bersama-sama dengan partikel fluida, cth:

 $s(x_0, y_0, z_0, t), V(x_0, y_0, z_0, t), dan a(x_0, y_0, z_0, t).$

Pendekatan Eulerian.

Pergerakan tiap partikel dinyatakan dan diobservasi sebagai fungsi ruang dan waktu dengan kerangka acuan tetap. cth: V = V(x, y, z, t)

Tujuan teknis dari analisis laut Lagrangian adalah untuk memperkirakan lintasan partikel virtual fluida dengan memanfaatkan informasi Eulerian fluida, yaitu medan kecepatan (van Sebille et al., 2018).

Muh. Nur Hidayat July 20, 2022 13/41

Analisis Laut Lagrangian II

Daftar Is

Latar Belakang dan

Rumusan Masalah Tujuan Penelitian

Urgensi dan Kebaruan Penelitian

Manfaat Penelitian

Tinjauar Piistaka

Persamaan Gerak Fluida Persamaan Navier-Stoke: 3 Dimensi

Analisis Laut Lagrangian OceanParcels

Arakawa C-grid

Domain Penelitian

Prosedur Penelitian

Misal vektor posisi X(t) bergantung terhadap waktu t. Jika bentuk n partikel diskrit ($n \in \mathbb{N}$), vektor posisi dinotasikan sebagai $X^n(t)$, dan Jika n kontinu, vektor posisi dinotasikan sebagai x = X(a,t) dimana a adalah koordinat materi, posisi partikel dengan referensi waktu $t = t_0$.

Selanjutnya parsel fluida (molekul skala mikroskopik) dalam bentuk kontinu diformulasikan dengan menghitung turunan lintasan partikel terhadap waktu (a konstan),

$$v(x,t) = \left(\frac{\partial X(a,t)}{\partial t}\right)_{a} \tag{7}$$

Muh. Nur Hidayat July 20, 2022 14/41

Analisis Laut Lagrangian III

Daftar Is

Pendahulua

Latar Belakang dan Rumusan Masalah

Tujuan Penelitian

Urgensi dan Kebaruan Penelitian

Manfaat Penelitian

Tinjauan Duetaka

Persamaan Gerak Fluida Persamaan Navier-Stoke 3 Dimensi

Analisis Laut Lagrangian OceanParcels

Arakawa C-grid

Penelitian

Domain Penelitian

Data Penelitian Prosedur Penelitian

Untuk memperoleh deskripsi kinematik yang lebih lengkap, misalkan fungsi sembarang ψ yang dihitung disepanjang lintasan, $\psi(X(a,t),t)$. Dengan aturan rantai diperoleh,

$$\frac{\partial \psi(X(a,t),t)}{\partial t} = \frac{\partial \psi(X(a,t),t)}{\partial t} + \left(\frac{dX(a,t)}{dt}\right) \frac{\partial \psi(X(a,t),t)}{\partial X(a,t)}$$
$$= \left[\frac{\partial}{\partial t} + v(X(a,t),t)\frac{\partial}{\partial X(a,t)}\right] \psi(X(a,t),t),$$

atau secara umum diperoleh,

$$\frac{\partial \psi(X(a,t),t)}{\partial t} = \left[\frac{\partial}{\partial t} + v(X(a,t),t).\nabla\right] \psi(X(a,t),t). \quad (8)$$

Muh. Nur Hidayat July 20, 2022 15/41

Analisis Laut Lagrangian IV

Daitai isi

Latar Belakang dan Rumusan Masalah

Tujuan Penelitian Urgensi dan Kebaruan

Manfaat Penelitian

Walladt Fellelltidi

Tinjauan Pustaka

Persamaan Gerak Fluida Persamaan Navier-Stoke 3 Dimensi

Analisis Laut Lagrangian OceanParcels

Arakawa C-grid

Domain Penelitia

Data Penelitian

Prosedur Penelitian

Metode integrasi Lagrangian,

Secara online.

Lintasan dihitung disetiap langkah waktu sehingga model Eulerian diperbaharui secara terus-menerus (cth software: LIGHT in MPAS-O, NEMO online floats and icebergs, MITgcm, HYCOM Float Package, dan ROMS online floats)

Secara offline.

Perhitungan model offline menawarkan kemampuan untuk menghitung lintasan dalam mode maju (dari titik awal dan maju dalam waktu) atau dalam mode mundur (dari titik akhir dan mundur dalam waktu) (cth software: Ariane, TRACMASS, Octopus, LAMTA, CMS, dan Parcels)

Muh. Nur Hidayat July 20, 2022 16/41

Analisis Laut Lagrangian V

Dartar 131

Latar Belakang dan Rumusan Masalah

Tujuan Penelitian Urgensi dan Kebaruan

Manfaat Penelitian

Mantaat Penelitiar

i injauar Duetaka

Persamaan Gerak Fluida Persamaan Navier-Stoke

Analisis Laut Lagrangian

Arakawa C-grid

Metodolog Penelitian

Domain Penelitian
Data Penelitian
Prosedur Penelitian

Proses transportasi dilautan yang mempengaruhi pergerakan dari partikel plastik,

Stokes drift.

Stokes drift $\overline{u_s}$, diformulasikan sebagai

$$\overline{u_s} = \overline{u_L} - \overline{u_E}, \tag{9}$$

dengan $\overline{u_E}$, $\overline{u_L}$ menyatakan rata-rata kecepatan Eulerian dan Lagrangian, dan

$$\begin{cases} \overline{u_E} &= \frac{\overline{\partial x}}{\underline{\partial t}} = \overline{u(x,t)}, \\ \overline{u_L} &= \frac{\overline{\partial X(a,t)}}{\overline{\partial t}} = \overline{u(X(a,t),t)}. \end{cases}$$

Dikarenakan gaya stokes drift, partikel plastik yang terapung dilautan akan memiliki kecepatan dalam arah yang sama dengan perambatan gelombang. Gelombang yang dimaksud adalah gelombang gravitasi permukaan yang muncul dari antarmuka atmosfer dan laut (Brach et al., 2018).

Muh. Nur Hidayat July 20, 2022 17/41

Analisis Laut Lagrangian VI

Daftar Isi

Pendahuluai

Latar Belakang dan Rumusan Masalah Tujuan Penelitian Urgensi dan Kebaruan

Manfaat Penelitian

Wildington Contonin

Pustaka

Persamaan Gerak Fluida Persamaan Navier-Stoke 3 Dimensi

Analisis Laut Lagrangian

Arakawa C-grid

Metodolo Penelitian

Domain Penelitian
Data Penelitian
Prosedur Penelitian

■ Angin.

Angin memainkan peran penting dalam mendorong arus permukaan dan juga dalam proses interaksi udara-laut. Sampah mikroplastik dapat ditransportasikan secara langsung oleh gaya angin dan mempengaruhi setiap benda yang berada diatas permukaan air (van Sebille et al., 2020). Sebagian besar proses interaksi udara-laut ditentukan dengan menggunakan tekanan angin (wind stress), suatu ukuran transfer momentum yang disebabkan oleh gerakan relatif antara laut dan atmosfer (Chacko et al., 2022). Tekanan angin berdasarkan aerodinamis massal (bulk-aerodynamic) dirumuskan sebagai,

$$\tau = \rho_a C_d U_W^2 \tag{10}$$

dengan ρ_a adalah densitas udara (1.225 kg/m^3), C_d koefisien seret (dimensionless) ($\approx 1.3 \times 10^-3$) dan U_W kecepatan angin.

Muh. Nur Hidayat July 20, 2022 18/41

OceanParcels I

Daftar Isi

Pendahuluan

Latar Belakang dan Rumusan Masalah

Tujuan Penelitian

Urgensi dan Kebaruan Penelitian

Manfaat Penelitian

rınjauar Pustaka

Persamaan Gerak Fluida Persamaan Navier-Stoke 3 Dimensi

Analisis Laut Lagrangian OceanParcels

Arakawa C-grid

Metodologi

Domain Penelitian

Data Penelitian

Prosedur Penelitian

OceanParcels (Probably A Really Computationally Efficient Lagrangian Simulator) adalah kumpulan class dan method dalam Python untuk membuat simulasi pelacakan partikel yang dapat disesuaikan menggunakan data output dari model sirkulasi laut (OGCMs). Parcels dapat digunakan untuk melacak partikel-partikel yang aktif dan pasif seperti air, plankton,plastik, dan ikan. Dalam hal ini, partikel dalam Parcels merepresentasikan berbagai benda yang mengapung dan tenggelam di lautan (https://oceanparcels.org/. Lange and van Sebille (2017)).

Muh. Nur Hidayat July 20, 2022 19/41

OceanParcels II

Daftar Is

Pendahulu

Latar Belakang dan Rumusan Masalah Tujuan Penelitian

Urgensi dan Kebaruan Penelitian Manfaat Penelitian

Tinjauan

Pustaka

Persamaan Gerak Fluida Persamaan Navier-Stoke: 3 Dimensi Analisis Laut Lagrangian OceanParcels

Arakawa C-grid

Metodolog Penelitian

Domain Penelitian

Data Penelitian

Prosedur Penelitian

Beberapa projek yang menggunakan OceanParcel:

- Simulasi plankton yang tenggelam di lautan (plankton-drift.org), (cth: Nooteboom et al., 2019,& 2020)
- Transportasi mikroba di lautan (Adrift project), (cth: McInnes et al., 2019),
- TOPIOS project untuk membuat peta 3D dari polusi plastik di lautan, (cth: Onink et al., 2019, Lacerda et al., 2019, Iskandar et al., 2021)

Muh. Nur Hidayat July 20, 2022 20/41

OceanParcels III

Daftar Is

Pendahulu

Latar Belakang dan Rumusan Masalah

Tujuan Penelitian Urgensi dan Kebaruan

Manfaat Penelitian

iviariiaat i orioittiai

i injauar Duetaka

Persamaan Gerak Fluida Persamaan Navier-Stoke 3 Dimensi

Analisis Laut Lagrangian OceanParcels

Arakawa C-grid

Penelitian

Data Penelitian

Prosedur Penelitian

Apabila terdapat n buah partikel yang berlokasi di titik $x = X^{(n)}(t)$, posisi dari partikel dapat diperbaharui dengan mengintegralkan persamaan 7 dan mengambil langkah waktu kecepatan sehingga

$$X(t + \Delta t) = X(t) + \int_{t}^{t + \Delta t} v(x(\tau), \tau) d\tau + \Delta X_{b}(t), \quad (11)$$

dengan $\Delta X_b(t)$ adalah tambahan suku di ruas kanan yang merepresentasikan perilaku partikel, seperti contoh daya apung (*buoyancy*)(van Sebille et al., 2018). Solusi dari persamaan ini kemudian diaproksimasi dalam Parcels dengan langkah waktu numerik.

Muh. Nur Hidayat July 20, 2022 21/41

OceanParcels IV

Daftar Isi

Pendahuluan

Latar Belakang dan Rumusan Masalah

Tujuan Penelitian

Urgensi dan Kebaruan Penelitian

Manfaat Penelitian

Tinjauar Duetaka

Persamaan Gerak Fluida Persamaan Navier-Stoke 3 Dimensi

Analisis Laut Lagrangian OceanParcels

Arakawa C-gri

Penelitian

Domain Penelitian

Data Penelitian

Prosedur Penelitian

Figure: Flowchart Parcels. Kode disusun dalam tingkat abstraksi tinggi, meminta dari pengguna informasi input yang sangat diperlukan (Lange & van Sebille, 2017)

Muh. Nur Hidayat July 20, 2022 22/41

OceanParcels V

Daftar Is

Pendanulua

Latar Belakang dan Rumusan Masalah

Tujuan Penelitian Urgensi dan Kebaruan

Penelitian

Manfaat Penelitia

Tinjauar

Persamaan Gerak Fluida Persamaan Navier-Stoke: 3 Dimensi

Analisis Laut Lagrangian OceanParcels

Arakawa C-grid

Penelitian

Data Penelitian
Prosedur Penelitian

Time Stepping

Persamaan 7 dan kondisi awal dapat ditulis ulang sebagai

$$\dot{y}(t) = f(t, y(t)), \quad y(t_0) = y_0$$
 (12)

dengan posisi partikel pada waktu t_n diberikan oleh $y(t_n) = (x_n, y_n, z_n)$. Fungsi f adalah kecepatan (v) dari partikel yang berbentuk suatu vektor (setiap elemen dalam f adalah kecepatan dalam 1-D). Akibatnya persamaan 11 (tanpa suku tambahan) menjadi

$$y(y_0, t + \Delta t) = y(y_0, t) + \int_t^{t + \Delta t} v(y, \tau) d\tau.$$
 (13)

Muh. Nur Hidayat July 20, 2022 23/41

OceanParcels VI

Daitar isi

Latar Belakang dan Rumusan Masalah

Tujuan Penelitian Urgensi dan Kebaruan

Manfaat Penelitian

Tinjauar

Persamaan Gerak Fluida Persamaan Navier-Stoke 3 Dimensi

Analisis Laut Lagrangian OceanParcels

Arakawa C-grid

Penelitian

Domain Penelitian

Data Penelitian

Prosedur Penelitian

Solusi numerik,

1 Metode eksplisit Euler

$$y_{n+1} = y_n + hf(t_n, y_n).$$
 (14)

2 Metode Runge-Kutta Orde 4 (RK4)

Muh. Nur Hidayat July 20, 2022 24/41

OceanParcels VII

Dailai isi

Latar Belakang dan

Rumusan Masalah
Tujuan Penelitian

Urgensi dan Kebaruan Penelitian

Manfaat Penelitian

Tinjauar

Persamaan Gerak Fluida Persamaan Navier-Stokes 3 Dimensi

Analisis Laut Lagrangian OceanParcels

Arakawa C-grid

Metodolog

Domain Penelitia Data Penelitian

Prosedur Penelitian

Metode Runge-Kutta-Fehlberg (RKF45)

0 14 38 12 13 1 1	$ \begin{array}{r} \frac{1}{4} \\ 3 \\ \overline{32} \\ 1932 \\ 2197 \\ 439 \\ 216 \\ -\frac{8}{27} \end{array} $	$\begin{array}{c} \frac{9}{32} \\ -\frac{7200}{2197} \\ -8 \\ 2 \end{array}$	7296 2197 3680 513 - 3544 2565	- 845 4104 1859 4104	$-\frac{11}{40}$	
	16 135	0	6656 12825	28561 56430	$-\frac{9}{50}$	<u>2</u> 55
	25 216	0	1408 2565	<u>2197</u> 4104	$-\frac{1}{5}$	0

Muh. Nur Hidayat July 20, 2022 25/41

OceanParcels VIII

Daftar Isi

Pendahuluan

Latar Belakang dan Rumusan Masalah

Tujuan Penelitian Urgensi dan Kebaruan

Penelitian

Manfaat Penelitian

Tinjauar

Persamaan Gerak Fluida Persamaan Navier-Stoke: 3 Dimensi

Analisis Laut Lagrangian OceanParcels

Arakawa C-gric

Metodologi

Domain Penelitian
Data Penelitian
Prosedur Penelitian

Selisih antara orde ke 5 (RK5) dan orde ke 4 (RK4), dihitung dengan cara

$$\kappa = ||y_{n+1}^{5th} - y_{n+1}^{4th}||.$$

Persamaan ini digunakan untuk menghitung *local error* di titik n + 1.

Muh. Nur Hidayat July 20, 2022 26/41

OceanParcels IX

Daftar Isi

Pendahuluai

Latar Belakang dan Rumusan Masalah Tujuan Penelitian

Urgensi dan Kebaruan Penelitian Manfaat Penelitian

Tinjauan Buotoko

Persamaan Gerak Fluida Persamaan Navier-Stokes 3 Dimensi

Analisis Laut Lagrangian OceanParcels

Arakawa C-grid

Penelitian Demois Beneliti

Data Penelitian

Kondisi Batas

- 2-D, kondisi batas antara darat dan laut serta sisi tepi dari domain simulasi yang digunakan.
- 3-D, terdapat kedalaman lautan yang mempengaruhi sehingga kondisi batas yang berhubungan adalah antara laut dan dasar laut, atau laut dan permukaan laut.

Dalam penelitian ini, kondisi batas yang digunakan adalah antara darat dan laut serta sisi tepi dari domain simulasi dan hanya membatasi pada kasus 2-D

Muh. Nur Hidayat July 20, 2022 27/41

Arakawa C-grid I

Latar Belakang dan Rumusan Masalah

Tuiuan Penelitian

Urgensi dan Kebaruan

Manfaat Penelitian

Persamaan Gerak Fluida

Analisis Laut Lagrangian

Arakawa C-grid

Data Penelitian Prosedur Penelitian

Data OGCM $\stackrel{\text{disimpan}}{----}$ Fields dalam Parcels yang memuat data 4-Dimensi (longitude, latitude, waktu, kedalaman) membutuhkan skema interpolasi dan diskritisasi untuk mendapatkan nilai field lokasi partikel.

Muh. Nur Hidavat July 20, 2022 28/41

Arakawa C-grid II

Daftar Isi

Pendahuluan

Latar Belakang dan Rumusan Masalah

Tujuan Penelitian

Urgensi dan Kebaruan Penelitian

Manfaat Penelitian

Tinjauar

Persamaan Gerak Fluida Persamaan Navier-Stoke

Analisis Laut Lagrangian

Arakawa C-grid

Metodolo

Domain Penelitian

Data Penelitian

Prosedur Penelitian

Figure: Diskritisasi grid dalam Parcels. Di bidang horizontal: (a) grid persegi, (b) grid lengkung, di bidang vertikal: (c) grid level z, (d) grid level s (Delandmeter & van Sebille, 2019)

Muh. Nur Hidayat July 20, 2022 29/41

Arakawa C-grid III

Latar Belakang dan Rumusan Masalah

Tuiuan Penelitian

Urgensi dan Kebaruan

Manfaat Penelitian

Persamaan Gerak Fluida

Analisis Laut Lagrangian

Arakawa C-grid

Data Penelitian

Prosedur Penelitian

Figure: Grid Arakawa: (a) Grid A dan (b) Grid C (Delandmeter & van Sebille, 2019)

Grid A adalah satu-satunya unstaggered grid dalam grid Arakawa dimana variabel-variabelnya (zonal velocity (u), meridional velocity (v), tracers (T)) hanya terdapat pada titik sudut grid, berbeda dengan grid C yang berada di sisi dan tengah grid. i dan j adalah indeks yang merepresentasikan variabel kolom dan baris dimana variabel disimpan.

Muh. Nur Hidavat July 20, 2022 30/41

Arakawa C-grid IV

Daftar Isi

Pendahulua

Latar Belakang dan Rumusan Masalah Tujuan Penelitian Urgensi dan Kebaruan

Manfaat Penelitian

Tinjauar

Persamaan Gerak Fluida Persamaan Navier-Stoke 3 Dimensi

Analisis Laut Lagrangian

Arakawa C-grid

Metodolog Penelitian

Domain Penelitian

Data Penelitian

Prosedur Penelitian

Bidang 2-D

Figure: Posisi variabel pada grid A (titik biru), dan grid C (titik jingga) dengan (a) koordinat fisik dalam sel jala (*mesh cell*), (b) koordinat relatif dalam sel satuan (*unit cell*) (Delandmeter & van Sebille, 2019)

Muh. Nur Hidayat July 20, 2022 31/41

Arakawa C-grid V

Daitai isi

Pendahuluar

Latar Belakang dan Rumusan Masalah

Tujuan Penelitian Urgensi dan Kebaruan

Penelitian

Manfaat Penelitian

i injauar Duetaka

Persamaan Gerak Fluida Persamaan Navier-Stoke

Analisis Laut Lagrangian

OceanParcels

Arakawa C-grid

Metodolo

Domain Penelitian

Prosedur Penelitian

Definisikan fungsi f sebagai suatu bidang yang diinterpolasi dalam sel (i,j) dengan polinomial Lagrange ϕ_n^{2-D} dan 4 titik sentral F_n , n=0...3 yang mengelilingi sel, sehingga

$$f(x,y) = \sum_{n=0}^{3} \phi_n^{2-D}(\xi,\eta) F_n,$$
 (15)

dengan ψ, η memenuhi

$$\begin{cases} x = \sum_{n} \phi_n^{2-D}(\xi, \eta) X_n \\ y = \sum_{n} \phi_n^{2-D}(\xi, \eta) Y_n. \end{cases}$$
 (16)

Muh. Nur Hidayat July 20, 2022 32/41

Arakawa C-grid VI

Polinomial Lagrange 2-D ϕ_n^{2-D} untuk n=0,1,2,3 menjadi

$$\begin{split} \phi_0^{2-D} &= (1-\xi)(1-\eta), & \phi_1^{2-D} &= \xi(1-\eta) \\ \phi_2^{2-D} &= \xi\eta, & \phi_3^{2-D} &= (1-\xi)\eta. \end{split}$$

Kecepatan relatif ξ , dan η untuk grid A (grid persegi)

$$\therefore \xi = \frac{x - X_0}{X_1 - X_0}.$$

$$\therefore \eta = \frac{y - Y_0}{Y_3 - Y_0}.$$

Komponen kecepatan dari Gambar 5b dapat ditulis meniadi

$$(u_0=u_{j+1,i},u_1=u_{j+1,i+1},v_0=v_{j,i+1},v_1=v_{j+1,i+1})$$
 dan digambarkan sedemikian sebagai Gambar 6a. Kemudian

Latar Belakang dan Rumusan Masalah

Tuiuan Penelitian Urgensi dan Kebaruan

Persamaan Gerak Fluida

Analisis Laut Lagrangian

Arakawa C-grid

Data Penelitian Prosedur Penelitian

Muh. Nur Hidavat July 20, 2022 33/41

Arakawa C-grid VII

Daftar Isi

Pendahuluan

Latar Belakang dan Rumusan Masalah Tujuan Penelitian

Urgensi dan Kebaruan

Manfaat Penelitian

Tinjauai

Persamaan Gerak Fluida Persamaan Navier-Stoke: 3 Dimensi

Analisis Laut Lagrangian OceanParcels

Arakawa C-grid

Metodolo

Domain Penelitian

Data Penelitian

Prosedur Penelitian

kecepatan pada posisi (x, y) didekati dengan interpolasi linear fluks (U_0, U_1, V_0, V_1) pada sisi-sisi sel (Gambar 6b) sehingga

$$\begin{cases}
U_0 = L_{03}u_0, \\
U_1 = L_{12}u_1, \\
V_0 = L_{01}v_0, \\
V_1 = L_{23}v_1,
\end{cases} (17)$$

dengan L_{03} , L_{12} , L_{01} , dan L_{23} adalah panjang sisi sel. Selanjutnya dengan menggunakan persamaan 16, misalkan matriks Jacobian 2-D yang mentransformasikan

Muh. Nur Hidayat July 20, 2022 34/41

Arakawa C-grid VIII

Daftar Is

Latar Belakang dan

Latar Belakang dan Rumusan Masalah

Tujuan Penelitian Urgensi dan Kebaruan

fantaat Peneliti

i injauar Piistaka

Persamaan Gerak Fluida Persamaan Navier-Stokes 3 Dimensi

Analisis Laut Lagrangian OceanParcels

Arakawa C-grid

Penelitian

Data Penelitian
Prosedur Penelitian

sel fisik menjadi sel satuan pada Gambar 6 yang didefinisikan sebagai

$$\mathbf{J}^{2-D}(\xi,\eta) = \left(\sum_{n} \frac{\partial \phi_{n}^{2-D}}{\partial \xi} X_{n}\right) \left(\sum_{n} \frac{\partial \phi_{n}^{2-D}}{\partial \eta} Y_{n}\right) - \left(\sum_{n} \frac{\partial \phi_{n}^{2-D}}{\partial \eta} X_{n}\right) \left(\sum_{n} \frac{\partial y}{\partial \phi_{n}^{2-D}} Y_{n}\right).$$
(18)

Determinan dari matriks Jacobian pada persamaan 18 selanjutnya dinotasikan $J^{2-D}(\xi,\eta) = \det(\mathbf{J}^{2-D})$ dan didefinisikan sebagai rasio antara permukaan dasar dalam sel fisik dan permukaan yang bersesuaian dalam

Muh. Nur Hidayat July 20, 2022 35/41

Arakawa C-grid IX

sel satuan. Kecepatan relatif dalam sel satuan didefinisikan sebagai

$$\begin{cases}
\frac{\partial \xi}{\partial t} &= \frac{(1-\xi)U_0 + \xi U_1}{J^2 - D(\xi, \eta)}, \\
\frac{\partial \eta}{\partial t} &= \frac{(1-\eta)V_0 + \eta V_1}{J^2 - D(\xi, \eta)}.
\end{cases} (19)$$

Dengan mentransformasikan kecepatan relatif kedalam sistem koordinat fisik diperoleh,

$$u = \frac{\partial x}{\partial \xi} \frac{\partial \xi}{\partial t} + \frac{\partial x}{\partial \eta} \frac{\partial \eta}{\partial t},$$
$$v = \frac{\partial y}{\partial \xi} \frac{\partial \xi}{\partial t} + \frac{\partial y}{\partial \eta} \frac{\partial \eta}{\partial t}.$$

Daftar Is

Latar Belakang dan

Rumusan Masalah

Tujuan Penelitian Urgensi dan Kebaruan

Penelitian

Manfaat Penelitian

Tinjauar

Persamaan Gerak Fluida Persamaan Navier-Stoke

Analisis Laut Lagrangian

Arakawa C-grid

Alakawa O-gii

Domain Penelitia

Data Penelitian

Muh. Nur Hidayat July 20, 2022 36/41

Arakawa C-grid X

Daftar Is

Pendahulu

Latar Belakang dan Rumusan Masalah Tujuan Penelitian Urgensi dan Kebaruan

Penelitian

Manfaat Penelitian

Tinjauar

Persamaan Gerak Fluida Persamaan Navier-Stoke: 3 Dimensi Analisis Laut Lagrangian

OceanParcels

Arakawa C-grid

Penelitian

Domain Peneliti

Data Penelitian Prosedur Penelitian

Ruang 3-D

Figure: Fluks yang digunakan untuk interpolasi 3-D pada grid C Arakawa: (a) sel fisik, (b) sel satuan (Delandmeter & van Sebille, 2019).

Muh. Nur Hidayat July 20, 2022 37/41

Domain Penelitian

Daftar Isi

. . . .

Latar Belakang dan

Tuiuan Penelitian

Urgensi dan Kebaruan Penelitian

Manfaat Penelitian

Tinjauar Puetaka

Persamaan Gerak Fluida Persamaan Navier-Stokes 3 Dimensi

Analisis Laut Lagrangian OceanParcels

Arakawa C-grid

Penelitiar

Domain Penelitian Data Penelitian

Prosedur Penelitian

Figure: Domain Penelitian

Muh. Nur Hidayat July 20, 2022 38/41

Data Penelitian

Daftar Isi

Pendahuluar

Latar Belakang dan Rumusan Masalah

Tujuan Penelitian

Urgensi dan Kebaruan Penelitian

Manfaat Penelitian

Tinjauar

Persamaan Gerak Fluida Persamaan Navier-Stoke

Analisis Laut Lagrangian

OceanParcels Arakawa C-grid

Metodolog Penelitian

Domain Penelitian

Prosedur Penelitian

Figure: Data penelitian

Data yang digunakan adalah data arus 3-D (resolusi spasial, NEMO: 5 mnt, HYCOM: 5 mnt lon, 2.5 mnt lat) dan data angin selama setahun, dari April 2021 - Maret 2022.

Muh. Nur Hidayat July 20, 2022 39/41

Prosedur Penelitian

Daftar Isi

Pondahuluan

Latar Belakang dan Rumusan Masalah Tujuan Penelitian

Urgensi dan Kebaruan

Manfaat Penelitian

Mantaat Penelitia

Tinjauai

Persamaan Gerak Fluida Persamaan Navier-Stoke

Analisis Laut Lagrangian OceanParcels

Metodolo

Domain Penelitia

Prosedur Penelitian

Figure: Diagram alir penelitian

Muh. Nur Hidayat

Terima Kasih

LINIVERSITAS SVIAH KITALA

Inovatif, Mandiei, Tockomuka