SECRECY AND TREE PACKING

With Imre Csiszár, Sirin Nitinawarat, Chunxuan Ye, Alexander Barg and Alex Reznik

Information Theoretic Security

- A complementary approach to computational security for secret key cryptosystems.
- Unconditional Security: A quantifiable and provable notion of security, with no assumption of "one-way" functions and no restrictions on the computational power of an adversary.
- Information theoretic perfect secrecy: Shannon, 1949.
- A modified notion: Maurer (1990, 1993), Ahlswede-Csiszár (1993)
 - an adversary does not have access to precisely the same observations as the legitimate users;
 - the legitimate plaintext messages and secret keys are, in effect, "nearly statistically independent" of the observations of the adversary.
- ? New insights: Innate connections with multiterminal data compression and points of contact with combinatorial tree packing algorithms.
- ??? New algorithms: Potential rests on advances in algorithms for multiterminal data compression and a better understanding of connections with combinatorial tree packing of multigraphs.

SECRET KEY GENERATION

Multiterminal Source Model

- The terminals in $\mathcal{M} = \{1, \dots, m\}$ observe separate but correlated signals, e.g., different noisy versions of a common broadcast signal or measurements of a parameter of the environment.
- The terminals in a given $subset A \subseteq \mathcal{M}$ wish to generate a "secret key" with the cooperation of the remaining terminals, to which end all the terminals can communicate among themselves possibly interactively in multiple rounds over a public noiseless channel of unlimited capacity.

• A secret key:

- random variables (rvs) generated at each terminal in A which agree with probability $\cong 1$; and
- the rvs are effectively concealed from an eavesdropper with access to the public communication.
- The key generation exploits the correlated nature of the observed signals.
- The secret key thereby generated can be used as a *one-time pad* for secure encrypted communication among the terminals in A.

Multiterminal Source Model

- The m legitimate terminals in $\mathcal{M} = \{1, \dots, m\}$ cooperate in secret key generation.
- X_1, \ldots, X_m are finite-valued random variables (rvs) with (known) joint distribution P_{X_1, \ldots, X_m} .
- Each terminal i, i = 1, ..., m, observes a signal comprising n independent and identically distributed repetitions (say, in time) of the rv X_i , namely the sequence $X_i^n = (X_{i1}, ..., X_{in})$.
- The signal components observed by the different terminals at successive time instants are i.i.d. according to $P_{X_1,...,X_m}$.

Multiterminal Source Model

- All the terminals are allowed to communicate over a noiseless channel of unlimited capacity, possibly interactively in several rounds.
- The communication from any terminal is observed by all the other terminals.
- The communication from a terminal is allowed to be any function of its own signal, and of all previous communication.
- Let **F** denote collectively all the communication.

Multiterminal Channel Model

- Terminals $1, \ldots, k$ govern the inputs of a secure discrete memoryless channel W, with input terminal i transmitting a signal $X_i^n = (X_{i1}, \ldots, X_{in})$ of length n. Terminals $k+1, \ldots, m$ observe the corresponding output signals, with output terminal i observing X_i^n of length n.
- Following each simultaneous transmission of symbols over the channel W, communication over a public noiseless channel of unlimited capacity is allowed between all the terminals, perhaps interactively, and observed by all the terminals. Let \mathbf{F} denote collectively all such public communication.
- Randomization at the terminals is permitted, and is modeled by the rvs U_i , i = 1, ..., m, which are taken to be mutually independent.

The Objective

Objective: To generate a secret key of the largest "size" for a given set $A \subseteq \{1, \ldots, m\}$ of terminals, i.e., common randomness shared by the terminals in A, which is

- of near uniform distribution;
- concealed from an eavesdropper that observes the public communication **F**.

All the terminals $1, \ldots, m$ cooperate in achieving this goal.

Assume: The eavesdropper is passive and cannot wiretap.

What is a Secret Key?

Secret Key (SK): A random variable K is a SK for the terminals in A, achievable with communication \mathbf{F} , if

- $Pr\{K = K_i, i \in A\} \cong 1$ ("common randomness")
- $I(K \wedge \mathbf{F}) \cong 0$ ("secrecy")
- $H(K) \cong \log |\text{key space}|$. ("uniformity")

Thus, a SK is effectively concealed from an eavesdropper with access to \mathbf{F} , and is nearly uniformly distributed.

Secret Key Capacity

- ?? What is the largest rate $\lim_{n \to \infty} \frac{1}{n} \log |\text{key space}|$ of such a SK for A which can be achieved with suitable communication: SK capacity $C_S(A)$?
- ?? How to construct such a SK?

Hereafter, we shall restrict ourselves to the multiterminal source model.

• X_1^n, X_2^n are $\{0,1\}$ -valued Bernoulli $(\frac{1}{2})$ sequences, and X_1^n is independent of X_2^n .

$$X_{3t} = X_{1t} \oplus X_{2t}, \qquad t = 1, \dots, n.$$

- Scheme (using n = 1): Terminal 3 communicates publicly $X_{31} = X_{11} \oplus X_{21}$.
- Terminals 1 and 2 respectively infer X_{21} and X_{11} .
- X_{11} is independent of $\mathbf{F} = X_{31} = X_{11} \oplus X_{21}$, and is uniform on $\{0,1\}$.
- Thus, X_{11} is a perfect SK of rate 1.0 (optimal), so that SK capacity $C_S(A) = 1.0$.

Some Related Work

- Maurer 1990, 1991, 1993, 1994, · · ·
- Ahlswede Csiszár 1993, 1994, 1998, · · ·
- Bennett, Brassard, Crépeau, Maurer 1995.
- Csiszár 1996.
- Maurer Wolf 1997, 2000, 2003, · · ·
- Venkatesan Anantharam 1995, 1997, 1998, 2000, · · ·
- Csiszár Narayan 2000, 2004, 2005, 2007, 2008, 2009.
- Renner Wolf 2003.
- Muramatsu 2004, 2005.
- Ye Narayan 2004, 2005.
- Gohari-Anantharam 2007, 2008.
- Ye-Reznik, 2007.
- Nitinawarat-Ye-Barg-Narayan-Reznik, 2008, 2009.

:

Secret Key Capacity: $\mathcal{M} = \{1, 2\} = A$

• SK capacity [Maurer '93, Ahlswede-Csiszár '93]:

$$C_S(A) = I(X_1 \wedge X_2).$$

• An interpretation:

$$C_S(A) = I(X_1 \wedge X_2)$$

 $= H(X_1, X_2) - [H(X_1|X_2) + H(X_2|X_1)]$
 $= \text{Entropy rate of "omniscience"} -$
Smallest aggregate rate of communication, $R_{CO}(A)$, that enables the terminals in A to become omniscient.

Secret Key Capacity

Theorem [I. Csiszár - P. N., '04, '08]:

$$C_S(A) = H(X_1, ..., X_m) - \text{Smallest aggregate rate of overall}$$

interterminal communication, $R_{CO}(A)$, that enables all the terminals in A to become omniscient
$$= H(X_1, ..., X_m) - \max_{\lambda \in \Lambda(A)} \sum_{B \in \mathcal{B}(A)} \lambda_B H(X_B | X_{B^c})$$

and can be achieved with noninteractive communication.

Remark: $R_{CO}(A)$ is obtained as the solution to a multiterminal data compression problem of omniscience generation that does not involve any secrecy constraints.

Interpretation: All the terminals cooperate – through public communication – in enabling the terminals in A to attain omniscience. Then the terminals in A extract a SK from their omniscience by purging the rate of this communication.

Minimum Interterminal Communication for Omniscience

Proposition [I. Csiszár - P. N., '04]: The smallest aggregate rate of interterminal communication, $R_{CO}(A)$, that enables all the terminals in A to become omniscient, is

$$R_{CO}(A) = \min_{(R_1, ..., R_m) \in \mathcal{R}_{SW}(A)} \sum_{i=1}^m R_i,$$

where

$$\mathcal{R}_{SW}(A) = \left\{ (R_1, \cdots, R_m) : \sum_{i \in B} R_i \ge H(X_B | X_{B^c}), \ \forall B \subset \mathcal{M}, \ B \ne \emptyset, \ A \nsubseteq B \right\},$$

and can be achieved with noninteractive communication. Furthermore

$$R_{CO}(A) = \max_{\lambda \in \Lambda(A)} \sum_{B \in \mathcal{B}(A)} \lambda_B H(X_B | X_{B^c}).$$

How Can a Secret Key be Constructed?

- Step 1: Common randomness generation: The terminals communicate over the public channel using compressed data in order to generate omniscience or some form of "common randomness." This public communication is observed by the eavesdropper.
- Step 2: Secret key construction: The terminals then process this "common randomness" to extract a SK of which the eavesdropper has provably little or no knowledge.

Example: Two Terminals with Symmetrically Correlated Signals

• Terminals 1 and 2 observe, respectively, n i.i.d. repetitions of the correlated rvs X_1 and X_2 , where X_1 , X_2 are $\{0,1\}$ -valued rvs with

$$P_{X_1X_2}(x_1, x_2) = \frac{1}{2}(1-p)\delta_{x_1x_2} + \frac{1}{2}p (1-\delta_{x_1x_2}), \quad p < \frac{1}{2}.$$

- $C_S(\{1,2\}) = I(X_1 \wedge X_2) = 1 h_b(p).$
- Can assume: $X_1^n = X_2^n \oplus V^n$, where $V^n = (V_1, \dots, V_n)$ is independent of X_2^n , and is a Bernoulli (p) sequence of rvs.

Step 1: Common Randomness Generation by SW Data Compression

A.D. Wyner, 1974: Scheme for reconstructing x_1^n at terminal 2

• Standard array for (n, n - m) linear channel code with parity check matrix **P** for a channel with noise V^n :

- Terminal 1 communicates $\mathbf{F} =$ the syndrome $\mathbf{P}x_1^n$ to terminal 2.
- Terminal 2 computes the ML estimate $\widehat{x}_1^n = \widehat{x}_1^n(x_2^n, \mathbf{F})$ as:

$$\widehat{x}_1^n = x_2^n \oplus f_{\mathbf{P}}(\mathbf{P}x_1^n \oplus \mathbf{P}x_2^n),$$

where $f_{\mathbf{P}}(\mathbf{P}x_1^n \oplus \mathbf{P}x_2^n) = \text{most likely noise sequence } v^n \text{ with syndrome}$ $\mathbf{P}v^n = \mathbf{P}x_1^n \oplus \mathbf{P}x_2^n.$

• Thus, terminal 2 reconstructs x_1^n with

$$\Pr{\{\hat{X}_{1}^{n} = X_{1}^{n}\}} = \dots = \Pr{\{f_{\mathbf{P}}(\mathbf{P}V^{n}) = V^{n}\}} \cong 1.$$

Step 2: Secret Key Construction

C. Ye - P.N., '05

• SK for terminals 1 and 2

Terminal 1 sets K_1 = numerical index of x_1^n in coset containing x_1^n ; Terminal 2 sets K_2 = numerical index of \widehat{x}_1^n in coset containing x_1^n .

- For a systematic channel code: K_1 (resp. K_2) = first (n-m) bits of x_1^n (resp. \widehat{x}_1^n).
- K_1 or K_2 forms an optimal rate SK, since:

$$- \Pr\{K_1 = K_2\} = \Pr\{\widehat{X}_1^n = X_1^n\} \cong 1; \qquad \text{(common randomness)}$$

$$-I(K_1 \wedge \mathbf{F}) = 0; (secrecy)$$

as K_1 conditioned on $\mathbf{F} = \mathbf{P}X_1^n \sim \text{uniform } \{1, \cdots, 2^{n-m}\};$

-
$$K_1 \sim \text{uniform } \{1, \cdots, 2^{n-m}\};$$
 (uniformity)

$$- \frac{1}{n}H(K_1) = \frac{n-m}{n} \cong 1 - h_b(p).$$
 (SK capacity)

TREE PACKING

Pairwise Independent Network (PIN) Model

$$X_2 = (Y_{21}, Y_{23}, \dots, Y_{2m})$$

$$X_1 = (Y_{12}, \dots, Y_{1m})$$

$$\bullet$$

$$X_m = (Y_{m1}, Y_{m2}, \dots, Y_{m,m-1})$$

A special form of a multiterminal source model in which

- $X_i = (Y_{ij}, j \in \{1, \dots, m\} \setminus \{i\}), i = 1, \dots, m;$
- Y_{ij} is correlated with Y_{ji} , $1 \le i \ne j \le m$;
- the pairs $\{(Y_{ij}, Y_{ji})\}$ are mutually independent across $1 \leq i < j \leq m$.

Secret Key Capacity for the PIN Model

Proposition [Nitinawarat *et al*, '08]: For a PIN model, the SK capacity for a set of terminals $A \subseteq \mathcal{M} = \{1, \dots, m\}$ is

$$C_S(A) = \min_{\lambda \in \Lambda(A)} \left[\sum_{1 \le i < j \le m} \left(\sum_{\substack{B \in \mathcal{B}(A):\\ i \in B, j \in B^c}} \lambda_B \right) I(Y_{ij} \wedge Y_{ji}) \right].$$

Proof: By an application of a general result [I. Csiszár - P.N., '04] to the PIN model.

Remarks:

- (i) $C_S(A)$ depends on the underlying joint probability distribution only through a linear combination of $\{I(Y_{ij} \wedge Y_{ji})\}_{i \neq j}$.
- (ii) For $i \neq j$, $I(Y_{ij} \wedge Y_{ji})$ is the best pairwise SK rate for the pair of terminals i, j. [Maurer (1993), Ahlswede-Csiszár (1993)].
- (iii) The corresponding pairwise SKs are mutually independent.

Secret Key Generation and Tree Packing

$$C_S(A) = \min_{\lambda \in \Lambda(A)} \left[\sum_{1 \le i < j \le m} \left(\sum_{\substack{B \in \mathcal{B}(A): \\ i \in B, j \in B^c}} \lambda_B \right) I(Y_{ij} \land Y_{ji}) \right]$$

?? Can a SK for the set of terminals A be formed by propagating *independent* and *locally generated pairwise* SKs in some manner ??

We shall see that

- SK generation for the PIN model can be viewed in terms of tree packing in an associated multigraph;
- reciprocally, a combinatorial problem of tree packing in a multigraph can be viewed in terms of SK generation for an appropriate PIN model.

Steiner Tree Packing

 $G(\mathcal{M}, E) = \text{multigraph with vertex set } \mathcal{M} \text{ and edge set } E.$

Definition

- For $A \subseteq \mathcal{M}$, a Steiner tree of G is a subgraph of G which is a tree and whose vertex set contains A.
- A Steiner tree packing of G is any collection of edge-disjoint Steiner trees of G. Let $\mu(A, G)$ denote the maximum size of such a packing.

How to Generate a Secret Key by Steiner Tree Packing?

- Given a PIN model, calculate $\{I(Y_{ij} \wedge Y_{ji})\}_{i \neq j}$.
- With the given PIN model, associate a multigraph $G^{(n)}(\mathcal{M}, E^{(n)})$ with vertex set $\mathcal{M} = \{1, \ldots, m\}$ and edge set $E^{(n)} = \{e_{ij}^{(n)} = nI(Y_{ij} \wedge Y_{ji})\}_{i \neq j}$.

- Local SK generation: For every pair of vertices $(i, j) \in G^{(n)}$, the terminals i, j generate a pairwise SK of size $nI(Y_{ij} \wedge Y_{ji})$ bits; these pairwise SKs are mutually independent.
- SK propagation by Steiner tree packing:
 - Claim: Every Steiner tree corresponds to 1 bit of SK for the terminals in A.
 - A Steiner packing of size p yields p SK bits shared by the terminals in A.

Remark: For m fixed, this algorithm can be implemented in linear time (in n).

Secret Key Capacity and Maximal Steiner Tree Packing

Theorem [Nitinawarat et al, '08]: For a PIN model, the SK capacity satisfies

$$\frac{1}{2}C_S(A) \le \sup_n \frac{1}{n} \ \mu(A, G^{(n)}) \le C_S(A).$$

with the second " \leq " holding with "=" when |A| = 2 and |A| = m.

A consequence of independent interest: Given a multigraph $G = G^{(1)}$,

• the SK capacity of an associated PIN model with

$$I(Y_{ij} \land Y_{ji}) = e_{ij}, \quad 1 \le i < j \le m$$

provides new (information theoretic) upper and lower bounds for the maximum rate of Steiner tree packing $\sup_{n} \frac{1}{n} \mu(A, G^{(n)});$

• the bounds are not tight, in general.

Secret Key Capacity and Maximal Spanning Tree Packing

When $A = \mathcal{M} = \{1, \dots, m\}$, a Steiner tree becomes a spanning tree.

Theorem [Nitinawarat et al, '08]: For a PIN model,

$$C_S(\mathcal{M}) = \sup_n \frac{1}{n} \ \mu(\mathcal{M}, G^{(n)}).$$

Idea of proof: By a result of [Nash-Williams, '61] and [Tutte, '61],

$$\sup_{n} \frac{1}{n} \mu(\mathcal{M}, G^{(n)}) = \min_{\mathcal{P}: \mathcal{P} \text{ a partition of } \mathcal{M}} \frac{1}{|\mathcal{P}| - 1} \left(\text{No. of edges of } G^{(1)} \text{that cross } \mathcal{P} \right),$$

which coincides with an upper bound for $C_S(\mathcal{M})$ in [I. Csiszár-P.N., '04].

Remarks:

- (i) Thus, maximal spanning tree packing attains the SK capacity $C_S(\mathcal{M})$.
- (ii) There exists a polynomial-time algorithm (in both m, n) for finding a maximal collection of edge-disjoint spanning trees for $G^{(n)}$ [Gabor-Westermann] and forming an optimal rate SK.

Perfect Secret Key for the PIN Model

- $X_i = (Y_{ij}, j \in \{1, \dots, m\} \setminus \{i\}), i = 1, \dots, m;$
- $Y_{ij} = Y_{ji}$, $1 \le i < j \le m$, and $Y_{ij} \sim \text{unif. } \{0,1\}^{e_{ij}}$;
- Y_{ij} , $1 \le i < j \le m$ are mutually independent.

Perfect SK: $Pr\{K = K_i, i \in A\} = 1, I(K \wedge \mathbf{F}) = 0, H(K) = \log |\text{key space}|.$

Perfect Secret Key Capacity for the PIN Model

Theorem [S. Nitinawarat-P.N, '09]: For a PIN model, the *perfect* SK capacity for a set of terminals $A \subseteq \mathcal{M} = \{1, \dots, m\}$ is

$$C_S(A) = \min_{\lambda \in \Lambda(A)} \left[\sum_{1 \le i < j \le m} \left(\sum_{\substack{B \in \mathcal{B}(A): \\ i \in B, j \in B^c}} \lambda_B \right) e_{ij} \right] = \sum_{i,j} e_{ij} - OMN(A),$$

where OMN(A) is the minimum rate of linear noninteractive communication for the terminals in A to attain perfect omniscience. Furthermore, this perfect SK capacity can be achieved with linear noninteractive communication.

Remarks:

- (i) The formula for $C_S(A)$ coincides with that of the (standard) SK capacity.
- (ii) The complexity of perfect SK generation in the theorem is prohibitive (exponential in n).
- (iii) ?? Is there an efficient algorithm for perfect SK generation? If so, how well does it perform?

The PIN model can be described equivalently by a multigraph $G(\mathcal{M}, E)$ with vertex set $\mathcal{M} = \{1, \ldots, m\}$ and edge set E consisting of e_{ij} edges connecting the vertices i and $j, 1 \leq i < j \leq m$.

Maximal Steiner Tree Packing and Perfect SK Capacity

Theorem [S. Nitinawarat-P.N, '09]: For every $A \subseteq \mathcal{M} = \{1, \dots, m\}$, it holds that

$$\frac{1}{2}C_S(A) \le \lim_{n \to \infty} \frac{1}{n} \mu(A, G^{(n)}) \le C_S(A),$$

where $C_S(A)$ is the perfect SK capacity of the PIN model with equivalent multigraph G. Furthermore, for the special cases |A| = 2 and $A = \mathcal{M}$,

$$\lim_{n} \frac{1}{n} \mu(A, G^{(n)}) = C_S(A).$$

Outline of proof:

- Based on the fact that every Steiner tree in a packing serves to generate 1 bit of perfect SK for the terminals in A, and all the SK bits so generated are mutually independent.
- Equality when |A| = 2 follows from the max-flow min-cut theorem; equality when $A = \mathcal{M}$ follows from a classic result on the maximum size of spanning tree packing in a multigraph [Nash-Williams, '61 and Tutte, '61].

Multiterminal Source Model with Wiretapper

The legitimate user terminals in A wish to generate a secret key K with the cooperation of the remaining legitimate terminals, which is concealed from an eavesdropper with access to the public interterminal communication \mathbf{F} and wiretapped side information $Z^n = (Z_1, \ldots, Z_n)$.

The secrecy condition is now strengthened to

$$I(K \wedge \mathbf{F}, Z^n) \cong 0.$$

??? Largest rate of a wiretap secret key for A: Unknown in general but for special cases and bounds.

The wiretapped terminal *cooperates* in the secrecy generation by "revealing" its observations to all the legitimate terminals; the resulting key must be concealed from the eavesdropper which knows (\mathbf{F}, Z^n) .

??? Largest rate of a private key for A: Known.

Multiterminal Channel Model

??? Largest rate of a secret key for A: Unknown in general but for special cases and bounds.

IN CLOSING

A Few Questions

- Information theoretic secrecy generation in a network is intertwined with multiterminal data compression and channel coding for certain network models.
 - What are the *explicit connections* for general network models?
 - What are the corresponding best rates of secret keys?
 - New algorithms for secret key construction?
- Multiuser secrecy generation for the PIN model has connections to the combinatorial problem of tree packing in multigraphs.
 - Tree packing algorithms for global secret key generation?
 - Information theoretic tools for tackling combinatorial tree packing problems?

Idea of Proof of SK Capacity Theorem

Achievability

If L represents "common randomness" for all the terminals in A, achievable with communication F for some (signal) observation length n, then $\frac{1}{n}H(L|\mathbf{F})$ is an achievable SK rate for the terminals in A.

ullet The terminals communicate publicly using compressed data in order to generate common randomness for the terminals in A equalling

$$L \cong \text{ omniscience } = (X_1^n, \dots, X_m^n), \text{ with } \mathbf{F} = \mathbf{F}_{CO} = \mathbf{F}_{CO}(X_1^n, \dots, X_m^n).$$

• The terminals in A then process this L to extract a SK of rate

$$\frac{1}{n}H(\mathbf{L}|\mathbf{F}) \cong \frac{1}{n}H(X_1^n, \dots, X_m^n|\mathbf{F}_{CO}) = H(X_1, \dots, X_m) - \frac{1}{n}H(\mathbf{F}_{CO})$$

and of which the eavesdropper has provably little or no knowledge.

Converse

Tricky, since interactive communication is not excluded a priori.

Decomposition interpretation:

Omniscience = $(X_1^n, \dots, X_m^n) \cong (\text{Optimum secret key for A}, \mathbf{F}_{CO})$.

Private Key Capacity

Theorem [I. Csiszár - P. N., '04, '08]:

$$C_P(A|Z) = H(X_1, ..., X_m, Z) - H(Z)$$
 – Smallest aggregate rate of public communication which enables the terminals in A to become omniscient when all terminals additionally know Z^n = $H(X_1, ..., X_m|Z) - \max_{\lambda \in \Lambda(A|Z)} \sum_{B \in \mathcal{B}(A|Z)} \lambda_B H(X_B|X_{B^c}, Z)$

and can be achieved with noninteractive communication.

Remarks:

- Clearly, WSK capacity $C_W(A|Z) \leq PK$ capacity $C_P(A|Z)$ with equality in special cases.
- Better upper bounds on WSK capacity are available due to Renner-Wolf ('03) and Gohari-Anantharam ('07, '08).

Private Key Generation

Achievability:

• The terminals in A generate common randomness L such that

$$(L, \mathbb{Z}^n) \cong (\text{omniscience}, \mathbb{Z}^n) = (X_1^n, \dots, X_m^n, \mathbb{Z}^n),$$

using public interterminal communication $\mathbf{F}_{CO} = \mathbf{F}_{CO}(X_1^n, \dots, X_m^n, Z^n)$ that is independent of Z^n .

• The terminals in A then extract secrecy of rate

$$\frac{1}{n}H(L, Z^n|\mathbf{F}_{CO}, Z^n) \cong \cdots \cong H(X_1, \dots, X_m|Z) - \frac{1}{n}H(\mathbf{F}_{CO}).$$

Decomposition interpretation:

 $(X_1^n, \dots, X_m^n, Z^n) \cong (\text{Optimum private key for A}, \mathbf{F}_{CO}, Z^n).$

Gohari-Anantharam, '07, '08

• Terminals 1, 2 generate common randomness L using public interterminal communication $\mathbf{F} = \mathbf{F}(X_1^n, X_2^n)$, such that

$$(L, \mathbb{Z}^n) \cong (\text{omniscience}, \mathbb{Z}^n) = (X_1^n, X_2^n, \mathbb{Z}^n).$$

Note that that **F** is not a function of \mathbb{Z}^n .

• The "nonsingle-letter" characterization of WSK capacity is

$$C_W(A|Z) = \lim_n \max_{\mathbf{L}, \mathbf{F}} \frac{1}{n} H(\mathbf{L}|\mathbf{F}, \mathbf{Z}^n) = \dots = H(\mathbf{X}_1, \mathbf{X}_2|\mathbf{Z}) - \lim_n \min_{\mathbf{F}} \frac{1}{n} H(\mathbf{F}|\mathbf{Z}^n).$$

Question: If L is the Slepian-Wolf codeword for the joint source (X_1^n, X_2^n) with "decoder side information" Z^n , what is $\lim_n \min_{\mathbf{F}} \frac{1}{n} H(\mathbf{F}|Z^n)$ where \mathbf{F} is the interterminal communication needed to form L by distributed processing?