PARTIE A: MECANIQUE GENERALE

PREMIERE PARTIE : ETUDE DU MECANISME D'ENTRAINEMENT DE LA POMPE A-1. ETUDE CINEMATIQUE

A-1-1. Graphe des liaisons

 L_{01} : Liaison pivot d'axe $(0, \vec{z}_0)$

 L_{12} : Liaison pivot d'axe (A, \vec{Z}_0)

 L_{23} : Liaison pivot d'axe (B, \vec{Z}_0)

 L_{03} : Liaison glissière d'axe (C, \vec{x}_0)

 L_{12} L_{34} : Liaison pivot d'axe (D, \vec{z}_0)

 L_{45} : Liaison pivot d'axe (E, \vec{z}_0)

 L_{05} : Liaison pivot d'axe (F, \vec{z}_0)

A-1-2. Les différentes matrices de passage sont données par :

$$\begin{cases} \vec{x}_1 = \cos\alpha \ \vec{x}_0 - \sin\alpha \ \vec{y}_0 \\ \vec{y}_1 = \sin\alpha \ \vec{x}_0 + \cos\alpha \ \vec{y}_0 \end{cases}$$

$$[P]_0^1 = \begin{bmatrix} \cos\alpha & \sin\alpha & 0 \\ -\sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{cases} \vec{x}_2 = \cos\beta \vec{x}_0 + \sin\beta \vec{y}_0 \end{cases}$$

$$\begin{cases} \vec{\mathbf{y}}_1 = -\mathbf{Sin}\boldsymbol{\beta} \ \vec{\mathbf{x}}_0 + \mathbf{Cos}\boldsymbol{\beta} \ \vec{\mathbf{y}}_0 \\ & \\ \mathbf{y}_0 = \begin{bmatrix} \mathbf{Cos}\boldsymbol{\beta} & -\mathbf{Sin}\boldsymbol{\beta} & \mathbf{0} \\ \mathbf{Sin}\boldsymbol{\beta} & \mathbf{Cos}\boldsymbol{\beta} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & 1 \end{bmatrix} \end{cases}$$

$$\vec{x}_4 = Cos\theta \ \vec{x}_0 + Sin\theta \ \vec{y}_0$$

$$\vec{y}_4 = -\sin\theta \ \vec{x}_0 + \cos\theta \ \vec{y}_0$$

$$\int \vec{\mathbf{x}}_5 = \mathbf{Cos} \phi \ \vec{\mathbf{x}}_0 - \mathbf{Sin} \phi \ \vec{\mathbf{y}}_0$$

$$P = \begin{bmatrix} \cos\phi & \sin\phi & 0 \\ -\sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

A-1-3. La condition de fermeture de la chaine cinématique (OABC) s'écrit :

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{BC}$$

Dans la base ${f B}_0(\vec x_0, \vec y_0, \vec z_0)$, le système d'équations qui en découle s'écrit :

$$\begin{cases} a_1 \cos\alpha + a_2 \cos\beta = a_0 \\ -a_1 \sin\alpha + a_2 \sin\beta = \lambda - b_1 \end{cases} \Phi$$

A-1-4. La condition de fermeture de la chaine cinématique (CDEF) s'écrit :

$$\overrightarrow{CF} = \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EF}$$

Dans la base $\mathbf{B}_0(\vec{x}_0, \bar{y}_0, \bar{z}_0)$, le système d'équations qui en découle s'écrit :

$$\begin{cases} a_4 \cos\theta - a_5 \cos\phi = 0 \\ a_4 \sin\theta + a_5 \sin\phi = b_0 - \lambda \end{cases}$$

A-1-5. Par définition, le torseur cinématique, au point O, de l'excentrique [1] dans son

mouvement par rapport au bâti [0] s'écrit : $\left\{\mathbf{V}_{(1/0)}\right\}_{0} = \begin{cases} \bar{\Omega}(1/0) \\ \bar{V}(O \in 1/0) \end{cases}_{0}$

 $\dots \dots \bullet \vec{\Omega}(1/0) = -\dot{\alpha} \vec{z}_0 \dots$

...... • $\vec{V}(O \in 1/0) = \vec{0}$

A-1-6. Par définition, le torseur cinématique, au point A, de la bielle [2] dans son

mouvement par rapport au bâtí [0] s'écrít : $\left\{ \mathbf{V}(2/0) \right\}_{A} = \begin{cases} \vec{\Omega}(2/0) \\ \vec{V}(A \in 2/0) \end{cases}_{A}$

$$\begin{array}{l}
\vdots \left\{ \mathbf{V}(2/0) \right\}_{\mathbf{A}} = \left\{ \begin{array}{c} \Omega(2/0) \\ \vec{\mathbf{V}}(\mathbf{A} \in 2/0) \end{array} \right\}_{\mathbf{A}}.
\end{array}$$

• $\vec{\Omega}(2/0) = \dot{\beta} \vec{z}_0$

...... $\vec{V}(A \in 2/0) = \vec{V}(A \in 2/1) + \vec{V}(A \in 1/0) = \vec{0} + \vec{V}(A \in 1/0)$

...... $\vec{V}(A \in 1/0) = \vec{V}(O \in 1/0) + \vec{\Omega}(1/0) \land \overrightarrow{OA} = -a_1 \dot{\alpha} \vec{y}_1$

$$\mathbf{a} = \left\{ \mathbf{V}(2/0) \right\}_{A} = \left\{ \begin{pmatrix} 0 \\ 0 \\ \dot{\beta} \end{pmatrix} \mid \begin{pmatrix} 0 \\ -a_{1}\dot{\alpha} \\ 0 \end{pmatrix} \right\}_{A}^{B_{1}}$$

A-1-7. Par définition, le torseur cinématique, au point D, du piston [3] dans son

mouvement par rapport au bâtí [0] s'écrít : $\left\{\mathbf{V}_{(3/0)}\right\}_{D} = \left\{\mathbf{V}_{(3/0)}\right\}_{D}$

..... • $\vec{\Omega}(3/0) = \vec{0}$

..... • $\vec{V}(D \in 3/0) = \left(\frac{d\overrightarrow{OD}}{dt}\right)_{/\Re_0} = \left(\frac{d\overrightarrow{OC}}{dt}\right)_{/\Re_0} + \left(\frac{d\overrightarrow{CD}}{dt}\right)_{/\Re_0} = \vec{0} + \dot{\lambda}\vec{y}_0$

$$\mathfrak{P}\left\{\mathbf{V}(3/0)\right\}_{D} = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} & \begin{bmatrix} 0 \\ \lambda \\ 0 \end{bmatrix} \right\}_{D}^{B_{0}}$$

A-1-8. La condition cinématique au niveau de la liaison pivot, au point B, entre la bielle [2] et le piston [3] s'écrit:

 $\vec{V}(B \in 3/0) = \vec{V}(B \in 2/0)$ $\vec{V}(B \in 3/2) = \vec{0}$

 $\dots \dots \bullet \vec{V}(B \in 2/0) = \vec{V}(A \in 2/0) + \vec{\Omega}(2/0) \wedge \overrightarrow{AB} = -a_1 \dot{\alpha} \vec{y}_1 + a_2 \dot{\beta} \vec{y}_2 \dots$

 $\vec{V}(B \in 3/0) = \vec{V}(D \in 3/0) + \vec{\Omega}(3/0) \wedge \vec{DB} = \lambda \vec{y}_0$

Le système d'équations, projetées sur l a base ${f B}_0(\vec x_0,\! \bar y_0,\! \bar z_0)$, qui en découle s'écrit :

A-1-9. Par définition, le torseur cinématique, au point D, de la biellette [4] dans son

mouvement par rapport au bâtí [0] s'écrit : $\left\{ \mathbf{V}(4/0) \right\}_{D} = \begin{cases} \vec{\Omega}(4/0) \\ \vec{V}(D \in 4/0) \end{cases}_{D}$

 $\bullet \ \vec{\Omega}(4/0) = \dot{\theta} \ \vec{z}_0 \dots$

..... • $\vec{V}(D \in 4/0) = \vec{V}(D \in 4/3) + \vec{V}(D \in 3/0) = \vec{0} + \vec{V}(D \in 3/0) = \dot{\lambda}\vec{y}_0$

A-1-10. Par définition, le torseur cinématique, au point F, du balancier [5] dans son mouvement par rapport au bâtí [0] s'écrit : $\left\{ \mathbf{V}(5/0) \right\}_{F} = \left\{ \begin{array}{c} \bar{\Omega}(5/0) \\ \bar{V}(F \in 5/0) \end{array} \right\}_{F}$

 $\cdot \vec{\Omega}(5/0) = -\dot{\phi} \ \vec{z}_0 \dots$

..... $\vec{V}(F \in 5/0) = \vec{0}$

$$\mathbf{\Psi} \left\{ \mathbf{V}(5/0) \right\}_{F} = \left\{ \begin{pmatrix} 0 \\ 0 \\ -\dot{\phi} \end{pmatrix} \mid \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}_{F}^{\mathbf{B}_{0}}$$

A partir de ce torseur, on peut déterminer le vecteur vitesse $\vec{V}(M\!\in\!5/0)$:

... $\vec{V}(M \in 5/0) = \vec{V}(F \in 5/0) + \vec{\Omega}(5/0) \wedge \vec{FM}$

 $=\vec{0}-\dot{\phi}\;\vec{z}_0\;\wedge\left(-d\;\vec{u}\right)=d\;\dot{\phi}\;\vec{v}\;.$ $\text{Dans la base }\;\mathsf{B}_{51}(\vec{u},\!\vec{y}_0,\!\vec{v}):\left|_{\vec{V}(M\;\in\;5/0)=\;d\;\dot{\phi}\;\vec{v}}\right|$

A-1-11. La condition cinématique au niveau de la liaison pivot, au point E, entre la biellette [4] et le balancier [5] s'écrit :

 $\vec{V}(E \in 4/5) = \vec{0}$

⇒

 $\vec{V}(E \in 4/0) = \vec{V}(E \in 5/0)$

..... $\vec{V}(E \in 4/0) = \vec{V}(D \in 4/0) + \vec{\Omega}(4/0) \wedge \overrightarrow{DE}$

 $\vec{V}(D \in 4/0) = \vec{V}(D \in 4/3) + \vec{V}(D \in 3/0) = \vec{0} + \lambda \vec{y}_0$

 $\vec{V}(E \in 4/0) = \dot{\lambda} \vec{y}_0 + (\dot{\theta} \vec{z}_0) \wedge (a_4 \vec{x}_4) = \dot{\lambda} \vec{y}_0 + a_4 \dot{\theta} \vec{y}_4 \dots$

• $\vec{V}(E \in 5/0) = \vec{V}(F \in 5/0) + \vec{\Omega}(5/0) \land \overrightarrow{FE}$

 $\vec{V}(E \in 5/0) = \vec{0} - (\dot{\phi} \vec{z}_0) \wedge (a_5 \vec{x}_5) = -a_5 \dot{\phi} \vec{y}_5 \dots$

Le système d'équations, projetées sur l a base $\mathbf{B}_0(\vec{x}_0,\vec{y}_0,\vec{z}_0)$, qui en découle s'écrit :

$$\begin{cases}
-a_4 \dot{\theta} \sin\theta + a_5 \dot{\phi} \sin\phi = 0 \\
a_4 \dot{\theta} \cos\theta + a_5 \dot{\phi} \cos\phi = -\dot{\lambda}
\end{cases}$$

A-2. ETUDE CINETIQUE

A-2.1. Par définition, le torseur cinétique, au point 0, de l'excentrique [1] dans son

mouvement par rapport au bâti [0] s'écrit : $\left\{ \mathbf{C}(1/0) \right\}_0 = \begin{cases} \vec{R}_1(C) \\ \vec{\sigma}_0(1/0) \end{cases}_0$

...... $\vec{R}_1(\vec{C}) = m_1 \vec{V}(O/0) = \vec{0}$

....... $\vec{\sigma}_{O}(1/0) = \vec{J}_{O}(1,\vec{\Omega}(1/0)) = [I_{O}(1)]_{B_{0}} \vec{\Omega}(1/0)$ Car O est le centre d'inertie de [1]

Or l'axe est un axe principal d'inertie, alors : $\begin{bmatrix} I_o(1) \end{bmatrix}_{B_0} = \begin{bmatrix} A_1 & -F_1 & 0 \\ -F_1 & B_1 & 0 \\ 0 & 0 & J \end{bmatrix}_{B_0}$

 $\vec{\sigma}_{O}(1/0) = -J \dot{\alpha} \vec{z}_{O}$

$$\left\{ \mathbf{C}(1/0) \right\}_{\mathbf{O}} = \left\{ \begin{array}{c} \mathbf{\bar{0}} \\ -\mathbf{J} \ \dot{\alpha} \ \mathbf{\bar{z}}_{\mathbf{0}} \end{array} \right\}_{\mathbf{O}}$$

A-2-2. Par définition, le torseur cinétique, au point D, du piston [3] dans son

mouvement par rapport au bâti [0] s'écrit : $\left\{\mathbf{C}(3/0)\right\}_{D} = \begin{cases} \vec{R}_{3}(C) \\ \vec{\sigma}_{D}(3/0) \end{cases}_{D}$

...... $\vec{R}_3(C) = \vec{mV}(G_3/0) = \vec{mV}(G_3 \in 3/0) = \vec{mV}(D \in 3/0) = \vec{m} \ \dot{\vec{v}}_0$

...... $\vec{V}(G_3 \in 3/0) = \vec{V}(D \in 3/0)$ Car [3] est solide en translation......

...... $\overrightarrow{DG_3}$ et $\overrightarrow{V}(G_3/0)$ sont colinéaires et $\overrightarrow{\Omega}(3/0) = \overrightarrow{0}$ $\left\{ \mathbf{C}(3/0) \right\}_{D} = \left\{ \begin{array}{c} \mathbf{m} \, \dot{\lambda} \, \bar{\mathbf{y}}_{\mathbf{0}} \\ \bar{\mathbf{0}} \end{array} \right\}$ A-2-3. Par définition, le torseur cinétique, au point F, du balancier [5] dans son mouvement par rapport au bâtí [0] s'écrit : $\left\{\mathbf{C}(5/0)\right\}_{F} = \begin{cases} \vec{R}_{5}(\mathbf{C}) \\ \vec{\sigma}_{F}(5/0) \end{cases}_{F}$ $\vec{R}_5(C) = M\vec{V}(M/0) = M\vec{V}(M \in 5/0) = M d \dot{\phi} \dot{v}$ $\vec{\sigma}_{M}(5/0) = \vec{0}$ Car masse ponctuelle en M..... $\left\{ \mathbf{C}(5/0) \right\}_{F} = \left\{ \begin{array}{c} \mathbf{M} \ \mathbf{d} \ \dot{\mathbf{v}} \\ \mathbf{M} \ \mathbf{d}^{2} \ \dot{\mathbf{v}} \ \mathbf{\bar{z}}_{0} \end{array} \right\}_{\mathbf{z}}$ A-2-4. L'expression de l'énergie cinétique d'un solide [Si] dans son mouvement par rapport au bâtí [0] s'écrit: $E_{c}(S_{i}/0) = \frac{1}{2} \left\{ \mathbf{C}(S_{i}/0) \right\}_{x} \left\{ \mathbf{V}(S_{i}/0) \right\}_{x}$. Celle système {S} composé de n solides [S_i] s'écrit : $\left| E_C(S/0) = \sum_{i=1}^n E_C(S_i/0) \right|$ En conséquence: $E_{c}(S/0) = E_{c}(1/0) + E_{c}(2/0) + E_{c}(3/0) + E_{c}(4/0) + E_{c}(5/0) ...$ $E_c(2/0) = E_c(4/0) = 0$ Car solides de masses négligeables...... $\dots \bullet \ E_c(1/0) = \frac{1}{2} \left\{ \textbf{C}(1/0) \right\}_o \left\{ \textbf{V}(1/0) \right\}_o = \frac{1}{2} \left\{ \begin{matrix} \vec{0} \\ -J \ \dot{\alpha} \ \vec{z}_o \end{matrix} \right\}_o \left\{ \begin{matrix} -\dot{\alpha} \ \vec{z}_o \\ \vec{0} \end{matrix} \right\}_c = \frac{1}{2} J \ \dot{\alpha}^2 \dots$ $\mathbf{E}_{\mathbf{C}}(3/0) = \frac{1}{2} \left\{ \mathbf{C}(3/0) \right\}_{\mathbf{D}} \left\{ \mathbf{V}(3/0) \right\}_{\mathbf{D}} = \frac{1}{2} \left\{ \begin{array}{l} \mathbf{m} \ \dot{\mathbf{X}} \ \ddot{\mathbf{y}}_{0} \\ \ddot{\mathbf{0}} \end{array} \right\}_{\mathbf{D}} \left\{ \begin{array}{l} \ddot{\mathbf{0}} \\ \dot{\lambda} \ \ddot{\mathbf{y}}_{0} \end{array} \right\}_{\mathbf{D}} = \frac{1}{2} \mathbf{m} \ \dot{\lambda}^{2} \dots$ $\mathbf{E}_{\mathbf{C}}(5/0) = \frac{1}{2} \left\{ \mathbf{C}(5/0) \right\}_{\mathbf{F}} \left\{ \mathbf{V}(5/0) \right\}_{\mathbf{F}} = \frac{1}{2} \left\{ \begin{array}{c} \mathbf{M} \ d \ \dot{\phi} \ \ddot{\mathbf{v}} \\ -\mathbf{M} \ d^2 \ \dot{\phi} \ \ddot{\mathbf{z}}_0 \end{array} \right\}_{\mathbf{O}} \left\{ \begin{array}{c} -\dot{\phi} \ \vec{\mathbf{z}}_0 \\ \vec{0} \end{array} \right\}_{\mathbf{O}} = \frac{1}{2} \mathbf{M} \ d^2 \ \dot{\phi}^2 \dots$ $E_{C}(S/0) = \frac{1}{2} \left(J \dot{\alpha}^{2} + m \dot{\lambda}^{2} + M d^{2} \dot{\phi}^{2} \right)$

...... $\vec{\sigma}_{D}(3/0) = m\overline{DG_{3}} \wedge \vec{V}(G_{3}/0) + [I_{D}(3)]_{B_{0}} \vec{\Omega}(3/0) = \vec{0}$

A-3-1. On isole le système $\{S\}=\{1, 2, 3, 4, 5\}$

A-3-2. Les torseurs des actions mécaniques extérieures, en leurs points d'application, dans la base $\mathbf{B}_0(\vec{x}_0, \vec{y}_0, \vec{z}_0)$, exercées sur le système $\{\mathbf{S}\}=\{1,2,3,4,5\}$ sont :

A-3-3. L'expression de la puissance développée par l'action d'un solide $[S_i]$ sur un solide $[S_i]$ dans son mouvement par rapport au bâti [0] est :

...... $P(0 \rightarrow 1/0) = P(0 \rightarrow 3/0) = P(0 \rightarrow 5/0) = 0$ Car liaisons parfaites....

......
$$P(Rotor \rightarrow 1/0) = \begin{cases} \vec{0} \\ -C_m \vec{z}_0 \end{cases}_O \begin{cases} -\dot{\alpha} \vec{z}_0 \\ \vec{0} \end{cases}_O = C_m \dot{\alpha}$$

.......
$$P(\vec{P}_3 \to 3/0) = \begin{cases} -m \ g \ \vec{y}_0 \\ \dot{0} \end{cases}_{G_3} \begin{cases} \vec{0} \\ \dot{\lambda} \ \vec{y}_0 \end{cases}_{G_3} = -m \ g \ \dot{\lambda} \$$

$$P(\vec{P}_5 \to 5/0) = \begin{cases} -M \ g \ \vec{y}_0 \\ \vec{0} \end{cases}_{M} \begin{cases} \vec{0} \\ d \ \dot{\phi} \ \vec{v} \end{cases}_{M} = -M \ g \ d \ \dot{\phi} \ Cos (\phi - \psi) \dots$$

$$\Psi(\vec{S} \to S/0) = C_m \ \dot{\alpha} - m \ g \ \dot{\lambda} - M \ g \ d \ \dot{\phi} \ Cos (\phi - \psi)$$
 A-3-4. Le théorème de l'énergie cinétique appliqué à un système {S} composé de n

solides [Si] dans son mouvement par rapport au bâti [0] est:

$$\dots - \frac{dE_{C}(S/0)}{dt} = J\dot{\alpha}\ddot{\alpha} + m\dot{\lambda}\ddot{\lambda} + Md^{2}\dot{\phi}\ddot{\phi} \qquad \dots$$

......
$$P(\overline{S} \to S/0) = C_m \dot{\alpha} - m g \dot{\lambda} - M g d \dot{\phi} Cos(\phi - \psi)$$

L'équation qui découle de l'application du théorème de l'énergie cinétique appliqué au système {S}={1,2,3,4,5} dans son mouvement par rapport au bâtí [0] est:

DEUXIEME PARTIE:

ETUDE DES ACTIONS MECANIQUES TRANSMISSIBLES SUR LE MAT

A-4-1. Les torseurs des actions mécaniques transmissibles, aux points O_1 et O_2 , au niveau des liaisons entre la pale et le mât sont:

$$\begin{bmatrix} \left\{ \tau_{1}(\text{mât} \rightarrow \text{pale}) \right\}_{O_{1}} = \left\{ \begin{bmatrix} X_{1} \\ ...Y_{1}... \\ 0 \end{bmatrix} \begin{bmatrix} ..0.. \\ ..0.. \\ 0 \end{bmatrix} \right\}^{B_{r}} \\ \left\{ \tau_{2}(\text{mât} \rightarrow \text{pale}) \right\}_{O_{2}} = \left\{ \begin{bmatrix} X_{2} \\ ...Y_{2}... \\ Z.. \end{bmatrix} \begin{bmatrix} ..0... \\ ..0.. \\ 0 \end{bmatrix} \right\}^{B_{r}}$$

$$\overrightarrow{M}_{2 O_1}(\text{m\^{a}t} \rightarrow \text{pale}) = \overrightarrow{M}_{2 O_2}(\text{m\^{a}t} \rightarrow \text{pale}) + \overrightarrow{R}_2(\text{m\^{a}t} \rightarrow \text{pale}) \wedge \overrightarrow{O_2 O_1} ...$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}_{\mathsf{B}_{\mathsf{r}}} + \begin{pmatrix} X_{2} \\ Y_{2} \\ Z_{2} \end{pmatrix}_{\mathsf{B}_{\mathsf{r}}} \wedge \begin{pmatrix} 0 \\ 0 \\ -2\pi a \end{pmatrix}_{\mathsf{B}_{\mathsf{r}}} = \begin{pmatrix} -2\pi a \ Y_{2} \\ 2\pi a \ X_{2} \\ 0 \end{pmatrix}_{\mathsf{B}_{\mathsf{r}}}$$

$$= \begin{pmatrix} (-2\pi a \ Y_{2}) \\ (-2\pi a \ Y_{2}) \\$$

$$\label{eq:tau_equation} \P \left\{ \tau(\text{m\^at} \rightarrow \text{pale}) \right\}_{O_1} = \left\{ \begin{pmatrix} ..X_1 + X_2 .. \\ ..Y_1 + Y_2 .. \\ ..Z_2 .. \end{pmatrix} \middle| \begin{array}{c} (.. - 2\pi a \ Y_2 .. \\ ..2\pi a \ X_2 .. \\ ..0 .. \end{array} \right\}_{O_1}^{B_r}$$

A-4-2. La résultante \tilde{S} de la charge qui s'exerce sur la pale $R(\text{charge} \to \text{pale})$ est définie par : $|\vec{S} = \int_{P \in Pale} \vec{f}_{P}(charge \rightarrow pale) d\ell$ $d\ell = \sqrt{\left(\frac{dr}{d\zeta}\right)^2 + \left(\frac{dy}{d\zeta}\right)^2} = a\sqrt{\sin^2\zeta + \left(1 - \cos\zeta\right)^2} = 2 \text{ a } \sin\frac{\zeta}{2}...$ $\vec{f}_{p}(\text{charge} \rightarrow \text{pale}) = \gamma (r(\zeta) - a) \vec{U}_{r} = -\gamma \text{ a Cos} \zeta \vec{U}_{r}$ $\dots \cdot \vec{S} = -2 a^2 \gamma \left(\int_0^{2\pi} \sin \frac{\zeta}{2} \cos \zeta \, d\zeta \right) \vec{U}_r \dots$ $\dots \cdot \int_0^{2\pi} \sin \frac{\zeta}{2} \cos \zeta \, d\zeta = \frac{-4}{3} \dots$ $\vec{S} = \frac{2 \gamma R^2}{3} \vec{U}_r$ $|\vec{S}| = \dots \frac{2 \gamma R^2}{2} \vec{U}_r \dots$ A-4-3. Le torseur de l'action mécanique de la charge qui s'exerce, au point O_1 , sur la pale est défini par : $\left\{ \tau(\text{charge} \rightarrow \text{pale}) \right\}_{O_1} = \left\{ \vec{N}_{O_1}(\text{charge} \rightarrow \text{pale}) \right\}_{O_2}^{B_r}$ $O\grave{u}: \vec{M}_{O_1}(charge \rightarrow pale) = \int_{P \in Pale} \overline{O_1P} \wedge \vec{f}_P(charge \rightarrow pale) \ d\ell \ ...$ \bullet $\overrightarrow{O_1P} = r(\zeta) \overrightarrow{U}_r + y(\zeta) \overrightarrow{y}_0$ \bullet $\overrightarrow{O_1P} \wedge \overrightarrow{f}_P(\text{charge} \rightarrow \text{pale}) = \gamma (r(\zeta) - a) y(\zeta) \overrightarrow{V}_r = -\gamma a^2 \text{Cos}\zeta (\zeta - \text{Sin}\zeta) \overrightarrow{V}_r$ \vec{M}_{O_r} (charge \rightarrow pale) = $-a^2 \gamma \left(\int_0^{2\pi} \sin \frac{\zeta}{2} \cos \zeta \left(\zeta - \sin \zeta \right) d\zeta \right) \vec{V}_r$ $\int_0^{2\pi} \sin\frac{\zeta}{2} \cos\zeta \left(\zeta - \sin\zeta\right) d\zeta = \frac{-4\pi}{3}.$ \vec{M}_{O_1} (charge \rightarrow pale) = $\frac{\pi \gamma R^3}{3} \vec{V}_r$

$$\left\{ \tau(\text{charge} \rightarrow \text{pale}) \right\}_{O_1} = \left\{ \left(\frac{...2 \text{ } \gamma \text{ } R^2}{3} \dots \right) \left(\frac{...0 \dots}{...6 \dots} \right) \right\}_{O_1}^{B_r}$$

A-4-4. Le torseur des actions mécaniques extérieures exercées sur la pale est:

$$\left\{ \tau(\overline{\text{pale}} \rightarrow \text{pale}) \right\}_{O_1} = \left\{ \begin{pmatrix} ..X_1 + X_2 + \frac{2 \gamma R^2}{3} .. \\ ..Y_1 + Y_2 .. \\ ..Z_2 .. \end{pmatrix} \middle| \begin{pmatrix} ..-\pi R Y_2 .. \\ ..\pi R X_2 + \frac{\pi \gamma R^3}{3} .. \\ ..0 .. \end{pmatrix} \right\}_{O_1}^{B_r}$$

Le Principe Fondamental de la Statique (PFS) appliqué, au point \mathbf{O}_1 , à la pale s'écrit :

 $\left|\left\{\tau(\overline{\mathrm{pale}} \rightarrow \mathrm{pale})\right\}_{O_1} = \left\{0\right\}\right|$

→ Les expressions des inconnues des torseurs statiques équivalents au niveau des liaisons sont données par :

$Y_1 = 0$	$Y_2 = 0$	$Z_2 = 0$
$X_1 = -\frac{\gamma R^2}{3}$	$X_2 = -\frac{\gamma R^2}{3}$	

PARTIEB: AUTOMATIQUE

B-1-1.

- Si d=0 alors M=0, indépendamment de a et b.
- Si d=1 alors on a la table de vérité suivante :

a	b	M
0	0	1
0	1	1
1	0	-
1	1	0

$$\Rightarrow M = \overline{b}.d$$

B-1-2.

B-2-1-1.

$$K_1 = \frac{v}{\Omega} = \frac{0.01}{100} = 10^{-4} \ m / rad$$

B-2-1-2.

$$G_1(p) = \frac{K_m}{1 + \tau_m p}$$
 et $G_2(p) = \frac{-1}{K_2 p}$

$$G(p) = \frac{-K_1 K_m}{K_2 p (1 + \tau_m p)} = \frac{-1}{0.1 p^2 + p}$$

B-2-1-3.

$$S(p) = \frac{-1}{p} + \frac{0.1}{0.1p+1} \text{ donc } s(t) = -1 + e^{-10t}$$

$$G(p) = \frac{-1}{p(1+0.1p)}$$
$$|-1|dB = 0dB, \arg(-1) = -180^{\circ}, \forall \omega.$$

$$\left|\frac{1}{p}\right| dB = -20 dB / d\acute{e}cade, \arg\left(\frac{1}{p}\right) = -90^{\circ}, \forall \omega.$$

$$\left| \frac{1}{1+0.1p} \right| d\mathbf{B} = \begin{cases} 0d\mathbf{B} / d\acute{e}cade & \text{si } \omega \le 10 \\ -20d\mathbf{B} / d\acute{e}cade & \text{si } \omega > 10 \end{cases}, \arg\left(\frac{1}{0.1p+1} \right) = \begin{cases} 0^{\circ} & \text{si } \omega \le 10 \\ -90^{\circ} & \text{si } \omega > 10 \end{cases}$$

B-2-2-1.

$$\frac{S(p)}{S_c(p)} = \frac{K_p G(p)}{1 + K_p K_3 G(p)} = \frac{-10K_p}{p^2 + 10p - 100K_p}$$

Concours MP-PC - Session Juin 2008

Epreuve de STI

Page 11/13

B-2-2-2.

Le système est de classe 1 (présence d'un intégrateur dans la chaîne d'action d'où l'erreur statique de position est nulle.

B-2-2-3.

Le système en boucle fermée est du second ordre donc tous les cœfficients du dénominateur doivent être du même signe \implies le système est donc stable en boucle fermée ssi $K_p < 0$.

B-2-2-4.

$$S(p) = \frac{10}{p^2 + 10p + 100} \times \frac{1}{p}$$

$$\begin{cases} \xi = \frac{1}{2} \\ \omega_n = 10 \text{ rad } / s \\ \omega_p = 8.66 \text{ rad } / s \end{cases}$$

$$s(t) = 0.1 \left[1 - 0.577e^{-5t} \sin\left(8.66t + \frac{\pi}{3} \right) \right]$$

B-2-2-5.

$$G(j\omega)\frac{-10K_p}{-0.1\omega^2 + j\omega} \Rightarrow \arg(G(j\omega_1)) = \arctan\left(\frac{1}{0.1\omega_1}\right) \Rightarrow \omega_1 = \frac{1}{0.1\tan(-135^\circ)} = 10 \, rad \, / \, s$$

$$\left|\frac{10K_p}{-0.1\omega_1^2 + j\omega_1}\right| = 1 \Rightarrow K_p = -1.414 \, .$$

PARTIEC: TECHNOLOGIE DE CONCEPTION

C-1- Etude de conception : Montage de la liaison encastrement

C-2- Etude graphique : Perspective cavalière

