Project Design Phase-II Technology Stack (Architecture & Stack)

Date	20 July 2025
Team ID	LTVIP2025TMID20285
Project Name	TrafficTelligence – Advanced Traffic
	Volume Estimation with Machine Learning
Maximum Marks	4 Marks

Technical Architecture:

The following table describes the technical architecture and the technology stack used in the TrafficTelligence project.

Table-1: Components & Technologies

S.No	Component	Description	Technology
1	User Interface	Frontend for user to	HTML, CSS,
		enter traffic input	JavaScript (Jinja2)
2	Application Logic-1	ML Inference and	Python (Flask,
		preprocessing	Pandas, Sklearn)
3	Application Logic-2	Web application	Flask
		routing and form	
		handling	
4	Database	CSV Dataset for	Local CSV (via
		traffic logs	Pandas)
5	File Storage	Model files (.pkl),	Local filesystem / S3
		logs	(optional)
6	External API-1	Weather integration	OpenWeatherMap
			API
7	External API-2	Optional location	Google Maps / GPS
		metadata	metadata
		integration	
8	Machine Learning	Predict traffic	ResNet50 + LSTM,
	Model	volume level (Low,	Random Forest
		Medium, High)	
9	Infrastructure	Deployment and	Localhost / Flask /
		execution	Heroku-ready

Table-2: Application Characteristics

S.No	Characteristic	Description	Technology
1	Open-Source	Flask, Pandas,	Python libraries
	Frameworks	Scikit-learn,	
		Matplotlib, Seaborn	
2	Security	Data validation,	Flask validation,
		local file access only,	HTTPS (Heroku)

		optional HTTPS support on	
		deployment	
3	Scalable	Modular Flask +	Flask, Gunicorn
	Architecture	model pipeline, easy	(Heroku/AWS)
		to scale or	
		containerize	
4	Availability	Can be hosted on	Heroku / AWS EC2 /
	-	free/paid cloud	Localhost
		instances, accessible	
		via web	
5	Performance	Low-latency	joblib, Fast Flask
		response (<1.1s),	API
		uses efficient model	
		serialization	