Laboratório de Circuitos Elétricos - 02/2024 - Turma 05 ${\bf Experimento~5} \\ 05/12/2024$

Grupo 5:

Yuri Shumyatsky - 231012826 Vinicius de Melo Moraes - 231036274

1 Introdução

A prática de laboratório de circuitos elétricos dedicada ao estudo de circuitos RC em regime permanente senoidal tem como objetivo compreender o comportamento desses circuitos quando submetidos a uma fonte de tensão alternada senoidal. Durante o experimento, são investigadas relações entre as tensões de entrada e capacitiva, defasagem, e impedâncias. Esses conceitos são essenciais para o entendimento da resposta em frequência do circuito e suas aplicações práticas, como filtragem de sinais. Além disso, a atividade proporciona uma oportunidade de explorar a relação teórica e prática, utilizando instrumentos de medição para observar os fenômenos e validar os modelos matemáticos associados.

2 Materiais

- National Instruments Elvis II
- 2 capacitores de 47 n F
- 2 resistores de 1,2k Ω

3 Procedimento

O National Instruments Elvis é usado como fonte, protoboard, e multímetro. Usa-se a função de multímetro para checar as resistências e capacitâncias dos componentes, que são marcadas na Tabela 1.

Grandeza	Valor nominal	Valor medido	Erro (%)
R_1	$1,2\mathrm{k}\Omega$	$1,1718$ k Ω	2,35
R_2	$1,2\mathrm{k}\Omega$	$1,\!1810\Omega$	1,58
C_1	47nF	49,90nF	6,17
C_2	$47 \mathrm{nF}$	47,54 nF	1,15

Tabela 1: Componentes

Em seguida, os componentes são usados para montar o circuito da Figura 1.

Figura 1: Circuito em regime AC

O Elvis possui um gerador de funções, que é usado para produzir uma onda senoidal com $2V_{pp}$, offset zero e frequência de 250Hz. Além do gerador, o equipamento também possui um osciloscópio, que é usado para medir as tensões relevantes e produzir os gráficos.

Para começar, é feita a transformação do circuito para o domínio dos fasores, de forma a facilitar as contas. Isso resulta no circuito da Figura 2.

Figura 2: Circuito no domínio fasorial

Nesse formato do circuito, foi feita análise nodal para obter as tensões V_1 e V_2 .

$$\frac{(-1+V_1)}{1250} + \frac{V_1}{-j13545} + \frac{(-V_2+V_1)}{1200} = 0$$

$$-\frac{V_2}{j13545} - \frac{(-V_2 + V_1)}{1200} = 0$$

que simplificam no seguinte sistema:

$$\begin{cases} V_1(16, 33 + j0, 74) - V_2(8, 33) = 8 \\ V_1(-8, 33) + V_2(8, 33 + j0, 74) = 0 \end{cases}$$

Com isso obtemos os valores esperados de $V_1=0,959-j0,175$ e $V_2=0,937-j0,259$, que podem ser transformados nas suas formas polares $V_1=0,975 \angle (-10,34^\circ)$ e $V_2=0,972 \angle (-15,45^\circ)$

Seguem o os Gráficos 1 e 2 que demonstram a diferença de amplitude entre V_0 e V_1 e V_0 e V_2 , respectivamente. Em azul escuro, temos a tensão da fonte e em verde as tensões capacitivas.

Gráfico 1: Tensão da fonte e V_1

Gráfico 2: Tensão da fonte e V_2

Em seguida, o processo é repetido para as frequências de 500Hz, 1kHz e 2kHz. Como a única parte alterada em todas contas é a impedância dos capacitores, que depende de ω (uma vez que $Z_c=\frac{1}{j\omega C}$), de forma análoga se encontram os valores de V_1 e V_2 expostos a seguir, e seus gráficos.

Figura 3: Circuito no domínio fasorial para $\omega=1000\pi$

$$f = 500Hz \implies \omega = 1000\pi:$$

$$V_1 = 0,859 - j0,307 = 0,910\angle(-19,25^\circ)$$

$$V_2 = 0,778 - j0,447 = 0,897\angle(-29,88^\circ)$$

Figura 4: Circuito no domínio fasorial para $\omega = 2000\pi rad/s$

$$f = 1kHz \implies \omega = 2000\pi rad/s:$$

$$V_1 = 0,639 - j0,403 = 0,755\angle(-32,24^\circ)$$

$$V_2 = 0,437 - j0,561 = 0,711\angle(-52,08^\circ)$$

Figura 5: Circuito no domínio fasorial para $\omega = 4000\pi rad/s$

$$f = 2kHz \implies \omega = 4000\pi rad/s$$
:
 $V_1 = 0,401 - j0,367 = 0,544\angle(-42,47^{\circ})$
 $V_2 = 0,089 - j0,432 = 0,441\angle(-78,36^{\circ})$

Gráfico 3: Tensão da fonte e V_1 em $\omega=1000\pi rad/s$

Gráfico 4: Tensão da fonte e V_2 em $\omega=1000\pi rad/s$

Gráfico 5: Tensão da fonte e V_1 em $\omega = 2000\pi rad/s$

Gráfico 6: Tensão da fonte e V_2 em $\omega = 2000\pi rad/s$

Gráfico 7: Tensão da fonte e V_1 em $\omega = 4000\pi rad/s$

Gráfico 8: Tensão da fonte e V_2 em $\omega=4000\pi rad/s$

Tendo todos esses dados, foram feitas as medições no circuito físico, usando o osciloscópio do Elvis. Usando os cursores, são feitas as seguintes medições da amplitude das tensões e o d
t (em segundos) entre os seus picos. O d
t é então multiplicado pelo ω para descobrir a diferença de fase em radianos entre ambas as ondas, e esse valor é convertido para graus.

Gráfico 9: Tensão da fonte e V_1 em f=250Hz

Gráfico 10: Tensão da fonte e V_1 em f=250Hz (ampliado)

Amplitude V_1 : 1,02V, dt: 136 $\mu s \implies$ Fase V_1 : -12,26°

Gráfico 11: Tensão da fonte e V_1 em f=500 Hz

Gráfico 12: Tensão da fonte e V_1 em f=500Hz (ampliado)

Amplitude V_1 : 0,999V, dt: 80 $\mu s \implies$ Fase V_1 : -14,38°

Gráfico 13: Tensão da fonte e V_1 em f=1000 Hz

Gráfico 14: Tensão da fonte e V_1 em f=1000Hz (ampliado)

Amplitude V_1 : 0,893V, dt: 48 $\mu s \implies$ Fase V_1 : -17,30°

Gráfico 15: Tensão da fonte e V_1 em f=2000 Hz

Gráfico 16: Tensão da fonte e V_1 em f=2000Hz (ampliado)

Amplitude V_1 : 0,574V, dt: 64 $\mu s \implies$ Fase V_1 : -46,07°

Gráfico 17: Tensão da fonte e V_2 em f=250 Hz

Gráfico 18: Tensão da fonte e V_2 em f=250 Hz (ampliado)

Amplitude V_2 : 1,02V, dt: 208 $\mu s \implies$ Fase V_2 : -18,74°

Gráfico 19: Tensão da fonte e V_2 em f=500 Hz

Gráfico 20: Tensão da fonte e V_2 em f=500 Hz (ampliado)

Amplitude V_2 : 0,935V, dt: 216 $\mu s \implies$ Fase V_2 : -38,90°

Gráfico 21: Tensão da fonte e V_2 em f=1000 Hz

Gráfico 22: Tensão da fonte e V_2 em f=1000 Hz (ampliado)

Amplitude V_2 : 0,744V, dt: 160 $\mu s \implies$ Fase V_2 : $-57,58^{\circ}$

Gráfico 23: Tensão da fonte e V_2 em f=2000 Hz

Gráfico 24: Tensão da fonte e V_2 em f=2000 Hz (ampliado)

Amplitude V_2 : 0,489V, dt: 112 $\mu s \implies$ Fase V_2 : $-80,62^{\circ}$

Agora que temos todos os dados, montam-se as tabelas 2 e 3.

Grandeza	Valor calculado	Valor medido	Erro (%)
Amplitude de V_1 (frequência $0, 25kHz$)	0,975V	1,02V	4,62
Amplitude de V_1 (frequência $0, 5kHz$)	0,910V	0,999V	9,78
Amplitude de V_1 (frequência $1kHz$)	0,755V	0,893V	18,28
Amplitude de V_1 (frequência $2kHz$)	0,544V	$0,\!574V$	5,51
Fase de V_1 em relação a V_0 (frequência $0, 25kHz$)	-10,34°	-12,26°	18,57
Fase de V_1 em relação a V_0 (frequência $0, 5kHz$)	-19,25°	-14,38°	25,30
Fase de V_1 em relação a V_0 (frequência $1kHz$)	-32,24°	-17,30°	46,34
Fase de V_1 em relação a V_0 (frequência $2kHz$)	-42,47°	-46,07°	8,48

Tabela 2: Tensões no capacitor C_1

Grandeza	Valor calculado	Valor medido	Erro (%)
Amplitude de V_2 (frequência $0, 25kHz$)	0,972V	1,02V	4,94
Amplitude de V_2 (frequência $0, 5kHz$)	0,897V	0,935V	4,24
Amplitude de V_2 (frequência $1kHz$)	0,711V	0,744V	4,64
Amplitude de V_2 (frequência $2kHz$)	0,441V	$0,\!489\mathrm{V}$	10,88
Fase de V_2 em relação a V_0 (frequência $0, 25kHz$)	-15,45°	-18,74°	21,29
Fase de V_2 em relação a V_0 (frequência $0, 5kHz$)	-29,88°	-38,90°	30,19
Fase de V_2 em relação a V_0 (frequência $1kHz$)	-52,08°	-57,58°	10,56
Fase de V_2 em relação a V_0 (frequência $2kHz$)	-78,36°	-80,62°	2,88

Tabela 3: Tensão no capacitor C_2

À medida que a frequência da tensão de entrada em um circuito com capacitor aumenta, a reatância capacitiva ($Z_c = \frac{1}{j\omega C}$) diminui, uma vez que é inversamente proporcional à frequência. Isso faz com que o capacitor ofereça menor oposição ao fluxo de corrente alternada, reduzindo a amplitude da tensão capacitiva em relação à tensão de entrada.

4 Conclusão

A prática realizada sobre circuitos RC em regime permanente senoidal permitiu compreender o comportamento do circuito diante de diferentes frequências de entrada, destacando a influência da impedância nas tensões capacitivas medidas, comparando-as com os valores teóricos. Os resultados obtidos validaram os conceitos teóricos relacionados ao regime senoidal e ressaltaram a importância desses circuitos em aplicações práticas, como controle de frequências e filtragem de sinais. A atividade reforçou a relação entre teoria e prática, consolidando o aprendizado dos princípios fundamentais dos circuitos elétricos.

5 Bibliografia

• HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de Física. 10. ed. v. 3. Rio de Janeiro: LTC, 2016.