ARQUITECTURA DE AGENTES REACTIVOS

(PARTE 2)

Luís Morgado 2010

MECANISMOS DE REACÇÃO SELECÇÃO DE ACÇÃO

- Como seleccionar as acções a realizar?
- Mecanismos de combinação e selecção de acções
 - Execução paralela de acções
 - Combinação de acções
 - Precedência de acções

SELECÇÃO DE ACÇÃO

Parallel actions

Actions which don't interfere with each other are executed in parallel (within the limitations of the architecture).

SELECÇÃO DE ACÇÃO

Prioritised actions

Actions interfere with each other, and the most important action takes precedence.

SELECÇÃO DE ACÇÃO

Combined actions

Distinct actions triggered by different percepts are combined into a single composite action.

SELECÇÃO DE ACÇÃO

HIERARQUIA

 Os comportamentos estão organizados numa hierarquia fixa de supressão

PRIORIDADE

 As respostas são seleccionadas de acordo com uma prioridade associada que varia ao longo da execução

FUSÃO

 As respostas são combinadas numa única resposta por composição (e.g. soma vectorial)

SELECÇÃO DE ACÇÃO

HIERARQUIA

Os comportamentos estão organizados numa hierarquia fixa de supressão

SELECÇÃO DE ACÇÃO

PRIORIDADE

 As respostas são seleccionadas de acordo com uma prioridade associada que varia ao longo da execução

Selecção por prioridade

SELECÇÃO DE ACÇÃO

FUSÃO

 As respostas são combinadas numa única resposta por composição (e.g. soma vectorial)

iRobot

[Brooks, 1985]

- Comportamentos organizados em camadas (níveis de competência) e responsáveis pela concretização independente de um objectivo
- Resultado do comportamento pode ser a entrada de outro comportamento
- Possibilidade de comportamentos das camadas superiores assumirem o controlo sobre comportamentos das camadas inferiores
- Camadas inferiores **não têm conhecimento** das camadas superiores
 - Hierarquia de comportamentos

- Saídas das camadas inferiores podem ser utilizadas por camadas superiores
- Camadas superiores controlam as camadas inferiores
 - Inibição
 - Desactivação de comunicação entre módulos
 - Supressão
 - Desactivação de comportamento
 - Reinício (Reset)
 - Reposição do estado inicial de um comportamento

MÓDULOS COMPORTAMENTAIS

[Brooks, 1991]

IMPLEMENTAÇÃO DE MÓDULOS COMPORTAMENTAIS

- Implementação com base em
 sequências de activação fixa (procedimentos)
- Implementação com base em regras estímulo resposta
- Implementação com base em **máquinas de estado aumentadas** (AFSM *Augmented Finite State Machines*)
 - Temporizadores
 - Cada AFSM realiza um comportamento e é responsável pela sua própria percepção do mundo

Exemplo: Tarefa de prospecção

- Tarefa consiste na procura de elementos do ambiente com características específicas (alvos)
- Quando o agente detecta um alvo, dirige-se até ele, pega no alvo e transporta-o até uma base
- Estas acções são repetidas até todos os alvos terem sido recolhidos para a base

Exemplo: Tarefa de prospecção

 Implementação com base em quatro comportamentos distintos

Vaguear

Movimentação em direcções aleatórias

• Evitar

- Virar para a esquerda (direita) caso seja detectado um obstáculo à direita (esquerda) e de seguida avançar
- Após três tentativas sem sucesso recuar

Pegar

 Tomar a direcção do alvo e avançar até ele; após o alvo alcançado fechar a pega

Regressar

 Tomar a direcção da base e avançar até a atingir; após atingir a base parar

Exemplo: Tarefa de prospecção

- Proposta como alternativa a abordagens simbólicas
- Arquitectura definida por conjuntos de comportamentos
- Comportamentos organizados em camadas (níveis de competência)
- Desenvolvimento incremental
- Robustez
- Simplicidade relativa
 - Problemas de escala

Exemplo:

[Brooks, 1985]

MODELAÇÃO DE COMPORTAMENTOS ANÁLISE DO DOMÍNIO DO PROBLEMA

- OBJECTIVOS
 - Definem a finalidade do agente
 - COMPORTAMENTOS
 - Definem formas de concretizar os objectivos
 - SUB-OJECTIVOS

- OBJECTIVOS
 - Recolher alvos
 - SUB-OBJECTIVOS
 - -Aproximar alvo
 - -Evitar obstáculos
 - -Explorar

COMPORTAMENTO RECOLHER

- Recolher alvos
 - Aproximar alvo
 - Aproximar alvo (direcção = ESQ)
 - Aproximar alvo (direcção = FRT)
 - Aproximar alvo (direcção = DIR)
 - Evitar obstáculos
 - Explorar

COMPORTAMENTO APROXIMAR ALVO

BIBLIOGRAFIA

[Russel & Norvig, 2003]

S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 2nd Edition, Prentice Hall, 2003

[Murphy, 2000]

R. Murphy, An Introduction to Al Robotics, MIT Press, 2000

[Wooldridge, 2002]

M. Wooldridge, An Introduction to Multi-Agent Systems, John Wiley & Sons, 2002

[Pfeifer & Scheier, 2002]

R. Pfeifer, C. Scheier, Understanding Intelligence, MIT Press, 2000

[Brooks, 1985]

R. Brooks, A Robust Layered Control System for a Mobile Robot, A. I. Memo 864, MIT AI-Lab, 1985

[Hoagland et al., 2001]

M. Hoagland, B. Dodson, J. Hauck, *Exploring The Way Life Works: The Science of Biology*, Jones & Bartlett Learning, 2001

[J. Staddon, 2001]

J. Staddon, Adaptive Dynamics: The Theoretical Analysis of Behavior, MIT Press, 2001

[Logan, 2001]

B. Logan, Designing Intelligent Agents, School of Computer Science, University of Nottingham, 2001