Lab 5

Wiktor Soral

October 31 2017

Monte Carlo simulations

Calculating evidence

$$P(\theta|\mathcal{D}) = \frac{P(\mathcal{D}|\theta) \times P(\theta)}{P(\mathcal{D})}$$

 $posterior = likelihood \times prior / evidence$

How to calculate evidence?

Calculating evidence

With only 2 or 3 values of θ it is fairly simple (recall HW 1):

$$P(\mathcal{D}) = [P(\mathcal{D}|\theta=1) \times P(\theta=1)] + [P(\mathcal{D}|\theta=2) \times P(\theta=2)]$$

In general we could write:

$$P(\mathcal{D}) = \sum_{\theta} P(\mathcal{D}|\theta) \times P(\theta)$$

Calculating evidence

Though, usually we will use θ with continuous scale (i.e. infinite number of values).

In math we denote summing across values of continuous scale as **integrating**:

$$P(\mathcal{D}) = \int_{\theta} P(\mathcal{D}|\theta) \times P(\theta) d\theta$$

Calculating integrals - analytical app.

Integral is a function used to calculate the area below the curve

We know from analytical solution: $\int x^2 dx = \frac{x^3}{3} + const$

Calculating integrals - numerical app.

Riemann integral (64 bins) – sum of boxes = 20.836

Computing integrals - numerical app.

- $\bullet~$ With 1 parameter/dimension CPU has to perform 100 operations
- With 2 parameters/dimensions CPU has to perform $100^2 = 10000$ operations
- With 3 parameters/dimensions CPU has to perform $100^3 = 1000000$ operations
- Numerical approach quickly becomes too hard even for fast computers

Sampling

Rejection sampling – pink rect area = 68

E.g. 318 of 1000 sampled points are below the curve - 0.318. $68 \times 0.318 = 21.624$