Kod ucznia	Liczba punktów

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2021/2022 STOPIEŃ WOJEWÓDZKI

1.	Test	konkursowy	zawiera	26	zadań.	Są	to	zadania	zamknięte	i	otwarte.	Na	ich
	rozwiązanie masz 90 minut. Sprawdź, czy test jest kompletny.												

- 2. Zanim udzielisz odpowiedzi, uważnie przeczytaj treść zadania.
- 3. Wszystkie odpowiedzi czytelnie i wyraźnie wpisuj w wyznaczonych miejscach.
- 4. Przy rozwiązywaniu zadań zamkniętych wyboru wielokrotnego wybierz jedną, prawidłową odpowiedź i zaznacz ją krzyżykiem, np.:

Α	X	С		D	
Jeżeli się pomylisz i zechcesz	, .	odpowiedź, to	złe zaznaczenie	otocz k	kółkiem
po czym skreśl właściwą lit	erę, np.:				
	$\overline{}$				

5. W innych zadaniach samodzielnie sformułuj odpowiedź i wpisz ją lub wykonaj zadanie zgodnie z instrukcją zawartą w poleceniu. Przedstaw tok rozumowania prowadzący do wyniku.

X

D

- 6. Test wypełniaj długopisem, nie używaj korektora, ołówka ani gumki. Nie komunikuj się z innymi uczestnikami konkursu.
- 7. Podczas rozwiązywania zadań nie możesz korzystać z kalkulatora.
- 8. Sprawdź wszystkie odpowiedzi przed oddaniem testu.
- 9. Nie podpisuj testu, zostanie on zakodowany.

Α

10. Brudnopis, dołączony do testu, nie podlega ocenie.

Numer zadania	1-19	20	21	22	23	24	25	26	Razem
	19 p.	2 p.	2 p.	2 p.	3 p.	4 p.	4 p.	4 p.	40 p.
Liczba punktów									

Zadanie 1. (1 p.)

Wyrażenie $\frac{1}{4}x^2 - 2x + 4$, dla każdej rzeczywistej liczby x, jest równe

$$\mathbf{A.} \left(\frac{1}{2}x - 2 \right) \left(\frac{1}{2}x + 2 \right)$$

C.
$$\left(\frac{1}{2}x - 2\right)\left(\frac{1}{2}x - 2\right)$$

B.
$$\left(-\frac{1}{2}x - 2\right)\left(-\frac{1}{2}x - 2\right)$$

D.
$$\left(\frac{1}{4}x - 2\right)(x - 2)$$

Zadanie 2. (1 p.)

Geodeta próbował zmierzyć w terenie kąt δ (rysunek obok). Ze względu na warunki terenowe nie było to możliwe, więc zmierzył kąty oznaczone na rysunku przez α , β , γ i otrzymał: α = 22°, β = 37°, γ = 46°. Kąt δ ma miarę

- **A.** 12°
- **B.** 13°
- **C.** 22°
- **D.** 23°

Zadanie 3. (1 p.)

Narysowano trzy proste równoległe: a, b i c. Prosta a leży między prostymi b i c. Odległość między prostymi a i b jest równa 2 cm, a odległość między prostymi a i c to 4 cm. Następnie narysowano okrąg o promieniu 3 cm i środku leżącym na prostej a. Ile łącznie punktów wspólnych z prostymi a, b i c ma ten okrąg?

Zadanie 4. (1 p.)

Z małej wyspy wypłynęły dwie łodzie – jedna płynęła z prędkością $6\frac{km}{h}$ w kierunku wschodnim, a druga z prędkością $8\frac{km}{h}$ w kierunku południowym. W jakiej odległości od siebie będą te łodzie po 30 minutach?

Zadanie 5. (1 p.)

Iloczyn trzech liczb jest równy 54. Pierwszą liczbę zwiększono dwa razy, drugą zmniejszono dziewięć razy, a trzecią zwiększono pięć razy. Nowy iloczyn jest równy

A. 8

В.	50

Zadanie 6. (1 p.)

Czworokąt ABCD jest kwadratem. Trójkąty CDG i EBF są podobne. Skala podobieństwa większego z nich do mniejszego jest równa

- **A.** 2
- **B.** 4
- **C.** 8
- **D.** 16

Zadanie 7. (1 p.)

W trójkącie o kątach 30°, 60°, 90° poprowadzono dwusieczną jednego kąta, która podzieliła ten trójkąt na dwa trójkąty. Jeżeli jeden z powstałych trójkątów jest trójkątem równoramiennym, to miary kątów drugiego z nich są równe:

- **A.** 30°, 45°, 105°.
- **B.** 30°, 30°, 120°.
- **C.** 45°, 60°, 75°.
- **D.** 30°, 60°, 90°.

Zadanie 8. (1 p.)

Jeżeli stożek ma średnicę podstawy k i wysokość H, to jego objętość jest równa

A.
$$\frac{\pi}{12} k^2 H$$

B.
$$\frac{\pi}{6}k^2H$$

C.
$$\frac{\pi}{4}k^2H$$

D.
$$\frac{\pi}{3}k^2H$$

Zadanie 9. (1 p.)

Jaki procent powierzchni koła zamalowano (rysunek obok)?

- **A.** 30%
- **B.** 70%
- **C.** 108%
- **D.** 252%

Zadanie 10. (1 p.)

Ile razy 3% liczby 3 jest większe od 0,5% liczby 0,5?

A. 6

B. 9

C. 36

D. 225

Zadanie 11. (1 p.)

Które z podanych wyrażeń dla x = -3 przyjmuje inną wartość niż dla x = 3?

A.
$$(x^2 - 9)$$

B.
$$|x| + 3$$

C.
$$(3-x)(3+x)$$
 D. $(-\frac{1}{2}x-3)$

$$(-\frac{1}{2}r - 3)$$

Zadanie 12. (1 p.)

Ile razy 10³ cm jest większe od 10⁻³ km?

A. 10

- **B.** 100
- **C.** 1000
- **D.** 10000

Zadanie 13. (1 p.)

W którym z poniższych stosunków Ania powinna podzielić odcinek o długości 36 cm, aby zbudować trójkąt z otrzymanych trzech odcinków?

- **A.** 1:2:6
- **B.** 1:3:5
- **C.** 2:3:4
- **D.** 2:3:7

Zadanie 14. (1 p.)

Marysia narysowała w układzie współrzędnych równoległobok nr 1. Kolejne przystające do niego równoległoboki rysowała według zasady (rysunek):

środek górnego boku ostatnio narysowanego równoległoboku to dolny lewy wierzchołek następnego równoległoboku.

W ten sposób Marysia narysowała n równoległoboków. Współrzędna y prawego górnego wierzchołka równoległoboku o numerze n jest równa

B. 2*n*

- **C.** 2n + 2
- **D.** 4*n*

Zadanie 15. (1 p.)

Na ile sposobów spośród 8 dziewcząt i 10 chłopców można losowo wybrać czteroosobową delegację do sztafety mieszanej 4 × 100 m, w skład której wejdą trzy dziewczynki i jeden chłopiec rozpoczynający sztafetę?

- **A.** 336
- **B.** 720
- **C.** 3360
- **D.** 5760

Zadanie 16. (1 p.)

lle wynoszą pole i obwód kwadratu ABCD, którego środkiem symetrii jest punkt O = (0, 0), a wierzchołek B ma współrzędne (0, -8)?

A. P = 64, Obwód =
$$8\sqrt{2}$$

C. P = 128, Obwód =
$$32\sqrt{2}$$

B. P = 128, Obwód =
$$16\sqrt{2}$$

D. P = 256, Obwód =
$$32\sqrt{2}$$

Zadanie 17. (1 p.)

Wartość wyrażenia $\frac{1}{2} + \frac{5}{6} - \frac{1}{3} + \frac{7}{10} - \frac{1}{5} + \frac{9}{14} - \frac{1}{7} + \frac{11}{18} - \frac{1}{9} + \frac{13}{22} - \frac{1}{11} + \frac{15}{26} - \frac{1}{13}$ jest równa

A. 2

B. $2\frac{1}{2}$

C. 3

D. $3\frac{1}{2}$

Zadanie 18. (1 p.)

Jeżeli usuniemy niewymierność z mianownika ułamka $\frac{\sqrt{8}+\sqrt{6}}{\sqrt{2}}$, to otrzymamy liczbę równą

A.
$$2 + \sqrt{3}$$

B.
$$2\sqrt{2} + \sqrt{6}$$

c.
$$4 + \sqrt{3}$$

D.
$$2 + 2\sqrt{3}$$

Zadanie 19. (1 p.)

Suma liczby ścian, krawędzi i wierzchołków pewnego graniastosłupa jest równa 44. Podstawą tego graniastosłupa jest

A. czworokąt

B. pięciokąt **C.** sześciokąt

D. siedmiokat

Zadanie 20. (2 p.)

Rysunek przedstawia trzy współśrodkowe okręgi, z których dwa o promieniach 4 cm i 8 cm wyznaczają szary pierścień. Oblicz promień okręgu zaznaczonego przerywaną linią, który dzieli szary pierścień na dwa pierścienie o równych polach.

Zadanie 21. *(2 p.)*

Korzystając ze wzoru
$$2 = \frac{np}{nr-s}$$
, gdzie $nr \neq s$, wykaż, że $n = \frac{2s}{2r-p}$ dla $2r \neq p$.

Zadanie 22. (2 p.)

Ołowianą półkulę o promieniu 6 cm przetopiono i z otrzymanego materiału odlano stożek o promieniu podstawy 4 cm. Wyznacz wysokość tego stożka.

Zadanie 23. (3 p.)

Jurek i jego brat Wojtek postanowili kupić piłkę do koszykówki. Jurek przeznaczył na ten cel kwotę równą 40% ceny piłki i jeszcze 20 zł, a Wojtek – kwotę równą 20% jej ceny i jeszcze 40 zł. Tata dołożył brakujące 60 zł. Ile kosztuje piłka?

Zadanie 24. (4 p.)

W trójkącie prostokątnym najdłuższy bok jest o 4,5 cm dłuższy od najkrótszego boku. Średni bok ma długość 7,5 cm. Oblicz długość najkrótszej wysokości tego trójkąta.

Zadanie 25. (4 p.)

Graniastosłup prawidłowy sześciokątny o wszystkich krawędziach długości 8 cm przecięto, otrzymując graniastosłup trójkątny i graniastosłup pięciokątny (rysunek obok).

Oblicz pole powierzchni całkowitej graniastosłupa pięciokątnego.

Zadanie 26. (4 p.)

Wojtek wykonał drewniany model sześcianu (rysunek obok). Używał listewek, których przekrój poprzeczny jest kwadratem o boku 2 cm. Masa 1 cm³ drewna, z którego je wykonano, jest równa 0,8 g.

Oblicz masę tego modelu, jeżeli krawędź sześcianu ma długość 20 cm.

