Tarea III

Román Contreras

15 de marzo de 2018

1. Producto interno e independencia lineal

1.1. Bases ortonormales

Ejercicio 1.1. Sea $\beta = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ un conjunto de vectores ortogonales, todos diferentes del vector $\vec{0}$.

Demuestra que β es un conjunto linealmente independiente.

Ejercicio 1.2. Sea Π un plano que pasa por el origen. Demuestra que existe una base ortonormal $\beta = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ tal que \vec{w}_1 y \vec{w}_2 están en Π y cualquier vector en el plano Π es una combinación lineal de \vec{w}_1 y \vec{w}_2 .

Ejercicio 1.3. Sea $\beta = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ un conjunto de vectores. Sean \vec{v} y \vec{w} dos vectores. Demuestra que si cada vector del conjunto β es una combinación lineal de los vectores \vec{v} y \vec{w} entonces β es un conjunto linealmente dependiente.

1.2. Ángulo entre vectores

Recordemos la desigualdad de $\mathit{Cauchy-Schwartz}$ que es válida para cualesquiera dos vectores \vec{v} \vec{w} :

$$|\langle \vec{v}, \vec{w} \rangle| \le ||\vec{v}|| \, ||\vec{w}||$$

Sean \vec{v} y \vec{w} dos vectores no nulos.

Ejercicio 1.4. Demuestra que la cantidad

$$\frac{\langle \vec{v}, \vec{w} \rangle}{\|\vec{v}\| \, \|\vec{w}\|}$$

está entre -1 y 1.

Definimos el ángulo entre \vec{v} y \vec{w} como el único ángulo entre 0 y π $\alpha_{\vec{v}\vec{w}}$ tal que

$$\cos(\alpha_{\vec{v}\vec{w}}) = \frac{\langle \vec{v}, \vec{w} \rangle}{\|\vec{v}\| \|\vec{w}\|}$$

dicho de otro modo,

$$\alpha_{\vec{v}\vec{w}} = \arccos\left(\frac{\langle \vec{v}, \vec{w} \rangle}{\|\vec{v}\| \|\vec{w}\|}\right)$$

Ejercicio 1.5. • Sea $\lambda > 0$ un real positivo. Demuestra que el ángulo entre \vec{v} y \vec{w} es el mismo que entre $\lambda \vec{v}$ y \vec{w} .

- Demuestra que el ángulo entre $\vec{-v}$ y \vec{w} es $\pi \alpha_{\vec{v}\vec{w}}$
- Demuestra que $\alpha_{\vec{v}\vec{w}} = \alpha_{\vec{w}\vec{v}}$
- Demuestra que si el ángulo entre \vec{v} y \vec{w} es 0 entonces existe $\lambda > 0$ tal que $\lambda \vec{v} = \vec{w}$.
- Demuestra que si el ángulo entre \vec{v} y \vec{w} es π entonces existe $\lambda < 0$ tal que $\lambda \vec{v} = \vec{w}$.

Ejercicio 1.6. Demuestra la ley de cosenos:

Si \vec{v} y \vec{w} son dos vectores no colineales tales que $\|\vec{v}\|=a$ y $\|\vec{w}\|=b$ y $\|\vec{v}-\vec{w}\|=c$, entonces

$$c^2 = a^2 + b^2 - 2ab\cos(\alpha_{\vec{v}\vec{w}})$$