Adaptive Proximal Average based Variance Reducing Stochastic Methods for Optimization with Composite Regularization

School of Computer Science and Technology, University of Science and Technology of China, Hefei, China

1. Introduction for basic methods

Traditional Formulation:

$$\min_{x \in \mathbb{R}^d} F(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) + r(x), \tag{1}$$

- $f_i: \mathbb{R}^d \to \mathbb{R}$: the empirical loss of the *i*-th sample with regard to the parameter x.
- r: the regularization term, which is convex but possibly non-smooth.
- Examples: LASSO, sparse SVM, ℓ_1, ℓ_2 -Logistic Regression.

Forward-Backward Splitting:

$$x^{k+1} = \operatorname{prox}_r^{\gamma}(x^k - \gamma \cdot \square), \qquad (2)$$

where \square can be $\nabla f(x^k)$ in GD, $\nabla f_i(x^k)$ in SGD, or $\nabla f_i(x^k) - \nabla f_i(\tilde{x}) + \nabla f(\tilde{x})$ in variance reducing stochastic gradient descent.

Proximal Operator:

$$\operatorname{prox}_{r}^{\gamma}(x) = \underset{y \in \mathbb{R}^{d}}{\operatorname{arg\,min}} \left(r(y) + \frac{1}{2\gamma} \|y - x\|^{2} \right). \quad (3)$$

One requirement for using proximal operators is that $\operatorname{prox}_r^{\gamma}(x)$ can be calculated effectively.

2. More complex problem

Composite Regularization:

$$\min_{x \in \mathbb{R}^d} F(x) = f(x) + r(x)$$

$$= \frac{1}{n} \sum_{i=1}^n f_i(x) + \sum_{k=1}^K w_k r_k(x),$$

where $w_k \geq 0$ and $\sum_{k=1}^K w_k = 1$.

Examples:

- Overlapping group lasso: $r(x) = \lambda \sum ||x_{g_k}||$.
- Graph-guided fused lasso:

$$r(x) = \sum_{\{i,j\}\in\mathcal{E}} w_{ij}|x_i - x_j|.$$

Difficulty:

 $\operatorname{prox}_r^{\gamma}(x)$ is hard to be calculated.

Drawbacks of Existing Methods

- ADMM: requires more space and involves complex implementation and convergence analysis.
- Three operator splitting: involves strong assumption.

3. Related works

1958

Reducing Stochastic \mathbf{Meth} -Variance ods (Prox-SVRG, Prox-SAGA)

- Use
$$v^k = \nabla f_j(x^k) - \nabla f_j(\tilde{x}) + \frac{1}{n} \sum_{i=1}^n \nabla f_i(\tilde{x})$$
 to replace $\nabla f_j(x^k)$.

- Prox-SVRG:

Define
$$\theta = \frac{1}{\gamma \mu (1-4L\gamma)m} + \frac{4L\gamma(m+1)}{(1-4L\gamma)m}$$
, then

$$EF(\tilde{x}_s) - F^* \le \theta[F(\tilde{x}_{s-1}) - F^*]. \tag{4}$$

If $0 < \gamma < 1/(4L)$ and m is large enough such that $\theta < 1$, then Prox-SVRG can achieve the linear convergence rate.

- Prox-SAGA:

By the Lyapunov function $T^k = \frac{1}{n} \sum_{i=1}^{n} f_i(x_i^k) -$

$$f(x^*) - \frac{1}{n} \sum_{i=1}^{n} \langle \nabla f_i(x^*), x_i^k - x^* \rangle + c ||x^k - x^*||^2,$$

$$\mathbb{E}\|x^k - x^*\|^2 \le \left(1 - \min\left\{\frac{1}{4n}, \frac{\mu}{3L}\right\}\right)^k T^0.$$
 (5)

Proximal Average (PA)

- Definition

The proximal average of r is the unique semicontinuous convex function $\hat{r}(x)$ such that

$$\operatorname{prox}_{\hat{r}}^{\gamma}(x) = \sum_{k=1}^{K} w_k \cdot \operatorname{prox}_{r_k}^{\gamma}(x). \tag{6}$$

- Lemma

Assume that each r_k is L_k -Lipschitz continuous, then $0 \le r(x) - \hat{r}(x) \le \frac{\gamma \bar{L}^2}{2}$, where $\bar{L}^2 =$ $\sum_{k=1}^{K} w_k L_k^2$.

- Conclusion. As the stepsize γ gets smaller, $\hat{r}(x)$ would be closer to r(x).

4. Our methods

Alternative:

$$\min_{x \in \mathbb{R}^d} \hat{F}(x) = f(x) + \hat{r}(x), \tag{7}$$

in which r is replaced by its proximal average \hat{r} . Then the iteration becomes

$$x^{k+1} = \operatorname{prox}_{\hat{r}}^{\gamma}(x^k - \gamma v^k)$$
$$= \sum_{k=1}^{K} w_k \cdot \operatorname{prox}_{r_k}^{\gamma}(x^k - \gamma v^k).$$

We need to decrease γ adaptively.

APA-SVRG

- ADA-SVRG Algorithm

1: **Initialize**: An initial number of inner loops $m_0 > 0$, decay rate $0 < \rho < 1$, and an initial point \tilde{x}_0 .

2: **for**
$$s = 1, 2, \dots,$$
do

3:
$$x^0 = \tilde{x}_{s-1}, \, \tilde{v} = \sum_{i=1}^n f_i(\tilde{x}_{s-1})/n;$$

$$4: \quad m_s = m_0 \cdot \rho^{-s};$$

5:
$$\gamma_s = \min\{1/4L, \rho^s\};$$

for
$$l=1,2,\cdots,m_s$$
 do

7: Randomly pick
$$j$$
 from $\{1, 2, \ldots, n\}$;

8:
$$v^l = \nabla f_j(x^{l-1}) - \nabla f_j(\tilde{x}_{s-1}) + \tilde{v};$$

$$x^{l} = \sum_{k=1}^{K} w_{k} \cdot \operatorname{prox}_{r_{k}}^{\gamma_{s}} (x^{l-1} - \gamma_{s} v^{l});$$

$$x^{\circ} = \sum_{k=1} w_k \cdot \operatorname{prox}_{r_k} (x^{\circ} - \gamma_s v^{\circ})$$

10: end for
$$\nabla^r$$

11:
$$\tilde{x}_s = \sum_{l=1}^{m_s} x^l / n$$
.

12: end for

- Theorem

Theorem 1 (APA-SVRG). Suppose that Lsmoothness, μ -strong convexity and L_k -Lipschitz continuous regularisers assumptions hold. Then for the update in APA-SVRG, it holds that

$$\mathbb{E}F(\tilde{x}_s) - F^*$$

$$\leq \theta^{s} (\hat{F}_{0}(\tilde{x}_{0}) - F^{*}) + \frac{\gamma_{0}}{2} \bar{L}^{2} \frac{\theta}{\theta - \rho} (\theta^{s} - \rho^{s}).$$

- Remarks

- · When $\rho = 1$, i.e. the stepsize is fixed, $\mathbb{E}F(\tilde{x}_{s+1})$ will not converge to the minimum value.
- · When $0 < \rho < 1$, $F(\tilde{x}_{s+1}) F^*$ approaches 0 at the exponential rate.

- Complexity

Corollary 1. To achieve the ϵ -accurate solution, the overall iteration complexity of APA-SVRG is $\sum_{s=0}^{S} \mathcal{O}(n+2m_s) = \mathcal{O}(nS + \sum_{s=0}^{S} m_s) =$ $\mathcal{O}(n\log\frac{1}{\epsilon} + m_0\frac{1}{\epsilon}).$

APA-SAGA

- APA-SAGA Algorithm

1: **Initialize**: An initial number of inner loops $m_0 > 0$, decay rate $0 < \rho < 1$, an initial point x^{0} , and $g_{i}^{0} = \nabla f(x^{0}), i = 1, 2, \dots, n$.

2: **for**
$$s = 1, 2, \dots, do$$

$$3: \quad m = m_0 \cdot \rho^{-s};$$

4:
$$\gamma_s = \frac{1}{3L} \cdot \rho^s$$
;

5:
$$x^0 = x_s$$
;

6: **for**
$$l = 1, \dots, m \, \mathbf{do}$$

Randomly pick
$$j$$
 from $\{1, 2, ..., n\}$;

$$v^l = \nabla f \cdot (x^{l-1}) - a^l \perp \nabla^n \quad a^l / n$$

8:
$$v^{l} = \nabla f_{j}(x^{l-1}) - g_{j}^{l} + \sum_{i=1}^{n} g_{i}^{l} / n;$$

9:
$$x^{l} = \sum_{k=1}^{K} w_{k} \cdot \operatorname{prox}_{r_{k}}^{\gamma_{s}}(x^{l-1} - \gamma_{s}v^{l});$$

10: Update $g_{i}^{l}, i = 1, 2, ..., n:$

$$g_i^l = \begin{cases} \nabla f_j(x^{l-1}), & \text{if } i = j, \\ g_i^{l-1}, & \text{otherwise.} \end{cases}$$

end for

12:
$$x_s = x^m$$
.

- Complexity

Corollary 2. To achieve the ϵ -accurate solution, the overall iteration complexity of APA-SAGA is $\mathcal{O}(n\log\frac{1}{\epsilon} + m_0\frac{1}{\epsilon}).$

5. Experiments

Comparisons

- The proposed APA-SVRG and APA-SAGA.
- PA-SVRG and PA-SAGA: proximal average based methods.
- SVRG-ADMM: stochastic ADMM combined with variance reduction.
- PA-ASGD: Accelerated stochastic gradient descent with proximal average.

Overlapping Group Lasso

Graph-Guided Logistic Regression

