Lab #1 Signal Flow Graphs

Students:

- Fareeda Mohamed Ali Abouzed 19016154
- Esraa Hassan Mokhtar Aboshady 19015407
- Ibrahim Tarek Ibrahim Abdelaal 19015167
- Ziad Reda Ali Saad 19015717

Problem Statement

Implementation of Signal flow graph representation of the system.

Main Features of the program

- Adding Nodes
- Adding Branches
- Numeric Gains for each Branch
- Solve the Signal Flow Graph
- Clear The Window

Data Structure

Node
 each Node is represented as a List of N, and its id
 each N is an id, gain

Node representation

N representation
Id: 1
Id: 2
Gain: 5.4

N representation
Id: 3
Gain: 4

Graph
 Graph is simply a list of Nodes

Graph representation

Built-in data structures in Java

- Map interface HashMap class
- · List interface LinkedList class
- Arrays
- Set interface HashSet class

Main modules

we have used Java, and Javafx.

Main modules:

- controls
- fxml
- graphics
- media

Algorithms used

To get Forward Paths, and Feedback Loops, we have used DFS (Depth-First Search) traverse Algorithm:

```
function dfs(src, des, graph, visited, temp, res):
    if src == des:
        temp.add(des)
        res.add(temp)
        return

visited[src] = true
    temp.add(src)
    for every child → graph[src]:
        if !visited[child]:
            dfs(child, des, graph, visited, temp, res)
            temp.remove(temp_size -1) // last added
    visited[src] = false
```

To get Non Touching Loops, and Delta, we have used normal for Loops.

Sample Runs

Test 1:

Test 2:

Test 3:

Simple User Guide

Main Window when Open:

Assumption:

Node 1 → Source Node

Node 2 → Destination Node

Tools:

To add New Node:

- Right Click On Button (Add Node)
 The program will count "width / num_of_nodes" and return the new Nodes in their right place
- Number of Nodes Text Area will be increased by one
- Like:

To add Edge:

• First Time you Press Right Click a Warning will pop up, saying if OK, you can't add any new Node unless you press Clear and Clear the scene

- If OK, you don't wanna any New Nodes but Branches
- · if CANCEL, you can continue adding Nodes
- To draw a Branch:
- First Right Click on the first Node
- Second Right Click on the second Node
 (sound pop up as a message of passing, direction from first → second)
- Some constraints here:
 - No branch from a Specific Node to 1 (source)
 - No branch from last Node (destination) to any Node
 - No more than one Branch from a node to another (sound pop up a message of a constraint has been hacked)
- Default gain = 1, Gain text Area accepts only numbers (negative, or positive real numbers)

To Solve:

- Right Click on Solve Button, a new window will pop up as containing
 - Forward Paths
 - Feedback Loops
 - Non touching Loops
 - and their gain
 - Delta Values
 - Over all Value

To Clear The Scene:

• Right Click on Clear Button, congratulations you're clean now:)

How To Run

- clone The repo (https://github.com/farida52369/Signal-Flow-Graph)
- download java (version 11)
- download javaFX (version 17) in your PC
- add javaFX library to program structure
- run HelloApplication.java
- don't forget to enjoy the program

