Graph Generator

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

DreamGrid has made a graph generator. The generator will take in a single integer n and generate an undirected graph with n vertices.

More specifically, the generator will generate an empty graph G and a permutation p of $\{1, 2, ..., n\}$. After that, the generator will do the following operations n times and during the q-th operation:

1. find the all connected components C_1, C_2, \ldots, C_m in G.

- 2. choose a subset S_q of $\bigcup_{i=1}^m C_i$ such that no two vertices in S_q belong to the same connected component.
- 3. create a new vertex with index p_q in G and add an edge between p_q and every vertex v in $\bigcup_{i \in S_q} C_{bel_i}$, where bel_i is the index of connected component which i belongs to.

Given the final generated graph, DreamGrid would like to know all the p_q and S_q .

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains two integers n and m $(1 \le n \le 10^5, 0 \le m \le \min(10^5, \frac{n(n-1)}{2}))$ – the number of vertices and the number of edges.

Each of the next m lines contains two integers u_i and v_i $(1 \le u_i, v_i \le n)$. There will be no self loops or multiple edges.

It is guaranteed that neither the sum of all n nor the sum of all m exceeds 2×10^6 .

Output

For each test case, if the the graph cannot be generated by the generator, output "No" in the first line. Otherwise, output "Yes" in the first line. Then in the *i*-th of the following line, output two integers q_i and s_i $(1 \le q_i \le n)$ followed with s_i integers: $a_1, a_2, \ldots, a_{s_i}$ $(1 \le a_j \le n)$ – the index of the newly created vertex and the subset during the *i*-th operation. If there are multiple solutions, print any of them.

Example

standard input	standard output
3	Yes
3 0	1 0
4 4	2 0
1 2	3 0
2 3	Yes
3 4	1 0
2 4	4 0
5 5	3 1 4
1 2	2 2 1 3
2 3	No
3 4	
4 5	
2 4	