CSC373 Worksheet 1

July 16, 2020

Source: link

- 1. CLRS 4.2-2: Write Pseudocode for Strassen's algorithm
- 2. **CLRS 4.2-4:** What is the largest k such that if you can multiply 3×3 matrics using k multiplications (not assuming commutativity of multiplication), then you can multiply $n \times n$ matrices in time $o(n^{\lg 7})$? What would the runing time of this algorithm be?
- 3. CLRS 4.2-5: V.Pan has discovered a way of multiplying 68 × 68 matrices, using 132,464 multiplications, a way of multiplying 70 × 70 matrices using 143,640 multiplications, and a way of multiplying 72 × 72 matricsusing 155,424 multiplications. Which method yields the best asymptotic running time when used in a divide-and-conquer matric-multiplication algorithm? How does it compare to Strassen's algorithm?
- 4. CLRS 4.2-7: Show how to multiply the complex numbers a + bi and c + di using only three multiplications of real numbers. The algorithm should take a, b, c and d as input and product the real component ac bd and the imaginary component ad + bc separately.
- 5. **CLRS 4-1:** Give asymptotic upper and lower bounds for T(n) in each of the following recurrences. Assume that T(n) is constant for $n \leq 2$. Make your bounds as tight as possible, and justify your answers
 - a) $T(n) = 2T(n/2) + n^4$
 - b) T(n) = T(7n/10) + n
 - c) $T(n) = 16T(n/4) + n^2$
 - d) $T(n) = 7T(n/3) + n^2$
 - e) $T(n) = 7T(n/2) + n^2$
 - f) $T(n) = 2T(n/4) + \sqrt{n}$
 - g) $T(n) = 2T(n-2) + n^2$
- 6. CLRS 33.4-2: Show that it actually suffices to check only the points in the 5 array positions following each point in the array Y'

CSC 373 Worksheet 1

7. CLRS 33.4-4: Give two points p_1 and p_2 in the plane, the L_{∞} -distance between them is given by $max(|x_1-x_2|,|y_1-y_2|)$. Modify the closest-pair algorithm to use the L_{∞} -distance.

8. CLRS 33.4-6: Auggest a change to the closest-pair algorithm that avoids presorting the Y array but leaves the running time as $O(n \lg n)$. (*Hint:* Merge sorted arrays Y_L and Y_R to form the sorted array Y.