MAT1140 - Oblig 1

Jon-Magnus Rosenblad

September 2018

Oppgave 1

Vi definerer relasjonen \sim på X ved

$$f \sim g \iff \{n \in \mathbb{N} \mid f(n) \neq g(n)\}$$

og vi definerer mengden $D_{f,g}$ for alle funksjoner $f,g \in X$ ved

$$D_{f,g} = \{ n \in \mathbb{N} \mid f(n) \neq g(n) \}.$$

(i) Vi ser at relasjonen er refleksiv, ettersom for enhver $f \in X$ har vi at $D_{f,f} = \{n \in \mathbb{N} \mid f(n) \neq f(n)\} = \emptyset$ som er endelig, så $\forall f \in X, f \sim f$ og dermed er \sim refleksiv.

Videre ser vi at $D_{f,g} = D_{g,f}$, så $f \sim g \Rightarrow g \sim f$. Dermed er \sim symmetrisk. Så antar vi at vi har $f,g,h \in X, \ f \sim g$ og $g \sim h$, dvs. $D_{f,g}$ er endelig og $D_{g,h}$ er endelig. Vi ser også at $D_{f,h} \subseteq D_{f,g} \bigcup D_{g,h}$ og $D_{f,g} \bigcup D_{g,h}$ er endelig, så siden en delmengde av en endelig mengde også er endelig må $D_{f,h}$ være endelig, så $f \sim h$, og dermed er \sim transitiv.

Siden \sim er en refleksiv, symmetrisk og transitiv relasjon er \sim ekvivalensrelasjon.

- (ii) Vi antar at $f_1 \sim f_2$ og $g_1 \sim g_2$, så D_{f_1,f_2} og D_{g_1,g_2} er endelige mengder. Vi ser så at for at $f_1(n)g_1(n) \neq f_2(n)g_2(n)$ må $f_1(n) \neq f_2(n)$ eller $g_1(n) \neq g_2(n)$, men vi vet at dette skjer bare i et endelig antall steder, nemlig $D_{f_1,f_2} \bigcup D_{g_1,g_2}$, så $D_{f_1g_1,f_2g_2} \subseteq D_{f_1,f_2} \bigcup D_{g_1,g_2}$ og dermed er $f_1g_1 \sim f_2g_2$
- (iii) Vi ser at definisjonen av \cdot er veldefinert, for uavhengig av hvilke representanter f og g vil velger for henholdsvis [f] og [g] vil produktet være av samme klasse [fg]. Dette følger direkte fra forrige oppgave.
- (iv) Velger vi klassene [f] og [g] ved å velge representantene:

$$f(x) = \begin{cases} 1 & x \text{ er et partall} \\ 0 & \text{ellers} \end{cases}$$

$$g(x) = \begin{cases} 0 & x \text{ er et partall} \\ 1 & \text{ellers} \end{cases}$$

ser vi at $[f] \neq [\overline{0}]$ og $[g] \neq [\overline{0}]$ siden de er forskjellige i uendelig mange punkter (nemlig når x er henholdsvis et partall og et odeltall). Videre ser

vi at
$$(fg)(x) = \begin{cases} 0 & x \text{ er et partall} \\ 0 & \text{ellers} \end{cases} = \bar{0}, \text{ så } [f] \cdot [g] = [fg] = [\bar{0}].$$

(v) Vi definerer relasjonen \leq på X/\sim ved

$$[f] \leq [g] \iff \{n \in \mathbb{N} \mid f(n) > g(n)\} \text{ er endelig}$$

og for alle $f, g \in X/\sim$ definerer vi mengden

$$G_{f,g} = \{ n \in \mathbb{N} \mid f(n) > g(n) \}.$$

For at relasjonen skal være veldefinert trenger vi at relasjonen holder uavhengig av hvilke representanter vi velger for klassene. Anta at vi velger f, f' som representanter for [f] og g, g' som representanter for [g]. Vi observerer at $f'(x) > g(x) \Rightarrow (f(x) > g(x) \lor f'(x) \neq f(x))$, så $G_{f',g} \subseteq G_{f,g} \bigcup D_{f',f}$, men siden $f \sim f'$ er $D_{f',f}$ endelig, og siden $[f] \leq [g]$ er $G_{f,g}$ endelig, så $G_{f',g}$ er endelig. Tilsvarende argument holder for $G_{f',g'} \subseteq G_{f',g} \bigcup D_{g',g}$ som viser at $G_{f',g'}$ er endelig, og dermed har vi $[f] \leq [g] \Rightarrow [f'] \leq [g']$ for vilkårlige representanter $f \sim f', g \sim g'$, så $[f] \leq [g]$ uavhengig av representanter for klassene.

(vi) Vi ser at for alle $f \in X$ gjelder $G_{f,f} = \emptyset$, så $[f] \leq [f]$, så \leq er refleksiv. Så ser vi at om vi har $[f] \leq [g]$ og $[g] \leq [f]$ vet vi at både $G_{f,g}$ og $G_{g,f}$ er endelig, men som en rask observasjon ser vi at $D_{f,g} = G_{f,g} \bigcup G_{g,f}$, og $G_{f,g} \bigcup G_{g,f}$ er endelig, så [f] = [g]. Dermed er \leq antisymmetrisk.

Anta så at $[f] \leq [g]$ og $[g] \leq [h],$ dvs. $G_{f,g}$ og $G_{g,h}$ er endelig. Vi observerer så at

$$\begin{split} f(x) > h(x) &\iff (f(x) > g(x) > h(x)) \lor \\ (g(x) &\ge f(x) > h(x)) \lor \\ (f(x) > h(x) &\ge g(x)) \end{split}$$

Vi ser videre at

$$f(x) > g(x) > h(x) \Rightarrow f(x) > g(x) \land g(x) > h(x)$$

$$\Rightarrow x \in G_{f,g} \cap G_{g,h}$$

$$g(x) \ge f(x) > h(x) \Rightarrow g(x) > h(x)$$

$$\Rightarrow x \in G_{g,h}$$

$$f(x) > h(x) \ge g(x) \Rightarrow f(x) > g(x)$$

$$\Rightarrow x \in G_{f,g}$$

Alt i alt har vi $f(x) > h(x) \implies x \in (G_{f,g} \cap G_{g,h}) \cup G_{g,h} \cup G_{f,g} = G_{f,g} \cup G_{g,h}$. Dermed har vi $G_{f,h} \subseteq G_{f,g} \cup G_{g,h}$. Antar vi at $[f] \leq [g]$ og $[g] \leq [h]$, dvs. $G_{f,g}$ og $G_{g,h}$ er endelig, ser vi også at $G_{f,g} \cup G_{g,h}$ er endelig, så $G_{f,h}$ er endelig og vi får $[f] \leq [h]$. Dermed er \leq transitiv.

Siden < er refleksiv, antisymmetrisk og transitiv er det en partiell ordning.

Velger vi $f(x) = \begin{cases} 1 & x \text{ er et partall} \\ 0 & \text{ellers} \end{cases}$ og $g(x) = \begin{cases} 0 & x \text{ er et partall} \\ 1 & \text{ellers} \end{cases}$ ser vi at både $[f] \nleq [g]$ og $[g] \nleq [f]$, så \leq er ikke en total ordning.

Oppgave 2

- (i) Vi ser at $x \in \sigma(x)$, så $\sigma(x) \neq \emptyset$ for alle mengder x.
- (ii) Siden $\emptyset \in A$ for alle induktive mengder, følger det at $\emptyset \in \omega$. For enklere notasjon lar vi \mathcal{A} være familien av alle induktive mengder. Anta at $x \in \omega$. Da må $x \in \bigcap_{A \in \mathcal{A}} A$, men siden for alle $A \in \mathcal{A}$ gjelder $x \in A \Rightarrow \sigma(x) \in A$, så $\sigma(x) \in \bigcap_{A \in \mathcal{A}} A$, og dermed er $\sigma(x) \in \omega$. Dermed gjelder både $\emptyset \in \omega$ og for alle $x \in \omega$, $\sigma(x) \in \omega$, så ω er en induktiv mengde.
- (iii) Anta at P er en egenskap slik at

$$P(\emptyset)$$

$$\forall x \in \omega \quad P(x) \Rightarrow P(\sigma(x))$$

La $\omega' = \{x \in \omega \mid P(x)\}$. Siden $P(\emptyset)$ og $\emptyset \in \omega$ må vi ha $\emptyset \in \omega'$. Videre ser vi at $P(x) \Rightarrow P(\sigma(x))$, så $x \in \omega' \Rightarrow \sigma(x) \in \omega'$, men dette medfører at ω' er en induktiv mengde, men siden $\omega' \subseteq \omega$ og ω er den minste induktive mengden må vi ha $\omega' = \omega$, så $\forall x \in \omega$ P(x).

(iv) Vi lar påstanden P være gitt ved $P(x) \Longleftrightarrow (\forall y \ y \in x \Rightarrow y \subset x)$. Vi ser at $\forall y \ y \notin \emptyset$, så utgangspunktet for implikasjonen er aldri oppfylt, så dermed er $P(\emptyset)$ oppfylt. Anta så at P(x) gjelder for en vilkårlig $x \in \omega$, dvs. $\forall y \ y \in x \Rightarrow y \subset x$. Videre har vi at $y \in \sigma(x) = x \bigcup \{x\}$, så $y \in x \lor y = x$. Vi tar hvert tilfelle hver for seg.

Anta først at $y \in x$. Da har vi fra antagelsen av P(x) at $y \subset x$, så $y \subset x \bigcup \{x\} = \sigma(x)$, så $y \subset \sigma(x)$.

Anta så heller at y = x. Da gjelder også $y \subset x \bigcup \{x\} = \sigma(x)$.

Dermed har vi vist at $P(x) \Rightarrow P(\sigma(x))$. Ved induksjon medfører dette at $\forall x \in \omega \quad P(x)$, eller med andre ord $\forall x \in \omega, \forall y \quad y \in x \Rightarrow y \subset x$.

(v) Vi antar for motsigelse at $\exists x, y \in \omega$ $x \in y \land y \in x$, men fra forrige oppgave ser vi at dette medører at $x \subset y \land y \subset x$ som er en selvmotsigelse, så vår antagelse var feil, og dermed har vi $\forall x, y \in \omega$ $\neg (x \in y \land y \in x)$.

(vi) Siden vi har $\sigma(x) = \sigma(y)$ følger det at $x \in \sigma(y) = y \bigcup \{y\}$, så $x \in y \lor x = y$. Tilsvarende kan vi resonere for at $y \in x \lor y = x$. Fra dette får vi fire forskjellige tilfeller:

$$(x \in y \land y \in x) \lor (x \in y \land y = x) \lor (x = y \land y \in x) \lor (x = y \land y = x)$$

men fra forrige oppgave vet vi at vi ikke kan ha $x \in y \land y \in x$ så vi må ha x = y. Dermed får vi $\sigma(x) = \sigma(y) \Rightarrow x = y$ og dermed er σ injektiv.

(vii) Anta for motsigelse at $\exists x \in \omega \setminus \{\emptyset\}$, $\nexists y \in \omega$ $x = \sigma(y)$. Da kan vi trygt fjerne x fra ω og beholde egenskapen ved ω som en induktiv mengde, men dette motsier at ω allerede var den minste induktive mengden, så vår antagelse var feil. Dermed har vi at $\forall x \in \omega \setminus \{\emptyset\}$, $\exists y \in \omega$ $x = \sigma(y)$, så σ er surjektiv.