Name: Bodhisatya Ghosh

Class: CSE DS **UID**: 2021700026 **Subject**: NLP

Experiment number: 4

Aim: Perform document classification using NB(no use of library of NB classifier)

Copy abstract of papers and create labelled dataset.

Create word count vectors. Each row represents a document, and each column represents a word.

Read text from set of test documents and classify the unlabelled documents.

Generate confusion matrix, and calculate accuracy, precision, recall, F1 score.

Theory

The Naive Bayes algorithm is a supervised machine learning algorithm based on the Bayes' theorem. It is a probabilistic classifier that is often used in NLP tasks like sentiment analysis (identifying a text corpus' emotional or sentimental tone or opinion).

exp 4

The Bayes' theorem is used to determine the probability of a hypothesis when prior knowledge is available. It depends on conditional probabilities. The formula is given below:

Naive Bayes Classifier:

P(A|B) is posterior probability i.e. the probability of a hypothesis A given the event B occurs.

P(B|A) is likelihood probability i.e. the probability of the evidence given that hypothesis A is true.

P(A) is prior probability i.e. the probability of the hypothesis before observing the evidence

P(B) is marginal probability i.e. the probability of the evidence.

```
In []: import pandas as pd
import numpy as np
import math
import nltk
import matplotlib.pyplot as plt
```

Load data (Fake news dataset)

```
In [ ]: data = pd.read_csv("./data.csv", usecols=['text','label'])
    df = data.copy().iloc[0:,:]
```

Preprocessing data

Dropping null values

```
In [ ]: df.dropna(inplace=True)
```

Removing non-alphanumeric characters

```
In []: import re
    def cleanText(string):
        result = re.sub(r'[^A-Za-z]',' ',string) #remove non-alphanumeric characters
        result = re.sub(r'\s+',' ',result)
        result = result.lower()
        return result
```

Removing stop words

```
In [ ]: df['text'] = df['text'].apply(lambda sent: cleanText(sent)).values
In [ ]: from nltk.corpus import stopwords
```

```
stop_words = set(stopwords.words('english'))
df['text'] = df['text'].apply(lambda x: ' '.join([word for word in x.split() if word not in (stop_words)]))
```

Performing lemmatization

```
In [ ]: w_tokenizer = nltk.tokenize.WhitespaceTokenizer()
    lemmatizer = nltk.stem.WordNetLemmatizer()

def lemmatize_text(text):
    st = ""
    for w in w_tokenizer.tokenize(text):
```

```
st = st + lemmatizer.lemmatize(w) + " "
return st
df['text'] = df.text.apply(lemmatize_text)
```

Split data 80:20 train:test

```
In []: text = df['text'].values
label = df['label'].values

In []: from sklearn.model_selection import train_test_split
    train_text, test_text, train_label, test_label = train_test_split(text, label, random_state=100, test_size=0.2)
```

Building the Naive Bayes classifier

```
In [ ]: from sklearn.feature_extraction.text import CountVectorizer
from collections import defaultdict
```

Create word vectors

```
In [ ]: vec = CountVectorizer(max_features = 3000)
    X = vec.fit_transform(train_text)
    vocab = vec.get_feature_names_out()
    X = X.toarray()
    word_counts = {}
    for l in range(2):
        word_counts[l] = defaultdict(lambda: 0)
    for i in range(X.shape[0]):
        l = train_label[i]
        for j in range(len(vocab)):
             word_counts[l][vocab[j]] += X[i][j]
```

Apply Laplace Smoothing

```
In [ ]: def laplace_smoothing(n_label_items, vocab, word_counts, word, text_label):
    a = word_counts[text_label][word] + 1
    b = n_label_items[text_label] + len(vocab)
```

```
return math.log(a/b)
def group by label(x, y, labels):
    data = \{\}
    for 1 in labels:
        data[1] = x[np.where(y == 1)]
    return data
def fit(x, y, labels):
    n label items = {}
    log label priors = {}
    n = len(x)
    grouped data = group by label(x, y, labels)
   for 1, data in grouped data.items():
        n label items[1] = len(data)
       log label priors[1] = math.log(n label items[1] / n)
    return n label items, log label priors
def predict(n label items, vocab, word counts, log label priors, labels, x):
    result = []
    for text in x:
        label scores = {1: log label priors[1] for 1 in labels}
        words = set(w tokenizer.tokenize(text))
        for word in words:
            if word not in vocab: continue
            for 1 in labels:
                log w given 1 = laplace smoothing(n label items, vocab, word counts, word, 1)
                label scores[1] += log w given 1
        result.append(max(label scores, key=label scores.get))
    return result
```

```
Accuracy of prediction on test set: 0.7278590748318191
Precision of prediction on test set: 0.9745921369350093
Recall of prediction on test set: 0.48762210624916363
F1 score of prediction on test set: 0.6500178380306814

In []: print("Confusion matrix of prediction on test set: ", confusion_matrix(test_label,pred))
Confusion matrix of prediction on test set: [[6851 95]
[3829 3644]]
```

Curiosity questions

1. What is the relation between accuracy and precision?

Precision:

Definition: Precision is the ratio of correctly predicted positive observations to the total predicted positives. It focuses on the accuracy of the positive predictions.

Interpretation: High precision means that the model has fewer false positives.

Accuracy:

Definition: Accuracy is the ratio of correctly predicted observations (both true positives and true negatives) to the total observations. Interpretation: Accuracy provides an overall measure of the model's correctness, but it can be misleading if there is an imbalanced class distribution.

2. Give example where precision is significant compared to accuracy?

Precision focuses more on the ability to predict a single class, rather than the overall ability to classify. Precision is more important than accuracy in situations where wrong predictions have heavy consequences. For example: Medical prediction of a rare disease should have high precision as predicting the wrong class may have dire consequences

3. Give example where accuracy is significant compared to precision?

Accuracy is more important than precision in situations where wrong predictions do not have serious implications. For example: Spam email classification should have a high accuracy the consequences of both false positives and false negatives are important, but neither is inherently more critical than the other.