ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ Императора Александра I»

Кафедра «Информационные и вычислительные системы» Дисциплина «Структуры и алгоритмы обработки данных»

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 1

Выполнил студент

Факультет: АИТ Группа: ИВБ-211

Проверил:

Шефнер А.

канд. ист. наук доц. Забродин Андрей Владимирович

Санкт-Петербург

2023

Оценочный	лист результатов	ЛР	No	1

Ф.И.О. студента	Шефнер Альберт		
Группа	ИВБ-211		

№ п/п	Материалы необходимые для оценки знаний, умений и навыков	Показатель оценивания	Критерии Оценивания	Шкала оценивания	Оценка
		Соответствие	Соответствует	7	
		методике	He	0	
		выполнения	соответствует		
		Срок	Выполнена в	2	
		выполнения	срок		
1	Лабораторная		Выполнена с	0	
	работа№		опозданием на 2		
			недели		
		оформление	Соответствует	1	
			требованиям	0	
			He		
			соответствует		
	итого			10	
	количество баллов				

Доцент кафедры	
«Информационные и вычислительные	
системы»	Забродин А.В.
«»2023 г.	

Цели работы:

• Освоить основные алгоритмы сортировки

Задание

Разработать и реализовать следующие алгоритмы сортировок:

- Сортировка выбором
- Пузырьковая сортировка
- Сортировка вставками
- Сортировка слиянием
- Пирамидальная сортировка
- Быстрая сортировка
- лексикографическая (входными данными может быть журнал, где сделать сортировку по имени, отчеству, п-ой букве фамилии и т.д)

Сайт (Архив погоды с 1929 года (pogoda-service.ru)) с которого каждому студенту выдаётся массив по 6(по одной на каждую сортировку) странам за год.

В отчёте нужно представить диаграмму, отображающую скорость каждой сортировки. Данные брать из файла. Для каждого алгоритма вычислить его скорость в О-символике

Используемые средства

В качестве интегрированной среды разработки использовалась JetBrains CLion. Для работы в консоли с потоками ввода-вывода использовалась стандартная библиотека <iostream>. Для поддержки функционального программирования использовалась библиотека <functional>

Исходный код

Исходный код программы доступен по ссылке:

https://github.com/n0emo/uni/tree/main/3%20term/Structures%20and%20Algorithms/Lab%201

Поведение программы

```
"/home/albert/Documents/uni/3 term/St
Enter task number:
1 - sort a CSV file
2 - test all sorts with a CSV file
```

При запуске программы вы увидите небольшое меню:

- 1 отсортировать CSV файл и записать результат в указанную директорию.
- 2 Протестировать все функции сортировки на время по указанному CSV файлу.

Оценки сложности алгоритмов

- 1. **Сортировка выбором:** выбор элемента методом линейного поиска требует прохождения по всему массиву, что имеет сложность O(n). Далее найденный элемент вставляется в нужную позицию за константное время O(1). Эти две операции производятся для каждого элемента, поэтому итоговая сложность алгоритма: $O(n^2)$.
- 2. **Пузырьковая сортировка:** этот алгоритм включает в себя два вложенных друг в друга цикла, количество итераций которых линейно растёт с количеством элементов массива, поэтому итоговая сложность алгоритма: $O\left(n^2\right)$
- 3. **Сортировка вставками:** для каждого из элемента массива производится вставка в нужную позицию, которая имеет сложность O(n), итоговая сложность алгоритма: $O(n^2)$.

- 4. **Сортировка слиянием:** делит массив на две равные части и сортирует их, после чего сливает обратно. Слияние двух отсортированных массивов имеет сложность O(n), а производиться оно будет $log_2(n)$ раз (поскольку массив делится в 2 раза). Итоговая сложность: $O(n \cdot \log(n))$.
- 5. **Пирамидальная сортировка:** построение первоначальной максимальной кучи имеет сложность $O(n \cdot log(n))$, далее п раз происходит перестановка и возврат максимальной кучи со сложностью O(log(n)). Итоговая сложность алгоритма: $O(n \cdot log(n))$.
- 6. **Быстрая сортировка:** разделение массива на 2 части имеет сложность O(n). Таких разделений в среднем $\log_2(n)$ раз. Итоговая сложность алгоритма: $O(n \cdot log(n))$.

Результаты тестов

Тесты проводились на CSV файлах people-100.csv, people-10000.csv и people-100000.csv. Вы можете найти их в репозитории проекта. Информация о ПО и оборудовании:

• Компилятор: LLVM

• Флаг оптимизации: -О3

• Процессор: AMD Ryzen 4700U

OC: Fedora Linux 38

Время, затраченное на сортировку

Алгоритм сортировки	Количество записей		
	100	10000	100000
Сортировка выбором	0.000234951 c	0.794204 c	160.005 c
Пузырьковая сортировка	0.00164801 c	8.40049 c	721.168 c
Сортировка вставками	0.000549454 c	2.77752 c	624.194 c
Сортировка слиянием	0.000508176 c	0.0589581 c	1.0649 c
Пирамидальная сортировка	0.000156181 c	0.0101833 c	0.177641 c
Быстрая сортировка	0.000324629 c	0.0205406 с	0.298199 c

Диаграмма

Диаграмма затраченного времени на сортировку в логарифмической шкале.

Вывод

Я изучил различные алгоритмы сортировки. Для моих данных и моего способа хранения наиболее быстрым алгоритмом оказался алгоритм пирамидальной сортировки. Это связано с тем, что перестановка двух записей при моём способе хранения это довольно дорогая операция, а пирамидальная сортировка совершает меньше всего перестановок. Так же, возможно, сыграли роль оптимизации LLVM, так как действительно сильно пирамидальная сортировка оторвалась от быстрой сортировки и сортировки слиянием только после компиляции в Release режиме с флагом оптимизации -03.