Lab.

Audio Front End and Playback

Goal

Audio Signal

- ◆ Audio jack
- ◆ Microphone

Signal Conditioning

- ◆ CE Amplifier
- ◆ Lowpass Filter
- ◆ Amplitude
- ◆ DC offset
- ◆ No aliasing

Digital Signal Processing

- ◆ ADC (Arduino)
- ◆ Record/Playback
- ◆ Sampling
- ◆ Save as a file

Hearing range

20~20k

Sampling

Time-domain: Multiplication

Ref: https://web.stanford.edu/class/ee179/lectures/notes11.pdf

Sampling

Frequency-domain: Convolution

Basically, Ctrl + C Ctrl + V

Aliasing

How to prevent it?

◆ Increase f_s

Sampling Theorem

Sufficient sample-rate > 2B

Circuit

EXP1.

Split Supply vs. Single Supply

LM324

EXP1-1Split Supply

DC measurement AC sweep (20mV_{pp}, 1~100kHz, 1s)

EXP1-2 Single Supply

DC measurement AC sweep (20mV_{pp}, 1~100kHz, 1s) OSC: AC Coupling

EXP2. Audio Front End

EXP2-1 DC measurement AC sweep (20mV_{pp}, 1~100kHz, 1s)

EXP 2-2 Audio input

EXP3.

Record/Playback

EXP 3 For more detail operations, please check the file Lab07_EXP_Audio Front End and Playback.pptx

- 1. Construct the circuit
- 2. Install DAQPlayer
- 3. Upload

 DAQPlayer.ino
- 4. Run DAQPlayer.exe
- 5. Save as .wav file

BONUS

- 1. Unity-Gain Bandwidth
 - 2. Slew Rate

BONUS

Ref: LMx24, LMx24x, LMx24xx, LM2902, LM2902x, LM2902xx, LM2902xxx Quadruple Operational Amplifiers datasheet (Rev. W)

6.8 Operating Conditions

 $V_{CC} = \pm 15 \text{ V}, T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	TYP	UNIT
SR	Slew rate at unity gain	$R_L = 1 \text{ M}\Omega$, $C_L = 30 \text{ pF}$, $V_I = \pm 10 \text{ V}$ (see Figure 7)	0.5	V/µs
B ₁	Unity-gain bandwidth	$R_L = 1 M\Omega$, $C_L = 20 pF$ (see Figure 7)	1.2	MHz
Vn	Equivalent input noise voltage	$R_S = 100 \Omega$, $V_I = 0 V$, $f = 1 kHz$ (see Figure 8)	35	nV/√Hz

7 Parameter Measurement Information

Figure 8. Noise-Test Circuit

Unity-Gain Bandwidth

The frequency at which the gain of an amplifier is equal to 1.

Ref: https://resources.pcb.cadence.com/blog/2020-what-is-the-unity-gain-bandwidth-of-an-amplifier

Slew Rate

The maximum rate of output voltage change per unit of time.

Ref: https://www.electrical4u.com/slew-rate/

Thank You

```
و $ * ه ( ` ت ) ه • * $
```