第8章 假设检验

第一节 假设检验

- @ 假设检验的基本思想和方法
- @ 假设检验的一般步骤
- 假设检验的两类错误
- 课堂练习
- 小结 布置作业

一、假设检验的基本思想和方法

在本节中,我们将讨论不同于参数估计的另一 类重要的统计推断问题.这就是根据样本的信息检验 关于总体的某个假设是否正确.

这类问题称作假设检验问题.

假设检验

参数假设检验

非参数假设检验

总体分布已 知,检验关 于未知参数 的某个假设

总体分布未知时的假设检验问题

罐装可乐的容量按标准应在 350毫升和360毫升之间.

生产流水线上罐装可乐不 断地封装,然后装箱外运.怎 么知道这批罐装可乐的容量是 否合格呢?

把每一罐都打开倒入量杯,看 看容量是否合于标准.

这样做显然不 行!

通常的办法是进行抽样检查.

每隔一定时间,抽查若干罐.如每隔1小时,抽查5罐,得5个容量的值 X_1 ,..., X_5 ,根据这些值来判断生产是否正常.

如发现不正常,就应停产,找出原因,排除 故障,然后再生产;如没有问题,就继续按规定 时间再抽样,以此监督生产,保证质量.

很明显,不能由5罐容量的数据,在把握不大的情况下就判断生产不正常,因为停产的损失是很大的.

当然也不能总认为正常,有了问题不能及时发现,这也要造成损失.

如何处理这两者的关系,假设检验面对的就是这种矛盾.

罐装可乐的容量按标准应在 350毫升和360毫升之间。

现在我们就来讨论这个问题.

在正常生产条件下,由于种种随机因素的影响, 每罐可乐的容量应在355毫升上下波动. 这些因素 中没有哪一个占有特殊重要的地位。 因此,根据中 心极限定理,假定每罐容量服从正态分布是合理的.

这样,我们可以认为 $X_1,...,X_5$ 是取自正态 总体 $N(\mu,\sigma^2)$ 的样本, 当生产比较稳定时, σ^2 是一个常数. 现在要检验的假设是:

$$H_0$$
: $\mu = \mu_0$ ($\mu_0 = 355$)

它的对立假设是:

在实际工作中, 往往把不轻易 否定的命题作 为原假设.

 $H_1: \mu \neq \mu_0$ 注意:原假设总是有等号: =或≤或≥。

称 H_0 为原假设(或零假设,解消假设);

称 H_1 为备选假设(或对立假设).

那么,如何判断原假设 H_0 是否成立呢?

由于 μ 是正态分布的期望值,它的估计量是样本均值 \overline{X} ,因此可以根据 \overline{X} 与 μ_0 的差距 $\left|\overline{X}-\mu_0\right|$ 来判断 H_0 是否成立.

当 $|\overline{X} - \mu_0|$ 较小时,可以认为 H_0 是成立的;

当 $|\overline{X} - \mu_0|$ 较大时,应认为 H_0 不成立,即 生产已不正常.

较大、较小是一个相对的概念,合理的界限在何处?应由什么原则来确定?

问题归结为对差异作定量的分析,以确定其性质.

差异可能是由抽样的随机性引起的,称为

"抽样误差"或随机误差

这种误差反映偶然、非本质的因素所引起的随机波动.

然而,这种随机性的波动是有一定限度的, 如果差异超过了这个限度,则我们就不能用抽样 的随机性来解释了.

必须认为这个差异反映了事物的本质差别,即 反映了生产已不正常.

这种差异称作

"系统误差"

问题是,根据所观察到的差异,如何判断它究竟是由于偶然性在起作用,还是生产确实不正常?

即差异是"抽样误差"还是"系统误差"所引起的?

这里需要给出一个量的界限.

假设检验所依据的基本原理是小概率原理。 问题是:如何给出这个量的界限?

这里用到人们在实践中普遍采用的一个原则:

小概率事件在一次试验中基本上不会发生.

假设检验所依据的基本原理是小概率原理。

在假设检验中,我们称这个小概率为显著性水 平,用 α 表示.

 α 的选择要根据实际情况而定。

常取 $\alpha = 0.1, \alpha = 0.01, \alpha = 0.05.$

现在回到我们前面罐装可乐的例中:

在提出原假设 H_0 后,如何作出接受和拒绝 H_0 的结 论呢?

罐装可乐的容量按标准应在350毫升和360毫升之间.一批可乐出厂前应进行抽样检查,现抽查了n罐,测得容量为 $X_1,X_2,...,X_n$,问这一批可乐的容量是否合格?

提出假设

$$H_0: \ \mu = 355 \longrightarrow H_1: \ \mu \neq 355$$

由于 σ 已知,

选检验统计量
$$U = \frac{X - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$$

它能衡量差异 $|\overline{X} - \mu_0|$ 大小且分布已知.

对给定的显著性水平, α 可以在N(0,1)表中查到分位点的值 $u_{\alpha/2}$,使

$$P\{|U|>u_{\alpha/2}\}=\alpha$$

$$P\{|U|>u_{\alpha/2}\}=\alpha$$

也就是说," $|U| > u_{\alpha/2}$ "是一个小概率事件.

故我们可以取拒绝域为:

W:
$$|U| > u_{\alpha/2}$$

如果由样本值算得该统计量的实测值落入区域W,则拒绝 H_0 ;否则,不能拒绝 H_0 .

这里所依据的逻辑是:

如果 H_0 是对的,那么衡量差异大小的某个统计量落入区域 W(拒绝域) 是个小概率事件. 如果该统计量的实测值落入W,也就是说, H_0 成立下的小概率事件发生了,那么就认为 H_0 不可信而否定它. 否则我们就不能否定 H_0 (只好接受它).

不否定 H_0 并不是肯定 H_0 一定对,而只是 说差异还不够显著,还没有达到足以否定 H_0 的程度.

所以假设检验又叫

"显著性检验"

如果显著性水平 α 取得很小,则拒绝域也会比较小.

其产生的后果是: H_0 难于被拒绝.

如果在 α 很小的情况下 H_0 仍被拒绝了,则说明实际情况很可能与之有显著差异.

基于这个理由,人们常把 $\alpha = 0.05$ 时拒绝 H_0 称为是显著的,而把在 $\alpha = 0.01$ 时拒绝 H_0 称为是高度显著的.

4、假设检验中的拒绝域和接受域

- 在规定了检验的显著性水平α后,根据容量为n的样本,按照统计量的理论概率分布规律,可以确定据以判断拒绝和接受原假设的检验统计量的临界值。
- 临界值将统计量的所有可能取值区间分为两个 互不相交的部分,即原假设的拒绝域和接受域。

单、双边检验

 H_0 : $\mu = \mu_0$, H_1 : $\mu \neq \mu_0$, 拒绝域取在两侧,称为 双边检验。

 H_0 : $\mu \le \mu_0$, H_1 : $\mu > \mu_0$, 拒绝域取在右侧,称为右边检验。

 H_0 : $\mu \geq \mu_0$, H_1 : $\mu < \mu_0$, 拒绝域取在左侧,称为

左边检验。

前面可乐的例子就是双边检验。下面看一个单侧检验的例子.

二、假设检验的一般步骤

- 1. 根据实际问题的需要,提出原假设H₀和备择假设H₁
- 2. 给定显著性水平 α 以及样本容量n
- 3. 确定检验统计量以及拒绝域的形式
- 4. 按P{当H₀为真拒绝H₀} ≤ α 求出拒绝域
- 5. 取样,根据样本观察值做出决策,是拒绝H₀,还 是接受H₀

检验名称

一般说来,按照检验所用的统计量的分布,分为

Z检验/ U 检验 用正态分布

t 检验 用 t 分布

χ² 检验 用χ² 分布

F 检验 用 F 分布

例如,工厂生产的某产品次品率不超过5%才能出厂。今抽检100件产品,发现次品4件,问这批产品能否出厂?要求检验结果具有95%的置信度。

解令

$$X = \begin{cases} 0, 检验合格 \\ 1, 检验不合格 \end{cases}$$

则总体 $X \sim b(1, p)$. E(X) = p, p 的 $1-\alpha$ 的置信区间为

$$\left(\overline{X} - \frac{S}{\sqrt{n}} z_{\alpha/2}, \ \overline{X} + \frac{S}{\sqrt{n}} z_{\alpha/2}\right)$$

现 $n=100, \bar{X}=0.04, z_{\alpha/2}=z_{0.025}=1.96$,又因 $X^2=X$,故

$$S^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2} \right) = \frac{n}{n-1} (\bar{X} - \bar{X}^{2}) = \frac{n}{n-1} \bar{X}(1 - \bar{X}) = 0.0388$$

求得 p 的 95% 置信区间为 (0.0014,0.0782)

由于置信上限 0.0782 > 5%, 故这批产品不能出厂

河 甲从乙厂定购了一批产品,双方约定产品次品率p不能超过5%,否则甲方有权拒收. 验收时随机抽检了100件产品,发现次品6件,问甲方能否接收该批产品? $(\alpha = 0.05)$

解令

$$X = \begin{cases} 0, 检验合格 \\ 1, 检验不合格 \end{cases}$$

则总体 $X \sim b(1, p)$,按题意,要检验假设

$$H_0$$
: $p \le p_0 = 0.05$, H_1 : $p > p_0$

当 H_0 成立时,由大样本理论有 $\frac{\overline{X}-p_0}{S/\sqrt{n}}$ $\stackrel{\overset{\overset{\smile}{\sim}}{\sim}}{\sim} N(0,1)$

采用 u 检验法,求得 H_0 的拒绝域为 $\bar{X} > p_0 + \frac{S}{\sqrt{n}} Z_{\alpha}$

计算得
$$s = \sqrt{\frac{n}{n-1}} \overline{z}(1-\overline{x}) = 0.2387, \ p_0 + \frac{s}{\sqrt{n}} Z_{0.05} = 0.089$$

 $:: \overline{x} = 0.06 < 0.089$: 不拒绝 H_0 ,即甲方可以接收该批产品.

假设检验和区间估计的关系(8.4)

【同】均是用于总体参数推断的统计方法;应用的抽样分布原理相同(借助的统计量和分布相同);

【异】

- 1. 目的不同:区间估计解决的是定量问题,假设检验解决的是定性问题;
- 2. 使用方法不同:区间估计使用"顺推法",假设检验使用"反证法";
- 3. 置信区间不同:区间估计是以 \overline{X} 为基准构造的随机区间;假设检验是以 $\mu=\mu_0$ 为基准构造的常数区间;
- 4. 适用场合不同:区间估计之前不需要了解未知参数的 有关信息;假设检验则应对未知参数有所了解,只是 对作出的某种推断无确切的把握。

甲从乙厂定购了一批产品,双方约定产品次品率p不能 超过5%,否则甲方有权拒收.验收时随机抽检了100件产品, 发现次品4件,问甲方能否接收该批产品? $(\alpha = 0.05)$

则总体 $X \sim b(1, p)$,按题意,要检验假设

$$H_0: p \ge p_0 = 0.05, H_1: p < p_0$$

当 H_0 成立时,由大样本理论有 $\frac{X-p_0}{S/\sqrt{n}}\stackrel{\stackrel{\iota}{\sim} N}{\sim} N(0,1)$

采用 u 检验法, 求得 H_0 的拒绝域为 $\bar{X} < p_0 - \frac{S}{n} Z_{\alpha}$

计算得
$$s = \sqrt{\frac{n}{n-1}} \, \overline{x} (1-\overline{x}) = 0.1969, \ p_0 - \frac{s}{\sqrt{n}} Z_{0.05} = 0.0176$$

 $\bar{x} = 0.04 > 0.0176$:.不拒绝 H_0 ,即甲方可不接收该批产品.

问题: 甲从乙厂定购了一批产品,双方约定产品次品率p不 能超过5%,否则甲方有权拒收.

② 随机抽检100件产品,发现次品6件,若检验假设 H_0 : $p \le p_0 = 0.05$, H_1 : $p > p_0$

结论 不拒绝 H_0 ,甲方可以接收该批产品

② 随机抽检100件产品,发现次品4件,若检验假设

 $H_0: p \ge p_0 = 0.05, H_1: p < p_0$

结论 不拒绝 Ho, 甲方不接收该批产品

- → 冷 为什么两个结论不一致?
 - ◎ 哪个结论可信度高?

问题: 甲从乙厂定购了一批产品,双方约定产品次品率p不能超过5%,否则甲方有权拒收.

② 随机抽检100件产品,发现次品6件,若检验假设

$$H_0$$
: $p \le p_0 = 0.05$, H_1 : $p > p_0$

结论 不拒绝 H_0 , 甲方可以接收该批产品

② 随机抽检100件产品,发现次品4件,若检验假设

$$H_0: p \ge p_0 = 0.05, H_1: p < p_0$$

结论 不拒绝 H_0 ,甲方不接收该批产品

《计数抽样检验程序》GB/T2828.1-2003/IS02859-1:1999

三、假设检验的两类错误

假设检验会不会犯错误呢?

由于作出结论的依据是下述

小概率原理

不是一定不发生

小概率事件在一次试验中基本上不会发生.

如果 H_0 成立,但统计量的实测值落入否定域,从而作出否定 H_0 的结论,那就犯了"以真为假"的错误.

如果 H_0 不成立,但统计量的实测值未落入否定域,从而没有作出否定 H_0 的结论,即接受了错误的 H_0 ,那就犯了"以假为真"的证错误.

请看下表

假设检验的两类错误

	实际情况			
决定	H_0 为真	H_0 不真		
拒绝 H_0	第一类错误	正确		
接受H ₀	正确	第二类错误		

犯两类错误的概率:

P{拒绝 $H_0|H_0$ 为真}= α ,

P{接受 $H_0|H_0$ 不真}= β .

显著性水平 α 为犯第一类错误的概率.

假设检验中的两类错误

(决策结果)

H₀: 无罪

假设检验就好像一场审判过程

统计检验过程

陪审团审判			H _o 检验		
裁决	实际情况		γ 1 , ΔΦ:	实际情况	
	无罪	有罪	决策	H ₀ 为真	H _o 为假
无罪	正确	错误	接受H ₀	正确决策 (1 – α)	第二类错 误(β)
有罪	错误	正确	拒绝H ₀	第一类错 误(α)	正确决策 (1-β)

假设检验两类错误关系示意图

以单侧上限检验为例,设 \mathbf{H}_0 : $\overline{\mathbf{X}} \leq \overline{\mathbf{X}}_0$, \mathbf{H}_1 : $\overline{\mathbf{X}} > \overline{\mathbf{X}}_0$

从上图可以看出,如果临界值沿水平方向右移, α 将变小而 β 变大,即若减小 α 错误,就会增大犯 β 错误的机会;如果临界值沿水平方向左移, α 将变大而 β 变小,即若减小 β 错误,也会增大犯 α 错误的机会。

两类错误的概率的关系

样本均值分布的标准误差为 5/√n

两类错误是互相关联的, 当样本容量固定时,一类错误概率的减少导致另一类错误概率的增加. 要同时降低两类错误的概率 α , β 或者要

在 α 不变的条件下降低 β ,需要增加样本容量.

根据统计调查的目的,提出 提出 原假设 H_0 和备选假设 H_1 四 假设 作出 小 决策 拒绝还是不能 结 拒绝 H_0 检验 抽取 样本 假设 对差异进行定量的分析, 确定其性质(是随机误差 $P(T \in W) = \alpha$ 还是系统误差. 为给出两 α-----犯第一 显著性 者界限,找一检验统计量T, 类错误的概率,

水平

 α

W为拒绝域

在 H_0 成立下其分布已知.)

