Exercise 3: Digital Images, Neighborhoods, Point Operations and Filters

Exercises

- 3.1 An analogue function f_a has as maximum spatial frequency value of $f_{sx} = 10^2 \ mm^{-1}$. This function is to be converted into a discrete function f_d by sampling with equidistant sampling points spaced at a distance $\Delta x = 0.05 \ mm$. What can be said in general about the sampled function f_d ?
- 3.2 For a square grid, mark the points of equal distance according to the discrete maximum distance D_8 for the neighboring points of a pixel p
- 3.3 An image b_{SB} of dimension 8x8 shows a regular black and white chequerboard pattern with 64 squares (size 1x1); the pixel $b_{SB}(0, 0)$ has the value black.
 - a) What type of image is the image b_{SB} ?
 - b) Sketch the brightness profile (intensity line profile) of the third line (j = 2) of b_{SB} (black=0, white=1).
 - c) Sketch the histogram $h(b_{SB})$ of the image b_{SB} .
- 3.4 What is the essential difference between
 - a) a point operation and a local operation
 - b) between a homogeneous and an inhomogeneous image operation?
- 3.5 Formally describe the transformation function T_{pl} for an inversion of
 - a) binary images b(i, j)
 - b) gray scale images g(i, j).

3.6 Image Enhancement Filters

- 1. Load a grayscale image of your choice into MATLAB. Add a salt and pepper noise to the image (imnoise).
- 2. Try to reduce the noise using
 - a. an average filter specified as a convolution kernel (conv2 or filter2)
 - i. Try different filter kernel sizes, e.g. 3x3 and 6x6.
 - b. A gaussian filter approximated by a convolution kernel (conv2, filter2)
 - c. The MATLAB function fspecial provides special convolution kernels for filters "with a name" (for example gaussian). Filter the image with a gaussian filter using fspecial and filter2.
- 3. Apply a *median filter* to the image with the added salt and pepper noise (medfilt2)
 - a. Try different filter kernel sizes, e.g. 3x3 and 6x6.
- 4. Formulate a local image operation T_L (Laplace operator) that subtracts the pixel values of the N_4 neighborhood from four times the value of the central pixel and apply this kernel using filter2 to the original noise-free image.