Cmput 466 / 551

Learning Belief Net Structures

Readings: HTF ~Ch17

+ Bayesian Networks without the Tears (Charniak)

R Greiner University of Alberta

Outline

- Motivation
- What is a Belief Net?
- Learning a Belief Net
 - Goal?
 - Learning Parameters Complete Data
 - Learning Parameters Incomplete Data
 - Learning Structure
 - Learning best TREE Structure
- Dynamical Belief Nets ... HMMs

Learning Belief Nets

<u>Jump</u>

Learning the structure of a BN

Take Cmput659...

Data

Constraint-based approach

- BN encodes conditional independencies
- Test conditional independencies in data
- Find an I-map (?P-map?)
 - Only include link if dependency (given other links)

$\begin{bmatrix} x_1^{(1)},...,x_n^{(1)} \end{bmatrix}$... $\begin{bmatrix} x_1^{(m)},...,x_n^{(m)} \end{bmatrix}$ Parameters

Score-based approach

- Finding structure + parameters = density estimation
- Evaluate model as we evaluated parameters
 - Maximum likelihood
 - Bayesian
 - etc.

Score-based Approach

Possible DAG structures (gazillions)

Nose

Data

Score of each Structure

Just use MLE parameters

- $\max_{\mathcal{G}, \ \theta_{\mathcal{G}}} L(\langle \mathcal{G}, \theta_{\mathcal{G}} \rangle : \mathcal{D}) =$ $\max_{\mathcal{G}} \max_{\mathcal{G}} L(\langle \mathcal{G}, \theta_{\mathcal{G}} \rangle : \mathcal{D}) =$ $\max_{\mathcal{G}} L(\langle \mathcal{G}, \theta^{*}(\mathcal{G}) \rangle : \mathcal{D})$ $\bullet^{*}(\mathcal{G}) = \max_{\theta} L(\langle \mathcal{G}, \theta_{\mathcal{G}} \rangle : \mathcal{D})$
- So... seek the structure G that achieves highest likelihood, given its MLE parameters $\theta^*(G)$
- Score(\mathcal{G}, \mathcal{D}) = log L($\langle \mathcal{G}, \theta^*(\mathcal{G}) \rangle : \mathcal{D}$)

Information-theoretic interpretation of maximum likelihood

Sinus

• Given structure \mathcal{G} , parameters $\theta_{\mathcal{G}}$, log likelihood of data \mathfrak{D} :

$$\begin{split} \log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}) &= \sum_{j=1}^{m} \sum_{i=1}^{n} \log P\left(X_{i} = x_{i}^{(j)} \mid \mathbf{Pa}_{X_{i}} = \mathbf{x}^{(j)}\right) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{m} \log P\left(X_{i} = x_{i}^{(j)} \mid \mathbf{Pa}_{X_{i}} = \mathbf{x}^{(j)}\right) \\ &= \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \#(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = u) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \frac{\#(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = u)}{m} \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right)$$

Entropy & Conditional Entropy

- Entropy of Distribution
 - $H(X) = -\sum_{i} P(x_{i}) \log P(x_{i})$
 - "How `surprising' variable is"
 - Entropy = 0 when know everything... eg P(+x)=1.0
- Conditional Entropy H(X | U)
 - $H(X|\mathbf{U}) = -\sum_{\mathbf{u}} P(\mathbf{u}) \sum_{i} P(x_{i}|\mathbf{u}) \log P(x_{i}|\mathbf{u})$
 - How much uncertainty is left in X, after observing U

$$H(X_i | \mathbf{Pa}_{X_i}) = -\sum_{x_i, \mathbf{u}} \hat{P}(X_i = x_i, \mathbf{Pa}_{X_i} = \mathbf{u}) \log P\left(X_i = x_i^{(j)} | \mathbf{Pa}_{X_i} = \mathbf{u}\right)$$

Information-theoretic interpretation of maximum likelihood ... 2

• Given structure \mathcal{G} , parameters $\theta_{\mathcal{G}}$, log likelihood of data \mathfrak{D} is...

So $\log P(\mathcal{D} \mid \theta, \mathcal{G})$ is LARGEST when each $H(X_i \mid Pa_{X_i,\mathcal{G}})$ is SMALL... ...ie, when parents of X_i are very INFORMATIVE about X_i !

Easier Form

Note

$$H_P(X \mid U) = \sum_{x,u} P(x,u) \log P(x \mid u)$$
 is not symmetric in X, U

Better to use symmetric

$$I_{P}(X, U) = \sum_{x,u} P(x, u) \log \frac{P(x,u)}{P(x) P(u)}$$

(Conditional) Mutual Information

- Mutual information: $I_{P}(X, U) = \sum_{x,y} P(x, u) \log \frac{P(x,u)}{P(x) P(u)}$
- Mutual information and independence:
 - X and U independent if and only if I(X,U)=0
 - $X \perp U$ \Leftrightarrow $P(x, u) = P(x) P(u) \Leftrightarrow \log[P(x,u)/P(x)P(u)] = 0$

Conditional mutual information:

$$I_{P}(X,Y|Z) = E_{Z}[I(X,Y|Z=z)] = \sum_{z} \sum_{x,y} P(x,y|z) \log \frac{P(x,y|z)}{P(x|z) P(y|z)}$$
• X \(\perp Y|Z\) iff \(P(X,Y|Z) = P(X|Z) P(Y|Z)\) iff \(I(X,Y|Z) = 0\)

- Using the data D
 - Empirical distribution: $\widehat{P}(x,y) = \frac{\operatorname{Count}_{\mathbf{D}}(X=x,Y=y)}{|D|}$ Mutual information: $I_{\widehat{P}}(X,Y) = \sum_{\mathbf{x},\mathbf{y}} \widehat{P}(\mathbf{x},\mathbf{y}) \log \frac{\widehat{P}(\mathbf{x},\mathbf{y})}{\widehat{P}(\mathbf{x})\widehat{P}(\mathbf{y})}$

Mutual Information

- Mutual information: $I_P(X, U) = \sum_{x,u} P(x, u) \log \frac{P(x,u)}{P(x) P(u)}$
- Mutual information and independence:
 - X and U independent if and only if I(X, U) = 0
 - $X \perp U$ \Leftrightarrow $\forall x, u P(x, u) = P(x) P(u)$ \Leftrightarrow $\forall x, u log[\frac{P(x,u)}{P(x)P(u)}] = 0$

$$I_{P}(X, \mathbf{U}) = \sum_{x,\mathbf{u}} P(x,\mathbf{u}) \log \frac{P(x,\mathbf{u})}{P(x) P(\mathbf{u})} = \sum_{x,\mathbf{u}} P(x,\mathbf{u}) \log \frac{P(x \mid \mathbf{u})}{P(x)}$$

$$= \sum_{x,\mathbf{u}} P(x,\mathbf{u}) \log P(x \mid \mathbf{u}) - \sum_{x,\mathbf{u}} P(x,\mathbf{u}) \log P(x)$$

$$= \sum_{x,\mathbf{u}} P(x,\mathbf{u}) \log P(x \mid \mathbf{u}) - \sum_{x} P(x) \log P(x) \sum_{\mathbf{u}} P(\mathbf{u} \mid x)$$

$$= -H(X \mid \mathbf{U}) + H(X)$$

Score for Belief Network

■
$$\mathcal{J}(X, \mathbf{U}) = H(X) - H(X \mid \mathbf{U})$$

⇒ $H(X \mid \mathbf{Pa}_{X,\mathcal{G}}) = H(X) - \mathcal{J}(X, Pa_{X,\mathcal{G}})$

Log data likelihood

$$\log P(D|\theta,G) = m \sum_{i} \mathcal{J}(X_{i}, \mathbf{Pa}_{X_{i},g}) - m \sum_{i} H(X_{i})$$

• So use score: $\sum_{i} \mathcal{J}(X_{i'}, Pa_{X_{i'}, Q_{i'}})$

Doesn't involve the structure, **?**!

Best Tree Structure

```
\log P(D | \theta, G) is monotonic with \sum_{i} I(x_i, Pa_{X_i,G})
```

- Identify tree with set \$\mathcal{F} = \{ Pa(X) \}\$
 - each Pa(X) is either {}, or another variable
- Optimal tree, given data, is $argmax_{\mathcal{F}} \sum_{i} I(X_{i}, Pa(X_{i}))$
- So ... want parents F s.t.
 - tree structure
 - maximizes $\sum_{i} I(X_{i}, Pa(X_{i}))$

Chow-Liu Tree Learning Alg

- For each pair of variables X_i, X_i
 - Compute empirical distribution:

$$\widehat{P}(x_i, x_j) = \frac{\operatorname{count}(x_i, x_j)}{m}$$

Compute mutual information:

$$\widehat{I}(X_i, X_j) = \sum_{X_i, X_i} \widehat{P}(X_i, X_j) \log \frac{\widehat{P}(X_i, X_j)}{\widehat{P}(X_i) \widehat{P}(X_j)}$$

- Define a graph
 - Nodes X₁, ..., X_n
 - Edge (i,j) gets weight Î(X_i,X_j)
- Find Maximal Spanning Tree
- Pick a node for root, dangle...

Chow-Liu Tree Learning Alg ... 2

$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \hat{I}(x_{i}, \mathbf{Pa}_{x_{i}, \mathcal{G}}) - m \sum_{i} \hat{H}(X_{i})$$

- Optimal tree BN
 - **...**
 - Compute maximum weight spanning tree
 - Directions in BN:
 - pick any node as root, ...doesn't matter which!
 - breadth-first-search defines directions
- Score Equivalence:
 If *G* and *G* are *J*-equiv,
 then scores are same

Chow-Liu (CL) Results

- If distribution P is tree-structured,
 CL finds CORRECT one
- If distribution P is NOT tree-structured,
 CL finds tree structured Q that
 has min'l KL-divergence: argmin₀ KL(P; Q)
- Even though 2^{θ(n log n)} trees,
 CL finds BEST one in poly time O(n² [m + log n])

number of instances

Using Chow-Liu to Improve NB

- Naïve Bayes model
 - $X_i \perp X_j \mid C$
 - Ignores correlation between features
 - What if $X_1 = X_2$? **Double count...**

- Avoid by conditioning features on one another
- Tree Augmented Naïve bayes (TAN) [Friedman et al. '97]
 - Same as Chow-Liu, but score edges with:

$$I(X_i, X_j | C) = \sum_{x_i, x_i, c} P(x_i, x_j, c) \log \frac{P(x_i, x_j | c)}{P(x_i | c) P(x_j | c)}$$

Can we extend Chow-Liu?

- (Approximately learning)
 models with tree-width up to k
 - [Narasimhan & Bilmes '04]
 - But, O(n^{k+1})...
 - and more subtleties

More Elaborate Models

- Space is sooo large
- Heuristic search
 - Pick a decomposable score
 - Pick a reasonable start, check neighbourhood
 - Add arc
 - Delete arc
 - Reverse arc

All easy checks, compare 1 or 2 CPDs, (cache Δ 's)

- Move to better score
 - If no better: terminate

Likelihood Overfits To Data

Consider

- $\log P_{G1}(\mathbf{D}) = I(X;Y) H(X) H(Y)$
- $\bullet \log P_{G2}(\mathbf{D}) = -H(X) H(Y)$
- ⇒ difference is mutual information
- Note:

$$\log P_{G1}(\mathbf{D}) - \log P_{G2}(\mathbf{D}) = I(X;Y) \ge 0$$

⇒ G1 always preferred than G2

Maximum likelihood score overfits!

$$\log \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \widehat{I}(X_{i}, \mathbf{Pa}_{X_{i}, \mathcal{G}}) - m \sum_{i} \widehat{H}(X_{i})$$

Adding a parent never decreases score!!!

```
■ Facts: H(X \mid Pa_{X,G}) = H(X) - I(X, Pa_{X,G})

H(X \mid A) \ge H(X \mid A \cup Y)

I(X_i, Pa_{X_i,G} \cup Y) = H(X_i) - H(X_i \mid Pa_{X_i,G} \cup Y)

\ge H(X_i) - H(X_i \mid Pa_{X_i,G})

= I(X_i, Pa_{X_i,G})
```

- So score increases as we add edges!
 - Best is COMPLETE Graph
 - Maximum likelihood score overfits!

Likelihood Overfits To Data

- If additional arcs always favoured Then prefer "Complete Model", K_N
- With fixed data:
 - more complex models will overfit

Bayesian Score

- Prior distributions:
 - Over structures
 - Over parameters of a structure
 Goal: Prefer simpler structures... regularization ...
- Posterior over structures given data:

$$\begin{array}{c} \blacksquare \ \mathsf{P}(\mathcal{G}|\mathcal{D}) \propto \mathsf{P}(\mathcal{D}|\mathcal{G}) \times \mathsf{P}(\mathcal{G}) \\ \\ \blacksquare \ \mathsf{Posterior} \end{array}$$

$$\begin{array}{c} \blacksquare \ \mathsf{Likelihood} \end{array} \quad \begin{array}{c} \blacksquare \ \mathsf{Prior over Graphs} \end{array}$$

Prior over Parameters

$$P(\mathcal{D}|\mathcal{G}) = \int_{\Theta} P(\mathcal{D} \mid \mathcal{G}, \Theta) P(\Theta|\mathcal{G}) d\Theta$$

$$\log P(\mathcal{G} \mid D) \approx \log P(\mathcal{G}) + \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}}|\mathcal{G}) d\theta_{\mathcal{G}}$$

Towards a decomposable Bayesian score

$$\log P(\mathcal{G} \mid D) \approx \log P(\mathcal{G}) + \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$$
• Local and global parameter independence $\theta_{\mathsf{Y}|+\mathsf{x}} \perp \theta_{\mathsf{X}}$

- Prior satisfies **parameter modularity**:
 - If X_i has same parents in G and G', then parameters have same prior

- Structure prior P(G) satisfies structure modularity
 - Product of terms over families
 - Eg, $P(G) / c^{|G|}$ | G = #edges; c < 1
- ... then: Bayesian score decomposes along families!
 - $\log P(G|D) = \sum_{X} ScoreFam(X | Pa_{X} : D)$

-

Priors for General Graphs

- For finite datasets, prior is important!
- Prior over structure satisfying prior modularity
 - Eg, $P(G) / c^{|G|}$ | G = #edges; c<1
- What is good prior over all parameters?
 - *K2 prior*: fix $\alpha \in \Re^+$, set $\theta_{X_i|Pa(X_i)} \sim \text{Dirichlet}(\alpha, ..., \alpha)$
 - Effective sample size, wrt X_i?
 - If 0 parents: $k \times \alpha$
 - If 1 binary parent: 2 $k\times\alpha$
 - If d k-ary parents: k^d k×α
 - So X_i "effective sample size" depends on #parental assignments
 - More parents ⇒ strong prior... doesn't make sense!
 - K2 is "inconsistent"

Summary wrt Learning BN Structure

- Decomposable scores
 - Data likelihood
 - Information theoretic interpretation
 - Bayesian
- Priors
 - Structure and parameter assumptions
- Best tree (Chow-Liu)
- Best TAN

- Bayesian model averaging