Caractérisation des singularités de type ${\mathfrak J}$

Stage de recherche de premier cycle sous la supervision de Frédéric Rochon et Carlo Scarpa

Félix Larose-Gervais

Été 2023

Table des matières

1	Intr	roduction	
	1.1	Motivation	
	1.2	Notations	
	1.3	Définitions	
	1.4	Arbre d'éclatements	
	1.5	Rappels d'arithmétique	
		1.5.1 Algorithme d'Euclide et plus grand diviseur commun (PGDC)	
2		1.5.2 Théorème des restes chinois	
	1.6	Résultats connus	
2	Nouveaux résultats		
	2.1	Existence d'un éclatement	
	2.2	Propriétés	
		2.2.1 Symétrie	
		2.2.2 Ajout de poids	
		2.2.3 Retrait de poids	
	2.3	Caractérisation stricte	
		2.3.1 Frontière	
3	Cor	njectures 9	
	3.1	Combinaison linéaire	
	3.2	Anti-symétrie	
	3.3	Échange racine-poids	
	3 4	Restriction au hord	

1 Introduction

1.1 Motivation

Ce document tire sa source des travaux[1] de Vestislav Apostolov et Yann Rollin, et tente d'étudier les singularités de type $\mathfrak J$ en adoptant un point de vue algébrique. On y répond a une question ouverte, énonce quelques propriétés du type $\mathfrak J$, et commence à caractériser une version plus stricte notée $\overline{\mathfrak J}$.

1.2 Notations

Soient $a, b \in \mathbb{Z}$. On note la relation de coprimalité \bot

$$a \perp b \iff \gcd(a, b) = 1$$

Soient $m, n \in \mathbb{N}$, X un ensemble. Notons

- S_m le groupe symétrique à m lettres;
- \mathbb{Z}_n l'anneau des entiers modulo n $(\mathbb{Z}/n\mathbb{Z})$;
- \mathbb{Z}_n^{\times} son groupe d'inversibles $(\{a \in \mathbb{Z}_n \mid a \perp n\});$
- X^m l'ensemble des m-tuplets de X $(\underbrace{X \times \cdots \times X}_{mfois})$.

On notera aussi S_n^m l'ensemble des m-tuplets d'inversibles modulo n $((\mathbb{Z}_n^{\times})^m)$.

1.3 Définitions

Définition 1. Une singularité est un m-tuplets $[a] = ([a_1], \ldots, [a_m]) \in S_n^m$. On appelle

- n la **racine** de la singularité;
- $[a_1], \ldots, [a_m]$ les **poids** de la singularité.

Définition 2. Un éclatement $a \in \mathbb{Z}^m$ d'une singularité $[a] \in S_n^m$ (noté $a \in [a]$) est un choix de représentant $a = (a_1, \ldots, a_m)$ tel que

$$\forall i \neq j : a_i \perp a_j$$
.

On note E_a l'ensemble des singularités associées à l'éclatement a comme suit:

$$E_{a} = \{ [a^{i}] \in S_{a_{i}}^{m} \mid \forall i = 1..m, \ a_{i} > 1 \} \text{ où}$$

$$[a^{i}] = ([a_{1}^{i}], \dots, [a_{m}^{i}]) \in S_{a_{i}}^{m} \text{ avec}$$

$$[a_{j}^{i}] \equiv \begin{cases} -n & \text{si } i = j \\ a_{j} & \text{sinon} \end{cases} \pmod{a_{i}} \quad \forall j = 1..m$$

On appelle $a = (a_1, ..., a_m)$ l'éclatement naturel de [a] si les $a_1, ..., a_m$ sont les plus petits représentants positifs de leurs classes.

Définition 3. Un éclatement $a \in [a]$ est dit **lisse** si a = (1, ..., 1).

Définition 4. En procédant récursivement, on dit qu'une singularité [a] est de **type** \mathfrak{J} (noté $[a] \in \mathfrak{J}$) si [a] possède un éclatement lisse ou s'il existe $a \in [a]$ tel que $E_a \subset \mathfrak{J}$.

De même, en procédant récursivement, on dit qu'une singularité [a] est de **type** \mathfrak{J} **strict** (noté $[a] \in \overline{\mathfrak{J}}$) lorsque pour $a \in [a]$ l'éclatement naturel de [a] on a que a est lisse ou que $E_a \subset \overline{\mathfrak{J}}$.

1.4 Arbre d'éclatements

Calculer l'arbre d'éclatements d'une singularité permet de la classifier comme de type $\mathfrak J$ ou non. Il est obtenu en appliquant récursivement la définition 2 et en vérifiant les coprimalités nécessaires à chaque étape.

Figure 1: Arbre d'éclatement montrant $(7,3)_{10}\in\overline{\mathfrak{J}}$

On remarque dans l'exemple suivant que les noeuds $(2,2)_3$ et $(3,3)_4$ ne respectent pas les coprimalités nécessaires et donc ne sont pas de type $\overline{\mathfrak{J}}$. La singularité racine de l'arbre $(5,3)_{16}$ n'est donc pas de type $\overline{\mathfrak{J}}$.

Figure 2: Arbre d'éclatement montrant $(5,3)_{16}\not\in\overline{\mathfrak{J}}$

1.5 Rappels d'arithmétique

1.5.1 Algorithme d'Euclide et plus grand diviseur commun (PGDC)

Soient $a, b \in \mathbb{Z}$. On peut calculer le plus grand diviseur commun gcd(a, b) de a et b en procédant récursivement comme suit (supposant gcd(a, b) > 0):

$$\gcd(a,b) := \begin{cases} a & \text{si } b = 0, \\ \gcd(b,a \mod b) & \text{sinon.} \end{cases}$$

Avec $k \in \mathbb{Z}$, on a les propriétés suivantes:

$$\gcd(a, 1) = 1,$$

$$\gcd(a, b) = \gcd(b, a),$$

$$\gcd(a, b) = \gcd(a, -b),$$

$$\gcd(a, b) = \gcd(a, b + ka).$$

De la dernière on déduit directement, pour $n \in \mathbb{N}$, que

$$a \equiv b \pmod{n} \implies \gcd(a, n) = \gcd(b, n).$$

1.5.2 Théorème des restes chinois

Soient $m, n_1, \ldots, n_m \in \mathbb{N}$ et $a_1, \ldots, a_m \in \mathbb{Z}$. Notons le produit $n = n_1 \cdots n_m$. Si $\forall i \neq j : n_i \perp n_j$, alors $\exists ! x \in \mathbb{Z}_n$ tel que

$$x \equiv a_1 \pmod{n_1},$$

$$\vdots$$

$$x \equiv a_m \pmod{n_m}.$$

Cette solution, pour m=2,

$$x \equiv a_1 \pmod{n_1}$$

 $x \equiv a_2 \pmod{n_2}$

est obtenue comme suit:

Puisque $n_1 \perp n_2$, on a $s, t \in \mathbb{Z}$ tels que $1 = sn_1 + tn_2$

Et donc $x = a_1tn_2 + a_2sn_1$ est l'unique solution (mod n_1n_2)

Cette méthode nous laisse m-1 équations dans le système

Ainsi, pour m > 2, il suffit d'itérer le processus jusqu'à ce qu'il n'en reste qu'une.

1.6 Résultats connus

Résultats utiles, dus à Habib Jaber[2].

Proposition 1. Si $a, b \in \mathbb{Z}$, alors

$$a \perp b \implies (a,b)_{a+b} \in \overline{\mathfrak{J}}.$$

Exemple 1. $8 \perp 5 \implies (8,5)_{13} \in \overline{\mathfrak{J}}$

Figure 3: Illustration avec la suite de Fibonacci

Proposition 2. Si $a, b \in \mathbb{Z}$, alors

$$(a,b)_n \in \overline{\mathfrak{J}} \implies \forall k \in \mathbb{Z}^\times : (a,b)_{n+kab} \in \overline{\mathfrak{J}}.$$

Exemple 2. $[(3,2)]_5 \in \overline{\mathfrak{J}} \implies (3,2)_{11} \in \overline{\mathfrak{J}}$

2 Nouveaux résultats

Soient $m, n \in \mathbb{N}$ tels que $m, n \ge 2$ et $[a] = ([a_1], \dots, [a_m])_n \in S_n^m$ une singularité.

2.1 Existence d'un éclatement

Proposition 3. Toute singularité isolée admet un éclatement.

Preuve. Prenons $(a_1, \ldots, a_m) \in [a]$ le représentant naturel de [a]On cherche $(b_1, \ldots, b_m) \in [a]$ tels que $\forall i \neq j : b_i \perp b_j$ et $\forall i : b_i \perp n$ Il suffit de prendre $b_1 = a_1$ et $\forall i = 2..m$, un b_i vérifiant

$$b_i \equiv a_i \pmod{n}$$

$$b_i \equiv 1 \pmod{b_1}$$

$$\vdots$$

$$b_i \equiv 1 \pmod{b_{i-1}}$$

De tels b_i existent par le théorème des restes chinois.

On vérifie les coprimalités nécessaires grâce aux propriétés de gcd. En effet, On a par la première congruence que $\forall i:b_i\perp n$ (puisque $\forall i:a_i\perp n$). Et par les suivantes $\forall i\neq j:b_i\perp b_j$.

On a donc bien que $b = (b_1, \ldots, b_m)$ est un éclatement de [a].

2.2 Propriétés

2.2.1 Symétrie

Proposition 4. Le réarrangement des poids préserve le type \mathfrak{J} . Soit $\sigma \in S_m$, on a

$$[a] \in \mathfrak{J} \implies \sigma([a]) \in \mathfrak{J}.$$

Preuve. Prenons $a \in [a]$ tel que $E_a \subset \mathfrak{J}$. Il suffit d'observer que $E_a \cong E_{\sigma(a)}$.

2.2.2Ajout de poids

Proposition 5. L'ajout de poids de valeur 1 préserve le type \mathfrak{J} :

$$([a_1],\ldots,[a_m])_n \in \mathfrak{J} \implies ([a_1],\ldots,[a_m],[1])_n \in \mathfrak{J}.$$

Preuve. Prenons $a \in [a]$ tel que $E_a \subset \mathfrak{J}, b = (a_1, \ldots, a_m, 1)$. Il suffit d'observer que $E_a \cong E_b$

Figure 6: Illustration avec $a = (a_1, a_2)$ $(a_1,a_2)_n$ $(a_1, a_2, 1)_n$ $(-n,a_2)_{a_1}$ $(a_1,-n)_{a_2}$ $(-n,a_2,1)_{a_1}$ $(a_1, -n, 1)_{a_2}$

2.2.3Retrait de poids

Proposition 6. Le retrait de poids préserve le type \mathfrak{J} :

$$([a_1],\ldots,[a_m])_n \in \mathfrak{J} \implies ([a_1],\ldots,[a_{m-1}])_n \in \mathfrak{J}.$$

Preuve. Prenons $a \in [a]$ tel que $E_a \subset \mathfrak{J}$.

La preuve se fait par induction structurelle.

D'abord, on observe $([1], \ldots, [1])_n \in \mathfrak{J}$. Puis on suppose que $\forall [b] \in E_a : [b] \in \mathfrak{J} \implies ([b_1], \ldots, [b_{m-1}])_n \in \mathfrak{J}$. On en conclut $([a_1], \ldots, [a_{m-1}])_n \in \mathfrak{J}$.

 $(a_1, a_2)_n$ $(a_1, a_2, a_3)_n$ $(a_1,-n)_{a_2}$ $(-n, a_2, a_3)_{a_1}$ $(a_1,-n,a_3)_{a_2}$ $(a_1, a_2, -n)_{a_3}$ $(-n,a_2)_{a_1}$

2.3 Caractérisation stricte

2.3.1 Frontière

Proposition 7. Soit $[a] \in S_n^2$, d'éclatement naturel $a = (a_1, a_2) \in [a]$. Alors

$$[a] \in \overline{\mathfrak{J}} \implies n \ge a_1 + a_2.$$

Preuve. Par contraposée, supposons $n < a_1 + a_2$ (*)

- Si $a_1 = a_2 \ (\neq 1 \text{ par } (\star)), \text{ alors } [a] \notin \overline{\mathfrak{J}}.$
- Sinon, $a_1 \neq a_2$, et on peut supposer sans perdre de généralité que $a_1 > a_2$.

Considérons a^1 l'éclatement naturel de $[a^1] \in E_a$ la singularité associée à a_1 .

On a que $a^1 = (-n \mod a_1, a_2 \mod a_1)$.

Puisque $a_1 > a_2$, on a $2a_1 > a_1 + a_2 > n$, donc $a_1 < n < 2a_1$.

On en déduit que $(-n \mod a_1) = 2a_1 - n$.

Aussi, $(a_2 \mod a_1) = a_2 \operatorname{car} a_1 > a_2$.

On a donc $a^1 = (2a_1 - n, a_2)$.

Puisque $n < a_1 + a_2$, on a $a_1 < 2a_1 - n + a_2$.

Donc $[a^1] \in S^2_{a_1}$ vérifie la condition (\star) .

En répétant le raisonnement avec $[a^1]$, on voit en itérant que l'arbre d'éclatements de [n] contient un élément $[b] \in S_a^2$ avec représentant $(b_1, b_2) \in \mathbb{Z}^2$ tel que $1 < b_1 = b_2 < k$.

Donc $[b] \notin \overline{\mathfrak{J}}$ et, a fortiori $[a] \notin \overline{\mathfrak{J}}$.

Exemple 3. $(4,3)_5 \notin \overline{\mathfrak{J}} \ car \ 5 < 4 + 3$

Figure 8: Singularités $s \in S^2_{32}$ telles que $s \in \overline{\mathfrak{J}}$

3 Conjectures

3.1 Combinaison linéaire

Conjecture 1. Soit $(a,b)_n \in \overline{\mathfrak{J}}$, alors $\exists \alpha, \beta \in \mathbb{N}_{>0}$ tels que

$$\alpha a + \beta b = n$$

Argument heuristique potentiel

Puisque $a \perp b$, prenons $s, t \in \mathbb{Z}$ tels que 1 = as + bt (par Bézout).

Considérons les systèmes modulaires suivants:

$$x \equiv 0 \pmod{a}$$
 $y \equiv n \pmod{a}$, $x \equiv n \pmod{b}$ $y \equiv 0 \pmod{b}$.

Par le Théorème des restes chinois, l'unique solution est:

$$x \equiv nas \pmod{ab}$$
$$y \equiv nbt \pmod{ab}$$

On a donc (toujours modulo ab)

$$x + y \equiv nas + nbt$$
$$\equiv n(as + bt)$$
$$\equiv n$$

Et comme a|x et b|y, prenons $\alpha = \frac{x}{a}$ et $\beta = \frac{y}{b}$, des entiers

$$n \equiv x + y$$

$$\equiv \frac{x}{a}a + \frac{y}{b}b$$

$$\equiv \alpha a + \beta b$$

Il reste à montrer que cette égalité n'est pas seulement vraie dans \mathbb{Z}_{ab} mais aussi dans \mathbb{Z} .

Une piste de recherche explorée jusqu'ici sans succès passe par le probème des pièces de monnaie. On peut reformuler la conjecture comme suit: $(a,b)_n \in \overline{\mathfrak{J}}$ implique que n est représentable par a et b (c'est-à-dire somme de multiples strictement positifs de a et b) $(\exists \alpha, \beta \in \mathbb{N}_{>0}, \alpha a + \beta b = n)$, même si n < g(a,b) = ab - (a+b) le nombre de Frobenius[3, page 134]. Il est connu que la moitié de ces nombres a+b < n < g(a,b) (ceux de la forme n=ab-ka-qb) sont non-représentables. Montrer que ces $(a,b)_n \not\in \overline{\mathfrak{J}}$ suffirait à montrer la conjecture.

3.2 Anti-symétrie

Corollaire 1. Soit $[s] \in S_n^2$ d'éclatement naturel $(a,b) \in [s]$, avec a,b > 1. Alors

$$(a,b)_n \in \overline{\mathfrak{J}} \implies (-a,b)_n \notin \overline{\mathfrak{J}}.$$

Preuve. Supposons $(a,b)_n \in \overline{\mathfrak{J}}$

La chaine d'éclatements naturels à gauche successifs de $(-a,b)_n$ est, pour i>0, n-ia>0

$$(n-ia,b)_{n-(i-1)a}$$
.

Prenons $\alpha, \beta \in \mathbb{N}_{>0}$ tels que $\alpha a + \beta b = n$ comme énoncé dans la conjecture 1.

On a que, lorsque $i = \alpha$, $n - ia = n - \alpha a = \beta b$.

Donc b|(n-ia).

Puisque b > 1, $b \not\perp (n - ia)$, ce qui montre que $(n - ia, b)_n \not\in \overline{\mathfrak{J}}$ de sorte que $(-a, b)_n \not\in \overline{\mathfrak{J}}$. \square

Échange racine-poids 3.3

Corollaire 2. Soit $[s] \in S_n^2$ d'éclatement naturel $(a,b) \in [s]$, avec a,b > 1. Alors

$$(a,b)_n \in \overline{\mathfrak{J}} \implies (n,b)_a \notin \overline{\mathfrak{J}}.$$

 $\begin{array}{l} \textit{Preuve.} \;\; \text{Supposons que} \; (a,b)_n \in \overline{\mathfrak{J}}. \\ \;\; \text{Donc son \'eclatement} \; (-n,b)_a \in \overline{\mathfrak{J}}, \, \text{de sorte que, par anti-symétrie, } (n,b)_a \not \in \overline{\mathfrak{J}}. \end{array}$

3.4 Restriction au bord

Corollaire 3. Soit $[s] \in S_n^3$ d'éclatement naturel $(a,b,c) \in [s]$, avec a,b,c > 1. Alors

$$(a,b,c)_n \not\in \overline{\mathfrak{J}}.$$

Preuve. Si $(a,b,c)_n \in \overline{\mathfrak{J}}$, alors ses éclatements $(-n,b,c)_a \in \overline{\mathfrak{J}}$ et $(a,-n,c)_b \in \overline{\mathfrak{J}}$ Par retrait de poids, $(b,c)_a \in \overline{\mathfrak{J}}$ et $(a,c)_b \in \overline{\mathfrak{J}}$, ce qui contredit l'échange racine-poids du corollaire précédant.

Corollaire 4. Pour être de type $\overline{\mathfrak{J}}$, une singularité ne peut avoir plus de 2 poids supérieurs à 1.

Preuve. Si une singularité de type $\bar{\mathfrak{J}}$ contient les poids a,b,c>1, alors, par retrait de poids $(a,b,c)_n \in \overline{\mathfrak{J}}$, contradiction.

Exemple 4. On observe que les singularités de type $\bar{\mathfrak{J}}$ de S_n^3 sont sur le bord

Figure 9: Singularités $s \in S_{13}^3$ telles que $s \in \overline{\mathfrak{J}}$

Conjecture 2. $Si [a] \in \overline{\mathfrak{J}}, \ alors [a] \in \mathfrak{J}, \ donc \ \mathfrak{J} = \overline{\mathfrak{J}}$

References

- [1] Vestislav Apostolov and Yann Rollin. Ale scalar-flat kähler metrics on non-compact weighted projective spaces, 2016.
- [2] Habib Jaber. Caractérisation des singularité de type j, 2022.
- [3] James Joseph Sylvester. On subinvariants, i.e. semi-invariants to binary quantics of an unlimited order, 1882.