

Lecture 5

Soft Matter Physics

Molecular association and cooperativity

- Recap: Gibbs distribution & chemical potential
- Free energy change of a reaction
- Equilibrium constant from mass action law
- Equilibrium constant from grand partition function
- Cooperativity in chemical reactions

Recap: Grand canonical ensemble

Open system with thermal + particle reservoir!

adiabatic, rigid, impermeable wall

Figure 7.9 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Gibbs distribution for system with energy & particle exchange:

Energy to have
$$N_{\rm s}$$
 particles in system Energy to take out $N_{\rm s}$ particles from reservoir
$$p(E_{\rm s}^{(i)},N_{\rm s}^{(i)})=\frac{{\rm e}^{-\beta(E_{\rm s}^{(i)}-\mu N_{\rm s}^{(i)})}}{\mathcal{Z}}$$

"Boltzmann-like" term comprising the total free energy change as sum of the free energy of the system with N_s particles and the free energy change from extracting N_s particles from the reservoir (concentration dependent)

Grand partition function

$$\mathcal{Z} = \sum_{i} e^{-\beta (E_s^{(i)} - N_s^{(i)} \mu)}$$

Recap: Gibbs distribution and chemical potential

$$\rho\left(E_s^{(i)}, N_s^{(i)}\right) = \frac{e^{-\beta\left(E_s^{(i)} - \mu N_s^{(i)}\right)}}{Z}$$

(with
$$\beta = 1/k_{\rm B}T$$
)

Grand partition function:

$$\mathcal{Z} = \sum_{i} e^{-\beta \left(E_S^{(i)} - \mu N_S^{(i)}\right)}$$

Grand potential:

$$\Omega(T, V, \mu) = -k_B T \ln Z = F - \mu N = U - TS - \mu N = H - pV - TS - \mu N$$

Average particle number in system:

$$\langle N \rangle = \sum_{i} N_{i} \rho_{i} = \frac{1}{Z} \sum_{i} N_{i} e^{-\beta (E_{i} - \mu N_{i})} \longrightarrow \langle N \rangle = \frac{1}{\beta} \frac{\partial}{\partial \mu} \ln Z$$

Recap: Gibbs distribution and chemical potential

$$\rho\left(E_s^{(i)}, N_s^{(i)}\right) = \frac{e^{-\beta\left(E_s^{(i)} - \mu N_s^{(i)}\right)}}{\mathcal{Z}}$$

(with
$$\beta = 1/k_B T$$
)

Grand partition function:

$$\mathcal{Z} = \sum_{i} e^{-\beta \left(E_S^{(i)} - \mu N_S^{(i)}\right)}$$

Grand potential:

$$\Omega(T, V, \mu) = -k_B T \ln Z = F - \mu N = U - TS - \mu N = H - pV - TS - \mu N$$

Average particle number in system:

$$\langle N \rangle = \sum_{i} N_{i} \rho_{i} = \frac{1}{Z} \sum_{i} N_{i} e^{-\beta (E_{i} - \mu N_{i})} \longrightarrow \langle N \rangle = \frac{1}{\beta} \frac{\partial}{\partial \mu} \ln Z$$

Chemical potential:

$$\mu(T, p, N) = \left(\frac{\partial G}{\partial N}\right)_{T, p}$$

$$\mu_i = \mu_{i,0} + k_B T \ln \left(\frac{c_i}{c_{i,0}} \right) \longrightarrow c_{i,0} = 1M$$

Examples of "chemical" reactions

What can we learn about relevant energy/entropy changes by looking at the involved species?

Free energy change of a reaction

chemical reaction

$$x_A A + x_B B \rightarrow x_C C x_D D$$

free energy change of single reaction

$$dG = \underbrace{\left(\frac{\partial G}{\partial N_A}\right)_{T,p}}_{\mu_A} dN + \underbrace{\left(\frac{\partial G}{\partial N_B}\right)_{T,p}}_{\mu_B} dN + \underbrace{\left(\frac{\partial G}{\partial N_C}\right)_{T,p}}_{\mu_C} dN + \underbrace{\left(\frac{\partial G}{\partial N_D}\right)_{T,p}}_{\mu_D} dN$$

$$dG = \underbrace{-x_A}_{v_A} dN \mu_A \underbrace{-x_B}_{v_B} dN \ \mu_B \underbrace{+x_C}_{v_C} dN \mu_C \ \underbrace{+x_D}_{v_D} dN \mu_D \qquad \longrightarrow \qquad \Delta_r G = \frac{dG}{dN} = \sum_i v_i \mu_i$$

 v_i are the stoichiometry factors

Free energy change of a reaction

chemical reaction

$$-v_A A + (-v_B)B \rightarrow v_C C + v_D D$$

(v_A and v_B negative)

free energy change of single reaction

$$\Delta_{r}G = \sum_{i} v_{i} \mu_{i}$$

$$= \sum_{i} v_{i} \mu_{i0} + k_{B}T \sum_{i} \ln \left(\frac{c_{i}}{c_{i0}}\right)^{v_{i}} = \Delta_{r}G^{0} + k_{B}T \sum_{i} \ln \left(\frac{c_{i}}{c_{i0}}\right)^{v_{i}}$$

$$\Delta_{r}G = \Delta_{r}G^{0} + k_{B}T \ln \left(\frac{c_{i}}{c_{i0}}\right)^{v_{i}}$$
Entropy term due to different abundance of species i

of reaction contains

make sure to insert c_{i} in units of [M]!

Standard free energy of reaction contains enthalpic & entropic part (molecular property)

(at standard conditions: p = 101.3 kPa, T = 298.15 K, $c_{i0} = 1$ M)

Mass action law

chemical reaction
$$-v_A A + (-v_B)B \rightarrow v_C C + v_D D$$
 $(v_A \text{ and } v_B \text{ negative})$

in equilibrium

$$\Delta_r G = 0 = \Delta_r G^0 + k_B T \ln \left[\prod_i \left(\frac{c_i}{c_{i0}} \right)^{v_i} \right]$$

$$\mathcal{K}_{eq}(T) = \left(\prod_{i} c_{i0}^{v_i}\right) e^{-\Delta_r G^0 / k_B T} = \prod_{i} c_i^{v_i}$$
equilibrium constant

ratio of reaction species provides equilibrium constant which is related to the standard free energy (change) of the reaction by:

$$\left| \Delta_r G^0 = -k_B T \ln \left(K_{eq} \prod_i c_{i0}^{-\nu_i} \right) \right|$$

Bimolecular association & dissociation constants

Association constant: is the equilibrium constant of a simple association reaction

$$L + R \leftrightarrow LR \longrightarrow K_a = \frac{1}{K_d} = \frac{[LR]}{[L][R]}$$
 $[K_a] = M^{-1}$

Dissociation constant: is the equilibrium constant of a simple dissociation reaction

$$LR \leftrightarrow L + R \longrightarrow K_d = \frac{1}{K_a} = \frac{[L][R]}{[LR]}$$
 $[K_d] = M$

Langmuir adsorption isotherm for bimol. association

$L + R \leftrightarrow LR$

as
$$[L] = [L]_0 - [LR]$$
 and $[R] = [R]_0 - [LR]$

with $[L]_0 \gg [R]_0$ (excess of ligand) $\rightarrow [L] \approx [L]_0$

$$K_d = \frac{([R]_0 - [LR])[L]_0}{[LR]}$$

Langmuir isotherm

$$\rho_{bound} = \frac{[LR]}{[R]_0} = \frac{[L]_0}{[L]_0 + K_D} = \frac{[L]_0 / K_D}{1 + [L]_0 / K_D}$$

K_D is the ligand concentration at which the receptor is <u>half occupied</u>

Figure 6.6 Physical Biology of the Cell, 2ed. (© Garland Science 2013

How to determine an equilibrium constant?

K_d for simple protein DNA complex from EMSA (electromobility shift analysis)

gel electrophoresis apparatus

Image of the gel after electrophoresis

radiactively or fluorescently labeled DNA

from BAMBED, Vol. 40, pp. 383-387, 2012

How to determine an equilibrium constant?

K_d for simple biomolecule (DNA origami)-lipid interactions from fluorescence microscopy

Biomimetic curved DNA origami

Stronger binding

 $K_{\rm d} = 0.39 \pm 0.07 \, \rm nM$

$$K_{\rm d} = 0.68 \pm 0.18 \, \rm nM$$

Weaker binding

$$K_{d} = 2.0 \pm 0.6 \,\text{nM}$$

Franquelim HG, et al. (2018) Nat Commun. 9(1): 811

Bimolecular association from Gibbs distribution

STATE

WEIGHT

free energy of receptor

$$E = \boldsymbol{\varepsilon_b} \cdot \boldsymbol{\sigma}$$

 $\varepsilon_h \rightarrow$ energy change

upon ligand binding

 $\sigma = 0$

1

 $e^{-\beta(\varepsilon_b-\mu)}$

$$Z = \sum_{\sigma=0}^{1} e^{-\beta(\varepsilon_b \sigma - \mu \sigma)} = 1 + e^{-\beta(\varepsilon_b - \mu)}$$

 $\sigma \rightarrow$ state variable i.e.,

occupancy by ligand

$$\sigma = 1$$

Figure 7.10 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

$$\rho_{bound} = \langle N \rangle = \frac{e^{-\beta(\varepsilon_b - \mu)}}{1 + e^{-\beta(\varepsilon_b - \mu)}} = \left(\frac{1}{e^{\beta(\varepsilon_b - \mu)} + 1}\right)$$

Bimolecular association from Gibbs distribution

Inserting $\mu = \mu_0 + k_B T \ln(c/c_0)$:

$$\rho_{bound} = \frac{e^{-\beta(\varepsilon_b - \mu_0 - k_B T \ln(c/c_0))}}{1 + e^{-\beta(\varepsilon_b - \mu_0 - k_B T \ln(c/c_0))}}$$

Inserting $\Delta_r G_{bind}^0 = \varepsilon_b - \mu_0$ and $K_{\rm d} = c_0 \ e^{\beta \Delta_r G_{bind}^0}$:

$$\rho_{bound} = \frac{(c/c_0)e^{-\beta\Delta_r G_{bind}^0}}{1 + (c/c_0)e^{-\beta G_{bind}^0}}$$

$$ho_{bound} = rac{c/K_d}{1 + c/K_d}$$
 Langmuir isotherm

$$p_{bound} = \frac{1}{e^{\beta(\varepsilon_b - \mu)} + 1} = \frac{1}{e^{\beta(\Delta_r G_{bind}^0 - k_B T \ln c)} + 1}$$

Changing equilibrium state population by sweeping an external potential

Cooperativity

Identical elements (e.g. binding sites) of a system that act dependently of each other, i.e. the occupation of an element state depends on the state of a neighboring element

Cooperative adsorption

gives commonly rise to nucleation phenomena

Hemoglobin – the model object of cooperativity

Langmuir adsorption isotherm describes myoglobin but does not describe hemoglobin binding!!!

- \rightarrow binding of O_2 at one sites increases K_{eq} for binding a second O_2
- → **cooperativity** seen as a more sudden/steeper transition

Hypothetical "Dimoglobin"

free energy of system

$$E = \varepsilon(\sigma_1 + \sigma_2) + J\sigma_1\sigma_2$$

J is measure of cooperativity

mutual interaction energy between

the two bound ligands

two state variables for each binding site:

Figure 7.17 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

$$\sigma_1 = 0 \ or \ 1 \rightarrow \text{binding site 1 unbound/bound by O}_2$$

$$\sigma_2 = 0 \ or \ 1 \rightarrow \text{binding site 2 unbound/bound by O}_2$$

$$\mathcal{Z} = \underbrace{1}_{\text{unoccupied}} + \underbrace{e^{-\beta(\varepsilon-\mu)} + e^{-\beta(\varepsilon-\mu)}}_{\text{single occupancy}} + \underbrace{e^{-\beta(2\varepsilon+J-2\mu)}}_{\text{both sites occupied}}$$

Hypothetical "Dimoglobin" – probability of states

Probabilities of each of the distinct state:

Figure 7.18 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

oxygen partial pressure (mmHg)

single-ligand state (ρ_1) is only transiently occupied to a low degree!

"Dimoglobin" - Mean number of oxygens bound

$$\Delta \varepsilon = \varepsilon_{\rm b} - \mu_0 = -5 k_{\rm B}T$$

Cooperativity factor J

Mean number of bound O₂:

$$\langle N \rangle = \frac{1}{\beta} \frac{\partial}{\partial \mu} \ln Z = \frac{1}{\beta} \frac{1}{Z} \frac{\partial}{\partial \mu} Z$$

$$\langle N \rangle = \frac{2e^{-\beta(\varepsilon-\mu)} + 2e^{-\beta(2\varepsilon+J-2\mu)}}{1 + e^{-\beta(\varepsilon-\mu)} + e^{-\beta(\varepsilon-\mu)} + e^{-\beta(2\varepsilon+J-2\mu)}}$$

Inserting $\mu = \mu_0 + k_B T \ln(c/c_0)$:

$$\langle N \rangle = \frac{2(c/c_0)e^{-\beta\Delta\varepsilon} + 2(c/c_0)^2 e^{-\beta(2\Delta\varepsilon + J)}}{1 + 2(c/c_0)e^{-\beta\Delta\varepsilon} + (c/c_0)^2 e^{-\beta(2\Delta\varepsilon + J)}}$$

"Dimoglobin" - Mean number of oxygens bound

$$\Delta \varepsilon = \varepsilon_{\rm b} - \mu_0 = -5 k_{\rm B}T$$

Cooperativity factor J

$$----0 k_B T$$

 $--2.5 k_B T$
 $--5 k_B T$

If
$$J = 0 \rightarrow$$
 no cooperativity

$$\langle N \rangle = 2 \frac{(c/c_0)e^{-\beta\Delta\varepsilon}}{1+(c/c_0)e^{-\beta\Delta\varepsilon}} = 2 \frac{c/K_d}{1+c/K_d}$$

$$\uparrow$$
2 independent
Langmuir isotherms

- *J* < 0; Cooperative binding (i.e. increased affinity for the second ligand)
- J > 0; Anti-cooperative binding
 (i.e. affinity for the second site is reduced)

$$\langle N \rangle = \frac{2(c/c_0)e^{-\beta \Delta \varepsilon} + 2(c/c_0)^2 e^{-\beta(2\Delta \varepsilon + J)}}{1 + 2(c/c_0)e^{-\beta \Delta \varepsilon} + (c/c_0)^2 e^{-\beta(2\Delta \varepsilon + J)}}$$

Hemoglobin – with all four binding sites

Real hemoglobin

(max. 4 O₂)

6 <u>pairwise</u> ligand-ligand interactions (corresponding to the six edges of a tetrahedron)

Pauling model

Pauling model

weights 1

 $6e^{-2\beta(\varepsilon-\mu)-\beta J}$ 1 interaction

 $4e^{-3\beta(\varepsilon-\mu)-3\beta J}$ 3 interactions

 $e^{-4\beta(\varepsilon-\mu)-6\beta J}$ 6 interactions

$$\mathcal{Z} = \underbrace{1}_{\text{0 bound}} + \underbrace{4e^{-\beta(\varepsilon-\mu)}}_{\text{1 bound}} + \underbrace{6e^{-2\beta(\varepsilon-\mu)-\beta J}}_{\text{2 bound}} + \underbrace{4e^{-3\beta(\varepsilon-\mu)-3\beta J}}_{\text{3 bound}} + \underbrace{e^{-4\beta(\varepsilon-\mu)-6\beta J}}_{\text{4 bound}}$$

Mean number of bound O₂:

$$\langle N \rangle = \frac{4e^{-\beta(\varepsilon-\mu)} + 12e^{-\beta(\varepsilon-\mu)-\beta J} + 12e^{-3\beta(\varepsilon-\mu)-3\beta J} + 4e^{-4\beta(\varepsilon-\mu)-6\beta J}}{1 + 4e^{-\beta(\varepsilon-\mu)} + 6e^{-2\beta(\varepsilon-\mu)-\beta J} + 4e^{-3\beta(\varepsilon-\mu)-3\beta J} + e^{-4\beta(\varepsilon-\mu)-6\beta J}}$$

Hemoglobin – compare model with data

Figure 7.23 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Hemoglobin – with all four binding sites

Adair model: includes tri- and tetravalent interactions to have even more fun @ (not just pairwise)

$$E = \varepsilon \sum_{\alpha=1}^{4} \sigma_{\alpha} + \frac{J}{2} \sum_{\alpha, \gamma}' \sigma_{\alpha} \sigma_{\gamma} + \frac{K}{3!} \sum_{\alpha, \beta, \gamma}' \sigma_{\alpha} \sigma_{\beta} \sigma_{\gamma} + \frac{L}{4!} \sum_{\alpha, \beta, \gamma, \delta}' \sigma_{\alpha} \sigma_{\beta} \sigma_{\gamma} \sigma_{\delta}$$

cooperativity effectively eliminates intermediate states

limits binding to narrow conc. range (sudden treshold, all-or-none binding)

Cooperative ligand binding – formula using mass action law

$$R + nL \rightleftharpoons L_nR$$

$$[L_n R] = [R] \frac{[L]^n}{K_d^n}$$

*n*th power of dissociation constant

$$(K_{\rm d})^{\mathbf{n}} = \frac{[L]^{\mathbf{n}}[R]}{[L_{\mathbf{n}}R]} = c_0^{\mathbf{n}} e^{\beta(n\Delta\varepsilon)}$$

Probability that receptor carries n ligands:

$$\rho_{bound} = \frac{[L_n R]}{[R] + [L_n R]} = \frac{([L]/K_d)^n}{1 + ([L]/K_d)^n}$$

Hill function with Hill coefficient n

Hill function for different Hill coefficients

With increasing Hill coefficient (cooperativity)

Curve becomes sigmoidal (S-shaped)

Hill function is empirical way to cooperativity Fitting hemoglobin data provides n < 4