

0.1 Quand est-ce que $\tilde{\mathcal{O}}_K$ est de Dedekind

Comme d'hab on prends

L/K finie avec $K = Frac(\mathcal{O}_K)$ un anneau de valuation discrète

Ensuite on regarde sa fermeture intégrale dans L, $\tilde{\mathcal{O}}_K$. On veut une extension de DVR, pour ça y faut que $\tilde{\mathcal{O}}_K$ soit de Dedekind. Le problème c'est toujours de montrer que c'est noethérien. Le reste se montrer toujours directement.

0.1.1 Cas général

Le fait que c'est intégralement clos c'est clair. Faut montrer que c'est de dimension 1. Ça c'est l'étude des Spec.

0.1.2 Cas séparable

Étant donnée L/K finie séparable, on a tout ce qui nous faut. On a un discriminant non nul bien défini, d'où si $L = \bigoplus Ke_i$ alors

$$(Tr(e_ie_j))_{i,j}$$

est non dégénérée. Puis on a une base duale à e_i , i.e. e_i^* telle que $Tr(e_i^*e_j) = \delta_{ij}$. Avec ça on peut

- 1. à partir de e_i une base de L/K dans $\tilde{\mathcal{O}}_K$, obtenir sa base duale pour la trace e_i^* .
- 2. montrer que tout élément entier $b = \sum \lambda_i e_i^*$ vérifie $\lambda_i \in \mathcal{O}_K$, via $Tr(be_i) = \lambda_i!$
- 3. D'où \mathcal{O}_K est un sous \mathcal{O}_K -module d'un module de type fini donc noethérien.

0.1.3 Cas semi-local

On se place **toujours** dans le cadre où on a \mathcal{O}_K de valuation **discrète**. Le cadre en gros c'est

$$\mathcal{O}_{K} \longrightarrow \tilde{\mathcal{O}}_{K} \subseteq (\tilde{\mathcal{O}}_{K})_{\mathfrak{m}_{i}} = ? = (\mathcal{O}_{L})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$k_{K} \longrightarrow k_{L}$$

C'est à dire qu'on prends la clôture intégrale, on regarde ses idéaux maximaux et on obtient des extensions de d.v.r. Quand K est complet ou quand on fixe une valuation (un premier \mathfrak{m}_i) sur L, \mathcal{O}_L fait sens.

0.1.4 Calcul générique

Pour calculer maintenant en fait une marche à suivre c'est

On sait le faire dans
$$\mathcal{O}_K[\alpha]$$
.

On aurait besoin de critères pour que $\tilde{\mathcal{O}}_K = \mathcal{O}_K[\alpha]$. Si c'est le cas alors :

- 1. La factorisation de P dans $k_K[X]$ donne la ramification et les idéaux maximaux de $\tilde{\mathcal{O}}_K!$
- 2. Plus précisément, si

$$\bar{P} = \prod_{i} p_i^{r_i} \in k_K[X]$$

alors $\mathfrak{m}_i = (\mathfrak{m}_K, p_i(\alpha)).$

Le point important c'est la ramification, on relève

$$P(\alpha) = \prod_{i} P_i^{r_i}(\alpha) + \epsilon(\alpha)$$

ce qui donne par le deuxième point

$$\prod_{i} \mathfrak{m}_{i}^{r_{i}} = \prod_{i} (\mathfrak{m}_{K}, P_{i}(\alpha))^{r_{i}} \subset \mathfrak{m}_{K} \tilde{\mathcal{O}}_{K} = \prod_{i} \mathfrak{m}_{i}^{e_{i}}$$

On en déduit $r_i \geq e_i$ pour tout i et on conclut directement avec

$$\sum r_i f_i = \deg \bar{P} = \deg P = [L:K] = \sum e_i f_i$$

On a utilisé que $\tilde{\mathcal{O}}_K$ est fini sur \mathcal{O}_K pour l'égalité $\deg \bar{P} = \deg P$ et la dimension $[L:K] = \sum e_i f_i$.

0.1.5 Cas primitif

Un cas intéressant quand on a $L = K(\alpha)$, par exemple si L/K est séparable on peut dire des choses fortes. Si \bar{P} est séparable, alors $\tilde{\mathcal{O}}_K = \mathcal{O}_K[\alpha]$ et on peut appliquer la section d'avant!

On a un problème quand l'extension résiduelle est inséparable, on se place dans le diagramme

0.1.6 Cas complet

On a une équivalence entre :

- 1. L'extension L/K est non ramifiée (par déf non ramifiée et $k_{K(\alpha)}/k_K$ est séparable).
- 2. Il existe $\alpha: L = K(\alpha)$ et P le pol min de α sur K est séparable sur k_K .

L'idée c'est juste que la formule ef = [L:K] est vraie. Et on peut relever une base de l'extension résiduelle! En gros ça donne une réciproque à la section d'avant.

Dans le cas p-adique, les corps finis sont parfaits et on a toujours des extensions séparables (c'est immédiat de la déf)! En particulier, si \bar{P} est inséparable c'est qu'il est scindé. Ça se voit bien par Hensel :

1. On a toujours $\bar{P} = F^d$ et en réécrivant $d \deg F = \deg P = e.f$ sachant que $\deg F \mid f$ (à vérifier mais ça se voit) on obtient $e \mid d$. (l'égalité c'est qu'on suppose P unitaire)

Conclure là dessus, ajouter une discussion des cassages d'extensions de \mathbb{Q}_p est totalement ramifiée et non ramifiée (le faire). Et aussi faire le lien entre ramification sur \mathbb{Q} est sur des complétions \mathbb{Q}_p . Aussi conclure le cas primitif avec des divisibilités.

0.2 Ramification 1

J'vais parler de ramification ici. Le lemme clé c'est que dans une extensions de d.v.r $\mathcal{O}_K - \mathcal{O}_L$. Si

$$k_K - k_L$$

est de dimension $f \in \mathbb{N} \cup \infty$. Alors

$$dim_k \mathcal{O}_L/\mathfrak{m}_K \mathcal{O}_L = e.f$$

avec $\mathfrak{m}_K = \mathfrak{m}_L^e$. Ensuite, si $\tilde{\mathcal{O}}_K$ est la fermeture intégrale de \mathcal{O}_K dans L alors

$$\sum_{i} e_i f_i \le [L:K]$$

où on écrit $\mathfrak{m}_K \tilde{\mathcal{O}}_K = \prod_i \mathfrak{m}_i^{e_i}$ et $f_i = [\tilde{\mathcal{O}}_K/\mathfrak{m}_i : k_K]$. Ça c'est par le lemme chinois! Pour utiliser le résultat de juste avant faut aussi montrer que

$$(\tilde{\mathcal{O}}_K)_{\mathfrak{m}_i}/\mathfrak{m}_i^r(\tilde{\mathcal{O}}_K)_{\mathfrak{m}_i}\simeq \tilde{\mathcal{O}}_K/\mathfrak{m}_i^r\tilde{\mathcal{O}}_K$$

Pour m maximal (ça se fait à la main). On a l'égalité dans plusieurs cas :

- 1. K est complet, car alors $\tilde{\mathcal{O}}_K = \mathcal{O}_L$.
- 2. L/K est séparable, car alors $\tilde{\mathcal{O}}_K$ est fini sur \mathcal{O}_K .
- 3. Plus généralement, si $\tilde{\mathcal{O}}_K$ est fini sur \mathcal{O}_K .
- 4. $L \otimes_K \widehat{K}$ est réduite. Regarder le lien entre les nilpotents et la séparabilité.

Maintenant faut la calculer.

 $0.2\ Ramification\ 1$

Chapitre 1

3e point sur les cours, 21/10/2024

Faut faire un peu plus attention qu'au 2e point.

1.1 Extensions de valuations bis

En conséquence de l'autre section on peut reformuler la bijection

{Ideaux maximaux de $L \otimes_K \widehat{K}$ } \leftrightarrow { Extensions de $|.|_K$ à L}

en