1	1.	A photosensing organic field effect transistor (POPE1), comprising:
2		
3		a substrate insulating layer, the insulating layer having a high relative
4		dielectric constant and a first side and a second side;
5		
6		a gate electrode, the gate electrode being an electrical conductor, the gate
7		electrode being positioned adjacent to the first side of the insulating layer;
8		
9		a semiconducting polymer layer, the semiconducting polymer layer being
10		responsive to incident light, the semiconducting polymer layer having a
11		first side, a second side, a first end and a second end, the second side of
12		the semiconductor layer being adjacent the second side of the insulating
13		layer;
14		
15		a source electrode, the source electrode being an electrical conductor, the
16		source electrode being in electrical contact with the first end of the
17		semiconductor layer; and
18		
19		a drain electrode, the drain electrode being an electrical conductor, the
20		drain being in electrical contact with the second end of the semiconducting
21		polymer layer.
22		
23	2.	A POFET, comprising:
24	<u> </u>	
25		a substrate insulating layer, the insulating layer having a high relative
26		dielectric constant and a first side, a second side, a first end and a second
27		end;
28		
29		a gate electrode, the gate electrode being an electrical conductor, the gate
30		electrode being positioned adjacent to the first side of the insulating layer;

1		
2		a source electrode, the source electrode being an electrical conductor, the
3		source electrode being in electrical contact with the first end of the second
4		side of the insulating layer;
5		
6		a drain electrode, the drain electrode being an electrical conductor, the
7		drain electrode being in electrical contact with the second end of the
8		second side of the insulating layer; and
9		
10		a semiconducting polymer layer, the semiconducting polymer layer being
11		responsive to incident light, the semiconducting polymer layer being in
12		electrical contact with the second side of the insulating layer and the
13		source electrode and the drain electrode.
14		
15	3.	The POFET of claim 1, wherein the semiconducting polymer layer further
16		comprises a photoconducting polymer having a field effect mobility of 10 ⁻²
17		cm ² /V-sec or greater.
18		
19	4.	The POFET of claim 1, wherein the insulating layer has a dielectric constant of
20		3.0 or greater.
21		
22	5.	The POFET of claim 1, wherein the insulating layer is further comprised of a
23		polymeric material.
24		
25	6.	The POFET of claim 5, wherein the polymeric media is polyvinyl alcohol.
26		
27	7.	The POFET of claim 5, wherein the polymeric media is polymethyl methacrylate.
28		
29	8.	The POFET of claim 1, wherein the insulating layer is further comprised of an
30		inorganic material.

1	9.	The POFET of claim 1, wherein the insulating layer is at least semi-transparent to
2		optical radiation.
3	10.	The POFET of claim 1, wherein the insulating layer is further comprised of SiO ₂ .
4		
5	11.	The POFET of claim 1, wherein the gate electrode is partially transparent.
6		
7	12.	The POFET of claim 1, wherein the semiconducting polymer layer further
8		comprises a polymer matrix including, in dilute quantities, one or more electron
9		acceptors selected from the group consisting of buckministerfullerene C_{60} and
10		derivatives thereof, viologen, dichloro-dicyano-benzoquinone, nanoparticles of
11		titanium dioxide, nanoparticles of cadmium sulphide and the like, thereby
12		enabling electron transfer from the polymer matrix upon photoexcitation in order
13		to obtain a high photo-induced current between the drain and source electrodes.
14		
15	13.	The POFET of claim 1, wherein a drain current (and transistor ON state) is
16		independently controllable by a voltage applied to the gate electrode and by the
17		intensity of light incident upon the POFET.
18		
19	14.	The POFET of claim 1, wherein the semiconducting polymer layer further
20		comprises a regioregular polyalkylthiophene with 98.5% head-to-tail regiospecific
21		conformation.
22		
23	15.	The POFET of claim 14, wherein the regionegular polyalkylthiophene is Poly (3-
24		octylthiophene).
25		
26	16.	The POFET of claim 14, wherein the regionegular polyalkylthiophene is Poly (3-
27		hexylthiophene).
28	\	
29	\ 17.	A method of fabricating a POFET, comprising the steps of:
30	\	

1		coating a glass substrate with a semi-transparent gate electrode;
2		
3		depositing upon the gate electrode an electrically insulating layer having a
4		first side and a second side, the first side adjacent to the gate electrode;
5		
6		forming on the second side of the insulating layer a semiconducting
7		polymer layer comprised of a regioregular polyalkylthiophene responsive
8		to incident light and having a 98.5% head-to-tail regiospecific
9		conformation; and
10		
11		forming on the semiconducting polymer layer electrically conducting
12		source and drain electrodes.
13		
14	18.	The method of claim 17, wherein the insulating substrate is comprised of a
15		polymeric media.
16		
17	19.	The method of claim 17, wherein the insulating substrate is partially transparent.
18		
19	20.	The method of claim 17, wherein the semiconducting polymer layer further
20		comprises a polymer matrix including, in dilute quantities, one or more electron
21		acceptors selected from the group consisting of buckministerfullerene C ₆₀ and
22		derivatives thereof, viologen, dichloro-dicyano-benzoquinone, nanoparticles of
23		titanium dioxide, nanoparticles of cadmium sulphide and the like, thereby
24		enabling electron transfer from the polymer matrix upon photoexcitation in order
25		to obtain a high photo-induced current between the drain and source electrodes.
26		
27	21.	The method of claim 17, wherein the regionegular polyalkylthiophene is Poly (3-
28		octylthiophene).
29		
30		

	1	22.	The method of claim 17, wherein the regionegular polyalkylthiophene is Poly (3-
	2		hexylthiophene)
	3		
	4	23.	The POFET of claim 1, wherein a POFET saturation current gain of 100 or higher
	5		may be achieved.
	6		
	7	24.	A method of using a POFET as a logical element, comprising the step of:
	8		activating a transistor ON state by controlling gate bias or the intensity of
	9		incident light.
	10	\	
	11	25.	A method of using a POFET as a logical element, comprising the step of:
	12	•	activating a transistor ON state by controlling gate bias and the intensity of
Ų.	13		incident light.
	14		
Ļ	15	26.	A method of using a POFET as a backbone of a position sensitive detector,
** () 125 cm² cm² (** ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	16		comprising the steps of:
	17		
Ď	18		positioning one or more photosensing organic FETs in a beam of light
es es es	19		incident from an object to be imaged; and
	20		
	21		monitoring the variation of drain current(s) from the one or more
	22		photosensing organic FETs, wherein the drain current(s) vary with the
	23		spatial position of the incident light beam.
	24		
	25	27.	A method of controlling the electrical properties of a POFET, comprising the step
	26	`	of:
	27		varying the intensity of light incident upon the photosensing organic FET,
	28		thereby varying the carrier concentration in the channel region and the
	29		drain-source current.