

Introdução à Computação

Noções básicas sobre arquitetura e organização de computadores

Universidade Federal Rural de Pernambuco Professor: Abner Corrêa Barros abnerbarros@gmail.com

Funções do computador

- Processamento de dados
- Armazenamento de dados
- Movimentação de dados
- ✓ Controle

Arquitetura Básica de um Computador

- ✓ Unidade de Processamento
- Meio de armazenamento
- ✓ Interfaces de Entrada e Saida

Organização interna de um computador

- □ CPU (Unidade Central de Processamento)
 - Celebro do computador
 - Responsável por buscar, decodificar e executar as instruções do programa
 - Principais características:
 - ✓ Velocidade do Clock
 - ✓ Número de cores
 - ✓ Tamanho do barramento (32 ou 64 bits)
 - Velocidade do barramento

Organização interna de um computador

- Memória Principal
 - Responsável por armazenar os programas e dados que estão sendo utilizados
 - Principais características:
 - √ Tamanho do barramento (32 ou 64 bits)
 - ✓ Velocidade do barramento
 - ✓ Tecnologia de construção (DDR, DDR2, DDR3, VRAM, etc)

Organização interna de um computador

- Dispositivos de Entrada e Saida
 - São o meio de comunicação do computador com o mundo exterior
 - Exemplos:
 - ✓ Teclado/Mouse
 - ✓ Monitor
 - ✓ Disco Rígido
 - ✓ Interface de Rede
 - ✓ Interface de captura

Princípio de funcionamento de um Computador

- Execução de algoritmos pré-definidos, descritos na forma de instruções da linguagem de máquina do processador utilizado
 - Nenhum computador possui inteligência para elaborar e executar algoritmos de maneira autônoma
 - ☐ Toda a "inteligência" dos computadores advêm dos algoritmos que estes executam

Processo de Execução de uma Instrução

- Buscar a instrução na memória
- Alterar o contador de programas para que este aponte para a próxima instrução
- □ Decodificar a instrução
- Se houver operandos a serem carregados, carrega os operandos

Processo de Execução de uma Instrução

- □ Executar a instrução
- □ Voltar à primeira etapa novamente para carregar a próxima instrução a ser executada

Lei Moore e a evolução dos computadores modernos

- □ Em 1965, quando não havia ainda nenhuma previsão real sobre o futuro do hardware, o então presidente da Intel, Gordon E. Moore fez uma previsão que se mostrou tão acertada que acabou se tornando uma lei, ficando conhecida como a Lei de Moore:
 - "daqui para frente o poder de processamento dos chips aumentará em 100% a cada período de 18 meses"

Lei Moore e a evolução dos computadores modernos

- Moore fez sua predição baseado em duas premissas:
 - As técnicas de fabricação dos Circuitos integrados tendem a evoluir a cada dia.
 - Com a evolução nas técnicas de fabricação, a quantidade de transistores disponíveis por área de silício a cada nova geração de circuitos integrados deve aumentar significativamente.

Lei Moore e a evolução dos computadores modernos

Computadores Modernos

□ A alta escala de integração verificada nos circuitos integrados, permitiu o desenvolvimento de processadores tanto mais poderosos quanto menores e com menor consumo de energia, isto possibilitou o desenvolvimento de diversos tipos de computadores os quais são empregados nas mais diversas áreas de aplicações

Computadores Modernos

- Personal Computers
 - Desktop
 - **Notebooks**
 - **Palmtops**
 - **Netbooks**

Computadores Modernos

- Embedded Computers
 - Eletrodomésticos
 - Dispositivos de Segurança Smart Card, Rf-Id,
 Alarmes
 - Eletromedicina
 - Entreterimento
 - Indústria Automotiva
 - Etc...

- Em uma avaliação simplista e direta, poderíamos dizer que um sistema computacional é formado de duas partes distintas e interdependentes:
 - Hardware
 - Software

Uma análise mais criteriosa e detalhada revela a existência de outros níveis de abstração na arquitetura de um sistema computacional:

- Existe uma grande lacuna entre o que é conveniente para as pessoas, do ponto de vista de descrição de um algorítmo, e o que é conveniente para uma máquina, do ponto de vista de execução de um algorítmo
 - As pessoas raciocinam em X
 - O hardware dos computadores só compreendem algoritmos descritos em Y

- ☐ Solução: Desenvolver um sistema que permita o mapeamento entre o que as pessoas pensam e o que os computadores executam
 - Pessoas pensam L1 (Software)
 - Computadores executam L2 (Hardware, Nível Físico, Eletrônico)

Máquinas multiníveis contemporâneas

