# National University of Computer & Emerging Sciences MT-1003 Calculus and Analytical Geometry



# **CONTINUITY**

# **DEFINITION OF CONTINUITY:**

Intuitively, the graph of a function can be described as a "continuous curve" if it has no breaks or holes. To make this idea more precise we need to understand what properties of a function can cause breaks or holes. Referring to Figure 1.5.1, we see that the graph of a function has a break or hole if any of the following conditions occur:

- The function f is undefined at c (Figure 1.5.1a).
- The limit of f(x) does not exist as x approaches c (Figures 1.5.1b, 1.5.1c).
- The value of the function and the value of the limit at c are different (Figure 1.5.1d).

**1.5.1 DEFINITION** A function f is said to be *continuous at* x = c provided the following conditions are satisfied:

- 1. f(c) is defined.
- 2.  $\lim_{x \to c} f(x)$  exists.
- 3.  $\lim_{x \to c} f(x) = f(c)$ .



**1.5.2 DEFINITION** A function f is said to be *continuous on a closed interval* [a, b] if the following conditions are satisfied:

- **1.** f is continuous on (a, b).
- **2.** f is continuous from the right at a.
- 3. f is continuous from the left at b.

## **SOME PROPERTIES OF CONTINUOUS FUNCTIONS**

**1.5.3 THEOREM** If the functions f and g are continuous at c, then

- (a) f + g is continuous at c.
- (b) f g is continuous at c.
- (c) fg is continuous at c.
- (d) f/g is continuous at c if  $g(c) \neq 0$  and has a discontinuity at c if g(c) = 0.

## **CONTINUITY OF POLYNOMIALS AND RATIONAL FUNCTIONS**

#### **1.5.4 THEOREM**

- (a) A polynomial is continuous everywhere.
- (b) A rational function is continuous at every point where the denominator is nonzero, and has discontinuities at the points where the denominator is zero.

### TYPES OF DISCONTINUITY



Each function drawn in Figure 1.5.1 illustrates a discontinuity

at x = c. In Figure 1.5.1a, the function is not defined at c, violating the first condition of Definition 1.5.1. In Figure 1.5.1b, the one-sided limits of f(x) as x approaches c both exist but are not equal. Thus,  $\lim_{x\to c} f(x)$  does not exist, and this violates the second condition of Definition 1.5.1. We will say that a function like that in Figure 1.5.1b has a *jump discontinuity* at c. In Figure 1.5.1c, the one-sided limits of f(x) as x approaches c are infinite. Thus,  $\lim_{x\to c} f(x)$  does not exist, and this violates the second condition of Definition 1.5.1. We will say that a function like that in Figure 1.5.1c has an *infinite discontinuity* at c. In Figure 1.5.1d, the function is defined at c and  $\lim_{x\to c} f(x)$  exists, but these two values are not equal, violating the third condition of Definition 1.5.1. We will

say that a function like that in Figure 1.5.1*d* has a *removable discontinuity* at *c*. Exercises 33 and 34 help to explain why discontinuities of this type are given this name.

**Example 1** Determine whether the following functions are continuous at x = 2.

$$f(x) = \frac{x^2 - 4}{x - 2}, \qquad g(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & x \neq 2 \\ 3, & x = 2, \end{cases} \qquad h(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & x \neq 2 \\ 4, & x = 2 \end{cases}$$

**Solution.** In each case we must determine whether the limit of the function as  $x \rightarrow 2$  is the same as the value of the function at x = 2. In all three cases the functions are identical, except at x = 2, and hence all three have the same limit at x = 2, namely,

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} g(x) = \lim_{x \to 2} h(x) = \lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} (x + 2) = 4$$

The function f is undefined at x = 2, and hence is not continuous at x = 2 (Figure 1.5.2a). The function g is defined at x = 2, but its value there is g(2) = 3, which is not the same as the limit as x approaches 2; hence, g is also not continuous at x = 2 (Figure 1.5.2b). The value of the function f at f is continuous at f is continuou



▲ Figure 1.5.2

# **Example 2** What can you say about the continuity of the function $f(x) = \sqrt{9 - x^2}$ ?

**Solution.** Because the natural domain of this function is the closed interval [-3,3], we will need to investigate the continuity of f on the open interval (-3,3) and at the two endpoints. If c is any point in the interval (-3,3), then it follows from Theorem 1.2.2(e) that

 $\lim_{x \to c} f(x) = \lim_{x \to c} \sqrt{9 - x^2} = \sqrt{\lim_{x \to c} (9 - x^2)} = \sqrt{9 - c^2} = f(c)$ 

which proves f is continuous at each point in the interval (-3,3). The function f is also continuous at the endpoints since

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} \sqrt{9 - x^{2}} = \sqrt{\lim_{x \to 3^{-}} (9 - x^{2})} = 0 = f(3)$$

$$\lim_{x \to -3^{+}} f(x) = \lim_{x \to -3^{+}} \sqrt{9 - x^{2}} = \sqrt{\lim_{x \to -3^{+}} (9 - x^{2})} = 0 = f(-3)$$

Thus, f is continuous on the closed interval [-3, 3] (Figure 1.5.5).



▲ Figure 1.5.5

# **Example 3** For what values of x is there a discontinuity in the graph of

$$y = \frac{x^2 - 9}{x^2 - 5x + 6}$$
?

**Solution.** The function being graphed is a rational function, and hence is continuous at every number where the denominator is nonzero. Solving the equation

$$x^2 - 5x + 6 = 0$$

yields discontinuities at x = 2 and at x = 3 (Figure 1.5.6).



$$y = \frac{x^2 - 9}{x^2 - 5x + 6}$$

▲ Figure 1.5.6

**Example 4** Show that |x| is continuous everywhere.

**Solution.** We can write |x| as

$$|x| = \begin{cases} x & \text{if } x > 0\\ 0 & \text{if } x = 0\\ -x & \text{if } x < 0 \end{cases}$$

so |x| is the same as the polynomial x on the interval  $(0, +\infty)$  and is the same as the polynomial -x on the interval  $(-\infty, 0)$ . But polynomials are continuous everywhere, so x = 0 is the only possible discontinuity for |x|. Since |0| = 0, to prove the continuity at x = 0 we must show that  $\lim_{x \to 0} |x| = 0$  (2)

Because the piecewise formula for |x| changes at 0, it will be helpful to consider the one-sided limits at 0 rather than the two-sided limit. We obtain

$$\lim_{x \to 0^+} |x| = \lim_{x \to 0^+} x = 0 \quad \text{and} \quad \lim_{x \to 0^-} |x| = \lim_{x \to 0^-} (-x) = 0$$

Thus, (2) holds and |x| is continuous at x = 0 (Figure 1.5.7).



▲ Figure 1.5.7

# **EXERCISE SET 1.2**

# **Question:**

**5.** Consider the functions

$$f(x) = \begin{cases} 1, & x \neq 4 \\ -1, & x = 4 \end{cases} \text{ and } g(x) = \begin{cases} 4x - 10, & x \neq 4 \\ -6, & x = 4 \end{cases}$$

In each part, is the given function continuous at x = 4?

- (a) f(x) (b) g(x) (c) -g(x) (d) |f(x)|

- (e) f(x)g(x) (f) g(f(x)) (g) g(x) 6f(x)

### **Answer:**

- (a) No.
- (b) No. (c) No. (d) Yes. (e) Yes.

- (f) No.
- (g) Yes.

## **Question:**

Find values of x, if any, at which f is not continuous.

17. 
$$f(x) = \frac{3}{x} + \frac{x-1}{x^2-1}$$

## **Answer:**

The function is not continuous at x = 0, x = 1 and x = -1.

## **Question:**

Find values of x, if any, at which f is not continuous.

**22.** 
$$f(x) = \begin{cases} \frac{3}{x-1}, & x \neq 1 \\ 3, & x = 1 \end{cases}$$

### **Answer:**

The function is not continuous at x = 1, as  $\lim_{x \to 1} f(x)$  does not exist.

## **Question:**

**29–30** Find a value of the constant k, if possible, that will make the function continuous everywhere.

**29.** (a) 
$$f(x) = \begin{cases} 7x - 2, & x \le 1 \\ kx^2, & x > 1 \end{cases}$$

#### **Answer:**

(a) f is continuous for x < 1, and for x > 1;  $\lim_{x \to 1^-} f(x) = 5$ ,  $\lim_{x \to 1^+} f(x) = k$ , so if k = 5 then f is continuous for

## **Question:**

**35–36** Find the values of x (if any) at which f is not continuous, and determine whether each such value is a removable discontinuity.

**35.** (a) 
$$f(x) = \frac{|x|}{x}$$

**35.** (a) 
$$f(x) = \frac{|x|}{x}$$
 (b)  $f(x) = \frac{x^2 + 3x}{x + 3}$ 

#### **Answer:**

(a) 
$$x = 0$$
,  $\lim_{x \to 0^-} f(x) = -1 \neq +1 = \lim_{x \to 0^+} f(x)$  so the discontinuity is not removable.

(b) 
$$x = -3$$
; define  $f(-3) = -3 = \lim_{x \to -3} f(x)$ , then the discontinuity is removable.