Assignment 1: Analyze a given business scenario and create an ER diagram that includes entities, relationships, attributes, and cardinality. Ensure that the diagram reflects proper normalization up to the third normal form.

Step 1: Understanding the Business Scenario

- Identify the key business processes.
- Determine the necessary entities, their attributes, and relationships.
- Define the cardinality constraints for each relationship.

Business Scenario:

- Customers place orders.
- Each order consists of multiple items.
- Orders are processed based on the given ER diagram.

Step 2: Identifying Entities & Attributes

Entities and Their Attributes:

- 1. **Customer** (*Customer_ID*, Name, Contact_Info)
- 2. **Order** (*Order_ID*, Order_Date, Customer_ID)
- 3. **Items** (*Item_ID*, Item_Name, Price)
- 4. **Order_Items** (*Order_ID*, Item_ID, Quantity)

Step 3: Defining Relationships & Cardinality

- 1. **Customer places Orders** (1:N) One customer can place multiple orders, but an order belongs to one customer.
- 2. **Order contains Items** (1:N) One order can contain multiple items, but each item belongs to only one order.

Based on the provided ER diagram, these relationships are properly defined.

Step 4: Normalization (Up to 3NF)

- 1. 1NF (Eliminate Duplicate Data & Ensure Atomicity)
 - Separate Order_Items to handle the relationship between Orders and Items.
 - Ensure all attributes contain atomic values.

2. 2NF (Eliminate Partial Dependencies)

 Order_Items is correctly structured with only composite primary keys (Order_ID, Item_ID).

3. 3NF (Eliminate Transitive Dependencies)

Order table refers to Customer_ID directly.

Final Normalized Schema:

```
Customer(Customer_ID, Name, Contact_Info)
Order(Order_ID, Order_Date, Customer_ID)
```

Items(Item ID, Item Name, Price)

Order_Items(Order_ID, Item_ID, Quantity)