Лекция 01 от 05.09.2016

Определение 1. Пусть $\{a_n\}_{n=1}^{\infty}$ — последовательность действительных чисел. Числовым рядом называется выражение вида $\sum_{n=1}^{\infty} a_n$, записываемая также как $a_1 + a_2 + \ldots + a_n + \ldots$

Определение 2. N-й частичной суммой называется сумма первых N членов. $S_n = a_1 + \ldots + a_N$.

Определение 3. Последовательность $\{S_n\}_{n=1}^{\infty}$ называется последовательностью частичных сумм.

Определение 4. Говорят, что ряд сходится, если сходится его последовательность его частичных сумм.

Определение 5. Суммой ряда называется этот предел, если он существует.

Определение 6. А если предела нет, то говорят, что ряд расходится.

Вспоминая, что $a_n = S_n - S_{n-1}$, можно заключить, что особой разницы между самим рядом и последовательностью его частичных сумм нет.

Пример 1 (Предел Коши для последовательностей). $\{S_n\}_{n=1}^{\infty}$ сходится тогда и только тогда, когда она удовлетворяет условию Коши, т.е.

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \colon \forall m, k > N \Rightarrow |S_m - S_k| < \varepsilon$$

Нахаляву получили теорему.

Теорема 1 (Критерий Коши сходимости ряда). Для сходимости ряда $\sum_{n=1}^{\infty} a_n$ необходимо и достаточно, чтобы

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \colon \forall k > N, \ \forall p \in \mathbb{N} | a_{k+1} + a_{k+2} \dots + a_{k+p} | < \varepsilon$$

Отсюда сразу же очевидно следует утверждение.

Утверждение 1 (Необходимое условие сходимости ряда). Если ряд сходится, то $\lim_{n\to\infty} a_n = 0$.

Доказательство. Ряд сходится, значит

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \colon \forall k > N, p = 1 \Rightarrow |a_{k+1}| < \varepsilon$$

— определение предела, равного нулю.

Другой способ доказательства:

$$a_n = S_n - S_{n-1}$$

А принимая во внимание, что S_n , как и S_{n-1} стремятся к одному пределу при стремлении n к бесконечности, получим, что $\lim_{n\to\infty} a_n = 0$.

Сформулируем и докажем несколько тривиальных свойств.

Теорема 2. Пусть
$$\sum_{n=1}^{\infty} a_n = a$$
, $\sum_{n=1}^{\infty} b_n = b$. Тогда $\sum_{n=1}^{\infty} (a_n + b_n) = a + b$.

Доказательство. Это напрямую следует из свойсва пределов $S_n^{a+b} = S_n^a + S_n^b$

Аналогично, вспоминая свойства предела последовательности, можно доказать, что, если $\sum_{n=1}^{\infty} a_n = a$, то $\sum_{n=1}^{\infty} \alpha a_n = \alpha a$ для любого действительного α .

Введём важное определение.

Определение 7. Пусть дан ряд $\sum_{n=1}^{\infty} a_n$. Обозначим некоторые из его сумм

$$\underbrace{a_1 + \ldots + a_{n_1}}_{b_1} + \underbrace{a_{n_1+1} + \ldots + a_{n_2}}_{b_2} + \ldots + a_{n_3} + a_{n_3+1} + \ldots$$

 \mathcal{C}_{i} где $\{b_{j}\}_{j=1}^{\infty}$ — возрастающая последовательность натуральных чисел. В таком случае говорят, что ряд $\sum_{j=1}^{\infty} b_{j}$ получен из исходного расстановкой скобок.

Утверждение 2. Если ряд сходится, то после любой расстановки скобок он сходится, скажем неформально, туда же.

Доказательство. Достаточно заметить, что частичные суммы ряда, полученного расстановкой скобок, образуют подпоследовательость в последовательности частичных сумм исходного ряда. Вспоминая свойство предела последовательности, что любая подпоследовательность сходящейся последовательности сходится туда же, куда и сама последовательность.

Обратное неверно!!! Пример такого ряда

$$1 - 1 + 1 - \dots = \sum_{n=0}^{\infty} (-1)^n$$

который при расстановке скобок $(1-1)+(1-1)+\ldots=0$ даёт сходящийся ряд, в то время как исходный ряд расходится (не выполняется необходимое условие о стремлении членов ряда 0).

Утверждение 3. Если $a_n \to 0$ и длины скобок ограничены (т.е. существует такое $c \in \mathbb{R}$, что $n_{k+1} - n_k < c$ при всех k), то из сходимости исходного ряда следует сходимость исходного ряда

Утверждение 4. Изменение, удаление, добавление конечного числа членов ряда не влияют на сходимость.

Определение 8. Если сходится ряд $\sum_{n=1}^{\infty} |a_n|$, то говорят, что ряд $\sum_{n=1}^{\infty} a_n$ сходится абсолютно.

Определение 9. Если ряд сходится, но не сходится абсолютно, то говорят, что ряд сходится условно.

Утверждение 5. Если ряд $\sum_{n=1}^{\infty} a_n$ сходится абслютно, то он сходится.

Доказательство. Сразу следует из критерия Коши. Возьмём произвольное $\varepsilon > 0$. Так как ряд из модулей сходится, то

$$\exists N \in \mathbb{N} \colon \forall k > N, \, \forall p \in \mathbb{N} \Rightarrow \sum_{k+1}^{k+p} |a_k| < \varepsilon$$

Тогда

$$\left| \sum_{n=k+1}^{k+p} a_n \right| \leqslant \sum_{n=k+1}^{k+p} |a_n| < \varepsilon$$

Введём ещё парочку определений

Определение 10. Для ряда
$$\sum\limits_{n=1}^{\infty}a_n$$
 N -й хвост это сумма $r_N=\sum\limits_{n=N}^{\infty}a_n.$

Для сходящегося ряда очевидно, что $r_n \in \mathbb{R}$.