NANYANG TECHNOLOGICAL UNIVERSITY SPECIAL SEMESTER ASSIGNMENT 2024-2025 EE6231 – REINFORCEMENT LEARNING

July 2025 Time Allowed: 1 Week

INSTRUCTIONS

- 1. Option 1: A computation-based approach that provides the necessary details, intermediate steps, and intermediate results for obtaining the answer.
- 2. Option 2: A programming-based approach that provides executable original code and output results. The specific programming language is not restricted and can be Python, C++, or MATLAB.
- 1. Find the optimal policy for the following four-state grid world example, with five-action space, as shown in Fig.Q1a, where S_0 is the target state and the discount rate $\gamma=0.9$, predefined threshold $\theta=0.0001$ to check the convergence of the state values.

Hints: Bellman equation, BOE, state value, action value, policy evaluation, policy improvement.

Target	
S0	S1
S2	S3

Figure Q1a: Four-state grid world example

Note: Question No. 1 continues on Page 2

- (a) The action space is shown in Fig.Q1b.
 - a_1 : move upward;
 - a_2 : move rightward;
 - a_3 : move downward;
 - a_4 : move leftward;
 - a_5 : stay still;

Figure Q1b: Action space of a state

- (b) The rewards are designed as follows:
 - If the agent attempts to stay still (action a_5), let $r_{\text{stay}} = -0.5$
 - If the agent reaches the target cell (state S_0), let $r_{\text{target}} = +10$
 - Otherwise, the agent gets a reward of r = -1.

(100 marks)