Gleichungen

Lösungsmenge

 $\label{eq:decomposition} \mbox{Die L\"osungsmenge} \ L \ \mbox{einer} \ \mbox{(Un-)Gleichung enth\"{a}lt} \ \mbox{alle Werte der Variablen, welche die (Un-)Gleichung erf\"{u}llen.$

Beispiele

$$\begin{array}{lll} x+4=7 & \Rightarrow & L=\{3\} \\ x^2=4 & \Rightarrow & L=\{-2;2\} \\ x+3>8 & \Rightarrow & L=]5;\infty[\\ \sin(x)=1 & \Rightarrow & L=\{x\in\mathbb{R}\mid x=\frac{1}{2}\pi+k\cdot 2\pi,\ k\in\mathbb{Z}\} \end{array}$$

Satz vom Nullprodukt

Ein Produkt ist 0, wenn mindestens einer der Faktoren 0 ist.

Beispiel

$$(x-5)\cdot(x^2-x+4)=0$$
 \Rightarrow $x-5=0$ \Rightarrow $x_1=5$ keine Lösung

(spezielle) kubische Gleichungen

Beispiele

$$x^{3} + 27 = 0$$

$$x^{3} = -27$$

$$x = -\sqrt[3]{27}$$

$$x = -3$$

$$4x^{3} - 12x^{2} - 40x = 0$$

$$4x \cdot (x^{2} - 3x - 10) = 0$$

$$\Rightarrow x_{1} = 0 \quad x_{2} = 5 \quad x_{3} = -2$$

Nicht (analytisch) Lösbar

$$x^3 - 7x^2 + 5 = 0$$

Biquadratische Gleichungen

Substitution

 $x^4 - 13x^2 + 36 = 0$ Substitution: $x^2 = z$ $\Rightarrow z^2 - 13z + 36 = 0$ $\Rightarrow z_1 = 9$ $z_2 = 4$

Rücksubstitution

 $\Rightarrow x_1 = 3$

 $x_2 = -3$

$$x^2=z_1$$

$$x^2 = z_1$$

$$x^2 = 9 \quad | \checkmark$$

$$x^2 = z_2$$

$$x^{2} = z_{2}$$
 $x^{2} = 4 \quad |\sqrt{}|$

$$x^2 = 4 \quad |\sqrt{}|$$

 $x_3 = 2$

$$x^2=4 \quad |\sqrt{} \ \Rightarrow x_3=2 \ x_4=-2$$

Bruchgleichungen

Beispiele

$$\frac{x+5}{x-3} - 3 = 0 \quad | \cdot (x-3)$$

$$5 + x - 3 \cdot (x-3) = 0$$

$$\dots$$

$$x = 7 \checkmark$$

$$rac{1}{x^2} + + rac{5}{x} = 0 \qquad |\cdot x^2| \\ 1 + 5x = 0 \qquad |-1| |:5 \\ x = -rac{1}{5} \checkmark$$

Wurzelgleichungen

Beispiel

Exponentialgleichungen

Allgemein

$$a^x = c$$
$$x = \log_a(c)$$

$$b^0 = 1, \quad b \neq 0$$

$$\log_e(x) = \ln(x)$$

Beispiele

$$2^x = 64$$
$$x = \log_2(64)$$
$$x = 6$$

$$4^x = 42$$
$$x = \log_4(42)$$

$$egin{array}{lll} 4^x = 42 & e^{2x} - 3e^x = 0 \\ x = \log_4(42) & (e^x)^2 - 3e^x = 0 \\ x pprox 2.696 & e^x \cdot (e^x - 3) = 0 \\ & \Rightarrow x = \ln(3) \end{array}$$

Betragsgleichungen

Beispiele

$$|2x - 5| = 3 \quad \Rightarrow \quad \begin{cases} 2x - 5 = 3 \\ -(2x - 5) = 3 \end{cases} \quad \Rightarrow \quad \begin{cases} x_1 = 4 \\ x_2 = 1 \end{cases}$$
$$|x - 4| = 2x - 11 \quad \Rightarrow \quad \begin{cases} x - 4 = 2x - 11 \\ x - 4 = -(2x - 11) \end{cases} \quad \Rightarrow \quad \begin{cases} x_1 = 7 \checkmark \\ x_2 = 5 \end{cases}$$

Bei Betragsgleichungen mit einer Variablen außerhalb der Betragsstriche: Probe machen.

Ungleichungen

Lässt sich wie eine normale Gleichung lösen, mit der Ausnahme, dass beim Multiplizieren/Dividieren mit einer negativen Zahl oder bei Logarithmen mit einer Basis kleiner als 1 das Ungleichheitszeichen umgedreht wird.

Beispiele

$$\begin{array}{c|c} 2x+5>1 & |-5\\ 2x>-4 & |:2\\ x>-2 \\ \\ \end{array}$$

$$1-\left(\frac{5}{6}\right)^x>0,9 & |-1\\ -\left(\frac{5}{6}\right)^x>-0,1 & |\cdot(-1)\\ \left(\frac{5}{6}\right)^x<0,1 & |\log_{\frac{5}{6}}\\ x>\log_{\frac{5}{6}}(0,1)\\ x\approx 12,63 \\ \\ \frac{5}{6}<1, \operatorname{deshalb} '<' \operatorname{umdrehen} \end{array}$$

$$4-x \le 8 \quad |-4
-x \le 4 \quad |\cdot(-1)$$

$$x \ge -4$$

$$x^{2} + x - 6 < 0$$

 $\Rightarrow x^{2} + x - 6 = 0$
 $\Rightarrow x_{1} = -3$ $x_{2} = 2$

Parabel nach oben geöffnet mit Nullstellen -3 und 2:

$$\Rightarrow L =]-3;2[$$

Trigonometrische Gleichungen

Beispiele

$$\begin{split} \sin(x) + 2 &= 1 \,, \; \; x \in [0; 4\pi] \\ \sin(x) &= -1 \\ x &= \sin^{-1}(-1) \\ x &= \frac{3}{2}\pi \\ \Rightarrow L &= \{\frac{3}{2}\pi; \frac{7}{2}\pi\} \end{split}$$

$$\sin(\pi x) = -1, \ x \in \mathbb{R}$$

Substitution

$$\begin{aligned} u &= \pi x \\ \Rightarrow \sin(u) &= -1 \\ \Rightarrow u &= \frac{3}{2}\pi + k \cdot 2\pi, \ k \ in \mathbb{Z} \end{aligned}$$

Rücksubstitution

$$\pi x=rac{3}{2}\pi+k\cdot 2\pi \quad |\colon \pi$$

$$x=rac{3}{2}+2k$$

$$\begin{split} &\Rightarrow L = \{x \; in \mathbb{R} \; | \; x = \frac{3}{2} + 2k, \; k \; in \mathbb{Z} \} \\ &\Rightarrow \text{unendlich viele Lösungen} \; \big(\frac{3}{2}; \frac{7}{2}; -\frac{1}{2}, \dots \big) \end{split}$$

Bei Trigonometrischen Funktionen auf den Definitionsbereich achten.

Ich weiß, das zweite Beispiel kann erstmal überwältigend sein, aber versucht, es zu verstehen. Es kann sein, dass im Abi eine Aufgabe mit einer "komplizierten" Lösungsmenge vorkommt.