Introduction

Weng Kai 2016 Spring

课程说明

课程网站

- http://fm.zju.edu.cn
- 用户名和初始密码都是学号
- 改密码请勿超过11位
- 请登记电邮地址以方便联系

- 密码遗失需要以登记的电邮地址电邮给我来重置
 - 未登记电邮地址的可以任何电邮地址来电邮要求重置

评分标准

- 周作业: 15次, 每次1分, 1周内提交, 共15分
- 实验: 8次, 每次3分, 2周内提交, 共24分
- 课程作业: 1个, 4人一组, 共26分
 - 每次实验课检查,共7个检查点,每次2分,共14分
 - 期末验收检查: 12分
- 课堂表现/技术博客: 5分(不写博客的最多得2分)
- 期末闭卷考试: 30分

作业

- 每次课后留一、两道思考题
- 每周周末 (周六23:59) 之前提交pdf文档

实验

- 单周公布实验要求
- 双周周末(周六晚上23:59)之前交实验报告
- 要有浙大实验报告封面的pdf文档

课程作业

- 分组, 4人一组, 不能多也不能少, 在fm网站登记组队情况
- 第一周会公布题目大致要求,每个组要选择其中一个题目来做
- 第二周的实验课各组汇报对题目的选择和技术方案(思路)
- 每个题目能申请的组的数量有限
 - 汇报时按照组队的顺序排
 - 先汇报且通过评审的得到题目

课程作业

- 选择题目
- 制定计划、分配任务(时间-人力)
- 做需求分析和总体设计
- 提出采购要求
- 搭建实验硬件

- 构建开发环境
- 准备测试环境和软件
- 开发应用软件
- 完成测试与应用测试
- 撰写完成报告

技术博客

- 鼓励写课程相关的技术博客
- 第三周结束(3月19日)前电邮提交博客地址
- 第16周实验课(6月19日)投票评选,按名次给分

微信群

嵌入式课程

该微信群二维码将在2016年3月6日失效

实验平台

实验平台

http://www.pcduino.com

Acadia

- A Mini PC with Arduino (TM) type Interface powered by ARM
- CPU: Freescale Quad ARM Cortex A9 based solution up to 1.2GHz
- GPU: OpenGL/ES 2. x 3D accelerator with OpenCL EP support and OpenVG 1.1 acceleration
- DRAM: 1GB
- Onboard Storage: 8GB Flash, SD card slot for up to 128GB
- Video Output: HDMI
- OS: Ubuntu Linux + Android
- Extension Interface: 2.54 mm Headers compatible with Arduino (TM)
- Network interface: RJ45

basic setup

Acadia to us

- 一个Linux机器,可以折腾
- 一个Cortex-A9开发板,可以学Cortex汇编
- 有GPIO,可以做物理计算

RASPBERRY PI MODEL B 实验于台目

RaspberryPi

 The Raspberry Pi (short: RPi or RasPi) is an ultralow-cost credit-card sized Linux computer which was conceived with the primary goal of teaching computer programming to children. It was developed by the Raspberry Pi Foundation, which is a UK registered charity.

HW spec.

	Model A	Model B	
Target price:[1]	US\$25 Ext tax (GBP £16 Exc VAT)	US\$35 Ext tax (GBP £22 Exc VAT)	
System-on-a-chip (SoC):[1]	Broadcom BCM2835 (CPU + GPU. SDRAM is a separate chip stacked on top)		
CPU:	700 MHz ARM11 ARM1176JZF-S core		
GPU:	Broadcom VideoCore IV,OpenGL ES 2.0,OpenVG 1080p30 H.264 high-profile encode/decode		
Memory (SDRAM)iB	256 MiB (planned with 128 MiB, upgraded to 256 MiB on 29 Feb 2012)	256 MiB (until 15 Oct 2012); 512 MiB (since 15 Oct 2012)	
USB 2.0 ports:	1 (provided by the BCM2835)	2 (via integrated USB hub)	
Video outputs:[1]	Composite video I Composite RCA, HDMI (not at the same time)		
Audio outputs:[1]	TRS connector I 3.5 mm jack, HDMI		
Audio inputs:	none, but a USB mic or sound-card could be added		
Onboard Storage:	Secure DigitalISD / MMC / SDIO card slot		
Onboard Network:[1]	None	10/100 wired Ethernet RJ45	
Low-level peripherals:	General Purpose Input/Output (GPIO) pins, Serial Peripheral Interface Bus (SPI), I ² C, I ² S ^[2] , Universal asynchronous receiver/transmitter (UART)		
Real-time clock: ^[1]	None		
Power ratings (provisional, from alpha board):	500 mA, (2.5 W) ^[1]	700 mA, (3.5 W)	
Power source: ^[1]	5 V (DC) via Micro USB type B or GPIO header		
Size:	85.0 x 56.0 mm (two different boards, measured with callipers)		

RPi to us

- 一个Linux机器,可以折腾
- 一个ARM开发板,可以学ARM汇编
- 有GPIO,可以做物理计算

实验平台川

• www.wrtnode.com

WRTnode

About 40mm*50mm MTK MT7620N 580MHz MIPS CPU (MIPS24KEc) 512Mbit DDR2 ram 128Mbit SPI Flash rom 300Mbit Wi-Fi 2T2R 802.11n 2.4 GHz 23GPIOs **JTAG** SPI **UART Lite USB2.0**

OpenWrt on Linux kernel 3.10.44

三者比较

指标	Acadia	RPi	WRTnode
ISA	CortexA9	ARM11	MIPS
主频	1.2GHz	700MHz	580MHz
RAM	1GB	256MB	64MB
接口	USB、以太网、 GPIO、UART、 SPI、ADC	USB、以太网、 GPIO、UART、SPI	WiFi、USB、以太 网、GPIO、SPI

Why not?

• 虚拟机: 没有GPIO

• 安卓机: 没有GPIO

• Arduino: 没有OS

实验平台IV

• STM32F103核心板

实验器材

- 每人一块STM32F103核心板
- 每个组一块Acadia、一块树莓派和一块WRTNode
- 每人一盒外围元件,包括面包板、连线和基础的传感器元件等
- 小组组成后,组长联系TA领器材,最后一次实验课回收器材, 如有损坏遗失需赔偿
- 需要自己准备一个5V/1A、USB接口的电源(用于树莓派, STM32F103和WRTNode可以由电脑的USB口供电)

嵌入式系统课程

嵌入式系统

嵌入式系统

配套服务器端设计与开发生产

系统分析与设计 应用软件 开发 性产设计

嵌入式产品

开发工 具与库、 OS开发

公共软件产品

嵌入式系统课程

嵌入式系统

嵌入式产品

开发工 具与库、 OS开发

公共软件产品

嵌入式系统课程的地位

• 了解嵌入式系统基本概念和一般原则

- 了解嵌入式系统基本概念和一般原则
- 掌握系统分析和架构设计的方法

- 了解嵌入式系统基本概念和一般原则
- 掌握系统分析和架构设计的方法
- 了解硬件设计的基本原则

- 了解嵌入式系统基本概念和一般原则
- 掌握系统分析和架构设计的方法
- 了解硬件设计的基本原则
- 掌握嵌入式软件开发所需的工具的概念和使用

课程目标

- 了解嵌入式系统基本概念和一般原则
- 掌握系统分析和架构设计的方法
- 了解硬件设计的基本原则
- 掌握嵌入式软件开发所需的工具的概念和使用
- 熟练掌握在裸机、RTOS和嵌入式Linux上开发应用软件的方法

课程目标

- 了解嵌入式系统基本概念和一般原则
- 掌握系统分析和架构设计的方法
- 了解硬件设计的基本原则
- 掌握嵌入式软件开发所需的工具的概念和使用
- 熟练掌握在裸机、RTOS和嵌入式Linux上开发应用软件的方法
- 了解为嵌入式设备提供数据服务的一般做法

课程培养目标

- 学会为嵌入式设备开发应用软件的手段,经过实践训练可以成长为嵌入式软件开发工程师
- 掌握程序编译、链接和运行的原理,从而作为非嵌入 式软件开发工程师能写出更好的应用软件来
- 为有兴趣接触嵌入式硬件和系统设计的同学打下基础

我们的使命

- 嵌入式系统所需的软件
 - 不仅仅是如何在嵌入式系统上写软件
 - 基础软件(操作系统、引导装载、驱动)
 - 开发软件(编译器、开发工具、调试、评测)
- 做软件而不仅是用软件

PC

104

PDA smart phone

MMUbased OS non-MMU MM-I

non-MMU no MM-I

PC

104

non-MMU

PDA smart phone

MMUbased OS non-MMU MM-I

non-MMU no MM-I

MMU

PC

104

non-MMU

PDA smart phone

MMUbased OS non-MMU MM-I

MCU

OS

non-OS

MMU

什么是嵌入式系统

- IEEE(国际电气和电子工程师协会)的定义:嵌入式系统是"用于控制、监视或者辅助操作机器和设备的装置"。
- Devices used to control, monitor, or assist the operation of equipment, machinery or plants.

嵌入式系统的含义

嵌入式系统的含义

通俗的说,嵌入式系统就是将计算机的硬件或软件嵌入其它机、电设备或应用系统中去,所构成了一种新的系统,即嵌入式系统。

嵌入式系统的含义

- 通俗的说,嵌入式系统就是将计算机的硬件或软件嵌入其它机、电设备或应用系统中去,所构成了一种新的系统,即嵌入式系统。
- 嵌入式系统是以应用为中心,以计算机技术为基础, 采用可剪裁软硬件,适用于对功能、可靠性、成本、 体积、功耗等有严格要求的专用计算机系统,用于实 现对其他设备的控制、监视或管理等功能。

- 嵌入式系统中运行的任务是专用而确定的
 - 心脏监视器只需运行信号输入、信号处理、心电图显示任务
 - 不用运行word、excel等任务
 - 如要更改任务,需要对整个系统进行重新设计或在线维护

- 嵌入式系统中运行的任务是专用而确定的
 - 心脏监视器只需运行信号输入、信号处理、心电图显示任务
 - 不用运行word、excel等任务
 - 如要更改任务,需要对整个系统进行重新设计或在线维护
- 桌面通用系统需要支持大量的、需求多样的应用程序:
 - 对系统中运行的程序不作假设
 - 程序升级、更新等方便

- 嵌入式系统往往对实时性提出较高的要求。
 - 实时系统: 指系统能够在限定的响应时间内提供所需水平的服务。(POSIX 1003.b)
- 嵌入式实时系统可分为:
 - 强实时型:响应时间µs~ms级,如数控机床、医疗仪器;
 - 一般实时:响应时间ms~s级,如打印机、电子菜谱;
 - 弱实时型:响应时间s级以上,如工程机械控制。

- 嵌入式系统中使用的操作系统一般是实时操作系统
 - 嵌入式Linux
 - VxWorks
 - Win CE/WinPhone
 - uc/os II
 - Android

- 嵌入式系统运行需要高可靠性保障
 - 1966年,美国首次金星探测计划失败
 - 1982年,在马尔维纳斯群岛战争中, 英国谢菲尔德驱逐舰被击沉,由于它 的雷达系统将来袭的"飞鱼"导弹确定 为"友好"
 - 1985~1987年,美国、加拿大联合研制的Therac25型放射治疗仪多次产生超计量辐射,造成两人死亡、多人受伤的重大医疗事故
 - 1991年,在海湾战争中,爱国者导弹 拦截飞毛腿导弹失败

- 1996年, ESA首次发射阿丽亚娜501 航天飞机自毁, 损失5亿
- 嵌入式系统需要忍受长时间、无人值守条件下的运行。
 - 如核心路由器、航天飞行器
 - 嵌入式系统运行的环境恶劣
 - 工业控制: 车间设备干扰、辐射
 - 航天飞行器: 40%的航天设备故障源 (单粒子翻转、单粒子闩锁、功率器 件SEB等)来自太空辐射,需要提供 抗辐射加固保障

• 嵌入式系统大都有功耗约束。

- 嵌入式系统大都有功耗约束。
 - 敦煌莫高窟洞窟微气象环境监测,有大约45000平方米的壁画、2400余尊彩塑等珍贵文物需要保护。对各个洞窟内的温度、湿度以及二氧化碳浓度的微气象环境是影响壁画保存的重要因素。

- 嵌入式系统大都有功耗约束。
 - 敦煌莫高窟洞窟微气象环境监测,有大约45000平方米的壁画、2400余尊彩塑等珍贵文物需要保护。对各个洞窟内的温度、湿度以及二氧化碳浓度的微气象环境是影响壁画保存的重要因素。
 - 要求1分钟采样一次,每个采样节点采用电池供电,1年更新一次。采用常规的方法,能量只能持续工作5天!

- 嵌入式系统大都有功耗约束。
 - 敦煌莫高窟洞窟微气象环境监测,有大约45000平方米的壁画、2400余尊彩塑等珍贵文物需要保护。对各个洞窟内的温度、湿度以及二氧化碳浓度的微气象环境是影响壁画保存的重要因素。
 - 要求1分钟采样一次,每个采样节点采用电池供电,1年更新一次。采用常规的方法,能量只能持续工作5天!

• 引入间歇工作方式,从而降低功耗,节省能量。

- 嵌入式系统比桌面通用系统可用资源少得多
 - 为降低系统成本,降低功耗,嵌入式系统的资源配置遵循够用就行!
- 嵌入式系统的开发需要专用工具和特殊方法:
 - 开发: 交叉编译、交叉链接
 - 调试: 仿真器、虚拟机
 - 更新: 在线升级等

- 嵌入式系统开发是一项综合的计算机应用技术
 - 系统结构: 状态控制器、中断控制器处理
 - 汇编语言: 操纵外围设备、端口
 - 操作系统: 设置运行任务、通信、互斥
 - 编译原理:交叉编译、bootloader加载
 - GUI布局: 多分辨率适配

是否属于嵌入式系统的标志

- 能否在运行时刻由用户方便地装载新的应用程序来运行
 - PC不是嵌入式系统
 - 服务器不是嵌入式系统
 - 智能手机不是嵌入式系统
 - 平板电脑不是嵌入式系统
 - 非智能手机是嵌入式系统
 - 路由器是嵌入式系统
 - 专用PC? 专用平板电脑?
 - 能运行脚本(lua)的设备?

是否属于嵌入式系统的标志

- 能否在运行时刻由用户方便地装载新的应用程序来运行
 - PC不是嵌入式系统
 - 服务器不是嵌入式系统
 - 智能手机不是嵌入式系统
 - 平板电脑不是嵌入式系统
 - 非智能手机是嵌入式系统
 - 路由器是嵌入式系统
 - 专用PC? 专用平板电脑?
 - 能运行脚本(lua)的设备?

有没有屏幕 有没有交互 有没有网络 有没有OS

本课程所限定的嵌入式系统

- 不包括简单逻辑控制设备
- 不包括商用GUI终端(手机、Pad等)
- 嵌入式Linux不是嵌入式OS的主流
- 在Linux之外我们会学习其他RTOS,它们也不一定比 Linux更有前途,但是值得你知道

嵌入式系统简单历史

出现和兴起

- 第一代电子管计算机(1946~1957年),无法满足嵌入式计算所要求的体积小、重量轻、 耗电少、可靠性高、实时性强等一系列要求。
- 60年代,第二代晶体管计算机系统开始应用:
 - 第一台机载专用数字计算机是美国海军舰载轰炸机"民团团员"号研制的多功能数字分析器(Verdan)。
 - 1962年美国乙烯厂实现了工业装置中的第一个直接数字控制。
- 1965~1970年,第三代集成电路化计算机系统应用:
 - 第一次使用机载数字计算机控制的是1965年发射的Gemini3号。
 - 第一次通过容错来提高可靠性是1968年的阿波罗4号、土星5号。
 - 在军用领域中, 出现了为各种武器系统研制的嵌入式系统。

出现和兴起

- 第一代电子管计算机(1946~1957年), 无法满足嵌入式计算所要求的体积小、重量轻、 耗电少、可靠性高、实时性强等一系列要求。
- 60年代,第二代晶体管计算机系统开始应用:
 - 第一台机载专用数字计算机是美国海军舰载轰炸机"民团团员"号研制的多功能数字分 析器(Verdan)。
 - 般对计算机这个词汇的理解是键盘鼠标显示器 而在嵌入式领域,计算机指的就是CPU
- 마 무배系统应用: • 196
 - 第一次使用机载数字计算机控制的是1965年发射的Gemini3号。
 - 第一次通过容错来提高可靠性是1968年的阿波罗4号、土星5号。
 - 在军用领域中,出现了为各种武器系统研制的嵌入式系统。

发展时期

- 嵌入式系统的大发展是在微处理问世之后:
 - 1971年11月,Intel公司推出了第一片微处理器Intel4004,并进一步通用化,推出了4位的4040、8位的8008。
 - 人们再也不必为设计一台专用机而研制专用的电路、专用的运算器了,只需以微处理器为基础进行设计。
 - 1976年,第一个单片机Intel 8048出现。
 - 1982年,第一个DSP出现,比同期的CPU快10~50倍。
 - 80年代后期,第三代DSP芯片出现。

嵌入式软件的进步

- 早期嵌入式系统: 采用汇编语言, 基本不采用操作系统
- 硬件的提升: 微处理器性能提高、存储器容量增加
- 软件技术发展: 高级语言、编译器、操作系统、集成开发环境

走向纵深化发展

- 应用充分普及: 工业控制、数字化通讯、数字化家电
 - 汽车: 50个以上嵌入式微处理器
 - 飞机: 70个以上嵌入式系统
 - 神舟飞船: 64个嵌入式软件系统
- 嵌入式微处理器32位、64位
- 嵌入式实时操作系统使用比率越来越高
 - 早期: 10%; 90年代初: 30%; 目前: 80~90%
 - 嵌入式系统开发工具越来越丰富
- 嵌入式系统产业链形成,并被广泛应用于网络通信、消费电子、医疗电子、工业控制和交通系统等领域

趋势

- 嵌入式技术是信息产业中发展最快、应用最广的计算机技术 之一,并被广泛应用于网络通信、消费电子、医疗电子、工 业控制和交通系统等领域。
- 全球嵌入式系统工业产值已超过1万亿美元,嵌入式系统硬件和软件开发工具市场约2千亿美元;全球嵌入式软件市场的规模超过1000亿美元,而且每年以超过30%的速度在增长。
- 日本及欧美嵌入式软件人才极其短缺,大量的跨国嵌入式软件公司到中国委托软件外包。在中国参与的在软件外包业中,嵌入式软件占到了50.4%。

在中国

- 嵌入式软件是嵌入式系统的核心技术之一,在中国占整个软件收入的21%,整个电子信息产业中的10%。
- 2010年,中国嵌入式软件市场规模达到1000亿元,并以40%的年增长率发展,2015年,有望达到5000亿元,成为中国软件产业快速发展的重要驱动力。
- 《国家中长期科学和技术发展规划纲要(2006-2020)》确立的16个重大专项,2008年颁布"核高基"-"基础软件产品"中包含了嵌入式基础软件的研发。

发展趋势

- 软、硬件系统整合
- SOC设计: 体积小、散热好、低功耗、可靠性高
- 应用领域拓展:无线传感器网络、物联网、智能电网、三网融合、普适计算、与云计算融合

发展趋势

多学科交叉融合,机、电、液、控、热等软、硬件等 多物理领域对象高度集成与融合,复杂机电产品的协 作(同步)开发

潮流

- 智能硬件 vs 物联网
- 嵌入式系统从"藏在里面的控制器"发展到"联网的结点"
 - 通信能力
 - 在线更新能力
 - 脚本语言编程能力

课程作业

背景

• 联网的智能家居/智能硬件系统 Sensor Sensor Sensor 430Radio ZigBEE Sensor Sensor **BLE** ZigBEE 430Radio Gater 485 **PLC** Sensor Sensor iNet Wi-Fi Sensor **GPRS** Sensor Server **ETH**

iNet

Browser

任务

- 服务器: 在网易蜂巢(https://c.163.com) 上部署一个服务器
- 网关:各种不采用TCP/IP协议的传感器与服务器的接口
- 传感器: 各种数据的传感器,采用各种手段与服务器或网关连接,可能带有动作器

为开发者打造的DOCKER全SSD助力极速开发云端应用谷裕石

服务器

• 部署在网易蜂巢上

図易蜂集

- 要实现服务器软件和简单的前端页面
 - 记录数据(数据库保存)
 - 数据的查询(根据时间、设备编号和地点等)
 - 数据的可视化表现(地图、曲线图)
- 以http和二进制协议两种方式接入传感器和网关
- 只有一个组

网关

- 在课程所提供的实验平台(Acadia、树莓派或WRTNode)上 实现
- 具有蓝牙、ZigBEE、430Radio、485、PLC中的2种接入方式
- 通过以太网或Wi-Fi连接到互联网去连接服务器
- 可以以http和二进制两种接入协议接入服务器(可配置)
- 网关也可以直接接传感/动作元件(非必须)
- 最多有三个组可以来做网关

传感器

- 可以传感的数据包括(不限于)
 - 温度、湿度、气压、光照、空气质量、声音、人体感应、电子围栏、加速度、GPS坐标、RFID卡、电压、电流…
- 可以做的动作包括(不限于)
 - 发出光、声音,驱动灯等电器的开关,驱动LCD/LED屏
- 可以连接的方式为

- 蓝牙(BLE4.0)、ZigBEE、 430无线电、电力线载波、 485、Wi-Fi/以太网、GPRS
- 每个传感器只能采用一种连接方式, 可以传感多种数据、做多种动作
- 每种连接方式最多只能有两个组做
- 采用ZigBEE、430和BLE的要实现 Ad Hoc
- 可以用四种实验平台中的任一种来做

专项作品

- GPRS定位设备:采用GPRS将GPS坐标实时发送给服务器
- 太阳能电池充电控制器:监视锂电池电压、充电电流和三路放电电流,根据电池电压和峰谷电时间决定开启/关闭市电充电,向服务器报告实时电压、电流
- 每个作品只有一个组可以做

应用场景

- 校园各处温度湿度分布和变化图
- 宿舍(实验室)门口经过人数的时间分布
- 上课点到
- 经过特殊地点的App消息提醒或延时传递

其他

- 可以提出自己的不同的课程作业内容
- 必须纳入整个体系中,数据要接入服务器

立项报告内容

- 对产品的理解
- 技术路线和方案
- 优势

立项报告顺序

- 1. 服务器
- 2. 网关
- 3. Wi-Fi/以太网传感器
- 4. 485传感器
- 5. 蓝牙传感器

- 6. ZigBEE传感器
- 7. 430无线电
- 8. 电力线载波
- 9. GPRS
- 10.专项作品
- 11.其他

立项评审指标

- 对产品的理解
- 技术路线和方案的选择
- 产品成本
- 已有的能力和资源

具体需求

• 在第一次实验课确定了题目后,与我沟通确定

实验器材

- 所需的器材(元件)课程没有提供的,小组可以提出 采购需求
- 第二次实验课之前提出清单,实验课上做解释
- 由课程组(三位老师)统一采购

全班验收门槛

- 最后一周验收时,传感器-网关-服务器-浏览器的链路要走通
- 否则所有人的课程作业分数(26分)减半

测试要求

- 每个组的产品有自己的测试方案和测试套件(软件+硬件)
 - 能不依赖于其他组做测试

其他要求

- 整个过程所有的材料(文档和代码)要在GitHub上
- 不要自己埋头做, 多与老师和助教沟通
- 课程中可能出现需求变更

8次检查/验收

- 3月13, 立项

• 4月10, 开发平台

• 3月27, 计划与方案

• 4月24, 测试设计

- 5月15, 1阶段验收
- 5月29, 2阶段验收
- 6月12, 初验
- 6月26, 终验

作业

考察产品

小米有一款家庭智能套装: http://list.mi.com/accessories/smartsuit

• 试分析(推测)其中可能用到的技术(如CPU、通信、供电、传感等)

第一次实验

- 选择一款嵌入式Linux平台
- 连接、开机、记录开机内容并分析
- 下载安装交叉编译环境
- 设置pc与板卡的文件交换渠道
- 编译、下载、运行