Lucrarea de laborator nr. 7

Coder, decoder, unitate de memorie permanentă

Scopul lucrării:

- 1. Studierea elementelor combinaționale (coder, decoder) în regim static.
- 2. Studierea elementelor combinaționale (coder, decoder) în regim dinamic.
- 3. Studierea și programarea unității de memorie permanentă.

Experimentul nr. 1. Decoder

1.1. Completați tabelul de adevăr al decoderului complet cu numărul de intrări M=4 (Tabelulu 1).

Tabelul 1. Tabelul de adevăr al decoderului

Nr.]	Intra	ările)		Ieșirile														
d/o	a	b	c	d	F ₁₅	F ₁₄	F ₁₃	F ₁₂	F ₁₁	F ₁₀	F ₉	F ₈	F ₇	F ₆	F ₅	F ₄	F ₃	F_2	F ₁	F ₀
0.	0	0	0	0																
1.	0	0	0	1																
•••																				
15.	1	1	1	1																

- 1.2. Scrieți, folosind tabelul de adevăr (Tabelulu 1), funcțiile logice ale decoderului cu numărul de intrări M=4.
- 1.3. Construiți, utilizînd programul EWB, schema electrică principială a decoderului.

Regim static.

- 1.4. Pentru studierea regimului static al decoderului conectați la intrările lui sursa de tensiune $+V_{CC}$, utilizînd comutatoarele, iar la ieșirele decoderului conectați indicatoarele luminescente.
- 1.5. Aplicați consecutiv cu ajutorul comutatoarelor de la sursa $+V_{CC}$ la intrările decoderului valoarea tensiunii de 5V.
- 1.6. Verificați corectitudinea funcționării decoderului, utilisînd tabelul de adevăr (Tabelul 1).

Regim dinamic.

- 1.7. Pentru studierea regimului dinamic al decoderului conectați la intrările lui generatorul de semnale FUNCTION GENERATOR, un contor cu numărare directă de ordinul patru, iar la ieșirele decoderului conectați analizatorul logic LOGIC Analyzer.
- 1.8. Introduceți valorile frecvenței FREQUENCY, factorului de umplere DUTY CYCLE și amplitudinei AMPLITUDE pe panoul generatorului de semnale FUNCTION GENERATOR conform variantei prestabilite (Tabelul 2, lucrarea de laborator nr. 1 numai "Parametrii inițiali" sau numai "Parametrii modificați").
- 1.9. Aplicați la intrările decoderului semnale de tip dreptunghiular. Obțineți diagramele temporale cu ajutorul analizatorului logic LOGIC Analyzer (aveți dreptul să modificați valoarea frecvenței fără a modifica alți parametri).
- 1.10. Comparați diagramele temporale obținute cu datele din tabelul de adevăr ale decoderului (Tabelul 1).

Experimentul nr. 2. Coder

2.1. Completați tabelul de adevăr al coderului incomplet cu M=17 intrări și N=5 ieșiri (Tabelul 2).

Ieșirile Nr. Intrările d/o x_{16} X₁₅ X₁₄ x_{12} x_{11} x_{10} X8 X7 x_6 X_4 **X**3 \mathbf{x}_1 F_4 F_3 F_2 F_0 x_{13} X5 \mathbf{x}_2 \mathbf{x}_0 0. 0 0 0 0 0 0 1. 0 0 1

Tabelul 2. Stările pentru coder

- 1.2. Scrieți, folosind tabelul de adevăr (Tabelulu 2), funcțiile logice ale coderului.
- 1.3. Construiți, utilizînd programul EWB, schema electrică principială a coderului incomplet cu M = 17 intrări și N = 5 ieșiri.

Regim static.

- 1.4. Pentru studierea regimului static al coderului conectați la intrările lui sursa de tensiune $+V_{CC}$, utilizînd comutatoarele, iar la ieșirele coderului conectați indicatoarele luminescente.
- 1.5. Aplicați consecutiv cu ajutorul comutatoarelor de la sursa $+V_{CC}$ la intrările coderului valoarea tensiunii de 5V.

1.6. Verificați corectitudinea funcționării coderului, utilisînd tabelul de adevăr (Tabelul 2).

Regim dinamic.

- 1.7. Pentru studierea regimului dinamic al coderului conectați la intrările lui generatorul de semnale FUNCTION GENERATOR, un contor cu numărare directă de ordinul 5 și un decoder cu M = 5 intrări și N = 17 ieșiri, iar la ieșirele coderului conectați analizatorul logic LOGIC Analyzer.
- 1.8. Introduceți valorile frecvenței FREQUENCY, factorului de umplere DUTY CYCLE și amplitudinei AMPLITUDE pe panoul generatorului de semnale FUNCTION GENERATOR conform variantei prestabilite (Tabelul 2, lucrarea de laborator nr. 1 numai "Parametrii inițiali" sau numai "Parametrii modificați").
- 1.9. Aplicați la intrările coderului semnale de tip dreptunghiular. Obțineți diagramele temporale cu ajutorul analizatorului logic LOGIC Analyzer (aveți dreptul să modificați valoarea frecvenței fără a modifica alți parametri).
- 1.10. Comparați diagramele temporale obținute cu datele din tabelul de adevăr ale coderului (Tabelul 2).

Experimentul nr. 3. Unitatea de memorie permanentă

A. Regim static.

- 3.1. Construiți schema electrică a unității de memorie permanentă. Conectați la intrările unității de memorie permanentă sursa de tensiune $+V_{CC}$, utilizînd comutatoarele, iar la ieșirele ei conectați indicatoarele luminescente.
- 3.2. Înscrieț în unitatea de memorie permanentă programa din Tabelul 3 (studentul alege numărul programului conform variantei prestabilite).

Tabelul 3. Variantele programelor pentru unitatea de memorie permanentă

Adresa	Variante de program (D ₄ D ₃ D ₂ D ₁ D ₀)												
$A_3A_2A_1A_0$	1	2	3	4	5	6	7	8	9	10	11		
0000	00111	01111	00001	00010	00110	01000	11011	01111	00001	00010	00110		
0001	10011	11000	11001	10110	11101	00111	11000	11000	11001	10110	11101		
0010	11100	10100	00111	11100	11101	00110	00001	10100	00111	11100	11101		
0011	00011	01100	10110	01100	01100	11000	11110	01100	10110	01100	01100		
0100	10111	10111	10011	01011	00100	01100	11010	10111	10011	01011	00100		

0101	10111	11000	01101	00101	10111	10100	00100	11000	01101	00101	10111
0110	00000	01101	01101	10011	11000	01111	11110	01101	01101	10011	11000
0111	11100	01101	00011	10100	11010	10110	00101	01101	00011	10100	11010
1000	10111	00111	11111	11001	01110	11101	10000	00111	11111	11001	01110
1001	01000	01010	10110	11001	10110	00110	10001	01010	10110	11001	10110
1010	11111	00001	01010	00011	10111	01111	00110	00001	01010	00011	10111
1011	01100	11010	11010	01001	01000	01100	11011	11010	11010	01001	01000
1100	10110	00010	10001	11100	00000	10101	00111	00010	10001	11100	00000
1101	01001	00111	11011	01000	10010	11011	00001	00111	11011	01000	10010
1110	00001	10010	01101	11001	10001	10101	11110	10010	01101	11001	10001
1111	11011	01110	00111	10001	11110	10001	10000	01110	00111	10001	11110

Continuare (Tabelul 3)

Adresa		Variante de program $(D_4D_3D_2D_1D_0)$													
$A_3A_2A_1A_0$	12	13	14	15	16	17	18	19	20	21	22				
0000	00110	01100	00101	00110	10110	01010	11111	01100	11001	00110	10110				
0001	10111	11000	11001	10110	11001	00111	11000	11010	11011	10110	11101				
0010	11100	10100	00011	11100	11101	00110	01101	10100	00111	11100	11101				
0011	00011	01100	10110	01000	01100	11100	11110	01100	10100	01100	01000				
0100	10111	10111	10011	01011	00000	01100	11010	10111	10011	01011	00100				
0101	10111	11000	01101	00101	10111	10100	00100	11010	01111	00111	10111				
0110	00010	01101	01001	10011	11000	01111	11110	01101	01101	10011	11011				
0111	11100	01101	00011	10000	11010	10110	00101	01001	00011	10100	11010				
1000	10111	00111	11011	11001	01110	11101	10011	00111	11111	11001	01110				
1001	01000	01010	10110	11001	10110	00110	10001	01010	10110	11011	10110				
1010	11011	00101	01010	00111	10111	01011	00110	00101	01010	00011	10111				
1011	01100	11010	11010	01001	01000	01100	11011	11010	11110	01001	01000				
1100	10110	00010	10001	11100	00100	10101	00101	00010	10101	10100	00110				
1101	01001	00111	11111	01100	10010	11011	00001	00101	11011	01000	10110				
1110	00101	10110	01101	11001	10001	10101	11110	10010	01101	11001	10001				
1111	11011	01010	00110	10111	11010	10011	10011	01010	00101	10011	11010				

3.3. Verificați corectitudinea înscrierii programului în unitatea de memorie permanentă.

B. Regim dinamic.

3.4. Pentru studierea regimului dinamic conectați la intrările unității de memorie permanentă generatorul de semnale FUNCTION GENERATOR, un contor cu numărare directă de ordinul 3, iar la ieșirele unității conectați analizatorul logic LOGIC Analyzer.

- 3.5. Introduceți valorile frecvenței FREQUENCY, factorului de umplere DUTY CYCLE și amplitudinei AMPLITUDE pe panoul generatorului de semnale FUNCTION GENERATOR conform variantei prestabilite (Tabelul 2, lucrarea de laborator nr. 1 numai "Parametrii inițiali" sau numai "Parametrii modificați").
- 3.6. Aplicați la intrările unitîții de memorie permanentă semnale de tip dreptunghiular. Obțineți diagramele temporale cu ajutorul analizatorului logic LOGIC Analyzer (aveți dreptul să modificați valoarea frecvenței fără a modifica alți parametri).
 - 3.7. Comparați diagramele temporale cu datele din tabelul de adevăr (Tabelul 3).

Lucrarea de laborator se finalizează cu un raport, ce va conține:

- 1. Numărul și denumirea lucrării de laborator.
- 2. Numele, pronumele studentului, codul grupei academice,
- 3. Denumirea experimentelor.
- 4. Fiecare experiment va conține schemele electrice construite și tabelele de adevăr (diagramele temporale) cu datele primite în urma măsurătorilor.
- 5. Concluzii referitor la rezultatele obținute.

Întrebări de control

La prezentarea raportului trebuie să fiți capabili să răspundeți la următoarele întrebări de control:

- 1. Ce numim decoder?
- 2. Ce numim coder?
- 3. Cîte tipuri de decodere/codere sunt?
- 4. Ce funcții pot îndeplini decoderul/coderul?
- 5. Ce numim translator de cod?
- 6. În ce dispozitive se folosesc împreună coderul și decoderul?

Bibliografie

- 1. KAF-Internet. Проектирование дешифраторов и шифраторов // Справочное руководство по Electronics Workbench, 2001 // http://workbench. host.net.kg/show.php?chapter=3.2.1.
- 2. Valachi, A. şi al. Analiza, sinteza şi testarea dispozitivelor numerice. Buc.: Ed. Nord Est, 1993, p. 54-75. p. 77-120.