4. Convex optimization problems

- optimization problem in standard form
- convex optimization problems
- quasiconvex optimization
- linear optimization
- quadratic optimization
- geometric programming
- generalized inequality constraints
- semidefinite programming
- vector optimization

Convex optimization problem

standard form convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $a_i^T x = b_i, \quad i = 1, \dots, p$

- f_0 , f_1 , . . . , f_m are convex; equality constraints are affine
- ullet problem is *quasiconvex* if f_0 is quasiconvex (and f_1 , . . . , f_m convex)

often written as

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $Ax = b$

important property: feasible set of a convex optimization problem is convex

Optimality criterion for differentiable f_0

x is optimal if and only if it is feasible and

$$\nabla f_0(x)^T(y-x) \ge 0$$
 for all feasible y

if nonzero, $\nabla f_0(x)$ defines a supporting hyperplane to feasible set X at x

Linear program (LP)

minimize
$$c^T x + d$$

subject to $Gx \leq h$
 $Ax = b$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Linear-fractional program

minimize
$$f_0(x)$$

subject to $Gx \leq h$
 $Ax = b$

linear-fractional program

$$f_0(x) = \frac{c^T x + d}{e^T x + f},$$
 $\mathbf{dom} \, f_0(x) = \{x \mid e^T x + f > 0\}$

- a quasiconvex optimization problem; can be solved by bisection
- also equivalent to the LP (variables y, z)

$$\begin{array}{ll} \text{minimize} & c^Ty+dz\\ \text{subject to} & Gy \preceq hz\\ & Ay=bz\\ & e^Ty+fz=1\\ & z \geq 0 \end{array}$$

Linear-fractional program

Quadratic program (QP)

minimize
$$(1/2)x^TPx + q^Tx + r$$
 subject to $Gx \leq h$ $Ax = b$

- $P \in \mathbf{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Examples

least-squares

minimize $||Ax - b||_2^2$

- analytical solution $x^* = A^{\dagger}b$ (A^{\dagger} is pseudo-inverse)
- ullet can add linear constraints, e.g., $l \leq x \leq u$

Examples

least-squares

minimize
$$||Ax - b||_2^2$$

- analytical solution $x^* = A^{\dagger}b$ (A^{\dagger} is pseudo-inverse)
- can add linear constraints, e.g., $l \leq x \leq u$

linear program with random cost

minimize
$$\bar{c}^T x + \gamma x^T \Sigma x = \mathbf{E} \, c^T x + \gamma \, \mathbf{var}(c^T x)$$
 subject to $Gx \leq h$, $Ax = b$

- ullet c is random vector with mean \bar{c} and covariance Σ
- ullet hence, c^Tx is random variable with mean \bar{c}^Tx and variance $x^T\Sigma x$
- \bullet $\gamma>0$ is risk aversion parameter; controls the trade-off between expected cost and variance (risk)

Quadratically constrained quadratic program (QCQP)

minimize
$$(1/2)x^TP_0x + q_0^Tx + r_0$$
 subject to
$$(1/2)x^TP_ix + q_i^Tx + r_i \leq 0, \quad i = 1, \dots, m$$

$$Ax = b$$

- $P_i \in \mathbf{S}_+^n$; objective and constraints are convex quadratic
- if $P_1, \ldots, P_m \in \mathbf{S}_{++}^n$, feasible region is intersection of m ellipsoids and an affine set

Second-order cone programming

minimize
$$f^Tx$$
 subject to $\|A_ix+b_i\|_2 \leq c_i^Tx+d_i, \quad i=1,\ldots,m$ $Fx=g$

$$(A_i \in \mathbf{R}^{n_i \times n}, F \in \mathbf{R}^{p \times n})$$

• inequalities are called second-order cone (SOC) constraints:

$$(A_i x + b_i, c_i^T x + d_i) \in \text{second-order cone in } \mathbf{R}^{n_i+1}$$

- ullet for $n_i=0$, reduces to an LP; if $c_i=0$, reduces to a QCQP
- more general than QCQP and LP

Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m,$

there can be uncertainty in c, a_i , b_i

two common approaches to handling uncertainty (in a_i , for simplicity)

ullet deterministic model: constraints must hold for all $a_i \in \mathcal{E}_i$

minimize
$$c^T x$$
 subject to $a_i^T x \leq b_i$ for all $a_i \in \mathcal{E}_i$, $i = 1, \ldots, m$,

ullet stochastic model: a_i is random variable; constraints must hold with probability η

minimize
$$c^T x$$

subject to $\mathbf{prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m$

deterministic approach via SOCP

• choose an ellipsoid as \mathcal{E}_i :

$$\mathcal{E}_i = \{ \bar{a}_i + P_i u \mid ||u||_2 \le 1 \} \qquad (\bar{a}_i \in \mathbf{R}^n, \quad P_i \in \mathbf{R}^{n \times n})$$

center is \bar{a}_i , semi-axes determined by singular values/vectors of P_i

robust LP

minimize
$$c^T x$$
 subject to $a_i^T x \leq b_i \quad \forall a_i \in \mathcal{E}_i, \quad i = 1, \dots, m$

is equivalent to the SOCP

minimize
$$c^T x$$

subject to $\bar{a}_i^T x + \|P_i^T x\|_2 \leq b_i, \quad i = 1, \dots, m$

(follows from
$$\sup_{\|u\|_2 \le 1} (\bar{a}_i + P_i u)^T x = \bar{a}_i^T x + \|P_i^T x\|_2$$
)

stochastic approach via SOCP

- assume a_i is Gaussian with mean \bar{a}_i , covariance Σ_i $(a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i))$
- $a_i^T x$ is Gaussian r.v. with mean $\bar{a}_i^T x$, variance $x^T \Sigma_i x$; hence

$$\mathbf{prob}(a_i^T x \le b_i) = \Phi\left(\frac{b_i - \bar{a}_i^T x}{\|\Sigma_i^{1/2} x\|_2}\right)$$

where
$$\Phi(x) = (1/\sqrt{2\pi}) \int_{-\infty}^{x} e^{-t^2/2} dt$$
 is CDF of $\mathcal{N}(0,1)$

robust LP

minimize
$$c^T x$$

subject to $\mathbf{prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m,$

with $\eta \geq 1/2$, is equivalent to the SOCP

minimize
$$c^Tx$$
 subject to $\bar{a}_i^Tx + \Phi^{-1}(\eta) \|\Sigma_i^{1/2}x\|_2 \leq b_i, \quad i=1,\ldots,m$

Geometric programming

monomial function

$$f(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}, \quad \mathbf{dom}\, f = \mathbf{R}_{++}^n$$

with c > 0; exponent a_i can be any real number

posynomial function: sum of monomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}, \quad \mathbf{dom} \, f = \mathbf{R}_{++}^n$$

geometric program (GP)

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 1, \quad i = 1, \dots, m$
 $h_i(x) = 1, \quad i = 1, \dots, p$

with f_i posynomial, h_i monomial

Geometric program in convex form

change variables to $y_i = \log x_i$, and take logarithm of cost, constraints

• monomial $f(x) = cx_1^{a_1} \cdots x_n^{a_n}$ transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = a^T y + b \qquad (b = \log c)$$

• posynomial $f(x) = \sum_{k=1}^K c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$ transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = \log \left(\sum_{k=1}^K e^{a_k^T y + b_k} \right) \qquad (b_k = \log c_k)$$

geometric program transforms to convex problem

minimize
$$\log\left(\sum_{k=1}^{K}\exp(a_{0k}^{T}y+b_{0k})\right)$$
 subject to
$$\log\left(\sum_{k=1}^{K}\exp(a_{ik}^{T}y+b_{ik})\right)\leq 0,\quad i=1,\ldots,m$$

$$Gy+d=0$$

Design of cantilever beam

- ullet N segments with unit lengths, rectangular cross-sections of size $w_i imes h_i$
- given vertical force F applied at the right end

design problem

minimize total weight subject to upper & lower bounds on w_i , h_i upper bound & lower bounds on aspect ratios h_i/w_i upper bound on stress in each segment upper bound on vertical deflection at the end of the beam

variables: w_i , h_i for $i = 1, \ldots, N$

objective and constraint functions

- total weight $w_1h_1 + \cdots + w_Nh_N$ is posynomial
- aspect ratio h_i/w_i and inverse aspect ratio w_i/h_i are monomials
- maximum stress in segment i is given by $6iF/(w_ih_i^2)$, a monomial
- ullet the vertical deflection y_i and slope v_i of central axis at the right end of segment i are defined recursively as

$$v_{i} = 12(i - 1/2)\frac{F}{Ew_{i}h_{i}^{3}} + v_{i+1}$$

$$y_{i} = 6(i - 1/3)\frac{F}{Ew_{i}h_{i}^{3}} + v_{i+1} + y_{i+1}$$

for i = N, N - 1, ..., 1, with $v_{N+1} = y_{N+1} = 0$ (E is Young's modulus) v_i and y_i are posynomial functions of w, h

formulation as a GP

minimize
$$w_1h_1+\cdots+w_Nh_N$$
 subject to $w_{\max}^{-1}w_i \leq 1, \quad w_{\min}w_i^{-1} \leq 1, \quad i=1,\dots,N$ $h_{\max}^{-1}h_i \leq 1, \quad h_{\min}h_i^{-1} \leq 1, \quad i=1,\dots,N$ $S_{\max}^{-1}w_i^{-1}h_i \leq 1, \quad S_{\min}w_ih_i^{-1} \leq 1, \quad i=1,\dots,N$ $6iF\sigma_{\max}^{-1}w_i^{-1}h_i^{-2} \leq 1, \quad i=1,\dots,N$ $y_{\max}^{-1}y_1 \leq 1$

note

• we write $w_{\min} \leq w_i \leq w_{\max}$ and $h_{\min} \leq h_i \leq h_{\max}$

$$w_{\min}/w_i \le 1, \qquad w_i/w_{\max} \le 1, \qquad h_{\min}/h_i \le 1, \qquad h_i/h_{\max} \le 1$$

• we write $S_{\min} \leq h_i/w_i \leq S_{\max}$ as

$$S_{\min} w_i / h_i \le 1, \qquad h_i / (w_i S_{\max}) \le 1$$

Generalized inequality constraints

convex problem with generalized inequality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \preceq_{K_i} 0$, $i = 1, \ldots, m$
 $Ax = b$

- $f_0: \mathbf{R}^n \to \mathbf{R}$ convex; $f_i: \mathbf{R}^n \to \mathbf{R}^{k_i}$ K_i -convex w.r.t. proper cone K_i
- same properties as standard convex problem (convex feasible set, local optimum is global, etc.)

conic form problem: special case with affine objective and constraints

minimize
$$c^T x$$

subject to $Fx + g \leq_K 0$
 $Ax = b$

extends linear programming $(K = \mathbf{R}_{+}^{m})$ to nonpolyhedral cones

Semidefinite program (SDP)

minimize
$$c^Tx$$
 subject to $x_1F_1+x_2F_2+\cdots+x_nF_n+G\preceq 0$ $Ax=b$

with F_i , $G \in \mathbf{S}^k$

- inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constraints: for example,

$$x_1\hat{F}_1 + \dots + x_n\hat{F}_n + \hat{G} \leq 0, \qquad x_1\tilde{F}_1 + \dots + x_n\tilde{F}_n + \tilde{G} \leq 0$$

is equivalent to single LMI

$$x_1 \begin{bmatrix} \hat{F}_1 & 0 \\ 0 & \tilde{F}_1 \end{bmatrix} + x_2 \begin{bmatrix} \hat{F}_2 & 0 \\ 0 & \tilde{F}_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} \hat{F}_n & 0 \\ 0 & \tilde{F}_n \end{bmatrix} + \begin{bmatrix} \hat{G} & 0 \\ 0 & \tilde{G} \end{bmatrix} \leq 0$$

LP and SOCP as SDP

LP and equivalent SDP

LP: minimize c^Tx SDP: minimize c^Tx subject to $Ax \leq b$ subject to $\operatorname{diag}(Ax - b) \leq 0$

(note different interpretation of generalized inequality \leq)

SOCP and equivalent SDP

SOCP: minimize f^Tx subject to $\|A_ix + b_i\|_2 \leq c_i^Tx + d_i, \quad i = 1, \dots, m$

SDP: minimize f^Tx subject to $\begin{bmatrix} (c_i^Tx+d_i)I & A_ix+b_i \\ (A_ix+b_i)^T & c_i^Tx+d_i \end{bmatrix} \succeq 0, \quad i=1,\ldots,m$

Quiz: how to represent QP as SDP?

LP and SOCP as SDP

Eigenvalue minimization

minimize
$$\lambda_{\max}(A(x))$$

where
$$A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$$
 (with given $A_i \in \mathbf{S}^k$)

equivalent SDP

- variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$
- follows from

$$\lambda_{\max}(A) \le t \iff A \le tI$$

Matrix norm minimization

minimize
$$||A(x)||_2 = \left(\lambda_{\max}(A(x)^T A(x))\right)^{1/2}$$

where $A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$ (with given $A_i \in \mathbf{R}^{p \times q}$) equivalent SDP

$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & \left[\begin{array}{cc} tI & A(x) \\ A(x)^T & tI \end{array} \right] \succeq 0 \end{array}$$

- variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$
- constraint follows from

$$||A||_2 \le t \iff A^T A \le t^2 I, \quad t \ge 0$$

$$\iff \begin{bmatrix} tI & A \\ A^T & tI \end{bmatrix} \succeq 0$$

Vector optimization

general vector optimization problem

minimize (w.r.t.
$$K$$
) $f_0(x)$
subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

vector objective $f_0: \mathbf{R}^n \to \mathbf{R}^q$, minimized w.r.t. proper cone $K \in \mathbf{R}^q$

convex vector optimization problem

minimize (w.r.t.
$$K$$
) $f_0(x)$ subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $Ax=b$

with f_0 K-convex, f_1 , . . . , f_m convex

Optimal and Pareto optimal points

set of achievable objective values

$$\mathcal{O} = \{f_0(x) \mid x \text{ feasible}\}$$

- feasible x is **optimal** if $f_0(x)$ is the minimum value of \mathcal{O}
- feasible x is **Pareto optimal** if $f_0(x)$ is a minimal value of \mathcal{O}

 x^{po} is Pareto optimal

Multicriterion optimization

vector optimization problem with $K = \mathbf{R}_+^q$

$$f_0(x) = (F_1(x), \dots, F_q(x))$$

- q different objectives F_i ; roughly speaking we want all F_i 's to be small
- feasible x^* is optimal if

$$y$$
 feasible \Longrightarrow $f_0(x^*) \leq f_0(y)$

if there exists an optimal point, the objectives are noncompeting

ullet feasible x^{po} is Pareto optimal if

$$y$$
 feasible, $f_0(y) \leq f_0(x^{\text{po}}) \implies f_0(x^{\text{po}}) = f_0(y)$

if there are multiple Pareto optimal values, there is a trade-off between the objectives

Regularized least-squares

minimize (w.r.t. \mathbf{R}_{+}^{2}) $(\|Ax - b\|_{2}^{2}, \|x\|_{2}^{2})$

example for $A \in \mathbf{R}^{100 \times 10}$; heavy line is formed by Pareto optimal points

Risk return trade-off in portfolio optimization

minimize (w.r.t.
$$\mathbf{R}_+^2$$
) $(-\bar{p}^T x, x^T \Sigma x)$ subject to $\mathbf{1}^T x = 1, \quad x \succeq 0$

- $x \in \mathbb{R}^n$ is investment portfolio; x_i is fraction invested in asset i
- $p \in \mathbf{R}^n$ is vector of relative asset price changes; modeled as a random variable with mean \bar{p} , covariance Σ
- $\bar{p}^T x = \mathbf{E} r$ is expected return; $x^T \Sigma x = \mathbf{var} r$ is return variance

example

Scalarization

to find Pareto optimal points: choose $\lambda \succ_{K^*} 0$ and solve scalar problem

minimize
$$\lambda^T f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

if x is optimal for scalar problem, then it is Pareto-optimal for vector optimization problem

for convex vector optimization problems, can find (almost) all Pareto optimal points by varying $\lambda \succ_{K^*} 0$

Scalarization for multicriterion problems

to find Pareto optimal points, minimize positive weighted sum

$$\lambda^T f_0(x) = \lambda_1 F_1(x) + \dots + \lambda_q F_q(x)$$

examples

• regularized least-squares problem of page 4-43

take
$$\lambda = (1, \gamma)$$
 with $\gamma > 0$

minimize
$$||Ax - b||_2^2 + \gamma ||x||_2^2$$

for fixed γ , a LS problem

• risk-return trade-off of page 4-44

$$\begin{array}{ll} \text{minimize} & -\bar{p}^Tx + \gamma x^T \Sigma x \\ \text{subject to} & \mathbf{1}^Tx = 1, \quad x \succeq 0 \end{array}$$

for fixed $\gamma > 0$, a quadratic program

5. Duality

- Lagrange dual problem
- weak and strong duality
- geometric interpretation
- optimality conditions
- perturbation and sensitivity analysis
- examples
- generalized inequalities

Lagrangian

standard form problem (not necessarily convex)

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

variable $x \in \mathbf{R}^n$, domain \mathcal{D} , optimal value p^*

Lagrangian: $L: \mathbf{R}^n \times \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$, with $\operatorname{\mathbf{dom}} L = \mathcal{D} \times \mathbf{R}^m \times \mathbf{R}^p$,

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- weighted sum of objective and constraint functions
- λ_i is Lagrange multiplier associated with $f_i(x) \leq 0$
- ν_i is Lagrange multiplier associated with $h_i(x) = 0$

Lagrange dual function

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$
$$= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

g is concave, can be $-\infty$ for some λ , ν

lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^{\star}$

proof: if \tilde{x} is feasible and $\lambda \succeq 0$, then

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible \tilde{x} gives $p^{\star} \geq g(\lambda, \nu)$

Least-norm solution of linear equations

$$\begin{array}{ll} \text{minimize} & x^T x \\ \text{subject to} & Ax = b \end{array}$$

dual function

- Lagrangian is $L(x,\nu) = x^T x + \nu^T (Ax b)$
- ullet to minimize L over x, set gradient equal to zero:

$$\nabla_x L(x,\nu) = 2x + A^T \nu = 0 \quad \Longrightarrow \quad x = -(1/2)A^T \nu$$

• plug in in L to obtain g:

$$g(\nu) = L((-1/2)A^{T}\nu, \nu) = -\frac{1}{4}\nu^{T}AA^{T}\nu - b^{T}\nu$$

a concave function of ν

lower bound property: $p^{\star} \geq -(1/4)\nu^T A A^T \nu - b^T \nu$ for all ν

Standard form LP

dual function

• Lagrangian is

$$L(x,\lambda,\nu) = c^T x + \nu^T (Ax - b) - \lambda^T x$$
$$= -b^T \nu + (c + A^T \nu - \lambda)^T x$$

 \bullet L is affine in x, hence

$$g(\lambda,\nu) = \inf_x L(x,\lambda,\nu) = \left\{ \begin{array}{ll} -b^T\nu & A^T\nu - \lambda + c = 0 \\ -\infty & \text{otherwise} \end{array} \right.$$

g is linear on affine domain $\{(\lambda, \nu) \mid A^T \nu - \lambda + c = 0\}$, hence concave

lower bound property: $p^{\star} \geq -b^T \nu$ if $A^T \nu + c \succeq 0$

Equality constrained norm minimization

$$\begin{array}{ll} \text{minimize} & \|x\| \\ \text{subject to} & Ax = b \end{array}$$

dual function

$$g(\nu) = \inf_{x}(\|x\| - \nu^T A x + b^T \nu) = \begin{cases} b^T \nu & \|A^T \nu\|_* \le 1 \\ -\infty & \text{otherwise} \end{cases}$$

where $||v||_* = \sup_{||u|| \le 1} u^T v$ is dual norm of $||\cdot||$

proof: follows from $\inf_x(\|x\|-y^Tx)=0$ if $\|y\|_*\leq 1$, $-\infty$ otherwise

- if $||y||_* \le 1$, then $||x|| y^T x \ge 0$ for all x, with equality if x = 0
- if $||y||_* > 1$, choose x = tu where $||u|| \le 1$, $u^T y = ||y||_* > 1$:

$$||x|| - y^T x = t(||u|| - ||y||_*) \to -\infty$$
 as $t \to \infty$

lower bound property: $p^* \geq b^T \nu$ if $||A^T \nu||_* \leq 1$

Two-way partitioning

- \bullet a nonconvex problem; feasible set contains 2^n discrete points
- interpretation: partition $\{1,\ldots,n\}$ in two sets; W_{ij} is cost of assigning i,j to the same set; $-W_{ij}$ is cost of assigning to different sets

dual function

$$g(\nu) = \inf_{x} (x^T W x + \sum_{i} \nu_i (x_i^2 - 1)) = \inf_{x} x^T (W + \mathbf{diag}(\nu)) x - \mathbf{1}^T \nu$$
$$= \begin{cases} -\mathbf{1}^T \nu & W + \mathbf{diag}(\nu) \succeq 0 \\ -\infty & \text{otherwise} \end{cases}$$

lower bound property: $p^* \geq -\mathbf{1}^T \nu$ if $W + \mathbf{diag}(\nu) \succeq 0$ example: $\nu = -\lambda_{\min}(W)\mathbf{1}$ gives bound $p^* \geq n\lambda_{\min}(W)$

Lagrange dual and conjugate function

minimize
$$f_0(x)$$

subject to $Ax \leq b$, $Cx = d$

dual function

$$g(\lambda, \nu) = \inf_{x \in \text{dom } f_0} \left(f_0(x) + (A^T \lambda + C^T \nu)^T x - b^T \lambda - d^T \nu \right)$$
$$= -f_0^* (-A^T \lambda - C^T \nu) - b^T \lambda - d^T \nu$$

- recall definition of conjugate $f^*(y) = \sup_{x \in \mathbf{dom}\ f} (y^T x f(x))$
- ullet simplifies derivation of dual if conjugate of f_0 is known

example: entropy maximization

$$f_0(x) = \sum_{i=1}^n x_i \log x_i, \qquad f_0^*(y) = \sum_{i=1}^n e^{y_i - 1}$$