ALGEBRA E LOGICA MATEMATICA 5 LUGLIO 2005

I PARTE

- 1) Sia dato l'insieme $X = \{a,b,c,d,e,f\}$.
 - a) Si consideri la relazione R su X rappresentata dal seguente grafo

$$a \rightarrow b$$
 $c \rightarrow d$ $e \rightarrow f$

Dire se esistono e quante sono le funzioni da X ad X contenenti R che ammettono inversa sinistra.

Determinare la relazione d'equivalenza ρ generata da R e l'insieme quoziente X/ ρ .

b) Si consideri ora la relazione T su X avente la seguente matrice d'incidenza

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Costruire la chiusura simmetrica τ della chiusura riflessiva e transitiva S di T.

E' una relazione d'equivalenza? Se sì, si costruisca l'insieme quoziente X/τ .

c) Si consideri ora la relazione $R \cup T$ su X.

Si mostri che esiste una ed una sola funzione biunivoca f di X in X contenuta in tale relazione.

Si mostri inoltre che esiste una ed una sola funzione g da X/ρ a X/τ tale che p_{ρ} g = p_{τ} ove p_{ρ} e p_{τ} sono le usuali proiezioni canoniche.

Giustificare ogni risposta.

2) Trovare in \mathbb{Z}_7 la soluzione dell'equazione

$$\{4\}$$
x = $\{2\}$

e dimostrare che è unica.

Discutere esistenza ed unicità della soluzione della stessa equazione in \mathbb{Z}_6 .

Considerare l'equazione

$$\{4\}x^2 - \{2\}x = \{0\}$$

e mostrare che in \mathbb{Z}_7 ha due sole soluzioni.

La stessa affermazione è valida in \mathbb{Z}_6 ?

Giustificare ogni risposta.

ALGEBRA E LOGICA MATEMATICA 5 LUGLIO 2005

II PARTE

1) Trovare una formula A contenente solo i connettivi ~ e ⇒ avente la seguente tavola di verità

A	В	C	f(A, B, C)
1	1	1	1
1	1	0	0
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	1
0	0	1	0
0	0	0	1

Determinare inoltre una formula B, che non sia una contraddizione, tale che in L da $A \wedge B$ si deduca $\sim A$.

- 2) Si considerino le seguenti proposizioni:
 - a) se Anna è una pittrice, allora Giorgio è uno scrittore oppure Silvia è una insegnante;
 - b) se Giorgio è uno scrittore, allora Lucia non fa la commessa oppure Silvia è una insegnante;
 - c) se Lucia fa la commessa, allora Anna è una pittrice;
 - d) Lucia fa la commessa;
 - e) Silvia è una insegnante.

Si mostri, utilizzando la teoria della risoluzione, che e) è deducibile da a), b), c), d).

3) Si consideri la seguente formula del I ordine

$$A_1^2(x,y) \Rightarrow (\exists z) (A_1^2(x,z) \wedge A_1^2(z,y))$$

si discuta la verità della formula data e delle sue chiusure esistenziale ed universale nell'interpretazione che ha come dominio N ed in cui $A_1^2(x,y)$ è da interpretarsi come la relazione x < y.

Dimostrare che la formula non è logicamente valida, né logicamente contraddittoria.

TRACCIA DI SOLUZIONE

PARTE 1

Esercizio 1.

Poiché X è finito una funzione da X ad X è suriettiva se e solo se è iniettiva. Dunque si tratta di decidere se esistono e quante sono le funzioni biunivoche da X ad X contenenti R. Per trovare tali funzioni dobbiamo vedere quali possono essere le immagini di b, d, f . Tali immagini vanno scelte fra a,c,e e quindi abbiamo in tutto 6 scelte possibili.

La relazione d'equivalenza p generata da R è formata dalle coppie

 $\{(a,a),(a,b),(b,a),(b,b),(c,c),(c,d),(d,c),(d,d),(e,e),(e,f),(f,e),(f,f)\}\ e\ quindi\ X/\rho=\{a\rho,c\rho,e\rho\}\ ove\ a\rho=\{a,b\},\ c\rho=\{c,d\},\ e\rho=\{e,f\}.$

O usando il grafo di incidenza o usando la matrice di incidenza è facile osservare che la chiusura riflessiva e transitiva di T ha come matrice di incidenza

```
\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \text{ quindi la sua chiusura simmetrica } \tau \text{ ha come matrice di incidenza}
```

```
\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ \end{bmatrix} \text{ ed è quindi una relazione di equivalenza (facile vedere che $\tau^2$= $\tau$ e quindi che }
```

 τ è transitiva). Ovviamente $X/\tau = \{a\tau, e\tau\}$ ove $a\tau = \{a,b,c,d\}$, $e\tau = \{e,f\}$.

La matrice di incidenza di R∪T è

```
 \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ \end{bmatrix} \ e \ quindi \ sapendo \ che \ una \ funzione \ biunivoca \ contenuta \ in \ essa \ deve \ avere
```

una matrice di incidenza ottenuta portando eventualmente degli 1 a 0 nella matrice di $R \cup T$ in modo che in ogni riga e colonna rimanga uno ed un solo 1, l'unica possibile matrice ottenuta in questo modo è

0	1	0	0	0	0	
0	0	1	0	0	0	
0	1 0 0 0 0	0	1	0	0	
1	0	0	0	0	0	•
0	0	0	0	0	1	
0	0	0 1 0 0 0	0	1	0	

Una funzione g tale che p_{ρ} g = p_{τ} è, come si può verificare direttamente la funzione così definita $g(a\rho)=g(c\rho)=a\tau$, $g(e\rho)=e\tau$.

Inoltre è facile osservare che la g così definita è l'unica possibile, infatti deve essere per ogni x di X p_{ρ} g (x)=g (p_{ρ} (x))= p_{τ} (x), ovvero g(x ρ)=x τ (oppure si può usare il II teorema di fattorizzazione delle applicazioni).

Esercizio 2

Sappiamo che Z_7 è un campo e che quindi ogni suo elemento non nullo ha inverso. Inoltre è noto che se · è un'operazione binaria associativa su un insieme X, ogni equazione $a\cdot x=b$ con $a,b\in X$ ha una e una sola soluzione della forma $x=a^{-1}\cdot b$ se a ha inverso. Poiché in Z_7 si ha $\{4\}^{-1}=\{2\}$, l'equazione $\{4\}x=\{2\}$ ha la soluzione $x=\{2\}\{2\}=\{4\}$ e tale soluzione è unica. In Z_6 invece $\{4\}$ non ammette inverso, è facile comunque verificare che $x=\{2\}$ è una soluzione dell'equazione in Z_6 , inoltre tale soluzione non è unica infatti anche $x=\{5\}$ è soluzione e questi due elemnti sono le uniche soluzioni.

Il polinomio $\{4\}x^2 - \{2\}x$ si decompone in $x(\{4\}x-\{2\})$, pertanto sia $x=\{0\}$ sia $x=\{4\}$ sono soluzione dell'equazione $\{4\}x^2 - \{2\}x = \{0\}$ in Z_7 , inoltre poiché Z_7 è privo di divisori dello 0 ogni soluzione dell'equazione deve o essere radice di x o radice di $\{4\}x-\{2\}$ e dunque le due soluzioni indicate sono le uniche soluzioni dell'equazione $\{4\}x^2 - \{2\}x = \{0\}$ in Z_7 . In Z_6 invece l'equazione $\{4\}x^2 - \{2\}x = \{0\}$ ha almeno le 3 soluzioni $x=\{0\}$, $x=\{2\}$, $x=\{5\}$, inoltre ammette anche la soluzione $x=\{3\}$ come si ottiene per verifica diretta o ragionando sui divisori dello 0.

PARTE 2

Esercizio 1.

La formula A

 $(A \land B \land C) \lor (A \land \neg B \land C) \lor (\neg A \land B \land \neg C) \lor (\neg A \land \neg B \land \neg C) \equiv (A \land C) \lor (\neg A \land \neg C) \equiv (A \Rightarrow \neg C) \Rightarrow \neg (\neg A \Rightarrow C) \text{ ha la tavola di verità data.}$

Una formula B che non sia una contraddizione tale cha da $A \land B$ in L si deduca $\sim A$ è la formula $\sim A$. Infatti per i teoremi di correttezza e completezza da $A \land B$ si deduca $\sim A$ in L se e solo se $(A \land B) \Rightarrow \sim A$ è una tautologia e ovviamente $(A \land \sim A) \Rightarrow \sim A$ è una tautologia essendo il suo antecedente sempre falso.

Esercizio 2.

Incicando con A la frase "Anna è una pittrice", con G la frase" Giorgio è uno scrittore", con S la frase "Silvia è una insegnante" e con L la frase "Lucia fa la commessa", le frasi a),b),c),d) ed e) diventano rispettivamente le formule

- a) $A \Rightarrow (G \lor S)$
- b) $G \Rightarrow (\sim L \lor S)$
- c) L⇒A
- d) L
- e) S

- a), b), c), d) in forma a clausole diventano
- a) $\{ \sim A, G, S \}$,
- b) $\{ \sim G, \sim L, S \}$
- c) $\{\sim L,A\}$
- d) {L}

la e negata diventa la clausola

f) {~S}

Per dimostrare con la risoluzione che la frase e) si deduce dalle frasi a),b),c),d) bisogna mostrare che dalle clausole a),b),c),d),f) si deduce la clausola vuota .

La risolvente di f) e b) è la clausola $\{\sim G, \sim L\}$, che a sua volta con d) dà come risolvente $\{\sim G\}$, che con a) dà $\{\sim A, S\}$, che con f) dà $\{\sim A\}$, che con c) dà $\{\sim L\}$ che con d) dà la clausola vuota.

Esercizio 3

Nell'interpretazione data la formula si legge

"x,y sono numeri naturali e se x è minore di y allora esiste un naturale z tale che x è minore di z e z è minore di y".

Ovviamente la formula è soddisfatta se y non è il successore di x perché in tal caso o y è minore o uguale ad x e non è soddisfatto l'antecedente o se y è maggiore di x il successore di x è compreso fra x ed y. La formula non è soddisfatta se y è il successore di x, perché in tal caso è soddisfatto l'antecedente ma non il conseguente.

Dunque la formula nell'interpretazione data è soddisfacibile ma non vera, per cui la sua chiusura esistenziale è vera e la sua chiusura universale è falsa.

La formula non può essere logicamente valida in quanto non è vera nell'interpretazione data, non è logicamente contraddittoria in quanto non è falsa (insoddisfacibile) nell'interpretazione data.