

Arquitetura de Computadores - Nível 2

Prof. Rogério Chola rogerio.chola@sptech.school

Um computador não entende a linguagem humana. Um computador somente entende, em sua lógica digital, dois estados possíveis: ligado (verdadeiro ou 1) e desligado (falso ou 0). Assim dizemos que um computador possui uma linguagem de máquina, formada por 0 e 1 e assim, por utilizar somente dois dígitos dizemos que o computador utiliza o Sistema Binário Digital onde cada símbolo (0 ou 1) é conhecido por BIT, do inglês BInary digiT ou Dígito Binário. Dessa forma, um BIT pode valer 0 ou 1 e assim também concluímos que esse sistema possui Base 2 por ter somente 2 dígitos. Existem outros sistemas de numeração como o Decimal (Base 10); o Hexadecimal (Base 16) e o Octal (Base 8). Assim, é possível transformar ou converter qualquer caractere (letra; número; símbolo) em uma representação numérica em determinada **BASE**

Sistema Base Binária: 2 dígitos (0 e 1)

Sistema Base Decimal: 10 dígitos (0, 1, 2, 3, 4, 5, 6, 7, 8 e 9)

Sistema Base Octal: 8 dígitos (0, 1, 2, 3, 4, 5, 6 e 7)

Sistema Base Hexadecimal: 16 dígitos (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E e F)

É necessário um conversor Analógico-Digital para interagir os computadores com os humanos e vice-versa

Obviamente que "falar" com um computador, bit a bit, leva tempo e gera complexidade. E também representar todos os caracteres possíveis somente utilizando dois valores não é possível. Dessa forma, o computador e seus circuitos foram "ensinados" a compor conjuntos de BIT's para assim formar padrões que podem representar, com mais facilidade todos os caracteres possíveis. Assim temos:

Nibble: formado por 4 bits $(2^4 = 16)$

Byte: formado por 8 bits (octeto) $(2^8 = 256)$

Word: formado por 16 bits (double byte) $(2^{16} = 65.536)$

Double Word: formado por 32 bits (long word) $(2^{32} = 4.294.967.296)$

Quad Word: formado por 64 bits (very long word) $(2^{64} = 18.446.744.073.709.551.616)$

Ano	Chip	Largura do barramento	Velocidade do clock	Transistores
1971	4004	4 bits	740KHz	2300
1974	8080	8 bits	2 MHz	6.000
1979	8088	16 bits	Até 8 MHz	29.000
1982	80286	16 bits	Até 12 MHz	134.000
1985	80386	32 bits	Até 33 MHz	275.000
1989	Intel 486	32 bits	Até 100 MHz	1.600.000
1993	Pentium (original)	64 bits	Até 200 MHz	3,3 milhões
1998	Pentium II	64 bits	233 MHz	7,5 milhões
19792	Pentium III	64 bits	Até 1 GHz	9,5 milhões
	Pentium IV	64 bits	Até 3,4 GHz	55,0 milhões

O nome ASCII vem do inglês American Standard Code for Information Interchange ou "Código Padrão Americano para o Intercâmbio de Informação". Ele é baseado no alfabeto romano e sua função é padronizar a forma como os computadores representam letras, números, acentos, sinais diversos e alguns códigos de controle

No ASCII existem apenas 95 caracteres que podem ser impressos, eles são numerados de 32 a 126 sendo os caracteres de 0 a 31 reservados para funções de controle. Ou seja, funções de computador. Alguns caracteres acabaram caindo em desuso pois eram funções específicas para computadores da época como o Teletype (máquinas de escrever eletro-mecânicas), fitas de papel perfurado e impressoras de cilindro para computadores da época como o Teletype (máquinas de escrever eletro-mecânicas), fitas de papel perfurado e impressoras de cilindro

O ASCII é um código que foi proposto por Robert W. Bemer como uma solução para unificar a representação de caracteres alfanuméricos em computadores. Antes de 1960 cada computador utilizava uma regra diferente para representar estes caracteres e o código ASCII nasceu para se tornar comum entre todas as máquinas

Decimal	Hex	Char	Decimal	Hex	Char	 Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	
1	1	[START OF HEADING]	33	21	!	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22	-	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	C
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	Se .	70	46	F	102	66	f
7	7	[BELL]	39	27		71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	1
10	A	(LINE FEED)	42	2A	*	74	4A	J	106	6A	1
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C		76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D		77	4D	M	109	6D	m
14	E	ISHIFT OUTI	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	IDATA LINK ESCAPEI	48	30	0	80	50	P	112	70	p
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	0	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	s
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	INEGATIVE ACKNOWLEDGE	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	v	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	w	119	77	w
24	18	[CANCEL]	56	38	8	88	58	x	120	78	×
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	ŷ
26	1A	(SUBSTITUTE)	58	3A	:	90	5A	z	122	7A	7
27	18	[ESCAPE]	59	3B	;	91	5B	Г	123	7B	1
28	10	IFILE SEPARATORI	60	3C	<	92	5C	·	124	7C	1
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	i	125	7D	1
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	-	127	7F	[DEL]

Tabela ASCII – Binário, Decimal e Hexadecimal

Binário	D	н	G	Binário	D	Н	G	Binário	D	н	G
0010 0000	32	20	vazio	0100 0000	64	40	æ	0110 0000	96	60	
0010 0001	33	21	!	0100 0001	65	41	A	0110 0001	97	61	а
0010 0010	34	22	-	0100 0010	66	42	В	0110 0010	98	62	b
0010 0011	35	23	#	0100 0011	67	43	С	0110 0011	99	63	С
0010 0100	36	24	-5	0100 0100	68	44	D	0110 0100	100	64	d
0010 0101	37	25	96	0100 0101	69	45	E	0110 0101	101	65	е
0010 0110	38	26	-8.	0100 0110	70	46	F	0110 0110	102	66	f
0010 0111	39	27	-	0100 0111	71	47	G	0110 0111	103	67	g
0010 1000	40	28	(0100 1000	72	48	н	0110 1000	104	68	h
0010 1001	41	29)	0100 1001	73	49		0110 1001	105	69	i
0010 1010	42	2A	*	0100 1010	74	4A	J	0110 1010	106	6A	j
0010 1011	43	28	+	0100 1011	75	4B	K	0110 1011	107	6B	k
0010 1100	44	2C		0100 1100	76	4C	L	0110 1100	108	6C	1
0010 1101	45	2D	-	0100 1101	77	4D	M	0110 1101	109	6D	m
0010 1110	46	2E	-	0100 1110	78	4E	N	0110 1110	110	6E	n
0010 1111	47	2F	1	0100 1111	79	4F	0	0110 1111	111	6F	0
0011 0000	48	30	0	0101 0000	80	50	P	0111 0000	112	70	P
0011 0001	49	31	1	0101 0001	81	51	Q	0111 0001	113	71	q
0011 0010	50	32	2	0101 0010	82	52	R	0111 0010	114	72	г
0011 0011	51	33	3	0101 0011	83	53	S	0111 0011	115	73	s
0011 0100	52	34	4	0101 0100	84	54	T	0111 0100	116	74	t
0011 0101	53	35	5	0101 0101	85	55	U	0111 0101	117	75	u
0011 0110	54	36	6	0101 0110	86	56	v	0111 0110	118	76	v
0011 0111	55	37	7	0101 0111	87	57	w	0111 0111	119	77	w
0011 1000	56	38	8	0101 1000	88	58	×	0111 1000	120	78	×
0011 1001	57	39	9	0101 1001	89	59	Y	0111 1001	121	79	У
0011 1010	58	ЗА	=	0101 1010	90	5A	Z	0111 1010	122	7A	z
0011 1011	59	3B	:	0101 1011	91	5B		0111 1011	123	7B	-{
0011 1100	60	3C	<	0101 1100	92	5C	1	0111 1100	124	7C	
0011 1101	61	3D	=	0101 1101	93	5D		0111 1101	125	7D	}
0011 1110	62	3E	>	0101 1110	94	5E	^	0111 1110	126	7E	~
0011 1111	63	3F	?	0101 1111	95	5F					

Tabela ASCII – Decimal. Octal, HTML e Hexadecimal

```
Dec Hx Oct Char
                                      Dec Hx Oct Html Chr
                                                            Dec Hx Oct Html Chr Dec Hx Oct Html Chr
    0 000 NUL (null)
                                       32 20 040   Space
                                                            64 40 100 @ 0
                                                                               96 60 140 @#96;
    1 001 SOH (start of heading)
                                       33 21 041 ! !
                                                            65 41 101 A A
                                                                               97 61 141 @#97;
    2 002 STX (start of text)
                                       34 22 042 4#34:
                                                            66 42 102 B B
                                                                                  62 142 4#98;
    3 003 ETX (end of text)
                                         23 043 4#35; #
                                                               43 103 C C
                                                                                  63 143 4#99;
                                         24 044 4#36;
                                                               44 104 D
                                                                              100 64 144 @#100; d
              (end of transmission)
    5 005 ENQ
              (enquiry)
                                         25 045 % %
                                                            69 45 105 E E
                                                                              101 65 145 @#101; e
                                         26 046 & &
                                                               46 106 F F
                                                                              102 66 146 f f
    6 006 ACK (acknowledge)
                                                            71 47 107 G 😉
    7 007 BEL (bell)
                                         27 047 4#39;
                                                                              103 67 147 @#103; g
                                         28 050 4#40:
                                                               48 110 H H
                                                                              104 68 150 @#104; h
    8 010 BS
              (backspace)
    9 011 TAB
             (horizontal tab)
                                       41 29 051 )
                                                            73 49 111 I <mark>I</mark>
                                                                              105 69 151 i i
    A 012 LF
              (NL line feed, new line)
                                       42 2A 052 *
                                                            74 4A 112 @#74: J
                                                                              106 6A 152 @#106; j
    B 013 VT
                                         2B 053 + +
                                                               4B 113 K K
                                                                              107 6B 153 k k
11
              (vertical tab)
                                       44 2C 054 @#44;
                                                            76 4C 114 L L
                                                                              108 6C 154 l 1
12
    C 014 FF
              (NP form feed, new page)
    D 015 CR
              (carriage return)
                                         2D 055 -
                                                               4D 115 %#77; M
                                                                              109 6D 155 m m
13
    E 016 S0
                                         2E 056 .
                                                            78 4E 116 N N
                                                                              110 6E 156 n n
              (shift out)
                                                               4F 117 @#79; 0
15
    F 017 SI
              (shift in)
                                         2F 057 /
                                                                              111 6F 157 @#111: 0
16 10 020 DLE
             (data link escape)
                                       48 30 060 4#48: 0
                                                            80 50 120 P P
                                                                              112 70 160 @#ll2: p
                                         31 061 4#49; 1
                                                            81 51 121 @#81; 0
                                                                              113 71 161 q q
   11 021 DC1 (device control 1)
                                       50 32 062 2 2
                                                                              114 72 162 @#114; r
18 12 022 DC2 (device control 2)
                                                            82 52 122 R R
                                       51 33 063 4#51: 3
                                                               53 123 4#83; $
                                                                                  73 163 s 5
19 13 023 DC3
              (device control 3)
20 14 024 DC4 (device control 4)
                                       52 34 064 4 4
                                                            84 54 124 @#84; T
                                                                              116 74 164 @#116; t
                                                               55 125 U U
                                       53 35 065 5 <mark>5</mark>
21 15 025 NAK (negative acknowledge)
                                                                              117 75 165 u <mark>u</mark>
              (synchronous idle)
                                       54 36 066 &#54: 6
                                                               56 126 V V
  16 026 SYN
                                         37 067 4#55; 7
                                                               57 127 4#87; ₩
                                                                              119 77 167 w ₩
23 17 027 ETB
              (end of trans. block)
24 18 030 CAN
              (cancel)
                                         38 070 8 <del>8</del>
                                                            88 58 130 X X
                                                                              120 78 170 x ×
25 19 031 EM
              (end of medium)
                                       57 39 071 9 <mark>9</mark>
                                                               59 131 Y Y
                                                                              121 79 171 y Y
                                                               5A 132 Z Z
                                                                              122 7A 172 @#122; Z
26 1A 032 SUB
              (substitute)
                                         3A 072 : :
                                                                              123 7B 173 @#123; {
27 1B 033 ESC
              (escape)
                                       59 3B 073 &#59; ;
                                                            91 5B 133 [ [
                                                               5C 134 &#92:
                                                                              124 7C 174 @#124;
28 1C 034 FS
              (file separator)
                                       60 3C 074 < <
                                       61 3D 075 = =
                                                            93 5D 135 ] ]
                                                                              125 7D 175 @#125; )
29 1D 035 GS
              (group separator)
30 1E 036 RS
              (record separator)
                                       62 3E 076 > >
                                                            94 5E 136 ^ ^
                                                                              |126 7E 176 ~ ~
                                                                              127 7F 177  DEL
                                      63 3F 077 4#63; ?
                                                            95 5F 137 4#95;
31 1F 037 US
              (unit separator)
```

Source: www.LookupTables.com

Tabela ASCII Extendida

100	a	1 4 4	É	1.00			1414			200	п	22.4		-0 4O	
128	Ç	144	E.	160	á	176		192	L	208	Ш	224	αu	240	
129	ü	145	æ	161	í	177	*****	193	Т	209	₹	225	В	241	±
130	é	146	Æ	162	ó	178	*****	194	Т	210	π	226	Γ	242	≥
131	â	147	ô	163	ú	179		195	H	211	Ш	227	π	243	≤
132	ä	148	ö	164	ñ	180	4	196	- 1	212	F	228	Σ	244	ſ
133	à	149	ò	165	Ñ	181	╡	197	+	213	F	229	σ	245	J
134	å	150	û	166	•	182	-	198	\F	214	The second	230	μ	246	÷
135	ç	151	ù	167	۰	183	П	199	· F	215	#	231	τ	247	æ
136	ê	152	ÿ	168	ż	184	1	200	Ŀ	216	#	232	Φ	248	0
137	ë	153	Ö	169	Ċ	185	4	201	F	217	J	233	◉	249	
138	è	154	Ü	170	\A	186		202	<u>JL</u>	218	Г	234	Ω	250	•
139	ï	155	¢	171	1/2	187	a	203	TE	219		235	δ	251	
140	î	156	£	172	1/4	188	1	204	ŀ	220		236	00	252	n
141	ì	157	¥	173	i	189	Ш	205	_	221		237	ф	253	2
142	Ä	158	R.	174	««	190	4	206	#	222		238	ε	254	
143	Å	159	f	175	»	191	٦	207	<u></u>	223		239	\Diamond	255	

Source: www.LookupTables.com

Desenhando com ASCII

Outro uso bem interessante dos códigos ASCII é para a criação de desenhos. Os códigos podem ser utilizados para representar qualquer tipo de imagem, coloridas ou não. Quem utilizava os antigos canais de IRC (Internet Relay Chat) ou as BBS (Bulletin Board System) talvez se lembre disso. Caso você queira experimentar algumas possibilidades em código ASCII hoje existem soluções online como o conversor de textos para ASCII como o Text to ASCII (http://www.techtudo.com.br/tudo-sobre/text-ascii-art-Art generator.html) de imagens Picascii ou 0 conversor (http://www.techtudo.com.br/tudo-sobre/picascii.html)

No site Asciiart (asciiarte.com) é possível conferir uma galeria de imagens criadas utilizando o código ASCII, apesar de ser um código antigo ele ainda é muito útil e divertido

Desenhando com ASCII

Tarefa:

Faça seu primeiro nome em ASCII nas representações em binário, hexadecimal, octal e decimal

Site para Referência: https://www.asciitable.com/

O Sistema Binário

Um sistema digital é um conjunto de funções usados para lidar com informações lógicas ou com quantidades físicas de forma digital. Para isso, é comum usarmos o sistema numérico binário, também conhecido como sistema de base 2, que consiste em dois possíveis valores de tensão, simbolizados pelos números 0 e 1, ou nível lógico baixo e nível lógico alto, respectivamenteDesligado/ligado; falso/verdadeiro)

Isso ocorre devido ao fato de que não seria viável projetar dispositivos eletrônicos capazes de operar com muitos níveis de tensão. Apesar disso, em algumas situações é necessário converter as saídas digitais binárias em valores com base decimal, como na utilização de calculadoras e computadores

A Álgebra Booleana

Nos circuitos lógicos, há uma predeterminação para a tensão, com valores de entrada e saída definidos. Portanto, para analisar e projetar determinados circuitos lógicos usamos a Álgebra Booleana, uma técnica que caracteriza as relações entre as entradas e saídas a partir de equações, também conhecidas como expressões booleanas

Com o uso da álgebra booleana, também é possível simplificar expressões de circuitos com a intenção de construir sistemas mais simples, com menos conexões e portas lógicas. Na álgebra booleana as variáveis assumem apenas valores de 0 ou 1, para representar os níveis de tensão, também conhecido como níveis lógicos

A Lógica Digital

As operações de um computador resumem-se então na combinação de operações aritméticas básicas: somar, complementar, comparar e mover bits

Essas complicadíssimas operações são realizadas por circuitos eletrônicos conhecidos como Circuitos Lógicos ou Logical Gates. Esses sistemas lógicos estão baseados na álgebra dos chaveamentos ou Álgebra de Boole, instituída pelo matemático inglês George Boole (1815 – 1864) e que admite apenas duas grandezas: falso ou verdadeiro, representados por 0 e 1 respectivamente

Esses sinais binários são representados por níveis de tensão nos circuitos do computador: 0 = Desligado ou 0 Volts e 1 = Ligado ou +5 Volts. A ação Analógica gera uma representação Digital

A Lógica Digital

ADC

ANALOG TO DIGITAL CONVERTER

Types, Working, Block Diagram & Applications

As Portas Lógicas Digitais

As portas lógicas são blocos fundamentais que combinados dão origem aos circuitos lógicos, a partir do qual é possível realizar operações. As portas lógicas podem possuir diversas variáveis de entrada, porém apenas uma variável de saída por vez

São 8 portas lógicas básicas: Buffer; NOT; AND; NAND; OR; NOR; XOR e XNOR

Cada porta tem uma função específica e uma simbologia e um relacionamento denominado de Tabela Verdade e é assim que os circuitos lógicos e os circuitos integrados são construídos. As portas lógicas funcionam como chaves que liga/desligam e roteiam os caminhos para a corrente eletrônica

A Tabela Verdade

A tabela-verdade define a relação de dependência da saída de um circuito lógico em relação aos níveis lógicos na sua entrada, representando todas as possíveis combinações

O número de combinações será igual a 2 elevado a N, para uma tabela-verdade de N variáveis de entrada

Por exemplo, para um circuito com duas variáveis de entrada, o número de saídas será igual a relação apresentada na imagem a seguir:

Número de saídas= 2 elevado a N

Número de saídas $=2^2$

Número de saídas= 4

Uma tabela verdade de 2 entradas terá 4 saídas!

A Tabela Verdade

Exemplo de Tabela Verdade básica

Portas Lógicas Básicas

Porta Lógica BUFFER

Input	Output
0	0
1	1

Se conectarmos duas portas inversoras de modo que a saída de uma seja alimentada na entrada da outra, as duas funções de inversão se "cancelarão" uma à outra para que não haja inversão da entrada para a saída final:

Embora isso possa parecer uma coisa inútil de se fazer, tem aplicação prática. Lembre-se de que os circuitos de porta são amplificadores de sinal, independentemente da função lógica que possam desempenhar.

Uma fonte de sinal fraco (uma que não é capaz de fornecer ou transferir muita corrente para uma carga) pode ser reforçada por meio de dois inversores como o par mostrado na ilustração anterior. O nível lógico permanece inalterado, mas os recursos completos de fornecimento ou redução de corrente do inversor final estão disponíveis para acionar uma resistência de carga, se necessário. Para isso, uma porta lógica especial chamada buffer é fabricada para realizar a mesma função que dois inversores. Seu símbolo é simplesmente um triângulo, sem "bolha" invertida no terminal de saída

Porta Lógica BUFFER

Buffer Circuit with Open-Collector Output

Porta Lógica OR

Uma porta lógica **OR** corresponde a um circuito lógico capaz de realizar a operação booleana OR, operação esta que consiste em valores de saída com nível lógico alto sempre que qualquer uma das variáveis de entrada apresentar também nível lógico alto. O CI mais conhecido que é capaz de realizar essa operação é o 7432, que possui quatro portas OR de duas entradas cada

Nas figuras acima temos a simbologia e a expressão lógica booleana usadas para representar a porta OR. A saída da porta OR é igual à soma lógica das entradas! Por isso, ao representarmos a operação OR usamos o sinal de soma (+), e lemos a expressão como: "x é igual a A ou B" ou "x é igual a A or B"

Α	В	X=A+B
0	0	0
0	1	1
1	0	1
1	1	1

Porta Lógica AND

Α	В	X=AB
0	0	0
0	1	0
1	0	0
1	1	1

A porta lógica **AND** corresponde a um circuito lógico capaz de realizar a operação booleana AND, que consiste em valores de saída com nível lógico baixo sempre que qualquer uma das variáveis de entrada apresentar também nível lógico baixo. O circuito integrado mais conhecido que consegue realizar essa operação lógica é o CI 7408, que possui quatro portas AND de duas entradas cada

Nas imagens vemos a simbologia e a expressão lógica booleana usadas para representar a porta AND. A saída da porta AND é igual ao produto lógico das entradas! Por isso, ao representarmos a operação AND usamos o sinal de multiplicação, e lemos a expressão como: "x é igual a A e B" ou "x é igual a A and B"

Porta Lógica NOT

A porta lógica **NOT**, também conhecida como porta inversora, equivale a um circuito lógico capaz de realizar a operação booleana NOT, uma operação muito simples, em que a saída corresponde basicamente ao oposto do valor der da entrada

Diferentemente das portas lógicas OR e AND, ela realiza apenas um valor de entrada. O CI mais conhecido é o 7404, que possui seis portas lógicas inversoras

Nas imagens vemos a simbologia e a expressão lógica booleana usadas para representar a porta NOT. Representamos a operação NOT com uma barra, e lemos a expressão como: "x é igual a NOT A" ou "x é igual ao inverso de A". Vale a pena destacar que a presença do pequeno círculo sempre indica inversão

Α	X=Ā
0	1
1	0

Porta Lógica NOR

Α	В	A+B	A+B
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

OR

NOR

A porta lógica **NOR** é a combinação entre as portas lógicas OR e NOT e funciona de modo semelhante à porta OR, porém seguida de uma porta inversora, de forma que a saída da porta NOR será igual ao inverso da saída da porta OR

Neste caso, a variável de saída irá para o nível lógico baixo sempre que alguma das variáveis de entrada estiver em nível lógico alto. O CI mais conhecido que é capaz de fazer essa operação lógica é o 7402, que possui quatro portas NOR de duas entradas cada

Porta Lógica NAND

			AND	NAND
	A	В	AB	AB
- 0	0	0	0	1
9	0	1	0	1
	1	0	0	1
2.0	1	1	1	0

A porta **NAND** é a junção entre as portas lógicas AND e NOT e funciona de modo semelhante à porta AND, porém seguida de uma porta inversora, de forma que a saída da porta NAND é igual ao inverso da porta AND

Sendo assim, a variável de saída irá para o nível lógico alto sempre que alguma das variáveis de entrada estiver em nível lógico baixo. O circuito integrado mais conhecido que é capaz de fazer essa operação lógica é o 7400, que possui quatro portas NAND de duas entradas cada

Nas imagens vemos a simbologia e a expressão lógica booleana usadas para representar a porta NAND. Representamos a operação NAND como um produto lógico barrado, ou como um produto lógico inverso

Porta Lógica XOR

Α	В	X=(A⊕B)
0	0	0
0	1	1
1	0	1
1	1	0

A porta lógica **XOR**, conhecida também como circuito anti coincidência, é representada por uma porta OR exclusiva, que consiste em valores de saída com nível lógico alto sempre que as variáveis de entrada, A e B, forem diferentes. O CI mais conhecido é o 7486, que possui quatro portas XOR de duas entradas cada

Nas imagens vemos a simbologia e a expressão lógica booleana usadas para representar a porta XOR

Porta Lógica XNOR

A porta lógica XNOR, conhecida também como circuito de coincidência, é representada por uma porta NOR exclusiva, em que os valores de saída terão nível lógico alto sempre que as variáveis de entrada, A e B, forem iguais. O CI mais conhecido é o 74266, que possui quatro portas XNOR de duas entradas cada

Nas imagens vemos a simbologia e a expressão lógica booleana usadas para representar a porta XNOR

Α	В	X=(Ā⊕B)
0	0	1
0	1	0
1	0	0
1	1	1

Portas Lógicas - RESUMO

Logic Gates - Symbols and Truth Tables

BUF (Butter)	In		Out	NOT	In		Out
	D		0	(inverter)	D	1	
	1		1:	(in)—Cour	1		0
AND	In1	in2	Out	NAND (NOT AND)	Inl	In2	Out
	0	0	0		0	0	1
(n) Out	0	1	0		0	1	1
	1	.0	0		1	.0	1
	1	1	1		1	1	0
OR	In1	In2	Out	(NOT OR)	In1	In2	Out
	0	0	0		0	0	1.
(in) Out	0	1	1		0	1	0
	1	0	1		1	0	0
	1	1	1		1	1	0
XOR (Exclusive Or)	In1	In2	Out	XNOR (NOT XOR)	In1	In2	Out
	0	0	0		0	0	- 1
	0	1	1		0	-1	0
	1	0	1		1	0	0
	10	1	0		1	1	1

A circle behind a symbol indicates that the output signal is inverted.

Portas Lógicas - Circuito Somador

Para que o computador possa fazer tudo que conhecemos no nosso universo, deve ter uma forma de converter a matemática dele, baseada em portas lógicas, para nossa matemática baseada em somas, subtrações, multiplicações e divisões

A porta NAND é um dispositivo de computação universal. Com ela podemos criar qualquer outra coisa, inclusive a matemática que conhecemos. Mas como isto funciona?

Tendo-se os valores que desejamos nas entradas, podemos gerar qualquer valor que quisermos na saída, usando apenas portas lógicas. Vamos pensar em uma soma simples de um digito. Se somarmos 1+0=1 e 0+1=1. Ou seja, os valores das duas entradas precisam ser diferentes (XOR), para que a saída seja 1

Se as duas entradas forem 0, teremos 0+0=0. E se as duas entradas forem 1? Bem, 1+1=2, e precisamos de dois dígitos em binário para representar o dois. Portanto 1+1=0 "e vai um"

Portas Lógicas – Circuito Somador

Dá para entender como ele funciona? Vimos que o XOR (que pode ser feito com portas NAND) gera 1 na saída se as duas entradas forem diferentes, uma sendo 0 e a outra sendo 1. E o "vai um" da matemática só acontece quando as duas entradas forem iguais a 1. Mas este circuito ainda é pouco útil, porque para ligar vários em sequência, precisamos fornecer duas entradas e O VALOR DO VAI UM da operação anterior. Precisamos de um circuito um pouco mais elaborado que este

Portas Lógicas - Circuito Somador

Este circuito aí acima, construído apenas com portas NAND, é o que chamamos de um somador completo

Portas Lógicas – Circuito Somador

Ele é como que o meio somador, mas ao invés de somente duas entradas, temos os dois valores e mais um valor que é o "vai um" do bit anterior (chamamos de **carry**). Se não tivermos o bit anterior, porque não houve um bit menos significativo, basta jogar 0 em **Cin**. Ligando vários destes em sequência, podemos efetuar somas com quantas entradas quisermos, porque não há limite de somadores que podem ser ligados em sequência. Lembre-se que na matemática o "vai um" da unidade para a dezena funciona da mesma forma que o "vai um" da dezena para centena, e vai assim até o infinito. Ou seja, basta ligar o **Cout** de um circuito deste acima no **Cin** de outro, para termos um somador de dois números de dois bits. E podemos juntar vários para fazer somas de quantos bits quisermos

Portas Lógicas - Circuitos Integrados

Portas Lógicas

Prática: https://academo.org/demos/logic-gate-simulator/

Logic Gate Simulator

A free, simple, online logic gate simulator. Investigate the behaviour of AND, OR, NOT, NAND, NOR and XOR gates. Select gates from the dropdown list and click "add node" to add more gates. Drag from the hollow circles to the solid circles to make connections. Right click connections to delete them. See below for more detailed instructions.

Por dentro da CPU - CHIP

Por dentro da CPU - CHIP

3rd Generation Intel® Core™ Processor: 22nm Process

New architecture with shared cache delivering more performance and energy efficiency

Por dentro da CPU - CHIP

SOC - System On a Chip

SOC - System On a Chip

https://www.youtube.com/watch?v=NKfW8ijmRQ4&t=447s

Microcontroladores

Muitas vezes confundido com "microprocessador", talvez pela semelhança de nomes, o microcontrolador consiste em um único circuito integrado que reúne um núcleo de processador, memórias voláteis e não voláteis e diversos periféricos de entrada e de saída de dados. Ou seja, ele nada mais é do que um computador muito pequeno capaz de realizar determinadas tarefas de maneira eficaz e sob um tamanho altamente compacto

Um microprocessador, por sua vez, contém apenas um processador de tamanho bastante pequeno no circuito integrado. Dessa maneira, ele não dispõe de periféricos tais como contadores, conversores e memórias variadas. Sendo assim, ele é capaz de executar apenas funções lógicas e aritméticas definidas pelo programa

Dentro do mercado atual, existem três grandes marcas que são bastante populares dentro do nicho de microcontroladores. São elas: a linha PIC da Microchip, a Intel MCS da Intel e o Atmel AVR da Atmel. Pode-se dizer também que a mais popular dentre as três seria a Atmel, uma vez que é a linha utilizada nas placas de Arduino, plataforma bastante difundida entre estudantes devido à sua simplicidade e acessibilidade

As Escalas da Natureza

O ângstron é um submultiplo do metro e Vale $10^{-10} m =$ 0,0000000001m um nº muito pequeno usado para medir átomos, micro organismos etc... Cada unidade de medida de comprimento é usada para determinado fim.

Múltiplos do metro		submultiplos do metro	
Yottamatro (Ym): 10 ²⁴ Zettametro (Zm): 10 ¹⁸ Exametro (Em): 10 ¹⁸ Petametro (Pm): 10 ¹⁵ Terametro (Tm): 10 ¹² Gigametro (Gm): 10 ⁹ Quilômetro (km): 10 ³ Hectômetro (Hm): 10 ² Decâmetro (Dm): 10 ¹ Metro (m): 10 ⁰ Prof.Estevam * 2010 *	m	decimetro (dm): 10 ⁻¹ centímetro (cm): 10 ⁻² milimetro (mm): 10 ⁻⁶ micrometro (um): 10 ⁻⁶ nanometro (nm): 10 ⁻⁹ Ângstron (A): 10 ⁻¹⁰ picometro (pm): 10 ⁻¹² femtômetro(fm): 10 ⁻¹⁵ attômetro (am): 10 ⁻¹⁸ zepTômetro(zm): 10 ⁻²¹ yoctômetro (ym):10	m m m m m m m m

As Escalas da Natureza

THE ELECTROMAGNETIC SPECTRUM

Tarefa: Leitura e Discussão em Sala de Aula

1- Faça leitura do artigo " A Máquina mais Valiosa do Mundo" – Revista Super Interessante – Ed. Abril

https://super.abril.com.br/tecnologia/a-maquina-mais-valiosa-do-mundo/#:~:text=Ela%20custa%20US%24%20150%20milh%C3%B5es,que%20a%20China%20n%C3%A3o%20tem

