Data Visualization W8-2

Some suggestions for your final presentation / report

- Some quantitative evidence for motivation
- Time
- Novelty

Quiz

- What do you find interesting in today's VotW?
- What is the main advantage of Kernel density estimation (KDE) compared to histograms?
- In KDE, what are the choices you have? And how do they affect the resulting KDE?

Interpolation, Extrapolation, and

Regression

Interpolation

"How can we fill the gaps between data points?"

Interpolation

"Let's connect the dots."

https://matplotlib.org/stable/gallery/images_contours_and_fields/interpolation_methods.html

Regression

Ok. Interpolation "connects" the dots. But what if we have some noise?

How can we visualize the trends?

Regression: We assume a 'model' and find the best fit of the parameters of the model to the data.

When taking a parametric approach, our "assumptions" (or simply models) may skew how data gets interpreted.

version?

What would be

non-parametric (data-centric)

Moving average: a non-parametric approach

https://stackoverflow.com/questions/11352047/finding-moving-average-from-data-points-in-python

Moving average vs.

LOESS (locally estimated scatterplot smoothing)

LOESS/LOWESS (local regression)

- LOESS (locally estimated scatterplot smoothing)
- Instead of taking the average, perform a (locally weighted) regression.

Extrapolation

Let's extend the trend we have seen.
(Dangerous!)

MY HOBBY: EXTRAPOLATING

xkcd

Extrapolation? Prediction?

Extrapolation? Prediction?

There is a huge gamut from crazy extrapolations to extremely accurate predictions, largely depending on our understanding of underlying mechanisms.