

Explain, with the aid of a calculation, which type of bird sits at A and which type of bird sits at B to ensure the whole arrangement is in equilibrium.

(3)

(Total for question = 4 marks)

Mark Scheme

Q1.

Question Number	Answer	Additional Guidance	Mark
	C is the only correct answer	A is incorrect because the wrong trigonometric function has been used B is incorrect because the wrong trigonometric function has been used D is incorrect because the wrong algebraic equation has been used	1

Q2.

Question	Answer	Mark
Number		
	C	1
	Incorrect Answers:	
	A - incorrect normal force direction	
	B - incorrect normal force direction and frictional force direction	
	D – incorrect frictional force direction	

Q3.

Question Number	Answer	Mark
	С	1

Q4.

Question Number		Answer		Additional Guidance	Mark
	•	Use moment = Fx x = 0.49 m	(1) (1)	Example of calculation $6.5 \text{ N} \times (0.75 \text{ m} - x) = 3.5 \text{ N} x$ 4.875 Nm - 6.5 x = 3.5 x $x = \frac{4.875 \text{ Nm}}{10 \text{ N}} = 0.488 \text{ m}$	2

Question Number	Acceptable answers	Additional guidance	Mark
(i)	• Use of $\cos \theta$ = vertical force ÷ applied force (1)	Example of calculation $\cos \theta = 50 \text{ N} \div F$ F = 55.2 N	
	• Answer 55 N (1)		2

Question Number	Acceptable answers		Additional guidance	Mark
(ii)	 Correct use of trigonometrical function to determine force in direction of motion Use of W = Fs and P = W/t Or use of v = s/t and P = Fv P = 83 W 	(1)(1)(1)	MP3 allow ecf from (b)(i) Example of calculation $F = 55.2 \text{ N} \times \sin 25^{\circ} = 23.3 \text{ N}$ $P = \frac{^{23.3 \text{ N} \times 15 \text{ m}}}{^{4.2 \text{ s}}}$ $= 83.2 \text{ W}$	3

Q6.

Question Number	Answer		Mark
(a)(i)	Use of $W = mg$	(1)	
	Use of Tcos30 Or W/cos30 Or Tsin60 Or W/sin60	(1)	
	Factor of 4 seen/used	(1)	
	$T = 1.5 \times 10^{-3} \text{ N}$	(1)	4
	Example of calculation Weight = $5.4 \times 10^{-4} \text{ kg} \times 9.81 \text{ N kg}^{-1} = 5.30 \times 10^{-3} \text{ N}$ Vertical component of tension = $T \cos 30^{\circ}$ $4T \cos 30^{\circ} = 5.30 \times 10^{-3} \text{ N}$ $T = 1.53 \times 10^{-3} \text{ N}$		
(a)(ii)	The tension has a horizontal <u>component</u> (as well) Or only the vertical <u>component</u> of the tension supports the weight	(1)	1
(b)	When under the twig (the stress/force is) tensile and when on top it is compressive	(1)	1
	Total for question		6

Question Number	Acceptable answers		Additional guidance	Mark
	Use of moment = force × perpendicular distance	(1)	MP1 not awarded if $\cos \theta$ not used or $\sin \theta$ not used	
	Use of clockwise moments = anticlockwise moments	(1)	Example of calculation $(18.5 \text{ kg} \times 9.81 \text{ N kg}^{-1}) \times x \cos \theta = 50$ $N \times 0.97 \text{ m} \times \cos \theta$	3
	• Position of centre of gravity = 27 cm from base	(1)	x = 0.27 m	

Q8.

Question Number	Acceptable answers	Additional guidance	Mark
	The position of the centre of gravity moves to the left/backwards Or the perpendicular distance (from O) would be greater (1)	MP1: accept lower for to the left	
	The moment of the bag (about O) increases so the moment of R (and the size of R) decreases to preserve equilibrium (1)		2

Q9.

Question	Acceptable Answer	Additional Guidance	Mark
Number			
(a)		Example of calculation	
	• Use of $W = mg$ (1)	Mass of water = 85.0 litres $\times 1$ kg = 85.0	
		kg	
	• $W = 868 \text{ (N)}$ (1)	Mass of base and water = 85.0 kg + 3.50	
		kg = 88.5 kg	
		Weight of base = $88.5 \text{ kg} \times 9.81 \text{ N kg}^{-1}$ =	
		868.2 N	2

Question Number	Acceptable Answer		Additional Guidance	Mark
(b)	• See 868 N × 0.45 m × cos 15 (= 377.3 Nm)	(1)	MP1 accept sin75 for cos15	
	• See 27 N ×2.0 m × cos 75 (= 13.98 N m)	(1)	MP2 accept sin15 for cos75	
	• See F _w ×2.4 m × cos 15 (= 2.31F _w)	(1)	MP3 accept sin75 for cos15	
	Use of principle of moments e.g. substitution into: moment of weight of base = moment of		MP4, accept > correctly used in place of = to indicate the point at which it will tip and ecf for W from 11 (a)	
	weight of post arrangement + moment of wind	(1)	Example of calculation (using perpendicular forces) Moment of weight of base = 868 N ×	
	• F _w = 157 or 158 N	(1)		
			Moment of the post arrangement = 27.0 N × cos 75 × (2.80 m – 0.80 m) = 13.98 N m	
			Moment of the wind = $F_w \times \cos 15 \times 2.40 \text{ m} = 2.31 F_w$	
			377.29 Nm = 13.98 Nm + 2.31 $F_{\rm w}$	
			$F_{\rm w} = 157.28 \; {\rm N}$	
			Example of calculation (using perpendicular distances)	
			(868 N × 0.45 m × cos 15) = $(27 \text{ N} \times 2.0 \text{ m} \times \cos 75) + (F_w \times 2.4 \text{ m})$	
			$\times \cos 15$) $F_{\rm w} = 156.72 \rm N$	5

Question Number	Acceptable Answer		Additional Guidance	Mark
(c)	F _w would increase	(1)		
	The <u>weight</u> of the base would be heavier/increase	(1)		
	This increases the clockwise moment Or this increases the moment of the (weight of the) base	(1)		2

Question Number	Acceptable answers		Additional guidance	Mark
(i)	 MAX 2 Statement describing 740cos20 as the (perpendicular) component of weight of the hiker and Statement describing Wcos20 as the (perpendicular) component of the weight of the bag 2R is the push of the ground on the hiker Use of ΣF = 0 with reference to 	(1) (1) (1)	Accept reaction force	2
	hiker being stationary			

Question Number		Acceptable answers		Additional guidance	Mark
(II)		G. 740.37 0.05	(1)	Example of calculation	
(ii)	•	See 740 N × 0.25 m × cos 20 (= 173.8 N m)	(1)	Moment of the weight of the man:	
			(1)	740 N × 0.25 m × cos 20 = 173.8 N m	
	•	See W × 0.10 m × cos 20 (= 0.0940W N m)		Moment of the weight of the bag:	
			(1)	$W \times 0.10 \text{ m} \times \cos 20 = 0.0940 W \text{ N m}$	
	•	See $R \times 0.40 \text{ m} (= 0.40 N \text{ m})$	(1)	Moment of R: $R \times 0.40 \text{ m} = 0.40 R \text{ N}$	
		Or 0.5(740cos20 + Wcos20)		m	
		Use of principle of moments	(1)	173.8 N m = 0.40R + 0.0940W N m	
		e.g. substitution into: moment of		Re-arranging to make R the subject of	
		weight of man = moment of weight of bag + moment of R		the equation:	
		of bag i moment of K		R = 435 N - 0.235W N	
	•	Use of equation of the resultant force with the equation obtained in MP4	(1)	Re-arranging the equation for the	
		OR	(1)	resultant force:	6
		Use of principle of moments about another point with the equation	(-)	R = 347.7 N + 0.470W	
		obtained in MP4		435 N - 0.235W N = 347.7 N + 0.470W	
		W = 120 N		0.705W= 87.3	
	•	n - 120 IV		W = 124 N	

Question Number	Acceptable answer	3	Additional guidance	Mark
	The weight does not act through the nail/pivot Or the centre of gravity is not line/below the nail/pivot Or there is a perpendicular distance between the weight at the nail/pivot There is now a moment of the weight Or the anticlockwise moment greater than the clockwise moment The idea that the picture stop moving when the c of g is better nail	(1) and (1) is (1)	Accept centre of mass for centre of gravity (Allow annotations to a diagram with additional explanation for MP1/3) MP3 Accept: the turning moment being 0 Or the clockwise moments equal to the anti-clockwise moments	3

Q12.

Question Number	Acceptable answers		Additional guidance	Mark
(i)	shows clockwise moment = anticlockwise	(1)	Example of calculation M.2 = 2M.1	1
(ii)	Moment of 3M associated with 1	(1)	Example of calculation	
	Takes moments around suspension	(1)	3M.1 + x.2 = M.3 + y.1	
	crow at A and owl at B	(1)	2x = y So y must be an owl and x the crow	
	Alternative scheme for MP2 and MP3: • Show that, without the extra birds, it		50 y must be an owr and x me crow	
	balances	(1)		
	 So added birds must be crow at A and owl at B, as in part (i) 	(1)		3