符号変調視覚誘発電位の ニューラルデコーディングと 脳コンピュータインターフェースへの応用

電気通信大学

大学院 情報理工学研究科 情報・通信工学専攻 佐藤純一・鷲沢嘉一

国立大学法人 **電気通信大学**

Outline

- BCIについて
- c-VEP BCI
- ●従来手法 空間フィルタ
- 提案手法 ニューラルデコーディング
- ●実験結果
- ●考察とまとめ

BCI: Brain Computer Interface

脳信号でコンピュータを操作

- 操作に**身体運動の必要が無い**
- **重度の運動機能障害**を持つ人のコミュニケーションツール

本研究

脳信号による文字入力装置(Speller)

脳信号の計測方法

侵襲式

- ●開頭して計測器具を直接設置
- ●ノイズ 小
- ●身体への負担 大

ECoG, Single unit recording

非侵襲

- ●開頭なしで計測
- ●ノイズ 大
- ●身体への負担 小

EEG, MEG, f-MRI

本研究では脳波計(EEG)を利用

脳波の種類

運動想起によるBCI

- ●事象関連脱同期
 - 運動をイメージ
 - 車いすの操作等に応用

刺激を利用したBCI

- 聴性定常状態誘発反応
- ●事象関連電位
 - P300
 - 様々な提示刺激(視覚、聴覚、触覚)で発生
- 視覚誘発電位 VEP

視覚誘発電位:VEP (Visual Evoked Potential)

視覚誘発電位

- 光刺激(明滅画像)を見た際に誘発される
- VEPを利用したBCIは効率や安定性に優れる

変調方式

● t-VEP:時間変調

● f-VEP: 周波数変調

● c-VEP: 符号変調

t-VEP:時間変調

- ●明滅の時間差を利用
- ある時刻に点滅している文字は1つ

Α	В	С	D	Е	F
G	Н	ı	J	K	L
М	N	0	Р	Q	R
S	т	U	V	W	Х
Υ	Z	0	1	2	3

f-VEP:周波数変調

- ●ターゲット間で異なる周波数を割り当てる
- ●事前トレーニングが不要
- 周波数によってf-VEPの強度が異なる
- コマンド数がモニターのリフレッシュレートで制限

c-VEP:符号変調

- 擬似雑音(PN: Pseudo Noise)系列で符号変調
- ●ターゲット間に強度の違いがない
- ■コマンド数の制約がない
- t-VEP, f-VEPに比べ高い情報転送量

c-VEP BCIの流れ

c-VEP: 視覚刺激の作成

M系列

- ●PN系列の一つ
- ●低い自己相関

巡回シフト

- ●各文字にM系列の巡回シフト
- 1文字のトレーニングのみでよい

刺激提示

● 1を黒画像, Oを白画像で対応づけ

識別手法: テンプレートマッチング

トレーニング

1 任意の1文字を注視 テンプレートを取得

2 巡回シフトで 全テンプレートを生成

各ターゲット刺激は同じ M系列から生成

識別手法: テンプレートマッチング

識別

1 テンプレートとテスト信号 の相関係数を計算

2 相関が最大のテンプレート を注視文字と推定

$$\rho_1 = 0.76$$
 $\rho_2 = 0.45$
 $\rho_3 = 0.32$
 $\stackrel{}{=}$
 $\stackrel{=}$
 $\stackrel{}{=}$
 $\stackrel{}{=}$
 $\stackrel{}{=}$
 $\stackrel{=}$
 $\stackrel{=}$
 $\stackrel{=}$
 $\stackrel{=}$

空間フィルタ

多チャンネル信号を統一的に扱う

- ●ノイズの除去
- ●次元削減により過学習を抑える

$$y[t] = \sum_{i=1}^{I} w_i x_i[t]$$
 $x_i[n]: i$ チャンネル脳信号 $w_i: i$ チャンネルフィルタ重

 w_i :iチャンネルフィルタ重み

重みwiを求める

従来手法:CCA空間フィルタ

- ●単一信号と加算平均信号の重み付き線形和の相関最大化
- $\bullet w_x$ を空間フィルタの重みとする

従来手法 CCA空間フィルタの問題点

問題点

- ●重みを訓練データと加算平均信号で決定
- ●より良い目標信号の設定が可能
 - ●平均信号はPN系列の性質を持つ保証がない
- ●チャンネル間に遅延がある場合がある

改善策

- 1. M系列を用いた最適化
- 2. 遅延を補正する時空間フィルタを設計

提案手法 ニューラルデコーディング

- 脳信号から提示刺激を復元する
- ●脳信号をM系列に逆変換する
 - 目標信号(target)にM系列を用いて 最適化

- ●フィルタの出力信号がM系列の性質を持つ
 - 低い自己相関
 - テンプレートマッチングの性能向上
 - 目標信号が全ての被験者で同じ

時空間逆フィルタ

- ullet M系列の刺激が N_r サンプルに影響すると仮定
- ●時空間逆フィルタは以下の式で表される

$$y[n] = \sum_{i=1}^{I} \sum_{\tau=0}^{N_{\tau}-1} w_{i,\tau} x_i [n + \tau + \tau_0]$$

 τ_0 : 誘発までの遅延

 $w_{i,\tau}$: 時空間フィルタの重み

ullet 2乗誤差を最小化して重み $w_{i. au}$ を決定

$$\min \sum_{n=0}^{N-1} (y[n] - s[n])^2$$
 $s[n]$: 中心化したM系列

時空間逆フィルタ

線形逆フィルタ:lasso

不要なチャンネルが存在する場合

- 視覚野以外の部位
- ●接触が悪いとき

●必要なフィルタ次数が異なる

重みを0にする

線形逆フィルタ: lasso

l₁ノルム正則化 lasso

●スパースモデル

$$\min \sum_{n=0}^{N-1} (y[n] - s[n])^2 + \alpha \sum_{i=1}^{I} \sum_{\tau=0}^{N_{\tau}-1} |w_{i,\tau}|$$

 $\alpha > 0$:正則化係数

非線形逆フィルタ

線形モデルの表現力の限界

- c-VEPは視覚から脳内を通過して発生
- ●2値関数に近づける必要がある

非線形モデルで逆フィルタを設計

- 線形モデルと同じように $x_i[n+\tau+\tau_0]$ を特徴ベクトルとする
- ●任意の関数が表現可能な
 - ニューラルネットワークを利用

ニューラルネットワーク (NN)

- ●非線形の活性化関数*f* を利用した非線形モデル
- ●予備実験より4層ニューラルネットを用いる

NNによる非線形逆フィルタ(1)

● 中間層: ReLU (Rectified linear function)

$$f(u) = \max(u, 0)$$

- ●出力層に双曲線正接関数
 - \bullet $s[n] \in \{-0.5, +0.5\}$ なので $-1 < \tanh(u) < 1$ を利用

$$g(u) = \tanh(u)$$

すべての中間層でドロップアウトを行う

ドロップアウト:一定の確率で選んだ中間ノードを無視する

NNによる非線形逆フィルタ(2)

- ●目標変数をM系列s[n]として回帰
- ●パラメータは2乗誤差最小化によって決定

$$\min_{(\boldsymbol{W}_{1}, \boldsymbol{W}_{2}, \boldsymbol{w}_{3}, \boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \boldsymbol{b}_{3})} \sum_{n=0}^{N-1} (s[n] - y[n])^{2}$$

●確率的勾配降下法を用いて最適化

実験

実験環境

- 20-22歳までの健康な男性5人
- 脳信号とM系列を120Hzでサンプリング
- 180サンプルでトレーニング
- 288 (32文字x9回)サンプルでテスト

パラメータの決定方法

- 出力信号とM系列の相関係数が最大になるものを選択
 - NNの中間層のノード数、層の数、非線形関数
 - Lassoの正則化係数
- ullet 遅延の次数 $N_{ au}$ = 信号長とし、誘発までの遅延 au_0 = 0と固定

比較手法

- 1. 従来: CCA
- 2. 提案:線形逆フィルタ (LMSE)
- 3. 提案:線形逆フィルタ (lasso)
- 4. 提案: 非線形逆フィルタ (NN)

デコード結果

復元性能:PN系列とテスト信号の相関係数

文字入力の精度:識別率

チャンネルのスパース性

- チャンネル重みの時間方向の*l*₂ノルムを比較
- ●値が大きいほどチャンネルが寄与している
- "PZ"はLMSEで大きく、lassoは小さい

結果と考察

結果

手法	モデル	目標信号	遅延耐性	スパース性	復元	識別
CCA (従来)	線形	脳信号	×	X	×	\triangle
LMSE	線形	M系列	0	×		\circ
lasso	線形	M系列	0	0		0
NN	非線形	M系列	0	×	0	\circ

考察

- デコードの性能改善は必ずしも識別率向上に結びつかない
- \bullet 遅延の次数 N_{τ} ,誘発までの遅延 τ_0 のパラメータチューニングが可能

まとめと今後の課題

まとめ

- 線形、非線形の逆フィルタの提案
 - 線形モデル (LMSE, lasso)
 - 非線形モデル(ニューラルネットワーク)
- 提案法は従来CCAより高い識別率、PN系列との高い相関

今後の課題

- ●M系列以外のPN系列にニューラルデコーディングを適用
- ●パラメータの自動決定