	MH1812 Discrete Mathematics: Quiz (CA) 1	
Name:		Tutorial Group:
NTU Email:		

There are 3 (THREE) questions, please try all of them, and justify all your answers! Best of luck!

Question 1 (30 points)

- a) Compute 40^{1234} modulo 2 (10 points).
- b) Consider the set S of odd natural numbers, with respective operator Δ .
 - Let Δ be the multiplication. Is S closed under Δ ? Justify your answer (10 points).
 - Let Δ be the addition. Is S closed under Δ ? Justify your answer (10 points).

Solution.

- a) We have that $40^{1234} \equiv 0$ modulo 2 because $40 = 2 \cdot 20 \equiv 0$ modulo 2.
- The S of odd integer numbers is closed under multiplication. To see that, notice that an odd integer number is of the form 2a + 1 for a some integer number. Then (2a + 1)(2b + 1) = 4ab + 2a + 2b + 1 = 2(2ab + a + b) + 1 which is again an odd integer number.
 - The S of odd integer numbers is not closed under addition. To see that, notice that an odd integer number is of the form 2a + 1 for a some integer number. Then (2a + 1) + (2b + 1) = 2a + 2b + 2 = 2(a + b + 1) which is even number. Alternatively, one example can do. For example, take 3 and 5, they are both odd, 3+5 is 8 which is even, thus S is not closed under addition.

Question 2 (40 points)

a) Prove or disprove the following statement (20 points):

$$p \wedge (\neg (q \to r)) \equiv (p \to r).$$

b) Decide whether the following argument is valid (20 points):

$$\begin{array}{l} (p \lor q) \to \neg r; \\ \neg r \to s; \\ p; \\ \therefore s \end{array}$$

Solution.

a) One should disprove the statement. There are several ways to do so. For example, note that

$$p \wedge (\neg (q \to r)) \equiv p \wedge (\neg (\neg q \vee r)) \equiv p \wedge (q \wedge \neg r) \equiv p \wedge q \wedge \neg r$$

using the conversion theorem and De Morgan law. Now we see, for example, that if p is true and r is false, then $p \wedge q \wedge \neg r$ can take the value true when q is true, but $p \to r$ is then false, no matter the value of q. It is also possible to find the same conclusion by doing a truth table.

p	q	r	$q \to r$	$p \land \neg (q \to r)$	$p \rightarrow r$
T	T	T	T	F	T
T	T	F	F	T	F
T	F	T	T	F	T
T	F	F	T	F	F
F	T	T	T	F	T
F	T	F	F	F	T
F	F	T	T	F	T
F	F	F	T	F	T

b) Decide whether the following argument is valid (20 points):

$$\begin{array}{l} (p \lor q) \to \neg r; \\ \neg r \to s; \\ p; \\ \therefore s \end{array}$$

Solution. We start by noticing that

$$\begin{array}{l} p;\\ \therefore (p\vee q)\\ \text{Then}\\ (p\vee q)\to \neg r;\\ p\vee q;\\ \therefore \neg r\\ \text{Finally}\\ \neg r\to s;\\ \neg r;\\ \therefore s \end{array}$$

and we conclude that the argument is valid.

We can come to the same conclusion using a truth table. Note that we care only about the critical rows, those for which the premises are true. Thus in the table below, we assume that p is always true.

s	q	r	$p \lor q$	$p \vee q \to \neg r$	$\neg r \rightarrow s$	
\overline{T}	T	T	T	F		
T	T	F	T	T	T	critical
T	F	T	T	F		
T	F	F	T	T	T	critical
F	T	T	T	F		
F	T	F	T	T	F	
F	F	T	T	F		
F	F	F	T	T	F	

We see that there are only 2 critical rows, for which s is true, therefore the argument is valid.

Question 3 (30 points)

Consider the domains $X = \{2, 4, 6\}$ and $Y = \{2, 3\}$, and the predicate P(x, y) = "x is a multiple of y". What are the truth values of these statements:

- a) $\forall x \in X, \exists y \in Y, P(x, y) \text{ (15 points)}.$
- b) $\neg (\forall x \in X, \ \forall y \in Y, \ P(x,y)) \ (15 \text{ points}).$

Solution.

- a) The first one is true. We check all values in X. For x=2, there exists y=2 such that x=2 is a multiple of y=2. For x=4, there exists y=2 such that x=4 is a multiple of y=2. For x=6, there exists y=2 such that x=6 is a multiple of 2.
- b) $\neg(\forall x \in X, \ \forall y \in Y, \ P(x,y))$ can be rewritten as

$$\exists x \in X, \ \exists y \in Y, \neg P(x, y).$$

So it is true. There exists an x, take x = 2, and there exists a y, take y = 3, such that x = 2 is not a multiple of y = 3.