Jointure général

```
S \bowtie_p R = \sigma_p(S \times R)
```

0.1. Exemple

Les chaises (id_prod) plus chères qu'au moins un fauteuil.

```
\textstyle \prod_{idprod_1} (\sigma_{descprod='chaise'}(Produit_1) \bowtie_{prix_1 > prix_2} \sigma_{desc='fauteuil'}(Produit_2))
```

Produit1

10	chaise	70

Produit2

```
11 fauteuil 60
```

```
SELECT *
FROM R,S
WHERE P;
(P = prix1 > prix2)
```

Opérations ensemblistes

Résultat d'une opération ensembliste est sans doublon

1. UNION

```
R U S <=> SELECT * FROM R UNION SELECT * FROM S;
```

R et S on le même nombre de colonnes

1.1. R

A	В
x	1
y	2
Z	3

1.2. S

A	В
у	2
у	4
Z	5

1.3. R U S

В
1
2
3
4
5

Les identifiants et descriptions des chaises en stock >= 4 et les tables en stock >= 1 dans le magasin 1

$$\mathbf{A} = \prod_{idprod, descprod = 'chaise'} (Produit) \bowtie \sigma_{quant \geq 4etidmag = 1}(Magasin))$$

$$\mathbf{B} = \prod_{idprod, descprod = 'table'}(Produit) \bowtie \sigma_{idmag = 1}(Magasin))$$

Resultat = A UNION B

2. INTER

```
R INTER S <=> SELECT * FROM R INERSECT SELECT * FROM S;
```

Nom des colonnes resultat = cellesde la première table $(\cap, \cup, -)$

Même nombre de colonne pour les 2 ensembles (\cap , \cup , -)

2.1. R

A	В
X	1
y	3
Z	4
Z	5

2.2. S

C	D
X	2
y	2
y	3
Z	5

2.3. R U S

A	В
y	3
Z	5

Les tables qui on un prix entre 20 et $40 \ \mbox{\ensuremath{\notin}}$ et en stock dans un magasin a LYON

$$\mathbf{A} = \prod_{idprod} (\sigma_{0 \leq prix \leq 20 et descprod = 'table'}(Produit)$$

$$\mathbf{B} = \prod_{idprod} ((Stock) \bowtie \sigma_{adresse='Lyon'}(Magasin))$$

 $RESULTAT = A \cap B$

3. - (moins ensemblistes)

R - S <=> SELECT * FROM R EXEPT SELECT * FROM S;

3.1. R

A	В
x	1
X	2
у	1
у	3
z	4

3.2. S

A	В
x	2
у	2
у	3
Z	2

3.3. R - S

A	В
x	1
у	1
Z	4

Les chaises (id_prod, prix) les moins chères. C'est à dire: les chaises ayant la propriété de ne pas être plus chère strictement qu'une autres

1ere Etape : les chaises plus chères qu'une autre

$$\mathbf{A} = \prod_{idprod,prix} (\sigma_{descprod='chaise'}(Produit_1) \bowtie_{prix_1 > prix_2} \sigma_{descprod='chaise'}(Produit_2))$$

 $\textbf{Resultat} = \textstyle \prod_{idprod,prix} (\sigma_{descprod='chaise'}(Produit)) - \mathbf{A}$

4. Division Ensemblistes

R / S R ÷ S Soit
$$R(a_1, \cdots, a_n, b_1, \cdots, b_p)$$

$$S(b_1,\cdots,b_p)$$

$$R/S = T(a_1, \cdots, a_n)$$

Tel que $(x_1, \dots, x_n) \in T$ ssi $\forall \text{ligne}(y_1, \dots, y_p) \in S$ alors $(x_1, \dots, x_n, y_1, \dots, y_p) \in R$

4.1. R

A	В
1	x
1	у
1	Z
1	t
2	x
2	Z
3	x
3	у
3	Z
4	t

4.2. S

В х у z

4.3. R/S

A1
3

4.4. Exemple

Les chaises (id_prod) en stock dans touts les magasin de Lyon

 $\mathbf{A} = \prod_{idprod,idmag} (\sigma_{descprod='chaise'}(Produit) \bowtie (Strock))$ Chaises et magasin ou elles sont en Stock

 $\mathbf{B} = \prod_{idmag} (\sigma_{adresse='Lyon'}(Magasin)$ Magasin de Lyon

Resultat = A/B

Sans division

Une chaise n'est pas dans le resultat s'il existe au moins un magasin qu'il ne l'a pas

1ere Étape

```
<code>Couple(id_prod, id_mag)</code> avec : <code>id_prod</code> coresspond a une chaise <code>id_mag</code> coresspond a un magasin a Lyon A = \prod_{idprod} (\sigma_{descprod='chaise'}(Produit)) \times \prod_{idmag} (\sigma_{adresse='Lyon'}(Magasin))
```

2eme Étape

SQL

1. LOGIQUE TRIVALUÉ

On a 3 valeurs logique possible TRUE, FALSE, NULL

NULL correspond a une valeur **non connu**

Opératons: AND, OR, NOT

AND	TRUE	NULL	FALSE
TRUE	TRUE	NULL	FALSE
NULL	NULL	NULL	FALSE
FALSE	FALSE	FALSE	FALSE