

Lung Cancer and Drug Response Prediction

Molecular biology & basic cellular physiology Ethics, innovative research, businesses & IPR

Guru Jaya Surya Yadav

J. Tej Krishna Sai

P. Teja Prakash Royal

S. Ankith

CB.AI.U4AIM24101.

CB.AI.U4AIM24117.

CB.AI.U4AIM24136.

CB.AI.U4AIM24147.

Guided by:

Prof. Kelath Murali Manoj

Dr. Neelesh Ashok

Reshma Sanal mam

CONTENTS

Introduction

Machine learning helps improve healthcare by predicting drug response and deep learning helps detecting lung cancer from CT scans.

Drug Response Prediction: Uses data to identify the best drug for a patient, reducing side effects and improving treatment.

Lung Cancer Detection: Uses CT scan images and deep learning to detect lung tumors early for faster diagnosis.

Biology Integration: Includes pharmacogenomics, biomarkers, and medical imaging to enhance precision medicine.

OBJECTIVES

Built ML Model: Trained multiple models to predict drug response.

Data Analysis & Visualization: Explored key features and patterns.

Model Comparison & Selection: To identify the best model for drug response.

Building a CNN model for lung cancer prediction using CT scans

Computational Aspects

SVM (Machine Learning):Predicts which drug works best.

Random Forest: Helps classify patient response to drugs.

CNN (Deep Learning): Finds lung cancer in CT scans.

Workflow for the model building

- Split data into training and testing sets
- Trained the models with different algorithms
- Evaluated model performance
- Found best model for drug response and predicted drug response

Found that random forest model has high accuracy

Random Forest Accuracy: 0.9925 Classification Report for Random Forest:				
	precision		f1-score	support
0	0.99	1.00	1.00	305
1	1.00	0.97	0.98	95
accuracy			0.99	400
macro avg	1.00	0.98	0.99	400
weighted avg	0.99	0.99	0.99	400

- Trained with random forest,svm ,logistic regression,gradient boosting
- Also predicted drug response

About CNN model

Dataset

Bengin case ct scan

Maligant case ct scan

Normal case ct scan

CASE STUDY:

US00000012032658B2

Introduces a new way to solve a problem cancer using deep learning.

Impact: Improves efficiency, cost, safety in medical field.

Market Potential: High demand with projected growth in the industry.

Technical Details: Uses deep learning models for better performance, reliability.

Conclusion: A breakthrough technology with real-world applications.

CASE STUDY:

Patent: US201701591.37A1

Innovation: Tests cancer drugs in real-time using live cells & glowing markers.

Faster Results: No need to wait weeks for genetic reports.

Impact:

For Patients: Finds the right drug quickly, fewer side effects.

For Doctors: Saves time, avoids trial-and-error treatments.

Market Potential: Useful for hospitals, pharma companies, and biotech startups.

Conclusion: A breakthrough making cancer treatment faster, accurate, and personalized.

CASE STUDY: LUNG CANCER PREDICTION USING ML MODELS

Innovation: Uses an ML model to predict lung cancer based on patient symptom questionnaires.

Data collection: Adaptive e-questionnaire filled by participants.

ML model used: SGB model

Accuracy: Correctly predicts 82% in never smokers, 77% in smokers, 63% in former smokers.

Conclusion: AI-driven risk assessment can improve early detection and save lives.

CASE STUDY:

US010957041B2

Innovation: AI scans histopathology images for biomarkers like PD-L1 & TILs.

Problem: Traditional detection is slow, error-prone, and expertise-dependent.

Solution: Al automates analysis, predicts biomarkers, and assists treatment decisions.

Impact: Faster, more accurate diagnosis and personalized immunotherapy.

Challenges: Data variability, AI validation, and computing costs.

Conclusion: Al enhances cancer detection & treatment planning for the future.

THANK YOU