

1 **WHAT IS CLAIMED IS:**

1 1. A method of providing a modulated signal, the method comprising:
2 providing a phase modulation signal; and
3 providing amplitude modulation to the phase modulation signal to
4 generate the modulated signal, wherein the phase modulation and amplitude
5 modulation are synchronized.

1 2. The method of claim 1, wherein the phase modulation and amplitude
2 modulation are synchronized in accordance with a calibration scheme.

1 3. The method of claim 2, wherein the calibration scheme includes
2 providing the modulated signal having a desired characteristic wherein the phase
3 modulation is reversed when the amplitude modulation is ~~zero~~ ^{minimum} *WJS 03/21/01*
KJS 3/21/01

1 4. The method of claim 3, wherein the calibration scheme utilizes a
2 phase jump detector, an envelope detector, and a minimum detector.

1 5. The method of claim 4, wherein the calibration scheme includes
2 detecting a delay between the phase modulation being reversed and the amplitude
3 modulation being ~~zero~~ ^{minimum} *WJS 03/21/01*
JWS 3/21/01

1 6. The method of claim 5, wherein the providing amplitude modulation
2 to the phase modulation signal to generate the modulated signal includes delaying
3 the phase modulation in accordance with the delay.

1 7. The method of claim 1, wherein the providing amplitude modulation
2 to the phase modulation signal to generate the modulated signal utilizes a gain
3 controlled amplifier.

1 8. The method of claim 1, wherein the modulated signal is a radio
2 frequency signal.

1 9. The method of claim 2, wherein the providing a phase modulation
2 signal utilizes a phase lock loop.

1 10. The method of claim 9, wherein the providing a phase modulation
2 signal utilizes a sigma-delta controlled phase lock loop.

1 11. A method of modulating first data and second data on a signal, the
2 method comprising steps of:

3 phase or frequency modulating the signal in accordance with the first
4 data; and

5 amplitude modulating the signal in accordance with the second data,
6 wherein the steps of phase or frequency modulating and amplitude modulating are
7 coordinated in time with respect to each other to ensure integrity of the first data
8 and the second data.

1 12. The method of claim 11, wherein a delay circuit is utilized to
2 coordinate in time the phase or frequency modulating step and the amplitude
3 modulating step.

1 13. The method of claim 12, wherein the delay circuit is calibrated by
2 providing the modulated signal having a desired characteristic, the desired
3 characteristic being when the phase modulation is reversed and the amplitude
4 modulation being simultaneously ~~zero~~ minimum; and detecting a delay between the phase
5 modulation being reversed and the amplitude modulation being ~~zero~~ minimum. *mjs 03/21/01*
KBS 3/21/01

1 14. A modulator, comprising:
2 a first data input;
3 a second data input;

4 a frequency or phase modulator circuit coupled to the first data input,
5 the frequency or phase modulator circuit providing modulation in response to first
6 data at the first data input; and

7 an amplitude modulator circuit coupled to the second data input, the
8 amplitude modulator circuit providing modulation in response to second data at the
9 second data input.

1 15. The modulator of claim 14, further comprising a delay circuit, the
2 delay circuit compensating for time delay for the frequency or phase modulator
3 circuit and the amplitude modulator circuit.

1 16. The modulator of claim 14, wherein the amplitude modulator is an
2 amplifier.

1 17. The modulator of claim 16, wherein the second data controls power
2 provided to the amplifier.

1 18. The modulator of claim 15, wherein the frequency or phase
2 modulator circuit receives an incoming signal and provides a modulated signal to the
3 amplitude modulator circuit.

1 19. The modulator of claim 18, wherein the delay circuit is coupled
2 between the second input and the amplitude modulator circuit.

1 20. The modulator of claim 15, further comprising an envelope detector
2 coupled to the amplitude modulator circuit, a minimum detector coupled to the
3 envelope detector, a phase jump detector coupled to the amplitude modulator circuit,
4 and a phase detector/charge pump circuit coupled to the phase jump detector and the
5 minimum detector, the phase detector/charge pump circuit providing a delay signal
6 during calibration of the modulator.