April 1, 2021

▶ We will discuss some aspects of Game Theory

- ▶ We will discuss some aspects of Game Theory
- ▶ In particular we will discuss the Minimax Algorithm

- ► We will discuss some aspects of Game Theory
- ▶ In particular we will discuss the Minimax Algorithm
- ► The concepts will be applied to simple examples.

Overview

Introduction to Game Theory

Normal form description Optimal strategies

The Minimax Algorithm

Sequential games
Concept of recursion
Minimax algorithm
Limitations of the Minimax algorithm
Alpha-Beta pruning
Intermediate scoring

Formalization of games

Games can be formalized mathematically

▶ We will consider games with two players.

- ▶ We will consider games with two players.
- ▶ Both players play simultaneously. Player *A* does action *a*, players *B* does action *b*.

- We will consider games with two players.
- ▶ Both players play simultaneously. Player A does action a, players B does action b.
- ▶ Their action results in a gain g(a, b).

- We will consider games with two players.
- ▶ Both players play simultaneously. Player A does action a, players B does action b.
- ▶ Their action results in a gain g(a, b).
- ► We assume that what A wins is what B looses : hence the term **zero-sum** game.
- For instance A wins g(a, b) and B "wins" -g(a, b).

Examples

- ► Paper, Scissors, Stone
- football penalty

Normal form description

► These games can be represented by a **payoff matrix**.

Player
$$B$$
 action a b

Player A action a $g(a,b)$ $g(a,b)$ $g(a,b)$

Table: In this game, the players can perform two possible actions. Since the game is zero-sum, it is sufficient to represent the gain of player A.

Example

Player B action $\begin{array}{c|cccc} & & & & & & & & \\ & a & & b & & & \\ & & & & & & 2 & & 3 \\ & & & & & & & 2 & & 3 \\ & & & & & & & & 1 & & 8 \end{array}$

Table: Example gains.

Concept of supinf

Player
$$B$$
 $a \ b \ c$
 $a \ 2 \ 0 \ 9$
Player $A \ b \ 4 \ 4 \ 7$
 $c \ 10 \ 1 \ 3$

Table: What is the gain the A can be **sure** of obtaining?

Concept of supinf

Table: What is the gain the A can be sure of obtaining? Reminder: B wants to **minimize the gain** and acts rationally.

Pure strategy and mixed strategy

- ▶ A pure strategy is completely deterministic
- A mixed strategy assigns a probability distirbution to the set of actions.

We will study mixed strategies in the Rock Scissors Paper game.

▶ How many action tuples are possible ?

Exercice 1 : Action probabilities

- cd minimax_and_games/zero_sum folder.
- Modify the file paper_scissors_rock.py so that the actions performed by the two players are drawn from the relevant distributions (= strategies) player_X_strategy.
- Use can use the function choice from numpy (look for its documentation)

Exercice 1 : Action probabilities

Modify the file so that the correct statistics about the victory rate are computed.

Exercice 2: Action probabilities

▶ What happens if you change the strategy of player *B* ?

Exercice 2: Action probabilities

- ▶ What happens if you change the strategy of player *B* ?
- ▶ And the stategy of player *A* ?
- ▶ How can we interpret that result ?

Let us define probabilistic events:

V : A wins the game

▶ Br : B plays rock.

▶ *Bs* : B plays scissors.

▶ Bp : B plays paper.

- V : A wins the game
- ▶ Br : B plays rock.
- Bs: B plays scissors.
- ▶ Bp : B plays paper.

$$P(V) = P(V \cap (Br \cup Bs \cup Bp))$$

= $P((V \cap Br) \cup (V \cap Bs) \cup (V \cap Bp))$ (1)

Symbols:

- P means "probability of".
- ▶ ∪ means "or"
- ▶ ∩ means "and"

$$P(V) = P(V \cap (Br \cup Bs \cup Bp))$$

$$= P((V \cap Br) \cup (V \cap Bs) \cup (V \cap Bp))$$

$$= P(V \cap Br) + P(V \cap Bs) + P(\cap Bp) \text{ (Incompatibility of events)}$$
(2)

$$P(V) = P(V \cap (Br \cup Bs \cup Bp))$$

$$= P((V \cap Br) \cup (V \cap Bs) \cup (V \cap Bp))$$

$$= P(V \cap Br) + P(V \cap Bs) + P(V \cap Bp)$$

$$= P(V|Br)P(Br) + P(V|Bs)P(Bs) + P(V|Bp)P(Bp)$$
(3)

P(V|Br) means "Probability that A wins, given that B plays rock".

P(V|Br) means "Probability that A wins, given that B plays rock". If the strategy of A is $[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}]$, then

- ► *P*(*V*|*Br*) =?
- ▶ P(V|Bs) = ?
- P(V|Bp) = ?

P(V|Br) means "Probability that A wins, given that B plays rock". If the strategy of A is $\left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right]$, then

- $P(V|Br) = \frac{1}{3}$
- $P(V|Bs) = \frac{1}{3}$
- $P(V|Bp) = \frac{1}{3}$

P(V|Br) means "Probability that A wins, given that B plays rock". If the strategy of A is $\left[\frac{1}{3},\frac{1}{3},\frac{1}{3}\right]$, then $P(V|Br)=P(V|Bs)=P(V|Bp)=\frac{1}{3}$. Hence :

$$P(V) = P(V|Br)P(Br) + P(V|Bs)P(Bs) + P(V|Bp)P(Bp)$$

$$= \frac{1}{3}P(Br) + \frac{1}{3}P(Bs) + \frac{1}{3}P(Bp)$$

$$= \frac{1}{3}(P(Br) + P(Bs) + P(Bp))$$
(4)

P(V|Br) means "Probability that A wins, given that B plays rock". If the strategy of A is $\left[\frac{1}{3},\frac{1}{3},\frac{1}{3}\right]$, then $P(V|Br)=P(V|Bs)=P(V|Bp)=\frac{1}{3}$. Hence :

$$P(V) = P(V|Br)P(Br) + P(V|Bs)P(Bs) + P(V|Bp)P(Bp)$$

$$= \frac{1}{3}P(Br) + \frac{1}{3}P(Bs) + \frac{1}{3}P(Bp)$$

$$= \frac{1}{3}(P(Br) + P(Bs) + P(Bp))$$

$$= \frac{1}{3}$$
(5)

Biased game

Exercice 3 : Alternative game with the well.

- ▶ Modify the file paper_scissors_rock_well.py so that the actions performed by the two players are drawn from the relevant distributions (= strategies) player_X_strategy, and so that the statistics are correctly computed.
- find a strategy that gives a better victory rate for A.

Statistics on strategies

Exercice 4 : Learning a strategy

► Modify the file **paper_rock_scissors_learn.py** in order to **learn the strategy of B**, and adapt the strategy of player *A* in order to have a better victory rate.

Statistics on strategies

Exercice 5: Learning a strategy

- ▶ Modify the file paper_rock_scissors_learn.py in order to learn the strategy of B, and adapt the strategy of player A in order to have a better victory rate for A.
- Several solutions are possible.
- You can work in groups.

Percentage of victory

Percentage of victory

Percentage of victory

Percentage of victory

- ▶ We will now change the type of games studied
- ▶ We still have two players but the game consists in a sequence of actions, instead of a single action.

- ▶ We will now change the type of games studied
- We still have two players but the game consists in a sequence of actions, instead of a single action.
- The two players play successively, taking into acount the previous actions, and also the following actions from their opponent.

- We will now change the type of games studied
- We still have two plkayers but the game consists in a sequence of actions, instead of a single action.
- The two players play successively, taking into acount the previous actions, and also the following actions from their opponent.
- until the game reaches a final state. When the game is in its final state, the players receive a score.

► One player is called the **maximiser**, the other player the **minimiser**.

- ► One player is called the **maximiser**, the other player the **minimiser**.
- ► The maximiser tries to get the **highest score**, while the minimiser tries to get the **lowest score**.

The Minimax algorithm

▶ We will study and implement an algorithm that computes the values of the actions of the two players.

The Minimax algorithm

- ▶ We will study and implement an algorithm that computes the values of the actions of the two players.
- ► Very important hypotheses : the agents are assumed to behave rationally

Figure: Representation of the game

Recursion

The Minimax algorithm is based on a concept called recursion.

Recursion

▶ **Proposed definition**: a method to solve a problem based on smaller instances of the same problem.

First Recursion example

- cd recursion
- Please modify factorial_rec.py so that it computes the factorial
- $ightharpoonup n! = 1 \times 2 \times ... \times n$

Recursion

A recursive function always has :

- a base case
- a recursive case

Warning

- Decrease does not mean terminate!
- What happens with the example bad_recursion ?
- In python, you can see the recursion limit with sys.getrecursionlimit()

► The **Minimax algorithm** is a recursive algorithm that computes the values of all the nodes.

- ▶ The **Minimax algorithm** is a recursive algorithm that computes the values of all the nodes.
- ▶ It does so by propagating the information from the **leaf nodes** (the **final states of the game**) to the parent nodes.

- ► The **Minimax algorithm** is a recursive algorithm that computes the values of all the nodes.
- ▶ It does so by propagating the information from the **leaf nodes** (the **final states of the game**) to the parent nodes.
- Let us apply it on an example.

Figure: The numbers do not represent the values here: they represent the index of the node.

Figure: Values of the final states

Python dictionaries

- **dictionaries** are a useful data structure.
- Demo with ipython

Exercice 6: Implementing the algorithm

- Please use the file minimax.py in order to implement the algorithm.
- ▶ I inserted 2 errors in the **minimax** function.
- you can also try with different values for the final states.

▶ What could be the problems with the Minimax algorithm ?

- ▶ Let *p* be the **branching factor** of the tree. (Here, the average number of children at each node)
- ▶ Let *d* be the **depth** of the tree.

- ▶ Let *p* be the **branching factor** of the tree of actions. (Here, the average number of children at each node)
- ▶ Let *d* be the **depth** of the tree.
- ▶ What is the order of magnitude of the number of nodes in the tree ?

- ▶ Let *p* be the **branching factor** of the tree of actions. (Here, the average number of children at each node)
- Let *d* be the **depth** of the tree.
- ► What is the order of magnitude of the number of nodes in the tree ?
- So in order to run the minimax algorithm needs to perform p^d evaluations.

Exercise

- ▶ In the **Othello game**, the average number of actions in each state is around 8.
- We assume that the evaluation for one leaf node takes 1×10^{-6} seconds.

Exercise

- ▶ In the **Othello game**, the average number of actions in each state is around 8.
- We assume that the evaluation for one leaf node takes 1×10^{-6} seconds.
- ► How long would be the search of the minimax if we look 10 actions ahead ?

Exercise

- ▶ In the **Othello game**, the average number of actions in each state is around 8.
- We assume that the evaluation for one leaf node takes 1×10^{-6} seconds.
- ▶ This duration is too long to be used.

Conclusion

For real games, we need to use either:

- ▶ a smaller tree (look not too many steps ahead)
- a faster algorithm

▶ We will study a method that opitmizes the Minimax algotihm.

- ▶ We will study a method that opitmizes the Minimax algotihm.
- ▶ It does so by preventing us from computing useless nodes

- ▶ We will study a method that opitmizes the Minimax algotihm.
- ▶ It does so by preventing us from computing useless nodes
- Let us do it on an example.

Figure: We use different final state values

Implementation

Exercice 7 : Alpha beta pruning

- ► Let us now implement the algrorithm
- use the file alpha_beta.py in order to implement the algorithm.
- ▶ There are several mistakes in the code.

Verification

► Please verify that the AlphaBeta algorithm gives the same result as the Minimax algorithm!

Other values

▶ Please try to modify the initial values to change the behavior of the algorithm.

Orders of magnitude

- ▶ If N is the number of nodes explored by the normal minimax algorithm, the number of nodes explored by Alphabeta can be of order of magnitude \sqrt{N}
- ▶ This is a great improvement.
- ▶ **However**, please note that the improvement depends on the tree. Sometimes the pruning will not accelerate the algorithm that much.

Intermediate scoring

► Sometimes it is not possible to explore the entire tree, if it is too large, even with alpha beta pruning.

Intermediate scoring

- ► Sometimes it is not possible to explore the entire tree, if it is too large, even with alpha beta pruning.
- ▶ In this situation, it is necessary to use intermediate scoring

Intermediate scoring

- ► Sometimes it is not possible to explore the entire tree, if it is too large, even with alpha beta pruning.
- ▶ In this situation, it is possible to use **intermediate scoring**
- ▶ It is a heuristic : there is no theoretical proof that it yields the best solution, but it permits computation

Intermediate scoring and phantom of the opera

Can you think of an intermediate scoring ?

Intermediate scoring and phantom of the opera

- ► Can you think of an intermediate scoring ?
- What are the depth and the width of the tree ?

