IN THE CLAIMS:

Claims 1-10 (Cancelled)

- 11. (Currently Amended) Method for manufacture of a cup that is designed to serve as a blank in the production of a metal shell, which method comprises the following stages:
- a) provision of providing a body of a bar material, which body has having a through hole;
- b) placing of the body in a counterdie and in which so that a first end surface of the body that is substantially perpendicular to the central axis of the body is placed facing towards the <u>a</u> bottom of the counterdie while the inner wall of the counterdie encloses at least a part of the body and preferably the whole body, so that the body is hereby placed in the counterdie, the counterdie having a hole in the bottom;
- c) application of applying a mandrel to a second end surface of the body that is substantially perpendicular to the central axis of the body, in which the mandrel has a centrally placed guide pin for interacting with the through hole of the body and for interacting with the hole in the bottom of the counterdie so that the body is thereby centred centered in relation to the mandrel, and in relation to the counterdie;
- d) application of a pressing force to the mandrel, so that the body is cold flow pressed into a cup by plastic deformation, wherein the hole of the counterdie has a shape and dimension that corresponds to a shape and dimension of the guide pin such that the bar material is prevented from flowing between the guide pin and the hole in the counterdie during the application of pressing force to the mandrel.

12. (Cancelled)

13. (Previously Presented) Method according to claim 11, wherein the body has

U.S. App'n Ser. No. 10/521,165 Page 3

a width or diameter of 10-500 mm and has a height of 5-300 mm.

- 14. (Previously Presented) Method according to claim 11, wherein the body has a width or diameter of 30-350 mm and a height of 10-100 mm.
- 15. (Previously Presented) Method according to claim 11, wherein the body has a width or diameter of 50-200 mm and a height of 20-50 mm.
- 16. (Previously Presented) Method for manufacture according to claim 11, wherein the body forms a part of a bar and has a chiefly homogeneous material structure around the central axis of the bar material.
- 17. (Previously Presented) Method according to claim 11, wherein the cold flow pressing a surrounding wall is formed that is deformed uniformly, so that an upper open end of the cup acquires a substantially even edge due to the cold flow pressing and that the surrounding wall formed in cold flow pressing in any cross-section perpendicular to the central axis of the cup has a substantially even material thickness dV in a range in which dV = 1-50 mm and in which the material thickness is permitted a maximum variation of 1.0 mm.
- 18. (Previously Presented) Method according to claim 17, wherein the dV = 2-25 mm.
- 19. (Previously Presented) Method according to claim 17, wherein the dV = 3-10 mm.
- 20. (Previously Presented) Method according to claim 17, wherein the material thickness is permitted a maximum variation of 0.5 mm.
- 21. (Previously Presented) Method according to claim 17, wherein the material thickness is permitted a maximum variation of 0.05 mm.

- U.S. App'n Ser. No. 10/521,165 Page 4
- 22. (Previously Presented) Method according to claim 11, wherein the cold flow pressing a bottom is formed that is deformed uniformly in which the bottom thickness dB = 1-50 mm and in which the material thickness is permitted a maximum variation of 1.0 mm.
- 23. (Previously Presented) Method according to claim 22, wherein the dB = 2-25 mm.
- 24. (Previously Presented) Method according to claim 22, wherein the dB = 3-10 mm.
- 25. (Previously Presented) Method according to claim 22, wherein the material thickness is permitted a maximum variation of 0.5 mm.
- 26. (Previously Presented) Method according to claim 22, wherein the material thickness is permitted a maximum variation of 0.05 mm.
- 27. (Previously Presented) Method according to claim 22, wherein a central part of the bottom of the shell following flanging has a thickness in the range 1 mm 10 mm.
- 28. (Previously Presented) Method according to claim 11, wherein said shell is a cartridge shell in which the cartridge shell has a diameter of 10-500 mm and a height of 20-3000 mm and has a minimum wall thickness at the mouth of the shell of 0.5-3.0 mm.
- 29. (Previously Presented) Method according to claim 28, wherein the cartridge shell has a diameter of 30-350 mm and a height of 50-2000 mm and has a minimum wall thickness at the mouth of the shell of 1.2-2.0 mm.
- 30. (Previously Presented) Method according to claim 28, wherein the cartridge shell has a diameter of 50-200 mm and a height of 100-1000 mm and has a

U.S. App'n Ser. No. 10/521,165 Page 5

minimum wall thickness at the mouth of the shell of 1.3-1.7 mm.

- 31. (Currently Amended) Process for manufacture of a shell, preferably a grenade/cartridge shell, which process comprises the following stages:
- a) provision of providing a circular-cylindrical body of a bar material;
- b) achieving, for example by drilling, forming a through hole in the body, which hole coincides with a central axis of the body.
- c) placing of the body in a counterdie and in which so that a first end surface of the body that is substantially perpendicular to the central axis of the body is turned towards the a bottom of the counterdie while the inner wall of the counterdie encloses at least a part of the body and preferably the whole body, so that the body is hereby placed in the counterdie, the counterdie having a centrally located hole in the bottom;
- d) application of applying a mandrel to a second end surface of the body that is substantially perpendicular to the central axis of the body, in which the mandrel has a centrally placed guide pin for interacting with the through hole of the body and the hole in the bottom of the counterdie so that the body is thereby centred centered in relation to the mandrel and the counterdie:
- e) application of applying a pressing force to the mandrel, so that the body is cold flow pressed into a cup by plastic deformation, wherein the hole of the counterdie has a shape and dimension that corresponds to a shape and dimension of the guide pin such that the bar material is prevented from flowing between the guide pin and hole in the counterdie during the application of pressing force to the mandrel; and
- f) deep drawing of the cup thus produced so that a shell is formed.
- 32. (Previously Presented) Process according to claim 31, wherein the cold flow pressing is terminated when the bottom of the cup has acquired a predetermined thickness in the range 3 mm 10 mm.

- U.S. App'n Ser. No. 10/521,165 Page 6
- 33. (New) Method according to claim 17, wherein the inner wall of the counterdie encloses the whole body.
- 34. (New) Process according to claim 31, wherein the shell comprises a grenade shell.
- 35. (New) Process according to claim 31, wherein the shell comprises a cartridge shell.
- 36. (New) Process according to claim 31, wherein the through hole is formed by drilling.