EECS 126

Albert Ye

October 5, 2023

1 Probability Space

1.1 Definition

Essentially from 70. Events happen with some probability in a larger probability space that contains all events that can happen.

1.2 Axioms of Probability

Proposition 1 (Axioms) 1. (Positivity) $P(\omega > 0)$ for any event ω in probability space Ω .

- 2. (Totality) In any sample space Ω , $P(\Omega) = 1$.
- 3. (Additivity) If A_1, A_2, \ldots, A_n are independent, then

$$\sum_{i=1}^{n} A_i = \bigcup_{i=1}^{n} A_i.$$

From just this, we can get some useful information, such as the union bound.

Theorem 2 (Union Bound)

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i).$$

The proof is left as an exercise to the student, probably in the homework.

1.3 σ -algebra

Definition 3 (σ -algebra)

Given a sample space Ω , a set $\mathcal{F} \subseteq 2^{\Omega}$ is a σ -algebra if:

- 1. $\Omega \in \mathcal{F}$
- 2. If any event A is in \mathcal{F} , then its complement $\Omega \setminus A$ is also in \mathcal{F} .
- 3. For countably many events $A_1, A_2, \ldots, A_n, \ldots \in \mathcal{F}$, their union $A = \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

The biggest note is that Ω must be in a σ -algebra in order for any of the axioms of probability to apply.

2 Conditional Probability

- 2.1 Definition
- 2.2 Total Probability
- 2.3 Bayes' Rule
- 2.4 Continuous Bayes

3 It Depends

3.1 Independence / (Un)correlation

3.2 Conditional Expectation

Notice that E[X|Y] is a random variable, but E[X|Y=y] is a number. We can call E[X|Y] a function g(Y), where then E[X|Y=y]=g(y) is just a value in the function.

3.3 Iterated Expectation

4 Distributions

4.1 Joint Distribution

Definition 4 (Joint Distribution)

A joint distribution $f_{X,Y}(x,y)$

4.2 Marginal Distribution

4.3 Derived Distribution

5 Random Variables

5.1 Discrete

5.1.1 Bernoulli

- PMF: $p_X(k) = \begin{cases} p & k = 1\\ 1 = p & k = 0 \end{cases}$
- \bullet Expected value: p
- Variance: p(1-p).

5.1.2 Binomial

- PMF: $p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$ over all $k \in 0, 1, \dots, n$.
- \bullet Expected value: np
- Variance: np(1-p).

Run a Bernoulli test n times, find how many are positive.

5.1.3 Geometric

- PMF: $p_X(k) = (1-p)^{k-1}p$, for k = 1, 2, ...
- Expected value: $\frac{1}{p}$
- Variance: $\frac{1-p}{p^2}$.

Here, each trial has a p probability of success, and we want to find the # of trials until one success.

5.1.4 Poisson

- PMF: $p_X(k) = \frac{\lambda^k(e^{-\lambda})}{k!}$.
- Expected value: λ
- Variance: λ

Used to simulate arrivals, I guess. More useful later, with Poisson processes.

5.2 Continuous

5.2.1 Uniform

5.2.2 Exponential

5.2.3 Gaussian

5.2.4 Joint Gaussian

The main tips for Joint Gaussian are to approach it as a sort of vectorized Gaussians over a certain number N of dimensions. Most of the addition / whatever operations in a Gaussian can be remodeled as a Joint Gaussian.

6 Moment Generating Functions

Definition 5

The **moment generating function** (also known as a transform) associated with a RV X, is a function $M_X(s)$ of a scalar parameter s defined by $M_X(s) = E(e^{sX})$.

the simpler notation M(S) can be used whenever the underlying random variable X is clear from context. In more detail, when X is a discrete random variable, the corresponding MGF is given by

$$M(s) = \sum_{x} e^{sx} p_X(x).$$

Analogously, when continuous, we just replace the summation with an integral to get

$$M(s) = \int_{-\infty}^{\infty} e^{sx} f_X(x) dx.$$

Just an example so that I know what the reference is here:

Example 6 (Discrete Example)

Let

$$p_X(x) = \begin{cases} \frac{1}{2} & x = 2\\ \frac{1}{6} & x = 3\\ \frac{1}{3} & x = 5. \end{cases}$$

Then the corresponding transform is

$$M(s) = E(e^{sx}) = \frac{1}{2} + \frac{1}{6}e^{3s} + \frac{1}{3}e^{5s}.$$

Example 7 (Continuous Example)

Let X be an exponential RV with parameter λ :

$$f_X(x) = \lambda e^{-\lambda x}$$
 $x \ge 0$.

Then,

$$M(s) = \lambda \int_0^\infty e^{sx} e^{-\lambda x} dx$$
$$= \lambda \int_0^\infty e^{(s-\lambda)x} dx$$
$$= \lambda \left(\frac{e^{(s-\lambda)x}}{s-\lambda} \Big|_0^\infty \right)$$
$$= \frac{\lambda}{\lambda - s}.$$

Notice, in above examples, that MGF is a **function** of parameter s, and not a number. We can also find MGF's for functions of X:

Proposition 8 (MGF of Linear Function of RV)

Let Y = aX + b. Then,

$$M_Y(s) = E(e^{s(aX+b)}) = e^{sb}E(e^{saX}) = e^{sb}M_X(sa).$$

From our previous example, we see that $M_X(s) = \frac{1}{1-s}$ where X is the exponential distribution

6.1 Moments

Now that we've established what a moment generating function is, now it's time to understand what is being generated.

Let's do a generic MGF

$$M(s) = \int_{-\infty}^{\infty} e^{sx} f_X(x) dx.$$

Now, we take the derivative of this.

$$\frac{d}{ds}M(s) = \frac{d}{ds} \int_{-\infty}^{\infty} e^{sx} f_X(x) dx$$
$$= \int_{-\infty}^{\infty} \frac{d}{ds} e^{sx} f_X(x) dx$$
$$= \int_{-\infty}^{\infty} x e^{sx} f_X(x) dx.$$

When s=0, we have that this evaluates to $\int_{-\infty}^{\infty} x f_X(x) dx = E(X)$. If we differentiate n times, then we will get

$$\left. \left(\frac{d^n}{ds^n} M(s) \right|_{s=0} = \int_{-\infty}^{\infty} x^n f_X(x) dx = E(X^n).$$

6.2 Inversion

Proposition 9 (Inversion Property)

The MGF $M_X(s)$ associated with an RV X uniquely determines the CDF of X, assuming that $M_X(s)$ is finite for all s in some interval [-a, a] for positive a.

6.3 Sum of Independent Random Variables

Proposition 10

Addition of independent random variables corresponds to multiplication of transforms.

Proof. Let Z = X + Y. $M_Z(s) = E(e^{sZ}) = E(e^{s(X+Y)}) = E(e^{sX}e^{sY})$. Since X, Y are independent, e^{sX} and e^{sY} are independent random variables for any fixed s. Thus, $E(e^{sX}e^{sY}) = E(e^{sX})E(e^{sY}) = M_X(s)M_Y(s)$.

We can further extend this; if X_1, \ldots, X_n is a collection of independent random variables and $Z = X_1 + \cdots + x_n$, then $M_Z(s) = M_{X_1}(s) \cdots M_{X_n}(s)$.

7 Concentration Inequalities

Theorem 11 (Markov's Inequality)

$$P(X > a) = \frac{E(X)}{a}.$$

Theorem 12 (Chebyshev's Inequality)

$$P(|X - E(X)| > a) = \frac{\operatorname{Var}(X)}{a^2}.$$

Used in lieu of confidence interval tests.

8 Modes of Convergence

8.1 Pointwise

Definition 13 (Pointwise Convergence)

Fix $\omega \in \Omega$, $\{X_n(\omega)\}_{n=1}^{\infty}$ converges **pointwise** if it becomes a real-valued sequence.

Usually, people don't use this because of reasons highlighted in 104.

8.2 Almost Sure

Definition 14 (Almost Sure Convergence)

```
\{x_n\}_{n=1}^{\infty} converges almost surely to X if P(\{\omega : \omega \in \Omega, \lim_{n \to \infty} X_n(\omega) = X(\omega)\}) = 1.
```

This gets rid of ω with probability 0. If you find an ω such that convergence doesn't hold, it's fine as long sa $P(\omega) = 0$.

8.2.1 Checking for Almost Sure Convergence

There are a couple ways to check if some sequence converges almost surely.

8.3 In Probability

This is a weaker bound for convergence than almost sure convergence.

9 Information Theory

9.1 Entropy

First, we define \mathcal{X} as the range of a random variable X over all events in a probability space.

Definition 15 (Entropy)

Given a discrete random variable X and PMF $P_X(x)$, we have **entropy**

$$H(X) = \sum_{x \in \mathcal{X}} P_X(x) \log \frac{1}{P_X(x)}.$$

Furthermore, the average amount of surprise is defined as $E\left[\log \frac{1}{P_X(x)}\right]$.

Moreover, some properties of entropy:

- 1. $H(X) \ge 0$
- 2. H(X) is
- 3. $H(X) \leq \log |x|$, achieved when X is uniform on x.

Where x is the range of $X(\omega)$ for all $\omega \in \Omega$.

Definition 16 (Joint Entropy)

Joint entropy $(X,Y) \sim P_{X,Y}$:

$$H(X,Y) = \sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} P_{X,Y}(x,y) \log \frac{1}{P_{X,Y}(x,y)}.$$

Definition 17 (Conditional Entropy)

Next, we observe some properties of joint and conditional entropy.

Proposition 18 1. (Chain Rule)

$$H(X,Y)H(X) + H(Y|X) = H(Y) + H(X|Y).$$

2. (Conditioning Reduces Entropy)

$$H(Y|X) \le H(Y)$$
.

3.

$$H(X,Y) \le H(X) + H(Y).$$

9.2 Mutual Information

Created by a Bob Fano, who argued more important than entropy.

Definition 19 (Mutual Information)

We define I(X,Y) as the **mutual information** between X and Y, such that

$$I(X : Y) = H(X) - H(X|Y) \ge 0$$

= $H(X) + H(Y) - H(X,Y)$
= $H(Y) - H(Y|X)$.

We can think of I(X, X) = H(X) as well.

Definition 20 (Kullback-Leibler Divergence)

We can also call this **relative entropy**.

$$D(P \parallel Q) = \sum_{x \in \mathcal{X}} P(X) \log \frac{P(x)}{Q(x)} \ge 0.$$

We can see that the mutual information can further be reduced to

$$I(X:Y) = \sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} P_{X,Y}(x,y) \log \frac{P_{X,Y}(x,y)}{P_X(x)P_Y(y)}$$
$$= D(P_{X,Y} \parallel P_X \otimes P_Y),$$

where we define $P_X \otimes P_Y$ as the cross product.

9.3 Source Coding

Let $X_1, X_2, ..., X_n$ be a string of symbols or binary code or etc. in a file. We want to convert this into some compressed $b(X_1, X_2, ..., X_n)$.

Theorem 21

We assume X_1, X_2, \ldots, X_n are i.i.d as X.

1. There exists a source code such that

$$\lim_{n\to\infty} E\left[\frac{1}{n}|b(x_1,\cdots,x_n)|\right] \le H(X) + \epsilon$$

for any $\epsilon > 0$.

2. Conversely, no source code can achieve an average length less than H(X) bits per symbol.