Tomasz Dominik Gwiazda

Genetic algorithms reference

Volume I

Crossover for single-objective numerical optimization problems

tomaszgwiazda e-books

Genetic algorithms reference Volume I Crossover for single-objective numerical optimization problems

Published by TOMASZGWIAZDA E-BOOKS Łomianki Poland http://www.tomaszgwiazda.pl http://www.tomaszgwiazda.com e-mail: contact@tomaszgwiazda.com

Copyright © 2006 by Tomasz Dominik Gwiazda

Cover designed by the author

Translation for the English edition: Agata Szczepańska

ISBN 10: 83-923958-1-6 ISBN 13: 978-83-923958-1-2

Contents

1.	Introduction	4
2.	Standard operators	8
	1-Point Crossover	
	k-Point Crossover	9
	Shuffle Crossover	11
	Reduced Surrogate Crossover	12
	Uniform Crossover	13
	Heuristic Uniform Crossover, Highly Disruptive Crossover	14
	Average Crossover	
	Discrete Crossover	
	Flat Crossover	18
	Heuristic Crossover /Intermediate Crossover	19
	Blend Crossover	20
3.	Binary operators	22
	Random Respectful Crossover	
	Masked Crossover	25
	1bit Adaptation Crossover	27
	Multivariate Crossover	31
	Homologous Crossover	33
	Count-preserving Crossover	35
	Elitist Crossover	37
4.	Index of keywords, authors and experiment domains	402

Introduction

The literature on Genetic Algorithms or more widely on Evolutionary Computation is full of many excellent books and articles which are texts of introductory or review character. These text concentrate on presentation of fundamental (or most popular at a given time) methods of selection, recombination and mutation etc., so, at the same time, for obvious reasons they overlook (or only mention) most of the output from that field. The similar situation occurs as far as websites on Genetic Algorithms as well as software applying Genetic Algorithms are concerned – the scope of presented or applied methods is considerably limited. Because of that a researcher who is a beginner in that field (though not only beginner) is forced to individually dig in the source texts for less popular methods, new inspirations or answers to the question whether the method he is currently working on is new. Eventually, it is very often the case (which is proved in this book) that the new method which is published, is a duplication of an already existing method or is a slight and not very significant modification of it. The need for comprehensive study is, therefore, obvious and that is the motivation which led to the idea of preparation of this book.

This book is the first of the series of reference books I am working on, with the aim to provide a possibly most comprehensive review of methods developed in the field of Genetic Algorithms. The necessity to concentrate on certain thematic areas is the result of the character of these books. The choice of those areas, even though performed arbitrarily will hopefully reflect their degree of importance and popularity. Hence, in this book which begins the whole series, an operator of the greatest importance for Genetic Algorithms will be presented i.e. crossover operator and its area of application will be single-objective numerical optimization problems. Following publications from this series will be dedicated to selection and mutation operators from the same area of application. After that I will be concentrating on multi-objective optimization problems to, in the end, cover the area of combinatorial optimization problems.

The layout of this book is the following. At the beginning I will present 11 standard operators, where by the term standard I mean those operators which most often appeared in source materials in the 80s and in the beginning of the 90s as a reference point for the newly published methods. The standard operators are presented in an abbreviated form in comparison to the other operators; therefore, some operators which could be undoubtedly qualified to the group of standard operators (e.g Arithmetical Crossover) are described in latter parts of this book in order to make a more complete presentation. The second part of this book presents 66 operators developed for the binary coded problems and the third one presents 89 operators developed for the real-coded problems. In many cases of the presented operators this division is somewhat artificial because they may be applied to solve one as well as the other class of problems. Hence, my decision to present a certain operator in the group of binary or real coded operators is based on the source texts in which, the authors usually specify the application area of that operator. The last part of this book includes the list of statistic-based operators indicating source texts as well as read-also texts...

Let Figure 1 represent quantitative summary, in which the number of operators described in this book is presented according to the years of their publication.

Figure 1 Number of operators described

In the second and third part of this book every operator is presented according to the same scheme, which is presented below:

- Keywords are supposed to help with searching through the book and also with mutual association of the presented in it operators.
- Motivation showing the motivation which was the base for development of a
 given operator. This motivation has been formulated by the authors éxplicite or
 has been drawn up arbitrarily.
- Source text source text pointing to the website from which that text may be downloaded most of these sites are free of charge.
- Read also suggested additional texts, the subject matter of which is directly connected with the discussed operator. The choice of these texts, even though it is made arbitrarily, is based mainly on the bibliography list included in the source text or points to the texts describing further development of a given operator or other operators connected with it ideologically. Links to sites where the suggested texts may be downloaded from are also provided.
- See also other operators that in my opinion it is worth to become acquainted with in connection with a given operator. The names of operators are in the same time hyperlinks to these pages of the book that they are discussed on.
- Algorithm presents the discussed operator in the form of a pseudo-code, often in a couple of options. I decided to choose this form of presentation of an operator because it enables, in most cases, immediate application of that operator in practice. On the other hand I decided against usage of a specific programming language because elements appearing in the code additionally, resulting from grammar could make it difficult to understand the presented operator. A presented algorithm may often differ from its original form presented in the source text, it is often the case when the form of an operator

was closely connected with the problem for which a given operator has been developed. However, the key idea of an operator is always presented.

- Comments commentary or description of the presented operator, depending on whether in my opinion pseudocode of an algorithm is a sufficient description or not.
- Experiment domains problems that a given operator has been developed to solve or has been tested on, especially in consideration with standard testing functions.
- Compared to list of other crossover operators the presented operator has been compared to (in the source text). The names of operators are in the same time hyperlinks to these pages of the book that they are discussed on.

Even though it may be disapproved of, I treat the following terms as synonyms: "recombination–crossover", "solution vector–chromosome", "genevariable", "generation–iteration" and use them as such throughout the text. Moreover, if it is not indicated explicite to be otherwise, I use following symbols throughout the text:

t – generation (iteration) counter

M – maximum number of generations (iterations)

P() – population of solution vectors (chromosomes)

P(0) – initial population

P(t) – current population

P(t+1) – next population

 p_{cross} , p_c – crossover probability

 p_m – mutation probability

n – length of solution vector (chromosome)

Binary operators

$$A^{(t)} = (a_1^{(t)}, ..., a_n^{(t)}) \ \forall i \ a_i^{(t)} \in \{0,1\} - \text{binary solution vector (chromosome)}$$

 $f(A^{(t)})$ – fitness of binary solution vector $A^{(t)}$

$$\{A_1^{(t)},...,A_k^{(t)}\}\in P(t)$$
 – binary solution vectors (chromosomes)

$$A_{i}^{(t)} = (a_{i1}^{(t)},...,a_{in}^{(t)}) \forall i, j \ a_{ii}^{(t)} \in \{0,1\}$$

 $f(A_j^{(t)})$ – fitness of binary solution vector $A_j^{(t)}$

Real operators

$$X^{(t)} = (x_1^{(t)}, ..., x_n^{(t)}) \in \mathbb{R}^n$$
 – real solution vector (chromosome)

$$\forall i \ x_i^l \le x_i \le x_i^u \text{ where:}$$

$$x_i^l$$
 – lower boundary of i^{th} variable (gene), x_i^u – upper boundary of i^{th} variable (gene) $f(X^{(t)})$ – fitness of real solution vector $X^{(t)}$ $\{X_1^{(t)},...,X_k^{(t)}\} \in P(t)$ – real solution vectors (chromosomes) $\forall i,j \ X_j^{(t)} = (x_{j1}^{(t)},...,x_{jn}^{(t)}) \in \mathbb{R}^n$, $x_i^l \leq x_{ji} \leq x_i^u$ where: x_i^l – lower boundary of i^{th} variable (gene) x_i^u – upper boundary of i^{th} variable (gene) $f(X_j^{(t)})$ – fitness of real solution vector $X_j^{(t)}$

Upon publishing of whole series of the planned e-books, I plan to prepare supplements once every two years which will cover two years from the date that e-book was published. I plan to send them to all interested readers. Hence, if you wish to receive such a supplement in the future please contact me by e-mail.

Standard operators

1-Point Crossover

(1-PX)

Read also

Nomura T. (1997), An Analysis on Crossovers for Real Number Chromosomes in an Infinite Population Size, ATR Human Information Processing Research Laboratories, Evolutionary Systems Department

WEB: http://citeseer.ifi.unizh.ch/62577.html http://citeseer.ist.psu.edu/62577.html

- 1. select two parents $A^{(t)}$ and $B^{(t)}$ from a parent pool
- 2. create two offspring $C^{(t+1)}$ and $D^{(t+1)}$ as follows:
- 3. randomly choose one crossover point $cp \in \{1,..., n-1\}$
- 4. for i = 1 to cp do
- 5. $c_i^{(t+1)} = a_i^{(t)}$
- 6. $d_i^{(t+1)} = b_i^{(t)}$
- 7. end do
- 8. for i = cp + 1 to n do
- 9. $c_i^{(t+1)} = b_i^{(t)}$
- 10. $d_i^{(t+1)} = a_i^{(t)}$
- 11. end do

k-Point Crossover

(k-PX)

Read also

Nomura T. (1997), An Analysis on Crossovers for Real Number Chromosomes in an Infinite Population Size, ATR Human Information Processing Research Laboratories, Evolutionary Systems Department

WEB: http://citeseer.ifi.unizh.ch/62577.html
http://citeseer.ist.psu.edu/62577.html

- 1. select two parents $A^{(t)}$ and $B^{(t)}$ from a parent pool
- 2. create two offspring $C^{(t+1)}$ and $D^{(t+1)}$ as follows:
- 3. randomly choose k crossover points $cp_1,...,cp_k \in \{1,...,n-1\}$

4. for
$$i = 1$$
 to cp_1 do

5.
$$c_i^{(t+1)} = a_i^{(t)}$$

6.
$$d_i^{(t+1)} = b_i^{(t)}$$

8.
$$switch = 0$$

9. for
$$j = 2$$
 to k do

10. if
$$switch = 0$$
 then

11. for
$$i = cp_{j-1} + 1$$
 to cp_j do

12.
$$c_i^{(t+1)} = b_i^{(t)}$$

13.
$$d_i^{(t+1)} = a_i^{(t)}$$

15.
$$switch = 1$$

17. for
$$i = cp_{j-1} + 1$$
 to cp_j do

18.
$$c_i^{(t+1)} = a_i^{(t)}$$

19.
$$d_i^{(t+1)} = b_i^{(t)}$$

21.
$$switch = 0$$

Standard operators

24. if
$$switch = 0$$
 then

25. for
$$i = cp_k + 1$$
 to n do

26.
$$c_i^{(t+1)} = b_i^{(t)}$$

27.
$$d_i^{(t+1)} = a_i^{(t)}$$

30. for
$$i = cp_k + 1$$
 to *n* do

31.
$$c_i^{(t+1)} = a_i^{(t)}$$

32.
$$d_i^{(t+1)} = b_i^{(t)}$$

Shuffle Crossover

(SC)

Read also

➤ Burkowski F.J. (1999), Shuffle Crossover and Mutual Information, in *Proceedings of the 1999 Congress on Evolutionary Computation*, pp. 1574-1580 WEB: http://intl.ieeexplore.ieee.org/xpl/abs-free.jsp?arNumber=782671

- 1. select two parents $A^{(t)}$ and $B^{(t)}$ from a parent pool
- 2. create two offspring $C^{(t+1)}$ and $D^{(t+1)}$ as follows:
- 3. randomly shuffle (in the same way) the genes in both parents
- 4. randomly choose one crossover point $cp \in \{1,..., n-1\}$
- 5. for i = 1 to cp do
- 6. $c_i^{(t+1)} = a_i^{(t)}$
- 7. $d_i^{(t+1)} = b_i^{(t)}$
- 8. end do
- 9. for i = cp + 1 to *n* do
- 10. $c_i^{(t+1)} = b_i^{(t)}$
- 11. $d_i^{(t+1)} = a_i^{(t)}$
- 12. end do
- 13. unshuffle the genes in both offspring

Reduced Surrogate Crossover

(SC)

- 1. select two parents $A^{(t)}$ and $B^{(t)}$ from a parent pool
- 2. create a list $PCP = (cp_1, ..., cp_l)$ of possible *l* crossover points as follows:
- 3. l = 0
- 4. for i = 1 to n do
- 5. if $a_i^{(t)} \neq b_i^{(t)}$ then
- 6. l = l + 1
- 7. $cp_l = i$
- 8. end if
- 9. end do
- 10. if l > 0 then
- 11. create two offspring $C^{(t+1)}$ and $D^{(t+1)}$ as follows:
- 12. randomly choose one crossover point $cp \in PCP(cp_1,...,cp_1)$
- 13. for i = 1 to cp do
- 14. $c_i^{(t+1)} = a_i^{(t)}$
- 15. $d_i^{(t+1)} = b_i^{(t)}$
- 16. end do
- 17. for i = cp + 1 to n do
- 18. $c_i^{(t+1)} = b_i^{(t)}$
- 19. $d_i^{(t+1)} = a_i^{(t)}$
- 20. end do
- 21. else
- 22. do nothing
- 23. end if

Uniform Crossover

(UX)

Read also

> Spears W.M., De Jong K.A. (1991), On the Virtues of Parameterized Uniform Crossover, in *Proceedings of the Fourth International Conference on Genetic Algorithms*, Morgan Kaufman, pp. 230-236

WEB: http://citeseer.ifi.unizh.ch/spears91virtues.html
http://citeseer.ifi.unizh.ch/spears91virtues.html

➤ Belea R., Beldiman L. (2003), A new method of gene coding for a genetic algorithm designed for parametric optimization, in *The Annals of "Dunarea De Jos"*, University of Galati, pp. 66-71

WEB: http://www.ann.ugal.ro/eeai/archives/2003.htm

➤ Cordón O., Damas S., Santamaría J. (2003), A CHC Evolutionary Algorithm for 3D Image Registration, in *IFSA 2003*, Springer-Verlag, pp. 404-411

WEB: http://sci2s.ugr.es/publications/

 $\underline{http://springerlink.metapress.com/openurl.asp?genre=article\&issn=0302-article\&is$

9743&volume=2715&spage=404

➤ Cotta C., Troya J.M. (2000), Using Dynastic Exploring Recombination to Promote Diversity in Genetic Search, in Parallel Problem Solving from Nature - 6th International Conference, Springer Verlag, pp. 16-20

WEB: http://citeseer.ifi.unizh.ch/cotta00using.html http://citeseer.ist.psu.edu/cotta00using.html

Algorithm UX

- 1. select two parents $A^{(t)}$ and $B^{(t)}$ from a parent pool
- 2. create two offspring $C^{(t+1)}$ and $D^{(t+1)}$ as follows:
- 3. for i = 1 to n do
- 4. choose a uniform random real number $u \in \{0,1\}$
- 5. if $u \le p_s$ then (swap bits)

6.
$$c_i^{(t+1)} = b_i^{(t)}$$

7.
$$d_i^{(t+1)} = a_i^{(t)}$$

9.
$$c_i^{(t+1)} = a_i^{(t)}$$

10.
$$d_i^{(t+1)} = b_i^{(t)}$$

12. end do

where:

 p_s – probability of swapping, in standard form p_s = 0.5

Heuristic Uniform Crossover, Highly Disruptive Crossover

(HUX)

Read also

➤ Spears W.M., De Jong K.A. (1991), On the Virtues of Parameterized Uniform Crossover, in *Proceedings of the Fourth International Conference on Genetic Algorithms*, Morgan Kaufman, pp. 230-236

WEB: http://citeseer.ifi.unizh.ch/spears91virtues.html
http://citeseer.ist.psu.edu/spears91virtues.html

➤ Belea R., Beldiman L. (2003), A new method of gene coding for a genetic algorithm designed for parametric optimization, in *The Annals of "Dunarea De Jos"*, University of Galati, pp. 66-71

WEB: http://www.ann.ugal.ro/eeai/archives/2003.htm

➤ Cordón O., Damas S., Santamaría J. (2003), A CHC Evolutionary Algorithm for 3D Image Registration, in *IFSA 2003*, Springer-Verlag, pp. 404-411

WEB: http://sci2s.ugr.es/publications/

http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=2715&spage=404

➤ Cotta C., Troya J.M. (2000), Using Dynastic Exploring Recombination to Promote Diversity in Genetic Search, in Parallel Problem Solving from Nature - 6th International Conference, Springer Verlag, pp. 16-20

WEB: http://citeseer.ifi.unizh.ch/cotta00using.html http://citeseer.ist.psu.edu/cotta00using.html

Algorithm HUX

- 1. select two parents $A^{(t)}$ and $B^{(t)}$ from a parent pool
- 2. create two offspring $C^{(t+1)}$ and $D^{(t+1)}$ as follows:

3.
$$C^{(t+1)} = A^{(t)}$$

4
$$D^{(t+1)} = B^{(t)}$$

5.
$$number of different genes = 0$$

6. for
$$i = 1$$
 to n do

7. if
$$c_i^{(t+1)} \neq d_i^{(t+1)}$$
 then

8.
$$number of different genes = number of different genes + 1$$

11.
$$swap\ counter = 0$$

13. for
$$i = 1$$
 to n do

Standard operators

14.			if $c_i^{(t+1)}$	$\neq d_i^{(t+1)}$ and $c_i^{(t+1)} \neq b_i^{(t)}$ then
15.			choose a	a uniform random real number $u \in <0,1>$
16.				if $u \le 0.5$ then (swap bits)
17.				$c_i^{(t+1)} = b_i^{(t)}$
18.				$d_i^{(t+1)} = a_i^{(t)}$
19.				$swap_counter = swap_counter + 1$
20.				end if
21.			end if	
22.		end do		
23.	loop			

Average Crossover

(AX)

Read also

Nomura T. (1997), An Analysis on Crossovers for Real Number Chromosomes in an Infinite Population Size, ATR Human Information Processing Research Laboratories, Evolutionary Systems Department

WEB: http://citeseer.ifi.unizh.ch/62577.html
http://citeseer.ist.psu.edu/62577.html

Fernandes C., Tavares R., Munteanu C., Rosa A. (2001), Using Assortative Mating in Genetic Algorithms for Vector Quantization Problems, in *Proceedings of the 2001 ACM symposium on Applied computing*, pp. 361 - 365

WEB: http://citeseer.ist.psu.edu/fernandes01using.html
http://citeseer.ifi.unizh.ch/fernandes01using.html

Algorithm

- 1. select two parents $X^{(t)}$ and $Y^{(t)}$ from a parent pool
- 2. create one offspring $X^{(t+1)}$ as follows:
- 3. for i = 1 to n do

4.
$$x_i^{(t+1)} = \frac{x_i^{(t)} + y_i^{(t)}}{2}$$

5. end do

Discrete Crossover

(DC)

Read also

➤ Voigt H.-M., Mühlenbein H., (1995), Cvetković D., Fuzzy recombination for the Breeder Genetic Algorithm, in *Proceedings of the Sixth International* Conference on Genetic Algorithms, Morgan Kaufman, pp. 104-111

WEB: http://citeseer.ifi.unizh.ch/voigt95fuzzy.html
http://citeseer.ist.psu.edu/voigt95fuzzy.html
<a href="http://citeseer.

➤ Mühlenbein H., Schlierkamp-Voosen D. (1993), Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization, in *Evolutionary Computation*, vol. 1, pp. 25-49

WEB: http://citeseer.ifi.unizh.ch/mtihlenbein93predictive.html
http://citeseer.ist.psu.edu/mtihlenbein93predictive.html
http://citeseer.ist.psu.edu/mtihlenbein93predictive.

- 1. select two parents $X^{(t)}$ and $Y^{(t)}$ from a parent pool
- 2. create one offspring $X^{(t+1)}$ as follows:
- 3. for i = 1 to n do
- 4. choose a uniform random real number $u \in \{0,1\}$
- 5. if $u \le 0.5$ then
- 6. $x_i^{(t+1)} = x_i^{(t)}$
- 7. else
- 8. $x_i^{(t+1)} = y_i^{(t)}$
- 9. end if
- 10. end do

Flat Crossover

(FC)

Read also

➤ Herrera F., Lozano M., Verdegay J.L. (1998), Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis, in *Artificial Intelligence Review*, Kluwer, vol. 12, pp. 254-319

WEB: http://citeseer.ifi.unizh.ch/herrera98tackling.html http://citeseer.ist.psu.edu/herrera98tackling.html

- 1. select two parents $X^{(t)}$ and $Y^{(t)}$ from a parent pool
- 2. create one offspring $X^{(t+1)}$ as follows:
- 3. for i = 1 to n do
- 4. choose a uniform random real number

$$\alpha \in <\min(x_i^{(t)}, y_i^{(t)}), \max(x_i^{(t)}, y_i^{(t)}) >$$

- $5. x_i^{(t+1)} = \alpha$
- 6. end do

Heuristic Crossover /Intermediate Crossover

(HC/IC)

Read also

➤ Voigt H.-M., Mühlenbein H., (1995), Cvetković D., Fuzzy recombination for the Breeder Genetic Algorithm, in *Proceedings of the Sixth International* Conference on Genetic Algorithms, Morgan Kaufman, pp. 104-111

WEB: http://citeseer.ifi.unizh.ch/voigt95fuzzy.html
http://citeseer.ist.psu.edu/voigt95fuzzy.html
http://www.amspr.gfai.de/publications de.htm

➤ Mühlenbein H., Schlierkamp-Voosen D. (1993), Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization, in *Evolutionary Computation*, vol. 1, pp. 25-49

WEB: http://citeseer.ifi.unizh.ch/mtihlenbein93predictive.html
http://citeseer.ist.psu.edu/mtihlenbein93predictive.html
http://citeseer.ist.psu.edu/mtihlenbein93predictive.

➤ Herrera F., Lozano M., Verdegay J.L. (1998), Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis, in *Artificial Intelligence Review*, Kluwer, vol. 12, pp. 254-319

WEB: http://citeseer.ifi.unizh.ch/herrera98tackling.html http://citeseer.ist.psu.edu/herrera98tackling.html

Algorithm

- 1. select two parents $X^{(t)}$ and $Y^{(t)}$ from a parent pool
- 2. create one offspring $X^{(t+1)}$ as follows:
- 3. for i = 1 to n do
- 4. assume that $x_i^{(t)} \le y_i^{(t)}$
- 5. choose a uniform random real number $\alpha \in <0,1>$
- 6. $x_i^{(t+1)} = x_i^{(t)} + \alpha (y_i^{(t)} x_i^{(t)})$
- 7. end do

Comments

Parameter α may be of constant value equal to 0.5 or may be selected by a draw from interval <0,1> (row: 5).

Blend Crossover

$(BLX-\alpha, BLX-\alpha-\beta)$

Read also

➤ Takahashi M., Kita H. (2001), A Crossover Operator Using Independent Component Analysis for Real-Coded Genetic Algorithm, in *Proceedings of the 2001 Congress on Evolutionary Computation*, pp. 643-649

WEB: http://ieeexplore.ieee.org/xpl/abs-free.jsp?arNumber=934452

➤ Herrera F., Lozano M., Sánchez A.M. (2003), A taxonomy for the Crossover Operator for Real-Coded Genetic Algorithms: An Experimental Study, in *International Journal of Intelligent Systems*, Wiley, vol. 18, pp. 309-338

WEB: http://www3.interscience.wiley.com http://dx.doi.org/10.1002/int.10091

Algorithm BLX-α

- 1. select two parents $X^{(t)}$ and $Y^{(t)}$ from a parent pool
- 2. create two offspring $X^{(t+1)}$ and $Y^{(t+1)}$ as follows:
- 3. for i = 1 to n do
- 4. $d_i = |x_i^{(t)} y_i^{(t)}|$
- 5. choose a uniform random real number

$$u \in \left\langle \min(x_i^{(t)}, y_i^{(t)}) - \alpha d_i, \max(x_i^{(t)}, y_i^{(t)}) + \alpha d_i \right\rangle$$

- $6. x_i^{(t+1)} = u$
- 7. choose a uniform random real number

$$u \in \left\langle \min(x_i^{(t)}, y_i^{(t)}) - \alpha d_i, \max(x_i^{(t)}, y_i^{(t)}) + \alpha d_i \right\rangle$$

- $8. y^{(t+1)} = u$
- 9. end do

where:

 α – positive real parameter

Algorithm BLX-α-β

- 1. select two parents $X^{(t)}$ and $Y^{(t)}$ from a parent pool
- 2. assume that $X^{(t)}$ is better than $Y^{(t)}$
- 3. create two offspring $X^{(t+1)}$ and $Y^{(t+1)}$ as follows:
- 4. for i = 1 to n do
- 5. $d_i = |x_i^{(t)} y_i^{(t)}|$

Standard operators

6. if
$$x_i^{(t)} \le y_i^{(t)}$$
 than

7. choose a uniform random real number

$$u \in \left\langle x_i^{(t)} - \alpha d_i, y_i^{(t)} + \beta d_i \right\rangle$$

$$x_i^{(t+1)} = u$$

9. choose a uniform random real number

$$u \in \langle x_i^{(t)} - \alpha d_i, y_i^{(t)} + \beta d_i \rangle$$

10.
$$y_i^{(t+1)} = u$$

11. else

12. choose a uniform random real number

$$u \in \left\langle y_i^{(t)} - \beta d_i, y_i^{(t)} + \alpha d_i \right\rangle$$

$$x_i^{(t+1)} = u$$

14. choose a uniform random real number

$$u \in \left\langle y_i^{(t)} - \beta d_i, y_i^{(t)} + \alpha d_i \right\rangle$$

15.
$$y_i^{(t+1)} = u$$

16. end do

where:

 α , β – positive real parameters

Binary operators

Random Respectful Crossover

(R3)(RRC)

Keywords

schema, similarity

Motivation

• Offspring generation from a similarity set of the parents.

Source text

Radcliffe N.J. (1991), Forma Analysis and Random Respectful Recombination, in *Proceedings of the Fourth International Conference on Genetic Algorithms*, pp. 222-229

WEB: http://users.breathe.com/njr/formaPapers.html
http://citeseer.ist.psu.edu/radcliffe91formal.html

Read also

➤ Watson R.A., Pollack J.B. (2000), Recombination Without Respect: Schema Combination and Disruption in Genetic Algorithm Crossover, in *Proceedings of GECCO 2000*, Morgan Kaufman, pp. 112-119

WEB: http://citeseer.ifi.unizh.ch/watson00recombination.html
http://citeseer.ifi.unizh.ch/watson00recombination.html

➤ Ozugur T. (2005), Hierarchical Provisioning for Cellular networks, in *IEEE Transactions on Wireless Communications*, vol. 4(2), pp. 775-791

WEB: http://ieeexplore.ieee.org/xpl/abs-free.jsp?arNumber=1413243

Nomura T. (1997), An Analysis on Crossovers for Real Number Chromosomes in an Infinite Population Size, ATR Human Information Processing Research Laboratories, Evolutionary Systems Department

WEB: http://citeseer.ifi.unizh.ch/62577.html http://citeseer.ist.psu.edu/62577.html

See also

- Hierarchical Crossover
- <u>Disrespectful Crossover</u>
- Asymmetric Two-point Crossover
- Variation of Asymmetric Two-point Crossover
- Homologous Crossover
- Schema-Based Crossover
- Adaptive Probability Crossover-4

- 1. select two parents $A^{(t)}$ and $B^{(t)}$ from a parent pool
- 2. create a similarity vector $S^{AB} = (s_1^{AB}, ..., s_n^{AB})$ as follows:
- 3. for i = 1 to n do
- 4. if $a_i^{(t)} = b_i^{(t)}$ then
- $S_i^{AB} = a_i^{(t)}$
- 6. else
- 7. $s_i^{AB} = NULL$
- 8. end if
- 9. end do
- 10. create two offspring $C^{(t+1)}$ and $D^{(t+1)}$ as follows:
- 11. for i = 1 to n do
- 12. if $s_i^{AB} = 1$ then
- 13. $c_i^{(t+1)} = 1$
- 14. $d_i^{(t+1)} = 1$
- 15. else if $s_i^{AB} = 0$ then
- 16. $c_i^{(t+1)} = 0$
- 17. $d_i^{(t+1)} = 0$
- 18. else if $s_i^{AB} = NULL$ then
- 19. choose a uniform random real number $u \in <0,1>$
- 20. if $u \le 0.5$ then
- 21. $c_i^{(t+1)} = 1$
- 22. else
- 23. $c_i^{(t+1)} = 0$
- 24. end if
- 25. choose a uniform random real number $u \in <0,1>$
- 26. if $u \le 0.5$ then
- 27. $d_i^{(t+1)} = 1$

Binary operators

28. else

29. $cd_i^{(t+1)} = 0$

30. end if

31. end if

32. end do

Comments

• The R3 algorithm duplicates genes of parents in an offspring at every position at which they are identical (rows: 12-17). At positions where values of the parent genes are different they are determined at random (rows: 18-31).

Experiment domains

• n/a

Compared to

• n/a

Masked Crossover

(MX)

Keywords

adaptive, fitness driven crossover, schema preservation, epistasis

Motivation

- Protecting good schemata from destruction.
- Searching through the solution space in promising directions depending on fitness.

Source text

Louis S.J., Rawlins G.J.E. (1991), Designer Genetic Algorithms: Genetic Algorithms in Structure Design, in *Proceedings of the Fourth International Conference on genetic Algorithms*, Morgan Kaufman, pp.53-60

WEB: http://citeseer.ifi.unizh.ch/louis91designer.html
http://citeseer.ist.psu.edu/louis91designer.html

Read also

Maini H., Mehrotra K., Mohan Ch., Ranka S. (1994), Knowledge-Based Nonuniform Crossover, in *Proceedings of IEEE International Conference on Evolutionary Computation*, Orlando

WEB: http://intl.ieeexplore.ieee.org/xpl/abs_free.jsp?arNumber=350048

➤ Vekaria K., Clack C. (1999), Biases Introduced by Adaptive Recombination Operators, in *Proceedings of the Genetic and Evolutionary Computation Conference*, pp. 670-677

WEB: http://citeseer.ifi.unizh.ch/vekaria99biases.html
http://citeseer.ist.psu.edu/vekaria99biases.html

➤ Chou Ch.-H., Chen J.-N. (2000), Genetic Algorithms: initialization schemes and genes extraction, in *Proceedings of The Ninth IEEE International Conference on Fuzzy Systems*, pp. 965 - 968

WEB: http://intl.ieeexplore.ieee.org/xpl/abs free.jsp?arNumber=839167

See also

• Knowledge-Based Nonuniform Crossover

- 1. select two parents $A^{(t)}$ and $B^{(t)}$ from a parent pool
- 2. create two offspring $C^{(t+1)}$ and $D^{(t+1)}$ as follows:
- 3. for i = 1 to n do
- 4. $c_i^{(t+1)} = a_i^{(t)}$
- 5. $d_i^{(t+1)} = b_i^{(t)}$
- 6. end do

7. for i = 1 to n do 8. if $p_i^B = 1$ and $p_i^A = 0$ then 9. $c_i^{(t+1)} = b_i^{(t)}$ 10. end if 11. if $p_i^A = 1$ and $p_i^B = 0$ then 12. $d_i^{(t+1)} = a_i^{(t)}$ 13. end if

14. end do

where:

$$P^A = (p_1^A, ..., p_n^A)$$
 – crossover mask of the parent $A^{(t)}$, $\forall i \ p_i^A \in \{0,1\}$
 $P^B = (p_1^B, ..., p_n^B)$ – crossover mask of the parent $B^{(t)}$, $\forall i \ p_i^B \in \{0,1\}$

Comments

- The MX operator uses a mask vector to determine which bits of which parent are inherited by the offspring. The first step is the duplication of the bits of the parents. The bits of the first parent are copied to the first offspring and, accordingly, of the second parent to the second offspring (rows: 3-6). In the second step, the offspring exchange bits among each other (rows: 9 and 12) at those positions where the mask vectors of the parent were equal to 1, indicated domination of that parent at that position and the mask vectors of the other parent were equal to 0 (rows: 8 and 11).
- The mask vectors are initiated in P(0) randomly. During every GA iteration, the mask vectors are inherited by each offspring from its parent. Then the mask vectors of the offspring as well as the parents undergo modification. The modification process (not described here) is based on the comparison of fitness of the offspring and the parents. If good offspring were created, the masks of the parents do not need to be modified and the masks of the offspring may be very similar to those of the parents. In a situation where bad offspring were created the masks of the parents as well as of the offspring need to be modified.

Experiment domains

- n-bit parity checker
- n-bit adder

Compared to

• 1-Point Crossover

1bit Adaptation Crossover

(1BX)

Keywords

adaptive, recombination model, combination of crossovers

Motivation

 Obtaining different trajectories of searching the solution space through simultaneous application of two operators of diametrically opposite characteristics.

Source text

➤ Spears W.M. (1992), Adapting Crossover in Evolutionary Algorithms, Technical Report AIC-92-025, Naval Research Laboratory, Navy Center for Applied Research on Artificial Intelligence.

WEB: http://www.aic.nrl.navy.mil/~spears/ea.html

Read also

➤ Vrajitoru D. (2004), Intra and Extra-Generation Schemes for Combining Crossover Operators, in *Proceedings of the Fifteenth Midwest Artificial Intelligence and Cognitive Science Conference MAICS 2004*, pp. 86-91

WEB: http://www.maics.us/proceedings.htm

➤ Herrera F., Lozano M., Sánchez A.M., Hybrid Crossover Operators for Real-Coded Genetic Algorithms: An Experimental Study, in *Soft Computing - A Fusion of Foundations, Methodologies and Applications*, Springer, vol. 9(4), pp. 280-298

WEB: http://sci2s.ugr.es/publications/
http://dx.doi.org/10.1007/s00500-004-0380-9

See also

- k-Point Crossover
- Uniform Crossover
- Combined Balanced Crossover
- Adaptive Strategies of Mixing Crossovers

- 1. select two parents $A^{(t)}$ and $B^{(t)}$ from current population P(t)
- 2. choose a uniform random real number $u \in \{0, 1\}$
- 3. if $a_n^{(t)} = b_n^{(t)} = 1$ then
- 4. create two offspring $C^{(t+1)}$ and $D^{(t+1)}$ offspring by the <u>2-Point Crossover</u> as follows:
- 5. randomly choose two crossover points $cp_1, cp_2 \in \{1, ..., n-1\}$ $(cp_1 < cp_2)$
- 6. for i = 1 to cp_1 do

Binary operators

```
c_i^{(t+1)} = a_i^{(t)}
7.
                      d_i^{(t+1)} = b_i^{(t)}
8.
9.
                      end do
                      for i = cp_1 + 1 to cp_2 do
10.
                      c_i^{(t+1)} = b_i^{(t)}
11.
                      d_i^{(t+1)} = a_i^{(t)}
12.
13.
                      end do
                      for i = cp_2 + 1 to n do
14.
                      c_i^{(t+1)} = a_i^{(t)}
15.
                      d_i^{(t+1)} = b_i^{(t)}
16.
                      end do
17.
           else if a_n^{(t)} = b_n^{(t)} = 0 then
18.
           create two offspring C^{(t+1)} and D^{(t+1)} by the <u>Uniform Crossover</u> as
19.
           follows:
20.
                      for i = 1 to n do
                      choose a uniform random real number u \in <0,1>
21.
22.
                                 if u \le p_s then (swap bits)
                                 c_i^{(t+1)} = b_i^{(t)}
23.
                                 d_i^{(t+1)} = a_i^{(t)}
24.
25.
                                 else (don't swap)
                                 c_i^{(t+1)} = a_i^{(t)}
26.
                                 d_i^{(t+1)} = b_i^{(t)}
27.
                                 end if
28.
29.
                      end do
30.
           else
31.
           choose a uniform random real number u \in <0, 1>
32.
                      if u < 0.5 then
                      create two offspring C^{(t+1)} and D^{(t+1)} by the <u>Uniform Crossover</u>
33.
                      as follows:
```

Binary operators

```
34.
                                 for i = 1 to n do
35.
                                 choose a uniform random real number u \in <0,1>
                                            if u \le p_s then (swap bits)
36.
                                            c_i^{(t+1)} = b_i^{(t)}
37.
                                            d_i^{(t+1)} = a_i^{(t)}
38.
                                            else (don't swap)
39.
                                            c_i^{(t+1)} = a_i^{(t)}
40.
                                            d_i^{(t+1)} = b_i^{(t)}
41.
42.
                                            end if
43.
                                 end do
                      else
44.
                      create two offspring C^{(t+1)} and D^{(t+1)} by the <u>2-Point Crossover</u>
45.
                      as follows:
46.
                      randomly choose two crossover points
                      cp_1, cp_2 \in \{1, ..., n-1\} (cp_1 < cp_2)
                                 for i = 1 to cp_1 do
47.
                                 c_i^{(t+1)} = a_i^{(t)}
48.
                                 d_i^{(t+1)} = b_i^{(t)}
49.
50.
                                 end do
51.
                                 for i = cp_1 + 1 to cp_2 do
                                 c_i^{(t+1)} = b_i^{(t)}
52.
                                 d_i^{(t+1)} = a_i^{(t)}
53.
54.
                                 end do
                                 for i = cp_2 + 1 to n do
55.
                                 c_i^{(t+1)} = a_i^{(t)}
56.
                                 d_i^{(t+1)} = b_i^{(t)}
57.
58.
                                 end do
59.
                      end if
           end if
60.
```

where:

 p_s – probability of swapping, in standard form $p_s = 0.5$

Comments

- In the 1BX method the last bit of the solution vector is reserved for the code of one of the two of the applied crossover operators. Assuming that "0" corresponds with the <u>Uniform Crossover</u> (UX) operator and "1" corresponds with the <u>2-Point Crossover</u> (2-PX) operator, the choice of one of them is made according to the rule: if the last bit of the parents is off the same value (rows: 3 and 18) then choose the operator indicated by this bit (rows: 4 and 19). Otherwise choose the operator through selection by a draw (rows: 32 and 44).
- Application of the described crossover scheme combines the choice of the operator with the solution vector. Moreover, this choice is carried out separately for each parent pair; hence this scheme is called *local adaptation*. Global adaptation version has been also presented, but as it was emphasized by the author, significantly worse results were obtained by its application.

Experiment domains

n-peak problems

Compared to

- k-Point Crossover
- Uniform Crossover

Multivariate Crossover

(MC)

Keywords

variable-to-variable recombination

Motivation

• Effective optimization of multivariate functions.

Source text

➤ Konstam A.H., Hartley S.J., Carr W.L. (1992), Optimization in a Distributed Processing Environment using Genetic Algorithm with Multivariate Crossover, in *Proceedings of the 1992 ACM annual conference on Communications*, pp. 109-116 WEB: http://portal.acm.org/citation.cfm?id=131228

Read also

➤ Yang S.Y., Park L.-J., Park C.H., Ra J.W. (1995), A Hybrid Algorithm using Genetic Algorithm and Gradient-Based Algorithm for Iterative Microwave Inverse Scattering, in *IEEE International Conference on Evolutionary Computation*, pp.450-455

WEB: http://intl.ieeexplore.ieee.org/xpl/abs-free.jsp?arNumber=489190

➤ Deb K., Goyal M., Optimizing Engineering Designs Using a Combined Genetic Search, in *Proceedings of the Seventh International Conference on Genetic Algorithms*, Morgan Kaufman, pp. 521-528

WEB: http://citeseer.ifi.unizh.ch/deb95optimizing.html http://citeseer.ist.psu.edu/deb95optimizing.html

See also

- Chromosome Shuffling
- 2N-Parent Parameter Wise Crossover

- 1. select two parents $A^{(t)}$ and $B^{(t)}$ form a parent pool
- 2. assume that each parent vector is divided into q substrings $s_{ij}^{(t)}$, where q is the number of parameters represented in each parent vector i.e. each

$$s_{ij}^{(t)}$$
 (i=A,B; j=1,...,q) represents a j^{th} parameter; hence $A^{(t)} = (s_{A1}^{(t)},...,s_{Aq}^{(t)})$,

$$B^{(t)} = (s_{B1}^{(t)}, ..., s_{Ba}^{(t)})$$

- 3. create two offspring $C^{(t+1)}$ and $D^{(t+1)}$ as follows:
- 4. for j = 1 to q do
- 5. if $Rnd \le p_c$ then

6. perform crossover between $s_{Aj}^{(t)}$ and $s_{Bj}^{(t)}$

7.
$$s_{Cj}^{(t+1)} = s_{Aj}^{(t)} \otimes s_{Bj}^{(t)}$$

8.
$$s_{Dj}^{(t+1)} = s_{Aj}^{(t)} \otimes s_{Bj}^{(t)}$$

9. else

10.
$$s_{Cj}^{(t+1)} = s_{Aj}^{(t)}$$

11.
$$s_{Di}^{(t+1)} = s_{Bi}^{(t)}$$

13. end do

where:

⊗ – standard <u>1-Point Crossover</u> operator

Rnd – uniform random real number, $Rnd \in <0,1>$

Comments

• The most fundamental difference between the MC operator and other operators using variable-to-variable recombination is that the answer to the question "whether to crossover" is checked in the MC method separately for each substring (row: 5). As for the other operators, the answer to that question refers to the parent vector as a whole.

Experiment domains

• function taken from the National Crime Survey

Compared to

• k-Point Crossover

Homologous Crossover

(HX)

Keywords

information exchanging, information destruction, convergence speed, non-disruptive crossover, optimal crossover points

Motivation

 Reduction of the destructive action of a multi-point crossover operator resulting from random selection of crossover points

Source text

➤ Park J., Park J., Lee Ch., Han M. (1993), Robust and Efficient Genetic Crossover Operator: Homologous Recombination, in *Proceedings of 1993 International Joint Conference on Neural Networks*, pp. 2975-2978

WEB: http://ieeexplore.ieee.org/xpl/abs-free.jsp?arNumber=714347

Read also

Beyer H.-G. (1995), Toward a Theory of Evolution Strategies: On the Benefits of Sex – the $(\mu/\mu, \lambda)$ Theory, in *Evolutionary Computation*, vol. 3(1), pp. 81-111 WEB: http://citeseer.ifi.unizh.ch/361714.html

http://citeseer.ist.psu.edu/361714.html

See also

- Spontaneous Crossover
- <u>Circle-ring Crossover</u>
- Sufficient Exchanging
- Intermediate Crossover
- Intermediate Crossover2
- Adaptive Number of Crossover Points

- 1. select two parents $A^{(t)}$ and $B^{(t)}$ from a current population P(t)
- 2. randomly choose *m* crossover points $\{pc_1,...,pc_m\}$
- 3. create two offspring $A^{(t+1)}$ and $B^{(t+1)}$ by restricted *m*-point crossover as follows:
- 4. for every pair of strings $ST_A = (a_{pc_k}^{(t)}, ..., a_{pc_{k+1}}^{(t)}) \in A^{(t)}$ and

$$ST_B = (b_{pc_k}^{(t)}, ..., b_{pc_{k+1}}^{(t)}) \in B^{(t)}$$
 between two successive crossover points pc_k and pc_{k+1} do:

- 5. if length of ST_A (= length of ST_B) $\geq \varpi$ then
- 6. compute the degree of similarity DS of strings ST_A and ST_B as follows:
- 7. number of 1 = 0

```
8.
                    for i = k to k + \varpi do
                              if a_{pc_i}^{(t)} XOR b_{pc_i}^{(t)} = 1 then
9.
10.
                              number of 1 = \text{number of } 1 + 1
                              end if
11.
12.
                    end do
13.
          DS = number of 1/length of ST_A
14.
                    if DS \ge \tau then
15.
                    swap bits
16.
                    else
17.
                    do nothing
18.
                    end if
19.
          else
20.
          do nothing
21
          end if
22, end do
where:
```

Comments

- The HX operator is based on the standard <u>k-Point Crossover</u> operator. Introduced modification relies on the fact that only strings of bits which are at least of a certain length (row: 5) or of an admissible degree of similarity (row: 14) are allowed to crossover. Determination of the degree of similarity is based on the XOR operator (rows: 9-13).
- This strategy is aimed at transfering (hence also protecting) strings with specified parameters to the next generation.
- In HX the value of ϖ and τ is determined à priori as constant or dynamicly changed (increased) in the GA run.

Experiment domains

• De Jong's function (F1)

 ϖ and τ – parameters of the method

Compared to

- k-Point Crossover
- <u>Uniform Crossover</u>
- <u>Intermediate Crossover</u>
- Intermediate Crossover2

Count-preserving Crossover

(CPC)

Keywords

number of "1" preservation

Motivation

 Preserving constant number of bits equal to "1" in every chromosome of a population.

Source text

➤ Hartley S.J., Konstam A.H. (1993), Using Genetic Algorithms to Generate Steiner Triple Systems, in *ACM Conference on Computer Science*, pp.366-371

WEB: http://citeseer.ifi.unizh.ch/hartley93using.html http://citeseer.ist.psu.edu/hartley93using.html

Read also

➤ Hou Y.-Ch., Chang Y.-H. (2004), A New Efficient Encoding Mode of Genetic Algorithms for the Generalized Plant Allocation Problem, in *Journal of Information Science and Engineering*, vol. 20, pp. 1019-1034

WEB: http://www.iis.sinica.edu.tw/JISE/2004/200409 12.html

See also

- <u>Count-preserving Crossover-2</u>
- Set-Oriented Crossover
- Self Crossover

- 1. select two parents $A^{(t)} = (a_1^{(t)}, ..., a_n^{(t)})$ and $B^{(t)} = (b_1^{(t)}, ..., b_n^{(t)})$ from a parent pool
- 2. create two lists of differences L^{up} and L^{down} as follows:
- 3. $L^{up} = empty \ list, L^{down} = empty \ list, L \ length = 0$
- 4. for i = 1 to n do
- 5. if $a_i = 1$ and $b_i = 0$ then
- 6. append i to L^{up}
- 7. L length = L length + 1
- 8. else if $a_i = 0$ and $b_i = 1$ then
- 9. append i to L^{down}
- 10. end if
- 11. end do

```
12. create two offspring A^{(t+1)} and B^{(t+1)} as follows:
13. copy all bits from parent A^{(t)} to offspring A^{(t+1)}
14. copy all bits from parent B^{(t)} to offspring B^{(t+1)}
          for j = 1 to L length do
15.
16.
                    if Rnd < 0.5 then
                    at position determined by L_i^{up} exchange the bits between offspring
17.
                    A^{(t+1)} and B^{(t+1)}
                    at position determined by L_i^{down} exchange the bits between
18.
                    offspring A^{(t+1)} and B^{(t+1)}
19.
                    end if
20.
          end do
where:
```

Rnd – uniform random real number, $Rnd \in <0,1>$ L length – number of elements in the L^{up} and L^{down} $L_i^{up} - j^{th}$ element of L^{up} $L_i^{down} - j^{th}$ element of L^{down}

Comments

- The CPC operator carries out its task (see: motivation) assuming, that the number of bits equal to "1" in every chromosome in the initial population P(0)is the same.
- CPC may guarantee preservation of the constant number of bits equal to "1" due to application of two lists noting the differences between the parents (rows: 3-11). List L^{up} includes positions (numbers) of those bits, on which there are differences between the parents, but the first parent at a given position holds a bit equal to "1" and the second equal to "0" (row: 5). List L^{down} similarly notes the positions of differences, but the first parent at a given position holds a bit equal to "0" and the second equal to "1" (row: 8). The offspring creation process making use of those lists is based on the exchange of bits between the offspring at those positions which, are indicated by subsequent element pairs from lists L^{up} and L^{down} (rows: 17 and 18).
- Number of elements in L^{up} and in L^{down} is the same, which is a direct result of the assumption, that the number of bits equal to "1" is constant for all chromosomes in P(0).

Experiment domains

n/a

Compared to

n/a

Elitist Crossover

(EX)

Keywords

selection, exploration, exploitation, exploration/exploitation balance, competition for survival

Motivation

• Assessing the effectivity of integrating the selection and crossover processes.

Source text

➤ Thierens D., Goldberg D.E. (1994), Elitist Recombination: an integrated selection recombination GA, in *Proceedings of the First IEEE World Congress on Computational Intelligence*, pp. 508-512

WEB: http://intl.ieeexplore.ieee.org/xpl/abs_free.jsp?arNumber=349898
http://www.cs.uu.nl/groups/DSS/publications/

Read also

➤ Vekaria K., Clack C. (1998), Selective Crossover in Genetic Algorithms: An Empirical Study, in *Proceedings of the fifth Conference on Parallel Problem Solving from Nature*, Springer-Verlag, pp. 438-447

WEB: http://citeseer.ifi.unizh.ch/vekaria98selective.html
http://citeseer.ist.psu.edu/vekaria98selective.html

Coli M., Genusso P., Palazzari P. (1996), A New Crossover Operator for Genetic Algorithms, in *IEEE International Conference on Evolutionary Computation*, pp. 201-206

WEB: http://citeseer.ifi.unizh.ch/coli96new.html http://citeseer.ist.psu.edu/coli96new.html

See also

- Best Schema Crossover
- Selective Crossover-2
- Partially Randomized Crossover
- <u>Direct Design Variable Exchange Crossover</u>

- 1. for every generation of GA do
- 2. randomly shuffle the entire population $P(t) = \{A_1^{(t)}, ..., A_{Population size}^{(t)}\}$
- 3. for i = 1 to Population size do
- 4. create two vectors V_1 and V_2 :

$$V_1 = A_i^{(t)} \otimes A_{i+1}^{(t)}$$

$$V_2 = A_i^{(t)} \otimes A_{i+1}^{(t)}$$

- 5. compute the fitness value of V_1 and V_2
- 6. insert best two vectors of $\{A_i^{(t)}, A_{i+1}^{(t)}, V_1, V_2\}$ into the next population

P(t+1) as offspring

- 7. i = i + 2
- 8. end do

where:

⊗ – preferred crossover method

Comments

- In the standard genetic algorithm, the selection process is always preceded by the crossover process. In the EX method both of the processes are integrated. During the first step the entire population is randomly shuffled (row: 2). Then, from each successive pair of parental vectors, two new vectors are created by crossover (row: 4). From a "family" created in this way, two best vectors are singled out and implemented as offspring to the next population (row: 6).
- Application of elitist selection in the traditional way that is on the level of the
 entire population may often be the reason for the premature convergence of the
 algorithm. An EX elitist selection applied on the "family" level (row: 6)
 eliminates this danger according to the authors.

Experiment domains

- bit counting function
- fully deceptive trap function

Compared to

• Uniform Crossover

Index of keywords, authors and experiment domains

A

adaptive 28, 30, 53, 94, 116, 158, 163, 185, 203, 233, 274	145, 156
158, 163, 185, 203, 233, 274	, 288,
291, 294, 298, 306, 318, 323	, 326,
329, 358, 366, 368, 379, 381	
adaptive culture model	390
adaptive length chromosome	296
allele distribution	
alternative to crossover . 68, 75,	102, 106
126, 308	. ,
approximation	.251, 253
Author	-
Abbas H.A274, 288	. 291. 323
Abdel-Aty-Zohdy A.S	
Acan A 158 303	308 326
Acan A	251 253
Agrawal R.B.	211
Aitken J.M.	
Alfonso H	237 261
Alliot JM.	
Altinçay H158	303 326
Anand A	, 303, 320 307
Anderson K.S251	397
Angantyr A231	
Angalay D.D.	 260
Angelov P.P	208
Antonsson E.K.	148, 200
Aydin M.E 276, 344, 347	
Bäck T	
Bandyopadhyay S	62, 91
Barrido S.C.	
Beasley J.E.	87
Beldiman L	16, 17
Belea R	16, 17
Bendisch J.	
Bentley P.J.	62
Bersini H.	
Beyer HG.	36, 211
Bhattacharyya S	156
Bi Z	172, 266
Blaise Madeline	298, 300
Bort E	.257, 392
Buczak A.L	
Bullinaria J.A.	
Burdsall B	
Burke D.S	

Burkowski F.J.	14
Cabido R	121
Cabido RCallagham V	203
Cantú-Paz E	139
Cao H	249
Caprani O 198, 257,	392
Cen L.	185
Cen L. Chakraborty G. 255,	370
Chan ChH.	370
Chan K.P.	397
Chan K.Y170, 276, 344, 347,	355
364	
Chang ChY	379
Chang H.C.	
Chang YH	179
Chen JN.	28
Chen P.H.	340
Chen S.	123
Chen Y	249
Cheng H	
Cheung YM.	174
Chou ChH	28
Chou ChH344, 351, 355,	388
Chu P.C.	87
Chuwu P 145,	384
Clack C), 94
Clarke G.	203
Coello Coello C. A	394
Coghill G.	358
Coli M 40, 55, 141,	145
Colley M.	203
Colorni A.	390
Cordón O 16	5, 17
Costa E102, 106, 126,	308
Cotta C 16, 17, 239,	386
Covic G	358
Cremonezi R.R.	329
Cvetković D 20, 22,	213
Dadios E.P.	294
Dallaali M.A.	372
Damas S 16	5, 17
De Falco I.	386
De Jong K.A 16, 17,	148
De San Pedro M.E.	237
de`Garis H.	249
Deb K34, 55, 116, 143, 211,	397
Delgado M.R.	329

5 11 6:	•	
Della Cioppa A		Hasegawa K68, 75, 102, 106, 126,
Demiröz G		308
Dolezal O		Herrera F.21, 22, 23, 30, 70, 158, 174,
Dongarra J.		206, 213, 215, 303, 316, 326, 353
Dorigo M	390	Hervás-Martínez C 398
Dotoli M	222	Higuchi T
Drake S.	276	Hinterding R 200, 329
Duarte A	121	Hiroyasu T137, 139, 145, 396
Durand N	245	Hirsh H
Eberhart R.C.		Ho SY344
Eiben A.E 42, 58, 82, 91, 100, 1		Hofmeister T121
166, 170, 182, 241, 243, 247, 32		Hong I70, 174
362	,	Hoshi K
Emmanouilidis C	123	Hou CZ
Erbatur F		Hou YCh
Esquivel S.C82, 237, 261,		Hsu Y
Estivill-Castro V.		Huang ChH
Ewing R.L.		Huang DS
Fernandes C		Huang JH
Fernandez F		Hunter A
Ferrero S237,		Husbands P
Fogarty T.C 53, 170, 188, 276, 2	298,	Ishibuchi H
344, 347, 355, 364		Jain L
Foley Ch.M102,	106	Janikow C.Z 194, 196
Franceschini G257,		Jannet T.C390
Fuller A.T.G.	222	Jian W 203, 368, 381
Furuhashi T68	, 75	Jian Y306
Gagliardi F239,	386	Jianfu T
Galla T.M.		Jiao L
Gallant P.J.	320	Jichang G
Gallard R.H 82, 237, 261,		Jin G
Gang Z145,		Jones T. C
Gantala D.		Joshi D
Garciá-Pedrajas N.		Joyner C.R72, 282, 344, 347, 355
Genusso P		Ju P
Ghosh A 100, 241, 243, 247,		Kahng A.B
Gibson G.M222,		Kang L
Giraud-Carrier Ch239,		Kanoh H68, 75, 102, 106, 126, 308
Goldberg D.E 40, 80, 116, 263,		Kargupta H
Gong D 163, 182, 268, 362,		Kato K
Gow HJ.		Kato N68, 75, 102, 106, 126, 308
Goyal M		Keller B
Grefenstette J.J		Kendall G
Guerra-Salcedo C		Kita H23, 245, 280, 396
Guo T.		Kobayashi S280, 318, 396, 398, 399
Guokun Z		Kok J.N
Güvenir H.A.		Konstam A.H 34, 38, 97, 179
Gwiazda T.D 177, 303,	394	Krahenbuhl L342
Hagras H.		Krasnogor N
Han L296,	320	Ku S286
Han M36, 49, 51,	163	Kubalik J 154
Harik G.R80,		Kundu M.K
Hartley S.J34, 38, 97,		Lai S
Harvey I		Lam H.K340
Hasançebi O		Lasso M
		Lazansky J

Lazarescu V284	Moreira F.J.S
Lee B	Mühlenbein H20, 22, 60, 206, 213,
Lee CY123, 208, 233, 280 Lee CY148, 200	397
Lee Ch	Munteanu C19, 270, 272, 284
Lee JD366	Murata T
Lee K.Y314	Murthy A.S
Lee SW	Murthy C.A
Lefmann	Nakano R
Leiva A	Nandi S
Leung F.H.F	Narayanan A
Leung Y. W	Naso D
Li Bin	Nawa N.E
Li F	Nazhiyat G
Li J	Noel M.M
Li YH360	Nomura T11, 12, 19, 25, 225, 270,
Li Yan-Da49, 51	272, 314
Lian Y	Nong Y
Lima C.F	Nossal R
Lin W	Nowrouzian B
Ling S.H	Ohmukai I
Lis J82, 91, 166	Ono I
Liu G	Ortiz-Boyer D
Liu QH145	Ozugur T
Liu TK344, 351, 355, 388	Paaß G
Liu Z	Pal N.R
Lobo F	Pal S.K
Logan T.D 190, 192, 194, 196, 198,	Palazzari P 40, 55, 141, 145
227	Pan F
Louis S.J28, 47	Pan XQ. 291, 368
Lozano M 21, 22, 23, 30, 70, 158,	Pandolfi D237
174, 206, 213, 215, 303, 316, 326,	Park C.H
353	Park J 36, 49, 51, 163
Lutz R66	Park LJ
MacIntyre J123	Patnaik L.M203, 255, 274, 288, 291,
Maini H	323, 368
Maione G222	Pelikan M
Maniezzo V390	Pham D.T
Mao Zhi-Hong49, 51	Pi L
Massa A257, 392	Pollack J.B25, 112, 130, 132, 135,
Mayer H.A89, 116, 168	200
Mehrotra K28, 47, 80	Pounds-Cronish A
Mezura-Montes E394	Premaratne M
Michalewicz M229, 231	Price K.V
Michalewicz Z 190, 192, 194, 196,	Qiang L296
198, 227, 229, 231, 257, 329, 392	Qiao JF
Miki M	Qifu X
Min F145	Ra J.W
Ming L174	Radcliffe N.J25
Mingshu Z145, 384	Ramirez J.A. 342
Miyoshi T225, 314	Ramos R.M342
Mohamed P.S. 314	Randolph D235
Mohan C.K78, 80, 118	Ranka S
Mohan Ch28, 47	Rasheed K
Molina D353	Raué PE
Moon B.R70, 158, 174, 326	Rawlins G.J.E 28, 47
Moore M399	Ray T397

Riff-Rojas M.C298	Tsutsui S 100, 241, 243, 247, 263,
Rosa A	375, 396, 397
Rothkrantz L.J.M154	Turchiano B
Ruan X	Unal R72, 282, 344, 347, 355
Russo M	Ünveren A 158, 303, 326
Ruttkay Zs42, 58	van Kemenade C.H.M 42, 58, 170
Sakawa M372	Vasconcelos J.A
Sakuma J	Vekaria K
Salcic Z358	Venkatarayalu N
Saldanha R.R342	Verdegay J.L
Salman A.A80	Villagra A
Salto C237, 261	Villar P
Sánchez A.M 23, 30, 70, 121, 158,	Voigt HM 20, 22, 60, 213
174, 206, 303, 316, 326	Voss M.S
Sanchez-Velazco J166	Vrajitoru D30, 114, 166, 172, 174,
Sano M396	358
Santamaría J	Wakefield J.P62
Sastry K	Wang H
	C
Sastry V.U.K45	Wang W.Y
Savage M.J.W358	Wang Y174, 266, 368, 381
Schlierkamp-Voosen D 20, 22, 206	Wang YP
Schoenauer M229, 231	Watson R.A25, 112, 130, 132, 135,
Schütz M237, 261	200
Schwefel HP55	Wei L
Seetharaman G.S	Wei P
Sharawi M.S	Whitley L.D. 123
Shimosaka H	Won K.S
Shu LS344	Wright A.H
Simões A	Wright J.A
Smith J53, 188	Wu CY
Smith J.E298	Wu Z318
Smith P68, 75	Xiaohui Hu 390
Smith S.F	Xiong WQ
Someya H	
	Xue Y
Spears W.M 16, 17, 30, 70, 358	Yamada T
Spirkovska L152	Yamamura M
Spitzlinger M89, 168	Yan W
Srinivas M 203, 255, 274, 288, 291,	Yang GW 145
323, 368	Yang H249
Stanley D.O 72, 282, 344, 347, 355	Yang Junan 399
Stidsen T.J	Yang Q 203, 368, 381
Su LM	Yang S
Sun X	Yang S.Y 34, 55
Swaminathan S 190, 192, 194, 196,	Yang YM
198, 227	Yanjiao K
Takahashi M23, 245, 280	Yen J 123, 208, 235
Takahashi R.H.C342	Yimin Y266
Tarantino E386	Yongquan Y172
Tavares R	Yoon HS
Tekol Y	Yoshida J
Thierens D40	Yoshida Y
Troutt M.D156	Yu J
Troya J.M16, 17	Yu N
Tsai JT344, 351, 355, 388	Yuan B
Tsay MT379	Yuhui Shi
Tsui HT364	Yunping C 306
	r5 C

Yushu L338	D
Zeng B384	D
Zhang GZ177	data clustering
Zhang H291, 368	deception
Zhang Liang-Jie49, 51	dependency of variables
Zhang Q72, 266, 282	derivatives
Zhang YP377	deterministic crowding
Zhao J	diploid chromosomes
Zhao S266, 368, 381	directional search
Zhou J	disparate parameters 222
Zhou X	diversity68, 75, 89, 102, 106, 126, 132,
Zhu Z	135, 163, 172, 215, 225, 251, 253,
Zhuang Zhenquan	255, 268, 272, 284, 306, 308, 316, 320, 323, 333, 351, 353, 379
averaging effect	dominance
averaging effect270, 272, 204	double string coding
The state of the s	dynamic representation of gene position
В	80
bacterial recombination	
biological site-specific recombination 276	${f E}$
biologically inspired 68, 75, 102, 106,	
126, 308	economy in computation 237, 261
blindness of algorithm377, 384	effectiveness 66, 141, 143, 161, 172, 177,
boundary of a feasible region229, 231	190, 192, 206, 229, 231, 233, 270,
	272, 286, 294, 303, 338, 340, 342,
\mathbf{C}	351, 353, 368, 370, 392
	epistasis
categorical variables333	exchanging relationships of genes 364
center of gravity	Experiment domains 10-bar truss problem 142, 144
chromosome differentiation	25-bar truss problem
chromosome structure	2-dimensional shape matching
combination of crossovers 30, 70, 158,	problem151
174, 326	4-bit parity problem
combination of differences130	6-bit deceptive problem219
competition for survival40	6-bit easy problem219
computational complexity55, 84, 185,	6-Hump Camel Back function 111,
208, 213, 235, 298, 300, 314	184
constraints satisfaction 72, 87, 143, 194,	72-bar truss problem 142, 144
196, 229, 231, 251, 253, 298, 300,	Ackley's function59, 67, 217, 312,
372, 394	317
contribution of parents to their offspring	active power security correction on
182, 362	power market
convergence speed 36, 49, 51, 55, 60,	actuator hysteresis identification and
123, 145, 161, 172, 185, 188, 213,	compensation371
233, 245, 253, 255, 259, 276, 288,	aligning multiple protein sequence
291, 314, 320, 323, 333, 366, 370,	problem
384, 392	assembling parts into objects problem
convex continuous parameter space194,	automotic generating numerical
196	automatic generating numerical control rules problem385
cross-gender cooperation	Baluja's function
crossover performance	benchmark set of 65 set covering
255, 5/0	problems
	bimodal equal spread function 212
	bimodal function
	,

bimodal unequal spread function212	function taken from the National
bit counting function41	Crime Survey35
blocked function212	fuzzy controller design 50, 52
Bohachewsky's function 111, 315, 317	fuzzy rule extraction problem 226
Branin's function 184, 359, 363, 376	Goldstein-Price's function 169
busy beaver problem219	graph bipartitioning79
camel function325	graph bisection problems160
chaotic time-series prediction problem	graph coloring problem 44, 299, 302
322	graph partitioning
clique finding problem46	Griewank's function 59, 111, 115, 129
Colville's function317	138, 140, 176, 184, 207, 214, 238,
concatenations of bipolar deceptive	242, 244, 246, 248, 262, 265, 269,
problems79, 120	317, 319, 354, 363, 376
concatenations of order-3 deceptive	Hamiltonian Circuit problems 115
problems79, 120	176
conceptual design of a supersonic	HIFF problem113, 131, 134, 136
aircraft260	induction motor parameter estimation
contrast streching and detail	290
	industrial simulation
enhancements of satellite images	
	integrated steelmaking optimum cast
Corana's function	plan
data clustering benchmark sets240	JSSP
data clustering in dermatological	Keane's function230, 232, 252, 254
semeiotics	knapsack problem 202, 287
De Jong's function 27, 37, 39, 44, 59,	knowledge aquisition problem 293
67, 77, 83, 85, 101, 111, 115, 129,	L-SAT problem generator 96, 157
155, 171, 176, 184, 189, 191, 193,	Mahfoud's function
199, 205, 212, 221, 234, 236, 238,	max-cut problem
242, 244, 248, 256, 265, 269, 279,	Michalewicz & Schoenauer's
319, 325, 359, 363, 376, 391	functions
deceptive trap functions96	Michalewicz's function 44, 59, 105
design of a three-stage membrane	111, 129, 210, 236
separation process260	microwave imaging problem 393
design of aerodynamic shape of a car	mixed variable bearing problem 337
65	multi-dimensional pattern recognition
design of digital finite impulse	problems 93
response filters187	multimodal function 56, 165, 173
design of two-way crossover circuits	multi-objective function
153	multi-objective optimization of logic
determination of a bus access	circuits
schedule for a real-time LAN90	n-bit adder29
dynamic biochemical sensor	n-bit parity checker
measurement characterization 162	non-stationary function 252, 254
Easom's function 184, 238, 262, 363	n-peak problmes
economic load-dispatch problem341	One-Max problem 54, 157, 219
enhanced Steiner problems in graphs	optical components benchmark data
74	sets
feature selection problem125	order-3 deceptive problem 205
feature selection problem of pattern	pattern matching problem 50, 52
recognition99	plant allocation problem 181
feature weights learning problem 228	pole problem212
Fletcher-Powell's function171	power plant control system design
frequency assignment problem328	problem315
fully deceptive 4-bit problem81	Rastrigin's function .59, 111, 115, 129
fully deceptive trap function41	138, 140, 176, 212, 214, 217, 242,

244, 248, 265, 269, 281, 317, 319,	fixed mapping problem211
343, 354	fixed-locus scheme
Rechenberg's function207	
registration of computer tomography	\mathbf{G}
image and facial surface data	9
problem367	gene pool60
Ridge's function	general applicability78
robot tracking problem295	global optima localization 66
Rosenbrock's function 169, 207, 217,	global search ability139
269, 281, 317, 319, 354	grammatical inference
Royal Road function 54, 157, 219	<i>Q</i>
SAT problems115	TT
satisfiability problem69	Н
Schaffer & Eshelman's trap function	Hamming cliff problem211
54	
Schaffer's function 67, 115, 147, 176,	hill-climbing
184, 191, 193, 325, 363, 376	hybridizing123, 208, 235, 276
Schubert's function67, 111, 359	
Schwefel's function 59, 111, 115, 129,	I
138, 140, 169, 176, 242, 244, 248,	
265, 269, 317, 354, 376	idependent parameters
Shekel's function	illegitimate transposition 102, 106, 126
soft decision decoding of linear block	implicit mutation
codes48	independece form coordinate system. 263
sphere function217, 317, 354	independent component analysis 280
stellar wave-front slopes prediction	infection
problem322	information destruction 36, 49, 51
trainer scheduling problem297	information exchanging36
	intra-gender competition 166
transportation problems195, 197	
TSP 44, 48, 160, 167, 205, 312	V
unimodal function	K
V-cliff function	King strategy
vector quantization problem271, 273	knowledge accumulation
V-function	knowledge-based crossover 47, 78, 118
VLSI standard cell placement	knowledge-based crossover 47, 76, 116
problem71	_
Watson's function317	${f L}$
Whitley's function	1 1 04 11 257 202
XOR problem205	landscape of the problem 257, 392
zero/one multiple knapsack problem	large optimization problems
117	Latin square
experimental design methods72, 170,	linear constraints
266, 282, 344, 347, 355	linear convergence
exploitation . 40, 141, 143, 237, 253, 257,	linear improvement
261, 303, 318, 392	linear non-convex combination 318
exploration 40, 58, 89, 141, 143, 154,	linkage 53
251, 253, 257, 261, 318, 392, 394	linkage equilibrium60
exploration/exploitation balance 40, 94,	linkage probabilities 80
154, 203, 215, 259, 261, 263, 274,	local improvement 123, 208
316	local search ability137
F	M
	macromutation
factorial design methods 344, 347, 355	main effect analysis
fitness driven crossover	mathematical relationships344, 347
fitness surface257, 392	mathematical relationships

mechanics of crossover		processing time	
messy GA		projections	
mixed variable		promoter	116
morphological filters			
multi-chromosomal recombina		Q	
multi-chromosomal representat	tion89,	quadratic representation	of search
multi-parent crossover 42, 53,	55, 58, 60,	domain	
72, 82, 100, 143, 152, 170,		quality of parents	
208, 229, 231, 235, 241, 243		quality of solution	
249, 257, 261, 263, 303, 318		quantization26	
362, 375, 392, 394		quantization	70, 202, 311, 317
multiple data types	222, 333	R	
N		ranking	323
		real-time system design.	89
neurocomputing model		recombination model 326	30, 70, 158, 174,
non-coding segments		reduced-form genetic alg	gorithm 360
non-convex linear combiantion		reliability	
non-disruptive crossover 36, 4			
non-separable fitness function.		S	
number of "1" preservation	38, 45, 97,	5	
179	162	schema	
number of crossover points	163	schema preservation 154, 188	28, 53, 123, 145,
O		schema ranking	188
		search direction	251, 253
optimal crossover points 36, 4		selection	
orthogonal array 72, 282, 344		selective pressure	255, 316
orthogonal design 282, 344		self-similarity	132, 135
orthogonal GA 72, 282, 344		semantic hierarchy	
orthogonal Latin square170		separability of fitness fur 318	
P		set-oriented	
		sex	
panmictic crossover		sex separation	
parabolic model		signal-to-noise ratio	
parallel distributed GA		similarity	
parameter control		simplex method	
parameters estimation		small population sizes	
parent differentiationparent-centric crossover		sociological model	
partial commitment		speed of searching	
partially specified representation		statistics-based	
performance 42, 58, 156, 172		structural information	
381	, 203, 271,	sum of values preservation	
precision	1, 235, 351	Sum of various preservant	,
premature convergence 132		Т	
163, 185, 203, 215, 251, 253		T	
291, 294, 306, 368, 377, 379		Taguchi method	344, 347, 355
preservation of similarity		terminator	
principal component analysis		tightly linked building bl	
probability of gene crossover			
problem-specific knowledge4	47, 78, 118		

U

ultilization of genetic information.	251
253	
underspecified representation	112
uniform array	266
uniform design	266
uniform GA	266
usefulness of crossover21	8, 220

V

variable length chromosome62, 148, 200,
222, 239, 286, 296, 308, 320, 386
variable length parameters
variable-to-variable recombination34, 55.
143