

Wir erinnern uns an die Potenzregeln, welche in beide Richtungen angewendet werden können.

 $x \in \mathbb{R}, n, m \in \mathbb{N}$

$$x^{n} \cdot x^{m} = x^{n+m}$$

$$\frac{x^{n}}{x^{m}} = x^{n-m}$$

$$(x^{n})^{m} = x^{n \cdot m}$$

$$\frac{1}{x^{n}} = x^{-n}$$

$$\sqrt[m]{x^{n}} = x^{\frac{n}{m}}$$

S. 194 **Aufgabe 8**: Schreiben Sie den Funktionsterm der Funktion f in der Form $f(x) = c \cdot a^x$.

(a)
$$f(x) = 3^{2x+3}$$
 (b) $f(x) = 16^{2x+0.5}$ (c) $f(x) = \frac{1}{2^{1+x}}$ (d) $f(x) = \frac{1}{2^{x-1}}$ $= 3^{2x} \cdot 3^3$ $= 16^{2x} \cdot 16^{\frac{1}{2}}$ $= 2^{-(1+x)} = 2^{-1-x}$ $= 2^{-(x-1)=2^{-x+1}}$ $= (3^2)^x \cdot 27$ $= (16^2)^x \cdot \sqrt{16}$ $= \frac{1}{2} \cdot (2^{-1})^x$ $= 2 \cdot (2^{-1})^x$ $\Rightarrow f(x) = 27 \cdot 9^x$ $\Rightarrow f(x) = 4 \cdot 256^x$ $\Rightarrow f(x) = \frac{1}{2} \cdot \frac{1}{2}^x$ $\Rightarrow f(x) = 2 \cdot \frac{1}{2}^x$ (e) $f(x) = (\frac{1}{2})^{x-2}$ (f) $f(x) = 3^{\frac{1}{3}x-3}$ (g) $f(x) = (\frac{1}{4})^{\frac{1}{4}x-\frac{1}{4}}$ (h) $f(x) = \frac{48}{4^{-0.5x+2}}$ $= \frac{\frac{1}{2}^x}{\frac{1}{2}^x} = \frac{1}{2}^x \cdot 2^2$ $= \frac{3\frac{3}{3}^x}{3^3} = \frac{1}{3^3} \cdot (3^{\frac{1}{3}})^x$ $= \frac{\frac{1}{4}\frac{1}{4}^x}{\frac{1}{4}^x} = (\frac{1}{4}^{\frac{1}{4}})^x \cdot 4^{\frac{1}{4}}$ $= 48 \cdot 4^{-(-0.5x+2)}$ $\Rightarrow f(x) = 4 \cdot \frac{1}{2}^x$ $\Rightarrow f(x) = \frac{1}{27} \cdot \sqrt[3]{3}^x$ $\Rightarrow f(x) = \sqrt[4]{4} \cdot \sqrt[4]{\frac{1}{4}}$ $= 48 \cdot 4^{0.5x-2}$ $= 48 \cdot 4^{0.5x-2}$ $= 48 \cdot \frac{1}{16} \cdot (\sqrt{4})^x$ $\Rightarrow f(x) = 3 \cdot 2^x$

Der **Logarithmus** $\log_b(a)$, gelesen als *Logarithmus von a zur Basis b* gibt uns den Exponenten e von b, so dass $b^e=a$.

Zudem erinnern wir uns, dass bei Gleichungen eine Operation (in unserem Fall log_b) immer auf beide Seiten der Gleichung angewendet werden muss.

$$b^x = a^y \mid log_b$$

$$x = log_b(a^y)$$

Es ist also sinnvoll, die gleiche Basis auf beiden Seiten der Gleichung zu haben.

S. 194 Aufgabe 11 : Lösen Sie die Gleichungen.										
	(a) $5^x = 125$	$ log_5 $	(b) $5^x = \frac{1}{25}$	$ log_5 $	(c) $5^x = 625$	$ log_5 $				
	x = 3		x = -2		x = 4					
	(d) $3^{x-1} = 9$	$ log_3 $		$ log_3 $	(f) $0,5^x = 2$					
	x - 1 = 2	+1	x + 2 = 2x	-x	$0,5^x = 0,5^{-4}$	$ log_{0,5} $				
	x = 3		x=2		x = -4					
	(g) $2^{3x-4} = 8$		(h) $3 \cdot \left(\frac{1}{3}\right)^{3x+2} = \frac{1}{27}$ $\left(\frac{1}{3}\right)^{3x+2} = \left(\frac{1}{3}\right)^4$: 3	(i) $\frac{1}{16} \cdot 4^{\frac{1}{2}x-2} = 2^{3x}$					
	$2^{3x-4} = 2^3$	$ log_2 $	$\left(\frac{1}{3}\right)^{3x+2} = \left(\frac{1}{3}\right)^4$	$ log_{\frac{1}{3}}$	$\frac{1}{16} \cdot \frac{4^{\frac{1}{2}x}}{4^2} = 2^{3x}$					
	3x - 4 = 3	+4	3x + 2 = 4	-2	$\frac{1}{2^4} \cdot 2^x \cdot \frac{1}{2^4} = 2^{3x}$					
	3x = 7	: 3	3x = 2	: 3	$2^{x-8} = 2^{3x}$	log_2				
	$x = \frac{7}{3}$		$x = \frac{2}{3}$		x - 8 = 3x	-x				
					-8 = 2x	: 2				
					x = -4					

(j) $\left(\frac{2}{3}\right)^{x-1} = \left(\frac{8}{27}\right)^{x+2}$		$0,5^x = 2^{x+1}$		$2 \cdot 0, 25^x = 4x$	
$\left(\frac{2}{3}\right)^{x-1} = \left[\left(\frac{2}{3}\right)^3\right]^{x+2}$		$2^{-x} = 2^{x+1}$	$ log_2 $	$2^{1-2x} = \left(2^2\right)^x$	
$\left(\frac{2}{3}\right)^{x-1} = \left(\frac{2}{3}\right)^{3(x+2)}$	$ log_{rac{2}{3}} $	-x = x + 1	-x	$2^{1-2x} = 2^{2x}$	$ log_2 $
x - 1 = 3(x + 2)		-2x = 1	: (-2)	1 - 2x = 2x	+2x
x - 1 = 3x + 6	+1; -3x	$x = -\frac{1}{2}$		1 = 4x	: 4
-2x = 7	: (-2)			$x = \frac{1}{4}$	
$x = -\frac{7}{2}$					