MA1201 Calc & Basic Linear Algebra II (2015/16), Test-I (**70 mins**)

Section: E F G H Name:

Student Number:

1. Let $\vec{u} = \vec{i} - 2\vec{j} + 3\vec{k}$, $\vec{v} = -2\vec{i} + \vec{j} - 4\vec{k}$ and $\vec{w} = -\vec{i} - 2\vec{j} + 2\vec{k}$ in \mathbf{R}^3 .

- (a) Calculate the $\vec{u} \cdot (\vec{v} + \vec{w})$ and the angle between the vectors \vec{u} and $\vec{v} + \vec{w}$. (15 marks)
- (b) Calculate the volume of the parallelepiped with $\vec{u}, \vec{v}, \vec{w}$ as adjacent sides. (15 marks)
- 2. Evaluate the following integrals.

(a)
$$\int \frac{\sqrt{x}+1}{x} dx$$
, (10 marks) (b) $\int (2x-1)e^{-x} dx$, (10 marks)

(c)
$$\int \frac{1}{\sqrt{x^2 - 2x + 5}}$$
 (15 marks), (d) $\int_{-1}^{2} |x(x - 2)| dx$, (15 marks)

(e)
$$\int \frac{13-x}{(2x-1)(x^2+2x+5)} dx$$
 (20 marks).

end -

Not to be taken away

Brief Table of Derivatives and Integrals

Standard Derivatives Standard Integrals	
Standard Integrals	
$\int x^p dx = \frac{x^{p+1}}{p+1} + C, p \neq -1$	
$\int \frac{1}{x} dx = \ln x + C$	
$\int e^x dx = e^x + C$	
$\int \cos x dx = \sin x + C$	
$\int \sin x dx = -\cos x + C$	
$\int \sec^2 x dx = \tan x + C$	
$\int \csc^2 x dx = -\cot x + C$	
$\int \sec x \tan x dx = \sec x + C$	
$\int \csc x \cot x dx = -\csc x + C$	
$\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1} x + C$	
$\int \frac{dx}{1+x^2} = \tan^{-1} x + C$	