Uncertain<T>

A First-Order Type for Uncertain Data

James Bornholt Australian National University

Todd Mytkowicz Microsoft Research

Kathryn S. McKinley Microsoft Research

estimated data

> discrete type

Uncertainty bug Location Loc getGPSLocation(); applications use estimated data, but languages use discrete types estimated discrete

data

```
public class GeoCoordinate {
    public double Latitude;
    public double Longitude;

    public double HorizontalAccuracy;
}
```

```
public class GeoCoordinate {
    public double Latitude;
    public double Longitude;

    public double HorizontalAccuracy;
}
```



```
public class GeoCoordinate {
    public double Latitude;
    public double Longitude;

    public double HorizontalAccuracy;
}
```


OS #195% confidence interval $\sigma = 33 \text{ m}$

OS #2 68% confidence interval $\sigma = 39 \text{ m}$

Computation compounds error

if (Distance < 200) ...

Computation compounds error

Inference asks wrong questions

How do application writers handle estimated data without a PhD in statistics?

How do application writers handle estimated data without a PhD in statistics?

Uncertain<T> is an uncertain type abstraction.

Developer computations

Developer computations

No abstraction

Domain PhD

Developer computations

No abstraction

Probabilistic programming

Domain PhD

Statistics PhD

Developer computations

No abstraction

Probabilistic programming

Current abstractions

Domain PhD

Statistics PhD

App developers

Developer computations

No abstraction

Probabilistic programming

Uncertain<T>

Current abstractions

Domain PhD

Statistics PhD

App developers

App developers

Flexible
Simple

Developer computations

No abstraction

Probabilistic programming

Uncertain<T>

Current abstractions

Domain PhD

Statistics PhD

App developers

App developers

Computing with estimates

Experts provide measurement models (they probably already have them!)

Asking the right questions

Improving estimates

Uncertain<T> approximates distributions by random sampling

Computing with estimates

Uncertain<T> lifts arithmetic operators (like +) to work over distributions

Asking the right questions

Improving estimates

Sampling trades speed for accuracy

"Is distance less than 200 m?"

Computing with estimates

Asking the right questions

The answer is a probability.

Improving estimates

Uncertain<*T*> accounts for sampling error using hypothesis testing on expected values.

$$\Pr[H|E] = \frac{\Pr[E|H]\Pr[H]}{\Pr[E]}$$

Computing with estimates

Bayes' Theorem uses distributions to form better estimates

Asking the right questions

Improving estimates

Uncertainty bugs: applications use estimated data, but languages use discrete types.

Uncertain< T > is an uncertain type abstraction.

Uncertain<*T*> makes programs more expressive and more correct.