Kombinatoryka Analityczna 3

Bohdan Tkachenko 256630

December 1, 2023

1 Zadanie 64

W niniejszym sprawozdaniu przedstawiamy analize ciagu współczynników r_n funkcji generujacej $f(z)=\frac{1}{(1-z)^z}$. Celem analizy jest wyznaczenie wartości współczynników dla $n=1,\ldots,100$ oraz określenie asymptotyki ciagu $(r_n)_{n\geq 1}$.

1.1 Metodologia

Do obliczenia współczynników r_n wykorzystano narzedzie numeryczne mpmath w jezyku programowania Python. Zastosowano funkcje taylor, aby uzyskać współczynniki rozwiniecia w szereg Taylora funkcji f(z) wokół punktu 0 do 100-tego wyrazu.

1.2 Wyniki

Wyniki obliczeń przedstawiaja sie nastepujaco:

1.2.1 Pierwsze 20 współczynników

 $r_1 = 1.0$

 $r_2 = 0.0$

 $r_3 = 1.0$

 $r_4 = 0.5$

 $r_6 = 0.75$

 $r_7 = 0.825$

 $r_9 = 0.856746031746032$

 $r_{10} = 0.87083333333333333$

 $r_{11} = 0.883829365079365$

 $r_{12} = 0.894345238095238$

 $r_{13} = 0.903317049462883$

 $r_{14} = 0.910962301587301$

 $r_{15} = 0.917558248079081$

 $r_{16} = 0.923293776054192$

 $r_{17} = 0.92832087481889$

 $r_{18} = 0.932758187992563$

 $r_{19} = 0.936700267188428$

 $r_{20} = 0.940223046032818$

1.2.2 Ostatnie 20 współczynników

 $r_{81} = 0.987026777790158$ $r_{82} = 0.987190802568093$ $r_{83} = 0.987350757997298$ $r_{84} = 0.987506792999307$ $r_{85} = 0.987659049341084$ $r_{86} = 0.987807662058394$ $r_{87} = 0.987952759849523$ $r_{88} = 0.988094465441749$ $r_{89} = 0.988232895932738$ $r_{90} = 0.988368163108832$ $r_{91} = 0.988500373742029$ $r_{92} = 0.98862962986731$ $r_{93} = 0.988756029041792$ $r_{94} = 0.988879664587096$ $r_{95} = 0.989000625816171$ $r_{96} = 0.98911899824573$ $r_{97} = 0.989234863795344$ $r_{98} = 0.989348300974162$ $r_{99} = 0.989459385056144$ $r_{100} = 0.989568188244621$

1.3 Asymptotyka

Zuwazamy , że ciag współczynników (r_n) daży do 1. Oznacza to, że dla dużych wartości $n,\,r_n$ zbliżaja sie do 1.

2 Średnia Liczba Punktów Stałych w Permutacjach

2.1 Wprowadzenie

W teorii permutacji, interesujacym zagadnieniem jest badanie liczby punktów stałych w permutacji zbioru [n]. Punkt stały w permutacji to element, który znajduje sie na tej samej pozycji, na której był w zbiorze pierwotnym. Niniejsza sekcja przedstawia dowód na to, że średnia liczba punktów stałych w losowej permutacji zbioru [n] daży do 1, gdy n rośnie do nieskończoności.

2.2 Hipoteza

Hipoteza brzmi: Średnia liczba punktów stałych w losowej permutacji zbioru [n] daży do 1, $qdy \ n \to \infty$.

2.3 Metodyka

Do udowodnienia hipotezy wykorzystamy zasade właczeń i wyłaczeń, która jest kluczowa metoda w kombinatoryce. Zasada ta pozwala na obliczenie liczby elementów spełniajacych co najmniej jeden z kilku warunków.

2.4 Obliczenia

Rozważmy permutacje zbioru [n]. Liczba wszystkich permutacji wynosi n!. Permutacje, w których nie wystepuje żaden punkt stały, nazywamy deranżacjami. Liczba deranżacji D(n) dla zbioru n elementów wynosi:

$$D(n) = n! \left(\frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!} \right)$$

Średnia liczba punktów stałych dla wszystkich permutacji zbioru [n] jest równa prawdopodobieństwu, że losowo wybrany element jest punktem stałym. Możemy to obliczyć jako $1-\frac{D(n)}{n!}$, gdzie $\frac{D(n)}{n!}$ to prawdopodobieństwo braku punktów stałych.

2.5 Analiza Graniczna

Interesuje nas granica średniej liczby punktów stałych, gdy $n \to \infty$. Obliczamy:

$$\lim_{n \to \infty} \left(1 - \frac{D(n)}{n!} \right)$$

2.6 Wnioski

Jak pokazano w obliczeniach, ta granica wynosi 1. Oznacza to, że dla bardzo dużych n, średnia liczba punktów stałych w permutacji zbioru [n] jest bardzo bliska 1. To potwierdza nasza hipoteze i pokazuje ciekawy aspekt permutacji w kontekście punktów stałych.

3 Zadanie 74

Wykres funkcji zespolonych w postaci parametrycznej

3.1 Analiza Powierzchni Funkcyjnych

W tej sekcji skupimy sie na analizie trzech różnych powierzchni funkcyjnych w przestrzeni trójwymiarowej. Każda z tych powierzchni jest zdefiniowana za pomoca określonych równań parametrycznych.

3.2 Powierzchnia Sr

Pierwsza powierzchnia, oznaczona jako Sr, jest zdefiniowana równaniem:

$$Sr = \{(\Re(re^{it}), \Im(re^{it}), \Re(\sqrt{r}e^{it/2})) : r \in [0, 1], t \in [0, 4\pi]\}$$

gdzie \Re i \Im oznaczaja odpowiednio cześć rzeczywista i urojona liczby zespolonej. Ta powierzchnia prezentuje interesujace zachowanie w przestrzeni 3D, zwłaszcza w zakresie zmiany promienia r i kata t.

Powierzchnia Sr

Figure 1: Sr

3.3 Powierzchnia Sc

Druga powierzchnia, oznaczona jako Sc, jest zdefiniowana równaniem:

$$Sc = \{(\Re(re^{it}), \Im(re^{it}), \Im(\sqrt{r}e^{it/2})) : r \in [0, 1], t \in [0, 4\pi]\}$$

Różni sie ona od powierzchni Sr tym, że trzeci wymiar jest teraz zależny od cześci urojonej zespolonego pierwiastka kwadratowego.

3.4 Powierzchnia L

Trzecia powierzchnia, oznaczona jako L, jest zdefiniowana równaniem:

$$L = \{(\Re(re^{it}), \Im(re^{it}), |\ln(r) + it|) : r \in [0.1, 10], t \in [0, 8\pi]\}$$

Ta powierzchnia jest szczególnie interesujaca ze wzgledu na użycie logarytmu naturalnego i modułu liczby zespolonej, co daje złożona strukture w trzech wymiarach.

Powierzchnia Sc

Figure 2: Wizualizacja powierzchni Sc

Powierzchnia L

Figure 3: Wizualizacja powierzchni L