```
close all; clear; clc;
```

Tests

```
load("Data ft3.mat")
filters = (Cessnafull.vZ__ms)<500 & (Cessnafull.vZ_ms)>-500 ...
    & Cessnafull.alt_1ftms1 < 5200 & Cessnafull.alt_1ftms1 > 4800;
velocity = Cessnafull.Vtrue_ktas(filters);
% figure
% plot(Cessnafull.Vind kias,'.')
xvec = [631,695,777,855,979];
for ii = 1:5
    table2(ii,:) = printItem2(Cessnafull,xvec(ii),ii);
end
disp(table2)
BHP = [106, 109, 114, 126, 138];
for ii = 1:5
    table3(ii,:) =
printItem3(Cessnafull,xvec(ii),table2(ii,:),BHP(ii));
end
figure
hold on
cdtas = fit(table2(:,5),table2(:,13), 'exp2');
plot(cdtas,table2(:,5),table2(:,13),'*')
cdtas3 = fit(table3(:,3),table3(:,6), 'exp2');
plot(cdtas3,table3(:,3),table3(:,6),'*')
ylabel('CD')
xlabel('TAS')
hold off
legend("X-Plane Data", "X-Plane Curve Fit", "Calculated
Data", "Calculated Curve Fit")
figure
hold on
claoa = fit(table2(:,7),table2(:,8), 'poly1');
plot(claoa, table2(:,7), table2(:,8), '*')
claoa = fit(table3(:,8),table3(:,7), 'poly1');
plot(claoa, table3(:,8), table3(:,7), '*')
hold off
ylabel('CL')
xlabel('AoA')
legend("X-Plane Data", "X-Plane Curve Fit", "Calculated
Data", "Calculated Curve Fit")
```

```
figure
hold on
cdcl = fit(table2(:,8),table2(:,13), 'exp2');
plot(cdcl,table2(:,8),table2(:,13),'*')
cdcl = fit(table3(:,7),table3(:,6), 'exp2');
plot(cdcl,table3(:,7),table3(:,6),'*')
hold off
ylabel('CD')
xlabel('CL')
legend("X-Plane Data", "X-Plane Curve Fit", "Calculated
Data", "Calculated Curve Fit")
figure
hold on
ldratio = fit(table2(:,5),table2(:,14), 'poly2');
plot(ldratio,table2(:,5),table2(:,14),'*')
xlabel('TAS')
ylabel('L/D')
disp(ldratio)
disp(table3)
function row = printItem2(data,x,num)
    row(1) = num;
    row(2) = data.real time(x-5);
    row(3) = data.real_time(x);
    row(4) = data.Vind kias(x);
    row(5) = data.Vtrue_ktas(x);
    row(6) = data.alt 1ftmsl(x);
    row(7) = data.alpha_deg(x);
    row(8) = data.cltotal(x);
    row(9) = data.curnt lb(x);
    row(10) = data.MP_1inhg(x);
    row(11) = data.rpm_1_prop(x);
    row(12) = data.thrst_1lb(x);
    row(13) = data.cdtotal(x);
    row(14) = data.LDratio(x);
    fprintf("\nTest Point Number: \t%d \n", num)
    fprintf("Start Time: \t\t%f \n", data.real_time(x-5))
    fprintf("End Time: \t\t%f\n", data.real_time(x))
    fprintf("IAS: \t\t\t\f\\n", data.Vind_kias(x))
    fprintf("TAS: \t\t\f\n", data.Vtrue_ktas(x))
    fprintf("Altitude: \t\t%f \n", data.alt_1ftmsl(x))
    fprintf("AoA: \t\t\t\ \n", data.alpha_deg(x))
    fprintf("CL: \t\t\t\f\\n", data.cltotal(x))
    fprintf("Weight: \t\t%f \n", data.curnt___lb(x))
    fprintf("Manifold Pressure: \t%f \n", data.MP__1_inhg(x))
    fprintf("RPM: \t\t\f\n", data.rpm_1_prop(x))
    fprintf("Thrust: \t\t\f \n", data.thrst 1lb(x))
    fprintf("L/D: \t\t\f \n", data.LDratio(x))
end
function row = printItem3(data,x,point,BHP)
    gbar = .5*(20.48e-4)*(point(5)*1.68781)^2;
    TAS = point(4)*sqrt(23.77e-4/20.48e-4);
```

```
cd = thrust/(qbar*174);
   row(1) = point(1);
   row(2) = data.flaphandl(x);
   row(3) = TAS;
   row(4) = thrust;
   row(5) = qbar;
   row(6) = cd;
   row(7) = point(8);
   row(8) = point(7);
   row(9) = point(8)/cd;
    fprintf("\nTest Point Number: \t%d \n", point(1))
    fprintf("Flap Setting: \t\t%f \n", data.flaphandl(x))
    fprintf("TAS: \t\t\t\f\\n", point(4)*sqrt(23.77e-4/20.48e-4))
    fprintf("Drag: \t\t\t\f\ \n", thrust)
    fprintf("Q_bar: \t\t\t\f \n", qbar)
    fprintf("C_D: \t\t\f\ \n", cd)
    fprintf("C L: \t\t\f\ \n", data.cltotal(x))
    fprintf("AoA: \t\t\t\f \n", data.alpha_deg(x))
end
Test Point Number: 1
Start Time: 717.727360
End Time: 722.789120
IAS:
       51.010590
TAS:
       59.727600
Altitude: 5012.728030
      2.261190
AoA:
CL:
      0.946910
Weight:
         2009.457640
Manifold Pressure: 20.664880
RPM:
      2092.385990
Thrust: 335.248170
L/D:
       5.952450
Test Point Number: 2
Start Time: 782.826420
End Time: 787.918640
IAS:
      55.990060
TAS:
       63.816420
Altitude:
          5012.815920
      0.930420
AoA:
CL:
      0.832700
        2008.420650
Weight:
Manifold Pressure: 21.211710
RPM:
      2134.804440
Thrust:
        337.838620
L/D:
       5.926240
Test Point Number: 3
Start Time: 866.134950
End Time: 871.173160
```

thrust = 325*.8*BHP/TAS;

IAS: 60.001140 TAS: 67.127670

Altitude: 5012.683590

AoA: 0.018530 CL: 0.754410

Weight: 2007.046750

Manifold Pressure: 21.932580

RPM: 2180.278560 Thrust: 345.543950 L/D: 5.807090

Test Point Number: 4
Start Time: 1052.082890
End Time: 1057.154420

IAS: 65.018430 TAS: 71.293250

Altitude: 5012.604490

AoA: -0.972260 CL: 0.670840

Weight: 2005.582640

Manifold Pressure: 23.085730

RPM: 2243.445070 Thrust: 358.648620 L/D: 5.615350

Test Point Number: 5
Start Time: 1177.252440
End Time: 1182.323610

IAS: 69.802100 TAS: 75.284290

Altitude: 5012.684080

AoA: -1.784930 CL: 0.602950

Weight: 2003.034420

Manifold Pressure: 24.581030

RPM: 2311.814210 Thrust: 375.969510 L/D: 5.372160 1.0e+03 *

Columns 1 through 7

0.0010	0.7177	0.7228	0.0510	0.0597	5.0127	0.0023
0.0020	0.7828	0.7879	0.0560	0.0638	5.0128	0.0009
0.0030	0.8661	0.8712	0.0600	0.0671	5.0127	0.0000
0.0040	1.0521	1.0572	0.0650	0.0713	5.0126	-0.0010
0.0050	1.1773	1.1823	0.0698	0.0753	5.0127	-0.0018

Columns 8 through 14

0.0009	2.0095	0.0207	2.0924	0.3352	0.0002	0.0060
0.0008	2.0084	0.0212	2.1348	0.3378	0.0001	0.0059
0.0008	2.0070	0.0219	2.1803	0.3455	0.0001	0.0058
0.0007	2.0056	0.0231	2.2434	0.3586	0.0001	0.0056

0.0006 2.0030 0.0246 2.3118 0.3760 0.0001 0.0054

Test Point Number: 1 Flap Setting: 1.000000 54.955348 TAS:Drag: 501.498054 Q bar: 10.406320 C_D : 0.276964 C_L : 0.946910 2.261190 AoA: Test Point Number: 2 Flap Setting: 1.000000 TAS: 60.319891 Drag: 469.828436 Q bar: 11.879877 0.227289 C_D : C L: 0.832700 0.930420 AoA: Test Point Number: 3 Flap Setting: 1.000000 TAS: 64.641156 Draq: 458.531401 0 bar: 13.144686 C_D : 0.200479 C_L : 0.754410 0.018530 AoA: Test Point Number: 4 Flap Setting: 1.000000 TAS: 70.046444 467.689694 Drag: *Q_bar:* 14.826679 C_D: 0.181286 C L: 0.670840 AoA: -0.972260 Test Point Number: 5 Flap Setting: 1.000000 TAS: 75.200045 477.127371 Draq: *Q_bar:* 16.533157 C D: 0.165855 C L: 0.602950 -1.784930 AoA: Linear model Poly2: $Idratio(x) = p1*x^2 + p2*x + p3$ Coefficients (with 95% confidence bounds): $p1 = -0.002259 \quad (-0.003401, -0.001116)$ p2 =0.2669 (0.1124, 0.4213) p3 = -1.924 (-7.116, 3.267) Columns 1 through 7

1.0000	1.0000	54.9553	501.4981	10.4063	0.2770	0.9469
2.0000	1.0000	60.3199	469.8284	11.8799	0.2273	0.8327
3.0000	1.0000	64.6412	458.5314	13.1447	0.2005	0.7544
4.0000	1.0000	70.0464	467.6897	14.8267	0.1813	0.6708
5.0000	1.0000	75.2000	477.1274	16.5332	0.1659	0.6029

Columns 8 through 9

3.4189
3.6636
3.7630
3.7004
3.6354

Published with MATLAB® R2021a