Database System

Homework #2 (Chapter 4)

4.7. Consider the LIBRARY relational database schema shown in Figure 4.6. Choose the appropriate action (reject, cascade, set to NULL, set to default) for each referential integrity constraint, both for the *deletion* of a referenced tuple and for the *update* of a primary key attribute value in a referenced tuple. Justify your choices.

BOOK Book_id Title Publisher name BOOK_AUTHORS Book_id Author_name **PUBLISHER** Name Phone Address **BOOK COPIES** Book id Branch_id No_of_copies BOOK_LOANS Card_no Book id Branch_id Date_out Due_date LIBRARY_BRANCH Branch_id Branch name Address **BORROWER** Card_no Name Address Phone

Figure 4.6
A relational database schema for a LIBRARY database.

4.8.	Write	appro	priate	SQL	DDL	staten	nents	for o	declar	ing t	he l	LIBRARY	relational	database
	schem	na of Fig	gure 4.	6. Spe	ecify th	ne keys	s and r	efere	ntial t	rigge	red	actions.		

4.12. Specify the following queries in SQL on the database schema of Figure 1.2.

STUDENT

Name	Student_number	Class	Major
Smith	17	1	CS
Brown	8	2	CS

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	07	King
92	CS1310	Fall	07	Anderson
102	CS3320	Spring	08	Knuth
112	MATH2410	Fall	08	Chang
119	CS1310	Fall	08	Anderson
135	CS3380	Fall	08	Stone

Figure 1.2
A database that stores student and course information.

GRADE_REPORT

Student_number	Section_identifier	Grade
17	112	В
17	119	С
8	85	Α
8	92	Α
8	102	В
8	135	Α

PREREQUISITE

Course_number	Prerequisite_number
CS3380	CS3320
CS3380	MATH2410
CS3320	CS1310

- **a.** Retrieve the names of all senior students majoring in 'CS' (computer science).
- **b.** Retrieve the names of all courses taught by Professor King in 2007 and 2008.
- **c.** For each section taught by Professor King, retrieve the course number, semester, year, and number of students who took the section.
- **d.** Retrieve the name and transcript of each senior student (Class = 4) majoring in CS. A transcript includes course name, course number, credit hours, semester, year, and grade for each course completed by the student.

- **4.13.** Write SQL update statements to do the following on the database schema shown in Figure 1.2.
 - **a.** Insert a new student, <'Johnson', 25, 1, 'Math'>, in the database.
 - **b.** Change the class of student 'Smith' to 2.
 - **c.** Insert a new course, <'Knowledge Engineering', 'CS4390', 3, 'CS'>.
 - **d.** Delete the record for the student whose name is 'Smith' and whose student number is 17.