Simulation (compléments du Chapitre 7)

Yves Aragon* Université Toulouse 1 Capitole

2 avril 2011

7.1 Exercices

Exercice 7.1 (Simulation d'un SARMA)

On veut simuler une série obéissant à (1.2).

- Tirer d'abord 290 observations i.i.d. suivant la loi de z_t.
- Simuler d'après cette série, une série de 240 valeurs obéissant à (1.2)

Réponse.

Cette simulation est effectuée par

- > # graine
- > set.seed(2761)
- > innov1 = rnorm(290, sd=4.18)
- y = arima.sim(list(order = c(12,0,1), ma=-.7, ar=c(rep(0,11),.9)),
- + innov =innov1, n.start =50, n = 240) +50
- > y.ts = ts(y, frequency=12, start=c(1920,1))
- > ytr=cbind(y.ts,nottem)
- > colnames(ytr)=c("serie simulee", "temperature")

Notons simplement que innov1 correspond à z_t , y à $y_t - 50$ et qu'on a dû expliciter que les coefficients de la régression de y_t sur ses valeurs passées jusqu'en t - 11, sont nuls.

Exercice 7.2 (ARIMA)

On veut simuler une série de 200 valeurs d'une autorégression dont le polynôme a deux racines strictement supérieurs à 1 et une racine égale à 1:

$$(1 - \frac{B}{1.4})(1 - B)(1 - \frac{B}{1.9}).$$

et la variance du bruit est égale à 1.

- Calculer le polynôme d'autorégression.
- Si on essaie de simuler cette série directement à l'aide de arima.sim(), qu'observe-t-on? La série obéit à un ARIMA(2,1,0). Après avoir consulté l'aide en ligne de cette fonction, reformuler la simulation pour pouvoir utiliser arima.sim().
- Simuler la série à l'aide de simulate().

^{*}aragon@cict.fr

Réponse.

- Calcul du polynôme d'autorégression.
 - > require(polynom)
 - > autop=polynomial(c(1,-1/1.4))*polynomial(c(1,-1))*polynomial(c(1,-1/1.4))
- Simulation directe. On obtient une erreur car la partie autorégressive du modèle n'est pas stationnaire. Le processus à simuler étant un ARIMA(2,1,0), on peut exprimer le facteur du terme en (1-B): (1-B/1.4)(1-B/1.9) et simuler l'ARIMA:

```
> autop1 = polynomial(c(1,-1/1.4))*polynomial(c(1,-1/1.9))
> asim8b = arima.sim(n=60, list(ar = -autop1[-1], + order=c(2,1,0)))
```

- Pour simuler la série à l'aide de simulate(), on construit le modèle via ARMA() puis on le simule
 - > require(dse)
 - > AR = array(autop1, c(length(autop1), 1, 1))
 - > MA = array(1, c(1, 1, 1))
 - > mod2 = ARMA (A=AR , B = MA)
 - > asim8c= simulate(mod2, sampleT=60, sd=1.5)

ainsi, alors que arima.sim() ne peut simuler que des ARMA ou des ARIMA explicites, simulate(), comme filter() peut simuler toute autorégression.

7.2 Intervention

Exercice 7.3

On dispose d'une série de 100 observations. On sait qu'à la date t1=10, une intervention a provoqué une hausse brutale du niveau moyen de la série qui est progressivement revenue à son niveau antérieur à la date t1. D'autre part, en t2=25, une autre intervention a provoqué une baisse progressive, avec des oscillations, du niveau moyen vers un niveau durablement inférieur.

- 1. Ecrire formellement ce mécanisme. On notera ω_i , δ_i , i=1,2 les paramètres des deux interventions.
- 2. Ecrire le code R pour calculer cet effet. Choisir des valeurs sensées pour les paramètres.

Réponse.

L'intervention en t1 est associée à une impulsion P_t^{t1} et un amortissement du type

$$\frac{\omega_1}{1-\delta_1 B}, \qquad \quad \omega_1,\, \delta_1>0$$

et celle en t2, qui dure, est associée à un échelon S_t^{t2} et l'amortissement est du même type avec maintenant $\omega_2 > 0$, $\delta_2 < 0$. Sans autres précisions, l'intervention en t2 va provoquer un saut de ω_2 . On peut l'atténuer en introduisant une intervention ponctuelle P_t^{t2} de coefficient $\omega_3 < 0$.

A la date t2 la série est nécessairement en train de revenir à son niveau moyen initial quand survient l'événement.