SITE INVESTIGATION REPORT FORMER GALT GAS COMPANY SITE CAMBRIDGE, ONTARIO

OCTOBER 1991

•	
· · · · · · · · · · · · · · · · · · ·	•

SITE INVESTIGATION REPORT

FORMER GALT GAS COMPANY SITE CAMBRIDGE, ONTARIO

Report prepared for:

Waste Site Evaluation Unit Waste Management Branch Ontario Ministry of the Environment

Report prepared by:

Conestoga-Rovers & Associates Limited

NOVEMBER 1991

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1991
This publication may be reproduced for non-commercial purposes with appropriate attribution.

DISCLAIMER

This report was prepared for the Ontario Ministry of the Environment as part of a Ministry - Funded Project. The views and ideas expressed in this report are those of the author and do not necessarily reflect the views and policies of the Ministry of the Environment, nor does mention of trade names of commercial products constitute endorsement or recommendation for use.

EXECUTIVE SUMMARY

The former Galt Gas Company Site is located within a parcel of property adjacent to the Grand River in Cambridge, Ontario. The current property owner purchased the property without knowing of the coal gasification plant which existed during the approximate period of 1886-1910. The property owner planned to re-develop the Site prior to being notified of the existence of the former coal gasification plant by the Ontario Ministry of the Environment (MOE).

The shoreline of the Grand River adjacent to the former coal gasification plant has apparently been extended outwards by filling. Currently, the Grand River Conservation Authority (GRCA) owns the property between the owner's property and the Grand River. A flood control berm is located on the GRCA property.

Several phases of investigation have been conducted. Initially, geotechnical boreholes were drilled for development purposes. These boreholes identified geologic conditions in the overburden. This work was not funded by the MOE. The investigative work conducted for the environmental investigation has included drilling 21 boreholes; chemical analysis of 16 soil samples; installation of four monitoring wells in the overburden; analysis of groundwater/fluid samples from three monitoring wells; inspection of the bottom of the Grand River adjacent to the former coal gasification plant; and analysis of water and sediment samples from the Grand River.

The geology of the Site from surface downwards includes a sand fill with gravel and rubble (up to 5 metres thick adjacent to the Grand River), an upper sequence of sands, a basal sand and gravel unit and bedrock. The bedrock is approximately 5 to 12 metres below ground surface. In some areas, thin silt layers are encountered within the overburden. A water table aquifer is found within the native sands at a depth of approximately 3.5 to 4.5 metres below ground surface. Water level measurements indicate that groundwater flow is in a southerly direction, parallel to that of the Grand River. The groundwater velocity was estimated to be approximately 1 metre/year.

The conclusions of this investigation are as follows:

1) The material underlying the former coal gasification plant includes concrete and soil containing coal tar residues. Gasoline and diesel fuel odours are also noted in this area.

- 2) Coal tar residues are present in soil to the west of the former coal gasification plant. These residues are found sporadically and may have been placed in part during historical filling along the edge of the Grand River.
- Coal tar residues are present in soil beneath the GRCA flood control berm.
- 4) The coal tar residues are generally found in the saturated soils and represent a potential source of groundwater contamination.
- 5) Groundwater flow on the property appears to be approximately parallel to the Grand River and toward the south.
- 6) Groundwater at the southern end of the property does not exhibit contamination by PAHs. One monitoring well exhibits low concentrations of VOCs. The VOC contamination has various potential sources, including the coal tar residues and former automobile service stations in the area.
- 7) Coal tar residues have not migrated to the southern property boundary as evidenced by the absence of PAHs in soil and groundwater at the two monitoring wells at the boundary.
- 8) Coal tar residues are not visually present in the bed of the Grand River adjacent to the former coal gasification plant.
- 9) Water and sediment in the Grand River does not exhibit a detectable impact by PAHs from the former coal gasification plant.

The recommendations based on this investigation are as follows:

- 1) Any proposed disturbance of the area containing coal tar residues should be reported in writing to the MOE, Waste Management Branch prior to commencement and conducted in accordance with applicable regulations and guidelines.
- 2) A monitoring program should be implemented in the short term to assess the potential migration of contaminants in groundwater and surface water. This would include:
 - measuring water levels in the monitoring wells and the Grand River quarterly for one year;

- ii) collecting water samples from wells which do not contain coal tar and from two locations in the Grand River on a semi-annual basis for one year (groundwater samples would be analyzed for PAHs and VOCs, surface water samples would be analyzed for PAHs); and
- iii) reporting all results to MOE.

The need for monitoring would be re-assessed at the end of the one year period.

TABLE OF CONTENTS

		<u>P</u>	<u>age</u>
ACK	NOWL	EDGEMENT AND DISCLAIMER	i
EXEC	UTIVE	SUMMARY	ii
1.0	INTR	ODUCTION	1
2.0	HISTO 2.1 2.2	ORICAL LAND USE OPERATION OF GAS WORKS (1886-1910) POST-CLOSURE OF GAS WORKS (1910-PRESENT)	3
3.0	FIELU 3.1 3.2 3.3 3.4	D INVESTIGATION PHASE I AND II INVESTIGATIONS PHASE III INVESTIGATION PHASE IV INVESTIGATION FIELD DATA SUMMARY	7 7 8
4.0	GEOL 4.1 4.2 4.2.1 4.2.2 4.2.3	OGY/HYDROGEOLOGY GEOLOGY HYDROGEOLOGY Groundwater Flow Hydraulic Conductivity Groundwater Flow Velocity	9 10 11 11
5.0	CON 5.1 5.1.1 5.1.2 5.2 5.3	TAMINANT DISTRIBUTION SOIL	13 13 15
6.0	CONG 6.1 6.2	CLUSIONS AND RECOMMENDATIONS CONCLUSIONSRECOMMENDATIONS	22

LIST OF FIGURES

		Following Page
FIGURE 1.1	LOCATION OF MILL RACE ON THE GRAND PROPERTY	1
FIGURE 2.1	SITE OCCUPANCY - 1918	3
FIGURE 2.2	SITE OCCUPANCY - 1941	4
FIGURE 3.1	LOCATION OF BOREHOLES, MONITORING WELLS AND RIVER SAMPLING/INSPECTION	7
FIGURE 4.1	GEOLOGIC CROSS SECTION LOCATIONS	9
FIGURE 4.2	GEOLOGIC CROSS SECTION A-A'	9
FIGURE 4.3	GEOLOGIC CROSS SECTION B-B'	9
FIGURE 4.4	GEOLOGIC CROSS SECTION C-C'	9
FIGURE 4.5	GROUNDWATER CONTOURS	11
FIGURE 5.1	LOCATION OF BOREHOLES EXHIBITING CONTAMINATION	14

LIST OF PLANS

PLAN 1 SITE PLAN

BACK POCKET

LIST OF TABLES

		Following <u>Page</u>
TABLE 4.1	SUMMARY OF WATER ELEVATION DATA	10
TABLE 5.1	SUMMARY OF ODOURS REPORTED IN GEOTECHNICAL SOIL BORINGS	13
TABLE 5.2	SUMMARY OF CONTAMINATION NOTED IN 1987 AND 1990 SOIL BORINGS	14
TABLE 5.3	PHASE I ANALYTICAL RESULTS - PAHs IN SOIL	15
TABLE 5.4	PHASE II ANALYTICAL RESULTS - PAHs IN SOIL LEACH	15
TABLE 5.5	PHASE II ANALYTICAL RESULTS - PAHs IN SOIL	15
TABLE 5.6	PHASE IV ANALYTICAL RESULTS - PAHs AND METALS IN SOIL	16
TABLE 5.7	ANALYTICAL RESULTS OF FLUID SAMPLE FROM OW8-87	17
TABLE 5.8	ANALYTICAL RESULTS OF GROUNDWATER SAMPLES	17
TABLE 5.9	ANALYTICAL RESULTS OF GRAND RIVER SEDIMENT SAMPLES	19
TABLE 5.10	ANALYTICAL RESULTS OF GRAND RIVER WATER SAMPLES	19

LIST OF APPENDICES

APPENDIX A GRAND RIVER INSPECTION REPORT BY INTEGRATED EXPLORATIONS

APPENDIX B FIELD METHODS FOR PHASE IV INVESTIGATION

APPENDIX C BOREHOLE LOGS

APPENDIX D MISCELLANEOUS FIELD DATA

APPENDIX E ANALYTICAL REPORTS

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) has completed an investigation of coal tar contamination at the site of the former Galt Gas Co. gas works in Cambridge, Ontario. The investigation has been carried out under the terms of a cost sharing agreement between the property owner (Mill Race on the Grand, Inc.) and the Ontario Ministry of the Environment (MOE) and a proposal by CRA dated June 1989 (1).

The initial phases of the investigation were reported by CRA in September 1987 (2). This report incorporates the information contained in the September 1987 report and provides an updated assessment of site conditions utilizing all data generated to date.

The area occupied by the former coal gasification plant is part of a larger parcel which was occupied by a textile mill until the mid 1980's. This parcel is herein referred to as the Mill Race on the Grand property (the property). The current owner purchased the property without knowing of the coal gasification plant which existed during the approximate period of 1886-1910.

Figure 1.1 shows the location of the Mill Race on the Grand property, which is situated on the west side of Water Street North in the City of Cambridge, north of the Parkhill Dam. The property fronts on Water Street and backs onto the flood control berm for the Grand River. The flood control berm property is owned by the Grand River Conservation Authority (GRCA).

This report is organized as follows:

- Section 2 contains a discussion of historical land use as originally reported in September 1987.
- Section 3 contains a discussion of field investigation methods.
- Section 4 contains a discussion of the geology/hydrogeology in the area investigated.
- Section 5 contains a discussion of contaminant distribution in the various media examined.
- Section 6 contains conclusions and recommendations.

2

2.0 HISTORICAL LAND USE

2.1 OPERATION OF GAS WORKS (1886-1910)

The history of the gasification plant and adjacent property was compiled through a review of documentation from the Cambridge Archives, the Cambridge Gallery and Library, the Gore-Mutual Insurance Company of Cambridge and oral communications with local residents.

The facilities present during operation of the former coal gasification plant are illustrated in Figure 2.1. This plan was reproduced from a fire insurance map stored at the Cambridge Gallery and Library. The fire insurance map was dated 1910 and was revised in 1918. Fire insurance maps are typically detailed site plans (to scale) of city blocks showing all building construction including materials. The original 1910 map depicted two large diameter gas holding tanks of 32,000 cubic foot and 15,000 cubic foot capacity respectively, separated by a large one-storey Purifying Retort building and several small storage buildings. The gas holding tanks measured approximately 2,400 square feet (55 feet diameter) and 1,600 square feet (45 feet diameter). The purifying-retort building measured approximately 2,500 square feet. The 1918 revised drawing does not record this layout. Figure 2.1 locates the above-mentioned tanks according to the 1910 survey. The Grand River shoreline configuration during the period was also recorded and is shown on Figure 2.1.

Based upon the above and the MOE release dated

January 20, 1987 listing former coal gasification plant sites, the operations at

this plant started in the late 19th Century and ended prior to World War I (approximately 1886-1910).

Concurrent with coal gasification operations was the operation of the Galt Robe Company immediately to the north. The building consisted of one large three-storey structure. A lumber yard occupied the area to the south.

2.2 POST-CLOSURE OF GAS WORKS (1910-PRESENT)

Between 1910 and 1918, as indicated by the revised fire insurance map, the coal gasification operations had ceased and the structures were utilized for storage. In addition an auto garage and repair shop had located immediately adjacent to, and north of, the former coal gasification plant.

Figure 2.2 presents the property development/occupancy as defined on a 1941 Provincial Insurance Survey Map obtained from the Gore-Mutual Insurance Company, Cambridge. As indicated on Figure 2.2, the Grand River shoreline has been partially changed, presumably by filling, and the textile mill expanded over the former gas plant. The total frontage of the textile mill along Water Street was on the order of 520 feet as scaled from the 1941 plan. Measurements taken at the property during the investigative program confirm the frontage to be 530 feet indicating generally good agreement with the 1941 record. The construction history of the property remains relatively unchanged from 1941 until the present. Several

gasoline/service stations were apparently located along the east side of Water Street in recent years.

The textile mill was demolished to grade in the early 1980s. The basement floor slab and foundation walls still exist.

3.0 FIELD INVESTIGATION

Field investigations by CRA have been conducted in four phases and have consisted of the following:

- Drilling of 21 boreholes to determine geologic conditions and the presence of coal tar contamination.
- ii) Collection and chemical analysis of 16 soil samples from boreholes.
- iii) Installation of four monitoring wells to allow groundwater sample collection and for determining groundwater flow direction.
- iv) Collection and chemical analysis of groundwater/fluid samples from three monitoring wells.
- v) Inspection of the bottom of the Grand River adjacent to the former coal gasification plant.
- vi) Collection and analysis of water and sediment samples from the Grand River.

The first two phases of the field investigation included primarily borehole installation and were reported in September 1987(2). The third phase of the investigation included inspection of the Grand River and sampling of water and sediment from the river. This work was completed in early 1989. The fourth phase included installation of additional boreholes

and monitoring wells and additional sampling of water from the Grand River. This work was completed in the spring of 1990.

3.1 PHASE I AND II INVESTIGATIONS

The field investigation methods for Phase I and II are described in the September 1987 report (2). During Phase I and II, 13 boreholes were advanced using hollow stem or solid stem augers and one monitoring well was installed to monitor the presence of coal tar or groundwater contamination. Soil and groundwater samples were collected for analysis. Boreholes were drilled at the property prior to the coal tar investigation by Peto-MacCallum Ltd. This work was part of the geotechnical investigation for the proposed property re-development.

3.2 PHASE III INVESTIGATION

Phase III consisted of an underwater investigation of the Grand River bottom by Integrated Explorations Ltd. of Guelph, Ontario under the direction of CRA. The report of the investigation is contained in Appendix A. The river bottom was visually inspected and the sediments were "probed" over a 50 metres by 50 metres area adjacent to the former coal gasification plant as shown on Figure 3.1. Water and sediment samples were collected for analysis.

2087-15/05/90 4-0

				¥

3.3 PHASE IV INVESTIGATION

The Phase IV investigation included the items described in the Proposal for Additional Investigative Work (1) (i.e. drilling of boreholes, installation of three monitoring wells and sampling of water in the Grand River). The work was conducted during the period of February to May 1990. The field methods for the Phase IV work are described in Appendix B.

3.4 FIELD DATA SUMMARY

Borehole logs for all borehole and well installations (including boreholes by Peto-MacCallum) are included in Appendix C. Additional field data which was collected (i.e. grain size data) are included in Appendix D. The locations of all boreholes, monitoring wells and river sampling points are shown on Figure 3.1 (presented previously).

Analytical reports for all samples collected during the entire program are contained in Appendix E.

		-			
-					
	7.0				

4.0 GEOLOGY/HYDROGEOLOGY

4.1 GEOLOGY

Geologic cross-sections are used to illustrate geologic conditions. Cross-section locations are shown on Figure 4.1. The geological setting beneath the property, as shown on cross-section Figures 4.2, 4.3 and 4.4, is represented by fill overlaying an upper sequence of sands (SM, SP and SW) overlay a basal sand and gravel unit (SW-GP). A silt (ML) bed, of approximately 0.5 metre thickness, is found between these clastic units in the eastern area of the site as shown on Figure 4.2. An organic silt (OL) is noted to overlie the upper sands in the western areas of the site as shown on Figure 4.3. The soil classifications are from the modified Unified Soil Classification system and are defined in Appendix C.

The basal sand and gravel unit consists of a dense to very dense coarse sand and gravel with occasional cobbles. This unit is found approximately 4.0 to 8.0 metres below the surface and is inferred to be 2.0 to 5.0 metres thick, extending to the bedrock surface, approximately 5.0 to 12.0 metres below the surface.

The upper sands consist of a poorly to well graded, fine to coarse grained sand with occasional silt seams and traces of gravel. The sands are found approximately 1.5 to 5.0 metres below the ground surface and vary in thickness from 1.0 to 5.0 metres. The unit is continuous under the property but, terminates abruptly at the western property boundary as shown on Figure 4.4.

					•
	÷				
2					

2087 15/05/90-4 0

		x.
£ (*)		
<i>*</i>		
	i.	
		(40)

A silt or sandy silt bed of approximately 0.5 metres thickness is found stratigraphically between the upper sands and basal sand and gravel in the eastern portion of the property.

Loose, dark gray, organic silts with occasional sand seams are found in a limited area of the northwest quarter of the property as shown on Figure 4.2. These organic silts directly overly the upper sands and are approximately 2.0 metres in thickness.

The entire property is covered by a sand fill containing occasional gravel and limited amounts of construction rubble (brick pieces). This fill tends to increase in thickness from approximately 2.0 metres at the eastern property boundary, near Water Street, to approximately 5.0 metres at the western property boundary adjacent to the Grand River. It is believed that the shoreline of the Grand River was extended westward from Water Street by the placement of these fill materials.

4.2 <u>HYDROGEOLOGY</u>

A water table aquifer is found within the native sands at the property. The water table is approximately 3.5 to 4.5 metres below the ground surface or at an elevation ranging from 263.902 to 264.118 metres above mean sea level (AMSL). Table 4.1 summarizes the historical water level data.

TABLE 4.1

SUMMARY OF WATER ELEVATION DATA

			Water	Water Elevation (m. AMSL)	(IMSI)			
	Ref. Elev.	4/29/87	2/27/90	3/14/90	3/26/90	5/3/90	5/22/90 12/11/90	12/11/90
Well Number								
OW8-87	269.178	264.548	264.298	264.718	264.438	264.118	264.498	264.418
OW14-90	268.409	1	264.049	264.459	264.299	263.909	264.279	264.249
OW15-90	268.542	;	264.052	264.502	264.272	263.902	264.312	264.232
OW17-90	269.560	1	264.210	264.540	264.380	264.035	264.360	264.330
River Station								
Number 1 (upstream)	265.715	ı	ł	ŀ	264.824	264.815	1	ı
Number 2 (downstream)	265.267	ł	}	}	264.794	264.767	:	1

4.2.1 Groundwater Flow

Groundwater flow within the water table aquifer is in a southerly direction, parallel to that of the Grand River as indicated by the water level data presented in Table 4.1, which were collected during spring and late fall conditions in 1990. This parallel groundwater flow pattern is thought to be significantly influenced by the Parkhill Dam immediately downstream of the property. During the period of water level measurements, the water elevation in the Grand River was found to be higher than the groundwater elevations on the property. This may be due to seasonal effects. Figure 4.5 illustrates the groundwater contours for May 3, 1990 taken from four groundwater observation wells: OW8-87, OW14-90, OW15-90 and OW17-90.

4.2.2 Hydraulic Conductivity

The in situ hydraulic conductivity of the screened material of groundwater monitoring wells OW14-90 and OW15-90 was determined by single well response testing of the wells. Data from these tests are presented in Appendix D. The hydraulic conductivity of these wells, as calculated following Hvorslev (1951) (5) is 1.0×10^{-3} cm/sec and 6.0×10^{-5} cm/sec, respectively. The geometric mean of these values is 2.4×10^{-5} cm/sec and is used to characterize the hydraulic conductivity of the aquifer.

4.2.3 Groundwater Flow Velocity

The average horizontal groundwater flow velocity can be determined using the modified Darcy equation:

$$\overline{V} = \frac{Ki}{n}$$

where:

K - hydraulic conductivity,

i - horizontal hydraulic gradient, and

n - effective porosity.

Using the geometric mean of the hydraulic conductivity of 2.4×10^{-6} m/sec (2.4×10^{-4} cm/sec), a horizontal hydraulic gradient of 0.0036 (m/m) and an assumed effective porosity of 0.30, a horizontal linear groundwater velocity of 2.9×10^{-8} m/sec or 0.93 m/yr is calculated.

5.0 <u>CONTAMINANT DISTRIBUTION</u>

5.1 SOIL

5.1.1 Summary of Borehole Observations

A total of 22 boreholes were completed by

Peto-MacCallum Ltd. (Peto) for geotechnical investigation as discussed in the

September 1987 report (2). Peto reported oil odours in several samples

recovered during the investigation. Table 5.1 presents a summary of the

location, depth and soil stratigraphy where the odours were reported.

The location of soil borings conducted by CRA in 1987 were selected on the basis of information from Peto borings, the location of the former coal gasification plant and the location of potential areas of contact with subsurface material during the proposed property development.

The soil borings conducted in 1990 by CRA were placed to define the extent of contamination outside of the limits of the former coal gasification plant and for installation of monitoring wells at the southern property boundary. In addition, a total of two boreholes and one monitoring well were to be placed through the top of the GRCA flood control berm. This part of the program was modified, in consultation with the MOE, because of difficulties and safety concerns regarding access of drilling equipment to the top of the berm. Two holes were drilled on the side of the berm (BH16-90, OW17-90) on GRCA property. One of these two boreholes (OW17-90) was completed as an observation well.

TABLE 5.1

SUMMARY OF ODOURS
REPORTED IN GEOTECHNICAL SOIL BORINGS

Borehole	Depth ft (m) BGS	Geodetic Elev. ft (m) AMSL	Soil/Odour ⁽¹⁾ Description	Remarks
103	12.5 (3.81)	868 (264.56)	Sand and Silt Fill/ Strong oil smell	West of reported gas holder location
104	11 (3.35)	865 (263.66)	Coarse Sand/Strong smell of oil	Inside purifying retort building
202	10 (3.05)	870 (265.18)	Sand and Gravel Fill/Strong smell of oil	West of reported gas holder location
108	15 (4.57)	863 (263.05)	Fine to Medium Sand/ Strong smell of oil	Near north property limit

Note:

(1) As presented by Peto-MacCallum Ltd.

Table 5.2 contains a summary of the contamination noted in the soil borings conducted by CRA in 1987 and 1990. Figure 5.1 shows in plan view the locations where contamination was noted. From this information, the following general observations are made:

- Concrete material is present beneath the existing textile mill foundation where the former coal gasification plant was located.
- Odours of coal tar, gasoline and diesel fuel are noted in the area of the former coal gasification plant.
- iii) The contamination is generally not encountered until the water table is reached.
- iv) The boreholes exhibiting the greatest amount of coal tar contamination are OW8-87, BH10-87 and BH13-87.
- A coal tar odour is noted at the north end of the property along with coal fragments.
- vi) Odours are noted in boreholes installed on GRCA property.
- vii) Contamination is not noted at boreholes on the southern property boundary (OW14-90, OW15-90).

TABLE 5.2

SUMMARY OF CONTAMINATION NOTED IN 1987 AND 1990 SOIL BORINGS

Borehole	Description
BH1-87	- none
BH2-87	- strong coal tar odour at water table (El. 263.8 m)
BH3-87	- coal tar odour at water table (El. 264.8 m)
D11 0 07	- strong gasoline odour (El. 263.7 m)
BH4-87	- strong coal tar odour at water table (El. 264.6 m)
	- strong gasoline odour (El. 264.0 m)
BH5-87	- none
BH6-87	- strong coal tar odour beneath buried concrete slab (El. 264.6 m)
BH7-87	- coal tar odour (El. 267.0 m)
OW8-87	- strong coal tar odour and coal tar at water table (El. 264.8 m)
	down to and into fine grained layer (El. 262.0 m)
BH9-87	- slight coal tar odour above probable concrete (El. 266.0 m)
BH10-87	- diesel fuel odour at water table (El. 264.8 m)
•	- strong coal tar odour and coal tar (El. 263.0 m)
BH11-87	- strong diesel fuel odour at water table (El. 264.8 m)
BH12-87	- strong diesel odour at water table (El. 265.0 m)
BH13-87	- slight coal tar odour at water table (El. 264.5 m) with increasing
	coal tar odour with depth
	- coal tar saturated above thin silt/sand layer (El. 262.2 m)
OW14-90	- none
OW15-90	- none
BH16-90	- very slight odour (El. 263.7 m)
	- slight odour, water discoloured (El. 262.3 m)
	- moderate odour in sand/gravel below silt layer (El. 261.0 m)
OW17-90	- slight odour in silt layer (El. 264.0 m)
DI 14.0.00	- slight odour in sand layer (El. 263.0 m)
BH18-90	- strong odour and sheen (El. 263.0 m)
PL110 00	- strong odour and product (El. 262.0 m)
BH19-90	- none
BH20-90	- strong odour and product (El. 262.5 m)
BH21-90	- none

2087 15/05/90 4 0

					•
	* 4				
-					
	22°				
			¥1	43	
		•			

5.1.2 Analytical Results of Soil Samples

During Phase I, two soil samples were analyzed for the indicator polynuclear aromatic hydrocarbons (PAHs); naphthalene and benzo(a)pyrene. These compounds were selected as indicators because of mobility (naphthalene) and carcinogenicity (benzo(a)pyrene). The results are contained in Table 5.3. One sample was obtained from the vicinity of the former coal gasification plant (BH6-87) and the other was obtained from the north end of the property (BH7-87) where odours were noted from the geotechnical investigation. The only detection was naphthalene at BH6-87.

During Phase II, ten soil samples were analyzed for PAHs in leachate from soil and two soil samples were analyzed for total concentration of PAHs. These results are contained in Tables 5.4 and 5.5, respectively.

As shown in Table 5.4, benzo(a)pyrene was not detected in any of the leach samples. There were no detections of PAHs in the leach samples collected from the unsaturated zone. Various PAHs were detected in the leach samples collected from the saturated zone. The number of PAH compounds and their concentrations in the leach samples collected from within the silt layer at BH10-87 (4.6 - 5.2 m) are significantly lower than those of samples collected in the saturated zone above the silt layer at the same borehole.

With respect to the total PAH concentrations shown in Table 5.5, several PAHs including benzo(a)pyrene were detected in soil

TABLE 5.3

PHASE I ANALYTICAL RESULTS
PAHs IN SOIL

Sample	Depth	Concentrati	ion (ppm) ⁽¹⁾
Location	m (ft)	Naphthalene	Benzo(a)pyrene
D114 0B	2.4.(2)	2.20	.0.5
BH6-87	2.4 (8)	2.38	<0.5
BH7-87	3.0-3.6 (10-12)	<0.05	<0.05

Notes:

1. Total concentration in soil

PITASE II ANALYTICAL RESULTS PATE IN SOIL LEACH

	28-8MO	28				BH10-87				
PAH Compound (119/1.)	3.8-4.4 m (12.5-14.5 ft) [5] MDI	MDE	1.5-2.1 m (5.0-7.0 ft) [4] MD1.	MDL	2.3-2.9 m (7.5-9.5 (t) 151 MDL	MDL	3.8-4.4 m (12.5-14.5 ft) [5] MDL	MDI	4.6-5.2 m	MIDI
Acenaphthene	50.4	0.2	t	0.1	27.1	0.1	3.4	-	0.5	0.1
Acenaphthylene	2.7	0.2	ı	0.1	0.4	0.1	355	_		0.1
Anthracene	0.5	0.2		0.1	-	0.1	21	_	1	0.1
Benz(a)Anthracene+Chrysene		0.7	,	0.1		0.1		_	•	0.1
Benzo(b)Fluoranthene and										
Benzo(k)Fluoranthene	,	0.2	ı	0.1		0.1	•	2	•	0.1
Benzo(a)Pyrene		0.7		0.1	,	0.1	•	2	•	0.1
Benzo(g,h,i)Perylene		0.4		0.2		0.2	,	5	•	0.2
Dibenz(a,h)Anthracene		0.4	ı	0.2	•	0.2	ı	S		0.2
Fluoranthene		0.7		0.1	0.2	0.1	5.6	-		0.1
Fluorene	6.7	0.2	ŧ	0.1	5.1	0.1	82		٠	0.1
Indeno(1,2,3-cd)l'yrene	•	0.4		0.2		0.2	,	ις	٠	0.2
Naphthalene	240	0.2		0.1	0.3	0.1	777	-	1.4	0.1
Phenanthrene	9.9	0.2		0.1	9	0.1	160	-	•	0.1
Pyrene	,	0.2	1	0.1	0.5	0.1	6.1	-	•	0.1

PHASE II ANALYTICAL RESULTS PAHS IN SOIL LEACH

	BI	BH11-87		BH12-87	2-87			BIII	BH13-87	
	2.3-2.9 т		0.75-1.35 m		2.3-2.9 m		1.5-2.1 m		5.3-5.9 m	
PAH Compound (µg/1.)	(7.5-9.5 ft)	(S) MDL	(2.5-4.5 ft) [4] MDL	MDL	(7.5-9.5 ft) [5] MDL	MDL	(5.0-7.0 ft) [4] MDL	IdW [t]	(17.5-19.5 ft) [5]	MDL
Acenaphthene	0.3	0.1	1	0.1	,	0.1	,	0.1	47.7	. –
Acenaphthylene	ι	0.1	,	0.1	,	0.1		0.1	283	-
Anthracene	ı	0.1	•	0.1	•	0.1	,	0.1	6.2	-
Benz(a)Anthracene+Chrysene	ι	0.1	,	0.1	,	0.1	,	0.1		-
Benzo(b)Fluoranthene and										
Benzo(k) Fluoranthene	,	0.1	,	0.1		0.1	,	0.1		2
Benzo(a)Pyrene		0.1	•	0.1	,	0.1	1	0.1	,	2
Benzo(g,h,i)Perylene	,	0.2	,	0.2	,	0.2		0.2	1	S
Dibenz(a,h)Anthracene	•	0.2		0.2	•	0.2	•	0.2	1	'n
Fluoranthene	•	0.1	•	0.1	•	0.1	•	0.1	3.5	-
Huorene	0.2	0.1	,	0.1	1	0.1	1	0.1	82	-
Indeno(1,2,3-cd)Pyrene	,	0.2	,	0.2	1	0.2	•	0.2	,	5
Naphthalene	1.6	0.1	,	0.1	1	0.1	,	0.1	10,550	-
Phenanthrene	0.4	0.1	,	0.1	0.2	0.1	•	0.1	117	-
Pyrene	,	0.1		0.1	1	0.1	,	0.1	5.7	_

Notes:

- [1] MDL = Method Detection Limit
- [2] Blank value indicates compound not detected at the MDL

 - [3] Total concentration in soil leach [4] Sample from unsaturated zone
- 15) Sample from saturated zone16) Sample from within or below silt layer

TABLE 5.5

PHASE II ANALYTICAL RESULTS
PAHs IN SOIL

	BH13	3-87	OW8	3-87
	5.3-5.9 m		3.8-4.4 m	
PAH Compound (ppm)	(175-195 ft)	MDL	(12.5-14.5 ft)	MDL
Acenaphthene	2,230	30		3
Acenaphthylene	160	30	89.2	3
Anthracene	1,250	30	55.8	3
Benz(a)Anthracene	400	30	11.3	3
Benzo(b)Fluoranthene and				
Benzo(k)Fluoranthene	420	50	TR	5
Benzo(a)Pyrene	530	50	TR	5
Benzo(g,h,i)Perylene	330	150		15
Chrysene	640	30	23.7	3
Dibenz(a,h)Anthracene		150		15
Fluoranthene	2,400	30	112	3
Fluorene	780	30	16.1	3
Indeno(1,2,3-cd)Pyrene	220	150		15
Naphthalene	10,300	30	180	3
Phenanthrene	5,250	30	188	3
Pyrene	510	30	24.8	3

Notes:

- 1. MDL = Method Detection Limit
- 2. Blank value indicates compound not detected at the MDL
- 3. TR = Trace
- 4. Total concentration in soil

samples. The concentrations present are higher in the vicinity of the former coal gasification plan (BH13-87) than at the property boundary (OW8-87). However, these samples were obtained from different depth horizons, and the concentrations of PAHs at a given location are expected to vary with depth due to the gravity effect on coal tar migration.

During Phase IV, two soil samples were collected and analyzed for PAHs and metals. These results are contained in Table 5.6. The samples were collected from the southern property boundary (OW14-90) and beneath the GRCA flood control berm (OW17-90). These samples were obtained from the saturated soil zone.

With respect to the PAH data, there were no detections at OW14-90 and there were several detections at OW17-90 at concentrations of approximately 1 ppm or less. The concentrations found at OW17-90 are significantly lower than those at OW8-87 which is approximately 30 metres upgradient of OW17-90 with respect to groundwater flow. This would be expected if the contaminants at OW17-90 were present as a result of transport with groundwater. With respect to the metals data, the concentrations present in both samples are similar to background concentrations of metals in surface soil in an urban location. The concentrations present are similar to or lower than the upper limits of normal concentrations in Ontario urban surface soil presented by the MOE (3).

TABLE 5.6

PHASE IV ANALYTICAL RESULTS PAHs AND METALS IN SOIL

Parameter	Sample	Location
	OW14-90 (3.81 - 4.42m)	OW17-90 (5.33 - 5.94 m)
PAHs (ppm)		
Acenaphthene	<0.05	0.69
Acenaphthylene	< 0.05	0.05
Anthracene	< 0.05	0.35
Benz(a)anthracene	< 0.05	0.19
Benzo(b)fluoranthene		
and Benzo(k)fluoranthene	< 0.12	0.24
Benzo(a)pyrene	< 0.1	0.2
Benzo(g,h,i)perylene	< 0.2	<0.2
Chrysene	< 0.05	0.21
Fluoranthene	< 0.05	0.53
Fluorene	< 0.05	0.32
Indeno(1,2,3-cd)pyrene		
and Dibenz(a,h)anthracene	< 0.25	< 0.25
Naphthalene	< 0.05	0.42
Phenanthrene	< 0.05	1.2
Pyrene	<0.05	0.75
Metals (ppm)		
Hexavalent Chromium	0.179	0.28
Zinc	56	89/92
Cadmium	0.10	0.30/0.40
Cobalt	2.5	2.5/2.5
Copper	13.5	14.5/12.5
Lead	5.0	18.0/20.0
Chromium	17	23/24
Nickel	9	12/13
Beryllium	<1	<1/<2
Molybdenum	4	4/4
Vanadium	14	24/27
Barium	17	38/42
Mercury	<0.02	< 0.02
Arsenic	<0.5	3.0/3
Selenium	<0.5	<0.5/<1
Silver	<0.5	<0.5/<1
Antimony	<1	
*	~1	<1/<2

5.2 **GROUNDWATER**

Monitoring wells OW8-87 and OW17-90 have been noted to contain non-aqueous phase liquids (e.g. oil, tar). A fluid sample was collected from OW8-87 and analyzed for PAHs as part of Phase II. This sample contained elevated concentrations of PAHs and VOCs but the sample is not indicative of groundwater quality. The analytical results for this sample are contained in Table 5.7. Monitoring well OW17-90 was not sampled since the well contains non-aqueous phase liquids which would interfere with the assessment of groundwater quality at this location.

As discussed in Section 4, groundwater flow at the property is towards the south. Monitoring wells OW14-90 and OW15-90 are expected to intercept floating and dissolved contaminants in groundwater which passes through the soil beneath the former coal gasification plant and vicinity.

The analytical results for groundwater samples collected in 1990 from OW14-90 and OW15-90 are contained in Table 5.8. PAHs were not detected in either sample. Volatile organic compounds (VOCs) were not detected in the sample from OW15-90. Several VOCs were detected in the sample from OW14-90 including chloroform, ethylbenzene and xylenes at concentrations of up to 4.3 µg/L. A total concentration of 16 µg/L of untargeted aromatic compounds was also detected. The VOCs which were detected in OW14-90 are not necessarily solely related to coal tar deposits, but may be related to petroleum products. An auto garage and some gasoline service stations are known to have existed in the area. These facilities would

ANALYTICAL RESULTS OF FLUID SAMPLE FROM OW8-87

Compound	MDL	OW8-87
PAHs (µg/L)		
Acenaphthene	10	112
Acenaphthylene	10 .	19.3
Anthracene	10	126
Benz(a)Anthracene	10	33.7
Chrysene	10	52.5
Benzo(b)Fluoranthene and		
Benzo(k)Fluoranthene	20	41
Benzo(a)Pyrene	20	54.6
Benzo(g,h,i)Perylene	50	TR
Dibenz(a,h)Anthracene	50	-
Fluoranthene	10	239
Fluorene	10	303
Indeno(1,2,3-cd)Pyrene	50	TR
Naphthalene	10	8,788
Phenanthrene	10	805
Pyrene	10	267

ANALYTICAL RESULTS OF FLUID SAMPLE FROM OW8-87

Compound	MDL	OW8-87
VOCs (μg/L)		
Benzene	1,000	8,940
Bromodichloromethane	100	-
Bromoform	500	-
Bromomethane	100	-
Carbon Tetrachloride	500	-
Chlorobenzene	100	-
Chloroethane	100	-
2-Chloroethyl Vinyl Ether	5,000	-
Chloroform	100	-
Chloromethane	100	-
Dibromochloromethane	100	-
1,2-Dichlorobenzene	150	-
1,3-Dichlorobenzene	150	-
1,4-Dichlorobenzene	150	-
1,1-Dichloroethylene	100	-
1,1-Dichloroethane	100	-
1,2-Dichloroethane	100	-
trans-1,2-Dichloroethylene	100	-
Dichloromethane	5,000	-
1,2-Dichloropropane	100	-
cis-1,3-Dichloropropene	250	-
trans-1,3-Dichloropropene	100	-
Ethylbenzene	50	5,000
A-Methylstvrene	50	130
Mesitylene	50	740
1,1,2,2-Tetrachloroethane	1,000	-
Tetrachloroethylene	100	-
Toluene	500	4,190
1.1.1-Trichloroethane	100	•
1,1,2-Trichloroethane	250	•
Trichloroethylene	100	-
Trichlorofluoromethane	500	-
m+p Xylene	50	1,410
o-Xylene	50	780
Vinyl Chloride	250	-
Other Aromatic Compounds	50	-

Notes:

- 1. MDL = Method Detection Limit
- 2. Blank value indicates not detected at the MDL
- 3. Other Aromatic Compounds = Total concentration of tri- and tetramethylbenzenes using the response factor of mesitylene
- 4. TR = Trace

ANALYTICAL RESULTS OF GROUNDWATER SAMPLES

Compound	MDL	OW14-90	OW15-90
PAHs (μg/L)			
Acenaphthene	1	ND	ND
Acenaphthylene	1	ND	ND
Anthracene	1	ND	ND
Benz(a)Anthracene	1	ND	ND
Benzo(b)Fluoranthene	1	ND	ND
Benzo(k)Fluoranthene	1	ND	ND
Benzo(a)Pyrene	1	ND	ND
Benzo(g,h,i)Perylene	2.5	ND	ND
Chrysene	1	ND	ND
Fluoranthene	1	ND	ND
Fluorene	1	ND	ND
Indeno(1,2,3-cd)Pyrene and			
Dibenz(a,h)Anthracene	3	ND	ND
Naphthalene	1	ND	ND
Phenanthrene	1	ND	ND
Pyrene	1	ND	ND

ANALYTICAL RESULTS OF GROUNDWATER SAMPLES

Compound	MDL	OW14-90	OW15-90
VOCs (μg/L)			
Benzene	1	ND	ND
Bromodichloromethane	1	ND	ND
Bromoform	2	ND	ND
Bromomethane	10	ND	ND
Carbon Tetrachloride	2	ND	ND
Chlorobenzene	1	ND	ND
Chloroethane	10	ND	ND
2-Chloroethyl Vinyl Ether	10	ND	ND
Chloroform	1	4.3	ND
Chloromethane	10	ND	ND
Dibromochloromethane	1	ND	ND
Dibromoethane	4	ND	ND
1,2-Dichlorobenzene	1	ND	ND
1,3-Dichlorobenzene	1	ND	ND
1,4-Dichlorobenzene	1	ND	ND
1,1-Dichloroethylene	1	ND	ND
1,1-Dichloroethane	1	ND	ND
1,2-Dichloroethane	2	ND	ND
trans-1,2-Dichloroethylene	1	ND	ND
Dichloromethane	5	ND	ND
1,2-Dichloropropane	1	ND	ND
cis-1,3-Dichloropropene	1	ND	ND
trans-1,3-Dichloropropene	1	ND	ND
Ethylbenzene	1	1.1	ND
A-Methylstyrene	1	ND	ND
Methylstyrene Isomers	1	ND	ND
Mesitylene	1	ND	ND
Styrene	2	ND	ND
1,1,2,2-Tetrachloroethane	2	ND	ND
Tetrachloroethylene	1	ND	ND
Toluene	2	ND	ND
1,1,1-Trichloroethane	2	ND	ND
1,1,2-Trichloroethane	1	ND	ND
Trichloroethylene	1	ND	ND
Trichlorofluoromethane	2	ND	ND
m+p Xylene	2.	TR	ND .
o-Xylene	1	1.5	ND
Vinyl Chloride	5	ND	ND
Other Aromatic Compounds	1	16	ND
	•	••	110

Notes:

- 1. ND = Not Detected
- 2. TR = Trace
- 3 Other aromatic compounds = total concentration of tri- and tetramethylbenzenes using the response factor of mesitylene.

likely have had underground storage tanks which could have leaked into the ground in the past.

The non-aqueous phase liquids which are encountered in the boreholes and at well locations OW8-87 and OW17-90 represent a potential source of groundwater contamination. The ultimate discharge point of groundwater is undefined, however it appears that coal tar material in the saturated soil zone does not readily solubilize into groundwater and migrate, as evidenced by the analytical results of soil and water samples from monitoring wells OW14-90 and OW15-90.

5.3 GRAND RIVER WATER AND SEDIMENT

The underwater inspection of the Grand River was carried out over a 50 metre by 50 metre area as shown on Figure 3.1 presented previously. The intensity of the search pattern by the diver was greatest near the shore as discussed in the report by Integrated Explorations (Appendix A). The diver visually observed the bottom sediments and used white plastic probes driven 75 to 150 millimetres into the soil every 0.6 to 1.0 metres to detect any buried coal tar. Coal tar, if any is present, which contacts the probe is made visible on the probe due to the affinity of oils for the plastic and the propensity to spread as a thin film over the plastic surface. In addition, seven holes were cut in the ice and underlying sediments were agitated with a pole to observe a possible oil sheen.

There were no observances of coal tar or oil material in water or sediments through the efforts described above. Therefore, it is considered that coal tar contamination does not exist in the survey area, which is the most probable area in the river for this material to appear in relation to the former coal gasification plant.

As part of the December 1988 river inspection, two surface water and three sediment samples were collected and analyzed for PAHs. In addition, two water samples were collected in May 1990 and analyzed for PAHs. Sample locations are shown on Figure 3.1 presented previously. The water samples were collected from approximately 20 cm above the river bottom.

Analytical results for sediment and water samples are contained in Tables 5.9 and 5.10, respectively. Sediment samples S-1 and S-2 were collected within the river inspection area. These samples contain low concentrations of various PAHs. The total concentrations of PAHs in these samples were 4.42 ppm in S-1, 4.16 ppm in S-1 duplicate and 1.93 ppm in S-2. Sediment sample S-3 was collected upstream of the survey area and just downstream of a storm outfall pipe. The total concentration of PAHs in this sample was 5.66 ppm. The concentrations of PAHs at all three sampling locations are similar.

Sample S-3 is considered to be representative of background conditions in the Grand River near the property. The boreholes drilled during the geotechnical investigation adjacent to the area of sample S-3 (i.e. BH205, 206, 207) did not encounter any coal tar deposits based on

TABLE 5.9

ANALYTICAL RESULTS OF GRAND RIVER SEDIMENT SAMPLES

Compound (ppm)	MDL	S-1	S-1 (Dup)	S-2	S-3
Acenaphthene	0.02	ND	ND	0.02	0.02
Acenaphthylene	0.02	ND	ND	ND	ND
Anthracene	0.02	0.03	0.06	0.03	0.1
Benz(a)Anthracene	0.02	0.3	0.3	0.1	0.2
Benzo(b)Fluoranthene and					
Benzo(k)Fluoranthene	0.02	1.0	0.9	0.4	1.1
Benzo(a)Pyrene	0.02	0.5	0.4	0.1	0.7
Benzo(g,h,i)Perylene	0.04	0.2	0.3	0.1	0.4
Chrysene	0.02	0.6	0.5	0.1	0.5
Dibenz(a,h)Anthracene	0.04	0.09	0.1	TR	0.1
Fluoranthene	0.02	0.6	0.6	0.4	0.9
Fluorene	0.02	ND	ND	ND	0.04
Indeno(1,2,3-cd)Pyrene	0.04	0.2	0.2	0.08	0.3
Naphthalene	0.02	ND	ND	ND	ND
Phenanthrene	0.02	0.3	0.2	0.2	0.5
Pyrene	0.02	0.6	0.6	0.4	0.8

Notes:

ND - Not Detected

TR - Trace

MDL - Method Detection Limit

TABLE 5.10 ANALYTICAL RESULTS OF GRAND RIVER WATER SAMPLES

Compound (µg/L)	MDL (1)	W-1	W-2	MDL (2)	W-3	W-4
Acenaphthene	0.05	ND	ND	1.2	ND	ND
Acenaphthylene	0.05	ND	ND	1.5	ND	ND
Anthracene	0.05	ND	ND	2	ND	ND
Benz(a)Anthracene	0.05	ND	ND	2	ND	ND
Benzo(b)Fluoranthene and						
Benzo(k)Fluoranthene	0.05	0.06	ND	4	ND	ND
Benzo(a)Pvrene	0.05	ND	ND	3	ND	ND
Benzo(g,h,i)Pervlene	0.1	ND	ND	5	ND	ND
Chrysene	0.05	ND	ND	2	ND	ND
Dibenz(a,h)Anthracene	0.1	ND	ND	NA	NA	NA
Fluoranthene	0.05	0.06	ND	2	ND	ND
Fluorene	0.05	ND	ND	1.5	ND	ND
Indeno(1,2,3-cd)Pyrene	0.1	ND	ND	NA	NA	NA
Naphthalene	0.05	ND	ND	1.2	ND	ND
Phenanthrene	0.05	ND	ND	2	ND	ND
Pyrene	0.05	ND	ND	1.5	ND	ND
Dibenz (a,h) Anthracene and						
Indeno (1,2,3-cd)Pyrene	NA	NA	NA	8	ND	ND

Notes:

ND - Not Detected

NA - Not Applicable
(1) Method Detection Limit for samples W-1 and W-2
(2) Method Detection Limit for samples W-3 and W-4

visual and olfactory observations. It would be expected that PAHs would be found in the river sediments because of the developed nature of the area and the many potential sources of PAHs in a developed area. A study of typical concentrations of PAHs in the environment by the MOE (5) indicated the presence of benzo (a) pyrene in soils and sediments near a highway at 2 ppm. It would be expected that similar concentrations may be encountered near roadways in the watershed of the Grand River. These sediments would then be expected to migrate to the river. Therefore, the concentration of PAHs found in the Grand River sediment samples could be expected to result from background activities.

The water sample collected in December 1988 adjacent to the former coal gasification plant (just upstream of sediment sample location S-2) showed two detections; benzo(b)fluoranthene/benzo(k)fluoranthene at $0.06\,\mu\text{g/L}$ and fluoranthene at $0.06\,\mu\text{g/L}$. These values are slightly above the detection limit of $0.05\,\mu\text{g/L}$. These compounds were also detected in all three sediment samples which were analyzed. It is possible that these compounds were present in the water sample as a result of suspended sediments containing PAHs. The sediments may have become suspended by the movement of the diver.

The water sample collected in May 1990 adjacent to the former coal gasification plant did not contain detectable quantities of PAHs. This sample was collected without any agitation of sediments. These results may be more indicative of the water quality in the Grand River near the former coal gasification plant than the earlier results.

PAHs were not detected in the water samples which were collected in December 1988 and May 1990 upstream of the former coal gasification plant.

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

Based on the information presented in this report, the following conclusions are made:

- The material underlying the former coal gasification plant includes concrete and soil containing coal tar residues. Gasoline and diesel fuel odours are also noted in this area.
- 2) Coal tar residues are present in soil to the west of the former coal gasification plant. These residues are found sporadically and may have been placed in part during historical filling along the edge of the Grand River.
- Coal tar residues are present in soil beneath the GRCA flood control berm.
- 4) The coal tar residues are generally found in the saturated soils and represent a potential source of groundwater contamination.
- 5) Groundwater flow on the property appears to be approximately parallel to the Grand River and toward the south.
- 6) Groundwater at the southern end of the property does not exhibit contamination by PAHs. One monitoring well exhibits low

concentrations of VOCs. The VOC contamination has various potential sources, including the coal tar residues and former automobile service stations in the area.

- 7) Coal tar residues have not migrated to the southern property boundary as evidenced by the absence of PAHs in soil and groundwater at the two monitoring wells at the boundary.
- 8) Coal tar residues are not visually present in the bed of the Grand River adjacent to the former coal gasification plant.
- 9) Water and sediment in the Grand River does not exhibit a detectable impact by PAHs from the former coal gasification plant.

6.2 RECOMMENDATIONS

Based on the above, the following recommendations are made:

 Any proposed disturbance of the area containing coal tar residues should be reported in writing to the MOE, Waste Management Branch prior to commencement and conducted in accordance with applicable regulations and guidelines.

- 2) A monitoring program should be implemented in the short term to assess the potential migration of contaminants in groundwater and surface water. This would include:
 - i) measuring water levels in the monitoring wells and the Grand
 River quarterly for one year;
 - ii) collecting water samples from wells which do not contain coal tar and from two locations in the Grand River on a semi-annual basis for one year (groundwater samples would be analyzed for PAHs and VOCs, surface water samples would be analyzed for PAHs); and
 - iii) reporting all results to the MOE.

The need for monitoring would be re-assessed at the end of the one year period.

All of Which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES

Julian Henguen)

Donald H. Haycock, P. Eng.

Julian Hayward, P. Eng.

REFERENCES

- 1) Proposal for Additional Investigative Work, Former Galt Gas Co. Site, Conestoga-Rovers & Associates, June 1989.
- 2) Subsurface Investigation, Former Galt Gas Co. Site, Conestoga-Rovers & Associates, September 1987.
- Guidelines for the Decommissioning and Clean-up of Sites in Ontario,
 Ontario Ministry of the Environment, January 1989.
- 4) Hvorsiev, M. J. 1951. Time lag and soil permeability in groundwater observations. U.S. Army Corps Engrs. Waterways Exp. Sta. Bull. 36, Vicksburg, Miss.
- 5) Polynuclear Aromatic Hydrocarbons, A Background Report Including Available Ontario Data, ARB-TDA-Report No. 58-79, Ministry of the Environment, Air Resources Branch, Technology Development and Appraisal Section, September 1979.

				1
*				
		100		
			; (%)	

APPENDIX A

GRAND RIVER INSPECTION REPORT BY INTEGRATED EXPLORATIONS

DIVING INSPECTION OF COAL TAR SITE IN THE GRAND RIVER, CAMBRIDGE (GALT), ONTARIO

Report No. PJ8818-1

December 29, 1988

REPORT PREPARED BY

Al Melkic,

DIVING INSPECTION OF COAL TAR SITE IN THE GRAND RIVER, CAMBRIDGE (GALT), ONTARIO

INTRODUCTION #

On December 18. 1988, Integrated Explorations conducted an underwater inspection of the area suspected of narbouring coal tar in the Grand River. The site was adjacent to the area known as the "Mill Race on the Grand", and located on the east bank, south of the Samuelson railway bridge in Cambridge (Galt). The purpose of the dive was to survey an area bounded by a 50 by 50 meter square for signs of coal tar using visual and coal tar probing methods. Some representative samples of water and sediment were also collected from the area.

Those involved in the project included the following: Mr. Julian Hayward who directed the survey, Mr. Al Melkic, who supervised the dive team and acted as stand by diver, Mr. Yves Rollin who worked as our primary diver, and Mr. Christopher Wade who functioned as the dive tender. Also, various OMOE officials dropped in briefly to observe our survey operation.

SITE OBSERVATIONS

- 1 AREA SURVEYED is illustrated in the attached survey plan. It was bounded by a 50 by 50 meter square. As illustrated in our drawing, the diver conducted an intensive search near shore and a looser but more extensive search as he proceeded towards the middle of the river. This is a standard procedure as contaminants entering rivers from the land are usually found close to shore.
- 2 DIVING CONDITIONS included ice cover of 4 to 6 inches and two feet visibility. Observations made by the diver were relayed to the surface crew. Ice holes were cut in strategic places to allow the diver to verify his position with respect to surface transect lines which were layed out over the surface of the ice.
- 3 TAR PROBING TECHNIQUE was used to aid visual inspection as buried coal tar is difficult to distinguish from silt and clay. Technical notes pertaining to the coal tar probing methodology are appended to this report.

- 4 PRESENCE OF COAL TAR was not indicated anywhere in our survey. Our experience from other coal tar surveys would lead us to believe that there is no coal tar present in the area. It should be noted that even if coal tar is hidden beneath superficial sediments, the movement of the diver and his umbilical line combined with the continual probing of the sediments would be sufficient to reveal such deposits.
- 5 RIVER SUBSTRATE was characterized by cobbles and boulders within 5 to 7 meters from shore. These were covered with a light silt varying between 0 to 15 cm in thickness. Further out from shore where the depth approached 6 ft. the bottom substrate changed to between 2 1/2 and 5 cm of silt cover over gravel with a clay substrata. Some areas were encountered where the tar probe could be pushed 36 cm into the soft sediment.
- 6 SEDIMENT AND WATER SAMPLES were collected at points depicted in the survey sketch map attached to this report. The two water samples were collected at a height of 20 cm from the river bottom. The three sediment samples were collected by scraping material directly into the sampling jars.

Technical Notes Regarding Novel Tar Probing Technology

Integrated Explorations has developed a number of techniques for quickly estimating the extent of underwater coal tar deposits without resorting to costly chemical analysis. Some of these techniques were used to develop the first map delineating the coal tar spill site in the Rideau River in 1986. This methodology was later improved upon and used with great success at the Port Stanley site in 1987. Currently the probing technique is being used in the Trent River to explore for creosote contamination in outlying areas for the Kingston Regional MOE. In February of 1989 our firm will be using this probing method to delineate the extent of a coal tar contaminated site in Owen Sound for the London Regional Ministry of the Environment.

With this method, oily and tar-like substances occurring as minute specks are made visible by virtue of their affinity for the plastic probe and their propensity to spread as a thin film over such surfaces. This provides a distinct advantage in detecting tiny specks covered by sediments. It also makes it easier to spatially resolve contaminated areas by providing a large number of visual indications per unit area without having to retrieve actual samples except for verification. With this technique, a diver can also distinguish between tar-like substances and clay which in our experience has always presented difficulties underwater.

APPENDIX B

FIELD METHODS FOR PHASE IV INVESTIGATION

1.0 FIELD INVESTIGATION

The Phase IV field investigation program was conducted during the period of February 5, 1990 to May 3, 1990. This program consisted of the installation of three groundwater monitoring wells, completion of five soil boreholes, soil sampling of the groundwater monitoring wells and soil boreholes, monitoring of water levels at four groundwater monitoring well locations and two river level stations, groundwater and river water sampling and level surveying of the installed groundwater monitoring wells and soil boreholes. A detailed description of these tasks follows.

1.1 GROUNDWATER MONITORING WELL INSTALLATION

The firm of Strata Drilling Incorporated of Cambridge, Ontario, was retained by CRA to install three groundwater monitoring wells; OW14-90, OW15-90 and OW17-90 (Figure 3.1, previous). The boreholes were advanced utilizing a CME-55 truck-mounted drill rig equipped with 4-1/4 inch I.D. hollow stem augers. During the course of the drilling operation split-spoon samples of the soils were collected at 2.5 foot intervals in order to assess the stratigraphic sequences at each of the boreholes. The soil samples were examined and the descriptions logged by a qualified CRA technician. Blow counts for Standard Penetration Tests (SPT) were also recorded during the soil sampling event. The recovered soil samples were labeled as to sample interval and location and retained for future reference.

Once the desired borehole depth had been achieved, groundwater monitoring wells were installed into the borehole.

Construction of the groundwater monitoring wells consisted of a 4.0 foot length of #10 slot, 2 inch diameter, stainless steel well screen connected by coupled 2 inch diameter black iron riser pipe. Construction details for the groundwater monitoring wells installed during the Phase IV investigation are provided in Table B-1.

The groundwater monitoring well installations were completed with a native sand pack caved to a minimum height of 2.0 feet above the top of the screen. The remaining annular space was filled with a mixture of cuttings and bentonite grout to within 2.0 feet of the surface which was subsequently filled with concrete. A protective steel casing was placed over the groundwater monitoring well and set into the concrete to complete the installation.

1.2 <u>SOIL BOREHOLES</u>

The firm of Strata Drilling Incorporated was also retained by CRA to complete five soil boreholes; BH16-90, BH18-90, BH19-90, BH20-90 and BH21-90 (Figure 3.1, previous). Each of these boreholes was advanced to the desired depth utilizing the equipment and methods employed during the installation of the groundwater monitoring wells. As previously, during the course of the drilling operations, split-spoon samples of the soils were collected at 2.5 foot intervals in order to assess the stratigraphic sequences at each of the boreholes. The retrieved soil samples were examined and the

TABLE B-1

MONITORING WELL COMPLETION DETAILS

	Ground	Reference	Total	Screened	Interval	
Well Number	Elevation (m AMSL)	Elevation (m AMSL)	Depth (m)	Elevation (m AMSL)	Depth (m)	Screened Material
OW14-90	267.541	268.409	5.79	263.84 - 262.62	4.57 - 5.79	sand
OW15-90	267.639	268.542	5.49	264.27 - 263.05	4.27 - 5.49	sand
OW17-90	268.484	269.560	5.83	264.95 - 263.73	4.61 - 5.83	sand

descriptions logged by a qualified CRA technician. Blow counts for Standard Penetration Tests (SPT) were also recorded during the soil sampling events. The recovered soil samples were labeled as to the sample interval and location and retained by CRA for future reference.

Upon completion of the borehole to the desired depth, the borehole was backfilled using only clean cuttings. The remaining annular space was then grouted using a bentonite grout to within 2.0 feet of the surface, which was subsequently filled with concrete to provide a good surface seal.

In order to prevent any form of cross-contamination from borehole to borehole, the drilling rig and all equipment was washed using a high pressure, hot water (steam) washer. The wash water was collected in a trough and pumped to 45 gallon drums for future disposal.

1.3 SOIL SAMPLING

During the course of the drilling operations for the groundwater monitoring wells and the soil boreholes, soil samples were collected at 2.5 foot intervals, using split-spoon sampling techniques. The recovered soil samples were examined and the descriptions logged by a qualified CRA technician. The soil samples were retained in precleaned laboratory glass jars and labeled as to the sample interval and location. Soil samples selected for laboratory analysis were packed on ice in a secure chest

and shipped via courier to the contract laboratory. Chain-of-Custody forms accompanied each shipment.

In order to prevent any cross-contamination between successive soil samples and prior to taking of the first soil sample, the split-spoon sampling device was cleaned using a clean water wash followed by a distilled water rinse, a methanol rinse and a final distilled water rinse.

1.4 GROUNDWATER SAMPLING

Prior to groundwater sampling, each groundwater monitoring well was developed by removing a minimum of five standing well volumes of groundwater from the well using a Wattera pump and polytubing set within the well casing. Stabilization criteria were met when two consistent measurements of pH and conductivity were recorded.

Observations of color, turbidity and odor were also noted during the well development and are presented in Table B-2 along with the aforementioned development criteria.

Once the groundwater monitoring wells had been suitably developed, two groundwater samples were collected from each of the wells. The first sample, for Volatile Organic Compounds (VOC), was collected in a 40-ml laboratory glass vial. A second sample, for Polynuclear Aromatic Hydrocarbons (PAH), was collected in a 1-litre amber glass container. All samples were assigned a unique sample number, packed on ice in a secure

TABLE B-2

WELL DEVELOPMENT AND STABILIZATION PARAMETERS

Comments	moderate recharge moderate recharge moderate recharge moderate recharge	contains silty sands contains silty sands contains silty sands	sheen, moderate recharge sheen, moderate recharge sheen, moderate recharge sheen, moderate recharge
Odour	ионе поне поне	лопе попе попе	moderate coal tar moderate coal tar moderate coal tar moderate coal tar
Colour	brown brown brown brown	dark grey dark grvy dark grey	black black grey grey
Clarity	very turbid very turbid very turbid very turbid	very turbid very turbid very turbid	very turbid very turbid very turbid very turbid
Conductivity (umhos/cm)	1020 1020 1020 1020	920 920 920	1020 1040 1040 1040
Hd	6.0 6.3 6.4 6.4	79.9 79.9 70.7	6.7 6.6 6.6 6.6
Volume Removed (L)	9.0 4.0 4.0	4.5 2.0 3.0	3.0 3.0 3.0
Well Volume (L)	4.0	3.0	2.0
Well Number	OW14-90	OW15-90	OW17-90

chest and shipped via courier to the contract laboratory. A chain-of-custody form accompanied the shipment of samples.

1.5 RIVER WATER SAMPLING

Water samples from the Grand River were collected on May 3, 1990, at two locations, approximately 20 cm above the river bed. The method employed in order to retrieve the river water samples consisted of securing a rubber stopper sealed, 1-litre, amber glass bottle to a long pole with tape. The bottle was then placed into the river, approximately 10 feet from shore, such that the bottle was upright and the base of the bottle rested on the river bed. The rubber stopper was then removed allowing the bottle to fill. The retrieved sample was then assigned a unique sample number, packed on ice in a secure chest and shipped via courier to the contract laboratory. A chain-of-custody form accompanied the shipment.

1.6 WATER LEVEL MONITORING

During the course of the Phase IV investigation, groundwater elevations were measured in groundwater monitoring wells; OW8-87, OW14-90, OW15-90 and OW17-90 on several occasions (see Table 4.1, previous). The water levels were obtained using a Solinst water level indicator which emits an audible signal when the probe comes in contact with the water surface. The probe is attached to a flat embossed tape, calibrated to 1 cm intervals, which allows for accurate water level readings to

within 2 mm. In order to avoid any cross-contamination between groundwater monitoring wells and prior to the first reading, the stainless steel probe was washed with a methanol and distilled water rinse.

1.7 LEVEL SURVEY

In order to establish horizontal and vertical control, CRA conducted a level survey of the groundwater monitoring wells and boreholes in February 1990. The reference and ground elevations are included on the stratigraphic and instrumentation logs in Appendix C.

1.8 SINGLE WELL RESPONSE TESTS

Single well response tests were conducted on two groundwater monitoring wells; OW14-90 and OW15-90. The method employed in the tests involved displacing the groundwater within the well casing with a slug of known volume and monitoring the water levels, over time, as they returned to the static level. The recorded date was then analyzed following methods outlined by Hvorslev (1951) to determine the hydraulic conductivity.

APPENDIX C

BOREHOLE LOGS

SOIL CLASSIFICATION SYSTEM (MODIFIED U.S.C.)

	3012 02			
	MAJOR	DIVISION	GROUP SYMBOL	TYPICAL DESCRIPTION
	HIGHLY OR	BANIC SOILS	PI	PEAT AND OTHER HIGHLY ORGANIC SOILS
ş	==		Gw	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES, < E% FINES
22.0	12 CF COAR CF 1144	CLEAN GRAVELS	GP	POORLY-GRADED GRAVELS, AND GRAVEL- SAND MIXTURES. < 5% FINES
N N N	GRAVELS MORE THAN MALF COANSE FRACTION LAGGR THAN HO 4 SIEVE SIE		CM	SILTY GRAYELS, GRAYEL-SAND-SILT MIXTURES > 12% FINES
4E0 80	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	DIRTY GRAVELS	GC	CLAVEY GRAVELS, GRAVEL-SAND-CLAY MISTURES > 12% FINES
COARS CANHED SOILS (UNDAR THAN HO 306 SIEVE SIZE)			sw	WELL-GRADED SANDS, GRAYELLT SANDS, < 3% FINES
COAR	SANDS MORE THAN HALF COARTE PARCITON BURLLER THAN MO. 4 SIEVE SIZE	CLEAN SANDS		POORLT-GRADED SANDS, OR GRAVELLY SANDS, < SE FINES
HAH HAL	SANDS THAN HALL TION BUALL NO. 4 SIEVE		SM	SILTY SANDS, SAND-SILT MIXTURES > 12% FINES
ומסשנ	100A	DIRTY SANDS	sc	CLATET SANDS, SAND-CLAY MISTURES > 12% FINES
1221	2510	SILTS W "A" LINE ON	ML	INDRGANIC SILTS AND YERY FINE SANDS. ROCK FLOUR, SILTY SANDS OF SLIGHT PLASTICITY
30 316 46	PLAS	TICITY CHART; IGIBLE ORGANIC	мн	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS, FINE SANDT OR SILTY SOILS
211.S 15 HO 10		CLAYS	CL	INORGANIC CLAYS OF LOW PLASTICITY, GRAVELLT, SANDY, OR SILTY CLAYS, LEAD CLAYS
AINEO S		YE "A" LINE ON TIGITY CHART:	C1	INORGANIC CLAYS OF MEDIUM PLASTICIT
FINE, GRAINEO SOILS	NEGL	NEGLIGIBLE ORGANIC CONTENT		INORGANIC CLAYS OF HIGH PLASTICITY.
FINE GRAINEO SOILS INORE THAN HALF BT WEICHT PASSES HO 100 SIEVE SIES)	ORGANIC S	ILTS & ORDANIC CLAT	oL OL	ORGANIC SILTS AND ORGANIC SILTY CLAY OF LOW PLASTICITY
11 PRO1		OW "A" LINE ON STICITY CHART	. он	ORGANIC CLAYS OF HIGH PLASTICITY

HOLE DESIGNATION, BH1-87

PROJECT NO. 2087

DATE COMPLETED. MARCH 16, 1987

(L - 7)

CL.ENT

DRILLING METHOD SOLD AUGER

LOCATION:

AS PER PLAN

MILLRACE ON THE GRAND NO

PROJECT NAME: FORMER GALT GAS CO SITE

CRA SUPERVISOR B FEDY

	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION			MPLE	
BG		m AMSL	INSTALLATION	2	1 2	,
	GROUND SURFACE	268.43		¥ @₩0	T E	Į.
	CONCRETE FLOOR SLAB	268.03		1		
1.0	GW GRAVEL (Fill): some sond, maximum aggregate size. 20 mm dia., compact, brown, moist		6.5.7 e BOREHOLE			
	SM SAND (Fill): some silt, little gravel, poorly graded, medium grained, dense, brown, maist	267.23	— cuttings			
2.0	SM SAND: some silt, poorly graded, medium grained, Jense, brown, moist	266.23				
3.0	granted, dense, drawn, more					
4.0	- becomes water saturated with accasional thin seams of coarse SP.	264 43	(2000) (2000) (2000)			
5.0	END OF HOLE @ 4.90 m BGS.	263.53				
6.0						
7.0						
8.0						
9.0						
10.0						
11.0						
12.0						
13.0						

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

(1-2)

PROJECT NAME: FORMER GALT GAS CO SITE

HOLE DESIGNATION 8-2-87

PROJECT NO.

2087

DATE COMPLETED. MARCH 16, 1987

CLIENT

MILLRACE ON THE GRAND INC.

DRILLING METHOD 95mm .D -SA

LOCATION:

CRA SUPERVISOR- B FEDY AS PER PLAN ELEVATION DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS MONITOR SAMPLE INSTALLATION m AMSL m BG GROUND SURFACE 268.44 CONCRETE FLOOR SLAB 268.04 BOREHOLE GW GRAVEL (Fill): some sand, compact, brown, 267.44 1.0 155 10 SM SAND (Fill): some silt, trace clay, fine CUTTINGS grained, compact, brown, maist 266.64 255 2.0 SM SAND: some silt, layered, dilatent, law to non-plastic, compact, brown, maist, occasional layer of meaium grained SP 388 55 265.44 3.0 SP SAND: trace silt, trace fine gravel, layered, 455 28 medium grained, very dense, brown, moist 264 44 4 0 SP SAND: uniform, layered, becomes grey. 555 25 water saturated 263.84 - strong coal tor odour ١,8 655 5.0 263.24 END OF HOLE @ 5.20 m BGS. 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND

STATIC WATER LEVEL Y (16/03/87)

HOLE DESIGNATION 8-3-87

DATE COMPLETED WARCH 16, 1987

PROJECT NO.. 2087

CL.ENT MILLRACE ON THE GRAND INC.

PROJECT NAME: FORMER GALT GAS CO SITE

DRILLING METHOD. 95mm .0 -SA

(--9)

LOCATION:

AS PER PLAN

CRA SUPERVISOR B FEDY

	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION			MPLE	
r BG		m AMSL	INSTALLATION	7	5	7
	GROUND SURFACE	267.06			÷ E	4 L J
	CONCRETE FLOOR SLAB		汉景 第	+ - 2	\vdash	
1.0	GW GRAVEL (Fill): some sand, compact, brown, moist, becomes black with occasional coal fragments	266.66	BOREHOLE	155	X	28
2 0	SP SAND: trace silt, layered, fine grained, dense, brown, moist, becomes siltier, water saturated	265.66	COST — CUTTINGS	255		25
3.0	— thin seam of fine SM, black — grey, strong coal tar odour	264 76		388	X	29
	— brown/yellow with strong gasoline odour	263.16		455	X	25
4.0	END OF HOLE @ 3.90 m BGS.	203.76				
5.0						
6.0						
70						
8.0						
9.0						
10.0						
11.0						
12.0						
13.0						
. 3.0						

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

STATIC WATER LEVEL Y (16/03/87)

STRATIGRAPHIC AND INSTRUMENTATION LOG

(OVERBURDEN)

PROJECT NAME FORMER GALT GAS CO SITE

PROJECT NO.. 2057

CLENT

MILLRACE ON THE GRAND INC

OCATION: AS PER PLAN HOLE DESIGNATION B-4-87

DATE COMPLETED MARCH 6, 1987

DRILLING METHOD. 95mm D -SA

(1- 0)

CRA SUPERVISOR B FEDY

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	I SA	MPLE	
₩ BG	STRATIGRAPHIC DESCRIPTION & REMARKS	m AMSL	INSTALLATION	3/	3 1	· ·
. 50	GROUND SURFACE	267.04) 3 00 mag	1 1	V 4 1 3:
0	CONCRETE FLOOR SLAB GW GRAVEL (Fill): some sanc, occasional coal fragments, bricks and other rubble, loose, prown	266.64	- 6 ST BOREHOLE			
- 20	to black, maist SW-SM SAND (Fill): some gravel, some silt, some flyash, accasional pebbles, wood fragments, slag, compact, white to brown, mais!	265.64	CUTTINGS	155		2C 37
- 30	SM SAND: same silt, paorly gradec, fine to medium grained, compoct, brown, water saturated — grey/block, strong coal far agour.	264.76 264.64 263.99		355		. 4
- 4.0	SP SAND: same grovel, medium to coarse grained, compact, grey to yellow, water saturated, strong gasoline adour	263.24		455		, ę
- 50	- END OF FIDE W J.80 III 503.					
- 6.0						
70						ı
- 80						
- 9.0						
- 10.0						
11.0		-				
120						
13.0						

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

PROJECT NAME: FORMER GALT GAS CO SITE

HOLE DESIGNATION 8-5-87

PROJECT NO.

2087

DATE COMPLETED MARCH 17 1981

MILLRACE ON THE GRAND INC.

DRILLING METHOD 95mm .D -SA

LOCATION:

AS PER PLAN

CRA SUPERVISOR B FEDY

-	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION			MPL	_
1 3G		m AMSL	INSTALLATION	_ 0	\$	7
	GROUND SURFACE	266.59		300	ŧ	
	CONCRETE FLOOR SLAB	255.10	\$26X	1 -		
	GW GRAVEL (Fill): some sand, compact, brown, moist	266.19 265.79	BOREHOLE			
1.0	SM SAND (Fill): some silt, little gravel, accasional brick fragments and other rubble,		公 公公	188	X	9
	Voose, brown to red, dry	265.19	CUTTINGS	255		
2.0	SM SAND: some silt, fine grained, uniform, dilatent, layered, oxidized seams, compact, light			233		
	brown, water saturated	264 19		388	X	2
3.0	- thin seam gravel SG			455	\Box	
				-33		
4.0	- thin seam gravel SG	262.39	交換器	588	X	4
	END OF HOLE @ 4.20 m BGS.					
5.0						
6.0						
7.0						
8.0						
9.0						
10.0						
11.0						
	1	1				
12.0						
12.0						

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

STATIC WATER LEVEL ____ (16/03/87

PROJECT NAME: FORMER GALT GAS CO SITE

PROJECT No. 2087

MILLRACE ON THE GRAND INC.

GRAIN SIZE ANALYSIS

CL ENT

LOCATION: AS PER PLAN HOLE DESIGNATION: 8-6-87

CRA SUPERVISOR B. FEDY

WATER FOUND STATIC WATER LEVEL (16/03/87)

DATE COMPLETED MARCH 17, 1981

DRILLING METHOD SOLD AUGER

(1-12)

PTH BG	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION m AMSL	MONITOR INSTALLATION	SA	MPLE \$	
-	GROUND SURFACE	267.04) # @ w a	A T E	774
	CONCRETE FLOOR SLAB		2002	1 3	-	- 5
1.0	GW GRAVEL (Fill). some sand, accasional pebbles, coal fragments, compact, black, moist.	266.64 266.34	200mm BOREHOLE			
	SG SAND: some gravel, some silt, medium grained, compact, light brown, dry	265.54	CAPPED WTH BENTONITE PELLETS			
2.0	CONCRETE SLAB	265.24 264.94	PELLETS PELLETS			
3.0	ML SILT some sond, fine grained, cohesive, black, water saturated. SM SAND: some silt, trace clay, trace grave., medium grained, grey/black, water saturated,	264.54	(A) (A) (A)			
4.0	END OF HOLE @ 2.50 m BGS.					
50						
5.0						
70						
8.0						
9.0						
10.0						
11.0						
120						
13.0						

HOLE DESIGNATION: 8-7-87

PROJECT NAME: FORMER GALT GAS CO. SITE

PROJECT NO. 2087

MILLRACE ON THE GRAND INC.

DATE COMPLETED. MARCH 17, 1987. DRILLING METHOD. 95mm D -SA

(4-13)

CLIENT. LOCATION:

AS PER PLAN

CRA SUPERVISOR B. FEDY

PTH BG	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION m AMSL	MONITOR INSTALLATION	SA	MPLE	
. 50	GROUND SURFACE	268.05	inarnes non	omake.	A T E	2>4 5
1.0	SM TOPSOIL: organic, black, moist SM SAND (Fill): sand, some silt, occasional coal fragments and rubble, trace flyash and slag, fine grained, loose, brown to yellow, dry, coal smell — moist, dilatent, compact, coal tar adour	267.65	BOREHOLE CUTTINGS	155	X	:.
3.0	SM SAND: some silt, uniform, fine grained, dilatent, layered, oxidized seams, compact to dense, light brown, very moist - water saturated	265.45 265.05	Z	3SS 4SS		
5.0	- thin seam of CL, some silt, firm END OF HOLE @ 4.40 m BGS.	263.65		555	\times	,
6.0						
7.0						
8.0 9.0						
10.0						
11.0						
12.0						
12.0					1	

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND STATIC WATER LEVEL (17/03/57)

PROJECT NAME: FORMER GALT GAS CO SITE

HOLE DESIGNATION: OW8-87

PROJECT NO. 2087

MILL RACE ON THE GRAND INC

DATE COMPLETED. April 20, 1987 DRILLING METHOD: 108mm (.D. H.S.A.

_-01)

CLENT LOCATION:

AS PER PLAN

CRA SUPERVISOR P HAYES

STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION			MPLE	
	m AMSL	INSTALLATION	N	9	Ž
REFERENCE ELEVATION (Tap of riser) GROUND ELEVATION	269.178 268.16	LOCKING CAP	3 B W B	A T E	A L JE
SM - SAND AND SILT (FILL), some gravel, poorly sorted, loose, prown, moist.		50 mm € B.I.P. PIPE 200mm € BOREHOLE	1SS 2SS	X	·8
-void 2.27m to 2.59m		CEMENT GROUT	355	X	12
SP — SAND, some gravel, loose, paorly graded, meaium grained, brown, water saturated,	265.26 264.81	X	4SS 5SS	X	14
weak cod for adour. - very loose, plack, sample is coal for saturated, strong coal for adour, split spoon coated in a coal for water mix,		S → BENTONITE N	655		4
 HNU reading downhole 6.8ppm. fine grained, poorly graded, loose, sand grains black, sample saturated with coal tar 	262.52	SAND	755	\boxtimes	2
CL — CLAY, some silt, soft, massive, low plastic, brown, maist, coal tar found as streaks and plebs throughout sample	262.06		222		3
END OF HOLE AT 6.1 m B.G.S.		Screened Interval: 5.18 m to 6.1 m AMSL Length91 m			
		Slot # 10 Material— Stainless Steel			
	GROUND ELEVATION SM - SAND AND SILT (FILL), some gravel, poorly sorted, loose, brown, maist. -vaid 2.27m to 2.59m SP - SAND, some gravel, loose, baarly graded, medium grained, brown, water saturated, weak coal tar adour very loose, black, sample is coal tar saturated, strong coal tar adour, split spoon coated in a coal tar water mix, HNU reading downhole 6.8ppm. -fine grained, poorly graded, loose, sand grains black, sample saturated with coal tar CL - CLAY, some silt, soft, massive, low plastic, brown, maist, coal tar found as streaks and blebs throughout sample	REFERENCE ELEVATION (Tap of riser) GROUND ELEVATION SM - SAND AND SILT (FILL), some gravel, poorly sorted, loose, prown, moist. -vaid 2.27m to 2.59m SP - SAND, some gravel, loose, paorly graded, medium grained, brown, water saturated, weak coal tar adour very loose, plack, sample is coal tar saturated, strong coal tar adour, split spoon coated in a coal tar water mix, - HNU reading downhole 6.8ppmfine grained, poorly graded, loose, sand grains black, sample saturated with coal tar CL - CLAY, some silt, soft, massive, low plastic, brown, maist, coal tar found as streaks and plebs throughout sample	REFERENCE ELEVATION (Tap of riser) GROUND ELEVATION SM - SAND AND SILT (FILL), some gravel, poorly sorted, loose, brown, moist. -void 2.27m to 2.59m SP - SAND, some gravel, loose, poorly graded, medium grained, brown, water saturated, weak cool tar adour very loose, black, sample is coal tar saturated, strong coal tar adour, split spoon coated in a coal tar water mix, - HNU reading downhole 6.8ppmfine grained, poorly graded, loose, sand grains black, sample saturated with coal tar CL - CLAY, some silt, soft, massive, low plastic, brown, moist, coal tar found as streaks and blebs throughout sample END OF HOLE AT 6.1 m B.G.S. SCREEN DETAILS Screened interval: 5.18 m to 6.1 m AMSL Length91 m Diameter - 50 mm Siot # 10	REFERENCE ELEVATION (Tap of riser) GROUND ELEVATION SM - SAND AND SILT (FILL), some gravel, poorly sorted, loose, brown, maist. -vaid 2.27m to 2.59m SP - SAND, some gravel, loose, paorly graded, meaium grained, brown, water saturated, weak coal tar adour very loose, black, sample is coal tar saturated, strong coal tar adour, split spoon coated in a coal tar water mix, HNU reading downhole 6.8ppmfine grained, poorly graded, loose, sand grains black, sample saturated with coal tar CL - CLAY, some silt, soft, massive, low piastic, brown, maist, coal tar found as streaks and blebs throughout sample END OF HOLE AT 6.1 m B.G.S. 1SS 269.26 269.26 269.26 269.26 269.26 SCREEN DETAILS: Screened interval: 5.18 m to 6.1 m AMSL Length91 m Diameter - 50 mm Slot # 10	REFERENCE ELEVATION (Tap of riser) GROUND ELEVATION SM - SAND AND SILT (FILL), some gravel, poorly sorted, loose, brown, moist. SP - SAND, some gravel, loose, baorly graded, medium grained, brown, water saturated, weak coal tar adour very loose, black, sample is coal tar saturated, strong coal tar adour, split sooon coated in a coal tar water mix, HNU reading downhole 6.8ppmfine grained, poorly graded, loose, sand grains black, sample saturated with coal tar controlled, strong coal tar adour, split sooon coated in a coal tar water mix, HNU reading downhole 6.8ppmfine grained, poorly graded, loose, sand grains black, sample saturated with coal tar Sone prown, maist, coal tar found as streaks and blebs throughout sample END OF HOLE AT 6.1 m B.G.S. SCREEN DETAILS Screened interval: 5.18 m to 6.1 m AMSL Length - 91 m Diameter - 50 mm Siot # 10

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

PROJECT NAME FORMER GALT GAS CO SITE

PROJECT NO. 2097

CLIENT. WILLRACE ON THE GRAND INC.

LOCATION.

NOTES:

GRAIN SIZE ANALYSIS

AS PER PLAN

HOLE DESIGNATION B-9-87

DATE COMPLETED Apr 20, 1981 DRILLING METHOD: 108mm .2 - 8.4

_-00

CRA SUPERVISOR P HAYES

HTG	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SA	MPLE
m BG	GROUND SURFACE	m AMSL 267.04	INSTALLATION	950000	4
	Concrete Floor Sign	266.94			===
1.0	GW - SAND AND GRAVEL (FILL), some red brick fregments, poorty sorted, conesionless, very lacese, prown, moist	266.08	BORE-FOLE	2\$\$	3
2.0	-very dense zone, probable concrete side wall of buried tank?	265.24	AUGERIOS		
	Refuser - END OF -OLE AT 18m B G.S note backfried to surface with				
3.0	cuger cuttings				
4.0					
5.0					
6.0					
7.0					
8.0					
9.0					
10.0					
11.0					
12.0					
13.0					

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

WATER FOUND \(\subseteq \text{STATIC WATER LEVEL } \subseteq \)

STRATIGRAPHIC AND INSTRUMENTATION LOG

(OVERBURDEN)

PROJECT NAME: FORMER GALT GAS CO SITE

HOLE DESIGNATION BH10-87

2087 PROJECT NO.

DATE COMPLETED. Apr. 21, 1987 DRILLING METHOD. 108mm I.D - S A

._-03;

CLIENT MILL RACE ON THE GRAND NO

AS PER PLAN LOCATION.

CRA SUPERVISOR: P. HAYES

LUCA	CRA SUPERVISOR P. HAYES									
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		SAMPLE						
m BG		m AMSL	INSTALLATION	C C 2	7	Ÿ				
	GROUND SURFACE	267.04		# # # # # # # # # # # # # # # # # # #	13.4	A				
	Concrete Floor Elas	266.94	经经	155	∇	6				
	SM - SAND AND SILT (FILL), some gravel, loose, massive, dark brown, moist.	266.24								
1.0	SP — SAND, little gravel, poorly graded, compact, medium grained, brown, maist,		200mm	255	\succeq	3.				
2.0	- water saturated	264 76	DOME HOLE	355	\boxtimes	1 g				
- 3.0	-black fimiliand laurd on sond grains, irridescent sneen, strong diesel accur		GEMENT	455	\boxtimes	17				
5.5	—slight dieser obour, greyish white sands			5SS	X	13				
4.0	-black, coalitar saturated, strong coalitar odour, inNu recoing downhale 2 ppm			655	X	3.				
- 5.0	SM - SAND, some sit, little clay, compact, the groined, massive, brown, water	262.32		755	X	.3				
	saturated	261.25		888	X	3.				
6.0	GM - GRAVEL, some silt, some sand, some snalev (mestane fragments, well graded, dense, ght prown, water saturated			988	X	48				
- 7.0	,									
	Auger Refusal, END OF HOLE AT 7.16 m B.G.S. on probable bedrock	259.88		1088	A	63				
- 8.0	BOREHOLE GROUTED TO SURFACE UPON COMPLETION									
9.0										
				· ·						
10.0										
- 11 0				•						
- 12.0										
12.0										
- 13.0										
L										

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

PROJECT NAME FORMER GALT GAS CO. SITE

PROJECT NO. 2087

CLIENT VILL RACE ON THE GRAND INC.

LOCATION - AS PER PLAN

HOLE DESIGNATION: B-11-87

DATE COMPLETED Apr 21, 1987

_-04

DRILLING METHOD 108mm .D - S &

CRA SUPERVISOR P HAYES

DEPTH m BG	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION m AMSL	MONITOR INSTALLATION	SAMPLE		
	GROUND SURFACE	267.04) # B		
	Concrete Foor Sco GW - SAND AND GRAVEL (FILL), compact, well graded, whitish brown, slightly moist.	266.94		'35 🔀 -		
1.0	greece, a more promy ongressy	265.52		255 2		
2.0	Concrete 5.cb	264.91	200mm • 200mm • 30777	NO SAVPLE		
3.0	SP — SAND, trace silt, loose to compact, poorly graced, medium grained, motitied brown block, water and diesel saturated, strong diesel baour — trace gravel	254 75	SEAST SEAST	355		
4.0	-iriaescent sneen to samples, strong diesel odour, cownnoie HNU 10ppm			555 2		
5.0	TYLL — SLT, some sand, little clay, very fine graned, compact, massive, brown, water saturated	262.02 261.89		65S S		
6.0	GM — GRAYEL, some silt, some sand, some snaley mestone fragments, well graded, dense, got brown, water saturated		10000000000000000000000000000000000000	888 8		
7.0	Auger Refusal, END OF HOLE AT 7.01m B.G.S. on probable bedrock	260.03	स्थित	922 S.C		
8.0	BOREHOLE GROUTED TO SURFACE UPON COMPLETION					
9.0						
0.0						
110						
12.0						
13.0						

GRAIN SIZE ANALYSIS

(1-05)

PROJECT NAME: FORMER GALT GAS CO SITE

HOLE DESIGNATION BH12-87

PROJECT NO. 2087

MILL RACE ON THE GRAND NO.

DATE COMPLETED. Apr 22, 1987 DRILLING METHOD. 108mm .D + S.A

CLIENT LOCATION

AS PER PLAN

CRA SUPERVISOR P HAYES

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION			SAMPLE			
m BG		m AMSL	INSTALLATION	7	5			
	GROUND SURFACE	267.05		3 mue	Ē.			
	Concrete Floor Slab	266.95	KS53	155	M	-		
	SW - SAND (FILL), some graver, some red brick fragments, well graded, loose, brown, maist,			1.55	\bowtie			
, 0	no chemical odour		7530 527	255	\boxtimes	9		
	SP - SAND, little graver, medium grained,	265.53	200mm BOREHOLE	355	M	9		
2.0	loose, massive, poorly graded, brown, moist, slight alese lodour, water saturated at 2.13m	264 95	区公公					
	-plack 'I'm coating sand grains, strong dieset odour		CEMENT CROUT	455	X	2		
30	oreser edeal			555	$\overline{\nabla}$			
	-slight diesel odour				\square			
4.0	ML - SILT AND SAND, some cloy, very fine	262.84	1 終額	6SS	X	:		
5.0	grained, poorly graded, mossive, firm, light brown	262.02		755		2		
5.0	GM - GRAVEL, some silt, some sand, dense,	202.02						
	well graded, brown, water saturated	261.42	12.72.63					
6 0	Auger Refusal, END OF HOLE AT 5.63m B.G.S. on possible bedrock							
7.0	BOREHOLE GROUTED TO SURFACE UPON COMPLETION							
8.0								
9.0								
100								
11 0								
120		1						
13.0								
, J. U								

MEASURING POINT ELEVATIONS MAY CHANGE: REFER TO CURRENT ELEVATION TABLE NOTES:

GRAIN SIZE ANALYSIS

WATER FOUND \(\square\)

STATIC WATER LEVEL Y

(_-06,

PROJECT NAME: FORMER GALT GAS CO SITE

PROJECT NO. 2087

CLENT MILL RACE ON THE GRAND INC.

HOLE DESIGNATION B-13-87

DATE COMPLETED | April 23, 1987

DRILLING METHOD. 108mm I.D. - S.A.

	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAMPLE
BC		m AMSL	INSTALLATION	M C 7
	GROUND SURFACE	268.34		18 E
	Aspngit	268.28	总 公	
	SW — SAND (FILL), little gravel, well graded. lagse, massive, brown, maist.			
.0	ligase, massive, prown, maist.			
			200mm BOREHOLE	
.0			BOKEHOLE	, 25 X
			ESTA COURSE	
.0			GROUT	
			经经	255
_	SP - SAND, laase, massive, medium grained	264.67	マ版製	
.0	brown, water saturated —grevish black sands, faint coal tar adour			355
			188 3	455
0.0	+black, coal tar staining on sand grains, moderate coal tar odour			1,22
	-sample saturated with coal tor, sample			555
0.8	HNU 100ppm ML-SiL: cnd SAND, same clay, massive, firm,	262.23		
	light brown, saturated, coal tor found as stringers between clean silt and sand	261.62	· 核结	655 X
7.0	GM-GRAVEL, some silt, some sond, dense, well	201.02	1333	755
	graded brown, water saturated	261.01	13.1.4	
. ^	Auger Refusal, END OF HOLE AT 7.32m B.G.S. on possible bedrock			
5.0	BOREHOLE GROUTED TO SURFACE			
	UPON COMPLETION			
0.0				
0.0				
1.0				
2.0				
2.0				
3.0				.

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

PROJECT NAME FORMER GALT GAS CO SITE

HOLE DESIGNATION OW14-90

PROJECT NO . 2087

DATE COMPLETED. FEBRUARY 7, 1990

NOTES:

GRAIN SIZE ANALYSIS

CLIENT VILLEACE ON THE GRAND NO DRILLING METHOD. 108mm DIHSA

LOCATION: AS PER PLAN CRA SUPERVISOR K VANDERWEULEN

STATIC WATER LEVEL Y (14/03/90)

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	m AVSL	MONITOR INSTALLATION	SAMP		5 1 5	
330	REFERENCE ELEVATION (Top of Riser) GROUND ELEVATION	268 409 267.54		ข™ฒ≰∈	Ā,	A L	
1.0	OL(TOPSOL) SW(SAND)Fill, some sand, little gravel, fine to medium grained, well graded, very dense, prown, moist	267.39	CONCRETE CONCRE				
30		264 46 263 71	SENTONIES AL				
40	SW(SAND), some sond, little gravel, trade to little slit, fine to coarse grained, well graded, very dense, brown	263.73 - 263.73	SAND PACK SC.8mme BLACK IRON PIPE	155	X	-	
5.0			WELL SCREEN				
6.0			CAVE	255	X	>	
7.0							
8.0				355	X		
9.0	ML(SiLT), trace to little sand, fine grained, dilatent, dense, prown, wet, no adour	258.4		4\$\$	X		
10,0							
11.0		-	SCREEN DETAILS Screened Intervol	555.	X		
12.0	Auger refusa END OF HOLE @ 12-34 m BGS	255.2	Length -1 22m Diameter - 50.8mi Slot # 10 Material - Stainles	m s Steel			
13.0			Sand pack intervo 3.72m to 5.79m Material — Natural	BGS			

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

WATER FOUND \(\sigma\)

PROJECT NAME, FORMER GALT GAS CO SITE

HOLE DESIGNATION: OW15-90

PROJECT NO. 2087

DATE COMPLETED: FEBRUARY 6, 1990

CLIENT.

MILLRACE ON THE GRAND INC.

DRILLING METHOD: 108mm D HSA

LOCATION:

AS PER PLAN

CRA SUPERVISOR: K VANDERMEULEN

EPTH BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		5/	MPL	
1 563	REFERENCE ELEVATION (Top of Riser)	m AMSL 268.54 267.64	INSTALLATION	N G K C Z	A . 15	
	GROUND ELEVATION Aspect	267.49		i a	-	
1.0	SP(SAND)FiLL, some sand, little gravel, trace silt, fine grained, poorly graded, cobbles, dense, brown/black, moist		CONCRETE CONCRETE CUTTINGS/ BENTONITE GROUT	133	X	2
	Little to trace grovel, little silt, loose, brown		20Jmme BOREHOLE	255		,
20	Some sand, little silt, fine grained, loase, prown, maist			355		
3.0	Some scnd, little gravel, trace silt, fine grained, poorly graded, very dense, metal, brown, maist	264 50	BENTONITE AL	455		5
4.0	SW(SAND), some sonas, little to trace gravel, fine to coarse grained, well graded, dense, brown, wet, no adour	264 50 263.83 263.83	50.8mmø BLACK IRON PIPE SAND PACK	555	\boxtimes	4
5.0	Little gravel, very dense	262.46	WELL SCREEN	655	X	5
6.0	SW-GW(SAND/GRAVEL), some sond, some gravel fine to coarse grained, well graded, very cense, brown, wet			755	X	5
0.0			CAVE	888	X	6
7.0	Cobbles					
8.0				988	\boxtimes	>5
9.0	Auger refusal END OF HOLE @ 8.69 m BGS.	258.95	SCREEN DETAILS:			
			Screened Interval: 4.27m to 5.49m BGS			
10.0			Length -1.22m Diameter -50.8mm Slot # 10			
11.0			Material — Stoinless Steel Sand pack interval: 3.51m to 5.49m BGS Material — Natural Sand			
120			2.27.6			
-						

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND STATIC WATER LEVEL (14/03/90

PROJECT NAME FORMER GALT GAS CO. SITE

HOLE DESIGNATION B-16-90

==0JECT NO. 2087

DATE COMPLETED FEBRUARY 8. 1990

CLENT. MILLRACE ON THE GRAND INC.

DRILLING METHOD: 108mm 0 -SA

LOCATION: AS PER PLAN

CRA SUPERVISOR: K VANDERMEULEN

_- 7)

EPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		MPLE	_
BGS	222442 515445424	m AMSL 268.20	INSTALLATION	- C 3 8 6 6 7	Ş A	Ä
	GROUND ELEVATION			Ę.	Ē	ě
10	OL(TOPSOIL) SW(SAND)FILL, some sand, little gravel, fine to meaium grained, well graded, dense, comples, moist	268.05	CONCRETE OCIONAL CONCRE			
3.0	Little silt, construction material, bricks, rocks, medium dense, brown, wet, no adour or product Rocks	264.54	Y	155	X	2
5 0	Flyash, black, wood, wet, very slight cool tor odour, no product or sheen present .			355		
6.0	ML(SiLT), little to trace sand, trace clay, fine to medium grained, brown/block, wet, slight codiliter adour, water discoloured	262.41 262.10		555		
70	SW-GW(SAND/GRAVEL), some sond, some grovel, medium coorse grained, well graded, brown, very dense, wet, moderote coal tor odour. Dense, moderote coal tar odour, no product.	260.73	2000	655		
80	END OF HOLE @ 7.47 m BGS.					
9.0						
10.0						
10		-				
.50						
13.0						

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE: REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND \(\subseteq \text{STATIC WATER LEVEL } \subseteq

PROJECT NAME: FORMER GALT GAS CO SITE

PROJECT NO... 2087

CL ENT.

MILLRACE ON THE GRAND INC.

LOCATION: AS PER PLAN HOLE DESIGNATION OW:7-90

DATE COMPLETED. FEBRUARY 9, 1990

_- 6

DRILLING METHOD. 108mm D -SA

CRA SUPERMISOR: K. VANDERMEULEN DEPTH ISTRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION SAMP! F MONITOR m BGS m AMSI INSTALLATION 269.560 REFERENCE ELEVATION (Top of Riser) 268 484 ε GROUND ELEVATION OL(TOPSOIL) 268.33 00 - CONCRETE SW(SAND)FILL, some sand, little gravei, fine b to medium grained, dense, cobbies, brown, 1.0 moist BEN TONITE 203mme BOREHOLE 188 2.0 BENTONITE PELLET SEAL SAND PACK 3.0 50.8mmø BLACK 288 264 54 4.0 388 264.06 OL(SILT), trace fine sand, loase, black, wood chips, decayed vegetation, wet, slight coal tar 5 455 5.0 WELL SCREEN odour 263.3 SW(SAND), some sono, little graver, fine to coarse grained, well graded, medium dense, 555 brown, slight coal tor odour, wet 6.0 262.08 261.93 261.77 688 >30 ML(SiLT), trace fine sand, medium dense, brown, wet 7.0 SCREEN DETAILS SW(SAND), some sand, little gravel, medium Screened Interval: to coorse groined, well graded, medium dense, 4.61m to 5.83m BGS brown, wet, very slight coal tar odour Length -1.22m END OF HOLE @ 6.71 m BGS 8.0 Diameter - 50.8mm Slot # 10 Matérial - Stainless Stee Sand pack interval: 9.0 2.44m to 6.71m BGS Material - Natural Sana 10.0 11.0 12.0 13.0

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE: REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND \(\sigma\)

STATIC WATER LEVEL Y (14/03/90)

HOLE DESIGNATION BHI8-90

PROJECT NAME: FORMER GALT GAS CO SITE

PROJECT NO. 3318

MILLRACE ON THE GRAND INC.

DATE COMPLETED. FEBRUARY 9, 1990

TL-0:1

CLIENT.

DRILLING METHOD. 108mm ID HSA

LOCATION: AS PER PLAN

CRA SUPERVISOR: K. VANDERMEULEN

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		SA	MPLE	
m BGS		m AMSL	INSTALLATION	2 3	Ş	2
	GROUND ELEVATION	268.16		30m0x	÷ E	4
	SW(SAND)Fill, little gravel, trace silt, medium coorse grained, well graded, loose, brown, maist, no adour		S.Q. O CONCRETE SURFACE SEAL SOBREMOLE	155	\times	9
2.5	Little silt, loase, dark brown, wet, no odour Little to some silt, dark brown to block, wet, no odour	265.27	Maria	2SS 3SS	×	2
- 50	Trace product, strong coal tar agour, sheen,	262.98	BENTONITE GROUT	4SS 5SS		9
- 7.5	SP(SAND), trace gravel, fine grained, poorly graded, very loose, black, wet, strong coal tor adour product Trace to little gravel, snell fragments, brown to black, medium dense, wet, coal tor	261.45 260.08		6SS 7SS 8SS	XXX	18 35 >50
- :0.0	SW-GW(SAND/GRAVEL), some sand, same gravel medium to coarse grained, well graded, dense brown, wet, no odour					
- 125	Very dense Auger refusol END OF HOLE @ 8.08 m BGS.					
- 15.0	NOTES: 1.Contamination approximately 4.57 to 6.4m BGS.					
- 17.5		,				
- 20.0						
- 22.5						
- 25.0						
- 275						
- 30.0						
- 32.5						

MEASURING POINT ELEVATIONS MAY CHANGE: REFER TO CURRENT ELEVATION TABLE NOTES:

WATER FOUND \(\square\) STATIC WATER LEVEL \(\square\)

GRAIN SIZE ANALYSIS

HOLE DESIGNATION BH19-90

PROJECT NO ..

3318

PROJECT NAME: FORMER GALT GAS CO. SITE

DATE COMPLETED. FEBRUARY 7, 1990

(1-02)

CLIENT.

MILLRACE ON THE GRAND INC

DRILLING METHOD. 108mm 10 -SA

AS PER PLAN LOCATION: CRA SUPERVISOR. K. VANDERMEULEN DEPTH I STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION MONITOR SAMPLE m BGS m AMSL INSTALLATION GROUND ELEVATION 268.17 Ε SM(SAND)FILL, some sond, some silt, little CONCRETE SURFACE SEAL 000 gravel, trace clay, fine grained, poorly graded, loose, brown, very maist 155 \sim 6 265.28 2.5 203mme BOREHOLE 265.27 SP(SAND), little silt, trace clay, fine 288 15 grained, medium dense, brown, wet, no odour or product BENTONITE 5.0 3SS 38 Dense 262.53 455 28 Meaium grained SM(SAND), little siit, fine grained, poorly 53 5SS 261.31 graded, medium dense, brown, wet, no odour Thin clay seam at 6.55m BGS, no odour 21 655 7.5 260.55 755 >50 SW-GW(SAND/GRAVEL), some sand, some gravel, medium coorse grained, well graded, medium dense, brown, wet, no odour 10.0 Very dense END OF HOLE @ 7.62 m BGS. NOTES: 1. Auger refusal at 7.62m BGS. 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND \

STATIC WATER LEVEL Y

HOLE DESIGNATION: 8-20-90

PROJECT NO.. 3318

CLENT MILLRACE ON THE GRAND INC.

LOCATION: AS PER PLAN

PROJECT NAME, FORMER GALT GAS CO. SITE

DATE COMPLETED: FEBRUARY 8, 1990

(1-03)

DRILLING METHOD: 108mm D -SA

CRA SUPERVISOR K VANDERMEULEN

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION			MPLE	
~ BGS		m AMSL	INSTALLATION	, Z	S	V
	GROUND ELEVATION	268.28		M (D to 0)	Ŷ.	€ 1361
	Aspnalt	268.13	CONCRETE SURFACE SEAL			
- 25	SW(SAND)FILL, some sond, little gravel, fine to medium grained, well graded, cobbles, medium dense, brown, moist, no odour	205.27	CIO OU C SURFACE SEAL 203mme BOREHOLE	1SS 2SS	X	14 21
	SP(SAND), some sand, trace silt, fine grained, poorly graded, loose, brown, maist,	265.23		3SS 4SS		9 20
- 50	no adour Product (2.54cm) at 5.79m BGS., sneen, strong cod! tar adour Sneen, strong cod! tar adour	261.88 261.42	BENTONITE GROU	5SS 6SS 7SS		>30 >50 >50
7.5	SM(SAND), some sand, some silt, fine grained. poorly graced, brown, dense, wet, slight coal tar odour	260.66		8SS	\boxtimes	17
- 10.0	SW-GW(SAND/GRAVEL), some sond, some gravel, medium to coarse grained, well graded, medium dense, brown, wet, no odour FND OF HOLE @ 7.62 m BGS					
125	NOTES: 1. Auger refusal at 7.62m BGS.					
15.0						
- 175						
- 20.0						
- 22.5						
25.0						
275						
30.0						
32.5						

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES:

GRAIN SIZE ANALYSIS

WATER FOUND \(\square\) STATIC WATER LEVEL \(\square\)

HOLE DESIGNATION: BH21-90

PROJECT NO.. 3318

DATE COMPLETED: FEBRUARY 7, 1990

DRILLING METHOD. 108mm ID HSA

CLIENT. LOCATION:

AS PER PLAN

MILLRACE ON THE GRAND INC.

PROJECT NAME: FORMER GALT GAS CO. SITE

CRA SUPERVISOR - K. VANDERMEULEN

(1-04)

1 -		STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SA	MPLE	
m	BGS		m AMSL	INSTALLATION	Z J	Ş	7
		GROUND ELEVATION	268.16		⊅ம்பும் € (Ť E	4_J⊃L
	2.5	Asphalt SW(SAND)FILL, some sand, little gravel, trace to little silt, fine to medium grained, cobbles, construction material, well graded, very dense, brown, maist, no adour	268.07	CONCRETE SURFACE SEAL	1 S S	X	
-	5.0	SW(SAND), some sand, littel gravel, fine to coarse grained, well graded, medium dense, brown, wet	264.50 264.35	BEN TONITE GROUT	255	X	28
	7.5	ML(SILT), trace sand, trace clay, fine grained, dilatent, very dense, brown, wet SW-GW(SAND/GRAVEL), some sand, some gravel, fine coarse grained, well graded, rock,	261.76 260.84		3SS 4SS 5SS	X X	>50 69 >50
-	10.0	brown, wet, no agour or product No adour or product Auger refusal END OF HOLE @ 8.99 m BGS.	259.17		233		730
-	12.5						
-	15.0						
-	17.5						
-	20.0						
-	22.5						
-	25.0						
-	27.5						
	30.0						
-	32.5						
_							

NOTES:

MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

GRAIN SIZE ANALYSIS

WATER FOUND \(\square\) STATIC WATER LEVEL \(\square\)

	RING METHOD CONTINUOUS FLIGHT			_								TINICIAN P V.S
	SO . MOFILE				SAMPL		-	A STRENGTH C.	•	PLASTIC LIMIT	*: *:	
EFTH t	DESCRIPTION GROUND ELEVATION 880.4	2	MIN MIN	# 7 · Z	1	N VALUES	DYNA	MIC CONE PENETRA DARD PENETRATION BLOWS/FOOT		WATER CONTENT	_*:	CRUENDWA! ORSERVATIO AND REMAR
9.0	ASPHALTIC CONCRETE FILE: Medium sand, some drawel to 5 in. diameter damp Decoming black silty sand, some to a trace of gravel some slag fill moist SAND: Compact Grown medium sand, wet	000	875 870 865 865	3 4 5 6	SS	9 6 16 6 14 21 79	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					Upon comple of drilling free water, at 13.3 ft.

80	RING METHOD _CONTINUOUS_FLIGHT	1100	2011	3 , 2	70	0212						THATC AN E M.S
	SOIL PROFILE				SAMPL	ES	SHEAR	STRENGTH C.		PLASTIC LIMIT	_*;	
EPTH	DESCRIPTION	11 C3 NB	71H V 41H IV	A	1	8	1	MIC CONE PENETRA DARD PENETRATIO	TEST •	*ATT# CONTEST_		GROUNDWATER ORSERVATIONS AND REMARKS
	CROUND ELEVATION 878.9	 	-	-	<u> </u>	5 Z	:	DLQ45/FOOT	•0	MATER CONTENT		
7.0	FILL: Dark brown and brown sity sand, and gravel to 1 in. diameter, damp, occassional concrete and slag pieces ORGANIC SILT: Very loose black organic silt, wet SAND: Loose dark drey and black medium-fine sand, somi organic shells, wet -emcountering brown peat GRAVEL: Dense to very dense brown gravel to 1% in. diameter some coarse sand, wet	200.000 Si	875 870 865 850 840	9	\$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$	18 85 59 2 2 9 7 29 35	10.					After sample free water at ft. inside au Unon cumplet of drilling free water, at a ft.

BORING METHOD CONTINUOUS FLIGHT	HOL	LOW		SAMPLE		SHFA	STREN	GTH C		 LIQUID	LIMIT	TI	THORIAN P.Y.S.
DESCRIPTION	0.0011	7	N 12 2 12	12.1	VALUE	DYNAI	IK CO	E PENE	TRATION	SATE OF	CONTEN	·7	GROUNDWATER ORSERVATIONS AND REMARKS
FILL: Brown silty sand and gravel fill encountering black cinder fill encountering black cinder fill and black coarse sand and gravel to 1 in. diameter some brick rubble, wet 2.0 ORGANIC SILT: Loose black organic silt, wet SAND: Loose grey mediumine sand some organic shells GRAVEL: Very dense grey gravel and coarse sand, wet 8.2 Borehole terminated at 28.2 ft. Auger refusal on possible boulder or bedrock		875	3 4 5 6 7 8	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	3 3 6 24 7 9	11 11	>	Pa 5 / 5 O		C	a	50.0	After sample free water at ft. inside aug. After sample free water at ft. inside aug. Upon completion of drilling, free water. cat 6.5 ft.

SOUL PROBLEM BIN KIPTION THE CONTINUE TO STANDS TO STANDS TO STAND SAME TO STAND SAM	SOUL PROTEIN BIM MIPTION DIAMACCONT PROTEIN TO STANDARD PROTEINS TO ST	80	RING METHOD CONTINUOUS FLIGHT	HOL	101	SILE	AU	EPS.					_	11	115 45 0 - =
DIMENSION 879.1 FILL Brown silty sand and gravel, moist becoming red brown medium sand, moist DRANIC SILT: Very loose black sand and ORGANIC SILT: Very loose black organic silt, moist SAND: Loose dark grey medium sand, wet PEAT AND SAND: Loose brown peat with medium sand layers of each silt medium sand layers of	The District of the Control of the C								SHEAR S	TRENGTH C.		LIQUID	IMIT_	·	
FILL Brown silty sand and gravel, moist becoming red brown medium sand, moist becogning black sand and RTO 3 SS 13 ORGANIC SILT: Very loose black organic silt, moist SAND: Loose dark grey medium sand, wet PEAT AND SAND: Loose brown peat with medium sand layers of medium sand layer	FILL Brown silty sand and gravel. moist Decoming red brown medium sand, moist Decoming plack sand and silt silt silt silt silt silt silt silt		DIN KIPTION		, E ;		7.1	1000	1			* *****	-0+TE+		* 5 * 471 8 Asia 47 555 ASIA 8 18 18 18 18 18 18 18
becoming red brown medium sand, moist Decogning black sand and B70 3 5S 10 DRGANIC SILT: Very loose black organic silt, moist Decogning black sand and B70 3 5S 10 DRGANIC SILT: Very loose black organic silt, moist Decogning black sand and B70 3 5S 10 Decog	becoming red brown medium sand, moist Decogning Dlack sand and Decog		CPH NOTELL ATION 879.1	-	Ξ	7		ž,	20	8LO45 FO	T Ris	W. 4.71	R CONTI	\!	1
	850 850 850 845	. 5 . 5	FILL. Brown silty sand and grawel, moist becoming red brown medium sand, moist becoming sand and order of the sand and order of the sand sand sand order	0; <i> }</i>	875 870 865	3 4 5 6	\$\$ \$\$ \$\$ \$\$ \$\$	6 5 13 3 5 8		#LOS > POC	to)) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	
SAND: Very dense brown sand.		. 0			825										of drilling, -ater at 12.0 cave at 21.0 4 hours after
B30	825 4 hours after drilling, fre water at 12.0 cave at 21.0 drilling, fre water at 12.0 cave at 21.0 drilling, fre water at 12.0 cave at 12.0 drilling, fre water at 12.0 cave		Borehole terminated at 50.0 ft.		1										

					21. AU											
	SOIL PROFILE			_	SAMPL	ES	SHEAR	STREN	CTH C.		•	PLASTIC	MIT	•c		
Утн Ét.	DESCRIPTION	7.11.	MILLEY	4 18 7:12	1	10wSyroor	DYNA	HIC CON	E PENE NETRA	TRATIO	st:	*ATER (ONTEVT.		G40(\\ Q8\12\ 4\0.8	0 4 4 7 1 4 4 8
		\ \	 	-		•	 	•	-	1 1	-	10	:n	10		
22.0	GROWNELEVATION 878.1 FILL: Brown silty sand and gravel to 1h in. diameter, some bricks, moist GRANIC SILT: V. loose dw grey Disck gravel to 1h in. diameter trace limestone, some silty becoming wet SILTY CLAY: Very soft brown silty clay, W.T.P.L. SILT: Compact light brown with rust scanning silt, moist SAND: Compact brown medium to fine sand, wet SILT: Compact brown with rust scanning silt, moist GRAVEL: Very dense brown gravel, wet SAND: Very dense brown gravel, wet	Th. 00.00.00	875 865 865	1 2 3 4 5 6	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	8 2 4 4 3 2 2 1 9 9 1 8 8 7 7 1 C		, RLC	ne S / F O			D D D	0,55	, Q	Upon com of drill water at cave at 2y nours drilling water at cave at	13.

۵	B NAME <u>NEWLANDS TEXTILES INC</u> CATION <u>160 HATER STREET NORT</u>	н. са	MRRI	DCE				80	RING DATE			8 No _ 84 F 121 GINEEP _ = N B
80	ORING METHODCONTINUOUS_FLIGHT	HC:	<u>`</u>	ST	SAMPL		SHEAR S	THE WEET		. LIQUID LIMIT_		CHNICIAN P K B
БУТ Н 1.	DISCRIPTION	il con	MULLANIA	MUMBI B	1	Detti Dot Valifis	DYHAMK	COME P	NETRATION RATION TEST	PLASTIC LIMIT		GROUNDWATER OBSERVATIONS AND REMARKS
		lx x	├	-		-	20	40	40 10		31.	
7.0	SAND: Compact light brown salty sand, some rust starring, trace of organics, moist becoming dense light brown medium sand, some gravel to, in. diameter, damp becoming very dense grey medium to coarse sand, moist sand salt, wet GRAVEL: Very dense brown gravel, wet		875 870 865	3 4 5 5	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$	6 40 48 51 29	10 In .	ALOUS /	FOOT NO BOOK N	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	-	Upon completion of drilling, no free water, cav at 14.0 %
	Power augered to 42.5 ft.,											

CHECKED AT

JOB NAME NEWLANDS TEXTILES INC PROPERTY LOCATION 160 WATER STREET NORTH, CAMBRIDGE, ONTARIO BORING DATE 1984.10 09 FYCINETE B . B BORING METHOD CONTINUOUS FLIGHT HOLLOW STEM AUGERS SAMPLES SHEAR STRENGTH C. MODIO LIMIT SOIL PROFILE PLASTIC LIMIT WATER CONTENT OBSITY ATIONS DESCRIPTION DYNAMIC CONE PENETRATION . STANDARD PENETRATION TEST . DEFTH ft. 8LOWS 1-00T MATERICONTINE GROUND ELEVATION 883.9 iz FILL: Black and brown silty sand, trace black organics, 1 | 55 (⊿a an 2 | 55 0 SAND: Loose red brown medito to fine sand, damp-moist 8 \$5 9.0 encountering some gravel ç 4 | 55 5 13.0 gravel and coarse sand, Very dense brown ., 870 5 34 damp 6 | 55 8.5 0, becoming wet 865 7 55 39 8 | 55 51 After sample 8 AND: Very dense red brown free water at 17.0 ft. inside coarse sand, some gravel to l in. diameter, wet Augers. 860 855 GRAVEL: Very dense brown gravel, wet Upon completion of drilling, no Screnole terminated at free water, cave at 16.5 ft. 31.0 ft. Auger refusal on possible boulder or bedrock 850 NOTES Power augered to 31.0 ft., no samples taken below 21.5 ft., soil description based on auger cuttings and observations during drilling.

MEMBER OF THE ASSOCIATION OF CONSULTING EMGINEERS OF CANADA

PM (1504

BORING METHOD CONTINUE															
501L ** 01					SAMPL		_	AR STRE	NCTH C			LICLID L		TECHN	11x 2 4e
OESCRIPTION		Qui'll ND	75	4 10 7	= 2	OWSTREE	OYN	AMIC CC	ME PEN	ETRAT	10.	PLASTIC WATER C	ONTE 47	•	GROUNDWATER OBSERS ATTONS AND BEMARKS
GROUND LLEVATION 878.3		=	111111	ž	-	ő z		, DE			a n	WATE	(0/11/1-	1	
FILL: Asphaltic C pavement over redd dark brown, and bla mixture of silt an with mome gravel, brick and organics to saturated SAND AND GRAVEL: very dense fine to sand and gravel, s Decoming coarse sai gravel 11.0 Borehole terminated 11.0 ft.	oncrete ish brown ck d sand trace of , moist Dense to coarse aturated		875 865 855	2	SS SS SS	21 51 28 51 40 38						"	5	Bll au ft bo	rehole become tafter same. owback inside gers at 25.0.; began was: ring. on completion drilling, rehole caved dwater level 11.0 ft.

DIFFI DIMETTION DIMETTION DIMETTION TO SERVICE OF THE TRANSPORT OF THE CONTROL OF THE TRANSPORT OF THE CONTROL OF THE TRANSPORT OF THE CONTROL OF THE CON
DIMERITION 879.0 FILL: Asphaltic concrete pavement over brown and dark brown mixture of silt and aand with some gravel. trace of organics, moist SAND: Very dense brown fine to coarse sand with little gravel, saturated SAND: Very dense brown fine to coarse sand with little gravel, saturated Borehole terminated at 11.5 fc. Borehole terminated at 11.5 fc.
Fill: Asphaltic concrete pavement over brown and dark brown maxture of silt and sand with some gravel, trace of organics, moist 2

	RING WETHOD CONTINUOUS Flight	Hol	10-	Ster	n Aug	ers	BORING DATE		GINTER S. MITCHE GINTER S. MITCHELL
- 50	SOIL PROFILE			_	SAMPL		CHEAR STRENGTH Cu	LIQUID LIMIT	
PTH	DESCRIPTION	110.40	111 vettos	* 14 14	=	OWCHOOL	DYNAMIC CONE PENETRATION STANDARD PENETRATION TES	T : WA TER CONTENT WE	P 101111
	CROUND ELINATION 879.9	_	-	\vdash		žz	20 40 40 40 10	MATERICONTENT	-
	FILL Brown, light brown, and red mixture of silt and sand with some gravel, occasional cobbles and brick pieces, moist becoming brown and dark brown silty sand, some gravel, very moist		875 870	3		14 11 5 13		9 0 0	
7.0	coal inclusions below 12.5 ft. with strong oil smell, saturated		865	6		6	4		Borehole becovet after sam
	SAND: compact black silty sand, trace of shells and organics, strong oil smell, saturated (possible fill)		860	$\overline{}$	SS	23		1 /	
\equiv					-	13			
3.0	SAND AND GRAVEL: Compact		1	-					
	to dense grey fine to coarse sand and gravel, saturated		855	$\overline{}$	SS	21		φ	Blowback ins augers at 25 began washbo
			850	E	_				
				-	_55_	119			
6.0			845		SS	105		8	
	Borehole terminated at 36.0 ft.								Upon complete of drilling borehole cave to 19.5 ft.
									water level a
									-
				Е					
\equiv								1	
									+
=									
\exists									
=									

	use fliance ca	1100	5000	Aug	0 - 0				
BORING METHOD CONTINUO		===	1			fus.	R STRENGTH Cy .	0 10 LIMIT	1100 to 21 Fe
DESCRIPTION	7	\$111 \$ \$ \$ 111 \$	x 147-12	=	VALIFA	DYNA	MIC CONE PENETRATION + DARD PENETRATION TEST +	PLASTIC LINIT	#1 NOS 4
GROUNTIANION 8'6. FILL: 1.0 in. con slab over fine to sand, some gravel, silt, moist to sat SAND: Compact gre sand with little g strong smell of oi saturated Borehole terminate 16.5 ft.	crete medium trace urated y coarse ravel, ,	870	2	\$\$ \$\$ \$\$ \$\$	6 13 4 12		Proposed sever	0	Borenole be wet after 4. Upon complete drilling borehole color at 8.0 ft. no free was

80	RING METIHOD CONTINUOUS Fligh	t So	lid	Ł H	ollo	<u>₩ 5</u> €	BORING DATI em_Augers		THAN IN D. Me. I.
	SOIL PEOLIT				34471			LIQUID LINE	
PTN	DI SERPTION	9,111	VIII VAIIIV	1 147 7	1441	VP1150	DYNAMIC CONF PENETRATION STANDARD PENETRATION TEST ALONS LOOT	PLASTIC LIMIT	# 1 ND# #T1 8 119 N R V # T1 D N V N D B I M # R N V
	GROUND PLEVATION 877.9	<u> </u>	=			ã z	20 All bil Ris	WATERCONTENT	
4.0	FILL: Brown mixture of fine to coarse sand with gravel, moist SAND AND GRAVEL: Very dense brown fine to coarse sand and gravel, damp becoming medium to coarse sand and gravel, saturated SAND: Dense brown silty sand, occasional clayey silt seams, saturated Borehole terminated at 17.0 ft.	3 .	265	1	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$	16 35 63 50	Proposed sever		Upon completion of drilling, water level at 13.5 ft. inside augers. After removing augers, boreanole caved to 3.0 ft. with no free wat

BORING METHOD CONTINUOUS FIGURE SQLZ. SOIL FRONT! DESCRIPTION CROUND ELEVATION 878.2 FILL: 2.5 in. concrete slab over brown clayey sult, with some sand and gravel, very moist SAND: Compact brown and light brown silty sand, occasional silt seams, very moist to saturated	SAMPLIS EZ	SHEAR STRENGTHC.	PLASTIC LIMIT	FILL AND AND THE STATE OF THE S
Fill: 2.5 in. concrete slab over brown clayey silt, with some sand and gravel, very moist SAND: Compact brown and light brown silty sand, occasional silt seams.	<u>: 55</u> 10	•	WATER CONTINT	BILL NOWATED THATE IT L N. BILVIARNY
Fill: 2.5 in. concrete slab over brown clayey silt, with some sand and gravel, very moist SAND: Compact brown and light brown silty sand, occasional silt seams.	<u>: 55</u> 10	•	1 1	
slab over brown clayey silt, with some sand and gravel, very moist SAND: Compact brown and light brown silty sand, occasional silt seams.			o	
Borehole terminated at 17.0 ft.	3 55 19 4 55 19 5 55 15	Proposed sever Invert level	0	Upon completing of drilling, borenole cave at 12.0 ft. water level at 11.0 ft.

LO	CATION Water Street North	h. Ca	mbr	doe	, Or	tar	0	BORING DATE	1986.04.23	HORN B6 F LIZ
	RING METHOD Continuous Flight	t Ho	low	Ste	m At	gers				TECHNICAN D FRILLY
	SOIL PROFILE	-		i .	SAUPL	E.S	SHEAR STREM	GTN C		
FPTH	OFSCRIPTION	ON 6.34	NOT VATION	# 1870	17.11	\$ \$/1 (x) [DYNAMIC CON STANDARD FE	E PENETRATION . NETRATION TEST .	PLASTIC LIMIT V	POINDWATER DRSPRIVATIONS AND REWARKS
	CROLADILINATION 895.6	1.	=	ž		i z	70 MLG	S FOOT	WATER CONTINE	
7.0	Fill: Dark brown and brown mixture of silt and sand with little gravel, occasional pieces of asphalt, concrete, brick and coal, moist to very moist SilT: Compact reddish brown sandy silt, moist to wet Borehole terminated at 27.0 ft. upon meeting refusal to auger on possible bedrock		885	6	\$\$ \$\$ \$\$ \$\$	30 6 19 16	Propo	r lever		Upon completion of drilling, borencle caved to 24.0 ft. un no free water.

1	B NAME PROPOSED MILL RA CATION Water Street Nor	ÇĘ,C th.	QNDO Camb	ELM Fid	i <u>ums</u>	Onta	BORING DATE	1986.04.23	8 <u>86 F 12</u> CARRO Mitchell
	RING METHODCONTINUOUS_Fligh								ON CIAN E YOU
-	SOIL PROFIE			_	SAMPL	_	SHEAR STRENGTH C	LIQUID LIMIT+;	
DEPTH	DESCRIPTION	7	711177 111	X 12 7 12	22	į į ,	DYNAMIC CONE PENETRATION	PLASTIC LIMIT	BULNOWATHE BSF ENATIONS COT EN MARKS
	GROUND ELFVATION 877.9		-	L	_	- Z	20 40 60 80	WATER CONTINTS	
13.0	FILL: 16.0 in. concrete slab over brown mixture of fine to coarse sand and gravel, little silt, moist ORGANIC SILT: Stiff dark grey organic silt with sand seams, wet SAND: Compact dark grey fine to medium sand, trace of organics, strong smell of oil, saturated (possible fill) Borenole terminated at 16.5 ft.		870	1 2 3 4	22 22 22 22 22 22 22 22 22 22 22 22 22	25 21 18 11	invert level		Borehole becoming the sample of the sample o
									CHECKED BY OK

PML 1504

LOCATION HALES Street North, Carbridge, Ontario BORING DATE 1986, 36.72									
BO	RING METHOD CONTINUOUS FLIGHT H	oilo	Ste	r Au		.,	CHE LE STEENCTUS		. HNn - 4N - 1 - 10 - 1
	SOIL PROHILE	i		_	SAMPL	-	SHEAR STRENGTH C.	PLASTIC LIMIT	
אודיכ	OESCRIPTION	90.00	7	1 1 2	=	S0001	DYNAMIC CONE PENETRATION + STANDARD PENETRATION TEST +	WATER CONTENT	9- NDWATE OTT 2 / P 1/N 222 M 18 C/+
	GROUND ELEVATION 880.1	=	Ē	Ž	_	N VARI	8LOWS FOOT 20 40 60 80	HATER CONTENT	
	FILL: 2.0 in. of asphaltic concrete over dark brown fine	X			_				
	to medium sand and gravel, damp	\otimes							
_			875	1	SS	12		ο	
		\bigotimes	,	2	.55	4	•	Ç-	1
_		\otimes	1						İ
٥		\otimes		7	ss	8	•	3	
	becoming wet with inclusions of coal and brick, strong smell	\bowtie	870	1	SS	9	6	0	1
٥		\mathbb{X}^{\times}	1	-		1	1,4		
0	ORGANIC SILT: Black organic silt, sand seams, saturated	12		5	22	23		0	
\dashv	SAND: Compact to very dense brown fine to medium sand,		865	6	55	17	4,2	1 6	After sample
	occasional silt seams, saturated]		Ī	After sample water level a 14.0 ft.
╛						1			1
-			860	-	SS	80		d	1
_								1 1 1	
0			855	8	-				-
٥.	SAND AND GRAVEL: Very dense	g.; ;		Ľ	-22	34			
ᅱ	brown fine to coarse sand and gravel, saturated	0,		-	-	1			
.0	Borehole terminated at 29.0 ft.		850	二		1			fixer xxmpleti
۲	upon meeting refusal to auger			Ë					drilling, box caved to 13.3
\neg						1			with no free
						1			
\dashv		1		-	-				
\Box									
\exists				F	_	}			
		:				1			
-				\vdash	-	1			
]]
						ŀ			
_				-	-	1			
						1	1 1 1 1		1 .
_									
				F		}			
						1			1
_				-	-	1			
						1			
						1			1
									1

1	B NAME PROPOSED MILL RACE CON							85 <u>F 331</u>
1	ORATION <u>Water Street North, Ca</u> DRING METHOD <u>Continuous Flight</u>				BORIN	C DATE	986.06.03	
-	SOIL PROFILE		SAMP		SHEAR STRENGTH C		LIQUID LIMIT	WALLAN T. FE
DEPTH	DESCRIPTION	1 t.t MD 1 V.A.TICON	TYPE B	VALUES	DYNAMIC CONE PENET STANDARD PENETRAL	TRATION .	PLASTIC LIMIT	ROUNDWATER OBSERVATIONS AND REMARKS
	GROUND ELEVATION 880.2] =	1	ı z	20 40 60	80	MATER CONTENT	
21.0		875 875 876 876 876 876 876 876 876 876 876 876	1 55	5 7 3 3 17 4 4 4 3 3 8	DYMAMIC CONE PENETRAL TRANDARD PENETRAL SLICAVS FFOO 10 SO 10 SO 11 SO 12 SO 13 SO 14 SO 15 SO 16 SO 17 SO 18 SO 19 In.	- 1	WATER CONTENT— WATER CONTENT— IN THE C	After sample 5, water level at 12.0 ft. Water sample taken following sample 6
4OTES								CHECLES . Gh

,	DB HAME PROPOSED MILL RACE CON	<u>a</u>	uns_						HN 86 F 132A
	OCATION Hater Street North, Cam						BORING DATE		NONDER T. Misson
В	ORING METHOD CONTADUOUS Flight	Hollo	M_Ste	T. AL				LIOUID LIMIT	TECHNIL 41 D. Keily
oem		QN 173	111 VA IJON		(AU+L	DWS/FOOT VATUES	DYNAMIC CONE PENETRATION . STANDARD PENETRATION TEST .	WATER CONTENT	# R-31 NDWATER
	GROUND FLEVATION 879.4	 	=	1		ã Z	BLOW \$/FOOT 20 40 60 80	WATER CONTENT	1
	FILL: Dark brown fine to medium sand and gravel, occasional organic inclusions, damp to wet OPGANIC SILT: Loose dark grey organic silt with occasional		875 870 865		\$\$ \$\$ \$\$ \$\$ \$\$	3 1/11 4 2	MATT.	0 g	After sample 5
19.0	becoming organic sand with	~ ~ ~ ?	860	4	55	6		41	21.5 ft.
	SAND AND GRAVEL: Very dense brown fine to coarse sand and gravel, saturated			8	SS	88/6	in.		
	Borehole terminated at 31.5 ft. upon meeting refusal to auger	8	850	9	22	102			tpon completion of drilling, borehole caves to 5.0 ft. with no free water
								1	
10									
NOTE	5								CHECKEO N JK

	JOE	NAME PROPOSED MILL RACE COND									96 F <u>. 124</u>
	LOC	ATION hater Street North, Car						- HORING DA	TE 1986.06.04		
-	90	RING METHOD Continuous Flight	Hollo	St.							HAD AN D Yelly
-		SOIL PROFILE		T -	1	SAMPL		SHEAR STRENGTH Cy	PLASTIC LIMIT	*t	
	реетн	DESCRIPTION	92	111 VA 110 V	MIN N	Ę	DWNESS	DYNAMIC CONE PENETRATION T	ON . W, W	_;	
		GROUND ELEVATION 879.4		=	ž		Ę z	20 40 60 B	0	* 1	
		FILL: Dark grey and black fine to medium sand, little gravel, coal, brick pieces and									
-		cinders, moist to wet		875	\Box	SS	14	•	0		
1			\bowtie	1	2	SS	8	į,	0		1
-			\bowtie		Н		1	1			
ļ			\otimes	870	3	SS	7		, α,		
d			X	1	1	SS	2	2		<u>5</u>	-
İ	12.0		\bigotimes				1	•		-	
-		ORCANIC SILT: Loose dark grey organic silt, saturated	+1		5	SS	3		1	445	
٦		organic price, consider	1	865			,				Ĭ
+			141		6	22	5		0		
È	12.5		111		\Box						
ŀ		becoming organic sand with shells	H	860	Н			1		1	
Ţ					7	SS	3	7		0	After sample ".
Ŀ	22.5		117-		Н					r'	water level at 17.5 ft.
		SAND AND GRAVEL: Very dense brown fine to coarse sand and	?	855	\Box			7		1	
+		gravel, saturated	7		8	SS	100	3 10		-	-
			. 2			_					
F	-	Borehole terminated at 27.5 ft.	-		\vdash						Upon completion of
4		upon meeting refusal to auger		850						1	drilling, commonle open to 20.0 ft.
1					\vdash				1 1	ĺ	with water level at 13.5 ft.
										1	13.5 10.
-					Н				1		
1				,						(
-					\vdash					1	
ļ											
4					\vdash						
									1		
H					\vdash						
+					\Box				1		
ŀ					\vdash	_					
1					\Box	_					
ŀ	-				\vdash	_					! !
Ĩ					\Box						
+					\vdash						
					\Box						
\$					\vdash	_					•
-	=										
+											
4					\Box	_					
t											
	NOTES										
										•	,
1											al

90	RING METHOD Contunuous E. 1cht	Hollo	Ļ_Ste	- Aı	oers		BORING DATE	*7	N 11 e
	SOIL PROFILE			1	SAMPL	٤5	SHEAR STRENGTH C.	PLASTIC LIMIT	
DEPTH	DESCRIPTION	9 T	VIII VA DIO	E II		DWS/HHH	DINAMIC CONE PENETRATION +	WATER CONTENT	817: NUME TER 8318 - ATIONS 1ND REMARKS
	UROUND ELEVATION 880.0		=	_		Ξz	BLOWS FOOT 20 40 AC BO	WATER CONTENT	
19.0 19.0	OREANIC SILT: Loose dark grey organic silt, some sand seams, saturated Decoming organic sand with shells SAND AND GRAVEL: Very dense brown fine to coarse sand and gravel, saturated Borehole terminated at 29.5 ft. upon meeting refusal to auger		875 865 860 855	5	SS	24 10 14 4 3 3 101		541	Í

	SOIL METHOD SOIL MEGICE			i	SAUPL	15	SHEAR STRENGT	HC,	, Lig. ib Liwit	•.	<u> </u>
אדל	OESCRIPTION	000	7011 × × 110	N S N S N S N S N S N S N S N S N S N S	2.2	100000 A 41 ULS	DYNAMIC CONE P		PLASTIC LIMIT_		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	GROUND FLENATION 878.2	1 =	=	ž		1 z	HLOW'S	►00T	*****		
	FILL: Dark grey and black fine	1/									
_	to coarse sand with coal and brick, moist to saturated	\mathbb{K}	875			1	1 1				
_		\otimes		1	SS	37	()X		3		
		\otimes		:	SS	6	1	1		Ą	
:		YZ	870	H		1		1			
	ORGANIC SILT: Loose dark grey organic silt, occasional sand	1	0.0	3	SS	3	•			461	•
	seams, saturated	11	{	4	SS	3	•1			56%	3
				H			12				
		$\ \ \ $	865				3				İ
				5	SS	6	. 1		1	1471	t
.0						1					
	becoming organic sand with shells		860			1		Y 1	1 1		
_				6	SS	7	1 1	-	1		•
		111			- 33	1	1	"-	1 1	234	PAfter sample 6, water level at 18.5 ft.
<u>:-</u>	SAND AND GRAVEL: Very dense		855	Н	_	-		,		,	18.5 22.
	brown fine to coarse sand and gravel, saturated					1		,			_
				1	SS	83)		Ī
			850	\Box			1 3				
_						j					
_				8.	22	147	1 1		0		
_		•	845	二		1		1 1	1		
.0				\vdash		1					
	Borehole terminated at 35.0 ft			\Box							Upon completion
											drilling, borend caved to 20.0 ft
						}					with water level 10.5 ft.
								1			
-				H		-					
-				\vdash	_	ł					-
				\Box							
					_						
									1		
							1 1				
				-							
								ŧ	1		
				\vdash		1					
				\Box			İ	1			
						j		1			
_						-					

APPENDIX D

MISCELLANEOUS FIELD DATA

SINGLE WELL RESPONSE TEST - DATA AND CALCULATIONS HVORSLEV METHOD (1951)

	2087 C.N.A. Holdings Inc. Ken VanderMeulen		FEB. 27/90 Falling
. ELEVATION: TIC DEPTH (H): G VOLUME: PL. (H-Ho):	268.41 m AMSL 4.440 m 1.046 L	WELL RADIUS (r): BOREHOLE RADIUS (R): SCREEN LENGTH (L): TIME LAG (To):	0.025 m 0.102 m 1.220 m 61 sec

JECT NAME: MILL RACE ON THE GRAND HOLE DESIGNATION: 0W14-9C

PL. (H-Ho): 0.533 m TIME LAG (To): 61 sec RAULIC CONDUCTIVITY K= (r*r*ln(L/R))/(2*L*To): 1.0E-03 cm/sec

:	TIME (actual ti	. m e			WATER	 : :	DISPL.	:		
STA		HH:MM:55)		TOTAL (sec.)	1	DEPTH	1	:H - h:		(H-h)/ (H-Ho)	:
;	1	00:00:07	1	7	;	4.250	;	0.190	į	0.357	
;	1	00:00:15	1	15	1	4.290	!	0.150	ł	0.282	;
*	1	00:00:25	3	25	;	4.330	1	0.110	1	0.206	*
1	:	00:00:36	;	36	3	4.360	;	0.080	1	0.150	1
b 1	* 1	00:00:44	1	44	1	4.380	;	0.060	1	0.113	1
:	* 1	00:00:54	1	54	1	4.400	;	0.040	1	0.075	3
:	1	00:01:04	1	64	;	4.410	1	0.030	1	0.056	;
;	1	00:01:16	1	76	;	4.420	1	0.020	ł	0.038	1
	1	00:01:30	1	90	1	4.430	1	0.010	;	0.019	:
	:	00:01:42	1	102	1	4.430	3	0.010	1	0.019	
;	;	00:03:30	1	210	1	4.430	;	0.010	1	0.019	,

SINGLE WELL RESPONSE TEST - DATA AND CALCULATIONS HVORSLEV METHOD (1951) ECT NAME: MILL RACE ON THE GRAND HOLE DESIGNATION: 0W15-90 DATE TESTED: IECT NUMBER: 2087 Feb. 27/90 NT: C.N.A. Holdings Inc. RVISOR: Lisa Lavallee TEST TYPE: Falling ELEVATION: 268.54 m AMSL WELL RADIUS (r): 0.025 m 4.490 m IC DEPTH (H): S VOLUME: BOREHOLE RADIUS (R): 0.102 m SCREEN LENGTH (L): TIME LAG (To): 1.046 L 1.220 m L. (H-Ho): 0.533 m 1055 secs PAULIC CONDUCTIVITY K = (r*r*ln(L/R))/(2*L*To): 6.0E-05 cm/sec _______ : TIME (actual time) : : :----: WATER : DISPL. : %DISPL. : : days :(HH:MM:SS): TOTAL : DEPTH : :H - h: : (H-h)/ : START TIME: 00:00:00 !(sec.) ! (h) ! (H-Ho) ! 1.00:00:11 1 11 1 4 150 1 0 740 1 0 478 1

1	- 1	00:00:11	1	11	1	4.150	;	0.340	1	0.638	1
1	;	00:00:17	1	17	1	4.160	;	0.330	1	0.619	1
1	;	00:00:31	1	31	1	4.165	;	0.325	1	0.610	:
1	;	00:00:40	1	40	i	4.170	}	0.320	1	0.601	1
1	1	00:00:55	;	55	1	4.180	;	0.310	;	0.582	1
1	1	00:01:17	;	77	1	4.190	;	0.300	1	0.563	1
1	ŀ	00:01:39	1	99	1	4.200	;	0.290	1	0.544	1
1	1	00:02:00	}	120	!	4.210	1	0.280	;	0.526	1
1	1	00:03:00	3	180	1	4.230	;	0.260	;	0.488	;
1	1	00:04:00	1			4.250		0.240	:	0.451	-
* ·	1	00:05:00	1	300	1	4.265	;	0.225	:	0.422	1
-	1	00:06:00	1			4.280	1	0.210	:	0.394	1
1	1	00:07:00	1	420	!	4.290	1	0.200		0.375	1
1	1	00:08:00	1	480	;	4.305	1	0.185		0.347	1
P	;	00:09:00	1			4.315		0.175		0.329	1
1	1	00:10:00	1	600	1	4.327	;	0.163	:	0.306	1
1	1	00:11:00	1			4.335		0.155		0.291	
r 1	1	00:12:00	1	720	1	4.345	1	0.145	:	0.272	
1	1	00:13:30	1	810	1	4.355	1	0.135	:	0.253	:
1	1	00:15:00	;			4.368		0.122	;	0.229	:
1	;	00:16:30	1	990	!	4.378	1	0.112		0.210	
1	1	00:18:00	1	1080	!	4.383	1	0.107	:	0.201	
1	;	00:19:30	;	1170	;	4.393	1	0.097		0.182	
1	;	00:21:30	1	1290	!	4.400	1	0.090		0.169	1
1	;	00:23:30	1			4.410		0.080		0.150	
*	;	00:25:30				4.420		0.070		0.131	;
*	?	00:27:30				4.425		0.065		0.122	1

| 00:36:30 | 2190 | 4.450 | 0.040 | 0.075 | 00:37:00 | 2340 | 4.452 | 0.038 | 0.071 | 00:41:30 | 2490 | 4.455 | 0.035 | 0.066 | 00:44:30 | 2670 | 4.460 | 0.030 | 0.056 | 00:47:30 | 2850 | 4.465 | 0.025 | 0.047 | 00:52:30 | 3150 | 4.475 | 0.015 | 0.028 | 00:57:30 | 3450 | 4.482 | 0.008 | 0.015 | 01:02:30 | 3750 | 4.482 | 0.008 | 0.015 | 01:07:30 | 4050 | 4.482 | 0.008 | 0.015 |

(9H → H) / (4 → H)

— բուցերությու

Depth 20 22 f SOIL DESCRIPTION TESTED BY PROJECT NO. ÁKK3..... C. MMFELDGE LOCATION . BHISER. DATE .. AFF.14.23 187... PROJECT NAME

			•
	0.00		
•			
		•	
		•	
		4	•
	9		

APPENDIX E

ANALYTICAL REPORTS

DATE. March 30, 1987

CLIENT ORDER #

2087

REPORT #

NL-2402

Attention: Ms. K. Kaufman

RE Analysis of Soil Samples for Naphthalene and Benzo(a)Pyrene

Ms. Kaufman,

Two (2) soil samples, received March 19, 1987, were analysed for naphthalene and benzo(a)pyrene indicator PAH compounds by solvent extraction and gas chromatography with flame ionization detection. Results and detection limits are shown in the table below.

Table - Concentration of Indicator PAH Compounds in Soil Samples (ug/g)

Sample	Naphthalene	Benzo(a) Pyrene
BF 0016	2.38	<0.5
BF 0025	<0.05	<0.05

Chromatograms will be kept on file.

Sincerely,

NOVALAB LIMITED

B.E. Crowlev/ B.Sc.

J DJawy

Approved by J.D. Fenwich, Ph.D., P. Chem.

BEC/hl

John D Ferwick
74-024

DATE May 19, 1987

CLIENT ORDER #

2087

REPORT # NL-2535

RE Analysis of Soil for PAH Analysis of Leachate for PAH

Ms. Kaufman,

Ten (10) soil samples were received April 28, 1987. Two (2) of these samples were analysed for polycyclic aromatic hydrocarbons by EPA method 625. All ten (10) soil samples were leached, according to the leaching procedure of Environment Quebec, and the resulting leachate was analysed also for PAH by EPA method 625.

Results and detection limits are shown in the appended tables.

Chromatograms will be kept on file. Results of gc/ms analyses are not corrected for recovery.

Sincerely,

NOVALAB LIMITED

B.E. Crowley, 8.5c

Approved by J.D. Fenwick, Ph.D., P.Chem.

BEC/hl encl. John D Farmer

CONCENTRATION OF PAH IN SDIL SAMPLES ug/g

	2087		2087			
COMPOUND	#1	MDL	12	HOL	Blank	MOL
ACENAPHTHENE	2230	30	-	3	-	0.3
ACENAPHTHYLENE	160	30	89.2	3	-	0.3
ANTHRACENE	1250	30	55.8	3	-	0.3
BENZ (A) ANTHRACENE	400	30	11.3	3	-	0.3
CHRYSENE	640	30	23.7	3	-	0.3
BENZO(B)FLUDRANTHENE						
BENZO(K)FLUDRANTHENE	420	50	TR	5		0.5
BENZO(A)PYRENE	530	50	TR	5	-	0.5
BENZO (GHI) PERYLENE	330	150	-	15	-	1.5
DIBENZ(A,H)ANTHRACENE	-	150	-	15	-	1.5
FLUORANTHENE	2400	30	112	3	-	0.3
FLUDRENE	780	30	16.1	3	-	0.3
INDENO(1,2,3-cd)PYRENE	220	150	-	15	-	1.5
NAPHTHALENE	10300	30	180	3	-	0.3
PHENANTHRENE	5250	30	188	3	-	0.3
PYRENE	510	30	24.8	3	-	0.3

HDL = METHOD DETECTION LIMIT

Total concentration of benzo(b)— and benzo(k)fluoroanthene is shown in the row for benzo(b)fluoranthene.

RECOVERY OF SURROGATE STANDARDS

	2087	2087	
COMPOUND	#1	12	81 ank
D8-NAPHTHALENE			55.6
D10-ANTHRACENE			57.2
D10-FLUORANTHENE			60.8
D12-PERYLENE			100

CONCENTRATION OF PAH IN LEACHATE SAMPLES ug/L

	2087 2087		2087			2087	2087	2087		
COMPOUND	\$ 1	#5	MDL	12	MDL	13	#4	#6	17	MDL
ACENAPHTHENE	47.7	3.4	1	50.4	0.2	•	27.1	0.5	0.3	0.1
ACENAPHTHYLENE	283	355	1	2.7	0.2	-	0.4	-	-	0.1
ANTHRACENE	6.2	21	1	0.5	0.2	-	1	-	-	0.1
BENZ (A) ANTHRACENE+CHRYSENE	-	-	1	-	0.2	-	-	-	-	0.1
BENZO(B)FLUORANTHENE										0.1
BENZD(K)FLUORANTHENE	-	-	2	-	0.2	-	-	-	-	0.1
8ENZO(A)PYRENE	-	-	2	-	0.2	-	-	-	-	0.1
BENID (GHI) PERYLENE	-	-	5	-	0.4	-	-	-	-	0.2
DIBENZ(A, H)ANTHRACENE	-	-	5	-	0.4	-	-	-	-	0.2
FLUORANTHENE	3.5	5.6	1	-	0.2	-	0.2	-	-	0.1
FLUORENE	82	82	1	6.7	0.2	-	5.1	-	0.2	0.1
INDENO(1,2,3-cd)PYRENE	-	-	5	-	0.4	-	-	-	-	0.2
NAPHTHALENE	10550	777	1	240	0.2		0.3	1.4	1.6	0.1
PHENANTHRENE	117	160	1	6.6	0.2	-	6	-	0.4	0.1
PYRENE	5.7	6.1	1	-	0.2	-	0.5	-	•	0.1

MDL = METHOD DETECTION LIMIT

Total concentration of benzo(b)- and benzo(k)fluoroanthene is shown in the row for benzo(k)fluoranthene.

RECOVERY OF SURROGATE STANDARDS (2)

2087 2087 2087 2087 2087 2087 2087 #6 #7 COMPOUND #1 #5 12 #3 \$4 D8-NAPHTHALENE 62.2 50.6 63.5 56.7 94.4 63.5 52.2 76.7 85.7 77.9 83.2 DIO-ANTHRACENE 81.4 63 87.4 010-FLUORANTHENE 74.1 63.6 90.9 75.6 85 78.8 82.9 82.4 D12-PERYLENE 100 100 83.5 46.6 44.9 81.3

CONCENTRATION OF PAH IN LEACHATE SAMPLES ug/L

COMPOUND	2087 88	2087 •9	2087 10	Leach. Blank	Lab Blank	MDL
ACENAPHTHENE	-	-	-			0.1
ACENAPHTHYLENE	-	-	-	-	-	0.1
ANTHRACENE	-	-	-	-	-	1.0
BENZ(A)ANTHRACENE + CHRYSENE	-	-	-	-	-	0.1
BENZO(B)FLUORANTHENE						
BENZO(K)FLUORANTHENE	-	-	-	-	-	0.1
BENZO(A)PYRENE	-	-	-	-	•	1.0
BENZO(GHI)PERYLENE	-	-	-	-	-	0.2
DIBENZ(A, H) ANTHRACENE	•	-	-	-	•	0.2
FLUORANTHENE	-	-	-	-	-	0.1
FLUORENE	-	-	-	-	•	0.1
INDEND(1,2,3-cd)PYRENE	-	-	-	-	-	0.2
NAPHTHALENE	-	-	-	-	-	0.1
PHENANTHRENE	-	0.2	-	-	-	0.1
PYRENE	-	-	-	-	-	0.1

MDL = METHOD DETECTION LIMIT

Total concentration of benzo(b)- and benzo(k)fluoroanthene is shown in the row for benzo(k)fluoranthene.

RECOVERY OF SURROGATE STANDARDS (2)

COMPOUND	2087 #8	2087 #9	2087 #10	Leach. 81ank	Lab Blank
D8-NAPHTHALENE	47.6	67	87.9	72.1	68.6
D10-ANTHRACENE	71.2	74.5	87.4	75.7	86.B
010-FLUORANTHENE	80.4	82	90.4	93.2	87.1
D12-PERYLENE	87.3	45.5	59.1	44.5	92.9

		ORD		PROJECT NE.	1	MULL.	RA	CE CONTRONING
SAMI	PLER'S SIGNATI	JRE	U MA	uss		SAMPLE	ME OF CONTAINERS	REMARKS
SEQ.	SAMPLE Ng.	DATE	TIME	SAMPLE LOCAT	ION	TYPE	CONT	Naman Na
	#1	Acril 18	}-			Scil	1	TOTAL + LEACH F.
	12	' /					1	TIDIAL GLEATH IN
	11 3		-				1	LEACH PORHI-
	# पं						,	
	_a <			·		 	1	
	110					 	1	
	47	-			-	/ . 	1	
	# 4						+	
	#10				V		1	V
	2 10							
							:	•
ł								
				TOTAL NS OF	CONTAIN	ER\$	10	
RELIA	QUISHED BY	Coty		- 1-3-41-	DATE/TIME RECEIVED BY:			(\$1GN)
RELINQUISHED BY: Ale Jan (SIGN)			DATE/TI	RECEIVED BY			MAGO TONK TONK	
RELINQUISHED BY:			DATE/TI	ME —	RECEIVED BY:			
RELINQUISHED BY:			DATE/TII	ME	RECEIVED	■ Y: ③-	(SIGN)	
METHOD OF SHIPMENT: SHIPPED B			D BY:	RECEIV	ED FOR LAE	ORAT	TORY BY: DATE/TIME	
CONDITION OF SEAL UPON RECEIPT: GENERAL CONDITION OF COOLER:					COOLER OPENED BY DATE/T			DATE/TIME

WHITE - RECEIVING LABORATORY COPY
YELLOW - SHIPPER'S COPY
- CRA LABORATORY COPY
GOLDEN ROD - CRA OFFICE COPY

DATE. May 19, 1987

CLIENT ORDER #

2087

REPORT # NL-2526

RE: Analysis of Water for PAH and Volatile Priority Pollutants

Ms. Kaufman,

One (1) sample of water, received May 1, 1987, was analysed for volatile priority pollutants by EPA method 624. One (1) sample of water, also received May 1, 1987, was analysed for polycyclic aromatic hydrocarbons by EPA method 625.

Results and detection limits are shown in the appended tables.

Chromatograms will be kept on file. Results of gc/ms are not corrected for recovery.

Sincerely,

NOVALAB LIMITED

B.E. Crowtey, HASC.

Approved by J.D. Fenwick, Ph.D., P.Chem.

BEC/hl

John D. Fenwick

CONCENTRATION OF VOLATILE PRIDRITY POLLUTANTS IN WATER ug/L

COMPOUND	W-042987 PH-001	MDL
BENZENE	8940	1000
BRONDDICHLORDMETHANE	-	100
BRONOFORM	-	500
BROMOMETHANE	-	100
CARBON TETRACHLORIDE	-	500
CHLOROBENZENE	-	100
CHLORGETHANE	•	100
2-CHLOROETHYL VINYL ETHER	-	5000
CHLOROFORM	-	100
CHLDROMETHANE	-	100
DIBROMOCHLOROMETHANE	•	100
1,2-DICHLOROBENZENE	-	150
1,3-DICHLOROBENZENE	-	450
1,4-DICHLOROBENZENE	-	150
1,1-DICHLOROETHYLENE	•	100
1,1-DICHLOROETHANE	-	100
1,2-DICHLOROETHANE	-	100
TRANS-1, 2-DICHLOROETHYLENE	-	100
DICHLOROMETHANE	-	5000
1,2-DICHLOROPROPANE	-	100 250
CIS-1,3-DICHLOROPROPENE	•	
TRANS-1, 3-DICHLDROPROPENE	5000	100 50
ETHYLBENZENE	5000	50
A-METHYLSTYRENE	130	50
MESITYLENE	740	1000
1,1,2,2-TETRACHLORDETHANE	-	1000
TETRACHLOROETHYLENE	4190	500
TOLUENE	4130	100
1,1,1-TRICHLOROETHANE	•	250
1,1,2-TRICHLOROETHANE	•	100
TRICHLOROETHYLENE	-	500
TRICHLOROFLUOROMETHANE	- 1410	50
H+P-IYLENE	1410	50
0-IYLENE	780	250
VINYL CHLORIDE OTHER ARCHATIC COMPOUNDS	-	50
DIMEN WARMITTO COULDONS		-

HOL . METHOD DETECTION LIMITS

OTHER AROMATIC COMPOUNDS = Total concentration of tri- and tetramethylbenzenes using the response factor of mesitylene.

Total concentration of 1,3- and 1,4-dichlorobenzene is shown in the row for 1,4-dichlorobenzene.

CONCENTRATION OF PAH IN WATER SAMPLES ug/L

W-0429B7 PH-001	Lab Blank	MOL
112	-	10
19.3	-	10
126	-	10
33.7	-	10
52.5	-	10
41	-	20
54.6	-	20
TR	-	50
-	-	50
239	-	10
303	-	10
TR	-	50
8788	-	10
805	-	10
267	-	10
	PH-001 112 19.3 126 33.7 52.5 41 54.6 TR - 239 303 TR 8788 805	PH-001 Blank 112 - 19.3 - 126 - 33.7 - 52.5 - 41 - 54.6 - TR 239 - 303 - TR - 8788 - 805 -

MDL = METHOD DETECTION LIMIT

Total concentration of benzo(b)- and benzo(k)fluoroanthene is shown in the row for benzo(k)fluoranthene.

RECOVERY OF SURROGATE STANDARDS

COMPOUND	₩-042987 PH-001	Lab Blank
D8-NAPHTHALENE		62.8
D10-ANTHRACENE		68.8
D10-FLUDRANTHENE		78.3
D12-PERYLENE		51.4

CH	CHAIN OF CUSTODY PROJECT NO. PROJECT NAME: RECORD 11 2007 MILL RACE CON.								
SAMI	PLER'S SIGNAT	URE _ C	In (1519A	<u> </u>		SAMPLE	X H		
SEQ.	SAMPLE Ng.	DATE	TIME	SAMPLE LOCAT	ION	TYPE	ME. OF CONTAINERS	REMARKS	
	001	April 29			V	rater	2	PAH, UCC	
	1	inv					-		
	1 TAI	1 100	_						
				-					
							-		
		 							
							ļ		
							-		
								1	
				70711 NA OF	201711	500	7		
				TOTAL NO. OF	CONTAIN	ERS —	12		
RELI	NOUISHED BY Y	1	-	- apulza	IME 1	RECEIVE	2-	(Warne Smitt	
RELIN	NOUISHED BY:	KKA 1	new	DATE / T		RECEIVE	3-	(\$1GH)	
RELIN	QUISHED BY			DATE/T	ME	RECEIVE	BY:		
(3168)							_	(\$10N)	
RELINQUISHED BY: (SIGN)				DATE/T	E	RECEIVE	3	(SIGN)	
METH	OD OF SHIPMER	D BY:	RECEIV	ED FOR LA	~	TORY BY DATE TIME			
	CONDITION OF SEAL UPON RECEIPT: GENERAL CONDITION OF COOLER: (SIGN) DATE/TIME						DATE/TIME		
WHIT	E - RECI	EIVING LABOR	RATORY COP	Y	1			00 2.7	

YELLOW - SHIPPER'S COPY
PINK - CRA LABORATORY COPY GOLDEN ROD - CRA OFFICE COPY

DATE Jan. 27, 1989

CLIENT ORDER =

2087

REPORT #

NL-4496

Attention: Ms. D. Hayes

RE Analysis of Water and Sediment for PAH - Project 2087

Ms. Hayes,

Two (2) water samples and three (3) sediment samples, received December 19, 1988, were analysed for polycyclic aromatic hydrocarbons by gc/ms equipped with a mass selective detector operated in the single ion monitoring mode (EPA method 625).

The water samples, identified as 2087 W-1 and 2087 W-2, were extracted on December 21, 1988 and analysed by gc/ms on December 24, 1988. The sediment samples, identified as 2087 S-1, 2087 S-2, and 2087 S-3, were extracted on December 23, 1988 and analysed by gc/ms on January 7, 1989.

The water samples contained only a very small amount of fine sediment, and this was allowed to settle out completely before the water for analysis was taken. The sediment samples were allowed to settle for four (4) days before the water portion was removed and the resulting sediment analysed (as discussed with Mr. Brian Crowley). The removed water was retained. One sample was also analysed in duplicate. Results and detection limits are shown in the attached Tables.

Chromatograms will be kept on file. Results are not corrected for recovery.

Sincerely,

NOVALAB LIMITED

iayle, J.

L.W. Tang, B.Sc. for J.D. Fenwick, Ph.D., P.Chem.

John D. Fernick 74-024 Overec

LWT/hl encl.

CONCENTRATION OF POLICICLIC ABONATIC BIDBOCARBONS IN SOIL US/5

	DUPL.					
	2087	2087	2087	2087		
COMPOUND	5-1	5-2	5-1	5-3	BLANK	MOL
ACENAPETEENE		0.02		0.02		0.02
ACENAPHTHYLENE		-	-		-	0.02
ANTERACENE	0.03	0.03	0.06	0.1	-	0.02
BENZ(A)ANTERACENE	0.3	0.1	0.3	0.2	•	0.02
BENZO(B)FLUORANTEENE						
BENZO(K)FLUORANTHENE]	1.0	0.4	0.9	1.1	•	0.02
BENZO(A)PYRENE	0.5	0.1	0.4	0.7		0.02
BEN20 (GHI) PERTLENE	0.2	0.1	0.3	0.4	•	0.04
CERTSENE	0.6	0.1	0.5	0.5	•	0.02
DIBEM2(A, H)ANTERACEME	0.09	TR	0.1	0.1	-	0.04
FLUORANTHENE .	0.6	0.4	0.6	0.9	-	0.02
FLUORENE	-		-	0.04	-	0.02
INDENO(1,2,3-CD)PTRENE	0.2	0.08	0.2	0.3	-	0.04
NAPHTHALENE	-			-		0.02
PERMANTERENE	0.3	0.2	0.2	0.5		0.02
PYRENE	0.6	0.4	0.6	0.8	-	0.02

HOL = METHOD DETECTION LINIT

TR = TRACE

Total concentration of benzo(b)- and benzo(k)fluoranthene is shown in the row for benzo(k)fluoranthene.

RECOVERY OF SURROGATE STANDARDS

(I)

			DUPL.			
COMPOUND	2087 S-1	2087 S-2	2087 S-1	2087 S-3	BLANK	
D8-NAPHTHALENE	36.5	31.2	33.8	34.9	30.1	•••••
DIO-ANTERACENE	64.6	66.8	68.6	70.5	51.5	
DIO-PLUORANTHEME	79	75.8	77.4	78.4	74.3	
D12-PERTLEME	96.6	97.2	99.9	97.4	99.2	

CONCENTRATION OF POLICICULE ABONATIC STDROCARBONS IN WATER UR/L

COMPOUND	2087 F -1	2087 ¥-2	BLANK	MDL
ACENAPHTHENE				0.05
ACENAPETEILENE	-		-	0.05
ANTHRACENE	-	-		0.05
BENZ (A) ANTERACENE	-			0.05
BENZO(B)PLUORANTHENE				
BENZO(K)PLUORANTBENE]	0.06		•	0.05
BENZO(A)PYREME		-	•	0.05
BENZO(GEI)PERTLENE		•	•	0.1
CHRYSENE	-			0.05
DIBEM2(A, E)ANTHRACENE		•	•	0.1
PLUORANTEENE	0.06	-		0.05
PLUORENE	-		•	0.05
INDENO(1,2,3-CD)PTRENE		-	•	0.1
NAPETBALENE	-	-	•	0.05
PHENANTERENE	-		-	0.05
PTRENE	•	•	•	0.05

HOL = METHOD DETECTION LIMIT

Total concentration of benzo(b)- and benzo(k)fluoranthene is shown in the row for benzo(k)fluoranthene.

RECOVERY OF SURROGATE STANDARDS

	2087	2087	BLANK	
COMPOUND	¥-]	¥-2		
D8-MAPETRALEME	54	41.6	32.4	
DIO-ANTERACENE	59.4	57.4	54.3	
DIO-PLUORANTEENE	67.9	70.1	66.8	
DI2-PERTLEME	80.4	85.5	83.5	

CH	AIN OF REC	CUS'	TODY	PROJECT Nº:		JECT NAME:	S	
SAM	PLER'S SIGNATU	RE	1716	11 20 m	_	SAMPLE	Nº OF CONTANERS	REMARKS
SEQ.	SAMPLE Nº	DATE	ПМЕ	SAMPLE LOCAT	NIC	TYPE	2 NO	
	2 -7- <-1	12	10 0	, , , , , , , , , , , , , , , , , , ,		-1 (1) -1, 1	/	1. 1
	1		15			, this	1	
	< - <u>7</u>		5-			· line of	1/	
•	_ 7-w-2		1=1			LOUN	!!	
`	1 5-3	2 -:	15 0	<u>'</u>		oden int		·
					+			
-		-						
					-		+ +	
-		-						
-					-			
-					-			-
-								
-								
-							-	
-					\rightarrow		\vdash	
-					+		 	
		1		TOTAL NUMBER	AE COM.	TAINERS		
TNA	CIPATED CHEMIC	CAL HAZAR	os:	9				
RELI	NQUISHED BY:	11 14.	usund	DATE/TI	4E スロ	RECEIVED	BY:	
		(200N)	1				-	(304)
RELI	NOUISHED BY:			DATE/TI	ME	RECEIVED	_	
	[2]	(39CH)					<u>a</u>	(340 4)
RELI	NOUISHED BY:			DATE/TI	ME	RECEIVED		
	[3]-	(38GH)		-		,	① —	(394)
	TIONAL SIGNATU							
-	HOO OF SHIPME	NT:	SHIPPE	D Bri	RECEI	IVED FOR LABO	RATO	RY BY: DATE/TIM
	DITION OF SEAL	UPON REC			+	LER OPENED B	Y:	DATE/TIM
	TRAL CONDITION				300			2

14 Apacus Road Canada L6T 5B7

Tei 416 458-4044 Brampton, Ontario Fax (416) 458-7303

Rec'd CRA

Mork Order # 90-02-108 MAP 1 12 1990 Page 1 . Beak Analytical REPORT 03.05/90 13:03:33 Received: 02/13/90 PREPORT Conestoga-Povens & Associates PREPARED Beak Analytical Services Br <u>.4 Ababus Road</u> 10 651 0015, 05.ve waterios, Intario ATTEM <u>Chester Lastoria</u> annen ligham uneureau PHONE 415-458-4044 CONTACT K_MCMIL_AN_ SAMPLES <u>1</u> CLIENT DRA gg-pank Conestoga-Rovers & Associates (Beak Analytical Services hereby disclaims any and all' mappility related to anomalous data arising from normal analytical and or sampling protocol. Should further information be required, please contact the Supervisor work ID Project IDEN #1.1race TAKEN 00, 10 F0 TRAME */PE <u>Soil</u> ::.:_ impolice under separate obver TEST CODES and NAMES used on this report SAMPLE IDENTIFICATION HEXCRS Hexavalent Chromium <u> 3-0087-889-008</u> SOI_ZM IInc____ SCC CD Cadmium 504_CC Cobalt SCS_DU Copper 507_PE_Leac ___ SOB_SR Chromius SOG_NI Micker

> S10_BE Beryllium S11_MO_Molybdenum S13_V Vanadium S16_BA Barium \$20_HG Mercury S21_AS Arsenic 522_SE Selenium S23_AG_Silver_ \$25_\$8 Antimony

14 Abacus Road Tel (416) 458-4044 Brampton, Ontario Fax (416) 458-7303

Date Received: 02.13/90 Conestoga-Povers & Associates Date Reported - 32 05 90 work Order: 90-02-108 o51 Colby Orive Waterioc, Ontario N2V .02 Category:

Atth: Graham Chevreau

Work ID. Project 2087 Millinace 2 O 1 10014 217

	-	76 16	, ,
Test		S-2087-KMV-001	S-2087-KMV-005
	Units		
Hexavalent C		0.179	0.28
Zinc	1g, 3	56	89/92
Cadmium	4 9	0.10	0.30/0.40
Cobalt	1 9	2.5	2.5/2.5
Copper	лд∵д	13.5	14.5/12.5
Lead	ug/g	5.0	18.0/20.0
Chromium	ug/g	17	23/24
Nickel	ug/g	9	12 / 13
Berylliu∎	ug/ g	<1	<1/<2
Molybdenum	ug/g	4	4 / 4
Vanadiu s	ug, g	14	24/27
Bariu s	ug, g	17	38/42
Mercury	u g / g	<0.02	<0.02
Arsenic	ug/g	<0.5	3.0/3
Selenium	ug/g	<0.5	<0.5/<1
Silver	ug/g	<0.5	<0.5/<1
Antimony	ug/g	<1	<1/<2
HULLBOILY	ug/g	NI.	11/1
			_

Certified By:

14 Abacus Road Tel 416: 458-4042 Brampton, Ontario Fax 416: 458-7303 Canada L6T 5B7

Page 2

Beak Analytical REPORT

Work Order \$ 90-02-108

Received: 02/13/90

Test Methodology

TEST COCE HEXCRS NAME Hexavalent Chromium

W.O. \$90.02.108

QA/QC REPORT

PARAMETER	EXTRACTED DATE	ANALYSED DATE	ANALYTICAL Blank	QA/QC
Cadmium	February 14, 1990	February 20, 1990	<0.0001 mg/L	BCSS-1
				True Value: 0.25 Analyzed Value: 0.24
Cobalt	Not Applicable	February 26, 1990	<0.001 mg/L	BCSS-1
				True Value: 11.4 Analyzed Value: 10.4
Copper	Not Applicable	February 20, 1990	•	WP 386
				True Value: 100 Analyzed Value: 107
Lead	Not Applicable	February 21, 1990	<0.001 mg/L	WP386
				True Value: 22.7 Analyzed Value: 21.2
Chromium	Not Applicable	February 28, 1990	<0.01 mg/L	WP386
				True Value: 123 Analyzed Value: 58.5
Hercury	February 19, 1990	February 20, 1990	<0.05 ug/L	WP386
				True Value: 0.12 Analyzed Value: 0.10
Arsenic	February 21, 1990	February 21, 1990	<1 ug/L	BCSS-1
				True Value: 11.1 Analyzed Value: 9.5
Selenium	February 21, 1990	February 21, 1990	<1 ug/L	BCSS-1
				True Value: 0.43 Analyzed Value: <0.5
Antimony	February 20, 1990	February 20, 1990	<2 ug/L	8CSS-1
				True Value: 0.59 Analyzed Value: <1

ш	٨	400	0.2	108

QA/QC REPORT (CONTINUED)

PARAMETER	EXTRACTED DATE	AMALYSED DATE	ANALYTICAL BLANK	QA/QC
Zinc	Not Applicable	February 19, 1990	0.02 mg/L	BC\$5-1
				True Value: 119 Analyzed Value: 115
Nickel	Not Applicable	February 19, 1990	<0.01 mg/L	BCSS-1
				True Value: 55.3 Analyzed Value: 54.1
Berylliu∎	Not Applicable	February 21, 1990	<0.01 mg/L	BCSS-1
				True Value: 1.3 Analyzed Value: 1.6
Molybdenum	Not Applicable	February 21, 1990	<0.01 mg/L	BC55-1
				True Value: - Analyzed Value: 5.4
Vanadiu∎	Not Applicable	February 21, 1990	<0.01 mg/L	BCSS-1
				True Value: 93.4 Analyzed Value: 49.8
Bariu∎	Not Applicable	February 21, 1990	<0.01 mg/L	BC55-1
				True Value: - Analyzad Value: 56.6
Silver	Not Applicable	February 21, 1990	<0.01 mg/L	Municipal Sludge
				True Value: B0.6 Analyzed Value: 70.0

N.O. #90.02.108

METHODS

Cadmium Graphite Furnace

Cobalt Graphite Furnace

Copper Graphite Furnace

Lead Graphite Furnace

Chromium DCP

Mercury Cold Vapour - Flameless Atomic Absorption (MOE 1983)

Arsenic Hydride Generation

Selenius Hydride Generation

Antimony Graphite Furnace

Zinc DCP

Nickel DCP

Beryllium DCP

Molybdenua DCP

Vanadium DCP

Barium DCP

Silver Graphite Furnace

Note: Beckman Instruments Inc.

Direct Current Plasma (DCP) Optional Emission Spoectrometric Method for Trace Elemental

Analysis of Water and Wastes. Method AES 0029, 1984

TEL (514) 636-6218 631-1838 FAX (514) 631-9814

DATE:

March 7, 1990

CLIENT ORDER #

2087

REPORT #

NL-6713

Attention: Mr. G. Chevreau

RE Analysis of Soil Samples - Project Millrace

Sir.

Two (2) soil samples, received February 13, 1990, were extracted February 27, 1990 and analysed for polycyclic aromatic hydrocarbons by gas chromatography with flame ionization detection. Results are shown in the attached Table.

Chromatograms will be kept on file.

Regards,

NOVALAB LIMITED

Elizatiaa

E.E. Keirstead, B.Sc., Dipl.

Approved by J.D. Fenwick, Ph.D., P.Chem.

EEK/hl encl. John D. Femwick
74-024
Onept C

CONCENTRATION OF POLICYCLIC ARONATIC HYDROCARBONS IN SOIL

	1.7.1.2 1.7.1.2	. "	
	S-2087	S-2087	
COMPODED	KMV-002	KNV-006	
MAPETHALENE	< 0.05	0.42	
ACENAPHTHYLEME	< 0.05	0.05	
ACENAPHTHEME	< 0.05	0.69	
PLOORENE	< 0.05	0.32	
PREMANTERENE	< 0.05	1.2	
ANTHRACENE	< 0.05	0.35	
PLOORANTHEME	<-0.05	0.53	
PYREME	< 0.05	0.75	
BENZ(A)ANTHRACENE	< 0.05	0.19	
CHRYSENE	< 0.05	0.21	
BEN 20 (B) PLUORANTHENE			
BENZO(K)FLOORANTRENE]	< 0.12	0.24	
BENZO(A)PTRENZ	< 0.1	0.2	
INDENO(1,2,3-CD)PYREME			
DIBENZ(A, E) ANTERACENE	< 0.25	< 0.25	
BENZO(G, H, I)PERTLEME	< 0.2	< 0.2	

HOL - METHOD DETECTION LINIT

C = LESS THAN

Total concentration of benzo(b)- and benzo(k)fluoranthene is shown in the row for benzo(k)fluoranthene.

fotal concentration of indemo(1,2,3-cd)pyrene and dibens(a,b)anthracene is shown in the row for dibenz(a,b)anthracene.

CHAIN OF CUSTO RECORD /	<i>J</i> LJ	ROJECT Nº: 2087		CT NAME:	Ε	
SAMPLER'S SIGNATURE	- S			SAMPLE TYPE	Nº OF CONTAINERS	REMARKS
Nº	TIME S	SAMPLE LOCAT	NIC		+	
:- 20 67 - KON - 002 02 × 10			-	SOIL	-	PAH
-2067-KMU-506 22-09-90				SO 1L	7	PAH
				-		
						-
			-			
ANTICIPATED CHEMICAL HAZARDS:		TAL NUMBER (AINERS	2	
ANTIGERIED CHEMICAL TIAZARDS.	P	NA,-	PH			
RELINQUISHED BY:		DATE/TI	ME	RECEIVED	BY:	5. Duguag
RELINQUISHED BY:		DATE/TI	ME	RECEIVED	BY: 3-	(SQN)
RELINQUISHED BY:		DATE/TI	ME	RECEIVED	BY:	(304).
ADDITIONAL SIGNATURE SHEET REQUIRED						(341)
METHOD OF SHIPMENT:	SHIPPED E	3Y:	RECEIV	VED FOR LABO	ORATO	RY BY: DATE/TIME
CONDITION OF SEAL UPON RECEIP GENERAL CONDITION OF COOLER:	T:		COOL	ER OPENED E	3Y:	DATE/TIME 13/62/41/000
WHITE - CRA OFFICE	COPY		(99N) -			7

PINK - CRA LABORATORY COPY
GOLDEN ROD - SHIPPERS

Mº 009311

TEL (514) 636-6218 631-1838 FAX (514) 631-9814

Rec'd CRA

APR 0 2 1990

DATE.

March 28, 1990

CLIENT ORDER #

2087

REPORT #

2087

MONITORING DATA

NL-6896

Attention: Mr. G. Chevreau

RE: Analysis of Water Samples - Project Mill Race

Sir,

Four (4) water samples were received on February 26, 1990. Two (2) water samples were extracted on February 28, 1990 and analysed for polycyclic aromatic hydrocarbons by gas chromatography with flame ionization detection and the other two (2) samples were extracted on February 26, 1990 and analysed for volatile priority pollutants by gc/ms. Results and detection limits are shown in the attached Tables.

All data will remain on file.

Sincerely.

NOVALAB LIMITED

Bilinky

B.E. Crowley, B.Sc.

Approved by J.D. Fenwick, Ph.D., P.Chem.

BEC/hl encl. John D. Ferwick 74-024

CONCENTRATION OF VOLATILE PRIORITY POLLUTANTS IN WATER ug/L

•	_	٠ ر	7	
	W-2087	₩-2087		
COMPOUND	KMV-001	KMV-005	BLANK	MDL
BENZENE	ND	NO	ND	1
BROMODICHLOROMETHANE	ND	ND	ND	1
BROMOFORM	ND	NO	ND	2
BROMOMETHANE	NO	ND	ND	10
CARBON TETRACHLORIDE	ND	NO	ND	2
CHLOROBENZENE	ND	ND	ND	1
CHLOROETHANE	NO	ND	ND	10
2-CHLOROETHYL VINYL ETHER	ND	ND	ND	10
CHLOROFORM	4.3	ND	ND	1
CHLOROMETHANE	ND	ND	ND	10
D18ROMOCHLOROMETHANE	NO	ND	NO	1
DIBROMOETHANE	NO	ND	NO	4
1,2-DICHLOROBENZENE	ND	NO	ND	1
1,3-DICHLOROBENZENE	ND	ND	NO	1
1,4-DICHLOROBENZENE	ND	ND	NO	1
1,1-DICHLOROETHYLENE	ND	ND	ND	1
1,1-DICHLOROETHANE	ND	ND	ND	1
1,2-DICHLORDETHANE	NO	ND	ND	2
TRANS-1,2-DICHLORDETHYLENE	NO	ND	ND	1
DICHLOROMETHANE	ND	ND	ND	5
1,2-DICHLOROPROPANE	ND	ND	ND	1
C1S-1,3-DICHLOROPROPENE	ND	ND	ND	1
TRANS-1,3-DICHLOROPROPENE	ND	NO	ND	1
ETHYLBENZENE	1.1	ND	ND	1
A-METHYLSTRYENE	ND	ND	ND	1
HETHYLSTYRENE ISOMERS	ND	ND	ND	1
MESITYLENE	NO	N0	ND	1
STYRENE	ND	ND	ND	2
1,1,2,2-TETRACHLOROETHANE	NO	ND	ND	2
TETRACHLOROETHYLENE	ND	ND	ND	1
TOLUENE	ND	NO	NO	2
1,1,1-TRICHLOROETHANE	ND	ND	ND	2
1,1,2-TRICHLOROETHANE	ND	ND	ND	1
TRICHLOROETHYLENE	ND	ND	ND	1
TRICHLOROFLUOROMETHANE	NO	ND	NO	2
M+P-XYLENE	TR	ND	ND	2
0-XYLENE	1.5	ND	ND	1
VINYL CHLORIDE	ND	ND	ND	\$
OTHER ARDMATIC COMPOUNDS	16	NO	ND	1

MDL = METHOD DETECTION LIMITS

NO = NOT DETECTED

TR = TRACE

OTHER AROMATIC COMPOUNDS = Total concentration of tri- and tetramethylbenzenes using the response factor of mesitylene.

CONCENTRATION OF POLICICLIC ARONATIC HYDROCARBONS IN WATER UR/L

	4610				
COMPOUND	9-2087 RHY-002	F-2087 RAY-006°	MDL		
MAPHTBALENE	I D	I D	1		
ACEMAPHTHYLENE	MD	10	1		
ACCAAPETHERE	E D	10	1		
PLDORENE	B D	M D	t		
PHENANTHREAD	ND.	10	1		
ANTHRACENE	I D	■D	1		
PLOORANTHEME	BD	80	1		
PYREME	ND.	H D	1		
BENZ (A) ANTHRACENE	IID.	B D	1		
CHRISTAL	MD	BD	1		
BENZO(B)PLOORANTHEDE	B D	MD	1		
BENZO(K) PLDORANTHEME	MD.	MD	1		
BERZO(A)PYRERE	MD	MD	1		
INDENO(1,2,3-CD)PYRENE					
DIBERZ(A, E)ANTHRACENE	ND.	IID	3		
BENZO(G.E.I)PERTLENE	II D	ID	2.5		

HDL = HETROD DETECTION LIKIT

ND = Not Detected

Total concentration of indeno(1,2,3-cd)pyrene and dibens(a,h)anthracene is shown in the row for dibenz(a,h)anthracene.

	-							
СН	AIN OF REC	CUST		PROJECT Nº: 7067		CT NAME:	ce	
SAMPLER'S SIGNATURE K Vousice YY		~~(c ?)	Jeule-		SAMPLE TYPE	NP OF	REMARKS	
SEQ.	SAMPLE Nº	DATE	TIME	SAMPLE LOCATO	IN	HIFE	2 × 8	
	w. 2587-			well	L	العجم		Voc
	1.	- 00		- ti		11	11	FAH
	11	- 00		11	-+	11	+++	voc
	1 2087. K	101 - 001	6	well		water	+++-	FAH
		-					+	. `
_		 			-		++	
		-			_		+-+	
							++	
		 					+	
							++	
		 					1-1-	
							+	•
							11	
							+	
							1	
			π	OTAL NUMBER O	F CONTA	INERS	4	
ANT	ICO	cal hazards	S:					
RELINQUISHED BY: Landon Mula			DATE/TIME RECEIVED BY: 2/23/90 3:30		- June may			
RELINQUISHED BY:			DATE/TIM	(T)			(904)	
05.		(341)		DATE/TIM	re .	RECEIVED	BY:	()
RELINQUISHED BY:::		UATE/TIME		(SGN)				
ADD	ITIONAL SIGNATUET REQUIRED	JRE						
METHOD OF SHIPMENT: SHIPPED							BY: DATE/TIME	
	ouvis .			EX.	(30)			DATE/TIME
CONDITION OF SEAL UPON RECEIPT: GENERAL CONDITION OF COOLER:			61)	(300LE	OPENED	84.	This I ! 4	
	HITE -	CRA OFFICE					/	7

WHITE - CRA OFFICE COPY
YELLOW - RECEIVING LABORATORY COPY
PINK - CRA LABORATORY COPY
GOLDEN ROD - SHIPPERS

Nº 007517

DATE: May 31, 1990

CLIENT ORDER #

2087

REPORT #

NL-7287

Attention: Mr. G. Chevreau

Analysis of Water Samples - Project : 2087

Sir.

RE:

Two (2) water samples, received May 4, 1990, were extracted May 10,1990 and analysed for polycyclic aromatic hydrocarbons by gas chromatography with flame ionization detection (EPA 610). Results are shown in the attached Table.

Chromatograms will be kept on file.

Regards,

NOVALAB LIMITED

B.B.Crowley, &.Sc.

Approved by J.D. Fenwick, Ph.D., P.Chem.

BEC/er encl.

CONCENTRATION OF POLICYCLIC AROMATIC BYDROCARBONS IN WATER $$u_{\rm g}/L$$

COMPOUND	¥-3 03/05/90	W-4 03/05/90	MDL
NAPETRALENE			1.2
ACEMAPHTHYLENE	-	-	1.5
ACENAPHTHEME	-	-	1.2
FLUORENE	-	-	1.5
PHENAN THRENE	-	•	2
ANTHRACENE	-	•	2
FLUORANTHENE	-	•	2
PYREME	-	-	1.5
BENZ(A)ANTHRACENE	-	-	2
CHRYSENE	-	-	2
BENZO(B+K)FLUORANTHENE			å
BENZO(A)PTRENE	-	-	3
INDENO(1,2,3-CD)PTRENE}	-	-	8
DIBENZ(A, E)ANTERACENE}			
BEN20(GHI)PERYLENE	-	•	5

HOL = METHOD DETECTION LIMIT

Total concentration of indeno (1,2,3-CD)pyrebe and dibebz(A,B)authracene is shown in the row of indeno (1,2,3-CD) pyrebe.

SAS OH

