

CSE 2017 Data Structure

Lecture #0: Orientation

Eun Man Choi

What is a Goal in your Career?

Road Map to be a Software Engineer

Skills for Working as a Programmer

- Programming skill
 - Know Programming Language Grammars
 - Ability to make a program for a certain problem
 - Debugging skill
- Ability to solve problems
 - design algorithms
 - design data structures
- Knowlegde about computer systems
 - OS, DB, network, mobile, security etc.
- Communication skill
 - writing documents
 - presentation

Purpose of this Lecture

- To help you develop a solid understanding of what data structure is
- To help you be able to implement computer based solutions to solve real problem
- "Programming Practice Using Data Structures"

Why OO in Data Structure?

Structure of this Lecture

- Part 1: Lecture(2 hours)
 - 10 minutes review last lecture and Q&A
 - 50 minutes lecture will cover each data structure type with presentation using PPT slide
 - 10 minutes break
 - 30 minutes supplement lecture
 - 20 minutes introducing lab problems
- Part 2: Lab
 - Pre-lab: a homework assignment in which you create an implementation of a data structure using the techniques presented in lecture.
 - In-lab: apply or extend the concepts introduced in the Prelab. All In-lab work shall be completed and turned in to your lab instructor during the lab.

Grading Policy

- Midterm and final exam: 50%
 - Simple answer questions
 - Fill in blanks of implementation
 - Writing a procedure in C programming language
 - No make-up exam
- Lab programming: 25%
 - 13 lab sessions
 - 100~200 LOC per week
- Project programming: 23%
 - 3 real professional programs
 - 500~1000 LOC each
- Attendance and Participation: 5%

Approximate Grading Scale

• Grading is on relative and absolute scale

Total Score	Grade
>85%	A +
>75%	Α
>65%	B+
>60%	В
>45%	C
>30%	D
<30%	\ F

Text and References

Text

 Nell Dale and David Teague: C++ Plus Data Structures, fourth edition, Jones and Bartlett, 2013.

Lab Book

 James Roberge: Data Structures in C++: A Laboratory Course, second edition, Jones and Bartlett, 2003.

Lecture Schedule

- Lecture 01: Orientation and Introduction to Data Structure
- Lecture 02: Introduction to C++(Struct, Class, Member Function, Overloading)
- Lecture 03: Data design and Implementation
- Lecture 04: List(Unsorted, Sorted)
- Lecture 05: Stack
- Lecture 06: Queue
- Lecture 07: Linked List
- Lecture 08: Double Linked List
- Lecture 09: Recursion
- Lecture 10: Tree
- Lecture 11: Binary Tree
- Lecture 12: Heap
- Lecture 13: Graph
- Lecture 14: Sorting

Guide to get A+ grade

- Familiar with C programming language
- Understanding data abstraction concept and each data structure's characteristics
- Your own work for Lab Programming
- Practice to apply basic concept to real problem by solving questions in books

Why Studying Data Structure is important?

- Real basic subject for understanding computer system and programming
- Computer Technology = Several Layers(like onion)

C programming + Data Structure + Algorithm + Computer
System knowledge + Design Skill + Database + = Success in getting a job

Questions?

