${\bf Topology-Munkres}$

Selected Exercise Solutions by Arnav Patri

Contents

Notation	3
Part I – General Topology	
Chapter 2 – Topological Spaces and Continuous Functions	
Section 13 – Basis for a Topology	
Section 16 – The Subspace Topology	
Section 17 – Closed Sets and Limit Points	
Section 18 – Continuous Functions	. 13

Notation Arnav Patri

Notation

This document uses the following conventions:

- $A \triangleq B$ denotes that B is the definition of A.
- $A \subset B$ denotes that A is a proper subset of B. Similarly, $A \supset B$ denotes that A is a proper superset of B.
- The power set of A is denoted $\mathcal{P}(A)$.
- $0 \in \mathbb{N} = \omega$.
- χ_A denotes the indicator function equal to 1 on A and zero on A^{\complement} .
- id denotes the identity function and may be subscripted with its domain.
- Let (X, τ) be a topological space, let $A \subseteq X$, and let $x \in X$.
 - The closure of A is denoted A or Cl(A).
 - The interior is denoted by A° or Int(A).
 - The set of limit points is denoted A' or Lim(A).
 - The boundary of A is denoted ∂A and is defined as $\overline{X} \setminus X^{\circ}$.
 - A neighbourhood of x is some $U \in \mathcal{P}(X)$ such that there is some $V \in \mathcal{P}(U) \cap \tau$ such that $x \in V$.
 - The neighbourhood system about x, the set of neighbourhoods of x, is denoted $\mathcal{N}(x)$,
 - The open neighbourhood system about x, the set of open neighbourhoods of x, is denoted $\mathcal{N}(x)$.
 - A punctured neighbourhood of x is some $U \setminus \{x\}$, where $U \in \mathcal{N}(x)$, and the punctured neighbourhood system is denoted $\mathcal{N}^*(x)$.
 - The system of punctured open neighbourhoods is denoted $\mathcal{N}^{\circledast}(x)$.
 - Cl, Int, Lim, ∂ , and $\mathcal N$ maybe subscripted with either X or τ for clarity.
- Let $\{(X_{\lambda}, \tau_{\lambda})\}_{\lambda \in \Lambda}$ be a collection of topological spaces. Their product with the product topology is denoted $\prod_{\lambda \in \Lambda} X_{\lambda}$, while that with the box topology is denoted $\prod_{\lambda \in \Lambda} X_{\lambda}$.
- Let (X,d) be a metric space with topology τ , let $x \in X$, and let $\varepsilon > 0$.
 - The open ball centred at x with radius ε is

$$B(x,\varepsilon) \triangleq \{y \in X \mid d(x,y) < \varepsilon\}$$

Its closed counterpart is

$$\overline{B}(x,\varepsilon) \triangleq \{ y \in X \mid d(x,y) \le \varepsilon \}$$

• The punctured open ball is given by

$$B^*(x,\varepsilon) \triangleq \{ y \in X \mid d(x,y) \in (0,\varepsilon) \}$$

• B may be subscripted by X, d, or τ for clarity.

Part I - General Topology

Section 13 – Basis for a Topology

1. Let (X, τ) be a topological space; let A be a subset of X. Suppose that for each $x \in A$ there is some open $U \in \tau \cap \mathcal{P}(A)$ with $x \in U$. Show that $A \in \tau$.

Solution: For each $x \in A$, let $U_x \in \tau \cap \mathcal{P}(A)$ such that $x \in U_x$, and let $U = \bigcup_{x \in A} U_x$. Clearly, U = A, making the latter a union of open sets and thus itself open.

3. Show that

$$\tau_{cf} = \{ U \subseteq X \mid |X \setminus U| < \aleph_0 \} \cup \varnothing$$

is a topology. Is

$$\tau_{\infty} = \{ U \subseteq X \mid |X \setminus U| \ge \aleph_0 \} \cup \{\varnothing, X\}$$

a topology?

Solution: If $|X| < \aleph_0$, then $\tau_{cf} = \mathcal{P}(X)$, yielding the discrete topology. Suppose instead that X is infinite, and let $\{U_{\lambda}\}_{{\lambda} \in \Lambda}, \{V_i\}_{i=1}^n \subseteq \tau_{cf}$. $\emptyset \in \tau_{cf}$ by construction, and

$$|X \setminus X| = |\emptyset| = 0 < \aleph_0$$

so $X \in \tau_{cf}$ as well. Furthermore, for any $\alpha \in \Lambda$,

$$\left| X \setminus \bigcup_{\lambda \in \Lambda} U_{\lambda} \right| \le |X \setminus U_{\alpha}| < \aleph_0$$

making τ_{cf} closed under arbitrary unions. If $V_i = \emptyset$ for some i, $\bigcap_{i=1}^n V_i = \emptyset \in \tau_{cf}$, and otherwise, $|X \setminus V_i| < \aleph_0$, so

$$\left| X \setminus \bigcap_{i=1}^{n} V_{i} \right| = \left| \bigcup_{i=1}^{n} [X \setminus V_{i}] \right| \leq \sum_{i=1}^{n} |X \setminus V_{i}| < \aleph_{0}$$

so τ_{cf} is also closed under finite intersections and is thus a valid topology.

If $|X| < \aleph_0$, τ_∞ is the trivial topology. Otherwise, for each $x \in X$,

$$|X \setminus \{x\}| = |X| - |\{x\}| = \aleph_0 - 1 = \aleph_0$$

so each singleton is in τ_{∞} . Despite this,

$$\left|X \smallsetminus \bigcup_{y \in X \smallsetminus \{x\}} \{y\}\right| = |X \smallsetminus (X \smallsetminus \{y\})| = |\{y\}| = 1$$

meaning that τ_{∞} is not closed under arbitrary unions and is thus not a topology.

4. (a) Let $\{\tau_{\lambda}\}_{{\lambda}\in\Lambda}\subseteq \mathcal{P}(\mathcal{P}(X))$ be a family of topologies on X. Show that $\tau=\bigcap_{{\lambda}\in\Lambda}\tau_{\lambda}$ is also a topology. Is $\tau'=\bigcup_{{\lambda}\in\Lambda}\tau_{\lambda}$?

Solution: Let $\{U_{\gamma}\}_{\gamma \in \Gamma}$, $\{V_i\}_{i=1}^n \subseteq \tau$. Then each U_{γ} and V_i is open in each τ_{λ} , meaning that the union of the former collection and the intersection of the latter are also in each τ_{λ} and thus in the intersection τ as well, making the latter a topology.

Let $X = \{1, 2, 3\}$, let $\tau_1 = \{\emptyset, \{1\}, X\}$, and let $\tau_2 = \{\emptyset, \{2\}, X\}$. These are clearly both valid topologies, so consider $\tau' = \tau_1 \cup \tau_2$. This includes both $\{1\}$ and $\{2\}$ but not their union and is thus not a topology.

(b) Let $\{\tau_{\lambda}\}_{{\lambda}\in\Lambda}$ be a family of topologies on X. Show that there are a unique smallest topology τ_{Λ} finer than and largest topology τ_{0} coarser than every τ_{λ} .

Solution: Let τ_{Λ} be the topology generated by $\mathcal{B} = \bigcup_{\lambda \in \Lambda} \tau_{\lambda}$. By Lemma 13.1, this means that

$$au_{\Lambda} = \left\{ \bigcup B \,\middle|\, B \subseteq \bigcup_{\lambda \in \Lambda} au_{\lambda} \right\}$$

Clearly, each $\tau_{\lambda} \subseteq \tau_{\Lambda}$. Let τ' be a topology such that each $\tau_{\lambda} \subseteq \tau'$, and let $U \in \tau_{\Lambda}$. Let $B \subseteq \mathcal{B}$ such that $\bigcup B = U$. Each element of B is open in some τ_{λ} and is thus open in τ' , so its union U is also in τ' ; that is, $\tau_{\Lambda} \subseteq \tau'$.

Let $\tau_0 = \bigcap_{\lambda \in \Lambda} \tau_\lambda$. By 4.(a), this is a valid topology. Let τ'' be a topology contained in each τ_λ . Then for $U \in \tau''$, $U \in \tau_\lambda$ for each λ , so $\tau'' \subseteq \tau_0$.

5. Show that if \mathcal{A} is a basis or subbasis generating (X, τ) , then τ is the intersection of all topologies on X containing \mathcal{A} .

Solution: Let $\mathcal{A} \subseteq X$ be a basis generating topology $\tau_{\mathcal{A}}$, and let τ' be a topology on containing \mathcal{A} . By Lemma 13.1,

$$\tau_{\mathcal{A}} = \left\{ \bigcup A \,\middle|\, A \subseteq \mathcal{A} \right\}$$

As $A \subseteq \tau'$, $\tau_A \subseteq \tau'$ by closure under unions.

Let $S \subseteq X$ be a subbasis generating topology τ_S and let τ'' be a topology containing S. By closure under arbitrary finite intersections and countable unions, $\tau_S \subseteq \tau''$.

8. (a) Show from Lemma 13.2 that

$$\mathcal{B} = \{(a,b) \, | \, a < b \in \mathbb{Q}\}$$

is a basis that generates the standard topology τ on \mathbb{R} .

Solution: Let $a < b \in \mathbb{R}$ and let $x \in (a,b)$. By the density of \mathbb{Q} in \mathbb{R} , let $c \in [a,x) \cap \mathbb{Q}$ and $d \in (x,b] \cap \mathbb{Q}$. Then $x \in (d,e) \in \mathcal{B}$. τ is generated by bounded open intervals, so for any $U \in \tau$ and $x \in U$, there is some open interval and thus some element of \mathbb{Q} within U containing x, so by Lemma 13.2, \mathcal{B} generates τ .

(b) Show that

$$\mathcal{C} = \{ [a, b) \mid a < b \in \mathbb{Q} \}$$

does not generate the lower limit topology on \mathbb{R} .

Solution: Let $a < b \in \mathbb{R} \setminus \mathbb{Q}$. Then for all $x \in [a,b) \setminus \mathbb{Q}$, a < x, meaning that there is no element of $\mathcal{C} \cap \mathcal{P}([a,b))$ containing a. By Lemma 13.3, the topology generated by \mathcal{C} is not finer than and thus not equal to the lower limit topology.

Section 16 - The Subspace Topology

1. Show that a subset of a subspace inherits the same topology from both the subspace and the parent space.

Solution: Let (Y, τ_Y) be a subspace of (X, τ) and let $A \subset Y$ inherit topologies τ_A from Y and $\tau_{A'}$ from X. Then

$$\begin{split} \tau_A &= \{Z \cap U \,|\, U \in \tau_Y\} = \{Z \cap (U \cap V) \,|\, V \in \tau\} \\ &= \{Z \cap U \,|\, U \in \tau\} \end{split}$$

by closure under finite unions.

2. Let τ and τ' be topologies on X with the latter strictly finer than the former. How do their subspace topologies on $Y \subseteq X$ compare?

Solution: Let τ_Y and τ_Y' respectively denote the subspace topologies induced by τ and τ' . Then

$$\tau_Y = \{Z \cap U(|)U \in \tau\} \subseteq \{Z \cap U(|)U \in \tau'\}$$

the former is coarser than the latter. If there is some $U \in \mathcal{P}(Y) \cap (\tau' \setminus \tau)$, then clearly this relation is strict.

Consider $X = \{1, 2, 3\}, \tau = \{\emptyset, \{1\}, X\}, \tau' = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, X\}, \text{ and } Y = \{1\}.$ Then despite τ being strictly coarser than τ' , $\tau_Y = \tau_Y'$.

4. A map $f: X \to Y$ between topological spaces (X, τ_X) and (Y, τ_Y) is an **open map** when it carries open sets to open sets. Show that the projection maps from $X \times Y$ with the product topology $\tau_{X \times Y}$ are open maps.

Solution: Let $U \in \tau_{X \times Y}$. By Lemma 13.1, let $\{(A_{\lambda}, B_{\lambda})\}_{\lambda \in \Lambda} \subseteq \tau_X \times \tau_Y$ such that

$$U = \bigcup_{\lambda \in \Lambda} [A_{\lambda} \times B_{\lambda}]$$

Then

$$\pi_1(U) = \pi_1 \left(\bigcup_{\lambda \in \Lambda} [A_\lambda \times B_\lambda] \right) = \bigcup_{\lambda \in \Lambda} \pi_1(A_\lambda \times B_\lambda) = \bigcup_{\lambda \in \Lambda} A_\lambda \in \tau_X$$

making π_1 an open map. Similarly, π_2 is as well.

- 5. Let τ_X and τ_X' be topologies on X, let τ_Y and τ_Y' be topologies on Y, and let $\tau_{X\times Y}$ and $\tau_{X\times Y}'$ denote respectively the product topologies induced by the paris τ_X and τ_Y' and τ_Y' and τ_Y' .
 - (a) Show that if τ'_X and τ'_Y are respectively finer than τ_X and τ_Y , $\tau_{X\times Y}\subseteq \tau'_{X\times Y}$

 $Solution: \text{Let } U \in \tau_{X \times Y}. \text{ Then by Lemma 13.1, some } \left\{ (A_{\lambda}, B_{\lambda}) \right\}_{\lambda \in \Lambda} \subseteq \tau_X \times \tau_Y,$

$$U = \bigcup_{\lambda \in \Lambda} [A_{\lambda} \times B_{\lambda}]$$

U is a union of basis elements of $\tau'_{X\times Y}$ and thus one of its elements by closure under unions. As such, $\tau_{X\times Y}\subseteq \tau'_{X\times Y}$.

(b) Suppose conversely that $\tau_{X\times Y}\subseteq \tau'_{X\times Y}$, and determine whether it must be the case that $\tau_X\subseteq \tau'_X$ and $\tau_Y\subseteq \tau'_Y$.

Solution: Let $U \in \tau_X$ and $V \in \tau_Y$. Then $U \times V \in \tau'_{X \times Y}$, so by Lemma 13.1, let $\{(A_\lambda, B_\lambda)\}_{\lambda \in \Lambda} \subseteq \tau'_X \times \tau'_Y$ such that

$$U\times V=\bigcup_{\lambda\in\Lambda}[A_\lambda\times B_\lambda]$$

Clearly, $U = \bigcup_{\lambda \in \Lambda} A_{\lambda} \in \tau_X'$ and $V = \bigcup_{\lambda \in \Lambda} B_{\lambda} \in \tau_Y'$, making them respectively finer than τ_X and τ_Y .

6. Show that

$$\mathcal{B} = \{(a, b) \times (c, d) \mid a < b \in \mathbb{Q}, c < d \in \mathbb{Q}\}$$

is a basis for the standard topology τ_2 on \mathbb{R}^2 .

 $Solution: \ \mathrm{Let} \ U \in \tau_2 \ \mathrm{and} \ \mathrm{let} \ x \in U. \ \mathrm{By} \ \mathrm{Lemma} \ 13.1, \ \mathrm{let} \ \left\{ (A_\lambda, B_\lambda) \right\}_{\lambda \in \Lambda} \subseteq \tau \times \tau \ \mathrm{such} \ \mathrm{that}$

$$U = \bigcup_{\lambda \in \Lambda} [A_\lambda \times B_\lambda]$$

and let $\alpha \in \Lambda$ such that $a \in A_{\alpha} \times B_{\alpha}$. By 13.8.(a),

$$\mathcal{C} = \{(a, b) \mid a < b \in \mathbb{Q}\}\$$

is a basis for the standard topology τ on \mathbb{R} , so by Lemma 13.1, let $\{C_n\}_{n\in\mathbb{N}}, \{D_n\}_{n\in\mathbb{N}}\subseteq\mathcal{C}$ such that

$$A_\alpha = \bigcup_{n \in \mathbb{N}} C_n \quad \text{and} \quad B_\alpha = \bigcup_{n \in \mathbb{N}} D_n$$

For some $n \in \mathbb{N}$, $x \in C_n \times D_n \in \mathcal{B} \cap \mathcal{P}(U)$, making \mathcal{B} a basis for (\mathbb{R}_2, τ_2) by Lemma 13.2.

7. Are all convex strict subsets of an ordered set necessarily either intervals or rays?

Solution: Consider

$$Y=\left\{ x\in\mathbb{Q}\,\big|\,x^{2}<2\right\}$$

with the usual order. This is cleary convex, but as it lacks a supremum in \mathbb{Q} , it is neither an interval nor a ray.

Section 17 – Closed Sets and Limit Points

1. Let $\mathcal{C} \subseteq \mathcal{P}(X)$ with $\emptyset, X \in \mathcal{C}$ be closed under finite unions and arbitrary intersections. Show that

$$\tau = \{X \setminus C \,|\, C \in \mathcal{C}\}$$

is a topology.

Solution: $X \setminus \emptyset = X$ while $X \setminus X = \emptyset$, so both are in τ . For $\{U_{\lambda}\}_{{\lambda} \in \Lambda}, \{V_{i}\}_{i=1}^{n} \subseteq \tau$,

$$\bigcup_{\lambda\in\Lambda}U_\lambda=X\smallsetminus\bigcap_{\lambda\in\Lambda}[X\smallsetminus U_\lambda]\in\tau$$

by closure under intersections and

$$\bigcap_{i=1}^n V_i = X \smallsetminus \bigcup_{i=1}^n [X \smallsetminus V_i] \in \tau$$

by closure under finite intersections, making τ a topology.

- 2. Show that if A is closed in a subspace (Y, τ_Y) which is itself closed in (X, τ) , then A is closed in X. Solution: By Theorem 17.2, $A = C \cap Y$ for some closed $C \subseteq X$, making A the intersection of two closed sets and hence itself closed.
- 3. Show that if A is closed in (X, τ_X) and B is closed in (Y, τ_Y) , then $A \times B$ is closed in the product space $(X \times Y, \tau_{X \times Y})$.

Solution: Since A and B are closed, $X \setminus A$ and $Y \setminus B$ are both open, so their product is a basis element of $\tau_{X \times Y}$, making

$$A \times B = (X \times Y) \setminus ((X \setminus A) \times (X \setminus B))$$

closed. \Box

4. Show that if U and A are respectively open and closed in (X, τ) , then $U \setminus A$ is open while $A \setminus U$ is closed.

Solution: By closure under finite intersections,

$$U \setminus A = U \cap (X \setminus A) \in \tau$$

while by Theorem 17.1,

$$A \setminus U = A \cap (X \setminus U)$$

is closed.

5. Show that in the order topology τ on (X, <), $\overline{(a, b)} \subseteq [a, b]$ for $a < b \in X$, and determine when equality holds.

Solution: For x < a, $(-\infty, a)$ is a neighbourhood that does not intersect (a, b), while for y > b, (b, ∞) suffices. As such, neither may be limit points of (a, b), so $\overline{(a, b)} \subseteq [a, b]$. Equality holds when a and b are themselves limit points of X.

- 6. Let (X,τ) be a topological space and let $\{A,B\} \cup \{A_{\lambda}\}_{{\lambda} \in \Lambda} \subseteq \mathcal{P}(X)$, and prove the following:
 - (a) If $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$

Solution: Let $x \in A'$. Then for all $U \in \mathcal{N}^*(x)$, $U \cap A \subseteq U \cap B$ is nonempty, so $x \in B'$. Since $A \subseteq B \subseteq \overline{A}$,

$$\overline{A} = A \cup A' \subset B \cup B' = \overline{B}$$

by Theorem 17.6. \Box

(b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Solution: By Theorem 17.6, $\overline{A \cup B} = (A \cup B) \cup (A \cup B)'$, $\overline{A} = A \cup A'$, and $\overline{B} = B \cup B'$. If $x \in A \cup B$, then clearly $x \in \overline{A} \cup \overline{B}$. Let $x \in (A \cup B)'$. Then for all $U \in \mathcal{N}^*(x)$, $U \cap (A \cup B)$ is nonempty, so either $U \cap A$ or $U \cap B$ is nonempty, making x a limit point of either A or B and thus an element of $\overline{A} \cup \overline{B}$. By proxy, $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$.

If $x \in A$ or $x \in B$, then $x \in A \cup B$ by definition. If $x \in A'$, then for each $U \in \mathcal{N}^*(x)$, $U \cap A \neq \emptyset$, so $U \cap (A \cup B) \neq \emptyset$; that is, $x \in (A \cup B)'$, so $\overline{A \cup B} = \overline{A} \cup \overline{B}$

(c) $\overline{\bigcup_{\lambda \in \Lambda} A_{\lambda}} \supseteq \bigcup_{\lambda \in \Lambda} \overline{A_{\lambda}}$, and equality may not hold.

Solution: By Theorem 17.6, $\overline{A_{\alpha}} = A_{\alpha} \cup A'_{\alpha}$ for each $\alpha \in \Lambda$ and

$$\overline{\bigcup_{\lambda \in \Lambda} A_{\lambda}} = \bigcup_{\lambda \in \Lambda} A_{\lambda} \cup \left(\bigcup_{\lambda \in \Lambda} A_{\lambda}\right)'$$

Let $\alpha \in \Lambda$. If $x \in A_{\alpha}$ then clearly $x \in \overline{\bigcup_{\lambda \in \Lambda} A_{\lambda}}$. If $x \in A'_{\alpha}$, then for each $U \in \mathcal{N}^*(x)$, $U \cap A_{\alpha} \neq \emptyset$, so $U \cap \bigcup_{\lambda \in \Lambda} A_{\lambda}$ is also nonempty; that is, $\bigcup_{\lambda \in \Lambda} \overline{A_{\lambda}} \subseteq \overline{\bigcup_{\lambda \in \Lambda} A_{\lambda}}$.

Let $B_n = [2^{-n}, 1]$ for $n \in \mathbb{N}$. Then in the standard topology on \mathbb{R} , each B_n is closed and thus contains all of its limit points, but

$$B = \bigcup_{n \in \mathbb{N}} B_n = (0, 1]$$

is not, having 0 as a limit point, meaning that $\overline{B} \supset \bigcup_{n \in \mathbb{N}} \overline{B_n}$.

9. Let A and B be subsets of (X, τ_X) and (Y, τ_Y) respectively. Show that in the product space $(X \times Y, \tau_{X \times Y})$, $\operatorname{Cl}_{X \times Y}(A \times B) = \operatorname{Cl}_X(A) \times \operatorname{Cl}_Y(B)$.

Solution: By Theorem 17.6,

$$\begin{aligned} \operatorname{Cl}_{X\times Y}(A\times B) &= (A\times B) \cup \operatorname{Lim}_{X\times Y}(A\times B) \\ \operatorname{Cl}_X(A) &= A \cup \operatorname{Lim}_X(A) \\ \operatorname{Cl}_Y(B) &= B \cup \operatorname{Lim}_Y(B) \end{aligned}$$

For $(x,y) \in \operatorname{Lim}_{X \times Y}(A \times B)$, $U \in \mathcal{N}_X^*(x)$, and $V \in \mathcal{N}_Y^*(x)$, $U \times V$ is a punctured neighbourhood of (x,y) and thus intersects $A \times B$, meaning that $A \cap U$ and $B \cap V$ must be nonempty, as if either were empty, the product $(A \cap U) \times (B \cap Y) = (A \times B) \cap (U \times Y)$ would be as well. This implies that $\operatorname{Cl}_{X \times Y}(A \times B) \subseteq \operatorname{Cl}_X(A) \times \operatorname{Cl}_Y(B)$.

If $x \in \text{Lim}_X(A)$, $y \in \text{Lim}_Y(B)$, and $U \in \mathcal{N}^*_{X \times Y}\big((x,y)\big)$, then by Lemma 13.1, there are some $\{(C_\lambda, D_\lambda)\}_{\lambda \in \Lambda} \subseteq \tau_X \times \tau_Y$ such that

$$U = \bigcup_{\lambda \in \Lambda} [C_{\lambda} \times D_{\lambda}]$$

Each C_{λ} and D_{λ} is respectively a punctured neighbourhood of x and y and therefore respectively intersect A and B, meaning that their product intersects A and B, as does U by proxy. As such, $\operatorname{Cl}_{X\times Y}(A\times B)=\operatorname{Cl}_X(A)\times\operatorname{Cl}_Y(B)$.

11. Show that the product of two Hausdorff spaces is Hausdorff.

Solution: Let (X, τ_X) and (Y, τ_Y) be Hausdorff spaces, let $(X \times Y, \tau_{X \times Y})$ denote their product, and let $x \neq y \in X \times Y$. If $\pi_1(x) \neq \pi_1(y)$, let $U \in \mathcal{N}_X^{\circ}(\pi_1(x))$ and $V \in \mathcal{N}_X^{\circ}(\pi_1(y))$ to obtain disjoint $U \times Y \in \mathcal{N}_{X \times Y}^{\circ}(x)$ and $V \times Y \in \mathcal{N}_{X \times Y}^{\circ}(y)$; otherwise, let $U \in \mathcal{N}_X^{\circ}(\pi_2(x))$ and $V \in \mathcal{N}_Y^{\circ}(\pi_2(y))$ for disjoint $X \times U \in \mathcal{N}_{X \times Y}^{\circ}(x)$ and $X \times V \in \mathcal{N}_{X \times Y}^{\circ}(y)$. In either case, the existence of such neighbourhoods makes the product space Hausdorff.

12. Show that a subspace of a Hausdorff space is Hausdorff.

Solution: Let (A, τ_A) be a subspace of a Hausdorff space (X, τ) , and let $x \neq y \in A$. If $U \in \mathcal{N}_X^{\circ}(x)$ and $V \in \mathcal{N}_X^{\circ}(y)$ are disjoint, then so are $U \cap A \in \mathcal{N}_A^{\circ}(x)$ and $V \cap A \in \mathcal{N}_A^{\circ}(y)$, making A Hausdorff.

13. Show that (X, τ) is Hausdorff if and only if the **diagonal**

$$\Delta \triangleq \{(x, x) \mid x \in X\}$$

is closed in the product space $(X \times X, \tau_2)$.

Solution: Suppose that (X,τ) is Hausdorff, and let $x \neq y \in X$. Let $U \in \mathcal{N}^{\circ}(x)$ and $V \in \mathcal{N}^{\circ}(y)$ be disjoint. Then since $U \times V \in \mathcal{N}^{\circ}_{2}((x,y))$ does not intersect Δ , since neither set contains a duplicate from the other, (x,y) is not a limit point of Δ , which therefore contains all of its is limit points and is thusly closed by Corollary 17.7.

Suppose conversely that Δ is closed in the product space, and let $x \neq y \in X$. Then by Corollary 17.7, it contains all of its limit points, so $(x,y) \notin \text{Lim}_2(\Delta)$; that is, there is some $U \in \mathcal{N}_2^{\circ}((x,y))$ disjoint from Δ . By Lemma 13.1, let $\{(A_{\lambda}, B_{\lambda})\}_{\lambda \in \Lambda} \in \tau \times \tau$ such that

$$U = \bigcup_{\lambda \in \Lambda} [A_\lambda \times B_\lambda]$$

Then

$$x \in \pi_1(U) = \pi_1\left(\bigcup_{\lambda \in \Lambda} [A_\lambda \times B_\lambda]\right) = \bigcup_{\lambda \in \Lambda} A_\lambda \in \mathcal{N}^{\circ}(x)$$

and similarly, $\pi_2(U) \in \mathcal{N}^{\circ}(y)$, separating x and y and making X Hausdorff.

15. Show that the T_1 axioms is equivalent to the condition that all distinct pairs of points have a neighbourhood not containing the other.

Solution: Suppose that (X, τ) is a T_1 -space, and let $x \neq y \in X$. Then $X \setminus \{y\} \in \mathcal{N}^{\circ}(x)$ and $X \setminus \{x\} \in \mathcal{N}^{\circ}(y)$ are neighbourhoods not containing the other point.

Suppose conversely that for all $x \neq y \in X$, there are some $U \in \mathcal{N}^{\circ}(x)$ and $V \in \mathcal{N}^{\circ}(y)$ such that neither point is in the other's neighbourhood. Let $x \in X$ and for $y \in X \setminus \{x\}$, let $U_y \in \mathcal{N}^{\circ}(y)$ such that $x \notin U_y$. Then

$$\bigcup_{y\in X\backslash\{x\}}U_Y=X\smallsetminus\{x\}\in\tau$$

so $\{x\}$ is closed; that is, singletons are closed, so X is T_1 .

Section 18 - Continuous Functions

1. Show that the topological and ε - δ definition of continuity on for $\mathbb{R}^{\mathbb{R}}$ are equivalent.

Solution: Let $f: \mathbb{R} \to \mathbb{R}$ be continuous in the topological sense, and let $x \in \mathbb{R}$ and $\delta > 0$. Since $B(x, \varepsilon)$ is open, so is its preimage under f, so by Lemma 13.1, let $\{I_{\lambda}\}_{{\lambda} \in \Lambda}$ be a collection of open intervals such that

$$f^{-1}\big(B(x,\varepsilon)\big)=\bigcup_{\lambda\in\Lambda}I_\lambda$$

Let $\alpha \in \Lambda$ such that $x \in I_{\alpha}$, and let

$$\delta = \min\{x - \inf(I_{\alpha}), \sup(I_{\alpha}) - x\}$$

Then $B(x,\delta) \subseteq I_{\lambda} \subseteq f^{-1}(B(x,\varepsilon))$, so $f(B(x,\delta)) \subseteq B(x,\varepsilon)$, making f continuous in the ε - δ sense.

Let $g: \mathbb{R} \to \mathbb{R}$ be continuous in the ε - δ sense, and let $U \subseteq \mathbb{R}$ be open. By Lemma 13.1, let $\{I_{\lambda}\}_{{\lambda} \in \Lambda}$ be a colletion of open sets such that

$$U = \bigcup_{\lambda \in \Lambda} I_{\lambda}$$

For each $x \in f^{-1}(U)$, there is some $\alpha_x \in \Lambda$ such that $f(x) \in I_{\alpha_x}$ and thus some $\varepsilon_x > 0$ such that $B(f(x), \varepsilon_x) \subseteq I_{\alpha_x}$ and some corresponding $\delta_x > 0$ such that $f(B(x, \delta_x)) \subseteq B(f(x), \varepsilon_x)$, so

$$f^{-1}(U) = \bigcup_{x \in f^{-1}(U)} B(x, \delta_x)$$

is open, making f topological continuous.

2. Let $f: X \to Y$ be a continuous function between spaces (X, τ_X) and (Y, τ_Y) . If x is a limit point of $A \subseteq X$, is f(x) a limit point of f(A)?

Solution: Suppose that Y is T_1 . Let $U \in \tau_X$, let $y \in Y$, and let

$$f: X \to Y$$
$$x \mapsto y$$

This is trivially continuous, but $\{y\}$ is a singleton and thus closed, meaning that it contains all of its limit points by Corollary 17.7, but since no neighbourhood of y can intersect $\{y\}$ nontrivially, the set lacks limit points altogether.

- 3. Let X be a set in topologies τ and τ' and let $\iota: X \to X$ be the identity function from (X, τ') to (X, τ) , where these are the respective subspace topologies.
 - (a) Show that ι is continuous if and only if $\tau' \supseteq \tau$.

Solution: Suppose that ι is continuous. Then for every $U \in \tau$, $\iota^{-1}(U) = U \in \tau'$, so $\tau' \supseteq \tau$.

Suppose conversely that $\tau' \supseteq \tau$. Then for $U \in \tau$, $\iota^{-1}(U) = U \in \tau'_X$, making ι continuous.

(b) Show that ι is a homeomorphism if and only if $\tau' = \tau$.

Solution: Suppose that ι is a homeomorphism. Then $U \in \tau$ if and only if $\iota^{-1}(U) = U \in \tau'$, so $\tau = \tau'$. Suppose conversely that $\tau' = \tau$. Then $U \in \tau$ if and only if $U = \iota^{-1} \in \tau'$, so ι is a homeomorphism.

4.