Applied Data Science Capstone project

Outline

- Executive summary
- Introduction
- Methodology
- Results
- Conclusion

Summary of methodologies

- Data Collection through API
- Data Collection with Web Scraping
- Data Wrangling
- Exploratory Data Analysis with SQL
- Exploratory Data Analysis with Data Visualization
- Interactive Visual Analytics with Folium
- Machine Learning Prediction

Summary of all results

- Exploratory Data Analysis result
- Interactive analytics in screenshots
- Predictive Analytics result

Introduction

• Project background and context

Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore, if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against Space X for a rocket launch. The goal of the project is to create a machine-learning pipeline to predict if the first stage will land successfully.

Problems you want to find answers

- What factors determine if the rocket will land successfully?
- The interaction amongst various features that determine the success rate of a successful landing.
- What operating conditions need to be in place to ensure a successful landing program?

Methodology

- Data collection
- Perform data wrangling
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models

Data collection

- Data collection was done using get request to the SpaceX API.
- Next, the response was decoded using.json() function.
- Then return into a pandas data frame using .json_normalize().
- Cleaned data and checked missing values by filling in the missing values.
- Web scraping was also performed using Wikipedia for the Falcon 9 launch.

Data collection-SpaceX API

Link to the notebook

https://github.com/freteka/SpaceX_project/blob/main/Space <a href="https://github.com/freteka/SpaceX_project/blob/main/Space

Data collection-Scraping

- Falcon9 was launched using BeautifulSoup
- The link

https://github.com/freteka/SpaceX_project/blob/main/Space %20X_WebScraping.ipynb

Data Wrangling

- The number of launches were calculated at each site, and the number and occurrence of each orbits.
- landing outcomes were created from the outcome column.
- Exported the results to CSV.
- The link

https://github.com/freteka/SpaceX_project/blob/main/SpaceX_Data%20Wrangling.ipynb

EDA with data Visualization

- Data was explored by visualizing the relationship between flight number and launch Site, payload and launch site, a success rate of each orbit type, flight number and orbit type, and the launch success yearly trend.
- Link

https://github.com/freteka/SpaceX_project/blob/main/SpaceX_eda%20DataViz.ipynb

EDA with **SQL**

- The names of unique launch sites in space missions.
- The total payload mass carried by booster launched by NASA.
- The average payload mass carried by booster version F9.
- The total number of successful and failed mission outcomes.
- The failed landing outcomes in drone ship, their booster version, and launch site names.
- Link <u>https://github.com/freteka/SpaceX_project/blob/main/SpaceX_edaSQL.ipynb</u>

Interactive map with Folium

- All marks were launched using a folium map.
- The feature launch outcomes (success or failure) were assigned.
- The distances between launch sites to their proximities were calculated.
- Link
 https://github.com/freteka/SpaceX_project/blob/main/SpaceX_DataVizFolium.ipynb

Predictive analysis

- To improve the model feature engineering and algorithm tunning was used.
- Link
 https://github.com/freteka/SpaceX_project/blob/main/SpaceX_machine%20learning.ipynb

Results

Flight number vs Launch site

The greater success rate was found in the launch site

Payload vs Launch site

Success rate vs Orbit type

Flight Number vs Orbit type

All Launch sites global map markers

Predictive analysis

Classification accuracy

Best params is : {'criterion': 'gini', 'max depth': 6, 'max features': 'auto', 'min samples leaf': 2, 'min samples split': 5, 'splitter': 'random'}

Conclusion

- The larger the flight amount at a launch site, the greater the success rate at a launch site.
- Launch success rate started to increase in 2013 till 2020.
- Orbits ES-L1, GEO, HEO, SSO, VLEO had the most success rate.
- KSC LC-39A had the most successful launches of any sites.
- The Decision tree classifier is the best machine learning algorithm for this task.

Thank you