README

Objective: Segment and extract arteries in the angiogram

Processing pipeline:

- Preprocessing:
 - Recreate the video for 21s. So, the number of frames will be 504
 - Crop each frame in order to obtain image with width=700 and height=600

- Image processing:
 - Apply gaussian filter to each frame (to smooth the image)

• Apply *frangi filter* and crop function (640,540) to each frame (to detect edges and remove noises)

Apply fillPoly and bitwise_and functions to remove noises from each frame

• Apply erosion with 5*5 kernel to each frame (to further remove noises from each frame)

• Again, apply gaussian filter to each frame (to smooth the image)

- Video creation:
 - Integrate all the frames to create the video

Evaluation:

In final output, main components of the original image can be seen

Note: Example image is taken from,

Run the code:

 Import the shared angiogram.mp4 to google colabs and run angiogram_vedio_processing.ipynb file

References:

- Frangi filter: https://scikit-image.org/docs/0.14.x/auto_examples/filters/plot_frangi.html
- Gaussian filter: https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_filtering/py_filtering.html