Lernzirkel Alkohole - Station 5

SIEDETEMPERATUREN

Alkan	Molekül masse in u	Siedetemperatur in °C	Alkanol	Molekül masse in u	Siedetemperatur in °C
Methan	16	- 161	Methanol	32	65
Ethan	30	- 88	Ethanol	46	78
Propan	44	- 42	1-Propanol	60	97
n-Butan	58	-0,5	1-Butanol	74	118
n-Pentan	72	36	1-Pentanol	88	138
n-Hexan	86	69	1-Hexanol	102	156
n-Heptan	100	98	1-Heptanol	116	176
n-Octan	114	126	1-Octanol	130	195
n-Nonan	128	151	1-Nonanol	144	213
n-Decan	142	174	1-Decanol	158	229

Arbeitsauftrag:

A Bearbeite folgende Aufgaben:

- Stelle die Siedetemperaturen der Alkane und der Alkanole in Abhängigkeit von der Molekülmasse der Moleküle in <u>einem</u> Kurvendiagramm dar.
- 2. Fasse die Ergebnisse folgender Fragen in Form eines Fazits zusammen!
 - Welcher Zusammenhang besteht zwischen Siedetemperaturen und zwischenmolekularen Kräften?
 - Welche zwischenmolekulare Kräfte gibt es grundsätzlich?
 - Welche Anziehungskräfte wirken zwischen Alkanmolekülen?
 - Welche Anziehungskräfte wirken zwischen Alkanolmolekülen?
 (Vgl. hierzu auch im Buch S. 296/297)

B Vervollständige den Lückentext auf dem Arbeitsblatt (Seite 2).

Arbeitsblatt zu Station 5: SIEDETEMPERATUREN

Siedetemperaturen von Alkanen und Alkanolen im Vergleich

In der homologen Reihe der Alkane nehmen die Siedetemperaturen, da die
mit zunehmender Molekülmasse der Moleküle
zunehmen. Auch innerhalb der homologen Reihe der Alkanole die
Siedetemperaturen. Vergleicht man die Siedetemperaturen der Alkane und der Alkanole
miteinander, so muss Folgendes beachtet werden: Man kann z.B. Butan mit
vergleichen, nicht aber Butan mit Butanol, denn nur die Butan- und
die besitzen vergleichbare Molekülmassen.
Damit wirken etwa gleich große
Im Vergleich der Siedetemperaturen stellt man fest, dass die Siedetemperaturen der
Alkanole als die der vergleichbaren Alkane sind. Die Alkanolmoleküle
können zusätzlich zu Van-der-Waals-Kräften
ausbilden, deshalb ist die Summe der zwischenmolekularen Kräfte der Alkanolmoleküle größer
als die vergleichbarer Alkanmoleküle. Innerhalb der homologen Reihe der Alkanole nimmt der
Einfluss des Alkylrestes gegenüber der auf die
Stoffeigenschaften und damit auch die Siedetemperatur zu. Mit zunehmender
nähern sich die Siedetemperaturen der Alkane und
Alkanole an.
Bei Alkanolmolekülen großer und damit einer hohen Mole-
külmasse ist der Einfluss der größer als der Einfluss der
·