CS 4072 - Topics in CS Process Mining

Lecture # 19

May 16, 2022

Spring 2022

FAST - NUCES, CFD Campus

Dr. Rabia Maqsood

rabia.maqsood@nu.edu.pk

Today's Topics

- Conformance Checking
 - ▶ Naïve approach
 - Using causal footprints

Project discussion

Process Mining Tasks

Play-In event log event log

Play-Out

Process Mining | Spring 202

Fig. 1.8 Three ways of relating event logs (or other sources of information containing example behavior) and process models: *Play-in*, *Play-out*, and *Replay*

4

Conformance Checking: use cases

- Compliance checking (for auditing, fraud detection, etc.)
- Evaluating process discovery results/algorithms
- Conformance to specification (software, services, etc.)

The objective of conformance checking is to find commonalities and discrepancies.

Impact of deviations: Positive or Negative?

Is the model wrong or something went wrong in the log?

Impact of deviations: Positive or Negative?

Breaking the glass may saves lives!

Four dimensions to compare the log and model

Replay fitness is dominant

Conformance diagnostics and measures

Global conformance measure example: 85% of the cases in the event log can be replayed by the model.

Local diagnostics example: activity x was executed 15 times although this was not allowed according to the model.

Evaluating Process Discovery Algorithms

examine

thoroughly

check

 N_4 : fitness = +, precision = +, generalization = -, simplicity = -

decide

е

reject

request

reject

check

ticket

thoroughly

register

request

а

register

request

Pr

#	trace
455	acdeh
191	abdeg
177	adceh
144	abdeh
111	acdeg
82	adceg
56	adbeh
47	acdefdbeh
38	adbeg
33	acdefbdeh
14	acdefbdeg
11	acdefdbeg
9	adcefcdeh
8	adcefdbeh
5	adcefbdeg
3	acdefbdefdbeg
2	adcefdbeg
2	adcefbdefbdeg
1	adcefdbefbdeh
1	adbefbdefdbeg
1	adcefdbefcdefdbeg
1391	

Itrace

Selection of a difference measurement criterion may vote for a different model.

Evaluating Process Discovery Algorithms

Four dimensions to compare the log and model

Among these four quality measures, **fitness** is most related to conformance.

Fitness measures "the proportion of behavior in the event log possible according to the model".

We will quantitatively define the notion of fitness in a while.

Approaches for Conformance Checking

Model and Log Fitness

Naïve approach

A naive approach towards conformance checking would be to simply count the fraction of cases that can be "parsed completely" (i.e., the proportion of cases corresponding to firing sequences leading from [start] to [end]).

Reference	Trace
σ_1	$\langle a, c, d, e, h \rangle$
σ_2	$\langle a, b, d, e, g \rangle$
σ_3	$\langle a, d, c, e, h \rangle$
σ_4	$\langle a, b, d, e, h \rangle$
σ_5	$\langle a, c, d, e, g \rangle$
σ_6	$\langle a, d, c, e, g \rangle$
σ_7	$\langle a, d, b, e, h \rangle$
σ_8	$\langle a, c, d, e, f, d, b, e, h \rangle$
σ_9	$\langle a, d, b, e, g \rangle$
σ_{10}	$\langle a, c, d, e, f, b, d, e, h \rangle$
σ_{11}	$\langle a,c,d,e,f,b,d,e,g \rangle$
σ_{12}	$\langle a, c, d, e, f, d, b, e, g \rangle$
σ_{13}	$\langle a,d,c,e,f,c,d,e,h \rangle$
σ_{14}	$\langle a, d, c, e, f, d, b, e, h \rangle$
σ_{15}	$\langle a,d,c,e,f,b,d,e,g \rangle$
σ_{16}	$\langle a,c,d,e,f,b,d,e,f,d,b,e,g\rangle$
σ_{17}	$\langle a, d, c, e, f, d, b, e, g \rangle$
σ_{18}	$\langle a,d,c,e,f,b,d,e,f,b,d,e,g\rangle$
σ_{19}	$\langle a, d, c, e, f, d, b, e, f, b, d, e, h \rangle$
σ_{20}	$\langle a,d,b,e,f,b,d,e,f,d,b,e,g\rangle$
σ_{21}	$\langle a.d.c.e.f.d.b.e.f.c.d.e.f.d.b.e.e. \rangle$
	σ_1 σ_2 σ_3 σ_4 σ_5 σ_6 σ_7 σ_8 σ_9 σ_{10} σ_{11} σ_{12} σ_{13} σ_{14} σ_{15} σ_{16} σ_{17} σ_{18} σ_{19} σ_{20}

Naïve approach

A naive approach towards conformance checking would be to simply count the fraction of cases that can be "parsed completely" (i.e., the proportion of cases corresponding to firing sequences leading from [start] to [end]).

 $\frac{1391}{1391}$

 $\frac{948}{1391} = 0.6815$

 $\frac{632}{1391} = 0.4543$

Causal footprint approach

	а	b	c	d	e	f	g	h
а	#	\rightarrow	\rightarrow	\rightarrow	#	#	#	#
b	\leftarrow	#	#		\rightarrow	\leftarrow	#	#
c	\leftarrow	#	#		\rightarrow	\leftarrow	#	#
d	\leftarrow			#	\rightarrow	\leftarrow	#	#
e	#	\leftarrow	\leftarrow	\leftarrow	#	\rightarrow	\rightarrow	\rightarrow
f	#	\rightarrow	\rightarrow	\rightarrow	\leftarrow	#	#	#
g	#	#	#	#	\leftarrow	#	#	#
h	#	#	#	#	\leftarrow	#	#	#

	а	b	C	d	e	f	g	h
а	#	\rightarrow	\rightarrow	#	#	#	#	#
b	\leftarrow	#	#	\rightarrow	#	\leftarrow	#	#
C	\leftarrow	#	#	\rightarrow	#	\leftarrow	#	#
d	#	\leftarrow	\leftarrow	#	\rightarrow	#	#	#
e	#	#	#	\leftarrow	#	\rightarrow	\rightarrow	\rightarrow
f	#	\rightarrow	\rightarrow	#	\leftarrow	#	#	#
g	#	#	#	#	\leftarrow	#	#	#
h	#	#	#	#	\leftarrow	#	#	#

22

Quantifying the differences

	а	b	С	d	е	f	g	h
а				\rightarrow :#		1-2-		
b				$\ : \to$	\rightarrow : #			
c				$\ :\rightarrow$	→: # →: #			
d	←: #	$\ :\leftarrow$:←			←:#		
e		:← ←: #	←: #					
f				\rightarrow :#				
g								
h								

(x:y where x is in log and y in N_2)

$$1 - \frac{12}{64} = 0.8125$$

Solution

C	olor
•	Log

Model

		a	b	\mathcal{C}	d	e	f	g	h
	а	#	#	\rightarrow	\rightarrow	#	#	#	#
	b	#	#	#	#	# >	#	#	#
	c	\leftarrow	#	#		\rightarrow	#	#	#
	d	\leftarrow	#		#	\rightarrow	#	#	#
	e	#	#	\leftarrow	\leftarrow	#	#	#	\rightarrow
	f	#	# >	# >	#	#-	#	#	#
Process Minii	g	#	#	#	#	#	#	#	#
	h	#	#	#	#	\leftarrow	#	#	#

 $1 - \frac{16}{64} = 0.75$

Solution

	а	b	C	d	e	f	g	h
а	#	\rightarrow	\rightarrow	\rightarrow	#	-#>	-#>	#
b	\leftarrow	Ħ	Ħ		#	₩	#	-#>
c	\leftarrow	Ħ	Ħ	Ï	#	#	#	#>
d	\leftarrow	ij	ij	Ħ	#	#	#	#
e	4+	#	#	₩	Ĥ	₩	\rightarrow	\rightarrow
f	#	₩	₩	₩	₩	Ä	-#>	-#>
g	4+	\ 	4	4+		4	#	#
h	#		#	#	\leftarrow	#	#	#

Color

- Log
- Model

 $1 - \frac{45}{64} = 0.296875$

Project

2 weeks time (Sunday, May 29, 2022)

3 persons team

Marks: 10%

Teams' names should be placed on the Google Classroom today by 21.00

Reading Material

► Chapter 8: Aalst