

Discrete amplitude random variables

• Let Θ be a discrete amplitude random variable. $\Theta = x_i$ for some $i, \ldots, -1, 0, 1, \ldots$

 x_i are a sequence of possible values for Θ .

 $p_{\Theta}(x_i)$: the probability mass function of Θ , $F_{\Theta}(x_i)$: the probability distribution function of Θ .

$$\begin{split} p_{\Theta}(x_i) &= \text{Probability}(\Theta = x_i) \\ F_{\Theta}(x_i) &= \text{Probability}(\Theta \leq x_i) \end{split}$$

• Properties:

$$F_{\Theta}(x_i) = \sum_{j=-\infty}^{j=i} p_{\Theta}(x_j)$$

 $p_{\Theta}(x_i) = F_{\Theta}(x_i) - F_{\Theta}(x_{i-1}) \ge 0$
 $\sum_{j=-\infty}^{n} p_{\Theta}(x_j) = 1$

40 1/---- 2040

Histogram as a probability density function

- \bullet For a given image ${\bf A},$ consider the image pixels as the realizations of a discrete amplitude random variable "A".
 - For example suppose we toss a coin $(\operatorname{Heads}=255\ \operatorname{and}\ \operatorname{Tails}=0)\ N\times M$ times and record the results as an N by M image matrix.
- \bullet Define the sample probability mass function $p_A(l)$ as the probability of a randomly chosen pixel having the value l.

$$p_A(l) = \frac{h_A(l)}{NM}$$

 \bullet Note that the sample mean and variance we talked about in Lecture 2 can be calculated as:

$$\begin{array}{rcl} m_A & = & \sum\limits_{l=0}^{255} l p_A(l) \\ \\ \sigma_A^2 & = & \sum\limits_{l=0}^{255} (l-m_A)^2 p_A(l) \end{array}$$

16 Kasım 2018

Histogram Equalization

- This method usually increases the global contrast of many images, especial when the usable data of the image is represented by close contrast values.
- Through this adjustment, the intensities can be better distributed on the histogram. This allows for areas of lower local contrast to gain a higher contrast.
- Histogram equalization accomplishes this by effectively spreading out the most frequent intensity values.

$$cdf(v) = round\left(\frac{cdf(v) - cdf_{min}}{(M \times N) - cdf_{min}} \times (L-1)\right)$$

16 Kasım 201

22

Quantization

• Let $t_n \in \{0,1,\dots,255\}$ denote a sequence of thresholds $(n=0,\dots,P-1)$.

• Consider the P "half-open, discrete intervals" $R_n = [t_n,t_{n+1})$ $(t_0=0,t_P=256)$.

• Let $r_n \in R_n$ be the reproduction level of the interval R_n .

• Define the quantizing point function or the P-level quantizer Q(l) in terms of the R_n , r_n (or equivalently in terms of t_n , r_n) as follows: $Q(l) = \{r_k | l \in R_k, \ k=0,\dots,P-1\}$ i.e., $l \in R_k \Leftrightarrow Q(l) = r_k$.

• Quantizing an image \mathbf{A} in matlab: $>> Q = \operatorname{zeros}(256,1); \ x = (0:255)';$ $>> \text{for} \quad i = 1:P$ Q = Q + r(i) * ((x > t(i)) & (x < t(i+1))); $\operatorname{end}; \qquad \% t(P+1) = 256$ >> B = Q(A+1);

