SEQUENCE LISTING

<110> DellaPenna, Dean Tian, Li Kim, Joonyul

- <120> Novel Carotenoid Hydroxylases for Use in Engineering Carotenoid Metabolism in Plants
- <130> MSU-08604
- <140> 10/751,235
- <141> 2004-01-02
- <160> 74
- <170> PatentIn version 3.2
- <210> 1
- <211> 77
- <212> PRT
- <213> Arabidopsis thaliana
- <400> 1

Leu Gln Pro Tyr Ala Glu Asp Gly Ser Ala Val Asn Met Glu Ala Lys

1 10 15

Phe Ser Gln Met Thr Leu Asp Val Ile Gly Leu Ser Leu Phe Asn Tyr 20 25 30

Asn Phe Asp Ser Leu Thr Thr Asp Ser Pro Val Ile Glu Ala Val Tyr 35 40 45

Thr Ala Leu Lys Glu Ala Glu Leu Arg Ser Thr Asp Leu Leu Pro Tyr 50 55 60

Trp Lys Ile Asp Ala Leu Cys Lys Ile Val Pro Arg Gln 65 70 75

- <210> 2
- <211> 77
- <212> PRT
- <213> Arabidopsis thaliana
- <400> 2

Leu Asp Ala Ala Leu Lys Gly Glu Glu Val Glu Met Glu Ser Leu 1 5 10 15

Phe Ser Arg Leu Thr Leu Asp Ile Ile Gly Lys Ala Val Phe Asn Tyr
20 25 30

Asp Phe Asp Ser Leu Thr Asn Asp Thr Gly Val Ile Glu Ala Val Tyr 35 40 45

Thr Val Leu Arg Glu Ala Glu Asp Arg Ser Val Ser Pro Ile Pro Val

Trp Asp Ile Pro Ile Trp Lys Asp Ile Ser Pro Arg Gln 70

<210> 3 <211> 84 <212> PRT

<213> Arabidõpsis thaliana

<400> 3

Glu Lys Leu Ile Arg Glu Lys Glu Thr Ser Ser Gly Glu Asp Thr Ile

Glu Leu Asp Leu Glu Ala Glu Phe Ser Ser Leu Ala Leu Asp Ile Ile 25

Gly Leu Ser Val Phe Asn Tyr Asp Phe Gly Ser Val Thr Lys Glu Ser

Pro Val Ile Lys Ala Val Tyr Gly Thr Leu Phe Glu Ala Glu His Arg

Ser Thr Phe Tyr Phe Pro Tyr Trp Asn Phe Pro Pro Ala Arg Trp Ile

Val Pro Arg Gln

<210> 4

<211> 539 <212> PRT

<213> Arabidopsis thaliana

<400> 4

Met Glu Ser Ser Leu Phe Ser Pro Ser Ser Ser Tyr Ser Ser Leu

Phe Thr Ala Lys Pro Thr Arg Leu Leu Ser Pro Lys Pro Lys Phe Thr

Phe Ser Ile Arg Ser Ser Ile Glu Lys Pro Lys Pro Lys Leu Glu Thr

Asn Ser Ser Lys Ser Gln Ser Trp Val Ser Pro Asp Trp Leu Thr Thr

Leu Thr Arg Thr Leu Ser Ser Gly Lys Asn Asp Glu Ser Gly Ile Pro 75 Ile Ala Asn Ala Lys Leu Asp Asp Val Ala Asp Leu Leu Gly Gly Ala Leu Phe Leu Pro Leu Tyr Lys Trp Met Asn Glu Tyr Gly Pro Ile Tyr 105 Arg Leu Ala Ala Gly Pro Arg Asn Phe Val Ile Val Ser Asp Pro Ala 120 Ile Ala Lys His Val Leu Arg Asn Tyr Pro Lys Tyr Ala Lys Gly Leu Val Ala Glu Val Ser Glu Phe Leu Phe Gly Ser Gly Phe Ala Ile Ala Glu Gly Pro Leu Trp Thr Ala Arg Arg Arg Ala Val Val Pro Ser Leu 170 165 His Arg Arg Tyr Leu Ser Val Ile Val Glu Arg Val Phe Cys Lys Cys Ala Glu Arg Leu Val Glu Lys Leu Gln Pro Tyr Ala Glu Asp Gly Ser Ala Val Asn Met Glu Ala Lys Phe Ser Gln Met Thr Leu Asp Val Ile Gly Leu Ser Leu Phe Asn Tyr Asn Phe Asp Ser Leu Thr Thr Asp Ser Pro Val Ile Glu Ala Val Tyr Thr Ala Leu Lys Glu Ala Glu Leu Arg 245 250 Ser Thr Asp Leu Leu Pro Tyr Trp Lys Ile Asp Ala Leu Cys Lys Ile 260 265 270 Val Pro Arg Gln Val Lys Ala Glu Lys Ala Val Thr Leu Ile Arg Glu 275 285 Thr Val Glu Asp Leu Ile Ala Lys Cys Lys Glu Ile Val Glu Arg Glu 290 295 Gly Glu Arg Ile Asn Asp Glu Glu Tyr Val Asn Asp Ala Asp Pro Ser 305 315 310

Ile Leu Arg Phe Leu Leu Ala Ser Arg Glu Glu Val Ser Ser Val Gln 330 325 Leu Arg Asp Asp Leu Leu Ser Met Leu Val Ala Gly His Glu Thr Thr Gly Ser Val Leu Thr Trp Thr Leu Tyr Leu Leu Ser Lys Asn Ser Ser 360 Ala Leu Arg Lys Ala Gln Glu Glu Val Asp Arg Val Leu Glu Gly Arg Asn Pro Ala Phe Glu Asp Ile Lys Glu Leu Lys Tyr Ile Thr Arg Cys 395 400 Ile Asn Glu Ser Met Arg Leu Tyr Pro His Pro Pro Val Leu Ile Arg 405 410 415 Arg Ala Gln Val Pro Asp Ile Leu Pro Gly Asn Tyr Lys Val Asn Thr 420 Gly Gln Asp Ile Met Ile Ser Val Tyr Asn Ile His Arg Ser Ser Glu 435 440 Val Trp Glu Lys Ala Glu Glu Phe Leu Pro Glu Arg Phe Asp Ile Asp 455 Gly Ala Ile Pro Asn Glu Thr Asn Thr Asp Phe Lys Phe Ile Pro Phe Ser Gly Gly Pro Arg Lys Cys Val Gly Asp Gln Phe Ala Leu Met Glu 485 490 Ala Ile Val Ala Leu Ala Val Phe Leu Gln Arg Leu Asn Val Glu Leu Val Pro Asp Gln Thr Ile Ser Met Thr Thr Gly Ala Thr Ile His Thr Thr Asn Gly Leu Tyr Met Lys Val Ser Gln Arg

<210> 5 <211> 2467 <212> DNA

<213> Arabidopsis thaliana

<400> 5 atggagtett cactettte tecatettee tettettaet ettetett cactgeaaaa 60 120 cctacgcgtc ttttatcacc aaaacccaaa ttcacattct ccatcagatc ctccattgag 180 aaacccaaac ccaaactcga gaccaattca tcgaaatccc aatcatgggt cagtcccgat 240 tggctcacaa cactcactcg taccctttcc tcaggaaaaa acgacgagtc aggtatacca ategegaacg egaagetega egatgteget gateteeteg gaggtgetet ettettaeet 300 ctctacaaat ggatgaatga gtacggaccc atttaccgtc tcgctgctgg tcctcgtaat 360 ttcgtaattg tgagcgaccc agcgatagct aaacatgttt tgaggaatta tccaaagtac 420 480 gctaaaggct tagtcgctga agtctctgaa tttctatttg gttcgggttt cgctatcgct gaaggacctc tttggacagt aatttcatct cctcctatct caattttgaa gtttttggaa 540 600 ttgtggaagt aatgtgtgac tgtcttgtat gataagtaac tctaatttta gggtttagat tccaatcttc tctattgggc ttagctgaag tctgattttt tacataggcg aggcgtagag 660 cggtggttcc atcgcttcac aggaggtatt tgtctgtgat tgtggagaga gtattctgca 720 780 aatgtgcaga gaggcttgtt gagaagttgc agccttatgc agaagacgga agtgctgtga 840 atatggaagc gaagttetet cagatgacac ttgatgteat tgggttgtet etttttaact 900 acaatttcga ttctttgact actgatagtc ctgtcattga agctgtttac actgctctta 960 aagaagetga gettegttet aetgatette tgecatattg gaaggeaagt tteetgtgtt ttttctgtgg tttgttgatt gtgtggaaca attggattct tgttaattga gagggtttgg 1020 ttgttttttt cagatcgatg cattgtgtaa gatagtcccg agacaggtga aagctgaaaa 1080 1140 ggctgtaact ttgataaggg aaactgttga agaccttatt gctaagtgta aagaaattgt cgaaagagaa ggcgaaagaa tcaatgatga ggagtatgta aatgatgctg acccaagtat 1200 cctgcgtttc ttgcttgcaa gcagagaaga ggtttaaaact tttttcctta agtttataag 1260 1320 caaatttggc ctttcattat cgcataatcg aagctgatgt tgcattgtga gggttttcag gtatcaagtg tgcagttacg ggatgatctt ctctcaatgc tcgtagcggg tcatgaaacc 1380 1440 actggatctg tecteacttg gacaetttat etectaagta aggtaeetta atgtatette 1500 tactttgcta tgctagagaa tttacttgga tgggagcttc tctgttctca tttacctctt 1560 caaattctct atgttcatag aactcatctg cattaaggaa agcacaagaa gaagtagaca

gagtgttaga aggaagaaac ccggctttcg aggatataaa ggagttgaag tacatcactc gttgtataaa cgagtcaatg cgtctctatc ctcatcctcc tgtaagcaat caagctcatc

1620

1680

tctctaatta	ttcatgaact	aaattttctg	attgatttgt	ttcctggtag	gtcttgataa	1740
gaagagctca	agttcctgac	attcttcctg	ggaactataa	ggtcaatacc	ggacaagaca	1800
ttatgatttc	agtctataac	atccatcgtt	cttccgaggt	acagttctct	tccttctctc	1860
gtccatagta	taacataggg	gagcctaatc	cttctcttca	atgatctttg	tgtggttcgg	1920
atatctaacc	ggagtggaca	ttcctagtat	tacattcatg	cccacatttc	ttatgtgttt	1980
gttgtttgtt	attccaaagg	tatgggaaaa	agctgaggaa	tttctgcctg	aacgattcga	2040
catagatggc	gcaatcccta	acgaaacaaa	cactgatttc	aagtaaactc	agtagaacac	2100
atcttttgac	acaaactact	gaatcaagat	tagtggtttt	gattagggaa	tttaaaagat	2160
gattttcttt	tttcaccaga	ttcatcccat	tcagtggagg	gcctagaaaa	tgtgtaggcg	2220
atcagtttgc	attgatggag	gcaattgtgg	cactcgcggt	gtttcttcag	cggttaaacg	2280
ttgagctggt	tcctgatcag	accattagca	tgaccacagg	agcaaccata	cacaccacca	2340
atgtatgcca	atgttctcac	actcgagaga	ttaatgagag	tgtctgtttt	gtttagaatg	2400
attccaattt	ctctaatgct	gatattttca	atttcaggga	ttgtatatga	aggtgagcca	2460
aaggtaa						2467

<210> 6

<211> 4170

:212> DNA

<213> Arabidopsis thaliana

<400> 6

60 cctggtcaag agagagcaga aattgctgat acgcatcttt gtcagagaga agcttcctga 120 gttcatccac gctacagaaa agtatacact attcaaaaag aagacataca aaaaaaacgc 180 acactegaga gaaggataac aaacaaacaa acaaaaagag caaacetttt gtettteaag aagacgataa tgccagctgc ttcacccggt gatacttgtg ctgaaatctg acctgaactt 240 300 tgaggccggg atgagcttgg cgagctaact aaagaaggcg agtaccatgg cgactgtgaa gaagetteet gaggaegaga ttgeeettgt tgttggtett ttgateeect teaegtaeae 360 aacaaaaaaa agaaacatca tcaactaact atctcagctt ccaagttaat ataatacatc 420 acctcataaa cttgaaaggt gcatttatac agcacatcat tgtaaaccta atatcagtaa 480 ctatgaaccc taaatcagta gctgagcaaa atctacactt gtcaattcac ctcaaaaacc 5.40 tcaaatatat cattatagct caacaaacta cacaacaaca agatttcctt aatcgctaac 600 agacctaatg tetggateac geaattteat caataacata tgaateagat ggeaaaaaat 660 720 tcgcaaaatc ataccagaaa ttgaacatcg tttctagaat tcgccgacta acgaaaggaa ttgacttttt cttgttctct tgtacttctt cttcctacca gatcgacaaa atttaacaac 780 tttacagaaa cagagtttac agagtttcaa agaaaattcg atcttctctg tttcgtttca 840

900 gattttgcta cttgctttta aaaggcccaa atacgaggag gcccatatta agttttgatt 960 aacaaaacgt agtcgtttta tgcatcgtcg tccttatcca cgcgtaacgg ttcgcgtttc tacacagagt caaatatttc tgcacggaag cttcgaaaag aggtcatcaa tggagtcttc 1020 actetttet ceatetteet ettettaete ttetetette actgeaaaac etaegegtet 1080 1140 tttatcacca aaacccaaat tcacattctc catcagatcc tccattgaga aacccaaacc caaactcgag accaattcat cgaaatccca atcatgggtc agtcccgatt ggctcacaac 1200 1260 actcactcgt accctttcct caggaaaaaa cgacgagtca ggtataccaa tcgcgaacgc gaagetegae gatgtegetg atetectegg aggtgetete ttettacete tetacaaatg 1320 gatgaatgag tacggaccca tttaccgtct cgctgctggt cctcgtaatt tcgtaattgt 1380 gagegaceca gegatageta aacatgtttt gaggaattat ecaaagtaeg etaaaggett 1440 agtcgctgaa gtctctgaat ttctatttgg ttcgggtttc gctatcgctg aaggacctct 1500 ttggacagta atttcatctc ctcctatctc aattttgaag tttttggaat tgtggaagta 1560 1620 atgtgtgact gtcttgtatg ataagtaact ctaattttag ggtttagatt ccaatcttct ctattgggct tagctgaagt ctgatttttt acataggcga ggcgtagagc ggtggttcca 1680 tegetteaca ggaggtattt gtetgtgatt gtggagagag tattetgeaa atgtgeagag 1740 1800 aggettgttg agaagttgea geettatgea gaagaeggaa gtgetgtgaa tatggaageg aagttetete agatgaeact tgatgteatt gggttgtete tttttaacta caatttegat 1860 1920 tctttgacta ctgatagtcc tgtcattgaa gctgtttaca ctgctcttaa agaagctgag cttcgttcta ctgatcttct gccatattgg aaggcaagtt tcctgtgttt tttctgtggt 1980 2040 ttgttgattg tgtggaacaa ttggattctt gttaattgag agggtttggt tgtttttttc agatcgatgc attgtgtaag atagtcccga gacaggtgaa agctgaaaag gctgtaactt 2100 tgataaggga aactgttgaa gaccttattg ctaagtgtaa agaaattgtc gaaagagaag 2160 2220 gcgaaagaat caatgatgag gagtatgtaa atgatgctga cccaagtatc ctgcgtttct tgcttgcaag cagagaagag gtttaaactt ttttccttaa gtttataagc aaatttggcc 2280 tttcattatc gcataatcga agctgatgtt gcattgtgag ggttttcagg tatcaagtgt 2340 gcagttacgg gatgatcttc tctcaatgct cgtagcgggt catgaaacca ctggatctgt 2400 cctcacttgg acactttatc tcctaagtaa ggtaccttaa tgtatcttct actttgctat 2460 gctagagaat ttacttggat gggagcttct ctgttctcat ttacctcttc aaattctcta 2520 2580 tgttcataga actcatctgc attaaggaaa gcacaagaag aagtagacag agtgttagaa ggaagaaacc cggctttcga ggatataaag gagttgaagt acatcactcg ttgtataaac 2640 2700 gagtcaatgc gtctctatcc tcatcctcct gtaagcaatc aagctcatct ctctaattat

tcatgaacta	aattttctga	ttgatttgtt	tcctggtagg	tcttgataag	aagagctcaa	2760
gttcctgaca	ttcttcctgg	gaactataag	gtcaataccg	gacaagacat	tatgatttca	2820
gtctataaca	tccatcgttc	ttccgaggta	cagttctctt	ccttctctcg	tccatagtat	2880
aacatagggg	agcctaatcc	ttctcttcaa	tgatctttgt	gtggttcgga	tatctaaccg	2940
gagtggacat	tcctagtatt	acattcatgc	ccacatttct	tatgtgtttg	ttgtttgtta	3000
ttccaaaggt	atgggaaaaa	gctgaggaat	ttctgcctga	acgattcgac	atagatggcg	3060
caatccctaa	cgaaacaaac	actgatttca	agtaaactca	gtagaacaca	tcttttgaca	3120
caaactactg	aatcaagatt	agtggttttg	attagggaat	ttaaaagatg	attttctttt	3180
ttcaccagat	tcatcccatt	cagtggaggg	cctagaaaat	gtgtaggcga	tcagtttgca	3240
ttgatggagg	caattgtggc	actcgcggtg	tttcttcagc	ggttaaacgt	tgagctggtt	3300
cctgatcaga	ccattagcat	gaccacagga	gcaaccatac	acaccaccaa	tgtatgccaa	3360
tgttctcaca	ctcgagagat	taatgagagt	gtctgttttg	tttagaatga	ttccaatttc	3420
tctaatgctg	atattttcaa	tttcagggat	tgtatatgaa	ggtgagccaa	aggtaaaaac	3480
cagaatttat	gttttcatga	taattgattg	gtgtgaatgg	acttgtttca	tagtactctt	3540
gagaaataac	cacaaaaaaa	tgaattatgg	aaaatagttg	taccatcgga	aatgtgaatt	3600
ttgaacagtg	agatgctagt	accattaaag	tttggtaatt	gtgttatcat	ttcaaatcaa	3660
actttcatac	agcttgtgtt	tgttctccat	ttttcagtaa	ttacgaaaat	caaaatttta	3720
ttttttttg	aatttctaaa	taatagacta	aggtctaaaa	ccatcccatt	ccatatggac	3780
cacacgtaac	attaacctta	aaaaccatat	aaaaccatat	aaaaccaata	ctagtgggtt	3840
ctatagcgat	gtgtagtttc	actttcacgt	acgaggaaga	ttaaaaaaaa	tggagaacga	3900
aagctcagag	agtagaaaca	gagctcgtct	tgccattatg	gagcttgcta	acatgattag	3960
cgttcccatg	tctctcaatg	ccgccgtgcg	actaggcatt	gccgacgcca	tttggaacgg	4020
cggagccaat	tctcctctct	ctgccgccga	gatcctccct	cgcctccacc	taccatctca	4080
cactaccatt	ggtggcgacc	ccgagaatct	tcagcgtata	cttcggatgc	tcaccagcta	4140
cggtgtcttc	tccgaacacc	ttgttggatc				4170

<210> 7

<211> 2467

<212> DNA

<213> Arabidopsis thaliana

<400> 7

atggagtett cactettte tecatettee tettettaet ettetett caetgeaaaa 60 cetaegegte tittateace aaaaceeaaa ticaeattet ceateagate etceattgag 120 aaaceeaaa ecaaactega gaceaattea tegaaateee aateatgggt cagteeegat 180

240 tggctcacaa cactcactcg taccctttcc tcaggaaaaa acgacgagtc aggtatacca 300 ategegaacg egaagetega egatgteget gateteeteg gaggtgetet ettettaeet ctctacaaat ggatgaatga gtacggaccc atttaccgtc tcgctgctgg tcctcgtaat 360 420 ttcgtaattg tgagcgaccc agcgatagct aaacatgttt tgaggaatta tccaaagtac gctaaaggct tagtcgctga agtctctgaa tttctatttg gttcgggttt cgctatcgct 480 gaaggacctc tttggacagt aatttcatct cctcctatct caattttgaa gtttttggaa 540 ttgtggaagt aatgtgtgac tgtcttgtat gataagtaac tctaatttta gggtttagat 600 660 tecaatette tetattggge ttagetgaag tetgattttt tacataggeg aggegtagag 720 eggtggttee ategetteae aggaggtatt tgtetgtgat tgtggagaga gtattetgea 780 aatgtgcaga gaggcttgtt gagaagttgc agccttatgc agaagacgga agtgctgtga atatggaagc gaagttetet cagatgacac ttgatgteat tgggttgtet etttttaact 840 900 acaatttcga ttctttgact actgatagtc ctgtcattga agctgtttac actgctctta 960 aagaagctga gcttcgttct actgatcttc tgccatattg gaaggcaagt ttcctgtgtt 1020 ttttctgtgg tttgttgatt gtgtggaaca attggattct tgttaattga gagggtttgg 1080 ttgttttttt cagatcgatg cattgtgtaa gatagtcccg agacaggtga aagctgaaaa ggctgtaact ttgataaggg aaactgttga agaccttatt gctaagtgta aagaaattgt 1140 cgaaagagaa ggcgaaagaa tcaatgatga ggagtatgta aatgatgctg acccaagtat 1200 cctgcgtttc ttgcttgcaa gcagagaaga ggtttaaact tttttcctta agtttataag 1260 1320 caaatttggc ctttcattat cgcataatcg aagctgatgt tgcattgtga gggttttcag gtatcaagtg tgcagttacg ggatgatctt ctctcaatgc tcgtagcggg tcatgaaacc 1380 1440 actggatctg tecteacttg gacaetttat etectaagta agatacetta atgtatette 1500 tactttgcta tgctagagaa tttacttgga tgggagcttc tctgttctca tttacctctt caaattctct atgttcatag aactcatctg cattaaggaa agcacaagaa gaagtagaca 1560 1620 gagtgttaga aggaagaaac ccggctttcg aggatataaa ggagttgaag tacatcactc 1680 gttgtataaa cgagtcaatg cgtctctatc ctcatcctcc tgtaagcaat caagctcatc tctctaatta ttcatgaact aaattttctg attgatttgt ttcctggtag gtcttgataa 1740 1800 gaagagetea agtteetgae attetteetg ggaactataa ggteaataee ggacaagaea 1860 ttatgatttc agtctataac atccatcgtt cttccgaggt acagttctct tccttctct 1920 gtccatagta taacataggg gagcctaatc cttctcttca atgatctttg tgtggttcgg atatctaacc ggagtggaca ttcctagtat tacattcatg cccacatttc ttatgtgttt 1980 2040 gttgtttgtt attccaaagg tatgggaaaa agctgaggaa tttctgcctg aacgattcga

```
catagatggc gcaatcccta acgaaacaaa cactgatttc aagtaaactc agtagaacac
                                                                    2100
atcttttgac acaaactact gaatcaagat tagtggtttt gattagggaa tttaaaagat
                                                                    2160
gattttcttt tttcaccaga ttcatcccat tcagtggagg gcctagaaaa tgtgtaggcg
                                                                    2220
atcagtttgc attgatggag gcaattgtgg cactcgcggt gtttcttcag cggttaaacg
                                                                    2280
ttgagctggt tcctgatcag accattagca tgaccacagg agcaaccata cacaccacca
                                                                    2340
atgtatgcca atgttctcac actcgagaga ttaatgagag tgtctgtttt gtttagaatg
                                                                    2400
attccaattt ctctaatgct gatattttca atttcaggga ttgtatatga aggtgagcca
                                                                    2460
                                                                    2467
aaggtaa
<210> 8
<400>
000
<210> 9
<400> 9
000
<210> 10
<211>
      24
      PRT
<212>
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 10
Leu Val Ala Glu Val Ser Glu Phe Leu Phe Gly Ser Gly Phe Ala Ile
Ala Glu Gly Pro Leu Trp Thr Ala
<210> 11
<211>
<212> PRT
<213> Artificial Sequence
<220>
```

<223> Synthetic

```
Met Glu Ser Ser Leu Phe Ser Pro Ser Ser Ser Tyr Ser Ser Leu
                5
                                    10
Phe Thr Ala Lys Pro Thr Arg Leu Leu Ser Pro Lys Pro Lys Phe Thr
            20
Phe Ser Ile Arg
<210> 12
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> MISC FEATURE
<222> (1)..(1)
<223> X is alanine or glycine.
<220>
<221>
      misc_feature
<222>
       (3)..(3)
      Xaa can be any naturally occurring amino acid
<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> X is aspartic acid or glutamic acid.
<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> X is threonine or serine.
<400> 12
Xaa Gly Xaa Xaa Thr Xaa
<210> 13
<211>
      6
<212>
      PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 13
Ala Gly His Glu Thr Thr
```

<400> 11

```
<210>
      14
<211>
      10
      PRT
<212>
<213> Artificial Sequence
<220>
<223>
      Synthetic
<220>
<221>
      misc_feature
<222>
      (2)..(3)
      Xaa can be any naturally occurring amino acid
<223>
<220>
<221>
      misc_feature
<222>
      (5)...(7)
      Xaa can be any naturally occurring amino acid
<223>
<220>
<221>
      misc_feature
<222>
      (9)...(9)
      Xaa can be any naturally occurring amino acid
<400> 14
Phe Xaa Xaa Gly Xaa Xaa Cys Xaa Gly
<210> 15
<211>
      10
<212>
      PRT
      Arabidopsis thaliana
<213>
<400> 15
Phe Ser Gly Gly Pro Arg Lys Cys Val Gly
<210> 16
<211>
      561
<212> PRT
<213> Oryza sativa
<400> 16
Met Ala Ala Ala Ala Ala Ala Val Pro Cys Val Pro Phe Leu Cys
                                                        15
                5
Pro Pro Pro Pro Leu Val Ser Pro Arg Leu Arg Arg Gly His Val
                                                   30
            20
Arg Leu Arg Leu Arg Pro Pro Arg Ser Ser Gly Gly Gly Gly Gly
Gly Ala Gly Gly Asp Glu Pro Pro Ile Thr Thr Ser Trp Val Ser Pro
```

Asp Trp Leu Thr Ala Leu Ser Arg Ser Val Ala Thr Arg Leu Gly Gly Gly Asp Asp Ser Gly Ile Pro Val Ala Ser Ala Lys Leu Asp Asp Val Arg Asp Leu Leu Gly Gly Ala Leu Phe Leu Pro Leu Phe Lys Trp Phe Arg Glu Glu Gly Pro Val Tyr Arg Leu Ala Ala Gly Pro Arg Asp Leu Val Val Ser Asp Pro Ala Val Ala Arg His Val Leu Arg Gly Tyr Gly Ser Arg Tyr Glu Lys Gly Leu Val Ala Glu Val Ser Glu Phe Leu 145 150 155 160 Phe Gly Ser Gly Phe Ala Ile Ala Glu Gly Ala Leu Trp Thr Val Arg 170 Arg Arg Ser Val Val Pro Ser Leu His Lys Arg Phe Leu Ser Val Met 180 Val Asp Arg Val Phe Cys Lys Cys Ala Glu Arg Leu Val Glu Lys Leu Glu Thr Ser Ala Leu Ser Gly Lys Pro Val Asn Met Glu Ala Arg Phe Ser Gln Met Thr Leu Asp Val Ile Gly Leu Ser Leu Phe Asn Tyr Asn 225 230 235 Phe Asp Ser Leu Thr Ser Asp Ser Pro Val Ile Asp Ala Val Tyr Thr Ala Leu Lys Glu Ala Glu Leu Arg Ser Thr Asp Leu Leu Pro Tyr Trp 265 Lys Ile Asp Leu Leu Cys Lys Ile Val Pro Arg Gln Ile Lys Ala Glu Lys Ala Val Asn Ile Ile Arg Asn Thr Val Glu Asp Leu Ile Thr Lys

295

•	Cys 305	Lys	Lys	Ile	Val	Asp 310	Ala	Glu	Asn	Glu	Gln 315	Ile	Glu	Gly	Glu	Glu 320
	Tyr	Val	Asn	Glu	Ala 325	Asp	Pro	Ser	Ile	Leu 330	Arg	Phe	Leu	Leu	Ala 335	Ser
	Arg	Glu	Glu	Val 340	Thr	Ser	Val	Gln	Leu 345	Arg	Asp	Asp	Leu	Leu 350	Ser	Met
	Leu	Val	Ala 355	Gly	His	Glu	Thr	Thr 360	Gly	Ser	Val	Leu	Thr 365	Trp	Thr	Ile
	Tyr	Leu 370	Leu	Ser	Lys	Asp	Pro 375	Ala	Ala	Leu	Arg	Arg 380	Ala	Gln	Ala	Glu
	Val 385	Asp	Arg	Val	Leu	Gln 390	Gly	Arg	Leu	Pro	Arg 395	Tyr	Glu	Asp	Leu	Lys 400
	Glu	Leu	Lys	Tyr	Leu 405	Met	Arg	Cys	Ile	Asn 410	Glu	Ser	Met	Arg	Leu 415	Tyr
	Pro	His	Pro	Pro 420	Val	Leu	Ile	Àrg	Arg 425	Ala	Ile	Val	Asp	Asp 430	Val	Leu
	Pro	Gly	Asn 435	Tyr	Lys	Ile	Lys	Ala 440	Gly	Gln	Asp	Ile	Met 445	Ile	Ser	Val
	Tyr	Asn 450	Ile	His	Arg	Ser	Pro 455	Glu	Val	Trp	Asp	Arg 460	Ala	Asp	Asp	Phe
	Ile 465	Pro	Glu	Arg	Phe	Asp 470	Leu	Glu	Gly	Pro	Val 475	Pro	Asn	Glu	Thr	Asn 480
	Thr	Glu	Tyr	Arg	Phe 485	Ile	Pro	Phe	Ser	Gly 490	Gly	Pro	Arg	Lys	Cys 495	Val
,	Gly	Asp	Gln	Phe 500	Ala	Leu	Leu	Glu	Ala 505	Ile	Val	Ala	Leu	Ala 510	Val	Val
	Leu	Gln	Lys 515	Met	Asp	Ile	Glu	Leu 520	Val	Pro	Asp	Gln	Lys 525	Ile	Asn	Met

Thr Thr Gly Ala Thr Ile His Thr Thr Asn Gly Leu Tyr Met Asn Val 530 540

Ser Leu Arg Lys Val Asp Arg Glu Pro Asp Phe Ala Leu Ser Gly Ser 545 550 555 560

Arg

<210> 17

<211> 545

<212> PRT

<213> Hordeum vulgare

<220>

<221> misc_feature

 $\langle 222 \rangle$ (529)...(529)

<223> Xaa can be any naturally occurring amino acid

<400> 17

Met Pro Ala Ala Ala Phe Ala Ser Ala Leu Ala Ser Pro Pro Pro 1 5 10 15

Trp Ala Pro Arg Pro Ser Pro Arg His Ala Ser Leu Arg Leu Pro Pro 20 25 30

Pro Arg Ser Ser Gly Gly Gly Gly Asp Lys Pro Thr Thr Ser Trp Val

Ser Pro Asp Trp Leu Thr Ser Leu Ser Arg Ser Val Leu Gly Arg Gly 50 55 60

Asn Asp Asp Ser Gly Ile Pro Val Ala Ser Ala Lys Leu Asp Asp Val 65 70 75 80

Gln Asp Leu Leu Gly Gly Ala Leu Phe Leu Pro Leu Phe Lys Trp Phe 85 90 95

Arg Glu Glu Gly Pro Val Tyr Arg Leu Ala Ala Gly Pro Arg Asp Phe 100 105 110

Val Ile Val Ser Asp Pro Ala Val Ala Lys His Val Leu Arg Gly Tyr 115 120 125

Gly Thr Arg Tyr Glu Lys Gly Leu Val Ala Glu Val Ser Glu Phe Leu 130 140

Phe 145	Gly	Ser	Gly	Phe	Ala 150	Ile	Ala	Glu	Gly	Ala 155	Leu	Trp	Thr	Val	Arg 160
Arg	Arg	Ala	Val	Val 165	Pro	Ser	Leu	His	Lys 170	Arg	Phe	Leu	Ser	Val 175	Met
Val	Asp	Lys	Val 180	Phe	Cys	Lys	Cys	Ala 185	Glu	Arg	Leu	Val	Glu 190	Lys	Leu
Glu	Thr	Tyr 195	Ala	Leu	Ser	Gly	Glu 200	Pro	Val	Asn	Met	Glu 205	Ala	Arg	Phe
Ser	Gln 210	Met	Thr	Leu	Asp	Val 215	Ile	Gly	Leu	Ser	Leu 220	Phe	Asn	Tyr	Asn
Phe 225	Asp	Ser	Leu	Thr	Ser 230	Asp	Ser	Pro	Val	Ile 235	Asp	Ala	Val	Tyr	Thr 240
Ala	Leu	Lys	Glu	Ala 245	Glu	Ala	Arg	Ser	Thr 250	Asp	Leu	Leu	Pro	Tyr 255	Trp
Gln	Ile	Asp	Leu 260	Leu	Cys	Lys	Ile	Val 265	Pro	Arg	Gln	Ile	Lys 270	Ala	Glu
Lys	Ala	Val 275	Asn	Thr	Ile	Arg	Asn 280	Thr	Val	Glu	Glu	Leu 285	Ile	Ile	Lys
Cys	Lys 290	Ala	Ile	Val	Asp	Ala 295	Glu	Asn	Glu	Gln	Ile 300	Glu	Gly	Glu	Glu
Tyr 305	Val	Asn	Glu	Ala	Asp 310	Pro	Ser	Ile	Leu	Arg 315	· Phe	Leu	Leu	Ala	Ser 320
Arg	Glu	Glu	Val	Ser 325	Ser	Leu	Gln	Leu	Arg 330	Asp	Asp	Leu	Leu	Ser 335	Met
Leu	Val	Ala	Gly 340	His	Glu	Thr	Thr	Gly 345	Ser	Val	Leu	Thr	Trp 350	Thr	Ile
Tyr	Leu	Leu 355	Ser	Lys	Asp	Pro	Val 360	Ala	Leu	Arg	Arg	Ala 365	Gln	Asp	Glu
Val	Asp 370	Arg	Val	Leu	Gln	Gly 375	Arg	Leu	Pro	Arg	Tyr 380	Glu	Asp	Val	Lys
Glu 385	Leu	Lys	Tyr	Leu	Met 390	Arg	Cys	Ile	Asn	Glu	Ser	Met	Arg	Leu	Tyr

Pro His Pro Pro Val Leu Ile Arg Arg Ala Leu Val Asp Asp Val Leu 405 410 415

Pro Gly Asn Tyr Lys Val Lys Thr Gly Gln Asp Ile Met Ile Ser Val 420 425 430

Tyr Asn Ile His Arg Ser Pro Glu Val Trp Asp Arg Ala Asp Glu Phe
435
440
445

Ile Pro Glu Arg Phe Asp Leu Glu Gly Pro Ile Pro Asn Glu Ser Asn 450 455 460

Thr Asp Phe Arg Phe Ile Pro Phe Ser Gly Gly Pro Arg Lys Cys Val 465 470 475 480

Gly Asp Gln Phe Ala Leu Leu Glu Ala Ile Val Ala Leu Ala Ile Val
485
490
495

Ile Gln Lys Met Asp Val Gln Leu Val Ala Asp Gln Lys Ile Ser Met 500 505 510

Thr Thr Gly Ala Thr Ile His Thr Thr Asn Gly Leu Tyr Met Asn Val 515 520 525

Xaa Leu Arg Lys Val Glu Gln Glu Ala Asp Leu Ala Leu Ser Pro Ser 530 540

Gly 545

<210> 18

<211> 362

<212> PRT

<213> Triticum aestivum

<400> 18

Met Pro Ala Ala Ala Phe Ala Ser Ala Phe Ala Ser Pro Pro Pro 1 5 10 15

Trp Ala Pro Arg Pro Pro Pro Arg His Ala Ser Leu Arg Leu Pro Pro 20 25 30

Pro Arg Ser Ser Ser Asn Asn Ser Gly Gly Gly Gly Asp Lys Pro
35 40 45

Thr Thr Ser Trp Val Ser Pro Asp Trp Leu Thr Ser Leu Ser Arg Ser 50 55 60

Val Leu Gly Arg Gly Asn Asp Ser Gly Ile Pro Val Ala Ser Ala Lys Leu Asp Asp Val Gln Asp Leu Leu Gly Gly Ala Leu Phe Leu Pro Leu Phe Lys Trp Phe Arg Glu Glu Gly Pro Val Tyr Arg Leu Ala Ala Gly Pro Arg Asp Phe Val Ile Val Ser Asp Pro Ala Val Ala Lys His 120 Val Leu Arg Gly Tyr Gly Thr Arg Tyr Glu Lys Gly Leu Val Ala Glu Val Ser Glu Phe Leu Phe Gly Ser Gly Phe Ala Ile Ala Glu Gly Ala 155 Leu Trp Thr Val Arg Arg Ala Val Val Pro Ser Leu His Lys Arg 165 Phe Leu Ser Val Met Val Asp Lys Val Phe Cys Lys Cys Ala Glu Arg 180 Leu Val Glu Lys Leu Glu Thr Tyr Ala Leu Ser Gly Glu Pro Val Asn 195 200 Met Glu Ala Arg Phe Ser Gln Met Thr Leu Asp Val Ile Gly Leu Ser 210 215 Leu Phe Asn Tyr Asn Phe Asp Ser Leu Thr Ser Asp Ser Pro Val Ile 225 235 Asp Ala Val Tyr Thr Ala Leu Lys Glu Ala Glu Ala Arg Ser Thr Asp 245 Leu Leu Pro Tyr Trp Gln Ile Asp Leu Leu Cys Lys Ile Val Pro Arg Gln Ile Lys Ala Glu Lys Ala Val Asn Thr Ile Arg Asn Thr Val Glu 280 285

Glu Leu Ile Thr Lys Cys Lys Ala Ile Val Asp Ala Glu Asn Glu Gln

Ile Glu Gly Glu Glu Tyr Val Asn Glu Ala Asp Pro Ser Ile Leu Arg 305 310 315 320

Phe Leu Leu Ala Ser Arg Glu Glu Val Ser Ser Leu Gln Leu Arg Asp 325 330 335

Asp Leu Leu Ser Met Leu Val Ala Gly His Glu Thr Thr Gly Ser Val 340 345 350

Pro Asp Tyr Arg Leu Gln Ala Gln Gly Ser 355 360

<210> 19

<211> 279

<212> PRT

<213> Lycopersicon esculentum

<400> 19

Cys Arg Cys Ala Glu Arg Met Val Glu Lys Leu Leu Pro Asp Ala Ile 1 5 10 15

Ser Gly Ser Ala Val Asn Met Glu Ala Lys Phe Ser Gln Leu Thr Leu 20 25 30

Asp Val Ile Gly Leu Ala Leu Phe Asn Tyr Asn Phe Asp Ser Leu Thr 35 40 45

Thr Asp Ser Pro Val Ile Asp Ala Val Tyr Thr Ala Leu Lys Glu Ala 50 55 60

Glu Leu Arg Ser Thr Asp Leu Leu Pro Tyr Trp Gln Ile Lys Ala Leu 65 70 75 80

Cys Lys Phe Ile Pro Arg Gln Ile Lys Ala Glu Asn Ala Val Ser Leu 85 90 95

Ile Arg Gln Thr Val Glu Glu Leu Ile Ala Lys Cys Arg Glu Ile Val
100 105 110

Glu Thr Glu Gly Glu Arg Ile Asn Glu Asp Glu Tyr Val Asn Asp Arg 115 120 125

Asp Pro Ser Ile Leu Arg Phe Leu Leu Ala Ser Arg Glu Glu Val Ser 130 135 .140

Ser Leu Gln Leu Arg Asp Asp Leu Leu Ser Met Leu Val Ala Gly His 145 150 155 160 Glu Thr Thr Gly Ser Val Leu Thr Trp Thr Ala Tyr Leu Leu Ser Lys 165 170 175

Asp Pro Ser Ser Leu Glu Lys Ala His Glu Glu Val Asp Arg Val Leu 180 185 190

Gly Gly Arg Ser Pro Thr Tyr Glu Asp Met Lys Asn Leu Lys Phe Leu 195 200 205

Thr Arg Cys Ile Thr Glu Ser Leu Arg Leu Tyr Pro His Pro Pro Val 210 220

Leu Ile Arg Arg Ala Gln Val Ala Asp Val Leu Pro Gly Asn Tyr Lys 225 230 235 240

Val Asn Val Gly Gln Asp Ile Met Ile Ser Val Tyr Asn Ile His His 245 250 255

Ser Ser Lys Val Trp Asp Arg Ala Glu Glu Phe Asp Pro Glu Arg Phe 260 265 270

Asp Leu Glu Arg Ser Arg Pro 275

<210> 20

<211> 177

<212> PRT

<213> Zea mays

<400> 20

Leu Glu Pro Tyr Ala Leu Ser Gly Glu Pro Val Asn Met Glu Ala Arg 1 5 10 15

Phe Ser Gln Leu Thr Leu Asp Val Ile Gly Leu Ser Leu Phe Asn Tyr 20 25 30

Asn Phe Asp Ser Leu Thr Thr Asp Ser Pro Val Ile Asp Ala Val Tyr 35 40 45

Thr Ala Leu Lys Glu Ala Glu Leu Arg Ser Thr Asp Leu Leu Pro Tyr 50 55 60

Trp Lys Val Gly Phe Leu Cys Lys Ile Ile Pro Arg Gln Ile Lys Ala 70 75 80

Glu Asn Ala Val Thr Ile Ile Arg Asn Thr Val Glu Glu Leu Ile Met 85 90 95 Lys Cys Lys Glu Ile Val Glu Ala Glu Asn Glu Gln Ile Glu Gly Glu
100 105 110

Glu Tyr Val Asn Glu Gly Asp Pro Ser Ile Leu Arg Phe Leu Leu Ala 115 120 125

Ser Arg Asp Glu Val Ser Ser Val Gln Leu Arg Asp Asp Leu Leu Ser 130 135 140

Met Leu Val Ala Gly His Glu Thr Thr Gly Ser Val Leu Thr Trp Thr 145 150 155 160

Ile Tyr Leu Leu Ser Lys Asp Pro Thr Ala Leu Arg Arg Ala Gln Asp 165 170 175

Glu

<210> 21

<211> 208

<212> PRT

<213> Helianthus annuus

<400> 21

Gly Pro Arg Asn Phe Val Ile Val Ser Asp Pro Glu Ile Ala Lys His
1 10 15

Val Leu Arg Asn Tyr Gly Ser Ile Tyr Ala Lys Gly Leu Val Ala Glu 20 25 30

Val Ser Glu Phe Leu Phe Gly Ser Gly Phe Ala Ile Ala Glu Gly Ser 35 40 45

Leu Trp Thr Ala Arg Arg Arg Ala Val Val Pro Ser Leu His Lys Lys 50 55 60

Tyr Leu Ser Val Ile Val Asp Arg Val Phe Cys Lys Cys Ser Glu Arg 65 70 75 80

Leu Val Glu Lys Leu Arg Ser Tyr Ala Arg Ser Asp Thr Ser Val Asn 85 90 95

Met Glu Gln Gln Phe Ser Gln Leu Thr Leu Asp Val Ile Gly Leu Ala 100 105 110

Val Phe Asn Tyr Asn Phe Asp Ser Leu Thr Ala Asp Ser Pro Val Ile 115 120 125 Glu Ser Val Tyr Thr Ala Leu Lys Glu Ala Glu Ala Arg Ser Thr Asp 130 135 140

Leu Leu Pro Tyr Trp Lys Ile Ser Ala Leu Cys Lys Ile Ile Pro Arg 145 150 155 160

Gln Ile Lys Ala Glu Gln Ala Val Thr Val Ile Arg Glu Thr Val Glu 165 170 175

Glu Leu Ile Ile Lys Cys Lys Glu Ile Val Glu Lys Glu Gly Glu Lys 180 185 190

Ile Asp Asp Glu Asp Tyr Val Asn Asp Ala Thr Tyr Ile Phe Ile Cys
195 200 205

<210> 22

<211> 1686

<212> DNA

<213> Oryza sativa

<400> 22
atggccgccg ccgccgccc cgccgtcccg tgcgtaccat tcctgtgccc gcctcctccg
ccattggtct cgccgcgtct ccgccgtggc cacgtccgcc tccgcctgcg gccgccaagg
agcagcggcg gtggaggcgg aggcggagcg gggggagacg agccgcccat caccacctcg
tgggtgagcc ccgactggct cacggcgctc tcccgctcgg tggcaacccg cctcggcggg
ggcgacgact cggggatccc cgtcgcctcc gccaagctcg acgacgtgcg ggacctcctc

ggcggcgcc tettectee tetetteaag tggtteegeg aggaaggee egtetaeege 360 etegeggegg ggcegegga tetegtegte gteagegate eegeegttge eaggeaegtg 420 etgegtggt aeggttegag gtacgagaag gggetegteg eegaggtte egagtteete 480 tteggeteeg ggttegeeat egeegaggge getetetgga eggtgagaeg tegateagtt 540

60

120 180

240

300

960

gtaccatctc tacacaaacg atttctctcg gtgatggttg acagagtttt ttgtaaatgt 600 gctgagagat tagtggagaa gcttgagaca tctgctttaa gtggcaaacc tgtaaatatg 660

gaagcaaggt tototoaaat gaotttagat gtgattggtt tgtoottgtt caattacaat 720

tttgattccc tcacatcaga tagccctgtt attgatgctg tttacactgc actcaaggaa 780

gcagaacttc gttctacaga tcttttacca tactggaaga ttgatttgct gtgcaagatt 840

gttcctagac aaataaagc agaaaaggca gttaacatca tcaggaatac cgttgaggac 900

ctaattacca aatgcaagaa gattgtagat gctgagaatg aacaaattga gggtgaggaa

tatgtaaatg aggcagaccc tagcatcctg cgattcctac ttgctagccg tgaagaggta 1020

accagtgtgc agttacgtga tgatctattg tcaatgttag ttgctggtca tgaaacaaca 1080

```
ggctctgtac tgacgtggac tatttatctt ctcagtaagg atccagcagc gctgaggaga
                                                                     1140
                                                                     1200
gctcaagcag aggttgaccg tgttctacaa ggtagactcc ccagatatga agatctaaaa
                                                                     1260
gagetgaagt acttgatgeg etgtataaat gagtetatge ggetttatee acacccacet
                                                                     1320
qtqttqatac qqcqaqccat agttgatgat gtgcttcccg gaaactataa gatcaaagct
                                                                     1380
ggtcaagata ttatgatttc agtgtacaat atacacaggt cacctgaggt ttgggacaga
gctgatgatt ttattcctga gagatttgat ttagagggac ctgttccaaa tgagacaaac
                                                                     1440
                                                                     1500
actgaataca gatttatccc attcagtgga ggtcctcgga aatgtgttgg agatcagttt
                                                                     1560
gctctcttgg aagcaattgt ggcacttgct gttgtgttgc agaagatgga cattgagctt
                                                                     1620
gtgccagatc aaaaaattaa catgactact ggggccacaa ttcatacaac caatggcctg
                                                                     1680
tatatgaatg taagtetgeg taaagttgae agggaacetg attttgeact cagtgggtee
                                                                     1686
agatga
```

<210> 23

<211> 1638 <212> DNA

<213> Hordeum vulgare

<220>

<221> misc feature

 $\langle 222 \rangle$ (1587)...(1587)

<223> n is a, c, g, or t

<400> 23

atgecegeeg eggeattege eteegegete gegteteete eteeteeatg ggeeceaega 60 120 ccgtccctc ggcacgctag cctccgcctg ccccgccaa ggagcagcgg cggcggaggg 180 gacaagecea ceaegtegtg ggteagecee gactggetea egtegetgte eegeteggtg eteggeeggg gaaacgaega eteggggate eeegtegeet eegeeaaget egaegaegtg 240 300 caggacetee tegggggege getetteete eegetettea agtggtteeg egaggaaggg 360 cccgtctacc gcctcgccgc ggggccgcgc gacttcgtca tcgtcagcga ccccgccgtg 420 gccaagcacg teeteegegg gtaeggeaeg eggtaegaga aggggetegt egeegaggte tecgagttee tetttggete tgggttegee ategeegagg gagegetetg gaeggtgaga 480 540 cgtagagcag ttgtaccatc tctacacaaa agatttctct cagtaatggt tgataaagtg ttttgtaaat gtgctgagag attggtggaa aagctcgaga catatgcttt gagcggtgaa 600 cctgttaata tggaagcgag attttctcaa atgacactag atgtgattgg tttgtctttg 660 ttcaactaca actttgattc cctcacatca gatagtcctg ttattgatgc tgtttacacc 720 780 gcactgaaag aagcagaggc tcgttctaca gatcttttac catactggca gattgatttg ctgtgcaaga ttgttcctag acagatcaaa gcagaaaagg cagttaacac aataaggaat 840

actgttgaag	agctaattat	aaaatgcaag	gcaatcgtag	atgctgaaaa	tgaacagatt	900
gagggtgaag	aatatgtaaa	tgaggcagat	cctagcatcc	tgcgtttttt	acttgctagc	960
cgtgaagagg	tcagcagttt	gcagttacgt	gatgatctat	tgtcaatgtt	agttgctggt	1020
cacgaaacaa	caggctctgt	actgacatgg	actatttatc	ttctcagtaa	ggatccagta	1080
gcactaagga	gagcccaaga	tgaggtagat	cgtgttctac	aaggtagact	cccaagatat	1140
gaagatgtaa	aagagctgaa	gtacttgatg	cgctgtatca	atgagtccat	gcggctatac	1200
ccacatcctc	ctgtgctgat	acggcgtgca	ctagttgatg	atgtgcttcc	tggaaactac	1260
aaggttaaga	ctggtcaaga	tattatgatt	tctgtgtaca	atattcacag	atcacctgag	1320
gtatgggaca	gagcagatga	attcattcca	gagagatttg	atttggaggg	tcccattcca	1380
aatgagtcaa	acaccgattt	caggtttatc	cctttcagtg	gaggtcctcg	aaaatgtgtt	1440
ggagatcagt	ttgctctttt	agaagcaatt	gtggcacttg	caattgtcat	acaaaagatg	1500
gacgttcagc	ttgtggcaga	tcaaaaaatc	agcatgacca	ctggggccac	catccataca	1560
accaatggac	tgtacatgaa	tgtaagnctg	cgtaaagttg	agcaagaagc	tgacttagca	1620
ctgagtccat	caggctag					1638

<210> 24

<211> 1086

<212> DNA

<213> Triticum aestivum

<400> 24 60 atgecegeeg eggeattege etcegegtte gegteteete etceteegtg ggeeeeaega ccgcctcctc gccacgccag cctccgcctg cccccgccaa ggagcagcag caacaacagc 120 ggcggcggcg gaggggacaa gcccaccacc tcgtgggtca gccccgactg gctgacgtcg 180 240 ctgtctcgct cggtgctcgg ccgggggaac gacgactcgg ggatacccgt cgcctccgcc aagetegaeg aegtgeagga eeteeteggg ggegegetet teetgeeget etteaagtgg 300 360 ttccgcgagg aagggcccgt ctaccgcctc gccgcggggc cgcgcgactt cgtcatcgtc 420 agegaeeeeg eegtageeaa geaegteete egegggtaeg geaegeggta egagaagggg ctcgtcgccg aggtctccga gttcctcttt ggctctgggt tcgccatcgc cgagggagcg 480 ctctggacgg tgagacgtag agcagttgta ccatctctac acaaaagatt tctctcagta 540 600 atggtcgata aagtgttctg taaatgtgct gagagattgg tggaaaagct cgagacttat gctttgagtg gtgaacctgt taatatggaa gcgaggtttt ctcaaatgac attagatgtg 660 720 attggtttat ccttgttcaa ctacaacttt gattccctca catcagatag tcctgttatt gatgctgttt acactgcact caaagaagct gaggctcgtt ctacagatct tttaccatac 780 tggcagatcg atttgctgtg caagattgtt cctagacaga taaaagcgga aaaagcagtt 840

aacacaataa ggaataccgt tgaagagcta attacaaaat gcaaggcaat cgtagatgct	900
gaaaatgaac agattgaggg tgaagaatat gtaaatgagg cagatcctag catcctgcgg	960
tttttacttg ctagccgtga agaggtcagc agtttgcagt tacgtgatga tctattgtca	1020
atgttagttg ctggtcatga aacaacaggt tctgtaccag actatcgatt acaagcccaa	1080
ggttcc	1086
<210> 25 <211> 839 <212> DNA <213> Lycopersicon esculentum	
<pre><400> 25 tgcagatgtg ctgagagaat ggtggagaaa cttttacctg atgcaatttc tggctctgca</pre>	60
gtgaatatgg aggcaaagtt ttctcaacta acacttgatg ttattggcct tgcactcttc	120
aattacaatt ttgattccct tactactgac agtccagtta ttgatgcagt ttacactgca	180
ctaaaagaag cagaactccg ttcaactgat ttgttgccat attggcagat caaagcttta	240
tgtaagttca tcccacgaca aataaaggct gagaatgcag tgtcattaat cagacaaaca	300
gttgaagaac ttattgcgaa gtgcagagag attgtagaaa ctgagggtga gaggattaat	360
gaagatgagt acgtgaatga tagagatcca agcatccttc gatttttgct tgctagccgt	420
gaggaggttt caagtttaca acttcgagat gatcttctgt caatgctagt tgctgggcat	480
gaaaccacag gttcagtttt gacttggacg gcatacctgc tgagtaagga cccttcctct	540
ttggaaaaag cacatgagga agtagacaga gttttgggag gacgctctcc gacttatgaa	600
gatatgaaga atctcaagtt cttaacacgg tgcataactg agtcactcag actctatcca	660
catccacctg teetgataag acgageteaa gtagetgatg teeteeeegg gaattacaaa	720
gtcaatgttg gtcaggatat aatgatttcg gtatataaca ttcatcattc ttcaaaagta	780
tgggatagag ctgaagaatt tgatcctgaa agattcgact tggaaaggtc ccgtcccaa	839
<210> 26 <211> 531 <212> DNA <213> Zea mays	
<400> 26 cttgagccat atgctttgag tggggaacct gtcaatatgg aagcgaggtt ttctcagttg	60
acattggatg tgattggttt atcattgttc aactacaatt ttgattccct cacaacagat	120
agtcctgtca ttgatgctgt ttatactgca ctcaaagaag cagagcttcg ttctacagat	180
cttttgccat actggaaggt tggtttcttg tgcaagataa tcccaagaca gataaaagca	240
gagaatgcgg ttacgattat aaggaacact gttgaagagc tgattatgaa gtgtaaagaa	300

atagtg	gaag	ctgaaaatga	acagattgag	ggtgaggaat	atgtaaacga	aggggateet	360
agcatt	ctac	gcttcctact	tgctagccga	gatgaggtaa	gcagtgtaca	attacgtgat	420
gatctc	ttgt	caatgttagt	tgctggtcat	gaaacaacag	gctctgtact	gacgtggaca	480
atctate	cttc	tcagtaagga	tccgactgca	ctgaggagag	ctcaagatga	a	531
<210><211><211><212><213>	27 624 DNA Hel:	ianthus annu	inė				
<400>	27 aqaa	actttqtqat	tgtgagtgac	ccggagattg	ctaagcatgt	gttgaggaat	60
					ctgagttctt		120
ggtttt	gcca	ttgctgaagg	ctctctttgg	actgcaaggc	gcagggctgt	agttccatca	180
cttcaca	aaga	agtacttatc	agtaatagtt	gatcgtgtat	tttgcaaatg	ctccgagagg	240
cttgtc	gaaa	agctaagatc	atacgcacgc	agtgacacgt	ctgttaacat	ggagcaacag	300
ttttcg	cagt	taacccttga	tgttatcggt	ctagccgtat	ttaactacaa	ttttgactca	360
cttacg	gccg	atagtcctgt	aattgaatct	gtttataccg	cactaaaaga	agctgaagcc	420
cgttca	actg	atcttttgcc	atattggaag	ataagtgcgt	tatgtaagat	tataccaaga	480
caaata	aaag	ccgagcaagc	agttactgta	attagagaaa	ctgtcgaaga	acttattata	540
aaatgc	aagg	aaatcgttga	aaaggaaggt	gaaaaaatag	acgatgaaga	ttacgtaaat	600
gatgca	acct	atatcttcat	ctgc				624
<210><211><211><212><213>	28 29 DNA Art	ificial Sequ	ıence				
<220> <223>	Synt	chetic					
<400> cttcct	28 cttc	ttactcttct	ctcttcact				29
<210><211><212><212><213>	29 29 DNA Arti	ificial Sequ	ıence		•		
<220> <223>	Synt	thetic					
<400>	29						20

```
<210> 30
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 30
                                                                    21
ccgtctcgct gctggtcctc g
<210> 31
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 31
                                                                    22
ggatgaatga gtacggaccc at
<210> 32
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 32
                                                                    21
gggtcgctca caattacgaa a
<210> 33
<211> 595
<212> PRT
<213> Arabidopsis thaliana
<400> 33
Met Ala Met Ala Phe Pro Leu Ser Tyr Thr Pro Thr Ile Thr Val Lys
Pro Val Thr Tyr Ser Arg Ser Asn Phe Val Val Phe Ser Ser
Ser Asn Gly Arg Asp Pro Leu Glu Glu Asn Ser Val Pro Asn Gly Val
Lys Ser Leu Glu Lys Leu Gln Glu Glu Lys Arg Arg Ala Glu Leu Ser
Ala Arg Ile Ala Ser Gly Ala Phe Thr Val Arg Lys Ser Ser Phe Pro
                   70
                                       75
```

Ser Thr Val Lys Asn Gly Leu Ser Lys Ile Gly Ile Pro Ser Asn Val 85 90 95

Leu Asp Phe Met Phe Asp Trp Thr Gly Ser Asp Gln Asp Tyr Pro Lys
100 105 110

Val Pro Glu Ala Lys Gly Ser Ile Gln Ala Val Arg Asn Glu Ala Phe 115 120 125

Phe Ile Pro Leu Tyr Glu Leu Phe Leu Thr Tyr Gly Gly Ile Phe Arg 130 135 140

Leu Thr Phe Gly Pro Lys Ser Phe Leu Ile Val Ser Asp Pro Ser Ile 145 150 155 160

Ala Lys His Ile Leu Lys Asp Asn Ala Lys Ala Tyr Ser Lys Gly Ile 165 170 175

Leu Ala Glu Ile Leu Asp Phe Val Met Gly Lys Gly Leu Ile Pro Ala 180 185 190

Asp Gly Glu Ile Trp Arg Arg Arg Arg Ala Ile Val Pro Ala Leu 195 200 205

His Gln Lys Tyr Val Ala Ala Met Ile Ser Leu Phe Gly Glu Ala Ser 210 215 220

Asp Arg Leu Cys Gln Lys Leu Asp Ala Ala Leu Lys Gly Glu Glu 225 230 235 240

Val Glu Met Glu Ser Leu Phe Ser Arg Leu Thr Leu Asp Ile Ile Gly 245 250 255

Lys Ala Val Phe Asn Tyr Asp Phe Asp Ser Leu Thr Asn Asp Thr Gly 260 265 270

Val Ile Glu Ala Val Tyr Thr Val Leu Arg Glu Ala Glu Asp Arg Ser 275 280 285

Val Ser Pro Ile Pro Val Trp Asp Ile Pro Ile Trp Lys Asp Ile Ser 290 295 300

Pro Arg Gln Arg Lys Val Ala Thr Ser Leu Lys Leu Ile Asn Asp Thr 305 310 315 320

Leu Asp Asp Leu Ile Ala Thr Cys Lys Arg Met Val Glu Glu Glu Glu 325 330 335

Leu	GIII	Pile	340	GIU	GIU	ığı	Met	345	Giu	AIG	Asp	PIO	350	116	Бец
His	Phe	Leu 355	Leu	Ala	Ser	Gly	Asp 360	Asp	Val	Ser	Ser	Lys 365	Gln	Leu	Arg
Asp	Asp 370	Leu	Met	Thr	Met	Leu 375	Ile	Ala	Gly	His	Glu 380	Thr	Ser	Ala	Ala
Val 385	Leu	Thr	Trp	Thr	Phe 390	Tyr	Leu	Leu	Thr	Thr 395	Glu	Pro	Ser	Val	Val 400
Ala	Lys	Leu	Gln	Glu 405	Glu	Val	Asp	Ser	Val 410	Ile	Gly	Asp	Arg	Phe 415	Pro
Thr	Ile	Gln	Asp 420	Met	Lys	Lys	Leu	Lys 425	Tyr	Thr	Thr	Arg	Val 430	Met	Asn
Glu	Ser	Leu 435	Arg	Leu	Tyr	Pro	Gln 440	Pro	Pro	Val	Leu	Ile 445	Arg	Arg	Ser
Ile	Asp 450	Asn	Asp	Ile	Leu	Gly 455	Glu	Tyr	Pro	Ile	Lys 460	Arg	Gly	Glu	Asp
Ile 465	Phe	Ile	Ser	Val	Trp 470	Asn	Leu	His	Arg	Ser 475	Pro	Leu	His	Trp	Asp 480
Asp	Ala	Glu	Lys	Phe 485	Asn	Pro	Glu	Arg	Trp 490	Pro	Leu	Asp	Gly	Pro 495	Asn
Pro	Asn	Glu	Thr 500	Asn	Gln	Asn	Phe	Ser 505	Tyr	Leu	Pro	Phe	Gly 510	Gly	Gly
Pro	Arg	Lys 515	Суз	Ile	Gly	Asp	Met 520	Phe	Ala	Ser	Phe	Glu 525	Asn	Val	Val
Ala	Ile 530	Ala	Met	Leu	Ile	Arg 535	Arg	Phe	Asn	Phe	Gln 540	Ile	Ala	Pro	Gly
Ala 545		Pro	Val	Lys	Met		Thr	Gly	Ala	Thr		His	Thr	Thr	Glu 560

Gly Leu Lys Leu Thr Val Thr Lys Arg Thr Lys Pro Leu Asp Ile Pro 565 570 575

Ser Val Pro Ile Leu Pro Met Asp Thr Ser Arg Asp Glu Val Ser Ser 580 585 590

Ala Leu Ser 595

<210> 34

<211> 632

<212> PRT

<213> Oryza sativa

<400> 34

Met Ala Ala Thr Ser Ser Ala Ala Ala Ala Ala Pro Pro Pro Cys Arg

1 10 15

Leu Leu Gly Ser Gly Gln Ala His Leu Arg Leu Pro Pro Ser Ala Ala 20 25 30

Ala Ala Ala Ser Ala Arg Arg Leu Leu Leu Arg Cys Ala Ala 35 40 45

Ser Gly Gly Asn Gly Lys Gly Gly Gly Gly Asp Gly Ser Gly Ser Asp 50 55 60

Pro Val Leu Glu Glu Arg Arg Arg Arg Gln Ala Glu Leu Ala Ala 65 70 75 80

Arg Ile Ala Ser Gly Glu Phe Thr Ala Gln Gly Pro Ala Trp Ile Ala 85 90 95

Pro Leu Ala Val Gly Leu Ala Lys Leu Gly Pro Pro Gly Glu Leu Ala 100 105 110

Ala Ala Leu Leu Thr Lys Val Ala Gly Gly Gly Pro Glu Ile Pro 115 120 125

Gln Ala Val Gly Ser Met Ser Ala Val Thr Gly Gln Ala Phe Phe Ile 130 135 140

Pro Leu Tyr Asp Leu Phe Leu Thr Tyr Gly Gly Ile Phe Arg Leu Asn 145 150 155 160

Phe Gly Pro Lys Ser Phe Leu Ile Val Ser Asp Pro Ala Ile Ala Lys 165 170 175

- His Ile Leu Arg Asp Asn Ser Lys Ala Tyr Ser Lys Gly Ile Leu Ala 180 185 190
- Glu Ile Leu Glu Phe Val Met Gly Thr Gly Leu Ile Pro Ala Asp Gly
 195 200 205
- Glu Ile Trp Arg Val Arg Arg Arg Ala Ile Val Pro Ala Met His Gln 210 215 220
- Lys Tyr Val Thr Ala Met Ile Ser Leu Phe Gly Tyr Ala Ser Asp Arg 225 230 235. 240
- Leu Cys Gln Lys Leu Asp Lys Ala Ala Thr Asp Gly Glu Asp Val Glu 245 250 255
- Met Glu Ser Leu Phe Ser Arg Leu Thr Leu Asp Val Ile Gly Lys Ala 260 265 270
- Val Phe Asn Tyr Asp Phe Asp Ser Leu Ser Tyr Asp Asn Gly Ile Val 275 280 285
- Glu Ala Val Tyr Val Thr Leu Arg Glu Ala Glu Met Arg Ser Thr Ser 290 295 300
- Pro Ile Pro Thr Trp Glu Ile Pro Ile Trp Lys Asp Ile Ser Pro Arg 305 310 315 320
- Gln Lys Lys Val Asn Glu Ala Leu Ala Leu Ile Asn Lys Thr Leu Asp 325 330 335
- Glu Leu Ile Asp Ile Cys Lys Arg Leu Val Glu Glu Glu Asp Leu Gln 340 345 350
- Phe His Glu Glu Tyr Met Asn Glu Gln Asp Pro Ser Ile Leu His Phe 355 360 365
- Leu Leu Ala Ser Gly Asp Asp Val Ser Ser Lys Gln Leu Arg Asp Asp 370 375 380
- Leu Met Thr Met Leu Ile Ala Gly His Glu Thr Ser Ala Ala Val Leu 385 390 395 400
- Thr Trp Thr Phe Tyr Leu Leu Ser Lys Tyr Pro Asn Val Met Ala Lys
 405
 410
 415
- Leu Gln Asp Glu Ala Asp Thr Val Leu Gly Asp Arg Leu Pro Thr Ile 420 425 430

- Glu Asp Val Lys Lys Leu Lys Tyr Thr Thr Arg Val Ile Asn Glu Ser 435 440 445
- Leu Arg Leu Tyr Pro Gln Pro Pro Val Leu Ile Arg Arg Ser Ile Glu
 450 455 460
- Glu Asp Met Leu Gly Gly Tyr Pro Ile Gly Arg Gly Glu Asp Ile Phe 465 470 475 480
- Ile Ser Val Trp Asn Leu His His Cys Pro Lys His Trp Asp Gly Ala
 485 490 495
- Asp Val Phe Asn Pro Glu Arg Trp Pro Leu Asp Gly Pro Asn Pro Asn 500 510
- Glu Thr Asn Gln Asn Phe Ser Tyr Leu Pro Phe Gly Gly Pro Arg
 515 520 525
- Lys Cys Val Gly Asp Met Phe Ala Thr Phe Glu Thr Val Val Ala Thr 530 540
- Ala Met Leu Val Arg Arg Phe Asp Phe Gln Met Ala Pro Gly Ala Pro 545 550 555 560
- Pro Val Glu Met Thr Thr Gly Ala Thr Ile His Thr Thr Glu Gly Leu 565 570 575
- Lys Met Thr Val Thr Arg Arg Thr Lys Pro Pro Val Ile Pro Asn Leu 580 585 590
- Glu Met Lys Val Ile Ser Asp Ser Pro Glu Asn Met Ser Thr Thr Thr 595 600 605
- Ser Met Pro Val Ser Ala Ala Ser Ile Ala Ser Gly Glu Asp Gln Gln 610 620
- Gly Gln Val Ser Ala Thr Arg Ile 625 630

- <210> 35 <211> 508
- <212> PRT
- <213> Hordeum vulgare

<400> 35

Ser Ala Arg Gly Gln Ala Val Gly Ser Leu Ala Ser Val Ala Gly Glu

Ala Phe Phe Leu Pro Leu Tyr Asp Leu Phe Leu Thr Tyr Gly Gly Val 25

Phe Arg Leu Asn Phe Gly Pro Lys Ser Phe Leu Ile Val Ser Asp Pro

Asp Val Ala Lys His Ile Leu Arg Asp Asn Ser Lys Ala Tyr Ser Lys

Gly Ile Leu Ala Glu Ile Leu Glu Phe Val Met Gly Thr Gly Leu Ile 70

Pro Ala Asp Gly Glu Val Trp Arg Val Arg Arg Arg Ala Ile Val Pro 85

Ala Leu His Gln Lys Tyr Val Thr Ala Met Ile Gly Leu Phe Gly Asn 100 105

Ala Ser Asp Arg Leu Cys Gln Lys Leu Asp Lys Ala Ala Ser Asp Gly

Glu Asp Val Glu Met Glu Ser Leu Phe Ser Arg Leu Thr Leu Asp Val 135

Ile Gly Lys Ala Val Phe Asn Tyr Asp Phe Asp Ser Leu Ser Tyr Asp 155 145 150

Asn Gly Ile Val Glu Ala Val Tyr Val Thr Leu Arg Glu Ala Glu Met

Arg Ser Thr Ser Pro Ile Pro Thr Trp Glu Ile Pro Ile Trp Lys Asp 185

Ile Ser Pro Arg Gln Arg Lys Val Asn Glu Ala Leu Ala Leu Ile Asn

Asn Ile Leu Asp Glu Leu Ile Ala Thr Cys Lys Arg Met Val Asp Glu

Glu 225	Asp	Leu	Gln	Phe	His 230	Glu	Glu	Tyr	Met	Asn 235	Glu	Lys	Asp	Pro	Ser 240
Ile	Leu	His	Phe	Leu 245	Leu	Ala	Ser	Gly	Asp 250	Asp	Val	Ser	Ser	Lys 255	Gln
Leu	Arg	Asp	Asp 260	Leu	Met	Thr	Met	Leu 265	Ile	Ala	Gly	His	Glu 270	Thr	Ser
Ala	Ala	Val 275	Leu	Thr	Trp	Thr	Phe 280	Tyr	Leu	Leu	Ser	Lys 285	Tyr	Pro	Asn
Val	Met 290	Ser	Lys	Leu	Gln	Ala 295	Glu	Ala	Asp	Ala	Val 300	Leu	Gly	Asp	Gly
Leu 305	Pro	Thr	Ile	Asp	Asp 310	Val	Lys	Lys	Leu	Lys 315	Tyr	Thr	Thr	Arg	Val 320
Ile	Asn	Glu	Ser	Leu 325	Arg	Leu	Tyr	Pro	Gln 330	Pro	Pro	Val	Leu	Ile 335	Arg
Arg	Ser	Leu	Glu 340	Asp	Asp	Met	Leu	Gly 345	Glu	Tyr	Pro	Ile	Gly 350	Lys	Gly
Glu	Asp	Ile 355	Phe	Ile	Ser	Ile	Trp 360	Asn	Leu	His	Arg	Cys 365	Pro	Lys	His
Trp	Asp 370	Asp	Ala	Asp	Val	Phe 375	Asn	Pro	Glu	Arg	Trp 380	Pro	Leu	Asp	Gly
Pro 385	Asn	Pro	Asn	Glu	Thr 390	Asn	Gln	Lys	Phe	Ser 395	Tyr	Leu	Pro	Phe	Gly 400
Gly	Gly	Pro	Arg	Lys 405	Cys	Val	Gly	Asp	Met 410	Phe	Ala	Thr	Phe	Glu 415	Thr
Val	Val	Ala	Thr 420	Ala	Met	Leu	Val	Lys 425	Arg	Phe	Asp	Phe	Gln 430	Met	Ala
Pro	Gly	Ala 435	Pro	Pro	Val	Glu	Met 440	Thr	Thr	Gly	Ala	Thr 445	Ile	His	Thr
Thr	Lys 450	Gly	Leu	Asn	Met	Thr 455	Val	Thr	Arg	Arg	Ile 460	Lys	Pro	Pro	Val
Ile	Pro	Asn	Leu	Glu	Met	Lys	Ile	Val	Ser	Asp	Pro	Glu	Gly	Ser	Thr

Ser Ser Thr Ala Ser Val Ala Val Ser Thr Ala Ser Ile Ala Ser Gly
485 490 495

Glu Gly Gln Gln Val Glu Val Ser Thr Ser Gln Val 505

<210> 36

<211> 425

<212> PRT

<213> Glycine max

<400> 36

Gly Lys Gly Leu Ile Pro Ala Asp Gly Glu Ile Trp Arg Val Arg Arg 1 5 10 15

Arg Ala Ile Val Pro Ala Leu His Gln Lys Tyr Val Ala Ala Met Ile 20 25 30

Gly Leu Phe Gly Gln Ala Ala Asp Arg Leu Cys Gln Lys Leu Asp Ala 35 40 45

Ala Ala Ser Asp Gly Glu Asp Val Glu Met Glu Ser Leu Phe Ser Arg 50 55 60

Leu Thr Leu Asp Ile Ile Gly Lys Ala Val Phe Asn Tyr Asp Phe Asp 65 70 75 80

Ser Leu Ser Asn Asp Thr Gly Ile Val Glu Ala Val Tyr Thr Val Leu 85 90 95

Arg Glu Ala Glu Asp Arg Ser Val Ala Pro Ile Pro Val Trp Glu Ile 100 105 110

Pro Ile Trp Lys Asp Ile Ser Pro Arg Leu Arg Lys Val Asn Ala Ala 115 120 125

Leu Lys Phe Ile Asn Asp Thr Leu Asp Asp Leu Ile Ala Ile Cys Lys 130 135 140

Arg Met Val Asp Glu Glu Glu Leu Gln Phe His Glu Glu Tyr Met Asn 145 150 155 160

Glu Gln Asp Pro Ser Ile Leu His Phe Leu Leu Ala Ser Gly Asp Asp 165 170 175

Val Ser Ser Lys Gln Leu Arg Asp Asp Leu Met Thr Met Leu Ile Ala 180 185 190 Gly His Glu Thr Ser Ala Ala Val Leu Thr Trp Thr Phe Tyr Leu Leu 200 205 Ser Lys Glu Pro Arg Val Met Ser Lys Leu Gln Glu Glu Val Asp Ser Val Leu Gly Asp Gln Tyr Pro Thr Ile Glu Asp Met Lys Lys Leu Lys Tyr Thr Thr Arg Val Ile Asn Glu Ser Leu Arg Leu Tyr Pro Gln Pro 245 Pro Val Leu Ile Arg Arg Ser Leu Glu Asp Asp Val Leu Gly Glu Tyr Pro Ile Lys Arg Gly Glu Asp Ile Phe Ile Ser Val Trp Asn Leu His 275 280 285 Arg Ser Pro Lys Leu Trp Asp Asp Ala Asp Lys Phe Lys Pro Glu Arg 290 295 Trp Ala Leu Asp Gly Pro Ser Pro Asn Glu Thr Asn Gln Asn Phe Lys 315 Tyr Leu Pro Phe Gly Gly Gly Pro Arg Lys Cys Val Gly Asp Leu Phe 325 330 Ala Ser Tyr Glu Thr Val Val Ala Leu Ala Met Leu Met Arg Arg Phe 345 Asn Phe Gln Ile Ala Val Gly Ala Pro Pro Val Glu Met Thr Thr Gly 360 Ala Thr Ile His Thr Thr Gln Gly Leu Lys Met Thr Val Thr His Arg Ile Lys Pro Pro Ile Val Pro Ser Leu Gln Met Ser Thr Leu Glu Val Asp Pro Ser Ile Ser Leu Ser Asp Gln Asp Glu Val Ser Gln Lys Gly 405 410 Glu Val Tyr Gln Ala Gln Ala Gln Ser

420

- <210> 37
- <211> 342
- <212> PRT
- <213> Triticum aestivum
- <400> 37
- Gly Cys Arg Leu Pro Gln Ala Val Gly Ser Leu Ala Ser Val Ala Gly
 1 10 15
- Glu Ala Phe Phe Leu Pro Leu Tyr Asp Leu Phe Leu Thr Tyr Gly Gly
 20 25 30
- Val Phe Arg Leu Asn Phe Gly Pro Lys Ser Phe Leu Ile Val Ser Asp 35 40 45
- Pro Asp Val Ala Lys His Ile Leu Arg Asp Asn Ser Lys Ala Tyr Ser 50 55 60
- Lys Gly Ile Leu Ala Glu Ile Leu Glu Phe Val Met Gly Thr Gly Leu 65 70 75 80
- Ile Pro Ala Asp Gly Glu Val Trp Arg Val Arg Arg Arg Ala Ile Val 85 90 95
- Pro Ala Leu His Gln Lys Tyr Val Thr Ala Met Ile Gly Leu Phe Gly 100 105 110
- Asn Ala Ser Asp Arg Leu Cys Gln Lys Leu Asp Lys Ala Ala Ser Asp 115 120 125
- Gly Glu Asp Val Glu Met Glu Ser Leu Phe Ser Arg Leu Thr Leu Asp 130 135 140
- Val Ile Gly Lys Ala Val Phe Asn Tyr Asp Phe Asp Ser Leu Ser Tyr 145 150 155 160
- Asp Asn Gly Ile Val Glu Ala Val Tyr Val Thr Leu Arg Glu Ala Glu 165 170 175
- Met Arg Ser Thr Ser Pro Ile Pro Thr Trp Glu Ile Pro Ile Trp Lys 180 185 190
- Asp Ile Ser Pro Arg Gln Cys Pro Lys His Trp Asp Asp Ala Asp Val 195 200 205
- Phe Asn Pro Glu Arg Trp Pro Leu Asp Gly Pro Asn Pro Asn Glu Thr 210 215 220

Asn Gln Lys Phe Ser Tyr Leu Pro Phe Gly Gly Gly Pro Arg Lys Cys 225 230 235 240

Val Gly Asp Met Phe Ala Thr Phe Glu Thr Val Val Ala Thr Ala Met 245 250 255

Leu Val Lys Arg Phe Asp Phe Gln Met Ala Pro Gly Ala Pro Pro Val 260 265 270

Glu Met Thr Thr Gly Ala Thr Ile His Thr Thr Lys Gly Leu Asn Met 275 280 285

Thr Val Thr Arg Arg Ile Lys Pro Pro Val Ile Pro Asn Leu Glu Met 290 295 300

Lys Ile Val Ser Asp Ser Glu Gly Ser Thr Ser Ser Thr Ala Ser Val 305 310 315 320

Ala Val Ser Thr Ala Ser Ile Ala Ser Gly Glu Gly Gln Gln Val Glu 325 330 335

Val Ser Thr Ser Gln Val 340

<210> 38

<211> 579

<212> PRT

<213> Lycopersicon esculentum

<400> 38

Gln Phe Pro Thr His His Tyr Ser Lys Ser Arg Leu Thr Leu Ser Pro 1 5 10 15

Lys Phe Lys Gly Ser Val Ser Asn Phe Thr Ile Arg Cys Ser Asn Ser 20 25 30

Asn Gly Lys Gln Pro Glu Ser Val Asp Glu Gly Val Lys Lys Val Glu
35 40 45

Lys Leu Leu Asp Glu Lys Arg Arg Ala Glu Leu Ser Ala Arg Ile Ala 50 55 60

Ser Gly Glu Phe Thr Val Glu Gln Ser Gly Phe Pro Ser Leu Leu Lys 70 75 80

Asn Gly Leu Ser Lys Leu Gly Val Pro Lys Glu Phe Leu Glu Phe Phe 85 90 95 Ser Arg Arg Thr Gly Asn Tyr Pro Arg Ile Pro Glu Ala Lys Gly Ser 100 105 110

Ile Ser Ala Ile Arg Asp Glu Pro Phe Phe Met Pro Leu Tyr Glu Leu 115 120 125

Tyr Leu Thr Tyr Gly Gly Ile Phe Arg Leu Ile Phe Gly Pro Lys Ser 130 135 140

Phe Leu Ile Val Ser Asp Pro Ser Ile Ala Lys His Ile Leu Lys Asp 145 150 155 160

Asn Ser Lys Ala Tyr Ser Lys Gly Ile Leu Ala Glu Ile Leu Asp Phe 165 170 175

Val Met Gly Lys Gly Leu Ile Pro Ala Asp Gly Glu Ile Trp Arg Val 180 185 190

Arg Arg Ala Ile Val Pro Ala Leu His Gln Lys Tyr Val Ala Ala 195 200 205

Met Ile Gly Leu Phe Gly Lys Ala Thr Asp Arg Leu Cys Lys Lys Leu 210 220

Asp Val Ala Ala Thr Asp Gly Glu Asp Val Glu Met Glu Ser Leu Phe 225 230 235 240

Ser Arg Leu Thr Leu Asp Ile Ile Gly Lys Ala Val Phe Asn Tyr Asp 245 250 255

Phe Asp Ser Leu Thr Val Asp Thr Gly Ile Val Glu Ala Val Tyr Thr 260 265 270

Val Leu Arg Glu Ala Glu Asp Arg Ser Val Ala Pro Ile Pro Val Trp 275 280 285

Glu Leu Pro Ile Trp Lys Asp Ile Ser Pro Lys Leu Lys Lys Val Asn 290 295 300

Ala Ala Leu Lys Leu Ile Asn Asp Thr Leu Asp Asp Leu Ile Ala Ile 305 310 315 320

Cys Lys Arg Met Val Asp Glu Glu Glu Leu Gln Phe His Glu Glu Tyr 325 330 335

Met Asn Glu Lys Asp Pro Ser Ile Leu His Phe Leu Leu Ala Ser Gly 340 345 350

Asp Glu Val Ser Ser Lys Gln Leu Arg Asp Asp Leu Met Thr Met Leu Ile Ala Gly His Glu Thr Ser Ala Ala Val Leu Thr Trp Thr Phe Tyr 375 Leu Leu Ser Lys Glu Pro Ser Val Met Ala Lys Leu Gln Asp Glu Val Asp Ser Val Leu Gly Asp Arg Leu Pro Thr Ile Glu Asp Leu Lys Lys Leu Arg Tyr Thr Thr Arg Val Ile Asn Glu Ser Leu Arg Leu Tyr Pro Gln Pro Pro Val Leu Ile Arg Arg Ser Ile Glu Glu Asp Val Val Gly 435 440 445 Gly Tyr Pro Ile Lys Arg Gly Glu Asp Ile Phe Ile Ser Val Trp Asn 450 455 Leu His Arg Cys Pro Asn His Trp Glu Glu Ala Asp Arg Phe Asn Pro 465 470 480 Glu Arg Trp Pro Leu Asp Gly Pro Asn Pro Asn Glu Thr Asn Gln Asn 485 Phe Ser Tyr Leu Pro Phe Gly Gly Pro Arg Lys Cys Val Gly Asp 505 Met Phe Ala Thr Phe Glu Asn Leu Val Ala Val Ala Met Leu Val Gln 515 520 525 Arg Phe Asp Phe Gln Met Ala Leu Gly Ala Pro Pro Val Lys Met Thr Thr Gly Ala Thr Ile His Thr Thr Glu Gly Leu Lys Met Thr Val Thr Arg Arg Ser Arg Pro Pro Ile Val Pro Asn Leu Glu Met Ala Thr Leu 565 570

Glu Val Asp

- <210> 39 <211> 367
- <212> PRT
- <213> Chlamydomonas reinhardtii

<400> 39

Ala Arg Arg Arg Ala Val Val Pro Ala Leu His Arg Lys Tyr Val Met

Ser Met Val Asp Met Phe Gly Asp Cys Ala Ala His Gly Ala Ser Ala

Thr Leu Asp Lys Tyr Ala Ala Ser Gly Thr Ser Leu Asp Met Glu Asn

Phe Phe Ser Arg Leu Gly Leu Asp Ile Ile Gly Lys Ala Val Phe Asn

Tyr Asp Phe Asp Ser Leu Ala His Asp Asp Pro Val Ile Gln Ala Val 75 70

Tyr Thr Leu Leu Arg Glu Ala Glu His Arg Ser Thr Ala Pro Ile Ala 85 90

Tyr Trp Asn Ile Pro Gly Ile Gln Phe Val Val Pro Arg Gln Lys Arg 100 105

Cys Gln Glu Ala Leu Val Leu Val Asn Glu Cys Leu Asp Gly Leu Ile 115

Asp Lys Cys Lys Lys Leu Val Glu Glu Glu Asp Ala Val Phe Gly Glu

Glu Phe Leu Ser Glu Arg Asp Pro Ser Ile Leu His Phe Leu Leu Ala 150 155 145

Ser Gly Asp Glu Ile Ser Ser Lys Gln Leu Arg Asp Asp Leu Met Thr

Met Leu Ile Ala Gly His Glu Thr Thr Ala Ala Val Leu Thr Trp Thr

Leu Tyr Leu Leu Ser Gln His Pro Glu Ala Ala Ala Ala Ile Arg Lys

Glu Val Asp Glu Leu Leu Gly Asp Arg Lys Pro Gly Val Glu Asp Leu

225 230 235 240 Tyr Pro Gln Pro Pro Val Leu Ile Arg Arg Ala Leu Gln Asp Asp His 250 255 Phe Asp Gln Phe Thr Val Pro Ala Gly Ser Asp Leu Phe Ile Ser Val 260 265 Trp Asn Leu His Arg Ser Pro Lys Leu Trp Asp Glu Pro Asp Lys Phe 280 275 Lys Pro Glu Arg Phe Gly Pro Leu Asp Ser Pro Ile Pro Asn Glu Val Thr Glu Asn Phe Ala Tyr Leu Pro Phe Gly Gly Arg Arg Lys Cys Ile Gly Asp Gln Phe Ala Leu Phe Glu Ala Val Val Ala Leu Ala Met Leu Met Arg Arg Tyr Glu Phe Asn Leu Asp Glu Ser Lys Gly Thr Val Gly Met Thr Thr Gly Ala Thr Ile His Thr Thr Asn Gly Leu Asn 360 <210> 40 <211> 2057 <212> DNA Arabidopsis thaliana <213> <400> 40 60 gtgatttgag tttttatttt geggtggegt tgtatggeta tggeetttee tetttettat actocgacga ttactgttaa accagtaacg tactotcgga gatcgaactt tgtagttttc 120 tcqtcqaqtt ctaatqqacq aqatccttta gaggagaatt cagtacctaa tggtgtgaaa 180 agcttggaga agcttcaaga agagaagcgt cgtgctgagt tatctgctag gattgcttct 240 ggagetttea etgtaeggaa atetagtttt ceatetaeag tgaagaatgg tttatetaag 300 attgqaatac caaqcaatqt tcttgatttc atgtttgatt ggactggttc tgaccaagac 360 taccccaagg ttcctgaggc taaaggctcg attcaggcgg tccggaacga agctttcttc 420 atccctttgt atgagetttt cettaettat ggtggaattt teaggttgae etttgggeet 480 540 aagtcattct tgatcgtgtc ggatccttct attgctaaac atatattgaa ggacaatgca 600 aaagcttact ccaaggggat tttagctgaa attctagatt ttgtgatggg aaaaggactc

Arg Ala Leu Lys Met Thr Thr Arg Val Ile Asn Glu Ala Met Arg Leu

```
attectgetg atggggagat atggegtaga egaaggegtg ceattgttee tgeattgeat
                                                                     660
                                                                     720
caaaagtatg tagcagctat gattagttta ttcggagaag cttcagatag gctttgtcag
aagettgatg etgetgeatt gaaaggggaa gaagtagaga tggaateaet ettetetegt
                                                                     780
                                                                     840
ttgacacttg atattattgg caaggeggtt ttcaattacg actttgactc ccttactaat
                                                                     900
gataccggtg tgatcgaggc agtgtacact gttctaagag aagctgaaga cagaagtgtt
teacetatte etgtttggga catacecatt tggaaagata tttccccacg teagaggaaa
                                                                     960
gttgctactt ccttgaaatt aatcaatgac acacttgatg atttgattgc aacatgcaag
                                                                    1020
                                                                    1080
agaatggtag aagaagagga gttgcagttt cacgaggagt atatgaacga aagagatcct
agcatccttc actttctttt agcttcagga gatgatgtct ctagtaagca gcttcgtgat
                                                                    1140
                                                                    1200
gacttgatga caatgcttat agccggacat gaaacatcgg cggcagtatt aacatggacc
ttttaccttt taacaacgga accaagtgta gttgccaaac ttcaagaaga ggttgattct
                                                                    1260
                                                                    1320
gtaattggag atagattccc aaccatacaa gatatgaaaa agctgaaata cactactcga
gtcatgaatg agtcattgag attatatcca caaccaccag tactgatccg tcgttctata
                                                                    1380
                                                                    1440
gataatgata tacttggaga gtatccgata aaaaggggag aggatatctt catctcggtt
                                                                    1500
tggaatctac atcgaagtcc tctgcattgg gatgatgcag agaagttcaa tcccgagaga
tggcctttgg atggaccaaa cccaaatgag acaaaccaaa acttcagtta cttacctttc
                                                                    1560
ggtggaggac cgcggaaatg tataggcgac atgtttgctt cctttgagaa tgtggtagca
                                                                    1620
                                                                    1680
ategeaatge ttattegaag atttaacttt cagattgeac caggagetee teeggtgaaa
                                                                    1740
atgactacag gagctacaat acacaccaca gaaggattga aattgacagt aacaaagagg
acaaaacctc tggacatacc atccgtaccg atacttccaa tggatacttc acgggatgaa
                                                                    1800
                                                                    1860
gtttcatctg ctctttctta agtcttcatc tttacaaaac tgaaaacaaa caagctcaga
tgaagaagca aaaatcttgt gttagaacag caaatgttga attgttggaa catgaccaat
                                                                    1920
gctttctgat tatttatctg cactgtaaaa tgcagacaag taaaatgaga agatttatta
                                                                    1980
ttctttggaa aaaaaaatg tttttgtctg cacagtgaag ataatataac ttctgggttc
                                                                    2040
                                                                    2057
tatgtaaaaa aaaaaac
```

<210> 41

<211> 1788

<212> DNA

<213> Arabidopsis thaliana

<400> 41 60 atggctatgg cctttcctct ttcttatact ccgacgatta ctgttaaacc agtaacgtac tctcggagat cgaactttgt agttttctcg tcgagttcta atggacgaga tcctttagag 120 180 gagaattcag tacctaatgg tgtgaaaagc ttggagaagc ttcaagaaga gaagcgtcgt gctgagttat ctgctaggat tgcttctgga gctttcactg tacggaaatc tagttttcca 240 tctacagtga agaatggttt atctaagatt ggaataccaa gcaatgttct tgatttcatg 300 360 tttgattgga ctggttctga ccaagactac cccaaggttc ctgaggctaa aggctcgatt caggoggtcc ggaacgaagc tttcttcatc cctttgtatg agcttttcct tacttatggt 420 ggaattttca ggttgacctt tgggcctaag tcattcttga tcgtgtcgga tccttctatt 480 540 gctaaacata tattgaagga caatgcaaaa gcttactcca aggggatttt agctgaaatt 600 ctagattttg tgatgggaaa aggactcatt cctgctgatg gggagatatg gcgtagacga aggegtgeea ttgtteetge attgeateaa aagtatgtag eagetatgat tagtttatte 660 ggagaagett cagatagget ttgtcagaag ettgatgetg etgcattgaa aggggaagaa 720 780 gtagagatgg aatcactctt ctctcgtttg acacttgata ttattggcaa ggcggttttc aattacgact ttgactccct tactaatgat accggtgtga tcgaggcagt gtacactgtt 840 900 ctaagagaag ctgaagacag aagtgtttca cctattcctg tttgggacat acccatttgg 960 aaagatattt ccccacgtca gaggaaagtt gctacttcct tgaaattaat caatgacaca cttgatgatt tgattgcaac atgcaagaga atggtagaag aagaggagtt gcagtttcac 1020 gaggagtata tgaacgaaag agatcctagc atccttcact ttcttttagc ttcaggagat 1080 1140 gatgtctcta gtaagcagct tcgtgatgac ttgatgacaa tgcttatagc cggacatgaa 1200 acatcggcgg cagtattaac atggaccttt taccttttaa caacggaacc aagtgtagtt gccaaacttc aagaagaggt tgattctgta attggagata gattcccaac catacaagat 1260 1320 atgaaaaagc tgaaatacac tactcgagtc atgaatgagt cattgagatt atatccacaa ccaccagtac tgatccgtcg ttctatagat aatgatatac ttggagagta tccgataaaa 1380 aggggagagg atatetteat eteggtttgg aatetacate gaagteetet geattgggat 1440 1500 gatgcagaga agttcaatcc cgagagatgg cctttggatg gaccaaaccc aaatgagaca aaccaaaact tcagttactt acctttcggt ggaggaccgc ggaaatgtat aggcgacatg 1560 tttgcttcct ttgagaatgt ggtagcaatc gcaatgctta ttcgaagatt taactttcag 1620 attgcaccag gageteetee ggtgaaaatg actacaggag etacaataca caccacagaa 1680 ggattgaaat tgacagtaac aaagaggaca aaacctctgg acataccatc cgtaccgata 1740 1788 cttccaatgg atacttcacg ggatgaagtt tcatctgctc.tttcttaa

<210> 42 <211> 5071 <212> DNA

<213> Oryza sativa

<400> 42

60 atggcggcta cetectetge ggccgccgct getecacete egtgccgctt acteggetee 120 ggtcaggcac acctgcgcct tcctccttct gctgctgctg ctgctgcttc agctcgtcgc cgcctgctcc tccgctgcgc cgcctcgggc ggcaacggga aaggcggtgg tggcgacggc 180 teeggeteeg acceggttet tgaggagegg eggeggegge geeaggetga getggeggeg 240 300 cgcattgcgt ccggcgagtt caccgcccaa ggccccgcgt cagtgctcat tctctctct 360 tetetetete aegttgegge egeettteet teeteetttg atgatetgat ggagagetee 420 ctctctcttt ttcaggtgga ttgctcccct cgcggtgggg cttgccaagc tcggcccacc 480 gggggagete geegeegege tgeteaceaa ggtegeeggt ggeggeggae eggagatace 540 gcaggcggtg gggtctatga gtgcggtgac agggcaggct ttcttcatcc cgctctatga totottoott acctatggcg gcatotttcg cotcaatttc ggccctaagg tgatgcacaa 600 tcagaccaat ttgctctcca actcggcaac tcccaatttt gtgttattat tgatggccta 660 720 aactttgttc ttttcttgtt ttccccagtc tttcctcatt gtctctgatc cagctatagc 780 taagcacatc ctgagggaca actccaaggc ttattccaag gttttgtgtt gtcaattttg gatgtagacg tgttctaggc tgtgctctag aaattaacgg cctgcatttt gattgtggtg 840 900 ggtgcagggt attctggcag aaattttaga gtttgtgatg ggtacgggtt tgatccctgc 960 tgatggggag atttggcgtg ttaggaggcg cgccattgta ccagcaatgc accagaaggt tctacatcat ttctgtacca ggtttagcat gatttgatct tcgggttgtg attgaactga 1020 1080 totgaattto gotttgoagt acgttaccgc aatgataagt otottoggat atgottcaga 1140 teggetetge cagaagttgg acaaggeage aacggatggg gaggatgtgg agatggaate tttgttctct cgactaacac tggatgtcat tgggaaggca gtcttcaatt atgatttcga 1200 1260 ctcattgtct tacgataatg gaatagttga ggttagtatt cagtcttgta ctgtaatttt ggaattcatt atacattcta tttgttcatg tttgttttct taaaatttta cctttttttg 1320 1380 gattgatgat caggcagtgt atgtgacact gcgagaagca gaaatgcgga gcacttctcc tataccaact tgggaaatac ccatatggaa agatatttcc ccgcggcaga agaaggtcaa 1440 tgaagctctt gcgctgataa ataagactct tgatgaacta attgacatct gcaaggtgaa 1500 cttcttttct tatgttctga ccttattatt tattttttaa aaaaatcaag gcttttagat 1560 1620 tggctgctgt tactcttgca gagattggtc gaggaagaag atctgcagtt tcatgaagaa tacatgaatg agcaagaccc cagtatcctc cactttcttt tggcatctgg agatgatgta 1680 tggtgtacct gcagtttaaa atattataga tctccaaaca ttctggtcct cacattgctt 1740 1800 caatttgtct tcattaggtc tccagcaagc aactccgtga tgatctgatg acaatgctca ttgctggcca tgagacctct gcagcagtct tgacatggac attttatctt ctatctaagg 1860 1920 tatcaatatg ttccgtagct gttcccaaaa gaaaatatgt tcagcaactc aaatcattga tgtattaatg tagcaatatg taatgatgaa tattgtatac gtcaaaccac tcatgtttta 1980 cctttcttgg cattggtaac ttgcagtatc caaatgtaat ggccaaactc caagatgagg 2040 2100 taaattcgct tttacattta ggattgttat ttttagaggc acgtgcttct acatcttaca 2160 agttgcaaat gacttgtttc actcacttat ggacaggctg atactgttct aggtgaccgt 2220 ttaccaacaa ttgaggatgt gaagaaattg aagtatacta ctagagtaat taacgaagta 2280 agtgataaac agtgctacct cattaaacaa tgagtatgat cactgaatga atatgtcatt 2340 caatcaccac ttttgcagtc attgagactc tatccacagc caccagtttt aattcgtcgc 2400 tctattgagg aggatatgct gggagggtac ccaattggcc ggtaaagaaa actctagcag 2460 aacttatttc tcaagtgtag gaaatctctc ctgtagtcct gttgactgtt gttacaattg 2520 gaataggaaa acagaaagat catgcctagt atcacaccag taaagttctg gtgaaactga 2580 gtctaagggc ctctttattt aggcttaagt ttattggttt agtattttaa gtcagttttt ttggcttata tgatttataa gccaatggat ttaaagtcct aagtttaatg gtggagtcat 2640 acctctatct cacataagcc aaaaaacctt ttccaaccta gcttttgtct taatagtgta 2700 2760 acagttcgct gagccttaat agtgtaatag tggtttatgg cttttaaaaa aaacatgcga 2820 aaagctgttt gtttgtttag gcttagactt ttcagctcat aagctggctt ataagcctaa acaaagaggg cctaagatat gtgcaagtat aagttatcta accaatcttt ttttagagaa 2880 2940 tatcttccca atcttgtgtg atatattttt gtcttctgct tgtataccat ttctggtcgt 3000 agetetagag tatttaattg tetgaattgt teetttttaa aaattteagt acaaatttga acttcaccta taattctgat aagatatttt ttccctttgt ttcccagggg agaagacatt 3060 3120 ttcatatccg tgtggaacct acatcattgc ccaaagcatt gggatggtgc agatgttttt aatccagaaa gatggccttt ggatggacca aatccaaatg aaacaaacca aaatttcagg 3180 3240 ttccatctct attaatgcta tgaaatgcat tagctcttta tttggatgca ccttatcact 3300 ctaattcccc cattttatta gtttctgctt tctactacaa aaatcagtag acatttgatt atgctcggta tagttgtgtt cttgtttgac gagaagtttg cgtttttaca tctactaaca 3360 3420 ctaagttatt tggtcatgcg atgcacctgt tgtaattatt ctagagataa caaaaacaaa 3480 aactctagct gattttcgtt ttcttctttg atgcaaatca tcaaattttc ttcatgtgat tcgtattaat ttagtgctaa tgctggcatg tgcatagcca caatcttaga aagtgcataa 3540 ggcagtcaca acaacataaa gaaaaatggg acctttttct tttgaagcag taaagatgag 3600 3660 ataactgtga tgacttgatt cctaaattta tggttttggg agctaaacca cagtttatga caatcatgtt aaaatgatat tcatatggct ataagcaaca tgtgccaaaa tgctattgta 3720 3780 ctttcaaact gatagtgctt gaaagtactt ttcaacttta ccacatcgcc agaactgtta 3840 actggttacg cagaaacagt acttggaata gtaattttgt ataaactgat agtatgtcgt 3900 atgagttcct tacctgtagc aagtatgtca acagcagaac cctttgtatg gatcaacaaa 3960 catcagaggt gctttgaaca aaatccttac ttgattagaa gacgtaacaa ttcgtgccat cctgagttaa tgaagacttc cgactggact acaaacttct tccgtgttgc agtcttgcag 4020 4080 ggagttgatg cacggcataa aacctgtgac ctgcaaatca tgttaattga aaaacaacca 4140 acgtatcatc aactataatg tacagcaagt ctcctaggca tcacactgaa acttaaaaaat 4200 ggtaatctgc atttacttgg cacatgacat gtcccattat tttgtcagct tagattgaac tcactgcgga acacatcttt ctttcaagac aacatccaaa ttattgattt tcagttggca 4260 tgtcaaactt tttaagctcc aattttaggc tgtggtagct ttcattctgt gtattgcggc 4320 tagcatctgt tagctgtcac tgcctcactg gctaatttaa tatatttgat gaatctacat 4380 agctaaatgg gactcacgtg ttctgttgaa ttctcagtta cttgccattt ggtggcggac 4440 4500 caaggaaatg tgtaggtgac atgtttgcca ctttcgaggt aatttgtttt agtttttgaa 4560 ggatttette tittaattte aaaatgteat titaaggaaa eatageaaac tiatgtatgg 4620 tocagtotta otgaacottg ttgoottgag cottotgttg totaccataa ggacattata 4680 tctcatgcca tgataaataa tgtagtacaa taactattga gcatgcaaga ttccaactct 4740 aataacatgg atatgccgga acttgtatgc agactgtggt ggcaactgca atgcttgtca ggcgctttga ttttcaaatg gctccaggag ctcctccggt ataatttctg tctgcttcct 4800 4860 ggttcttcat agttatcaac atacagataa tcactgtgaa gtatcaatat gataggttga gatgacaact ggagcaacga ttcacacaac tgaggggttg aaaatgactg ttactcggag 4920 4980 gacaaagcca cctgtaatcc caaacctaga gatgaaagtc atttctgatt caccagaaaa 5040 catgagtact actacatcaa tgcccgtttc tgctgctagt attgcttcag gagaagatca 5071 acaagggcaa gtctcagcaa ctcgaatctg a

<210> 43 <211> 1899 <212> DNA

<213> Oryza sativa

<400> 43

60 atggcggcta cetectetge ggccgccgct getecacete egtgccgctt acteggetee 120 ggtcaggcac acctgcgcct tectecttet getgctgctg etgctgctte agetcgtcgc cgcctgctcc tccgctgcgc cgcctcgggc ggcaacggga aaggcggtgg tggcgacggc 180 240 teeggeteeg acceggttet tgaggagegg eggeggegge geeaggetga getggeggeg 300 cgcattgcgt ccggcgagtt caccgcccaa ggccccgcgt ggattgctcc cctcgcggtg 360 gggcttgcca agctcggccc accgggggag ctcgccgccg cgctgctcac caaggtcgcc 420 ggtggcggcg gaccggagat accgcaggcg gtggggtcta tgagtgcggt gacagggcag 480 getttettea tecegeteta tgatetette ettacetatg geggeatett tegeeteaat 540 ttcggcccta agtctttcct cattgtctct gatccagcta tagctaagca catcctgagg gacaactcca aggcttattc caagggtatt ctggcagaaa ttttagagtt tgtgatgggt 600 acgggtttga tccctgctga tggggagatt tggcgtgtta ggaggcgcgc cattgtacca 660 720 gcaatgcacc agaagtacgt taccgcaatg ataagtctct tcggatatgc ttcagatcgg 780 ctctgccaga agttggacaa ggcagcaacg gatggggagg atgtggagat ggaatctttg ttctctcgac taacactgga tgtcattggg aaggcagtct tcaattatga tttcgactca 840 900 ttgtcttacg ataatggaat agttgaggca gtgtatgtga cactgcgaga agcagaaatg 960 cggagcactt ctcctatacc aacttgggaa atacccatat ggaaagatat ttccccgcgg cagaagaagg tcaatgaagc tcttgcgctg ataaataaga ctcttgatga actaattgac 1020 1080 atctgcaaga gattggtcga ggaagaagat ctgcagtttc atgaagaata catgaatgag caagacccca gtatcctcca ctttcttttg gcatctggag atgatgtctc cagcaagcaa 1140 ctccgtgatg atctgatgac aatgctcatt gctggccatg agacctctgc agcagtcttg 1200 1260 acatggacat tttatcttct atctaagtat ccaaatgtaa tggccaaact ccaagatgag 1320 gctgatactg ttctaggtga ccgtttacca acaattgagg atgtgaagaa attgaagtat actactagag taattaacga atcattgaga ctctatccac agccaccagt tttaattcgt 1380 cgctctattg aggaggatat gctgggaggg tacccaattg gccggggaga agacattttc 1440 1500 atatccgtgt ggaacctaca tcattgccca aagcattggg atggtgcaga tgtttttaat 1560 ccagaaagat ggcctttgga tggaccaaat ccaaatgaaa caaaccaaaa tttcagttac ttgccatttg gtggcggacc aaggaaatgt gtaggtgaca tgtttgccac tttcgagact 1620 1680 gtggtggcaa ctgcaatgct tgtcaggcgc tttgattttc aaatggctcc aggagctcct

ccggttgaga tgacaactgg agcaacgatt cacacaactg aggggttgaa aatgactgtt 1740
actcggagga caaagccacc tgtaatccca aacctagaga tgaaagtcat ttctgattca 1800
ccagaaaaca tgagtactac tacatcaatg cccgtttctg ctgctagtat tgcttcagga 1860
gaagatcaac aagggcaagt ctcagcaact cgaatctga 1899

<210> 44
<211> 1527
<212> DNA

<213> Hordeum vulgare <400> 44 teggeaegag ggeaggeegt egggtegetg getteegteg eeggggagge ettetteetg 60 120 ccgctctacg acctcttcct cacctacggc ggcgtcttcc gcctcaactt cgggcccaag tettteetea tegtetetga teeggatgta getaageata teeteaggga caacteaaag 180 gcttattcca agggtatcct tgcggaaata ctggagtttg tgatgggcac aggtctgatc 240 300 ceggetgatg gggaggtetg gegtgttega eggegtgeea ttgtaceage attgcateag aagtacgtga cagcgatgat aggtctcttt ggaaacgctt cagaccggct ctgccagaag 360 ctcgacaagg ctgcttcgga cggggaggat gtggagatgg aatctctctt ctcccgacta 420 480 acgctggatg tcatcgggaa ggcggtgttc aattatgatt ttgattcatt atcttacgat 540 aatggaatag ttgaggctgt gtatgtaaca ctgcgggaag cagaaatgcg gagtacatct 600 cctattccaa catgggaaat acccatatgg aaagacatct cccctcggca gaggaaggtc aatgaagcgc ttgcactgat aaataatatt ctcgatgaac taattgctac gtgcaagagg 660 720 atggtagatg aagaagatct gcagtttcat gaggaataca tgaatgagaa agaccctagt 780 attetteact ttetattgge atetggagat gatgtgteca geaageaget eegtgatgae ctgatgacaa tgctcatagc tggccatgag acctctgcag cagtcttgac atggacattt 840 900 tatcttctat ctaagtatcc caacgtaatg tccaagctcc aagctgaggc tgatgctgtt 960 ctaggagatg gtctgccaac aattgatgat gtgaagaaac tgaagtatac tactcgagtt 1020 attaatgaat ctttgagact atacccacag ccgccagttt taattcgccg ctcccttgag gatgatatgc taggagagta cccgatcggc aagggagaag atatttttat atccatctgg 1080 aaccttcatc gctgcccaaa gcattgggat gacgcggatg ttttcaatcc ggaaaggtgg 1140 cctttggacg gaccgaatcc aaatgagaca aaccaaaaat tcagttactt gccatttggt 1200 ggcggaccaa ggaaatgtgt aggtgatatg tttgctactt ttgagactgt ggtagcaaca 1260

gcaatgcttg tcaagcgatt tgattttcag atggctccag gagcacctcc ggtcgagatg

acaaccggag caacgattca cacaactaag ggactgaaca tgactgttac tcggaggata

1320 1380

aagccacctg	taattccaaa	cttagagatg	aaaatcgttt	ccgatccaga	aggaagcaca	1440
agttctactg	cgtcagtggc	tgtttctact	gctagtattg	catccggaga	aggtcaacaa	1500
gtggaggtgt	cgacaagtca	agtgtga				1527
<210> 45 <211> 127 <212> DNA <213> Gly	8 cine max					
<400> 45 gggaaagggc	ttatcccagc	tgatggtgaa	atatggcgag	ttagacgtcg	tgctatagtc	60
ccagcattgc	accagaagta	tgtagcagct	atgattggcc	ttttcggaca	agctgcagat	120
aggctctgcc	agaagctaga	tgctgctgca	tccgatggag	aagatgttga	gatggaatca	180
cttttctctc	gattgacctt	ggacatcatt	ggcaaggcag	tattcaatta	tgattttgat	240
agtttatcaa	atgacactgg	tatagttgag	gctgtttata	ctgtactgag	agaagcagaa	300
gatcgaagtg	ttgctccaat	tccagtctgg	gagatcccaa	tatggaaaga	catatcacca	360
cgtctaagga	aggttaatgc	agctctcaaa	ttcatcaatg	atacgcttga	tgatctgata	420
gcaatatgca	agagaatggt	ggatgaagaa	gagttacagt	ttcatgagga	gtacatgaat	480
gagcaagatc	caagtattct	acacttcttg	ttggcgtcag	gagatgatgt	gtcaagtaag	540
caacttcgtg	atgacttaat	gaccatgctc	attgctggac	atgaaacatc	agctgctgtt	600
ttaacttgga	ccttttatct	tctatccaag	gagccaagag	tcatgtccaa	gctccaagaa	660
gaggttgact	ctgtacttgg	agatcaatat	ccaactatag	aagacatgaa	gaaactcaaa	720
tatacaaccc	gagtgatcaa	tgagtcattg	aggctttacc	cacaaccacc	tgtgttaatt	780
cgccgctctc	ttgaggatga	tgttcttgga	gagtacccta	taaagagagg	tgaagatatc	840
tttatatctg	tatggaacct	gcatcgcagt	ccaaaactat	gggatgatgc	tgacaagttt	900
aaacctgaaa	gatgggcatt	agatggacca	agtcctaatg	agacaaatca	aaacttcaaa	960
tatcttccgt	ttggtggcgg	accacggaaa	tgtgtaggtg	atttgtttgc	ttcatacgag	1020
acggtagtag	cactcgcaat	gcttatgaga	cgattcaact	ttcaaatagc	agttggagct	1080
ccaccggttg	agatgactac	tggagctaca	attcatacaa	cacaagggtt	gaagatgact	1140
gtaactcaca	gaataaaacc	tcctattgtg	ccctcattac	agatgtcaac	tttggaagtg	1200
gatccatcca	taagcctttc	tgatcaagat	gaagtaagtc	agaaaggcga	agtttaccag	1260
acteaaacte	actectaa					1278

- <210> 46 1031 <211>
- <212> DNA
- <213> Triticum aestivum
- <400> 46 60 ggctgcaggc tgccgcaggc ggtcgggtcg ctggcgtccg tcgccgggga ggccttcttc etgeegetet aegaeetett eeteacetae ggeggegtet teegeeteaa ettegggeee 120 aagtetttee teategtete tgateeggat gtagetaage atateetgag ggacaactee 180
- 240 aaggettatt ecaagggtat eettgeggaa atattggagt ttgtgatggg cacaggtetg atcccggctg atggggaggt ctggcgtgtt cgacggcgtg ccattgtacc agcattgcat 300 cagaagtacg tgacagcgat gataggtctc ttcggaaatg cttcagaccg tctgtgccag 360
- aagctggaca aggcggcatc cgatggggag gatgtggaga tggaatctct cttctctcga 420 ctaacgctgg atgtcatcgg gaaggcagtg ttcaattatg attttgattc attatcttac 480
- gataatggaa tagttgaggc tgtgtatgta acattacggg aagcggaaat gcggagcaca 540
- tctcctattc caacttggga aatacccata tggaaagaca tctcccctcg gcagagtgcc 600
- caaagcattg ggacgatgcg gatgttttca atccagaaag gtggcctttg gacggaccga 660
- atccaaatga gacaaaccaa aaattcagtt atttgccatt tggtggcggg ccaaggaaat 720
- 780 gtgtaggcga tatgtttgct acttttgaga ctgtggtggc aacagcaatg cttgtcaagc
- 900 ttcacacaac taagggactc aacatgactg ttactcggag gataaagcca cctgtaattc

840

420

gatttgattt tcagatggct ccaggagcac ctccggtcga gatgacaact ggagcaacga

- 960 caaacttaga gatgaaaatc gtttccgatt cagaaggaag cacaagttct actgcgtcag
- tggctgtttc tactgctagt attgcatccg gagaaggtca acaagtagag gtgtcgacaa 1020
- 1031 gtcaagtgtg a
- <210> 47
- <211> 1737
- <213> Lycopersicon esculentum
- <400> 47
- caatttccaa cacaccatta ctctaaatct agactcactc tctcacctaa attcaagggt 60 agtgtatcaa attttacaat taggtgttct aattctaatg gaaaacagcc tgagtcggta 120 gatgaaggag tcaaaaaggt ggaaaagctt ttagatgaga aaaggcgagc tgaattatct 180 gctcgtattg cttcaggcga atttactgtt gaacaatctg gcttcccgtc attgctcaaa 240 300 aatggtttgt ctaaattggg tgtaccaaag gaatttcttg agttcttctc tcgacgaacg ggcaattatc ctcgcattcc agaggcaaaa ggatccatca gtgctattcg ggatgagcca 360

ttcttcatgc cgctttatga gctttacctt acttatggcg gaattttccg gttgattttt

ggtcccaagt	cttttttaat	agtttctgat	ccatcaatag	ccaaacacat	actgaaagat	480
aattctaagg	cttattctaa	gggtatccta	gctgaaatat	tggactttgt	gatgggaaag	540
ggacttatac	ctgcagatgg	agaaatttgg	cgcgtcaggc	ggcgtgccat	tgtaccagca	600
ttgcaccaaa	agtacgtagc	agctatgatt	ggcttatttg	gaaaagcaac	cgataggttg	660
tgcaaaaagc	ttgatgttgc	tgcaactgat	ggagaagatg	tagagatgga	atcacttttc	720
tcccgtctaa	cattggacat	cattggcaaa	gctgtattta	attatgattt	tgactcttta	780
actgtagata	ctggtatcgt	ggaggctgta	tatacagtac	ttagagaagc	agaagatcgt	840
agtgttgcac	caattccagt	ttgggagttg	cctatctgga	aagatatctc	tccgaagcta	900
aaaaaggtta	atgcagctct	caagttgatt	aatgacacat	tggatgatct	gattgctata	960
tgtaagagga	tggtagacga	agaagagttg	cagtttcacg	aggaatacat	gaatgaaaaa	1020
gatcctagca	tcctccattt	cttgttagca	tctggagatg	aggtctcaag	caagcaactt	1080
cgtgatgacc	tcatgacaat	gcttatagcg	ggacatgaaa	catctgcagc	agtgctcaca	1140
tggacctttt	atctgttgtc	caaggaacct	agtgtcatgg	ccaagcttca	agatgaggtc	1200
gattcagttc	taggggatag	gttaccaacc	attgaagatc	taaagaaact	cagatacaca	1260
actcgtgtga	ttaatgagtc	tttaagacta	tatccacagc	caccagtctt	gattcgtcgt	1320
tctattgaag	aggacgtagt	tggaggttac	ccgattaaaa	ggggtgaaga	cattttcatt	1380
tctgtttgga	acttgcatcg	atgcccgaat	cattgggaag	aagccgatag	attcaatcct	1440
gagaggtggc	cacttgatgg	acctaaccca	aatgagacga	accaaaattt	cagttacctt	1500
cccttcggtg	gtggaccaag	aaaatgtgtg	ggagacatgt	ttgccacatt	tgagaattta	1560
gtagcagttg	caatgcttgt	tcaacgattt	gattttcaaa	tggctcttgg	agctcctcct	1620
gttaaaatga	caactggggc	taccatccac	accacagaag	gattaaaaat	gactgtaaca	1680
cgaagatcaa	gacctccaat	agttcccaac	ttggagatgg	caacattaga	agtagat	1737

<210> 48

<211> 1101

<212> DNA

<213> Chlamydomonas reinhardtii

<400> 48
gcgcgccgac gcgcagtggt gccagccctg caccgcaagt acgtgatgtc gatggtggac 60
atgttcggcg actgcgcgc gcacggcgcg tccgccacac tagacaagta tgccgcctca 120
ggcaccagcc tggacatgga aaacttcttc agccggctgg gtctggacat catcggcaag 180
gccgtgttca actacgactt cgactcgctg gcgcacgacg accccgtcat ccaggccgtg 240
tacacgttgc tgcgcgaagc ggagcaccgc tccacagcgc ccatcgccta ctggaacatt 300
cccggcatcc agtttgtggt gccgcggcag aagcgctgcc aggaggcgct ggtgctggta 360

420 aatgagtgcc tggacggcct catcgacaag tgcaagaagc tggtcgagga ggaggacgcg gtgtttgggg aggagtteet tagegagege gaeeeeteea teetgeaett eeteetegeg 480 540 totggagacg agatttcctc gaagcagttg cgcgatgacc tgatgactat gctgattgcg gggcacgaga ccaccgccgc cgtgctgacg tggacgctgt acctgctgtc ccaacacccc 600 gaggeggeag eggeeateeg caaggaggta gaegagetee ttggggaeeg caageeeggg 660 720 gtggaagacc tcagagcgct caagatgacg actcgcgtca tcaacgaggc gatgcggctc tacccacage egecagtact cattegeoge gegetgeagg acgaccactt egaccagtte 780 acggtgccgg ccggcagcga cctgttcatc agcgtgtgga acttgcaccg cagccctaag 840 ctgtgggacg agcccgacaa gttcaagccg gagcgcttcg gaccgctgga cagccccatc 900 960 cccaacgagg tgactgaaaa cttcgcctac ctgccctttg gcggtggccg ccgcaagtgc attggcgacc agttcgcttt gttcgaggcg gttgttgcgc tggccatgct gatgcggcga 1020 tacgagttca acctggacga gtccaagggg acagtgggca tgacaacagg tgccaccatc 1080 cacaccacca acggtctaaa c 1101

<210> 49

<211> 576

<212> PRT

<213> Arabidopsis thaliana

<400> 49

Met Ala Phe Pro Ala Ala Ala Thr Tyr Pro Thr His Phe Gln Gly Gly 1 5 10 15

Ala Leu His Leu Gly Arg Thr Asp His Cys Leu Phe Gly Phe Tyr Pro 20 25 30

Gln Thr Ile Ser Ser Val Asn Ser Arg Arg Ala Ser Val Ser Ile Lys 35 40 45

Cys Gln Ser Thr Glu Pro Lys Thr Asn Gly Asn Ile Leu Asp Asn Ala 50 55 60

Ser Asn Leu Leu Thr Asn Phe Leu Ser Gly Gly Ser Leu Gly Ser Met 65 70 75 80

Pro Thr Ala Glu Gly Ser Val Ser Asp Leu Phe Gly Lys Pro Leu Phe 85 90 95

Leu Ser Leu Tyr Asp Trp Phe Leu Glu His Gly Gly Ile Tyr Lys Leu 100 105 110

Ala	Phe	Gly 115	Pro	Lys	Ala	Phe	Val 120	Val	Ile	Ser	Asp	Pro 125	Ile	Ile	Ala
Arg	His 130	Val	Leu	Arg	Glu	Asn 135	Ala	Phe	Ser	Tyr	Asp 140	Lys	Gly	Val	Leu
Ala 145	Glu	Ile	Leu	Glu	Pro 150	Ile	Met	Gly	Lys	Gly 155	Leu	Ile	Pro	Ala	Asp 160
Leu	Asp	Thr	Trp	Lys 165	Leu	Arg	Arg	Arg	Ala 170	Ile	Thr	Pro	Ala	Phe 175	His
Lys	Leu	Tyr	Leu 180	Glu	Ala	Met	Val	Lys 185	Val	Phe	Ser	Asp	Cys 190	Ser	Glu
Lys	Met	Ile 195	Leu	Lys	Ser	Glu	Lys 200	Leu	Ile	Arg	Glu	Lys 205	Glu	Thr	Ser
Ser	Gly 210	Glu	Asp	Thr	Ile	Glu 215	Leu	Asp	Leu	Glu	Ala 220	Glu	Phe	Ser	Ser
Leu 225	Ala	Leu	Asp	Ile	Ile 230	Gly	Leu	Ser	Val	Phe 235	Asn	Tyr	Asp	Phe	Gly 240
Ser	Val	Thr	Lys	Glu 245	Ser	Pro	Val	Ile	Lys 250	Ala	Val	Tyr	Gly	Thr 255	Leu
Phe	Glu	Ala	Glu 260	His	Arg	Ser	Thr	Phe 265	Tyr	Phe	Pro	Tyr	Trp 270	Asn	Phe
Pro	Pro	Ala 275	Arg	Trp	Ile	Val	Pro 280	Arg	Gln	Arg	Lys	Phe 285	Gln	Ser	Asp
Leu	Lys 290	Ile	Ile	Asn	Asp	Cys 295	Leu	Asp	Gly	Leu	Ile 300	Gln	Asn	Ala	Lys
Glu 305	Thr	Arg	Gln	Glu	Thr 310	Asp	Val	Glu	Lys	Leu 315	Gln	Glu	Arg	Asp	Tyr 320
Thr	Asn	Leu	Lys	Asp 325	Ala	Ser	Leu	Leu	Arg 330	Phe	Leu	Val	Asp	Met 335	Arg
Gly	Val	Asp	Ile 340	Asp	Asp	Arg	Gln	Leu 345	Arg	Asp	Asp	Leu	Met 350	Thr	Met
Leu	Ile	Ala 355	Gly	His	Glu	Thr	Thr 360	Ala	Ala	Val	Leu	Thr 365	Trp	Ala	Val

Phe Leu Leu Ser Gln Asn Pro Glu Lys Ile Arg Lys Ala Gln Ala Glu 370 380

Ile Asp Ala Val Leu Gly Gln Gly Pro Pro Thr Tyr Glu Ser Met Lys 385 390 395 400

Lys Leu Glu Tyr Ile Arg Leu Ile Val Val Glu Val Leu Arg Leu Phe
405
410
415

Pro Gln Pro Pro Leu Leu Ile Arg Arg Thr Leu Lys Pro Glu Thr Leu 420 425 430

Pro Gly Gly His Lys Gly Glu Lys Glu Gly His Lys Val Pro Lys Gly
435
440
445

Thr Asp Ile Phe Ile Ser Val Tyr Asn Leu His Arg Ser Pro Tyr Phe 450 455 460

Trp Asp Asn Pro His Asp Phe Glu Pro Glu Arg Phe Leu Arg Thr Lys 465 470 475 480

Glu Ser Asn Gly Ile Glu Gly Trp Ala Gly Phe Asp Pro Ser Arg Ser 485 490 495

Pro Gly Ala Leu Tyr Pro Asn Glu Ile Ile Ala Asp Phe Ala Phe Leu 500 505 510

Pro Phe Gly Gly Pro Arg Lys Cys Ile Gly Asp Gln Phe Ala Leu 515 520 525

Met Glu Ser Thr Val Ala Leu Ala Met Leu Phe Gln Lys Phe Asp Val 530 540

Glu Leu Arg Gly Thr Pro Glu Ser Val Glu Leu Val Ser Gly Ala Thr 545 550 555 560

Ile His Ala Lys Asn Gly Met Trp Cys Lys Leu Lys Arg Arg Ser Lys 565 570 575

- <210> 50
- <211> 552
- <212> PRT
- <213> Pisum sativum

<400> 50

Met Val Ala Ala Pro Ile Ser Thr Val Lys Leu Thr Asp Ala Asn Leu 1 5 10 15

His Thr Arg Phe His Ser Ser Ser Ser Ser Thr Pro Ser Thr Leu Ser 20 25 30

Leu Pro Leu Ser Leu His Phe His Phe Ser Ser His Ser Lys Arg Phe 35 40 45

Ser Ser Ile Arg Cys Gln Ser Val Asn Gly Glu Lys Arg Lys Gln Ser 50 55 60

Ser Arg Asn Val Phe Asp Asn Ala Ser Asn Leu Leu Thr Ser Leu Leu 65 70 75 80

Ser Gly Ala Asn Leu Gly Ser Met Pro Ile Ala Glu Gly Ala Val Thr 85 90 95

Asp Leu Phe Asp Arg Pro Leu Phe Phe Ser Leu Tyr Asp Trp Phe Leu 100 105 110

Glu His Gly Ser Val Tyr Lys Leu Ala Phe Gly Pro Lys Ala Phe Val 115 120 125

Val Val Ser Asp Pro Ile Val Ala Arg His Ile Leu Arg Glu Asn Ala 130 135 140

Phe Ser Tyr Asp Lys Gly Val Leu Ala Asp Ile Leu Glu Pro Ile Met 145 150 155 160

Gly Lys Gly Leu Ile Pro Ala Asp Leu Glu Thr Trp Lys Gln Arg Arg 165 170 175

Arg Val Ile Ala Pro Gly Phe His Thr Ser Tyr Leu Glu Ala Met Val 180 185 190

Gln Leu Phe Thr Ser Cys Ser Glu Arg Thr Val Leu Lys Val Asn Glu
195 200 205

Leu Leu Glu Gly Glu Gly Arg Asp Gly Gln Lys Ser Val Glu Leu Asp 210 215 220

Leu 225	GIu	Ala	Glu	Phe	230	Asn	Leu	Ala	Leu	G1u 235	IIe	He	GIY	Leu	G1y 240
Val	Phe	Asn	Tyr	Asp 245	Phe	Gly	Ser	Val	Thr 250	Asn	,Glu	Ser	Pro	Val 255	Ile
Lys	Ala	Val	Tyr 260	Gly	Thr	Leu	Phe	Glu 265	Ala	Glu	His	Arg	Ser 270	Thr	Phe
Tyr	Ile	Pro 275	Tyr	Trp	Lys	Phe	Pro 280	Leu	Ala	Arg	Trp	Ile 285	Val	Pro	Arg
Gln	Arg 290	Lys	Phe	Gln	Asp	Asp 295	Leu	Lys	Val	Ile	Asn 300	Thr	Cys	Leu	Asp
Gly 305	Leu	Ile	Arg	Asn	Ala 310	Lys	Glu	Ser	Arg	Gln 315	Glu	Thr	Asp	Val	Glu 320
Lys	Leu	Gln	Gln	Arg 325	Asp	Tyr	Ser	Asn	Leu 330	Lys	Asp	Ala	Ser	Leu 335	Leu
Arg	Phe	Leu	Val 340	Asp	Met	Arg	Gly	Val 345	Asp	Val	Asp	Asp	Arg 350	Gln	Leu
Arg	Asp	Asp 355	Leu	Met	Thr	Met	Leu 360	Ile	Ala	Gly	His	Glu 365	Thr	Thr	Ala
Ala	Val 370	Leu	Thr	Trp	Ala	Val 375	Phe	Leu	Leu	Ala	Gln 380	Asn	Pro	Asp	Lys
Met 385	Lys	Lys	Ala	Gln	Ala 390	Glu	Val	Asp	Leu	Val 395	Leu	Gly	Met	Gly	Lys 400
Pro	Thr	Phe	Glu	Leu 405	Leu	Lys	Lys	Leu	Glu 410	Tyr	Ile	Arg	Leu	Ile 415	Val
Val	Glu	Thr	Leu 420	Arg	Leu	Tyr	Pro	Gln 425	Pro	Pro	Leu	Leu	Ile 430	Arg	Arg
Ser	Leu	Lys 435	Pro	Asp	Val	Leu	Pro 440	Gly	Gly	His	Lys	Gly 445	Asp	Lys	Asp
Gly	Tyr 450	Thr	Ile	Pro	Ala	Gly 455	Thr	Asp	Val	Phe	Ile 460	Ser	Val	Tyr	Asn
Leu 465	His	Arg	Ser	Pro	Tyr 470	Phe	Trp	Asp	Arg	Pro 475	Asn	Asp	Phe	Glu	Pro

Glu Arg Phe Leu Val Gln Asn Asn Glu Glu Val Glu Gly Trp Ala 485 490 495

Gly Phe Asp Pro Ser Arg Ser Pro Gly Ala Leu Tyr Pro Asn Glu Ile 500 505 510

Ile Ser Asp Phe Ala Phe Leu Pro Phe Gly Gly Pro Arg Lys Cys 515 520 525

Val Gly Asp Gln Phe Ala Leu Met Glu Ser Thr Val Ala Leu Val Cys 530 535 540

Cys Tyr Arg Ile Ser Met Trp Asn 545 550

<210> 51

<211> 576

<212> PRT

<213> Glycine max

<400> 51

Leu His Ser Arg Phe His Ser Arg Leu Val Pro Phe Thr His His Phe
20 25 30

Ser Leu Ser Gln Pro Lys Arg Ile Ser Ser Ile Arg Cys Gln Ser Ile 35 40 45

Asn Thr Asp Lys Lys Lys Ser Ser Arg Asn Leu Leu Gly Asn Ala Ser 50 55 60

Asn Leu Leu Thr Asp Leu Leu Ser Gly Gly Ser Ile Gly Ser Met Pro 65 70 75 80

Ile Ala Glu Gly Ala Val Ser Asp Leu Leu Gly Arg Pro Leu Phe Phe 85 90 95

Ser Leu Tyr Asp Trp Phe Leu Glu His Gly Ala Val Tyr Lys Leu Ala 100 105 110

Phe Gly Pro Lys Ala Phe Val Val Val Ser Asp Pro Ile Val Ala Arg 115 120 125

His Ile Leu Arg Glu Asn Ala Phe Ser Tyr Asp Lys Gly Val Leu Ala 130 135 140

Asp 145	Ile	Leu	Glu	Pro	Ile 150	Met	Gly	Lys	Gly	Leu 155	Ile	Pro	Ala	Asp	Leu 160
Asp	Thr	Trp	Lys	Gln 165	Arg	Arg	Arg	Val	Ile 170	Ala	Pro	Ala	Phe	His 175	Asn
Ser	Tyr	Leu	Glu 180	Ala	Met	Val	Lys	Ile 185	Phe	Thr	Thr	Cys	Ser 190	Glu	Arg
Thr	Ile	Leu 195	Lys	Phe	Asn	Lys	Leu 200	Leu	Glu	Gly	Glu	Gly 205	Tyr	Asp	Gly
Pro	Asp 210	Ser	Ile	Glu	Leu	Asp 215	Leu	Glu	Ala	Glu	Phe 220	Ser	Ser	Leu	Ala
Leu 225	Asp	Ile	Ile	Gly	Leu 230	Gly	Val	Phe	Asn	Tyr 235	Asp	Phe	Gly	Ser	Val 240
Thr	Lys	Glu	Ser	Pro 245	Val	Ile	Lys	Ala	Val 250	Tyr	Gly	Thr	Leu	Phe 255	Glu
Ala	Glu	His	Arg 260	Ser	Thr	Phe	Tyr	Ile 265	Pro	Tyr	Trp	Lys	Ile 270	Pro	Leu
Ala	Arg	Trp 275	Ile	Val	Pro	Arg	Gln 280	Arg	Lys	Phe	'Gln	Asp 285	Asp	Leu	Lys
Val	Ile 290	Asn	Thr	Cys	Leu	Asp 295	Gly	Leu	Ile	Arg	Asn 300	Ala	Lys	Glu	Ser
Arg 305	Gln	Glu	Thr	Asp	Val 310	Glu	Lys	Leu	Gln	Gln 315	Arg	Asp	Tyr	Leu	Asn 320
Leu	Lys	Asp	Ala	Ser 325	Leu	Leu	Arg	Phe	Leu 330	Val	Asp	Met	Arg	Gly 335	Ala
Asp	Val	Asp	Asp 340	Arg	Gln	Leu	Arg	Asp 345	Asp	Leu	Met	Thr	Met 350	Leu	Ile
Ala	Gly	His 355	Glu	Thr	Thr	Ala	Ala 360	Val	Leu	Thr	Trp	Ala 365	Val	Phe	Leu

Leu Ala Gln Asn Pro Ser Lys Met Lys Lys Ala Gln Ala Glu Val Asp 370 380

Leu Val Leu Gly Thr Gly Arg Pro Thr Phe Glu Ser Leu Lys Glu Leu 385 390 395 400

Gln Tyr Ile Arg Leu Ile Val Val Glu Ala Leu Arg Leu Tyr Pro Gln 405 410 415

Pro Pro Leu Leu Ile Arg Arg Ser Leu Lys Ser Asp Val Leu Pro Gly 420 425 430

Gly His Lys Gly Glu Lys Asp Gly Tyr Ala Ile Pro Ala Gly Thr Asp 435 440 445

Val Phe Ile Ser Val Tyr Asn Leu His Arg Ser Pro Tyr Phe Trp Asp 450 455 460

Arg Pro Asp Asp Phe Glu Pro Glu Arg Phe Leu Val Gln Asn Lys Asn 465 470 475 480

Glu Glu Ile Glu Gly Trp Ala Gly Leu Asp Pro Ser Arg Ser Pro Gly 485 490 495

Ala Leu Tyr Pro Asn Glu Val Ile Ser Asp Phe Ala Phe Leu Pro Phe 500 505 510

Gly Gly Pro Arg Lys Cys Val Gly Asp Gln Phe Ala Leu Met Glu 515 520 525

Ser Thr Val Ala Leu Thr Met Leu Leu Gln Asn Phe Asp Val Glu Leu 530 540

Lys Gly Thr Pro Glu Ser Val Glu Leu Val Thr Gly Ala Thr Ile His 545 550 555 560

Thr Lys Asn Gly Leu Trp Cys Asn Leu Arg Lys Arg Ser Ser Leu His 565 570 575

<210> 52

<211> 588

<212> PRT

<213> Oryza sativa

<400> 52

Met Ala Ala Ala Ala Ala Ala Ala Val Pro Cys Val Pro Phe Leu Cys 1 5 10 15

Pro Pro Pro Pro Leu Val Ser Pro Arg Leu Arg Arg Gly His Val 20 25 30

Arg Leu Arg Leu Arg Pro Pro Arg Ser Ser Gly Gly Phe Thr Gly 35 40 45

Gly Gly Gly Ala Gly Gly Asp Glu Pro Pro Ile Thr Thr Ser Trp Val 50 55 60

Ser Pro Asp Trp Leu Thr Ala Leu Ser Arg Ser Val Ala Thr Arg Leu 65 70 75 80

Gly Gly Gly Asp Asp Ser Gly Ile Pro Val Ala Ser Ala Lys Leu Asp 85 90 95

Asp Val Arg Asp Leu Leu Gly Gly Ala Leu Phe Leu Pro Leu Phe Lys
100 105 110

Trp Phe Arg Glu Glu Gly Pro Val Tyr Arg Leu Ala Ala Gly Pro Arg 115 120 125

Asp Leu Val Val Val Ser Asp Pro Ala Val Ala Arg His Val Leu Arg 130 135 140

Gly Tyr Gly Ser Arg Tyr Glu Lys Gly Leu Val Ala Glu Val Ser Glu 145 150 155 160

Phe Leu Phe Gly Ser Gly Phe Ala Ile Ala Glu Gly Ala Leu Trp Thr 165 170 175

Val Arg Arg Arg Ser Val Val Pro Ser Leu His Lys Arg Phe Leu Ser 180 185 190

Val Met Val Asp Arg Val Phe Cys Lys Cys Ala Glu Arg Leu Val Glu 195 200 205

Lys Leu Glu Thr Ser Ala Leu Ser Gly Lys Pro Val Asn Met Glu Ala 210 215 220

Arg Phe Ser Gln Met Thr Leu Asp Val Ile Gly Leu Ser Leu Phe Asn 225 230 235 240

Tyr	Asn	Phe	Asp	Ser 245	Leu	Thr	Ser	Asp	Ser 250	Pro	Val	Ile	Asp	Ala 255	Val
Tyr	Thr	Ala	Leu 260	Lys	Glu	Ala	Glu	Leu 265	Arg	Ser	Thr	Asp	Leu 270	Leu	Pro
Tyr	Trp	Lys 275	Ile	Asp	Leu	Leu	Cys 280	Lys	Ile	Val	Pro	Arg 285	Gln	Ile	Lys
Ala	Glu 290	Lys	Ala	Val	Asn	Ile 295	Ile	Arg	Asn	Thr	Val 300	Glu	Asp	Leu	Ile
Thr 305	Lys	Cys	Lys	Lys	Ile 310	Val	Asp	Ala	Glu	Asn 315	Glu	Gln	Ile	Glu	Gly 320
Glu	Glu	Tyr	Val	Asn 325	Glu	Ala	Asp	Pro	Ser 330	Ile	Leu	Arg	Phe	Leu 335	Leu
Ala	Ser	Arg	Glu 340	Glu	Val	Thr	Ser	Val 345	Gln	Leu	Arg	Asp	Asp 350	Leu	Leu
Ser	Met	Leu 355	Val	Ala	Gly	His	Glu 360	Thr	Thr	Gly	Ser	Val 365	Leu	Thr	Trp
Thr	Ile 370	Tyr	Leu	Leu	Ser	Lys 375	Asp	Pro	Ala	Ala	Leu 380	Arg	Arg	Ala	Gln
Ala 385	Glu	Val	Asp	Arg	Val 390	Leu	Gln	Gly	Arg	Leu 395	Pro	Arg	Tyr	Glu	Asp 400
Leu	Lys	Glu	Leu	Lys 405	Tyr	Leu	Met	Arg	Cys 410	Ile	Asn	Glu	Ser	Met 415	Arg
Leu	Tyr	Pro	His 420	Pro	Pro	Val	Leu	Ile 425	Arg	Arg	Ala	Ile	Val 430	Asp	Asp
Val	Leu	Pro 435	Gly	Asn	Tyr	Lys	Ile 440	Lys	Ala	Gly	Gln	Asp 445	Ile	Met	Ile
Ser	Val 450	Tyr	Asn	Ile	His	Arg 455	Ser	Pro	Glu	Val	Trp 460	Asp	Arg	Ala	Asp
Asp 465	Phe	Ile	Pro	Glu	Arg 470	Phe	Asp	Leu	Glu	Gly 475	Pro	Val	Pro	Asn	Glu 480
Thr	Asn	Thr	Glu	Tyr 485	Arg	Phe	Ile	Pro	Phe 490	Ser	Gly	Gly	Pro	Arg 495	Lys

Cys Val Gly Asp Gln Phe Ala Leu Leu Glu Ala Ile Val Ala Leu Ala 500 510

Val Val Leu Gln Lys Met Asp Phe Thr Ile Glu Leu Val Pro Asp Gln 515 520 525

Lys Ile Asn Met Thr Thr Gly Ala Thr Ile His Thr Thr Asn Gly Leu 530 540

Tyr Met Asn Val Val Asn Ile Gly Val Gln Val Asp Glu Ala Arg Lys 545 550 555

His Gly Tyr Asn Ser Phe Ile Val Tyr Gly Tyr Thr Leu Tyr Ala Tyr
565 570 575

Ile Ser Pro Arg Ile Trp Ser Ala Met Pro Val Leu
580 585

<210> 53

<211> 1734

<212> DNA

<213> Arabidopsis thaliana

<400> 53

atggcttttc ctgccgctgc tacttatccc acccatttcc aaggcggcgc tcttcatctg 60 ggtaggaccg atcattgcct cttcggtttc taccctcaaa ccatttcctc tgtgaattct 120 180 cggagagctt ctgtttccat caagtgccaa tctacggagc caaagacgaa tggtaacata ttggacaatg cgagcaacct tttgacaaat tttttaagtg gtggaagttt ggggtcaatg 240 cctactgctg aaggetetgt ctetgatttg tttggaaage etetettttt atetetttac 300 gactggttct tggagcatgg aggaatttat aaacttgcgt ttggtccaaa agcctttgtt 360 gtcatctcag atcccattat tgcaaggcat gtcctccggg aaaatgcttt ttcttatgac 420 aagggagttc ttgctgagat cttagagccg attatgggaa aagggttaat accggctgat 480 540 ctagatacgt ggaagttaag aagaagagct atcactcccg cattccataa attgtatcta 600 gaggccatgg tcaaagtatt tagtgactgt tcggagaaaa tgatattgaa atctgagaaa ctcataaggg agaaagaaac ttcaagcggg gaggacacca ttgagttgga tctggaagca 660 qaattctcqa qtctqqctct tgatattata ggtcttagcg tgttcaacta cgattttggc 720 totgtcacaa aagagtcccc tgtgatcaag gcagtttatg gaactctttt cgaggcagag 780 categgteta etttetaett ecettattgg aacttteete eagetagatg gatagtteeg 840 900 aggcaacgaa agttccaaag cgatctgaag attataaacg attgccttga tggcctcatt caaaatgcta aagagacaag acagcaggaa acagatgttg agaagctcca ggaaagggac 960

tacactaatc tcaaggatgo	aagtcttttg	cggttcttag	tcgatatgcg	cggtgttgac	1020
attgatgacc ggcagctgag	ggatgacttg	atgactatgc	taattgctgg	tcatgagaca	1080
acagcagcag tacttacttg	ggctgttttc	cttctgtcac	aaaatcctga	aaaaattagg	1140
aaagctcaag ctgagattga	tgctgtgctt	ggtcaaggtc	cacccactta	tgaatcaatg	1200
aaaaagctcg agtacatacg	actgatcgtt	gtagaagtcc	ttcgtctctt	tcctcagcca	1260
cctttgctca tcagacgcac	tctcaaacca	gaaacattac	ccggtggaca	caaaggggaa	1320
aaagaaggtc ataaagttcc	aaaagggact	gatatcttca	tttctgtata	taatctccat	1380
agatetecat aettttggga	taatccccac	gattttgagc	ctgagaggtt	tttaagaaca	1440
aaggagagca atggaattga	aggatgggct	ggctttgatc	catctcgtag	ccccggggca	1500
ctatatccga atgagataat	agcagacttt	gcattcttac	catttggtgg	aggaccaaga	1560
aaatgcattg gagaccagtt	tgcactaatg	gaatcgaccg	tcgcactagc	tatgttgttt	1620
cagaaattcg atgtggagct	gcgtggaacg	ccagaatctg	ttgaactcgt	gagcggcgca	1680
acgattcatg ccaaaaatgg	gatgtggtgc	aaactaaaga	[·] gaagatcaaa	gtga	1734

<210> 54

<211> 1926

<212> DNA

<213> Pisum sativum

<400> 54

catcacttac cactaactga aacttgcaag caccattctc aacttaacac cgtcgtcacc 60 gccatggttg ccgcccctat ctcaaccgtc aaacttaccg atgccaatct tcacaccaga 120 180 tttcattcct cttcttcttc tacaccatcc accctcagtc ttccactctc tcttcatttt cacttttctt ctcactccaa acgcttttct tctatcagat gtcaatcggt taatggtgaa 240 300 aagcgaaaac aaagtagtag aaatgtgttt gacaatgcta gcaacctcct tacaagcttg 360 ttaagtggtg caaatttagg gtccatgccc atagctgaag gtgccgtcac agatctgttt gaccggccgc tgtttttctc actatatgat tggttcttag agcatggttc tgtgtataaa 420 ctggcgtttg gaccgaaagc atttgttgtt gtatcagatc ccattgttgc aagacatatt 480 ctgcgagaaa atgcattttc ttatgacaag ggagtacttg ctgatatcct agaaccaatt 540 atgggaaaag gactcatacc tgcagacctt gagacatgga agcaaaggag aagagtgatt 600 gctccgggtt tccatacctc atacttggaa gctatggtac aactattcac ttcatgttca 660 gaaagaactg tgttaaaggt caatgagctt cttgaaggag aggggcgtga tggacagaag 720 tcagttgaat tggaccttga ggcagaattt tcaaatttgg ctcttgagat tattgggcta 780 ggtgtgttca actatgactt tggttctgtc accaatgaat ctcccgttat taaggctgtc 840 900 tatggcactc tttttgaagc cgaacataga tccactttct atattccata ttggaaattt

ccattagcaa	ggtggattgt	gcccaggcaa	aggaagtttc	aggatgacct	taaagtcatt	960
aatacttgtc	ttgatggact	tatcagaaat	gcaaaagaga	gcaggcagga	aacagatgtt	1020
gagaaactgc	agcaaaggga	ttactcaaat	ttgaaggatg	caagtcttct	gcgtttccta	1080
gttgatatgc	ggggagttga	tgttgatgat	cgtcagttga	gggatgattt	aatgacaatg	1140
cttattgctg	gtcatgagac	gacggctgca	gttcttacat	gggcagtttt	cctgctagct	1200
caaaatcctg	acaaaatgaa	gaaggctcaa	gcagaggtag	atttggtgct	ggggatgggg	1260
aagccaactt	ttgaattgct	taaaaagttg	gagtacatta	ggttaattgt	tgtggagact	1320
cttcgattat	atccacaacc	acctctgctg	attagacgtt	cactcaaacc	tgatgttttg	1380
ccaggtggac	ataaaggtga	caaagatggt	tatacaattc	ctgctgggac	tgatgtcttc	1440
atttctgtat	ataatctcca	tcgatctcca	tatttttggg	accgccctaa	tgacttcgag	1500
cctgaacgat	ttctagtgca	aaacaataat	gaagaagttg	aagggtgggc	tggttttgac	1560
ccatctcgaa	gtcctggagc	cttgtatcca	aacgagatta	tatcagattt	tgcattcttg	1620
ccttttggtg	gtggaccacg	aaaatgcgtt	ggagaccaat	ttgctctcat	ggaatccact	1680
gtagcgctag	tatgctgcta	cagaatttcg	atgtggaact	gaaggggacc	cctgaatcgg	1740
ttgaactagt	tactggggca	actatccata	ccaaaaatgg	attgtggtgc	aatttgagga	1800
agagatctag	tttacattga	catgttaact	gcaacatttt	tcttatgcag	aatgatgtac	1860
aaaatattta	tcatttaaaa	tgacattaac	attgaatagt	gtctaataca	gctaaagggt	1920
atttac						1926

<210> 55 <211> 1731 <212> DNA

<213> Glycine max

<400> 55 atgagtgtcg acacttcctc caccctctcc accgtcaccg atgccaatct tcactccaga 60 tttcattctc gtcttgttcc attcactcat catttctcac tttctcaacc caaacggatt 120 180 tetteaatea gatgeeaate aattaataee gataagaaga aateaagtag aaatetgetg ggcaatgcaa gtaacctcct cacggactta ttaagtggtg gaagtatagg gtctatgccc 240 300 atagctgaag gtgcagtctc agatctgctt ggtcgacctc tctttttctc actgtatgat 360 tggttcttgg agcatggtgc ggtgtataaa cttgcctttg gaccaaaagc atttgttgtt 420 gtatcagatc ccatagttgc tagacatatt ctgcgagaaa atgcattttc ttatgacaag 480 ggagtacttg ctgatatect tgaaccaata atgggcaaag gactcatacc agcagacett gatacttgga agcaaaggag aagagtcatt gctccggctt tccataactc atacttggaa 540 600 gctatggtta aaatattcac aacttgttca gaaagaacaa tattgaagtt taataagctt

cttgaaggag agggttatga tggacctgac tcaattgaat tggatcttga ggcagagttt 660 tctagtttgg ctcttgatat tattgggctt ggtgtgttca actatgactt tggttctgtc 720 accaaagaat ctccagttat taaggcagtc tatggcactc tttttgaagc tgaacacaga 780 tccactttct acattccata ttggaaaatt ccattggcaa ggtggatagt cccaaggcaa 840 agaaagtttc aggatgacct aaaggtcatc aatacttgtc ttgatggact tatcagaaat 900 gcaaaagaga gcagacagga aacagatgtt gagaaattgc agcagaggga ttacttaaat 960 ttgaaggatg caagtettet gegttteetg gttgatatge ggggagetga tgttgatgat 1020 cgtcagttga gggatgattt aatgacaatg cttattgccg gtcatgaaac aacggctgca 1080 gttcttactt gggcagtttt cctcctagct caaaatccta gcaaaatgaa gaaggctcaa 1140 gcagaggtag atttggtgct gggtacgggg aggccaactt ttgaatcact taaggaattg 1200 cagtacatta gattgattgt tgtggaggct cttcgtttat acccccaacc acctttgctg 1260 attagacgtt cactcaaatc tgatgtttta ccaggtgggc acaaaggtga aaaagatggt 1320 tatgcaattc ctgctqqqac tqatqtcttc atttctgtat ataatctcca tagatctcca 1380 tatttttggg accgccctga tgacttcgaa ccagagagat ttcttgtgca aaacaagaat 1440 gaagaaattg aaggatgggc tggtcttgat ccatctcgaa gtcccggagc cttgtatccg 1500 aacgaggtta tatcggattt tgcattctta ccttttggtg gcggaccacg aaaatgtgtt 1560 ggggaccaat ttgctctgat ggagtccact gtagcgttga ctatgctgct ccagaatttt 1620 gacgtggaac taaaagggac ccctgaatcg gtggaactag ttactggggc aactattcat 1680 accaaaaatg qaatgtggtg cagattgaag aagagatcta atttacgttg a 1731

<210> 56

<211> 659

<212> PRT

<213> Skeletonema costatum

<400> 56

Met Ala Ser Tyr Glu Ser Asp Leu Leu Ser Thr Trp Asp Glu Asp Pro 1 5 10 15

Ser Leu Gln Lys Gly Phe Asp Trp Glu Ile Glu Lys Leu Arg Arg Tyr
20 25 30

Phe Ala Gly Leu Arg Gln Thr Pro Asp Gly Arg Trp Val Arg Lys Ser 35 40 45

Thr Leu Phe Glu Phe Leu Val Thr Asn Ser Pro Ser Lys Val Val Gly 50 60

Val Gly Pro Asp Gly Glu Arg Tyr Glu Ser Pro Pro Lys Pro Val Asn Ile Phe Asp Val Gly Val Leu Val Gly Lys Asn Thr Leu Thr Trp Leu Gly Phe Gly Pro Asn Leu Gly Met Ala Ala Val Pro Asp Ala Val Ile Gln Lys Tyr Glu Gly Ser Phe Phe Thr Phe Ile Lys Gly Ala Leu Gly 120 Gly Asp Leu Gln Thr Leu Ala Gly Gly Pro Leu Phe Leu Leu Ala Lys Tyr Tyr Thr Asp His Gly Pro Ile Phe Asn Leu Ser Phe Gly Pro 155 Lys Ser Phe Leu Val Ile Ser Asp Pro Val Met Ala Arg His Ile Leu Arg Asp Ser Ser Pro Glu Gln Tyr Cys Lys Gly Met Leu Ala Glu Ile Leu Glu Pro Ile Met Gly Asp Gly Leu Ile Pro Ala Asp Pro Lys Ile Trp Lys Val Arg Arg Arg Ala Val Val Pro Gly Phe His Lys Lys Trp Leu Asn Ser Met Ile Gly Leu Phe Gly Asp Cys Gly Asp Arg Leu Val 225 230 235 Asp Asp Leu Glu Lys Arg Ser Thr Ser Asp Lys Pro Val Ile Asp Met 245 250 255 Glu Glu Arg Phe Cys Ser Val Thr Leu Asp Ile Ile Gly Lys Ala Val 260 Phe Asn Tyr Asp Phe Gly Ser Val Thr Lys Glu Ser Pro Ile Val Lys 280 285 Ala Val Tyr Arg Val Leu Arg Glu Ala Glu His Arg Ser Ser Ser Phe

Ile Pro Tyr Trp Asn Leu Pro Tyr Ala Glu Lys Trp Met Val Gly Gln

val	. GIU	Pne	Arg	325	Asp	Mec	GIY	Met	330	Asp	Asp	116	ьеu	335	пув
Leu	ı Ile	Asn	Arg 340	Ala	Val	Glu	Thr	Arg 345	Gln	Glu	Ala	Thr	Val 350	Glu	Glu
Leu	ı Glu	Glu 355	Arg	Glu	Thr	Ser	Asp 360	Asp	Pro	Ser	Leu	Leu 365	Arg	Phe	Leu
Va]	370	Met	Arg	Gly	Glu	Asp 375	Leu	Thr	Ser	Lys	Val 380	Leu	Arg	Asp	Asp
Le: 389	Met	Thr	Met	Leu	Ile 390	Ala	Gly	His	Glu	Thr 395	Thr	Ala	Ala	Met	Leu 400
Thi	Trp	Thr	Met	Phe 405	Gly	Leu	Val	Ser	Asn 410	Asp	Pro	Gly	Met	Met 415	Lys
Glu	ı Ile	Gln	Ala 420	Glu	Val	Arg	Thr	Val 425	Met	Gly	Asn	Lys	Ser 430	Arg	Pro
Asp	Tyr	Asp 435	Asp	Val	Val	Ala	Met 440	Lys	Lys	Leu	Arg	Tyr 445	Ala	Leu	Ile
Glu	1 Ala 450	Leu	Arg	Leu	Tyr	Pro 455	Glu	Pro	Pro	Val	Leu 460	Ile	Arg	Arg	Ala
Arc 465	g Gln	Glu	Asp	Thr	Leu 470	Pro	Pro	Gly	Gly	Thr 475	Gly	Leu	Ser	Gly	Gly 480
Va]	Lys	Val	Leu	Arg 485	Gly	Thr	Asp	Ile	Phe 490	Ile	Ser	Thr	Trp	Asn 495	Leu
His	arg	Ala	Pro 500	Glu	Tyr	Trp	Glu	Asn 505	Ala	Asp	Lys	Tyr	Asp 510	Pro	Thr
Arg	J Trp	Glu 515	Arg	Pro	Phe	Lys	Asn 520	Pro	Gly	Val	Lys	Gly 525	Trp	Asn	Gly
Туз	530	Pro	Glu	Lys	Gln	Ser 535	Ser	Gln	Ser		Tyr ·540	Pro	Asn	Glu	Ile
Th: 545	Ser	Asp	Tyr	Ala	Phe 550	Leu	Pro	Phe	Gly	Ala 555	Gly	Lys	Arg	Lys	Cys 560

Ile Gly Asp Gln Phe Ala Met Leu Glu Ala Ser Val Thr Leu Ser Met 565 570 575

Ile Met Asn Lys Phe Asp Phe Thr Leu Val Gly Thr Pro Glu Asp Val
580 585 590

Gly Met Lys Thr Gly Ala Thr Ile His Thr Met Asn Gly Leu Asn Met 595 600 605

Met Val Ser Pro Arg Ser Glu Thr Asn Pro Ile Pro Gly Thr Asn Glu 610 620

Trp Trp Thr Lys Gln His Leu Met Arg Gly Leu Ser Ser Thr Gly Arg 625 635 640

Pro Tyr Thr Ser Asp Glu Asp Ala Ala Trp Thr Thr Ser Ala Asn Gly 645 650 655

Met Arg Pro

<210> 57

<211> 1980

<212> DNA

<213> Skeletonema costatum

<400> 57

atggcctcct acgagagtga tctgctctca acatgggatg aagatccatc gctgcaaaag 60 gggtttgact gggagattga aaagctccgt cggtactttg ccggactgcg tcaaacacca 120 gacgggcgat gggtgcgcaa gtcgacactg tttgagtttc ttgtgacaaa ctctccaagt 180 aaagtagttg gggtaggtcc ggatggggaa cggtatgaaa gccctccgaa accagtcaat 240 300 atcttcgatg tgggagtgtt agtcggtaag aatacactca cttggttggg atttggaccg aatttgggta tggccgcggt acccgatgca gtcattcaaa agtatgaggg tagcttcttc 360 acctttatca agggagcatt ggggggtgat ttgcaaactt tggcgggtgg tcctttgttc 420 ttattgcttg ccaagtatta tacggatcat ggacccattt tcaacttgag ttttggacca 480 aagagetttt tggtgattte ggateetgtt atggegagge atattttgag ggatagttea 540 ccqqaqcaqt attqtaaqqq aatqcttqcq qaqattttqq aaccqatcat gggtgatgga 600 ttgattcctg cagatccaaa gatttggaag gttcgtcgaa gagctgtcgt acctggtttc 660 cacaaaaagt ggctqaacaq catgattggt ttgttcggag actgtggtga tcgtctcgtt 720 gacgatctag aaaagcgttc tacttcagat aaacctgtaa ttgacatgga agaacgattc 780 840 tgttccgtca cactcgatat catcggtaag gcagtattca actatgattt tggatcagtg

```
900
acaaaggaat cacctattgt aaaggcagta tacagagtgt tacgtgaggc ggagcacaga
                                                                     960
tcatcttcgt tcatccccta ctggaacttg ccttatgctg agaaatggat ggtaggacag
gttgaattcc gcaaagatat gggaatgctt gacgatatct tggcaaaact gatcaatcgt
                                                                    1020
                                                                    1080
gctgttgaga ctaggcaaga agctactgtc gaagagttgg aagagagaga aacaagcgat
                                                                    1140
gatecgagte tettaaggtt eetagttgat atgaggggag aagatttaae gagtaaagtg
ttgagagatg atttgatgac aatgcttatt gcaggacatg aaacaacagc ggcaatgctg
                                                                    1200
                                                                    1260
acgtggacaa tgtttgggct agtaagcaac gatcctggca tgatgaagga aatccaggca
                                                                    1320
gaagttcgaa ctgtcatggg caataagtct cgaccagatt acgatgatgt tgtggcgatg
                                                                    1380
aaaaagttga ggtatgcttt gattgaagca cttcgattat atcccgagcc acccgtgttg
                                                                    1440
attegeaggg caaggcaaga ggacactett ceaceaggtg gtaegggtet ttetggaggt
gtcaaagtat tgcgtggaac agatatettt atttetaett ggaacettea eegegeteea
                                                                    1500
                                                                    1560
gaatactggg agaatgcaga caaatatgac cctactcgat gggagcgtcc gttcaaaaac
                                                                    1620
ccaggtgtta agggttggaa tggatatgat ccggaaaaac aatcatctca atcactttat
                                                                    1680
cctaacgaga taacgtcaga ctatgctttc cttccttttg gtgctgggaa gagaaaatgt
                                                                    1740
atcggggatc agtttgctat gctcgaggct tcggttacac tatcgatgat tatgaataaa
tttgacttca cgttggtcgg tacccctgaa gatgtcggca tgaagaccgg agcaactatt
                                                                    1800
                                                                    1860
cataccatga atgggctcaa catgatggtc agccctcgat cagagacaaa cccgattcca
                                                                    1920
gggacaaatg agtggtggac gaaacaacat ctaatgagag gtttgagttc tactggaaga
ccatacactt ccgatgaaga tgccgcgtgg acgacatccg ctaatggcat gagaccgtga
                                                                    1980
```

<210> 58

<400> 58

000

<210> 59

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 59

cacacaca cacacaca

18

<210> 60 <211> 77

<212> PRT

<213> Oryza sativa

<400> 60

Leu Glu Thr Ser Ala Leu Ser Gly Lys Pro Val Asn Met Glu Ala Arg

Phe Ser Gln Met Thr Leu Asp Val Ile Gly Leu Ser Leu Phe Asn Tyr 25

Asn Phe Asp Ser Leu Thr Ser Asp Ser Pro Val Ile Asp Ala Val Tyr 40 , 45

Thr Ala Leu Lys Glu Ala Glu Leu Arg Ser Thr Asp Leu Leu Pro Tyr 55 60

Trp Lys Ile Asp Leu Leu Cys Lys Ile Val Pro Arg Gln 70

<210> 61

<211> 77 <212> PRT <213> Zea mays

<400> 61

Leu Glu Pro Tyr Ala Leu Ser Gly Glu Pro Val Asn Met Glu Ala Arg

Phe Ser Gln Leu Thr Leu Asp Val Ile Gly Leu Ser Leu Phe Asn Tyr

Asn Phe Asp Ser Leu Thr Thr Asp Ser Pro Val Ile Asp Ala Val Tyr 35 40 , 45

Thr Ala Leu Lys Glu Ala Glu Leu Arg Ser Thr Asp Leu Leu Pro Tyr 55 60 50

Trp Lys Val Gly Phe Leu Cys Lys Ile Ile Pro Arg Gln

<210> 62

<211> 77

<212> PRT

<213> Hordeum vulgare

<400> 62

Leu Glu Thr Tyr Ala Leu Ser Gly Glu Pro Val Asn Met Glu Ala Arg

Phe Ser Gln Met Thr Leu Asp Val Ile Gly Leu Ser Leu Phe Asn Tyr 25

Asn Phe Asp Ser Leu Thr Ser Asp Ser Pro Val Ile Asp Ala Val Tyr

Thr Ala Leu Lys Glu Ala Glu Ala Arg Ser Thr Asp Leu Leu Pro Tyr 50 60

Trp Gln Ile Asp Leu Leu Cys Lys Ile Val Pro Arg Gln

<210> 63

<211> 77 <212> PRT <213> Triticum aestivum

<400> 63

Leu Glu Thr Tyr Ala Leu Ser Gly Glu Pro Val Asn Met Glu Ala Arg

Phe Ser Gln Met Thr Leu Asp Val Ile Gly Leu Ser Leu Phe Asn Tyr

Asn Phe Asp Ser Leu Thr Ser Asp Ser Pro Val Ile Asp Ala Val Tyr 35 40

Thr Ala Leu Lys Glu Ala Glu Ala Arg Ser Thr Asp Leu Leu Pro Tyr 50 60

Trp Gln Ile Asp Leu Leu Cys Lys Ile Val Pro Arg Gln 70

<210> 64

<211> 77

<212> PRT

<213> Arabidopsis thaliana

<400> 64

Leu Gln Pro Tyr Ala Glu Asp Gly Ser Ala Val Asn Met Glu Ala Lys

Phe Ser Gln Met Thr Leu Asp Val Ile Gly Leu Ser Leu Phe Asn Tyr

Asn Phe Asp Ser Leu Thr Thr Asp Ser Pro Val Ile Glu Ala Val Tyr

Thr Ala Leu Lys Glu Ala Glu Leu Arg Ser Thr Asp Leu Leu Pro Tyr 50 55 60

Trp Lys Ile Asp Ala Leu Cys Lys Ile Val Pro Arg Gln

<210> 65

<211> 77 <212> PRT <213> Helianthus annuus

<400> 65

Leu Arg Ser Tyr Ala Arg Ser Asp Thr Ser Val Asn Met Glu Gln Gln

Phe Ser Gln Leu Thr Leu Asp Val Ile Gly Leu Ala Val Phe Asn Tyr

Asn Phe Asp Ser Leu Thr Ala Asp Ser Pro Val Ile Glu Ser Val Tyr 35 40

Thr Ala Leu Lys Glu Ala Glu Ala Arg Ser Thr Asp Leu Leu Pro Tyr 50 60

Trp Lys Ile Ser Ala Leu Cys Lys Ile Ile Pro Arg Gln

<210> 66 <211> 77

<212> PRT

<213> Lycopersicon esculentum

<400> 66

Leu Leu Pro Asp Ala Ile Ser Gly Ser Ala Val Asn Met Glu Ala Lys

Phe Ser Gln Leu Thr Leu Asp Val Ile Gly Leu Ala Leu Phe Asn Tyr

Asn Phe Asp Ser Leu Thr Thr Asp Ser Pro Val Ile Asp Ala Val Tyr

Thr Ala Leu Lys Glu Ala Glu Leu Arg Ser Thr Asp Leu Leu Pro Tyr 50

Trp Gln Ile Lys Ala Leu Cys Lys Phe Ile Pro Arg Gln

<210> 67

<211> 77 <212> PRT <213> Hordeum vulgare

<400> 67

Leu Asp Lys Ala Ala Ser Asp Gly Glu Asp Val Glu Met Glu Ser Leu

Phe Ser Arg Leu Thr Leu Asp Val Ile Gly Lys Ala Val Phe Asn Tyr

Asp Phe Asp Ser Leu Ser Tyr Asp Asn Gly Ile Val Glu Ala Val Tyr 35 40

Val Thr Leu Arg Glu Ala Glu Met Arg Ser Thr Ser Pro Ile Pro Thr 50

Trp Glu Ile Pro Ile Trp Lys Asp Ile Ser Pro Arg Gln 70

<210> 68 <211> 77

<212> PRT

<213> Triticum aestivum

<400> 68

Leu Asp Lys Ala Ala Ser Asp Gly Glu Asp Val Glu Met Glu Ser Leu

Phe Ser Arg Leu Thr Leu Asp Val Ile Gly Lys Ala Val Phe Asn Tyr 25

Asp Phe Asp Ser Leu Ser Tyr Asp Asn Gly Ile Val Glu Ala Val Tyr

Val Thr Leu Arg Glu Ala Glu Met Arg Ser Thr Ser Pro Ile Pro Thr

Trp Glu Ile Pro Ile Trp Lys Asp Ile Ser Pro Arg Gln 70

<210> 69

<211> 77

<212> PRT

<213> Oryza sativa

<400> 69

Leu Asp Lys Ala Ala Thr Asp Gly Glu Asp Val Glu Met Glu Ser Leu

Phe Ser Arg Leu Thr Leu Asp Val Ile Gly Lys Ala Val Phe Asn Tyr

Asp Phe Asp Ser Leu Ser Tyr Asp Asn Gly Ile Val Glu Ala Val Tyr 35 40

Val Thr Leu Arg Glu Ala Glu Met Arg Ser Thr Ser Pro Ile Pro Thr 50

Trp Glu Ile Pro Ile Trp Lys Asp Ile Ser Pro Arg Gln

<210> 70

<211> 77

<212> PRT

<213> Glycine max

<400> 70

Leu Asp Ala Ala Ala Ser Asp Gly Glu Asp Val Glu Met Glu Ser Leu

Phe Ser Arg Leu Thr Leu Asp Ile Ile Gly Lys Ala Val Phe Asn Tyr

Asp Phe Asp Ser Leu Ser Asn Asp Thr Gly Ile Val Glu Ala Val Tyr

Thr Val Leu Arg Glu Ala Glu Asp Arg Ser Val Ala Pro Ile Pro Val 50 55

Trp Glu Ile Pro Ile Trp Lys Asp Ile Ser Pro Arg Leu

<210> 71

<211> 77

<211> 77 <212> PRT <213> Lycopersicon esculentum

<400> 71

Leu Asp Val Ala Ala Thr Asp Gly Glu Asp Val Glu Met Glu Ser Leu

Phe Ser Arg Leu Thr Leu Asp Ile Ile Gly Lys Ala Val Phe Asn Tyr

Asp Phe Asp Ser Leu Thr Val Asp Thr Gly Ile Val Glu Ala Val Tyr 35 40

Thr Val Leu Arg Glu Ala Glu Asp Arg Ser Val Ala Pro Ile Pro Val 50

Trp Glu Leu Pro Ile Trp Lys Asp Ile Ser Pro Lys Leu 70

<210> 72 <211> 77

<212> PRT

<213> Arabidopsis thaliana

<400> 72

Leu Asp Ala Ala Leu Lys Gly Glu Glu Val Glu Met Glu Ser Leu

Phe Ser Arg Leu Thr Leu Asp Ile Ile Gly Lys Ala Val Phe Asn Tyr

Asp Phe Asp Ser Leu Thr Asn Asp Thr Gly Val Ile Glu Ala Val Tyr

Thr Val Leu Arg Glu Ala Glu Asp Arg Ser Val Ser Pro Ile Pro Val 60

Trp Asp Ile Pro Ile Trp Lys Asp Ile Ser Pro Arg Gln 70

<210> 73

<211> 77

<212> PRT

<213> Chlamydomonas reinhardtii

<400> 73

Leu Asp Lys Tyr Ala Ala Ser Gly Thr Ser Leu Asp Met Glu Asn Phe

Phe Ser Arg Leu Gly Leu Asp Ile Ile Gly Lys Ala Val Phe Asn Tyr

Asp Phe Asp Ser Leu Ala His Asp Asp Pro Val Ile Gln Ala Val Tyr 35 40

Thr Leu Leu Arg Glu Ala Glu His Arg Ser Thr Ala Pro Ile Ala Tyr 50

Trp Asn Ile Pro Gly Ile Gln Phe Val Val Pro Arg Gln

<210> 74 <211> 85

<212> PRT

<213> Arabidopsis thaliana

<400> 74

Glu Lys Leu Ile Arg Glu Lys Glu Thr Ser Ser Gly Glu Asp Thr Ile

Glu Leu Asp Leu Glu Ala Glu Phe Ser Ser Leu Ala Leu Asp Ile Ile 25

Gly Leu Ser Val Phe Asn Tyr Asp Phe Gly Ser Val Thr Lys Glu Ser

Pro Val Ile Lys Ala Val Tyr Gly Thr Leu Phe Glu Ala Glu His Arg 50 55 60

Ser Thr Phe Tyr Phe Pro Tyr Trp Asn Phe Pro Pro Ala Arg Trp Ile

Val Pro Arg Gln Arg