CHEMISTRY

Written examination 2

DATA BOOK

Directions to students

This data book is provided as a reference.

Make sure that you remove this data book from the question and answer book during reading time.

Any writings, jottings, notes or drawings made on this data book will **not** be considered in the marking.

At the end of the examination, ensure that you do **not** leave the data book in the question and answer book.

You may keep this data book.

Table of contents

		page
1.	Periodic table of the elements	3
2.	The electrochemical series	4
3.	Physical constants	5
4.	SI prefixes, their symbols and values	5
5.	¹ H NMR data	5–6
6.	¹³ C NMR data	7
7.	Infrared absorption data	7
8.	2-amino acids (α-amino acids)	8–9
9.	Formulas of some fatty acids	10
10.	Structural formulas of some important biomolecules	10
11.	Acid-base indicators	11
12.	Acidity constants, $K_{a,}$ of some weak acids	11
13.	Values of molar enthalpy of combustions of some common fuels at 298 K and 101.3 kPa	11

1. Periodic table of the elements

2 He 4.0 Helium 10 Ne 20.1 Neon 18	Ar 39.9 Argon	36 Kr 83.8 Krypton	54 Xe 131.3 Xenon	86 Rn (222) Radon	118 Uuo
9 F 19.0 Fluorine 17	CI 35.5 Chlorine	35 Br 79.9 Bromine	53 I 126.9 Iodine	85 At (210) Astatine	
8 O 16.0 Oxygen	S 32.1 Sulfur	34 Se 79.0 Selenium	52 Te 127.6 Tellurium	84 Po (209) Polonium	116 Uuh
7 N 14.0 Nitrogen	P 31.0 Phosphorus	33 As 74.9 Arsenic	51 Sb 121.8 Antimony	83 Bi 209.0 Bismuth	
6 C 12.0 Carbon	Si 28.1 Silicon	32 Ge 72.6 Germanium	50 Sn 118.7 Tin	82 Pb 207.2 Lead	114 Uuq
5 B 10.8 Boron	AI 27.0 Aluminium	31 Ga 69.7 Gallium	49 In 114.8 Indium	81 T1 204.4 Thallium	
		30 Zn 65.4 Zinc	-	80 Hg 200.6 Mercury	112 Uub
symbol of element		29 Cu 63.6 Copper	47 Ag 107.9 Silver	78 79 Pt Au 195.1 197.0 Platinum Gold	111 Rg (272) Roentgenium
79 Symb 197.0 Gold name		28 Ni 58.7 Nickel	46 Pd 106.4 Palladium	78 Pt 195.1 Platinum	110 Ds (271) Darmstadtium
		27 Co 58.9 Cobalt		77 Ir 192.2 Iridium	8
atomic number relative atomic mass		26 Fe 55.9 Iron	44 Ru 101.1 Ruthenium	76 Os 190.2 Osmium	108 Hs (277) Hassium
-		25 Mn 54.9 Manganese	43 Te 98.1 m Technetium	75 Re 186.2 Rhenium	
		24 Cr 52.0 Chromium	42 Mo 95.9 Molybdenum	74 W 183.8 Tungsten	106 Sg (266) Seaborgium
		23 V 50.9 Vanadium	41 Nb 92.9 Niobium	73 Ta 180.9 Tantalum	105 Db (262) Dubnium
		22 Ti 47.9 Titanium	40 Zr 91.2 Zirconium	72 Hf 178.5 Hafnium	104 Rf (261) Rutherfordium
		Sc 44.9 Scandium	39 Y 88.9 Yttrium	57 La 138.9 Lanthanum	89 Ac (227) Actinium
4 Be 9.0 Beryllium 12	Mg 24.3 Magnesium	20 Ca 40.1 Calcium	38 Sr 87.6 Strontium	56 Ba 137.3 Barium	88 Ra (226) Radium
1	Na 23.0 Sodium	19 K 39.1 Potassium	37 Rb 85.5 Rubidium	55 Cs 132.9 Caesium	87 Fr (223) Francium

	59	09	19	62	63	49	65	99	29	89	69	20	11
	Pr	PΝ	Pm	Sm	Eu	P.S	Tb	Dy	Но	Er	Tm	Λp	Lu
	140.9	144.2	(145)	150.3	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.0	175.0
_	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
1													

103	Lr	(262)	Lawrencium
102	S N	(259)	Nobelium
101	Md	(258)	Mendelevium
100	Fm	(257)	Fermium
66	Es	(252)	Einsteinium
		(251)	_
26	Bk	(247)	Berkelium
96	Cm	(247)	Curium
95	Am	(243)	Americium
94	Pu	(244)	Plutonium
93	ď	(237.1)	Neptunium
92	n	238.0	Uranium
91	Pa	231.0	Protactinium
06	Th	232.0	[horium]

TURN OVER

2. The electrochemical series

	E° in volt
$F_2(g) + 2e^- \Longrightarrow 2F^-(aq)$	+2.87
$H_2O_2(aq) + 2H^+(aq) + 2e^- \implies 2H_2O(1)$	+1.77
$Au^{+}(aq) + e^{-} \rightleftharpoons Au(s)$	+1.68
$Cl_2(g) + 2e^- \Longrightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \iff 2H_2O(1)$	+1.23
$Br_2(l) + 2e^- \Longrightarrow 2Br^-(aq)$	+1.09
$Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$	+0.80
$Fe^{3+}(aq) + e^- \Longrightarrow Fe^{2+}(aq)$	+0.77
$O_2(g) + 2H^+(aq) + 2e^- \rightleftharpoons H_2O_2(aq)$	+0.68
$I_2(s) + 2e^- \iff 2I^-(aq)$	+0.54
$O_2(g) + 2H_2O(l) + 4e^- \rightleftharpoons 4OH^-(aq)$	+0.40
$Cu^{2+}(aq) + 2e^- \iff Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2\operatorname{e}^- \ \Longrightarrow \ \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$S(s) + 2H^{+}(aq) + 2e^{-} \iff H_2S(g)$	+0.14
$2H^+(aq) + 2e^- \rightleftharpoons H_2(g)$	0.00
$Pb^{2+}(aq) + 2e^- \Longrightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \Longrightarrow \operatorname{Sn}(\operatorname{s})$	-0.14
$Ni^{2+}(aq) + 2e^- \Longrightarrow Ni(s)$	-0.23
$Co^{2+}(aq) + 2e^- \Longrightarrow Co(s)$	-0.28
$Fe^{2+}(aq) + 2e^- \Longrightarrow Fe(s)$	-0.44
$Zn^{2+}(aq) + 2e^- \rightleftharpoons Zn(s)$	-0.76
$2\mathrm{H}_2\mathrm{O}(\mathrm{l}) + 2\mathrm{e}^- \ \Longleftrightarrow \ \mathrm{H}_2(\mathrm{g}) + 2\mathrm{OH}^-(\mathrm{aq})$	-0.83
$Mn^{2+}(aq) + 2e^- \iff Mn(s)$	-1.03
$Al^{3+}(aq) + 3e^- \Longrightarrow Al(s)$	-1.67
$Mg^{2+}(aq) + 2e^- \iff Mg(s)$	-2.34
$Na^+(aq) + e^- \rightleftharpoons Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^- \rightleftharpoons Ca(s)$	-2.87
$K^+(aq) + e^- \rightleftharpoons K(s)$	-2.93
$Li^{+}(aq) + e^{-} \rightleftharpoons Li(s)$	-3.02

3. Physical constants

Avogadro's constant (N_A) = 6.02×10^{23} mol⁻¹

Charge on one electron $= -1.60 \times 10^{-19} \text{ C}$

Faraday constant (F) = 96 500 C mol⁻¹

Gas constant (R) = 8.31 J K⁻¹mol⁻¹

Ionic product for water $(K_w) = 1.00 \times 10^{-14} \text{ mol}^2 \text{ L}^{-2}$ at 298 K

(Self ionisation constant)

Molar volume (V_m) of an ideal gas at 273 K, 101.3 kPa (STP) = 22.4 L mol⁻¹

Molar volume (V_m) of an ideal gas at 298 K, 101.3 kPa (SLC) = 24.5 L mol⁻¹

Specific heat capacity (c) of water = $4.18 \text{ J g}^{-1} \text{ K}^{-1}$

Density (d) of water at 25° C = 1.00 g mL^{-1}

1 atm = 101.3 kPa = 760 mm Hg 0° C = 273 K

4. SI prefixes, their symbols and values

SI prefix	Symbol	Value
giga	G	109
mega	M	10^{6}
kilo	k	10^{3}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}

5. ¹H NMR data

Typical proton shift values relative to TMS = 0

These can differ slightly in different solvents. Where more than one proton environment is shown in the formula, the shift refers to the ones in bold letters.

Type of proton		Chemical shift (ppm)
R-CH ₃		0.9
R-CH ₂ -R		1.3
$RCH = CH - CH_3$		1.7
R ₃ –CH		2.0
CH ₃ —C Or Or O	CH ₃ —CNHR	2.0

Type of proton	Chemical shift (ppm)
R CH_3	
C	2.1
O	
$R-CH_2-X$ (X = F, Cl, Br or I)	3–4
$R-CH_2-OH$	3.6
O	
R - C'	3.2
NHC H ₂ R	
R—O—CH ₃ or R—O—CH ₂ R	3.3
O	
$\langle \bigcirc \rangle$ \sim	4.1
_{2,} 0	
R-C	4.1
OCH ₂ R	
R-O-H	1–6 (varies considerably under different conditions)
$R-NH_2$	1–5
$RHC = C\mathbf{H}_2$	4.6–6.0
ОН	7.0
Н	7.3
$R - C$ N H CH_2R	8.1
R—C H	9–10
R—C O—H	11.5

6. ¹³C NMR data

Type of carbon	Chemical shift (ppm)
R-CH ₃	8–25
R-CH ₂ -R	20–45
R ₃ -CH	40–60
R ₄ –C	36–45
R-CH ₂ -X	15–80
RC-NH ₂	35–70
R-CH ₂ -OH	50–90
RC≡CR	75–95
RC=CR	110–150
RCOOH	160–185

7. Infrared absorption data

Characteristic range for infrared absorption

Bond	Wave number (cm ⁻¹)
C-C1	700–800
C–C	750–1100
C-O	1000–1300
C=C	1610–1680
C=O	1670–1750
O–H (acids)	2500–3300
С–Н	2850–3300
O–H (alcohols)	3200–3550
N–H (primary amines)	3350–3500

8. 2-amino acids (α-amino acids)

Name	Symbol	Structure
alanine	Ala	$_{\parallel}^{\mathrm{CH}_{3}}$
		H ₂ N—CH—COOH
arginine	Arg	NH
		CH_2 CH_2 NH CH_2 NH
		H ₂ N—CH—COOH
asparagine	Asn	$\begin{array}{c} O \\ \parallel \\ CH_2 \longrightarrow C \longrightarrow NH_2 \\ \parallel \\ H_2N \longrightarrow CH \longrightarrow COOH \end{array}$
		CH_2 C NH_2
		H ₂ N—CH—COOH
aspartic acid	Asp	СН ₂ —— СООН
		H ₂ N—CH—COOH
cysteine	Cys	CH ₂ —SH
		H ₂ N—CH—COOH
glutamine	Gln	O
		$\begin{array}{c} \operatorname{CH}_2 & \longrightarrow \operatorname{CH}_2 & \longrightarrow \operatorname{NH}_2 \\ & & & & & & & & & & & & & & & & & &$
		H ₂ N—CH—COOH
glutamic acid	Glu	СН ₂ —— СН ₂ —— СООН
		H ₂ N—CH—COOH
glycine	Gly	H ₂ N—CH ₂ —COOH
histidine	His	N
		CH_2 N
		H_2N —CH—COOH
isoleucine	Ile	CH ₃ —— CH—— CH ₂ —— CH ₃
		H ₂ N—CH—COOH

Name	Symbol	Structure
leucine	Leu	CH_3 — CH — CH_3
		CH_2
		H ₂ N—CH—COOH
lysine	Lys	CH_2 CH_2 CH_2 CH_2 NH_2
		$\begin{array}{c} \operatorname{CH}_2 & \operatorname{CH}_2 & \operatorname{CH}_2 & \operatorname{CH}_2 \\ \\ \\ \operatorname{H}_2 \operatorname{N} & \operatorname{CH} & \operatorname{COOH} \end{array}$
methionine	Met	CH ₂ —CH ₂ —S—CH ₃
		$\begin{array}{c} \operatorname{CH}_2 \hspace{-0.5cm} - \operatorname{CH}_2 \hspace{-0.5cm} - \operatorname{S} \hspace{-0.5cm} - \operatorname{CH}_3 \\ \\ \hspace{-0.5cm} \\ \hspace{-0.5cm} \operatorname{H}_2 \hspace{-0.5cm} - \hspace{-0.5cm} \operatorname{CH} \hspace{-0.5cm} - \hspace{-0.5cm} \operatorname{COOH} \end{array}$
phenylalanine	Phe	CH ₂ ——
		H_2N —CH—COOH
proline	Pro	н соон
		N N
serine	Ser	СН ₂ — ОН
		$\begin{array}{c} \text{CH}_2 \text{\longrightarrow OH} \\ \\ \\ \text{H}_2 \text{NCH} \text{\longrightarrow COOH} \end{array}$
threonine	Thr	CH3—— CH—— OH
		H ₂ N—CH—COOH
tryptophan	Trp	H N
		CH ²
		H ₂ N—CH—COOH
tyrosine	Tyr	СН2—ОН
		CH_2 —OH H_2N —CH—COOH
valine	Val	CH ₂ —— CH—— CH,
		CH ₃ — CH— CH ₃ H ₂ N—CH— COOH
		-

9. Formulas of some fatty acids

Name	Formula
Lauric	$C_{11}H_{23}COOH$
Myristic	$C_{13}H_{27}COOH$
Palmitic	$C_{15}H_{31}COOH$
Palmitoleic	$C_{15}H_{29}COOH$
Stearic	$C_{17}H_{35}COOH$
Oleic	$C_{17}H_{33}COOH$
Linoleic	$C_{17}H_{31}COOH$
Linolenic	$C_{17}H_{29}COOH$
Arachidic	$C_{19}H_{39}COOH$
Arachidonic	$C_{19}H_{31}COOH$

10. Structural formulas of some important biomolecules

$$\begin{array}{c|c} HOCH_2 & OH \\ \hline H & H \\ HO & H \end{array}$$

deoxyribose

11. Acid-base indicators

Name	pH range	Colour change		K _a
		Acid	Base	
Thymol blue	1.2-2.8	red	yellow	2×10^{-2}
Methyl orange	3.1–4.4	red	yellow	2×10^{-4}
Bromophenol blue	3.0-4.6	yellow	blue	6×10^{-5}
Methyl red	4.2-6.3	red	yellow	8×10^{-6}
Bromothymol blue	6.0-7.6	yellow	blue	1×10^{-7}
Phenol red	6.8-8.4	yellow	red	1×10^{-8}
Phenolphthalein	8.3–10.0	colourless	red	5×10^{-10}

12. Acidity constants, $K_{\rm a}$, of some weak acids

Name	Formula	Ka
Ammonium ion	NH ₄ ⁺	5.6×10^{-10}
Benzoic	C ₆ H ₅ COOH	6.4×10^{-5}
Boric	H_3BO_3	5.8×10^{-10}
Ethanoic	CH₃COOH	1.7×10^{-5}
Hydrocyanic	HCN	6.3×10^{-10}
Hydrofluoric	HF	7.6×10^{-4}
Hypobromous	HOBr	2.4×10^{-9}
Hypochlorous	HOCI	2.9×10^{-8}
Lactic	HC ₃ H ₅ O ₃	1.4×10^{-4}
Methanoic	НСООН	1.8×10^{-4}
Nitrous	HNO ₂	7.2×10^{-4}
Propanoic	C ₂ H ₅ COOH	1.3×10^{-5}

13. Values of molar enthalpy of combustions of some common fuels at 298 K and 101.3 kPa $\,$

Substance	Formula	State	$\Delta H_{\rm c}$ (kJ mol ⁻¹)
hydrogen	H_2	g	-286
carbon(graphite)	С	S	-394
methane	CH ₄	g	-889
ethane	C_2H_6	g	-1557
propane	C ₃ H ₈	g	-2217
butane	C ₄ H ₁₀	g	-2874
pentane	C ₅ H ₁₂	1	-3509
hexane	C ₆ H ₁₄	1	-4158
octane	C ₈ H ₁₈	1	-5464
ethene	C ₂ H ₄	g	-1409
methanol	CH ₃ OH	1	-725
ethanol	C ₂ H ₅ OH	1	-1364
1-propanol	CH ₃ CH ₂ CH ₂ OH	1	-2016
2-propanol	CH ₃ CHOHCH ₃	1	-2003
glucose	C ₆ H ₁₂ O ₆	S	-2816