MATH2421 Midterm Cheat Sheet

Permutation with objects alike: n objects of which n_1 are alike, n_2 are alike, \cdots , n_r alike: $\frac{n!}{n_1!n_2!\cdots n_r!}$

Circle arrangement: n people sitting in a circle, (n-1)! permutations.

Properties of combinations:
$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$

Binomial Theorem:
$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Multinomial Coefficients: n distinct items divided into r distinct groups of size n_1, n_2, \dots, n_r , respectively, where $\sum n_i = n$, then there are $\binom{n}{n_1, n_2, \dots, n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}$ arrangements.

Multinomial Theorem:
$$(x_1 + x_2 + \dots + x_r)^n = \sum_{(n_1, \dots, n_r): n_1 + \dots + n_r = n} \binom{n}{n_1, n_2, \dots, n_r} x_1^{n_1} x_2^{n_2} \cdots x_r^{n_r}$$

Kolmogorov Axioms: Probability is a function satisfying:

- 1. For any event $A, 0 \leq P(A) \leq 1$
- 2. Let S be the sample space, then P(S) = 1
- 3. For mutually exclusive events A_1, A_2, \cdots , there is $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$

Inclusion-Exclusion Principle:

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{i \le i_1 < i_2 \le n} P(A_{i_1} A_{i_2}) + \dots + (-1)^{r+1} \sum_{1 \le i_1 < \dots < i_r \le n} P(A_{i_1} \dots A_{i_r}) + \dots + (-1)^{n+1} P(A_1 \dots A_n)$$

General Multiplication Rule: $P(A_1A_2\cdots A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)\cdots P(A_n|A_1A_2\cdots A_{n-1})$

Total Probability: $P(B) = P(B|A)P(A) + P(B|A^C)P(A^C)$

Bayes' formula: Events A_1, \dots, A_n partitions sample space, assume $P(A_i) > 0$ for $1 \le i \le n$. Let B be any event, then for any $1 \le i \le n$, we have $P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B|A_1)P(A_1) + \dots + P(B|A_n)P(A_n)}$

1

Probability mass function: $p_X(x) = \begin{cases} P(X = x) & \text{if } x = x_1, x_2, \cdots \\ 0 & \text{otherwise} \end{cases}$

Cumulative distribution function: $F_X(x) = P(X \le x)$ for $x \in \mathbb{R}$

Expected Value: $E(X) = \sum_{x} x p_X(x), E[g(x)] = \sum_{x} g(x_i) p_X(x_i) = \sum_{x} g(x) p_X(x)$

Tail Sum Formula: $E(X) = \sum_{k=1}^{\infty} P(X \ge k) = \sum_{k=0}^{\infty} P(X > k)$

Variance: $var(X) = E(X - \mu)^2 = E(X^2) - [E(X)]^2$

Expected Value of Sum of RV: $E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$

Bernoulli random variable: Be(p), X = 1 if success, 0 if failure.

$$P(X = 1) = p, P(X = 0) = 1 - p,$$
 $\mathbb{E}(X) = p, \text{var}(X) = p(1 - p)$

Binomial random variable: Bin(n, p), X = # of successes in n Bernoulli(p) trials.

For
$$0 \le k \le n$$
, $P(X = k) = \binom{n}{k} p^k q^{n-k}$ $\mathbb{E}(X) = np, \text{var}(X) = np(1-p)$

Geometric random variable: Geom(p), X = # of Bernoulli(p) trials required to obtain the first success.

For
$$k \ge 1$$
, $P(X = k) = pq^{k-1}$ $\mathbb{E}(X) = \frac{1}{p}$, $var(X) = \frac{1-p}{p^2}$.

OR, X' = # of failures in Bernoulli(p) trials to obtain 1st success. X = X' + 1

For
$$k \ge 0$$
, $P(X' = k) = pq^k$, $\mathbb{E}(X') = \frac{1-p}{p}$, $var(X') = \frac{1-p}{p^2}$

Negative Binomial random variable: NB(r, p), X = # of Bernoulli(p) trials required to obtain r success.

For
$$k \ge r$$
, $P(X = k) = \binom{k-1}{r-1} p^r q^{k-r}$, $\mathbb{E}(X) = \frac{r}{p}$, $var(X) = \frac{r(1-p)}{p^2}$

Note that
$$Geom(p) = NB(1, p), {k-1 \choose r-1} = (-1)^{r-1} {-(k-r+1) \choose r-1}$$

Poisson Random Variable:
$$X \sim \text{Poisson}(\lambda)$$
 For $k \geq 0$, $P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$, $\mathbb{E}(X) = \lambda$, $\text{var}(x) = \lambda$

Usually if n > 20 and np < 15, $Bin(n, p) \approx Poisson(np)$.

Hypergeometric Random Variable: H(n, N, m), a set of N balls, of which m are red and N-m are blue. We choose n of these balls without replacement, X = # of red balls in sample.

For
$$0 \le x \le \min(m, n)$$
, $P(X = x) = \frac{\binom{m}{x} \binom{N - m}{n - x}}{\binom{N}{x}}$ $\mathbb{E}(X) = \frac{nm}{N}$, $var(X) = \frac{nm}{N} \left[\frac{(n - 1)(m - 1)}{N - 1} + 1 - \frac{nm}{N} \right]$