COMP 3311 DATABASE MANAGEMENT SYSTEMS

LECTURE 6 EXERCISES RELATIONAL ALGEBRA

EXAMPLE RELATIONAL SCHEMA

Sailor(sailorld, sName, rating, age)

Boat(boatId, bName, color)

Reserves(<u>sailorId</u>, <u>boatId</u>, <u>rDate</u>)

What is the E-R schema for this relational schema?

What about this schema?

Reserves(*sailorId*, *boatId*, rDate)

A sailor can reserve a given boat at most once!

What do we get if we reduce Reserves?

rDate is not part of the key in the reduction!

EXAMPLE RELATIONAL SCHEMA

Sailor(sailorld, sName, rating, age)

Boat(boatId, bName, color)

What about this schema?

Reserves(<u>sailorId</u>, <u>boatId</u>, <u>rDate</u>)

What kind of entity is Reserves? ⇒ Weak entity.

On which entity is Reserves dependent?

Both Sailor and Boat!

Is rDate a discriminator for Reserves? ⇒ Yes

What should be the cardinality constraints for Makes? \Rightarrow 1:N

What should be the participation constraints for Makes? ⇒ Sailor - partial; Reserves - total

What should be the cardinality constraints for Has? \Rightarrow 1:N

What should be the participation constraints for Has? ⇒ Boat - partial; Reserves - total

EXAMPLE RELATIONAL SCHEMA AND DATABASE

Sailor(sailorld, sName, rating, age)

Boat(boatId, bName, color)

Reserves(sailorld, boatld, rDate)

Attribute names in italics are foreign key attributes.

Sailor

<u>sailorId</u>	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

11 tuples

Reserves

<u>sailorId</u>	<u>boatld</u>	<u>rDate</u>
22	101	10/10/17
22	102	10/10/17
22	103	08/10/17
22	104	07/10/17
31	102	10/11/17
31	103	06/11/17
31	104	12/11/17
64	101	05/09/17
64	102	08/09/17
74	103	08/09/17
99	104	08/08/17

Boat

<u>boatld</u>	bName	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red
105	Serenity	Cyan

5 tuples

L6: EXERCISES

11 tuples

EXERCISE 1

Find the ids of sailors who have reserved boat 103.

22, 31, 74

1. Is this a solution?

2. Is this a solution?

o _{boatId=103} Reserves						
sailorId	boatld	rDate				
22	103	08/10/17				
31	103	06/11/17				
74	103	08/09/17				

sailorld
22
31
74

EXERCISE 2

Find the names of sailors who have reserved boat 103.

Dustin, Lubber, Horatio

1. Is this a solution?

 $\pi_{\text{SName}}(\sigma_{\text{Reserves.sailorId=Sailor.sailorId} \land \text{boatId=103}}(\text{Reserves X Sailor}))$

2. Is this a solution?

 $\pi_{\text{SName}}(\sigma_{\text{Reserves.sailorId}} = Sailor.sailorId)((\sigma_{\text{boatId}=103} \text{Reserves}) \times Sailor))$

EXERCISE 2: SOLUTION I

 $\pi_{\text{SName}}(\sigma_{\text{Reserves.sailorId}-\text{Sailor.sailorId}} \land \text{boatId}=103(\text{Reserves X Sailor}))$

Dustin, Lubber, Horatio

Reserves

sailorld	boatld	rDate
22	101	10/10/17
22	102	10/10/17
22	103	08/10/17
22	104	07/10/17
31	102	10/11/17
31	103	06/11/17
31	104	12/11/17
64	101	05/09/17
64	102	08/09/17
74	103	08/09/17
99	104	08/08/17

Sailor

sailorld	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

11 tuples

11 tuples

How many tuples in the result? $11 \times 11 = 121$ tuples!

Χ

EXERCISE 2: SOLUTION I

 $\pi_{\text{SName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId}} \land \text{boatId}=103}(\text{Reserves X Sailor}))$

property Dustin, Lubber, Horatio

	Reserves X Sailor					
Reserves.sailorId	boatld	rDate	Sailor.sailorId	sName	rating	age
22	101	10/10/17	22	Dustin	7	45
22	101	10/10/17	29	Brutus	1	33
22	101	10/10/17	31	Lubber	8	55
22	101	10/10/17	32	Andy	8	25
22	101	10/10/17	58	Rusty	10	35
22	101	10/10/17	64	Horatio	7	35
22	101	10/10/17	71	Zorba	10	16
22	101	10/10/17	74	Horatio	9	35
22	101	10/10/17	85	Art	3	25
22	101	10/10/17	95	Bob	3	63
22	101	10/10/17	99	Chris	10	30
22	102	10/10/17	22	Dustin	7	45
22	102	10/10/17	29	Brutus	1	33
:	:	:	:	:	:	:

EXERCISE 2: SOLUTION I

 $\pi_{\text{SName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId} \land \text{boatId}=103}(\text{Reserves X Sailor}))$

Dustin, Lubber, Horatio

σ _{Reserves.sailorId=Sailor.sailorId ∧ boatId=103} (Reserves X Sailor)						
Reserves.sailorld boatld rDate Sailor.sailorld sName rating age					age	
22	103	08/10/17	22	Dustin	7	45
31	103	06/11/17	31	Lubber	8	55
74	103	08/09/17	74	Horatio	9	35

Apply π_{SName} to above result:

SName

Dustin
Lubber
Horatio

EXERCISE 2: SOLUTION 2

 $\pi_{\text{sName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId}}((\sigma_{\text{boatId}=103}\text{Reserves}) \times \text{Sailor}))$

Dustin, Lubber, Horatio

Χ

$\sigma_{\text{boatId}=103}$ Reserves					
sailorId	boatld	rDate			
22	103	08/10/17			
31	103	06/11/17			
74	103	08/09/17			

Sailor

sailorld	name	rating	age	
22	Dustin	7	45	
29	Brutus	1	33	
31	Lubber	8	55	
32	Andy	8	25	
58	Rusty	10	35	
64	Horatio	7	35	
71	Zorba	10	16	
74	Horatio	9	35	
85	Art	3	25	
95	Bob	3	63	
99	Chris	10	30	

11 tuples

How many tuples in the result? $3 \times 11 = 33$ tuples!

EXERCISE 2: SOLUTION 2

 $\pi_{\text{sName}}(\sigma_{\text{Reserves.sailorId}} = Sailor.sailorId}((\sigma_{\text{boatId}=103} \text{Reserves}) \times Sailor))$

Dustin, Lubber, Horatio

(o _{boatId=103} Reserves) X Sailor						
Reserves.sailorId	boatld	rDate	Sailor.sailorId	sName	rating	age
22	103	08/10/17	22	Dustin	7	45
22	103	08/10/17	29	Brutus	1	33
22	103	08/10/17	31	Lubber	8	55
22	103	08/10/17	32	Andy	8	25
22	103	08/10/17	58	Rusty	10	35
22	103	08/10/17	64	Horatio	7	35
22	103	08/10/17	71	Zorba	10	16
22	103	08/10/17	74	Horatio	9	35
22	103	08/10/17	85	Art	3	25
22	103	08/10/17	95	Bob	3	63
22	103	08/10/17	99	Chris	10	30
31	103	06/11/17	22	Dustin	7	45
31	103	06/11/17	29	Brutus	1	33
31	103	06/11/17	31	Lubber	8	55
:	•	:	÷	÷	•	÷

EXERCISE 2: SOLUTION 2

 $\pi_{\text{SName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId}}((\sigma_{\text{boatId}=103}\text{Reserves}) \times \text{Sailor}))$

Dustin, Lubber, Horatio

σ _{Reserves.sailorId=Sailor.sailorId} ((σ _{boatId=103} Reserves) X Sailor)						
Reserves.sailorId	boatld	rDate	Sailor.sailorId	sName	rating	age
22	103	08/10/17	22	Dustin	7	45
31	103	06/11/17	31	Lubber	8	55
74	103	08/09/17	74	Horatio	9	35

Apply π_{sName} to above result:

Dustin
Lubber
Horatio

EXERCISE 2

Find the names of sailors who have reserved boat 103.

Dustin, Lubber, Horatio

1. Is this a solution? ✓

 $\pi_{\text{SName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId} \land \text{boatId}=103}(\text{Reserves X Sailor}))$

Initial result: 121 tuples

2. Is this a solution? ✓

 $\pi_{\text{sName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId}}((\sigma_{\text{boatId}=103}\text{Reserves}) \times \text{Sailor}))$

Initial result: 33 tuples

3. Is this a solution?

 $\pi_{\text{sName}}((\sigma_{\text{boatId}=103} \text{Reserves}) \text{ JOIN Sailor})$

EXERCISE 2: SOLUTION 3

 $\pi_{\text{sName}}((\sigma_{\text{boatId}=103} \text{Reserves}) \text{ JOIN Sailor})$

Dustin, Lubber, Horatio

o _{boatId=103} Reserves			
sailorId	boatld	rDate	
22	103	08/10/17	
31	103	06/11/17	
74	103	08/09/17	

JOIN

Sailor

sailorld	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

11 tuples

How many tuples in the result? 3 tuples!

EXERCISE 2: SOLUTION 3

 π_{sName} (($\sigma_{\text{boatId}=103}$ Reserves) JOIN Sailor)

Dustin, Lubber, Horatio

($\sigma_{boatId=103}$ Reserves) JOIN Sailor						
Reserves.sailorId	boatId	rDate	Sailor.sailorId	sName	rating	age
22	103	08/10/17	22	Dustin	7	45
31	103	06/11/17	31	Lubber	8	55
74	103	08/09/17	74	Horatio	9	35

Apply π_{SName} to above result:

sName
Dustin
Lubber
Horatio

EXERCISE 2: SUMMARY

Find the names of sailors who have reserved boat 103.

All three queries get the correct answer, BUT ...

1. Is this a solution? ✓

$$\pi_{\text{SName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId} \land \text{boatId}=103}(\text{Reserves X Sailor}))$$

Initial result: 121 tuples

2. Is this a solution? ✓

$$\pi_{\text{SName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId}}((\sigma_{\text{boatId}=103}\text{Reserves}) \times \text{Sailor}))$$

Initial result: 33 tuples

3. Is this a solution? ✓

$$\pi_{\text{SName}}((\sigma_{\text{boatId}=103}\text{Reserves}) \text{ JOIN Sailor})$$

Initial result: 3 tuples

Query Optimization

Relational DBMSs do such optimizations based on relational algebra.

EXERCISE 3: SOLUTION I

Find the names of sailors who have reserved a red boat.

Dustin, Lubber, Horatio, Chris

Is this a solution?

COMP 3311

 $\pi_{SName}((\sigma_{color='red'}Boat) JOIN Reserves JOIN Sailor)$

σ _{color='red'} Boat			
boatId bName color			
102	Interlake	red	
104 Marine red			

JOIN

How many tuples in the result? 6 tuples!

How many columns in the result? 5 columns!

Reserves

sailorld	boatld	rDate	
22	101	10/10/17	
22	102	10/10/17	
22	103	08/10/17	
22	104	07/10/17	
31	102	10/11/17	
31	103	06/11/17	=
31	104	12/11/17	
64	101	05/09/17	
64	102	08/09/17	
74	103	08/09/17	
99	104	08/08/17	

EXERCISE 3: SOLUTION I

 $\pi_{\text{sName}}((\sigma_{\text{color}='\text{red}'}\text{Boat}) \text{ JOIN } \text{Reserves } \text{JOIN } \text{Sailor})$

Dustin, Lubber, Horatio, Chris

(σ _{color='red'} Boat) JOIN Reserves				
bName	color	sailorId	boatld	rDate
Interlake	red	22	102	10/10/17
Marine	red	22	104	07/10/17
Interlake	red	31	102	10/11/17
Marine	red	31	104	12/11/17
Interlake	red	64	102	08/09/17
Marine	red	99	104	08/08/17

JOIN

How many tuples in the result? 6 tuples!

How many columns in the result? 8 columns!

Sailor

sailorId	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

=

EXERCISE 3: SOLUTION I

 $\pi_{SName}((\sigma_{color='red'}Boat) JOIN Reserves JOIN Sailor)$

Dustin, Lubber, Horatio, Chris

	(σ _{color='red'} Boat) JOIN Reserves JOIN Sailor						
bName	color	sailorId	boatld	rDate	sName	rating	age
Interlake	red	22	102	10/10/17	Dustin	7	45
Marine	red	22	104	07/10/17	Dustin	7	45
Interlake	red	31	102	10/11/17	Lubber	8	55
Marine	red	31	104	12/11/17	Lubber	8	55
Interlake	red	64	102	08/09/17	Horatio	7	35
Marine	red	99	104	08/08/17	Chris	10	30

Apply π_{sName} to above result:

SName
Dustin
Lubber
Horatio
Chris

L6: EXERCISES

EXERCISE 3: SOLUTION 2

Find the names of sailors who have reserved a red boat.

Dustin, Lubber, Horatio, Chris

 $\pi_{\text{SName}}((\sigma_{\text{color}='\text{red}'}\text{Boat}) \text{ JOIN Reserves JOIN Sailor})$

Can you give a more efficient solution in terms of result size?

 $\pi_{\text{sName}}((\pi_{\text{boatId}}(\sigma_{\text{color='red'}}\text{Boat})) \text{ JOIN Reserves JOIN Sailor})$

σ _{color='red'} Boat			
boatId bName color			
102	Interlake	red	
104	Marine	red	

After selecting red boats, first project onto boatld before doing the join since the name and color of the boat is not needed for the query.

Thus, only the boatld is "carried" when evaluating the rest of the query.

EXERCISE 3: SOLUTION 2

 $\pi_{\text{sName}}((\pi_{\text{boatId}}(\sigma_{\text{color}='\text{red'}}\text{Boat})) \text{ JOIN } \text{Reserves } \text{JOIN } \text{Sailor})$

Dustin, Lubber, Horatio, Chris

π_{boatld}(σ_{color='red'}Boat)
boatld
102
104

JOIN

Reserves

sailorld	boatld	rDate	
22	101	10/10/17	
22	102	10/10/17	
22	103	08/10/17	
22	104	07/10/17	
31	102	10/11/17	
31	103	06/11/17	=
31	104	12/11/17	
64	101	05/09/17	
64	102	08/09/17	
74	103	08/09/17	
99	104	08/08/17	

How many tuples in the result? 6 tuples!

How many columns in the result? 3 columns!

EXERCISE 3: SOLUTION 2

 $\pi_{\text{sName}}((\pi_{\text{boatId}}(\sigma_{\text{color}='\text{red'}}\text{Boat})) \text{ JOIN } \text{Reserves } \text{JOIN } \text{Sailor})$

Dustin, Lubber, Horatio, Chris

 $(\pi_{boatld}(\sigma_{color='red'}Boat))$ JOIN Reserves

sailorld	boatld	rDate
22	102	10/10/17
22	104	07/10/17
31	102	10/11/17
31	104	12/11/17
64	102	08/09/17
99	104	08/08/17

JOIN

Sailor

sailorld	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

How many tuples in the result? 6 tuples!

How many columns in the result? 6 columns!

EXERCISE 3: SOLUTION 2

 $\pi_{\text{SName}}((\pi_{\text{boatld}}(\sigma_{\text{color='red'}}\text{Boat})) \text{ JOIN Reserves JOIN Sailor})$

Dustin, Lubber, Horatio, Chris

	(σ _{color='red'} Boat) JOIN Reserves JOIN Sailor							
sailorId	boatld	rDate	sName	rating	age			
22	102	10/10/17	Dustin	7	45			
22	104	07/10/17	Dustin	7	45			
31	102	10/11/17	Lubber	8	55			
31	104	12/11/17	Lubber	8	55			
64	102	08/09/17	Horatio	7	35			
99	104	08/08/17	Chris	10	30			

Apply π_{sName} to above result:

SName

Dustin
Lubber
Horatio
Chris

EXERCISE 3: SUMMARY

Solution 1

 $\pi_{\text{SName}}((\sigma_{\text{color}='\text{red}'}\text{Boat}) \text{ JOIN } \text{Reserves } \text{JOIN } \text{Sailor})$

(6 tuples, 5 columns) + (6 tuples, 8 columns)

Solution 2

 $\pi_{\text{SName}}((\pi_{\text{boatld}}(\sigma_{\text{color='red'}}\text{Boat})) \text{ JOIN Reserves JOIN Sailor})$

(6 tuples, 3 columns) + (6 tuples, 6 columns)

Solution 2 is more efficient in terms of tuple size.

Query Optimization

Relational DBMSs do such optimizations based on relational algebra.

EXERCISE 4

Find the names of sailors who have reserved either a red or a green boat.

Dustin (22), Lubber (31), Horatio (64), Horatio (74), Chris (99)

 $\pi_{\text{SName}}(\pi_{\text{boatId}}(\sigma_{\text{color='red'} \vee \text{color='green'}} \text{Boat)}) \text{ JOIN Reserves JOIN Sailor)}$

Identify all red or green boats ($\sigma_{\text{color='red'} \vee \text{color='green'}}$ Boat), then find sailors who have reserved one of these boats (... JOIN Reserves JOIN Sailor).

 π_{boatld} is a nice optimization, but is not strictly needed to answer the query.

EXERCISE 5: SOLUTION I

Is this a solution?

Find the names of sailors who have reserved both a red and a green boat.

Dustin (22), Lubber (31)

 $\pi_{\text{SName}}((\sigma_{\text{color}='\text{red}' \land \text{color}='\text{green}'}\text{Boat}) \text{ JOIN Reserves JOIN Sailor})$

Boat

<u>boatld</u>	bName	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red
105	Serenity	cyan

No! Why?

Nothing is selected! Why?

The condition color='red' \(\scales \text{color='green' can } \frac{never}{} \text{be satisfied!} \)

EXERCISE 5: SOLUTION 2

Is this a solution?

 $\pi_{\text{SName}}((\sigma_{\text{color='red'} \lor \text{color='green'}}\text{Boat}) \text{ JOIN } \text{Reserves JOIN } \text{Sailor})$

Dustin (22), Lubber (31)

	What's		(ocolor='red' ∨ color='green'Boat) JOIN Reserves JOIN Sailor									
	the			rating	sName	rDate	boatld	sailorId	color	bName		
m?	roblen	р	45	7	Dustin	10/10/17	102	22	red	Interlake		
e	sName		45	7	Dustin	07/10/17	104	22	red	Marine		
	Dustin		55	8	Lubber	10/11/17	102	31	red	Interlake		
	Lubber	π_{sName}	55	8	Lubber	12/11/17	104	31	red	Marine		
 X	Horatio		35	7	Horatio	08/09/17	102	64	red	Interlake		
<u> </u>	Chris		30	10	Chris	08/08/17	104	99	red	Marine		
	011110		45	7	Dustin	08/10/17	103	22	green	Clipper		
			55	8	Lubber	06/11/17	103	31	green	Clipper		
			35	7	Horatio	08/09/17	103	74	green	Clipper		

The condition color='red' v color='green' includes sailors who have reserved only a red or only a green boat, as well as both a red and a green boat!

Must identify sailors who have reserved red boats, sailors who have reserved green boats, then find the intersection.

EXERCISE 5: SOLUTION 3

Is this a solution?

(intersect on sName)

$$\pi_{\text{SName}}((\sigma_{\text{color}='\text{red'}}\text{Boat}) \text{ JOIN} \text{ Reserves JOIN Sailor})$$

 $\pi_{\text{SName}}((\sigma_{\text{color='green'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor})$

Dustin (22), Lubber (31)

	(σ _{color='red'} Boat) JOIN Reserves JOIN Sailor								
bName	color	sailorId	boatld	rDate	sName	rating	age		
Interlake	red	22	102	10/10/17	Dustin	7	45		
Marine	red	22	104	07/10/17	Dustin	7	45		
Interlake	red	31	102	10/11/17	Lubber	8	55		
Marine	red	31	104	12/11/17	Lubber	8	55		
Interlake	red	64	102	08/09/17	Horatio	7	35		
Marine	red	99	104	08/08/17	Chris	10	30		

π_{SName}

Dustin

Lubber

Horatio

Chris

Since sName is not unique, there may be incorrect tuples in the intersection (i.e., Horatio is not unique).

 π_{sName}

SName
Dustin
Lubber
Horatio

	(σ _{color='green'} Boat) JOIN Reserves JOIN Sailor								
bName	color	sailorId	boatld	rDate	sName	rating	age		
Clipper	green	22	103	08/10/17	Dustin	7	45		
Clipper	green	31	103	06/11/17	Lubber	8	55		
Clipper	green	74	103	08/09/17	Horatio	7	35		

SName

Dustin

Lubber

Horatio

EXERCISE 5: SOLUTION 4

Is this a solution?

(intersect on sailorld, sName)

 $\pi_{\text{sName}}(\pi_{\text{sailorId, sName}}(\sigma_{\text{color='red'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor})$

 $\pi_{\text{sailorId, sName}}((\sigma_{\text{color='green'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor)})$

Dustin (22), Lubber (31)

	(σ _{color='red'} Boat) JOIN Reserves JOIN Sailor									
bName	color	sailorId	boatld	rDate	sName	rating	age			
Interlake	red	22	102	10/10/17	Dustin	7	45			
Marine	red	22	104	07/10/17	Dustin	7	45			
Interlake	red	31	102	10/11/17	Lubber	8	55			
Marine	red	31	104	12/11/17	Lubber	8	55			
Interlake	red	64	102	08/09/17	Horatio	7	35			
Marine	red	99	104	08/08/17	Chris	10	30			

 $\pi_{\text{sailorId, sName}}$

sailorld	sName
22	Dustin
31	Lubber
64	Horatio
99	Chris

sName
Dustin
Lubber

	_ 4
	~/
	v

	(σ _{color='green'} Boat) JOIN Reserves JOIN Sailor							
bName	color	sailorId	boatld	rDate	sName	rating	age	
Clipper	green	22	103	08/10/17	Dustin	7	45	
Clipper	green	31	103	06/11/17	Lubber	8	55	
Clipper	green	74	103	08/09/17	Horatio	7	35	

	sailorId	sName
:	22	Dustin
	31	Lubber
	74	Horatio

EXERCISE 5: SOLUTION 5

Is this a solution? (join on sName)

COMP 3311

 $\begin{array}{c} \pi_{\text{sName}}(\pi_{\text{sailorId, sName}}((\sigma_{\text{color='red'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor}) \\ \text{JOIN}_{\text{sName}} \\ \pi_{\text{sailorId, sName}}((\sigma_{\text{color='green'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor})) \end{array}$

Dustin (22), Lubber (31)

Since sName is not unique, there may be incorrect tuples in the join (i.e., there are two *different* sailors with the same name, Horatio).

	R1.sailorId	R1.sailorld sName	
	22	Dustin	22
=	31	Lubber	31
	64	Horatio	74

sName	
Dustin	\
Lubber	
Horatio	

L6: EXERCISES 30

74

Horatio

EXERCISE 5: SOLUTION 6

Is this a solution?

(join on sailorId)

$$\begin{split} \pi_{\text{sName}}(\pi_{\text{sailorId, sName}}((\sigma_{\text{color='red'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor}) \\ \text{JOIN}_{\text{sailorId}} \\ \pi_{\text{sailorId, sName}}((\sigma_{\text{color='qreen'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor})) \end{split}$$

Dustin (22), Lubber (31)

$\pi_{\text{sailorId, sName}}((\sigma_{\text{color='red'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor})$

sailorld	sName
22	Dustin
31	Lubber
64	Horatio
99	Chris
•	

JOINsailorld

 $\pi_{\text{sailorId, sName}}(\sigma_{\text{color='green'}}\text{Boat})$ JOIN Reserves JOIN Sailor)

sailorId	sName
22	Dustin
31	Lubber
74	Horatio

EXERCISE 6: SOLUTION I

Find the ids of sailors who have made at least two reservations on the same date.

22

We have to use rename: p_{R1} (Reserves), p_{R2} (Reserves)

 $\pi_{R1.sailorId}(\sigma_{R1.sailorId=R2.sailorId \land R1.rDate=R2.rDate \land R1.boatId <> R2.boatId}(\rho_{R1}(Reserves) \times \rho_{R2}(Reserves)))$

Or equivalently:

 $\pi_{R1.sailorId}(\rho_{R1}(Reserves) JOIN_{R1.sailorId=R2.sailorId \land R1.rDate=R2.rDate \land R1.boatId <> R2.boatId}, \rho_{R2}(Reserves))$

Find the ids of sailors who have made at least two reservations on the same date.

EXERCISE 6: SOLUTION I (CONTD)

 $\pi_{R1.sailorId}(\sigma_{R1.sailorId=R2.sailorId} \land R1.rDate=R2.rDate \land R1.boatId <> R2.boatId}(R1 X R2))$

Χ

R1

sailorld	boatld	rDate
22	101	10/10/17
22	102	10/10/17
22	103	08/10/17
22	104	07/10/17
31	102	10/11/17
31	103	06/11/17
31	104	12/11/17
64	101	05/09/17
64	102	08/09/17
74	103	08/09/17
99	104	08/08/17

R2

sailorld	boatld	rDate
22	101	10/10/17
22	102	10/10/17
22	103	08/10/17
22	104	07/10/17
31	102	10/11/17
31	103	06/11/17
31	104	12/11/17
64	101	05/09/17
64	102	08/09/17
74	103	08/09/17
99	104	08/08/17

Find the ids of sailors who have made at least two reservations on the same date.

EXERCISE 6: SOLUTION I (CONTD)

 $\pi_{R1.sailorId}(\sigma_{R1.sailorId=R2.sailorId \land R1.rDate=R2.rDate \land R1.boatId <> R2.boatId}(R1 X R2))$

	⊙ R1.sailorId=R2.sailorId ∧ R1.rDate=R2.rDate ∧ R1.boatId<>R2.boatId				
R1.sailorId	R1.boatld	R1.rDate	R2.sailorId	R2.boatId	R2.rDate
22	101	10/10/17	22	101	10/10/17
22	101	10/10/17	22	102	10/10/17
22	101	10/10/17	22	103	08/10/17
22	101	10/10/17	22	104	07/10/17
22	101	10/10/17	31	102	10/11/17
22	101	10/10/17	31	103	06/11/17
22	101	10/10/17	31	104	12/11/17
22	101	10/10/17	64	101	05/09/17
22	101	10/10/17	64	102	08/09/17
22	101	10/10/17	74	103	08/09/17
22	101	10/10/17	99	104	08/08/17
22	102	10/10/17	22	101	10/10/17
22	102	10/10/17	22	102	10/10/17
22	102	10/10/17	22	103	08/10/17
22	102	10/10/17	22	104	07/10/17
:	:	:	:	:	:

sailorld 22

 $\pi_{R1.sailorId} =$

EXERCISE 6: SOLUTION I (CONTO)

What do we get if we omit R1.rDate=R2.rDate?

○R1.sailorId=R2.sailorId ∧ R1.boatId<>R2.boatId					
R1.sailorId	R1.boatId	R1.rDate	R2.sailorId	R2.boatId	R2.rDate
22	101	10/10/17	22	102	10/10/17
22	101	10/10/17	22	103	08/10/17
22	101	10/10/17	22	104	07/10/17
22	102	10/10/17	22	101	10/10/17
22	102	10/10/17	22	103	08/10/17
22	102	10/10/17	22	104	07/10/17
22	103	08/10/17	22	101	10/10/17
22	103	08/10/17	22	102	10/10/17
22	103	08/10/17	22	104	07/10/17
22	104	07/10/17	22	101	10/10/17
22	104	07/10/17	22	102	10/10/17
22	104	07/10/17	22	103	08/10/17
31	102	10/11/17	31	103	06/11/17
31	102	10/11/17	31	104	12/11/17
31	103	06/11/17	31	102	10/11/17
31	103	06/11/17	31	104	12/11/17
		:		i	i

Sailors who have made more than one reservation.

 $\pi_{R1.sailorld} =$

sailorld
22
31
64

EXERCISE 6: SOLUTION I (CONTO)

What do we get if we omit R1.boatId<>R2.boatId?

	σ	R1.sailorId=R2.sailor	ld ∧ R1.rDate=R2.rDat	e	
R1.sailorId	R1.boatld	R1.rDate	R2.sailorId	R2.boatId	R2.rDate
22	101	10/10/17	22	101	10/10/17
22	101	10/10/17	22	102	10/10/17
22	102	10/10/17	22	101	10/10/17
22	102	10/10/17	22	102	10/10/17
22	103	08/10/17	22	103	08/10/17
22	104	07/10/17	22	104	07/10/17
31	102	10/11/17	31	102	10/11/17
31	103	06/11/17	31	103	06/11/17
31	104	12/11/17	31	104	12/11/17
64	101	05/09/17	64	101	05/09/17
64	102	08/09/17	64	102	08/09/17
74	103	08/09/17	74	103	08/09/17
99	104	08/08/17	99	104	08/08/17

Sailors who have made at least one reservation.

 $\pi_{R1.sailorId} =$

Salioriu
22
31
64
74
99

sailorld

Find the ids of sailors who have made at least two reservations on the same date.

EXERCISE 6: SOLUTION 2

 $\pi_{\text{sailorId}}(\text{sailorId}, \text{rDate} G_{\text{count}}(\text{sailorId}) >= 2(\text{Reserves}))$

Reserves

only this group has a count >= 2.

 $\pi_{\text{sailorId}} = 22$

Form groups based on the same values for sailorld and rDate.