Диференціальні рівняння

Диференціальні рівняння І-го порядку

- рівняння з відокремлюваними змінними
- однорідні рівняння
- лінійні рівняння
- рівняння в повних диференціалах
- Диференціальні рівняння ІІ-го порядку
- лінійні однорідні диференціальні рівняння другого порядку
- із сталими коефіцієнтами
- лінійні неоднорідні диференціальні рівняння **другого порядк**у
- із сталими коефіцієнтами

ЗВИЧАЙНІ диференціальні рівняння

Порядком диференціального рівняння називається найвищий порядок похідної - n, що містить рівняння (1). У цьому рівнянні x — незалежна змінна, y - шукана функція, y', y'', $y^{(n)}$ - похідні функції y.

Приклад: $y^{(4)} - y + x = 0$ - рівняння четвертого порядку.

3ДР

Функція $y=\varphi(x, C_1, C_2, ..., C_n)$, де x – аргумент, $C_1, C_2, ..., C_n$ – довільні сталі, називається загальним розв'язком диференціального рівняння n-го порядку, якщо при її підстановці в рівняння, воно перетворюється в тотожність.

Загальний розв'язок диференціального рівняння, що має вигляд $\Phi(x, y, C_1, C_2, ..., C_n) = 0$, називається загальним інтегралом диференціального рівняння.

Частинним розв'язком диференціального рівняння називають розв'язок, одержаний із загального розв'язку (інтегралу) цього рівняння при підстановці деяких фіксованих значень сталих величин $C_1, C_2, ..., C_n$.

Ці значення знаходять при, так званих, початкових умовах :

$$x = x_0, y = y_0, y' = y_1, ..., y^{(n)} = y_{n-1}$$

розв'язавши відповідну систему рівнянь відносно $C_1, C_2, ..., C_n$.

Задача знаходження часткового розв'язку диференціального рівняння при заданих початкових умовах називається задачею Коші.

Основні задачі теорії ЗДР:

- 1. знаходження диференціального рівняння та початкових умов, які описують ситуацію або процес, який досліджують;
- 2. розв'язування заданої задачі Коші або знаходження загального розв'язку заданого диференціального рівняння.

Приклад 1. (Закон природного зростання).

Закон, за яким швидкість зростання речовини пропорційна кількості речовини.

Потрібно знайти формулу для визначення кількості речовини у будьякий момент часу, якщо відомо, що у початковий момент часу t=0, кількість речовини дорівнювала y_0 .

Pозв'язання. Нехай y(t) — шукана кількість речовини в момент t.

Швидкість зростання речовини ϵ швидкість зміни функції y. Тоді закон

природного зростання:
$$\frac{dy}{dt} = ay, \tag{1'}$$

a>0 – коефіцієнт пропорційності.

За умовою задачі повинна виконуватись рівність:

$$y|_{t=0} = y_0$$
 . (2')

Математична модель закону природного зростання речовини – задача Коші для диф. рівняння першого порядку вигляду (1') з початковою умовою (2').

Рівняння (1') можна записати у вигляді

$$\frac{dy}{y} = adt$$
 abo $d(\ln y) = d(at)$.

Якщо диференціали двох функцій рівні, то функції можуть відрізнятись лише довільною сталою, тому

$$ln y = at + C.$$

Звідси, потенціюванням знаходимо

$$y = e^{at+C}. (3)$$

Формула (3) дає вираз для кількості речовини як функції часу. Вона містить довільну сталу C, яка може приймати довільні числові значення. Тому формула (3) дає не один, а нескінченну кількість розв'язків задачі.

Використовуючи початкові умови (2), одержимо:

$$y_0 = e^C$$
.

Отже, формула (3) тепер буде мати вигляд

$$y = y_0 e^{at} \,. \tag{4}$$

Це і є шукана формула.

За законом природного зростання (4) зростає кількість живих клітин, кристалів, населення.

Приклад 4. (Зростання інвестицій). Економісти встановили, що швидкість зростання інвестованого капіталу у будь-який момент часу t пропорційна величині капіталу із коефіцієнтом пропорційності рівним узгодженому відсотку R неперервного зростання капіталу. Треба знайти закон зростання інвестованого капіталу, враховуючи величину початкової (t=0) інвестиції K_0 .

Чъ Розв'язання. Спочатку побудуємо математичну модель цієї задачі.

Позначимо: K(t) – величина інвестованого капіталу у момент t

(шукана функція). Тоді
$$\frac{dK(t)}{dt}$$
 — швидкість зміни величини інвес-

тиції,
$$r = \frac{R}{100}$$
.

За умовою задачі маємо:

$$\begin{cases}
\frac{dK(t)}{dt} = rK(t) \\
K(t)|_{t=0} = K_0
\end{cases}$$
(9)

Одержали задачу Коші для диференціального рівняння першого порядку аналогічного рівнянню (1).

Тому загальним розв'язком диференціального рівняння буде функція

$$K(t) = e^{rt+C} = e^C e^{rt}$$
. (10)

Згідно з початковою умовою при t=0 маємо

$$K_0 = e^C$$
.

Отже, розв'язком задачі Коші (9) буде функція

$$K(t) = K_0 e^{rt} \,. \tag{11}$$

Це означає, що при умовах задачі інвестиції з часом зростать за експоненціальним законо.

Sus

ЗДР першого порядку

Звичайним диференціальним рівнянням першого порядку називаються рівняння виду:

$$F(x, y, y') = 0$$
 (2) and $y' = f(x, y)$ (3)

де x - незалежна змінна, y(x) - невідома функція

Загальний розв'язок: $y = \varphi(x, C)$

Частинний розв'язок при початкових умовах :

$$y = y_0 \quad x = x_0$$

знаходять розв'язавши рівняння $y_0 = f(x_0, C)$ відносно C.

Приклад: $y'(x) - 3 \cdot x = 0$ загальний розв'язок: $y(x) = \frac{3}{2}x^2 + c$

Зауваження. Немає загального методу знаходження розв'язків звичайних диференціальних рівнянь.

Рівняння з відокремлюваними змінними

1)
$$f(x)dx + g(y)dy = 0, \quad (4)$$

$$\int f(x)dx + \int g(y)dy = C \quad (5)$$

- загальний інтеграл (загальний розв'язок) цього рівняння.

Приклад: Знайти загальний розв'язок рівняння

2)
$$P_1(x)P_2(y)dy + Q_1(x)Q_2(y)dx = 0$$

Діленням на $P_1(x)Q_2(y)$ це рівняння зводиться до вигляду (4):

$$\frac{P_2(y)}{Q_2(y)}dy + \frac{Q_1(x)}{P_1(x)}dx = 0$$

Зауваження. Рівняння y' = f(x) g(y) еквівалентне рівнянню

$$\frac{dy}{dx} = f(x) \cdot g(y)$$

Поділивши його на g(y) і помноживши на dx отримуємо рівняння

$$\frac{dy}{g(y)} = f(x)dx$$

Це рівняння - з відокремлюваними змінними. Його загальний інтеграл:

$$\int \frac{dy}{g(y)} = \int f(x)dx + C$$

Приклад: $y' = x \cdot (y - 1);$

$$\frac{dy}{dx} = x \cdot (y-1); \qquad \frac{dy}{(y-1)} = x \cdot dx;$$

$$\int \frac{dy}{(y-1)} = \int x \cdot dx; \quad \ln|y-1| = \frac{x^2}{2} + C$$

Виразимо \mathbf{y} з останнього виразу як функцію \mathbf{x} , отримаємо загальний розв'язок:

$$y = Ce^{\frac{x^2}{2}} + 1$$

Приклад.

$$(y^2 - 4)dx = x \cdot y \cdot dy$$
, $y(1) = 2$.

Розв'язання. Розділимо змінні:
$$\frac{dx}{x} = -\frac{y}{v^2 - 4} dy$$
.

Проінтегруємо:
$$\int \frac{dx}{x} = -\int \frac{y}{v^2 - 4} dy$$
.

Знайдемо інтеграли у лівій та правій частині рівняння: $\int \frac{y}{v^2-4} dy = -\int \frac{dx}{x}$.

$$\int \frac{y}{y^2 - 4} dy = \begin{cases} po \delta u mo & 3 a mi + y : \\ y^2 - 4 = t; \\ d(y^2 - 4) = dt; \\ 2 y dy = dt \\ y dy = \frac{1}{2} dt \end{cases} = \frac{1}{2} \int \frac{dt}{t} = \ln |y^2 - 4| + C_1$$

$$\frac{1}{2}\ln|y^2 - 4| = -\ln|x| + \ln C; \quad \frac{1}{2}\ln|y^2 - 4| = \ln\left|\frac{C}{x}\right|; \quad \ln\left|(y^2 - 4)\right| = 2\ln\left|\frac{C}{x}\right|;$$

$$\ln\left|(y^2 - 4)\right| = \ln\left|\frac{C}{x}\right|^2; \quad \ln\left|(y^2 - 4)\right| = \ln\left|\frac{C^2}{x^2}\right| \quad y^2 - 4 = \frac{C^2}{x^2};$$

$$y^2 = \frac{C^2}{x^2} + 4$$
 - загальній розв'язок рівняння, або: $y = \pm \sqrt{\frac{C^2}{x^2} + 4}$.

Знайдемо частинний розв'язок диференціального рівняння із заданою початковою умовою y(1)=2: $2^2=\frac{C^2}{1^2}+4$; $4=C^2+4$; C=0.

Одже:
$$y = \pm \sqrt{\frac{0}{x^2} + 4}$$
; $y = \pm \sqrt{4}$; $y = \pm 2$ - **частинний розв'язок** диференціального рівняння із заданою почат ковою умовою

Однорідні рівняння

$$y'=f(x,y)$$

де f(x, y) така, що f(tx, ty) = f(x, y).

Це рівняння зводиться до рівняння з відокремлюваними змінними відносно нової незалежної функції u(x) заміною:

$$\frac{y(x)}{x} = u(x)$$

Підставляємо в рівняння $y = x \cdot u$, $y' = u + x \cdot u'$, отримаємо

$$u + xu' = f(u), x \frac{du}{dx} = f(u) - u,$$

(це - рівняння з відокремлюваними змінними),

$$\frac{du}{f(u)-u}=\frac{dx}{x}, \int \frac{du}{f(u)-u}=\int \frac{dx}{x}$$

- загальний інтеграл рівняння відносно змінних x, u

Приклад:
$$y' = \frac{y}{x} + \frac{x}{y}$$
, $u = \frac{y}{x}$, $y = ux$, $y' = u + u'x$,

$$u + u'x = u + \frac{1}{u}, \qquad x \frac{du}{dx} = \frac{1}{u}, \qquad udu = \frac{dx}{x},$$

$$\int u du = \int \frac{dx}{x}, \quad \frac{u^2}{2} = \ln |x| + \frac{C}{2}, \quad u^2 = 2 \ln |x| + C, \quad \frac{y^2}{x^2} = \ln x^2 + C,$$

$$y^2 = x^2 \left(C + \ln x^2 \right)$$

- загальний розв'язок рівняння

Приклад: $xy' = y \cos(\ln y - \ln x)$

$$y' = \frac{y}{x} \cos \ln \frac{y}{x}$$
 $u = \frac{y}{x}, y = ux,$

$$y' = u + u'x, u + u'x = u \cos \ln u, x \frac{du}{dx} = u \cosh u - u, \frac{du}{u(\cos \ln u - 1)} = \frac{dx}{x}, \int \frac{du}{u(\cos \ln u - 1)} = \int \frac{dx}{u(\cos \ln u - 1)}$$

$$\int \frac{du}{u(\cos \ln u - 1)} = \left| s = \ln u \right| = \int \frac{ds}{\cos s - 1} = \left| p = \operatorname{tg} \frac{s}{2} \right| = \int \frac{2dp/(1 + p^2)}{\frac{1 - p^2}{1 + p^2} - 1} = \int \frac{2dp}{-2p^2} = \frac{1}{p} = \operatorname{ctg} \frac{s}{2} + C = \operatorname{ctg} \frac{\ln u}{2} + C,$$

$$\cot \frac{\ln u}{2} = \ln |x| + \ln |C|$$

$$\cot \frac{\ln u}{2} = \ln |x| + \ln |C|$$

$$\cot \frac{\ln u}{2} = \cot \frac{\ln u}{2}$$

$$\cot Cx = e^{\cot \frac{\ln (y/x)}{2}}$$

Остаточно, отримаємо загальний розв'язок:

$$y = x \cdot e^{2arcctg(\ln x + C)}$$

Лінійні рівняння

ДР першого порядку називається лінійним, якщо невідома функція y(x) і її похідна входять до рівняння у першому степені, тобто:

 $\frac{dy}{dx} + p(x)y = q(x) \tag{6}$

де p(x), q(x) - неперервні функції.

Якщо q(x)=0, то рівняння (6) називається лінійним однорідним диференціальним рівнянням першого порядку.

Для розв'язання рівняння представимо y(x) в вигляді добутку двох нових невідомих функцій u(x) і v(x):

$$y(x) = u(x)v(x).$$

Тоді

$$y'(x) = u'(x)v(x) + u(x)v'(x)$$

і рівняння (6) матиме вид:

$$u'v + u(v' + p(x)v) = q(x)$$

Це рівняння розв'язуємо у два етапи: спочатку знаходимо функцію v(x) як частинний розв'язок рівняння з відокремлюваними змінними:

$$\mathbf{v}' + \mathbf{p}(\mathbf{x})\mathbf{v} = 0$$

$$\frac{dv}{dx} + p(x)v = 0 \Rightarrow \frac{dv}{v} = -p(x)dx \Rightarrow \int \frac{dv}{v} = -\int p(x)dx \Rightarrow \ln|v| = -\int p(x)dx \Rightarrow v = e^{-\int p(x)dx}$$

потім знаходимо u(x) з рівняння :

$$u'v = q(x)$$

$$e^{-\int p(x)dx} \cdot u'(x) = q(x) \Rightarrow u'(x) = q(x)e^{\int p(x)dx} \Rightarrow$$

$$\Rightarrow u(x) = \int q(x)e^{\int p(x)dx}dx + C$$

$$y(x) = e^{-\int p(x)dx} \left(\int q(x)e^{\int p(x)dx}dx + C \right)$$

$$y' - \operatorname{tg} x \cdot y = \frac{1}{\cos x}, y(0) = 1$$

Розв'язання:

$$y = uv$$
, $y' = u'v + uv'$, $u'v + uv' - tg x \cdot uv = \frac{1}{\cos x}$,

$$u'v + u(v' - v \operatorname{tg} x) = \frac{1}{\cos x}, \qquad \frac{dv}{dx} = \operatorname{tg} x \cdot v, \qquad v' - v \operatorname{tg} x = 0,$$

$$\int \frac{dv}{v} = \int \frac{\sin x dx}{\cos x}, \qquad \ln |v| = -\ln |\cos x|,$$

$$v = \frac{1}{\cos x},$$

$$\frac{u'}{\cos x} = \frac{1}{\cos x}, u(x) = x + C$$

і загальний розв'язок рівняння

$$y(x) = \frac{x + C}{\cos x}$$

Для знаходження частинного розв'язку, що відповідає початковим умовам (задача Коші), підставимо в загальний розв'язок

$$y(x) = \frac{x+C}{\cos x}$$
 $x = 0, y = 1: 1 = \frac{0+C}{\cos 0} \Rightarrow C = 1$

Розв'язок задачі:

$$y(x) = \frac{x+1}{\cos x}$$

Рівняння в повних диференціалах

так називається рівняння виду

$$P(x, y) dx + Q(x, y) dy = 0.$$
 (8)

(P(x, y), Q(x, y) - неперервно диференційовані) у випадку, якщо його ліва частина є повним диференціалом деякої функції u(x, y), тобто якщо існує така функція u(x, y), що

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial y}{\partial y} dy$$

Необхідною і достатньою умовою існування такої функції

$$\epsilon$$
 ymoba:
$$\frac{\partial P}{\partial v} = \frac{\partial Q}{\partial x}$$

Якщо (8) — рівняння в повних диференціалах, то воно приймає вигляд du(x, y) = 0. При розв'язанні одержимо du(x, y(x)) = 0, отже u(x, y(x)) = C, де C — довільна стала.

Співвідношення u(x, y) = C — загальний розв'язок рівняння в повних диференціалах.

Для знаходження функції u(x, y) потрібно розв'язати систему рівнянь

 $\begin{cases} \frac{\partial u}{\partial x} = P(x, y), \\ \frac{\partial u}{\partial y} = Q(x, y). \end{cases}$

з першого рівняння цієї системи знаходимо:

$$u(x,y) = \int P(x,y)dx + \varphi(y)$$

з точністю до довільної диференційованої по у функції $\varphi(y)$ (ця функція відіграє роль сталої інтегрування; оскільки інтегрування відбувається по змінній x.

Диференціюємо цю функцію по y і прирівнюємо до виразу, що стоїть у другому рівнянні системи (тобто Q(x,y)), отримаємо диференціальне рівняння з якого можна знайти $\varphi(y)$

Приклад: знайти загальний розв'язок рівняння $\left(\frac{\sin 2x}{y} + x\right) dx + \left(y - \frac{\sin^2 x}{y^2}\right) dy = 0$

Впевнимося, що це - рівняння в повних диференціалах.

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\sin 2x}{y} + x, & P(x,y) = \frac{\sin 2x}{y} + x; Q(x,y) = y - \frac{\sin^2 x}{y^2} \\ \frac{\partial u}{\partial y} = y - \frac{\sin^2 x}{y^2}. & \frac{\partial P}{\partial y} = -\frac{\sin 2x}{y^2}; \frac{\partial Q}{\partial x} = -\frac{2\sin x \cos x}{y^2} = -\frac{\sin 2x}{y^2} = \frac{\partial P}{\partial y} \\ u(x,y) = \int \left(\frac{\sin 2x}{y} + x\right) dx + \varphi(y) = -\frac{\cos 2x}{2y} + \frac{x^2}{2} + \varphi(y) \\ \frac{\partial u}{\partial y} = \frac{\cos 2x}{2y^2} + \varphi'(y) = y - \frac{\sin^2 x}{y^2} \\ \Rightarrow \varphi'(y) = y - \frac{1}{2y^2} \Rightarrow \qquad \varphi(y) = \int \left(y - \frac{1}{2y^2}\right) dy = \frac{y^2}{2} + \frac{1}{y} \\ u(x,y) = -\frac{\cos 2x}{2y} + \frac{x^2}{2} + \frac{y^2}{2} + \frac{1}{y} \end{cases}$$

ЗДР другого порядку

$$F(x, y, y', y'') = 0.$$
 (10)

$$y = \varphi(x, C_1, C_2)$$
. (11)

-- загальний розв'язок рівняння (10).

Деякі типи рівнянь, що допускають пониження порядку:

1. Рівняння, не містить в явному вигляді невідому функцію та похідні нижчого порядку.

Рівняння виду

$$y''=f(x)$$

розв'язується послідовним двократним інтегруванням, а саме:

$$y' = \int f(x)dx + C_1$$
$$y = \int \left[\int f(x)dx \right] dx + C_1 x + C_2$$

Приклад.

Знайти загальний розв'язок диференціального рівняння $y'' = x^2$.

Розв'язання. Робимо заміну: u(x) = u = y', тоді: y'' = u'(x).

Підставимо заміну в рівняння: $u' = x^2$ і запишемо похідну через

диференціали: $\frac{du}{dx} = x^2.$

Розв'яжемо одержане рівняння:

$$du = x^2 dx$$
; $\int du = \int x^2 dx$, звідки: $u = \frac{x^3}{3} + C_1$.

Після зворот ної заміни $u = y' = \frac{dy}{dx}$, одержимо рівняння: $\frac{dy}{dx} = \frac{x^3}{3} + C_1$.

Розв'яжемо рівняння:

$$dy = \left(\frac{x^3}{3} + C_1\right) dx; \qquad \int dy = \int \left(\frac{x^3}{3} + C_1\right) dx;$$

$$y = \frac{x^4}{12} + C_1 x + C_2$$
 - загальний розв'язок рівняння.

2. Рівняння не містить шукану функцію у

$$\frac{d^2y}{dx^2} = f(x, \frac{dy}{dx}) \tag{12}$$

Шляхом підстановки:

$$\frac{dy}{dx} = p, \frac{d^2y}{dx^2} = \frac{dp}{dx}$$

у (12), отримаємо рівняння першого порядку відносно функції p(x):

$$\frac{dp}{dx} = f(x, p)$$

 $\frac{dp}{dx} = f(x, p)$ Проінтегруємо це рівняння і знайдемо його загальний розв'язок:

$$p = p(x, C_1)$$
 $y' = p(x, C_1)$

Тоді загальний інтеграл матиме вигляд:

$$y = \int p(x, C_1) dx + C_2$$

Приклад.

Знайти загальний розв'язок диференціального рівняння: $y'' \cdot x - y' = 1$.

Розв'язання. Це рівняння, що не містить явно шуканої функції.

Робимо заміну:
$$y' = u(x)$$
, $y'' = u'(x)$.

Одержимо:
$$u'x - u = 1$$
, або $\frac{du}{dx}x = 1 + u$.

Розв'яжемо рівняння:
$$\frac{du}{1+u} = \frac{dx}{x}$$
;

$$\int \frac{du}{1+u} = \int \frac{dx}{x}; \quad \ln|1+u| = \ln|x| + \ln C_1; \quad \ln|1+u| = \ln|C_1 \cdot x|;$$

$$1 + u = C_1 \cdot x$$
; $u = C_1 x - 1$.

Так як
$$u = y' = \frac{dy}{dx}$$
, тоді $\frac{dy}{dx} = C_1 x - 1$.

Розв'яжемо останнє рівняння:
$$\int dy = \int (C_1 x - 1) dx.$$

$$y = -C_1 x - x + C_2$$
 - загальній розв'язок рівняння.

У рівнянні відсутній аргумент.

Дано рівняння:

$$y'' = f(y, y')$$
 (16)

Виконаємо заміну: $u(x) = u = y' = \frac{dy}{dx}$. Тоді: $y'' = u'(x) = \frac{du}{dx}$.

Так, як
$$dx = \frac{dy}{u}$$
, тоді: $y'' = \frac{du}{dy} = u\frac{du}{dy}$.

Підставимо y' = u і $y'' = u \frac{du}{dy}$ у рівняння (16), та одержимо рівняння:

$$u\frac{du}{dy} = f(y,C_1).$$

Якщо його розв'язком ε функція $u=\varphi(y,C_1)$, то, виконавши зворотну заміну $u=y'=\frac{dy}{dx}$, одержимо рівняння першого порядку: $\frac{dy}{dx}=\varphi(y,C_1)$.

Знайдемо його розв'язок:

$$\frac{dy}{\varphi(y,C_1)} = dx; \qquad \int \frac{dy}{\varphi(y,C_1)} = \int dx;$$

$$\int \frac{dy}{\varphi(y,C_1)} = x + C_2 \tag{17}$$

- загальний розв'язок диференціального рівняння другого порядку.

Приклад.

Знайти загальний розв'язок диференціального рівняння y'' = y'.

Розв'язання. Виконаємо заміну: $u = y' = \frac{dy}{dx}$ і $y'' = u \frac{du}{dy}$.

Одержимо звичайне диференціальне рівняння з відокремлюваними змінними: $u\frac{du}{dy} = u$.

Розділимо ліву і праву частини на u і розв'яжемо його:

$$\frac{du}{dy} = 1; du = dy; \int du = \int dy;$$

$$u = y + C_1.$$

Виконаємо зворотну заміну і розв'яжемо наступне рівняння:

$$\frac{dy}{dx}=y+C_1; \qquad \frac{dy}{y+C_1}=dx\;;$$

$$\int \frac{dy}{y+C_1}=\int dx\;; \qquad \ln \left|y+C_1\right|=x+C_2; \qquad e^{x+C_2}=y+C_1;$$

 $y = e^{x+C_2} - C_1$ - загальний розь'язок диференціального рівняння.

Приклад: Понизити порядок рівняння:

$$|yy''=y'^2-y'|,$$

Змінна x явно до рівняння не входить, тому вважаємо, y' = p(y) y'' = p'p

тоді
$$ypp'=p^2-p$$
.

Просто поділити на p це рівняння **неможливо**, оскільки можна втратити

розв'язки $p = 0 \Rightarrow y' = 0 \Rightarrow y = C$ тому розглядають **два випадки:**

$$p = 0 \Rightarrow y' = 0 \Rightarrow y = C$$

$$p \neq 0 \Rightarrow yp' = p - 1.$$

Лінійні однорідні диференціальні рівняння 2-го порядку.

Означення. Диференціальне рівняння другого порядку наз. nihiйним, якщо шукана функція y та її похідні y', y'', що входять у рівняння, мають тільки перший степінь:

$$a_0(x)y'' + a_1(x)y' + a_2(x)y = f(x)$$
 (16)

Коефіцієнти: $a_0(x), a_1(x), a_2(x), f(x)$ — задані функції від x, або сталі величини, є неперервними для всіх значень x.

Якщо $f(x) \neq 0$, то рівняння (16) наз. *лінійним неоднорідним* рівнянням, в іншому випадку- *лінійним однорідним*.

Лінійні однорідні диференціальні рівняння другого порядку із сталими коефіцієнтами

Рівняння виду

$$y''+py'+qy=0$$
, $p i q - сталi$, (18)

називається <u>лінійним однорідним</u> диференціальним рівнянням другого порядку із сталими коефіцієнтами.

Загальний розв'язок рівняння (16) має вигляд

$$y = C_1 y_1 + C_2 y_2, (19)$$

де y_1 і y_2 – два лінійно незалежних частинних розв'язки рівняння (18), C_1 та C_2 – довільні сталі.

Ці розв'язки знаходять у вигляді $y = e^{kx}$, де k — невизначена стала (дійсна або уявна). Для знаходження k складають характеристичне рівняння

$$k^2 + pk + q = 0. (20)$$

Розв'язуючи рівняння (20), знаходимо його корені k_1 і k_2 . Можливі такі три випадки.

1. Якщо D>0, то $k_1 \neq k_2$ — дійсні числа, тоді $y_1 = e^{k_1 x}$ та $y_2 = e^{k_2 x}$, а загальний розв'язок має вигляд

$$y = C_1 e^{k_1 x} + C_2 e^{k_2 x}. (21)$$

2. Якщо D=0, то $k_1=k_2=k$ – дійсне число, тоді $y_1=e^{kx}$ та $y_2=xe^{kx}$, а загальний розв'язок має вигляд

$$y = C_1 e^{kx} + C_2 x e^{kx}. (22)$$

3. Якщо D < 0, то k_1 та k_2 — комплексні числа $(k_1 = \alpha + \beta i$ і $k_2 = \alpha - \beta i$, $\beta \neq 0$), тоді $y_1 = e^{\alpha x} \cos \beta x$, $y_2 = e^{\alpha x} \sin \beta x$, а загальний розв'язок має вигляд

$$i^2 = -1, \alpha = -\frac{p}{2}, \beta = \sqrt{q - \frac{p^2}{4}} y = C_1 e^{\alpha x} \cos \beta x + C_2 e^{\alpha x} \sin \beta x.$$
 (23)

Приклад 6. Знайти загальний розв'язок диференціального рівняння:

1)
$$y'' - 5y' + 6y = 0$$
;

2)
$$y'' + 4y' + 13y = 0$$
;

3)
$$y'' + 6y' + 9y = 0$$
.

1) y'' - 5y' + 6y = 0. Складемо характеристичне рівняння: $k^2 - 5k + 6 = 0$.

Знайдемо його розв'язки: $D=25-24=1 \Rightarrow k_1=\frac{5+1}{2}=3, k_2=\frac{5-1}{2}=2$. Тоді, використовуючи формулу (21) маємо, що загальний розв'язок рівняння має вигляд: $y=C_1e^{2x}+C_2e^{3x}$.

2) y'' + 4y' + 13y = 0. Складемо характеристичне рівняння: $k^2 + 4k + 13 = 0$. Знайдемо його розв'язки:

$$D=16-52=-36 \Rightarrow k_1=\frac{-4+6i}{2}=-2+3i, k_2=\frac{-4-6i}{2}=-2-3i.$$

Тоді, використовуючи формулу (23) маємо, що загальний розв'язок рівняння має вигляд: $y = C_1 e^{-2x} \cos 3x + C_2 e^{-2x} \sin 3x$.

3) y'' + 6y' + 9y = 0. Складемо характеристичне рівняння і знайдемо його розв'язки : $k^2 + 6k + 9 = 0 \Rightarrow (k+3)^2 = 0 \Rightarrow k_1 = -3, k_2 = -3$. Тоді, використовуючи формулу (22) маємо, що загальний розв'язок рівняння має вигляд: $y = C_1 e^{-3x} + C_2 x e^{-3x}$.

Лінійні неоднорідні диференціальні рівняння другого порядку із сталими коефіцієнтами

Рівняння виду

$$y''+py'+qy = f(x),$$
 (24)

де p і q — сталі, а f(x) — деяка неперервна функція на відрізку [a;b], називається <u>лінійним неоднорідним</u> диференціальним рівнянням другого порядку із сталими коефіцієнтами.

Рівняння y''+py'+qy=0 у цьому випадку називається <u>відповідним лінійним</u> <u>однорідним диференціальним рівнянням</u>.

Загальний розв'язок рівняння (24) знаходять у вигляді суми загального розв'язку відповідного однорідного диференціального рівняння та деякого частинного розв'язку неоднорідного рівняння, тобто

$$y = y + y^*, \tag{25}$$

де $y = C_1 y_1 + C_2 y_2$ — загальний розв'язок відповідного однорідного диференціального рівняння, а y^* — частинний розв'язок неоднорідного рівняння.

Загальний розв'язок відповідного однорідного диференціального рівняння знаходяться за формулами (21-23). Щоб знайти частинний розв'язок неоднорідного рівняння використовують метод варіації довільних сталих, який дає змогу визначити частинний розв'язок неоднорідного рівняння за загальним розв'язком відповідного однорідного рівняння.

Нехай $y = C_1 y_1 + C_2 y_2$ загальний розв'язок відповідного однорідного диференціального рівняння. Замінимо C_1 і C_2 невідомими функціями $C_1(x)$ і $C_2(x)$ та підберемо їх такими, щоб функція

$$y^* = C_1(x)y_1 + C_2(x)y_2$$
 (26) була частинним розв'язком неоднорідного диференціального рівняння. Для визначення невідомих функцій $C_1(x)$ і $C_2(x)$ необхідно розв'язати систему рівнянь:

ынянь: $\begin{cases} C_{1}^{'}(x)y_{1} + C_{2}^{'}(x)y_{2} = 0, \\ C_{1}^{'}(x)y_{1}^{\prime} + C_{2}^{'}(x)y_{2}^{\prime} = f(x). \end{cases}$

$$(y^*)' = C_1(x)y_1(x) + C_1(x)y_1(x) + C_2(x)y_2(x) + C_2(x)y_2(x)$$

$$C'_1(x)y_1(x) + C'_2(x)y_2(x) = 0$$

$$(y^*)' = C_1(x)y_1(x) + C_2(x)y_2(x)$$

$$(y^*)'' = C_1(x)y_1(x) + C_1(x)y_1(x) + C_2(x)y_2(x) + C_2(x)y_2(x)$$

Підставивши отримані співвідношення в (24) отримаємо:

$$C'_1(x)y_1'(x) + C'_2(x)y_2'(x) = f(x)$$

Теорема: Якщо функції y_1 і y_2 лінійно незалежні розв'язки однорідного диференціального рівняння на проміжку (a;b), то визначник $\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} \neq 0$ в кожній точці даного проміжку.

Визначник системи $\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} \neq 0$, тому що y_1 і y_2 - лінійно незалежні частинні розв'язки відповідного однорідного рівняння. Отже, дана система має

єдиний розв'язок: $C'_1(x) = \varphi(x)$, $C'_2(x) = \psi(x)$. Проінтегрувавши дані функції знайдемо $C_1(x) = \int \varphi(x) dx$ і $C_2(x) = \int \psi(x) dx$, а потім підставивши їх у формулу (26) отримаємо частинний розв'язок неоднорідного диференціального рівняння:

$$y^* = C_1(x)y_1 + C_2(x)y_2 = \int \varphi(x)dx \cdot y_1 + \int \psi(x)dx \cdot y_2.$$

Приклад 7. Знайти загальний розв'язок неоднорідного рівняння:

$$y'' + 4y = \frac{1}{\cos 2x}.$$

Розв'язання.

Загальний розв'язок заданого рівняння має вигляд: $y = y + y^*$.

Знайдемо \bar{y} . Для цього випишемо відповідне однорідне рівняння та розв'яжемо його.

$$y'' + 4y = 0$$
; $k^2 + 4 = 0 \Rightarrow k_{1,2} = \pm 2i \Rightarrow \bar{y} = C_1 \cos 2x + C_2 \sin 2x$.

Запишемо частинний розвязок даного неоднорідного рівняння у вигляді

$$y^* = C_1(x)\cos 2x + C_2(x)\sin 2x$$
.

Для знаходження невідомих функцій $C_1(x)$ і $C_2(x)$ складемо систему $\begin{cases} C_1'(x)\cos 2x + C_2'(x)\sin 2x = 0, \\ -2C_1'(x)\sin 2x + C_2'(x)\cos 2x = \frac{1}{\cos 2x} \end{cases}$

Розв'язавши дану систему отримаємо:
$$C_1'(x) = -\frac{1}{2}tgx$$
 і $C_2'(x) = \frac{1}{2}$. Тоді

$$C_1(x) = -\int \frac{1}{2} t g x dx = \frac{1}{4} \ln |\cos 2x|$$
, а $C_2(x) = \int \frac{1}{2} dx = \frac{x}{2}$. Запишемо частинний

розв'язок неоднорідного рівняння:
$$y^* = \frac{1}{4} \ln \left| \cos 2x \right| \cdot \cos 2x + \frac{x}{2} \sin 2x$$
.

Загальний розв'язок заданого неоднорідного диференціального рівняння буде таким:

$$y = \bar{y} + y^* = C_1 \cos 2x + C_2 \sin 2x + \frac{1}{4} \ln|\cos 2x| \cdot \cos 2x + \frac{x}{2} \sin 2x$$

Лінійні неоднорідні диференціальні рівняння другого порядку із сталими коефіцієнтами та спеціальною правою частиною

Якщо права частина рівняння (24) має спеціальний вигляд, то частинний розв'язок y^* можна знаходити, не вдаючись до інтегрування. Розглянемо деякі з таких випадків.

1) Нехай права частина рівняння (24) має вигляд

$$f(x) = e^{\alpha x} P_n(x), \tag{27}$$

де α – дійсне число, $P_n(x)$ – многочлен степеня n.

Тоді частинний розв'язок цього рівняння шукають у вигляді

$$y^* = x^r e^{\alpha x} Q_n(x), \tag{28}$$

де $Q_n(x)$ – многочлен з невизначеними коефіцієнтами того самого степеня, що і многочлен $P_n(x)$;

r – число коренів характеристичного рівняння, які дорівнюють α , якщо α не є коренем характеристичного рівняння, то приймають r=0.

2) Нехай права частина рівняння (24) має вигляд

$$f(x) = e^{\alpha x} (P_n(x) \cos \beta x + R_m(x) \sin \beta x). \tag{29}$$

Функція (27) є частинним випадком функції (29) при $\beta = 0$.

Тоді частинний розв'язок цього рівняння шукають у вигляді

$$y^* = x^r e^{\alpha x} (Q_s(x) \cos \beta x + L_s(x) \sin \beta x), \tag{30}$$

де $Q_s(x)$ та $L_s(x)$ – многочлени степеня s з невизначеними коефіцієнтами;

s – найвищий степінь многочленів $P_n(x)$ та $R_m(x)$;

r – число коренів характеристичного рівняння, які дорівнюють $\alpha + \beta i$.

Шукані многочлени $Q_n(x)$ з формули (28) та $Q_s(x)$ і $L_s(x)$ з формули (30) мають бути повними, тобто містити всі степені x відповідно від 0 до n та від 0 до s.

Приклад 8. Знайти розв'язок задачі Коші:

1)
$$y''-3y'-4y=17\sin x$$
; $y(0)=0$, $y'(0)=1$.

2)
$$y''-8y'+16y = e^{4x}$$
; $y(0) = 0$, $y'(0) = 1$.

3)
$$y''+2y+2y=x^2e^{-x}$$
; $y(0)=0$, $y'(0)=1$.

1)
$$y''-3y'-4y=17\sin x$$
; $y(0)=0$, $y'(0)=1$.

Дане рівняння є неоднорідним диференціальним рівнянням з сталими коефіцієнтами. Знайдемо розв'язок характеристичного рівняння відповідного однорідного диференціального рівняння.

$$k^2 - 3k - 4 = 0 \implies k_1 = -1, k_2 = 4.$$

Корені характеристичного рівняння дійсні та різні, тоді за формулою (21) загальний розв'язок відповідного однорідного диференціального рівняння такий

$$\overline{y} = C_1 e^{-x} + C_2 e^{4x}$$
.

Знайдемо частинний розв'язок у* даного неоднорідного рівняння. Функція у правій частині даного рівняння $f(x) = 17 \sin x -$ подана у вигляді (28), тобто $f(x) = e^{0x}(0 \cdot \cos x + 17\sin x)$. Тому розв'язок шукатимемо у вигляді (29) $v^* = x^r e^{\alpha x} (Q_s(x) \cos \beta x + L_s(x) \sin \beta x),$ де $\alpha = 0$, $\beta = 1 \Rightarrow \alpha + \beta i = i$; r=0, так як $\alpha + \beta i \neq k_1$ і $\alpha + \beta i \neq k_2$; s = 0, так як $P_n(x) = 0$, $R_m(x) = 17 \implies n = m = 0$, тому $Q_0(x) = A$, $L_0(x) = B$. Звідси:

$$y^* = x^0 e^0 (A\cos x + B\sin x) = A\cos x + B\sin x,$$

$$(y^*)' = -A\sin x + B\cos x,$$

$$(y^*)'' = -A\cos x - B\sin x.$$

Підставляємо у задане рівняння:

$$y'' = (y^*)'', y' = (y^*)', y = y^*.$$

- $A\cos x - B\sin x - 3(-A\sin x + B\cos x) - 4(A\cos x + B\sin x) = 17\sin x.$

Розкриємо дужки та згрупуємо доданки у лівій частині відносно $\cos x$ та $\sin x$:

$$(-5A-3B)\cos x + (3A-5B)\sin x = 17\sin x$$
.

Прирівнюючи коефіцієнти біля $\cos x$ та $\sin x$, одержимо

$$\begin{cases} -5A - 3B = 0, \\ 3A - 5B = 17; \end{cases} \Rightarrow \begin{cases} A = -\frac{3}{5}B, \\ -\frac{9}{5}B - 5B = 17; \end{cases} \Rightarrow \begin{cases} A = \frac{3}{2}, \\ B = -\frac{5}{2}. \end{cases}$$

Звідси
$$y^* = \frac{3}{2}\cos x - \frac{5}{2}\sin x$$
.

Таким чином, знайшовши загальний розв'язок \bar{y} відповідного однорідного та частинний розв'язок y^* неоднорідного рівняння, можемо записати загальний розв'язок даного рівняння

$$y = y + y^* = C_1 e^{-x} + C_2 e^{4x} + \frac{3}{2} \cos x - \frac{5}{2} \sin x.$$

Розв'яжемо задачу Коші при y(0) = 0, y'(0) = 1. Для цього знайдемо y'

$$y' = -C_1 e^{-x} + 4C_2 e^{4x} - \frac{3}{2} \sin x - \frac{5}{2} \cos x.$$

Підставивши початкові умови, одержимо

$$y(0) = C_1 + C_2 + \frac{3}{2} = 0 \implies C_1 + C_2 = -\frac{3}{2},$$

$$y'(0) = -C_1 + 4C_2 - \frac{5}{2} = 1 \implies C_1 = 4C_2 - \frac{7}{2}. \implies$$

$$\Rightarrow \begin{cases} C_1 + C_2 = -\frac{3}{2}, \\ C_1 = 4C_2 - \frac{7}{2}; \end{cases} \Rightarrow \begin{cases} C_2 = \frac{2}{5}, \\ C_1 = -\frac{19}{10}. \end{cases}$$

Таким чином, отримаємо відповідь:

$$y = \overline{y} + y^* = -\frac{19}{10}e^{-x} + \frac{2}{5}e^{4x} + \frac{3}{2}\cos x - \frac{5}{2}\sin x$$
.

2)
$$y''-8y'+16y = e^{4x}$$
; $y(0) = 0$, $y'(0) = 1$.

Дане рівняння ϵ неоднорідним диференціальним рівнянням з постійними коефіцієнтами.

Знайдемо розв'язок характеристичного рівняння відповідного однорідного диференціального рівняння.

$$k^2 - 8k + 16 = 0 \implies k_1 = k_2 = 4 \implies k = 4.$$

Корені характеристичного рівняння дійсні та рівні, тоді за формулою $y = C_1 e^{kx} + C_2 x e^{kx}$ загальний розв'язок відповідного однорідного диференціального рівняння такий

$$\bar{y} = C_1 e^{4x} + C_2 x e^{4x}$$
.

Знайдемо частинний розв'язок y^* даного неоднорідного рівняння. Функція у правій частині даного рівняння $f(x) = e^{4x}$ — подана у вигляді (26), причому $P_n(x) = 1$ — многочлен нульового порядку, тобто n = 0. Тому розв'язок шукатимемо у вигляді

$$y^* = x^r e^{\alpha x} Q_n(x),$$

де $\alpha=4$; r=2, так як $\alpha=k_1$ і $\alpha=k_2$; n=0 (порядок многочлена $P_n(x)$), тому $Q_0(x)=A$.

Звідси

$$y^* = Ax^2 e^{4x},$$

$$(y^*)'=2Axe^{4x}+4Ax^2e^{4x},$$

$$(y^*)'' = 2Ae^{4x} + 8Axe^{4x} + 8Axe^{4x} + 16Ax^2e^{4x} = 2Ae^{4x} + 16Axe^{4x} + 16Ax^2e^{4x}.$$

Підставляємо у задане рівняння:

$$y''=(y^*)'', y'=(y^*)', y=y^*.$$

$$2Ae^{4x} + 16Axe^{4x} + 16Ax^{2}e^{4x} - 8(2Axe^{4x} + 4Ax^{2}e^{4x}) + 16(Ax^{2}e^{4x}) = e^{4x},$$

$$e^{4x}(2A + 16Ax + 16Ax^{2} - 16Ax - 32Ax^{2} + 16Ax^{2}) = e^{4x},$$

$$2A=1 \Rightarrow A=\frac{1}{2}$$
.

Звідси $y^* = \frac{1}{2}x^2e^{4x}$. Таким чином, знайшовши загальний розв'язок y відповідного однорідного та частинний розв'язок y^* неоднорідного рівняння,

можемо записати загальний розв'язок даного рівняння

$$y = y + y^* = C_1 e^{4x} + C_2 x e^{4x} + \frac{1}{2} x^2 e^{4x}$$
.

Знайдемо розв'язок задачі Коші при початкових умовах y(0) = 0, y'(0) = 1.

$$y' = 4C_1e^{4x} + C_2e^{4x} + 4C_2xe^{4x} + xe^{4x} + 2x^2e^{4x} =$$

$$= e^{4x}(4C_1 + C_2 + (4C_2 + 1)x + 2x^2).$$

Підставивши початкові умови, одержимо

$$y(0) = C_1 = 0,$$

 $y'(0) = 4C_1 + C_2 = 1 \implies C_2 = 1.$

Таким чином, дістанемо відповідь:

$$y = xe^{4x} + \frac{1}{2}x^2e^{4x} = (x + \frac{1}{2}x^2)e^{4x}$$
.

3)
$$y''+2y'+2y = x^2e^{-x}$$
; $y(0) = 0$, $y'(0) = 1$.

Дане рівняння є неоднорідним диференціальним рівнянням з постійними коефіцієнтами.

Знайдемо розв'язок характеристичного рівняння відповідного однорідного диференціального рівняння.

$$k^{2} + 2k + 2 = 0 \Rightarrow D = 4 - 8 = -4 = (2i)^{2} \Rightarrow k_{1} = -1 - i, k_{2} = -1 + i.$$

Корені характеристичного рівняння комплексні ($\alpha = -1$, $\beta = 1$), тоді за формулою $y = C_1 e^{\alpha x} \cos \beta x + C_2 e^{\alpha x} \sin \beta x$ (21) загальний розв'язок відповідного однорідного диференціального рівняння такий

$$\overline{y} = C_1 e^{-x} \cos x + C_2 e^{-x} \sin x = e^{-x} (C_1 \cos x + C_2 \sin x).$$

Знайдемо частинний розв'язок y^* даного неоднорідного рівняння. Функція у правій частині даного рівняння $f(x) = x^2 e^{-x}$ — подана у вигляді (26), причому $P_n(x) = x^2$ — многочлен другого порядку, тобто n = 2. Тому розв'язок шукатимемо у вигляді

$$y^* = x^r e^{\alpha x} Q_n(x),$$

де $\alpha = -1$; r = 0, так як $\alpha \neq k_1$ і $\alpha \neq k_2$;

n=2 (порядок многочлена $P_n(x)$), тому $Q_2(x) = Ax^2 + Bx + C$ (повний многочлен другого порядку).

Звідси

$$y^* = x^0 e^{-x} (Ax^2 + Bx + C) = e^{-x} (Ax^2 + Bx + C),$$

 $(y^*)' = -e^{-x} (Ax^2 + Bx + C) + e^{-x} (2Ax + B) = e^{-x} (-Ax^2 + (2A - B)x + B - C),$
 $(y^*)'' = -e^{-x} (-Ax^2 + (2A - B)x + B - C) + e^{-x} (-2Ax + 2A - B) =$
 $= e^{-x} (Ax^2 + (-4A + B)x + 2A - 2B + C).$
Підставляємо у задане рівняння : $y'' = (y^*)'', y' = (y^*)', y = y^*.$
 $e^{-x} (Ax^2 + (-4A + B)x + 2A - 2B + C) + 2e^{-x} (-Ax^2 + (2A - B)x + B - C) + 2e^{-x} (Ax^2 + Bx + C) = x^2 e^{-x},$

$$e^{-x}(Ax^2 + Bx + 2A + C) = x^2e^{-x},$$

 $Ax^2 + Bx + 2A + C = x^2.$

Прирівнюючи коефіцієнти біля відповідних степенів х одержуємо:

$$\begin{cases} A=1, \\ B=0, \Rightarrow \begin{cases} A=1, \\ B=0, \\ 2A+C=0; \end{cases} \Rightarrow \begin{cases} C=-2. \end{cases}$$

Звідси $y^* = e^{-x}(x^2 - 2)$. Таким чином, знайшовши загальний розв'язок y відповідного однорідного та частинний розв'язок y^* неоднорідного рівняння, можемо записати загальний розв'язок даного рівняння

$$y = y + y^* = e^{-x} (C_1 \cos x + C_2 \sin x) + e^{-x} (x^2 - 2) =$$

$$= e^{-x} (C_1 \cos x + C_2 \sin x + x^2 - 2),$$

Знайдемо розв'язок задачі Коші. Для цього знайдемо у':

$$y' = -e^{-x}(C_1\cos x + C_2\sin x + x^2 - 2) + e^{-x}(-C_1\sin x + C_2\cos x + 2x) =$$

$$= e^{-x}(-C_1\cos x - C_2\sin x - x^2 + 2 - C_1\sin x + C_2\cos x + 2x) =$$

$$= e^{-x}((-C_1 + C_2)\cos x + (-C_1 - C_2)\sin x - x^2 + 2x + 2).$$

Підставивши початкові умови y(0) = 0, y'(0) = 1, одержимо

$$y(0) = C_1 - 2 = 0 \implies C_1 = 2,$$

 $y'(0) = -C_1 + C_2 + 2 = 1 \implies C_2 = 1.$

Таким чином, одержимо відповідь:

$$y = e^{-x}(2\cos x + \sin x + x^2 - 2).$$