BIMA - Examen session 1

6 janvier 2015

Le barème, sur 40, donné à titre indicatif, est susceptible d'être modifié. Aucun document ni machine électronique ne sont autorisés. Durée de l'examen : 2h.

Exercice 1 Questions de cours (12 points)

- 1. Expliquer le principe du filtrage numérique anti-aliasing (3 lignes max).
- 2. Soit un ensemble de données vectorielles de taille 100. Peut-on réduire la taille des données à 3 sans aucune perte (processus réversible) avec une ACP (3 lignes max)?
- 3. Est ce que le détecteur de Harris est invariant à une rotation de l'image ? à un changement d'échelle ? Justifier (3 lignes max).
- 4. peut-on faire une ALD lorsqu'on ne connait pas les classes des individus (données vectorielles) considérés? (2 lignes max)
- 5. Quelle est la principale différence entre les descripteurs SIFT et DAISY?
- 6. Donner deux filtres d'ordre 1 et un filtre d'ordre 2 permettant de réaliser une détection de contours.
- 7. Rappeler brièvement les avantages et inconvénients des filtres d'ordre 1 par rapport aux filtres d'ordre 2 (4 lignes max)
- 8. On souhaite segmenter une image avec une méthode de type *Mean Shift* et une méthode de type *Split and Merge*. Quelle est la différence **fondamentale** entre ces deux méthodes en ce qui concerne les propriétés topologiques des ensembles résultants (3 lignes max).

Exercice 2 Traitement d'images (10 points)

On considère l'image initiale donnée à la Figure 1a), qui a été bruitée avec un bruit "poivre et sel" - Figure 1b). On rappelle que ce bruit consiste à modifier aléatoirement un pourcentage p des pixels en leur affectant ¹ le niveau de gris 0 (noir) ou 255. Dans la Figure 1b), on a p = 10%.

- 1. Écrire le code matlab/octave d'une fonction $J = salt_peper_noise(I,p)$ qui renvoie une image bruitée par un bruit poivre et sel avec p% de pixels modifiés.
- 2. On va filtrer l'image de la la figure 1b) avec un filtre médian 3×3 .

 Rappel : ce filtrage coniste à trier les niveau de gris dans un voisinage et à affecter au pixel considéré la valeur médiane après tri.
 - Le filtrage médian est-il linéaire? Justifier.

^{1.} une fois sur deux

- Écrire le code matlab/octave d'une fonction J = median(I,d) qui effectue le filtrage médian par un filtre de taille $d \times d$. N.B.: on effectuera un zero-padding.
- Donner l'image résultant du filtrage de la figure 1b) pour un filtre médian 3×3 .
- 3. On va filtrer l'image de la la figure 1b) avec un filtre moyenneur 3×3 .
 - Rappeler le principe du filtre moyenneur.
 - Donner l'image résultant du filtrage de la figure 1b) pour un filtre moyenneur 3×3 .
- 4. Calculer l'erreur après filtrage pour les filtres médian et moyenneur. Lequel semble le plus adapté? Expliquer.

FIGURE 1 – Débruitage d'image

Exercice 3 Transformée de Fourier (5 points)

- Quelle est la fonction 2d qui correspond à l'image source de la Figure 2? Quelle est la forme analytique attendue pour sa transformée de Fourier?
- Parmi les tranformées de Fourier TF1, TF2 ou TF3, quel est celui correspondant à l'image source de la Figure 2? Justifier.

FIGURE 2 – Associer une image à sa transformée de Fourier

Exercice 4 Complexité du filtrage spatial et fréquentiel (7 points)

Filtrage dans le domaine spatial

On considère un filtre RIF défini par le masque de convolution h(n, m) discret de taille $K \times K$. On veut effectuer le filtrage d'une image x de taille $M \times N$ par ce filtre, donnant une image x_f . On rappelle que le filtrage se traduit par un produit de convolution, $x_f = x \star h$.

- 1. Combien d'opérations faut-il effectuer pour calculer la valeur de x_f au pixel (n, m).
- 2. Quelle est la complexité globale du filtrage spatial?

Filtrage dans le domaine fréquentiel

Pour un signal 1d de taille N, on rappelle qu'il existe des algorithmes efficaces pour le calcul de la transformée de Fourier discrète, de complexité $N\log_2(N)$. Pour une image, le calcul de la transformée de Fourier consiste à effectuer successivement deux transformées 1d : une sur les lignes, puis une sur les colonnes (ou l'inverse).

- 1. Rappeler le traitement à effectuer pour filtrer une image dans le domaine fréquentiel.
- 2. Quelle est la complexité du calcul de la transformée de Fourier discrète pour une image de taille $M \times N$?

 $\underline{\mathbf{indication}}: \text{on rappelle que } \log(a \cdot b) = \log(a) + \log(b).$

3. Quelle est la complexité globale du filtrage fréquentiel?

Comparaison filtrage dans le domaine spatial v.s. fréquentiel

Quel est le filtrage le plus efficace? De quoi cela dépend-il?

- On veut filtrer une image de taille N=M=1024 pixels avec un masque de taille 3, quel va être le traitement le plus efficace? Justifier.
- On veut filtrer une image de taille N=M=128 pixels avec un masque de taille 13, quel va être le traitement le plus efficace? Justifier.

Exercice 5 Interpolation (6 points)

On considère un signal continu x(t) et X(f) = TF[x(t)] sa transformée de Fourier. Soit $\delta(t)$ la distribution de Dirac : $\delta(t) = \begin{cases} 0 & \text{si } t \neq 0 \\ \infty & \text{sinon} \end{cases}$. On suppose qu'on a échantillonné x(t) pour produire un signal discret selon le modèle d'échantillonage idéal :

$$x_e(t) = \sum_{k=-\infty}^{+\infty} x(t)\delta(t - kT_e) = \sum_{k=-\infty}^{+\infty} x(kT_e)\delta(t - kT_e)$$

On rappelle que l'échantillonage se traduit par une périodisation du spectre dans le domaine fréquentiel :

$$X_e(f) = \frac{1}{T_e} \sum_{k=-\infty}^{+\infty} X(f - kf_e)$$

L'interpolation consiste, à partir du signal discret $x_e(t)$, à déterminer un signal $x_i(t)$ tel que $x_i(kT_e) = x_e(kT_e)$, les valeurs entre les échantillons discrets dépendant de la méthode d'interpolation choisie. L'interpolation est dite "idéale" si le signal interpolé $x_i(t)$ coïncide avec le signal continu x(t) de départ (ceci n'est possible que si le théorème de Shannon est vérifié).

Rappel:

- Propriétés de la distribution de Dirac :
 - $-x(t) \delta(t-t_0) = x(t_0) \delta(t-t_0)$
 - $-x \star \delta(t t_0) = x(t t_0)$
- La fonction "rectangle" Rect(t) s'écrit de la manière suivante :

$$Rect(t) = \begin{cases} 1 & \text{si } |t| \le \frac{1}{2} \\ 0 & \text{sinon} \end{cases}$$
 (1)

Et $TF[Rect(t)] = sinc(\pi f)$.

- 1. On suppose dans la suite que x(t) est un signal tel que X(f) = 0 pour $|f| > f_m = \frac{1}{4}$, et qu'on échantillonne x(t) pour produire $x_e(t)$ avec $T_e = 1$. Le signal est-il échantillonné conformément au théorème de Shannon? Justifier. Représenter graphiquement $X_e(f)$.
- 2. L'interpolation du signal échantillonné peut s'écrire dans le domaine fréquentiel, de la manière suivante : $X_i(f) = X_e(f)H(f)^2$, où H(f) est la fonction de transfert définissant le filtre d'interpolation. Montrer alors que l'interpolation peut s'écrire dans le domaine temporel de la manière suivante, avec une fonction h(t) que l'on précisera :

$$x_i(t) = \sum_{k = -\infty}^{+\infty} x(k)h(t - k)$$
 (2)

3. Soit la méthode d'interpolation définie par h(t) = Rect(t). Que vaut $x_i(t)$? Quelle méthode d'interpolation reconnaissez-vous? L'interpolation est-elle idéale? Quelles en sont les conséquences?

^{2.} produit simple dans le domaine de Fourier