LinkedIn GreyKite Forecast - Queens Rolling Data

Here I will do the following:

- 1. Import necessary modules
- 2. Import the data
- 3. Prepare data to work with greykite
- 4. Forecast 30 days ahead with greykite
- 5. Note observation of what prices the model predicts

```
In [2]: import sys
         sys.path.append('../greykite')
In [3]:
        import pandas as pd
         import greykite
         from greykite.framework.templates.autogen.forecast_config import ForecastConfig
         from greykite.framework.templates.autogen.forecast_config import MetadataParam
         from greykite.framework.templates.forecaster import Forecaster
         from greykite.framework.templates.model_templates import ModelTemplateEnum
         import datetime
         import plotly
         #Supress default INFO logging
         %matplotlib inline
         import warnings
         warnings.filterwarnings('ignore')
         import logging
         logger = logging.getLogger()
         logger.setLevel(logging.CRITICAL)
         import logging, sys
         warnings.simplefilter(action='ignore', category=FutureWarning)
In [4]: | df = pd.read_csv('datasets/rollingsales_queens.xls_prepped_bare.csv', usecols=['
In [5]: | df['SALE DATE'] = pd.to_datetime(df['SALE DATE'])
In [6]: df.dropna(inplace=True)
         df.reset_index(drop=True)
Out[6]:
                SALE PRICE SALE DATE
                            2020-07-16
             0
                   4121000
             1
                    584569
                            2020-08-28
             2
                    800000
                            2021-01-11
             3
                    300000
                            2020-12-16
             4
                    360000
                            2020-06-23
         13166
                    254563
                            2020-12-31
         13167
                    254563
                            2020-12-31
          13168
                   1000000
                            2020-07-10
          13169
                    960000
                            2020-07-01
         13170
                    718000
                            2020-11-03
         13171 rows × 2 columns
```

```
In [7]: | df = df.rename(columns={'SALE DATE':'ts', 'SALE PRICE': 'y'})
          df.columns = df.columns.astype(str)
          df = df.set_index(['ts'], drop=True)
          df.index= pd.to_datetime(df.index)
In [11]: df
Out[11]:
                           У
                  ts
           2020-07-16 4121000
           2020-08-28
                      584569
           2021-01-11
                       800000
           2020-12-16
                      300000
           2020-06-23
                       360000
                      254563
           2020-12-31
           2020-12-31
                       254563
           2020-07-10 1000000
           2020-07-01
                       960000
           2020-11-03
                      718000
          13171 rows × 1 columns
In [12]: | df = df.resample('D').mean()
In [13]: df = df.reset_index()
In [14]:
          df.fillna(0)
Out[14]:
                                     у
             0 2020-04-01 961150.000000
             1 2020-04-02 753357.142857
             2 2020-04-03 681724.206897
             3 2020-04-04
                               0.000000
                2020-04-05
                               0.000000
           360 2021-03-27
                               0.000000
           361 2021-03-28
                               0.000000
           362 2021-03-29 694114.470588
               2021-03-30 747610.935484
           363
               2021-03-31 602154.750000
          365 rows × 2 columns
In [15]: df['ts']= pd.to_datetime(df['ts'])
```

```
In [16]:
         # df = ... # your input timeseries!
         df=df
         metadata = MetadataParam(
             time_col= 'ts',
                                 # time column in `df`
             value_col='y'
                                 # value in `df`
         forecaster = Forecaster() # creates forecasts and stores the result
         result = forecaster.run_forecast_config(
              df=df,
               config=ForecastConfig(
                   # uses the SILVERKITE model template parameters
                   model_template=ModelTemplateEnum.SILVERKITE.name,
                   forecast_horizon=30, # forecasts 30 steps ahead
                                          # 95% prediction intervals
                   coverage=0.95,
                   metadata_param=metadata
          )
         # Access the result
         forecaster.forecast_result
         Fitting 3 folds for each of 1 candidates, totalling 3 fits
         [Parallel(n jobs=1)]: Using backend SequentialBackend with 1 concurrent worker
         [Parallel(n_jobs=1)]: Done
                                       3 out of 3 | elapsed:
                                                                 12.2s finished
Out[16]: ForecastResult(timeseries=<greykite.framework.input.univariate_time_series.Univ</pre>
         ariateTimeSeries object at 0x00000153CA690A60>, grid_search=RandomizedSearchCV
         (cv=RollingTimeSeriesSplit(expanding_window=True, forecast_horizon=30,
                      max_splits=3, min_train_periods=60, periods_between_splits=30,
                      periods_between_train_test=0, use_most_recent_splits=False),
                             estimator=Pipeline(steps=[('input',
                                                        PandasFeatureUnion(transformer li
         st=[('date',
         Pipeline(steps=[('select_date',
         ColumnSelector(column names=['ts'...
                                      'OutsideTolerance3p': make_scorer(score_func_finit
         e),
                                      'OutsideTolerance4p': make_scorer(score_func_finit
         e),
                                      'OutsideTolerance5p': make_scorer(score_func_finit
         e),
                                      'Q80': make_scorer(score_func_finite),
                                      'Q95': make_scorer(score_func_finite),
                                      'Q99': make_scorer(score_func_finite),
                                      'R2': make_scorer(score_func_finite),
                                      'RMSE': make_scorer(score_func_finite)
                                      'sMAPE': make_scorer(score_func_finite)},
                             verbose=1), model=Pipeline(steps=[('input',
                           PandasFeatureUnion(transformer_list=[('date',
                                                                  Pipeline(steps=[('select
         _date',
                                                                                   ColumnS
         elector(column_names=['ts']))])),
                                                                 ('response',
                                                                  Pipeline(steps=[('select
         _val',
                                                                                   ColumnS
         elector(column_names=['y'])),
                                                                                  ('outlie
         r',
                                                                                   Zscore0
         utlierTransformer()),
                                                                                  ('null',
                                                                                   NullTra
         nsformer(impute_algorithm='interpolate',
         impute_params={'axis': 0,
          'limit direct...
```

```
'simple_freq': <Sim</pre>
\verb|pleTimeFrequencyEnum.DAY: Frequency(default\_horizon=30, seconds\_per\_observation|)|
=86400, valid_seas={'YEARLY_SEASONALITY', 'MONTHLY_SEASONALITY', 'QUARTERLY_SEA
SONALITY', 'WEEKLY_SEASONALITY'})>,
                                                                'start_year': 202
0},
                                             uncertainty_dict={'params': {'condit
ional_cols': ['dow_hr'],
                                                                            'quanti
le_estimation_method': 'normal_fit',
                                                                            'quanti
les': [0.0250000000000000022,
0.975],
                                                                            'sample
_size_thresh': 5,
                                                                            'small
sample_size_method': 'std_quantiles',
                                                                            'small_
sample_size_quantile': 0.98},
                                                                 'uncertainty_metho
d': 'simple_conditional_residuals'}))]), backtest=<greykite.framework.output.un</pre>
ivariate_forecast.UnivariateForecast object at 0x00000153C6760730>, forecast=<g</pre>
reykite.framework.output.univariate_forecast.UnivariateForecast object at 0x000
00153C6753DC0>)
```

```
In [17]: ts = result.timeseries
         fig = ts.plot()
         plotly.io.show(fig)
```

```
In [18]: ts = result.timeseries
         fig = ts.plot()
         plotly.io.show(fig)
```

```
In [19]: from plotly.offline import init_notebook_mode, iplot
         init_notebook_mode(connected=True) # for generating offline graphs within Jupy
         backtest = result.backtest
         fig = backtest.plot()
         iplot(fig)
```

```
In [20]: from plotly.offline import init_notebook_mode, iplot
         init_notebook_mode(connected=True)
         fig = backtest.plot_components()
         iplot(fig) # fig.show() if you are using "PROPHET" template
```

```
In [21]: forecast = result.forecast
fig = forecast.plot()
              iplot(fig)
```

```
In [22]: | from plotly.offline import init_notebook_mode, iplot
          from greykite.common.evaluation import EvaluationMetricEnum
          init_notebook_mode(connected=True) # for generating offline graphs within Jupy
          # MAPE by day of week
          fig = backtest.plot_grouping_evaluation(
              score_func=EvaluationMetricEnum.MeanAbsolutePercentError.get_metric_func(),
              score_func_name=EvaluationMetricEnum.MeanAbsolutePercentError.get_metric_nam
              which="train", # "train" or "test" set
groupby_time_feature="dow", # day of week
              groupby_sliding_window_size=None,
              groupby_custom_column=None)
          iplot(fig)
          # RMSE over time
          fig = backtest.plot_grouping_evaluation(
              score_func=EvaluationMetricEnum.RootMeanSquaredError.get_metric_func(),
              score_func_name=EvaluationMetricEnum.RootMeanSquaredError.get_metric_name(),
              which="test", # "train" or "test" set
              groupby_time_feature=None,
              groupby_sliding_window_size=7, # weekly aggregation of daily data
              groupby_custom_column=None)
          iplot(fig)
```

In [23]: summary = result.model[-1].summary() # -1 retrieves the estimator from the pipe print(summary)

Number of observations: 365, Number of features: 92

Method: Ridge regression Number of nonzero features: 92 Regularization parameter: 9770.0

Residuals:

Min 1Q Median 3Q Max -8.924e+05 -2.735e+05 -1.967e+05 -8.940e+04 1.378e+07 Max

-8.924e+05	-2.735e	+05 -1.96	7e+05 -8	.940e+04	1.378e+07	
	Pred_col	Estimate	Std. Err	Pr(>)_boot	sig. code	
	Intercept	8.882e+05	6.122e+04	<2e-16	***	(7.821e+05,
1.007e+06) events_C	New Year	-7.897	11.63	0.222		(-40.7
9, 1.979) events_C	w Year-1	-0.7624	9.193	0.584		(-20.4
7, 20.81) events_C	w Year-2	-18.19	21.51	0.518		(-7
6.82, 0.) events_C 3.06, 0.)	w Year+1	-14.87	18.42	0.150		(-6
events_C 6.25, 0.)	w Year+2	-22.23	22.21	0.136		(-7
events_Chris (0., 273.1)	tmas Day	83.83	83.91	0.536		
events_C (0., 675.2)	as Day-1	219.5	216.7	0.500		
events_C 7, 3.039)	as Day-2	-8.717	13.75	0.232		(-45.2
events_C 81.9, 0.)	as Day+1	-50.96	51.77	0.158		(-1
events_C 45, 1.33)	as Day+2	-9.693	13.83	0.564		(-49.
events_E (0., 109.7)	Ireland]	31.57	31.67	0.526		
events_E 92.6, 0.)	eland]-1	-56.38	55.57	0.166		(-1
events_E 50.9, 0.)	eland]-2	-39.28	42.81	0.520		(-1
events_E 1, 18.75)	eland]+1	0.492	8.065	0.944		(-16.2
events_E (0., 91.91)	eland]+2	22.57	26.06	0.510		
events_Goo 1.44, 0.)	od Friday	-22.4	23.37	0.534		(-8
events_Good 0.95, 0.)	Friday-1	-10.98	12.82	0.178		(-4
events_Good 44.7, 0.)	Friday-2	-54.12	39.83	0.210		(-1
events_Good 50.9, 0.)	Friday+1	-39.28	42.81	0.520		(-1
events_Good 92.6, 0.)	Friday+2	-56.38	55.57	0.166		(-1
events_I 63.6, 0.)	ence Day	-52.81	48.28	0.274		(-1
events_I 12.4, 0.)	ce Day-1	-79.45	60.09	0.096	•	(-2
events_I 52.1, 0.)	ce Day-2	-56.98	40.9	0.092	•	(-1
events_I 14.1, 0.)	ce Day+1	-113.7	84.69	0.100		(-3
events_I 32.5, 0.)	ce Day+2	-49.63	37.15	0.208		(-1
•	abor Day	-104.2	95.03	0.268		(-3
events_Lab 85.5, 0.)	or Day-1	-71.63	51.81	0.108		(-1
events_Lab	or Day-2	-22.2	23.85	0.244		(-78.9

LIN	KEDIN GREYKITI	= J Queens Foreca	ist - Jupyter Noteb	оок	
8, 5.749) events_Labor Day+1	-44.77	35.74	0.130		(-1
20.4, 0.) events_Labor Day+2	1099.0	1116.0	0.398		(-25.7
8, 3323.0) events_Memorial Day	-44.97	44.54	0.500		(-1
38.2, 0.) events_Mal Day-1	-56.89	56.18	0.170		(-1
83.2, 0.) events_Mal Day-2	-21.87	23.16	0.508		(-8
1.36, 0.) events_Mal Day+1	-31.59	32.57	0.168		(-1
04.7, 0.) events_Mal Day+2	-30.11	32.49	0.536		(-1
10.0, 0.) events_New Years Day	-9.243	13.27	0.206		(-47.1
7, 2.419) events_Nrs Day-1	0.6554	9.234	0.972		(-17.
23, 22.3) events_Nrs Day-2	27.86	27.27	0.168		
(0., 89.87) events_Nrs Day+1	-18.35	19.28	0.152		(-6
4.98, 0.) events_Nrs Day+2	-27.83	29.38	0.172		(-9
6.58, 0.) events_Other	-564.4	350.6	0.106		(-1275.
0, 72.93) events_Other-1	1139.0	1264.0	0.406		(-762.
4, 3788.0) events_Other-2	971.2	1241.0	0.516		(-689.
0, 3677.0) events_Other+1	380.3	1021.0	0.728		(-962.
7, 2698.0) events_Other+2	-353.0	362.0	0.310		(-1042.
<pre>0, 353.8) events_Thanksgiving</pre>	-9.927	12.35	0.156		(-4
0.52, 0.) events_Tgiving-1	-16.13	17.43	0.138		(-5
6.89, 0.) events_Tgiving-2	-10.6	13.53	0.522		(-
47.4, 0.) events_Tgiving+1	-5.426	10.08	0.324		(-34.
<pre>09, 6.38) events_Tgiving+2</pre>	-34.71	33.54	0.152		(-1
17.7, 0.) events_Veterans Day	-40.67	43.0	0.520		(-1
56.7, 0.) events_Vns Day-1	-14.17	15.85	0.512		(-5
5.53, 0.) events_Vns Day-2	-15.17	18.66	0.496		(-6
<pre>6.84, 0.) events_Vns Day+1</pre>	-18.53	18.86	0.500		(-
59.2, 0.) events_Vns Day+2	181.4	174.1	0.472		
(0., 562.3) str_dow_2-Tue	-331.8	386.3	0.376		(-1091.
0, 425.5) str_dow_3-Wed	1962.0	1498.0	0.230		(-358.
7, 5201.0) str_dow_4-Thu	187.8	571.1	0.752		(-836.
3, 1396.0) str_dow_5-Fri	157.0	449.8	0.696		(-656.
5, 1181.0) str_dow_6-Sat	-833.5	480.3	0.094		(-1717.
0, 133.9) str_dow_7-Sun	-1195.0	472.7	0.006	**	(-2101.
0, -227.8) ct1	-149.9	306.8	0.612		(-794.
2, 403.6) is_weekend:ct1	-934.3	419.6	0.026	*	(-1710.
0, -98.99) str_dow_2-Tue:ct1	-156.6	217.6	0.448		(-559.
3, 254.9) str_dow_3-Wed:ct1	850.7	703.9	0.290		(-208.

ĮL	INNEDIN GRETKI	i Ej Queens Foreca	ist - Jupyter Notebo	JOK	
0, 2388.0)					
str_dow_4-Thu:ct1 1, 449.8)	-15.94	221.2	0.926		(-414.
str_dow_5-Fri:ct1 7, 566.9)	89.71	229.9	0.694		(-357.
str_dow_6-Sat:ct1	-281.6	320.7	0.376		(-833.
9, 416.0) str_dow_7-Sun:ct1	-652.7	245.8	0.004	**	(-1104.
0, -163.4)					·
ct1:sin1_tow_weekly 6, 3332.0)	1446.0	883.1	0.082	•	(-66.3
ct1:cos1_tow_weekly	-681.2	457.8	0.130		(-1572.
<pre>0, 229.7) ct1:sin2_tow_weekly</pre>	74.94	536.0	0.918		(-1021.
0, 1029.0)	74.54	330.0	0.510		(1021.
ct1:cos2_tow_weekly	-270.2	868.9	0.734		(-2025.
0, 1266.0) sin1_tow_weekly	3413.0	1792.0	0.050	•	(188.
4, 7326.0)					·
cos1_tow_weekly	-1461.0	1017.0	0.132		(-3409.
0, 499.3) sin2_tow_weekly	-395.9	1108.0	0.724		(-2766.
0, 1629.0)					•
cos2_tow_weekly	-409.5	1802.0	0.798		(-4210.
0, 2755.0) sin3_tow_weekly	-1781.0	1554.0	0.260		(-5086.
0, 1041.0)	-/ 0-10		01200		(55551
cos3_tow_weekly	2055.0	1362.0	0.128		(-473.
4, 4641.0) sin4_tow_weekly	1781.0	1554.0	0.260		(-1041.
0, 5086.0)	1701.0	1334.0	0.200		(1041.
cos4_tow_weekly	2055.0	1362.0	0.128		(-473.
4, 4641.0)	2685 0	1424 0	0.012	*	/ cean a
<pre>sin1_toq_quarterly -1300.0)</pre>	-3685.0	1424.0	0.012		(-6822.0,
cos1_toq_quarterly	2179.0	1559.0	0.134		(-370.
7, 5397.0)				dede	
<pre>sin2_toq_quarterly -1131.0)</pre>	-2640.0	818.2	0.002	**	(-4269.0,
cos2_toq_quarterly	-20.49	1913.0	0.996		(-3738.
0, 3677.0)					·
sin3_toq_quarterly	661.6	1372.0	0.626		(-1762.
0, 3665.0) cos3_toq_quarterly	388.2	1578.0	0.794		(-2254.
0, 3701.0)					•
sin4_toq_quarterly	410.0	1023.0	0.684		(-1458.
0, 2525.0) cos4_toq_quarterly	2667.0	1935.0	0.158		(-776.
8, 6645.0)					(
sin5_toq_quarterly	-2185.0	1343.0	0.100		(-4798.
0, 207.9) cos5_toq_quarterly	2108.0	1617.0	0.188		(-581.
7, 5240.0)		2027.0	0.100		(301.
Signif, Code: 0 '***'	0 001 '**'	0.01 '*' 0.0	05 '.' 0.1 '	' 1	

Signif. Code: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Multiple R-squared: 0.0038, Adjusted R-squared: 0.005245 F-statistic: -0.03447 on 0 and 364 DF, p-value: nan

Model AIC: 12315.0, model BIC: 12317.0

WARNING: the F-ratio and its p-value on regularized methods might be misleadin g, they are provided only for reference purposes.

Observation:

Per the model in Linkedin Greykite, house prices will be stable around almost \$900,000 for Queens