

Market vs. Government — The Neoclassical school vs. The Keynesians

The Unemployment Rate

 to be unemployed, a person must want to work and be actively looking for a job (but have not yet found one).

- the *labor force* consists of those who are employed and those who are unemployed.

- the *unemployment rate* is equal to the number of unemployed people divided by the labor force.

UNEMPLOYMENT RATE: India [July 2017- June 18]

All India: 6.1%

Rural Males: 5.8%

Rural Females: 3.8%

Urban Males: 7.1%

Urban Females: 10.8%

Measuring Joblessness: The Unemployment Rate

Labor Force = Number of Employed + Number of Unemployed

Unemployment Rate =
$$\frac{\text{Number of Unemployed}}{\text{Labor Force}} \times 100$$

Labor-Force Participation Rate =
$$\frac{\text{Labor Force}}{\text{Adult Population}} \times 100$$

U.S. unemployment rate

SEASONALLY ADJUSTED FIGURES. HIGHLIGHTED DATE RANGES INDICATE RECESSION

CHART: LANCE LAMBERT • SOURCE: U.S. DEPARTMENT OF LABOR

U.S. Unemployment Rate 2008

Source: U.S. Department of Labor

Cases of Hyperinflation

Bolivia (1983-1985): prices increased by 23,000 percent!

Germany (1923): banknotes had lost so much value that they were used as wallpaper!

Sundesarchiv, 6lid 102-00104 oto: o./ng. | 1923

20th Century Hyperinflations		
Nation	Year(s)	Peak Inflation (%)
Angola	1991-95	1 x 10 ⁹
Argentina	1983-92	1.5 x 10 ⁹
Austria	1922-23	500,000
Belarus	2000-08	1 x 10 ⁸
Bolivia	1984-86	1 x 10 ⁶
Bosnia/Hergez.	1992-93	5×10^7
Brazil	1967-94	2.75 x 10 ¹⁸
China	1948-55	1.5 x 10 ¹⁹
Georgia	1993-95	1 x 10 ⁶
Greece	1944	5 x 10 ¹³
Hungary	1922-24	n/a
	1945-46	4 x 10 ²⁹
Mexico	1982-92	1,000
Nicaragua	1987-90	5 x 10 ¹⁰
Peru	1988-90	1 x 10 ⁶
Philippines	1942-44	100
Poland	1921-24	1.8 x 10 ⁶
	1989-91	10,000
Romania	1990-98	5 x 10 ⁶
Russia	1992-98	1,000
Taiwan	1944-49	4,000
Ukraine	1993-95	100,000
U.S.S.R.	1921-22	n/a
Yugoslavia	1989-94	1.3 x 10 ²⁷
Zaire	1989-96	3 x 10 ¹¹
Zimbabwe	2000-08	1 x 10 ²⁵

HS 101: Macroeconomics

2nd Week [October, 2020]

N. Gregory Mankiw: Chapter 10 onward

Unemployment: Chapter 14

WHO ARE INDIA'S UNEMPLOYED?

Source: Economic Review 2016, State Planning Board Kerala

The unemployment rate at times is used to reflect the state of the business cycle in the economy.

When output is falling / shrinking \implies Labour demand falls and (involuntary) Unemployment rate increases.

The (Un)employment – Output Interlinkage

Stock and Flow

- Stock variables are measured at a given point of time.
 The macro stock variables are: total money supply, total bank deposits, inventory, capital stock, etc.
- Flow variables are measured over a period of time. The macro flow variables are: consumption, investment, national income and output, etc.

Total money supply is a stock quantity, but the change in money supply is a flow quantity.

Govt. **d**ebt is *stock* but **B**udget **d**eficit is *flow*.

Stock of Assets but Flow of Income.

Stock and Flow

- Stock may be defined as any economic variable which has been accumulated at a specific point of time
 - like money, assets and wealth.
- Flow includes the variables which increase (inflows) and decrease (outflows) the stock, over a period of time.
 - like income, consumption, saving and investment

Stock=Inflows-Outflows

Goods and services

FACTOR MARKET

- Households sell
- · Firms buy

Money income mages, rents, terest, profit-Labour, land, capital, entre-

BUSINESSES

- · Buy factors of production
- Sell products

Revenue

PRODUCT MARKET

- · Firms sell
- · Households buy

HOUSEHOLDS

- · Sell factors of production
- Buy products

Goods and services Consumplier cyrosty

Aggregate Demand (AD)

- Refers to the total amount that different sectors in the economy willingly spend on goods and services in a given period.
- Aggregate demand is the sum of spending by consumers (on cars, food items, tourism, etc.), businesses (investment on construction of houses and factories, machines and equipments), government (spending on highways, missiles) and the rest of the world (exports and imports).

Private Consumption Expenditure (C)

Investment Expenditure (I)

Government Expenditure (G)

Net Exports (X - M)

Components of Aggregate Demand

Aggregate Supply (AS)

 Refers to the total quantity of goods and services that the nations' business is willing to produce and sell during a given period.

Potential Output: Maximum sustainable output that an economy can produce. It is determined by the availability of productive inputs and the managerial and technical efficiency with which those inputs are combined.

Macroeconomic System and Determinants of AD and AS

MACROECONOMIC EQUILIBRIUM

Equilibrium determination of National Income and general price level

Output can rise above the trend (or potential output) because people work overtime and machinery is used for several shifts.

Growth in Potential Output Determines Long-Run Economic Performance

National Income Accounting

Three approaches:

- amount of output produced, excluding output used in the intermediate stages of production (Product approach);
- total income generated in the economy (Income approach);
- amount of spending by the ultimate purchasers of output (Expenditure approach).

All the three approaches give identical measurements of the amount of current economic activity.

The Concept of Value Added

Activity	Cost of Inputs	Price of Output	Value Added
Growing Oranges	\$0	\$1	\$1
Making Orange Juice	\$1	\$1.50	\$0.50
Distributing Juice to Stores (Wholesale)	\$1.50	\$2.25	\$0.75
Selling Juice to Consumer (Retail)	\$2.25	\$3.50	\$1.25

Suppose there are only two business houses: TATA and Birla. TATA owns and operates orange orchards in the *orange city*, Nagpur. It sells some of its oranges directly to the public in the market and sells the rest to Birla, which then produces and sells orange juice in the market.

Rs. 15,000
Rs. 5,000
Rs. 35,000
Rs. 10,000
Rs. 25,000
Rs. 10,000
Rs. 2,000
Rs. 25,000
Rs. 40,000

The Product Approach (Value Added Approach)

Value added: The value added of an producer is the value of its output *minus* the value of the (intermediate) inputs it purchases from other producers.

TATA produces oranges worth of Rs. 35,000 and Birla produces orange juice worth of Rs. 40,000. However, if we add these two amounts the we will 'double count' the Rs. 25,000 which Birla purchased from TATA.

Hence, we only sum the *value added* rather than total output. Birla's value added is: Rs. 15,000.

TATA doesn't use any inputs purchased from other businesses, so its value added equals its revenue of Rs. 35,000.

Total value added in the economy is:

Rs. 15,000 + Rs. 35,000 = Rs. 50,000

Suppose there are only two business houses: TATA and Birla. TATA owns and operates orange orchards in the *orange city*, Nagpur. It sells some of its oranges directly to the public in the market and sells the rest to Birla, which then produces and sells orange juice in the market.

TATA			
Wages paid to employees		Rs. 15,000	
Taxes paid to the government		Rs. 5,000	
Revenue received from sale of oranges	R	Rs. 35,000	
Oranges sold to public (market)	R	Rs. 10,000	
Oranges sold to Birla	R	Rs. 25,000	
BIRLA			
Wages paid to employees		Rs. 10,000	
Taxes paid to the government		Rs. 2,000	
Oranges purchased from TATA		Rs. 25,000	
Revenue from sale of orange juice		Rs. 40,000	

The Income Approach

Consider the after-tax incomes of TATA & Birla and the total taxes received by the government.

TATA's after-tax profit is Rs. 15,000.

Birla's after-tax profit is Rs. 3,000.

Total wage income of employees is Rs. 25,000.

Government's Tax income is Rs. 7,000.

Again, we find $Rs.\ 50,000$ as the measure of total economic activity.

The Expenditure Approach

Add the amount spent by all the ultimate users of output.

Households are ultimate users of oranges. Birla is not. Because, it finally sells the oranges (in *processed*, *juice form*) to households.

Thus, consumers (ultimate users) purchase Rs. 10,000 of oranges from TATA and Rs. 40,000 of orange juice from Birla.

A sum total of **Rs. 50,000**.

Note that, all the three approaches give identical measurements of the amount of current economic activity.

Methods of Measuring Sectoral Output in India

Method / Approach	Sectors
Product Approach (Value added method)	Agriculture, forestry, fishing, mining, manufacturing.
Income Approach	Electricity, water supply, banking and insurance, transport, communication, real estate, hotels, restaurants, and defence, etc.
Expenditure Approach	Construction.