Exploiting Unlabeled Data, Cheaper Labels and Efficient Annotation for 3D Point Cloud Deep Learning

Xu Xun, Machine Intellection department, I2R

E-mail: xux@i2r.a-star.edu.sg

Homepage: https://alex-xun-xu.github.io

Background

Environment sensing is key to the safety of autonomous driving and robotics. 3D point cloud deep learning[1] is the state-of-theart techniques, however, requires substantial amount of labeled data. We aim to exploit unlabeled data, cheaper labels and efficient annotation to improve the efficacy of 3D point cloud deep learning.

Key Challenges to Address

- ☐ Unlabeled data is abundant but hard to be used for training
- ☐ Cheap labeled data is easier to acquire but gives less precise supervision
- ☐ Annotation budget is precious and should be used wisely

Obj: Achieve higher performance with $\{X^l, Y^l\}$ and $\{X^u\}$ than purely trained on $\{X^l, Y^l\}$

Obj: Achieve higher performance with $\{X^l, Y^l\}$ and $\{X^c, Y^c\}$ than purely trained on $\{X^l, Y^l\}$

Obj: Label as few as possible on $\{X^u\}$ to achieve 95% performance of model purely trained on $\{X^l, Y^l\}$

WP1: Semi-Supervised Learning [2-3]

We develop the first open-set semi-supervised 3D point cloud semantic segmentation approach to exploit large uncurated unlabeled data.

WP2: Alternative Cheaper Labels [4]

We developed weakly supervised 3D point cloud segmentation approach by introducing multiprototype learning.

WP3: Active Learning [5-6]

We developed one of the first active learning approach to 3D point cloud segmentation.

Our Contributions:

- ☐ Formulate open-set semi-supervised learning as a bi-level optimization problem.
- ☐ A weight predictor network is introduced to estimate per-sample weights for unlabeled data.
- ☐ To address the instability issue of bi-level optimization, we introduce three regularization terms to further stabilize meta optimization loop.

Our Contributions:

- ☐ Observing the clear sub-class structures in 3D point cloud data, we propose a multiprototype classifier
- ☐ We propose a subclass averaging constraint to exploit both labeled and unlabeled data to supervise prototypes learning.
- ☐ We discover subclasses within each semantic category without any additional supervision.

Plane Wings

Our Contributions:

- We demonstrate that active learning is effective for label-efficient 3D point cloud segmentation.
- ☐ We investigate the effectiveness of point-level, instance-level, polygon-level and superpointlevel selection schemes using realistic, clickbased annotation cost.
- ☐ We propose to combine uncertainty and feature diversity for active selection.

Our proposed superpoint generation method (right)

an_SP	DIV_SP	Unc_SP	Ours_SP		
	Comparing selec	ted superpoints for annotation			
	Methods	mIoU (%)	#Clicks	#Points	
	SONet [46]	64.0	$\sim 250k$	$\sim 250k$	
	3DCNet [47]	67.0	$\sim 250k$	$\sim 250k$	
	MUS [48]	68.2	$\sim 250k$	$\sim 250k$	
	PTCT(HC) [7]	74.0	$\sim 250k$	$\sim 250k$	
	PTCT(PINCE) [7]	73.1	$\sim 250k$	$\sim 250k$	
	PCWS [4]	74.4	$\sim 200k$	$\sim 200k$	
	Ours	79.9	200k	$\sim 710k$	

Our Results:

Data	Methods	1%	5%
	SO-Net[12]	64.0	69.0
(C)	PointCapsNet[36]	67.0	70.0
$\{\mathcal{L}\}$	JointSSL[1]	71.9	77.4
	Multi-task[9]	68.2	77.7
$\{\mathcal{L},\mathcal{N}\}$	PCont[31]	74.0	79.9
$\{\mathcal{L},\mathcal{C}\}$	ACD[7]	75.7	79.7
$\{\mathcal{L},\mathcal{M}\}$	ReBO	76.2	80.1
$\{\hat{\mathcal{L}}, \mathcal{U}, \hat{\mathcal{M}}\}$	ReBO	76.9	80.3

Lampshade

Method	Annotation	SampAvg(%)	CatAvg(%)
DGCNN	lpt	72.6	72.2
DGCNN	10%	84.5	81.5
DGCNN	100%	85.1	82.3
DGCNN + MulPro	lpt	79.4	77.8
DGCNN + MulPro	10%	85.3	82.0
DGCNN + MulPro	100%	85.5	82.4

References (* corresponding author; # equal contribution)