MFCC 2020019252 PLP

Definite Wows

- •Phase(Degress of displacement) : 위상
- •Amplitude(Intensity) : 신폭
- •Frequency : 구파수

Frequency

Amplitude

•High frequency → High pitch

•High Amplitude → Loud sound

Everen

- waveform이 가지고 있는 에너지 값을 의미
- 즉 signal의 전체 amplitude에 대응되는 값
- signal의 각 amplitude 포인트를 x(n)이라고 할 때,
- signal \cong lenergy $=\sum_n |x(n)|^2$

root-mean-square energy(RMSE) :
$$\sqrt{rac{1}{N}\sum_{n}\left|x(n)
ight|^{2}}$$

(Mel Frequency Cepstrol Coefficients)

The diegram of MFCC algorithm

entinent

eniment

$$w[n] = 0.54 - 0.46cos(\frac{2\pi n}{N-1})$$

motener Tenueta

$$s = A_1 \sin(2\pi f_1 t + \varphi_1) + A_2 \sin(2\pi f_2 t + \varphi_2)$$

Fourier Transform

: 시간에 대한 연속성이 고려되지 않음으로써 많은 문제가 야기된다!

STFT

(Short-time Fourier transform)

Enter the areferent refrue-

STFT

Each Fourier transformed frame is stretched vertically in chronological order.

spectrum에서 소리의 고유한 특징을 추출하기 (cepstral 분석)

funcioned frequency

Voice = fundamental frequency(F0) + Harmonics

Figure 5

Elmennet e

소리가 공명되는 특정 주파수 대역

articulation

Vowel	F1(Hz)	F2(Hz)	F3(Hz)
i:	280	2620	3380
I	360	2220	2960
e	600	2060	2840
æ	800	1760	2500
Λ	760	1320	2500
a:	740	1180	2640
D	560	920	2560
o:	480	760	2620
Ü	380	940	2300
u:	320	920	2200
3:	560	1480	2520

frequency

Cepstrum을 통해 FO 구하기

FFT 거친 spectrum

IFFT 적용 그래프에서 삐죽 튀어나온 부분이 F0

- (1) Fourier transform -> Complex log -> Fourier transform
- (2) Fourier transform -> Complex log -> Inverse Fourier transform
- (3) Fourier transform -> power spectrum -> Mel-filter bank
 - -> Real log -> Discrete cosine transform(DCT)

Mel Filter Bank

사람의 청력은 1000Hz 이상의 frequency에 대해서는 덜 민감하므로 1000Hz까지는 Linear하게 그 이상은 Log scale로 변환해줘야 함

Mel Specien

주파수 단위를 다음 공식에 따라 멜 단위로 바꾼 것

$$m = 2595 \log_{10} \left(1 + \frac{f}{700} \right)$$

Discrete Cosine Transform(DCT)

Cepstrm coefficient

$$C_n = \sqrt{\frac{2.0}{\text{fN}}} \times \sum_{j=1}^{\text{fN}} \log_{10} \left(\sum_f W_j(f) |X(f)|^2 \right) \cos \left(\frac{\pi}{\text{fN}} n \left(j - 0.5 \right) \right)$$

MFCC

