Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning

Daniil Chesakov, Vsevolod Glazov, Evgeny Kovalev

Skolkovo Institute of Science and Technology, Uncertainty Quantification

Moscow, 2019

Introduction

(a) Standard Neural Net

(b) After applying dropout.

Regression: CO2

CO2 dataset

- 4 fully connected layers (1024 neurons)
- Dropout (p=0.2) after every layer
- ReLU and Tanh non-linearities

Regression: irradiance

Irradiance reconstruction dataset since 1610.

Regression: irradiance

- 5 fully connected layers (1024 neurons)
- Dropout (p=0.2) after every layer
- ReLU and Tanh non-linearities

			RMSE		LL	
Dataset	N	Q	PBP	Dropout	PBP	Dropout
Lean2000 irradiance	391	1	0.25	0.28	-1.79	-1.87

Experiment setup

LeNet architecture trained on MNIST dataset

- added dropout layer before the output layer. Used p: 0, 0.25, 0.5, 0.75
- bs=32, lr=5e-3, 500 epochs, SGD (momentum=0.9, w decay=1e-6)
- lr policy:

$$lr_i = lr_{init}(1 + \alpha i)^{-\beta}$$

with
$$\alpha = 1e - 4$$
, $\beta = 0.75$

Results: test accuracy

Model	accuracy	best epoch	
LeNet, p=0.5	0.995308	479	
LeNet, p=0.25	0.994409	100	
LeNet, p=0.75	0.993810	113	
LeNet, no dropout	0.993710	26	

Model uncertainty: p=0.5

Model uncertainty: p=0.25

Model uncertainty: p=0.75

Conclusion

In this work we studied how such regularization technique as dropout can be applied in order to represent model uncertainty. We implemented the experiments from the studied paper and compared the uncertainty of different models in regression and classification tasks. We also explicitly shown the importance of uncertainty estimation in classification task.

References

- Y. Gal, Z. Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. arXiv:1506.02142, 2016.
- https://github.com/blacKitten13/Dropout-for-Model-Uncertainty