Math 353-05: Elementary Differential Equations & Boundary Value Problems

Instructor: Anna Nelson September 23, 2021 Exam #1

Instructions:

- Do not open exam until you are directed to do so.
- You have 75 minutes to complete the exam.
- You are allowed one 8.5" by 11" sheet of notes, both sides.
- This is an individual exam, no group work.
- Calculators, cell phones, and books are not allowed.
- Please show all your work and justify your answer, as partial credit will be given where appropriate.
- Circle your final answer!

By signing below, you acknowledge having read the above instructions, and you agree to abide by the Duke Community Standard.

Name:				
Signature	::			

Question	Points	Score	
1	12		
2	14		
3	13		
4	20		
5	24		
6	22		
Total:	105		

1. Consider the following differential equation. Circle true or false.

$$\frac{dy}{dx} = e^3(x+xy)^{1/3}$$

(a) (1 point) This is a linear differential equation.

True

False

(b) (1 point) This is a separable differential equation.

True

False

(c) (1 point) This is a first-order differential equation.

True

False

(d) (1 point) This is an autonomous differential equation.

True

False

(e) (8 points) Solve for the general implicit solution.

						g 1 lb/gal of salt at a rate of 3 gal	
(a	(6 points) $x(t)$.	Write down a o	lifferential equat	ion and initial	condition for the	he amount of sal	t in the tank,
(l _a	(Find the aurelia	t colution to the	differential age	uation		
d)	o) (8 points)	ring the explici	t solution to the	differential eq	uation.		

$$\frac{dy}{dx} = 2xy^2, \quad y(0) = y_0$$

(a) (10 points) Solve the general initial value problem and determine how the interval in which the solution exists depends on the initial value, y_0 .

(b) (3 points) Identify the slope field that matches the given equation. Explain your reasoning.

Explanation:

- 4. Solve the following differential equations.
 - (a) (10 points)

$$(1 + e^x y + xe^x y)dx + (xe^x + 2)dy = 0$$

$$y'' - 4y' + 7y = x + \cos x$$

5. (a) (8 points) Find two values of m such that $y(t) = t^m$ solves the following homogeneous equation.

$$t^2y'' - 5ty' + 8y = 0, \qquad t > 0$$

(b) (4 points) Determine if the functions found above are linearly independent. Explain your reasoning.

(c) (12 points) Given that $y_1(x) = \cos(\ln x)$ and $y_2(x) = \sin(\ln x)$, use variation of parameters to find a particular solution to the differential equation

$$x^2y'' + xy' + y = \ln x, \qquad x > 0$$

6. Consider the following differential equation.

$$\frac{dP}{dt} = P^2 - hP$$

- (a) (4 points) Find all the critical points.
- (b) (8 points) Draw phase lines and determine the stability of the critical points as a function of h.

(c) (6 points) Draw the bifurcation diagram in the hP-plane for the differential equation.

(d) (4 points) Suppose h=4 and P(0)=1. Find the following limits.

$$\lim_{t\to -\infty} P(t) = \lim_{t\to \infty} P(t) =$$