DELPHION

No active trail

Log Out Work Files Saved Searches

My Account

INSIDE DELPHION

Search: Quick/Number Boolean Advanced Derwent

Derwent Record

☑ Email th

View: Expand Details Go to: Delphion Integrated View

Tools: Add to Work File: Create new Work File

Bucket leveller device for industrial vehicle - calculates deviation between boom Derwent Title:

angle and boom stop angle, and releases detent mechanism when boom reaches

stop position

Original Title: WO9629478A1: BUCKET LEVELLER DEVICE FOR AN INDUSTRIAL VEHICLE

KOMATSU KK Standard company Assignee:

Other publications from KOMATSU KK (KOMS)...

KOMATSU MEC KK Standard company

Other publications from KOMATSU MEC KK (KOMS)...

KOMATSU SEISAKUSHO KK Standard company

Other publications from KOMATSU SEISAKUSHO KK (KOMS)...

IKARI M; KANDA S; ☼ Inventor:

1996-443239 / 200457

Update:

E02F 3/43; ☑ IPC Code:

Q42; X25; Derwent Classes:

X25-D01(Soil shifting, excavators), X25-U(Building, construction

industry)

(WO9629478A) The bucket leveller comprises a detent mechanism (21) for holding in a • Derwent floating position a floating position detector (8) for detecting the floating position of a Abstract:

boom operation valve (5) for controlling the boom cylinder (1) and a boom lever (5a). A boom angle detector (18) senses the rotating angle of the boom. A boom stop angle memory (19) has the stop position of the boom stored in it previously. A solenoid valve (14) control the bucket cylinder (2) in the tilting direction. A bucket cylinder position

detector (9) senses the position of the bucket cylinder (2).

Tilting is started when the solenoid valve (14) is switched on by a signal from the floating position detector (8). A deviation between the boom angle and the boom stop angle is calculated by a calculating unit (12). The tilting of the bucket is stopped by switching off the solenoid valve (14) the moment the bucket cylinder position detector (9) is switched on. The detent mechanism (21) is released when the boom reaches its stop position. Advantage - Bucket can be stopped in its horizontal position only by allowing boom to

naturally lower after earth has been dumped, thus bucket levelling is enabled.

ି Images:

Dwg.1/5

PDF Patent

Pub. Date Derwent Update Pages Language IPC Code

₩O9629478A1 **

1996-09-26

199644

18 Japanese E02F 3/43

Des. States: (N) CN DE US

Local appls.: WO1995JP0000521 Filed:1995-03-22 (95WO-JP00521)

DE19581883B4 = 2004-09-02

200457

10 German E02F 3/43

Local appls.: Based on WO09629478 (WO 9629478)

WO1995JP0000521 Filed:1995-03-22 (95WO-JP00521) DE1995001081883 Filed:1995-03-22 (95DE-1081883)

CN1171140A =

1998-01-21

200325

English E02F 3/43

Local appls.: Based on WO09629478 (WO 9629478)

WO1995JP0000521 Filed:1995-03-22 (95WO-JP00521) CN1995000197070 Filed:1995-03-22 (95CN-0197070)

DE19581883T = 1997-12-11

199804

German E02F 3/43

Local appls.: Based on WO09629478 (WO 9629478)

DE1995001081883 Filed:1995-03-22 (95DE-1081883) WO1995JP0000521 Filed:1995-03-22 (95WO-JP00521)

INPADOC Legal Status:

Show legal status actions

Priority Number:

Application Number	Filed	Original Title
WO1995JP0000521	1995-03-22	BUCKET LEVELLER DEVICE FOR AN INDUSTRIAL VEHICLE

* Citations:

PDF	Patent	Original Title
Ø	JP01182419	BUCKET LEVELER DEVICE
	JP64043629	
		Msg: 1.Jnl.Ref

ੌTitle Terms:

BUCKET LEVEL DEVICE INDUSTRIAL VEHICLE CALCULATE DEVIATE BOOM ANGLE BOOM STOP ANGLE RELEASE DETENT MECHANISM BOOM REACH STOP **POSITION**

Pricing Current charges

Derwent Searches: Boolean | Accession/Number | Advanced

Data copyright Thomson Derwent 2003

THOMSON

Copyright © 1997-2006 The Thomson

Subscriptions | Web Seminars | Privacy | Terms & Conditions | Site Map | Contact Us |

DEUTSCHES PATENTAMT

- der internationalen Anmeldung mit der WQ 96/29478 Veröffentlichungsnummer:
 - in deutscher Übersetzung (Art. III § 8 Abs. 2 int.Pat.ÜG)
- Deutsches Aktenzeichen:
- 195 81 883.0
- PCT-Aktenzeichen:
- PCT/JP95/00521
- PCT-Anmeldetag:
- 22. 3.95
- PCT-Veröffentlichungstag:
- 26. 9.96
- Veröffentlichungstag der PCT-Anmeldung in deutscher Übersetzung:
 - 11. 12. 97

(7) Anmeider:

Komatsu Ltd., Tokio/Tokyo, JP; Komatsu Mec K.K., Tokio/Tokyo, JP

(74) Vertreter:

BOEHMERT & BOEHMERT, 28209 Bremen

(72) Erfinder:

Ikari, Masanori, Saitama, JP; Kanda, Shoichi, Kanagawa, JP

3 Baggereimerausrichter für ein Industriefahrzeug

BOEHMERT & BOEHMERT ANWALTSSOZIETÄT

Bochmert & Bochmert • P.O.B. 10 71 27 • D-28071 Bremen

An das Deutsche Patentamt Zweibrückenstr. 12

80297 München

DR.-ING. KARL BOEHMERT, PA (1923-1973) DIPL-ING. ALBERT BOEHMERT, PA (1954-1993) WILHELM J.H. STAHLBERG, RA. BREWEN DR.-ING. WALTER HOORMANN, PA', BREMEN DIPL-PHYS. DR. HEINZ GODDAR, PA", MONCHEN DR.-ING. ROLAND LIESEGANG, PA*, MONCHEN WOLF-DIETER KUNTZE, RA, BREMEN, ALICANTE DIPL-PHYS. ROBERT MUNZHUBER, PA (1965-1992) DR. LUDWIG KOUKER, RA. HEDJE DR. (CHEM.) ANDREAS WINKLER, PA", BECKEN MICHAELA HUTH, RA, MONCHEN DIPL.-PHYS. DR. MARION TÖNHARDT, PA*, DOSSELDORF

DR. ANDREAS EBERT-WEIDENFELLER, RA, MEDEN

PROF. DR. WILHELM NORDEMANN, RA, BRANDENBURG DR. AXEL NORDEMANN, RA, FOT DR. JAN BERND NORDEMANN, LLM, RA, BERLIN DIPL-PHYS. EDUARD BAUMANN, PA', BOHENKINGHEN DR.-ING. GERALD KLOPSCH, PA*, DOSSELDOM ANKE SCHIERHOLZ, RA, POTEDA DIPL-ING. EVA LIESEGANG, PA', BEALIN DIPL-ING. DR. JAN TONNIES, PA, RA, KIEL DIPL-PHYS. CHRISTIAN BIEHL, PA', a DIPL. PHYS. DR. DOROTHEE WERER-BRILLS, PA. MONTHE DR.-ING. MATTHIAS PHILIPP, PA', SKEN DIPL-PHYS. DR. STEFAN SCHOHE, PA', LEDZIO MARTIN WIRTZ, RA, BIDGO DR. DETMAR SCHÄFER, RA, BREMEN

PA - Patentanwait / Patent Attorney RA - Rochtsanwait / Attorney at Law * - European Patent Attorney a

Ihr Zeichen Your ref.

Ihr Schreiben Your Letter of

Unser Zeichen Our ref.

KM1955

Bremen

27. Juni 1997

Komatsu Ltd.

3-6, Akasaka 2-chome, Minato-ku, Tokyo 107, Japan Komatsu Mec Kasushiki Kaisha

3-6, Akasaka 2-chome, Minato-ku, Tokyo 107, Japan

Baggereimerausrichter für ein Industriefahrzeug

Technisches Gebiet

Die gegenwärtige Erfindung betrifft einen Baggereimerausrichter für ein Industriefahrzeug, wie einen Hublader.

<u>Hintergrundtechnologie</u>

In der japanischen Patentanmeldung Nr. 63-6837 (JP-A-1-182419) ist, beispielsweise, ein herkömmlicher Baggereimerausrichter für ein Industriefahrzeug dieses Typs angemeldet worden.

Der Baggereimerausrichter dieser Anmeldung steuert automatisch ein hydraulisches System, so daß der Boden eines Baggereimers horizontal relativ zu dem Grund positioniert ist, während sich der Baggereimer herabsenkt, um dem Baggereimer zu ermöglichen, einfach Erde zu schöpfen, nachdem Erde in den Baggereimer geladen und von demselben ausgekippt worden ist.

2365

Hofferallee 32 • D-28209 Bremen • P.O.B. 10 71 27 • D-28071 Bremen • Telephon (04 21) 3 40 90 • Telefax (04 21) 3 49 17 68

- 2 -

Jedoch gibt es bei dem herkömmlichen Baggereimerausrichter für ein Industriefahrzeug das Problem, daß, wenn der Baggereimerausrichter in einem Zustand betrieben wird, in dem der Ausleger stoppt, nachdem Erde, die in den Baggereimer geladen und dort beherbergt ist, auf eine lasttragende Plattform eines Muldenkippers in einem kompletten Entladungszustand entladen wird, die Drehgeschwindigkeit des Baggereimers beschleunigt wird und somit große Stöße in einem Körper des Fahrzeugs in einer nach oben gerichteten Richtung erzeugt werden, wenn der Baggereimer stoppt.

Um dies zu verhindern, wenn der Baggereimerausrichter bedient wird, nachdem der Ausleger herabfährt, muß das Schalten zwischen dem Baggereimerhebel und dem Auslegerhebel häufig durchgeführt werden, was, nachteiligerweise, jedoch einen aufwendigen Betrieb als anderes Problem hervorruft.

Demgemäß gibt es noch ein weiteres Problem bei dem herkömmlichen Baggereimerausrichter, daß zusätzliche Handlungen vonnöten sind, um dem Ausleger zu erlauben, sich direkt nach dem Betätigen des Baggereimerausrichters herabzusenken, so daß der Betrieb des Baggereimerausrichters anhält, während der Ausleger herunterfährt, um Stoßwellen zu absorbieren, wenn die Schaufel anhält, oder um die Maschinengeschwindigkeit zu reduzieren, um die Bewegungsgeschwindigkeit der Schaufel zu reduzieren.

Die gegenwärtige Erfindung ist gemacht worden, um solche Probleme des herkömmlichen Baggereimerausrichters zu verbessern, und es ist eine Aufgabe dieser Erfindung, einen Baggereimerausrichter für ein Industriefahrzeug zu liefern, der dazu fähig ist, einen Baggereimer in einer horizontalen Position mit einem einfachen Betrieb zum lediglich, natürlichen Absenken des Auslegers, nachdem Erde abgeladen worden ist, zu stoppen.

Offenbarung der Erfindung

Um die obige Aufgabe zu erfüllen, liefert diese Erfindung einen

- 3 -

Baggereimerausrichter für ein Industriefahrzeug, aufweisend einen Baggereimer, bereitgestellt an einem vorderen Ende eines Auslegers, der in einer vertikalen Richtung mittels eines Auslegerzylinders drehbar ist, wobei der Baggereimer ausgekippt und umgedreht wird mittels eines Baggereimerzylinders, der Baggereimerausrichter einen Detektor für eine Schwebeposition zum Erfassen der Schwebeposition eines Auslegerbetriebsventils zum Steuern des Auslegerzylinders, einen Feststellmechanismus zum Halten eines Auslegerhebels in einer Schwebeposition, einen Detektor für einen Auslegerwinkel zum Bestimmen eines Umdrehwinkels des Auslegers, ein Speichermittel für einen Auslegerhaltewinkel zum Vorabspeichern einer Auslegerhalteposition, ein Solenoidventil zum Steuern des Baggereimerzylinders in einer Umdrehrichtung und einen Detektor für eine Baggereimerzylinderposition zum Bestimmen der Position des Baggereimerzylinders aufweist, wobei ein Umdrehen gestartet wird, wenn das Solenoidventil in Antwort auf ein Signal von dem Detektor für die Schwebeposition eingeschaltet wird, eine Abweichung zwischen einem Auslegerwinkel und einem Auslegerhaltewinkel über ein Rechenoperationsmittel berechnet wird, ein Umdrehen des Baggereimers durch Einschalten des Detektors für die Baggereimerzylinderposition und durch Ausschalten des Solenoidventils umdreht wird, und der Feststellmechanismus freigegeben wird, wenn der Ausleger seine Halteposition erreicht.

Mit der oben beschriebenen Anordnung kann der Baggereimer automatisch an einer Position gedreht werden, in der er parallel mit der Erde ist, während sich der Ausleger natürlich absenkt durch den einfachen Betrieb des Auslegerbetriebsventils in einer Schwebeposition, nachdem Erde in dem Baggereimer herausgekippt worden ist.

Beste Art der Verwirklichung der Erfindung

Eine erste Ausführungsform dieser Erfindung wird nun mit Bezug auf

- 4 -

die beiliegenden Figuren beschrieben.

Figur 1 ist ein Schaltdiagramm eines Baggereimerausrichters. Figur 2 ist ein Flußdiagramm, zeigend den Betrieb des Baggereimerausrichters, und Figur 3 ist ein Diagramm, zeigend den Betrieb des Baggereimerausrichters.

In einer nicht gezeigten Arbeitsmaschine eines Industriefahrzeugs sind ein Auslegerzylinder 1, ein Baggereimerzylinder 2 und eine Hydraulikpumpe 3, in Figur 1, bereitgestellt.

Hydrauliköl, entladen von der Hydraulikpumpe 3, wird zu dem Baggereimerzylinder 2 über ein Baggereimerbetriebsventil 4 und auch zu dem Auslegerzylinder 1 über das Baggereimerbetriebsventil 4 und ein Auslegerbetriebsventil 5 zugeführt. Das Baggereimerbetriebsventil 4 hat einen Detektor 7 für die Baggereimerneutralposition, um zu erfassen, daß ein Baggereimerhebel 4a in einer Neutralposition ist, und das Auslegerbetriebsventil 5 hat einen Detektor 8 für eine Schwebeposition, um zu erfassen, daß der Auslegerhebel 5a in der Schwebeposition betrieben wird, und ein Detektor 9 für die Baggereimerzylinderposition ist nahe dem Baggereimerzylinder 2 bereitgestellt, wobei ein Schalter 10 in Antwort auf ein Signal eingeschaltet wird, das von dem Detektor 7 für die Baggereimerneutralposition herausgegeben wird, ein Schalter 11 in Antwort auf ein Signal eingeschaltet wird, das von dem Detektor 9 für die Baggereimerzylinderposition herausgegeben wird, und ein Signal, herausgegeben von dem Detektor 8 für die Schwebeposition, in ein Rechenoperationsmittel 12 eingegeben wird.

Die Schalter 10 und 11 sind in Reihe zwischen dem Rechenoperationsmittel 12 und einem Verstärker für das Betreiben eines Solenoidventils 14 angeordnet, und das Solenoidventil 14 ist zwischen einer Hydraulikpumpe 15 und dem Baggereimerzylinder 2 angeordnet. Unterdessen, eine Abweichung zwischen dem Auslegerwinkel θ_0 , herausgegeben von dem Detektor 18 für den Auslegerwinkel, und einem Auslegerhaltewinkel θ_{0m} , herausgegeben von einem Speichermittel 19 für den Auslegerhaltewinkel, wird in das Rechenoperationsmittel 12 eingegeben, während ein Steuersignal von dem Rechenoperationsmittel 12 an einen Feststellmechanismus 21 über eine Ausgabeeinrichtung 20 herauszugeben ist.

Der Feststellmechanismus 21 ist nahe dem Auslegerhebel 5a bereitgestellt, um den Auslegerhebel 5a in der Schwebeposition zu halten und das Halten des Auslegerhebels 5a auf Empfangen eines Signals freizugeben.

Der Betrieb des Baggereimerausrichters wird nun mit Bezug auf die Figuren 2 und 3 beschrieben.

Wenn der Auslegerhebel 5a betätigt wird, um in der Schwebeposition angeordnet zu sein, wird der Ausleger in einem Komplettauskippzustand, nachdem Erde, beherbergt in dem Baggereimer, auf einen Muldenkipper ausgekippt worden ist, mit seinem natürlichen Absenken aufgrund seines Eigengewichts starten, während das Solenoidventil 14 eingeschaltet wird, wenn ein Signal, herausgegeben von dem Detektor 8, für die Schwebeposition in das Rechenoperationsmittel 12 eingegeben wird. Als ein Resultat senkt sich der Ausleger ab und Hydrauliköl wird von der Hydraulikpumpe 15 zu dem Boden des Baggereimerzylinders 2 befördert, so daß der Baggereimer startet, in eine Horizontalrichtung von dem Zustand des kompletten Auskippens umzudrehen.

Die Veränderung des Auslegerwinkels θ_0 aufgrund des Herabsenkens des Auslegers wird von dem Detektor 18 für den Auslegerwinkel im Schritt 102 in Figur 2 ausgelesen, und der Auslegerwinkel θ_0 wird mit dem Auslegerhaltewinkel θ_{0m} verglichen, der in dem Speichermittel 19 für den Auslegerhaltewinkel gespeichert ist, im Schritt 102, wodurch die Abweichung $\Delta\theta_0$ zwischen dem Auslegerwinkel θ_0 und dem Auslegerhaltewinkel θ_{0m} berechnet wird.

Im Schritt 103 wird beurteilt, ob die Abweichung $\Delta\theta_0$ größer als Null ist, oder nicht. Wenn die Abweichung $\Delta\theta_0$ nicht größer als Null ist, geht ein Programm zu einem Schritt 104, in dem der Feststellmechanismus 21 freigegeben wird. Das Programm kehrt dann zu dem Schritt 101 zurück, und das Programm geht wieder von dem Schritt 101 zu dem Schritt 103.

Wenn die Abweichung $\Delta\theta_0$ größer als Null ist, geht das Programm zu einem Schritt 105, in dem beurteilt wird, ob der Auslegerhebel 5a in der Schwebepositon ist, oder nicht.

Wenn der Auslegerhebel 5a in der Schwebeposition ist, schreitet das Programm zu einem Schritt 106 fort, in dem beurteilt wird, ob der Detektor 9 für die Baggereimerzylinderposition eingeschaltet ist, oder nicht.

Wenn der Detektor 9 für die Baggereimerzylinderposition nicht eingeschaltet ist, geht das Programm zu einem Schritt 107, in dem das Solenoidventil 14 eingeschaltet bleibt; dann kehrt das Programm zu dem Schritt 101 zurück; und das Programm wiederholt obige Operation. Wenn der Detektor 9 für die Baggereimerzylinderposition eingeschaltet ist im Schritt 106, geht das Programm zu einem Schritt 108 über, in dem das Solenoidventil 14 ausgeschaltet wird, um das Umdrehen des Baggereimers anzuhalten.

Danach senkt sich der Ausleger weiter ab, und, wenn der Ausleger den Auslegerhaltewinkel $\theta_{\rm 0m}$ erreicht, wie in dem Speichermittel 19 für den Auslegerhaltewinkel gespeichert, wird das Steuersignal von dem Rechenoperationsmittel 12 an den Feststellmechanismus 21 ausgegeben, so daß das Halten des Auslegerhebels 5a freigegeben wird und der Auslegerhebel 5a in die Neutralposition positioniert ist, und der Ausleger in der Neutralposition anhält.

Danach wird der Auslegerhebel 5a betrieben, um den Ausleger abzusenken, um dem Boden des Baggereimers zu erlauben, den Grund

- 7 -

zu berühren, wodurch dem Baggereimer erlaubt wird, zu dem folgenden Eintauchbetrieb fortzuschreiten.

Wie oben erwähnt, ist es möglich, den Baggereimer horizontal an einer gegebenen Höhe relativ zu dem Grund automatisch lediglich durch Betätigen des Auslegerhebels 5a in der Schwebeposition anzuhalten, nachdem Erde ausgekippt worden ist.

Die Veränderung des Schaufelwinkels, wenn sich der Ausleger natürlich von der Auskipposition herabsenkt, ist in Figur 3 dargestellt.

In der gleichen Figur ist mit a der Fall angezeigt, in dem der Auslegerhebel 5a in der Schwebeposition ist, und ist mit b dargestellt, daß der Baggereimer startet, sich von einer Auskipposition umzudrehen, und der Detektor 9 für die Baggereimerzylinderposition wird an einem Punkt c eingeschaltet, an dem das Umdrehen abgeschlossen ist.

Danach senkt sich der Ausleger weiter ab und hält mit dem Absenken an einem Punkt d an, und erreicht an einem Punkt e den Grund, aufgrund des Absenkbetriebs durch den Auslegerhebel 5a.

Obwohl bei der obigen ersten Ausführungsform das
Baggereimerbetriebsventil 4 und das Auslegerbetriebsventil 5 durch
den Baggereimerhebel 4a und den Auslegerhebel 5a betätigt werden,
kann die erste Ausführungsform mit einer Hydraulikschaltung zum
Steuern des Baggereimerbetriebsventils 4 und des
Auslegerbetriebsventils 5 in einem Vorsteuersystem, wie in Figur 4
gezeigt, verwendet werden.

Bei einer zweiten Ausführungsform ist ein Sperrventil 26 in einer Vorsteuerung eines Vorbetriebsventils 25 anstelle des Solenoidventils 14 zum Umdrehen des Baggereimers bereitgestellt, wodurch eine Unterbrechungssteuerung durchgeführt wird.

- 8 -

Bei der zweiten Ausführungsform wird ferner die Fließrate von Hydrauliköl, involviert bei dem Umdrehen, durch eine Entladungsmenge der Hydraulikpumpe bestimmt, da der Umdrehbetrieb durch das Baggereimerbetriebsventil 4 durchgeführt wird.

Demgemäß tritt ein Fall auf, in dem das Umdrehen des Baggereimers nicht abgeschlossen ist, wenn sich der Ausleger auf eine Halteposition abgesenkt hat.

Um solch einen Fall zu verhindern, ist ein Proportionaldruckreduzierventil 23 in der Vorsteuerung an der Absenkseite des Auslegers bereitgestellt, um die natürliche Absenkgeschwindigkeit des Auslegers zu verzögern, wodurch die Umdrehzeit des Baggereimers sichergestellt wird.

Der Betrieb des Baggereimerausrichters gemäß der zweiten Ausführungsform ist in dem Flußdiagramm 5 von Figur 5 dargestellt.

In Figuren 5 sind die Schritte außer Schritt 105' die Gleichen wie bei der ersten Ausführungsform, und daher wird eine Erklärung derselben weggelassen.

<u>Industrielle Anwendbarkeit</u>

Gemäß dieser Erfindung, wie im Detail oben beschrieben, kann der Baggereimer automatisch durch einfaches Absenken des Auslegers natürlich mit dem Betrieb des Auslegerhebels in einer Schwebeposition horizontal umgedreht werden, nachdem Erde in dem Baggereimer herausgekippt worden ist, so daß der Betrieb einfach durchgeführt werden kann und der Baggereimer umgedreht wird, während sich der Ausleger absenkt, wodurch Stöße aufgrund des Anhaltens des Baggereimers reduziert werden.

Ferner, da der Ausrichtbetrieb des Baggereimers durchgeführt wird, während sich der Ausleger absenkt, kann der Absenkbetrieb des Auslegers und die Ausrichthandlung des Baggereimers effektiv

- 9 -

während einer kurzen Zeitdauer durchgeführt werden, was Verluste von Hydrauliköl reduziert, während der Ausleger abgesenkt wird.

Kurze Beschreibung der Erfindung

Figur 1	ist ein Schaltdiagramm, zeigend einen
	Baggereimerausrichter für ein Industriefahrzeug
	gemäß einer ersten Ausführungsform dieser
	Erfindung;

- Figur 2 ist ein Flußdiagramm, zeigend den Betrieb des Baggereimerausrichters für ein Industriefahrzeug gemäß der ersten Ausführungsform dieser Erfindung;
- Figur 3 ist ein Graph, zeigend den Betrieb des
 Baggereimerausrichters für ein Industriefahrzeug
 gemäß der ersten Ausführungsform dieser Erfindung;
- Figur 4 ist ein Schaltdiagramm, zeigend einen
 Baggereimerausrichter für ein Industriefahrzeug
 gemäß einer zweiten Ausführungsform dieser
 Erfindung; und
- Figur 5 ist ein Flußdiagramm, zeigend den Betrieb des Baggereimerausrichters für ein Industriefahrzeug gemäß der zweiten Ausführungsform dieser Erfindung.

BCEHMERT & BOEHMERT /195 81 183.0

-15-

PCT/JP95/00521 KM1955

Zusammenfassung (vom 22. März 1995)

Ein Baggereimerausrichter für ein Industriefahrzeug, aufweisend einen Baggereimer, bereitgestellt an einem vorderen Ende eines Auslegers, der in einer vertikalen Richtung mittels eines Auslegerzylinders (1) drehbar ist, wobei der Baggereimer ausgekippt und gedreht wird mittels eines Baggereimerzylinders (2), wobei der Baggereimerausrichter einen Schwebepositionsdetektor (8) zum Erfassen der Schwebeposition eines Auslegerbetriebsventils (5) zum Steuern des Auslegerzylinders (1), einen Feststellmechanismus (21) zum Halten eines Auslegerhebels (5a) in einer Schwebeposition, einen Auslegerwinkeldetektor (18) zum Erfassen eines Umdrehwinkels des Auslegers, ein Auslegerhaltewinkelspeichermittel (19) zum Speichern einer Halteposition des Auslegers im voraus, ein Solenoidventil (14) des Baggereimerzylinders (2) in einer Umdrehrichtung und einen Baggereimerpositionsdetektor (9) zum Erfassen der Position des Baggereimerzylinders (2) umfaßt, wobei ein Umdrehen gestartet wird, wenn das Solenoidventil (14) in Antwort auf ein Signal von dem Schwebepositionsdetektor (8) eingeschaltet wird, eine Abweichung zwischen einem Auslegerwinkel und einem Auslegerhaltewinkel mittels eines Rechenoperationsmittels (12) berechnet wird, ein Umdrehen des Baggereimers durch Einschalten des Baggereimerzylinderpositionsdetektors (9) und Ausschalten des Solenoidventils (14) angehalten wird und der Feststellmechanismus (21) freigegeben wird, wenn der Ausleger seine Halteposition erreicht.

Demgemäß kann der Baggereimer in seiner horizontalen Position mit einem einzigen Betrieb lediglich durch Herabsenken des Auslegers natürlich nach unten, nachdem Erde herausgekippt worden ist, angehalten werden, wodurch ein Baggereimerausrichtungsbetrieb durchgeführt wird.

30EHMERT & BOEHMERT

DE 195 81 883 TT

-11-

PCT/JP95/00521 KM1955

Bezugszeichenliste

100	Starten.
101	Auslesen des Auslegerwinkels $ heta_{\scriptscriptstyle 0}$.
102	Berechnen der Auslegerwinkelabweichung $\Delta heta$
	$=$ $\theta_{\rm o}$ $ \theta_{\rm om}$.
104	Freigeben des Feststellmechanismus.
104'	Einschalten des Auslegerhebelerfassungs-
	freigabemechanismussolenoidventils.
105	Ist Auslegerhebel in Schwebeposition?
105'	Ausleger ist in einer natürlichen
	Absenkposition.
105''	Solenoidventil 14 zum Steuern der Ab-
	senkgeschwindigkeit des Auslegers ist ein-
	geschaltet.
106	Ist Detektor 9 für die Baggereimer-
	zylinderposition eingeschaltet?
107	Solenoidventil 14 ist eingeschaltet (Um-
	drehen).
107'	Baggereimerumdrehsolenoidventil ist ein-
	geschaltet.
108	Solenoidventil für den Baggereimerzylinder
	ist ausgeschaltet.
108'	Baggereimerzylindersolenoidventil 14 ist
	ausgeschaltet.

-12- DE 195 81 883 TE

BOEHMERT & BOEHMERT ANWALTSSOZIETÄT

Boehmert & Boehmert • P.O.B. 10 71 27 • D-28071 Bremen

An das Deutsche Patentamt Zweibrückenstr. 12

80297 München

DR-ING. KARL BOEHMERT, PA (1951-1973)
DIFL-ING. ALBERT BOEHMERT, PA (1951-1973)
WILHELM JH. STARLBERG, RA, SEDECH
DR-ING. WALTER HOORMANN, PA*, DEDGEN
DIFL-PHYS. DR. HEINZ GODDAR, PA*, MONGEN
WOLF-DIETER KUNTZE, RA, DEBGEN, ALCANTE
DIFL-PHYS. ROBERT MÜNZHÜBER, PA (1965-1973)
DR. LUDWIG KOUKER, RA, ERDECH
MICHAELA HUTH, RA, MONGEN
DIFL-PHYS. DR. MARION TÖNHARDT, PA*, DOSSELDHU
DR. CHEM) ANDREAS WINKLER, PA*, DESSELDHU
DR. ANDREAS EBERT-WEIDENFELLER, RA, DESSELDHU
DR. ANDREAS EBERT-WEIDENFELLER, RA, DEBGEN

PROF. DR. WILHELM NORDEMANN, RA. BRANDINERSO
DR. AXEL NORDEMANN, RA. FORDAM
DR. JAN BERND NORDEMANN, LIM, RA. BERLD
DIPL-PHYS. EDUARD BAUMANN, PA*, MORDEMENS
DR-ING. GERALD KLÖPSCH, PA*, MORDEMENS
DR-ING. GERALD KLÖPSCH, PA*, MORDEM
DIPL-ING. DR. JAN TONNIES, PA, RA. KILL
DIPL-PHYS. CHRISTIAN BEHL, PA*, KILL
DIPL-PHYS. CHRISTIAN BEHL, PA*, KILL
DIPL-PHYS. CHRISTIAN BEHL, PA*, MENGEN
DR-ING. MATTHIAS PHILIPP, PA*, BENGEN
DIPL-PHYS. DR. STEFAN SCHOHE, PA*, LEPZIG
MARTIN WIRTZ, RA. BENGEN
DR. DETMAR SCHÄFER, RA. BENGEN

PA - Patentarwah / Patent Attorney RA - Rechtsarwah / Attorney at Law * - European Patent Attorney Alle zegelasten beim EU-Martenannt, Alleante All admitted at the EU-Trademark Office, Alleante

Ihr Zeichen Your ref. Ihr Schreiben Your Letter of

Unser Zeichen Our ref.

KM1955

Bremen

27. Juni 1997

Komatsu Ltd. 3-6, Akasaka 2-chome, Minato-ku, Tokyo 107, Japan Komatsu Mec Kasushiki Kaisha 3-6, Akasaka 2-chome, Minato-ku, Tokyo 107, Japan

Baggereimerausrichter für ein Industriefahrzeug

1. Baggereimerausrichter für ein Industriefahrzeug, aufweisend einen Baggereimer, bereitgestellt an einem vorderen Ende eines Auslegers, der in einer vertikalen Richtung mittels eines Auslegerzylinders drehbar ist, wobei der Baggereimer ausgekippt und umgedreht wird mittels eines Baggereimerzylinders, wobei der Baggereimerausrichter einen Detektor für eine Schwebeposition zum Erfassen der Schwebeposition eines Auslegerbetriebsventils zum Steuern des Auslegerzylinders, einen Feststellmechanismus zum Halten eines Auslegerhebels in einer Schwebeposition, einen Detektor für einen Auslegerwinkel zum Bestimmen eines Umdrehwinkels des Auslegers, ein Speichermittel für einen Auslegerhaltewinkel zum Vorabspeichern einer Auslegerhalteposition, ein Solenoidventil zum Steuern des Baggereimerzylinders in einer Umdrehrichtung und einen Detektor für eine Baggereimerzylinderposition zum Bestimmen der Position 2365

Hollerallee 32 • D-28209 Bremen • P.O.B. 10 71 27 • D-28071 Bremen • Telephon (04 21) 3 40 90 • Telefax (04 21) 3 49 17 68

-2-- -13-

des Baggereimerzylinders umfaßt, wobei ein Umdrehen gestartet wird, wenn das Solenoidventil in Antwort auf ein Signal von dem Detektor für die Schwebeposition eingeschaltet wird, eine Abweichung zwischen einem Auslegerwinkel und einem Auslegerhaltewinkel über ein Rechenoperationsmittel berechnet wird, ein Umdrehen des Baggereimers durch Einschalten des Detektors für die Baggereimerzylinderposition und durch Ausschalten des Solenoidventils angehalten wird, und der Feststellmechanismus freigegeben wird, wenn der Ausleger seine Halteposition erreicht.

- 19 - Nummer: Int. Cl.⁶:

DE 195 81 883 T1 E 02 F 3/43

Veröffentlichungstag: 11. Dezember 1997

FIG. I

F I G. 2

F16.3

FIG. 4

.

DE 195 81 883 TO F I G. 5

