Babes-Bolyai University, Faculty of Mathematics and Computer Science Mathematical Analysis - Lecture Notes

Computer Science, Academic Year: 2020/2021

Lecture 4

Example 1. (i) The harmonic series: $\sum_{n=0}^{\infty} \frac{1}{n}$ is divergent with sum ∞ .

Follows from fecture 3, Ruk. 6

The generalized harmonic series: Let $\alpha \in \mathbb{R}$. Then

$$\sum_{n>1} \frac{1}{n^{\alpha}} = \begin{cases} \text{convergent,} & \text{if } \alpha > 1, \\ \text{divergent,} & \text{if } \alpha \leq 1. \end{cases}$$

In particular, $\sum_{n=0}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

(ii) $\sum_{n=0}^{\infty} \frac{1}{n!}$ is convergent with sum e. Thus, Euler's number can be equivalently defined via this series.

lim
$$(1+\frac{1}{n})^n \in \mathbb{R}$$
. Denote for $n \in \mathbb{N}$ 0 the postiol sums by $\Delta_n = 1+\frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$.

 $(1+\frac{1}{n})^n = \sum_{k=0}^{n} {n \choose k} \frac{1}{n^k} = 1 + n \cdot \frac{1}{n} + \frac{n(n-n)}{n!} \cdot \frac{1}{n^2} + \dots + \frac{n(n-n) \cdot \dots \cdot 1}{n!} \cdot \frac{1}{n^n}$
 $= 1 + 1 + \frac{1}{2!} \cdot (1-\frac{1}{n}) + \dots + \frac{1}{n!} \cdot (1-\frac{1}{n}) \cdot (1-\frac{2}{n}) \cdot \dots \cdot (1-\frac{n-1}{n}) \in \Delta n$

Take $n \in \mathbb{N}$. Take $m \in \mathbb{N}$ s.t. $m \ge n$. Thus

$$(n + \frac{1}{m})^{m} = n + n + \frac{1}{2!} (n - \frac{1}{m}) + ... + \frac{1}{n!} (1 - \frac{1}{m}) (1 - \frac{2}{m}) \cdot ... \cdot (1 - \frac{n-1}{m}) + ... + \frac{1}{n!} (1 - \frac{1}{m}) (n - \frac{2}{m}) \cdot ... \cdot (n - \frac{m-n}{m})$$

$$\geq 1 + n + \frac{1}{2!} (n - \frac{1}{m}) + ... + \frac{1}{n!} (n - \frac{1}{m}) (n - \frac{2}{m}) \cdot ... \cdot (n - \frac{n-1}{m})$$
Letting $m \rightarrow \infty$, $Q \neq 0$

Theorem 1 (The n^{th} Term Test). If the series $\sum_{n\geq 1} x_n$ converges, then $\lim_{n\to\infty} x_n = 0$.

Pf: $\Sigma 2n$ convergent => the sequence (sn) of partial sums is convergent

emorgine, note inso 1

lim
$$\pi_n = 0$$
 $\neq 0$ $\geq 2\pi$ to constraint (e.g. $\sum_{n \geq 1} \frac{1}{n} = \infty$ | $\sum_{n \geq 1} \frac{1}{n} = \infty$ |

Thin

Series with nonnegative terms

Let (x_n) be a sequence of in \mathbb{R} . Consider the series $\sum_{n\geq 1} x_n$ and the sequence (s_n) of partial sums.

$$\sum_{n\geq n} x_n$$
 is convergent \Longrightarrow (x_n) bounded
 $\sum_{n\geq n} x_n = (-1, n \text{ odd} \Longrightarrow (x_n) \text{ bounded}, \text{ but not convergent}$
 $\sum_{n\geq n} x_n = (0, n \text{ even})$
 $\sum_{n\geq n} x_n = (0, n \text{ even})$

A series $\sum_{n\geq 1} x_n$ is with nonnegative (positive) terms if $\forall n\in\mathbb{N}, x_n\geq 0$ $(x_n>0)$. Assume that $\sum_{n\geq 1} x_n$ is a series with nonnegative terms.

$$\Sigma \times n$$
 is convergent E (n) is bounded
 $n \times n$
 $\Delta n + n = \Delta n + 2 \times n = 0$ ($n \times n$) is increasing, ($n \times n$) bd. below
if ($n \times n$) is bd. above => $\sum_{n > n} \times n$ is convergent
 $\sum_{n > n} \times n = \infty$, $\sum_{n > n} \times n = \infty$.

Hence, series with nonnegative terms always have a sum in $[0,\infty) \cup \{\infty\}$:

$$\sum_{n=1}^{\infty} x_n = \lim_{n \to \infty} s_n = \sup_{n \in \mathbb{N}} s_n.$$

Theorem 2 (First Comparison Test). Let $\sum_{n\geq 1} x_n$ and $\sum_{n\geq 1} y_n$ be series with nonnegative terms satisfying

$$\exists n_0 \in \mathbb{N} \text{ such that } \forall n \geq n_0, x_n \leq y_n.$$

Then:

- (i) if $\sum_{n>1} y_n$ is convergent, then $\sum_{n>1} x_n$ is convergent.
- (ii) if $\sum_{n\geq 1} x_n$ is divergent, then $\sum_{n\geq 1} y_n$ is divergent.

Pf: (i) We may assume $N_0 = 1$. Denote the partial orders of the two besies by $S_{N_0} = X_1 + X_2 + ... + X_N$ and $S_N = Y_1 + Y_2 + ... + Y_N$, $N \in \mathbb{N}$.

$$\Sigma_{n}$$
 is convergent =) (S_n) is bd. above Σ_{n} Σ_{n} is Σ_{n} is Σ_{n} is Σ_{n} Σ_{n} is Σ_{n} Σ_{n} is Σ_{n} Σ_{n} Σ_{n} Σ_{n} is Σ_{n} Σ_{n

Example 2. Let $\alpha \in \mathbb{R}$, $\alpha \leq 1$. Then $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ is divergent.

Take
$$t = \frac{1}{n}$$
, $y_n = \frac{1}{n\alpha}$, $n \in \mathbb{N}$

Then $t = \frac{1}{n} \leq \frac{1}{n\alpha} = y_n$, $t = \mathbb{N}$

$$t = \frac{1}{n} \leq \frac{1}{n\alpha} = \frac{1}{n$$

Theorem 3 (Second Comparison Test). Let $\sum_{n\geq 1} x_n$ be a series with nonnegative terms and $\sum_{n\geq 1} y_n$ a series with positive terms. Suppose $\exists L = \lim_{n\to\infty} \frac{x_n}{y_n} \in [0,\infty) \cup \{\infty\}$. Then:

- (i) for $L \in (0,\infty)$: $\sum_{n\geq 1} x_n$ is convergent if and only if $\sum_{n\geq 1} y_n$ is convergent (equivalently, $\sum_{n\geq 1} x_n$ is divergent if and only if $\sum_{n\geq 1} y_n$ is divergent).
- (ii) for L=0: if $\sum_{n\geq 1} y_n$ is convergent, then $\sum_{n\geq 1} x_n$ is convergent (equivalently, if $\sum_{n\geq 1} x_n$ is divergent, then $\sum_{n\geq 1} y_n$ is divergent).
- (iii) for $L = \infty$: if $\sum_{n \geq 1} x_n$ is convergent, then $\sum_{n \geq 1} y_n$ is convergent (equivalently, if $\sum_{n \geq 1} y_n$ is divergent, then $\sum_{n \geq 1} x_n$ is divergent).

Example 3. $\sum_{n\geq 1} \frac{1}{n^2 - \ln n + \sin n}$ is convergent.

Then $\frac{4\pi}{y_n} = \frac{n^2 - \ln n + rin + n}{n^2}$ $\longrightarrow \Lambda \in (0, \infty)$ $\searrow S.C.T.$ the given series is ∑ ½ is convergent

Theorem 4 (Ratio Test, d'Alembert). Let $\sum_{n\geq 1} x_n$ be a series with positive terms. Then:

- (i) if $\exists q \in (0,1), \exists n_0 \in \mathbb{N}$ such that $\forall n \geq n_0, \frac{x_{n+1}}{x_n} \leq q$, then $\sum_{n \geq 1} x_n$ is convergent.
- (ii) if $\exists n_0 \in \mathbb{N}$ such that $\forall n \geq n_0, \frac{x_{n+1}}{x_n} \geq 1$, then $\sum_{n \geq 1} x_n$ is divergent.
- (iii) assuming $\exists L = \lim_{n \to \infty} \frac{x_{n+1}}{x_n} \in [0, \infty) \cup \{\infty\}$, we have:
 - (a) if L < 1, then $\sum_{n>1} x_n$ is convergent.
 - (b) if L > 1, then $\sum_{n>1} x_n$ is divergent.
 - (c) if L = 1, the test gives no information.

Example 4. (i) $\sum_{n\geq 1} \frac{(n!)^2}{(2n)!}$ is convergent.

benote * = (n!)2 1 n=1N

$$\frac{4m_{H}}{2m_{H}} = \frac{\left(\frac{(n+1)!}{(2m+1)!}\right)^{\frac{1}{2}}}{\left(2m_{H}\right)!} = \frac{\left(\frac{(n+1)^{\frac{1}{2}}}{(2m+1)!}\right)^{\frac{1}{2}}}{\left(2m_{H}\right)(2m+2)!} = \frac{m+1}{2(2m+1)} \rightarrow \frac{1}{2} < 1$$
Fig. the Ratio Test,
the given series is
convergent

(ii) $\sum_{n\geq 1} \frac{1}{n}$ is divergent, $\sum_{n\geq 1} \frac{1}{n^2}$ is convergent, yet $\lim_{n\to\infty} \frac{\frac{1}{n+1}}{\frac{1}{n}} = 1 = \lim_{n\to\infty} \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}}$.

Theorem 5 (Root Test, Cauchy). Let $\sum_{n\geq 1} x_n$ be a series with nonnegative terms. Then:

- (i) if $\exists q \in [0,1)$, $\exists n_0 \in \mathbb{N}$ such that $\forall n \geq n_0, \sqrt[n]{x_n} \leq q$, then $\sum_{n\geq 1} x_n$ is convergent.
- (ii) if $\exists n_0 \in \mathbb{N}$ such that $\forall n \geq n_0, \sqrt[n]{x_n} \geq 1$, then $\sum_{n \geq 1} x_n$ is divergent.
- (iii) assuming $\exists L = \lim_{n \to \infty} \sqrt[n]{x_n} \in [0, \infty) \cup \{\infty\}$, we have:
 - (a) if L < 1, then $\sum_{n \ge 1} x_n$ is convergent.

an exponent in the terms of the series

Particularly

ustful for series where

n appears as

3

Partialony 1°morboine the factorial function

- (b) if L > 1, then $\sum_{n>1} x_n$ is divergent.
- (c) if L = 1, the test gives no information.

Example 5. $\sum_{n\geq 1} \frac{n^{\alpha}}{(1+\beta)^n}$, where $\alpha \in \mathbb{N}$ and $\beta > 0$, is convergent.

$$\sqrt[n]{\frac{n^{\alpha}}{(4+\beta)^{\alpha}}} = \frac{(\sqrt[n]{n})^{\alpha}}{\Lambda + \beta} \rightarrow \frac{1}{\Lambda + \beta} < 1$$
. By the Root Tist, the given series is convergent.

Theorem 6 (Raabe's Test). Let $\sum_{n>1} x_n$ be a series with positive terms. Then:

(i) if
$$\exists q > 1, \exists n_0 \in \mathbb{N}$$
 such that $\forall n \geq n_0, n\left(\frac{x_n}{x_{n+1}} - 1\right) \geq q$, then $\sum_{n \geq 1} x_n$ is convergent.

(ii) if
$$\exists n_0 \in \mathbb{N}$$
 such that $\forall n \geq n_0, n\left(\frac{x_n}{x_{n+1}} - 1\right) \leq 1$, then $\sum_{n \geq 1} x_n$ is divergent.

(iii) assuming
$$\exists L = \lim_{n \to \infty} n \left(\frac{x_n}{x_{n+1}} - 1 \right) \in \overline{\mathbb{R}}$$
, we have:

- (a) if L > 1, then $\sum_{n \geq 1} x_n$ is convergent.
- (b) if L < 1, then $\sum_{n \ge 1} x_n$ is divergent.
- (c) if L = 1, the test gives no information.

Example 6. Let a > 0. Then

$$\sum_{n \ge 1} \frac{n!}{a(a+1) \cdot \ldots \cdot (a+n)} = \begin{cases} \text{divergent,} & \text{if } a \in (0,1], \\ \text{convergent,} & \text{if } a > 1. \end{cases}$$

Take $x_n = \frac{n!}{\alpha(\alpha+1) \cdot \ldots \cdot (\alpha+n)}$, $n \in \mathbb{N}$

$$\frac{\chi_{n+1}}{\chi_{n}} = \frac{(n+1)!}{\alpha(\alpha+1)! \dots (\alpha+n+1)}, \quad \frac{\alpha(\alpha+1)! \dots (\alpha+n)}{n!} = \frac{n+1}{\alpha+n+1} \xrightarrow{n\to\infty} 1$$

=> KM Ratio Test is inconclusive

$$n\left(\frac{2n}{2nn}-1\right)=n\left(\frac{a+m+1}{m+n}-1\right)=M\cdot\frac{a}{m+1} \longrightarrow a$$
by Raady's Test, $\sum_{n\geq 1} 2n$ is convergent if $a>1$ and divergent if $a\in(0,1)$.

If $a=1$, $2n=\frac{1}{m+1}$ and $\sum_{n\geq 1} \frac{1}{m+1}$ is divergent.

Series with arbitrary terms

Definition 1. A series $\sum_{n\geq 1} x_n$ is called *alternating* if either

$$x_n = (-1)^{n+1} |x_n|, \forall n \in \mathbb{N} : x_1 \ge 0, x_2 \le 0, x_3 \ge 0, \dots$$

or

$$x_n = (-1)^n |x_n|, \forall n \in \mathbb{N} : x_1 \le 0, x_2 \ge 0, x_3 \le 0, \dots$$

Example 7. (i)
$$\sum_{n\geq 1} (-1)^{n+1} \frac{n}{n+1}$$
 is divergent. (apply the n^{th} Term Test)

(ii)
$$\sum_{n\geq 1} \cos(n\pi)$$
 is divergent. $\left(\sim (n\pi) = (-1)^n \right)$

Theorem 7 (Alternating Series Test, Leibniz). Let $\sum_{n\geq 1} x_n$ be an alternating series. If the sequence $(|x_n|)$ is decreasing, then $\sum_{n\geq 1} x_n$ is convergent if and only if $\lim_{n\to\infty} x_n = 0$.

Definition 2. We say that a series $\sum_{n\geq 1} x_n$ is

- absolutely convergent if the series $\sum_{n>1} |x_n|$ is convergent.
- semi-convergent (or conditionally convergent) if it is convergent, but not absolutely convergent.

Theorem 8. Let $\sum_{n\geq 1} x_n$ be an absolutely convergent series. Then $\sum_{n\geq 1} x_n$ is convergent.

$$\frac{P_{+}: 0 \leq x_{m} + |x_{m}| \leq 2|x_{m}|}{\sum_{n \geq 1} |x_{m}|} \leq 2|x_{m}|} \leq 2|x_{m}| \leq 2|x_{m}|} \leq 2|x_{m}| \leq 2|x_{m}|} \leq 2|x_{m}| \leq 2|x_{m}|} \leq 2|x_{m}| \leq 2|x_{m}|} \leq 2|x_{$$

Remark 2. If $\sum_{n\geq 1} x_n$ is with nonnegative terms, then absolute convergence and convergence are equivalent. However, in general, convergence does not imply absolute convergence (i.e., there exist semi-convergent series).

Example 8. The alternating generalized harmonic series: Let $\alpha \in \mathbb{R}$.

$$\sum_{n\geq 1} \frac{(-1)^{n+1}}{n^{\alpha}} = \begin{cases} \text{divergent}, & \text{if } \alpha \leq 0, \\ \text{semi-convergent}, & \text{if } \alpha \in (0,1], \\ \text{absolutely convergent}, & \text{if } \alpha > 1. \end{cases} \begin{pmatrix} \sum_{n\geq 1} \frac{1}{n^{\alpha}} & \text{is convergent} \end{pmatrix}$$

$$\alpha \in (0,1]: \bullet \sum_{n\geq 1} \frac{1}{n^{\alpha}} & \text{is divergent} = \sum_{n\geq 1} \frac{(-1)^{n+1}}{n^{\alpha}} & \text{is not divergent} & (x) \\ \bullet & \begin{pmatrix} \frac{1}{n^{\alpha}} \end{pmatrix}_{n \in \mathbb{N}} & \text{is divergent} & \sum_{n\geq 1} \frac{(-1)^{n+1}}{n^{\alpha}} & \text{is convergent} & (x+1) \end{pmatrix}$$

$$\frac{1}{n^{\alpha}} = 0$$

$$\lim_{n \to \infty} \frac{1}{n^{\alpha}} = 0$$