Ariel Consortium Meeting: MADRID

"Understanding Predictions made by Machine Learning for Spectroscopic Atmospheric Characterisation"

Jools Clarke¹, Gordon Yip², and Nikos Nikolaou³

¹ jools.clarke.23@ucl.ac.uk

² kai.hou.yip@ucl.ac.uk

³ n.nikolaou@ucl.ac.uk

With thanks to Sushuang Ma for the data

(Welbanks *et al.*, 2025)

INARA

Comprehensive grid search over model architectures and hyperparameters

Established **1D CNN**s as best model architecture

Significantly **accelerated** compared to traditional Bayesian retrievals

13

16

10

PERTURB

Wavelength (µm)

Accuracy of these retrievals on simulated data is sufficient for making useful statements about a system

(Clarke et al. 2025b, in prep.)

SHAP paper: (Lundberg and Lee, 2017), image: (Shojaeinasab et al., 2024)

Least Sensitive Most Sensitive

(Yip et al., 2021)

Introducing

PERTURB

P hysical

E xplainability

R anking

T echniques for

U nderstanding

R etrieval

B lack-boxes

A new **lightweight** method for ML retrieval model interpretability based on **noise injection** and **response regression**.

Built to be **modular** and **tunable**

Model agnostic, can be applied to any retrieval methodology

(Clarke et al. 2025a, in prep.)

20

Perturbation (%)

Help shape PERTURB for your research! Fill out the survey

or read more about the project

Jools Clarke¹, Gordon Yip², and Nikos Nikolaou³

- ¹ jools.clarke.23@ucl.ac.uk
- ² kai.hou.yip@ucl.ac.uk
- ³ n.nikolaou@ucl.ac.uk

With thanks to Sushuang Ma for the data