2. Реални числа. Точна горна и долна граница

Галина Люцканова

27 юли 2013 г.

Числови множества Числата са възникнали още в древни времена. Първо са се появили естествените числа. Те се използват в онези времена основно за броене. Множеството от естествените числа се бележи с:

$$\mathbb{N} = \{1, 2, 3, ...\}.$$

Ако съберем 2 естествени числа получаваме естествено число. Но решението на уравнението a+x=b не е задължително да е естествено число. Например 3+x=2 няма решение в естествени числа. Това налага появявата на отрицателните числа. На всяко число $n \in \mathbb{N}$ съпоставяме -n, такова че n+(-n)=(-n)+n=0. Така като вземем естествените, отрицателните и 0 получаваме множеството на целите числа \mathbb{Z} т.е.

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}.$$

Сега уравнението a+x=b има винаги решение в множеството на целите числа. Но нека да разгледаме уравнението $a\cdot x=b$. То не винаги има решение в множеството \mathbb{Z} . Например решението на $3\cdot x=2$ не е цяло число. Възниква нужда за допълнително разширяване на множеството на целите числа - появява се множеството на рационалните числа (\mathbb{Q}). Това са числа от вида $\frac{p}{q}$, където $p,q\in\mathbb{Z}$ и $q\neq 0$. Сега да се замислим знаем от училище, че $\frac{1}{2}=\frac{2}{4}=\frac{3}{6}$, а от предната тема ни е известно, че множеството не може да има повтарящи се елементи. Какво ще правим тогава? Много просто - за да имаме единствено срещане на всеки от елементите, трябва да ограничим по някакакъв начин р и q. Нека дробта $\frac{p}{q}$ е несъкратима т.е. НОД(най-големият общ делител) на р и q е 1. Последното се записва във вида (p,q)=1. Така получихме, че

$$\mathbb{Q} = \{ \frac{p}{q} | p, q \in \mathbb{Z}, (p, q) = 1 \}.$$

Сега да се върнем във времената на Питагоровата теорема. Един нещастник полетял от лодка, защото запитал Питагор каква е третата страна на правоъгълен триъгълник с катети 1 и 1.

Сега да проверим все пак, че наистина решението на уравнението $x^2 = 1^2 + 1^2 = 2$ не е рационално число.

Допускаме противното, т.е че решението на уравнението $x^2=2$ е рационално число, т.е. х има представяне от вида $x=\frac{p}{q}, q\neq 0, (p,q)=1.$ Тогава заместваме в уравнението и получаваме $(\frac{p}{q})^2=2\Longrightarrow p^2=2q^2.$ Така получихме, че p^2 се дели на 2 т.е. р се дели на 2. Следователно р има представяне от вида p=2k. Пак се връщаме и заместваме в уравнението и получаваме $(2k)^2=2q^2\Longrightarrow 2k^2=q^2.$ Сега получихме, че q се дели на 2. Общо получихме, че и p, и q се делят на 2. А това е в противоречие с това, че (p,q)=1.

Така изкарахме, че има поне 1 число, което не принадлежи на \mathbb{Q} . Ще означаваме с \mathbb{I} числата, които не принадлежат на \mathbb{Q} (или по-конкретно \mathbb{I} се състой безкрайните непериодични десетични дроби; докато крайните и безкрайните периодични са от \mathbb{Q}). Ясно е, че $\mathbb{Q} \cap \mathbb{I} = \emptyset$. Множеството на реални числа наричаме множеството, получено от обединението на рационалните и ирационалните числа т.е. $\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$.

Аксиоми за събирането на реалните числа:

- 1. Ако $a,b\in\mathbb{R}$, то $a+b\in\mathbb{R}$ затвореност относно събирането
- 2. $(a+b)+c=a+(b+c) \quad \forall a,b,c\in \mathbb{R}$ асоциативност относно събирането
- 3. $\exists \ 0 \in \mathbb{R} : a+0=0+a=a \quad \forall a \in \mathbb{R}$ съществуване нулев елемент
- 4. $\exists -a \in \mathbb{R} : a + (-a) = (-a) + a = 0 \quad \forall a \in \mathbb{R}$ съществуване на противоположен елемент
- 5. a+b=b+a $\forall a,b\in\mathbb{R}$ комутативност на събирането

Определение 2.1 (изваждане): Изваждането се дефинира като събиране с отрицателен елемент т.е. $a-b \stackrel{\text{def}}{=} a + (-b)$

Следствия от аксиомите за събиране:

1. Съществува единствен нулев елемент

Доказателство: Да допуснем, че съществуват поне 2 нулеви елемента - 0_1 и 0_2 , като $0_1 \neq 0_2$. Тогава

$$0_1 \stackrel{(3)}{=} 0_1 + 0_2 \stackrel{(3)}{=} 0_2,$$

Така получихме, че $0_1 = 0_2$ и достигнахме до противоречие с допускането $0_1 \neq 0_2$.

2. Съществува единствен противоположен елемент.

<u>Доказателство:</u> Да допуснем, че съществуват поне 2 противоположни елемента - $(-a)_1$ и $(-a)_2$, като $(-a)_1 \neq (-a)_2$. Тогава

$$(-a)_2 \stackrel{(3)}{=} 0 + (-a)_2 \stackrel{(4)}{=} ((-a)_1 + a) + (-a)_2 \stackrel{(2)}{=} (-a)_1 + (a + (-a)_2) \stackrel{(4)}{=}$$

$$\stackrel{(4)}{=} (-a)_1 + 0 \stackrel{(3)}{=} (-a)_1,$$

Така получихме, че $(-a)_1 = (-a)_2$ и достигнахме до противоречие с допускането $(-a)_1 \neq (-a)_2$.

3. Съществува единствено решение на уравнението a + x = b.

Доказателство:

(a) Първо ще докажем, че x = b - a е решение на уравнението a + x = b.

$$a + (b + (-a)) \stackrel{(5)}{=} a + ((-a) + b) \stackrel{(2)}{=} (a + (-a)) + b \stackrel{(4)}{=} 0 + b \stackrel{(3)}{=} b$$

(б) Сега ще докажем, че е единствено решение. Да допуснем, че съществуват поне 2 решения на уравнението: $x_1 = b + (-a)$ и $x_2 \neq x_1$.

$$x_1 = b + (-a) = (a + x_2) + (-a) \stackrel{(5)}{=} (x_2 + a) + (-a) \stackrel{(2)}{=}$$

 $\stackrel{(2)}{=} x_2 + (a + (-a)) \stackrel{(4)}{=} x_2 + 0 \stackrel{(3)}{=} x_2.$

Така получихме, че $x_2 = x_1$ и достигнахме до противоречие с допускането $x_2 \neq x_1$.

Аксиоми за умножение на реалните числа:

- 1. Ако $a, b \in \mathbb{R}$, то $ab \in \mathbb{R}$ затвореност относно умножението
- 2. $(ab)c = a(bc) \quad \forall a, b, c \in \mathbb{R}$ асоциативност относно умножението
- 3. $\exists \ 1 \in \mathbb{R} : a \cdot 1 = 1 \cdot a = a \quad \forall a \in \mathbb{R}$ - съществуване единичен елемент елемент
- 4. $\exists \ a^{-1} \in \mathbb{R} : a \cdot a^{-1} = a^{-1} \cdot a = 1 \quad \forall a \in \mathbb{R}$ съществуване на обратен елемент
- 5. $a \cdot b = b \cdot a$ $\forall a, b \in \mathbb{R}$ комутативност на умножението

Определение 2.2: Делението на 2 реални числа а и b (a/b) се дефинира като умножението на а с обратният елемент на b т.е. $a/b \stackrel{\text{def}}{=} a \cdot b^{-1}$

Следствия от аксиомите за умножение: Доказателствата са абсолютно аналогични на тези на следствията на аксиомите за събиране. Поради това и не са поместени долу.

- 1. Съществува единствен единичен елемент
- 2. Съществува единствен обратен елемент.
- 3. Съществува единствено решение на уравнението $a \cdot x = b$.

Дистрибутивни закони

1. $(a+b)\cdot c = ac+bc$ $\forall a,b,c\in\mathbb{R}$ - дистрибутивен закон

Аксиоми за наредбата:

- 1. В ℝ е въведена релация на пълна наредба <:
 - (a) Ако $a \neq b$, то a < b или a > b т.е. всеки 2 реални числа могат да бъдат сравнени.
 - (б) Релацията ≤ е частична наредба(Ако не се сещате какво е релация можете на погледнете първата лекция по АГ). Когато редим обекти, трябва да спазени някои основни правила да е наредба, а не хаос:
 - і. $a \leq a \quad \forall a \in \mathbb{R}$ рефлексивност (да можем да наредим еднаквите)
 - іі. $a \le b$ и $b \le a$, то тогава $a = b \quad \forall a, b \in \mathbb{R}$ антисиметричност (ако а може да е преди b и b може да е преди а, то двата са равни)
 - ііі. $a \le b$ и $b \le c$,то $a \le c$ $\forall a,b,c \in \mathbb{R}$ транзитивност(ако а е преди b, а b е преди c, то би било логично а да е преди c)
- 2. Ako $a \leq b$, to $a + c \leq b + c$
- 3. Ако a < b и c > 0, то ac < bc

<u>Принцип на Архимед:</u> Не съществува реално число по-голямо от всички естествени числа.

Интервал В математиката интервал от а до b е множество от реални числа, което се състои от всички числа, които се намират между 2 числа а и b. Като а и b се наричат краища на интервала. В зависимост дали интералът съдържа крищата си или не интервалите се делят на следните видове:

Определение 2.3: Затворен интервал от а до b се нарича множеството $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$

Определение 2.4: Отворен интервал от а до b се нарича множеството $(a,b) = \{x \in \mathbb{R} : a < x < b\}$

Определение 2.5: Полуотворен интервал от а до b (отворен от ляво и затворен от дясно интервал от а до b) се нарича множеството $[a,b)=\{x\in\mathbb{R}:a\leq x< b\}$

Определение 2.6: Полуотворен интервал от а до b (затворен от ляво и отворен от дясно интервал от а до b) се нарича множеството $[a,b) = \{x \in \mathbb{R} : a < x \leq b\}$

Краища на интервали безкрайности Възможно е a и b да не са фиксирани числа, а безкрайности:

Определение 2.7: $[a, +\infty) = \{x \in \mathbb{R} : a \leq x\}$

Определение 2.8: $(a, +\infty) = \{x \in \mathbb{R} : a < x\}$

Определение 2.9: $(-\infty, b) = \{x \in \mathbb{R} : x < b\}$

Определение 2.10: $(-\infty, b] = \{x \in \mathbb{R} : x \leq b\}$

Определение 2.11: $(-\infty, +\infty) = \{x \in \mathbb{R}\}$

Модул

Определение 2.12: Модул (или абсолютна стойност) на число наричаме разстоянието от нулата до образа на числото върху числовата ос.

$$|a| = \begin{cases} a, & \text{ако } a \ge 0 \\ -a, & \text{ако } a < 0 \end{cases}$$

Свойства на модула:

- 1. $|a| \ge 0$ очевидно
- 2. |a| = |-a|

Доказателство:

$$|a| = \begin{cases} a, & \text{ako } a \ge 0 \\ -a, & \text{ako } a < 0 \end{cases}$$

$$|-a| = \begin{cases} -a, & \text{ako } -a \ge 0 \\ -(-a), & \text{ako } -a < 0 \end{cases}$$

$$|-a| = \begin{cases} -a, & \text{ako } a \le 0 \\ a, & \text{ako } a > 0 \end{cases}$$

Понеже |0| = 0. То тогава

$$|a| = \begin{cases} a, & \text{ako } a \ge 0 \\ -a, & \text{ako } a < 0 \end{cases}$$

T.e.
$$|a| = |-a|$$
.

3.
$$|a| \le A \iff -A \le a \le A$$

Доказателство:

$$|a| \le A \Longleftrightarrow \begin{cases} a \le A \\ -a \le A \Longleftrightarrow a \ge -A \end{cases} \iff -A \le a \le A. \blacksquare$$

4. $|a+b| \le |a| + |b|$ (неравенство на триъгълника)

Доказателство:

Имаме от свойство 2 при A=a, че $-a \le |a| \le a$ и $-b \le |b| \le b.$ Следователно като съберем неравенствата получаваме

$$-(|a|+|b|) = -|a|-|b| \le a+b \le |a|+|b|$$

и излиза, че $|a+b| \le |a| + |b|$.

5.
$$|a-b| \ge ||a| - |b||$$

Доказателство:

$$|a| = |a - b + b| \stackrel{(3)}{\leq} |a - b| + |b| \Longrightarrow |a| - |b| \leq |a - b|$$

$$|b| = |-b| = |-a + a - b| \stackrel{(3)}{\leq} |-a| + |a - b| = |a| + |a - b|$$

$$\Longrightarrow |a - b| \geq |b| - |a| = -(|a| - |b|)$$

Така получихме $|a - b| \ge ||a| - |b||$.

Минимален и максимален елемент на множество

Определение 2.13: Най-малък елемент на едно множество M (минимален елемент на M) е такъв елемент $m \in M$, който е по-малък или равен на всички елементи от множеството. Бележим с $\min M$ Последното определение може да се запише и по следния начин:

$$x_0 = \min X \iff x_0 \in X, x_0 \le x \quad \forall x \in X$$

Определение 2.14: Най-голям елемент на едно множество M (максимален елемент на M) е такъв елемент $m \in M$, който е по-голям или равен на всички елементи от множеството. Бележим с $\max M$. Последното определение може да се запише и по следния начин:

$$x_0 = \max X \iff x_0 \in X, x_0 \ge x \quad \forall x \in X$$

Не всяко множество има минимален и максимален елемент.

<u>Пример 2.1:</u> Да разгледаме \mathbb{N} . Ще докажем, че \mathbb{N} няма максимален елемент. Да допуснем, че \mathbb{N} има най-голям елемент и нека той е $k \in \mathbb{N}$. Очевидно $k > 1 \in \mathbb{N}$. Но $k^2 > k$, тъй като k > 1 и $k^2 \in \mathbb{N}$, така получихме противоречие с максималността на k т.е. нямаме максимален елемент на множеството. Лесно се вижда, че 1 е минималният елемент на множеството.

Пример 2.2: Да разгледаме множеството $M = \{\frac{1}{n} | n \in \mathbb{N}\}$, т.е. $M = \{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}..., \frac{1}{n}, ...\}$. Да допуснем, че M има най-малък елемент и нека той е $\frac{1}{k} \in M$, ако k > 1, но понеже $\frac{1}{k^2} \in M$ и $\frac{1}{k^2} < \frac{1}{k}$ ($k > 1 \Rightarrow k^2 > 1$). Така получихме противоречие с минималността на $\frac{1}{k}$ т.е. нямаме минимален елемент на множеството.

Околност на точка. Горна и долна граница

Определение 2.15: ϵ - околност на точката a(при $\epsilon>0)$ наричаме всички точки х върху реалната права, такива че $|x-a|<\epsilon$ е изпълнено. Или по-просто казано ϵ - околност на точката a наричаме всички точки х, които се намират на разстояние от а по-малко от $\epsilon($ затова и $\epsilon>0$, защото е разстояние).

Сега малко да преобразуваме условието в дефиницията.

$$|x - a| < \epsilon \iff -\epsilon < x - a < \epsilon \iff a - \epsilon < x < a + \epsilon \iff x \in (a - \epsilon, a + \epsilon)$$

т.е. ϵ - околност на точката a наричаме всички точки $x \in (a-\epsilon,a+\epsilon)$

Определение 2.16: Казваме, че множеството M е ограничено отгоре, ако съществува число U: $x \leq U \quad \forall x \in M$. (Казваме, че множеството M е ограничено отгоре, ако съществува число U, такова че всеки елемент x в M е по-малък от U.) Числото U се нарича горна граница.

Определение 2.17: Казваме, че множеството M е ограничено отдолу, ако съществува число L: $\forall x \in M \quad x \geq L$. (Казваме, че множеството M е ограничено отдолу, ако съществува число L, такова че всеки елемент х в M е по-голям от L.). Числото L се нарича долна граница.

Определение 2.18: Казваме, че множеството M е ограничено, ако е ограничено отгоре и ограничено отдолу.

Пример 2.3: Да разгледаме интервала [2; 3] - интервалът е множество от точки. Множеството е ограничено отдолу, защото съществува например L=0, за което е изпълнено всяко число от интервала [2; 3] е поголямо от L. Със същия успех можех да избера L=2 ,L=1 и т.н. . Множеството е ограничено отгоре, защото съществува U=3, за което е изпълнено всяко число от интервала [2; 3] е по-малко от U. (аналогично за горна граница можем да изберем U=4, U=5, ...). Така получихме, че множеството е ограничено отгоре и ограничено отдолу, т.е. множеството е ограничено.

Пример 2.4: Да разгледаме множеството $M=\{\sqrt{2},\sqrt{3},\sqrt{4},...\}$. Това е множество, което е ограничено отдолу, защото съществува например $L=\sqrt{2},$ за което е изпълнено всяко число от M е по-голямо от L. Със същия успех можех да избера L=1 , L=0 и каквото се сетите реално число по-малко от $\sqrt{2}$ дори $-\sqrt{5}12$. Обаче множеството M е неограничено отгоре т.е. не съществува такова число U: $x\leq U \quad \forall x\in M$. Да допуснем, че съществува такова U, за което е изпълнено $x\leq U \quad \forall x\in M$, то то е вярно и за $x=\sqrt{2}\in M$ следователно $U\geq \sqrt{2}>0$. Понеже $\sqrt{U^4}\in M$ (заради дефиницията на M), то

$$U \ge \sqrt{U^4} = U^2 \Longleftrightarrow U - U^2 \ge 0 \Longleftrightarrow U(1 - U) \ge 0 \tag{1}$$

и понеже доказахме, че

$$U > \sqrt{2} > 1 \Rightarrow 1 - U < 0 \tag{2}$$

От (1) и (2) получаваме, че т.е. $U \le 0$, което е в противоречие с $U \ge \sqrt{2}$ следователно M не е ограничено отгоре.

Предполагам, че сте забелязали в примерите, че ако едно множество е ограничено отдолу, то има безброй много долни граници, а ако е ограничено отгоре, има безброй много горни граници.

Определение 2.19: Точна горна граница на ограничено отгоре множество X е неговата най-малка горна граница. Ще наричаме точната горна граница супремум. Бележим с $\sup X$.

Определение 2.20: Точна долна граница (инфинимум) на ограничено отдолу множество X наричаме неговата най-голяма долна граница. Бележим c inf X.

В пример **2.3** инфинимумът е 2, а супремумът е 3. В пример **2.4** инфинимумът е $\sqrt{2}$.

<u>Твърдение 2.1:</u> Нека $a=\sup M.$ Тогава $\forall \epsilon>0$ съществува $x\in M$: $a-\epsilon< x.$

Доказателство:

Да допуснем противното т.е. не съществува $x \in M : a - \epsilon < x$. Следователно $\forall x \in M$ е изпълнено $x \leq a - \epsilon$. От където излиза по определението за горна граница, че $a - \epsilon$ е горна граница за M. Но $a - \epsilon < \epsilon$, то достигнахме до противоречие с допускането, че a е супремумът на M.

<u>Твърдение 2.2:</u> Нека $a=\inf M.$ Тогава $\forall \epsilon>0$ съществува $x\in M$: $a+\epsilon>x.$

Доказателство:

Абсолютно аналогично на предното твърдение.

Така достиганахме до еквивалентни определения за супремум (инфинимум) от определнието за горна (долна) граница и Твърдение 1 (Твърдение 2).

Определение 2.21:
$$\alpha = \sup X \Longleftrightarrow \begin{cases} x \leq \alpha & \forall x \in X \\ \forall \epsilon > 0 & \exists x_{\epsilon} \in M : \alpha - \epsilon < x_{\epsilon} \end{cases}$$

Определение 2.22:
$$\alpha = \inf X \Longleftrightarrow \begin{cases} x \geq \alpha & \forall x \in X \\ \forall \epsilon > 0 & \exists x_{\epsilon} \in M : \alpha + \epsilon > x_{\epsilon} \end{cases}$$

От определението се вижда, че ако супремумът (инфинимумът) принадлежи на множеството, то той е максималният (минималният) елемент в множеството. Ако съществува максимален (минимален) елемент в множеството, то той е супремум (инфинимум).

Пример 2.5($\inf M \notin M$): Да вземем множеството $M = \{\frac{1}{x} | x \in \mathbb{N}\}$, т.е. $M = \{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}...\frac{1}{n}...\}$. Тогава множеството M няма минимален елемент (пример 2.2), но инфинимумът на множеството е в 0, защото

- 1. $\frac{1}{x} \ge 0 \quad \forall x \in \mathbb{N}$
- 2. Да допуснем, че не е изпълнено $\forall \epsilon > 0 \quad \exists y_{\epsilon} \in M : 0 + \epsilon > y_{\epsilon}$ т.е. е изпълнено $\forall \epsilon > 0, \forall x \in \mathbb{N} \quad 0 + \epsilon < y_{\epsilon} = \frac{1}{x}$. Понеже ϵ е произволно положително число, то можем да си го изберем примерно $\epsilon = \frac{1}{x^2}$. То тогава получаваме $\forall \epsilon > 0, \forall x \in \mathbb{N} \quad \frac{1}{x^2} < \frac{1}{x}$, което очевидно не е вярно и така достигнахме до противоречие с допускането, че $\forall \epsilon > 0 \quad \exists y_{\epsilon} \in M : 0 + \epsilon > y_{\epsilon}$ не е изпълнено.

След проверката на определението за inf достигнахме до извода, че inf M=0, от където следва, че не е задължително inf да е в множеството.

<u>Принцип за непрекъснатост на реалните числа:</u> Всяко непразно ограничено отгоре множество от реални числа има точна горна граница и всяко непразно ограничено отдолу множество има точна долна граница.

Интересното в случая е, че за рационалните числа са изпълнени, както аксиомите за събиране, умножение и дистрибутивните закони, също

така и принципът на Архимед, единственото, което не е изпълнено е приципът за непрекъснатост.

<u>Пример 2.6:</u> Да разгледаме множеството M от приближенията на $\sqrt{2}$ отдолу - 1;1.4;1.41;1.414;1.4142;... .. В случая е ясно, че множеството е ограничено отгоре и неговата горна граница е $\sqrt{2}$, но $\sqrt{2} \notin \mathbb{Q}$.