Lista de exercícios 2 – Função definida por partes. Teorema dos limites laterais. Limites e continuidade

Parte 1 – Função definida por partes

1. A partir da função definida por partes:

$$y = f(x) = \begin{cases} -3, se - 7 \le x < 1 \\ -2, se & 1 \le x < 3 \\ 1, se & 3 \le x < 5 \end{cases}$$

Considere as proposições a seguir:

I – O gráfico de função definida por partes é dado por:

II – O domínio da função é dado por $D(f) = \{x \in R | -7 \le x < 5\}$ e a imagem da função é dada por $Im(f) = \{-3, -2, 1\}$;

III – Para
$$x = -4$$
, temos $y = -3$, isto é, $f(-4) = -3$; $f(1) \neq -2$ e $f(3) = -2$.

A partir das assertivas apresentadas acima, é correto afirmar que é (são) verdadeiro(s):

- (A) I, apenas.
- (B) II, apenas.
- (C) I e II, apenas.
- (D) II e III, apenas.
- (E) I e III, apenas.
- 2. A partir da função definida por partes:

$$y = f(x) = \begin{cases} x + 5, se - 5 \le x < 0 \\ 2, se & x = 0 \\ 5 - x, se & 0 < x < 5 \\ 5, se & x = 5 \\ 0, se & 5 < x \le 10 \end{cases}$$

Considere as proposições a seguir:

I – O gráfico de função definida por partes é dado por:

II – O domínio da função é dado por $D(f) = \{x \in R | -5 \le x \le 10 \text{ e } x \ne 5\};$

III – A imagem da função é dada por $Im(f) = \{y \in R | 0 \le y < 5\}.$

A partir das assertivas apresentadas acima, é correto afirmar que é (são) verdadeiro(s):

- (A) I, apenas.
- (B) II, apenas.
- (C) I e II, apenas.
- (D) II e III, apenas.
- (E) I e III, apenas.

3. A partir da função definida por partes:

$$y = f(x) = \begin{cases} 1, se & -3 < x \le -2 \\ 4 - x^2, se & -2 < x < 0 \\ 4 - 4x, se & 0 \le x \le 1 \\ 4x - 4, se & 1 < x < 2 \\ 0, se & 2 < x \le 3 \end{cases}$$

Considere as proposições a seguir:

I – O gráfico de função definida por partes é dado por:

II – O domínio da função é dado por $D(f) = \{x \in R | -3 \le x \le 3 \ e \ x \ne 2\};$

III – A imagem da função é dada por $Im(f) = \{y \in R | 0 \le y < 4\}$.

A partir das assertivas apresentadas acima, é correto afirmar que é (são) verdadeiro(s):

- (A) I, apenas.
- (B) II, apenas.
- (C) I e II, apenas.
- (D) II e III, apenas.
- (E) I, II e III.
- **4.** Determinado consultório médico tem política de preços baseada no tempo de atendimento gasto pelo médico no diagnóstico e prognóstico. Quando a paciente permanece no consultório por tempo até 6 minutos, o valor cobrado é de *R*\$ 50,00. Caso o atendimento supere os 6 minutos, porém não ultrapasse 15 minutos, há um acréscimo de *R*\$30 no valor da consulta. Em situações em que o tempo de atendimento supera 15 minutos, o custo da consulta é calculado através da soma de um valor fixo de *R*\$ 80,00, adicionando *R*\$5,00 para cada minuto gasto após os 15 minutos.

A partir do exposto acima, analise as proposições seguintes:

I - A função definida por partes que modela matematicamente essa situação é descrita adequadamente por, sendo o tempo dado por t, em minutos:

$$f(t) \begin{cases} R\$ 50,00 & , se \ t \le 6 \\ R\$ 80,00 & , se \ 6 < t \le 15 \\ R\$ 80,00 + R\$ 5(t-15) & , se \ t > 15 \end{cases}$$

II - O domínio da função definida por partes é dado por $D(f) = \{t \in R | t \ge 0\}$ e o gráfico da função definida por partes está representado no gráfico abaixo:

III – Se um paciente é atendido nesse consultório médico durante 12 minutos, o valor gasto na consulta médica será de *R*\$ 80,00. Se outro paciente é atendido por um período de 20 minutos, o valor gasto será de *R*\$105,00.

A partir do exposto acima, é correto afirmar que é (são) verdadeiro(s):

- (A) I, apenas.
- (B) III, apenas.
- (C) I e II, apenas.
- (D) II e III, apenas.
- (E) I, II e III.
- 5. João precisou ir ao centro de Sorocaba fazer compras para a Páscoa. Como é difícil encontrar um lugar para estacionar, optou por deixar seu carro em um estacionamento. João está estudando funções definidas por partes em seu curso de graduação e a política de preços lhe chamou atenção. Se o carro permanece por 15min no estacionamento, o valor cobrado é de R\$5. Caso o tempo de permanência supere 15min, e seja até 1h, o valor cobrado é de R\$10. Caso o tempo de permanência supere 1h é cobrado um valor fixo de R\$10 acrescido de um valor adicional de R\$0,10 para cada minuto, até o período de 24h. Para um período superior à 24h, o valor da diária corresponde a R\$120. Considere o preço do estacionamento em função do tempo dado por P(t), em reais (R\$), e o tempo t, em minutos. Ajude João a desvendar a relação entre o conteúdo de suas aulas e a política de preços do estacionamento, analisando as proposições seguintes:
 - I A função definida por partes que modela matematicamente essa situação é descrita adequadamente por, sendo o tempo dado por t, em minutos:

$$P(t) = \begin{cases} R\$5, & se\ 0 \le t \le 15\ min \\ R\$10, & se\ 15 < t \le 60\ min \\ R\$10 + 0,10(t - 60), & se\ 60 < t \le 1440\ min \\ R\$120, & se\ t > 1440\ min \end{cases}$$

II - O domínio da função definida por partes é dado por $D(f) = \{t \in R | t \ge 0\}$ e o gráfico da função definida por partes está representado no gráfico abaixo:

III – Se o carro permanecer por 90 minutos no estacionamento, o valor cobrado será de R\$ 13,00.
Se o carro ficar por 1 dia e meio no estacionamento, João gastará R\$120,00.

A partir do exposto acima, é correto afirmar que é (são) verdadeiro(s):

- (A) I, apenas.
- (B) III, apenas.
- (C) I e II, apenas.
- (D) II e III, apenas.
- (E) I, II e III.
- 6. O avanço tecnológico resulta na produção de calculadoras cada vez mais potentes e compactas. Além disso, o preço das calculadoras no mercado está atualmente diminuindo. Suponha que x meses a partir de agora, o preço de certo modelo seja de P(x) = 40 + 30/(x+1), sendo P(x) em reais (R\$). A partir do exposto, considere as proposições a seguir.
 - I O preço daqui a 5 meses será R\$45,00.
 - II Durante o quinto mês o preço diminuirá R\$1,00.
 - III Daqui a nove meses o preço será de R\$ 43,00.
 - IV o preço a longo prazo $(x \to \infty)$ tenderá a R\$ 40,00 ($P(x) \to R$ \$ 40,00 quando $x \to \infty$).

A partir das assertivas apresentadas acima, é correto afirmar que é (são) verdadeiro(s):

- (A) II, apenas.
- (B) I, II e IV, apenas.
- (C) II e III, apenas.
- (D) I, II e III, apenas.
- (E) I, II, III e IV.
- **7.** O protótipo de um veículo está sendo testado e sua velocidade no tempo *x* é dada pela função abaixo:

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, se \ 0 \le x < 2\\ ax^2 - bx + 3, se \ 2 \le x < 3\\ 2x - a + b, se \ x > 3 \end{cases}$$

Os engenheiros do protótipo desejam que a velocidade apresente um comportamento de uma função contínua, ou seja, que ela não mude abruptamente em um determinado tempo. Neste caso, os valores de a e b que tornam a função f contínua, são:

(A)
$$a = \frac{1}{2} e b = -\frac{1}{2}$$
.

(B)
$$a = -\frac{5}{2} e b = -\frac{11}{2}$$
.

(C)
$$a = \frac{1}{2} e b = \frac{1}{2}$$
.

(D)
$$a = -\frac{5}{2} e b = \frac{9}{2}$$
.

(E)
$$a = \frac{5}{2} e b = -\frac{11}{2}$$
.

8. Suponha que uma bateria não forneça nenhuma tensão quando o circuito está aberto. A partir de determinado momento, o circuito se fecha e a bateria fornece uma tensão de 5 volts, que se mantem constante durante 15 segundos até o circuito se fechar novamente.

Considerando que ao abrir ou fechar o circuito a tensão é iniciada ou interrompida instantaneamente, analise as proposições a seguir:

- I) A tensão (V), em volts, fornecida pela bateria está em função do tempo (t);
- II) A função que descreve essa situação tem duas partes, podendo ser expressa como:

$$V(t) = \begin{cases} 0, & \text{se } t < 0 \\ 5, & \text{se } t \ge 0 \end{cases}$$

III) Para
$$t = -1$$
, $t = 1$ e $t = 100$ a tensão será $V(-1) = 0$, $V(1) = 5$ e $V(100) = 0$

É correto afirmar que é (são) verdadeiro(s):

- (A) Apenas a I.
- (B) Apenas a II.
- (C) Apenas a III.
- (D) I e II.
- (E) I e III.
- 9. O imposto sobre a renda ou imposto sobre o rendimento é um tributo existente em vários países. Cada contribuinte, seja ele pessoa física ou pessoa jurídica, é obrigado a pagar uma certa porcentagem de sua renda ao governo, que empregará os recursos arrecadados para gestão dos serviços públicos federais, estaduais e municipais, tais como programas de saúde, educação, desenvolvimento social, obras de infraestrutura, cultura e esportes. Somos também responsáveis pelo salário de todos aqueles investidos em cargos públicos, inclusos os vereadores, prefeitos, governadores, deputados e outros.

A tributação é progressiva, quanto maior a faixa salarial maior será a porcentagem de imposto retida pelo governo. Até 2018, segundo a Secretaria da Receita Federal do Brasil, a alíquota era calculada

conforme demonstra a Tabela 1. Considere que a alíquota (L) do imposto de renda depende da base de cálculo (r).

Tabela 1. Alíquota do imposto de renda de acordo com as faixas salariais.

Base de Cálculo (R\$)	Alíquota (%)	Dedução do IR (R\$)
Até 1.903,98	Isento	0
De 1.903,99 até 2.826,65	7,5	142,80
De 2.826,66 até 3.751,05	15	354,80
De 3.751,06 até 4.664,68	22,50	636,13
Acima de 4.664,68	27,50	869,36

Considerando que A representa a alíquota incidente sobre a renda, defina:

- a) A função definida por partes que descreva A(r).
- b) O gráfico de A(r).
- c) O domínio de A(r).

10. A partir da função definida por partes:

$$y = g(x) = \begin{cases} 2, se - 8 \le x \le -2 \\ 6, se - 2 < x \le 3 \\ -2, se \quad 3 < x < 8 \end{cases}$$

Considere as proposições a seguir:

I – O gráfico de função definida por partes é dado por:

II – O domínio da função é dado por $D(f) = \{x \in R | -7 \le x < 5\}$ e a imagem da função é dada por $Im(f) = \{-2, 2, 6\}$;

III – O valores
$$g(-2,0001) = 2$$
, $g(-1,999) = 6$, $g(2,999) = 6$, $g(3) = 6$ e $g(3,0001) = -2$ são verdadeiros.

A partir das assertivas apresentadas acima, é correto afirmar que é (são) verdadeiro(s):

- (A) I, apenas.
- (B) II, apenas.
- (C) III, apenas.
- (D) II e III, apenas.
- (E) I e III, apenas.

Parte 2 – Teorema dos limites laterais. Limites e continuidade.

11. Para cada uma das funções f(x) a seguir, determine graficamente:

a)
$$\lim_{x \to 1^+} f(x)$$
, $\lim_{x \to 8^-} f(x)$, $\lim_{x \to 8^+} f(x)$, $f(8)$, $\lim_{x \to 16} f(x)$, $\lim_{x \to 18^-} f(x)$ e $f(18)$.

b) $\lim_{x \to 5} f(x)$, $\lim_{x \to 10^{-}} f(x)$, $\lim_{x \to 10^{+}} f(x)$, f(10), $\lim_{x \to 13^{-}} f(x)$, $\lim_{x \to 13^{+}} f(x)$ e f(13).

12. O gráfico da função $y = f(x) = \frac{5}{x-2} + 3$, apresentado na imagem abaixo, foi obtido da por meio da translação da função original $y = f(x) = \frac{5}{x}$ no eixo x, em duas unidades para à direita, e no eixo y, em três unidades para cima.

Considere as proposições seguintes:

- I o domínio da função f(x) é formado pelo conjunto dos números reais, exceto o valor 2, e a imagem pelo conjunto dos números reais.
- II o limite da função f(x), quando a variável x tende a menos infinito, é igual a 3.
- III o limite da função f(x), quando a variável x tende a 2 pela direita, é mais infinito.

É correto afirmar que é (são) verdadeiro(s):

- (A) I, apenas.
- (B) III, apenas.
- (C) I e II, apenas.
- (D) II e III, apenas
- (E) I, II e III.
- 13. O gráfico da função $y = g(x) = \frac{1}{x+2} + 2$, apresentado na imagem abaixo, foi obtido por meio da translação da função original $y = g(x) = \frac{1}{x}$ no eixo x, em duas unidades para à esquerda, e no eixo y, em duas unidades para cima.

Considere as proposições seguintes:

I – o domínio da função g(x) é formado pelo conjunto dos números reais, exceto o valor -2, e a imagem pelo conjunto dos números reais, exceto o valor 2;

II – o limite da função g(x), quando a variável x tende a infinito, é igual a 2;

III – o limite da função g(x), quando a variável x tende a -2 pela direita, é mais infinito.

É correto afirmar que é (são) verdadeiro(s):

- (A) I, apenas.
- (B) III, apenas
- (C) I e II.
- (D) II e III.
- (E) I, II e III.

14. Considere a função definida por partes:

$$y = h(x) = \begin{cases} \frac{1}{x+2}, & se \ x < -2\\ x^2 - 5, & se \ -2 \le x < 3\\ \sqrt{x+13}, & se \ x > 3 \end{cases}$$

Essa função definida por partes tem a seguinte representação gráfica:

A partir do exposto, assinale a alternativa correta:

(A) O domínio é $D(h) = R - \{3\}$ e a imagem Im(h) = R.

(B)
$$h(-1,9999) \approx -1 e h(3,0001) \approx 4$$
.

(C)
$$\lim_{x \to -2^{-}} h(x) = -\infty$$
, $\lim_{x \to -2^{+}} h(x) = -1$ e $\lim_{x \to -2} h(x) = -1$.

(D)
$$\lim_{x \to 0^{-}} h(x) = -5$$
, $\lim_{x \to 0^{+}} h(x) = -5$ e $\lim_{x \to 0} h(x) = 0$.

(E)
$$\lim_{x \to 3^{-}} h(x) = 4$$
, $\lim_{x \to 3^{+}} h(x) = 4$ e $\lim_{x \to 3} h(x) = 4$, e $h(3) = 4$.

15. Um gás (vapor d'água) é mantido à temperatura constante. A medida que o gás é comprimido, o volume (V) decresce até que atinja uma certa pressão (P) crítica. Além dessa pressão, o gás assume forma líquida.

Observando a figura, considere as proposições a seguir:

$$I - \lim_{p \to 100^{-}} V = 0.8.$$

II -
$$\lim_{p \to 100^+} V = 0.4$$
.

III - Não existe o limite pedido, pois: $\lim_{p\to 100^-} V \neq \lim_{p\to 100^+} V$.

A partir das assertivas apresentadas acima, é correto afirmar que é (são) verdadeiro(s):

- (A) I, apenas.
- (B) II, apenas.
- (C) I e II, apenas.
- (D) II e III, apenas.
- (E) I, II e III.
- **16.** Seja T = f(t) a temperatura de uma peça t minutos depois de retirada de um forno industrial. A figura abaixo mostra a curva da temperatura versus tempo para a peça, onde r denota a temperatura ambiente.

Pergunta-se:

- a) Qual é o significado físico de $\lim_{t\to 0^+} f(t)$?
- b) Qual é o significado físico de $\lim_{t\to\infty} f(t)$?
- 17. Um paciente em um hospital recebe uma dose inicial de 200 miligramas de um medicamento. A cada 4 horas recebe uma dose adicional de 100 miligramas. A quantidade f(t) do medicamento presente na corrente sangüínea após t horas é exibida na figura a seguir. Determine e interprete:

a) $\lim_{t\to 8^-} f(t)$

b) $\lim_{t\to 8^+} f(t)$

- 18. Desenhe o gráfico das funções e determine para cada um dos valores de α :
 - i) $\lim_{x \to a^{-}} f(x)$ ii) $\lim_{x \to a^{+}} f(x)$ iii) $\lim_{x \to a} f(x)$ e iv) f(a)
 - v) se a função é contínua em x = a

a)
$$f(x) = \begin{cases} 1, se - 2 \le x < -1 \\ 3 - x^2, se - 1 < x < 0 \\ 3 - 3x, se \ 0 \le x < 1 \\ 3x - 3, se \ 1 < x \le 2 \\ 0, se \ 2 < x < 3 \end{cases}$$
 para: $\alpha = \begin{cases} -1 \\ 0 \\ 1 \\ 2 \end{cases}$

b)
$$f(x) = \begin{cases} 2x + 2, se - 2 < x < -1 \\ -1, se \ x = -1 \\ -2x - 2, se - 1 < x < 0 \\ -x^2 + 2x, se \ 0 \le x < 2 \\ 0, se \ x > 2 \end{cases}$$
 para: $a = \begin{cases} -1 \\ 0 \\ 1 \\ 2 \end{cases}$

c)
$$f(x) = \begin{cases} x^2, se \ 0 \le x < 2 \\ 2, se \ 2 \le x \le 3 \\ -2x + 8, se \ 3 < x < 4 \\ 0, se \ x > 4 \end{cases}$$
 para: $a = \begin{cases} 1 \\ 2 \\ 3 \\ 4 \end{cases}$

d)
$$f(x) = \begin{cases} -x, se - 2 < x < 0 \\ 1, se \ x = 0 \\ x, se \ 0 < x < 1 \\ 0, se \ x = 1 \\ 1, se \ x > 1 \end{cases}$$

$$para: a = \begin{cases} -1 \\ 0 \\ 1 \\ 2 \end{cases}$$

A partir da função definida por mais de uma sentença, desenhe o gráfico da função definida por partes a seguir.

$$f(x) = \begin{cases} -x - 3 & \text{se} \quad -5 \le x < -2 \\ -2 & \text{se} \quad x = -2 \\ -x^2 + 2x + 5 & \text{se} \quad -2 < x \le 3 \\ 1 & \text{se} \quad 3 < x \le 4 \\ x - 4 & \text{se} \quad 4 < x < 6 \end{cases}$$

Dada a situação exposta acima, faça as questões 19, 20 e 21

19. Sabendo que o domínio D(f) da função y = f(x) está relacionado com a variável x e a imagem Im(f) com a variável y, assinale a alternativa correta.

(A)
$$D(f) =] - \infty$$
; $+\infty$ [e Im(f) = $] - \infty$; $+\infty$ [.

(B)
$$D(f) = [-5; +\infty[e Im(f) =] - 3; +\infty[.$$

- (C) D(f) =] 5; 6[e Im(f) = $] \infty$; 6].
- (D) D(f) =]-5; $5[e Im(f) = [-3; +\infty[$.
- (E) D(f) = [-5; 6[e Im(f) =] 3; 6].
- **20.** O teorema dos limites laterais diz que o limite de uma função f(x) existe se, e somente se, os limites laterais pela esquerda e pela direita existem e são iguais a um valor L. A partir disto, assinale a alternativa correta.
 - (A) $\lim_{x \to -2^-} f(x) = -1$, $\lim_{x \to -2^+} f(x) = -2$ e $\lim_{x \to -2} f(x) =$ \nexists .
 - (B) $\lim_{x \to -2^{-}} f(x) = -1$, $\lim_{x \to -2^{+}} f(x) = -3$ e $\lim_{x \to -2} f(x) = -2$.
 - (C) $\lim_{x \to 1^{-}} f(x) = 6$, $\lim_{x \to 1^{+}} f(x) = 6$ e $\lim_{x \to 1} f(x) = \nexists$.
 - (D) $\lim_{x \to 3^{-}} f(x) = 2$, $\lim_{x \to 3^{+}} f(x) = 1$ e $\lim_{x \to 3} f(x) = \nexists$.
 - (E) $\lim_{x \to 5^{-}} f(x) = 1$, $\lim_{x \to 5^{+}} f(x) = 1$ e $\lim_{x \to 5} f(x) = 2$.
- **21.** Dizemos que uma função f(x), definida num domínio D, é contínua em um ponto x_0 deste domínio, se, para algum valor L pertencente aos reais:
 - I. $f(x_0)$ existe.
 - $f(x_0) = L$. II.
 - $\lim_{x \to x_0} f(x) = L.$ III.

Desta forma, assinale a alternativa correta.

- (A) Como $\lim_{x \to -2} f(x) = -1$ e f(-2) = -1, então a função é contínua para $x_0 = -2$.
- (B) Como $\lim_{x \to -1} f(x) = 2$ e f(-1) = 1, então a função é contínua para $x_0 = -1$.
- (C) Como $\lim_{x\to 1} f(x) = 6$ e f(1) = 6, então a função é descontínua para $x_0 = 1$.
- (D) Como $\lim_{x\to 3} f(x) = \mathbb{A}$ e f(3) = 2, então a função é descontínua para $x_0 = 3$.
- (E) Como $\lim_{x\to 4} f(x) = \mathbb{Z}$ e f(4) = 0, então a função é descontínua para $x_0 = 4$.
- 22. Calcule os limites dos polinômios:

a)
$$\lim_{x\to 1} (x^7 - 2x + 5)$$

d)
$$\lim_{x\to -4} (3-7x-x^2)$$

a)
$$\lim_{x \to 1} \left(x^7 - 2x + 5 \right)$$
 d) $\lim_{x \to -4} \left(3 - 7x - x^2 \right)$ g) $\lim_{x \to -4} \left(\frac{x^6}{100} - 100x^3 \right)$

b)
$$\lim_{x \to +\infty} (x^7 - 2x + 5)$$

e)
$$\lim_{x \to \infty} (3 - 7x - x^2)$$

b)
$$\lim_{x \to +\infty} \left(x^7 - 2x + 5 \right)$$
 e) $\lim_{x \to +\infty} \left(3 - 7x - x^2 \right)$ h) $\lim_{x \to +\infty} \left(\frac{x^6}{100} - 100x^3 \right)$

c)
$$\lim_{x\to -\infty} \left(x^7 - 2x + 5 \right)$$

f)
$$\lim_{x \to -\infty} (3 - 7x - x^2)$$

c)
$$\lim_{x \to -\infty} \left(x^7 - 2x + 5 \right)$$
 f) $\lim_{x \to -\infty} \left(3 - 7x - x^2 \right)$ i) $\lim_{x \to -\infty} \left(\frac{x^6}{100} - 100x^3 \right)$

23. Calcule os limites das funções racionais:

a)
$$\lim_{x\to 2} \frac{x^2 - 5x + 6}{x - 2}$$

d)
$$\lim_{x\to +\infty} \frac{-2x}{3x^3-1}$$

b)
$$\lim_{x\to -1} \frac{x^2 - 1}{x + 1}$$

e)
$$\lim_{x \to +\infty} \frac{-5x^2 + 7x - 2}{3x + 3}$$

c)
$$\lim_{x\to 0} \frac{x^2 + 6x + 9}{x^2 - 9}$$

f)
$$\lim_{x \to -\infty} \frac{2x^3 + 7}{x^3 + x + 1}$$

24. Calcule os limites.

a)
$$\lim_{x \to 9} \frac{x - 9}{\sqrt{x} - 3}$$

b)
$$\lim_{x \to +\infty} \frac{2 + \sqrt{x}}{2 - \sqrt{x}}$$

a)
$$\lim_{x\to 9} \frac{x-9}{\sqrt{x}-3}$$
 b) $\lim_{x\to +\infty} \frac{2+\sqrt{x}}{2-\sqrt{x}}$ c) $\lim_{x\to 0} \frac{(5+x)^2-25}{x}$

Gabarito:

9. a)
$$L = \begin{cases} 0, se \ 0 \le r \le 1.903,98 \\ 7,5, se \ 1903,98 < r \le 2.826,65 \\ 15, se \ 2.826,65 < r \le 3.751,05 \\ 22,50, se \ 3.751,05 < r \le 4.664,68 \\ 27,50, se \ r > 4.664,68 \end{cases}$$

b)

c)
$$D(f) = \{r \in R | r \ge 0\}$$

10. C

11.

a)
$$\lim_{x \to 1^+} f(x) = 1$$
, $\lim_{x \to 8^-} f(x) = 6$, $\lim_{x \to 8^+} f(x) = 3$, $f(8) = 3$, $\lim_{x \to 16} f(x) = 3$, $\lim_{x \to 18^-} f(x) = 4$ e $f(18)$ não existe.

b)
$$\lim_{x \to 5} f(x) = 2$$
, $\lim_{x \to 10^{-}} f(x) = 5$, $\lim_{x \to 10^{+}} f(x) = 5$, $f(10) = 3$, $\lim_{x \to 13^{-}} f(x) = 2$, $\lim_{x \to 13^{+}} f(x) = 1$ e $f(13) = 2$.

- 12. D
- 13. E
- 14. B
- 15. E

16.

- a) A peça foi retirada neste instante do forno, apresentando a maior temperatura do período, de $400\,^{\circ}\text{C}$.
- b) A temperatura da peça está tendendo ao valor da temperatura ambiente, de 25 °C.
- 17. a) 150 b) 250 Interpretação: Não existe limite em t = 8.

18.

a)	a = -1	a = 0	a = 1	a = 2
i)	1	3	0	3
ii)	2	3	0	0

iii)	não existe	3	0	não existe
iv)	não existe	3	não existe	3
v)	descontínua	contínua	descontínua	descontínua
b)	a = -1	a = 0	a = 1	a = 2
i)	0	-2	1	0
ii)	0	0	1	0
iii)	0	não existe	1	0
iv)	-1	0	1	não existe
v)	descontínua	descontínua	contínua	descontínua
c)	<i>a</i> = 1	a=2	a=3	a = 4
i)	1	4	2	0
ii)	1	2	2	0
iii)	1	não existe	2	0
iv)	1	2	2	não existe
v)	contínua	descontínua	contínua	descontínua
d)	a = -1	a = 0	a = 1	a = 2
i)	1	0	1	1
ii)	1	0	1	1
iii)	1	0	1	1
iv)	1	1	0	1
v)	contínua	descontínua	descontínua	contínua

- 21. D
- 22.
 - a) 4
 - b) +∞
 - c) −∞
 - d) 15
 - e) −∞
 - f) -∞
 - g) -90.000
 - h) +∞
 - i) +∞
- 23.
 - a) -1
 - b) -2
 - c) -1
 - d) 0
 - e) −∞
 - f) 2
- 24.
 - a) .4
 - b) -1
 - c) 10