Convolutional Autoencoder for the unsupervised extraction of fire footprints from Sentinel-1 time-series

Convolutional Autoencoder for the unsupervised extraction of fire footprints from Sentinel-1 time-series Thomas Di Martino^{1,2}, Laetitia Thirion-Lefevre², Elise Colin¹, Régis Guinvarc'h²

CentraleSupélec

ONERA, Traitement de l'information et systèmes, Université Paris-Saclay, 91123 Palaiseau, France 2 SONDRA, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France

> Session C1.09 Representation learning in remote sensing: from unsupervised, to self-and meta-learning

INTRODUCTION

Detection of forest perturbations is possible with Sentinel-1 time series, through temporal processing:

- Detection of deforestation [1,2]
- Detection of wildfires [3]

Unsupervised temporal anomaly detection method:

- 1. Model radiometric temporal profile of forests using Convolutional Autoencoders [4].
- 2. Visualize variations in the profiles of forest using the generated embedding space.
- 3. Isolate profiles deviating from a norm as being fire.

STUDY DATASET-

- Ontario Fire, starting date: 21st of June 2018.
- Superficies: ~760 Ha.
- Fire outline data source: 2021 Canadian National Fire Database product

RESULTS 1. Model Sentinel-1 Time-Recreated Sentinel Reconstruction loss: 1 Time-series $L(p, \tilde{p}) = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{T} \sum_{t=1}^{T} \left(p_i^{(t)} - \tilde{p_i^{(t)}} \right)^2 \right)$ series (VV, VH) $\{\widetilde{p_1},\widetilde{p_2},\cdots,\widetilde{p_N}\}$ $\{p_1, p_2, \cdots, p_N\}$ Official Fire outline 3D Embedding Image, mapped to RGB color space Visual interpretation of embeddings \rightarrow spatial localization of the fire outline Fire outline and embedding image superposition 3. Isolate

CONCLUSION

Thanks to the modeling of SAR time series of forested environments with Convolutional Autoencoders, we can:

- Extract and visualize the main temporal profiles within a forested scene.
- Adopt an anomaly detection viewpoint to model "normal" forest temporal signatures, and the **extraction** of "abnormal" forest temporal signatures.
- Leverage this viewpoint to retrieve fire outlines as "abnormal" profiles without supervision.

REFERENCES

[1] Vahid Akbari and Svein Solberg, "Clear-cut detection and mapping using sentinel-1 backscatter coefficient and short-term interferometric coherence time series," IEEE Geoscience and Remote Sensing Letters, pp. 1–5, 2020. [2] Johannes Reiche, Eliakim Hamunyela, Jan Verbesselt, Dirk Hoekman, and Martin Herold, "Improving near-real time deforestation monitoring in tropical dry forests by combining dense sentinel-1 time series with landsat and ALOS-2 PALSAR-2," Remote Sensing of Environment, vol. 204, pp. 147-161, 2018.

[3] Yifang Ban, Puzhao Zhang, Andrea Nascetti, Alexandre Bevington, and Michael Wulder, "Near real-time wildfire progression monitoring with sentinel-1 SAR time series and deep learning," Scientific Reports, vol. 10, 01 2020. [4] Thomas Di Martino, Régis Guinvarc'h, Laetitia Thirion-Lefevre and Élise Colin, "Beets or Cotton? Blind Extraction of Fine Agricultural Classes Using a Convolutional Autoencoder Applied to Temporal SAR Signatures," IEEE Transactions on Geoscience and Remote Sensing, vol.

60, pp. 1-18, 2022. [5] Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Devi Parikh and Dhruv Batra, "Grad-cam: Visual explanations from deep networks via gradient-based localization," IEEE International Conference on Computer Vision, pp. 618-626, 2017.

Extraction of variations in agricultural practices over rice fields using unsupervised learning

CentraleSupéle

Extraction of variations in agricultural practices over

rice fields using unsupervised learning

Thomas Di Martino^{1,2}, Régis Guinvarc'h², Elise Colin¹, Laetitia Thirion-Lefevre²

ONERA, Traitement de l'information et systèmes, Université Paris-Saclay, 91123 Palaiseau, France 2 SONDRA, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France

A3.04 Agriculture - Methods and Algorithms, Science, Applications and Policy

INTRODUCTION

Existing variations of agricultural practices within a single crop type:

- Various sowing, harvesting dates [1].
- Optional flooding of rice fields, for bird resting areas [2], seeding period...

Convolutional Autoencoders [3] can model and extract variations within a single **crop type** and **group them**, using different semantic criteria, **without supervision**.

Average Sentinel-1 backscatter temporal profile of rice fields over the studied area

USED DATA

- Location of rice crops: Sector BXII, near Sevilla, Spain
- Details: 3500 ha of crops, growing in 2017.
- Sentinel-1 Data: 61 acquisitions (Jan 2017 to Dec 2017), dual-pol (VV, VH), preprocessing in [4]

Rice fields, in a Guadlquivir Marshes landscape, Andalucia, Spain (Source: [5])

AUTOENCODERS AND APPLICATION

3D Embedding vectors → RGB Embedding image

Spatial visualization of groups of crops in the embedding space

Optional Flooding Period

Approximate Seeding Period

End of the year flooding Period

The application of an autoencoder to SAR time series of rice crops allows to:

- Generate a 3D **embedding image** that **highlights groups** of crops.
- **Visualize** these **groups** of crops by mapping the embedding space to the **RGB** color space.
- Find out **which period** of a field contributes to **making the groups** of crops using the Grad-CAM methodology.

RESULTS AND VISUALISATION

REFERENCES

- [1] Alexandre Bouvet, Thuy Le Toan and Lam-Dao Nguyen, "Monitoring of the Rice Cropping System in the Mekong Delta Using ENVISAT/ASAR Dual Polarization Data," IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 2, pp. 517-526, 2009. [2] Claire A. Pernollet, Anis Guelmami, Andy J. Green, Antoni Curcó Masip, Bosco Dies, Giuseppe Bogliani, Franco Tesio, Anne Brogi, Michel Gauthier-Clerc, Matthieu Guillemain, "A comparison of wintering duck numbers among European rice production areas with contrasting
- flooding regimes," Biological Conservation, vol. 186, pp. 214-224, 2015. [3] Thomas Di Martino, Régis Guinvarc'h, Laetitia Thirion-Lefevre and Élise Colin, "Beets or Cotton? Blind Extraction of Fine Agricultural Classes Using a Convolutional Autoencoder Applied to Temporal SAR Signatures," IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-18, 2022.
- [4] Alejandro Mestre-Quereda, Juan M. Lopez-Sanchez, Fernando Vicente-Guijalba, Alexander W. Jacob, and Marcus E. Engdahl. "Time-series of sentinel-1 interferometric coherence and backscatter for crop-type mapping," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.13, pp. 4070–4084, 2020.
- [5] https://es.wikipedia.org/wiki/Marismas_del_Guadalquivir
- [6] Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Devi Parikh and Dhruv Batra, "Grad-cam: Visual explanations from deep networks via gradient-based localization," IEEE International Conference on Computer Vision, pp. 618-626, 2017.