Tree formats and vocabulary

Emily Jane McTavish

Life and Environmental Sciences University of California, Merced ejmctavish@ucmerced.edu, twitter:snacktavish

(With thanks to Mark Holder, Paul Lewis, Joe Felsenstein, and David Hillis for slides)

Phylogenies describe shared ancestry and inform our understanding of evolutionary processes

Tree terminology

Rooted tree terminology

Rooted tree terminology

Tree terms

A tree is a connected, acyclic graph.

A rooted tree is a connected, acyclic directed graph.

A polytomy or multifurcation is a node with a degree > 3 (in an unrooted tree), or a node with an out-degree > 2 (in a rooted tree).

Collapsing an edge means to merge the nodes at the end of the branch (resulting in a polytomy in most cases).

Refining a polytomy means to "break" the node into two nodes that are connected by an edge.

Monophyletic groups ("clades"): the basis of phylogenetic classification

Paraphyletic groups: error of omitting some species

https://xkcd.com/867/

Polyphyletic groups: error of grouping "unrelated" species

from wikipedia

more terms:

- sister taxa: taxa or monophyletic groups which share a most recent common ancestor
- outgroup: taxon that is determined a priori to be sister to all other taxa in the analysis. Used for rooting tree

Branch rotation does not matter

Rooted vs unrooted trees

Splits

- It is useful to think of unrooted trees in terms of 'splits'
- ► Each branch in an unrootred tree splits the taxa into two groups.
- Membership in those groups can be denoted by ** vs ..
- ► e.g. a split between 1+2 and 3+4 can be summarized as 1234
 - ** ..

or

12|34

Warning: software often displays unrooted trees like this:

a brief digression into newick tree file format

Newick's Lobster House was the site of an historic 1986 meeting at which a standard was devised for storing descriptions of phylogenetic trees as strings. (Photo from Paul Lewis)

Note: ((1,2),3,4) is referred to as Newick or New Hampshire notation for the tree.

You can read it by following the rules:

- start at a node,
- if the next symbol is '(' then add a child to the current node and move to this child,
- if the next symbol is a label, then label the node that you are at,
- if the next symbol is a comma, then move back to the current node's parent and add another child,
- if the next symbol is a ')', then move back to the current node's parent.

Newick

- ▶ Parenthetical tree format
- Rooted vs. unrooted trees are not differentiated
- Some programs interpret polytomy at root as 'unrooted
- Branches and nodes not well differentiated
- ► A name can contain and characters except blanks, colons, semicolons, parentheses, and square brackets

Nexus

- ► Starts with #nexus
- ► Can contain blocks of alignments, trees, commands, and more!
- ▶ Blocks between 'begin' and 'end'
- ► Trees in Newick format, prepended with [&U] unrooted or [&R] rooted

Nexus

```
#nexus
begin taxa:
  dimensions ntax=5:
  taxlabels
    Giardia
    Thermus
    Deinococcus
    Sulfolobus
    Haobacterium
end:
#nexus
begin data;
  dimensions ntax=5 nchar=54;
 format datatype=dna missing=? gap=-;
  matrix
    Ephedra
                 TTAAGCCATGCATGTCTAAGTATGAACTAATTCCAAACGGTGAAACTGCGGATG
    Gnetum
                 TTAAGCCATGCATGTCTATGTACGAACTAATC-AGAACGGTGAAACTGCGGATG
    Welwitschia
                 TTAAGCCATGCACGTGTAAGTATGAACTAGTC-GAAACGGTGAAACTGCGGATG
   Ginkgo
                 TTAAGCCATGCATGTAAGTATGAACTCTTTACAGACTGTGAAACTGCGAATG
                 TTAAGCCATGCATGTCTAAGTATGAACTAATTGCAGACTGTGAAACTGCGGATG
    Pinus
                [----+--10|----+--20|----+--30|----+--40|----+--50|----]
end:
```

http://hydrodictyon.eeb.uconn.edu/eebedia/index.php/ Phylogenetics:_NEXUS_Format

Nexus

```
#nexus
...
begin trees;
translate
1 Ephedra,
2 Gnetum,
3 Welwitschia,
4 Ginkgo,
5 Pinus
;
tree one = [&U] (1,2,(3,(4,5));
tree two = [&U] (1,3,(5,(2,4));
end;
```

```
#nexus
...
begin sets;
    charset trnL_intron = 562-4226;
    taxset gnetales = Ephedra Gnetum Welwitschia;
end;
```

http://hydrodictyon.eeb.uconn.edu/eebedia/index.php/ Phylogenetics:_NEXUS_Format

NeXML

- Phylogenetic data as XML
- ► Can capture all information from Nexus
- ► Full semantic annotation
- ► Easily extensible

NeXML

Computer readable, but not very human readable

```
<otu about="#otu99" id="otu99" label="Parupeneus barberinoides">
 <meta datatype="xsd:string" property="ot:originalLabel" xsi:type="nex:LiteralMeta">Parupeneus
 <meta datatype="xsd:int" property="ot:ottId" xsi:type="nex:LiteralMeta">758968</meta>
 <meta datatype="xsd:string" property="ot:ottTaxonName" xsi:type="nex:LiteralMeta">Parupeneus b
<trees about="#trees1" id="trees1" otus="otus1">
<tree about="#tree1" id="tree1" label="Untitled (tree1)" xsi:type="nex:FloatTree">
   eta datatype="xsd:string" property="ot:branchLengthDescription" xsi:type="nex:LiteralMeta"/>
 <meta datatype="xsd:string" property="ot:branchLengthMode" xsi:type="nex:LiteralMeta">ot:undef
 <meta datatype="xsd:string" property="ot:curatedType" xsi:type="nex:LiteralMeta">Bayesian infe
 <meta datatype="xsd:string" property="ot:inGroupClade" xsi:type="nex:LiteralMeta">node2</meta>
 <meta datatype="xsd:string" property="ot:nodeLabelMode" xsi:type="nex:LiteralMeta"/>
 <meta datatype="xsd:string" property="ot:nodeLabelTimeUnit" xsi:type="nex:LiteralMeta"/>
 <meta datatype="xsd:string" property="ot:outGroupEdge" xsi:type="nex:LiteralMeta"/>
    eta_datatype="xsd:string" property="ot:specifiedRoot" xsi:type="nex:LiteralMeta">nodel</m
      a datatype="xsd:boolean" property="ot:unrootedTree" xsi:type="nex:LiteralMeta">false</m
 <node about="#nodel" id="nodel" root="true"/>
 <node about="#node2" id="node2"/>
     de about="#node144" id="node144"/>
       about="#node145" id="node145"/>
      e about="#node146" id="node146"/>
      e about="#node147" id="node147"/>
      e about="#node148" id="node148"/>
      about="#node149" id="node149"/>
      e about="#node150" id="node150"/>
      e about="#node151" id="node151"/>
      e about="#node152" id="node152"/>
    ode about="#node153" id="node153"/>
 <node about="#node154" id="node154"/>
      e about="#node155" id="node155" otu="otu72">
  <meta datatype="xsd:boolean" property="ot:isLeaf" xsi:type="nex:LiteralMeta">true</meta>
 <node about="#node156" id="node156" otu="otu73">
  <meta datatype="xsd:boolean" property="ot:isLeaf" xsi:type="nex:LiteralMeta">true</meta>
 <node about="#node157" id="node157" otu="otu74">
  <meta datatype="xsd:boolean" property="ot:isLeaf" xsi:type="nex:LiteralMeta">true</meta>
     le about="#node158" id="node158"/>
 <node about="#node159" id="node159" otu="otu75">
  <meta datatype="xsd:boolean" property="ot:isLeaf" xsi:type="nex:LiteralMeta">true</meta>
```

Phylip (sequence data format)

- ► First line must be two integers: <number of taxa> <number of sites>
- Sequence ID followed by spaces up to 10 char.
- No duplicate names
- Relaxed phylip up to 250 characters followed by a space

5 42

Turkey AAGCTNGGGC ATTTCAGGGT GAGCCCGGGC AATACAGGGT AT
Salmo gairAAGCCTTGGC AGTGCAGGGT GAGCCGTGGC CGGGCACGGT AT
H. SapiensACCGGTTGGC CGTTCAGGGT ACAGGTTGGC CGTTCAGGGT AA
Chimp AAACCCTTGC CGTTACGCTT AAACCGAGGC CGGGACACTC AT
Gorilla AAACCCTTGC CGGTACGCTT AAACCATTGC CGGTACGCTT AA

Phylip interleaved

5 42
Turkey AAGCTNGGG ATTTCAGGGT
Salmo gairAAGCCTTGGC AGTGCAGGGT
H. SapiensACCGGTTGGC CGTTCAGGGT
Chimp AAACCCTTGC CGTTAGGCTT
Gorilla AAACCCTTGC CGGTACGCTT

GAGCCCGGGC AATACAGGGT AT GAGCCGTGGC CGGCACGGT AT ACAGGTTGGC CGTTCAGGGT AA AAACCGAGGC CGGGACACTC AT AAACCATTGC CGGTACGCTT AA

Phylip sequential

5 42
Turkey AAGCTNGGGC ATTTCAGGGT
GAGCCCGGGC AATACAGGGT AT
Salmo gairAAGCCTTGGC AGTGCAGGGT
GAGCCGTGGC CGGGCACGGT AT
H. SapiensACCGGTTGGC CGTTCAGGGT
ACAGGGTTGGC CGTTCAGGGT AA
Chimp AAACCCTTGC CGTTACGCTT
AAACCGAGGC CGGGACACTC AT
GOrilla AAACCCTTGC CGGTACGCTT
AAACCATTGC CGGTACGCTT AA

Fasta (sequence data format)

▶ Description line before each sequence starts with (">") symbol in the first column

>AB000263 |acc=AB000263|descr=Homo sapiens mRNA for prepro cortistatin like peptide, complete cds.|len=368
ACAAGATGCCATTGTCCCCGGCCTCCTGCTGCTGCTCTCCGGGGCCACGGCCACCGCTGCCCTGCC
CCTGGAGGGTGGGCCCACCGGCCGAGACAGCAAACAGCAACCAGCAATATGCAGGAACGGCAAGAATAAGGAAAAGCAGC
CTCCTGAGCTTTTCCTGCGTTTGGATGGAACTCCCCAGCCAAGCAATCCGCGGCCCCTCATAGGAAAGG
AAGCTCGGGAGGTGGCCAGGCAGGAAGGCGCACCCCCCCAGCAATCCGCGGCCCGGGACAGAATGCC
CTGCAGGAACTTCTTCTGGAAGACCTCTCCCCCCAGCAATAAAAACCTCACCCATGAATGCTCACGCAAG
TTTAATTACAGACCTGAA

An Exercise: Writing and Viewing a Tree by Hand

- Make sure you have:
 - A text editor installed.
 - ► FigTree (or some other tree visualizer of choice).
- ② Create a subdirectory for all our labs, e.g. "\$HOME/projects/GradPhylo".
- Oreate a work subdirectory within this directory for this particular lab, e.g. "lab-01".
- Using a create a simple Newick tree file using a text editor, e.g. "simple.tre".
- This tree should reflect the real topological relationships of at least 4 species.
- **6** Visualize it in FigTree.
- Export as a NEXUS file.
- 3 Open this second file in a text editor and edit the tip labels.
- Visualize it again.

DIY

Create a newick tree file in your text editor with the content:

```
(((C,(D,E)),(F,G),A),B);
Save it as 'example.tre'.
```

- 1 Draw the tree by hand
- 2 Write down all the splits in "AB|CD" format.
- 4 Load the tree in a tree viewer (e.g. phylo.io, figtree). Re-root the tree. What rootings make the following true? Which cannot be true?
 - a. A is more closely related to G than it is to C
 - b (C,D,E) is sister to (A,B,F,G)
 - c (C,D) is sister to (A,B,E,F,G)
 - d (C,D,E) is a paraphyletic group
 - e (C,D,E) is a monophyletic group
 - f (A,B,C) is a monophyletic group