Abstracciones funcionales

Ricardo Pérez López

IES Doñana, curso 2025/2026

Generado el 2025/08/20 a las 16:06:00

Índice

1.	Abstracciones lambda	2
	1.1. Expresiones lambda	2
		2
		3
	1.3.1. Evaluación de una aplicación funcional	3
	1.3.2. Funciones con nombre	4
	1.3.3. Composición de funciones	5
	1.4. Identificadores cuantificados y libres de una expresión lambda	7
2.	Ámbitos	8
	2.1. Ámbitos léxicos	8
	2.1.1. Ámbito global	
	2.2. Ámbito de una definición y de una ligadura	
	2.2.1. Visibilidad	
		4
	2.2.3. Almacenamiento	4
		7
	2.4. Ámbito de un parámetro	8.
	2.5. Ámbito de un identificador cuantificado	12
	2.6. Ámbito de un identificador libre	
3.	Abstracciones funcionales 2	22
	3.1. Las funciones como abstracciones y generalizaciones	22
	3.2. Pureza	
	3.3. Especificaciones de funciones	
4.	Recursividad 3	34
	4.1. Funciones y procesos	34
	4.1.1. Funciones <i>ad-hoc</i>	
	4.2. Funciones recursivas	
	4.2.1. Definición	
	4.2.2. Casos base v casos recursivos	

	.2.3. El factorial	36
	2.4. Diseño de funciones recursivas	37
	.2.5. Recursividad lineal	40
	.2.6. Recursividad múltiple	43
	.2.7. Recursividad final y no final	45
4.3.	ipos de datos recursivos	46
	.3.1. Concepto	46
	.3.2. Cadenas	46
	.3.3. Tuplas	46
	.3.4. Rangos	47
	.3.5. Conversión a tupla	49

1. Abstracciones lambda

1.1. Expresiones lambda

Las **expresiones lambda** (también llamadas **abstracciones lambda** o **funciones anónimas** en algunos lenguajes) son expresiones que capturan la idea abstracta de «**función**».

Son la forma más simple y primitiva de describir funciones en un lenguaje funcional.

Su sintaxis (simplificada) es:

```
⟨expresión_lambda⟩ ::= lambda [⟨lista_parámetros⟩]: ⟨expresión⟩
⟨lista_parámetros⟩ := identificador (, identificador)*
```

Por ejemplo, la siguiente expresión lambda captura la idea general de «suma»:

```
lambda x, y: x + y
```

1.2. Parámetros y cuerpos

Los identificadores que aparecen entre la palabra clave **lambda** y el carácter de dos puntos (:) son los **parámetros** de la expresión lambda.

La expresión que aparece tras los dos puntos (:) es el cuerpo de la expresión lambda.

En el ejemplo anterior:

```
lambda x, y: x + y
```

- Los parámetros son x e y.
- El cuerpo es x + v.
- Esta expresión lambda captura la idea general de sumar dos valores (que en principio pueden ser de cualquier tipo, siempre y cuando admitan el operador +).
- En sí misma, esa expresión devuelve un valor válido que representa a una función.

1.3. Aplicación funcional

De la misma manera que podemos aplicar una función a unos argumentos, también podemos aplicar una expresión lambda a unos argumentos.

Por ejemplo, la aplicación de la función \max sobre los argumentos 3 y 5 es una expresión que se escribe como $\max(3, 5)$ y que denota el valor **cinco**.

Igualmente, la aplicación de una expresión lambda como

```
lambda x, y: x + y
```

sobre los argumentos 4 y 3 se representa así:

```
(lambda x, y: x + y)(4, 3)
```

O sea, que la expresión lambda representa el papel de una función.

1.3.1. Evaluación de una aplicación funcional

En nuestro modelo de sustitución, la evaluación de la aplicación de una expresión lambda consiste en sustituir, en el cuerpo de la expresión lambda, cada parámetro por su argumento correspondiente (por orden) y devolver la expresión resultante parentizada (o sea, entre paréntesis).

A esta operación se la denomina aplicación funcional o β-reducción.

Siguiendo con el ejemplo anterior:

```
(lambda x, y: x + y)(4, 3)
```

sustituimos en el cuerpo de la expresión lambda los parámetros x e y por los argumentos 4 y 3, respectivamente, y parentizamos la expresión resultante, lo que da:

```
(4 + 3)
```

que simplificando (según las reglas del operador +) da 7.

Es importante hacer notar que el cuerpo de una expresión lambda sólo se evalúa cuando se lleva a cabo una β-reducción (es decir, cuando se aplica la expresión lambda a unos argumentos), y no antes.

Por tanto, el cuerpo de la expresión lambda no se evalúa cuando se define la expresión.

Por ejemplo, al evaluar la expresión:

```
lambda x, y: x + y
```

el intérprete no evalúa la expresión del cuerpo (x + y), sino que crea un valor de tipo «función» pero sin entrar a ver «qué hay» en el cuerpo.

Sólo se mira lo que hay en el cuerpo cuando se aplica la expresión lambda a unos argumentos.

En particular, podemos tener una expresión lambda como la siguiente, que sólo dará error cuando se aplique a un argumento, no antes:

```
lambda x: x + 1/0
```

1.3.2. Funciones con nombre

Si hacemos la siguiente definición:

```
suma = lambda x, y: x + y
```

le estamos dando un nombre a la expresión lambda, es decir, a una función.

A partir de ese momento podemos usar suma en lugar de su valor (la expresión lambda), por lo que podemos hacer:

```
suma(4, 3)
```

en lugar de

```
(lambda x, y: x + y)(4, 3)
```

Cuando aplicamos a sus argumentos una función así definida también podemos decir que estamos **invocando** o **llamando** a la función. Por ejemplo, en suma(4, 3) estamos *llamando* a la función suma, o hay una *llamada* a la función suma.

La evaluación de la llamada a suma (4, 3) implicará realizar los siguientes tres pasos y en este orden:

- 1. Sustituir el nombre de la función suma por su definición, es decir, por la expresión lambda a la cual está ligado.
- 2. Evaluar los argumentos que aparecen en la llamada.
- 3. Aplicar la expresión lambda a sus argumentos (β-reducción).

Esto implica la siguiente secuencia de reescrituras:

```
suma(4, 3)  # evalúa suma y devuelve su definición
= (lambda x, y: x + y)(4, 3)  # evalúa 4 y devuelve 4
= (lambda x, y: x + y)(4, 3)  # evalúa 3 y devuelve 3
= (lambda x, y: x + y)(4, 3)  # aplica la expresión lambda sus argumentos
= (4 + 3)  # evalúa 4 + 3 y devuelve 7
= 7
```

Como una expresión lambda es una función, aplicar una expresión lambda a unos argumentos es como llamar a una función pasándole dichos argumentos.

Por tanto, también podemos decir que *llamamos* o *invocamos* una expresión lambda, pasándole unos argumentos durante esa llamada.

En consecuencia, ampliamos ahora nuestra gramática de las expresiones en Python incorporando las expresiones lambda como un tipo de función:

Ejemplo

Dado el siguiente código:

```
suma = lambda x, y: x + y
```

¿Cuánto vale la expresión siguiente?

```
suma(4, 3) * suma(2, 7)
```

Según el modelo de sustitución, reescribimos:

```
suma(4, 3) * suma(2, 7)
                                          # definición de suma
= (lambda x, y: x + y)(4, 3) * suma(2, 7) # evaluación de 4
= (lambda x, y: x + y)(4, 3) * suma(2, 7) # evaluación de 3
= (lambda x, y: x + y)(4, 3) * suma(2, 7) # aplicación a 4 y 3
= (4 + 3) * suma(2, 7)
                                          # evaluación de 4 + 3
= 7 * suma(2, 7)
                                          # definición de suma
= 7 * (lambda x, y: x + y)(2, 7)
                                          # evaluación de 2
= 7 * (lambda x, y: x + y)(2, 7)
                                          # evaluación de 7
= 7 * (lambda x, y: x + y)(2, 7)
                                          # aplicación a 2 y 7
                                          # evaluación de 2 + 7
= 7 * (2 + 7)
= 7 * 9
                                           # evaluación de 7 * 9
= 63
```

1.3.3. Composición de funciones

Podemos crear una función que use otra función. Por ejemplo, para calcular el área de un círculo usamos otra función que calcule el cuadrado de un número:

```
cuadrado = lambda x: x * x
area = lambda r: 3.1416 * cuadrado(r)
```

La expresión area (11 + 1) se evaluaría así:

En detalle:

- Línea 1: Se evalúa area, que devuelve su definición (una expresión lambda).
- Líneas 2-4: Lo siguiente a evaluar es la aplicación de la expresión lambda de area sobre su argumento, por lo que primero evaluamos éste.
- Línea 5: Ahora se aplica la expresión lambda a su argumento 12.
- Línea 6: Lo siguiente que toca evaluar es el 3.1416, que ya está evaluado.
- Línea 7: A continuación hay que evaluar la aplicación de cuadrado sobre 12. Primero se evalúa cuadrado, sustituyéndose por su definición...
- Línea 8: ... y ahora se aplica la expresión lambda a su argumento 12.
- Lo que queda ya por evaluar es todo aritmética.

A veces no resulta fácil determinar el orden en el que hay que evaluar las subexpresiones que forman una expresión, sobre todo cuando se mezclan funciones y operadores en una misma expresión.

En ese caso, puede resultar útil reescribir los operadores como funciones, cuando sea posible, y luego dibujar el árbol sintático correspondiente a esa expresión, para ver a qué profundidad quedan los nodos.

Por ejemplo, la siguiente expresión:

```
abs(-12) + max(13, 28)
```

se puede reescribir como:

```
from operator import add
add(abs(-12), max(13, 28))
```

y si dibujáramos el árbol sintáctico veríamos que la suma está más arriba que el valor absoluto y el máximo (que están, a su vez, al mismo nivel de profundidad).

Un ejemplo más complicado:

```
abs(-12) * max((2 + 3) ** 5), 37)
```

se reescribiría como:

```
from operator import add, mul
mul(abs(-12), max(pow(add(2, 3), 5), 37))
```

donde se aprecia claramente que el orden de las operaciones, de más interna a más externa, sería:

- 1. Suma (+ o add).
- 2. Potencia (** o pow).
- 3. Valor absoluto (abs) y máximo (max) al mismo nivel.
- 4. Producto (* o mul).

1.4. Identificadores cuantificados y libres de una expresión lambda

Si un identificador de los que aparecen en el cuerpo de una expresión lambda también aparece en la lista de parámetros de esa expresión lambda, decimos que es un identificador cuantificado de la expresión lambda.

En caso contrario, le llamamos identificador libre de la expresión lambda.

En el ejemplo anterior:

```
lambda x, y: x + y
```

los dos identificadores que aparecen en el cuerpo (x e y) aparecen también en la lista de parámetros de la expresión lambda, por lo que ambos son identificadores cuantificados y no hay ningún identificador libre.

En cambio, en la expresión lambda:

```
lambda x, y: x + y + z
```

x e y son identificadores cuantificados (porque aparecen en la lista de parámetros de la expresión lambda), mientras que z es un identificador libre.

En realidad, un identificador cuantificado y un parámetro están vinculados, hasta el punto en que podemos considerar que son la misma cosa.

Tan sólo cambia su denominación dependiendo del lugar donde aparece su identificador en la expresión lambda:

- Cuando aparece antes del «:», le llamamos «parámetro».
- Cuando aparece después del «:», le llamamos «identificador cuantificado».

Por ejemplo: en la siguiente expresión lambda:

```
lambda x, y: x + y

T T identificador cuantificado

— parámetro
```

el identificador x aparece dos veces, pero en los dos casos representa la misma cosa. Tan sólo se llama de distinta forma (*«parámetro»* o *«identificador cuantificado»*) dependiendo de dónde aparece.

Abstracciones funcionales 2. Ámbitos

A los identificadores cuantificados se les llama así porque sus posibles valores están cuantificados o *restringidos* a los posibles valores que puedan tomar los parámetros de la expresión lambda en cada llamada a la misma.

Dicho valor además vendrá determinado automáticamente por la ligadura que crea el intérprete durante la llamada a la expresión lambda.

Es decir: el intérprete liga automáticamente el identificador cuantificado al valor del correspondiente argumento durante la llamada a la expresión lambda.

En cambio, el valor al que esté ligado un identificador libre de una expresión lambda no viene determinado por ninguna característica propia de dicha expresión lambda.

2. Ámbitos

2.1. Ámbitos léxicos

Un **ámbito léxico** (también llamado **ámbito estático**) es una porción del código fuente de un programa.

Decimos que ciertas construcciones sintácticas determinan ámbitos léxicos.

Cuando una construcción determina un ámbito léxico, la sintaxis del lenguaje establece dónde empieza y acaba ese ámbito léxico en el código fuente.

Por tanto, siempre se puede determinar sin ambigüedad si una instrucción situada en un punto concreto del programa está dentro de un determinado ámbito léxico, tan sólo leyendo el código fuente del programa y sin necesidad de ejecutarlo.

Eso significa que el concepto de ámbito léxico es un concepto **estático**.

Además de los ámbitos léxicos, existen también los llamados **ámbitos dinámicos**, que funcionan de otra forma y que no estudiaremos en este curso.

La mayoría de los lenguajes de programación usan ámbitos léxicos, salvo excepciones (como LISP o los *shell scripts*) que usan ámbitos dinámicos.

Por esa razón, a partir de ahora, cuando hablemos de «ámbitos» sin especificar de qué tipo, nos estaremos siempre refiriendo a «ámbitos léxicos».

Por ejemplo: en el lenguaje de programación Java, los *bloques* son estructuras sintácticas delimitadas por llaves { y } que contienen instrucciones.

Los bloques de Java determinan ámbitos léxicos; por tanto, si una instrucción está dentro de un bloque (es decir, si está situada entre las llaves { y } que delimitan el bloque), entonces esa instrucción se encuentra dentro del ámbito léxico que define el bloque.

En Python, **las expresiones lambda determinan ámbitos léxicos**, así que, cada vez que creamos una expresión lambda, estamos introduciendo un nuevo ámbito en el código fuente de nuestro programa.

En concreto, el ámbito que determina una expresión lambda viene delimitado por su cuerpo.

Los ámbitos **se pueden anidar recursivamente**, o sea, que pueden estar contenidos unos dentro de otros.

Abstracciones funcionales 2.1 Ámbitos léxicos

Por tanto, una instrucción puede estar en varios ámbitos al mismo tiempo (anidados unos dentro de otros).

De todos ellos, el ámbito más interno es el que no contiene, a su vez, a ningún otro ámbito.

Definimos el **ámbito de una instrucción** como el ámbito más interno en el que se encuentra dicha instrucción.

Según lo anterior, en un momento dado, el **ámbito actual** es el ámbito de la instrucción actual, es decir, el ámbito más interno en el que se encuentra la instrucción que se está ejecutando actualmente.

Decimos que los ámbitos léxicos cumplen la propiedad de la estructura.

Una **estructura** es una construcción sintáctica que puede **anidarse completamente** dentro de otras estructuras, de forma que, dadas dos estructuras cualesquiera, o una está incluida completamente dentro de la otra, o no se tocan en absoluto.

Por tanto, los bordes de dos ámbitos léxicos nunca pueden cruzarse:

Ámbitos léxicos anidados

Abstracciones funcionales 2.1 Ámbitos léxicos

Estas no son estructuras

2.1.1. Ámbito global

Un ámbito que siempre existe en cualquier programa es el llamado ámbito global:

- Si se está ejecutando un *script* en el intérprete por lotes (con python script.py), el ámbito global abarca todo el script, desde la primera instrucción hasta la última.
- Si estamos en el intérprete interactivo (con python o ipython3), el ámbito global abarca toda nuestra sesión con el intérprete, desde que arrancamos la sesión hasta que finalizamos la misma.

Por tanto:

- En el momento en que se empieza a ejecutar un *script* o se arranca una sesión con el intérprete interactivo, **se entra** en el *ámbito global*.
- Del ámbito global sólo se sale cuando se finaliza la ejecución del script o se cierra el intérprete interactivo.

Ejemplos

Por ejemplo, en la siguiente línea de código:

```
suma = lambda x, y: x + y
```

el cuerpo de la función suma determina un ámbito.

Por tanto, en el siguiente código tenemos dos ámbitos: el ámbito global (más externo) y el ámbito del cuerpo de la expresión lambda (más interno y anidado dentro del ámbito global):

```
nombre = 'Manolo'
suma = lambda x, y: x + y
total = suma(3, 5)

Ambito del cuerpo de la expresión lambda

Ambito del cuerpo de la expresión lambda
```

En este otro ejemplo más complicado, tenemos el siguiente script:

```
1 W = 2
f = lambda x, y: 5 + (lambda z: z + 3)(x + y)
3 r = f(2, 4)
m = (lambda x: x ** 2)(3)
```

donde existen cuatro ámbitos:

2.2. Ámbito de una definición y de una ligadura

El **ámbito de una definición** es el ámbito actual de esa definición, es decir, el ámbito más interno donde aparece esa definición.

Por extensión, llamamos **ámbito de una ligadura** al ámbito de la definición que, al ejecutarse, creará la ligadura (es decir, el ámbito más interno donde aparece la definición que, al ejecutarse, creará la ligadura en tiempo de ejecución).

En la práctica, es lo mismo hablar del «ámbito de una definición» que del «ámbito de la ligadura que se creará al ejecutar la definición», ya que son la misma cosa.

Decimos que la definición (y la ligadura correspondiente que se creará al ejecutar esa definición) es **local** a su ámbito.

Si ese ámbito es el ámbito *global*, decimos que la *definición* (y la *ligadura* que se creará al ejecutar esa definición) es **global**.

Por ejemplo, en el siguiente script se ejecutan cuatro definiciones:

```
x = 25
y = 99
z = y
nombre = "Manolo"
```

Ámbito global

El ámbito de cada una de las instrucciones es el ámbito *global*, que es el único ámbito que existe en el *script*.

En consecuencia:

- Las cuatro definiciones tienen ámbito global (y son, por tanto, definiciones globales).
- Cuando se ejecuten, esas definiciones crearán ligaduras globales.

Como estamos usando un lenguaje de programación que trabaja con *ámbitos léxicos*, **el ámbito de una definición siempre vendrá determinado por una construcción sintáctica** del lenguaje.

Por tanto:

- Sus límites vienen marcados únicamente por la sintaxis de la construcción que determina el ámbito de esa definición.
- El ámbito de la definición se puede determinar simplemente leyendo el código fuente del programa, observando dónde empieza y dónde acaba esa construcción, sin tener que ejecutarlo.

Es decir, que se puede determinar de forma estática.

2.2.1. Visibilidad

La visibilidad de una ligadura indica en qué lugares del código fuente del programa es visible y accesible esa ligadura.

Una ligadura puede existir en un punto concreto del programa, pero en cambio no ser accesible en ese mismo punto.

Para determinar las reglas de visibilidad de una ligadura, existen dos posibilidades, dependiendo de si la ligadura está ligando un atributo de un objeto, o no.

Veamos cada caso con detalle.

- 1. Si el identificador ligado es un **atributo de un objeto**, la ligadura sólo será visible dentro del objeto.
 - En tal caso, decimos que la visibilidad de la ligadura (y del correspondiente atributo ligado) es **local al objeto** que contiene el atributo.
 - Eso significa que debemos indicar (usando el operador punto (.)) el objeto que contiene a la ligadura para poder acceder a ella, lo que significa que también debemos tener acceso al propio objeto que la contiene.
- 2. Si el identificador ligado **NO es un atributo de un objeto**, la ligadura sólo será visible dentro del ámbito donde se definió la ligadura.

Ese ámbito representa una «región» cuyas fronteras limitan la porción del código fuente en la que es visible esa ligadura.

En tal caso, decimos que la visibilidad de la ligadura es local a su ámbito.

Eso significa que **no es posible acceder a esa ligadura fuera de su ámbito**; sólo es visible dentro de él.

En cambio, si el ámbito de la ligadura contiene dentro otro ámbito anidado, sí que podremos acceder a la ligadura dentro de ese ámbito más interno, ya que técnicamente seguiría estando dentro de su ámbito.

Si el ámbito es el global, decimos que la ligadura tiene visibilidad global.

Suponiendo que tenemos los siguientes cuatro ámbitos, identificados con las letras A, B, C y D:

Ámbitos léxicos anidados

- A puede ver los nombres definidos en A, pero no los definidos en B, C o D.
- B puede ver los nombres definidos en A y B, pero no los definidos en C o D.
- C puede ver los nombres definidos en A, B y C, pero no los definidos en D.
- D puede ver los nombres definidos en A y D, pero no los definidos en B o C.

2.2.2. Tiempo de vida

El tiempo de vida de una ligadura representa el periodo de tiempo durante el cual *existe* esa ligadura, es decir, el periodo comprendido desde su creación y almacenamiento en la memoria hasta su posterior destrucción.

En la mayoría de los lenguajes (incluyendo Python y Java), una ligadura **empieza a existir** justo cuando se crea, es decir, en el punto donde se ejecuta la instrucción que define la ligadura.

Por tanto, no es posible acceder a esa ligadura antes de ese punto, ya que no existe hasta entonces.

Por otra parte, el momento en que una ligadura **deja de existir** depende si el identificador ligado es un atributo de un objeto, o no:

- Si el identificador ligado es un atributo de un objeto, la ligadura dejará de existir cuando se elimine el objeto de la memoria, o bien, cuando se elimine el propio atributo ligado.
- En caso contrario, la ligadura dejará de existir allí donde termine el ámbito de la ligadura.

Es importante hacer notar que, en un momento dado, una ligadura puede existir pero no ser visible.

Por ejemplo, si una ligadura local y una global vinculan el mismo identificador, la local «hace sombra» a la global, cosa que estudiaremos con más profundidad posteriormente.

2.2.3. Almacenamiento

Sabemos que las ligaduras se almacenan en espacios de nombres.

En Python, hay dos lugares donde se pueden almacenar ligaduras y, por tanto, hay dos posibles espacios de nombres: los *objetos* y los *marcos*.

Así que tenemos dos posibilidades:

- 1. Si el identificador que se está ligando es un *atributo* de un objeto, entonces la ligadura se almacenará en el objeto, junto con el propio atributo.
- 2. En caso contrario, la ligadura se almacenará en un marco, el cual depende del ámbito actual.

Veamos cada caso con más detalle.

1. Cuando se crea una ligadura dentro de un objeto en Python usando el operador punto (.), el espacio de nombres será el propio objeto, ya que los objetos son espacios de nombres en Python.

En tal caso, la ligadura asocia un valor con un *atributo* del objeto, y tanto el atributo como la ligadura se almacenan dentro del objeto.

Por ejemplo, si en Python hacemos:

```
import math
math.x = 75
```

estamos creando la ligadura $x \to 75$ en el espacio de nombres que representa el módulo math, el cual es un objeto en Python y, por tanto, es quien almacena la ligadura.

Así que el espacio de nombres ha sido seleccionado a través del operador punto (.) para resolver el atributo dentro del objeto, y no depende del ámbito donde se encuentre la sentencia math.x = 75.

Diremos que la ligadura es local al objeto.

2. Si la ligadura no se crea dentro de un objeto usando el operador punto (.), entonces el espacio de nombres irá asociado al ámbito y, en este caso, ese espacio de nombres siempre será un marco.

Ese marco será el que corresponda al *ámbito actual*, es decir, el ámbito más interno en el que se encuentra la instrucción que crea la ligadura.

Cuando el ámbito es el *ámbito global* (y, por tanto, la ligadura se almacena en el marco global), se dice que la ligadura es **global**.

En caso contrario, decimos que es **local** al ámbito, y se almacenará en el marco correspondiente a ese ámbito.

Ejemplo

En el siguiente ejemplo vemos cómo hay varias definiciones que, al ejecutarse, crearán ligaduras en un determinado ámbito, pero no en un objeto (ya que no se están creando atributos dentro de ningún objeto):

```
x = 25
y = 99
z = y
nombre = 'Manolo'
```

Todas esas definiciones son globales y, por tanto, las ligaduras que crean al ejecutarse son ligaduras globales o de ámbito global, y se almacenan en el marco global.

Al no tratarse de atributos de objetos, la visibilidad vendrá determinada por sus ámbitos.

En consecuencia, la visibilidad de todas esas ligaduras será el ámbito global, ya que son ligaduras globales. Por tanto, decimos que su **visibilidad** es **global**.

Por otra parte, como esas ligaduras no se crean sobre atributos de objetos, empezarán a existir justo donde se crean, y terminarán de existir al final de su ámbito.

Por ejemplo, la ligadura y \rightarrow 99 empezará a existir en la línea 2 y terminará al final del *script*, que es donde termina su ámbito (que, en este ejemplo, es el ámbito global).

En consecuencia, el **tiempo de vida** de la ligadura será el periodo comprendido desde su creación (en la línea 2) hasta el final de su ámbito.

Cuando la ligadura se crea sobre un **atributo** de un *objeto* de Python, entonces ese objeto almacenará la ligadura y será, por tanto, su espacio de nombres.

Recordemos que, por ejemplo, cuando importamos un módulo usando la sentencia **import**, podemos acceder al objeto que representa ese módulo usando su nombre, lo que nos permite acceder a sus atributos y crear otros nuevos.

Esos atributos y sus ligaduras correspondientes sólo son visibles cuando accedemos a ellos usando el operador punto (.) a través del objeto que lo contiene.

Por tanto, los atributos no son visibles fuera del objeto, y debemos usar el operador punto (.) para acceder a ellos (su visibilidad es local al objeto que los contiene).

Por ejemplo:

```
>>> import math
>>> math.pi
3.141592653589793  # El nombre 'pi' es visible dentro del objeto
>>> pi  # El nombre 'pi' no es visible fuera del objeto
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: name 'pi' is not defined
```

Igualmente, si creamos un nuevo atributo dentro del objeto, la ligadura entre el atributo y su valor sólo existirá en el propio objeto y, por tanto, sólo será visible cuando accedamos al atributo a través del objeto donde se ha creado.

```
>>> import math
>>> math.x = 95  # Creamos un nuevo atributo en el objeto
>>> math.x  # El nombre 'x' es visible dentro del objeto
95
>>> x  # El nombre 'x' no es visible fuera del objeto
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined
```

Resumiendo:

- Para poder acceder a un atributo de un objeto, debemos acceder primero al objeto y usar el operador punto (.).
- Por tanto, la **visibilidad** de su ligadura correspondiente no vendrá determinada por un ámbito, sino por el objeto que contiene al atributo (y que, por consiguiente, también contiene a su ligadura).

En tal caso, diremos que la visibilidad es local al objeto que contiene el atributo.

- Por otra parte, el **tiempo de vida** de la ligadura será el tiempo que permanezca el atributo en el objeto, ligado a algún valor.

2.2.3.1. Resumen

Ámbito (léxico):

Porción del código fuente de un programa. Los límites de ese ámbito sólo vienen determinados por la sintaxis del lenguaje, ya que ciertas construcciones sintácticas determinan su propio ámbito.

Ámbito de una definición:

El ámbito actual de la definición; es decir: el ámbito más interno donde aparece la definición.

Ámbito de una ligadura:

El ámbito de la instrucción que creará la ligadura en tiempo de ejecución. Por ejemplo, si la ins-

trucción es una definición, se corresponde con el ámbito de la definición.

Visibilidad de una ligadura:

Determina dónde es visible una ligadura dentro del programa.

Esa visibilidad depende de si el identificador ligado es un atributo de un objeto o no:

- a. Si es un atributo de un objeto, la visibilidad lo determina el objeto que contiene la ligadura.
- b. En caso contrario, la visibilidad lo determina el ámbito de la ligadura.

Tiempo de vida de una ligadura:

El periodo de tiempo durante el cual *existe* esa ligadura, es decir, el periodo comprendido desde su creación y almacenamiento en la memoria hasta su posterior destrucción.

Su tiempo de vida empieza siempre en el momento en que se crea la ligadura, y su final depende de si el identificador ligado es un atributo de un objeto o no:

- a. Si es un atributo de un objeto, el tiempo de vida acabará cuando se destruya el objeto que lo contiene (o cuando se elimine el atributo ligado).
- b. En caso contrario, el tiempo de vida acabará al final del ámbito de la ligadura.

Almacenamiento de una ligadura:

Determina el **espacio de nombres** donde se almacenará la ligadura:

- a. Si el identificador ligado es un atributo de un objeto, el espacio de nombres será el objeto que lo contiene.
- b. En caso contrario, el espacio de nombres será el marco asociado al ámbito de la ligadura.

2.3. Ámbito de un identificador

A veces, por economía del lenguaje, se suele hablar del «ámbito de un identificador», en lugar de hablar del «ámbito de la ligadura que liga ese identificador con un valor».

Por ejemplo, en el siguiente script:

x = 25

tenemos que:

- En el ámbito global, hay una definición que liga al identificador x con el valor 25.
- Por tanto, se dice que el ámbito de esa ligadura es el ámbito global.
- Pero también se suele decir que «el identificador x es global» o, simplemente, que «x es global».

O sea, se asocia al ámbito no la ligadura, sino el identificador en sí.

Pero hay que tener cuidado, ya que ese mismo identificador puede aparecer en ámbitos diferentes y, por tanto, ligarse en ámbitos diferentes.

Así que no tendría sentido hablar del ámbito que tiene ese identificador (ya que podría tener varios) sino, más bien, del ámbito que tiene una aparición concreta de ese identificador.

Por eso, sólo deberíamos hablar del ámbito de un identificador cuando no haya ninguna ambigüedad respecto a qué aparición concreta nos estamos refiriendo.

Por ejemplo, en el siguiente script:

```
1 X = 4 suma = (lambda x, y: x + y)(2, 3)
```

el identificador x que aparece en la línea 1 y el identificador x que aparece en la línea 2 pertenecen a ámbitos distintos (como veremos en breve) aunque sea el mismo identificador.

2.4. Ámbito de un parámetro

El cuerpo de la expresión lambda determina un ámbito.

Por ejemplo, supongamos la siguiente llamada a una expresión lambda:

```
(lambda x, y: x + y)(2, 3)
```

Al llamar a la expresión lambda (es decir, al aplicar la expresión lambda a unos argumentos), se empieza a ejecutar su cuerpo y, por tanto, se entra en dicho ámbito.

En ese momento, **se crea un nuevo marco** en la memoria, que representa esa ejecución concreta de dicha expresión lambda.

Lo que ocurre justo a continuación es que cada parámetro de la expresión lambda se liga a uno de los argumentos en el orden en que aparecen en la llamada a la expresión lambda (primer parámetro con primer argumento, segundo con segundo, etcétera).

En el ejemplo anterior, es como si el intérprete ejecutara las siguientes definiciones dentro del ámbito de la expresión lambda:

```
x = 2
y = 3
```

Las ligaduras que crean esas definiciones **se almacenan en el marco de la llamada a la expresión** lambda.

Ese marco se eliminará de la memoria al salir del ámbito de la expresión lambda, es decir, cuando se termine de ejecutar el cuerpo de la expresión lambda al finalizar la llamada a la misma.

Por tanto, las ligaduras se destruyen de la memoria al eliminarse el marco que las almacena.

La próxima vez que se llame a la expresión lambda, se volverán a ligar sus parámetros con los argumentos que haya en esa llamada.

Por ejemplo, supongamos que tenemos esta situación:

```
suma = lambda x, y: x + y
a = suma(4, 3)
b = suma(8, 9)
```

En la primera llamada, se entrará en el ámbito determinado por el cuerpo la expresión lambda, se creará el marco que representa a esa llamada, y se ejecutarán las siguientes definiciones dentro del ámbito:

```
  \begin{cases}
    x = 4 \\
    y = 3
  \end{cases}
```

lo que creará las correspondientes ligaduras y las almacenará en el marco de esa llamada.

Despues, evaluará el cuerpo de la expresión lambda y devolverá el resultado, saliendo del cuerpo de la expresión lambda y, por tanto, del ámbito que determina dicho cuerpo, lo que hará que se destruya el marco y, en consecuencia, las ligaduras que contiene.

En la siguiente llamada ocurrirá lo mismo pero, esta vez, las definiciones que se ejecutarán serán las siguientes:

```
\begin{array}{ccc}
x &= 8 \\
y &= 9
\end{array}
```

lo que creará otras ligaduras, que serán destruidas luego cuando se destruya el marco que las contiene, al finalizar la ejecución del cuerpo de la expresión lambda.

Es importante hacer notar que **en ningún momento se está haciendo un** *rebinding* **de los parámetros**, ya que cada vez que se llama de nuevo a la expresión lambda, se está creando una ligadura nueva sobre un identificador que no estaba ligado.

En consecuencia, podemos decir que:

- El **ámbito de la ligadura** entre un parámetro y su argumento es el **cuerpo** de la expresión lambda, así que la **visibilidad** del parámetro (y de la ligadura) es ese cuerpo.
- Esa ligadura se crea justo después de entrar en ese ámbito, así que se puede acceder a ella en cualquier parte del cuerpo de la expresión lambda, por lo que su tiempo de vida va desde el principio hasta el final de la llamada.
- El **espacio de nombres** que almacena las ligaduras entre parámetros y argumentos es el **marco** que se crea al llamar a la expresión lambda.

Esto se resume diciendo que «el ámbito de un parámetro es el cuerpo de su expresión lambda».

También se dice que el parámetro tiene un **ámbito** *local* y un **almacenamiento** *local* al cuerpo de la expresión lambda.

Resumiendo: el parámetro es **local** a dicha expresión lambda.

Por tanto, sólo podemos acceder al valor de un parámetro dentro del cuerpo de su expresión lambda.

Por ejemplo, en el siguiente código:

```
suma = lambda x, y: x + y
```

el cuerpo de la expresión lambda ligada a suma determina su propio ámbito.

Por tanto, en el siguiente código tenemos dos ámbitos: el ámbito global (más externo) y el ámbito del cuerpo de la expresión lambda (más interno y anidado dentro del ámbito global):

```
Ambito del cuerpo de la expresión lambda

nombre = 'Manolo'

suma = lambda x, y: x + y

total = suma(3, 5)

Ambito global
```

Además, cada vez que se llama a suma, la ejecución del programa entra en su cuerpo, lo que crea un nuevo marco que almacena las ligaduras entre sus parámetros y los argumentos usados en esa llamada.

En resumen:

El **ámbito de un parámetro** es el ámbito de la ligadura que se establece entre éste y su argumento correspondiente, y se corresponde con el **cuerpo** de la expresión lambda donde aparece.

Por tanto, el parámetro sólo existe dentro del cuerpo de la expresión lambda y no podemos **acceder** a su valor fuera del mismo; por eso se dice que tiene un **ámbito** *local* a la expresión lambda.

Además, la ligadura entre el parámetro y su argumento se almacena en el marco de la llamada a la expresión lambda, y por eso se dice que tiene un almacenamiento local a la expresión lambda.

Los ámbitos léxicos permiten ligaduras locales a ciertas construcciones sintácticas, lo cual nos permite programar definiendo partes suficientemente independientes entre sí.

Esto es la base de la llamada programación modular.

Por ejemplo, nos permite crear funciones sin preocuparnos de si los nombres de los parámetros ya han sido utilizados en otras partes del programa.

Igualmente, nos permite crear programas sin preocuparnos de si estamos usando nombres que ya han sido usadas en el interior de alguna de las funciones del programa.

De lo contrario, se podría provocar lo que se conoce como *name clash* (conflicto de nombres o choque de nombres), que es el problema que se produce cuando usamos el mismo nombre para varias cosas diferentes y que impide que se puedan acceder a todas al mismo tiempo.

Lo que impide el name clash son dos cosas:

- Los *ámbitos* hacen que los nombres sólo sean visibles en ciertas zonas.
- Los *espacios de nombres* permiten que un mismo nombre pueda ligarse a diferentes nombres simultáneamente.

2.5. Ámbito de un identificador cuantificado

Hemos visto que a los **parámetros** de una expresión lambda se les llama **identificadores cuantificados** cuando aparecen dentro del cuerpo de dicha expresión lambda.

Por tanto, todo lo que se dijo sobre el ámbito de un parámetro se aplica exactamente igual al ámbito de un identificador cuantificado.

Recordemos que el ámbito de un parámetro es el cuerpo de su expresión lambda, que es la porción de código donde podemos acceder al valor del argumento con el que está ligado.

Por tanto, el ámbito de un identificador cuantificado es el cuerpo de la expresión lambda donde aparece, y es el único lugar dentro del cual podremos acceder al valor del identificador cuantificado (que también será el valor del argumento con el que está ligada).

Por eso también se dice que el identificador cuantificado tiene un **ámbito local** al cuerpo de la expresión lambda.

En resumen:

El **ámbito de un identificador cuantificado** es el ámbito de la ligadura que se crea entre ésto y su argumento correspondiente, y se corresponde con el **cuerpo** de la expresión lambda donde aparece.

Por tanto, el identificador cuantificado sólo existe dentro del cuerpo de la expresión lambda y no podemos **acceder** a su valor fuera del mismo; por eso se dice que tiene un **ámbito** *local* a la expresión lambda.

Además, la ligadura entre el identificador cuantificado y su argumento se almacena en el marco de la llamada a la expresión lambda, y por eso se dice que tiene un almacenamiento local a la expresión lambda.

O sea: con los **identificadores cuantificados** ocurre exactamente lo mismo que con los **parámetros**, ya que, de hecho, **un parámetro y un identificador cuantificado son la misma cosa**, como ya hemos visto.

Ejemplo

En el siguiente script:

```
# Aquí empieza el script (no hay más definiciones antes de esta línea):
producto = lambda x: x * x
y = producto(3)
z = x + 1  # da error
```

Hay dos ámbitos: el ámbito global y el ámbito local definido por el cuerpo de la expresión lambda (o sea, la expresión x * x).

Esa expresión lambda tiene un parámetro (x) que aparece como el identificador cuantificado x en el cuerpo de la expresión lambda.

El ámbito del parámetro x (o, lo que es lo mismo, el identificador cuantificado x) es el **cuerpo** de la expresión lambda.

Por tanto, fuera de ese cuerpo, no es posible acceder al valor del identificador cuantificado x, al encontrarnos **fuera de su ámbito** (la ligadura **sólo es visible dentro del cuerpo** de la expresión lambda).

Por eso, la línea 4 dará un error al intentar acceder al valor x, cuya ligadura no es visible fuera de la expresión lambda.

2.6. Ámbito de un identificador libre

Los identificadores y ligaduras que no tienen ámbito local se dice que tienen un **ámbito** *no local* o, a veces, un **ámbito** *más global*.

Si, además, ese ámbito resulta ser el **ámbito global**, decimos directamente que esos identificadores o ligaduras son **globales**.

Por ejemplo, los **identificadores libres** que aparecen en una expresión lambda no son locales a dicha expresión (ya que no representan parámetros de la expresión) y, por tanto:

- 1. Tienen un ámbito más global que el cuerpo de dicha expresión lambda.
- 2. Se almacenarán en otro espacio de nombres distinto al marco que se crea al llamar a la expresión lambda.

3. Abstracciones funcionales

3.1. Las funciones como abstracciones y generalizaciones

Recordemos la definición de la función area:

```
cuadrado = lambda x: x * x
area = lambda r: 3.1416 * cuadrado(r)
```

Aunque es muy sencilla, la función area ejemplifica la propiedad más potente de las funciones definidas por el programador: la **abstracción**.

La función area está definida sobre la función cuadrado, pero sólo necesita saber de ella qué resultados de salida devuelve a partir de sus argumentos de entrada (o sea, *qué* calcula y no *cómo* lo calcula).

Podemos escribir la función area sin preocuparnos de cómo calcular el cuadrado de un número, porque eso ya lo hace la función cuadrado.

Los detalles sobre cómo se calcula el cuadrado están ocultos dentro de la definición de cuadrado. Esos detalles se ignoran en este momento al diseñar area, para considerarlos más tarde si hiciera falta.

De hecho, por lo que respecta a area, cuadrado no representa una definición concreta de función, sino más bien la abstracción de una función, lo que se denomina una abstracción funcional, ya que a area le sirve igual de bien cualquier función que calcule el cuadrado de un número.

Por tanto, si consideramos únicamente los valores que devuelven, las tres funciones siguientes son indistinguibles e igual de válidas para area. Ambas reciben un argumento numérico y devuelven el cuadrado de ese número:

```
cuadrado = lambda x: x * x
cuadrado = lambda x: x ** 2
cuadrado = lambda x: x * (x - 1) + x
```

En otras palabras: la definición de una función debe ser capaz de **ocultar sus detalles internos de funcionamiento**, ya que para usar la función no debe ser necesario conocer esos detalles.

Encapsular es el acto de encerrar algo dentro una *cápsula*, de forma que parte de lo que hay dentro queda visible y accesible desde el exterior, mientras que el resto queda oculto e inaccesible en el interior.

El resultado de la encapsulación se denomina una «caja negra».

Abstraer es centrarse en lo importante en un determinado momento e ignorar lo que en ese momento no resulta importante.

Crear una abstracción es meter un mecanismo más o menos complejo dentro de una caja negra y darle un nombre, de forma que podamos referirnos a todo el conjunto simplemente usando su nombre sin tener que conocer su composición interna ni sus detalles internos de funcionamiento.

Es importante entender que no todas las cajas negras son abstracciones. Una caja negra sólo es una abstracción cuando la encapsulación se hace de forma que deja visible sólo lo necesario para usar la abstracción y oculta lo demás (es decir, lo que no es necesario).

Por tanto, para usar la abstracción nos bastará con conocer su *nombre* y saber *qué hace*, sin necesidad de saber *cómo lo hace* ni qué elementos la forman *internamente*.

En consecuencia, las abstracciones están *encapsuladas*, pero no de cualquier manera, sino de forma que:

- lo que queda visible desde el exterior de la cápsula es qué hace la abstracción, y
- lo que se oculta en el interior es cómo lo hace.

La abstracción es el principal instrumento de control de la complejidad, ya que nos permite ocultar detrás de un nombre los detalles que componen una parte del programa, haciendo que esa parte actúe (a ojos del programador que la utilice) como si fuera un elemento *predefinido* del lenguaje, de forma que el programador lo puede usar sin tener que saber cómo funciona por dentro.

Por tanto, **las funciones son abstracciones** porque nos permiten usarlas sin tener que conocer los detalles internos del procesamiento que realizan.

Por ejemplo, si queremos usar la función cubo (que calcula el cubo de un número), nos da igual que dicha función esté implementada de cualquiera de las siguientes maneras:

```
cubo = lambda x: x * x * x cubo = lambda x: x ** 3 cubo = lambda x: x * x ** 2
```

Para **usar** la función, nos basta con saber que calcula el cubo de un número, sin necesidad de saber qué cálculo concreto realiza para obtener el resultado.

Los detalles de implementación quedan ocultos y por eso también decimos que cubo es una abstracción.

Las funciones también son abstracciones porque describen operaciones compuestas a realizar sobre ciertos valores sin importar cuáles sean esos valores en concreto (son *generalizaciones* de casos particulares).

Por ejemplo, cuando definimos:

```
cubo = lambda x: x * x * x
```

no estamos hablando del cubo de un número en particular, sino más bien de un **método** para calcular el cubo de cualquier número.

Es decir: estamos definiendo en qué consiste elevar «algo» al cubo, en general.

Por supuesto, nos las podemos arreglar sin definir el concepto de *cubo*, escribiendo siempre expresiones explícitas (como 3*3*3,5*5*5, etc.) sin usar la palabra «cubo», pero eso nos obligaría siempre a expresarnos usando las operaciones primitivas de nuestro lenguaje (como *), en vez de poder usar términos de más alto nivel.

Es decir: nuestros programas podrían calcular el cubo de un número, pero no tendrían la habilidad de expresar el concepto de *elevar al cubo*.

Una de las habilidades que deberíamos pedir a un lenguaje potente es la posibilidad de **construir abstracciones** asignando nombres a los patrones más comunes, y luego trabajar directamente usando dichas abstracciones.

Las funciones nos permiten esta habilidad, y esa es la razón de que todos los lenguajes (salvo los más primitivos) incluyan mecanismos para definir funciones.

Por ejemplo: en el caso anterior, vemos que hay un patrón (multiplicar algo por sí mismo tres veces) que se repite con frecuencia, y a partir de él construimos una abstracción que asigna un nombre a ese patrón (elevar al cubo).

Esa abstracción la definimos como una función que describe la *regla* necesaria para elevar algo al cubo.

Por tanto, algunas veces, analizando ciertos *casos particulares*, observamos que se repite el mismo patrón en todos ellos, y de ahí extraemos un *caso general* (es decir, hacemos una **generalización**) que agrupa a todos los posibles casos particulares que cumplen ese patrón.

Luego, hacemos una **encapsulación**, metiendo ese caso general en una «caja negra» que oculte sus detalles internos, y finalmente le damos un nombre a la «caja», con lo que acabamos creando una **abstracción**.

En resumen, creamos abstracciones:

- Cuando queremos **reducir la complejidad**, dándole un nombre a un mecanismo complejo para poder referirnos a todo el conjunto a través de su nombre sin tener que recordar continuamente qué piezas contiene el mecanismo o cómo funciona éste por dentro.
- Cuando queremos que nuestro programa pueda expresar un concepto abstracto, como el de «elevar al cubo».
- Cuando creamos **casos generales a partir de patrones que se repiten** en varios casos particulares.

Por ejemplo, cuando vemos que en nuestros programas es frecuente tener que multiplicar una cosa por sí misma tres veces, deducimos que ahí hay un patrón común que se repite en todos los casos.

De ahí, creamos la abstracción que describe ese patrón general y le llamamos «elevar al cubo»:

Ese patrón general representa a cada miembro del grupo formado por sus casos particulares, y se construye colocando un *parámetro* allí donde los casos particulares se diferencian entre sí (es decir, hacemos una **parametrización**).

La función resultante es, al mismo tiempo:

- una **encapsulación** (porque los detalles internos de la función quedan ocultos dentro del cuerpo de la expresión lambda como si fuera una caja negra),
- una abstracción (porque se puede invocar a la función usando simplemente su nombre sin necesidad de saber cómo está hecha por dentro y, por tanto, sabiendo qué sin tener que saber cómo lo hace), y
- una **generalización** (porque, al estar parametrizada, representa muchos casos particulares con un único caso general).

Al invocar a la función, se ligan sus parámetros con los argumentos de la llamada, lo que produce un caso particular a partir del caso general.

En resumen, el proceso conceptual sería el siguiente:

- 1. Observar que hay varios casos particulares que se parecen.
- 2. Generalizar esos casos particulares creando un caso general.
- 3. Parametrizar el caso general creando una expresión lambda.
- 4. Abstraer la expresión lambda dándole un nombre.

Veamos cada paso por separado con detalle.

Paso 1: Abstracción

Partimos de casos particulares que se parecen. Por ejemplo, supongamos las siguientes expresiones:

```
3 * 3 * 3
5 * 5 * 5
```

Si las comparamos, vemos que tienen la misma forma y que contienen elementos que son iguales y otros que son diferentes.

Por ejemplo, los operadores * son iguales, y lo que varía es la cosa que se multiplica (el 3, el 5, etcétera).

A partir de ahí, hacemos abstracción y nos centramos en estudiar aquello en lo que se parecen e ignoramos aquello en lo que se diferencian.

Haciendo eso, deducimos un patrón común que subyace a todas esas expresiones.

En este caso, el patrón es que en todas ellas hay «algo» que se multiplica por sí mismo tres veces.

Al deducir ese patrón estamos realizando un proceso de abstracción, porque nos estamos centrando en lo que ahora mismo importa (es un producto de «cosas») e ignorando los detalles que ahora mismo no importan (qué son esas «cosas»).

Ese patrón representa el concepto abstracto de «elevar al cubo».

Ahora bien: ¿cómo se materializa ese concepto?

Paso 2: Generalización

Generalizamos estos casos particulares, convirtiendo en identificadores libres aquellas partes en las que se diferencian (es decir, las partes que no son comunes) y el resto se deja igual:

```
X * X * X
```

Esa expresión describe el patrón común como un caso general de las expresiones anteriores, ya que representa a todos los posibles casos particulares (potencialmente infinitos) que se ajustan a ese mismo patrón. Por ese motivo decimos que es una generalización.

El valor de esa expresión generalizada depende del valor al que esté ligado el identificador x (el cual decimos que es un identificador *libre*) en el momento de evaluar la expresión.

Los **identificadores libres** son nombres que no se sabe de antemano a qué valores van a estar ligados, ya que dependen del *contexto*, es decir, de lo que hay fuera de la expresión cuando se va a evaluar.

Se dice que una expresión con identificadores libres está *abierta*, porque su valor depende de elementos externos a ella.

El valor de la expresión x * x * x sigue dependiendo del valor ligado a x, ya que esa x es libre.

Por tanto, para deducir qué valor tendrá la expresión tendremos que seguir conociendo su interior: tenemos que saber que su valor se calcula a partir del valor que tiene el identificador libre x.

Esto hace que la expresión x * x * x no sea una buena abstracción, ya que no funciona como una caja negra. Esto se debe, principalmente, a que la expresión está abierta.

Cuando una parte de un programa está *abierta* resulta más difícil de programar y de razonar sobre ella, ya que su comportamiento depende del resto del programa. Lo que nos interesa (siempre que sea posible) es que la expresión esté *cerrada*.

Paso 3: Más generalización

Generalizamos aún más, *parametrizando* los identificadores libres obtenidos en el paso anterior (y sólo éstos) utilizando el cuantificador **lambda**, creando así una *abstracción lambda*:

```
cubo = lambda x: x * x * x
```

Un *cuantificador* es un símbolo que *cierra* expresiones convirtiendo los elementos que son externos a la expresión (los identificadores libres) en elementos propios de la expresión (*parámetros*).

Los parámetros son nombres cuyo valor cambia dependiendo de los argumentos de la llamada.

Ahora hemos *cerrado* la expresión creando una función en la que los identificadores libres ya no son libres sino *parámetros* de la expresión lambda, así que la expresión ya no depende de nada que haya en el exterior de la misma.

Al invocarla con un argumento concreto, el parámetro toma el valor de ese argumento y así se van obteniendo los casos particulares deseados:

```
(lambda x: x * x * x)(3) \rightarrow 3 * 3 * 3 (lambda x: <math>x * x * x)(5) \rightarrow 5 * 5 * 5
```

La expresión lambda es una expresión cerrada que puede usarse simplemente pasándole los argumentos necesarios en cada llamada, sin necesidad de manipular directamente la expresión que forma su cuerpo y que es la que lleva a cabo el procesamiento y el cálculo del resultado.

Por eso podemos decir que el cuerpo está *encapsulado* dentro de la expresión lambda, la cual forma una **caja negra** con una parte expuesta, visible y manipulable desde el exterior (sus parámetros) y otra parte oculta dentro de la cápsula (su cuerpo).

Paso 4: Más abstracción

Abstraemos dándole un nombre a toda la expresión, de forma que ahora podemos usar su nombre en lugar de la expresión lambda:

```
cubo = lambda x: x * x * x
```

Por tanto, de ahora en adelante podemos llamar a la función usando su nombre:

```
 \begin{array}{c} cubo(3) \to 3 \, * \, 3 \, * \, 3 \\ cubo(5) \to 5 \, * \, 5 \, * \, 5 \end{array}
```

La función cubo así creada es una abstracción porque:

- Para usarla sólo basta con saber su nombre y qué hace.
- No es necesario saber cómo lo hace.

- Es una caja negra que expone el qué y oculta el cómo.

Además, una expresión lambda sin nombre es como una función de «usar y tirar» que vive y muere en la misma expresión donde se la utiliza. En cambio, cuando le damos un nombre, ya puede reutilizarse en muchas expresiones.

La importancia de la **abstracción** reside en su capacidad para ocultar detalles irrelevantes y en el uso de nombres para referenciar objetos.

La principal preocupación del usuario de un programa (o de cada una de sus partes) es *qué* hace. Esto contrasta con la del programador de esa parte del programa, cuya principal preocupación es *cómo* lo hace.

Los lenguajes de programación proporcionan abstracción mediante funciones (y otros elementos como procedimientos y módulos, que veremos posteriormente) que permiten al programador distinguir entre lo que hace una parte del programa y cómo se implementa esa parte.

Una función, además, **encapsula** porque crea una *cápsula* alrededor de ella que sólo deja visible al exterior parte de su contenido; en particular, la cápsula de una función sólo deja pasar fuera lo necesario para poder usar la función, y oculta dentro todo lo demás, es decir, lo que no es necesario conocer ni manipular para usarla.

La abstracción es esencial en la construcción de programas. Pone el énfasis en lo que algo es o hace, más que en cómo se representa o cómo funciona. Por lo tanto, es el principal medio para gestionar la complejidad en programas grandes.

De igual importancia es la generalización.

Mientras que la abstracción reduce la complejidad al ocultar detalles irrelevantes, la generalización la reduce al sustituir, con una sola construcción, varios elementos que realizan una funcionalidad similar.

Los lenguajes de programación permiten la generalización mediante variables, parametrización, genéricos y polimorfismo.

La generalización es esencial en la construcción de programas. Pone el énfasis en las similitudes entre elementos. Por lo tanto, ayuda a gestionar la complejidad al agrupar individuos y proporcionar un representante que puede utilizarse para especificar cualquier individuo del grupo.

Resumen

Encapsulación: Es agrupar varios elementos juntos formando una sola unidad, ocultando algunos y exponiendo otros.

Caja negra: Es el resultado de la encapsulación. La «tapa» de la caja negra es la *cápsula* que separa lo que se expone de lo que se oculta al exterior. En ese sentido, la tapa deja ver alguna cosas y otras no.

Abstracción: Conceptualmente, es el proceso de simplificar algo resaltando solo sus características esenciales y ocultando los detalles irrelevantes para el contexto en que se usa.

En la práctica, también es el producto resultante de ese proceso. En tal caso, una abstracción consiste en darle un nombre a una caja negra, pero no cualquier caja negra, sino una donde lo que se expone es la información necesaria para saber *qué* hace la abstracción, y lo que se oculta son los detalles necesarios para saber *cómo* lo hace.

Abstracciones funcionales 3.2 Pureza

En la abstracción, por tanto, la cápsula separa el qué del cómo.

Generalización: Es el proceso de identificar un patrón común entre varios casos particulares y crear un modelo más general que los abarque a todos.

Parametrización: Es el proceso de definir un elemento que representa un caso general utilizando parámetros que permiten obtener los casos particulares del caso general sin tener que reescribirlo, ligando valores concretos a los parámetros.

Parámetro: Es una parte que cambia en cada caso particular de un patrón común.

3.2. Pureza

Si una expresión lambda no contiene identificadores libres, el valor que obtendremos al aplicarla a unos argumentos dependerá únicamente del valor que tengan esos argumentos (no dependerá de nada que sea «exterior» a la expresión lambda).

En cambio, si el cuerpo de una expresión lambda contiene identificadores libres, el valor que obtendremos al aplicarla a unos argumentos no sólo dependerá del valor de los argumentos, sino también de los valores a los que estén ligados esos identificadores libres en el momento de evaluar la aplicación de la expresión lambda.

Es el caso del siguiente ejemplo, donde tenemos una expresión lambda que contiene un identificador libre (z) y, por tanto, cuando la aplicamos a los argumentos 4 y 3 obtenemos un valor que depende no sólo de los valores de x e y sino también del valor de z en el entorno:

```
>>> prueba = lambda x, y: x + y + z
>>> z = 9
>>> prueba(4, 3)
16
```

En este otro ejemplo, tenemos una expresión lambda que calcula la suma de tres números a partir de otra expresión lambda que calcula la suma de dos números:

```
suma = lambda x, y: x + y
suma3 = lambda x, y, z: suma(x, y) + z
```

En este caso, hay un identificador (suma) que no aparece en la lista de parámetros de la expresión lambda ligada a suma3.

En consecuencia, el valor de dicha expresión lambda dependerá de lo que valga suma en el entorno actual.

Se dice que una expresión lambda es **pura** si, siempre que la apliquemos a unos argumentos, el valor obtenido va a depender únicamente del valor de esos argumentos o, lo que es lo mismo, del valor de sus parámetros en la llamada.

Podemos decir que hay distintos grados de pureza:

- Una expresión lambda en cuyo cuerpo no hay ningún identificador libre es **más pura** que otra que contiene identificadores libres.
- Una expresión lambda cuyos **identificadores libres** representan **funciones** que se usan en el cuerpo de la expresión lambda, es **más pura** que otra cuyos identificadores libres representan

cualquier otro tipo de valor.

En el ejemplo anterior, tenemos que la expresión lambda de suma3, sin ser totalmente pura, a efectos prácticos se la puede considerar pura, ya que su único identificador libre (suma) se usa como una función.

Por ejemplo, las siguientes expresiones lambda están ordenadas de mayor a menor pureza, siendo la primera totalmente **pura**:

```
# producto es una expresión lambda totalmente pura:
producto = lambda x, y: x * y
# cuadrado es casi pura; a efectos prácticos se la puede
# considerar pura ya que sus identificadores libres (en este
# caso, sólo una: producto) son funciones:
cuadrado = lambda x: producto(x, x)
# suma es impura, porque su identificador libre (z) no es una función:
suma = lambda x, y: x + y + z
```

La pureza de una función es un rasgo deseado y que hay que tratar de alcanzar siempre que sea posible, ya que facilita el desarrollo y mantenimiento de los programas, además de simplificar el razonamiento sobre los mismos, permitiendo aplicar directamente nuestro modelo de sustitución.

Es más incómodo trabajar con suma porque hay que *recordar* que depende de un valor que está *fuera* de la expresión lambda, cosa que no resulta evidente a no ser que mires en el cuerpo de la expresión lambda.

3.3. Especificaciones de funciones

La **especificación de una** *función* es la descripción de **qué** hace la función sin entrar a detallar **cómo** lo hace.

La **implementación de una función** es la descripción de **cómo** hace lo que hace, es decir, los detalles de su algoritmo interno.

Para poder usar una función, un programador no debe necesitar saber cómo está implementada.

Eso es lo que ocurre, por ejemplo, con las funciones predefinidas del lenguaje (como max, abs o len): sabemos *qué* hacen pero no necesitamos saber *cómo* lo hacen.

Incluso puede que el usuario de una función no sea el mismo que la ha escrito, sino que la puede haber recibido de otro programador como una «caja negra», que tiene unas entradas y una salida pero no se sabe cómo funciona por dentro.

Para poder **usar una abstracción funcional** *nos basta* con conocer su *especificación*, porque es la descripción de qué hace esa función.

Igualmente, para poder **implementar una abstracción funcional** necesitamos conocer su especificación, ya que necesitamos saber qué tiene que hacer la función antes de diseñar cómo va a hacerlo.

La especificación de una abstracción funcional describe tres características fundamentales de dicha función:

- El dominio: el conjunto de datos de entrada válidos.
- El rango o codominio: el conjunto de posibles valores que devuelve.

- El **propósito**: qué hace la función, es decir, la relación entre su entrada y su salida.

Hasta ahora, al especificar **programas**, hemos llamado «**entrada**» al dominio, y hemos agrupado el rango y el propósito en una sola propiedad que llamamos «**salida**».

Por ejemplo, cualquier función cuadrado que usemos para implementar area debe satisfacer esta especificación:

```
\begin{cases} \textbf{Entrada} : n \in \mathbb{R} \\ \textbf{cuadrado} \\ \textbf{Salida} : n^2 \end{cases}
```

La especificación **no concreta cómo** se debe llevar a cabo el propósito. Esos son **detalles de implementación** que se abstraen a este nivel.

Este esquema es el que hemos usado hasta ahora para especificar programas, y se podría seguir usando para especificar funciones, ya que éstas son consideradas *subprogramas* (programas que forman parte de otros programas más grandes).

Pero para especificar funciones resulta más adecuado usar el siguiente esquema, al que llamaremos especificación funcional:

```
\begin{cases} \text{Pre}: & \text{True} \\ & \text{cuadrado}(n: \text{float}) \rightarrow \text{float} \end{cases}
\text{Post}: & \text{cuadrado}(n) = n^2
```

- «**Pre**» representa la **precondición**: la propiedad que debe cumplirse justo *en el momento* de llamar a la función.
- «**Post**» representa la **postcondición**: la propiedad que debe cumplirse justo *después* de que la función haya terminado de ejecutarse.

Lo que hay en medio es la **signatura**: el nombre de la función, el nombre y tipo de sus parámetros y el tipo del valor de retorno.

La especificación se lee así: «Si se llama a la función respetando su signatura y cumpliendo su precondición, la llamada termina cumpliendo su postcondición».

En este caso, la **precondición** es True, que equivale a decir que cualquier condición de entrada es buena para usar la función.

Dicho de otra forma: no hace falta que se dé ninguna condición especial para usar la función. Siempre que la llamada respete la signatura de la función, el parámetro *n* puede tomar cualquier valor de tipo float y no hay ninguna restricción adicional.

Por otro lado, la **postcondición** dice que al llamar a la función cuadrado con el argumento n se debe devolver n^2 .

Tanto la precondición como la postcondición son **predicados**, es decir, expresiones lógicas que se escriben usando el lenguaje de las matemáticas y la lógica.

La **signatura** se escribe usando la sintaxis del lenguaje de programación que se vaya a usar para implementar la función (Python, en este caso).

Recordemos la diferencia entre:

- Dominio y conjunto origen de una función.
- Rango (o codominio) y conjunto imagen de una función.

¿Cómo recoge la especificación esas cuatro características de la función?

- La signatura expresa el conjunto origen y el conjunto imagen de la función.
- El dominio viene determinado por los valores del conjunto origen que cumplen la precondición.
- El codominio viene determinado por los valores del conjunto imagen que cumplen la postcondición.

En el caso de la función cuadrado tenemos que:

- El conjunto origen es float, ya que su parámetro n está declarado de tipo float en la signatura de la función.

Por tanto, los datos de entrada a la función deberán pertenecer al tipo float.

- El dominio coincide con el conjunto origen, ya que su precondición es True. Eso quiere decir que cualquier dato de entrada es válido siempre que pertenezca al dominio (en este caso, el tipo float).
- El conjunto imagen también es float, ya que así está declarado el tipo de retorno de la función.

Las pre y postcondiciones no es necesario escribirlas de una manera **formal y rigurosa**, usando el lenguaje de las Matemáticas o la Lógica.

Si la especificación se escribe en *lenguaje natural* y se entiende bien, completamente y sin ambigüedades, no hay problema.

El motivo de usar un lenguaje formal es que, normalmente, resulta **mucho más conciso y preciso que el lenguaje natural**.

El lenguaje natural suele ser:

- Más prolijo: necesita más palabras para decir lo mismo que diríamos matemáticamente usando menos caracteres.
- Más ambiguo: lo que se dice en lenguaje natural se puede interpretar de distintas formas.
- Menos completo: quedan flecos y situaciones especiales que no se tienen en cuenta.

En este otro ejemplo, más completo, se especifica una función llamada cuenta:

```
 \begin{cases} \text{Pre}: & \textit{car} \neq \text{""} \land \text{len}(\textit{car}) = 1 \\ & \text{cuenta}(\textit{cadena}: \textit{str}, \textit{car}: \textit{str}) \rightarrow \text{int} \end{cases}   \begin{aligned} \text{Post}: & \text{cuenta}(\textit{cadena}, \textit{car}) \geq 0 \land \\ & \text{cuenta}(\textit{cadena}, \textit{car}) = \textit{cadena}. \texttt{count}(\textit{car}) \end{cases}
```

Con esta especificación, estamos diciendo que cuenta es una función que recibe una cadena y un carácter (otra cadena con un único carácter dentro).

Ahora bien: esa cadena y ese carácter no pueden ser cualesquiera, sino que tienen que cumplir la precondición.

Eso significa, entre otras cosas, que aquí **el dominio** y **el conjunto origen de la función no coinciden** (no todos los valores pertenecientes al conjunto origen sirven como datos de entrada válidos para la función).

En esta especificación, count se usa como un método auxiliar.

Las operaciones auxiliares se puede usar en una especificación siempre que estén perfectamente especificadas, aunque no estén implementadas.

En este caso, se usa en la *postcondición* para decir que la función cuenta, la que se está especificando, debe devolver el mismo resultado que devuelve el método count (el cual ya conocemos perfectamente y sabemos qué hace, puesto que es un método que ya existe en Python).

Es decir: la especificación anterior describe con total precisión que la función cuenta cuenta el número de veces que el carácter car aparece en la cadena cadena.

En realidad, las condiciones de la especificación anterior se podrían simplificar aprovechando las propiedades de las expresiones lógicas, quedando así:

Ejercicio

1. ¿Por qué?

Finalmente, podríamos escribir la misma especificación en lenguaje natural:

```
Pre: car debe ser un único carácter

cuenta(cadena: str, car: str) -> int

Post: cuenta(cadena, car) devuelve el número de veces

que aparece el carácter car en la cadena cadena.

Si cadena es vacía o car no aparece nunca en la

cadena cadena, debe devolver 0.
```

Probablemente resulta más fácil de leer (sobre todo para los novatos), pero también es más largo y prolijo.

Es como un contrato escrito por un abogado en lenguaje jurídico.

Abstracciones funcionales 4. Recursividad

4. Recursividad

4.1. Funciones y procesos

Los **procesos** son entidades abstractas que habitan los ordenadores.

Conforme van evolucionando, los procesos manipulan otras entidades abstractas llamadas datos.

La evolución de un proceso está dirigida por un patrón de reglas llamado programa.

Los programadores crean programas para dirigir a los procesos.

Es como decir que los programadores son magos que invocan a los espíritus del ordenador (los procesos) con sus conjuros (los programas) escritos en un lenguaje mágico (el lenguaje de programación).

Una **función** describe la *evolución local* de un **proceso**, es decir, cómo se debe comportar el proceso durante la ejecución de la función.

En cada paso de la ejecución se calcula el *siguiente estado* del proceso basándonos en el estado actual y en las reglas definidas por la función.

Nos gustaría ser capaces de visualizar y de realizar afirmaciones sobre el comportamiento global del proceso cuya evolución local está definida por la función.

Esto, en general, es muy difícil, pero al menos vamos a describir algunos de los modelos típicos de evolución de los procesos.

4.1.1. Funciones ad-hoc

Supongamos que queremos diseñar una función llamada permutas que reciba un número entero *n* y que calcule cuántas permutaciones distintas podemos hacer con *n* elementos.

Por ejemplo: si tenemos 3 elementos (digamos, A, B y C), podemos formar con ellos las siguientes permutaciones:

y, por tanto, con 3 elementos podemos formar 6 permutaciones distintas. En consecuencia, permutas(3) debe devolver 6.

La implementación de esa función deberá satisfacer la siguiente especificación:

```
\begin{cases} \textbf{Pre}: & n \geq 0 \\ & \text{permutas}(n: \text{int}) \rightarrow \text{int} \end{cases}
\textbf{Post}: & \text{permutas}(n) = \text{el número de permutaciones que podemos formar con } n \text{ elementos}
```

Un programador con poca idea de programación (o muy listillo) se podría plantear una implementación parecida a la siguiente:

```
permutas = lambda n: 1 if n == 0 else 1 if n == 1 else 2 if n == 2 else ...
```

que se puede escribir mejor usando la barra invertida (\setminus) para poder separar una instrucción en varias líneas:

Pero este algoritmo en realidad es *tramposo*, porque no calcula nada, sino que se limita a asociar el dato de entrada con el de salida, que se ha tenido que calcular previamente usando otro procedimiento.

Este tipo de algoritmos se denominan **algoritmos** *ad-hoc*, y las funciones que los implementan se denominan **funciones** *ad-hoc*.

Las funciones ad-hoc no son convenientes porque:

- Realmente son **tramposos** (no calculan nada).
- No son útiles, porque al final el cálculo se tiene que hacer con otra cosa.
- Generalmente resulta **imposible** que una función de este tipo abarque todos los posibles datos de entrada, ya que, en principio, puede haber **infinitos** y, por tanto, su código fuente también tendría que ser infinito.

Usar algoritmos y funciones *ad-hoc* se penaliza en esta asignatura.

4.2. Funciones recursivas

4.2.1. Definición

Una función recursiva es aquella que se define en términos de sí misma.

Eso quiere decir que, durante la ejecución de una llamada a la función, se ejecuta otra llamada a la misma función, es decir, que la función se llama a sí misma directa o indirectamente.

La forma más sencilla y habitual de función recursiva es aquella en la que **la propia definición de la función contiene una o varias llamadas a ella misma**. En tal caso, decimos que la función se llama a sí misma *directamente* o que hay una **recursividad directa**.

Ese es el tipo de recursividad que vamos a estudiar.

Las definiciones recursivas son el mecanismo básico para ejecutar **repeticiones de instrucciones** en un lenguaje de programación funcional.

Por ejemplo:

$$f(n) = n + f(n+1)$$

Esta función matemática es recursiva porque aparece ella misma en su propia definición.

Para calcular el valor de f(n) tenemos que volver a utilizar la propia función f.

Por ejemplo:

$$f(1) = 1 + f(2) = 1 + 2 + f(3) = 1 + 2 + 3 + f(4) = \dots$$

Cada vez que una función se llama a sí misma decimos que se realiza una **llamada recursiva** o **paso recursivo**.

Ejercicio

2. Desde el principio del curso ya hemos estado trabajando con estructuras que pueden tener una definición recursiva. ¿Cuáles son?

4.2.2. Casos base y casos recursivos

Resulta importante que una definición recursiva se detenga alguna vez y proporcione un resultado, ya que si no, no sería útil (tendríamos lo que se llama una **recursión infinita**).

Por tanto, en algún momento, la recursión debe alcanzar un punto en el que la función no se llame a sí misma y se detenga.

Para ello, es necesario que la función, en cada paso recursivo, se vaya acercando cada vez más a ese punto.

Ese punto en el que la función recursiva **no se llama a sí misma**, se denomina **caso base**, y puede haber más de uno.

Los casos base, por tanto, determinan bajo qué condiciones la función no se llamará a sí misma, o dicho de otra forma, con qué valores de sus argumentos la función devolverá directamente un valor y no provocará una nueva llamada recursiva.

Los demás casos, que sí provocan llamadas recursivas, se denominan casos recursivos.

4.2.3. El factorial

El ejemplo más típico de función recursiva es el factorial.

El factorial de un número natural n se representa por n! y se define como el producto de todos los números desde 1 hasta n:

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot 1$$

Por ejemplo:

$$6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$$

Pero para calcular 6! también se puede calcular 5! y después multiplicar el resultado por 6, ya que:

$$6! = 6 \cdot \cancel{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}$$

$$6! = 6 \cdot 5!$$

Por tanto, el factorial se puede definir de forma recursiva.

Tenemos el **caso recursivo**, pero necesitamos al menos un **caso base** para evitar que la recursión se haga *infinita*.

El caso base del factorial se obtiene sabiendo que el factorial de 0 es directamente 1 (no hay que llamar al factorial recursivamente):

$$0! = 1$$

Combinando ambos casos tendríamos:

$$n! = \begin{cases} 1 & \text{si } n = 0 \text{ (caso base)} \\ n \cdot (n-1)! & \text{si } n > 0 \text{ (caso recursivo)} \end{cases}$$

La especificación de una función que calcule el factorial de un número sería:

```
\begin{cases}
Pre: & n \ge 0 \\
& factorial(n:int) \rightarrow int \\
Post: & factorial(n) = n!
\end{cases}
```

Y su **implementación** en Python podría ser la siguiente:

```
factorial = lambda n: 1 if n == 0 else n * factorial(n - 1)
```

que sería prácticamente una traducción literal de la definición recursiva de factorial que acabamos de obtener.

4.2.4. Diseño de funciones recursivas

El diseño de funciones recursivas se basa en:

- 1. Identificación de casos base
- 2. Descomposición (reducción) del problema
- 3. Pensamiento optimista

4.2.4.1. Identificación de casos base

Debemos identificar los ejemplares para los cuales hay una solución directa que no necesita recursividad.

Esos ejemplares representarán los casos base de la función recursiva, y por eso los denominamos ejemplares básicos.

Por ejemplo:

- Supongamos que queremos diseñar una función (llamada *fact*, por ejemplo) que calcule el factorial de un número.

Es decir: fact(n) debe devolver el factorial de n.

- Sabemos que 0! = 1, por lo que nuestra función podría devolver directamente 1 cuando se le pida calcular el factorial de 0.

- Por tanto, el caso base del factorial es el cálculo del factorial de 0:

$$fact(0) = 1$$

4.2.4.2. Descomposición (reducción) del problema

Reducimos el problema de forma que así tendremos un ejemplar más pequeño del problema.

Un ejemplar más pequeño es aquel que está más cerca del caso base.

De esta forma, cada ejemplar se irá acercando más y más al caso base hasta que finalmente se alcanzará dicho caso base y eso detendrá la recursión.

Es importante comprobar que eso se cumple, es decir, que la reducción que le realizamos al problema produce ejemplares que están más cerca del caso base, porque de lo contrario se produciría una recursión infinita.

En el ejemplo del factorial:

- El caso base es fact(0), es decir, el caso en el que queremos calcular el factorial de 0, que ya vimos que es directamente 1 (sin necesidad de llamadas recursivas).
- Si queremos resolver el problema de calcular, por ejemplo, el factorial de 5, podríamos intentar reducir el problema a calcular el factorial de 4, que es un número que está más cerca del caso base (que es 0).
- A su vez, para calcular el factorial de 4, reduciríamos el problema a calcular el factorial de 3, y así sucesivamente.
- De esta forma, podemos reducir el problema de calcular el factorial de n a calcular el factorial de (n-1), que es un número que está más cerca del 0. Así, cada vez estaremos más cerca del caso base y, al final, siempre lo acabaremos alcanzando.

4.2.4.3. Pensamiento optimista

Consiste en suponer que la función deseada ya existe y que, aunque no sabe resolver el ejemplar original del problema, sí que es capaz de resolver ejemplares *más pequeños* de ese problema (este paso se denomina **hipótesis inductiva** o **hipótesis de inducción**).

Suponiendo que se cumple la hipótesis inductiva, y aprovechando que ya contamos con un método para reducir el ejemplar a uno más pequeño, ahora tratamos de encontrar un patrón común de forma que resolver el ejemplar original implique usar el mismo patrón en un ejemplar más pequeño.

Es decir:

- Al reducir el problema, obtenemos un ejemplar más pequeño del mismo problema y, por tanto, podremos usar la función para poder resolver ese ejemplar más pequeño (que sí sabe resolverlo, por hipótesis inductiva).
- A continuación, usamos dicha solución *parcial* para tratar de obtener la solución para el ejemplar original del problema.

En el ejemplo del factorial:

- Supongamos que queremos calcular, por ejemplo, el factorial de 6.
- Aún no sabemos calcular el factorial de 6, pero suponemos (por *hipótesis inductiva*) que sí sabemos calcular el factorial de 5.

En ese caso, ¿cómo puedo aprovechar que sé resolver el factorial de 5 para lograr calcular el factorial de 6?

- Analizando el problema, observo que se cumple esta propiedad:

$$6! = 6 \cdot \underbrace{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}_{5!} = 6 \cdot 5!$$

Por tanto, he deducido un método para resolver el problema de calcular el factorial de 6 a partir del factorial de 5: para calcular el factorial de 6 basta con calcular primero el factorial de 5 y luego multiplicar el resultado por 6.

Dicho de otro modo: *si yo supiera* calcular el factorial de 5, me bastaría con multiplicarlo por 6 para obtener el factorial de 6.

Generalizando para cualquier número, no sólo para el 6:

- Si queremos diseñar una función fact(n) que calcule el factorial de n, supondremos que esa función ya existe pero que aún no sabe calcular el factorial de n, aunque sí sabe calcular el factorial de (n-1).

Tenemos que creer en que es así y actuar como si fuera así, aunque ahora mismo no sea verdad. Ésta es nuestra **hipótesis inductiva**.

- Por otra parte, sabemos que:

$$n! = n \cdot \overbrace{(n-1) \cdot (n-2) \cdot (n-3) \cdot 2 \cdot 1}^{(n-1)!} = n \cdot (n-1)!$$

Por tanto, si sabemos calcular el factorial de (n-1) llamando a fact(n-1), para calcular fact(n) sólo necesito multiplicar n por el resultado de fact(n-1).

Resumiendo: si yo supiera calcular el factorial de (n-1), me bastaría con multiplicarlo por n para obtener el factorial de n.

- Así obtengo el caso recursivo de la función fact, que sería:

$$fact(n) = n \cdot fact(n-1)$$

Combinando todos los pasos, obtenemos la solución general:

$$fact(n) = egin{cases} 1 & ext{si } n = 0 & ext{(caso base)} \\ n \cdot fact(n-1) & ext{si } n > 0 & ext{(caso recursivo)} \end{cases}$$

4.2.5. Recursividad lineal

Una función tiene **recursividad lineal** si cada llamada a la función recursiva genera, como mucho, otra llamada recursiva a la misma función.

El factorial definido en el ejemplo anterior es un caso típico de recursividad lineal ya que, cada vez que se llama al factorial se genera, como mucho, otra llamada al factorial.

Eso se aprecia claramente observando que la definición del caso recursivo de la función *fact* contiene una única llamada a la misma función *fact*:

```
fact(n) = n \cdot fact(n-1) si n > 0 (caso recursivo)
```

4.2.5.1. Procesos recursivos lineales

La forma más directa y sencilla de definir una función que calcule el factorial de un número a partir de su definición recursiva podría ser la siguiente:

```
factorial = lambda n: 1 if n == 0 else n * factorial(n - 1)
```

Utilizaremos el modelo de sustitución para observar el funcionamiento de esta función al calcular 6!:

```
factorial(6)
= (6 * factorial(5))
= (6 * (5 * factorial(4)))
= (6 * (5 * (4 * factorial(2))))
= (6 * (5 * (4 * (3 * factorial(2)))))
= (6 * (5 * (4 * (3 * (2 * factorial(1))))))
= (6 * (5 * (4 * (3 * (2 * (1 * factorial(0)))))))
= (6 * (5 * (4 * (3 * (2 * (1 * 1))))))
= (6 * (5 * (4 * (3 * (2 * 1)))))
= (6 * (5 * (4 * (3 * 2))))
= (6 * (5 * (4 * (3 * 2))))
= (6 * (5 * (4 * 6)))
= (6 * (5 * 24))
= (6 * 120)
= 720
```

Podemos observar un perfil de **expansión** seguido de una **contracción**:

- La **expansión** ocurre conforme el proceso construye una secuencia de operaciones a realizar *posteriormente* (en este caso, una secuencia de multiplicaciones).
- La **contracción** se realiza conforme se van ejecutando realmente las multiplicaciones.

Llamaremos **proceso recursivo** a este tipo de proceso caracterizado por una secuencia de **operaciones pendientes de completar**.

Para poder ejecutar este proceso, el intérprete necesita **memorizar**, en algún lugar, un registro de las multiplicaciones que se han dejado para más adelante.

En el cálculo de n!, la longitud de la secuencia de operaciones pendientes (y, por tanto, la información que necesita almacenar el intérprete), crece *linealmente* con n, al igual que el número de pasos de reducción.

A este tipo de procesos lo llamaremos proceso recursivo lineal.

4.2.5.2. Procesos iterativos lineales

A continuación adoptaremos un enfoque diferente.

Podemos mantener un producto acumulado y un contador desde *n* hasta 1, de forma que el contador y el producto cambien de un paso al siguiente según la siguiente regla:

```
acumulador_{nuevo} = acumulador_{viejo} \cdot contador_{viejo} contador_{nuevo} = contador_{viejo} - 1
```

Su traducción a Python podría ser la siguiente, usando una función auxiliar fact_iter:

Al igual que antes, usaremos el modelo de sustitución para visualizar el proceso del cálculo de 6!:

```
factorial(6)
= fact_iter(6, 1)
= fact_iter(5, 6)
= fact_iter(4, 30)
= fact_iter(3, 120)
= fact_iter(2, 360)
= fact_iter(1, 720)
= fact_iter(0, 720)
= 720
```

Este proceso no tiene expansiones ni contracciones ya que, en cada instante, toda la información que se necesita almacenar es el valor actual de los parámetros cont y acc, por lo que el tamaño de la memoria necesaria es constante.

A este tipo de procesos lo llamaremos proceso iterativo.

El número de pasos necesarios para calcular n! usando esta función crece linealmente con n.

A este tipo de procesos lo llamaremos **proceso iterativo lineal**.

Tipo de proceso	Número de reducciones	Memoria necesaria
Recursivo	Proporcional a <u>n</u>	Proporcional a <u>n</u>
Iterativo	Proporcional a <u>n</u>	Constante

Tipo de proceso	Número de reducciones	Memoria necesaria
Recursivo lineal	Linealmente proporcional a <u>n</u>	Linealmente proporcional a <u>n</u>
Iterativo lineal	Linealmente proporcional a <u>n</u>	Constante

En general, un **proceso iterativo** es aquel que está definido por una serie de **coordenadas de estado** junto con una **regla** fija que describe cómo actualizar dichas coordenadas conforme cambia el proceso de un estado al siguiente.

La diferencia entre los procesos recursivo e iterativo se puede describir de esta otra manera:

- En el **proceso iterativo**, los parámetros dan una descripción completa del estado del proceso en cada instante.

Así, si parásemos el cálculo entre dos pasos, lo único que necesitaríamos hacer para seguir con el cálculo es darle al intérprete el valor de los dos parámetros.

- En el **proceso recursivo**, el intérprete tiene que mantener cierta información *oculta* que no está almacenada en ningún parámetro y que indica qué operaciones ha realizado hasta ahora y cuáles quedan pendientes por hacer.

No debe confundirse un proceso recursivo con una función recursiva:

- Cuando hablamos de *función recursiva* nos referimos al hecho de que la función se llama a sí misma (directa o indirectamente).
- Cuando hablamos de *proceso recursivo* nos referimos a la forma en como se desenvuelve la ejecución de la función (con una expansión más una contracción).

Puede parecer extraño que digamos que una función recursiva (por ejemplo, fact_iter) genera un proceso iterativo.

Sin embargo, el proceso es realmente iterativo porque su estado está definido completamente por dos parámetros, y para ejecutar el proceso sólo se necesita almacenar el valor de esos dos parámetros.

Aquí hemos visto un ejemplo donde se aprecia claramente que una función sólo puede tener una especificación pero puede tener varias implementaciones distintas.

Eso sí: todas las implementaciones de una función deben satisfacer su especificación.

En este caso, las dos implementaciones son:

```
factorial = lambda n: 1 if n == 0 else n * factorial(n - 1)
```

У

Y aunque las dos satisfacen la misma especificación (y, por tanto, calculan exactamente los mismos valores), lo hacen de una forma muy diferente, generando incluso procesos de distinto tipo.

4.2.6. Recursividad múltiple

Una función tiene **recursividad múltiple** cuando, durante la misma activación o llamada a la función, se puede generar más de una llamada recursiva a la misma función.

El ejemplo clásico es la función que calcula los términos de la sucesión de Fibonacci.

La sucesión comienza con los números 0 y 1, y a partir de éstos, cada término es la suma de los dos anteriores:

```
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, ...
```

Podemos definir una función recursiva que devuelva el n-ésimo término de la sucesión de Fibonacci:

$$\mathit{fib}(n) = egin{cases} 0 & \mathsf{si} \ n = 0 & \mathsf{(caso \ base)} \\ 1 & \mathsf{si} \ n = 1 & \mathsf{(caso \ base)} \\ \mathit{fib}(n-1) + \mathit{fib}(n-2) & \mathsf{si} \ n > 1 & \mathsf{(caso \ recursivo)} \end{cases}$$

La especificación de una función que devuelva el n-ésimo término de la sucesión de Fibonacci sería:

```
 \begin{cases} \textbf{Pre}: & n \geq 0 \\ & \texttt{fib}(n: \texttt{int}) \rightarrow \texttt{int} \end{cases}   \textbf{Post}: & \texttt{fib}(n) = \texttt{el } n\text{-\'esimo t\'ermino de la sucesi\'on de Fibonacci}
```

Y su implementación en Python podría ser:

```
fib = lambda n: 0 if n == 0 else 1 if n == 1 else fib(n - 1) + fib(n - 2)
```

o bien, separando la definición en varias líneas:

Si vemos el perfil de ejecución de fib(5), vemos que:

- Para calcular fib(5), antes debemos calcular fib(4) y fib(3).
- Para calcular fib(4), antes debemos calcular fib(3) y fib(2).
- Así sucesivamente hasta poner todo en función de fib(0) y fib(1), que se pueden calcular directamente (son los casos base).

En general, el proceso resultante tiene forma de árbol.

Por eso decimos que las funciones con recursividad múltiple generan procesos recursivos en árbol.

La función anterior es un buen ejemplo de recursión en árbol, pero desde luego es un método *horrible* para calcular los números de Fibonacci, por la cantidad de **operaciones redundantes** que efectúa.

Para tener una idea de lo malo que es, se puede observar que fib(n) crece exponencialmente en función de n.

Por lo tanto, el proceso necesita una cantidad de tiempo que crece **exponencialmente** con n.

Por otro lado, el espacio necesario sólo crece **linealmente** con *n*, porque en un cierto momento del cálculo sólo hay que memorizar los nodos que hay por encima.

En general, en un proceso recursivo en árbol el tiempo de ejecución crece con el número de nodos del árbol mientras que el espacio necesario crece con la altura máxima del árbol.

Se puede construir un proceso iterativo para calcular los números de Fibonacci.

La idea consiste en usar dos coordenadas de estado *a* y *b* (con valores iniciales 0 y 1, respectivamente) y aplicar repetidamente la siguiente transformación:

$$a_{nuevo} = b_{viejo}$$

 $b_{nuevo} = b_{viejo} + a_{viejo}$

Después de n pasos, a y b contendrán fib(n) y fib(n + 1), respectivamente.

En Python sería:

```
fib_iter = lambda cont, a, b: a if cont == 0 else fib_iter(cont - 1, b, a + b)
fib = lambda n: fib_iter(n, 0, 1)
```

Esta función genera un proceso iterativo lineal, por lo que es mucho más eficiente.

4.2.7. Recursividad final y no final

Lo que diferencia al fact_iter que genera un proceso iterativo del factorial que genera un proceso recursivo, es el hecho de que fact_iter se llama a sí misma y devuelve directamente el valor que le ha devuelto su llamada recursiva sin hacer luego nada más.

En cambio, factorial tiene que hacer una multiplicación después de llamarse a sí misma y antes de terminar de ejecutarse:

Es decir:

- fact_iter(cont, acc) simplemente llama a: fact_iter(cont - 1, acc * cont)

y luego devuelve directamente el valor que le entrega ésta llamada, sin hacer ninguna otra operación posterior antes de terminar.

- En cambio, factorial(n) hace:

```
n * factorial(n - 1)
```

o sea, se llama a sí misma pero el resultado de la llamada recursiva tiene que multiplicarlo luego por n antes de devolver el resultado final.

Por tanto, **lo último que hace fact_iter es llamarse a sí misma**. En cambio, lo último que hace **factorial** no es llamarse a sí misma, porque tiene que hacer más operaciones (en este caso, la multiplicación) antes de devolver el resultado.

Cuando lo último que hace una función recursiva es llamarse a sí misma y devolver directamente el valor devuelto por esa llamada recursiva, decimos que la función es **recursiva final** o que tiene **recursividad final**.

En caso contrario, decimos que la función es recursiva no final o que tiene recursividad no final.

Las funciones recursivas finales generan procesos iterativos.

La función fact_iter es recursiva final, y por eso genera un proceso iterativo.

En cambio, la función factorial es recursiva no final, y por eso genera un proceso recursivo.

En la práctica, para que un proceso iterativo consuma realmente una cantidad constante de memoria, es necesario que el traductor **optimice la recursividad final**.

Ese tipo de optimización se denomina tail-call optimization (TCO).

No muchos traductores optimizan la recursividad final.

De hecho, ni el intérprete de Python ni la máquina virtual de Java optimizan la recursividad final.

Por tanto, en estos dos lenguajes, las funciones recursivas finales consumen tanta memoria como las no finales.

4.3. Tipos de datos recursivos

4.3.1. Concepto

Un tipo de dato recursivo es aquel que puede definirse en términos de sí mismo.

Un dato recursivo es un dato que pertenece a un tipo recursivo. Por tanto, es un dato que se construye sobre otros datos del mismo tipo.

Como toda estructura recursiva, un tipo de dato recursivo tiene casos base y casos recursivos:

- En los casos base, el tipo recursivo se define directamente, sin referirse a sí mismo.
- En los casos recursivos, el tipo recursivo se define sobre sí mismo.

La forma más natural de manipular un dato recursivo es usando funciones recursivas.

4.3.2. Cadenas

Las **cadenas** se pueden considerar **tipos de datos recursivos**, ya que podemos decir que toda cadena c:

- o bien es la cadena vacía ' ' (caso base),
- o bien está formada por dos partes:
 - * El **primer carácter** de la cadena, al que se accede mediante c [0].
 - * El **resto** de la cadena (al que se accede mediante c[1:]), que también es una cadena (caso recursivo).

En tal caso, se cumple que c == c[0] + c[1:].

Eso significa que podemos acceder al segundo carácter de la cadena (suponiendo que exista) mediante c[1:][0].

```
cadena = 'hola'
cadena[0]  # devuelve 'h'
cadena[1:]  # devuelve 'ola'
cadena[1:][0]  # devuelve 'o'
```

4.3.3. **Tuplas**

Las **tuplas** (datos de tipo tuple) son una generalización de las cadenas.

Una tupla es una **secuencia de elementos** que no tienen por qué ser caracteres, sino que cada uno de ellos pueden ser **de cualquier tipo** (números, cadenas, booleanos, ..., incluso otras tuplas).

Los literales de tipo tupla se representan enumerando sus elementos separados por comas y encerrados entre paréntesis.

Por ejemplo:

```
tupla = (27, 'hola', True, 73.4, ('a', 'b', 'c'), 99)
```

Si sólo tiene un elemento, hay que poner una coma detrás:

```
tupla = (35,)
```

Las tuplas también pueden verse como un tipo de datos recursivo, ya que toda tupla t:

- o bien es la tupla vacía, representada mediante () (caso base),
- o bien está formada por dos partes:
 - * El **primer elemento** de la tupla (al que se accede mediante t[0]), que hemos visto que puede ser de cualquier tipo.
 - * El **resto** de la tupla (al que se accede mediante t[1:]), que también es una tupla (*caso recursivo*).

Según el ejemplo anterior:

```
>>> tupla = (27, 'hola', True, 73.4, ('a', 'b', 'c'), 99)
>>> tupla[0]
27
>>> tupla[1:]
('hola', True, 73.4, ('a', 'b', 'c'), 99)
>>> tupla[1:][0]
'hola'
```

Junto a las operaciones t[0] y t[1:], tenemos también la operación + (**concatenación**), al igual que ocurre con las cadenas.

Con la concatenación se pueden crear nuevas tuplas a partir de otras tuplas.

Por ejemplo:

```
>>> (1, 2, 3) + (4, 5, 6)
(1, 2, 3, 4, 5, 6)
```

Eso significa que, si t es una tupla no vacía, se cumple que t == (t[0],) + t[1:].

Esta propiedad es similar (aunque no exactamente igual) a la que se cumple en las cadenas no vacías.

4.3.4. Rangos

Los rangos (datos de tipo range) son valores que representan sencuencias de números enteros.

Los rangos se crean con la función range, cuya signatura es:

```
range([start: int,] stop: int [, step: int]) -> range
```

Cuando se omite start, se entiende que es 0.

Cuando se omite step, se entiende que es 1.

El valor de stop no se alcanza nunca.

Cuando start y stop son iguales, representa el rango vacío.

step debe ser siempre distinto de cero.

Cuando *start* es mayor que *stop*, el valor de *step* debería ser negativo. En caso contrario, también representaría el rango vacío.

Ejemplos

```
range(10) representa la secuencia 0, 1, 2, ..., 9.
range(3, 10) representa la secuencia 3, 4, 5, ..., 9.
range(0, 10, 2) representa la secuencia 0, 2, 4, 6, 8.
range(4, 0, -1) representa la secuencia 4, 3, 2, 1.
range(3, 3) representa el rango vacío.
range(4, 3) también representa el rango vacío.
```

La **forma normal** de un rango es una expresión en la que se llama a la función range con los argumentos necesarios para construir el rango:

```
>>> range(2, 3)
range(2, 3)
>>> range(4)
range(0, 4)
```

```
>>> range(2, 5, 1)
range(2, 5)
>>> range(2, 5, 2)
range(2, 5, 2)
```

El **rango vacío** es un valor que no tiene expresión canónica, ya que cualquiera de las siguientes expresiones representan al rango vacío tan bien como cualquier otra:

- range(0).
- range(a, a), donde a es cualquier entero.
- range(a, b, c), donde $a \ge b$ y c > 0.
- range(a, b, c), donde $a \le b$ y c < 0.

```
>>> range(3, 3) == range(4, 4)
True
>>> range(4, 3) == range(3, 4, -1)
True
```

Los rangos también pueden verse como un tipo de datos recursivo, ya que todo rango r:

- o bien es el rango vacío (caso base),
- o bien está formado por dos partes:

- * El **primer elemento** del rango (al que se accede mediante r[0]), que hemos visto que tiene que ser un número entero.
- * El **resto** del rango (al que se accede mediante r[1:]), que también es un rango (*caso recursivo*).

Según el ejemplo anterior:

```
>>> rango = range(4, 7)
>>> rango[0]
4
>>> rango[1:]
range(5, 7)
>>> rango[1:][0]
5
```

4.3.5. Conversión a tupla

Las cadenas y los rangos se pueden convertir fácilmente a tuplas usando la función tuple:

```
>>> tuple('hola')
('h', 'o', 'l', 'a')
>>> tuple('')
()
```

```
>>> tuple(range(10))
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
>>> tuple(range(1, 11))
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
>>> tuple(range(0, 30, 5))
(0, 5, 10, 15, 20, 25)
>>> tuple(range(0, 10, 3))
(0, 3, 6, 9)
>>> tuple(range(0, -10, -1))
(0, -1, -2, -3, -4, -5, -6, -7, -8, -9)
>>> tuple(range(0))
()
>>> tuple(range(1, 0))
()
```

Bibliografía

Abelson, Harold, Gerald Jay Sussman, and Julie Sussman. 1996. Structure and Interpretation of Computer Programs. 2nd ed. Cambridge, Mass.: New York: MIT Press; McGraw-Hill.