Metody Probabilistyczne i Statystyka - wykład 7. Wektory Iosowe dwuwymiarowe

5 kwietnia 2025

Definicja

Niech X i Y będą jednowymiarowymi zmiennymi losowymi.

Definicja

Niech X i Y będą jednowymiarowymi zmiennymi losowymi. Parę (X,Y) nazywamy **dwuwymiarowym wektorem losowym**.

Definicja

Niech X i Y będą jednowymiarowymi zmiennymi losowymi. Parę (X,Y) nazywamy dwuwymiarowym wektorem losowym.

Definicja

• Rozkład wektora (X, Y) -

Definicja

Niech X i Y będą jednowymiarowymi zmiennymi losowymi. Parę (X,Y) nazywamy dwuwymiarowym wektorem losowym.

Definicja

• Rozkład wektora (X, Y) - rozkład łączny

Definicja

Niech X i Y będą jednowymiarowymi zmiennymi losowymi. Parę (X,Y) nazywamy dwuwymiarowym wektorem losowym.

Definicja

- Rozkład wektora (X, Y) rozkład łączny
- Rozkłady X i Y jako osobnych zmiennych losowych -

Definicja

Niech X i Y będą jednowymiarowymi zmiennymi losowymi. Parę (X,Y) nazywamy dwuwymiarowym wektorem losowym.

Definicja

- Rozkład wektora (X, Y) rozkład łączny
- Rozkłady X i Y jako osobnych zmiennych losowych rozkłady brzegowe

Definicja

Punktem skokowym rozkładu wektora (X, Y) nazywamy każdą parę $(a, b) \in \mathbb{R}^2$ taką, że P(X = a, Y = b) > 0.

Definicja

Wektor losowy (X, Y) ma **rozkład dyskretny**, jeśli zbiór jego wartości jest przeliczalny lub skończony.

Definicja

Wektor losowy (X, Y) ma **rozkład dyskretny**, jeśli zbiór jego wartości jest przeliczalny lub skończony.

 $S_{XY} \subset \mathbb{R}^2$ - **nośnik** rozkładu łącznego wektora (X,Y):

Definicja

Wektor losowy (X, Y) ma **rozkład dyskretny**, jeśli zbiór jego wartości jest przeliczalny lub skończony.

 $S_{XY} \subset \mathbb{R}^2$ - **nośnik** rozkładu łącznego wektora (X,Y):

1.
$$P(X = x, Y = y) > 0$$
 dla każdego punktu $(x, y) \in S_{XY}$,

Definicja

Wektor losowy (X, Y) ma **rozkład dyskretny**, jeśli zbiór jego wartości jest przeliczalny lub skończony.

 $S_{XY} \subset \mathbb{R}^2$ - **nośnik** rozkładu łącznego wektora (X,Y):

1.
$$P(X = x, Y = y) > 0$$
 dla każdego punktu $(x, y) \in S_{XY}$,

2.
$$\sum_{(x,y)\in S_{XY}} P(X=x,Y=y) = 1.$$

Definicja

Funkcja prawdopodobieństwa rozkładu łącznego wektora (X,Y)

Definicja

Funkcja prawdopodobieństwa rozkładu łącznego wektora (X,Y)

- funkcja
$$p_{XY}: \mathbb{R}^2 \longrightarrow [0;1]$$
 taka, że

$$p_{XY}(x,y) = P(X = x, Y = y).$$

Definicja

Funkcja prawdopodobieństwa rozkładu łącznego wektora (X, Y)

- funkcja
$$p_{XY}: \mathbb{R}^2 \longrightarrow [0;1]$$
 taka, że

$$p_{XY}(x,y) = P(X = x, Y = y).$$

Przykład 1.

Rozważmy doświadczenie polegające na dwukrotnym rzucie monetą niesymetryczną, dla której $P(O)=\frac{1}{3},\ P(R)=\frac{2}{3}.$ Niech X oznacza liczbę orłów w pierwszym rzucie, Y liczbę orłów we wszystkich rzutach. Wyznaczyć funkcję prawdopodobieństwa rozkładu łącznego wektora (X,Y).

Twierdzenie

Wektor losowy (X, Y) ma rozkład dyskretny wtedy i tylko wtedy, gdy rozkłady brzegowe zmiennych X i Y też są dyskretne. Ponadto:

Twierdzenie

Wektor losowy (X, Y) ma rozkład dyskretny wtedy i tylko wtedy, gdy rozkłady brzegowe zmiennych X i Y też są dyskretne. Ponadto:

1.
$$S_{XY} \subseteq S_X \times S_Y$$
;

Twierdzenie

Wektor losowy (X, Y) ma rozkład dyskretny wtedy i tylko wtedy, gdy rozkłady brzegowe zmiennych X i Y też są dyskretne. Ponadto:

- 1. $S_{XY} \subseteq S_X \times S_Y$;
- 2. Dla każdego $x \in S_X$:

$$P(X = x) = \sum_{y} P(X = x, Y = y)$$

Twierdzenie

Wektor losowy (X, Y) ma rozkład dyskretny wtedy i tylko wtedy, gdy rozkłady brzegowe zmiennych X i Y też są dyskretne. Ponadto:

- 1. $S_{XY} \subseteq S_X \times S_Y$;
- 2. Dla każdego $x \in S_X$:

$$P(X = x) = \sum_{y} P(X = x, Y = y)$$

3. Dla każdego $y \in S_Y$:

$$P(Y = y) = \sum_{x} P(X = x, Y = y).$$

Dystrybuanta dwuwymiarowego wektora losowego

Definicja

Dystrybuantą rozkładu łącznego wektora (X, Y) nazywamy funkcję $F_{XY}: \mathbb{R}^2 \to [0; 1]$ określoną wzorem

$$F_{XY}(x, y) = P(X \leqslant x, Y \leqslant y).$$

Własności dystrybuanty dwuwymiarowejgo wektora losowego

Twierdzenie

Dla dowolnych $x_1 < x_2, \ y_1 < y_2$ zachodzi równość

$$P(x_1 < X \le x_2, y_1 < Y \le y_2) =$$

$$= F_{XY}(x_2, y_2) - F_{XY}(x_1, y_2) - F_{XY}(x_2, y_1) + F_{XY}(x_1, y_1).$$

Własności dystrybuanty dwuwymiarowejgo wektora losowego

Twierdzenie

Dla dowolnych $x_1 < x_2, y_1 < y_2$ zachodzi równość

$$P(x_1 < X \le x_2, y_1 < Y \le y_2) =$$

$$= F_{XY}(x_2, y_2) - F_{XY}(x_1, y_2) - F_{XY}(x_2, y_1) + F_{XY}(x_1, y_1).$$

Twierdzenie

Dla dowolnej pary $(a,b) \in \mathbb{R}^2$ zachodzi równość

$$P(X = a, Y = b) =$$
= $F_{XY}(a, b) - F_{XY}(a^-, b) - F_{XY}(a, b^-) + F_{XY}(a^-, b^-).$

Twierdzenie

Niech (X, Y) będzie wektorem losowym o dystrybuancie F_{XY} .

Twierdzenie

Niech (X, Y) będzie wektorem losowym o dystrybuancie F_{XY} .

Dystrybuanty brzegowe *zmiennych losowych X i Y określone są następująco:*

Twierdzenie

Niech (X, Y) będzie wektorem losowym o dystrybuancie F_{XY} .

Dystrybuanty brzegowe *zmiennych losowych X i Y określone są następująco:*

$$F_X(x) = \lim_{y \to +\infty} F_{XY}(x, y)$$

Twierdzenie

Niech (X, Y) będzie wektorem losowym o dystrybuancie F_{XY} .

Dystrybuanty brzegowe *zmiennych losowych X i Y określone są następująco:*

$$F_X(x) = \lim_{y \to +\infty} F_{XY}(x, y)$$

$$F_Y(y) = \lim_{x \to +\infty} F_{XY}(x, y)$$

Definicja

Wektor losowy (X, Y) ma rozkład ciągły, jeśli istnieje funkcja $f_{XY} : \mathbb{R}^2 \to \mathbb{R}$ zwana gęstością rozkładu wektora (X, Y) taka, że

Definicja

Wektor losowy (X, Y) ma rozkład ciągły, jeśli istnieje funkcja $f_{XY} : \mathbb{R}^2 \to \mathbb{R}$ zwana gęstością rozkładu wektora (X, Y) taka, że

$$F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(u,t) du dt.$$

Definicja

Wektor losowy (X, Y) ma rozkład ciągły, jeśli istnieje funkcja $f_{XY} : \mathbb{R}^2 \to \mathbb{R}$ zwana gęstością rozkładu wektora (X, Y) taka, że

$$F_{XY}(x,y) = \int_{-\infty}^{\hat{\Lambda}} \int_{-\infty}^{y} f_{XY}(u,t) du dt.$$

Definicja

Nośnikiem rozkładu wektora (X, Y) o łącznym rozkładzie ciągłym jest zbiór $S_{XY} = \{(x, y) : f_{XY}(x, y) > 0\}.$

Twierdzenie

Funkcja $f: \mathbb{R}^2 \to \mathbb{R}$ jest gęstością dwuwymiarowego wektora losowego wtedy i tylko wtedy, gdy:

Twierdzenie

Funkcja $f: \mathbb{R}^2 \to \mathbb{R}$ jest gęstością dwuwymiarowego wektora losowego wtedy i tylko wtedy, gdy:

1. $f(x,y) \ge 0$ prawie wszędzie

Twierdzenie

Funkcja $f: \mathbb{R}^2 \to \mathbb{R}$ jest gęstością dwuwymiarowego wektora losowego wtedy i tylko wtedy, gdy:

1. $f(x,y) \ge 0$ prawie wszędzie

2.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$$

Twierdzenie

Jeśli funkcja $f: \mathbb{R}^2 \to \mathbb{R}$ jest gęstością wektora losowego (X,Y), to:

Twierdzenie

Jeśli funkcja $f: \mathbb{R}^2 \to \mathbb{R}$ jest gęstością wektora losowego (X,Y), to:

1.
$$\frac{\partial^2 F_{XY}}{\partial x \partial y}(x,y) = f(x,y)$$
 prawie wszędzie

Twierdzenie

Jeśli funkcja $f: \mathbb{R}^2 \to \mathbb{R}$ jest gęstością wektora losowego (X, Y), to:

- 1. $\frac{\partial^2 F_{XY}}{\partial x \partial y}(x, y) = f(x, y)$ prawie wszędzie
- 2. Dla każdego $A \in \mathcal{B}(\mathbb{R}^2)$ zachodzi równość

$$P((X,Y) \in A) = \iint_A f(x,y) dx dy$$

Twierdzenie

Jeśli wektor losowy (X, Y) ma rozkład ciągły, to rozkłady brzegowe zmiennych losowych X i Y też są ciągłe.

Twierdzenie

Jeśli wektor losowy (X,Y) ma rozkład ciągły, to rozkłady brzegowe zmiennych losowych X i Y też są ciągłe. Ponadto

$$f_X(x) = \int\limits_{-\infty}^{+\infty} f_{XY}(x,y) dy$$
 – gęstość brzegowa zmiennej losowej X

Twierdzenie

Jeśli wektor losowy (X,Y) ma rozkład ciągły, to rozkłady brzegowe zmiennych losowych X i Y też są ciągłe. Ponadto

$$f_X(x) = \int\limits_{-\infty}^{+\infty} f_{XY}(x,y) dy$$
 – gęstość brzegowa zmiennej losowej X

$$f_Y(y) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dx$$
 – gęstość brzegowa zmiennej losowej Y

Twierdzenie

Jeśli wektor losowy (X,Y) ma rozkład ciągły, to rozkłady brzegowe zmiennych losowych X i Y też są ciągłe. Ponadto

$$f_X(x) = \int\limits_{-\infty}^{+\infty} f_{XY}(x,y) dy$$
 – gęstość brzegowa zmiennej losowej X

$$f_Y(y) = \int\limits_{-\infty}^{+\infty} f_{XY}(x,y) dx$$
 – gęstość brzegowa zmiennej losowej Y

Uwaga:

Twierdzenie odwrotne nie jest prawdziwe.

Przykład 2.

Wektor losowy (X, Y) ma rozkład ciągły o gęstości

$$f_{XY}(x,y) = a \cdot 1_D(x,y),$$

gdzie D jest trójkątem o wierzchołkach (-2,0), (0,2), (2,0).

- (a) Wyznaczyć a.
- (b) Wyznaczyć gęstości brzegowe.
- (c) Obliczyć P(Y > X).