Analogy to 1D sho:
$$E(x) = x^2$$
 for $V_BT = 1$

We perform Mc limitation on the energy furface: $E(x) = x^2$

Now, consider: $E(x) = x^2$

So, $E(x) = x^2$

Analogy to 1D sho: $E(x) = x^2$ for $V_BT = 1$

We perform Mc limitation on the energy furface: $E(x) = x^2$

Now, consider: $E(x) = x^2$

A Other importance sampling: $I = \int f(x) dx = \frac{1}{N} \int f(x_i) = \langle f \rangle$ where

where, χ_i is drawn from uniform distribution

$$I = \int f(n) dn = \int \frac{f(n)}{W(n)} W(n) dn = \left\langle \frac{f}{W} \right\rangle,$$
with a distribution fun

where, is drawn with a distribution function W(x).

#	Monte	Carlo	8	3D	LJ	particles:

Due'll we truncated LJ function

Ufults (8) = 4 E [(5) 12 (5) 6]

Utruse $(r) = \begin{cases} U_{\text{full}}(r) - U_{\text{full}}(rc) \\ \vdots \\ for r \leq rc \end{cases}$

* Does No interaction beyond Cut-off distance &.

* Shifted so that Utrue (r) is continuous at r= rc.

2) Periodic Boundary Condition (PBC): Wrap particles inside box of length L: Box: [0, L]

> If x>L: x=x-LIf x<0: x=x+L

3) Minimum Image convention:
Energy of 1900 i-th particle;
For $j = 1$ to N : if $i \neq j$?
Eit= Eij (r)
Note: EDOS For calculating Eij(8), we
must use the nearest image of j (to i). Following transformation is required:
7= 022 + 032 + 022
If 12 > L/2:
$\Delta x' = \Delta x - L$ If $\Delta x < -L/2$
のれるこのメナレ
Same for 1x, 0y, 02 -> then contente v.
812 = 0212 + 0212 + 0212
(1) Pun MC & compute following:
(E), (F. OTTOCK)
* How to compute Pas ensemble average?
Find out! Hint: "Virial (Google is
your friend (:))
* Go Good Plot P vs. 1/9 at different T