Effiziente Algorithmen (SS2015) Kapitel 4 Lineare Programme 1

Walter Unger

Lehrstuhl für Informatik 1

13:52 Uhr, den 22. November 2018

4 Inhaltsverzeichnis

Algorithmus von Seidel

Dualität

Ganzzahligkeit 000000000

Walter Unger 22.11.2018 13:52 SS2015 RWTH

Inhalt I

- Einleitung zu LPs

 Beispiele
 - Formen eines LP
 - Geometrische Interpretation
- Algorithmus von Seidel
 Details
 - Algorithmus

- Laufzeit
 - Dualität
 - EinleitungAussagen
- Beispiele
- Ganzzahligkeit
 Einleitung
 - Einleitung
 Unimodularität

Einleitung zu LPs Algorithmus von Seidel Dualität Ganzzahligkeit •00000000000000 4:1 Beispiele 1/17 Walter Unger 22.11.2018 13:52 SS2015 RWTH

Einleitung zu LPs Algorithmus von Seidel Dualität Ganzzahligkeit •00000000000000 4:1 Beispiele 2/17 Walter Unger 22.11.2018 13:52 SS2015 RWTH

Dualität 0000000

Walter Unger 22.11.2018 13:52

Ganzzahligkeit 00000000 SS2015 RWTH

4:1 Beispiele 3/17

Dualität 0000000 Ganzzahligkeit

Walter Unger 22.11.2018 13:52 SS2015 RWTH

Einfaches Beispiel

• Wir betrachten ein System von linearen Ungleichungen.

- Wir betrachten ein System von linearen Ungleichungen.
- Dabei ist eine "Zielfunktion" zu optimieren.

Algorithmus von Seidel

on Seidel Dualität

 Dualität
 Ganzzahligkeit

 0000000
 000000000

 Walter Unger 22.11.2018 13:52
 SS2015
 RWTH

- Wir betrachten ein System von linearen Ungleichungen.
- Dabei ist eine "Zielfunktion" zu optimieren.
- Beispiel (Brotrezept):

- Wir betrachten ein System von linearen Ungleichungen.
- Dabei ist eine "Zielfunktion" zu optimieren.
- Beispiel (Brotrezept):
 - x kg Weizenmehl

Algorithmus von Seidel

Dualität

Walter Unger 22.11.2018 13:52

Ganzzahligkeit SS2015 RWIH

- Wir betrachten ein System von linearen Ungleichungen.
- Dabei ist eine "Zielfunktion" zu optimieren.
- Beispiel (Brotrezept): x kg Weizenmehl

 - y kg Roggenmehl

Walter Unger 22.11.2018 13:52

- Wir betrachten ein System von linearen Ungleichungen.
- Dabei ist eine "Zielfunktion" zu optimieren.
- Beispiel (Brotrezept):
 - x kg Weizenmehl
 - y kg Roggenmehl
 - Maximal 80 kg Weizenmehl.

- Wir betrachten ein System von linearen Ungleichungen.
- Dabei ist eine "Zielfunktion" zu optimieren.
- Beispiel (Brotrezept):
 - x kg Weizenmehl
 - y kg Roggenmehl
 - Maximal 80 kg Weizenmehl.
 - Maximal 110 kg Roggenmehl.

Walter Unger 22.11.2018 13:52

- Wir betrachten ein System von linearen Ungleichungen.
- Dabei ist eine "Zielfunktion" zu optimieren.
- Beispiel (Brotrezept):
 - x kg Weizenmehl
 - y kg Roggenmehl
 - Maximal 80 kg Weizenmehl.
 - Maximal 110 kg Roggenmehl.
 - Mischungsverhältnis: $1.2 \cdot x + y$.

- Wir betrachten ein System von linearen Ungleichungen.
- Dabei ist eine "Zielfunktion" zu optimieren.
- Beispiel (Brotrezept):
 - x kg Weizenmehl
 - y kg Roggenmehl
 - Maximal 80 kg Weizenmehl.
 - Maximal 110 kg Roggenmehl.
 - Mischungsverhältnis: $1.2 \cdot x + y$.
 - Maximale Brotmenge:

$$1.2 \cdot x + y \leqslant 120.$$

- Wir betrachten ein System von linearen Ungleichungen.
- Dabei ist eine "Zielfunktion" zu optimieren.
- Beispiel (Brotrezept):
 - x kg Weizenmehl
 - y kg Roggenmehl
 - Maximal 80 kg Weizenmehl.
 - Maximal 110 kg Roggenmehl.
 - Mischungsverhältnis: $1.2 \cdot x + y$.
 - Maximale Brotmenge:

$$1.2 \cdot x + y \leqslant 120.$$

$$f(x,y) = 4/5 \cdot x + y.$$

- Wir betrachten ein System von linearen Ungleichungen.
- Dabei ist eine "Zielfunktion" zu optimieren.
- Beispiel (Brotrezept):
 - x kg Weizenmehl
 - y kg Roggenmehl
 - Maximal 80 kg Weizenmehl.
 - Maximal 110 kg Roggenmehl.
 - Mischungsverhältnis: $1.2 \cdot x + y$.
 - Maximale Brotmenge:
 - $1.2 \cdot x + y \leqslant 120.$
 - Zu optimieren: $f(x, y) = 4/5 \cdot x + y.$

- Wir betrachten ein System von linearen Ungleichungen.
- Dabei ist eine "Zielfunktion" zu optimieren.
- Beispiel (Brotrezept):
 - x kg Weizenmehl
 - y kg Roggenmehl
 - Maximal 80 kg Weizenmehl.
 - Maximal 110 kg Roggenmehl.
 - Mischungsverhältnis: $1.2 \cdot x + y$.
 - Maximale Brotmenge:
 - $1.2 \cdot x + y \leqslant 120.$

$$f(x,y)=4/5\cdot x+y.$$

Walter Unger 22.11.2018 13:52 SS2015 RWIH

- Wir betrachten ein System von linearen Ungleichungen.
- Dabei ist eine "Zielfunktion" zu optimieren.
- Beispiel (Brotrezept):
 - x kg Weizenmehl
 - y kg Roggenmehl
 - Maximal 80 kg Weizenmehl.
 - Maximal 110 kg Roggenmehl.
 - Mischungsverhältnis: $1.2 \cdot x + y$.
 - Maximale Brotmenge:
 - $1.2 \cdot x + y \leqslant 120.$ Zu optimieren:

$$f(x, y) = 4/5 \cdot x + y.$$

Walter Unger 22.11.2018 13:52 SS2015 RWIH

Beispiele 17/17 Einfaches Beispiel

- Wir betrachten ein System von linearen Ungleichungen.
- Dabei ist eine "Zielfunktion" zu optimieren.
- Beispiel (Brotrezept):
 - x kg Weizenmehl
 - y kg Roggenmehl
 - Maximal 80 kg Weizenmehl.
 - Maximal 110 kg Roggenmehl.
 - Mischungsverhältnis: $1.2 \cdot x + y$.
 - Maximale Brotmenge:

$$1.2 \cdot x + y \leqslant 120.$$

$$f(x,y)=4/5\cdot x+y.$$

Beispiel: Flussproblem

Flussproblem:

Dualität 0000000

00000000 13:52 SS2015 RWTH

Ganzzahligkeit

Walter Unger 22.11.2018 13:52 SS20

Beispiel: Flussproblem

- Flussproblem:
 - Gegeben G = (V, E, s, t, c) mit $c : E \mapsto \mathbb{N}$.

Ganzzahligkeit Walter Unger 22.11.2018 13:52 SS2015 RWTH

Beispiel: Flussproblem

Einleitung zu LPs

- Flussproblem:
 - Gegeben G = (V, E, s, t, c) mit $c : E \mapsto \mathbb{N}$.
 - Maximiere den Fluss.

Ganzzahligkeit

Beispiel: Flussproblem

Einleitung zu LPs

000000000000000 4:2 Beispiele 4/10

- Flussproblem:
 - Gegeben G = (V, E, s, t, c) mit $c : E \mapsto \mathbb{N}$.
 - Maximiere den Fluss.
- als lineares Programm:

Beispiel: Flussproblem

Einleitung zu LPs

- Flussproblem:
 - Gegeben G = (V, E, s, t, c) mit $c : E \mapsto \mathbb{N}$.
 - Maximiere den Fluss.
- als lineares Programm:
 - Variablen x_e für $e \in E$.

Beispiel: Flussproblem

Einleitung zu LPs

- Flussproblem:
 - Gegeben G = (V, E, s, t, c) mit $c : E \mapsto \mathbb{N}$.
 - Maximiere den Fluss.
- als lineares Programm:
 - Variablen x_e für $e \in E$.
 - Maximiere

$$\sum_{e \in N_{out}(s) \in E} x_e.$$

Walter Unger 22.11.2018 13:52

Einleitung zu LPs

Beispiel: Flussproblem

- Flussproblem:
 - Gegeben G = (V, E, s, t, c) mit $c : E \mapsto \mathbb{N}$. Maximiere den Fluss.
- als lineares Programm:
 - Variablen x_e für $e \in E$.
 - Maximiere

$$\sum_{e \in N_{out}(s) \in E} x_e.$$

unter Einhaltung der Bedingungen:

Beispiel: Flussproblem

Einleitung zu LPs

000000000000000 4:2 Beispiele 8/10

- Flussproblem:
 - Gegeben G = (V, E, s, t, c) mit $c : E \mapsto \mathbb{N}$.
 - Maximiere den Fluss.
- als lineares Programm:
 - Variablen x_e für $e \in E$.
 - Maximiere

$$\sum_{e \in N_{out}(s) \in E} x_e.$$

- unter Einhaltung der Bedingungen:
 - Für jeden Knoten $v \in V \setminus \{s, t\}$: $\sum_{e \in N_{in}(v)} x_e = \sum_{e \in N_{out}(v)} x_e$,

Einleitung zu LPs

000000000000000

Beispiel: Flussproblem

- Flussproblem:
 - Gegeben G = (V, E, s, t, c) mit $c : E \mapsto \mathbb{N}$.
 - Maximiere den Fluss.
- als lineares Programm:
 - Variablen x_e für $e \in E$.
 - Maximiere

$$\sum_{e \in N_{out}(s) \in E} x_e.$$

- unter Einhaltung der Bedingungen:
 - Für jeden Knoten $v \in V \setminus \{s, t\}$: $\sum_{e \in N_{in}(v)} x_e = \sum_{e \in N_{out}(v)} x_e$,
 - $\forall e \in E : x_e \leqslant c_e$, und

Einleitung zu LPs

Beispiel: Flussproblem

- Flussproblem:
 - Gegeben G = (V, E, s, t, c) mit $c : E \mapsto \mathbb{N}$.
 - Maximiere den Fluss.
- als lineares Programm:
 - Variablen x_e für $e \in E$.
 - Maximiere

$$\sum_{e \in N_{out}(s) \in E} x_e.$$

- unter Einhaltung der Bedingungen:
 - Für jeden Knoten $v \in V \setminus \{s, t\}$: $\sum_{e \in N_{in}(v)} x_e = \sum_{e \in N_{out}(v)} x_e$,
 - $\forall e \in E : x_e \leqslant c_e$, und
 - $\forall e \in E : x_e \geqslant 0$.

Relaxiertes Rucksackproblem:

- Relaxiertes Rucksackproblem:
 - \bullet gegeben d teilbare Objekte mit Gewichten g_i und

- Relaxiertes Rucksackproblem:
 - ullet gegeben d teilbare Objekte mit Gewichten g_i und
 - ullet die Gewichtsschranke G des Rucksacks.

Einleitung zu LPs

- Relaxiertes Rucksackproblem:
 - gegeben d teilbare Objekte mit Gewichten gi und
 - die Gewichtsschranke G des Rucksacks.
 - Und v_i sei der Nutzen für $1 \leqslant i \leqslant d$.

- Relaxiertes Rucksackproblem:
 - ullet gegeben d teilbare Objekte mit Gewichten g_i und
 - die Gewichtsschranke G des Rucksacks.
 - Und v_i sei der Nutzen für $1 \leqslant i \leqslant d$.
 - Sei x_i der Anteil von Objekt i.

- Relaxiertes Rucksackproblem:
 - ullet gegeben d teilbare Objekte mit Gewichten g_i und
 - die Gewichtsschranke G des Rucksacks.
 - Und v_i sei der Nutzen für $1 \le i \le d$.
 - Sei x_i der Anteil von Objekt i.
 - Fülle den Rucksack. Dabei soll der Nutzen maximal sein.

- Relaxiertes Rucksackproblem:
 - ullet gegeben d teilbare Objekte mit Gewichten g_i und
 - ullet die Gewichtsschranke G des Rucksacks.
 - Und v_i sei der Nutzen für $1 \le i \le d$. • Sei v. der Anteil von Obiekt i
 - Sei x_i der Anteil von Objekt i.
 - Fülle den Rucksack. Dabei soll der Nutzen maximal sein.
- Als lineares Programm:

Walter Unger 22.11.2018 13:52

Beispiel: Relaxiertes Rucksackproblem

Einleitung zu LPs

- Relaxiertes Rucksackproblem:
 - gegeben d teilbare Objekte mit Gewichten gi und
 - die Gewichtsschranke G des Rucksacks.
 - Und v_i sei der Nutzen für $1 \leqslant i \leqslant d$.
 - Sei x_i der Anteil von Objekt i.
 - Fülle den Rucksack. Dabei soll der Nutzen maximal sein.
- Als lineares Programm:
 - Maximiere

$$\sum_{i=1}^{d} v_i \cdot x_i$$

Dualität

Ganzzahligkeit

Walter Unger 22.11.2018 13:52 SS2015 RWTH

Beispiel: Relaxiertes Rucksackproblem

Einleitung zu LPs

000000000000000 4:3 Beispiele 9/12

- Relaxiertes Rucksackproblem:
 - gegeben d teilbare Objekte mit Gewichten gi und
 - die Gewichtsschranke G des Rucksacks
 - Und v_i sei der Nutzen für $1 \leqslant i \leqslant d$.
 - Sei x_i der Anteil von Objekt i.
 - Fülle den Rucksack. Dabei soll der Nutzen maximal sein.
- Als lineares Programm:
 - Maximiere

$$\sum_{i=1}^d v_i \cdot x_i.$$

unter den Nebenbedingungen:

Beispiel: Relaxiertes Rucksackproblem

- Relaxiertes Rucksackproblem:
 - gegeben d teilbare Objekte mit Gewichten gi und
 - die Gewichtsschranke G des Rucksacks
 - Und v_i sei der Nutzen für $1 \le i \le d$.
 - Sei x_i der Anteil von Objekt i.
 - Fülle den Rucksack. Dabei soll der Nutzen maximal sein.
- Als lineares Programm:
 - Maximiere

$$\sum_{i=1}^{d} v_i \cdot x_i$$

- unter den Nebenbedingungen:
 - $\sum_{i=1}^d g_i \cdot x_i \leqslant G$,

Beispiel: Relaxiertes Rucksackproblem

Einleitung zu LPs

000000000000000 4:3 Beispiele 11/12

- Relaxiertes Rucksackproblem:
 - gegeben d teilbare Objekte mit Gewichten gi und
 - die Gewichtsschranke G des Rucksacks
 - Und v_i sei der Nutzen für $1 \le i \le d$.
 - Sei x_i der Anteil von Objekt i.
 - Fülle den Rucksack, Dabei soll der Nutzen maximal sein.
- Als lineares Programm:
 - Maximiere

$$\sum_{i=1}^{d} v_i \cdot x_i.$$

- unter den Nebenbedingungen:

 - $\sum_{i=1}^{d} g_i \cdot x_i \leqslant G$, $\forall i : 1 \leqslant i \leqslant d : x_i \leqslant 1$, und

Walter Unger 22.11.2018 13:52

Beispiel: Relaxiertes Rucksackproblem

Einleitung zu LPs

000000000000000 4:3 Beispiele 12/12

- Relaxiertes Rucksackproblem:
 - gegeben d teilbare Objekte mit Gewichten gi und
 - die Gewichtsschranke G des Rucksacks
 - Und v_i sei der Nutzen für $1 \le i \le d$.
 - Sei x_i der Anteil von Objekt i.
 - Fülle den Rucksack, Dabei soll der Nutzen maximal sein.
- Als lineares Programm:
 - Maximiere

$$\sum_{i=1}^{d} v_i \cdot x_i.$$

- unter den Nebenbedingungen:
 - $\sum_{i=1}^d g_i \cdot x_i \leqslant G$,
 - $\forall i : 1 \leq i \leq d : x_i \leq 1$, und
 - $\forall i : 1 \leq i \leq d : x_i \geq 0$.

 Routing und Wellenlängenzuweisung: bestimme die Wellenlängen in einem optischen Netzwerk. In dem Netzwerk gibt es Kommunikationsanfragen für Paare von Knoten.

- Routing und Wellenlängenzuweisung: bestimme die Wellenlängen in einem optischen Netzwerk. In dem Netzwerk gibt es Kommunikationsanfragen für Paare von Knoten.
 - N_E Endknoten.

- Routing und Wellenlängenzuweisung: bestimme die Wellenlängen in einem optischen Netzwerk. In dem Netzwerk gibt es Kommunikationsanfragen für Paare von Knoten.
 - N_E Endknoten.
 - N_R Router mit Konverter.

- Routing und Wellenlängenzuweisung: bestimme die Wellenlängen in einem optischen Netzwerk. In dem Netzwerk gibt es Kommunikationsanfragen für Paare von Knoten.
 - N_E Endknoten.
 - N_R Router mit Konverter.
 - $\bullet \ n = N_E + N_R.$

Walter Unger 22.11.2018 13:52 SS2015 **RWTH**

Ganzzahligkeit

- Routing und Wellenlängenzuweisung: bestimme die Wellenlängen in einem optischen Netzwerk. In dem Netzwerk gibt es Kommunikationsanfragen für Paare von Knoten.
 - N_E Endknoten.
 - N_R Router mit Konverter.
 - $n = N_E + N_R$.
 - Namen der Knoten: N_i $(1 \le i \le n)$.

Dualität

Ganzzahligkeit Walter Unger 22.11.2018 13:52 SS2015 RWTH

Beispiel: Routing und Wellenlängenzuweisung

- Routing und Wellenlängenzuweisung: bestimme die Wellenlängen in einem optischen Netzwerk. In dem Netzwerk gibt es Kommunikationsanfragen für Paare von Knoten.
 - N_F Endknoten.

Einleitung zu LPs

4:4 Beispiele 6/12

- N_R Router mit Konverter.
- $n = N_F + N_R$.
- Namen der Knoten: N_i $(1 \le i \le n)$.
- m Anzahl der Lichtwege.

- Routing und Wellenlängenzuweisung: bestimme die Wellenlängen in einem optischen Netzwerk. In dem Netzwerk gibt es Kommunikationsanfragen für Paare von Knoten.
 - N_E Endknoten.

4:4 Beispiele 7/12

- N_R Router mit Konverter.
- $n = N_F + N_R$.
- Namen der Knoten: N_i $(1 \le i \le n)$.
- m Anzahl der Lichtwege.
- $E: (i, j) \in E \iff \text{Kante von } N_i \text{ nach } N_i$.

- Routing und Wellenlängenzuweisung: bestimme die Wellenlängen in einem optischen Netzwerk. In dem Netzwerk gibt es Kommunikationsanfragen für Paare von Knoten.
 - N_F Endknoten.

4:4 Beispiele 8/12

- N_R Router mit Konverter.
- $n = N_F + N_R$.
- Namen der Knoten: N_i $(1 \le i \le n)$.
- m Anzahl der Lichtwege.
- $E: (i, j) \in E \iff \text{Kante von } N_i \text{ nach } N_i$.
- src(k): ist Startknoten der k-ten Anfrage.

- Routing und Wellenlängenzuweisung: bestimme die Wellenlängen in einem optischen Netzwerk. In dem Netzwerk gibt es Kommunikationsanfragen für Paare von Knoten.
 - N_F Endknoten.
 - N_R Router mit Konverter.
 - $n = N_F + N_R$.
 - Namen der Knoten: N_i $(1 \le i \le n)$.
 - m Anzahl der Lichtwege.
 - $E: (i, j) \in E \iff \text{Kante von } N_i \text{ nach } N_i$.
 - src(k): ist Startknoten der k-ten Anfrage.
 - dst(k): ist Endknoten der k-ten Anfrage.

- Routing und Wellenlängenzuweisung: bestimme die Wellenlängen in einem optischen Netzwerk. In dem Netzwerk gibt es Kommunikationsanfragen für Paare von Knoten.
 - N_F Endknoten.
 - N_R Router mit Konverter.
 - $n = N_F + N_R$.
 - Namen der Knoten: N_i $(1 \le i \le n)$.
 - m Anzahl der Lichtwege.
 - $E: (i, j) \in E \iff \text{Kante von } N_i \text{ nach } N_i$.
 - src(k): ist Startknoten der k-ten Anfrage.
 - dst(k): ist Endknoten der k-ten Anfrage.
 - Ω_{max} : Congestion des Netzwerks.

- Routing und Wellenlängenzuweisung: bestimme die Wellenlängen in einem optischen Netzwerk. In dem Netzwerk gibt es Kommunikationsanfragen für Paare von Knoten.
 - N_F Endknoten.
 - N_R Router mit Konverter.
 - $n = N_F + N_R$.
 - Namen der Knoten: N_i $(1 \le i \le n)$.
 - m Anzahl der Lichtwege.
 - $E: (i, j) \in E \iff \text{Kante von } N_i \text{ nach } N_i$.
 - src(k): ist Startknoten der k-ten Anfrage.
 - dst(k): ist Endknoten der k-ten Anfrage.
 - Ω_{max}: Congestion des Netzwerks.
 - $X_{ii}^k \in \{0,1\}$ mit:

$$X_{ij}^k = \left\{ egin{array}{ll} 1 & ext{der k-te Weg nutzt Kante } (i,j) \in E \\ 0 & ext{sonst} \end{array}
ight.$$

Beispiel: Routing und Wellenlängenzuweisung

- Routing und Wellenlängenzuweisung: bestimme die Wellenlängen in einem optischen Netzwerk. In dem Netzwerk gibt es Kommunikationsanfragen für Paare von Knoten.
 - N_F Endknoten.
 - N_R Router mit Konverter.
 - $n = N_F + N_R$.
 - Namen der Knoten: N_i $(1 \le i \le n)$.
 - m Anzahl der Lichtwege.
 - $E: (i, j) \in E \iff \text{Kante von } N_i \text{ nach } N_i$.
 - src(k): ist Startknoten der k-ten Anfrage.
 - dst(k): ist Endknoten der k-ten Anfrage.
 - Ω_{max}: Congestion des Netzwerks.
 - $X_{ii}^k \in \{0,1\}$ mit:

$$X_{ij}^{k} = \begin{cases} 1 & \text{der } k\text{-te Weg nutzt Kante } (i,j) \in E \\ 0 & \text{sonst} \end{cases}$$

• Wegen $X_{ii}^k \in \{0,1\}$ ist dies hier ein "Integer Linerar Programm".

Dualität

Ganzzahligkeit

Walter Unger 22.11.2018 13:52 SS2015 RWTH

Routing und Wellenlängenzuweisung als ILP

• Minimiere Zielfunktion Ω_{max} .

$$src(k) \longleftrightarrow dst(k) : (\mathbf{1} \leqslant k \leqslant m)$$

 $X_{ii}^k : k$ -te Weg nutzt Kante (i, j)

 X_{ii}^{k} : k-te Weg nutzt Kante (i, j)

Routing und Wellenlängenzuweisung als ILP

• Minimiere Zielfunktion Ω_{max} .

Einleitung zu LPs

000000000000000 4:5 Beispiele 2/9

• $\sum_{k=1}^{m} X_{ij}^{k} \leqslant \Omega_{max}, \forall (i,j) \in E$.

 $rc(k) \longleftrightarrow dst(k) : (\mathbf{1} \leqslant k \leqslant m)$ $X_{ii}^{k}: k$ -te Weg nutzt Kante (i, j)

Routing und Wellenlängenzuweisung als ILP

Minimiere Zielfunktion Ω_{max}.

Einleitung zu LPs

0000000000000000 4:5 Beispiele 3/9

- $\sum_{k=1}^{m} X_{ii}^{k} \leq \Omega_{max}, \forall (i,j) \in E$.
- Für alle $k: 1 \le k \le m$ und alle $i: 1 \le i \le n$:

$$\sum_{j:(i,j)\in E} X_{ij}^k - \sum_{j:(j,i)\in E} X_{ji}^k = \begin{cases} 1 & \text{falls } src(k) = i \\ -1 & \text{falls } dst(k) = i \\ 0 & \text{sonst} \end{cases}$$

 $n = N_E + N_R$ $src(k) \longleftrightarrow dst(k) : (\mathbf{1} \leqslant k \leqslant m)$ $X_{ii}^{k}: k$ -te Weg nutzt Kante (i, j)

Routing und Wellenlängenzuweisung als ILP

Minimiere Zielfunktion Ω_{max}.

Einleitung zu LPs

0000000000000000 4:5 Beispiele 4/9

- $\sum_{k=1}^{m} X_{ii}^{k} \leq \Omega_{max}, \forall (i,j) \in E$.
- Für alle $k: 1 \le k \le m$ und alle $i: 1 \le i \le n$:

$$\sum_{j:(i,j)\in\mathcal{E}} X_{ij}^k - \sum_{j:(j,i)\in\mathcal{E}} X_{ji}^k = \begin{cases} 1 & \text{falls } src(k) = i \\ -1 & \text{falls } dst(k) = i \\ 0 & \text{sonst} \end{cases}$$

• Dies ist eine korrekte Formulierung des Routen- und Wellenlängenzuweisungsproblems als ILP.

 $n = N_E + N_R$ $src(k) \longleftrightarrow dst(k) : (\mathbf{1} \leqslant k \leqslant m)$ $X_{ii}^{k}: k$ -te Weg nutzt Kante (i, j)

Walter Unger 22.11.2018 13:52

Routing und Wellenlängenzuweisung als ILP

- Minimiere Zielfunktion Ω_{max}.
- $\sum_{k=1}^{m} X_{ii}^{k} \leq \Omega_{max}, \forall (i,j) \in E$.
- Für alle $k: 1 \le k \le m$ und alle $i: 1 \le i \le n$:

$$\sum_{j:(i,j)\in E} X_{ij}^k - \sum_{j:(j,i)\in E} X_{ji}^k = \begin{cases} 1 & \text{falls } src(k) = i \\ -1 & \text{falls } dst(k) = i \\ 0 & \text{sonst} \end{cases}$$

- Dies ist eine korrekte Formulierung des Routen- und Wellenlängenzuweisungsproblems als ILP.
- Komplexität:

Einleitung zu LPs

0000000000000000 4:5 Beispiele 5/9

 $n = N_E + N_R$ $src(k) \longleftrightarrow dst(k) : (\mathbf{1} \leqslant k \leqslant m)$ $X_{ij}^{k}: k$ -te Weg nutzt Kante (i, j)

Routing und Wellenlängenzuweisung als ILP

- Minimiere Zielfunktion Ω_{max}.
- $\sum_{k=1}^{m} X_{ii}^{k} \leq \Omega_{max}, \forall (i,j) \in E$.
- Für alle $k: 1 \le k \le m$ und alle $i: 1 \le i \le n$:

$$\sum_{j:(i,j)\in\mathcal{E}} X_{ij}^k - \sum_{j:(j,i)\in\mathcal{E}} X_{ji}^k = \begin{cases} 1 & \text{falls } src(k) = i \\ -1 & \text{falls } dst(k) = i \\ 0 & \text{sonst} \end{cases}$$

- Dies ist eine korrekte Formulierung des Routen- und Wellenlängenzuweisungsproblems als ILP.
- Komplexität:

Einleitung zu LPs

0000000000000000 Beispiele 6/9

m · |E| Variablen der Form X^k_{ii}.

Dualität

Routing und Wellenlängenzuweisung als ILP

 $n = N_E + N_R$ $src(k) \longleftrightarrow dst(k) : (\mathbf{1} \leqslant k \leqslant m)$ X_{ii}^{k} : k-te Weg nutzt Kante (i, j)

- Minimiere Zielfunktion Ω_{max}.
- $\sum_{k=1}^{m} X_{ii}^{k} \leq \Omega_{max}, \forall (i,j) \in E$.
- Für alle $k: 1 \le k \le m$ und alle $i: 1 \le i \le n$:

$$\sum_{j:(i,j)\in\mathcal{E}} X_{ij}^k - \sum_{j:(j,i)\in\mathcal{E}} X_{ji}^k = \begin{cases} 1 & \text{falls } src(k) = i \\ -1 & \text{falls } dst(k) = i \\ 0 & \text{sonst} \end{cases}$$

- Dies ist eine korrekte Formulierung des Routen- und Wellenlängenzuweisungsproblems als ILP.
- Komplexität:

Einleitung zu LPs

0000000000000000 4:5 Beispiele 7/9

- $m \cdot |E|$ Variablen der Form X_{ii}^k .
- Eine Variable Ω_{max}.

 $n = N_E + N_R$ $src(k) \longleftrightarrow dst(k) : (\mathbf{1} \leqslant k \leqslant m)$ X_{ii}^{k} : k-te Weg nutzt Kante (i, j)

Walter Unger 22.11.2018 13:52

Routing und Wellenlängenzuweisung als ILP

- Minimiere Zielfunktion Ω_{max}.
- $\sum_{k=1}^{m} X_{ii}^{k} \leq \Omega_{max}, \forall (i,j) \in E$.
- Für alle $k: 1 \le k \le m$ und alle $i: 1 \le i \le n$:

$$\sum_{j:(i,j)\in E} X_{ij}^k - \sum_{j:(j,i)\in E} X_{ji}^k = \begin{cases} 1 & \text{falls } src(k) = i \\ -1 & \text{falls } dst(k) = i \\ 0 & \text{sonst} \end{cases}$$

- Dies ist eine korrekte Formulierung des Routen- und Wellenlängenzuweisungsproblems als ILP.
- Komplexität:

Einleitung zu LPs

0000000000000000 4:5 Beispiele 8/9

- m · |E| Variablen der Form X^k_{ii}.
- Eine Variable Ω_{max} .
- Nebenbedingungen: $|E| + n \cdot m$.

 $n = N_E + N_R$ $src(k) \longleftrightarrow dst(k) : (\mathbf{1} \leqslant k \leqslant m)$ $X_{ii}^{k}: k$ -te Weg nutzt Kante (i, j)

Routing und Wellenlängenzuweisung als ILP

- Minimiere Zielfunktion Ω_{max}.
- $\sum_{k=1}^{m} X_{ii}^{k} \leq \Omega_{max}, \forall (i,j) \in E$.
- Für alle $k: 1 \le k \le m$ und alle $i: 1 \le i \le n$:

$$\sum_{j:(i,j)\in\mathcal{E}} X_{ij}^k - \sum_{j:(j,i)\in\mathcal{E}} X_{ji}^k = \begin{cases} 1 & \text{falls } src(k) = i \\ -1 & \text{falls } dst(k) = i \\ 0 & \text{sonst} \end{cases}$$

- Dies ist eine korrekte Formulierung des Routen- und Wellenlängenzuweisungsproblems als ILP.
- Komplexität:

Einleitung zu LPs

00000000000000000 4:5 Beispiele 9/9

- m · |E| Variablen der Form X^k_{ii}.
- Eine Variable Ω_{max} .
- Nebenbedingungen: $|E| + n \cdot m$.
- Schon f
 ür relativ kleine Netzwerke zu aufwendig.

• N_E Endknoten; N_R Router ohne Konverter.

Einleitung zu LPs

000000000000000 4:6 Beispiele 2/9

- N_E Endknoten; N_R Router ohne Konverter.
- $n = N_E + N_R$; Namen der Knoten: N_i $(1 \le i \le n)$.

000000000000000 4:6 Beispiele 3/9

- N_E Endknoten; N_R Router ohne Konverter.
 - $n = N_E + N_R$; Namen der Knoten: N_i $(1 \le i \le n)$.
 - m Anzahl der Lichtwege; n_{ch} Anzahl der Wellenlängen.

Einleitung zu LPs

00000000000000000 4:6 Beispiele 4/9

- N_E Endknoten; N_R Router ohne Konverter.
- $n = N_E + N_R$; Namen der Knoten: N_i $(1 \le i \le n)$.
- m Anzahl der Lichtwege; n_{ch} Anzahl der Wellenlängen.
- $E: (i, j) \in E \iff \text{Kante von } N_i \text{ nach } N_i$.

Einleitung zu LPs

00000000000000000 4:6 Beispiele 5/9

- N_E Endknoten; N_R Router ohne Konverter.
- $n = N_E + N_R$; Namen der Knoten: N_i $(1 \le i \le n)$.
- m Anzahl der Lichtwege; n_{ch} Anzahl der Wellenlängen.
- $E: (i, j) \in E \iff \text{Kante von } N_i \text{ nach } N_j$.
- src(k): ist Startknoten der k-ten Anfrage.

Einleitung zu LPs

00000000000000000 4:6 Beispiele 6/9

- N_E Endknoten; N_R Router ohne Konverter.
- $n = N_E + N_R$; Namen der Knoten: N_i $(1 \le i \le n)$.
- m Anzahl der Lichtwege; n_{ch} Anzahl der Wellenlängen.
- $E: (i, j) \in E \iff \text{Kante von } N_i \text{ nach } N_i$.
- src(k): ist Startknoten der k-ten Anfrage.
- dst(k): ist Endknoten der k-ten Anfrage.

Dualität

Einleitung zu LPs

Routen- und Wellenlängenzuweisung

- N_E Endknoten; N_R Router ohne Konverter.
- $n = N_E + N_R$; Namen der Knoten: N_i $(1 \le i \le n)$.
- m Anzahl der Lichtwege; n_{ch} Anzahl der Wellenlängen.
- $E: (i, j) \in E \iff \text{Kante von } N_i \text{ nach } N_i$.
- src(k): ist Startknoten der k-ten Anfrage.
- dst(k): ist Endknoten der k-ten Anfrage.
- Ω_{max} : Congestion des Netzwerks.

- N_F Endknoten: N_R Router ohne Konverter.
- $n = N_E + N_R$; Namen der Knoten: N_i ($1 \le i \le n$).
- m Anzahl der Lichtwege; n_{ch} Anzahl der Wellenlängen.
- $E: (i, j) \in E \iff \text{Kante von } N_i \text{ nach } N_i$.
- src(k): ist Startknoten der k-ten Anfrage.
- dst(k): ist Endknoten der k-ten Anfrage.
- Ω_{max} : Congestion des Netzwerks.
- $X_{ii}^{wk} \in \{0,1\}$ mit:

$$X_{ij}^{wk} = \left\{ \begin{array}{ll} 1 & \text{der } k\text{-te Weg nutzt } (i,j) \in E \text{ und W.länge } w \\ 0 & \text{sonst} \end{array} \right.$$

- N_F Endknoten: N_R Router ohne Konverter.
- $n = N_E + N_R$; Namen der Knoten: N_i $(1 \le i \le n)$.
- m Anzahl der Lichtwege; n_{ch} Anzahl der Wellenlängen.
- $E: (i, j) \in E \iff \text{Kante von } N_i \text{ nach } N_i$.
- src(k): ist Startknoten der k-ten Anfrage.
- dst(k): ist Endknoten der k-ten Anfrage.
- Ω_{max} : Congestion des Netzwerks.
- $X_{ii}^{wk} \in \{0,1\}$ mit:

$$X_{ij}^{wk} = \left\{ egin{array}{ll} 1 & \det k ext{-te Weg nutzt }(i,j) \in E \ ext{und W.länge } w \ 0 & ext{sonst} \end{array}
ight.$$

• $Y_w^k \in \{0, 1\}$ mit:

$$Y_w^k = \begin{cases} 1 & \text{der } k\text{-te Weg nutzt Wellenlänge } w \\ 0 & \text{sonst} \end{cases}$$

 $\sum_{n_{ch}}^{n_{ch}}\sum_{j}^{m}X_{ij}^{wk}\leqslant\Omega_{max}, orall (i,j)\in E$

Walter Unger 22.11.2018 13:52 SS2015 RWTH

ILP:

• Minimiere Zielfunktion Ω_{max} :

$$src(k) \longleftrightarrow dst(k) : (\mathbf{1} \leqslant k \leqslant m)$$

 $X_{ij}^k : k$ -te Weg nutzt Kante (i,j)
 $Y_{w}^k : k$ -te Weg nutzt Wellenlänge w

Ganzzahligkeit

• Minimiere Zielfunktion Ω_{max} :

 $src(k) \longleftrightarrow dst(k) : (\mathbf{1} \leqslant \overline{k} \leqslant \overline{m})$ $X_{ij}^{k}: k$ -te Weg nutzt Kante (i, j) $Y_{W}^{k}: k$ -te Weg nutzt Wellenlänge w

$$\sum_{i=1}^{n_{ch}}\sum_{j=1}^{m}X_{ij}^{wk}\leqslant\Omega_{max},orall(i,j)\in E$$

• Für alle $k, w : 1 \le k \le m, 1 \le w \le n_{ch}$ und alle $i : 1 \le i \le n$:

$$\sum_{j:(i,j)\in E} X_{ij}^{wk} - \sum_{j:(j,i)\in E} X_{ji}^{wk} = \begin{cases} Y_w^k & \text{falls } src(k) = i \\ -Y_w^k & \text{falls } dst(k) = i \end{cases}$$

$$0 & \text{sonst}$$

Walter Unger 22.11.2018 13:52

ILP:

Einleitung zu LPs

• Minimiere Zielfunktion Ω_{max} :

 $src(k) \longleftrightarrow dst(k) : (\mathbf{1} \leqslant \overline{k} \leqslant \overline{m})$ X_{ij}^k : k-te Weg nutzt Kante (i, j) Y_{w}^{k} : k-te Weg nutzt Wellenlänge w

$$\sum_{i=1}^{n_{ch}}\sum_{j=1}^{m}X_{ij}^{wk}\leqslant\Omega_{max},orall(i,j)\in E$$

• Für alle $k, w : 1 \le k \le m, 1 \le w \le n_{ch}$ und alle $i : 1 \le i \le n$:

$$\sum_{j:(i,j)\in E} X_{ij}^{wk} - \sum_{j:(j,i)\in E} X_{ji}^{wk} = \begin{cases} Y_w^k & \text{falls } src(k) = i \\ -Y_w^k & \text{falls } dst(k) = i \end{cases}$$

$$0 & \text{sonst}$$

• Für alle $k: 1 \leq k \leq m$:

$$\sum_{n_{ch}}^{n_{ch}} Y_w^k = 1$$

Walter Unger 22.11.2018 13:52

Einleitung zu LPs

 $src(k) \longleftrightarrow dst(k) : (\mathbf{1} \leqslant \overline{k} \leqslant \overline{m})$ X_{ij}^{k} : k-te Weg nutzt Kante (i, j)

 Y_w^k : k-te Weg nutzt Wellenlänge w

$$\sum_{i=1}^{n_{ch}}\sum_{j=1}^{m}X_{ij}^{wk}\leqslant\Omega_{max},orall(i,j)\in E$$

• Für alle $k, w : 1 \le k \le m, 1 \le w \le n_{ch}$ und alle $i : 1 \le i \le n$:

$$\sum_{j:(i,j)\in\mathcal{E}} X_{ij}^{wk} - \sum_{j:(j,i)\in\mathcal{E}} X_{ji}^{wk} = \begin{cases} Y_w^k & \text{falls } src(k) = i \\ -Y_w^k & \text{falls } dst(k) = i \end{cases}$$

$$0 \quad \text{sonst}$$

• Für alle $k: 1 \leq k \leq m$:

$$\sum_{w=1}^{n_{ch}} Y_w^k = 1$$

• Für alle $w: 1 \leq w \leq n_{ch}$ und alle $(i, j) \in E$:

$$\sum_{i=1}^{m} X_{ij}^{wk} \leqslant 1$$

Kanonische Form eines LP

Einleitung zu LPs

000000000000000 4:8 Formen eines LP 1/15

• Ein LP ist in kanonischer Form, falls:

Dualität

Ganzzahligkeit

Walter Unger 22.11.2018 13:52 SS2015 RWTH

- Ein LP ist in kanonischer Form, falls:
 - Es gibt d Variablen $x_i \in \mathbb{R} \ (1 \leqslant i \leqslant d)$,

Dualität

Ganzzahligkeit Walter Unger 22.11.2018 13:52 SS2015 RWTH

- Ein LP ist in kanonischer Form, falls:
 - Es gibt d Variablen $x_i \in \mathbb{R} \ (1 \leqslant i \leqslant d)$,
 - Werte $c_j \in \mathbb{R}$ für $1 \leqslant j \leqslant d$,

- Ein LP ist in kanonischer Form, falls:
 - Es gibt d Variablen $x_i \in \mathbb{R} \ (1 \leqslant i \leqslant d)$,
 - Werte $c_i \in \mathbb{R}$ für $1 \leqslant j \leqslant d$,
 - Werte $\vec{b_i} \in \mathbb{R}$ für $1 \leqslant i \leqslant m$ und

Kanonische Form eines LP

Einleitung zu LPs

000000000000000 4:8 Formen eines LP 5/15

- Ein LP ist in kanonischer Form, falls:
 - Es gibt d Variablen $x_i \in \mathbb{R} \ (1 \leqslant i \leqslant d)$,
 - Werte $c_i \in \mathbb{R}$ für $1 \leq j \leq d$,
 - Werte $b_i \in \mathbb{R}$ für $1 \leq i \leq m$ und
 - Werte $a_{i,j} \in \mathbb{R}$ für $1 \leq j \leq d$ und $1 \leq i \leq m$.

- Ein LP ist in kanonischer Form, falls:
 - Es gibt d Variablen $x_i \in \mathbb{R} \ (1 \leq i \leq d)$,
 - Werte $c_i \in \mathbb{R}$ für $1 \leq j \leq d$,
 - Werte $\check{b_i} \in \mathbb{R}$ für $1 \leqslant i \leqslant m$ und
 - Werte $a_{i,j} \in \mathbb{R}$ für $1 \leq j \leq d$ und $1 \leq i \leq m$.
 - Gesucht ist eine Belegung der Variablen $x_i \in \mathbb{R}$ mit:

0000000000000000

- Ein LP ist in kanonischer Form, falls:
 - Es gibt d Variablen $x_i \in \mathbb{R} \ (1 \leq i \leq d)$,
 - Werte $c_j \in \mathbb{R}$ für $1 \leqslant j \leqslant d$,
 - Werte $b_i \in \mathbb{R}$ für $1 \leq i \leq m$ und
 - Werte $a_{i,j} \in \mathbb{R}$ für $1 \leq j \leq d$ und $1 \leq i \leq m$.
 - Gesucht ist eine Belegung der Variablen $x_i \in \mathbb{R}$ mit:
 - Maximiere Zielfunktion $\sum_{i=1}^{d} c_i \cdot x_i$

Dualität

Einleitung zu LPs

00000000000000000

- Ein LP ist in kanonischer Form, falls:
 - Es gibt d Variablen $x_i \in \mathbb{R} \ (1 \leq i \leq d)$,
 - Werte $c_i \in \mathbb{R}$ für $1 \leq j \leq d$,
 - Werte $b_i \in \mathbb{R}$ für $1 \leq i \leq m$ und
 - Werte $a_{i,j} \in \mathbb{R}$ für $1 \leq j \leq d$ und $1 \leq i \leq m$.
 - Gesucht ist eine Belegung der Variablen $x_i \in \mathbb{R}$ mit:
 - Maximiere Zielfunktion $\sum_{i=1}^{d} c_i \cdot x_i$
 - unter den Nebenbedingungen:

Kanonische Form eines LP

Einleitung zu LPs

00000000000000000 4:8 Formen eines LP 9/15

- Ein LP ist in kanonischer Form, falls:
 - Es gibt d Variablen $x_i \in \mathbb{R} \ (1 \leqslant i \leqslant d)$,
 - Werte $c_i \in \mathbb{R}$ für $1 \leq j \leq d$,
 - Werte $b_i \in \mathbb{R}$ für $1 \leq i \leq m$ und
 - Werte $a_{i,j} \in \mathbb{R}$ für $1 \leq j \leq d$ und $1 \leq i \leq m$.
 - Gesucht ist eine Belegung der Variablen $x_i \in \mathbb{R}$ mit:
 - Maximiere Zielfunktion $\sum_{i=1}^{d} c_i \cdot x_i$
 - unter den Nebenbedingungen:
 - $\sum_{i=1}^d a_{ij} \cdot x_j \leqslant b_j$ für $i \in \{1, 2, \dots, m\}$ und

Kanonische Form eines LP

Einleitung zu LPs

00000000000000000 4:8 Formen eines LP 10/15

- Ein LP ist in kanonischer Form, falls:
 - Es gibt d Variablen $x_i \in \mathbb{R} \ (1 \leq i \leq d)$,
 - Werte $c_i \in \mathbb{R}$ für $1 \leq j \leq d$,
 - Werte $b_i \in \mathbb{R}$ für $1 \leq i \leq m$ und
 - Werte $a_{i,j} \in \mathbb{R}$ für $1 \leq j \leq d$ und $1 \leq i \leq m$.
 - Gesucht ist eine Belegung der Variablen $x_i \in \mathbb{R}$ mit:
 - Maximiere Zielfunktion $\sum_{i=1}^{d} c_i \cdot x_i$
 - unter den Nebenbedingungen:
 - $\sum_{i=1}^d a_{ij} \cdot x_j \leqslant b_j$ für $i \in \{1, 2, \dots, m\}$ und
 - $x_i \ge 0$ für $i \in \{1, 2, ..., d\}$.

Walter Unger 22.11.2018 13:52

Einleitung zu LPs

00000000000000000

- Ein LP ist in kanonischer Form, falls:
 - Es gibt d Variablen $x_i \in \mathbb{R} \ (1 \leq i \leq d)$,
 - Werte $c_i \in \mathbb{R}$ für $1 \leq j \leq d$,
 - Werte $b_i \in \mathbb{R}$ für $1 \leq i \leq m$ und
 - Werte $a_{i,j} \in \mathbb{R}$ für $1 \leq j \leq d$ und $1 \leq i \leq m$.
 - Gesucht ist eine Belegung der Variablen $x_i \in \mathbb{R}$ mit:
 - Maximiere Zielfunktion $\sum_{i=1}^{d} c_i \cdot x_i$
 - unter den Nebenbedingungen:
 - $\sum_{i=1}^d a_{ij} \cdot x_j \leqslant b_j$ für $i \in \{1, 2, \dots, m\}$ und
 - $x_i \ge 0$ für $i \in \{1, 2, ..., d\}$.
- Setze:

Kanonische Form eines LP

Einleitung zu LPs

00000000000000000 4:8 Formen eines LP 12/15

- Ein LP ist in kanonischer Form, falls:
 - Es gibt d Variablen $x_i \in \mathbb{R} \ (1 \leq i \leq d)$,
 - Werte $c_i \in \mathbb{R}$ für $1 \leq i \leq d$,
 - Werte $b_i \in \mathbb{R}$ für $1 \leq i \leq m$ und
 - Werte $a_{i,j} \in \mathbb{R}$ für $1 \leq j \leq d$ und $1 \leq i \leq m$.
 - Gesucht ist eine Belegung der Variablen $x_i \in \mathbb{R}$ mit:
 - Maximiere Zielfunktion $\sum_{i=1}^{d} c_i \cdot x_i$
 - unter den Nebenbedingungen:
 - $\sum_{j=1}^d a_{ij} \cdot x_j \leqslant b_j$ für $i \in \{1, 2, \dots, m\}$ und
 - $x_i \ge 0$ für $i \in \{1, 2, ..., d\}$.
- Setze:
 - $x = (x_i), c = (c_i), b = (b_i) \text{ und } A = (a_{ii}).$

Walter Unger 22.11.2018 13:52

Einleitung zu LPs

0000000000000000 4:8 Formen eines LP 13/15

- Ein LP ist in kanonischer Form, falls:
 - Es gibt d Variablen $x_i \in \mathbb{R} \ (1 \leq i \leq d)$,
 - Werte $c_i \in \mathbb{R}$ für $1 \leq i \leq d$,
 - Werte $b_i \in \mathbb{R}$ für $1 \leq i \leq m$ und
 - Werte $a_{i,j} \in \mathbb{R}$ für $1 \leq j \leq d$ und $1 \leq i \leq m$.
 - Gesucht ist eine Belegung der Variablen $x_i \in \mathbb{R}$ mit:
 - Maximiere Zielfunktion $\sum_{i=1}^{d} c_i \cdot x_i$
 - unter den Nebenbedingungen:
 - $\sum_{i=1}^d a_{ij} \cdot x_j \leqslant b_j$ für $i \in \{1, 2, \dots, m\}$ und
 - $x_i \ge 0$ für $i \in \{1, 2, ..., d\}$.
- Setze:
 - $x = (x_i), c = (c_i), b = (b_i) \text{ und } A = (a_{ii}).$
- Dann ist kurzgefasst die kanonische Form:

Walter Unger 22.11.2018 13:52

Einleitung zu LPs

00000000000000000

- Ein LP ist in kanonischer Form, falls:
 - Es gibt d Variablen $x_i \in \mathbb{R} \ (1 \leq i \leq d)$,
 - Werte $c_i \in \mathbb{R}$ für $1 \leq i \leq d$,
 - Werte $\vec{b_i} \in \mathbb{R}$ für $1 \leqslant i \leqslant m$ und
 - Werte $a_{i,j} \in \mathbb{R}$ für $1 \leq j \leq d$ und $1 \leq i \leq m$.
 - Gesucht ist eine Belegung der Variablen $x_i \in \mathbb{R}$ mit:
 - Maximiere Zielfunktion $\sum_{i=1}^{d} c_i \cdot x_i$
 - unter den Nebenbedingungen:
 - $\sum_{j=1}^d a_{ij} \cdot x_j \leqslant b_j$ für $i \in \{1, 2, \dots, m\}$ und
 - $x_i \ge 0$ für $i \in \{1, 2, ..., d\}$.
- Setze:
 - $x = (x_i), c = (c_i), b = (b_i) \text{ und } A = (a_{ii}).$
- Dann ist kurzgefasst die kanonische Form:
 - Maximiere $c^T \cdot x$ unter den Nebenbedingungen:

Kanonische Form eines LP

Einleitung zu LPs

00000000000000000 4:8 Formen eines LP 15/15

- Ein LP ist in kanonischer Form, falls:
 - Es gibt d Variablen $x_i \in \mathbb{R} \ (1 \leq i \leq d)$,
 - Werte $c_i \in \mathbb{R}$ für $1 \leq i \leq d$,
 - Werte $\vec{b_i} \in \mathbb{R}$ für $1 \leqslant i \leqslant m$ und
 - Werte $a_{i,j} \in \mathbb{R}$ für $1 \leq j \leq d$ und $1 \leq i \leq m$.
 - Gesucht ist eine Belegung der Variablen $x_i \in \mathbb{R}$ mit:
 - Maximiere Zielfunktion $\sum_{i=1}^{d} c_i \cdot x_i$
 - unter den Nebenbedingungen:
 - $\sum_{i=1}^d a_{ij} \cdot x_j \leqslant b_j$ für $i \in \{1, 2, \dots, m\}$ und
 - $x_i \ge 0$ für $i \in \{1, 2, ..., d\}$.
- Setze:

•
$$x = (x_j), c = (c_j), b = (b_i) \text{ und } A = (a_{ij}).$$

- Dann ist kurzgefasst die kanonische Form:
 - Maximiere $c^T \cdot x$ unter den Nebenbedingungen:
 - $A \cdot x \leq b$ und $x \geq 0$.

Umformungen zur kanonischen Form

• Minimierungsproblem in ein Maximierungsproblem:

Walter Unger 22.11.2018 13:52 SS2015 RWTH

Ganzzahligkeit

Umformungen zur kanonischen Form

- Minimierungsproblem in ein Maximierungsproblem:
 - $c^T \cdot x$ wird zu $-c^T \cdot x$.

Dualität

Ganzzahligkeit

Walter Unger 22.11.2018 13:52 SS2015 RWTH

Umformungen zur kanonischen Form

Einleitung zu LPs

- Minimierungsproblem in ein Maximierungsproblem:
 - $c^T \cdot x$ wird zu $-c^T \cdot x$.
- Eine Gleichung $a^T \cdot x = b$ wird ersetzt durch

Umformungen zur kanonischen Form

Einleitung zu LPs

0000000000000000

- Minimierungsproblem in ein Maximierungsproblem:
 - $c^T \cdot x$ wird zu $-c^T \cdot x$.
- Eine Gleichung $a^T \cdot x = b$ wird ersetzt durch
 - $a^T \cdot x \leq b$ und

0000000000000000 4:9 Formen eines LP 5/11

- Minimierungsproblem in ein Maximierungsproblem:
 - $c^T \cdot x$ wird zu $-c^T \cdot x$.
- Eine Gleichung $a^T \cdot x = b$ wird ersetzt durch
 - $a^T \cdot x \leq b$ und
 - $a^T \cdot x \geqslant b$.

0000000000000000 4:9 Formen eines LP 6/11

- Minimierungsproblem in ein Maximierungsproblem:
- $c^T \cdot x$ wird zu $-c^T \cdot x$.
- Eine Gleichung $a^T \cdot x = b$ wird ersetzt durch
 - $a^T \cdot x \leq b$ und
 - $a^T \cdot x \ge b$.
- Eine Gleichung $a^T \cdot x \ge b$ wird ersetzt durch

Umformungen zur kanonischen Form

Einleitung zu LPs

00000000000000000 4:9 Formen eines LP 7/11

- Minimierungsproblem in ein Maximierungsproblem:
 - $c^T \cdot x$ wird zu $-c^T \cdot x$.
- Eine Gleichung $a^T \cdot x = b$ wird ersetzt durch
 - $a^T \cdot x \leq b$ und
 - $a^T \cdot x \ge b$.
- Eine Gleichung $a^T \cdot x \geqslant b$ wird ersetzt durch
 - \bullet $-a^T \cdot x \leq -b$.

Umformungen zur kanonischen Form

- Minimierungsproblem in ein Maximierungsproblem:
 - $c^T \cdot x$ wird zu $-c^T \cdot x$.
- Eine Gleichung $a^T \cdot x = b$ wird ersetzt durch
 - $a^T \cdot x \leq b$ und • $a^T \cdot x \ge b$.
- Eine Gleichung $a^T \cdot x \geqslant b$ wird ersetzt durch
 - \bullet $-a^T \cdot x \leq -b$.
- Eine möglicherweise negative Variable $x \in \mathbb{R}$ wird ersetzt durch:

00000000000000000 Formen eines LP 9/11

- Minimierungsproblem in ein Maximierungsproblem:
 - $c^T \cdot x$ wird $zu c^T \cdot x$
- Eine Gleichung $a^T \cdot x = b$ wird ersetzt durch
 - $a^T \cdot x \leq b$ und
 - $a^T \cdot x \ge b$.
- Eine Gleichung $a^T \cdot x \ge b$ wird ersetzt durch
 - \bullet $-a^T \cdot x \leq -b$.
- Eine möglicherweise negative Variable $x \in \mathbb{R}$ wird ersetzt durch:
 - x' x'' und den Nebenbedingungen:

Umformungen zur kanonischen Form

- Minimierungsproblem in ein Maximierungsproblem:
 - \circ $c^T \cdot x$ wird $z_{11} c^T \cdot x$
- Eine Gleichung $a^T \cdot x = b$ wird ersetzt durch
 - $a^T \cdot x \leq b$ und
 - $a^T \cdot x \ge b$.
- Eine Gleichung $a^T \cdot x \geqslant b$ wird ersetzt durch
 - \bullet $-a^T \cdot x \leq -b$.
- Eine möglicherweise negative Variable $x \in \mathbb{R}$ wird ersetzt durch:
 - x' x'' und den Nebenbedingungen:
 - $x' \ge 0$ und

Umformungen zur kanonischen Form

- Minimierungsproblem in ein Maximierungsproblem:
 - \circ $c^T \cdot x$ wird $z_{11} c^T \cdot x$
- Eine Gleichung $a^T \cdot x = b$ wird ersetzt durch
 - $a^T \cdot x \leq b$ und
 - $a^T \cdot x \ge b$.
- Eine Gleichung $a^T \cdot x \geqslant b$ wird ersetzt durch
 - \bullet $-a^T \cdot x \leq -b$.
- Eine möglicherweise negative Variable $x \in \mathbb{R}$ wird ersetzt durch:
 - x' x'' und den Nebenbedingungen:
 - $x' \ge 0$ und
 - $x'' \ge 0$.

Geometrische Interpretation

Walter Unger 22.11.2018 13:52 SS2015 RWTH

Geometrische Interpretation

$$0 \leqslant x \leqslant t$$

$$0 \leqslant y \leqslant t$$

$$0 \leqslant z \leqslant t$$

Geometrische Interpretation

$$0 \leqslant x \leqslant t$$

$$0 \leqslant y \leqslant t$$

$$0 \leqslant z \leqslant t$$

$$0 \leqslant x \leqslant t$$

$$0 \leqslant y \leqslant t$$

$$0 \leqslant z \leqslant t$$

• Eine Variablenbelegung $x = (x_1, x_2, \dots, x_d)$ entspricht einem Punkt im d-dimensionalen Raum.

Walter Unger 22.11.2018 13:52

Geometrische Interpretation

4:10 Geometrische Interpretation

$$0 \leqslant x \leqslant t$$

$$0 \leqslant y \leqslant t$$

$$0 \leqslant z \leqslant t$$

- Eine Variablenbelegung $x = (x_1, x_2, \dots, x_d)$ entspricht einem Punkt im d-dimensionalen Raum.
- Eine Nebenbedingung $a_i \cdot x \leq b_i$ definiert einen Halbraum.

Geometrische Interpretation

4:10 Geometrische Interpretation

- $0 \leqslant x \leqslant t$
- $0 \leqslant y \leqslant t$
- $0 \leqslant z \leqslant t$

- Eine Variablenbelegung $x = (x_1, x_2, \dots, x_d)$ entspricht einem Punkt im d-dimensionalen Raum.
- Eine Nebenbedingung $a_i \cdot x \leq b_i$ definiert einen Halbraum.
- Die Grenze des Halbraums ist die Hyperebene $a_i \cdot x = b_i$.

Algorithmus von Seidel

Dualität

Walter Unger 22.11.2018 13:52

Ganzzahligkeit

4:10 Geometrische Interpretation 7/10 Geometrische Interpretation

$$0 \leqslant x \leqslant t$$

$$0 \le v \le t$$

$$0 \leqslant z \leqslant t$$

- Eine Variablenbelegung $x = (x_1, x_2, \dots, x_d)$ entspricht einem Punkt im d-dimensionalen Raum.
- Eine Nebenbedingung $a_i \cdot x \leq b_i$ definiert einen Halbraum.
- Die Grenze des Halbraums ist die Hyperebene $a_i \cdot x = b_i$.
- Der Schnitt aller Halbräume ist der Raum der zulässigen Lösungen.

4:10 Geometrische Interpretation

Geometrische Interpretation

$$0 \leqslant x \leqslant t$$

$$0 \le v \le t$$

$$0 \leqslant z \leqslant t$$

- Eine Variablenbelegung $x = (x_1, x_2, \dots, x_d)$ entspricht einem Punkt im d-dimensionalen Raum.
- Eine Nebenbedingung $a_i \cdot x \leq b_i$ definiert einen Halbraum.
- Die Grenze des Halbraums ist die Hyperebene $a_i \cdot x = b_i$.
- Der Schnitt aller Halbräume ist der Raum der zulässigen Lösungen.
- Ein LP wird als zulässig bezeichnet, wenn des zulässige Lösungen gibt.

4:10 Geometrische Interpretation

Geometrische Interpretation

$$0 \leqslant x \leqslant t$$

$$0 \le v \le t$$

$$0 \leqslant z \leqslant t$$

- Eine Variablenbelegung $x = (x_1, x_2, \dots, x_d)$ entspricht einem Punkt im d-dimensionalen Raum.
- Eine Nebenbedingung $a_i \cdot x \leq b_i$ definiert einen Halbraum.
- Die Grenze des Halbraums ist die Hyperebene $a_i \cdot x = b_i$.
- Der Schnitt aller Halbräume ist der Raum der zulässigen Lösungen.
- Ein LP wird als zulässig bezeichnet, wenn des zulässige Lösungen gibt.
- Schnittmengen von Halbräumen bilden ein Polyhedron.

4:10 Geometrische Interpretation

Ganzzahligkeit 000000000

Geometrische Interpretation

$$0 \leqslant x \leqslant t$$
$$0 \leqslant y \leqslant t$$
$$0 \leqslant z \leqslant t$$

• Eine Variablenbelegung $x = (x_1, x_2, ..., x_d)$ entspricht einem Punkt im d-dimensionalen Raum

Walter Unger 22.11.2018 13:52

- Eine Nebenbedingung $a_i \cdot x \leq b_i$ definiert einen Halbraum.
- Die Grenze des Halbraums ist die Hyperebene $a_i \cdot x = b_i$.
- Der Schnitt aller Halbräume ist der Raum der zulässigen Lösungen.
- Ein LP wird als zulässig bezeichnet, wenn des zulässige Lösungen gibt.
- Schnittmengen von Halbräumen bilden ein Polyhedron.
- Damit bilden die zulässigen Lösungen ein Polyhedron.

Konvexität

P Polyhedron

Lemma

Ein Polyhedron P ist konvex.

Konvexität

P Polyhedron

Lemma

Ein Polyhedron P ist konvex.

Konvexität

P Polyhedron

Lemma

Ein Polyhedron P ist konvex.

Beweis:

• Konvex: $\forall a, b \in P : I(a, b) \in P$ mit:

Konvexität

P Polyhedron

Lemma

Ein Polyhedron P ist konvex.

- Konvex: $\forall a, b \in P : I(a, b) \in P$ mit:
- $I(a, b) = \{\lambda a + (1 \lambda)b \mid 0 \le \lambda \le 1\}.$

Konvexität

Lemma

Ein Polyhedron P ist konvex.

- Konvex: $\forall a, b \in P : I(a, b) \in P$ mit:
- $I(a, b) = \{\lambda a + (1 \lambda)b \mid 0 \le \lambda \le 1\}.$
- Ein Halbraum ist konvex.

Walter Unger 22.11.2018 13:52

P Polyhedron

Lemma

Ein Polyhedron P ist konvex.

- Konvex: $\forall a, b \in P : I(a, b) \in P$ mit:
- $I(a, b) = \{\lambda a + (1 \lambda)b \mid 0 \le \lambda \le 1\}.$
- Ein Halbraum ist konvex.
- Ein Polyhedron ist der Schnitt von Halbräumen.

Dualität

Walter Unger 22.11.2018 13:52

Ganzzahligkeit

Konvexität

P Polyhedron

Lemma

Ein Polyhedron P ist konvex.

- Konvex: $\forall a, b \in P : I(a, b) \in P$ mit:
- $I(a, b) = \{\lambda a + (1 \lambda)b \mid 0 \le \lambda \le 1\}.$
- Ein Halbraum ist konvex.
- Ein Polyhedron ist der Schnitt von Halbräumen.
- Zeige: Der Schnitt von konvexen Mengen ist konvex.

8/11

Walter Unger 22.11.2018 13:52

Einleitung zu LPs

Lemma

Ein Polyhedron P ist konvex.

- Konvex: $\forall a, b \in P : I(a, b) \in P$ mit:
- $I(a, b) = \{\lambda a + (1 \lambda)b \mid 0 \le \lambda \le 1\}.$
- Ein Halbraum ist konvex.
- Ein Polyhedron ist der Schnitt von Halbräumen.
- Zeige: Der Schnitt von konvexen Mengen ist konvex.
- D.h. aus A, B konvex folgt $A \cap B$ konvex.

Einleitung zu LPs

P Polyhedron

Lemma

Ein Polyhedron P ist konvex.

- Konvex: $\forall a, b \in P : I(a, b) \in P$ mit:
- $I(a, b) = \{\lambda a + (1 \lambda)b \mid 0 \le \lambda \le 1\}.$
- Ein Halbraum ist konvex.
- Ein Polyhedron ist der Schnitt von Halbräumen.
- Zeige: Der Schnitt von konvexen Mengen ist konvex.
- D.h. aus A, B konvex folgt $A \cap B$ konvex.
- Damit gilt: $\forall a, b \in A : I(a, b) \in A$ und

Konvexität

Einleitung zu LPs

0000000000000000

P Polyhedron

Lemma

Ein Polyhedron P ist konvex.

- Konvex: $\forall a, b \in P : I(a, b) \in P$ mit:
- $I(a, b) = \{\lambda a + (1 \lambda)b \mid 0 \le \lambda \le 1\}.$
- Ein Halbraum ist konvex.
- Ein Polyhedron ist der Schnitt von Halbräumen.
- Zeige: Der Schnitt von konvexen Mengen ist konvex.
- D.h. aus A, B konvex folgt $A \cap B$ konvex.
- Damit gilt: $\forall a, b \in A : I(a, b) \in A$ und
- weiter $\forall a, b \in B : I(a, b) \in B$.

Einleitung zu LPs

P Polyhedron

Lemma

Ein Polvhedron P ist konvex.

- Konvex: $\forall a, b \in P : I(a, b) \in P$ mit:
- $I(a, b) = \{\lambda a + (1 \lambda)b \mid 0 \le \lambda \le 1\}.$
- Ein Halbraum ist konvex.
- Ein Polyhedron ist der Schnitt von Halbräumen.
- Zeige: Der Schnitt von konvexen Mengen ist konvex.
- D.h. aus A, B konvex folgt $A \cap B$ konvex.
- Damit gilt: $\forall a, b \in A : I(a, b) \in A$ und
- weiter $\forall a, b \in B : I(a, b) \in B$.
- Es folgt: $\forall a, b \in A \cap B : I(a, b) \in A \cap B$.

P Polyhedron

Lemma

Sei $z, x \in P$ und $c^T z > c^T x$.

Dann existiert für $\varepsilon > 0$ ein $y \in P$ mit: $||x - y|| \le \varepsilon$ und $c^T y > c^T x$.

P Polyhedron

Lemma

Sei $z, x \in P$ und $c^T z > c^T x$.

Dann existiert für $\varepsilon > 0$ ein $y \in P$ mit: $||x - y|| \le \varepsilon$ und $c^T y > c^T x$.

P Polyhedron

Lemma

Sei $z, x \in P$ und $c^T z > c^T x$.

Dann existiert für $\varepsilon > 0$ ein $y \in P$ mit: $||x - y|| \le \varepsilon$ und $c^T y > c^T x$.

Beweis:

• P ist konvex, gilt $I(x, z) \in P$.

P Polyhedron

Lemma

Sei $z, x \in P$ und $c^T z > c^T x$.

Dann existiert für $\varepsilon > 0$ ein $y \in P$ mit: $||x - y|| \le \varepsilon$ und $c^T y > c^T x$.

- P ist konvex, gilt $I(x, z) \in P$.
- Wähle $y \in I(x, z)$ mit $x \neq y$ und $||x y|| \leq \varepsilon$.

Lokales und globales Optimum

Lemma

Sei $z, x \in P$ und $c^T z > c^T x$.

Dann existiert für $\varepsilon > 0$ ein $y \in P$ mit: $||x - y|| \le \varepsilon$ und $c^T y > c^T x$.

- P ist konvex, gilt $I(x, z) \in P$.
- Wähle $y \in I(x, z)$ mit $x \neq y$ und $||x y|| \leq \varepsilon$.
- Nach Definition von I gibt $\lambda > 0$ mit: $y = \lambda x + (1 \lambda)z$.

Lemma

Sei $z, x \in P$ und $c^T z > c^T x$.

Dann existiert für $\varepsilon > 0$ ein $y \in P$ mit: $||x - y|| \le \varepsilon$ und $c^T y > c^T x$.

- P ist konvex, gilt $I(x, z) \in P$.
- Wähle $y \in I(x, z)$ mit $x \neq y$ und $||x y|| \leq \varepsilon$.
- Nach Definition von I gibt $\lambda > 0$ mit: $y = \lambda x + (1 \lambda)z$.
- Es folgt:

$$c^T y = c^T (\lambda x + (1 - \lambda)z)$$

Lokales und globales Optimum

Lemma

Sei
$$z, x \in P$$
 und $c^T z > c^T x$.

Dann existiert für
$$\varepsilon > 0$$
 ein $y \in P$ mit: $||x - y|| \le \varepsilon$ und $c^T y > c^T x$.

- P ist konvex, gilt $I(x, z) \in P$.
- Wähle $y \in I(x, z)$ mit $x \neq y$ und $||x y|| \leq \varepsilon$.
- Nach Definition von I gibt $\lambda > 0$ mit: $y = \lambda x + (1 \lambda)z$.
- Es folgt:

$$c^T y = c^T (\lambda x + (1 - \lambda)z)$$

Walter Unger 22.11.2018 13:52

Lokales und globales Optimum

Lemma

Einleitung zu LPs

Sei $z, x \in P$ und $c^T z > c^T x$.

Dann existiert für $\varepsilon > 0$ ein $y \in P$ mit: $||x - y|| \le \varepsilon$ und $c^T y > c^T x$.

- P ist konvex, gilt $I(x, z) \in P$.
- Wähle $y \in I(x, z)$ mit $x \neq y$ und $||x y|| \leq \varepsilon$.
- Nach Definition von I gibt $\lambda > 0$ mit: $y = \lambda x + (1 \lambda)z$.
- Es folgt:

$$c^T y = c^T (\lambda x + (1 - \lambda)z)$$

= $\lambda c^T x + (1 - \lambda)c^T z$

Lokales und globales Optimum

Lemma

Einleitung zu LPs

Sei $z, x \in P$ und $c^T z > c^T x$.

Dann existiert für $\varepsilon > 0$ ein $y \in P$ mit: $||x - y|| \le \varepsilon$ und $c^T y > c^T x$.

- P ist konvex, gilt $I(x, z) \in P$.
- Wähle $y \in I(x, z)$ mit $x \neq y$ und $||x y|| \leq \varepsilon$.
- Nach Definition von / gibt $\lambda > 0$ mit: $y = \lambda x + (1 \lambda)z$.
- Es folgt:

$$c^{T}y = c^{T}(\lambda x + (1 - \lambda)z)$$
$$= \lambda c^{T}x + (1 - \lambda)c^{T}z$$
$$> \lambda c^{T}x + (1 - \lambda)c^{T}x$$

10/11

Lokales und globales Optimum

P Polyhedron

Lemma

Einleitung zu LPs

4:12 Geometrische Interpretation

Sei
$$z, x \in P$$
 und $c^T z > c^T x$.
Dann existiert für $\varepsilon > 0$ ein $y \in P$ mit: $||x - y|| \le \varepsilon$ und $c^T y > c^T x$.

- P ist konvex, gilt $I(x, z) \in P$.
- Wähle $y \in I(x, z)$ mit $x \neq y$ und $||x y|| \leq \varepsilon$.
- Nach Definition von / gibt $\lambda > 0$ mit: $y = \lambda x + (1 \lambda)z$.
- Es folgt:

$$c^{T}y = c^{T}(\lambda x + (1 - \lambda)z)$$

$$= \lambda c^{T}x + (1 - \lambda)c^{T}z$$

$$> \lambda c^{T}x + (1 - \lambda)c^{T}x$$

$$= c^{T}x$$

Lokales und globales Optimum

Lemma

Einleitung zu LPs

Sei $z, x \in P$ und $c^T z > c^T x$.

Dann existiert für $\varepsilon > 0$ ein $y \in P$ mit: $||x - y|| \le \varepsilon$ und $c^T y > c^T x$.

Beweis:

- P ist konvex, gilt $I(x, z) \in P$.
- Wähle $y \in I(x, z)$ mit $x \neq y$ und $||x y|| \leq \varepsilon$.
- Nach Definition von I gibt $\lambda > 0$ mit: $y = \lambda x + (1 \lambda)z$.
- Es folgt:

$$c^{T}y = c^{T}(\lambda x + (1 - \lambda)z)$$

$$= \lambda c^{T}x + (1 - \lambda)c^{T}z$$

$$> \lambda c^{T}x + (1 - \lambda)c^{T}x$$

$$= c^{T}x$$

Lemma

Ein lokales Optimum ist auch ein globales Optimum.

Unterräume

P Polyhedron

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \ldots + \alpha_d x_d = \beta.$$

Unterräume

Einleitung zu LPs

• Eine Hyperebene wird beschrieben durch:

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \ldots + \alpha_d x_d = \beta.$$

• Es sind d-1 Variablen frei wählbar.

Unterräume

P Polyhedron

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \ldots + \alpha_d x_d = \beta.$$

- Es sind d-1 Variablen frei wählbar.
- Der Wert der d-ten Variable ist dann festgelegt.

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \ldots + \alpha_d x_d = \beta.$$

- Es sind d − 1 Variablen frei wählbar.
- Der Wert der d-ten Variable ist dann festgelegt.
- Der durch die Hyperebene beschriebene affine Unterraum ist ein Unterraum der Dimension d-1.

Unterräume

Einleitung zu LPs

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \ldots + \alpha_d x_d = \beta.$$

- Es sind d − 1 Variablen frei wählbar.
- Der Wert der d-ten Variable ist dann festgelegt.
- Der durch die Hyperebene beschriebene affine Unterraum ist ein Unterraum der Dimension d-1.
- Ein Unterraum, der als Schnittmenge von k linear unabhängigen Hyperräumen beschrieben wird, hat Dimension d - k.

Walter Unger 22.11.2018 13:52

P Polyhedron

Unterräume

Einleitung zu LPs

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \ldots + \alpha_d x_d = \beta.$$

- Es sind d − 1 Variablen frei wählbar.
- Der Wert der d-ten Variable ist dann festgelegt.
- Der durch die Hyperebene beschriebene affine Unterraum ist ein Unterraum der Dimension d-1.
- Ein Unterraum, der als Schnittmenge von k linear unabhängigen Hyperräumen beschrieben wird, hat Dimension d - k.
- Falls mehr als d Nebenbedingungen (Hyperebenen) sich in einem Punkt treffen, so ist das LP degeneriert.

Walter Unger 22.11.2018 13:52

Unterräume

00000000000000000

4:13 Geometrische Interpretation 7/7

Einleitung zu LPs

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \ldots + \alpha_d x_d = \beta.$$

- Es sind d − 1 Variablen frei wählbar.
- Der Wert der d-ten Variable ist dann festgelegt.
- Der durch die Hyperebene beschriebene affine Unterraum ist ein Unterraum der Dimension d-1.
- Ein Unterraum, der als Schnittmenge von k linear unabhängigen Hyperräumen beschrieben wird, hat Dimension d - k.
- Falls mehr als d Nebenbedingungen (Hyperebenen) sich in einem Punkt treffen, so ist das LP degeneriert.
- Ein degeneriertes LP kann in ein nicht-degeneriertes LP umgeformt werden, ohne die Form (Zusammensetzung) der Lösung signifikant zu verändern.

Oberfläche eines Polyhedrons

Oberfläche eines Polyhedrons

Oberfläche eines Polyhedrons

Oberfläche eines Polyhedrons

• Die Oberfläche eines Polyhedrons besteht aus Facetten.

Walter Unger 22.11.2018 13:52

Oberfläche eines Polyhedrons

• Die Oberfläche eines Polyhedrons besteht aus

- Facetten.
 - Sei P ein Polyhedron und H eine Hyperebene und sei P komplett auf einer Seite der Hyperebene H.

P Polyhedron

Walter Unger 22.11.2018 13:52

Oberfläche eines Polyhedrons

- Die Oberfläche eines Polyhedrons besteht aus Facetten.
 - Sei P ein Polyhedron und H eine Hyperebene und sei P komplett auf einer Seite der Hyperebene H.
 - Falls $f = P \cap H$ nicht leer ist. so

P Polyhedron

Oberfläche eines Polyhedrons

P Polyhedron

- Die Oberfläche eines Polyhedrons besteht aus Facetten.
 - Sei P ein Polyhedron und H eine Hyperebene und sei P komplett auf einer Seite der Hyperebene H.
 - Falls $f = P \cap H$ nicht leer ist, so
 - ist f eine Facette von P.

Oberfläche eines Polyhedrons

P Polyhedron

Ganzzahligkeit

- Die Oberfläche eines Polyhedrons besteht aus Facetten.
 - Sei P ein Polyhedron und H eine Hyperebene und sei P komplett auf einer Seite der Hyperebene H.
 - Falls $f = P \cap H$ nicht leer ist, so
 - ist f eine Facette von P.
- Eine Facette der Dimension d-1 heißt Face.

Oberfläche eines Polyhedrons

- Die Oberfläche eines Polyhedrons besteht aus Facetten.
 - Sei P ein Polyhedron und H eine Hyperebene und sei P komplett auf einer Seite der Hyperebene H.
 - Falls $f = P \cap H$ nicht leer ist. so
 - ist f eine Facette von P
- Eine Facette der Dimension d-1 heißt Face.
- Eine Kante entspricht dem Schnitt von d-1Hyperebenen (Facette der Dimension 1).

Dualität

Ganzzahligkeit SS2015 RWTH

P Polyhedron

Walter Unger 22.11.2018 13:52

Oberfläche eines Polyhedrons

- Facetten.
 - Sei P ein Polyhedron und H eine Hyperebene und sei P komplett auf einer Seite der Hyperebene H.
 - Falls $f = P \cap H$ nicht leer ist. so
 - ist f eine Facette von P
- Eine Facette der Dimension d-1 heißt Face.
- Eine Kante entspricht dem Schnitt von d-1Hyperebenen (Facette der Dimension 1).
- Ein Knoten entspricht dem Schnitt von d Hyperebenen (Facette der Dimension 0).

P Polyhedron

Walter Unger 22.11.2018 13:52 SS2015 RWTH

Oberfläche eines Polyhedrons

- Facetten.
 - Sei P ein Polyhedron und H eine Hyperebene und sei P komplett auf einer Seite der Hyperebene H.
 - Falls $f = P \cap H$ nicht leer ist. so
- ist f eine Facette von P
- Eine Facette der Dimension d-1 heißt Face.
- Eine Kante entspricht dem Schnitt von d-1Hyperebenen (Facette der Dimension 1).
- Ein Knoten entspricht dem Schnitt von d Hyperebenen (Facette der Dimension 0).
- Zwei Knoten sind benachbart, wenn sie durch eine Kante verbunden sind.

P Polyhedron

Walter Unger 22.11.2018 13:52

Oberfläche eines Polyhedrons

- Facetten.
 - Sei P ein Polyhedron und H eine Hyperebene und sei P komplett auf einer Seite der Hyperebene H.
 - Falls $f = P \cap H$ nicht leer ist. so
 - ist f eine Facette von P
- Eine Facette der Dimension d − 1 heißt Face.
- Eine Kante entspricht dem Schnitt von d-1Hyperebenen (Facette der Dimension 1).
- Ein Knoten entspricht dem Schnitt von d Hyperebenen (Facette der Dimension 0).
- Zwei Knoten sind benachbart, wenn sie durch eine Kante verbunden sind.
- Falls P unbeschränkt ist, so kann es unbeschränkte Kanten geben.

P Polyhedron

Oberfläche eines Polyhedrons

- Facetten.
 - Sei P ein Polyhedron und H eine Hyperebene und sei P komplett auf einer Seite der Hyperebene H.
 - Falls $f = P \cap H$ nicht leer ist. so
 - ist f eine Facette von P
- Eine Facette der Dimension d − 1 heißt Face.
- Eine Kante entspricht dem Schnitt von d-1Hyperebenen (Facette der Dimension 1).
- Ein Knoten entspricht dem Schnitt von d Hyperebenen (Facette der Dimension 0).
- Zwei Knoten sind benachbart, wenn sie durch eine Kante verbunden sind.
- Falls P unbeschränkt ist, so kann es unbeschränkte Kanten geben.
- Solche Kanten haben nur einen oder keinen Endpunkt.

• Die Zielfunktion $c^T x$ (Vektor) gibt eine Richtung in \mathbb{R}^d vor.

- Die Zielfunktion $c^T x$ (Vektor) gibt eine Richtung in \mathbb{R}^d vor.
- Falls die Nebenbedingungen den Zielwert nach oben beschränken, so wird das LP als beschränkt bezeichnet.

- Die Zielfunktion $c^T x$ (Vektor) gibt eine Richtung in \mathbb{R}^d vor.
- Falls die Nebenbedingungen den Zielwert nach oben beschränken, so wird das LP als beschränkt bezeichnet.
 - Falls der Zielwert nicht beschränkt ist, so heißt das LP unbeschränkt.

- Die Zielfunktion $c^T x$ (Vektor) gibt eine Richtung in \mathbb{R}^d vor.
- Falls die Nebenbedingungen den Zielwert nach oben beschränken, so wird das LP als beschränkt bezeichnet.
 - Falls der Zielwert nicht beschränkt ist, so heißt das LP unbeschränkt.
- Das Polyhedron muss dabei nur in der Richtung von c^Tx beschränkt sein.

- Die Zielfunktion $c^T x$ (Vektor) gibt eine Richtung in \mathbb{R}^d vor.
- Falls die Nebenbedingungen den Zielwert nach oben beschränken, so wird das LP als beschränkt bezeichnet.
 - Falls der Zielwert nicht beschränkt ist, so heißt das LP unbeschränkt.
- Das Polyhedron muss dabei nur in der Richtung von $c^T x$ beschränkt sein.
- Ist das Polyhedron in alle Richtungen beschränkt (in einer Kugel enthalten), so wird es als Polytop bezeichnet.

Geometrische Bestimmung des Optimums

• Betrachte beschränktes LP in kanonischer Form mit Lösungspolyhedron P und Zielfunktion $c^T x$.

- Betrachte beschränktes LP in kanonischer Form mit Lösungspolyhedron P und Zielfunktion $c^T x$,
- ullet Sei ${\cal H}$ eine zum Vektor c orthogonale Hyperebene.

- Betrachte beschränktes LP in kanonischer Form mit Lösungspolyhedron P und Zielfunktion $c^T x$,
- ullet Sei ${\mathcal H}$ eine zum Vektor c orthogonale Hyperebene.
- Damit gibt es $t \in \mathbb{R}$ mit: $\mathcal{H} = \{x \in \mathbb{R}^d \mid c^T \cdot x = t\}$.

Walter Unger 22.11.2018 13:52

- ullet Betrachte beschränktes LP in kanonischer Form mit Lösungspolyhedron Pund Zielfunktion $c^T x$.
- Sei \mathcal{H} eine zum Vektor c orthogonale Hyperebene.
- Damit gibt es $t \in \mathbb{R}$ mit: $\mathcal{H} = \{x \in \mathbb{R}^d \mid c^T \cdot x = t\}$.
- Setze $\mathcal{H}_t = \{x \in \mathbb{R}^d \mid c^T \cdot x = t\}.$

0000000000000000

- ullet Betrachte beschränktes LP in kanonischer Form mit Lösungspolyhedron Pund Zielfunktion $c^T x$.
- Sei \mathcal{H} eine zum Vektor c orthogonale Hyperebene.
- Damit gibt es $t \in \mathbb{R}$ mit: $\mathcal{H} = \{x \in \mathbb{R}^d \mid c^T \cdot x = t\}$.
- Setze $\mathcal{H}_t = \{x \in \mathbb{R}^d \mid c^T \cdot x = t\}.$
- Sei \mathcal{H} so gewählt, dass $P \cap \mathcal{H} \neq \emptyset$ gilt.

0000000000000000

- Betrachte beschränktes LP in kanonischer Form mit Lösungspolyhedron P und Zielfunktion $c^T x$.
- Sei \mathcal{H} eine zum Vektor c orthogonale Hyperebene.
- Damit gibt es $t \in \mathbb{R}$ mit: $\mathcal{H} = \{x \in \mathbb{R}^d \mid c^T \cdot x = t\}$.
- Setze $\mathcal{H}_t = \{x \in \mathbb{R}^d \mid c^T \cdot x = t\}.$
- Sei \mathcal{H} so gewählt, dass $P \cap \mathcal{H} \neq \emptyset$ gilt.
- Wähle z maximal mit $P \cap \mathcal{H}_z \neq \emptyset$.

0000000000000000

- Betrachte beschränktes LP in kanonischer Form mit Lösungspolyhedron P und Zielfunktion $c^T x$.
- Sei \mathcal{H} eine zum Vektor c orthogonale Hyperebene.
- Damit gibt es $t \in \mathbb{R}$ mit: $\mathcal{H} = \{x \in \mathbb{R}^d \mid c^T \cdot x = t\}$.
- Setze $\mathcal{H}_t = \{x \in \mathbb{R}^d \mid c^T \cdot x = t\}.$
- Sei \mathcal{H} so gewählt, dass $P \cap \mathcal{H} \neq \emptyset$ gilt.
- Wähle z maximal mit $P \cap \mathcal{H}_z \neq \emptyset$.
- Ein beliebiger Punkt $x^* \in P \cap \mathcal{H}_z$ ist eine optimale Lösung des LPs.

- Betrachte beschränktes LP in kanonischer Form mit Lösungspolyhedron P und Zielfunktion $c^T x$.
- Sei \mathcal{H} eine zum Vektor c orthogonale Hyperebene.
- Damit gibt es $t \in \mathbb{R}$ mit: $\mathcal{H} = \{x \in \mathbb{R}^d \mid c^T \cdot x = t\}$.
- Setze $\mathcal{H}_t = \{x \in \mathbb{R}^d \mid c^T \cdot x = t\}.$
- Sei \mathcal{H} so gewählt, dass $P \cap \mathcal{H} \neq \emptyset$ gilt.
- Wähle z maximal mit $P \cap \mathcal{H}_z \neq \emptyset$.
- Ein beliebiger Punkt $x^* \in P \cap \mathcal{H}_z$ ist eine optimale Lösung des LPs.
- Beobachtungen:

- Betrachte beschränktes LP in kanonischer Form mit Lösungspolyhedron P und Zielfunktion $c^T x$.
- Sei \mathcal{H} eine zum Vektor c orthogonale Hyperebene.
- Damit gibt es $t \in \mathbb{R}$ mit: $\mathcal{H} = \{x \in \mathbb{R}^d \mid c^T \cdot x = t\}$.
- Setze $\mathcal{H}_t = \{x \in \mathbb{R}^d \mid c^T \cdot x = t\}.$
- Sei \mathcal{H} so gewählt, dass $P \cap \mathcal{H} \neq \emptyset$ gilt.
- Wähle z maximal mit $P \cap \mathcal{H}_z \neq \emptyset$.
- Ein beliebiger Punkt $x^* \in P \cap \mathcal{H}_z$ ist eine optimale Lösung des LPs.
- Beobachtungen:

0000000000000000 4:16 Geometrische Interpretation

• $P \cap \mathcal{H}_z$ ist eine Facette f von P.

- Betrachte beschränktes LP in kanonischer Form mit Lösungspolyhedron P und Zielfunktion $c^T x$.
- Sei \mathcal{H} eine zum Vektor c orthogonale Hyperebene.
- Damit gibt es $t \in \mathbb{R}$ mit: $\mathcal{H} = \{x \in \mathbb{R}^d \mid c^T \cdot x = t\}$.
- Setze $\mathcal{H}_t = \{x \in \mathbb{R}^d \mid c^T \cdot x = t\}.$
- Sei \mathcal{H} so gewählt, dass $P \cap \mathcal{H} \neq \emptyset$ gilt.
- Wähle z maximal mit $P \cap \mathcal{H}_z \neq \emptyset$.
- Ein beliebiger Punkt $x^* \in P \cap \mathcal{H}_z$ ist eine optimale Lösung des LPs.
- Beobachtungen:

0000000000000000

- P ∩ H_z ist eine Facette f von P.
- Falls f nicht in allen Richtungen unbeschränkt ist, so gibt es mindestens einen optimalen Knoten.

Die Idee

• Kann eine zufällige Auswahl helfen?

Die Idee

- Kann eine zufällige Auswahl helfen?
- Können effiziente Algorithmen noch schneller gemacht werden?

Die Idee

- Kann eine zufällige Auswahl helfen?
- Können effiziente Algorithmen noch schneller gemacht werden?
- Kann bei schweren Problemen mit ausreichender Wahrscheinlichkeit ein gutes Ergebnis erreicht werden?

• Bestimme Extrempunkt eines Polyhedrons bezüglich einer Zielfunktion.

- Bestimme Extrempunkt eines Polyhedrons bezüglich einer Zielfunktion.
- Eingabe:

- Bestimme Extrempunkt eines Polyhedrons bezüglich einer Zielfunktion.
- Eingabe:
 - ullet Gegeben sind d Variablen.

- Bestimme Extrempunkt eines Polyhedrons bezüglich einer Zielfunktion.
- Eingabe:
 - Gegeben sind d Variablen.
 - Gegeben sind *m* lineare Ungleichungen (Nebenbedingungen).

- Bestimme Extrempunkt eines Polyhedrons bezüglich einer Zielfunktion.
- Eingabe:
 - Gegeben sind d Variablen.
 - Gegeben sind *m* lineare Ungleichungen (Nebenbedingungen).
 - ullet Gegeben ist eine lineare Zielfunktion f über die d Variablen.

- Bestimme Extrempunkt eines Polyhedrons bezüglich einer Zielfunktion.
- Eingabe:
 - Gegeben sind d Variablen.
 - Gegeben sind *m* lineare Ungleichungen (Nebenbedingungen).
 - Gegeben ist eine lineare Zielfunktion f über die d Variablen.
- Gesucht:

- Bestimme Extrempunkt eines Polyhedrons bezüglich einer Zielfunktion.
- Eingabe:
 - Gegeben sind d Variablen.
 - Gegeben sind *m* lineare Ungleichungen (Nebenbedingungen).
 - Gegeben ist eine lineare Zielfunktion f über die d Variablen.
- Gesucht:
 - \bullet Maximiere f unter Berücksichtigung aller Nebenbedingungen.

Ganzzahligkeit

- Bestimme Extrempunkt eines Polyhedrons bezüglich einer Zielfunktion.
- Eingabe:
 - Gegeben sind d Variablen.
 - Gegeben sind *m* lineare Ungleichungen (Nebenbedingungen).
 - Gegeben ist eine lineare Zielfunktion f über die d Variablen.
- Gesucht:
 - \bullet Maximiere f unter Berücksichtigung aller Nebenbedingungen.
- Das ist ein LP (lineares Programm)

0000000000000000

- Bestimme Extrempunkt eines Polyhedrons bezüglich einer Zielfunktion.
- Eingabe:
 - Gegeben sind d Variablen.
 - Gegeben sind m lineare Ungleichungen (Nebenbedingungen).
 - Gegeben ist eine lineare Zielfunktion f über die d Variablen.
- Gesucht:
 - Maximiere f unter Berücksichtigung aller Nebenbedingungen.
- Das ist ein LP (lineares Programm)
- Obere Schranke für Laufzeit: $O(\binom{m}{d}) = O(n^d)$.

Einleitung zu LPs

0000000000000000

- Bestimme Extrempunkt eines Polyhedrons bezüglich einer Zielfunktion.
- Eingabe:
 - Gegeben sind d Variablen.
 - Gegeben sind m lineare Ungleichungen (Nebenbedingungen).
 - Gegeben ist eine lineare Zielfunktion f über die d Variablen.
- Gesucht:
 - Maximiere f unter Berücksichtigung aller Nebenbedingungen.
- Das ist ein LP (lineares Programm)
- Obere Schranke für Laufzeit: $O(\binom{m}{d}) = O(n^d)$.
 - Untersuche für jede d-elementige Teilmenge der m Ungleichungen den jeweiligen Schnittpunkt (Basislösung).

Einleitung zu LPs

0000000000000000

- Bestimme Extrempunkt eines Polyhedrons bezüglich einer Zielfunktion.
- Eingabe:
 - Gegeben sind d Variablen.
 - Gegeben sind m lineare Ungleichungen (Nebenbedingungen).
 - Gegeben ist eine lineare Zielfunktion f über die d Variablen.
- Gesucht:
 - Maximiere f unter Berücksichtigung aller Nebenbedingungen.
- Das ist ein LP (lineares Programm)
- Obere Schranke für Laufzeit: $O(\binom{m}{d}) = O(n^d)$.
 - Untersuche für jede d-elementige Teilmenge der m Ungleichungen den jeweiligen Schnittpunkt (Basislösung).
- Hier nun Algorithmus mit erwarteter linearer Laufzeit (d.h. linear in m).

Beispiel

Maximiere y unter den Nebenbedingungen $0 \leqslant x \leqslant 20$, $0 \leqslant y \leqslant 10$, und:

Beispiel

Maximiere y unter den Nebenbedingungen $0\leqslant x\leqslant 20$, $0\leqslant y\leqslant 10$, und:

$$f_1: y \leqslant 3 \cdot x + 1$$

Beispiel

Maximiere y unter den Nebenbedingungen $0\leqslant x\leqslant 20$, $0\leqslant y\leqslant 10$, und:

$$f_1: y \leqslant 3 \cdot x + 1$$

$$f_2: y \leqslant 1 \cdot x + 2$$

$$f_1: y \leqslant 3 \cdot x + 1$$

$$f_2: y \leqslant 1 \cdot x + 2$$

$$f_3: y \leqslant -2 \cdot x + 30$$

$$f_1: y \leqslant 3 \cdot x + 1$$

$$f_1: y \leq 3 \cdot x + 1$$
 $f_4: y \leq -0.9 \cdot x + 9$

$$f_2: y \leqslant 1 \cdot x + 2$$

$$\leq 1 \cdot x +$$

$$f_3: y \leq -2 \cdot x + 30$$

$$f_1: y \leqslant 3 \cdot x + 1$$

$$f_1: y \leq 3 \cdot x + 1$$
 $f_4: y \leq -0.9 \cdot x + 9$

$$f_2: y \leqslant 1 \cdot x +$$

$$f_2: y \le 1 \cdot x + 2$$
 $f_5: y \ge -0.9 \cdot x + 2$

$$f_3: y \leqslant -2 \cdot x + 30$$

$$f_1: y \le 3 \cdot x + 1$$
 $f_4: y \le -0.9 \cdot x + 9$

$$f_2: y \le 1 \cdot x + 2$$
 $f_5: y \ge -0.9 \cdot x + 2$

$$f_3:y\leqslant -2\cdot x+30 \quad f_6:y\leqslant -2\cdot x+40$$

$$f_1: y \le 3 \cdot x + 1$$
 $f_4: y \le -0.9 \cdot x + 9$ $f_7: y \ge 0.5 \cdot x - 5$

$$f_4: y \leq -0.9 \cdot x + 9$$

$$f_2: y \le 1 \cdot x + 2$$
 $f_5: y \ge -0.9 \cdot x + 2$

$$f_3:y\leqslant -2\cdot x+30 \quad f_6:y\leqslant -2\cdot x+40$$

$$f_3: y \leqslant -2 \cdot x +$$

$$f_6: y \leqslant -2 \cdot x + 4$$

$$f_1: y \le 3 \cdot x + 1$$
 $f_4: y \le -0.9 \cdot x + 9$ $f_7: y \ge 0.5 \cdot x - 5$
 $f_2: y \le 1 \cdot x + 2$ $f_5: y \ge -0.9 \cdot x + 2$ $f_8: y \ge 1 \cdot x - 10$
 $f_3: y \le -2 \cdot x + 30$ $f_6: y \le -2 \cdot x + 40$

Dualität 0000000 Walter Unger 22.11.2018 13:52 Ganzzahligkeit 00000000 SS2015 RWTH

Beispiel

$$\begin{array}{lll} f_1: y \leqslant 3 \cdot x + 1 & f_4: y \leqslant -0.9 \cdot x + 9 & f_7: y \geqslant 0.5 \cdot x - 5 \\ f_2: y \leqslant 1 \cdot x + 2 & f_5: y \geqslant -0.9 \cdot x + 2 & f_8: y \geqslant 1 \cdot x - 10 \\ f_3: y \leqslant -2 \cdot x + 30 & f_6: y \leqslant -2 \cdot x + 40 & f_9: y \leqslant 1.05 \cdot x + 8 \end{array}$$

Vorgab<u>en</u>

• Variablen: x_1, x_2, \ldots, x_d mit:

d Variablen, m Nebenbedingungen, Dimentsion n

Ganzzahlig<u>keit</u>

000000000

SS2015 RWTH

Dualität Ganzzahligkeit 0000000 00000000 Walter Unger 22.11.2018 13:52 SS2015 RWTH

Vorgaben

• Variablen: x_1, x_2, \dots, x_d mit: • $x = (x_1, x_2, \dots, x_d)^T$ und

- Variablen: x_1, x_2, \ldots, x_d mit:
 - $x = (x_1, x_2, \dots, x_d)^T$ und
- Nebenbedingungen: $A \cdot x \leq b$ mit:

- Variablen: x_1, x_2, \ldots, x_d mit:
 - $x = (x_1, x_2, \dots, x_d)^T$ und
- Nebenbedingungen: $A \cdot x \leq b$ mit:
 - A ist eine $m \times d$ Matrix und

Dualität

0000000

Walter Unger 22.11.2018 13:52

Vorgaben

- Variablen: x_1, x_2, \ldots, x_d mit:
 - $x = (x_1, x_2, \dots, x_d)^T$ und
- Nebenbedingungen: $A \cdot x \leq b$ mit:
 - A ist eine $m \times d$ Matrix und
 - $b = (b_1, b_2, \ldots, b_d)^T$.

- Variablen: x_1, x_2, \ldots, x_d mit:
 - $x = (x_1, x_2, \dots, x_d)^T$ und
- Nebenbedingungen: $A \cdot x \leq b$ mit:
 - A ist eine $m \times d$ Matrix und • $b = (b_1, b_2, \ldots, b_d)^T$.
- Zielfunktion $f(x) = c^T \cdot x$ mit:

Dualität

0000000

Walter Unger 22.11.2018 13:52

- Variablen: x_1, x_2, \ldots, x_d mit:
 - $x = (x_1, x_2, \dots, x_d)^T$ und
- Nebenbedingungen: $A \cdot x \leq b$ mit:
 - A ist eine $m \times d$ Matrix und
 - $b = (b_1, b_2, \ldots, b_d)^T$.
- Zielfunktion $f(x) = c^T \cdot x$ mit:
 - $c = (c_1, c_2, \ldots, c_d).$

Einleitung zu LPs

4:20 Details 8/14

0000000000000000

- Variablen: x_1, x_2, \ldots, x_d mit:
 - $x = (x_1, x_2, \dots, x_d)^T$ und
- Nebenbedingungen: $A \cdot x \leq b$ mit:
 - A ist eine $m \times d$ Matrix und
 - $b = (b_1, b_2, \ldots, b_d)^T$.
- Zielfunktion $f(x) = c^T \cdot x$ mit:
 - $c = (c_1, c_2, \ldots, c_d).$
- O.B.d.A. gibt es eine zulässige Lösung.

- Variablen: x_1, x_2, \ldots, x_d mit:
 - $x = (x_1, x_2, \dots, x_d)^T$ und
- Nebenbedingungen: $A \cdot x \leq b$ mit:
 - A ist eine $m \times d$ Matrix und
 - $b = (b_1, b_2, \ldots, b_d)^T$.
- Zielfunktion $f(x) = c^T \cdot x$ mit:
 - $c = (c_1, c_2, \ldots, c_d)$.
- O.B.d.A. gibt es eine zulässige Lösung.
- O.B.d.A. ist die Lösung eindeutig.

Einleitung zu LPs

0000000000000000

4:20 Details 10/14

- Variablen: x_1, x_2, \ldots, x_d mit:
 - $x = (x_1, x_2, \dots, x_d)^T$ und
- Nebenbedingungen: $A \cdot x \leq b$ mit:
 - A ist eine $m \times d$ Matrix und
 - $b = (b_1, b_2, \ldots, b_d)^T$.
- Zielfunktion $f(x) = c^T \cdot x$ mit:
 - $c = (c_1, c_2, \ldots, c_d)$.
- O.B.d.A. gibt es eine zulässige Lösung.
- O.B.d.A. ist die Lösung eindeutig.
 - Falls nicht, so setze:

0000000000000000

Vorgaben

- Variablen: x_1, x_2, \ldots, x_d mit:
 - $x = (x_1, x_2, \dots, x_d)^T$ und
- Nebenbedingungen: $A \cdot x \leq b$ mit:
 - A ist eine $m \times d$ Matrix und
 - $b = (b_1, b_2, \dots, b_d)^T$.
- Zielfunktion $f(x) = c^T \cdot x$ mit:
 - $c = (c_1, c_2, \ldots, c_d)$.
- O.B.d.A. gibt es eine zulässige Lösung.
- O.B.d.A. ist die Lösung eindeutig.
 - Falls nicht. so setze:
 - $c_i = c_i + \varepsilon^i$ für ein $\varepsilon > 0$.

Vorgaben

Einleitung zu LPs

- Variablen: x_1, x_2, \ldots, x_d mit:
- $x = (x_1, x_2, \dots, x_d)^T$ und
- Nebenbedingungen: $A \cdot x \leq b$ mit:
 - A ist eine $m \times d$ Matrix und
 - $b = (b_1, b_2, \dots, b_d)^T$.
- Zielfunktion $f(x) = c^T \cdot x$ mit:
 - $c = (c_1, c_2, \ldots, c_d)$.
- O.B.d.A. gibt es eine zulässige Lösung.
- O.B.d.A. ist die Lösung eindeutig.
 - Falls nicht, so setze:
 - $c_i = c_i + \varepsilon^i$ für ein $\varepsilon > 0$.
 - Zielfunktion wird virtuell perturbiert (durcheinander wirbeln, stören).

Dualität

0000000

Einleitung zu LPs

0000000000000000

4:20 Details 13/14

- Variablen: x_1, x_2, \ldots, x_d mit:
- $x = (x_1, x_2, \dots, x_d)^T$ und
- Nebenbedingungen: $A \cdot x \leq b$ mit:
 - A ist eine $m \times d$ Matrix und
 - $b = (b_1, b_2, \dots, b_d)^T$.
- Zielfunktion $f(x) = c^T \cdot x$ mit:
 - $c = (c_1, c_2, \ldots, c_d)$.
- O.B.d.A. gibt es eine zulässige Lösung.
- O.B.d.A. ist die Lösung eindeutig.
 - Falls nicht, so setze:
 - $c_i = c_i + \varepsilon^i$ für ein $\varepsilon > 0$.
 - Zielfunktion wird virtuell perturbiert (durcheinander wirbeln, stören).
 - D.h. es wird lexikographisch kleinste Basislösung gewählt.

Vorgaben

- Variablen: x_1, x_2, \ldots, x_d mit:
 - $x = (x_1, x_2, \dots, x_d)^T$ und
- Nebenbedingungen: $A \cdot x \leq b$ mit:
 - A ist eine $m \times d$ Matrix und
 - $b = (b_1, b_2, \dots, b_d)^T$.
- Zielfunktion $f(x) = c^T \cdot x$ mit:
 - $c = (c_1, c_2, \ldots, c_d)$.
- O.B.d.A. gibt es eine zulässige Lösung.
- O.B.d.A. ist die Lösung eindeutig.
 - Falls nicht, so setze:
 - $c_i = c_i + \varepsilon^i$ für ein $\varepsilon > 0$.
 - Zielfunktion wird virtuell perturbiert (durcheinander wirbeln, stören).
 - D.h. es wird lexikographisch kleinste Basislösung gewählt.
- Jede Nebenbedingung entspricht einer Hyperebene.

 Dualität
 Ganzzahligkeit

 0000000
 00000000

 Walter Unger 22.11.2018 13:52
 SS2015
 RWTH

Vorgaben

d Variablen, m Nebenbedingungen, Dimentsion n

• Das LP sollte nicht unbeschränkt sein.

Vorgaben

- Das LP sollte nicht unbeschränkt sein.
- Daher werden zusätzlich Box-Bedingungen eingefügt.

Dualität 0000000 Walter Unger 22.11.201813:52

Ganzzahligkeit 000000000 SS2015 RWTH

Vorgaben

- Das LP sollte nicht unbeschränkt sein.
- Daher werden zusätzlich Box-Bedingungen eingefügt.
 - $-t \leqslant x_i \leqslant t$ für: $(1 \leqslant i \leqslant d)$.

 Dualität 0000000

Walter Unger 22.11.2018 13:52

Ganzzahligkeit 000000000 SS2015 RWTH

4:21 Details 4/9
Vorgaben

- Das LP sollte nicht unbeschränkt sein.
- Daher werden zusätzlich Box-Bedingungen eingefügt.
 - $-t \leqslant x_i \leqslant t$ für: $(1 \leqslant i \leqslant d)$.
 - t muss so groß sein, dass keine Basislösung verloren geht.

- Das I P sollte nicht unbeschränkt sein.
- Daher werden zusätzlich Box-Bedingungen eingefügt.
 - $-t \leqslant x_i \leqslant t$ für: $(1 \leqslant i \leqslant d)$.
 - t muss so groß sein, dass keine Basislösung verloren geht.
 - ullet D.h. in jeder Basislösung müssen die Variablenwerte zwischen t und -t liegen.

Algorithmus von Seidel ○●○○○○○○○○○○○ Dualität 0000000 Walter Unger 22.11.2018 13:52

Ganzzahligkeit 00000000 SS2015 RWTH

Vorgaben

- Das LP sollte nicht unbeschränkt sein.
- Daher werden zusätzlich Box-Bedingungen eingefügt.

•
$$-t \leqslant x_i \leqslant t$$
 für: $(1 \leqslant i \leqslant d)$.

- t muss so groß sein, dass keine Basislösung verloren geht.
- \bullet D.h. in jeder Basislösung müssen die Variablenwerte zwischen t und -t liegen.
- So ein Wert t existiert immer.

Vorgaben

- Das LP sollte nicht unbeschränkt sein.
- Daher werden zusätzlich Box-Bedingungen eingefügt.
 - $-t \leqslant x_i \leqslant t$ für: $(1 \leqslant i \leqslant d)$.
 - t muss so groß sein, dass keine Basislösung verloren geht.
 - ullet D.h. in jeder Basislösung müssen die Variablenwerte zwischen t und -t liegen.
 - So ein Wert t existiert immer.
 - $\bullet\ t$ kann polynomiell in der Eingabelänge bestimmt werden.

 Dualität 0000000 Walter Unger 22.11.201813:52

Ganzzahligkeit 00000000 SS2015 RWTH

Vorgaben

- Das LP sollte nicht unbeschränkt sein.
- Daher werden zusätzlich Box-Bedingungen eingefügt.
 - $-t \leqslant x_i \leqslant t$ für: $(1 \leqslant i \leqslant d)$.
 - t muss so groß sein, dass keine Basislösung verloren geht.
 - ullet D.h. in jeder Basislösung müssen die Variablenwerte zwischen t und -t liegen.
 - So ein Wert t existiert immer.
 - t kann polynomiell in der Eingabelänge bestimmt werden.
 - Man kann auch t als symbolischen Wert darstellen.

Algorithmus von Seidel

Dualität 0000000 Walter Unger 22.11.201813:52

Ganzzahligkeit 00000000 SS2015 RWTH

Vorgaben

- Das LP sollte nicht unbeschränkt sein.
- Daher werden zusätzlich Box-Bedingungen eingefügt.
 - $-t \leqslant x_i \leqslant t$ für: $(1 \leqslant i \leqslant d)$.
 - t muss so groß sein, dass keine Basislösung verloren geht.
 - ullet D.h. in jeder Basislösung müssen die Variablenwerte zwischen t und -t liegen.
 - So ein Wert t existiert immer.
 - t kann polynomiell in der Eingabelänge bestimmt werden.
 - Man kann auch t als symbolischen Wert darstellen.
 - Dann wird t im folgenden Algorithmus immer größer sein als jeder bis dahin berechnete Wert.

Algorithmus von Seidel (1991)

• Idee:

Algorithmus von Seidel (1991)

Idee:

d Variablen, m Nebenbedingungen, Dimentsion n

• Sei H die Menge der Nebenbedingungen (Ohne Box-Bedingungen).

Algorithmus von Seidel (1991)

• Idee:

d Variablen, m Nebenbedingungen, Dimentsion n

- Sei H die Menge der Nebenbedingungen (Ohne Box-Bedingungen).
- Wähle zufällig $h \in H$ aus, und

Dualität 0000000

000000000

Ganzzahligkeit

Walter Unger 22.11.2018 13:52 SS2015 RWTH

d Variablen, m Nebenbedingungen, Dimentsion n

Algorithmus von Seidel (1991)

Idee:

- Sei H die Menge der Nebenbedingungen (Ohne Box-Bedingungen).
- Wähle zufällig $h \in H$ aus, und
- löse dann rekursiv

Walter Unger 22.11.2018 13:52 S

d Variablen, m Nebenbedingungen, Dimentsion n

Algorithmus von Seidel (1991)

- Idee:
 - C: WE ME THE COLD DE
 - Sei H die Menge der Nebenbedingungen (Ohne Box-Bedingungen).
 - ullet Wähle zufällig $h \in H$ aus, und
 - löse dann rekursiv.
- Für $H' \subset H$ sei LP(H') das LP, bei dem alle Nebenbedingungen aus $H \setminus H'$ gestrichen wurden.

Dualität

Algorithmus von Seidel (1991)

Idee:

Einleitung zu LPs

0000000000000000

4:22 Algorithmus 6/11

- Sei H die Menge der Nebenbedingungen (Ohne Box-Bedingungen).
- Wähle zufällig $h \in H$ aus, und
- löse dann rekursiv
- Für $H' \subset H$ sei LP(H') das LP, bei dem alle Nebenbedingungen aus $H \setminus H'$ gestrichen wurden.
- Die optimale Basislösung von LP(H') wird mit opt(H') bezeichnet.

Dualität

0000000

Idee:

Einleitung zu LPs

0000000000000000

4:22 Algorithmus 7/11

- Sei H die Menge der Nebenbedingungen (Ohne Box-Bedingungen).
- Wähle zufällig $h \in H$ aus, und
- löse dann rekursiv
- Für $H' \subset H$ sei LP(H') das LP, bei dem alle Nebenbedingungen aus $H \setminus H'$ gestrichen wurden.
- Die optimale Basislösung von LP(H') wird mit opt(H') bezeichnet.
- Algorithmus von Seidel:

Idee:

Einleitung zu LPs

0000000000000000

4:22 Algorithmus 8/11

- Sei H die Menge der Nebenbedingungen (Ohne Box-Bedingungen).
- Wähle zufällig $h \in H$ aus, und
- löse dann rekursiv
- Für $H' \subset H$ sei LP(H') das LP, bei dem alle Nebenbedingungen aus $H \setminus H'$ gestrichen wurden.
- Die optimale Basislösung von LP(H') wird mit opt(H') bezeichnet.
- Algorithmus von Seidel:
 - **1** Falls d=1 oder m=0, so gebe opt(H) aus.

Algorithmus von Seidel (1991)

Idee:

Einleitung zu LPs

0000000000000000

- Sei H die Menge der Nebenbedingungen (Ohne Box-Bedingungen).
- Wähle zufällig $h \in H$ aus, und
- löse dann rekursiv
- Für $H' \subset H$ sei LP(H') das LP, bei dem alle Nebenbedingungen aus $H \setminus H'$ gestrichen wurden.
- Die optimale Basislösung von LP(H') wird mit opt(H') bezeichnet.
- Algorithmus von Seidel:
 - **4** Falls d=1 oder m=0, so gebe opt(H) aus.
 - **2** Ansonsten wähle uniform eine Nebenbedingung $h \in H$ aus, und berechne $opt(H \setminus \{h\})$ rekursiv.

Algorithmus von Seidel (1991)

Idee:

Einleitung zu LPs

- Sei H die Menge der Nebenbedingungen (Ohne Box-Bedingungen).
- Wähle zufällig $h \in H$ aus, und
- löse dann rekursiv
- Für $H' \subset H$ sei LP(H') das LP, bei dem alle Nebenbedingungen aus $H \setminus H'$ gestrichen wurden.
- Die optimale Basislösung von LP(H') wird mit opt(H') bezeichnet.
- Algorithmus von Seidel:
 - **4** Falls d=1 oder m=0, so gebe opt(H) aus.
 - **2** Ansonsten wähle uniform eine Nebenbedingung $h \in H$ aus, und berechne $opt(H \setminus \{h\})$ rekursiv.
 - 3 Falls $opt(H \setminus \{h\})$ die Nebenbedingung h nicht verletzt, so gebe $opt(H \setminus \{h\}) = opt(H)$ aus.

Algorithmus von Seidel (1991)

d Variablen, m Nebenbedingungen, Dimentsion n

- Idee:
 - Sei H die Menge der Nebenbedingungen (Ohne Box-Bedingungen).
 - Wähle zufällig $h \in H$ aus, und
 - löse dann rekursiv
- Für $H' \subset H$ sei LP(H') das LP, bei dem alle Nebenbedingungen aus $H \setminus H'$ gestrichen wurden.
- Die optimale Basislösung von LP(H') wird mit opt(H') bezeichnet.
- Algorithmus von Seidel:
 - **4** Falls d=1 oder m=0, so gebe opt(H) aus.
 - **2** Ansonsten wähle uniform eine Nebenbedingung $h \in H$ aus, und berechne $opt(H \setminus \{h\})$ rekursiv.
 - 3 Falls $opt(H \setminus \{h\})$ die Nebenbedingung h nicht verletzt, so gebe $opt(H \setminus \{h\}) = opt(H)$ aus.
 - Ansonsten berechne den Schnitt des Lösungspolyhedrons mit der Hyperebene h, und löse das so entstandene (d-1)-dimensionale LP rekursiv.

Einleitung zu LPs Algorithmus von Seidel 000000000000000 0000000 4:23 Algorithmus 1/9 Beispiel (Abstieg der ersten vier Rekursionen)

000000000 Walter Unger 22.11.2018 13:52 SS2015 RWTH

Ganzzahligkeit

Dualität

d Variablen, m Nebenbedingungen, Dimentsion n

Entferne nacheinander f₈,

$$\begin{array}{lll} f_1: y \leqslant 3 \cdot x + 1 & f_4: y \leqslant -0.9 \cdot x + 9 & f_7: y \geqslant 0.5 \cdot x - 5 \\ f_2: y \leqslant 1 \cdot x + 2 & f_5: y \geqslant -0.9 \cdot x + 2 & f_8: y \geqslant 1 \cdot x - 10 \\ f_3: y \leqslant -2 \cdot x + 30 & f_6: y \leqslant -2 \cdot x + 40 & f_9: y \leqslant 1.05 \cdot x + 8 \end{array}$$

Entferne nacheinander f_8 ,

$$\begin{array}{lll} f_1: y \leqslant 3 \cdot x + 1 & f_4: y \leqslant -0.9 \cdot x + 9 & f_7: y \geqslant 0.5 \cdot x - 5 \\ f_2: y \leqslant 1 \cdot x + 2 & f_5: y \geqslant -0.9 \cdot x + 2 & f_8: y \geqslant 1 \cdot x - 10 \\ f_3: y \leqslant -2 \cdot x + 30 & f_6: y \leqslant -2 \cdot x + 40 & f_9: y \leqslant 1.05 \cdot x + 8 \end{array}$$

Entferne nacheinander f_8 , f_1 ,

$$f_1: y \le 3 \cdot x + 1 \qquad f_4: y \le -0.9 \cdot x + 9 \qquad f_7: y \ge 0.5 \cdot x - 5$$

$$f_2: y \le 1 \cdot x + 2 \qquad f_5: y \ge -0.9 \cdot x + 2$$

$$f_3: y \le -2 \cdot x + 30 \qquad f_6: y \le -2 \cdot x + 40 \qquad f_9: y \le 1.05 \cdot x + 8$$

Entferne nacheinander f_8 , f_1 ,

$$f_1: y \le 3 \cdot x + 1$$
 $f_4: y \le -0.9 \cdot x + 9$ $f_7: y \ge 0.5 \cdot x - 5$
 $f_2: y \le 1 \cdot x + 2$ $f_5: y \ge -0.9 \cdot x + 2$
 $f_3: y \le -2 \cdot x + 30$ $f_6: y \le -2 \cdot x + 40$ $f_9: y \le 1.05 \cdot x + 8$

Entferne nacheinander f₈, f₁, f₅

$$f_4: y \leqslant -0.9 \cdot x + 9 \quad f_7: y \geqslant 0.5 \cdot x - 5$$

$$f_2: y \leqslant 1 \cdot x + 2 \quad f_5: y \geqslant -0.9 \cdot x + 2$$

$$f_3: y \leqslant -2 \cdot x + 30 \quad f_6: y \leqslant -2 \cdot x + 40 \quad f_9: y \leqslant 1.05 \cdot x + 8$$

Entferne nacheinander f₈, f₁, f₅

$$f_4: y \le -0.9 \cdot x + 9 \quad f_7: y \ge 0.5 \cdot x - 5$$

$$f_2: y \le 1 \cdot x + 2 \quad f_5: y \ge -0.9 \cdot x + 2$$

$$f_3: y \le -2 \cdot x + 30 \quad f_6: y \le -2 \cdot x + 40 \quad f_9: y \le 1.05 \cdot x + 8$$

Entferne nacheinander f_8 , f_1 , f_5 und f_7 und löse jeweils rekursiv.

$$f_4: y \leqslant -0.9 \cdot x + 9$$
 $f_7: y \geqslant 0.5 \cdot x - 5$

$$f_2: v \leq 1 \cdot x + 2$$

$$f_3: y \leqslant -2 \cdot x + 30$$
 $f_6: y \leqslant -2 \cdot x + 40$ $f_9: y \leqslant 1.05 \cdot x + 8$

Entferne nacheinander f_8 , f_1 , f_5 und f_7 und löse jeweils rekursiv.

$$f_4: y \leqslant -0.9 \cdot x + 9$$
 $f_7: y \geqslant 0.5 \cdot x - 5$

$$f_2: v \leq 1 \cdot x + 2$$

$$f_3: y \leqslant -2 \cdot x + 30$$
 $f_6: y \leqslant -2 \cdot x + 40$ $f_9: y \leqslant 1.05 \cdot x + 8$

Einleitung zu LPs Algorithmus von Seidel Dualität Ganzzahligkeit 000000000000000 0000000 000000000 4:24 Algorithmus 1/11 Walter Unger 22.11.2018 13:52 SS2015 RWTH

Beispiel (Abstieg der nächsten vier Rekursionen)

d Variablen, m Nebenbedingungen, Dimentsion n

Entferne nacheinander f_4 ,

$$\textit{f}_4: y \leqslant -0.9 \cdot x + 9$$

$$f_2: y \leqslant 1 \cdot x + 2$$

$$f_3: y \leq -2 \cdot x + 30$$
 $f_6: y \leq -2 \cdot x + 40$ $f_9: y \leq 1.05 \cdot x + 8$

$$f_9: y \leqslant 1.05 \cdot x + 3$$

Entferne nacheinander f4,

$$f_4:y\leqslant -0.9\cdot x+9$$

$$f_2: y \leq 1 \cdot x + 2$$

$$f \cdot y < 2 \cdot x + 2 \cdot y + 3 \cdot$$

$$f_3: y \leq -2 \cdot x + 30$$
 $f_6: y \leq -2 \cdot x + 40$ $f_9: y \leq 1.05 \cdot x + 8$

$$f_9: y \leqslant 1.05 \cdot x +$$

Entferne nacheinander f_4 , f_6 ,

 $f_2: y \leq 1 \cdot x + 2$

Einleitung zu LPs

0000000000000000

$$f_2: y \le 1 \cdot x + 2$$

 $f_3: y \le -2 \cdot x + 30$ $f_6: y \le -2 \cdot x + 40$ $f_9: y \le 1.05 \cdot x + 8$

 Falls d = 1 oder m = 0, so gebe opt(H) aus. 2. Ansonsten wähle $h \in H$ aus, und berechne $opt(H \setminus \{h\})$ rekursiv. 3.Falls $opt(H \setminus \{h\})$ die Nebenbedingung h nicht verletzt, so gebe $opt(H \setminus \{h\}) =$ opt(H) aus. 4. Ansonsten berechne den Schnitt mit der Hyperebene h, und löse das so entstandene (d - 1)dimensionale

I P rekursiv

Entferne nacheinander f_4 , f_6 ,

Falls d = 1

oder m = 0, so gebe opt(H) aus.

$$\textit{f}_2: y \leqslant 1 \cdot x + 2$$

Einleitung zu LPs

0000000000000000

4:24 Algorithmus 5/11

$$f_3: y \le -2 \cdot x + 30$$
 $f_6: y \le -2 \cdot x + 40$ $f_9: y \le 1.05 \cdot x + 8$

$$f_6: y \leqslant -2 \cdot x + 40$$

$$f_9: y \leqslant 1.05 \cdot x +$$

Entferne nacheinander f4, f6, f3

$$f_2: y \le 1 \cdot x + 2$$

 $f_3: y \le -2 \cdot x + 30$

Einleitung zu LPs

0000000000000000

4:24 Algorithmus 6/11

$$f_9: y \leq 1.05 \cdot x + 8$$

 Falls d = 1 oder m = 0, so gebe opt(H) aus. 2. Ansonsten wähle $h \in H$ aus, und berechne $opt(H \setminus \{h\})$ rekursiv. 3.Falls $opt(H \setminus \{h\})$ die Nebenbedingung h nicht verletzt, so gebe $opt(H \setminus \{h\}) =$ opt(H) aus. 4. Ansonsten berechne den Schnitt mit der Hyperebene h, und löse das so entstandene (d - 1)dimensionale

I P rekursiv

Falls d = 1

oder m = 0, so gebe opt(H) aus.

2. Ansonsten wähle $h \in H$

 $opt(H \setminus \{h\})$ rekursiv.

Nebenbedingung h nicht

verletzt, so gebe

 $opt(H \setminus \{h\}) =$ opt(H) aus.

4. Ansonsten berechne den

dimensionale I P rekursiv

Schnitt mit der Hyperebene h, und löse das so entstandene (d - 1)-

aus, und berechne

3.Falls $opt(H \setminus \{h\})$ die

Beispiel (Abstieg der nächsten vier Rekursionen)

Entferne nacheinander f4, f6, f3

$$f_2: y \le 1 \cdot x + 2$$

 $f_3: y \le -2 \cdot x + 30$

Einleitung zu LPs

$$f_9: y \leq 1.05 \cdot x + 8$$

Entferne nacheinander f_4 , f_6 , f_3 und f_2 und löse jeweils rekursiv.

oder m = 0, so gebe opt(H) aus. 2. Ansonsten wähle $h \in H$ aus, und berechne $opt(H \setminus \{h\})$ rekursiv. 3.Falls $opt(H \setminus \{h\})$ die Nebenbedingung h nicht verletzt, so gebe $opt(H \setminus \{h\}) =$ opt(H) aus. 4. Ansonsten berechne den Schnitt mit der Hyperebene h, und löse das so entstandene (d - 1)dimensionale

I P rekursiv

Falls d = 1

$$f_2: y \leq 1 \cdot x + 2$$

Einleitung zu LPs

0000000000000000

4:24 Algorithmus 8/11

$$f_9: y \leq 1.05 \cdot x + 8$$

Entferne nacheinander f_4 , f_6 , f_3 und f_2 und löse jeweils rekursiv.

 Falls d = 1 oder m = 0, so gebe opt(H) aus. 2. Ansonsten wähle $h \in H$ aus, und berechne $opt(H \setminus \{h\})$ rekursiv. 3.Falls $opt(H \setminus \{h\})$ die Nebenbedingung h nicht verletzt, so gebe $opt(H \setminus \{h\}) =$ opt(H) aus. 4. Ansonsten berechne den Schnitt mit der Hyperebene h, und löse das so entstandene (d - 1)dimensionale

I P rekursiv

$$f_2: y \leq 1 \cdot x + 2$$

Einleitung zu LPs

$$f_9: y \leq 1.05 \cdot x + 8$$

Entferne nacheinander f_4 , f_6 , f_3 und f_2 und löse jeweils rekursiv.

 Falls d = 1 oder m = 0, so gebe opt(H) aus. 2. Ansonsten wähle $h \in H$ aus, und berechne $opt(H \setminus \{h\})$ rekursiv. 3.Falls $opt(H \setminus \{h\})$ die Nebenbedingung h nicht verletzt, so gebe $opt(H \setminus \{h\}) =$ opt(H) aus. 4. Ansonsten berechne den Schnitt mit der Hyperebene h, und löse das so entstandene (d - 1)dimensionale

I P rekursiv

Entferne nacheinander f_4 , f_6 , f_3 und f_2 und löse jeweils rekursiv.

Einleitung zu LPs Algorithmus von Seidel Dualität Ganzzahligkeit 000000000000000 0000000 000000000 4:25 Algorithmus 1/8 Walter Unger 22.11.2018 13:52 SS2015 RWTH

Beispiel (Aufstieg der letzten vier Rekursionen)

d Variablen, m Nebenbedingungen, Dimentsion n

Füge nacheinander wieder ein: f_2 ,

$$f_2: y \le 1 \cdot x + 2$$

Einleitung zu LPs

0000000000000000

4:25 Algorithmus 2/8

$$f_9: y \leq 1.05 \cdot x + 8$$

Füge nacheinander wieder ein: f_2 , f_3 ,

$$f_2: y \le 1 \cdot x + 2$$

 $f_3: y \le -2 \cdot x + 30$

$$f_9: y \leq 1.05 \cdot x + 8$$

 Falls d = 1 oder m = 0, so gebe opt(H) aus. 2. Ansonsten wähle $h \in H$ aus, und berechne $opt(H \setminus \{h\})$ rekursiv. 3.Falls $opt(H \setminus \{h\})$ die Nebenbedingung h nicht verletzt, so gebe $opt(H \setminus \{h\}) =$ opt(H) aus. 4. Ansonsten berechne den Schnitt mit der Hyperebene h, und löse das so entstandene (d - 1)dimensionale

I P rekursiv

Falls d = 1

2. Ansonsten wähle $h \in H$

 $opt(H \setminus \{h\})$ rekursiv.

Nebenbedingung h nicht

verletzt, so gebe

 $opt(H \setminus \{h\}) =$ opt(H) aus.

4. Ansonsten berechne den

dimensionale I P rekursiv

Schnitt mit der Hyperebene h, und löse das so entstandene (d - 1)-

aus, und berechne

3.Falls $opt(H \setminus \{h\})$ die

oder m = 0, so gebe opt(H) aus.

Beispiel (Aufstieg der letzten vier Rekursionen)

Füge nacheinander wieder ein: f_2 , f_3 ,

$$f_2: y \le 1 \cdot x + 2$$

 $f_3: y \le -2 \cdot x + 30$

Einleitung zu LPs

0000000000000000

4:25 Algorithmus 4/8

$$f_9: y \leq 1.05 \cdot x + 8$$

Füge nacheinander wieder ein: f_2 , f_3 , f_6

 Falls d = 1 oder m = 0, so gebe opt(H) aus. 2. Ansonsten wähle $h \in H$ aus, und berechne $opt(H \setminus \{h\})$ rekursiv. 3.Falls $opt(H \setminus \{h\})$ die Nebenbedingung h nicht verletzt, so gebe $opt(H \setminus \{h\}) =$ opt(H) aus. 4. Ansonsten berechne den Schnitt mit der Hyperebene h, und löse das so entstandene (d - 1)dimensionale

I P rekursiv

$$f_2:y\leqslant 1\cdot x+2$$

Einleitung zu LPs

0000000000000000

4:25 Algorithmus 5/8

$$f_3: y \leqslant -2 \cdot x + 30$$
 $f_6: y \leqslant -2 \cdot x + 40$ $f_9: y \leqslant 1.05 \cdot x + 8$

$$y \leqslant -2 \cdot x + 40$$

$$f_9: y \leq 1.05 \cdot x +$$

Füge nacheinander wieder ein: f_2 , f_3 , f_6 und f_4 .

$$f_4: y \leqslant -0.9 \cdot x + 9$$

$$f_2: y \leq 1 \cdot x + 2$$

$$f_2 : v \le -2 \cdot x + 30$$

$$f_3: y \leq -2 \cdot x + 30$$
 $f_6: y \leq -2 \cdot x + 40$ $f_9: y \leq 1.05 \cdot x + 8$

$$f_9: y \leq 1.05 \cdot x +$$

Füge nacheinander wieder ein: f_2 , f_3 , f_6 und f_4 .

$$f_4: y \leqslant -0.9 \cdot x + 9$$

$$f_2: y \leq 1 \cdot x + 2$$

$$f_2: v \le -2 \cdot x + 30$$

$$f_3: y \leq -2 \cdot x + 30$$
 $f_6: y \leq -2 \cdot x + 40$ $f_9: y \leq 1.05 \cdot x + 8$

$$f_9: y \leqslant 1.05 \cdot x +$$

d Variablen, m Nebenbedingungen, Dimentsion n Falls d = 1 oder m = 0, so gebe opt(H) aus. 2. Ansonsten wähle $h \in H$ aus, und berechne $opt(H \setminus \{h\})$ rekursiv. 3.Falls $opt(H \setminus \{h\})$ die Nebenbedingung h nicht verletzt, so gebe $opt(H \setminus \{h\}) =$ opt(H) aus. 4. Ansonsten berechne den Schnitt mit der Hyperebene h, und löse das so entstandene (d - 1)dimensionale I P rekursiv

Füge nacheinander wieder ein: f_2 , f_3 , f_6 und f_4 .

$$f_4: y \leqslant -0.9 \cdot x + 9$$

$$f_2: y \leq 1 \cdot x + 2$$

$$f_2 : v \le -2 \cdot x + 30$$

$$f_3: y \leq -2 \cdot x + 30$$
 $f_6: y \leq -2 \cdot x + 40$ $f_9: y \leq 1.05 \cdot x + 8$

$$f_9: y \leq 1.05 \cdot x +$$

d Variablen, m Nebenbedingungen, Dimentsion n Falls d = 1 oder m = 0, so gebe opt(H) aus. 2. Ansonsten wähle $h \in H$ aus, und berechne $opt(H \setminus \{h\})$ rekursiv. 3.Falls $opt(H \setminus \{h\})$ die Nebenbedingung h nicht verletzt, so gebe $opt(H \setminus \{h\}) =$ opt(H) aus. 4. Ansonsten berechne den Schnitt mit der Hyperebene h, und löse das so entstandene (d - 1)dimensionale I P rekursiv

000000000000000 0000000 4:26 Algorithmus 1/5 Walter Unger 22.11.2018 13:52 SS2015 RWTH

Algorithmus von Seidel

Beispiel (Aufstieg der ersten vier Rekursionen)

Einleitung zu LPs

Ganzzahligkeit

000000000

d Variablen, m Nebenbedingungen, Dimentsion n

Dualität

Beispiel (Aufstieg der ersten vier Rekursionen)

Füge nacheinander wieder ein: f_7 ,

$$f_4:y\leqslant -0.9\cdot x+9 \quad f_7:y\geqslant 0.5\cdot x-5$$

$$f_2: y \leq 1 \cdot x + 2$$

Einleitung zu LPs

$$f_3: y \leqslant -2 \cdot x + 30$$
 $f_6: y \leqslant -2 \cdot x + 40$ $f_9: y \leqslant 1.05 \cdot x + 8$

Füge nacheinander wieder ein: f_7 , f_5 ,

$$f_4: y \le -0.9 \cdot x + 9 \quad f_7: y \ge 0.5 \cdot x - 5$$

$$f_2: y \le 1 \cdot x + 2 \quad f_5: y \ge -0.9 \cdot x + 2$$

$$f_3: y \le -2 \cdot x + 30 \quad f_6: y \le -2 \cdot x + 40 \quad f_9: y \le 1.05 \cdot x + 8$$

 Falls d = 1 oder m = 0, so gebe opt(H) aus. 2. Ansonsten wähle $h \in H$ aus, und berechne $opt(H \setminus \{h\})$ rekursiv. 3.Falls $opt(H \setminus \{h\})$ die Nebenbedingung h nicht verletzt, so gebe $opt(H \setminus \{h\}) =$ opt(H) aus. 4. Ansonsten berechne den Schnitt mit der Hyperebene h, und löse das so entstandene (d - 1)dimensionale I P rekursiv

0000000000000000

4:26 Algorithmus 4/5

Füge nacheinander wieder ein: f_7 , f_5 , f_1

$$f_1: y \le 3 \cdot x + 1$$
 $f_4: y \le -0.9 \cdot x + 9$ $f_7: y \ge 0.5 \cdot x - 5$
 $f_2: y \le 1 \cdot x + 2$ $f_5: y \ge -0.9 \cdot x + 2$
 $f_3: y \le -2 \cdot x + 30$ $f_6: y \le -2 \cdot x + 40$ $f_9: y \le 1.05 \cdot x + 8$

 Falls d = 1 oder m = 0, so gebe opt(H) aus. 2. Ansonsten wähle $h \in H$ aus, und berechne $opt(H \setminus \{h\})$ rekursiv. 3.Falls $opt(H \setminus \{h\})$ die Nebenbedingung h nicht verletzt, so gebe $opt(H \setminus \{h\}) =$ opt(H) aus. 4. Ansonsten berechne den Schnitt mit der Hyperebene h, und löse das so entstandene (d - 1)dimensionale I P rekursiv

0000000000000000

Beispiel (Aufstieg der ersten vier Rekursionen)

Füge nacheinander wieder ein: f_7 , f_5 , f_1 und f_8 .

$$\begin{array}{lll} f_1: y \leqslant 3 \cdot x + 1 & f_4: y \leqslant -0.9 \cdot x + 9 & f_7: y \geqslant 0.5 \cdot x - 5 \\ f_2: y \leqslant 1 \cdot x + 2 & f_5: y \geqslant -0.9 \cdot x + 2 & f_8: y \geqslant 1 \cdot x - 10 \\ f_3: y \leqslant -2 \cdot x + 30 & f_6: y \leqslant -2 \cdot x + 40 & f_9: y \leqslant 1.05 \cdot x + 8 \end{array}$$

 Falls d = 1 oder m = 0, so gebe opt(H) aus. 2. Ansonsten wähle $h \in H$ aus, und berechne $opt(H \setminus \{h\})$ rekursiv. 3.Falls $opt(H \setminus \{h\})$ die Nebenbedingung h nicht verletzt, so gebe $opt(H \setminus \{h\}) =$ opt(H) aus. 4. Ansonsten berechne den Schnitt mit der Hyperebene h, und löse das so entstandene (d - 1)dimensionale I P rekursiv

 d Variablen, m Nebenbedingungen, Dimentsion n Falls d=1 gilt, gibt es nur noch eine Variable x_i .

- d Variablen, m Nebenbedingungen, Dimentsion n Falls d=1 gilt, gibt es nur noch eine Variable x_i .
 - Es gibt noch *m* Nebenbedingungen.

Dualität 0000000 Walter Unger 22.11.2018 13:52

Ganzzahligkeit 00000000 SS2015 RWTH

Laufzeiten und Details (Schritt 1 bis 3)

- d Variablen, m Nebenbedingungen, Dimentsion n Falls d=1 gilt, gibt es nur noch eine Variable x_i .
 - Es gibt noch *m* Nebenbedingungen.
 - Damit kann x_i in Zeit O(m) bestimmt werden.

Dualität 0000000 Ganzzahligkeit 000000000 S2015 RWTH

4:27 Laufzeit 4/12 Walter Unger 22.11.201813:52 SS2015 RWTH

Laufzeiten und Details (Schritt 1 bis 3)

 d Variablen, m Nebenbedingungen, Dimentsion n Falls d=1 gilt, gibt es nur noch eine Variable x_i .

- Es gibt noch *m* Nebenbedingungen.
- Damit kann x_i in Zeit O(m) bestimmt werden.
- Falls $x_i \in \{-t, t\}$ ist das LP ohne Box-Bedingungen unbeschränkt.

- d Variablen, m Nebenbedingungen, Dimentsion n Falls d=1 gilt, gibt es nur noch eine Variable x_i .
 - Es gibt noch m Nebenbedingungen.
 - Damit kann x_i in Zeit O(m) bestimmt werden.
 - Falls $x_i \in \{-t, t\}$ ist das LP ohne Box-Bedingungen unbeschränkt.
 - Ansonsten ist $-t < x_i < t$ die optimale Lösung.

Einleitung zu LPs

0000000000000000

4:27 Laufzeit 6/12

- d Variablen, m Nebenbedingungen, Dimentsion n • Falls d = 1 gilt, gibt es nur noch eine Variable x_i .
 - Es gibt noch m Nebenbedingungen.
 - Damit kann x_i in Zeit O(m) bestimmt werden.
 - Falls $x_i \in \{-t, t\}$ ist das LP ohne Box-Bedingungen unbeschränkt.
 - Ansonsten ist $-t < x_i < t$ die optimale Lösung.
- Falls m = 1 gilt, gibt es nur eine Nebenbedingung neben den Box-Bedingungen.

Einleitung zu LPs

0000000000000000

4:27 Laufzeit 7/12

- d Variablen, m Nebenbedingungen, Dimentsion n • Falls d = 1 gilt, gibt es nur noch eine Variable x_i .
 - Es gibt noch m Nebenbedingungen.
 - Damit kann x_i in Zeit O(m) bestimmt werden.
 - Falls $x_i \in \{-t, t\}$ ist das LP ohne Box-Bedingungen unbeschränkt.
 - Ansonsten ist $-t < x_i < t$ die optimale Lösung.
 - Falls m=1 gilt, gibt es nur eine Nebenbedingung neben den Box-Bedingungen.
 - Damit haben wir ein relaxiertes Rucksackproblem.

Dualität Ganzzahligkeit 0000000 Walter Unger 22.11.2018 13:52 SS2015 RWTH

Laufzeiten und Details (Schritt 1 bis 3)

Einleitung zu LPs

0000000000000000

4:27 Laufzeit 8/12

- d Variablen, m Nebenbedingungen, Dimentsion n • Falls d = 1 gilt, gibt es nur noch eine Variable x_i .
 - Es gibt noch m Nebenbedingungen.
 - Damit kann x_i in Zeit O(m) bestimmt werden.
 - Falls $x_i \in \{-t, t\}$ ist das LP ohne Box-Bedingungen unbeschränkt.
 - Ansonsten ist $-t < x_i < t$ die optimale Lösung.
- Falls m=1 gilt, gibt es nur eine Nebenbedingung neben den Box-Bedingungen.
 - Damit haben wir ein relaxiertes Rucksackproblem.
 - Dies kann optimal mittels Greedy gelöst werden.

0000000000000000

4:27 Laufzeit 9/12

- d Variablen, m Nebenbedingungen, Dimentsion n • Falls d = 1 gilt, gibt es nur noch eine Variable x_i .
 - Es gibt noch m Nebenbedingungen.
 - Damit kann x_i in Zeit O(m) bestimmt werden.
 - Falls $x_i \in \{-t, t\}$ ist das LP ohne Box-Bedingungen unbeschränkt.
 - Ansonsten ist $-t < x_i < t$ die optimale Lösung.
 - Falls m=1 gilt, gibt es nur eine Nebenbedingung neben den Box-Bedingungen.
 - Damit haben wir ein relaxiertes Rucksackproblem.
 - Dies kann optimal mittels Greedy gelöst werden.
 - Laufzeit: O(d log d) = O(d²).

0000000000000000

4:27 Laufzeit 10/12

d Variablen, m Nebenbedingungen, Dimentsion n • Falls d = 1 gilt, gibt es nur noch eine Variable x_i .

- Es gibt noch m Nebenbedingungen.
- Damit kann x_i in Zeit O(m) bestimmt werden.
- Falls $x_i \in \{-t, t\}$ ist das LP ohne Box-Bedingungen unbeschränkt.
- Ansonsten ist $-t < x_i < t$ die optimale Lösung.
- Falls m=1 gilt, gibt es nur eine Nebenbedingung neben den Box-Bedingungen.
 - Damit haben wir ein relaxiertes Rucksackproblem.
 - Dies kann optimal mittels Greedy gelöst werden.
 - Laufzeit: O(d log d) = O(d²).
- In Schritt 2 wird rekursiv ein Problem gelöst, bei dem m um eins verringert ist.

Einleitung zu LPs

0000000000000000

4:27 Laufzeit 11/12

- d Variablen, m Nebenbedingungen, Dimentsion n • Falls d = 1 gilt, gibt es nur noch eine Variable x_i .
 - Es gibt noch m Nebenbedingungen.
 - Damit kann x_i in Zeit O(m) bestimmt werden.
 - Falls $x_i \in \{-t, t\}$ ist das LP ohne Box-Bedingungen unbeschränkt.
 - Ansonsten ist $-t < x_i < t$ die optimale Lösung.
 - Falls m=1 gilt, gibt es nur eine Nebenbedingung neben den Box-Bedingungen.
 - Damit haben wir ein relaxiertes Rucksackproblem.
 - Dies kann optimal mittels Greedy gelöst werden.
 - Laufzeit: O(d log d) = O(d²).
 - In Schritt 2 wird rekursiv ein Problem gelöst, bei dem m um eins verringert ist.
- In Schritt 3 wird getestet, ob die gewählte Hyperebene h nicht die Lösung $opt(H \setminus \{h\})$ verletzt.

0000000000000000

4:27 Laufzeit 12/12

- Falls d = 1 gilt, gibt es nur noch eine Variable x_i .
 - Es gibt noch m Nebenbedingungen.
 - Damit kann x_i in Zeit O(m) bestimmt werden.
 - Falls $x_i \in \{-t, t\}$ ist das LP ohne Box-Bedingungen unbeschränkt.
 - Ansonsten ist $-t < x_i < t$ die optimale Lösung.
- Falls m=1 gilt, gibt es nur eine Nebenbedingung neben den Box-Bedingungen.
 - Damit haben wir ein relaxiertes Rucksackproblem.
 - Dies kann optimal mittels Greedy gelöst werden.
 - Laufzeit: O(d log d) = O(d²).
- In Schritt 2 wird rekursiv ein Problem gelöst, bei dem m um eins verringert ist.
- In Schritt 3 wird getestet, ob die gewählte Hyperebene h nicht die Lösung $opt(H \setminus \{h\})$ verletzt.
 - Das kann in O(d) gelöst werden.

Laufzeiten und Details (Schritt 4)

d Variablen, m Nebenbedingungen, Dimentsion nFasse die Nebenbedingung h als Gleichung auf.

 Dualität
 Ganzzahligkeit

 0000000
 00000000

 Walter Unger 22.11.2018 13:52
 SS2015
 RWTH

Laufzeiten und Details (Schritt 4)

- d Variablen, m Nebenbedingungen, Dimentsion nFasse die Nebenbedingung h als Gleichung auf.
- Löse h zu einer beliebigen Variablen x_k auf $(k \in \{1, 2, ..., d\})$.

0000000000000000

4:28 Laufzeit 3/12

- Fasse die Nebenbedingung h als Gleichung auf.
- Löse h zu einer beliebigen Variablen x_k auf $(k \in \{1, 2, ..., d\})$.
- D.h. $x_k = s_k(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$.

0000000000000000

- Fasse die Nebenbedingung h als Gleichung auf.
- Löse h zu einer beliebigen Variablen x_k auf $(k \in \{1, 2, ..., d\})$.
- D.h. $x_k = s_k(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$.
- Ersetze jedes Auftreten von x_k durch $s_k(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$ in:

0000000000000000

4:28 Laufzeit 5/12

- Fasse die Nebenbedingung h als Gleichung auf.
- Löse h zu einer beliebigen Variablen x_k auf $(k \in \{1, 2, ..., d\})$.
- D.h. $x_k = s_k(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$.
- Ersetze jedes Auftreten von x_k durch $s_k(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$ in:
 - allen Nebenbedingungen aus $H \setminus \{h\}$,

0000000000000000

4:28 Laufzeit 6/12

d Variablen, m Nebenbedingungen, Dimentsion n

Dualität

0000000

- Fasse die Nebenbedingung h als Gleichung auf.
- Löse h zu einer beliebigen Variablen x_k auf $(k \in \{1, 2, ..., d\})$.
- D.h. $x_k = s_k(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$.
- Ersetze jedes Auftreten von x_k durch $s_k(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$ in:
 - allen Nebenbedingungen aus $H \setminus \{h\}$,
 - in der Zielfunktion, und

0000000000000000

d Variablen, m Nebenbedingungen, Dimentsion n

Dualität

0000000

Walter Unger 22.11.2018 13:52

- Fasse die Nebenbedingung h als Gleichung auf.
- Löse h zu einer beliebigen Variablen x_k auf $(k \in \{1, 2, ..., d\})$.
- D.h. $x_k = s_k(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$.
- Ersetze jedes Auftreten von x_k durch $s_k(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$ in:
 - allen Nebenbedingungen aus $H \setminus \{h\}$,
 - in der Zielfunktion, und
 - in der Box-Bedingung für $h_k^- \leq x_k \leq h_k^+$:

Laufzeiten und Details (Schritt 4)

d Variablen, m Nebenbedingungen, Dimentsion n

Dualität

0000000

- Fasse die Nebenbedingung h als Gleichung auf.
- Löse h zu einer beliebigen Variablen x_k auf $(k \in \{1, 2, ..., d\})$.
- D.h. $x_k = s_k(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$.
- Ersetze jedes Auftreten von x_k durch $s_k(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$ in:
 - allen Nebenbedingungen aus $H \setminus \{h\}$,
 - in der Zielfunktion, und
 - in der Box-Bedingung für $h_{\nu}^{-} \leq x_{k} \leq h_{\nu}^{+}$:
 - $h_k^- \leqslant s_k(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$ und

Laufzeiten und Details (Schritt 4)

d Variablen, m Nebenbedingungen, Dimentsion n

Dualität

0000000

- Fasse die Nebenbedingung h als Gleichung auf.
- Löse h zu einer beliebigen Variablen x_k auf $(k \in \{1, 2, ..., d\})$.
- D.h. $x_k = s_k(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$.
- Ersetze jedes Auftreten von x_k durch $s_k(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$ in:
 - allen Nebenbedingungen aus $H \setminus \{h\}$,
 - in der Zielfunktion, und
 - in der Box-Bedingung für $h_{\nu}^{-} \leq x_{k} \leq h_{\nu}^{+}$:
 - $h_k^- \leqslant s_k(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$ und
 - $h_k^+ \geqslant s_k(x_1, x_2, \ldots, x_{k-1}, x_{k+1}, \ldots, x_d)$.

0000000000000000

4:28 Laufzeit 10/12

- Fasse die Nebenbedingung h als Gleichung auf.
- Löse h zu einer beliebigen Variablen x_k auf ($k \in \{1, 2, ..., d\}$).
- D.h. $x_k = s_k(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$.
- Ersetze jedes Auftreten von x_k durch $s_k(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$ in:
 - allen Nebenbedingungen aus $H \setminus \{h\}$,
 - in der Zielfunktion, und • in der Box-Bedingung für $h_k^- \leq x_k \leq h_k^+$:
 - $h_{i}^{-} \leq s_{k}(x_{1}, x_{2}, \dots, x_{k-1}, x_{k+1}, \dots, x_{d})$ und
 - $h_k^+ \geqslant s_k(x_1, x_2, \ldots, x_{k-1}, x_{k+1}, \ldots, x_d)$.
 - Nenne diese beiden letzten Bedingungen h' und h''.

0000000000000000

4:28 Laufzeit 11/12

- Fasse die Nebenbedingung h als Gleichung auf.
- Löse h zu einer beliebigen Variablen x_k auf ($k \in \{1, 2, ..., d\}$).
- D.h. $x_k = s_k(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$.
- Ersetze jedes Auftreten von x_k durch $s_k(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$ in:
 - allen Nebenbedingungen aus $H \setminus \{h\}$,
 - in der Zielfunktion, und
 - in der Box-Bedingung für $h_k^- \leq x_k \leq h_k^+$:
 - $h_k^- \leqslant s_k(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$ und
 - $h_k^+ \geqslant s_k(x_1, x_2, \ldots, x_{k-1}, x_{k+1}, \ldots, x_d)$.
 - Nenne diese beiden letzten Bedingungen h' und h''.
- Setze nun $H' = H \cup \{h', h''\} \setminus \{h\}$ und löse H' rekursiv.

0000000000000000

4:28 Laufzeit 12/12

- Fasse die Nebenbedingung h als Gleichung auf.
- Löse h zu einer beliebigen Variablen x_k auf $(k \in \{1, 2, ..., d\})$.
- D.h. $x_k = s_k(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$.
- Ersetze jedes Auftreten von x_k durch $s_k(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$ in:
 - allen Nebenbedingungen aus $H \setminus \{h\}$,
 - in der Zielfunktion, und
 - in der Box-Bedingung für $h_k^- \leq x_k \leq h_k^+$:
 - $h_k^- \leqslant s_k(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_d)$ und
 - $h_k^+ \geqslant s_k(x_1, x_2, \ldots, x_{k-1}, x_{k+1}, \ldots, x_d)$.
 - Nenne diese beiden letzten Bedingungen h' und h''.
- Setze nun $H' = H \cup \{h', h''\} \setminus \{h\}$ und löse H' rekursiv.
- Beachte: H' hat m+1 Nebenbedingungen, aber nur d-1 Variablen.

00000000000000	0000000000000000	0000000	000000000
4:29 Laufzeit 1/9		Walter Unger 22.11.2018 13:52	SS2015 RWTH
Data dal Calada A ()	2)		

Algorithmus von Seidel

Beispiel Schritt 4 (d = 3)

Einleitung zu LPs

d Variablen, m Nebenbedingungen, Dimentsion n

Ganzzahligkeit

Dualität

Dualität 000000 Ganzzahligkeit 000000000

Walter Unger 22.11.201813:52 SS2015 RWTH

Beispiel Schritt 4 (d = 3)

Nebenbedingungen:

$$0 \leqslant x, \quad x \leqslant 10$$

$$0 \leqslant y$$
, $y \leqslant 10$

$$0 \leqslant z, \quad z \leqslant 10$$

Ganzzahligkeit

Beispiel Schritt 4 (d = 3)

Nebenbedingungen:

$$0 \leqslant x$$
, $x \leqslant 10$

$$0 \leqslant y$$
, $y \leqslant 10$

$$0 \leqslant z$$
, $z \leqslant 10$

Beispiel Schritt 4 (d = 3)

Nebenbedingungen:

$$0 \leqslant x$$
, $x \leqslant 10$ $x + y + z \leqslant 25$

$$0 \leqslant y, \quad y \leqslant 10$$

$$0 \leqslant z, \quad z \leqslant 10$$

Gegeben seien die sechs einfachen Nebenbedingungen

Beispiel Schritt 4 (d = 3)

Nebenbedingungen:

 $0 \leqslant z$, $z \leqslant 10$

$$0 \le x$$
, $x \le 10$ $x + y + z \le 25$
 $0 \le y$, $y \le 10$

- Gegeben seien die sechs einfachen Nebenbedingungen
- Zu maximieren sei die Funktion $f(x, y, z) = 0.99 \cdot x + 0.974 \cdot y + z$.

Beispiel Schritt 4 (d = 3)

Nebenbedingungen:

$$0 \le x$$
, $x \le 10$ $x + y + z \le 25$
 $0 \le y$, $y \le 10$

$$0 \leqslant z, \quad z \leqslant 10$$

- Gegeben seien die sechs einfachen Nebenbedingungen
- Zu maximieren sei die Funktion $f(x, y, z) = 0.99 \cdot x + 0.974 \cdot y + z$.
- Das Maximum wird bei f(10, 10, 10) erreicht.

Beispiel Schritt 4 (d = 3)

Nebenbedingungen:

 $0 \leqslant z$, $z \leqslant 10$

$$0 \le x$$
, $x \le 10$ $x + y + z \le 25$
 $0 \le y$, $y \le 10$

- Gegeben seien die sechs einfachen Nebenbedingungen
- Zu maximieren sei die Funktion $f(x, y, z) = 0.99 \cdot x + 0.974 \cdot y + z$.
- Das Maximum wird bei f(10, 10, 10) erreicht.
- Die zusätzliche Nebenbedingung $x + y + z \le 25$ widerspricht diesem Maximum

Beispiel Schritt 4 (d = 3)

Nebenbedingungen:

 $0 \leqslant z$, $z \leqslant 10$

$$0 \le x$$
, $x \le 10$ $x + y + z \le 25$
 $0 \le y$, $y \le 10$

- Gegeben seien die sechs einfachen Nebenbedingungen
- Zu maximieren sei die Funktion $f(x, y, z) = 0.99 \cdot x + 0.974 \cdot y + z$.
- Das Maximum wird bei f(10, 10, 10) erreicht.
- Die zusätzliche Nebenbedingung $x + y + z \le 25$ widerspricht diesem Maximum
- Das neue Maximum liegt damit auf der blauen Fläche.

Beispiel Schritt 4 (d = 3)

Nebenbedingungen:

 $0 \leqslant z$, $z \leqslant 10$

$$0 \leqslant x, \quad x \leqslant 10 \quad x+y+z \leqslant 25$$

 $0 \leqslant y, \quad y \leqslant 10$

- Gegeben seien die sechs einfachen Nebenbedingungen
- Zu maximieren sei die Funktion $f(x, y, z) = 0.99 \cdot x + 0.974 \cdot y + z$.
- Das Maximum wird bei f(10, 10, 10) erreicht.
- Die zusätzliche Nebenbedingung $x + y + z \le 25$ widerspricht diesem Maximum
- Das neue Maximum liegt damit auf der blauen Fläche.
- Wir lösen nach z auf: z = 25 x y. Damit verbleibt:

$$0 \le x$$
, $x \le 10$, $x + y \le 25$ $f(x, y) = -0.01 \cdot x - 0.026 \cdot y + 25$
 $0 \le y$, $y \le 10$, $15 \le x + y$

Einleitung zu LPs Algorithmus von Seidel 000000000000000 0000000000000000 4:30 Laufzeit 1/12 Korrektheit

Ganzzahligkeit 0000000 000000000 Walter Unger 22.11.2018 13:52 SS2015 RWTH

Dualität

on Seidel Dualität
0000000 0000000
Walter Unger 22.11.2018 13:5:

Korrektheit

d Variablen, m Nebenbedingungen, Dimentsion n

Ganzzahligkeit

Dualität 0000000

Walter Unger 22.11.2018 13:52

Ganzzahligkeit 000000000 SS2015 RWTH

Korrektheit

d Variablen, m Nebenbedingungen, Dimentsion n

• Setze $k(d, m) = 2 \cdot d + m$.

Korrektheit

- Setze $k(d, m) = 2 \cdot d + m$.
- Pro rekursiven Aufruf wird k(d, m) um eins verringert.

Dualität 0000000 Ganzzahligkeit 000000000 SS2015 RWTH

Walter Unger 22.11.2018 13:52

Korrektheit

- Setze $k(d, m) = 2 \cdot d + m$.
- Pro rekursiven Aufruf wird k(d, m) um eins verringert.
- Bei spätestens k(d, m) = 3 terminiert das Verfahren mit:

Algorithmus von Seidel 000000000000000000 Dualität 0000000

Ganzzahligkeit SS2015 RWIH

Walter Unger 22.11.2018 13:52

Korrektheit

- Setze $k(d, m) = 2 \cdot d + m$.
- Pro rekursiven Aufruf wird k(d, m) um eins verringert.
- Bei spätestens k(d, m) = 3 terminiert das Verfahren mit: • d = 1 oder m = 0.

$$u = 1$$
 odel $m = 0$.

0000000000000000

- Setze $k(d, m) = 2 \cdot d + m$.
- Pro rekursiven Aufruf wird k(d, m) um eins verringert.
- Bei spätestens k(d, m) = 3 terminiert das Verfahren mit: • d = 1 oder m = 0.
- Falls h eine Nebenbedingung ist, die keinen Einfluss auf die optimale Lösung hat.

Korrektheit

Einleitung zu LPs

- Setze $k(d, m) = 2 \cdot d + m$.
- Pro rekursiven Aufruf wird k(d, m) um eins verringert.
- Bei spätestens k(d, m) = 3 terminiert das Verfahren mit: • d = 1 oder m = 0.
- Falls h eine Nebenbedingung ist, die keinen Einfluss auf die optimale Lösung hat.
 - Dann bestimmt der Algorithmus $opt(H \setminus \{h\})$ in Schritt 3.

d Variablen, m Nebenbedingungen, Dimentsion n

Dualität

0000000

Walter Unger 22.11.2018 13:52

- Setze $k(d, m) = 2 \cdot d + m$.
- Pro rekursiven Aufruf wird k(d, m) um eins verringert.
- Bei spätestens k(d, m) = 3 terminiert das Verfahren mit: • d = 1 oder m = 0
- Falls h eine Nebenbedingung ist, die keinen Einfluss auf die optimale Lösung hat.
- Dann bestimmt der Algorithmus $opt(H \setminus \{h\})$ in Schritt 3.
- Falls h eine Nebenbedingung ist, mit der sich die optimale Lösung schneidet.

0000000000000000

- Setze $k(d, m) = 2 \cdot d + m$.
- Pro rekursiven Aufruf wird k(d, m) um eins verringert.
- Bei spätestens k(d, m) = 3 terminiert das Verfahren mit: • d = 1 oder m = 0
- Falls h eine Nebenbedingung ist, die keinen Einfluss auf die optimale Lösung hat.
 - Dann bestimmt der Algorithmus $opt(H \setminus \{h\})$ in Schritt 3.
- Falls h eine Nebenbedingung ist, mit der sich die optimale Lösung schneidet.
 - Dann befindet sich die optimale Lösung auf der Hyperebene, die durch h beschrieben wird

0000000000000000

4:30 Laufzeit 11/12

- - Setze $k(d, m) = 2 \cdot d + m$.
 - Pro rekursiven Aufruf wird k(d, m) um eins verringert.
 - Bei spätestens k(d, m) = 3 terminiert das Verfahren mit:
 - d = 1 oder m = 0
 - Falls h eine Nebenbedingung ist, die keinen Einfluss auf die optimale Lösung hat.
 - Dann bestimmt der Algorithmus $opt(H \setminus \{h\})$ in Schritt 3.
 - Falls h eine Nebenbedingung ist, mit der sich die optimale Lösung schneidet.
 - Dann befindet sich die optimale Lösung auf der Hyperebene, die durch h beschrieben wird
 - Diese betrachtet der Algorithmus in Schritt 4.

Korrektheit

Einleitung zu LPs

d Variablen, m Nebenbedingungen, Dimentsion n 1. Falls d = 1 oder

- Setze $k(d, m) = 2 \cdot d + m$.
- Pro rekursiven Aufruf wird k(d, m) um eins verringert.
- Bei spätestens k(d, m) = 3 terminiert das Verfahren mit: • d = 1 oder m = 0
- Falls h eine Nebenbedingung ist, die keinen Einfluss auf die optimale Lösung hat.
 - Dann bestimmt der Algorithmus $opt(H \setminus \{h\})$ in Schritt 3.
- Falls h eine Nebenbedingung ist, mit der sich die optimale Lösung schneidet.
 - Dann befindet sich die optimale Lösung auf der Hyperebene, die durch h beschrieben wird
 - Diese betrachtet der Algorithmus in Schritt 4.

m = 0, so gebe opt(H) aus. 2. Ansonsten wähle $h \in H$ aus. und berechne $opt(H \setminus \{h\})$ rekursiv. 3. Falls $opt(H \setminus \{h\})$ die Nebenbedingung h nicht verletzt, so gebe $opt(H \setminus \{h\}) =$ opt(H) aus. 4. Ansonsten berechne den Schnitt mit der

Hyperebene h, und löse das so

entstandene

(d - 1)dimensionale LP rekursiv.

Einleitung zu LPs Algorithmus von Seidel Dualität Ganzzahligkeit 000000000000000 00000000000000000 0000000 000000000 Walter Unger 22.11.2018 13:52 4:31 Laufzeit 1/8 SS2015 RWTH

Laufzeit

d Variablen, m Nebenbedingungen, Dimentsion n

• Sei T(m, d) eine obere Schranke für die erwartete Laufzeit.

idel Dualität Ganzzahligkeit
00000 0000000

Walter Unger 22.11.201813:52 S52015 | TWTH

Laufzeit

- Sei T(m, d) eine obere Schranke für die erwartete Laufzeit.
- ullet Falls m>0 und d>1 ergibt sich folgende Abschätzung für die Laufzeiten der vier Schritte:

Einleitung zu LPs

4:31 Laufzeit 3/8

- Sei T(m, d) eine obere Schranke für die erwartete Laufzeit.
- Falls m > 0 und d > 1 ergibt sich folgende Abschätzung für die Laufzeiten der vier Schritte:
 - Schritt 1: $T_1 = O(1)$.

Einleitung zu LPs

4:31 Laufzeit 4/8

- Sei T(m, d) eine obere Schranke für die erwartete Laufzeit.
- Falls m > 0 und d > 1 ergibt sich folgende Abschätzung für die Laufzeiten der vier Schritte:
 - Schritt 1: $T_1 = O(1)$.
 - Schritt 2: $T_2 = T(m-1, d)$.

Algorithmus von Seidel 000000000000000000

Dualität Ganzzahligkeit 0000000 000000000 Walter Unger 22.11.2018 13:52 SS2015 RWTH

Laufzeit

- Sei T(m, d) eine obere Schranke für die erwartete Laufzeit.
- Falls m > 0 und d > 1 ergibt sich folgende Abschätzung für die Laufzeiten der vier Schritte:
 - Schritt 1: $T_1 = O(1)$. • Schritt 2: $T_2 = T(m-1, d)$.

 - Schritt 3: $T_3 = O(d)$.

Einleitung zu LPs

- Sei T(m, d) eine obere Schranke für die erwartete Laufzeit.
- Falls m > 0 und d > 1 ergibt sich folgende Abschätzung für die Laufzeiten der vier Schritte:
 - Schritt 1: $T_1 = O(1)$.
 - Schritt 2: $T_2 = T(m-1, d)$.
 - Schritt 3: $T_3 = O(d)$.
 - Schritt 4: $T_4 = T(m+1, d-1) + O(d \cdot m)$.

Einleitung zu LPs

0000000000000000

4:31 Laufzeit 7/8

- Sei T(m, d) eine obere Schranke für die erwartete Laufzeit.
- Falls m > 0 und d > 1 ergibt sich folgende Abschätzung für die Laufzeiten der vier Schritte:
 - Schritt 1: $T_1 = O(1)$.
 - Schritt 2: $T_2 = T(m-1, d)$.
 - Schritt 3: $T_3 = O(d)$.
 - Schritt 4: $T_4 = T(m+1, d-1) + O(d \cdot m)$.
- Dabei wird der Schritt 4 nicht immer ausgeführt.

Einleitung zu LPs

0000000000000000

4:31 Laufzeit 8/8

- Sei T(m, d) eine obere Schranke für die erwartete Laufzeit.
- Falls m > 0 und d > 1 ergibt sich folgende Abschätzung für die Laufzeiten der vier Schritte:
 - Schritt 1: $T_1 = O(1)$.
 - Schritt 2: $T_2 = T(m-1, d)$.
 - Schritt 3: $T_3 = O(d)$.
 - Schritt 4: $T_4 = T(m+1, d-1) + O(d \cdot m)$.
- Dabei wird der Schritt 4 nicht immer ausgeführt.
- Im Folgenden schätzen wir diese Wahrscheinlichkeit ab.

Einleitung zu LPs Algorithmus von Seidel 000000000000000 4:32 Laufzeit 1/10

Dualität Ganzzahligkeit 0000000

000000000 Walter Unger 22.11.2018 13:52 SS2015 RWTH

Aussage

d Variablen, m Nebenbedingungen, Dimentsion n

Lemma

Die Wahrscheinlichkeit, dass Schritt 4 ausgeführt wird, ist höchstens d/m.

 Dualität
 Ganzzahligkeit

 0000000
 000000000

 Walter Unger 22.11.2018 13:52
 SS2015
 RWTH

Aussage

d Variablen, m Nebenbedingungen, Dimentsion n

Lemma

Die Wahrscheinlichkeit, dass Schritt 4 ausgeführt wird, ist höchstens d/m.

Dualität 0000000 Ganzzahligkeit 000000000

Walter Unger 22.11.2018 13:52 SS2015 RWTH

Aussage

Lemma

d Variablen, m Nebenbedingungen, Dimentsion n

Die Wahrscheinlichkeit, dass Schritt 4 ausgeführt wird, ist höchstens d/m.

Beweis:

• Sei $x^* = opt(H)$.

Dualität Ganzzahligkeit Walter Unger 22.11.2018 13:52 SS2015 RWTH

Aussage

d Variablen, m Nebenbedingungen, Dimentsion n

Lemma

Die Wahrscheinlichkeit, dass Schritt 4 ausgeführt wird, ist höchstens d/m.

- Sei $x^* = opt(H)$.
- x^* ist damit auf dem Schnitt von d Hyperebenen.

Walter Unger 22.11.2018 13:52

Aussage

d Variablen, m Nebenbedingungen, Dimentsion n

Lemma

Die Wahrscheinlichkeit, dass Schritt 4 ausgeführt wird, ist höchstens d/m.

- Sei $x^* = opt(H)$.
- x^* ist damit auf dem Schnitt von d Hyperebenen.
- Diese d Hyperebenen sind Nebenbedingungen oder Box-Bedingungen.

Algorithmus von Seidel Dualität 0000000 Ganzzahligkeit

Walter Unger 22.11.2018 13:52

Aussage

d Variablen, m Nebenbedingungen, Dimentsion n

Lemma

Die Wahrscheinlichkeit, dass Schritt 4 ausgeführt wird, ist höchstens d/m.

- Sei $x^* = opt(H)$.
- x^* ist damit auf dem Schnitt von d Hyperebenen.
- Diese d Hyperebenen sind Nebenbedingungen oder Box-Bedingungen.
- Sei D eine Auswahl mit |D| = d dieser x^* bestimmenden Hyperebenen.

Aussage

Einleitung zu LPs

d Variablen, m Nebenbedingungen, Dimentsion n

Lemma

Die Wahrscheinlichkeit, dass Schritt 4 ausgeführt wird, ist höchstens d/m.

- Sei $x^* = opt(H)$.
- x^* ist damit auf dem Schnitt von d Hyperebenen.
- Diese d Hyperebenen sind Nebenbedingungen oder Box-Bedingungen.
- Sei D eine Auswahl mit |D| = d dieser x^* bestimmenden Hyperebenen.
- Damit gilt: $opt(D) = x^*$.

Dualität

0000000

Einleitung zu LPs

d Variablen, m Nebenbedingungen, Dimentsion n

Lemma

0000000000000000

4:32 Laufzeit 8/10

Die Wahrscheinlichkeit, dass Schritt 4 ausgeführt wird, ist höchstens d/m.

- Sei $x^* = opt(H)$.
- x^* ist damit auf dem Schnitt von d Hyperebenen.
- Diese d Hyperebenen sind Nebenbedingungen oder Box-Bedingungen.
- Sei D eine Auswahl mit |D| = d dieser x^* bestimmenden Hyperebenen.
- Damit gilt: $opt(D) = x^*$.
- Schritt 4 wird ausgeführt, falls $opt(H \setminus \{h\})$ die Nebenbedingung h verletzt.

Aussage

d Variablen, m Nebenbedingungen, Dimentsion n

Dualität

0000000

Walter Unger 22.11.2018 13:52

Lemma

Die Wahrscheinlichkeit, dass Schritt 4 ausgeführt wird, ist höchstens d/m.

- Sei $x^* = opt(H)$.
- x^* ist damit auf dem Schnitt von d Hyperebenen.
- Diese d Hyperebenen sind Nebenbedingungen oder Box-Bedingungen.
- Sei D eine Auswahl mit |D| = d dieser x^* bestimmenden Hyperebenen.
- Damit gilt: $opt(D) = x^*$.
- Schritt 4 wird ausgeführt, falls $opt(H \setminus \{h\})$ die Nebenbedingung h verletzt.
- D.h. Schritt 4 wird ausgeführt, falls $h \in D$.

Aussage

d Variablen, m Nebenbedingungen, Dimentsion n

Lemma

0000000000000000

Die Wahrscheinlichkeit, dass Schritt 4 ausgeführt wird, ist höchstens d/m.

- Sei $x^* = opt(H)$.
- x^* ist damit auf dem Schnitt von d Hyperebenen.
- Diese d Hyperebenen sind Nebenbedingungen oder Box-Bedingungen.
- Sei D eine Auswahl mit |D| = d dieser x^* bestimmenden Hyperebenen.
- Damit gilt: $opt(D) = x^*$.
- Schritt 4 wird ausgeführt, falls $opt(H \setminus \{h\})$ die Nebenbedingung h verletzt.
- D.h. Schritt 4 wird ausgeführt, falls h ∈ D.
- Damit ist die Wahrscheinlichkeit, dass Schritt 4 ausgeführt wird:

$$\mathbb{P}\mathsf{r}[h\in D] = \frac{|D\cap H|}{|H|} \leqslant \frac{d}{m}.$$

Abschätzung der Laufzeit

d Variablen, m Nebenbedingungen, Dimentsion n

• Im Falle m > 0 und d > 1 gilt: $T(m, d) = T_1 + T_2 + T_3 + \frac{d}{m} \cdot T_4$.

 Dualität
 Ganzzahligkeit

 0000000
 00000000

 Walter Unger 22.11.2018 13:52
 SS2015
 RWTH

Abschätzung der Laufzeit

- d Variablen, m Nebenbedingungen, Dimentsion n
- Im Falle m>0 und d>1 gilt: $T(m,d)=T_1+T_2+T_3+\frac{d}{m}\cdot T_4$.
- Unter Vernachlässigung der konstanten Faktoren:

0000000

Abschätzung der Laufzeit

Einleitung zu LPs

0000000000000000

4:33 Laufzeit 3/7

- d Variablen, m Nebenbedingungen, Dimentsion n • Im Falle m > 0 und d > 1 gilt: $T(m, d) = T_1 + T_2 + T_3 + \frac{d}{m} \cdot T_4$.
- Unter Vernachlässigung der konstanten Faktoren:
- Im Falle m > 0 und d > 1 gilt:

$$T(m,d) \leqslant T(m-1,d) + d^2 + \frac{d}{m} \cdot T(m+1,d-1).$$

Abschätzung der Laufzeit

Einleitung zu LPs

0000000000000000

4:33 Laufzeit 4/7

- d Variablen, m Nebenbedingungen, Dimentsion n • Im Falle m > 0 und d > 1 gilt: $T(m, d) = T_1 + T_2 + T_3 + \frac{d}{m} \cdot T_4$.
- Unter Vernachlässigung der konstanten Faktoren:
- Im Falle m > 0 und d > 1 gilt:

$$T(m,d) \leqslant T(m-1,d) + d^2 + \frac{d}{m} \cdot T(m+1,d-1).$$

• Im Falle m = 0 oder d = 1 gilt:

$$T(m,d) \leqslant d^2 + m.$$

0000000

Abschätzung der Laufzeit

Einleitung zu LPs

0000000000000000

Laufzeit 5/7

- d Variablen, m Nebenbedingungen, Dimentsion n • Im Falle m > 0 und d > 1 gilt: $T(m, d) = T_1 + T_2 + T_3 + \frac{d}{m} \cdot T_4$.
- Unter Vernachlässigung der konstanten Faktoren:
- Im Falle m > 0 und d > 1 gilt:

$$T(m,d) \leqslant T(m-1,d) + d^2 + \frac{d}{m} \cdot T(m+1,d-1).$$

• Im Falle m=0 oder d=1 gilt:

$$T(m,d) \leqslant d^2 + m.$$

• Wir definieren nun f(1) = 1 und für d > 1:

$$f(d) = d \cdot f(d-1) + 3 \cdot d^3$$

Abschätzung der Laufzeit

Einleitung zu LPs

0000000000000000

Laufzeit 6/7

- $_{d}$ Variablen, $_{m}$ Nebenbedingungen, Dimentsion $_{n}$ $_{d}$ Im Falle $_{d}$ $_{d}$ 0 und $_{d}$ $_{d}$ 1 gilt: $_{d}$ $_{d}$
- Unter Vernachlässigung der konstanten Faktoren:
- Im Falle m > 0 und d > 1 gilt:

$$T(m,d) \leqslant T(m-1,d) + d^2 + \frac{d}{m} \cdot T(m+1,d-1).$$

• Im Falle m = 0 oder d = 1 gilt:

$$T(m,d) \leqslant d^2 + m.$$

• Wir definieren nun f(1) = 1 und für d > 1:

$$f(d) = d \cdot f(d-1) + 3 \cdot d^3$$

Damit gilt:

$$f(d) = d! + \sum_{i=1}^{d} 3 \cdot k^{3} \cdot \frac{d!}{(k-1)!} = O(d!).$$

Abschätzung der Laufzeit

Einleitung zu LPs

Laufzeit 7/7

- d Variablen, m Nebenbedingungen, Dimentsion n • Im Falle m > 0 und d > 1 gilt: $T(m, d) = T_1 + T_2 + T_3 + \frac{d}{m} \cdot T_4$.
- Unter Vernachlässigung der konstanten Faktoren:
- Im Falle m > 0 und d > 1 gilt:

$$T(m,d) \leqslant T(m-1,d) + d^2 + \frac{d}{m} \cdot T(m+1,d-1).$$

• Im Falle m=0 oder d=1 gilt:

$$T(m,d) \leqslant d^2 + m.$$

• Wir definieren nun f(1) = 1 und für d > 1:

$$f(d) = d \cdot f(d-1) + 3 \cdot d^3$$

Damit gilt:

$$f(d) = d! + \sum_{k=2}^{d} 3 \cdot k^{3} \cdot \frac{d!}{(k-1)!} = O(d!).$$

• Denn $\sum_{k=2}^{d} \frac{3 \cdot k^3}{(k-1)!}$ ist durch Konstante beschränkt.

000000000 Walter Unger 22.11.2018 13:52

SS2015 RWITH

Ganzzahligkeit

Finale Abschätzung der Laufzeit

d Variablen, m Nebenbedingungen, Dimentsion n

Lemma

Es gilt: $T(m, d) \leq (m-1) \cdot f(d) + 2 \cdot d^2$.

Beweis:

000000000 Walter Unger 22.11.2018 13:52

SS2015 RWITH

Ganzzahligkeit

Finale Abschätzung der Laufzeit

d Variablen, m Nebenbedingungen, Dimentsion n

Lemma

Es gilt: $T(m, d) \leq (m-1) \cdot f(d) + 2 \cdot d^2$.

Beweis:

Finale Abschätzung der Laufzeit

d Variablen, m Nebenbedingungen, Dimentsion n

Lemma

Es gilt:
$$T(m, d) \leq (m-1) \cdot f(d) + 2 \cdot d^2$$
.

Beweis:

$$T(m,d) \leq d^2 + 1 \leq (m-1) \cdot f(d) + 2 \cdot d^2$$
.

Lemma

0000000000000000

4:34 Laufzeit 4/9

Einleitung zu LPs

d Variablen, m Nebenbedingungen, Dimentsion n

Es gilt: $T(m,d) \leq (m-1) \cdot f(d) + 2 \cdot d^2$.

Beweis:

• Induktionsanfang: m = 1

$$T(m,d) \leqslant d^2 + 1 \leqslant (m-1) \cdot f(d) + 2 \cdot d^2.$$

$$T(m,d) \leqslant m+1 \leqslant (m-1) \cdot f(d) + 2 \cdot d^2.$$

d Variablen, m Nebenbedingungen, Dimentsion n

Lemma

0000000000000000

4:34 Laufzeit 5/9

Einleitung zu LPs

Es gilt:
$$T(m, d) \leq (m-1) \cdot f(d) + 2 \cdot d^2$$
.

Beweis:

• Induktionsanfang: m = 1

$$T(m,d) \leq d^2 + 1 \leq (m-1) \cdot f(d) + 2 \cdot d^2.$$

• Induktionsanfang: d = 1

$$T(m,d) \leqslant m+1 \leqslant (m-1) \cdot f(d) + 2 \cdot d^2.$$

Für den Induktionsschritt setzen wir:

0000000

Finale Abschätzung der Laufzeit

Lemma

Einleitung zu LPs

0000000000000000

4:34 Laufzeit 6/9

Es gilt: $T(m,d) \leq (m-1) \cdot f(d) + 2 \cdot d^2$.

Beweis:

• Induktionsanfang: m = 1

$$T(m,d) \leqslant d^2 + 1 \leqslant (m-1) \cdot f(d) + 2 \cdot d^2.$$

$$T(m,d) \leqslant m+1 \leqslant (m-1) \cdot f(d) + 2 \cdot d^2.$$

- Für den Induktionsschritt setzen wir:
 - $k = 2 \cdot d + m$

d Variablen, m Nebenbedingungen, Dimentsion n

Finale Abschätzung der Laufzeit

Beweis:

Es gilt: $T(m,d) \leq (m-1) \cdot f(d) + 2 \cdot d^2$.

• Induktionsanfang: m = 1

$$T(m,d) \leq d^2 + 1 \leq (m-1) \cdot f(d) + 2 \cdot d^2$$
.

$$T(m,d) \leqslant m+1 \leqslant (m-1) \cdot f(d) + 2 \cdot d^2.$$

- Für den Induktionsschritt setzen wir:
 - $k = 2 \cdot d + m$
 - Es sei nun $m \ge 2$ und $d \ge 2$.

d Variablen, m Nebenbedingungen, Dimentsion n

Lemma

0000000000000000

4:34 Laufzeit 8/9

Einleitung zu LPs

Es gilt:
$$T(m, d) \leq (m-1) \cdot f(d) + 2 \cdot d^2$$
.

Beweis:

Induktionsanfang: m = 1

$$T(m,d) \leqslant d^2 + 1 \leqslant (m-1) \cdot f(d) + 2 \cdot d^2.$$

$$T(m,d) \leqslant m+1 \leqslant (m-1) \cdot f(d) + 2 \cdot d^2.$$

- Für den Induktionsschritt setzen wir:
 - $k = 2 \cdot d + m$
 - Es sei nun $m \ge 2$ und $d \ge 2$.
 - Behauptung sei gezeigt für alle d' und m' mit $2 \cdot d' + m' < k$.

Finale Abschätzung der Laufzeit

d Variablen, m Nebenbedingungen, Dimentsion n

Dualität

0000000

Lemma

Es gilt:
$$T(m, d) \leq (m-1) \cdot f(d) + 2 \cdot d^2$$
.

Beweis:

Induktionsanfang: m = 1

$$T(m,d) \leqslant d^2 + 1 \leqslant (m-1) \cdot f(d) + 2 \cdot d^2.$$

$$T(m,d) \leqslant m+1 \leqslant (m-1) \cdot f(d) + 2 \cdot d^2.$$

- Für den Induktionsschritt setzen wir:
 - $k = 2 \cdot d + m$
 - Es sei nun $m \ge 2$ und $d \ge 2$.
 - Behauptung sei gezeigt für alle d' und m' mit $2 \cdot d' + m' < k$.
 - Also auch für (m-1, d) und (m+1, d-1).

Ganzzahligkeit 000000000

Walter Unger 22.11.201813:52 SS2015 RWTH

$$T(m, d) \leqslant (m - \mathbf{1}) \cdot f(d) + \mathbf{2} \cdot d^{\mathbf{2}}$$

 $f(d) = d \cdot f(d - \mathbf{1}) + \mathbf{3} \cdot d^{\mathbf{3}}$

$$T(m,d) \leq T(m-1,d) + d^2 + \frac{d}{m} \cdot T(m+1,d-1)$$

Ganzzahligkeit

Walter Unger 22.11.2018 13:52 SS2015 RWTH

$$T(m, d) \leqslant (m - \mathbf{1}) \cdot f(d) + \mathbf{2} \cdot d^{\mathbf{2}}$$
$$f(d) = d \cdot f(d - \mathbf{1}) + \mathbf{3} \cdot d^{\mathbf{3}}$$

$$\begin{array}{ll} T(m,d) & \leqslant & T(m-1,d) + d^2 + \frac{d}{m} \cdot T(m+1,d-1) \\ & \leqslant & (m-2) \cdot f(d) + 2 \cdot d^2 + d^2 + \frac{d}{m} \cdot T(m+1,d-1) \end{array}$$

Ganzzahligkeit 000000000

Walter Unger 22.11.2018 13:52 SS2015 **RWTH**

$$T(m, d) \leqslant (m - \mathbf{1}) \cdot f(d) + 2 \cdot d^{2}$$
$$f(d) = d \cdot f(d - \mathbf{1}) + 3 \cdot d^{3}$$

$$T(m,d) \leq T(m-1,d) + d^2 + \frac{d}{m} \cdot T(m+1,d-1) \leq (m-2) \cdot f(d) + 2 \cdot d^2 + d^2 + \frac{d}{m} \cdot T(m+1,d-1) \leq (m-2) \cdot f(d) + 3 \cdot d^2 + \frac{d}{m} \cdot m \cdot f(d-1) + 2 \cdot (d-1)^2$$

Ganzzahligkeit 000000000

Walter Unger 22.11.2018 13:52 SS2015 **RWTH**

$$T(m, d) \leqslant (m - \mathbf{1}) \cdot f(d) + \mathbf{2} \cdot d^{\mathbf{2}}$$

 $f(d) = d \cdot f(d - \mathbf{1}) + \mathbf{3} \cdot d^{\mathbf{3}}$

$$\begin{array}{lll} T(m,d) & \leqslant & T(m-1,d) + d^2 + \frac{d}{m} \cdot T(m+1,d-1) \\ & \leqslant & (m-2) \cdot f(d) + 2 \cdot d^2 + d^2 + \frac{d}{m} \cdot T(m+1,d-1) \\ & \leqslant & (m-2) \cdot f(d) + 3 \cdot d^2 + \frac{d}{m} \cdot m \cdot f(d-1) + 2 \cdot (d-1)^2 \\ & \leqslant & (m-2) \cdot f(d) + 3 \cdot d^2 + \frac{d}{m} \cdot m \cdot f(d-1) + 2 \cdot d^2 \end{array}$$

Walter Unger 22.11.2018 13:52 SS2015 🖪

$$T(m, d) \leqslant (m - \mathbf{1}) \cdot f(d) + \mathbf{2} \cdot d^{\mathbf{2}}$$

 $f(d) = d \cdot f(d - \mathbf{1}) + \mathbf{3} \cdot d^{\mathbf{3}}$

$$\begin{array}{lll} T(m,d) & \leqslant & T(m-1,d) + d^2 + \frac{d}{m^2} \cdot T(m+1,d-1) \\ & \leqslant & (m-2) \cdot f(d) + 2 \cdot d^2 + d^2 + \frac{d}{m} \cdot T(m+1,d-1) \\ & \leqslant & (m-2) \cdot f(d) + 3 \cdot d^2 + \frac{d}{m} \cdot m \cdot f(d-1) + 2 \cdot (d-1)^2 \\ & \leqslant & (m-2) \cdot f(d) + 3 \cdot d^2 + \frac{d}{m} \cdot m \cdot f(d-1) + 2 \cdot d^2 \\ & = & (m-2) \cdot f(d) + 3 \cdot d^2 + d \cdot \frac{f(d) - 3 \cdot d^3}{d} + 2 \cdot d^2 \end{array}$$

 Ganzzahligkeit

Walter Unger 22.11.2018 13:52 SS2015 RWTH

$$T(m, d) \leqslant (m - \mathbf{1}) \cdot f(d) + \mathbf{2} \cdot d^{\mathbf{2}}$$
$$f(d) = d \cdot f(d - \mathbf{1}) + \mathbf{3} \cdot d^{\mathbf{3}}$$

$$T(m,d) \leq T(m-1,d) + d^2 + \frac{d}{m} \cdot T(m+1,d-1)$$

$$\leq (m-2) \cdot f(d) + 2 \cdot d^2 + d^2 + \frac{d}{m} \cdot T(m+1,d-1)$$

$$\leq (m-2) \cdot f(d) + 3 \cdot d^2 + \frac{d}{m} \cdot m \cdot f(d-1) + 2 \cdot (d-1)^2$$

$$\leq (m-2) \cdot f(d) + 3 \cdot d^2 + \frac{d}{m} \cdot m \cdot f(d-1) + 2 \cdot d^2$$

$$= (m-2) \cdot f(d) + 3 \cdot d^2 + d \cdot \frac{f(d) - 3 \cdot d^3}{d} + 2 \cdot d^2$$

$$= (m-2) \cdot f(d) + 3 \cdot d^2 + f(d) - 3 \cdot d^3 + 2 \cdot d^2$$

0000000000000000

4:35 Laufzeit 7/7

$$\begin{array}{lll} T(m,d) & \leqslant & T(m-1,d) + d^2 + \frac{d}{m^2} \cdot T(m+1,d-1) \\ & \leqslant & (m-2) \cdot f(d) + 2 \cdot d^2 + d^2 + \frac{d}{m} \cdot T(m+1,d-1) \\ & \leqslant & (m-2) \cdot f(d) + 3 \cdot d^2 + \frac{d}{m} \cdot m \cdot f(d-1) + 2 \cdot (d-1)^2 \\ & \leqslant & (m-2) \cdot f(d) + 3 \cdot d^2 + \frac{d}{m} \cdot m \cdot f(d-1) + 2 \cdot d^2 \\ & = & (m-2) \cdot f(d) + 3 \cdot d^2 + d \cdot \frac{f(d) - 3 \cdot d^3}{d} + 2 \cdot d^2 \\ & = & (m-2) \cdot f(d) + 3 \cdot d^2 + f(d) - 3 \cdot d^3 + 2 \cdot d^2 \\ & \leqslant & (m-1) \cdot f(d) + 2 \cdot d^2 \end{array}$$

Aussage

Theorem

Der Algorithmus von Seidel löst ein zulässiges d-dimensionales LP mit m Nebenbedingungen in erwarteter Laufzeit von $O(m \cdot d!)$.

Algorithmus von Seidel 00000000000000000 Dualität 0000000 Ganzzahligkeit

Walter Unger 22.11.2018 13:52 SS2015 RWTH

Aussage

Theorem

Der Algorithmus von Seidel löst ein zulässiges d-dimensionales LP mit m Nebenbedingungen in erwarteter Laufzeit von $O(m \cdot d!)$.

• Ist d konstant, so ist die erwartete Laufzeit O(m).

Ganzzahligkeit 000000000

Walter Unger 22.11.2018 13:52 SS2015 RWTH

Aussage

Theorem

Der Algorithmus von Seidel löst ein zulässiges d-dimensionales LP mit m Nebenbedingungen in erwarteter Laufzeit von $O(m \cdot d!)$.

- Ist d konstant, so ist die erwartete Laufzeit O(m).
- Ist d > 10 so ist die Konstante aber ein wenig unpraktisch.

 Dualität
 Ganzzahligkeit

 ●000000
 000000000

 Walter Unger 22.11.2018 13:52
 SS2015
 RWTH

Beispiel

• Maximiere: $5 \cdot x_1 + 7 \cdot x_2$ unter den Nebenbedingungen:

$$x_1 + 4 \cdot x_2 \leq 4$$
, $x_1 + x_2 \leq 2$, und $x_1, x_2 \geq 0$.

Einleitung 2/6

Einleitung zu LPs

• Maximiere: $5 \cdot x_1 + 7 \cdot x_2$ unter den Nebenbedingungen:

$$x_1 + 4 \cdot x_2 \leqslant 4$$
, $x_1 + x_2 \leqslant 2$, und $x_1, x_2 \geqslant 0$.

• Einfache obere Schranke: $5 \cdot x_1 + 17 \cdot x_2 \le 18$, gewonnen aus:

$$4 \cdot (x_1 + 4 \cdot x_2 \leqslant 4)$$
 plus $x_1 + x_2 \leqslant 2$.

Einleitung 3/6

• Maximiere: $5 \cdot x_1 + 7 \cdot x_2$ unter den Nebenbedingungen:

$$x_1 + 4 \cdot x_2 \leq 4$$
, $x_1 + x_2 \leq 2$, und $x_1, x_2 \geq 0$.

• Einfache obere Schranke: $5 \cdot x_1 + 17 \cdot x_2 \le 18$, gewonnen aus:

$$4 \cdot (x_1 + 4 \cdot x_2 \leqslant 4)$$
 plus $x_1 + x_2 \leqslant 2$.

• Weitere einfache obere Schranke: $5 \cdot x_1 + 11 \cdot x_2 \le 14$, gewonnen aus:

$$2 \cdot (x_1 + 4 \cdot x_2 \leqslant 4)$$
 plus $3 \cdot (x_1 + x_2 \leqslant 2)$.

Beispiel

• Maximiere: $5 \cdot x_1 + 7 \cdot x_2$ unter den Nebenbedingungen:

$$x_1 + 4 \cdot x_2 \leq 4$$
, $x_1 + x_2 \leq 2$, and $x_1, x_2 \geq 0$.

• Einfache obere Schranke: $5 \cdot x_1 + 17 \cdot x_2 \le 18$, gewonnen aus:

$$4 \cdot (x_1 + 4 \cdot x_2 \leqslant 4)$$
 plus $x_1 + x_2 \leqslant 2$.

• Weitere einfache obere Schranke: $5 \cdot x_1 + 11 \cdot x_2 \le 14$, gewonnen aus:

$$2 \cdot (x_1 + 4 \cdot x_2 \leqslant 4)$$
 plus $3 \cdot (x_1 + x_2 \leqslant 2)$.

• Rezept für obere Schranke: Bestimme y_1, y_2 mit $y_1 + y_2 \ge 5$ und $4 \cdot y_1 + y_2 \geqslant 7$ und addiere:

$$y_1 \cdot x_1 + y_1 \cdot 4 \cdot x_2 \leq y_1 \cdot 4$$
 plus $y_2 \cdot x_1 + y_2 \cdot x_2 \leq y_2 \cdot 2$.

Einleitung 5/6

Beispiel

• Maximiere: $5 \cdot x_1 + 7 \cdot x_2$ unter den Nebenbedingungen:

$$x_1 + 4 \cdot x_2 \leq 4$$
, $x_1 + x_2 \leq 2$, und $x_1, x_2 \geq 0$.

• Einfache obere Schranke: $5 \cdot x_1 + 17 \cdot x_2 \le 18$, gewonnen aus:

$$4 \cdot (x_1 + 4 \cdot x_2 \leqslant 4)$$
 plus $x_1 + x_2 \leqslant 2$.

• Weitere einfache obere Schranke: $5 \cdot x_1 + 11 \cdot x_2 \le 14$, gewonnen aus:

$$2 \cdot (x_1 + 4 \cdot x_2 \leqslant 4)$$
 plus $3 \cdot (x_1 + x_2 \leqslant 2)$.

• Rezept für obere Schranke: Bestimme y_1, y_2 mit $y_1 + y_2 \ge 5$ und $4 \cdot y_1 + y_2 \geqslant 7$ und addiere:

$$y_1 \cdot x_1 + y_1 \cdot 4 \cdot x_2 \leq y_1 \cdot 4$$
 plus $y_2 \cdot x_1 + y_2 \cdot x_2 \leq y_2 \cdot 2$.

• Damit haben wir ein Ungleichungssystem zum Bestimmen einer kleinsten oberen Schranke, d.h.:

Einleitung 6/6

• Maximiere: $5 \cdot x_1 + 7 \cdot x_2$ unter den Nebenbedingungen:

$$x_1 + 4 \cdot x_2 \leq 4$$
, $x_1 + x_2 \leq 2$, und $x_1, x_2 \geq 0$.

• Einfache obere Schranke: $5 \cdot x_1 + 17 \cdot x_2 \le 18$, gewonnen aus:

$$4 \cdot (x_1 + 4 \cdot x_2 \leqslant 4)$$
 plus $x_1 + x_2 \leqslant 2$.

• Weitere einfache obere Schranke: $5 \cdot x_1 + 11 \cdot x_2 \le 14$, gewonnen aus:

$$2 \cdot (x_1 + 4 \cdot x_2 \leqslant 4)$$
 plus $3 \cdot (x_1 + x_2 \leqslant 2)$.

• Rezept für obere Schranke: Bestimme y_1, y_2 mit $y_1 + y_2 \ge 5$ und $4 \cdot y_1 + y_2 \geqslant 7$ und addiere:

$$y_1 \cdot x_1 + y_1 \cdot 4 \cdot x_2 \leq y_1 \cdot 4$$
 plus $y_2 \cdot x_1 + y_2 \cdot x_2 \leq y_2 \cdot 2$.

- Damit haben wir ein Ungleichungssystem zum Bestimmen einer kleinsten oberen Schranke. d.h.:
- Minimiere $4 \cdot y_1 + 2 \cdot y_2$ unter den Nebenbedingungen:

$$y_1 + y_2 \ge 5$$
, $4 \cdot y_1 + y_2 \ge 7$, und $y_1, y_2 \ge 0$.

Definition

Einleitung 1/3

Gegeben sei ein LP (im Weiteren das primale LP) mit n Variablen und m Nebenbedingungen in kanonischer Form:

Maximiere
$$c^T x$$
 unter $Ax \leq b$, $x \geq 0$.

Das duale LP hat m Variablem und n Nebenbedingungen und die Form:

Minimiere
$$y^T b$$
 unter $y^T A \geqslant c^T$, $y \geqslant 0$.

Äquivalente Schreibweise: Minimiere $b^T y$ unter $A^T y \ge c$, $y \ge 0$.

Einleitung zu LPs

Definition

Einleitung 2/3

Gegeben sei ein LP (im Weiteren das primale LP) mit n Variablen und m Nebenbedingungen in kanonischer Form:

Maximiere
$$c^T x$$
 unter $Ax \leq b$, $x \geq 0$.

Das duale LP hat *m* Variablem und *n* Nebenbedingungen und die Form:

Minimiere
$$y^T b$$
 unter $y^T A \geqslant c^T$, $y \geqslant 0$.

Äquivalente Schreibweise: Minimiere $b^T y$ unter $A^T y \ge c$, $y \ge 0$.

• Aus den n Variablen des primalen LP werden n Nebenbedingungen des dualen I Ps.

Definition

Einleitung 3/3

Gegeben sei ein LP (im Weiteren das primale LP) mit n Variablen und m Nebenbedingungen in kanonischer Form:

Maximiere
$$c^T x$$
 unter $Ax \leq b$, $x \geq 0$.

Das duale LP hat m Variablem und n Nebenbedingungen und die Form:

Minimiere
$$y^T b$$
 unter $y^T A \geqslant c^T$, $y \geqslant 0$.

Äquivalente Schreibweise: Minimiere $b^T y$ unter $A^T y \ge c$, $y \ge 0$.

- Aus den n Variablen des primalen LP werden n Nebenbedingungen des dualen I Ps.
- Aus den m Nebenbedingungen des primalen LP werden m Variablen des dualen LPs.

mus von Seidel

Dualität 00●0000 Ganzzahligkeit 00000000 SS2015 RWTH

Walter Unger 22.11.201813:52 SS2015 R

Dual von Dual

Theorem

Das duale LP des dualen LP ist das primale LP.

Beweis:

Algorithmus von Seidel

Dualität 0000000

Ganzzahligkeit SS2015 RWIH

Walter Unger 22.11.2018 13:52

Dual von Dual

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

Theorem

Das duale LP des dualen LP ist das primale LP.

Beweis:

Walter Unger 22.11.2018 13:52 SS2015

Dualität

0000000

4:39 Aussagen 3/7 Dual von Dual

Einleitung zu LPs

 $\mathbf{primal}\colon c^{T}\mathbf{x}:A\mathbf{x}\leqslant b,\mathbf{x}\geqslant\mathbf{0},\,\mathbf{dual}\colon b^{T}\mathbf{y}:A^{T}\mathbf{y}\geqslant c,\mathbf{y}\geqslant\mathbf{0}$

Theorem

Das duale LP des dualen LP ist das primale LP.

Beweis:

Primale LP:

Maximiere $c^T x$ unter $Ax \leq b$, $x \geq 0$.

0000000

Einleitung zu LPs

Dual von Dual

primal: $c^T x : Ax \leqslant b, x \geqslant \mathbf{0}$, dual: $b^T y : A^T y \geqslant c, y \geqslant \mathbf{0}$

Theorem

Das duale LP des dualen LP ist das primale LP.

- Primale LP:
 Maximiere c^Tx unter Ax ≤ b, x ≥ 0.
- Duale LP: Minimiere $b^T y$ unter $A^T y \ge c$, $y \ge 0$.

0000000

Einleitung zu LPs

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

Theorem

Das duale LP des dualen LP ist das primale LP.

- Primale I P: Maximiere $c^T x$ unter $Ax \leq b$, $x \geq 0$.
- Duale I P: Minimiere $b^T y$ unter $A^T y \ge c$, $y \ge 0$.
- Duale LP in kanonischer Form: Maximiere $-b^T y$ unter $-A^T y \leqslant -c$, $y \geqslant 0$.

Dual von Dual

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

Theorem

Das duale LP des dualen LP ist das primale LP.

- Primale I P: Maximiere $c^T x$ unter $Ax \leq b$, $x \geq 0$.
- Duale I P: Minimiere $b^T y$ unter $A^T y \ge c$, $y \ge 0$.
- Duale LP in kanonischer Form: Maximiere $-b^T y$ unter $-A^T y \leq -c$, $y \geq 0$.
- Davon wieder das duale LP: Minimiere $-c^T x$ unter $-Ax \ge -b$, $x \ge 0$.

Aussagen 7/7 Dual von Dual

Einleitung zu LPs

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

$\mathsf{Theorem}$

Das duale LP des dualen LP ist das primale LP.

- Primale I P: Maximiere $c^T x$ unter $Ax \leq b$, $x \geq 0$.
- Duale I P: Minimiere $b^T y$ unter $A^T y \ge c$, $y \ge 0$.
- Duale LP in kanonischer Form: Maximiere $-b^T y$ unter $-A^T y \leq -c$, $y \geq 0$.
- Davon wieder das duale LP: Minimiere $-c^T x$ unter $-Ax \ge -b$, $x \ge 0$.
- Das wieder in kanonische Form gebracht: Maximiere $c^T x$ unter $Ax \leq b$, $x \geq 0$.

Dualität 000●000

Walter Unger 22.11.2018 13:52

Ganzzahligkeit 000000000 SS2015 RWTH

Schwaches Dualitätsprinzip

primal: $c^T x : Ax \leq b, x \geqslant \mathbf{0}$, dual: $b^T y : A^T y \geqslant c, y \geqslant \mathbf{0}$

Theorem

Sei x eine zulässige Lösung für das primale LP und sei y eine zulässige Lösung für das duale LP. Dann gilt $y^T \cdot b \geqslant x^T \cdot x$.

Walter Unger 22.11.2018 13:52 SS2015 RWTH

Ganzzahligkeit

Schwaches Dualitätsprinzip

primal: $c^T x : Ax \leq b, x \geqslant 0$, dual: $b^T y : A^T y \geqslant c, y \geqslant 0$

Theorem

Sei x eine zulässige Lösung für das primale LP und sei y eine zulässige Lösung für das duale LP. Dann gilt $y^T \cdot b \geqslant x^T \cdot x$.

0000000

Schwaches Dualitätsprinzip

primal:
$$c^T x : Ax \leq b, x \geqslant \mathbf{0}$$
, dual: $b^T y : A^T y \geqslant c, y \geqslant \mathbf{0}$

Theorem

Einleitung zu LPs

4:40 Aussagen 3/7

Sei x eine zulässige Lösung für das primale LP und sei y eine zulässige Lösung für das duale LP. Dann gilt $y^T \cdot b \ge x^T \cdot x$.

Beweis:

• Aus der Zulässigkeit folgt jeweils: $x \ge 0$ und $y^T A \ge c^T$.

Theorem

Einleitung zu LPs

4:40 Aussagen 4/7

Sei x eine zulässige Lösung für das primale LP und sei y eine zulässige Lösung für das duale LP. Dann gilt $y^T \cdot b \ge x^T \cdot x$.

- Aus der Zulässigkeit folgt jeweils: $x \ge 0$ und $v^T A \ge c^T$.
- Damit folgt: $c^T x \leq y^T A x$.

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

Theorem

Einleitung zu LPs

4:40 Aussagen 5/7

Sei x eine zulässige Lösung für das primale LP und sei y eine zulässige Lösung für das duale LP. Dann gilt $y^T \cdot b \ge x^T \cdot x$.

- Aus der Zulässigkeit folgt jeweils: $x \ge 0$ und $v^T A \ge c^T$.
- Damit folgt: $c^T x \leq y^T A x$.
- Weiter folgt aus der Zulässigkeit: $v \ge 0$ und $Ax \le b$.

Einleitung zu LPs

Schwaches Dualitätsprinzip

primal: $c^T x : Ax \leq b, x \geqslant \mathbf{0}$, dual: $b^T y : A^T y \geqslant c, y \geqslant \mathbf{0}$

Theorem

Sei x eine zulässige Lösung für das primale LP und sei y eine zulässige Lösung für das duale LP. Dann gilt $y^T \cdot b \geqslant x^T \cdot x$.

- Aus der Zulässigkeit folgt jeweils: $x \ge 0$ und $y^T A \ge c^T$.
- Damit folgt: $c^T x \leq y^T A x$.
- Weiter folgt aus der Zulässigkeit: $y \ge 0$ und $Ax \le b$.
- Damit folgt: $y^T A x \leqslant y^T b$.

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

Theorem

Aussagen 7/7

Einleitung zu LPs

Sei x eine zulässige Lösung für das primale LP und sei y eine zulässige Lösung für das duale LP. Dann gilt $y^T \cdot b \ge x^T \cdot x$.

- Aus der Zulässigkeit folgt jeweils: $x \ge 0$ und $v^T A \ge c^T$.
- Damit folgt: $c^T x \leq v^T A x$.
- Weiter folgt aus der Zulässigkeit: $v \ge 0$ und $Ax \le b$.
- Damit folgt: $y^T A x \leq y^T b$.
- Damit gilt: $c^T x \leq v^T A x \leq v^T b$.

Dualität Ganzzahligkeit 0000000 Walter Unger 22.11.2018 13:52 SS2015 RWIH

Starkes Dualitätsprinzip

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

Theorem

Einleitung zu LPs

4:41 Aussagen 1/4

Sei x^* eine optimale Lösung für das primale LP und sei y^* eine optimale Lösung für das duale LP. Dann gilt $y^T \cdot b = x^T \cdot x$.

Beweis (siehe Script):

Starkes Dualitätsprinzip

primal: $c^T x : Ax \leq b, x \geqslant \mathbf{0}$, dual: $b^T y : A^T y \geqslant c, y \geqslant \mathbf{0}$

Theorem

Einleitung zu LPs

Sei x^* eine optimale Lösung für das primale LP und sei y^* eine optimale Lösung für das duale LP. Dann gilt $y^T \cdot b = x^T \cdot x$.

Beweis (siehe Script):

0000000

Starkes Dualitätsprinzip

primal:
$$c^T x : Ax \leq b, x \geqslant 0$$
, dual: $b^T y : A^T y \geqslant c, y \geqslant 0$

Theorem

Einleitung zu LPs

4:41 Aussagen 3/4

Sei x^* eine optimale Lösung für das primale LP und sei y^* eine optimale Lösung für das duale LP. Dann gilt $y^T \cdot b = x^T \cdot x$.

Beweis (siehe Script):

Der Beweis ist sogar konstruktiv.

0000000

primal: $c^T x : Ax \leq b, x \geqslant 0$, dual: $b^T y : A^T y \geqslant c, y \geqslant 0$

Theorem

Einleitung zu LPs

4:41 Aussagen 4/4

Sei x^* eine optimale Lösung für das primale LP und sei y^* eine optimale Lösung für das duale LP. Dann gilt $y^T \cdot b = x^T \cdot x$.

Beweis (siehe Script):

- Der Beweis ist sogar konstruktiv.
- D.h. eine "primale Lösung" kann in polynomieller Zeit in eine "duale Lösung" überführt werden.

Dualität 00000●0 Ganzzahligkeit 000000000

Walter Unger 22.11.2018 13:52 SS2015 RWTH

Flussproblem als LP

nach t.

primal: $c^Tx: Ax \leqslant b, x \geqslant \mathbf{0}$, dual: $b^Ty: A^Ty \geqslant c, y \geqslant \mathbf{0}$

• Gegeben G = (V, E, s, t, c). Sei $P_{s,t}$ die Menge der einfachen Pfade von s

Flussproblem als LP

Einleitung zu LPs

4:42 Beispiele 2/6

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

- Gegeben G = (V, E, s, t, c). Sei $P_{s,t}$ die Menge der einfachen Pfade von snach t.
- Für jeden Pfad $p \in P_{s,t}$ gibt es eine Variable x_p .

Einleitung zu LPs

Flussproblem als LP

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

- Gegeben G = (V, E, s, t, c). Sei $P_{s,t}$ die Menge der einfachen Pfade von snach t.
- Für jeden Pfad $p \in P_{s,t}$ gibt es eine Variable x_p .
- Das primale LP lautet: Maximiere $\sum_{p \in P_{n+}} x_p$ unter den Nebenbedingungen:

$$\sum_{p,e \in p} x_p \leqslant c(e), \ \forall e \in E \ \text{und} \ x_p \geqslant 0, \ \forall p \in P_{s,t}.$$

Beispiele 4/6

Einleitung zu LPs

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

- Gegeben G = (V, E, s, t, c). Sei $P_{s,t}$ die Menge der einfachen Pfade von snach t.
- Für jeden Pfad $p \in P_{s,t}$ gibt es eine Variable x_p .
- Das primale LP lautet: Maximiere $\sum_{p \in P_{n+}} x_p$ unter den Nebenbedingungen:

$$\sum_{p:e\in p} x_p \leqslant c(e), \ \forall e\in E \ \text{und} \ x_p\geqslant 0, \ \forall p\in P_{s,t}.$$

• Das duale LP lautet: Minimiere $\sum_{e \in F} c(e) y_e$ unter den Nebenbedingungen:

$$\sum y_e\geqslant 1, \ \forall p\in P_{s,t} \ \text{und} \ y_e\geqslant 0, \ \forall e\in E.$$

Beispiele 5/6

Einleitung zu LPs

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

- Gegeben G = (V, E, s, t, c). Sei $P_{s,t}$ die Menge der einfachen Pfade von snach t.
- Für jeden Pfad $p \in P_{s,t}$ gibt es eine Variable x_p .
- Das primale LP lautet: Maximiere $\sum_{p \in P_{n+}} x_p$ unter den Nebenbedingungen:

$$\sum_{p:e\in p} x_p \leqslant c(e), \ \forall e\in E \ \text{und} \ x_p\geqslant 0, \ \forall p\in P_{s,t}.$$

• Das duale LP lautet: Minimiere $\sum_{e \in F} c(e)y_e$ unter den Nebenbedingungen:

$$\sum_{e \in p} y_e \geqslant 1, \ \forall p \in P_{s,t} \ \text{und} \ y_e \geqslant 0, \ \forall e \in E.$$

• Für das duale LP gilt (nach dem folgenden Abschnitt): die Werte von y_e sind aus $\{0,1\}$.

Flussproblem als LP

primal:
$$c^T x : Ax \leqslant b, x \geqslant \mathbf{0}$$
, dual: $b^T y : A^T y \geqslant c, y \geqslant \mathbf{0}$

- Gegeben G = (V, E, s, t, c). Sei $P_{s,t}$ die Menge der einfachen Pfade von snach t.
- Für jeden Pfad $p \in P_{s,t}$ gibt es eine Variable x_p .
- Das primale LP lautet: Maximiere $\sum_{p \in P_{n+}} x_p$ unter den Nebenbedingungen:

$$\sum_{p:e\in p} x_p \leqslant c(e), \ \forall e\in E \ \text{und} \ x_p\geqslant 0, \ \forall p\in P_{s,t}.$$

• Das duale LP lautet: Minimiere $\sum_{e \in F} c(e)y_e$ unter den Nebenbedingungen:

$$\sum_{e \in p} y_e \geqslant 1, \ \forall p \in P_{s,t} \ \text{und} \ y_e \geqslant 0, \ \forall e \in E.$$

- Für das duale LP gilt (nach dem folgenden Abschnitt): die Werte von y_e sind aus $\{0,1\}$.
- Das duale LP entspricht dem Finden eines minimalen Schnitts zwischen s und t.

Ganzzahligkeit

SS2015 RWTH Walter Unger 22.11.2018 13:52

Relaxiertes Matching

• Gegeben G = (V, E).

primal: $c^T x : Ax \leq b, x \geqslant \mathbf{0}$, dual: $b^T y : A^T y \geqslant c, y \geqslant \mathbf{0}$

Ganzzahligkeit SS2015 RWIH

Walter Unger 22.11.2018 13:52

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

Relaxiertes Matching

- Gegeben G = (V, E).
- Für jede Kante $e \in E$ gibt es Variable x_e .

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

Relaxiertes Matching

Einleitung zu LPs

4:43 Beispiele 3/7

• Gegeben
$$G = (V, E)$$
.

- Gegeben G = (V, L).
- Für jede Kante $e \in E$ gibt es Variable x_e .
- \bullet Das primale LP lautet: Maximiere $\sum_{e \in \mathcal{E}} x_e$ unter den Nebenbedingungen:

$$\sum_{e \in V} x_e \leqslant 1, \ \forall v \in V \ \text{und} \ x_e \geqslant 0, \ \forall e \in E.$$

Einleitung zu LPs

Relaxiertes Matching

primal:
$$c^T x : Ax \leqslant b, x \geqslant \mathbf{0}$$
, dual: $b^T y : A^T y \geqslant c, y \geqslant \mathbf{0}$

- Gegeben G = (V, E).
- Für jede Kante $e \in E$ gibt es Variable x_e .
- Das primale LP lautet: Maximiere $\sum_{e \in F} x_e$ unter den Nebenbedingungen:

$$\sum_{e \in v} x_e \leqslant 1, \ \forall v \in V \ \text{und} \ x_e \geqslant 0, \ \forall e \in E.$$

• Das duale LP lautet: Minimiere $\sum_{v \in V} y_v$ unter den Nebenbedingungen:

$$\sum_{v \in e} y_v \geqslant 1, \ \forall e \in E \ \text{und} \ y_v \geqslant 0, \ \forall v \in V.$$

Einleitung zu LPs

4:43 Beispiele 5/7

- primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$ • Gegeben G = (V, E).
- Für jede Kante $e \in E$ gibt es Variable x_e .
- Das primale LP lautet: Maximiere $\sum_{e \in F} x_e$ unter den Nebenbedingungen:

$$\sum_{e \in v} x_e \leqslant 1, \ \forall v \in V \ \text{und} \ x_e \geqslant 0, \ \forall e \in E.$$

• Das duale LP lautet: Minimiere $\sum_{v \in V} y_v$ unter den Nebenbedingungen:

$$\sum_{v \in e} y_v \geqslant 1, \ \forall e \in E \ \text{und} \ y_v \geqslant 0, \ \forall v \in V.$$

• Das duale LP entspricht einem relaxierten Vertex-Cover-Problem.

Einleitung zu LPs

4:43 Beispiele 6/7

- primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$ • Gegeben G = (V, E).
- Für jede Kante $e \in E$ gibt es Variable x_e .
- Das primale LP lautet: Maximiere $\sum_{e \in F} x_e$ unter den Nebenbedingungen:

$$\sum_{e \in v} x_e \leqslant 1, \ \forall v \in V \ \text{und} \ x_e \geqslant 0, \ \forall e \in E.$$

• Das duale LP lautet: Minimiere $\sum_{v \in V} y_v$ unter den Nebenbedingungen:

$$\sum_{v \in e} y_v \geqslant 1, \ \forall e \in E \ \text{und} \ y_v \geqslant 0, \ \forall v \in V.$$

- Das duale LP entspricht einem relaxierten Vertex-Cover-Problem.
- Aber hier liegt eine Ganzzahligkeit der Lösungen nur auf bipartiten Graphen vor.

Einleitung zu LPs

4:43 Beispiele 7/7

primal:
$$c^T x : Ax \leqslant b, x \geqslant \mathbf{0}$$
, dual: $b^T y : A^T y \geqslant c, y \geqslant \mathbf{0}$

- Gegeben G = (V, E).
- Für jede Kante $e \in E$ gibt es Variable x_e .
- Das primale LP lautet: Maximiere $\sum_{e \in F} x_e$ unter den Nebenbedingungen:

$$\sum_{e \in v} x_e \leqslant 1, \ \forall v \in V \text{ und } x_e \geqslant 0, \ \forall e \in E.$$

• Das duale LP lautet: Minimiere $\sum_{v \in V} y_v$ unter den Nebenbedingungen:

$$\sum_{v \in e} y_v \geqslant 1, \ \forall e \in E \ \text{und} \ y_v \geqslant 0, \ \forall v \in V.$$

- Das duale LP entspricht einem relaxierten Vertex-Cover-Problem.
- Aber hier liegt eine Ganzzahligkeit der Lösungen nur auf bipartiten Graphen vor.
- Somit sind bipartites Matching und Vertex-Cover auf bipartiten Graphen dual zueinander.

ILPs (Integer Linear Programs) unterscheißen sich nur von LPs dadurch, y ≥ c, y ≥ 0 dass die Variablen aus IN sein müssen.

- ILPs (Integer Linear Programs) unterscheißen sich nur bon 1 Ps dad urch, y ≥ c, y ≥ 0 dass die Variablen aus N sein müssen.
 - Rucksackproblem: Gegeben d Objekte mit Gewichten g_i und Nutzen v_i für $1 \le i \le d$. Weiter sei G die Gewichtsschranke des Rucksacks.

Einleitung zu LPs

4:44 Einleitung 3/7

- ILPs (Integer Linear Programs) unterscheiden sich nur von LPs dad urch. $^{T}_{v} > c, y > 0$ dass die Variablen aus IN sein müssen.
- Rucksackproblem: Gegeben d Objekte mit Gewichten g_i und Nutzen v_i für $1 \le i \le d$. Weiter sei G die Gewichtsschranke des Rucksacks.
- Maximiere $\sum_{i=1}^{d} v_i \cdot x_i$ unter den Nebenbedingungen:

$$\sum_{i=1}^d g_i \cdot x_i \leqslant G, \ \forall i: 1 \leqslant i \leqslant d: x_i \in \{0,1\}.$$

Einleitung zu LPs

4:44 Einleitung 4/7

- ILPs (Integer Linear Programs) unterscheiden sich nur von LPs dad urch. $^{T}_{v} > c, y > 0$ dass die Variablen aus IN sein müssen.
- Rucksackproblem: Gegeben d Objekte mit Gewichten g_i und Nutzen v_i für $1 \leq i \leq d$. Weiter sei G die Gewichtsschranke des Rucksacks.
- Maximiere $\sum_{i=1}^{d} v_i \cdot x_i$ unter den Nebenbedingungen:

$$\sum_{i=1}^d g_i \cdot x_i \leqslant G, \ \forall i: 1 \leqslant i \leqslant d: x_i \in \{0,1\}.$$

• Gewichtetes Matchingproblem: Gegeben G = (V, E) mit Kantengewichten $w_e, e \in E$.

Einleitung zu LPs

4:44 Einleitung 5/7

- ILPs (Integer Linear Programs) unterscheiden sich nur von LPs dad urch $^{T}_{v} > c, y > 0$ dass die Variablen aus IN sein müssen.
- Rucksackproblem: Gegeben d Objekte mit Gewichten g_i und Nutzen v_i für $1 \leq i \leq d$. Weiter sei G die Gewichtsschranke des Rucksacks.
- Maximiere $\sum_{i=1}^{d} v_i \cdot x_i$ unter den Nebenbedingungen:

$$\sum_{i=1}^d g_i \cdot x_i \leqslant G, \ \forall i: 1 \leqslant i \leqslant d: x_i \in \{0,1\}.$$

- Gewichtetes Matchingproblem: Gegeben G = (V, E) mit Kantengewichten $w_e, e \in E$.
- Maximiere $\sum_{e \in E} w_e \cdot x_e$ unter den Nebenbedingungen:

$$\sum_{e \in E: v \in e} x_e \leqslant 1, \ \forall v \in V \ \mathsf{und} \ x_e \in \{0,1\}, \ \forall e \in E.$$

- ILPs (Integer Linear Programs) unterscheiden sich nur von LPs dad urch $^{T}_{v} > c, y > 0$ dass die Variablen aus IN sein müssen.
- Rucksackproblem: Gegeben d Objekte mit Gewichten g_i und Nutzen v_i für $1 \le i \le d$. Weiter sei G die Gewichtsschranke des Rucksacks.
- Maximiere $\sum_{i=1}^{d} v_i \cdot x_i$ unter den Nebenbedingungen:

$$\sum_{i=1}^d g_i \cdot x_i \leqslant G, \ \forall i: 1 \leqslant i \leqslant d: x_i \in \{0,1\}.$$

- Gewichtetes Matchingproblem: Gegeben G = (V, E) mit Kantengewichten $w_e, e \in E$.
- Maximiere $\sum_{e \in E} w_e \cdot x_e$ unter den Nebenbedingungen:

$$\sum_{e \in E: v \in e} x_e \leqslant 1, \ \forall v \in V \ \mathsf{und} \ x_e \in \{0,1\}, \ \forall e \in E.$$

 Das Rucksackproblem ist NP-hart, aber das gewichtete Matchingproblem ist in \mathcal{P} .

- ILPs (Integer Linear Programs) unterscheiden sich nur von LPs dad urch $^{T}_{v} > c, y > 0$ dass die Variablen aus IN sein müssen.
- Rucksackproblem: Gegeben d Objekte mit Gewichten g_i und Nutzen v_i für $1 \le i \le d$. Weiter sei G die Gewichtsschranke des Rucksacks.
- Maximiere $\sum_{i=1}^{d} v_i \cdot x_i$ unter den Nebenbedingungen:

$$\sum_{i=1}^d g_i \cdot x_i \leqslant G, \ \forall i: 1 \leqslant i \leqslant d: x_i \in \{0,1\}.$$

- Gewichtetes Matchingproblem: Gegeben G = (V, E) mit Kantengewichten $w_e, e \in E$.
- Maximiere $\sum_{e \in E} w_e \cdot x_e$ unter den Nebenbedingungen:

$$\sum_{e \in E: v \in e} x_e \leqslant 1, \ \forall v \in V \ \mathsf{und} \ x_e \in \{0,1\}, \ \forall e \in E.$$

- Das Rucksackproblem ist NP-hart, aber das gewichtete Matchingproblem ist in \mathcal{P} .
- Wir untersuchen im Folgenden, wann ein ILP in \mathcal{P} liegt.

 Dualität
 Ganzzahligkeit

 ○○○○○○
 ○○○○○○

 Walter Unger 22.11.201813:52
 SS2015
 RWTH

Unimodularität

primal: $c^T x : Ax \leqslant b, x \geqslant \mathbf{0}$, dual: $b^T y : A^T y \geqslant c, y \geqslant \mathbf{0}$

Dualität Ganzzahlig<u>keit</u> 00000000 Walter Unger 22.11.2018 13:52 SS2015 RWTH

Unimodularität

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

Definition

• Eine ganzzahlige quadratische Matrix heißt unimodular, falls ihre Determinante 1 oder -1 ist.

Dualität 0000000 Walter Unger 22.11.201813:52

Ganzzahligkeit ○●○○○○○○ SS2015 RWTH

Unimodularität

primal: $c^T x : Ax \leq b, x \geq \mathbf{0}$, dual: $b^T y : A^T y \geq c, y \geq \mathbf{0}$

Definition

- Eine ganzzahlige quadratische Matrix heißt unimodular, falls ihre Determinante 1 oder -1 ist.
- Eine ganzzahlige quadratische Matrix heißt total unimodular, falls jede quadratische reguläre Teilmatrix unimodular ist.

Dualität 0000000 Ganzzahligkeit ○●○○○○○○ SS2015 RWTH

Walter Unger 22.11.2018 13:52

Unimodularität

primal: $c^T x : Ax \leq b, x \geqslant \mathbf{0}$, dual: $b^T y : A^T y \geqslant c, y \geqslant \mathbf{0}$

Definition

- Eine ganzzahlige quadratische Matrix heißt unimodular, falls ihre Determinante 1 oder -1 ist.
- Eine ganzzahlige quadratische Matrix heißt total unimodular, falls jede quadratische reguläre Teilmatrix unimodular ist.

Unimodularität

primal: $c^T x : Ax \leq b, x \geqslant \mathbf{0}$, dual: $b^T y : A^T y \geqslant c, y \geqslant \mathbf{0}$

Definition

- Eine ganzzahlige quadratische Matrix heißt unimodular, falls ihre Determinante 1 oder -1 ist.
- Eine ganzzahlige quadratische Matrix heißt total unimodular, falls jede quadratische reguläre Teilmatrix unimodular ist.

Theorem

Sei A total unimodular. Dann sind alle Basislösungen von $A \cdot x = b$ ganzzahlig.

Beweis:

Dualität 0000000 Walter Unger 22.11.201813:52

Ganzzahligkeit

0000000

SS2015 RWTH

Unimodularität

primal: $c^T x : Ax \leq b, x \geq \mathbf{0}$, dual: $b^T y : A^T y \geq c, y \geq \mathbf{0}$

Definition

- Eine ganzzahlige quadratische Matrix heißt unimodular, falls ihre Determinante 1 oder -1 ist.
- Eine ganzzahlige quadratische Matrix heißt total unimodular, falls jede quadratische reguläre Teilmatrix unimodular ist.

Theorem

Sei A total unimodular. Dann sind alle Basislösungen von $A \cdot x = b$ ganzzahlig.

Beweis:

Dualität Walter Unger 22.11.2018 13:52

Ganzzahligkeit SS2015 RWTH

Unimodularität

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

Definition

- Eine ganzzahlige quadratische Matrix heißt unimodular, falls ihre Determinante 1 oder -1 ist.
- Eine ganzzahlige quadratische Matrix heißt total unimodular, falls jede quadratische reguläre Teilmatrix unimodular ist.

Theorem

Sei A total unimodular. Dann sind alle Basislösungen von $A \cdot x = b$ ganzzahlig.

Beweis:

• Sei δ Basis von A. Die Basislösung ergibt sich aus $A_{\delta} \cdot x_{\delta} = b$.

Dualität Walter Unger 22.11.2018 13:52

Ganzzahligkeit SS2015 RWTH

Unimodularität

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

Definition

- Eine ganzzahlige quadratische Matrix heißt unimodular, falls ihre Determinante 1 oder -1 ist.
- Eine ganzzahlige quadratische Matrix heißt total unimodular, falls jede quadratische reguläre Teilmatrix unimodular ist.

Theorem

Sei A total unimodular. Dann sind alle Basislösungen von $A \cdot x = b$ ganzzahlig.

Beweis:

- Sei δ Basis von A. Die Basislösung ergibt sich aus $A_{\delta} \cdot x_{\delta} = b$.
- A_{δ} ist dabei eine quadratische Teilmatrix.

Einleitung zu LPs

Definition

- Eine ganzzahlige quadratische Matrix heißt unimodular, falls ihre Determinante 1 oder -1 ist.
- Eine ganzzahlige quadratische Matrix heißt total unimodular, falls jede quadratische reguläre Teilmatrix unimodular ist.

Theorem

Sei A total unimodular. Dann sind alle Basislösungen von $A \cdot x = b$ ganzzahlig.

Beweis:

- Sei δ Basis von A. Die Basislösung ergibt sich aus $A_{\delta} \cdot x_{\delta} = b$.
- A_{δ} ist dabei eine quadratische Teilmatrix.
- Damit folgt die Aussagen nach der Cramerschen Regel:

$$x_{\delta(i)} = rac{\det(A_{\delta(1)}, \dots, A_{\delta(i-1)}, b, A_{\delta(i+1)} \dots, A_{\delta(k)})}{\det(A_{\delta})}.$$

Dualität 0000000 Ganzzahligkeit

00000000

Walter Unger 22.11.2018 13:52 SS2015 RWTH

LPs

primal: $c^T x : Ax \leqslant b, x \geqslant \mathbf{0}$, dual: $b^T y : A^T y \geqslant c, y \geqslant \mathbf{0}$

Theorem

Sei A total unimodular, Dann sind alle Basislösungen von dem LP $A \cdot x \leq b$ ganzzahlig.

Algorithmus von Seidel

OOOOOOOOOOOOOOO

Dualität

OOOOOOO

 Dualität
 Ganzzahligkeit

 0000000
 0000000

 Walter Unger 22.11.2018 13:52
 SS2015
 RWTH

LPs

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

Theorem

Sei A total unimodular, Dann sind alle Basislösungen von dem LP $A \cdot x \leqslant b$ ganzzahlig.

• Sei m die Anzahl der Zeilen von A.

Dualität Walter Unger 22.11.2018 13:52

Ganzzahligkeit SS2015 RWIH

LPs

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

Theorem

Sei A total unimodular, Dann sind alle Basislösungen von dem LP $A \cdot x \leq b$ ganzzahlig.

- Sei m die Anzahl der Zeilen von A.
- Mit Schlupfvariablen erhalten wir ein LP in Gleichungsform: $(A \mid E_m)$.

LPs

primal: $c^Tx: Ax \leq b, x \geqslant \mathbf{0}$, dual: $b^Ty: A^Ty \geqslant c, y \geqslant \mathbf{0}$

Theorem

Sei A total unimodular, Dann sind alle Basislösungen von dem LP $A \cdot x \leq b$ ganzzahlig.

- Sei m die Anzahl der Zeilen von A.
- Mit Schlupfvariablen erhalten wir ein LP in Gleichungsform: $(A \mid E_m)$.
- Wir zeigen nun, dass $(A \mid E_m)$ total unimodular ist.

LPs

primal: $c^T x : Ax \leq b, x \geqslant \mathbf{0}$, dual: $b^T y : A^T y \geqslant c, y \geqslant \mathbf{0}$

Theorem

Sei A total unimodular, Dann sind alle Basislösungen von dem LP $A \cdot x \leq b$ ganzzahlig.

- Sei m die Anzahl der Zeilen von A.
- Mit Schlupfvariablen erhalten wir ein LP in Gleichungsform: $(A \mid E_m)$.
- Wir zeigen nun, dass $(A \mid E_m)$ total unimodular ist.
- Sei C beliebige quadratische Teilmatrix von $(A \mid E_m)$.

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

ganzzahlig.

Theorem
Sei A total unimodular, Dann sind alle Basislösungen von dem LP
$$A \cdot x \leq b$$

- Sei m die Anzahl der Zeilen von A.
- Mit Schlupfvariablen erhalten wir ein LP in Gleichungsform: $(A \mid E_m)$.
- Wir zeigen nun, dass $(A \mid E_m)$ total unimodular ist.
- Sei C beliebige quadratische Teilmatrix von $(A \mid E_m)$.
- Wir können C wie folgt umgeformt darstellen:

$$C' = \left(\begin{array}{cc} M & 0 \\ * & E_k \end{array} \right).$$

Sei A total unimodular, Dann sind alle Basislösungen von dem LP $A \cdot x \leq b$ ganzzahlig.

- Sei m die Anzahl der Zeilen von A.
- Mit Schlupfvariablen erhalten wir ein LP in Gleichungsform: $(A \mid E_m)$.
- Wir zeigen nun, dass $(A \mid E_m)$ total unimodular ist.
- Sei C beliebige quadratische Teilmatrix von $(A \mid E_m)$.
- Wir können C wie folgt umgeformt darstellen:

$$C' = \left(\begin{array}{cc} M & 0 \\ * & E_k \end{array} \right).$$

• Dabei ist E_k eine $k \times k$ -Einheitsmatrix.

Sei A total unimodular, Dann sind alle Basislösungen von dem LP $A \cdot x \leq b$ ganzzahlig.

- Sei m die Anzahl der Zeilen von A.
- Mit Schlupfvariablen erhalten wir ein LP in Gleichungsform: $(A \mid E_m)$.
- Wir zeigen nun, dass $(A \mid E_m)$ total unimodular ist.
- Sei C beliebige quadratische Teilmatrix von $(A \mid E_m)$.
- Wir können C wie folgt umgeformt darstellen:

$$C' = \left(\begin{array}{cc} M & 0 \\ * & E_k \end{array} \right).$$

- Dabei ist E_k eine $k \times k$ -Einheitsmatrix.
- M ist eine $(m-k) \times (m-k)$ -Teilmatrix von A.

Sei A total unimodular, Dann sind alle Basislösungen von dem LP $A \cdot x \leq b$ ganzzahlig.

- Sei m die Anzahl der Zeilen von A.
- Mit Schlupfvariablen erhalten wir ein LP in Gleichungsform: $(A \mid E_m)$.
- Wir zeigen nun, dass $(A \mid E_m)$ total unimodular ist.
- Sei C beliebige quadratische Teilmatrix von $(A \mid E_m)$.
- Wir können C wie folgt umgeformt darstellen:

$$C' = \left(\begin{array}{cc} M & 0 \\ * & E_k \end{array} \right).$$

- Dabei ist E_k eine k × k-Einheitsmatrix.
- M ist eine $(m-k) \times (m-k)$ -Teilmatrix von A.
- Es folgt: $|\det(C)| = |\det(C')| = |\det(M)| = 1$.

Einleitung zu LPs

Theorem

4:46 Unimodularität 10/10

primal:
$$c^T x : Ax \leq b, x \geq 0$$
, dual: $b^T y : A^T y \geq c, y \geq 0$

Sei A total unimodular, Dann sind alle Basislösungen von dem LP A \cdot x \leq b ganzzahlig.

- Sei m die Anzahl der Zeilen von A.
- Mit Schlupfvariablen erhalten wir ein LP in Gleichungsform: $(A \mid E_m)$.
- Wir zeigen nun, dass $(A \mid E_m)$ total unimodular ist.
- Sei C beliebige quadratische Teilmatrix von $(A \mid E_m)$.
- Wir können C wie folgt umgeformt darstellen:

$$C' = \left(\begin{array}{cc} M & 0 \\ * & E_k \end{array} \right).$$

- Dabei ist E_k eine $k \times k$ -Einheitsmatrix.
- M ist eine $(m-k) \times (m-k)$ -Teilmatrix von A.
- Es folgt: $|\det(C)| = |\det(C')| = |\det(M)| = 1$.
- Damit ist $(A \mid E_m)$ total unimodular.

Dualität 0000000 Walter Unger 22 Ganzzahligkeit 000000000 SS2015 RWTH

Walter Unger 22.11.2018 13:52 SS2018

Eine Eigenschaft für unimodular

primal: $c^T x : Ax \leqslant b, x \geqslant \mathbf{0}$, dual: $b^T y : A^T y \geqslant c, y \geqslant \mathbf{0}$

Theorem

Dualität Ganzzahligkeit Walter Unger 22.11.2018 13:52 SS2015 RWIH

Eine Eigenschaft für unimodular

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

Theorem

Eine Matrix A mit Einträgen aus $\{-1,0,1\}$ ist total unimodular, • nicht mehr als zwei Einträge pro Spalte aus $\{-1,1\}$ sind und

Dualität Ganzzahligkeit Walter Unger 22.11.2018 13:52 SS2015 RWIH

Eine Eigenschaft für unimodular

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

Theorem

- nicht mehr als zwei Einträge pro Spalte aus $\{-1,1\}$ sind und
- die Zeilen in zwei Mengen l₁ und l₂ aufteilen lassen, für die gilt:

Dualität Walter Unger 22.11.2018 13:52 Ganzzahligkeit

Eine Eigenschaft für unimodular

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

Theorem

- nicht mehr als zwei Einträge pro Spalte aus $\{-1,1\}$ sind und
- die Zeilen in zwei Mengen l₁ und l₂ aufteilen lassen, für die gilt:
 - Falls eine Spalte zwei unterschiedliche Einträge (-1 und 1) enthält, so sind die zugehörigen Zeilen in der gleichen Menge Ii.

Dualität

Ganzzahligkeit SS2015 RWTH

Walter Unger 22.11.2018 13:52

Eine Eigenschaft für unimodular

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

Theorem

- nicht mehr als zwei Einträge pro Spalte aus $\{-1,1\}$ sind und
- die Zeilen in zwei Mengen l₁ und l₂ aufteilen lassen, für die gilt:
 - Falls eine Spalte zwei unterschiedliche Einträge (-1 und 1) enthält, so sind die zugehörigen Zeilen in der gleichen Menge I:.
 - ullet Falls eine Spalte zwei Einträge -1 oder zwei Einträge 1 hat, so sind die zugehörigen Zeilen in der unterschiedlichen Mengen Ii.

Dualität Walter Unger 22.11.2018 13:52

Ganzzahligkeit SS2015 RWTH

Eine Eigenschaft für unimodular

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

Theorem

- nicht mehr als zwei Einträge pro Spalte aus $\{-1,1\}$ sind und
- die Zeilen in zwei Mengen l₁ und l₂ aufteilen lassen, für die gilt:
 - Falls eine Spalte zwei unterschiedliche Einträge (-1 und 1) enthält, so sind die zugehörigen Zeilen in der gleichen Menge I:.
 - ullet Falls eine Spalte zwei Einträge -1 oder zwei Einträge 1 hat, so sind die zugehörigen Zeilen in der unterschiedlichen Mengen Ii.

Dualität

Eine Eigenschaft für unimodular

primal: $c^T x : Ax \leq b, x \geq 0$, dual: $b^T y : A^T y \geq c, y \geq 0$

Theorem

4:47 Unimodularität 7/9

Einleitung zu LPs

Eine Matrix A mit Einträgen aus $\{-1,0,1\}$ ist total unimodular,

- nicht mehr als zwei Einträge pro Spalte aus $\{-1,1\}$ sind und
- die Zeilen in zwei Mengen l₁ und l₂ aufteilen lassen, für die gilt:
 - Falls eine Spalte zwei unterschiedliche Einträge (-1 und 1) enthält, so sind die zugehörigen Zeilen in der gleichen Menge I:.
 - Falls eine Spalte zwei Einträge −1 oder zwei Einträge 1 hat, so sind die zugehörigen Zeilen in der unterschiedlichen Mengen Ii.

Beweis:

Beweis erfolgt per Induktion über die Größe der Teilmatrizen.

4:47 Unimodularität 8/9

Einleitung zu LPs

Eine Matrix A mit Einträgen aus $\{-1,0,1\}$ ist total unimodular,

- nicht mehr als zwei Einträge pro Spalte aus $\{-1,1\}$ sind und
- die Zeilen in zwei Mengen l₁ und l₂ aufteilen lassen, für die gilt:
 - Falls eine Spalte zwei unterschiedliche Einträge (-1 und 1) enthält, so sind die zugehörigen Zeilen in der gleichen Menge I:.
 - ullet Falls eine Spalte zwei Einträge -1 oder zwei Einträge 1 hat, so sind die zugehörigen Zeilen in der unterschiedlichen Mengen Ii.

Beweis:

- Beweis erfolgt per Induktion über die Größe der Teilmatrizen.
- Induktionsanfang: eine 1×1 Teilmatrix ist offensichtlich unimodular.

4:47 Unimodularität 9/9

Einleitung zu LPs

Eine Matrix A mit Einträgen aus $\{-1,0,1\}$ ist total unimodular,

- nicht mehr als zwei Einträge pro Spalte aus $\{-1,1\}$ sind und
- die Zeilen in zwei Mengen l₁ und l₂ aufteilen lassen, für die gilt:
 - Falls eine Spalte zwei unterschiedliche Einträge (-1 und 1) enthält, so sind die zugehörigen Zeilen in der gleichen Menge I:.
 - ullet Falls eine Spalte zwei Einträge -1 oder zwei Einträge 1 hat, so sind die zugehörigen Zeilen in der unterschiedlichen Mengen Ii.

Beweis:

- Beweis erfolgt per Induktion über die Größe der Teilmatrizen.
- Induktionsanfang: eine 1×1 Teilmatrix ist offensichtlich unimodular.
- Induktionsannahme: jede $(k-1) \times (k-1)$ Teilmatrix sei unimodular.

Beweis

Induktionsannahme: jede $(k-1) \times (k-1)$ Teilmatrix sei unimodular.

• Sei C eine $k \times k$ Teilmatrix von A.

Beweis

- Sei C eine $k \times k$ Teilmatrix von A.
- Wir müssen zeigen: C ist nicht regulär oder C ist unimodular.

Dualität 0000000 Ganzzahligkeit 0000•0000 SS2015 RWTH

Walter Unger 22.11.2018 13:52 SS

Beweis

- Sei C eine $k \times k$ Teilmatrix von A.
- Wir müssen zeigen: C ist nicht regulär oder C ist unimodular.
 - Falls C eine Spalte enthält, die 0^k ist, so ist C nicht regulär.

Dualität 0000000 Ganzzahligkeit 00000000 SS2015 RWTH

Walter Unger 22.11.2018 13:52

Beweis

- Sei C eine $k \times k$ Teilmatrix von A.
- Wir müssen zeigen: C ist nicht regulär oder C ist unimodular.
 - Falls C eine Spalte enthält, die 0^k ist, so ist C nicht regulär.
 - Falls C eine Spalte enthält, die nur einen Eintrag aus {-1,1} enthält, so können wir die Determinante nach dieser Spalte entwickeln.

Dualität 0000000 Ganzzahligkeit 00000000 SS2015 RWTH

Walter Unger 22.11.2018 13:52

Beweis

- Sei C eine $k \times k$ Teilmatrix von A
- Wir müssen zeigen: C ist nicht regulär oder C ist unimodular.
 - Falls C eine Spalte enthält, die 0^k ist, so ist C nicht regulär.
 - Falls C eine Spalte enthält, die nur einen Eintrag aus $\{-1,1\}$ enthält, so können wir die Determinante nach dieser Spalte entwickeln.
 - Dazu sind die Zeile und Spalte dieses Eintrags zu entfernen und die Determinante der verbleibenden $(k-1) \times (k-1)$ ist zu betrachten.

Dualität 0000000 Ganzzahligkeit 0000●0000 SS2015 RWTH

Beweis

Induktionsannahme: jede $(k-1) \times (k-1)$ Teilmatrix sei unimodular.

Walter Unger 22.11.2018 13:52

- Sei C eine $k \times k$ Teilmatrix von A
- Wir müssen zeigen: C ist nicht regulär oder C ist unimodular.
 - Falls C eine Spalte enthält, die 0^k ist, so ist C nicht regulär.
 - Falls C eine Spalte enthält, die nur einen Eintrag aus $\{-1,1\}$ enthält, so können wir die Determinante nach dieser Spalte entwickeln.
 - Dazu sind die Zeile und Spalte dieses Eintrags zu entfernen und die Determinante der verbleibenden $(k-1) \times (k-1)$ ist zu betrachten.
 - Damit gilt die Behauptung in diesem Fall.

Dualität 0000000 Ganzzahligkeit 0000●0000 SS2015 RWTH

Beweis

Induktionsannahme: jede $(k-1) \times (k-1)$ Teilmatrix sei unimodular.

Walter Unger 22.11.2018 13:52

- Sei C eine $k \times k$ Teilmatrix von A
- Wir müssen zeigen: C ist nicht regulär oder C ist unimodular.
 - Falls C eine Spalte enthält, die O^k ist, so ist C nicht regulär.
 - Falls C eine Spalte enthält, die nur einen Eintrag aus $\{-1,1\}$ enthält, so können wir die Determinante nach dieser Spalte entwickeln.
 - Dazu sind die Zeile und Spalte dieses Eintrags zu entfernen und die Determinante der verbleibenden $(k-1) \times (k-1)$ ist zu betrachten.
 - Damit gilt die Behauptung in diesem Fall.
 - Falls jede Spalte aus C zwei Einträge enthält, so gilt für jede Spalte j:

Dualität 0000000 Ganzzahligkeit 000000000 SS2015 RWTH

Beweis

Induktionsannahme: jede $(k-1) \times (k-1)$ Teilmatrix sei unimodular.

Walter Unger 22.11.2018 13:52

- Sei C eine $k \times k$ Teilmatrix von A
- Wir müssen zeigen: C ist nicht regulär oder C ist unimodular.
 - Falls C eine Spalte enthält, die 0^k ist, so ist C nicht regulär.
 - Falls C eine Spalte enthält, die nur einen Eintrag aus $\{-1,1\}$ enthält, so können wir die Determinante nach dieser Spalte entwickeln.
 - Dazu sind die Zeile und Spalte dieses Eintrags zu entfernen und die Determinante der verbleibenden $(k-1) \times (k-1)$ ist zu betrachten.
 - Damit gilt die Behauptung in diesem Fall.
 - Falls jede Spalte aus C zwei Einträge enthält, so gilt für jede Spalte j:
 - $\bullet \sum_{i \in I_1} a_{i,j} = \sum_{i \in I_2} a_{i,j}.$

Dualität 0000000 Walter Unger 22.11.201813:52 Ganzzahligkeit 0000●0000 SS2015 RWTH

Beweis

- Sei C eine $k \times k$ Teilmatrix von A
- Wir müssen zeigen: C ist nicht regulär oder C ist unimodular.
 - Falls C eine Spalte enthält, die 0^k ist, so ist C nicht regulär.
 - Falls C eine Spalte enthält, die nur einen Eintrag aus $\{-1,1\}$ enthält, so können wir die Determinante nach dieser Spalte entwickeln.
 - Dazu sind die Zeile und Spalte dieses Eintrags zu entfernen und die Determinante der verbleibenden $(k-1) \times (k-1)$ ist zu betrachten.
 - Damit gilt die Behauptung in diesem Fall.
 - Falls jede Spalte aus C zwei Einträge enthält, so gilt für jede Spalte j:
 - $\sum_{i \in I_1} a_{i,j} = \sum_{i \in I_2} a_{i,j}$
 - Damit können wir die Zeilenvektoren aus l₁ aufsummieren und die aus l₂ subtrahieren.

Beweis

- Sei C eine $k \times k$ Teilmatrix von A
- Wir müssen zeigen: C ist nicht regulär oder C ist unimodular.
 - Falls C eine Spalte enthält, die 0^k ist, so ist C nicht regulär.
 - Falls C eine Spalte enthält, die nur einen Eintrag aus $\{-1,1\}$ enthält, so können wir die Determinante nach dieser Spalte entwickeln.
 - Dazu sind die Zeile und Spalte dieses Eintrags zu entfernen und die Determinante der verbleibenden $(k-1) \times (k-1)$ ist zu betrachten.
 - Damit gilt die Behauptung in diesem Fall.
 - Falls jede Spalte aus C zwei Einträge enthält, so gilt für jede Spalte j:
 - $\sum_{i \in I_1} a_{i,j} = \sum_{i \in I_2} a_{i,j}$.
 - Damit können wir die Zeilenvektoren aus l₁ aufsummieren und die aus l₂ subtrahieren.
 - $\bullet\,$ Das Ergebnis ist ein Nullvektor. Damit ist C nicht regulär.

Inzidenzmatrix

Induktionsannahme: jede $(k-1) \times (k-1)$ Teilmatrix sei unimodular.

• Die Inzidenzmatrix eines Graphen hat folgende Gestalt:

Dualität 0000000

Walter Unger 22.11.2018 13:52 S

Ganzzahligkeit 00000●000 SS2015 RWTH

<u>Inzi</u>denzmatrix

- Die Inzidenzmatrix eines Graphen hat folgende Gestalt:
 - Für jeden Knoten gibt es eine Zeile.

Dualität

Ganzzahligkeit 000000000 Walter Unger 22.11.2018 13:52

SS2015 RWITH

Inzidenzmatrix

- Die Inzidenzmatrix eines Graphen hat folgende Gestalt:
 - Für jeden Knoten gibt es eine Zeile.
 - Für jede Kante gibt es eine Spalte.

Dualität 0000000 Walter Unger 22.11.201813:52

Ganzzahligkeit 0000●000 SS2015 RWTH

Inzidenzmatrix

- Die Inzidenzmatrix eines Graphen hat folgende Gestalt:
 - Für jeden Knoten gibt es eine Zeile.
 - Für jede Kante gibt es eine Spalte.
 - Eine 1 besagt: die ungerichtete Kante ist zu dem Knoten inzident.

Dualität 0000000 Walter Unger 22.11.201813:52

Ganzzahligkeit 0000●000 SS2015 RWTH

Inzidenzmatrix

Induktionsannahme: jede $(k-\mathbf{1}) \times (k-\mathbf{1})$ Teilmatrix sei unimodular.

- Die Inzidenzmatrix eines Graphen hat folgende Gestalt:
 - Für jeden Knoten gibt es eine Zeile.
 - Für jede Kante gibt es eine Spalte.
 - Eine 1 besagt: die ungerichtete Kante ist zu dem Knoten inzident.
 - Eine 1 besagt: die gerichtete Kante endet in dem Knoten.

Dualität 0000000 Walter Unger 22.11.201813:52

Ganzzahligkeit 000000000 SS2015 RWTH

Inzidenzmatrix

- Die Inzidenzmatrix eines Graphen hat folgende Gestalt:
 - Für jeden Knoten gibt es eine Zeile.
 - Für jede Kante gibt es eine Spalte.
 - Eine 1 besagt: die ungerichtete Kante ist zu dem Knoten inzident.
 - Eine 1 besagt: die gerichtete Kante endet in dem Knoten.
 - ullet Eine -1 besagt: die gerichtete Kante startet in dem Knoten.

Inzidenzmatrix

- Die Inzidenzmatrix eines Graphen hat folgende Gestalt:
 - Für jeden Knoten gibt es eine Zeile.
 - Für jede Kante gibt es eine Spalte.
 - Eine 1 besagt: die ungerichtete Kante ist zu dem Knoten inzident.
 - Eine 1 besagt: die gerichtete Kante endet in dem Knoten.
 - ullet Eine -1 besagt: die gerichtete Kante startet in dem Knoten.
- Die Inzidenzmatrix eines gerichteten Graphen genügt den obigen Bedingungen:

Dualität Walter Unger 22.11.2018 13:52

Ganzzahligkeit 000000000 SS2015 RWIH

Inzidenzmatrix

- Die Inzidenzmatrix eines Graphen hat folgende Gestalt:
 - Für jeden Knoten gibt es eine Zeile.
 - Für jede Kante gibt es eine Spalte.
 - Eine 1 besagt: die ungerichtete Kante ist zu dem Knoten inzident.
 - Eine 1 besagt: die gerichtete Kante endet in dem Knoten.
 - Eine -1 besagt: die gerichtete Kante startet in dem Knoten.
- Die Inzidenzmatrix eines gerichteten Graphen genügt den obigen Bedingungen:
 - Alle Zeilen gehören hier zur Menge I₁.

Einleitung zu LPs

4:49 Unimodularität 9/11

- Die Inzidenzmatrix eines Graphen hat folgende Gestalt:
 - Für ieden Knoten gibt es eine Zeile.
 - Für jede Kante gibt es eine Spalte.
 - Eine 1 besagt: die ungerichtete Kante ist zu dem Knoten inzident.
 - Eine 1 besagt: die gerichtete Kante endet in dem Knoten.
 - Eine -1 besagt: die gerichtete Kante startet in dem Knoten.
- Die Inzidenzmatrix eines gerichteten Graphen genügt den obigen Bedingungen:
 - Alle Zeilen gehören hier zur Menge I₁.
- Die Inzidenzmatrix eines ungerichteten bipartiten Graphen (V, W, E) genügt den obigen Bedingungen:

4:49 Unimodularität 10/11

Einleitung zu LPs

- Die Inzidenzmatrix eines Graphen hat folgende Gestalt:
 - Für ieden Knoten gibt es eine Zeile.
 - Für jede Kante gibt es eine Spalte.
 - Eine 1 besagt: die ungerichtete Kante ist zu dem Knoten inzident.
 - Eine 1 besagt: die gerichtete Kante endet in dem Knoten.
 - Eine -1 besagt: die gerichtete Kante startet in dem Knoten.
- Die Inzidenzmatrix eines gerichteten Graphen genügt den obigen Bedingungen:
 - Alle Zeilen gehören hier zur Menge I₁.
- Die Inzidenzmatrix eines ungerichteten bipartiten Graphen (V, W, E) genügt den obigen Bedingungen:
 - Alle Zeilen die Knoten aus V repräsentieren gehören zur Menge I_1 .

Dualität Walter Unger 22.11.2018 13:52

Ganzzahligkeit 000000000 SS2015 RWTH

Inzidenzmatrix

4:49 Unimodularität 11/11

Einleitung zu LPs

- Die Inzidenzmatrix eines Graphen hat folgende Gestalt:
 - Für ieden Knoten gibt es eine Zeile.
 - Für jede Kante gibt es eine Spalte.
 - Eine 1 besagt: die ungerichtete Kante ist zu dem Knoten inzident.
 - Eine 1 besagt: die gerichtete Kante endet in dem Knoten.
 - Eine -1 besagt: die gerichtete Kante startet in dem Knoten.
- Die Inzidenzmatrix eines gerichteten Graphen genügt den obigen Bedingungen:
 - Alle Zeilen gehören hier zur Menge I₁.
- Die Inzidenzmatrix eines ungerichteten bipartiten Graphen (V, W, E) genügt den obigen Bedingungen:
 - Alle Zeilen die Knoten aus V repräsentieren gehören zur Menge I_1 .
 - Alle Zeilen die Knoten aus W repräsentieren gehören zur Menge I_2 .

Dualität 0000000

Walter Unger 22.11.2018 13:52

Ganzzahligkeit 000000●00 SS2015 RWTH

Folgerungen

Induktionsannahme: jede $(k-1) \times (k-1)$ Teilmatrix sei unimodular.

Lemma

Ein LP in Standardform oder in kanonischer Form hat nur ganzzahlige Basislösungen, falls die Nebenbedingungsmatrix

Dualität 0000000 Ganzzahligkeit 00000●00 SS2015 RWTH

Walter Unger 22.11.2018 13:52

Folgerungen

Induktionsannahme: jede $(k-1) \times (k-1)$ Teilmatrix sei unimodular.

Lemma

Ein LP in Standardform oder in kanonischer Form hat nur ganzzahlige Basislösungen, falls die Nebenbedingungsmatrix

• der Inzidenzmatrix eines gerichteten Graphen oder

Dualität 0000000 Ganzzahligkeit 00000●00 SS2015 RWTH

Walter Unger 22.11.2018 13:52

Folgerungen

Induktionsannahme: jede $(k-1) \times (k-1)$ Teilmatrix sei unimodular.

Lemma

Ein LP in Standardform oder in kanonischer Form hat nur ganzzahlige Basislösungen, falls die Nebenbedingungsmatrix

- der Inzidenzmatrix eines gerichteten Graphen oder
- der Inzidenzmatrix eines bipartiten Graphen entspricht.

Dualität 0000000 Ganzzahligkeit 00000●00 SS2015 RWTH

Walter Unger 22.11.2018 13:52

Folgerungen

Induktionsannahme: jede $(k-1) \times (k-1)$ Teilmatrix sei unimodular.

Lemma

Ein LP in Standardform oder in kanonischer Form hat nur ganzzahlige Basislösungen, falls die Nebenbedingungsmatrix

- der Inzidenzmatrix eines gerichteten Graphen oder
- der Inzidenzmatrix eines bipartiten Graphen entspricht.

Dualität 0000000 Walter Unger 22.11.201813:52

Ganzzahligkeit 00000●00 SS2015 RWTH

Folgerungen

Induktionsannahme: jede $(k-1) \times (k-1)$ Teilmatrix sei unimodular.

Lemma

Ein LP in Standardform oder in kanonischer Form hat nur ganzzahlige Basislösungen, falls die Nebenbedingungsmatrix

- der Inzidenzmatrix eines gerichteten Graphen oder
- der Inzidenzmatrix eines bipartiten Graphen entspricht.

Damit liefen die relaxierten LP-Formulierungen eine ganzzahlige optimale Lösung für:

maximalen Fluss,

Dualität 0000000 Ganzzahligkeit 00000●00 SS2015 RWTH

Walter Unger 22.11.2018 13:52

Folgerungen

Induktionsannahme: jede $(k-1) \times (k-1)$ Teilmatrix sei unimodular.

Lemma

Ein LP in Standardform oder in kanonischer Form hat nur ganzzahlige Basislösungen, falls die Nebenbedingungsmatrix

- der Inzidenzmatrix eines gerichteten Graphen oder
- der Inzidenzmatrix eines bipartiten Graphen entspricht.

Damit liefen die relaxierten LP-Formulierungen eine ganzzahlige optimale Lösung für:

- maximalen Fluss,
- kürzester Weg,

Walter Unger 22.11.2018 13:52

Lemma

Ein LP in Standardform oder in kanonischer Form hat nur ganzzahlige Basislösungen, falls die Nebenbedingungsmatrix

- der Inzidenzmatrix eines gerichteten Graphen oder
- der Inzidenzmatrix eines bipartiten Graphen entspricht.

Damit liefen die relaxierten LP-Formulierungen eine ganzzahlige optimale Lösung für:

- maximalen Fluss,
- kürzester Weg,
- gewichtetes bipartites Matching, und

Dualität 0000000 Walter Unger 22.11.2018 13:52 Ganzzahligkeit 00000●00 SS2015 RWTH

Folgerungen

Induktionsannahme: jede $(k-1) \times (k-1)$ Teilmatrix sei unimodular.

Lemma

Ein LP in Standardform oder in kanonischer Form hat nur ganzzahlige Basislösungen, falls die Nebenbedingungsmatrix

- der Inzidenzmatrix eines gerichteten Graphen oder
- der Inzidenzmatrix eines bipartiten Graphen entspricht.

Damit liefen die relaxierten LP-Formulierungen eine ganzzahlige optimale Lösung für:

- maximalen Fluss,
- kürzester Weg,
- gewichtetes bipartites Matching, und
- bipartites Vertex-Cover.

 Dualität
 Ganzzahligkeit

 0000000
 000000000

 Walter Unger 22.11.2018 13:52
 SS2015
 RWTH

Bemerkungen

Induktionsannahme: jede $(k-1) \times (k-1)$ Teilmatrix sei unimodular.

 Damit folgt auch die Dualität des Matchings und des Vertex-Cover auf bipartiten Graphen.

Dualität 0000000 Ganzzahligkeit 000000●0 SS2015 RWTH

Walter Unger 22.11.2018 13:52 SS20:

Bemerkungen

- Damit folgt auch die Dualität des Matchings und des Vertex-Cover auf bipartiten Graphen.
- Betrachte folgende Matrix (Inzidenzmatrix von K_3):

$$\left(\begin{array}{cccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)$$

Dualität Ganzzahligkeit Walter Unger 22.11.2018 13:52 SS2015 RWIH

4:51 Unimodularität 3/6 Bemerkungen

Einleitung zu LPs

Induktionsannahme: jede $(k-1) \times (k-1)$ Teilmatrix sei unimodular.

- Damit folgt auch die Dualität des Matchings und des Vertex-Cover auf bipartiten Graphen.
- Betrachte folgende Matrix (Inzidenzmatrix von K_3):

$$\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)$$

Die Determinante dieser Matrix ist 2.

Unimodularität 4/6

Einleitung zu LPs

- Damit folgt auch die Dualität des Matchings und des Vertex-Cover auf bipartiten Graphen.
- Betrachte folgende Matrix (Inzidenzmatrix von K_3):

$$\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)$$

- Die Determinante dieser Matrix ist 2.
- Der zugehörige Graph K₃ hat nur ein Matching der Größe 1.

Unimodularität 5/6

Einleitung zu LPs

- Damit folgt auch die Dualität des Matchings und des Vertex-Cover auf bipartiten Graphen.
- Betrachte folgende Matrix (Inzidenzmatrix von K_3):

$$\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)$$

- Die Determinante dieser Matrix ist 2.
- Der zugehörige Graph K₃ hat nur ein Matching der Größe 1.
- Das relaxierte Matching hat aber einen Wert von 3/2.

Unimodularität 6/6

Einleitung zu LPs

- Damit folgt auch die Dualität des Matchings und des Vertex-Cover auf bipartiten Graphen.
- Betrachte folgende Matrix (Inzidenzmatrix von K_3):

$$\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)$$

- Die Determinante dieser Matrix ist 2.
- Der zugehörige Graph K₃ hat nur ein Matching der Größe 1.
- Das relaxierte Matching hat aber einen Wert von 3/2.
- Dazu wird jede Kante zur Hälfte gematcht.

00000000 Walter Unger 22.11.2018 13:52 SS2015 RWIH

Ganzzahligkeit

Literatur

Induktionsannahme: jede $(k-1) \times (k-1)$ Teilmatrix sei unimodular.

• B. Korte, J. Vygen. Combinatorial Optimization: Theory and Algorithms, 2nd Edition, Springer, 2002.

Dualität 0000000 Ganzzahligkeit 00000000 SS2015 RWTH

Walter Unger 22.11.2018 13:52

Literatur

Induktionsannahme: jede $(k-\mathbf{1}) \times (k-\mathbf{1})$ Teilmatrix sei unimodular.

- B. Korte, J. Vygen. Combinatorial Optimization: Theory and Algorithms, 2nd Edition, Springer, 2002.
- E. Lawler. Combinatorial Optimization: Networks and Matroids. Dover Publications, 1976.

Dualität 0000000 Walter Unger 22.11.201813:52

Ganzzahligkeit 00000000 SS2015 RWTH

Literatur

- B. Korte, J. Vygen. Combinatorial Optimization: Theory and Algorithms, 2nd Edition, Springer, 2002.
- E. Lawler. Combinatorial Optimization: Networks and Matroids. Dover Publications, 1976.
- C. Papadimitriou und K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity. Prentice Hall, 1982.

Dualität Walter Unger 22.11.2018 13:52

Ganzzahligkeit SS2015 RWTH

Literatur

- B. Korte, J. Vygen. Combinatorial Optimization: Theory and Algorithms, 2nd Edition, Springer, 2002.
- E. Lawler. Combinatorial Optimization: Networks and Matroids. Dover Publications, 1976.
- C. Papadimitriou und K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity. Prentice Hall, 1982.
- A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.

Fragen

• Wie arbeitet der Algorithmus von Seidel?

Fragen

- Wie arbeitet der Algorithmus von Seidel?
- Wie ist die Laufzeit für den Algorithmus von Seidel?