Portfolio Optimization

Using the Markowitz Framework

Roel Deckers

December 4, 2015

Markowitz Framework for Portofolio Composition

- ► Assume the rate of return *r* of an asset is modeled by known multivariate normal distributions.
- ▶ Maximize the profit $\bar{r} = \vec{r}^T \vec{w}$ subject to $\sum w_i = 1$.
 - If short selling is not allowed: $w_i > 0$.
- ▶ Variance of \bar{r} is given by $\bar{\sigma} = \vec{w}^T \sigma \vec{w}$.

Data Used

$$\vec{r} = 10^{-2} \begin{pmatrix} 13 \\ 5.3 \\ 10.5 \\ 5 \\ 12.6 \end{pmatrix}, \, \boldsymbol{\sigma} = 10^{-2} \begin{pmatrix} 4.01 & -1.19 & 0.60 & 0.74 & -0.21 \\ & 1.12 & 0.21 & 0.54 & 0.55 \\ & & & 3.04 & 0.77 & 0.29 \\ & & & & 3.74 & -1.04 \\ & & & & & 3.8 \end{pmatrix}$$

Maximizing Profit

Assume we want to maximize our profits with reckless abandon.

- ▶ If short selling is not allowed: Put eveything on the best performing asset, same variance as said asset.
- ▶ If short selling is allowed: infite returns, even more infinite risk.

Minimizing Variance

Play it safe, try to get the most 'stable' rate-of-return.

- Minimize $\vec{w}^T \sigma \vec{w}$ with respect to \vec{w} , under the constraint that $\sum w_i = 1$.
 - Write constraint as $\mathbf{A}\vec{w} = b$, where $\mathbf{A} = \vec{1}$, b = 1.
- With short selling: solve the KKT system:

$$\begin{pmatrix} 2\boldsymbol{\sigma} & \mathbf{A}^T \\ \mathbf{A} & 0 \end{pmatrix} = \begin{pmatrix} \vec{\mathbf{x}}^* \\ \lambda \end{pmatrix}$$

Without short selling: additional constraint, solve with Matlab's quadprog.

Minimizing Variance

With short-selling:

$$\vec{x}^* = \vec{w} = \begin{pmatrix} 0.3198 \\ 0.7213 \\ 0.0350 \\ -0.0708 \\ -0.0052 \end{pmatrix}, \quad \vec{r} = 0.0792 \pm 0.0627$$

Minimizing Variance

Without short-selling:

$$ec{w} = egin{pmatrix} 0.2922 \\ 0.6540 \\ 0.0278 \\ -0.0000 \\ 0.0259 \end{pmatrix}, \quad ar{r} = 0.0788 \pm 0.0636$$

Fixed Target Returns

- lacktriangle Want an effective interest rate of ho
- ightharpoonup Expand m f A and m f eta so that $m f A=egin{pmatrix} ec{1} \\ ec{r} \end{pmatrix}, \ ec{b}=egin{pmatrix} 1 \\
 ho \end{pmatrix}.$
- Solve like before
- ▶ For $\rho = 0.1$:
 - ▶ With shorting: $\bar{r} = 0.1 + -0.0785$.
 - ▶ Without shorting: $\bar{r} = 0.1 + -0.08$.
- ▶ Without shorting no solution for $\rho \notin [\min(\vec{r}), \max(\vec{r})]$.

Fixed Target Returns

Minimum Target Returns

Balancing Volatility Returns

- Want to balance volatility with expected returns
- ▶ Minimize $\alpha \vec{w}^T \sigma \vec{w} (1 \alpha)\vec{r}$ for $\alpha \in [0, 1]$ instead.
 - $\alpha = 1 \rightarrow$ minimize volatility.
 - $\alpha = 0 \rightarrow$ maximize profit.
- ▶ Solving for different values of α gives a graph of \bar{r} vs. $\bar{\sigma}$.

\bar{r} vs $\bar{\sigma}$ (no short-selling)

\bar{r} vs $\bar{\sigma}$ (with short-selling)

Any Questions?