# Link Budget Calculation

#### Goals

- ► To be able to calculate how far we can go with the equipment we have
- To understand why we need high poles for long links



## Free space loss

 Signal power is diminished by geometric spreading of the wavefront, commonly known as *Free Space Loss*.

► The power of the signal is spread over a wave front, the area of which increases as the distance from the transmitter increases. Therefore, the power density

diminishes.



# Free Space Loss (any frequency)

Using decibels to express the loss and using a generic frequency f, the equation for the Free Space Loss is:

$$L_{fs} = 92.4 + 20*log_{10}(D) + 20*log_{10}(f)$$

...where L<sub>fs</sub> is expressed in dB, D is in kilometers and f is in GHz.

## Free Space Loss (@2.45 GHz)

Using decibels to express the loss and using 2.4 GHz as the signal frequency, the equation for the Free Space Loss is:

$$L_{fs} = 100 + 20*log_{10}(D)$$

...where L<sub>fs</sub> is expressed in dB and D is in kilometers.



## Power in a wireless system



#### Link budget

- The performance of any communication link depends on the quality of the equipment being used.
- Link budget is a way of quantifying the link performance.
- The received power in an 802.11 link is determined by three factors: transmit power, transmitting antenna gain, and receiving antenna gain.
- ► If that power, minus the *free space loss* of the link path, is greater than the *minimum received signal level* of the receiving radio, then a link is possible.
- The difference between the minimum received signal level and the actual received power is called the *link margin*.
- The link margin must be positive, and should be maximized (should be at least 10dB or more for reliable links).

## Example link budget calculation

Let's estimate the feasibility of a **5 km** link, with one access point and one client radio.

The access point is connected to an antenna with 10 dBi gain, with a transmitting power of 20 dBm and a receive sensitivity of -89 dBm.

The client is connected to an antenna with **14 dBi** gain, with a transmitting power of **15 dBm** and a receive sensitivity of **-82 dBm**.

The cables in both systems are short, with a loss of **2dB** at each side at the 2.4 GHz frequency of operation.

#### dB cheats

$$P_{dBm} = 10 \cdot \log_{10} \left(\frac{P}{1mW}\right)$$

$$P_{dBW} = 10 \cdot \log_{10} \left(\frac{P}{1W}\right)$$

$$P_{dBm} = P_{dBW} + 30$$

$$dBW \pm dB = dBW$$

$$dBm \pm dB = dBm$$

#### AP to Client link



## Link budget: AP to Client link

```
20 dBm (TX Power AP)
+ 10 dBi (Antenna Gain AP)
- 2 dB (Cable Losses AP)
+ 14 dBi (Antenna Gain Client)
- 2 dB (Cable Losses Client)
 40 dBm Total Gain
-114 dB (free space loss @5 km)
-74 dBm (expected received signal level)
--82 dBm (sensitivity of Client)
 8 dB (link margin)
```

#### Opposite direction: Client to AP



# Link budget: Client to AP link

```
15 dBm (TX Power Client)
+ 14 dBi (Antenna Gain Client)
- 2 dB (Cable Losses Client)
+ 10 dBi (Antenna Gain AP)
- 2 dB (Cable Losses AP)

35 dBm Total Gain
-114 dB (free space loss @5 km)

-79 dBm (expected received signal level)
--89 dBm (sensitivity of AP)
```

10 dB (link margin)