Algorithmes évolutionnaires

(optimisation stochastique)

Nicolas Bredeche Sorbonne Université, CNRS nicolas.bredeche(·)sorbonne-universite.fr

Optimisation: éléments

2

Problème: $y^* = argopt_{y \in Y} f(y)$

Solution candidate: a := (y, f(y))

- Retrouver la composition d'un café à l'arôme
 - Objectif: maximiser la satisfaction de l'expert-évaluateur
 - Espace de recherche: mélanges de café
 - Fonction de coût: évaluation empirique par l'expert

D'autres exemples d'applications: https://www.human-competitive.org/awards

[Herdy, 1997]

Exemple: emploi du temps 4					
	lundi 30/11	mardi 01/12	mercredi 02/12	jeudi 03/12	vendredi 04/12
8h00	ANGLAIS LVA Mme M. McGonagall [6G2P.1], <i>C13</i>		ED.PHYSIQUE & SPORT.	ANGLAIS LVA Mme M. McGonagall C13	ITALIEN LVB Mr M. Miyazaki [6ITA2], <i>C1</i> 2
9h00	MATHEMATIQUES Mme M. Mirzakhani [6G2P.1], <i>C21</i>	ANGLAIS LVA Mme M. McGonagall C13	Mme Shakira	EDUCATION MUSICALE Mr D.Vador <i>C01 MUS</i>	FRANCAIS Mr Jourdain C23,C24
10h15	ED.PHYSIQUE & SPORT. Mme Shakira	MATHEMATIQUES Mme M. Mirzakhani C21		HISTOIRE-GEOGRAPHIE Mme L. Croft C42	FRANCAIS Mr Jourdain <i>C24</i>
11h15		EDUCATION MUSICALE Mr D.Vador C01 MUS	ANGLAIS LVA Mme M. McGonagall C13	TECHNOLOGIE Mr C. Stross C35	HISTOIRE-GEOGRAPHIE Mme L. Croft C42
12h15 12h30					
13h30	FRANCAIS Mr Jourdain <i>C24</i>	HISTOIRE-GEOGRAPHIE Mme L. Croft C42		FRANCAIS Mr Jourdain <i>C24</i>	ANGLAIS LVA Mme M. McGonagall C13
14h30 15h30	PHYSIQUE-CHIMIE Mr A. Nobel C101 SCIENCES	MATHEMATIQUES Mme M. Mirzakhani <i>C21</i>		ITALIEN LVB Mr H. Miyazaki [6ITA2], <i>C12</i>	
15h45	SCIENCES VIE & TERRE Mme M. Curie C102 SCIENCES	ITALIEN LVB Mr H. Miyazaki [6ITA2], <i>C12</i>			
16h45					

espace de recherche: (jour,heure,classe,matière,prof)ⁿ

Propriétés

- Espace de recherche
 - binaire, symbolique, continu
 - structuré ou non
- Fonction de performance
 - lien ténu entre représentation et performance
 - évaluation potentiellement bruitée
- Relation faible entre espace de recherche et objectif
 - ▶ l'espace de recherche contraint la forme des solutions
 - ▶ la mesure de performance permet de comparer des solutions

Optimisation

- Des méthodes pour des classes de problèmes
 - ▶ Algorithme de gradient (recherche locale, suit le gradient si il existe)
 - ► Hill-climbing (recherche locale, change un élément à la fois)
 - ▶ Méthodes énumératives (recherche globale, espace de recherche discret)
 - Méthodes heuristiques (espaces structurés)
 - Méta-heuristique et méthodes stochastiques
 - recherche aléatoire (recherche globale, sans a priori) [Monte carlo, Tabu]
 - recuit simulé (recherche globale) ["simulated annealing"]
 - méthodes bio-inspirées (recherche globale) [DE, PSO, Algo. évol., ...]

Evolutionary Robotics

 θ : parameters

f : objective function

 $f(\theta)$: fitness

problème classique d'optimisation sous contraintes

 θ : parameters

f: objective function

 $f(\theta)$: fitness

[Herdy, 1997]

problème classique d'optimisation boîte noire

Algorithmes génétiques

Recherche dans un espace d'entiers ou de symboles

Solution candidate: a := (y, f(y))

→ algorithmes génétiques

Exemples d'espace de recherche:

- composition d'une équipe de football
- découverte d'un code secret
- construire un emploi du temps

$$a := (y, s, f(y), f'(y), f''(y))$$

12

Opérateurs de sélection

N individus Sélection N' individus

- Définition
 - ▶ Sélectionne une sous-partie des solutions candidates
- Exemple
 - Renvoie les N meilleurs individus parmi M

- K-tournament
 - ▶ sélectionner k individus
 - garder le meilleur
- Fitness-proportionate

- (μ,λ)-ES
 - sélectionner les μ meilleurs, générer λ enfants, garder λ
- $(\mu + \lambda)$ -ES ("élitiste")
 - ightharpoonup sélectionner les μ meilleurs, générer λ enfants, garder μ et λ

Tableau

- Propriétés
 - Déterministe vs. stochastique
 - Compromis exploration/exploitation
 - Ne pas confondre l'archivage et la sélection
 - ex.: la sélection avec élitisme vs. archivage des meilleurs

16

- Définition
 - ▶ Construit un nouvel individu à partir d'un (ou plusieurs) individus
- Exemple
 - Modifie aléatoirement un élément du génome
- Propriétés
 - Conservatif vs. disruptif

Opérateur de variation: mutation

parent variation enfant

- Définition
 - ▶ Construit un nouvel individu à partir d'un seul individu parent
- Exemples

- Définition
 - ► Construit un nouvel individu à partir de 2 (ou +) individus parents
- Exemples:

Stochastique

- Les opérateurs de variation sont stochastiques
 - il s'applique avec une certaine probabilité
 - "probabilité de mutation", "probabilité de croisement"
 - il s'applique de manière déterministe ou non
 - la mutation bit-flip choisit un paramètre au hasard

Cas d'étude

Le problème du max-one

Blackbox optimisation and robotics

$$f(y): \{0,1\}^6 \to \mathbb{R}$$

$$y^* = argopt_{y \in Y} f(y)$$

nicolas.bredeche@upmc.fr

Evolutionary Robotics

22

 θ : parameters

f : objective function

problème classique d'apprentissage par renforcement

 $f(\theta)$: fitness

Problème: trouver une combinaison de 0 et 1

- Objectif: maximiser la fonction fitness
- Population initiale: 4 individus tirés au hasard
- Opérateur de Sélection : prend le meilleur
- Opérateurs de Variation : croisement ou mutation
 - Probabilité de croisement: p ; probabilité de mutation: I-p ; avec p=0.5
 - Croisement: on mélange le début d'un génome et la fin d'un second
 - Mutation: on change une valeur au hasard

Remarques:

- 1. les opérateurs sont ici choisis arbitrairement. D'autres choix sont possibles.
- 2. on imagine que les scores sont calculés par un simulateur externe qui renvoie un scalaire entre 0 et 6 pour un génome donné en entrée

nicolas.bredeche@upmc.fr random generator: <0.1 0.3 0.6 0.1 0.7 0.3 0.9 0.9 0.7 0.1 0.9 0.2 0.4 0.1 0.9 0.5 0.6 0.9>

déroulement de l'algorithme

nicolas.bredeche@upmc.fr

Comment mesurer la performance d'une solution?

le capteur 2 active le moteur I

- Paysage de la fonction fitness
 - ▶ Une fitness renvoie une valeur unique...
 - ▶ ce "score" peut aider (ou non) la recherche
- Combiner plusieurs objectifs
 - ▶ Fitness agrégée (combinaison linéaire d'objectifs)
 - ► Fitness lexico-graphique (ordonner les objectifs)
 - Multi-objectif

28

Comment tracer vos résultats?

En pratique

- Il s'agit d'une méthode stochastique, donc: faire plusieurs runs!
- Sur le calcul de la fitness: réévaluer pour bien estimer la qualité
- Fonction fitness:
 - elle guide l'évolution. Il faut la définir avec soin (si possible).

Tableau

A retenir:

- Médianes plutôt que moyennes
- Evaluations plutôt que générations
- ▶ Répéter les expériences, poursuivre jusqu'à convergence
- En pratique:
 - meilleures performances au mieux: le choix de la solution
 - meilleures performances en moyenne: le choix de l'algorithme

Tableau

exemple pratique (sur Moodle) Algorithme génétique et maxOne