# 3.320: Final Lecture (May 10 2005) JOVRNEY TO THE (ENTRE OF THE EARTH

## **Planetary Interiors**



#### Earth's core

- 30% of mass of the planet
- Mainly iron (star nucleosynthesis) the liquid outer core is slightly less dense (light impurities: S, O, Si, H?)
- Pressure ranges 100-400 GPa, temperatures 3000-7000 K (?)
- Liquid-solid boundary: 330 Gpa (seismic waves)
- DAC: 300 GPa @ 300K, 200 Gpa @ 3700K

#### **GGA-DFT** Iron



Pressure as a function of atomic volume of hcp Fe.



Phonon dispersion curves of ferromagnetic bcc Fe at Zero pressure along the [100], [110], and [111] directions.

Figure by MIT OCW.

Initial T = 100 K, final T = 119.5 K.



Initial T = 130 K, final T = 120.9 K.



# Melting Point



# Thermodynamic integration (I)

$$\mathcal{U}(\lambda) \ = \ (1-\lambda)\mathcal{U}_{\rm I} + \lambda \mathcal{U}_{\rm II} \qquad \qquad Q(N,V,T,\lambda) = \frac{1}{\Lambda^{3N}N!} \int d\mathbf{r}^N \exp[-\beta \mathcal{U}(\lambda)]. \label{eq:update}$$

$$\begin{split} \left(\frac{\partial F(\lambda)}{\partial \lambda}\right)_{N,V,T} &= -\frac{1}{\beta} \frac{\partial}{\partial \lambda} \ln Q(N,V,T,\lambda) = -\frac{1}{\beta Q(N,V,T,\lambda)} \frac{\partial Q(N,V,T,\lambda)}{\partial \lambda} \\ &= \frac{\int d\mathbf{r}^N (\partial \mathcal{U}(\lambda)/\partial \lambda) \exp[-\beta \mathcal{U}(\lambda)]}{\int d\mathbf{r}^N \exp[-\beta \mathcal{U}(\lambda)]} = \left\langle \frac{\partial \mathcal{U}(\lambda)}{\partial \lambda} \right\rangle_{\lambda} \end{split}$$

# Partitioning the free energy

$$F = -k_{\rm B}T \ln \left\{ \frac{1}{N! \Lambda^{3N}} \int d\mathbf{R}_1 \dots d\mathbf{R}_N \right.$$
$$\times \exp[-\beta U(\mathbf{R}_1, \dots \mathbf{R}_N; T_{\rm el})] \right\},$$

$$U(R_1,...,R_N;T_{el}) = U(R_1^0,...R_N^0;T_{el}) + U_{vib}^{harm}(R_1,...,R_N;T_{el}) + U_{vib}^{anharm}(R_1,...,R_N;T_{el})$$

#### Harmonic Term

$$F_{\text{harm}} = -k_{\text{B}}T \ln \left\{ \frac{1}{\Lambda^{3N}} \int d\mathbf{R}_{1} \dots d\mathbf{R}_{N} \right.$$
$$\times \exp\left[ -\beta U_{\text{harm}}(\mathbf{R}_{1}, \dots \mathbf{R}_{N}; T_{\text{el}}) \right] \right\},$$

$$U_{\text{harm}} = \frac{1}{2} \sum_{ls\alpha,l't\beta} u_{ls\alpha} \Phi_{ls\alpha,l't\beta} u_{l't\beta} \longrightarrow F_{\text{harm}} = \frac{3k_{\text{B}}T}{N_{\mathbf{k}s}} \sum_{\mathbf{k}s} \ln(\beta \hbar \omega_{\mathbf{k}s})$$

#### Anharmonic Term

$$F_{\text{anharm}} = (F_{\text{vib}} - F_{\text{ref}}) + (F_{\text{ref}} - F_{\text{harm}}),$$

$$F_{\text{vib}} - F_{\text{ref}} = \int_0^1 d\lambda \, \langle U_{\text{vib}} - U_{\text{ref}} \rangle_{\lambda}^{\text{vr}},$$

$$F_{\text{ref}} - F_{\text{harm}} = \int_0^1 d\lambda \langle U_{\text{ref}} - U_{\text{harm}} \rangle_{\lambda}^{\text{rh}}.$$

## Reference System

$$U_{\text{IP}} = \frac{1}{2} \sum_{I \neq J} \phi(|\mathbf{R}_I - \mathbf{R}_J|),$$

$$U_{\text{ref}} = c_1 U_{\text{harm}} + c_2 U_{\text{IP}}$$
.

## Shock Hugoniot



Experimental and *ab initio* Hugoniot pressure *p* as a function of atomic volume *V*.

Figure by MIT OCW.

## Taking the temperature...



Figure by MIT OCW. After D. Alfe.

## Force Matching Method

Laio et al, Science '00

Graph and diagram removed for copyright reasons.

### Neptune and Uranus

Ancilotto et al, Science '97

- Middle ice layer: methane, ammonia, and water in solar proportions
- From 20 GPa/2000K to 600 Gpa/8000K

#### A rain of diamonds?

Diagrams removed for copyright reasons.

Source: Figure 1 in Ancilotto, F., et al. "Dissociation of Methane into Hydrocarbons at Extreme (Planetary) Pressure and Temperature." *Science* 275, no. 5304 (Feb. 1997): 1288-1290.

Image removed for copyright reasons.

From Benedetti et al, 1999.

Experimental confirmation that hydrocarbons and diamonds could both form methane at planetary conditions came from a diamond-anvil experiment at UC-Berkeley by Jeanloz et al.

## Superprotonic Water

Cavazzoni et al, Science '99



Courtesy of Erio Tosatti. Used with permission.

Image removed for copyright reasons.

Scan of paper: Goncharov, A.F., et al. "Dynamic Ionization of Water under Extreme Conditions." *Physical Review Letters* 94 (April 1, 2005).

## Pairing in dense alkali

Graph and diagram removed for copyright reasons.

Figure 5 in Neaton and Ashcroft, Nature 1999.



Lyrics for song "My Way" removed for copyright reasons.

3.320 Last Lecture (May 10 2005)

#### **Overview**

**Basic Techniques** 

**DFT** and Potentials

MD, MC

Often need to be combined in creative ways to get results

#### Issues: How to make impact?



#### Theory of Properties: The Multi-Scale Materials View



#### Theory of Properties: A More Realistic View



Courtesy of NIH.

# Computations should not substitute for lack of knowledge

Example: Intergranular Embrittlement of Fe

**Observation:** P embrittles high strength steel

B enhances intergranular cohesion

Can we study this with atomistic modeling?

**Rice-Wang theory** 

"Embritting tendency of solute depends on difference in segregation energy at grain boundary and free surface"

Calculate segregation energy for B and P at free surface and grain boundary

#### Intergranular Embrittlement of Fe

#### **Rice-Wang theory**

"Embritting tendency of solute depends on difference in segregation energy at grain boundary and free surface"

Diagram removed for copyright reasons. Source: Wu, R., A. J. Freeman, and G. B. Olsen. *Science* 265 (1994): 376-380.

# Calculate segregation energy for B and P at free surface and grain boundary

May 10 2005 3.320 Atomistic Modelling of Materials -G. Ceder, N. Marzari

#### Intergranular Embrittlement of Fe

Graph and diagrams removed for copyright reasons.

R. Wu, A. J. Freeman, G. B. Olson, *Science* 265, (1994) 376-380.

# When you can not think through the relation between macroscopic behavior and "computable" properties on the atomic scale

Derive relation statistically -> data mining techniques

# What if we can not bridge the gap between microscopic and macroscopic with theory?

Microscopic

Macroscopic



May 10 2005 3.320 Atomistic Modelling of Materials -G. Ceder, N. Marzari

#### **Learning Methods**



e.g QSAR in chemistry (Quantitative Structure Activity Relationship)

# Example, can one predict stable crystal structures in a binary alloy from knowledge of only the energy of a few compounds



#### Ag-Cd: Example

#### **Test: Crystal Structure Prediction**



#### Design: Bandgaps

Standard First Principles Methods (LDA/GGA) underestimate band gaps

Example: Silicon

Figure removed for copyright reasons. Calculated: 0.55 eV

Experimental: 1.1 eV

#### Can be fixed

With empirical pseudo potentials (not generally available) band gaps can be corrected by fitting to well-known semi conductors

GaAs

# Then, can predict band gaps of mixtures and states of impurities

# Can try to find composition and arrangement with "tuned" gap

Scan through milions of AlAs/GaAs superlattices to find one with maximal band gap

#### **Thermoelectrics**

Figure of merit

$$ZT = \frac{\sigma}{\kappa} S^2 T$$
Seebeck Coefficient

 $CeFe_4P_{12}$ 

Want low thermal conductivity: <u>Can be</u> <u>calculated</u>, <u>but tedious</u>. Use qualitative guidelines:

Figure removed for copyright reasons.

Complex unit cells, "ratteling" ions to cause scattering of phonons

e.g. skutterudites

#### **Thermoelectrics**

Want semiconductors with high s and high S

$$S \quad \frac{e\tau}{3\sigma T} \int d\varepsilon \left( -\frac{\partial f}{\partial \varepsilon} \right) \quad N(\varepsilon) \quad v^{2}(\varepsilon)(\varepsilon - \varepsilon_{o})$$

Can be calculated from band structures

#### Prediction of high thermo-electric performance

 $La(Ru_{1-x}Rh_x)_4Sb_{12}$ 

Figure removed for copyright reasons.

from Fornari and Singh: Applied Physics Letters, Vol 74, 3666 (1999)

#### The future of modeling

What does more computing buy you?

**Doubling every two years** 

40 years -> 10<sup>6</sup> increase in performance

#### But, ... scaling

**Molecular Dynamics with potentials O(N)** 

DFT (LDA, GGA)  $O(N^3 \text{ or } N^2 \log(n))$ 

Hartree Fock O(N<sup>4</sup>)

| Method                  | Today<br>(atoms)      | +40 years       |
|-------------------------|-----------------------|-----------------|
| MD (potentials)         | 10 <sup>8</sup> atoms | $10^{14}$ atoms |
| LDA (N <sup>3</sup> )   | 1000                  | 100,000         |
| LDA(N)                  | 1000                  | 109             |
| HF +CI(N <sup>6</sup> ) | 10                    | 100             |

**Scaling for length** 

 $N = L^3$ 

May 10 2005 3.320 Atomistic Modelling of Materials -G. Ceder, N. Marzari

#### **Conclusion**

Computational modeling is very powerful, but

# Be Smart