Inference from the ground up

Building intuition + a primer on sampling

code of conduct

there will be a live coding session:

no laughing at others people's (my) code

inference

Many ways to infer information from data, e.g., classification

Is there a categorizable object in an image?

e.g., neural networks, logistic regression

inference

Recommender systems: what will you probably want to watch given what you've

NETFLIX

already watched?

e.g., clustering++

Over 75% of what people watch comes from a recommendation

inference

Precision measurement:

does my data contain a signal?

Many scientific examples (e.g., GWs)

What are the attributes of the signal?

e.g., GW sky location

Bayesian inference

Optimal framework for statistical inference

Assign probabilities to hypotheses such as:

- Does my data contain a signal?
- How much more likely is it that the data contains a signal vs noise
- If the data contains a signal, does it have such-and-such properties

Bayesian inference

Some features:

- Can be arbitrarily complex, but for many applications there are surprisingly few inputs
 - Noise statistics
 - Theoretical model for signals

The following example shows how to leverage these two ingredients - in a "Bayesian way" - to demonstrate

- signal detection
- how to extract signal properties

Goals

- How to think about comparing hypotheses (e.g., signal vs noise)
- Build intuition for how to write down a likelihood function.
- How to think about defining priors

$$p(\theta|d) = \frac{\mathcal{L}(d|\theta)\pi(\theta)}{Z(d)}$$

 Note how very weak signals can have a high statistical significance if they're extracted optimally

Signal Detection and Parameter Estimation

An example motivated by time-series analysis

Background/noise measurements

Key point: data are random variables

Background/noise measurements

$$p(d=n; \mu=0, \sigma=1) = \frac{1}{\sqrt{2\pi 1^2}} \exp\left[-\frac{1}{2} \frac{(n-0)^2}{1^2}\right]$$

Background/noise measurements

"Foreground" measurement: impulse of amplitude = 11

Below is the probability that the data is noise

$$p(d=n; \mu=0, \sigma=1) = \frac{1}{\sqrt{2\pi 1^2}} \exp\left[-\frac{1}{2} \frac{(n-0)^2}{1^2}\right]$$

"Foreground" measurement: impulse of strain = 11

Below is the probability that the data is noise

Subtracting out the signal

Interlude: Some notation

Likelihood function

$$\mathcal{L}(d|\mathcal{H}_n) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \frac{(d-\mu)^2}{\sigma^2}\right]$$

$$\mathcal{L}(d|\mathcal{H}_s) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \frac{(d-s-\mu)^2}{\sigma^2}\right]$$

Hypothesis testing

Likelihood ratio: detection statistic

- How much more likely is the signal hypothesis than the noise hypothesis?
 - Form the likelihood ratio:

$$O = rac{\mathcal{L}(d|\mathcal{H}_s)}{\mathcal{L}(d|\mathcal{H}_n)}$$

Hypothesis testing

Likelihood ratio: detection statistic

- How much more likely is the signal hypothesis than the noise hypothesis?
 - Form the likelihood ratio:

$$O = rac{\mathcal{L}(d|\mathcal{H}_s)}{\mathcal{L}(d|\mathcal{H}_n)}$$

In this case: O = exp(23)

Time series data

Time series data

Using N=10'000 sample points

$$\mathcal{L}(d(t_1), d(t_2)...d(t_N)|\mathcal{H}_n) = \mathcal{L}(d(t_1)|\mathcal{H}_n) \text{ and } \mathcal{L}(d(t_2)|\mathcal{H}_n) \text{ and } \dots \text{ and } \mathcal{L}(d(t_N)|\mathcal{H}_n)$$

$$\mathcal{L}(d|\mathcal{H}_n) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi \, 1^2}} \exp\left[-\frac{1}{2} \frac{(d-0)_i^2}{1^2}\right]$$

Time series data

Using N=10'000 sample points

- \circ log[L(d)] = -5077 (!?)
- This is a consequence of high-D data
- Probability *density* in shrinks like power of the dimension

Time series data

 $\mathcal{L}(d|\mathcal{H}_s) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi 1^2}} \exp\left[-\frac{1}{2} \frac{(d-s-0)_i^2}{1^2}\right]$

Using N=10'000 sample points

 exp(30) ~ 10¹³ times more likely to be a signal than noise!

The basics of search

What if the exact signal is unknown?

What if we want to find a signal

The basics of *parameter estimation*

$$p(f|d) \propto \mathcal{L}(d|f,\mathcal{H}_s)\pi(f)$$

- The probability of the signal's frequency depends on the likelihood and the prior
 - Choosing a good prior is motivated by, e.g.,
 - Knowledge of how signal's frequencies are distributed in nature (previous measurements)
 - Ignorance (Maybe we don't know what to expect, so we should treat all values as equally likely)
 - Known constraints (signals only have frequencies in some range)

The basics of *parameter estimation*

$$p(f|d) \propto \mathcal{L}(d|f,\mathcal{H}_s)\pi(f)$$

$$\mathcal{L}(d|f,\mathcal{H}_s) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi 1^2}} \exp\left[-\frac{1}{2} \frac{(d_i - \sin(2\pi f t_i) - 0)^2}{1^2}\right]$$
$$\pi(f) = 1 \qquad (2\text{Hz} \le f \le 8\text{Hz})$$
$$= 0 \qquad \text{otherwise}$$

Exercise:

- Code up (log) likelihood functions for the signal and noise hypothesis
 - The function should take as inputs:
 - Data
 - Noise variance
 - Noise mean
 - A signal
- Useful tips:
 - When multiplying numbers, it's a good idea to use numpy functions like numpy.dot as this will ensure you code will scale efficiently when your data becomes large
- Add a signal to some noise and compute the likelihood ratio

The basics of *parameter estimation*

• ρ =30 (as we found when we knew the exact signal)

unkown signals

What if the exact signal is unknown?

What if we want to find a signal

The basics of search

- ρ =30 (as we found when we knew the exact signal)
- This is also the basis of parameter estimation!

Exercise: Recreating the experiment in software

- Use numpy to generate some Gaussian random variables
 - Hint: the numpy.random module contains a convenient function to do this

- Create a histogram of your random numbers
 - Note how the histogram converges as you generate more numbers
 - Compare your (normalized) histogram to the exact probability of a number being Gaussian

- Previous example used a simple search over a single parameter (frequency)
 - Numerically simple
 - Scales poorly with number of parameters
- Example:
 - Measure a satellite's trajectory for a few seconds/minutes/hours using GPS
 - What is the (initial) position, velocity, acceleration of the satellite

Position (3) + velocity (3) + acceleration (3) = 9 parameters

Gridding up N points in each dimension and searching over this space scales like N⁹!

- Do we need to consider N⁹ trails point to get an accurate measurement of the variables?
 - Noise in the data sets ultimate accuracy of any measurement
 - Systematic error scales like 1/sqrt(M) where M is the number of measurements

- Probably only need a few thousand "sample" points in position/velocity/acceleration to get a measurement that's not dominated by systematic errors
- Sampling provides a way to do this
 - Idea is that we only need a relatively small number of samples for the parameters where most of the probability is contained (and ignore the rest)
 - E.g., sampling a population to measure height distribution

Drawing points with the right probability requires specialized algorithms/tools:

- MCMC
- Nested sampling

The sample in a random, unbiased way