1 Radioactivity

Nuclear radius: $r \approx (1.2 \times 10^{-15} \text{ m})A^{1/3}$ Atomic mass unit: $1 \text{ u} = 1.66 \times 10^{-27} \text{ kg}$

 α decay: ${}_Z^AX \rightarrow_{Z-2}^{A-4} X' + {}_2^4$ He

 β decay: ${}_{Z}^{A}X \rightarrow {}_{Z+1}^{A}X' + e^{-}(+ \text{ neutrino})$

 γ decay: ${}_{Z}^{A}X* \rightarrow {}_{Z}^{A}X + \text{ photon}$

Radioactive decay law: $N(t) = N_0 e^{-\lambda t}$

Half-life: $T_{1/2} = \frac{\ln 2}{\lambda}$

Activity: $\left| \frac{dN}{dt} \right| = \lambda N \left[1 \text{ Ci} = 3.70 \times 10^{10} \text{ decays/s} \right]$

Dosimetry

Absorbed dose: dose_{abs} = E/m [1 rad = 0.01 J/kg]

Effective dose: $dose_{eff} = dose_{abs} \times QF$

 $[1 \text{ rem} = 1 \text{ rad} \times 1 \text{ QF}, 1 \text{ Sv} = 100 \text{ rem} = 1 \text{ J/kg} \times 1 \text{ QF}]$

2 Electricity

Elementary charge: $e = 1.60 \times 10^{-19} \text{ C}$

Coulomb const.: $k = \frac{1}{4\pi\epsilon_0} = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$

Permittivity: $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$ **Electron Volt:** $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Electric Field 2.1

Coulomb's law: $\mathbf{F}_{12} = k \frac{Q_1 Q_2}{2} \hat{\mathbf{r}}_{21}$

Force on q: $\mathbf{F} = q\mathbf{E}$

Coulomb's law: $\mathbf{E} = \frac{kQ}{r^2} \hat{\mathbf{r}}$

Gauss's law: $\Phi_E = \sum_{\text{surfaces}} E_{\perp} A = \frac{Q_{\text{encl}}}{\epsilon_0}$

2.2Potential

Potential energy of q: U = qV

Gradient of V: $E_l = -\frac{dV}{dl}$

Uniform field: $V = -E_l l$

Point charge: $V = \frac{kQ}{r}$

2.3Capacitance

Capacitance: Q = CV [1 F = 1 C/V]

Parallel plates: $C = \frac{\epsilon_0 A}{d}$

...In series: $\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + ...$

...In parallel: $C_{eq} = C_1 + C_2 + ...$

Potential energy: $U = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C}$

Dielectric: $C = KC_0$

2.4 Current and Resistance

Current: $I = \frac{dQ}{dt}$ [1 A = 1 C/s]

Ohm's law: V = IR

Resistance: $R = \rho \frac{l}{A}$

...In series $R_{eq} = R_1 + R_2 + ...$

...In parallel $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + ...$

Power: P = IV [1 W = 1 J/s]

3 Magnetism

Permeability: $\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$

Magnetic field 3.1

Force on wire: $F = IlB_{\perp}$ [1 T = 1 N/A·m, 1 G = 10^{-4} T]

Force on charge: $F = qvB_{\perp}$

Ampère's law: $\sum \ B_{\parallel} l = \mu_0 I_{
m encl}$

Long wire: $B = \frac{\mu_0 I}{2\pi r}$

Solenoid: $B = \mu_0 \frac{N}{I} I$

3.2 Induction

Flux: $\Phi_B = NB_{\perp}A \left[1 \text{ Wb} = 1 \text{ T} \cdot \text{m}^2 \right]$

Faraday's law: $\mathscr{E} = -\frac{d\Phi_B}{dt}$

Transformer: $\frac{V_p}{N_p} = \frac{V_s}{N_s}$

Self-inductance: $\mathscr{E} = -L \frac{dI}{dt} [1 \text{ H} = 1 \Omega \cdot \text{s}]$

Solenoid: $L = \frac{\mu_0 N^2 A}{I}$

Potential energy: $U = \frac{1}{2}LI^2$

4 Circuits

DC Circuits

Kirchhoff's branch: at a branch $\sum I_{in} = \sum I_{out}$

Kirchhoff's loop: around a loop $\sum V = 0$

 $\begin{array}{llll} \textbf{Reaction Time:} & I(t)-I_{\infty} & = & \left(I_{0}-I_{\infty}\right)e^{-t/\tau} \\ & V(t)-V_{\infty} & = & \left(V_{0}-V_{\infty}\right)e^{-t/\tau} \\ \end{array}$

Time constant: $\tau = RC$ RC circuits:

 $I_{\infty,C} = 0$

Time constant: $\tau = \frac{L}{R}$ LR circuits:

 $V_{\infty,L} = 0$

AC Circuits

Sinusoidal: $V_{\text{RMS}} = \frac{V_0}{\sqrt{2}}$, $I_{\text{RMS}} = \frac{I_0}{\sqrt{2}}$

Angular frequency: $\omega = 2\pi f = \frac{2\pi}{T}$

L Reactance: $X_L = \omega L$

C Reactance: $X_C = \frac{1}{\omega C}$

LRC Impedance: $Z = \sqrt{R^2 + (X_L - X_C)^2}$

LRC Phase: $\cos \phi = \frac{R}{Z}$

LRC Resonance: $\omega_0 = \frac{1}{\sqrt{IC}}$

LRC Power: $\overline{P} = I_{\text{RMS}}^2 R = I_{\text{RMS}} V_{\text{RMS}} \cos \phi$

5 Electromagnetic waves

Speed of light: $c = 3.00 \times 10^8 \text{ m/s}$

Wavelength: $f\lambda = c$