K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELEMENTS OF ELECTRICAL AND ELECTRONICS ENGINEERING DC CRICUITS

Numerical 1: Find the current I_0 in Circuit 1.

Figure 1: Circuit 1

Solution:

By using delta to star conversion,

Figure 2: Modified circuit for figure 1

By further simplyfing we get,

Figure 3: Modified circuit for figure 2

Figure 4: Modified circuit for figure 3

$$\therefore I_0 = \frac{V}{R}$$

$$\therefore I_0 = \frac{24}{24.064}$$

$$I_0 = 0.9973 \text{ A}$$

The above circuit is simulated in LTspice. The results are presented below.

Figure 5: Circuit schematic and simulated results

Here, $I_{V1} = I_0 = 0.9974$ A

Parameter	Theoretical value	Simulated values
I_0	0.9973A	0.9974A

Table 1: Numerical 1

Numerical 2: Find R_{ab} in the four way power divider circuit. Assume each element is 1Ω .

Figure 6: Circuit 2

Solution:

Since loop 1 and loop 2 form a wheatstone's bridge, current through R_{13} and R_{14} becomes zero. Therefore, R_{13} and R_{14} becomes open i.e. gets removed.

Figure 7: Modified circuit for figure 6

After simplifying the circuit we get, Now, this loop also forms a wheatstone's bridge

Figure 8: Modified circuit for figure 7

Therefore the resistance R_{25} gets removed.

Figure 9: Modified circuit for figure 8

After simplyfing the circuit we get,

$$R_{ab} = 2\Omega$$

The above circuit is simulated in LTspice. The results are presented below.

Figure 10: Circuit schematic

Î		Operating	Point	/-
V(n001)	:	2.5		voltage
V(n004)	:	5		voltage
V(a):		10		voltage
V(n005)		2.5		voltage
V(n002)	:	1.25		voltage
V(n003)	:	1.25		voltage
V(n006)	:	1.25		voltage
V(n007)		1.25		voltage
I (R11):		-1.25	i	device current
I (R14):		0		device current
I (R13):		0		device current
I (R12):		0		device current
I(R10):		-1.25	i e	device_current
I(R9):		-1.25	i	device_current
I(R8):		-1.25	i	device_current
I(R7):		-1.25	5	device_current
I(R6):		-1.25	i	device_current
I(R5):		-1.25	i	device_current
I(R4):		-1.25	i e	device_current
I(R3):		-2.5		device_current
I(R1):		-5		device_current
I(R2):		-2.5		device_current
I(V1):		-5		device current

Figure 11: Simulated results

$${\rm Here},$$

$$R_{ab} = \frac{V_1}{I_V}$$

$$R_{ab} = \frac{10}{5}$$

$$R_{ab} = 2\Omega$$

Parameter	Theoretical value	Simulated values
R_{ab}	2Ω	2Ω

Table 2: Numerical 2

Numerical 3: Using superposition, find V_0 in the circuit 3.

Figure 12: Circuit 3

Solution:

Step 1: When 3V source is acting alone,

Figure 13: Modified circuit for figure 12

By further simplyfing we get,

Figure 14: Modified circuit for figure 13

$$I_{ckt} = \frac{3}{3.25} = 0.9230$$

 $I_1 = 0.9230 \times \frac{3}{3+9}$
 $I_1 = 0.2307A(\leftarrow)$

Step 2: When 9V source is acting alone,

Figure 15: Modified circuit for figure 12

Figure 16: Modified circuit for figure 15

$$I_{ckt} = \frac{9}{3.9} = 2.3076A$$

$$\therefore I_2 = 2.3076 \times \frac{1}{1+9}$$

$$I_2 = 2.3076 \times \frac{1}{1+9}$$

$$\therefore I_2 = 0.23076A(\leftarrow)$$

By Superposition Theorem,

$$I : I = I_1 + I_2$$

$$I = 0.2307 + 0.2307$$

$$\therefore I = 0.4615A(\rightarrow)$$

$$\therefore V_0 - 0 = I \times R$$

$$V_0 = 0.4615 \times (4+5)$$

$$\therefore V_0 = \mathbf{4.1526V}$$

The above circuit is simulated in LTspice. The results are presented below.

Figure 17: Circuit schematic and simulated results

Here, $V_0 = 4.15385V$

Parameter	Theoretical value	Simulated values
V_0	4.1526V	4.1538V

Table 3: Numerical 3

Numerical 4: Determine V_0 in circuit 4 using superposition principle.

Figure 18: Circuit 4

Solution:

Step 1: When 2A source is acting alone,

Figure 19: Modified circuit for figure 18

Figure 20: Modified circuit for figure 19

$$\therefore I_1 = 2 \times \frac{5}{10}$$
$$\therefore I_1 = 1A(\rightarrow)$$

$$I_1 = 1A(\rightarrow)$$

Step 2: When 12V source is acting alone,

Figure 21: Modified circuit for figure 18

Figure 22: Modified circuit for figure 21

Figure 23: Modified circuit for figure 22

$$I_{ckt} = \frac{12}{6 + 2.182}$$

$$I_{12} = 1.467 \times \frac{3}{3 + 8}$$

$$I_{12} = 0.4A(\rightarrow)$$

Step 3: When 19V source is acting alone,

Figure 24: Modified circuit for figure 18

Figure 25: Modified circuit for figure 24

Figure 26: Modified circuit for figure 25

$$I_{ckt} = \frac{19}{8.42} = 2.256A$$

 $\therefore I_3 = 2.256 \times \frac{12}{7 + 12}$
 $\therefore I_3 = 1.425A \leftarrow$
 $\therefore I_3 = -1.425 \rightarrow$

By Superposition Theorem,

$$I_{5\Omega} = I_1 + I_2 + I_3$$

$$I_{5\Omega} = I_1 + I_2 + I_3$$

 $\therefore I_{5\Omega} = 1 + 0.4 - 1.425$
 $\therefore I_{5\Omega} = -0.025(\rightarrow)$
 $\therefore I_{5\Omega} = 0.025(\leftarrow)$

$$I_{50} = -0.025 \rightarrow$$

$$I_{50} = 0.025(\leftarrow)$$

$$V_0 = I_{5\Omega} \times R_{5\Omega}$$

$$\therefore V_0 = 0.025 \times 5$$

$$V_0 = 0.125V$$

The above circuit is simulated in LTspice. The results are presented below.

Figure 27: Circuit schematic

--- Operating Point ---

V(a):	8.05	voltage
V(n001):	12	voltage
V(b):	8.175	voltage
V(n002):	19	voltage
I(I1):	2	device_current
I(R5):	-2.68333	device_current
I(R4):	-0.68125	device_current
I(R3):	2.70625	device_current
I(R2):	0.025	device_current
I(R1):	-0.658333	device_current
I(V2):	-0.658333	device_current
I(V1):	-2.70625	device current

Figure 28: Simulated results

Here, $V_0 = V_B - V_A = 8.175 - 8.050$ $\therefore V_0 = \mathbf{0.125V}$

Parameter	Theoretical value	Simulated values
V_0	0.125V	0.125 V

Table 4: Numerical 4

Numerical 5: Use Thevenin's theorem to find current in the branch AB of the network shown in Figure 29. All resistances are in ohms.

Figure 29: Circuit 5

Solution:

Step 1: Finding R_{TH} ,

Here, we need to replace the voltage source by a short circuit as shown in figure 30.

Figure 30: Modified circuit for figure 29 to find R_{TH}

After simplifying the circuit we get,

 $R_{AB} = R_{TH} = 2.769\Omega$

Figure 31: Modified circuit for figure 30 to find V_{TH}

By using nodal analysis,

$$\therefore \frac{V_A - 10}{4} + \frac{V_A}{9} = 0$$

$$\therefore 13V_A - 90 = 0$$

$$\therefore V_{TH} = V_A = 6.9230V$$

Step 3: Thevenin's equivalent circuit,

The circuit consists of resistance R_{TH} and R_L in series with voltage source V_{TH} as shown in figure 32.

Figure 32: The venin's equivalent circuit

$$I_{1\Omega} = \frac{6.923}{2.769 + 1} = 1.8368A$$

 $I_{AB} = I_{1\Omega} = \mathbf{1.8368A}$

The above circuit is simulated in LTspice. The results are presented below.

Figure 33: Circuit schematic

Figure 34: Simulated results

Here, $I_{1\Omega} = I_{AB} = 1.83673 \text{A}$

Parameter	Theoretical value	Simulated values
$I_{1\Omega}$	1.8369A	1.83673A

Table 5: Numerical 5

Numerical 6: Find the current that would flow if 2Ω resistor was connected between A and B as shown in figure 35. All resistances are in ohms.

Figure 35: Circuit 6

Solution:

Step 1: Find R_{TH} or R_{AB} ,

Here, we need to replace voltage source with short circuit as shown in figure 35.

Figure 36: Modified circuit for figure 35 to find R_{TH}

Figure 37: Modified circuit for figure 36 to find R_{TH}

 $R_{AB} = R_{TH} = 1.425\Omega$

Step 2: Find V_{TH} or V_{AB} ,

Figure 38: Modified circuit for figure 35 to find V_{TH}

By Nodal analysis,

Considering node V_C ,

$$\therefore \frac{V_C - V_A}{1} + \frac{V_C - 2}{2} + \frac{V_C}{12} = 0$$

$$\therefore -12V_A + 19V_C = 12 \qquad \dots (1)$$

Considering node V_A ,

$$\therefore \frac{V_A - 4}{3} + \frac{V_A - V_C}{1} = 0$$

$$\therefore 4V_A - 3V_C = 4$$
.....(2)

After solving equation (1) and (2) we get, $V_A = 2.8V$

Step 3: Thevenin's equivalent circuit,

Figure 39: Thevenin's equivalent circuit

$$I_{AB} = \frac{2.8}{1.425 + 2} = 0.8175A$$

 $I_{Ab} = I_{2\Omega} = \mathbf{0.8175A}$

The above circuit is simulated in LTspice. The results are presented below.

Figure 40: Circuit schematic

(Operating Point	
V(n002):	1.66423	voltage
V(n001):	2	voltage
V(a):	1.63504	voltage
V(n003):	4	voltage
I(R5):	0.817518	device current
I(R4):	-0.138686	device current
I(R3):	0.788321	device current
I(R2):	-0.0291971	device current
I(R1):	-0.167883	device current
I(V2):	-0.788321	device current
I(V1):	-0.167883	device current

Figure 41: Simulated results

Here, $I_{R5} = I_{AB} = \mathbf{0.8175A}$

Parameter	Theoretical value	Simulated values
I_{AB}	0.8175A	0.8175A

Table 6: Numerical 6

Numerical 7: Find the Thevenin and Norton equivalent circuits for the active network shown in Figure 42. All resistance are in ohms.

Figure 42: Circuit 7

1] For Thevenin's circuit:

Step 1: Finding V_{TH} ,

Figure 43: Modified circuit for figure 42 to find V_{TH}

By nodal analysis, Considering node C,

$$\frac{V_C - V_A}{2} - 2 + \frac{V_C - 6}{2} = 0$$

$$\therefore 2V_C - V_A - 6 = 4$$

$$\therefore -V_A + 2V_C = 10$$
(1)

Considering node A,

$$V_A - V_C = 0$$
(2)

On solving (1) and (2) we get,

$$V_A = V_{TH} = \mathbf{10V}$$

Step 2: Finding R_{AB} ,

Here, we replace the voltage source by short circuit and current source by open circuit. Therefore the circuit gets reduced to figure 44.

Figure 44: Modified circuit for figure 42 to find R_{TH}

Here, we replace the voltage source by short circuit and current source by open circuit. $R_{AB}=4\Omega$

Step 3: Thevenin's equivalent circuit,

The circuit consists of R_{TH} in series with voltage source V_{TH} as shown in figure 45,

Figure 45: Thevenin's equivalent circuit

2] For Norton's circuit:

Step 1: Finding I_{SC} ,

Figure 46: Modified circuit for figure 42 to find I_{SC}

By supermesh,

Supermesh equation,

$$I_1 - I_2 = 2$$
(3)

Applying mesh analysis to outer loop,

$$I_1 + I_2 = 3$$
(4)

On solving equation (3) and (4) we get,

$$I_2 = I_{SC} = 2.5A$$

Step 2: Norton's equivalent circuit,

We know,

$$R_{th} = R_N = 4\Omega$$

The circuit consists of R_N in parallel with current source I_{SC} as shown in the figure 47,

Figure 47: Norton's equivalent circuit

SIMULATED RESULTS:

The above circuit is simulated in LTspice. The results are presented below.

Figure 48: Circuit schematic and simulated results: To find V_{TH}

Here,
$$V_{TH} = V_A = 10V$$

Figure 49: Circuit schematic and simulated results: To find R_{TH}

Here,

$$R_{TH} = R_{AB} = \frac{V_A}{I_{V1}}$$

$$\therefore R_{TH} = R_{AB} = \frac{10}{2.5}$$

$$\therefore R_{TH} = R_{AB} = 4\Omega$$

Figure 50: Circuit schematic and simulated results: To find I_{SC}

Here, $I_{SC} = I_{R2} = 2.5$ A

Parameter	Theoretical value	Simulated values
V_{TH}	10V	10V
I_{SC}	2.5A	2.5A
R_{AB}	4Ω	4Ω

Table 7: Numerical 7

Numerical 8: Determine current and voltage across $3k\Omega$ resistor in Figure 51.

Figure 51: Circuit 8

Step 1: Finding I_{SC} or I_N ,

Here, we need to replace $3k\Omega$ resistor with a short circuit.

Figure 52: Modified circuit for figure 51 to find I_{SC}

By applying mesh analysis we get,

$$-10^3 \times 6I_1 = 6$$

$$I_1 = -1 \times 10^{-3} = -1mA$$

$$-10^3 \times 2I_2 = 3$$

$$\therefore I_1 = 1.5mA$$

$$I_{SC} = I_2 - I_1$$

$$I_{SC} = 1.5 - (-1)$$

 $I_{SC} = 2.5mA$

Step 2: Finding R_{AB} or R_N ,

Here, we need to replace both the voltage source with short circuit. As shown in the figure 53.

Figure 53: Modified circuit for figure 51 to find R_{TH}

After solving we get,

$$R_{AB} = 6\Omega \mid\mid 2\Omega$$

$$\therefore R_{AB} = 1.5 \text{k}\Omega$$

Step 3: Norton's equivalent circuit,

The circuit consists of R_N in parallel with current source I_{SC} as shown in the figure 54.

Figure 54: Norton's equivalent circuit

By using current division formula,

$$I_{3k\Omega} = 2.5 \times 10^{-3} \times \frac{1.5 \times 10^{3}}{(1.5+3) \times 10^{3}}$$

 $\therefore I_{3k\Omega} = \mathbf{0.8333mA}$
 $V_{3k\Omega} = I \times R = 0.8333 \times 10^{-3} \times 3 \times 10^{3}$

$$\therefore V_{3k\Omega} = 2.5\mathbf{V}$$

SIMULATED RESULTS:

The above circuit is simulated in LTspice. The results are presented below. Here,

Figure 55: Circuit schematic and simulated results: To find V_{TH}

$$I_{SC} = I_{AB} = I_{R2} - I_{R1}$$

$$\therefore I_{SC} = I_{AB} = 0.0015 - (-0.001)$$

$$\therefore I_{SC} = I_{AB} = 0.0025 = 2.5 mA$$

Figure 56: Circuit schematic and simulated results: To find R_{TH}

Here,
$$R_N = R_{AB} = \frac{V1}{I_{V1}}$$
 $\therefore R_N = R_{AB} = \frac{10}{0.006667}$
 $\therefore R_N = R_{AB} = 1.5k\Omega$

Figure 57: Circuit schematic and simulated results: To find I_{SC}

Here, $V_A = V_{3\Omega} = \mathbf{2.5V}$ $I_{RL} = I_{3\Omega} = \mathbf{0.8333mA}$

Parameter	Theoretical value	Simulated values
$I_{3k\Omega}$	$0.8333 \mathrm{mA}$	0.8333 mA
$V_{3k\Omega}$	2.5V	2.5V

Table 8: Numerical 8

Numerical 9: Find the value of R_L for maximum power transfer in the Figure 58. Find the maximum power.

Figure 58: Circuit 9

Solution:

Step 1: Finding R_{TH} ,

Here, we need to replace the voltage source by a short circuit and current source by open circuit as shown in figure 59.

Figure 59: Modified circuit for figure 58 to find R_{TH}

After simplifying the circuit we get,

$$R_{AB} = R_{TH} = 6||12 + 3 + 2$$

$$R_{AB} = R_{TH} = 4 + 5$$

$$R_{AB} = R_{TH} = 9\Omega$$

Figure 60: Modified circuit for figure 58 to find V_{TH}

By using nodal analysis,

Considering node A,

$$\therefore \frac{V_A - V_C}{2} = 0$$

$$\therefore V_A - V_C = 0$$
.....(1)

Considering node C,

$$\therefore \frac{V_C - V_A}{2} + \frac{V_C - V_D}{3} = 2$$

$$\therefore -3V_A + 5V_C - 2V_D = 12$$
......(2)

Considering node D,

$$\therefore \frac{V_D - 12}{6} + \frac{V_D}{12} + \frac{V_D - V_C}{3} = 0$$

$$\therefore -4V_C + 7V_D = 0$$
......(3)

On solving equations (1),(2) and (3) we get,

$$V_A = 22V$$

For maximum power transfer,

$$R_L = R_{TH} = 9\Omega$$

Maximum power,

$$P_{max} = \frac{(V_{TH})^2}{4R_L}$$
$$P_{max} = \frac{(22)^2}{4 \times 9}$$

 $P_{max} = 13.44$ W

The above circuit is simulated in LTspice. The results are presented below.

Figure 61: Circuit schematic for finding R_{TH}

Figure 62: Simulated results for finding R_{TH}

Here,
$$I_{V_1} = 1.111A$$

$$R_{AB} = \frac{V_1}{I_{V_1}} = \frac{10}{1.111}$$

$$R_{AB} = R_{TH} = 9.00\Omega$$

Figure 63: Circuit schematic for finding V_{TH}

(Operating Point	
V(n002):	16	voltage
V(n003):	22	voltage
V(a):	22	voltage
V(n001):	12	voltage
I(I1):	2	device current
I(R4):	0.666667	device current
I(R3):	0	device current
I(R2):	2	device current
I(R1):	1.33333	device current
I(V1):	0.666667	device current

Figure 64: Simulated results for finding V_{TH}

Here, $V_{TH} = V_{AB} = 22V$

For maximum power transfer,

$$R_L = R_{TH} = 9\Omega$$

Maximum power,

$$P_{max} = \frac{(V_{TH})^2}{4R_L}$$
$$P_{max} = \frac{(22)^2}{4 \times 9}$$

$$P_{max} = \frac{(22)^2}{4 \times 9}$$

$$P_{max} = 13.44$$
W

Parameter	Theoretical value	Simulated values
R_L	9Ω	9Ω
P_{max}	13.44W	13.44W

Table 9: Numerical 9

Numerical 10: Consider the bridge circuit. Is the bridge balanced? If the $10k\Omega$ resistance is replaced by an $18k\Omega$ resistor, what resistor connected between A-B absorbs the maximum power? What is the power?

Figure 65: Circuit 10

Solution:

Part 1: To find whether the bridge is balanced or not.

$$\therefore \frac{R_1}{R_2} = \frac{3 \times 10^3}{5 \times 10^3} = 0.6$$

$$\therefore \frac{R_3}{R_4} = \frac{6 \times 10^3}{10 \times 10^3} = 0.6$$

$$\therefore \frac{R_1}{R_2} = \frac{R_3}{R_4}$$

Since the ratio of resistances is equal the bridge is balanced.

Part 2: Solving futher by replacing $10k\Omega$ resistor with $18k\Omega$ resistor.

Figure 66: Modified circuit for figure 65 to solve part 2

Step 1: Find V_{TH} or V_{AB} ,

Figure 67: Modified circuit for figure 66 to find V_{TH}

$$I = \frac{200}{8 \times 10^3}$$

$$I = 27.5mA$$

$$I_2 = 27.5 \times \frac{8}{8 + 24} = 6.875mA$$

$$I_1 = 27.5 \times \frac{24}{8 + 24} = 20.625mA$$

Writing V_{TH} equation,

 $V_{TH} - 3 \times 20.625 + 6 \times 6.875 = 0$

 $V_{TH} = V_{AB} = 20.625V$

Step 2: Find R_{TH} or R_{AB} ,

Here, we need to replace voltage source with short circuit as shown in figure 68.

Figure 68: Modified circuit for figure 65 to find R_{TH}

Figure 69: Modified circuit for figure 68 to find R_{TH}

Using delta to star conversion,

Figure 70: Modified circuit for figure 69 to find R_{TH}

After simplifing we get,

$$R_{TH} = 6.3846k\Omega$$

For maximum power transfer,

$$R_{AB} = R_{Th} = 6.3846k\Omega$$

Maximum power,

$$P_{max} = \frac{(V_{TH})^2}{4R_L}$$

$$P_{max} = \frac{(20.625)^2}{4 \times 6.346 \times 10^3}$$

$$P_{max} = 16.656 \text{mW}$$

The above circuit is simulated in LTspice. The results are presented below.

Part 1: To find whether the bridge is balanced or not.

Figure 71: Circuit schematic

(Operating Poin	t
V(n002):	160	voltage
V(a):	100	voltage
V(b):	100	voltage
V(n001):	220	voltage
I (R6):	0	device current
I (R5):	-0.03	device current
I (R4):	0.01	device current
I (R3):	0.02	device current
I(R2):	0.01	device current
I(R1):	0.02	device current
I(V1):	-0.03	device current

Figure 72: Simulated results

Since, current in the branch AB is zero the circuit forms a Wheatstone's bridge. Hence the bridge is balanced.

Part 2: Solving futher by replacing $10k\Omega$ resistor with $18k\Omega$ resistor.

Figure 73: Circuit schematic for finding V_{TH}

(Operating Point	
V(n002):	165	voltage
V(a):	103.125	voltage
V(b):	123.75	voltage
V(n001):	220	voltage
I(R5):	-0.0275	device current
I(R4):	0.006875	device current
I(R3):	0.020625	device current
I (R2):	0.006875	device current
I(R1):	0.020625	device current
I(V1):	-0.0275	device current

Figure 74: Simulated results for finding V_{TH}

Here,

 $V_A = 103.125V$

 $V_B = 123.75V$

 $\therefore V_{TH} = V_{BA} = V_B - V_A$

 $\therefore V_{TH} = V_{BA} = 123.75 - 103.125$

 $V_{TH} = V_{BA} = 20.625V$

Figure 75: Circuit schematic for finding R_{TH}

c	perating Point -	-
V(n001):	0.29304	voltage
V(n002):	-2.74725	voltage
V(n003):	7.25275	voltage
I(R5):	0.00014652	device current
I(R4):	0.00040293	device current
I(R3):	-0.000549451	device current
I(R2):	-0.00115995	device current
I(R1):	0.00101343	device current
I (V1):	-0.00156288	device_current

Figure 76: Simulated results for finding R_{TH}

Here,

$$I_{V_{e}} = 0.00156288A$$

$$I_{V_1} = 0.00156288A$$

$$R_{AB} = R_{TH} = \frac{V_1}{I_{V_1}}$$

$$R_{AB} = R_{TH} = \frac{10}{0.00156288}$$

$$R_{AB} = R_{TH} = 6.39844\Omega$$

For maximum power transfer,

$$R_{AB} = R_{Th} = 6.3846k\Omega$$

Maximum power,

$$P_{max} = \frac{(V_{TH})^2}{4R_L}$$

$$P_{max} = \frac{(20.625)^2}{4 \times 6.346 \times 10^3}$$

$$P_{max} = \mathbf{16.656mW}$$

Parameter	Theoretical value	Simulated values
R_{AB}	6.3846Ω	6.3844Ω
P_{max}	16.656 mW	$16.657 \mathrm{mW}$

Table 10: Numerical 10