

BAN 5743

Dr. Goutam Chakraborty

- Software used in BAN5743
- A quick recap of predictive modeling (machine learning) approach

Software Used in This class

- Some base SAS and SAS EG
- A lot of SAS Enterprise Miner in class demos
 - Access via VMware Horizon client (desktop.okstate.edu)
 - Login using okey email and password
 - Use Spears lab image
 - Use windows search box to find SAS Enterprise Miner while in Spears lab
 - Save all work on M: drive (each of you have M drive access and should be able to save stuff there from Vmware capacity 2 GB)
- Some SAS Viya towards end of the semester and in some labs

My take on software

- SAS EM is a point-and-click interface and makes your life very easy to run complicated analysis
 - It's also an expensive software and many companies do not have it. Or, if they do, they have limited number of licenses
- So, while learning the tool is important, it's more critical that you learn the concepts/mechanics of each technique
 - Most of the times companies want to hire students from our program assuming that you are deeply trained (not just being able to do point-and-click)
 - So, dig in and learn concepts/mechanics
 - And, learn to use SAS, R and Python code to replicate SAS EM results

Predictive Models: Statistical vs. Machine Learning Approach

- Statistical Approach
 - Explanation more important than prediction
 - Smaller data size, limited number of variables
 - Statistical significance via p-value is the dominant philosophy

- Machine Learning approach
 - Prediction more important than explanation
 - Large data size, many variables
 - Need different methods for variable selection
 - Model performance on unseen data is the dominant philosophy
 - Handled via data partitioning
 - Prevents model overfitting

Model Complexity

Outline

- Machine learning approach to predictive modeling requires you to first complete
 - Data handling (data wrangling):
 - Missing values
 - Outliers
 - Transformations
 - Creating data split (training and validation)

Data Exploration

- GIGO principle is very important in analytics projects
- It is imperative that as an analyst, you spend substantial time (before running any modeling) on checking, exploring and understanding data.
- At the minimum explore following:
 - Summary statistics (including minimum and maximum) for interval variables
 - Missing values, extreme values, skewed distribution, etc.
 - Categories (classes) for nominal variables
 - Rare classes create problems
 - Plots (many choices)
 - Univariate (understand nature of distribution of a variable)
 - Bivariate (explore relationship between 2 variables)
 - Multivariate (explore relationship between 3 or more variables)

Overview of Methods and Algorithms for Segmentation

Dr. Goutam Chakraborty

- Assumption about things you should know (or, go back to those notes and refresh your memory)
- Broad overview of different methods and alogrithms used for segmentation

Make Sure you Refresh Your Knowledge About

- What is STP and where does segmentation fit in marketing strategy?
- How has segmentation concepts evolved over time?
- Criteria used to strategically evaluate effectiveness of segmentation?
- Bases vs. Descriptors of segments
- Different types of segmentation such as:
 - Targeting vs. Foundational, Needs, behavior or Value-based
- Types of segmentation variable used
- Classification of different types of segmentation methods

Methods and Algorithms Used in Segmentation

- RFM (Recency, Frequency, Monetary) cells for behavioral segmentation
 - Very popular in Internet/Direct marketing world
 - Very simple algorithm all you need is ability to sort data and do grouping
 - Quite a bit of arbitrariness in deciding number of cells
- Statistical and Machine Learning methods
 - Hierarchical clustering (many methods such as average, centroid, ward's ...)
 - Non-Hierarchical clustering (most common: k-means)
 - Expectation-Maximization algorithm
 - Self Organizing map (SOM)
 - K-Nearest Neighbors algorithm (KNN)

Pattern Recognition, Similarity and Distance

Dr. Goutam Chakraborty

Outline

- Basic issues in pattern recognition via natural grouping of data
- Conceptual basis of similarity
- Distance metrics used to measure similarity

Pattern Recognition or, Unsupervised Classification

- Pattern recognition or, unsupervised classification of entities/objects is a basic human conceptual activity and a fundamental requirement for development of *scientific* knowledge.
 - *Cluster analysis* is the generic name for a wide variety of procedures that can be used to create an unsupervised classification of entities/objects.
 - It has been referred to as Q analysis, typology construction, classification analysis, unsupervised pattern recognition, and numerical taxonomy.
 - The essence of all these approaches is the unsupervised classification of data as suggested by "natural" groupings (pattern) of the data themselves.

Natural Grouping in Data:

A Geometrical View of an Ideal Pattern

Natural Grouping in Data: A Geometrical View of Pattern Likely to Be Found in Practice

How Many Groups and Which Observation Belongs in Which Group?

continued...

continued...

How Many Groups and Which Observation Belongs in Which Group?

Clustering, Segmentation, and a Deck of Cards!

Concept of Similarity and Distance

- To identify natural groups, we must first define a measure of **similarity** (proximity) between objects/entities.
 - Assume variables (axes in space) are numeric.
 - Then, if two things are similar, they should be close to each other in the space.
 - That is, the distance between them should be
 - But, if two things are dissimilar, they should be well separated from each other in the space.
 - That is, the distance between them should be
 - A collection of similar things would therefore likely result in more cohesive (homogenous) groups than a collection of dissimilar things.

Types of Distance Metrics Used in Clustering for Numeric Variables

- Euclidean distance
- City-block (Manhattan) distance
- Mahalanobis distance

Examples of Distance Calculations – Three Customers, Two Variables

 Assume we have the following data from three customers about what they consider important in buying a product (rated on a scale with 1=not at all important and 11=extremely important).

Customer	Price	Quality
Α	9	8
В	5	9
С	6	8

Euclidean distance between A and B is $\sqrt{(9-5)^2+(8-9)^2}$ 4.123

Euclidean distance between B and C is $\sqrt{(5-6)^2+(9-8)^2}=1.414$

Euclidean distance between A and C is $\sqrt{(9-6)^2+(8-8)^2}=3$

Examples of Euclidean Distance Calculations

What if we also had data on a third variable, say importance of service, from the same three customers?

Customer	Price	Quality	Service
Α	9	8	7
В	5	9	8
С	6	8	9

Euclidean distance between A and B is $\sqrt{(9-5)^2 + (8-9)^2 + (7-8)^2} = 4.243$

Euclidean distance between B and C is $\sqrt{(5-6)^2 + (9-8)^2 + (8-9)^2} = 1.732$

Euclidean distance between A and C is $\sqrt{(9-6)^2 + (8-8)^2 + (7-9)^2} = 3.606$

Similarity Measures for Categorical Variables

- A large number of coefficients have been used for measuring similarity between objects characterized by **only** categorical variables. Some of the commonly used measures are
 - Hamming distance
 - Simple matching coefficients
 - Nonmissing mismatches
 - Nonmissing matches
 - Jaccard's coefficients

When Variables Used for Describing Objects Include Both Numeric and Categorical

This is a likely situation in many practical segmentation problems.

- Unfortunately, in such situations (involving a mix of numerical and categorical variables), complications arise because theoretically it is unclear what "distance" really means!
- Often the practical solution is to convert the categorical variables into dummy or flag (1/0) variables and then use the dummy (flag) variables along with the other numeric variables in calculating distance metrics (such as Euclidean).
- Or, convert categorical variables to a numeric variable using WOE (weight-of-evidence) coding.

An Example with Numeric and Categorical Variables

Suppose we also know customers' marital status, and we would like to use that in our distance calculation.

Customer	Price	Quality	Service	Marital Status
Α	9	9	7	Single
В	5	9	8	Married
С	6	8	9	Divorced

Convert marital status to dummy variables and use those in distance calculations.

Customer	Price	Quality	Service	Single	Married	Divorced
Α	9	9	7	1	0	0
В	5	9	8	0	1	0
С	6	8	9	0	0	1

Euclidean distance between A and B is

$$\sqrt{(9-5)^2 + (9-9)^2 + (7-8)^2 + (1-0)^2 + (0-1)^2 + (0-0)^2} = 4.359$$

Challenges with Different Measurement Scales of Variables

What's the problem with using different measurement scales for variables used as input into clustering?

- Euclidean distance metric assume equal weight to each input variables.
 - But, in reality, the input variables with a wider scale of measurement (more variance) get weighted more in determining distances.
- So, the solution is standardization.
 - Many different ways of doing this.
 - *Range standardization* (where each input variable is scaled by first subtracting its minimum value and then dividing by its range) is often preferred for segmentation problems instead of *normal standardization* (0 mean, 1 standard deviation).

Hierarchical Clustering

Dr. Goutam Chakraborty

Outline

- Differences between hierarchical and nonhierarchical clustering.
- Agglomerative versus divisive hierarchical clustering.
- Mechanics behind agglomerative hierarchical clustering.

Types of Clustering

- Hierarchical clustering
 - Average, Centroid, Ward's method, others
- Nonhierarchical clustering (or, partitive clustering)
 - K-means, SOM, EM and others

Source: Applied Clustering Techniques Course Notes, SAS Institute, Inc., Cary, NC.

Numerical Example of Clustering (Agglomerative, Single Linkage)

Data from eight subjects (A, B, C, D, E, F, G, H) on two variables, X and Y.

Agglomerative Clustering Steps

	Minimum Distance	ID	Cluster Membership	Number of	Overall Heterogenity
Step	Between	Pair		Clusters	Measure (Average
	Unclustered				Within Cluster
	IDs				Distance)
Initial			ABCDEFGH	8	0
1	1.414	A,B	(AB) CDEFGH	7	1.414
2	1.414	H,D	(AB) C (DH) E F G	6	1.414
3	1.414	H,F	(AB) C (DHF) E G	5	1.561
4	2	G,E	$(AB) \subset (DHF) (GE)$	4	1.648
5	2.236	F,E	(AB) C (DHGEF)	3	2.266
6	2.236	A,C	(ABC) (DHGEF)	2	2.32
7	2.236	D,C	(ABCDHGEF)	1	3.343

ID	Α	В	С	D	Е	F	G	Н
Α	0.00000							
В	1.41421	0.00000						
С	2.23607	3.00000	0.00000					
D	3.16228	2.82843	2.23607	0.00000				
E	5.00000	5.00000	3.16228	2.23607	0.00000			
F	5.09902	4.47214	4.12311	2.00000	2.23607	0.00000		
G	6.70820	6.40312	5.09902	3.60555	2.00000	.23607	0.00000	
Н	4.00000	3.16228	3.60555	1.41421	3.00000	1.41421	3.60555	0

Distance Between Clusters in Agglomerative Algorithm

- Single linkage (nearest neighbor)
- Complete linkage (farthest neighbor)
- Average linkage
- Centroid method
- Ward's method

What's the Distance Between the Clusters? (This help us in Joining Clusters)

Single Linkage : Shortest Distance

Complete Linkage: Maximum Distance

Average Linkage: Average of all pairwise distances

Centroid Method: Distance between cluster centers

Ward's Method (Variance Based)

Which Is the Best Method?

And the winner is....

Four Fundamental Questions in Hierarchical Clustering

Q1: Which variables should be used for clustering?

Q2: How do we define similarity between observations?

Q3: How should clusters be joined?

Q4: How many clusters?

Demo of Hierarchical Clustering (Ward's)

Dr. Goutam Chakraborty

Outline

- Use Ward's method to conduct cluster analysis.
- Interpret cluster analysis results from running Ward's method.
- Interpret cluster profiles by comparing the variable means of each cluster to others, as well as to the overall mean.
 - First, we will handle profiling clusters with base variables
 - Later, we will profile with descriptors and other managerially relevant variables

SAS EG Steps

- Use Analyze > Multivariate > Cluster > Select reliab_dstz ...talk_dir_dstz as
 Analysis variables, cust_id as Identifying label and all variables as copy
 variables > Cluster method as Ward's Minimum variance > Results > Check
 simple summary statistics, Check Tree output
- I will then modify SAS EG code to do following:
 - ODS Graphics ON/Imagemap=on;
 - Plots (unpack)=PSF
 - Plots (unpack)=PST2
 - Plots (unpack) =CCC;
- Look at results, select number of cluster and then modify SAS Code again to change *Nclusters*

Summary of Clustering Using Ward's Method

- Ward's minimum variance method results summary:
- Cluster history shows no single observation joining with clusters at the late stages.
- The number of clusters suggested by the pseudo *t*-square plot is 6+1=7 or 8+1=9.
- CCC all negative (cannot be used!)
- Pseudo F shows no peak!
- The number of clusters suggested by a *big drop* in RSQ (or, *increase* in SPRSQ) is 6, 4, or 3.
- SAS Enterprise Guide does not print average cluster distance for Ward's method.
 So, we will make a managerial decision to go with 4 clusters for now!

Profiling Clusters: The Big Questions

Several types of questions are often asked in profiling:

- How is the average member *of one cluster* different from an average member *of a different cluster*?
- How is the average member *of any cluster* different from the average member *of the entire data*?
- How does the *distribution* of a variable *within a clus*ter compare to the *distribution* of the same variable in the *entire data*?
- Which variables are *most important predictors* for each cluster?

Profiling Clusters with Bases

- Profiling involves examining the distinguishing characteristics of each cluster's profile and identifying substantial differences between clusters.
 - For **numeric** variables, this involves
 - comparing the mean of each variable across clusters
 - comparing the mean of each variable in a cluster with the mean for the same variable for the entire data
 - comparing the distribution (histogram) of each variable in a cluster with the distribution of the same variable for the entire data
 - For **categorical** variables, this involves comparing % members in each category within a cluster with the % members in the same category for the entire data

SAS EG Step

- Use disjoint cluster data from proc tree
- Describe > One way frequencies > Select cluster as Analysis Variable
- ANOVA > One-Way ANOVA > Select all _dstz variables as Dependent Variables > Cluster as Independent Variable > Means > breakdown > select Mean > Run
 - Optional: Copy and paste table at the end of SAS Output in Excel

Cluster Profiles using Double Standardized Base Variable Means

CHUSTER			Av_br dstz	Av_spec dstz	Price dstz		<u> </u>		_	Talk_dir dstz
Overall(.)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.0	-0.4	-0.5	0.1	-0.2	-0.1	0.2	1.0	0.1	0.0	-0.2
2.0	0.1	0.0	0.6	0.4	0.3	0.1	-0.7	0.5	0.3	-0.2
3.0	0.2	0.4	-1.0	0.0	0.1	0.1	-0.5	0.5	0.5	0.4
4.0	0.5	0.5	0.2	0.0	-0.2	-0.3	-0.5	-0.9	-0.6	0.3

Profiles Using Double-Standardized Indexes

С	LUSIER		Time index	Av_br index			Credit index			Warranty index	Talk_dir index
	Overall(.)	100	100	100	100	100	100	100	100	100	100
	1.0	60	51	107	79	89	117	195	106	102	81
	2.0	105	104	163	140	130	108	32	147	131	76
	3.0	121	136	0	97	115	111	52	149	146	141
	4.0	147	147	115	98	83	68	53	6	36	127

Cluster 1: Care most about availability of payment options and credit.

Cluster 2: Care most about availability of brands, availability of detailed specifications, price, return policy, and warranty policy.

Cluster 3: Care most about return, warranty, and ability to talk directly to salesperson, timeliness and reliability.

Cluster 4: Care most about reliability, timeliness of delivery and talk directly to salesperson.