Student #:				Student Name:		
Grade	e 12	? Physics	Class	12:	Diffraction and Interference	
1.	the followers. I. co. II. a. III. fill. IV. v.	llowing variables ca ?	an be altere	d to ch	gh an opening in a barrier in a harbour. Which on ange the amount of diffraction the wave experivaves and the barrier	
	(b) I (c) I (d) I	and II I, III, and IV , III, and IV II, IV, and V and IV				
2.	source	•	the nodal li	nes ar	experiment to determine the wavelength of a light re too close together to be accurately measured al lines, she could:	
	(b) c (c) n (d) b	decrease the slit se decrease the distan move the light source both (a) and (b) a), (b), and (c)	ce between			
3.					a corner but cannot see light from around the to explain this phenomenon?	
	(b) S (c) L	•	ical wave, a eed much fa	nd ligh aster th		
4.			st diffraction	patter	rns are seen when light is shone through:	
		a single slit a double slit				

(e) a thin soap film

(c) a diffraction grating(d) a polarizing filter

Class 12 Homework Page 1 of 4

	 5. The greater the number of lines on a diffraction grating of a given size, (a) the greater the range of wavelengths that can be diffracted (b) the smaller the range of wavelengths that can be diffracted (c) the greater the distance between the bright fringes produced (d) the smaller the distance between the bright fringes produced (e) the less clear the diffraction pattern will be
6.	A prism bends blue light more than red. Is the same true of a diffraction grating? Explain.
7.	Upon observing an interference pattern produced onto a screen, how could you identify whether a single slit or double slit produced the pattern?
8.	Blue light ($\lambda=475\mathrm{nm}$) is sent through a single slit with a width of 2.1 µm. What is the maximum possible number of bright fringes produced on the screen?
9.	Determine the distance that the <i>third</i> bright fringe would lie from the central bisector in a single slit diffraction pattern generated with $542\mathrm{nm}$ light incident on a $1.2\times10^{-4}\mathrm{m}$ slit falling onto a screen $68\mathrm{cm}$ away.

Class 12 Homework Page 2 of 4

10.	Predict whether violet light ($\lambda=404\mathrm{nm}$) or red light ($\lambda=702\mathrm{nm}$) will have a wider of	entral:
	maximum in a single-slit diffraction pattern. Calculate the difference if the light is incident	t on a
	$6.9 imes 10^{-5}$ m wide slit falling onto a screen $85\mathrm{cm}$ away.	

- 11. A double slit apparatus is held 1.2 m from a screen.
 - (a) When red light ($\lambda=600\,\mathrm{nm}$) is sent through the double slit, the interference pattern on the screen shows a distance of 12.5 cm between the first and tenth dark fringes. What is the separation of the slits?
 - (b) What will be the difference in path length for the waves travelling from each slit to the tenth nodal line?

12. The signal from a $103.9\,\mathrm{MHz}$ FM radio station reflects off a building $400\,\mathrm{m}$ away, effectively creating two sources of the same signal. You are driving at $60\,\mathrm{km/h}$ along a road parallel to a line between the station's antenna and the building, and locate at a perpendicular distance of $6.5\,\mathrm{km}$ from them. How often does the signal appear to fade when you are driving long the road? The speed of radio waves is $3.00\times10^8\,\mathrm{m/s}$.

Class 12 Homework Page 3 of 4

13. A beam of parallel rays from a 29 MHz radio transmission passes between two electrically conducting (therefore opaque to radio waves) buildings $45\,\mathrm{m}$ apart. What is the angular width (i.e. what is the angle θ of the first minima) of the beam when it emerges from between the buildings?

Class 12 Homework Page 4 of 4