

CALCULUS

THIS DOCUMENT WAS TYPESET ON FEBRUARY 17, 2013.

Copyright © 2013 Jim Fowler and Bart Snapp

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA. If you distribute this work or a derivative, include the history of the document.

This text is based on David Guichard's open-source calculus text which in turn is a modification and expansion of notes written by Neal Koblitz at the University of Washington. David Guichard's text is available at http://www.whitman.edu/mathematics/calculus/under a Creative Commons license.

The book includes some exercises and examples from *Elementary Calculus: An Approach Using Infinitesimals*, by H. Jerome Keisler, available at http://www.math.wisc.edu/~keisler/calc.html under a Creative Commons license. In addition, the chapter on differential equations and the section on numerical integration are largely derived from the corresponding portions of Keisler's book. Albert Schueller, Barry Balof, and Mike Wills have contributed additional material.

This book is typeset in the Kerkis font, Kerkis © Department of Mathematics, University of the Aegean.

We will be glad to receive corrections and suggestions for improvement at fowler@math.osu.edu or snapp@math.osu.edu.

Contents

1	Limits	8
2	Basics of Derivatives	37
3	Curve Sketching	55
4	The Product Rule and Quotient Rule	73
5	The Chain Rule	81
6	The Derivatives of Trigonometric Functions and their Inverses	98
7	Applications of Differentiation	113

Answers to Exercises	138
Index	148

List of Main Theorems

1.3.1	Theorem (Limit Laws)	19
1.3.5	Theorem (Squeeze Theorem)	21
1.6.3	Theorem (Intermediate Value Theorem)	33
2.1.3	Theorem (Differentiability implies Continuity)	40
2.2.1	Theorem (The Constant Rule)	46
2.2.2	Theorem (The Power Rule)	47
2.2.6	Theorem (The Sum Rule)	49
2.2.9	Theorem (The Derivative of e^x)	51
3.1.1	Theorem (Fermat's Theorem)	56
	Theorem (First Derivative Test)	59
3.3.1	Theorem (Test for Concavity)	63
3.4.1	Theorem (Second Derivative Test)	66
4.1.1	Theorem (The Product Rule)	74
	Theorem (The Quotient Rule)	77
5.1.1	Theorem (Chain Rule)	81
	Theorem (The Derivative of the Natural Logrithm)	90
	Theorem (Inverse Function Theorem)	91
6.1.5	Theorem (The Derivatives of Trigonometric Functions)	102
	Theorem (The Derivatives of Inverse Trigonometric Functions)	

7.1.1	Theorem (L'H	lôpital's Rule	١.																					11	3
-------	--------------	----------------	----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----	---

How to Read Mathematics

Reading mathematics is ${f not}$ the same as reading a novel. To read mathematics you need:

- (a) A pen.
- (b) Plenty of blank paper.
- (c) A willingness to write things down.

As you read mathematics, you must work along side of the text itself. You must **write** down each expression, **sketch** each graph, and **think** about what you are doing. You should work examples and fill-in the details. This is not an easy task, it is in fact **hard** work. However, mathematics is not a passive endeavor. You, the reader, must become a doer of mathematics.

1 Limits

1.1 The Basic Ideas of Limits

Consider the function:

$$f(x) = \frac{x^2 - 3x + 2}{x - 2}$$

While f(x) is undefined at x = 2, we can still plot f(x) at other values, see Figure 1.1. Examining Table 1.1, we see that as x approaches 2, f(x) approaches 1. We write this:

As
$$x \to 2$$
, $f(x) \to 1$ or $\lim_{x \to 2} f(x) = 1$.

Intuitively, $\lim_{x\to a} f(x) = L$ when the value of f(x) can be made arbitrarily close to L by making x sufficiently close, but not equal to, a. This leads us to the formal definition of a *limit*.

Definition The **limit** of f(x) as x goes to a is L,

$$\lim_{x \to a} f(x) = L,$$

if for every $\varepsilon > 0$ there is a $\delta > 0$ so that whenever

$$0 < |x - \alpha| < \delta$$
, we have $|f(x) - L| < \varepsilon$.

If no such value of L can be found, then we say that $\lim_{x\to a} f(x)$ does not exist.

In Figure 1.2, we see a geometric interpretation of this definition.

Figure 1.1: A plot of $f(x) = \frac{x^2 - 3x + 2}{x - 2}$.

X	f(x)		X	f(x)						
1.7	0.7		2	undefined						
1.9	0.9		2.001	1.001						
1.99	0.99		2.01	1.01						
1.999	0.999		2.1	1.1						
2	undefined		2.3	1.3						

Table 1.1: Values of $f(x) = \frac{x^2 - 3x + 2}{x - 2}$.

Equivalently, $\lim_{x \to a} f(x) = L$, if for every $\varepsilon > 0$ there is a $\delta > 0$ so that whenever $x \neq a$ and $a - \delta < x < a + \delta$, we have $L - \varepsilon < f(x) < L + \varepsilon$.

Limits need not exist, let's examine two cases of this.

Example 1.1.1 Let $f(x) = \lfloor x \rfloor$. Explain why the limit

$$\lim_{x\to 2} f(x)$$

does not exist.

Solution The function $\lfloor x \rfloor$ is the function that returns the greatest integer less than or equal to x. Since f(x) is defined for all real numbers, one might be tempted to think that the limit above is simply f(2) = 2. However, this is not the case. If x < 2, then f(x) = 1. Hence if $\varepsilon = .5$, we can **always** find a value for x (just to the left of 2) such that

$$0 < |x-2| < \delta$$
, where $\varepsilon < |f(x)-2|$.

On the other hand, $\lim_{x\to 2} f(x) \neq 1$, as in this case if $\varepsilon = .5$, we can **always** find a value for x (just to the right of 2) such that

$$0 < |x-2| < \delta$$
, where $\varepsilon < |f(x)-1|$.

Figure 1.2: A geometric interpretation of the (ε, δ) -criterion for limits. If $0 < |x-a| < \delta$, then we have that $a-\delta < x < a+\delta$. In our diagram, we see that for all such x we are sure to have $L-\varepsilon < f(x) < L+\varepsilon$, and hence $|f(x)-L| < \varepsilon$.

Figure 1.3: A plot of $f(x) = \lfloor x \rfloor$. Note, no matter which $\delta > 0$ is chosen, we can only at best bound f(x) in the interval [1, 2].

We've illustrated this in Figure 1.3. Moreover, no matter what value one chooses for $\lim_{x\to 2} f(x)$, we will always have a similar issue.

Limits may not exist even if the formula for the function looks innocent.

Example 1.1.2 Let $f(x) = \sin\left(\frac{1}{x}\right)$. Explain why the limit

$$\lim_{x\to 0} f(x)$$

does not exist.

Solution In this case f(x) oscillates "wildly" as x approaches 0, see Figure 1.4. In fact, one can show that for any given δ , There is a value for x in the interval

$$0 - \delta < x < 0 + \delta$$

such that f(x) is **any** value in the interval [-1, 1]. Hence the limit does not exist.

Sometimes the limit of a function exists from one side or the other (or both) even though the limit does not exist. Since it is useful to be able to talk about this situation, we introduce the concept of a *one-sided limit*:

Definition We say that the **limit** of f(x) as x goes to a from the **left** is L,

$$\lim_{x \to a^{-}} f(x) = L$$

if for every $\varepsilon > 0$ there is a $\delta > 0$ so that whenever $x < \alpha$ and

$$a - \delta < x$$
 we have $|f(x) - L| < \varepsilon$.

We say that the **limit** of f(x) as x goes to a from the **right** is L,

$$\lim_{x \to a+} f(x) = L$$

Figure 1.4: A plot of $f(x) = \sin\left(\frac{1}{x}\right)$.

if for every $\varepsilon > 0$ there is a $\delta > 0$ so that whenever x > a and

$$x < \alpha + \delta$$
 we have $|f(x) - L| < \varepsilon$.

Example 1.1.3 Let $f(x) = \lfloor x \rfloor$. Discuss

$$\lim_{x\to 2-} f(x), \qquad \lim_{x\to 2+} f(x), \qquad \text{and} \qquad \lim_{x\to 2} f(x).$$

Solution From the plot of f(x), see Figure 1.3, we see that

$$\lim_{x \to 2^{-}} f(x) = 1$$
, and $\lim_{x \to 2^{+}} f(x) = 2$.

Since these limits are different, $\lim_{x\to 2} f(x)$ does not exist.

Limits from the left, or from the right, are collectively called ${\bf one\text{-}sided\ limits}.$

Exercises for Section 1.1

(1) Evaluate the expressions by reference to the plot in Figure 1.5.

- (e) $\lim_{x \to 0+} f(x)$
- $(i) \lim_{x \to 0} f(x+1)$

- (a) $\lim_{x \to 4} f(x)$ (b) $\lim_{x \to -3} f(x)$ $\cdots f(x)$
 - (f) f(-2)
- (j) f(0)

- (g) $\lim_{x \to 2^-} f(x)$
- (k) $\lim_{x \to 1^{-}} f(x-4)$

- (d) $\lim_{x \to 0-} f(x)$
- (h) $\lim_{x \to -2-} f(x)$
- (2) Use a table and a calculator to estimate $\lim_{x\to 0} \frac{\sin(x)}{x}$.
- (3) Use a table and a calculator to estimate $\lim_{x\to 0} \frac{\sin(2x)}{x}$.
- (4) Use a table and a calculator to estimate $\lim_{x\to 0} \frac{x}{\sin\left(\frac{x}{3}\right)}$.
- (5) Use a table and a calculator to estimate $\lim_{x\to 0} \frac{\tan(3x)}{\tan(5x)}$
- (6) Use a table and a calculator to estimate $\lim_{x\to 0} \frac{2^x-1}{x}$.
- (7) Use a table and a calculator to estimate $\lim_{x\to 0} (1+x)^{1/x}$.
- (8) Sketch a plot of $f(x) = \frac{x}{|x|}$ and explain why $\lim_{x\to 0} \frac{x}{|x|}$ does not exist.
- (9) Let $f(x) = \sin\left(\frac{\pi}{x}\right)$. Construct three tables of the following form

X	f(x)
0.d	
0.0d	
0.00d	
0.000d	

Figure 1.5: A plot of f(x), a piecewise defined func-

where d=1,3,7. What do you notice? How do you reconcile the entries in your tables with the value of $\lim_{x\to 0} f(x)$?

(10) In the theory of special relativity, a moving clock ticks slower than a stationary observer's clock. If the stationary observer records that $t_{\rm s}$ seconds have passed, then the clock moving at velocity v has recorded that

$$t_v = t_s \sqrt{1 - v^2/c^2}$$

seconds have passed, where c is the speed of light. What happens as $v \to c$ from below?

1.2 Limits by the Definition

Now we are going to get our hands dirty, and really use the definition of a limit.

Example 1.2.1 Show that $\lim_{x\to 2} x^2 = 4$.

Solution We want to show that for any given $\varepsilon > 0$, we can find a $\delta > 0$ such that

$$|x^2-4|<\varepsilon$$

whenever $0 < |x-2| < \delta$. Start by factoring the left-hand side of the inequality above

$$|x+2||x-2|<\varepsilon$$
.

Since we are going to assume that $0 < |x - 2| < \delta$, we will focus on the factor |x + 2|. Since x is assumed to be close to 2, suppose that $x \in [1,3]$. In this case

$$|x+2| \le 3+2=5$$
,

and so we want

$$5 \cdot |x - 2| < \varepsilon$$
$$|x - 2| < \frac{\varepsilon}{5}$$

Recall, we assumed that $x \in [1,3]$, which is equivalent to |x-2| < 1. Hence we must set $\delta = \min\left(\frac{\varepsilon}{5},1\right)$.

When dealing with limits of polynomials, the general strategy is always the same. Let p(x) be a polynomial. If showing

$$\lim_{x \to a} p(x) = L,$$

one must first factor out |x-a| from |p(x)-L|. Next bound $x \in [a-1,a+1]$ and estimate the largest possible value of

$$\left| \frac{p(x) - L}{x - a} \right|$$

Recall, $\lim_{x \to a} f(x) = L$, if for every $\varepsilon > 0$ there is a $\delta > 0$ so that whenever $0 < |x - a| < \delta$, we have $|f(x) - L| < \varepsilon$.

Figure 1.6: The (ε, δ) -criterion for $\lim_{x\to 2} x^2 = 4$. Here $\delta = \min\left(\frac{\varepsilon}{5}, 1\right)$.

for $x \in [a-1,a+1]$. Call this estimation M. Finally, one must set $\delta = \min\left(\frac{\varepsilon}{M},1\right)$. As you work with limits, you find that you need to do the same procedures again and again. The next theorems will expedite this process.

Theorem 1.2.2 (Limit Product Law) Suppose $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$. Then

$$\lim_{x \to a} f(x)g(x) = LM.$$

Proof Given any ε we need to find a δ such that

$$0 < |x - \alpha| < \delta$$

implies

$$|f(x)g(x) - LM| < \varepsilon$$
.

Here we use an algebraic trick, add 0 = -f(x)M + f(x)M:

$$|f(x)g(x) - LM| = |f(x)g(x) - f(x)M + f(x)M - LM|$$

$$= |f(x)(g(x) - M) + (f(x) - L)M|$$

$$\leq |f(x)(g(x) - M)| + |(f(x) - L)M|$$

$$= |f(x)||g(x) - M| + |f(x) - L||M|.$$

Since $\lim_{x\to a} f(x) = L$, there is a value δ_1 so that $0 < |x-a| < \delta_1$ implies $|f(x)-L| < |\varepsilon/(2M)|$. This means that $0 < |x-a| < \delta_1$ implies $|f(x)-L||M| < \varepsilon/2$.

$$|f(x)g(x) - LM| \le |f(x)||g(x) - M| + \underbrace{|f(x) - L||M|}_{< \frac{\varepsilon}{2}}.$$

If we can make $|f(x)||g(x)-M| < \varepsilon/2$, then we'll be done. We can make |g(x)-M| smaller than any fixed number by making x close enough to a. Unfortunately, $\varepsilon/(2f(x))$ is not a fixed number since x is a variable.

We will use this same trick again of "adding 0" in the proof of Theorem 4.1.1.

This is all straightforward except perhaps for the " \leq ". This follows from the *Triangle Inequality*. The **Triangle Inequality** states: If a and b are any real numbers then $|a+b| \leq |a| + |b|$.

Here we need another trick. We can find a δ_2 so that $|x - a| < \delta_2$ implies that |f(x) - L| < 1, meaning that L - 1 < f(x) < L + 1. This means that |f(x)| < N,

where N is either |L-1| or |L+1|, depending on whether L is negative or positive. The important point is that N doesn't depend on x. Finally, we know that there is a δ_3 so that $0 < |x-a| < \delta_3$ implies $|g(x)-M| < \varepsilon/(2N)$. Now we're ready to put everything together. Let δ be the smallest of δ_1 , δ_2 , and δ_3 . Then $|x-a| < \delta$ implies that

$$|f(x)g(x)-LM| \leq \underbrace{|f(x)|}_{< N} \underbrace{|g(x)-M|}_{< \frac{\varepsilon}{2N}} + \underbrace{|f(x)-L||M|}_{< \frac{\varepsilon}{2}}.$$

so

$$\begin{split} |f(x)g(x) - LM| &\leq |f(x)||g(x) - M| + |f(x) - L||M| \\ &< N\frac{\varepsilon}{2N} + \left|\frac{\varepsilon}{2M}\right||M| \\ &= \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

This is just what we needed, so by the definition of a limit, $\lim_{x \to a} f(x)g(x) = LM$.

Another useful way to put functions together is composition. If f(x) and g(x) are functions, we can form two functions by composition: f(g(x)) and g(f(x)). For example, if $f(x) = \sqrt{x}$ and $g(x) = x^2 + 5$, then $f(g(x)) = \sqrt{x^2 + 5}$ and $g(f(x)) = (\sqrt{x})^2 + 5 = x + 5$. This brings us to our next theorem.

Theorem 1.2.3 (Limit Composition Law) Suppose that
$$\lim_{x\to a}g(x)=M$$
 and $\lim_{x\to M}f(x)=f(M)$. Then
$$\lim_{x\to a}f(g(x))=f(M).$$

This is sometimes written as

$$\lim_{x \to a} f(g(x)) = \lim_{g(x) \to M} f(g(x)).$$

Note the special form of the condition on f(x): it is not enough to know that $\lim_{x\to L} f(x)$ exists, though it is a bit tricky to see why. Consider

$$f(x) = \begin{cases} 3 & \text{if } x = 2, \\ 4 & \text{if } x \neq 2. \end{cases}$$

and g(x) = 2. Now the conditions of Theorem 1.2.3 are not satisfied, and

$$\lim_{x \to 1} f(g(x)) = 3$$
 but $\lim_{x \to 2} f(x) = 4$.

Many of the most familiar functions do satisfy the conditions of Theorem 1.2.3. For example:

Theorem 1.2.4 (Limit Root Law) Suppose that n is a positive integer. Then

$$\lim_{x\to a} \sqrt[n]{x} = \sqrt[n]{a},$$

provided that α is positive if n is even.

This theorem is not too difficult to prove from the definition of limit.

Exercises for Section 1.2

(1) For each of the following limits, $\lim_{x\to a} f(x) = L$, use a graphing device to find δ such that $0 < |x - a| < \delta$ implies that $|f(x) - L| < \varepsilon$ where $\varepsilon = .1$.

(a)
$$\lim_{x \to 0} (3x + 1) = 7$$

(c)
$$\lim_{x \to \infty} \sin(x) = 0$$

(a)
$$\lim_{x \to 2} (3x+1) = 7$$
 (c) $\lim_{x \to \pi} \sin(x) = 0$ (e) $\lim_{x \to 1} \sqrt{3x+1} = 2$ (b) $\lim_{x \to 1} (x^2+2) = 3$ (d) $\lim_{x \to 0} \tan(x) = 0$ (f) $\lim_{x \to -2} \sqrt{1-4x} = 3$

(b)
$$\lim_{x \to 0} (x^2 + 2) = 3$$

(d)
$$\lim_{x \to 0} \tan(x) = 0$$

(f)
$$\lim_{x \to -2} \sqrt{1 - 4x} = 3$$

The next set of exercises are for advanced students and can be skipped on first reading.

(2) Use the definition of limits to explain why $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right) = 0$. Hint: Use the fact that $|\sin(a)| < 1$ for any real number a.

(3) Use the definition of limits to explain why $\lim_{x\to 4} (2x - 5) = 3$.

(4) Use the definition of limits to explain why $\lim_{x \to -3} (-4x - 11) = 1$.

(5) Use the definition of limits to explain why $\lim_{x\to -2} \pi = \pi$.

(6) Use the definition of limits to explain why $\lim_{x \to -2} \frac{x^2 - 4}{x + 2} = -4$.

(7) Use the definition of limits to explain why $\lim_{x\to 4} x^3 = 64$.

(8) Use the definition of limits to explain why $\lim_{x\to 1} (x^2 + 3x - 1) = 3$.

(9) Use the definition of limits to explain why $\lim_{x\to 9} \frac{x-9}{\sqrt{x}-3} = 6$.

(10) Use the definition of limits to explain why $\lim_{x\to 2} \frac{1}{x} = \frac{1}{2}$.

1.3 Limit Laws

In this section, we present a handful of tools to compute many limits without explicitly working with the definition of limit. Each of these could be proved directly as we did in the previous section.

Theorem 1.3.1 (Limit Laws) Suppose that $\lim_{x\to a} f(x) = L$, $\lim_{x\to a} g(x) = M$, k is some constant, and n is a positive integer.

Constant Law
$$\lim_{x \to a} kf(x) = k \lim_{x \to a} f(x) = kL.$$

Sum Law
$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = L + M.$$

Product Law
$$\lim_{x\to a} (f(x)g(x)) = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x) = LM$$
.

Quotient Law
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)} = \frac{L}{M}$$
, if $M \neq 0$.

Power Law
$$\lim_{x \to a} f(x)^n = \left(\lim_{x \to a} f(x)\right)^n = L^n$$
.

Root Law
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)} = \sqrt[n]{L}$$
 provided if n is even, then $f(x) \ge 0$ near a .

Composition Law If
$$\lim_{x\to a} g(x) = M$$
 and $\lim_{x\to M} f(x) = f(M)$, then $\lim_{x\to a} f(g(x)) = f(M)$.

Roughly speaking, these rules say that to compute the limit of an algebraic expression, it is enough to compute the limits of the "innermost bits" and then combine these limits. This often means that it is possible to simply plug in a value for the variable, since $\lim_{x\to a} x = a$.

Example 1.3.2 Compute
$$\lim_{x\to 1} \frac{x^2 - 3x + 5}{x - 2}$$
.

Solution Using limit laws,

$$\lim_{x \to 1} \frac{x^2 - 3x + 5}{x - 2} = \frac{\lim_{x \to 1} x^2 - 3x + 5}{\lim_{x \to 1} (x - 2)}$$

$$= \frac{\lim_{x \to 1} x^2 - \lim_{x \to 1} 3x + \lim_{x \to 1} 5}{\lim_{x \to 1} x - \lim_{x \to 1} 2}$$

$$= \frac{(\lim_{x \to 1} x)^2 - 3\lim_{x \to 1} x + 5}{\lim_{x \to 1} x - 2}$$

$$= \frac{1^2 - 3 \cdot 1 + 5}{1 - 2}$$

$$= \frac{1 - 3 + 5}{-1} = -3.$$

It is worth commenting on the trivial limit $\lim_{x\to 1} 5$. From one point of view this might seem meaningless, as the number 5 can't "approach" any value, since it is simply a fixed number. But 5 can, and should, be interpreted here as the function that has value 5 everywhere, f(x) = 5, with graph a horizontal line. From this point of view it makes sense to ask what happens to the height of the function as x approaches 1.

We're primarily interested in limits that aren't so easy, namely limits in which a denominator approaches zero. The basic idea is to "divide out" by the offending factor. This is often easier said than done—here we give two examples of algebraic tricks that work on many of these limits.

Example 1.3.3 Compute
$$\lim_{x\to 1} \frac{x^2 + 2x - 3}{x - 1}$$
.

Solution We can't simply plug in x = 1 because that makes the denominator zero. However, when taking limits we assume $x \neq 1$:

$$\lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 3)}{x - 1}$$
$$= \lim_{x \to 1} (x + 3) = 4$$

Limits allow us to examine functions where they are not defined.

Example 1.3.4 Compute $\lim_{x\to -1} \frac{\sqrt{x+5}-2}{x+1}$.

Solution Using limit laws,

$$\lim_{x \to -1} \frac{\sqrt{x+5} - 2}{x+1} = \lim_{x \to -1} \frac{\sqrt{x+5} - 2}{x+1} \frac{\sqrt{x+5} + 2}{\sqrt{x+5} + 2}$$

$$= \lim_{x \to -1} \frac{x+5-4}{(x+1)(\sqrt{x+5} + 2)}$$

$$= \lim_{x \to -1} \frac{x+1}{(x+1)(\sqrt{x+5} + 2)}$$

$$= \lim_{x \to -1} \frac{1}{\sqrt{x+5} + 2} = \frac{1}{4}.$$

We'll conclude with one more theorem that will allow us to compute more difficult limits.

Theorem 1.3.5 (Squeeze Theorem) Suppose that $g(x) \le f(x) \le h(x)$ for all x close to a but not necessarily equal to a. If

$$\lim_{x \to a} g(x) = L = \lim_{x \to a} h(x),$$

then $\lim_{x \to a} f(x) = L$.

Example 1.3.6 Compute

$$\lim_{x\to 0}\frac{\sin(x)}{x}.$$

Here we are rationalizing the numerator by multiplying by the conjugate.

For a nice discussion of this limit, see: Richman, Fred. *A circular argument*. College Math. J. 24 (1993), no. 2, 160–162.

The limit in this example will be used in Theorem 6.1.1, and we will give another derivation of this limit in Example 7.1.2.

Solution To compute this limit, use the Squeeze Theorem, Theorem 1.3.5. First note that we only need to examine $x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ and for the present time, we'll assume that x is positive—consider the diagrams below:

From our diagrams above we see that

 $Area\ of\ Triangle\ A \leq Area\ of\ Sector \leq Area\ of\ Triangle\ B$

and computing these areas we find

$$\frac{\cos(x)\sin(x)}{2} \le \left(\frac{x}{2\pi}\right) \cdot \pi \le \frac{\tan(x)}{2}.$$

Multiplying through by 2, *and recalling that* $tan(x) = \frac{\sin(x)}{\cos(x)}$ *we obtain*

$$\cos(x)\sin(x) \le x \le \frac{\sin(x)}{\cos(x)}.$$

Dividing through by sin(x) and taking the reciprocals, we find

$$\cos(x) \le \frac{\sin(x)}{x} \le \frac{1}{\cos(x)}.$$

Note, $\cos(-x) = \cos(x)$ and $\frac{\sin(-x)}{-x} = \frac{\sin(x)}{x}$, so these inequalities hold for all $x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$. Additionally, we know $\lim_{x \to 0} \cos(x) = 1 = \lim_{x \to 0} \frac{1}{\cos(x)},$

$$\lim_{x \to 0} \cos(x) = 1 = \lim_{x \to 0} \frac{1}{\cos(x)},$$

and so we conclude by the Squeeze Theorem, Theorem 1.3.5, $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$.

Exercises for Section 1.3

Compute the limits. If a limit does not exist, explain why.

(1)
$$\lim_{x \to 3} \frac{x^2 + x - 12}{x - 3}$$

(9)
$$\lim_{x \to 0} \frac{4x - 5x^2}{x - 1}$$

(2)
$$\lim_{x \to 1} \frac{x^2 + x - 12}{x - 3}$$

(10)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

(3)
$$\lim_{x \to -4} \frac{x^2 + x - 12}{x - 3}$$

(11)
$$\lim_{x\to 0+} \frac{\sqrt{2-x^2}}{x}$$

(4)
$$\lim_{x \to 2} \frac{x^2 + x - 12}{x - 2}$$

(12)
$$\lim_{x \to 0+} \frac{\sqrt{2-x^2}}{x+1}$$

(5)
$$\lim_{x \to 1} \frac{\sqrt{x+8} - 3}{x-1}$$

$$\lim_{x \to a} \frac{x^3 - a^3}{x - a} \quad \blacksquare$$

(6)
$$\lim_{x \to 0+} \sqrt{\frac{1}{x} + 2} - \sqrt{\frac{1}{x}}$$

(14)
$$\lim_{x \to 2} (x^2 + 4)^3$$

(7)
$$\lim_{x\to 2} 3$$

(15)
$$\lim_{x \to 1} \begin{cases} x - 5 & \text{if } x \neq 1, \\ 7 & \text{if } x = 1. \end{cases}$$

(8)
$$\lim_{x \to 4} 3x^3 - 5x$$

1.4 Infinite Limits

Consider the function

$$f(x) = \frac{1}{(x+1)^2}$$

While the $\lim_{x\to -1} f(x)$ does not exist, see Figure 1.7, something can still be said.

Definition If f(x) grows arbitrarily large as x approaches a, we write

$$\lim_{x \to a} f(x) = \infty$$

and say that the limit of f(x) approaches infinity as x goes to a.

If |f(x)| grows arbitrarily large as x approaches a and f(x) is negative, we write

$$\lim_{x \to a} f(x) = -\infty$$

and say that the limit of f(x) approaches negative infinity as x goes to a.

On the other hand, if we consider the function

$$f(x) = \frac{1}{(x-1)}$$

While we have $\lim_{x\to 1} f(x) \neq \pm \infty$, we do have one-sided limits, $\lim_{x\to 1^+} f(x) = \infty$ and $\lim_{x\to 1^-} f(x) = -\infty$, see Figure 1.8.

Definition If

$$\lim_{x \to a} f(x) = \pm \infty, \qquad \lim_{x \to a+} f(x) = \pm \infty, \qquad \text{or} \qquad \lim_{x \to a-} f(x) = \pm \infty,$$

then the line x = a is a **vertical asymptote** of f(x).

Figure 1.7: A plot of $f(x) = \frac{1}{(x+1)^2}$.

Figure 1.8: A plot of $f(x) = \frac{1}{x-1}$.

Example 1.4.1 Find the vertical asymptotes of

$$f(x) = \frac{x^2 - 9x + 14}{x^2 - 5x + 6}.$$

Solution Start by factoring both the numerator and the denominator:

$$\frac{x^2 - 9x + 14}{x^2 - 5x + 6} = \frac{(x - 2)(x - 7)}{(x - 2)(x - 3)}$$

Using limits, we must investigate when $x \rightarrow 2$ *and* $x \rightarrow 3$ *. Write*

$$\lim_{x \to 2} \frac{(x-2)(x-7)}{(x-2)(x-3)} = \lim_{x \to 2} \frac{(x-7)}{(x-3)}$$
$$= \frac{-5}{-1}$$
$$= 5.$$

Now write

$$\lim_{x \to 3} \frac{(x-2)(x-7)}{(x-2)(x-3)} = \lim_{x \to 3} \frac{(x-7)}{(x-3)}$$
$$= \lim_{x \to 3} \frac{-4}{x-3}.$$

Since $\lim_{\substack{x \to 3+ \\ x \to 3+}} x - 3$ approaches 0 from the right and the numerator is negative, $\lim_{\substack{x \to 3+ \\ \text{is negative,}}} f(x) = -\infty$. Since $\lim_{\substack{x \to 3- \\ \text{is negative,}}} x - 3$ approaches 0 from the left and the numerator is negative, $\lim_{\substack{x \to 3- \\ x \to 3-}} f(x) = \infty$. Hence we have a vertical asymptote at x = 3, see Figure 1.9.

Figure 1.9: A plot of $f(x) = \frac{x^2 - 9x + 14}{x^2 - 5 + 6}$

Exercises for Section 1.4

Compute the limits. If a limit does not exist, explain why.

(1)
$$\lim_{x \to 1^-} \frac{1}{x^2 - 1}$$

(5)
$$\lim_{x\to 5} \frac{1}{(x-5)^4}$$

(2)
$$\lim_{x \to 4^-} \frac{3}{x^2 - 2}$$

(6)
$$\lim_{x \to -2} \frac{1}{(x^2 + 3x + 2)^2}$$

(3)
$$\lim_{x \to -1^+} \frac{1+2x}{x^3-1}$$

(7)
$$\lim_{x \to 0} \frac{1}{\frac{x}{x^5} - \cos(x)}$$

(4)
$$\lim_{x \to 3+} \frac{x-9}{x^2 - 6x + 9}$$

(8)
$$\lim_{x \to 0+} \frac{x-11}{\sin(x)}$$

(9) Find the vertical asymptotes of

$$f(x) = \frac{x - 3}{x^2 + 2x - 3}.$$

(10) Find the vertical asymptotes of

$$f(x) = \frac{x^2 - x - 6}{x + 4}.$$

1.5 Limits at Infinity

Consider the function:

$$f(x) = \frac{6x - 9}{x - 1}$$

As x approaches infinity, it seems like f(x) approaches a specific value. This is a *limit at infinity*.

Definition If f(x) becomes arbitrarily close to a specific value L by making x sufficiently large, we write

$$\lim_{x \to \infty} f(x) = L$$

and we say, the **limit at infinity** of f(x) is L.

If f(x) becomes arbitrarily close to a specific value L by making x sufficiently large and negative, we write

$$\lim_{x \to -\infty} f(x) = L$$

and we say, the **limit at negative infinity** of f(x) is L.

Example 1.5.1 Compute

$$\lim_{x\to\infty}\frac{6x-9}{x-1}.$$

Solution Write

$$\lim_{x \to \infty} \frac{6x - 9}{x - 1} = \lim_{x \to \infty} \frac{6x - 9}{x - 1} \frac{1/x}{1/x}$$

$$= \lim_{x \to \infty} \frac{\frac{6x}{x} - \frac{9}{x}}{\frac{x}{x} - \frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{6}{1}$$

$$= 6.$$

Here is a somewhat different example of a limit at infinity.

Figure 1.10: A plot of $f(x) = \frac{6x - 9}{x - 1}$.

Example 1.5.2 Compute

$$\lim_{x\to\infty}\frac{\sin(7x)}{x}+4.$$

Solution We can bound our function

$$-1/x + 4 \le \frac{\sin(7x)}{x} + 4 \le 1/x + 4.$$

Since

$$\lim_{x \to \infty} -1/x + 4 = 4 = \lim_{x \to \infty} 1/x + 4$$

we conclude by the Squeeze Theorem, Theorem 1.3.5, $\lim_{x\to\infty} \frac{\sin(7x)}{x} + 4 = 4$.

Definition If

$$\lim_{x\to\infty} f(x) = L \qquad \text{or} \qquad \lim_{x\to-\infty} f(x) = L,$$

then the line y = L is a **horizontal asymptote** of f(x).

Example 1.5.3 Give the horizontal asymptotes of

$$f(x) = \frac{6x - 9}{x - 1}$$

Solution From our previous work, we see that $\lim_{x\to\infty} f(x) = 6$, and upon further inspection, we see that $\lim_{x\to-\infty} f(x) = 6$. Hence the horizontal asymptote of f(x) is the line y=6.

It is a common misconception that a function cannot cross an asymptote. As the next example shows, a function can cross an asymptote, and in this case this occurs an infinite number of times!

Example 1.5.4 Give a horizontal asymptote of

$$f(x) = \frac{\sin(7x)}{x} + 4.$$

Solution Again from previous work, we see that $\lim_{x\to\infty} f(x) = 4$. Hence y = 4 is a horizontal asymptote of f(x).

We conclude with an infinite limit at infinity.

Example 1.5.5 Compute

$$\lim_{x\to\infty}\ln(x)$$

Solution The function $\ln(x)$ grows very slowly, and seems like it may have a horizontal asymptote, see Figure 1.12. However, if we consider the definition of the natural log

$$ln(x) = y \qquad \Leftrightarrow \qquad e^y = x$$

Since we need to raise e to higher and higher values to obtain larger numbers, we see that $\ln(x)$ is unbounded, and hence $\lim_{x\to\infty} \ln(x) = \infty$.

Figure 1.12: A plot of $f(x) = \ln(x)$.

Exercises for Section 1.5

Compute the limits.

(1)
$$\lim_{x\to\infty}\frac{1}{x}$$

(5)
$$\lim_{x\to\infty} \left(\frac{4}{x} + \pi\right)$$

$$(2) \lim_{x \to \infty} \frac{-x}{\sqrt{4 + x^2}} \quad \blacksquare$$

(6)
$$\lim_{x \to \infty} \frac{\cos(x)}{\ln(x)}$$

(3)
$$\lim_{x \to \infty} \frac{2x^2 - x + 1}{4x^2 - 3x - 1}$$

$$(7) \lim_{x \to \infty} \frac{\sin(x^7)}{\sqrt{x}} \quad \blacksquare$$

(4)
$$\lim_{x \to -\infty} \frac{x^3 - 4}{3x^2 + 4x - 1}$$

(8)
$$\lim_{x \to \infty} \left(17 + \frac{32}{x} - \frac{(\sin(x/2))^2}{x^3} \right)$$

(9) Suppose a population of feral cats on a certain college campus t years from now is approximated by

$$p(t) = \frac{1000}{5 + 2e^{-0.1t}}.$$

Approximately how many feral cats are on campus 10 years from now? 50 years from now? 100 years from now? What do you notice about the prediction—is this realistic?

(10) The amplitude of an oscillating spring is given by

$$a(t) = \frac{\sin(t)}{t}.$$

What happens to the amplitude of the oscillation over a long period of time?

1.6 Continuity

Informally, a function is continuous if you can "draw it" without "lifting your pencil." We need a formal definition.

Definition A function f is **continuous at a point** a if $\lim_{x\to a} f(x) = f(a)$.

Example 1.6.1 Find the discontinuities (the values for x where a function is not continuous) for the function given in Figure 1.13.

Solution From Figure 1.13 we see that $\lim_{x\to 4} f(x)$ does not exist as

$$\lim_{x \to 4-} f(x) = 1 \qquad and \qquad \lim_{x \to 4+} f(x) \approx 3.5$$

Hence $\lim_{x\to 4} f(x) \neq f(4)$, and so f(x) is not continuous at x=4.

We also see that $\lim_{x\to 6} f(x) \approx 3$ while f(6)=2. Hence $\lim_{x\to 6} f(x) \neq f(6)$, and so f(x) is not continuous at x = 6.

Building from the definition of continuous at a point, we can now define what it means for a function to be *continuous* on an interval.

Definition A function f is **continuous on an interval** if it is continuous at every point in the interval.

In particular, we should note that if a function is not defined on an interval, then it cannot be continuous on that interval.

Example 1.6.2 Consider the function

$$f(x) = \begin{cases} \sqrt[5]{x} \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0, \end{cases}$$

see Figure 1.14. Is this function continuous?

Figure 1.13: A plot of a function with discontinuities at x = 4 and x = 6.

Figure 1.14: A plot of

$$f(x) = \begin{cases} \sqrt[5]{x} \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Solution Considering f(x), the only issue is when x = 0. We must show that $\lim_{x \to 0} f(x) = 0$. Note

$$-|\sqrt[5]{x}| \le f(x) \le |\sqrt[5]{x}|.$$

Since

$$\lim_{x \to 0} -|\sqrt[5]{x}| = 0 = \lim_{x \to 0} |\sqrt[5]{x}|,$$

we see by the Squeeze Theorem, Theorem 1.3.5, that $\lim_{x\to 0} f(x) = 0$. Hence f(x) is continuous.

Here we see how the informal definition of continuity being that you can "draw it" without "lifting your pencil" differs from the formal definition.

We close with a useful theorem about continuous functions:

Theorem 1.6.3 (Intermediate Value Theorem) If f(x) is a function that is continuous for all x in the closed interval [a, b] and d is between f(a) and f(b), then there is a number c in [a, b] such that f(c) = d.

In Figure 1.15, we see a geometric interpretation of this theorem.

Example 1.6.4 Explain why the function $f(x) = x^3 + 3x^2 + x - 2$ has a root between 0 and 1.

Solution By Theorem 1.3.1, $\lim_{x\to a} f(x) = f(a)$, for all real values of a, and hence f is continuous. Since f(0) = -2 and f(1) = 3, and f(1) = 3 is between f(0) = -2 and f(0) = 3.

This example also points the way to a simple method for approximating roots.

Example 1.6.5 Approximate a root of $f(x) = x^3 + 3x^2 + x - 2$ to one decimal place.

Solution If we compute f(0.1), f(0.2), and so on, we find that f(0.6) < 0 and f(0.7) > 0, so by the Intermediate Value Theorem, f has a root between 0.6

The Intermediate Value Theorem is most frequently used when d=0.

For a nice proof of this theorem, see: Walk, Stephen M. *The intermediate value theorem is NOT obvious—and I am going to prove it to you.* College Math. J. 42 (2011), no. 4, 254–259.

and 0.7. Repeating the process with f(0.61), f(0.62), and so on, we find that f(0.61) < 0 and f(0.62) > 0, so f has a root between 0.61 and 0.62, and the root is 0.6 rounded to one decimal place.

Figure 1.15: A geometric interpretation of the Intermediate Value Theorem. The function f(x) is continuous on the interval [a,b]. Since d is in the interval [f(a),f(b)], there exists a value c in [a,b] such that f(c)=d.

Exercises for Section 1.6

(1) Consider the function

$$f(x) = \sqrt{x-4}$$

Is f(x) continuous at the point x = 4? Is f(x) a continuous function on \mathbb{R} ?

(2) Consider the function

$$f(x) = \frac{1}{x+3}$$

Is f(x) continuous at the point x = 3? Is f(x) a continuous function on \mathbb{R} ?

(3) Consider the function

$$f(x) = \begin{cases} 2x - 3 & \text{if } x < 1, \\ 0 & \text{if } x \ge 1. \end{cases}$$

Is f(x) continuous at the point x = 1? Is f(x) a continuous function on \mathbb{R} ?

(4) Consider the function

$$f(x) = \begin{cases} \frac{x^2 + 10x + 25}{x - 5} & \text{if } x \neq 5, \\ 10 & \text{if } x = 5. \end{cases}$$

Is f(x) continuous at the point x = 5? Is f(x) a continuous function on \mathbb{R} ?

(5) Consider the function

$$f(x) = \begin{cases} \frac{x^2 + 10x + 25}{x + 5} & \text{if } x \neq -5, \\ 0 & \text{if } x = -5. \end{cases}$$

Is f(x) continuous at the point x = -5? Is f(x) a continuous function on \mathbb{R} ?

(6) Determine the interval(s) on which the function $f(x) = x^7 + 3x^5 - 2x + 4$ is continuous.

- (7) Determine the interval(s) on which the function $f(x) = \frac{x^2 2x + 1}{x + 4}$ is continuous.
- (8) Determine the interval(s) on which the function $f(x) = \frac{1}{x^2 9}$ is continuous.
- (9) Approximate a root of $f(x) = x^3 4x^2 + 2x + 2$ to two decimal places.
- (10) Approximate a root of $f(x) = x^4 + x^3 5x + 1$ to two decimal places.

2 Basics of Derivatives

2.1 Slopes of Tangent Lines via Limits

Suppose that f(x) is a function. It is often useful to know how sensitive the value of f(x) is to small changes in x. To give you a feeling why this is true, consider the following:

- If p(t) represents the position of an object with respect to time, the rate of change gives the velocity of the object.
- If v(t) represents the velocity of an object with respect to time, the rate of change gives the acceleration of the object.
- The rate of change of a function can help us approximate a complicated function with a simple function.
- The rate of change of a function can be used to help us solve equations that we would not be able to solve via other methods.

The rate of change of a function is the slope of the tangent line. Part of our goal will be to give a formal definition of a tangent line. For now, consider the following informal definition:

Given a function f(x), if one can "zoom in" on f(x) sufficiently so that f(x) seems to be a straight line, then that line is the **tangent line** to f(x) at the point determined by x.

While this is merely an informal definition of a tangent line, it contains the essence of how the formal definition will be constructed. We illustrate this informal definition with Figure 2.1.

The *derivative* of a function f(x) at x, is the slope of the tangent line at x. To find the slope of this line, we consider *secant* lines, lines that locally intersect the curve at two points. The slope of any secant line that passes through the points (x, f(x)) and (x + h, f(x + h)) is given by

$$\frac{\Delta y}{\Delta x} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h},$$

see Figure 2.2. This leads to the limit definition of the derivative:

Definition of the Derivative The **derivative** of f(x) is the function

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

If this limit does not exist for a given value of x, then f(x) is not **differentiable** at x.

Figure 2.2: Tangent lines can be found as the limit of secant lines. The slope of the tangent line is given by $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$.

Figure 2.1: Given a function f(x), if one can "zoom in" on f(x) sufficiently so that f(x) seems to be a straight line, then that line is the **tangent line** to

f(x) at the point determined by x.

Definition There are several different notations for the derivative, we'll mainly use

$$\frac{d}{dx}f(x) = f'(x).$$

If one is working with a function of a variable other than x, say t we write

$$\frac{d}{dt}f(t) = f'(t).$$

However, if y = f(x), $\frac{dy}{dx}$, \dot{y} , and $D_x f(x)$ are also used.

Now we will give a number of examples, starting with a basic example.

Example 2.1.1 Compute

$$\frac{d}{dx}(x^3+1)$$
.

Solution Using the definition of the derivative,

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{(x+h)^3 + 1 - (x^3 + 1)}{h}$$

$$= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 + 1 - x^3 - 1}{h}$$

$$= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h}$$

$$= \lim_{h \to 0} (3x^2 + 3xh + h^2)$$

$$= 3x^2.$$

See Figure 2.3.

Next we will consider the derivative a function that is not continuous on \mathbb{R} .

Example 2.1.2 Compute

$$\frac{d}{dt}\frac{1}{t}$$
.

Figure 2.3: A plot of $f(x) = x^3 + 1$ and $f'(x) = 3x^2$.

Solution Using the definition of the derivative,

$$\frac{d}{dt} \frac{1}{t} = \lim_{h \to 0} \frac{\frac{1}{t+h} - \frac{1}{t}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{t}{t(t+h)} - \frac{t+h}{t(t+h)}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{t-(t+h)}{t(t+h)}}{h}$$

$$= \lim_{h \to 0} \frac{t-t-h}{t(t+h)h}$$

$$= \lim_{h \to 0} \frac{-h}{t(t+h)h}$$

$$= \lim_{h \to 0} \frac{-1}{t(t+h)}$$

$$= \frac{-1}{t^2}.$$

This function is differentiable at all real numbers except for t = 0, see Figure 2.4.

As you may have guessed, there is some connection to continuity and differentiability.

Theorem 2.1.3 (Differentiability implies Continuity) If f(x) is a differentiable function at x = a, then f(x) is continuous at x = a.

Proof We want to show that f(x) is continuous at x = a, hence we must show that

$$\lim_{x \to a} f(x) = f(a).$$

Figure 2.4: A plot of $f(t) = \frac{1}{t}$ and $f'(t) = \frac{-1}{t^2}$.

Consider

$$\lim_{x \to a} (f(x) - f(a)) = \lim_{x \to a} \left((x - a) \frac{f(x) - f(a)}{x - a} \right) \qquad \text{Multiply and divide by } (x - a).$$

$$= \lim_{h \to 0} h \cdot \frac{f(a + h) - f(a)}{h} \qquad \qquad \text{Set } x = a + h.$$

$$= \left(\lim_{h \to 0} h \right) \left(\lim_{h \to 0} \frac{f(a + h) - f(a)}{h} \right) \qquad \qquad \text{Limit Law.}$$

$$= 0 \cdot f'(a) = 0.$$

Since

$$\lim_{x \to a} (f(x) - f(a)) = 0$$

we see that $\lim_{x\to a} f(x) = f(a)$, and so f(x) is continuous.

This theorem is often written as its contrapositive:

If f(x) is not continuous at x = a, then f(x) is not differentiable at x = a.

Let's see a function that is continuous whose derivative does not exist everywhere.

Example 2.1.4 Compute

$$\frac{d}{dx}|x|$$
.

Solution Using the definition of the derivative,

$$\frac{d}{dx}|x| = \lim_{h \to 0} \frac{|x+h| - |x|}{h}.$$

If x is positive we may assume that x is larger than h, as we are taking the limit as h goes to 0,

$$\lim_{h \to 0} \frac{|x+h| - |x|}{h} = \lim_{h \to 0} \frac{x+h-x}{h}$$
$$= \lim_{h \to 0} \frac{h}{h}$$
$$= 1.$$

Figure 2.5: A plot of f(x) = |x| and

$$f'(x) = \begin{cases} 1 & \text{if } x > 0, \\ -1 & \text{if } x < 0. \end{cases}$$

If x is negative we may assume that |x| is larger than h, as we are taking the limit as h goes to 0,

$$\lim_{h \to 0} \frac{|x+h| - |x|}{h} = \lim_{h \to 0} \frac{x - h - x}{h}$$
$$= \lim_{h \to 0+} \frac{-h}{h}$$
$$= -1.$$

However we still have one case left, when x = 0. In this situation, we must consider the one-sided limits:

$$\lim_{h \to 0+} \frac{|x+h| - |x|}{h} \quad and \quad \lim_{h \to 0-} \frac{|x+h| - |x|}{h}.$$

In the first case,

$$\lim_{h \to 0+} \frac{|x+h| - |x|}{h} = \lim_{h \to 0+} \frac{0+h-0}{h}$$
$$= \lim_{h \to 0+} \frac{h}{h}$$
$$= 1.$$

On the other hand

$$\lim_{h \to 0-} \frac{|x+h| - |x|}{h} = \lim_{h \to 0-} \frac{|0+h| - 0}{h}$$
$$= \lim_{h \to 0-} \frac{|h|}{h}$$
$$= -1.$$

Hence we see that the derivative is

$$f'(x) = \begin{cases} 1 & \text{if } x > 0, \\ -1 & \text{if } x < 0. \end{cases}$$

Note this function is undefined at 0, see Figure 2.5.

Thus from Theorem 2.1.3, we see that all differentiable functions on \mathbb{R} are continuous on \mathbb{R} . Nevertheless as the previous example shows, there are continuous

functions on $\mathbb R$ that are not differentiable on $\mathbb R$.

Exercises for Section 2.1

These exercises are conceptual in nature and require one to think about what the derivative means.

(1) If the line y = 7x - 4 is tangent to f(x) at x = 2, find f(2) and f'(2).

(2) Here are plots of four functions.

Two of these functions are the derivatives of the other two, identify which functions are the derivatives of the others.

(3) If
$$f(3) = 6$$
 and $f(3.1) = 6.4$, estimate $f'(3)$.

(4) If
$$f(-2) = 4$$
 and $f(-2 + h) = (h + 2)^2$, compute $f'(-2)$.

(5) If
$$f'(x) = x^3$$
 and $f(1) = 2$, approximate $f(1.2)$.

(6) Consider the plot of f(x) in Figure 2.6.

- (a) On which subinterval(s) of [0, 6] is f(x) continuous?
- (b) On which subinterval(s) of [0,6] is f(x) differentiable?
- (c) Sketch a plot of f'(x).

Figure 2.6: A plot of f(x).

These exercises are computational in nature.

- (7) Let $f(x) = x^2 4$. Use the definition of the derivative to compute f'(-3) and find the equation of the tangent line to the curve at x = -3.
- (8) Let $f(x) = \frac{1}{x+2}$. Use the definition of the derivative to compute f'(1) and find the equation of the tangent line to the curve at x = 1.
- (9) Let $f(x) = \sqrt{x-3}$. Use the definition of the derivative to compute f'(5) and find the equation of the tangent line to the curve at x = 5.
- (10) Let $f(x) = \frac{1}{\sqrt{x}}$. Use the definition of the derivative to compute f'(4) and find the equation of the tangent line to the curve at x = 4.

2.2 Basic Derivative Rules

It is tedious to compute a limit every time we need to know the derivative of a function. Fortunately, we can develop a small collection of examples and rules that allow us to compute the derivative of almost any function we are likely to encounter. We will start simply and build-up to more complicated examples.

The Constant Rule

The simplest function is a constant function. Recall that derivatives measure the rate of change of a function at a given point. Hence, the derivative of a constant function is zero. For example:

- The constant function plots a horizontal line—so the slope of the tangent line is 0.
- If p(t) represents the position of an object with respect to time and p(t) is constant, then the object is not moving, so its velocity is zero. Hence $\frac{d}{dt}p(t)=0$.
- If v(t) represents the velocity of an object with respect to time and v(t) is constant, then the object's acceleration is zero. Hence $\frac{d}{dt}v(t)=0$.

The examples above lead us to our next theorem.

Theorem 2.2.1 (The Constant Rule) Given a constant c.

$$\frac{d}{dx}c = 0.$$

Proof From the limit definition of the derivative, write

$$\frac{d}{dx}c = \lim_{h \to 0} \frac{c - c}{h}$$
$$= \lim_{h \to 0} \frac{0}{h}$$
$$= \lim_{h \to 0} 0 = 0.$$

To gain intuition, you should compute the derivative of f(x) = 6 using the limit definition of the derivative.

The Power Rule

Now let's examine derivatives of powers of a single variable. Here we have a nice rule.

Theorem 2.2.2 (The Power Rule) For any real number n,

$$\frac{d}{dx}x^n = nx^{n-1}.$$

Proof At this point we will only prove this theorem for n being a positive integer. Later in Section 5.3, we will give the complete proof. From the limit definition of the derivative, write

$$\frac{d}{dx}x^n = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}.$$

Start by expanding the term $(x + h)^n$

$$\frac{d}{dx}x^{n} = \lim_{h \to 0} \frac{x^{n} + \binom{n}{1}x^{n-1}h + \binom{n}{2}x^{n-2}h^{2} + \dots + \binom{n}{n-1}xh^{n-1} + h^{n} - x^{n}}{h}$$

Note, by the Binomial Theorem, we write $\binom{n}{k}$ for the coefficients. Canceling the terms x^n and $-x^n$, and noting $\binom{n}{1} = \binom{n}{n-1} = n$, write

$$\frac{d}{dx}x^{n} = \lim_{h \to 0} \frac{nx^{n-1}h + \binom{n}{2}x^{n-2}h^{2} + \dots + \binom{n}{n-1}xh^{n-1} + h^{n}}{h}$$
$$= \lim_{h \to 0} nx^{n-1} + \binom{n}{2}x^{n-2}h + \dots + \binom{n}{n-1}xh^{n-2} + h^{n-1}.$$

Since every term but the first has a factor of h, we see

$$\frac{d}{dx}x^n = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h} = nx^{n-1}.$$

Now we will show you several examples. We begin with something basic.

To gain intuition, you should compute the derivative of $f(x) = x^3$ using the limit definition of the derivative.

Recall, the ${\bf Binomial\ Theorem}$ states that if n is a nonnegative integer, then

$$(a+b)^n = a^n b^0 + \binom{n}{1} a^{n-1} b^1 + \dots + \binom{n}{n-1} a^1 b^{n-1} + a^0 b^n$$

where

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Example 2.2.3 Compute

$$\frac{d}{dx}x^{13}$$
.

Solution Applying the power rule, we write

$$\frac{d}{dx}x^{13} = 13x^{12}.$$

Sometimes, it is not as obvious that one should apply the power rule.

Example 2.2.4 Compute

$$\frac{d}{dx}\frac{1}{x^4}$$
.

Solution Applying the power rule, we write

$$\frac{d}{dx}\frac{1}{x^4} = \frac{d}{dx}x^{-4} = -4x^{-5}.$$

The power rule also applies to radicals once we rewrite them as exponents.

Example 2.2.5 Compute

$$\frac{d}{dx}\sqrt[5]{x}$$
.

Solution Applying the power rule, we write

$$\frac{d}{dx}\sqrt[5]{x} = \frac{d}{dx}x^{1/5} = \frac{x^{-4/5}}{5}.$$

The Sum Rule

We want to be able to take derivatives of functions "one piece at a time." The *sum rule* allows us to do this. The sum rule says that we can add the rates of change of two functions to obtain the rate of change of the sum of both functions. For example, viewing the derivative as the velocity of an object, the sum rule states that the velocity of the person walking on a moving bus is the sum of the velocity of the bus and the walking person.

Theorem 2.2.6 (The Sum Rule) If f(x) and g(x) are differentiable and c is a constant, then

(a)
$$\frac{d}{dx}(f(x) + g(x)) = f'(x) + g'(x)$$
,

(b)
$$\frac{d}{dx}(f(x) - g(x)) = f'(x) - g'(x),$$
(c)
$$\frac{d}{dx}(c \cdot f(x)) = c \cdot f'(x).$$

(c)
$$\frac{d}{dx}(c \cdot f(x)) = c \cdot f'(x)$$
.

Proof We will only prove part (a) above, the rest are similar. Write

$$\frac{d}{dx}(f(x) + g(x)) = \lim_{h \to 0} \frac{f(x+h) + g(x+h) - (f(x) + g(x))}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) + g(x+h) - f(x) - g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x) + g(x+h) - g(x)}{h}$$

$$= \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h}\right)$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= f'(x) + g'(x).$$

Example 2.2.7 Compute

$$\frac{d}{dx}\left(x^5+\frac{1}{x}\right).$$

Solution Write

$$\frac{d}{dx}\left(x^{5} + \frac{1}{x}\right) = \frac{d}{dx}x^{5} + \frac{d}{dx}x^{-1}$$
$$= 5x^{4} - x^{-2}.$$

Figure 2.7: A geometric interpretation of the sum rule. Since every point on f(x)+g(x) is the sum of the corresponding points on f(x) and g(x), increasing aby a "small amount" h, increases f(a) + g(a) by the sum of f'(a)h and g'(a)h. Hence,

$$\frac{\Delta y}{\Delta x} \approx \frac{f'(a)h + g'(a)h}{h} = f'(a) + g'(a).$$

Example 2.2.8 Compute

$$\frac{d}{dx}\left(\frac{3}{\sqrt[3]{x}}-2\sqrt{x}+\frac{1}{x^7}\right).$$

Solution Write

$$\frac{d}{dx} \left(\frac{3}{\sqrt[3]{x}} - 2\sqrt{x} + \frac{1}{x^7} \right) = 3\frac{d}{dx} x^{-1/3} - 2\frac{d}{dx} x^{1/2} + \frac{d}{dx} x^{-7}$$
$$= -x^{-4/3} - x^{-1/2} - 7x^{-8}.$$

The Derivative of e^x

We don't know anything about derivatives that allows us to compute the derivatives of exponential functions without getting our hands dirty. Let's do a little work with the definition of the derivative:

$$\frac{d}{dx}a^{x} = \lim_{h \to 0} \frac{a^{x+h} - a^{x}}{h}$$

$$= \lim_{h \to 0} \frac{a^{x}a^{h} - a^{x}}{h}$$

$$= \lim_{h \to 0} a^{x} \frac{a^{h} - 1}{h}$$

$$= a^{x} \lim_{h \to 0} \frac{a^{h} - 1}{h}$$

$$= a^{x} \cdot \underbrace{\text{(constant)}}_{\lim_{h \to 0} \frac{a^{h} - 1}{h}}$$

There are two interesting things to note here: We are left with a limit that involves h but not x, which means that whatever $\lim_{h\to 0}(a^h-1)/h$ is, we know that it is a number, that is, a constant. This means that a^x has a remarkable property: Its derivative is a constant times itself. Unfortunately it is beyond the scope of this text to compute the limit

$$\lim_{h\to 0}\frac{a^h-1}{h}.$$

However, we can look at some examples. Consider $(2^h - 1)/h$ and $(3^h - 1)/h$:

h	$(2^h - 1)/h$	h	$(2^h - 1)/h$	h	$(3^h - 1)/h$	h	$(3^h - 1)/l$
-1	.5	1	1	-1	≈ 0.6667	1	2
-0.1	≈ 0.6700	0.1	≈ 0.7177	-0.1	≈ 1.0404	0.1	≈ 1.1612
-0.01	≈ 0.6910	0.01	≈ 0.6956	-0.01	≈ 1.0926	0.01	≈ 1.1047
-0.001	≈ 0.6929	0.001	≈ 0.6834	-0.001	≈ 1.0980	0.001	≈ 1.0992
-0.0001	≈ 0.6931	0.0001	≈ 0.6932	-0.0001	≈ 1.0986	0.0001	≈ 1.0987
-0.00001	≈ 0.6932	0.00001	≈ 0.6932	-0.00001	≈ 1.0986	0.00001	≈ 1.0986

While these tables don't prove a pattern, it turns out that

$$\lim_{h\to 0} \frac{2^h - 1}{h} \approx .7 \quad \text{and} \quad \lim_{h\to 0} \frac{3^h - 1}{h} \approx 1.1.$$

Moreover, if you do more examples you will find that the limit varies directly with the value of a: bigger a, bigger limit; smaller a, smaller limit. As we can already see, some of these limits will be less than 1 and some larger than 1. Somewhere between a=2 and a=3 the limit will be exactly 1. This happens when

$$a = e = 2.718281828459045...$$

This brings us to our next definition.

Definition Euler's number is defined to be the number *e* such that

$$\lim_{h\to 0}\frac{e^h-1}{h}=1.$$

Now we see that the function e^x has a truly remarkable property:

Theorem 2.2.9 (The Derivative of e^x)

$$\frac{d}{dx}e^x = e^x.$$

Proof From the limit definition of the derivative, write

$$\frac{d}{dx}e^x = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h}$$

$$= \lim_{h \to 0} \frac{e^x e^h - e^x}{h}$$

$$= \lim_{h \to 0} e^x \frac{e^h - 1}{h}$$

$$= e^x \lim_{h \to 0} \frac{e^h - 1}{h}$$

$$= e^x.$$

Hence e^x is its own derivative. In other words, the slope of the plot of e^x is the same as its height, or the same as its second coordinate: The function $f(x) = e^x$ goes through the point (a, e^a) and has slope e^a there, no matter what a is.

Example 2.2.10 Compute:

$$\frac{d}{dx}\left(8\sqrt{x}+7e^x\right)$$

Solution Write:

$$\frac{d}{dx} (8\sqrt{x} + 7e^{x}) = 8\frac{d}{dx} x^{1/2} + 7\frac{d}{dx} e^{x}$$
$$= 4x^{-1/2} + 7e^{x}.$$

Exercises for Section 2.2

Compute:

(1)
$$\frac{d}{dx}$$
5

(9)
$$\frac{d}{dx}x^{3/4}$$

$$(2) \quad \frac{d}{dx} - 7 \quad \blacksquare \blacksquare$$

$$(10) \ \frac{d}{dx} \frac{1}{(\sqrt[7]{x})^9}$$

$$(3) \ \frac{d}{dx}e^7 \quad \blacksquare \blacksquare$$

(11)
$$\frac{d}{dx} \left(5x^3 + 12x^2 - 15 \right)$$

$$(4) \quad \frac{d}{dx} \frac{1}{\sqrt{2}} \quad \blacksquare \blacksquare$$

(12)
$$\frac{d}{dx} \left(-4x^5 + 3x^2 - \frac{5}{x^2} \right)$$

$$(5) \quad \frac{d}{dx}x^{100} \quad \blacksquare \blacksquare$$

(13)
$$\frac{d}{dx}5(-3x^2+5x+1)$$

$$(6) \quad \frac{d}{dx}x^{-100} \quad \blacksquare \blacksquare$$

(14)
$$\frac{d}{dx} \left(3\sqrt{x} + \frac{1}{x} - x^e \right)$$

$$(7) \quad \frac{d}{dx} \frac{1}{x^5} \quad \blacksquare \blacksquare$$

(15)
$$\frac{d}{dx} \left(\frac{x^2}{x^7} + \frac{\sqrt{x}}{x} \right)$$

(8) $\frac{d}{dx}x^{\pi}$

Expand or simplify to compute the following:

(16)
$$\frac{d}{dx} \left((x+1)(x^2+2x-3) \right)$$
 (18) $\frac{d}{dx} \frac{x-5}{\sqrt{x}-\sqrt{5}}$

$$(18) \ \frac{d}{dx} \frac{x-5}{\sqrt{x}-\sqrt{5}}$$

(17)
$$\frac{d}{dx} \frac{x^3 - 2x^2 - 5x + 6}{(x - 1)}$$

(19)
$$\frac{d}{dx}((x+1)(x+1)(x-1)(x-1))$$

(20) Suppose the position of an object at time t is given by $f(t) = -49t^2/10 + 5t + 10$. Find a function giving the velocity of the object at time t. The acceleration of an object is the rate at which its velocity is changing, which means it is given by the derivative of the velocity function. Find the acceleration of the object at time t.

- (21) Let $f(x) = x^3$ and c = 3. Sketch the graphs of f(x), cf(x), f'(x), and (cf(x))' on the same diagram.
- (22) Find a cubic polynomial whose graph has horizontal tangents at (-2,5) and (2,3).
- (23) Find an equation for the tangent line to $f(x) = x^3/4 1/x$ at x = -2.
- (24) Find an equation for the tangent line to $f(x) = 3x^2 \pi^3$ at x = 4.
- (25) Prove that $\frac{d}{dx}(cf(x)) = cf'(x)$ using the definition of the derivative.

3 Curve Sketching

Whether we are interested in a function as a purely mathematical object or in connection with some application to the real world, it is often useful to know what the graph of the function looks like. We can obtain a good picture of the graph using certain crucial information provided by derivatives of the function and certain limits.

3.1 Extrema

Local *extrema* on a function are points on the graph where the y coordinate is larger (or smaller) than all other y coordinates on the graph at points "close to" (x, y).

Definition

- (a) A point (x, f(x)) is a **local maximum** if there is an interval a < x < b with $f(x) \ge f(z)$ for every z in (a, b).
- (b) A point (x, f(x)) is a **local minimum** if there is an interval a < x < b with $f(x) \le f(z)$ for every z in (a, b).

A **local extremum** is either a local maximum or a local minimum.

Local maximum and minimum points are quite distinctive on the graph of a function, and are therefore useful in understanding the shape of the graph. In many applied problems we want to find the largest or smallest value that a function

achieves (for example, we might want to find the minimum cost at which some task can be performed) and so identifying maximum and minimum points will be useful for applied problems as well.

If (x, f(x)) is a point where f(x) reaches a local maximum or minimum, and if the derivative of f exists at x, then the graph has a tangent line and the tangent line must be horizontal. This is important enough to state as a theorem, though we will not prove it.

Theorem 3.1.1 (Fermat's Theorem) If f(x) has a local extremum at x = a and f(x) is differentiable at a, then f'(a) = 0.

Thus, the only points at which a function can have a local maximum or minimum are points at which the derivative is zero, see Figure 3.1, or the derivative is undefined, as in Figure 3.2. This brings us to our next definition.

Definition Any value of x for which f'(x) is zero or undefined is called a **critical point** for f(x).

Warning When looking for local maximum and minimum points, you are likely to make two sorts of mistakes:

- You may forget that a maximum or minimum can occur where the derivative does not exist, and so forget to check whether the derivative exists everywhere.
- You might assume that any place that the derivative is zero is a local maximum or minimum point, but this is not true, see Figure 3.3.

Since the derivative is zero or undefined at both local maximum and local minimum points, we need a way to determine which, if either, actually occurs. The most elementary approach is to test directly whether the y coordinates near the

Figure 3.1: A plot of $f(x) = x^3 - 4x^2 + 3x$ and $f'(x) = 3x^2 - 8x + 3$.

Figure 3.2: A plot of $f(x) = x^{2/3}$ and $f'(x) = \frac{2}{3x^{1/3}}$.

potential maximum or minimum are above or below the y coordinate at the point of interest.

It is not always easy to compute the value of a function at a particular point. The task is made easier by the availability of calculators and computers, but they have their own drawbacks—they do not always allow us to distinguish between values that are very close together. Nevertheless, because this method is conceptually simple and sometimes easy to perform, you should always consider it.

Example 3.1.2 Find all local maximum and minimum points for the function $f(x) = x^3 - x$.

Solution Write

$$\frac{d}{dx}f(x) = 3x^2 - 1.$$

This is defined everywhere and is zero at $x = \pm \sqrt{3}/3$. Looking first at $x = \sqrt{3}/3$, we see that

$$f(\sqrt{3}/3) = -2\sqrt{3}/9.$$

Now we test two points on either side of $x = \sqrt{3}/3$, making sure that neither is farther away than the nearest critical point; since $\sqrt{3} < 3$, $\sqrt{3}/3 < 1$ and we can use x = 0 and x = 1. Since

$$f(0) = 0 > -2\sqrt{3}/9$$
 and $f(1) = 0 > -2\sqrt{3}/9$,

there must be a local minimum at $x = \sqrt{3}/3$.

For $x = -\sqrt{3}/3$, we see that $f(-\sqrt{3}/3) = 2\sqrt{3}/9$. This time we can use x = 0 and x = -1, and we find that $f(-1) = f(0) = 0 < 2\sqrt{3}/9$, so there must be a local maximum at $x = -\sqrt{3}/3$, see Figure 3.4.

Figure 3.3: A plot of $f(x) = x^3$ and $f'(x) = 3x^2$. While f'(0) = 0, there is neither a maximum nor minimum at (0, f(0)).

Figure 3.4: A plot of $f(x) = x^3 - x$ and $f'(x) = 3x^2 - 1$.

Exercises for Section 3.1

In the following problems, find the x values for local maximum and minimum points by the method of this section.

(1)
$$y = x^2 - x$$

(8)
$$f(x) = \begin{cases} x - 1 & x < 2 \\ x^2 & x \ge 2 \end{cases}$$

(2)
$$y = 2 + 3x - x^3$$

(3)
$$u = x^3 - 9x^2 + 24x$$

$$\begin{cases} x - 3 & x < 3 \\ x - 3 & x < 3 \end{cases}$$

(4)
$$y = x^4 - 2x^2 + 3$$

(9)
$$f(x) = \begin{cases} x - 3 & x < 3 \\ x^3 & 3 \le x \le 5 \end{cases}$$
 1/x $x > 5$

(5)
$$y = 3x^4 - 4x^3$$

(10)
$$f(x) = x^2 - 98x + 4$$

(6)
$$y = (x^2 - 1)/x$$

$$(11) \ f(x) = \begin{cases} -2 & x = 0 \\ 1/x^2 & x \neq 0 \end{cases}$$

(7)
$$y = -\frac{x^4}{4} + x^3 + x^2$$

- (12) How many critical points can a quadratic polynomial function have?
- (13) Explore the family of functions $f(x) = x^3 + cx + 1$ where c is a constant. How many and what types of local extrema are there? Your answer should depend on the value of c, that is, different values of c will give different answers.

3.2 The First Derivative Test

The method of the previous section for deciding whether there is a local maximum or minimum at a critical point by testing "near-by" points is not always convenient. Instead, since we have already had to compute the derivative to find the critical points, we can use information about the derivative to decide. Recall that

- If f'(x) > 0 on an interval, then f(x) is increasing on that interval.
- If f'(x) < 0 on an interval, then f(x) is decreasing on that interval.

So how exactly does the derivative tell us whether there is a maximum, minimum, or neither at a point? Use the *first derivative test*.

Theorem 3.2.1 (First Derivative Test) Suppose that f(x) is continuous on an interval, and that $f'(\alpha) = 0$ for some value of α in that interval.

- If f'(x) > 0 to the left of a and f'(x) < 0 to the right of a, then f(a) is a local maximum.
- If f'(x) < 0 to the left of a and f'(x) > 0 to the right of a, then f(a) is a local minimum.
- If f'(x) has the same sign to the left and right of f'(a), then f'(a) is not a local extremum.

Example 3.2.2 Consider the function

$$f(x) = \frac{x^4}{4} + \frac{x^3}{3} - x^2$$

Find the intervals on which f(x) is increasing and decreasing and identify the local extrema of f(x).

Solution Start by computing

$$\frac{d}{dx}f(x) = x^3 + x^2 - 2x.$$

Now we need to find when this function is positive and when it is negative. To do this, solve

$$f'(x) = x^3 + x^2 - 2x = 0.$$

Factor f'(x)

$$f'(x) = x^{3} + x^{2} - 2x$$
$$= x(x^{2} + x - 2)$$
$$= x(x + 2)(x - 1).$$

So the critical points (when f'(x) = 0) are when x = -2, x = 0, and x = 1. Now we can check points **between** the critical points to find when f'(x) is increasing and decreasing:

$$f'(-3) = -12$$
 $f'(.5) = -0.625$ $f'(-1) = 2$ $f'(2) = 8$

From this we can make a sign table:

Hence f(x) is increasing on $(-2,0) \cup (1,\infty)$ and f(x) is decreasing on $(-\infty,-2) \cup (0,1)$. Moreover, from the first derivative test, Theorem 3.2.1, the local maximum is at x=0 while the local minima are at x=-2 and x=1, see Figure 3.5.

Hence we have seen that if f'(x) is zero and increasing at a point, then f(x) has a local minimum at the point. If f'(x) is zero and decreasing at a point then f(x) has a local maximum at the point. Thus, we see that we can gain information about f(x) by studying how f'(x) changes. This leads us to our next section.

Figure 3.5: A plot of $f(x) = x^4/4 + x^3/3 - x^2$ and $f'(x) = x^3 + x^2 - 2x$.

Exercises for Section 3.2

In the following exercises, find all critical points and identify them as local maximum points, local minimum points, or neither.

(1)
$$y = x^2 - x$$

(5)
$$y = 3x^4 - 4x^3$$

(2)
$$y = 2 + 3x - x^3$$

(6)
$$y = (x^2 - 1)/x$$

(3)
$$y = x^3 - 9x^2 + 24x$$
 (4) $y = x^4 - 2x^2 + 3$ (5)

(7)
$$f(x) = |x^2 - 121|$$

(8) Let $f(x) = ax^2 + bx + c$ with $a \ne 0$. Show that f(x) has exactly one critical point using the first derivative test. Give conditions on a and b which guarantee that the critical point will be a maximum.

3.3 Concavity and Inflection Points

We know that the sign of the derivative tells us whether a function is increasing or decreasing. Likewise, the sign of the second derivative f''(x) tells us whether f'(x) is increasing or decreasing. We summarize this in the table below:

If we are trying to understand the shape of the graph of a function, knowing where it is concave up and concave down helps us to get a more accurate picture. It is worth summarizing what we have seen already in to a single theorem.

Theorem 3.3.1 (Test for Concavity) Suppose that f''(x) exists on an interval.

- (a) If f''(x) > 0 on an interval, then f(x) is concave up on that interval.
- (b) If f''(x) < 0 on an interval, then f(x) is concave down on that interval.

Of particular interest are points at which the concavity changes from up to down or down to up.

Definition If f(x) is continuous and its concavity changes either from up to down or down to up at x = a, then f(x) has an **inflection point** at x = a.

It is instructive to see some examples and nonexamples of inflection points.

This is an inflection point. The concavity changes from concave up to concave down.

This is **not** an inflection point. The curve is concave down on either side of the point.

This is an inflection point. The concavity changes from concave up to concave down.

This is **not** an inflection point. The curve is concave down on either side of the point.

We identify inflection points by first finding where f''(x) is zero and then checking to see whether f''(x) does in fact go from positive to negative or negative to positive at these points.

Warning Even if f''(a) = 0, the point determined by x = a might **not** be an inflection point.

Example 3.3.2 Describe the concavity of $f(x) = x^3 - x$.

Solution To start, compute the first and second derivative of f(x) with respect to x,

$$f'(x) = 3x^2 - 1$$
 and $f''(x) = 6x$.

Since f''(0) = 0, there is potentially an inflection point at zero. Since f''(x) > 0 when x > 0 and f''(x) < 0 when x < 0 the concavity does change from down to up at zero—there is an inflection point at x = 0. The curve is concave down for all x < 0 and concave up for all x > 0, see Figure 3.6.

Note that we need to compute and analyze the second derivative to understand concavity, so we may as well try to use the second derivative test for maxima and minima. If for some reason this fails we can then try one of the other tests.

Figure 3.6: A plot of $f(x) = x^3 - x$ and f''(x) = 6x. We can see that the concavity change at x = 0.

Exercises for Section 3.3

In the following exercises, describe the concavity of the functions.

(1)
$$y = x^2 - x$$

(6)
$$y = (x^2 - 1)/x$$

(2)
$$y = 2 + 3x - x^3$$

(7)
$$y = 3x^2 - \frac{1}{x^2}$$

(3)
$$y = x^3 - 9x^2 + 24x$$

(8)
$$y = x^5 - x$$

(4)
$$y = x^4 - 2x^2 + 3$$

(9)
$$y = x + 1/x$$

(5)
$$y = 3x^4 - 4x^3$$

(10)
$$y = x^2 + 1/x$$

(11) Identify the intervals on which the graph of the function $f(x) = x^4 - 4x^3 + 10$ is of one of these four shapes: concave up and increasing; concave up and decreasing; concave down and increasing; concave down and decreasing.

3.4 The Second Derivative Test

Recall the first derivative test, Theorem 3.2.1:

- If f'(x) > 0 to the left of a and f'(x) < 0 to the right of a, then f(a) is a local maximum.
- If f'(x) < 0 to the left of a and f'(x) > 0 to the right of a, then f(a) is a local minimum.

If f'(x) changes from positive to negative it is decreasing. In this case, f''(x) might be negative, and if in fact f''(x) is negative then f'(x) is definitely decreasing, so there is a local maximum at the point in question. On the other hand, if f'(x) changes from negative to positive it is increasing. Again, this means that f''(x) might be positive, and if in fact f''(x) is positive then f'(x) is definitely increasing, so there is a local minimum at the point in question. We summarize this as the second derivative test.

Theorem 3.4.1 (Second Derivative Test) Suppose that f''(x) is continuous on an open interval and that f'(a) = 0 for some value of a in that interval.

- If f''(a) < 0, then f(x) has a local maximum at a.
- If $f''(\alpha) > 0$, then f(x) has a local minimum at α .
- If f''(a) = 0, then the test is inconclusive. In this case, f(x) may or may not have a local extremum at x = a.

The second derivative test is often the easiest way to identify local maximum and minimum points. Sometimes the test fails and sometimes the second derivative is quite difficult to evaluate. In such cases we must fall back on one of the previous tests.

Example 3.4.2 Once again, consider the function

$$f(x) = \frac{x^4}{4} + \frac{x^3}{3} - x^2$$

Use the second derivative test, Theorem 3.4.1, to locate the local extrema of f(x).

Solution Start by computing

$$f'(x) = x^3 + x^2 - 2x$$
 and $f''(x) = 3x^2 + 2x - 2$.

Using the same technique as used in the solution of Example 3.2.2, we find that

$$f'(-2) = 0$$
, $f'(0) = 0$, $f'(1) = 0$.

Now we'll attempt to use the second derivative test, Theorem 3.4.1,

$$f''(-2) = 6$$
, $f''(0) = -2$, $f''(1) = 3$.

Hence we see that f(x) has a local minimum at x = -2, a local maximum at x = 0, and a local minimum at x = 1, see Figure 3.7.

Warning If f''(a) = 0, then the second derivative test gives no information on whether x = a is a local extremum.

Figure 3.7: A plot of $f(x) = x^4/4 + x^3/3 - x^2$ and $f''(x) = 3x^2 + 2x - 2$.

Exercises for Section 3.4

Find all local maximum and minimum points by the second derivative test.

(1)
$$y = x^2 - x$$

(6)
$$y = (x^2 - 1)/x$$

(2)
$$y = 2 + 3x - x^3$$

(7)
$$y = 3x^2 - \frac{1}{x^2}$$

(3)
$$y = x^3 - 9x^2 + 24x$$

(8)
$$y = x^5 - x$$

(4)
$$y = x^4 - 2x^2 + 3$$

(9)
$$y = x + 1/x$$

(5)
$$y = 3x^4 - 4x^3$$

(10)
$$y = x^2 + 1/x$$

3.5 Sketching the Plot of a Function

In this section, we will give some general guidelines for sketching the plot of a function.

Procedure for Sketching the Plots of Functions

- Find the *y*-intercept, this is the point (0, f(0)). Place this point on your graph.
- Find candidates for vertical asymptotes, these are points where f(x) is undefined.
- Compute f'(x) and f''(x).
- Find the critical points, the points where f'(x) = 0.
- Use the second derivative test to identify local extrema and/or find the intervals where your function is increasing/decreasing.
- Find the candidates for inflection points, the points where f''(x) = 0.
- Identify inflection points and concavity.
- If possible find the *x*-intercepts, the points where f(x) = 0. Place these points on your graph.
- Find horizontal asymptotes.
- Determine an interval that shows all relevant behavior.

At this point you should be able to sketch the plot of your function. $\,$

Let's see this procedure in action. We'll sketch the plot of $2x^3 - 3x^2 - 12x$. Following our guidelines above, we start by computing f(0) = 0. Hence we see that the *y*-intercept is (0,0). Place this point on your plot, see Figure 3.8.

Figure 3.8: We start by placing the point (0,0).

Note that there are no vertical asymptotes as our function is defined for all real numbers. Now compute f'(x) and f''(x),

$$f'(x) = 6x^2 - 6x - 12$$
 and $f''(x) = 12x - 6$.

The critical points are where f'(x) = 0, thus we need to solve $6x^2 - 6x - 12 = 0$ for x. Write

$$6x^{2} - 6x - 12 = 0$$
$$x^{2} - x - 2 = 0$$
$$(x - 2)(x + 1) = 0.$$

Thus

$$f'(2) = 0$$
 and $f'(-1) = 0$.

Mark the critical points x = 2 and x = -1 on your plot, see Figure 3.9.

Check the second derivative evaluated at the critical points. In this case,

$$f''(-1) = -18$$
 and $f''(2) = 18$,

hence x = -1, corresponding to the point (-1, 7) is a local maximum and x = 2, corresponding to the point (2, -20) is local minimum of f(x). Moreover, this tells us that our function is increasing on [-2, -1), decreasing on (-1, 2), and increasing on (2, 4]. Identify this on your plot, see Figure 3.10.

The candidates for the inflection points are where f''(x) = 0, thus we need to solve 12x - 6 = 0 for x. Write

$$12x - 6 = 0$$
$$x - 1/2 = 0$$
$$x = 1/2.$$

Thus f''(1/2) = 0. Checking points, f''(0) = -6 and f''(1) = 6. Hence x = 1/2 is an inflection point, with f(x) concave down to the left of x = 1/2 and f(x) concave up to the right of x = 1/2. We can add this information to our plot, see Figure 3.11.

Figure 3.9: Now we add the critical points x = -1 and x = 2.

Figure 3.10: We have identified the local extrema of f(x) and where this function is increasing and decreasing.

Finally, in this case, $f(x) = 2x^3 - 3x^2 - 12x$, we can find the *x*-intercepts. Write

$$2x^3 - 3x^2 - 12x = 0$$

$$x(2x^2 - 3x - 12) = 0.$$

Using the quadratic formula, we see that the *x*-intercepts of f(x) are

$$x = 0$$
, $x = \frac{3 - \sqrt{105}}{4}$, $x = \frac{3 + \sqrt{105}}{4}$.

Since all of this behavior as described above occurs on the interval [-2, 4], we now have a complete sketch of f(x) on this interval, see the figure below.

Figure 3.11: We identify the inflection point and note that the curve is concave down when x < 1/2 and concave up when x > 1/2.

Exercises for Section 3.5

Sketch the curves via the procedure outlined in this section. Clearly identify any interesting features, including local maximum and minimum points, inflection points, asymptotes, and intercepts.

(1)
$$y = x^5 - x$$

(5)
$$y = x^3 - 3x^2 - 9x + 5$$

(2)
$$y = x(x^2 + 1)$$

(6)
$$y = x^5 - 5x^4 + 5x^3$$

(3)
$$y = 2\sqrt{x} - x$$

(7)
$$y = x + 1/x$$

(4)
$$y = x^3 + 6x^2 + 9x$$

(8)
$$y = x^2 + 1/x$$

4 The Product Rule and Quotient Rule

4.1 The Product Rule

Consider the product of two simple functions, say

$$f(x) \cdot g(x)$$

where $f(x) = x^2 + 1$ and $g(x) = x^3 - 3x$. An obvious guess for the derivative of f(x)g(x) is the product of the derivatives:

$$f'(x)g'(x) = (2x)(3x^2 - 3)$$
$$= 6x^3 - 6x.$$

Is this guess correct? We can check by rewriting f(x) and g(x) and doing the calculation in a way that is known to work. Write

$$f(x)g(x) = (x^{2} + 1)(x^{3} - 3x)$$
$$= x^{5} - 3x^{3} + x^{3} - 3x$$
$$= x^{5} - 2x^{3} - 3x.$$

Hence

$$\frac{d}{dx}f(x)g(x) = 5x^4 - 6x^2 - 3,$$

so we see that

$$\frac{d}{dx}f(x)g(x) \neq f'(x)g'(x).$$

So the derivative of f(x)g(x) is **not** as simple as f'(x)g'(x). Never fear, we have a rule for exactly this situation.

Theorem 4.1.1 (The Product Rule) If f(x) and g(x) are differentiable, then

$$\frac{d}{dx}f(x)g(x) = f(x)g'(x) + f'(x)g(x).$$

Proof From the limit definition of the derivative, write

$$\frac{d}{dx}(f(x)g(x)) = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

Now we use the exact same trick we used in the proof of Theorem 1.2.2, we add 0 = -f(x+h)g(x) + f(x+h)g(x):

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x+h)g(x) + f(x+h)g(x) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x+h)g(x)}{h} + \lim_{h \to 0} \frac{f(x+h)g(x) - f(x)g(x)}{h}.$$

Now since both f(x) and g(x) are differentiable, they are continuous, see Theorem 2.1.3. Hence

$$= \lim_{h \to 0} f(x+h) \frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} g(x)$$

$$= \lim_{h \to 0} f(x+h) \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \lim_{h \to 0} g(x)$$

$$= f(x)g'(x) + f'(x)g(x).$$

Let's return to the example with which we started.

Example 4.1.2 Let
$$f(x) = (x^2 + 1)$$
 and $g(x) = (x^3 - 3x)$. Compute:

$$\frac{d}{dx}f(x)g(x).$$

Figure 4.1: A geometric interpretation of the product rule. Since every point on f(x)g(x) is the product of the corresponding points on f(x) and g(x), increasing a by a "small amount" h, increases f(a)g(a) by the sum of f(a)g'(a)h and f'(a)hg(a). Hence,

$$\frac{\Delta y}{\Delta x} \approx \frac{f(a)g'(a)h + f'(a)g(a)h}{h} = f(a)g'(a) + f'(a)g(a).$$

Solution Write

$$\frac{d}{dx}f(x)g(x) = f(x)g'(x) + f'(x)g(x)$$
$$= (x^2 + 1)(3x^2 - 3) + 2x(x^3 - 3x).$$

We could stop here—but we should show that expanding this out recovers our previous result. Write

$$(x^{2} + 1)(3x^{2} - 3) + 2x(x^{3} - 3x) = 3x^{4} - 3x^{2} + 3x^{2} - 3 + 2x^{4} - 6x^{2}$$
$$= 5x^{4} - 6x^{2} - 3,$$

which is precisely what we obtained before.

Exercises for Section 4.1

Compute:

(1) $\frac{d}{dx}x^3(x^3 - 5x + 10)$ (4) $\frac{d}{dx}e^{3x}$

(2) $\frac{d}{dx}(x^2+5x-3)(x^5-6x^3+3x^2-7x+1)$ (5) $\frac{d}{dx}3x^2e^{4x}$

(3) $\frac{d}{dx}e^{2x} = \frac{d}{dx}(e^x \cdot e^x) \quad (6) \quad \frac{d}{dx}\frac{3e^x}{x^{16}} \quad (6)$

(7) Use the product rule to compute the derivative of $f(x) = (2x - 3)^2$ with respect to x. Sketch the function. Find an equation of the tangent line to the curve at x = 2. Sketch the tangent line at x = 2.

Use the following table to compute solve the next 4 problems. Note $\frac{d}{dx}f(x)\Big|_{x=a}$ is the derivative of f(x) evaluated at x=a.

(8) $\frac{d}{dx}f(x)g(x)\Big|_{x=2}$ (10) $\frac{d}{dx}xg(x)\Big|_{x=4}$

(9) $\frac{d}{dx}xf(x)\Big|_{x=3}$ (11) $\frac{d}{dx}f(x)g(x)\Big|_{x=1}$

(12) Suppose that f(x), g(x), and h(x) are differentiable functions. Show that

 $\frac{d}{dx}f(x) \cdot g(x) \cdot h(x) = f(x)g(x)h'(x) + f(x)g'(x)h(x) + f'(x)g(x)h(x).$

4.2 The Quotient Rule

We'd like to have a formula to compute

$$\frac{d}{dx}\frac{f(x)}{g(x)}$$

if we already know f'(x) and g'(x). Instead of attacking this problem head-on, let's notice that we've already done part of the problem: $f(x)/g(x) = f(x) \cdot (1/g(x))$, that is, this is really a product, and we can compute the derivative if we know f'(x) and (1/g(x))'. This brings us to our next derivative rule.

Theorem 4.2.1 (The Quotient Rule) If f(x) and g(x) are differentiable, then

$$\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}.$$

Proof First note that if we knew how to compute

$$\frac{d}{dx}\frac{1}{g(x)}$$

then we could use the product rule to complete our proof. Write

$$\frac{d}{dx} \frac{1}{g(x)} = \lim_{h \to 0} \frac{\frac{1}{g(x+h)} - \frac{1}{g(x)}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{g(x) - g(x+h)}{g(x+h)g(x)}}{h}$$

$$= \lim_{h \to 0} \frac{g(x) - g(x+h)}{g(x+h)g(x)h}$$

$$= \lim_{h \to 0} -\frac{g(x+h) - g(x)}{h} \frac{1}{g(x+h)g(x)}$$

$$= -\frac{g'(x)}{g(x)^2}.$$

Now we can put this together with the product rule:

$$\frac{d}{dx}\frac{f(x)}{g(x)} = f(x)\frac{-g'(x)}{g(x)^2} + f'(x)\frac{1}{g(x)}$$

$$= \frac{-f(x)g'(x) + f'(x)g(x)}{g(x)^2}$$

$$= \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}.$$

Example 4.2.2 Compute:

$$\frac{d}{dx}\frac{x^2+1}{x^3-3x}.$$

Solution Write

$$\frac{d}{dx}\frac{x^2+1}{x^3-3x} = \frac{2x(x^3-3x)-(x^2+1)(3x^2-3)}{(x^3-3x)^2}$$
$$= \frac{-x^4-6x^2+3}{(x^3-3x)^2}.$$

It is often possible to calculate derivatives in more than one way, as we have already seen. Since every quotient can be written as a product, it is always possible to use the product rule to compute the derivative, though it is not always simpler.

Example 4.2.3 Compute

$$\frac{d}{dx} \frac{625 - x^2}{\sqrt{x}}$$

in two ways. First using the quotient rule and then using the product rule.

Solution First, we'll compute the derivative using the quotient rule. Write

$$\frac{d}{dx}\frac{625 - x^2}{\sqrt{x}} = \frac{(-2x)\left(\sqrt{x}\right) - (625 - x^2)\left(\frac{1}{2}x^{-1/2}\right)}{x}.$$

Second, we'll compute the derivative using the product rule:

$$\frac{d}{dx} \frac{625 - x^2}{\sqrt{x}} = \frac{d}{dx} \left(625 - x^2 \right) x^{-1/2}$$
$$= \left(625 - x^2 \right) \left(\frac{-x^{-3/2}}{2} \right) + (-2x) \left(x^{-1/2} \right).$$

With a bit of algebra, both of these simplify to

$$-\frac{3x^2+625}{2x^{3/2}}.$$

Exercises for Section 4.2

Find the derivatives of the following functions using the quotient rule.

(1)
$$\frac{x^3}{x^3 - 5x + 10}$$

$$(3) \quad \frac{e^x - 4}{2x} \quad \blacksquare \blacksquare$$

(2)
$$\frac{x^2 + 5x - 3}{x^5 - 6x^3 + 3x^2 - 7x + 1}$$
 (4)
$$\frac{2 - x - \sqrt{x}}{x + 2}$$

$$(4) \quad \frac{2-x-\sqrt{x}}{x+2} \quad \blacksquare$$

- (5) Find an equation for the tangent line to $f(x) = (x^2 4)/(5 x)$ at x = 3.
- (6) Find an equation for the tangent line to $f(x) = (x-2)/(x^3+4x-1)$ at x=1.
- (7) The curve $y = 1/(1 + x^2)$ is an example of a class of curves each of which is called a witch of Agnesi. Find the tangent line to the curve at x = 5. Note, the word witch here is due to a mistranslation.

Use the following table to compute solve the next 4 problems. Note $\frac{d}{dx}f(x)$ is the derivative of f(x) evaluated at x = a.

(8)
$$\frac{d}{dx} \frac{f(x)}{g(x)} \Big|_{x=2}$$

(10)
$$\frac{d}{dx} \frac{xf(x)}{g(x)} \bigg|_{x=4}$$

(9)
$$\frac{d}{dx} \frac{f(x)}{x} \Big|_{x=3}$$

(11)
$$\frac{d}{dx} \frac{f(x)g(x)}{x} \Big|_{x=1}$$

(12) If
$$f'(4) = 5$$
, $g'(4) = 12$, $f(4)g(4) = 2$, and $g(4) = 6$, compute $f(4)$ and $\frac{d}{dx} \frac{f(x)}{g(x)}$ at 4.

5 The Chain Rule

So far we have seen how to compute the derivative of a function built up from other functions by addition, subtraction, multiplication and division. There is another very important way that we combine functions: composition. The *chain rule* allows us to deal with this case.

5.1 The Chain Rule

Consider

$$h(x) = (1 + 2x)^5.$$

While there are several different ways to differentiate this function, if we let $f(x) = x^5$ and g(x) = 1 + 2x, then we can express h(x) = f(g(x)). The question is, can we compute the derivative of a composition of functions using the derivatives of the constituents f(x) and g(x)? To do so, we need the *chain rule*.

Theorem 5.1.1 (Chain Rule) If f(x) and g(x) are differentiable, then

$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x).$$

Proof Let g_0 be some x-value and consider the following:

$$f'(g_0) = \lim_{h \to 0} \frac{f(g_0 + h) - f(g_0)}{h}.$$

Figure 5.1: A geometric interpretation of the chain rule. Increasing a by a "small amount" h, increases f(g(a)) by f'(g(a))g'(a)h. Hence,

$$\frac{\Delta y}{\Delta x} \approx \frac{f'(g(a))g'(a)h}{h} = f'(g(a))g'(a).$$

Set $h = g - g_0$ and we have

$$f'(g_0) = \lim_{g \to g_0} \frac{f(g) - f(g_0)}{g - g_0}.$$
 (5.1)

At this point, we might like to set g = g(x+h) and $g_0 = g(x)$; however, we cannot as we cannot be sure that

$$g(x+h) - g(x) \neq 0$$
 when $h \neq 0$.

To overcome this difficulty, let E(g) be the "error term" that gives the difference between the slope of the secant line from $f(g_0)$ to f(g) and $f'(g_0)$,

$$E(g) = \frac{f(g) - f(g_0)}{g - g_0} - f'(g_0).$$

In particular, $E(g)(g - g_0)$ is the difference between f(g) and the tangent line of f(x) at x = g, see the figure below:

Hence we see that

$$f(g) - f(g_0) = (f'(g_0) + E(g))(g - g_0), \tag{5.2}$$

and so

$$\frac{f(g) - f(g_0)}{g - g_0} = f'(g_0) + E(g).$$

Combining this with Equation 5.1, we have that

$$f'(g_0) = \lim_{g \to g_0} \frac{f(g) - f(g_0)}{g - g_0}$$
$$= \lim_{g \to g_0} f'(g_0) + E(g)$$
$$= f'(g_0) + \lim_{g \to g_0} E(g),$$

and hence it follows that $\lim_{g\to g_0} E(g) = 0$. At this point, we may return to the "well-worn path." Starting with Equation 5.2, divide both sides by h and set g = g(x+h) and $g_0 = g(x)$

$$\frac{f(g(x+h)) - f(g(x))}{h} = (f'(g(x)) + E(g(x))) \frac{g(x+h) - g(x)}{h}.$$

Taking the limit as h approaches 0, we see

$$\lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{h} = \lim_{h \to 0} \left(f'(g(x)) + E(g(x)) \right) \frac{g(x+h) - g(x)}{h}$$
$$= \lim_{h \to 0} \left(f'(g(x)) + E(g(x)) \right) \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$
$$= f'(g(x))g'(x).$$

Hence,
$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$$
.

It will take a bit of practice to make the use of the chain rule come naturally—it is more complicated than the earlier differentiation rules we have seen. Let's return to our motivating example.

Example 5.1.2 Compute:

$$\frac{d}{dx}(1+2x)^5$$

Solution Set $f(x) = x^5$ and g(x) = 1 + 2x, now

$$f'(x) = 5x^4$$
 and $g'(x) = 2$.

Hence

$$\frac{d}{dx}(1+2x)^5 = \frac{d}{dx}f(g(x))$$
= $f'(g(x))g'(x)$
= $5(1+2x)^4 \cdot 2$
= $10(1+2x)^4$.

Let's see a more complicated chain of compositions.

Example 5.1.3 Compute:

$$\frac{d}{dx}\sqrt{1+\sqrt{x}}$$

Solution Set $f(x) = \sqrt{x}$ and g(x) = 1 + x. Hence,

$$\sqrt{1+\sqrt{x}} = f(g(f(x))) \qquad \text{and} \qquad \frac{d}{dx} f(g(f(x))) = f'(g(f(x)))g'(f(x))f'(x).$$

Since

$$f'(x) = \frac{1}{2\sqrt{x}}$$
 and $g'(x) = 1$

We have that

$$\frac{d}{dx}\sqrt{1+\sqrt{x}} = \frac{1}{2\sqrt{1+\sqrt{x}}} \cdot 1 \cdot \frac{1}{2\sqrt{x}}.$$

Using the chain rule, the power rule, and the product rule it is possible to avoid using the quotient rule entirely.

Example 5.1.4 Compute:

$$\frac{d}{dx}\frac{x^3}{x^2+1}$$

Solution Rewriting this as

$$\frac{d}{dx}x^3(x^2+1)^{-1},$$

$$set f(x) = x^{-1} \ and \ g(x) = x^2 + 1. \ Now$$

$$x^{3}(x^{2}+1)^{-1} = x^{3}f(g(x)) \quad \text{and} \quad \frac{d}{dx}x^{3}f(g(x)) = 3x^{2}f(g(x)) + x^{3}f'(g(x))g'(x).$$
Since $f'(x) = \frac{-1}{x^{2}}$ and $g'(x) = 2x$, write

Since
$$f'(x) = \frac{-1}{x^2}$$
 and $g'(x) = 2x$, write

$$\frac{d}{dx}\frac{x^3}{x^2+1} = \frac{3x^2}{x^2+1} - \frac{2x^4}{(x^2+1)^2}.$$

Exercises for Section 5.1

Compute the derivatives of the functions. For extra practice, and to check your answers, do some of these in more than one way if possible.

(1)
$$x^4 - 3x^3 + (1/2)x^2 + 7x - \pi$$

$$(19) (x^2 + 5)^3$$

(2)
$$x^3 - 2x^2 + 4\sqrt{x}$$

$$(20) (6-2x^2)^3$$

(3)
$$(x^2+1)^3$$

(21)
$$(1-4x^3)^{-2}$$

(4)
$$x\sqrt{169-x^2}$$

(22)
$$5(x+1-1/x)$$

(5)
$$(x^2 - 4x + 5)\sqrt{25 - x^2}$$

$$(23) \ 4(2x^2-x+3)^{-2}$$

(6)
$$\sqrt{r^2 - x^2}$$
, r is a constant

(7)
$$\sqrt{1+x^4}$$

(24)
$$\frac{1}{1+1/x}$$

$$(8) \quad \frac{1}{\sqrt{5-\sqrt{x}}}.$$

$$(25) \ \frac{-3}{4x^2 - 2x + 1}$$

(9)
$$(1+3x)^2$$

(26)
$$(x^2 + 1)(5 - 2x)/2$$

(10)
$$\frac{(x^2+x+1)}{(1-x)}$$

$$(27) (3x^2 + 1)(2x - 4)^3$$

$$(11) \quad \frac{\sqrt{25-x^2}}{x} \quad \blacksquare$$

$$(28) \quad \frac{x+1}{x-1} \quad \blacksquare \quad \blacksquare$$

(12)
$$\sqrt{\frac{169}{x} - x}$$

(29)
$$\frac{x^2 - 1}{x^2 + 1}$$

(13)
$$\sqrt{x^3 - x^2 - (1/x)}$$

(30)
$$\frac{(x-1)(x-2)}{x-3}$$

$$(14) \ 100/(100-x^2)^{3/2}$$

(31)
$$\frac{2x^{-1} - x^{-2}}{3x^{-1} - 4x^{-2}}$$

(15)
$$\sqrt[3]{x + x^3}$$

(32)
$$3(x^2+1)(2x^2-1)(2x+3)$$

(16)
$$\sqrt{(x^2+1)^2+\sqrt{1+(x^2+1)^2}}$$

(33)
$$\frac{1}{(2x+1)(x-3)}$$

$$(17) (x+8)^5$$

(34)
$$((2x+1)^{-1}+3)^{-1}$$

(18)
$$(4-x)^3$$

(35)
$$(2x+1)^3(x^2+1)^2$$

- (36) Find an equation for the tangent line to $f(x) = (x-2)^{1/3}/(x^3+4x-1)^2$ at x=1.
- (37) Find an equation for the tangent line to $y = 9x^{-2}$ at (3, 1).
- (38) Find an equation for the tangent line to $(x^2 4x + 5)\sqrt{25 x^2}$ at (3, 8).
- (39) Find an equation for the tangent line to $\frac{(x^2+x+1)}{(1-x)}$ at (2,-7).
- (40) Find an equation for the tangent line to $\sqrt{(x^2+1)^2+\sqrt{1+(x^2+1)^2}}$ at $(1, \sqrt{4+\sqrt{5}})$.

5.2 Implicit Differentiation

The functions we've been dealing with so far have been *explicit functions*, meaning that the dependent variable is written in terms of the independent variable. For example:

$$y = 3x^2 - 2x + 1$$
, $y = e^{3x}$, $y = \frac{x - 2}{x^2 - 3x + 2}$.

However, there are another type of functions, called *implicit functions*. In this case, the dependent variable is not stated explicitly in terms of the independent variable. For example:

$$x^{2} + y^{2} = 4$$
, $x^{3} + y^{3} = 9xy$, $x^{4} + 3x^{2} = x^{2/3} + y^{2/3} = 1$.

Your inclination might be simply to solve each of these for y and go merrily on your way. However this can be difficult and it may require two *branches*, for example to explicitly plot $x^2 + y^2 = 4$, one needs both $y = \sqrt{4 - x^2}$ and $y = -\sqrt{4 - x^2}$. Moreover, it may not even be possible to solve for y. To deal with such situations, we use *implicit differentiation*. Let's see an illustrative example:

Example 5.2.1 Consider the curve defined by

$$x^3 + y^3 = 9xy.$$

- (a) Compute $\frac{dy}{dx}$.
- (b) Find the slope of the tangent line at (4, 2).

Solution Starting with

$$x^3 + y^3 = 9xy,$$

we apply the differential operator $\frac{d}{dx}$ to both sides of the equation to obtain

$$\frac{d}{dx}\left(x^3+y^3\right) = \frac{d}{dx}9xy.$$

Applying the sum rule we see

$$\frac{d}{dx}x^3 + \frac{d}{dx}y^3 = \frac{d}{dx}9xy.$$

Figure 5.2: A plot of $x^3 + y^3 = 9xy$. While this is not a function of y in terms of x, the equation still defines a relation between x and y.

Let's examine each of these terms in turn. To start

$$\frac{d}{dx}x^3 = 3x^2.$$

On the other hand $\frac{d}{dx}y^3$ is somewhat different. Here you imagine that y=y(x), and hence by the chain rule

$$\frac{d}{dx}y^3 = \frac{d}{dx}(y(x))^3$$
$$= 3(y(x))^2 \cdot y'(x)$$
$$= 3y^2 \frac{dy}{dx}.$$

Considering the final term $\frac{d}{dx}9xy$, we again imagine that y=y(x). Hence

$$\frac{d}{dx}9xy = 9\frac{d}{dx}x \cdot y(x)$$
$$= 9(x \cdot y'(x) + y(x))$$
$$= 9x\frac{dy}{dx} + 9y.$$

Putting this all together we are left with the equation

$$3x^2 + 3y^2 \frac{dy}{dx} = 9x \frac{dy}{dx} + 9y.$$

At this point, we solve for $\frac{dy}{dx}$. Write

$$3x^{2} + 3y^{2} \frac{dy}{dx} = 9x \frac{dy}{dx} + 9y$$
$$3y^{2} \frac{dy}{dx} - 9x \frac{dy}{dx} = 9y - 3x^{2}$$
$$\frac{dy}{dx} (3y^{2} - 9x) = 9y - 3x^{2}$$
$$\frac{dy}{dx} = \frac{9y - 3x^{2}}{3y^{2} - 9x} = \frac{3y - x^{2}}{y^{2} - 3x}.$$

For the second part of the problem, we simply plug x=4 and y=2 into the formula above, hence the slope of the tangent line at (4,2) is $\frac{5}{4}$, see Figure 5.3.

Figure 5.3: A plot of $x^3 + y^3 = 9xy$ along with the tangent line at (4, 2).

You might think that the step in which we solve for $\frac{dy}{dx}$ could sometimes be difficult—after all, we're using implicit differentiation here instead of the more difficult task of solving the equation $x^3 + y^3 = 9xy$ for y, so maybe there are functions where after taking the derivative we obtain something where it is hard to solve for $\frac{dy}{dx}$. In fact, this never happens. All occurrences $\frac{dy}{dx}$ arise from applying the chain rule, and whenever the chain rule is used it deposits a single $\frac{dy}{dx}$ multiplied by some other expression. Hence our expression is linear in $\frac{dy}{dx}$, it will always be possible to group the terms containing $\frac{dy}{dx}$ together and factor out the $\frac{dy}{dx}$, just as in the previous example.

The Derivative of Inverse Functions

Geometrically, there is a close relationship between the plots of e^x and $\ln(x)$, they are reflections of each other over the line y=x, see Figure 5.4. One may suspect that we can use the fact that $\frac{d}{dx}e^x=e^x$, to deduce the derivative of $\ln(x)$. We will use implicit differentiation to exploit this relationship computationally.

Theorem 5.2.2 (The Derivative of the Natural Logrithm)

$$\frac{d}{dx}\ln(x) = \frac{1}{x}.$$

Proof Recall

$$ln(x) = y \Leftrightarrow e^y = x$$

Figure 5.4: A plot of e^x and $\ln(x)$. Since they are inverse functions, they are reflections of each other across the line y = x.

Hence

$$e^{y} = x$$

$$\frac{d}{dx}e^{y} = \frac{d}{dx}x$$
Differentiate both sides.
$$e^{y}\frac{dy}{dx} = 1$$
Implicit differentiation.
$$\frac{dy}{dx} = \frac{1}{e^{y}} = \frac{1}{x}.$$
Since $y = \ln(x)$, $\frac{d}{dx}\ln(x) = \frac{1}{x}$.

There is one catch to the proof given above. To write $\frac{d}{dx}(e^y) = e^y \frac{dy}{dx}$ we need to know that the function y has a derivative. All we have shown is that if it has a derivative then that derivative must be 1/x. The Inverse Function Theorem guarantees this.

Theorem 5.2.3 (Inverse Function Theorem) If f(x) is a differentiable function, and f'(x) is continuous, and $f'(\alpha) \neq 0$, then

- (a) $f^{-1}(y)$ is defined for y near f(a),
- (b) $f^{-1}(y)$ is differentiable near f(a), (c) $\frac{d}{dy}f^{-1}(y)$ is continuous near f(a), and (d) $\frac{d}{dy}f^{-1}(y) = \frac{1}{f'(f^{-1}(y))}$.

Exercises for Section 5.2

Compute $\frac{dy}{dx}$:

(1)
$$x^2 + y^2 = 4$$

(6)
$$\sqrt{x} + \sqrt{y} = 9$$

(2)
$$y^2 = 1 + x^2$$

(3)
$$x^2 + xy + y^2 = 7$$

(7)
$$xy^{3/2} + 4 = 2x + y$$

(4)
$$x^3 + xy^2 = y^3 + yx^2$$

(5)
$$x^2y - y^3 = 6$$

(8)
$$\frac{1}{x} + \frac{1}{y} = 7$$

- (9) A hyperbola passing through (8,6) consists of all points whose distance from the origin is a constant more than its distance from the point (5,2). Find the slope of the tangent line to the hyperbola at (8,6).
- (10) The graph of the equation $x^2 xy + y^2 = 9$ is an ellipse. Find the lines tangent to this curve at the two points where it intersects the *x*-axis. Show that these lines are parallel.
- (11) Repeat the previous problem for the points at which the ellipse intersects the y-axis.
- (12) Find the points on the ellipse from the previous two problems where the slope is horizontal and where it is vertical.
- (13) Find an equation for the tangent line to $x^4 = y^2 + x^2$ at (2, $\sqrt{12}$). This curve is the *kampyle of Eudoxus*.
- (14) Find an equation for the tangent line to $x^{2/3} + y^{2/3} = a^{2/3}$ at a point (x_1, y_1) on the curve, with $x_1 \neq 0$ and $y_1 \neq 0$. This curve is an *astroid*.
- (15) Find an equation for the tangent line to $(x^2 + y^2)^2 = x^2 y^2$ at a point (x_1, y_1) on the curve, with $x_1 \neq 0, -1, 1$. This curve is a *lemniscate*.

5.3 Logarithmic Differentiation

Logarithms were originally developed as a computational tool. The key fact that made this possible is that

$$\log_b(xy) = \log_b(x) + \log_b(y).$$

While this may seem quite abstract, before the days of calculators and computers, this was critical knowledge for anyone in a computational discipline. Suppose you wanted to compute

$$138 \cdot 23.4$$

You would start by writing both in scientific notation

$$(1.38 \cdot 10^2) \cdot (2.34 \cdot 10^1)$$
.

Next you would use a log-table, which gives $\log_{10}(N)$ for values of N ranging between 0 and 9. We've reproduced part of such a table below.

Figure 5.5: A plot of $\ln(x)$. Here we see that $\ln(2\cdot 3) = \ln(2) + \ln(3).$

N	0	1	2	3	4	5	6	7	8	9
1.3	0.1139	0.1173	0.1206	0.1239	0.1271	0.1303	0.1335	0.1367	0.1399	0.1430
2.3	0.3617	0.3636	0.3655	0.3674	0.3692	0.3711	0.3729	0.3747	0.3766	0.3784
3.2	0.5052	0.5065	0.5079	0.5092	0.5105	0.5119	0.5132	0.5145	0.5159	0.5172

Figure 5.6: Part of a base-10 logarithm table.

From the table, we see that

$$log_{10}(1.38) \approx 0.1399$$
 and $log_{10}(2.34) \approx 0.3692$

Add these numbers together to get 0.5091. Essentially, we know the following at this point:

Using the table again, we see that $\log_{10}(3.23) \approx 0.5091$. Since we were working in scientific notation, we need to multiply this by 10^3 . Our final answer is

$$3230 \approx 138 \cdot 23.4$$

Since $138 \cdot 23.4 = 3229.2$, this is a good approximation. The moral is:

Logarithms allow us to use addition in place of multiplication.

When taking derivatives, both the product rule and the quotient rule can be cumbersome to use. Logarithms will save the day. A key point is the following

$$\frac{d}{dx}\ln(f(x)) = \frac{1}{f(x)} \cdot f'(x) = \frac{f'(x)}{f(x)}$$

which follows from the chain rule. Let's look at an illustrative example to see how this is actually used.

Example 5.3.1 Compute:

$$\frac{d}{dx} \frac{x^9 e^{4x}}{\sqrt{x^2 + 4}}$$

Solution While we could use the product and quotient rule to solve this problem, it would be tedious. Start by taking the logarithm of the function to be differentiated.

$$\ln\left(\frac{x^9 e^{4x}}{\sqrt{x^2 + 4}}\right) = \ln\left(x^9 e^{4x}\right) - \ln\left(\sqrt{x^2 + 4}\right)$$
$$= \ln\left(x^9\right) + \ln\left(e^{4x}\right) - \ln\left((x^2 + 4)^{1/2}\right)$$
$$= 9\ln(x) + 4x - \frac{1}{2}\ln(x^2 + 4).$$

Setting
$$f(x) = \frac{x^9 e^{4x}}{\sqrt{x^2 + 4}}$$
, we can write

$$\ln(f(x)) = 9\ln(x) + 4x - \frac{1}{2}\ln(x^2 + 4).$$

Recall the properties of logarithms:

- $\log_b(xy) = \log_b(x) + \log_b(y)$
- $\log_b(x/y) = \log_b(x) \log_b(y)$
- $\log_b(x^y) = y \log_b(x)$

Differentiating both sides, we find

$$\frac{f'(x)}{f(x)} = \frac{9}{x} + 4 - \frac{x}{x^2 + 4}.$$

Finally we solve for f'(x), write

$$f'(x) = \left(\frac{9}{x} + 4 - \frac{x}{x^2 + 4}\right) \left(\frac{x^9 e^{4x}}{\sqrt{x^2 + 4}}\right).$$

The process above is called *logarithmic differentiation*. Logarithmic differentiation allows us to compute new derivatives too.

Example 5.3.2 Compute:

$$\frac{d}{dx}x^{x}$$

Solution The function x^x is tricky to differentiate. We cannot use the power rule, as the exponent is not a constant. However, if we set $f(x) = x^x$ we can write

$$\ln(f(x)) = \ln(x^{x})$$
$$= x \ln(x).$$

Differentiating both sides, we find

$$\frac{f'(x)}{f(x)} = x \cdot \frac{1}{x} + \ln(x)$$
$$= 1 + \ln(x).$$

Now we can solve for f'(x),

$$f'(x) = x^x + x^x \ln(x).$$

Finally recall that previously we only proved the power rule, Theorem 2.2.2, for positive exponents. Now we'll use logarithmic differentiation to give a proof for all real-valued exponents. We restate the power rule for convenience sake:

Theorem 5.3.3 (Power Rule) For any real number n,

$$\frac{d}{dx}x^n = nx^{n-1}.$$

Proof We will use logarithmic differentiation. Set $f(x) = x^n$. Write

$$\ln(f(x)) = \ln(x^n)$$
$$= n \ln(x).$$

Now differentiate both sides, and solve for f'(x)

$$\frac{f'(x)}{f(x)} = \frac{n}{x}$$
$$f'(x) = \frac{nf(x)}{x}$$
$$= nx^{n-1}.$$

Thus we see that the power rule holds for all real-valued exponents.

While logarithmic differentiation might seem strange and new at first, with a little practice it will seem much more natural to you.

Exercises for Section 5.3

Use logarithmic differentiation to compute the following:

(1)
$$\frac{d}{dx}(x+1)^3 \sqrt{x^4+5}$$

(6)
$$\frac{d}{dx}x^{(e^x)}$$

$$(2) \quad \frac{d}{dx}x^2e^{5x} \quad \blacksquare \blacksquare$$

$$(7) \ \frac{d}{dx}x^{\pi} + \pi^{x} \quad \blacksquare \blacksquare$$

(3)
$$\frac{d}{dx}x^{\ln(x)}$$

(8)
$$\frac{d}{dx}\left(1+\frac{1}{x}\right)^x$$

$$(4) \ \frac{d}{dx}x^{100x} \ \blacksquare$$

$$(9) \ \frac{d}{dx}(\ln(x))^x \quad \blacksquare$$

$$(5) \quad \frac{d}{dx} \left((3x)^{4x} \right) \quad \blacksquare \quad \bullet$$

(10)
$$\frac{d}{dx}(f(x)g(x)h(x))$$

6 The Derivatives of Trigonometric Functions and their Inverses

6.1 The Derivatives of Trigonometric Functions

Up until this point of the course we have been largely ignoring a large class of functions—those involving sin(x) and cos(x). It is now time to visit our two friends who concern themselves periodically with triangles and circles.

Theorem 6.1.1 (The Derivative of sin(x))

$$\frac{d}{dx}\sin(x) = \cos(x).$$

Proof Using the definition of the derivative, write

$$\frac{d}{dx}\sin(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \sin(h)\cos(x) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \left(\frac{\sin(x)\cos(h) - \sin(x)}{h} + \frac{\sin(h)\cos x}{h}\right)$$

$$= \lim_{h \to 0} \left(\sin(x)\frac{\cos(h) - 1}{h} + \cos(x)\frac{\sin(h)}{h}\right)$$

$$= \sin(x) \cdot 0 + \cos(x) \cdot 1 = \cos x.$$
See Example 1.3.6.

$$\begin{split} \lim_{h \to 0} \frac{\cos(h) - 1}{h} &= \lim_{h \to 0} \left(\frac{\cos(h) - 1}{h} \cdot \frac{\cos(h) + 1}{\cos(h) + 1} \right) \\ &= \lim_{h \to 0} \frac{\cos^2(h) - 1}{h(\cos(h) + 1)} \\ &= \lim_{h \to 0} \frac{-\sin^2(h)}{h(\cos(h) + 1)} \\ &= -\lim_{h \to 0} \left(\frac{\sin(h)}{h} \cdot \frac{\sin(h)}{(\cos(h) + 1)} \right) \\ &= -1 \cdot \frac{0}{2} = 0. \end{split}$$

Consider the following geometric interpretation of the derivative of $\sin(\theta)$.

Here we see that Increasing θ by a "small amount" h, increases $\sin(\theta)$ by $h\cos(\theta)$. Hence,

$$\frac{\Delta y}{\Delta \theta} \approx \frac{h \cos(\theta)}{h} = \cos(\theta).$$

Since the tangent line to the circle is locally a good approximation for the circle and radians measure the arc length of the unit circle, the hypotenuse of the small triangle in the figure is approximately h.

The derivative of a function measures the slope of the plot of a function. If we examine the graphs of the sine and cosine side by side, it should be that the latter appears to accurately describe the slope of the former, and indeed this is true, see Figure 6.1.

Of course, now that we know the derivative of the sine, we can compute derivatives of more complicated functions involving the sine.

Theorem 6.1.2 (The Derivative of cos(x))

$$\frac{d}{dx}\cos(x) = -\sin(x).$$

Proof Recall that

$$\cos(x) = \sin\left(x + \frac{\pi}{2}\right),$$

$$\sin(x) = -\cos\left(x + \frac{\pi}{2}\right).$$

Now:

$$\frac{d}{dx}\cos(x) = \frac{d}{dx}\sin\left(x + \frac{\pi}{2}\right)$$
$$= \cos\left(x + \frac{\pi}{2}\right) \cdot 1$$
$$= -\sin(x).$$

Next we have:

Theorem 6.1.3 (The Derivative of tan(x))

$$\frac{d}{dx}\tan(x) = \sec^2(x).$$

Figure 6.1: Here we see a plot of $f(x) = \sin(x)$ and its derivative $f'(x) = \cos(x)$. One can readily see that $\cos(x)$ is positive when $\sin(x)$ is increasing, and that $\cos(x)$ is negative when $\sin(x)$ is decreasing.

Proof We'll rewrite tan(x) as $\frac{\sin(x)}{\cos(x)}$ and use the quotient rule. Write

$$\frac{d}{dx}\tan(x) = \frac{d}{dx}\frac{\sin(x)}{\cos(x)}$$

$$= \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)}$$

$$= \frac{1}{\cos^2(x)}$$

$$= \sec^2(x).$$

Finally, we have

Theorem 6.1.4 (The Derivative of sec(x))

$$\frac{d}{dx}\sec(x) = \sec(x)\tan(x).$$

Proof We'll rewrite sec(x) as $(cos(x))^{-1}$ and use the power rule and the chain rule. Write

$$\frac{d}{dx}\sec(x) = \frac{d}{dx}(\cos(x))^{-1}$$
$$= -1(\cos(x))^{-2}(-\sin(x))$$
$$= \frac{\sin(x)}{\cos^2(x)}$$
$$= \sec(x)\tan(x).$$

The derivatives of the cotangent and cosecant are similar and left as exercises. Putting this all together, we have:

Theorem 6.1.5 (The Derivatives of Trigonometric Functions)

•
$$\frac{d}{dx}\sin(x) = \cos(x)$$
.

•
$$\frac{d}{dx}\cos(x) = -\sin(x)$$
.

•
$$\frac{d}{dx}\tan(x) = \sec^2(x)$$

•
$$\frac{d}{dx}\sec(x) = \sec(x)\tan(x)$$
.

•
$$\frac{d}{dx}\sin(x) = \cos(x)$$
.
• $\frac{d}{dx}\cos(x) = -\sin(x)$.
• $\frac{d}{dx}\tan(x) = \sec^2(x)$.
• $\frac{d}{dx}\sec(x) = \sec(x)\tan(x)$.
• $\frac{d}{dx}\csc(x) = -\csc(x)\cot(x)$.
• $\frac{d}{dx}\cot(x) = -\csc^2(x)$.

•
$$\frac{d}{dx}\cot(x) = -\csc^2(x)$$

Warning When working with derivatives of trigonometric functions, we suggest you use radians for angle measure. For example, while

$$\sin\left((90^\circ)^2\right) = \sin\left(\left(\frac{\pi}{2}\right)^2\right),\,$$

one must be careful with derivatives as

$$\frac{d}{dx}\sin\left(x^2\right)\Big|_{x=90^\circ} \neq \underbrace{2\cdot 90\cdot \cos(90^2)}_{\text{incorrect}}$$

Alternatively, one could think of x° as meaning $\frac{x \cdot \pi}{180}$, as then $90^{\circ} = \frac{90 \cdot \pi}{180} = \frac{\pi}{2}$. In this case

$$2 \cdot 90^{\circ} \cdot \cos((90^{\circ})^2) = 2 \cdot \frac{\pi}{2} \cdot \cos\left(\left(\frac{\pi}{2}\right)^2\right).$$

Exercises for Section 6.1

Find the derivatives of the following functions.

(1)
$$\sin^2(\sqrt{x})$$

(8)
$$\sqrt{x \tan(x)}$$

(2)
$$\sqrt{x}\sin(x)$$

(9)
$$\tan(x)/(1 + \sin(x))$$

(3)
$$\frac{1}{\sin(x)}$$

(10)
$$\cot(x)$$

$$(4) \quad \frac{x^2 + x}{\sin(x)} \quad \blacksquare$$

(11)
$$\csc(x)$$

(5)
$$\sqrt{1 - \sin^2(x)}$$

(12)
$$x^3 \sin(23x^2)$$

(6)
$$\sin(x)\cos(x)$$

(13)
$$\sin^2(x) + \cos^2(x)$$

(7)
$$\sin(\cos(x))$$

(14)
$$\sin(\cos(6x))$$

(15) Compute
$$\frac{d}{d\theta} \frac{\sec(\theta)}{1 + \sec(\theta)}$$
.

(16) Compute
$$\frac{d}{dt}t^5\cos(6t)$$
.

(17) Compute
$$\frac{d}{dt} \frac{t^3 \sin(3t)}{\cos(2t)}$$
.

- (18) Find all points on the graph of $f(x) = \sin^2(x)$ at which the tangent line is horizontal.
- (19) Find all points on the graph of $f(x) = 2\sin(x) \sin^2(x)$ at which the tangent line is horizontal.
- (20) Find an equation for the tangent line to $\sin^2(x)$ at $x = \pi/3$.
- (21) Find an equation for the tangent line to $\sec^2(x)$ at $x = \pi/3$.
- (22) Find an equation for the tangent line to $\cos^2(x) \sin^2(4x)$ at $x = \pi/6$.
- (23) Find the points on the curve $y = x + 2\cos(x)$ that have a horizontal tangent line.

6.2 Inverse Trigonometric Functions

The trigonometric functions frequently arise in problems, and often we are interested in finding specific angles, say θ such that

$$\sin(\theta) = .7$$

Hence we want to be able to invert functions like $sin(\theta)$ and $cos(\theta)$.

However, since these functions are not one-to-one, meaning there are are infinitely many angles with $\sin(\vartheta)=.7$, it is impossible to find a true inverse function for $\sin(\vartheta)$. Nevertheless, it is useful to have something like an inverse to the sine, however imperfect. The usual approach is to pick out some collection of angles that produce all possible values of the sine exactly once. If we "discard" all other angles, the resulting function has a proper inverse.

In a similar fashion, we need to restrict cosine to be able to take an inverse.

Figure 6.2: The function $\sin(\theta)$ takes on all values between -1 and 1 exactly once on the interval $[-\pi/2, \pi/2]$. If we restrict $\sin(\theta)$ to this interval, then this restricted function has an inverse.

Figure 6.3: The function $\cos(\theta)$ takes on all values between -1 and 1 exactly once on the interval $[0,\pi]$. If we restrict $\cos(\theta)$ to this interval, then this restricted function has an inverse.

By examining both sine and cosine on restricted domains, we can now produce functions arcsine and arccosine:

Here we see a plot of $\arcsin(y)$, the inverse function of $\sin(\theta)$ when it is restricted to the interval $[-\pi/2, \pi/2]$.

Here we see a plot of arccos(y), the inverse function of $cos(\theta)$ when it is restricted to the interval $[0, \pi]$.

Recall that a function and its inverse undo each other in either order, for example,

$$\sqrt[3]{x^3} = x$$
 and $(\sqrt[3]{x})^3 = x$.

However, since arcsine is the inverse of sine restricted to the interval $[-\pi/2, \pi/2]$, this does not work with sine and arcsine, for example

$$\arcsin(\sin(\pi)) = 0.$$

Moreover, there is a similar situation for cosine and arccosine as

$$\arccos(\cos(2\pi)) = 0.$$

Once you get a feel for how arcsin(y) and arccos(y) behave, let's examine tangent.

Compare this with the fact that while $(\sqrt{x})^2 = x$, we have that $\sqrt{x^2} = |x|$.

Again, only working on a restricted domain of tangent, we can produce an inverse function, arctangent.

Figure 6.4: The function $\tan(\theta)$ takes on all values in \mathbb{R} exactly once on the open interval $(-\pi/2,\pi/2)$. If we restrict $\tan(\theta)$ to this interval, then this restricted function has an inverse.

We leave it to you, the reader, to investigate the functions arcsecant, arccosecant, and arccotangent.

Figure 6.5: Here we see a plot of $\arctan(y)$, the inverse function of $\tan(\theta)$ when it is restricted to the interval $(-\pi/2, \pi/2)$.

The Derivatives of Inverse Trigonometric Functions

What is the derivative of the arcsine? Since this is an inverse function, we can find its derivative by using implicit differentiation and the Inverse Function Theorem, Theorem 5.2.3.

Theorem 6.2.1 (The Derivative of arcsin(y))

$$\frac{d}{dy}\arcsin(y) = \frac{1}{\sqrt{1 - y^2}}.$$

Proof To start, note that the Inverse Function Theorem, Theorem 5.2.3 assures us that this derivative actually exists. Recall

$$\arcsin(y) = \theta \implies \sin(\theta) = y.$$

Hence

$$\sin(\vartheta) = y$$

$$\frac{d}{dy}\sin(\vartheta) = \frac{d}{dy}y$$

$$\cos(\vartheta)\frac{d\vartheta}{dy} = 1$$

$$\frac{d\vartheta}{dy} = \frac{1}{\cos(\vartheta)}.$$

At this point, we would like cos(9) written in terms of y. Since

$$\cos^2(\theta) + \sin^2(\theta) = 1$$

and $sin(\theta) = y$, we may write

$$\cos^{2}(\theta) + y^{2} = 1$$
$$\cos^{2}(\theta) = 1 - y^{2}$$
$$\cos(\theta) = \pm \sqrt{1 - y^{2}}.$$

Since $\theta = \arcsin(y)$ we know that $-\pi/2 \le \theta \le \pi/2$, and the cosine of an angle in this interval is always positive. Thus $\cos(\theta) = \sqrt{1 - y^2}$ and

$$\frac{d}{dy}\arcsin(y) = \frac{1}{\sqrt{1 - y^2}}.$$

We can do something similar with arccosine.

Theorem 6.2.2 (The Derivative of arccos(y))

$$\frac{d}{dy}\arccos(y) = \frac{-1}{\sqrt{1 - y^2}}.$$

Proof To start, note that the Inverse Function Theorem, Theorem 5.2.3 assures us that this derivative actually exists. Recall

$$arccos(y) = \theta \implies cos(\theta) = y.$$

Hence

$$\cos(\vartheta) = y$$

$$\frac{d}{dy}\cos(\vartheta) = \frac{d}{dy}y$$

$$-\sin(\vartheta)\frac{d\vartheta}{dy} = 1$$

$$\frac{d\vartheta}{dy} = \frac{-1}{\sin(\vartheta)}.$$

At this point, we would like sin(9) written in terms of y. Since

$$\cos^2(\theta) + \sin^2(\theta) = 1$$

and $cos(\theta) = y$, we may write

$$y^{2} + \sin^{2}(\theta) = 1$$

$$\sin^{2}(\theta) = 1 - y^{2}$$

$$\sin(\theta) = \pm \sqrt{1 - y^{2}}.$$

Since $\theta = \arccos(y)$ we know that $0 \le \theta \le \pi$, and the sine of an angle in this interval is always positive. Thus $\sin(\theta) = \sqrt{1 - y^2}$ and

$$\frac{d}{dy}\arccos(y) = \frac{-1}{\sqrt{1 - y^2}}.$$

Finally, let's look at arctangent.

Theorem 6.2.3 (The Derivative of arctan(y))

$$\frac{d}{dy}\arctan(y) = \frac{1}{1+y^2}.$$

Proof To start, note that the Inverse Function Theorem, Theorem 5.2.3 assures us that this derivative actually exists. Recall

$$\arctan(y) = \vartheta \implies \tan(\vartheta) = y.$$

Hence

$$\tan(\theta) = y$$

$$\frac{d}{dy}\tan(\theta) = \frac{d}{dy}y$$

$$\sec^{2}(\theta)\frac{d\theta}{dy} = 1$$

$$\frac{d\theta}{dy} = \frac{1}{\sec^{2}(\theta)}$$

At this point, we would like $sec^2(\theta)$ written in terms of y. Recall

$$\sec^2(\vartheta) = 1 + \tan^2(\vartheta)$$

and $tan(\theta) = y$, we may write $sec^2(\theta) = 1 + y^2$. Hence

$$\frac{d}{dy}\arctan(y) = \frac{1}{1+y^2}.$$

We leave it to you, the reader, to investigate the derivatives of arcsecant, arccosecant, and arccotangent. However, as a gesture of friendship, we now present you with a list of derivative formulas for inverse trigonometric functions.

Theorem 6.2.4 (The Derivatives of Inverse Trigonometric Functions)

- $\frac{d}{dy}\arcsin(y) = \frac{1}{\sqrt{1-y^2}}$.
- $\frac{d}{dy} \arccos(y) = \frac{-1}{\sqrt{1 y^2}}$. $\frac{d}{dy} \arctan(y) = \frac{1}{1 + y^2}$.
- $\frac{d}{dy}\operatorname{arcsec}(y) = \frac{1}{|y|\sqrt{y^2 1}}$ for |y| > 1.
- $\frac{d}{dy} \operatorname{arccsc}(y) = \frac{-1}{|y|\sqrt{y^2 1}} \text{ for } |y| > 1.$ $\frac{d}{dy} \operatorname{arccot}(y) = \frac{-1}{1 + y^2}.$

Exercises for Section 6.2

- (1) The inverse of cot is usually defined so that the range of arccotangent is $(0, \pi)$. Sketch the graph of $y = \operatorname{arccot}(x)$. In the process you will make it clear what the domain of arccotangent is. Find the derivative of the arccotangent.
- (2) Find the derivative of $\arcsin(x^2)$.
- (3) Find the derivative of $arctan(e^x)$.
- (4) Find the derivative of $\arcsin x^3$
- (5) Find the derivative of $ln((arcsin(x))^2)$
- (6) Find the derivative of $arccos(e^x)$
- (7) Find the derivative of $\arcsin(x) + \arccos(x)$
- (8) Find the derivative of $\log_5(\arctan(x^x))$

7 Applications of Differentiation

7.1 L'Hôpital's Rule

Derivatives allow us to take problems that were once difficult to solve and convert them to problems that are easier to solve. Let us consider l'Hôpital's rule:

Theorem 7.1.1 (L'Hôpital's Rule) Let f(x) and g(x) be functions that are differentiable near a. If

$$\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0 \qquad or \pm \infty,$$

and $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ exists, and $g'(x) \neq 0$ for all x near a, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

This theorem is somewhat difficult to prove, in part because it incorporates so many different possibilities, so we will not prove it here.

L'Hôpital's rule allows us to investigate limits of indeterminate form.

Definition (List of Indeterminate Forms)

0/0 This refers to a limit of the form $\lim_{x\to a} \frac{f(x)}{g(x)}$ where $f(x)\to 0$ and $g(x)\to 0$ as $x\to a$.

L'Hôpital's rule applies even when $\lim_{x\to a} f(x) = \pm \infty$ and $\lim_{x\to a} g(x) = \mp \infty$. See Example 7.1.4.

 ∞/∞ This refers to a limit of the form $\lim_{x\to a} \frac{f(x)}{g(x)}$ where $f(x)\to\infty$ and $g(x)\to\infty$ as $x\to a$.

0⋅∞ This refers to a limit of the form $\lim_{x\to a} (f(x) \cdot g(x))$ where $f(x) \to 0$ and $g(x) \to \infty$ as $x \to a$.

∞–∞ This refers to a limit of the form $\lim_{x\to a} (f(x) - g(x))$ where $f(x) \to \infty$ and $g(x) \to \infty$ as $x \to a$.

1^{∞} This refers to a limit of the form $\lim_{x\to a} f(x)^{g(x)}$ where $f(x)\to 1$ and $g(x)\to \infty$ as $x\to a$.

0° This refers to a limit of the form $\lim_{x\to a} f(x)^{g(x)}$ where $f(x)\to 0$ and $g(x)\to 0$ as $x\to a$.

 $\infty^{\mathbf{0}}$ This refers to a limit of the form $\lim_{x \to a} f(x)^{g(x)}$ where $f(x) \to \infty$ and $g(x) \to 0$ as $x \to a$.

In each of these cases, the value of the limit is **not** immediately obvious. Hence, a careful analysis is required!

Our first example will be the computation of a limit that was somewhat difficult before, see Example 1.3.6.

Example 7.1.2 (0/0) Compute

$$\lim_{x\to 0}\frac{\sin(x)}{x}.$$

Solution Set $f(x) = \sin(x)$ and g(x) = x. Since both f(x) and g(x) are differentiable functions at 0, and

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = 0,$$

so this situation is ripe for l'Hôpital's Rule. Now

$$f'(x) = \cos(x)$$
 and $g'(x) = 1$.

Figure 7.1: A plot of $f(x) = \sin(x)$ and g(x) = x. Note how the tangent lines for each curve are coincide at x = 0.

L'Hôpital's rule tells us that

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{\cos(x)}{1} = 1.$$

From this example, we gain an intuitive feeling for why l'Hôpital's rule is true: If two functions are both 0 when x = a, and if their tangent lines have the same slope, then the functions coincide as x approaches a. See Figure 7.1.

Our next set of examples will run through the various indeterminate forms one is likely to encounter.

Example 7.1.3 (∞/∞) Compute

$$\lim_{x \to \pi/2+} \frac{\sec(x)}{\tan(x)}.$$

Solution Set $f(x) = \sec(x)$ and $g(x) = \tan(x)$. Both f(x) and g(x) are differentiable near $\pi/2$. Additionally,

$$\lim_{x \to \pi/2+} f(x) = \lim_{x \to \pi/2+} g(x) = -\infty.$$

This situation is ripe for l'Hôpital's Rule. Now

$$f'(x) = \sec(x)\tan(x)$$
 and $g'(x) = \sec^2(x)$,

L'Hôpital's rule tells us that

$$\lim_{x \to \pi/2+} \frac{\sec(x)}{\tan(x)} = \lim_{x \to \pi/2+} \frac{\sec(x)\tan(x)}{\sec^2(x)} = \lim_{x \to \pi/2+} \sin(x) = 1.$$

Example 7.1.4 (0.\infty) Compute

$$\lim_{x\to 0+} x \ln x.$$

Solution This doesn't appear to be suitable for l'Hôpital's Rule. As x approaches zero, $\ln x$ goes to $-\infty$, so the product looks like

(something very small) · (something very large and negative).

This product could be anything—a careful analysis is required. Write

$$x \ln x = \frac{\ln x}{x^{-1}}.$$

Set $f(x) = \ln(x)$ and $g(x) = x^{-1}$. Since both functions are differentiable near zero and

$$\lim_{x\to 0+}\ln(x)=-\infty \qquad and \qquad \lim_{x\to 0+}x^{-1}=\infty,$$

we may apply l'Hôpital's rule. Write

$$f'(x) = x^{-1}$$
 and $g'(x) = -x^{-2}$,

so

$$\lim_{x \to 0+} x \ln x = \lim_{x \to 0+} \frac{\ln x}{x^{-1}} = \lim_{x \to 0+} \frac{x^{-1}}{-x^{-2}} = \lim_{x \to 0+} -x = 0.$$

One way to interpret this is that since $\lim_{x\to 0^+} x \ln x = 0$, the function x approaches zero much faster than $\ln x$ approaches $-\infty$.

Indeterminate Forms Involving Subtraction

There are two basic cases here, we'll do an example of each.

Example 7.1.5 (∞ - ∞) Compute

$$\lim_{x\to 0} \left(\cot(x) - \csc(x)\right).$$

Solution Here we simply need to write each term as a fraction,

$$\lim_{x \to 0} (\cot(x) - \csc(x)) = \lim_{x \to 0} \left(\frac{\cos(x)}{\sin(x)} - \frac{1}{\sin(x)} \right)$$
$$= \lim_{x \to 0} \frac{\cos(x) - 1}{\sin(x)}$$

Setting $f(x) = \cos(x) - 1$ and $g(x) = \sin(x)$, both functions are differentiable near zero and

$$\lim_{x \to 0} (\cos(x) - 1) = \lim_{x \to 0} \sin(x) = 0.$$

We may now apply l'Hôpital's rule. Write

$$f'(x) = -\sin(x)$$
 and $g'(x) = \cos(x)$,

so

$$\lim_{x \to 0} (\cot(x) - \csc(x)) = \lim_{x \to 0} \frac{\cos(x) - 1}{\sin(x)} = \lim_{x \to 0} \frac{-\sin(x)}{\cos(x)} = 0.$$

Sometimes one must be slightly more clever.

Example 7.1.6 (\infty-\infty) Compute

$$\lim_{x\to\infty} \left(\sqrt{x^2+x}-x\right).$$

Solution Again, this doesn't appear to be suitable for l'Hôpital's Rule. A bit of algebraic manipulation will help. Write

$$\lim_{x \to \infty} \left(\sqrt{x^2 + x} - x \right) = \lim_{x \to \infty} \left(x \left(\sqrt{1 + 1/x} - 1 \right) \right)$$
$$= \lim_{x \to \infty} \frac{\sqrt{1 + 1/x} - 1}{x^{-1}}$$

Now set $f(x) = \sqrt{1 + 1/x} - 1$, $g(x) = x^{-1}$. Since both functions are differentiable for large values of x and

$$\lim_{x \to \infty} (\sqrt{1 + 1/x} - 1) = \lim_{x \to \infty} x^{-1} = 0,$$

we may apply l'Hôpital's rule. Write

$$f'(x) = (1/2)(1 + 1/x)^{-1/2} \cdot (-x^{-2})$$
 and $g'(x) = -x^{-2}$

so

$$\lim_{x \to \infty} \left(\sqrt{x^2 + x} - x \right) = \lim_{x \to \infty} \frac{\sqrt{1 + 1/x} - 1}{x^{-1}}$$

$$= \lim_{x \to \infty} \frac{(1/2)(1 + 1/x)^{-1/2} \cdot (-x^{-2})}{-x^{-2}}$$

$$= \lim_{x \to \infty} \frac{1}{2\sqrt{1 + 1/x}}$$

$$= \frac{1}{2}.$$

Exponential Indeterminate Forms

There is a standard trick for dealing with the indeterminate forms

$$1^{\infty}$$
, 0^{0} , ∞^{0} .

Given u(x) and v(x) such that

$$\lim_{x \to a} u(x)^{v(x)}$$

falls into one of the categories described above, rewrite as

$$\lim_{x\to a}e^{v(x)\ln(u(x))}$$

and then examine

$$\lim_{x \to a} \frac{\ln(u(x))}{v(x)^{-1}}$$

using l'Hôpital's rule. Since these forms are all very similar, we will only give a single example.

Example 7.1.7 (1^{\infty}) Compute

$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x.$$

Solution Write

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to \infty} e^{x \ln\left(1 + \frac{1}{x}\right)}.$$

So now look at

$$\lim_{x \to \infty} \frac{\ln\left(1 + \frac{1}{x}\right)}{x^{-1}}$$

Setting $f(x) = \ln\left(1 + \frac{1}{x}\right)$ and $g(x) = x^{-1}$, both functions are differentiable for large values of x and

$$\lim_{x \to \infty} \ln\left(1 + \frac{1}{x}\right) = \lim_{x \to \infty} x^{-1} = 0.$$

We may now apply l'Hôpital's rule. Write

$$f'(x) = \frac{-x^{-2}}{1 + \frac{1}{x}}$$
 and $g'(x) = -x^{-2}$,

so

$$\lim_{x \to \infty} \frac{\ln\left(1 + \frac{1}{x}\right)}{x^{-1}} = \lim_{x \to \infty} \frac{\frac{-x^{-2}}{1 + \frac{1}{x}}}{-x^{-2}}$$
$$= \lim_{x \to \infty} \frac{1}{1 + \frac{1}{x}}$$
$$= 1.$$

Hence,

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to \infty} e^{x \ln \left(1 + \frac{1}{x} \right)} = e^1 = e.$$

Exercises for Section 7.1

Compute the limits.

$$(1) \lim_{x \to 0} \frac{\cos x - 1}{\sin x} \quad \blacksquare$$

(14)
$$\lim_{t \to 0} \left(t + \frac{1}{t} \right) ((4 - t)^{3/2} - 8)$$

(2)
$$\lim_{x \to \infty} \frac{e^x}{x^3}$$

(15)
$$\lim_{t\to 0^+} \left(\frac{1}{t} + \frac{1}{\sqrt{t}}\right) (\sqrt{t+1} - 1)$$

(3)
$$\lim_{x \to \infty} \sqrt{x^2 + x} - \sqrt{x^2 - x}$$

(16)
$$\lim_{x \to 0} \frac{x^2}{\sqrt{2x+1} - 1}$$

(4)
$$\lim_{x \to \infty} \frac{\ln x}{x}$$

(17)
$$\lim_{u \to 1} \frac{(u-1)^3}{(1/u) - u^2 + 3/u - 3}$$

$$(5) \lim_{x \to \infty} \frac{\ln x}{\sqrt{x}} \quad \blacksquare$$

(18)
$$\lim_{x \to 0} \frac{2 + (1/x)}{3 - (2/x)}$$

(6)
$$\lim_{x \to \infty} \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

(19)
$$\lim_{x \to 0^+} \frac{1 + 5/\sqrt{x}}{2 + 1/\sqrt{x}}$$

(7)
$$\lim_{x \to 0} \frac{\sqrt{9+x}-3}{x}$$

(20)
$$\lim_{x\to 0^+} \frac{3+x^{-1/2}+x^{-1}}{2+4x^{-1/2}}$$

(8)
$$\lim_{t \to 1^+} \frac{(1/t) - 1}{t^2 - 2t + 1}$$

(21)
$$\lim_{x \to \infty} \frac{x + x^{1/2} + x^{1/3}}{x^{2/3} + x^{1/4}}$$

(9)
$$\lim_{x \to 2} \frac{2 - \sqrt{x+2}}{4 - x^2}$$

(22)
$$\lim_{t \to \infty} \frac{1 - \sqrt{\frac{t}{t+1}}}{2 - \sqrt{\frac{4t+1}{t+2}}}$$

(10)
$$\lim_{t \to \infty} \frac{t + 5 - 2/t - 1/t^3}{3t + 12 - 1/t^2}$$

(23)
$$\lim_{t \to \infty} \frac{1 - \frac{t}{t-1}}{1 - \sqrt{\frac{t}{t-1}}}$$

$$\lim_{y \to \infty} \frac{\sqrt{y+1} + \sqrt{y-1}}{y} \quad \blacksquare$$

(24)
$$\lim_{x \to -\infty} \frac{x + x^{-1}}{1 + \sqrt{1 - x}}$$

(12)
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{\sqrt[1/3]{x} - 1}$$

(25)
$$\lim_{x \to \pi/2} \frac{\cos x}{(\pi/2) - x}$$

(13)
$$\lim_{x \to 0} \frac{(1-x)^{1/4} - 1}{x}$$

$$(26) \lim_{x\to 0} \frac{e^x - 1}{x} \quad \blacksquare$$

(27)
$$\lim_{x\to 0} \frac{x^2}{e^x - x - 1}$$

$$(28) \lim_{x \to 1} \frac{\ln x}{x - 1}$$

(29)
$$\lim_{x \to 0} \frac{\ln(x^2 + 1)}{x}$$

(30)
$$\lim_{x \to 1} \frac{x \ln x}{x^2 - 1}$$

(31)
$$\lim_{x \to 0} \frac{\sin(2x)}{\ln(x+1)}$$

(32)
$$\lim_{x \to 1} \frac{x^{1/4} - 1}{x}$$

(33)
$$\lim_{x \to 1^+} \frac{\sqrt{x}}{x - 1}$$

(34)
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1}$$

(35)
$$\lim_{x \to \infty} \frac{x^{-1} + x^{-1/2}}{x + x^{-1/2}}$$

(36)
$$\lim_{x \to \infty} \frac{x + x^{-2}}{2x + x^{-2}} \quad \blacksquare$$

(37)
$$\lim_{x \to \infty} \frac{5 + x^{-1}}{1 + 2x^{-1}} \quad \blacksquare \blacksquare$$

(38)
$$\lim_{x \to \infty} \frac{4x}{\sqrt{2x^2 + 1}}$$

(39)
$$\lim_{x \to 0} \frac{3x^2 + x + 2}{x - 4}$$

(40)
$$\lim_{x \to 0} \frac{\sqrt{x+1} - 1}{\sqrt{x+4} - 2}$$

(41)
$$\lim_{x\to 0} \frac{\sqrt{x+1}-1}{\sqrt{x+2}-2}$$

(42)
$$\lim_{x \to 0^+} \frac{\sqrt{x+1}+1}{\sqrt{x+1}-1}$$

(43)
$$\lim_{x \to 0} \frac{\sqrt{x^2 + 1} - 1}{\sqrt{x + 1} - 1}$$

(44)
$$\lim_{x \to \infty} (x+5) \left(\frac{1}{2x} + \frac{1}{x+2} \right)$$

(45)
$$\lim_{x \to 0^+} (x+5) \left(\frac{1}{2x} + \frac{1}{x+2} \right)$$

(46)
$$\lim_{x \to 1} (x+5) \left(\frac{1}{2x} + \frac{1}{x+2} \right)$$

(47)
$$\lim_{x \to 2} \frac{x^3 - 6x - 2}{x^3 + 4}$$

(48)
$$\lim_{x \to 2} \frac{x^3 - 6x - 2}{x^3 - 4x}$$

(49)
$$\lim_{x \to 1+} \frac{x^3 + 4x + 8}{2x^3 - 2}$$

7.2 The Derivative as a Rate

The world is constantly changing around us. To simplify matters we will only consider change in one dimension. This means that if we think of a ball being tossed in the air, we will consider its vertical movement separately from its lateral and forward movement. To understand how things change, we need to understand the *rate* of change. Let's start out with some rather basic ideas.

Definition Given a function f(x), the **average rate of change** over the interval $[a, a + \Delta x]$ is given by

 $\frac{f(a+\Delta x)-f(a)}{\Delta x}.$

Example 7.2.1 Suppose you drive a car on a 600 mile road trip. Your distance from home is recorded by the plot shown in Figure 7.2. What was your average velocity during hours 4–8 of your trip?

Solution Examining Figure 7.2, we see that we were around 240 miles from home at hour 4, and 360 miles from home at hour 8. Hence our average velocity was

$$\frac{360 - 240}{8 - 4} = \frac{120}{4} = 30$$
 miles per hour.

Of course if you look at Figure 7.2 closely, you see that sometimes we were driving faster and other times we were driving slower. To get more information, we need to know the *instantaneous rate of change*.

Definition Given a function, the **instantaneous rate of change** at x = a is given by

$$\frac{d}{dx}f(x)\Big|_{x=a}$$
.

Figure 7.2: Here we see a plot of the distance traveled on a 600 mile road trip.

Example 7.2.2 Again suppose, you drive a car 600 mile road trip. Your distance from home is recorded by the plot shown in Figure 7.2. What was your instantaneous velocity 8 hours into your trip?

Solution Since the instantaneous rate of change is measured by the derivative, we need to find the slope of the tangent line to the curve. At 7 hours, the curve is growing at an essentially constant rate. In fact, the growth rate seems to be constant from (7,300) to (10,500). This gives us an instantaneous growth rate at hour 8 of about $200/3 \approx 67$ miles per hour.

Physical Applications

In physical applications, we are often concerned about position, velocity, speed, acceleration.

p(t) = position with respect to time.

v(t) = p'(t) = velocity with respect to time.

s(t) = |v(t)| = speed, the absolute value of velocity.

a(t) = v'(t) = acceleration with respect to time.

Let's see an example.

Example 7.2.3 The Mostar bridge in Bosnia is 25 meters above the river Neretva. For fun, you decided to dive off the bridge. Your position t seconds after jumping off is

$$p(t) = -4.9t^2 + 25.$$

When do you hit the water? What is your instantaneous velocity as you enter the water? What is your average velocity during your dive?

Solution To find when you hit the water, you must solve

$$-4.9t^2 + 25 = 0$$

Figure 7.3: Here we see a plot of $p(t) = -4.9t^2 + 25$. Note, time is on the t-axis and vertical height is on the p-axis.

Write

$$-4.9t^{2} = -25$$
$$t^{2} \approx 5.1$$
$$t \approx 2.26.$$

Hence after approximately $2.26\ \text{seconds}$, you gracefully enter the river.

Your instantaneous velocity is given by p'(t). Write

$$p'(t) = -9.8t$$
,

so your instantaneous velocity when you enter the water is approximately $-9.8 \cdot 2.26 \approx -22$ meters per second.

Finally, your average velocity during your dive is given by

$$\frac{p'(2.26) - p'(0)}{2.26} \approx \frac{-22}{2.26} = -9.7$$
 meters per second.

Biological Applications

In biological applications, we are often concerned with how animals and plants grow, though there are numerous other applications too.

Example 7.2.4 A certain bacterium divides into two cells every 20 minutes. The initial population of a culture is 120 cells. Find a formula for the population. What is the average growth rate during the first 4 hours? What is the instantaneous growth rate of the population at 4 hours? What rate is the population growing at 20 hours?

Solution Since we start with 120 cells, and this population doubles every 20 minutes, then the population doubles three times an hour. So the formula for the population is

$$p(t) = 120 \cdot 2^{3t}$$

where t is time measured in hours.

Figure 7.4: Here we see a plot of $p(t) = 120 \cdot 2^{3x}$. Note, time is on the t-axis and population is on the p-axis.

Now, the average growth rate during the first 4 hours is given by

$$\frac{p(4) - p(0)}{4} = \frac{491520 - 120}{4} = 122850 \text{ cells per hour.}$$

We compute the instantaneous growth rate of the population with

$$p'(t) = \ln(2) \cdot 360 \cdot 2^{3t}.$$

So $p'(4) \approx 1022087$ cells per hour. Note how fast p(t) is growing, this is why it is important to stop bacterial infections fast!

Exercises for Section 7.2

Exercises related to physical applications:

- (1) The position of a particle in meters is given by $1/t^3$ where is t is measured in seconds. What is the acceleration of the particle after 4 seconds?
- (2) On the Earth, the position of a ball dropped from a height of 100 meters is given by

$$-4.9t^2 + 100$$
, (ignoring air resistance)

where time is in seconds. On the Moon, the position of a ball dropped from a height of 100 meters is given by

$$-0.8t^2 + 100$$
.

where time is in seconds. How long does it take the ball to hit the ground on the Earth? What is the speed immediately before it hits the ground? How long does it take the ball to hit the ground on the Moon? What is the speed immediately before it hits the ground?

(3) A 10 gallon jug is filled with water. If a valve can drain the jug in 15 minutes, Torricelli's Law tells us that the volume of water in the jug is given by

$$V(t) = 10(1 - t/15)^2$$
 where $0 \le t \le 14$.

What is the average rate that water flows out (change in volume) from 5 to 10 minutes? What is the instantaneous rate that water flows out at 7 minutes?

(4) Starting at rest, the position of a car is given by $p(t) = 1.4t^2$ m, where t is time in seconds. How many seconds does it take the car to reach 96 km/hr? What is the car's average velocity (in km/h) on that time period?

Exercises related to biological applications:

(5) A certain bacterium triples its population every 15 minutes. The initial population of a culture is 300 cells. Find a formula for the population after t hours.

(6) The blood alcohol content of man starts at 0.18 mg/ml. It is metabolized by the body over time, and after t hours, it is given by

$$c(t) = .18e^{-0.15t}$$
.

What rate is the man metabolizing alcohol at after 2 hours?

(7) The area of mold on a square piece of bread that is 10 cm per side is modeled by

$$a(t) = \frac{90}{1 + 150e^{-1.8t}} \text{ cm}^2$$

where t is time measured in days. What rate is the mold growing after 3 days? After 10 days?

7.3 Related Rates Problems

Suppose we have two variables x and y which are both changing with respect to time. A *related rates* problem is a problem where we know one rate at a given instant, and wish to find the other. If y is written in terms of x, and we are given $\frac{dx}{dt}$, then it is easy to find $\frac{dy}{dt}$ using the chain rule:

$$\frac{dy}{dt} = y'(x(t)) \cdot x'(t).$$

In many cases, particularly the interesting ones, our functions will be related in some other way. Nevertheless, in each case we'll use the same strategy:

Guidelines for Related Rates Problems

Draw a picture. If possible draw a schematic picture with all the relevant information.

Find an equation. We want an equation that relates all relevant functions.

Differentiate the equation. Here we will often use implicit differentiation.

Evaluate the equation at the desired values. The known values should let you solve for the relevant rate.

Let's see a concrete example.

Example 7.3.1 A plane is flying directly away from you at 500 mph at an altitude of 3 miles. How fast is the plane's distance from you increasing at the moment when the plane is flying over a point on the ground 4 miles from you?

Solution We'll use our general strategy to solve this problem. To start, **draw a picture**.

Next we need to **find an equation**. By the Pythagorean Theorem we know that

$$p^2 + 3^2 = s^2.$$

Now we differentiate the equation. Write

$$2p(t)p'(t) = 2s(t)s'(t).$$

Now we'll **evaluate the equation at the desired values**. We are interested in the time at which p(t) = 4 and p'(t) = 500. Additionally, at this time we know that $4^2 + 9 = s^2$, so s(t) = 5. Putting together all the information we get

$$2(4)(500) = 2(5)s'(t),$$

thus s'(t) = 400 mph.

Example 7.3.2 You are inflating a spherical balloon at the rate of 7 cm³/sec. How fast is its radius increasing when the radius is 4 cm?

Solution To start, draw a picture.

Next we need to **find an equation**. Thinking of the variables r and V as functions of time, they are related by the equation

$$V(t) = \frac{4\pi (r(t))^3}{3}.$$

Now we need to **differentiate the equation**. Taking the derivative of both sides gives

$$\frac{dV}{dt} = 4\pi (r(t))^2 \cdot r'(t).$$

Finally we evaluate the equation at the desired values. Set r(t)=4 cm and $\frac{dV}{dt}=7$ cm $^3/{\rm sec.}$ Write

$$7 = 4\pi 4^2 r'(t),$$

 $r'(t) = 7/(64\pi) \text{ cm/sec.}$

Example 7.3.3 Water is poured into a conical container at the rate of $10 \text{ cm}^3/\text{sec}$. The cone points directly down, and it has a height of 30 cm and a base radius of 10 cm. How fast is the water level rising when the water is 4 cm deep?

Solution To start, draw a picture.

Note, no attempt was made to draw this picture to scale, rather we want all of the relevant information to be available to the mathematician.

Now we need to **find an equation**. The formula for the volume of a cone tells us that

$$V = \frac{\pi}{3}r^2h.$$

Now we must **differentiate the equation**. We should use implicit differentiation, and treat each of the variables as functions of t. Write

$$\frac{dV}{dt} = \frac{\pi}{3} \left(2rh \frac{dr}{dt} + r^2 \frac{dh}{dt} \right). \tag{7.1}$$

At this point we **evaluate the equation at the desired values**. At first something seems to be wrong, we do not know $\frac{dr}{dt}$. However, the dimensions of the cone of water must have the same proportions as those of the container. That is, because of similar triangles,

$$\frac{r}{h} = \frac{10}{30} \qquad \text{so} \qquad r = h/3.$$

In particular, we see that when h = 4, r = 4/3 and

$$\frac{dr}{dt} = \frac{1}{3} \cdot \frac{dh}{dt}$$

Now we can **evaluate the equation at the desired values**. Starting with Equation 7.1, we plug in $\frac{dV}{dt} = 10$, r = 4/3, $\frac{dr}{dt} = \frac{1}{3} \cdot \frac{dh}{dt}$ and h = 4. Write

$$10 = \frac{\pi}{3} \left(2 \cdot \frac{4}{3} \cdot 4 \cdot \frac{1}{3} \cdot \frac{dh}{dt} + \left(\frac{4}{3} \right)^2 \frac{dh}{dt} \right)$$

$$10 = \frac{\pi}{3} \left(\frac{32}{9} \frac{dh}{dt} + \frac{16}{9} \frac{dh}{dt} \right)$$

$$10 = \frac{16\pi}{9} \frac{dh}{dt}$$

$$\frac{90}{16\pi} = \frac{dh}{dt}.$$

Thus,
$$\frac{dh}{dt} = \frac{90}{16\pi}$$
 cm/sec.

Example 7.3.4 A swing consists of a board at the end of a 10 ft long rope. Think of the board as a point P at the end of the rope, and let Q be the point of attachment at the other end. Suppose that the swing is directly below Q at time t = 0, and is being pushed by someone who walks at 6 ft/sec from left to right. What is the angular speed of the rope in deg/sec after 1 sec?

Solution To start, draw a picture.

Now we must **find an equation**. From the right triangle in our picture, we see

$$\sin(\theta) = x/10$$
.

We can now **differentiate the equation**. Taking derivatives we obtain

$$\cos(\vartheta) \cdot \vartheta'(t) = 0.1x'(t).$$

Now we can **evaluate the equation at the desired values**. When t = 1 sec, the person was pushed by someone who walks 6 ft/sec. Hence we have a 6-8-10 right triangle, with x'(t) = 6, and $\cos \theta = 8/10$. Thus

$$(8/10)\vartheta'(t) = 6/10,$$

and so $\vartheta'(t) = 6/8 = 3/4$ rad/sec, or approximately 43 deg/sec.

We have seen that sometimes there are apparently more than two variables that change with time, but as long as you know the rates of change of all but one of them you can find the rate of change of the remaining one. As in the case when there are just two variables, take the derivative of both sides of the equation relating all of the variables, and then substitute all of the known values and solve for the unknown rate.

Example 7.3.5 A road running north to south crosses a road going east to west at the point P. Cyclist A is riding north along the first road, and cyclist B is riding east along the second road. At a particular time, cyclist A is 3 kilometers to the north of P and traveling at 20 km/hr, while cyclist B is 4 kilometers to the east of P and traveling at 15 km/hr. How fast is the distance between the two cyclists changing?

Solution We start the same way we always do, we **draw a picture**.

Here a(t) is the distance of cyclist A north of P at time t, and b(t) the distance of cyclist B east of P at time t, and c(t) is the distance from cyclist A to cyclist B at time t.

We must **find an equation**. By the Pythagorean Theorem,

$$c(t)^2 = a(t)^2 + b(t)^2$$
.

Now we can **differentiate the equation**. Taking derivatives we get

$$2c(t)c'(t) = 2a(t)a'(t) + 2b(t)b'(t).$$

Now we can **evaluate the equation at the desired values**. We know that a(t) = 3, a'(t) = 20, b(t) = 4 and b'(t) = 15. Hence by the Pythagorean Theorem, c(t) = 5. So

$$2 \cdot 5 \cdot c'(t) = 2 \cdot 3 \cdot 20 + 2 \cdot 4 \cdot 15$$

solving for c'(t) we find c'(t) = 24 km/hr.

Exercises for Section 7.3

- (1) A cylindrical tank standing upright (with one circular base on the ground) has radius 20 cm. How fast does the water level in the tank drop when the water is being drained at 25 cm³/sec?
- (2) A cylindrical tank standing upright (with one circular base on the ground) has radius 1 meter. How fast does the water level in the tank drop when the water is being drained at 3 liters per second?
- (3) A ladder 13 meters long rests on horizontal ground and leans against a vertical wall. The foot of the ladder is pulled away from the wall at the rate of 0.6 m/sec. How fast is the top sliding down the wall when the foot of the ladder is 5 m from the wall?
- (4) A ladder 13 meters long rests on horizontal ground and leans against a vertical wall. The top of the ladder is being pulled up the wall at 0.1 meters per second. How fast is the foot of the ladder approaching the wall when the foot of the ladder is 5 m from the wall?
- (5) A rotating beacon is located 2 miles out in the water. Let *A* be the point on the shore that is closest to the beacon. As the beacon rotates at 10 rev/min, the beam of light sweeps down the shore once each time it revolves. Assume that the shore is straight. How fast is the point where the beam hits the shore moving at an instant when the beam is lighting up a point 2 miles along the shore from the point *A*?
- (6) A baseball diamond is a square 90 ft on a side. A player runs from first base to second base at 15 ft/sec. At what rate is the player's distance from third base decreasing when she is half way from first to second base?
- (7) Sand is poured onto a surface at 15 cm³/sec, forming a conical pile whose base diameter is always equal to its altitude. How fast is the altitude of the pile increasing when the pile is 3 cm high?

- (8) A boat is pulled in to a dock by a rope with one end attached to the front of the boat and the other end passing through a ring attached to the dock at a point 5 ft higher than the front of the boat. The rope is being pulled through the ring at the rate of 0.6 ft/sec. How fast is the boat approaching the dock when 13 ft of rope are out?
- (9) A balloon is at a height of 50 meters, and is rising at the constant rate of 5 m/sec. A bicyclist passes beneath it, traveling in a straight line at the constant speed of 10 m/sec. How fast is the distance between the bicyclist and the balloon increasing 2 seconds later?
- (10) A pyramid-shaped vat has square cross-section and stands on its tip. The dimensions at the top are $2 \text{ m} \times 2 \text{ m}$, and the depth is 5 m. If water is flowing into the vat at $3 \text{ m}^3/\text{min}$, how fast is the water level rising when the depth of water (at the deepest point) is 4 m? Note: the volume of any "conical" shape (including pyramids) is (1/3)(height)(area of base).
- (11) A woman 5 ft tall walks at the rate of 3.5 ft/sec away from a streetlight that is 12 ft above the ground. At what rate is the tip of her shadow moving? At what rate is her shadow lengthening?
- (12) A man 1.8 meters tall walks at the rate of 1 meter per second toward a streetlight that is 4 meters above the ground. At what rate is the tip of his shadow moving? At what rate is his shadow shortening?
- (13) A police helicopter is flying at 150 mph at a constant altitude of 0.5 mile above a straight road. The pilot uses radar to determine that an oncoming car is at a distance of exactly 1 mile from the helicopter, and that this distance is decreasing at 190 mph. Find the speed of the car.
- (14) A police helicopter is flying at 200 kilometers per hour at a constant altitude of 1 km above a straight road. The pilot uses radar to determine that an oncoming car is at a distance of exactly 2 kilometers from the helicopter, and that this distance is decreasing at 250 kph. Find the speed of the car.
- (15) A road running in a northwest direction crosses a road going east to west at a 120° at a point *P*. Car *A* is driving northwesterly along the first road, and car *B*

is driving east along the second road. At a particular time car A is 10 kilometers to the northwest of P and traveling at 80 km/hr, while car B is 15 kilometers to the east of P and traveling at 100 km/hr. How fast is the distance between the two cars changing? Hint, recall the law of cosines: $c^2 = a^2 + b^2 - 2ab\cos\theta$.

- (16) A road running north to south crosses a road going east to west at the point *P*. Car A is 300 meters north of *P*, car B is 400 meters east of *P*, both cars are going at constant speed toward *P*, and the two cars will collide in 10 seconds.
- (17) A road running north to south crosses a road going east to west at the point P. Eight seconds ago car A started from rest at P and has been picking up speed at the steady rate of 5 m/sec², and 6 seconds after car A started car B passed P moving east at constant speed 60 m/sec. How fast is the distance between the two cars changing?
- (18) Suppose a car is driving north along a road at 80 km/hr and an airplane is flying east at speed 200 km/hr. Their paths crossed at a point P. At a certain time, the car is 10 kilometers north of P and the airplane is 15 kilometers to the east of P at an altitude of 2 km. How fast is the distance between car and airplane changing?
- (19) Suppose a car is driving north along a road at 80 km/hr and an airplane is flying east at speed 200 km/hr. Their paths crossed at a point *P*. At a certain time, the car is 10 kilometers north of *P* and the airplane is 15 kilometers to the east of *P* at an altitude of 2 km—gaining altitude at 10 km/hr. How fast is the distance between car and airplane changing?
- (20) A light shines from the top of a pole 20 m high. An object is dropped from the same height from a point 10 m away, so that its height at time t seconds is $h(t) = 20 9.8t^2/2$. How fast is the object's shadow moving on the ground one second later?

Answers to Exercises

Answers for 1.1

1. (a) 8, (b) 6, (c) DNE, (d) -2, (e) -1, (f) 8, (g) 7, (h) 6, (i) 3, (j) -3/2, (k) 6, (l) 2 **2.** 1 **3.** 2 **4.** 3 **5.** 3/5 **6.** $0.6931 \approx \ln(2)$ **7.** $2.718 \approx e$ **8.** Consider what happens when x is near zero and positive, as compared to when x is near zero and negative. **9.** The limit does not exist, so it is not surprising that the resulting values are so different. **10.** When v approaches c from below, then t_v approaches zero—meaning that one second to the stationary observations seems like very little time at all for our traveler.

Answers for 1.2

1. For these problems, there are many possible values of δ , so we provide an inequality that δ must satisfy when $\varepsilon=0.1$. (a) $\delta<1/30$, (b) $\delta<\frac{\sqrt{110}}{10}-1\approx 0.0488$, (c) $\delta<\arcsin(1/10)\approx 0.1002$, (d) $\delta<\arctan(1/10)\approx 0.0997$ (e) $\delta<13/100$, (f) $\delta<59/400$ **2.** Let $\varepsilon>0$. Set $\delta=\varepsilon$. If $0<|x-0|<\delta$, then $|x\cdot 1|<\varepsilon$, since $\sin\left(\frac{1}{x}\right)\leq 1$, $|x\sin\left(\frac{1}{x}\right)-0|<\varepsilon$. **3.** Let $\varepsilon>0$. Set $\delta=\varepsilon/2$. If $0<|x-4|<\delta$, then $|2x-8|<2\delta=\varepsilon$, and then because |2x-8|=|(2x-5)-3|, we conclude $|(2x-5)-3|<\varepsilon$. **4.** Let $\varepsilon>0$. Set $\delta=\varepsilon/4$. If $0<|x-(-3)|<\delta$, then $|-4x-12|<4\delta=\varepsilon$, and then because |-4x-12|=|(-4x-11)-1|, we conclude $|(-4x-11)-1|<\varepsilon$. **5.** Let $\varepsilon>0$. No matter what I choose for δ , if x is within δ of -2, then π is within ε of π . **6.** As long as $x\neq -2$, we have $\frac{x^2-4}{x+2}=x-2$, and the limit is not sensitive to the value of the function at the point -2; the limit

only depends on nearby values, so we really want to compute $\lim_{x \to -2} (x-2)$. Let $\varepsilon > 0$. Set $\delta = \varepsilon$. Then if $0 < |x - (-2)| < \delta$, we have $|(x-2) - (-4)| < \varepsilon$. **7.** Let $\varepsilon > 0$. Pick δ so that $\delta < 1$ and $\delta < \frac{\varepsilon}{61}$. Suppose $0 < |x-4| < \delta$. Then $4-\delta < x < 4+\delta$. Cube to get $(4-\delta)^3 < x^3 < (4+\delta)^3$. Expanding the right-side inequality, we get $x^3 < \delta^3 + 12 \cdot \delta^2 + 48 \cdot \delta + 64 < \delta + 12\delta + 48\delta + 64 = 64 + \varepsilon$. The other inequality is similar. **8.** Let $\varepsilon > 0$. Pick δ small enough so that $\delta < \varepsilon/6$ and $\delta < 1$. Assume $|x-1| < \delta$, so $6 \cdot |x-1| < \varepsilon$. Since x is within $\delta < 1$ of 1, we know 0 < x < 2. So |x+4| < 6. Putting it together, $|x+4| \cdot |x-1| < \varepsilon$, so $|x^2 + 3x - 4| < \varepsilon$, and therefore $|(x^2 + 3x - 1) - 3| < \varepsilon$. **9.** Let $\varepsilon > 0$. Set $\delta = 3\varepsilon$. Assume $0 < |x-9| < \delta$. Divide both sides by 3 to get $\frac{|x-9|}{3} < \varepsilon$. Note that $\sqrt{x} + 3 > 3$, so $\frac{|x-9|}{\sqrt{x} + 3} < \varepsilon$. This can be rearranged to conclude $\left|\frac{x-9}{\sqrt{x}-3} - 6\right| < \varepsilon$. **10.** Let $\varepsilon > 0$. Set δ to be the

can be rearranged to conclude $\left| \frac{x-9}{\sqrt{x}-3} - 6 \right| < \varepsilon$. **10.** Let $\varepsilon > 0$. Set δ to be the minimum of 2ε and 1. Assume x is within δ of 2, so $|x-2| < 2\varepsilon$ and 1 < x < 3. So $\left| \frac{x-2}{2} \right| < \varepsilon$. Since 1 < x < 3, we also have 2x > 2, so $\left| \frac{x-2}{2x} \right| < \varepsilon$. Simplifying, $\left| \frac{1}{2} - \frac{1}{x} \right| < \varepsilon$, which is what we wanted.

Answers for 1.3

1. 7 **2.** 5 **3.** 0 **4.** DNE **5.** 1/6 **6.** 0 **7.** 3 **8.** 172 **9.** 0 **10.** 2 **11.** DNE **12.** $\sqrt{2}$ **13.** $3a^2$ **14.** 512 **15.** -4

Answers for 1.4

1. $-\infty$ **2.** 3/14 **3.** 1/2 **4.** $-\infty$ **5.** ∞ **6.** ∞ **7.** 0 **8.** $-\infty$ **9.** x = 1 and x = -3 **10.** x = -4

Answers for 1.5

1. 0 **2.** -1 **3.** $\frac{1}{2}$ **4.** $-\infty$ **5.** π **6.** 0 **7.** 0 **8.** 17 **9.** After 10 years, \approx 174 cats; after 50 years, \approx 199 cats; after 100 years, \approx 200 cats; after 1000 years, \approx 200 cats; in the sense that the population of cats cannot grow indefinitely this is somewhat realistic. **10.** The amplitude goes to zero.

Answers for 1.6

1. f(x) is continuous at x=4 but it is not continuous on \mathbb{R} . **2.** f(x) is continuous at x=3 but it is not continuous on \mathbb{R} . **3.** f(x) is not continuous at x=1 and it is not continuous on \mathbb{R} . **4.** f(x) is not continuous at x=5 and it is not continuous on \mathbb{R} . **5.** f(x) is continuous at x=-5 and it is also continuous on \mathbb{R} . **6.** \mathbb{R} **7.** $(-\infty, -4) \cup (-4, \infty)$ **8.** $(-\infty, -3) \cup (-3, 3) \cup (3, \infty)$ **9.** x=-0.48, x=1.31, or x=3.17 **10.** x=0.20, or x=1.35

Answers for 2.1

1. f(2) = 10 and f'(2) = 7 **2.** p'(x) = s(x) and r'(x) = q(x) **3.** $f'(3) \approx 4$ **4.** f'(-2) = 4 **5.** $f(1.2) \approx 2.2$ **6.** (a) $[0, 4.5) \cup (4.5, 6]$, (b) $[0, 3) \cup (3, 6]$, (c) See Figure **7.** f'(-3) = -6 with tangent line y = -6x - 13 **8.** f'(1) = -1/9 with tangent line $y = \frac{-1}{9}x + \frac{4}{9}$ **9.** $f'(5) = \frac{1}{2\sqrt{2}}$ with tangent line $y = \frac{1}{2\sqrt{2}}x - \frac{1}{2\sqrt{2}}$ **10.** $f'(4) = \frac{-1}{16}$ with tangent line $y = \frac{-1}{16}x + \frac{3}{4}$

Answers for 2.2

1. 0 **2.** 0 **3.** 0 **4.** 0 **5.** $100x^{99}$ **6.** $-100x^{-101}$ **7.** $-5x^{-6}$ **8.** $\pi x^{\pi - 1}$ **9.** $(3/4)x^{-1/4}$ **10.** $-(9/7)x^{-16/7}$ **11.** $15x^2 + 24x$ **12.** $-20x^4 + 6x + 10/x^3$ **13.** -30x + 25 **14.** $\frac{3}{2}x^{-1/2} - x^{-2} - ex^{e-1}$ **15.** $-5x^{-6} - x^{-3/2}/2$ **16.** $3x^2 + 6x - 1$ **17.** 2x - 1 **18.** $x^{-1/2}/2$ **19.** $4x^3 - 4x$ **20.** -49t/5 + 5, -49/5 **21.** See Figure **22.** $x^3/16 - 3x/4 + 4$ **23.** y = 13x/4 + 5 **24.** $y = 24x - 48 - \pi^3$ **25.** $\frac{d}{dx}cf(x) = \lim_{h \to 0} \frac{cf(x+h) - cf(x)}{h} = c\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = cf'(x)$.

Answers for 3.1

1. min at x = 1/2 **2.** min at x = -1, max at x = 1 **3.** max at x = 2, min at x = 4 **4.** min at $x = \pm 1$, max at x = 0. **5.** min at x = 1 **6.** none **7.** min at x = 0, max at $x = \frac{3 \pm \sqrt{17}}{2}$ **8.** none **9.** local max at x = 5 **10.** local min at x = 49 **11.** local min at x = 0 **12.** one **13.** if $c \ge 0$, then there are

Answer 2.1.6: (c) a sketch of f'(x).

Answer 2.2.21.

no local extrema; if c < 0 then there is a local max at $x = -\sqrt{\frac{|c|}{3}}$ and a local min at $x = \sqrt{\frac{|c|}{3}}$

Answers for 3.2

1. min at x = 1/2 **2.** min at x = -1, max at x = 1 **3.** max at x = 2, min at x = 4 **4.** min at $x = \pm 1$, max at x = 0. **5.** min at x = 1 **6.** none **7.** max at x = 0, min at $x = \pm 11$ **8.** f'(x) = 2ax + b, this has only one root and hence one critical point; a < 0 to guarantee a maximum.

Answers for 3.3

1. concave up everywhere **2.** concave up when x < 0, concave down when x > 0 **3.** concave down when x < 3, concave up when x > 3 **4.** concave up when $x < -1/\sqrt{3}$ or $x > 1/\sqrt{3}$, concave down when $-1/\sqrt{3} < x < 1/\sqrt{3}$ **5.** concave up when x < 0 or x > 2/3, concave down when 0 < x < 2/3 **6.** concave up when x < 0, concave down when x > 0 **7.** concave up when x < -1 or x > 1, concave down when -1 < x < 0 or 0 < x < 1 **8.** concave up on $(0, \infty)$ **9.** concave up on $(0, \infty)$ **10.** concave up on $(-\infty, -1)$ and $(0, \infty)$ **11.** up/incr: $(3, \infty)$, up/decr: $(-\infty, 0)$, (2, 3), down/decr: (0, 2)

Answers for 3.4

1. min at x = 1/2 **2.** min at x = -1, max at x = 1 **3.** max at x = 2, min at x = 4 **4.** min at $x = \pm 1$, max at x = 0. **5.** min at x = 1 **6.** none **7.** none **8.** max at $-5^{-1/4}$, min at $5^{-1/4}$ **9.** max at -1, min at 1 **10.** min at $2^{-1/3}$

Answers for 3.5

1. *y*-intercept at (0,0); no vertical asymptotes; critical points: $x = \pm 1/\sqrt[4]{5}$; local max at $x = -1/\sqrt[4]{5}$, local min at $x = -1/\sqrt[4]{5}$; increasing on $(-\infty, -1/\sqrt[4]{5})$, decreasing on $(-1/\sqrt[4]{5}, 1/\sqrt[4]{5})$, increasing on $(1/\sqrt[4]{5}, \infty)$; concave down on $(-\infty, 0)$, concave up on $(0, \infty)$; root at x = 0; no horizontal asymptotes; interval for sketch: [-1.2, 1.2]

2. *y*-intercept at (0,0); no vertical asymptotes; no critical points; no local extrema; increasing on $(-\infty, \infty)$; concave down on $(-\infty, 0)$, concave up on $(0, \infty)$; roots at x = 0; no horizontal asymptotes; interval for sketch: [-3, 3]**3.** *y*-intercept at (0,0); no vertical asymptotes; critical points: (answers may vary) x = 1; local max at x = 1; increasing on [0, 1), decreasing on $(1, \infty)$; concave down on $[0, \infty)$; roots at x = 0, x = 4; no horizontal asymptotes; interval for sketch: [0, 6] (answers may vary) **4.** *y*-intercept at (0, 0); no vertical asymptotes; critical points: x = -3, x = -1; local max at x = -3, local min at x = -1; increasing on $(-\infty, -3)$, decreasing on (-3, -1), increasing on $(-1, \infty)$; concave down on $(-\infty, -2)$, concave up on $(-2, \infty)$; roots at x = -3, x = 0; no horizontal asymptotes; interval for sketch: [-5,3] (answers may vary) **5.** y-intercept at (0,5); no vertical asymptotes; critical points: x = -1, x = 3; local max at x = -1, local min at x = 3; increasing on $(-\infty, -1)$, decreasing on (-1, 3), increasing on $(3, \infty)$; concave down on $(-\infty, 1)$, concave up on $(1, \infty)$; roots are too difficult to be determined cubic formula could be used; no horizontal asymptotes; interval for sketch: [-2, 5] (answers may vary) **6.** *y*-intercept at (0, 0); no vertical asymptotes; critical points: x = 0, $x = \frac{10 \pm \sqrt{85}}{5}$; local max at $x = \frac{10 - \sqrt{85}}{5}$, local min at $x = \frac{10 + \sqrt{85}}{5}$; increasing on $(-\infty, \frac{10 - \sqrt{85}}{5})$, decreasing on $(\frac{10 - \sqrt{85}}{5}, \frac{10 + \sqrt{85}}{5})$, increasing on $(\frac{10+\sqrt{85}}{5},\infty)$; concave down on $(-\infty,0)$, concave up on $(0,\frac{15-\sqrt{195}}{10})$, concave down on $(\frac{15 - \sqrt{195}}{10}, \frac{15 + \sqrt{195}}{10})$, concave up on $(\frac{15 + \sqrt{195}}{10}, \infty)$; roots at x = 0, $x = \frac{5 \pm \sqrt{21}}{2}$; no horizontal asymptotes; interval for sketch: [-1,5] (answers may vary) 7. no y-intercept; vertical asymptote at x = 0; critical points: x = 0, $x = \pm 1$; local max at x = -1, local min at 1; increasing on $(-\infty, -1)$, decreasing on $(-1,0) \cup (0,1)$, increasing on $(1,\infty)$; concave down on $(-\infty,0)$, concave up on $(0,\infty)$; no roots; no horizontal asymptotes; interval for sketch: [-2, 2] (answers may vary) **8.** no *y*-intercept; vertical asymptote at x = 0; critical points: x = 0, $x = \frac{1}{\sqrt[3]{2}}$; local min at $x = \frac{1}{\sqrt[3]{2}}$; decreasing on $(-\infty, 0)$, decreasing on $(0, \frac{1}{\sqrt[3]{2}})$, increasing on $(\frac{1}{\sqrt[3]{6}}, \infty)$; concave up on $(-\infty, -1)$, concave down on (-1, 0), concave up on $(0, \infty)$;

root at x = -1; no horizontal asymptotes; interval for sketch: [-3, 2] (answers may vary)

Answers for 4.1

1.
$$3x^2(x^3 - 5x + 10) + x^3(3x^2 - 5)$$
 2. $(x^2 + 5x - 3)(5x^4 - 18x^2 + 6x - 7) + (2x + 5)(x^5 - 6x^3 + 3x^2 - 7x + 1)$ 3. $2e^{2x}$ 4. $3e^{3x}$ 5. $6xe^{4x} + 12x^2e^{4x}$ 6. $\frac{-48e^x}{x^{17}} + \frac{3e^x}{x^{16}}$ 7. $f' = 4(2x - 3), y = 4x - 7$ 8. 3 9. 10 10. -13 11. -5 12. $\frac{d}{dx}f(x)g(x)h(x) = \frac{d}{dx}f(x)(g(x)h(x)) = f(x)\frac{d}{dx}(g(x)h(x)) + f'(x)g(x)h(x) = f(x)(g(x)h'(x) + g'(x)h(x)) + f'(x)g(x)h(x) = f(x)g(x)h'(x) + f(x)g'(x)h(x) + f'(x)g(x)h(x)$

Answers for 4.2

1.
$$\frac{3x^2}{x^3 - 5x + 10} - \frac{x^3(3x^2 - 5)}{(x^3 - 5x + 10)^2}$$
 2. $\frac{2x + 5}{x^5 - 6x^3 + 3x^2 - 7x + 1} - \frac{(x^2 + 5x - 3)(5x^4 - 18x^2 + 6x - 7)}{(x^5 - 6x^3 + 3x^2 - 7x + 1)^2}$ 3. $\frac{2xe^x - (e^x - 4)2}{4x^2}$ 4. $\frac{(x + 2)(-1 - (1/2)x^{-1/2}) - (2 - x - \sqrt{x})}{(x + 2)^2}$ 5. $y = 17x/4 - 41/4$ 6. $y = 11x/16 - 15/16$ 7. $y = 19/169 - 5x/338$ 8. $-1/4$ 9. $8/9$ 10. 24 11. -3 12. $f(4) = 1/3$, $\frac{d}{dx} \frac{f(x)}{g(x)} = 13/18$

Answers for 5.1

1.
$$4x^3 - 9x^2 + x + 7$$
 2. $3x^2 - 4x + 2/\sqrt{x}$ 3. $6(x^2 + 1)^2x$ 4. $\sqrt{169 - x^2} - x^2/\sqrt{169 - x^2}$ 5. $(2x - 4)\sqrt{25 - x^2} - (x^2 - 4x + 5)x/\sqrt{25 - x^2}$ 6. $-x/\sqrt{r^2 - x^2}$ 7. $2x^3/\sqrt{1 + x^4}$ 8. $\frac{1}{4\sqrt{x}(5 - \sqrt{x})^{3/2}}$ 9. $6 + 18x$ 10. $\frac{2x + 1}{1 - x} + \frac{x^2 + x + 1}{(1 - x)^2}$ 11. $-1/\sqrt{25 - x^2} - \sqrt{25 - x^2}/x^2$ 12. $\frac{1}{2}\left(\frac{-169}{x^2} - 1\right)/\sqrt{\frac{169}{x}} - x$ 13. $\frac{3x^2 - 2x + 1/x^2}{2\sqrt{x^3 - x^2 - (1/x)}}$ 14. $\frac{300x}{(100 - x^2)^{5/2}}$ 15. $\frac{1 + 3x^2}{3(x + x^3)^{2/3}}$ 16. $\left(4x(x^2 + 1) + \frac{4x^3 + 4x}{2\sqrt{1 + (x^2 + 1)^2}}\right)/\sqrt{\frac{169}{x^2}}$ 17. $5(x + 8)^4$ 18. $-3(4 - x)^2$ 19. $6x(x^2 + 5)^2$ 20. $-12x(6 - 2x^2)^2$ 21. $24x^2(1 - 4x^3)^{-3}$ 22. $5 + 5/x^2$ 23. $-8(4x - x)^2$

1) $(2x^2 - x + 3)^{-3}$ 24. $1/(x + 1)^2$ 25. $3(8x - 2)/(4x^2 - 2x + 1)^2$ 26. $-3x^2 + 5x - 1$ 27. $6x(2x - 4)^3 + 6(3x^2 + 1)(2x - 4)^2$ 28. $-2/(x - 1)^2$ 29. $4x/(x^2 + 1)^2$ 30. $(x^2 - 6x + 7)/(x - 3)^2$ 31. $-5/(3x - 4)^2$ 32. $60x^4 + 72x^3 + 18x^2 + 18x - 6$ 33. $(5 - 4x)/((2x + 1)^2(x - 3)^2)$ 34. $1/(2(2 + 3x)^2)$ 35. $56x^6 + 72x^5 + 110x^4 + 100x^3 + 60x^2 + 28x + 6$ 36. y = 23x/96 - 29/96 37. y = 3 - 2x/3 38. y = 13x/2 - 23/2 39. y = 2x - 11 40. $y = \frac{20 + 2\sqrt{5}}{5\sqrt{4 + \sqrt{5}}}x + \frac{3\sqrt{5}}{5\sqrt{4 + \sqrt{5}}}$

Answers for 5.2

1. -x/y 2. x/y 3. -(2x+y)/(x+2y) 4. $(2xy-3x^2-y^2)/(2xy-3y^2-x^2)$ 5. $\frac{-2xy}{x^2-3y^2}$ 6. $-\sqrt{y}/\sqrt{x}$ 7. $\frac{y^{3/2}-2}{1-y^{1/2}3x/2}$ 8. $-y^2/x^2$ 9. 1 10. $y=2x\pm 6$ 11. $y=x/2\pm 3$ 12. $(\sqrt{3},2\sqrt{3}), (-\sqrt{3},-2\sqrt{3}), (2\sqrt{3},\sqrt{3}), (-2\sqrt{3},-\sqrt{3})$ 13. $y=7x/\sqrt{3}-8/\sqrt{3}$ 14. $y=(-y_1^{1/3}x+y_1^{1/3}x_1+x_1^{1/3}y_1)/x_1^{1/3}$ 15. $(y-y_1)/(x-x_1)=(2x_1^3+2x_1y_1^2-x_1)/(2y_1^3+2y_1x_1^2+y_1)$

Answers for 5.3

1. $(x+1)^3 \sqrt{x^4+5}(3/(x+1)+2x^3/(x^4+5))$ **2.** $(2/x+5)x^2e^{5x}$ **3.** $2\ln(x)x^{\ln(x)-1}$ **4.** $(100+100\ln(x))x^{100x}$ **5.** $(4+4\ln(3x))(3x)^{4x}$ **6.** $((e^x)/x+e^x\ln(x))x^{e^x}$ **7.** $\pi x^{\pi-1} + \pi^x \ln(\pi)$ **8.** $(\ln(1+1/x)-1/(x+1))(1+1/x)^x$ **9.** $(1/\ln(x)+\ln(\ln(x)))(\ln(x))^x$ **10.** (f'(x)/f(x)+g'(x)/g(x)+h'(x)/h(x))f(x)g(x)h(x)

Answers for 6.1

1.
$$\sin(\sqrt{x})\cos(\sqrt{x})/\sqrt{x}$$
 2. $\frac{\sin(x)}{2\sqrt{x}} + \sqrt{x}\cos(x)$ 3. $-\frac{\cos(x)}{\sin^2(x)}$ 4. $\frac{(2x+1)\sin(x) - (x^2+x)\cos(x)}{\sin^2(x)}$ 5. $\frac{-\sin(x)\cos(x)}{\sqrt{1-\sin^2(x)}}$ 6. $\cos^2(x)-\sin^2(x)$ 7. $-\sin(x)\cos(\cos(x))$ 8. $\frac{\tan(x) + x\sec^2(x)}{2\sqrt{x}\tan(x)}$ 9. $\frac{\sec^2(x)(1+\sin(x)) - \tan(x)\cos(x)}{(1+\sin(x))^2}$ 10. $-\csc^2(x)$ 11. $-\csc(x)\cot(x)$ 12. $3x^2\sin(23x^2) + 46x^4\cos(23x^2)$ 13. 0 14. $-6\cos(\cos(6x))\sin(6x)$ 15. $\sin(\theta)/(\cos(\theta) + 1)^2$ 16. $5t^4\cos(6t) - 6t^5\sin(6t)$ 17. $3t^2(\sin(3t) + t\cos(3t))/\cos(2t) + 2t^3\sin(3t)\sin(2t)/\cos^2(2t)$

18. $n\pi/2$, any integer n **19.** $\pi/2 + n\pi$, any integer n **20.** $\sqrt{3}x/2 + 3/4 - \sqrt{3}\pi/6$ **21.** $8\sqrt{3}x + 4 - 8\sqrt{3}\pi/3$ **22.** $3\sqrt{3}x/2 - \sqrt{3}\pi/4$ **23.** $\pi/6 + 2n\pi$, $5\pi/6 + 2n\pi$, any integer n

Answers for 6.2

1.
$$\frac{-1}{1+x^2}$$
 2. $\frac{2x}{\sqrt{1-x^4}}$ 3. $\frac{e^x}{1+e^{2x}}$ 4. $-3x^2\cos(x^3)/\sqrt{1-\sin^2(x^3)}$ 5. $\frac{2}{(\arcsin(x))\sqrt{1-x^2}}$ 6. $-e^x/\sqrt{1-e^{2x}}$ 7. 0 8. $\frac{(1+\ln x)x^x}{\ln 5(1+x^{2x})\arctan(x^x)}$

Answers for 7.1

1. 0 2. ∞ 3. 1 4. 0 5. 0 6. 1 7. 1/6 8. $-\infty$ 9. 1/16 10. 1/3 11. 0 12. 3/2 13. -1/4 14. -3 15. 1/2 16. 0 17. -1 18. -1/2 19. 5 20. ∞ 21. ∞ 22. 2/7 23. 2 24. $-\infty$ 25. 1 26. 1 27. 2 28. 1 29. 0 30. 1/2 31. 2 32. 0 33. ∞ 34. 1/2 35. 0 36. 1/2 37. 5 38. $2\sqrt{2}$ 39. -1/2 40. 2 41. 0 42. ∞ 43. 0 44. 3/2 45. ∞ 46. 5 47. -1/2 48. does not exist 49. ∞

Answers for 7.2

1. $3/256 \text{ m/s}^2$ **2.** on the Earth: $\approx 4.5 \text{ s}$, $\approx 44 \text{ m/s}$; on the Moon: $\approx 11.2 \text{ s}$, $\approx 18 \text{ m/s}$ **3.** average rate: $\approx -0.67 \text{ gal/s}$; instantaneous rate: $\approx -0.71 \text{ gal/s}$ **4.** $\approx 8.9 \text{ s}$; $\approx 45 \text{ km/h}$. **5.** $p(t) = 300 \cdot 3^{t/4}$ **6.** $\approx -.02 \text{ mg/ml}$ per hour **7.** $\approx 39 \text{ cm/day}$; $\approx 0 \text{ cm/day}$

Answers for 7.3

1. $1/(16\pi)$ cm/s **2.** $3/(1000\pi)$ meters/second **3.** 1/4 m/s **4.** -6/25 m/s **5.** 80π mi/min **6.** $3\sqrt{5}$ ft/s **7.** $20/(3\pi)$ cm/s **8.** 13/20 ft/s **9.** $5\sqrt{10}/2$ m/s **10.** 75/64 m/min **11.** tip: 6 ft/s, length: 5/2 ft/s **12.** tip: 20/11 m/s, length: 9/11 m/s **13.** $380/\sqrt{3}-150\approx69.4$ mph **14.** $500/\sqrt{3}-200\approx88.7$ km/hr **15.** $136\sqrt{475}/19\approx156$ km/hr **16.** -50 m/s **17.** 68

m/s **18.** $3800/\sqrt{329}\approx 210$ km/hr **19.** $820/\sqrt{329}+150\sqrt{57}/\sqrt{47}\approx 210$ km/hr **20.** 4000/49 m/s

Index

arccosine, 105	derivative of secant, 101	inflection point, 63
arcsine, 105	derivative of sine, 98	instantaneous rate of change, 123
arctangent, 108	derivative of tangent, 101	Inverse Function Theorem, 91
asymptote	derivative of the natural logarithm, 90	
horizontal, 29	derivative rules	l'Hôpital's Rule, 114
vertical, 25	chain, 81	limit
average rate of change, 123	constant, 46	at infinity, 28
	power, 47	definition, 8
Binomial Theorem, 47	product, 74	definition of the derivative, 38
	quotient, 77	infinite, 25
chain rule, 81	sum, 49	limit laws, 19
composition of functions, 16		local maximum, 55
concave down, 62	e, 51	local minimum, 55
concave up, 62	Euler's number, 51	local extremum, 55
concavity test, 63	e^{x} , 51	logarithmic differentiation, 93
constant rule, 46	explicit function, 88	
continuous, 32		one-sided limit, 10
critical point, 56	Fermat's Theorem, 56	
	first derivative test, 59	product rule, 74
derivative		
limit definition, 38	horizontal asymptote, 29	quotient rule, 77
notation, 39		
of e^x , 51	implicit function, 88	second derivative test, 66
derivative of arccosine, 110	implicit differentiation, 88	Squeeze Theorem, 21
derivative of arcsine, 109	indeterminate form, 114	sum rule, 49
derivative of arctangent, 111	indeterminate forms, 116	
derivative of cosine, 100	infinite limit, 25	tangent line

informal definition, 37 the power rule, 47

triangle inequality, 15

vertical asymptote, 25