분류 분석 III

빅데이터 분석

(Artificial) Neural Networks

Linear Regression

$$\hat{y} = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b$$

Multilayer Perceptrons (MLP)

tanh relu

2.0

-0.5

relu(x), tanh(x)

 $h[0] = \tanh(w[0, 0] * x[0] + w[1, 0] * x[1] + w[2, 0] * x[2] + w[3, 0] * x[3])$ $h[1] = \tanh(w[0, 0] * x[0] + w[1, 0] * x[1] + w[2, 0] * x[2] + w[3, 0] * x[3])$ $h[2] = \tanh(w[0, 0] * x[0] + w[1, 0] * x[1] + w[2, 0] * x[2] + w[3, 0] * x[3])$ $\hat{y} = v[0] * h[0] + v[1] * h[1] + v[2] * h[2]$

붓꽃 데이터

Iris Versicolor

Iris Setosa

Iris Virginica

- Sepal length 꽃받침의 길이 정보
- Sepal width 꽃받침의 너비 정보
- Petal length 꽃잎의 길이 정보
- Petal width 꽃잎의 너비 정보
- Species (Target) 꽃의 종류 정보 (setosa / versicolor / virginica)

데이터 로딩 및 데이터 셋 분리

test_size=0.3, random_state=11)

In [1]: from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 붓꽃 데이터를 로딩 iris_data = load_iris() # 학습 데이터 셋과 테스트 데이터 셋으로 분리 X_train, X_test, y_train, y_test = train_test_split(iris_data.data, iris_data.target,

Neural network 와 Decision tree 정확도 비교

```
# Neural network from sklearn.neural_network import MLPClassifier

mlp_clf = MLPClassifier(solver='lbfgs', random_state=0, hidden_layer_sizes=[10])
mlp_clf.fit(X_train, y_train)
y_predict = mlp_clf.predict(X_test)

accuracy = accuracy_score(y_test, y_predict)
print('Neural network 예측 정확도: {0:.4f}'.format(accuracy))
```

Neural network

```
Decision tree
```

```
In [3]: # Decision tree
from sklearn.tree import DecisionTreeClassifier

dt_clf = DecisionTreeClassifier(random_state=156)
```

y_predict = dt_clf.predict(X_test)

dt_clf.fit(X_train, y_train)

accuracy = accuracy_score(y_test, y_predict) print('Decision Tree 예측 정확도: {0:.4f}'.format(accuracy))