Personal (For vi)

U.H.B.C. Chlef

Département des Mathématiques

Année Universitaire: 2019/2020 Faculté des Sciences Exactes et Informatique Niveau: 1^{ère} Master/ Option: M.A.S. Module: Processus Stochastiques 1.

Examen de Rattarpage (2 Heures)

Documents Non Autorisés

1. Questions de cours Oblob

Soit X_1, X_2, X_3, \dots une chaîne de Markov à espace d'état fini $E = \{1, 2, ..., N\}$ avec la matrice de transition P . Parmi les affirmations suivantes, dites lesquelles impliquent lesquelles.

- (a) Il existe une loi de probabilité $\bar{\pi}$ telleque $\lim_{n\to\infty} \pi \mathbf{P}^n = \bar{\pi}$ pour toute loi de probabilité π .
- (b) $\lim_{n\to\infty} \mathbf{P}^n = \begin{vmatrix} \bar{\pi} \\ \vdots \\ \bar{\pi} \end{vmatrix}$, pour une certaine loi de probabilité $\bar{\pi}$.
- (c) Il existe une loi de probabilité $\bar{\pi}$ telleque $\bar{\pi}P = \bar{\pi}$.
- **e** (d) $P_{ij} > 0$ pour tout $i, j \in E$
- $\boldsymbol{\mathfrak k}$ (e) Il existe n>0 telque $P_{ij}^{(n)}>0$ pour tout $i,j\in E$
- **9** (f) $P_{ij}^{(n)} > 0$ pour tout $i, j \in E$ et n > 0.
- **k** (g) Pour tout $i, j \in E$. Il existe n > 0 telque $P_{ij}^{(n)} > 0$.
- $\boldsymbol{\ell}_{2}$ (h) $X_{1}, X_{2}, X_{3}, \dots$ une chaîne de Markov irréductible.
- $\mbox{\ensuremath{\sl}{h}}$ (i) $X_1,X_2,X_3,...$ une chaîne de Markov irréductible apériodique.

2. Chaîne de Markov à temps discret

Soit X_1, X_2, X_3, \dots une suite de variables aléatoires i.i.d. à valeurs dans $E = \{1, 2, 3\}$ de loi de probabilité $\mathbb{P}(X_1=1)=1/2,\,\mathbb{P}(X_1=2)=1/3,\,\mathbb{P}(X_1=3)=1/6$

- (a) Expliquer pourquoi cette suite définit une Chaîne de Markov homogène.
- (b) Calculer la matrice de transition et la loi limite $\bar{\pi}$.
- (c) Donner la loi du temps de séjour et le temps moyen de séjour dans l'état 1.
- (d) Quel est le temps moven du retour à l'état 2?
- (e) Donner le nombre moyen de visites de l'état 3.
- (f) Calculer la limite: $\lim_{m \to \infty} \frac{1}{m} \sum_{n=1}^{m} (X_n)^r$; r > 0.

3. Chaîne de Markov à temps continu.

Trois (3) satellites de communication sont placés sur une orbite. La durée de vie d'un satellite est exponentiellement distribuée de movenne $1/\mu$, $\mu > 0$. Si l'un tombe en panne, son remplaçant sera envoyé. Le temps nécessaire pour préparer et envoyer un remplaçant est exponentiellement distribuée de movenne $1/\lambda$, $\lambda > 0$. Soit X(t) le nombre des satellites sur l'orbite à l'instant t. Supposons que $[X(t)]_{t\geq 0}$ est un processus de Markov à temps continu.

- (a) Tracer le diagramme des transitions.
- (b) Donner le générateur infinitésimal.
- (c) Ecrire les équations de Kolmogorov directes (forward) et rétrogrades (backword) du processus.
- (d) $[X(t)]_{t\geq 0}$ est-il un processus de Naissance et de Mort? Justifier!
- (e) Montrer que la limite $\lim_{t\to\infty} \mathbb{P}(X_t=i)$; $i\geq 0$ existe. Que représente cette limite?
- (f) Calculer la probabilité qu'à long-terme aucun satellite n'est sur l'orbite.

02/05

(c) des équations de Kolmogoros duects: P(t) = P(t), Q. ie, P'; (t) = [Past) Que; Earvors le équatris avant le colonnes de Q $P_{io}(t) = \sum_{b=0}^{\infty} P_{ib}(t) Q_{k0}$ /Pio(+) = - > Pio(+) + M Pia(+) [1) | Pin(t) = 2 lio(t)-(1+M)Pin(t)+2 MPie(t), iet Piz(t) = > Pix(t) - (1+2M) Piz(t) + 3MPiz(t) 1EIE Pi3(t) - 2 Pi2(t) - 3 MPi3(t); (EF) 2) Poi, (X) est on P.N.M., car d'après

le diagramme de transitions seules les

Promestrons possibles sont celles entre

les états adjacents. linite lim 11 (X = i) existi & existo, d'après le cours: To =

