

CNPJ: 17.358.703/0001-99 - I.E. 712.057.230.110 Rua Itaici, 130 - Jd. Itajaí - Várzea Paulista / SP

CEP. 13224-250

Certificado de Calibração

Número: 012326_01

1. Dados do Cliente

Empresa:	Suez - Técnologia e Soluções Para Tratamento de Água Ltda				
Endereço:	Rod. Raposo Tavares, 22901 - Granja Viana - Cotia/SP				
Cidade:	Cotia Estado: SP CEP: 06709-015				
Contratante:	Suez - Técnologia e Soluções Para Tratamento de Água Ltda				

2. Dados do Equipamento

Instrumento:	Espectrofotômetro
Modelo:	DR2800
Fabricante:	Hach

Capacidade:	340 - 900 nm
№ de Série:	1358800
Identificação:	ESP-00023

3. Condições Ambientais

Temperatura Ambiente
20 ± 0,4 °C

Umidade Relativa	
70 ± 1,2 % ur	

4. Informações da Calibração e Responsáveis

Técnico Executor:	Guilherme Azevedo
Responsável Técnico:	Wellington Barbosa

Data da Calibração:	17/05/2021
Data da Emissão:	17/05/2021

Local da Calibração:	Laboratório Heavy Industry - Lobos - Alumínio / SP
Responsável Instrumento:	Rafaela Gomes

5. Rastreabilidade dos Padrões

Código do Padrão	Descrição do Padrão	Orgão Calibrador	Certificado de Calibração	Data da Calibração	Validade da Calibração
H001A03FH	Filtro de Oxido de Holmio	Visomes	LV02172-27498-19-R0	09/09/2019	09/09/2021
H001A03FD	Filtro de Oxido de Didmio	Visomes	LV02172-27497-19-R0	09/09/2019	09/09/2021
H001A03FN	Filtro de Densidade Neutra	Visomes	LV02172-27499-19-R0	10/09/2019	10/09/2021
H002A03FN	Filtro de Densidade Neutra	Visomes	LV02172-27499-19-R0	10/09/2019	10/09/2021
H003A03FN	Filtro de Densidade Neutra	Visomes	LV02172-27499-19-R0	10/09/2019	10/09/2021
H004A03FN	Filtro de Densidade Neutra	Visomes	LV02172-27499-19-R0	10/09/2019	10/09/2021
G003A03TH - T	Termômetro Digital	Visomes	LV02172-17945-20-R0	26/06/2020	26/06/2022
G003A03TH - H	Higrômetro Digital	Visomes	LV02172-17945-20-R0	26/06/2020	26/06/2022

Aprovado Rafael Campos Rafael Campoy - Suez Labsupply - Suez

E-mail: vendas@eranalitica.com.br / Fone: (11) 4606-7200 / eranalitica.com.br

CNPJ: 17.358.703/0001-99 - I.E. 712.057.230.110 Rua Itaici, 130 - Jd. Itajaí - Várzea Paulista / SP

CEP. 13224-250

Certificado de Calibração Número:

6. Resultados da Medição para Comprimento de Onda

(VR) Valor de Referência (nm)	(VMO) Valor Médio do Objeto (nm)	(E) Tendência (VMO-VR) (nm)	(U) Incerteza Expandida (nm)	Fator de Abragência (k)	Graus de Liberdade Efetivos (veff)
360	361	1	1	2,00	Infinito
431	431	0	1	2,00	Infinito
474	473	-1	1	2,00	Infinito
529	529	0	1	2,00	Infinito
585	586	1	1	2,00	Infinito
641	641	0	1	2,00	Infinito
685	684	-1	1	2,00	Infinito
749	748	-1	1	2,00	Infinito
807	807	0	1	2,00	Infinito
880	879	-1	1	2,00	Infinito

Critério de Aceitação (nm)				
Mín.	Máx.			
357	363			
428	434			
471	477			
526	532			
582	588			
638	644			
682	688			
746	752			
804	810			
877	883			

012326_01

CNPJ: 17.358.703/0001-99 - I.E. 712.057.230.110 Rua Itaici, 130 - Jd. Itajaí - Várzea Paulista / SP

CEP. 13224-250

Certificado de Calibração

Número: 012326_01

7. Resultados da Calibração Escala Fotométrica Visível

Filtro Padrão de 5% Transmitância					
Comprimento de Onda (nm)	Valor de Referência (abs)	Valor Médio do Objeto (abs)	Tendência (VMO-VR) (abs)		
440	1,3714	1,367	-0,004		
465	1,2719	1,270	-0,002		
546	1,3205	1,317	-0,004		
590	1,3947	1,391	-0,004		
635	1,3731	1,370	-0,003		
	0,006 Abs				
	2,00				
	Infinito				

Filtro Padrão de 10% Transmitância					
Comprimento de Onda (nm)	Valor de Referência (abs)	Valor Médio do Objeto (abs)	Tendência (VMO-VR) (abs)		
440	1,0205	1,018	-0,002		
465	0,9380	0,937	-0,001		
546	0,9648	0,964	-0,001		
590	1,0201	1,017	-0,003		
635	1,0172	1,015	-0,002		
Incerteza Expandida (abs)			0,006 Abs		
Fator de Abragência (k)			2,00		
	Infinito				

Filtro Padrão de 25% Transmitância					
Comprimento de Onda (nm)	Valor de Referência (abs)	Valor Médio do Objeto (abs)	Tendência (VMO-VR) (abs)		
440	0,6594	0,657	-0,003		
465	0,6116	0,610	-0,002		
546	0,6349	0,634	-0,001		
590	0,6704	0,669	-0,001		
635	0,6601	0,660	0,000		
Incerteza Expandida (abs)			0,006 Abs		
Fator de Abragência (k)			2,00		
	Infinito				

Filtro Padrão de 50% Transmitância					
Comprimento de Onda (nm)	Valor de Referência (abs)	Valor Médio do Objeto (abs)	Tendência (VMO-VR) (abs)		
440	0,3369	0,334	-0,003		
465	0,3041	0,302	-0,002		
546	0,3067	0,304	-0,003		
590	0,3246	0,322	-0,003		
635	0,3325	0,333	0,001		
Incerteza Expandida (abs)			0,006 Abs		
Fator de Abragência (k)			2,00		
Graus de Liberdade Efetivos (veff)			Infinito		

CNPJ: 17.358.703/0001-99 - I.E. 712.057.230.110 Rua Itaici, 130 - Jd. Itajaí - Várzea Paulista / SP

CEP. 13224-250

Certificado de Calibração Número: 012326_01

8. Método de Calibração

O instrumento foi calibrado por comparação conforme descrito a seguir:

O item 6, foi calibrado em escala de comprimento de onda do instrumento com um Filtros Padrão de Óxido de Hólmio e Didmio nos pontos indicados e expressada a média de três leituras como resultado para cada ponto.

Item 7, foi calibrado com Filtros Ópticos de Densidade Neutra na região visível na escala de absorbância, sendo o resultado expresso, a média de três leituras

Para todos os itens a referência utilizada foi o ar.

9. Notas

- 1 Foi utilizada a norma ASTM E 925 como referência.
- 2 Tendência = Valor Médio do Objeto -Valor do Referência.
- 3 A incerteza expandida de medição relatada é baseada em uma incerteza padrão combinada, multiplicada por um fator de abrangência k, para um nível da confiança de aproximadamente 95%. Veff = grau de liberdade efetivo.
- 4 O presente certificado refere-se exclusivamente ao instrumento calibrado.
- 5 É proibida a reprodução parcial deste certificado, sem prévia autorização do laboratório.

10. Observações

Este certificado atende aos requisitos da Suez e de acordo com os valores apresentados encontra-se aprovado e disponivel para uso.

11. Responsável Técnico

Wellington Barbosa

Signatário Autorizado

