1

Coordinate Geometry Exercises

G V V Sharma*

CONTENTS

1 Conics 1

2 QR Decomposition 10

Abstract—This book provides some exercises related to coordinate geometry. The content and exercises are based on NCERT textbooks from Class 6-12.

1 Conics

1.1. Find the area of the region enclosed between the two circles: $\mathbf{x}^T \mathbf{x} = 4$ and $\left\| \mathbf{x} - \begin{pmatrix} 2 \\ 0 \end{pmatrix} \right\| = 2$. **Solution:** General equation of circle is

$$\mathbf{x}^T \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{1.1.1}$$

Taking equation of the first circle to be,

$$\|\mathbf{x}\|^2 + 2\mathbf{u}_1^T\mathbf{x} + f_1 = 0 \tag{1.1.2}$$

$$\mathbf{x}^T \mathbf{x} - 4 = 0 \tag{1.1.3}$$

$$\mathbf{u_1} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{1.1.4}$$

$$f_1 = -4 (1.1.5)$$

$$\mathbf{O_1} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{1.1.6}$$

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Taking equation of the second circle to be,

$$\left\|\mathbf{x} - \begin{pmatrix} 2\\0 \end{pmatrix}\right\|^2 = 2^2 \tag{1.1.7}$$

$$\mathbf{x}^T \mathbf{x} + 2\mathbf{u_2}^T \mathbf{x} = 0 \tag{1.1.8}$$

$$\mathbf{u_2} = \begin{pmatrix} -2\\0 \end{pmatrix} \tag{1.1.9}$$

$$f_2 = 0 (1.1.10)$$

$$\mathbf{O_2} = \begin{pmatrix} 2\\0 \end{pmatrix} \tag{1.1.11}$$

Now, Subtracting equation (1.1.8) from (1.1.3) We get,

$$\mathbf{x}^T \mathbf{x} - 2\mathbf{u_2}^T \mathbf{x} + f_1 - \mathbf{x}^T \mathbf{x} = 0$$
 (1.1.12)

$$2\mathbf{u}^T\mathbf{x} = -4 \tag{1.1.13}$$

$$\begin{pmatrix} -4 & 0 \end{pmatrix} \mathbf{x} = -4 \tag{1.1.14}$$

Which can be written as:-

$$\begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{x} = 1 \tag{1.1.15}$$

$$\mathbf{x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{1.1.16}$$

$$\mathbf{x} = \mathbf{q} + \lambda \mathbf{m} \tag{1.1.17}$$

$$\mathbf{q} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{1.1.18}$$

$$\mathbf{m} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{1.1.19}$$

Substituting (1.1.17) in (1.1.2)

$$\|\mathbf{x}\|^{2} + 2\mathbf{u}_{1}^{T}\mathbf{x} + f_{1} = 0$$

$$(1.1.20)$$

$$\|\mathbf{q} + \lambda \mathbf{m}\|^{2} + f_{1} = 0$$

$$(1.1.21)$$

$$(\mathbf{q} + \lambda \mathbf{m})^{T}(\mathbf{q} + \lambda \mathbf{m}) + f_{1} = 0$$

$$(1.1.22)$$

$$\mathbf{q}^{T}(\mathbf{q} + \lambda \mathbf{m}) + \lambda \mathbf{m}^{T}(\mathbf{q} + \lambda \mathbf{m}) + f_{1} = 0$$

$$(1.1.23)$$

$$\|\mathbf{q}\|^{2} + \lambda \mathbf{q}^{T}\mathbf{m} + \lambda \mathbf{m}^{T}\mathbf{q} + \lambda^{2} \|\mathbf{m}\|^{2} + f_{1} = 0$$

$$(1.1.24)$$

$$\|\mathbf{q}\|^{2} + 2\lambda \mathbf{q}^{T}\mathbf{m} + \lambda^{2} \|\mathbf{m}\|^{2} + f_{1} = 0$$

$$(1.1.25)$$

$$\lambda(\lambda \|\mathbf{m}\|^{2} + 2\mathbf{q}^{T}\mathbf{m}) = -f_{1} - \|\mathbf{q}\|^{2}$$

$$(1.1.26)$$

$$\lambda^{2} \|\mathbf{m}\|^{2} = -f_{1} - \|\mathbf{q}\|^{2}$$

$$(1.1.27)$$

$$\lambda^{2} = \frac{-f_{1} - \|\mathbf{q}\|^{2}}{\|\mathbf{m}\|^{2}}$$

$$(1.1.28)$$

$$\lambda^{2} = 3$$

$$(1.1.29)$$

$$\lambda = +\sqrt{3}, -\sqrt{3}$$

Substituting the value of λ in(1.1.17)

$$\mathbf{x} = \mathbf{q} + \lambda \mathbf{m} \tag{1.1.31}$$

(1.1.30)

$$\mathbf{A} = \begin{pmatrix} 1\\\sqrt{3} \end{pmatrix} \tag{1.1.32}$$

$$\mathbf{B} = \begin{pmatrix} 1 \\ -\sqrt{3} \end{pmatrix} \tag{1.1.33}$$

Now finding the direction vector \mathbf{m}_{O_1A} , \mathbf{m}_{O_1B} , \mathbf{m}_{O_2A} and \mathbf{m}_{O_2B} .

$$\mathbf{m}_{O_1A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix} = \begin{pmatrix} -1 \\ -\sqrt{3} \end{pmatrix} \tag{1.1.34}$$

$$\mathbf{m}_{O_1B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ -\sqrt{3} \end{pmatrix} = \begin{pmatrix} -1 \\ \sqrt{3} \end{pmatrix} \tag{1.1.35}$$

$$\mathbf{m}_{O_2A} = \begin{pmatrix} 2\\0 \end{pmatrix} - \begin{pmatrix} 1\\\sqrt{3} \end{pmatrix} = \begin{pmatrix} 1\\-\sqrt{3} \end{pmatrix} \tag{1.1.36}$$

$$\mathbf{m}_{O_2B} = \begin{pmatrix} 2\\0 \end{pmatrix} - \begin{pmatrix} 1\\-\sqrt{3} \end{pmatrix} = \begin{pmatrix} 1\\\sqrt{3} \end{pmatrix} \tag{1.1.37}$$

Now finding the angle $\angle O_1AB$.

$$\mathbf{m}_{O_{1}A}^{T}\mathbf{m}_{O_{1}B} = \|\mathbf{m}_{O_{1}A}\| \|\mathbf{m}_{O_{1}B}\| \cos \theta_{1} \quad (1.1.38)$$

$$\frac{\mathbf{m}_{O_{1}A}^{T}\mathbf{m}_{O_{1}B}}{\|\mathbf{m}_{O_{1}A}\| \|\mathbf{m}_{O_{1}B}\|} = \cos \theta_{1} \quad (1.1.39)$$

$$\frac{-2}{4} = \cos \theta_1 \quad (1.1.40)$$

$$\frac{-1}{2} = \cos \theta_1 \quad (1.1.41)$$

$$\theta_1 = 120^{\circ}$$
 (1.1.42)

Now finding the angle $\angle O_2AB$.

$$\mathbf{m}_{O_2 A}^T \mathbf{m}_{O_2 B} = \|\mathbf{m}_{O_2 A}\| \|\mathbf{m}_{O_2 B}\| \cos \theta_2$$
 (1.1.43)

$$\frac{\mathbf{m}_{O_2A}^T \mathbf{m}_{O_2B}}{\|\mathbf{m}_{O_2A}\| \|\mathbf{m}_{O_2B}\|} = \cos \theta_2 \quad (1.1.44)$$

$$\frac{-2}{4} = \cos \theta_2 \quad (1.1.45)$$

$$\frac{-1}{2} = \cos \theta_2$$
 (1.1.46)

$$\theta_2 = 120^{\circ}$$
 (1.1.47)

Finding area of O_1AB and O_2AB .

$$A_{O_1AB} = \frac{\theta_1}{360}r^2 - \frac{1}{2}2\sqrt{3}$$
 (1.1.48)

$$=\frac{120}{360}4\pi - \frac{1}{2}2\sqrt{3} \tag{1.1.49}$$

$$A_{O_2AB} = \frac{\pi\theta_2}{360}r^2 - \frac{1}{2}2\sqrt{3}$$
 (1.1.50)

$$=\frac{120}{360}4\pi - \frac{1}{2}2\sqrt{3} \tag{1.1.51}$$

Area of O1AO2B

$$A_{O_1AO_2B} = \frac{120}{360} 4\pi - \frac{1}{2} 2\sqrt{3} + \frac{120}{360} 4\pi - \frac{1}{2} 2\sqrt{3}$$

$$= \frac{8\pi}{3} - 2\sqrt{3}$$
(1.1.52)

1.2. Find the equation of the circle with radius 5 whose centre lies on x-axis and passes through the point $\binom{2}{3}$.

Solution:

Equation of the circle with radius r and centre(h,k) is given by,

$$x^T x + 2u^T x + f = 0 (1.2.1)$$

Fig. 1.1: Figure depicting intersection points of circle

where,

$$f = \mathbf{u}^T \mathbf{u} - r^2 \tag{1.2.2}$$

The radius and centre are respectively given by,

$$r = 5 \tag{1.2.3}$$

$$\mathbf{c} = -u = k\mathbf{e} \tag{1.2.4}$$

Where,

$$\mathbf{e} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{1.2.5}$$

$$\mathbf{x_1} = \begin{pmatrix} 2\\3 \end{pmatrix} \tag{1.2.6}$$

From the given data, we modify equation 1.2.1 as,

$$\mathbf{x_1}^T \mathbf{x_1} + 2(-k \quad 0)\begin{pmatrix} -k \\ 0 \end{pmatrix} + f = 0$$
 (1.2.7)

$$||\mathbf{x_1}||^2 + 2(k^2) + f = 0$$
 (1.2.8)

$$2k^2 + f = -\|\mathbf{x_1}\|^2 \quad (1.2.9)$$

Substituting \mathbf{u} in equation 1.2.2, we get,

$$f = \begin{pmatrix} -k & 0 \end{pmatrix} \begin{pmatrix} -k \\ 0 \end{pmatrix} - r^2 \tag{1.2.10}$$

$$f = (k^2) - r^2 (1.2.11)$$

$$k^2 - f = r^2 (1.2.12)$$

From equations 1.2.9 and 1.2.12,

$$\begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} k^2 \\ f \end{pmatrix} = \begin{pmatrix} -\|\mathbf{x_1}\|^2 \\ r^2 \end{pmatrix}$$
 (1.2.13)

Here $\|\mathbf{x_1}\|$ is given by,

$$\|\mathbf{x_1}\| = \sqrt{2^2 + 3^2} \tag{1.2.14}$$

$$||\mathbf{x_1}|| = \sqrt{13} \tag{1.2.15}$$

Substituting equation 1.2.6,1.2.3 in equation 1.2.13 we get,

$$\begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} k^2 \\ f \end{pmatrix} = \begin{pmatrix} -13 \\ 25 \end{pmatrix}$$
 (1.2.16)

The augumented matrix of 1.2.16 is given by,

$$\begin{pmatrix} 2 & 1 & | & -13 \\ 1 & -1 & | & 25 \end{pmatrix} \tag{1.2.17}$$

By using row reduction technique, we get,

$$\begin{pmatrix} 2 & 1 & | & -13 \\ 1 & -1 & | & 25 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_1} \begin{pmatrix} 1 & -1 & | & 25 \\ 2 & 1 & | & -13 \end{pmatrix}$$
(1.2.18)

$$\begin{pmatrix} 1 & -1 & 25 \\ 2 & 1 & -13 \end{pmatrix} \xrightarrow{R_2 = R_2 - 2R_1} \begin{pmatrix} 1 & -1 & 25 \\ 0 & 3 & -63 \end{pmatrix}$$
(1.2.19)

$$\begin{pmatrix} 1 & -1 & 25 \\ 0 & 3 & -63 \end{pmatrix} \xrightarrow{R_2 = \frac{R_2}{3}} \begin{pmatrix} 1 & -1 & 25 \\ 0 & 1 & -21 \end{pmatrix}$$

$$(1.2.20)$$

$$\begin{pmatrix} 1 & -1 & 25 \\ 0 & 1 & -21 \end{pmatrix} \xrightarrow{R_1 = R_1 + R_2} \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & -21 \end{pmatrix}$$

$$(1.2.21)$$

Equation 1.2.16 can we rewritten as,

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} k^2 \\ f \end{pmatrix} = \begin{pmatrix} 4 \\ -21 \end{pmatrix} \tag{1.2.22}$$

Expanding the above equation 1.2.22 we get,

$$k^2 = 4 (1.2.23)$$

$$k = \pm 2$$
 (1.2.24)

$$f = -21 \tag{1.2.25}$$

To get the centre substitute equation 1.2.24 in equation 1.2.4 To verify the above results we plot the circle with centre \mathbf{c} as $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} -2 \\ 0 \end{pmatrix}$, qFrom the above figure 1 it is clear that circle with centre $\mathbf{c} = \begin{pmatrix} -2 \\ 0 \end{pmatrix}$ passes through the point \mathbf{x}_1

Fig. 1: Circle of radius 5 centre lies on x-axis and passing through the point(2,3)

Desired equation of circle is given by,

$$c = \begin{pmatrix} -2\\0 \end{pmatrix} \tag{1.2.26}$$

$$f = -21 (1.2.27)$$

- 1.3. Find the equation of the circle passing through $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and making intercepts a and b on the coordinate axes.
- 1.4. Find the equation of a circle with centre $\binom{2}{2}$ and passes through the point $\binom{4}{5}$.

Solution: he general equation of a circle is

$$\mathbf{x}^T \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{1.4.1}$$

If
$$r$$
 is radius, $f = \mathbf{u}^T \mathbf{u} - r^2$ (1.4.2)

center
$$\mathbf{c} = -\mathbf{u}$$
 (1.4.3)

Given centre is $\binom{2}{2}$

$$\implies \mathbf{c} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \tag{1.4.4}$$

$$\implies \mathbf{u} = \begin{pmatrix} -2 \\ -2 \end{pmatrix} \tag{1.4.5}$$

Equation (1.4.1) becomes

$$\mathbf{x}^T \mathbf{x} + \begin{pmatrix} -4 & -4 \end{pmatrix} \mathbf{x} + f = 0 \tag{1.4.6}$$

This passes through point $\begin{pmatrix} 4 \\ 5 \end{pmatrix}$

Substituting $\mathbf{x} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$ in (1.4.6)

$$(4 5) \binom{4}{5} + (-4 -4) \binom{4}{5} + f = 0 (1.4.7)$$

$$\implies f = -5 \quad (1.4.8)$$

Also, radius can be determined as follows

$$f = \mathbf{u}^T \mathbf{u} - r^2 \tag{1.4.9}$$

$$\implies -5 = \begin{pmatrix} -2 & -2 \end{pmatrix} \begin{pmatrix} -2 \\ -2 \end{pmatrix} - r^2 \qquad (1.4.10)$$

$$\implies$$
 -5 = 8 - r^2 (1.4.11)

$$\implies r = \sqrt{13} \qquad (1.4.12)$$

The equation of required circle is

$$\mathbf{x}^T \mathbf{x} + (-4 \quad -4) \mathbf{x} - 5 = 0$$
 (1.4.13)

See Fig. 1

Fig. 1: plot showing the circle

- 1.5. Find the locus of all the unit vectors in the xy-plane.
- 1.6. Find the points on the curve $\mathbf{x}^T \mathbf{x} 2 \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{x} 3 = 0$ at which the tangents are parallel to the x-axis.
- 1.7. Find the area of the region in the first quadrant enclosed by x-axis, line $(1 \sqrt{3})\mathbf{x} = 0$ and the circle $\mathbf{x}^T\mathbf{x} = 4$.

Solution: The equation of a circle can be expressed as,

$$\mathbf{x}^T \mathbf{x} - 2\mathbf{c}^T \mathbf{x} + f = 0 \tag{1.7.1}$$

where \mathbf{c} is the center.

Comparing equation (1.7.1) with the circle equation given,

$$\mathbf{x}^T \mathbf{x} = 4 \tag{1.7.2}$$

$$\implies \mathbf{c} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad f = -4 \tag{1.7.3}$$

$$r = \sqrt{\mathbf{c}^T \mathbf{c} - f} = \sqrt{4} \tag{1.7.4}$$

$$\implies \boxed{r=2} \tag{1.7.5}$$

From equation (1.7.5), the point at which circle touches *x*-axis is $\binom{2}{0}$.

The direction vector of x-axis is $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

The direction vector of the given line $(1 - \sqrt{3})\mathbf{x} = 0$ is $\begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix}$.

The angle that the line makes with the x-axis is given by,

$$\cos \theta = \frac{\begin{pmatrix} \sqrt{3} & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}}{\left\| \begin{pmatrix} \sqrt{3} & 1 \end{pmatrix} \right\| \left\| \begin{pmatrix} 1 & 0 \end{pmatrix} \right\|} = \frac{\sqrt{3}}{2} \quad (1.7.6)$$

$$\implies \boxed{\theta = 30^{\circ}} \quad (1.7.7)$$

Using equation (1.7.5) and (1.7.7), the area of the sector is obtained as,

$$\implies \boxed{\frac{\theta}{360^{\circ}}\pi r^2 = \frac{30^{\circ}}{360^{\circ}}\pi (2)^2 = \frac{\pi}{3}}$$
 (1.7.8)

Fig. 4: Region enclosed by x-axis, line and circle

To find points **A** and **B**,

The parametric form of x-axis is,

$$\mathbf{B} = \mathbf{q} + \lambda \mathbf{m} \tag{1.7.9}$$

$$= \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{1.7.10}$$

From the intersection of circle and line, the value of λ can be found by,

$$\lambda^2 = \frac{-f_1 - ||\mathbf{q}||^2}{||\mathbf{m}||^2}$$
 (1.7.11)

$$=\frac{4-0}{1}=4\tag{1.7.12}$$

$$\implies \lambda = \pm 2$$
 (1.7.13)

Sub equation (1.7.13) in (1.7.10),

$$\mathbf{B} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} -2 \\ 0 \end{pmatrix} \tag{1.7.14}$$

As given in question as first quadrant,

$$\Longrightarrow \boxed{\mathbf{B} = \begin{pmatrix} 2\\0 \end{pmatrix}} \tag{1.7.15}$$

Similarly, to find point **A**, The parametric form of line is,

$$\mathbf{A} = \mathbf{q} + \lambda \mathbf{m} \tag{1.7.16}$$

$$= \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix} \tag{1.7.17}$$

$$\lambda^2 = \frac{-f_1 - ||\mathbf{q}||^2}{||\mathbf{m}||^2}$$
 (1.7.18)

$$=\frac{4-0}{4}=1\tag{1.7.19}$$

$$\implies \lambda = \pm 1 \tag{1.7.20}$$

$$\mathbf{A} = \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix} \quad \mathbf{A} = \begin{pmatrix} -\sqrt{3} \\ -1 \end{pmatrix} \tag{1.7.21}$$

$$\implies \boxed{\mathbf{A} = \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix}} \tag{1.7.22}$$

- 1.8. Find the area lying in the first quadrant and bounded by the circle $\mathbf{x}^T\mathbf{x} = 4$ and the lines x = 0 and x = 2.
- 1.9. Find the area of the circle $4\mathbf{x}^T\mathbf{x} = 9$.
- 1.10. Find the area bounded by curves $\|\mathbf{x} \begin{pmatrix} 1 \\ 0 \end{pmatrix}\| = 1$ and $\|\mathbf{x}\| = 1$
- 1.11. Find the smaller area enclosed by the circle $\mathbf{x}^T \mathbf{x} = 4$ and the line $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathbf{x} = 2$.
- 1.12. Find the slope of the tangent to the curve y =

 $\frac{x-1}{x-2}$, $x \neq 2$ at x = 10. **Solution:**

$$y = \frac{x - 1}{x - 2} \tag{1.12.1}$$

Equation (1.12.1) can be expressed as

$$y(x-2) = x - 1 \tag{1.12.2}$$

$$yx - 2y - x + 1 = 0 ag{1.12.3}$$

From above we can say,

$$\mathbf{V} = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{1.12.4}$$

$$\mathbf{u} = \begin{pmatrix} -\frac{1}{2} & -1 \end{pmatrix} \tag{1.12.5}$$

$$f = 1$$
 (1.12.6)

Now,

$$|V| = \begin{vmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{vmatrix} < 0,$$
 (1.12.7)

(1.12.1) is the equation of a hyperbola. To verify that this we will find the the characteristic equation of V.

$$\left| \lambda \mathbf{I} - \mathbf{V} \right| = \begin{vmatrix} \lambda & \frac{1}{2} \\ \frac{1}{2} & \lambda \end{vmatrix} = 0 \tag{1.12.8}$$

$$\implies \lambda^2 - 2\lambda + \frac{3}{4} = 0 \tag{1.12.9}$$

The eigenvalues are the roots of (1.12.9) given by

$$\lambda_1 = \frac{1}{2}, \lambda_2 = -\frac{1}{2} \tag{1.12.10}$$

The eigenvector \mathbf{p} is defined as

$$\mathbf{V}\mathbf{p} = \lambda \mathbf{p}$$
 (1.12.11)

$$\mathbf{V} \cdot \mathbf{p} = 0$$
 (1.12.12)

(1.12.14)

$$\implies (\lambda \mathbf{I} - \mathbf{V}) \mathbf{p} = 0 \tag{1.12.12}$$

where λ is the eigenvalue. For $\lambda_1 = \frac{1}{2}$,

$$(\lambda_{1}\mathbf{I} - \mathbf{V}) = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \xrightarrow{R_{2} \leftarrow R_{2} - R_{1}} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

$$(1.12.13)$$

$$\implies \mathbf{p}_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Now, λ is the eigenvalue. For $\lambda_2 = -\frac{1}{2}$,

$$(\lambda_{2}\mathbf{I} - \mathbf{V}) = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \xrightarrow{R_{2} \leftarrow R_{2} + R_{1}} \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}$$

$$(1.12.15)$$

$$\implies \mathbf{p}_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$(1.12.16)$$

From Equations,

$$\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1} = \mathbf{P}\mathbf{D}\mathbf{P}^{T} \quad :: \mathbf{P}^{-1} = \mathbf{P}^{T}$$
(1.12.17)

or,
$$\mathbf{D} = \mathbf{P}^T \mathbf{V} \mathbf{P}$$
 (1.12.18)

We can say that

$$\mathbf{P} = \begin{pmatrix} \mathbf{p}_1 & \mathbf{p}_2 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \qquad (1.12.19)$$

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix} \tag{1.12.20}$$

 $\mathbf{v} \cdot \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f > 0$, there isn't a need to swap axes. In hyperbola,

$$\mathbf{c} = -\mathbf{V}^{-}1\mathbf{u} \tag{1.12.21}$$

$$axes = \begin{cases} \sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_1}} \\ \sqrt{\frac{f - \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u}}{\lambda_2}} \end{cases}$$
 (1.12.22)

From above equations we can say that,

$$\mathbf{c} = \begin{pmatrix} -2\\-1 \end{pmatrix} \tag{1.12.23}$$

$$\sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_1}} = \sqrt{2}$$
 (1.12.24)

$$\sqrt{\frac{f - \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u}}{\lambda_2}} = \sqrt{2}$$
 (1.12.25)

with the standard hyperbola equation becoming

$$\frac{x^2}{2} - \frac{y^2}{2} = 1, (1.12.26)$$

Let us assume slope to be l,now finding the direction vector and normal vector of the tangent with slope 1.

$$\mathbf{m} = \begin{pmatrix} 1 \\ l \end{pmatrix} \tag{1.12.27}$$

$$\mathbf{n} = \begin{pmatrix} l \\ -1 \end{pmatrix} \tag{1.12.28}$$

Now considering the equations to find point of contact

$$\mathbf{q} = \mathbf{V}^{-1} \left(\kappa \mathbf{n} - \mathbf{u} \right) \tag{1.12.29}$$

$$\kappa = \pm \sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\mathbf{n}^T \mathbf{V}^{-1} \mathbf{n}}}$$
 (1.12.30)

By using (1.12.30)

$$\kappa = \sqrt{-\frac{1}{4l}} \tag{1.12.31}$$

Now substituting this κ in (1.12.29)

$$\mathbf{q} = \begin{pmatrix} -2\sqrt{-\frac{1}{4l}} + 2\\ 2\sqrt{\frac{-l}{4}} + 1 \end{pmatrix}$$
 (1.12.32)

We know that x=10.

$$-2\sqrt{-\frac{1}{4l}} + 2 = 10\tag{1.12.33}$$

$$-2\sqrt{-\frac{1}{4I}} = 8\tag{1.12.34}$$

$$\sqrt{-\frac{1}{4l}} = 4 \tag{1.12.35}$$

$$-\frac{1}{4l} = 16\tag{1.12.36}$$

$$l = -\frac{1}{64} \tag{1.12.37}$$

The slope of the tangent to the curve $y = \frac{x-1}{x-2}$, $x \neq 2$ at x = 10 is $\frac{1}{64}$. So, from the above we can say that $\kappa = 4, -4$ and from equation (1.12.27) and (1.12.28) direction and normal vectors will come out to be

$$\mathbf{m} = \begin{pmatrix} 1 \\ -\frac{1}{64} \end{pmatrix} \tag{1.12.38}$$

$$\mathbf{n} = \begin{pmatrix} -\frac{1}{64} \\ -1 \end{pmatrix} \tag{1.12.39}$$

Now using equation (1.12.29)

$$\mathbf{q}_1 = \mathbf{V}^{-1} \left(\kappa_1 \mathbf{n} - \mathbf{u} \right) \quad (1.12.40)$$

$$\mathbf{q}_1 = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \left(-4 \begin{pmatrix} -\frac{1}{64} \\ -1 \end{pmatrix} - \begin{pmatrix} -\frac{1}{2} \\ -1 \end{pmatrix} \right) \tag{1.12.41}$$

$$\mathbf{q}_1 = \begin{pmatrix} 10\\ \frac{9}{8} \end{pmatrix} \qquad (1.12.42)$$

$$\mathbf{q}_2 = \mathbf{V}^{-1} \left(\kappa_2 \mathbf{n} - \mathbf{u} \right) \qquad (1.12.43)$$

$$\mathbf{q}_2 = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \left(4 \begin{pmatrix} -\frac{1}{64} \\ -1 \end{pmatrix} - \begin{pmatrix} -\frac{1}{2} \\ -1 \end{pmatrix} \right) \tag{1.12.44}$$

$$\mathbf{q}_2 = \begin{pmatrix} -6\\ \frac{7}{8} \end{pmatrix} \qquad (1.12.45)$$

Fig. 5: Tangent 2 shows the tangent

- 1.13. Find a point on the curve $y = (x-2)^2$ at which the tangent is parallel to the chord joining the points $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 4 \\ 4 \end{pmatrix}$.
- (1.12.39) 1.14. Find the equation of all lines having slope 1 that are tangents to the curve $\frac{1}{x-1}$, $x \ne 1$
 - 1.15. Find the equation of all lines having slope -2 which are tangents to the curve $\frac{1}{x-3}$, $x \ne 3$. **Solution:** Given the curve,

$$y = \frac{1}{x - 3} \tag{1.15.1}$$

$$\implies xy - 3y - 1 = 0 \tag{1.15.2}$$

From (1.15.2) we get,

$$\mathbf{V} = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \mathbf{u} = \frac{-3}{2} \begin{pmatrix} 0 \\ 1 \end{pmatrix}, f = -1 \quad (1.15.3)$$

Now,

(1.15.1) is equation of hyperbola. Now,

$$\left| \lambda \mathbf{I} - \mathbf{V} \right| = \begin{vmatrix} \lambda & \frac{-1}{2} \\ \frac{-1}{2} & \lambda \end{vmatrix} = 0 \tag{1.15.5}$$

$$\implies \lambda^2 - \frac{1}{4} = 0 \tag{1.15.6}$$

Thus the eigen values are,

$$\lambda_1 = \frac{1}{2}, \lambda_2 = \frac{-1}{2} \tag{1.15.7}$$

The eigen vector **p** is given by,

$$(\lambda \mathbf{I} - \mathbf{V})\mathbf{p} = 0 \tag{1.15.8}$$

For $\lambda_1 = \frac{1}{2}$,

$$(\lambda_{1}\mathbf{I} - \mathbf{V}) = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \xrightarrow{R_{2} \leftarrow R_{2} + R_{1}} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$$

$$(1.15.9)$$

$$\implies \mathbf{p_{1}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$(1.15.10)$$

Similarly for λ_2 ,

$$(\lambda_{2}\mathbf{I} - \mathbf{V}) = \begin{pmatrix} \frac{-1}{2} & \frac{-1}{2} \\ \frac{-1}{2} & \frac{-1}{2} \end{pmatrix} \xrightarrow{R_{2} \leftarrow R_{-}R_{1}} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

$$(1.15.11)$$

$$\implies \mathbf{p}_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$(1.15.12)$$

Now,

$$\mathbf{P} = \begin{pmatrix} \mathbf{p_1} & \mathbf{p_2} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
 (1.15.13)

$$\mathbf{D} = \begin{pmatrix} \frac{1}{2} & 0\\ 0 & \frac{-1}{2} \end{pmatrix} \tag{1.15.14}$$

$$\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f = 1 \qquad (1.15.15)$$

 $\mathbf{v} \cdot \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f = 1 > 0$, there is no need to swap

the axes. The hyperbola parameters are,

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u} = 3 \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{1.15.16}$$

$$\sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_1}} = \sqrt{2}$$
 (1.15.17)

$$\sqrt{\frac{f - \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u}}{\lambda_1}} = \sqrt{2}$$
 (1.15.18)

with the standard hyperbola becoming,

$$\frac{x^2}{2} - \frac{y^2}{2} = 1 \tag{1.15.19}$$

The direction and normal vectors of the tangent with slope -2 are given as,

$$\mathbf{m} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \mathbf{n} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \tag{1.15.20}$$

Now considering the equations to find the point of contact,

$$\mathbf{q} = \mathbf{V}^{-1}(k\mathbf{n} - \mathbf{u}) \tag{1.15.21}$$

$$k = \pm \sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\mathbf{n}^T \mathbf{V}^{-1} \mathbf{n}}}$$
 (1.15.22)

Thus,

$$\mathbf{n}^T \mathbf{V}^{-1} \mathbf{n} = 8 \tag{1.15.23}$$

$$k = \pm \frac{1}{2\sqrt{2}} \tag{1.15.24}$$

$$\mathbf{q_1} = \begin{pmatrix} \frac{1+3\sqrt{2}}{\sqrt{2}} \\ \sqrt{2} \end{pmatrix} \tag{1.15.25}$$

$$\mathbf{q}_2 = \begin{pmatrix} \frac{-1+3\sqrt{2}}{\sqrt{2}} \\ -\sqrt{2} \end{pmatrix}$$
 (1.15.26)

The desired tangents are,

$$(2 1) \left\{ \mathbf{x} - \left(\frac{1+3\sqrt{2}}{\sqrt{2}} \right) \right\} = 0 (1.15.27)$$

$$\implies$$
 $(2 \ 1)\mathbf{x} = 6 + 2\sqrt{2}$ (1.15.28)

$$(2 \quad 1) \left\{ \mathbf{x} - \left(\frac{-1+3\sqrt{2}}{\sqrt{2}} \right) \right\} = 0$$
 (1.15.29)

$$\implies$$
 $(2 \ 1)\mathbf{x} = 6 - 2\sqrt{2}$ (1.15.30)

Below figure corresponds to the tangents on the hyperbola, represented by (1.15.28) and (1.15.30) each having slope of -2.

Fig. 6: Tangents to the hyperbola

- 1.16. Find points on the curve $\mathbf{x}^T \begin{pmatrix} \frac{1}{9} & 0 \\ 0 & \frac{1}{16} \end{pmatrix} \mathbf{x} = 1$ at which tangents are
 - a) parallel to x-axis
 - b) parallel to y-axis.
- 1.17. Find the equations of the tangent and normal to the given curves at the indicated points: $y = x^2$
- 1.18. Find the equation of the tangent line to the curve $y = x^{2} - 2x + 7$
 - a) parallel to the line (2 -1)x = -9
 - b) perpendicular to the line (-15 5)x = 13.
- 1.19. Find the equation of the tangent to the curve = $\sqrt{3x-2}$ which is parallel to the line 1.38. Find the area of the region bounded by the $(4 \ 2)\mathbf{x} + 5 = 0$.
- is a tangent to the curve $y^2 = 4x$.
- 1.21. The line $(-m \ 1)\mathbf{x} = 1$ is a tangent to the curve 1.40. Find the area between $y = x^2$ and y = x. $y^2 = 4x$. Find the value of m.
- 1.22. Find the normal at the point $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ on the curve $2y + x^2 = 3$
- 1.23. Find the normal to the curve $x^2 = 4y$ passing through $\binom{1}{2}$
- 1.24. Find the area of the region bounded by the curve $y^2 = x$ and the lines x = 1, x = 4 and the x-axis in the first quadrant.
- 1.25. Find the area of the region bounded by $y^2 =$ 9x, x = 2, x = 4 and the x-axis in the first quadrant.
- 1.26. Find the area of the region bounded by $x^2 =$

- 4y, y = 2, y = 4 and the y-axis in the first quadrant.
- 1.27. Find the area of the region bounded by the ellipse $\mathbf{x}^T \begin{pmatrix} \frac{1}{16} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \mathbf{x} = 1$
- 1.28. Find the area of the region bounded by the ellipse $\mathbf{x}^T \begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{9} \end{pmatrix} \mathbf{x} = 1$
- 1.29. The area between $x = y^2$ and x = 4 is divided into two equal parts by the line x = a, find the value of a.
- 1.30. Find the area of the region bounded by the parabola $y = x^2$ and y = |x|.
- 1.31. Find the area bounded by the curve $x^2 = 4y$ and the line (1 -1)x = -2.
- 1.32. Find the area of the region bounded by the curve $y^2 = 4x$ and the line x = 3.
- 1.33. Find the area of the region bounded by the curve $y^2 = x$, y-axis and the line y = 3.
- 1.34. Find the area of the region bounded by the two parabolas $y = x^2, y^2 = x$.
- 1.35. Find the area lying above x-axis and included between the circle $\mathbf{x}^T \mathbf{x} - 8 \begin{pmatrix} 1 & 0 \end{pmatrix} = 0$ and inside of the parabola $y^2 = 4x$.
- 1.36. AOBA is the part of the ellipse $\mathbf{x}^T \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x} =$ 36 in the first quadrant such that $O\dot{A} = 2$ and OB = 6. Find the area between the arc AB and the chord AB.
- 1.37. Find the area lying between the curves $y^2 = 4x$ and y = 2x.
- curves $y = x^2 + 2$, y = x, x = 0 and x = 3.
- 1.20. Find the point at which the line $\begin{pmatrix} -1 & 1 \end{pmatrix} \mathbf{x} = 1$ 1.39. Find the area under $y = x^2, x = 1, x = 2$ and x-axis.

 - 1.41. Find the area of the region lying in the first quadrant and bounded by $y = 4x^2, x = 0, y = 1$ and y = 4.
 - 1.42. Find the area enclosed by the parabola 4y = $3x^2$ and the line $(-3 \ 2)x = 12$.
 - 1.43. Find the area of the smaller region bounded by the ellipse $\mathbf{x}^T \begin{pmatrix} \frac{1}{9} & 0 \\ 0 & \frac{1}{4} \end{pmatrix} \mathbf{x} = 1$ and the line $\begin{pmatrix} \frac{1}{a} & \frac{1}{b} \end{pmatrix} \mathbf{x} = 1$
 - 1.44. Find the area of the region enclosed by the parabola $x^2 = y$, the line $\begin{pmatrix} -1 & 1 \end{pmatrix} \mathbf{x} = 2$ and the x-axis.

1.45. Find the area bounded by the curves

$$\{(x,y): y > x^2, y = |x|\}$$
 (1.45.1)

1.46. Find the area of the region

$$\{(x,y): y^2 \le 4x, 4\mathbf{x}^T\mathbf{x} = 9\}$$
 (1.46.1)

1.47. Find the area of the circle $\mathbf{x}^T \mathbf{x} = 16$ exterior to the parabola $y^2 = 6$.

Now by using equations (2.1.5) to (2.1.9)

$$k_1 = \sqrt{5} (2.1.13)$$

$$\mathbf{u}_1 = \sqrt{\frac{1}{5}} \begin{pmatrix} 1\\2 \end{pmatrix}, \tag{2.1.14}$$

$$r_1 = \sqrt{5} \tag{2.1.15}$$

$$\mathbf{u}_2 = \sqrt{\frac{1}{5}} \begin{pmatrix} -2\\1 \end{pmatrix} \tag{2.1.16}$$

$$k_2 = \sqrt{5} \tag{2.1.17}$$

(2.1.18)

Thus obtained QR decomposition is

 $\begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} \sqrt{5} & \sqrt{5} \\ 0 & \sqrt{5} \end{pmatrix}$

2.1.
$$\begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$$
Solution: Let
$$2.2. \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

$$2.3. \begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}$$

$$\alpha = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 (2.1.1) 2.4. $\begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix}$
$$\beta = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$
 (2.1.2) 2.5. $\begin{pmatrix} 2 & 1 \\ 7 & 4 \end{pmatrix}$ nese as 2.6. $\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$

We can express these as

$$\alpha = k_1 \mathbf{u}_1
\beta = r_1 \mathbf{u}_1 + k_2 \mathbf{u}_2$$
(2.1.3)
(2.1.4)
$$2.7. \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix}$$
2.8.
$$\begin{pmatrix} 4 & 5 \\ 3 & 4 \end{pmatrix}$$

where

$$k_{1} = \|\alpha\|$$

$$\mathbf{u}_{1} = \frac{\alpha}{k_{1}}$$

$$(2.1.5)$$

$$2.9. \begin{pmatrix} 3 & 10 \\ 2 & 7 \end{pmatrix}$$

$$r_{1} = \frac{\mathbf{u}_{1}^{T}\beta}{\|\mathbf{u}_{1}\|^{2}}$$

$$\mathbf{u}_{2} = \frac{\beta - r_{1}\mathbf{u}_{1}}{\|\beta - r_{1}\mathbf{u}_{1}\|}$$

$$k_{2} = \mathbf{u}_{2}^{T}\beta$$

$$(2.1.5)$$

$$(2.1.6)$$

$$(2.1.6)$$

$$(2.1.6)$$

$$(2.1.7)$$

$$(2.1.8)$$

$$(2.1.8)$$

$$(2.1.8)$$

$$(2.1.9)$$

$$(2.1.9)$$

From (2.1.3) and (2.1.4),

(2.1.3) and (2.1.4),

$$(\alpha \quad \beta) = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{pmatrix} \begin{pmatrix} k_1 & r_1 \\ 0 & k_2 \end{pmatrix}$$
(2.1.10)
$$(2.1.10) \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$$

$$(2.1.11)$$

triangular matrix and

$$\mathbf{Q}^T \mathbf{Q} = \mathbf{I} \tag{2.1.12}$$

From above we can see that **R** is an upper 2.15. Find QR decomposition of $\begin{pmatrix} 2 & 3 \\ 3 & -4 \end{pmatrix}$

Solution: Let **a** and **b** be the column vectors

of the given matrix.

$$\mathbf{a} = \begin{pmatrix} 2\\3 \end{pmatrix} \tag{2.15.1}$$

$$\mathbf{b} = \begin{pmatrix} 3 \\ -4 \end{pmatrix} \tag{2.15.2}$$

lows,

$$\mathbf{a} = k_1 \mathbf{u}_1 \tag{2.15.3}$$

$$\mathbf{b} = r_1 \mathbf{u}_1 + k_2 \mathbf{u}_2 \tag{2.15.4}$$

Here,

$$k_1 = ||\mathbf{a}|| \tag{2.15.5}$$

$$\mathbf{u}_1 = \frac{\mathbf{a}}{k_1} \tag{2.15.6}$$

$$r_1 = \frac{\mathbf{u}_1^T \mathbf{b}}{\|\mathbf{u}_1\|^2} \tag{2.15.7}$$

$$\mathbf{u}_2 = \frac{\mathbf{b} - r_1 \mathbf{u}_1}{\|\mathbf{b} - r_1 \mathbf{u}_1\|} \tag{2.15.8}$$

$$k_2 = \mathbf{u}_2^T \mathbf{b} \tag{2.15.9}$$

The (2.15.3) and (2.15.4) can be written as,

$$\begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{pmatrix} \begin{pmatrix} k_1 & r_1 \\ 0 & k_2 \end{pmatrix} \tag{2.15.10}$$

$$\begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix} = \mathbf{Q}\mathbf{R} \tag{2.15.11}$$

Now, **R** is an upper triangular matrix and also,

$$\mathbf{Q}^T \mathbf{Q} = \mathbf{I} \tag{2.15.12}$$

Now using equations (2.15.5) to (2.15.9) we get,

$$k_1 = \sqrt{2^2 + 3^2} = \sqrt{13}$$
 (2.15.13)

$$\mathbf{u}_1 = \frac{1}{\sqrt{13}} \begin{pmatrix} 2\\3 \end{pmatrix} \tag{2.15.14}$$

$$r_1 = \left(\frac{2}{\sqrt{13}} \quad \frac{3}{\sqrt{13}}\right) \begin{pmatrix} 3\\ -4 \end{pmatrix} = -\frac{6}{\sqrt{13}}$$
 (2.15.15)

$$\mathbf{u}_2 = \frac{1}{\sqrt{13}} \begin{pmatrix} 3 \\ -2 \end{pmatrix} \tag{2.15.16}$$

$$k_2 = \left(\frac{3}{\sqrt{13}} - \frac{2}{\sqrt{13}}\right) \begin{pmatrix} 3\\ -4 \end{pmatrix} = \frac{17}{\sqrt{13}}$$
 (2.15.17)

Thus putting the values from (2.15.13) to (2.15.17) in (2.15.11) we obtain QR decomposition,

$$\begin{pmatrix} 2 & 3 \\ 3 & -4 \end{pmatrix} = \begin{pmatrix} \frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}} \\ \frac{3}{\sqrt{13}} & -\frac{2}{\sqrt{13}} \end{pmatrix} \begin{pmatrix} \sqrt{13} & -\frac{6}{\sqrt{13}} \\ 0 & \frac{17}{\sqrt{13}} \end{pmatrix}$$
 (2.15.18)

The column vectors can be expressed as fol- 2.16. Find the QR decomposition of $\begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}$

Solution:

Let c_1 and c_2 be the column vectors of the given matrix.

$$\mathbf{c_1} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \tag{2.16.1}$$

$$\mathbf{c_2} = \begin{pmatrix} 2\\4 \end{pmatrix} \tag{2.16.2}$$

The column vectors can be represented as,

$$\mathbf{c_1} = k_1 \mathbf{u}_1 \tag{2.16.3}$$

$$\mathbf{c_2} = r_1 \mathbf{u}_1 + k_2 \mathbf{u}_2 \tag{2.16.4}$$

where,

$$k_1 = \|\mathbf{c_1}\| \tag{2.16.5}$$

$$\mathbf{u_1} = \frac{\mathbf{c_1}}{k_1} \tag{2.16.6}$$

$$r_1 = \frac{\mathbf{u}_1^T \mathbf{c_2}}{\|\mathbf{u}_1\|^2} \tag{2.16.7}$$

$$\mathbf{u_2} = \frac{\mathbf{c_2} - r_1 \mathbf{u_1}}{\|\mathbf{c_2} - r_1 \mathbf{u_1}\|}$$
 (2.16.8)

$$k_2 = \mathbf{u_2}^T \mathbf{c_2} \tag{2.16.9}$$

From (2.16.3) and (2.16.4),

$$\begin{pmatrix} \mathbf{c_1} & \mathbf{c_2} \end{pmatrix} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{pmatrix} \begin{pmatrix} k_1 & r_1 \\ 0 & k_2 \end{pmatrix} \qquad (2.16.10)$$

$$\begin{pmatrix} \mathbf{c_1} & \mathbf{c_2} \end{pmatrix} = \mathbf{QR} \tag{2.16.11}$$

Where \mathbf{R} is an upper triangular matrix and

$$\mathbf{Q}^T \mathbf{Q} = \mathbf{I} \tag{2.16.12}$$

Using equations (2.16.5) to (2.16.9) we get,

$$k_1 = \sqrt{3^2 + 1^2} = \sqrt{10}$$
 (2.16.13)

$$\mathbf{u_1} = \frac{1}{\sqrt{10}} \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{3}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} \end{pmatrix}$$
 (2.16.14)

$$r_1 = \left(\frac{3}{\sqrt{10}} \quad \frac{1}{\sqrt{10}}\right) \begin{pmatrix} 2\\4 \end{pmatrix} = \sqrt{10}$$
 (2.16.15)

$$\mathbf{u_2} = \begin{pmatrix} \frac{-1}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} \end{pmatrix} \tag{2.16.16}$$

$$k_2 = \left(\frac{-1}{\sqrt{10}} \quad \frac{3}{\sqrt{10}}\right) \begin{pmatrix} 2\\4 \end{pmatrix} = \sqrt{10}$$
 (2.16.17)

Now putting the values from (2.16.13) to (2.16.17), we obtain the QR decomposition of given matrix,

$$\begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} \frac{3}{\sqrt{10}} & \frac{-1}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \end{pmatrix} \begin{pmatrix} \sqrt{10} & \sqrt{10} \\ 0 & \sqrt{10} \end{pmatrix} (2.16.18)$$

2.17. Find QR decomposition of $\begin{pmatrix} 4 & 3 \\ 5 & -2 \end{pmatrix}$

Solution: The QR decomposition of a matrix is a decomposition of the matrix into an orthogonal matrix and an upper triangular matrix. A QR decomposition of a real square matrix A is a decomposition of A as

$$\mathbf{A} = \mathbf{QR} \tag{2.17.1}$$

where \mathbf{Q} is an orthogonal matrix and \mathbf{R} is an upper triangular matrix Given

$$\mathbf{A} = \begin{pmatrix} 4 & 3 \\ 5 & -2 \end{pmatrix} \tag{2.17.2}$$

Let **a** and **b** be the column vectors of the given matrix

$$\mathbf{a} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \tag{2.17.3}$$

$$\mathbf{b} = \begin{pmatrix} 3 \\ -2 \end{pmatrix} \tag{2.17.4}$$

The above column vectors (2.17.3) ,(2.17.4) can be expressed as ,

$$\mathbf{a} = t_1 \mathbf{u}_1 \tag{2.17.5}$$

$$\mathbf{b} = s_1 \mathbf{u}_1 + t_2 \mathbf{u}_2 \tag{2.17.6}$$

Where,

$$t_1 = ||\mathbf{a}|| \tag{2.17.7}$$

$$\mathbf{u}_1 = \frac{\mathbf{a}}{t_1} \tag{2.17.8}$$

$$s_1 = \frac{\mathbf{u}_1^T \mathbf{b}}{\|\mathbf{u}_1\|^2} \tag{2.17.9}$$

$$\mathbf{u}_2 = \frac{\mathbf{b} - s_1 \mathbf{u}_1}{\|\mathbf{b} - s_1 \mathbf{u}_1\|} \tag{2.17.10}$$

$$t_2 = \mathbf{u}_2^T \mathbf{b} \tag{2.17.11}$$

The (2.17.5) and (2.17.6) can be written as,

$$\begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{pmatrix} \begin{pmatrix} t_1 & s_1 \\ 0 & t_2 \end{pmatrix}$$
 (2.17.12)

$$\begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix} = \mathbf{Q}\mathbf{R} \tag{2.17.13}$$

Here, \mathbf{R} is an upper triangular matrix and \mathbf{Q} is an orthogonal matrix such that

$$\mathbf{Q}^T \mathbf{Q} = \mathbf{I} \tag{2.17.14}$$

Now using equations from (2.17.7) to (2.17.11) we get,

$$t_1 = \sqrt{4^2 + 5^2} = \sqrt{41} \tag{2.17.15}$$

$$\mathbf{u}_1 = \frac{1}{\sqrt{41}} \begin{pmatrix} 4\\5 \end{pmatrix} \tag{2.17.16}$$

$$s_1 = \left(\frac{4}{\sqrt{41}} \quad \frac{5}{\sqrt{41}}\right) \begin{pmatrix} 3\\ -2 \end{pmatrix} = \frac{2}{\sqrt{41}}$$
 (2.17.17)

$$\mathbf{u}_2 = \frac{1}{\sqrt{41}} \begin{pmatrix} 5\\ -4 \end{pmatrix} \tag{2.17.18}$$

$$t_2 = \left(\frac{5}{\sqrt{41}} \quad \frac{-4}{\sqrt{41}}\right) \begin{pmatrix} 3\\ -2 \end{pmatrix} = \frac{23}{\sqrt{41}}$$
 (2.17.19)

Substituting the values from (2.17.15) to (2.17.19) in (2.17.13) we obtain QR decomposition as,

$$\begin{pmatrix} 4 & 3 \\ 5 & -2 \end{pmatrix} = \begin{pmatrix} \frac{4}{\sqrt{41}} & \frac{5}{\sqrt{41}} \\ \frac{5}{\sqrt{41}} & \frac{-4}{\sqrt{41}} \end{pmatrix} \begin{pmatrix} \sqrt{41} & \frac{2}{\sqrt{41}} \\ 0 & \frac{23}{\sqrt{41}} \end{pmatrix} (2.17.20)$$