SMART INDIA HACKATHON 2024

TITLE PAGE

- **Problem Statement ID** SIH1572
- Problem Statement Title Design/Development of an efficient Energy
 Storage System (ESS) to integrate
 intermittent Renewable Energy sources and
 to support/stabilize the grid
- Theme Renewable / Sustainable Energy
- PS Category Hardware
- Team ID 33281
- Team Name BUGS DENIED

IDEATITLE

Proposed Solution :

- Peer-to-peer (P2P) energy trading platform "URRJA".
- Houses with excess energy from solar panels share it with their neighborhood via blockchain technology.
- Energy is traded using a digital token system ensuring transparency and realtime transactions.

Adressing the problem :

- Solves grid instability and storage inefficiencies by promoting localized energy trading.
- Reduces central grid pressure by allowing renewable energy to be consumed locally, minimizing transmission losses.
- Promotes the use of renewable energy during peak or intermittent production times.

Unique Value Proposition :

- Decentralized, blockchain-driven platform puts energy management in the hands of communities.
- Real-time energy trading with dynamic pricing.
- Digital energy credits incentivize renewable resource creation.

TECHNICAL APPROACH

Algorithm Development :

- **Step 1:** Install smart meters at premises for energy monitoring.
- **Step 2:** Send real-time data to a cloud server, log surplus in blockchain.
- <u>Step 3:</u> Users access URRJA app for energy credits and conduct P2P energy trades.
- **Step 4:** Blockchain secures transaction settlements.

Flow Chart:

Technologies used:

- Programming: Python, JavaScript, Solidity (for blockchain development).
- Frameworks: Hyperledger for backend, ReactJS for frontend.
- Blockchain Protocol: Hyperledger or Ethereum for energy transactions.
- **Hardware**: IoT-enabled smart meters for energy measurement, edge devices for data gathering.

Product Status: 56% Completed.

FEASIBILITY & VIABILITY

→ Feasibility and Viability:

- Proven technologies like IoT, blockchain, and renewable energy make URRJA highly feasible.
- Successful P2P energy trading cases like SOLShare in Bangladesh highlight its viability.
 URRJA scales easily from local networks to larger regional grids.
- URRJA's blockchain architecture fits seamlessly into India's existing traditional and renewable energy systems.

→ Challenges & Risks :

- Regulatory Barriers: India's energy policy doesn't fully allow P2P trading.
- Adoption Resistance: Low tech-awareness may hinder initial adoption.
- Grid Compatibility: Old grid architecture poses integration challenges.

⇒ Strategies :

- Policy Advocacy: Promote policy changes to support decentralized trading.
- Community Engagement: Raise awareness of economic and environmental benefits.
- Tech Innovation: Develop hybrid systems that integrate smoothly with existing grids.

IMPACTS AND BENEFITS

▶ <u>Impacts</u>:

- Encourages communities to generate and share their own
 energy, also reduces the dependency on central grids.
- Reduced energy bills by allowing households to sell their surplus power.
- Opens new economic opportunities in renewable energy production and management sectors
- Minimises energy loss during transmission which
 contributes to cleaner, greener urban and rural environments
- Reduces the dependency on fossil fuel consumption

Benefits:

- Helps create a new income generating path for households producing excess energy
- Promotes clean energy over fossil fuels but cutting down on carbon emissions
- Strengthens community ties and paves the way for expanding decentralised energy solutions across regions
- Increases energy accessibility in off grid or rural areas
 and reduces strains on national grid by balancing local energy
 generation
- Community self reliance i.e helps local communities to manage their energy needs independently

RESEARCH AND REFERENCES

SL.no	Title/Description/Year of Publication	Author/Publisher	Contribution	Limitation
1	Peer-to-Peer Energy Trading meets IOTA: Toward a Scalable, Low-Cost, and Efficient Trading System (2022)	Conor Mullaney Adnan Aijaz Nathan Sealey Ben Holden	 Development of a P2P energy trading system based on IOTA Tangle and smart contracts. Introduction of a hierarchical routing structure for interconnected micro-grids 	 Conventional blockchain technologies face scalability and energy efficiency challenges. Some consensus mechanisms are too energy expensive or slow.
2	Peer-to-Peer Energy Trading through Swarm Intelligent Stackelberg Game (2023)	Chathurangi Edussuriya Umar Marikkar Subash Wickramasinghe Upul Jayasinghe Janaka Alawatugoda	 Decentralised energy trading network using blockchain technology. Swarm intelligence technique for optimising energy trading among intelligent agents 	 Traditional neural networks had low efficiency and accuracy. Existing models needed noise reduction and parameter adjustment for improvement.
3	Grid-connected versus stand-alone energy systems for decentralized power—A review of literature(2009)	Deepak Paramashivan Kaundinya P Balachandra N Ravindranath	Review of 102 articles on decentralized power systems. Assessment of techno-economic feasibility for grid-connected and stand-alone systems	 Poor performance due to sizing and systemic issues. Limited coverage on generalized assessment methods
4	A Decentralized System for Green Energy Distribution in a Smart Grid(2020)	Romana Talat Muhammad Muzammal Qiang Qu Wei Zhou Muhammad Najam-Ul-Islam Hosseini Bamakan Jiangnan Qiu	 Novel proof of distribution protocol for decentralized energy transfer. Digital certificates ensure security in energy distribution protocol 	 Security and fault tolerance cannot be achieved simultaneously. Malicious generators may claim energy transfer without generation.
5	Decentralized operating modes for electrical distribution systems with distributed energy resources (2009)	Nouredine Hadjsaid Raphael Carie Bertrand Raison	 Development of decentralized operating modes for EDS management. Validation of self-healing functionalities in micro distribution networks 	 Centralized management limits handling of DER integration. Legacy systems complicate transition to decentralized operations