Gewöhnliche Differentialgleichungen - Übungsblatt 3

Wintersemester 2021/22

Prof. Dr. Marciniak-Czochra, Christian Düll

Abgabe: 12. November, 11:00 Uhr in den Zettelkasten (1. Stock Mathematikon)

Aufgabe 3.1 4 Punkte

Seien $f, g : \mathbb{R} \to \mathbb{R}$ stetige Funktionen und $y_0 \in \mathbb{R}$ sei eine isolierte Nullstelle von g, d.h. $g(y_0) = 0$ und es existiert $\varepsilon > 0$, sodass für alle $y \in [y_0 - \varepsilon, y_0 + \varepsilon] \setminus \{y_0\}$ gilt: $g(y) \neq 0$. Nehmen Sie weiter an, dass die uneigentlichen Integrale

$$\int_{y_0-\varepsilon}^{y_0} \frac{1}{g(\xi)} d\xi \quad \text{sowie} \quad \int_{y_0}^{y_0+\varepsilon} \frac{1}{g(\xi)} d\xi$$

divergieren. Dann besitzt das AWP

$$\begin{cases} y' = f(t)g(y) \\ y(t_0) = y_0 \end{cases}$$
 (1)

für beliebige $t_0 \in \mathbb{R}$ eine eindeutige globale Lösung.

Aufgabe 3.2 4 Punkte

Im Folgenden seien $t_0, y_0 \in \mathbb{R}$, a > 0, $I := [t_0, t_0 + a]$, $I_0 := (t_0, t_0 + a]$ und $f : I \times \mathbb{R}$ eine Funktion. In dieser Aufgabe betrachten das AWP

$$y' = f(t, y), y(t_0) = y_0.$$
 (2)

Eine differenzierbare Funktion $v: I \to \mathbb{R}$ heißt **Unterfunktion** von (2), wenn

$$v'(t) < f(t, v(t)) \, \forall t \in I \text{ und } v(t_0) < y_0.$$

Analog heißt eine differenzierbare Funktion $w: I \to \mathbb{R}$ Oberfunktion von (2), wenn

$$w'(t) > f(t, w(t)) \, \forall t \in I \text{ und } w(t_0) \ge y_0.$$

In dieser Aufgabe wollen wir zeigen, dass man mittels Ober-und Unterfunktionen das Verhalten einer DGL untersuchen kann, ohne die Lösung explizit berechnen zu müssen (siehe b)). Für den Beweis benötigen wir die Hilfsaussage a)

a) Es seien $\phi, \psi: I_0 \to \mathbb{R}$ differenzierbar. Weiterhin existiere $\varepsilon \in (0, a)$, sodass $\phi < \psi$ auf $(t_0, t_0 + \varepsilon)$ und es gelte

$$\phi'(t) - f(t, \phi(t)) < \psi'(x) - f(t, \psi(t)) \qquad \forall t \in I_0.$$

Zeigen Sie, dass dann $\phi < \psi$ auf I_0 .

b) Es sei $y:I\to\mathbb{R}$ eine Lösung von (2) und $v,w:I\to\mathbb{R}$ eine Unter-bzw Oberfunktion von (2). Dann gilt

$$v(t) < y(t) < w(t)$$
 $\forall t \in I_0.$

In den folgenden beiden Aufgaben könnte manchmal die Aussage aus Aufgabe 3.2 hilfreich sein, indem Sie passende Ober-bzw Unterfunktionen konstruieren.

Aufgabe 3.3 4 Punkte

a) Betrachten Sie die gewöhnliche Differentialgleichung

$$\begin{cases} y' = f(t, y) = e^{y^2}, \\ y(0) = y_0 \in \mathbb{R} \end{cases}$$
 (3)

Zeigen Sie, dass jede Lösung y von (3) nach endlicher Zeit explodiert, d.h. gegen $\pm \infty$ strebt.

b) Es sei $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ stetig und lokal Lipschitz-stetig. Es gelte

$$f(-t,y) = -f(t,y)$$
 für alle $(t,y) \in \mathbb{R}^2$.

Zeigen Sie, dass dann jede Lösung $\varphi: [-r, r] \to \mathbb{R}$ mit r > 0, der Differentialgleichung y' = f(x, y) bei Spiegelung an der y-Achse in sich übergeht.

Aufgabe 3.4 4 Punkte

Es sei $F: \mathbb{R} \to \mathbb{R}$ definiert durch

$$F(x) := \begin{cases} x \sin(\frac{1}{x}), & x \in \mathbb{R} \setminus \{0\} \\ 0, & x = 0. \end{cases}$$

Zeigen Sie, dass das Anfangswertproblem

$$\begin{cases} \frac{dy}{dt} = F(y(t)), & t \in [0, \frac{1}{2}], \\ y(0) = y_0 \end{cases}$$
 (4)

für jedes $y_0 > 0$ genau eine Lösung besitzt.

Hinweis: Es ist nicht notwendig, die Lösung explizit anzugeben.

Sie können folgendes Resultat ohne Beweis verwenden: Ist $y:(a,b)\to\mathbb{R}$ eine eindeutige maximale Lösung zu (4), die nicht global definiert ist, dann gilt $\lim_{t\to b} \|y(t)\| = \infty$ (analog für den Limes gegen a). Es muss dann also ein blow-up vorliegen.