Zobrazení – cvičení 1:

(Celá úloha zabere při jednotce 1cm minimálně 2/3 strany A4, bod A je vlevo nahoře.) Zobrazte v souřadné soustavě vrcholy ΔABC, A[1; 8], B[2; 6], C[5; 7].

- Nejprve jej zobrazte ve středové souměrnosti se středem S[4; 4] do polohy $A_1B_1C_1$.
- $\Delta A_1 B_1 C_1$ posuňte do polohy $A_2 B_2 C_2$ v posunutí určeném \overrightarrow{TS} , T[0;1].
- $\Delta A_2 B_2 C_2$ zobrazte v osové souměrnosti určené osou x. Získáte tak $\Delta A_3 B_3 C_3$.
- $\Delta A_3 B_3 C_3$ otočte o -85° . Střed otáčení je O[5;-1]. Dostanete $\Delta A_4 B_4 C_4$.
- Nakonec $\Delta A_4 B_4 C_4$ zobrazte do $\Delta A_5 B_5 C_5$ v osové souměrnosti s osou $A_4 C_4$.
- Je složení těchto pěti zobrazení shodnost přímá?

Zobrazení – cvičení 2:

Zobrazte půlkruh s průměrem |AB| = 6cm

- ve středové souměrnosti se středem *A*
- v osové souměrnosti s osou BK, kde K je libovolný bod kruhového oblouku AB různý od A, B
- v posunutí určeném vektorem $\frac{3}{2}\overrightarrow{BA}$
- v otočení kolem středu O o 110° (O je libovolný bod z vnitřní oblasti půlkruhu)

Konstrukce – cvičení 3:

 ΔKLM nejprve zobrazte v osové souměrnosti s osou o do polohy $K_1L_1M_1$. Tento obraz dále posuňte do polohy $K_2L_2M_2$ v posunutí určeném vektorem $\frac{2}{3}\overrightarrow{LK}$.

Konstrukce – cvičení 4:

Daný $\triangle ABC$ zobrazte nejprve ve stejnolehlosti se středem S a koeficientem -0.5 do polohy $A_1B_1C_1$, ten potom ve stejnolehlosti se středem B_1 a koeficientem 3 do $\triangle A_2B_2C_2$. Nakonec $\triangle A_2B_2C_2$ zobrazte ve stejnolehlosti se středem O (O je střed úsečky A_2C_2) a koeficientem 0.5, získáte tak výsledný $\triangle A_3B_3C_3$.

