

Multimodal LLMs

Yu Meng

University of Virginia yumeng5@virginia.edu

Nov 11, 2024

Announcement

- Guest lecture (11/08) grades posted; contact Xu (ftp8nr@virginia.edu) if you have questions
- Assignment 5 has been released (deadline: 12/02 11:59pm)

Overview of Course Contents

- Week 1: Logistics & Overview
- Week 2: N-gram Language Models
- Week 3: Word Senses, Semantics & Classic Word Representations
- Week 4: Word Embeddings
- Week 5: Sequence Modeling and Neural Language Models
- Week 6-7: Language Modeling with Transformers (Pretraining + Fine-tuning)
- Week 8: Large Language Models (LLMs) & In-context Learning
- Week 9-10: Reasoning, Knowledge, and Retrieval-Augmented Generation (RAG)
- Week 11: LLM Alignment
- Week 12: Language Agents
- Week 13: Recap + Future of NLP
- Week 15 (after Thanksgiving): Project Presentations

(Recap) Overview: Language Model Alignment

- Ensure language models behaviors are aligned with human values and intent
- "HHH" criteria (Askell et al. 2021):
 - **Helpful**: Efficiently perform the task requested by the user
 - Honest: Give accurate information & express uncertainty
 - Harmless: Avoid offensive/discriminatory/biased outputs

4/32

(Recap) Post-training for Alignment

- Pretrained language models are **not** aligned
- Objective mismatch
 - Pretraining is to predict the next word in a sentence
 - Does not involve understanding human intent/values
- Training data bias
 - Text from the internet can contain biased, harmful, or misleading information
 - LMs don't distinguish between good and bad behavior in training data
- (Over-)generalization issues
 - LMs' generalization can lead to outputs that are inappropriate in specific contexts
 - Might not align with intended ethics/honesty standard

(Recap) Language Model Alignment Techniques

Reinforcement Learning from Human Feedback (RLHF)

Prompt

(Recap) Instruction Tuning: Method

- Input: task description
- **Output**: expected response or solution to the task
- Train LLMs to generate response tokens given prompts $\min_{m{ heta}} \log p_{m{ heta}}(m{y}|m{x})$

Paper: https://arxiv.org/pdf/2109.01652

(Recap) Instruction Tuning vs. Other Paradigms

- Task-specific fine-tuning does not enable generalization across multiple tasks
- In-context learning requires few-shot demonstrations

Instruction tuning enables zero-shot cross task generalization

(Recap) Instruction Tuning vs. Pretraining

- Both instruction tuning and pretraining are multi-task learning paradigms
- Supervision
 - Pretraining: self-supervised learning (raw data w/o human annotation)
 - Instruction tuning: supervised learning (human annotated responses)
- Task format
 - Pretraining: tasks are implicit (predicting next tokens)
 - Instruction tuning: tasks are explicit (defined using natural language instructions)
- Goal
 - Pretraining: teach LMs a wide range of linguistic patterns & general knowledge
 - Instruction tuning: teach LMs to follow specific instructions and perform a variety of tasks

Join at slido.com

(Recap) Better Generalization with More Clusters#2705 251

- Held out three clusters from instruction tuning: Commonsense, NLI, Closed-book QA
- More clusters and tasks used in instruction tuning => better generalization to unseen clusters

(Recap) Different Model Sizes

- Instruction tuning can hurt small model (< 8B) generalization
- Instruction tuning substantially improves generalization for large models

(Recap) Why RLHF

Costly human annotations

- Instruction tuning requires human annotators to write down the entire expected responses
- RLHF only relies on preference labels (which response is better?)

Open-ended generation

- Open-ended creative generation (e.g., story writing) inherently has no single "right" answer
- RLHF uses human feedback to determine which response is more creative/appealing

Token-level learning

- Instruction tuning applies the language modeling loss -> penalizes all token mistakes equally regardless of their impact on the overall quality of the output (e.g., a grammatical error might be less critical than a factual inaccuracy)
- RLHF uses human feedback to prioritize the error types that are more important to correct

Suboptimal human answers

- Instruction tuning may learn the suboptimal patterns written by humans
- Identifying a better answer from a few options is usually easier than writing an optimal answer entirely

(Recap) RLHF Illustration

(Recap) Preference Data

Join at slido.com #2705 251

Humans are better at relative judgments than absolute ones

What are the steps for making a simple cake?

- 1. Preheat oven to 350°F (175°C).
- 2. Grease and flour a cake pan.
- In a bowl, combine 2 cups flour, 1.5 cups sugar, 3.5 tsp baking powder, and a pinch of salt.
- Add 1/2 cup butter, 1 cup milk, and 2 tsp vanilla; mix well.
- 5. Beat in 3 eggs, one at a time.
- 6. Pour batter into the pan.
- Bake for 30-35 minutes or until a toothpick comes out clean.
- 8. Let cool, then frost or serve as desired.

What are the steps for making a simple cake?

- 1. Warm up the oven.
- 2. Grease a cake pan.
- 3. Blend dry ingredients in a bowl.
- 4. Incorporate butter, milk, and vanilla.
- Mix in the eggs.
- 6. Pour into the prepared pan.
- Bake until golden brown.
- Add frosting if desired.

Preference data: (x, y_w, y_l) prompt

preferred

preferred

(losing) response

(winning) response

(Recap) Reward Model Setup

Goal: train a reward model to assign a higher reward to y_w than y_l

Apply a linear layer at the last token representation to learn a scalar output

(Recap) Reward Model Training

Bradley-Terry pairwise comparison objective

(Recap) Regularized Reward Optimization

Add a penalty for drifting too far from the initial SFT checkpoint

$$\max_{\theta} \mathbb{E}_{\boldsymbol{y} \sim p_{\theta}(\cdot | \boldsymbol{x})} \left[r_{\phi}(\boldsymbol{x}, \boldsymbol{y}) - \beta \log \left(\frac{p_{\theta}(\boldsymbol{y} | \boldsymbol{x})}{p_{\text{SFT}}(\boldsymbol{y} | \boldsymbol{x})} \right) \right]$$
Maximize reward
Prevent deviation from the initial (SFT) model hyperparameter

- ullet Penalize cases where $p_{ heta}(oldsymbol{y}|oldsymbol{x}) > p_{ ext{SFT}}(oldsymbol{y}|oldsymbol{x})$
- In expectation, it is known as the Kullback-Leibler (KL) divergence $\mathrm{KL}(p_{ heta}(m{y}|m{x})\|p_{\mathrm{SFT}}(m{y}|m{x}))$

(Recap) Optimization with RL

- Why reinforcement learning:
 - No supervised data available (only a reward model)
 - Encourage the model to explore new possibilities (generations) guided by the reward model
- Optimization: policy gradient methods
 - Optimize the policy (LLM) by adjusting the parameters in the direction that increases expected rewards
- REINFORCE (simplest policy gradient method):

Further Reading on RLHF

- RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment [Dong et al., 2023]
- <u>Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint</u> [Xiong et al., 2023]
- <u>SLiC-HF: Sequence Likelihood Calibration with Human Feedback</u> [Zhao et al., 2023]
- <u>SimPO: Simple Preference Optimization with a Reference-Free Reward</u> [Meng et al., 2024]

The Evolution of GPT Models: GPT-4

- GPT-1: decoder-only Transformer pretraining
- GPT-2: language model pretraining is multi-task learning
- GPT-3: scaling up & in-context learning
- ChatGPT: language model alignment
- GPT-4: multimodality

GPT-1	GPT-2	GPT-3	ChatGPT (GPT-3.5)	GPT-4	
2018	2019	2020	2022	2023	

GPT-4: Multimodal Input Processing

accept both images and texts as input

Source: hmmm (Reddit)

FPT-4 The image shows a package for a "Lightning Cable" adapter with three panels.

Panel 1: A smartphone with a VGA connector (a large, blue, 15-pin connector typically used for computer monitors) plugged into its charging port.

Panel 2: The package for the "Lightning Cable" adapter with a picture of a VGA connector on it.

Panel 3: A close-up of the VGA connector with a small Lightning connector (used for charging iPhones and other Apple devices) at the end.

The humor in this image comes from the absurdity of plugging a large, outdated VGA connector into a small, modern smartphone charging port.

Overview: Multimodal LLMs

- Process and understand multiple types of data (e.g., text, images, audio, and video)
- More comprehensive and contextually rich understanding & generation
- Multimodal input processing (common):
 - Accept and process different types of input data
 - Examples: understanding the content of an image, transcribing and interpreting speech, analyzing video content, or integrating information from sensor data
- Multimodal output generation (less common):
 - Generate output in various modalities
 - Examples: creating realistic images from text descriptions, translating speech to text, or generating music according to user descriptions

Overview: Multimodal Architecture

- Architecture:
 - Require modality-specific architectures (e.g., vision/audio/video encoders)
 - Usually LLMs serve as the strong base
- Multimodal fusion: fuse information from different modalities
 - Early fusion: Combine raw input data from different modalities before processing
 - Late fusion: Process each modality separately and then combine the representations later

Overview: Multimodal Datasets

Training datasets need to contain paired examples of different modalities => teach the model the relationships between different types of data

Source: https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg

What is unusual about this image?

The unusual aspect of this image is a man ironing clothes on the back of a minivan or van. This is not a typical place to perform this activity, as one would usually iron clothes in a more stationary and safe location, such as a home, using a regular ironing board.

Learning Aligned Visual Representations

- Goal: learn a joint embedding space where images and their matching text descriptions are close together
- **CLIP** (Contrastive Language-Image Pretraining): predict the correct pairings of a batch of (image, text) training examples

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford * 1 Jong Wook Kim * 1 Chris Hallacy 1 Aditya Ramesh 1 Gabriel Goh 1 Sandhini Agarwal 1 Girish Sastry 1 Amanda Askell 1 Pamela Mishkin 1 Jack Clark 1 Gretchen Krueger 1 Ilya Sutskever 1

CLIP: Contrastive Pretraining

Maximize similarity between correct image-text pairs and minimize for incorrect ones

CLIP: Zero-shot Generalization

After training, the text encoder/image encoder can embed the target class names/test images for zero-shot image classification

Visual Instruction Tuning

- Goal: fine-tune a multimodal LLM to learn to follow instructions for tasks that involve both visual and textual information
- LLaVA (Large Language and Vision Assistant): combine a pretrained vision encoder (e.g., CLIP) with a large language model (e.g., Llama) for visual instruction tuning

Visual Instruction Tuning

Haotian Liu^{1*}, Chunyuan Li^{2*}, Qingyang Wu³, Yong Jae Lee¹

¹University of Wisconsin–Madison ²Microsoft Research ³Columbia University https://llava-vl.github.io

LLaVA: Architecture

- Learn a projection matrix (W) to convert imagine representations (Z_v) to text embeddings (H_v)
- Concatenate visual tokens (H_v) with text tokens (H_q) as input to the model

LLaVA: Results

Sometimes I just look at pictures of the earth from space and I marvel at how beautiful it all is.

User LLaVA Can you explain this meme in detail?

The meme in the image is a creative and humorous take on food, with a focus on chicken nuggets, as the center of the universe. The meme begins with the phrase "Sometimes I just look at pictures of the Earth from space and I marvel at how beautiful it all is..." The main image features a tray of cooked chicken nuggets, with the chicken pieces positioned to resemble the continents and islands on a world map. The meme playfully suggests that the chicken nuggets represent the Earth, and the various locations depicted in the photo are

Further Reading on Multimodal LLMs

- <u>Zero-Shot Text-to-Image Generation</u> [Ramesh et al., 2021]
- Flamingo: a Visual Language Model for Few-Shot Learning [Alayrac et al., 2022]
- AudioLM: a Language Modeling Approach to Audio Generation [Borsos et al., 2022]
- Movie Gen: A Cast of Media Foundation Models [Polyak et al., 2024]

Thank You!

Yu Meng

University of Virginia

yumeng5@virginia.edu