

GNNExplainer: Generating Explanations for Graph Neural Networks

이상용 / 2020-04-03

Computational Data Science LAB

GNNExplainer: Generating Explanations for Graph Neural Networks

Computational Data Science LAB	
목차	 Introduction Formulating explanations for graph neural networks GNNEXPLAINER Experiments
논의사항 및 결정사항	
관련문서	Ying, Z., Bourgeois, D., You, J., Zitnik, M., & Leskovec, J. (2019). Gnnexplainer: Generating explanations for graph neural networks. In Advances in Neural Information Processing Systems (pp. 9240–9251).

CONTENTS

- 1. Introduction
- 2. Formulating explanations for graph neural networks
- 3. GNNEXPLAINER
- 4. Experiments

01 | INTRODUCTION

- Graph neural networks (GNN)은 그래프 데이터에 대해 강력한 머신러닝 툴
- GNN은 특정한 노드에 대한 node representation과 그래프의 structural information을 고려하여 학습하는 특성으로 인해, GNN 모델에 대한 해석을 하는 것은 어려움
- 본 논문은 최초의 GNN기반 모델 해석을 위한 model-agnostic 방식의 GNNExplainer을 제안

Explaning GNN's predictions

02 Formulating explanations for graph neural networks

- G: graph, E: edges, V: nodes, $\mathcal{X} = \{x_1, ..., x_n\}, x_i \in \mathbb{R}^d$
- Φ: optimized GNN model
- Background on graph neural networks
 - ✓ GNN 모델 Φ는 세 가지 중요한 computations 특성을 가짐
 - 1. 모델은 모든 노드 쌍에 대해 message를 계산 $\rightarrow m_{ij}^l = \mathrm{MSG}(\mathbf{h}_i^{l-1}, \mathbf{h}_j^{l-1}, r_{ij})$
 - 2. 노드 v_i 의 이웃노드 \mathcal{N}_{v_i} 의 메시지 m_{ij}^l 를 모두 aggregate하는 특성 $\rightarrow M_i^l = \mathrm{AGG}(\{m_{ij}^l|v_j\in\mathcal{N}_{v_i}\})$
 - 3. l번째 layer의 v_i feature 정보를 구하기 위해 1,2 의 정보를 사용하여 update $\rightarrow \mathbf{h}_i^l = \text{UPDATE}(M_i^l, \mathbf{h}_i^{l-1})$
 - ✓ GNNExplainer는 MSG, AGG, UPDATE 세 가지의 computations 특성을 GNN에 대해 explanation 가능 (Model-agnostic)

03 GNNEXPLAINER

GNNEXPLAINER: Problem formulation

- \checkmark G_c : graph, $A_c(v) \in \{0,1\}^{n \times n}$: adj, $X_c(v) = \{x_j | v_j \in G_c(v)\}$: feature set
- ✓ The GNN model learns a conditional distribution $P_{\Phi}(Y|G_c,X_c)$, $\hat{y} = \Phi(G_c(v),X_c(v))$: prediction
- ✓ GNNEXPLAINER는 (G_S, X_S^F) 로 \hat{y} 의 해석을 제공함
- \checkmark G_S : small subgraph, X_S^F : small subset of node feature (i.e., $X_S^F = \{x_i^F | v_i \in G_S\}$)

03 GNNEXPLAINER

- \checkmark 노드 v가 주어졌을 때, GNN의 예측 \hat{y} 에 중요한 영향을 준 서브그래프 $G_S \subset G_c$ 와 features $X_S^F = \{x_j^F | v_j \in G_S\}$ 를 찾는 것이 목적
- ✓ 본 논문은 importance의 개념을 mutual information M/로 공식화 하고, GNNEXPLAINER를 optimization framework로 공식화 함

전체 그래프 서브 그래프
$$MU(Y,(G_S,X_S))=H(Y)-H(Y|G=G_S,X=X_S).$$
 $P_{east}=0.99
ightarrow H(east)$: 높음 $P_{west}=0.01
ightarrow H(west)$: 낮음

- \checkmark Mi는 서브그래프 G_S 와 서브피쳐 X_S^F 로 제한되었을 때 \hat{y} 의 확률의 변화를 정량화
- \checkmark G_c 에서 v_i 의 \hat{y} 을 예측하는데 어떤 노드 v_i 를 지웠을 때 확률이 강하게 감소한다면, v_i 는 v_i 의 예측에 대한 좋은 설명
- ✓ 엔트로피 term H(Y)는 ϕ 가 고정 되어 있기 때문에 상수
- ✓ 즉, 위 식을 maximization 하는 것은 $H(Y|G = G_S, X = X_S)$ 를 minimize 하는 것과 같음

03 GNNEXPLAINER

GNNEXPLAINER's optimization framework

$$H(Y|G=G_S,X=X_S)=-\mathbb{E}_{Y|G_S,X_S}\left[\log P_\Phi(Y|G=G_S,X=X_S)
ight].$$

- ✓ Compact explanation을 위해 G_S 의 사이즈를 제한할 수 있음 : $|G_S| \leq K_M$
- \checkmark 위 목적함수를 바로 최적화 하는 것은 어려움 \to G_c 에 대한 모든 가능한 G_S 후보군을 고려해야 하기 때문
- ✓ Computationally efficient version of GNNEXPLAINER's objective, which we optimize using gradient descent, is as follows:

$$\min_{M} - \sum_{c=1}^{C} \mathbb{1}[y=c] \log P_{\Phi}(Y=y|G=A_S \odot \sigma(M), X=X_S),$$

Fractional adjacency matrix

- \checkmark $M \in \mathbb{R}^{n \times n}$: 학습해야하는 mask, $\sigma : mask$ 를 $[0,1]^{n \times n}$ 으로 매핑하는 sigmoid 함수
- ✓ 어떤 변수가 결과에 중요한 영향을 미쳤는지 파악할 때에도 위와 같은 방식으로 진행
- ✓ Binary feature selector $F \in \{0,1\}^d$ 사용 $\to X_S^F$ as X_S ⊙ F

04 | EXPERIMENTS

• 인조데이터 - 중요한 subgraphs structure

• 실제데이터 - 중요한 subgraphs structure

• 중요변수

Q&A

감사합니다.