Natural Language Processing - Exercise 3

Due: 22.12.2024 23:59

Please submit **two** files – a pdf file for the answers to the questions and a zip archive. The zip file should contain your code files and a README txt. Please do not put the pdf in the zip.

1. (10 pts) Consider this (toy) biological setup:

A cell can be in one of two states - H, for high GC-content, and L for low GC. On each time step the cell produces one nucleotide, A,C,T or G, and might also change its state. The probability of changing from state H to L is 0.5, and from state L to H is 0.4.

In state H the probabilities for producing nucleotides are 0.2 for A, 0.3 for C, 0.3 for G and 0.2 for T. In L the probabilities are 0.3 for A, 0.2 for C, 0.2 for G and 0.3 for T.

Consider the nucleotide sequence S = ACCGTGCA. Use the Viterbi algorithm to find the best state-sequence and calculate the probability of S given this state-sequence. Assume the previous state before S was H.

2. (10 pts) In class we saw the trigram HMM model and the corresponding Viterbi algorithm. We will now make two main changes. First, we will consider a four-gram tagger, where p takes the form:

$$p(x_1 \cdots x_n, y_1 \cdots y_{n+1}) = \prod_{i=1}^{n+1} q(y_i | y_{i-3}, y_{i-2}, y_{i-1}) \prod_{i=1}^{n} e(x_i | y_i)$$
(1)

We assume in this definition that $y_0 = y_{-1} = y_{-2} = *$, where * is the START symbol, $y_{n+1} = STOP$, and $y_i \in \mathcal{K}$ for $i = 1 \cdots n$, where \mathcal{K} is the set of possible tags in the HMM.

Second, we consider a version of the Viterbi algorithm that takes as input an integer n (and not a sentence $x_1 \cdots x_n$ as we saw in class) and finds

$$\max_{y_1\cdots y_{n+1},x_1\cdots x_n} p(x_1\cdots x_n,y_1\cdots y_{n+1})$$

for a four-gram tagger, as defined in Equation $1 x_1 \cdots x_n$ may range over the values of some fixed vocabulary \mathcal{V} . Complete the following pseudo-code of this version of the Viterbi algorithm for this model. The pseudo-code must be efficient.

Input: An integer n, parameters q(w|t, u, v) and e(x|s).

Definitions: Define \mathcal{K} to be the set of possible tags. Define $\mathcal{K}_{-2} = \mathcal{K}_{-1} = \mathcal{K}_0 = \{*\}$, and $\mathcal{K}_k = \mathcal{K}$ for $k = 1 \cdots n$. Define \mathcal{V} to be the set of possible words.

Initialization: · · · Algorithm: · · · Return: · · ·

3. (80 pts) In this programming exercise with Python, we will implement several versions of an HMM POS tagger.

4146	<i>,</i> >161.	っしついり	. 2125
------	----------------	-------	--------

1. (10 pts) Consider this (toy) biological setup:

A cell can be in one of two states - H, for high GC-content, and L for low GC. On each time step the cell produces one nucleotide, A,C,T or G, and might also change its state. The probability of changing from state H to L is 0.5, and from state L to H is 0.4.

In state H the probabilities for producing nucleotides are 0.2 for A, 0.3 for C, 0.3 for G and 0.2 for T. In L the probabilities are 0.3 for A, 0.2 for C, 0.2 for G and 0.3 for T. Consider the nucleotide sequence S = ACCGTGCA. Use the Viterbi algorithm to find the best state-

Consider the nucleotide sequence S = ACCGTGCA. Use the Viterbi algorithm to find the best state-sequence and calculate the probability of S given this state-sequence. Assume the previous state before S was H

$$V = S \qquad J(1)$$

$$r(y_{i},...,y_{k}) = \prod_{i=1}^{k} q(y_{i}|y_{i-1}) \cdot \prod_{i=1}^{k} e(x_{i}|y_{i})$$

$$T(k,t) = \max_{j \in \mathbb{N}} \{x_{j}, x_{j}, x_{j}\} = \max_{j \in \mathbb{N}} \{x_{j}, x_{j}\} = \max_{j \in \mathbb{N}} \{x_{j}\} = \max_{j \in \mathbb{N}} \{x_{j}$$

	-		-	-	-	-		-	
2.	(10 pts) In class	we saw the	trigram H	IMM model	and the co	orresponding	Viterbi :	algorithm.	We will
	now make two n	nain changes	. First, we	will conside	er a four-gr	am tagger, w	here p to	akes the for	m:

$$p(x_1 \cdots x_n, y_1 \cdots y_{n+1}) = \prod_{i=1}^{n+1} q(y_i|y_{i-3}, y_{i-2}, y_{i-1}) \prod_{i=1}^{n} e(x_i|y_i)$$
(1)

We assume in this definition that $y_0 = y_{-1} = y_{-2} = *$, where * is the START symbol, $y_{n+1} = STOP$, and $y_i \in \mathcal{K}$ for $i = 1 \cdots n$, where \mathcal{K} is the set of possible tags in the HMM. Second, we consider a version of the Viterbi algorithm that takes as input an integer n (and not a sentence x_i or x_i as we are in class) and finds sentence $x_1 \cdots x_n$ as we saw in class) and finds

$$\max_{y_1\cdots y_{n+1},x_1\cdots x_n} p(x_1\cdots x_n,y_1\cdots y_{n+1})$$

for a four-gram tagger, as defined in Equation $\boxed{1}$ $x_1\cdots x_n$ may range over the values of some fixed vocabulary $\mathcal V$. Complete the following pseudo-code of this version of the Viterbi algorithm for this model . The pseudo-code must be efficient.

Input: An integer n, parameters q(w|t, u, v) and e(x|s). **Definitions:** Define \mathcal{K} to be the set of possible tags. Define $\mathcal{K}_{-2} = \mathcal{K}_{-1} = k = 1 \cdots n$. Define \mathcal{V} to be the set of possible words.

Initialization: · · ·

N x IV XKI ~ (3, 7) th (1, 2, 1) th (1, 2, 1) th (1, 2, 1) 1,400 eci (4.60, 1) of 21 1 of 2011 $\mathcal{F}(0,\gamma,\chi) = 1 \qquad \mathcal{F}(0,\gamma,\chi) = 1 \qquad \mathcal{F}(0,\gamma,\chi) \qquad \mathcal{F}(0$, Jek-ixet

 $V_{-3} = V_{-2} = V_{-1} = V_{0} = 2 \times 3, V_{i} = V \text{ for } i \in \{1, ..., n\}$

K-3 = K-2 = K-1 = K0 = 2#3, Ki = k for i E 51, ..., n3

empty tag for x

for	•				٠	•	•	•	٠	•	•	•	•	٠	•	• 7	<u> </u>)15/V
				k.			•	•	•	•	٠	٠	•	•	•	•	•	
•	F.	(X	$\epsilon \cdot $		٠	٠	٠	٠	٠		٠	٠	٠	٠	•	•	• •
•	•	~ (i., (j, x)	2 '7 '6 'Y '' 6	M 	€ ↑ (€k;-1,	(i -	1. (\ \ \ X \	•		9 9	*1	, \) · e	(×	k y
·	بو از (17 /			1 W X	(M	· (· / /	· ×	· , Y)	·		•			•		•	
•	•	٠	٠	•	•	•		•	•	٠	•	•	•	•	•		•	• •
•																· : C		
)_\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.		
																· X		
•	•	•	•	•	•		•	. \[\lambda		<i>y</i> .	1,6		· \	. 12) ·)	, <i>żu</i> y(•	122
•	•	•	•	•	•	•	•	•	•	•	•	•	:	196 V	7.1	, <i>m3</i>	J Ce	Mic.

