# 计算机组成原理

翁睿

哈尔滨工业大学

## 第9章 控制单元的功能

- 9.1 操作命令的分析
- 9.2 控制单元的功能

## 9.1 操作命令的分析

完成一条指令分4个工作周期

取指周期

间址周期

执行周期

中断周期

## 9.1 操作命令的分析

## 一、取指周期

PC → MAR → 地址线 1 → R M (MAR) → MDR MDR → IR

 $(PC)+1 \longrightarrow PC$ 

OP (IR)  $\rightarrow$  CU



## 二、间址周期

9.1

指令形式地址 MAR

 $Ad(IR) \longrightarrow MAR$ 

 $1 \longrightarrow R$ 

 $M(MAR) \longrightarrow MDR$ Optional

 $MDR \longrightarrow Ad(IR)$ 





注意!此处与书上P344图8.1有出入!

三、执行周期

9.1

## 1. 非访存指令

(1) CLA 清A  $0 \rightarrow ACC$ 

(2) COM 取反  $ACC \rightarrow ACC$ 

(3) SHR 算术右移  $L(ACC) \rightarrow R(ACC), ACC_0 \rightarrow ACC_0$ 

(4) CSL 循环左移  $R(ACC) \rightarrow L(ACC)$ ,  $ACC_0 \rightarrow ACC_n$ 

(5) STP 停机指令  $0 \rightarrow G$ 

## 2. 访存指令

9.1

(1) 加法指令 ADD X

 $Ad(IR) \rightarrow MAR$ 

 $1 \longrightarrow R$ 

 $M(MAR) \rightarrow MDR$ 

 $(ACC) + (MDR) \rightarrow ACC$ 

(2) 存数指令 **STA** X

 $Ad(IR) \rightarrow MAR$ 

 $1 \longrightarrow W$ 

 $ACC \longrightarrow MDR$ 

 $MDR \rightarrow M(MAR)$ 

(3) 取数指令 LDA X

9.1

$$Ad(IR) \rightarrow MAR$$

 $1 \rightarrow R$ 

 $M(MAR) \rightarrow MDR$ 

 $MDR \rightarrow ACC$ 

- 3. 转移指令
- (1) 无条件转移 **JMP** X

$$Ad(IR) \rightarrow PC$$

(2) 条件转移

BAN X

Branch if ACC is Negative (负则转)

$$A_0$$
:Ad (IR) +  $\overline{A}_0$  (PC)  $\longrightarrow$  PC

4. 三类指令的指令周期

9.1



# 四、中断周期

9.1

程序断点存入"0"地址 程序断点 进栈
0→ MAR (SP)-1→ MAR

 $1 \longrightarrow W$   $1 \longrightarrow W$ 

 $PC \longrightarrow MDR$   $PC \longrightarrow MDR$ 

 $MDR \rightarrow M (MAR)$   $MDR \rightarrow M (MAR)$ 

中断识别程序入口地址 M → PC

## 9.2 控制单元的功能

#### 一、控制单元的外特性



## 1. 输入信号

9.2

(1) 时钟

CU是时序逻辑电路 受时钟控制

一个时钟脉冲

发一个操作命令或一组需同时执行的操作命令

- (2) 指令寄存器 OP(IR)→ CU 控制信号 与操作码有关
- (3) 标志 CU依赖CPU当前的状态 受标志控制
- (4) 外来信号

如 INTR 中断请求 HRQ 总线请求

## 2. 输出信号

9.2

(1) CPU 内的各种控制信号

$$R_i \rightarrow R_j$$
  
(PC) + 1  $\rightarrow$  PC  
ALU +、一、与、或 ······

(2) 送至控制总线的信号

MREQ 访存控制信号

IO/M 访 IO/ 存储器的控制信号

RD 读命令

WR 写命令

INTA中断响应信号

HLDA 总线响应信号

## 二、控制信号举例

9.2

1. 不采用 CPU 内部总线的方式

以ADD @ X 为例



## 二、控制信号举例

9.2

1. 不采用 CPU 内部总线的方式



## 二、控制信号举例

9.2

1. 不采用 CPU 内部总线的方式





# (2) ADD @ X 间址周期

9.2

内

部总

线

形式地址 — MAR

• MDR → MAR → 地址线 **MDR**<sub>0</sub> **MAR**<sub>i</sub>

•  $1 \longrightarrow R$ 

· 数据线 → MDR

• MDR  $\longrightarrow$  IR **MDR**<sub>o</sub> IRi

有效地址 → Ad (IR)



Z

控制信号

## (3) ADD @ X 执行周期

- MDR → MAR → 地址线
  MDR<sub>0</sub> MAR<sub>i</sub>
- $1 \longrightarrow R$
- · 数据线 → MDR
- MDR  $\longrightarrow$  Y  $\longrightarrow$  ALU MDR<sub>0</sub> Y<sub>i</sub>
- $\begin{array}{ccc} \bullet & AC \longrightarrow & ALU \\ AC_0 & & ALU_i \end{array}$
- $(AC) + (Y) \longrightarrow Z$
- $\begin{array}{c} \bullet \ Z \longrightarrow AC \\ Z_0 \quad AC_i \end{array}$



## 三、多级时序系统

9.2

- 1. 机器周期
  - (1) 机器周期的概念 所有指令执行过程中的一个基准时间
  - (2) 确定机器周期需考虑的因素 每条指令的执行步骤 每一步骤 所需的时间
  - (3) 基准时间的确定
    - •以完成最复杂指令功能的时间为准
    - •以访问一次存储器的时间为基准

若指令字长=存储字长 取指周期=机器周期

## 2. 时钟周期(节拍、状态)

9.2

一个机器周期内可完成若干个微操作

每个微操作需一定的时间

将一个机器周期分成若干个时间相等的时间段(节拍、状态、时钟周期)

时钟周期是控制计算机操作的最小单位时间

用时钟周期控制产生一个或几个微操作命令



## 3. 多级时序系统

9.2

机器周期、节拍(状态)组成多级时序系统

- 一个指令周期包含若干个机器周期
- 一个机器周期包含若干个时钟周期



# 4. 机器速度与机器主频的关系

9.2

机器的 主频 ƒ 越快 机器的 速度也越快

在机器周期所含时钟周期数相同的前提下, 两机平均指令执行速度之比等于两机主频之比

$$\frac{\text{MIPS}_1}{\text{MIPS}_2} = \frac{f_1}{f_2}$$

机器速度不仅与主频有关,还与机器周期中所含时钟周期(主频的倒数)数以及指令周期中所含的机器周期数有关

## 四、控制方式

9.2

产生不同微操作命令序列所用的时序控制方式

1. 同步控制方式

任一微操作均由 统一基准时标 的时序信号控制



(1) 采用 定长 的机器周期

以最长的微操作序列和最复杂的微操作作为标准

## (2) 采用不定长的机器周期

9.2

#### 机器周期内 节拍数不等





# (3) 采用中央控制和局部控制相结合的方法 9.2



#### 2. 异步控制方式

9.2

无基准时标信号

无固定的周期节拍和严格的时钟同步 采用 <u>应答方式</u>

- 3. 联合控制方式 同步与异步相结合
- 4. 人工控制方式
  - (1) Reset
  - (2) 连续 和 单条 指令执行转换开关
  - (3) 符合停机开关

## 第10章 控制单元的设计

10.1 组合逻辑设计

10.2 微程序设计

## 10.1 组合逻辑设计

## 一、组合逻辑控制单元框图

#### 1. CU 外特性





## 二、微操作的节拍安排

10.1

采用同步控制方式

一个机器周期内有3个节拍(时钟周期)

CPU 内部结构采用非总线方式



# 1. 安排微操作时序的原则

10.1

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作 尽量安排在 一个节拍 内完成

原则三 占用 时间较短 的微操作 尽量 安排在 一个节拍 内完成 并允许有先后顺序

## 2. 取指周期 微操作的 节拍安排

10.1

$$T_0$$
 PC  $\longrightarrow$  MAR
 $1 \longrightarrow R$ 

 $T_1$  M (MAR)  $\longrightarrow$  MDR (PC) + 1  $\longrightarrow$  PC

原则二

 $T_2$  MDR  $\longrightarrow$  IR
OP (IR)  $\longrightarrow$  ID

原则三

## 3. 间址周期 微操作的 节拍安排

$$T_0$$
 Ad (IR) $\longrightarrow$ MAR  
 $1 \longrightarrow R$   
 $T_1$  M (MAR) $\longrightarrow$ MDR

 $T_1$  M (MAR)  $\longrightarrow$  MDR  $T_2$  MDR  $\longrightarrow$  Ad (IR)

# 4. 执行周期 微操作的 节拍安排

10.1

① CLA 
$$T_0$$

$$T_1$$

$$T_2 \quad 0 \longrightarrow AC$$
② COM  $T_0$ 

$$T_1$$

$$T_2 \quad \overline{AC} \longrightarrow AC$$
③ SHR  $T_0$ 

$$T_1$$

$$T_1$$

$$T_1$$

$$AC \longrightarrow AC$$

4 CSL  $T_0$  10.1

 $T_1$   $T_2 R(AC) \longrightarrow L(AC) AC_0 \longrightarrow AC_n$ 

 $T_2 \qquad 0 \longrightarrow G$ 

**⑥** ADD  $X T_0$  Ad (IR) → MAR  $1 \longrightarrow R$ 

 $T_1$  M (MAR)  $\longrightarrow$  MDR

 $T_2$  (AC) + (MDR)  $\longrightarrow$  AC

 $T_1$  AC $\longrightarrow$ MDR

 $T_2$  MDR  $\longrightarrow$  M (MAR)

 $\textcircled{8} LDA X \qquad T_0 \qquad Ad(IR) \longrightarrow MAR \quad 1 \longrightarrow R \qquad 10.1$ 

 $T_1$  M (MAR)  $\longrightarrow$  MDR

 $T_2$  MDR  $\longrightarrow$  AC

9 JMP X

 $T_1$ 

 $T_2$  Ad (IR)  $\longrightarrow$  PC

 $\bigcirc$  BAN X  $T_0$ 

 $T_1$ 

 $T_2$   $A_0 \cdot Ad (IR) + \overline{A_0} \cdot PC \longrightarrow PC$ 

## 5. 中断周期 微操作的 节拍安排

10.1

 $T_0 \longrightarrow MAR$ 

1→W 硬件关中断

 $T_1$  PC  $\longrightarrow$  MDR

 $T_2$  MDR  $\longrightarrow$  M (MAR) 向量地址  $\longrightarrow$  PC

中断隐指令完成

10.1

#### 1. 列出操作时间表

| 工作周期标记 | 节拍    | 状态<br>条件       | 微操作命令信号                  | CLA | СОМ | ADD | STA | LDA | JMP |
|--------|-------|----------------|--------------------------|-----|-----|-----|-----|-----|-----|
|        | $T_0$ |                | PC → MAR                 |     |     |     |     |     |     |
|        |       |                | 1→ R                     |     |     |     |     |     |     |
|        | $T_1$ |                | $M(MAR) \rightarrow MDR$ |     |     |     |     |     |     |
| FE     |       |                | $(PC)+1 \rightarrow PC$  |     |     |     |     |     |     |
| 取指     | $T_2$ |                | MDR→ IR                  |     |     |     |     |     |     |
|        |       |                | $OP(IR) \rightarrow ID$  |     |     |     |     |     |     |
|        |       | <sub>1</sub> I | 1→ IND                   |     |     |     |     |     |     |
|        |       | // ī           | $1 \longrightarrow EX$   |     |     |     |     |     |     |

**间址特征** 

10.1

#### 1. 列出操作时间表

| 工作周期标记    | 节拍    | 状态<br>条件 | 微操作命令信号                                     | CLA | COM | ADD | STA | LDA | JMP |
|-----------|-------|----------|---------------------------------------------|-----|-----|-----|-----|-----|-----|
|           | $T_0$ |          | $Ad (IR) \rightarrow MAR$ $1 \rightarrow R$ |     |     |     |     |     |     |
| IND<br>间址 | $T_1$ |          | $M(MAR) \rightarrow MDR$                    |     |     |     |     |     |     |
| In the    | T     |          | MDR→Ad (IR)                                 |     |     |     |     |     |     |
|           | $T_2$ | IND      | 1 → EX                                      |     |     |     |     |     |     |

间址周期标志

10.1

| 工作周期标记 | 节拍    | 状态<br>条件 | 微操作命令信号                   | CLA | СОМ | ADD | STA | LDA | JMP |
|--------|-------|----------|---------------------------|-----|-----|-----|-----|-----|-----|
|        |       |          | $Ad (IR) \rightarrow MAR$ |     |     |     |     |     |     |
|        | $T_0$ |          | $1 \rightarrow R$         |     |     |     |     |     |     |
|        |       |          | $1 \rightarrow W$         |     |     |     |     |     |     |
| EX     | $T_1$ |          | $M(MAR) \rightarrow MDR$  |     |     |     |     |     |     |
| 执行     |       |          | AC→MDR                    |     |     |     |     |     |     |
|        | $T_2$ |          | (AC)+(MDR)→AC             |     |     |     |     |     |     |
|        |       |          | $MDR \rightarrow M(MAR)$  |     |     |     |     |     |     |
|        |       |          | MDR→AC                    |     |     |     |     |     |     |
|        |       |          | 0→AC                      |     |     |     |     |     |     |

10.1

| 工作<br>周期<br>标记 | 节拍    | 状态<br>条件 | 微操作命令信号                     | CLA | СОМ | ADD | STA | LDA | JMP |
|----------------|-------|----------|-----------------------------|-----|-----|-----|-----|-----|-----|
|                | $T_0$ |          | PC → MAR                    | 1   | 1   | 1   | 1   | 1   | 1   |
|                |       |          | 1→ R                        | 1   | 1   | 1   | 1   | 1   | 1   |
|                | $T_1$ |          | $M(MAR) \rightarrow MDR$    | 1   | 1   | 1   | 1   | 1   | 1   |
| FE             |       |          | $(PC)+1 \longrightarrow PC$ | 1   | 1   | 1   | 1   | 1   | 1   |
| 取指             | $T_2$ |          | MDR→ IR                     | 1   | 1   | 1   | 1   | 1   | 1   |
|                |       |          | $OP(IR) \rightarrow ID$     | 1   | 1   | 1   | 1   | 1   | 1   |
|                |       | I        | 1→ IND                      |     |     | 1   | 1   | 1   | 1   |
|                |       | Ī        | $1 \longrightarrow EX$      | 1   | 1   | 1   | 1   | 1   | 1   |

10.1

| 工作周期标记    | 节拍    | 状态<br>条件 | 微操作命令信号                   | CLA | СОМ | ADD | STA | LDA | JMP |
|-----------|-------|----------|---------------------------|-----|-----|-----|-----|-----|-----|
|           | $T_0$ | <b>T</b> | $Ad (IR) \rightarrow MAR$ |     |     | 1   | 1   | 1   | 1   |
|           |       |          | 1→ R                      |     |     | 1   | 1   | 1   | 1   |
| IND<br>间址 | $T_1$ |          | $M(MAR) \rightarrow MDR$  |     |     | 1   | 1   | 1   | 1   |
| <br>      | T     |          | MDR→Ad (IR)               |     |     | 1   | 1   | 1   | 1   |
|           | $T_2$ | IND      | $1 \longrightarrow EX$    |     |     | 1   | 1   | 1   | 1   |

10.1

| 工作周期标记 | 节拍    | 状态<br>条件 | 微操作命令信号                   | CLA | СОМ | ADD | STA | LDA | JMP |
|--------|-------|----------|---------------------------|-----|-----|-----|-----|-----|-----|
|        |       |          | $Ad (IR) \rightarrow MAR$ |     |     | 1   | 1   | 1   |     |
|        | $T_0$ |          | 1→ R                      |     |     | 1   |     | 1   |     |
|        |       |          | $1 \rightarrow W$         |     |     |     | 1   |     |     |
| EX     | $T_1$ |          | $M(MAR) \rightarrow MDR$  |     |     | 1   |     | 1   |     |
| 执行     |       |          | $AC \rightarrow MDR$      |     |     |     | 1   |     |     |
|        | $T_2$ |          | (AC)+(MDR)→AC             |     |     | 1   |     |     |     |
|        |       |          | $MDR \rightarrow M(MAR)$  |     |     |     | 1   |     |     |
|        |       |          | MDR→AC                    |     |     |     |     | 1   |     |
|        |       |          | 0→AC                      | 1   |     |     |     |     |     |

# 2. 写出微操作命令的最简表达式 10.1

```
M (MAR) \longrightarrow MDR
= FE \cdot T_1 + IND \cdot T_1 (ADD + STA + LDA + JMP + BAN) + EX \cdot T_1 (ADD + LDA)
= T_1 \{ FE + IND (ADD + STA + LDA + JMP + BAN) + EX (ADD + LDA) \}
```

## 3. 画出逻辑图

10.1

 $M(MAR) \longrightarrow MDR = T_1 \{ FE + IND (ADD + STA + LDA + JMP + BAN ) \}$ 



- 特点
- > 思路清晰,简单明了
  - > 庞杂,调试困难,修改困难
  - ➤ 速度快 (RISC)