Problem Set 6

Problem 1. Determine the phasors corresponding to the following signals.

a) $u(t) = 10\sin(\omega t)V$

b) $i(t) = 10\cos(\omega t + \frac{\pi}{3}) \text{mA}$

c) $u(t) = 5\sin(\omega t + 60^{\circ})V$

d) $u(t) = 2V \sin(\omega t - 30^\circ) + 3V \cos \omega t$

e) $i(t) = 12\cos(\omega t - 12^{\circ})A$

Problem 2. Determine alternating signals corresponding to the following phasors.

a) I = jA

b) I = 6 - j8A

c) I = -6 - j8A

d) $I = 12e^{j10^{\circ}} A$

e) $U = \frac{1}{j+1}V$

f) $U = j^5 V$

g) $U = \frac{1+j}{1-j}V$

h) $U = 4e^{j40^{\circ}}2e^{j5^{\circ}}V$

Problem 3. The voltage across a one-port, and the current through this one-port (oriented opposite with respect to the voltage) equal, respectively, $u(t) = 200 \sin(\omega t + 80^{\circ}) \text{V}$ and $i(t) = 10 \sin(\omega t + 20^{\circ}) \text{A}$. Find the impedance of this one-port.

Problem 4. Find the equivalent impedances of the following one-ports.

Problem 5. Determine current i(t) in the following circuit.

 $e(t)=-6\mathrm{V}\sin\omega t,\ j_1(t)=12\,\mathrm{mA}\cos\omega t,\ R_1=2\,\mathrm{k}\Omega,\ R_2=1\,\mathrm{k}\Omega,\ L=12\,\mathrm{mH},\ C=1\,\mathrm{nF},$ $\omega=\frac{1}{3}\mathrm{Mrad/s}.$

