实变函数

李想 (网名: 寨森 Lambda-CDM)

目录

第一章	Lebesgue 测度	1
1.1	动机: 定义长度	1
1.2	测度空间	4
1.3	Borel 与 Lebesgue 测度	7
	1.3.1 Borel 测度	7
	1.3.2 Lebesgue 测度	8
1.4	Lebesgue 可测集的逼近	9
	1.4.1 内外逼近	9
	1.4.2 初等逼近	10
1.5	Lebesgue 测度的完备性	13
	1.5.1 完备测度	13
	1.5.2 完备化	15
第二章	可测函数	18
2.1	可测函数	18
2.2	简单函数与阶梯函数	21
	2.2.1 简单函数	21
	2.2.2 阶梯函数	22
2.3	Littlewood 三原则	24
	2.3.1 第三原则: Egorov 定理	24
	2.3.2 第二原则: Luzin 定理	24
第三章	Lebesgue 积分	26
3.1	Lebesgue 积分的定义	26
	3.1.1 非负可测简单函数的积分	26
	3.1.2 非负可测函数的积分	27
	3.1.3 可测函数的积分	28
3.2	Lebesgue 积分的性质	29
3.3		33
	3.3.1 单调收敛定理	33
	3.3.2 Fatou 定理	34
	3.3.3 有界收敛定理	35
	3.3.4 控制收敛定理	37
3.4	Riemann 积分	38

目录		by 寨森 Lambda-CDI	M
3.5	可积函数空间	4	10
第四章	微分	4	1
笙五音	乘积测度	4	12

第一章 Lebesgue 测度

1.1 动机: 定义长度

我们想给 \mathbb{R} 的子集定义长度的概念。在最一开始,需要回顾一下关于开集、闭集、开区间、闭区间的一些知识。

定义 1.1.

- 如果两个闭区间的内部是无交的,则称这两个闭区间几乎无交 (Stein)[1]
- 定义有限个有界开区间的并集为初等开集,有限个有界闭区间的并集为初等闭集 (Rudin) [2]
- 定义可数个开集的交集为 G_δ 集,可数个闭集的并集为 F_σ 集。

关于 ℝ 上的开集,有如下结论:

引理 1.1 (开集的结构性定理 (Stein, Chapter 1, Theorem 1.3)[1]).

任何开集 $A \subseteq \mathbb{R}$ 均可唯一地写成可数个无交的开区间的并。

引理 1.2 (开集的另一结构性定理 (Stein, Chapter 1, Theorem 1.4)[1]).

任何开集 $A \subseteq \mathbb{R}$ 均可写成可数个几乎无交的有界闭区间的并。

这样看起来区间的功能其实非常强大,强大到足以表示开集。因此我们先来定义开区间的长度:

定义 1.2 (开区间的长度).

- 如果开区间 (a,b) 是有界的,其长度定义为 length ((a,b)) = b a
- 如果开区间 I 是无界的,其长度定义为 length $(I) = +\infty$

有了开区间的辅助,现在可以对任何 $A \subseteq \mathbb{R}$ 定义"长度"的概念了。

定义 1.3 (外测度).

 $A \subseteq \mathbb{R}$ 的外测度定义为

$$|A| := \inf \left(\sum_{i=1}^{\infty} \operatorname{length}(I_i) \right)$$

其中 inf 取遍所有满足 $\bigcup I_i \supseteq A$ 的开区间序列 I_i

用实数系的完备性公理/定理可以证明:

引理 1.3 (外测度兼容长度).

|[a,b]| = |(a,b)| = length((a,b))特别地 $|\emptyset| = 0$

这表明外测度的定义是兼容开区间长度定义的。 此外,可以证明

引理 1.4 (外测度的单调性).

如果 $A \subseteq B \subseteq \mathbb{R}$, 那么 $|A| \le |B|$

引理 1.5 (外测度的次可加性).

设 $A_i \subseteq \mathbb{R}$,则

$$\Big|\bigcup_{i=1}^{\infty} A_i\Big| \le \sum_{i=1}^{\infty} |A_i|$$

单调性和次可加性符合我们对长度的直觉。 由外测度的定义和次可加性立刻得到

引理 1.6 (外测度的半正则性).

设 $A\subseteq\mathbb{R}$ 。对任何 $\varepsilon>0$,存在开集 $G\supseteq A$,使得 $|G|\le |A|+\varepsilon$ (若 $|A|<+\infty$,可以要求 $|G|<|A|+\varepsilon$)

我们希望进一步把次可加性加强为(无交的)可加性。可以证明如下引理:

引理 1.7 (弱化版本的可加性 (GTM 282, 2.62, 2.63) [3]).

如果 \mathbb{R} 的子集 A 和 B 无交,且 B 是开集或闭集,那么 $|A \cup B| = |A| + |B|$

看起来外测度似乎已经能满足我们对长度的定义。可惜外测度并不满足一般情况下的 可列可加性(甚至有限可加性也不满足)。

引理 1.8 (外测度没有可加性 (GTM 282, 2.18) [3]).

如果选择公理成立,那么存在无交的 $A\subseteq\mathbb{R}$ 和 $B\subseteq\mathbb{R}$,使得 $|A\cup B|\neq |A|+|B|$

事实上,下面的引理表明我们无法构造出适用于 ℝ 中所有子集的完美的长度的定义。

引理 1.9 (不存在 ℝ 上完美的长度的定义 (GTM 282, 2.22)[3]).

如果选择公理成立,则不存在满足如下条件的映射 μ :

- (1) μ 是 $\mathcal{P}(\mathbb{R}) \to [0, +\infty]$ 的映射
- (2) 对任何开区间 I, $\mu(I) = \text{length}(I)$
- (3) 对任何无交的集合序列 A_1, A_2, \dots , 有 $\mu(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \mu(A_k)$
- (4) 平移不变,即 $\forall t \in \mathbb{R}, \ \forall A \subseteq \mathbb{R}, \ \mu(t+A) = \mu(A)$

之前定义的外测度满足 (1)(2)(4),但很可惜不满足 (3)。(在选择公理成立的前提下,可以构造两个无交的集合 A, B 使得 $|A \cup B| \neq |A| + |B|$)然而 (3) 是可列可加性,对于长度的描述是至关重要的。因此我们要对外测度做一些修改,使得 (3) 成立,但这样就不得不放弃其他三条性质中的至少一条了。而 (2)(4) 也是长度明显应该具有的性质,因此我们不得不放弃 (1)。事实上,定义域 $\mathcal{P}(\mathbb{R})$ 过于强了,我们其实并不需要给每个 \mathbb{R} 中的子集指定长度,只需要对一部分子集指定长度(毕竟长得乱七八糟的点集也没有必要非得赋予长度)。

因此,下面的工作就是寻找 $\mathcal{S}\subseteq\mathcal{P}(\mathbb{R})$,使得外测度限制在 \mathcal{S} 上满足可列可加性 (3)。 这构成了定义**测度**的动机。

1.2 测度空间

上一节所讲的 \mathbb{R} 上的外测度可以推广到一般的空间 X 上去:

定义 1.4 (抽象的外测度).

设 μ^* 是 $\mathcal{P}(X) \to [0, +\infty]$ 的映射,满足:

- (i) $\mu^*(\emptyset) = 0$
- (ii) μ^* 满足单调性,即如果 $A_1 \subseteq A_2$,那么 $\mu^*(A_1) \le \mu^*(A_2)$
- (iii) μ^* 满足次可加性,即如果 A_1, A_2, \cdots 是 X 的子集序列,那么

$$\mu^*(\bigcup_{i=1}^{\infty} A_i) \le \sum_{i=1}^{\infty} \mu^*(A_i)$$

则称 μ^* 是 X 上的**外测度**。

命题 1.1.

由定义 1.3 所定义的外测度确实是 ℝ 上的外测度。

证明. 由引理 1.3, 1.4, 1.5 即得。

单单上面陈列的条件还不够,我们需要可列可加性。由上一节的讨论,我们需要找一个 $\mathcal{S} \subseteq \mathcal{P}(\mathbb{R})$ 使得外测度限制在其上满足可列可加性。我们先思考一下可以定义"长度"的集 族 \mathcal{S} 应该满足哪些性质。一般地,在空间 X 上下面性质应该是必要的:

定义 1.5 $(\sigma - 代数)$.

如果 $S \subseteq \mathcal{P}(X)$ 满足下述条件:

- $\emptyset \in \mathcal{S}$
- $A \in \mathcal{S} \Rightarrow X \backslash A \in \mathcal{S}$
- $A_i \in \mathcal{S} \Rightarrow \bigcup A_i \in \mathcal{S}$

则称 S 为 X 上的 σ - 代数。

 σ - 代数就是我们想要的可定义长度的集合(可测集)的基石。

定义 1.6 (可测空间、测度与测度空间).

如果 $S \subseteq \mathcal{P}(X)$ 是 X 上的 σ - 代数,则称 (X,S) 是**可测空间**,称 S 中的集合是 S- 可测的。

进一步,如果映射 $\mu: \mathcal{S} \to [0, +\infty]$ 满足 $\mu(\emptyset) = 0$ 且满足可列可加性(即对任何无交的集合序列 $A_i \in S$ 有 $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$),则称 μ 是 (X, \mathcal{S}) 上的**测度**,称 (X, \mathcal{S}, μ) 是**测度空间**。

通过这个定义可以发现,上一节所定义的"外测度"确实不是测度。

命题 1.2.

由定义 1.3 所定义的外测度不是 $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$ 上的测度。

证明. 由引理 1.8, 外测度不满足可列可加性。

以后如不加说明,"外测度"均是指由定义 1.3 所定义的外测度。

定义 1.7 (子可测空间、子测度空间).

设 (X,S) 是可测空间。如果 $E \subseteq X$ 并且 $(E,S \cap \mathcal{P}(E))$ 是可测空间,则称 $(E,S \cap \mathcal{P}(E))$ 是 (X,S) 的**子可测空间**。

设 (X, S, μ) 是测度空间。如果 $E \subseteq X$ 并且 $(E, S \cap \mathcal{P}(E), \mu|_{S \cap \mathcal{P}(E)})$ 是测度空间,则称 $(E, S \cap \mathcal{P}(E), \mu|_{S \cap \mathcal{P}(E)})$ 是 (X, S, μ) 的子测度空间。

命题 1.3.

设 (X, S) 是可测空间,并且 $E \subseteq X$ 。则 $(E, S \cap \mathcal{P}(E))$ 是 (X, S) 的子可测空间,等价于: $E \in S$.

设 (X, \mathcal{S}, μ) 是测度空间,并且 $E \subseteq X$ 。则 $(E, \mathcal{S} \cap \mathcal{P}(E), \mu|_{\mathcal{S} \cap \mathcal{P}(E)})$ 是 (X, \mathcal{S}, μ) 的子测度空间,等价于: $E \in \mathcal{S}$.

证明. 这里只证明子测度空间的那一部分。

 (\Rightarrow) : 如果 $(E, S \cap \mathcal{P}(E), \mu|_{S \cap \mathcal{P}(E)})$ 是 (X, S, μ) 的子测度空间,则 $E \in S \cap \mathcal{P}(E) \subseteq S$ (\Leftarrow) : 如果 $E \in S$,则有:

- $\emptyset \in \mathcal{S} \cap \mathcal{P}(E)$
- 若 $A \in S \cap \mathcal{P}(E)$,则 $E \setminus A \in S \cap \mathcal{P}(E)$ (因为 S, $\mathcal{P}(E)$ 皆对补集封闭)
- 若 $A_i \in \mathcal{S} \cap \mathcal{P}(E)$,则 $\bigcup A_i \in \mathcal{S} \cap \mathcal{P}(E)$ (因为 \mathcal{S} , $\mathcal{P}(E)$ 皆对可列并封闭)

因此 $S \cap \mathcal{P}(E)$ 是 E 上的 σ - 代数。故 $(E, S \cap \mathcal{P}(E))$ 是可测空间。

进一步,由于 μ 满足可列可加性,则其限制 $\mu|_{S\cap\mathcal{P}(E)}$ 当然也满足可列可加性,故它是 $(E, S\cap\mathcal{P}(E))$ 上的测度。因此 $(E, S\cap\mathcal{P}(E), \mu|_{S\cap\mathcal{P}(E)})$ 是 (X, S, μ) 的子测度空间。 \square

在寻找具体的 S 之前,先讨论测度具有的性质:

命题 1.4 (测度的单调性).

设 (X, S, μ) 是测度空间, $A, B \in S$. 若 $A \subseteq B$, 则 $\mu(A) \le \mu(B)$

命题 1.5 (测度的次可加性).

设 (X, \mathcal{S}, μ) 是测度空间, $A_i \in \mathcal{S}$. 则

$$\mu(\bigcup_{i=1}^{\infty} A_i) \le \sum_{i=1}^{\infty} \mu(A_i)$$

命题 1.6 (测度的连续性).

设 (X, S, μ) 是测度空间,集合序列 $A_i \in S$

- 如果 $A_1 \subseteq A_2 \subseteq \cdots$,则 $\mu(\bigcup A_i) = \lim_{i \to \infty} \mu(A_i)$
- 如果 $A_1 \supseteq A_2 \supseteq \cdots$, 则 $\mu(\bigcap A_i) = \lim_{i \to \infty} \mu(A_i)$

上面这些性质确实是测度应该具有的性质,而且连续性使得我们可以对可测集进行"逼近",这是后续内容的核心想法。

为了具体构造出可测空间 $(\mathbb{R}, \mathcal{S})$,我们需要给 \mathcal{S} 添加一些具体的元素。例如,所有的 开区间应该可以定义长度(即兼容 length)。故要求所有开区间都要在 \mathcal{S} 中。 σ — 代数又会 要求开区间的可列并都要在 \mathcal{S} 中,根据引理 1.1, \mathbb{R} 中所有的开集都会在 \mathcal{S} 中。满足这个条件的最小的 σ — 代数 \mathcal{S} 被称为 Borel σ — 代数。在一般的空间 X 中,有如下的定义:

定义 1.8 (Borel 集).

设 X 是拓扑空间 a 。包含 X 中所有开集的最小的 $\sigma-$ 代数 S 被定义为 X 上的 Borel $\sigma-$ 代数,其中的元素称为 X 上的 Borel 集。

 \mathbb{R} 上的 Borel σ - 代数记作 \mathcal{B} 。

"如果读者不熟悉拓扑空间的概念,可以把它理解成在上面定义了开集。如 $\mathbb R$ 是拓扑空间,因为 $\mathbb R$ 上定义了开集。

根据 σ - 代数的定义, \mathcal{B} 也会同时包含所有 \mathbb{R} 中的闭集、 G_{δ} 集与 F_{σ} 集。这样常见的集合都在 \mathcal{B} 中。

现在 $(\mathbb{R}, \mathcal{B})$ 是可测空间,后续将证明外测度的确是 $(\mathbb{R}, \mathcal{B})$ 上的测度,这个测度被称为 **Borel 测度**。这样看起来就已经完全解决了长度的定义问题。事实上我们可以做的更好:我们能构造出一个比 \mathcal{B} 更大的 σ - 代数 \mathcal{L} ,使得外测度在 $(\mathbb{R}, \mathcal{L})$ 上是测度,这个测度被称为 **Lebesgue 测度**。下一节将会对 Borel 与 Lebesgue 测度进行细致的讨论。

1.3 Borel 与 Lebesgue 测度

本文定义两个测度:

- Borel 测度
- Lebesgue 测度

1.3.1 Borel 测度

下面的定义可能稍显生硬,我们在后面再阐述背后的动机。

定义 1.9 (Lebesgue 可测集).

如果集合 $A\subseteq \mathbb{R}$ 满足:对任何 $\varepsilon>0$,存在闭集 $F\subseteq A$,使得 $|A\backslash F|<\varepsilon$,则称 A 是 Lebesgue 可测集。记 \mathcal{L} 是所有 Lebesgue 可测集构成的集族。

由这个定义,可以证明如下结论:

命题 1.7.

 \mathcal{L} 是 \mathbb{R} 上的 σ - 代数。

证明.(这个证明有点长,在此先略过,日后补充)

命题 1.8.

 \mathcal{L} 包含所有的开集,进一步包含所有的 Borel 集,即 $\mathcal{B} \subset \mathcal{L}$

证明. 由 \mathcal{L} 的构造知 \mathcal{L} 包含所有的闭集(取 F 等于闭集本身)。由命题 1.7, \mathcal{L} 是 σ -代数,由对补封闭知包含所有的开集。而 Borel σ -代数是最小的包含所有开集的 σ -代数,因此 \mathcal{L} 包含所有的 Borel 集。

引理 **1.10** (GTM 282, 2.66[3]).

如果 \mathbb{R} 的子集 A 和 B 无交,且 B 是 Borel 集,那么 $|A \cup B| = |A| + |B|$

证明. 只需证明 $|A \cup B| \ge |A| + |B|$ (另一边是次可加性)。

由命题 1.8, B 是 Lebesgue 可测集,故对任何 $\varepsilon > 0$,存在闭集 $F \subseteq A$ 使 $|B \setminus F| < \varepsilon$ 。 故

$$|A \cup B| \ge |A \cup F|$$
 (引理 1.4)
= $|A| + |F|$ (引理 1.7)
= $|A| + |B| - |B \setminus F|$ (注意到 $B = (B \setminus F) \cup F$,然后用引理 1.7)
 $\ge |A| + |B| - \varepsilon$

让 ε 任意小就推出 $|A \cup B| \ge |A| + |B|$

有了上述引理的准备,就能证明外测度确实是(ℝ, β)上的测度。

定理 1.1 (Borel 测度 (GTM 282, 2.68)[3]).

外测度限制在 \mathcal{B} 上是 (\mathbb{R},\mathcal{B}) 上的测度。(称这个测度为 **Borel 测度**)

证明. 只需证外测度限制在 B 上满足可列可加性。

设 B_1, B_2, \cdots 是无交的 Borel 集序列。由引理 1.10 并归纳可知外测度限制在 \mathcal{B} 上满足有限可加性。故对于任何 $n \in \mathbb{Z}^+$ 有

$$\sum_{i=1}^{n} |B_i| = |\bigcup_{i=1}^{n} B_i| \le |\bigcup_{i=1}^{\infty} B_i|$$

<math>

$$\sum_{i=1}^{\infty} |B_i| \le |\bigcup_{i=1}^{\infty} B_i|$$

不等号的另一个方向由次可加性给出。因此可列可加性得证。

1.3.2 Lebesgue 测度

我们借助 Lebesgue 可测集,成功证明了外测度确实是 (\mathbb{R},\mathcal{B}) 上的测度。但是不要急忙拆掉 \mathcal{L} 这个"脚手架"。事实上,根据命题 1.7 和 1.8,我们发现 \mathcal{L} 是比 \mathcal{B} 更大的 σ — 代数。倘若外测度在 (\mathbb{R},\mathcal{L}) 上也是测度的话,那毫无疑问这将给出更强有力的测度。

在讨论 (\mathbb{R},\mathcal{L}) 之前,先给出 Lebesgue 可测的若干等价条件。

定理 1.2 (Lebesgue 可测集的内侧逼近 (GTM 282,2.71) [3]).

下列条件等价:

- (1) $A \in \mathcal{L}$ (即对任何 $\varepsilon > 0$, 存在闭集 $F \subseteq A$, 使得 $|A \setminus F| < \varepsilon$)
- (2) 存在 F_{σ} 集 $F \subseteq A$ 使得 $|A \setminus F| = 0$
- (3) 存在 Borel 集 $B \subset A$ 使得 $|A \setminus B| = 0$

值得一提的是,上述 (3) 是 GTM 282 对 Lebesgue 可测集的定义 (GTM 282, 2.70[3]) 证明. (未完待续)

现在可以证明外测度确实是 (\mathbb{R},\mathcal{L}) 上的测度。

定理 1.3 (Lebesgue 测度 (GTM 282, 2.72)[3]).

外测度限制在 \mathcal{L} 上是 (\mathbb{R},\mathcal{L}) 上的测度。(称这个测度为 **Lebesgue 测度**)

证明. 只需证明外测度限制在 \mathcal{L} 上满足可列可加性。

设 $A_n \in \mathcal{L}$ 是无交的 Lebesgue 可测集序列。根据定理 1.2, 存在 Borel 集 $B_n \subseteq A_n$ 使得 $|A_n \backslash B_n| = 0$. 再由无交并 $A_n = (A_n \backslash B_n) \cup B_n$ 及引理 1.10 知 $|A_n| = |A_n \backslash B_n| + |B_n| = |B_n|$. 故

$$\sum_{n=1}^{\infty} |A_n| = \sum_{n=1}^{\infty} |B_n| = |\bigcup_{n=1}^{\infty} B_n| \le |\bigcup_{n=1}^{\infty} A_n| \le \sum_{n=1}^{\infty} |A_n|$$

这意味着可列可加性 $\sum |A_n| = \bigcup A_n$ 成立。

1.4 Lebesgue 可测集的逼近

本节描述两种逼近 Lebesgue 可测集的方式。

- 内外逼近
- 初等逼近

1.4.1 内外逼近

现在说明之前定义的 Lebesgue 可测集的直观意义。回想定义是:对于任何 $\varepsilon>0$,存在闭集 $F\subseteq A$ 使得 $|A\backslash F|<\varepsilon$,这就说明了 Lebesgue 可测集是可以被内部的闭集所逼近的,并且 $|A\backslash F|$ 衡量了逼近过程中的误差。

定理 1.2 进一步说明了,Lebesgue 可测集几乎就是内部的 F_{σ} 集,或是内部的 Borel 集 (差别只是外测度为 0 的集合)。这些均反映了 Lebesgue 可测集可以从内侧逼近的事实。

下面给出了对偶的定理,描述了 Lebesgue 可测集是如何从外侧被逼近的。

定理 1.4 (Lebesgue 可测集的外侧逼近 (GTM 282,2.71) [3]).

下列条件等价:

- (1) $A \in \mathcal{L}$
- (2) 对任何 $\varepsilon > 0$,存在开集 $G \supseteq A$,使得 $|G \setminus A| < \varepsilon$
- (3) 存在 G_{δ} 集 $G \supseteq A$ 使得 $|G \setminus A| = 0$
- (4) 存在 Borel 集 $B \supseteq A$ 使得 $|B \setminus A| = 0$

值得一提的是,上述 (2) 是 Stein 对 Lebesgue 可测集的定义 (Stein[1])

证明.(未完待续)

当然, Lebesgue 可测集亦可以同时被内外侧逼近。这就是下面的正则性定理。

定理 1.5 (Lebesgue 测度的正则性定理).

 $A \in \mathcal{L}$ 等价于:对任何 $\varepsilon > 0$,存在闭集 $F \subseteq A$ 与开集 $G \supseteq A$ 使得 $|G \setminus F| < \varepsilon$

证明. (⇒): 设 $A \in \mathcal{L}$, 则存在闭集 $F \subseteq A$ 使得 $|A \setminus F| < \frac{\varepsilon}{2}$ 且由定理 1.4 知存在开集 $G \supseteq A$ 使得 $|G \setminus A| < \frac{\varepsilon}{2}$ 。注意到 $G \setminus F = (G \setminus A) \cup (A \setminus F)$,故 $|G \setminus F| \le |G \setminus A| + |A \setminus F| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ (⇐): 注意到 $A \setminus F \subseteq G \setminus F$,故 $|A \setminus F| \le |G \setminus F| < \varepsilon$. 由定义 1.9, $A \in \mathcal{L}$

下面介绍一般测度空间上正则性的概念。

定义 1.10 (正则性).

设 X 是拓扑空间, (X, S, μ) 是测度空间。如果对任何 $A \in S$,满足:

- $\mu(A) = \inf \{ \mu(G) : G \in \mathcal{S}, G \supseteq A$ 是开集 $\}$
- $\mu(A) = \sup \{ \mu(F) : F \in \mathcal{S}, F \subseteq A$ 是闭集 $\}$

则称测度 μ 是**正则**的。

引理 1.11.

设 X 是拓扑空间, (X, \mathcal{S}, μ) 是测度空间。如果对于任何 $A \in \mathcal{S}$ 和 $\varepsilon > 0$,都存在闭集 $F \in \mathcal{S}$ 与开集 $G \in \mathcal{S}$,使得 $F \subseteq A \subseteq G$ 并且 $\mu(G) - \varepsilon \le \mu(A) \le \mu(F) + \varepsilon$,那么测度 μ 是正则的。

证明. 若 $\mu(A) < +\infty$, 由单调性知 $\mu(F) \le \mu(A) \le \mu(G)$, 再由 $\mu(G) - \varepsilon \le \mu(A) \le \mu(F) + \varepsilon$ 及上下确界的定义知测度 μ 是正则的。

若 $\mu(A) = +\infty$,则满足 $G \supseteq A$ 的 G 恒有 $\mu(G) = +\infty$,故

$$\inf \{ \mu(G) : G \in \mathcal{S}, G \supseteq A$$
是开集 $\} = +\infty = \mu(A)$

再由存在 F 使 $\mu(A) \leq \mu(F) + \varepsilon$ 知存在 F 使 $\mu(F) = +\infty$,故

$$\sup \{\mu(F) : F \in \mathcal{S}, F \subseteq A$$
是闭集
$$\} = +\infty = \mu(A)$$

故测度 μ 是正则的。

下面我们回到 ℝ中,验证 Lebesgue 测度是正则的。

命题 1.9.

若 $A \in \mathcal{L}$,则对任何 $\varepsilon > 0$,存在闭集 $F \subseteq A$ 使得 $|A| \leq |F| + \varepsilon$.

证明. 设 $A \in \mathcal{L}$ 。对任何 $\varepsilon > 0$,由定义 1.9 知存在闭集 $F \subseteq A$ 使得 $|A \setminus F| < \varepsilon$ 。注意到 $F \in \mathcal{L}$ 以及 $A \setminus F \in \mathcal{L}$ 。由无交并 $A = F \cup (A \setminus F)$ 知 $|A| = |F| + |A \setminus F| \le |F| + \varepsilon$

定理 1.6.

Lebesgue 测度是正则的。

证明. 左半边 $|G|-\varepsilon \le |A|$ 由引理 1.6 成立,右半边 $|A| \le |F|+\varepsilon$ 由命题 1.9 成立。

这里提醒一下,引理 1.11 与命题 1.9 的逆命题均是不对的,在测度为无穷的时候会出现问题。可以证明,当 $\mu(A)<+\infty$ ($|A|<+\infty$) 时两个引理的逆是正确的。

1.4.2 初等逼近

下面将要介绍的初等逼近,从某种角度而言,是比之前所说的内外逼近更简单的方式。 毕竟之前用的逼近集合都是开集、闭集,甚至是 G_δ 集、 F_σ 集这样复杂的集合,而初等逼近 用的只是初等开集、初等闭集这样简单的集合(回忆初等闭集是指有限个有界闭区间的并,初等开集类似)。事实上,Lebesgue 可测集完全可以只用初等集合就可以描述出来。

当然,为了换得简单的集合,付出的代价就是,不能像之前一样单纯从内侧或单纯从外侧逼近了。也就是说在逼近的过程中,初等闭(开)集可能时而在集合 A 内侧,时而在集合 A 外侧,甚至既不在内侧也不在外侧。这样就不能像之前一样简单地用 $|A \setminus F|$ 或 $|G \setminus A|$ 来度量误差了。这就要使用如下的对称差的工具:

定义 1.11.

设 $A \subseteq \mathbb{R}$. 如果对于任何 $\varepsilon > 0$, 存在初等闭集 F 使得 $|A\Delta F| < \varepsilon$, 则称 A 可被初等闭集逼近。同理定义可被初等开集逼近的概念。

 $^a\Delta$ 表示对称差: 对集合 A,B,其对称差定义为 $A\Delta B=(A\backslash B)\cup(B\backslash A)$

想象一下,如果 $|A\Delta F|$ 非常小,那么集合 A "几乎" 就是集合 F 了,因此对称差的外测度 $|A\Delta F|$ 是合适的反映两个集合差别的度量。

定理 1.7 (有限 Lebesgue 可测集的初等逼近).

下列条件等价:

- (1) $|A| < +\infty \coprod A \in \mathcal{L}$
- (2) A 可被初等闭集逼近
- (3) A 可被初等开集逼近

证明. $(1) \Rightarrow (2)$: (这一方向的证明来自 Stein, Chapter 1, Theorem 3.4(iv)[1])

由引理 1.6 知,对于任何 $\varepsilon > 0$,存在开集 $G \supseteq A$ 使得 $|G| < |A| + \frac{\varepsilon}{2} < +\infty$. 由引理 1.2,存在可数个几乎无交的有界闭区间 F_i 使得 $G = \bigcup_{i=1}^{\infty} F_i$. 有

$$\sum_{i=1}^{\infty} |F_i| = \Big| \bigcup_{i=1}^{\infty} F_i \Big| = |G| < +\infty$$

(其中第一个等号 $\sum |F_i| = |\bigcup F_i|$ 是因为,每个 $F_i = E_i \cup G_i$,其中 E_i 是闭区间 F_i 的两个端点, G_i 是闭区间 F_i 的内部。故 $\bigcup F_i = E' \cup G'$,其中 $E' = \bigcup E_i$, $G' = \bigcup G_i$ 。注意到 E',G' 是无交的,并且 G' 是开集。由引理 1.7, $|\bigcup F_i| = |E'| + |G'|$ 。由于 E' 是可数集故 |E'| = 0,并且由于 G_i 无交故 $|G'| = |\bigcup G_i| = \sum |G_i|$,因此 $|\bigcup F_i| = \sum |G_i| = \sum |F_i|$ 故无穷级数 $\sum_{i=1}^{\infty} |F_i| < +\infty$ 收敛,所以存在 $N \in \mathbb{Z}^+$,使得余项

$$\sum_{i=N+1}^{\infty} |F_i| < \frac{\varepsilon}{2}$$

令 $F = \bigcup_{i=1}^N F_i$,则 F 是初等闭集,当然也会有 $F \in \mathcal{L}$. 又 $A \in \mathcal{L}$,故 $A \setminus F \in \mathcal{L}$ 且 $F \setminus A \in \mathcal{L}$,故 $|A \triangle F| = |(A \setminus F) \cup (F \setminus A)| = |A \setminus F| + |F \setminus A|$. 同时由开集 $G \in \mathcal{L}$ 知 $G \setminus A \in \mathcal{L}$,再结合 $G \supseteq A \ \mathcal{D} \ |G| < +\infty$ 就知道 $|G \setminus A| = |G| - |A|$. 故

$$|A\Delta F| = |A\backslash F| + |F\backslash A| \le |G\backslash F| + |G\backslash A|$$
$$= \Big|\bigcup_{i=N+1}^{\infty} F_i\Big| + (|G| - |A|) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

这就表明 A 可被初等闭集逼近。

 $(2) \Rightarrow (3)$: 如果 F 是初等闭集,则可以由它生成对应的初等开集 G,方法是: 把 F 写成有限个有界闭区间的并集,并将每个闭区间端点去掉,就变成有限个有界开区间的并集,也即初等开集 G。注意到生成后 F 与 G 至多差有限个点,即: 存在有限点集 E,使得 $F=G\cup E$,此时 $E=F\Delta G$ 且 |E|=0。由集合恒等式

$$A\Delta G \subseteq (A\Delta F) \cup (F\Delta G) = (A\Delta F) \cup E$$

因此由次可加性, $|A\Delta G| \leq |A\Delta F|$,故 $|A\Delta F| < \varepsilon$ 蕴含 $|A\Delta G| < \varepsilon$ 。这表明可被被初等闭集逼近蕴含可被初等开集逼近。

 $(3) \Rightarrow (1)$: 先证 $A \in \mathcal{L}$. 因 A 可被初等开集逼近,所以对于任何 $\varepsilon > 0$,存在初等开集 G_1 使得 $|A\Delta G_1| < \varepsilon$. 由引理 1.6,存在开集 $G_2 \supseteq A\Delta G_1$ 使得 $|G_2| \le |A\Delta G_1| + \varepsilon < 2\varepsilon$. 令 $G = G_1 \cup G_2$,则 G 是开集,并且有

$$G = G_1 \cup G_2 \supseteq G_1 \cup (A \triangle G_1) \supseteq G_1 \cup (A \backslash G_1) = G_1 \cup A \supseteq A$$

$$G \setminus A = (G_1 \cup G_2) \setminus A = (G_1 \setminus A) \cup (G_2 \setminus A) \subseteq (A \Delta G_1) \cup G_2 \subseteq G_2$$

故由单调性, $|G \setminus A| \leq |G_2| < 2\varepsilon$. 由定理 1.4, $A \in \mathcal{L}$ 。

再证 $|A|<+\infty$ 。事实上,给定 $\varepsilon>0$,由条件存在初等开集 G 使 $|A\Delta G|<+\varepsilon$. 又因为初等开集是有限个有界开区间的并集,故 $|G|<+\infty$. 再结合

$$A\subseteq A\cup G=(A\backslash G)\cup G\subseteq (A\Delta G)\cup G$$

知
$$|A| \le |A\Delta G| + |G| \le \varepsilon + |G| < +\infty$$

下面把结论推广到任意的 $A \in \mathcal{L}$ 上去,而不只是 $|A| < +\infty$ 的情况。

命题 1.10.

 $A \in \mathcal{L}$,等价于: A 是可数个具有有限外测度的 Lebesgue 可测集的并。

证明. (\Rightarrow): 令 $A_n = A \cap (-n, n)$,则 $A_n \in \mathcal{L}$ 。又 $|A_n| \leq 2n < +\infty$,结合 $A = \bigcup_{n=1}^{\infty} A_n$ 的事实就完成了这一方向证明。

(
$$\leftarrow$$
): 由 \mathcal{L} 是 σ - 代数的事实立即得到到。

以后称具有有限外测度的 Lebesgue 可测集为"有限 Lebesgue 可测集"。

定理 1.8 (Lebesgue 可测集的初等逼近).

下列条件等价:

- (1) $A \in \mathcal{L}$
- (2) A 是可数个可被初等闭集逼近的集合的并
- (3) A 是可数个可被初等开集逼近的集合的并

值得一提的是,这是 Rudin 对 Lebesgue 可测集的定义 (Rudin, 11.9[2])

证明. 由定理 1.7 与命题 1.8 即得。

1.5 Lebesgue 测度的完备性

本节研究 Lebesgue 测度的完备性,从以下两个方面:

- 完备测度
- 完备化

1.5.1 完备测度

首先考虑一个简单的命题。

命题 1.11.

外测度为 0 的集合都在 \mathcal{L} 中。

证明. 设 $E \subseteq \mathbb{R}$ 满足 |E| = 0。在定义 1.9 中令 $F = \emptyset$ 就知道 $E \in \mathcal{L}$

定义 1.12 (完备测度).

设 (X, S, μ) 是测度空间。若 $E \in S$ 使 $\mu(E) = 0$,则称 E 为 μ - 零测集。若 μ - 零测集的子集仍在 S 中,则称测度 μ 是完备的。

从这个定义我们能立马发现,外测度为 0 的集与 Lebesgue-零测集其实是一回事(以后简成为"**零测集**")。

下面我们来论证 Lebesgue 测度是完备的。实际上这是非常显然的事实,见下文命题 1.10 的证法一。但是,看待这个问题有另一种角度。从抽象的层面来讲,Lebesgue 可测等价于下面要给出的 Caratheodory 可测,而 Caratheodory 可测会自动诱导出完备的测度。

现在给出一般空间中 Caratheodory 可测的定义:

定义 1.13 (Caratheodory 可测).

设 μ^* 是 X 上的外测度 (回忆定义 1.4)。

如果 $A \subseteq X$ 满足下述条件 (被称为 Caratheodory 条件):

$$\forall T \subseteq X, \ \mu^*(T \cap A) + \mu^*(T \setminus A) = \mu^*(T)$$

则称 $A \in \mathbf{Caratheodory} \ \mu^* - \mathbf{可测}$ 的。

这个条件有非常强的几何直观: $A \in Caratheodory$ 可测的,等价于随便一个 T 的外测度都可以用 A 衡量: 把 $T \vdash A$ 重叠部分的外测度跟 T 去掉 A 的部分的外测度相加。

引理 1.12 (Caratheodory 定理 (Stein, Chapter 6, Theorem 1.1) [1]).

设 μ^* 是 X 上的外测度,记 S 是由所有 Caratheodory μ^* — 可测的集合构成的集族,则 S 是 σ — 代数,且 $\mu^*|_S$ 是 (X,S) 上的完备测度(称为 X 上由外测度 μ^* 诱导的 Caratheodory 测度)。

证明. (未完待续)

现在回到 R 中。下面的定理表明,在 R 上 Caratheodory 可测等价于 Lebesgue 可测。

定理 1.9 (Caratheodory 条件).

下列条件等价:

- (1) $A \in \mathcal{L}$
- (2) $\forall T \subseteq \mathbb{R}, |T \cap A| + |T \setminus A| = |T|$
- (3) $\forall n \in \mathbb{Z}^+, |(-n,n) \cap A| + |(-n,n) \setminus A| = 2n$

证明. $(1) \Rightarrow (2)$:根据引理 1.6,对任何 $\varepsilon > 0$,存在开集 $G \supseteq T$ 使得 $|G| \le |T| + \varepsilon$ 。由于 G,A 皆 Lebesgue 可测集,故 $G \cap A,G \setminus A$ 亦可测,并注意到二者无交。因此

$$|T \cap A| + |T \setminus A| \le |G \cap A| + |G \setminus A| = |(G \cap A) \cup (G \setminus A)| = |G| \le |T| + \varepsilon$$

由于该式对任意 $\varepsilon > 0$ 成立,故 $|T \cap A| + |T \setminus A| \le |T|$ 。此外由 $T = (T \cap A) \cup (T \setminus A)$ 以及外测度的次可加性知 $|T| \le |T \cap A| + |T \setminus A|$ 。因此 (2) 得证。

- $(2) \Rightarrow (3)$:显然。
- $(3) \Rightarrow (1)$: 先假设 A 有界,则会有某个 $n \in \mathbb{Z}^+$ 使得 $A \subseteq (-n,n)$ 。根据引理 1.6,对任何 $\varepsilon > 0$,存在开集 $G' \supseteq A$ 使得 $|G'| < |A| + \varepsilon$ 。令 $G = G' \cap (-n,n)$,则 G 也是开集, $G \supseteq A$,并且 $|G| \le |G'| < |A| + \varepsilon$ 。因此,

$$\begin{split} |G| + |(-n,n)\backslash A| &< |A| + \varepsilon + |(-n,n)\backslash A| = |(-n,n)\cap A| + |(-n,n)\backslash A| + \varepsilon \\ &= 2n + \varepsilon = |(-n,n)| + \varepsilon = |G\cup((-n,n)\backslash G)| + \varepsilon \\ &\le |G| + |(-n,n)\backslash G| + \varepsilon \end{split}$$

故 $|(-n,n)\backslash A| - |(-n,n)\backslash G| < \varepsilon$ 。由于 $(-n,n)\backslash A = ((-n,n)\backslash G) \cup (G\backslash A)$ 是无交并,并且 $(-n,n)\backslash G$ 是 Borel 集,由引理 1.10, $|(-n,n)\backslash A| = |(-n,n)\backslash G| + |G\backslash A|$ 。故

$$|G \setminus A| = |(-n, n) \setminus A| - |(-n, n) \setminus G| < \varepsilon$$

这就证明了 $A \in \mathcal{L}$ 。

现在考虑一般的情形。设 $A_n=A\cap (-n,n)$,则 $A=\bigcup_{n=1}^\infty A_n$, $(-n,n)\cap A_n=(-n,n)\cap A$,并且 $(-n,n)\setminus A_n=(-n,n)\setminus A$ 。故

$$|(-n,n) \cap A_n| + |(-n,n) \setminus A_n| = |(-n,n) \cap A| + |(-n,n) \setminus A| = 2n$$

由刚才有界集的情形知 $A_n \in \mathcal{L}$ 。于是 $A = \bigcup_{n=1}^{\infty} A_n \in \mathcal{L}$ 。

利用 Caratheodory 条件这个工具,可以立即得到 Lebesgue 测度的完备性:

定理 1.10.

Lebesgue 测度是完备的。

证明.【证法一】设 E 是零测集,则 |E|=0。设 M 是 E 的子集。则有外测度的单调性知 $|M|\leq |E|=0$,故 |M|=0。由命题 1.11 知 $M\in\mathcal{L}$ 。故 Lebesgue 测度是完备的。

【证法二】由定理 1.9 知 Lebesgue 测度就是 \mathbb{R} 上由外测度诱导的 Caratheodory 测度,再由引理 1.12 知它是完备的。

1.5.2 完备化

下面的定理给出了 Lebesgue 可测集的一个分解。

定理 1.11 (Lebesgue 可测集的结构).

下列条件等价:

- (1) $A \in \mathcal{L}$
- (2) 存在 Borel 集 B 与零测集 E 使得 $A = B \cup E$
- (3) 存在 Borel 集 B 与零测集 E 使得 $A = B\Delta E$
- 证明. $(1) \Rightarrow (2)$: 由定理 1.2, 存在 Borel 集 $B \subseteq A$ 使得 $|A \setminus B| = 0$ 。令 $E = A \setminus B$ 即得。
 - $(2) \Rightarrow (1)$: 由命题 1.8 与 1.11 知 $B \in \mathcal{L}$ 且 $E \in \mathcal{L}$ 。再由命题 1.7 知 $A = B \cup E \in \mathcal{L}$
 - (1) ⇒ (3):请读者模仿 (1) ⇒ (2)的论证自己证明。
 - $(3) \Rightarrow (1)$:请读者模仿 $(2) \Rightarrow (1)$ 的论证自己证明。

我们已经知道, \mathcal{L} 包含所有的开集与零测集。事实上, \mathcal{L} 正是满足这个条件的最小的 σ -代数。

定理 1.12.

 \mathcal{L} 是最小的包含所有开集与零测集的 σ - 代数。

证明. 包含性由命题 1.8 与 1.11 给出。对于最小性,我们只需证明: 对于任何包含所有开集与零测集的 σ — 代数 S,都有 $\mathcal{L} \subseteq S$. 事实上,由定理 1.11,任何 Lebesgue 可测集 $A \in \mathcal{L}$ 都有 $A = B \cup E$,其中 B 是 Borel 集且 E 是零测集。故由 S 的构造知 $B \in S$ 且 $E \in S$,再由 S 是 σ — 代数知 $A = B \cup E \in S$ 。这就证明了 $\mathcal{L} \subseteq S$

在进行下面的内容之前,我们先回顾一下之前定义 Borel 测度与 Lebesgue 测度的过程。我们先是把所有开集纳入到 σ — 代数中,从而定义出 Borel σ — 代数,再进一步证明了外测度确实是其上的测度。后来我们定义了 Lebesgue 可测集,发现 $\mathcal L$ 是更大的 σ — 代数并且还能让外测度成为其上的测度。我们不禁在想,这个过程能不能继续扩大下去?如果能找到比 $\mathcal L$ 更大的,还能维持外测度成为测度,那岂不是更强的结果?但下面的引理表明,这是不可能的。某种程度上来说, $\mathcal L$ 已是最好的结果。

引理 1.13.

如果 $S \subseteq \mathcal{P}(\mathbb{R})$ 满足:

- (1) S 是 ℝ 上的 σ− 代数
- (2) 外测度限制在 S 上是 (\mathbb{R}, S) 上的测度
- (3) S 包含所有开集

那么 $\mathcal{B} \subseteq \mathcal{S} \subseteq \mathcal{L}$

证明. 由 (1)(3) 知 $\mathcal{B} \subseteq \mathcal{S}$, 故只需证 $\mathcal{S} \subseteq \mathcal{L}$ 。任取 $A \in \mathcal{S}$ 。下证 $A \in \mathcal{L}$ 。

先考虑 $|A| < +\infty$ 的情形。对任何 $\varepsilon > 0$,由引理 1.6,存在开集 $G \supseteq A$ 使得 $|G| < |A| + \varepsilon < +\infty$. 由 (3) 知 $G \in \mathcal{S}$,再由 (1) 知 $G \setminus A \in \mathcal{S}$ 。由无交并 $G = (G \setminus A) \cup A$ 以及 (2) 知 $|G| = |G \setminus A| + |A|$. 故 $|G \setminus A| = |G| - |A| < \varepsilon$. 由定理 1.2 知 $A \in \mathcal{L}$

下面再考虑 $|A|=+\infty$ 的情形。对于任何 $n\in\mathbb{Z}^+$,由 (3) 知开区间 $(-n,n)\in\mathcal{S}$ 。令 $A_n=A\cap(-n,n)$ 。由 (1) 知 $A_n\in\mathcal{S}$ 。同时有 $|A_n|\leq 2n<+\infty$ 。根据刚才有限情形的讨论 知道 $A_n\in\mathcal{L}$ 。再注意到 $A=\bigcup_{n=1}^\infty A_n$,因此 $A\in\mathcal{L}$.

从定理 1.12 看到, \mathcal{L} 是某种程度上的最小的 σ - 代数,而又从引理 1.13 看到, \mathcal{L} 是另一种意义上最大的 σ - 代数。把二者的条件一结合,就能唯一地确定 \mathcal{L} 了。

定理 1.13 (\mathcal{L} 的万有性质).

存在唯一的 $S \subseteq \mathcal{P}(\mathbb{R})$ 满足:

- (1) S 是 ℝ 上的 σ 代数
- (2) 外测度限制在 S 上是 (\mathbb{R}, S) 上的测度
- (3) S 包含所有开集
- (4) S 包含所有零测集

事实上,这唯一的 S 就是 \mathcal{L} 。这个定理表明,**包含所有开集,并且外测度限制在其上 是完备测度的** σ - **代数**,只能是 \mathcal{L} 。以下是证明:

证明. 对于存在性, 只需注意到 £ 满足如上所有四个条件。

对于唯一性,只需证明所有满足这四个条件的 \mathcal{S} 只能是 \mathcal{L} 。由 (1)(3)(4) 及定理 1.12 知 $\mathcal{L} \subseteq \mathcal{S}$ 。再由 (1)(2)(3) 及引理 1.13 知 $\mathcal{S} \subseteq \mathcal{L}$. 因此 $\mathcal{S} = \mathcal{L}$

不同书给出的 Lebesgue 可测集的定义各不相同。不过从上面这个定理可以看到,给出若干抽象的性质后,就能唯一确定出 \mathcal{L} 。从而不同的定义只是提供了满足这些抽象性质的 \mathcal{L} 的不同模型而已(本文的定义 1.9 也只是其中一个模型)。

从这个定理我们还能看到,如果从 Borel 测度出发,将测度进行"扩张",使得扩张后的测度满足完备性的话,那么这个扩张存在且唯一(就是 Lebesgue 测度)。从这个层面来讲,Lebesgue 测度是 Borel 测度的"完备化"。下面我们从最一般的角度来描述完备化。

引理 1.14 (Folland, 1.9 Theorem).

设 (X, \mathcal{S}, μ) 是测度空间, \mathcal{N} 是所有 μ — 零测度集构成的集族。则存在唯一的测度空间 $(X, \tilde{S}, \tilde{\mu})$,满足

 $\tilde{\mathcal{S}} := \{ A \cup M : A \in \mathcal{S} \perp \exists N \in \mathcal{N}, M \subseteq N \}$

并且 $\tilde{\mu}: \tilde{S} \to [0, +\infty]$ 使得 $\tilde{\mu}$ 是 (X, \tilde{S}) 上的完备测度且 $\tilde{\mu}|_{S} = \mu$ 。

证明.(未完待续)

定义 1.14 (完备化).

设 (X, S, μ) 是测度空间,由引理 1.14 给出的 $(X, \tilde{S}, \tilde{\mu})$ 中,称 $\tilde{\mu}$ 是 μ 的完备化, \tilde{S} 是 S 对于 μ 的完备化。

给出完备化的定义以后,我们现在来验证 Lebesgue 测度是 Borel 测度的完备化。

命题 1.12.

E 是零测集等价于:存在 Borel-零测集 N 使得 $E \subseteq N$

证明. (\Rightarrow) : 设 $E \in \mathcal{L}$ 是零测集。由定理 1.2,存在 Borel 集 $N \supseteq E$ 使得 $|N \setminus E| = 0$ 。故

$$|N| = |E \cup (N \setminus E)| \le |E| + |N \setminus E| = 0 \quad \Rightarrow \quad |N| = 0$$

$$(\Leftarrow)$$
: 由单调性 $|E| \leq |N| = 0 \Rightarrow |E| = 0$

定理 1.14.

Lebesgue 测度是 Borel 测度的完备化。

 \mathcal{L} 是 \mathcal{B} 对于 Borel 测度的完备化。

证明. 设 \mathcal{N} 是所有 Borel-零测度集构成的集族。由定理 1.11 与命题 1.12 知

$$\mathcal{L} = \{ B \cup E : B \in \mathcal{B} \perp \exists N \in \mathcal{N}, E \subseteq N \}$$

由定义 1.14 以及 Lebesgue 测度的完备性即得。

第二章 可测函数

2.1 可测函数

定义 2.1 (扩充实数集与扩充 Borel 集).

定义 $\mathbb{R} = [-\infty, +\infty]$ 为扩充实数集。

设 $A \subseteq \mathbb{R}$. 如果 $A \cap \mathbb{R} \in \mathcal{B}$,则称 A 是扩充 Borel 集。

所有扩充 Borel 集构成的集族记作 $\overline{\mathcal{B}}$

引理 2.1.

 $\overline{\mathcal{B}}$ 是 \mathbb{R} 上最小的包含所有开集以及 $\{-\infty\}$, $\{+\infty\}$ 的 σ - 代数。

证明. 容易看出, $A \in \overline{\mathcal{B}}$ 等价于 A 是如下四种形式的一种:

$$B \cup \{-\infty\}$$
 $B \cup \{+\infty\}$ $B \cup \{-\infty, +\infty\}$

其中 $B \in \mathcal{B}$.

由于 \emptyset 是上述第一种形式,故 $\emptyset \in \overline{\mathcal{B}}$ 。此外,若 A 是上述四种形式的一种,则由 \mathcal{B} 是 σ - 代数知 $\mathbb{R}\setminus A$ 也将是上述四种形式的一种。类似地,由 \mathcal{B} 是 σ - 代数知上述四种形式的集合的可列并也会是上述四种形式中的一种。因此 $\overline{\mathcal{B}}$ 是 \mathbb{R} 上的 σ - 代数。

设 \mathcal{S} 是任一包含所有开集以及 $\{-\infty\}$, $\{+\infty\}$ 的 σ - 代数。则由 \mathcal{B} 的定义知 $\mathcal{B} \subseteq \mathcal{S}$. 再由 \mathcal{S} 是 σ - 代数知上述四种形式的集合都应在 \mathcal{S} 中。这就表明 $\overline{\mathcal{B}} \subseteq \mathcal{S}$. 最小性得证。 \square

定义 2.2 (可测函数).

设 (X,S) 是可测空间。如果函数 $f:X\to \mathbb{R}$ 满足:

$$\forall B \in \overline{\mathcal{B}}, \ f^{-1}(B) \in \mathcal{S}$$

则称 f 是 S- 可测函数。

注意, 定义可测函数时, 并不需要测度, 只需要可测空间。

如果函数 $f: X \to \mathbb{R}$ 的值域是 \mathbb{R} 的子集,则说 f 是有限值函数,它也可以被看成是 $X \to \mathbb{R}$ 的函数。显见,有限值 S— 可测函数满足:Borel 集的原像在 S 中。

命题 2.1.

设 (X, S) 是可测空间, $E \in S$ 。如果 $f: X \to \mathbb{R}$ 是 S- 可测函数,则 $f|_E$ 是对应于子可测空间 $(E, S \cap \mathcal{P}(E))$ 上的 $S \cap \mathcal{P}(E)$ - 可测函数。

引理 2.2.

设 (X, S) 是可测空间, $f: X \to Y$ 是函数。则

$$\mathcal{T} = \{ A \subseteq Y : f^{-1}(A) \in \mathcal{S} \}$$

是 Y 上的 σ - 代数。

命题 2.2.

设 (X, S) 是可测空间, $f: X \to \mathbb{R}$ 是函数。则下列条件等价:

- (1) $f \in S$ 可测函数 (即 $\forall B \in \overline{\mathcal{B}}, f^{-1}(B) \in S$)
- (2) 对任何开集 $G \subseteq \mathbb{R}$ 有 $f^{-1}(G) \in \mathcal{S}$,且 $f^{-1}(\{-\infty\}) \in \mathcal{S}$, $f^{-1}(\{+\infty\}) \in \mathcal{S}$
- (3) 对任何闭集 $F \subseteq \mathbb{R}$ 有 $f^{-1}(F) \in \mathcal{S}$,且 $f^{-1}(\{-\infty\}) \in \mathcal{S}$, $f^{-1}(\{+\infty\}) \in \mathcal{S}$
- (4) $\forall a \in \mathbb{R}, f^{-1}((a, +\infty)) \in \mathcal{S}$
- (5) $\forall a \in \mathbb{R}, \ f^{-1}([a, +\infty]) \in \mathcal{S}$
- (6) $\forall a \in \mathbb{R}, \ f^{-1}([-\infty, a)) \in \mathcal{S}$
- (7) $\forall a \in \mathbb{R}, f^{-1}([-\infty, a]) \in \mathcal{S}$

命题 2.3.

设 (X,S) 是可测空间, f_1,f_2,\cdots 是 S- 可测函数序列。则下列函数均 S- 可测:

$$\sup_{n \in \mathbb{Z}^+} f_n(x) \qquad \inf_{n \in \mathbb{Z}^+} f_n(x) \qquad \limsup_{n \to \infty} f_n(x) \qquad \liminf_{n \to \infty} f_n(x)$$

命题 2.4.

设 (X, S) 是可测空间。

若 S- 可测函数序列 f_1, f_2, \cdots 点态收敛于函数 f, 则 f 是 S- 可测函数。

定义 2.3.

设 X 是拓扑空间,S 是 X 上的 Borel σ - 代数。

如果 $f: X \to \mathbb{R}$ 是 S- 可测函数,则称 f 是 X 上的 Borel 可测函数。

命题 2.5.

设 X 是拓扑空间。如果 $f: X \to \mathbb{R}$ 连续,那么 $f \in X$ 上的 Borel 可测函数。

证明. 因为 f 是连续函数,所以 \mathbb{R} 中开集的原像是 X 中的开集,故也会是 X 中的 Borel 集。由命题 2.2 的 (1)(2) 等价知 f 是 X 上的 Borel 可测函数。

(注意, 命题 2.2 (2) 中的 $f^{-1}(\{\pm\infty\}) \in \mathcal{S}$ 平凡成立, 因为条件中的 f 是有限值的) \square

命题 2.6.

设 (X, S) 是可测空间, $f: X \to \mathbb{R}$ 是有限值 S- 可测函数, $g: \mathbb{R} \to \mathbb{R}$ 是 \mathbb{R} 上的 Borel 可测函数,则 $g \circ f: X \to \mathbb{R}$ 是有限值 S- 可测函数。

证明. 首先 $g \circ f$ 是有限值的,因为是两个有限值函数的复合。

由于 g 是 \mathbb{R} 上的 Borel 可测函数,故 \mathbb{R} 中 Borel 集在 g 下的原像还是 \mathbb{R} 中的 Borel 集。再由 f 是有限值 S— 可测函数知 \mathbb{R} 中的 Borel 集在 f 下的原像在 S 中。因此, \mathbb{R} 中的 Borel 集在 $g \circ f$ 下的原像在 S 中,故 $g \circ f$ 是有限值 S— 可测函数。

定义 2.4.

对于函数 $f: X \to \mathbb{R}$, 定义 $f^+ = \max(f, 0)$, $f^- = \max(-f, 0)$

命题 2.7.

设 (X, S) 是可测空间。

(1) 如果 f 是 S- 可测函数,则下列函数都是 S- 可测函数:

$$-f$$
 $\frac{f}{2}$ $|f|$ f^2

(2) 如果 f,g 是 S- 可测函数,则下列函数都是 S- 可测函数:

$$\max(f,g) \quad \min(f,g) \quad f^+ \quad f^-$$

(3) 如果 f,g 是有限值 S- 可测函数,则下列函数都是有限值 S- 可测函数:

$$f+g$$
 $f-g$ fg

2.2 简单函数与阶梯函数

本节我们用简单函数与阶梯函数逼近可测函数。

- 简单函数
- 阶梯函数

2.2.1 简单函数

定义 2.5 (特征函数).

设 $E \subseteq X$. 定义 E 的特征函数 $\chi_E : X \to \mathbb{R}$ 为:

$$\chi_E(x) = \begin{cases} 1 & x \in E \\ 0 & x \notin E \end{cases}$$

定义 2.6 (简单函数).

值域是有限集的函数称为简单函数。

命题 2.8.

设 (X,S) 是可测空间。如果 $f: X \to \mathbb{R}$ 是简单函数,设 $f(X) = \{c_1, \dots, c_n\}$ (其中 c_1, \dots, c_n 是有限个互异的实数),则 $E_i = f^{-1}(\{c_i\})$ 构成了 X 的分划,且

$$f = \sum_{i=1}^{n} c_i \chi_{E_i}$$

此外, $f \in S_-$ 可测等价于每个 χ_{E_i} 都是 S_- 可测。

定理 2.1 (简单函数逼近 (GTM 282, 2.89)[3]).

设可测空间 (X,S) 及函数 $f:X\to \mathbb{R}$. 则存在 $X\to \mathbb{R}$ 的函数序列 f_1,f_2,\cdots 满足:

- (1) 每个 f_k 是简单函数
- (2) f_k 点态收敛于 f
- (3) $\forall k \in \mathbb{Z}^+, \ \forall x \in X, \ |f_k(x)| \le |f_{k+1}(x)| \le |f(x)|$
- (4) 如果 f 是 S- 可测函数,则每个 f_k 都是 S- 可测的
- (5) 如果 f 是有界函数,则 f_k 一致收敛于 f

证明. 对于任何 $k \in \mathbb{Z}^+$ 以及 $y \in (-k, k)$,一定存在唯一的 $m \in \mathbb{Z}$ 使得 $y \in [\frac{m}{2^k}, \frac{m+1}{2^k})$ 。记 区间两端点 $\frac{m}{2^k}, \frac{m+1}{2^k}$ 中绝对值较小的那个为 p,由此构造函数 φ_k 如下:

$$\varphi_k: (-k, k) \to \mathbb{R}, \ y \mapsto p$$

形象地说, $\varphi_k(y)$ 是所有比 y 绝对值小 1 的以 2^k 为分母的有理数中最接近 y 的那个。

¹这里"小"有可能包含了相等的情况,读者理解意思就行。

从上述构造显见,如果 $y \in (-k,k)$,那么 $|\varphi_k(y) - y| \leq \frac{1}{2^k}$ 并且 $|\varphi_k(y)| \leq |y|$. 现在对任何 $k \in \mathbb{Z}$,定义函数 $f_k : X \to \mathbb{R}$ 为:

$$f_k(x) = \begin{cases} \varphi_k(f(x)) & \text{if } f(x) \in (-k, k) \\ k & \text{if } f(x) \in [k, +\infty] \\ -k & \text{if } f(x) \in [-\infty, -k] \end{cases}$$

(未完待续)

2.2.2 阶梯函数

定义 2.7 (阶梯函数).

形如 $f: \mathbb{R} \to \mathbb{R}$,

$$f = \sum_{i=1}^{n} c_i \chi_{I_i}$$

的函数被称为**阶梯函数**,其中 $c_1, \dots, c_n \in \mathbb{R}$, I_1, \dots, I_n 是 n 个区间,且构成了 \mathbb{R} 的分划。

引理 2.3.

对任何有限 Lebesgue 可测集 $A \subseteq \mathbb{R}$,对任何 $\varepsilon > 0$,存在外测度小于 ε 的集合 E 与阶梯函数 ψ ,使得对任何 $x \in \mathbb{R} \setminus E$,都有 $\psi(x) = \chi_A(x)$

证明. 由定理 1.7,对于任何 $\varepsilon > 0$,存在有限个有界闭区间 F_1, \cdots, F_n (可以选择使其无交),使得它们的并 $F = \bigcup_{i=1}^n F_i$ 能够逼近 A,即 $|A\Delta F| < \varepsilon$. 记

$$\psi = \sum_{i=1}^{n} \chi_{F_i} = \chi_F$$

则 ψ 是阶梯函数,并且

$$\{x: \psi(x) \neq \chi_A(x)\} = A\Delta F$$

于是取 $E = A\Delta F$,就会有 $|E| < \varepsilon$,并且对于任何 $x \in \mathbb{R} \setminus E$ 都有 $\psi(x) = \chi_A(x)$

定理 2.2 (阶梯函数逼近 (Stein, Chapter 1, Theorem 4.3) [1]).

如果 $f: \mathbb{R} \to \mathbb{R}$ 是 Lebesgue 可测函数,则存在零测集 E 与阶梯函数序列 f_1, f_2, \cdots 使得 f_k 在 $\mathbb{R} \setminus E$ 上点态收敛于 f.

证明. 由定理 2.1 知存在 $\mathbb{R} \to \mathbb{R}$ 的 Lebesgue 可测函数序列 g_1, g_2, \cdots 使得 g_k 点态收敛于 f. 由命题 2.8,可设 $g_k = \sum_{i=1}^{n_k} c_{ki} \chi_{A_{ki}}$,其中 A_{ki} 是 Lebesgue 可测集,且 $\{A_{ki}\}_{i=1}^{n_k}$ 构成 \mathbb{R} 的分划。

记 $B_{ki} = A_{ki} \cap (-k, k)$,则 B_{ki} 是有限 Lebesgue 可测集。由引理 2.3,存在外测度小于 $n_k^{-1}2^{-k}$ 的集合 E_{ki} 与阶梯函数 ψ_{ki} ,使得对任何 $x \in \mathbb{R} \setminus E_{ki}$ 都有 $\psi_{ki}(x) = \chi_{B_{ki}}(x)$,即 对任何 $x \in (\mathbb{R} \setminus E_{ki}) \cap (-k, k)$ 都有 $\psi_{ki}(x) = \chi_{A_{ki}}(x)$. 记

$$f_k = \sum_{i=1}^{n_k} c_{ki} \psi_{ki} \qquad E_k = \bigcup_{i=1}^{n_k} E_{ki}$$

则 $|E_k| \le 2^{-k}$, f_k 仍为阶梯函数,且对任何 $x \in (\mathbb{R} \setminus E_k) \cap (-k,k)$ 都有 $f_k(x) = g_k(x)$. 记

$$E = \bigcap_{K=1}^{\infty} \bigcup_{k=K+1}^{\infty} E_k$$

此时对任何 K,都有 $|E| \le |\bigcup_{k=K+1}^{\infty} E_k| \le \sum_{k=K+1}^{\infty} 2^{-k} = 2^{-K}$,从而 |E| = 0。此外,可以看出

$$\mathbb{R}\backslash E = \bigcup_{K=1}^{\infty} \bigcap_{k=K+1}^{\infty} (\mathbb{R}\backslash E_k) = \bigcup_{K=1}^{\infty} \bigcap_{k=K+1}^{\infty} ((\mathbb{R}\backslash E_k) \cap (-k, k))$$

这意味着,对任何 $x \in \mathbb{R} \setminus E$,存在 $K \in \mathbb{Z}^+$,使得对于任何 k > K,都有 $x \in (\mathbb{R} \setminus E_k) \cap (-k,k)$,此时 $f_k(x) = g_k(x)$,故 $\lim_{k \to \infty} f_k(x) = \lim_{k \to \infty} g_k(x) = f(x)$. 这就证明了阶梯函数序列 f_k 在 $x \in \mathbb{R} \setminus E$ 上点态收敛于 f。

2.3 Littlewood 三原则

Littlewood 曾经总结了关于测度理论的三个原则:

- 第一原则: 任何可测集都几乎是有限个区间的交。
- 第二原则: 任何可测函数都几乎是连续的。
- 第三原则: 任何点态收敛的函数序列都几乎一致收敛。

其中第一原则就是定理 1.7 (以后再用到此定理时,将会被直接说成是 Littlewood 第一原则)。本文介绍后两个原则。

2.3.1 第三原则: Egorov 定理

定理 2.3 (Egorov 定理 (GTM 282, 2.85) [3]).

设 (X, S, μ) 是测度空间,并且 $\mu(X) < +\infty$. 设 f_1, f_2, \cdots 是 $X \to \mathbb{R}$ 的 S- 可测函数序列,并且点态收敛于 $f: X \to \mathbb{R}$. 则对于任何 $\varepsilon > 0$,存在 $E \in S$,使得 $\mu(X \setminus E) < \varepsilon$ 并且在 $E \perp f_k$ 一致收敛于 f.

2.3.2 第二原则: Luzin 定理

定理 2.4 (Luzin 定理 (Stein, Chapter 1, Theorem 4.5) [1]).

设 $E \subseteq \mathbb{R}$ 是 Lebesgue 可测集, $f: E \to \mathbb{R}$ 是 Lebesgue 可测函数。则对于任何 $\varepsilon > 0$,存在闭集 $F \subseteq E$,使得 $|E \setminus F| < \varepsilon$ 且 $f|_F$ 连续。

证明. 我们先证 $|E| < +\infty$ 的情况。

由定理 2.2, 存在 $S\subseteq E$ 与阶梯函数序列 f_n ,使得 $|E\backslash S|=0$ 且在 $S\perp f_n\to f$ 。对每个 n,由于 f_n 是阶梯函数,故只有有限个间断点。取区间 E_n 把间断点包住并且让 $|E_n|<2^{-n}$,就会使 $f_n|_{E\backslash E_n}$ 连续。

注意 S 是 Lebesgue 可测集且 $|S|<+\infty$,由 Egorov 定理(2.3),对任何 $\varepsilon>0$,存在 Lebesgue 可测集 $A\subseteq S$ 使得 $|S\backslash A|<\frac{\varepsilon}{3}$ 并且在 $A\perp f_n$ 一致收敛于 f_o 由于 $\sum 2^{-n}$ 级数 收敛,所以余项 $\sum_{n=N+1}^{\infty} 2^{-n}$ 趋于 0。现在选取 N 使得 $\sum_{n=N+1}^{\infty} 2^{-n}<\frac{\varepsilon}{3}$,令

$$F' = A \setminus \bigcup_{n=N+1}^{\infty} E_n \subseteq A$$

则 $|A\backslash F'|<\frac{\epsilon}{3}$,并且当 n>N 时, $f_n|_{F'}$ 连续。再由 f_n 在 F' 上一致收敛于 f,知 $f|_{F'}$ 连续。注意到 F' 是 Lebesgue 可测集,故存在闭集 $F\subseteq F'$ 使得 $|F'\backslash F|<\frac{\epsilon}{3}$.

这样,我们就找到了闭集 $F \subset E$,使得

$$|E \backslash F| \leq |E \backslash S| + |S \backslash A| + |A \backslash F'| + |F' \backslash F| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

并且 $f|_F$ 连续。

下面再证 $|E| = +\infty$ 的情况。

设 $I_1, I_2, I_3, I_4, \dots = [0, 1), [-1, 0), [1, 2), [-2, -1), \dots$,则 I_k 构成了 \mathbb{R} 的分划,并且 $E_k = E \cap I_k$ 是有限 Lebesgue 可测集。则根据刚才有限的情况,对每个 k,对任何 $\varepsilon > 0$,

存在闭集 $F_k \subseteq E_k$ 使得 $|E_k \setminus F_k| < 2^{-k}\varepsilon$ 且 $f|_{F_k}$ 连续. 令 $F = \bigcup_{k=1}^\infty F_k \subseteq E$,则 $f|_F$ 连续, $|E \setminus F| < \sum_{k=1}^\infty 2^{-k}\varepsilon = \varepsilon$,并且 F 是闭集(这是因为,对任何 F 中的收敛数列,充分大时必落入某个 I_k ,从而必落入某个 F_k 。再由于 F_k 是闭集,知道极限在 $F_k \subseteq F$ 中)

第三章 Lebesgue 积分

3.1 Lebesgue 积分的定义

我们分三步定义 Lebesgue 积分:

- 非负可测简单函数
- 非负可测函数
- 可测函数

下面表达式中,如果出现 $0 \times \infty$, $\infty \times 0$,则约定为 0.

3.1.1 非负可测简单函数的积分

定义 3.1 (非负可测简单函数的积分).

设 (X, \mathcal{S}, μ) 是测度空间, $f: X \to [0, +\infty]$ 是 \mathcal{S} 一可测简单函数,即可写成

$$f = \sum_{i=1}^{n} c_i \chi_{E_i}$$

其中 $c_i \ge 0$ 互异, $E_i \in \mathcal{S}$ 构成了 X 的分划。 定义 f 对 μ 的积分 I(f) 为

$$I(f) = \sum_{i=1}^{n} c_i \mu(E_i)$$

引理 3.1.

设 (X, \mathcal{S}, μ) 是测度空间, $f, g: X \to [0, +\infty]$ 是 $\mathcal{S}-$ 可测简单函数。 若 $f \leq g$,则 $I(f) \leq I(g)$

证明. 设 $f = \sum_{i=1}^n c_i \chi_{E_i}$, $g = \sum_{j=1}^m d_j \chi_{F_j}$ 是由命题 2.8 确定的形式。则每个 $E_i \cap F_j \in \mathcal{S}$,并且构成了 X 的分划。由于 $E_i = \bigcup_{j=1}^m E_i \cap F_j$ 以及测度的可列可加性,知 $\mu(E_i) = \sum_{j=1}^m \mu(E_i \cap F_j)$ 。同理, $\mu(F_j) = \sum_{i=1}^n \mu(E_i \cap F_j)$ 。对每个 i, j,设 $c_{ij} = c_i$, $d_{ij} = d_j$,则有

$$I(f) = \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} \mu(E_i \cap F_j) \qquad I(g) = \sum_{i=1}^{n} \sum_{j=1}^{m} d_{ij} \mu(E_i \cap F_j)$$

由于 $f \leq g$,同时注意到 c_{ij} 是 f 在 $E_i \cap F_j$ 上的取值, d_{ij} 是 g 在 $E_i \cap F_j$ 上的取值, 因此 $c_{ij} \leq d_{ij}$ 。这就表明 $I(f) \leq I(g)$.

3.1.2 非负可测函数的积分

定义 3.2 (非负可测函数的积分).

设 (X, \mathcal{S}, μ) 是测度空间, $f: X \to [0, +\infty]$ 是 $\mathcal{S}-$ 可测函数,定义 f 对 μ 的积分 $\int_{-}^{+} f d\mu$ 为

$$\int_{-}^{+} f d\mu = \sup \{ I(s) : s \le f, s : X \to [0, +\infty] \mathbb{E}S - 可测简单函数 \}$$

命题 3.1.

定义 3.2 与定义 3.1 所确定的积分是兼容的。

换言之,设 (X,\mathcal{S},μ) 是测度空间, $f:X\to[0,+\infty]$ 是 $\mathcal{S}-$ 可测简单函数,则

$$\int_{-}^{+} f \mathrm{d}\mu = I(f)$$

证明. 考察 $A = \{I(s): s \leq f, s: X \to [0, +\infty] \\ \mathbb{E}S - 可测简单函数 \}$. 对于任何 $a \in A$,都 会有某个 $X \to [0, +\infty]$ 的 S - 可测简单函数 s,满足 $s \leq f$ 并且 a = I(s). 由引理 3.1 知 $a = I(s) \leq I(f)$ 。因此,sup $A \leq I(f)$ 。同时注意到 $I(f) \in A$,故 sup $A \geq I(f)$ 。所以, $\int_{-}^{+} f d\mu = \sup A = I(f)$

引理 3.2.

设 (X, \mathcal{S}, μ) 是测度空间, $f: X \to [0, +\infty]$ 是 \mathcal{S} - 可测简单函数。则

$$\int^+ f \mathrm{d}\mu \ge 0$$

此外,假若在 X 上恒有 f = 0,则

$$\int^{+} f \mathrm{d}\mu = 0$$

证明. 对所有满足 $s \leq f$ 的非负简单可测函数 s,由定义 3.1 知 $I(s) = \sum_{i=1}^{n} c_i \mu(E_i) \geq 0$ 。 再由定义 3.2 知取 sup 后仍然保持 $\int_{-\infty}^{\infty} f d\mu \geq 0$ 。

f = 0 是非负可测简单函数,由定义 3.1 知 I(f) = 0。再由命题 3.1 知 $\int_{-\infty}^{+\infty} f d\mu = 0$ 口事实上,还有第二种定义非负可测函数积分的方法,那就是借由 Lebesgue 下和。

定义 3.3 (Lebesgue 下和).

设 (X, \mathcal{S}, μ) 是测度空间, $f: X \to [0, +\infty]$ 是 $\mathcal{S}-$ 可测函数,P 是 X 的有限可测分划(意思是存在有限个 $E_1, \cdots, E_n \in \mathcal{S}$ 构成 X 的分划)。

定义 Lebesgue 下和 L(f, P) 为

$$L(f,P) = \sum_{i=1}^{n} m_i \mu(E_i)$$

其中 E_i 构成有限可测分划 P, $m_i = \inf_{x \in E_i} f(x)$

命题 3.2.

设 (X, \mathcal{S}, μ) 是测度空间, $f: X \to [0, +\infty]$ 是 \mathcal{S} 可测函数, 则

$$\int_{-}^{+} f d\mu = \sup \{ L(f, P) : P \in X \text{ 的有限可测分划} \}$$

证明. 只需证明对下述两个集合 A, B, 有 $\sup A = \sup B$:

$$A = \{I(s): s \leq f, s: X \to [0, +\infty]$$
是 \mathcal{S} - 可测简单函数
$$B = \{L(f, P): P \in X \text{ 的有限可测分划}\}$$

一方面,对任何 $a \in A$,都有 a = I(s),其中 $s \le f$,s 是非负 S— 可测简单函数。设 $s = \sum c_i \chi_{E_i}$,则 E_i 构成了 X 的有限可测分划 P,并且由 $s \le f$ 知道 $c_i \le \inf_{x \in E_i} f(x) = m_i$ 。 因此取 $b = L(f, P) \in B$ 就有 $a = \sum c_i \mu(E_i) \le \sum m_i \mu(E_i) = b$ 。故 $\sup A \le \sup B$

另一方面,对任何 $b \in B$,设 $b = L(f, P) = \sum m_i \mu(E_i)$,其中 E_i 构成了 X 的有限可测分划 P。由 f 非负知 m_i 非负。这就自动确定了一个非负 S— 可测简单函数 $s = \sum m_i \chi_{E_i}$.由于每个 $m_i = \inf_{x \in E_i} f(x)$,故 $s \leq f$ 。取 $a = I(s) \in A$ 就有 a = b. 故 $\sup A \geq \sup B$.

3.1.3 可测函数的积分

回忆定义 2.4, $f^+ = \max(f,0)$, $f^- = \max(-f,0)$ 。 由命题 2.7, 当 $f: X \to \mathbb{R}$ 是 $\mathcal{S}-$ 可测函数时, f^+ , f^- 均为非负 $\mathcal{S}-$ 可测函数,因此 $\int^+ f^+ \mathrm{d}\mu$ 与 $\int^+ f^- \mathrm{d}\mu$ 均有意义。

定义 3.4 (可测函数的积分).

设 (X, \mathcal{S}, μ) 是测度空间, $f: X \to \mathbb{R}$ 是 $\mathcal{S}-$ 可测函数。

如果 $\int^+ f^+ d\mu$ 与 $\int^+ f^- d\mu$ 二者中至少有一个是有限的,则定义 f 对 μ 的 **Lebesgue** 积分 $\int f d\mu$ 为

$$\int f d\mu = \int_{-}^{+} f^{+} d\mu - \int_{-}^{+} f^{-} d\mu$$

命题 3.3.

定义 3.4 与定义 3.2 所确定的积分是兼容的。

换言之,设 (X, \mathcal{S}, μ) 是测度空间, $f: X \to [0, +\infty]$ 是 \mathcal{S} -可测函数,则

$$\int f d\mu = \int^+ f d\mu$$

证明. 显见 $f^+ = f$, $f^- = 0$ 。由引理 3.2, $\int^+ f^- d\mu = 0$ 有限。故 $\int f d\mu$ 有意义,且

$$\int f d\mu = \int_{-}^{+} f^{+} d\mu - \int_{-}^{+} f^{-} d\mu = \int_{-}^{+} f d\mu$$

3.2 Lebesgue 积分的性质

在进行下面的讨论前, 先定义 f 在 X 的一个子集 E 上的积分。

定义 3.5 (子集上的积分).

设 (X, \mathcal{S}, μ) 是测度空间,并且 $E \in \mathcal{S}$ 。如果 $f: X \to \mathbb{R}$ 是 \mathcal{S} — 可测函数,则定义 f 在 E 上对于 μ 的积分 $\int_E f d\mu$ 为子测度空间 $(E, \mathcal{S} \cap \mathcal{P}(E), \mu|_{\mathcal{S} \cap \mathcal{P}(E)})$ 上 $f|_E$ 对于 $\mu|_{\mathcal{S} \cap \mathcal{P}(E)}$ 的积分 $\int f|_E d\mu|_{\mathcal{S} \cap \mathcal{P}(E)}$:

$$\int_{E} f d\mu = \int f|_{E} d\mu|_{\mathcal{S} \cap \mathcal{P}(E)}$$

命题 3.4.

定义 3.5 与定义 3.4 所确定的积分是兼容的。

换言之,设 (X, \mathcal{S}, μ) 是测度空间, $f: X \to \mathbb{R}$ 是 \mathcal{S} -可测函数,则

$$\int_X f \mathrm{d}\mu = \int f \mathrm{d}\mu$$

证明. 这是显然的。

下面研究 Lebesgue 积分的诸性质。

命题 3.5 (积分的齐性 (GTM 282, 3.20) [3]).

设 (X, \mathcal{S}, μ) 是测度空间, $E \in \mathcal{S}$, $f: X \to \mathbb{R}$ 使得 $\int_E f \mathrm{d}\mu$ 有定义,设 $c \in \mathbb{R}$ 。则

$$\int_{E} cf \mathrm{d}\mu = c \int_{E} f \mathrm{d}\mu$$

证明. 先假设 $c \ge 0$ 且 f 是非负简单可测函数。则 cf 亦是非负简单可测函数。此时该命题由定义 3.1 显然成立。

再假设 $c \ge 0$ 且 f 是非负可测函数。则 cf 亦是非负可测函数。注意到对每个非负简单可测函数 s 而言, $s \le f$ 等价于 $cs \le cf$,而由刚才的讨论 I(cs) = cI(s)。因此取上确界后,由定义 3.2 知 $\int_E cf \mathrm{d}\mu = c \int_E f \mathrm{d}\mu$ 成立。

然后假设 $c \ge 0$ 且 f 是可测函数,则 cf 亦是可测函数。此时

$$\int_{E} cf d\mu = \int_{E} (cf)^{+} d\mu - \int_{E} (cf)^{-} d\mu = \int_{E} cf^{+} d\mu - \int_{E} cf^{-} d\mu$$
$$= c \int_{E} f^{+} d\mu - c \int_{E} f^{-} d\mu = c \left(\int_{E} f^{+} d\mu - \int_{E} f^{-} d\mu \right) = c \int_{E} f d\mu$$

最后假设 c < 0 且 f 是可测函数,则 cf 亦是可测函数。此时 -c > 0 并且

$$\int_{E} cf d\mu = \int_{E} (cf)^{+} d\mu - \int_{E} (cf)^{-} d\mu = \int_{E} (-c)f^{-} d\mu - \int_{E} (-c)f^{+} d\mu$$
$$= (-c) \int_{E} f^{-} d\mu - (-c) \int_{E} f^{+} d\mu = (-c) \left(\int_{E} f^{-} d\mu - \int_{E} f^{+} d\mu \right) = c \int_{E} f d\mu$$

看到这里,自然会问 $\int (f+g)\mathrm{d}\mu = \int f\mathrm{d}\mu + \int g\mathrm{d}\mu$ 是否成立呢? 事实上也是成立的,我们留到下节证明。

命题 3.6 (零测集上的积分).

设 (X, \mathcal{S}, μ) 是测度空间, $E \in \mathcal{S}$ 且 $\mu(E) = 0$, $f: X \to \mathbb{R}$ 是 \mathcal{S} - 可测函数。则

$$\int_{E} f \mathrm{d}\mu = 0$$

证明. 先假设 f 是非负可测的。则由定义 3.1 ,以及零测集的 S- 可测子集仍零测的事实,所有满足 $s \le f$ 的非负简单可测函数 s 都有 $\int_E s\mathrm{d}\mu = 0$ 。再由定义 3.2 知道 $\int_E f\mathrm{d}\mu = 0$ 。

再考虑一般的 f。因为 f^+ , f^- 是非负可测的,由刚才的讨论, $\int_E f^+ d\mu = 0$ 且 $\int_E f^- d\mu = 0$ 。因此 $\int_E f d\mu = \int_E f^+ d\mu - \int_E f^- d\mu = 0$ 。

命题 3.7 (积分的区域可加性 (Rudin, 11.24)[2]).

设 (X, \mathcal{S}, μ) 是测度空间, $f: X \to \mathbb{R}$ 使得 f 非负 $\mathcal{S}-$ 可测,或 $\int f d\mu < +\infty$ 。设一列集合 $A_1, A_2, \dots \in \mathcal{S}$ 满足两两无交 $A_i \cap A_j = \emptyset$ $(i \neq j)$,设 $A = \bigcup A_i$,则

$$\int_{A} f \mathrm{d}\mu = \sum_{i=1}^{\infty} \int_{A_i} f \mathrm{d}\mu$$

定理 3.1 (积分测度).

设 (X, \mathcal{S}, μ) 是测度空间, $f: X \to [0, +\infty]$ 是 \mathcal{S} — 可测函数。则

$$\phi: \mathcal{S} \to [0, +\infty], \ A \mapsto \int_A f \mathrm{d}\mu$$

是可测空间 (X, S) 上的测度。

证明. 引理 3.2 保证了 ϕ 确实是 $\mathcal{S} \to [0, +\infty]$ 的。命题 3.6 及 $\mu(\emptyset) = 0$ 的事实保证了 $\phi(\emptyset) = 0$ 。命题 3.7 保证了 ϕ 的可数可加性。从而 ϕ 是测度。

命题 3.8 (积分的保序性).

设 (X, \mathcal{S}, μ) 是测度空间, $E \in \mathcal{S}$, $f, g: X \to \mathbb{R}$ 使得 $\int_E f d\mu$, $\int_E g d\mu$ 有定义,并且 $f \leq g$ 在 E 上恒成立。则

$$\int_{E} f \mathrm{d}\mu \le \int_{E} g \mathrm{d}\mu$$

证明. 先假设 f,g 非负可测。那么所有满足 $s \le f$ 的非负简单可测函数 s 都满足 $s \le g$,取上确界后由定义 3.2 就有 $\int_E f \mathrm{d}\mu \le \int_E g \mathrm{d}\mu$ 。

再考虑一般的情况。由 $f \leq g$ 知 $f^+ \leq g^+, f^- \geq g^-$ 。因此由刚才的讨论, $\int_E f^+ \mathrm{d}\mu \leq \int_E g^+ \mathrm{d}\mu$, $\int_E f^- \mathrm{d}\mu \geq \int_E g^- \mathrm{d}\mu$ 。故

$$\int_{E} f d\mu = \int_{E} f^{+} d\mu - \int_{E} f^{-} d\mu \le \int_{E} g^{+} d\mu - \int_{E} g^{-} d\mu = \int_{E} g d\mu$$

命题 3.9 (积分的绝对值不等式 (Rudin, 11.26) [2]).

设 (X, \mathcal{S}, μ) 是测度空间, $f: X \to \mathbb{R}$ 使得 $\int_E f d\mu$ 有定义。则

$$\left| \int_{E} f \mathrm{d}\mu \right| \leq \int_{E} |f| \mathrm{d}\mu$$

命题 3.10 (积分的界 (GTM 282, 3.25)[3]).

设 (X, \mathcal{S}, μ) 是测度空间, $E \in \mathcal{S}$, $f: X \to \overline{\mathbb{R}}$ 使得 $\int_E f d\mu$ 有定义。则

$$\left| \int_{E} f \mathrm{d}\mu \right| \le \left(\sup_{E} |f| \right) \mu(E)$$

证明.

$$\Big| \int_E f \mathrm{d} \mu \Big| \leq \int_E |f| \mathrm{d} \mu \leq \int_E \left(\sup_E |f| \right) \mathrm{d} \mu = \left(\sup_E |f| \right) \mu(E)$$

(第一个不等号来自命题 3.9; 第二个不等号来自命题 3.8; 最后的等号来自非负简单可测函数的积分的定义) □

命题 3.11.

设 (X, \mathcal{S}, μ) 是测度空间, $E \in \mathcal{S}$, $f: X \to \mathbb{R}$, $g: X \to \mathbb{R}$ 均是 \mathcal{S} — 可测函数,在 E 上几乎处处 f = g,且 $\int_E g \mathrm{d} \mu$ 有定义。则 $\int_E f \mathrm{d} \mu$ 有定义,并且

$$\int_{E} f \mathrm{d}\mu = \int_{E} g \mathrm{d}\mu$$

证明. 先假设 f,g 均非负可测,则 $\int_E f d\mu$ 有定义。由在 E 上几乎处处 f=g 知存在 $N,S \in \mathcal{S}$ 使得 $E=N \cup S$, $N \cap S=\emptyset$, 在 S 上 f=g, 且 $\mu(N)=0$ 。故

$$\int_{E} f d\mu = \int_{S} f d\mu + \int_{N} f d\mu = \int_{S} f d\mu = \int_{S} g d\mu = \int_{S} g d\mu + \int_{N} g d\mu = \int_{E} g d\mu$$

(其中第一个与最后一个等号使用了命题 3.7, 第二个与倒数第二个等号使用了命题 3.6)

下面再讨论一般情况。由在 E 上几乎处处 f=g 知道在 E 上几乎处处 $f^+=g^+$ 且 $f^-=g^-$ 。由刚才的讨论知道 $\int_E f^+\mathrm{d}\mu=\int_E g^+\mathrm{d}\mu$, $\int_E f^-\mathrm{d}\mu=\int_E g^-\mathrm{d}\mu$ 。由 $\int_E g\mathrm{d}\mu$ 有定义 知道前面两个积分至少有一个是有限的,从而 $\int_E f\mathrm{d}\mu$ 有定义,并且

$$\int_{E} f d\mu = \int_{E} f^{+} d\mu - \int_{E} f^{-} d\mu = \int_{E} g^{+} d\mu - \int_{E} g^{-} d\mu = \int_{E} g d\mu$$

命题 3.12 (Stein, Chapter 2, Proposition 1.6(v)).

设 (X,\mathcal{S},μ) 是测度空间, $E\in\mathcal{S}$, $f:X\to[0,+\infty]$ 使得 $\int_E f\mathrm{d}\mu<+\infty$,则在 E 上几乎处处 $f<+\infty$ 。

证明. 对 $k \in \mathbb{Z}^+$, 设 $E_k = \{x \in E : f(x) \ge k\}$, $E_\infty = \{x \in E : f(x) = \infty\}$. 由于 $\int_E f d\mu$ 是有定义的,故 $f \in S$ — 可测函数,故 $E_k, E_\infty \in S$,并且有

$$+\infty > \int_{E} f d\mu \ge \int_{E} k \chi_{E_k} d\mu = k\mu(E_k)$$

(其中第一个不等号是条件,第二个不等号是注意到在 $E \perp f \geq k\chi_{E_k}$,然后用命题 3.8,最后的等号来自非负简单可测函数积分的定义)

故当 $k \to \infty$ 时

$$\mu(E_k) < \frac{\int_E f \mathrm{d}\mu}{k} \to 0$$

注意到 $E_1\supseteq E_2\supseteq \cdots$ 并且 $E_\infty=\bigcap E_k$. 故由命题 1.6 知

$$\mu(E_{\infty}) = \lim_{k \to \infty} \mu(E_k) = 0$$

即在 E 上几乎处处 $f < +\infty$ 。

命题 3.13 (Stein, Chapter 2, Proposition 1.6(vi)).

设 (X, \mathcal{S}, μ) 是测度空间, $E \in \mathcal{S}$, $f: X \to [0, +\infty]$ 是 \mathcal{S} - 可测函数。则 $\int_E f \mathrm{d}\mu = 0$,等价于:在 E 上几乎处处 f = 0。

证明. (\Rightarrow) : 对 $k \in \mathbb{Z}^+$, 设 $E_k = \{x \in E : f(x) \ge 1/k\}$, $E_\infty = \{x \in E : f(x) \ne 0\}$. 则

$$0 = \int_{E} f d\mu \ge \int_{E} \frac{1}{k} \chi_{E_k} d\mu = \frac{1}{k} \mu(E_k) \ge 0$$

因此每个 $\mu(E_k)=0$, 当然也会有 $\mu(E_k)\to 0$ $(k\to\infty)$ 。 注意到 $E_1\subseteq E_2\subseteq\cdots$ 并且 $E_\infty=\bigcup E_k$. 故由命题 1.6 知

$$\mu(E_{\infty}) = \lim_{k \to \infty} \mu(E_k) = 0$$

即在 E 上几乎处处 f=0。

(⇐): 这是命题 3.11 的直接推论。

3.3 收敛定理

本节介绍四个收敛定理。

- 单调收敛定理
- Fatou 定理
- 有界收敛定理
- 控制收敛定理

3.3.1 单调收敛定理

定理 3.2 (单调收敛定理 (GTM 282, 3.11) [3]).

设 (X, \mathcal{S}, μ) 是测度空间, \mathcal{S} — 可测函数序列 $f_1, f_2, \dots : X \to \mathbb{R}$ 点态收敛于 $f: X \to \mathbb{R}$ 。如果在 X 上恒有 $0 \le f_1 \le f_2 \le \dots$,那么

$$\lim_{n \to \infty} \int f_n d\mu = \int f d\mu$$

证明. 由命题 2.4 知 f 是非负 S— 可测函数。因为每个 $f_n \leq f$,所以 $\int f_n d\mu \leq \int f d\mu$,取 极限后 $\lim_{n\to\infty} \int f_n d\mu \leq \int f d\mu$ 。下证另外一个方向。

对所有 $s \leq f$ 的非负简单可测函数 s,固定其中一个 s 并设 $s = \sum_{i=1}^m c_i \chi_{A_i}$ 。令 $t \in (0,1)$ 。对 $n \in \mathbb{Z}^+$,令

$$E_n = \left\{ x \in X : f_n(x) \ge t \sum_{i=1}^m c_i \chi_{A_i}(x) \right\}$$

则 $E_1 \subseteq E_2 \subseteq \cdots$,并且 $\bigcup_n E_n = X$. 因此对每个 A_i ,都有 $A_i \cap E_1 \subseteq A_i \cap E_2 \subseteq \cdots$,并且 $\bigcup_n (A_i \cap E_n) = A_i$ 。 故对每个 A_i 都有 $\lim_{n \to \infty} \mu(A_i \cap E_n) = \mu(A_i)$ 。

对 $n \in \mathbb{Z}^+$, 对任何 $x \in X$, 有

$$f_n(x) \ge t \sum_{i=1}^m c_i \chi_{A_i \cap E_n}(x)$$

由积分的保序性,

$$\int f_n \mathrm{d}\mu \ge t \sum_{i=1}^m c_I \mu(A_i \cap E_n)$$

两边取极限,

$$\lim_{n\to\infty} \int f_n \mathrm{d}\mu \ge t \sum_{i=1}^m c_i \mu(A_i)$$

由于这是对所有的 $t \in (0,1)$ 都成立的, 让 $t \to 1$ 即得

$$\lim_{n \to \infty} \int f_n d\mu \ge \sum_{i=1}^m c_i \mu(A_i) = I(s)$$

由于这是对所有非负简单可测函数 $s \leq f$ 成立的,两边对所有这样的 s 取上确界即得

$$\lim_{n \to \infty} \int f_n d\mu \ge \int f d\mu$$

命题 3.14 (积分的可加性).

设 (X, \mathcal{S}, μ) 是测度空间, $E \in \mathcal{S}$, $f, g: X \to \mathbb{R}$ 使得 f, g 均非负 \mathcal{S} — 可测,或 $\int_E f \mathrm{d}\mu < +\infty$, $\int_E g \mathrm{d}\mu < +\infty$ 。则

$$\int_{E} (f+g) d\mu = \int_{E} f d\mu + \int_{E} g d\mu$$

证明. 先假设 f,g 是非负简单可测函数,则该命题由定义 3.1 明显成立。

再假设 f,g 是非负可测函数。由定理 2.1,存在递增的非负简单可测函数序列 f_n,g_n ,使得 f_n,g_n 分别点态收敛于 f,g。此时 f_n+g_n 是递增的非负简单可测函数序列,并且点态收敛于 f+g。由单调收敛定理(定理 3.2),

$$\int_{E} (f+g) d\mu = \lim_{n \to \infty} \int_{E} (f_n + g_n) d\mu = \lim_{n \to \infty} \left(\int_{E} f_n d\mu + \int_{E} g_n d\mu \right)$$
$$= \lim_{n \to \infty} \int_{E} f_n d\mu + \lim_{n \to \infty} \int_{E} g_n d\mu = \int_{E} f d\mu + \int_{E} g d\mu$$

最后讨论 $\int_E f \mathrm{d}\mu < +\infty, \int_E g \mathrm{d}\mu < +\infty$ 的情况。注意到恒等式(请自行验证):

$$(f+g)^+ + f^- + g^- = (f+g)^- + f^+ + g^+$$

由刚才已证非负可测情形的可加性,

$$\int_{E} (f+g)^{+} d\mu + \int_{E} f^{-} d\mu + \int_{E} g^{-} d\mu = \int_{E} (f+g)^{-} d\mu + \int_{E} f^{+} d\mu + \int_{E} g^{+} d\mu$$

由 $\int_E f \mathrm{d}\mu < +\infty$,知 $\int_E f^+ \mathrm{d}\mu < +\infty$. 同理 $\int_E g^+ \mathrm{d}\mu < +\infty$ 。注意到 $(f+g)^+ \le f^+ + g^+$,所以由积分的保序性和之前已证非负可测情形的可加性,

$$\int_{E} (f+g)^{+} d\mu \le \int_{E} (f^{+} + g^{+}) d\mu = \int_{E} f^{+} d\mu + \int_{E} g^{+} d\mu < +\infty$$

同理可证 $\int_E (f+g)^- \mathrm{d}\mu < +\infty$ 。 这表明 $\int_E (f+g) \mathrm{d}\mu$ 有定义 (而且有限),并且

$$\int_{E} (f+g) d\mu = \int_{E} (f+g)^{+} d\mu - \int_{E} (f+g)^{-} d\mu
= \int_{E} f^{+} d\mu - \int_{E} f^{-} d\mu + \int_{E} g^{+} d\mu - \int_{E} g^{-} d\mu = \int_{E} f d\mu + \int_{E} g d\mu$$

3.3.2 Fatou 定理

定理 3.3 (Fatou 定理 (Rudin, 11.31) [2]).

设 (X, \mathcal{S}, μ) 是测度空间,设 $\mathcal{S}-$ 可测函数序列 $f_1, f_2, \cdots: X \to [0, +\infty]$ 。如果 $f: X \to [0, +\infty]$ 定义为 $f(x) = \liminf_{n \to \infty} f_n(x)$,那么

$$\int f \mathrm{d}\mu \le \liminf_{n \to \infty} \int f_n \mathrm{d}\mu$$

3.3.3 有界收敛定理

定理 3.4 (有界收敛定理 (GTM 282, 3.26) [3]).

设 (X, \mathcal{S}, μ) 是测度空间,并且 $\mu(X) < +\infty$ 。设 \mathcal{S} — 可测函数序列 $f_1, f_2, \dots : X \to \mathbb{R}$ 点态收敛于 $f: X \to \mathbb{R}$ 。如果存在 $M \in \mathbb{R}^+$ 使得对任何 $n \in \mathbb{Z}^+, x \in X$ 都有 $|f_n(x)| \leq M$,那么

$$\lim_{n \to \infty} \int f_n d\mu = \int f d\mu$$

证明. 由命题 2.4 知 f 是 S- 可测函数,此外 $|f| \le M$ 。对任何 $\varepsilon > 0$,由 Egorov 定理(定理 2.3)知存在 $E \in S$ 使得 $\mu(X \setminus E) < \frac{\varepsilon}{4M}$ 并且 f_1, f_2, \cdots 在 E 上一致收敛于 f。因此当n 充分大时, $(\sup_E |f_n - f|) \mu(E) < \frac{\varepsilon}{2}$,并且

$$\left| \int f_n d\mu - \int f d\mu \right| = \left| \int_{X \setminus E} f_n d\mu - \int_{X \setminus E} f d\mu + \int_E (f_n - f) d\mu \right|$$

$$\leq \left| \int_{X \setminus E} f_n d\mu \right| + \left| \int_{X \setminus E} f d\mu \right| + \left| \int_E (f_n - f) d\mu \right|$$

$$\leq M\mu(X \setminus E) + M\mu(X \setminus E) + \left(\sup_E |f_n - f| \right) \mu(E)$$

$$< M\frac{\varepsilon}{4M} + M\frac{\varepsilon}{4M} + \frac{\varepsilon}{2} = \varepsilon$$

(其中倒数第二个不等式使用了命题 3.10)

故

$$\lim_{n \to \infty} \int f_n d\mu = \int f d\mu$$

命题 3.15 (GTM 282, 3.29[3]).

设 (X, \mathcal{S}, μ) 是测度空间, $g: X \to [0, +\infty]$ 使得 $\int g d\mu < +\infty$ 。则对于任何 $\varepsilon > 0$,存在 $E \in \mathcal{S}$,使得 $\mu(E) < +\infty$ 并且

$$\int_{X\setminus E} g \mathrm{d}\mu < \varepsilon$$

证明. 由非负可测函数积分的定义,对任何 $\varepsilon > 0$,存在非负简单可测函数 $s \leq g$,满足

$$\int g \mathrm{d}\mu < \int s \mathrm{d}\mu + \varepsilon$$

设 $s=\sum_i s_i \chi_{E_i}$, $E=\bigcup_{i\in I} E_i$,其中指标集 $I=\{i:s_i>0\}$ 。则 $E\in\mathcal{S}$, $\mu(E)<+\infty$ (否则, $\int g\mathrm{d}\mu\geq\int s\mathrm{d}\mu\geq (\min_{i\in I} s_i)\mu(E)=+\infty$,与条件 $\int g\mathrm{d}\mu<+\infty$ 矛盾),并且

$$\int_{X \setminus E} g d\mu = \int g d\mu - \int_{E} g d\mu$$

$$< \int s d\mu + \varepsilon - \int_{E} g d\mu$$

$$= \int_{E} s d\mu + \varepsilon - \int_{E} g d\mu \le \varepsilon$$

命题 3.16 (积分的绝对连续性 (GTM 282,3.28) [□]).

设 (X, S, μ) 是测度空间, $g: X \to [0, +\infty]$ 使得 $\int g d\mu < +\infty$ 。则对于任何 $\varepsilon > 0$,存在 $\delta > 0$,使得对任何 $B \in S$,当 $\mu(B) < \delta$ 时,

$$\int_{B} g \mathrm{d}\mu < \varepsilon$$

证明. 由非负可测函数积分的定义,对任何 $\varepsilon > 0$,存在非负简单可测函数 $s \leq g$,满足

$$\int g \mathrm{d}\mu - \int s \mathrm{d}\mu < \frac{\varepsilon}{2}$$

可以进一步要求 $s<+\infty$ (由 $\int g\mathrm{d}\mu<+\infty$ 与命题 3.12 知在 X 上几乎处处 $s\leq g<+\infty$, 即取到 $s=\infty$ 的点构成零测集。在这些点上将 s 改成有限值,不改变 $\int s\mathrm{d}\mu$)。

让 $H=\max{\{s(x):x\in X\}}$,则 $0\leq H<+\infty$ 。令 $\delta>0$ 使得 $H\delta<\frac{\varepsilon}{2}$ 。现在对任何 $B\in\mathcal{S}$,当 $\mu(B)<\delta$ 时,

$$\int_{B} g d\mu < \int_{B} (g - s) d\mu + \int_{B} s d\mu$$

$$\leq \int_{B} (g - s) d\mu + H\mu(B)$$

$$< \frac{\varepsilon}{2} + H\delta < \varepsilon$$

命题 3.17.

设 (X,\mathcal{S},μ) 是测度空间, $g:X\to[0,+\infty]$ 使得 $\int g\mathrm{d}\mu<+\infty$ 。则对于任何 $\varepsilon>0$,存在 $E\in\mathcal{S}$,使得 g 在 E 上有界,并且

$$\int_{X \setminus E} g \mathrm{d}\mu < \varepsilon$$

证明. 对任何 $m \in \mathbb{Z}^+$,设 $E_m = \{x \in X : g(x) \ge m\}$ 。由 $\int g d\mu$ 有定义知 $g \not\in S$ — 可测函数,故 $E_m \in S$,并且

$$+\infty > \int g d\mu \ge \int m\chi_{E_m} d\mu = m\mu(E_m)$$

故当 $m \to \infty$ 时

$$\mu(E_m) < \frac{\int g \mathrm{d}\mu}{m} \to 0$$

对任何 $\varepsilon > 0$,由命题 3.16,存在 $\delta > 0$,使得对任何 $B \in \mathcal{S}$,当 $\mu(B) < \delta$ 时, $\int_B g \mathrm{d}\mu < \varepsilon$ 。 由 $\mu(E_m) \to 0$ 知,存在 $M \in \mathbb{Z}^+$,使得 $\mu(E_M) < \delta$ 。因此 $\int_{E_M} g \mathrm{d}\mu < \varepsilon$ 。

设 $E = X \setminus E_M$,则 $E \in S$, g 在 E 上有界 (因为 $E = \{x \in X : g(x) < M\}$),并且

$$\int_{X\backslash E} g\mathrm{d}\mu = \int_{E_M} g\mathrm{d}\mu < \varepsilon$$

3.3.4 控制收敛定理

定理 3.5 (控制收敛定理).

设 (X, \mathcal{S}, μ) 是测度空间, \mathcal{S} — 可测函数序列 $f_1, f_2, \dots : X \to \mathbb{R}$ 点态收敛于 $f: X \to \mathbb{R}$ 。如果存在 \mathcal{S} — 可测函数 $g: X \to [0, \infty]$,使得 $\int g d\mu < +\infty$,并且对任何 $n \in \mathbb{Z}^+, x \in X$ 都有 $|f_n(x)| \leq g(x)$,那么

$$\lim_{n \to \infty} \int f_n d\mu = \int f d\mu$$

证明.【证法一】(使用 Fatou 定理, Rudin, 11.31)(未完待续)

【证法二】(使用有界收敛定理, Stein, Chapter 2, Theorem 1.13)

由 $|f_n| \leq g$ 知 $|f| \leq g$, 故 $|f_n - f| \leq 2g$ 。

对任何 $\varepsilon>0$,由命题 **3.17**,存在 $E\in\mathcal{S}$,使得 g 在 E 上有界并且 $\int_{X\setminus E} g\mathrm{d}\mu<\varepsilon$ 。故存在 $M\in\mathbb{R}^+$,使得对于任何 $n\in\mathbb{Z}^+,x\in E$, $|f_n(x)|\leq g(x)\leq M$ 。由有界收敛定理(定理 **3.4**), $\lim_{n\to\infty}\int_E f_n\mathrm{d}\mu=\int_E f\mathrm{d}\mu$ 。于是对充分大的 n 都有 $\int_E |f_n-f|\mathrm{d}\mu<\varepsilon$ 。故

$$\int |f_n - f| d\mu = \int_E |f_n - f| d\mu + \int_{X \setminus E} |f_n - f| d\mu$$

$$\leq \int_E |f_n - f| d\mu + 2 \int_{X \setminus E} g d\mu$$

$$< \varepsilon + 2\varepsilon = 3\varepsilon$$

故

$$\lim_{n \to \infty} \int f_n d\mu = \int f d\mu$$

3.4 Riemann 积分

记 $\int_{[a,b]}^{\mathcal{R}} f$ 是 f 在 [a,b] 上的 Riemann 积分。

引理 3.3.

设 $f:[a,b]\to\mathbb{R}$ 是有界函数, $|f|\leq M$,P,P' 是 [a,b] 的两个分划,P 包含 k 个分划点,P' 中最长区间的长度为 δ 。则 Darboux 下和有如下关系:

$$L(f, P) \le L(f, P') + 2M\delta k$$

证明. P' 中的每个区间分成两类:

- 1. 包含 P 中的分划点
- 2. 不包含 P 中的分划点

只有第一类区间,才有可能使得其上 P' 对应的 Darboux 下和小于 P 的,且差距不会超过振幅乘最大长度,即 $2M\delta$ 。而第一类区间的个数不会超过 P 的分划点个数,即 k 个。因此,L(f,P') 再小,也不会小过 $L(f,P)-2M\delta k$ 。

引理 3.4.

设 $f:[a,b]\to\mathbb{R}$ 是有界函数, P_n 是 [a,b] 的一系列分划, P_{n+1} 是 P_n 的加细,并且当 $n\to\infty$ 时, P_n 中最长区间的长度趋于 0。则 Darboux 上和与下和的极限 $\lim_{n\to\infty}U(f,P_n)$, $\lim_{n\to\infty}L(f,P_n)$ 存在,且分别等于 Darboux 上积分与下积分U(f),L(f)。

证明. 因 f 有界,设 $|f| \leq M$. 因为 P_{n+1} 是 P_n 的加细,所以 $U(f,P_n)$ 单调递减, $L(f,P_n)$ 单调递增,此外它们都是有界的(因为落在 [-M,M] 中)。由单调有界定理, $\lim_{n\to\infty} U(f,P_n)$, $\lim_{n\to\infty} L(f,P_n)$ 存在。

下证 $L(f) = \lim_{n\to\infty} L(f,P_n)$ (U(f) 是类似的)。由单调递增知只需证 $L(f) = \sup_{n\in\mathbb{Z}^+} L(f,P_n)$. 而我们已经知道了 $L(f,P_n) \leq L(f)$ 。因此只需证 $\forall \varepsilon > 0$,存在 N 使得 $L(f) < L(f,P_N) + \varepsilon$ 。

现在对于任何 $\varepsilon > 0$,由 L(f) 的定义($L(f) = \sup \{L(f,P): P \in [a,b]$ 的分划 $\}$)知道,存在一个分划 P,使得 $L(f) < L(f,P) + \frac{\varepsilon}{2}$ 。设 P 包含 k 个分划点。因为当 $n \to \infty$ 时, P_n 中最长区间的长度趋于 0,所以可以取充分大的 N,使得 P_N 中最长区间的长度 δ 小于 $\frac{\varepsilon}{4Mk}$. 根据引理 $\frac{3.3}{3}$, $L(f,P) \leq L(f,P_N) + 2M\delta k < L(f,P_N) + \frac{\varepsilon}{2}$ 。因此,

$$L(f) < L(f,P) + \frac{\varepsilon}{2} < L(f,P_N) + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = L(f,P_N) + \varepsilon$$

定理 3.6 ((GTM 282, 3.34) [3]).

设 $f:[a,b]\to\mathbb{R}$ 是有界函数。记 m 是 \mathbb{R} 上的 Lebesgue 测度。则:

1. 如果 f 在 [a,b] 上 Riemann 可积,那么 Lebesgue 积分 $\int_{[a,b]} f dm$ 存在,并且

$$\int_{[a,b]} f \mathrm{d}m = \int_{[a,b]}^{\mathcal{R}} f$$

2. f 在 [a,b] 上 Riemann 可积,等价于: f 在 [a,b] 上几乎处处连续。

证明. 因 f 有界,设 $|f| \le M$ 。设 P_n 是 [a,b] 的 2^n 等分分划。则 P_{n+1} 是 P_n 的加细,并且 P_n 中的每个区间的长度都是 $\frac{b-a}{2^n}$,当 $n \to \infty$ 时趋于 0。由引理 3.4,

$$L(f) = \lim_{n \to \infty} L(f, P_n)$$
 $U(f) = \lim_{n \to \infty} U(f, P_n)$

设 P_n 中的区间分别是 I_1, \cdots, I_{2^n} 。 令

$$\phi_n = \sum_{j=1}^{2^n} (\inf_{I_j} f) \chi_{I_j}$$
 $\psi_n = \sum_{j=1}^{2^n} (\sup_{I_j} f) \chi_{I_j}$

则显然有 $\phi_n \leq f \leq \psi_n, \, \phi_n \leq \phi_{n+1}, \, \psi_{n+1} \leq \psi_n, \, |\phi_n| \leq M, \, |\psi_n| \leq M$,且

$$L(f, P_n) = \int_{[a,b]} \phi_n dm \qquad U(f, P_n) = \int_{[a,b]} \psi_n dm$$

令

$$\phi(x) = \lim_{n \to \infty} \phi_n(x)$$
 $\psi(x) = \lim_{n \to \infty} \psi_n(x)$

对每个 $x\in[a,b]$,由 $\phi_n(x),\psi_n(x)$ 单调有界知 ϕ,ψ 的定义是良好的,并且 $\phi\leq f\leq\psi$ 。 因为 $m[a,b]=b-a<+\infty$, ϕ_n,ψ_n 是阶梯函数序列(从而是 Lebesgue 可测函数序列),并且 $|\phi_n|\leq M, |\psi_n|\leq M$,所以由有界收敛定理(定理 3.4)知道

$$L(f) = \lim_{n \to \infty} L(f, P_n) = \lim_{n \to \infty} \int_{[a,b]} \phi_n dm = \int_{[a,b]} \phi dm$$
$$U(f) = \lim_{n \to \infty} U(f, P_n) = \lim_{n \to \infty} \int_{[a,b]} \psi_n dm = \int_{[a,b]} \psi dm$$

因此,f 在 [a,b] 上 Riemann 可积,等价于 L(f) = U(f),等价于 $\int_{[a,b]} \phi dm = \int_{[a,b]} \psi dm$,等价于 $\int_{[a,b]} (\psi - \phi) dm = 0$,(由 $\psi - \phi$ 非负可测及命题 3.13)等价于在 [a,b] 上几乎处处 $\psi - \phi = 0$,(由 $\phi \leq f \leq \psi$)等价于在 [a,b] 上几乎处处 $\phi = f = \psi$ 。

现在来证明原命题:

1. 第一个结论的证明: 因为 f 在 [a,b] 上 Riemann 可积,所以 $\int_{[a,b]}^{\mathcal{R}} f = U(f)$ 。由之前的讨论,在 [a,b] 上几乎处处 $f=\psi$ 。由命题 3.11 知 $\int_{[a,b]} f dm$ 存在,且

$$\int_{[a,b]} f dm = \int_{[a,b]} \psi dm = U(f) = \int_{[a,b]}^{\mathcal{R}} f$$

2. 第二个结论的证明: 假若 $x \in [a,b]$ 不属于任何 P_n 中的分划点,那么显见 $\phi(x) = f(x) = \psi(x)$ 等价于 f 在 x 点连续。因为所有 P_n 的分划点的并集可数,其测度是 0,所以 f 在 [a,b] 上几乎处处连续,等价于在 [a,b] 上几乎处处 $\phi = f = \psi$,(由之前的讨论)等价于 f 在 [a,b] 上 Riemann 可积。

3.5 可积函数空间

第四章 微分

第五章 乘积测度

参考文献

- [1] Stein, E.M. & Shakarchi, R., 2005. Real analysis: measure theory, integration, and Hilbert spaces., Princeton, N.J.: Princeton University Press.
- [2] Rudin, W., 1976. Principles of mathematical analysis Third., New York ; Tokyo: McGraw-Hill.
- [3] Sheldon, A., 2020. Measure, Integration & Real Analysis, Graduate Texts in Mathematics., Cham: Springer International Publishing AG.