Lagrange Duality

Yuanming Shi

ShanghaiTech University

Outline

- 1 Lagrangian
- 2 Dual Function
- 3 Dual Problem
- 4 Weak and Strong Duality
- 5 KKT conditions

Lagrangian

Consider an optimization problem in standard form (not necessarily convex)

$$\begin{array}{lll} \text{ minimize } & f_0(\boldsymbol{x}) \\ & \text{subject to } & f_i(\boldsymbol{x}) \leq 0 \quad i=1,\cdots,m \\ & h_i(\boldsymbol{x}) = 0 \quad i=1,\cdots,p \end{array}$$

with variable $x \in \mathbb{R}^n$, domain \mathcal{D} , and optimal value p^*

The Lagrangian is a function $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with

$$\dim L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p, \text{ defined as}$$

$$\lim_{x \to \infty} \sum_{i=1}^p \sum_{i=1}^p \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

where λ_i is the Lagrange multiplier associated with $f_i(x) \leq 0$ and ν_i is the Lagrange multiplier associated with $h_i(\mathbf{x}) = 0$.

Outline

- 1 Lagrangian
- 2 Dual Function
- 3 Dual Problem
- 4 Weak and Strong Duality
- 5 KKT conditions

Lagrange Dual Function I

The Lagrange dual function is defined as the infimum of the Lagrangian over $x: g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\boldsymbol{x} \in \mathcal{D}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$$

$$= \inf_{\boldsymbol{x} \in \mathcal{D}} \left(f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i f_i(\boldsymbol{x}) + \sum_{i=1}^p \nu_i h_i(\boldsymbol{x}) \right)$$

- **Observe that:**
 - the infimum is unconstrained (as opposed to the original constrained minimization problem)
 - g is concave regardless of original problem (infimum of affine functions) λv
 - g can be $-\infty$ for some λ, ν

left. 2 - P18

Recall: pointwise supremum: if (X, Y) is convex

in X for each $J \in A$, then $g(X) = \sup_{Y \in A} f(X, Y)$ $J \in A$

Lagrange Dual Function II

Lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^*$.

Proof.
$$L(x_{j}\lambda, \nu) = \int_{\sigma} (\tilde{x}) + \sum_{i=1}^{m} \frac{\lambda_{i} + i \tilde{x}}{2\sigma} + \sum_{i=1}^{p} \frac{\nu_{i} h_{i} (\tilde{x})}{2\sigma}$$

Suppose \tilde{x} is feasible and $\lambda \succeq 0$. Then,
$$\int_{\sigma} \tilde{x} = \int_{0} (\tilde{x}) \geq L(\tilde{x}, \lambda, \nu) \geq \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$$

Now choose minimizer of $f_0(\tilde{x})$ over all feasible \tilde{x} to get $p^* \geq g(\lambda, \nu)$.

We could try to find the best lower bound by maximizing $g(\lambda, \nu)$. This is in fact the dual problem.

Outline

- 1 Lagrangian
- 2 Dual Function
- 3 Dual Problem
- 4 Weak and Strong Duality
- 5 KKT conditions

Dual Problem

The *Lagrange dual problem* is defined as

maximize
$$g(\lambda, \nu) \leq p^{\star}$$
 minimize $-g(\lambda, \nu)$ subject to $\lambda \geq 0$ subject to $\lambda \geq 0$

- This problem finds the best lower bound on p^* obtained from the dual function
- It is a convex optimization (maximization of a concave function and linear constraints)
- The optimal value is denoted d^*
- λ, ν are dual feasible if $\lambda \succeq 0$ and $(\lambda, \nu) \in \text{dom } g$ (the latter implicit constraints can be made explicit in problem formulation)

Example: Least-Norm Solution of Linear Equations I

Consider the problem

minimize
$$x^T x$$
 subject to $Ax = b$

The Lagrangian is

$$L(\boldsymbol{x}, \boldsymbol{\nu}) = \boldsymbol{x}^T \boldsymbol{x} + \boldsymbol{\nu}^T (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b})$$

To find the dual function, we need to solve an unconstrained minimization of the Lagrangian. We set the gradient equal to zero

$$\nabla_{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\nu}) = 2\boldsymbol{x} + \boldsymbol{A}^T \boldsymbol{\nu} = \boldsymbol{0} \Longrightarrow \boldsymbol{x} = -\frac{1}{2} \boldsymbol{A}^T \boldsymbol{\nu}$$

Example: Least-Norm Solution of Linear Equations II

and we plug the solution in L to obtain g:

In the solution in
$$L$$
 to obtain g :
$$g(\boldsymbol{\nu}) = L(-\frac{1}{2}\boldsymbol{A}^T\boldsymbol{\nu},\boldsymbol{\nu}) = -\frac{1}{4}\boldsymbol{\nu}^T\boldsymbol{A}\boldsymbol{A}^T\boldsymbol{\nu} - \boldsymbol{b}^T\boldsymbol{\nu}$$
 on g is, as expected, a concave function of $\boldsymbol{\nu}$.

- The function g is, as expected, a concave function of ν .
- From the lower bound property, we have

$$p^{\star} \geq -\frac{1}{4} oldsymbol{
u}^T oldsymbol{A} oldsymbol{A}^T oldsymbol{
u} - oldsymbol{b}^T oldsymbol{
u}$$
 for all $oldsymbol{
u}$

The dual problem is the QP

$$\underset{\boldsymbol{\nu}}{\text{maximize}} \quad -\frac{1}{4}\boldsymbol{\nu}^T \boldsymbol{A} \boldsymbol{A}^T \boldsymbol{\nu} - \boldsymbol{b}^T \boldsymbol{\nu}$$

Example: Standard Form LP I

Consider the problem

minimize
$$c^T x$$
 $-\chi \leq \mathcal{O}$ subject to $Ax = b$, $x \succeq 0$

The Lagrangian is

$$L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = \boldsymbol{c}^T \boldsymbol{x} + \boldsymbol{\nu}^T (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}) - \boldsymbol{\lambda}^T \boldsymbol{x}$$
$$= (\boldsymbol{c} + \boldsymbol{A}^T \boldsymbol{\nu} - \boldsymbol{\lambda})^T \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{\nu}$$

L is a linear function of x and it is unbounded if the term

multiplying
$$x$$
 is nonzero.

$$g(\lambda, 0) = \inf_{i=0, i=1, \dots, N} \underbrace{L(X; \lambda, 0)}_{i=0, i=1, \dots, N} \\
= \underbrace{50, \alpha_{i} = 0, i=1, \dots, N}_{i=0, i=1, \dots, N}$$

Example: Standard Form LP II

Hence, the dual function is

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu) = \begin{cases} -b^{T} \nu & c + A^{T} \nu - \lambda = 0 \\ -\infty & \text{otherwise} \end{cases}$$

- The function g is a concave function of (λ, ν) as it is linear on an affine domain.
- From the lower bound property, we have

$$p^{\star} \geq -oldsymbol{b}^T oldsymbol{
u} \quad ext{if } oldsymbol{c} + oldsymbol{A}^T oldsymbol{
u} \succeq oldsymbol{0} \qquad \qquad egin{array}{c} oldsymbol{\lambda} oldsymbol{
u} oldsymbol{
u} \end{array}$$

The dual problem is the LP

$$egin{array}{ll} ext{maximize} & -oldsymbol{b}^Toldsymbol{
u} & \checkmark & \ ext{subject to} & oldsymbol{c} + oldsymbol{A}^Toldsymbol{
u} \succeq oldsymbol{0} & \checkmark & \ ext{} & \checkmark & \ ext{} &$$

Outline

- 1 Lagrangian
- 2 Dual Function
- 3 Dual Problem
- 4 Weak and Strong Duality
- 5 KKT conditions

Weak and Strong Duality I

- From the lower bound property, we know that $g(\lambda, \nu) \leq p^*$ for feasible (λ, ν) . In particular, for a (λ, ν) that solves the dual problem.
- Hence, weak duality always holds (even for nonconvex problems):

$$d^{\star} \leq p^{\star}$$

- The difference $p^* d^*$ is called **duality gap**.
- Solving the dual problem may be used to find nontrivial lower bounds for difficult problems.
- Even more interesting is when equality is achieved in weak duality. This is called **strong duality**:

$$d^* = p^* \quad A.$$

Weak and Strong Duality II

- Strong duality means that the duality gap is zero.
- Strong duality:
 - is very desirable (we can solve a difficult problem by solving the dual)
 - does not hold in general
 - usually holds for convex problems \$\infty\$
 - conditions that guarantee strong duality in convex problems are called constraint qualifications.

A non-conex problem also holds sometimes?!

(HW)

Slater's Constraint Qualification I

- Slater's constraint qualification is a very simple condition that is satisfied in most cases and ensures strong duality for convex problems.
- Strong duality holds for a convex problem

minimize
$$f_0({m x})$$
 subject to $f_i({m x}) \leq 0$ $i=1,\cdots,m$ ${m A}{m x}={m b}$

if it is strictly feasible, i.e.,

$$\exists x \in \operatorname{int} \mathcal{D}: f_i(x) < 0 \quad i = 1, \dots, m, \quad Ax = b$$

There exist many other types of constraint qualifications.

Example: Inequality Form LP

Consider the problem

$$egin{array}{ll} ext{minimize} & oldsymbol{c}^T oldsymbol{x} \ ext{subject to} & oldsymbol{A} oldsymbol{x} \preceq oldsymbol{b} \ \end{array}$$

The dual problem is

maximize
$$-m{b}^Tm{\lambda}$$
 subject to $m{A}^Tm{\lambda}+m{c}=m{0}, \quad m{\lambda}\succeq m{0}$

- From Slater's condition: $p^* = d^*$ if $A\tilde{x} \prec b$ for some \tilde{x} .
- In this case, in fact, $p^* = d^*$ except when primal and dual are infeasible.

Example: Convex QP

ightharpoonup Consider the problem (assume $P \succeq 0$)

minimize
$$x^T P x$$
 subject to $Ax \leq b$

The dual problem is

maximize
$$-\frac{1}{4} \boldsymbol{\lambda}^T \boldsymbol{A} \boldsymbol{P}^{-1} \boldsymbol{A}^T \boldsymbol{\lambda} - \boldsymbol{b}^T \boldsymbol{\lambda}$$
 subject to
$$\boldsymbol{\lambda} \succeq \mathbf{0}$$

- From Slater's condition: $p^* = d^*$ if $A\tilde{x} \prec b$ for some \tilde{x} .
- In this case, in fact, $p^* = d^*$ always.

Complementary Slackness

Assume strong duality holds, x^* is primal optimal and (λ^*, ν^*) is

dual optimal. Then
$$f_0(\boldsymbol{x}^\star) = g(\boldsymbol{\lambda}^\star, \boldsymbol{\nu}^\star) = \inf_{\boldsymbol{x}} \left(f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i^\star f_i(\boldsymbol{x}) + \sum_{i=1}^p \nu_i^\star h_i(\boldsymbol{x}) \right)$$
 Strong duality
$$g(\boldsymbol{x}^\star) = \int_{\boldsymbol{x}}^m \left(f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i^\star f_i(\boldsymbol{x}) + \sum_{i=1}^p \nu_i^\star h_i(\boldsymbol{x}) \right)$$
 Strong duality
$$f_0(\boldsymbol{x}^\star) = \int_{\boldsymbol{x}}^m \left(f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i^\star f_i(\boldsymbol{x}^\star) + \sum_{i=1}^p \nu_i^\star h_i(\boldsymbol{x}^\star) \right)$$
 Hence, the two inequalities must hold with equality. Implications:

- Hence, the two inequalities must hold with equality. Implications:
 - $\mathbf{A} \stackrel{\star}{\sim} \mathbf{x}^{\star}$ minimizes $L(\mathbf{x}, \mathbf{\lambda}^{\star}, \mathbf{\nu}^{\star})$
 - $\lambda_i^{\star} f_i(\boldsymbol{x}^{\star}) = 0$ for $i = 1, \dots, m$; this is called **complementary slackness**:

$$\lambda_i^{\star} > 0 \Longrightarrow f_i(\boldsymbol{x}^{\star}) = 0, \quad f_i(\boldsymbol{x}^{\star}) < 0 \Longrightarrow \lambda_i^{\star} = 0$$

Outline

- 1 Lagrangian
- 2 Dual Function
- 3 Dual Problem
- 4 Weak and Strong Duality
- 5 KKT conditions

Karush-Kuhn-Tucker (KKT) Conditions

KKT conditions (for differentiable f_i, h_i):

1 primal feasibility:

$$f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m, \ h_i(\mathbf{x}) = 0, \ i = 1, \dots, p$$

- dual feasibility: $\lambda \succeq 0$
- complementary slackness: $\lambda_i f_i(\mathbf{x}) = 0$ for $i = 1, \dots, m$
- \triangle zero gradient of Lagrangian with respect to x:

$$\nabla f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i \nabla f_i(\boldsymbol{x}) + \sum_{i=1}^p \nu_i \nabla h_i(\boldsymbol{x}) = \mathbf{0}$$

KKT condition

- We already known that if strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT conditions.
- What about the opposite statement?

If x, λ, ν satisfy the KKT conditions for a convex problem, then they are optimal. $L(\hat{X}; \lambda, \nu) = f_{\bullet}(\hat{x}) + \sum_{i=1}^{m} \lambda_i f_i(\hat{x}) + \sum_{i=1}^{m} \lambda_i f_i(\hat{x})$

Proof.

From complementary slackness, $f_0(x) = L(x, \lambda, \nu)$ and, from 4th KKT condition and convexity, $g(\lambda, \nu) = L(x, \lambda, \nu)$. Hence, $f_0(x) = g(\lambda, \nu)$. Theorem

Theorem

If a problem is convex and Slater's condition is satisfied, then x is optimal if and only if there exists λ, ν that satisfy the KKT conditions.

Somex subject to $f:(X) \leq 0$, i=1,...,n(UX-end || CUX Step |: trous formation EDNIC optimization (primal-dual problem) minimize $C^T X$ maximize $-b^T y$ Subject to AX + S = b $(Y, y) \in \{0\}^n X K^*$ $(X, S) \in \mathbb{R}^n X K$ Convex Love

SEX

(Definition) convex one k: for all $x \in \mathcal{K}$, $\lambda x \in \mathcal$

 $1) \underbrace{Y \in X^*} = 1 \angle Y, \underline{S} > \underline{70}, \quad \forall \underline{S} \in X$ $\lambda S \in X, \quad \forall \lambda > 0$ $\langle Y, \underline{\lambda} S \rangle = \lambda \langle Y, \underline{S} \rangle ? 0$ $\lambda > 0$ $inf \langle Y, \underline{S} \rangle = 0$ $S \in X$

2) $y \notin k^* = > \langle y, s \rangle \leq 0$, $\exists s \in k$ $\exists x \in k$

SEK

KKT Conditions 1)- Primal feasible: Ax+s=b, XER, SEX 2)-dual pasible: ATY+C=V, Y=0, Y ∈ K* 3) - Complementary slackness: CTX + bTy = 0 ATY + C2 = Y -AX + b2 = S $C^{T}X + b^{T}Y + X = D$ homogenous Self-dual
embedding system (X,S, 2, Y, y, x) ∈ R"XXXR+ X \ O3"X X X X R+ 1) solver: SPPT3, MOSEK, SePuim

SCS (ADMM)

Any solution of the self-dual embedding, (X, S, Z, V, Y, x) falls into one of three cases: 1. 2 70, X =0. The point $(\hat{x}, \hat{y}, \hat{s}) = (\frac{x}{2}, \frac{y}{2}, \frac{s}{2})$ satisfies the KKT Gorditions => a primal-dual optimal solution 2. 2=0, $\times 70 = C^T \times t \ b^T y < 0 =$ either primal or dual infeasible? Theorem: Certificates of infeasibility (Section 5.8) If Strong duality holds, then exactly one of the sets: $0 p = \S(X, S) : AX + S = b$, $S \in X \S : encodes primal feasibility$ @ D= {Y: ATY=0, YEX*, by <0}: is non-empty

enodes dual feasibility

Theorem of Strong Alternatives: Any duel variable yED sorves as a proof or certificate the set p is empty, i.e., the problem is primal

S:m: lawy, exactly one of the following two sets is non-empty. Dp= {x:-Ax Ex, c7x <0}

 $\partial \widetilde{D} = \{ y : A^T y = -C, y \in x^* \} : \text{encodes dual feasibility}$ claim: any primal variable XEP is a cortificate of dual

2. 2=0, $\times 70 = C^T \times t b^T \times 20 = 0$ either primal or dual infeasible?

1) it by CD, then $\hat{y} = \frac{y}{-b^T y}$ is a certificate

primal inteasibility (i.e., p is non-empty), since $A^{T}\hat{Y} = \frac{Y}{-b^{T}Y} = 0, \quad \hat{Y} \in \mathcal{X}^{*}, \quad b^{T}\hat{Y} = 1 < 0$ 2) if $C^{T}X < 0$, then $\hat{X} = \frac{X}{-C^{T}X}$ is a certificate of dual inteasibility (i.e., \tilde{p} is non-empty), since $-A\hat{X} = \frac{S}{-C^{T}X} \in \mathcal{X}$, $C^{T}\hat{X} = 1 < 0$ b.

3) $C^{T}X < 0$, $b^{T}Y < 0 = 0$ both primal and dual inteasible

3. 2=x=0, withing can be concluded, can be awoided.

Strong duality assumption is violated!

Reference

Chapter 5 of:

Stephen Boyd and Lieven Vandenberghe, *Convex Optimization*. Cambridge, U.K.: Cambridge University Press, 2004.