

Exercícios sobre relações numéricas

Quer ver este material pelo Dex? Clique aqui

Exercícios

1. Ateliê de um ourives, as joias são feitas de ouro 18 quilates, que consiste em uma liga contendo 75 % de ouro + 25 % de outros metais. Assim, uma aliança com 3,0 g dessa liga contém uma quantidade de ouro, em mol, de, aproximadamente,

Dado: Massa molar (g/mol)

$$Au = 197$$

- **a)** 0,01.
- **b)** 0,02.
- **c)** 0,03.
- **d)** 0,04.
- **e)** 0,05.
- O consumo excessivo de sal pode acarretar o aumento da pressão das artérias, também chamada de hipertensão. Para evitar esse problema, o Ministério da Saúde recomenda o consumo diário máximo de 5 g de sal (1,7 g de sódio). Uma pessoa que consome a quantidade de sal máxima recomendada está ingerindo um número de íons sódio igual a

Dados: Massa molar do Na = 23,0 g/mol.

Constante de Avogadro: $6.0 \times 10^{23} \text{ mol}^{-1}$.

- a) 1.0×10^{21}
- **b)** 2.4×10^{21}
- c) 3.8×10^{22}
- d) 4.4×10^{22}
- e) 6.0×10^{23}

- **3.** Assinale a alternativa que apresenta a massa, em gramas, de um átomo de Vanádio. Considere: $MA_v = 51u$ e o nº de Avogadro: $6,02 \times 10^{23}$.
 - a) $8,47 \times 10^{-23}$ g
 - **b)** $8,47 \times 10^{23}$ g
 - **c)** 307×10^{-23} g
 - d) 307×10^{23} g
 - **e)** 3.07×10^{21} g
- **4.** A massa atômica de alguns elementos da tabela periódica pode ser expressa por números fracionários, como, por exemplo, o elemento estrôncio cuja massa atômica é de 87,621, o que se deve
 - a) à massa dos elétrons.
 - b) ao tamanho irregular dos nêutrons.
 - c) à presença de isótopos com diferentes números de nêutrons.
 - d) à presença de isóbaros com diferentes números de prótons.
 - e) à grande quantidade de isótonos do estrôncio.
- As essências usadas nos perfumes podem ser naturais ou sintéticas. Uma delas, a muscona, é o principal componente do odor de almíscar, que, na natureza, é encontrado em glândulas presentes nas quatro espécies de veado almiscareiro (*Moschus ssp.*). Por ser necessário sacrificar o animal para a remoção dessa glândula, tais espécies encontram-se ameaçadas de extinção, o que tem promovido o uso de substâncias sintéticas com propriedades olfativas semelhantes à muscona, como o composto mostrado a seguir.

Fórmula molecular: C₁₁H₁₃N₃O₆

A massa de uma única molécula do composto acima é

- a) 4.7×10^{-22} g
- **b)** 283,27 g
- $1,7 \times 10^{26}$ g
- d) $2,13\times10^{21}$ g
- **e)** 1.7×10^{-26} g

- **6.** Um procedimento depende de 0,9 g de sulfato cúprico anidro, CuSO₄, porém tem-se disponível o sulfato cúprico penta-hidratado, CuSO₄ · 5H₂O. Para a realização do procedimento, deve-se pesar uma quantidade de CuSO₄ · 5H₂O, aproximadamente, igual a
 - a) 0,58 g.
 - **b)** 1,56 g.
 - **c)** 1,41 g.
 - **d)** 0,90 g.
- 7. O sal rosa do Himalaia é um sal rochoso muito apreciado em gastronomia, sendo obtido diretamente de uma reserva natural aos pés da cordilheira. Apresenta baixo teor de sódio e é muito rico em sais minerais, alguns dos quais lhe conferem a cor característica.

Considere uma amostra de 100 g de sal rosa que contenha em sua composição, além de sódio e outros minerais, os seguintes elementos nas quantidades especificadas:

Magnésio = 36 mg

Potássio = 39mg

Cálcio = 48mg

Os elementos, colocados na ordem crescente de número de mols presentes na amostra, são

- a) K, Ca, Mg.
- b) K, Mg, Ca.
- c) Mg, K, Ca.
- d) Ca, Mg, K.
- e) Ca, K, Mg.
- **8.** Em um experimento no qual foi envolvido um determinado gás ideal X, uma amostra de 2,0 g desse gás ocupou o volume de 623 mL de um balão de vidro, sob temperatura de 127 °C e pressão de 1.000 mmHg. Considerando-se que esse gás X seja obrigatoriamente um dos gases presentes nas alternativas a seguir, identifique-o.

Dados: massas molares $(g \cdot mol^{-1})$ H = 1, N = 14, O = 16 e S = 32 constante universal dos gases ideais (R) = 62,3 mmHg·L·mol⁻¹ ·K⁻¹

- a) H₂
- **b)** O₂
- c) NO₂
- d) SO_2
- e) SO₃

9. Por questões econômicas, a medalha de ouro não é 100% de ouro desde os jogos de 1912 em Estocolmo, e sua composição varia nas diferentes edições dos jogos olímpicos. Para os jogos olímpicos de 2016, no Rio de Janeiro, a composição das medalhas foi distribuída como apresenta o quadro abaixo.

Medalha	Composição em massa
Ouro	prata (98,8%) e ouro (1,2%)
Prata	prata (100%)
Bronze	cobre (95%) e zinco (5%)

Considerando que as três medalhas tenham a mesma massa, assinale a alternativa que apresenta as medalhas em ordem crescente de número de átomos metálicos na sua composição.

Dados: Ag = 108; Au = 197; Cu = 63,5; Zn = 65,4.

- a) Medalha de bronze < medalha de ouro < medalha de prata.
- b) Medalha de bronze < medalha de prata < medalha de ouro.
- c) Medalha de prata < medalha de ouro < medalha de bronze.
- d) Medalha de prata < medalha de bronze < medalha de ouro.
- e) Medalha de ouro < medalha de prata < medalha de bronze.
- 10. Fertilizantes do tipo NPK possuem proporções diferentes dos elementos nitrogênio (N), fósforo (P) e potássio (K). Uma formulação comum utilizada na produção de pimenta é a NPK 4-30-16, que significa 4% de nitrogênio total, 30% de P₂O₅ e 16% de K₂O, em massa. Assim, a quantidade, em mol, de P contida em 100 g desse fertilizante é de, aproximadamente,

Dados: massas molares (g⋅mol⁻¹)

$$0 = 16$$

$$P = 31,0$$

- a) 0,25.
- **b)** 0,33.
- c) 0,42.
- **d)** 0,51.
- e) 0,68.

Gabarito

1. A

2.

O Ministério da Saúde recomenda o consumo diário máximo de 5 g de sal (1,7 g de sódio).

$$6.0 \times 10^{23}$$
 ions Na⁺ — 23 g x — 1,7 g
 $x = 0.443478 \times 10^{23}$ ions Na⁺
 $x \approx 4.4 \times 10^{22}$ ions Na⁺

3. A

4. C

Para o cálculo da massa atômica leva-se em consideração a massa média atômica ponderada dos isótopos existentes do elemento químico.

5. A

Massa molar do composto $C_{11}H_{13}N_3O_6$: 283g/mol 283g — 6,02·10²³moléculas x — 1 molécula $x=4,7\cdot10^{-22}g$

6. C

7. A

Cálculo do número de mols de elementos presentes na amostra:

$$\begin{split} \text{Magn\'esio (Mg): n} &= \frac{m}{M} = \frac{36 \times 10^{-3} \text{ g}}{24 \text{ gmor}^{-1}} = 0,0015 \text{ mol} \\ \text{Pot\'assio (K): n} &= \frac{m}{M} = \frac{39 \times 10^{-3} \text{ g}}{39 \text{ gmor}^{-1}} = 0,001 \text{ mol} \\ \text{C\'alcio (Ca): n} &= \frac{m}{M} = \frac{48 \times 10^{-3} \text{ g}}{40 \text{ gmor}^{-1}} = 0,0012 \text{ mol} \\ 0,001 \text{ mol} &< 0,0012 \text{ mol} < 0,0015 \text{ mol} \\ \hline \text{Ca} &&&& \text{Mg} \end{split}$$

8. E

P · V = n · R · T

$$1000 \cdot 0,623 = n \cdot 62,3 \cdot (273 + 127)$$

 $n = 2,5 \cdot 10^{-2}$ mol
 $n = \frac{m}{MM}$
 $MM = \frac{2}{0.025} = 80 \text{ g} \cdot \text{mol}^{-1}$

Comparando com as massas molares dos compostos:

$$H_2 = 2 g \cdot \text{mol}^{-1}$$
 $O_2 = 32 g \cdot \text{mol}^{-1}$
 $NO_2 = 46 g \cdot \text{mol}^{-1}$

$$SO_2 = 64 \text{ g.mol}^{-1}$$

 $SO_3 = 80 \text{ g} \cdot \text{mol}^{-1}$

9. E

Medalha de ouro:

$$m_{prata} = \frac{1,2}{100} \times m g$$

$$6 \times 10^{23}$$
 átomos de prata — 108 g

$$n_{Ag} - \frac{1,2}{100} \times m g$$

$$n_{Aa} = 6,66 \times 10^{19} \times m$$
 átomos

$$m_{ouro} = \frac{98.8}{100} \times m g$$

$$6 \times 10^{23}$$
 átomos de ouro — 197 g

$$n_{Au} - \frac{98.8}{100} \times m g$$

$$n_{Au} = 300 \! \times \! 10^{19} \! \times \! m \text{ átomos}$$

$$n_{total} = 306,66 \times 10^{19} \times m \text{ átomos}$$

Medalha de prata:

$$m_{prata} = \frac{100}{100} \times m g$$

$$6 \times 10^{23}$$
 átomos de prata $-----108 g$

$$n_{Ag} - \frac{100}{100} \times m g$$

$$n_{A\alpha} = 555 \times 10^{19} \times m \text{ átomos}$$

Medalha de bronze:

$$m_{cobre} = \frac{95}{100} \times m \ g$$

$$6 \times 10^{23}$$
 átomos de cobre — 63,5 g

$$n_{Cu} - \frac{95}{100} \times m g$$

$$n_{Cu} = 897, 6 \times 10^{19} \times m \text{ átomos}$$

$$m_{zinco} = \frac{5}{100} \times m g$$

$$6 \times 10^{23}$$
 átomos de zinco — 65,4 g

$$n_{Zn} - \frac{5}{100} \times m g$$

$$n_{Zn} = 45,87 \times 10^{19} \times m \text{ átomos}$$

$$n_{total} = 943,47 \times 10^{19} \times m \text{ átomos}$$

$$\underbrace{306,66\times10^{19}\times\text{m átomos}}_{Ouro}<\underbrace{555\times10^{19}\times\text{m átomos}}_{Pr\,ata}<\underbrace{943,47\times10^{19}\times\text{m átomos}}_{Bronze}$$

10. C

$$P_2O_5 = 31 \cdot 2 + 16 \cdot 5 = 142g \, / \, mol$$

$$x = 0.70 \text{ mol de } P_2O_5$$

$$30\% \text{ de } 0,70 \text{ mol} = 0,21 \text{ mol}$$

Tem-se 2 mols de fósforo no composto, assim:

 $0,21\cdot 2=0,42$ mol de P em 100 g de fertilizante.