Neuro-Fuzzy

Dr. Suyanto, S.T., M.Sc.

HP/WA: 0812 845 12345

Intelligence Computing Multimedia (ICM)
Informatics faculty – Telkom University

Perbandingan ANN dan Fuzzy Systems

Kriteria	ANN	Fuzzy Systems
Sangat baik untuk masalah dengan informasi yang kurang presisi dan memiliki kebenaran parsial?	Tidak	Ya
Memiliki kemampuan untuk menjelaskan proses penalaran?	Tidak	Ya
Bisa learning?	Ya	Tidak

Permasalahan Fuzzy Systems

- Fungsi keanggotaan: bentuk & kemiringan
- Bagaimana membangun aturan *fuzzy*?

Solusi?

Gunakan ANN untuk mendapatkan fungsi keanggotaan dan/atau aturan *fuzzy* yang optimal.

Interaksi ANN dan FS [TET01]

Tiga kombinasi ANN & Fuzzy [TET01]

- Co-operative
 - Off-line: ANN mempelajari fungsi keanggotaan dan/atau aturan sistem fuzzy hanya sekali untuk selamanya.
 - On-line: ANN mempelajari fungsi keanggotaan dan/atau aturan sistem fuzzy pada saat sistem tersebut beroperasi.
- Concurrent (lebih tepat sekuensial) dimana ANN diaplikasikan sebagai pre atau post processing.
- *Hybrid* dimana fuzzy system direpresentasikan sebagai struktur jaringan (yang bisa belajar).

Fuzzy Neural Network

- Fuzziness dapat aplikasikan pada ANN dalam beberapa cara:
 - Fuzzy neuron
 - Multilayered Fuzzy Neural Network

Neuron konvensional

$$y = g(A(w, x))$$

OR fuzzy neuron [TET01]

$$y = OR(x_1 AND w_1, x_2 AND w_2, ..., x_n AND w_n)$$
$$y = \nabla_{j=1}^n (x_j \Delta w_j)$$

AND fuzzy neuron [TET01]

$$y = AND(x_1 \ OR \ w_1, \ x_2 \ OR \ w_2, \ ..., \ x_n \ OR \ w_n)$$
$$y = \Delta_{j=1}^n (x_j \ \nabla w_j)$$

OR/AND fuzzy neuron

Jika $C_1 = 1$ dan $C_2 = 0$, maka akan menjadi AND fuzzy neuron Jika $C_1 = 0$ dan $C_2 = 1$, maka akan menjadi OR fuzzy neuron

3 Layer ANN dengan AND fuzzy units pada hidden layer

$$v_k = \left[\Delta_{j=1}^n \left(x_j \nabla w_{k,j} \right) \right] \Delta \left[\Delta_{j=1}^n \left(\overline{x}_j \nabla w_{k,(n+j)} \right) \right], \quad k = 1, 2, ..., p$$

3 Layer ANN dengan OR fuzzy units pada hidden layer

$$v_k = \left[\nabla_{j=1}^n \left(x_j \, \Delta \, w_{k,j} \right) \right] \, \nabla \left[\nabla_{j=1}^n \left(\overline{x}_j \, \Delta \, w_{k,(n+j)} \right) \right], \quad k = 1, 2, \dots, p$$

NEFPROX (NEuro-Fuzzy function apPROXimator)

- Sesuai dengan namanya, NEFPROX digunakan untuk approximating a continuous unknown function specified by sample input/output data pairs.
- Feedforward Network dengan 3 layer
- Tidak ada cycles
- Tidak ada koneksi antara layer n dan layer n + j (dimana j > 1)
- Jaringan ini mampu belajar dan memberikan *fuzzy* inference path

Karakteristik NEFPROX

- Input unit diberi label $x_1, x_2, ..., x_n$
- Hidden rule units dinyatakan R₁, R₂, ..., R_k
- Output units dilambangkan dengan y₁, y₂, ..., y_m
- Setiap koneksi diberi bobot dgn suatu himpunan fuzzy dan diberi label dengan istilah linguistik.
- Semua koneksi yang berasal dari unit input yang sama dan mempunyai label sama diberi bobot yang sama menggunakan suatu shared weight.
- Tidak ada dua aturan dgn antecedents yang sama.

NEFPROX

Proses belajar pada NEFPROX

- Algoritma belajar terdiri dari dua bagian:
 - A structure-learning (*fuzzy rule*)
 - Parameter-learning (*connection weight*)
- Jika kita tidak memiliki pengetahuan tentang aturan, maka jaringan tidak memiliki hidden rule units pada awal proses belajar.

Structure-learning algorithm [TET01]

- 1. Pilih pola latih (s,t) dari training set
- 2. Untuk setiap input unit x_i cari fungsi keanggotaan $\mu_{ji}^{(i)}$ sehingga

$$\mu_{ji}^{(i)}(s_i) = \max_{j \in \{1, \dots p_i\}} \left\{ \mu_j^{(i)}(s_i) \right\}$$

Structure-learning algorithm [TET01]

3. Jika tidak ada rule *R* dengan bobot

$$W(x_1,R) = \mu_{ji}^{(1)},...,W(x_n,R) = \mu_{jn}^{(1)}$$

maka buat *node* untuk rule tersebut dan hubungkan node tersebut ke semua *output nodes*.

Structure-learning algorithm [TET01]

4. Untuk setiap koneksi dari *rule node* baru ke *output nodes*, cari fuzzy weight $v_{ji}^{(i)}$ yang sesuai menggunakan fungsi-fungsi keanggotaan yang di*assigned* ke output units *yi* sehingga

$$v_{ji}^{(i)}(t_i) = \max_{j \in \{1, \dots, q_i\}} \{v_j^{(i)}(t_i)\} \quad \text{dan} \quad v_j^{(i)}(t_i) \ge 0.5$$

Jika himpunan fuzzy tidak terdefinisi, maka buat himpunan fuzzy baru $v_{new}^{(i)}(t_i)$ untuk variabel ouput yi dan set $W(R, y_i) = v_{new}^{(i)}$

Ilustrasi (0)

Structure-learning algorithm

Ilustrasi (1) Structure-learning algorithm

Ilustrasi (2) Structure-learning algorithm

Ilustrasi (3) Structure-learning algorithm

Parameter-learning algorithm [TET01]

- 1. Pilih pola latih (s,t) dari training set dan letakkan pada input layer
- 2. Propagasikan maju pola tersebut melalui hidden layer sampai *output units* menghasilkan vektor output **o**.
- 3. Untuk setiap output unit yi tentukan error-nya

$$\delta_{yi} = t_i - o_{yi}$$

Parameter-learning algorithm [TET01]

- 4. Untuk setiap rule unit R dengan output $o_R > o$ lakukan
 - Update parameter2 himpunan fuzzy $W(R, y_i)$ menggunakan learning rate $\sigma > 0$
 - Tentukan perubahan $\delta_R = o_R(1 o_R) \bullet \sum_{y \in output layer} (2W(R, y)(t_i) 1) \bullet |\delta_y|$
 - Update parameter2 himpunan fuzzy W(x, R) menggunakan δ_R dan σ untuk menghitung variasi-variasi tersebut.
- 5. Jika kriteria konvergen telah tercapai, maka berhenti. Jika tidak, kembali ke langkah 1.

Parameter-learning algorithm

- Prosedur belajar berbasis pada simple heuristic method.
- Prosedur ini menghasilkan pergeseran fungsi-fungsi keanggotaan.

Kasus: Prediksi Beban listrik jangka pendek

- Tenaga listrik harus tersedia pada saat dibutuhkan
- Tenaga listrik tidak dapat disimpan dalam skala besar
- Berapa tenaga listrik yang perlu dibangkitkan untuk memenuhi kebutuhan tenaga listrik konsumen setiap jam (24 jam) untuk beberpa hari yang akan datang?

Data Beban Listrik per jam (pukul 01:00 - 24:00) Periode 03 Januari - 24 Maret 2007 di suatu APJ

Beban Listrik pada pukul 11:00 untuk Periode 03 Jan - 24 Mar 2007

NEFPROX

- fuzzy set yang digunakan adalah segitiga
- Jumlah fuzzy set = 4 atau 5
- Jumlah input = 4 atau 5
- Learning rate (σ) = 0; 0,0025; 0,006; dan 0,01
- FK memiliki *intersect* 0,5 (setengah bagian overlap)
- Domain fungsi keanggotaan dalam interval tertentu

Pukul	Domain (kVA)	Pukul	Domain (kVA)	
01:00	270000 - 390000	13:00	320000 - 510000	
02:00	250000 - 370000	14:00	320000 - 535000	
03:00	250000 - 370000	15:00	320000 - 535000	
04:00	250000 - 370000	16:00	330000 - 530000	
05:00	280000 - 415000	17:00	340000 - 540000	
06:00	275000 - 420000	18:00	375000 - 525000	
07:00	275000 - 420000	19:00	375000 - 530000	
08:00	280000 - 475000	20:00	370000 - 510000	
09:00	290000 - 500000	21:00	345000 - 475000	
10:00	310000 - 510000	22:00	320000 - 440000	
11:00	310000 - 520000	23:00	295000 - 435000	
12:00	300000 - 500000	24:00	300000 - 420000	

Structure Learning

- Jika jumlah fuzzy set (F) = 4 dan jumlah input (P) = 4,
 maka total aturan maksimum = 256
- Jika jumlah fuzzy set (F) = 5 dan jumlah input (P) = 5,
 maka total aturan maksimum = 3125

Pukul	Jumlah input optimal	Jumlah <i>Fuzzy</i> Setoptimal	σ	Jumlah Aturan yang di hasilkan
01:00	5	4	0.01	40
02:00	5	5	0.006	36
03:00	5	5	0.01	39
04:00	5	5	0.01	43
05:00	5	5	0.01	42
06:00	5	5	0.01	44
07:00	5	5	0.006	49
08:00	5	5	0.01	43
09:00	5	5	0.006	35
10:00	5	5	0.01	35
11:00	5	5	0.006	36
12:00	5	5	0.006	38
13:00	4	5	0.0025	24
14:00	5	5	0.006	45
15:00	5	4	0.0025	43
16:00	5	4	0.0025	35
17:00	4	4	0.006	30
18:00	5	4	0.0025	51
19:00	5	4	0.006	34
20:00	5	4	0.006	43
21:00	5	4	0.006	35
22:00	4	4	0.006	36
23:00	4	4	0.006	34
24:00	4	5	0.01	45

Parameter Learning

Akurasi NEFPROX

$$MAPE = \frac{1}{P} \sum_{i=1}^{P} \frac{|T(i) - O(i)|}{|T(i)|} * 100\%$$

- T(i) adalah beban listrik sebenarnya (target)
- O(i) adalah nilai prediksi yang dihasilkan NEFPROX
- P adalah jumlah pasangan data (input dan targetnya)
- Semakin kecil MAPE yang dihasilkan berarti semakin bagus performansi NEFPROX.

Jumlah fuzzy set

5

1,5700

1,5469

1,6057

1,6422

1,0040

0,8095

0,7087

0,7511

4

4,5634

4,6225

4,6514

4,5684

4,4250

4,4126

4,2754

Jumlah fuzzy set

5

1,5364

1,5167

1,4374

1,5295

1,0479

0,8846

0,6565

0,6437

4

2,6726

2,5959

2,6137

2,7300

2,1827

2,2589

2,4307

2,6310

MAPI	= untuk	validation set	pukul 01:00 sa	impai 03:00.
Jumlah			MAPE (%)	
	_	Pukul 01:00	Pukul 02:00	Pukul03:00
Input	σ	.lumlah fuzzy set	.lumlah fuzzv set	.lumlah fuzzy se

Jumlah fuzzy set

5

4,0982

4,0331

4,4739

4,5383

4,2584

4,1078

2,7773

4

2,0537

2,0191

1,7833

1,8292

1,1728

1,3648

0,7216

0,6208

0

4

5

0,0025

0,006

0,01

0,0025

0,006

0,01

0

MAPE (%)

Pukul08:00

Jumlah fuzzy set

5

3,3450

2,4405

1,5548

1,5179

2,2193

1,6534

1,6592

1,4529

4

4,1060

3,2290

3,3454

3,2876

4,1402

3,3906

3,4176

3,3253

Pukul 09:00

Jumlah fuzzy set

5

2,5512

2,5337

2,6345

2,8007

2,3040

1,7558

1,3242

1,4536

4

3,5731

3,2101

3,3943

4,4337

3,1605

3,0359

MAP	E untuk	validation	<i>set</i> pukul	07:00	sampai	09:00.

Pukul 07:00

Jumlah fuzzy set

5

3,2427

3,1867

2,8979

2,7334

2,4545

2,3033

2,0763

4

3,6292

3,5908

3,5931

3,2748

3,0657

3,0204

3,0670

3,1921

Jumlah

Input

4

 σ

0

0,0025

0,006

0,01

0,0025

0,006

0,01

0

MAPE untuk *validation set* pukul 19:00 sampai 21:00.

Pukul 19:00

Jumlah fuzzy set

5

3,2915

2,9800

2,3619

1,8084

2,0966

2,0265

1,8351

1,4855

4

2,6541

2,3836

1,7777

1,6005

1,9521

1,5541

0,7032

0,7976

MAPE (%)

Pukul 20:00

Jumlah fuzzy set

5

1,7885

1,9846

2,7109

2,7749

1,0239

1,1898

4

1,8599

1,5248

1,4934

1,5067

1,4194

1,0113

0,9703

0,9931

Pukul 21:00

Jumlah fuzzy set

5

3,8766

3,7370

3,3896

2,6152

4,4388

4,3872

4,2276

3,3241

4

2,6374

2,5538

2,3680

2,1762

2,1370

2,0251

1,8923

1,8973

Jumlah

Input

4

 σ

0

0,0025

0,006

0,01

0,0025

0,006

0,01

0

Kesalahan Prediksi	alahan Prediksi Error (%)			MADE					
	Pukul	11 Mar	12 Mar	13 Mar	14 Mar	15 Mar	16 Mar	17 Mar	MAPE
dan MAPE untuk Test Set	01:00	-1,426	0,290	2,190	2,096	1,103	0,044	2,852	1,429 %
	02:00	-0,969	1,108	1,809	2,182	-0,319	-0,731	0,821	1,134 %
(11-17 MAR 2007)	03:00	0,329	1,463	2,432	2,402	-1,974	-0,395	1,505	1,500 %
	04:00	1,0516	1,291	1,932	1,380	-1,067	-1,380	1,410	1,359 %
	05:00	3,435	0,019	-1,97	-1,215	-1,252	-2,128	0,179	1,457 %
	06:00	2,986	-0,0006	3,303	-1,203	-4,118	0,942	3,614	2,309 %
	07:00	2,815	-0,402	1,750	1,295	-1,501	-1,355	-2,068	1,598 %
	08:00	-0,733	-1,233	4,943	2,366	3,213	3,686	-2,981	2,736 %
	09:00	1,032	1,999	1,086	0,264	-1,490	1,97	4,218	1,723 %
	10:00	2,657	1,941	-1,021	-0,975	-0,199	0,497	2,390	1,383 %
	11:00	2,018	0,421	-0,138	-0,520	0,972	0,719	0,999	0,827 %
	12:00	0,199	3,429	-0,452	-0,510	0,458	-1,262	-1,607	1,131 %
	13:00	3,225	4,034	-2,666	-0,575	-0,265	3,243	-0,147	2,022 %
	14:00	-0,053	4,867	2,738	-1,588	-2,717	1,099	0,249	1,902 %
	15:00	2,276	4,852	-4,056	-0,794	-2,398	0,002	-3,033	2,487 %
	16:00	-1,255	-1,130	0,899	-4,16	-2,329	-1,189	0,738	1,671 %
	17:00	5,234	0,973	-2,992	-3,824	-1,795	-6,201	2,634	3,379 %
	18:00	3,978	-2,923	-6,231	-5,871	-2,667	-1,951	2,785	3,772%
	19:00	0,470	0,837	-0,583	0,693	-1,298	1,573	2,848	1,186 %
	20:00	-0,421	-0,619	0,292	0,936	-0,527	0,488	1,683	0,709%
	21:00	-0,242	-3,893	-1,575	-0,808	-1,504	0,545	4,146	1,816 %
	22:00	0,258	-3,694	-0,805	-2,560	-3,419	0,135	3,792	2,095 %
	23:00	0,165	5,037	4,210	-0,988	-1,134	2,351	1,963	2,264 %
	24:00	0,865	-0,353	1,831	-4,849	-0,620	0,005	1,046	1,367 %

Beban listrik pukul 18:00 sulit diprediksi: Sangat Fluktuatif

Beban listrik pukul 20:00 mudah diprediksi: Relatif periodik

Beban listrik pukul 18:00 sulit diprediksi: Sangat Fluktuatif

Beban listrik pukul 20:00 mudah diprediksi: Relatif periodik

Pada *first order Sugeno model*, himpunan aturan menggunakan kombinasi linier dari input-input yang ada dapat diekspresikan sbb:

IF
$$x$$
 is A_1 **AND** y is B_1 **THEN** $f_1 = p_1x + q_1y + r_1$
IF x is A_2 **AND** y is B_2 **THEN** $f_2 = p_2x + q_2y + r_2$

Mekanisme penalaran pada model ini adalah sbb:

$$f = \frac{w_1 f_1 + w_2 f_2}{w_1 + w_2} = \overline{w}_1 + \overline{w}_2$$

Figure 4.8. The Sugeno fuzzy model.

If X is small then Y = 0.1X + 6.4If X is medium then Y = -0.5X + 4If X is large then Y = X - 2

If X is small and Y is small then z = -x+y+1If X is small and Y is large then z = -y+3If X is large and Y is small then z = -x+3If X is large and Y is large then z = x+y+2

IPK Gaji	Kecil	Sedang	Besar	Sangat Besar
Buruk	Sedang	Rendah	Rendah	Rendah
Cukup	Tinggi	Tinggi	Sedang	Rendah
Bagus	Tinggi	Tinggi	Tinggi	Sedang

Arsitektur jaringan ANFIS yang berhubungan dengan Sugeno model di atas digambarkan sbb [TET01]:

Input space partitioning

ANFIS (Adaptive Neuro-Fuzzy Inference System)

Regular grid

Independent functions

Figure 4.13. Various methods for partitioning the input space: (a) grid partition; (b) tree partition; (c) scatter partition.

If X is small then Y = 0.1X + 6.4If X is medium then Y = -0.5X + 4If X is large then Y = X - 2

• **Layer 1**: Dinotasikan $O_{l,i}$ (output dari node i pada layer l). Masing-masing node pada layer i adalah adaptive unit dengan output:

$$O_{1,i} = \mu_{Ai}(x), i = 1,2$$

$$O_{1,i} = \mu_{Bi}(y), i = 3,4$$

dimana *x* dan *y* adalah nilai-nilai input untuk *node* tersebut dan *Ai* atau *Bi*-2 adalah himpunan *fuzzy*. Jadi, masing-masing node pada layer 1 berfungsi membangkitkan derajat keanggotaan bagian *premise*.

Misalkan, pada layer 1, kita menggunakan fungsi *Bell* sebagai fungsi keanggotaan μ dengan rumus dan grafik sebagai berikut:

$$bell(x; a, b, c) = \frac{1}{\left(1 + \left|\frac{x - c}{a}\right|^{2b}\right)}$$

Dimana *a*, *b*, dan *c*, yang biasa disebut sebagai *premise parameters*, sangat menentukan kemiringan fungsi *Bell* tersebut. Parameter *b* harus bernilai positif. Jika *b* bernilai negatif, maka fungsi *Bell* menjadi terbalik.

• **Layer 2**: Dinotasikan π . Setiap node pada layer ini berfungsi untuk menghitung *firing strength* dari setiap *rule* sebagai *product* dari semua input yang masuk atau *operator* **t-norm** (*triangular norm*):

$$O_{2,i} = w_i = \mu_{A_i}(x) \Delta \mu_{B_i}(y), i = 1,2$$

Sehingga

$$w_1 = \mu_{A_1}(x) \ AND \ \mu_{B_1}(y)$$

$$w_2 = \mu_{A_2}(x) \ AND \ \mu_{B_2}(y)$$

• Layer 3: Dilambangkan dengan *N*. Berfungsi untuk menghitung rasio dari *firing strength* dari rule ke-*i* terhadap total *firing strength* dari semua rule:

$$O_{3,i} = \overline{w}_i = \frac{w_i}{w_1 + w_2}, \quad i = 1,2.$$

• Layer 4: Setiap node pada layer ini berfungsi sebagai:

$$O_{4,i} = \overline{w}_i f_i = \overline{w}_i (p_i x + q_i y + r_i)$$

 \overline{w}_i adalah output dari layer 3

 $\{p_i x + q_i y + r_i\}$ adalah himpunan parameter pada fuzzy dengan model *first-order* Sugeno.

Layer 5: Satu node tunggal yang dilambangkan ∑
 pada layer ini berfungsi mengagregasikan seluruh
 output (yang didefinisikan sebagai penjumlahan
 dari semua sinyal yang masuk):

$$O_{5,i} = \sum_{i} \overline{w}_{i} f_{i} = \frac{\sum_{i} w_{i} f_{i}}{\sum_{i} w_{i}}$$

Learning pada ANFIS

- Algoritma learning pada ANFIS adalah hybrid supervised method yang berbasis pada dua metode: least-squares dan gradient descent.
- Pada tahap maju, sinyal-sinyal merambat maju sampai layer 4 dan consequent parameters di-update menggunakan metode least-square
- Pada tahap mundur, sinyal-sinyal error dirambatkan mundur dan premise parameters di-update menggunakan gradient descent.

If X is small and Y is small then z = -x+y+1If X is small and Y is large then z = -y+3If X is large and Y is small then z = -x+3If X is large and Y is large then z = x+y+2

Prediksi Tingkat Partisipasi Angkatan Kerja

- Data dari Badan Pusat Statistik
- Data time series per tahun: 1982 2002 (21 sampel)
- Bagaimana penggunaan ANFIS?

GRAFIK POLA DATA TPAK NASIONAL PERIODE 1982-2002

MAPE untuk ANFIS, Regresi Sederhana, dan Pemulusan Eksponensial

Kesimpulan

- Sinergi ANN dan FS bisa menghasilkan sistem *soft* computing yang lebih baik.
- Implementasi *Neuro-Fuzzy* bisa dilakukan menggunakan berbagai macam cara tergantung pada masalah yang dihadapi.
- NEFPROX
- ANFIS

Referensi

- [SUY08] Suyanto, 2008, "Soft Computing: Membangun Mesin Ber-IQ Tinggi", Informatika, Bandung Indonesia. ISBN: 978-979-1153-49-2.
- [TET01] Tettamanzi A., Tomassini M., "Soft Computing". Springer-Verlag Berlin Heidelberg, 2001. Printed in Germany.
- [MIT97] Mitchell M. Tom. 1997. "Machine Learning".
 McGraw-Hill International Editions. Printed in Singapore.