DISJOINT SET DATA STRUCTURES

CS340

Disjoint-set data structures

- Also known as "union find."
- Disjoint = "no elements in common"
- Maintain collection $S = \{S_1, ..., S_k\}$ of disjoint dynamic (changing over time) sets.
- Each set is identified by a representative, which is some member of the set.
- Doesn't matter which member is the representative, as long as if we ask for the representative twice without modifying the set, we get the same answer both times.

Operations supported

- MAKE-SET(x)
 - Makes a new set whose only member (and representative) is x.
- UNION(x,y)
 - Unites the dynamic sets that contain x and y, say S_x and S_y , into a new set that is the union of these two sets. The representative is any member of $S_x \cup S_y$.
- FIND-SET(x)
 - Returns a pointer to the representative of the (unique) set containing x.

Running Times

- Analyzed in terms of:
 - n, the number of MAKE-SET operations,
 - m, the total number of MAKE-SET, UNION, and FIND-SET operations.
- Each UNION(x) reduces the number of sets by 1.
 - max number of UNION operations is n-1

Amortized Time Complexity

- Take the time complexity for the complete set of operations, and divide by the number of operations.
- For a disjoint set problem, total time to do 2n-1 (n Make-Sets and n-1 Unions) operations = Θ(n²)
- Amortized time per operation = $\Theta(n)$

Operation	Number of objects updated					
$MAKE-SET(x_1)$	1					
$MAKE-SET(x_2)$	1					
:	:					
$MAKE-SET(x_n)$	1					
$UNION(x_2, x_1)$	1					
$UNION(x_3, x_2)$	2					
$UNION(x_4, x_3)$	3					
:	:					
UNION(xn xn 1)	n-1					

Determining Connected Components

Why not use DFS?

```
CONNECTED-COMPONENTS (G)

1 for each vertex v \in G.V

2 MAKE-SET(v)

3 for each edge (u, v) \in G.E

4 if FIND-SET(u) \neq FIND-SET(v)

5 UNION(u, v)

SAME-COMPONENT (u, v)

1 if FIND-SET(u) == FIND-SET(v)

2 return TRUE

3 else return FALSE
```

Connected Components

Edge processed initial sets	Collection of disjoint sets										
	<i>{a}</i>	{b}	<i>{c}</i>	$\{d\}$	{e}	<i>{f}</i>	{g}	{ <i>h</i> }	$\{i\}$	{ <i>j</i> }	
(b,d)	<i>{a}</i>	$\{b,d\}$	$\{c\}$		{e}	<i>{f}</i>	{g}	{ <i>h</i> }	$\{i\}$	<i>{j}</i>	
(e,g)	<i>{a}</i>	$\{b,d\}$	$\{c\}$		$\{e,g\}$	<i>{f}</i>		<i>{h}</i>	$\{i\}$	<i>{j}</i>	
(a,c)	{ <i>a</i> , <i>c</i> }	<i>{b,d}</i>			$\{e,g\}$	<i>{f}</i>		{ <i>h</i> }	$\{i\}$	<i>{j}</i>	
(h,i)	<i>{a,c}</i>	$\{b,d\}$			$\{e,g\}$	<i>{f}</i>		$\{h,i\}$		<i>{j}</i>	
(a,b)	$\{a,b,c,d\}$				$\{e,g\}$	<i>{f}</i>		$\{h,i\}$		<i>{j}</i>	
(e,f)	$\{a,b,c,d\}$				$\{e, f, g\}$			$\{h,i\}$		<i>{j}</i>	
(b,c)	$\{a,b,c,d\}$				$\{e, f, g\}$			$\{h,i\}$		$\{j\}$	

Disjoint Set Forest

- Create a forest of trees.
 - 1 tree per set. Root is representative.
 - Each node points only to its parent.

Disjoint set forest

- MAKE-SET
 - make a single-node tree.
- UNION
 - make one root a child of the other.
- FIND-SET
 - follow pointers to the root.
- Sounds good, but if our trees end up looking like linked lists, we haven't gained anything.

Forest heuristics

- Union by rank
 - Make the root with the smaller rank into a child of the root with the larger rank.
 - Rank is an upper bound on the height of a node.
 - Size (number of nodes) of the trees is irrelevant.

Forest Heuristics

- Path compression
 - Find path = nodes visited during FIND-SET on the trip to the root.
 - Make all nodes on the find path direct children of root.
 - We want the tree to be as short and bushy as possible.

Each node has two attributes, p (parent) and rank.

Forest implementation with heuristics

```
MAKE-SET(x)
   x.p = x
 x.rank = 0
UNION(x, y)
   LINK(FIND-SET(x), FIND-SET(y))
LINK(x, y)
   if x.rank > y.rank
      y.p = x
   else x.p = y
      if x.rank == y.rank
          y.rank = y.rank + 1
```

```
FIND-SET(x)

1 if x \neq x.p

2 x.p = \text{FIND-SET}(x.p)

3 return x.p
```

notice how cleverly x.p=FIND-SET(x.p) accomplishes path compression!

FIND-SET makes a pass up to find the root, and a pass down as recursion unwinds to update each node on find path to point directly to root.

Running times

- If use both union by rank and path compression,
 O(m α(n)).
- α is a very-slow growing function
- Running time is just barely superlinear