Survival analysis

Wenda Zhou

June 22, 2017

Survival analysis

Study of data under censoring.

Censoring

A variable is said to be censored if its value is only partially known.

Censoring

Can be seen as a type of missing data.

Right censoring

Wish to understand survival time after cancer diagnosis.

Not all diagnosis made at the same time: after 5 years, status still unknown for some people.

Know that the value is greater than.

Censoring

Can be seen as a type of missing data.

Right censoring

Wish to understand survival time after cancer diagnosis.

Not all diagnosis made at the same time: after 5 years, status still unknown for some people.

Know that the value is greater than.

Left censoring

Wish to understand reliability of car.

First inspection after 200 days – however, some cars may fail before.

Know that the value is less than.

Censoring

Can be seen as a type of missing data.

Right censoring

Wish to understand survival time after cancer diagnosis.

Not all diagnosis made at the same time: after 5 years, status still unknown for some people.

Know that the value is greater than.

Left censoring

Wish to understand reliability of car.

First inspection after 200 days – however, some cars may fail before.

Know that the value is less than.

Interval censoring

Observe animal every 7 days, wish to determine time of hibernation.

Know that the value is in an interval.

Survival function

The object of interest in survival analysis is the survival function. Let T denote the time to event:

$$S(t) = 1 - F(t) = P(T \ge t) \tag{1}$$

Survival function

The object of interest in survival analysis is the survival function. Let \mathcal{T} denote the time to event:

$$S(t) = 1 - F(t) = P(T \ge t) \tag{1}$$

Usually the object of interest.

Kaplan-Meier estimator of the survival function

Suppose that we have observations t_1, \ldots, t_n . How should we estimate the survival function?

No censoring

If there is no censoring, can just consider the complement of the ecdf:

$$\hat{S}(t) = \frac{\#\{i : t_i > t\}}{n}$$
 (2)

Kaplan-Meier estimator of the survival function

Suppose that we have observations t_1, \ldots, t_n . How should we estimate the survival function?

No censoring

If there is no censoring, can just consider the complement of the ecdf:

$$\hat{S}(t) = \frac{\#\{i : t_i > t\}}{n} \tag{2}$$

However, if there is censoring, cannot fully know the number of observations such that $t_i > t$.

What does not work

Idea 1: complete case analysis

Longer time to events are more likely to be censored. Hence complete case analysis is to pessimistic.

What does not work

Idea 1: complete case analysis

Longer time to events are more likely to be censored. Hence complete case analysis is to pessimistic.

Idea 2

Count censored observations as having survived: too optimistic.

Life tables

Age	Number dying	Number at start	Probability of dying
0 - 1	596	100,000	0.005958
1 - 2	42	99, 404	0.000422
2 - 3	25	99, 362	0.000255

What can we estimate? Probability of surviving until next year.

$$\mathsf{P}(T \geq t+1 \mid T \geq t) = \frac{\# \text{ alive at time } t \text{ who survive until } t+1}{\# \text{ alive at time } t} \tag{3}$$

Can we get to $P(T \ge t)$ from the above?

What can we estimate? Probability of surviving until next year.

$$\mathsf{P}(\mathit{T} \geq t+1 \mid \mathit{T} \geq t) = \frac{\# \text{ alive at time } t \text{ who survive until } t+1}{\# \text{ alive at time } t} \tag{3}$$

Can we get to $P(T \ge t)$ from the above?

$$P(T \ge t) = P(T \ge t \mid T \ge t-1) P(T \ge t-1 \mid T \ge t-2) \cdots (4)$$

Hazard function

Can define the hazard function, which is the limit:

$$\lambda(x) = \lim_{\delta \to 0} \frac{1}{\delta} P(T \le t + \delta \mid T \ge t) = \frac{f_T(t)}{S(t)}$$
 (5)

Hazard function

Can define the hazard function, which is the limit:

$$\lambda(x) = \lim_{\delta \to 0} \frac{1}{\delta} P(T \le t + \delta \mid T \ge t) = \frac{f_T(t)}{S(t)}$$
 (5)

How to get from the hazard function to the survival function? Let the cumulative hazard function be $\Lambda(t)$ defined by:

$$\Lambda(t) = \int_0^t \lambda(t') \, dt' \tag{6}$$

then

$$S(t) = e^{-\Lambda(t)} \tag{7}$$

The Kaplan-Meier estimator estimates the hazard function, and produces the survival function from that.

The Kaplan-Meier estimator estimates the hazard function, and produces the survival function from that.

It is an unbiased estimator of the survival function under mild conditions.

Survival and covariates

We will often wish to understand how some covariates affect survival.

Examples

- Understand how the drug dose affects survival
- Understand how design of car affects reliability

Survival and covariates

We will often wish to understand how some covariates affect survival.

Examples

- Understand how the drug dose affects survival
- Understand how design of car affects reliability

Potentially interested in estimation and testing.

Cox proportional hazards

"Linear regression for survival".

Model the hazard rate as for a unit with covariates x_1, \ldots, x_p as:

$$\lambda(t) = \lambda_0(t) \exp\{\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p\}$$
 (8)

where $\lambda_0(t)$ is an unknown base hazard rate.