Operator ';' defined as

$$R_1$$
; $R_2 = \{(a, c) : there is a b with $(a, b) \in R_1 \text{ and } (b, c) \in R_2\}$$

(a) For $(R_1; R_2)$; R_3 , we have 3 relations 123

$$(a,i) \in R_1$$
$$(i,j) \in R_2$$
$$(j,b) \in R_3$$

From 2 and 3, we can have 4

$$(i,b)\in(R_2;R_3)$$

Then, combining ① with ④, we can obtain

$$(a,b) \in R_1; (R_2; R_3)$$

Therefore,

$$(R_1; R_2); R_3 = R_1; (R_2; R_3)$$

(b) From I; R_1 , we have

$$I; R_1 = \{(a, c) : there is a b with (a, b) \in I \ and (b, c) \in R_1\}$$

And factor given is

$$I = \{(x, x) : x \in S\}$$

So I; R_1 turns into

 $I; R_1 = \{(a, c) : there \ is \ a \ b \ with \ (a, a) \in I \ and \ (a, c) \in R_1\} = R_1$ Therefore, formula holds.

(c) does not holds followed by counterexample if

$$(a, i) \in R_1, (i, j) \in R_2$$

Then

$$(i,a)\in {R_1}^\leftarrow,(j,i)\in {R_2}^\leftarrow$$

Obviously, R_1 ; R_2 would be a \emptyset . Therefore, formula does not hold

(d) To prove this formula, we can just satisfy ③

$$(R_1 \cup R_2); R_3 = (R_1; R_2) \vee (R_1 \cup R_2); R_3 = (R_2; R_3)$$

We assume

$$(a,c) \in (R_1 \cup R_2); R_3$$

We can have its derivative 12

$$(a,i) \in R_1 \lor (a,i) \in R_2$$
$$(i,c) \in R_3$$

Thus, we can observe that combining one of ① with ② could result in one of ③

(e) does not hold if we assume

$$(R_1; R_2) = (R_1; R_3) = (a, c)$$

 $R_1 = \{(a, i), (a, j)\}$
 $R_2 = (i, c), R_3 = (j, c)$

Obviously, we can observe that $(R_2 \cap R_3) = \emptyset$ so that formula does not hold.

Definition

$$R^{0} := I = \{(x, x) : x \in S\}$$

$$R^{i+1} := R^{i} \cup (R; R^{i}) \text{ for } i \ge 0$$

(a) For all $j \ge i$, $R^j = R^i$ when i = j. Then, for R^{j+1} , we have

$$R^{j+1} := R^j \cup \left(R; R^j\right)$$

Due to $R^j = R^i$, $R^{j+1} = R^{i+1}$. Because of $R^i = R^{i+1}$, $R^{j+1} = R^i$. Thus, for all $j \ge i$, formula holds.

- (b) From (a), we have $k \ge i$. Then, $R^k = R^i$ and $R^k \sqsubseteq R^i$. From definition of R^{i+1} , we can get $R^k \sqsubseteq R^{k+1}$ for $k \ge 0$ like $R^0 \sqsubseteq R^1 \sqsubseteq R^2 \sqsubseteq R^3 \sqsubseteq R^i$. Therefore, for domain [0,i], $R^k \sqsubseteq R^i$.
- (c) When n=0, $P(0)\Rightarrow R^0;R^m$. Due to $R^0=I$, $R^0;R^m=R^m$. If $R^k;R^m=R^{k+m}$, we have to prove $R^{k+1};R^m=R^{k+m+1}$. However, $R^{k+1};R^m$ can transform to $R^k\cup(R;R^k);R^m$. Due to question d of problem1, it can also be turned to $(R^k;R^m)\cup\left((R;R^k);R^m\right)$ then same way from question a in problem1, it could be $(R^k;R^m)\cup\left(R;(R^k;R^m)\right)$. However, it again can be transformed into $R^{k+m}\cup(R;R^{k+m})\Rightarrow R^{k+m}\cup R^{k+m+1}$ due to $R^k;R^m=R^{k+m}$. Thus, $R^{k+1};R^m=R^{k+m}\cup R^{k+m+1}=R^{k+m+1}$.

(d)

- (e) We can assume $(a,b) \in R^k$, $(b,c) \in R^k$ then we need to prove $(a,c) \in R^k$. Firstly, we can obtain $(a,c) \in R^{2k}$ because of question c in problem b. Secondly, from question d of problem 2 and |S| = k, we obtain $R^k = R^{k+1}$. In addition, from question a of problem 2, if $R^k = R^{k+1}$, then $R^k = R^i$ for all $k \ge i$. Due to this, for all $k \ge i$, $R^{2k} = R^k$, then $(a,c) \in R^k$.
- (f) To show equivalence relation, we have to prove Reflexivity, Symmetry and Transitive.

For Reflexivity, from question b in problem 2, we have $I \sqsubseteq R^0 \sqsubseteq R^1 \sqsubseteq R^k$ which is $(x,x) \in R^k \Longrightarrow (x,x) \in (R \cup R^{\leftarrow})^k$ so that Reflexivity holds.

For Symmetry, when k = 0, we have $R^0 = I$ which satisfy Symmetry. To prove Symmetry, we assume R^k satisfy Symmetry, we have to prove $R^{k+1} = \cup (R; R^k)$. This means we need to show that $(R; R^k)$ also satisfy Symmetry

```
(a) Definition: A Binary Tree is either:
                                (B) an empty Tree, or
                                (R) an ordered pair (LeftChildTree, RightChildTree)
(b) count(T):
         if (T.isEmpty()):
             return 0
         else:
             return 1 + count(T.left) + count(T.right)
(c) leaves(T):
         if (T.isEmpty()):
             return 0
         else:
             if (T.left.isEmpty() && T.Right.isEmpty()):
                  return 1
             else:
                  return leaves(T.left) + leaves(T.right)
(d) internal(T):
         if (T.isEmpty):
             return 0
         else:
             if (!T.left.isEmpty() && !T.right.isEmpty):
                  return internal(T.left) + internal(T.right) + 1
             else:
                  return internal(T.left) + internal(T.right)
```

(e) Every node has a parent node except root node so that a tree with N nodes owns N-1 edges. This means that from root to leaf, we obtain the sum of degree being $0 \times n_0 + 1 \times n_1 + 2 \times n_2$. Then $N-1=0 \times n_0 + 1 \times n_1 + 2 \times n_2$ which can be transformed into $n_0 + n_1 + n_2 - 1 = 0 \times n_0 + 1 \times n_1 + 2 \times n_2$. This formula can simplify to

$$n_0 = n_2 + 1$$

Which is leaves(T) = internal(T) + 1.

(a)

(i)
$$\left(hi_{Alpha} \lor lo_{Alpha}\right) \land \left(hi_{Bravo} \lor lo_{Bravo}\right) \land \left(hi_{Charlie} \lor lo_{Charlie}\right) \land (hi_{Delta} \lor lo_{Delta})$$

(ii)
$$((hi_{Alpha} \land \neg lo_{Alpha}) \lor (lo_{Alpha} \land \neg hi_{Alpha})) \land ((hi_{Bravo} \land \neg lo_{Bravo}) \lor (lo_{Bravo} \land \neg hi_{Bravo})) \land ((hi_{Charlie} \land \neg lo_{Charlie}) \lor (lo_{Charlie} \land \neg hi_{Charlie})) \land ((hi_{Delta} \land \neg lo_{Delta}) \lor (lo_{Delta} \land \neg hi_{Delta}))$$

$$\begin{split} &\text{(iii) } \left[\left(lo_{Alpha} \wedge hi_{Bravo} \right) \vee \left(hi_{Alpha} \wedge lo_{Bravo} \right) \right] \wedge \left[\left(lo_{Bravo} \wedge hi_{Charlie} \right) \vee \\ & \left(hi_{Bravo} \wedge lo_{Charlie} \right) \right] \wedge \left[\left(lo_{Charlie} \wedge hi_{Delta} \right) \vee \left(hi_{Charlie} \wedge lo_{Delta} \right) \right] \end{split}$$

(b)

(i) To satisfy $\varphi_1 \wedge \varphi_1 \wedge \varphi_1$, we have truth assignment below:

$$egin{aligned} hi_{Alpha} &= 1 & hi_{Bravo} &= 0 & hi_{Charlie} &= 1 & hi_{Delta} &= 0 \ lo_{Alpha} &= 0 & lo_{Bravo} &= 1 & lo_{Charlie} &= 0 & lo_{Delta} &= 1 \end{aligned}$$

(ii) To avoid interference, the channels should be: Alpha uses hi, Bravo uses lo, Charlie uses hi, Delta uses lo.