Project: Investigate Children Out of School

Table of Contents

- Introduction
- Data Wrangling
- Exploratory Data Analysis
- Conclusions

Introduction

Key notes: "Gapminder has collected a lot of information about how people live their lives in different countries, tracked across the years, and on a number of different indicators.

Questions to explore:

- 1. Research Question 1: What is the total numbers of children out of primary school over years, indicate the male and female numbers as well?
- 2. Research Question 2: What is distribution of female children who was out of primary school from 1980 to 1995?
- 3. Research Question 3: What are numbers of children out of school in total, by male and female in China, 1985?
- 4. What are relationship of children out of school of female in China in russian and usa over time? Which has a better trend?
- <u>5. Research Question 5: What is the overall trend for children out of primary school over the years?</u>

```
# Set up import statements for all of the packages that are planed to use;
# Include a 'magic word' so that visualizations are plotted;
# call on dataframe to display the first 5 rows.

import pandas as pd
import numpy as np
import datetime
from statistics import mode
% matplotlib inline
import matplotlib.pyplot as plt
%config InlineBackend.figure_format = 'retina'
import seaborn as sns
sns.set style('darkgrid')
```

In [2]:

In [1]:

```
# Reading an Excel file in python using pandas
# call on dataframe to display the first 5 rows

xl = pd.ExcelFile('Child out of school primary.xlsx')

xl.sheet_names
[u'Data']

df_tot = xl.parse("Data")
df_tot.head()
```

Out[2]:

	Children out of school, primary	1970	1971	1972	1973	1974	1975	1976	1977	
0	Abkhazia	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
1	Afghanistan	NaN	NaN	NaN	NaN	1559835.0	NaN	NaN	NaN	Nε
2	Akrotiri and Dhekelia	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nε
3	Albania	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nε
4	Algeria	NaN	NaN	NaN	806895.0	731571.0	696223.0	671496.0	646398.0	62

```
In [3]:
x2 = pd.ExcelFile('Child out of school primiary female.xlsx')
x2.sheet_names
[u'Data']
df_f = x2.parse("Data")
df_f.head()
```

Out[3]:

	Children out of school, primary, female	1970	1971	1972	1973	1974	1975	1976	1977	
0	Abkhazia	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nal
1	Afghanistan	NaN	NaN	NaN	NaN	923588.0	NaN	NaN	NaN	Nal
2	Akrotiri and Dhekelia	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nal
3	Albania	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nal
4	Algeria	NaN	NaN	NaN	564297.0	538928.0	523330.0	509066.0	491870.0	476

5 rows × 43 columns

```
x3 = pd.ExcelFile('Child out of school primiary male.xlsx')
x3.sheet_names
[u'Data']

df_m = x3.parse("Data")
df_m.head()
```

Out[4]:

In [4]:

	Children out of school, primary, male	1970	1971	1972	1973	1974	1975	1976	1977	
0	Abkhazia	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nal
1	Afghanistan	NaN	NaN	NaN	NaN	636247.0	NaN	NaN	NaN	Nal
2	Akrotiri and Dhekelia	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nal
3	Albania	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nal
4	Algeria	NaN	NaN	NaN	242598.0	192643.0	172893.0	162430.0	154528.0	150

 $5 \text{ rows} \times 43 \text{ columns}$

```
In [5]:
```

```
# Check if the three dataframe have the same shape

df_tot.shape, df_m.shape, df_f.shape
```

```
Out[5]:
```

```
((275, 43), (275, 43), (275, 43))
```

In [6]:

```
# Check if the first columns from the 3 dataframe are exactly the same assert (df_tot['Children out of school, primary'].tolist() == df_m['Children out of school, primary, male'].tolist()\
== df_f['Children out of school, primary, female'].tolist()
```

```
In [7]:
# Merge the 3 dataframe

df1 = df_tot.merge(df_f, how='outer', left_index = True, right_index = True)

df1 = df1.merge(df_m, how='outer', left_index = True, right_index = True)

# Confirm changes

df1.shape

Out[7]:
(275, 129)
```

Data Wrangling

Key notes: In this section of the report, the following work will be done: load the data; check for cleanliness; trim and clean dataset for analysis.

General Properties

return the datatypes of the columns.

In [8]:

1984_x

1985 x

1986_x

```
df1.dtypes
Out[8]:
Children out of school, primary
                                       object
1970_x
                                      float64
1971_x
                                      float64
1972 x
                                      float64
                                      float64
1973 x
1974_x
                                      float64
1975_x
                                      float64
1976 x
                                      float64
1977_x
                                      float64
                                      float64
1978 x
1979 x
                                      float64
1980_x
                                      float64
1981 x
                                      float64
                                      float64
1982 x
                                      float64
1983_x
```

float64

float64

float64

1987_x				float64
1988_x				float64
_ 1989 х				float64
1990 x				float64
1991 x				float64
1992 x				float64
1993 x				float64
1994 x				float64
_ 1995 х				float64
1996 x				float64
1997 x				float64
1998 x				float64
_				• • •
1982				float64
1983				float64
1984				float64
1985				float64
1986				float64
1987				float64
1988				float64
1989				float64
1990				float64
1991				float64
1992				float64
1993				float64
1994				float64
1995				float64
1996				float64
1997				float64
1998				float64
1999				float64
2000				float64
2001				float64
2002				float64
2003				float64
2004				float64
2005				float64
2006				float64
2007				float64
2008				float64
2009				float64
2010				float64
2011				float64
Length:	129,	dtype:	object	

```
# check for duplicates in the data.
sum(df1.duplicated())
Out[9]:
0
In [10]:
# check if any value is NaN in DataFrame and in how many columns
df1.isnull().any().any(), sum(df1.isnull().any())
Out[10]:
(True, 126)
In [11]:
# Generates descriptive statistics, excluding NaN values.
df1.describe()
```

Out[11]:

In [9]:

	1970_x	1971_x	1972_x	1973_x	1974_x	
count	1.700000e+01	4.900000e+01	5.300000e+01	5.300000e+01	4.800000e+01	4.5000
mean	6.843502e+05	1.022907e+06	3.314347e+05	3.489581e+05	4.035501e+05	4.230
std	1.321416e+06	4.052435e+06	8.888364e+05	6.248331e+05	9.659810e+05	1.0987
min	4.610000e+02	0.000000e+00	1.800000e+01	1.160000e+03	1.860000e+02	0.0000
25%	6.148100e+04	2.506400e+04	2.677500e+04	3.293600e+04	2.891925e+04	2.4000
50%	1.633390e+05	9.488500e+04	7.827400e+04	9.425400e+04	8.502600e+04	7.1392
75%	4.429960e+05	4.115620e+05	1.959640e+05	4.260080e+05	3.638538e+05	2.3386
max	4.782696e+06	2.799442e+07	5.911106e+06	3.151254e+06	6.276900e+06	5.9376

8 rows × 126 columns

Data Cleaning

```
In [12]:
# Locate the columns whose NaN values needs to be treated
col = df1.drop(['Children out of school, primary', 'Children out of school, prim
ary, female'\
               , 'Children out of school, primary, male'], axis=1)
# Replace NaN with mean
for c in col:
    c_mean = df1[c].mean()
    df1[c].fillna(c mean, inplace = True)
# Confirm changes
df1.isnull().any().any()
Out[12]:
False
In [13]:
# Rename column for simplification
df1.rename(columns = {'Children out of school, primary': 'country'}, inplace = Tr
ue)
```

Out[13]:

df1.head()

check the new dataframe

	country	1970_x	1971_x	1972_x	1973_x	1974
0	Abkhazia	684350.176471	1.022907e+06	331434.679245	348958.09434	403550.128
1	Afghanistan	684350.176471	1.022907e+06	331434.679245	348958.09434	1559835.00
2	Akrotiri and Dhekelia	684350.176471	1.022907e+06	331434.679245	348958.09434	403550.12
3	Albania	684350.176471	1.022907e+06	331434.679245	348958.09434	403550.125
4	Algeria	684350.176471	1.022907e+06	331434.679245	806895.00000	731571.000

5 rows × 129 columns

Exploratory Data Analysis

Research Question 1: What is the total numbers of children out of primary school over years. indicate the male and female numbers as well?

```
In [14]:
```

```
# Get the sum for each group
sum tot = df1.iloc[:, 1:43]
m tot = df1.iloc[:, 44:86]
f_tot = df1.iloc[:, 87:]
tot = []
for t in sum tot.columns:
    tot.append(sum tot[t].sum())
m = []
for ma in m tot.columns:
    m.append(m tot[ma].sum())
f = []
for fa in f tot.columns:
    f.append(f tot[fa].sum())
# Plot
x = ['total number', 'male number', 'female number']
y = [sum(tot), sum(m), sum(f)]
plt.subplots(figsize=(10,6))
sns.barplot(x,y, alpha = 0.8);
```


Research Question 2: What is distribution of female children who was out of primary school from 1980 to 1995?

```
In [15]:
```

```
# Target the year and plot
sum_tot1 = sum_tot.iloc[:, 10:26]
new_col = []
for ele in sum_tot1.columns:
    new_col.append(ele.split('_x')[0])
sum_tot1.columns = new_col
plt.figure(figsize=(20,15))
sns.boxplot(data = sum_tot1);
```


Research Question 3: What are numbers of children out of school in total, by male and female in China, 1985?

```
In [16]:
china = df1.copy()
china = china.set_index('country')
tot_chi = china.loc['China', '1985_x']
f_chi = china.loc['China', '1985_y']
m_chi = china.loc['China', '1985']

print('The numbers of children out of school in total, by male and female in China were \
{0:.0f}, {1:.0f} and {2:.0f} in 1985, respectively.'.format(tot_chi, f_chi, m_chi))
```

The numbers of children out of school in total, by male and female in China were 284172, 177367 and 122195 in 1985, respectively.

Research Question 4: What are relationship of children out of school of female in China in russian and usa over time? Which has a better trend?

```
In [17]:

rus_us = df1.iloc[:, 0:42].copy()

new_col1 = []
for ele in rus_us:
    new_col1.append(ele.split('_x')[0])

rus_us.columns = new_col1

rus_us = rus_us.set_index('country')
rus_us_df = pd.DataFrame(columns=['USA', 'Russia'])
rus_us_df['USA'] = rus_us.loc['United States'].values
rus_us_df['Russia'] = rus_us.loc['Russia'].values

sns.lmplot(x = 'USA', y = 'Russia', data = rus_us_df);
```


In [18]:

sns.boxplot(data=rus_us_df);


```
In [19]:
```

```
rus_us_df['year'] = rus_us.columns
rus_us_df.index = rus_us_df.year
rus_us_df.plot();
plt.ylabel('Numers')
plt.xlabel('Country')
plt.title('Numbers of children out of primary school from 1970 to 2011');
```


There is a positive correlation between children droped out of primary school in Russia and USA. The estimated linear regression is shown as the blue line, the estimates varies in the light blue shade with 95% confident level. The trend of children out of school in USA is much higher than that of Russia over that past 40 years.

Research Question 5: What is the overall trend for children out of primary school over the years?

```
In [20]:
```

```
overall_df = pd.DataFrame(columns=['year','numbers'])
overall_df['year'] = rus_us.columns
n_list =[]

for n in rus_us.columns:
    n_list.append(rus_us[n].mean())

overall_df['numbers'] = np.array(n_list)
overall_df.index = overall_df.year

overall_df.plot();
plt.ylabel('Numers')
plt.xlabel('Year')
plt.title('Numbers of children out of primary school from 1970 to 2011');
```


From the analysis we can conclude that the overall trend of children out of primary school had been descreasing starting between 1970 and 1975 at which point of time the numbers fell down dramatically

Conclusions

In current study, a good amount of profound analysis has been carried out. Prior to each step, deailed instructions was given and interpretions was also provided afterwards. The dataset across 41 years from 1970 to 2011.

The limitations of current study was that the structure is only 275*42 in shape, thus the analysis would not be much reliable due to small scale samples.

In addition, the parameters in the dataset is very simple, it only focus on the number of children out of school.

```
In [21]:
```

```
from subprocess import call
call(['python', '-m', 'nbconvert', 'Children_Out_of_School_Primary.ipynb'])
```

Out[21]:

0