

Networks & Operating Systems Essentials

Dr Angelos Marnerides

<angelos.marnerides@glasgow.ac.uk>
 School of Computing Science

Based on slides © 2017 Colin Perkins

PHYSICAL LAYER (L1)

The Physical Layer

- The physical layer is concerned with transmission of raw data bits
 - What type of cable or wireless link do you use?
 - How to encode bits onto that channel?
 - What is the capacity of the channel?
- Physical characteristics of cable or optical fibre:
 - Size and shape of the plugs
 - Maximum cable/fibre length
 - Type of cable (e.g., electrical voltage, current, modulation)
 - Type of fibre (e.g., single- or multi-mode, optical clarity, colour, power output, and modulation of the laser)
- Main focus: how to transmit a sequence of bits (0/1 values) over an analogue channel, subject to noise/clock skew/hw limitations/etc.
- Interface to L2: sequence of bits
 - Hides away complexity of encoding/decoding

Example Wired Media

- Unshielded Twisted Pair (UTP)
 - Electrical cable using two wires twisted together
 - Each pair is unidirectional: signal and ground
 - Twists reduce interference and noise pickup: more twists → less noise
 - Cable lengths of several miles possible at low data rates;
 ~100 metres at high rates
 - Susceptibility to noise increases with cable length
 - Extremely widely deployed:
 - Ethernet cables
 - Telephone lines

Optical Fibre

- Glass core and cladding, contained in plastic jacket for protection
 - Somewhat fragile: glass can crack if bent sharply
 - Unidirectional data: transmission laser at one end; photodetector at the other
 - Very low noise, since electromagnetic interference does not affect light
 - Very high capacity: 10s of Gbps over 100s of miles
 - Very cheap to manufacture
 - Requires relatively expensive lasers to operate

Wired Data Transmission

- Signal usually directly encoded onto the channel
- Encoding performed by varying the voltage in an electrical cable, or the intensity of light in an optical fibre
- Many encoding schemes exist: NRZ, NRZI, Manchester, 4B/5B, etc.

Baseband Data Encoding

- Encode the signal as change in voltage applied to cable, or change in brightness of laser in optical fibre
- Example:

Encodes a 1 as a high signal, a 0 as a low signal

Runs of the same value → clock skew and baseline wander

Encode a 1 as a change in signal value, a 0 as a constant signal

Solves problem with consecutive 1s, not runs of consecutive 0s

Encode a 1 as high-low transition, a 0 as a low-high transition

Doubles the bandwidth needed, but avoids problems with NRZ encoding

Example: Ethernet

 Baseband data with Manchester coding at 10 Mbps, or 4B/5B coding at 100 Mbps

4 twisted pairs per cable 3 twists per inch

24 gauge (~0.5mm) copper

100m maximum cable length

Carrier Modulation

- Carrier wave applied to channel at frequency, C
 - Signal modulated onto the carrier

- Allows multiple signals on a single channel
 - Provided carriers spaced greater than bandwidth, H, of the signal
 - Usually applied to wireless links, but can be used on wired links this is how ADSL and voice telephones share a phone line

Carrier Modulation

Symbols per second

- More complex modulation schemes allow more than one bit to be sent per baud
 - Use multiple levels of the modulated component
 - Example: gigabit Ethernet uses amplitude modulation with five levels, rather than binary signalling
- Combine modulation schemes
 - Vary both phase and amplitude → quadrature amplitude modulation
 - Example: 9600bps modems use 12 phase shift values at two different amplitudes
- Extremely complex combinations regularly used

Spread Spectrum Communication

- Single frequency channels prone to interference
 - Mitigate by repeatedly changing carrier frequency, many times per second: noise unlikely to affect all frequencies
 - Use a pseudo-random sequence to choose which carrier frequency is used for each time slot
 - Seed of pseudo-random number generator is shared secret between sender and receiver, ensuring security
 - Example: 802.11b Wi-Fi uses spread spectrum using several frequencies centred ~2.4 GHz with phase modulation

Hedy Lamarr (1914-2000)

Bandwidth, Channel Capacity, Noise

- The bandwidth of a channel determines the frequency range it can transport
 - Fundamental limitations based on physical properties of the channel, design of the end points, etc.
- What about digital signals?
 - Sampling (Nyquist's) theorem: to accurately digitise an analogue signal, need 2H samples per second
 - Maximum transmission rate of a digital signal depends on channel bandwidth
 - $R_{max} = 2H \log_2 V$
 - $-R_{max}$ = maximum transmission rate of channel (bits per second)
 - H = bandwidth (Hz)
 - V = number of discrete values per symbol
 - Assumption: perfect, noise-free, channel
- Real world channels are subject to noise that corrupts the signal
 - Electrical interference, cosmic radiation, thermal noise, ...
- Can measure channel's signal power, S, and noise floor, N, and compute its signal-to-noise ratio (S/N or SNR)
 - Typically quoted in decibels dB = $10 \log_{10} S/N$
 - Example: ADSL modems report S/N ~30 dB for good quality phone lines
 signal power 1000x greater than noise
- Maximum transmission rate of a channel grows ~logarithmically to the SNR
 - $-R_{max} = H \log_2(1 + S/N) -- Shannon's Theorem$
- Bandwidth and SNR are fundamental limits: might be reached with careful engineering, but cannot be exceeded

Based on slides © 2017 Colin Perkins

DATA LINK LAYER (L2)

Purpose of Data Link Layer

- Arbitrate access to the physical layer
 - Identify devices addressing
 - Structure and frame the raw bitstream
 - Detect and correct bit errors
 - Control access to the channel media access control
- Interface with L1: raw bit stream
- Interface with L3: structured communication (addressing, packets)

Basic Services

Addressing

- Physical links can be point-to-point or multi-access
 - Wireless links are common example of multi-access, but several hosts can also be connected to a single cable to form multi-access wired link
 - Multi-access links require host addresses, to identify senders and receivers
- Host addresses may be link-local or global scope
 - Sufficient to be unique only amongst devices connected to a link
 - But needs coordination between devices to assign addresses
 - Many data link layer protocols use globally unique addresses
 - Examples: Ethernet, IEEE 802.11 Wi-Fi
 - Simpler to implement if devices can move, since don't need to change address when connected to a different link – privacy concerns

Framing & synchronization

- Physical layer provides unreliable raw bit stream
 - Bits might be corrupted
 - · Timing can be disrupted
- Data link layer must correct these problems
 - Break the raw bit stream into frames
 - Transmit and repair individual frames
 - Limit scope of any transmission errors

Example: Ethernet

Error Detection & Correction

- Noise and interference at physical layer can cause bit errors
 - Rare in wired links, common in wireless systems
 - Add error detecting code to each packet
- Example: Parity codes
 - Simplest error detecting code
 - Calculate parity of the data
 - How many 1 bits are in the data?
 - An odd number → parity 1
 - An even number → parity 0
 - Parity bit is the XOR ("⊕") of data bits
 - Transmit parity with the data, check at receiver
 - Detects all single bit errors
- Example: The Internet checksum
 - Sum data values, send checksum in each frame
 - Internet protocol uses a 16 bit one's complement checksum
 - Receiver recalculates checksum, a mismatch → bit error occurred
 - More effective than parity codes can detect some multiple bit errors


```
#include <stdint.h>
// Internet checksum algorithm.
// Assumes data padded to a 16-bit
// boundary.
uint16_t
internet_cksum(uint16_t *buf, int buflen)
{
    uint32_t sum = 0;
    while (buflen--) {
        sum += *(buf++);
        if (sum & 0xffff0000) {
            // Carry occurred, wrap around
            sum +=;
            sum++;
        }
    }
    return ~(sum & 0x0000ffff);
}
```


Error Detection & Correction

- More powerful error detecting codes exist
 - Cyclic redundancy code (CRC)
 - More complex → fewer undetected errors
- Error detecting codes can be extended to also correct errors
 - Transmit error correcting code as additional data within each frame
 - Allows receiver to correct (some) errors without contacting sender
 - Example: Hamming Code
 - Allows the receiver to detect and correct all possible errors that corrupt only a single bit, and some errors affecting multiple bits
- Other error correcting codes exist
 - Trade-off complexity and amount of data added, for the ability to correct multi-bit errors
- Error correcting codes not the only means of repair
 - Can also request retransmission on error detection

Synchronisation

- How to detect the start of a message?
- Leave gaps between frames
 - Problem physical layer typically doesn't guarantee timing (clock skew, etc.)
- Precede each frame with a length field
 - What if that length is corrupted? How to find next frame?
- Add a special start code to beginning of frame
 - A unique bit pattern that only occurs at the start of each frame
 - Enables synchronisation after error wait for next start code, begin reading frame headers
- What if start code appears in data?
 - Bit stuffing can give a transparent channel
 - Sender inserts a 0 bit after sending any five consecutive 1 bits – unless sending start code
 - If receiver sees five consecutive 1 bits, look at sixth bit:
 - If 0, has been stuffed, so remove
 - If 1, look at seventh bit:
 - If 0, start code
 - If 1, corrupt frame
 - A binary-level escape code

Media Access Control

- How to arbitrate access to the link?
- Links may be point-to-point or multi-access
 - Point-to-point links typically two unidirectional links
 - Separate physical cables for each direction
 - Need framing in each direction, but there is no contention for the link
 - Multi-access links typically share a bidirectional link
 - A single physical cable nodes contend for access to the link
 - A single radio frequency
- Link contention
 - Two hosts transmit simultaneously → Collision
 - Signals overlap: only garbage received

Contention-Based MAC

- Multiple hosts share channel in a way that can lead to collisions: system is contention-based
- Two-stage access to channel:
 - Detect that a collision is occurring/will occur
 - By listening to the channel while/before sending
 - Send if no collision, or back-off and/or retransmit data according to some algorithm to avoid/resolve collision
 - · Back-off delay randomised and increasing to prevent repeated collisions
 - Can be arranged to give priority to certain hosts/users/traffic classes
- Probabilistic, variable latency, access to channel

Contention-Based MAC

The ALOHA network

- Wireless network developed at the University of Hawaii (1970)
 - The first wireless packet switched network
- Simplest contention-based MAC
 - Try to transmit whenever data is available
 - If a collision occurs, wait random amount of time then retransmit; repeat until successful
- Simple, but poor performance
- Low channel utilisation; long delays

Carrier Sense Multiple Access (CSMA)

- When propagation delay low, listen before sending
 - If another transmission is active: backoff as if collision occurred, without sending anything
 - If link is idle, send data immediately
- Improves utilisation
 - · Active transmissions not disrupted by collisions
 - Only the new sender backs-off if the channel is active
- Why does propagation delay matter?

B listens, hears no traffic (message from A hasn't reached it yet)

B starts transmitting

Collision occurs, as messages overlap in transit; smaller propagation delay \rightarrow less likely to occur

Contention-Based MAC

- High propagation delay → increased collision rate; what then?
- CSMA updated with collision detection (CSMA/CD)
 - Listen to channel before, and while, transmitting data
 - If collision occurs, immediately stop sending, back-off, and retransmit
 - Collision still corrupts both packets
 - But, time channel is blocked due to collisions is reduced better performance than plain CSMA
- Examples: Ethernet, 802.11 Wi-Fi
- How long is the back-off interval?
 - Should be random to avoid deterministic repeated collisions
 - Should increase with the number of collisions that affect a transmission repeated collisions signal congestion; reduce transmission rate allows the network to recover
 - Good strategy:
 - Initial back-off interval x seconds ± 50%
 - Each repeated collision before success, x → 2x

Reading Material

 Peterson, Davies "Computer Networks: a systems approach" 5th Edition. Chapter 2

Tanenbaum, Wetherall, "Computer Networks"
 5th Edition. Chapters 2 and 3

Coming up next...

Source: https://xkcd.com/742/