nDPI & Machine Learning

A future concrete idea

1. Conjunction between DPI & ML

2. Introduction to Tensorflow and ConvNet project

Traffic classification approaches

Classification methodology	Attribute(s)	Granularity	Processing time
Protocol port	Protocol ports	High	Low
Deep Packet Inspection	Payload inspection	High	High
inspection Stochastic Packet Inference	Statistical properties inherent in packet headers and payload	High	High
End-point monitoring Behaviour Techniques Traffic accounting	Identify host behaviour pattern	Low	Moderate
	Heuristic analysis of inspected packets, flows	High	High
Packet based Statistical Approaches Flow based	Packet and payload size, inter-packet arrival time	High	Moderate
	Duration, transmission rate, multiple flow features	Low	Low
	Protocol port Deep Packet Inspection Stochastic Packet Inference End-point monitoring Traffic accounting Packet based	Protocol port Protocol ports Deep Packet Inspection Stochastic Packet Inference Statistical properties inherent in packet headers and payload End-point monitoring Identify host behaviour pattern Traffic accounting Heuristic analysis of inspected packets, flows Packet based Packet and payload size, inter-packet arrival time Flow based Duration, transmission rate,	Protocol port Protocol ports High Deep Packet Inspection Payload inspection High Stochastic Packet Inference Statistical properties inherent in packet headers and payload High End-point monitoring Identify host behaviour pattern Low Traffic accounting Heuristic analysis of inspected packets, flows High Packet based Packet and payload size, inter-packet arrival time High Flow based Duration, transmission rate,

The goal

Try to find a union between the features of *DPI* and the potentialities of *ML* (Deep Learning)

nDPI

- Open-source library for protocol classification by the payload
- How a protocol is detected:
 - The concept of flow
 - Port matching -- Ip address matching
 - Dissector
- Any example of detection:
 - Easy (i.e. HTTP)
 - Normal (i.e. QUIC, RTMP)
 - Hard (i.e. TOR, Skype, Whatsapp)
 - Host / IP matched (i.e. Facebook, Twitter)

Case study: WhatsApp

Proprietary and encrypted:

Uses different protocols:

- > STUN (Session Traversal Utilities for NAT) for NAT traversal of applications for real-time voice, video, messaging (usually on UDP)
- A customized version of XMPP (eXtensible Messaging and Presence Protocol) to handle the message delivery system
- Signal protocol to encrypt messages
- > SRTP to encrypt WhatsApp calls

From DPI to ML 1/2

DPI libraries replaced the first generation of port-based tools, but

- Some countries forbid DPI
- DPI uses significant computing resources in order to be performed
- > DPI is limited by new implementations of a protocol (*dissectors* must be updated every time there is a change)
- Encrypted payload

From DPI to ML 2/2

- Machine Learning is the technique that "gives computers the ability to learn without being explicitly programmed" (Arthur Samuel, 1959)
- Models:
 - Supervised
 - Dataset with label
 - Unsupervised
 - Dataset without label
- Dataset:
 - Hundreds thousand or millions pkts

Machine Learning in protocol detection

Question: Can we extract features from a flow of WhatsApp to train a model for semi-automatic detection?

Answer: This is exactly what we want to do with ML. Let's do it!

- > Flow is a set of pkts where we extract statistical features and features values
- > Flows are used to train the **classifier**
- Classifier is used to determine the class of flows

Process to extract features and train a model

➤ Machine Learning to classify applications as WhatsApp, Facebook, etc.

> DPI to recognize protocol under the hood of applications

Highest accuracy

A parallel work on Deep Learning

ConvNet

- > ConvNet is a convolutional neural network for image recognition.
- Developed with Tensorflow
- Based on AlexNet algorithm
- Model build with several convolutional layers
- Dataset made by preprocessing images to create serialized object:
 - Load dataset at a reasonable speed (Cpickle module)
- Use optimizer Tensorflow function to minimize the loss (error on learn)
- Model trained with labeled images

Fundamental concept:

- Linear Regression:
 - How to model the relationship between a scalar dependent variable y and one or more independent variables x

Logistic Linear Regression for a Deep Learning model

1. Convolution of an image

Tensorflow

Tensorflow is an open source library implemented by Google for machine learning using data flow graphs:

- Computation is defined as a graph
- > Nodes in the graph represent mathematical operations
- Graph edges represent the multidimensional data arrays (tensors)
 communicated between them

What is a Data Flow Graph?

- Data flow graphs describe mathematical computation with a graph of nodes and edges
- Graph is defined in high-level language (Python, C++)
- Graph is compiled and optimized
- Nodes represent computations and state
- Data (tensors) flow along the edges

Build a graph and then run it

```
import tensorflow as tf
....
c = tf.add( a,b )
session = tf.Session()
val_c = session.run( c, {a=2, b=3} )
```

A session is the execution of a context

A simple implementation

```
import tesorflow as tf
x = tf.placeholder(shape = [None],
                                                                     Build the graph
                            dtype = tf.float32, name="x")
W = tf.get_variable(shape = [], name="W")
b = tf.get variable(shape = [], name="b")
y = W * x + b
                                                                     Prepare execution environment
with tf.Session() as sess:
                                                                     Initialize variables
     sess.run(tf.initialize all variable())
     For i in max epochs:
                                                                     Run the computation many times
           print(sess.run(y, feed dict={x : x inputs}))
```


Information flow

Adding loss, optimizer and training function

```
loss = tf.reduce mean(tf.square(y - y label))
                                                                     Define the loss
optimizer = tf.train.AdamOptimizer(0.2))
                                                                     Create an optimizer
                                                                     Minimize the loss
train = optimizer.minimize(loss)
                                                                     Prepare execution environment
with tf.Session() as sess:
                                                                     Initialize variables
     sess.run(tf.initialize all variable())
     For i in max epochs:
                                                                     Run the computation many times
           print(sess.run(y, feed dict={x : x inputs}))
```


Results obtained with ConvNet

Used two different datasets, one big (~13K images), one small (200 images)

All the images are cropped or padded in a fix dimension (224x224x3)

- > Small Dataset obtained ~95% of accuracy in prediction
- > Big Dataset obtained work in progress -

Thank you for your attention

References:

- nDPI github page: https://github.com/ntop/nDPI
- ConvNet github page: https://github.com/kYroL01/ConvNet
- > Tensorflow: https://www.tensorflow.org/

E-mail to Michele Campus: campus@ntop.org

