The Bernstein-Landau paradox in an electrostatic plasma with an external magnetic field

A. Rege¹, F. Charles¹, B. Després¹, R. Weder²

¹Laboratoire Jacques-Louis Lions Sorbonne Université

²Universita Nacional Autonoma de Mexico

02 December 2020

1 Motivation : the Bernstein-Landau paradox

- Spectral decomposition of a linearized Vlasov-Ampère system
- 3 Numerical study with a Semi-Lagrangian scheme : construction of reference solutions

1 Motivation : the Bernstein-Landau paradox

- 2 Spectral decomposition of a linearized Vlasov-Ampère system
- 3 Numerical study with a Semi-Lagrangian scheme : construction of reference solutions

Kinetic formalism and Vlasov equations

- A plasma can be described statistically by considering the distribution function f = f(t, x, v) = number density of particles located at position x, with velocity v and at time t.
- If each particle is subject to an acceleration field a = a(t, x, v) then we can deduce an equation on f:

$$\partial_t f(t, x, v) + v \cdot \nabla_x f(t, x, v) + a(t, x, v) \nabla_v f(t, x, v) = 0 \quad (1)$$

This is called a Vlasov equation when the vector field (v, a(t, x, v)) is coupled to another equation.

The magnetized Vlasov-Ampère-Poisson system for electrons

$$\begin{cases}
\partial_{t}f + v \cdot \nabla_{x}f + F\nabla_{v}f = 0, \\
F(t, x, v) = \frac{q}{m}(E(t, x) + v \wedge B), \\
\operatorname{rot}(B) = \mu_{0}(j_{ion} - \int_{\mathbb{R}^{3}} v f dv + \epsilon_{0} \partial_{t} E), \\
\partial_{x}E = \frac{q}{\epsilon_{0}}(\rho_{ion} - \int_{\mathbb{R}^{3}} f dv),
\end{cases}$$

$$(2)$$

The paradox

The Bernstein-Landau paradox

"In unmagnetized plasmas, waves exhibit Landau Damping, while in magnetized plasmas, waves perpendicular to the magnetic field are exactly undamped, independently of the strength of the magnetic field". ¹

- Several older physical papers ² ¹ and more recent mathematical papers ³ have studied the behaviour of magnetized plasmas.
- There seems to be a discontinuity between the theory of unmagnetized plasmas and the theory of magnetized plasmas.

^{1.} A. I. Sukhorukov and P. Stubbe, On the Bernstein-Landau paradox, Phy. of Plasmas. 1997.

^{2.} I. Bernstein, Waves in a Plasma in a Magnetic Field, Phy. Review, 1958.

^{3.} J. Bedrossian and F. Wang, The linearized Vlasov and Vlasov-Fokker-Planck equations in a uniform magnetic field, Journal of Statistical Physics, 2020.

Numerical illustration of the influence of B: magnetic recurrence

Figure - Damped and undamped electric field

Magnetic recurrence different from the numerical recurrence ⁴.

^{4.} Recurrence phenomenon for Vlasov-Poisson simulations on regular finite element mesh, M. Mehrenberger, L. Navoret, N. Pham, Commun. Comput. Phys., 2020.

Motivation: the Bernstein-Landau paradox

- Spectral decomposition of a linearized Vlasov-Ampère system
- 3 Numerical study with a Semi-Lagrangian scheme : construction of reference solutions

Spectral theory

• A general linear ordinary differential equation is given by X'(t) = A(t)X(t) + B(t) with $X: I \to \mathbb{R}^n$, $B: I \to \mathbb{R}^n$ and $A: I \to \mathcal{M}_n(\mathbb{R})$ ($n \in \mathbb{N}^*$ and I an interval of \mathbb{R}). If A(t) is symmetric, one can solve the system by looking at the eigenvalues of A(t) because

$$\mathbb{R}^n = \bigoplus_{\lambda \in Sp(A(t))} \ker(A(t) - \lambda).$$

Spectral theory

• A general linear ordinary differential equation is given by X'(t) = A(t)X(t) + B(t) with $X: I \to \mathbb{R}^n$, $B: I \to \mathbb{R}^n$ and $A: I \to \mathcal{M}_n(\mathbb{R})$ ($n \in \mathbb{N}^*$ and I an interval of \mathbb{R}). If A(t) is symmetric, one can solve the system by looking at the eigenvalues of A(t) because

$$\mathbb{R}^n = \bigoplus_{\lambda \in Sp(A(t))} \ker(A(t) - \lambda).$$

• More complicated for linear partial differential equations $\partial_t u(t,x) = H(t,x)u(t,x) + f(t,x)$ because now $u,f:I \to \mathcal{H}$ and $H:I \to \mathcal{B}(\mathcal{H})$. If H(t) is self-adjoint (and \mathcal{H} a Hilbert space), then we have the

If H(t) is self-adjoint (and ${\mathcal H}$ a Hilbert space), then we have the decomposition

$$\mathcal{H} = \mathcal{H}^{ac} \oplus \mathcal{H}^{sc} \oplus \mathcal{H}^{pp}$$

Linearized Vlasov-Ampère system

$$\begin{cases} \partial_{t}u + v_{1}\partial_{x}u + Fv_{1}e^{-\frac{v_{1}^{2}+v_{2}^{2}}{4}} + \omega_{c}(-v_{2}\partial_{v_{1}} + v_{1}\partial_{v_{2}})u = 0, \\ \partial_{t}F = 1^{*} \int ue^{-\frac{v_{1}^{2}+v_{2}^{2}}{4}} v_{1}dv_{1}dv_{2}. \end{cases}$$
with
$$1^{*}g(x) = g(x) - \frac{1}{2\pi} \int_{\mathbb{T}} g(x)dx.$$
 (3)

Final formulation

$$\partial_t \left(\begin{array}{c} u \\ F \end{array} \right) = iH \left(\begin{array}{c} u \\ F \end{array} \right), H = i \left(\begin{array}{c} v_1 \partial_x + \omega_c (v_2 \partial_{v_1} - v_1 \partial_{v_2}) & v_1 e^{-\frac{v_1^2 + v_2^2}{4}} \\ \hline -1^* \int v_1 e^{-\frac{v_1^2 + v_2^2}{4}} \cdot dv_1 dv_2 & 0 \end{array} \right)$$

$$\mathcal{H} = \underbrace{\left(L^2(\mathbb{T} \times \mathbb{R}^2) \cap \left\{ \int u \sqrt{f_0} dx dv_1 dv_2 = 0 \right\} \right)}_{=L_0^2(\mathbb{T} \times \mathbb{R}^2)} \times \underbrace{\left(L^2(\mathbb{T}) \cap \left\{ \int F dx = 0 \right\} \right)}_{=L_0^2(\mathbb{T})}$$

Spectral study: eigenvalues and eigenvectors

- We compute the eigenfunctions Fourier mode by Fourier mode.
- For a non-zero Fourier mode $n \neq 0$, the eigenspaces are as follows :

Space	λ	m
$W_n^1 := \oplus_{m \in \mathbb{Z}^*} \left[e^{mi\varphi - inrac{v_2}{\omega_c}} V_{n,m} imes \{0\} ight]$	$-m\omega_c$	$m \neq 0$
$W_n^2 := \oplus_{m \in \mathbb{Z}^*} \left\{ \left(e^{-inrac{v_2}{\omega_c}} w_{n,m}, -ni ight) ight\}$	λ_m	$m \neq 0$
$W_n^3 := \operatorname{Span}_ au \left\{ \left(e^{-inrac{v_2}{\omega_c}} au(r), 0 ight) ight\} + \left\{ \left(e^{-rac{r^2}{4}}, -in ight) ight\}$	0	

• The eigenspaces corresponding to n = 0 are :

Space	λ	m
$W_0^1 := \oplus_{m \in \mathbb{Z}^*} \left[e^{mi\varphi} L^2(\mathbb{R}^+) \times \{0\} \right]$	$-m\omega_c$	$m \neq 0$
$W_0^3 := \oplus_{p \in \mathbb{N}^*} \left[\{ au_p \} imes \{ 0 \} ight]$	0	<i>p</i> > 0

Spectral study: discrete spectrum

Theorem

We have completeness of the eigenspaces .

$$L_0^2(\mathbb{T}\times\mathbb{R}^2)\times L_0^2(\mathbb{T})=\oplus_{n\neq 0}\left[e^{inx}\left(W_n^1\oplus W_n^2\oplus W_n^3\right)\right]\oplus\left[L_0^2(\mathbb{R}^2)\times 0\right]$$

and so the eigenvalues of H are 0, $-m\lambda_c$ and λ_m , $m \neq 0$.

- This shows that H can be fully diagonalized \Rightarrow their is only discrete spectrum $V = \mathcal{H}^{pp}$.
- New result for this kind of system ⁵.

^{5.} J. Bedrossian and F. Wang, The linearized Vlasov and Vlasov-Fokker-Planck equations in a uniform magnetic field, Journal of Statistical Physics, 2020.

Back to the Bernstein-Landau paradox

Spectral explanation for the Bernstein-Landau paradox ⁶

The Vlasov-Ampère operator H is self-adjoint and it has a complete set of eigenfunctions ⇒ electric field is undamped. Expression of electric field with the eigenvectors and eigenvalues :

$$F_n(t) = -nie^{nix} \sum_{m \neq 0} \frac{\left\langle u_0, e^{-in\frac{v_2}{\omega_c}} w_{n,m} \right\rangle + niF_0}{\left\| e^{-in\frac{v_2}{\omega_c}} w_{n,m} \right\|^2 + n^2} e^{i\lambda_m t}$$

② The Vlasov system without magnetic field has only absolutely continuous spectrum and a kernel \Rightarrow electric field goes to 0.

^{6.} F. Charles, B. Després, A. Rege, R. Weder, The Vlasov-Ampère system and the Bernstein-Landau paradox, submitted to Journal of Statistical Physics, 2020

Motivation: the Bernstein-Landau paradox

- Spectral decomposition of a linearized Vlasov-Ampère system
- 3 Numerical study with a Semi-Lagrangian scheme : construction of reference solutions

Initialization : back to the spectral study

Objective: compare the numerical and theoretical solutions of Vlasov-Ampère when initializing with an eigenvector.

- We consider an eigenvector $U_{n,m}=\begin{pmatrix} w_{n,m} \\ F_n \end{pmatrix}$ associated to the Fourier mode $n\neq 0$ and the eigenvalue λ_m .
- $w_{n,m}$ and F_n are given by

$$w_{n,m} = e^{in(x - \frac{v_2}{\omega_c})} e^{-\frac{r^2}{4}} \sum_{p \in \mathbb{Z}^*} \frac{p\omega_c}{p\omega_c + \lambda_m} e^{pi\varphi} J_p\left(\frac{nr}{\omega_c}\right) \text{ and } F_n = -ine^{inx}$$

• λ_m is one of the roots of a secular equation given by :

$$g(\lambda) = -1 - \frac{2\pi}{n^2} \sum_{m \in \mathbb{Z}^*} \frac{m\omega_c}{m\omega_c + \lambda} \int_0^\infty e^{-\frac{r^2}{2}} J_m \left(\frac{nr}{\omega_c}\right)^2 r dr = 0. \quad (4)$$

• $\partial_t U = i\lambda_m U \Rightarrow U = e^{i\lambda_m t} U_{n,m}$

Linear Vlasov-Ampère : Numerical results for u with

$$T_{end} = \frac{\pi}{2\lambda_m}$$

For all of the simulations, $N_x=33$, $N_{v_1}=N_{v_2}=63$, $L_x=2\pi$, $L_{v_1}=L_{v_2}=10$ and we have taken $\omega_c=0.5$ and n=1.

Linear Vlasov-Ampère : Numerical results for u and F for

$$T_{end} = \frac{\pi}{2\lambda_m}$$

Figure – Module of u in V1-V2 plane for x = 0 and real and imaginary parts of F.

02 December 2020

Non-linear Vlasov-Poisson : Numerical results for u and F with $T_{end} = \frac{\pi}{2\lambda_m}$

For all of the simulations, we have taken $\omega_c = 0.5$ and n = 1.

Figure $-\frac{f-f_0}{\varepsilon\sqrt{f_0}}\approx u$ in V1-V2 plane for x=0 and $\frac{E}{\varepsilon}\approx F$.

Summary and perspectives

- Spectral decomposition of the Vlasov-Ampère system
- Reinterpretation of the Bernstein-Landau paradox as a AC spectrum versus PP spectrum.
- Constructed new reference solutions that can be tested on linear and non-linear schemes.

Summary and perspectives

- Spectral decomposition of the Vlasov-Ampère system
- Reinterpretation of the Bernstein-Landau paradox as a AC spectrum versus PP spectrum.
- Constructed new reference solutions that can be tested on linear and non-linear schemes.

Perspective

Limit $\omega_c \to 0$.

Mathematical difficulty:

$$w_{n,m} = e^{in(x - \frac{v_2}{\omega_c})} e^{-\frac{r^2}{4}} \sum_{p \in \mathbb{Z}^*} \frac{p\omega_c}{p\omega_c + \lambda_m} e^{pi\varphi} J_p\left(\frac{nr}{\omega_c}\right)$$

There is a singularity at $\omega_c = 0$.

