Fouille de Données

Data Mining

Classification - Partie 3

Série TP 4 – Naive Bayes with Scikit Learn

Série TP 4 – Naive Bayes with Scikit Learn

https://scikit-learn.org/stable/modules/naive_bayes.html

Série TP 4 – Naive Bayes with Scikit Learn

- 1.9.1. Gaussian Naive Bayes
- 1.9.2. Multinomial Naive Bayes
- 1.9.3. Complement Naive Bayes
- 1.9.4. Bernoulli Naive Bayes
- 1.9.5. Categorical Naive Bayes

Série TP 4 – Naive Bayes with Scikit Learn

$$egin{aligned} P(y \mid x_1, \dots, x_n) &\propto P(y) \prod_{i=1}^n P(x_i \mid y) \ & \ \hat{y} = rg \max_y P(y) \prod_{i=1}^n P(x_i \mid y), \end{aligned}$$

- sklearn.naive_bayes.CategoricalNB implements the categorical naive Bayes algorithm for categorically distributed data.
- Takes as input two arrays: an array X of shape (n_samples, n_features) holding the training samples, and an array Y of integer values, shape (n_samples,), holding the class labels for the training samples.

sklearn.naive_bayes.CategoricalNB

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

sklearn.naive_bayes.CategoricalNB

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

Probability calculation

The probability of category t in feature i given class c is estimated as:

$$P(x_i = t \mid y = c \; ; \; lpha) = rac{N_{tic} + lpha}{N_c + lpha n_i},$$

where $N_{tic}=|\{j\in J\mid x_{ij}=t,y_j=c\}|$ is the number of times category t appears in the samples x_i , which belong to class c, $N_c=|\{j\in J\mid y_j=c\}|$ is the number of samples with class c, α is a smoothing parameter and n_i is the number of available categories of feature i.

sklearn.naive_bayes.CategoricalNB

In CategoricalNB, for each feature X_j with possible categorical values x_j , the conditional probability of a value given a class y is estimated as:

$$P(X_j = x_j \mid Y = y) = rac{N_{y,x_j} + lpha}{N_y + lpha \cdot n_j}$$

where:

- ullet N_{y,x_j} = number of samples with class y having feature $X_j=x_j$
- N_y = total number of samples with class y
- n_j = number of possible categories for feature X_j
- α = smoothing parameter (default = 1.0)

sklearn.naive_bayes.CategoricalNB

Whether	Play			
Sunny	No			
Sunny	No			
Overcast	Yes			
Rainy	Yes			
Rainy	Yes			
Rainy	No			
Overcast	Yes			
Sunny	No			
Sunny	Yes			
Rainy	Yes			
Sunny	Yes			
Overcast	Yes			
Overcast	Yes			
Rainy	No			

Prédire la classe quand le Weather = Overcast :

sklearn.naive_bayes.CategoricalNB

Whether	Play
Sunny	No
Sunny	No
Overcast	Yes
Rainy	Yes
Rainy	Yes
Rainy	No
Overcast	Yes
Sunny	No
Sunny	Yes
Rainy	Yes
Sunny	Yes
Overcast	Yes
Overcast	Yes
Rainy	No

Prédire la classe quand le Weather = Overcast :

$$P(X_j=x_j\mid Y=y)=rac{N_{y,x_j}}{N_y}$$

sklearn.naive_bayes.CategoricalNB

Whether	Play
Sunny	No
Sunny	No
Overcast	Yes
Rainy	Yes
Rainy	Yes
Rainy	No
Overcast	Yes
Sunny	No
Sunny	Yes
Rainy	Yes
Sunny	Yes
Overcast	Yes
Overcast	Yes
Rainy	No

Prédire la classe quand le Weather = Overcast :

Problem - If a certain category never appears in training for a given class :

- its probability becomes zero,
- which makes the whole product of probabilities for that class zero during prediction.

sklearn.naive_bayes.CategoricalNB

Whether	Play
Sunny	No
Sunny	No
Overcast	Yes
Rainy	Yes
Rainy	Yes
Rainy	No
Overcast	Yes
Sunny	No
Sunny	Yes
Rainy	Yes
Sunny	Yes
Overcast	Yes
Overcast	Yes
Rainy	No

Prédire la classe quand le Weather = Overcast :

Solution – Smoothing (Lissage) : It adds a small constant (α) to each count.

$$P(X_j = x_j \mid Y = y) = rac{N_{y,x_j} + lpha}{N_y + lpha \cdot n_j}$$

sklearn.naive_bayes.CategoricalNB

- CategoricalNB in scikit-learn uses additive (Laplace) smoothing when estimating conditional probabilities.
- This is controlled by the parameter alpha.
- It adds a small constant (α) to each count. Ensures **no zero probabilities**, and improves generalization on unseen category combinations.
- alpha=1.0 → Laplace smoothing & alpha > 1 is called Lidstone smoothing. Defaut = 1.
- alpha= $0.0 \rightarrow \text{no smoothing}$.

sklearn.naive_bayes.CategoricalNB

Concept	In CategoricalNB
Type of smoothing	Additive (Laplace / Lidstone)
Parameter	alpha
Default	alpha=1.0
Purpose	Avoid zero probabilities for unseen categories

- 1. Import necessary modules
- 2. Load & explore the dataset
- 3. Split the DataFrame into features (X) and target/class (y)
- 4. Create training and test sets
- 5. Encode categorical data as numbers: LabelEncoding
- 6. Train the model
- 7. Predict and Evaluate : Accuracy & Confusion matrix

sklearn.naive_bayes.CategoricalNB

Import necessary modules : scikit-learn package

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB, CategoricalNB
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
```

sklearn.naive_bayes.CategoricalNB

Load & explore the dataset : Exercice 2 - Série TD 2

```
lst_data = [
    ['jeune', 'f', 'v', 'faible'],
    ['jeune', 'v', 'v', 'eleve'],
    ['adulte', 'f', 'f', 'faible'],
    ['senior', 'v', 'f', 'eleve'],
    ['jeune', 'f', 'v', 'moyen'],
    ['jeune', 'f', 'f', 'faible'],
    ['adulte', 'v', 'v', 'moyen'],
    ['senior', 'f', 'f', 'faible'],
    ['senior', 'v', 'v', 'eleve'],
]
```

```
df = pd.DataFrame(lst_data, columns=['age', 'S1', 'S2', 'risque'])
```

sklearn.naive_bayes.CategoricalNB

age	S1	S2	risque
jeune	f	V	faible
jeune	V	V	eleve
adulte	f	f	faible
senior	V	f	eleve
senior	f	V	moyen
jeune	f	f	faible
adulte	V	f	moyen
adulte	V	V	moyen
senior	f	f	faible
senior	V	V	eleve
	jeune jeune adulte senior jeune adulte adulte adulte senior	jeune f jeune v adulte f senior v senior f jeune f adulte v adulte v senior f	jeune v v adulte f f senior v f senior f v jeune f f adulte v f adulte v v senior f f

Target

(y)

n_samples

sklearn.naive_bayes.CategoricalNB

	age	S1	S2	risque
0	jeune	f	٧	faible
1	jeune	٧	٧	eleve
2	adulte	f	f	faible
3	senior	٧	f	eleve
4	senior	f	٧	moyen
5	jeune	f	f	faible
6	adulte	٧	f	moyen
7	adulte	٧	٧	moyen
8	senior	f	f	faible
9	senior	٧	٧	eleve

```
X = df[['age', 'S1', 'S2']]
y = df['risque']
```

```
X = df[['age', 'S1', 'S2']]
y = df['risque']
X_train, X_test, y_train, y_test =
     train_test_split(X, y,
                    test_size = 0.3,
                    random state = 42)
```

- 1. Import necessary modules
- 2. Load & explore the dataset
- 3. Split the DataFrame into features (X) and target/class (y)
- 4. Create training and test sets
- 5. Encode categorical data as numbers: LabelEncoding
- 6. Train the model
- 7. Predict and Evaluate : Accuracy & Confusion matrix

Encoding : Encode categorical data as numbers

Encoding : One-Hot Encoding

Human-Readable

Machine-Readable

Pet	Cat	Dog	Turtle	Fish
Cat	1	0	0	0
Dog	0	1	0	0
Turtle	0	0	1	0
Fish	0	0	0	1

Encoding : Label Encoding

Human-Readable

Machine-Readable

Encoding : Ordinal Encoding

Encoding : Count Encoding

Encoding : Binary Encoding

Temperature
Hot
Cold
Very Hot
Warm
Hot
Warm
Warm
Hot
Hot
Cold

Order	
1	
2	
3	
4	
1	
4	
4	
1	
1	
2	
	1 2 3 4 1 4 4 1

0 0 1 0 1 0	2
0 1 0	
0 1 1	
1 0 0	
0 0 1	
1 0 0	
1 0 0	
0 0 1	
0 0 1	
0 1 0	

Encoding : Label Encoding

```
le = LabelEncoder()
```

```
le.fit(X_train)
```

```
X_train_le = le.transform(X_train)
```

Encoding : Label Encoding

```
le = LabelEncoder()
le.fit(X_train)

X train le = le.transform(X train)
```

X_test_le = le.transform(**X**_test)

• Encoding : Label Encoding

```
encoders = {} # to store a LabelEncoder for each column
```

```
for col in X_train.columns:
    le = LabelEncoder()
    le.fit(X_train[col])
    X_train_le[col] = le.transform(X_train[col])
    encoders[col] = le  # Save encoder for later use
```

• Encoding : Label Encoding

print(encoders["age"].classes_)

Output : array(['Adulte', 'Jeune', 'Senior'], dtype=object)

Adulte \rightarrow 0

Jeune $\rightarrow 1$

Senior $\rightarrow 2$

• Encoding : Label Encoding

```
enc_values = [0, 1, 2]
decoded = encoders["age"].inverse_transform(enc_values)
print(decoded)
```

Output : ['Adulte', 'Jeune', 'Senior']

Adulte \rightarrow 0 Jeune \rightarrow 1 Senior \rightarrow 2

Encoding : Label Encoding

```
for col in X_test.columns:
```

```
X_test_le[col] = encoders[col].transform(X_test[col])
```

Train the model CategoricalNB

CategoricalNB

```
class sklearn.naive_bayes.CategoricalNB(*, alpha=1.0, force_alpha=True,
fit_prior=True, class_prior=None, min_categories=None)
[source]
```

```
clf = CategoricalNB(alpha=1.0)
```

```
clf.fit(X_train_le, y_train)
```

Train the model CategoricalNB

Attributes:

category_count_: list of arrays of shape (n_features,)

Holds arrays of shape (n_classes, n_categories of respective feature) for each feature. Each array provides the number of samples encountered for each class and category of the specific feature.

class_count_: *ndarray of shape (n_classes,)*

Number of samples encountered for each class during fitting. This value is weighted by the sample weight when provided.

classes_: ndarray of shape (n_classes,)

Class labels known to the classifier

X_1	X_train					clf.feature_names_in_
	age S1		S2	y_t	train	array(['age', 'S1', 'S
0	jeune	f	٧	0	faible	
7	adulte	٧	V	7	moyen	clf.classes_
2	adulte	f	f	2	faible	/51.7 1.16.117
9	senior	٧	٧	9	eleve	array(['eleve', 'faibl
4	senior	f	٧	4	moyen	
3	senior	٧	f	3	eleve	clf.class_count_
6	adulte	٧	f	6	moyen	array([2., 2., 3.])

```
S2'], dtype=object)
le', 'moyen'], dtype=
     P(cls)
```

X_train										
age	S1	S2	y_t	rair						
jeune	f	٧	0	fa						
adulte	٧	٧	7	r						
adulte	f	f	2	fa						
senior	٧	V	9	6						
senior	f	٧	4	r						
senior	٧	f	3	(
adulte	V	f	6	r						
	age jeune adulte adulte senior senior	age S1 jeune f adulte v adulte f senior v senior f senior v	age S1 S2 jeune f v adulte v v adulte f f senior v v senior f v senior v f	age S1 S2 jeune f v adulte v v adulte f f senior v v senior f v senior v f adulte v f						

```
aible
moyen
aible
eleve
moyen
eleve
moyen
```

```
    Array per feature
```

- Array (row, col) = (cls, feature_values)
- P(xi|cls)

```
clf.category_count_
[array([[0., 0., 2.],
        [1., 1., 0.],
        [2., 0., 1.]]),
 array([[0., 2.],
        [2., 0.],
        [1., 2.]]),
array([[1., 1.],
```

[1., 1.],

[1., 2.]])

Predict and Evaluate : Accuracy

```
for col in X_test.columns:
  X_test_le[col] = encoders[col].transform(X_test[col])
y_preds = clf.predict(X_test_le)
accuracy_score(y_test, y_preds)
classification_report(y_test, y_preds)
```

Predict class of a new example: Senior, V, F,?

y_pred = clf.predict([2, 1, 0]) # Based on encoded_values

$$\begin{array}{ccccc} Adulte \rightarrow o & & & F \rightarrow o \\ Jeune \rightarrow 1 & & V \rightarrow 1 & & V \rightarrow 1 \\ Senior \rightarrow 2 & & V \rightarrow 1 & & V \rightarrow 1 \end{array}$$

> array(['eleve'], dtype='<U6')</pre>

Predict class of a new example: Senior, V, F,?

```
y_pred = clf.predict_proba([2, 1, 0])
```

$$\begin{array}{ccccc} Adulte \rightarrow o & & & F \rightarrow o \\ Jeune \rightarrow 1 & & V \rightarrow 1 & & V \rightarrow 1 \end{array}$$
 Senior \rightarrow 2

> array([[0.40540541, 0.27027027, 0.32432432]])

Predict class of a new example: Senior, V, F,?

```
# New example

new_sample = pd.DataFrame([["Senior", "V", "F"]],

columns=["age", "S1", "S2"])
```

Encode it

```
for col in new_sample.columns:
new_sample_le[col] = encoders[col].transform(new_sample[col])
```

```
# Predict
y_pred = clf.predict(new_sample_le)
```

- 1. Import necessary modules
- 2. Load & explore the dataset
- 3. Split the DataFrame into features (X) and target/class (y)
- 4. Create training and test sets
- 5. Encode categorical data as numbers: LabelEncoding
- 6. Train the model
- 7. Predict and Evaluate : Accuracy & Confusion matrix

Ressources

Data Mining: concepts and techniques, 3rd Edition

- ✓ Auteur : Jiawei Han, Micheline Kamber, Jian Pei
- ✓ Éditeur : Morgan Kaufmann Publishers
- ✓ Edition: Juin 2011 744 pages ISBN 9780123814807

Data Mining: concepts, models, methods, and algorithms

- ✓ Auteur : Mehmed Kantardzi
- ✓ Éditeur : John Wiley & Sons
- ✓ Edition : Aout 2011 552 pages ISBN : 9781118029121

Data Mining: Practical Machine Learning Tools and Techniques

- ✓ Auteur : Ian H. Witten & Eibe Frank
- ✓ Éditeur : Morgan Kaufmann Publishers
- ✓ Edition : Juin 2005 664 pages ISBN : 0-12-088407-0