Consider a directed graph G = (V, E), where all edges have weight 1. Let $u, v \in V$ be two vertices.

Consider a directed graph G = (V, E), where all edges have weight 1. Let $u, v \in V$ be two vertices.

Consider a directed graph G = (V, E), where all edges have weight 1. Let $u, v \in V$ be two vertices.

Consider a directed graph G = (V, E), where all edges have weight 1. Let $u, v \in V$ be two vertices.

Consider a directed graph G = (V, E), where all edges have weight 1. Let $u, v \in V$ be two vertices.

Assume we know a vertex w on the shortest path from u to v.

Optimal substructure!

Consider a directed graph G = (V, E), where all edges have weight 1. Let $u, v \in V$ be two vertices.

Consider a directed graph G = (V, E), where all edges have weight 1. Let $u, v \in V$ be two vertices.

Consider a directed graph G = (V, E), where all edges have weight 1. Let $u, v \in V$ be two vertices.

Assume we know a vertex w on the **longest** path from u to v.

Example:

NO!

In fact, computing the longest path is NP-Hard...