Булевы функции (ЗАДАЧИ)

- **1.** Выразите функции &, ∨, ¬ через *стрелку* Пирса.
- 2. Докажите, что система функций, состоящая только из функции отрицания, не является полной.
- 3. Докажите, что система функций, состоящая только из функции конъюнкция, не является полной.
- **4.** Докажите, что система функций $\{\&, \lor\}$ не является полной.
- **5.** Используя второй закон де Моргана, докажите, что система {¬, &} полна.
- **6.** Выразите функции & и \vee через \rightarrow и \neg , доказав тем самым полноту системы $\{\rightarrow$, \neg $\}$.
- 7. Как с помощью функции исключающее ИЛИ и одной из констант 0 или 1 (определите, какой именно) можно выразить логическое отрицание?
- **8.** Найдите СДНФ и СКНФ функций $f_i(i=1:4)$, заданных таблицей истинности

х	y	Z	f_1	f_2	f_3	f_4
0	0	0	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	0
0	1	1	0	1	1	1
1	0	0	1	1	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	0
1	1	1	1	0	0	1

9. Найдите СДНФ функций с помощью равносильных преобразований:

a)
$$f(x,y) = \overline{x} \vee \overline{y}$$
;

6)
$$f(x, y, z) = (\overline{x} \rightarrow \overline{y}) \rightarrow (yz \rightarrow xz)$$
;

B)
$$f(x, y, z) = \overline{(x \oplus y)} \sim z$$
;

$$f(x, y, z) = x \oplus \overline{xyz}$$
;

д)
$$f(x, y, z) = \overline{(\overline{x} \vee \overline{y}z) \oplus (z \to x)}$$
;

e)
$$f(x, y, z, t) = \overline{x} \vee z \overline{y} t$$
.

10. Привести данные выражения к ДНФ, пользуясь правилами де Моргана. Если возможно, сократить ДНФ, используя свойство поглощения и правило Блейка:

a)
$$\overline{x\overline{y}(xy\overline{z}\vee\overline{x}y)}$$
;

6)
$$x\overline{y}\overline{z} \lor xy\overline{z} \lor \overline{x}\overline{z} \lor x\overline{y}\overline{z}$$
.

11. По заданным ДНФ построить сокращенную ДНФ:

$$\overline{x}_1\overline{x}_2 \vee x_1\overline{x}_2x_4 \vee x_2\overline{x}_3x_4$$
.

- **12.** Для данной функции f(x, y, z)
 - 1. Выяснить, какие её переменные являются существенными, а какие фиктивными.
 - 2. Выразить f(x, y, z) формулой, содержащей только существенные переменные.

Nº	f(x, y, z)		
1	1011 1011		
2	0011 1100		
3	0101 1111		
4	1000 1000		

N₂	f(x,y,z)		
5	1010 0000		
6	1100 1111		
7	0010 0010		
8	1100 0011		

No	f(x,y,z)		
9	0000 1010		
10	1001 1001		
11	0101 0000		
12	1100 1100		

- **13.** Для данной функции f(x, y, z, w), заданной векторно, проделать следующее:
 - 1. Записать её СДНФ и СКНФ.
 - 2. Методом Квайна найти сокращённую ДНФ.
 - 3. Для сокращённой ДНФ построить матрицу Квайна, указать ядровые импликанты.
 - 4. С помощью матрицы Квайна найти минимальную ДНФ, указать её сложность.
 - 5. Найти минимальную ДНФ данной функции с помощью карт Карнау, сравнить полученный результат с ДНФ, найденной в п. 4.

№	f	№	f	Nº	f
1	1111 0101 0011 1101	11	0100 1110 1101 1111	21	1011 1111 0001 1111
2	1101 1110 1010 1110	12	1111 1110 0111 1100	22	1110 1100 1111 1001
3	0111 0001 1111 1101	13	1000 1011 1111 1111	23	1001 1011 1111 1010
4	1011 1111 1111 1000	14	1111 1101 1110 0001	24	1111 1110 0111 0011
5	1101 0101 1101 1111	15	1101 0111 1100 1110	25	1010 1111 0111 0011
6	1111 1110 1010 0011	16	1011 1111 1010 1101	26	1110 0110 1111 1100
7	1111 0010 0111 1110	17	1001 1101 1010 1111	27	0111 0111 0101 1011
8	1100 1110 1111 1011	18	1110 0110 1111 1100	28	1101 1111 1110 1010
9	1100 0110 1111 0111	19	0011 1011 1010 1111	29	1111 0011 0111 0111
10	1011 1111 1110 0010	20	1111 0110 1110 1110	30	1110 1110 1010 1101