Example: Tree for a Query

Using the relations Bars(name, addr) and Sells(bar, beer, price), find the names of all the bars that are either on Maple St. or sell Bud for less than \$3.

As a Tree:

Using the relations Bars(name, addr) and Sells(bar, beer, price), find the names of all the bars that are either on Maple St. or sell Bud for less than \$3. Sells Bars

Example: Self-Join

- Using Sells(bar, beer, price), find the bars that sell two different beers at the same price.
- □ Strategy: by renaming, define a copy of Sells, called S(bar, beer1, price). The natural join of Sells and S consists of quadruples (bar, beer, beer1, price) such that the bar sells both beers at this price.

The Tree

Schemas for Results

- Union, intersection, and difference: the schemas of the two operands must be the same, so use that schema for the result.
- Selection: schema of the result is the same as the schema of the operand.
- Projection: list of attributes tells us the schema.

Schemas for Results

- Product: schema is the attributes of both relations.
 - Distinguish two attributes with the same name.
- □ Theta-join: same as product.
- Natural join: union of the attributes of the two relations. Keep only one copy of the equated attributes.
- Renaming: the operator tells the schema.

s ⋈ T

39

R

A	В
1	1
2	1
3	3

$$\pi_{\scriptscriptstyle B}(R) \cap \rho_{\scriptscriptstyle T(B)}(\pi_{\scriptscriptstyle C}(S))\text{:}$$

1 3

$$R\bowtie (S\bowtie \rho_{T(B,C)}(R))$$

A	В	С	D
1	1	1	2
2	1	1	2
3	3	3	4
3	3	3	5

The Extended Algebra

 δ = eliminate duplicates from bags.

T =sort tuples.

Y = grouping and aggregation.

Outerjoin: avoids "dangling tuples" = tuples that do not join with anything.

Duplicate Elimination

$$\square$$
 R1 := δ (R2).

 □ R1 consists of one copy of each tuple that appears in R2 one or more times.

Example: Duplicate Elimination

Α	В
1 3	2 4 2
	1

$$\delta_{(R)} = \begin{bmatrix} A & B \\ 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Sorting

- \square R1 := T_L (R2).
 - \square L is a list of some of the attributes of R2.
- R1 is the list of tuples of R2 sorted first on the value of the first attribute on L, then on the second attribute of L, and so on.
 - Break ties arbitrarily.

Example: Sorting

R =	(Α	В	
		1	2	
		3	4	
		5	2	

$$T_{B}(R) = \begin{pmatrix} A & B \\ 5 & 2 \\ 1 & 2 \\ 3 & 4 \end{pmatrix}$$

Aggregation Operators

- Aggregation operators are not formally operators of relational algebra.
- Rather, they apply to entire columns of a table and produce a single result.
- The most important examples: SUM, AVG, COUNT, MIN, and MAX.

Example: Aggregation

R = (Α	В)
	1	3	
	3	4	
	3	2	

$$SUM(A) = 7$$

$$COUNT(A) = 3$$

$$MAX(B) = 4$$

$$AVG(B) = 3$$

Grouping Operator

- R1:= Y_L (R2). L is a list of elements that are either:
 - 1. Individual (grouping) attributes.
 - 2. AGG(A), where AGG is one of the aggregation operators and A is an attribute.
 - An arrow and a new attribute name renames the component.

Applying $Y_L(R)$

- Group R according to all the grouping attributes on list L.
 - That is: form one group for each distinct list of values for those attributes in R.
- Within each group, compute AGG(A) for each aggregation on list L.
- Result has one tuple for each group:
 - The grouping attributes and
 - 2. The group's aggregations.

Example: Grouping/Aggregation

R =

A	В	O
1	2	3
4	5	6
1	2	5

$$Y_{A,B,AVG(C)\rightarrow X}$$
 (R) = $??$

First, group R by A and B:

A	В	С
,	C	9
	2	3
1	2	5
4	5	6

Then, average C within groups:

Α	В	Х
1	2	4
4	5	6

Recall: Outerjoin

- \square Suppose we join $R \bowtie_C S$.
- □ A tuple of R that has no tuple of S with which it joins is said to be dangling.
 - Similarly for a tuple of S.
- Outerjoin preserves dangling tuples by padding them NULL.

Example: Outerjoin

(1,2) joins with (2,3), but the other two tuples are dangling.

R FULL OUTERJOIN S =

Α	В	С
1	2	3
4	5	NULL
NULL	6	7

Outer Join – Example

instructor

ID	name	dept_name
10101	Srinivasan	Comp. Sci.
12121	Wυ	Finance
15151	Mozart	Music

teaches

ID	course_id
10101	CS-101
12121	FIN-201
76766	BIO-101

instructor teaches

■ Left Outer Join	
instructor 🖂	_{FT} teaches

ID	name	dept_name	course_id
10101	Srinivasan	Comp. Sci.	CS-101
12121	Wu	Finance	FIN-201

ID	name	dept_name	course_id
10101	Srinivasan	Comp. Sci.	CS-101
12121	Wu	Finance	FIN-201
15151	Mozart	Music	NULL

Outer Join - Example

instructor

ID	name	dept_name
10101	Srinivasan	Comp. Sci.
12121	Wυ	Finance
15151	Mozart	Music

teaches

ID	course_id
10101	CS-101
12121	FIN-201
76766	BIO-101

■ instructor teaches

ID	name	dept_name	course_id
10101	Srinivasan	Comp. Sci.	CS-101
12121	Wu	Finance	FIN-201
76766	null	null	BIO-101

instructor teaches

ID	name	dept_name	course_id
10101	Srinivasan	Comp. Sci.	CS-101
12121	Wυ	Finance	FIN-201
15151	Mozart	Music	null
76766	null	null	BIO-101

Operations on Bags

A **bag** = a set with repeated elements

All operations need to be defined carefully on bags

- $\sigma_{C}(R)$: preserve the number of occurrences
- $\Pi_A(R)$: no duplicate elimination
- Cartesian product, join: no duplicate elimination
 Important! Relational Engines work on bags, not sets!

Why Bags?

- SQL, the most important query language for relational databases, is actually a bag language.
- Some operations, like projection, are more efficient on bags than sets.

Operations on Bags

- Selection applies to each tuple, so its effect on bags is like its effect on sets.
- Projection also applies to each tuple, we do not eliminate duplicates.
- Products and joins are done on each pair of tuples, so duplicates in bags have no effect on how we operate.

Example: Bag Selection

R

Α	В
1	2
5	6
1	2

 $\mathbf{O}_{A+B<5}$ (R) =

Α	В
1	2
1	2

Example: Bag Projection

R

Α	В
1 5	2 6
1	2

$$\prod_{A} (R) =$$

Α
1
5
1

Example: Bag Product

R

Α	В
1	2
5	6
1	2

S

В	С
3 7	4 8

$$RXS =$$

Α	R.B	S.B	U
1	2	3	4
1	2	7	8
5	2 2 6 6 2 2	3	4
5	6	7	8
1	2	3	4
1	2	7	8

Example: Bag Theta-Join

R(Α,	В)
	1	2
	5	6
	1	2

$$_{R}$$
 \bowtie $_{R.B < S.B}$ $S =$

Α	R.B	S.B	U
1	2	3	4
1	2	7	8
5	6	7	8
1	2	3	4
1	2	7	8

Bag Union

- An element appears in the union of two bags the sum of the number of times it appears in each bag.
- □ Example: $\{1,2,1\}$ \cup $\{1,1,2,3,1\}$ = $\{1,1,1,1,1,2,2,3\}$

Bag Intersection

- An element appears in the intersection of two bags the minimum of the number of times it appears in either bag
- \square Example: $\{1,2,1,1\} \cap \{1,2,1,3\} = \{1,1,2\}.$

Bag Difference

- □ An element appears in the difference A B of bags as many times as it appears in A, minus the number of times it appears in B.
- □ Example: $\{1,2,1,1\} \{1,2,3\} = \{1,1\}$.

Beware: Bag Laws != Set Laws

- Some, but not all algebraic laws that hold for sets also hold for bags.
- □ Example: the commutative law for union $(R \cup S = S \cup R)$ does hold for bags.
 - Since addition is commutative, adding the number of times x appears in R and S doesn't depend on the order of R and S.

Example: A Law That Fails

- \square Set union is idempotent, meaning that $S \cup S = S$.
- \square However, for bags, if x appears n times in S, then it appears 2n times in $S \cup S$.
- \square Thus $S \cup S != S$ in general.
 - \blacksquare e.g., $\{1\} \cup \{1\} = \{1,1\} != \{1\}.$

What about Intersection?

Intersection is idempotent for sets and bags.