ЧМ

20 февраля 2020 г.

1 2-е Задание

1.1 Уравнение Теплопроводности

$$\begin{split} \frac{\delta T}{\delta t} - U \frac{\delta T}{\delta x} - \chi \frac{\delta^2 T}{\delta x^2} &= Q \\ r &= \frac{\kappa \Delta t}{\Delta x^2} \text{ - сеточное число Рейнольдса} \\ s &= \frac{u \Delta t}{\Delta x} \text{ - сеточное число Струхала} \end{split}$$

1.1.1 Уравнение Конвективного переноса

$$\frac{\delta T}{\delta t} - U \frac{\delta T}{\delta x} = 0$$

Решение имеет вид:

 $T(t,x) = T_0(x-Ut)$ - это сдвиг начальных условий

		явная	квнак
	По поток	Абсолютно неустойчивая	Абсолютно неустойчивая
Ì	Против потока	Условно устойчивая	Абсолютно устойчивая, схемная релаксация

Таблица 1: Устойчивость методов для уравнения конвективного переноса

 Π ри s>1 неустойчивая

При s=1 неустойчивая, точная

 Π ри s < 1 устойчивая

1.1.2 Уравнение Теплопроводности в неподвижной среде

$$\frac{\delta T}{\delta t} - \chi \frac{\delta^2 T}{\delta x^2} = 0$$

Решение имеет вид:

$$T(t,x) = \frac{1}{\sqrt{t}e^{\frac{-x^2}{4\chi t}}}$$

 $T(t,x)=rac{1}{\sqrt{t}e^{rac{-x^2}{4\chi t}}}$ При
г $<rac{1}{3}$ устойчивая, хорошо повторяет точное решение

При $\frac{1}{2} < r < \frac{1}{3}$ Слабая устойчивость, пилоообразные колебания, затухающие с ростом п

1

явная	квнак
Условно устойчивая	Абсолютно устойчивая, схемная релаксация

Таблица 2: Устойчивость методов для уравнения Теплопроводности в неподвижной среде

При
г $>\frac{1}{2}$ неустойчивая