

Cassandra Sénécaille, Rémy Gilibert, Line Bransolle, Jolhan Raë .

07/05/2023

Table des matières

1	Intr	roduction	3
	1.1	Introduction	3
	1.2	Enjeux de ce thème	3
	1.3	Descriptif de notre jeu de donnée	4
2	Bas	e de données	5
	2.1	Descriptif des tables	5
	2.2	Modélisation	8
	2.3	Nettoyage des données	9
	2.4	Importation des données	10
	2.5	Requêtes SQL	12
3	Ana	alyse des données	19
	3.1	Techniques et outils utilisés pour l'analyse de données	19
	3.2	Exploration des données à l'aide de graphiques et de statistiques descriptives	20
4	Diff	iculté et Conclusion	29
	4.1	Problèmes rencontrés	29
	4.2	Conclusion et persepctives	30
Bi	ibliog	graphie	31

TABLE DES MATIÈRES

2 TABLE DES MATIÈRES

Nous déclarons que ce rapport est le fruit de notre seul travail, à part lorsque cela est indiqué explicitement.

Nous acceptons que la personne évaluant ce rapport puisse, pour les besoins de cette évaluation:

• la reproduire et en fournir une copie à un autre membre de l'université; et/ou,

• en communiquer une copie à un service en ligne de détection de plagiat (qui pourra en retenir une

copie pour les besoins d'évaluation future).

Nous certifions que nous avons lu et compris les règles ci-dessus.

En signant cette déclaration, nous acceptons ce qui précède.

Signature: Line BRANSOLLE 22103700

Date: 04/05/2023

Signature: Rémy GILIBERT 22101487

Date: 04/05/2023

Signature: Johan RAE 22102934

Date: 04/05/2023

Signature: Cassandra SENECAILLE 22100082

Date: 04/05/2023

Nos plus sincères remerciements vont à nos encadrants pédagogiques pour les conseils avisés sur notre travail.

04/05/2023.

Chapter 1

Introduction

1.1 Introduction

En France, les crimes sont régulièrement enregistrés et analysés par les autorités compétentes pour aider à comprendre les tendances et les schémas de criminalité. En 2017, des données ont été recueillies sur les crimes perpétrés dans chaque département en France. Dans ce travail, nous allons examiner ces données afin de mieux comprendre la distribution des crimes à travers les différents départements. Ainsi, cette étude vise à répondre à la question de savoir :

De quelle manière la richesse d'un département peut-elle influencer la criminalité en 2017?

Nous allons commencer notre analyse par cette brève introduction, puis nous continuerons sur l'explication de notre base de données et du modèle conceptuel des données. Ensuite nous commencerons l'analyse sur les requêtes SQL, puis on enchaînera sur l'analyse des données avec le langage R. Nous terminerons ce rapport avec les difficultés que nous avons rencontré ainsi que par la conclusion générale de notre recherche.

Les liens vers nos jeux de données :

- https://www.data.gouv.fr/fr/datasets/r/05cc86c4-b499-40c9-84cc- fd24d92d4a45
- https://www.data.gouv.fr/fr/datasets/r/acc332f6-92be-42af-9721-f3609bea8cfc

1.2 Enjeux de ce thème

Nous avons choisi le sujet suivant : "De quelle manière la richesse d'un département peut-elle influencer la criminalité en 2017? . Notre objectif sera donc d'interpréter et d'analyser les inégalités sociales en France dans l'optique de comprendre comment ces inégalités sont liées à la criminalité. Si on suppose que la richesse est un facteur important dans la criminalité, alors cela peut signifier que les personnes vivant dans des zones défavorisées sont plus susceptibles de commettre des crimes. Cette hypothèse pourrait également aider à établir des politiques visant à réduire les inégalités sociales et économiques.

De plus, étudier la corrélation entre les départements et la criminalité en 2017 peut nous aider à comprendre les tendances actuelles et les modèles de criminalité en France. Cela peut aider les autorités à concentrer leurs ressources sur les zones où la criminalité est la plus élevée et à adopter des approches ciblées pour la réduire.

Ainsi, notre recherche peut aider à établir des politiques publiques plus efficaces, à réduire les inégalités sociales et économiques et à améliorer notre compréhension de la criminalité en France.

1.3 Descriptif de notre jeu de donnée

Pour notre projet, nous avons choisi les variables suivantes, présentent dans les deux jeux de données :

- classe : indicateur des crimes et délits;
- Code.departement : le code officiel géographique du département;
- unite.de.compte : unité de compte associé à cet indicateur (véhicule, infraction, victime, victime entendue);
- faits : le nombre de faits de délinquance enregistrés;
- Nom.de.la.commune : le libellé de la commune;
- Typo.degre.densite : la typologie urbaine ou rurale de la commune définit à partir de la grille de densité communale;
- TDUU2017 : la tranche détaillée d'unité urbaine à laquelle appartient la commune;
- TDAAV2017 : la tranche détaillée d'aire d'attraction des villes à laquelle appartient la commune;
- POP : population par départements.

Chapter 2

Base de données

2.1 Descriptif des tables

Table 2.1: Classe (11×2)

Nom de la colonne	Type de données	Signification	Caractéristiques
id_classe	Entier (integer)	Identifiant unique de la classe	Clé primaire, non nul, unique
classe	chaîne de caractère (varchar)	type de crime et délits	-

La table Classe (2.1) regroupe deux types données, id_classe et classe.

- id_classe est l'identifiant de la table, c'est une clé unique.
- classe est de type varchar, elle nous informe sur le type de crime (cambriolage de logement, coups et blessures volontaires, vol de véhicule,...)

Table 2.2: departement (100×2)

Nom de la colonne	Type de données	Signification	Caractéristiques
code_dep	Entier (integer)	Identifiant unique de la classe	Clé primaire, non nul, unique
POP	Entier (integer)	population par département	

La table departement (2.2) regroupe deux types données, code_dep et pop

- code_dep est le code du département, c'est une clé primaire
- pop indique le nombre d'habitant de chaque département en 2017

Nom de la colonne	Type de données	Signification	Caractéristiques
id_attractivite	Entier (integer)	Identifiant unique de la classe	Clé primaire, non nul, unique
aire_attractivite	chaîne de caractère (varchar)	d'aire d'attraction des villes à laquelle appartient la commune	- -

Table 2.3: aire_attractivite (17×2)

La table aire_attractivite (2.3) regroupe deux types données: id_attractivite et aire_attractivite

- id_attractivité est une clé primaire
- aire_attractivité indique l'aire d'atractivité de la commune (aire de moins de 10 000 habitants, aire de 10 000 à moins de 20 000 habitants, ...)

Table 2.4: unite_urbaine (21×2)

m de la colonne Ty	pe de données Si	gnification Ca	ractéristiques
id_unite unite_urbaine	Entier (integer) chaîne de caractère (varchar)	Identifiant unique de la classe unité urbaine à laquelle appartient la commune	Clé primaire, non nul, unique -

La table (2.4) unite_urbaine regroupe deux types de données: id_unite et unite_urbaine

- id_unite est une clé unique qui sert d'identifiant pour la table
- unite_urbaine indique l'unité urbaine de la commune (Commune hors unite urbaine, commune appartenant à l'unit urbaine de Paris,...)

m de la colonne Ty	pe de données Si	gnification C	aractéristiques
id_crime unite compte	Entier (integer) chaîne de caractère	Identifiant unique de la classe unité de compte associé	Clé primaire, non nul, unique
umte_compte	(varchar)	à cette indicateur	-
faits	Entier (integer)	nombre de faits	-
$code_dep$	Entier (integer)	code département	clé étrangère vers la table "departement"
id_classe	Entier (integer)	identifiant de la classe	clé étrangère vers la table "classe"

Table 2.5: crime (1089×5)

La table crime (2.5) regroupe 5 types de données: id_crime, unite_compte, faits, code_dep et id_classe

- id_crime est une clé unique et primaire
- unite_compte correpond au type de crime (victime, infraction, victime entendue,...)
- faits indique le nombre de faits commis en 2017 pour la classe qui est indiqué
- code dep est le département où les faits se sont déroulées, c'est la clé primaire de la table departement
- id_classe indique la classe concernée par les faits commis, c'est la clé primaire de la table classe

Nom de la colonne	Type de données	Signification	Caractéristiques
	Type de données	Digillication	Caracteristiques
id_commune	Entier (integer)	Identifiant unique de la classe	Clé primaire, non nul, unique
nom_commune	chaîne de caractère (varchar)	Nom de la commune	
type_degres_densite	chaîne de caractère (varchar)	degrés de densité de la commune	
code_dep	Entier (integer)	code département	clé étrangère vers la table "departement"
id_unite	Entier (integer)	identifiant de l'unité urbaine	clé étrangère vers la table "unite_urbaine"
id_attractivite	Entier (integer)	identifiant de l'aire d'attractivité	clé étrangère vers la table "aire_attractivite"

Table 2.6: commune (4649×6)

La table commune (2.6) regroupe 6 types de données: id_commune, nom_commune, type_degres_densite, code_dep, id_unite, id_attractivite.

- id_commune est l'identifiant de la table, c'est une clé primaire
- nom_commune est le nom de la commune
- type_degres_densite indique son degrés de densité (Rural à habitat dispersé, Bourgs ruraux, ...)
- code dep indique le code du département de la commune, c'est la clé primaire de la table departement
- id unite indique l'identifiant de l'unité urbaine, c'est la clé primaire de la table unite urbaine
- id_attacrivite indique l'identifiant de l'aire d'attractivité, c'est la clé primaire de la table aire_attractivite

2.2 Modélisation

2.2.1 Modèle Conceptuel des Données

Un modèle conceptuel de données (MCD) est une aide essentielle pour la compréhension de notre base de données. Il nous permet d'identifier les entités, les relations et les attributs de nos tables.

On a pu visualiser notre MDC avec l'aide de l'outil mocodo, qui est un logiciel d'aide à la modélisation de base de données. Il nous permettra d'identifier clairement les données qui seront utilisées pour notre projet, comme nous pouvons le voir sur la figure 2.1.

Figure 2.1: MCD

Voici le MCD que l'on obtient sur PhpMyAdmin (figure 2.2)

Figure 2.2: MCD wamp

2.2.2 Modèle Organisationnel des Données

```
La version écrite du MOD:
unite_urbaine(id_unite, unite_urvaine)
aire_attractivite(id_attractivite, aire_attractivite)
departement(code_dep, pop)
commune(id_commune, nom_commune, type_degres_densite, code_dep, id_unite, id_attractivite)
classe(id_classe, classe)
crime(id_crime, unite_compte, faits,id_classe, code_dep)
```

2.3 Nettoyage des données

Avant d'importer nos données au format SQL, nous avons réuni dans des classeurs Excel les données qui seront utiles pour notre analyse. Nous avons relié nos classeurs en utilisant nos clés primaires et étrangères, ce qui nous a permis de faire le lien entre nos futures tables SQL (voir MCD et MOD). Nous avons nettoyé nos données de la manière suivante :

- Jeu de données 1 («donnee-dep-data.gouv-2021-geographie2022-produit-le 2022-07-27»):
 - Suppression des caractères spéciaux
 - Suppression des lignes vides
 - Filtre par année, en prenant uniquement 2017
 - Suppression des colonnes : Code.region, milPOP, milLOG, LOG et tauxpourmille
 - Suppression des données de la Corse: 2A et 2B, car code.dep ne peut prendre que des INTEGER, et que les codes de la Corse regroupaient INTEGER et VARCHAR.
- Jeu de données 2 («info-complements-data.gouv-2021-geographie2022-produit-le 2022-07-27»):
 - Suppression des caractères spéciaux
 - Suppression des lignes vides
 - Suppression des colonnes: Code.region, Code.EPCI, Nature.EPCI, Code.arrondissement,
 Code.canton, ZE2020, UU2020, TUU2017, UUSTATUT2017, AAV2020, TAAV2017,
 CATEAAV2020, BV2012
 - Le Code.region nous a aidé à réduire le jeux de données pour ne garder que les communes des régions Occitanie(76) et Rhône-Alpes(84)
 - Suppression des données liées à la Corse (2A et 2B)

2.4 Importation des données

Afin d'importer correctement nos tables dans PhpMyAdmin, nous avons utilisé le code SQL suivant. Cela nous a permis d'avoir directement les clés primaires et étrangères de chaque table.

```
CREATE TABLE IF NOT EXISTS classe(
       id_classe int(11) NOT NULL,
       classe varchar(100) DEFAULT NULL,
       PRIMARY KEY(id classe)
   )ENGINE=InnoDB DEFAULT CHARSET=utf8;
   CREATE TABLE IF NOT EXISTS departement(
       code_dep int(5) NOT NULL,
       pop int(10) NOT NULL,
       PRIMARY KEY(code_dep)
10
   )ENGINE=InnoDB DEFAULT CHARSET=utf8;
12
   CREATE TABLE IF NOT EXISTS unite_urbaine(
       id_unite int(10) NOT NULL,
14
       unite_urbaine varchar(200) DEFAULT NULL,
       PRIMARY KEY(id unite)
16
   )ENGINE=InnoDB DEFAULT CHARSET=utf8;
   CREATE TABLE IF NOT EXISTS aire_attractivite(
       id attractivite int(10) NOT NULL,
20
       aire attractivite varchar(200) DEFAULT NULL,
       PRIMARY KEY(id attractivite)
22
   )ENGINE=InnoDB DEFAULT CHARSET=utf8;
23
24
   CREATE TABLE IF NOT EXISTS commune(
25
       id_commune int(200) NOT NULL,
26
       nom_commune varchar(200) DEFAULT NULL,
27
       type_degres_densite varchar(200) DEFAULT NULL,
28
       code_dep int(5) NOT NULL,
29
       id_unite int(10) NOT NULL,
       id_attractivite int(10) NOT NULL,
31
       PRIMARY KEY (id_commune),
        FOREIGN KEY(code dep) REFERENCES departement(code dep),
        FOREIGN KEY(id_unite) REFERENCES unite_urbaine(id_unite),
        FOREIGN KEY(id attractivite) REFERENCES aire attractivite(id attractivite)
35
   )ENGINE=InnoDB DEFAULT CHARSET=utf8;
37
   CREATE TABLE IF NOT EXISTS crime(
       id crime int(10) NOT NULL,
39
       unite_compte varchar(50) DEFAULT NULL,
40
       faits int(200) NOT NULL,
       id_classe int(10) NOT NULL,
42
       code_dep int(5) NOT NULL,
43
       PRIMARY KEY (id_crime),
44
       FOREIGN KEY (id_classe) REFERENCES classe(id_classe),
45
       FOREIGN KEY (code_dep) REFERENCES departement(code_dep)
46
   )ENGINE=InnoDB DEFAULT CHARSET=utf8;
```

Par la suite, nous avons importé les fichiers Excel dans un ordre précis:

- 1. classe
- 2. attractivite
- 3. unite urbaine
- 4. departement
- 5. crime
- 6. commune

Nous nous sommes rendu compte que le fichier "unite_urbaine" posait problème, il ne voulait pas s'importer. Nous avons donc prit la décision d'importer directement les données sous forme de code SQL.

```
INSERT INTO unite_urbaine (id_unite,unite_urbaine)VALUES
   (1, 'Commune hors unite urbaine'),
   (2, 'Commune appartenant a l unite urbaine de Paris'),
   (3, 'Commune appartenant a une unite urbaine de 10000 a 14999 habitants'),
   (4, 'Commune appartenant a une unite urbaine de 100000 a 149999 habitants'),
   (5, 'Commune appartenant a une unite urbaine de 15000 a 19999 habitants'),
   (6, 'Commune appartenant a une unite urbaine de 150000 a 199999 habitants'),
   (7, 'Commune appartenant a une unite urbaine de 2500 a 2999 habitants'),
   (8, 'Commune appartenant a une unite urbaine de 20000 a 24999 habitants'),
   (9, 'Commune appartenant a une unite urbaine de 200000 a 299999 habitants'),
10
   (10, 'Commune appartenant a une unite urbaine de 25000 a 29999 habitants'),
   (11, 'Commune appartenant a une unit urbaine de 3000 a 3999 habitants'),
12
   (12, 'Commune appartenant a une unite urbaine de 30000 a 39999 habitants'),
13
   (13, 'Commune appartenant a une unite urbaine de 300000 a 499999 habitants'),
   (14, 'Commune appartenant a une unite urbaine de 400 a 4999 habitants'),
   (15, 'Commune appartenant a une unite urbaine de 40000 a 49999 habitants'),
16
   (16, 'Commune appartenant a une unite urbaine de 5000 a 6999 habitants'),
   (17, 'Commune appartenant a une unite urbaine de 50000 a 69999 habitants'),
   (18, 'Commune appartenant a une unite urbaine de 500000 a 1 999999 habitants'),
19
   (19, 'Commune appartenant a une unite urbaine de 7000 a 9999 habitants'),
20
   (20, 'Commune appartenant a une unite urbaine de 70000 a 99999 habitants'),
21
   (21, 'Commune appartenant a une unite urbaine de 70000 a 99999 habitants');
```

2.5 Requêtes SQL

2.5.1 Analyses sur les données :

- Donne le nombre total de crime en France en 2017:

```
SELECT SUM(crime.faits) AS total_crime_en_France_2017
FROM crime;
```

Table 2.7: 1 records

$\overline{\mathrm{total}}$	_crime_	_en_	_France_	_2017
			21	06841

- Donne le nombre de faits par départements:

```
SELECT departement.code_dep, departement.pop, SUM(crime.faits) AS 'faits/departement'
FROM crime, departement
WHERE crime.code_dep = departement.code_dep
GROUP BY departement.code_dep
ORDER BY SUM(crime.faits) DESC;
```

Table 2.8: Displaying records 1 - 10

$\overline{\mathrm{code_dep}}$	pop	faits/departement
75	2187526	216456
13	2024162	98535
59	2604361	95852
93	177689	89068
69	1843319	87612
31	1362672	58936
33	1583384	56530
44	1394909	54132
92	157249	52467
94	1609306	52063

D'après le tableau, on remarque que le département ayant le plus de délits est le département 75, Paris. Cela peut s'expliquer par une forte population, de plus, c'est la capitale du pays, on peut donc supposer que le résultat est proportionnel avec l'intéraction de la population. En deuxième position, nous retrouvons les Bouches-du-Rhône (13), où se situe la ville de Marseille, qui a une réputation de 'Capitale du Crime'.

- Donne la moyenne du nombre de faits :

```
SELECT AVG(faits) AS 'Moyenne des faits de crime'
FROM (

SELECT SUM(faits) AS faits
FROM crime, departement
WHERE crime.code_dep=departement.code_dep
GROUP BY departement.code_dep ) AS departement_faits;
```

Table 2.9: 1 records

Moyenne des faits de crime 21281.22

- Donne la médiane du nombre de faits:

Table 2.10: 1 records

 $\frac{\text{mediane}}{12403}$

- Donne le taux pour mille par département:

```
SELECT departement.code_dep, pop, SUM(crime.faits), (SUM(crime.faits)/departement.pop * 1000)
AS Taux_pour_mille
FROM departement
JOIN crime ON departement.code_dep = crime.code_dep
JOIN classe ON crime.id_classe = classe.id_classe
GROUP BY departement.code_dep
ORDER BY (SUM(crime.faits)/departement.pop * 1000) DESC;
```

Table 2.11: Displaying records 1 - 10

code_dep	pop	SUM(crime.faits)	Taux_pour_mille
93	177689	89068	501.2578
92	157249	52467	333.6555
38	187187	42190	225.3896
75	2187526	216456	98.9501
974	372594	22306	59.8668
13	2024162	98535	48.6794
69	1843319	87612	47.5295
34	1144892	49717	43.4251
31	1362672	58936	43.2503
6	1083310	43760	40.3947

Ici, on affiche le taux de crime pour mille habitants par département, cet indicateur apporte une analyse statistique prenant en compte le taux de crime et la population. On se rend compte que le département 93

(Seine-Saint-Denis) est dans le haut du tableau, suivit par les Hauts-de-Seine (92). Ces deux départements font partie de la banlieue de la métropole. On ne retrouve pas Paris dans le haut du classement, car il n'y a pas de proportionnalité entre la population et le nombre de crimes. En d'autres mots, il y a beaucoup plus d'habitants que de faits, comparé aux deux départements de sa banlieue.

 Donne le nombre total de faits par unité de compte sur l'ensemble des départements (Permet de voir que crime est le plus représenté):

```
SELECT crime.unite_compte ,SUM(crime.faits) AS Nombre_faits
FROM crime JOIN departement ON crime.code_dep = departement.code_dep
GROUP BY (crime.unite_compte)
ORDER BY Nombre_faits DESC
```

Table 2.12: 4 records

unite_compte	Nombre_faits
victime entendue	717520
vehicule	528633
victime	506625
infraction	354063

On observe que l'unité de compte ayant le plus de faits recensé est les victimes entendues, qui correspond aux plaintes déposées qui sont allées jusqu'au procès.

 Donne le nombre total et le pourcentage des crimes de chaque classe:

```
SELECT classe.classe, SUM(crime.faits) AS total_crime,
(SUM(crime.faits)*100 / SUM(SUM(crime.faits)) OVER()) AS pourcentage_crime
FROM classe JOIN crime ON classe.id_classe = crime.id_classe
GROUP BY classe.classe
ORDER BY (SUM(crime.faits)*100 / SUM(SUM(crime.faits)) OVER()) DESC;
```

Table 2.13: Displaying records 1 - 10

classe	$total_crime$	pourcentage_crime
Vols sans violence contre des personnes	717520	34.0567
Vols dans les vehicules	271960	12.9084
Cambriolages de logement	253736	12.0434
Coups et blessures volontaires	232570	11.0388
Vols de vehicules	155262	7.3694
Autres coups et blessures volontaires	132436	6.2860
Vols d'accessoires sur vehicules	101411	4.8134
Coups et blessures volontaires intrafamiliaux	100134	4.7528
Vols violents sans arme	90188	4.2807
Violences sexuelles	41485	1.9691

On remarque que la classe où il y a eu le plus de crimes est Vol sans violence contre des personnes, ce qui pourrait correspondre à des vols de biens (sac à main, téléphones, ...). Cette analyse correspond à la réalité.

2.5.2 Recherche de données

- Donne l'identifiant, le nom et le type de degrés de densité de toutes les communes du département '34':

```
SELECT commune.id_commune.nom_commune, commune.type_degres_densite
FROM crime, departement, commune
WHERE crime.code_dep=34 AND departement.code_dep=crime.code_dep
AND departement.code_dep = commune.code_dep;
```

Table 2.14: Displaying records 1 - 10

id_commune	nom_commune	type_degres_densite
34001	Abeilhan	Bourgs ruraux
34006	Aigne	Rural a habitat disperse
34016	Aumelas	Rural a habitat disperse
34018	Autignac	Bourgs ruraux
34019	Avene	Rural a habitat tres disperse
34020	Azillanet	Rural a habitat disperse
34029	Belarga	Bourgs ruraux
34033	Boisseron	Bourgs ruraux
34039	Bouzigues	Ceintures urbaines
34043	Buzignargues	Rural a habitat disperse

- Donne tous les départements ayant un nombre de crime supérieur à la moyenne:

Table 2.15: Displaying records 1 - 10

$\overline{\mathrm{code_dep}}$	faits/departement
75	216456
13	98535
59	95852
93	89068
69	87612
31	58936
33	56530
44	54132
92	52467

$\overline{\mathrm{code_dep}}$	faits/departement
94	52063

Table 2.16: 1 records

nombre de	départements	concernés
		26

On observe qu'il y a 26 départements qui ont des crimes au-dessus de la moyenne, que l'on a calculé dans la partie 'Analyse de données', sur les 99 départements.

- Donne l'aire attractivité par commune :

```
SELECT commune.nom_commune, aire_attractivite.aire_attractivite
FROM commune, aire_attractivite
WHERE aire_attractivite.id_attractivite = commune.id_attractivite
```

Table 2.17: Displaying records 1 - 10

nom_commune	aire_attractivite
Apremont	Aire de moins de 10 000 habitants
Beny	Aire de moins de 10 000 habitants
Bregnier-Cordon	Aire de moins de 10 000 habitants
Champagne-en-Valromey	Aire de moins de 10 000 habitants
Dompierre-sur-Veyle	Aire de moins de 10 000 habitants
Rance	Aire de moins de 10 000 habitants
Sonthonnax-la-Montagne	Aire de moins de 10 000 habitants
Sulignat	Aire de moins de 10 000 habitants
Ainay-le-Chateau	Aire de moins de 10 000 habitants
Barberier	Aire de moins de 10 000 habitants

- Donne le département, où le nombre de faits est < 100 et que unite_compte='vehicule':

```
SELECT crime.code_dep, classe.classe, SUM(crime.faits) AS total_faits
FROM crime

JOIN departement ON crime.code_dep = departement.code_dep

JOIN classe ON classe.id_classe = crime.id_classe

WHERE crime.unite_compte = 'véhicule'

AND crime.faits < 100

GROUP BY crime.code_dep, classe.classe

ORDER BY SUM(crime.faits) DESC;
```

Table 2.18: 7 records

$\overline{\mathrm{code_dep}}$	classe	total_faits
48	Vols dans les vehicules	87
976	Vols d'accessoires sur vehicules	85
23	Vols de vehicules	80
15	Vols de vehicules	75
15	Vols d'accessoires sur vehicules	68
48	Vols de vehicules	53
48	Vols d'accessoires sur vehicules	50

On se rend compte que le département de La Lozère (48), regroupe 3 classes différentes (vols dans les véhicules, vol de véhicules et vols d'accessoires sur véhicules) qui ont moins de 100 faits.

2.5.3 Recherche de valeur aberrantes (Agrégats):

- Donne les valeurs aberrantes du nombre de faits par départements (supérieur à 3 l'écart type) :

```
SELECT crime.code_dep, SUM(faits) AS 'Total faits de crime'
FROM crime,departement
WHERE crime.code_dep=departement.code_dep
GROUP BY crime.code_dep
HAVING SUM(faits) > (
    SELECT AVG(faits) + (3 * STDDEV(faits))
FROM (
    SELECT SUM(faits) AS faits
    FROM crime,departement
    WHERE crime.code_dep=departement.code_dep
    GROUP BY crime.code_dep ) AS departement_faits );
```

Table 2.19: 1 records

$\overline{\mathrm{code_dep}}$	Total faits de crime
75	216456

De la façon dont nous avons calculé ces valeurs, SQL ne trouve que la valeur aberrante la plus grande, qui se trouve être Paris (75).

- Combine les requêtes suivantes avec UNION -> donne les départements qui ont plus de 90 000 faits et ceux qui ont moins de 2 000 faits :

```
SELECT departement.code_dep, SUM(crime.faits) AS 'faits/departement'
FROM crime
JOIN departement ON crime.code_dep = departement.code_dep
GROUP BY departement.code_dep
HAVING SUM(crime.faits) > 90000
UNION
SELECT departement.code_dep, SUM(crime.faits) AS 'faits/departement'
FROM crime JOIN departement ON crime.code_dep = departement.code_dep
GROUP BY departement.code_dep
HAVING SUM(crime.faits) <2000
ORDER BY `faits/departement` ASC;
```

Table 2.20: 6 records

code_dep faits/departeme	ent
48 10	67
23 16	29
15 17	52
59 958	52
13 985	35
75 2164	56

Lorsque l'on observe ce tableau, on se rend compte que les départements ayant le plus de délits recensés sont Paris (75), les Bouches-du-Rhônes(13) et le Nord (59), ces trois départements sont relativement peuplés. Or d'après le classement des départements français les plus riches, Paris est en première position, tandis que les Bouches-du-Rhône et le Nord sont respectivement en 29ème et 55ème positions. Ceci contredit notre analyse car ce ne sont pas les départements les plus riche. Les trois départements qui ont le moins de délits et de crimes sont la Lozère(48), la Creuse(23) et le Cantal(15), ils se situent dans des zones peu peuplées, et moins urbanisées que Paris par exemple. Ils se trouvent dans le bas du classement des départements les plus riche de France en 2017. Cela répond bien à la problématique.

```
# Fermeture de la connexion
dbDisconnect(con)
```

[1] TRUE

Chapter 3

Analyse des données

3.1 Techniques et outils utilisés pour l'analyse de données

Pour mener à bien une analyse de données, il existe différentes techniques et outils. Parmi les outils les plus couramment utilisés, on peut citer RStudio. C'est un environnement de développement intégré (IDE) pour le langage de programmation R, largement utilisé en analyse de données. Il propose de nombreuses bibliothèques et packages qui permettent de faire des graphiques, des statistiques descriptives, des analyses de corrélation, des modèles prédictifs, et bien plus encore. C'est pour cela que nous avons utilisé RStudio pour analyser nos données. Pour analyser nos données nous utiliserons dans un premier temps des graphiques et des statistiques descriptives pour explorer nos données, puis nous analyserons les corrélations entre les variables à l'aide de différents calculs (régression linéaire, analyse de variance, etc.).

Pour notre projet, nous avons besoin de trois bibliothèques:

```
library(readxl)
library(ggplot2)
library(here)
```

here() starts at C:/Users/33611/OneDrive/Documents/Rapport_G14

- readxl: ce package donne une fonction qui nous permet de lire les données des fichiers Excel (read_excel()).
- here: ce package permet de créer des chemins relatifs à la racine du répertoire
- ggplot2: ce package nous permettra de faire des graphiques

Ensuite, avant de commencer notre analyse avec R, on importe les tableurs xlsx nécessaire avec la librairie here.

```
chemin_fichier <- here("DataFichiers", "Aire_Attractivite.xlsx")
Aire_Attractivite <- read_excel(chemin_fichier)

chemin_fichier <- here("DataFichiers", "Classe.xlsx")
Classe <- read_excel(chemin_fichier)

chemin_fichier <- here("DataFichiers", "commune.xlsx")
commune <- read_excel(chemin_fichier)</pre>
```

3.2 Exploration des données à l'aide de graphiques et de statistiques descriptives

3.2.1 Statistiques descriptives

Voici quelques statistiques que nous avons réalisées en langage R pour comparer avec ce que nous avons obtenu lorsque nous avons fait des requêtes SQL. R nous permettra d'avoir un visuel sur nos données avec l'aide de graphiques.

On s'attend à obtenir les mêmes résultats que dans le chapitre précédent. Si c'est le cas, on aura la même interprétation qu'en SQL.

• Calcul de la moyenne:

```
sommes <- aggregate(Crimes$faits, by = list(Crimes$code_dep), FUN = sum)
moyenne <- mean(sommes$x)
cat("La moyenne du nombre de faits de Crimes pour tous les départements est de",
    round(moyenne, 2), "\n")</pre>
```

La moyenne du nombre de faits de Crimes pour tous les départements est de 21281.22

• Somme des faits en 2017:

```
somme <- sum(Crimes$faits, na.rm = TRUE)
cat("La somme totale des faits en France en 2017 est: ", somme)</pre>
```

La somme totale des faits en France en 2017 est: 2106841

• Somme des faits par classes et leurs pourcentages:

```
somme_faits <- aggregate(faits~id_classe, data=Crimes, FUN=sum)</pre>
somme_faits$pourcentage <- somme_faits$faits/sum(somme_faits$faits)*100</pre>
somme_faits$faits_pourcentage <- paste(somme_faits$id_classe, Classe$classe,</pre>
                                        somme_faits$faits, sprintf("(%.1f\%)",
                                        somme_faits$pourcentage))
cat(somme_faits$faits_pourcentage, sep="\n")
## 1 Cambriolages de logement 253736 (12.0%)
## 2 Coups et blessures volontaires 232570 (11.0%)
## 3 Coups et blessures volontaires intrafamiliaux 100134 (4.8%)
## 4 Autres coups et blessures volontaires 132436 (6.3%)
## 5 Violences sexuelles 41485 (2.0%)
## 6 Vols avec armes 10139 (0.5%)
## 7 Vols d'accessoires sur vehicules 101411 (4.8%)
## 8 Vols dans les vehicules 271960 (12.9%)
## 9 Vols de vehicules 155262 (7.4%)
## 10 Vols sans violence contre des personnes 717520 (34.1%)
## 11 Vols violents sans arme 90188 (4.3%)
```

On remarque que la classe où il y a eu le plus de crimes est Vol sans violence contre des personnes. Ce résultat concorde avec la requête SQL.

• Les départements qui ont plus de 90 000 faits et ceux qui ont moins de 2 000 faits:

```
#On calcule le nombre de faits pour chaque départements
merg <- merge(Crimes, Departement, by="code_dep")</pre>
res <- aggregate(merg$faits, by=list(merg$code dep), FUN=sum)
colnames(res) <- c("departement", "Nombre_faits")</pre>
res<-res[order(res$Nombre_faits, decreasing = TRUE),]</pre>
#On filtre pour avoir les départements ayant moins de 2 000 faits
res filtrerMoins <- subset(res,res$Nombre faits<2000)
res_filtrerMoins <- res_filtrerMoins[order(res_filtrerMoins$Nombre_faits, decreasing = TRUE),]
print(res_filtrerMoins)
##
      departement Nombre_faits
## 15
           15
                          1752
               23
## 22
                          1629
## 47
               48
                          1067
#On filtre pour avoir les départements ayant plus de 90 000 faits
res_filtrerPlus <- subset(res,res$Nombre_faits>90000)
res_filtrerPlus <- res_filtrerPlus[order(res_filtrerPlus$Nombre_faits, decreasing = TRUE),]
print(res_filtrerPlus)
      departement Nombre faits
##
## 74
           75
                        216456
## 13
              13
                         98535
## 58
               59
                         95852
```

```
#Pour avoir les deux en même temps:
res_filtrerPM <- subset(res, res$Nombre_faits<2000 | res$Nombre_faits>90000)
res_filtrerPM <- res_filtrerPM[order(res_filtrerPM$Nombre_faits, decreasing = TRUE),]
print(res_filtrerPM)</pre>
```

```
##
     departement Nombre_faits
## 74
              75
## 13
              13
                         98535
## 58
               59
                         95852
              15
## 15
                         1752
               23
                          1629
## 22
## 47
               48
                          1067
```

On retrouve le même résultat qu'avec notre requête SQL.

• Les départements où l'unité de compte = 'véhicule' et le nombre de faits < 100:

```
donnee <- subset(Crimes, Crimes$unite_compte=="vehicule" & Crimes$faits <100)
print(donnee)</pre>
```

```
## # A tibble: 7 x 5
    id_crime unite_compte faits id_classe code_dep
                   <dbl>
                               <dbl>
##
       <dbl> <chr>
                                          <dbl>
        823 vehicule
                         75
## 1
                                            15
## 2
       830 vehicule
                          80
                                     9
                                             23
## 3
        857 vehicule
                          53
                                     9
                                             48
## 4
                           87
                                     8
        958 vehicule
                                             48
                                    7
## 5
      1025 vehicule
                           68
                                            15
      1059 vehicule
                           50
                                    7
## 6
                                             48
## 7
        1111 vehicule
                           85
                                            976
```

• Médiane des crimes par départements:

La mediane du nombre de faits de Crimes pour tous les départements est de 12403

• Le nombre total de faits par unité de compte sur l'ensemble des départements:

```
merged_data <- merge(Crimes, Departement, by = "code_dep")
result <- aggregate(merged_data$faits, by = list(merged_data$unite_compte), FUN = sum)
colnames(result) <- c("unite_compte", "Nombre_faits")
(result <- result[order(result$Nombre_faits, decreasing = TRUE), ])</pre>
```

$3.2.~EXPLORATION~DES~DONN\'ES~\`A~L'AIDE~DE~GRAPHIQUES~ET~DE~STATISTIQUES~DESCRIPTIVES 23$

##		unit	te_compte	Nombre_faits
##	4	${\tt victime}$	$\verb"entendue"$	717520
##	2		vehicule	528633
##	3		victime	506625
##	1	iı	nfraction	354063

• Donne l'identifiant, le nom et le type de degrés de densité de toutes les communes du département '34':

```
communes_34 <- subset(commune, code_dep == "34")
print(communes_34[c("id_commune", "nom_commune", "type_degres_densite")])</pre>
```

```
## # A tibble: 63 x 3
##
     id_commune nom_commune type_degres_densite
##
     <chr>
                <chr>
                             <chr>>
                Abeilhan
## 1 34001
                            Bourgs ruraux
             Aigne Rural a habita
Aumelas Rural a habita
Autignac Bourgs ruraux
## 2 34006
                            Rural a habitat disperse
## 3 34016
                            Rural a habitat disperse
## 4 34018
## 5 34019
              Avene
                           Rural a habitat tres disperse
## 6 34020
              Azillanet Rural a habitat disperse
## 7 34029
                Belarga
                            Bourgs ruraux
## 8 34033
                Boisseron
                            Bourgs ruraux
## 9 34039
                Bouzigues
                            Ceintures urbaines
## 10 34043
                Buzignargues Rural a habitat disperse
## # ... with 53 more rows
```

3.2.2 Graphiques

• Boxplot (valeurs aberrantes):

```
#Calculer la somme des crimes pour chaque département
sommes <- aggregate(Crimes$faits, by = list(Crimes$code dep), FUN = sum)</pre>
#Renommer les colonnes pour plus de clarté
names(sommes) <- c("Departement", "TotalCrimes")</pre>
#Calculer les limites des valeurs aberrantes
q1 <- quantile(sommes$TotalCrimes, 0.25)
q3 <- quantile(sommes$TotalCrimes, 0.75)
iqr <- q3 - q1
low_limit \leftarrow q1 - 1.5 * iqr
high_limit \leftarrow q3 + 1.5 * iqr
#Trouver les valeurs aberrantes
outliers <- subset(sommes, TotalCrimes < low_limit | TotalCrimes > high_limit)
#Créer un boxplot pour visualiser les valeurs aberrantes
boxplot(sommes$TotalCrimes, main = "Nombre total de crimes par département",
        ylab = "Total de crimes", ylim = range(0, high_limit + iqr * 1.5),col="#ffe4af")
points(outliers$TotalCrimes, col = "red", pch = 16)
```

Nombre total de crimes par département

#Afficher les valeurs aberrantes outliers

##		Departement	${\tt TotalCrimes}$
##	13	13	98535
##	30	31	58936
##	32	33	56530
##	33	34	49717
##	43	44	54132
##	58	59	95852
##	68	69	87612
##	74	75	216456
##	91	92	52467
##	92	93	89068
##	93	94	52063
##	94	95	46597

Ce boxplot nous montre les valeurs aberrantes trouvées précédemment. On peut voir que la médianne est relativement basse dans la boite. On peut voir que distance entre celle-ci et le premier quartile est assez courte par rapport à celle entre la médiane et le troisième quartile. Les moustaches représentent les plages des 25% inférieurs et des 25% supérieur des valeurs données. Ce sont donc des valeurs aberrantes. Or, on peut voir qu'il y a des valeurs encore plus extrêmes. En effet, les départements ayant un nombre de crimes largement supérieur aux autres. On peut d'ailleurs les retrouver dans le tableau ci-dessus.

• Diagramme du pourcentage de faits par classes:

Pourcentage de faits pour chaque classe

Ce graphique nous montre que la classe 10 (Vol sans violence contre des personnes) est largement au-dessus des autres, avec un total de 34,1% de faits en 2017. Par la suite, on retrouve la classe 8 (vol dans les véhicules), avec un total de 12,9%.

3.2. EXPLORATION DES DONNÉES À L'AIDE DE GRAPHIQUES ET DE STATISTIQUES DESCRIPTIVES27

• Diagramme de la Situation de chaque département par rapport à la moyenne:

```
# Calculer la moyenne de chaque département
moyennes <- aggregate(Crimes$faits ~ Crimes$code_dep, FUN = mean)

# Renommer les colonnes
names(moyennes) <- c("Departement", "Moyenne")

# Créer le graphique
ggplot(moyennes, aes(x = Departement, y = Moyenne)) +
    geom_bar(stat = "identity", fill = "blue") +
    geom_hline(yintercept = mean(moyennes$Moyenne), color = "red", linetype = "dashed") +
    ggtitle("Situation de chaque département par rapport à la moyenne") +
    xlab("Département") +
    ylab("Nombre de crimes") +
    theme_classic()</pre>
```

Situation de chaque département par rapport à la moyenne


```
(somme <- sum(Crimes$faits, na.rm = TRUE))</pre>
```

[1] 2106841

Quand on enlève les valeurs nulles du graphiques, on obtient la figure suivante:

Figure 3.1: Graphique

On peut donc voir plusieurs valeurs aberrantes. Comme le département 75, le 93, le 59 ou encore le 13. Ils sont largement au-dessus de la moyenne, qui est en rouge. Ces départements reviennent souvent dans les résultats de nos requêtes précédentes. En effet, Paris s'avère être le département ayant le plus de faits en France en 2017. Egalement, le département 13 et 59 font partie des départements ayant plus de 90 000 faits.

Chapter 4

Difficulté et Conclusion

4.1 Problèmes rencontrés

Nous avons rencontré plusieurs difficultés durant ce projet, nous allons vous en citer quelques-unes : - Confusion de l'outil utilisé pour le rapport (LaTeX au lieu de RMarkdown), nécessitant une reprise complète du travail en RMarkdown pour intégrer du code Rstudio et SQL. Recherche pour comprendre le fonctionnement de RMarkdown et résoudre les erreurs rencontrées. Solution : utilisation des cours et des livres, ainsi que des forums pour la recherche d'informations.

- Problème d'importation des données nécessitant un accès complet aux fichiers. Solution : mise en place de la fonction here() pour s'adapter aux différents ordinateurs.
- Problème de mise en page avec une page supplémentaire entre la table des matières et la bibliographie qui n'a pas été résolue.
- Un fichier Excel ne voulait pas s'importer sur PhpMyAdmin. Solution : création d'un code SQL pour rentrer manuellement les données de ce fichier et expliquer la clé primaire.
- Difficulté à faire des jointures entre les différents fichiers sur R. Solution : recherche sur Internet pour comprendre et correctement utiliser la fonction "merge".
- Données comportant des caractères spéciaux dans les fichiers Excel. Solution : recherche et remplacement des caractères spéciaux par des lettres de base.
- Difficulté à trouver certains mots-clés dans PhpMyAdmin pour des requêtes avancées, nécessitant des recherches longues. Solution non résolue. (Non résolu pour la recherche des valeurs aberrantes de la même façon en R et en SQL (résultat différent)).
- Difficultés de travail à distance pour la distribution et la compréhension des tâches.
- Jeu de données conséquent nécessitant une réduction du jeu de données à l'année 2017 pour une analyse plus facile.
- Difficulté de mise en place des requêtes sur Rstudio nécessitant des recherches pour trouver la solution adaptée. Jeux de données pas toujours cohérents et compréhensibles nécessitant une remise en question régulière et des changements dans les MOD et MCD.

4.2 Conclusion et persepctives

Il est difficile de conclure de manière définitive que la richesse d'un département influence directement la criminalité. Cependant, il existe des corrélations entre la pauvreté et la criminalité, car les zones les plus pauvres ont tendance à être plus touchées par la criminalité. En effet, les départements les plus touchés par la criminalité en 2017 étaient généralement situés dans des zones urbaines densément peuplées et dans des zones où la pauvreté est plus élevée. Les départements comme les Bouches-du-Rhône (13) et le Nord (59), qui ont signalé un nombre élevé de faits (supérieur à 90 000 faits) de crimes en 2017, sont des zones urbaines densément peuplées et caractérisées par des niveaux de pauvreté plus élevés que la moyenne nationale.

Mais Paris dans notre analyse reste une exception, puisque c'est un département avec une forte densité de population et c'est l'un des départements les plus riches et pourtant le nombre de faits en 2017 est supérieur à 90 000 faits. Ce sont des chiffres bien au-dessus de la moyenne nationale de 21 281,22 faits de criminalité par département. Ces départements présentent également un nombre de faits de criminalité bien supérieur à la médiane de 12 403.

D'autre part, on peut constater que les départements les moins riches, tels que le Cantal (15), la Lozère (48) et la Creuse (23), ont signalé le moins de faits de criminalité en 2017 (moins de 2 000 faits). Ces départements se situent en-dessous de la moyenne nationale, avec un nombre de faits de criminalité nettement inférieur à la médiane.

Cependant, il est important de souligner que d'autres facteurs peuvent influencer le nombre de faits de criminalité signalés, tels que la densité de population, les taux de chômage et les niveaux d'éducation. Il est donc important de prendre en compte ces facteurs dans l'analyse de la relation entre la richesse d'un département et le nombre de faits de criminalité signalés.

Bibliographie

RStudio:

- STHDA
- qastack.fr
- Lafaye de Micheaux, P., Drouilhet, R., & Liquet, B. (2013). Le logiciel R Maitriser le langage Effectuer des analyses (bio)statistiques. Springer.

SQL :

- Bringay, S. : Cours de Base de données
- $\bullet \quad phpMyAdmin$