TD 4: MODÈLE ALÉATOIRE DISCRET

Modèles Aléatoires Discrets M1– 2019-2020 P.-O. Goffard & Rémy Poudevigne

1. Couverture publicitaire

Un fabricant veut fixer le niveau de publicité qu'il fait passer dans un média. Il peut choisir entre une couverture publicitaire élevée (E) et une moyenne (M). Les ventes mensuelles sont réparties en trois catégories : C_1 (peu de ventes), C_2 (nombre de ventes normal) et C_3 (beaucoup de ventes). On estime que l'évolution de la catégorie des ventes mensuelles au cours du temps peut être représentée par une chaîne de Markov, dont la matrice de transition dépend de la couverture publicitaire :

couverture élevée :
$$P_E = \begin{pmatrix} 0.2 & 0.5 & 0.3 \\ 0.1 & 0.5 & 0.4 \\ 0.1 & 0.2 & 0.7 \end{pmatrix}$$
 couverture moyenne : $P_M = \begin{pmatrix} 0.6 & 0.4 & 0 \\ 0.4 & 0.5 & 0.1 \\ 0.4 & 0.5 & 0.1 \end{pmatrix}$

Un mois de ventes de la catégorie C_1 (respectivement C_2 et C_3) rapporte environ 9000 euros (respectivement 12000 et 18000 euros). Une forte couverture publicitaire coûte 6000 euros par mois, alors qu'une couverture publicitaire moyenne ne coûte que 1000 euros par mois. Calculer le bénéfice moyen du fabricant sur une grande période de temps pour les deux couvertures. Quel est le choix le plus rentable ?

2. Livreur

Un livreur se partage sa zone de livraison en 4 zones, de manière à économiser ses efforts. On suppose qu'il a toujours des colis à livrer en attente pour toutes les zones. Il décide de ne pas trop bouger, en particulier, il reste dans la même zone toute la journée, et décide à la fin de la journée dans quelle zone il ira le jour suivant.

- S'il est dans la zone 1, il n'y reste jamais le jour suivant, à cause des fréquents braquages, et il se rend de manière équiprobable dans l'une des trois autres zones.
- S'il est dans la zone 2 ou 3, il y reste avec probabilité 1/2, et s'il en part, il va aléatoirement dans l'une des autres zones.
- S'il est dans la zone 4, un peu plus éloignée des autres, soit il y reste (probabilité 2/3), soit il va en zone 2.
- (a) Modéliser cette situation par une chaîne de Markov, et justifier ce choix. Donner son graphe et sa matrice de transition.
- (b) Cette chaîne est-elle irréductible? Quelle est la nature des états? leur période?
- (c) Donner, s'il en existe, la ou les mesures stationnaires de cette chaîne.
- (d) Quelle est, à long terme, la probabilité qu'il soit dans la zone 1 ? dans la zone 3 ?
- (e) Quelle est la probabilité qu'il se trouve dans la zone 1 après-demain sachant qu'il est dans la zone 4 aujourd'hui?
- (f) En moyenne, combien de jours faut-il pour que le livreur revienne dans chacune des zones ?

3. Le temps au pays d'Oz

Au pays d'Oz, le temps ne peut prendre que 3 formes : Beau temps (B), Pluvieux (P), ou Neigeux (N). Les règles d'évolution du temps sont immuables et ne souffrent aucune exception.

- S'il fait beau, il ne fera pas beau le lendemain, et il y a autant de chances qu'il pleuve ou qu'il neige le lendemain.
- S'il pleut ou il neige, il y a une chance sur deux qu'il fasse le même temps le lendemain, et une chance sur quatre qu'il fasse beau le lendemain.
- (a) Modéliser cette situation par une chaîne de Markov, et justifier ce choix. Donner son graphe et sa matrice de transition.
- (b) Cette chaîne est-elle irréductible ? Quelle est la nature des états ? leur période ?
- (c) Donner, s'il en existe, la ou les mesures stationnaires de cette chaîne.
- (d) Quel est, à long terme, la probabilité qu'il fasse beau ? qu'il neige ?
- (e) Quelle est la probabilité qu'il fasse beau après-demain sachant qu'il fait beau aujourd'hui? Quelle est la probabilité qu'il neige deux jours de suite en trois jours ?
- (f) En moyenne, combien de jours faut-il pour que le beau temps revienne?

4. Une chaîne de Markov non apériodique: le modèle d'Ehrenfest à deux jetons

On considère deux urnes A et B et deux jetons numérotés 1 et 2. On tire le numéro 1 ou 2 au hasard de manière équiprobable et indépendante et on change d'urne le jeton correspondant. Au départ les deux jetons sont dans l'urne A. Notons, pour tout $n \in \mathbb{N}$, X_n le nombre de jetons dans l'urne A.

- (a) Pour tout $n \in \mathbb{N}$, quelles sont les valeurs prises par X_n ?
- (b) (i) Soit $k \in \{0, 1, 2\}$. Calculer, pour tout $n \in \mathbb{N}$, $\mathbb{P}(X_{n+1} = k | X_n = k)$, $\mathbb{P}(X_{n+1} = k + 1 | X_n = k)$ et $\mathbb{P}(X_{n+1} = k 1 | X_n = k)$.
 - (ii) Que peut-on en déduire sur $(X_n)_{n\in\mathbb{N}}$?
- (c) Donner la matrice de transition Q associée à $(X_n)_{n\in\mathbb{N}}$.
- (d) Montrer que, pour tout $k \ge 1$, $Q^{2k} = \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{pmatrix}$ et pour tout $k \ge 0$, $Q^{2k+1} = Q$.
- (e) $(X_n)_{n\in\mathbb{N}}$ est-elle irréductible ?
 - Déterminer la période de $(X_n)_{n\in\mathbb{N}}$.
- (f) Montrer que $(X_n)_{n\in\mathbb{N}}$ admet une unique probabilité invariante.
- (g) Étudier la convergence en loi de $(X_n)_{n\in\mathbb{N}}$.
- (h) Pour tout $n \in \mathbb{N}$, quel est le nombre moyen de jetons dans l'urne A au bout de n étapes ?
- (i) Notons T la variable aléatoire qui compte le nombre d'étapes pour revenir à l'état initial pour la première fois (c'est-à-dire avec deux jetons dans A).
 - (i) Montrer que, pour tout $k \in \mathbb{N}$, $\mathbb{P}(T = 2k + 1) = 0$.
 - (ii) Montrer que, pour tout $k \in \mathbb{N}^*$, $\mathbb{P}(T=2k) = \frac{1}{2k}$.
 - (iii) Montrer que $\mathbb{P}(T < +\infty) = 1$.
 - (iv) Montrer que, pour tout $n \in \mathbb{N}$, $\sum_{k=1}^{n} \frac{k}{2^{k-1}} = 4 \frac{n+2}{2^{n-1}}$.
 - En déduire l'espérance de T.