# Number Theory Coding Club

## Mohammed Alshamsi 2021004826 mo.alshamsi@aurak.ac.ae

American University of Ras Al Khaimah

March 14, 2024



March 14, 2024

▶ Number Theory?



▶ Number Theory? Study of integers, especially positive integers



- ▶ Number Theory? Study of integers, especially positive integers
- ▶ Format?



- ▶ Number Theory? Study of integers, especially positive integers
- ► Format? You'll see the following:



- ▶ Number Theory? Study of integers, especially positive integers
- ▶ Format? You'll see the following:
  - ▶ Mathematical definitions with examples



- ▶ Number Theory? Study of integers, especially positive integers
- ► Format? You'll see the following:
  - ▶ Mathematical definitions with examples
  - ▶ Some interesting algorithms



- ▶ Number Theory? Study of integers, especially positive integers
- ► Format? You'll see the following:
  - ▶ Mathematical definitions with examples
  - ▶ Some interesting algorithms
  - ► Applications to cryptography



- ▶ Number Theory? Study of integers, especially positive integers
- ► Format? You'll see the following:
  - ▶ Mathematical definitions with examples
  - ▶ Some interesting algorithms
  - ► Applications to cryptography
- ▶ Why Math?



- ▶ Number Theory? Study of integers, especially positive integers
- ► Format? You'll see the following:
  - ▶ Mathematical definitions with examples
  - ▶ Some interesting algorithms
  - ▶ Applications to cryptography
- ▶ Why Math? Some math background will enable you to make more sophisticated software.



- ▶ Number Theory? Study of integers, especially positive integers
- ► Format? You'll see the following:
  - ▶ Mathematical definitions with examples
  - ▶ Some interesting algorithms
  - ▶ Applications to cryptography
- ▶ Why Math? Some math background will enable you to make more sophisticated software.
- ▶ These Slides?



- ▶ Number Theory? Study of integers, especially positive integers
- ► Format? You'll see the following:
  - ▶ Mathematical definitions with examples
  - ▶ Some interesting algorithms
  - ► Applications to cryptography
- ▶ Why Math? Some math background will enable you to make more sophisticated software.
- ▶ These Slides? See our GitHub repository.
- ▶ If you don't know coding:



- ▶ Number Theory? Study of integers, especially positive integers
- ► Format? You'll see the following:
  - ▶ Mathematical definitions with examples
  - ▶ Some interesting algorithms
  - ▶ Applications to cryptography
- ▶ Why Math? Some math background will enable you to make more sophisticated software.
- ▶ These Slides? See our GitHub repository.
- ▶ If you don't know coding: Check appendix in main document on GitHub, or find a guide online. (We won't do much in this presentation.)



March 14, 2024

- ▶ Number Theory? Study of integers, especially positive integers
- ► Format? You'll see the following:
  - ▶ Mathematical definitions with examples
  - ▶ Some interesting algorithms
  - ▶ Applications to cryptography
- ▶ Why Math? Some math background will enable you to make more sophisticated software.
- ▶ These Slides? See our GitHub repository.
- ▶ If you don't know coding: Check appendix in main document on GitHub, or find a guide online. (We won't do much in this presentation.)

Any questions?



March 14, 2024

## Outline

- Divisibility
  - Division Algorithm
  - Caesar Cipher
  - GCD
  - Prime Numbers
- Modular Arithmetic
  - Affine Cipher
  - Chinese Remainder Theorem
  - RSA



Definition (Divisibility)



## Definition (Divisibility)

A nonzero integer a is a divisor of an integer b if b = ak for some integer k.



## Definition (Divisibility)

A nonzero integer a is a divisor of an integer b if b = ak for some integer k.

▶ When a divides b, we write " $a \mid b$ ".



## Definition (Divisibility)

A nonzero integer a is a divisor of an integer b if b = ak for some integer k.

- ▶ When a divides b, we write "a | b".
- ▶ When a does not divide b, we write " $a \nmid b$ ".



## Definition (Divisibility)

A nonzero integer a is a divisor of an integer b if b = ak for some integer k.

- ▶ When a divides b, we write "a | b".
- ▶ When a does not divide b, we write " $a \nmid b$ ".

## Example



## Definition (Divisibility)

A nonzero integer a is a divisor of an integer b if b = ak for some integer k.

- ▶ When a divides b, we write " $a \mid b$ ".
- ▶ When a does not divide b, we write " $a \nmid b$ ".

## Example

▶  $5 \mid 15$  because  $15 = 5 \cdot 3$ , and 3 is an integer.



## Definition (Divisibility)

A nonzero integer a is a divisor of an integer b if b = ak for some integer k.

- ▶ When a divides b, we write " $a \mid b$ ".
- ▶ When a does not divide b, we write " $a \nmid b$ ".

## Example

- ▶  $5 \mid 15$  because  $15 = 5 \cdot 3$ , and 3 is an integer.
- ▶  $6 \nmid 15$  because  $15 = 6 \cdot 2.5$ , and 2.5 is not an integer.





## Definition (Divisibility)

A nonzero integer a is a divisor of an integer b if b = ak for some integer k.

- ▶ When a divides b, we write " $a \mid b$ ".
- ▶ When a does not divide b, we write " $a \nmid b$ ".

## Example

- ▶  $5 \mid 15$  because  $15 = 5 \cdot 3$ , and 3 is an integer.
- ▶  $6 \nmid 15$  because  $15 = 6 \cdot 2.5$ , and 2.5 is not an integer.
- For all n, n | 0. (Why?)



Theorem (The Division Algorithm)



## Theorem (The Division Algorithm)

For integers a and m with m > 0, there exist unique integers q and r such that

$$a = mq + r$$

where  $0 \leqslant r < m$ .



## Theorem (The Division Algorithm)

For integers a and m with m > 0, there exist unique integers q and r such that

$$a = mq + r$$

where  $0 \le r < m$ . We may write a mod m to refer to this unique r.



## Theorem (The Division Algorithm)

For integers a and m with m>0, there exist unique integers q and r such that

$$a = mq + r$$

where  $0 \le r < m$ . We may write a mod m to refer to this unique r.

## Example



## Theorem (The Division Algorithm)

For integers a and m with m > 0, there exist unique integers q and r such that

$$a = mq + r$$

where  $0 \le r < m$ . We may write a mod m to refer to this unique r.

## Example

▶ If a = 17 and m = 5,  $17 = 5 \cdot 3 + 2$ . Note that  $0 \le 2 < 5$ .





## Theorem (The Division Algorithm)

For integers a and m with m > 0, there exist unique integers q and r such that

$$a = mq + r$$

where  $0 \le r < m$ . We may write a mod m to refer to this unique r.

## Example

- ▶ If a = 17 and m = 5,  $17 = 5 \cdot 3 + 2$ . Note that  $0 \le 2 < 5$ .
- ▶ If a = -17 and m = 5,  $-17 = 5 \cdot -4 + 3$ . Also,  $-17 \mod 5 = 3$ .



In the C programming language, % gives the remainder.



In the C programming language, % gives the remainder.

```
int a = 17, m = 5;
int r = a % m;
printf("%d",r);
```



In the C programming language, % gives the remainder.

```
int a = 17, m = 5;
int r = a % m;
printf("%d",r);
```

This outputs 2.



6/34

In the C programming language, % gives the remainder.

```
int a = 17, m = 5;
int r = a % m;
printf("%d",r);
```

This outputs 2.

Note! This isn't the same as a mod m. See this example:



In the C programming language, % gives the remainder.

```
int a = 17, m = 5;
int r = a % m;
printf("%d",r);
```

This outputs 2.

Note! This isn't the same as a mod m. See this example:

```
int a = -17, m = 5;
int r = a % m;
printf("%d",r);
```



In the C programming language, % gives the remainder.

```
int a = 17, m = 5;
int r = a % m;
printf("%d",r);
```

This outputs 2.

Note! This isn't the same as a mod m. See this example:

```
int a = -17, m = 5;
int r = a % m;
printf("%d",r);
```

This prints -2, instead of  $3 = -17 \mod 5$ .



# Caesar Cipher

▶ Encryption:



► Encryption: Transforming a plain text message into cipher text to hide its content.



- ► Encryption: Transforming a plain text message into cipher text to hide its content.
- ▶ Decryption:



- ► Encryption: Transforming a plain text message into cipher text to hide its content.
- ▶ Decryption: Reverting the cipher text to plain text.



- ► Encryption: Transforming a plain text message into cipher text to hide its content.
- ▶ Decryption: Reverting the cipher text to plain text.
- ► Key:



- ► Encryption: Transforming a plain text message into cipher text to hide its content.
- ▶ Decryption: Reverting the cipher text to plain text.
- ▶ Key: Determines "parameters" for the encryption and decryption.



- ► Encryption: Transforming a plain text message into cipher text to hide its content.
- ▶ Decryption: Reverting the cipher text to plain text.
- ▶ Key: Determines "parameters" for the encryption and decryption.
  - ▶ Usually agreed upon by sender and receiver.



- ► Encryption: Transforming a plain text message into cipher text to hide its content.
- ▶ Decryption: Reverting the cipher text to plain text.
- ▶ Key: Determines "parameters" for the encryption and decryption.
  - ▶ Usually agreed upon by sender and receiver.
- ▶ Caesar Cipher:



- ▶ Encryption: Transforming a plain text message into cipher text to hide its content.
- ▶ Decryption: Reverting the cipher text to plain text.
- ▶ Key: Determines "parameters" for the encryption and decryption.
  - ▶ Usually agreed upon by sender and receiver.
- ► Caesar Cipher: "Shift" alphabet by the key number.







### Example

Alphabet shifted by key k = 3.



#### Example

Alphabet shifted by key k = 3.



#### Example

Alphabet shifted by key k = 3.

A B C D E ··· W X Y Z D E F G H ··· Z A B C

Message:

I HAVE INVENTED A NEW SALAD, TELL THE GREEKS.



#### Example

Alphabet shifted by key k = 3.

A B C D E ... W X Y Z D E F G H ... Z A B C

Message:

I HAVE INVENTED A NEW SALAD, TELL THE GREEKS.

Replace each letter with its correspondent:

L KDYH LQYHQWHG D QHZ VDODG, WHOO WKH JUHHNV.



Definition (Greatest Common Divisor)





## Definition (Greatest Common Divisor)

Let a, b, c be integers. If  $c \mid a$  and  $c \mid b$ , then c is a *common divisor* of a and b.





#### Definition (Greatest Common Divisor)

Let a, b, c be integers. If  $c \mid a$  and  $c \mid b$ , then c is a *common divisor* of a and b. The largest such c is the greatest common divisor of a and b, and is denoted gcd(a,b).



9/34



## Definition (Greatest Common Divisor)

Let a, b, c be integers. If  $c \mid a$  and  $c \mid b$ , then c is a *common divisor* of a and b. The largest such c is the greatest common divisor of a and b, and is denoted gcd(a,b).

## Theorem (Bézout's Identity)





#### Definition (Greatest Common Divisor)

Let a, b, c be integers. If  $c \mid a$  and  $c \mid b$ , then c is a *common divisor* of a and b. The largest such c is the greatest common divisor of a and b, and is denoted gcd(a,b).

### Theorem (Bézout's Identity)

Let a, b, d be integers with  $d = \gcd(a, b)$ .



### Definition (Greatest Common Divisor)

Let a, b, c be integers. If  $c \mid a$  and  $c \mid b$ , then c is a *common divisor* of a and b. The largest such c is the greatest common divisor of a and b, and is denoted gcd(a, b).

### Theorem (Bézout's Identity)

Let a, b, d be integers with  $d = \gcd(a, b)$ . For each multiple of d, there exists a pair of integers x, y such that ax + by is equal to this multiple.



Algorithm (Euclidean Algorithm)



## Algorithm (Euclidean Algorithm)

Given two integers m and n, find gcd(m, n).



## Algorithm (Euclidean Algorithm)

Given two integers m and n, find gcd(m, n).

 $\blacksquare$  [Find remainder.] Divide m by n and let r be the remainder.



10/34

## Algorithm (Euclidean Algorithm)

Given two integers m and n, find gcd(m, n).

- [Find remainder.] Divide m by n and let r be the remainder.
- [Is it zero?] If r is 0, the algorithm terminates; n is the answer.



## Algorithm (Euclidean Algorithm)

Given two integers m and n, find gcd(m, n).

- [Find remainder.] Divide m by n and let r be the remainder.
- 2 [Is it zero?] If r is 0, the algorithm terminates; n is the answer.
- 3 [Reduce.] Set m to n, then n to r, and go back to Step 1.



## Example: Euclidean Algorithm

- $\blacksquare$  [Find remainder.] Divide m by n and let r be the remainder.
- [Is it zero?] If r is 0, the algorithm terminates; n is the answer.
- $\blacksquare$  [Reduce.] Set m to n, then n to r, and go back to Step 1.



### Prime Numbers

Definition (Prime Number)



#### Prime Numbers

### Definition (Prime Number)

A prime number p is a positive integer that has no divisors apart from 1 and p.



#### Prime Numbers

### Definition (Prime Number)

A prime number p is a positive integer that has no divisors apart from 1 and p.

$$2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, \dots$$



Algorithm (Sieve of Eratosthenes)



#### Algorithm (Sieve of Eratosthenes)

Generate a list of all prime numbers less than or equal to a positive integer  $\ensuremath{n}$ .



13/34

### Algorithm (Sieve of Eratosthenes)

Generate a list of all prime numbers less than or equal to a positive integer n.

I [Initialize.] Create a list of consecutive integers from 2 to n. Let p = 2.



## Algorithm (Sieve of Eratosthenes)

Generate a list of all prime numbers less than or equal to a positive integer n.

- Initialize. Create a list of consecutive integers from 2 to n. Let p = 2.
- [Remove composites.] Remove all multiples of p from the list, except p itself.



### Algorithm (Sieve of Eratosthenes)

Generate a list of all prime numbers less than or equal to a positive integer n.

- Initialize. Create a list of consecutive integers from 2 to n. Let p = 2.
- [Remove composites.] Remove all multiples of p from the list, except p itself.
- [Iterate.] If there is an integer greater than p in the list, set p to be the smallest such integer, and go to Step 2. Otherwise, terminate; all numbers in the list are prime.



## Example: Sieve of Eratosthenes

#### Initialize

|    | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10  |
|----|----|----|----|----|----|----|----|----|-----|
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20  |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30  |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40  |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50  |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60  |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70  |
| 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80  |
| 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90  |
| 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |



# Example: Sieve of Eratosthenes (Cont.)

| p   | = | 2 |
|-----|---|---|
| - Р |   | _ |

|    |   |    | <u> </u> |    |    |  |
|----|---|----|----------|----|----|--|
|    | 2 | 3  | 5        | 7  | 9  |  |
| 11 |   | 13 | 15       | 17 | 19 |  |
| 21 |   | 23 | 25       | 27 | 29 |  |
| 31 |   | 33 | 35       | 37 | 39 |  |
| 41 |   | 43 | 45       | 47 | 49 |  |
| 51 |   | 53 | 55       | 57 | 59 |  |
| 61 |   | 63 | 65       | 67 | 69 |  |
| 71 |   | 73 | 75       | 77 | 79 |  |
| 81 |   | 83 | 85       | 87 | 89 |  |
| 91 |   | 93 | 95       | 97 | 99 |  |



# Example: Sieve of Eratosthenes (Cont.)

| p = | = 3 |
|-----|-----|
|-----|-----|

|    |   |    | <u> </u> | - |    |    |  |
|----|---|----|----------|---|----|----|--|
|    | 2 | 3  | 5        |   | 7  |    |  |
| 11 |   | 13 |          |   | 17 | 19 |  |
|    |   | 23 | 25       |   |    | 29 |  |
| 31 |   |    | 35       |   | 37 |    |  |
| 41 |   | 43 |          |   | 47 | 49 |  |
|    |   | 53 | 55       |   |    | 59 |  |
| 61 |   |    | 65       |   | 67 |    |  |
| 71 |   | 73 |          |   | 77 | 79 |  |
|    |   | 83 | 85       |   |    | 89 |  |
| 91 |   |    | 95       |   | 97 |    |  |



16/34

# Example: Sieve of Eratosthenes (Cont.)

| p | = | 5                          |
|---|---|----------------------------|
| Ρ | _ | $\boldsymbol{\mathcal{I}}$ |

| ρ = 3 |   |    |  |   |  |    |    |  |
|-------|---|----|--|---|--|----|----|--|
|       | 2 | 3  |  | 5 |  | 7  |    |  |
| 11    |   | 13 |  |   |  | 17 | 19 |  |
|       |   | 23 |  |   |  |    | 29 |  |
| 31    |   |    |  |   |  | 37 |    |  |
| 41    |   | 43 |  |   |  | 47 | 49 |  |
|       |   | 53 |  |   |  |    | 59 |  |
| 61    |   |    |  |   |  | 67 |    |  |
| 71    |   | 73 |  |   |  | 77 | 79 |  |
|       |   | 83 |  |   |  |    | 89 |  |
| 91    |   |    |  |   |  | 97 |    |  |



# Example: Sieve of Eratosthenes (Cont.)

| p = 7 |   |    |  |   |  |    |  |    |  |
|-------|---|----|--|---|--|----|--|----|--|
|       | 2 | 3  |  | 5 |  | 7  |  |    |  |
| 11    |   | 13 |  |   |  | 17 |  | 19 |  |
|       |   | 23 |  |   |  |    |  | 29 |  |
| 31    |   |    |  |   |  | 37 |  |    |  |
| 41    |   | 43 |  |   |  | 47 |  |    |  |
|       |   | 53 |  |   |  |    |  | 59 |  |
| 61    |   |    |  |   |  | 67 |  |    |  |
| 71    |   | 73 |  |   |  |    |  | 79 |  |
|       |   | 83 |  |   |  |    |  | 89 |  |
|       |   |    |  |   |  | 97 |  |    |  |

Optimization: We can stop if  $p > \sqrt{n}$ .



Theorem (Euclid's Lemma)



#### Theorem (Euclid's Lemma)

If a prime number p divides the product ab of two integers a and b, then p must divide at least one of a or b.



#### Theorem (Euclid's Lemma)

If a prime number p divides the product ab of two integers a and b, then p must divide at least one of a or b.

### Theorem (Fundamental Theorem of Arithmetic)



#### Theorem (Euclid's Lemma)

If a prime number p divides the product ab of two integers a and b, then p must divide at least one of a or b.

#### Theorem (Fundamental Theorem of Arithmetic)

Every integer greater than 1 can be represented uniquely as a product of prime powers.



Definition (Relatively Prime Numbers)



#### Definition (Relatively Prime Numbers)

Let a and b be integers. If gcd(a, b) = 1, then a and b are said to be relatively prime.



#### Definition (Relatively Prime Numbers)

Let a and b be integers. If gcd(a, b) = 1, then a and b are said to be relatively prime.

## Definition (Euler's Totient Function)



#### Definition (Relatively Prime Numbers)

Let a and b be integers. If gcd(a, b) = 1, then a and b are said to be relatively prime.

#### Definition (Euler's Totient Function)

Let n be an integer.  $\phi(n)$  counts how many of the positive integers up to n are relatively prime to n.



#### Definition (Relatively Prime Numbers)

Let a and b be integers. If gcd(a,b) = 1, then a and b are said to be relatively prime.

### Definition (Euler's Totient Function)

Let n be an integer.  $\phi(n)$  counts how many of the positive integers up to n are relatively prime to n.

#### Proposition



#### Definition (Relatively Prime Numbers)

Let a and b be integers. If gcd(a,b) = 1, then a and b are said to be relatively prime.

### Definition (Euler's Totient Function)

Let n be an integer.  $\phi(n)$  counts how many of the positive integers up to n are relatively prime to n.

#### Proposition

▶ Whenever n is prime,  $\phi(n) = n - 1$ .



#### Definition (Relatively Prime Numbers)

Let a and b be integers. If gcd(a,b) = 1, then a and b are said to be relatively prime.

### Definition (Euler's Totient Function)

Let n be an integer.  $\phi(n)$  counts how many of the positive integers up to n are relatively prime to n.

#### Proposition

- ▶ Whenever n is prime,  $\phi(n) = n 1$ .
- ▶ For any two relatively prime numbers m and n,  $\phi(mn) = \phi(m)\phi(n)$ .



▶ We defined divisibility and went over the division algorithm.



- ▶ We defined divisibility and went over the division algorithm.
- Caesar Cipher.



21 / 34

- ▶ We defined divisibility and went over the division algorithm.
- ► Caesar Cipher.
- ▶ Greatest Common Divisor, Bézout's Identity, and the Euclidean Algorithm.



- ▶ We defined divisibility and went over the division algorithm.
- Caesar Cipher.
- ▶ Greatest Common Divisor, Bézout's Identity, and the Euclidean Algorithm.
- ▶ Prime numbers and the Sieve of Eratosthenes.



Definition (Congruence Modulo m)



## Definition (Congruence Modulo m)

For integers a, b, m, if  $m \mid (a - b)$ , then we say that a is congruent to b modulo m, and write  $a \equiv b \pmod{m}$ .



## Definition (Congruence Modulo m)

For integers a, b, m, if  $m \mid (a - b)$ , then we say that a is congruent to b modulo m, and write  $a \equiv b \pmod{m}$ .

### Example



## Definition (Congruence Modulo m)

For integers a, b, m, if  $m \mid (a - b)$ , then we say that a is congruent to b modulo m, and write  $a \equiv b \pmod{m}$ .

#### Example

▶  $9 \equiv 21 \pmod{6}$  because  $6 \mid (21 - 9)$ .



## Definition (Congruence Modulo m)

For integers a, b, m, if  $m \mid (a - b)$ , then we say that a is congruent to b modulo m, and write  $a \equiv b \pmod{m}$ .

### Example

▶  $9 \equiv 21 \pmod{6}$  because  $6 \mid (21 - 9)$ . According to the Division Algorithm,  $21 = 6 \cdot 3 + 3$  and  $9 = 6 \cdot 1 + 3$ . Remainders are the same!



### Definition (Congruence Modulo m)

For integers a, b, m, if  $m \mid (a - b)$ , then we say that a is congruent to b modulo m, and write  $a \equiv b \pmod{m}$ .

#### Example

- ▶  $9 \equiv 21 \pmod{6}$  because  $6 \mid (21 9)$ . According to the Division Algorithm,  $21 = 6 \cdot 3 + 3$  and  $9 = 6 \cdot 1 + 3$ . Remainders are the same!
- ▶  $-17 \equiv 4 \pmod{7}$  because  $7 \mid (4 (-17))$ .



Proposition (Modular Arithmetic)



# Proposition (Modular Arithmetic)

Suppose that  $\alpha \equiv b \pmod{\mathfrak{m}}.$  Then, the following is true for all integers k.



## Proposition (Modular Arithmetic)

Suppose that  $a \equiv b \pmod{m}$ . Then, the following is true for all integers k.

$$\blacktriangleright \ a+k \equiv b+k \ (mod \ m).$$



23 / 34

## Proposition (Modular Arithmetic)

Suppose that  $a \equiv b \pmod{m}$ . Then, the following is true for all integers k.

- ▶ If  $c \equiv d \pmod{m}$ , then  $ac \equiv bd \pmod{m}$ .



## Proposition (Modular Arithmetic)

Suppose that  $a \equiv b \pmod{m}$ . Then, the following is true for all integers k.

- ▶ If  $c \equiv d \pmod{m}$ , then  $ac \equiv bd \pmod{m}$ .
- $\blacktriangleright \ a^k \equiv b^k \ (mod \ m).$



### Proposition (Modular Arithmetic)

Suppose that  $a \equiv b \pmod{m}$ . Then, the following is true for all integers k.

- ▶ If  $c \equiv d \pmod{m}$ , then  $ac \equiv bd \pmod{m}$ .
- ightharpoonup  $a^k \equiv b^k \pmod{m}$ .

### Definition (Modular Multiplicative Inverse)



## Proposition (Modular Arithmetic)

Suppose that  $a \equiv b \pmod{m}$ . Then, the following is true for all integers k.

- ▶ If  $c \equiv d \pmod{m}$ , then  $ac \equiv bd \pmod{m}$ .
- ightharpoonup  $a^k \equiv b^k \pmod{\mathfrak{m}}$ .

### Definition (Modular Multiplicative Inverse)

Given relatively prime integers a, m, there exists an integer  $a^{-1}$  such that  $a^{-1}a \equiv 1 \pmod{m}$ .



## Proposition (Modular Arithmetic)

Suppose that  $a \equiv b \pmod{m}$ . Then, the following is true for all integers k.

- $a+k \equiv b+k \pmod{\mathfrak{m}}.$
- ▶ If  $c \equiv d \pmod{m}$ , then  $ac \equiv bd \pmod{m}$ .

### Definition (Modular Multiplicative Inverse)

Given relatively prime integers a, m, there exists an integer  $a^{-1}$  such that  $a^{-1}a \equiv 1 \pmod{m}$ . We call  $a^{-1}$  the modular multiplicative inverse of a.



▶ Generalization of the Caesar Cipher.



- ▶ Generalization of the Caesar Cipher.
- ▶ First multiply modulo 26, then shift (add modulo 26).



March 14, 2024

- ▶ Generalization of the Caesar Cipher.
- First multiply modulo 26, then shift (add modulo 26).

# Algorithm (Affine Cipher Encryption)



24/34

- ▶ Generalization of the Caesar Cipher.
- ▶ First multiply modulo 26, then shift (add modulo 26).

### Algorithm (Affine Cipher Encryption)

**1** [Choose key.] Choose an integer 0 < a < 26 relatively prime to 26, and any integer  $0 \le b < 26$ .



- ▶ Generalization of the Caesar Cipher.
- ▶ First multiply modulo 26, then shift (add modulo 26).

### Algorithm (Affine Cipher Encryption)

- **1** [Choose key.] Choose an integer 0 < a < 26 relatively prime to 26, and any integer  $0 \le b < 26$ .
- [Encrypt.] For each letter, take its numerical value x. Find the integer  $0 \le y < 26$  such that  $y \equiv ax + b \pmod{26}$ . Replace by the letter corresponding to y.



Assume b = 0. We know  $y \equiv \alpha x \pmod{26}$ .



Assume b=0. We know  $y\equiv ax\pmod{26}$ . Since  $\gcd(a,26)=1$ , there must be  $a^{-1}$  such that  $a^{-1}ax\equiv x\equiv a^{-1}y\pmod{26}.$ 



Assume b = 0. We know  $y \equiv ax \pmod{26}$ . Since gcd(a, 26) = 1, there must be  $a^{-1}$  such that

$$a^{-1}ax \equiv x \equiv a^{-1}y \pmod{26}$$
.

Pairs:

a
 1
 3
 5
 7
 9
 11
 15
 17
 19
 21
 23
 25

 
$$a^{-1}$$
 1
 9
 21
 15
 3
 19
 7
 23
 11
 5
 17
 25



Assume b = 0. We know  $y \equiv ax \pmod{26}$ . Since gcd(a, 26) = 1, there must be  $a^{-1}$  such that

$$a^{-1}ax \equiv x \equiv a^{-1}y \pmod{26}$$
.

Pairs:

a
 1
 3
 5
 7
 9
 11
 15
 17
 19
 21
 23
 25

 
$$a^{-1}$$
 1
 9
 21
 15
 3
 19
 7
 23
 11
 5
 17
 25

What if  $b \neq 0$ , so that  $ax + b \equiv y \pmod{26}$ ?



Assume b = 0. We know  $y \equiv ax \pmod{26}$ .

Since  $gcd(\alpha, 26) = 1$ , there must be  $\alpha^{-1}$  such that

$$a^{-1}ax \equiv x \equiv a^{-1}y \pmod{26}$$
.

Pairs:

a
 1
 3
 5
 7
 9
 11
 15
 17
 19
 21
 23
 25

 
$$a^{-1}$$
 1
 9
 21
 15
 3
 19
 7
 23
 11
 5
 17
 25

What if  $b \neq 0$ , so that  $ax + b \equiv y \pmod{26}$ ? Then  $ax \equiv y - b \pmod{26}$ , so

$$x \equiv a^{-1}y - a^{-1}b \pmod{26}.$$



# Example: Affine Cipher Encryption

| 0  | 1  | 2  | 3  | 4            | 5  | 6        | 7  | 8  | 9  | 10 | 11 | 12           |
|----|----|----|----|--------------|----|----------|----|----|----|----|----|--------------|
| Α  | В  | C  | D  | $\mathbf{E}$ | F  | G        | Η  | I  | J  | K  | L  | M            |
| 13 | 14 | 15 | 16 | 17           | 18 | 19       | 20 | 21 | 22 | 23 | 24 | 25           |
| N  | Ο  | Р  | Q  | R            | S  | ${ m T}$ | U  | V  | W  | X  | Y  | $\mathbf{Z}$ |

#### AFFINE NOT LINEAR

Choose any  $\alpha$  in  $\{1,3,5,7,9,11,15,17,19,21,23,25\},$  and any  $0\leqslant b<26.$ 



▶ Suppose you have a set of moduli  $m_1, m_2, ..., m_k$ , and an integer x.



- ▶ Suppose you have a set of moduli  $m_1, m_2, ..., m_k$ , and an integer x.
- ▶ "Residues"  $u_1 = x \mod m_1$ ,  $u_2 = x \mod m_2$ , ...



- ▶ Suppose you have a set of moduli  $m_1, m_2, ..., m_k$ , and an integer x.
- ightharpoonup "Residues"  $u_1 = x \mod m_1$ ,  $u_2 = x \mod m_2$ , ...
- ightharpoonup Modular representation of x in this system is

$$(u_1, u_2, \ldots, u_k)$$
.



- ▶ Suppose you have a set of moduli  $m_1, m_2, ..., m_k$ , and an integer x.
- "Residues"  $u_1 = x \mod m_1$ ,  $u_2 = x \mod m_2$ , ...
- ightharpoonup Modular representation of x in this system is

$$(u_1, u_2, \ldots, u_k)$$
.

# Example





- ▶ Suppose you have a set of moduli  $m_1, m_2, ..., m_k$ , and an integer x.
- "Residues"  $u_1 = x \mod m_1$ ,  $u_2 = x \mod m_2$ , ...
- ightharpoonup Modular representation of x in this system is

$$(u_1, u_2, \ldots, u_k)$$
.

#### Example

Three moduli  $m_1 = 8$ ,  $m_2 = 21$ ,  $m_3 = 5$ .



- ▶ Suppose you have a set of moduli  $m_1, m_2, ..., m_k$ , and an integer x.
- "Residues"  $u_1 = x \mod m_1$ ,  $u_2 = x \mod m_2$ , ...
- ightharpoonup Modular representation of x in this system is

$$(u_1, u_2, \ldots, u_k).$$

#### Example

Three moduli  $m_1 = 8$ ,  $m_2 = 21$ ,  $m_3 = 5$ . Let's choose x = 127.



27/34

- ▶ Suppose you have a set of moduli  $m_1, m_2, ..., m_k$ , and an integer x.
- "Residues"  $u_1 = x \mod m_1$ ,  $u_2 = x \mod m_2$ , ...
- ightharpoonup Modular representation of x in this system is

$$(u_1, u_2, \ldots, u_k)$$
.

#### Example

Three moduli  $m_1 = 8$ ,  $m_2 = 21$ ,  $m_3 = 5$ . Let's choose x = 127. Then  $u_1 = 7$ ,  $u_2 = 1$ ,  $u_3 = 2$ .





- ▶ Suppose you have a set of moduli  $m_1, m_2, ..., m_k$ , and an integer x.
- "Residues"  $u_1 = x \mod m_1$ ,  $u_2 = x \mod m_2$ , ...
- ightharpoonup Modular representation of x in this system is

$$(u_1, u_2, \ldots, u_k)$$
.

#### Example

Three moduli  $m_1 = 8$ ,  $m_2 = 21$ ,  $m_3 = 5$ . Let's choose x = 127. Then  $u_1 = 7$ ,  $u_2 = 1$ ,  $u_3 = 2$ . So x can be represented as (7, 1, 2).





In above example, between 1 and  $m_1m_2m_3 = 840$  inclusive, 127 is the only number with representation (7, 1, 2)!



In above example, between 1 and  $m_1m_2m_3 = 840$  inclusive, 127 is the only number with representation (7, 1, 2)!

# Theorem (Chinese Remainder Theorem)



In above example, between 1 and  $m_1m_2m_3 = 840$  inclusive, 127 is the only number with representation (7, 1, 2)!

# Theorem (Chinese Remainder Theorem)

Let  $m_1, m_2, ..., m_k$  be positive integers that are relatively prime in pairs.



In above example, between 1 and  $m_1m_2m_3 = 840$  inclusive, 127 is the only number with representation (7, 1, 2)!

### Theorem (Chinese Remainder Theorem)

Let  $m_1, m_2, ..., m_k$  be positive integers that are relatively prime in pairs. Let  $m = m_1 m_2 \cdots m_k$ , and let  $a, u_1, u_2, ..., u_k$  be integers.



In above example, between 1 and  $m_1m_2m_3 = 840$  inclusive, 127 is the only number with representation (7, 1, 2)!

### Theorem (Chinese Remainder Theorem)

Let  $m_1, m_2, \ldots, m_k$  be positive integers that are relatively prime in pairs. Let  $m = m_1 m_2 \cdots m_k$ , and let  $a, u_1, u_2, \ldots, u_k$  be integers. Then there is exactly one x such that

$$a \leqslant x < a + m$$
, and  $x \equiv u_i \pmod{m_i}$  for  $1 \leqslant i \leqslant k$ .



In above example, between 1 and  $m_1m_2m_3 = 840$  inclusive, 127 is the only number with representation (7, 1, 2)!

### Theorem (Chinese Remainder Theorem)

Let  $m_1, m_2, \ldots, m_k$  be positive integers that are relatively prime in pairs. Let  $m = m_1 m_2 \cdots m_k$ , and let  $a, u_1, u_2, \ldots, u_k$  be integers. Then there is exactly one x such that

$$\alpha \leqslant x < \alpha + m, \quad \text{and} \quad x \equiv u_i \pmod{m_i} \quad \text{for } 1 \leqslant i \leqslant k.$$

 $\alpha$  allows for an offset. We took  $\alpha=1$  above, but could choose any value.



► Asymmetric encryption (two keys)



- ► Asymmetric encryption (two keys)
  - ▶ Public key shared with anyone, used for encryption



- ▶ Asymmetric encryption (two keys)
  - ▶ Public key shared with anyone, used for encryption
  - ▶ Private key known only to receiver, used for decryption



- ▶ Asymmetric encryption (two keys)
  - ▶ Public key shared with anyone, used for encryption
  - ▶ Private key known only to receiver, used for decryption
- ▶ RSA's security relies on difficulty of factorizing large primes.



Algorithm (RSA Encryption)



# Algorithm (RSA Encryption)

[Choose key.] Choose two primes p and q, and an integer e such that (p-1)(q-1) and e are relatively prime.





# Algorithm (RSA Encryption)

- [Choose key.] Choose two primes p and q, and an integer e such that (p-1)(q-1) and e are relatively prime.
- **2** [Encrypt.] For each letter, take its numerical value x, and replace it with the letter corresponding to  $y = (x^e \mod pq)$ .





# Algorithm (RSA Encryption)

- [Choose key.] Choose two primes p and q, and an integer e such that (p-1)(q-1) and e are relatively prime.
- **2** [Encrypt.] For each letter, take its numerical value x, and replace it with the letter corresponding to  $y = (x^e \mod pq)$ .

Decryption: Find integer d for which  $\varepsilon d \equiv 1 \pmod{(p-1)(q-1)}.$  Then take  $x=y^d \mod pq.$ 



# Algorithm (RSA Encryption)

- [Choose key.] Choose two primes p and q, and an integer e such that (p-1)(q-1) and e are relatively prime.
- **2** [Encrypt.] For each letter, take its numerical value x, and replace it with the letter corresponding to  $y = (x^e \mod pq)$ .

Decryption: Find integer d for which  $ed \equiv 1 \pmod{(p-1)(q-1)}$ . Then take  $x=y^d \mod pq$ . Yes, that's it.



# Algorithm (RSA Encryption)

- [Choose key.] Choose two primes p and q, and an integer e such that (p-1)(q-1) and e are relatively prime.
- **2** [Encrypt.] For each letter, take its numerical value x, and replace it with the letter corresponding to  $y = (x^e \mod pq)$ .

Decryption: Find integer d for which  $ed \equiv 1 \pmod{(p-1)(q-1)}$ . Then take  $x=y^d \mod pq$ . Yes, that's it.



# Example: RSA

| 65 | 66 | 67 | 68 | 69           | 70 | 71      | 72 | 73 | 74 | 75 | 76 | 77           |  |
|----|----|----|----|--------------|----|---------|----|----|----|----|----|--------------|--|
| Α  | В  | C  | D  | $\mathbf{E}$ | F  | G       | Η  | I  | J  | K  | L  | M            |  |
| 78 | 79 | 80 | 81 | 82           | 83 | 84      | 85 | 86 | 87 | 88 | 89 | 90           |  |
| N  | Ο  | Ρ  | Q  | R            | S  | ${f T}$ | U  | V  | W  | X  | Y  | $\mathbf{Z}$ |  |

KEEP ON KEEPING ON



To explain RSA, we'll need this theorem.



To explain RSA, we'll need this theorem.

Theorem (Euler's Theorem)



To explain RSA, we'll need this theorem.

# Theorem (Euler's Theorem)

For integers a and n, if they are relatively prime, then



To explain RSA, we'll need this theorem.

# Theorem (Euler's Theorem)

For integers a and n, if they are relatively prime, then

$$a^{\phi(n)} \equiv 1 \pmod{n}$$
, or equivalently  $a^{\phi(n)+1} \equiv a \pmod{n}$ .



To explain RSA, we'll need this theorem.

# Theorem (Euler's Theorem)

For integers a and n, if they are relatively prime, then

$$a^{\phi(n)} \equiv 1 \pmod{n}$$
, or equivalently  $a^{\phi(n)+1} \equiv a \pmod{n}$ .

So  $x^{\phi(pq)} \equiv 1 \pmod{pq}$ , which implies that  $x^{k\phi(pq)+1} \equiv x \pmod{pq}$ .



32/34

Given  $ed \equiv 1 \pmod{(p-1)(q-1)}$ .

# Proof.



Given  $ed \equiv 1 \pmod{(p-1)(q-1)}$ .

#### Proof.

We know that  $x^{p-1} \equiv 1 \pmod p$  and  $x^{q-1} \equiv 1 \pmod q$ .



Given  $ed \equiv 1 \pmod{(p-1)(q-1)}$ .

#### Proof.

We know that  $x^{p-1} \equiv 1 \pmod{p}$  and  $x^{q-1} \equiv 1 \pmod{q}$ .

So 
$$x^{k(p-1)(q-1)+1} \equiv x \pmod p$$
 and  $x^{k(p-1)(q-1)+1} \equiv x \pmod q$ .





Given  $ed \equiv 1 \pmod{(p-1)(q-1)}$ .

#### Proof.

We know that  $x^{p-1} \equiv 1 \pmod{p}$  and  $x^{q-1} \equiv 1 \pmod{q}$ .

So 
$$x^{k(p-1)(q-1)+1} \equiv x \pmod p$$
 and  $x^{k(p-1)(q-1)+1} \equiv x \pmod q$ .

Since  $ed \equiv 1 \pmod{\varphi(pq)}$ , there is k such that  $ed = k\varphi(pq) + 1$ . That is, ed = k(p-1)(q-1) + 1.





Given  $ed \equiv 1 \pmod{(p-1)(q-1)}$ .

#### Proof.

We know that  $x^{p-1} \equiv 1 \pmod{p}$  and  $x^{q-1} \equiv 1 \pmod{q}$ .

So 
$$x^{k(p-1)(q-1)+1} \equiv x \pmod{p}$$
 and  $x^{k(p-1)(q-1)+1} \equiv x \pmod{q}$ .

Since  $ed \equiv 1 \pmod{\varphi(pq)}$ , there is k such that  $ed = k\varphi(pq) + 1$ . That is, ed = k(p-1)(q-1) + 1.

Substitute:

$$x^{ed} \equiv x \pmod{p}$$
 and  $x^{ed} \equiv x \pmod{q}$ .





Given  $ed \equiv 1 \pmod{(p-1)(q-1)}$ .

#### Proof.

We know that  $x^{p-1} \equiv 1 \pmod{p}$  and  $x^{q-1} \equiv 1 \pmod{q}$ .

So 
$$x^{k(\mathfrak{p}-1)(\mathfrak{q}-1)+1} \equiv x \pmod{\mathfrak{p}}$$
 and  $x^{k(\mathfrak{p}-1)(\mathfrak{q}-1)+1} \equiv x \pmod{\mathfrak{q}}$ .

Since  $ed \equiv 1 \pmod{\varphi(pq)}$ , there is k such that  $ed = k\varphi(pq) + 1$ . That is, ed = k(p-1)(q-1) + 1.

Substitute:

$$x^{ed} \equiv x \pmod{p}$$
 and  $x^{ed} \equiv x \pmod{q}$ .

So  $x^{ed} \equiv x \pmod{pq}$ .





### That's All!

#### Most of this was based on the following:

- ▶ The Art of Computer Programming (Knuth) Chapter 4, sections 4.3.2 and 4.5.4
- ▶ Concrete Mathematics (Graham, Knuth, Patashnik) Chapter 4
- ▶ Number Theory (Andrews) Chapters 1 through 4
- ▶ Proofs: A Long-Form Mathematics Textbook (Cummings) Chapter 2
- ► Handbook of Applied Cryptography (Menezes, Oorschot, Vanstone) Section 8.2

