Language GANs Falling Short

Работу выполнил: студент НИУ ВШЭ ПМИ 182 Пак Ди Ун

Проблема

Различие в обучении и использовании MLE (Maximum Likelihood Estimation) в задач NLG (Natural Language Generation) приводит к плохому качеству

Проблема

Различие в обучении и использовании MLE (Maximum Likelihood Estimation) в задач NLG (Natural Language Generation) приводит к плохому качеству

Скорость обучения трансформеров очень низкая

Проблема

Различие в обучении и использовании MLE (Maximum Likelihood Estimation) в задач NLG (Natural Language Generation) приводит к плохому качеству

Скорость обучения трансформеров очень низкая

Mode collapse при обучении генеративных моделей результирует в низкое разнообразие

Измерение качества

Измерение качества

Измерение качества

Генеративные модели в задачах NLP

Для обучения генератора мы должны уметь пропускать градиент через операцию семплирования

Генеративные модели

- SeqGAN(2017)
 - REINFORCE

Генеративные модели

- SeqGAN(2017)
 - REINFORCE
 - Дискриминатор оценивает правдоподобие полного предложения

Генеративные модели

- SeqGAN(2017)
 - REINFORCE
 - Дискриминатор оценивает правдоподобие полного предложения
- RankGAN(2017), MaliGAN(2017), TextGAN(2017), LeakGAN(2017),
 IRL-GAN(2017)

Метрики безусловной задачи NLG

• Corpus-level BLEU - доля n-грамм из предложения, присутствующих в корпусе

Метрики безусловной задачи NLG

- Corpus-level BLEU доля n-грамм из предложения, присутствующих в корпусе
- Self-BLEU

Сравнение RL генеративных моделей

Temperature sweep

$$G_{\theta}(x_t \mid x_{1:t-1}) = \operatorname{softmax}(o_t \cdot W/\alpha)$$

G - условное распределение генератора

о, - активация генератора

W - матрица эмбеддингов

α - температура

Temperature sweep (пример)

α	Samples
2.0	(1) If you go at watch crucial characters putting awareness in Washington , forget there are now unique developments organized personally then why charge .
	(2) Front wants zero house blood number places than above spin 5 provide school projects which youth particularly teenager temporary dollars plenty of investors enjoy headed Japan about if federal assets own , at 41 .
1.0	(1) Researchers are expected to comment on where a scheme is sold, but it is no longer this big name at this point.
	(2) We know you' re going to build the kind of home you' re going to be expecting it can give us a better understanding of what ground test we' re on this year, he explained.
0.7	(1) The other witnesses are believed to have been injured , the police said in a statement , adding that there was no immediate threat to any other witnesses .
	(2) The company's net income fell to 5. 29 billion, or 2 cents per share, on the same period last year.
0.0	(1) The company's shares rose 1.5 percent to 1.81 percent, the highest since the end of the year.
	(2) The company's shares rose 1.5 percent to 1.81 percent, the highest since the end of the year.

Experiments (synthetic)

Model	NLL_{oracle}
SeqGAN (Yu et al., 2017)	8.74
RankGAN (Lin et al., 2017)	8.25
LeakGAN (Guo et al., 2017)	7.04
IRL (Shi et al., 2018)	6.91
MLE ($\alpha = 1.0$)	9.40
MLE ($\alpha = 0.4$)	5.50
MLE ($\alpha = 0.001$)	4.58

Experiments (long-text)

Experiments (decoding method)

- 1. Модель распределения
 - а. Факторизация распределения
 - b. Параметризация

- 1. Модель распределения
- 2. Функция потерь
 - 2.1. Общий вид функции потерь генератора и дискриминатора
 - 2.2. Дополнительная функция потерь для предобучения генератора

- 1. Модель распределения
- 2. Функцию потерь
- 3. Метод обучения модели
 - a. REINFORCE
 - b. Gumbel-Softmax trick
 - с. Другие методы

- 1. Модель распределения
- 2. Функцию потерь
- 3. Метод обучения модели
- 4. Архитектура

Используется REINFORCE с обучаемыми наградами

$$\nabla_{\theta} \mathbb{E}_{p_{\theta}(\mathbf{x})}[R(\mathbf{x})] = \mathbb{E}_{p_{\theta}(\mathbf{x})}[R(\mathbf{x})\nabla_{\theta} \log p_{\theta}(\mathbf{x})]$$

Используется REINFORCE с обучаемыми наградами

Награда выдается за каждый префикс в предложении

$$r_t = 2\mathcal{D}_{\phi}(\hat{x}_t | x_{t-1}...x_1) - 1$$

Используется REINFORCE с обучаемыми наградами

Награда выдается за каждый префикс в предложении

Суммарная награда кумулятивная

$$R_t = \sum_{s=t}^{T} \gamma^{s-t} r_s$$

Используется REINFORCE с обучаемыми наградами

Награда выдается за каждый префикс в предложении

Суммарная награда кумулятивная

Она суммируется внутри каждого батча

$$\nabla_{\theta} = \sum_{n=1}^{N} \sum_{t=1}^{T} (R_{t}^{n} - b_{\underline{t}}) \underline{\nabla_{\theta}} \log \underline{p_{\theta}}(\hat{x}_{t}^{n} | \hat{x}_{t-1}^{n} ... \hat{x}_{1}^{n}), \qquad \hat{x}_{t}^{n} \sim p_{\theta}(x_{t}^{n} | \hat{x}_{t-1}^{n} ... \hat{x}_{1}^{n})$$

ScratchGAN результаты

Model	World level perplexity
Random	5725
ScratchGAN	154
MLE	42

ScratchGAN результаты

Итоги

- 1. Проверили применимость генеративно-состязательных сетей в задач NLG
- 2. Сравнили с MLE решениям в различных аспектах
- 3. Рассмотрели конкретную реализацию одной из моделей

Источники

M. Caccia, L. Caccia, W. Fedus, H. Larochelle, J. Pineau, and L. Charlin. Language gans falling short. In ICLR, 2020. https://arxiv.org/abs/1811.02549

C. d'Autume, M. Rosca, J. Rae, and S. Mohamed. Training language gans from scratch. In NeurIPS, 2019. https://arxiv.org/abs/1905.09922