Algorytmy Numeryczne Projekt 1

1 Wstep

W zadaniu zbadano precyzje obliczeń współrzednych wierzchołków foremnego n-kata wpisanego w okrag, uwzgledniajac wpływ błedów zaokragleń. Celem była weryfikacja trzech hipotez:

- H1: Czy ostatni wierzchołek \mathbf{v}_n pokrywa sie dokładnie z $\mathbf{v}_0 = (\mathbf{1}, \mathbf{0})$ dla dowolnego n?
- H2: Czy suma wszystkich wektorów przyrostowych w_i daje wektor zerowy?
- H3: Czy zmiana kolejności sumowania współrzednych (sortowanie) redukuje bład?

Do analizy wykorzystano metody: sumowanie sekwencyjne (H2) oraz sumowanie z sortowaniem (H3). Wyniki przedstawiono na wykresach w skali logarytmicznej, aby uwidocznić błedy rzedu $\mathbf{10^{-15}}$ – $\mathbf{10^{-14}}$.

2 Opis wykresów

Poniższy wykres przedstawia wierzchołki wygenerowane dla 10:

2.1 H1: Porównanie wektora $(\mathbf{v}_n)i(v_0)$

Weryfikacja hipotezy **H1**: Odchylenia współrzednych v_n od teoretycznej wartości $v_0 = (1,0)$. Niebieskie punkty ($|\mathbf{X} - \mathbf{1}|$) przedstawiaja bezwzgledny bład współrzednej \mathbf{x} , czerwone ($|\mathbf{Y}|$) – wartość współrzednej \mathbf{y} , która teoretycznie powinna wynosić 0. Błedy mieszcza sie w zakresie $\mathbf{10^{-16}-10^{-15}}$, co jednoznacznie obala hipoteze **H1**. Przyczyna: kumulacja błedów zaokragleń w iteracyjnych obliczeniach obrotów przy użyciu precyzji double. Dla wartości równych 0 zastosowano dolny limit $\mathbf{1} \times \mathbf{10^{-18}}$, aby zapewnić poprawne odwzorowanie danych na logarytmicznej skali osi \mathbf{y} .

2.2 H2: Sumy wektorów

Na wykresie pokazano, jak zmieniaja sie sumy składowych wektorów \mathbf{X} i \mathbf{Y} w zależności od liczby składników n. W teorii suma wszystkich wektorów powinna wynosić zero, czyli $\mathbf{sum}\mathbf{X}$ i $\mathbf{sum}\mathbf{Y}$ powinny być równe zeru. W rzeczywistości jednak widzimy niewielkie odchylenia, co wynika z błedów numerycznych powstajacych podczas obliczeń. Wartości te sa bardzo małe i maleja w miare wzrostu n, co oznacza, że obliczenia sa poprawne, a odchylenia wynikaja jedynie z ograniczonej precyzji komputera.

Porównanie metod sumowania $\mathbf{H2}$ i $\mathbf{H3}$. $\mathbf{H2}$ (niebieski): Bład standardowego sumowania wektorów $\vec{w_i}$. Maksymalny bład: $\mathbf{7.4} \times \mathbf{10^{-16}}$ dla $\mathbf{n} = \mathbf{9000}$. $\mathbf{H3}$ (czerwony): Sumowanie ze sortowaniem współrzednych. Bład siega $\mathbf{1.1} \times \mathbf{10^{-14}}$ dla $\mathbf{n} = \mathbf{10000}$, co jest wynikiem gorszym niż $\mathbf{H2}$. Obserwacje: (1) $\mathbf{H3}$ generuje błedy średnio 5–10 razy wieksze niż $\mathbf{H2}$, (2) Wartości $\mathbf{H3}$ rosna monotonicznie z \mathbf{n} , (3) Wynik przeczy hipotezie $\mathbf{H3}$ – sortowanie nie poprawia dokładności w tym przypadku.

3 Wnioski

- 1. Hipoteza H1 (idealne domkniecie wielokata): Obala ja doświadczalnie. Teoretycznie v_n powinien pokrywać sie z $v_0 = (1,0)$. W praktyce:
 - Odchylenie współrzednej x (|X-1|) osiaga 1.1×10^{-15} dla n = 6000 (Rys. 2.1),
 - Współrzedna y (|Y|) siega 9.7×10^{-16} dla n = 9000,
 - Błedy mieszcza sie w przedziale 10^{-18} : 10^{-15} , co jest spodziewane przy precyzji double.

Przyczyna: Kumulacja błedów zaokragleń w iteracyjnym obliczaniu obrotów.

- 2. Hipoteza H2 (suma wektorów zerowa): Cześciowo potwierdzona. Suma $\sum \vec{w_i}$ teoretycznie wynosi zero, jednak:
 - Bład H2 rośnie z n, osiagajac 7.4×10^{-16} dla n = 9000 (Rys. 2.3),
 - Wynik jest zgodny z ograniczeniami precyzji zmiennoprzecinkowej błedy sa kontrolowane i nie przekraczaja 10⁻¹⁵.
- 3. Hipoteza H3 (poprawa dokładności przez sortowanie): Całkowicie obalona. Metoda H3 generuje błedy średnio 5–10 razy wieksze niż H2:
 - Dla n = 10000 bład H3 (1.1×10^{-14}) jest 37-krotnie wiekszy od H2 (2.9×10^{-16}) ,
 - \bullet Sortowanie wartości bliskich zeru (np. 10^{-17}) prowadzi do katastrofalnej anulacji odejmowanie zbliżonych liczb wzmaga błedy wzgledne (Rys. 2.3).

4 Podsumowanie ogólne

- Stabilność numeryczna: Sumowanie sekwencyjne (H2) jest optymalne dla danych o podobnych rzedach wielkości. Sortowanie (H3) destabilizuje obliczenia.
- Granice precyzji: Błedy mieszcza sie w zakresie precyzji $double~(10^{-15}-10^{-16})$, co potwierdza poprawność implementacji.
- Praktyczne implikacje: W problemach z iteracyjnymi obrotami i małymi przyrostami:
 - Unikać modyfikacji kolejności sumowania bez ścisłego uzasadnienia teoretycznego,
 - Monitorować kumulacje błedów dla dużych n.