

Programmation – TD1

Structure conditionnelle

Exercice 1¹

Ecrire un programme affichant la valeur absolue d'un nombre dont on aura lu la valeur au clavier

Exercice 2

Ecrire un programme demandant la valeur de deux nombres et affichant les deux nombres s'ils sont égaux et le plus grand des deux s'ils sont différents

Exercice 3

Ecrire un programme demandant la valeur de trois nombres et confirmant (oui/non) si le troisième nombre est compris entre les deux premiers

Exercice 4²

Ecrire un programme demandant quatre chiffres et répondant « oui » uniquement si les trois conditions suivantes sont simultanément satisfaites :

- 1. Le premier chiffre a pour valeur 1 ou 2
- 2. Le quatrième chiffre a pour valeur 1 ou 2
- 3. Les deuxième et troisième chiffres sont identiques

Exercice « Norme, produit scalaire et angle »

L'objectif de ce programme est de calculer l'angle entre deux vecteurs :

Pour cela, il faut dans un premier temps déterminer la *norme* induite par les vecteurs $\overrightarrow{AB} = \overrightarrow{u}$ et $\overrightarrow{AC} = \overrightarrow{v}$. Les points ont les coordonnées suivantes $A(x_1; y_1)$, $B(x_2; y_2)$ et $C(x_3; y_3)$ et le vecteur entre deux points A et B est défini comme suit $\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1)$. La norme pour $\overrightarrow{u} = (a, b)$ est calculée comme suit $\|\overrightarrow{u}\| = \sqrt{a^2 + b^2}$.

Dans un second temps, il faut déterminer le produit scalaire des deux vecteurs $\vec{u}=(a,b)$ et $\vec{v}=(c,d)$. Celui est obtenu comme suit : \vec{u} . $\vec{v}=a\times c+b\times d$.

Dans un troisième temps, l'angle formé par les deux vecteurs peut être calculé comme suit (si les vecteurs ne sont pas nuls)³ :

$$\widehat{CAB} = \cos^{-1}\left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \times \|\vec{v}\|}\right)$$

Exercices « Bonus »

Problèmes DMOJ: ccc06j1, ccc15j1 (special day) et ccc07j1

¹ Les exercices 1 à 3 sont inspirés de « How to think like a computer scientist » - https://www.greenteapress.com/thinkpython/thinkCSpy/thinkCSpy.pdf

² Problème DMOJ *ccc18 j1* - https://dmoj.ca/problems/

³ En python, la fonction inverse du cosinus s'intitule acos() est définie dans la bibliothèque math qui doit être importée.