

Overview

- IM Data Overview
- Working with the Data
- Making Recommendations
- Q&A

IM Data Overview

Chat Message Content

Content to analyze

- 2,940,566 messages sent
- 123,958,816 text characters in messages
- 13,639,344 terms (excluding stop-words)

Senders/Receivers

- 90,779 senders of messages (Californians only)
- 493,031 recipients of messages
- 51,752 senders/receivers of messages
- 532,058 profiles based on chat data
- 1,088,099 directional message exchanges

Distribution of Connections Initiated

(Log Scale)

of Connections Initiated

Distribution of Connections Received

(Log Scale)

Distribution of Messages Sent

(Log Scale)

Distribution of Text Sent

(Log Scale)

Amount of Text Sent

Data Challenges

- Lack of grammar, spelling errors, heavy use of vernacular/slang
- Questionable literacy levels for many users (not just chat language)
- Very few salient topics
- Spanglish text
- Inconsistent send/receive patterns user availability is an unknown
- Data snapshot makes it hard to determine good connections (no previous history)
- No gender identification
- No profile data

Data Observations

- Chat messages reflect the pathos of life
 - Everyday life concerns are paramount (work, family, problems)
 - The need for relationships trumps need for sex
- Patterns that emerge
 - Women tend to have more connections received than initiated
 - Common misspelling/vernacular (chillen, shyt, wassup, nuttin, kool)
 - Meetup concerns (distance is an issue)
- Mirroring in message exchanges
 - "You are the sum of your send and receive messages"
- People are multi-dimensional
 - The occurrence of a single term does not make you a pervert (e.g. "fisting")

Working with the Data

Data Classification

- Existing ontologies/taxonomies of no use
- Created custom classes
- Created corpus lexicon derived with text from all messages (frequency, message count)
- Created classes (called attributes) based on data interpretation
- Created classification sets for wordnet, vernacular/slang and combined (top 1000 terms for each)

User Attributes

- English english predominance
- ProperEnglish proportion of dictionary english versus slang/vernacular
- VocabularyRange the number of distinct terms in messages
- Raw use of sexual terms (... you get the idea ...)
- Empathy the ability to interact (sorry, understand, appreciate, ...)
- Outreach explicit meetup terminology (sms, email, phone numbers, ...)
- Relationship blandishments/endearments (sweetie, cutie, boyfriend, girlfriend,...)
- Tagged tagged community interaction (tagged, pet, buy, add, ...)
- Appearance physical description (short, tall, hair, face, neck, fat, ...)
- Work terms related to work (work, job, boss, manager, shift, ...)
- Behavior activity descriptors (chillin, surfing, watching, sleeping, ...)
- Education discussion centering around education (school, classes, teacher, professor, ...)
- Family references to family (mother, father, daughter, son, children, etc.)
- Money monetary concerns (money, cash, dollars, car, apartment, house, ...)
- Adversity life's trials and tribulations (divorced, sick, ill, drugs, ...)
- Religiosity prevalence of religion in discourse (blessed, rosaries, jesus, god, ...)
- Prosperity life positives (trip, vacation, holidays, army, navy,...)

User Discourse Analysis

- For each user, construct a discourse set based on send and receive messages
 - note: some people send and receive, some only send, some only receive
- Compute the most important terms for the user based on tf-idf calculations using corpus lexicon
- Based on these terms, identify the prevalent discourse attributes for each user
 - attributes based on WordNet terms
 - attributes based on vernacular/slang
 - attributes based on the combination of WordNet and vernacular
- Construct user profile aspects based on slang, WordNet and total word usage

Making Recommendations

IM Analysis

- From the raw data, build a communication graph where message exchange between two tagged members is greater than one
 - 351,459 sender-receiver edges (directed graph)
 - 60,602 senders of messages (67% of raw data senders)
 - 196,794 receivers of messages (40% of raw data receivers)
 - 24,875 senders/receivers of messages (48% of raw data sender/receivers)
- Compute language and attribute similarities, also taking into account user location, for each edge in the graph

Message Exchange Modeling

For each user in the communication graph, build a predictive model which can identify successful message exchanges

- Model is based on user's language and attribute similarities with all partners
- Data smoothing is used on independent variables (reduce noise)
- Positive identification based on attribute (content) similarity of at least 80%
- Most important independent variables in the user model are ranked

Finding Candidates

- Original number of possible (directional) connections population:
 - 532,058 * 532,058 = 283,085,715,364
 - (532,058 * 532,057) / 2 = 141,542,591,653

- Construct FOAF-like graph
 - Population: 218,307 users
 - Directional connections: 11,414,012 (vs 47,657,946,249)

Recommendation Methodology

- Each user in the graph of possible recommendations has a classifier.
- A classifier returns I if the attributes of another matches the user's.
- So, for each user for each possible candidate to recommen
 - apply user's classifier against candidate's attributes {0, I}
 - apply candidate's classifier against user attributes {0, I}

One-way Acceptance => user classifier returns I for candidate

Mutual Acceptance => user classifier returns I for candidate AND candidate's classifier returns I for user

Recommendations

Recommendations	Connections				Users	
	Number	% of FOAF-like Graph	% of Original Data		Number	% of Original Population
Single Acceptance	3,780,544	33.12%	122.20%	(a)	127,867	24.03%
Mutual Acceptance	1,621,522	14.21%	58.98%	(b)	68,973	12.96%
Population		11,413,971	1,088,099			532,058
Messages Out >= 10						
Single Acceptance	859,472	36.03%	1131.94%		18,806	45.50%
Mutual Acceptance	488,048	20.46%	642.77%		14,072	34.04%
Population		2,385,260	75,929			41,334
TextLength Out >= 100						
Single Acceptance	941,180	33.74%	1045.58%		26,092	41.56%
Mutual Acceptance	510,504	18.30%	567.13%		17,701	28.19%
Population		2,789,338	90,015			62,786
Note: Only California sending reco	ommendations of	compared to original data.				
(a						
(b)	641,778					

Conclusion

IM Content analysis has the potential to increase the number of connections between users by more than 50%, impacting 25% of the Tagged community.

Team

Peter Berger, CEO

- Alitora Systems
- WikiLoan
- HotShot Media
- SV SemTech Grp
- UCSF Catalyst T1
- Adams Nye LLP

Karl Dawson, CTO

- PhiScape
- DeltaVista
- Rentenanstalt
- iFace
- Credit Suisse
- Amdahl

Jaromir Dzialo, Engineer

- PhiScape
- AMS/CGI
- Sabre
- DeltaVista
- Onet.pl
- Microsoft

Matt Walters, Bus. and Corp. Dev.

- LifeGivingForce
- IBM
- Room to Read
- AIG
- Wharton
- Princeton

Pitor Metel, Engineer

- 20 years of experience
- Distributed computing
- Web applications
- Applications frameworks
- Natural language processing
- Applied Mathematics, Jagiellonian University

Wojciech Pater, Engineer

- 10 years experience
- Server-side
- Distributed systems
- Natural language processing fields

Contact

Peter Berger, CEO peter@topicmarks.com

Karl Dawson, CTO karl@topicmarks.com

Matt Walters, Head of Customer Dev. matt@topicmarks.com

Topicmarks, Inc. 153 Townsend Street, Suit 900 San Francisco, CA 94107 (415) 310-4406

