Зададимся алфавитом Σ . Множество регулярных выражений над Σ обозначим $RE(\Sigma)$. Зафиксируем алфавит переменных:

$$\Delta = \{X_i \mid i \in \overline{1,n}\}, \quad \Sigma \cap \Delta = \emptyset.$$

Далее потребуется обозначение:

$$\Delta_i = \{X_i \mid i \in \overline{j,n}\}, \ j \in \overline{1,n+1}.$$

В частности, $\Delta_1 = \Delta$ и $\Delta_{n+1} = \emptyset$.

Пусть дана афинная система уравнений с регулярными коэффициентами:

$$\mathcal{E}: \left\{ X_i = \sum_{j=1}^n \alpha_{i,j} X_j + \alpha_{i,0} \quad i \in \overline{1,n} \right.,$$

где $\alpha_{i,j} \in RE(\Sigma), i, j \in \overline{1,n}$. *i*-ое уравнение системы будем обозначать $\mathcal{E}[i]$.

Обозначим операцию подстановки регулярного выражения $\gamma \in RE(\Omega)$ в *i*-ое уравнение системы $\mathcal E$ вместо всех вхождений переменной X_j следующим образом:

$$\mathcal{E}[i] \leftarrow \gamma/X_i$$
.

Решением системы уравнений \mathcal{E} называется набор $(\hat{x}_1,\ldots,\hat{x}_n)\in RE(\Sigma)^n$, такой что при подстановке:

$$\forall i, j \in \overline{(1, n)} \quad \mathcal{E}[i] \leftarrow \hat{x}_i / X_i.$$

каждое $\mathcal{E}[i]$ прератится в верное регулярное тождество.

Напомним, что решением афинного уравнения с регулярными коэффициентами:

$$(1): X = \alpha X + \beta$$

является регулярное выражение $\hat{x} = \alpha^* \beta$. Обозначим этот факт так:

$$(1): X = \alpha X + \beta \mapsto \hat{x} = \alpha^* \beta.$$

Теперь мы готовы изложить алгоритм, реализующий метод Гаусса для системы \mathcal{E} .

Алгоритм 1 $Bxo\partial$: система \mathcal{E} ;

Выход: решение $(\hat{x}_1,\ldots,\hat{x}_n)$ системы \mathcal{E} ;

алгоритм представлен последовательностью шагов:

St.1: i = 1.

St.2:

if i = n then goto St.4;

 $\textit{else $\mathcal{E}[i]: X_i = \alpha X_i + \beta \mapsto \hat{x}_i = \alpha^*\beta, \quad \alpha, \beta \in RE(\Sigma \cup \Delta_{i+1});}$

for j from i+1 to n do $\mathcal{E}[j] \leftarrow \hat{x}_i/X_i$.

St.3: ++ i, goto St.2;

St.4: $\mathcal{E}[i]: X_i = \alpha X_i + \beta \mapsto \hat{x}_i = \alpha^* \beta, \quad \alpha, \beta \in RE(\Sigma);$ for j from i-1 downto 1 do: $\mathcal{E}[j] \leftarrow \hat{x}_i/X_i;$

St.5: if i > 1 - -i; goto St.4; else exit;

По завершении работы алгоритма значения \hat{x}_i составляют искомый набор.