Tarea 4 (parte 1)

Entregar a más tardar el martes 8PM

1. Supongamos que para un problema de clasificación binaria, se construye un clasificador donde se permite, además de regresar como predición 0 y 1, también abstenerse.

El costo de predecir 1 si la verdadera categoria es 0, es 1 peso. El costo de predecir 0 si la verdadera categoria es 1, también es 1 peso. El costo de abstenerse es θ , una constante dada de antemano: $0 < \theta < \frac{1}{2}$.

Calcula el clasificador Bayesiano óptimo en función de θ y P(Y=1|X=x).

2. Considera un problema de clasificación binaria con predictores X. Supongamos que P(Y=1)=P(Y=0) y que P(X|Y=i) sigue una distribución Poisson con parámetro λ_i .

Derive el clasificador Bayesiano óptimo si el costo de un falso positivo es dos veces el costo de un falso negativo.

3. Supongamos que X, Y sean v.a. discretas:

	X=0	X=1	X=2
Y=0	0.1	0.3	0.25
Y=1	0.25	0.05	0.05

Si L(0,1)=L(1,0), calcula el clasificador Bayesiano óptimo de Y usando X.

Si L(0,1)=2L(1,0) calcula el clasificador Bayesiano óptimo y su error (promedio) correspondiente.

- 4. (no entregar) Calcula el clasificador Bayesiano óptimo para una función de costo simétrico, $Y|X=x\sim\mathcal{N}(\mu,\sigma_y^2),y\in\{0,1\}$ y P(Y=1)=P(Y=0).
- 5. (no entregar) Para un problema de clasificación binaria y $x \in \mathbb{R}^2$, dibuja un conjunto de datos con tres observaciones donde el clasificador 1-NN tiene un error empírica (sobre el conjunto de entrenamiento) que no sea cero.