

Unit - I 1.5 Batteries

Dr.Santhosh.T.K.

Syllabus

UNIT – I 10 Periods

Introduction and Basic Concepts: Concept of Potential difference, voltage, current - Fundamental linear passive and active elements to their functional current-voltage relation - Terminology and symbols in order to describe electric networks - Concept of work, power, energy and conversion of energy- Principle of batteries and application.

Principles of Electrostatics: Electrostatic field - electric field intensity - electric field strength - absolute permittivity - relative permittivity - capacitor composite - dielectric capacitors - capacitors in series & parallel - energy stored in capacitors - charging and discharging of capacitors.

Outline

- Why is this important?
- Terminologies
- Brief history of batteries
- Basic chemistry
- Battery types and characteristics

Battery terminology

- Cells are the smallest individual electrochemical unit, and deliver a voltage that depends on the cell chemistry
 - There are primary (single use) and secondary (rechargeable) cells
 - A cell is different from a battery, but many people (including me at times!) use the term "battery" to describe any electrochemical energy source, even if it is a single cell, and this can lead to confusion

Battery terminology

- Batteries and battery packs are made up from groups of cells wired in series/parallel
 - These cells can be wired together in series, in parallel, or in some combination of both
 - Sometimes they are packaged in a single physical unit
 - For example, automotive 12 V ead-acid batteries comprise six 2 V cells in series
 - Other times, the connections are external to the cells
- Cell (nominal) capacity specifies the quantity of charge, in ampere hours (Ah) or milliampere hours (mAh), that the cell is rated to hold

_> 3000 m AL -> 3AL ←

- The C rate is a relative measure of cell electrical current
- It is the constant-current charge or discharge rate that the cell can sustain for one hour
- A 20 Ah cell should be able to deliver 20 A ("1C") for 1 h or 2 A ("C/10") for about 10h
- If the cell is discharged at a 10C rate, it will be completely discharged in about six minutes
- Example: The 1C rate of the example to the right is 3.4A

Energy and Power

- A cell stores energy in electrochemical form, which it can later release to do work
- The total energy storage capacity of a cell is roughly its nominal voltage multiplied by its nominal capacity (mWh, Wh, or kWh)
- Example: The nominal energy storage capacity of the example is $3.7 V \times 3.4 Ah = 12.58 Wh$

Mobile battery

Charge

charging cycle

Li fetime

Ly 10,000 cycles

Thange +1 discharge

101. - 901. 901. - 101. 101. - 91.

Cells connected in series

- When cells are connected in series, the battery voltage is the sum of the individual cell voltages
- However, battery capacity is equal to individual cell capacity since the same electrical current passes through all of the cells (charging and discharging all cells at the same rate)
- Example: A battery constructed from three 3 V, 20 Ah cells in series will have:
- A nominal voltage of $3 \times 3V \neq 9V$
- A nominal capacity of 1×20 Ah = 20 Ah
- A nominal energy capacity of $3 \times 3V \times 20$ Ah = 180 Wh

Cells connected in parallel

- When cells are connected in parallel, the battery voltage is equal to the cells' voltage
- However, battery capacity is the sum of the cells' capacities, since the battery current is the sum of all the cell currents 2 %, 3 %, 5 %
- Example: A battery constructed from three 3 V, 20 Ah cells in parallel will have:
- A nominal voltage of $3 \times 3V = 3V$
- A nominal capacity of $3 \times 20 Ah = 60 Ah$
- A nominal energy capacity of $3 \times 3V \times 20$ Ah = 180 Wh

Battery Charging

- Cells are often first charged with either constant-current or constant-power
- When maximum permitted cell voltage is reached, the cell is held at that voltage until it is fully charged

Specific energy and energy density

- Specific energy and energy density measure the maximum stored energy per unit weight or volume (respectively)
- For a given weight, higher specific energy stores more energy
- For a given storage capacity, higher specific energy cells are lighter
- For a given volume, higher energy density stores more energy
- For a given storage capacity, higher energy density cells are smaller

Battery History

1000\$ / kwl

1800 Voltaic pile: silver zinc

1836 Daniell cell: copper zinc

1946 Neumann: sealed NiCd

1960s Alkaline, rechargeable NiCd

1970s Lithium, sealed lead acid

1991 Lithium ion——>

1992 Rechargeable alkaline

1999 Lithium ion polymer

100 \$ /kwd

Battery Nomenclature

Duracell batteries

7

9v battery

6v dry cell

Two cells

Another battery

More precisely

The Electrochemical Cell

The Electrochemical Series

Battery Characteristics

- Size
 - Physical: button, AAA, AA, C, D, ...
 - Energy density (watts per kg or cm³)
- Longevity
 - Capacity (Ah, for drain of C/10 at 20°C)
 - Number of recharge cycles
- Discharge characteristics (voltage drop)

Primary (Disposable) Batteries

- Zinc carbon (flashlights, toys)
- Heavy duty zinc chloride (radios, recorders)
- Alkaline (all of the above)
- Lithium (photoflash)
- Silver, mercury oxide (hearing aid, watches)
- Zinc air

Secondary (Rechargeable) Batteries

- Nickel cadmium
- Nickel metal hydride
- Alkaline
- Lithium ion
- Lithium ion polymer
- Lead acid

Lead Acid Batteries

Chemistry

Lead

Sulfuric acid electrolyte

- Features
 - + Least expensive
 - + Durable
 - Low energy density
 - Toxic

Lithium Ion Batteries

Chemistry

Graphite (-), cobalt or manganese (+)

Nonaqueous electrolyte

Features

- + 40% more capacity than NiCd
- + Flat discharge (like NiCd)
- + Self-discharge 50% less than NiCd
- Expensive

Lithium-ion Batteries in Gadgets

- Lithium: greatest electrochemical potential, lightest weight of all metals
 - But, Lithium metal is explosive
 - So, use Lithium-{cobalt, manganese, nickel} dioxide
- Overcharging would convert lithium-x dioxide to metallic lithium, with risk of explosion

Battery Types

Battery Management Systems

 Comprises purpose-built electronics plus custom designed algorithms (computer methods)

• Example: If a PbA battery is not maintained at a high state-of-charge, lead sulphate deposits on both electrodes will begin to form hard crystals, which cannot be reconverted by a standard fixed-voltage (13.6 V) battery charger.

Is lithium going to run out?

 Is there enough lithium for xEVs and other applications?

Li is between 20 and 100 times more abundant than Pb and Ni

How much lithium is in a lithium-ion cell?

- The lithium content in a lithium-ion cell is actually quite small. Consider an LCO cell
- Lithium content in LiCoO₂ is only 7 % by weight
- Overall, total lithium content in high-energy cell ≤3 % by weight
- xEV cells weigh about $7kgkWh^{-1}$: 1 : Li content $\sim 0.2kgkWh^{-1}$
- 200-mile EV needs ~60kWh battery: Li content ~12kg / EV
- 1 million EVs would consume ≤12000 tons of Li
 - Known available supply of Li is over 200 billion tons, including from seawater
 - Each human being presently alive could own more than 2000 EVs, without recycling!

Summary

Batten'es Jerminologies demistry

References

 https://www.coursera.org/learn/battery-managementsystems