Proposition - Monodromy Functor

Let $B \in \mathbf{Top}$ be locally path connected and $X \in \mathbf{Cov}(B)$. (It follows that X is locally path connected.) Then the *monodromy functor of* X is defined as the $\Pi_1(B)$ -set:

$$\begin{split} \operatorname{Fib}_X: \Pi_1(B) &\to \mathbf{Set} \\ b &\mapsto \downarrow^{-1} b \\ [\gamma] &\mapsto \operatorname{Fib}_X([\gamma]) :\downarrow^{-1} s(\gamma) \to \downarrow^{-1} t(\gamma), x \mapsto \gamma_x(1) \end{split}$$

where γ_x is any lift of any representative of $[\gamma]$, such that $\gamma_x(0) = x$. This gives rise to a functor:

$$\operatorname{Fib}: \mathbf{Cov}(B) \to \Pi_1(B)\mathbf{Set}$$

Furthermore, for each $X \in \mathbf{Cov}(B)$, we can recover the fundamental groupoid of X via

$$\int_{\Pi_1(B)} \mathrm{Fib}_X \simeq \Pi_1(X)$$

where the former is the category of elements of Fib_X . Hence

- X is path-connected if and only if Fib_X is transitive, i.e. for all $(b,x),(b_1,x_1)\in\int_{\Pi_1(B)}\mathrm{Fib}_X$, there exists a morphism $[\gamma]$ of $\Pi_1(B)$ such that $\mathrm{Fib}_X([\gamma])(x)=x_1$.
- for all $(b,x) \in \int_{\Pi_1(B)} \mathrm{Fib}_X$, $\downarrow \pi_1(X,x) = \mathrm{Stab}(x) \subseteq \pi_1(B,b)$.

Proof. To define the $\Pi_1(B)$ -action on fibres, we need to be able to lift paths uniquely *and* for path-homotopies to lift. We first prove paths lift uniquely.

Lemma (*Unique Path Lifting*).

Let $B \in \mathbf{Top}$, $X \in \mathbf{Cov}(B)$. Then X satisfies unique path lifting, meaning for all commuting squares of the form :

there exists a unique morphism in the diagonal such that the whole diagram commutes. Such a diagonal morphism is called a lift of the morphism $I \to B$.

Proof. Let $\gamma: I \to B$ and $x \in X$ in the fibre over $\gamma(0)$. Then there exists a set \mathcal{U} consisting of opens of B trivialising X such that $\gamma I \subseteq \bigcup \mathcal{U}$.

The idea is that each $U \in \mathcal{U}$ allows us to lift a part of γI and compactness of I allows for induction. Since I is compact, there exists a partition $\{0 = t_0 < \cdots < t_n = 1\}$ of I such that for each $t_i < t_n$,

^aThe following doesn't require coverings be surjective?

 $\gamma[t_i,t_{i+1}]$ is in some $U_i\in\mathcal{U}$. Suppose by induction we have a unique lift $\overline{\gamma_{n-1}}:[0,t_{n-1}]\to X$ of $\gamma:[0,t_{n-1}]\to B$. Let $U_n\in\mathcal{U}$ with $\gamma[t_{n-1},t_n]\subseteq U_n$. Let $s_n:U_n\to X$ be a section such that $\overline{\gamma_{n-1}}(t_{n-1})\in s_nU_n$. The define a lift $\overline{\gamma}:I\to X$ by patching together $\overline{\gamma_{n-1}}$ and $s_n\circ\gamma|_{[t_{n-1},t_n]}$. This lift is unique because any lift $\widetilde{\gamma}:I\to X$ of γ must restrict to a lift of $\gamma:[0,t_{n-1}]\to B$, and thus $\widetilde{\gamma}|_{[0,t_{n-1}]}=\overline{\gamma_{n-1}}$ by uniqueness of $\overline{\gamma_{n-1}}$ and finally $\widetilde{\gamma}$ must also agree with $\overline{\gamma}$ on $[t_{n-1},t_n]$ since $\widetilde{\gamma}[t_{n-1},t_n]\subseteq s_nU_n$ and s_n is a homeomorphism onto its image.

For lifting homotopies, we prove a more general lemma:

Lemma (Unique Homotopy Lifting).

Let $B \in \mathbf{Top}$ be locally path connected and $X \in \mathbf{Cov}$. (It follows that X is also locally path connected.) Then X satisfies unique homotopy lifting with respect to locally connected spaces, meaning for all commuting squares

$$Y \longrightarrow X$$

$$\downarrow \qquad \qquad \downarrow$$

$$Y \times I \longrightarrow B$$

where Y is locally connected, there exists a unique morphism in the diagonal such that the diagram commutes. Such a morphism is called a lift of the morphism $Y \times I \to B$.

Proof. (Existence) (Local Lifts) Let $y \in Y$. We show the existence of an open neighbourhood U_y of y with a lift $\overline{H}_y: V_y \times I \to X$ of $H: U_y \times I \to B$. Let $\mathcal U$ be an open cover of B trivialising X. Since B is locally path connected, we can WLOG assume $\mathcal U$ consists of path connected opens. Now, for every $t \in I$, there exists $\varepsilon_t > 0$ and V_t open neighbourhood of y such that $HV_t \times [t-\varepsilon_t, t+\varepsilon_t] \subseteq U_t$ for some $U_t \in \mathcal U$. By compactness of I, there exists a partition $\{0=t_0 < \cdots < t_n=1\}$ of I and open neighbourhoods (V_i) of y such that $HV_i \times [t_i, t_{i+1}] \subseteq U_i$ for some $U_i \in \mathcal U$. We can now take $V_y = \bigcap_i V_i$ as a single open neighbourhood of y such that $HV_y \times [t_i, t_{i+1}] \subseteq U_i$ for some $U_i \in \mathcal U$. We construct a lift \overline{H}_y inductively. By local connectedness of Y, we can WLOG assume V_y is connected, which we will use. Suppose by induction we have a lift $\widetilde{H}: V_y \times [0, t_{n-1}] \to X$ of $H: V_y \times [0, t_{n-1}] \to X$. Let $U_n \in \mathcal U$ that covers $HV_y \times [t_{n-1}, t_n]$. By connectedness of V_y , $\widetilde{H}V_y \times t_{n-1}$ lies within the image of a section $s_n: U_n \to X$. Hence we can define a lift $\overline{H}: V_y \times I \to X$ by patching together \widetilde{H} and $s_n \circ H|_{V_y \times [t_{n-1}, t_n]}$.

(Global Lift) We have an open cover $\mathcal Y$ of Y and for each $V\in\mathcal Y$ a lift $\overline{H}_V:V\times I\to X$ of $H:V\times I\to B$. For any two $V,W\in\mathcal Y,\overline{H}_V$ and \overline{H}_W both restrict to lifts of $V\times I\cap W\times I=(V\cap W)\times I$. But these give lifts of paths starting in $V\cap W$ and lifts of paths are unique by the previous lemma, so \overline{H}_V and \overline{H}_W agree on $V\times I\cap W\times I$. Thus these lifts patch together to give a global lift $\overline{H}:Y\times I\to X$ of H.

(*Uniqueness*) Let \overline{H} , $\overline{H}_1: Y \times I \to X$ be lifts of $H: Y \times I \to B$. Again, these restrict to lifts of paths $y \times I \to B$, which are unique by the previous lemma so $\overline{H} = \overline{H}_1$.

We can now define the $\Pi_1(B)$ -action. Let $[\gamma]$ be a morphism in $\Pi_1(B)$. Choose a representative γ . Define

$$\operatorname{Fib}_X([\gamma]) :\downarrow^{-1} s([\gamma]) \to \downarrow^{-1} t([\gamma]) := x \mapsto \gamma_x(1)$$

where $\gamma_x:I\to X$ is the unique lift of γ with $\gamma_x(0)=x$. We now need to show this is independent of the choice of γ . Let γ^1 be another representative of $[\gamma]$. So we have a homotopy $H:I\times I\to B$ from γ to γ^1 that fixes endpoints. Since I is locally connected, we have a lift:

$$\begin{array}{c}
I \xrightarrow{\gamma_x} X \\
\downarrow \\
I \times I \xrightarrow{H} B
\end{array}$$

We hope that \overline{H} gives a path-homotopy. Well,

- 1. Restricted to $0 \times I$, \overline{H} gives a lift of the constant point $s([\gamma])$. By uniqueness of path lifting, \overline{H} must be constant along $0 \times I$. Similarly, \overline{H} is the constant point $t([\gamma])$ along $1 \times I$.
- 2. Now restricted to $I \times 1$, \overline{H} gives a lift of γ^1 starting at $s([\gamma])$. By uniqueness of path lifting, \overline{H} must be γ^1_x along $I \times 1$.

Hence, \overline{H} is indeed a homotopy from γ_x to γ_x^1 fixing end points, i.e. $[\gamma_x] = [\gamma_x^1]$. In particular, $\gamma_x(1) = \gamma_X^1(1)$ so $\mathrm{Fib}_X([\gamma])(x)$ is well-defined.

(Fib) Let $f \in \mathbf{Cov}(Y, X)$. Then indeed for every morphism $[\gamma]$ in $\Pi_1(B)$, we have

$$\operatorname{Fib}_{X}(s([\gamma])) \xrightarrow{f} \operatorname{Fib}_{Y}(s([\gamma]))$$

$$\downarrow^{\operatorname{Fib}_{X}([\gamma])} \qquad \downarrow^{\operatorname{Fib}_{Y}([\gamma])}$$

$$\operatorname{Fib}_{X}(t([\gamma])) \xrightarrow{f} \operatorname{Fib}_{Y}(t([\gamma]))$$

since for every x in the fibre over the source of $[\gamma]$ and any lift γ_x of $[\gamma]$ starting at x, $f \circ \gamma_x$ is a lift of $[\gamma]$ starting at f(x).

(*Furthermore*) We describe the functor $\int_{\Pi_1(B)} \mathrm{Fib}_X \to \Pi_1(X)$:

- for each object (b, x), map it to x.
- for each morphism $[\gamma] \in \int_{\Pi_1(B)} \mathrm{Fib}_X((b,x),(b_1,x_1))$, map it to $[\gamma_x]$ where γ_x is any lift of γ starting at x. We have seen this is well-defined and by the assumption of $\mathrm{Fib}_X([\gamma])(x) = x_1$, $[\gamma_x] \in \Pi_1(X)(x,x_1)$ indeed.
- Functoriality follows from uniqueness of path liftings.

The functor is clearly essentially surjective. Faithfulness comes from projecting paths back down $\Pi_1(X) \to \Pi_1(B)$. We have seen fullness.

(Hence) clear.
$$\Box$$

Lemma (Characterisation of Semi-Locally Simply Connected).

Let $B \in \mathbf{Top}$ locally path connected. Given an open U of B and $b \in U$, TFAE:

- 1. *U* is path connected and the obvious morphism $\pi_1(U,b) \to \pi_1(B,b)$ is trivial.
- 2. The following being a bijection:

$$b \downarrow \Pi_1 U \rightarrow U$$

When U and b satisfies any (and thus both) of the above, call b a centre of U. If U satisfies the above for some $b \in U$, then call U a centred open.

Then TFAE:

- 1. There exists an open cover U of B consisting of U such that every $b \in U$ is a centre of U.
- 2. For every $b \in B$, there is a neighbourhood base of opens U with b as a centre.
- 3. There exists a cover \mathcal{U} of B consisting of centred opens.

We say B is semi-locally simply connected when it satisfies any (and thus all) of the above.

Proof. $(1 \Leftrightarrow 2 \text{ for } U \text{ and } b) U$ being path connected corresponds to $b \downarrow \Pi_1 U \to U$ being surjective. It suffices to prove $\pi_1(U,b) \to \pi_1(B,b)$ trivial if and only if $b \downarrow \Pi_1 U \to U$ injective. Forwards, given two morphisms $[\gamma], [\gamma_1]$ in $\Pi_1 U$ with source at b and same target, $[\gamma]^{-1}[\gamma_1] \in \pi_1(U,b)$. Triviality of $\pi_1(U,b) \to \pi_1(B,b)$ implies $[\gamma] = [\gamma_1]$ as morphisms in $\Pi_1 B$, in particular in $\Pi_1 U$. The converse is easy.

Now for equivalent conditions of B semi-locally simply connected. $(1 \Rightarrow 2)$ Use local path connectedness of B and functoriality of $\pi_1(-,b)$. $(2 \Rightarrow 3)$ Obvious. $(3 \Rightarrow 1)$ Let \mathcal{U} be an open cover of B such that for all $U \in \mathcal{U}$, there exists a centre b of U. It suffices to show for other $b_1 \in U$, $\pi_1(U,b_1) \to \pi_1(B,b_1)$ is also trivial. By assumption, there exists $[\gamma] \in \Pi_1U(b,b_1)$, so we have a commutative square

$$\pi_1(U,b) \xrightarrow{1} \pi_1(X,b)$$

$$\cong \downarrow \qquad \qquad \downarrow \cong$$

$$\pi_1(U,b_1) \longrightarrow \pi_1(X,b_1)$$

where the vertical maps are "conjugation" by $[\gamma]$. This proves the bottom horizontal morphism is trivial.

Proposition – Fundamental Theorem of Covering Spaces a

Let $B \in \mathbf{Top}$ be locally path connected and semi-locally simply connected. Consider the functor $\int_{\Pi_1 B} : \mathbf{Set}^{\Pi_1 B} \to \mathbf{Set} \downarrow B$ that sends X to its category of elements $\int_{\Pi_1 B} X$, which we then view as a set with a set-morphism down to B. Then

^aI made up this terminology to avoid repeating long phrases in the proof.

- 1. we can promote the $\int_{\Pi_1 B}$ to a functor $\Pi_1 B \mathbf{Set} \to \mathbf{Cov} B$.
- 2. $\int_{\Pi_1 B}$ and Fib form an equivalence of categories $\mathbf{Cov}(B) \simeq \Pi_1 B \mathbf{Set}$

$$\mathbf{Cov}(B) \simeq \Pi_1 B \mathbf{Set}$$

Proof. (1) Let $\rho \in \mathbf{Set}^{\Pi_1 B}$. By assumption, B has a topological base of centred opens. These will give the topology on $\int_{\Pi_1 B} \rho$ as well as the trivialising opens of the projection.

(1)(Topology) For $(b,x)\in\int_{\Pi_1B}\rho$ and an open U of B centred at b, define

$$U[b,x] := \{ \rho([\gamma](x) \mid [\gamma] \in b \downarrow \Pi_1 U \}$$

Then the set of these give a topological base because centred opens form a topological base for B. We topologise $\int_{\Pi_1 B} \rho$ using this topological base.

(1)(Projection Topological) To show $\int_{\Pi_1 B} \rho \to B$ is a morphism of topological spaces, since B has centred opens as a topological base, it suffices for each centred U, say at some b, to have preimage

$$\downarrow^{-1} U = \bigsqcup_{x \in \rho(b)} U[b, x]$$

The equality is straight forward from U being centred at b and disjoint union follows from $\Pi_1 U$ being a groupoid.

- (1)(Covering) We saw already that $\downarrow^{-1} U = \bigsqcup_{x \in \rho(b)} U[b,x]$ as sets. Since $\int_{\Pi_1 B} \rho$ has topology generated by the V[b,x]'s, to show $U[b,x] \to U$ is a topological isomorphism, it suffices to show for all U with centres band $x \in \rho(b)$, U[b, x] maps to U bijectively. And it does because U is centred!
- (1)(Functorial) Let $f \in \mathbf{Set}^{\Pi_1 B}(\rho, \rho_1)$. We need to show the induced $f_*: \int_{\Pi_1 B} \rho \to \int_{\Pi_1 B} \rho_1$ is a topological morphism over B. Suffices for basic opens U[b,y] of $\int_{\Pi_1 B} \rho_1$ to have preimage

$$\downarrow^{-1} U[b,y] = \bigcup_{x \in f_b^{-1}(y)} U[b,x]$$

where $f_b: \rho(b) \to \rho_1(b)$. \supseteq is clear. Let (b_1, x_1) be in the preimage of U[b, y]. By definition, there exists $[\gamma] \in \Pi_1 U(b, b_1)$ with $\rho[\gamma](y) = f_{b_1}(x_1)$. Then by naturality of f, we have

$$\begin{array}{ccc}
\rho(b) & \xrightarrow{f_b} & \rho_1(b) \\
\rho[\gamma] \downarrow & & \downarrow^{\rho_1[\gamma]} \\
\rho(b_1) & \xrightarrow{f_{b_1}} & \rho_1(b_1)
\end{array}$$

Since $\Pi_1 B$ is a groupoid, $\rho[\gamma]$ are isomorphisms of sets, so there exists $x \in \rho(b)$ with $\rho[\gamma](x) = x_1$ and $f_b(x) = y$, i.e. we have the other inclusion.

 $(2)(\operatorname{Fib} \circ \int_{\Pi_1 B} \cong \mathbb{1})$ We know that $\operatorname{Fib} \left(\int_{\Pi_1 B} \rho \right)(b) = \rho(b)$ for $b \in \Pi_1 B$. So it suffices that for all morphisms $[\gamma]$ in $\Pi_1 B$,

$$\mathrm{Fib}_{\int_{\Pi_1 B} \rho}[\gamma] = \rho[\gamma]$$

which will actually show $\mathrm{Fib} \circ \int_{\Pi_1 B} = \mathbb{1}$. The left is topological and right is algebraic. We bridge from left to right by using compactness of paths to break $[\gamma]$ into finitely many pieces that lie within basic opens, where things are algebraic.

Let $[\gamma]$ be a morphism in $\Pi_1 B$. Since B is semi-locally simply connected, we have an open cover \mathcal{U} of B such that every $b \in U$ is a centre of U. By compactness of [0,1], there exists morphisms $[\gamma_0], \ldots, [\gamma_n]$ in $\Pi_1 B$ such that $[\gamma] = [\gamma_n] \circ \cdots \circ [\gamma_0]$ and $[\gamma_i]$ is $\Pi_1 U_i$ for some $U_i \in \mathcal{U}$. Let $x \in \rho(s[\gamma]) = \rho(s[\gamma_0])$. By unique path lifting,

$$\left(\mathrm{Fib}_{\int_{\Pi_1 B} \rho}[\gamma_0]\right)(x) \in U_0[s[\gamma_0], x] \cap \rho(t[\gamma_0]) = U_0[t[\gamma_0], \rho[\gamma_0](x)] \cap \rho(t[\gamma_0]) = \{\rho[\gamma_0](x)\}$$

Thus $\left(\mathrm{Fib}_{\int_{\Pi_1B}\rho}\right)[\gamma_0](x)=\rho[\gamma_0](x).$ The same goes for all i, giving

$$\mathrm{Fib}_{\int_{\Pi_1 B} \rho}[\gamma] = \mathrm{Fib}_{\int_{\Pi_1 B} \rho}[\gamma_n] \circ \cdots \circ \mathrm{Fib}_{\int_{\Pi_1 B} \rho}[\gamma_0] = \rho[\gamma_n] \circ \cdots \circ \rho[\gamma_0] = \rho[\gamma]$$

 $(2)(\int_{\Pi_1 \mathit{B}} \circ \mathrm{Fib} \cong \mathbb{1})$ There's an obvious set isomorphism :

$$\int_{\Pi_1 B} \mathrm{Fib}_X \to X$$

We have a topological base of B consisting of centred opens, which also trivialise X, so X also has a topological base consisting of centred opens, which map isomorphically down to centred opens of B. Let us call such opens of X basic for duration of the rest of the proof. It suffices for preimage of basic opens of X to be open. Let U be a basic open of X and x a centre of U. Let $b \in B$ be the projection of x and U_0 the projection of U. The claim is that the preimage of U is $U_0[b,x]$. This is clear since

Proposition – Decomposition to Path-Connected Components

Let $B \in \mathbf{Top}$ be locally path connected and semi-locally simply connected. Let $B = \bigsqcup_{B_i \in I} B_i$ where I is the set of path-connected components of B. Then

1. $\Pi_1 B \simeq \coprod_{B_i \in I} (\Pi_1 B_i)$.

2. we have a commutative square

$$\begin{array}{ccc} \mathbf{Cov}(B) & \xrightarrow{\simeq} & \Pi_1 B \mathbf{Set} \\ \simeq & & \downarrow \simeq \\ & & \Pi_{B_i \in I} \mathbf{Cov}(B_i) & \xrightarrow{\simeq} & \Pi_{B_i \in I} \Pi_1 B_i \mathbf{Set} \end{array}$$

Proof. (1) ok. (2) The square commutes. By base change of covering space, we get the functor $\mathbf{Cov}(B) \to \prod_{B_i \in I} \mathbf{Cov}(B_i)$. For full and faithful, note that every $X \in \mathbf{Cov}(B)$ is isomorphic to $\coprod_{B_i \in I} X_i$ where X_i is the preimage of B_i . Essentially surjective is okay and this shows left vertical functor is equivalence. The other vertical equivalence and the bottom horizontal equivalence are formal.

Remark. From the above, we see that we can restrict to the case with addition assumption of B path connected.

Proposition - Fundamental Theorem of Covering Spaces, Path Connected Version

Let $B \in \mathbf{Top}$ be path connected. For $b \in B$, use $\pi_1(B,b)$ to refer to the single object category consisting of b and automorphisms in $\Pi_1 B$ as the only morphisms. Then for any $b \in B$, there's an equivalence of categories

$$\pi_1(B,b) \stackrel{\simeq}{\to} \Pi_1 B$$

which induces an equivalence of categories:

$$\Pi_1 B\mathbf{Set} \stackrel{\cong}{\to} \pi_1(B,b)\mathbf{Set}$$

Thus, when B is path connected, locally path connected, semi-locally simply connected, we have equivalence of categories :

where

- 1. the equivalence restricts to an equivalence between path connected coverings of B and transitive $\pi_1(B,b)$ -action.
- 2. for $X \in \mathbf{Cov}(B)$ path connected, for any $x \in \mathrm{Fib}_X(b)$, we have

$$\operatorname{Aut}_{\mathbf{Cov}(B)} X \cong \operatorname{Aut}_{\pi_1(B,b)} \operatorname{Fib}_X(b) \cong N \operatorname{Stab}(x) / \operatorname{Stab}(x)$$

In particular, $\operatorname{Aut}_{\mathbf{Cov}(B)}(X)$ acts transitively on $\operatorname{Fib}_X(b)$ if and only if $\operatorname{Stab}(x)$ is normal in $\pi_1(B,b)$.

Proof. The forgetful functor $\pi_1(B,b) \to \Pi_1 B$ is fully faithful and is essentially surjective because B is path connected. $\Pi_1 B \mathbf{Set} \simeq \pi_1(B,b) \mathbf{Set}$ is formal. For $\mathrm{Fib}(b) : \mathbf{Cov}(B) \to \pi_1(B,b) \mathbf{Set}$ being an equivalence, note

that a composition of equivalences form an equivalence.

- (1) Now let $X \in \mathbf{Cov}(B)$. X is path connected if and only if Fib_X is a transitive $\Pi_1 B$ -action. This implies $\mathrm{Fib}_X(b)$ is a transitive $\pi_1(B,b)$ -action. Conversely, B path connected implies that any two fibers $\mathrm{Fib}_X(b)$, $\mathrm{Fib}_X(b_1)$ biject by some $\mathrm{Fib}_X[\gamma]$ with $[\gamma] \in \Pi_1 B(b,b_1)$ so $\mathrm{Fib}_X(b)$ being a transitive $\pi_1(B,b)$ -action gives the desired result.
- (2) Let $X \in \mathbf{Cov}(B)$ be path connected and $x \in \mathrm{Fib}_X(b)$. $\mathrm{Aut}_{\mathbf{Cov}(B)} X \cong \mathrm{Aut}_{\pi_1(B,b)} \mathrm{Fib}_X(b)$ comes from the equivalence of categories. For $\mathrm{Aut}_{\pi_1(B,b)} \mathrm{Fib}_X(b) \cong N \operatorname{Stab}(x) / \operatorname{Stab}(x)$ and the in particular, this is a general group theoretic fact :

Lemma (Automorphisms of Non-empty Transitive Actions). Let $G \in \mathbf{Grp}$ and $X \in G\mathbf{Set}$ be transitive and $x \in X$. Then

- 1. $\operatorname{Aut}_{G\mathbf{Set}} X \cong N \operatorname{Stab}(x) / \operatorname{Stab}(x)$.
- 2. Aut_{GSet} X acts transitively on X if and only if $N \operatorname{Stab}(x) = G$.

Proof. (1) Define:

$$N \operatorname{Stab}(x) \to \operatorname{Aut}_{G\mathbf{Set}} X, \sigma \mapsto (\sigma_0(x) \mapsto (\sigma_0 \circ \sigma)(x))$$

The group morphism is well-defined because $\operatorname{Stab}(x)$ is normal in $N \operatorname{Stab}(x)$. To show surjective, let $\varphi \in \operatorname{Aut}_{G\mathbf{Set}} X$. Since X is a transitive G-set, φ is determined by what it does to x. There exists $\sigma \in G$ with $\sigma(x) = \varphi(x)$. It suffices to show $\sigma \in N \operatorname{Stab}(x)$. This is true by a quick computation. It is clear that the kernel of the group morphism is $\operatorname{Stab}(x)$ so we have the desired group isomorphism.

(2) Assume $\operatorname{Aut}_{G\mathbf{Set}}X$ acts transitively on X. Let $\sigma \in G$. Then there exists $\sigma_0 \in N\operatorname{Stab}(x)$ such that $\sigma_0(x) = \sigma(x)$. It follows that $\sigma \in \sigma_0\operatorname{Stab}(x) \subseteq N\operatorname{Stab}(x)$. The converse is clear.