Compressive Sensing as a tool for Video Analysis

Rhian Davies Idris Eckley, Lyudmila Mihaylova, Nicos Pavlidis

August 4, 2013

Motivation

"Big Brother is Watching You."
- George Orwell, 1984

What is compressive sensing?

Compressive sensing is a method of **reducing the amount of data collected** from a signal without compromising the ability to later **reconstruct the signal accurately.**

CS Methodology

Figure: CS measurement process, courtesy of Volkan Cevher.

Restricted Isometry Property (RIP)

A matrix Φ satisfies the Restricted Isometry Property (RIP) of order K if there exists a $\delta_K \in (0,1)$ such that

$$(1 - \delta_k)||\mathbf{x}||_2^2 \le ||\mathbf{\Phi}\mathbf{x}||_2^2 \le (1 + \delta_k)||\mathbf{x}||_2^2, \tag{1}$$

for all $\mathbf{x} \in \sum_{\mathcal{K}} = \mathbf{x} : ||\mathbf{x}||_0 \le \mathcal{K}$.

<ロ > ← □ > ← □ > ← □ > ← □ = − の q ○ ○

Recovery of sparse transforms

- $\mathbf{y} = \Phi x$
- $\Delta(y, \Phi) = x$
- ► Infinitely many solutions!

$$\hat{x} = \arg\min_{y=\phi x} ||x||_0$$

$$\hat{x} = \arg\min_{y = \phi x} ||x||_1$$

Optimisation based on the l_1 norm can closely approximate compressible signals with high probability.

<ロ > ← □ > ← □ > ← □ > ← □ = − の q ○ ○

Orthogonal Matching Pursuit

We shall define the columns of Φ to be $\varphi_1, \varphi_2, \dots, \varphi_N$ each of length M.

- ▶ Step 1: Find the index for the column of Φ which satisfies $\lambda_t = \operatorname{argmax}_{j=1,...,N} |< r_{t-1}, \varphi_j > |$
- ▶ Step 2: Keeps track of the columns used. $\Lambda_t = \Lambda_{t-1} \cup \lambda_t$, $\Phi_t = [\Phi_{t-1}, \psi_{\lambda_t}]$
- ▶ Step 3: Update the estimate of the signal. $x_t = \operatorname{argmin}_x ||v \Phi_t x||_2$.
- ▶ Step 4: Update the measurement residual. $r_t = y \Phi_t x_t$.
- ▶ Output: Estimated sparse vector \hat{x}

<ロ > ← □ > ← □ > ← □ > ← □ = ・ つ へ ○ ○

Background Subtraction

Figure: The background subtraction process

Foreground sparsity

(a) Original frame

(b) Background Model

 $\hbox{(c) Foreground Mask}\\$

Background Subtraction with Compressive Sensing.

- 1. Initialise a compressed background y_0^b .
- 2. Compressively Sense $y_t = \Phi x_t$.
- 3. Reconstruct $\Delta(y_t y_t^b)$
- 4. Update Background $y_{t+1}^b = \alpha y_i + (1 \alpha)y_i^b$

Experimentation

Figure: Sanfran test video courtesy of Seth Benton

Further Work

- ▶ Choice of Φ and Δ ?
- More advanced methods of background subtraction.
- Adapting with varying sparsity.
- Knowing when to reconstruct.
- ▶ Exploiting the properties of natural images.

Any Questions?

