Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Garcke, Penn-Karras, Tröltzsch SoSe 09 05. Oktober 2009

Oktober – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:	Vorname:					
MatrNr.:	Studi	engang	:			
Neben einem handbeschriebenen A4 B	latt mi	t Notiz	en			
sind keine Hilfsmittel zugelassen.						
Die Lösungen sind in Reinschrift auf schriebene Klausuren können nicht ge			_	ben. M	Iit Blei	stift ge-
Dieser Teil der Klausur umfasst die Ver Rechenaufwand mit den Kenntnissen a wenn nichts anderes gesagt ist, immer	aus der	Vorles	sung lö	sbar se	in. Gel	0
Die Bearbeitungszeit beträgt eine Stu	ınde.					
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens 1:				*	•	
Korrektur						
	1	2	3	4	5	Σ

1. Aufgabe 5 Punkte

Welche der folgenden Aussagen sind wahr, welche sind falsch? Notieren Sie Ihre Lösungen **ohne** Begründung auf einem separaten Blatt. Für eine richtige Antwort bekommen Sie einen Punkt, für eine falsche verlieren Sie einen Punkt. Die minimale Punktzahl dieser Aufgabe beträgt 0.

- 1. Konvexe Mengen sind immer offen.
- 2. Eine differenzierbare Funktion $f:\mathbb{R}^2 \to \mathbb{R}$ nimmt immer ein globales Maximum an.
- 3. Ist grad $f(0,0) = (0,0)^T$ und die Determinante der Hesseschen Matrix an der Stelle $(0,0)^T$ negativ, so hat f an der Stelle $(0,0)^T$ ein lokales Maximum.
- 4. Nimmt eine auf \mathbb{R}^2 stetige Funktion f im Inneren des Vollkreises um $(0,0)^T$ mit Radius 1 kein Maximum an, so nimmt f ein Maximum unter der Nebenbedingung $x^2 + y^2 1 = 0$ an.
- 5. Sei $D \subset \mathbb{R}^3$ offen und $\vec{v} \colon D \to \mathbb{R}^3$. Dann folgt aus rot $\vec{v} = \vec{0}$, dass \vec{v} auf ganz D ein Potential besitzt.

2. Aufgabe 10 Punkte

Die Funktion $g: \mathbb{R}^2 \to \mathbb{R}$ ist durch

$$g(x,y) = \begin{cases} 5 & \text{falls } y \ge 1, \\ -5 & \text{falls } y < 1 \end{cases}$$

gegeben.

- 1. Für welche Punkte $(x,y)^T \in \mathbb{R}^2$ ist g stetig bzw. unstetig?
- 2. Für welche Punkte $(x,y)^T \in \mathbb{R}^2$ existieren die partiellen Ableitungen $\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}$?
- 3. Für welche Punkte $(x,y)^T \in \mathbb{R}^2$ ist g differenzierbar bzw. nicht differenzierbar?

Begründen Sie Ihre Antwort und geben Sie die Ableitungsmatrix, für die Punkte in denen Sie existiert, an.

3. Aufgabe 10 Punkte

Gegeben sei das Vektorfeld

$$\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$$
, $v(x, y, z) = (\lambda xz \cos(x^2) + y, x, \sin(x^2) + 2z)^T$.

- 1. Wie ist die Konstante $\lambda \in \mathbb{R}$ zu wählen, damit \vec{v} ein Potential besitzt?
- 2. Bestimmen Sie für die unter 1. gefundenen Werte für λ eine Stammfunktion von \vec{v} .
- 3. Bestimmen Sie für die unter 1. gefundenen Werte für λ das Kurvenintegral von \vec{v} entlang der Kurve

$$\vec{c}: [0,1] \to \mathbb{R}^3, \quad \vec{c}(t) = (\sin(\pi t), 2t^2 - t, te^{t^2 - t})^T.$$

4. Aufgabe

10 Punkte

Gegeben ist die Fläche $F = \{(x, y, z)^T \in \mathbb{R}^3 : z = 0, (x - 1)^2 + y^2 \le 1\}.$

- 1. Skizzieren Sie F.
- 2. Parametrisieren Sie die Fläche ${\cal F}$ und bestimmen Sie das vektorielle Oberflächenelement.
- 3. Gegeben sei das Vektorfeld $\vec{v}(x,y,z) = \begin{pmatrix} xy^2 \\ x^2y 2x \\ 0 \end{pmatrix}$.

Zeigen Sie mit Hilfe des Satzes von Stokes, dass

$$\int_{\vec{\gamma}} \vec{v} \cdot \vec{ds} \neq 0$$
 gilt, wobei $\vec{\gamma}$ die Randkurve von F ist.

5. Aufgabe 5 Punkte

Geben Sie jeweils ein Beispiel ohne Begründung für

- 1. eine Teilmenge von \mathbb{R}^3 die konvex und kompakt ist,
- 2. eine nicht-konvergente Folge (\vec{a}_n) in \mathbb{R}^3 ,
- 3. eine stetige Funktion von $\{(x,y)^T: x^2+y^2<2\}$ nach $\mathbb{R},$ die kein Minimum annimmt,
- 4. eine Funktion von \mathbb{R}^2 nach \mathbb{R} die unendlich viele Maximalstellen hat,
- 5. eine Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit $\int_0^1 \int_0^1 f(x,y) \, dx dy = 1$,

an.