Estructuras Algebraicas Segundo examen parcial	1 ^{er} Apellido:	3 de junio de 2021 Tiempo 2 h
Dpt. Matemática Aplicada a las T.I.C. E.T.S. de Ingenieros Informáticos Universidad Politécnica de Madrid	2º Apellido: Nombre: Número de matrícula:	Calificación:

Para que sean consideradas como válidas, todas las respuestas deben estar adecuadamente justificadas. No está permitido el uso de dispositivos electrónicos.

Ejercicio 1. (2 puntos)

Enunciar y demostrar la caracterización de los elementos algebraicos sobre un cuerpo K.

Ejercicio 2. (2 puntos)

- 1. Estudiar si $(\mathbb{Z}_5[i], +_5, \cdot_5)$ es dominio de integridad.
- 2. Estudiar si $g = x^2 + 2$ es polinomio primitivo en $\mathbb{Z}_5[x]$.

Ejercicio 3. (2 puntos)

Sea
$$R = \left\{ \begin{pmatrix} x & 3y \\ y & x \end{pmatrix} : x, y \in \mathbb{Z}_5 \right\}$$
. Se define la aplicación $\varphi : \mathbb{Z}_5[x] \to R$ tal que $\forall g = \sum_{i=0}^n a_i x^i \in \mathbb{Z}_5[x]$ es $\varphi(g) = a_0 I + a_1 A + \dots + a_n A^n$, donde $A = \begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix}$, $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

- 1. Estudiar si $(R, +_5, \cdot_5)$ es cuerpo.
- 2. Demostrar que φ es homomorfismo de anillos y calcular su núcleo.

Ejercicio 4. (2 puntos)

- 1. Sean $a, b \in \mathbb{Z}_2[x]$, con $a = x^5 + x^4 + x^3 + x^2$, $b = x^4 + x^3 + x + 1$. Usando el algoritmo de Euclides, obtener el polinomio $d = \text{mcd}(a, b) \in \mathbb{Z}_2[x]$ y polinomios $u, v \in \mathbb{Z}_2[x]$ tales que d = ua + vb.
- 2. Estudiar si $\mathbb{Z}_2[x]/(x^4+x^3+x^2+x+1)$ es cuerpo, y en caso afirmativo indicar el número de elementos que tiene y obtener el resultado de la siguiente operación, expresándolo en forma reducida:

$$(x^2 + 1)^{-1}x^2 + x$$

Ejercicio 5. (2 puntos)

Se considera el grupo de unidades módulo 8: (U_8, \cdot_8) actuando sobre el conjunto \mathbb{Z}_8 mediante la operación producto módulo 8: $\cdot : U_8 \times \mathbb{Z}_8 \to \mathbb{Z}_8$ tal que $(a, n) \mapsto a \cdot_8 n$.

- 1. Determinar las órbitas de dicha acción.
- 2. Obtener, para cada $a \in U_8$, el conjunto de puntos fijos.
- 3. Verificar el teorema de Burnside para esta acción.

Soluciones

- 1. Consultar apuntes.
- 2. a) $(\mathbb{Z}_5[i], +_5, \cdot_5)$ no es dominio de integridad: (1+2i)(2+i)=0
 - b) El polinomio g no es primitivo en \mathbb{Z}_5 , porque x no es generador del grupo de unidades de $\mathbb{Z}_5[x]/(g)$.
- 3. a) $(R, +5, \cdot5)$ es cuerpo
 - b) φ es homomorfismo. $\ker(\varphi) = (x^2 + 2)$
- 4. a) $d = x^2 + 1 = a(x+1) + b(x^2 + x + 1)$

$a = x^5 + x^4 + x^3 + x^2$		(1,0)
$b = x^4 + x^3 + x + 1$		(0,1)
$x^3 + x$	x	(1,x)
$x^2 + 1$	x+1	$(x+1, x^2+x+1)$
0	x	

- b) $\mathbb{Z}_2[x]/(x^4+x^3+x^2+x+1)$ es cuerpo por ser $x^4+x^3+x^2+x+1$ polinomio irreducible en $\mathbb{Z}_2[x]$. $(x^2+1)^{-1}x^2+x=(x^2+x)x^2+x=x^2+1$
- 5. a) $[0] = \{0\}$, $[1] = \{1, 3, 5, 7\}$, $[2] = \{2, 6\}$, $[4] = \{4\}$.
 - b) $X_1 = \mathbb{Z}_8$, $X_3 = \{0, 4\}$, $X_5 = \{0, 2, 4, 6\}$, $X_7 = \{0, 4\}$.
 - c) $N = \frac{1}{|G|} \sum_{g \in G} |X_g|$: $4 = \frac{1}{4} (8 + 2 + 4 + 2)$