Produktivitätsmodell "Hacker"

Teil A: Grundlagen

Renato Lemm
Fritz Frutig
Dario Pedolin
Oliver Thees (Leitung)

FE Waldressourcen und Waldmanagement Gruppe "Forstliche Produktionssysteme" Eidg. Forschungsanstalt WSL 8. März 2019

Das Produktivitätsmodell "Hacker" ist Teil einer Sammlung von Produktivitätsmodellen der Holzernte, welche von der Eidg. Forschungsanstalt WSL entwickelt wurden und unter dem Namen "HeProMo" auf dem Internet zur Verfügung gestellt werden (http://www.waldwissen.net). Der Teil A des Dokumentes beschreibt die Ernteverfahren und das Modell "Hacken an der Waldstrasse". Der Teil B "Analyse der Datensätze und Diskussion der Modellierung" fehlt hier, weil keine Datensätze ausgewertet wurden.

Bearbeiter	Datum	Kommentar
R. Lemm	28.08.2015	
F.Frutig/R. Lemm	24.08.2016	Überarbeitung
R.Lemm	04.04.2018	Korrektur
R. Lemm /F. Frutig	08.03.2019	Änderungen
F. Frutig	20.05.2019	Schlussredaktion

Inhaltsübersicht

1	Grui	ndlagen	4
	1.1	Entstehung und Verwendung	4
	1.2	Beurteilung und Besonderheiten	
2	Proc	luktionssystem – Beschreibung	4
	2.1	Produktionsprozess Hacken an der Waldstrasse	4
	2.2	Input/Output-Zustand	
		2.2.1 Input	5
		2.2.2 Output	5
	2.3	Technik und Personal	5
	2.4	Berechneter Output	5
3	Proc	luktionssystem – mathematische Darstellung	5
	3.1	Systemübersicht	5
	3.2	Einflussgrössen	
	3.3	Vergleich der Hackermodelle von Ghaffariyan und Kuptz	
	3.4	Mathematisches Modell	9
4	Zeit	system und Umrechnungen im Produktivitätsmodell "Hacker"	11
	4.1	Zeitsystem	. 11
	Bere	chnung der System- und Faktorzeiten pro Schüttraummeter	. 11
5	Bere	echnung von Zeitbedarf und Kosten	12
	5.1	Zeitbedarf der Produktionsfaktoren pro Srm	. 12
	5.2	Kosten der Produktionsfaktoren pro Srm	. 12
	5.3	Kostenansätze für Grosshacker	
	5.4	Berechnungsbeispiel	. 13
6	Abk	ürzungen und Definitionen	14
7	Anh	ang: Methoden zur Abschätzung des Poltervolumens	15
	7.1	Schätzmethode 1	. 15
		7.1.1 Raumvolumen für Hackguthaufen aus Energierundholz	. 15
		7.1.2 Raumvolumen für Hackguthaufen aus Waldrestholz	. 15
		7.1.3 Faktoren zur Bestimmung der Hackgutmenge aus dem Raumvolumen	. 16
	7.2	Schätzmethoden 2, 3 und 4	. 17
8	Lite	aturverzeichnis	18
9	Beu	rteilung der Qualität des Modells "Hacker"	19
-	_ 50		

Hinweis

Im Handel und im Transport von Energieholz in Form von Waldhackschnitzeln werden die Volumina in Schüttraummetern angegeben. Für die Umrechnung von fester Holzmasse (m³) in Schüttraummeter (Srm) wird der Faktor 2.8 verwendet (Schweizer Handelsgebräuche für Rohholz, Ausgabe 2010). 1 m³ entspricht also 2.8 Srm.

1 Grundlagen

1.1 Entstehung und Verwendung

Zeitstudienerhebungen sind sehr arbeits- und kostenintensiv. Deshalb wurde in einer umfangreichen Literaturrecherche abgeklärt, welche Grundlagen für ein Produktivitätsmodell für Hacken an der Waldstrasse allenfalls bereits vorhanden sind. Dabei hat sich die Untersuchung "Optimale Bereitstellungsverfahren für Holzhackschnitzel" von Kuptz et al. (2015) als umfassendste und aktuellste Grundlage erwiesen. Das nachfolgende Produktivitätsmodell "Hacker" beruht weitgehend auf den Ergebnissen dieser Untersuchung. An 36 Einsatztagen wurden Zeitstudien beim Hacken durchgeführt, davon wurde an 10 Tagen die gesamte Tagesarbeitszeit erfasst und an 26 Tagen Ausschnitte davon.

1.2 Beurteilung und Besonderheiten

Die Ergebnisse der Zeiterhebungen lassen sich unserer Ansicht nach gut auf die Verhältnisse in der Schweiz anwenden. Beim Hacken an der Waldstrasse sind keine bedeutenden Unterschiede in den Arbeitsverfahren und den Einsatzbedingungen zwischen Deutschland und der Schweiz festzustellen. Die Ergebnisse der Untersuchung von Kuptz et al. (2015) sind sehr aktuell und die Zeiterhebungen genügend umfangreich, dass sie für ein Produktivitätsmodell verwendet werden können. Die festgestellten Abhängigkeiten von den Eingangsvariablen "Hackgutart" und "Motorleistung des Hackers" scheinen plausibel.

2 Produktionssystem – Beschreibung

2.1 Produktionsprozess Hacken an der Waldstrasse

Abbildung 1 zeigt die Integration des Produktionsprozesses "Hacken" in die Holzerntelogistik vom Bestand zum Endverbraucher.

Abbildung 1: Integration des Produktionsprozesses "Hacken" in die Logistikkette vom Bestand zum Endverbraucher.

Der Prozess der Hackschnitzelbereitstellung umfasst üblicherweise folgende Arbeiten:

- Fällen und gegebenenfalls Aufarbeiten der Bäume
- Rücken des Holzes bzw. der Vollbäume an eine lastwagenbefahrbare Waldstrasse
- Hacken an der Waldstrasse
- Transportieren der Hackschnitzel zum Verbraucher
- Entladen beim Verbraucher.

Im Gegensatz zu anderen Holzernteverfahren, die i.d.R. an der Waldstrasse mit dem Produkt Rundholz enden, müssen bei der Bereitstellung von Waldhackschnitzeln noch weitere Teilarbeiten durchgeführt werden, wie Hacken, ggfs. Zwischenlagern, Transport zum Verbraucher und Entladen.

Der Prozess "Hacken auf der Rückegasse" wird heute nur noch selten durchgeführt und deshalb hier nicht weiter betrachtet.

2.2 Input/Output-Zustand

2.2.1 Input

Das Hackgut ist an einer lastwagenbefahrbaren Strasse bereitgestellt. Für das Produktivitätsmodell werden zwei Formen von Hackgut unterschieden (Abb. 3):

- Energierundholz (grob geastetes Stammholz kurz oder lang)
- Waldrestholz (überwiegend Baumkronen und Äste).

2.2.2 Output

Die Waldhackschnitzel liegen in Containern oder Mulden.

2.3 Technik und Personal

Hacker montiert auf Anhänger oder LKW 1 Maschinenführer

2.4 Berechneter Output

Produktivität in Srm/PSH₁₅ (produktive Arbeitszeit).

3 Produktionssystem – mathematische Darstellung

3.1 Systemübersicht

Abbildung 2: Einflussgrössen auf die Produktivität beim Hacken und Darstellung der Zeitaufwände für die Kostenberechnung.

Für die gesamte Logistikkette "Hackschnitzelbereitstellung" werden zurzeit folgende Modelle in HeProMo angeboten:

Fällen: "Motormanuelle Holzhauerei"

Rücken: "Schlepper", "Mobilseilkran", "Konventioneller Seilkran"

Hacken: "Hacker" (vorliegendes Modell)

Transportieren: Neues Modell "Waldhackschnitzel-Transport".

3.2 Einflussgrössen

Nach Kuptz et al. (2015) hängt die Produktivität beim Hacken hauptsächlich von zwei Einflussgrössen ab, der Art des Hackgutes und der Motorleistung des Hackers.

Beim Hackgut wird unterschieden zwischen Waldrestholz und Energierundholz (Abb. 3).

Abbildung 3: A) Waldrestholz setzt sich überwiegend aus Baumkronen, Ästen, Vollbaumteilen sowie kleinen Vollbäumen aus Erstdurchforstungen zusammen. B) Energierundholz ist grob geastetes und auch dürres Stammholz in kurzer oder langer Form. Ebenso werden faule Stammabschnitte oder solche schlechterer Qualität dem Energierundholz zugeteilt (Bilder aus Kuptz et al., 2015).

Die zweite wichtige Eingangsvariable ist die Motorleistung des Hackers, welche in kW angegeben wird.

3.3 Vergleich der Hackermodelle von Ghaffariyan und Kuptz

Verschiedene Arbeiten zum Thema Hacken zeigen übereinstimmend, dass die Hackerproduktivität hauptsächlich von der Motorleistung des Hackers und vom mittleren Stückinhalt des Hackgutes abhängt. Bei Ghaffariyan et al. (2013) wird die Produktivität in Tonnen Grünbiomasse/PMH₀ angegeben. Für die Umrechnung in Srm/PMH₀ bzw. Srm/PMH₁₅ kommt es also darauf an, wie hoch der Wassergehalt des Hackgutes zum Zeitpunkt des Hackens ist.

Modell nach Ghaffariyan et al. (2013)

Berechnungsformel für die Produktivität beim Hacken:

$$Produktivität \left(\frac{GMt}{PMH0}\right) = -24.2 + 0.05 \times Motorleistung + 28.2 \times Betriebstyp$$
$$-1.67 \times Ablageort \ Hackschnitzel + 26.3 \times Mittl. Stückinhalt \ (m^3)$$

Legende:

Produktivität: Grünbiomasse (Tonnen) pro PMH0

Motorleistung in kW

Betriebstyp: Hackschnitzel = 1; Zellstoff = 2

Ablageort Hackschnitzel:

 $Hackschnitzel\ in\ LKW-Muldenauf\ bau\ geblasen=1$ in $Lkw-Container\ oder\ Schüttgutanhänger=2$

auf Haufen = 3

 $in\ Container\ auf\ Hacker\ auf\ gebaut=4$

Modell nach Kuptz et al. (2015)

Berechnungsformeln für die Produktivität beim Hacken:

Energierundholz:

$$Produktivit$$
ät $\left[\frac{Srm}{MAS}\right] = 0.2848 * MotorleistungHacker^{1.0276}$

Waldrestholz:

Produktivität = 0.5177 × MotorleistungHacker^{0.8486}

MotorleistungHacker in [kW]

In Tabelle 1 sind die Produktivitäten für verschiedene Hackertypen dargestellt (Kuptz et al 2015). Tabelle 2 zeigt die Produktivitäten berechnet mit dem Modell von Ghaffariyan et al. (2013) und Tabelle 3 diejenigen berechnet mit dem Modell von Kuptz et al. (2015).

Tabelle 1: Produktivität für verschiedene Hackertypen, jeweils für Waldrestholz (blau) und Energierundholz (rot), berechnet mit den Formeln von Kuptz et al. (2015).

Hackertyp	Einheit	Motorleistung [kW]	Zielsortimente	Produktivität [Srm/MAS]
Farmi 260 HF-EM	Srm/PMH ₁₅	82	Waldrestholz	21.8
	Srm/PMH ₁₅	82	Energierundholz	26.4
Musmax Wood Terminator 9 XL Z	Srm/PMH ₁₅	154	Waldrestholz	37.2
	Srm/PMH ₁₅	154	Energierundholz	50.4
Komptech Chippo 510C	Srm/PMH ₁₅	278	Waldrestholz	61.4
	Srm/PMH ₁₅	278	Energierundholz	92.5
Jenz Hem 582 R	Srm/PMH ₁₅	353	Waldrestholz	75.2
	Srm/PMH ₁₅	353	Energierundholz	118.2
Albach Silvator 2000	Srm/PMH ₁₅	455	Waldrestholz	93.3
	Srm/PMH ₁₅	455	Energierundholz	153.4

Tabelle 2: Berechnung der Produktivität nach dem Modell von Ghaffariyan et al. (2013 für Waldrestholz (blau) und Energierundholz (rot) und jeweils für verschiedene Motorleistungen der Hacker.

			Mittl.	Mittl.			Grünbio		Grünbio	Produk-
Motor-	Be-	Ab-	Stück	Stück-	Grünbio-	Grünbio-	masse	Grünbio-	masse	tivität
leistung	triebs-	lage-	inhalt	inhalt	masse	masse	[Srm/	masse	m ³ /	[Srm/
[kW]	typ	ort	[t]	[m³]	[t/PMH ₀]	[m ³ /PMH ₀]	PMH_0]	[t/PMH ₁₅]	PMH ₁₅	PMH ₁₅]
50	1	1	0.078	0.12	8.0	12.3	34.4	7.5	11.6	32.5
150	1	1	0.078	0.12	13.0	20.0	55.9	12.3	18.8	52.8
250	1	1	0.078	0.12	18.0	27.7	77.5	17.0	26.1	73.1
350	1	1	0.078	0.12	23.0	35.4	99.0	21.7	33.4	93.4
450	1	1	0.078	0.12	28.0	43.1	120.6	26.4	40.6	113.7
50	1	1	0.455	0.7	23.2	35.8	100.1	21.9	33.7	94.4
150	1	1	0.455	0.7	28.2	43.4	121.6	26.6	41.0	114.8
250	1	1	0.455	0.7	33.2	51.1	143.2	31.4	48.2	135.1
350	1	1	0.455	0.7	38.2	58.8	164.7	36.1	55.5	155.4
450	1	1	0.455	0.7	43.2	66.5	186.3	40.8	62.8	175.7

Für die Umrechnung einer Tonne Grünmasse in m^3/PMH_0 wurde für die Rohdichte der Hackschnitzel 650 kg/ m^3 angenommen. Als mittlerer Stückinhalt für Waldrestholz wurde 0.12 m^3 und für Energierundholz 0.70 m^3 angenommen. Die Umrechnung von PMH_0 in PMH_{15} erfolgte mit dem Faktor 1.06. Die Werte in den fett markierten Spalten in Tabelle 2 (Berechnung nach Ghaffariyan) sind für den Vergleich der Produktivitäten mit Tabelle 3 (Berechnung nach Kuptz) massgebend.

Tabelle 3: Berechnung der Produktivität nach dem Modell von Kuptz et al. (2015) für Waldrestholz (blau) und Energierundholz (rot) und jeweils für verschiedene Motorleistungen der Hacker.

Motorleistung (kW)	Zielsortiment	Produktivität [Srm/PMH ₁₅]
50	Waldrestholz	14.3
150	Waldrestholz	36.4
250	Waldrestholz	56.1
350	Waldrestholz	74.6
450	Waldrestholz	92.4
50	Energierundholz	15.9
150	Energierundholz	49.1
250	Energierundholz	82.9
350	Energierundholz	117.2
450	Energierundholz	151.7

Abbildung 4: Vergleich der Produktivitäten, die mit den Modellen von Ghaffariyan et al. (2013) und Kuptz et al. (2015) geschätzt wurden. Annahmen im Modell von Ghaffariyan: Waldfrisches Fichtenholz (Wassergehalt 60%, Rohdichte 650 kg/m³); mittlerer Stückinhalt 0.12 m^3 bei Waldrestholz und 0.70 m^3 bei Energierundholz; Umrechnungsfaktor von 1.06 für die Umrechnung von PMH $_0$ in PMH $_1$ 5.

Der Vergleich der Modelle von Ghaffariyan et al. (2013) und Kuptz et al. (2015) zeigt für die Produktivitätswerte von Waldrestholz einen ähnlichen Verlauf über den gesamten Bereich der Motorleistungen der Hacker. Für das Energierundholz sind die Produktivitäten im Bereich der unteren Leistungsklassen der Hacker bei Ghaffariyan deutlich höher als bei Kuptz. Im Bereich der leistungsstärkeren Hacker nähern sich die beiden Modelle an.

Für die Angabe der Produktivität in Srm/PMH₁₅ müssen beim Modell von Ghaffariyan verschiedene Annahmen getroffen werden, so insbesondere über die Rohdichte und den mittleren Stückinhalt des Hackgutes, da die Produktivität im Modell in Tonnen Grünbiomasse pro PMH₀ angegeben wird. Weiter muss auch eine Annahme für die Umrechnung von PMH₀ in PMH₁₅ getroffen werden. All diese Annahmen sind mit gewissen Unsicherheiten behaftet. Im Modell von Kuptz müssen dagegen lediglich die Art des Hackgutes und die Motorleistung des Hackers gewählt werden, was erheblich einfacher und zuverlässiger ist. Deshalb wird als Grundlage für unser Produktivitätsmodell das Modell von Kuptz et al. (2013) verwendet.

3.4 Mathematisches Modell

Nebst der reinen Hackzeit muss ein Produktivitätsmodell auch die Wartezeiten infolge von Muldenwechseln und Engpässen in der Transportlogistik sowie die Umsetzzeiten zwischen den Haufen beim Hacken und zwischen den Arbeitsorten berücksichtigen. Weil aus diesen Gründen die theoretisch mögliche Hackerleistung auf Dauer kaum erreicht wird, gehen Schulmeyer et al. (2016) davon aus, dass die reine Hackzeit in der Praxis nur rund 2/3 der gesamten Arbeitszeit beträgt. Rund ein Drittel der Arbeitszeit entfällt also auf Stand-, Umsetz- und Wartezeiten. Die reine Hackzeit muss folglich um 50% erhöht werden um die gesamte Arbeitszeit WSH zu erhalten.

Zur gesamten Arbeitszeit WSH müssen noch die bezahlten Arbeitswege und Pausen des Personals (in der Regel 1 Maschinist) dazugerechnet werden, um die sogenannte Arbeitsplatzzeit WPSH zu erhalten. Diese bildet die Basis für die Kostenberechnung.

Kleine Hackholzhaufen bedingen ein häufigeres Umsetzen des Hackers beim Hacken. Die einzelnen Hackholzhaufen sollten also möglichst gross sein. Im Anhang werden drei Methoden zur Schätzung der Schüttraumvolumina von Hackholzhaufen beschrieben.

Produktivitätsmodell auf der Grundlage des Modelles von Kuptz et al. (2015):

Produktivität von Energierundholz Prod_{RundHolz}

 $Prod_{RundHolz} = 0.2848 \times MotorleistungHacker^{1.0276}$

 $PMH_{15_Hacken_RundHolz} = 1/Prod_{RundHolz}$

Zuschlag für Warte – und Umsetzzeiten $t_{indirekte\ Arbeit}$ (Schulmeyer et al. (2016): $t_{indirekte\ Arbeit} = 1/2 \times PMH_{15_Hacken_RundHolz}$

Dieser Zuschlag ist eine indirekte Zeit und wird somit erst bei der Kostenberechnung des Personals verwendet.

Produktivität von Waldrestholz Prod_{RestHolz}

 $Prod_{RestHolz} = 0.5177 \times MotorleistungHacker^{0.8486}$

 $PMH_{15\ Hacken\ RestHolz} = 1/Prod_{RestHolz}$

Zuschlag für Warte – und Umsetzzeiten $t_{indirekte\ Arbeit}$ (Schulmeyer et al. (2016): $t_{indirekte\ Arbeit} = 1/2 \times PMH_{15\ Hacken\ RestHolz}$

Dieser Zuschlag ist eine indirekte Zeit und wird somit erst bei der Kostenberechnung des Personals verwendet.

Legende:

MotorleistungHacker: Motorleistung des Hackers in [kW]

 $PMH_{15_Hacken_RundHolz}: Zeitbedarf \ f\"{u}r \ das \ Hacken \ eines \ Srm \ Energierundholz \ in \ [PMH_{15}] \ PMH_{15_Hacken_RestHolz}: Zeitbedarf \ f\"{u}r \ das \ Hacken \ eines \ Srm \ Waldrestholz \ in \ [PMH_{15}]$

 $t_{indirekte\ Arbeit}$: Zeiten für Warten und Umsetzen in [PMH₁₅]

frei wählbar; Defaultwert $^{1}\!/_{2}$ der reinen Hackerzeiten.

 $Prod_{RundHolz}$: $Produktivität für das Hacken eines Srm Energierundholz in <math>\left[\frac{Srm}{PMH_{15}}\right]$

 $Prod_{RestHolz}$: Produktivität für das Hacken eines $Srm\ W$ aldrestholz in $\left[\frac{Srm}{PMH_{15}}\right]$

4 Zeitsystem und Umrechnungen im Produktivitätsmodell "Hacker"

4.1 Zeitsystem

Abbildung 5: Verwendetes Zeitsystem (Björheden und Thompson 1995, Heinimann 1997; verändert).

Die in Abbildung 4 aufgeführten Zeiten können grundsätzlich für das Produktionssystem als Ganzes sowie für die beteiligten Produktionsfaktoren (Maschinen, Personal) ermittelt werden. Je nachdem spricht man zum Beispiel von der System-, der Maschinen- oder der Personalarbeitszeit. In Anlehnung an die Originalgrundlagen wurden die Abkürzungen von den englischen Begriffen abgeleitet (Tabelle 4).

Tabelle 4: Übersicht über die verwendeten Zeitbegriffe.

	Arbeitsplatzzeit				
		Nicht Arbeitszeit	Arbeitszeit (work time)		e)
Betrachtetes Objekt		(non work time)			
	workplace	n on w ork	work	indirect	p roductive
System (s ystem h our)	WPSH	NWSH	WSH	ISH	PSH
Maschine (machine hour)	WPMH	NWMH	WMH	IMH	PMH ₁₅ =MAS
Personal (p ersonal h our)	WPPH	NWPH	WPH	IPH	PPH

Berechnung der System- und Faktorzeiten pro Schüttraummeter

Schüttraummeter (Srm) werden in der Regel in Rinde angegeben. Es kommt bei der Berechnung der Produktivität jedoch nicht darauf an, ob mit oder ohne Rinde gehackt wird.

Maschinen:

$$Produktivit$$
ät = $\frac{Anzahl\ Srm\ in\ Rinde}{PMH_{15}}$

$$PMH_{15} = \frac{1}{Produktivität}$$

Personal:

$$WPPH = PMH_{15} \times F_{indir} \times F_{Weg} \times F_{Pausen} \times F_{St\"{o}r}$$

In F_{indir} sind die unvermeidbaren Verlustzeiten > 15 Min., wie Rüstzeit, Umsetzzeit und Servicezeit enthalten.

In unserem Fall beträg $F_{indir} = 1.5$

Gemäss Schulmeyer et al. (2016) im LWF-Merkblatt Nr. 10 beträgt die durch Umsetz- und Wartezeiten bedingte Auslastung eines Hackers durchschnittlich nur 2/3 der gesamten Arbeitszeit WSH, d.h.

$$t_{indirekte\ Arbeit} = \frac{1}{2} \times PMH_{15_{Hacken_{RundHolz}}}$$
 oder $t_{indirekte\ Arbeit} = \frac{1}{2} \times PMH_{15_{Hacken_{RestHolz}}}$

Daraus ergibt sich für $F_{indir} = 1.5$

$$F_{Weg} = 1 + \frac{bezahlte\ Wegzeit\ pro\ Tag}{bez.WSH\ (Arbeitszeit)\ pro\ Tag}$$

$$F_{Pausen} = 1 + \frac{bez.\ Pausenzeiten\ pro\ Tag}{bez.WSH\ (Arbeitszeit)\ pro\ Tag}$$

$$F_{Stör} = 1 + \frac{störzeiten>15\ Min}{WSH}$$

5 Berechnung von Zeitbedarf und Kosten

5.1 Zeitbedarf der Produktionsfaktoren pro Srm

Tabelle 5: Formeln zur Berechnung des Zeitbedarfs der Produktionsfaktoren pro Srm.

Input		Formel	Out	put
Produktivität	$\left[\frac{Srm}{PMH_{15}}\right]$	$PMH_{15} = \frac{1}{Produktivit}$	PMH_{15}	$\left[\frac{PMH_{15}}{Srm}\right]$
		$WPPH = PMH_{15} \times F_{indir} \times F_{Weg} \times F_{Pausen} \times F_{St\"{o}r}$	WPPH	$\left[\frac{PMH_{15}}{Srm}\right]$
		Faktoren:		[51.110]
F_{indir}	[-]	$F_{indir} = frei$ wählbar; im Modell 1.5 als Defaultwert gesetzt		
F_{Weg}	[-]			
F_{Pausen}	[-]	$F_{Weg} \times F_{Pausen} = ist frei wählbar,$		
$F_{St\"{o}r}$	[-]	im Modell $\frac{540 \text{Min}}{(540-60) \text{Min}} = 1.125 \text{als Default eingesetzt}$		
		$F_{St\"{o}r} = frei\ w\"{a}hlbar; im\ Modell\ 1.0\ als\ Default$ eingesetzt		

5.2 Kosten der Produktionsfaktoren pro Srm

 $Kosten\ Hacken_{Rundholz} \\ = PMH_{15_{HackenRundHolz}} \times F_{indir} \times F_{Weg} \times F_{Pausen} \times F_{St\"{o}r} \times Kostenansatz\ Maschinist \\ + PMH_{15_{HackenRundHolz}} \times Kostenansatz\ Hacker$

 $\label{eq:Kosten Hacken} Kosten \ Hacken_{Restholz} \\ = PMH_{15_{HackenRestHolz}} \times F_{indir} \times F_{Weg} \times F_{Pausen} \times F_{St\"{o}r} \times Kostenansatz \ Maschinist \\ + PMH_{15_{HackenRestHolz}} \times Kostenansatz \ Hacker$

Legende:

Kosten $Hacken_{Rundholz}$ pro $Srm~i.R.:~Gesamtkosten~f\"ur~das~Hacken~von~Rundholz~in~Rinde~pro~Srm~Kosten~Hacken_{Restholz}$ pro Srm~i.R.:~Gesamtkosten~f"ur~das~Hacken~von~Restholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Restholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Restholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Restholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Rundholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Rundholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Rundholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Restholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Restholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Restholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Restholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Restholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Restholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Restholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Restholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Restholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Restholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Restholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Restholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Restholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Restholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Restholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Restholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Restholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Restholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~Restholz~in~Rinde~pro~Srm~i.R.:~Gesamtkosten~f'ur~das~Hacken~von~f'ur~das~Hacken~von~f'ur~das~Hacken~von~f'ur~das~Hacken~von~f'ur~das~hacken~von~f'ur~das~hacken~f'ur~das~hacken~f'ur~das~hacken~f'ur~das~hacken~f'ur~das~hacken~f'ur~das~hacken~f'ur

Kostenansatz Maschinist: Kostenansatz Maschinist [CHF/PMH15]

Kostenansatz Hacker: Kostenansatz Hacker ohne Maschinist [CHF/PMH15]

 $PMH_{15_{HackenRundHolz}}$: Produktive Hackerarbeitszeit beim Aufarbeiten von Energierundholz

 $mit\ Unterbrechungen\ < 15\ MinF_{indir}\ i.R.$

 $PMH_{15_{HackenRestHolz}}$: Produktive Hackerarbeitszeit beim Aufarbeiten von Energierestholz

 $mit\ Unterbrechungen\ < 15\ MinF_{indir}\ i.\ R.$

 $F_{indir}, F_{Wea}, F_{Pausen}, F_{St\"{o}r}$: Defaultwerte der Faktoren siehe oben

5.3 Kostenansätze für Grosshacker

Abgaben zu Kostenansätzen für Grosshacker finden sich nur schwerlich, da die Hackkosten in der Regel pro Schüttraummeter abgerechnet werden. Die Maschinenstundenkosten hängen vor allem von der Grösse (max. Holzdurchmesser, Motorleistung) des Hackers bzw. der Hackleistung ab.

In Tabelle 6 werden Grössenordnungen für Maschinenstundenkosten inkl. Maschinist für Grosshacker angegeben. Diese können für Berechnungen verwendet werden, falls keine genaueren Werte vorliegen. Die Werte wurden aufgrund von eigenen Maschinenkostenberechnungen und Literaturrecherchen ermittelt.

Für die produktiven Hackerzeiten dürften die Kosten für einen Grosshacker inkl. Maschinisten im Bereich von 450-550 CHF/PMH₁₅ liegen. Anfahrtswege zum Hackort werden von den Unternehmern in der Regel zusätzlich verrechnet, ebenso Wartezeiten (z.B. infolge von Unterbrüchen in der Logistikkette).

Leistungsbereich [kW] (PS)	Maschinenstundenkosten [CHF/PMH ₁₅]	Verrechnungssatz [CHF/PMH ₁₅]
200-299 (272-407)	450	495
300-399 (408-543)	500	550
> 400 (> 544)	550	605

Tabelle 6: Aufgrund eigener Maschinenkostenberechnungen geschätzte Kostenansätze für Grosshacker auf Lastwagen. Der Verrechnungssatz berücksichtigt einen Zuschlag von 10% für Aquisition, Verwaltung, Risiko und Gewinn.

5.4 Berechnungsbeispiel

Ein Hackguthaufen aus Energierundholz soll mit einem Grosshacker der obersten Leistungsklasse 4 mit einer Motorleistung von 580 PS gehackt werden. Die Berechnung der mutmasslichen Hackschnitzelmenge aus dem Hackguthaufen nach dem Quadersektionsverfahren gemäss Anhang 7 ergab 180 Srm (grün=Eingangsgrössen, rot=berechnete Werte).

	Wert	[Einheit]	Bemerkungen
Hackgutmenge	180	Srm	
Motorleistung Hacker	350	kW	Umrechnung: 1kW=1.36 PS
Kostenansatz Maschinist	70	CHF/WPPH	
Kostenansatz Hacker ohne Maschinist	600	CHF/PMH15	
Produktivität für Energierundholz	117.17	Srm/PMH ₁₅	Prod _{Erundh} =0.2848 x 426 ^{1.0276}
Produktive Hackzeit pro Srm	0.51	Min./Srm	PMH ₁₅
Produktive Hackzeit PMH ₁₅	92.17	Min.	PMH ₁₅
Arbeitsplatzzeit Personal (WPPH)	155.54	Min.	WPSH = PMH ₁₅ x F _{indir} x F _{Weg/Pausen} x FS _{tör} ; wobei F _{indir} = 1.5; F _{Weg/Pausen} =1.125 _, F _{stör} =1
Für Hacker: PMH ₁₅	92.17	Min.	
Kosten Maschinist	181.46	CHF	
Kosten Hacker	921.72	CHF	
Kosten	6.13	CHF/Srm	

Gleiches Beispiel wie oben, jedoch für einen Hackguthaufen aus Waldrestholz.

	Wert	[Einheit]	Bemerkungen
Hackgutmenge	180	Srm	
Motorleistung Hacker	350	kW	Umrechnung: 1kW=1.36 PS
Kostenansatz Maschinist	70	CHF/WPPH	
Kostenansatz Hacker ohne Maschinist	600	CHF/PMH15	
Produktivität für Waldrestholz	74.64	Srm/PMH ₁₅	Prod _{Erundh} =0.2848 x 426 ^{1.0276}
Produktive Hackzeit pro Srm	0.80	Min./Srm	PMH ₁₅
Produktive Hackzeit PMH ₁₅	144.69	Min.	PMH ₁₅
Arbeitsplatzzeit Personal (WPPH)	244.17	Min.	WPSH = PMH ₁₅ x F _{indir} x F _{Weg/Pausen} x FS _{tör} ; wobei F _{indir} = 1.5; F _{Weg/Pausen} =1.125, F _{stör} =1
Für Hacker: PMH ₁₅	144.69	Min.	
Kosten Maschinist	284.87	CHF	
Kosten Hacker	1446.94	CHF	
Kosten	9.62	CHF/Srm	

Bei Annahme einer durchschnittlichen Aufteilung der Hackguthaufen auf 70% Energierundholz und 30% Waldrestholz ergeben sich für das gewählte Beispiel mittlere Kosten von 7.18 CHF/Srm.

6 Abkürzungen und Definitionen

Tabelle 7: Abkürzungen und Definitionen für das Modell "Hacker".

Abkürzung	Definition	Default-	Def.	Einheit
		wert	bereich	
MotorleistungHacker	Motorleistung des Hackers in kW (1 kW = 1.36 PS)	350	100-	kW
			500	
Waldrestholz	Siehe Abbildung 3			
Energierundholz	Siehe Abbildung 3			
Faktoren	Multiplikationsfaktoren für			
F_{indir}	indirekte Arbeitszeiten	1.5		
F_{Pause}	Pausen >15 Min.		≥1.0	[-]
F_{Weg}	Wegzeiten >15 Min.		≥1.0	[-]
	Gewählter Defaultwert: F _{Pause} *F _{Weg} =1.125	1.125		
$F_{St\"{o}r}$	Störzeiten >15 Min.	1.0		
Srm	Schüttraummeter. Ein m ³ Holzmasse entspricht 2.8 Srm		≥ 0	[Srm]
	Hackschnitzel			
PMH ₁₅	Produktive Hackerzeit mit Unterbrüchen < 15 Min. pro			$[PMH_{15}]$
	Srm			[Srm]
Produktivität	Gehacktes Holzvolumen in Srm pro Maschinenarbeits-			[Srm]
	stunde			$\left[\frac{PMH_{15}}{PMH_{15}}\right]$
WPPH	Arbeitsplatzzeit des Personals (Maschinist) = PMH ₁₅ x		≥0	$\lceil PMH_{15} \rceil$
	F _{indir} ·x F _{Weg/Pausen} x F _{Stör}			$\left[\frac{15}{Srm}\right]$
	F _{indir} =1.5, in F _{indir} sind die Wartezeiten während des			2 0
	Hackens (z.B. Muldenwechsel) und die Umsetzzeiten			
	enthalten.			
WPSH	Arbeitsplatzzeit des Sytems=WPPH		≥0	$[PMH_{15}]$
			= 0	$\left[\frac{13}{Srm}\right]$

7 Anhang: Methoden zur Abschätzung des Poltervolumens

7.1 Schätzmethode 1

Falsch eingeschätzte Hackschnitzelmengen aus Hackguthaufen führen zu Unsicherheiten in der bereitgestellten Liefermenge, erschweren die Planung von Hackereinsätzen und Transportkapazitäten und führen zu höheren Bereitstellungskosten.

Zur Abschätzung der Hackgutmenge eignet sich die praxistaugliche Methode nach Kuptz et al. (2015). Das Hackgut wird wegen der unterschiedlichen Ausformung in die beiden Hackgutarten "Energierundholz" und "Waldrestholz" eingeteilt. Die Schätzung der Hackschnitzelmenge erfolgt für die beiden Hackgutarten mit unterschiedlichen Verfahren.

Die Berechnung der Hackgutmenge [Srm] erfolgt in zwei Schritten:

- Berechnung des Poltervolumens in Raummeter (Rm) für das Energierundholz oder für das Waldrestholz
- 2. Multiplikation dieses Poltervolumens mit dem Korrekturfaktor der Stirnfläche (Kronenfussfläche)

Die nachfolgend empfohlenen Mess- und Berechnungsverfahren zur Bestimmung der Hackholzmenge stammen aus der Auswertung von Daten aus mehreren 100 Hackholzhaufen.

7.1.1 Raumvolumen für Hackguthaufen aus Energierundholz

Für Energierundholz eignet sich das Quader-Sektionsverfahren:

$$V_{QS}[Rm] = I_{BSS} \times h_{SkSS} \times \frac{t_l + t_r}{2}$$

$$V_{OS}[Rm] = I_{BSS} \times h_{SkSS} \times t_M$$

Legende:

 V_{OS} : Raumvolumen des Hackguthaufens, berechnet nach dem Quader-Sektionsverfahren

I_{BSs}: Basislänge Stirnseite

 h_{SkSS} : mittlere Höhe der Sektionen der Stirnseite

 t_l und t_r : Tiefe links und rechts geteilt durch 2 ergibt die mittlere Tiefe t_M

[Rm]: Raummeter

Abbildung 7: Beim Quader-Sektionsverfahren werden die Polter an der Stirnseite in 1m breite Sektionen h_{SkSs} unterteilt, deren Höhe jeweils gemessen wird. Der Mittelwert aus diesen einzelnen Höhen ergibt die mittlere Höhe des Hackguthaufens.

7.1.2 Raumvolumen für Hackguthaufen aus Waldrestholz

Für Hackguthaufen aus Waldrestholz eignet sich das Zylinder-Verfahren:

$$V_{Zy}[Rm] = \frac{\pi}{4} \times I_{BSS} \times h_{SS} \times t_{M}$$

Legende:

 V_{Zv} : Raumvolumen des Hackguthaufens, berechnet nach dem Zylinder-Verfahren

I_{BSs}: *halbe* Basislänge Stirnseite

 h_{SS} : Höhe Stirnseite

 t_l und t_r : Tiefe links und rechts geteilt durch 2 ergibt die mittlere Tiefe t_M

Abbildung 8: Verfahren mit Zylinderform.

7.1.3 Faktoren zur Bestimmung der Hackgutmenge aus dem Raumvolumen

Die nach dem Quader-Sektionsverfahren bzw. dem Zylinderform-Verfahren berechneten Raumvolumen der Hackgutpolter können mittels Korrekturverfahren in Schüttraummeter umgerechnet werden. Damit lässt sich vor dem Hacken ermitteln, welche Hackschnitzelmenge sich aus einem Hackguthaufen ergeben wird.

Die Korrekturfaktoren gegenüber den unterstellten geometrischen Formen zur Bestimmung des Poltervolumens sind in Tabelle 7 zusammengestellt. Die Wertebereiche sind so gewählt, dass 70% der Messwerte innerhalb des angegebenen Bereichs liegen. Bei stark ungleichmässiger Ausformung der Höhe an der Stirnseite wird auch für Waldrestholz das Sektionsverfahren empfohlen.

Tabelle 8: Korrekturfaktoren gegenüber den unterstellten geometrischen Formen zur Bestimmung des Poltervolumens (Kuptz et al. 2015).

Sortiment	Quader-Sek	tionsverfahren	Zylinder-Verfahren		
	V_{QS}		V_{QS} V_{Zy}		
	Mittelwert Wertebereich		Mittelwert	Wertebereich	
Waldrestholz	1.0 0.9-1.2		1.0	0.9-1.1	
Energierundholz	1.0	0.9-1.1	0.9	0.8-1.1	

Die Kronenfussfläche kann entweder geschätzt oder mit einem Holzrahmen von 1x1m Seitenlänge näherungsweise bestimmt werden. Diese Methode kann recht aufwendig sein.

Abbildung 9: Bestimmen des Flächenanteils der Kronenfüsse an der gesamten Stirnfläche des Polters. Diese Bestimmung kann stichprobenartig mittels eines Holzrahmens von 1x1m Seitenlänge erfolgen.

Tabelle 9: Faktoren für die Umrechnung vom Raummass [Rm] des Polters auf die zu erwartende Hackschnitzelmenge [Srm]. Die Kronenfussfläche wird als prozentualer Anteil an der gesamten Stirnfläche des Polters angegeben.

	Waldrestholz				Energierundholz					
Kronenfussfläche [%]	20	25	30	35	40	45	50	55	60	65
Umrechnungsfaktor	0.4	0.6	0.7	0.8	1.0	1.1	1.2	1.4	1.5	1.6

Beispiel:

Energierundholzpolter: $I_{BSS}=2.10~m;~h_{SS}=2.3~m;~t_{M}=3.10~m;~Kronenfussanteil=45\%$

$$V_{Zy} = \frac{\pi}{4} \times 2.1 \times 2.30 \times 3.10 = 11.76 \, Rm$$

 $Hackschnitzelmenge = 11.76 \times 1.1 = 12.9 Srm$

7.2 Schätzmethoden 2, 3 und 4

Die Raurica Waldholz AG (2010) hat in einer Studie untersucht, ob es zuverlässige Methoden zur Schätzung des Hackschnitzelvolumens von Energieholzhaufen gebe. Im Allgemeinen liegen die Schätzfehler bei grösseren Haufen höher als bei kleineren. Folgende Schätzmethoden eignen sich:

Schätzmethode 2: für Poltergrösse < 200m³

 $Hackgutmenge [Srm] = H\ddot{o}he \times L\ddot{a}nge \times Tiefe \times 0.6$

Schätzmethode 3: für Poltergrösse 200-1000m³

 $Hackgutmenge [Srm] = H\ddot{o}he \times L\ddot{a}nge \times Tiefe \times 0.4$

Schätzmethode 4: für alle Poltergrössen

Hackgutmenge [Srm]

 $= 2.8 (H\ddot{o}he \times L\ddot{a}nge \times Tiefe \times 0.5)$

 \times (Volumenanteil Nadelholz \times 0.8 + Volumenanteil Laubholz \times 0.6)

 \times (Volumenanteil Derbholz \times 0.7 + Volumenanteil Reisig \times 0.5))

Beispiel:

Energierundholzpolter; Höhe = $4.1 \, m$; Länge = 15 m; Tiefe = $5 \, m$; nur Nadelholz; nur Derbholz.

Hackgutmenge [Srm]

$$= 2.8 \times (4.1 \times 15 \times 5 \times 0.5 \times (1.0 \times 0.8 + 0 \times 0.6) \times (1.0 \times 0.7 + 0.0 \times 0.5)) = 241$$

Die Schätzmethoden wurden anhand der vorhandenen Datensätze (Hackschnitzelmenge total 20'700 Srm) auf ihre Genauigkeit überprüft. Mit den Schätzmethoden 2 bis 4 betrug die Abweichung der geschätzten Hackschnitzelmenge weniger als 10% zur tatsächlichen Menge.

Die Schätzmethode 4, bei der auch der Nadelholz- bzw. Laubholzanteil sowie der Derbholzanteil berücksichtigt wurden, zeigte sich erwartungsgemäss als die genauste Methode.

8 Literaturverzeichnis

Björheden, R., Apel, K., Shiba, M., Thompson, M., 1995: IUFRO forest work study nomenclature. Swedish University of Agricultural Science. Dept. of Operational Efficiency, Garpenberg.

Cremer, T., 2008: Bereitstellung von Holzhackschnitzeln durch die Forstwirtschaft: Produktivitätsmodelle als Entscheidungsgrundlage über Verfahren und Aushaltungsvarianten, entwickelt auf der Basis einer Metaanalyse, Universitätsbibliothek Freiburg. 199 S.

Ghaffariyan, M., Spinelli, R. und Brown, M., 2013: A model to predict productivity of different chipping operations. J For Sci 75(3). 129-136.

Kanzian, C., Holzleitner, F., Stampfer, K. und Ashton, S, 2009: Regional energy wood logistics—optimizing local fuel supply. Silva Fennica 43(1). 113-128.

Kuptz, D., Schulmeyer, F., Hüttl, K., Dietz, E., Turowski, P., Zormaier, F., Borchert, H. und Hartmann, H., 2015: Optimale Bereitstellungsverfahren für Holzhackschnitzel. LWF Bayerische Landesanstalt für Wald und Forstwirtschaft. 316 S.

Raurica Waldholz AG, 2010: Wie viel Holz ist im Polter? Wald und Holz(12). 26-27.

Schulmeyer, F., Mergler, F., Hüttl, K., Zormaier, F., 2016: Bereitstellung von Waldhackschnitzeln. Bayerische Landesanstalt für Wald und Forstwirtschaft, Merkblatt 10, 6 S.

9 Beurteilung der Qualität des Modells "Hacker"

Kriterien		Bewertung		Bemerkungen			
Datengrundlage aus den Jahren		2015					
Technische Aktualität (Verfahren)	aktuell	teilw.veraltet	veraltet				
Umfang der Datengrundlage	gross	mittel	klein	Untersuchung "Optimale Bereitstellungsverfahren für Holzhackschnitzel" (Kuptz et al, 2015). Zeiterhebung über 36 Tage, davon 10 Tage gesamte Arbeitszeit und 26 Tage Ausschnitte davon.			
Anwendbarkeit auf CH-Verhältnisse	gut	mittel	schlecht				
Dokumentation der Anwendung	gut	mittel	gering	Teil A			
Modell anhand der Grundlagendaten überprüft	ja	nein					
Detaillierungsgrad des Modells	gut	mittel					

Gesamturteil:

Beurteilung durch: R. Lemm, F. Frutig

Datum: 08. Dezember 2018