```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
```

In [5]:

```
behave_db = pd.read_excel("QVI_transaction_data.xlsx")
```

In [6]:

behave db.head()

Out[6]:

	DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES
0	43390	1	1000	1	5	Natural Chip Compny SeaSalt175g	2	6.0
1	43599	1	1307	348	66	CCs Nacho Cheese 175g	3	6.3
2	43605	1	1343	383	61	Smiths Crinkle Cut Chips Chicken 170g	2	2.9
3	43329	2	2373	974	69	Smiths Chip Thinly S/Cream&Onion 175g	5	15.0
4	43330	2	2426	1038	108	Kettle Tortilla ChpsHny&Jlpno Chili 150g	3	13.8

In [7]:

```
trans_db = pd.read_csv("QVI_purchase_behaviour.csv")
```

In [8]:

trans db.head()

Out[8]:

	LYLTY_CARD_NBR	LIFESTAGE	PREMIUM_CUSTOMER
0	1000	YOUNG SINGLES/COUPLES	Premium
1	1002	YOUNG SINGLES/COUPLES	Mainstream
2	1003	YOUNG FAMILIES	Budget
3	1004	OLDER SINGLES/COUPLES	Mainstream
4	1005	MIDAGE SINGLES/COUPLES	Mainstream

In [9]:

```
print(behave_db.shape)
print(trans_db.shape)
```

(264836, 8) (72637, 3)

In [10]:

```
print(behave_db.isnull().sum())
print('\r')
print(trans_db.isnull().sum())
```

DATE 0 STORE_NBR 0 LYLTY_CARD_NBR 0
TXN_ID 0
PROD_NBR 0
PROD_NAME 0
PROD_QTY 0
TOT_SALES 0
dtype: int64

LYLTY_CARD_NBR 0
LIFESTAGE 0
PREMIUM CUSTOMER 0

There is no null value in the dataset.

In [11]:

dtype: int64

behave_db.describe()

Out[11]:

	DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_QTY	TOT_SALES
count	264836.000000	264836.00000	2.648360e+05	2.648360e+05	264836.000000	264836.000000	264836.000000
mean	43464.036260	135.08011	1.355495e+05	1.351583e+05	56.583157	1.907309	7.304200
std	105.389282	76.78418	8.057998e+04	7.813303e+04	32.826638	0.643654	3.083226
min	43282.000000	1.00000	1.000000e+03	1.000000e+00	1.000000	1.000000	1.500000
25%	43373.000000	70.00000	7.002100e+04	6.760150e+04	28.000000	2.000000	5.400000
50%	43464.000000	130.00000	1.303575e+05	1.351375e+05	56.000000	2.000000	7.400000
75%	43555.000000	203.00000	2.030942e+05	2.027012e+05	85.000000	2.000000	9.200000
max	43646.000000	272.00000	2.373711e+06	2.415841e+06	114.000000	200.000000	650.000000

In [13]:

trans_db.describe()

Out[13]:

LYLTY_CARD_NBR

count	7.263700e+04
mean	1.361859e+05
std	8.989293e+04
min	1.000000e+03
25%	6.620200e+04
50%	1.340400e+05
75%	2.033750e+05
max	2.373711e+06

In [14]:

db = pd.merge(behave_db, trans_db, on="LYLTY_CARD_NBR", how="right")
db.head()

Out[14]:

_	DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES	LIFESTAGE
	0 43390	1	1000	1	5	Natural Chip Compny SeaSalt175g	2	6.0	YOUNG SINGLES/COUPLES

1

1	63572	STORE_NBŔ	LYLTY_CARD_NBR	TXN346	PROD_NER	CUS Nacno PROD NAME	PROD_QTŶ	TOT_SALÊS	MIDAGE SINGLES/E595425
2	43414	1	1307	346	96	WW Original Stacked Chips 160g	2	3.8	MIDAGE SINGLES/COUPLES
3	43533	1	1307	347	54	CCs Original 175g	1	2.1	MIDAGE SINGLES/COUPLES
4	43605	1	1343	383	61	Smiths Crinkle Cut Chips Chicken 170g	2	2.9	MIDAGE SINGLES/COUPLES
4								1888)

Here, have merged both the datasets on the basis of Loyalty Card Number of the customer.

In [15]:

```
db['DATE'] = pd.to_datetime(db['DATE'], unit='D', origin='1899-12-30')
```

The DATE column was in int data type, we changed it into datetime datatype.

In [16]:

db.head()

Out[16]:

	DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES	LIFESTAGE
0	2018- 10-17	1	1000	1	5	Natural Chip Compny SeaSalt175g	2	6.0	YOUNG SINGLES/COUPLES
1	2019- 05-14	1	1307	348	66	CCs Nacho Cheese 175g	3	6.3	MIDAGE SINGLES/COUPLES
2	2018- 11-10	1	1307	346	96	WW Original Stacked Chips 160g	2	3.8	MIDAGE SINGLES/COUPLES
3	2019- 03-09	1	1307	347	54	CCs Original 175g	1	2.1	MIDAGE SINGLES/COUPLES
4	2019- 05-20	1	1343	383	61	Smiths Crinkle Cut Chips Chicken 170g	2	2.9	MIDAGE SINGLES/COUPLES
4									Þ

In [17]:

behave_db.head()

Out[17]:

	DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES
0	43390	1	1000	1	5	Natural Chip Compny SeaSalt175g	2	6.0
1	43599	1	1307	348	66	CCs Nacho Cheese 175g	3	6.3
2	43605	1	1343	383	61	Smiths Crinkle Cut Chips Chicken 170g	2	2.9
3	43329	2	2373	974	69	Smiths Chip Thinly S/Cream&Onion 175g	5	15.0
4	43330	2	2426	1038	108	Kettle Tortilla ChpsHny&Jlpno Chili 150g	3	13.8

```
db.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 264836 entries, 0 to 264835
Data columns (total 10 columns):
    Column
                      Non-Null Count
                                        Dtype
                       -----
 0
    DATE
                       264836 non-null datetime64[ns]
 1
    STORE NBR
                       264836 non-null
                                       int64
    LYLTY_CARD_NBR
 2
                       264836 non-null int64
 3
    TXN ID
                       264836 non-null int64
 4
   PROD NBR
                       264836 non-null int64
 5
   PROD_NAME
                       264836 non-null object
                       264836 non-null int64
 6
   PROD QTY
 7
    TOT SALES
                       264836 non-null float64
 8
    LIFESTAGE
                       264836 non-null object
 9
   PREMIUM CUSTOMER 264836 non-null object
dtypes: datetime64[ns](1), float64(1), int64(5), object(3)
memory usage: 22.2+ MB
First, let's identify the product with the highest demanad.
In [21]:
db['PROD NAME'].describe()
Out[21]:
                                          264836
count
                                             114
unique
          Kettle Mozzarella Basil & Pesto 175q
top
freq
                                            3304
Name: PROD NAME, dtype: object
In [23]:
split prods = db["PROD NAME"].str.replace(r'([0-9]+[gG])','').str.replace(r'[^\w]', '')
.str.split()
In [24]:
word count = {}
def count words(line):
    for word in line:
        if word not in word count:
            word count[word] = 1
        else:
            word_count[word] += 1
split prods.apply(lambda line: count words(line))
print(pd.Series(word count).sort values(ascending=False))
Chips
          49770
Kettle
          41288
Smiths
          28860
Salt
          27976
Cheese
          27890
Onin
           1432
Pс
           1431
Garden
           1419
NCC
           1419
           1418
Fries
Length: 198, dtype: int64
Since salsa is an outlier, We need to remove salsa product
```

In [26]:

In [19]:

```
db = db[~db['PROD NAME'].str.contains(r"[Ss]alsa")]
In [27]:
db.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 246742 entries, 0 to 264835
Data columns (total 10 columns):
     Column
 #
                        Non-Null Count
                                          Dtype
                        246742 non-null datetime64[ns]
 0
    DATE
   STORE NBR
                        246742 non-null int64
 1
   LYLTY CARD NBR 246742 non-null int64
 2
    TXN ID
                        246742 non-null int64
 3
   PROD NBR
                        246742 non-null int64
 4
                        246742 non-null object
246742 non-null int64
246742 non-null float64
    PROD NAME
 5
    PROD QTY
 7
     TOT SALES
 8
     LIFESTAGE
                        246742 non-null object
 9
     PREMIUM CUSTOMER 246742 non-null object
dtypes: datetime64[ns](1), float64(1), int64(5), object(3)
memory usage: 20.7+ MB
In [30]:
print('min qty:',db['PROD QTY'].min())
print('max qty:',db['PROD_QTY'].max())
min qty: 1
max qty: 200
In [31]:
db["PROD QTY"].value counts(bins=5).sort index()
Out[31]:
(0.8, 40.8]
                   246740
(40.8, 80.6]
(80.6, 120.4]
                        0
(120.4, 160.2]
                        0
(160.2, 200.0]
                        2
Name: PROD_QTY, dtype: int64
from this binning we identify that PROD_QTY values below 40.8
In [22]:
db.sort values(by="PROD QTY", ascending=False).head()
Out[22]:
       DATE STORE NRR LYLTY CARD NRR TXN ID PROD NRR PROD NAME PROD OTY TOT SALES
                                                                                           LIEFST
```

	DAIL	SIUKE_NBK	LTLIT_CARD_NBR	I YN_ID	PROD_NBR	PROD_NAME	PROD_Q11	IUI_SALES	LIFESI
71457	2019- 05-20	226	226000	226210	4	Dorito Corn Chp Supreme 380g	200	650.0	OLDER FAMI
71456	2018- 08-19	226	226000	226201	4	Dorito Corn Chp Supreme 380g	200	650.0	OLDER FAMI
171902	2018- 08-19	23	23102	19371	26	Pringles Sweet&Spcy BBQ 134g	5	18.5	RETIF
151907	2019- 05-20	118	118021	120799	14	Smiths Crnkle Chip Orgnl Big Bag 380g	5	29.5	RETIF

Dorito Corn Chip Supreme 380g is brought in large quantity by the same customer. This is a outlier with respect to other values in the dataset and can be removed

```
In [33]:
db = db [db ["PROD QTY"] < 6]
In [34]:
db['DATE'].describe()
Out[34]:
count
                        246740
unique
                           364
          2018-12-24 00:00:00
top
freq
          2018-07-01 00:00:00
first
          2019-06-30 00:00:00
last.
Name: DATE, dtype: object
In [36]:
pd.date range(start=db['DATE'].min(), end = db['DATE'].max()).difference(db["DATE"])
Out[36]:
```

we got to know that the missing date was 2018-12-25.

DatetimeIndex(['2018-12-25'], dtype='datetime64[ns]', freq=None)

```
In [37]:
```

```
check_null_date = pd.merge(pd.Series(pd.date_range(start=db["DATE"].min(), end=db["DATE"].max()), name="DATE"), db, on="DATE", how="left")
```

```
In [39]:
```

```
import datetime as dt
trans_by_date = check_null_date["DATE"].value_counts()
dec = trans_by_date[(trans_by_date.index >= dt.datetime(2018,12,1)) & (trans_by_date.ind
ex < dt.datetime(2019,1,1))].sort_index()
dec.index = dec.index.strftime('%d')
ax = dec.plot(figsize=(15,3))
ax.set_xticks(np.arange(len(dec)))
ax.set_xticklabels(dec.index)
plt.title("Transactions for December 2018")
plt.savefig("Transactions for December 2018.png", bbox_inches="tight")
plt.show()</pre>
```


The date with no transactions is 25th of Dec which is Christmas Day. So the store remained closed for that particular day.

```
In [40]:
```

```
db["PROD_NAME"] = db["PROD_NAME"].str.replace(r'[0-9]+(G)','g')
```

In [41]:

```
pack_sizes = db["PROD_NAME"].str.extract(r'([0-9]+[gG])')[0].str.replace("g","").astype(
"float")
print(pack_sizes.describe())
pack_sizes.plot.hist()
```

count		240676.000000
mean		175.302286
std		60.014468
min		70.000000
25%		150.000000
50%		170.000000
75%		175.000000
max		380.000000
Name:	0,	dtype: float64

Out[41]:

<matplotlib.axes. subplots.AxesSubplot at 0x2305c278220>

The smallest package is 70g and the biggest package is 380g. Most packages are mid ranged from 150g to 200g

In [42]:

```
db["PROD_NAME"].str.split().str[0].value_counts().sort_index()
```

Out[42]: Burger

CCs	4551
Cheetos	2927
Cheezels	4603
Cobs	9693
Dorito	3183
Doritos	22041
French	1418
Grain	6272
GrnWves	1468
Infuzions	11057
Infzns	3144
Kettle	41288
NCC	1419
Natural	6050
Pringles	25102
RRD	11894
Red	4427
Smith	2963
Smiths	27390
Snbts	1576
Sunbites	1432
Thins	14075

1564

```
Tostitos 9471
Twisties 9454
Tyrrells 6442
WW 10320
Woolworths 1516
Name: PROD_NAME, dtype: int64
```

Here, we can see that some same product brands are written differently. Dorito and Doritos. Grain and GrnWves. Infuzions and Infzns. Natural and NCC. Red and RRD. Smith and Smiths. Snbts and Sunbites. WW and Woolworths

```
In [43]:
db['PROD NAME'].str.split()[db['PROD NAME'].str.split().str[0] == 'Grain'].value counts()
Out[43]:
[Grain, Waves, Sweet, Chilli, 210g]
                                         3167
[Grain, Waves, Sour, Cream&Chives, g]
                                         3105
Name: PROD NAME, dtype: int64
In [44]:
db['PROD NAME'].str.split()[db['PROD NAME'].str.split().str[0] == 'Natural'].value counts(
Out[44]:
[Natural, Chip, Co, Tmato, Hrb&Spce, 175g]
                                                  1572
[Natural, ChipCo, Sea, Salt, &, Vinegr, 175g]
                                                  1550
[Natural, Chip, Compny, SeaSalt175g]
                                                  1468
[Natural, ChipCo, Hony, Soy, Chckn175g]
                                                  1460
Name: PROD NAME, dtype: int64
In [45]:
db['PROD NAME'].str.split()[db['PROD NAME'].str.split().str[0] == 'Red'].value counts()
Out[45]:
[Red, Rock, Deli, Sp, Salt, &, Truffle, g]
                                                 1498
[Red, Rock, Deli, Thai, Chilli&Lime, 150g]
                                                 1495
[Red, Rock, Deli, Chikn&Garlic, Aioli, 150g] 1434
Name: PROD NAME, dtype: int64
In [47]:
db["Cleaned Brand Names"] = db["PROD NAME"].str.split().str[0]
In [48]:
def clean brand names (line):
    brand = line["Cleaned Brand Names"]
    if brand == "Dorito":
        return "Doritos"
    elif brand == "GrnWves" or brand == "Grain":
       return "Grain Waves"
    elif brand == "Infzns":
       return "Infuzions"
    elif brand == "Natural" or brand == "NCC":
       return "Natural Chip Co"
    elif brand == "Red":
       return "RRD"
    elif brand == "Smith":
       return "Smiths"
    elif brand == "Snbts":
       return "Sunbites"
    elif brand == "WW":
        return "Woolworths"
       return brand
```

In [51]:

```
db["Cleaned_Brand_Names"] = db.apply(lambda line: clean_brand_names(line), axis=1)
```

In [50]:

```
db["Cleaned_Brand_Names"].value_counts(ascending=True).plot.barh(figsize=(10,5))
```

Out[50]:

<matplotlib.axes. subplots.AxesSubplot at 0x230565f83a0>

Brands with higest transactions are Kettle, Smiths, Doritos, Pringles

In [52]:

```
db['LIFESTAGE'].value_counts()
```

Out[52]:

OLDER SINGLES/COUPLES	50793
RETIREES	46431
OLDER FAMILIES	45158
YOUNG FAMILIES	40494
YOUNG SINGLES/COUPLES	33969
MIDAGE SINGLES/COUPLES	23398
NEW FAMILIES	6497
Name: LIFESTAGE, dtype:	int64

In [39]:

```
sns.countplot(y = db['LIFESTAGE'], order = db['LIFESTAGE'].value_counts().index)
```

Out[39]:

<matplotlib.axes._subplots.AxesSubplot at 0x2c4e5407430>

In [54]:

```
grouped_sales = pd.DataFrame(db.groupby(["LIFESTAGE", "PREMIUM_CUSTOMER"])["TOT_SALES"].
agg(["sum", "mean"]))
grouped_sales.sort_values(ascending=False, by="sum")
```

Out[54]:

mean	sum		
		PREMIUM_CUSTOMER	LIFESTAGE
7.291241	156863.75	Budget	OLDER FAMILIES
7.551279	147582.20	Mainstream	YOUNG SINGLES/COUPLES
7.269352	145168.95	Mainstream	RETIREES
7.302705	129717.95	Budget	YOUNG FAMILIES
7.444305	127833.60	Budget	OLDER SINGLES/COUPLES
7.306049	124648.50	Mainstream	
7.459997	123537.55	Premium	
7.445786	105916.30	Budget	RETIREES
7.281440	96413.55	Mainstream	OLDER FAMILIES
7.461315	91296.65	Premium	RETIREES
7.226772	86338.25	Mainstream	YOUNG FAMILIES
7.637156	84734.25	Mainstream	MIDAGE SINGLES/COUPLES
7.285951	78571.70	Premium	YOUNG FAMILIES
7.232779	75242.60	Premium	OLDER FAMILIES
6.663023	57122.10	Budget	YOUNG SINGLES/COUPLES
7.152371	54443.85	Premium	MIDAGE SINGLES/COUPLES
6.673325	39052.30	Premium	YOUNG SINGLES/COUPLES
7.108442	33345.70	Budget	MIDAGE SINGLES/COUPLES
7.297256	20607.45	Budget	NEW FAMILIES
7.313364	15979.70	Mainstream	
7.231720	10760.80	Premium	

In [55]:

```
grouped_sales["sum"].sort_values().plot.barh(figsize=(12,7))
```

Out[55]:

<matplotlib.axes. subplots.AxesSubplot at 0x230550ff4c0>

In [60]:

stage_agg_prem = db.groupby("LIFESTAGE")["PREMIUM_CUSTOMER"].agg(pd.Series.mode).sort_va
lues()
print("Top contributor per LIFESTAGE by PREMIUM category")
print(stage_agg_prem)

Top contributor per LIFESTAGE by PREMIUM category

LIFESTAGE

NEW FAMILIES

OLDER FAMILIES

OLDER SINGLES/COUPLES

YOUNG FAMILIES

MIDAGE SINGLES/COUPLES

RETIREES

YOUNG SINGLES/COUPLES

Name: PREMIUM_CUSTOMER, dtype: object

In [58]:

unique_cust = db.groupby(["LIFESTAGE", "PREMIUM_CUSTOMER"])["LYLTY_CARD_NBR"].nunique().
sort_values(ascending=False)
pd.DataFrame(unique_cust)

Out[58]:

LYLTY_CARD_NBR

LIFESTAGE PREMIUM_CUSTOMER

7917	Mainstream	YOUNG SINGLES/COUPLES
6358	Mainstream	RETIREES
4858	Mainstream	OLDER SINGLES/COUPLES
4849	Budget	
4682	Premium	
4611	Budget	OLDER FAMILIES
4385	Budget	RETIREES
3953	Budget	YOUNG FAMILIES
3812	Premium	RETIREES
3647	Budget	YOUNG SINGLES/COUPLES
3298	Mainstream	MIDAGE SINGLES/COUPLES
2788	Mainstream	OLDER FAMILIES
2685	Mainstream	YOUNG FAMILIES
2480	Premium	YOUNG SINGLES/COUPLES
2398	Premium	YOUNG FAMILIES
2369	Premium	MIDAGE SINGLES/COUPLES
2231	Premium	OLDER FAMILIES
1474	Budget	MIDAGE SINGLES/COUPLES
1087	Budget	NEW FAMILIES
830	Mainstream	
575	Premium	

In [59]:

unique_cust.sort_values().plot.barh(figsize=(12,7))

Out[59]:

<matplotlib.axes. subplots.AxesSubplot at 0x23059f05100>

In [62]:

freq_per_cust = db.groupby(["LYLTY_CARD_NBR", "LIFESTAGE", "PREMIUM_CUSTOMER"]).count()[
"DATE"]
freq_per_cust.groupby(["LIFESTAGE", "PREMIUM_CUSTOMER"]).agg(["mean", "count"]).sort_val
ues(ascending=False, by="mean")

Out[62]:

mean count

LIFESTAGE PREMIUM_CUSTOMER

LIFESTAGE	PREWIUM_COSTOWER		
OLDER FAMILIES	Mainstream	4.749283	2788
	Budget	4.665799	4611
	Premium	4.662931	2231
YOUNG FAMILIES	Premium	4.497081	2398
	Budget	4.493549	3953
	Mainstream	4.449534	2685
OLDER SINGLES/COUPLES	Budget	3.541349	4849
	Premium	3.536950	4682
	Mainstream	3.511939	4858
MIDAGE SINGLES/COUPLES	Mainstream	3.364160	3298
RETIREES	Budget	3.244014	4385
MIDAGE SINGLES/COUPLES	Premium	3.213170	2369
RETIREES	Premium	3.209864	3812
MIDAGE SINGLES/COUPLES	Budget	3.182497	1474
RETIREES	Mainstream	3.140925	6358
NEW FAMILIES	Mainstream	2.632530	830
	Budget	2.597976	1087
	Premium	2.587826	575
YOUNG SINGLES/COUPLES	Mainstream	2.468612	7917
	Premium	2.359677	2480
	Budget	2.350699	3647

This describes the Average frequency of Purchase per segment" and "Unique customer per segment"

We can see now that the "Older - Budget" segment contributes to high sales partly because of the combination of:

- · High Frequency of Purchase and,
- Fairly high unique number of customer in the segment

In [63]:

```
db.groupby(["LIFESTAGE", "PREMIUM_CUSTOMER"])["Cleaned_Brand_Names"].agg(pd.Series.mode)
.sort_values()
```

Out[63]:

```
PREMIUM CUSTOMER
LIFESTAGE
MIDAGE SINGLES/COUPLES
                        Budget
                                             Kettle
YOUNG SINGLES/COUPLES
                        Budget
                                             Kettle
YOUNG FAMILIES
                        Premium
                                             Ket.t.le
                        Mainstream
                                             Kettle
                        Budget
                                             Kettle
RETIREES
                        Premium
                                             Kettle
                        Mainstream
                                             Kettle
                        Budget
                                             Kettle
OLDER SINGLES/COUPLES
                        Premium
                                             Kettle
YOUNG SINGLES/COUPLES
                        Mainstream
                                             Kettle
OLDER SINGLES/COUPLES
                        Mainstream
                                             Kettle
OLDER FAMILIES
                                             Kettle
                        Premium
                                             Kettle
                        Mainstream
                                             Kettle
                        Budget
NEW FAMILIES
                        Premium
                                             Kettle
                        Mainstream
                                             Kettle
                        Budget
                                             Kettle
MIDAGE SINGLES/COUPLES
                       Premium
                                             Kettle
                        Mainstream
                                             Kettle
OLDER SINGLES/COUPLES
                        Budget
                                             Kettle
YOUNG SINGLES/COUPLES
                        Premium
                                             Ket.t.le
Name: Cleaned Brand Names, dtype: object
```

In [64]:

```
for stage in db["LIFESTAGE"].unique():
    for prem in db["PREMIUM_CUSTOMER"].unique():
        print('========',stage, '-', prem,'========')
        summary = db[(db["LIFESTAGE"] == stage) & (db["PREMIUM_CUSTOMER"] == prem)]["Cle
aned_Brand_Names"].value_counts().head(3)
    print(summary)
    plt.figure()
    summary.plot.barh(figsize=(5,1))
    plt.show()
```

Name: Cleaned_Brand_Names, dtype: int64

name: creamed_brand_names, despe: into

```
Pringles - Smiths -
```



```
====== NEW FAMILIES - Mainstream =======
Kettle
            414
            257
Doritos
Smiths
            244
Name: Cleaned Brand Names, dtype: int64
 Smiths
Doritos
 Kettle
             100
                 150
                     200
                         250
                             300
                                 350
                                      400
====== OLDER FAMILIES - Premium =======
Kettle
             1512
Smiths
             1448
             1014
Pringles
Name: Cleaned_Brand_Names, dtype: int64
Pringles
 Smiths
  Kettle
                           1000 1200
          200
              400
                   600
                       800
                                    1400
====== OLDER FAMILIES - Budget =======
Kettle
            3320
Smiths
            2948
            2032
Doritos
Name: Cleaned Brand Names, dtype: int64
Doritos
 Smiths
 Kettle
              1000
                    1500
                         2000
                              2500
                                   3000
          500
          = OLDER FAMILIES - Mainstream =
Kettle
            2019
Smiths
            1742
Doritos
            1263
Name: Cleaned Brand Names, dtype: int64
Doritos
 Smiths
 Kettle
             500
                  750 1000 1250 1500 1750 2000
====== OLDER SINGLES/COUPLES - Premium =======
Kettle
            2947
Smiths
            1952
Doritos
            1784
Name: Cleaned_Brand_Names, dtype: int64
Doritos
 Smiths
 Kettle
           500
                1000
                      1500
                            2000
                                 2500
                                       3000
====== OLDER SINGLES/COUPLES - Budget =======
             3065
Kettle
Smiths
             2010
             1843
Pringles
Name: Cleaned Brand Names, dtype: int64
Pringles
 Smiths
  Kettle
           500
                1000
                      1500
                           2000
                                 2500
                                      3000
===== OLDER SINGLES/COUPLES - Mainstream =======
            2835
Kettle
```

Smiths 2070 Doritos 1791

Name: Cleaned Brand Names, dtype: int64

====== RETIREES - Premium =======

Kettle 2216 Smiths 1395 Pringles 1331

Name: Cleaned_Brand_Names, dtype: int64

====== RETIREES - Budget ======

Kettle 2592 Smiths 1612 Doritos 1592

Name: Cleaned_Brand_Names, dtype: int64

====== RETIREES - Mainstream =======

Kettle 3386 Smiths 2367 Pringles 2103

Name: Cleaned_Brand_Names, dtype: int64

====== YOUNG FAMILIES - Premium =======

Kettle 1745 Smiths 1384 Pringles 1007

Name: Cleaned Brand Names, dtype: int64

====== YOUNG FAMILIES - Budget =======

Kettle 2743 Smiths 2334 Doritos 1767

Name: Cleaned Brand Names, dtype: int64

====== YOUNG FAMILIES - Mainstream =======

Kettle 1789 Smiths 1681 Pringles 1148

Name: Cleaned Brand Names, dtype: int64

Every segment had Kettle as the most purchased brand. Every segment except "YOUNG SINGLES/COUPLES Mainstream" had Smiths as their second most purchased brand. "YOUNG SINGLES/COUPLES Mainstream" had Doritos as their second most purchased brand

Top 3 total sales contributor segments are:

- Older Families(Budget)
- Young Singles/Couples (Mainstream)
- Retirees (Mainstream)

Older Families followed by Young Families has the highest average quantity of chips bought per purchase

Chips brand Kettle is dominating every segment as the most purchased brand.

Observing the 2nd most purchased brand, "Young and Midage Singles/Couples" is the only segment with a different preference (Doritos) as compared to others' (Smiths).

Most frequent chip size purchased is 175gr followed by the 150gr chip size for all segments.

In []: