Machine Learning

Boris Velichkov

How do we learn?

Machine Learning

Supervised Learning

Unsupervised Learning

Classification

Regression

Clustering

Classification

		Attribute 1	Attribute 2	•••	•••	Attribute N	Class
Dataset	X1						"Yes"
	•						"No"
							"Yes"
	Xm						"Yes"

$$Xt = (a1, a2, ..., aN)$$

Class(Xt) = ?

Classification

		Humidity	Wind	Temperature	Class (Play Tennis)
Dataset	X1	high	mid	35°	No
	X2	mid	strong	5°	No
	Х3	mid	weak	20°	Yes
	X4	high	weak	25°	Yes
	X5	low	strong	18°	No

Regression

		Attribute 1	Attribute 2	•••	•••	Attribute N	Class
Dataset	X1						1.5
	•						0.7
	j .						1.8
	Xm						1.2

$$Xt = (a1, a2, ..., aN)$$

Class(Xt) = ?

Regression

		Humidity	Wind	Outlook	Class (T°)
Dataset	X1	high	mid	rainy	35
	X2	mid	strong	overcast	5
	Х3	mid	weak	sunny	20
	X4	high	weak	overcast	25
	X5	low	strong	overcast	18

Xt = (low, weak, sunny)
Class(Xt) = ?

Data Preprocessing

Data Preprocessing

- "Garbage in, garbage out"
- Data-gathering methods are often loosely controlled
 - Out-of-range values (e.g., Income: −100)
 - Impossible data combinations (e.g., Sex: Male, Pregnant: Yes)
 - Missing values
- Misleading results

Why Preprocessing?

- Real world data are generally
 - Incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - Noisy: containing errors or outliers
 - Inconsistent: containing discrepancies in codes or names
- Tasks in data preprocessing
 - Data cleaning: fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies.
 - Data integration: using multiple databases, data cubes, or files.
 - Data transformation: normalization and aggregation.
 - Data reduction: reducing the volume but producing the same or similar analytical results.
 - Data discretization: part of data reduction, replacing numerical attributes with nominal ones.

Data Cleaning

- Fill in missing values (attribute or class value):
 - Ignore the tuple: usually done when class label is missing.
 - Use the attribute mean (or majority nominal value) to fill in the missing value.
 - Use the attribute mean (or majority nominal value) for all samples belonging to the same class.
 - Predict the missing value by using a learning algorithm: consider the attribute with the missing value as a dependent (class) variable and run a learning algorithm (usually Bayes or decision tree) to predict the missing value.
- Identify outliers and smooth out noisy data:
 - Binning
 - Sort the attribute values and partition them into bins (see "Unsupervised discretization" below);
 - Then smooth by bin means, bin median, or bin boundaries.
 - Clustering: group values in clusters and then detect and remove outliers (automatic or manual)
 - Regression: smooth by fitting the data into regression functions.
- Correct inconsistent data: use domain knowledge or expert decision.

Data Transformation

- Normalization:
 - Scaling attribute values to fall within a specified range.
 - Example: to transform V in [min, max] to V' in [0,1], apply V'=(V-Min)/(Max-Min)
 - Scaling by using mean and standard deviation (useful when min and max are unknown or when there are outliers): V'=(V-Mean)/StDev
- Aggregation: moving up in the concept hierarchy on numeric attributes.
- Generalization: moving up in the concept hierarchy on nominal attributes.
- Attribute construction: replacing or adding new attributes inferred by existing attributes.

Data Reduction

- Reducing the number of attributes
 - Data cube aggregation: applying roll-up, slice or dice operations.
 - Removing irrelevant attributes: attribute selection (filtering and wrapper methods), searching the attribute space (see Lecture 5: Attribute-oriented analysis).
 - Principle component analysis (numeric attributes only): searching for a lower dimensional space that can best represent the data..
- Reducing the number of attribute values
 - Binning (histograms): reducing the number of attributes by grouping them into intervals (bins).
 - Clustering: grouping values in clusters.
 - Aggregation or generalization
- Reducing the number of tuples
 - Sampling

Data discretization

- Part of data reduction, replacing numerical attributes with nominal ones.
- Nominal to numerical?
- Binarization?

- Linear classifiers
 - Fisher's linear discriminant
 - Logistic regression
 - Naive Bayes classifier
 - Perceptron

- Linear classifiers
 - Fisher's linear discriminant
 - Logistic regression
 - Naive Bayes classifier
 - Perceptron

- Linear classifiers
 - Fisher's linear discriminant
 - Logistic regression
 - Naive Bayes classifier
 - Perceptron

Support vector machines

Quadratic classifiers

- Kernel estimation
 - k-nearest neighbor

Boosting (meta-algorithm)

- AdaBoost

- Decision trees
 - Random forests

Neural networks

Learning vector quantization

"winner-take-all"

Cross-validation

Final Accuracy = Average(Round 1, Round 2, ...)

Clustering

Clustering Example

Hierarchical Clustering

Aglommerative vs. Divisive Clustering

- ✓ Aglommerative (bottom-up)
- **✓ Divisive (partitional, top-down)**

Agglomerative Clustering

Cluster Similarity

- -Single Link: Similarity of the two most similar members.
- **Complete Link**: Similarity of the two least similar members.
- Group Average: Average similarity between members.

