

CHEMISTRY Chapter 8

ÓXIDOS

1. FUNCIÓN QUÍMICA

CONCEPTO: Una función química es el conjunto de compuestos químicos con propiedades químicas semejantes y con el mismo grupo funcional.

En química inorgánica existen cinco funciones.

2.ÓXIDOS

Función óxido

Los óxidos son compuestos binarios formados por un elemento químico y oxígeno

A. Óxidos básicos o metálicos

Metal + oxígeno

$$Al^{+3} + O^{-2} \rightarrow Al_2O_3$$

Fórmula general

Elemento (metal o no metal)

No metal + oxígeno

$$\text{Cl}^{+5} + \text{O}^{-2} \rightarrow \text{Cl}_2\text{O}_5$$

Número de oxidación: «x»(elemento)

3.NOMENCLATURA SISTEMATICA

CONCEPTO: Esta nomenclatura es recomendada por la IUPAC o UNIÓN INTERNACIONAL DE QUIMICA PURA Y APLICADA (International Union of Pure and Applied Chemestry).

Se utilizan **prefijos** multiplicativos mono, **di**, tri, tetra, penta, hexa, etc. Para indicar que una determinada especie está presente 1, 2, 3, 4,5,6, 7, etc. Veces respectivamente

EJEMPLOS:

trióxido de dihierro

EJEMPLOS:

Pb
$$^{4+}$$
 $O^{2^{-}}$ \rightarrow Pb $_{2}O_{4}$ \rightarrow Pb $_{2}O_{2}$ \rightarrow 1 plomo 2 oxígenos (di) dióxido de plomo

heptaóxido de dicloro

4. NOMENCLATURA STOCK

En esta nomenclatura se escribe: óxido de luego el nombre del elemento y finalmente el número de oxidación (N.O.) entre paréntesis con números romanos.

Si el elemento tiene un solo N.O., se puede obviar ésta.

EJEMPLOS:

EJEMPLOS:

4.NOMENCLATURA TRADICIONAL O CLASICA

- >Se debe conocer todos los números de oxidación (N.O.) del elemento a usarse.
- ➤ Para los óxidos básicos; dependiendo del N.O., se usan los sufijos OSO o ICO, según sea la MENOR o la MAYOR respectivamente.
- ≻Por ejemplo en el caso del hierro (2+,3+), se tienen dos N.O.:

≽En el caso del platino (2+, 4+), también se tienen dos N.O

EJEMPLO:

$$(N.O. mayor)$$

$$Pt^{2+} + O^{2-} \rightarrow Pt_2O_2 \rightarrow PtO$$
Oxido platinoso

EJEMPLO:

$$(N.O. mayor)$$
 $Pt^{4+} + O^{2-} \rightarrow Pt_2O_4 \rightarrow PtO_2$

Óxido platínico

➤El calcio (2+), tiene un solo N.O.. En este caso se considera como mayor.

EJEMPLO:

(único N.O.)
$$Ca^{2+} + O^{2-} \rightarrow Ca_2O_2 \rightarrow CaO$$
Óxido cálcico

➤ Para los óxidos ácidos o anhídridos; dependiendo del N.O., se usan los prefijos HIPO o PER y los sufijos OSO o ICO, dependiendo del N.O. según el siguiente cuadro.

Aumenta el

Anhídrido	Total N.O.				N.O.	Anhídrido	Número de				
Hipo oso			X	X				OX	idac	ión	
OSO		Х	X	X		Hipo oso			+]	+2	+]
030			V			OSO		+2	+3	+4	+3
ico	X	X	X	X	—	ico	+3	+4	+5	+6	+5
Per ico				X		Per ico					+7

>Parea el manganeso : (+4) manganoso, (+6) mangánico, (+7 permangánico.

➤En el caso del cloro (1+,3+,5+,7+), se tienen cuatro valores de N.O.:

Anhídrido		Número de oxidación					
Hipo oso			+1	+2	+1		
oso		+2	+3	+4	+3		
ico	+3	+4	+5	+6	+5		
Per ico					+7		

EJEMPLO: Cl^{1+} + O^{2-} \rightarrow Cl_2O

anhídrido hipocloroso

⇒ (N.O. intermedia menor)

EJEMPLO: Cl_3^{3+} + O^{2-} \rightarrow Cl_2O

anhídrido cloroso

EJEMPLO: (N.O. intermedia mayor)

 Cl^{5+} \rightarrow Cl_2O_5

anhídrido clórico

EJEMPLO:

(N.O. mayor)

 Cl^{7+} O^{2-} O_{2}

anhídrido perclórico

Respecto a la nomenclatura química inorgánica, indique verdadero (V) o falso (F) según corresponda.

Nos enseña a nombrar los compuestos y escribir la fórmula de un compuesto dado conociendo su nombre.

Según la nomenclatura tipo Stock al nombrar un compuesto, se debe especificar el número de oxidación de los elementos, expresados en números romanos, encerrados en paréntesis.

La nomenclatura a utilizar para nombrar compuestos binarios puede ser: sistemática, común o clásica y stock.

Determine cuántos óxidos son básicos (enumérelos).

CaO

II. Br_2O_5

 Al_2O_3

FeO

V. CO₂

RESOLUCIÓN:

metal + oxígeno → óxido básico

Son óxidos

básicos:

- I. CaO
- III. Al₂O₃
- IV. FeO

Usando la nomenclatura IUPAC, nombre el siguiente óxido: Cl_2O_5

RESOLUCIÓN:

Pentaóxido dedicloro

Mediante la nomenclatura de Stock, nombre el siguiente óxido:

PbO₂

RESOLUCIÓN:

NOMENCLATURA DE STOCK

Óxido de plom(V)

Usando la nomenclatura tradicional (clásica), nombre los siguientes óxidos:

b. SO₃

$$(S: +2, +4, +6)$$

RESOLUCIÓN:

Anhídrido	Br	S
hipooso	-	+2
oso	3	+4
ico	+5	(<mark>6</mark>
perico	+7	

NOMENCLATURA TRADICIONAL

Br₂O₃

Anhídrido bromoso

Anhídrido sulfúrico

Para obtener información acerca de una sustancia dada, es necesario conocer su fórmula química y su nombre. Los nombres y las fórmulas de los compuestos son parte del vocabulario fundamental de la química. Formule los siguientes óxidos.

I. Anhídrido hiposulfuroso

$$(S: +2, +4, +6)$$

II. Óxido auroso

III. Óxido de plomo (IV)

RESOLUCIÓN:

I. Anhidrido hiposulfuroso

II. Óxido auroso

III. Óxido de plomo (IV)

$$Pb^{4+}$$
 + O^{2-} \rightarrow Au_2O_4 \rightarrow Pb_2O

Los óxidos son compuestos binarios presentes en la naturaleza y forman partes de diversos minerales: el óxido de aluminio ($Al_2 O_3$) en el corindón, el óxido de calcio (CaO) en la cal viva y el óxido de

plomo (II) en el litar

De las proposiciones dadas

- I. Se mencionan 3 óxidos básicos.
- II. Todos los óxidos tienen la misma atomicidad.

It diagone cheque beda (ts) e que sea (m) ccidance 2 ta (s):

RESOLUCIÓN:

óxido de aluminio (Al₂ O₃) (Pb; +2), +4) óxido de calcio (CaO) $(Pb^2 + Q^2 - Pb_2 O_2 \rightarrow Pb_2 O_2 \rightarrow Pb_2 O_3 \rightarrow Pb_$

- I. Se mencionan 3 óxidos básicos
- II. Todos los óxidos tienen la misma atomicidad

$$Al_2 O_3 \rightarrow 2+3=5$$
 $CaO \rightarrow 1+1=2$
 $PbO \rightarrow 1+1=2$ (F)

III. Dos de ellos tienen atomicidad (Y)

Rpta: I y III