WHAT IS CLAIMED IS

1	1. A method for overcoming stiction in an electro-mechanical system.		
2	the method comprising:		
3	providing a base layer;		
4	providing a contact area, wherein the contact area comprises a portion of		
5	the base layer or a stop disposed thereon;		
6	providing a structural plate, wherein a side of the structural plate is in		
7	contact with the contact area, and wherein a stiction force impedes movement of the		
8	structural plate away from the contact area; and		
. 9	producing a vibration local to the contact area and sufficient to overcome		
10	the stiction force.		
1 -	2. The method of claim 1, wherein the structural plate is one of a		
2	plurality of structural plates and the contact area is one of a plurality of contact areas, and		
3	wherein each of the structural plates is associated with at least one contact area, the		
4	method further comprising:		
5	producing a vibration local to a subset of the contact areas.		
1	3. An electo-mechanical system capable of overcoming stiction forces		
2	through localized vibration, the system comprising:		
3	a base layer having a surface;		
4	a device supported above the surface by a pivot, wherein the device is		
5	movable along a movement path;		
6	a stop located at a contact position along the movement path, wherein the		
7	device contacts the stop at the contact position, and wherein a stiction force between the		
8	device and the stop exits at the contact postion; and		
9	a vibration element operable to cause a vibration at or near the contact		
10	position, wherein the vibration disrupts the stiction force.		
1	4. The system of claim 3, the system further comprising an device		
2	actuator, wherein the device actuator is operable to cause the device to move along the		
3	movement path.		
1	5. The system of claim 3, wherein the device is a structural plate,		
2	comprising a micro mirror.		

1	6.	The system of claim 3, wherein the stop comprises an area of the
2	base layer.	
1	7.	The system of claim 6, wherein the vibration element is a
2 .	mechanical structure of	perable to repeatedly contact the device at or near the contact point.
1	8.	The system of claim 3, wherein the vibration element comprises a
2	device actuator, wherei	n the device actuator is operable to cause the device to move
3	relative along the move	ment path.
1	9.	The system of claim 3, wherein the vibration element is integral to
2	the device.	•
1	10.	The system of claim 3, wherein the device is a first device, the
2	pivot is a first pivot, th	e stop is a first stop, the contact position is a first contact position,
3	the movement path is a	first movement path, and the vibration device is a first vibration
4	device, the system furt	her comprising:
5 .	at least	a second device and a second pivot, wherein the second device is
6	supported above the su	rface by the second pivot, and wherein the second device is
7	movable along a secon	d movement path;
8	at least	a second stop located at a second contact position along the second
9	movement path, where	in the second device contacts the second stop at the second contact
10	position, and wherein	he contact between the second device and the second stop is
l 1	susceptible to a stiction	n force;
12	at least	a second vibration element operable to cause a vibration at or near
13	the second contact pos	ition, wherein the vibration disrupts the stiction force; and
14	whereir	the first and second vibration elements are electrically connected
15	such that the first and	second vibration elements are activated together.
1	11.	A method for overcoming stiction in an electro-mechanical system,
2	the method comprising	; :
3	g providi	ng a base layer;
4	providi	ng a device supported above a surface of the base layer by a pivot;
5	5 providi	ng an actuator disposed on the base layer;

6	activating the actuator to cause the device to deflect until an end o	f the	
7	device contacts the base layer or a structure disposed thereon at a contact position,		
8	wherein further movement of the device is retarded by a stiction force at the contact		
9	position;	•	
0	deactivating the actuator to allow the device to return to a static po	sition;	
1	and ·		
2	vibrating an area at or about the contact position, wherein the vibr	ation	
3	disrupts the stiction force.		
1	12. The method of claim 11, wherein the device comprises a st	tructural	
2	plate with a micromirror mounted thereon.		
1	13. The method of claim 11, wherein vibrating comprises appl	ying a	
2	force to deform an elastic structure at or near the contact position, and subsequen	tly	
3	removing the force to allow the elastic structure to reform, and wherein reforming	g the	
4	elastic structure causes a vibration at the contact position.		
1	14. The method of claim 11, wherein the force is a voltage.		
1	15. The method of claim 11, wherein vibrating comprises appl	lying a	
2	voltage alternating between a low potential and a high potential at a frequency, a	nd	
3	wherein the high potential causes an elastic structure to deform at or near the con	tact	
4	position and the low potential allows the elastic structure to reform, and wherein		
5	deforming and reforming the elastic structure causes a vibration at or near the co	ntact	
6	position.		
1	16. The method of claim 11, wherein the contact position is as	sociated	
2	with a stop structure disposed on the base layer.		
1	17. The method of claim 16, wherein vibrating comprises app	lying an	
2	alternating voltage to the stop structure, and wherein the frequency of the alterna	ting	
3	voltage is at or near the natural frequency of the stop structure or a harmonic the	reof.	
1	18. A method for overcoming stiction through vibrations local	lized to	
2	areas susceptible to stiction forces, the method comprising:		
3	providing a base layer;		

4	providing at least a first and a second device;			
5	wherein the first device is moveable to contact the base layer or a			
6	first structure thereon at a first contact position, and wherein at the first contact position,			
7	movement of the first device is susceptible to stiction forces; and			
8	wherein the second device is moveable to contact the base layer or			
9	a second structure thereon at a second contact position, and wherein at the second contact			
10	position, movement of the second device is susceptible to stiction forces; and			
11	concurrently vibrating an area at or about the first and the second contact			
12	positions, wherein the vibration disrupts the stiction forces.			
1	19. The method of claim 18, wherein the device comprises a structural			
2	plate with a micromirror mounted thereon.			
1	20. The method of claim 18, wherein vibrating comprises applying a			
2	force to deform an elastic structure at or near the first contact position, and subsequently			
3	removing the force to allow the elastic structure to reform, and wherein reforming the			
4	elastic structure causes a vibration at the first contact position.			
1	21. The method of claim 18, wherein vibrating comprises applying a			
2	voltage alternating between a low potential and a high potential at a frequency, and			
3	wherein the high potential causes an elastic structure to deform at or near the first contact			
4	position and the low potential allows the elastic structure to reform, and wherein			
5	deforming and reforming the elastic structure causes a vibration at or near the first contact			
6	position.			
1	22. The method of claim 21, wherein the elastic structure is a first			
2	elastic structure, the method further comprising:			
3	concurrently applying the voltage to a second elastic structure, wherein			
4	deformation and reformation of the second elastic structure causes a vibration at or near			
5	the second contact position.			
1	23. The method of claim 18, wherein the first contact position is			
2	associated with a first stop structure disposed on the base layer, and wherein the second			
3	contact position is associated with a second stop structure disposed on the base layer.			

1	1 24. The method of claim 23, wherein vib	rating comprises applying an
2	2 alternating voltage to both the first and the second stop stru	ctures, and wherein the
3	3 frequency of the alternating voltage is at or near the natural	frequency of the first and the
4 .	4 second stop structures or a harmonic thereof.	
1	25. An electro-mechanical system, the system	stem comprising:
2		
3		a movement of the stop
4		•
5		
1	1 26. The system of claim 25, wherein act	ivating the actuator with a
2	2 force causes the stop to displace from a static position to a	displaced position, and
3		
4	4 the stop to displace from the displaced position to the station	position when the actuator is
5	5 de-activated.	
1	1 27. The system of claim 26, wherein the	movement comprises an
2	2 oscillation of the stop.	
1	1 28. The system of claim 27, wherein the	oscillation comprises
2	2 displacement of the stop from the displaced position passed	l the static position to an
3	3 overshoot position and back to the static position.	
1	1 29. The system of claim 25, the system	further comprising a base layer
2	2 wherein the structural plate is supported above the substrate	e by a pivot and the stop is
3	3 disposed over the base layer.	
1	1 30. The system of claim 29, the system	further comprising a micro-
2	2 mirror disposed on the structural plate.	
1	1 31. The system of claim 29, wherein the	actuator is a first actuator, the
2	2 system further comprising a second actuator, wherein appl	ication of a DC voltage to the
3	3 second actuator cause the structural plate to displace and c	ontact the stop.

1	32. A method of providing localized vibration in an electro-mechanical		
2	system, the method comprising:		
3	providing a base layer;		
4	providing a stop disposed over the base layer;		
5	providing a structural plate supported over the base layer by a pivot,		
6	wherein the structural plate is moveable to contact the stop;		
7 .	providing an actuator disposed relative to the stop;		
8	applying a static force to the actuator, wherein the stop displaces from a		
9	static position to a displaced position; and		
10	removing the static force from the actuator to cause a movement of the		
11	stop relative to the structural plate, wherein the movement is sufficient to overcome		
12	stiction forces between the stop and the structural plate.		
1	33. The method of claim 32, wherein the static force is a DC voltage.		
1	34. The method of claim 32, wherein the movement comprises an		
2	oscillation of the stop.		
1	35. The method of claim 34, wherein the oscillation comprises		
2	displacement of the stop from the displaced position passed the static position to an		
3	overshoot position and back to the static position.		
1	36. The method of claim 32, wherein the movement is primarily		
2	vertical relative to the base layer.		
1	37. The method of claim 32, wherein the movement is primarily		
2	horizontal relative to the base layer.		
1	38. The method of claim 32, wherein the structural plate comprises a		
2	micro-mirror disposed thereon.		
1	39. The method of claim 32, wherein the actuator is a first actuator, the		
2	method further comprising:		
3	providing a second actuator, wherein activation of the second actuator		
4	causes the structural plate to contact the stop; and		
5	activating the second actuator.		

1	40. The method of claim 39, the method further comprising:
2	removing the static force from the first actuator at or about the same time
3	as deactivating the second actuator.
1	41. An electro-mechanical system, the system comprising:
2	a mechanical stop;
3	a structural plate disposed relative to the mechanical stop, wherein a side
4	of the structural plate contacts the mechanical stop; and
5	an actuator, wherein application of a DC voltage to the actuator causes the
6	mechanical stop to move relative to the structural plate from a static position to a
7	displaced position, and wherein removal of the static force causes a movement of the
8	mechanical stop from the displaced position to the static position, and wherein the
9	movement is sufficient to overcome stiction forces between the structural plate and the
.0	mechanical stop.
1	42. The system of claim 41, wherein the movement comprises an
2	oscillation of the mechanical stop.
1	43. The system of claim 42, wherein the oscillation comprises
2	displacement of the mechanical stop from the displaced position passed the static position
3	to an overshoot position and back to the static position.
1	44. The system of claim 41, the system further comprising a base layer,
2	wherein the structural plate is supported above the substrate by a pivot and the
3.	mechanical stop is disposed over the base layer.
1	45. The system of claim 44, wherein the actuator is a first actuator, the
2	system further comprising a second actuator, wherein application of a force to the second
3	actuator causes the structural plate to deflect into contact with the mechanical stop.
1	46. An optical routing apparatus comprising a moveable micro-mirror,
2	the optical routing apparatus comprising:
3	a base layer;
4	a stop disposed over the base layer;

5	a structural plate supported above the substrate by a pivot, wherein the		
6	structural plate is deflectable to contact the stop;		
7	an actuator disposed near the stop, wherein application of a DC voltage to		
8	the actuator causes the stop to displace from a static position, and wherein removing the		
9	DC voltage allows the stop to displace to the static position, and wherein displacement to		
10	the static position creates a movement sufficient to overcome stiction related forces		
11	between the stop and the structural plate.		
1	47. The system of claim 46, wherein the movement comprises an		
2	oscillation of the stop.		
1	48. The system of claim 46, wherein the movement comprises a		
2	combination of horizontal and vertical movement relative to the base layer.		
1	49. The system of claim 46, wherein the actuator is a first actuator, the		
2	system further comprising a second actuator, wherein application of a force to the second		
3	actuator causes the structural plate to deflect into contact with the stop.		
1	50. An electro-mechanical system, the system comprising:		
2	a structural plate in contact with a stop; and		
3	an actuator activated by an alternating force for creating an oscillating		
4	movement of the stop relative to the structural plate, wherein the oscillating movement is		
5	sufficient to overcome stiction forces between the structural plate and the stop.		
1	51. The system of claim 50, wherein the alternating force is an AC		
2	voltage or a pulsed DC voltage.		
1	52. The system of claim 50, wherein activating the actuator with an		
2	alternating force causes the stop to displace to a displaced position when the alternating		
3	force is at a first potential, and wherein an elastic force associated with the stop causes the		
4	stop to displace toward a static position when the alternating force is at a second potential		
.1	53. The system of claim 52, wherein the oscillating movement results		
2	from displacing the stop to the displaced position and returning the stop toward the static		
3	position.		

1	54.	The system of claim 53, wherein the oscillating movement	
2	oscillates at a frequency at or about the frequency of the alternating force.		
1	55.	The system of claim 50, the system further comprising a base layer,	
2	wherein the structur	al plate is supported above the base layer by a pivot and the stop is	
3	disposed over the ba	ase layer.	
1	56.	The system of claim 55, wherein the actuator is a first actuator, the	
2	system further comp	prising a second actuator, wherein application of a voltage to the	
3	second actuator cause the structural plate to displace and contact the stop.		
1	57.	A method of providing localized vibration in an electro-mechanical	
2 ·	system, the method	comprising:	
3	prov	iding a base layer;	
4	prov	iding a stop disposed over the base layer;	
5	prov	iding a structural plate supported over the base layer by a pivot,	
6	wherein the structur	al plate is moveable to contact the stop;	
7	prov	iding an actuator disposed relative to the stop;	
8	appl	ying an alternating force to the actuator to create a movement of the	
9	stop, wherein the st	op displaces from a static position to a displaced position when the	
10	alternating force is	at a first potential and returns toward the static position when the	
l 1	alternating force is at a second potential; and		
12	when	rein the movement is sufficient to overcome stiction forces between	
13	the stop and the structural plate.		
1	58.	The method of claim 57, wherein the alternating force is an AC	
2	voltage.		
1	59.	The method of claim 57, wherein the movement comprises an	
2	oscillation of the sto	op.	
1	60.	The method of claim 59, wherein a frequency of the alternating	
2	force determines th	e frequency of the oscillation.	
1	61.	The method of claim 57, wherein the actuator is a first actuator, the	
2	method further com	prising:	

3	providing a second actuator, wherein activation of the second actuator		
4	causes the structural plate to contact the stop; and		
5	activating the second actuator.		
1	62. The method of claim 61, the method further comprising:		
2	de-activating the second actuator at or about the same time as applying an		
3	alternating force to the first actuator.		
1	63. An electro-mechanical system, the system comprising:		
2	a mechanical stop;		
3	a structural plate disposed relative to the mechanical stop, wherein a side		
4	of the structural plate contacts the mechanical stop; and		
5	an actuator, wherein application of an AC voltage to the actuator causes		
6	the mechanical stop to vibrate, and wherein the vibration is sufficient to overcome stiction		
7	forces between the structural plate and the mechanical stop.		
1	64. The system of claim 63, wherein the vibration occurs at a		
2	frequency at or about the frequency of the AC voltage.		
1	65. An optical routing apparatus comprising a moveable micro-mirror,		
2	the optical routing apparatus comprising:		
3	a base layer;		
4	a stop disposed over the base layer;		
5	a structural plate supported above the base layer by a pivot, wherein the		
6	structural plate is deflectable to contact the stop; and		
7	an actuator disposed near the stop, wherein application of an AC voltage to		
8	the actuator causes the stop to oscillate at a frequency at or about the frequency of the AC		
9	voltage, and wherein the oscillation is sufficient to overcome stiction related forces		
10	between the stop and the structural plate.		
1	66. The system of claim 65, wherein the oscillation comprises a		
2	combination of horizontal and vertical movement relative to the base layer.		
1	67. The system of claim 65, wherein the actuator is a first actuator, the		
2	system further comprising a second actuator, wherein application of a force to the second		
3	actuator causes the structural plate to deflect into contact with the stop.		

1		68.	An electro-mechanical system, the system comprising:
2		a base	e layer;
3		a stop	disposed on the base layer;
4		a stru	ctural plate supported above the base layer by a pivot, wherein the
5	structural pla	ate can d	leflect to contact the stop; and
6		a con	tact for receiving a driving force, wherein a frequency of the driving
7	force is at or	near the	e resonant frequency, or a harmonic thereof, of either the stop or the
8	structural pla	ate, and	wherein receiving the driving force causes a vibration of the stop
9	relative to th	e structi	ural plate.
1		69.	The system of claim 68, wherein the driving force is a mechanical
2	force.		
1		70.	The system of claim 68, wherein the driving force is sound.
1		71.	The system of claim 68, wherein the driving force is an AC
2	voltage.		
1		72.	The system of claim 71, wherein the contact comprises a portion of
2	the stop.		
1		73.	The system of claim 71, wherein the contact comprises a portion of
2	the pivot.		
1		74.	The system of claim 71, wherein the contact is an electrically
2	conductive lead coupled to the stop.		
1		75.	The system of claim 71, wherein the vibration primarily comprises
2	movement o	of the sto	op.
1		76.	The system of claim 75, wherein the stop is comprised of a
2	material and	l the driv	ving force has a frequency at or near the resonant frequency of the
3	material.		
1		77.	The system of claim 71, wherein the vibration primarily comprises
2	movement o	of the str	uctural plate.

1	78.	The system of claim 77, wherein the structural plate comprises a
2	structure connecti	ng a first and a second portion of the structural plate.
1	79.	The system of claim 78, wherein the structure is a serpentine
2	structure.	
1	. 80.	The system of claim 78, wherein the structure is comprised of a
2	•	riving force has a frequency at or near the resonant frequency of the
3	material.	
1	81.	The system of claim 68, the system further comprising an actuator,
2	wherein activation	of the actuator causes the structural plate to deflect and contact the
3 .	stop.	
1	82.	The system of claim 81, wherein the actuator is integral to the stop.
1	83	A method of providing localized vibration in an electro-mechanical
2	system, the method	od comprising:
3	pro	oviding a base layer;
4	pro	oviding a stop disposed over the base layer;
5	pro	oviding a structural plate supported over the base layer by a pivot,
6	wherein the struct	tural plate is moveable to contact the stop;
7	ap	plying a driving force to the stop, wherein a frequency of the driving
8	force is at or near	the resonant frequency, or a harmonic thereof, of either the stop or the
9	structural plate, a	nd wherein the driving force causes a vibration of the stop relative to the
10	structural plate; a	nd
11	wh	nerein the movement is sufficient to overcome stiction forces between
12	the stop and the s	tructural plate.
1	84	. The method of claim 83, wherein the driving force is an AC
2	voltage.	
1	85	. The method of claim 83, wherein the stop comprises a material and
2	the vibration com	prises a vibration of the stop at or near the resonant frequency of the
3	material.	

1	86.	The method of claim 83, wherein the structural plate comprises a	
2	material and the vibration comprises a vibration of the structural plate at or near the		
3	resonant frequency of the material.		
1	87.	The method of claim 83, wherein the structural plate comprises a	
2	structure disposed between a first and second portions of the structural plate.		
1	88.	The method of claim 87, wherein the vibration comprises a	
2	vibration of the structural plate at or near the resonant frequency of the structure.		
1	89.	The method of claim 83, wherein the structural plate comprises a	
2	micro-mirror disposed thereon.		
1	90.	An electro-mechanical system, the system comprising:	
2	a ba	a base layer;	
3	a str	uctural plate supported above the base layer by a pivot, wherein a firs	
4	portion of the structural plate contacts the base layer or a stop disposed on the base layer		
5	and a second portion of the structural plate contacts the pivot, and wherein a structure is		
6	disposed between the first and the second portions;		
7	a dri	iving force, wherein the driving force has a frequency at or near the	
8	natural frequency, or a harmonic thereof, of the structure; and		
9	whe	rein the driving force causes a vibration of the structural plate relative	
0	to the base layer, the vibration sufficient to overcome stiction related forces between the		
1	base layer and the structural plate.		
1	91.	The system of claim 90, wherein the structure is comprised of a	
2	material and the driving force has a frequency at or near the natural frequency of the		
3	material.		