# ECEn 671: Mathematics of Signals and Systems

Randal W. Beard

Brigham Young University

September 1, 2023

#### Section 1

Inequality Constraints: Kuhn-Tucker Conditions

Lets first consider the problem with just inequality constraints, i.e.

$$\min f(x)$$

s.t. 
$$\mathbf{g}(x) \leq 0$$

where  $\mathbf{g}(x) \leq 0$  means that

$$\begin{pmatrix} g_1(x) \\ \vdots \\ g_q(x) \end{pmatrix} \le \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

i.e., element-wise.

For example, let  $x \in \mathbb{R}^2$  and let q = 3.



Case I. If the local min is in the interior of  $\Omega$ , then clearly

$$\nabla f(x^*) = 0$$

or

$$\nabla f(x^*) + 0 \cdot \nabla g_1(x^*) + 0 \cdot \nabla g_2(x^*) + 0 \cdot g_3(x^*) = 0.$$

Case II. The local minimum is on the boundary but not at a corner



Since in this case  $g_1$  is an equality constraint, we must have that  $\nabla f(x^*) \parallel \nabla g_1(x^*)$ . In fact, in this case the two vectors point in opposite directions! Therefore

$$\nabla f(x^*) + \mu_1 \nabla g_1(x^*) + 0 \cdot \nabla g_2(x^*) + 0 \cdot g_3(x^*) = 0.$$

# Inequality Constraints Case III.



In this case,  $\nabla f(x^*)$  is in the linear span of  $\nabla g_1(x^*)$  and  $\nabla g_2(x^*)$  where the coefficients are negative. Therefore

$$\nabla f(x^*) + \mu_1 \nabla g_1(x^*) + \mu_2 \nabla g_2(x^*) + 0 \cdot g_3(x^*) = 0$$

where  $\mu_1 > 0$  and  $\mu_2 > 0$ .



In general, for inequality constraints at a local minimum  $x^*$  we have that

- 1.  $\nabla f(x^*) + \nabla \mathbf{g}(x^*)\mu = 0$
- 2.  $\mathbf{g}(x^*)^{\top}\mu = 0$
- 3.  $\mu \ge 0$

Conditions (1) and (3) together mean that  $\nabla f(x^*)$  is contained in the (negative) linear span of  $\{\nabla g_1(x^*), \dots, \nabla g_q(x^*)\}$ .

Condition (2): Note that if the constraint is active, i.e.  $g_i(x^*) = 0$  then  $\mu_i$  can be nonzero, but if  $g_i$  is inactive, i.e.  $g_i(x^*) < 0$  then  $\mu_i$  must be zero to satisfy (2).

Now lets go back to the general constrained optimization problem:

min 
$$f(x)$$
  
s.t.  $\mathbf{h}(x) = 0$ ,  
 $\mathbf{g}(x) \le 0$ 

where  $f: \mathbb{R}^n \to \mathbb{R}$ ,  $h(x): \mathbb{R}^n \to \mathbb{R}^p$ ,  $g(x): \mathbb{R}^n \to \mathbb{R}^q$ .

#### **Definition**

 $x^*$  is a <u>regular point</u> if  $\nabla h_i(x^*)$ ,  $i=1,\ldots,p$  and  $\nabla g_j(x^*)$  are linearly independent for all  $j=1,\ldots,q$  such that  $g_j(x^*)$  is active.



For example, suppose that 
$$\mathbf{h} = \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$
, and  $\mathbf{g} = \begin{pmatrix} g_1 \\ g_2 \\ g_3 \end{pmatrix}$ .



#### Then $x^*$ is a regular point at:

- ▶  $x_1$  if  $\{\nabla h_1(x_1), \nabla h_2(x_1), \nabla g_1(x_1), \nabla g_2(x_1)\}$  are linearly independent.
- $\blacktriangleright$   $x_2$  if  $\{\nabla h_1(x_2), \nabla h_2(x_2)\}$  are linearly independent.
- $\blacktriangleright$   $x_3$  if  $\{\nabla h_1(x_3), \nabla h_2(x_3), \nabla g_1(x_3)\}$  are linearly independent.



# Kuhn Tucker Conditions: Necessary Conditions

### Theorem (Moon Theorem 18.6)

Let  $x^*$  be a regular local minimum, then  $\exists \lambda \in \mathbb{R}^p$  (regular Lagrange multipliers), and  $\exists \mu \in \mathbb{R}^q$ , such that

- 1.  $\mu \ge 0$  (element wise)
- 2.  $\mathbf{g}^{\top}(x^*)\mu = 0$
- 3.  $\nabla f(x^*) + \nabla \mathbf{h}^{\top}(x^*)\lambda + \nabla \mathbf{g}^{\top}(x^*)\mu = 0.$

#### Kuhn Tucker Conditions: Sufficient Conditions

#### Theorem (Moon 18.7)

Suppose f, g, h are in  $C_2$ . If there exist  $\lambda \in \mathbb{R}^p, \mu \in \mathbb{R}^q$  such that at  $x^*$ 

- 1.  $\mu \ge 0$
- 2.  $\mathbf{g}^{\top}(x^*)\mu = 0$
- 3.  $\nabla f(x^*) + \nabla \mathbf{h}^{\top}(x^*)\lambda + \nabla \mathbf{g}^{\top}(x^*)\mu = 0$
- 4.  $p^{\top}(\nabla^2 f(x^*) + \sum_{k=1}^p \nabla^2 h_k(x^*) \lambda_k + \sum_{k=1}^q \nabla g_k(x^*) \mu_k) p > 0$

for all p in the tangent plane of the <u>active</u> constraints, then  $x^*$  is a local constrained minimum.

min 
$$3x_1^2 + 4x_2^2 + 6x_1x_2 - 8x_2 - 6x_1$$
  
s.t.  $x_1^2 + x_2^2 - 9 \le 0$ ,  
 $2x_1 - x_2 - 4 \le 0$ 

The necessary conditions are:

$$6x_1 + 6x_2 - 6 + \mu_1(2x_1) + \mu_2(2) = 0$$

$$8x_2 + 6x_1 - 8 + \mu_1(2x_2) + \mu_2(-1) = 0$$

$$\mu_1(x_1^2 + x_2^2 - 9) + \mu_2(2x_1 - x_2 - 4) = 0$$

$$\mu_1 \ge 0, \mu_2 \ge 0$$

Lets try various combinations of active constraints:

Case I (Both inactive) i.e.

$$\mu_1 = \mu_2 \,\, 0$$

Therefore, must solve

$$6x_1 + 6x_2 - 6 = 0$$

$$8x_2 + 6x_1 - 8 = 0$$

i.e.,

$$\begin{pmatrix} 6 & 6 \\ 6 & 8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 8 \end{pmatrix}$$
$$\implies \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Check inequality constraints:

$$g_1(x) = 1 - 9 = -8 \le 0$$

$$g_2(x) = -1 - 4 \le 0$$

Therefore

$$x^* = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \mu^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

satisfies necessary conditions. Sufficient condition:

$$\nabla^2 f = \begin{pmatrix} 6 & 6 \\ 6 & 8 \end{pmatrix} > 0$$

implies local minimum.

$$\begin{aligned} & \min \quad x_1^2 + x_2^2 \\ & \text{s.t.} \quad x_1 + x_2 + 1 \leq 0, \\ & \quad - x_1 + x_2 + 1 \leq 0 \end{aligned}$$



The necessary conditions are:

$$2x_1 + \mu_1 - \mu_2 = 0$$

$$2x_2 + \mu_1 + \mu_2 = 0$$

$$\mu_1(x_1 + x_2 + 1) + \mu_2(-x_1 + x_2 + 1) = 0$$

$$\mu_1 \ge 0, \mu_2 \ge 0$$

Try various combinations of active constraints Case 1: (Both inactive)

$$2x_1 = 0$$
$$2x_2 = 0$$
$$\implies x^* = \begin{pmatrix} 0\\0 \end{pmatrix}$$

However, both constraints are violated since

$$g_1^*(x^*) = 1 \ge 0$$
  
 $g_2(x^*) = 1 > 0$ .

Case 2:  $g_1$ -active,  $g_2$ -inactive

$$2x_1 + \mu_1 = 0 \implies x_1 = -\frac{1}{2}\mu_1$$
 $2x_2 + \mu_1 = 0 \implies x_2 = -\frac{1}{2}\mu_1$ 
 $\mu_1(x_1 + x_2 + 1) = 0$ 
 $\mu_1 > 0$ 

Last two equations imply that

$$\mu_1(-\frac{1}{2}\mu_1 - \frac{1}{2}\mu_1 + 1) = -\mu_1^2 + \mu_1 = \mu_1(1 - \mu_1) = 0.$$

Solving for  $\mu_1$  gives  $\mu_1=0$  or  $\mu_1=1$ . Therefore

$$x^* = \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}$$

Checking constraints:

$$g_1(x^*)=-rac{1}{2}-rac{1}{2}+1=0\leq 0$$
 ok  $g_2(x^*)=rac{1}{2}-rac{1}{2}+1=1\geq 0$  no

Case 3:  $g_1$ -inactive,  $g_2$ -active Similar results to Case 2.

#### Case 4: Both active

$$\mu_1(\frac{1}{2}\mu_2 - \frac{1}{2}\mu_1 - \frac{1}{2}\mu_2 - \frac{1}{2}\mu_1 + 1) + \mu_2(-\frac{1}{2}\mu_2 + \frac{1}{2}\mu_1 - \frac{1}{2}\mu_1 - \frac{1}{2}\mu_2 + 1) = 0$$

$$\Longrightarrow \mu_1(1 - \mu_1) + \mu_2(1 - \mu_2) = 0$$

A positive solution is

$$\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} > 0$$

which gives

$$x^* = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

Constraints can be verified to be satisfied.

Sufficient condition:

$$\nabla^2 f + \nabla^2 g \mu = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{1} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{1} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} > \mathbf{0}$$

Therefore  $x^*$  is a local minimum.