Insegnamento di Metodi Numerici

Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

Docenti: Lucia Romani e Damiana Lazzaro

3 Settembre 2021 - 9:00 ESAME IN PRESENZA

1. Sia assegnata la matrice

$$\mathbf{Z} = \begin{bmatrix} 11+a & 10+a & 14+a \\ 12+a & 11+a & -13+a \\ 14+a & 13+a & -66+a \end{bmatrix}$$

dipendente dal parametro $a \geq 30$, la cui inversa è

$$\mathbf{Z}^{-1} = \begin{bmatrix} -55a - 557 & 83a + 842 & -28a - 284 \\ 55a + 610 & -83a - 922 & 28a + 311 \\ 2 & -3 & 1 \end{bmatrix}$$

Scrivere lo script Matlab/Python es1 in cui:

a) si calcolino le espressioni di $\|\mathbf{Z}\|_{\infty}$ e $\|\mathbf{Z}^{-1}\|_{\infty}$ al variare di a;

Punti: 3

- b) si calcoli l'espressione di $K_{\infty}(\mathbf{Z})$ (numero di condizionamento di \mathbf{Z} in norma infinito) al variare di a;
- c) Si implementi il metodo di eliminazione Gaussiana con pivoting parziale per la risoluzione del generico sistema lineare Zx = b;

Punti: 5

d) Il sistema lineare Zx = b con termine noto $b = [3a + 35, 3a + 10, 3a - 39]^T$ ha soluzione esatta $[1, 1, 1]^T$. Fissato il valore a = 30, si risolva il sistema lineare $Z_px = b$ dove $Z_p = Z + \Delta Z$ e

$$\Delta Z = \left[\begin{array}{ccc} \delta & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

per valori di $\delta = [10^{-3}, 10^{-4}, 10^{-5}, 10^{-6}]$, si calcoli l'errore relativo (in norma infinito) sulla soluzione e si fornisca una giustificazione teorica del risultato.

Punti: 5

Totale: 16