Metodi Matematici per l'Informatica (secondo canale) Prova scritta - 10 Febbraio 2020

Nome e Cognome (STAMPATELLO)
La prova è divisa in quattro parti, corrispondenti rispettivamente agli esercizi $1-4$ (insiemi, relazioni, funzioni), $5-6$ (numerabilità, equivalenza), 7 (induzione) e $8-10$ (logica). Lo studente dovrà ottenere la sufficienza su ciascuna delle parti.
Es. 1. Sia $A = \{2, \{4, 5\}, 4, (5, 1), 3\}$. Allora: $\Box_V \Box_F \ \mathbf{A}. \ \exists x[(x \subset A) \land (5 \in x)];$ $\Box_V \Box_F \ \mathbf{B}. \ \{5, 4\} \in A;$ $\Box_V \Box_F \ \mathbf{C}. \ \{3, 4\} \subseteq A;$ $\Box_V \Box_F \ \mathbf{D}. \ (4, 5) \in A$
Es. 2. Siano $A \in B$ tali che $A \cup B = B$. Allora sicuramente $\Box_V \Box_F \ \mathbf{A}. \ A = B;$ $\Box_V \Box_F \ \mathbf{B}. \ A \subseteq B;$ $\Box_V \Box_F \ \mathbf{C}. \ A \not\in B;$ $\Box_V \Box_F \ \mathbf{D}. \ A \neq \emptyset;$ $\Box_V \Box_F \ \mathbf{E}. \ A \in B$ hanno la stessa cardinalità.
Es. 3. La chiusura transitiva della relazione $R = \{(1, 2), (2, 1), (1, 3), (3, 2)\} \subseteq \mathbf{N} \times \mathbf{N}$ è $\Box_V \Box_F$ A. $\mathbf{N} \times \mathbf{N}$; $\Box_V \Box_F$ B. $\{1, 2, 3\} \times \{1, 2, 3\}$; $\Box_V \Box_F$ C. $\{(1, 1), (2, 2), (3, 3), (2, 3), (3, 1)\}$; $\Box_V \Box_F$ D. una relazione di equivalenza su $\mathbf{N} \times \mathbf{N}$;
Es. 4. Sia $Q = \{(a,b), (a,c), (a,d), (b,c)\} \subseteq \{a,b,c,d\} \times \{a,b,c,d\}$; allora $\Box_V \Box_F \ \mathbf{A}. \ Q$ è una funzione iniettiva; $\Box_V \Box_F \ \mathbf{B}. \ Q$ è una relazione di equivalenza; $\Box_V \Box_F \ \mathbf{C}. \ Q$ è una relazione transitiva;
Es. 5. Sia dato l'insieme $A = \{a, aa, aaa, aaaa, \dots\}$ $\Box_V \Box_F \ \mathbf{A}. \ \exists x \in A \text{ tale che } \forall y \in A \text{ si ha } \ell(y) \leq \ell(x), \text{ dove } \ell(x) \text{ indica la lunghezza di } x;$ $\Box_V \Box_F \ \mathbf{B}. \ A \text{ non è numerabile;}$ $\Box_V \Box_F \ \mathbf{C}. \ A \text{ è in corrispondenza biunivoca con l'insieme } \{2^k \mid k \in \mathbb{N}\};$ $\Box_V \Box_F \ \mathbf{D}. \ A \text{ contiene un insieme di parole di lunghezza infinita.}$
Es. 6. La relazione $\mathbf{R} = \{(x,y) \in \mathbb{N} \times \mathbb{N} \mid x+y \text{ è pari}\}$ è una relazione di equivalenza? Fornire una giustificazione alla risposta e, nel caso affermativo, indicare l'insieme quoziente della relazione.

Risp	ondere qui
Forn	nalizzare il seguente problema e verificare la correttezza dell'affermazione finale:
	Se la Roma ha vinto la partita, allora il Brescia e il Genoa retrocedono. Se almeno uno t
	il Brescia e il Genoa retrocede, allora la Sampdoria si salva. Quindi, se la Sampdoria non
	salva, allora la Roma non ha vinto la partita.
Risp	ondere qui
	dere se i seguenti enunciati sono validi:
Α.	$(\forall x A(x) \to \forall x B(x)) \to \forall x (A(x) \to B(x));$
Α.	
А. В.	$(\forall x A(x) \to \forall x B(x)) \to \forall x (A(x) \to B(x)); (\forall x A(x) \to \exists x B(x)) \leftrightarrow \exists x (A(x) \to B(x)).$
A . B . Form	$(\forall x A(x) \to \forall x B(x)) \to \forall x (A(x) \to B(x));$ $(\forall x A(x) \to \exists x B(x)) \leftrightarrow \exists x (A(x) \to B(x)).$ nalizzare le proposizioni seguenti con enunciati nel linguaggio predicativo \mathcal{L} composto da un s
A. B. Form	$(\forall x A(x) \to \forall x B(x)) \to \forall x (A(x) \to B(x)); (\forall x A(x) \to \exists x B(x)) \leftrightarrow \exists x (A(x) \to B(x)).$
A. B. Form	$(\forall x A(x) \to \forall x B(x)) \to \forall x (A(x) \to B(x));$ $(\forall x A(x) \to \exists x B(x)) \leftrightarrow \exists x (A(x) \to B(x)).$ nalizzare le proposizioni seguenti con enunciati nel linguaggio predicativo $\mathcal L$ composto da un serelazione a due argomenti (con la sua ovvia interpretazione).
A. B. Form	$(\forall x A(x) \to \forall x B(x)) \to \forall x (A(x) \to B(x));$ $(\forall x A(x) \to \exists x B(x)) \leftrightarrow \exists x (A(x) \to B(x)).$ nalizzare le proposizioni seguenti con enunciati nel linguaggio predicativo $\mathcal L$ composto da un serelazione a due argomenti (con la sua ovvia interpretazione). < ha un elemento minimo;
A. B. Form	$(\forall x A(x) \to \forall x B(x)) \to \forall x (A(x) \to B(x));$ $(\forall x A(x) \to \exists x B(x)) \leftrightarrow \exists x (A(x) \to B(x)).$ nalizzare le proposizioni seguenti con enunciati nel linguaggio predicativo $\mathcal L$ composto da un serelazione a due argomenti (con la sua ovvia interpretazione). < ha un elemento minimo;
A. B. Form	$(\forall x A(x) \to \forall x B(x)) \to \forall x (A(x) \to B(x));$ $(\forall x A(x) \to \exists x B(x)) \leftrightarrow \exists x (A(x) \to B(x)).$ nalizzare le proposizioni seguenti con enunciati nel linguaggio predicativo $\mathcal L$ composto da un serelazione a due argomenti (con la sua ovvia interpretazione). < ha un elemento minimo;
A. B. Form < di A.	$(\forall x A(x) \to \forall x B(x)) \to \forall x (A(x) \to B(x));$ $(\forall x A(x) \to \exists x B(x)) \leftrightarrow \exists x (A(x) \to B(x)).$ nalizzare le proposizioni seguenti con enunciati nel linguaggio predicativo $\mathcal L$ composto da un serelazione a due argomenti (con la sua ovvia interpretazione). < ha un elemento minimo; Rispondere qui
A. B. Form < di A.	$(\forall x A(x) \to \forall x B(x)) \to \forall x (A(x) \to B(x));$ $(\forall x A(x) \to \exists x B(x)) \leftrightarrow \exists x (A(x) \to B(x)).$ nalizzare le proposizioni seguenti con enunciati nel linguaggio predicativo $\mathcal L$ composto da un serelazione a due argomenti (con la sua ovvia interpretazione). < ha un elemento minimo;
A. B. Form < di A.	$(\forall x A(x) \to \forall x B(x)) \to \forall x (A(x) \to B(x));$ $(\forall x A(x) \to \exists x B(x)) \leftrightarrow \exists x (A(x) \to B(x)).$ nalizzare le proposizioni seguenti con enunciati nel linguaggio predicativo $\mathcal L$ composto da un serelazione a due argomenti (con la sua ovvia interpretazione). < ha un elemento minimo; Rispondere qui
A. B. Form < di A.	$(\forall x A(x) \to \forall x B(x)) \to \forall x (A(x) \to B(x));$ $(\forall x A(x) \to \exists x B(x)) \leftrightarrow \exists x (A(x) \to B(x)).$ nalizzare le proposizioni seguenti con enunciati nel linguaggio predicativo $\mathcal L$ composto da un serelazione a due argomenti (con la sua ovvia interpretazione). < ha un elemento minimo; Rispondere qui
A. B. Form < di A.	$(\forall x A(x) \to \forall x B(x)) \to \forall x (A(x) \to B(x));$ $(\forall x A(x) \to \exists x B(x)) \leftrightarrow \exists x (A(x) \to B(x)).$ nalizzare le proposizioni seguenti con enunciati nel linguaggio predicativo $\mathcal L$ composto da un serelazione a due argomenti (con la sua ovvia interpretazione). < ha un elemento minimo; Rispondere qui
A. B. Form < di A. B.	$(\forall x A(x) \to \forall x B(x)) \to \forall x (A(x) \to B(x));$ $(\forall x A(x) \to \exists x B(x)) \leftrightarrow \exists x (A(x) \to B(x)).$ nalizzare le proposizioni seguenti con enunciati nel linguaggio predicativo $\mathcal L$ composto da un serelazione a due argomenti (con la sua ovvia interpretazione). < ha un elemento minimo; Rispondere qui