Proof 2.2 — Zoom Window Centring

Let the window span be: \mathbf{x}_{\min} , \mathbf{x}_{\max} , \mathbf{y}_{\min} , \mathbf{y}_{\max} and the click at pixel (ex, ey).

Step 1: Fractional position of click (Ratio — independent of coordinate system)

We can obtain fractions in two equivalent ways:

1a. Screen ratio first (pixel → fraction):

So $f_x, f_y \in [0,1]$:

- f_x=0→ left edge,
- $f_x=1 \rightarrow right edge$,
- $f_y=0 \rightarrow top edge$,
- $f_v=1 \rightarrow bottom edge$.

Then convert to complex coordinates of click:

$$x_c = x_{min} + f_x * (x_{max} - x_{min})$$

$$y_c = y_{min} + f_v \cdot (y_{max} - y_{min})$$

1b. Complex coordinate first (pixel → complex → fraction):

Convert click pixel to complex coordinate directly:

$$x_c = x_{min} + (e_x / SCREEN_WIDTH) * (x_{max} - x_{min})$$

Then normalize to fractions:

$$f_x = (x_c - x_{min})/(x_{max} - x_{min})$$

$$f_v = (y_c - y_{min})/(y_{max} - y_{min})$$

Both paths (1a and 1b) give the same (fx,fy) and same centre (xc,yc).

Step 2: Choice of scale factor

Zoom depends on mouse button:

s=ZOOM_FACTOR, if left button (zoom in)

s=1/ ZOOM_FACTOR if right button (zoom out)

Step 3: New window size after zoom

newHeight=(y_{max}-y_{min})·s

Step 4: Keep click at same fraction

$$x_{new}=x_{min}+f_x*newWidth$$

y_{new}=y_{min}+f_v*newHeight

Step 5: Re-arrange to find new bounds

$$x_{min}=x_{new}-f_x*newWidth$$

y_{min}=y_{new}-f_y*newHeight

The click must remain at same relative fraction: so $x_{new}=x_c$ and $y_{new}=y_c$

Thus: $x_{min}=x_c-f_x*newWidth$

y_{min}=y_c-f_v*newHeight

 $x_{max}=x_{min}+newWidth$

y_{max}=y_{min}+newHeight

We have used 1a in our code because it has less computation.