Knowledge Distillation with a focus on DistilBert

Mayank Musaddi Sprinklr Intern ML Team

Flow

- Motivation
- Knowledge Distillation
 - vs Transfer Learning
 - Student Teacher Paradigm
 - Dark Knowledge
 - Temperature
 - Learning Architecture
- DistilBert
 - Loss
 - Performance
 - **Experiments**

Motivation

Lonnnggggg Inference Time!

Deeper model were giving more accuracy but..

Deeper the model, higher the inference time
Resnet 11M
GPT 117M
BERT 345M
XLNET 340M

Ensemble of Models 😵

Tradeoff Between Accuracy and Inference Time

Smaller Model with Higher Accuracy

Knowledge Distillation: Smaller Model learns from Larger Model

Transfer Learning vs Knowledge Distillation

Student (a smaller model)
learns from Teacher

Utilizes the output of Teacher when training

Significance of Output: Dark Knowledge

Softmax Gives Probability of Output Classes

$$\sigma(ec{z})_i = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

```
Input: ['[CLS]', 'i', 'think', 'this', 'is', 'the', 'beginning', 'of', 'a', 'beautiful', '[MASK]', '.', '[SEP]']
Rank 0 - Token: day
                                - Prob: 0.21348
Rank 1 - Token: life
                                - Prob: 0.18380
Rank 2 - Token: future
                                - Prob: 0.06267
Rank 3 - Token: story
                                - Prob: 0.05854
Rank 4 - Token: world
                                - Prob: 0.04935
                                                  Compared with
Rank 5 - Token: era
                                - Prob: 0.04555
Rank 6 - Token: time
                                - Prob: 0.03210
                                                                                Cross Entropy Loss
                                                 one-hot encoded
Rank 7 - Token: year
                                - Prob: 0.01722
Rank 8 - Token: history
                                - Prob: 0.01663
                                                        labels
Rank 9 - Token: summer
                                - Prob: 0.01335
                                                                                  -1*log(0.21348)
                                                                        0
Rank 10 - Token: adventure
                                - Prob: 0.01233
                                                                        0
Rank 11 - Token: dream
                                - Prob: 0.01209
Rank 12 - Token: moment
                                - Prob: 0.01129
Rank 13 - Token: night
                                - Prob: 0.01084
Rank 14 - Token: beginning
                                - Prob: 0.00937
Rank 15 - Token: season
                                - Prob: 0.00664
Rank 16 - Token: journey
                                - Prob: 0.00621
Rank 17 - Token: period
                                - Prob: 0.00553
Rank 18 - Token: relationship
                                - Prob: 0.00517
Rank 19 - Token: thing
                                - Prob: 0.00508
```

Distillation Loss

https://arxiv.org/pdf/1503.02531.pdf

Student instead of comparing its result from one-hot encoded labels, can now compare it with the output of the teacher

Distillation Loss

$$L = -\sum_{i} t_{i} * log(s_{i})$$

With t the logits from the teacher and s the logits of the student

Teacher Output	Stude	ent Ou	ıtput	One-F	lot Labels
0.00 0.52 0.21 0.02	stillation	0.08 0.27 0.21 0.03 0.08 0.10	Stude	nt .	ot Labels 0 1 0 0 0 0 0
0.01 0.12	Loss	0.01 0.17	Loss		0
0.00		0.17			0
0.05		0.02			0

Temperature

https://arxiv.org/pdf/1503.02531.pdf

Additional Parameter Temperature (T) is applied in the softmax function to make the output more informative by making the outputs softer

Learning Architecture

https://intellabs.github.io/distiller/knowledge_distillation.html

Details

Architecture: Same as BERT except,
The token-type embeddings and the pooler are removed while the number of layers is
reduced by a factor of 2

Dataset: Same as BERT (English Wikipedia and Toronto Book Corpus)

Initialisation: Student take one layer out of two from teacher

Additional

Large batches
Dynamic masking
no NSP

Experiment: Adding another step of distillation for SQuAD task during the adaptation phase
Fine-tuning DistilBERT on SQuAD
Teacher: BERT model previously fine-tuned on SQuAD

Loss

Learning Inductive Biases of Teacher:

 $\begin{array}{c} \text{Masked Language Modelling Loss L}_{\text{mlm}} \\ \text{Distillation Loss L}_{\text{ce}} \\ \text{Cosine Distance Loss L}_{\text{cos}} \end{array}$

tend to align the directions of the student and teacher hidden states vectors

Ablation Study showed that MLM Loss has least impact

Table 4: **Ablation study.** Variations are relative to the model trained with triple loss and teacher weights initialization.

Ablation	Variation on GLUE macro-score
\emptyset - L_{cos} - L_{mlm}	-2.96
L_{ce} - \emptyset - L_{mlm}	-1.46
L_{ce} - L_{cos} - \emptyset	-0.31
Triple loss + random weights initialization	-3.69

Table 1: **DistilBERT retains 97% of BERT performance.** Comparison on the dev sets of the GLUE benchmark. ELMo results as reported by the authors. BERT and DistilBERT results are the medians of 5 runs with different seeds.

Model	Score	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B	WNLI
ELMo	68.7	44.1	68.6	76.6	71.1	86.2	53.4	91.5	70.4	56.3
BERT-base	79.5	56.3	86.7	88.6	91.8	89.6	69.3	92.7	89.0	53.5
DistilBERT	77.0	51.3	82.2	87.5	89.2	88.5	59.9	91.3	86.9	56.3

Table 2: **DistilBERT yields to comparable performance on downstream tasks.** Comparison on downstream tasks: IMDb (test accuracy) and SQuAD 1.1 (EM/F1 on dev set). D: with a second step of distillation during fine-tuning.

Model	IMDb (acc.)	SQuAD (EM/F1)		
BERT-base	93.46	81.2/88.5		
DistilBERT	92.82	77.7/85.8		
DistilBERT (D)	-	79.1/86.9		

Table 3: **DistilBERT is significantly smaller while being constantly faster.** Inference time of a full pass of GLUE task STS-B (sentiment analysis) on CPU with a batch size of 1.

Model	# param. (Millions)	Inf. time (seconds)		
ELMo	180	895		
BERT-base	110	668		
DistilBERT	66	410		

Bonus

http://ralphtang.com/papers/deeplo2019.pdf Ralph Tang et al.

- Student can be tiny
- Student Architecture doesn't matter
- Lots of data required for learning
- Semantic Knowledge is hard to distill (CoLA)
- Layer Width > Number of Layers

Task Specific vs Multi-task Knowledge Distillation https://www.aclweb.org/anthology/2020.aacl-main.9.pdf https://arxiv.org/pdf/1911.03588.pdf

Instead of Distilling on Individual Tasks, distilling on general language modelling problem seems to be a better approach as it captures semantic information

Thank you Any QA?