B)
$$x + x^2 \sin x = O(x^2)$$
; r) $\frac{\arctan x}{1 + x^2} = O(\frac{1}{x^2})$;

д)
$$\ln x = o(x^e)$$
 (e>0); e) $x^p e^{-x} = o(\frac{1}{x^a})$;

$$\sqrt{x + \sqrt{x + \sqrt{x}}} \sim \sqrt{x}$$
; 3) $x^2 + x \ln^{100} x \sim x^2$.

652. Доказать, что при достаточно большом x > 0 имеют место неравенства:

a)
$$x^2 + 10x + 100 < 0.001x^3$$
;

6)
$$\ln^{1000}x < \sqrt{x}$$
; B) $x^{10}e^x < e^{2x}$.

652.1. Доказать асимптотическую формулу

$$\sqrt{x^2 + px + q} = x + \frac{p}{2} + O\left(\frac{1}{x}\right)$$

при $x \to +\infty$.

653. Пусть $x \to 0$. Выделить главный член вида Cx^n (C — постоянная) и определить порядки малости относительно переменной x следующих функций:

a)
$$2x-3x^3+x^5$$
; 6) $\sqrt{1+x}-\sqrt{1-x}$;

B)
$$\sqrt{1-2x} - \sqrt[3]{1-3x}$$
; r) tg x—sin x.

654. Пусть $x \to 0$. Показать, что бесконечно малые

a)
$$f(x) = \frac{1}{\ln x}$$
; 6) $f(x) = e^{-1/x^2}$

не сравнимы с бесконечно малой x^n (n > 0), каково бы ни было n, т. е. ни при каком n не может иметь место равенство $\lim_{x\to 0} \frac{f(x)}{x^n} = k$, где k — конечная величина, отличная от нуля.

655. Пусть $x \to 1$. Выделить главный член вида $C(x-1)^n$ и определить порядки малости относительно бесконечно малой x-1 следующих функций:

a)
$$x^3 - 3x + 2$$
; 6) $\sqrt[3]{1 - \sqrt{x}}$;

B)
$$\ln x$$
; r) $e^x - e$; A) $x^x - 1$.