Hash Tables

Achieving Expected O(1) Insert/Search/Delete

Mapping Keys To Indices

- If keys are integer numbers between 0 and m-1 only,
 - We can use those keys as indices to the underlying array store.
 - This is what's referred to as "direct-address tables" in CLRS 11.1.
- Insert/Search/Delete are guaranteed to be O(1) in all cases.
- But not realistic
 - · Keys are mostly not integers.
 - Mapping arbitrary key values to integers in [0, m-1) is nontrivial.
 - m could be really big, and only very small number of keys might be in use.
 - Big waste of maintaining the array of unnecessarily big size m, or it's even impossible.

Achieving Expected O(1) Insert/Delete/Search

- Linked data structures (linked lists, trees) require traversal, which will exceed O(1).
- Only way to achieve O(1) would be to utilize "random access" store, with ability to calculate the location for any key in constant time
 - Indexed arrays are the only random access store we have
 - · How to map keys to array indices becomes critical
- Already mentioned "key"
 - We assume we store "key"-"value" pairs, with all keys distinct
 - "Dictionary", "Map", "Table": Refer to same key-value store

Hashing

- Given
 - U: Set of all possible keys (universe)
 - T[0..m-1]: Hash table of size m
- Hash function
 - $h: U \to \{0, 1, ..., m-1\}$
- Collision
 - Unavoidable if |U| > m and more than m items are inserted
 - · Pigeonhole principle

http://en.wikipedia.org/wiki/Hash_table

Collision Resolution By Chaining

http://en.wikipedia.org/wiki/Hash_table

CLRS Figure 11.3, pp.257: Doubly-linked list in order to make delete-by-node operation $\mathcal{O}(1)$

Analysis of Hash Table Operations When Hashing With Chaining

- Worst case is terrible: $\Theta(n)$, when all elements hash to the same slot.
 - Degenerates into a linked list
- Average-case performance of hashing with chaining
 - "Depends on how well the hash function h distributes the set of keys to be stored among the m slots, on the average"
 - "Simple uniform hashing":
 - Hard to express the distribution precisely, so we make assumption:
 - Any given element is equally likely to hash into any of the m slots.
- Load factor $\alpha = \frac{n}{m}$
 - When n is the number of elements stored in the hash table of size m.
 - It's the average number of elements stored in a chain.

Chaining Example

- Keys are nonnegative integers,
 h(k) = k mod 7, m = 7
- If following keys are inserted in the order, and chaining is used to resolve collisions, what's the resulting hash table?

8, 10, 24, 15, 32, 17

When Search Fails

- Expected time to search unsuccessfully for key k is:
 - Expected time to search to the end of list T[h(k)].
 - Equivalent to expected length of the chain $T[h(k)] = \alpha$
 - Plus time to compute hash function h(k): Fixed $(\Theta(1))$
- Therefore, unsuccessful search is $\Theta(1 + \alpha)$.
 - Theorem 11.1 in CLRS pp.259

When Search Succeeds

- ullet Another probabilistic assumption: Element being search for is equally likely to be any of the n elements stored in the table
- Note elements are pushed to the head of a chain for any collision
 - The number of elements examined to hit element x is 1+# elements that appear before x in x's chain
 - # elements appearing before x in x's chain is # elements hashed to the same slot, but inserted to the table after x
- Quite more involved, need to establish other random variables
 - See CLRS pp.260
 - After careful math to compute expected # elements to examine, we still get $\Theta(1+\alpha)$ even for successful searches.
- This means search in hashing is O(1) if α is bounded by a fixed constant!

What Makes A Good Hashing Function?

- Should satisfy (approximately) simple uniform hashing:
 - Each key is equally likely to hash to any of the m slots.
 - Independently of where any other key has hashed to.
 - Unfortunately we typically have no way to check this condition:
 - We can't know probability distribution of the keys.
 - Keys may not be independent to each other.
 - In rare cases when we do know the distribution,
 - E.g., If keys are random real numbers k which are independently and uniformly distributed between 0 (incl.) and 1 (excl.),
 - $h(k) = \lfloor km \rfloor$ does satisfy simple uniform hashing.
 - In practice, some heuristically crafted hash functions work pretty well.
 - Only natural numbers are considered as keys, because any keys can be mapped to (interpreted as) natural numbers.
 - E.g., variable name "pt" mapped to ASCII (112,116), then 112x128+116=14452.

Crafting Good Hashing Functions

Not All Hashing Functions Work Well

Division Method

- $h(k) = k \mod m (k \% m)$
 - E.g., 100 mod 12 = 4, because 100 / 12 = 6 in integer, and 100 12*6 = 4
 - The remainder of integer division of k by m
- Choice of *m* is important
 - Avoid a power of 2. In the case of string keys, it's like choosing last (or first) few characters as hash values, which wouldn't be very uniformly distributed.
 - A prime number is usually good choice, but not all primes are good.
 - Exercise 11.3-3: $m=2^p-1$ is not good when k is a numeric encoding of character string in radix 2^p (e.g., 2^8 would be 8-bit/1-byte code, ...)
 - A prime not too close to an exact power of 2 is often a good choice for m
 - · Heuristically concluded.

Multiplication Method

• Multiply natural number k by a fractional real number A ($0 \le A < 1$), then take the fractional part, then multiply by m, then take the integer part.

$$h(k) = \lfloor m(kA - \lfloor kA \rfloor) \rfloor$$

- Advantage: m can be any number, even a power of 2
- A few more restrictions on A to make the computation efficient.
- Some heuristically found A works pretty well
 - E.g., $A \cong \frac{\sqrt{5}-1}{2} = 0.6180339887 \dots$

Hashing with Open Addressing

When Pointers Are Not Desirable

Universal Hashing

- A fixed hash function, if known, can be easily exploited by malicious adversary for worst case degeneration (all keys hashing into same slot)
- Should be able to choose hash function for each usage
- ullet Set of hash functions ${\mathcal H}$ is called universal
 - If for each pair of distinct keys $k, l \in U$, the number of hash functions $h \in \mathcal{H}$ for which h(k) = h(l) is at most $|\mathcal{H}|/m$.
- A good universal set of hash functions
 - $h_{ab}(k) = ((ak + b) \% p) \% m$
 - For a prime $p, a \in \{1, 2, ..., p-1\}, b \in \{0, 1, 2, ..., p-1\}$
 - Study CLRS 11.3.3 why this is universal and why universal hash function gives $O(1+\alpha)$

Open Addressing: Alternatives to Chaining

- There are certain situations where chaining shouldn't be used:
 - · Limited memory, no memory allocator, ...
- Instead of chaining colliding elements as a linked list,
 - Compute the sequence of slots to be examined.
 - Probe this sequence for any operations.
- Probe sequence depends upon the key being used.
- Hash function should be extended to include probe number:
 - $h: U \times \{0, 1, ..., m-1\} \rightarrow \{0, 1, ..., m-1\}$
 - The probe sequence for key *k*:
 - $\langle h(k,0), h(k,1), \dots, h(k,m-1) \rangle$: This should be a permutation of $\langle 0,1,\dots,m-1 \rangle$.
 - So that every hash-table position is eventually considered for any key, as table fills up.

Linear Probing

 Given original (called auxiliary) hash function

$$h': U \to \{0, 1, \dots, m-1\},\$$

- h(k, i) = (h'(k) + i) % m
- E.g., if m = 7, h'(k) = k % 7, and k = 38, then the probe sequence should be:
 - First, h'(38) = 38 % 7 = 3.
 - h(k,0) = h'(38) % 7 = 3
 - h(k, 1) = (h'(38) + 1) % 7 = 4
 - : (3, 4, 5, 6, 0, 1, 2)

• Example: For the hash parameters and functions on the left, draw the resulting hash table when the following keys are inserted in the given order: 38, 29, 17, 45, 8, 15

0	
1	29
2 3 4	8
3	38
4	17
5	45
6	15

Double Hashing

- Still clustering on quadratic probing: "secondary clustering"
 - Same probe sequences for two keys if their initial probes are the same.
 - $\bullet\,$ The initial probe fixes the entire sequence, allowing only m permutations.
- Double hashing: Combine 2 hashing functions to allow more perms.
 - $h(k,i) = (h_1(k) + i h_2(k)) \% m$.
 - It's like linear probing, but the displacement is not fixed to 1, but it varies on k.
 - Easier construction of $h_1(k)$ and $h_2(k)$. E.g., for a prime m,
 - $h_1(k) = k \% m$
 - $h_2(k) = 1 + (k \% (m-1))$
 - Double hashing performs close to "ideal" scheme of uniform hashing.

Quadratic Probing

- Linear probing is easy to understand/implement.
- But it suffers from "primary clustering" issue.
 - # probes goes up pretty quickly as α (= n/m) approaches 1 due to cluster forming from previous insertions
- Quadratic probing: Use a different hash function to avoid the issue
 - $h(k,i) = (h'(k) + c_1 i + c_2 i^2) \% m$
 - E.g., for the earlier example (k = 38) with $c_1 = 0 \& c_2 = 1$, the probing sequence will be (3, 4, 0, 5, 5, 0, 4), which is not a permutation of (0, 1, 2, 3, 4, 5, 6), thus won't work well for open addressing.
 - In fact, $c_1 \& c_2$ must be chosen carefully to produce permutation for every k.
 - For such good $c_1 \& c_2$, quadratic probing is much better than linear probing.

Double Hashing Example (CLRS Fig. 11.5, pp.273)

Q: What is the probe sequence for k=135, and in what slot will the key 135 be inserted?

Probe 0: h₁(135) = 135 mod 13 = 5 Probe 1: 5 + 1*(1+135%11) = 9 Probe 2: 5 + 2*(1+135%11) = 13%13 = 0

Figure 11.5 Insertion by double hashing. Here we have a hash table of size 13 with $h_1(k) = k \mod 13$ and $h_2(k) = 1 + (k \mod 11)$. Since $14 \equiv 1 \pmod 13$ and $14 \equiv 3 \pmod 11$, we insert the key 14 into empty slot 9, after examining slots 1 and 5 and finding them to be occupied.

Analysis Of Open Addressing

- Study CLRS Theorem 11.6 & 11.8
 - For open addressing's average case performance
 - Using again probability and random variable analysis
 - Note the results are only for "uniform" hashing (ideal case)
 - None of the open addressing schemes we've seen are truly uniform.
 - Double hashing is close to uniform.
 - Theorem 11.6: Expected # probes in unsuccessful search is at most $\frac{1}{1-\alpha}$.
 - Theorem 11.8: Expected # probes in successful search is at most $\frac{1}{\alpha} \ln(\frac{1}{1-\alpha})$.

Open Addressing Summary

- Should be used only on limited cases:
 - When load factor is small.
 - When memory is limited (thus has to be saved as much) or dynamic memory is unavailable (no dynamic allocation of pointed nodes).
- Deletion should be also careful.
 - Can't just assign empty to the slot.
 - If done this way, then subsequent search for a different value with same hash will fail, when it's still in the table.
 - Must just mark the slot as **deleted**. Search should ignore the deleted mark.
 - Insertion can just overwrite any slot that's marked as deleted.
- Finally, $n \leq m!$
 - If more elements are inserted, the entire table must be resized.
 - · Meaning all existing elements should be copied, which is a big overhead (rehashing)

In Practice,

From Data Abstraction & Problem Solving with C++: Walls & Mirrors by Carrano

Many Variants of Hashing

- Perfect Hashing
 - Constructing a hashing function with no collisions (hard problem)
 - · Useful for fixed data sets
 - O(1) search time in the worst case
- Cuckoo Hashing (2001)
 - Use two hash tables with two different hashing functions
 - While inserting, if slot 1 in the first table is occupied, we go to second table
 - If the slot 2 is again occupied, kick the element there, and put the new one
 - The kicked element applies the same algorithm.... may never stop!
 - We can use a single table with two hashing functions
 - Insertion is slower (may need resize and rehashing), but search is faster
- Many more ...

Digital or Radix Search

Achieving Worst Case O(1) Insert/Search/Delete

Binary Tries

• We do not need edge labels, they are implicit (0 left, 1 right)

- To store words you concatenate the codes of letters
- Space can be larger than O(n), the number of words

Searching Strings

• Instead of comparing numbers we can use letters to guide the search in a *trie* (labels can be in edges or nodes)

- Searching, inserting and deleting in a trie takes time proportional to the length of the string independent on the number of strings!
- Notice that the leaves are lexicographically sorted as labels are sorted

PATRICIA Trees

- We do not need to store unary nodes as they do not guide the search
- Hence we can skip them, adding the letter position in each node

 Search is equal as before l but we need to check the whole string after

• Space is reduced to O(n)

Suffix or PAT trees

• Each suffix of a string is an entry in the tree

• Then we can search any substring of a long string

- We keep only the leaves of the suffix tree
- We use less memory and we can search in O(log n) time using two indirect binary searches (≤ & ≥ to the query string)
- Many applications in computational biology

0	13	\$
1	9	accg\$
2	8	caccg\$
3	10	ccg\$
4	11	cg\$
5	12	g\$
6	7	gcaccg\$
7	5	gtgcaccg\$
8	3	gtgtgcaccg\$
9	1	gtgtgtgcaccg\$
10	6	tgcaccg\$
11	4	tgtgcaccg\$
12	2	tgtgtgcaccg\$
13	0	tgtgtgtgcaccg\$