Métodos matemáticos para la ciencia e Ingeniería: Resolución de EDPs tipo Reacción-Difusión

Fernanda Pérez (rut: 18.769.232-6)

3 de Noviembre, 2015

1 Ecuación de Fisher-KPP

1.1 Introducción

Se busca resolver e interpretar los resultados de la siguiente EDP:

$$\frac{\partial n}{\partial t} = \gamma \frac{\partial^2 n}{\partial x^2} + \mu n - \mu n^2$$

Corresponde a una ecuación a derivadas parciales tipo reacción-difusión llamada Ecuación de Fisher-KPP. Ésta busca modelar el comportamiento de una especie animal. La variable n=n(t,x) describe la densidad de la especie como función del tiempo y la posición. Los 3 términos del lado derecho corresponden a:

- μn : Tendencia de la especie a crecer indefinidamente (suponiendo que los recursos sean infinitos).
- $-\mu n^2$: Despues de un tiempo, el aumento en densidad creará competencia por los recursos, lo que tenderá a disminuir la densidad.
- $\gamma \frac{\partial^2 n}{\partial x^2}$: Tendencia de la especie a dispersarse para encontrar más recursos.

La ecuación tiene dos puntos de equilibrio n=0 y n=1, pero sólo el segundo es estable. Las soluciones tienen un comportamiento que es una mezcla de difusión y un pulso viajero. Se busca resolver discretizando la parte de difusión mediante el método de Crank-Nicolson, y el método de Euler explícito para la parte de reacción, utilizando las siguientes constantes y condiciones:

• $x \in [0, 1]$

• n(t,0) = 1

• $\gamma = 0.001$

• n(t,1) = 0

• $\mu = 1.5$

• $n(0,x) = e^{-x^2/0.1}$

Se busca discretizar el espacio en aproximadamente 500 puntos, eligiendo un paso temporal de modo que la solución sea estable e integrar hasta al menos t=4. El problema utiliza unidades arbitrarias.

1.2 Procedimiento

La ecuación se puede ordenar de la siguiente forma:

$$\frac{\partial n}{\partial t} = \gamma \frac{\partial^2 n}{\partial r^2} + \mu n (1 - n) \tag{1}$$

Reconociendo en el lado derecho al primer término como el de difusión (lineal) y al segundo como el de reacción (no lineal). Se define la parte de reacción como R.

1.2.1 Reacción

Utilizando el método de Euler explícito:

$$R_i^n = \mu \cdot n_i^n (1 - n_i^n) \tag{2}$$

1.2.2 Difusión

Utilizando el método de Crank Nicolson tenemos que:

$$-rn_{j+1}^{n+1} + (1+2r)n_j^{n+1} - rn_{j-1}^{n+1} = rn_{j+1}^{n} + (1-2r)n_j^{n} + rn_{j-1}^{n} + dtR_j^{n}$$
 (3)

Donde $r = \gamma \frac{dt}{2 \cdot dx^2}$. Es posible escribir lo anterior matricialmente como $A\vec{n}^{n+1} = \vec{b}^n$. Donde A tiene la forma tridiagonal mostrada en la ecuación 3.

Se utiliza la librería *scipy.sparse* para resolver este sistema. Ésta trabaja con matrices *poco densas*, es decir, matrices en que la mayoría de sus elementos resultan ser cero. Se forman las matrices del problema a partir de otras que cumplen con lo anterior.

$$A = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ -r & (1+2r) & -r & & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & & -r & (1+2r) & -r \\ 0 & \cdots & 0 & 0 & 1 \end{pmatrix}$$
 (4)

Es posible obtener esta forma para A de la siguiente manera:

$$A = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & & \vdots \\ \vdots & & \ddots & & \\ & & & 1 & 0 \\ 0 & \cdots & 0 & 0 & 1 \end{pmatrix} - 2r \cdot \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & \frac{1}{2} & & & \vdots \\ \vdots & & \ddots & & \\ & & & \frac{1}{2} & 0 \\ 0 & \cdots & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} -2 & 1 & 0 & \cdots & 0 \\ 1 & -2 & 1 & \vdots & & \\ \vdots & \ddots & \ddots & \ddots & 0 \\ & & & 1 & -2 & 1 \\ 0 & \cdots & 0 & 1 & -2 \end{pmatrix}$$
(5)

Por otro lado, \vec{b} resulta ser:

$$\vec{b} = M \cdot \vec{n}^n + \vec{R}^n = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ r & (1 - 2r) & r & & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & & r & (1 - 2r) & r \\ 0 & \cdots & 0 & 0 & 1 \end{pmatrix} \cdot \vec{n}^n + \vec{R}^n$$
 (6)

Es posible obtener la matriz M de la Ecuación 5 de la siguiente manera:

$$M = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & & \vdots \\ \vdots & & \ddots & & \\ & & & 1 & 0 \\ 0 & \cdots & 0 & 0 & 1 \end{pmatrix} - 2r \cdot \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & \frac{1}{2} & & & \vdots \\ \vdots & & \ddots & & \\ & & & \frac{1}{2} & 0 \\ 0 & \cdots & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} -2 & 1 & 0 & \cdots & 0 \\ 1 & -2 & 1 & \vdots & & \\ \vdots & \ddots & \ddots & \ddots & 0 \\ & & & 1 & -2 & 1 \\ 0 & \cdots & 0 & 1 & -2 \end{pmatrix}$$
(7)

Una vez calculado el vector \vec{b} de la manera mostrada anteriormente, se setean sus valores extremos con los valores otorgados según las condiciones de borde. Notar que los extremos superior izquierdo e inferior derecho de A se dejaron con valor 1, para que las condiciones se cumplan. Se parte calculando \vec{b} con las condiciones iniciales del problema.

Finalmente, habiendo calculado A y \vec{b}^n , se resuelve el sistema, obteniendo \vec{n}^{n+1} . Se utiliza dx = 0.002 (dado del hecho de querer dar 500 pasos entre 0 y 1). Realizando un cambio de variables para x y t, de manera de obtener la Ecuación 8, es posible calcular dt máximo para el cual el método de Euler explícito es estable. Se escoge dt = 0.002 que asegura estabilidad. Se grafica para un rango de t desde 0 hasta 5 (unidades arbitrarias).

$$\frac{\partial n}{\partial t'} = \frac{\partial^2 n}{\partial x'^2} + n(1 - n) \tag{8}$$

1.3 Resultados

Resolviendo el problema de la manera planteada en la sección Procedimiento, se obtiene la Figura 1 donde se decide graficar sólo para seis tiempos con el fin de obtener una mejor percepción de la evolución de la curva en el tiempo.

Figura 1: Gráfico n(x) vs x, donde n(x) corresponde a la densidad de

la especie en función de la posición. Se muestra el estado de la curva en seis tiempos distintos equiespaciados en una unidad de tiempo.

1.4 Conclusiones

Se obtiene exitosamente la solución al problema.

Se aprecia en la Figura 1 un desplazamiento lateral de la curva en el tiempo, tal como lo hace un pulso viajero. En este movimiento, la curva se va acercando a una solución estable (n=1). La especie invade el espacio, en busca de la supervivencia.

2 Ecuación de Newell-Whitehead-Segel

2.1 Introducción

Se busca resolver e interpretar los resultados de la siguiente EDP:

$$\frac{\partial n}{\partial t} = \gamma \frac{\partial^2 n}{\partial x^2} + \mu(n - n^3)$$

Corresponde a una ecuación a derivadas parciales tipo reacción-difusión llamada Ecuación de Newell-Whitedead-Segel. Ésta describe fenómenos de convección y combustión entre otros

Esta vez la ecuación tiene 3 puntos de equilibrio: n=0 (inestable) y $n=\pm 1$ (estables). Se pide explicar en argumentos simples por qué son estables.

Se utilizan las mismas constantes que en la pregunta anterior, pero con las siguientes condiciones de borde:

- n(t,0) = 0
- n(t,1) = 0
- n(0,x) = np.random.uniform(low=-0.3, high=0.3, size=Nx)

El problema utiliza unidades arbitrarias.

2.2 Procedimiento

Se escogen las semillas 18769 y 1876 para np.random.uniform().

Se realiza un procedimiento análogo al visto en el problema anterior, cambiando las condiciones iniciales y de borde, y con las componentes de \vec{R} modificadas:

$$R_j^n = \mu \cdot n_j^n (1 - (n_j^n)^2)$$

Se escoge dt = 0.01 y se grafica para un rango de t desde 0 hasta 5 (unidades arbitrarias).

2.3 Resultados

Resolviendo el problema de la manera planteada anteriormente, se obtiene la Figura 2 y la Figura 3, donde se decide graficar sólo para seis tiempos, con el fin de obtener una mejor percepción de la evolución de la curva en el tiempo.

Figura 2: Gráfico n(x) vs x. Se muestra el estado de la curva en seis tiempos distintos equiespaciados en una unidad de tiempo. Se utiliza como semilla (seed) 18769, y dt = 0.01.

Figura 3: Gráfico n(x) vs x. Se muestra el estado de la curva en seis tiempos distintos equiespaciados en una unidad de tiempo. Se utiliza como semilla (seed) 1876, y dt = 0.01.

2.4 Conclusiones

Se obtiene exitosamente la solución al problema.

Tanto en la Figura 2 como en la Figura 3 se observa cómo la situación random de un inicio (condiciones iniciales) se ordena en una curva continua que con el tiempo va buscando llegar a los puntos de equilibrios estables ($n=1,\ n=-1$). Podemos ver que los dos puntos anteriores son efectivamente puntos de equilibrio, ya que en ellos se anula la parte de reacción obteniéndose un comportamiento puramente difusivo, y estables ya que es posible apreciar en las figuras Figura 2 y Figura 3 que actúan como atractores.

Observando las dos figuras anteriormente mencionadas, es posible apreciar una fuerte dependencia de la solución con respecto a las condiciones iniciales.

Las gráficas obtenidas obedecen a lo esperado teóricamente.