日本国特許庁 JAPAN PATENT OFFICE

23 JUN 2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年12月25日

REC'D 19 FEB 2004

WIFO

PCT

出 願 番 号 Application Number:

特願2002-375115

[ST. 10/C]:

[]P2002-375115]

出 願 人
Applicant(s):

浜松ホトニクス株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 2月 5日

今井康

【書類名】

特許願

【整理番号】

2002-0761

【提出日】

平成14年12月25日

【あて先】

特許庁長官殿

【国際特許分類】

G01T 1/20

【発明者】

【住所又は居所】

静岡県浜松市市野町1126番地の1 浜松ホトニク

ス株式会社内

【氏名】

鈴木 保博

【発明者】

【住所又は居所】

静岡県浜松市市野町1126番地の1 浜松ホトニク

ス株式会社内

【氏名】

水野 誠一郎

【特許出願人】

【識別番号】

000236436

【氏名又は名称】

浜松ホトニクス株式会社

【代理人】

【識別番号】

100088155

【弁理士】

【氏名又は名称】

長谷川 芳樹

【選任した代理人】

【識別番号】

100089978

【弁理士】

【氏名又は名称】 塩田 辰也

【選任した代理人】

【識別番号】

100092657

【弁理士】

【氏名又は名称】 寺崎 史朗

【選任した代理人】

【識別番号】

100110582

【弁理士】

【氏名又は名称】 柴田 昌聰

【手数料の表示】

【予納台帳番号】

014708

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

要

【物件名】

要約書 1

【プルーフの要否】

【書類名】 明細書

【発明の名称】 光検出装置

【特許請求の範囲】

【請求項1】 入射光強度に応じた量の電荷を各々発生するN個(Nは2以上の整数)のフォトダイオードと、

前記N個のフォトダイオードそれぞれに対応して設けられ、各フォトダイオードで発生した電荷の量のレベルを判定し、そのレベル判定結果を示すレベル信号を出力するN個の電荷量レベル判定回路と、

容量値が可変であって該容量値が前記レベル信号に基づいて設定される積分容量部を有し、入力端に入力した電荷を前記積分容量部に蓄積して、この蓄積した電荷の量に応じた電圧値を出力端より出力する積分回路と、

前記N個のフォトダイオードそれぞれに対応して設けられ、各フォトダイオードと前記積分回路の入力端との間に設けられた第1スイッチと、

前記N個の電荷量レベル判定回路それぞれに対応して設けられ、各電荷量レベル判定回路と前記積分容量部との間に設けられた第2スイッチと、

を備えることを特徴とする光検出装置。

【請求項2】 前記積分回路の出力端より出力された電圧値を入力し、この電圧値をA/D変換して、この電圧値に応じたデジタル値を出力するA/D変換回路を更に備えることを特徴とする請求項1記載の光検出装置。

【請求項3】 前記A/D変換回路から出力されたデジタル値を入力し、前記レベル信号に応じて前記デジタル値のビットをシフトして、このビットをシフトしたデジタル値を出力するシフト回路を更に備えることを特徴とする請求項2記載の光検出装置。

【請求項4】 前記積分容量部が第1容量値または第2容量値に設定が可能であって、前記第1容量値が前記第2容量値の2P倍(pは1以上の整数)であり、

前記A/D変換回路がp以上のビット数のデジタル値を出力し、

前記シフト回路が前記レベル信号に応じてデジタル値をpビットだけシフトする、

ことを特徴とする請求項3記載の光検出装置。

【請求項5】 前記第1スイッチおよび前記第2スイッチそれぞれの開閉を 制御する制御回路を更に備え、

前記制御回路が、前記N個のフォトダイオードそれぞれについて、該フォトダイオードに対応する前記第2スイッチを閉じ、該フォトダイオードに対応する前記電荷量レベル判定回路より出力されたレベル信号に基づいて前記積分容量部の容量値が設定された後に、該フォトダイオードに対応する前記第1スイッチを閉じる、

ことを特徴とする請求項1記載の光検出装置。

【請求項6】 前記N個のフォトダイオード、前記N個の電荷量レベル判定 回路および前記積分回路を1組として、これらをM組(Mは2以上の整数)備え る、ことを特徴とする請求項1記載の光検出装置。

【請求項7】 第1基板に前記N個のフォトダイオードが設けられ、

第2基板に前記N個の電荷量レベル判定回路、前記積分回路、前記第1スイッチおよび前記第2スイッチが設けられており、

前記第1基板と前記第2基板とが互いにバンプ接続されていて、互いに対応する前記フォトダイオードと前記第1スイッチとが電気的に接続されており、互いに対応する前記フォトダイオードと前記電荷量レベル判定回路とが電気的に接続されている、

ことを特徴とする請求項1記載の光検出装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、配列された複数のフォトダイオードを含む光検出装置に関するものである。

[0002]

【従来の技術】

光検出装置は、1次元状または2次元状に配列された複数のフォトダイオードと、アンプおよび積分容量部を含む積分回路とを備えた装置であり、また、さら

に以降の信号処理回路をも備える場合がある。この光検出装置では、各フォトダイオードへの入射光の強度に応じた量の電荷が該フォトダイオードから出力され、その電荷が積分容量部に蓄積され、その蓄積された電荷の量に応じた電圧値が積分回路より出力される。複数のフォトダイオードそれぞれで発生した電荷の量に応じて積分回路より出力される電圧値に基づいて、複数のフォトダイオードが配列された光検出面へ入射する光が検出される。また、光検出装置は、積分回路から出力された電圧値(アナログ値)をデジタル値に変換するA/D変換回路を更に備えている場合があり、この場合には、入射光強度がデジタル値として得られ、さらにコンピュータ等により処理することが可能となる。

[0003]

このような光検出装置は、CMOS技術により製造することが可能であって、 積分回路に含まれる積分容量部の容量値を変更することにより、入射光強度検出 のダイナミックレンジを拡大することができる。例えば、非特許文献1に記載さ れた光検出装置では、積分回路は、容量値が可変である積分容量部がアンプの入 出力端子間に設けられており、フォトダイオードから出力された電荷を積分容量 部に蓄積して、この蓄積した電荷の量に応じた電圧値を出力する。そして、この 非特許文献1に記載された光検出装置では、外部からの制御により積分容量部の 容量値を適切に設定することで、入射光強度検出のダイナミックレンジの拡大を 図っている。

[0004]

すなわち、積分容量部の容量値を小さくすることで、入射光強度が小さい場合であっても検出感度が大きくなり、一方、積分容量部の容量値を大きくすることで、入射光強度が大きい場合であっても出力信号の飽和が回避される。この光検出装置を用いれば、例えば真夏の昼間のように非常に明るい被写体を撮像する場合にも、出力信号が飽和することなく被写体を撮像することができる。また、例えば夜間のように非常に暗い被写体を撮像する場合にも、感度よく被写体を撮像することができる。

[0005]

しかしながら、上記非特許文献1に記載された光検出装置は、被写体上の位置

[0006]

このような問題を解決することを意図した発明が特許文献1に開示されている。この特許文献1に開示された光検出装置は、容量値が可変である積分容量部を有する積分回路と、各フォトダイオードそれぞれで発生した電荷の量のレベルを判定する電荷量レベル判定回路と、を備えている。そして、複数のフォトダイオードのうちの何れかのフォトダイオードが選択され、この選択されたフォトダイオードで発生した電荷の量のレベルが電荷量レベル判定回路により判定され、この判定された電荷量レベルに基づいて積分容量部の容量値が設定され、その後に、選択されたフォトダイオードで発生した電荷の蓄積する動作が積分回路において開始される。このように構成されることで、この光検出装置は、各々のフォトダイオード毎(すなわち、1 画面における画素毎)の入射光強度検出のダイナミックレンジが拡大され得る。

[0007]

【特許文献1】

国際公開第02/12845号パンフレット

[0008]

【非特許文献1】

S. L. Garverick, et al., "A 32-Channel Charge Readout IC for Programma ble, Nonlinear Quantization of Multichannel Detector Data", IEEE Journal of Solid-State Circuits, Vol.30, No.5, pp.533-541 (1995)

[0009]

【発明が解決しようとする課題】

[0010]

本発明は、上記問題点を解消する為になされたものであり、入射光強度検出の ダイナミックレンジが広く高速に入射光強度を検出することができる光検出装置 を提供することを目的とする。

[0011]

【課題を解決するための手段】

本発明に係る光検出装置は、(1) 入射光強度に応じた量の電荷を各々発生する N個 (Nは2以上の整数) のフォトダイオードと、(2) N個のフォトダイオード それぞれに対応して設けられ、各フォトダイオードで発生した電荷の量のレベル を判定し、そのレベル判定結果を示すレベル信号を出力する N個の電荷量レベル 判定回路と、(3) 容量値が可変であって該容量値がレベル信号に基づいて設定される積分容量部を有し、入力端に入力した電荷を積分容量部に蓄積して、この蓄積した電荷の量に応じた電圧値を出力端より出力する積分回路と、(4) N個のフォトダイオードそれぞれに対応して設けられ、各フォトダイオードと積分回路の入力端との間に設けられた第1スイッチと、(5) N個の電荷量レベル判定回路それぞれに対応して設けられ、各電荷量レベル判定回路と積分容量部との間に設けられた第2スイッチと、を備えることを特徴とする。

[0012]

本発明に係る光検出装置によれば、フォトダイオードに入射した光の強度に応じた量の電荷が発生し、この電荷のレベルが電荷量レベル判定回路により判定される。そして、この判定された電荷量レベルに基づいて積分回路の積分容量部の容量値が設定される。その後、積分回路において、フォトダイオードで発生した電荷が積分容量部に蓄積されて、この蓄積された電荷の量に応じた値の電圧信号が出力される。入射光強度が大きい場合には、積分回路の可変容量部の容量値は比較的大きな値に設定され、入射光強度が大きくても飽和することなく入射光強

度が検出される。一方、入射光強度が小さい場合には、積分回路の可変容量部の 容量値は比較的小さな値に設定され、入射光強度が小さくても感度よく入射光強 度が検出される。また、この光検出装置では、各フォトダイオードに対して電荷 量レベル判定回路が1対1に設けられていることにより、積分回路の積分容量部 の容量値が迅速に設定され、高速に入射光強度が検出され得る。

[0013]

本発明に係る光検出装置は、積分回路の出力端より出力された電圧値を入力し 、この電圧値をA/D変換して、この電圧値に応じたデジタル値を出力するA/ D変換回路を更に備えるのが好適である。この場合には、積分回路から出力され た電圧値は、A/D変換回路に入力してデジタル値に変換され、このデジタル値 がA/D変換回路より出力される。

[0014]

本発明に係る光検出装置は、A/D変換回路から出力されたデジタル値を入力 し、レベル信号に応じてデジタル値のビットをシフトして、このビットをシフト したデジタル値を出力するシフト回路を更に備えるのが好適である。この場合に は、A/D変換回路から出力されたデジタル値は、シフト回路により、電荷量レ ベル判定回路により判定された電荷量レベルに応じてビットがシフトされて出力 される。

[0015]

本発明に係る光検出装置は、積分容量部が第1容量値または第2容量値に設定 が可能であって、第1容量値が第2容量値の2P倍(pは1以上の整数)であり 、A/D変換回路がp以上のビット数のデジタル値を出力し、シフト回路がレベ ル信号に応じてデジタル値をpビットだけシフトするのが好適である。この場合 には、A/D変換回路から出力されたデジタル値が必要に応じてpビットだけシ フトされることで、これにより得られるデジタル値は入射光強度に対して線形性 が優れるものとなる。

[0016]

本発明に係る光検出装置は、第1スイッチおよび第2スイッチそれぞれの開閉 を制御する制御回路を更に備え、制御回路が、N個のフォトダイオードそれぞれ について、該フォトダイオードに対応する第2スイッチを閉じ、該フォトダイオードに対応する電荷量レベル判定回路より出力されたレベル信号に基づいて積分容量部の容量値が設定された後に、該フォトダイオードに対応する第1スイッチを閉じるのが好適である。この場合には、積分回路の積分容量部の容量値が迅速に設定され、高速に入射光強度が検出される。

[0017]

本発明に係る光検出装置は、N個のフォトダイオード、N個の電荷量レベル判定回路および積分回路を1組として、これらをM組(Mは2以上の整数)備えるのが好適である。この場合には、M×N個のフォトダイオードが配列されるので、画素数の更なる増加が可能である。

[0018]

本発明に係る光検出装置は、(1) 第1基板にN個のフォトダイオードが設けられ、(2) 第2基板にN個の電荷量レベル判定回路、積分回路、第1スイッチおよび第2スイッチが設けられており、(3) 第1基板と第2基板とが互いにバンプ接続されていて、互いに対応するフォトダイオードと第1スイッチとが電気的に接続されており、互いに対応するフォトダイオードと電荷量レベル判定回路とが電気的に接続されているのが好適である。この場合には、第1基板および第2基板それぞれは、最適の製造プロセスで製造することが可能であり、集積度を向上する上で好ましい。

[0019]

【発明の実施の形態】

以下、添付図面を参照して本発明の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。

[0020]

図1は、本実施形態に係る光検出装置1の全体構成図である。図2は、本実施形態に係る光検出装置1の一部構成図である。図1において点線で示された範囲 Y内のブロック X_1 ~ X_M それぞれの詳細が図2に示されている。これらの図に示される光検出装置1は、M組のユニット U_1 ~ U_M 、A/D変換回路30、シフト 回路40および制御回路50を備えている。各ユニット U_m は、互いに同様の構

[0021]

各フォトダイオード $PD_{m,n}$ は、入射光強度に応じた量の電荷Qを発生するものである。スイッチ $SW1_{m,n}$ は、フォトダイオード $PD_{m,n}$ に対応して該フォトダイオード $PD_{m,n}$ と積分回路 20_m の入力端との間に設けられ、電気的に開閉が可能である。

[0022]

[0023]

積分回路 20_m は、容量値が可変である積分容量部を有しており、フォトダイオード $PD_{m,n}$ とスイッチ $SW1_{m,n}$ を介して入力端が接続されている。そして、積分回路 20_m は、これらのスイッチ $SW1_{m,1}$ $\sim SW1_{m,N}$ の順次の開閉に伴い N個のフォトダイオード $PD_{m,1}$ $\sim PD_{m,N}$ それぞれから順次に出力されて該入力端に入力した電荷 Q を積分容量部に蓄積して、この蓄積した電荷 Q の量に応じた電圧値 V_{20} を出力端より出力する。また、積分容量部は、電荷量レベル判定回路 $10_{m,n}$ とスイッチ $SW2_{m,n}$ を介して接続されており、これらのスイッチ $SW2_{m,1}$ $\sim SW2_{m,N}$ の順次の開閉に伴い N個の電荷量 レベル判定回路 $10_{m,1}$ $\sim 10_{m,N}$ ~ 1

[0024]

[0025]

制御回路 50 は、光検出装置 1 の全体の動作を制御するものである。特に、制御回路 50 は、各スイッチ S W $1_{m,n}$ および各スイッチ S W $2_{m,n}$ それぞれの開閉を制御する。具体的には、制御回路 50 は、各フォトダイオード P $D_{m,n}$ について、対応するスイッチ S W $2_{m,n}$ を閉じ、対応する電荷量 V ベル判定回路 $10_{m,n}$ より出力された V ベル信号 L Evel に基づいて積分回路 20_{m} の積分容量部の容量値が設定された後に、対応するスイッチ S W $1_{m,n}$ を閉じて、積分回路 20_{m} における積分動作を開始させる。また、制御回路 50 は、積分回路 20_{m} 、スイッチ S W 3_{m} 、スイッチ S W 4_{m} 、A I D 変換回路 30 およびシフト回路 40 それぞれの動作のタイミングをも制御する。この動作タイミングについては後に詳述する。なお、図 1 では、制御回路 10 のから他の要素回路へ送られる制御信号の図示が省略されている。

[0026]

図 3 は、本実施形態に係る光検出装置 1 に含まれる電荷量レベル判定回路 1 0 $_{m,n}$ および積分回路 2 $_{0m}$ の回路図である。なお、この図には、第 $_{m}$ ユニット $_{0m}$ 内の第 $_{0m}$ カフォトダイオード $_{0m}$ アカル で対応する部分のみが示されている。

[0027]

電荷量レベル判定回路 $10_{m,n}$ は、30の比較器 $11\sim13$ および制御部 14 を有している。比較器 $11\sim13$ それぞれの非反転入力端子は、フォトダイオード $PD_{m,n}$ のカソード端子とスイッチ $SW1_{m,n}$ との接続点に接続されている。比

較器 11 の反転入力端子には基準電圧値 V_{ref1} が入力し、比較器 12 の反転入力端子には基準電圧値 V_{ref2} が入力している。そして、比較器 13 の反転入力端子には基準電圧値 V_{ref3} が入力している。そして、比較器 $11\sim13$ それぞれは、非反転入力端子 および反転入力端子それぞれに入力する電圧値を大小比較して、その比較結果を 表す信号を制御部 14 へ出力する。制御部 14 は、比較器 $11\sim13$ それぞれよ り出力された信号を入力して、積分回路 20_m の積分容量部の容量値を設定する 為の 3 ビットのレベル信号Levelを出力する。

[0028]

ここで、基準電圧値Vrefl~Vref3は

$$V_{refl} = V_{sat} / 2$$
 ···(la)

$$V_{ref2} = V_{sat} / 4$$
 ...(1b)

$$V_{ref3} = V_{sat} / 8 \qquad \cdots (1c)$$

なる関係式を満たす。 V_{sat} は一定値である。したがって、3つの比較器 1 1 \sim 1 3 は、フォトダイオード P $D_{m,n}$ のカソード端子の電位 V_{PD} が、

$$V_{PD} < V_{sat} / 8 \qquad \cdots (2a)$$

$$V_{sat}/8 \le V_{PD} < V_{sat}/4 \qquad \cdots (2b)$$

$$V_{sat}/4 \le V_{PD} < V_{sat}/2 \qquad \cdots (2c)$$

$$V_{sat}/2 \le V_{PD}$$
 ...(2d)

のうちの何れの範囲にあるかを判定することができる。制御部 14 より出力されるレベル信号Levelは、電位 V_{PD} が上記 (2a) 式 \sim (2d) 式の何れの範囲にあるかを示すものである。

[0029]

積分回路 20_m は、アンプA、容量素子 $C_0\sim C_3$ およびスイッチ $SW_0\sim SW_3$ を有している。アンプAの入力端子は、スイッチ $SW1_{m,n}$ を介して、フォトダイオード $PD_{m,n}$ のカソード端子に接続されている。アンプAの出力端子は、スイッチ $SW3_m$ を介してA/D変換回路 30 に接続されている。互いに直列接続されたスイッチ SW_1 および容量素子 C_1 、互いに直列接続されたスイッチ SW_2 および容量素子 C_2 、互いに直列接続されたスイッチ SW_3 および容量素子 C_3 、容量素子 C_0 、ならびに、スイッチ SW_0 は、アンプAの入出力端子間に互いに並

[0030]

容量素子 C_0 ~ C_3 およびスイッチ SW_1 ~ SW_3 は、容量値が可変の積分容量部 21を構成している。すなわち、スイッチ SW_1 ~ SW_3 それぞれは、電荷量レベル判定回路 10 $_{m,n}$ の制御部 14より出力されスイッチ SW_2 $_{m,n}$ を経て入力したレベル信号Levelに基づいて開閉し、この開閉状態に応じて積分容量部 21の容量値が定まる。ここで、容量素子 C_0 ~ C_3 それぞれの容量値は、

$$C_0 = C$$
 ...(3a)
 $C_1 = C$...(3b)

$$C_2 = 2 C \cdots (3c)$$

$$C_3 = 4 C \cdots (3d)$$

なる関係式を満たす。Cは一定値である。

[0031]

$$V_{sat}/2 \le V_{20} < V_{sat}$$
 …(4)
なる範囲にある。

[0.0.32]

[0033]

シフト回路40は、A/D変換回路30から出力されたデジタル値を入力する とともに、電荷量レベル判定回路 $10_{m,1} \sim 10_{m,N}$ それぞれから出力されたレベ ル信号Levelを順次に入力して、このレベル信号Levelに応じてデジタル値のビッ トをシフトして、このビットをシフトしたデジタル値を出力する。すなわち、A /D変換回路30から出力されるデジタル値がKビット(Kは2以上の整数)の デジタル値 $(D_{K-1}, D_{K-2}, \cdots D_1, D_0)$ であるとしたとき、シフト回路 40 は (K+3)ビットのデジタル値を出力する。シフト回路40は、電位VpDが上記(2a) 式の範囲にあることをレベル信号Levelが示している場合には、入力したデジタ ル値をビットシフトすることなく、(K+3)ビットのデジタル値 $(0,0,0,D_K$ -1, D_{K-2} , $\cdots D_1$, D_0) を出力する。電位 V_{PD} が上記(2b)式の範囲にあることをレ ベル信号Levelが示している場合には、入力したデジタル値を1ビット分だけ上 位にシフトして、(K+3)ビットのデジタル値($0,0,D_{K-1},D_{K-2},\cdots D_1,D_0$ 0) を出力する。電位 V_{PD} が上記(2c)式の範囲にあることをレベル信号Levelが 示している場合には、入力したデジタル値を2ビット分だけ上位にシフトして、 (K+3)ビットのデジタル値(0, D_{K-1} , D_{K-2} , \cdots D_1 , D_0 , 0, 0) を出力する。 また、電位 VPDが上記(2d)式の範囲にあることをレベル信号Levelが示している 場合には、入力したデジタル値を3ビット分だけ上位にシフトして、(K+3)ビ ットのデジタル値(D_{K-1} , D_{K-2} , … D_1 , D_0 , 0, 0, 0) を出力する。

[0034]

次に、本実施形態に係る光検出装置1の動作タイミングについて説明する。図4は、本実施形態に係る光検出装置1の動作を説明するタイミングチャートである。この図には、上から順に、フォトダイオード $PD_{m,\,n-1}$ に対応するスイッチ

 $SW2_{m,n-1}$ の開閉タイミングおよびスイッチ $SW1_{m,n-1}$ の開閉タイミング、各ユニット U_m においてフォトダイオード $PD_{m,n-1}$ に隣接して配置されるフォトダイオード $PD_{m,n}$ に対応するスイッチ $SW2_{m,n}$ の開閉タイミングおよびスイッチ $SW1_{m,n}$ の開閉タイミング、各ユニット U_m においてフォトダイオード $PD_{m,n}$ に隣接して配置されるフォトダイオード $PD_{m,n+1}$ に対応するスイッチ $SW2_{m,n}$ +1の開閉タイミングおよびスイッチ $SW1_{m,n+1}$ の開閉タイミング、積分回路 2 0_m からの出力電圧値 V_{20} 、ならびに、A/D変換回路 30 からの出力デジタル値、が示されている。

[0035]

時刻 $t_{n-1,2}$ から時刻 $t_{n,1}$ までの期間内に、各ユニット U_m において、N個のスイッチ $SW2_{m,1} \sim SW2_{m,N}$ のうちの第(n-1)番目のスイッチ $SW2_{m,n-1}$ のみが閉じて、第(n-1)番目の電荷量レベル判定回路 $10_{m,n-1}$ の制御部 14 より出力されたレベル信号Levelが積分回路 20_m に入力して、このレベル信号に基づいて積分回路 20_m の積分容量部 21 の容量値が設定される。このときのレベル信号は、時刻 $t_{n-1,2}$ において電荷量レベル判定回路 $10_{m,n}$ の3つの比較器 $11\sim13$ により判定されて制御部 14により保持されたフォトダイオード $PD_{m,n}$ のカソード端子の電位 V_{PD} のレベルを示すものである。また、積分回路 20_m のスイッチ SW_0 が時刻 $t_{n-1,2}$ に閉じて、積分回路 20_m から出力される電圧値 V_{20} が初期化される。

[0036]

時刻 $t_{n,1}$ から時刻 $t_{n,2}$ までの期間に、各ユニット U_m において、N個のスイッチSW $1_{m,1}$ ~SW $1_{m,N}$ のうちの第n番目のスイッチSW $1_{m,n}$ のみが閉じ、積分回路 2 0_m のスイッチSW0が開いており、積分回路 2 0_m の積分動作が行なわれる。このとき積分回路 2 0_m より出力される電圧値 V_{20} は、N個のフォトダイオードPD $_{m,1}$ ~PD $_{m,N}$ のうち第n番目のフォトダイオードPD $_{m,n}$ より出力されて積分容量部 2 1 に蓄積された電荷の量および積分容量部 2 1 の容量値に応じたものである。

[0037]

また、この時刻 $t_{n,1}$ から時刻 $t_{n,2}$ までの期間に、M個のスイッチ $SW3_m$ が

順次に閉じ、M個のスイッチSW4 $_{\rm m}$ が順次に閉じる。そして、M個のユニット $U_1 \sim U_{\rm M}$ から順次に出力された電圧値 V_{20} は、A/D変換回路 30 によりデジタ ル値に変換され、このデジタル値は、M個のユニット $U_1 \sim U_{\rm M}$ から順次に出力されたレベル信号Levelに応じて、シフト回路 40 によりビットシフトされて出力される。このときシフト回路 40 より順次に出力されるデジタル値は、M個のユニット $U_1 \sim U_{\rm M}$ それぞれに含まれる第n番目のフォトダイオード $PD_{\rm m,n}$ への入射光強度に応じたものである。

[0038]

そして、時刻 $t_{n,2}$ に、各ユニット U_m において、第n番目のスイッチ $SW1_{m,n}$ nおよびスイッチ $SW2_{m,n}$ それぞれが開き、積分回路 20_m のスイッチSW0が閉じて、第n番目のフォトダイオード $PD_{m,n}$ についての一連の動作が終了する。時刻 $t_{n,2}$ から時刻 $t_{n+1,2}$ までの期間に、各ユニット U_m の第(n+1)番目のフォトダイオード $PD_{m,n+1}$ について同様に一連の動作が行なわれる。更に以降も同様である。

[0039]

以上のように、本実施形態に係る光検出装置 1 では、各フォトダイオードPD $_{m,n}$ に対して電荷量レベル判定回路 1 $0_{m,n}$ が設けられていることにより、該フォトダイオードPD $_{m,n}$ より出力される電荷の量に応じた適切な容量値が積分回路 2 0_{m} の積分容量部 2 1 に設定されるので、各々のフォトダイオード毎(すなわち、1 画面における画素毎)の入射光強度検出のダイナミックレンジが拡大され得る。また、各フォトダイオードPD $_{m,n}$ に対して電荷量レベル判定回路 1 $0_{m,n}$ が 1 対 1 に設けられていることにより、積分回路 2 0_{m} の積分容量部 2 1 の容量値が迅速に設定され、高速に入射光強度が検出され得る。また、個々の電荷量レベル判定回路 1 $0_{m,n}$ は、電荷量レベルの判定に際し、高速処理を要しないから、消費電力が小さくて済む。

[0040]

次に、本実施形態に係る光検出装置1の実装形態について、図5~図7を用いて説明する。図5は、本実施形態に係る光検出装置1における第1基板100および第2基板200の配置関係を示す斜視図である。この図に示されるように、

[0041]

図6は、本実施形態に係る光検出装置1における第1基板100および第2基板200の断面の1例を示す図である。なお、この図において、左右方向に基本パターンが繰り返されて示されているので、以下では1つの基本パターンについてのみ説明する。

[0042]

第1基板100は、n型半導体基板の第1面(図で上側の面)上に、該n型基板とともにpn接合を形成してフォトダイオードPDを構成するp+領域111と、アイソレーション領域としてのn+領域112とが形成されている。また、第1基板100は、n型半導体基板の第2面(図で下側の面)上に、ボンディングパッド124とオーミック接続を形成するn+型不純物層121と、表面を保護するための絶縁性の保護層122と、保護層122を貫通してn+型不純物層121と電気的に接続されるボンディングパッド124とが形成されている。さらに、第1基板100は、第1面と第2面との間を貫通する貫通孔が設けられ、その貫通孔内には、内壁に形成された絶縁物層を介して貫通電極131が設けられている。そして、第1基板100の第1面側においてp+領域111と貫通電極131とを電気的に接続する金属配線113が絶縁膜114上に形成され、また、第2面側において貫通電極131と電気的に接続されたボンディングパッド

[0043]

第2基板200は、半導体基板の第1面(図で上側の面)上に、スイッチSW1の第1端と電気的に接続されたボンディングパッド223、及び、接地電位に電気的に接続されたボンディングパッド224が形成されている。そして、第1基板100のボンディングパッド123と第2基板200のボンディングパッド223とはバンプ423により互いに接続されており、また、第1基板100のボンディングパッド124と第2基板200のボンディングパッド224とはバンプ424により互いに接続されている。第1基板100と第2基板200との間の間隙は樹脂により充填されている。

[0044]

また、第1基板100の第1面の側には、シンチレータ510および遮蔽材520が配置されている。シンチレータ510は、第1基板100のp+領域1110上方に設けられ、X線等のエネルギ線が入射することによりシンチレーション光を発生するものである。遮蔽版520は、第1基板100のn+領域112の上方に設けられ、X線等のエネルギ線の透過を阻止するとともに、シンチレータ510を固定するものである。

[0045]

この図6に示される構成では、X線等のエネルギ線がシンチレータ510に入射すると、そのシンチレータ510よりシンチレーション光が発生する。さらに、そのシンチレーション光が第1基板100のp+領域111に入射すると、p n接合部において電荷が発生する。その電荷は、金属配線113、貫通電極131、ボンディングパッド123、バンプ423および第2基板200のボンディングパッド223を経て、第2基板200上に形成されているスイッチSW1を経て積分回路20の入力端に入力する。

[0046]

図7は、本実施形態に係る光検出装置1における第1基板100および第2基板200の断面の他の例を示す図である。なお、この図においても、左右方向に基本パターンが繰り返されて示されているので、以下では1つの基本パターンに

[0047]

第1基板100は、n型半導体基板の第1面(図で上側の面)上に、電荷再結合を防止するためのn+型アキュムレーション層151と、表面を保護するための絶縁性の保護層152とが形成されている。第1基板100は、n型半導体基板の第2面(図で下側の面)上に、該n型基板とともにpn接合を形成してフォトダイオードPDを構成するp+領域161が形成され、アイソレーション領域としてのn+領域162が形成され、これらの上に保護層163が形成されている。また、第1基板100の第2面には、p+領域161と電気的に接続されたボンディングパッド164と、n+領域162と電気的に接続されたボンディングパッド165とが形成されている。

[0048]

第2基板200は、半導体基板の第1面(図で上側の面)上に、スイッチSW1の第1端と電気的に接続されたボンディングパッド264およびボンディングパッド265が形成されている。そして、第1基板100のボンディングパッド164と、第2基板200のボンディングパッド264とは、バンプ464により互いに接続されている。第1基板100のボンディングパッド165と、第2基板200のボンディングパッド265とは、バンプ465により互いに接続されている。第1基板100と第2基板200との間の間隙は樹脂により充填されている。

[0049]

また、第1基板100の第1面の側には、シンチレータ510および遮蔽材520が配置されている。シンチレータ510は、第1基板100のp+領域161の上方に設けられ、X線等のエネルギ線が入射することによりシンチレーション光を発生するものである。遮蔽版520は、第1基板100のn+領域162の上方に設けられ、X線等のエネルギ線の透過を阻止するとともに、シンチレータ510を固定するものである。また、第1基板100は、p+領域161が形成された部分において、第1面側が研削されて、厚みが薄くされている。

[0050]

この図7に示される構成では、X線等のエネルギ線がシンチレータ510に入射すると、そのシンチレータ510よりシンチレーション光が発生する。さらに、そのシンチレーション光が第1基板100を透過してp+領域161に入射すると、pn接合部において電荷が発生する。その電荷は、ボンディングパッド164、バンプ464および第2基板200のボンディングパッド264を経て、第2基板200上に形成されているスイッチSW1を経て積分回路20の入力端に入力する。

[0051]

[0052]

本発明は、上記実施形態に限定されるものではなく、種々の変形が可能である。例えば、例えば、第1基板100および第2基板200それぞれの断面構造は、図6および図7それぞれに示されたものに限定されない。また、第2基板200上には、更に他の回路が設けられていてもよい。また、電荷量レベル判定回路 $10_{m,n}$ において電荷量レベルを判定する為の閾値の個数は任意であり、この個数に応じて、積分回路 20_m の積分容量部が有し得る容量値の場合の数が定まる

[0053]

【発明の効果】

以上、詳細に説明したとおり、本発明に係る光検出装置によれば、フォトダイオードに入射した光の強度に応じた量の電荷が発生し、この電荷のレベルが電荷量レベル判定回路により判定される。そして、この判定された電荷量レベルに基づいて積分回路の積分容量部の容量値が設定される。その後、積分回路において、フォトダイオードで発生した電荷が積分容量部に蓄積されて、この蓄積された電荷の量に応じた値の電圧信号が出力される。入射光強度が大きい場合には、積分回路の可変容量部の容量値は比較的大きな値に設定され、入射光強度が大きくても飽和することなく入射光強度が検出される。一方、入射光強度が小さい場合には、積分回路の可変容量部の容量値は比較的小さな値に設定され、入射光強度が小さくすも感度よく入射光強度が検出される。また、この光検出装置では、各フォトダイオードに対して電荷量レベル判定回路が1対1に設けられていることにより、積分回路の積分容量部の容量値が迅速に設定され、高速に入射光強度が検出され得る。

【図面の簡単な説明】

【図1】

本実施形態に係る光検出装置1の全体構成図である。

【図2】

本実施形態に係る光検出装置1の一部構成図である。

【図3】

本実施形態に係る光検出装置 1 に含まれる電荷量レベル判定回路 $10_{m,n}$ および積分回路 20_{m} の回路図である。

【図4】

本実施形態に係る光検出装置1の動作を説明するタイミングチャートである。

【図5】

本実施形態に係る光検出装置1における第1基板100および第2基板200 の配置関係を示す斜視図である。

【図6】

本実施形態に係る光検出装置1における第1基板100および第2基板200

【図7】

本実施形態に係る光検出装置1における第1基板100および第2基板200 の断面の他の例を示す図である。

【符号の説明】

1…光検出装置、10…電荷量レベル判定回路、20…積分回路、30…A/ D変換回路、40…シフト回路、50…制御回路、A…アンプ、C…容量素子、 PD…フォトダイオード、SW, SW1, SW2, SW3, SW4…スイッチ。

【図6】

【図7】

【要約】

【課題】 入射光強度検出のダイナミックレンジが広く高速に入射光強度を検出 することができる光検出装置を提供する。

【解決手段】 各フォトダイオード $PD_{m,n}$ は、入射光強度に応じた量の電荷Qを発生する。電荷量レベル判定回路 $10_{m,n}$ は、フォトダイオード $PD_{m,n}$ に対応して設けられており、該フォトダイオード $PD_{m,n}$ で発生した電荷Qの量のレベルを判定し、そのレベル判定結果を示すレベル信号Levelを出力する。積分回路 20_{m} の積分容量部 21 は、N個の電荷量レベル判定回路 $10_{m,1} \sim 10_{m,N}$ それぞれから順次に出力されて入力したレベル信号Levelに基づいて容量値が設定される。積分回路 20_{m} は、N個のフォトダイオード $PD_{m,1} \sim PD_{m,N}$ それぞれから順次に出力されて該入力端に入力した電荷Qを積分容量部 21 に蓄積して、この蓄積した電荷Qの量に応じた電圧値 V_{20} を出力端より出力する。

【選択図】 図3

特願2002-375115

出願入履歴情報

識別番号

[000236436]

1. 変更年月日

1990年 8月10日

[変更理由]

新規登録

住 所

静岡県浜松市市野町1126番地の1

氏 名 浜松ホトニクス株式会社