

Sistemas Operacionais

Análise e Desenvolvimento de Sistemas

Um sistema de memória possui pelo menos dois níveis:

- o Memória principal: acessada pela CPU
- o Memória secundária: discos

- Programas são armazenados em disco
- o Executar um programa se traduz em transferi-lo da memória secundária à memória primária

- Qualquer sistema operacional tem gerência de memória
- Monotarefa: gerência é simples
- Multitarefa: complexa
- Algoritmos de gerência de memória dependem de facilidades disponíveis pelo hardware da máquina

Memória lógica

- o É aquela que o processo "enxerga"
- o Endereços lógicos são aqueles manipulados por um processo

Memória física

- Implementada pelos circuitos integrados de memória.
- Endereços físicos são aqueles que correspondem a uma posição real de memória.

Espaço lógico de um processo é diferente do espaço físico.

- Endereço lógico: gerado pela CPU (endereço virtual)
- Endereço físico: endereços enviados para a memória RAM

Programas de usuários "vêem" apenas endereços lógicos.

Endereços lógicos são transformados em endereços físicos no momento de execução dos processos.

UNIDADE DE GERENCIA DE MEMÓRIA

Memory Management Unit (MMU)

 Hardware que faz o mapeamento entre endereço lógico e endereço físico

UNIDADE DE GERENCIA DE MEMÓRIA

Um programa deve ser transformado em um processo para poder ser executado.

- Alocação de um descritor de processos
- Alocação de áreas de memória para código, dados e pilha

Transformação é feita através de uma série de passos, alguns com a ajuda do próprio programados.

- Compilação, diretivas de compilação e/ou montagem, ligação, etc...
- Amarração de endereços (binding)

Transformação de programa em processo

Amarração de endereços (binding)

Atribuição de endereços para instruções e dados pode ser feita em três momentos diferentes:

- Em tempo de compilação: se a localização da memória é conhecida á priori, código absoluto pode ser gerado; tem que recompilar o código se a alocação inicial mudar
- Em tempo de carga: deve gerar código relocável se a localização da memória não é conhecida em tempo de compilação
- Em tempo de execução: a atribuição é adiada até o tempo de execução se o processo puder ser movido durante sua execução de um segmento de memória para outro. Precisa de suporte de hardware para mapear endereços (ex.: registradores base e limite)

Registradores de Base e de Limite.

Um par de registradores de base e de limite definem o espaço de endereço lógico

endereço lógico

Mecanismos para alocação de memória

ALOCAÇÃO CONTÍGUA SIMPLES

- Sistema mais simples
- Memória principal é dividida em duas partições: o Sistema operacional (parte baixa de memória) o Processo de usuário (restante da memória)
- Usuário tem controle total da memória podendo inclusive acessar a área do sistema operacional. Ex.: DOS (não confiável)

ALOCAÇÃO CONTÍGUA PARTICIONADA

- Existência de múltiplas partições
- Imposta pela multiprogramação
- Filosofia:
- o Dividir a memória em blocos (partições)
- o Cada partição pode receber um processo (programa)
- o Grau de multiprogramação é fornecido pelo número de partições
- * * Importante: não considerando a existência de swapping

ALOCAÇÃO CONTÍGUA PARTICIONADA

- O sistema operacional é responsável pelo controle das partições mantendo informações como:
- o Partições alocadas
- o Partições livres
- o Tamanho das partições

ALOCAÇÃO CONTÍGUA PARTICIONADA FIXA

 Memória disponível é dividida em partições de tamanho fixo que podem ser do mesmo tamanho ou não

ALOCAÇÃO CONTÍGUA PARTICIONADA DINÂMICA

Fragmentação externa

Exemplo:

Criação processo 120K

SisOp	
Processo 1	320 K
Processo 4	128 K 96 K
Processo 3	288 K
	64 K

Soluções possíveis fragmentação externa

- Reunir espaços adjacentes de memória
- Empregar compactação
- Relocar as partições de forma a eliminar os espaços entre elas e criando uma área contígua

Desvantagem:

Consumo do processador Acesso a disco

- Acionado somente quando ocorre fragmentação
- Necessidade de código relocável

Gerenciamento de partições dinâmicas

- Determinar qual área de memória livre será alocada a um processo
- Sistema operacional mantém uma lista de lacunas o Pedaços de espaços livres em memória
- Necessidade de percorrer a lista de lacunas sempre que um processo é criado

Algoritmos para alocação contígua dinâmica

- Best fit
 Minimizar tam_processo tam_bloco o Deixar espaços livres os menores possíveis
- Worst fit
 Maximizar tam_processo tam_bloco o Deixar espaços livres os maiores possíveis
- First fit tam_bloco > tam_processo
- Circular fit
 Variação do first-fit

PAGINAÇÃO DE MEMÓRIA

- O Espaço de Endereçamento lógico de um processo pode ser não contínuo; aloca-se memória física ao processo sempre que esta é disponível.
- A memória física (sistema) e a memória lógica (processo) são divididos em blocos de tamanho fixo e idênticos:
- o Memória física dividida em blocos de tamanho fixo denominados de frames
- o Memória lógica divide em blocos de tamanho fixo denominados de páginas

PAGINAÇÃO DE MEMÓRIA

SEGMENTAÇÃO DE MEMÓRIA

- Técnica de gerência de memória, onde os programas são divididos logicamente e em subrotinas e estruturas de dados e colocados em blocos de informações na memória
- Segmentos blocos de tamanhos diferentes com seu próprio espaço de endereçamento.
- Respeita a visão do programador.

MEMÓRIA VIRTUAL

- Desvincula o endereçamento feito pelos programas aos endereços físicos de memória
- Programas não limitados ao tamanho total da memória física
- Permite ao SO endereçar muito mais memória do que a instalada

MEMÓRIA VIRTUAL

MEMÓRIA VIRTUAL

- A memória virtual de um SO é o seu arquivo de swap (troca) gravado no HD
- Memória total de um SO é a soma da memória física (fixa) com a virtual
- No windows a memória virtual (arquivo de paginação) pode ser definida como 1,5 x a quantidade de memória física

SWAPPING

- Processo necessita estar na memória para ser executado
- Se não há mais espaço em memória é necessário fazer um rodízio de processos em memória
- Um processo pode ser temporariamente movido para fora da memória (backing store) e então trazido de volta para a memória para confinuar a execução

SWAPPING

sistema operacional mantém uma fila de processos que estão prontos para executar, que possuem imagens da memória em disco

