Product Catalog

FOR EDUCATIONAL USE ONLY

www.minipcb.com

https://github.com/miniPCB

https://www.youtube.com/@minipcb

1. INTRODUCTION

The miniPCB™ Product Catalog offers a selection of panelized printed circuit boards (PCBs) designed for lab instruction, circuit prototyping, and hands-on electronics education. These are unpopulated boards—no components are included—allowing students to practice component selection, soldering, circuit assembly, and testing from the ground up.

Each miniPCB board follows the miniPCB™ Design Standard, which ensures consistent part numbering, board outlines, connector placements and layout standards across all designs. Boards are grouped into functional categories and support a wide range of educational applications.

All boards are supplied in panels, typically with four or more identical PCBs per panel, separated by v-score lines for easy breaking before or after assembly.

Whether you're running an introductory electronics course or an advanced prototyping lab, the miniPCB™ ecosystem gives you a consistent, scalable, and instructor-friendly toolkit for practical learning.

1.1. PART NUMBERS

As specified in the **miniPCB™ Design Standard**, all miniPCBs have a part number consistent with the below format. The part identification may be two or three digits.

Figure 1 – Part Identification Number

1.2. CIRCUIT CATEGORIES

As specified in the **miniPCB™ Design Standard**, all miniPCBs exist in one of the categories below. Multiple subcategories exist for each category.

CATEGORY ID	TITLE	NOTE
00X-XXX	Test Boards	
01X-XXX	Components	
02X-XXX	Sensors	
03X-XXX	Actuators	
04X-XXX	Amplifiers	
05X-XXX	Filters	
06X-XXX	Oscillators	
07 X-XXX	Radio	
XXX-X80	Signal Converters	
09 X-XXX	Power	
10X-XXX	Digital	
11X-XXX	Computing	
12X-XXX	Communication	
13X-XXX	Games	
14X-XXX	Home Automation	
15X-XXX	Wearables	
16X-XXX	Instruments	

HOW TO GO FURTHER

1.3.

Revision Date: 4 May 2025

Ready to explore miniPCBs in your lab or classroom? Here are a few ways to get started:

1. Request Free Samples (LIMITED TIME ONLY)

Email me, <u>nolan@minipcb.com</u>, a list of the boards you'd like to try, along with a shipping address. I'll send sample panels at no cost—shipping included.

2. Request to Purchase

Email me, <u>nolan@minipcb.com</u>, a list of the boards you'd like to buy, along with a shipping address. We'll figure out what payment option and price works for you.

3. Suggest a New Design

Have a circuit in mind that's not in the catalog? To be honest, many good circuits aren't captured yet. Email me, nolan@minipcb.com, and I'll work on turning it into a miniPCB.

4. Share With Colleagues

Know an educator who might benefit from these boards? Please forward this catalog to them—I'm always happy to support new classrooms.

2. PRODUCTS

2.1. CURRENT SENSE RESISTORS, 01A-01

2.2. REDUNDANT SWITCH INPUT CIRCUIT, 02A-007

2.3. PUSH-ON, PUSH-OFF (SWITCH), 02A-04

2.4. PUSH-ON, PUSH-OFF, SCHMITT DRIVER (SWITCH), 02A-05

2.5. REDUNDANT SOLENOID DRIVER, 03A-02

2.6. (REDUNDANT) SOLENOID DRIVER, 03A-03

2.7. SHIFT AMPLIFIER, 04A-03

2.8. INVERTING AMPLIFIER, 04A-005

2.9. NON-INVERTING AMPLIFIER, 04A-010

2.10. DIFFERENCE AMPLIFIER, 04A-015

2.11. INSTRUMENTATION AMPLIFIER, 04A-020

2.12. COMMON EMITTER AMPLIFIER, 04B-005

2.13. COMMON BASE AMPLIFIER, 04B-060

2.14. CASCODE AMPLIFIER, 04B-340

2.15. CASCADE AMPLIFIER, 04B-345

2.16. CASCODE CASCADE AMPLIFIER, 04B-350

2.17. SIMPLE DIFFERENCE AMPLIFIER, 04B-356

2.18. SIMPLE DIFFERENCE AMPLIFIER, 04B-358

2.19. SIMPLE DIFFERENCE AMPLIFIER, 04B-359

2.20. SIMPLE DIFFERENCE AMPLIFIER, 04B-360

2.21. CURRENT SENSE AMPLIFIER, 04C-003

2.22. ELECTROMETER, OPA928D, 04C-12

2.23. INSTRUMENTATION AMPLIFIER, OPA928D, 04C-13

2.24. DIFFERENCE AMPLIFIER, OPA392, 04C-14

2.25. DIFFERENCE AMPLIFIER, RES11A, OPA392, 04C-17

2.26. LOW PASS FILTER (SINGLE), 05A-01

2.27. HIGH PASS FILTER (SINGLE), 05A-02

2.28. DUAL LOW PASS FILTER, 05A-03

2.29. DUAL HIGH PASS FILTER, 05A-04

2.30. COLPITTS OSCILLATOR, 06A-03

2.31. HARTLEY OSCILLATOR, 06A-04

2.32. COLPITTS OSCILLATOR, 06A-05

2.33. PHASESHIFT OSCILLATOR, 06A-06

2.34. PHASESHIFT OSCILLATOR, 06A-07

2.35. SINEWAVE OSCILLATOR, 06A-08

2.36. THREE PHASE SINEWAVE GENERATOR, 06A-09

2.37. SINGLE TRANSISTOR OSCILLATOR, 06B-00

2.38. TWO TRANSISTOR OSCILLATOR, 06B-03

2.39. SIMPLE FM TRANSMITTER, 07A-00

2.40. SIMPLE FM TRANSMITTER, 07A-01

2.41. FIVE TRANSISTOR RADIO, 07B-00

2.42. WINDOW COMPARATOR, 08A-02

2.43. TL432 EVAL, 09A-10

2.44. PRECISION HIGH CURRENT SERIES REGULATOR (TL432), 09A-11

2.45. CURRENT MIRROR, SIMPLE AND IMPROVED, 09B-10

2.46. CURRENT SINK, TL432, 09B-11

2.47. CURRENT SINK, TL432, 09B-12

2.48. CURRENT MIRRORS, SIMPLE AND IMPROVED, 09B-13

2.49. VOLTAGE SUPERVISOR, SOT23 (TLV803 EVAL), 09E-10

2.51. SCHMITT TRIGGER, 10A-05

2.52. UTSA VIVA BOARD, 11A-001

Developed with Dr. Paul Morton for use teaching microcontrollers at the University of Texas at San Antonio.

2.53. VIVA ESP NODE MCU BOARD, 11A-01

2.54. INTEGRATOR, ADJUSTABLE, 11B-05

3. REVISION HISTORY

REV	DESCRIPTION	ECO	DATE
Α	Initial Release, first 50+ designs	N/A	04MAY2025