18.102 Assignment 2

Octavio Vega

February 14, 2023

Problem 1

(a)

Proof. Let B be a Banach space. Suppose $T \in \mathcal{B}(B,B)$ and ||I-T|| < 1. Then by Geometric series,

$$\sum_{n=0}^{\infty} ||(I-T)^n|| \le \sum_{n=0}^{\infty} ||I-T||^n = \frac{1}{1-||I-T||} < \infty.$$
 (1)

So the series $\sum_{n=0}^{\infty}(I-T)^n$ converges absolutely, which implies that it converges. Fix $m\in\mathbb{N}$. Then

$$T\sum_{n=0}^{m} (I-T)^n = [I-(I-T)]\sum_{n=0}^{m} (I-T)^n$$
 (2)

$$= \sum_{n=0}^{m} (I - T)^n - \sum_{n=0}^{m} (I - T)^{n+1}$$
 (3)

$$= I - (I - T)^{m+1}, \text{ by telescoping sum.}$$
 (4)

By continuity of T,

$$T\sum_{n=0}^{\infty} (I-T)^n = T\left(\lim_{m\to\infty} \sum_{n=0}^{m} (I-T)^n\right)$$
 (5)

$$= \lim_{m \to \infty} T \sum_{n=0}^{m} (I - T)^n \tag{6}$$

$$= \lim_{m \to \infty} \left[I - (I - T)^{m+1} \right] \tag{7}$$

$$=I, (8)$$

since ||I - T|| < 1. We can similarly show that $\sum_{n=0}^{\infty} (I - T)^n = I$.

Thus, T is indeed invertible, and $\sum_{n=0}^{\infty} (I-T)^n \to T^{-1}$ in $\mathcal{B}(B,B)$.

(b)

Proof. Let $\mathcal{I}:=\{T\in\mathcal{B}(B,B)|T^{-1}\text{ exists}\}$. We want to show that $\forall T\in\mathcal{I},\ \exists \delta>0$ such that if $||S-T||<\delta\Longrightarrow S\in\mathcal{I}$.

Choose $\delta = \frac{1}{||T^{-1}||}$, and write

$$S = T - (T - S) = T \left[I - T^{-1} (T - S) \right]. \tag{9}$$

If $||S - T|| < \delta = \frac{1}{||T^{-1}||}$, then

$$\frac{1}{||T^{-1}||} > ||S - T|| \tag{10}$$

$$= ||T - T[I - T^{-1}(T - S)]||$$
(11)

$$= ||T|| \cdot ||I - [I - T^{-1}(T - S)]|| \tag{12}$$

$$\implies ||I - [I - T^{-1}(T - S)]|| < \frac{1}{||T^{-1}|| \cdot ||T||} = 1$$
 (13)

$$\implies ||T^{-1}(T-S)|| = ||I - T^{-1}S|| < 1. \tag{14}$$

So by (a), $T^{-1}S$ is invertible, which implies that S is invertible. Thus, $\exists \delta > 0$ such that if $S \in B_{\delta}(T)$, then $S \in \mathcal{I}$.

Therefore,
$$\mathcal{I}$$
 is open.

Problem 2

(a)

Proof. To show that ||v + W|| is a norm, we will show that it obeys positive definiteness, homogeneity, and the triangle inequality.

First, suppose that $0 = ||v + W|| = \inf_{w \in W} ||v + w||$. Then since $||\cdot||_V$ is a norm on V,

$$||w+w|| = 0 \iff v+w=0 \implies v=-w. \tag{15}$$

So \exists a sequence $\{w_k\}_k \subset W$ such that $w_k \to -v$. Since W is closed, $-v \in W \implies v \in V$. But then v + W = 0 + W because $v \in W$.

Thus, $||v + W|| = 0 \iff v = 0$ (definiteness).

Also, $||v+W||=\inf_{w\in W}||v+w||\geq 0$ because $||\cdot||_V$ is a norm, and $||v+w||\geq 0$ $\forall w\in W.$

Let $\lambda \in \mathbb{K}$. Then since $\lambda W = W$,

$$||\lambda(v+W)|| = ||\lambda v + W|| \tag{16}$$

$$=\inf_{w\in W}||\lambda v + w||\tag{17}$$

$$= \inf_{w \in W} |\lambda| \cdot ||v + \frac{w}{\lambda}|| \tag{18}$$

$$= |\lambda| \inf_{w \in W} ||v + w|| \tag{19}$$

$$= |\lambda| \cdot ||v + W||$$
 (homogeneity). (20)

Now let u + W, $v + W \in V/W$. Then

$$||(u+W) + (v+W)|| = ||u+v+W|| \tag{21}$$

$$=\inf_{w\in W}||u+v+w||\tag{22}$$

$$= \inf_{w \in W} ||u + v + 2w|| \tag{23}$$

$$= \inf_{w \in W} ||u + w + v + w|| \tag{24}$$

$$\leq \inf_{w \in W} (||u + w|| + ||v + w||) \tag{25}$$

$$\leq \inf_{w \in W} ||u + w|| + \inf_{w \in W} ||v + w||$$
 (26)

$$= ||u + W|| + ||v + W||$$
 (triangle inequality). (27)

Thus, ||v + W|| is a norm on V/W.

(b)

TODO TODO TODO TODO

Problem 3

Proof. Let $\{v_n\}_n$ be a sequence of elements in V. Suppose that the series $\sum_n (v_n + W)$ is absolutely summable, i.e. that $\sum_n ||v_n + W||$ converges. Since $||v_n + W|| = \inf_{w \in W} ||v_n + w||$, then for each $n \in \mathbb{N}$, $\exists w_n \in W$ such that

$$||v_n + w_n|| \le ||v_n + W|| + 2^{-n} \tag{28}$$

$$\implies \sum_{n} ||v_n + w_n|| \le \sum_{n} ||v_n + W|| + \sum_{n} 2^{-n}$$
 (29)

$$= \sum_{n} ||v_n + W|| + 1. \tag{30}$$

Then by comparison, $\sum_{n} ||v_n + w_n||$ converges, so $\sum_{n} (v_n + w_n)$ converges.

Since V is a Banach space, then, by closure, $\exists v \in V$ such that $v = \sum_{n} (v_n + w_n)$. Then

$$\lim_{N \to \infty} v + W - \sum_{n=1}^{N} (v_n + W) = \sum_{n=1}^{\infty} (v_n + w_n) + W - \lim_{N \to \infty} \sum_{n=1}^{N} (v_n + W)$$
(31)
$$= \sum_{n=1}^{\infty} v_n + \sum_{n=1}^{\infty} w_n + W - \lim_{N \to \infty} \sum_{n=1}^{N} (v_n + W)$$
(32)

$$= \sum_{n=1}^{\infty} v_n + W - \lim_{N \to \infty} \sum_{n=1}^{N} (v_n + W)$$
 (33)

$$= \sum_{n=1}^{\infty} v_n + W - \lim_{N \to \infty} \sum_{n=1}^{N} v_n - W$$
 (34)

$$= \sum_{n=1}^{\infty} v_n - \lim_{N \to \infty} \sum_{n=1}^{N} = 0.$$
 (35)

So $\sum_{n}(v_n+W)=v+W$, thus $\sum_{n}(v_n+W)$ converges in V/W.

Therefore V/W is a Banach space.

Problem 4

(a)

Proof. Let $\{v_n\}_n$ be a sequence of elements in ker (T) such that $v_n \to v \in V$ and $Tv_n \to w \in W$. Then $\forall n \in \mathbb{N}$,

$$\implies Tv_n = 0 \tag{36}$$

$$\implies \{Tv_n\}_n \to w = 0. \tag{37}$$

By continuity of T,

$$0 = \lim_{n \to \infty} T v_n = T \left(\lim_{n \to \infty} v_n \right) = T v, \tag{38}$$

so $v \in \ker(T)$. Hence $\ker(T)$ is closed.

(b)

Proof. (\Rightarrow) Suppose $V/\ker(T)$ is isomorphic to range(T). Then \exists isomorphism $S:V/\ker(T)\longrightarrow \operatorname{range}(T)$. We claim that the operator defined via $S(v+\ker(T))=Tv$ satisfies this.

First, we show that S is linear. Let $v_1, v_2 \in V/\ker(T)$. Then by linearity of T,

$$S(v_1 + v_2 + \ker(T)) = T(v_1 + v_2)$$
(39)

$$=Tv_1+Tv_2\tag{40}$$

$$= S(v_1 + \ker(T)) + S(v_2 + \ker(T)). \tag{41}$$

Let $\lambda \in \mathbb{K}$. Then by linearity of T and since $\lambda \cdot \ker(T) = \ker(T)$,

$$S(\lambda(v + \ker(T))) = S(\lambda v + \ker(T)) \tag{42}$$

$$=T(\lambda v)\tag{43}$$

$$= \lambda T v \tag{44}$$

$$= \lambda S(v + \ker(T)). \tag{45}$$

Thus, S is linear.

Next, we show that S is bounded. We have

$$||S|| = \sup_{||v||=1} ||S(v + \ker(T))||$$
(46)

$$= \sup_{||v||=1} ||Tv|| \tag{47}$$

$$=||T||. (48)$$

Thus S is bounded, since $T \in \mathcal{B}(V, W)$. So, S is indeed an isomorphism, which confirms that $V/\ker(T)$ is isomorphic to $\operatorname{range}(T)$.

Now we proceed to the main part of the proof, where we will show that the above implies that $\operatorname{range}(T)$ is closed.

Note that by problems 2 and 3, the space $V/\ker(T)$ is a Banach space because we showed in (a) that $\ker(T)$ is a proper closed supspace of V, and V is a Banach space.

Let $\{w_j\}_j$ be a sequence in range(T) such that $w_j \to w \in W$. Then $\{w_j\}_{j\in\mathbb{N}}$ is Cauchy. Since S^{-1} is a continuous linear operator, then $\{S^{-1}(w_j)\}_j$ is also a Cauchy sequence in $V/\ker(T)$.

Since $V/\ker(T)$ is a Banach space, then it is complete. So $\exists v \in V/\ker(T)$ such that

$$S^{-1}(w_i) \to v. \tag{49}$$

By continuity, $S\left(S^{-1}(w_i)\right) \to S(v)$, then

$$\implies \lim_{j \to \infty} w_j = w = S(v) \tag{50}$$

$$\implies w \in \text{range}(T).$$
 (51)

Thus, range(T) is closed in W.

 (\Leftarrow) Suppose range(T) is closed. Then range $(T) \subset W$ is a Banach space. The operator $S: V/\ker(T) \longrightarrow \operatorname{range}(T)$ as defined before is a well-defined, bijective, bounded linear operator, i.e. $S \in \mathcal{B}(V/\ker(T), \operatorname{range}(T))$. Then by the Open Mapping theorem, $S^{-1} \in \mathcal{B}(\operatorname{range}(T), V/\ker(T))$.

Thus S is an isomorphism, and we are done.

Problem 5

(a)

Proof. Let $b \in \ell^1$, $\epsilon > 0$, $N \in \mathbb{N}$. Define the truncated sequence

$$a := \{b_1, b_2, b_3, ..., b_N, 0, 0, ...\}.$$
(52)

Then $\sum_{k=1}^{\infty} k|a_k| = \sum_{k=1}^{N} k|b_k| < \infty$, so $a \in W$. We choose N such that $\sum_{k=1}^{N} |b_k| > \sum_{k=1}^{\infty} |b_k| - \epsilon$. [Note that this is always possible since the infinite series converges, so its sequence of partial sums also converges.] Then we have

$$||a - b||_1 = \sum_{k=1}^{\infty} |a_k - b_k| \tag{53}$$

$$= \sum_{k=1}^{N} |b_k - b_k| + \sum_{k=N+1}^{\infty} |0 - b_k|$$
 (54)

$$=\sum_{k=N+1}^{\infty} |b_k| \tag{55}$$

$$=\sum_{k=1}^{\infty}|b_k|-\sum_{k=1}^{N}|b_k|\tag{56}$$

$$<\epsilon.$$
 (57)

So we have shown that for every $\epsilon > 0$ and $b \in \ell^1$, $\exists N \in \mathbb{N}$ such that $||a-b||_1 < \epsilon$, i.e. $B(b,\epsilon) \cap W \neq \emptyset$. Thus W is dense in ℓ^1 .

Now consider the sequence $\{b_k\}_k$ given by $b_k = \frac{1}{k^2}$. Then $\sum_k b_k$ converges absolutely (p > 1), but

$$\sum_{k=1}^{\infty} k|b_k| = \sum_{k=1}^{\infty} k \cdot \frac{1}{k^2} = \sum_{k=1}^{\infty} \frac{1}{k}$$
 (58)

diverges by Harmonic series. So $b \in \ell^1$ but $b \notin W$. Hence $\ell^1 \neq W$.

Thus we conclude that W is a proper, dense subset of ℓ^1 .