Задача 13. Дадена е релацията R над множеството M от наредени двойки от естествени числа: $M = \mathbb{N} \times \mathbb{N}$ и $(a,b)R(c,d) \Leftrightarrow \exists k \in \mathbb{N} : (a=kc \wedge d=kb)$. Да се провери дали R е частична наредба и релация на еквивалентност.

Решение:

За да решим задачата е необходимо да проверим релацията за рефлексивност, симетричност, антисиметричност и транзитивност. Най-тактически обосновано е да проверим първо за симетричност и антисиметричност, тъй като двете са взаимно изключващи се и НЕпритежаването на всяко едно от тях като свойство на релацията ще доведе до липса на една от характеристиките за проверяване. Въпреки това ще ги караме по първоначално приетия ред.

а) Рефлексивност

 $(a,b)\in\mathbb{N}\times\mathbb{N}.\ (a,b)R(a,b)\Leftrightarrow\exists k\in\mathbb{N}:(a=ka\wedge b=kb)$. Такова k съществува: $k=1\Rightarrow R$ е рефлексивна.

b) Симетричност

 $(a,b), (c,d) \in \mathbb{N} \times \mathbb{N}$. Нека $(a,b)R(c,d) \Rightarrow \exists k \in \mathbb{N} : (a=kc \wedge d=kb)$. Необходимо е да проверим дали от това следва, че (c,d)R(a,b), тоест $\exists p \in \mathbb{N} : (c=pa \wedge b=pd)$. Ще покажем, че това не е така с контрапример. За да е изпълнено е необходимо a=kc и $c=pa \Leftrightarrow a=kpa \Leftrightarrow a(1-kp)=0 \Leftrightarrow a=0 \vee p=k=1$ $(p,k \in \mathbb{N})$. Тоест, ако вземем пример, който не отговаря на тези условия, то той ще е контрапример. Нека a=k=2 и d=4. $(a,b)R(c,d) \to (2,b)R(c,4)$. $2=2\times c \Rightarrow c=1$ и $4=2\times b \Rightarrow b=2$. Трябва да намерим такова $p \in \mathbb{N}$, за което $1=2\times p, 2=4\times p \Rightarrow p=\frac{1}{2} \notin \mathbb{N}$, което прави (2,2) и (1,4) валиден контрапример. Следователно R не е симетрична.

с) Антисиметричност

 $(a,b),(c,d)\in\mathbb{N}\times\mathbb{N}$. Нека $(a,b)R(c,d)\Rightarrow\exists k\in\mathbb{N}:(a=kc\wedge d=kb)$ и $\exists p\in\mathbb{N}:(c=pa\wedge b=pd)$. Трябва да проверим дали от това следва, че (a,b)=(c,d).

 $a=kpa\Rightarrow a(1-kp)=0\Rightarrow a=0$ или p=k=1 $(p,k\in\mathbb{N}).$ От това произлизат два случая:

1.)
$$p = k = 1 \Rightarrow a = c, b = d \Rightarrow (a, b) = (c, d)$$

II.)
$$a = 0 \Rightarrow c = 0 \times p \Rightarrow c = 0$$

Да проверим за b и d: $d = dpk \Rightarrow d(1 - pk) = 0 \Rightarrow d = 0$ или p = k = 1 ($p, k \in \mathbb{N}$).

Разглеждаме два случая:

1.)
$$p = k = 1 \Rightarrow a = c, b = d \Rightarrow (a, b) = (c, d)$$

II.)
$$d = 0 \Rightarrow b = 0 \times p \Rightarrow b = 0$$

Получаваме, че $a=c=0,\,b=d=0\Rightarrow(a,b)=(c,d).$ И така получихме равенство на наредените двойки от естествени числа във всеки един от разгледаните случаи.

Следователно релацията R е антисиметрична.

d) Транзитивност

$$\begin{array}{ll} (a,b),(c,d),(e,f)\in \mathbb{N}\times \mathbb{N} \,. & \text{Heka} & (a,b)R(c,d) \\ (c,d)R(e,f)\Rightarrow (\exists k\in \mathbb{N})[a=kc\wedge d=kb] \text{ in } (\exists p\in \mathbb{N})[c=pe\wedge f=pd]. \end{array}$$

Трябва да проверим дали от това следва, че (a,b)R(e,f) , тоест дали $(\exists q \in \mathbb{N})[a=qe \land f=qb].$

$$a=kc=kpe$$
 $f=dp=bkp=kpb$ $q=rac{f}{b}=rac{kpb}{b}=kp\in\mathbb{N}\Rightarrow R$ е транзитивна.

От полученото може да заключим, че релацията е частична наредба и не е релация на еквивалентност.

github.com/andy489

П