Reproducing a Study of Stochastic Volatility + Market Inefficiency

>>> Fun with Multi Linear Regression

Maks Pazuniak

Original Study:

FEDERAL RESERVE BANK OF SAN FRANCISCO

WORKING PAPER SERIES

Examining the Sources of Excess Return Predictability: Stochastic Volatility or Market Inefficiency?

Kevin J. Lansing Federal Reserve Bank of San Francisco

Stephen F. LeRoy University of California, Santa Barbara

> Jun Ma Northeastern University

> > December 2018

Working Paper 2018-14

https://www.frbsf.org/economic-research/publications/working-papers/2018/14/

Stochastic Volatility

sto · chas · tic

/stə^lkastik/ adjective TECHNICAL

> randomly determined; having a random probability distribution or pattern that may be analyzed statistically but may not be predicted precisely.

the volatility of asset prices is not constant]

The efficient-market hypothesis is a theory that asset prices fully reflect all available information.

A direct implication is that it is impossible to "beat the market" consistently on a risk-adjusted basis since market prices should only react to new information.

Findings:

>>> Not Investment
Advice

We show that the sentiment-momentum variable is positively correlated with fluctuations in Google searches for the term "stock market," suggesting that the sentiment-momentum variable helps to predict excess returns because it captures shifts in investor attention, particularly during stock market declines.

"

Data Sources:

Variance Risk Premium: https://sites.google.com/site/haozhouspersonalhomepage

EOM Nominal S&P, Nominal Dividends / Nominal Risk Free Rate: http://www.hec.unil.ch/agoyal/

University of Michigan Consumer Sentiment: http://www.sca.isr.umich.edu/

Google Trends: https://trends.google.com/trends/?geo=US

Quand1 API: https://www.quandl.com/

Yahoo Finance: https://finance.yahoo.com/

Study Covers 1990-03 through 2017-12

Key Terms & Independent Variables:

```
price-dividend ratio index closing value / cumulative nominal dividends >> " pd "
fed funds rate delta 12 month change in federal funds rate >> " ff12_D "
variance risk premium 3 month moving average in difference between implied volatility from option on the
index and realized volatility of the index >> " vrp3 "
fed funds rate delta 12 month change in federal funds rate >> " ff12_D "
consumer sentiment delta 12 month change in UM Consumer Sentiment >> " sent12_D "
excess stock return delta 1 month change in excess return (over the risk free rate) - a measure of return
momentum >> " ersf D "
interaction consumer sentiment delta X excess stock return delta >> " sent_x_ersf_D "
google search term momentum 1 month change in volume of google searches for the term "Stock
Market" >> " Google_D "
```

Target Variable:

excess return in month t+1 12 month change in federal funds rate >> " ersf_t1 "

Monthly Excess Returns over Risk Free Rate

Distribution of Monthly Returns

Mean: 0.65

Standard Deviation: 4.1

Minimum: -16.8% Maximum: 10.9%

Correlation Plots target variable vs. independent variables

Baseline Model

price-dividend / federal funds rate / variance risk premium / sentiment change (12mo) X return momentum

0LS	(Statsmodel)	

Dep. Variable:	ersf_t1	R-squared:	0.174
Model:	OLS	Adj. R-squared:	0.164
Method:	Least Squares	F-statistic:	17.29
Date:	Sun, 21 Apr 2019	<pre>Prob (F-statistic):</pre>	6.93E-13
Time:	23:03:43	Log-Likelihood:	-913.55
No. Observations:	334	AIC:	1837
Df Residuals:	329	BIC:	1856
Df Model:	4		

t

2.305

-3.777

5.352

5.391

-3.844

2.026

38.189

238

5.10E-09

P>|t|

0.022

0.000

0.000

0.000

0.000

[0.025

0.281

-0.087

0.550

0.070

-0.021

0.975]

3.548

-0.027

1.189

0.150

-0.007

Original Study R-Squared:

std err

0.831

0.015

0.162

0.020

0.004

Prob(JB):

Cond. No.

Durbin-Watson:

Jarque-Bera (JB):

Covariance Type: nonrobust

Intercept

sent_x_ersf_D

Prob(Omnibus):

pd

ff12_D

Omnibus:

Kurtosis:

Skew:

vrp3

coef 1.914

-0.057

0.870

0.110

-0.014

29.202

-0.648

4.031

0

Adding Change in Volume of Google Searches

google search term momentum 1 month change in volume of google searches for the term "Stock
Market" >> " Google_D "

Final Model

price-dividend / federal funds rate / variance risk premium / sentiment change (12mo) X return momentum / <mark>Google Delta</mark>

OLS	(Statsmodel
-----	-------------

Kurtosis:

3.138

Dep. Variable:	ersf_t1	R-squared:	0.311			D: CC .
Model:	0LS	Adj. R-squa	ıı 0.29	Different Timeframe:		
Method:	Least Squares	F-statistic	14.63		Goo	ogle Trends
Date:	Sun, 21 Apr 2019	Prob (F-sta	17.89E-12			tavailable
Time:	23:03:47	Log-Likelih	ı -435.44			until 2004.
No. Observations:	168	AIC:	882.9			ers 2004-01 gh 2017-12.
Df Residuals:	162	BIC:	901.6		ciii oug	, <u></u>
Df Model:	5					
Covariance Type:	nonrobust					
coef	std err	t	P> t	[0.025	0.975]	
Intercept	6.3421	3.122	2.031	0.0440	0.177	12.508
pd	-0.1484	0.058	-2.557	0.0110	-0.263	-0.034
ff12_D	1.6608	0.287	5.784	0.0000	1.094	2.228
vrp3	0.1386	0.03	4.649	0.0000	0.08	0.197
sent_x_ersf_D	-0.0087	0.005	-1.909	0.0580	-0.018	0
Google_D	-0.0847	0.028	-3.066	0.0030	-0.139	-0.03
Omnibus:	9.6	Durbin-Wats	a 1.89		7 0 1	5 0
Prob(Omnibus):	0.008	Jarque-Bera	9.844	Origina	al Study	y R-Squared:
Skew:	-0.589	<pre>Prob(JB):</pre>	0.00728	<mark>29.1%</mark>		

724

Cond. No.

Final Model - Residuals vs. Fitted Values

The residual plots are fairly well distributed around the horizontal line, with no discernible pattern; a linear regression model appears to be appropriate.

Final Model - QQ Plot

The QQ Plot shows indicates that the residuals are fairly normally distributed, with some significant outliers towards the tails.

Predicting 2018 Forward Month Stock Returns

Running the Final Model on Untrained 2018 Data:

Applying a simple "Buy / Sell" Signal. If the Predicted Return is > 0, Buy (or Hold), if Predicted Return is < 0, Sell. Following this signal would have resulted in a -1.6% return on the year versus a -6.3% return with a pure "Buy and Hold" strategy. The amount show the results of investing \$10,000 on 12/31/2017, and following the monthly signal. While this is a useful heuristic for applying the model, the actual model Root Mean Squared Error was fairly high, at 4.76% (compared to 3.23% on the Trained Dataset).

actual	model	correct	invested	ersf	pred_ret_next_mo	month
\$10,566	\$10,566	TRUE	TRUE	5.66	0.30	2018-01
\$10,155	\$10,566	TRUE	FALSE	-3.88	-0.32	2018-02
\$9,884	\$10,566	TRUE	FALSE	-2.67	-3.39	2018-03
\$9,912	\$10,595	TRUE	TRUE	0.28	3.78	2018-04
\$10,126	\$10,824	TRUE	TRUE	2.16	0.38	2018-05
\$10,175	\$10,877	TRUE	TRUE	0.49	1.56	2018-06
\$10,541	\$11,268	TRUE	TRUE	3.60	0.72	2018-07
\$10,858	\$11,607	TRUE	TRUE	3.01	0.85	2018-08
\$10,902	\$11,654	TRUE	TRUE	0.40	0.65	2018-09
\$10,141	\$10,840	FALSE	TRUE	-6.98	0.89	2018-10
\$10,319	\$10,840	FALSE	FALSE	1.76	-1.61	2018-11
\$9,368	\$9,842	FALSE	TRUE	-9.21	2.10	2018-12

-1.58% -6.32%

Predicting 2018 Forward Month Stock Returns

The Model failed to predict some of the extreme market moves in 2018.

The negative 9.6% return in December has a Z-Score of -2.54 compared to the mean return from 2004 - 2017, with only a 1.1% probability of such an extreme move in either direction.

Date (month t+1)

Next Steps:

Incorporate Additional Variables:

- Volume Weighted Moving Average
- Twitter Sentiment
- Breadth Advance / Decline
- Sentiment Put / Call Ratios