

MULTIMEDIA

UNIVERSITY

STUDENT ID NO

--	--	--	--	--	--	--	--	--

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 3, 2016/2017

EEE1046 – ELECTRONICS III

(All sections / Groups)

26 MAY 2017
3:00 PM – 5:00 PM
(2 Hours)

INSTRUCTIONS TO STUDENTS

1. This Question paper consists of 6 pages (including the cover page) with 4 Questions only.
2. Attempt **ALL** questions. All questions carry equal marks and the distribution of the marks for each question is given.
3. Please write all your answers in the Answer Booklet provided.

Question 1

(a) An ideal non-inverting amplifier consists of an operational amplifier (op-amp) and an external negative feedback circuit.

- Explain the term *negative feedback*. Next, state the **TWO** fundamental rules that are applied in the analysis of an ideal op-amp. [2+2 marks]
- Sketch the schematic diagram of an ideal non-inverting op-amp circuit. Label the series input resistor R_1 , feedback resistor R_F , input voltage V_i , and output voltage V_o accordingly. [3 marks]
- With the aid of the sketch in Part (a) (ii), derive the equation for the closed loop voltage gain of the ideal non-inverting amplifier. [4 marks]

(b) Figure Q1 (b) (i) depicts the schematic diagram of an ideal op-amp differentiator circuit. An input signal with a waveform as shown in Figure Q1 (b) (ii) is applied to the differentiator.

- Derive the expression for the output voltage V_o of the ideal differentiator. [4 marks]
- The differentiator has $C_1 = 120 \text{ pF}$ and $R_F = 33 \text{ k}\Omega$. Determine the output voltage and draw the graph of the output waveform relative to the input signal. [7 marks]
- At high frequencies, the ideal differentiator is susceptible to electrical noise. Explain why. [3 marks]

Figure Q1 (b) (i)

Figure Q1 (b) (ii)

Continued

Question 2

(a) The total output voltage gain of an op-amp is due to its differential signal and common signal at the input. Given an op-amp which its output voltage V_o is 1.002 V when $V_+ = 501 \mu\text{V}$ and $V_- = 499 \mu\text{V}$. When $V_+ = 606 \mu\text{V}$ and $V_- = 604 \mu\text{V}$, V_o is 1.00201 V. Calculate the common mode gain A_{CM} , open loop gain A_{OL} and common-mode rejection ratio (in decibels) of the amplifier. [10 marks]

(b) Describe the terms;

- (i) Input bias current, I_{BIAS} . [2 marks]
- (ii) Power Supply Rejection Ratio (PSRR). [2 marks]

(c) Internal stages of op-amp circuit contribute to its own critical frequency at each stage. Given an op-amp with two critical frequencies, which are $f_{cl} = 10 \text{ kHz}$ and $f_{c2} = 50 \text{ kHz}$.

- (i) Calculate the total phase-lag at frequency, $f = 30 \text{ kHz}$ and 80 kHz . [5 marks]
- (ii) If 30 kHz is the unity-gain bandwidth of the op-amp, find its phase margin. Is this op-amp stable? [3 marks]
- (iii) If the op-amp is used to form an inverting amplifier with voltage gain equal to -8. Find the required value for input resistor, R_I if feedback resistor, $R_F = 25 \text{ k}\Omega$. [3 marks]

Continued

Question 3

(a) The voltage from an unregulated power supply may vary from 12 V_{FL} (at full load) to 16 V_{NL} (at no load). A power transistor with a maximum rating of 1 A is to be used as the pass transistor of a 9 V regulator. The minimum h_{FE} of the transistor is 25. The required maximum load current, I_L is 500 mA. Also given that the Zener knee current, I_ZK is 10 mA and the base-emitter voltage, V_{BE} of the transistor is 0.7 V.

(i) Sketch the series voltage regulator circuit. With the aid of the sketch, design the circuit by computing the value of R . [10 marks]

(ii) Determine the power dissipation of the pass transistor. [2 marks]

(b) Determine the regulated voltage, V_L and circuit currents, I_L , I_S and I_C for the shunt regulator shown in Figure Q3 (b). Given the value of the regulator $V_i = 22 \text{ V}$, $V_Z = 8.2 \text{ V}$, $R_L = 100 \Omega$, and $R_S = 120 \Omega$. [7 marks]

Figure Q3 (b)

Continued

(c) A Colpitts oscillator is shown in Figure Q3 (c). If the value of capacitors are $C_1 = 0.1 \mu\text{F}$ and $C_2 = 0.01 \mu\text{F}$, and the value of inductor L is 50 mH,

- Determine the frequency for the oscillator. Assume there is negligible loading on the feedback circuit and the Q is greater than 10. [4 marks]
- Find the frequency if the oscillator is loaded to a point where the Q drops to 8. [2 marks]

Figure Q3 (c)

Continued

Question 4

(a) A band reject filter with a band of zero-gain for $f_c = 3 \text{ kHz}$. $BW = 1 \text{ kHz}$ and $K_{PB} = 2$ is constructed of a first order Low-Pass Filter (1st Order LP) and a first order High-Pass Filter (1st Order HP). Calculate,

(i) f_L and f_H . [6 marks]
(ii) R (for f_L) and R' (for f_H). [6 marks]

(Given $K_{PB} = K_{HP} = K_{LP} = 2$, $C = 5 \text{ nF}$, $C' = 10 \text{ nF}$, $R_F = R_I = R_I' = R_2 = R_3 = R_4 = 10 \text{ k}\Omega$)

b) Draw the schematic of a precision rectifier (super diode). The circuit must consist of the following item. (One op-amp, one diode, one resistor, one AC supply). [7 marks]

c) With reference to Figure Q4 (a). Given $+V_{out(max)} = +12\text{V}$, $-V_{out(max)} = -6\text{V}$, $R_I = 22 \text{ k}\Omega$, $R_2 = 22 \text{ k}\Omega$. Calculate:

(i) Upper trigger level, V_{UTP} [3 marks]
(ii) Lower trigger level, V_{LTP} [3 marks]

End of paper

Figure Q4(a)