Chapter I Gromov's Nonsqueezing Thm

& I.3 IDEA of the Proof

Macion: Bi:= { SECu: ISI<1! Bou! = Bin

Z := Z2" := { & EC" : 181/<1 } = B3 × C"-1

FACT: Yr. we can whome-presented embedd Bin into Z.

← Ps: C" → C". (Z,... Zn) → (Zisz... Zn), if s>r

then $\overline{P}_s(B_r) \subset \mathbb{Z}$, and for $w = \sum_{i=1}^n dx_i \wedge dy_i$

P* W = = & dx'ndy' + 52dx2ndy2+ ... dxndyn

=> Φ*ω" = (Φ*ω)"= ω| c" = n; dx'n- ndy"

VE \$\overline{P}_{5}\$ is volume preserving. but not symplectic embedding

Def: If (M. Wm) and (N. Wn) are the symplectic mfids.

with embedding i: $M \hookrightarrow N$. He call this embedding is symptetic if $i^* \omega_N = \omega_M$.

Actually, he have

Thy: (Groma) - Nonsqueezing thesem)

The ball (Br.w) embedds symplectically into (Z.w)

iff rem1.

RMR: From the thin above, he can see the "rigidity" of symplottic.

& IDEA OF THE PROOF:

Step 1: Suppose ne hore a symplectic embedding

 $\Phi\colon \mathsf{Bro} \to \mathsf{Z}$ Frecall this is an open ball open ball

We consider the closed ball $D_r := B_r$, $r < r_0$. and write \overline{P}^{-1} : $\overline{\Phi}(D_r) \to D_r$. it suffices to for $\forall r$. $r \le 1$.

Let W, J_0 , <, $>_J_0$ be the standard str. on $\mathbb{C}^n = \mathbb{R}^{2n}$.

the can construct on almost complex str. J on $\overline{\Phi}(Dr)$ as $J:=\overline{\Phi}_*\circ J_*\circ \overline{\Phi}_*'$

$$\begin{split} - & \not \vdash ACT \colon J \text{ is an almost complex str. compatible } \ \omega \text{ ith } \omega \,. \\ & \not \vdash f \colon \langle X, \Upsilon \rangle_J := \omega(X, J\Upsilon) \\ & = \omega(X, \ \underline{\Phi}_* \circ J_* \circ \underline{\Phi}_*^{-1} \Upsilon) \quad \ \ ^{\top} \underline{\Phi} \text{ (Lence } \underline{\Phi}^{-1} \text{) is} \\ & = \omega(\ \underline{\Phi}_*^{-1} X, \ J_\circ \circ \underline{\Phi}_*^{-1} \Upsilon) \quad \ \ ^{\sigma} \text{ a symple cross-upphism} \\ & = \omega(\ \underline{\Phi}_*^{-1} X, \ \underline{\Phi}_*^{-1} \Upsilon) \quad \ \ ^{\sigma} \text{ from } \underline{D}^{\tau} \Rightarrow \underline{\Phi}(\underline{D}^{\tau}) \\ & = \langle \ \underline{\Phi}_*^{-1} X, \ \underline{\Psi}_*^{-1} \Upsilon \rangle_J^{\sigma}. \end{split}$$

Stop 2: (non-trivial) FACT: J can be extended to an almost complex str. compatible with ω on \mathbb{R}^{2n} , and conicides with J antside a small nond of $\Phi(D_r)$.

them the ne can establish the existence of J-holomorphic Disc.

i.e. a smooth map $\hat{u}:(D \rightarrow \partial D) \rightarrow (Z.\partial Z)$ with

(DI) $\widehat{u}(0) = \overline{\Phi}(0)$

(D2) $\int_{0}^{\infty} \hat{u}^{*} \omega = \pi \int_{0}^{\infty} u_{x}$ is a vector, and can be identified

(D3) $u_x + J(u)(\hat{u}_y) = 0$. With the tangent lector. $J(u) = J_{uz}$.

This is called the symplectic event of \hat{u}

Def: Let (M, J) be an almost complex mfid. and $U \subseteq C$ be some open subset. A smooth map $u: U \to M$ is called a J-holo-morphic curve writ to J. if $\widehat{u}_x + J(u)(\widehat{u}_y) = 0$.

Rmk: More generally, take \hat{j} as the complex str. $\hat{u}_x + J_{(u)}(\hat{u}_y)$ =0 $\iff \hat{U}_x \circ j = J_0 \hat{U}_t$

 $\mathbf{H} : \text{ For } \{\partial_{x}.\partial_{y}\} = \mathbf{T}\hat{\mathbf{u}}. \quad \hat{\mathbf{u}}_{x}\circ_{j}(\partial_{x}) = \mathbf{J}\circ\hat{\mathbf{u}}_{x}(\partial_{x}) \Rightarrow \hat{\mathbf{u}}_{x}(\partial_{y}) = \mathbf{J}(\hat{\mathbf{u}}_{x})$

 $\Rightarrow \widehat{u}_{x} = -J(\widehat{u}_{y}) \Rightarrow \widehat{u}_{x} + J(\widehat{u}_{y}) = 0. \text{ the opposite side is}$ same and easy.

Exercise: Let $\varphi: V \to U$ be a biholomuphism. $U: U \to (M.T)$ is a J-holomorphic cure \Longrightarrow uo φ is also a J-holomorphic cure. i.e. conformal reparametrisations of J-holomorphic cures are still J-holomorphic.

Pf: Let U(x-y). and V(sei. then () = (xisei. y (s-t))

$$(n\circ d)^{4} = \frac{9x}{9n} \frac{9x}{9x} + \frac{9x}{9n} \frac{9x}{9x} , \quad \frac{9x}{9x} = \frac{9x}{9x} \frac{9x}{9x} = -\frac{9x}{9x}$$

$$\Rightarrow (n\circ d)^{2} = \frac{9x}{9n} \frac{9x}{9x} + \frac{9x}{9n} \frac{9x}{9x} , \quad \frac{9x}{9x} = \frac{9x}{9x} . \quad \frac{9x}{9x} = -\frac{9x}{9x}$$

$$\Rightarrow \text{ number}$$

$$= \frac{\partial x}{\partial x} \frac{\partial x}{\partial 5} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial 5} + J(\frac{\partial u}{\partial x} \frac{\partial x}{\partial e} + \frac{\partial e}{\partial y} \frac{\partial y}{\partial e})$$

$$= \frac{\partial x}{\partial 5} \left(\frac{u}{x} + J(u_y) \right) + \frac{\partial y}{\partial 5} \left(\frac{u_y}{y} - J(u_x) \right) = 0.$$

Scep3: Consider $G_r := \widehat{u}^{-1}(\overline{\Phi}(Br)) \subseteq \mathbb{D}$. Hen define

$$U := \overline{\mathfrak{P}}^{-1} \circ \widehat{\mathfrak{U}} |_{\overline{G}_{\Gamma}} : \overline{G}_{\Gamma} \to \mathbb{D}_{\Gamma}$$

$$(D_r, J_o) \qquad \stackrel{\overline{\Phi}}{\longrightarrow} \qquad \stackrel{\widehat{\pi}(D_r)}{\longrightarrow} \stackrel{\widehat{\pi}(D_r)}{\longrightarrow} (D_r, J_o)$$

$$u(\overline{G_r}) \qquad u(\overline{G_r}) \qquad u(\overline{G_r})$$

FACT: Uis hotomorphic.

 $\overline{G}_r = \widetilde{U}^{-1}(\overline{\Phi}(Br))$

If: Recall
$$J = \Phi_{\star} \circ J_{\circ} \circ \Phi_{\star}^{-1}$$
 then we have

$$U_{\star \circ j} = \overline{\Phi}_{\star}^{-1} \circ \widehat{U}_{\star \circ j} = \overline{\Phi}_{\star}^{-1} \circ J \circ \widehat{U}_{\star}$$

$$= J_{\circ} \circ \overline{\Phi}_{\star}^{-1} \circ \widehat{U}_{\star} = J_{\circ} \circ U_{\star}$$

=> the Uis Jo-holomorphic. i.e. holomorphic since Jo is standard.

Claim: Gr & ID°, u(OGr) CODr.

Hint: This is from basic set topology.

Step4: We apply the monotonicity lemma . i.e. under this

Situation, he half $\pi Y^2 \leq \int_{G_r} u^* \omega$

Note that $\hat{U} = \Phi_0 u$. Since Φ is symplectic \Rightarrow

$$\hat{u}^*\omega = (\underline{\Phi}_{ou})^*\omega = \underline{u}^*\underline{\Phi}^*\omega = \underline{u}^*\omega$$

We that û*w is non-negative on D. i.e.

$$u^*\omega(\partial x.\partial y) = \omega(\widehat{u}_x.\widehat{u}_y)$$

$$\Rightarrow \int_{\overline{G_1}} u^* \omega = \int_{\overline{G_1}} \overline{u}^* \omega = \int_{\overline{G_2}} \overline{u}^* \omega = \pi$$

##

§ I.4 The monotonicity Lemma.

Thm: If $G \subseteq C$ be a domain. $o \in Gr$. and $u: (G.o) \rightarrow (C^n.o)$ is a proper holomorphic map ten for any r > 0. We have $\int_{U^{-1}(Br)} u^* \omega \geqslant \pi r^2.$

· The proof is rather easy. main tool is to use Isoperimetric inequalities. We omit here. Ref [Greige. Kai § 1.4-1.6]

& I.7 Extension of J from $\mathbb{P}(\mathbb{D}_r)$ to \mathbb{C}^n .

Thm: There is an almost complex structure \widehat{J} on \mathbb{R}^{2n} , compatible with ω , that coincides with J on $\overline{\Psi}(\mathbb{D}r)$, and with $J_{\mathfrak{o}}$ on $\mathbb{R}^{2n} \setminus \overline{\Psi}(\mathbb{B}r\mathfrak{e})$, where ε is small enough s.c. $r\mathfrak{e}\varepsilon$ ero.

• The proof is by directly construction, with the help of cut-off function and linear algebra. Ref [G.k. § I.7]

Now he can start the really interesting part of the proof was the existence of J-holomorphic Discs.

§ I. 8 A Moduli space of J- holomorphic discs.

CS 扫描全能王 3亿人都在用的扫描App To find or part the existence of J-holomorphic curres, we always try to consider the Madli space, then study the property of Moduli space, we can know the desired target to exists.

For Cyclinder $Z = B \times C^{n-1}$, with coordinate $(\omega, x+iy)$. $\omega \in B \subseteq \mathbb{C}$. $|\omega|=1$. $X.Y \in \mathbb{R}^{n+1}$. $X=(X_1:X_n)$. $Y=(Y_2:Y_n)$. One can view Z in h=2 as ... a disk bundle are C^{n-1}

Hence the boundary of Z. $\partial Z = \partial B \times C^{n+1}$ has a family of N-dim cylinders, $t \in \mathbb{R}^{n-1}$

$$L^{t} := \partial B \times \mathbb{R}^{N-1} \times \{ \gamma = t \}$$

$$L^{t}$$

$$R^{N-1} = \{ \alpha \}$$

FACT: $\dim_{\mathbb{R}} L^t = n$. and actually L^t is a Lagranigian submerial of $(\mathbb{R}^{2n}, \omega)$.

— t: are consts.

PENT: 7: Lt COR2N. by (coso. sino, x2, t2, ..., Xn. Tn)

=> i*\w = dosp rdsing + \(\frac{1}{12} dx: \(\D \) = \(\O \) \(\since \dim\(\D^{2} \) = \(\D \) \(\since \dim\(\D^{2} \) = \(\D \) \(\D \

Now we consider the Modul: space M as:

Def: The Modul; space M is the set of J-holomorphic disc

U: (D.OD) -> (R2M. DZ)

with the following properties.

(M1) (Lagrangian boundary andition)

For overy ue M Here is a TERMI, called the level

(M2) (Homotopy condition)

The boundary map uloo: 010 -> Lt is (smoothly) homocopic

(M3) (three-point condition)

For k=01.2. we have , u(ik) ∈ {ik} × R*1× {y=+}

Rmk: () (MI) is essential for the analytical set up.

- @ (M2) is will given the property of sympleric energy 72.
- 3 (M3) is somehow like normalization. Since the automorphism of disc is determined by 3-points (Möbius transformation).

The central thm of this note is

Thm: For a generic choice of the W-compatible almost complex Structure J. the mouduli space M of J-holomorphic discs is a Smooth mfid of dim 2n-2.

The evaluation map ev: $M \times D \to \mathbb{R}^{2n}$. $(u.z) \mapsto u\mathbb{R}$? is Smooth, proper, and it takes value in \overline{Z} . Regarded ev as $M \times D \to \overline{Z}$, we have the mod z degree z = 1.

FACT: This thm is really hard.

Corollary: Possibly after reparametrising with an element of Aut (D). there is a J-holomorphic disc $\hat{u}: (D, \partial D) \rightarrow (\overline{Z}, \partial \overline{Z}), \hat{u}_{(0)} = \overline{D}_{(0)}$. (This is not a direct corollary for now- after we talk more about the evaluation map, this may be Clear)

(D1) & (D3). how he see that (D2) is also holds thanks to (M2)

Rop: Every $u \in M$ has symplectic energy equal to π . $\int_{D} u^* \omega = \pi.$

Frut: Let $u \in M$ be a J-holomorphic disc of level $t \in \mathbb{R}^{n-1}$ in (M1). Set $U_o^{t}(z) := (z, o+it) = (z, it) \in L^{t}$. $z \in D$ Thanks to homotopy condition (M2), we can find a homotopy $H: [0.1] \times \partial D \longrightarrow L^{t}$

from H(0,·) = Ut |00. to H(1.) = uloo.

Note that $\omega = \sum_{i=1}^{n} dx^{i} \wedge dy^{i} = d\left(\sum_{i=1}^{n} x^{i} \wedge dy^{i}\right) = : dx$, hence

$$\int_{\mathcal{D}} u^* \omega = \int_{\mathcal{D}} \partial(u^* \lambda) = \int_{\partial \mathcal{D}} u^* \lambda = \int_{[\sigma] \times \partial \mathcal{D}} H^* \omega + \int_{\partial \mathcal{D}} (u^*_{\sigma})^* \lambda$$

$$= \int_{\mathcal{D}} u^* \omega = \int_{\partial \mathcal{D}} \partial(u^* \lambda) = \int_{\partial \mathcal{D}} u^* \lambda = \int_{[\sigma] \times \partial \mathcal{D}} H^* \omega + \int_{\partial \mathcal{D}} (u^*_{\sigma})^* \lambda$$

$$= \int_{\mathcal{D}} u^* \omega = \int_{\partial \mathcal{D}} \partial(u^* \lambda) = \int_{\partial \mathcal{D}} u^* \lambda = \int_{[\sigma] \times \partial \mathcal{D}} H^* \omega + \int_{\partial \mathcal{D}} (u^*_{\sigma})^* \lambda$$

$$= \int_{\partial \mathcal{D}} u^* \omega = \int_{\partial \mathcal{D}} \partial(u^* \lambda) = \int_{\partial \mathcal{D}} u^* \lambda = \int_{[\sigma] \times \partial \mathcal{D}} H^* \omega + \int_{\partial \mathcal{D}} (u^*_{\sigma})^* \lambda$$

$$= \int_{\partial \mathcal{D}} u^* \omega = \int_{\partial \mathcal{D}} \partial(u^* \lambda) = \int_{\partial \mathcal{D}} u^* \lambda = \int_{\partial \mathcal{D}} H^* \omega + \int_{\partial \mathcal{D}} (u^*_{\sigma})^* \lambda$$

Track despited to the property of the

The evaluation map this may be dear