# **26: INFERENCE FOR SLR**

Stat250 S25 Prof Amanda Luby

# 1 SLR Model Recap

$$Y_i|x_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$$

Key features:

All three of these data sets were generated from the SLR model:



But only data 3 has (marginally) normally distributed responses:

## Normal QQ plots of all Y's



Let's look at the Y values for all cases with  $x \approx 7$ :



The Y values are (conditionally) normally distributed for with  $x \approx 7$ 

## Normal QQ plots of all Y's



### 2 Inference for coefficients

### **Maximum Likelihood Estimators for SLR**

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{x}$$

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(Y_i - \bar{Y})}{\sum (x_i - \bar{x})^2}$$

$$\hat{\sigma}^2 = \frac{\sum e_i^2}{n}$$

Properties of the MLE's for SLR:

- 1.  $\hat{\beta}_0$  and  $\hat{\beta}_1$  are Normally-distributed random variables
- 2.  $\hat{\beta}_0$  and  $\hat{\beta}_1$  are unbiased estimators

3. 
$$V(\hat{\beta}_1) = \frac{\sigma^2}{\sum (x_i - \bar{x})^2}$$

4. 
$$V(\hat{\beta}_0) = \sigma^2 \left[ \frac{1}{n} + \frac{\bar{x}^2}{\sum (x_i - \bar{x})^2} \right]$$

5.  $\hat{\beta}_1$ ,  $\bar{Y}$  and  $\hat{\sigma}^2$  are mutually independent

6. 
$$\frac{n\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-2}^2$$

7.  $s^2 = \frac{n}{n-2}\hat{\sigma}^2$  is an unbiased estimator for  $\sigma^2$ 

### Test statistic for $\beta_1$

Let  $(x_1, Y_1), (x_2, Y_2), ..., (x_n, Y_n)$  be a set of points satisfying  $E(Y|X = x) = \beta_0 + \beta_1 x$  and let  $S^2 = \frac{1}{n-2} \sum (Y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i))^2$ . Then,  $T = \frac{\hat{\beta}_1 - \beta_1}{S/\sqrt{\sum (x_i - \bar{x})^2}}$ 

$$T = \frac{\hat{\beta}_1 - \beta_1}{S / \sqrt{\sum (x_i - \bar{x})^2}}$$

Example: We are interested in the average inconclusive rate (how often the firearms examiner cannot come to a definitive conclusion) for bullets compared to cartridge cases. Some results from a study are included below:



### Call:

lm(formula = inc\_cart ~ inc\_bul, data = firearms)

### Residuals:

Min 1Q Median 3Q Max -0.48856 -0.11666 0.01347 0.10022 0.41347

#### Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.07809 0.02811 2.778 0.00609 \*\*
inc\_bul 0.65064 0.04972 13.087 < 2e-16 \*\*\*

\_\_\_

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1671 on 171 degrees of freedom Multiple R-squared: 0.5004, Adjusted R-squared: 0.4975 F-statistic: 171.3 on 1 and 171 DF, p-value: < 2.2e-16

What is a 95% confidence interval for  $\beta_1$ ?

## 3 Inference for $\mu_{Y|x}$

**Example**: How do we find a confidence interval for the line?

## 4 Inference for new data points

**Example:** If we observe a new examiner who was inconclusive 75% of time time on bullets, what would we predict for their inconclusive rate on cartridge cases?

