MA 361: Probability Theory

Naman Mishra

August 2024

Contents

Ι	Review of discrete probability	4
П	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 8 9 10 13 14
Ш	II.4.2 Structure of $P(\Omega, \mathcal{F})$ I The Lebesgue integral III.1 Lebesgue as super-Riemann III.2 Change of variables III.3 First and second moment methods III.4.1 Coupon collector III.4 Random graphs III.4.2 Random independent series	16 23 24 27 32 33 35 36 37 41
1 2 3	III.5 Laws of large numbers III.5.1 Two extensions in different directions Lectures Thu, August 1 Discrete probability and σ-algebras Tue, August 6 Probability measures and their existence Thu, August 8	3 8 14
4 5	Tue, August 13 Tue, August 20	1 1

2 Lectures

6	Thu,	August 22																				21
7	Tue,	August 27																				25
8	Thu,	August 29																				27
10	Thu,	September 5																				28
13	Tue,	September 24																				32
15	Tue,	October 1																				35
17	Tue,	October 8	M	00	$d\epsilon$	\mathbf{s}	of	c	Ю1	nv	er	g	en	ce)							38
18	Thu,	October 10																				42
21	Thu.	October 17			_		_			_								_				42

The course

Grading

• Homework: 20%

• Two midterms: 15% each

• Final: 50%

Lecture 1.
Thursday
August 1

Chapter I

Review of discrete probability

Definition I.1 (Discrete probability space). A discrete probability space is a pair (Ω, p) where Ω is a finite or countable set called *sample space* and $p: \Omega \to [0,1]$ is a function giving the *elementary probabilities* of each $\omega \in \Omega$ such that

$$\sum_{\omega \in \Omega} p(\omega) = 1.$$

Examples.

• "Toss a fair n times" is modeled as

$$\Omega = \{0, 1\}^n$$

with

$$p(\omega) \equiv \frac{1}{2^n}.$$

• "Throw r balls randomly into m bins" is modeled as

$$\Omega = [m]^r$$

with p given by the multinomial distribution (assuming uniformity).

• "A box has N coupons, draw one of them."

$$\Omega = [N]$$

$$p = \omega \mapsto \frac{1}{N}.$$

• "Toss a fair coin countably many times." The set of outcomes is clear: $\Omega = \{0, 1\}^{\mathbb{N}}$. What about the elementary probabilities?

Probabilities of some events are also fairly intuitive. For example, the event

$$A = \{ \underline{\omega} \in \Omega \mid \omega_1 = 1, \omega_2 = 1, \omega_3 = 0 \}$$

has probability 1/8. Similarly $B = \{\underline{\omega} \in \Omega \mid \omega_1 = 1, \omega_2 = 0\}$ has probability 1/4. Where does this come from?

What about this event:

$$C = \{ \underline{\omega} \in \Omega \mid \frac{1}{n} \sum_{i=1}^{n} \omega_i \to 0.6 \}$$

What about:

$$D = \{\underline{\omega} \in \Omega \mid \sum_{i=1}^{n} \omega_i = \frac{n}{2} \text{ for infinitely many } n\}^1$$

• "Draw a number uniformly at random from [0, 1]." Ω is obviously [0, 1]. Again some events have obvious probabilities.

$$A = [0.1, 0.3] \implies \mathbf{P}(A) = 0.2$$

Similarly

$$B = [0.1, 0.2] \cup (0.7, 1) \implies \mathbf{P}(B) = 0.4$$

What about $C = \mathbb{Q} \cap [0,1]$? What about D, the $\frac{1}{3}$ -Cantor set?

The $\frac{1}{3}$ -Cantor set is given by the limit of the following sequence of sets.

$$K_0 = [0, 1]$$

$$K_1 = [0, 1/3] \cup [2/3, 1]$$

$$K_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8/9, 1]$$

$$\vdots$$

where each K_{n+1} is obtained by removing the middle third of each interval in K_n .²

The resolution for the above examples is achieved by taking the 'obvious' cases as definitions.

What we wish for:

What we agree on:

(*)
$$\mathbf{P}([a,b]) = b - a$$
 for all $0 < a < b < 1$.

(#1) If
$$A \cap B = \emptyset$$
, then $\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B)$.

(#2) If
$$A_n \downarrow A$$
, then $\mathbf{P}(A_n) \downarrow \mathbf{P}(A)$.

Question: Does there exist a $P: 2^{[0,1]} \to [0,1]$ that satisfies (*), (#1) and (#2)? **No.**

Question: Does there exist a $P: 2^{[0,1]} \to [0,1]$ that satisfies (*), (#1) and even *translational invariance*? **Yes!** However, it is not unique.

$${}^{1}\mathbf{P}(C) = 0 \text{ and } \mathbf{P}(D) = 1.$$

Lecture 1: Discrete probability and σ -algebras

 $^{{}^{2}\}mathbf{P}(C) = \mathbf{P}(D) = 0.$

What about the same for a probability measure on $[0,1]^2$ that is translation and rotation invariant?

What about $[0,1]^3$?

Lack of uniqueness is a disturbing issue. The way out is the following: restrict the class of sets on which ${\bf P}$ is defined to a σ -algebra.

 $^{^3{\}rm The~Banach\text{-}Tarski}$ paradox gives a "no" for the 3D case.

Chapter II

Measure-theoretic probability

σ -algebras **II.1**

Definition II.1 (σ -algebra). Given a set Ω , a collection $\mathcal{F} \subseteq 2^{\Omega}$ is

- $(\varsigma 1) \varnothing \in \mathcal{F}.$ $(\varsigma 2) A \in \mathcal{F} \implies A^c \in \mathcal{F}.$ $(\varsigma 3) \text{ If } A_1, A_2, \dots \in \mathcal{F}, \text{ then } \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}.$

This gives us a modified question.

Question: Does there exist any σ -algebra \mathcal{F} on [0,1] and a function $\mathbf{P} \colon \mathcal{F} \to \mathbf{P}$ [0,1] that satisfies (*), (#1) and (#2)?

Answer: Yes, and it is sort-of unique.

Exercise II.2. Suppose (*) and (#1) hold. Prove that (#2) is equivalent to the following: if $(B_n)_{\mathbb{N}}$ are pairwise disjoint, then

$$\mathbf{P}(\bigcup B_n) = \sum \mathbf{P}(B_n). \tag{II.1}$$

Solution. If $A_1 \supseteq A_2 \supseteq \cdots \supseteq A$, then $A_1^c \subseteq A_2^c \subseteq \cdots \subseteq A^c$. Let $B_n =$ $A_n^c \setminus A_{n-1}^c$, with $B_1 = A_1^c$. First note that (*) and (#1) imply the following:

- (1) $P(A^c) = 1 P(A)$, since $P(A) + P(A^c) = P[0, 1] = 1$.
- (2) If $A \subseteq B$, then $\mathbf{P}(A) \leq \mathbf{P}(B)$, since $\mathbf{P}(B) = \mathbf{P}(A) + \mathbf{P}(B \setminus A)$. Specifically, $\mathbf{P}(A_1) \geq \mathbf{P}(A_2) \geq \cdots \geq \mathbf{P}(A)$.

Thus $\mathbf{P}(A_n) \downarrow \lim \mathbf{P}(A_n) \geq \mathbf{P}(A)$.

Then

$$\sum_{n=1}^{\infty} \mathbf{P}(B_n) = \lim_{n \to \infty} \mathbf{P}(A_n^c) \quad \text{and} \quad \mathbf{P}(A^c) = \mathbf{P}(\bigcup B_n).$$

If
$$\mathbf{P}(A_n) \downarrow \mathbf{P}(A)$$
, then $\mathbf{P}(A_n^c) \uparrow \mathbf{P}(A^c)$ and so $\sum \mathbf{P}(B_n) = \mathbf{P}(\bigcup B_n)$.
If $\sum \mathbf{P}(B_n) = \mathbf{P}(\bigcup B_n)$, then $\lim \mathbf{P}(A_n^c) = \mathbf{P}(A^c)$ and so $\mathbf{P}(A_n) \downarrow \mathbf{P}(A)$.

A σ -algebra that works for our case is the *smallest* one that contains all intervals.

Exercise II.3. If $\{\mathcal{F}_i\}_{i\in I}$ are σ -algebras on Ω , then $\bigcap_{i\in I} \mathcal{F}_i$ is also a σ -algebra.

Proof. \varnothing is in each \mathcal{F}_i and hence in the intersection. If A is in each \mathcal{F}_i , then so is A^c . If A_1, A_2, \ldots are in each \mathcal{F}_i , then so is $\bigcup_{n=1}^{\infty} A_n$.

This allows us to make sense of the word 'smallest' above.

Definition II.4. Let $S \subseteq 2^{\Omega}$. The *smallest* σ -algebra containing S is given by the intersection of all σ -algebras on Ω that contain S. We denote this by $\sigma(S)$.

This will contain S since 2^{Ω} itself is a σ -algebra.

Example (Borel σ -algebra). The Borel σ -algebra on [0,1] is the smallest σ -algebra containing all intervals in [0,1]. It is denoted by $\mathcal{B}_{[0,1]}$.

II.2 Probability spaces

Definition II.5 (probability space). A probability space is a triple $(\Omega, \mathcal{F}, \mathbf{P})$, where Ω is a non-empty set called the sample space, \mathcal{F} is a σ -algebra on Ω , and \mathbf{P} is a probability measure on \mathcal{F} .

A probability measure on a σ -algebra \mathcal{F} is a function $\mathbf{P} \colon \mathcal{F} \to [0,1]$ such that $\mathbf{P}(\Omega) = 1$ and

$$\mathbf{P}\left(\bigsqcup_{n} A_{n}\right) = \sum_{n} \mathbf{P}(A_{n})$$

for any sequence of pairwise disjoint sets $A_n \in \mathcal{F}$ (countable additivity).

Countable additivity is a stronger condition than finite additivity.

Exercise II.6. Prove that countable additivity is equivalent to the following two conditions taken together:

- (1) **finite additivity:** if $A \cap B = \emptyset$, then $\mathbf{P}(A \sqcup B) = \mathbf{P}(A) + \mathbf{P}(B)$
- (2) If $A_n \uparrow A$, then $\mathbf{P}(A_n) \uparrow \mathbf{P}(A)$.

Solution. Identical to exercise II.2.

Lecture 2. Tuesday August 6

Where do Ω , \mathcal{F} , and P come from?

 Ω is simply the set of all possible outcomes.

II.2.1 The σ -algebra

 $\mathcal{F}=2^{\Omega}$ and $\mathcal{F}=\{\varnothing,\Omega\}$ are bullshit choices. In reality, \mathcal{F} is always chosen to be the smallest σ -algebra containing some specified sets of interest. That is, for some $S \subseteq 2^{\Omega}$, $\mathcal{F} = \sigma(S)$.

This is sometimes called the σ -algebra "generated by" \mathcal{S} . However, this can create a misconception. Recall the similar notion of the span of a set of vectors. We can define the span of a set $S \subseteq V$ of vectors in two ways:

- (external) the smallest subspace containing S.
- (internal) the set of all linear combinations of vectors in S.

For $\sigma(\mathcal{S})$, there is no "internal" definition. $\sigma(\mathcal{S})$ cannot be generated by unions, intersections, etc. of sets in S.

A frequent choice for S is the following.

Definition II.7 (Borel σ -algebra). Let (X, d) be a metric space. The Borel σ -algebra on X is the smallest σ -algebra containing all open sets in X, and is denoted $\mathcal{B}(X)$.

Exercise II.8 (self). Show that $\sigma\{(a,b) \mid a,b \in \mathbb{R}\} = \mathcal{B}(\mathbb{R})$.

Solution. Let $\Sigma = \sigma\{(a,b) \mid a,b \in \mathbb{R}\}$. It is obvious that $\Sigma \subseteq \mathcal{B}(\mathbb{R})$, since the set of intervals is a subset of the set of all open sets.

We will show that each open set can be written as a countable union of open intervals. Then $\{U \subseteq \mathbb{R} \mid U \text{ is open}\}\$ would be necessarily contained in Σ by (3), and so $\mathcal{B}(\mathbb{R}) \subset \Sigma$.

Let $U \in \mathbb{R}$ be open. For each $x \in U$, there exists a bounded open interval $I_x = (a_x, b_x) \subseteq U$ containing x. Let $(\alpha_n)_{n \in \mathbb{N}}$ be an enumeration of the rationals, and define

$$I_n = \bigcup_{I_x \ni \alpha_n} I_x.$$

 $I_n=\bigcup_{I_x\ni\alpha_n}I_x.$ Observe that $I_n=(\inf a_x,\sup b_x),$ where the inf and sup are taken over

But each I_x contains a rational number, so $U = \bigcup_n I_n$ is a countable union of open intervals.

Homework 1, problem 8 presents a neater argument.

II.2.2 The probability measure

There is some collection $S \subseteq \Omega$ for which we know what the probabilities "should" be, $\mathbf{P} \colon S \to [0, 1]$.

Question II.9. Does **P** extend to a probability measure on $\sigma(S)$? If so, is it unique?

Uniqueness does not hold.

Example. Let $\Omega = \{1, 2, 3, 4\}$ and $S = \{\{1, 2\}, \{2, 3\}, \{3, 4\}\}$. $F = \sigma(S) = 2^{\Omega}$.

Then the probability measures given by

$$\underline{p} = (.25, .25, .25, .25)$$

 $q = (.5, 0, .5, 0)$

agree on \mathcal{S} but differ on \mathcal{F} .

When does uniqueness hold?

Uniqueness

Definition II.10 (π -system). A collection $S \subseteq 2^{\Omega}$ is a π -system if it is closed under finite intersections. That is, for any $A, B \in S$, $A \cap B \in S$.

Definition II.11 (λ -system). A collection $\mathcal{C} \subseteq 2^{\Omega}$ is a λ -system if it contains Ω and is closed under

- proper differences: if $A, B \in \mathcal{C}$ and $B \subseteq A$, then $A \setminus B \in \mathcal{C}$.
- increasing limits: if $A_n \in \mathcal{C}$ and $A_n \uparrow A$, then $A \in \mathcal{C}$.

Theorem II.12. If $\mathcal{F} = \sigma(\mathcal{S})$ where \mathcal{S} is a π -system and P, Q are probability measures on \mathcal{F} that agree on \mathcal{S} , then P = Q.

Proof. Consider $\mathcal{G} = \{A \in \mathcal{F} \mid P(A) = Q(A)\}$. Then $\mathcal{G} \supseteq \mathcal{S}$. Further, if $A \in \mathcal{G}$, then $A^c \in \mathcal{G}$ since $P(A^c) = 1 - P(A) = 1 - Q(A) = Q(A^c)$. If $A, B \in \mathcal{G}$ are disjoint, then

$$P(A \sqcup B) = P(A) + P(B) = Q(A) + Q(B) = Q(A \sqcup B).$$

But how do we deal with A, B not disjoint? We would need to show that $A, B \in \mathcal{G} \implies A \cap B \in \mathcal{G}$.

Resolution: Show that \mathcal{G} is a λ -system, and then apply the π - λ theorem. Suppose $A, B \in \mathcal{G}$ with $B \subseteq A$. Then $P(A \setminus B) = P(A) - P(B) = Q(A) - Q(B) = Q(A \setminus B)$. Thus \mathcal{G} is closed under proper differences.

Lecture 2: Probability measures and their existence

If $A_n \uparrow A$ are in \mathcal{G} , then $P(A_n) \uparrow P(A)$ and $Q(A_n) \uparrow Q(A)$. But $P(A_n) = Q(A_n)$ for all n, so P(A) = Q(A). Thus \mathcal{G} is closed under increasing limits.

 \mathcal{G} contains Ω since $P(\Omega) = Q(\Omega) = 1$. Thus by the π - λ theorem, $\mathcal{G} \supseteq \mathcal{F}$.

Theorem II.13 $(\pi$ - λ theorem). Let S be a π -system and C be a λ -system. If $C \supseteq S$, then $C \supseteq \sigma(S)$.

This is due to Sierpiński and Dynkin.

Proof. It suffices to show that $\sigma(S) = \lambda(S)$. Call this simply λ . $\lambda \supseteq S$ already contains Ω , and is closed under complements and increasing limits by virtue of being a λ -system. All that's required is closure under finite unions. Manju shows closure under finite intersections, which is slightly easier. I will show closure under finite unions.

For any $A \in S$, let $\Lambda_A = \{B \in \lambda \mid A \cup B \in \lambda\}$.

- Clearly $\Omega \in \Lambda_A$.
- If $B_n \uparrow B$ are from Λ_A , then $A \cup B_n \uparrow A \cup B$, so $A \cup B \in \lambda$ and hence $B \in \Lambda_A$.
- If $B \in \Lambda_A$, then $A \cup B \in \lambda$, so $B \setminus A = (A \cup B) \setminus A \in \lambda$. Then $\Omega \setminus (B \setminus A) = \Omega \cap (B \cap A^c)^c = B^c \cup A \in \lambda,$ so $B^c \in \Lambda_A$.
- Let $B \in S$. HOW?

Thus Λ_A is a λ -system containing S. This proves that $\Lambda_A = \lambda$. In particular, λ is closed under union with elements of S.

Now let $A \in \lambda$ and define Λ_A as before. By the above, $S \subseteq \Lambda_A$. Now again

- $\Omega \in \Lambda_A$.
- If $B_n \uparrow B$ are from Λ_A , then $A \cup B_n \uparrow A \cup B$, so $A \cup B \in \lambda$ and hence $B \in \Lambda_A$.
- If $B \in \Lambda_A$, then $A \cup B \in \lambda$, so $B \setminus A = (A \cup B) \setminus A \in \lambda$. Then $\Omega \setminus (B \setminus A) = \Omega \cap (B \cap A^c)^c = B^c \cup A \in \lambda,$ so $B^c \in \Lambda_A$.

Thus $\Lambda_A = \lambda$. That is, λ is closed under union with elements of λ .

What about existence?

Lecture 2: Probability measures and their existence

Existence

In the general case, obviously not. Consider $\Omega = [0, 1]$ with

$$S = \{(0, \frac{1}{2}), (0, \frac{1}{4}), (\frac{1}{4}, \frac{1}{2})\}$$

$$\mathbf{P}(a, b) = (b - a)^{2}.$$

Then the sum of $\mathbf{P}(0, \frac{1}{4})$ and $\mathbf{P}(\frac{1}{4}, \frac{1}{2})$ is less that $\mathbf{P}(0, \frac{1}{2})$. Let us impose some necessary conditions.

Definition II.14 (algebra). A collection $\mathcal{A} \subseteq 2^{\Omega}$ is an *algebra* if it $\emptyset \in \mathcal{A}$ and it is closed under complements and finite unions.

Definition II.15 (monotone class). A collection $\mathcal{M} \subseteq 2^{\Omega}$ is a *monotone class* if it is closed under increasing and decreasing limits.

Proposition II.16 (monotone algebra theorem). Let \mathcal{A} be an algebra and \mathcal{M} be a monotone class. If $\mathcal{M} \supseteq \mathcal{A}$, then $\mathcal{M} \supseteq \sigma(\mathcal{A})$.

This is very similar to the π - λ theorem.

Proof. It again suffices to show that $\sigma(\mathcal{A}) = \mathcal{M}(\mathcal{A})$. Call this simply \mathcal{M} . $\mathcal{M} \supseteq \mathcal{A}$ already contains \emptyset and is closed under increasing and decreasing limits. It remains to show closure under complements and finite unions.

Let $\mathcal{G} = \{A \in \mathcal{M} \mid A^c \in \mathcal{M}\}$. Since \mathcal{A} is closed under complements, $\mathcal{A} \subseteq \mathcal{G}$. Now if $A_n \uparrow A$ (resp. $A_n \downarrow A$) are from \mathcal{G} , then $A \in \mathcal{M}$. Moreover, $A_n^c \downarrow A^c$ (resp. $A_n^c \uparrow A^c$) are in \mathcal{G} , so $A^c \in \mathcal{M}$. Thus $A \in \mathcal{G}$. This shows that $\mathcal{G} \subseteq \mathcal{M}$ is a monotone class containing \mathcal{A} , so $\mathcal{G} = \mathcal{M}$. Thus \mathcal{M} is closed under complements.

Now let $A \in \mathcal{A}$ and set $\mathcal{M}_A = \{B \in \mathcal{M} \mid A \cup B \in \mathcal{M}\}$. Again $\mathcal{A} \subseteq \mathcal{M}_A$. If $B_n \uparrow B$ (resp. $B_n \downarrow B$) are from \mathcal{M}_A , then $A \cup B_n \uparrow A \cup B$ (resp. $A \cup B_n \downarrow A \cup B$). So $A \cup B \in \mathcal{M}$ and hence $B \in \mathcal{M}_A$. Thus $\mathcal{M}_A \subseteq \mathcal{M}$ is a monotone class containing \mathcal{A} , so $\mathcal{M}_A = \mathcal{M}$. This shows that \mathcal{M} is closed under union with elements of \mathcal{A} .

Now let $A \in \mathcal{M}$ and define \mathcal{M}_A as before. By the above, $\mathcal{A} \subseteq \mathcal{M}_A$. Closure under limits is the same as before. Thus \mathcal{M} is closed under finite unions.

Theorem II.17 (Carathéodory's extension theorem). Let S be an algebra. Assume that $P: S \to [0,1]$ is countably additive. Then there exists an extension of P to a probability measure P on $F = \sigma(S)$.

Corollary II.18. The above extension is unique.

Proof. An algebra is a π -system. Theorem II.12 applies.

	\varnothing , Ω	A^c	$\bigcap_{i=1}^{n}$	$\bigcup_{i=1}^{n}$	$\bigcap_{i=1}^{\infty}$	$\bigcup_{i=1}^{\infty}$	$A \setminus B$ $(B \subseteq A)$	$A_n \uparrow A$
π -system			1					
λ -system	✓	✓					✓	✓
algebra	✓	✓	✓	✓			✓	
σ -algebra	✓	✓	✓	✓	✓	✓	✓	✓

Table II.1: Various systems of sets

Figure II.1: Heirarchy of systems of sets under inclusion

II.3 Existence of Lebesgue measure

Theorem II.19. There is a unique probability measure λ on [0,1] with the Borel σ -algebra such that

$$\lambda[a,b] = b - a \qquad \forall \ 0 \le a \le b \le 1.$$

Proof. Let $\Omega = [0, 1)$.

Let $S_0 = \{[a,b) \mid 0 \le a \le b \le 1\}$. Half-open intervals are nice because they are closed under complements $[a,b)^c = [0,a) \sqcup [b,1)$ and intersections $[a,b) \cap [c,d) = [a \lor c,b \land d)$.

Let

$$\mathcal{S} = \{ I_1 \sqcup \cdots \sqcup I_k \mid k \geq 1, I_j \in \mathcal{S}_0 \text{ disjoint} \}$$

be the collection of all finite disjoint unions of half-open intervals. It is obvious that S is an algebra. Define

$$\lambda_{\mathcal{S}}(I_1 \sqcup \cdots \sqcup I_k) = \sum_{j=1}^k (\sup I_j - \inf I_j).$$

We need to show that this is countably additive, in order that Carathéodory's extension theorem applies. We will proceed via exercise II.6.

• Finite additivity is obvious.

Lecture 2: Probability measures and their existence

• Let $A_n, A \in \mathcal{S}$ with $A_n \uparrow A$. Then it should be sort of obvious that $\lambda_{\mathcal{S}}(A_n) \uparrow \lambda_{\mathcal{S}}(A)$. Yes?

By Carathéodory's extension theorem, there exists a unique probability measure λ on $\mathcal{F} = \sigma(\mathcal{S})$ that extends $\lambda_{\mathcal{S}}$.

Lecture 3. Thursday August 8

II.4 New measures from old

Definition II.20. Let (Ω, \mathcal{F}) and (Ω', \mathcal{F}') be two sets with σ -algebras. A function $T: \Omega \to \Omega'$ is measurable if

$$T^{-1}(B) \in \mathcal{F}$$
 for all $B \in \mathcal{F}'$.

II.4.1 Push forward

Lemma II.21. Let (Ω, \mathcal{F}, P) be a probability space and (Ω', \mathcal{F}') be a set with a σ -algebra. Let $T: \Omega \to \Omega'$ be measurable. Then $Q := P \circ T^{-1}$ is a probability measure on \mathcal{F}' .

Proof. We need to show that $Q(\Omega') = 1$ and Q is countably additive. The first is immediate as $Q(\Omega') = P(T^{-1}(\Omega')) = P(\Omega) = 1$.

Notice that if B_1 and B_2 are disjoint, so are $T^{-1}(B_1)$ and $T^{-1}(B_2)$. Let $(B_n)_{\mathbb{N}}$ be a sequence of pairwise disjoint sets in \mathcal{F}' . Then $(T^{-1}(B_n))_{\mathbb{N}}$ are pairwise disjoint in \mathcal{F} . Thus

$$Q(\bigsqcup B_n) = P(T^{-1}(\bigsqcup B_n))$$

$$= P(\bigsqcup T^{-1}(B_n))$$

$$= \sum P(T^{-1}(B_n))$$

$$= \sum Q(B_n).$$

Definition II.22 (cumulative distributive function). A *cumulative* distributive function (CDF) is a function $F: \mathbb{R} \to [0, 1]$ such that

- (1) (increasing) $x \le y \implies F(x) \le F(y)$
- (2) (right-continuous) $\lim_{h\searrow 0} F(x+h) = F(x)$
- (3) $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$

Let $P(\mathbb{R})$ be the set of all probability measures on $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$. If $\mu \in P(\mathbb{R})$, then $F_{\mu}(x) := \mu(-\infty, x]$ is a CDF (increasing, right-continuous with $F(-\infty) = 0$, $F(\infty) = 1$)).

Lecture 4. Tuesday August 13

Theorem II.23. Given a CDF $F: \mathbb{R} \to [0,1]$, there exists a unique probability measure $\mu \in P(\mathbb{R})$ such that $\mu(-\infty, x] = F(x)$ for all $x \in \mathbb{R}$.

Proof. Consider $((0,1), \mathcal{B}, \lambda)$ and define

$$T: (0,1) \to \mathbb{R}$$

 $u \mapsto \inf\{x \in \mathbb{R} : F(x) \ge u\}$

The set is non-empty since $F(x) \to 1$ as $x \to \infty$. Moreover, T is increasing since

$$\{x \in \mathbb{R} : F(x) \ge u\} \subseteq \{x \in \mathbb{R} : F(x) \ge v\}$$

whenever $u \leq v$. T is left-continuous.

Finally, $T(u) \leq x \iff F(x) \geq u$. (This is reminiscent of the inverse property: $T(u) = x \iff F(x) = u$.) If $F(x) \geq u$, then $x \in F^{-1}[u, 1)$, so $T(u) \leq x$. If $T(u) \leq x$, then $x + \frac{1}{n} \in F^{-1}[u, 1)$ for all $n \in \mathbb{N}$. By right-continuity, $F(x) \geq u$.

Now T is Borel-measurable, so

$$\mu := \lambda \circ T^{-1}$$

is a probability measure on $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$.

Further,
$$\mu(-\infty, x] = \lambda(T^{-1}(-\infty, x]) = \lambda(0, F(x)] = F(x)$$
. Uniqueness if by the π -system thingy.

Examples.

- Take $f: \mathbb{R} \to [0, \infty)$ measurable whose total integral is 1. Then $F = x \mapsto \int_{-\infty}^{x} f(u) du$ is a CDF.
- (Cantor measure) Consider the $\frac{1}{3}$ -Cantor set $K = K_1 \cap K_2 \cap \dots$ where

$$K_1 = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right]$$

$$K_2 = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right]$$
:

Notice that

$$K = \{x \in [0,1] : x = \sum_{n=1}^{\infty} \frac{x_n}{3^n}, x_n = 0 \text{ or } 2\}.$$

We can construct the measurable function

$$T: [0,1] \to \mathbb{R}$$

$$\sum_{n=1}^{\infty} \frac{x_n}{2^n} \mapsto \sum_{n=1}^{\infty} \frac{2x_n}{3^n}$$

where we are considering the non-terminating binary expansion of x on the left. It is obvious that T maps only to K. Since $T^{-1}(K) = [0, 1]$, we have that $\mu(K) = 1$. However, $\lambda(K) = 0$. Thus the CDF cannot arise from a density. However, the CDF is continuous!

• (just for fun) Fix a $\theta > 2$ and define

$$T_{\theta} \colon [0,1] \to [0,1]$$

$$\sum_{n=1}^{\infty} \frac{x_n}{2^n} \mapsto \sum_{n=1}^{\infty} \frac{x_n}{\theta^n}$$

define $\mu_{\theta} = \lambda \circ T_{\theta}^{-1}$. $\mu_2 = \lambda$. It is known that for $\theta > 2$, μ_{θ} has no density. What about $1 < \theta < 2$? This is an open problem. "Bernoulli convolution problem".

II.4.2 Structure of $P(\Omega, \mathcal{F})$

What is the structure of $P(\Omega, \mathcal{F})$? Is it a vector space? A group?

One thing to note is that $P(\Omega, \mathcal{F})$ is convex. That is, given any $\mu, \nu \in P(\Omega, \mathcal{F})$ and $0 \le t \le 1$, $(1 - t)\mu + t\nu \in P(\Omega, \mathcal{F})$. This is called a *mixture* of μ and ν .

We would like to study *closeness* of probability measures. Consider a computer generating a random number between 0 and 1, by generating a sequence of 8 random bits. The computer is actually sampling from the uniform distribution

$$\mu_{2^8} = \text{Unif}\left\{\frac{0}{2^8}, \frac{1}{2^8}, \dots, \frac{2^8 - 1}{2^8}\right\}.$$

However, we do accept μ as an approximation of λ . We will thus attempt to define a *metric* on $P(\mathbb{R})$.

Attempt 1. (total variation distance) Define

$$d(\mu, \nu) = \sup_{A \in \mathcal{B}_{\mathbb{R}}} |\mu(A) - \nu(A)|.$$

This does not work for out for our use case, as

$$d(\mu_{2^8}, \lambda) = 1.$$

Attempt 2. (Kolmogorov-Smirnov metric) Choose a suitable $\mathcal{C} \in \mathcal{B}_{\mathbb{R}}$ and define

$$d(\mu,\nu) = \sup_{A \in \mathcal{C}} |\mu(A) - \nu(A)|.$$

 \mathcal{C} should be "measure-determining".

Attempt 3. (Lévy metric)

$$d(\mu, \nu) = \inf\{\varepsilon > 0 : F_{\mu}(x + \varepsilon) + \varepsilon \ge F_{\nu}(x) \text{ and } F_{\nu}(x + \varepsilon) + \varepsilon \ge F_{\mu}(x) \text{ for all } x \in \mathbb{R}\}.$$

This is symmetric by sheer obviousness. For \triangle , consider three measures μ, ν, ρ .

$$t > d(\mu, \nu)$$
 $\Longrightarrow F_{\mu}(x+t) + t \ge F_{\nu}(x)$
 $s > d(\nu, \rho)$ $\Longrightarrow F_{\nu}(x+s) + s \ge F_{\rho}(x)$

Thus

$$F_{\mu}(x+t+s) + t + s \ge F_{\nu}(x+s) + t \ge F_{\rho}(x)$$

Thus $t + s \ge d(\mu, \rho)$. \triangle holds.

Finally, suppose $d(\mu, \nu) = 0$. Let $\varepsilon_n \downarrow 0$ be a sequence such that $F_{\mu}(x + \varepsilon_n) + \varepsilon_n \geq F_{\nu}(x)$ for all x for all n. Taking limits, we have $F_{\mu}(x) \geq F_{\nu}(x)$ by right-continuity. By symmetry, $F_{\mu}(x) = F_{\nu}(x)$.

Definition II.24. If $\mu_n, \mu \in P(\mathbb{R})$ and $d(\mu_n, \mu) \to 0$ then we say that μ_n converges in distribution to μ and write $\mu_n \stackrel{d}{\to} \mu$.

Lecture 5. Tuesday August 20

Remark. This is also called weak convergence and hence sometimes written $\mu_n \stackrel{\text{w}}{\to} \mu$. Yet others write $\mu_n \Rightarrow \mu$.

We now prove an extremely powerful result for showing convergence of probability measures.

Proposition II.25. Let $\mu_n, \mu \in P(\mathbb{R})$. Then

$$\mu_n \xrightarrow{d} \mu \iff F_{\mu_n}(x) \to F_{\mu}(x) \text{ for all } x \text{ where } F_{\mu} \text{ is continuous.}$$

Examples.

• $\delta_{\frac{1}{2}} \xrightarrow{d} \delta_0$ because

$$\lim_{n \to \infty} F_{\delta_{1/n}}(x) = \begin{cases} 0 & \text{if } x \le 0, \\ 1 & \text{if } x > 0. \end{cases}$$

So $F_{\delta_{1/n}}(x) \to F_{\delta_0}(x)$ for all $x \neq 0$.

• $\delta_{-\frac{1}{2}}(x) \to \delta_0(x)$ everywhere.

Proof. Write $F_{\mu} = F$ and $F_{\mu_n} = F_n$.

Suppose $\mu_n \xrightarrow{d} \mu$ and let F be continuous at $x \in \mathbb{R}$. Let $\varepsilon > 0$. Then

$$F(x + \varepsilon) + \varepsilon \ge F_n(x)$$

 $F_n(x) + \varepsilon \ge F(x - \varepsilon)$

for all large n. Thus we have

$$\limsup_{n \to \infty} F_n(x) \le F(x + \varepsilon) + \varepsilon$$
$$\liminf_{n \to \infty} F_n(x) \ge F(x - \varepsilon) - \varepsilon.$$

But this holds for all $\varepsilon > 0$. Letting $\varepsilon \downarrow 0$ gives

$$\limsup_{n \to \infty} F_n(x) \le F(x)$$
$$\liminf_{n \to \infty} F_n(x) \ge F(x).$$

Thus $\lim_{n\to\infty} F_n(x) = F(x)$.

Now suppose $F_n(x) \to F(x)$ for all x where F is continuous. Fix $\varepsilon > 0$ and pick $x_1 < \cdots < x_p$ such that

- each x_i is a continuity point of F,
- $x_{j+1} x_j < \varepsilon$ for all j,
- $F(x_1) \le \varepsilon$ and $F(x_p) \ge 1 \varepsilon$.

Then $\exists N \in \mathbb{N}$ such that $\forall n \geq N$ we have

$$|F_n(x_j) - F(x_j)| < \varepsilon \text{ for all } j.$$
 (II.2)

Let $x \in \mathbb{R}$ and $n \geq N$. We have three cases.

$$(x_i \le x \le x_{i+1})$$
 Then

$$F_n(x+\varepsilon) + \varepsilon \ge F_n(x_{j+1}) + \varepsilon \ge F(x_{j+1}) \ge F(x).$$

The first and last inequalities are by the increasing nature of CDFs. The middle inequality is by equation (II.2). Similarly

$$F(x+\varepsilon)+\varepsilon \ge F(x_{j+1})+\varepsilon \ge F_n(x_{j+1}) \ge F_n(x).$$

 $(x < x_1)$ Then

$$F_n(x+\varepsilon) + \varepsilon \ge \varepsilon \ge F(x_1) \ge F(x).$$

The other direction requires a bigger jump.

$$F(x+2\varepsilon) + 2\varepsilon \ge 2\varepsilon \ge F(x_1) + \varepsilon \ge F_n(x_1) \ge F_n(x)$$
.

$$(x > x_p)$$

Thus
$$d(\mu_n, \mu) \to 0$$
.

Remarks.

- We will now frequently show $F_{\mu_n} \to F_{\mu}$ at all continuity points of F_{μ} , to show that $\mu_n \xrightarrow{\mathrm{d}} \mu$. In fact, many authors use this proposition as the *definition* of convergence, without even mentioning the Lévy metric.
- Notice that the converse did not use the continuity of F at all. All that was required is that the points of continuity of F are dense. Thus we have the following proposition immediately.

Proposition II.26. Let $\mu_n, \mu \in P(\mathbb{R})$ and let D be a dense subset of \mathbb{R} . Then

$$F_{\mu_n}(x) \to F_{\mu}(x) \text{ for all } x \in D \implies \mu_n \xrightarrow{d} \mu.$$

 $(P(\mathbb{R}), d_{\text{Lévy}})$ is a metric space. It is interesting to ask what the *compact* subsets of this space are, so that we can exploit convergence of subsequences.

Definition II.27. A subset $A \subseteq P(\mathbb{R})$ is *tight* if for all $\varepsilon > 0$ there exists a compact set K_{ε} such that

$$\mu(K_{\varepsilon}^c) \leq \varepsilon \text{ for all } \mu \in \mathcal{A}.$$

For \mathbb{R} , it only makes sense to consider $K_{\varepsilon} = [-M_{\varepsilon}, M_{\varepsilon}]$. Such an M_{ε} exists for each $\mu \in \mathcal{A}$ individually, but not necessarily for all $\mu \in \mathcal{A}$ simultaneously.

Examples.

- $\mathcal{A} = \{\delta_n\}_{n \in \mathbb{Z}}$ is *not* tight. No matter what M is chosen, $\delta_{\lceil M+1 \rceil}$ will have all of its mass outside of [-M, M].
- Similarly, $\{N(\mu,1)\}_{\mu\in\mathbb{R}}$ is not tight, but $\{N(\mu,1)\}_{-16\leq\mu\leq32768}$ is tight.
- $\{N(\mu, \sigma^2)\}_{\substack{-10 \le \mu \le 10 \ 0 < \sigma < 10}}$ is not tight, but $\{N(\mu, \sigma^2)\}_{\substack{-10 \le \mu \le 10 \ 0 < \sigma < 10}}$ is.
- $\{\delta_{\frac{1}{n}}\}_{n\in\mathbb{N}}$ is tight.

Definition II.28. A set $E \subseteq (X, d)$ is *pre-compact* if its closure \overline{E} is compact.

Theorem II.29. Any $A \subseteq P(\mathbb{R})$ is pre-compact iff it is tight.

We will cover two prerequisites before we prove this theorem.

Theorem II.30 (Helly's selection principle). Let $\mu_n \in P(\mathbb{R})$. Then there is a subsequence $n_1 < n_2 < \ldots$ and an increasing, right continuous function $F \colon \mathbb{R} \to [0,1]$ such that

 $F_{\mu_{n_k}}(x) \to F(x)$ for all x where F is continuous.

F may be a "defective CDF". It need not go to 0 to the left, nor 1 to the right.

Examples.

• Let $\mu_n = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_n$. $F_{\mu_n}(x)$ looks like

The pointwise limit of any subsequence is

This is not a CDF.

• The limit for $\mu_n = N(0, n)$ is the constant function $F(x) = \frac{1}{2}$.

Proof. Fix a dense countable set $D = \{x_1, x_2, \ldots\} \subseteq \mathbb{R}$. By compactness of [0, 1], there exists a subsequence $(n_k)_{k \in \mathbb{N}}$ such that $F_{n_k}(x_1)$ converges, say to c_1 .

Choose a further subsequence $(n_{k_l})_{l\in\mathbb{N}}$ such that $F_{n_{k_l}}(x_2)$ converges, say to c_2 .

Choose a further subsequence $(n_{k_{l_m}})_{m\in\mathbb{N}}$ such that $F_{n_{k_{l_m}}}(x_3)$ converges, say to c_3 .

The limit of doing this infinitely many times may give an empty subsequence. The key is diagonalization.

Let us relabel these subsequences as $(n_{1,k})_{k\in\mathbb{N}}$, $(n_{2,k})_{k\in\mathbb{N}}$, $(n_{3,k})_{k\in\mathbb{N}}$,

Walk the diagonal. $F_{n_{j,j}}(x_i) \to c_i$ for each i.

Thus we have constructed a subsequence, which we will finally label $(n_k)_{k\in\mathbb{N}}$ such that

$$F_{n_k}(x_i) \to c_i$$
 for all i .

All that remains is to extend this preserving right-contiunity. Define

$$F(x) := \inf\{c_i \mid i \in \mathbb{N} \text{ such that } x < x_i\}.$$

All that remains is to check that

- F is increasing and right-continuous,
- $F_{n_k}(x) \to F(x)$ if F is continuous at x.

Suppose $x_1 \le x_2$. Then $F(x_1) = \inf\{c_i \mid x_i > x_1\} \le \inf\{c_i \mid x_i > x_2\} = F(x_2)$ since the second set is a subset of the first.

Now let $x \in \mathbb{R}$ and $\varepsilon > 0$. Then $F(x) \geq c_i - \varepsilon$ for some i such that $x_i \geq x$. Let $y \in (x, x_i)$. Then $F(y) \leq c_i$ by definition of F (c_i is a witness for y). Thus $F(x) \leq F(y) \leq F(x) + \varepsilon$.

When does Helly's selection give a defective CDF? Whenever some mass escapes out to $\pm \infty$. For example, in $\mu_n = \frac{1}{4}\delta_{-n} + \frac{1}{2}\delta_0 + \frac{1}{4}\delta_n$, whose limit is the constant $x \mapsto \frac{1}{2}$. If the mass does not escape, we should get a proper CDF. This is where tightness comes in (theorem II.29).

Lecture 6. Thursday August 22

Lemma II.31. Suppose $\mu_n \in P(\mathbb{R})$ and F is a possibly defective CDF. Suppose $F_{\mu_n} \to F$ at all continuity points of F. Then $F = F_{\mu}$ for some $\mu \in P(\mathbb{R})$ iff $\{\mu_n\}$ is tight.

Proof. (\Longrightarrow) Suppose $F = F_{\mu}$. Let $\varepsilon > 0$ be given. Let M_1, M_2 be such that $F(M_1) < \varepsilon$ and $F(M_2) > 1 - \varepsilon$. We can choose M_1, M_2 to be continuity points of F, since it is continuous at all but countably many points.

Since $F_{\mu_n} \to F$ at all continuity points of F, $F_{\mu_n}(M_1) \to F(M_1) < \varepsilon$ and $F_{\mu_n}(M_2) \to F(M_2) > 1 - \varepsilon$. Thus there is some N such that for all $n \geq N$, $F_{\mu_n}(M_1) < \varepsilon$ and $F_{\mu_n}(M_2) > 1 - \varepsilon$, that is,

$$\mu_n[M_1, M_2] > 1 - 2\varepsilon$$
 for all $n \ge N$.

We need to show this for all n. Simply pick $M'_1 < M_1$ and $M'_2 > M_2$ such that $\mu_n[M'_1, M'_2] > 1 - 2\varepsilon$ for all n < N, which are only finitely many. Thus $\{\mu_n\}$ is tight.

(\iff) Now suppose $\{\mu_n\}$ is tight. Let $\varepsilon > 0$. Pick $M_1 < M_2$ such that $\mu_n[M_1, M_2] > 1 - \varepsilon$ for all n, ensuring again that F is continuous at M_1, M_2 . Then

$$F(M_1) = \lim F_{\mu_n}(M_1) \le \varepsilon$$
 and $F(M_2) = \lim F_{\mu_n}(M_2) \ge 1 - \varepsilon$.

Thus F is not defective.

We can now prove theorem II.29.

Proof of theorem II.29. (\Longrightarrow) Suppose \mathcal{A} is not tight. That is, there is some $\varepsilon > 0$ such that for all M > 0, there is some $\mu \in \mathcal{A}$ for which $\mu[-M,M]^c > \varepsilon$. Thus we have a sequence $(\mu_n)_{n\in\mathbb{N}} \subseteq \mathcal{A}$ such that $\mu_n[-n,n]^c > \varepsilon$ for all n.

Note that no subsequence of (μ_n) is tight. Thus the previous lemma gives that no subsequence of (μ_n) can converge to a proper CDF, and hence \mathcal{A} is not pre-compact.

(\iff) Suppose \mathcal{A} is tight. Let $(\mu_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$. By Helly's selection principle, there exists a subsequence $(\mu_{n_k})_{k\in\mathbb{N}}$ and a possibly defective CDF F such that $F_{\mu_{n_k}}\to F$ at all continuity points of F. But (μ_{n_k}) is tight, so by the previous lemma, F is a proper CDF.

Recap: We have covered the following so far.

- Probability spaces $(\Omega, \mathcal{F}, \mathbf{P})$ in section II.2.
- Where \mathcal{F} and \mathbf{P} come from.
- Construction of probability measures:
 - Lebesgue measure
 - Coin-tossing measure
 - Every measure on \mathbb{R} .
- Lévy metric and convergence in distribution in terms of CDFs.
- Tightness and Helly's selection.

Chapter III

The Lebesgue integral

Fix a probability space $(\Omega, \mathcal{F}, \mathbf{P})$. For this chapter, we will let RV denote the collection of all (real-valued) random variables, and RV₊ denote the collection of all non-negative random variables.

That is, all functions $X : \Omega \to \overline{\mathbb{R}}$ such that for each $B \in \mathcal{B}(\overline{R}), X^{-1}(B) \in \mathcal{F}$.

Notice that the codomain of X is $\overline{\mathbb{R}}$, the extended real numbers. This is because it is often convenient to allow random variables to take infinite values. In fact, whenever we say "real-valued", we will mean "extended real-valued".

We will need to define the Borel σ -algebra on $\overline{\mathbb{R}}$. For this we define the following metric.

Definition III.1 (Metric on $\overline{\mathbb{R}}$). For $x, y \in \overline{\mathbb{R}}$, we define the metric

$$d_{\overline{\mathbb{R}}}(x,y) = \left| \frac{x}{1+|x|} - \frac{y}{1+|y|} \right|.$$

Exercise III.2. Check that any function $X: (\Omega, \mathcal{F}) \to (\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$ is measurable iff

$$\{X \le t\} := \{\omega \in \Omega \mid X(\omega) \le t\} \in \mathcal{F} \text{ for all } t \in \mathbb{R}.$$

Solution. The forward direction is by definition. Assume $\{X \leq t\} \in \mathcal{F}$ for all $t \in \mathbb{R}$. Let $\mathcal{G} = \{A \in \mathcal{B}(\overline{\mathbb{R}}) \mid X^{-1}(A) \in \mathcal{F}\}$. By the assumption, \mathcal{G} contains all $(-\infty, t]$. \mathcal{G} contains \emptyset , and if $A \subseteq B$ are in \mathcal{G} , then $X^{-1}(B \setminus A) = X^{-1}(B) \setminus X^{-1}(A) \in \mathcal{F}$.

Theorem III.3 (existence and uniqueness of expectation). There is a unique function $E \colon RV_+ \to [0, \infty]$ called the expectation such that

- (E1) (pseudo-linearity) $E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$ for every $X, Y \in RV_+$ and $\alpha, \beta \ge 0$;
- (E2) (positivity) $E[X] \ge 0$ with equality iff X = 0 almost surely;
- (E3) (indicator) $E[\mathbf{1}_A] = \mathbf{P}(A)$ for all $A \in \mathcal{F}$;
- (E4) (monotone convergence) If $X_n \uparrow X$ almost surely (that is, $\mathbf{P}\{\omega \in \Omega \mid X_n(\omega) \uparrow X(\omega)\} = 1$), then $E[X_n] \uparrow E[X]$.

Exercise III.4. Let $X_n \in RV$. Show that the following are measurable sets.

- (1) $\{\omega \mid \lim X_n = 0\}$
- (2) $\{\omega \mid \lim X_n \ exists\}$

Definition III.5 (Expectation). For $X \in RV$, let $X_+ = X \vee 0$ and $X_- = (-X) \vee 0$. Then $X_+, X_- \in RV_+$ and $X = X_+ - X_-$, $|X| = X_+ + X_-$. If $E|X| < \infty$, we say X is *integrable* or that X has expectation and define $\mathbf{E}[X] := E[X_+] - E[X_-]$.

Proposition III.6.

- (1) (linearity) If $X, Y \in RV$ are integrable and $\alpha, \beta \in \mathbb{R}$, then $\alpha X + \beta Y$ is integrable and $\mathbf{E}[\alpha X + \beta Y] = \alpha \mathbf{E}[X] + \beta \mathbf{E}[Y]$.
- (2) (positivity) If $X \in RV_+$ then $\mathbf{E}[X] \ge 0$, with equality only if X = 0 almost surely.
- (3) (indicator) $\mathbf{E}[\mathbf{1}_A] = \mathbf{P}(A)$ for all $A \in \mathcal{F}$.

III.1 Lebesgue as super-Riemann

The expectation is a generalization of the Riemann integral.

Proposition III.7. Fix $(\Omega, \mathcal{F}, \mathbf{P}) = ([0, 1], \mathcal{B}([0, 1]), \lambda)$. Let $f : [0, 1] \to \mathbb{R}$ be continuous. Then $f \in \mathrm{RV}$ and $\mathbf{E}[f] = \int_0^1 f(x) \, \mathrm{d}x$.

Proof. f is measurable since the pre-image of each open set is open. f is bounded by the extreme value theorem.

Let $M = \sup |f(x)|$. Then $\mathbf{E}|f| \leq M \mathbf{E}[\mathbf{1}_{[0,1]}] = M$ is well-defined.

Let $(f_n)_n$ be a sequence of step functions bounded above by f that converges pointwise to f. Then $\mathbf{E}[f_n] = \int_0^1 f_n(x) dx$ by indicators and

linearity. By the monotone convergence theorem, $\mathbf{E}[f_n] \uparrow \mathbf{E}[f]$. Thus $\mathbf{E}[f] = \int_0^1 f(x) \, \mathrm{d}x$.

Proof of theorem III.3 (uniqueness). Let $X \in \mathbb{RV}_+$. Define

Lecture 7. Tuesday August 27

$$X_n(\omega) = \sum_{k=0}^{n2^n - 1} \frac{k}{2^n} \left[X(\omega) \in \left[\frac{k}{2^n}, \frac{k+1}{2^n} \right) \right].$$

Observe that $X_n(\omega) \leq X_{n+1}(\omega)$ for all n and ω . As the partition becomes finer, X_n converges to X pointwise. Thus, by the monotone convergence theorem, $\mathbf{E} X_n \uparrow \mathbf{E} X$. But we can find $\mathbf{E} X_n$ explicitly:

$$\mathbf{E} X_n = \sum_{k=0}^{n2^n - 1} \frac{k}{2^n} \mathbf{P} \left(X \in \left[\frac{k}{2^n}, \frac{k+1}{2^n} \right) \right)$$

The limit exists axiomatically, so

$$\mathbf{E} X = \lim_{n \to \infty} \sum_{k=0}^{n2^{n}-1} \frac{k}{2^{n}} \mathbf{P} \left(X \in \left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}} \right) \right)$$

is uniquely determined.

Once we have expectation, various interesting quantitites can be defined.

- Moments: if $p \in \mathbb{N}$ and X^p is integrable, then $\mathbf{E}[X^p]$ is called the p-th moment of X. More generally, if $|X|^p$ is integrable, we say that the p-th moment of X exists.
- Variance: if the second moment exists, we define

$$\operatorname{Var} X = \mathbf{E}[(X - \mathbf{E} X)^2].$$

By linearity,

$$Var X = \mathbf{E}[X^{2} - 2X(\mathbf{E} X) + (\mathbf{E} X)^{2}]$$

$$= \mathbf{E} X^{2} - (2\mathbf{E} X)\mathbf{E} X + (\mathbf{E} X)^{2}\mathbf{E}[\mathbf{1}]$$

$$= \mathbf{E} X^{2} - (\mathbf{E} X)^{2}.$$

This exists, since $|X| \le X^2 + 1$.

• Moment generating function: If $\mathbf{E}[e^{\theta x}]$ exists for all $\theta \in I = (-a, b)$, we define

$$\phi \colon I \to \mathbb{R}$$
$$\theta \mapsto \mathbf{E}[e^{\theta X}].$$

• Characteristic function: We define

$$\psi \colon \mathbb{R} \to \mathbb{C}$$

$$\theta \mapsto \mathbf{E}[e^{i\theta X}] = \mathbf{E}[\cos(\theta X)] + i \, \mathbf{E}[\sin(\theta X)].$$

Exercise III.8. If $\mathbf{E}[e^{\theta X}]$ exists for all $\theta \in (-\delta, \delta)$ for some $\delta > 0$, show that X has all moments.

Theorem III.9 (inequalities). Consider a probability space $(\Omega, \mathcal{F}, \mathbf{P})$. Let X, Y be random variables on Ω .

$$(\mathbf{E}[XY])^2 \le \mathbf{E}[X^2] \, \mathbf{E}[Y^2].$$

- (1) If E X² < ∞ and E Y² < ∞, then XY is integrable and (E[XY])² ≤ E[X²] E[Y²].
 (2) (E X)² ≤ E[X²].
 (3) Let 1 < p, q < ∞ with ½ + ½ = 1. Let X, Y ∈ RV+ and E X², E Y² exist. Then

$$\mathbf{E}[XY] \le \mathbf{E}[X^p]^{\frac{1}{p}} \, \mathbf{E}[Y^q]^{\frac{1}{q}}.$$

$$\mathbf{E}[XY] \le \mathbf{E}[X^p]^{\frac{1}{p}} \mathbf{E}[Y^q]^{\frac{1}{q}}.$$
(4) Let $1 \le p < \infty$ and $\mathbf{E}|X|^p, \mathbf{E}|Y|^p < \infty$. Then
$$\mathbf{E}[|X+Y|^p]^{\frac{1}{p}} \le \mathbf{E}[|X|^p]^{\frac{1}{p}} + \mathbf{E}[|Y|^p]^{\frac{1}{p}}.$$

Proof. Consider the set

$$\mathcal{V} = \{ X \in \mathrm{RV} \mid \mathbf{E} X^2 < \infty \}$$

be the space of square-integrable random variables. Then for any $X, Y \in \mathcal{V}$, we have

$$|XY| \le \frac{X^2 + Y^2}{2}$$

is integrable. Thus

$$\langle X, Y \rangle = \mathbf{E}[XY]$$

is a pseudo-inner product on \mathcal{V} . Cauchy-Schwarz follows.

More directly, let $X, Y \in \mathcal{V}$. Then

$$0 \le \mathbf{E}[(X - \lambda Y)^2]$$

= $\mathbf{E} X^2 - 2\lambda \mathbf{E}[XY] + \lambda^2 \mathbf{E} Y^2$

for all $\lambda \in \mathbb{R}$. Thus the discriminant is nonpositive, so

$$(\mathbf{E}[XY])^2 \le \mathbf{E} X^2 \mathbf{E} Y^2.$$

The equality holds iff there is some λ such that $X = \lambda Y$ a.s.

(2) follows from Cauchy-Schwarz with X = Y. Alternatively, follows from $Var(X) \geq 0$.

For Hölder's inequality, define

$$A = \frac{X}{\mathbf{E} X^p}$$
 and $B = \frac{Y}{\mathbf{E} Y^q}$.

From Hölder's inequality for real numbers, we have

$$\frac{XY}{(\mathbf{E}\,X^p)^{\frac{1}{p}}(\mathbf{E}\,Y^q)^{\frac{1}{q}}} \leq \frac{1}{p}\frac{X^p}{\mathbf{E}\,X^p} + \frac{1}{q}\frac{Y^q}{\mathbf{E}\,Y^q}.$$

The expectation is thus bounded by

$$\frac{1}{p} \frac{\mathbf{E} X^p}{\mathbf{E} X^p} + \frac{1}{q} \frac{\mathbf{E} Y^q}{\mathbf{E} Y^q} = 1.$$

This gives

$$\mathbf{E}[XY] \le \mathbf{E}[X^p] \, \mathbf{E}[Y^q].$$

Finally, we come to Minkowski's inequality. p=1 is obvious, so consider p>1, and let $q=\frac{p}{p-1}$.

$$\begin{aligned} \mathbf{E}|X+Y|^{p} &= \mathbf{E}|X+Y|^{p-1}|X+Y| \\ &\leq \mathbf{E}|X+Y|^{p-1}|X| + \mathbf{E}|X+Y|^{p-1}|Y| \\ &\leq (\mathbf{E}|X|^{p})^{\frac{1}{p}} \Big(\mathbf{E}|X+Y|^{(p-1)q}\Big)^{\frac{1}{q}} + (\mathbf{E}|Y|^{p})^{\frac{1}{p}} \Big(\mathbf{E}|X+Y|^{(p-1)q}\Big)^{\frac{1}{q}} \\ &= (\mathbf{E}|X|^{p})^{\frac{1}{p}} + (\mathbf{E}|Y|^{p})^{\frac{1}{p}} (\mathbf{E}|X+Y|^{p})^{\frac{1}{q}}. \end{aligned}$$

Theorem III.10 (Jensen's inequality). Let $\phi \colon \mathbb{R} \to \mathbb{R}$ be a convex function and let X be an integrable random variable. Then

$$\mathbf{E}[\phi(X)] \ge \phi(\mathbf{E}\,X)$$

Proof. We will use that for any $x_0 \in \mathbb{R}$, there is a line $y = \phi(x_0) + (x - x_0)m$ that lies below the raph of ϕ . Let $x_0 = \mathbf{E} X$ and take expectations.

$$\phi(x_0) = \mathbf{E}[\phi(x_0)] \le \mathbf{E}[\phi(X)].$$

III.2 Change of variables

Proof of theorem III.3 (existence). Fix a probability space (Ω, \mathcal{F}, P) .

We will only consider non-negative random variables. We define a *simple* function on Ω to be a random variable whose range is finite. For a simple function X taking values x_1, \ldots, x_n on sets $A_1, \ldots, A_n \in \mathcal{F}$, we define the expectation of X to be

$$\mathbf{E}[X] = \sum_{i=1}^{n} x_i P(A_i).$$

For a general random variable X, we define the expectation of X to be

$$\mathbf{E}[X] = \sup \{ \mathbf{E}[\phi] : 0 \le \phi \le X, \phi \text{ simple} \}.$$

Lecture 8. Thursday August 29

Tutorial 2. Tuesday August 27

We have to show

- $\mathbf{E}[X]$ is well-defined and agrees with the first definition when X is simple.
- $\mathbf{E}[\mathbf{1}_A] = P(A)$ for any $A \in \mathcal{F}$.
- $\mathbf{E}[X]$ is linear.
- $\mathbf{E}[X] \le \mathbf{E}[Y]$ if $X \le Y$.

$$\mathbf{E}\left[\phi \mathbf{1}_{\bigsqcup_{i=1}^{\infty} A_{i}}\right] = \sum_{i=1}^{\infty} \mathbf{E}[\phi \mathbf{1}_{A_{i}}] \tag{III.1}$$

Let $\varepsilon > 0$ be arbitrary and

$$E_n = \{ \omega \in \Omega : X_n(\omega) \ge (1 - \varepsilon)\phi(\omega) \}.$$

Note that $E_n \subseteq E_{n+1}$ and $\bigcup_{n=1}^{\infty} E_n = \Omega$. That is, $E_n \uparrow \Omega$. Now

$$\mathbf{E}[X_n] \ge \mathbf{E}[X_n \mathbf{1}_{E_n}]$$

$$\ge \mathbf{E}[(1 - \varepsilon)\phi \mathbf{1}_{E_n}]$$

$$= (1 - \varepsilon)\mathbf{E}[\phi \mathbf{1}_{E_n}]$$

Since $E_n \uparrow \Omega$, we have

$$\lim_{n\to\infty} \mathbf{E}[X_n] \ge (1-\varepsilon)\,\mathbf{E}[\phi]$$

by equation (III.1).

Proposition III.11 (simple function approximation). Let $X : (\Omega, \mathcal{F}, \mathbf{P}) \to \mathbb{R}$ be a random variable, and let $f : \mathbb{R} \to \mathbb{R}$. Then

$$\mathbf{E}[f(X)] = \int f(X) \, \mathrm{d}\mathbf{P} = \int f(x) \, \mathrm{d}\mu,$$

where μ is the push-forward measure

$$\mu \colon \mathbb{R} \to \mathbb{R}$$

$$A \mapsto \mathbf{P}(X^{-1}(A))$$

Definition III.12. Let (Ω, \mathcal{F}) and (Λ, \mathcal{G}) be measurable spaces and $X : \Omega \to \mathsf{Thursday}$ Λ be measurable. We define September 5

$$\sigma(X) = \{ X^{-1}(A) \mid A \in \mathcal{G} \}.$$

This is the smallest σ -algebra on Ω with respect to which X is measurable.

Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space.

Definition III.13 (Independence). $\mathcal{G}_1, \ldots, \mathcal{G}_n$ sub σ -algebras of \mathcal{F} are *independent* if

$$\mathbf{P}(A_1 \cap \dots \cap A_n) = \mathbf{P}(A_1) \dots \mathbf{P}(A_n)$$
 for all $A_k \in \mathcal{G}_k$ (III.2)

Random variables X_1, \ldots, X_n are independent if $\sigma(X_1), \ldots, \sigma(X_n)$ are.

Equivalently, X_i 's are independent if

$$P{X_1 \in A_1, ..., X_n \in A_n} = P{X_1 \in A_1} ... P{X_n \in A_n}$$

for all $A_1, \ldots, A_n \in \mathcal{B}(\mathbb{R})$.

Lemma III.14. Let $\mathcal{G}_k = \sigma(\mathcal{S}_k)$ where \mathcal{S}_k is a π -system containing Ω . If equation (III.2) folds for $A_k \in \mathcal{S}_k$, then \mathcal{G}_k are independent.

Example. If

Exercise III.15. If $(\mathcal{H}_i)_{i\in I}$ and $(\mathcal{G}_i)_{i\in I}$ are such that $\mathcal{H}_i \subseteq \mathcal{G}_i$ for all $i \in I$, then independence of $(\mathcal{G}_i)_{i\in I}$ implies independence of $(\mathcal{H}_i)_{i\in I}$.

Lemma III.16. Suppose $(\mathcal{G}_i)_{i\in I}$ are independent. Let $I = \bigsqcup_{r\in R} I_r$ be a partition of I. Define $\widetilde{\mathcal{G}}_r = \sigma(\bigcup_{i\in I_r} \mathcal{G}_i)$. Then $(\widetilde{\mathcal{G}}_r)_{r\in R}$ are independent.

Proof. For each $r \in R$, let \mathcal{S}_r be the collection of all finite intersections of elements in $\bigcup_{i \in I_r} \mathcal{G}_i$. Then \mathcal{S}_r is a π -system generating $\widetilde{\mathcal{G}}_r$. Furthermore, equation (III.2) holds since TODO

Example. If X_1, \ldots, X_{10} are independent and

$$Y_1 = f_1(X_1, X_2, X_3),$$

$$Y_2 = f_2(X_4, X_5),$$

$$Y_3 = f_3(X_6, X_7),$$

$$Y_4 = f_4(X_8, X_9, X_{10}),$$

where f_i 's are measurable. Then Y_1, Y_2, Y_3, Y_4 are independent, since $\sigma(Y_1) \subseteq \sigma(X_1 \cup X_2 \cup X_3)$, etc.

Proposition III.17. $\mathcal{G}_1, \ldots, \mathcal{G}_n$ are independent if and only if

$$\mathbf{E}[X_1 X_2 \dots X_n] = \mathbf{E}[X_1] \mathbf{E}[X_2] \dots \mathbf{E}[X_n]$$

for all random variables X_k measurable with respect to \mathcal{G}_k .

Proof. "if" is trivial, setting $X_k = \mathbf{1}_{A_k}$.

For "only if", we start with simple random variables. Since both sides are multilinear in X_k 's and equality holds for indicators, it holds for simple functions.

Now let X_k 's be positive random variables and choose simple random variables $X_{k,m} \uparrow X_k$. Then $X_{1,m} X_{2,m} \dots X_{n,m} \uparrow X_1 X_2 \dots X_n$ and by monotone convergence,

$$\mathbf{E}[X_{1,m}X_{2,m}\dots X_{n,m}] = \mathbf{E}[X_{1,m}]\mathbf{E}[X_{2,m}]\dots \mathbf{E}[X_{n,m}]$$

$$\stackrel{\lim}{\Longrightarrow} \mathbf{E}[X_1X_2\dots X_n] = \mathbf{E}[X_1]\mathbf{E}[X_2]\dots \mathbf{E}[X_n].$$

Corollary III.18. X_1, \ldots, X_n are independent if and only if

$$\mathbf{E}[f_1(X_1)f_2(X_2)\dots f_n(X_n)] = \mathbf{E}[f_1(X_1)]\mathbf{E}[f_2(X_2)]\dots \mathbf{E}[f_n(X_n)]$$

for all $f_k : \mathbb{R} \to \mathbb{R}$ bounded and Borel measurable.

Theorem III.19 (Daniell-Kolmogorov). Given μ_1, μ_2, \ldots in $P(\mathbb{R})$, there exists a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ and random variables random variables $X_1, X_2, \dots : \Omega \to \mathbb{R}$ such that

(1) $X_n \sim \mu_n$, and

(2) X_1, X_2, \dots are independent.

Proof.

Case 1: $\mu_n = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_1$. Then $([0,1], \mathcal{B}, \lambda)$ and $X_n(\omega) = n^{\text{th}}$ digit in the binary expansion of ω

works. TODO

Case 2: $\mu_n = [0, 1]$.

Claim. Suppose $(\Omega, \mathcal{F}, \mathbf{P})$ and $\varepsilon_1, \varepsilon_2, \ldots$ are independent $\mathrm{Ber}(\frac{1}{2})$ random variables. Then $Y_n = \sum_{k=1}^n \frac{\varepsilon_k}{2^k} \sim [0,1]$.

Choose ([0, 1], \mathcal{B} , λ) and X_k 's as before.

$$M = \begin{pmatrix} 1 & 3 & 5 & 7 & \dots \\ 2 & 6 & 10 & 14 & \dots \\ 4 & 12 & 20 & 28 & \dots \\ 8 & 24 & 40 & 56 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

By the claim,

$$Y_n = \sum_{i=1}^{\infty} \frac{m_{ni}}{2^i}$$

are [0, 1]. By lemma III.16, they are independent.

Lecture 10

Case 3: $\mu_n \in P(\mathbb{R})$. Let G_n be the generalized inverse of the CDF of μ_n .

$$Z_n = G_n(Y_n).$$

Then $Z_n \sim \mu_n$ and Z_1, Z_2, \ldots are independent.

Let $\mu_1, \mu_2, \mu_3 \in P(\mathbb{R}^2)$. Do there exist random variables X_1, X_2, X_3 on a common $(\Omega, \mathcal{F}, \mathbf{P})$ such that

$$(X,Y) \sim \mu_1,$$

 $(Y,Z) \sim \mu_2,$
 $(Z,X) \sim \mu_3.$

No, since $\mu_1(A \times \mathbb{R}) = \mu_3(\mathbb{R} \times A)$ for all $A \in \mathcal{B}(\mathbb{R})$ is necessary.

Fact III.20 (Kolmogorov's consistency theorem). For each n, let $\mu_n \in P(\mathbb{R}^n)$. Suppose that $\{\mu_n\}_{n\geq 1}$ are consistent in the sense that

$$\mu_n \circ (\pi_1, \dots, \pi_{n-1})^{-1} = \mu_{n-1}$$
 for all $n \ge 2$.

 $\mu_n \in F(\mathbb{R}^n)$. Suppose that $(p^n)^{n \ge 1}$ $\mu_n \circ (\pi_1, \dots, \pi_{n-1})^{-1} = \mu_{n-1} \quad \text{for all } n \ge 2.$ Then there exists a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ and random variables X_1, X_2, \dots such that $(X_1, \dots, X_n) \sim \mu_n$ for all n

$$(X_1,\ldots,X_n)\sim \mu_n$$

Example. Given an infinite symmetric and positive semi-definite matrix

$$\Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} & \dots \\ \sigma_{21} & \sigma_{22} & \sigma_{23} & \dots \\ \sigma_{31} & \sigma_{32} & \sigma_{33} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix},$$

does there exist an $(\Omega, \mathcal{F}, \mathbf{P})$ and random variables X_1, X_2, \ldots such that

$$(X_1,\ldots,X_n)\sim N_n(0,\Sigma_n)$$

for all n? (Where Σ_n is the top-left $n \times n$ submatrix of Σ .) Kolmogorov's consistency theorem says yes. Alternatively, we can construct them using iid standard normal random variables, which would not require this theorem.

Let Z_1, Z_2, \ldots be iid standard normal random variables. Write $\Sigma = LL^{\perp}$ where L is lower triangular. Define X_1, X_2, \ldots by

$$\begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ \vdots \end{pmatrix} = L \begin{pmatrix} Z_1 \\ Z_2 \\ Z_3 \\ \vdots \end{pmatrix}$$

Lecture 13

Lecture 13.

Tuesday September 24

III.3 First and second moment methods

The first moment method is simply Markov's inequality. If $X \geq 0$, then

$$\mathbf{P}{X \ge t} \le \frac{\mathbf{E}[X]}{t}$$
 for all $t > 0$.

In particular,

$$\mathbf{P}\{X \ge k \, \mathbf{E}[X]\} \le \frac{1}{k} \quad \text{for all } k > 0.$$

"X is within a few multiples of $\mathbf{E}[X]$ with high probability."

The other direction does not hold.

$$\mathbf{P}\{X \le \frac{1}{2}\mathbf{E}[X]\} \le \varepsilon$$

cannot be guaranteed for any ε . Consider

$$X_n \sim \left(1 - \frac{1}{n}\right)\delta_0 + \frac{1}{n}\delta_{n^2}.\tag{III.3}$$

Then

$$\mathbf{E}[X_n] = n, \text{ but}$$

 $\mathbf{P}\{X = 0\} = 1 - \frac{1}{n} \to 1.$

If the second moment exists, we can use Chebyshev's inequality to get a bound.

$$\mathbf{P}\left\{X \le \frac{1}{2}\mu\right\} \le \Pr\left\{|X - \mu| \ge \frac{1}{2}\mu\right\} \le \frac{\operatorname{Var}(X)}{\mu^2/4}.$$

In general,

$$\mathbf{P}\{X \le \delta \mu\} \le \mathbf{P}\{|X - \mu| \ge (1 - \delta)\mu\} \le \frac{\text{Var}(X)}{(1 - \delta)^2 \mu^2}.$$

This only gives non-trivial bounds if $\operatorname{Var}(X) < (1 - \delta)^2 \mu^2$. If $\operatorname{Var}(X) \ge \mu^2$, no δ gives a non-trivial bound!

The second moment method refers to the Paley-Zygmund inequality.

Proposition III.21 (Paley-Zygmund inequality). For a random variable X > 0,

$$\mathbf{P}\{X \geq \delta \, \mathbf{E}[X]\} \geq (1 - \delta)^2 \frac{\mathbf{E}[X]^2}{\mathbf{E}[X^2]} \quad \textit{for all } 0 \leq \delta \leq 1.$$

When does this give a non-trivial lower bound?

$$\frac{\mathbf{E}[X]^2}{\mathbf{E}[X^2]} = \frac{\mu^2}{\mu^2 + \sigma^2} = \frac{1}{1 + \sigma^2/\mu^2}.$$

This gives non-trivial bounds no matter how small σ^2/μ^2 is.

Proof. We first prove it for $\delta = 0$. Write $X = X \mathbf{1}_{X>0}$. Then from Cauchy-Schwarz,

$$\mathbf{E}[X]^2 \le \mathbf{E}[X^2] \, \mathbf{E}[\mathbf{1}_{X>0}^2]$$

= $\mathbf{E}[X^2] \, \mathbf{P}\{X > 0\}$.

Now for any δ , let $Y = (X - \delta \mu)_+ \ge 0$. Then

$$\mathbf{P}\{Y>0\} \ge \frac{\mathbf{E}[Y]^2}{\mathbf{E}[Y^2]}.\tag{III.4}$$

The LHS is $P\{X \ge \delta \mu\}$. We need to relate moments of X and Y.

$$\mu = \mathbf{E}[X] = \mathbf{E}[X\mathbf{1}_{X>\delta\mu}] + \mathbf{E}[X\mathbf{1}_{X\leq\delta\mu}]$$

$$\leq \mathbf{E}[Y] + \mathbf{E}[\delta\mu\mathbf{1}_{X>\delta\mu}] + \mathbf{E}[\delta\mu\mathbf{1}_{X\leq\delta\mu}]$$

$$= \mathbf{E}[Y] + \delta\mu.$$

Then

$$\mathbf{E}[Y] \ge (1 - \delta)\mu.$$

Since $|Y| \leq |X|$, we have

$$\mathbf{E}[Y^2] \le \mathbf{E}[X^2].$$

Thus equation (III.4) gives

$$\mathbf{P}\{X \ge \delta\mu\} \ge \frac{(1-\delta)^2\mu^2}{\mathbf{E}[X^2]}.$$

III.3.1 Coupon collector

A box contains N coupons labelled 1, 2, ..., N. Draw repeatedly uniformly at random with replacement until all coupons are collected. That is, let $X_n \sim ([N])$ be iid, and define

$$T_N = \min\{t \in \mathbb{N} \mid \{X_1, \dots, X_t\} = [N]\}.$$

We wish to study T.

To analyze this, define $U_t = U_t^{(N)}$ as

$$U_t = N - \#\{X_1, \dots, X_t\}.$$

We can further write it as

$$U_t = \sum_{k=1}^{N} U_{t,k}, \quad U_{t,k} = \prod_{i=1}^{t} \mathbf{1}_{X_i \neq k}.$$

We can write $T > t \iff U_t \ge 1$, so

$$T_N = \min\{t \in \mathbb{N} \mid U_t = 0\}.$$

We shall use the first and second moment methods on U_t .

$$\mathbf{E}[U_{t,k}] = \prod_{i=1}^{t} \mathbf{P}\{X_i \neq k\}$$

$$= \left(1 - \frac{1}{N}\right)^t$$

$$\implies \mathbf{E}[U_t] = N\left(1 - \frac{1}{N}\right)^t$$

$$\mathbf{E}[U_t^2] = \mathbf{E}\left[\sum_{k=1}^{N} U_{t,k} + \sum_{k \neq \ell} U_{t,k} U_{t,\ell}\right]$$

$$= N\left(1 - \frac{1}{N}\right)^t + N(N - 1)\left(1 - \frac{2}{N}\right)^t$$

Proposition III.22 (elementary inequalities). For all x,

$$1 - x < e^{-x}$$
.

For $|x| < \frac{1}{2}$,

$$e^{-x-x^2} < 1 - x < e^{-x}$$
.

Thus we have

$$\mathbf{E}[U_t] \le Ne^{-t/N} = e^{-t/N + \log N}.$$

If $t = N(\log N + h_N)$ where $h_N \to \infty$ as $N \to \infty$, we have

$$\mathbf{E}[U_t] \le e^{-h_N} \to 0.$$

Define this t to be t_N^+ . Then

$$\mathbf{P}\{T_N > t_N^+\} = \mathbf{P}\{U_{t_N^+} \ge 1\} \le \mathbf{E}[U_{t_N^+}] \to 0.$$

What if $t = N(\log N - h_N)$? Call this t_N^- .

$$\begin{split} \mathbf{P}\{T_N > t_N^-\} &= \mathbf{P}\{U_{t_N^-} \ge 1\} \\ &\geq \frac{\mathbf{E}[U_t]^2}{\mathbf{E}[U_t^2]} \\ &\geq \frac{N^2 e^{-\frac{2t}{N} - \frac{2t}{N^2}}}{Ne^{-\frac{t}{N}} + N(N-1)e^{-\frac{2t}{N}}} \\ &\geq \frac{e^{-\frac{2t}{N^2}}}{\frac{1}{N}e^{\frac{t}{N}} + \left(1 - \frac{1}{N}\right)}. \end{split}$$

We have concluded that for any $h_N \to \infty$,

$$|\mathbf{P}\{N(\log N - h_N) \le T_N \le N(\log N + h_N)\} \to 1.$$

III.4 Random graphs

Definition III.23 (Erdös-Rényi graph). The *Erdös-Rényi random graph* $\mathcal{G}_{n,p}$ is the random graph on n vertices where each edge is present with probability p independently.

That is, we have random variables $\{X_{i,j} \mid 1 \le i < j \le n\}$ iid Ber(p).

Theorem III.24. For a $\delta > 0$ and let $p_n^+ = (1+\delta)\frac{\log n}{n}$ and $p_n^- = (1-\delta)\frac{\log n}{n}$. Then

$$\begin{aligned} \mathbf{P}\{\mathcal{G}_{n,p_n^+} \ is \ connected\} &\to 1 \\ \mathbf{P}\{\mathcal{G}_{n,p_n^-} \ is \ connected\} &\to 0. \end{aligned}$$

Define

 C_n = number of connected components of size $\leq \frac{n}{2}$.

 \mathcal{I}_n = number of isolated vertices.

Of course $\mathcal{I}_n \leq \mathcal{C}_n$, and

$$\mathcal{G}_{n,p}$$
 is disconnected $\iff \mathcal{C}_n \geq 1 \iff \mathcal{I}_n \geq 1$.

Lecture 15. Tuesday

Definition III.25 (tail). Fix a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ and a collection October 1 $(\mathcal{G}_n)_n$ of sub σ -algebras of \mathcal{F} . The *tail* of $(\mathcal{G}_1, \mathcal{G}_2, \dots)$ is the σ -algebra

$$\tau = \bigcap_{N=1}^{\infty} \sigma(\mathcal{G}_N, \mathcal{G}_{N+1}, \dots).$$

More usefully, if $\mathcal{G}_n = \sigma(Y_n)$ for some random variables $(Y_n)_n$, then

$$\tau = \bigcap_{N=1}^{\infty} \sigma(Y_N, Y_{N+1}, \dots).$$

A random variable X is tail-measurable iff

$$X = f_N(Y_N, Y_{N+1}, \dots)$$
 for some f_N for all N .

Examples.

- $X = \limsup_{n \to \infty} Y_n$ is tail-measurable.
- $X = \lim_{n \to \infty} (Y_1 + Y_2 + \cdots + Y_n)$ is not tail-measurable.
- $X = \lim_{n \to \infty} \frac{1}{n} (Y_1 + Y_2 + \dots + Y_n)$ is tail-measurable.

Theorem III.26 (Kolmogorov's 0–1 law). Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space and $(\mathcal{G}_n)_n$ be independent sub σ -algebras of \mathcal{F} . Then the tail τ of $(\mathcal{G}_n)_n$ is trivial, i.e., $\mathbf{P}(A) \in \{0,1\}$ for all $A \in \tau$.

Corollary III.27. If $(Y_n)_n$ are independent random variables, then any tail random variable is almost surely constant.

Proof. If $\mathbf{P}(A) \in \{0, 1\}$ for all $A \in \tau$, then for any tail-measurable X, the event $\{X \leq t\}$ is in τ and hence has probability 0 or 1. Thus the CDF of X is either 0 or 1 for all t.

$$F_X(t) = \begin{cases} 0 & t < t_0 \\ 1 & t \ge t_0 \end{cases} \text{ for some } t_0 \in \overline{\mathbb{R}}.$$

Thus $X = t_0$ almost surely.

Proof of Kolmogorov's 0-1 law. Since

$$\mathcal{G}_1, \dots, \mathcal{G}_N, \mathcal{G}_{N+1}, \dots$$
 are independent,

so are

$$\mathcal{G}_1,\ldots,\mathcal{G}_N,\sigma(\mathcal{G}_{N+1},\mathcal{G}_{N+2},\ldots).$$

But $\tau \subseteq \sigma(\mathcal{G}_{N+1}, \mathcal{G}_{N+2}, \dots)$, so

$$\mathcal{G}_1, \ldots, \mathcal{G}_N, \tau$$
 are independent.

This holds for all N.

An infinite set of σ -algebras is independent iff any finite subset is independent. Thus

$$\tau, \mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3, \dots$$
 are independent.

Chunking them up again, we have that

$$\tau, \sigma(\mathcal{G}_1 \cup \mathcal{G}_2 \cup \dots)$$
 are independent.

Again τ is a subset of the second, so finally

 τ, τ are independent.

That is, $\mathbf{P}(A \cap B) = \mathbf{P}(A)\mathbf{P}(B)$ for all $A, B \in \tau$. Thus $\mathbf{P}(A) \in \{0, 1\}$ for all $A \in \tau$.

III.4.1 Percolation

Fix a $p \in [0, 1]$. For each edge e of \mathbb{Z}^d , let $X_e \sim \text{Ber}(p)$ independently. Let G be the random graph with vertex set \mathbb{Z}^d and edge set $\{e \mid X_e = 1\}$. Does G have an infinite cluster (connected component)?

This has probability 0 or 1. Enumerate the edges as e_1, e_2, \ldots and let the corresponding random variables be $Y_n = X_{e_n}$. Finitely many edges do not affect the existence of an infinite cluster, so the existence of an infinite cluster is a tail event with respect to $(Y_n)_n$. Since Y_n are independent, the existence of an infinite cluster is a 0–1 event.

Remark. This tries to model a fluid percolating through a porous medium. If the fluid is allowed to flow only through the edges of the graph, then the question is whether the fluid can flow from top to bottom.

Let P_p be the probability that there is an infinite cluster in G for a given $p \in [0,1]$. Observe that P_p is increasing in p (coupling). Thus there is a critical value $p_c \in [0,1]$ such that

$$P_p = \begin{cases} 0 & \text{if } p < p_c, \\ 1 & \text{if } p > p_c, \end{cases}$$

and $P_{p_c} \in \{0, 1\}.$

This shows a discontinuous behaviour, where none was present in the underlying model. Close links to phase transitions.

III.4.2 Random independent series

Let $(X_n)_n$ be a sequence of independent random variables. Consider the event that $\sum_{n=1}^{\infty} X_n$ converges. This is a tail event, so it has probability 0 or 1 (independence).

Examples.

- $X_n = c^n \xi_n$, where $c \in \mathbb{R}$ and $\xi_n \sim \operatorname{Ber}(\frac{1}{2})$ are independent.
 - If |c| < 1, then $\sum_{n=1}^{\infty} X_n$ converges.
 - If c=1, then $\sum_{n=1}^{\infty} X_n$ diverges almost surely.

Theorem III.28 (Khinchine). Let $(X_n)_n$ be independent random variables with finite variances and zero means. If $\sum_{n=1}^{\infty} \operatorname{Var}(X_n) < \infty$, then $\sum_{n=1}^{\infty} X_n$ converges almost surely.

Examples.

• Let $\xi_n \sim \operatorname{Ber}_{\pm}(\frac{1}{2})$ independently. Fix an $\alpha > 0$. Let $X_n = \frac{\xi_n}{n^{\alpha}}$. Then $\mathbf{E} X_n = 0$ and $\operatorname{Var} X_n = \frac{1}{n^{2\alpha}}$. Thus if $\alpha > \frac{1}{2}$, the series converges almost surely.

Note that the alternating series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{\alpha}}$ converges for all $\alpha > 0$.

Proof. $\sum X_n$ converges iff $(S_n)_n$ is Cauchy.

 $(t_n)_n$ is not Cauchy iff there exists an $\varepsilon > 0$ such that for any $N \in \mathbb{N}$, there exists a $k \in \mathbb{N}$ such that $|t_{N+k} - t_N| \ge \varepsilon$. Then

$$\{(S_n)_n \text{ is not Cauchy}\} = \bigcup_{m=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{k=1}^{\infty} \{|S_{N+k} - S_N| \ge \frac{1}{m}\}$$

To show that this has probability 0 is the same as showing that

$$\bigcap_{N=1}^{\infty} \bigcup_{k=1}^{\infty} \{ |S_{N+k} - S_N| \ge \frac{1}{m} \} \text{ has probability } 0$$

for each $m \ge 1$. It suffices to show that for each $m \ge 1$,

$$\mathbf{P}\left(\bigcup_{k=1}^{\infty} \{|S_{N+k} - S_N| \ge \frac{1}{m}\}\right) \to 0 \text{ as } N \to \infty.$$

We fix $\varepsilon = \frac{1}{m}$ and $N \ge 1$ and compute this probability. This is the same as

$$\mathbf{P}\bigg\{\sup_{k\geq 1}|S_{N+k}-S_N|\geq \varepsilon\bigg\}.$$

By Kolmogorov's maximal inequality,

$$\mathbf{P}\bigg\{\sup_{k\geq 1}|S_{N+k}-S_N|\geq \varepsilon\bigg\}\leq \frac{2}{\varepsilon^2}\sum_{j=N+1}^{\infty}\mathrm{Var}(X_j)\to 0.$$

This is by reducing to the finite case

$$\mathbf{P}\bigg\{\sup_{k\geq 1}|S_{N+k}-S_N|\geq \varepsilon\bigg\}\leq \lim_{M\uparrow\infty}\mathbf{P}\bigg\{\max_{1\leq k\leq M}|S_{N+k}-S_N|\geq \varepsilon\bigg\}.$$

This proves the result.

Theorem III.29 (Kolmogorov's maximal inequality). Let Y_1, Y_2, \ldots, Y_n be independent random variables with zero means and finite variances. Let $S_k = Y_1 + \cdots + Y_k$. Then

$$\mathbf{P}\left\{\max_{1 \le k \le n} |S_k| \ge t\right\} \le \frac{\sum_{k=1}^n \operatorname{Var}(Y_k)}{t^2} \text{ for } t > 0.$$

Chebyshev's inequality gives

$$\mathbf{P}\{S_n \ge t\} \le \frac{\mathbf{E}[S_n^2]}{t^2} = \frac{\sum_{k=1}^n \operatorname{Var} Y_k}{t^2}.$$

The maximum of S_k could be much larger than S_n .

Lecture 17. Tuesday

October 8

Definition III.30 (convergence). Let $(X_n)_n$ and X be random variables on $(\Omega, \mathcal{F}, \mathbf{P})$. We say that

- (1) (almost sure convergence) $X_n \xrightarrow{\text{a.s.}} X$
- (2) (convergence in probability) $X_n \xrightarrow{\mathsf{P}} X$
- (3) (convergence in distribution) $X_n \xrightarrow{d} X$
- (4) $(L_p \text{ convergence}) X_n \xrightarrow{L^p} X (p \ge 0)$

Proposition III.31. (1) Almost sure convergence implies convergence in probability.

- (2) Convergence in probability implies convergence in distribution.
- (3) L^p convergence implies convergence in probability.

Proposition III.32. (1) If X is an almost sure constant, then $X_n \stackrel{d}{\to} X$ implies $X_n \stackrel{P}{\to} X$.

(2) If $(X_n)_n$ are uniformly integrable, then $X_n \xrightarrow{P} X$ implies $X_n \xrightarrow{L^1} X$.

Proposition III.33. If convergence in probability is fast, i.e.,

$$\sum_{n} \mathbf{P}(|X_n - X| > \varepsilon) < \infty \text{ for all } \varepsilon > 0,$$

then $X_n \xrightarrow{\mathsf{P}} X$ implies $X_n \xrightarrow{a.s.} X$.

Definition III.34 (uniform integrability). A family $\{X_{\alpha} \mid \alpha \in I\}$ of integrable random variables is *uniformly integrable* if for any $\varepsilon > 0$ there exists an $M < \infty$ such that

$$\mathbf{E}[|X_{\alpha}|\mathbf{1}_{|X_{\alpha}|>M}]<\varepsilon \text{ for all } \alpha\in I.$$

Remarks.

- If $dQ_{\alpha} = |X_{\alpha}| d\mathbf{P}$ (that is, $Q_{\alpha}(A) = \int_{A} |X_{\alpha}| d\mathbf{P}$), then uniform integrability is equivalent to the condition that ???
- A single integrable random variable forms a uniformly integrable family.
- Uniform integrability implies the following: given $\varepsilon > 0$, there exists a $\delta > 0$ such that for any $A \in \mathcal{F}$ with $\mathbf{P}(A) < \delta$, we have $\mathbf{E}[|X_{\alpha}|\mathbf{1}_A] < \varepsilon$ for all $\alpha \in I$. Pf

- If I is finite, uniform integrability holds. (If $\mathbf{E}|X| < \infty$, then $\mathbf{E}[|X|\mathbf{1}_{|X|>M}] \to 0$ as $M \to \infty$.) More generally, if $\{X_{\alpha}\}_{{\alpha}\in I}$ is uniformly integrable and $\{Y_{\beta}\}_{{\beta}\in J}$ is a finite integrable family, then the union is uniformly integrable.
- The family of pairwise sums of two uniformly integrable families is uniformly integrable.

Proof. Let $\{X_{\alpha}\}_{\alpha}$ and $\{Y_{\beta}\}_{\beta}$ be uniformly integrable. Then for any α , β ,

$$|X_{\alpha} + Y_{\beta}| \mathbf{1}_{|X_{\alpha} + Y_{\beta}| > M} \le 2|X_{\alpha}| \mathbf{1}_{|X_{\alpha}| > M} + 2|Y_{\beta}| \mathbf{1}_{|Y_{\beta}| > M}.$$

- If $\{X_{\alpha}\}_{{\alpha}\in I}$ are dominated by an integrable random variable Y, that is, $|X_{\alpha}| \leq Y$ almost surely for all α , then $\{X_{\alpha}\}_{\alpha}$ is uniformly integrable. The converse is not true. For example, consider $X_n = n\mathbf{1}_{[\frac{1}{n},\frac{1}{n-1}]}$ on $([0,1],\mathcal{B},\lambda)$. Then $\{X_n\}_n$ is uniformly integrable, but not dominated by any integrable random variable.
- If $\{X_{\alpha}\}_{\alpha}$ is bounded in L^p for some p > 1, then it is uniformly integrable.

$$\sup_{\alpha} \mathbf{E}[|X_{\alpha}|^p] < \infty \implies \{X_{\alpha}\}_{\alpha} \text{ is uniformly integrable.}$$

Proof. By Markov's inequality,

$$\mathbf{E}[|X_{\alpha}|\mathbf{1}_{|X_{\alpha}|>M}] \le \frac{\mathbf{E}[|X_{\alpha}|^{p}\mathbf{1}_{|X_{\alpha}|>M}}{M^{p-1}} \le \frac{\mathbf{E}[|X_{\alpha}|^{p}]}{M^{p-1}} \to 0$$

as $M \to \infty$, since the numerator is uniformly bounded.

This is false for p = 1. Consider $X_n = n\mathbf{1}_{[0,\frac{1}{n}]}$ on $([0,1], \mathcal{B}, \lambda)$. $\{X_n\}_n$ is bounded in L^1 since each expectation is 1. But for any M, $\mathbf{E}[X_n\mathbf{1}_{|X_n|>M}] = 1$ for all n > M.

• If $X_n \xrightarrow{L^1} X$, then $\{X_n\}_n$ is uniformly integrable.

Proof. Suppose X = 0. Then $\mathbf{E}[|X_n|] \to 0$. Given $\varepsilon > 0$, find an N such that $\mathbf{E}[|X_n|] < \varepsilon$ for all n > N. For the first N terms, simply take the maximum M_n such that $\mathbf{E}[|X_n|\mathbf{1}_{|X_n|>M_n}] < \varepsilon$. Thus $\{X_n\}_n$ is uniformly integrable.

If X is non-zero, then $\{X_n - X\}_n \xrightarrow{L^1} 0$. Thus $\{X_n - X\}_n$ is uniformly integrable. But the singleton $\{X\}$ is uniformly integrable. Thus the pairwise sum $\{X_n\}_n$ is uniformly integrable.

Theorem III.35. Let X_n, X be integrable random variables on $(\Omega, \mathcal{F}, \mathbf{P})$. Then

$$X_n \xrightarrow{L^1} X \iff \begin{cases} X_n \xrightarrow{\mathsf{P}} X, \ and \\ \{X_n\}_n \ is \ uniformly \ integrable. \end{cases}$$

Proof. The forward implication has already been proved.

Let $X_n \xrightarrow{\mathsf{P}} X$ and $\{X_n\}_n$ be uniformly integrable. Define $Y_n \coloneqq X_n - X$. Then $Y_n \xrightarrow{\mathsf{P}} 0$ and $\{Y_n\}_n$ is uniformly integrable. We need to show that $\mathbf{E}|Y_n| \to 0$.

$$\mathbf{E}|Y_n| = \mathbf{E}[|Y_n|\mathbf{1}_{|Y_n|>M}] + \mathbf{E}[|Y_n|\mathbf{1}_{|Y_n|\leq M}].$$

Prove via almost sure subsequences and DCT

The first term can be made arbitrarily small by uniform integrability. For the second term,

$$\mathbf{E}[|Y_n|\mathbf{1}_{|Y_n|\leq M}] = \int_0^\infty \mathbf{P}\{|Y_n|\mathbf{1}_{|Y_n|\leq M} > t\} dt$$
$$= \int_0^M \mathbf{P}\{|Y_n| > t\} dt.$$

We know that for any t > 0, $\mathbf{P}\{|Y_n| > t\} \to 0$ Since probabilities are bounded by 1, we can apply the dominated convergence theorem (on Lebesgue integrals) to get

$$\mathbf{E}[|Y_n|\mathbf{1}_{|Y_n|< M}] \to 0.$$

As a corollary of everything,

Corollary III.36. Suppose $X_n \xrightarrow{a.s.} X$. Then $X_n \xrightarrow{L^1} X$ iff $\{X_n\}_n$ is uniformly integrable.

III.5 Laws of large numbers

Fix a space $(\Omega, \mathcal{F}, \mathbf{P})$ and a sequence of i.i.d. random variables X_1, X_2, \ldots on this space. Let $S_n = \sum_{i=1}^n X_i$. The weak law of large numbers states that

$$\frac{S_n}{n} \xrightarrow{\mathsf{P}} \mathbf{E}[X_1].$$

The strong law of large numbers states that

$$\frac{S_n}{n} \xrightarrow{\text{a.s.}} \mathbf{E}[X_1].$$

Obviously, the strong law implies the weak law.

If these were not true, we would have to rework probability.

— Prof. Manjunath Krishnapur

Proof attempt. Assume X_k 's have finite variance σ^2 . WLOG take $\mu = 0$ (else replace X_k with $X_k - \mu$). Then $\mathbf{E}[X_k] = 0$ and $\mathrm{Var}(X_k) = \sigma^2$. Then S_n has mean 0 and variance $n\sigma^2$.

$$\mathbf{E}[S_n^2] = \sum_i \mathbf{E}[X_i^2] + \sum_{i \neq j} \mathbf{E}[X_i X_j] = n\sigma^2.$$

This is the "square root law". Thus

$$\mathbf{E}[(S_n/n)^2] = \frac{\sigma^2}{n} \to 0.$$

Since L^2 convergence implies convergence in probability, we have

$$\frac{S_n}{n} \xrightarrow{\mathsf{P}} 0.$$

If $n_1 < n_2 < \dots$ is a subsequence such that $\sum_k \frac{1}{n_k} < \infty$, then

$$\mathbf{P}\{|S_{n_k}/n_k| > \delta\} \le \frac{\sigma^2}{\delta^2 n_k}$$

is summable, so $\frac{S_{n_k}}{n_k} \xrightarrow{\text{a.s.}} 0$.

Alternatively, if we assume a higher moment condition, say fourth moment, then

$$\mathbf{E}[S_n^4] = \sum_{i,j,k,l} \mathbf{E}[X_i X_j X_k X_l]$$

$$= \sum_i \mathbf{E}[X_i^4] + 3 \sum_{i \neq j} \mathbf{E}[X_i^2] \mathbf{E}[X_j^2]$$

$$= nB + 3n(n-1)\sigma^4$$

Thus

$$\mathbf{P}\{|S_n/n| \ge \delta\} \le \frac{\mathbf{E}[S_n^4]}{(n\delta)^4}$$

$$\le$$

Theorem III.37 (strong law of large numbers). Let X_1, X_2, \ldots be i.i.d with $\mathbf{E}[X_i] = 0. \ Then \xrightarrow{S_n} \xrightarrow{a.s.} 0$

Lecture 28. Thursday October 10

Proof. First reduce this to the case when all $X_i \geq 0$.

If $\lambda > 1$ and $n_k = |\lambda^k|$, then

$$\frac{S_{n_k}}{n_k} \xrightarrow{\text{a.s.}} \mathbf{E}[X_1].$$

If $X_i \ge 0$ and $n_k \le n < n_{k+1}$, then

$$S_{n_k} \le S_n \le S_{n_{k+1}}$$
, so $\frac{S_{n_k}}{n_{k+1}} \le \frac{S_n}{n} \le \frac{S_{n_{k+1}}}{n_k}$.

Lecture 21

Thus for all $\lambda > 1$,

$$\frac{\mu}{\lambda} \le \liminf \frac{S_n}{n} \le \limsup \frac{S_n}{n} \le \lambda \mu \text{ a.s.}$$

Take intersection over $\lambda = 1 + \frac{1}{i}$ to get

$$\lim \frac{S_n}{n} = \mu \text{ a.s.}$$

III.5.1 Two extensions in different directions

- (1) Let X_1, X_2, \ldots be i.i.d. with $\mathbf{E}[X_i] = 0$. For which α does $\frac{S_n}{n^{\alpha}} \xrightarrow{\text{a.s.}} 0$? For which f does $\frac{S_n}{f(n)} \xrightarrow{\text{a.s.}} 0$? What more assumptions are needed?
- (2) In the same setting with any more assumptions necessary, what is the rate of convergence of $\frac{S_n}{n}$? How does $\mathbf{P}\left\{\left|\frac{S_n}{n}\right| > \delta\right\}$ go to 0? Chebyshev gives a $\frac{1}{n}$ convergence assuming second moment. Can we do better?

Recall the Möbius function

$$\mu(n) = \begin{cases} 1 & n = p_1 p_2 \dots p_{2k} \text{ distinct primes,} \\ -1 & n = p_1 p_2 \dots p_{2k+1} \text{ distinct primes,} \\ 0 & n \text{ is not square-free.} \end{cases}$$

Claim (Riemann hypothesis). $\sum_{i=1}^{n} \mu(i) = O(n^{1/2+\varepsilon})$ for all $\varepsilon > 0$.

We will prove this in the next lecture. Let X_1, X_2, \ldots be i.i.d. $\mathrm{Ber}_{\pm}(\frac{1}{2})$. Since X_i is bounded, all moments exist.

Let $S_n = X_1 + \cdots + X_n$. We have seen

$$\mathbf{E}[S_n^2] = n$$

$$\implies \mathbf{P}\Big\{ \left| \frac{S_n}{n} \right| \ge \delta \Big\} \le \frac{1}{n\delta^2}.$$

$$\mathbf{E}[S_n^4] = 3n(n-1)$$

$$\implies \mathbf{P}\Big\{ \left| \frac{S_n}{n} \right| \ge \delta \Big\} \le \frac{3n(n-1) + n}{n^4\delta^4}.$$

More generally,

$$\mathbf{P}\left\{\left|\frac{S_n}{n^{\alpha}}\right| \ge \delta\right\} \le \frac{3n(n-1)+n}{n^{4\alpha}\delta^4} \le \frac{C}{\delta^4 n^{4\alpha-2}}.$$

This is summable for $\alpha > \frac{3}{4}$. What if we use higher moments?

$$\mathbf{E}[S_n^6] = 5!!n(n-1)(n-2) + O(n^2)$$

$$\Longrightarrow \mathbf{P}\left\{\left|\frac{S_n}{n}\right| \ge \delta\right\} \le \frac{5!!n(n-1)(n-2) + O(n^2)}{n^6\delta^6}$$

$$\le \frac{C}{\delta^6 n^{6\alpha - 3}},$$

which is summable for $\alpha > \frac{2}{3}$.

$$\mathbf{E}[S_n^8] = 7!!n(n-1)(n-2)(n-3) + O(n^3)$$

$$\implies \mathbf{P}\left\{ \left| \frac{S_n}{n} \right| \ge \delta \right\} \le \frac{7!!n(n-1)(n-2)(n-3) + O(n^3)}{n^8 \delta^8}$$

$$\le \frac{C}{\delta^8 n^{8\alpha - 4}},$$

which is summable for $\alpha > \frac{5}{8}$. More generally,

$$\mathbf{E}[S_n^{2p}] = (2p-1)!!n^p + O(n^{p-1})$$

$$\implies \mathbf{P}\left\{\left|\frac{S_n}{n}\right| \ge \delta\right\} \le \frac{C_p}{\delta^{2p}n^{2p\alpha-p}},$$

Which is summable for $\alpha > \frac{1+p}{2p}$.

Thus for any $\alpha > \frac{1}{2}$, $\frac{S_n}{n^{\alpha}} \xrightarrow{\text{a.s.}} 0$.

Exercise III.38. $\alpha = \frac{1}{2}$ does not work.

We can do better using Hoeffding's inequality. Recall that if $|X_i| \leq d_i$ are independent with zero mean, then

$$\mathbf{P}\{S_n \ge t\} \le \exp\left(-\frac{t^2}{2\sum d_i^2}\right).$$

Thus

$$\mathbf{P}\Big\{\Big|\frac{S_n}{n^\alpha}\Big| \geq \delta\Big\} \leq 2\exp\bigg(-\frac{n^{2\alpha}\delta^2}{2n}\bigg) = 2\exp\bigg(-\frac{\delta^2}{2}n^{2\alpha-1}\bigg).$$

This is summable for $\alpha > \frac{1}{2}$. All the moment crunching in one shot. Do better!

$$\mathbf{P}\left\{ \left| \frac{S_n}{\sqrt{nh(n)}} \right| \ge \delta \right\} \le 2 \exp\left(-\frac{\delta^2}{2}h(n)\right)$$

This is summable for $h(n) \ge (\log n)^{1+\varepsilon}$. Thus

$$\frac{S_n}{\sqrt{n(\log n)^{1+\varepsilon}}} \xrightarrow{\text{a.s.}} 0.$$

In fact, this proof works for all bounded X_i .

Fact III.39 (Khinchin's law of the iterated logarithm). Let X_1, X_2, \ldots be i.i.d. with mean 0 and variance 1. Then

$$\limsup_{n \to \infty} \frac{S_n}{\sqrt{n \log \log n}} = \sqrt{2} \ a.s.$$

Remark. Khinchin only proved this for Bernoullis. The general case is due to Hartman and Wintner.

Suppose A_1, A_2, \ldots are independent events. Then

$$\mathbf{P}\{A_n \text{ i.o}\} = \begin{cases} 0 & \text{if } \sum \mathbf{P}(A_n) < \infty, \\ 1 & \text{if } \sum \mathbf{P}(A_n) = \infty. \end{cases}$$

Let B_1, B_2, \ldots be such that

$$B_1 = A_1,$$
 $B_2 = B_3 = A_2,$
 $B_4 = B_5 = B_6 = A_3,$
 \vdots

Then $\{B_n \text{ i.o.}\}=\{A_n \text{ i.o.}\}$. Borel-Cantelli gives that if $\sum n \mathbf{P}(A_n) < \infty$, then B_n occur infinitely often with probability 0. This is a weaker conclusion that Borel-Cantelli on the A_n 's.

Khinchin proved his thoerem by reverse engineering this. S_n 's barely change with neighbouring n's. Khinchin managed to create blocks of n's where S_n 's are almost constant and independent of each other.

We want bounds for $\mathbf{P}\left\{\left|\frac{S_n}{n} - \mu\right| \ge \delta\right\}$.

Example. Let X_i be iid $\mathrm{Ber}(\frac{1}{2})$. Fix a $k \in n+1$. Then $\mathbf{P}\{S_n = k\} = \binom{n}{k} \frac{1}{2^n}$ By the Strirling approximation,

$$m! \sim \sqrt{2\pi m} \left(\frac{m}{e}\right)^m$$
.

That is, $\frac{m!}{\sqrt{2\pi}m^{m+\frac{1}{2}}e^{-m}} \to 1$. Assume $1 \ll k \ll n \ (n \to \infty \text{ and } n-k \to \infty)$.

Then

$$\mathbf{P}\{S_n = k\} \sim \frac{1}{\sqrt{2\pi} 2^n} \frac{n^{n + \frac{1}{2}} e^{-n}}{k^{k + \frac{1}{2}} e^{-k} (n - k)^{n - k + \frac{1}{2}} e^{-(n - k)}}$$

$$\sim \frac{\sqrt{n}}{\sqrt{2\pi} \sqrt{k} \sqrt{n - k}} \frac{n^n}{k^k (n - k)^{n - k} 2^n}$$

$$= \frac{\sqrt{n}}{\sqrt{2\pi k (n - k)}} e^{-n \left[\log 2 + \frac{n}{k} \log \frac{n}{k} + \left(1 - \frac{k}{n}\right) \log\left(1 - \frac{k}{n}\right)\right]}$$

Let $H(p) = -p \log p - (1-p) \log (1-p)$. Then $\mathbf{P}\{S_n = k\} = C_{n,k} e^{-nH(\frac{k}{n})}$, where $C_{n,k}$ is polynomially bounded in n and k.

If
$$\frac{1}{2} , then$$

$$\mathbf{P}\left\{\frac{S_n}{n} \ge p\right\} = \sum_{k=np} \mathbf{P}\left\{S_n = k\right\}.$$

This is lower-bounded by the first term, and upper-bounded by n times the first term. Taking logarithms,