Theoretical Foundations of the Analysis of Large Data Sets Laboratory 2

Needle in Haystack

- 1. Let $L(X) = \frac{1}{p} \sum_{i=1}^{p} \exp(X_i \mu \mu^2/2)$ be the statistic of the Neyman-Pearson test for the "needle in haystack" problem, and $\tilde{L}(X) = \frac{1}{p} \sum_{i=1}^{p} \left(\exp(X_i \mu \mu^2/2) \mathbb{1}_{\{X_i < \sqrt{2 \log p}\}} \right)$ be its truncated version. For each of the settings $\mu = (1 + \epsilon) \sqrt{2 \log p}$ with $\epsilon \in \{-0.3, -0.2, -0.1\}$ and $p \in \{5000, 50000, 500000\}$
 - a) Estimate $P_{H_0}(L(X) \neq \tilde{L}(X))$.
 - b) Calculate the sample mean and the sample variance of L(X) and $\tilde{L}(X)$ (use at least 500 replicates).
 - c) Based on at least 500 replicates calculate the maximum of L(X) and $\tilde{L}(X)$.
 - d) Report 0.95 quantile of L(X) and $\tilde{L}(X)$.

How do these quantities change with p? - comment referring to the theory learned in class. How does L(X) compare to $\tilde{L}(X)$?

- 2. For p = 5000 and p = 50000 estimate the critical values of the optimal Neyman-Pearson test for the "needle in haystack" problem against alternatives:
 - a) $\mu^{(p)} = 1.2\sqrt{2 \log p}$
 - b) $\mu^{(p)} = 0.8\sqrt{2\log p}$

Use the significance level $\alpha = 0.05$. Comment on the results referring to the theory given in class

- 3. For p=5000 and p=50000 and $\alpha=0.05$ compare the power of the above Neyman-Pearson test with the power of the Bonferroni test when
 - a) $\mu_1 = 1.2\sqrt{2\log p}$, $\mu_2 = \dots = \mu_p = 0$
 - b) $\mu_1 = 0.8\sqrt{2\log p}$, $\mu_2 = \dots = \mu_p = 0$.

Comment on the results referring to the theory given in class.

Next two problems are for additional points.

- 4. For p = 5000 and p = 50000 implement the optimal Neyman-Pearson test against the alternative such that
 - a) $||\mu||^2 = (2 * p)^{2/5}$
 - b) $||\mu||^2 = (2 * p)^{3/5}$

and estimate its critical values. Use the significance level $\alpha = 0.05$. Comment on the results referring to the theory given in class.

- 5. For p=5000 and p=50000 and $\alpha=0.05$ compare the power of the above Neyman-Pearson test with the power of the chi-square test when μ is uniformly distributed on the sphere such that
 - a) $||\mu||^2 = (2 * p)^{2/5}$
 - b) $||\mu||^2 = (2 * p)^{3/5}$

Use the significance level $\alpha = 0.05$.

Comment on the results referring to the theory given in class.