

Материалы
Всероссийской конференции
с международным участием
"Исследования молодых ученых:
идеи и перспективы"

19 декабря 2014 года



Выходные данные электронного сборника:

Исследования молодых ученых: идеи и перспективы / Сборник материалов Всероссийской конференции с международным участием. [Электронный ресурс] /отв. ред.В.Н. Кризский—Стерлитамак: СФ БашГУ, 2014.

#### ОПТИМИЗАЦИЯ СИНТЕЗА АМИНОКИСЛОТНЫХ КОМПЛЕКСОВ VO(II)

Известно, что аминокислотные комплексы ванадила  $(VO^{+2})$  зарекомендовали себя как биологически активные соединения, поскольку принимают активное участие в формировании костей и зубов, метаболизме жиров, в репродукции клеток, оказывают противоопухолевое действие. Значительный интерес вызывают подобные комплексы  $VO^{+2}$  из-за проявления инсулиноподобного действия [1].

Поиск и оптимизация методик получения подобных, комплексов  $VO^{+2}$  с аминокислотами, в зависимости от pH среды, температуры, соотношения исходных реагентов и условий проведения реакции, является актуальной задачей современной фармацевтической химии.

С целью оптимизации синтеза комплексов, образующихся на основе методик [2-3], были синтезированы комплексы  $VO^{+2}$  с глицином (gly), DL-валином (DL-val), L-аланином (L-ala). Выявлено, что комплексы **1-3** образуются в кислой среде (pH=5). Изменение pH до 7-8 приводит к выпадению осадка тёмно-серого цвета, предположительно ( $VO_2 \cdot H_2O$ )n. В результате получены комплексы  $VO(gly)_2$  (1), VO(DL-val) $_2$  (2), VO(L-ala) $_2$  (3) с выходами соответственно 44%, 53% и 60%. Соединения **1-3** идентифицированы с помощью ИК-спектроскопии. Установлено, что в результате комплексообразования образуются *цис*- и *транс*-изомеры **1-3** в различном соотношении, которые имеют отличия в ИК-спектрах валентных колебаниий  $V_{as}(NH_2-)$  и  $V_{s}(NH_2-)$  3100-3400 см<sup>-1</sup> и  $V_{as}(COO^-)$  1580-1650 см<sup>-1</sup> и  $V_{s}(COO^-)$  1330-1450 см<sup>-1</sup>

#### Литература

- 1. Лапочкин О.В. Получение и изучение комплексных соединений ванадила с аминокислотами: глицин, *α*-аланин, *β*-аланин, Автореф. дис. ... канд. фарм. наук. Пятигорск, 2008, М., 23 с.
  - 2. Aiyelabola T.O. at al. //Adv. Biol. Chem., 2012, 2, 268-273.
  - 3. Малинин В.В., Пушкарев А.Н., Хромов А.Н. Патент РФ 2430733.

### Колыванова Т.В., Каткова С.С., Иванов А.Н., Хамзин И.Р., Левашова В.И., Исламутдинова А.А.

## АНТИКОРРОЗИОННАЯ СПОСОБНОСТЬ ВЕЩЕСТВА НА ОСНОВЕ ЭТИЛЕНДИАМИНА И ГАЛОГЕНПРОИЗ-ВОДНОГО АРОМАТИЧЕСКОГО УГЛЕВОДОРОДА

В последние годы особый интерес вызывает проблема износа нефтепромыслового оборудования и магистральных трубопроводов нефтеперерабатывающей промышленности.

С помощью ингибиторов можно эффективно бороться с коррозионно-механическим разрушением металлов, повысить работоспособность металлических изделий, сохранить физико-химические и механические характеристики металлов на исходном уровне.

Для расширения спектра используемых ингибиторов коррозии нами предлагается соединение на основе этилендиамина и галогенпроизводного ароматического углеводорода.

Вещество синтезировано в четырехгорлой колбе, снабженной мешалкой, термометром и обратным холодильником, в водной среде при температуре  $90^{\circ}$ С и мольном соотношении компонентов реакции 1:2. Продолжительность проведения синтеза составила 3 часа.

Анализ ингибирующих свойств проведен на индикаторе скорости коррозии «Моникор-2М». Ниже представлены результаты исследований в графическом виде (Рис.1).



Рис. 1 – Скорость коррозии после обработки на аппарате Моникор-2М

1 ячейка — без ингибитора; 2 — концентрация ингибитора 1 г/л ; 3 — концентрация ингибитора 2 г/л

Степень защиты в растворе соляной кислоты концентрации 20% для соединения на основе этилендиамина и галогенпроизводного ароматического углеводорода составила 99,4%, защитный эффект составил 168,8.

Таким образом, предложенное нами новое соединение обладает высокой ингибирующей способностью и позволит расширить существующий на рынке ассортимент ингибиторов.

# Литература

- 1. Иванов, Е.С. Ингибиторы коррозии металлов в кислых средах. М.: Металлургия, 1986. 175 с.
- 2.  $H.\Pi$ . Жук Коррозия и защита металлов. Расчеты. М.: Машгиз, 2007. 332 с.
- 3. *Мудрик Т. П., Левашова В. И.* Синтез и исследование бактерицидных свойств четвертичных аммонийных солей на основе гексаметилентетрамина и гидрохлоридов изопрена/ Башкирский химический журнал. 2008. Т. 15. № 2 С. 176 178.
- 4. Иванов А.Н., Гаеткулова Г.К., Тимербаев Г.Г., Исламутдинова А.А., Калимуллин Л.И. Ингибирующая способность циклических азотсодержащих соединений / Актуальные проблемы развития нефтегазового комплекса России: тезисы докладов X всероссийской научно-технической конференции. М.: РГУ нефти и газа имени И. М. Губкина, 2014. С. 142.

| Научный руководитель: к.т.н. Пупшева Л.Н                     |       |
|--------------------------------------------------------------|-------|
| ПЕРСПЕКТИВЫ РЕАКЦИИ СИНТЕЗА ФИШЕРА-ТРОПША                    | ••••• |
| Колчина Г.Ю. (к.х.н., старший преподаватель)                 |       |
| КВАНТОВОХИМИЧЕСКИЕ ИССЛЕДОВАНИЯ                              |       |
| АНТИОКИСЛИТЕЛЬНЫХ ПРИСАДОК                                   |       |
| ДЛЯ РЕАКТИВНЫХ ТОПЛИВ МЕТОДАМИ КВАНТОВОЙ ХИМИИ В             |       |
| ПРИБЛИЖЕНИИ ВЗLYP/6-311+G( $d,p$ ) и MP2/6-31G( $d,p$ )      | ••••• |
| Колыванова Т.В., Каткова С.С., Иванов А.Н., Хамзин И.Р 40    |       |
| Научный руководитель: Левашова В.И., Исламутдинова А.А 40    |       |
| СИНТЕЗ ИНГИБИТОРА КОРРОЗИИ НА ОСНОВЕ                         |       |
| АМИНОЭТИЛЭТАНОЛАМИНА                                         | ••••• |
| Красильникова Т.А                                            |       |
| Научный руководитель: к. б. н., доцент Михайлова В.А 41      |       |
| ХАРАКТЕРИСТИКА ПОПУЛЯЦИИ ЛИШАЙНИКА <i>РНҮЅСІА</i>            |       |
| STELLARIS В ОКРЕСТНОСТЯХ Д. АНТОНОВКА И                      |       |
| ДМИТРИЕВКА ГАФУРИЙСКОГО РАЙОНА РЕСПУБЛИКИ                    |       |
| БАШКОРТОСТАН41                                               |       |
| Кулябина Л.Ю., Мудрик В.А41                                  |       |
| УТИЛИЗАЦИЯ ДИСТИЛЛЕРНОЙ ЖИДКОСТИ СОДОВОГО                    |       |
| ПРОИЗВОДСТВА С ПОЛУЧЕНИЕМ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ            |       |
| Кинзибаев Д.Р., Абдуллина М.И., Глазырин А.Б., Гайсин Л.В 42 |       |
| РАДИКАЛЬНАЯ ПРИВИВКА МАЛЕИНОВОГО АНГИДРИДА К                 |       |
| СИНДИОТАКТИЧЕСКОМУ 1,2-ПОЛИБУТАДИЕНУ                         | ••••• |
| Кинзибаев Д.Р., Абдуллина М.И., Глазырин А.Б., Гараев И.И 43 |       |
| ИСПОЛЬЗОВАНИЕ МАЛЕИНИЗИРОВАННОГО 1,2-                        |       |
| ПОЛИБУТАДИЕНА ДЛЯ МОДИФИКАЦИИ БИТУМНЫХ                       |       |
| композиций                                                   | ••••• |
| Ларева О.Э 50                                                |       |
| Научный руководитель: М.М. Залимова, Т.Р. Залимов 50         |       |
| ЭТИЛЕНГЛИКОЛЬ                                                |       |
| Максютова Э.И                                                |       |
| Научный руководитель: М.М. Залимова 56                       |       |
| ПРОИЗВОДСТВО СИНТЕТИЧЕСКОГО ИЗОПРЕНОВОГО КАУЧУКА             |       |
| СКИ-3                                                        | ••••• |
| Максютова Э.И                                                |       |
| Научный руководитель: В.И. Левашова 57                       |       |
| СИНТЕЗ ПОЛИОКСИФЕНИЛЕНОВ НА ОСНОВЕ                           |       |
| ДВУХАТОМНЫХ ФЕНОЛОВ                                          | ••••• |
| Никифоров Е.В57                                              |       |