Minimum intrusion GRID

Economics and Load balancing

The Simple MiG Model

Simple Scheduling

- Simple model
 - Job queue
 - Local scheduling only
 - First fit, Random, FIFO
 - Throughput, Best fit

Job

Job

Schedule when resources request job

Job

- CPU, Memory, Disk, REs
 - Price functions (experimental)
- No actual economy
- Fairness?

The Full MiG Model

Full Model

- MiG Servers
 - Job queue
- Fault tolerance / Load balancing
 - Replication
 - Migration
- Economics
 - Pricing
 - Banking

Fault tolerance / Load balancing

- Fault tolerance
 - Replicate jobs and write to disk
 - Block until replicated
- Load balancing
 - Envy based balancing
 - Combined with pricing?
 - Migrate jobs that don't fit?
- Reuse protocols?

Economics

- Price properties:
 - Stable
 - price propagation, small local differences
 - Comparable
 - MiG units
 - Resource price, limited by owners(>minprice)
 - Job price limited by user (<maxprice)
 - "Fair" (user/resource/free market forces?)

– Open economy:

Stable, Fair Prices

- Market forces: supply and demand
 - Average load
 - Price propagation
- Actual price = minprice * load_multiply
 - minprice if no or low demand
 - grows with demand
 - as much as maxprice if plenty of jobs
- Price functions

time of day

delay

Summary

- Market forces
 - Local prices
 - Based on load
 - Price propagation
 - Migration
 - Implicit price negotiation

Server communication

- How and what to communicate
 - Job replication
 - Job migration
 - load/price balancing
 - Fail-over detection
- pyro: Python RMI
 - NS, SSL, scalability?
- (py)cURL: HTTPS w. certificates
 - already in use, overhead (keep-alive)?

MiG

Communication

cURL

- Replication
 - push: submit blocks (unresolved) e

queue -

MiG

server

- Price and load details
 - publish "conf" at local www.
 - pull+parse remote "conf" server
- Migration
 - based on price and queue length www
 - push or pull "pickled" jobs (unfesetved)
 - ... or steal replicated jobs if possible

Dynamic Pricing

- MiG unit (unresolved)
- Unit minprice in resource conf
- Job maxprice in mRSL
- Dynamic price
 - load multiplier

 - accept rate and talast load:
- Price stability
 - cheap resources accept more jobs

if load < target load and load <

decrease(mult)

increase(mult)

load >

elif load > target load and

last load:

price directed migration

Price Example

- Two resources
 - first fit
 - after warm-up
 - plenty of jobs
 - one max price: $5(\frac{\text{cur_price} = 498.8}{\text{last_load} = 0.7})$
 - load markers
 - stable max price
 - 498 to 503 (1%)

```
Server status:

lo_load = 0.45

target_load = 0.75

queued = 22

fqdn = localhost

hi_load = 0.85
```

Resource reasonable.imada.sdu.dk:
load = 0.7
min_price = 80
load_multiply = 6.235
cur_price = 498.8
last_load = 0.7

Resource affordable.imada.sdu.dk: load = 0.7 min_price = 100 load_multiply = 4.985 cur_price = 498.5 last_load = 0.7