Section 2B. Regression Function Statistics for Data Science

Victor M. Preciado, PhD MIT EECS Dept of Electrical & Systems Engineering University of Pennsylvania preciado@seas.upenn.edu

Regression Function: Theory

▶ If we had access to $f_{Y|X}$ explicitly (which is typically impossible), one could compute the regression function f as follows

$$f(\mathbf{x}) = \mathbb{E}[Y|X = \mathbf{x}] = \int_{y=-\infty}^{y=+\infty} y \, f_{Y|X}(y|\mathbf{x}) \, dy$$

Notice that the result of the integral is a function of x alone.

One can prove that the regression function is the solution to the following optimization

$$f(\cdot) = \arg\min_{g(\cdot)} \mathbb{E}\left[\left(Y - g(X)\right)^{2}\right]$$

where the minimization is over all functions g and the expectation is called the **mean** squared error (MSE).

Regression Function: Practice

Practical setup: In practice, we do not know explicitly the conditional PDF $f_{Y|X}$; however, we can sample data points from the additive model. Hence, the statistical learning problem can be posed as follows:

- ▶ **Given** a dataset $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$ where (\mathbf{x}_i, y_i) are random samples drawn independently from the additive model (notice that $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})^\mathsf{T} \in \mathbb{R}^p$ is a p-dimensional vector)
- **Find** an estimate of the regression function f. We will denote our estimate by \hat{f}

Regression Function: Practice (cont.)

 \triangleright We might be tempted to approximate $f(\mathbf{x})$ using the *empirical* conditional mean, i.e.,

$$f(\mathbf{x}) = \mathbb{E}[Y|X = \mathbf{x}] \approx \frac{1}{|\mathcal{D}_{\mathbf{x}}|} \sum_{i \in \mathcal{D}_{\mathbf{x}}} y_i, \text{ where } \mathcal{D}_{\mathbf{x}} = \{i \in \{1, \dots, N\} : \mathbf{x}_i = \mathbf{x}\}$$

In other words, we should look for points in \mathcal{D} for which the input \mathbf{x}_i is exactly \mathbf{x}

▶ However, it is very unlikely we will find any samples in \mathcal{D} for which $\mathbf{x}_i = \mathbf{x}$ exactly. See an example in the figure below for $\mathbf{x} = 2$

Regression Function: Practice (cont.)

▶ **Numerical solution**: Consider a window of width *r* and use the approximation

$$f(\mathbf{x}) = \mathbb{E}\left[Y|X = \mathbf{x}\right] \approx \frac{1}{|\mathcal{D}_r(\mathbf{x})|} \sum_{i \in \mathcal{D}_r(\mathbf{x})} y_i, \text{ where } \mathcal{D}_r(\mathbf{x}) = \{i \in \{1, \dots, N\} \colon \|\mathbf{x}_i - \mathbf{x}\| \le r\}$$

 $\|\mathbf{x}_i - \mathbf{x}\|$ is the distance between points \mathbf{x}_i and \mathbf{x} . In other words, we should look for points for which the input \mathbf{x}_i is r-close a given vector \mathbf{x}

Copyright 2020 University of Pennsylvania No reproduction or distribution without permission.