NSR Search Results Page 1 of 6

Visit the <u>Isotope Explorer</u> home page!

38 reference(s) found:

Keynumber: 1999ZHZM

Reference: INDC(CPR)-049/L, p.76 (1999)

Authors: C.Zhou

Title: Prompt γ -Ray Data Evaluation of Thermal-Neutron Capture for A = 1 ϑ 25

Keyword abstract: NUCLEAR REACTIONS ¹, ²H, ⁶, ⁷Li, ⁹Be, ¹², ¹³C, ¹⁴N, ¹⁶, ¹⁷O, ¹⁹F, ²⁰, ²¹,

²²Ne, ²³Na, ²⁴, ²⁵Mg(n, γ),E=thermal; compiled, evaluated prompt γ -ray data.

Keynumber: 1998SHZT

Reference: Proc.Intern.Symposium on Nuclear Astrophysics, Nuclei in the Cosmos V, Volos, Greece,

July 6-11, 1998, N.Prantzos, S.Harissopulos, Eds., Editions Frontieres, Paris, p.25 (1998)

Authors: T.Shima, T.Kobayashi, K.Takaoka, M.Kinoshita, Y.Nobuhara, T.Kikuchi, T.Kii, F.Okazaki,

Y.Nagai, M.Igashira

Title: Neutron Capture Cross Sections of Deuteron and ⁷Li at Stellar Energies

Keyword abstract: NUCLEAR REACTIONS 2 H(n, γ),E=30.5,54.2,531 keV; measured E γ ,I γ ,capture σ .

⁷Li(n, γ),E=42.4 keV; measured E γ ,I γ , γ -ray branching ratio. Comparison with previous results.

Keynumber: 1998NA15

Reference: Nucl.Instrum.Methods Phys.Res. A402, 408 (1998)

Authors: Y.Nagai, T.Kobayashi, T.Kikuchi, F.Okazaki, K.Takaoka, S.Naito, A.Tomyo, T.Shima,

M.Igashira, S.Ishikawa

Title: Nuclear and Nuclear Astrophysical Interest in $D(n,\gamma)^3H$ Reaction

Keyword abstract: NUCLEAR REACTIONS ${}^{2}H(n,\gamma)$, E=10-80 keV; measured σ . Astrophysical

implications.

Keynumber: 1997NAZZ

Reference: Proc.9th Intern.Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, Budapest, Hungary, October 1996, G.L.Molnar, T.Belgya, Zs.Revay, Eds., Vol.2, p.501 (1997)

Authors: Y.Nagai, T.Shima, T.Kikuchi, T.Kii, T.Kobayashi, F.Okazaki, T.Baba, K.Takaoka, S.Naito,

A.Tomyo, M.Igashira, T.Ohsaki, S.Ishikawa

Title: Nuclear Astrophysics Studied by Neutron Capture Reaction of Light Nuclei

Keyword abstract: NUCLEAR REACTIONS ²H, ⁷Li, ¹⁸O(n,γ),E=10-80 keV; measured Eγ,Iγ;

deduced capture σ . Astrophysical implications discussed.

Keynumber: 1994KR20

Reference: Fiz.Elem.Chastits At.Yadra 25, 1444 (1994); Sov.J.Part.Nucl 25, 612 (1994)

Authors: P.A.Krupchitsky

Title: Parity Violation in Nuclear Reactions with Polarized Neutrons

Keyword abstract: NUCLEAR REACTIONS ², ¹H, ³⁵Cl, ⁵⁷Fe, ⁷⁹, ⁸¹Br, ¹¹¹, ¹¹³Cd, ¹¹⁷Sn, ¹³⁹La,

²⁰⁷Pb(polarized n, γ),E=thermal,resonance; compiled,reviewed parity violation data,analyses; deduced dominant mechanism.

dominant mechanism.

Keynumber: 1993FA06

Reference: J.Phys.(London) G19, 569 (1993)

Authors: G.Faldt, L.-G.Larsson

NSR Search Results Page 2 of 6

Title: Pole Model for $n + d \rightarrow {}^{3}H + \gamma$ at Threshold

Keyword abstract: NUCLEAR REACTIONS ${}^{2}H(n,\gamma)$, $E \approx$ threshold; calculated capture σ , photon

polarization parameter. Pole model.

Keynumber: 1990FR19

Reference: Phys.Lett. 251B, 11 (1990) **Authors:** J.L.Friar, B.F.Gibson, G.L.Payne **Title:** Thermal n-d Radiative Capture

Keyword abstract: NUCLEAR REACTIONS ${}^{2}H(n,\gamma)$, E=thermal; calculated capture σ vs triton

binding energy. Configuration space Faddeev equations.

Keynumber: 1989ABZZ

Reference: Bull.Am.Phys.Soc. 34, No.4, 1139, A7 6 (1989)

Authors: K.Abrahams

Title: Neutron Capture and Exchange Currents

Keyword abstract: NUCLEAR REACTIONS ¹, ²H, ³He(n,γ),E=thermal; calculated radiative capture

 σ ; deduced single photon ³He(n, γ) σ .

Keynumber: 1988KO07

Reference: Phys.Lett. 205B, 215 (1988)

Authors: M.W.Konijnenberg, K.Abrahams, J.Kopecky, F.Stecher-Rasmussen, R.Wervelman, J.H.Koch **Title:** Evidence for Meson-Exchange Currents in the Radiative Thermal Neutron Capture by Deuterium

Nuclei

Keyword abstract: NUCLEAR REACTIONS 2 H(polarized n, γ),E=thermal; measured γ CP; deduced

meson exchange current role.

Keynumber: 1988AL29

Reference: Can.J.Phys. 66, 542 (1988)

Authors: J.Alberi, R.Hart, E.Jeenicke, R.Ost, R.Wilson, I.G.Schroder, M.Avenier, G.Bagieu,

H.Benkoula, J.F.Cavaignac, A.Idrissi, D.H.Koang, B.Vignon

Title: Studies of Parity Violation using Polarized Slow Neutron Beams

Keyword abstract: NUCLEAR REACTIONS ², ¹H(polarized n, γ), E=slow; compiled asymmetry data;

deduced parity violation information.

Keynumber: 1988AB04

Reference: J.Phys.(London) G14, Supplement S373 (1988)

Authors: K.Abrahams, M.W.Konijnenberg, J.Kopecky, F.Stecher-Rasmussen, R.Wervelman **Title:** Meson Exchange Currents in Few-Nucleon Systems and Radiative Capture of Neutrons

Keyword abstract: NUCLEAR REACTIONS 2 H(polarized n, γ), E not given; measured γ CP vs E γ .

Keynumber: 1986MIZU

Reference: Diss.Abst.Int. 46B, 2708 (1986)

Authors: G.Mitev

Title: Radiative Neutron Capture by Deuterium

Keyword abstract: NUCLEAR REACTIONS 2 H(n, γ), (polarized n, γ),E=9,10.8,14 MeV; measured σ

 (θ) , analyzing power vs θ , σ ; deduced s-wave scattering length. ³H deduced E1,E2 relative transition strengths.

strengths.

Keynumber: <u>1986MI17</u>

NSR Search Results Page 3 of 6

Reference: Phys.Rev. C34, 389 (1986)

Authors: G.Mitev, P.Colby, N.R.Roberson, H.R.Weller, D.R.Tilley

Title: Radiative Neutron Capture by Deuterium

Keyword abstract: NUCLEAR REACTIONS 2 H(n, γ), (polarized n, γ),E=9-14 MeV; measured $\sigma(\theta)$,A

(0); deduced capture σ ,E1,E2,amplitudes,phases, σ (3 H(γ ,n))/ σ (3 He(γ ,n)). Direct capture models.

Keynumber: 1986DE24

Reference: Nucl.Phys. A458, 689 (1986) **Authors:** B.Desplanques, J.J.Benayoun

Title: Parity Non-Conserving Effects in Thermal Neutron-Deuteron Radiative Capture

Keyword abstract: NUCLEAR REACTIONS 2 H(n, γ),E=thermal; calculated γ CP, γ asymmetry with respect to n,d; deduced parity nonconserving effects. Super soft core,Reid soft core potentials.

Keynumber: 1986AV04

Reference: Nucl. Phys. A459, 335 (1986)

Authors: M.Avenier, J.F.Cavaignac, D.H.Koang, B.Vignon, R.Hart, R.Wilson

Title: Measurement of the Photon Asymmetry in Capture of Polarized Neutrons by Deuterons **Keyword abstract:** NUCLEAR REACTIONS 2 H(polarized n, γ), E=thermal; measured E γ , I γ , γ

 (θ) , asymmetry.

Keynumber: 1986AK06

Reference: Dok.Akad.Nauk SSSR 288, 100 (1986); Sov.Phys.Dokl. 31, 408 (1986)

Authors: A.I.Akhiezer, M.P.Rekalo

Title: Polarization Correlations in the Radiative Capture of Nucleons by Deuterons,n+d \rightarrow ³H+ γ and

 $p+d \rightarrow {}^{3}He+\gamma$

Keyword abstract: NUCLEAR REACTIONS 2 H(polarized p, γ), (polarized n, γ),E=slow; calculated reaction amplitude,tensor polarization, $\sigma(\theta)$. Hadronic electromagnetic interaction,polarized target.

Keynumber: 1984HU12

Reference: Can.J.Phys. 62, 1114 (1984)

Authors: D.A.Hutcheon

Title: Experiments at TRIUMF on Radiative Processes

Keyword abstract: NUCLEAR REACTIONS ²H(polarized n, γ), E=270,180 MeV; analyzed analyzing

power vs θ , γ d-coin data.

Keynumber: 1983TO12

Reference: Phys.Rev. C28, 529 (1983)

Authors: J.Torre, B.Goulard

Title: Mesonic Exchange Currents and Radiative Thermal Neutron Capture by the Deuteron

Keyword abstract: NUCLEAR STRUCTURE ³H; calculated μ. Three-body forces,meson exchange

currents.

Keyword abstract: NUCLEAR REACTIONS 2 H(n, γ),E=thermal; calculated σ (capture); deduced three-body force role. Meson exchange currents.

Keynumber: 1982MIZS

Reference: Bull.Am.Phys.Soc. 27, No.7, 701, AE10 (1982)

Authors: G.Mitev, H.R.Weller, N.R.Roberson, D.R.Tilley, D.M.Skopik

Title: Radiative Capture of Neutrons by ²H

NSR Search Results Page 4 of 6

Keyword abstract: NUCLEAR REACTIONS 2 H(polarized n, γ),E=9-14 MeV; measured σ

(θ),analyzing power.

Keynumber: 1982JU01

Reference: Phys.Rev. C25, 2810 (1982) **Authors:** E.T.Jurney, P.J.Bendt, J.C.Browne

Title: Thermal Neutron Capture Cross Section of Deuterium

Keyword abstract: NUCLEAR REACTIONS 2 H, 12 C(n, γ),E=thermal; measured E γ ,I γ , σ . 13 C

transitions deduced Iy.

Keynumber: 1981SH25

Reference: Fiz.Elem.Chastits At.Yadra 12, 962 (1981); Sov.J.Part.Nucl. 12, 386 (1981)

Authors: E.I.Sharapov

Title: Radiative Capture of Neutrons by the Lightest Nuclei

Keyword abstract: NUCLEAR REACTIONS 1 , 2 H, 3 He(n, γ),E=thermal; analyzed σ (capture) data;

deduced meson exchange, two-photon capture, wave function symmetry rule selection effects.

Keynumber: 1980TOZQ

Coden: REPT ISN 80-01,P106,Torre

Keyword abstract: NUCLEAR REACTIONS ${}^{2}H(n,\gamma)$, E=thermal; calculated σ . Impulse

approximation, meson exchange contribution.

Keynumber: 1980BEYU

Coden: REPT ISN 80-01,P104,Benayoun

Keyword abstract: NUCLEAR REACTIONS 2 H(n, γ),E=thermal; calculated scattering length.

Realistic interactions.

Keynumber: 1980ALZZ

Coden: REPT JINR-P3-12667,2/11/80,Alfimenkov

Keyword abstract: NUCLEAR REACTIONS ${}^{2}H(n,\gamma)$, E=th; measured σ . Three-body model, Faddeev

calculations.

Keynumber: 1980ALZH

Coden: CONF Kiev(Neutron Physics) Proc, Part2, P194, Alfimenkov

Keyword abstract: NUCLEAR REACTIONS ${}^{2}H(n,\gamma)$, E=thermal; measured σ . Ge(Li)

spectrometer,tof. Other data input.

Keynumber: 1980AL31

Reference: Yad.Fiz. 32, 1491 (1980)

Authors: V.P.Alfimenkov, S.B.Borzakov, E.V.Vasilyeva, Wo Wang Thuang, B.P.Osipenko,

L.B.Pikelner, V.G.Tishin, E.I.Sharapov

Title: Direct Measurements of the Effective Cross Section of Thermal Neutron Radiative Capture by

Deuterons

Keyword abstract: NUCLEAR REACTIONS ${}^{2}H(n,\gamma)$, E=thermal; measured σ . Ge(Li) spectrometer.

Kevnumber: 1979WU05

Reference: Phys.Rev. C19, 1153 (1979) **Authors:** N.Wust, H.Seyfarth, L.Aldea

Title: Two-Quantum Radiative Thermal Neutron Capture in ¹H

NSR Search Results Page 5 of 6

Keyword abstract: NUCLEAR REACTIONS 2 H, 16 O(n, γ),E=thermal; measured σ for double-photon

emission.σγ.

Keynumber: 1979ALZL

Coden: JOUR BAPSA 24 873, DB4, Alfimenkov

Keyword abstract: NUCLEAR REACTIONS ${}^{2}H(n,\gamma)$, E=thermal; measured σ . Tof method.

Keynumber: 1978BAYO

Coden: REPT INDC(CCP)-111/U,p₁,Bazazyants

Keyword abstract: NUCLEAR REACTIONS ²H(n,n), (n,γ), (n,2n),E=0.0001 eV to 15 MeV; evaluated

available data on σ.

Keynumber: 1977MC05

Reference: Nucl.Phys. A281, 325 (1977)

Authors: A.B.McDonald, E.D.Earle, M.A.Lone, F.C.Khanna, H.C.Lee

Title: Doubly Radiative Thermal Neutron Capture in ²H and ¹⁶O: Experiment and Theory

Keyword abstract: NUCLEAR REACTIONS 2 H, 16 O(n,γ),E=th; measured σ (Εγ); deduced upper limit

for $\sigma(2\gamma)$. ¹⁷O levels deduced γ -branching. Enriched target.

Keynumber: 1976LE27

Reference: Phys.Lett. 65B, 201 (1976)

Authors: H.C.Lee, F.C.Khanna, M.A.Lone, A.B.McDonald

Title: Doubly Radiative Neutron Capture by ²H, ³He, ¹⁶O and ²⁰⁸Pb

Keyword abstract: NUCLEAR REACTIONS ²H. ³He. ¹⁶O. ²⁰⁸Pb(n,γ).E=th: calculated σ(2γ).σ(2γ)/σ

 (γ) .

Keynumber: 1975SM02

Reference: Phys.Rev. C11, 1392 (1975) Authors: L.G.Smith, A.H.Wapstra

Title: Masses of Isotopes of H, He, C, N, O, and F

Keyword abstract: ATOMIC MASSES ³H, ³He, ¹³, ¹⁴C, ¹⁴, ¹⁵N, ¹⁶O, ¹⁹F; measured atomic mass. **Keyword abstract:** NUCLEAR REACTIONS ²H, ³He, ¹², ¹³C, ¹⁴N(n,γ); calculated quadrupole

moment.

Kevnumber: 1974MC06

Reference: Phys.Rev. C9, 1790 (1974)

Authors: B.H.J.McKellar

Title: Analysis of the Parity-Nonconserving Amplitudes of the Reactions $n + p \rightarrow d + \gamma$ and $n + d \rightarrow t + \gamma$

Keyword abstract: NUCLEAR REACTIONS ${}^{1}H(n,\gamma)$, ${}^{2}H(n,\gamma)$, thermal neutrons; formalism for

calculating parity-nonconserving effects.

Keynumber: 1973IS08

Reference: Nucl.Instrum.Methods 109, 493 (1973)

Authors: H.Ishikawa

Title: Measurements of Neutron Reaction Cross Sections Using a Liquid Scintillation Spectrometer

Keyword abstract: NUCLEAR REACTIONS 2 H, 31 P, 34 S, 44 Ca, 62 Ni(n, γ); measured σ (E).

NSR Search Results Page 6 of 6

Keynumber: 1973HA30

Reference: Phys.Rev.Lett. 31, 183 (1973)

Authors: E.Hadjimichael

Title: Meson-Exchange Corrections to the Cross Section for $n + H^2 \rightarrow H^3 + \gamma$

Keyword abstract: NUCLEAR REACTIONS 2 H(n, γ); 3 He calculated σ for n-d capture.

Keynumber: 1971GR36

Reference: Yad.Fiz. 14, 109 (1971); Sov.J.Nucl.Phys. 14, 62 (1972)

Authors: D.P.Grechukhin

Title: Two-Quantum Radiative Capture of a Slow Neutron by a Proton

Keyword abstract: NUCLEAR REACTIONS 2 H(n, $\gamma\gamma$), 3 He(n, $\gamma\gamma$), E not given; calculated 2-quantum σ

 $(E\gamma,\theta(\gamma)).$

Keynumber: 1969PR06

Reference: Phys.Rev. 180, 945 (1969) **Authors:** W.V.Prestwich, G.E.Thomas

Title: Precision Determination of the D-T Neutron Separation Energy

Keyword abstract: NUCLEAR REACTIONS ${}^{2}H(n,\gamma)$, E= thermal; measured Ey; deduced Q.

Keynumber: 1969MO22

Reference: Yadern.Fiz. 9, 163 (1969); Soviet J.Nucl.Phys. 9, 99 (1969)

Authors: A.N.Moskalev

Title: Effects of Parity Nonconservation in the Capture of Thermal Neutrons by Deuterons

Keyword abstract: NUCLEAR REACTIONS 2 H(n, γ), E = thermal; calculated γ circular polarization, σ

 $(\theta(\gamma))$.