LANDOLT-BÖRNSTEIN

Numerical Data and Functional Relationships in Science and Technology

New Series
Editor in Chief: K.-H. Hellwege

Group III: Crystal and Solid State Physics

Volume 4
Magnetic and Other Properties
of Oxides and Related Compounds

Part a

J.B. Goodenough · W. Gräper · F. Holtzberg · D. L. Huber R. A. Lefever · J. M. Longo · T. R. McGuire · S. Methfessel

Editors: K.-H. Hellwege and A. M. Hellwege

Springer-Verlag Berlin · Heidelberg · New York 1970

BEST AVAILABLE COPY

LANDOLT-BÖRNSTEIN

ıS

Zahlenwerte und Funktionen aus Naturwissenschaften und Technik

Neue Serie

Gesamtherausgabe: K.-H. Hellwege

Gruppe III: Kristall- und Festkörperphysik

Band 4

Magnetische und andere Eigenschaften von Oxiden und verwandten Verbindungen

Teil a

J.B. Goodenough · W. Gräper · F. Holtzberg · D. L. Huber R. A. Lefever · J. M. Longo · T. R. Mc Guire · S. Methfessel

Herausgeber: K.-H. Hellwege und A. M. Hellwege

compour

3 Crystallographic and magnetic properties of perovskite and perovskite-related compounds*)

3.0 Introduction — Einleitung

3.0.1 General remarks - Allgemeines

The perovskites form a family of compounds having a crystal structure similar to that of the mineral perovskite, $CaTiO_3$. There are two classes of materials crystallizing with this general structure type: primarily ionic materials having the ideal chemical formula ABX_3 , (A = larger cation, B = smaller cation, X = anion), and alloys having the ideal formula $M^cXM_3^f$, (X = interstitial atom, M^c and M^f are metal atoms). Of these two classes, the former is much larger and the more important.

The stability of the ABX₃ perovskite structure is primarily derived from the electrostatic (Madelung) energy achieved if cations occupy cornershared octahedra. Thus the first prerequisite for a stable ABX3 perovskite is the existence of stable, polar octahedral-site building blocks. This, in turn, requires that the B cation have a preference for octahedral coordination and that there be an effective charge on the B cation. Since any A cation must occupy the relatively large anionic interstice created by corner-shared octahedra, a second prerequisite is an appropriate size for the A cation. Where it is too large, the B-X bond length cannot be optimized, and hexagonal stacking with faceshared octahedra becomes competitive. Where the A cation is too small, A-X bonding stabilizes structures having a smaller anionic coordination about the A cation. Thus ABX, perovskites are commonly found in fluorides and oxides having B cations with a preference energy for octahedral coordination. By contrast, the chlorides and sulfides, having larger anions, not only require the largest A cations, but also form layer structures, where the A cations are missing, because they have anionic d orbitals energetically available for orbital hybridization.

There are many perovskite-related structures, and these have been included in these tables. For example, the structure can tolerate mixed systems such as $A_{1-x}A_x'BX_3$ and $AB_{1-x}B_x'X_3$, A-cationic vacancies \Box as in $\Box_{1-x}A_xBX_3$, and cationic ordering as in $A_2BB'X_6$. Although anion-deficient perovskites have been reported many times, the anion vacancies \oplus are probably not distributed randomly. In compounds containing Fe^{3+} ions, for example, they appear to condense in pairs at individual B-site octahedra to convert the local anion interstice from an octahedron to a tetrahedron. In

Die Perowskite sind eine Gruppe von Verbindungen mit der gleichen Kristallstruktur wie das Mineral Perowskit, CaTiO₃. Man unterscheidet zwei Klassen von Substanzen, die in diesem allgemeinen Strukturtyp kristallisieren: in erster Linie Ionenverbindungen mit der idealen chemischen Formel ABX₃ (A = größeres Kation, B = kleineres Kation, X = Anion) und Legierungen mit der idealen Formel $M^c X M_3^c$ (X = Zwischengitteratom, M^c und M^c = Metallatome). Von diesen beiden Klassen ist die erstere wesentlich umfangreicher und wichtiger.

Die Stabilität der ABX₃-Perowskitstruktur beruht in erster Linie auf der elektrostatischen (Madelung-) Energie, die dann zustande kommt, wenn Kationen Oktaeder mit gemeinsamen Ecken besetzen. So ist die Existenz von stabilen, polaren Oktaeder-Bausteinen die erste Vorbedingung für ein stabiles ABX3-Perowskit. Dies wiederum erfordert, daß das B-Kation die Oktaeder-Koordination bevorzugt und daß beim B-Kation eine effektive Ladung existiert. Da ein jedes A-Kation die relativ große Anionen-Lücke besetzen muß, die zwischen Oktaedern mit gemeinsamen Ecken entsteht, ist die passende Größe des A-Kations die zweite Vorbedingung. Wenn das A-Kation zu groß ist, läßt sich der optimale B-X-Bindungsabstand nicht erreichen, und eine hexagonale Packung von Oktaedern mit gemeinsamen Flächen kann ebenso auftreten. Wenn das A-Kation zu klein ist, ergibt die A-X-Bindung Strukturen mit einer kleineren Anionen-Koordination um das A-Kation. Daher sind ABX3-Perowskite gewöhnlich unter den Fluoriden und Oxiden zu finden, in denen die B-Kationen Oktaeder-Koordination energetisch bevorzugen. Dagegen erfordern Chloride und Sulfide, die größere Anionen haben, nicht nur die größten A-Kationen, sondern sie bilden, weil sie anionische d-Elektronenbahnen mit der richtigen Energie für eine Bahn-Hybridisierung haben, auch Schichtstrukturen, bei denen die A-Kationen ganz fehlen.

Es gibt viele dem Perowskit verwandte Strukturen, die in diese Tabellen aufgenommen wurden. Zum Beispiel können gemischte Systeme wie $A_{1-x}A_x^{\dagger}BX_3$ und $AB_{1-x}B_x^{\dagger}X_3$ mit dieser Struktur auftreten, weiter A-Kationenlücken \square wie in $\square_{1-x}A_x^{\dagger}BX_3$ und geordnete Kationen wie in $A_2BB^{\dagger}X_6$. Über Perowskite mit Anionenlücken ist schon häufig berichtet worden, vermutlich sind die Anionenleerstellen \oplus nicht willkürlich verteilt. In Verbindungen, die Fe³+-Ionen enthalten, scheinen sie z. B. paarweise im Oktaeder eines einzelnen B-Platzes zusammenzutreffen und die

Goodenough/Longo

it is more anions f deficient cations, contain across w edges () ciencies alloys. B-occu1 perovsk cation v an inter (Fig. 23 stackin nal stac cies (F $(AX)_m$ rocksal stacked also oc an A ca structi with it classifi and E rather for ex-18). S of the

> Tł ing pl BaTi(ferror condu ducti latortor a patib trans ture ABX mult $\lceil Sm \rceil$ ferro ed f Ba, : pero and mag of t mag

> > app.

tura

that

*) 1

^{*)} This work was sponsered by the U. S. Air Force.

:bin-

das zwei inen nenrmel tion. alen und n ist iger. r be-[adevenn i helaren ţ für a erdina-:ffekn die , die ents die groß stand g von oenso rgibt neren)aher Fluo-Katievorılfide. ößten iische ie für hichtehlen. Strukırden. ; wie uktur ie in ie in ücken utlich urlich nthal-: eines

ıd die

compounds containing Ti4+ ions, on the other hand, it is more probable that local rearrangements of the anions form trigonal bipyramidal sites. Aniondeficient, ionic materials in which there are no Acations, such as \(\sum WO_{3-x}, \) have been shown to contain \(\subseteq \text{BX}_3 \) blocks connected by "shear" planes across which the occupied octahedra share common edges (Fig. 22). On the other hand, anion deficiencies may occur randomly in the McX1-xMf3 alloys. B-cation defects cannot occur, because the B-occupied octahedra form the basis of the ABX₃perovskite structure. Where there are apparent Bcation vacancies, as in $A_m B_{m-1} X_{3m}$, there is either an interleaving of perovskite layers with A2X2 layers (Fig. 23) or an interleaving of cubic (perovskite) stacking of AO3 layers with regularly spaced hexagonal stackings at which are located the B-ion vacancies (Fig. 24). Similarly, the series of compounds $(AX)_m(ABX_3)_n$ crystallize with an interleaving of rocksalt layers (Fig. 25). Interleaving of cubicstacked AO3 layers and hexagonal-stacked layers also occurs in ABX3 compounds having too large an A cation to be accommodated by the perovskite structure (Fig. 3). Finally, there are a few alloys with interesting magnetic properties that can be classified as A2BB'X6 compounds if the symbols B and B' are allowed to represent atomic clusters rather than single cations. These are illustrated, for example, by the alloy Al₂(AlCo₁₂)(Co₈)B₆ (Fig. 18). Sections 3.1 and 3.2 are devoted to descriptions of the perovskite and perovskite-related structures.

The ABX₃ perovskites exhibit several interesting physical properties such as ferroelectricity (as in BaTiO₃), ferromagnetism (as in SrRuO₃), weak ferromagnetism (as in LaFeO3 or HoFeO3), superconductivity (as in SrTiO_{3-x}), a large thermal conductivity due to exciton transport (LaCoO₃), insulator-to-metallic transitions of interest for thermistor applications (as in LaCoO₃), fluorescence compatible with laser action (as in LaAlO3:Nd), and transport properties of interest for high-temperature thermoelectric power (as in La₂CuO₄). A few ABX₃ perovskites have been found that are simultaneously antiferromagnetic and ferroelectric [Sm 16, Mi7, Sm9]. The simultaneous occurrence of ferroelectricity and ferromagnetism has been reported for systems like $Sr_{0.25}La_{0.75}MnO_3$ -ATiO₃ (A = Ba, Pb, $Bi_{0.5}K_{0.5}$) [To3, To6]. Many of the $M^cXM_3^f$ perovskite alloys are ferromagnetic or ferrimagnetic, and a few exhibit first-order ferrimagnetic-to-ferromagnetic transitions. Nevertheless, the significance of the entire perovskite family for the field of magnetism*) lies not yet in their technological applications, but in their provision of an isostructural series of compounds having outer d electrons that are localized and spontaneously magnetic in dortige Anionenlücke von einem Oktaeder in einen Tetraeder umzuwandeln. Bei Verbindungen, die Ti4+-Ionen enthalten, ist es dagegen wahrscheinlicher, daß die lokale Anordnung der Anionen trigonale Doppelpyramiden-Plätze bildet. Für Ionenverbindungen mit Anionenlücken, die keine A-Kationen haben, wie \(\subseteq WO_{3-x}, \) ist gezeigt worden, daß sie BX3-Blöcke enthalten, die durch "Gleit" ebenen verbunden sind, in denen die besetzten Oktaeder gemeinsame Kanten innehaben (Fig. 22). In McX_{1-x}M₃-Legierungen können jedoch Anionenlücken auch beliebig auftreten. B-Kationenlücken können nicht vorkommen, weil die von B besetzten Oktaeder die Basis der ABX3-Perowskitstruktur bilden. Wo scheinbare B-Kationenleerstellen auftreten, wie in $A_m B_{m-1} X_{3m}$, sind entweder $A_2 X_2$ -Schichten zwischen Perowskitschichten eingeschoben (Fig. 23), oder kubische (Perowskit-) Anordnungen von AO3-Schichten wechseln mit regelmäßig verteilten hexagonalen Anordnungen, in denen die B-Ionenlücken auftreten, ab (Fig. 24). Ähnlich kristallisieren die Verbindungen der Reihe (AX)_m(ABX₃)_n mit einer Einschiebung von Steinsalzschichten (Fig. 25). Einschiebungen von kubisch gepackten AO₃-Schichten und hexagonal gepackten Schichten treten auch in solchen ABX₃-Verbindungen auf, deren A-Kation für die Perowskit-Struktur zu groß ist (Fig. 3). Schließlich gibt es einige wenige Legierungen mit interessanten magnetischen Eigenschaften, die als $A_2BB'X_6$ -Verbindungen eingeordnet werden können, wenn man unter den Symbolen B und B' Atomgruppen statt einzelner Kationen versteht, Dies gilt z. B. für die Legierung Al₂(AlCo₁₂)(Co₈)B₆ (Fig. 18). Die Abschnitte 3.1 und 3.2 sind der Beschreibung der Perowskit- und verwandter Strukturen gewidmet.

Die ABX₃-Perowskite weisen einige interessante physikalische Eigenschaften auf, wie Ferroelektrizität (in BaTiO₃), Ferromagnetismus (in SrRuO₃), schwachen Ferromagnetismus (in LaFeO3 oder HoFeO₃), Supraleitfähigkeit (in SrTiO_{3-x}), große Wärmeleitfähigkeit durch Excitonentransport (in LaCoO₃), für Thermistoren interessante Übergänge zwischen Nichtleiter und metallischem Leiter (in LaCoO₃), für Laser-Anwendungen geeignete Fluoreszenz (in LaAlO₃:Nd), und Transporteigenschaften, die für Thermospannungen bei hohen Temperaturen von Interesse sind (in La₂CuO₄). Einige wenige ABX3-Perowskite wurden gefunden, die sowohl ferromagnetisch als auch ferroelektrisch sind [Sm16. Mi7, Sm9]. Das gleichzeitige Auftreten von Ferroelektrizität und Ferromagnetismus wurde bei Systemen wie $Sr_{0.25}La_{0.75}MnO_3$ -ATiO₃ (A = Ba, Pb, $Bi_{0.5}K_{0.5}$) [To3, To6] beschrieben. Viele $M^cXM_3^f$ -Perowskitlegierungen sind ferromagnetisch oder ferrimagnetisch, und einige zeigen Übergänge erster Ordnung von Ferri- zu Ferromagnetismus. Trotzdem liegt die Bedeutung der gesamten Perowskit-Familie für den Magnetismus*) noch nicht in der technologischen Anwendung, sondern im Vorhandensein einer isostrukturellen Reihe von Verbin-

^{*)} The technologically important dielectric properties are outside the scope of this summary. See Vol. III/3 of the New Series of Landolt-Börnstein.

^{*)} Die technologisch wichtigen dielektrischen Eigenschaften liegen nicht im Rahmen dieser Zusammenstellung. Siehe Band III/3 der Neuen Serie des Landolt-Börnstein.

w

bι

th

tic

bl

pε

pl

m

siı

рі

uı

Ċŧ

ef

S,

 ϵ

 ϵ

7

 c_1

 $\epsilon_{\rm i}$

1.

6

6

e

ť

(

λ

2

1

1

1

í

one member, collective and spontaneously magnetic in another, and collective and Pauli paramagnetic in yet another. This permits a systematic experimental investigation of the properties of the d electrons on passing through the transition from a localized character, where crystal-field plus superexchange and/or double-exchange theories apply, to an uncorrelated (except below a superconducting transition temperature) collective-electron character, where the conventional band theory applies. In addition, the simplicity of the perovskite ABX, structure minimizes competitive magnetic interactions between neighboring magnetic cations. Therefore from a study of magnetic order, as revealed by neutron diffraction, together with detailed structural information, as revealed by x-ray diffraction, it has been possible to test the semiempirical rules for 180° cation-anion-cation isotropic superexchange interactions between localized electrons, the double-exchange hypothesis, antisymmetric exchange, and predictions of magnetic order and spontaneous atomic moments due to collective electrons.

Section 3.3 presents the general phenomenological exchange Hamiltonian for localized electrons and summarizes the microscopic models for isotropic superexchange, double exchange, and antisymmetric exchange. From these models, general rules for the interactions responsible for magnetic order are developed for comparison with the tabulated magnetic data.

Section 3.4 presents the fundamental physical concepts needed to construct a qualitative phase diagram for the outer d electrons as a function of the number n_l of electrons per relevant orbital, the magnitude of a nearest-neighbor transfer energy b, and the temperature T. It also summarizes the various characters of several physical properties imparted by outer electrons to show how they can be used to distinguish the electronic phases in different perovskites. Information from the tabulated data is used to show the influence of covalence and intra-atomic exchange, which help determine the parameter b, on the character of the electrons. Spontaneous collective-electron magnetism is seen to occur only in a narrow transitional interval of bbetween localized-electron magnetism and collective-electron Pauli paramagnetism.

Section 3.5 provides schematic energy diagrams for the alloys M°XMf. These are shown to be useful guides to predictions of the magnitudes of the atomic moments and the magnetic order.

dungen mit äußeren d-Elektronen, die lokalisiert und spontan magnetisch in der einen Verbindung, kollektiv und spontan magnetisch in einer anderen, und kollektiv und Pauli-paramagnetisch in noch einer weiteren sind. Dies erlaubt systematische experimentelle Untersuchungen der Eigenschaften der d-Elektronen, indem man von einem lokalisierten Zustand, in dem Kristallfeld plus Superaustausch- und/oder Doppelaustausch-Theorien gelten, zu einem Zustand unkorrelierter Kollektivelektronen (außer bei Temperaturen unterhalb des Übergangs zur Supraleitung) übergeht, in dem die konventionelle Bändertheorie anzuwenden ist. Weiterhin führt die Einfachheit der Perowskit-ABX₃-Struktur zu minimalen konkurrierenden Wechselwirkungen zwischen benachbarten magnetischen Kationen. Aufgrund der Untersuchung der magnetischen Ordnung, die man durch die Neutronenbeugung kennt, und einer genauen Kenntnis der Struktur, wie man sie durch Röntgenbeugung gewonnen hat, war es deshalb möglich, die halbempirischen Gesetze über die isotrope 180°-Kation-Anion—Kation—Superaustausch—Wechselwirkung zwischen lokalisierten Elektronen, die Doppelaustausch-Hypothese, den antisymmetrischen Austausch und Voraussagen für magnetische Ordnung und spontane Atom-Momente, die von Kollektivelektronen herrühren, zu prüfen.

Der Abschnitt 3.3 enthält den allgemeinen phänomenologischen Hamilton-Austausch-Operator für lokalisierte Elektronen und faßt die mikroskopischen Modelle für den isotropen Superaustausch, den Doppelaustausch und den antisymmetrischen Austausch zusammen. Aus diesen Modellen werden allgemeine Regeln für die Wechselwirkungen, die für die magnetische Ordnung verantwortlich sind, zum Vergleich mit den tabellierten Daten entwickelt.

Der Abschnitt 3.4 enthält die grundlegenden physikalischen Ideen, die für die Herstellung eines qualitativen Phasendiagramms für die äußeren d-Elektronen als Funktion der Elektronenzahl n_l pro betreffenden Bahnzustand, der Größe einer Übertragungsenergie b zwischen nächsten Nachbarn und der Temperatur T notwendig sind. Außerdem werden hier verschiedene Charakteristika einiger durch die äußeren Elektronen gegebenen physikalischen Eigenschaften zusammengestellt, um zu zeigen, wie man mit ihrer Hilfe die elektronischen Phasen verschiedener Perowskite unterscheiden kann. Auf Grund der tabellierten Werte wird der Einfluß von Kovalenz und intra-atomarem Austausch, die den Parameter b mitbestimmen, auf den Charakter der Elektronen gezeigt. Spontane Magnetisierung der Kollektivelektronen tritt, wie man sieht, nur in einem schmalen Übergangsintervall von b zwischen dem Magnetismus lokalisierter Elektronen und dem Pauli-Paramagnetismus der Kollektivelektronen

Der Abschnitt 3.5 enthält schematische Energiediagramme für die Legierungen M°XM₃. Es wird gezeigt, daß sie zu brauchbaren Voraussagen über die Größe der Atom-Momente und die magnetische Ordnung führen können.

ert ng, dein enem lus eoekalb em ist. sit-1en neder :roder ıng ılbonung 111S-.us-)rdlekhäitor opisch. hen den die ind, entiden ines n dpro berund werurch chen . wie ver-Auf von die .kter rung ur in chen dem onen

rgie-

d ger die

ische

In the introductions to the sections $3.2 \cdot \cdot \cdot 3.5$ we have referenced the principle theoretical contribution discussed, but no attempt was made to do this systematically for the experimental contributions, which are thoroughly referenced in the tables. — In the crystallographic tables, the crystal parameters quoted either represent the most complete analysis, in our judgment, or belong to the most complete set of parameters for a series of similar compounds. They do not necessarily represent the historical reference that established the unit-cell dimensions.

Literature was considered up to 1969.

Finally, we would like to thank DAVID MAHONEY for his willing assistance, the library and publications personnel of Lincoln Laboratory for their efficient support, and Mrs. G. E. BOYD for her help with all the foreign references.

In den Einleitungen zu den Abschnitten 3.2 ··· 3.5 haben wir die grundlegenden theoretischen Beiträge, die diskutiert werden, mit Literaturhinweisen versehen; für die experimentellen Beiträge haben wir dies nicht systematisch durchzuführen versucht, da die entsprechenden Tabellen vollständig mit Literaturhinweisen versehen sind. — In den kristallographischen Tabellen stellen die angeführten Kristallparameter entweder die nach unserer Beurteilung vollständigste Analyse dar, oder sie gehören zum vollständigsten Satz von Parametern für eine Reihe ähnlicher Verbindungen. Sie geben nicht notwendigerweise den historischen Literaturhinweis, der die Dimensionen der Einheitszelle festlegte.

Die Literatur wurde bis 1969 berücksichtigt.

Schließlich möchten wir David Mahoney für seine bereitwillige Hilfe, den Angestellten der Bibliothek und der Veröffentlichungsabteilung des Lincoln-Laboratoriums für ihre wirksame Unterstützung und Mrs. G. E. Boyd für ihre Hilfe bei der ausländischen Literatur danken.

3.0.2 Symbols and units used in tables and figures

Crystallographic structure

symmetry classification for perovskite structures: C = cubic, H = hexagonal, symmetry R = rhombohedral, O = orthorhombic $(a < c/\sqrt{2})$, O' = orthorhombic $(c/\sqrt{2} < a)$, T = tetragonal, M = monoclinic, Tr = triclinic lattice parameters a, b, c [Å] angle between crystallographic axes $\alpha, \beta, \gamma \text{ [deg]}$ crystallographic transition and ordering temperatures Θ_{trans}, Θ_{ord} [°K] Debye temperature $\Theta_{\rm D}$ [°K] melting temperature T_{melt} [°K] elastic constants Cii crystalline strains radius of A, B, B' cation $r_{A,B,B'}$ [Å] Magnetic properties (static measurements)

see magnetic structure type from Fig. 26 magnetic order atomic moment and component of atomic moment parallel to net ferromagnetic $n_{\rm A}, n_{\parallel}^{\rm A}$ moment in numbers of Bohr magnetons: $p_A = n_A \mu_B$ net magnetization per molecule in numbers of Bohr magneton: $p_m = \overline{n}_m \mu_B$ $\overline{n}_{\rm m}$ $n_{\rm eff} = \sqrt{8 C_{\rm m}}$ is the effective paramagnetic moment: $p_{\rm eff} = n_{\rm eff} \mu_{\rm B}$ $n_{
m eff}$ Curie temperature Θ_c [°K] Néel temperature; extrapolated Néel temperature Θ_N [°K] Θ_r [°K] Θ_p [°K] temperature for spin reorientation paramagnetic Curie temperature ($\Theta_{\rm p} < 0$ if antiferromagnetic coupling) temperature below which parasitic $n_{\rm s}^{\rm A}$ deviates appreciably from 0.05 molar Curie constant determined from Curie-Weiss law $\chi_m = C_m/(T - \Theta_p)$ $C_{\rm m}$ [emu °K mole⁻¹] specific paramagnetic susceptibility χ_g [emu/g], [cm³/g] molar paramagnetic susceptibility $\chi_{\rm m}$ [emu/mole] atomic moment, atomic moment of element A $p_A, p^A [\mu_B]$ $p_{m}, p^{(xy)}$ molecular moment (of molecule xy) effective paramagnetic moment: $p^* = \sqrt{\chi_m T}$ isotropic exchange constant of Eq. (16) for near-neighbor interactions J_{nn}/k [°K] Ln-Fe interaction parameter defined by $M(t) = \sigma_0(0) B(t) [1 + (d/t)]$, where $t = T/\Theta_C$ and B(t) is the Brillouin function domain wall energy density net near-neighbor Weiss molecular field constant: $H_{\text{wi}} = \sum_{j=1}^{z} W_{ij} M_{j}$ $\sigma_{\mathbf{w}}$ [erg/cm²]

Re

```
s
s
c
I
i
```

```
[Gauss cm³/g] [emu/g]
                                  magnetic moment per gram = specific magnetization
                                 specific parasitic (weak) magnetization as obtained from \sigma = \sigma_0 + \chi_{\rm g} H_{\rm a}
\sigma_{\mathbf{o}} [\text{emu/g}]
                                  spontaneous specific magnetization
                                  externally applied field
                                  critical applied field for antiferromagnetic-ferromagnetic transition or for spin-
H_{\mathbf{a}} [Oe]
H_{\rm crit} [Oe]
                                     flop transition
                                  coercivity
H_{\mathbf{c}}
                                  cant angle
                                  magnetoelectric coefficients
b_1, b_2 [dyn/cm<sup>2</sup>]
                                  magnetostriction constant for [100] direction: \lambda_{100} = -4b_1/3(c_{11} - c_{12})
                                  components of the tensor describing the quadratic dependence of magnetization
C_{ijk}
                                     on applied field: Eq. (36)
                                  the Bohr magneton = 5585 cmu/g
                                  torque: T = \sigma \times H_a
 T[erg/g]
                                      Magnetic properties (resonance measurements)
                                  effective crystalline-anisotropy field
 H_{\mathbf{A}}
                                   exchange field
 H_{ex}
                                   spin-canting field (Dzialoshinskii field)
 H_{\mathbf{D}}
                                   internal magnetic field at the nucleus
 H_{\rm int}
                                   axial hyperfine field arising from nuclear polarization
                                   hyperfine field I \cdot A \cdot S, where I = nuclear spin, S = net atomic spin, and the
 H_{n}
 H_{\mathrm{hyp}}
                                      components of the interaction tensor are A_s,\,A_{ns},\,A_{\sigma},\,A_{\pi},\,A_{2p}
                                   fraction of unpaired s, p_{\sigma} or p_{\pi} electron spins involved in covalent bonding:
 f_8^{\mathbf{A}}, f_{\sigma}^{\mathbf{A}}, f_{\pi}^{\mathbf{A}}
                                   f_s^A = 2SA_s/A_{ns} = \frac{1}{3}N_e^2\lambda_s^2, f_\sigma^A = 2SA_\sigma/A_{2p} = \frac{1}{3}N_e^2\lambda_\sigma^2, f_\pi^A = 2SA_\pi/A_{2p} = \frac{1}{4}N_t^2\lambda_\pi^2
                                      See Eq. (4) for N_e, N_t, \lambda_s, \lambda_\sigma, \lambda_\pi.
                                   nuclear quadrupole coupling constant and quadrupole splitting
 \epsilon, \Delta E
                                   dipolar and quadrupolar magnetoelastic coefficients: \delta g_i = \sum_{i=1}^{r} F_{ij} \epsilon_j and
 F_{ii}, G_{ij}
                                      d_{\mathbf{i}} = \sum_{\mathbf{j}=1}^{6} G_{\mathbf{i}\mathbf{j}} \epsilon_{\mathbf{j}}, where \mathscr{H}_{\mathrm{spin-lattice}} = \mu_{\mathrm{B}} H_{\mathrm{a}} \cdot \delta \mathbf{g} \cdot \mathbf{S} + \mathbf{S} \cdot \mathbf{d} \cdot \mathbf{S}
                                    resonance frequency for NMR
  \nu_{\mathbf{R}} [Hz]
                                    half-line width
  Δν [Hz]
                                    nuclear spin-lattice relaxation time
  T_1 [sec]
                                    nuclear spin-spin relaxation time
  T_2 [sec]
                                    nuclear spin-lattice relaxation time during a locking pulse
  T_{\mathrm{le}} [sec]
                                                         Optical measurements
                                    index of refraction
                                    low-frequency dielectric constant
                                    Faraday rotation
  e [°/cm]
                                    frequency of transverse and longitudinal optical modes
  v_{TO}, v_{LO} [Hz]
                                                        Transport measurements
                                     superconducting critical temperature
   \Theta_{\mathrm{cs}}
                                     Fermi energy
   E_{\mathbf{F}}
                                     activation energy for a small-polaron hop
   E_{\mathbf{a}}
                                     electrical resistivity
   \rho \left[\Omega \text{cm}\right]
                                     Seebeck coefficient
   S[\mu V/^{\circ}K]
                                     magnitude of the electronic charge
   e [esu]
                                     charge-carrier density
   c, n_{\rm i}, n_{\pm} \, [{\rm cm}^{-3}]
                                     charge-carrier mobility
   \mu [cm<sup>2</sup>/Vsec]
                                     charge-carrier collision time
   τ [sec]
                                     charge-carrier effective mass
    m* [g]
                                     charge-carrier diffusion coefficient at E_a=0
    D_0 [cm<sup>2</sup>/sec]
                                     density of unoccupied states: 2(2\pi m_{\pm}^* \tilde{k} T/h^2)^{3/2}
   N_{\pm}
                                                              General properties
                                      temperature
    T [°K]
                                      pressure
    Þ
                                      specific heat at constant pressure
    c_p
```

n-

n

g: $l_{\pi}^{2}.$

Abbreviations for text and indices

AFMR	antiferromagnetic resonance
APR	acoustic paramagnetic resonance
BPW	Bethe-Peierls-Weiss method
C, cub	cubic
DS	Danielson-Stevens method
DTA	differential thermal analysis
ESR	electron spin resonance = paramagnetic resonance
f.c.	face-centered permutation
FMR	ferromagnetic resonance
F _R	ferromagnetic with reduced $n_{\mathbf{A}}$
H, hex, hex (nL)	hexagonal, hexagonal n-layer structure
IR.	infrared
Ln	Lanthanon = any of the rare-earth elements
MF	molecular field approximation
M, mon	monoclinic
NAR	nuclear acoustic resonance
NMR	nuclear magnetic resonance
ncub	noncubic
O, O', orth	orthorhombic (O: $a < c/\sqrt{2}$; O': $c/\sqrt{2} < a$)
P&S	reference to preparation and structural information
	reference to material preparation
Prep. Prop.	reference to material properties
pscub	pseudocubic
1 *	pseudomonoclinic
psmon R, rh	rhombohedral
RW	Rushbrooke-Wood method
S. G.	space group
S.S.	solid solution
T. tetr	tetragonal
Tr. tr	triclinic
1 **, **	1

3.1 Descriptions of stoichiometric ABX₃ and M°XM^f₃ structures

3.1.1 The ideal perovskite structure

The ideal perovskite structure has the cubic unit cell of Fig. 1 with space group Pm3m. Fig. 1(a) shows the corner-sharing octahedral units (BX₃ array in ABX₃ and XM₃ array in M°XM₃, which form the stable skeleton of the structure. The A cation (or M° atom) occupies the body-center position. Fig. 1(b) shows the unit cell with the A cation (or M° atom) at the origin, or corner position. This shows the face-centered-cubic character (with Cu₃Au-type order) of the AX₃ or M°M₃ subarrays. Fig. 1(c) shows the cubic perovskite on an hexagonal basis, with the c axis along the cubic [111] direction. The alternate AX₃ and B ionic layers each have cubic stacking. Also indicated is the ordering of B and B' layers in the ordered $A(B'_{2/3}B_{1/3})X_3$ structures.

Fig. 1. ABX₃, M^cXM₃. Ideal perovskite structure: a) B cation (or X atom) at origin. b) M^c atom (or A cation) at origin. c) A cation at origin in hexagonal basis [Gat0].

po

OC4

be

A3

sić

po

sł

tl Cŧ is sl

tì d

ť.

b

F đ

> i: а

Į

The alloys $M^c X M_3^f$ are stabilized by covalent M-X bonding and by metallic M-M bonding, so that they are generally cubic. Only in phases exhibiting complex magnetic order are there distortions to lower symmetry. On the other hand, the ABX, perovskites, which are primarily stabilized by the Madelung energy, are rarely cubic at normal temperatures. Madelung energy calculations are available [Ro15a,

Although cubic at high temperatures, most ABX, compounds exhibit distortions to lower symmetry Sa2b, Mill. below some temperature Θ_{trans} as a result of atomic displacements. Such displacive transitions can be described by a finite set of normal vibrational modes that become soft, their vibrational frequency increasing with $T > \Theta_{\text{trans}}$. From Landau's [La2] theory of phase transitions, it may be argued [Ha1, Co2] that at a second-order displacive transition, the frequency of one normal mode becomes zero. Thus the occurrence of ferroelectricity in perovskite-type crystals such as BaTiO3 has been correlated both theoretically and experimentally [An2, Co1, Ba17, Co28, Ne8, Sh26] with the existence of a transverse optic mode of lattice vibration having wave number $k \approx 0$ and a temperature-dependent frequency $\omega \sim (T - \Theta_{\text{trans}})^{1/2}$.

Similarly, in the case of LaAlO₃ softening of a single normal mode can produce the R3c-to-cubic transition, and this transition is probably second-order. Investigation [Ha1] of the atomic displacements involved in other distortions from cubic symmetry, on the other hand, has shown that several normal modes are involved, and these displacive transitions are first-order.

SrTiO₃ exhibits a tetragonal (D_{4h}¹⁸ with c/a = 1.00056) to cubic transition at $\Theta_{\text{trans}} = 110$ °K [Ly2, Ri5] that appears to illustrate the softening of a triply degenerate phonon at the R point of the Brillouin zone in the cubic phase. For $T < \Theta_{\text{trans}}$, it splits into two zone-center phonons having a frequency dependence $\omega \sim (\Theta_{\text{trans}} - T)^{0.31} [Fl2]$. In the presence of an external electric field $E_{\mathbf{a}}$ the symmetry is further reduced to $C_{\mathbf{4v}}$ if $E_{\mathbf{a}} \parallel c$ -axis, or $C_{\mathbf{2v}}$ if $E_{\mathbf{a}} \perp c$ -axis, and the critical modes have the same symmetry as the ferroelectric TO modes. "Anticrossing" of the modes occurs for $E_{\mathbf{a}} = 1.5 \, \text{kV/cm}$ and 15 kV/cm [Ne7, Western Vestern VeWo19]. Thus the observed [He5] maximum in the electric susceptibility of SrTiO3 at very low temperatures does not appear to be associated with a ferroelectric transition.

Theoretical interest in the analytic description of these phase transitions continues [Go1a, Mu4a,

The physical origins of the various crystallographic distortions may be separated into three parts: relative ionic sizes, electron ordering among localized electrons, and electron ordering among collective

3.1.2 The influence of relative ionic sizes

3.1.2.1 Tolerance factor

The first prerequisite for a stable perovskite structure is the existence of a stable BX_3 skeletal subarray. If the B-cation radius is $r_{\rm B} < 0.51 \, {\rm \AA}$ in oxides, for example, the B cation does not achieve its optimum B-O separation in an octahedral site and therefore stabilizes a structure with a smaller anion coordination. The Al3+ ion is borderline, being stable in four, five or six coordination. However, Ga3+, Ge4+ and V5+ ions are definitely more stable in tetrahedral sites at ambient pressures.

Given the BX3 skeletal subarray, additional stabilization is achieved by accommodating a large A cation within this skeleton. Because there is an optimum A-X bond length, the presence of an A atom generally distorts the BX3 array so as to optimize the A-X bonding. However, if this distortion is too large, then other space groups become competitive. Goldschmidt [Go2] defined the tolerable limits on the size of the A cation via a tolerance factor

$$t = (r_{A} + r_{X})/\sqrt{2} (r_{B} + r_{X})$$
 (1)

where r_A , r_B , r_X are empirical radii of the respective ions. By geometry, the ideal cubic structure should have t = 1. The perovskite structure occurs only within the range 0.75 < t < 1.00. However, this is not a sufficient condition, since the A and B cations must, in themselves, be stable in twelvefold (12 or $8\,+\,4$ or 6+6) and sixfold coordinations. This sets lower bounds for the cationic radii. In oxides these bounds are $r_A > 0.90 \text{ Å}$ and $r_B > 0.51 \text{ Å}$. In addition, Megaw [Me5] noted that, if 0.75 < t < 0.9, a cooperative buckling of the corner-shared octahedra to optimize the A-X bond lengths enlarges the unit cell; on the other hand, if 0.9 < t < 1, such buckling may not be found, although small distortions to rhombohedral symmetry occur. These structures are to be distinguished from perovskites that exhibit additional distortions as a result of electron ordering. The cubic phase is found at high temperatures or where the A-X bond is more ionic (especially if $t \approx 1$).

Where the A cation is too small $(r_A < 0.9 \text{ Å})$ to accommodate twelve nearest neighbors, a structure in which the A and B cations are both six-coordinated becomes competitive. From the phase diagram of Fig. 2 for the oxides A3+B3+O3, which has been adapted from Schneider, Roth, and Waring [Sc13], the initial competition is the C-M2O3 structure, which contains two unusual types of corner-shared, sixcoordinated sites. The C-M2O3 structure consists of a face-centered-cubic array of cations with anions occupying 3 of the tetrahedral interstices in an ordered manner. Thus each cation has six out of eight near-neighbor anions at the corners of a circumscribing cube: † of the cations have two anions missing at the ends of a body diagonal and ? of the cations have two anions missing at the end of a face diagonal of the circumscribing cube. This arrangement minimizes the electrostatic repulsive forces between the cations.

ev ng 5a, be in-2] :he •de 1/2 nts nal *i5*] me enher as e7. :ra-4a, :ts: ive av. ion. V5+ e A tom rge, size (1) ould not 4 or ınds tive the dral stor-A-X re in n of

> , the sixions

ight

ıg at

al of

ions.

Fig. 2. General $r_A - r_B$ phase diagram for $A^{g+}B^{g+}O_g$ compounds based on ionic-size considerations. Exceptions may occur where considerations other than ionic radii r_A , r_B become important, as in the case A = Bi. A similar plot for $A^{g+}B^{g+}O_g$ perovskites is not useful because secondary considerations are amplified by ferroelectric distortions and the possibility of different layer sequences where larger A cations are present. [Adapted from Sc13].

Given smaller A cations, however, electrostatic screening between face-shared octahedra can be achieved by displacements of the cations away from the shared face, and the structure competitive with perovskite is generally built from an hexagonal-close-packed anion array, which has octahedral holes sharing common faces along the c-axis. With one octahedral hole per anion and a cation/anion ratio 2/3, the cations are ordered among these holes so as to minimize the electrostatic energy. If the A and B cations carry the same charge, as in A3+B3+O3, only pairs of cations share common octahedral-site faces and there is no ordering of A and B within the cationic array. This allows the electrostatic force between two cations sharing a common octahedral face to be reduced by displacements of the cations away from each other, thus distorting the octahedra. The result is the corundum structure of Al₂O₃. If the cations A and B carry different charges, as in A2+B4+O3, then the A and the B cations order into alternate puckered cationic (111) planes of the rhombohedral corundum structure to form the ilmenite structure. However, where there is a large difference in the cationic charges, as in Li+Sb5+O3 and Li+Nb5+O3, two other alternatives become competitive: (1) The A+ ions order in strings of face-shared octahedra so as to permit the Bs+-ion octahedra to share only edges with near-neighbor occupied octahedra. This structure is illustrated by LiSbO₃ [Ed1]. (2) After ordering B5+ and Li+ ions whithin each cationic (111) plane of the corundum structure in such a way that B5+ and Li+ ions share common octahedral-site faces, each A+ cation is then displaced into the far face of its octahedron, where it is equally spaced from B5+ cations above and below so long as the B5+ cations remain in the centers of their octahedra. This is the structure of paraelectric LiNbO₃ and LiTaO₃ [Ab3].

Where the A cation is too large (t > 1.0), the close-packed AX₃ layers of Fig. 1 (c) tend to change their stacking sequence from cubic to hexagonal. However, the change from the all-cubic stacking of the rhombohedral perovskite structure to the all-hexagonal stacking of the hexagonal (hex. 2L) CsNiCl₃ structure goes via the three intermediate steps shown in Fig. 3 [Lo1]. The first step is the hexagonal 'BaTiO₃ structure of Fig. 3 (c). It is a six-layer structure with stacking sequence a-b-c-a-c-b-a, corresponding to one hexagonal stacking out of three. In this structure (hex. 6L), two-out-of-three B cations form pairs sharing a common octahedral-site face, and one-out-of-three B cation shares only common octahedral-site corners as in the perovskite structure. Many ordered compounds $A_3B_2B'O_9$ are known to have this structure. The second step, illustrated by the hexagonal BaMnO₃ structure of Fig. 3 (d), alternates hexagonal and cubic stackings with the sequence a-b-c-b-a. This four-layer structure (hex. 4L), contains only B-cation pairs sharing common octahedral-site faces. The electrostatic forces between paired B-cations in Figs. 3 (c), (d) displace the paired cations from one another along the c-axis, exactly as in the corundum

Fig. 3. Stable structures intermediate to a) cubic perovskite and b) the two-layer hexagonal CsNiCl₃ structure, c) six-layer hexagonal BaTiO₃ structure, d) four-layer hexagonal BaMnO₃ structure, e) nine-layer hexagonal BaRuO₃ structure. [Adapted from Ca2].

Ref.

w]

F

structure. The third step is the nine-layer (hex. 9L) structure of $BaRuO_3$, which has two hexagonal stackings out of three in the sequence a-b-c-b-c-a-c-a-b-a. Here the B cations form strings of three sharing common octahedral-site faces along the c-axis. Electrostatic forces displace the two end-member B cations away from the center B cation of each string, as shown in Fig. 3 (e). Because cubic stacking is stabilized by hydrostatic pressure, it is possible to convert under pressure and high temperature the hexagonal structures to the perovskite structure through the successive sequence of steps. This is well illustrated by the $Ba_{1-x}Sr_xRuO_3$ system as shown in Fig. 4(a). These particular intermediate structures appear to be stabilized by the cation displacements, but at the cost of alternating the stacking sequence. The (hex. 4L) structure, which has the maximum alternation of stacking, is not always found, and the intermediate structures tend to be stabilized by smaller B cations, as illustrated in Fig. 4(b).

Fig. 4. a) $Ba_{1-x}Sr_xRuO_3$. p-x phase diagram where p is hydrostatic pressure [Lo1], b) structural phase diagram of CsBF₃ compounds [Lo1b].

3.1.2.2 O-orthorhombic structure

Cooperative buckling of corner-shared octahedra, although indexed on a monoclinic pseudocell in earlier work, may produce the orthorhombic primitive cell of Fig. 5 containing four formula units. It was first identified in single crystals of $GdFeO_3$ [Ge1] and later confirmed [Co21]. Powder photographs taken with CrK_{α} radiation could be indexed on the monoclinic pseudocell containing a single $GdFeO_3$ molecule, which is the origin of the earlier classification. The pseudocell dimensions of $GdFeO_3$ are a=c=3.87 Å, b=3.83 Å, $\beta=92.8^{\circ}$, where $2b_{pseudocell}=c_{true\ cell}$. The true orthorhombic cell is referred to in the tables as O-orthorhombic and is distinguished from the O'-orthorhombic structure by a lattice-parameter ratio

Fig. 5. GdFeO₃. O-orthorhombic structure. $\phi_{ab} = \langle B_1 X_{II} B_2, \phi_c = \langle B_2 X_I B_3, Fig. from [Vet 2], structure [Get], coordinates[Co21].$

		,	coordinates	
ion	position	*	y	Z
Gd3+	4 (c)	-0.018	0.060	ž
Fe³+	4 (b)	1 & 1	0	0
	4(c)	0.05	0.470	ž
Oi- Oiï	8 (d)	-0.29	0.275	0.05

ıal

L) .te

of

en ie. Ă,

es

in

 $c/a > \sqrt{2}$, where a < b. The O'-orthorhombic structure, which has $c/a < \sqrt{2}$, is the result of a superposed Jahn-Teller (with or without spin-orbit coupling) distortion. It is also to be distinguished from ferroelectric OB-orthorhombic and OB-orthorhombic distortions in which each B cation is removed from the center of symmetry of its interstice. Other orthorhombic distortions have been reported for NdGaO, [Br26] and NaCoF₃ [Ok5].

The O-orthorhombic unit cell has the probable space group Pbnm with A cations in positions 4(c): $\pm (x, y, \frac{1}{4}; \frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{4})$, the B cations in 4(b): $(\frac{1}{2}, 0, 0; \frac{1}{2}, 0, \frac{1}{2}; 0, \frac{1}{2}; 0, \frac{1}{2}, \frac{1}{2})$, eight anions X_{II} in 8(d): $\pm (x, y, z; \frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z; \overline{x}, \overline{y}, \frac{1}{2} + z; \frac{1}{2} + x, \frac{1}{2} - y, \overline{z})$, and the remaining four anions X_{II} in

4(c). Coordinates for the ions in GdFeO3 are also given in Fig. 5. The buckling of the corner-shared octahedra decreases the cation-anion-cation angle ϕ from 180°. If the B cations and the anions are distinguished as $B_1(\frac{1}{2}, 0, 0)$, $B_2(0, \frac{1}{2}, 0)$, $B_3(\frac{1}{2}, 0, \frac{1}{2})$, $X_{II}(\frac{1}{2} + x, \frac{1}{2} - y, \overline{z})$, and $X_I(\frac{1}{2}-x,\frac{1}{2}+y,\frac{1}{4})$, then the two representative angles are $\Phi_{ab}=(B_1-X_{II}-B_2)$ and $\Phi_c=(B_2-X_I-B_3)$. Gilleo [Gi4] has estimated that in $La(Co_{0.2}Mn_{0.8})O_3$ these angles are $\Phi_{ab}=150^\circ\pm3^\circ$ and $\Phi_c=177^\circ\pm3^\circ$ with $B_1-O_{II}=1.95$ Å, $B_2-O_{II}=2.10$ Å, $B_1-O_1=B_3-O_1=1.96$ Å. The angles in GdFeO₃ are similar.

3.1.2.3 Rhombohedral structures

Where there is no buckling of the octahedra, the perovskites ABX3 may have a small deformation from cubic to rhombohedral symmetry. Where this deformation does not enlarge the unit cell, it is possible to index it either on a unit cell containing two formula units, as shown in Fig. 6, or on a unit cell containing one formula unit. The corresponding rhombohedral angles are $\alpha \approx 60^{\circ}$ or $\alpha \approx 90^{\circ}$. In the early literature, detailed anion positions were not known, and it was common to use the smaller cell with $\alpha \approx 90^{\circ}$. However, the anions are generally displaced so as to require the larger unit cell of Fig. 6,

Fig. 6. Rhombohedral ABX, structures: a) anion shifts for symmetry R3c; b) the simplest ionic displacements, corresponding to symmetry $R\overline{3}m$ for ordered $A_3BB^{\dagger}X_6$ structures having $r_{B^{\prime}} > r_B$ [Ra3].

Anion displacements from their ideal positions may be of three different types: (1) AX₃(111) planes remain equidistant from neighboring B-cation (111) planes, leaving all the B-cations equivalent. Within these planes, three A-X distances are reduced and three are enlarged via cooperative rotations of the B-cation octahedra, as shown in Fig. 6(a). (2) The anions may move within pseudocubic {110} planes including the B-B axes so as to create two distinguishable B positions: B positions having a shorter B-X separation and B' positions having a larger B'-X separation. This gives the symmetry R3m, which allows the A cations to be displaced along the [111] axis so as to make the separations $B-A \neq B'-A$. (3) In the most general case, the anion displacements may be decomposed into R3c and R3m components. The resulting symmetry R3 also gives distinguishable B and B' positions via its R3m component.

Although the distinction between these possibilities has been determined in only a few cases, it appears that R3c can be anticipated unless there is a physical reason for creating two distinguishable positions B and B'. This conclusion is based on the fact that LaAlO₃ has been shown to have the symmetry R3c by neutron diffraction, [De14] nuclear quadrupole resonance [Mu5], electron-spin resonance, [Ki3] and x-ray techniques [Ge4b, De17]. It is strongly supported by the observation [Ra3] that LaCoO3 has the symmetry R3c at low temperatures, where all of the trivalent cobalt are in their low-spin state, but has the symmetry R3 at higher temperatures where thermal activation creates a nearly equal population of high-spin and low-spin cobalt ions. These are crystallographically distinguishable, via different ionic radii, as B and B'.

a) ∠

Hu sio

Sir

is

pa:

pe

the

sta

Ref. 1

3.1.3 The influence of localized-electron ordering

3.1.3.1 Crystal-field theory

Crystal-field theory rests on the assumption that the outer electrons to be described are localized at discrete atomic positions. This assumption is valid for outer f electrons; it is valid for d electrons in fluorides and in many oxides. Given this assumption, the Schroedinger equation $\mathcal{H}\psi=E\psi$ that describes the localized orbitals and their energies contains the Hamiltonian

$$\mathcal{H} = \mathcal{H}_0 + V_{el} + V_{cub} + (V_{LS} + V_{ncub} + V_{\lambda} + \sum_{i} V_{ij})$$
 (2)

where \mathcal{H}_0 is the Hamiltonian for a hydrogen-like, spherical potential, $V_{\rm el}$ is the atomic correction for spherical symmetry that enters if there is more than one outer d electron, and $V_{\rm cub}$ is the energy correction due to the cubic component of the crystalline fields. For outer d electrons, $V_{\rm el}$ and $V_{\rm cub}$ are generally ≈ 1 eV, and the ion is in a high-spin or a low-spin state depending upon the relative magnitudes of these two terms. In the case of 3d electrons, the perturbations listed within the parentheses are all < 0.1 eV, and they must be considered simultaneously. $V_{LS} = \lambda L \cdot S$ is the spin-orbit coupling energy, and covalent mixing reduces slightly the parameter λ from its free-atom value. $V_{\rm ncub}$ is the noncubic component of the crystalline field, V_{λ} is the elastic coupling energy associated with cooperative local distortions, and V_{ij} is the magnetic exchange energy coupling localized atomic moments on neighboring cations.

Solution of the zero-order equation $\mathcal{H}_0 \psi = E \psi$ gives hydrogenic wave functions $f_{l,m} = R_l(r) Y_l^m(\theta, \phi)$. From the spherical harmonics $Y_l^m(\theta, \phi)$, the d electrons (l=2) have the following angular dependence and azimuthal-angular-momentum quantum number m derived from $L_z f = -i \hbar \partial f / \partial \phi = m \hbar f$:

$$f_{A} \sim (3z^{2} - r^{2})/r^{2} = (3\cos^{2}\theta - 1); \qquad m = 0$$

$$(f_{D} \pm if_{E}) \sim 2(zx \pm iyz)/r^{2} = \sin 2\theta \exp(\pm i\phi); \qquad m = \pm 1$$

$$(f_{B} \pm if_{C}) \sim (x^{2} - y^{2} \pm i2xy)/r^{2} = \sin^{2}\theta \exp(\pm i2\phi); \qquad m = \pm 2$$
(3)

where θ , ϕ are conventional spherical coordinates. The perturbation $V_{\rm el}$ reflects the fact that outer electrons of parallel spin are excluded from one another and therefore screen each other less from the positive atomic nucleus than do those of antiparallel spin. This correction is responsible for Hund's highest-multiplicity rule for the free atoms. It influences the radial part of the wave function, and hence the relative energies of states of different spin, but not the angular part.

Given the cartesian axes at a B cation formed by the principal axes of its octahedral interstice, the five d orbitals of Eq. (3) are separated into two symmetry groups; f_A and f_B , which are directed along the cartesian axes toward near-neighbor anions, have $E_{\bf g}$ symmetry and are referred to as $e_{\bf g}$ orbitals; $f_{\bf C}$, $f_{\bf D}$, and $f_{\bf E}$, which are more stable because they are directed away from the near-neighbor anions, have $T_{\bf 2g}$ symmetry and are referred to as $t_{\bf 2g}$ orbitals. The principal contribution to the cubic-field splitting 10 Dq of $T_{\bf 2g}$ and $E_{\bf g}$ energies is due to covalent mixing, not to electrostatic energies as calculated on a point-charge model. If covalent mixing with the near-neighbor anionic and A-cationic orbitals is introduced, then the crystalline localized orbitals of $t_{\bf 2g}$ and $e_{\bf g}$ symmetry become

$$\psi_{t} = N_{t}(f_{t} - \lambda_{\pi}\phi_{\pi} + \lambda_{A}\phi_{A})$$

$$\psi_{e} = N_{e}(f_{e} - \lambda_{s}\phi_{s} - \lambda_{\sigma}\phi_{\sigma})$$
(4)

where $f_{\bf i}$ and $f_{\bf e}$ are linear combinations of the atomic $f_{\bf C}$, $f_{\bf D}$, $f_{\bf E}$ and $f_{\bf A}$, $f_{\bf B}$ orbitals. The symmetrized anionic p_n , s and p_σ orbitals are ϕ_n , ϕ_s and ϕ_σ ; the symmetrized A-catonic s, p orbitals are $\phi_{\bf A}$. The covalent-mixing parameters λ_σ , λ_n , $\lambda_{\bf A}$, $\lambda_{\bf s}$ are roughly proportional to the overlap integral for atomic orbitals on neighboring ions and inversely proportional to their energy separation. Initially, the energy separations of cationic d and ϕ_σ or ϕ_n are given by $E_{\bf M}-E_{\bf I}$, the difference between the Madelung energy and ionization potentials for the "effective" ionic charges, so that by symmetry

$$10 \operatorname{Dq} = \Delta_{\mathbf{M}} + (\lambda_{\sigma}^{2} - \lambda_{\pi}^{2}) (E_{\mathbf{M}} - E_{\mathbf{I}}), \lambda_{\pi} < \lambda_{\sigma}$$
 (5)

where $\Delta_{\mathbf{M}}$ is any electrostatic contribution to 10 Dq. The one-electron crystal-field splitting of the d-state manifold is shown in Fig. 7(a). The relationship $\lambda_{\pi} < \lambda_{\sigma}$ has been confirmed by nuclear magnetic resonance studies of KMnF₃, KNiF₃ and K₂NiCrF₆ [Sh30, Hu4]. In these experiments the fractional occupancies by unpaired spins of the 2s, $2p_{\sigma}$, and $2p_{\pi}$ orbitals are:

$$fx_{\rm s} \equiv 2SA_{\rm s}/A_{\rm 2s} \sim N_{\rm e}^2\lambda_{\rm s}^2, \quad fx_{\rm o} = 2SA_{\rm o}/A_{\rm 2p} \sim N_{\rm e}^2\lambda_{\rm o}^2, \quad fx_{\rm n} = 2SA_{\rm n}/A_{\rm 2p} \sim N_{\rm t}^2\lambda_{\rm n}^2$$

where A_8 is the isotropic component and A_{σ} , A_{π} the anisotropic components of the hyperfine interaction tensor A_{ij} entering the nuclear spin-electron spin coupling energy $\Sigma_i I_i \cdot A_{ij} \cdot S_i$. Interpretation of the phenomenological parameters λ_{π} , λ_{σ} and 10 Dq has been discussed extensively [Hu4].

With more than one outer d electron or d hole, it is necessary to introduce V_{el} , which is responsible for Hund's highest multiplicity rule (highest net S and L) for the free atoms. For four outer electrons, the atomic ground term is therefore ^{5}D . In a crystal, this rule may break down as a result of the crystalline

fields. Schematically, the Hund splitting Δ_{ex} for states of different spin and the one-electron splitting 10 Dq may be represented on the same energy diagram, as shown in Fig. 7(b). It follows from this figure that with four to eight outer d electrons, the magnitude of the net ground-state spin depends upon whether $(\Delta_{ex} - 10 \text{ Dq})$ is positive or negative. If $\Delta_{ex} > 10 \text{ Dq}$, the ion is in a high-spin state; if $\Delta_{ex} < 10 \text{ Dq}$,

Fig. 7. One-electron crystal-field splitting of the d-state manifold of a transition-metal B cation in a cubic perovskite: a) $\Delta_{ex} = 0$ and b) schematically for $\Delta_{ex} \neq 0$, corresponding to more than one outer d electron.

Hund's rule breaks down and the ion is in a low-spin state. Since $\Delta_{\rm ex}$ decreases with larger radial extension of the crystalline wave functions, it decreases with increasing covalent-mixing parameters λ_{σ} , λ_{n} . Simultaneously, from Eq. (5) it follows that 10 Dq increases with increasing covalency. Therefore there is a critical amount of covalent bonding beyond which Hund's rule breaks down. Covalency with a particular anionic sublattice increases with cationic charge and on going to the right through any long period of the periodic table. In oxides with the perovskite structure, only divalent and trivalent ions of the first long period are high-spin. Of these, trivalent nickel is low-spin and trivalent cobalt exhibits a variable high-spin to low-spin population as a function of temperature.

In general, it is necessary to use a multi-electron notation for the outer d electrons. Whereas atomic D states are split by the crystalline fields as shown in Fig. 7, atomic F states are split as shown in Fig. 8.

Fig. 8. Octahedral-site splitting of atomic F states: a) two-electron *F states and b) two-hole *F states.

Because the operator $L_z=-i\,\hbar\partial/\partial\phi$ is imaginary, the crystal-field splitting of f_B and f_C quenches the orbital angular momentum associated with these orbitals, so that the e_g orbitals have m=0, 0 and the t_{2g} orbitals have $m=0,\pm 1$. An isomorphism between f_C , f_D , f_E and atomic P orbitals simplifies calculation of V_{LS} . It is possible to treat the t_{2g} orbitals as atomic P orbitals if the sign of the spin-orbit-coupling

parameter λ is reversed [Gr9]. Therefore ground states having an orbital degeneracy and $m \neq 0$ are split by V_{LS} into (2J+1) multiplet states corresponding to states of different J=L+S. However, the order of the levels is inverted (largest J lowest for less than five d electrons, smallest J lowest for more than five d electrons) because of the change in sign of λ . According to the Landé interval rule, the separation between states J and J+1 is $|\lambda|$ (J+1). The first-order multiplet splittings, which do not include mixing of higher states of similar symmetry, are shown in Fig. 9 for Fe²⁺ and Co²⁺ ions. Note that the term is now identified by its symmetry character T_{2g} or T_{1g} rather than by its atomic orbital-momentum character D or F. Tab. 1 summarizes the various symmetry notations for different spin states.

Fig. 9. Schematic spin-orbit plus trigonal-field, or tetragonal-field, splittings of cubic-field levels as a function of the ratio $\delta/(-\lambda)$ for a) ${}^5T_{2g}$ level of Fe²⁺ and b) ${}^4T_{1g}$ level of Co²⁺.

Spin-orbit coupling introduces an axial symmetry to the charge distribution, where the spin (or atomic-moment) defines the axis. Therefore, if there is a noncubic component to the crystalline field $(V_{\text{neub}} \neq 0)$, then there is a spin-lattice interaction via the orbital-lattice interaction that introduces a magnetic anisotropy. For localized electrons, this is a local, one-ion anisotropy. Conversely, if the spins are ordered below some transition temperature, then the local interstices have time to relax about the noncubic charge distribution, thereby distorting the octahedral site. Therefore there is an intimate connection between the noncubic symmetry and the magnitude of the multiplet splitting. The noncubic component is usually parametrized as

$$V_{\text{n cub}} = \delta(L_z^2 - \frac{2}{3}),\tag{6}$$

and Fig. 9 includes the total perturbation $V_{LS} + V_{\text{neub}}$ of the one-electron and two-electron ground states. With one or two holes in a half-shell, the one-electron and two-electron energy diagrams are inverted. In these cases $M_L = \Sigma_l m_l = 0$, so that $V_{LS} = 0$, and there is no multiplet splitting.

Tab. 1 also displays the general ground-state wave functions for a magnetically ordered phase having collinear spins. The coefficients a_1 , a_2 , a_3 of the Kramers' doublets and b_1 , b_2 of the singlets all depend upon the relative magnitudes of the five perturbation terms $V_{LS} + V_{\text{neub}} + V_{\lambda} + \mathscr{H}_Z$ where \mathscr{H}_Z is the Zeeman energy due to the internal molecular field resulting from magnetic order. The molecular-field approximation is used for the first-order, isotropic magnetic-coupling energy \mathscr{H}_{ex} , which is the dominant term in Σ V_{1j} [see discussion of Eq. (13)]. This gives

$$\mathcal{H}_{\mathbf{Z}} \approx 2J_{\mathbf{p}} \langle S \rangle S_{\mathbf{z}} \tag{7}$$

where J_p , the sum of all near-neighbor exchange parameters, can be determined from the temperature dependence of the magnetic susceptibility and z is along the axis of the average spin $\langle S \rangle$ on the neighboring cations. This term contributes to the spectroscopic-splitting factor g, and hence to the net atomic moment, if $V_{LS} \neq 0$. In Tab. 1, the components of the wave functions are designated by the notation $|M_L, M_S|$, where M_L, M_S are the azimuthal quantum numbers for the net orbital and spin momenta.

is .r-.e

<u> </u>	Tab. 1. L	owest t	erms a	nd grou	nd state	Tab. 1. Lowest terms and ground state wave function for octahedral-site cations having n localized outer d electrons	n localized outer d electrons
	noI	ts en	Vel	Vcub	V_{LS}	$V_{LS} + V_{n \operatorname{cub}}(\delta < 0) + \mathcal{H}_{Z}$	$V_{LS} + V_{n \operatorname{cub}}(\delta > 0) + \mathcal{H}_{Z}$
	1 Ti3+, V4+, W5+, Re6+	t1 e0	ů.	2T2g		-+1,+	$ a_1 0, +\frac{1}{2} > +a_2 +1, -\frac{1}{2} >$
		1260		3.7.18	J = 2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1-03-
		1360		4A2R	 	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	4 Cr²+, Mn³+	t361	ð	2 €	J = 2	$^{\circ}B_{1g}\mid 0, +2>$	
	FeIV, RuIV, OsIV	24 G0		$^3T_{1g}$	J=0	$ b_1 +1, -1>+b_2 0, 0>+b_1 -1, +1>$	$ b_1 +1, -1 > +b_2 0, 0 > +b_1 -1, +1 >$
	5 Mn ²⁺ , Fe ³⁺	1362	် လ	8A18	7 = 25	0, +毫 >	0, +毫 >
	IrIV	15 60		$^2T_{2g}$	<u>}</u> = }	$ a_1 0, +\frac{1}{2} > +a_2 +1, -\frac{1}{2} >$	$ a_1' 0, +\frac{1}{2} > +a_2' +1, -\frac{1}{2} >$
	6 Fe ²⁺ , Co ³⁺	£4 €2	ů	5 T 2g	J = 1	$ a_1 -1, +2 > +a_2 0, +1 > +a_3 +1, 0 >$	$ b_1 +1, -1>+b_2 0, 0>+b_1 -1, +1>$
		16 60		1A1g	J=0	< 0,0	(0,0)
	7 Co ²⁺	€5 €2	4 H	4 T18	$J = \frac{1}{2}$	$ a_1 -1, +\frac{3}{2} > +a_2 0, +\frac{1}{2} > +a_3 +1, -\frac{1}{2} >$	$ a_1 -1, +\frac{3}{2}+a_2^2 0, +\frac{1}{2}>+a_3^2 +1, -\frac{1}{2}>$
		te e₁		2E,	\$ = <u>f</u>		
		18 62	3F	3A.	I = 1	0, +1 >	0, +1 >
	3 + ' - ' - ' - ' - ' - ' - ' - ' - ' - '	16,03	. [2	2 H 2	* = 1	2B. 10. +\ >	2A, 0 + >
) -	be	N .	7 - 7 - 197	
				,			
_							
						•	
13							

Ref.

th€

tha

du-

of:

als

ab

an

ap

th

rei

OI

th

th.

fie

Ja

th

fo

th

si te fi (d

3.1.3.2 Jahn-Teller distortions

If the cubic-field ground state of the B cation is an orbitally two-fold-degenerate $E_{\rm g}$ state, then the $t_{\rm 2g}$ orbitals are either full or half-filled, so that $M_L=0$, and there is no spin-orbit coupling ($V_{LS}=0$). Jahn and Teller [Ja6] have shown that, if there is no perturbation available to remove a ground-state orbital degeneracy, then there will be a spontaneous distortion to lower local symmetry below some transition temperature $\Theta_{\rm trans} < T_{\rm melt}$ where $T_{\rm melt}$ is the melting point. Since the energy gained by a local distortion is reduced by the work done against the elastic restoring forces of the crystal, transition temperatures $\Theta_{\rm trans}$ are small for isolated ions. However, if all of the B cations are similar, then cooperative distortions are possible, and the net energy gained per ion is much greater because of the elastic-coupling energy V_{λ} of Eq. (2). Such a cooperative phenomenon is characterized by thermal hysteresis and a definite (usually first-order) transition temperature. Since they are due to electronic ordering, such transitions are martensitic.

Van Vleck [Va15] pointed out that the normal vibrational modes that split an $E_{\mathfrak{g}}$ electronic state are themselves twofold-degenerate with symmetry $E_{\mathfrak{g}}$. One mode gives the interstice a tetragonal distortion, the other an orthorhombic distortion. It follows that, from first-order theory, there is no static distortion of the interstice, only a dynamic coupling between the electronic charge density and the vibrational modes. Moreover, this dynamic coupling greatly enhances the two $E_{\mathfrak{g}}$ vibrational modes and gives a dynamic splitting of the electronic $E_{\mathfrak{g}}$ state. This mechanism has important consequences for the acoustic properties and, as discussed in 3.3, for the sign of the magnetic superexchange coupling.

Inclusion in the theory of higher-order coupling terms and anharmonic elastic terms shows that a static, tetragonal (c/a > 1) distortion of the interstice is stable below some Θ_{trans} [Ka10]. This sign for the static distortion was first established experimentally through the interpretation [Go15] and further study of cooperative tetragonal-to-cubic transitions in spinel systems. However, application to the perovskites requires a solution of the lowest-energy cooperative distortion via inclusion of the elastic-coupling energy V_{λ} . Goodenough [Go6] proposed that individual tetragonal (c/a > 1) octahedra order their long axes alternately along [100] and [010] axes of the pseudocubic cell. Kanamori [Ka10] generalized this solution to include an orthorhombic component to the local-octahedron distortions. This gives B-B separations within (001) planes having a long (l) and a short (s) B-X separation and along the [001] axis two intermediate (m) B-X separations where s < m < (l + s)/2. This prediction was later verified by Hepworth and Jack [He9] for \square MnF₃ and by Okazaki [Ok1] for KCuF₃ (see Fig. 10). Superposition of this distortion on an O-orthorhombic cell stabilizes the unique axis along the orthorhombic c-axis, and

 $l = 2.1 \, \text{Å} \, , \, \, m = 1.9 \, \text{Å} \, , \, \, S = 1.8 \, \, \text{Å} \, , \, \, \phi_C = 194^\circ , \, \, \phi_{\alpha b} = 148^\circ$

Fig. 10. Cooperative Jahn-Teller distortions in a) $\square MnF_3$ and b) KCuF₃. c) Configuration of hole-orbitals at Cu²⁺ ions of tetragonal KCuF₃ [He9, Ok1].

0).
idne
:al

F,

the axial ratios of the O-orthorhombic cell are transformed from $a < c/\sqrt{2}$ to $c/\sqrt{2} < a$. To signal the fact that a Jahn-Teller distortion (with or without spin-orbit coupling) has been superposed on a distortion due to relative ionic sizes, the notation O'-orthorhombic is used in Tab. 2 wherever $c/\sqrt{2} < a$.

The important B cations that exhibit dynamic and static Jahn-Teller stabilizations in the absence of spin-orbit coupling are: $Cu^{2+} {}^2E_g(t_{2g}^6e_g^3)$, Cr^2+ and $Mn^{3+} {}^5E_g(t_{2g}^3e_g^4)$, $Ni^{III} {}^2E_g(t_{2g}^6e_g^2)$, where Roman numerals are used for the valence state of a low-spin cation. Tab. 2 shows that O'-orthorhombic symmetry above a magnetic-ordering temperature is associated with these ions, provided the d electrons are localized, and only with these ions, with the exception of $LaVO_3$ and $CeVO_3$, where sharply enhanced distortions appear abruptly below Θ_N [Ro3; Go10]. The cubic ${}^3T_{1g}$ state of V^{3+} is orbitally threefold-degenerate, so that it may induce small distortions above Θ_N , larger distortions below Θ_N (see discussion Go14). LaNiO₃ remains $R\bar{3}c$ because the e_g electrons are collective. In $La_2Li_{0.5}Ni_{0.5}O_4$ crystals, on the other hand, the ordered Ni^{III} ions have localized e_g electrons, and there is a tetragonal (c/a > 1) distortion. The sign of this distortion is manifest by the large c/a ratio. Strictly speaking, this is not a Jahn-Teller distortion, since the K_2NiF_4 structure is tetragonal, but ordering of the localized electron of unpaired spin in the tetragonal field distorts the Ni^{III} octahedra to tetragonal symmetry with axes parallel to the unique axis. Pure Jahn-Teller distortions can be distinguished from distortions associated with spin-orbit coupling because they are independent of magnetic order and generally occur at a Θ_{trans} above the magnetic-ordering temperature.

3.1.3.3 Spin-orbit coupling

B cations having cubic-field ground-state terms T_{2g} or T_{1g} are orbitally threefold-degenerate with $M_L=0,\,\pm 1$, so that $V_{LS}\neq 0$. The combined perturbations $V_{LS}+V_{\rm ncub}$ separate into secular equations for different M_J , as shown in Fig. 9. With a single outer electron, the $^2T_{2g}$ cubic-field term is split in two, the energies for different M_J shifting by

$$E_{3/2} = \frac{1}{3}\delta - \frac{1}{2}\lambda E_{1/2}^{\pm} = -\frac{1}{6}\delta + \frac{1}{4}\lambda \pm \frac{1}{2}\{\delta^2 + \lambda\delta + (\frac{3}{2}\lambda)^2\}^{1/2}$$
(8)

where $\lambda > 0$. In a cubic field

$$E_{3/2} = E_{1/2}^{-} = E_{1/2}^{+} - \frac{3}{2}\lambda, \tag{9}$$

and spin-orbit coupling leaves an orbitally twofold-degenerate ground state. Therefore it is necessary to consider an additional Jahn-Teller stabilization via $V_{\text{ncub}} + V_{\lambda} + \mathcal{H}_{Z}$. Goodenough [Go14] has shown that it is necessary to consider two temperature regions: $T > \Theta_{N}$ and $T < \Theta_{N}$, where Θ_{N} is the temperature below which the spins order collinearly. In the paramagnetic domain $T > \Theta_{N}$, the molecular fields vanish ($\langle S \rangle = 0$) and, from Eq. (7), $\mathcal{H}_{Z} = 0$. In this case, the ground-state energy varies as (δ^{2}/λ) . Since the work done against elastic restoring forces is $q_{2}\delta^{2}$, there is a spontaneous Jahn-Teller distortion, corresponding to $\delta > 0$, at a $\Theta_{\text{trans}} > \Theta_{N}$ only if the product λq_{2} is relatively small. In the magnetically ordered state ($T < \Theta_{N}$), on the other hand, there is an internal molecular field H_{int} at each atom, which produces a Zeeman splitting of the orbitals of different spin. The magnitude of this splitting depends upon the spectroscopic splitting factor, which has the components

$$g_{\parallel} = 2 - 2g_1(\delta/\lambda) \text{ and } g_{\perp} = 2 + g_1(\delta/\lambda)$$
 (10)

where $g_1>0$. Therefore the Zeeman splitting in the molecular fields is maximized by making $\delta<0$ and having the spins parallel to the unique axis defined by δ . Further, this energy is linear in δ , so that a spontaneous distortion should occur at some $\Theta_{\text{trans}}<\Theta_{\text{N}}$. A similar argument holds for the orbitally twofold-degenerate J=1 and $J=\frac{1}{2}$ states of octahedral-site Fe²⁺ ${}^5T_{2g}$ and Co²⁺ ${}^4T_{1g}$.

In summary, if multiplet splitting leaves a ground state with a twofold, accidental orbital degeneracy, then there is a spontaneous Jahn-Teller distortion at some Θ_{trans} that removes this degeneracy. If $\Theta_{\text{trans}} > \Theta_{\text{N}}$, then $\delta > 0$. However, this alternative requires special crystallographic conditions that do not appear to be met in perovskites. On the other hand, a $\Theta_{\text{trans}} \leq \Theta_{\text{N}}$ and $\delta < 0$ can be generally anticipated wherever the spins order collinearly and the d electrons are localized. Further, from Eqs. (3) and (6), it follows that T_{2g} states (one outer t_{2g} electron) have $\delta < 0$ if the site symmetry is tetragonal (c/a > 1), whereas T_{1g} states (two outer t_{2g} electrons) have $\delta < 0$ if it is tetragonal (c/a < 1). Alternatively, distortions of the site symmetry may be to trigonal symmetry. A $\delta < 0$ corresponds to $\alpha < 60^{\circ}$ for T_{2g} states, to $\alpha > 60^{\circ}$ for T_{1g} states. These relationships are also summarized in Tab. 1. Experimentally, Fe²⁺⁵ T_{2g} octahedra become trigonal $(\alpha < 60^{\circ})$ below Θ_{N} , as exhibited by KFeF₃, whereas Co²⁺⁴ T_{1g} octahedra become tetragonal (c/a < 1) below Θ_{N} , as exhibited by KCoF₃. Where $\Theta_{\text{trans}} = \Theta_{\text{N}}$, the magnetic ordering temperature may be first-order. In addition, the spontaneous distortions introduce large magnetostriction and magnetic anisotropy.

The cubic-field ground state of V^{3+} $^3T_{1g}$ is orbitally threefold-degenerate. As a result, any spontaneous distortion must correspond to $\delta < 0$, i.e., tetragonal (c/a < 1) or trigonal $(\alpha > 60^{\circ})$. However, as in the other cases a $\Theta_{\text{trans}} \lesssim \Theta_{\text{N}}$ is to be expected in the perovskite structure. The V^{3+} ion generally occurs in an O-orthorhombic perovskite, and superposition of a tegragonal (c/a < 1) distortion with coincident unique axes again results in O'-orthorhombic symmetry. The perovskite LaVO₃ exhibits an abrupt contraction of the c-axis on cooling through Θ_{N} .

site

nun

 Y^{3+}

stat

any

at tl the

non

neoi

sym this

cha: axis orbi alor

pos:

tha

bon

nun

strc

que

illu:

pola

elec

cati

bv : the:

a fe

ture

the

dist

or I

ᢙ

Fig.

0

Ref.

3.1.4 The influence of collective-electron ordering

3.1.4.1 Band theory

Conventional band theory rests on three principal assumptions: (1) A description of the outer electrons may be built up from solutions of a single electron moving in a periodic potential. (2) Multiplet structure on individual atoms may be disregarded. (3) Electron-phonon interactions may be treated as a small perturbation. For an infinite crystal, the unperturbed solution of running waves in a periodic potential gives the Bloch functions and energies

$$\psi_{km} = \exp(i \mathbf{k} \cdot \mathbf{r}) u_{km}(\mathbf{r}); E_k = E_0 + \hbar^2 k^2 / 2m^*$$
 (11)

where $\hbar k$ is the momentum of an electron of effective mass m^* and $u_k(r)$ is a periodic function. In the tight-binding approximation appropriate for narrow bands, the Bloch functions are

$$\psi_{\bf k}({\bf r}) = 1/\sqrt{N}\sum_{n=1}^N \exp\left(i\,{\bf k}\cdot{\bf R}_n\right)\,w({\bf r}-{\bf R}_n)$$
 where $w({\bf r}-{\bf R}_n)$ is a localized wave function for the atom at ${\bf R}_n$ defined by

$$w(\mathbf{r} - \mathbf{R}_{\mathrm{n}}) = 1/\sqrt{N} \Sigma \exp\left[i \, \mathbf{k} \cdot (\mathbf{r} - \mathbf{R}_{\mathrm{n}})\right] u_{\mathbf{k}}(\mathbf{r})$$

and $u_k(r)$ is a localized crystalline orbital. At the Brilloin-zone boundries defined by

$$2\mathbf{k} \cdot \mathbf{K} + |\mathbf{K}|^2 = 0, \tag{12}$$

where K is a reciprocal lattice vector, there are energy discontinuities in energy-momentum space. In polar insulators, this introduces an energy gap $E_{\mathbf{g}}$ between occupied, primarily anionic states and empty, primarily cationic states. Cooperative displacements δ of the cationic sublattice relative to the anionic sublattice may increase this gap, thereby stabilizing the total energy of the occupied states by $\epsilon_2 \delta^2$. Since the resulting elastic-strain energy is $q_2 \delta^2$, there can be a spontaneous displacement only for the exceptional case $q_2 < \epsilon_2$ and a ground state corresponding to a small distortion parameter δ . In this case vibrational entropy may stabilize the higher symmetry at the higher temperatures. This differs from the usual criterion for spontaneous distortions, where a term linear in δ is identified. There appear to be two situations occurring in perovskites where the requirement $q_2 < \epsilon_2$ is met: (1) Where B-cations have empty d orbitals, there is a critical range of covalent-mixing parameters through which the site preference changes from octahedral to tetrahedral. In this range q_2 is very small for B-cation displacements within an octahedron that reduce the coordination number from six towards four. The origin of the small q_2 is a balance of the electrostatic energy lost and covalent-bond energy gained on going to smaller anion coordination. (2) The high polarizability of the outer core electrons of Pb²⁺ and Bi³⁺ ions makes q_2 relatively small, so that displacements that permit a relatively large ε_2 can occur spontaneously.

What distinguishes these spontaneous distortions from those due to an ordering of localized electrons is the displacement of the cations from the centers of symmetry of their interstices. (The Jahn-Teller distortions, with or without spin-orbit coupling, leave the cations in the centers of symmetry of their interstices.) Unlike the structures, such as corundum, where pairs of octahedra share a common face, these cationic displacements from the centers of symmetry of their interstices do not follow from pointcharge electrostatic arguments. In polar insulators, these displacements lead to ferroelectricity or antiferroelectricity, and they often induce displacements of neighboring cations. Further, where the requirement $q_2 \approx \varepsilon_2$ occurs just above Θ_{trans} , there must be a strong interaction of the bonding (mostly anionic) electrons with those vibrational modes that anticipate the cooperative ionic displacements below Θ_{trans} These "soft" vibrational modes impart several anomalous physical properties, including a high electric

susceptibility.

3.1.4.2 Distortions due to B-X bonding

Transition-metal cations having no outer d electrons have the following site preferences:

Sc*1	Ti^{4+}	V5 +	Cr ⁶ i	Mn ⁷ F
Y3+	Zr^{4+}	N b5+	Mo ⁶⁺	Tc7+
	H{4+	Ta5+	We+	Re7+

where cations at the left of each row have definite octahedral-site (or larger anion coordination) preference and those to the right have definite tetrahedral-site preference. Those underlined by a solid line may be stabilized in the octahedral sites of a perovskite-type structure, but they tend to induce spontaneous ferroelectric or antiferroelectric distortions, the ions moving cooperatively out of the centers of symmetry of their interstices. The ions underlined by dashed lines only occur in ordered perovskites A2BB'O6 and A₃BB₂O₉. In general, they are found in tetrahedral sites or in strongly distorted octahedral sites. However, in the ordered perosvkites they are able to strongly polarize the anion near neighbors so as to stabilize the octahedral symmetry.

ns re ill

1) he

In ty, nic ice nal nal nal

ıa-

ges taice on.

ons ler .eir .ce, nt-

retic)

nce
be
ous
try
and

ow-

lize

It is significant that spontaneous ferroelectric distortions are only induced by B cations if these are transition-metal cations having empty d orbitals. It is also significant that the change from octahedral-site to tetrahedral-site preference is associated with a relative stabilization of the d orbitals (larger atomic number in any long period) as well as with a decrease in ionic size. (The ionic radii decrease in the order Y³+, Sc³+, Hf⁴+, Zr⁴+, Ta⁵+, Nb⁵+, Ti⁴+, W⁶+, Mo⁶+, Re²+, V⁵+, Tc²+, Cr⁶+, Mn²+). The greater the relative stability of the d orbitals, the larger are the parameters λ_{σ} and λ_{π} of Eq. (4), and these are enhanced by any displacement that decreases a B-X separation. Such an enhancement stabilizes the occupied states at the expense of the d states, and a net stabilization can occur if the d states are empty. Also the smaller the cationic size, the smaller the elastic resistance to displacements within an octahedral interstice. (Phenomenological ionic models for the ferroelectric distortions have also been given [Me7, Ha33].)

There are three B-cation displacements relative to their octahedral interstices that would simultaneously stabilize the occupied anionic p_n orbitals relative to the unoccupied t_{2g} orbitals: (1) Tetragonal symmetry. Displacements along an [001] axis that create alternate long and short B-X distances along this axis would stabilize s, p_{σ} and the two p_n orbitals per anion on this axis and strongly polarize the charge density toward the short B-X separation. (2) Orthorhombic symmetry. Displacement along a [110] axis that created two shortest and two longest B-X distances would stabilize the s, p_{σ} and the two p_n orbitals per anion on two out of the three cartesian axes. (3) Rhombohedral symmetry. Displacement along a [111] axis would stabilize the s, p_{σ} and the two p_n orbitals per anion on all the anions. These three

possibilities are illustrated in Fig. 11. Such distortions also induce changes in the A-X separations, and the particular cooperative distortion that is stabilized depends upon the character of the A-X bonding. The covalency contribution to the A-X bond increases with formal A cationic charge; for a fixed charge it decreases with increasing atomic number of the A cation down any column of the periodic table. If A-X covalent bonding is relatively strong and the perovskite is distorted to O-orthorhombic symmetry, all ferroelectric distortions may be quenched because the p_{π} orbitals are stabilized by σ -bonding with the A cations. This appears to be illustrated by CaTiO₃, and almost so by SrTiO₃. On the other hand, if the A atom is stabilized by a polarization of its outer core electrons (Pb2+ and Bi3+ as discussed in 3.1.4.3), then a tetragonal, ferroelectric distortion is stabilized so as to allow a cooperative displacement of the A and B cations, the A cation moving along the [001] axis to stabilize two p_{π} orbitals per anion not on [001] axes. This is illustrated by the PbTiO₃ structure of Fig. 12. If the covalency contribution to the A-X bonding is relatively weak, then the B-X covalency contribution should dominate. For large A cations (t > 0.9), this would stabilize a ferroelectric, rhombohedral distortion at lowest temperatures, as illustrated by BaTiO₃. As the temperature increases, successive distorted structures $(R_B^F \to O_B^F \to T_B^F \to C)$ introduce incremental additions to the entropy. However, a small A cation and weak A-X covalency contribution may lead to a ferroelectric distortion superposed on the O-orthorhombic structure to give the O*B-orthorhombic structure of CdTiO3 or NaTaO3 shown in Fig. 13. Even more complex distortions are found in NaNbO3 [Vo6]. The room-tem-

Fig. 11. Possible B-cationic displacements within their octahedra in ferroelectric or antiferroelectric distortions.

and b) environment of Pb [Sh21].

b) NaTaO, [Ka22].

Fig. 12. Tetragonal PbTiO₃: a) environment of Ti

are

str

the

b-a

(b :

a-b

th€

sm

sm

res

lar

bij

an

ex

OC.

en

in:

s

t

1

perature form has parallel pairs of (001) NbO₂ planes coupled antiparallel to give an antiferroelectric phase, as shown in Fig. 14. The Na atoms are also displaced antiparallel to one another.

3.1.4.3 Distortions due to core polarization: Pb2+ and Bi3+

Lead and bismuth are heavy ions, and the 6s orbitals are sufficiently more stable than the 6p orbitals that Pb²⁺ and Bi³⁺ ions are commonly stable. However, the outer $6s^2$ core electrons have a relatively large radial extension, making the ionic radius large, and this reduces the overlap of the 6p orbitals with the orbitals on near-neighbor anions. This reduction in overlap reduces the strength of the A-X bond. However, hybridization of 6s and 6p orbitals, which costs the energy separation of 6s and 6p orbitals, produces a polarization of the outer-core electrons, so that the effective ionic radius is much smaller on one side of the cation than on the other. This permits the formation of a much more stable bond on one side of the cation, and the energy gained in this bonding may be greater than the hybridization energy required to polarize the core. It is for this reason that Pb²⁺ and Bi³⁺ ions are stabilized in many crystals with an asymmetric anion coordination.

There are three possible displacements of the A cations that would stabilize the anion p_{π} orbitals (which σ -bond with the A cations): (1) Tetragonal symmetry. Displacement of the A cations along [001] axes to stabilize the two p_{π} orbitals per anion not on [001] axes, as found for PbTiO₂ (see Fig. 12). (2) Orthorhombic symmetry. Displacement of the A cations along [110] axes to stabilize strongly one p_{π} orbital per anion on [001] axes. The smallest induced distortion of the B-cation octahedra occurs for an antiferroelectric displacement of the type illustrated by PbZrO₃, Fig. 15. (3) Rhombohedral symmetry. Displacement of the A cations along [111] axes to stabilize strongly one p_{π} orbital per anion. To be cooperative, such a distortion must be ferroelectric, as in BiFeO₃, Fig. 16. Further, since the A cation is moved toward a B cation, there is an electrostatic repulsion between them that displaces the B cation from the center of symmetry of its interstice.

Given spontaneous distortions due to A-cation displacements, there remains the possibility that electron ordering among localized d electrons on B cations can superpose an additional distortion. Whether this is the origin of the triclinic symmetry reported for ferromagnetic $BiMnO_3$, where Mn^3+ is a Jahn-Teller ion, is not known.

Fig. 14. Ionic displacements in orthorhombic NaNbO₃. The shifts of the anions in NbO₃ planes and the small r shifts of the Nb ions have been omitted for clarity [Vo6].

Fig. 15. a) Pb-ion shifts (\approx 0.26 Å) in a (001) plane of antiferroelectric PbZrO₃. b) Distorted Zr octahedra as a result of simultaneous anion displacements. Zr-O distances are given in [Å] [Sa8, Jo5].

er .n-

3.1.4.4 Competitive phases

A few compounds have atomic radii compatible with the formation of a perovskite phase and yet are stabilized in other structures at ordinary temperature and pressure. Two important competitive structures of this type are represented by YAlO₃ and PbRuO₃. Both of these compounds convert to the perovskite structure under hydrostatic pressure.

The hexagonal YAlO₃ structure of Fig. 17(a) consists of close-packed layers having the sequence b-a-b'-a-b'-a-b'-c-b' c-c-b, where b is an A-cation layer, b' is a B-X layer with anions stacked beneath A cations (b stacking) and B cations in the trigonal bipyramids formed by face-shared tetrahedra in the hexagonal a-b-a or c-b-c anion-stacking sequence. The structure apparently forms because both the A cations and the B cations simultaneously approach the lower limit for cationic size: $r_B = 0.51$ Å, $r_A = 0.90$ Å. The small Al³+ ion is relatively stable in the five-fold coordination of the trigonal-bipyramid sites, and the small Y³+ ion is more stable in an eightfold (or 6 + 2) coordination instead of a twelvefold (or 9 + 3) coordination. These site preferences reflect an increased stabilization of the bonding, anionic orbitals as a result of closer cation-anion distances.

The antiferromagnetic, ferroelectric compound YMnO₃ has a similar structure, but with an a-axis $\sqrt{3}$ larger than that of YAlO₃ to give six molecules per unit cell. The Mn³+ ion can be stabilized in a trigonal-bipyramid site because it has four outer d electrons with configuration $e_{\sigma}^2 e_{\sigma}^2 a_{\alpha}^0$, where the empty a_1 orbital is directed along the c-axis to bond covalently with the two collinear oxygen ions. The larger unit cell and the ferroelectricity are reflected in the complex magnetic order shown in Fig. 17 (b). Below Θ_N , exchange striction favors antiferromagnetic Mn-O-O-Mn interactions. The ferroelectric transition that occurs above 600 °C is apparently due to the relatively large size of the Mn³+ ion, which creates a large enough interstice for the Y³+ ion that it is stabilized by a displacement from the center of symmetry of its interstice so as to lower its near-neighbor anion coordination from eight toward seven.

Fig. 16. Structure of BiFeO₃ showing displacements in perovskite subcell [MiO].

Fig. 17. a) Comparison of the unit cells of YAlO₃ (solid lines) and YMnO₃ (dashed lines). b) Magnetic structure of YMnO₃ [Be36, Be39]. a = 3.678 Å, c = 10.52 Å for YAlO₃.

Cubic $PbRuO_3$ gives an x-ray pattern of the pyrochlore structure, corresponding to chemical formula $A_2B_2O_7$, and therefore may be written as $Pb_2Ru_2O_6\oplus$. This structure is competitive with the perovskite structure in several PbB^4+O_3 compounds. It has been shown [Lo4] that the anion vacancies \oplus are located at the centers of Pb^2+ -ion tetrahedra sharing common corners and that the electrostatic repulsion between the Pb ions may be counteracted by a transfer of the two outer-core electrons per Pb ion to the \oplus sites, which act as traps for four electrons per vacancy. Thus the outer core electrons at the Pb^2+ ions induce a completely new structure rather than a ferroelectric-type displacement of the A-cations within the perovskite structure. This new structure contains B cations in corner-shared octahedra, as in perovskite, but the B-X-B angle is reduced to about 135°. This structure is also stabilized in AgSbO₃ [Sc22] presumably because there is a small effective charge on the Ag+ ions. The pyrochlore $A_2B_2O_7$ structure itself is competitive if attempts are made to force a low valence state on one of the cations.

Ref

.....

3.1.5 Structures encountered with ordered B, B' cations

3.1.5.1 Same B atom

There are three ways of creating two different cations from the same atom:

- (1) Two A cations of different valence can create two different valence states of the same B atom, and these may order at lower temperature as a result of different cationic charge. The ordering temperature may be quite low, since only electron transfers are required for cationic ordering. This is illustrated by $(La_{0.5}Ca_{0.5})$ $(Mn_{0.5}^{3+}Mn_{0.5}^{4+})O_3$, which has the Mn^{3+} , Mn^{4+} ordering in a rocksalt-type array. Because $Mn^{3+}(t_{2g}^3e_0^2)$ is a Jahn-Teller ion having localized outer d electrons, there is also a cooperative distortion to tetragonal (c/a > 1) symmetry of the Mn^{3+} -occupied octahedra, and the ordering of these distortions gives a macroscopic distortion to tetragonal (c/a < 1) symmetry (see Fig. 26).
- (2) Where the energy difference between the high-spin and low-spin states of the B cation are nearly equal, the populations of the two energy states approach each other at higher temperatures. In LaCoO₃, high-spin Co³⁺ and low-spin Co^{III} are separated by only $E_{3+}-E_{III}\approx 0.08$ eV, and the populations of the two spin states are nearly equal at 400°K. This temperature is sufficiently low that ordering of the two different spin states occurs above this temperature, and the symmetry changes from R $\overline{3}$ c to R $\overline{3}$ [Ra3]. In this case, it is the difference in ionic size and covalent bonding, which results in a difference in the effective ionic charge—not the formal ionic charge—that is the driving force for the ionic ordering.
- (3) Disproportionation of B^{m+} cations into $B^{(m-1)+}$ and $B^{(m+1)+}$ cations may create ions of different size and charge that become ordered. This is illustrated by $\square PdF_3$, which has been shown by magnetic susceptibility measurements to be $Pd^2+Pd^{IV}F_6$ [Ba19]. (The A cation is missing.) Such a disproportionation permits the formation of $(PdF_6)^{2-}$ clusters in which the anionic orbitals are stabilized by strong covalent mixing with the σ -bonding 4d orbitals of e_g symmetry. This is accomplished by a shifting of the F^- ions toward the Pd^{4+} ions and away from the Pd^{2+} ions. Simultaneously, the anionic shift reduces covalent mixing in the occupied, antibonding 4d orbitals of e_g symmetry at the Pd^{2+} ions. These orbitals are therefore localized and further stabilized by intra-atomic exchange (Hund splitting), so that each Pd^{2+} ion carries an atomic moment of $2\mu_B$. Were there no disproportionation, the single electron per-low-spin Pd^{III} ion would occupy antibonding e_g orbitals that were more unstable than the occupied, localized e_g orbitals at the Pd^{2+} ions. However, the transformation $2 Pd^{III} \rightarrow Pd^{2+} + Pd^{IV}$ costs ionization energy, and this is usually too large (as in $LaNiO_3$) for disproportionation to occur.

3.1.5.2 Different B atoms

There are many examples of ordered B, B' structures in compounds having different B atoms: $A_2^+B^+B^{13}+F_6$; $A_2^2+B^3+B^{15}+O_6$, $A_2^2+B^2+B^{16}+O_6$, $A_2^2+B^2+B^{14}+O_6$, $A_2^3+B^2+B^{15}+O_6$, and $A_3^2+B_2^3+B^{16}+O_9$. In the $A_2BB^!X_6$ group, ordering is on alternate (111) planes of B cations, in the $A_3B_2B^!X_9$ group the B' cations occupy every third B-cation (111) layer, Fig. 1(c). The probability for an ordered arrangement of the B, B' cations is determined by the differences between their ionic charges and their ionic radii [Fe22, Fe23, Ga1, Ga10]. To first approximation, the order-disorder transition temperature Θ_{ord} induced by the charge difference $\Delta q = (q'-q)$ at cations B' and B is $\Theta_{\text{ord}} \sim (\Delta q)^2$. Thus superstructure has been observed in all the known compounds having $(\Delta q)^2 = 36$ and 16, whereas those having $(\Delta q)^2 = 4$ are disordered unless there is a relatively large difference in ionic sizes. The minimum difference in ionic size that results in ordered $A_2^2+B^3+B^{15}+O_6$ compounds is $|r_B-r_{B^1}|/r_B\approx 0.09$, and this has been achieved where B' = Nb or Ta, having empty d orbitals for the formation of stable $(B^!O_6)^{7-}$ clusters, while the B cation has no relatively stable, empty d orbitals.

Given the formation of $(B^!X_6)$ octahedra, a confusion arises as to where the structure corresponds to an ordered $A_2BB^!O_6$ perovskite built up of corner-shared octahedra plus A cations and where it corresponds to the isostructural $(NH_4)_3FeF_6$ structure, which consists of discrete $(B^!X_6)$ octahedra separated by A and B cations. (The cubic K_2NaAlF_6 structure with space group $T_6^b(Pa3)$ is similar to $(NH_4)_3FeF_6$, but has a lower symmetry because there are very small rotations of the $(B^!X_6)$ octahedra.) Some authors [Fe22] select as a criterion for the perovskite structure the cationic radius ratio $r_B/r_A < 0.8$ where $r_B > r_{B^!}$. This decision is based on the observation that a plot of the cubic lattice parameter a_0 vs. B-cation radius r_B is a straight line for $r_B/r_A < 0.8$, but bends over for $r_B/r_A > 0.8$. However, this probably reflects the ratio at which electrostatic forces inhibit (or reverse) any A-cation displacements rather than the ratio at which discrete $(B^!X_6)$ octahedra are formed. For most physical properties this criterion is probably arbitrary.

Without electron-ordering distortions superposed on the size effects, ordered $A_2BB^{\dagger}X_6$ perovskites can be described by either the O-orthorhombic cell of Fig. 5 or by the rhombohedral $R\overline{3}$ (or $R\overline{3}m$) cell of Fig. 6. Where $\alpha=60^\circ$, a tetramolecular cubic cell may be chosen provided the A cations are not displaced from their ideal positions. Like cubic (NH₄)₃FeF₆, the cubic cell has the space group O₅ (Fm3m) with B cations in 4(b) ($\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$); f.c., A cations in 8(c) \pm ($\frac{1}{4}$, $\frac{1}{4}$); f.c., B' cations in 4(a) (0, 0, 0); f. c., and X-anions in 24(e) \pm (u, 0, 0; 0, u, 0; 0, 0, u); f.c. with 0.2 < u < 0.25. However, even where $\alpha=60^\circ$, motions of the A cations along the [111] axes may occur, thereby destroying the cubic symmetry.

n.

re

se

n

ns

n s If an electron-ordering transition superposes a distortion at every other octahedron of Fig. 5, either the B or the B' octahedra remaining cubic, cooperative elastic interactions between the distorted octahedra give a further reduction in symmetry. The resulting monoclinic cell [Fi9, Bl8], which is pseudotriclinic, is not to be confused with the pseudomonoclinic symmetry reported in early work for the O-orthorhombic structures. The origin of the superposed electron-ordering transition could be either a Jahn-Teller ordering of localized electrons or a ferroelectric-type displacement of the anions about a $(B'X_6)$ octahedron.

Several $Ca_2B^3+Ta^5+O_6$ and $Sr_2B^3+Nb^5+O_6$ perovskites having B= rare-earth atom exhibit the monoclinic symmetry of a distorted O-orthorhombic cell [Fi8]. Since the 4f electrons at the rare-earth ions are localized, it is tempting to attribute this to a Jahn-Teller distortion with spin-orbit coupling. Although Fig. 9 shows that the octahedral site splitting of one-electron 4f orbitals gives orbitally threefold-degenerate levels having an accidental degeneracy that is not removed by spin-orbit coupling, nevertheless there are two reasons why this explanation cannot be correct: (1) There is no magnetic ordering of the 4f electrons at room temperature and (2) Sr_2GdNbO_6 shows the distortion even though Gd^3+ has a half-filled $4f^7$ shell, which has no orbital degeneracy associated with the ground state. It is therefore concluded that the additional distortions are due to the potentially ferroelectric cations Nb^5+ and Ta^5+ .

3.1.5.3 Complex alloys $A_2BB'X_6$, where $B=M_{13}$, $B'=M_8$

Several complex interstitial alloys have a formal structural relationship to the ordered perovskite $A_2BB'X_6$ as well as interesting magnetic properties. In this group, having space group Fm3m, the B position is occupied by a thirteen-atom cluster consisting of a metal atom at position 4(a) at the center of a cubo-octahedral, twelve-atom cluster of M atoms at positions 48(h); the B' position is occupied by a simple cube of eight M' atoms at 32(f). The three principal axes of each cluster are along the cubic axes of the perovskite cell, as shown schematically in Fig. 18, so that each X atom at positions 24(e) has eight near neighbors. The eight A atoms of the tetra-molecular cell are at the 8(c) positions. The 4(b) position at the center of the M_8' clusters is empty. Alloys with this structure include the ferromagnetic borides $Al_2[(AlM_{12})(M_8')]B_6$, where M = Fe, Co, Ni, as well as $Cr_{23}C_6$.

Fig. 18. One quadrant of the $A_2BB'X_6$ structure showing the atomic positions of the $B=M_{13}$ and $B'=M_6$ clusters [Wet9].

3.1.6 First-order magnetic transition in M°XM₃ perovskites

Many perovskites M°XM₃ exhibit first-order phase changes at magnetic-ordering transitions. Most of these are reported to be cubic-to-cubic transitions, but in ZnCMn₃ it is a tetragonal (ferrimagnetic)-to-cubic (ferromagnetic) transition. These crystallographic changes are induced by a complex interplay of collective electrons in overlapping bands. Because of the intimate connection with the magnetic properties and because of the necessarily speculative character of any model at this time, discussion of these compounds is deferred to 3.5.

[Lit. S. 275

3.1.7 Data: Crystallographic properties of ABX₃, A₂BB'X₆, A₃B'₂BX₉ and A(B₂B'₂B'₂)X₃ compounds with perovskite or perovskite-related structure (Tab. 2)

Tab. 2.

Within any section, the compounds are in general first ordered according to the atomic number of the B cation and then by the basicity of the A cation. For the ordered perovskites of Tab. 2b, c, d, the compounds are further ordered by the atomic number of the other B cation. The order of the sections is as follows:

```
Tab. 2a - ABX<sub>3</sub>
                       A2+LiH3
                       A(H_2O) (Li_{1/3})_3; A = I^{-1}, Br^{-1}
                      \begin{array}{l} A_1 B_2 + X_3; \ X = F^{-1}, \ Cl^{-1}, \ Br^{-1} \\ A_2 + B_3 + O_3; \ B = V, \ Nb, \ Sb, \ Ta, \ I, \ Pa, \ U \\ A_2 + B_3 + O_3; \ B = Ti, \ V, \ Cr, \ Mn, \ Fe, \ Co, \ Ni, \ Ge, \ Zr, \ Mo, \ Tc, \ Ru, \ Sn, \ Ce, \ Pr, \ Hf, \ Re, \ Ir, \ Pb, \ Th, \ U, \ Ru, \ Nb, \ Sh, \ Ce, \ Pr, \ Hf, \ Re, \ Ir, \ Pb, \ Th, \ U, \ Ru, \ Nb, \ Sh, \ Ce, \ Pr, \ Hf, \ Re, \ Ir, \ Pb, \ Th, \ U, \ Ru, \ Nb, \ Sh, \ Ce, \ Pr, \ Hf, \ Re, \ Ir, \ Pb, \ Th, \ U, \ Ru, \ Nb, \ Sh, \ 
                        A^{2+}B^{4+}X_3 or A^{3+}B^{3+}X_3; X = S or Se, B = Ti, Zr, Ta, In, Ga
                        A^{3+}B^{3+}O_3; B=Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Ga, Y, Nb, Rh, In, Ho, Er, Tm, Yb, Lu
 Tab. 2b - A<sub>2</sub>BB'X<sub>6</sub>
                        A_aBB^a+X_6; X=F^{-1}, Cl^{-1}, B^a+=Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ga, Ag, In, Ce, Pr, Au, Tl
                         A^{\bar{2}+}A^{3+}B^{\bar{3}+}B^{4+}O_{6};\ B^{4+}=Ti,\ Ir
                         A_2BB^{n+O_6}; B^{4+}=Ti, Mn, Ge, Zr, Ru, Ir
                                                                        \mathrm{B^{5+}}=\mathrm{V}, Nb, Sb, Ta, Bi, Pa, Pu
                                                                        B^{6+} = Mo, Te, W, Re^{6+,5+}, Os^{6+,5+}, U^{6+,5+}, Np^{6+}, Pu^{6+}
                                                                        B^{7+} = Tc, Re, Os, I
  Tab. 2c - A_3BB_2^{\dagger}O_9
                                                                                     B^{5+} = Nb, Ru, Sb, Ta
                           A_3BB_2^{5+}O_9;
                          La_3Co_2B^{5+}O_9; B^{5+} = Nb, Sb
                                                                                     B^{6+} = Mo, W, Re, U
                          A_3B_2B^6+O_9;
```

Tab. 2d - $A^{2+}(B_xB_y^{"}B_z^{"})O_3$

the om-

, U,

, Tl

Ref. p. 275]		3.1 ABA ₃ perovskite structure	_
nic.	Magnetic Data	Tab. Tab	
Abbreviations in Tab. 2: Symmetry: $C = \text{cubic}$, $H = \text{hexagonal}$, $M = \text{monoclinic}$, $O = \text{orthorhombic}$ ($a < c/\sqrt{2}$), $O' = \text{orthorhombic}$ ($c/\sqrt{2} < a$), $R = \text{rhombohedral}$, $T = \text{tetragonal}$, $T = \text{triclinic}$. Remarks: for abbreviations, see p. 131. Tab. 2a. ABX ₃ compounds	Remarks	P & S [$Me26$]; Neutron diffraction shows S.G. Pm3m [$Ma11a$] Neutron diffraction shows S.G. Pm3m [$Ma11a$] P & S [$Me20$] P & S [$Re20$, $Be22a$, $Bu3a$] Hex (6L), high pressure phase Hex (9L), high pressure phase Prep. [$Be22a$, $Bu3a$] S.S. with Co, Hex (6L), $\Theta_0 = 15$ °K (50% Co) [$Sh1a$] P & S [$De22$, $Lu1$, $Be53$], I.R. spectra [$Pe5$, $Yo2$] NMR, Fi ¹⁰ [$A11a$], elastic properties [$Re7a$] P & S [$Lu1$, $Be53$, $Ru8$, $Ba1$], NMR, Fi ¹⁰ [$A11a$] T = 760 °C, tetr. 760 < T < 900 °C Pseudocubic Hex (2L) Absorption spectra: Ni [$Br28$], ESR: Mn [$Zd1$] Hex (2L)	
5. 2: orthorhomb see p. 131.	Ref.	Me25 Ma11a Me25 Me24 Lu1 Lu1 Lu1 Lu1 Ch5 Ch5 Ch5 Ch5 Ch5 Ch5 Lu1 Br28 Ya1 Br9 Ya1 Br9 Ya1 Ya1 Ya1 Ya1	
Abbreviations in Tab. 2: thorhombic $(a < c/\sqrt{2})$, $O' = \text{orthorhom}$ Remarks: for abbreviations, see p. 131. Tab. 2a. ABX ₃ compounds	angle	$\beta = 98^{\circ} 30^{\circ}$	
Ab 0 = orthorhom Remark Tab	o 4	14.45 22.13 8.72 8.19 7.676 3.933 6.19 9.922	
= monoclinic,	b A	8.19	
= hexagonal, M	A A	4.023 4.02 3.833 3.796 3.996 3.99 Br ⁻¹ 4.296 6.04 6.04 6.04 6.04 6.16 9.39 8.19 8.19 3.973 3.973 4.523 4.523 4.457 8.76 5.396 5.396	
cubic, H :	Sym	0 0000 1-1 00 1-1 00 0H00H0 0000 H	۲
Symmetry: C =	Compound	A ² +L;+H ₃ -1 BaLiH ₃ BaLiH	CSTICIS

R

Magnetic Data	in 3.3.4, Tab.		9				9	9		9	99		9
Remarks		Hex (2L), $P\&S[YdI]$ Hex (2L), optical and magnetic properties Hex (2L), $P\&S[YdI]$	P&S [Co27] $T = 500 °C, P&S [Ed2, Vot, Kn3, Yot, Pe2a]$	a and b axis said to double	Hex (2L), P&S [5e2] Hex (2L) pseudohexagonal	Hex (6L), $\Theta_{\rm N}=54$ °K, P&S [Si14, Be19], neutron diffraction [Pi1], optical properties [Si28, Si30], NMR [Mi4, We11], AFMR [Wi14], magnetics properties [Le3, Le4, Se1], S.S. with K and	Hof7, cubic to $T = Perties$ [$Ig1$, $Ch4a$],	pressibility [S129], I.R. spectra [Ax2, Pe5], bibliography [Fr10a] P&S [Be14, Si14, Cr4, Be2, Be4, Kn3, Ok2, Ok3, Ok4, Be53, Ok6, Ho17, Gu1a], S.S. with Co + Ni [Ha28], I.R. spectra [Ax2, Pe5, Yo2], bibliography [Fr10a]	$T = 95^{\circ}\text{K}, (c/a > \sqrt{2}) 184 > T > 84^{\circ}\text{K} [Be3, De3, Ok6]$	$I = 65^{\circ} K$, $(c/a < V \le 1 < 84^{\circ} K$, $[Be2, De2, OR0]$ Prep. $[Ho17, Be19b]$, a and b axis doubled $[Si14]$, $P \approx S \mid Ma9 \mid$	P&S [Cr4, Ho17, Co25], neutron diffraction [Fi1]	Hex (9L), $\Theta_{N} = 69$ °K, AFMR [Ket , $Sh5$] Hex (6L), $\Theta_{N} = 86$ °K, AFMR & ESR [Ket , $Sh3$,	Cubic $T>458$ °C, AFMR & ESR [$Ke1$, $Sh5$]
Ref.		Se1b Gr8a Se1b	Vo1 Co27 Co27	Vo1 Vo1 Vo1	Yd1 Se2	Zat	Lo1b Wa8	Be3	Be3	Bes Si14	Si14 Ki9	Ke7 Ke7	Cr6
angle				$\beta = 87^{\circ} 48^{\circ}$									
٥		6.03 6.0 5.98	8.088	7.954 7.954 8.064	6.228	15.074			8.376	8.330 8.000		27.44 17.798	9.972
b A	(p;			5.885					5.885	5.760			,
ΑA	Br-1 (continued)	7.23 7.04 6.90	6.149 6.04 4.158	8.544 5.695 6.232 6.194	7.249	6.213	4.328	4.186	5.885	5.900	4.238	7.288	10.024
Sym	F-1, Cl-1, E	 	ннон	- >	HH	н	υυ	U	0 (00	ပပ) H H	T
Compound	$A+B^2+X_3; X = F$	CsVC!, RbVC!, KVC!,	RbCrF, KCrF,	NaCrF ₃ (NH ₄)CrF ₃ TiCrF ₃	CsCrCi, RbCrCi,	CsMnF3	${ m RbMnF_3}$	KMnF ₃		$NaMnF_3$	(NH4)MnF3	CsMnCl ₃ RbMnCl ₃	KMnCl ₃

_	_
,	
[/ 10 (10 14) 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
١	1
4	
}	
\$	
_	-
	ı
;	1
	-
	1
	1
	ı
	4
!	
:	1
_	
	l
	_
٠	l
	1
	1
	1
_	1
	1
	l
	1

Magnetic Data	in 3.3.4, Tab		9		9	७७	v			9	9		00	9	-						99		
Remarks		Hex (6L), structure [Ba5], $\Theta_{\rm C}=60$ °K [Po9a, Po9b] High pressure phase	P&S [Ke19], neutron diffraction [Wa14], cubic $T > 97$ °K, tetr. $97 > T > 86$ °K, orth. $86 > T > 45$ °K mon. $T < 45$ °K (Te11)	P&S[Kn3, Ma29, Ok2, Ok3, Ok4], neutron diffrac-	T = 78 °K, rhombohedral $T < 121$ °K	P&S[Vo1, Ma9, Po9a]	P&S[Poja] Hex (2L), $P\&S[Se2a]$	Hex (2L) Hey (01) magnetic propagation (D. 21 D. C f D. 31	Hex $(2L)$, inagment properties $[\kappa uo]$, $F \propto 5 \lfloor Ba4 \rfloor$ Hex $(6L)$, high pressure phase	P&S [Ru8, Cr4], S.S. with Mg [Sh1a]	$F \propto S [Kn3, Ma29, Ok2, Ok3, Ok4, Ru8, Cr4]$ I.R. spectra $[Ax1, Ax2, Pe5, Yo2, Pe2a]$	T = 78 °K Described from T_{us} Made	Ru8	$F \propto S [Rus]$ Hex (2L), complete structure and magnetic prop-	erties [So1] Hex (2L)	Hex (2L)	Hex (6L) high pressure form: $\Theta_C = 111$ °K	Hex (6L), P&S [Si14], $\Theta_{\rm C} = 139$ °K, magnetic properties [Si19b, Mc1a, Sm32, Sm31, Sh1, Go3,	Ku2, Go3a], S.S. with Co [Bo13, Su11, Pi16], optical properties [Sm32, Sm31, Sm21, Sm22,	Sh1, Ty1, Pi8, Pi14, Pi15, Za1a, Be19c, Pi16], Raman scattering $[Ch14a]$ NMR $[Sm32a]$	High pressure phase, P&S [5y1] P&S [Ok 3 Ok 4 Kn 3 Math Rus Ok 2] I B const	tra [Pe5, Ba17a] $T = 78$ °K	
Ref.		Ke19 Lo1b	Wa12	Ok6	Ok6	172 Po9a	Vo1 Yd1	Se2a Ra5	Lo1b	Rub	0% O	Ok6	Rub	ruo Yd1	En1	Ba2	Lotb	Rus			Ka4 Ok6	046	
angle					$\alpha = 89^{\circ} 51'$																		
c Å		14.855			1	068.7	6.045	6.020 22.61	14.67			4.049		6.032	5.996	5.225	14.54	14.31				-	
b À	led)			-	1	2/0.6						5.603					•						
a À	Br-1 (continued)	6.158 4.283	4.173	4.122	4.108	4.177	4.188 7.237	7.060	6.09	4.116	60.	4.05/ 5.420	4.127	7.202	966.9	6.236	6.05	5.645			4.074	4.002	
Sym	F-1, Cl-1,	ЖO	U	ပ	۲ () U	Z H	Ħ Ħ	H	υc) (- O	υc	н	н	нн	ı II I	 С		-	ပပ	Ů,	
Compound	ζ ₃ ; X =	CsFeF3	RbFeF3	KFeF3	Į.	Narer, NH FeF,	TiFeF ₃ CsFeCl ₃	RbFeCi, CsCoF,	" ! ! !	RbCoF,	NCOF.	NaCoF.	NH,CoF3	CSCoCl	RbCoCl3	CsNiF3	ŗ	KDINIF3			KNiF3		

R

Magnetic Data	in 3.3.4,	9	9						0 0		9	9												
Remarks		P&S [0g2, Ru5, 0k5]	P&S[Ru8] Hex[K1]	High pressure phase. P&S (SvI)	Hex (2L), P& [47], structure determination	$\begin{bmatrix} 114 \end{bmatrix}$ Hex (2L)	Related to Hex (2L)	Related to Hex (2L), optical properties [Sc10a]	Optical properties [Sciloa] P&S [Ed2, Kn3, Ok1, Ok2, Ok6,] neutron diffrac-	tion [$5cI$], optical properties [$FeZa$, OeI , $5cIOa$] $T = 78$ °K	P&S [Ru3]	P&S[Ru3] Related to Hex (2L). $P\&S[So7, We9]$ magnetic	properties $\Theta_{\mathbf{p}} = -3.5 \text{eK}$, $\mu_{\text{eff}} (300 \text{eK}) = 1.95 \mu_{\text{B}}$	Not properties $\Theta_{N} = 17.5 ^{\circ} \text{K}$	Not perovskite Not perovskite, magnetic properties [In3]		Hex (6L), high pressure phase	P&S[Cr4, Lu1] Hex (61) high temperature form	P&S [Lu1, Ma29], thermal conductivity [Su8],	optical properties: Ni, Mn [Fe11, Fe15], I.R.	P&S [Lu1, Ru8, Ba1, Ma9, Ma10, Sc10]		Hex (6L)	Nuclear quadrupole resonance [$Vo\theta$] Cubic $T>155$ °C, ferroelectric transition at 155 °C
Ref.		Ru8	Ru5 Ko4	Ko4	Yaı	S144	A 54	Ba2	Ruo	040	Ru6 Cv4	Ru6 Yd1		Ki10	Ki10 Ki10	Lu1	Lotb	Ba1	Kn3		Tus	De22	101	Ch15 Ch15
angle	-										$\beta = 86^{\circ} 54^{\circ}$			$\beta = 97^{\circ} 20^{\circ}$	$\beta = 97^{\circ} 30'$ $\beta = 96^{\circ} 5'$									α = 80°38'
o A		7.688	14 37	70:11	5.940	6.109	12.480	11.56	7.846	3.913	7.521	7.866		8.736	9.003	9.05	14.67	14.44	-		7.743		14.52	
b À	ed)	5.524									11.37			13.785	14.189 14.43						5.569			
Å	Cl-1, Br-1 (continued)	5.360	8.145	4.10	7.169	9.019	7.488	12.55	5.855	4.121	11.01	6.083		4.029	4.066 4.05	06.6	6.09	4.110 5.896	4.055		5.404	3.98	5.934	5.444 5.475
Sym	F-1, Cl-1,	0	υ¤	: O	Ħ	H	Ħ	# £	- <u>i</u> -	Ţ	ZΗ	H H		×	ZΣ	H	H	ت ت	Ų		٥٠	υ	Ħ	೫೦
Compound	$A^{+B^2+X_3}; X = F$	NaNiF,	NH, NiF.	m 1 1 1	CsNiCl3	(CH ₃),NNiCl ₃	CsNiBra	CsCuF ₃	KCuF ₃		NaCuF ₃ NH,CuF,	TlCuF, CsCuCl,	,	KCuCl3	NH,CuCl, KCuBr,	CsZnF.	i i	Kb2nF3	KZnF ₃		NaZnF ₃ NH 7F	AgZnF,	TiZnF	CsGeCl3

Cubic $T > 155$ °C, ferroelectric transition at 155°C	
Ch15	
-	
5.475	
S	

Magnetic Data	in 3.3.4,						v							
Remarks		[Be22a, Bu3a] no cell dimensions	Prep. + Prop. [Ba20, Fi3]	P&S [Co27a] Mn emission [K11], P&S [Co27a] P&S [Ma29, Br9, K11, Co27a, Co26, Vo11]	Mn emission [KlI] The state of the state	Slight distortion [Na15], P&S [Si3] Hex (6L) P&S [Na19]		P&S [Na19, Na18] P&S [Na19]	Phase transition at 40 °C [$Sa2a$] Cubic $T>47$ °C [$Mo3$]		Not perovskite, $A = Na$, K , Rb , Cs and Ag Not perovskite Structure [$Ka19$, $Vo4$, $Vo5$], crystal growth [$Bu2$, Cs , C	BaTiO ₃ [Br2], where I hoperties [Ka3, Cn13]; S.S. with: BaTiO ₃ [Br2], NaNbO ₃ [Du3, Te86], Li [Ni2a] T = 260 °C, Tetr. 435 > T > 225 °C.	S.S. with KTaO ₃ (see KTaO ₃) T = 500 °C, cubic $T > 435$ °C T = -140 °C, neutron diffraction $2 \text{Na} + \text{Nb}_2 \text{O}_6$	
Ref.	·	Yd1		K11 Vo1 Ba5b	Co27a Co27a	Fe20 Si3 Na15	Do5 Do5 Bo31	Na15 Na15 Seo	Mo2 Mo2 Mo2	70.7.	Fe7 Wo15	W015	Wo15 Sh23 Ad1	
angle													$\alpha = 89^{\circ} 50^{\circ}$	
c A				8.652	4.447	18.39			5.630	-	3.984	4.07		
b Å	led)									-	5.739			
Ą	= F ⁻¹ , Cl ⁻¹ , Br ⁻¹ (continued)	5.589		4.47 4.395 6.101	4.368	5.20 7.418 10.70	5.58 5.94 4.77	10.88 5.77 4.81	5.590 5.599 5.874	•	5.720	4.00	4.024 4.016 4.2	
Sym	-1, Cl-1,	O		OOH	ΗО	ひ其り	ပပပ	ပပပ	ноо		0	Η	೧೩೧	
Compound	 X	CsSrF ₃ CsSrCl ₃	CsPdF	CsCdF ₃ RbCdF ₃ KCdF ₃	(NH4)CdF3	CsCdCl ₃ CsCdBr ₃	CsSnCl ₃ CsSnBr ₃ CsEuF ₃	CsHgCl, CsHgBr, CsPbF,	CsPbCi _s CsPbBr _s	A+B5+O3	AVO ₃ RbNbO ₃ KNbO ₃		NaNbO _{2.5}	

R

Magnetic Data	in 3.3.4, Tab.								
Remarks	Structure determined, P&S [Vo4, Vo5, We10, Ba18, Fe7, Wo15]; S.S. with: KNbO ₃ [Du3, Te8c], NaTaO ₃ [Iw4, Is7, Is14], SrNb ₂ O ₈ [Is16, Te7], CdTiO ₃ [Le2], AgNbO ₃ [Br24], Cd and Sr	50 kV/cm applied to crystal; other phase transformations [Te6, So1b, Le5, Fr1, Sh20a, Cr6a, So1a, Is5a]; heat of transformations [Te8a] Structure determined	Not perovskite, see text S.S. with KNbO ₃ [$We5$] $T=550~{\rm C}$, cubic $T>550~{\rm C}$ Defect pyrochlore	[Fe7] says not perovskite P&S[Vo5], crystal growth [Sh25, Wi4, We13], optical properties [Fr20, Pr2, Di7, Di8, Be27, Ax1, Pe4, Jo15, Sh20, Ka7, Se5, Si20, La7a], Faraday rotation[Ba7], electrooptic properties[Fr20, Fa7, Fa8, Fr21, Fr22, Ge13, Zo3], S.S. with: KNbO3, [Fu3, Ha2, Ch13, Ge9, We12, We14, Di6, Hi2a, La7a], Ca [Se4]; Raman spectrum [Fl1a, Pe6, Fl1b]; ESR: Eu, Gd [Un1], Fe, Ni [Ha9e, We18b]; ultrasonic attenuation [Ba17b]; Nuclean roll resonance [Gr7a]	Crystal structure, P&S [Vo4, Vo5], S.S. with: NaNbO _s [Is14, Is7]	630 °C, cubic $I \ge 630$ °C, tetr. 630 $\nearrow I \nearrow 330$ °C. Not perovskite, neutron diffraction $[AbJ]$ (see text) Actually Cu _{0.5} TaO ₃ , see "Bronze" section	P&S[Br27] 485 °C; cubic $T > 485$ ° P&S[Na15]	P&S [<i>Na15</i>] Perovskite (?), P&S [<i>Na15</i>] P&S [<i>Ri9</i>]	
Ręf.	901	Wo17	Ab4 Fr2 Fr2 Sc22	Sm11 Vo4	Ka22	185 Ab2 Sh12	Fr2 Fr2 Bo30	Bo30 Na16 Sm3	Na15 Ke5
angle			$\beta = 90^{\circ} 34^{\circ}$				$\beta = 90^{\circ} 21^{\circ}$	$\alpha = 89^{\circ} 44'$ $\beta = 89^{\circ} 12'$ $\alpha = 89^{\circ} 25'$	ll 1
0 +A	15.518	7.77	13.8631	4.51	7.751	13.783	3.914	8.94	
9 %	5.568	5.57	7.888		5.513		7.862	8.94	
<i>a</i> • 4	5.505	5.51	5.1483 7.888 3.595 10.32	3.92 3.9885	5.494	3.929 5.154	7.862 3.949 4.674	4.541 8.94 4.410	4.510 9.18 4.368
Sym	O (pa	0 0	ロロ対対の	Ηυ	0	υĦ	≱oo	XXX	ಜ೦೦
Compound	A+B³+O₃ (continued) NaNbO₃	NaNbO ₃	Linbo, Agnbo, AgSbo,	RbTaO ₃ KTaO ₃	NaTaO ₃	NaTaO, LiTaO,	AgTaO3	Rbio, Kio,	TilO ₃ NH ₄ IO ₃ CsPaO ₃

A+B ⁶⁺ O ₃ (continued)	Sym	P 8	φ	۰ ب	angle	Ref.	Remarks	Magnetic Data
KPaO ₃								in 3.3.4, Tab.
NaPaO ₃ RhIIO.	<u> </u>	4.341 5.82 4.323	5.97	8.36		Ke5 Ke5 Ke12	P&S [Ru3a, 1p1], Prop. [Ke13]	9
KUO, NaUO,	o	4.290 5.775	5.905	8.25		Ke12 Ke12	P&S[Ru3a,Ch1b], Prop.[Ke13] P&S[Ru3a], Prop.[Ke13]	9 9
A2+B4+O ₃								
BaTiO,	<u> </u>	4.012				Met	T = 200 °C, cubic $120 < T < 1372$ °C [Ed5], cubic $T > 133$ °C [We11a], high temperature	
	[-	3.994		4.034		Met	phase [Me4, Me6, Me2, Ka23] T = 20 °C, tetragonal $5 < T < 120$ °C; struc-	
	ı						ture determination: by x-rays $[Ev2, Ev3, Ev4, Ch2]$, by neutrons $[Sh18, Fr4]$, by electron mi-	
							croscope [P12]; P&S [De1, Sa5], further re-	
	0	5.682	5.669	3.990		105	$T = \frac{10^{\circ} \text{C}}{10^{\circ} \text{C}}$, orthorhombic $-90 < T < 5 ° \text{C}$	
	ж н	3.998		14.05	$\alpha = 89^{\circ} 52'$	Ka24 Bu4	T = -100 °C, rhombohedral $T < -90$ °C Hex (6L); structure determination [Bu4, Ev1].	
SrTiO,	ပ	3.905				Me4	Further remarks:**) $T = 293 ^{\circ}$ K; cubic $T > 110 ^{\circ}$ K, thermal expansion $z = 0.4 \cdot 10^{-6} ^{\circ}$ Alea may be tetr with	
	(-	3.8972		3.8991		Ly2	c/a = 1.00008 [Ly2] T = 10000% [Ly2] T = 1.000% Further $C/a = 1.000%$	
	0					Ly2	remarks.***) See page 156 a:b:c.0.9998:1:1.0002, orthorhombic	
	~					Ly2	55 < 1 < 65 R [Lyx] Possibly rhombohedral at 10° K	

dependence declectric properties [6027, Ka1, Le9, Me23, Mo7, Mo8, Po3, Po4, Po5, Po6, Sa7]; radiation damage [Sc6, We7]; refractive index [Sh1, Ho3, Ho2a]; thermal conductivity [Di9, Ma23, Su7, In2b]; surface layers [Or1, Le12, Ho10, Du1, Cr2, Ca1, Br7]. Optical properties [Mu11, Mu12, Mu13, Ve6, Ve6, Ha15, Jo1, Co30, Sh24, Re4, Po7, Na8, Kh3, Ba9, We11a]; ultrasonic propagation [Gr10]; ESR: Ti [Da4, Ta4, Ta6], Mn [Ik1, Ik2, Ik3, Ik3, Ik3, Re13, Ta8], Gd [Bu7, Ta3, Ta5, Ta8, Ri5]; dielectric properties [De9, Hu11, St17, Fr17, We11a].

Transport properties [Uc1, Ue2, Ta9, Sc15, Ry1, Mu10, Ma32, Ma3, Ko9, Ka21, Ik5, Be28, Au4], electromicroscopic observation [Mo/2]. Lattice vibration [Ax1, Ha14, Ka3, Dr3], shockwave compression [Do4], elastic properties [Fu5], grain size influence on \(\theta_0 \in [Rv1], Ro3], Ro3, Ro4, Jo11], Sr [He14, Al1, He6], Bi [Bo3, Jo11], Halogens [Jo10], PbNb₂0, [Sr1], Ca, Zr, Si, Fe, Mg [Br22a]; defect study [Co24, Mus, Nos], neutron scattering [Ya2a].
**) P&S [Wo16, Me4, Ma36, St19c, Ra5, B114a, Di4]; effect of additives on occurrence [Ra5, Ro20a, Di4], hex. form due to oxygen vacancies or metal substitution for Ti [Di4], magnetic properties with Ti, Cr, V, Mn, Re, Fe, Co, Ru, Ir, Pt substitution [Di4].

*) Complete bibliography to 1961 [Ha7]; Raman scattering [Di8, Dv2, Pa6, Pi3, Ri8, Di8a, Ro19a]; study of structural changes [Ca4, Co15a, Fo6, Me6, Sc8, Ka24, We11a]; pressure

155

ن. -

	3.1 ABA3 Perowskit-Struktui	
Magnetic Data	Tab. Tab. 6	erties [Ba6, Un2], Ni³+ °K) [Su7]; Nb [Ti2]; Ya5, Ya3a,
Remarks	P&S [Ba18, Ze1, Ze2, Le10, Na13, Na15, Me4, Ku2], optical properties [St21, Pe8, Mu13], detailed structure [Ka21a] Cubic $T > 1260 ^{\circ}\text{C}$ Structure determined Pbn2, [Ka22], structure questioned [Ge3a], P&S [Me4], S.S. with NaNbO ₃ [Le2], electrical properties [Sh24a], perovskite-ilmenite transformation [Li0] Complete structure [Sh21], P&S [Me4, Sh19, Co13, Sh15, Sh24b], optical properties [Pe8, Fu5], piezoelectric properties [Ue3, Fe2, Fe1, Is14a], slow neutron scattering [So2], S.S. with (Ba, Sr, Ca, Pb) (Ti, Zr, Sn)O ₃ [Sh19, Ta14, Ha20, Ba12, No7, Ou1, Ou2, Th2, Ok7, Ta6, K17, Ou1a, Pe9, Is1, Uc2, S134, Fe1, Bu10, Fe3, Fe9, Fu5, He14, Iw3, S135, Di1a], radiation damage [Ha30], S.S. with PbGeO ₃ [Di5b] $T = 535 ^{\circ}\text{C}$, cubic $T > 490 ^{\circ}\text{C}$ A = Ca(25%) a = 7.393 A; Cd (25%) a = 7.399 A; Sr (20%) a = 7.420 A P&S [Bv20, Mc1b], Prop. [Mc2, Mc3, Mc4, Si4] Dielectric properties [Sm8, Ag1] Dielectric properties [Sm8, Ag1] Dielectric properties [Sm8, Sm26] S.S. with La S.S. with STiO ₃ [Ti1, Ve9, We16]	***) Superconductivity [Am2, Ap2, Ea2, Fr10, Ko7, Sc19, Sc20, Sc21]; Raman scattering [Sc4, Sc3, Ri6, Os1, Ni1a, F11b]; NMR [We1]; Mössbauer: Co ¹² [Bh3]. Optical properties [Ba6, Ba16, Ca6, Co9, Du1, Ea1, Gr1, Ka9, Mu11, Mu12, Mu13, Ya36], percelectric properties [Tu2]; Shubnikov-deHaas effect [Fr8]; thermal conductivity (33 < T < 110 °K) [Su7]; diffusion and formation of exygen defects [Pa3, Pa4, Wa9, Wa10]; radiation damage [Sc6, Av4]; band structure [Ka6]; dielectric properties: doped with Fe and Cr [Ma33] with Nb [Ti2]; distinction of exygen defects [Pa3, Pa4, Wa9]; radiation damage [Sc6, Av4]; band structure [Ka6]; dielectric properties [He6a, Sa3]; photoconduction [Ya4, Ya5, Ya3a, Pa3a, Pa3e, Pa3e]; properties [Fr8]; vibrational modes [Ja8, Jo14]; thermal expansion [De19b], inelastic neutron scattering [Sh16a], electrooptic effect [So3].
Ref.	Pe3 Gr3a Ka22 Sh21 De18 Ho12 R020 Ag1 R020 R02 Iv2 Iv2 Ke18 Ke18	', Ri6, Os1', fall mobilit; ; Shubnike structure [are depende stic neutro
angle	α = 89° 36'	(an scattering [Sc4, Sc3] Am3, Fa4a, Fe10a]; For the stric properties [Tu2] mage [Sc6, Ro4]; band pehavior [Ru12]; press pansion [De19b], inela
o 4	7.645	5220, Sc21]; Ram Si12, Va6, Zo2, 1, Ya3b], piezoele 10]; radiation da cctromechanicall 14]; thermal ex
b Å	5.443	710, Ko7, Sc19, St10, Ko7, Sc19, Stance [Fr7, Tu3, Pa4, Wa9, Wa I [Be6, Jo5a]; ele modes [Ja8, Jo
À	5.381 5.348 5.348 3.904 3.904 7.810 3.914 3.86 3.913 3.874 5.326 3.913 3.887 3.8	m2, Ap2, Ea2, F. ', Gr1, Ka9, Mu1 []; magnetoresis en defects [Pa3, ave attenuation r5]; vibrational
Sym	(g) O OO H OO OOOOH#OOO	uctivity [41, 99, Dv1, Ea1, i5, Sa2, Si7, ion of oxyg m sound w operties [F7
Compound	A ²⁺ B ⁴ +O ₃ (continued) CaTiO ₃ CdTiO ₃ CdTiO ₃ PbTiO ₃ La _{0.5} K _{0.5} TiO ₃ La _{0.5} K _{0.5} TiO ₃ La _{0.5} K _{0.5} TiO ₃ No _{0.5} K _{0.5} TiO ₃ No _{0.5} K _{0.5} TiO ₃ No _{0.5} K _{0.5} TiO ₃ Si _{0.6} K _{0.5} TiO ₃ Si _{0.6} K _{0.5} TiO ₃ Bi _{0.6} K _{0.5} TiO ₃ Si _{0.7} Si _{0.7} Si _{0.5} Si _{0.7} O _{2.5} Si _{0.7} O _{2.5} Si _{0.7} O _{2.5}	***) Superconductivity [Am2, Ap2, Ea2, Fr19, Ko7, Sc Ba15, Ba16, Ca6, Co9, Dv1, Ea1, Gr1, Ka9, Mu11, Mu12, M [Ho1], Gd ²⁺ [Ri7, Ri5, Sa2, Si11]; magnetoresistance [Fr7, diffusion and formation of oxygen defects [Pa3, Pa4, Wa9, clastic constants from sound wave attenuation [Be6, Jo5a Ya3b]; magnetic properties [Fr5]; vibrational modes [Ja8

Ref. p. 275]

Compound	Sym	<i>z</i> ⊷	<i>Q</i> ♥	v •<	angle	Ref.	Remarks	Magnetic Data
	- ;	4	4					in 3.3.4,
A ² +B ⁴ +O ₃ (continued) CaVO _{3.0}		3.767		t		W014	P&S [Ru7, De2, Re8, Re9]	6
	٥٠	5.326	5.352	7.547		K010 W014		
Ca V O 1.88 BaCrO ₃	Ħ	5.62		22.95		Chla	Hex (9L), high pressure phase, semiconducting, $\Delta E = 0.09 \text{ eV}$	
	Ħ	5.659		9.359		Ch1a	Hex (4L), high pressure phase, semiconducting, $AE = 0.11 \text{ eV}$	
	Ħ	5.627		13.690		Ch1a	Hex (6L), high pressure phase	
	H;	5.662		27.752		Ch.1a	Hex (12L), high pressure phase	
	工 江	5.652		62.706		Ch1a	Hex $(27L)$, high pressure phase	`
SrCrO	<u>.</u>	3.818		1		Ch1		o o
CaCrO	၀ ပ	5.287	5.316	7.480		Ro19	P&S [De21]	0
BaMnO ₃	H	5.672		4.71		Ha7	Hex (2L), P&S [$Ha16$, Sy1]	
•	出口	5.667		20.948		Syl Ha7	Hex $(9L)$, fight pressure phase, $P\&S[Ha16]$	
	H -	5.645		9.264		Syl	Hex (4L), high temperature phase	
SrMnO3	Ħ	5.449		9.085		57.1	Hex $(4L)$, S.S. with $(Bi, Ba, La)MnO_3[101]$	
CaMnO,	# 0	5.431	5.275	7.464		Mag	96% Mn ⁴ +, P&S [Vo12, To13, Yu1, Yu8], S. S.	9
n)	'						with Bi [Bo6, Bo12, S119]	
Ca _{0.78} Sr _{0.25} MnO ₃ BaFeO ₃₋₇	0 к	5.302	5.304	7.488	$\alpha = 88^{\circ} 47'$	Ma6 Mo10	x = 0.36 P&S [De15, Er1, Mo11, Ma22, Va8]	o
1	U E	3.997		9008		M010	x = 0.25; Kg X-ray spectra [A00a] x = 0.19	
	- I	5.672		13.90		M010	Hex (6L); $x = 0.08$	
BaFeO _{2.8}	0	5.83	16.98	5.54		Ga18 .	Brownmillerite structure, see Fig. 21 $T = 1000$ °C. $T = 20$ °C (triclinic)	
SrFeO.) ပ 	3.850				Ma4	P&S[Wa17, Ya1, Ga17, Sh17], S.S. with La [Ga16,	9
9.6	1						Wa17, Wa20], Bi [Ma8], Ti [Cl2, Br18]	
SrFeO _{2.84} SrFeO _{2.80}	H 0	3.851 5.671	15.59	3.867 5.528		Ma4 Ma4	P&S [Ba23], S.S. with Al [Ba24, Ba25], Brown- millorite etructure see Rig 21	
CaFeO _{2.80}	0	5.64	14.68	5.39		Be40	P&S [Be39, Sm4], neutron diffraction [Ta10, Fr16,	9
							Cozzl, Mossbauer [GO4, G70, Ge7, Ge8, W112, Wit6, Ta10, Gr4]	
CaFe _{0.6} Al _{0.5} O _{2.6} PbFeO _{2.6}	0Н	5.58	14.50	5.34		Ha10 Be26	Prop. [G15, Po1, Wh4, Be40, Sm4] P&S [Mo15]	99
		_						

Magnetic	المعامدة
	Remarks
	Ref.
	angle
	υ,
	9
•	<i>a</i>
	τ

Ref.

Magnetic Data	in 3.3.4, Tab.							9	9 9	9			
Remarks		Hex (2L), P&S [$SI4I$] 1.4% Co ⁴⁺ , S.S. with La [$Wa17$] Hex (2L) [$La3$, $Gu7$] High pressure phase; doubled cell [$SI3a$] High pressure phase pseudocubic	Parameter phase, pseudocustors $[Fe7]$, $Fe8 \le [Fe2]$, $Fe92$, $Fe92$, $Fe92$, $Fe7$,	P&S [Ho2, Me4, Sm3, Sc18a], D.T.A., $T < 1000$ °C [Ca5], optical properties [Pe7, Du5], S.S. with	HI [Be24a] $T = 2000 ^{\circ}\text{C}$, cubic $T > 1300 ^{\circ}\text{C}$ P&S [Si15, Me4, Ru9, Ru14], S. S. with Cr [Ni2] $T = 2000 ^{\circ}\text{C}$, cubic $T > 1600 ^{\circ}\text{C}$	P&S [1s1, Me4, Sa7], phase transitions [Go28, Go29, Go30, Sa8, Te5, Te8, Ue1, Sh15a, Te8d],	radiation damage [Ha30], optical properties [Pe7], neutron diffraction [Jo5], dielectric properties [Kh4, Kh6, Kh8, Go29], piezo-electric effect [Ro1, Th2, Is14a], S.S. with Ca [Kh4, Si15], (BiNa) and (BiK) [Bu3], Pb(Ni _{1/3} Nb _{4/8})O ₈	$[Bul0]$, $BiFeO_3$ $[Gel0]$, Hi $[Go2]$ $T = 230$ °C, cubic $T > 230$ °C $P\&S[Me4]$	 Prep. + Prop. [Sm33, Bu3] Prep. + Prop. [Sm33, Bu3] P&S [Bo19, Sc16, Ro2a], S.S. with Sr [Br15] P&S [Bo19, Sc16, Ro2a], S.S. with Ti [Ro2a, Br17], S.S. with Zr [Br17] 	P&S [Sc16, Go17, Ro2a] Hex (6L)	Slight distortion, P&S $[Ke9]$	Defect pyrochlore structure Hex (9L), structure determination [Do2], Prop. [Ca2], S.S. with Sr [Do3, Lo1], S.S. with Zr, Mn,	Ir, Ni $[Doja]$ Hex $(4L)$, high pressure phase
Ref.		Gu7 Ya1 La4 Ri8a	к18а На20 Е24	F04 Pe3	F04 Ti3 F04	Sa8		Sa8 Ho12	Sc17 Sc17	Mc1 Mu7 Ke9	Mu7 Ke9	Mu7 Ra6	Lo1
angle													
, A		4.83		8.189	8.008	8.202				7.77 14.046	3.76	21.60	9.50
b A				5.818	5.758	11.744				5.58	3.96		
ъ •A		5.59 7.725 5.58 3.723	3.70	4.26 5.792	5.587	5.872		4.149	4.04	5.45 5.758 8.140	3.95	10.360	5.73
Sym	led)	用り耳り	ပပ	ပ 0	υ O (00		ပပ	υu	ОЖС	၁ပင	о Д	Ħ
Compound	A ^{2+B⁴⁺O₃ (continued)}	BaCoO _{2.72} SrCoO _{3x} BaNiO _{2.8} CaGeO ₃	CdGeO ₃ BaZrO ₃	$SrZrO_3$	CaZrO ₃	PbZrO3		EuZrO,	Bi _{0.8} K _{0.6} ZrO ₃ Bi _{0.8} Na _{0.6} ZrO ₃ BaMoO ₃ SrMoO ₃	CaMoO ₃ BaTcO ₃	SrTcO	PbrcO ₃ BaRuO ₃	

Lot Hex $(4L)$, high pressure phase	
9.50	
H 5.73	-

Magnetic Data	in 3.3.4, Tab.	9 9												-					
Remarks		Hex $(6L)$, high pressure phase P&S [KhI], Prop. [$Ca2$, $Lo3$] Prop. [$Ca2$, $Lo3$]	P&S [Rass], Defect pyrochlore structure High pressure phase	P& S[Wa2, Cob, Sm3], S.S. with Sr[Sm3], (Ba, Sr, Pb) TiO ₂ [Na9, Du4, My2], optical properties	$(Fu2)$, $Fu2$, Accessorated in S.S. with 11 [Lev, LO), $Kr\delta$]; S.S. with Ti, tetragonal at 91% Ti [LO1] P&S [Ho2, Me4, Co8], optical properties [Du5] P&S [Ro12, Co8, Me4]; optical properties [Du5];	S.S. with BaTiO ₃ cubic at 13% CaSnO ₃ [<i>Do1</i>] P&S [<i>Na13</i> , <i>Co8</i>]	High pressure preparation $T = 125$ °C cubic $T > 125$ °C C	(Sm_{J}) , optical properties (Sm_{J}) , 3.3. with 31 (Sm_{J}) , dielectric properties (Sm_{J}) dielectric P&S $(Ho2)$, optical properties $(Du5)$, dielectric	properties [<i>Sm7a</i>] Pseudocubic	Pseudocubic Pseudocubic	P&S[Ho2] S & with CaZrO, [B,24] P&S[Sc18a]	P&S [Naf5], S.S. with SrZrO ₃ [Be24a]	1107: [110/1]	Cubic $T > 215$ °C, S.S. with PbZrO ₃ [Go31] T = 250 °C. cubic $T > 215$ °C	Defect pyrochlore type S.S. with Sr [Do3], distorted Hex (9L); structure	[Ro2b] Prep. $[Ro2a]$, distorted Hex $(6L)$	In the second of the second o	Not perovskite D& C [13/27 N/3] electrical properties [184]	
Ref.		Lo1 Ra6 Ra6	Lo4 Lo1a	Me4	Sm3 Sm2	Sm2	Su9	Sm3	Na14	Na14 Na14	Na15 Sh16	H02	Av1	Sh16 Sh16	L04 D03	Lota	L04 L04	Ro2b	We7
angle							$\beta = 89^{\circ}45^{\circ}$						$\beta = 91^{\circ} 36'$			$\beta = 93^{\circ} 16'$			
o Å		14.00 7.85 7.67	7.84		7.885	7.867	4.043	8.588				1	3.942	4.099	44.4	14.17	60./	7.293	8.336
b.		5.57	5.58		5.668	5.577	4.076	6.156				1	5.732 3.982			9.62	09.60	9.855	5.949
P- 8		5.71 5.53 5.36	10.25	4.117	8.070	5.457	4.076	6.011	7 70	7.65	8.708	4.069	5.508 3.942	4.136	10.425	5.60	5.58	3.145	5.864
Sym	ed)	H00	O U C	ာပ	υO	0	¥ O i	ပ င		000	000	ى رى ر <u>.</u>	ZC	HC	υ¤	Ŋ (ت ص د	000	٥٥
Compound	A ² +B ⁴ +O ₂ (continued)	BaRuO ₃ SrRuO ₃ CaRuO ₃	SrRu _{0.8} Ir _{0.5} O ₃ PbRuO ₃	BaSnOs	Sr SnO ₃	CdSnO3	PbSnO ₃	BaCeO,		0000 0000 0000 0000 0000	BaPro,	SrHfO ₃	CaHfo,	PbHfOs	PbReO ₃ .	SrIrO	Dh.T.40	Calro	Barbo, SrPbo,

Re

Magnetic

	3.1 ABX ₃ Perowskit-Struktur	[Lit. S. 275
Magnetic Data	Tab.	9
Remarks	P&S [Ho2, Na15, Me4, Be24] Pseudocubic, S.S. with Ba [Be24] Pseudocubic Pseud	P&S [Be34, Da1, Re5, De14], ESR: Gd, Cr [Ki3, St16a]. Luminescence: Eu [Ya3, B113, B114], Pr [Ma30, De8], Cr [B115, Bo14]; twinning + detwinning [Fa9, Fa10]; nuclear quadrupole resonance [De17]; S.S. with BaTiO ₃ [Sm15, Is2b]; space group, R\(\text{S}\) cabic [T = \(\text{50}\) °C; cubic T > \(\text{52}\) °C; (Wo15a, Ge4b) \(T = \text{63}\) o°C; cubic T > \(\text{52}\) °C [Wo15a, Ge4b] \(T \text{83}\) inelastic neutron scattering [Ax\(\text{3}\)] \(T \text{86}\) P\(\text{8}\) S [Be34, Ma27, Yu4, Zo1, Re5, Li2, Ru10, Sc13]
Ref.	Sm30 Na15 Na15 Na15 Na15 Na15 Ke4 Ke3 Ke3 Ke3 Ke3 Cl1 As3a As3a Cl1 As3a As3a Cl1 As3b As3a Ka13	Ges Ges Kit Ges
angle		$\alpha = 60^{\circ} 6'$ $\alpha = 60^{\circ} 15'$ $\alpha = 60^{\circ} 22'$
3 • €	5.74 6.033 5.829 11.752 7.050 6.025 14.23 14.23 14.23 14.23 11.9 5.742 5.787 11.9 20.98	
γ	9.983 9.79 9.58 8.58 ≈ 11.78	
P 4	8.985 8.84 8.74 8.74 8.960 4.387 4.384 4.387 4.384 4.387 4.28 6.77 7.054 6.730 7.054 6.730 7.054 6.730 7.134 13.49 13.49 13.07 6.847 7.134 7.134 7.134	5.357 3.818 5.327 5.307
Sym	м нт нообразоровно н но нообразоровно н но нообразоровно н но нообразоровно н н н н н н н н н н н н н н н н н н	ж о кк
Compound	A²+B+4O₃ (continued) BaThO₃ C CaThO₃ C CaThO₃ C CaThO₃ C CaThO₃ C CaThO₃ C BaUO₃ C BaNpO₃ C BaPuO₃ C BaPuO₃ C BaTiS₃ H PbTiS₃ H PbTiS₃ H BaZrS₃ D BaTaS₃ H BaTaSs₃ H LnGaSs₃ H LnGaSs₃ H LnGaSs₃ H LnGaSs₃ H	ATECO. LaAlo. CeAlo. PrAlo.

Magnetic Data	in 3.3.4, Tab.	9	9	9	9	, ,	9	9			9					· · · · · · · · · · · · · · · · · · ·	
Remarks		Discussion of disagreement between [Ge5] and	P&S [BY Cal III [GG-4] and [10/24] P&S [BA2, Zo1, Ke2, Ge5, Re5, Li2, Ru10,	Scis, Dail P&S [Be34, Ke2, Re5, Li2, Sci3, Zoi] Discussion of disagreement between [Ge5] and	[$Ma27$] given in [$Ge4a$] and [$To12a$] $T=850$ °C, rhombohedral $T>800$ °C P& S [$Bo14$, $Re5$, $Li2$]	Prep. T < 900 °C, see Fig. 17a P&S [Be34, Da1, Ga28, Sc13, Li2, Ma39]; optical	properties [Bl13, Bl14, Bl16, Ca8, Oh1]; NMR, Al ¹⁷ [Bo2a] Prep. < 900 °C, see Fig. 17a Neutron diffraction [Bi2], P&S [Ga28, Sc13], opti-	cal properties [Hu6, Hu6a] Prop. < 900 °C, see Fig. 17a P&S [Be34Ga28, Da1, Da2, Sc13], neutron dif-	Iraction [Bi1, He12], optical properties [Hu5, Sc24, Fa3]	Frep. $< y00^{\circ}$ C, see Fig. 1/a P&S [$Ga28$]	Prep. < 900 °C, see Fig. 17a P&S [<i>Ga28</i>]	Prep. < 900 °C, see Fig. 17a P&S [<i>Ga28</i>]	No perovskite [Ga28, Sc13] P&S [Mi8, Be34], ESR: Fe³+ and Gd³+ [Wh3];	accomposition of YAG [MaZ6] Prep. $< 900 ^{\circ}$ C, see Fig. 17a Not able to be reproduced [Bu3]	P&S [Sc13, Ke2]	No dimensions P&S [Set]	F & 3 [3673, A&Z]
Ref.		Ma27	Ges	Ge5 Ma27	Ge2 Ge5	Be36 Ge5	Be36 Bi2	Be36 Gi3	76.00	Sc13	Be36 Sc13	Be36 Sc13 Ga28	Ge6	Be36 Na15 Pu13	Ke8 Ge2	Kez Gez	Sc13
angle			$\alpha = 60^{\circ} 25'$		$\alpha = 60^{\circ} 19^{\circ}$									~ - 90° 24'	l B		
Ą		3.76		7.473	7.458	10.52 7.447	10.51 7.415	10.51	7	7.36	10.51 7.33	10.50 7.29 7.317	7.370	10.52 7.94	8.098	8.027	7.95
y o			•••	5.290	5.292	5.304	5.308	5.31		5.33	5.32	5.33	5.329		5.787	5.776	5.76
À		3.74	5.286	5.285	5.316	3.760 5.247	3.73	3.730 5.23	700	5.18	3.670 5.16	3.660 5.15 5.128	5.179	3.68 7.61 3.78	3.75	5.615	5.53
Sym	ed)	H	ద	00	×0	щo	ĦО	що	þ	40:	# O	H00	0	五十五	. K O (000	0
Compound	A ³⁺ B ³⁺ O ₃ (continued)	PrA10 ₃	NdAlO ₃	SmAlO ₃	EuAlO,	GdAlO	TbAlOs	DyAlO ₃		HoAlOs	ErAlO,	TmAlO ₃ YbAlO ₄	LuAlO, YAlO,	BiAlOs B: A1O	AmAlO, LaScO,	Cesco, Prsco,	Susco.

R٠

Magnetic Data	in 3.3.4, Tab.	9		99	00000		9	00000	99
Remarks		P&S [Sc13], Prop. [Bo36]	P&S $[Sc13, Ke2]$ High pressure preparation $[To11a]$	P&S [Si4, Be33, Ho12, Ke15, Ke16, Jo4] Ti4+, S.S. with SrTiO ₃ [Ti1, Ke18, Ve9, We16], Barrio [To4]	P&S [Be3, U7] P&S [Be3, H012, Si4] P&S [Be3, H012, Si4] P&S [Be3, H012, Si4] P&S [Be3, H012, Si4] P&S [Be36, H012, Si4, Mc1c] P&S [Bo36, H012, Si4, Mc1c] Ti4+, P&S [Br20, Mc1b], Prop. [Mc3, Mc4, Si4], neutron diffraction [Mc2]		P&S [Si5, Be33, Ke16, Re8, Wo4, Ke18, Ke15, Ya1, Ro3], S.S. with: SrVO218 [Ke18, Wo14],	S.S. with CaVC _{2,8} [W014] P&S [Be33, Re8, W04] P&S [Be33, Re8, W04, Vi2, Ge2] P&S [Be33, Re8, W04, Vi2, Ge2] P&S [Be33, Re8, W04] P&S [Be33, Re8, W04] P&S [Be33, Re8, Re8, Ge2]	P&S [Re8]
Ref.		Sc13 Ge2 Sc13	Sc13 Ge2 To11b	We16 Ke18	We16 We16 We16 We16 Ho12	Mc1c Mc1c Mc1c Mc1c Mc1c Mc1c	Mc1c Wo14	Wo14 Wo14 Wo14 Wo14	Wol4 Wol4 Rul3 Ke8
angle			$\alpha = y = 90^{\circ} 41^{\circ}$	d = d					
o •4	-	7.94 7.925 7.89	7.87 7.894 4.042		7.760 7.742 7.728 7.651 7.616	7.676 7.647 7.626 7.613 7.607 7.598	7.624	7.74 7.751 7.734 7.672 7.637	7.578 7.587 7.76 7.78
b Å		5.76 5.756 5.71	5.71 5.712 4.127		5.521 5.568 5.655	849.0 849.0 8659.0 8659.0 865.0 869.	5.665	5.486 5.562 5.579 5.588 5.614	5.604 5.604 5.58 5.61
Ā		5.51 5.487 5.43	5.42 5.431 4.042	3.934	5.513 5.508 5.482 5.398 5.353 7.810	5.388 5.361 5.339 5.318 5.293 5.274	5.340 5.540	5.486 5.487 5.393 5.393	5.202 5.262 5.284 5.45 5.48
Sym	ted)	000	100	υυ	HH0000	000000	0 0	00000	
Compound	A ³⁺ B ³⁺ O ₃ (continued)	Eusco, GdSco, DySco,	HoScO ₃ YScO ₃ BiScO ₃	LaTiO _{3-r} La _{0.87} TiO ₃	CeTiO, PrTiO, NdTiO, SmTiO, GdTiO,	Tbrio, Dyrio, Horio, Errio, Tmrio, Ybrio,	YTiO, LaVO,	CeVO, PrvO, NdVO, SmVO, GdVO,	DyvOs ErVOs PuVOs AmVOs

Magnetic Data	in 3.3.4, Tab.	9		9	99	9	9	999	9	9 .	9	99	9	9	
Remarks		Semiconducting 0.6 eV [Ru11], neutron diffraction [Ko1], optical properties [Ru11], dielectric properties [Ra8], P& S [Ge2, Ru11, Wo4, Ke2, Na14], S. S. with Ni, Mn [Be33, Be21]; Tmelt = 2500 °C [Fo2], EPR [We4]	$T=280$ °C, rhombohedral 280 < $T<1030$ °C $_{T}=1230$ °C		P&S [Ru10, Be33, Wo4, Ke2] P&S [Ge2, Ru10, Be33, Wo4], $T_{melt} = 2420 \text{ °C}$	Fo2), dietectric properties (ring) $P\&S(Ru10, Ge2, Be33, Wo4, Ke2)$, $T_{melt} = 2405$ °C recons	$\Gamma_{\rm res}^{\rm CT/2}$ Pes [Ru10, Ge2, Be33, Wo4, Ke2], $T_{\rm melt} = 2385^{\circ}$ C From	P&S[$Ru10$] P&S[$Ru10$] Restruction [$Be42$, $Ma24$], specific heat	[De1a] Neutron diffraction [Be38], $T_{molt} = 2345$ °C [Fo.7]: dielectric hysteresis disappears at	Neutron diffraction [Be32, Be47, Be50], dielectric properties [Co6], Tmal = 2330 °C [Fo2], dielectric tric hysteresis disappears at ≈ 460 °C indicating and a supering form of the properties [Co6], Tmal = 2300 °C [Fo2], dielectric hysteresis disappears at ≈ 460 °C indicating and a superior feature [Fo8] °C with Hown.	10 center of symmetry [range, c.e. with instances $[A \not= h]$] Dielectric properties $[Co\delta]$, $T_{molt} = 2325$ °C $[Foc]$	$T_{\rm melt} = 2320 {}^{\circ}{\rm C} [Fo2],$ dielectric hysteresis disappears at $\approx 520 {}^{\circ}{\rm C}$ indicating no center of sym-	metry $[Ra\delta]$ Dielectric hysteresis disappears at ≈ 480 °C indicating no center of symmetry $[Ra\delta]$	P&S [Ge6, Ge2, Lo5, Ka18, Pa14, Yu5], dielectric properties [Ra8]. T_mail = 2340 °C [Fo2]	High pressure preparation
Ref.		0n1	Ru11 Ru11	Iw1 Va1	021 021	Qu1	Qu1	000 2 2 1 1	Qu1	Qu1	Qu1	Qu1 Qu1	Qu1	Qu1	Sh9
angle			$\alpha = 60^{\circ} 32^{\circ}$										·		
A		7.753		7.75	7.740	7.694	7.643	7.622 7.606 7.576	7.552	7.538	7.519	7.500	7.475	7.532	7.543
b A	_	5.515		5.50	5.475	5.478	5.508	5.515 5.525 5.518	5.520	5.519	5.516	5.508	5.497	5.521	5.355
8 •4		5.479	5.47	5.47	7.754 5.475 5.448	5.425	5.367	5.340 5.312 5.291	5.265	5.243	5.223	5.209	5.176	5.241	5.170
Sym	ed)	0	<u>بر</u>	000	υ o o	0	0	000	0	0	0	00	0	0	0
Compound	l A3+R3+O, (continued)	LaCrOs		La,Bio,CrO3	La _{0.8} Sr _{0.6} CrO _{3-x} CeCrO ₃ PrCrO ₃	, NdCrO,	SmCrO	EuCrO, GdCrO,	DyCro,	HoCrO ₃	Ercro	TmCrO ₃ YbCrO ₃	LuCrO,	YCrO ₃	InCrO3

Goodenough/Longo

Magnetic Data	in 3.3.4, Tab.	9	9				9 4	0 0	9	००													
Remarks	-11	High pressure preparation High pressure preparation; S.S. with BiMnO ₃ [<i>Tolla</i>]	P&S[Na14], neutron diffraction [Ko1, Wo12], S.S. with Ba, Sr, Ca[Wo12, Ja4, Ja5, Jo8, Jo12, Ha22,	Jo7, Jo9, Ya1, Ro11], S.S. with Cr, Fe, Co, Ni [Be33, Be21, Gi4, Jo7, Jo8, Jo9, Wo2, Wo6, Fu2, B17], S.S. with (Ba, Sr, Ca, Pb)TiO ₃ [Ha31, Ha32, To3, To6, To12], S.S. with GdCoO ₃ [De23]	24% Mn ⁴⁺	P&S [Be33 Vil] complete structure [Qu2]	P&S [Be33, Vi1, Sz1], complete structure [Qu2]	P&S [<i>Be33</i>] P&S [<i>Sz1</i>]	P&S [Be33, Sz1], S.S. with LaCoO ₃ [De23]	Complete structure determination [Qu2]	Preparation temperature 1600 °C, see Fig. 17a	Magnetic properties [Ve12, Be32], dielectric properties [Be35, Co7], P& $S[Sx1]$, see Fig. 17a	High pressure phase, P&S [Wa5, Vi1, Sz1]	Magnetic properties [Ve12, Be32], dielectric properties [Be35, Co7], see Fig. 17a	High pressure phase	Magnetic properties [Ve14, Be24], dietectric properties [Be35, Co7], see Fig. 17a	High pressure phase Magnetic properties [Ve12, Be32, Ro8, Bo11],	dielectric properties [Be35, Ro8, Bo11, Co7, Is11], P&S [Sz1], see Fig. 17a	High pressure phase	Magnetic properties [Ve12, Be22], dielectic properties [Be35, Co7], see Fig. 17a	High pressure phase	Dielectric or magnetic properties [1913, R06, Be32,	Be39, Be43, Be44, Be49, Ko3, Ki8], see Fig. 17a
Ref.		Sh9 Su10	Ru13 W02		Wo2	Ve12	Ve12	Ve12 Ve12	Ve12	Ve12	Sz1	Ya2	Wa4	Ya2	Wa4	Ya2	Wa4	ž	Wa4	Ya2	Wa4	Ya2	
angle		$\alpha = \gamma = 90^{\circ}35'$ $\beta = 89^{\circ}10'$			$\alpha = 90^{\circ} 36'$						-								.,				
v •4		3.90	7.76			7.818	7.557	7.482	7.432	7.403	11.43	11.42	7.35	11.41	7.335	11.40	7.32	11.40	7.30	11.37	7.31	11.41	
b A	-	5.405	5.51 5.722			5.557	5.854	5.843	0.047 0.042	5.831	5.828		5 84	+ 0.0	5.82		5.81		5.80		5.79		
a ⊷	-	5.302 3.90	5.46		3.892	5.537	5.445	5.359	5.338	5.297	5.275	6.136	76 3	5.20 6.115	5.24	6.062	5.23	6.062	5.22	6.042	5 205	6.125	
Sym		o Ir	00		α.	ō	ō ō	00	0 0	o ō	ō	d III		ĎΉ	ĵ.	H	ō	Ħ ———	Ċ	H	č	H	
Compound		A. B. C. (continued) Ticro, Bicro,	PuCrO, LaMnO,			CeMnO ₃	PrMnO ₃	SmMnO ₃	EuMnO	GdMnO ₃ TbMnO ₃	DyMnO ₃	HoMnO ₃		ErMnO ₃	-	TmMnO3		YbMnO ₃		LuMnO ₃		YMnO ₃	

Berichtigungen zu Band III/4a

- S. 177, letzte Zeile: statt Ba₂TdPaO₆ lies Ba₂TbPaO₆
- S. 219, Zeile 16 von unten: statt $\mathrm{KMg_{1-x}Ni_xFe_3}$ lies $\mathrm{KMg_{1-x}Ni_xF_3}$
- S. 252, Zeile 26 von oben (Überschrift): statt $Sr_3Fe_3UO_9$ lies $Sr_3Fe_2UO_9$

Errata in Vol. III/4a

- p. 177, bottom line: instead of Ba₂TdPaO₆ read Ba₂TbPaO₆
- p. 219, line 16 from the bottom: instead of $KMg_{1-x}Ni_xFe_3$ read $KMg_{1-x}Ni_xF_3$
- p. 252, line 26 from above (headline): instead of $Sr_3Fe_3UO_9$ read $Sr_3Fe_2UO_9$

Landolt-Börnstein, Neue Serie III /4a

Magnetic Data	in 3.3.4, Tab.		9	9	७७	9	9	9 9	999	9	9	9	ဖ ဖ [ဲ]		
Remarks		High pressure phase; S.S. with: Fe, perovskite at 15% Fe $[Ch6]$	P&S [$Sa70$]; S.S. with Ca [$Bo6$, $Bo12$, $S119$], PbTiO ₈ [$Bo6$, $Bo7$], Sr [$Iv1$], La [$Iv1$], BiCrO ₃ [$To11a$]; crystallographic transformation $T = 210$ °C [$To11a$]	Pseudocubic P&S [Be33, Fo5, Re5, Wo3, Ke2, Da2, Na14, Ya1], S.S. with Ni, Mn [Be33], S.S. with Al, Co, Cr, Sc[Ka17, Wo3], rhombohedral T > 980°C [Da1], S.S. with: PbNb ₂ O ₈ [Fr11], Pb [Re5a], B: Fish:	P&S [Ke2, Be33] P&S [Ee2, Be33] P&S [Be33, Fo5, Re5], S.S. with Al, Co, Cr, Sc	P&S (1873), Fo5, Re5, Wo3], S.S. with Pb [Re5a], Ri [Re5h]	P&S [Be33, Fo5, Re5, Wo3], S.S. with Pb [Re5a], Bi [Re5b]	P&S [<i>Re5</i>], S.S. with Pb [<i>Re5a</i>], Bi [<i>Re5b</i>] P&S [<i>Be33</i> , <i>Re5</i>], crystal structure [<i>Co27</i>], S.S. with Pb [<i>Re5a</i>]. Bi [<i>Re5b</i>]	P&S [Koof, S.S. with: Pb [Resa], Bi [Resb] P&S [Da2], S.S. with: Pb [Resa], Bi [Resb] P&S [Koof], S.S. with: Pb [Resa], Bi [Resb], HoMnO, [Absta]	P&S [Fo], crystal structure [W17], S.S. with: Pb [Re5a], Bi [Re5b]	Crystal structure [Wið], S.S. with: Pb [Re5a], Bi [Re5b]	P&S [Ko6, Be1, Ha21], S.S. with: Pb [Re5a], Bi [Re5b]	P&S [Sab], S.S. with: Pb [Re5a], Bi [Re5b] P&S [Fo5, Ru11, Ko6, Wo3, Ge4, Ma26, Va7, Sh12a], crystal structure [Co21], S.S. with:	Pb [<i>Re5a</i>], B1 [<i>Re>b</i>]	
Ref.		Wa3	Bo12	Ru13 Ge6	Ro1a Ge6	Geb	Ge6	Ge6 Ge6	Ei1 Ei1	Eil	Eil	Ei1	Ei1 Ei1	Shg	
angle			$\beta = 92^{\circ} 24^{\circ}$												
o 4	-	7.35	7.98	7.862	7.809	7.753	7.711	7.686	7.635 7.623 7.602	7.591	7.584	7.570	7.565	7.796	
b A	4	5.84	11.31	5.565	5.577	5.573	5.592	5.611 5.616	5.598 5.598 5.591	5.582	5.576	5.557	5.547	5.448	
<i>v</i> • <i>a</i>	4	5.26	10.93	3.86 5.556	5.541	5.441	5.394	5.371 5.346	5.326 5.302 5.278	5.263	5.251	5.233	5.213	5.319	
Sym	-		×	υO	00	0	0	00	000	. 0	0	0	00	0	
Compound		A*+B*+Os (continued) YMnOs	BiMnO ₃	PuMnO _s LaFeO _s	CeFeO.			EuFeO ₃	TbFeO ₃ DyFeO ₃ HoFeO ₃	ErFeO3	TmFeO	YbFeO3	LuFeO ₃ YFeO ₃	TIFeOs	16

0	i .	3.1 ADA3 1 Clow				[Lit. 5.	
Magnetic Data	in 3.3.4, Tab. 6	9	9	99	999	9	
Remarks	P&S [Fi12, Is10, Ko5, Kr4, To7, To9, To12, Yu3, Yu1, Za2, Sm34, To10, Ge10a, Ro22], neutron diffraction [P11, Ki4, Ki5, Ki6, Bh2], S.S. with: LaAlO ₃ [Fe5], LnFeO ₃ [Kr5, Kh5, Ro7, Ro9, Is10b, Ro10, Ki6], Pb(Ti, Zr)O ₃ [La6, Fe8, Ge10, Fe2, Sm7], BaTiO ₃ [Ve5, Ka15], SrTiO ₃ [Fe6], LaCrO ₃ [Ro5], SrSnO ₃ [Hi1], Bi ₄ Ti ₅ O ₁₂ [Is12], SrFeO ₃ [Ma8], Pb ₂ FeNbO ₆ [Ro10, Yu1, Yu2, Sm12, Sm13, Is10a, Zh1, Is8, Kr3, Kr5], SrGo, Mn, Mn, Mn, Mn, Mn, Mn, Mn, Mn, Mn, Mn	[Rot0], PbNb ₂ O ₈ [Fr/1]; BiMnO ₃ [MaJ], PbNb ₂ O ₈ [Fr/1]; BiMnO ₃ [MaJ], Pb(Fe _{2/3} W _{1/8})O ₃ [Sm20], FreO ₃ [Vi4a], complete structure S.G. R3c [Mi0] [MaJ], com-NG ₂ C, T < 375 °C; R\$\overline{A}\$, T > 375 °[RaJ]; P&S [As3, Wo4, He7, Sc23], Prop. [Me17, Ko1, Ra3, Ge12, Ra3, Jo9, Go16, Na1, Bl6, He7, Mu4, Me18], S.S. with Sr [Me18, Ra4, Jo13], S.S. with Sr and Th [Sc23]	T=937 °C: atomic positions demand R3 symmetry P&S [$Wo4$] P&S [$Wo4$], thermal conductivity [$Ge12$] P&S [$Wo4$],	P&S [435] Studied in review of TbBO _s compounds [Ma24]. No cell dimension	High pressure preparation [$Totta$] P&S [$Wool$, neutron diffraction [Kot] High pressure preparation [$Totta$] P&S [$Ke2$, $Da2$, $Be34$, $Br25$, $Da1$, $Ma25a$] P&S [$Coole = 100$] P&S [$Coole = 100$] P&S $Coole = 100$ PM PAD	P&S [Be34, Br25, Ma25a] P&S [Be34, Br25, Ma25a] P&S [Da1, Be34, Br25, Ke2, Ma25a], complete structure [Br26], S.S. with LaGaO ₈ [Br25] High pressure preparation High pressure preparation [High pressure preparation [Ma25]	High pressure preparation
Ref.	Mio	W09	Ra3 Be33 Be33 Be33	Be33	To11b Wo8 To11b Ge2 Ge2	Ma25a Ma25a Ma25a	Ma25a
angle	$\alpha = 59^{\circ} 41'$	$\alpha = 60^{\circ} 48'$	0°0°0 = 8		$\alpha = 60^{\circ} 49'$ $\alpha = 60^{\circ} 25'$		
o A			7.587 7.547 7.541	7.436	7.787	7.729 7.706 7.650 7.628 7.628	7.578
ь			5.373 5.336 5.354	5.404	5.524	5.495 5.502 5.520 5.528 5.537	5.531
ā	5.62		5.32 5.331 5.336 5.289	5.228	4.228 5.461 4.173 5.544 5.544	5.465 5.426 5.369 5.351 5.322	5.307
Sym	ned) R	K (4 000	0	0 K 0 0 K 0	000 0000	0
Compound	A ³ +B ³ +O ₃ (continued) BiFeO ₃	LaCoO3	PrCoO, NdCoO, SmCoO,	GdCoO ₃ TbCoO ₃	BiCoO ₃ LaNiO ₃ BiNiO ₃ LaGaO ₃	PrGaO, NdGaO, SmGaO, EuGaO, GdGaO,	r o ca O ₃

A*+B*+C, (continued) Dy GaO, Ho GaO, Tm GaO, Yb GaO, Yb GaO, Yb GaO, Yb GaO, Yb GaO, La Yo, La Yo, La Yo, La Yo, La Yo, La Yo, C, La Yo, C, La Yo, C,	2 5.534 1 5.531 1 5.531 14 5.515 18 5.510 18 5.510 18 5.510 18 6.071 14 5.7473 178 5.751 174 5.7607 174 5.7607	7.556 7.536 7.536 7.505 7.484 7.533 8.438 8.438 7.500 7.700 7.7083 7.7083 7.6802 7.6584 7.6502 7.6584		Ma25a Ma25a Ma25a Ma25a Ma25a Ma25 Ge3 To11b Si5 Sh8a Sh8a	High pressure preparation [Ma25] P&S [Pa2, Mo6], optical properties (Eu³+) [B113] P&S [Ch11, Wo9, Kh1] P&S [Ch11] P&S [Ch11] P&S [Ch11]	Tab.
A*+B*+O, (continued) DyGaO, HoGaO, HoGaO, TmGaO, YbGaO, LuGaO, YGaO, LaYO, LaXO, LaXO, LaXNo, C LaRNo, C LaRNo, O PrRhO, O SmRhO, O GaRhO, O GaRhO, C C C C C C C C C C C C C C C C C C C	11 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Ma25a Ma25a Ma25a Ma25a Ma25a Ma25a Ma25 Ge3 To11b Si5 Si8a Si8a	High pressure preparation $[Ma2\delta]$ $[Ma2\delta]$ $[Ma2\delta]$ High pressure preparation $[Ma2\delta]$	
DyGaO, HoGaO, HoGaO, TmGaO, TmGaO, YbGaO, LuGaO, LaYO, BiYO, LaNbO, Carkho, PrRhO, NdRhO, O FuRhO, O FurthO, O FurthO	11 8 8 3 1 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4			Ma25a Ma25a Ma25a Ma25a Ma25 Ge3 To11b Si5 Wo5 Sh8a Sh8a	High pressure preparation High pressure preparation High pressure preparation High pressure preparation [Ma25] High pressure preparation [Ma26] P & S [Pa2, Mo6], optical properties (Eu³+) [B113] High pressure preparation [To11a] P & S [Ch11, Wo9, Kh1] P & S [Ch11]	
HoGaO, TmGaO, TmGaO, YbGaO, LuGaO, LaYO, ExNO, LaNO, LaNbO, Canner, Ca				Ma25a Ma25a Ma25a Ma25 Ma25 Ge3 To11b Si5 Wo5 Sh8a Sh8a	High pressure preparation High pressure preparation $[Ma25]$ High pressure preparation $[Ma25]$ High pressure preparation $[Ma26]$ P & S $[Pa2, Mo6]$, optical properties (Eu^{3+}) $[B113]$ High pressure preparation $[To11a]$ P Seudocubic $[To11a]$ P & S $[Ch11, Wo9, Kh1]$ P & S $[Ch11]$ P & S $[Ch11]$ P & S $[Ch11]$	
ErGaO ₃ TmGaO ₃ YbGaO ₃ YGaO ₃ LaYO ₃ EaNO ₃ Carho ₃ Carho ₃ PrRhO ₃ Oarho ₃ Carho ₃	53.118.3			Ma25a Ma25a Ma25a Ma25 Ge3 To11b Si5 Wo5 Sh8a Sh8a	High pressure preparation High pressure preparation [$Ma25$] High pressure preparation [$Ma25$] High pressure preparation [$Ma26$] P&S [$Pa2$, $Mo6$], optical properties (Eu^{3+}) [$B113$] High pressure preparation [$To11a$] Pseudocubic P&S [$Ch11$, $Wo9$, $Kh1$] P&S [$Ch11$]	
TmGaO, YbGaO, LuGaO, YGaO, LaYO, BiYO, LaYO, BiYO, CaRhO, PrRhO, NdRhO, OGRRhO, CaRhO,	53.118.3			Ma25a Ma25a Ma25 Ge3 Ge3 To11b Si5 Wo5 Sh8a Sh8a	High pressure preparation $[Ma25]$ High pressure preparation High pressure preparation $[Ma26]$ P&S $[Pa2, Mo6]$, optical properties (Eu^{3+}) $[B113]$ High pressure preparation $[To11a]$ Pseudocubic P&S $[Ch11, Wo9, Kh1]$ P&S $[Ch11]$ P&S $[Ch11]$	
YbGaO, YbGaO, LuGaO, YGaO, LaYO, BiYO, LaRhO, Carrho, PrRhO, NdRhO, OGRhO, Carrho, Carrho, NdRhO, OGRhO, Carrho, Carrh	8819476			Ma25a Ma25 Ge3 To11b Si5 Wo5 Sh8a Sh8a Sh8a	High pressure preparation High pressure preparation [Ma26] P & S [Pa2, Mo6], optical properties (Eu³+) [B113] P & S [Pa2, Mo6], optical properties (Eu³+) [B113] High pressure preparation [$Tof1a$] P & S [$Ch11$, $Wo9$, $Kh1$] P & S [$Ch11$]	
LuGaO, YGaO, YGaO, LaYO, BiYO, LaRhO, LaRhO, PrRhO, NdRhO, OGARhO, GdRhO, TbRhO, OGHRO, GHRO, EuRhO, OGHRO,	8815416			Ma25 Ge3 To11b Si5 Wo5 Sh8a Sh8a Sh8a	High pressure preparation $[Ma26]$ P & S $[Pa2, Mo6]$, optical properties (Eu^3+) $[Bl/3]$ High pressure preparation $[Tof/a]$ P Seudocubic P & S $[Ch/1, Wo9, Kh/1]$ P & S $[Ch/1]$	
YGaO, LaYO, BiYO, BiYO, C. LaRhO, PaRhO, NdRhO, SmRhO, C.	8819470			Ge3 To11b Si5 Wo5 Sh8a Sh8a Sh8a	P&S[Pa2, Moo], optical properties (Eu³+) [B113] High pressure preparation [$To11a$] Pseudocubic P&S[Ch11, Wo9, Kh1] P&S[Ch11] P&S[Ch11]	
LaYO, BiYO, BiYO, C. LaRbO, C. LaRbO, NdRbO, SmRbO, CuRbO,				Tottb Sis Wos Sh8a Sh8a Sh8a	High pressure preparation [Tolla] Pseudocubic P&S [Ch11, Wo9, Kh1] P&S [Ch11] P&S [Wo1]	
BiYO, LaNbO, LaRbO, LaRbO, PrRhO, NdRhO, SmRhO, EuRbO, GdRbO, O TbRbO, HoRbO, ErRbO,				Si5 Wo5 Sh8a Sh8a Sh8a	Pseudocubic P&S [Ch11, Wo9, Kh1] P&S [Ch11] P&S [Wo5]	
LaNbO, LaRhOs, CarhOs, NaRhOs, SmRhOs, EuRhOs, GaRhOs, OyRhOs, HoRhOs, ErRhOs,				Wos Sh8a Sh8a Sh8a Sh8a	P&S [Ch11, Wo9, Kh1] P&S [Ch11] P&S [Wo5]	
LaRho, PrRho, NdRhO, NdRhO, SmRhO, EuRhO, GdRhO, TbRhO, HoRhO, HoRhO, ErRhO,				Sh8a Sh8a Sh8a	P&S [Ch11] P&S [Vh17] P&S [W17]	
PrRhO ₃ NdRhO ₃ SmRhO ₃ EuRhO ₃ GdRhO ₃ TbRhO ₃ UyRhO ₃ HoRhO ₃ ErRhO ₃				Sh8a Sh8a Sh8a	T&S [Viii] P&S [Viii]	
MARNO, SMRNO, EuRhO, GARNO, TbRNO, DyRNO, HORNO,				Sh8a Sh8a	1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0	·
SmRhO ₃ EuRhO ₃ GdRhO ₃ O GdRhO ₃ TbRhO ₃ DyRhO ₃ HoRhO ₃				5484		
SmrnO ₃ EuRhO ₃ GdRhO ₃ O TbRhO ₃ O TyRhO ₃ HoRhO ₃ O ErRhO ₃				010	F&V [041]	
Eukhus GdRhos TbRhos DyRhos HoRhos				2000		
GdRhO, TbRhO, DyRhO, HoRhO, ErRhO,		· ·		Sh8a	P&S[Ch11]	
TbRhO ₃ O DyRhO ₃ O HoRhO ₃ O ErRhO ₃ O		-		Sh8a		
DyRhO, O HoRhO, O ErRhO, O		_		Sh8a		
HoRhO, O ErRhO, O				5480	P & S [Ch11]	
ErRhO, O				5480	P & S [Ch11]	
				5484		
TmRhO, 0				Sh8a		
Lingho, 0				27.0		
			-	3/17	D & C 17.2 D.21	
				K010	Γα 3 [σεν, τ αξ]	
0		-		K016		
				K010		
	67 5.835			249	High pressure preparation	
	u n	2 8.071		Shg	High pressure preparation	
) C				Sh9	High pressure preparation	
		7 8.053		Sh9	High pressure preparation	·
 		8.480		Mo6		> \
				Sc12	P&S [Sc13, Mo6]	۰ د
				Sc12	P&S [Sc13, Mo6]	0
) (i				Sc12	P&S [Sc13, Mo6], complete structure determined,	_
					S.G. Pbn2 ₁ , [Mu8], $T_{melt} = 2120$ °C [$Tr0$]	9
7 205	- 20			Tr0	$T = 2080 ^{\circ}$ C	
ب 	20.9	8.37		Sc12	P&S [Sc13, Mo6]	
LaLud, 0 5.751			<u>.</u>	Mo6		
1						

Rei

	Magnetic Data	in 3.3.4, Tab																							
	Remarks		Hex (12 L)	Hex (12L) R perovskite	Hex (6L), Prep. $T > 470$ °C	[2,7] At this S S [23,7] 0101/6 55/S] S & D	P&S [Pa10, Me20]	rrep. [Bau]	Prep. [Ba0] Prep. [Ro0]	T < 680 °C	High temperature form	Per S [Bas], magnetic properties, $n_{\text{eff}} = 1.70$,	$C_p = 0^{-1} R [Ent]$ Structure determined $[Bu4a]$	P&S[Ba5]	Hex (12L)		Hex (12L)	Magnetic properties, $80 < T < 300$ °K, $n_{off} = 2.79$. $\Theta_{off} = -14$ °K [Fi4]				Hex (12L)		Hex (121.)	P&S [<i>Pe2</i>] High temperature form
spunodu	Ref.		Basa	Ba5a Wi11b	Wi11b Me21	St33	Pag	Ho16a	802	$\frac{D}{ThI}$	B02	Br7	Br7	Br7 Ra5a	Ba5a	Basa	Ba5a		Ba5	Pa6a	Basa	Ba5a	Basa	Basa	K16 B02
b. A ₂ B'BX ₆ compounds	angle					B 90° 11'	Ī			$\beta = 90^{\circ} 45^{\circ}$;	$\beta \approx 90^{\circ}$											
Tab. 2b.	c A		29.76	28.02 13.648	13.754	7 80	2			8.12	7.45	8.75		7.99	30.40		28.77			-		30.24		28.61	8.62
	b A					7,				5.81			;	5.83											
	a A		6.168	5.802	5.614 8.105	8.65	8.90	9.32	17.46	5.60	6.49 9.26	8.56	8.367	5.53 9.04	6.267	8.88	5.891		8.315	9.04	8.99	6.231	8.81	5.865	8.56 8.54
	Sym	1, Cl-1	ΗO	HH	СН	ပ ≱	ပ	ပ	ပ ပ	≥ ≥ €	→ ∪	H	υ;		H		H	•	O i	ပ င	. ပ	H	<u></u>	π د	нo
	Compound	$A_2^+B^+B^{8+}X_6; X = F^{-1},$	Cs2NaAlF6 Rb,NaAlF2	Rb <u>"</u> LiAIF, K <u>2</u> LiAIF,	K2NaAlF6	K2KAIF, Na,NaAIF,	(NH4)2(NH4)AIF	Cs_KScF,	Kbrbscf, Krscf.	Na ₂ NaScF ₆	(1/1/4/2(1/1/4/) OCF6	K ₂ KTiF ₆	K, NaTiF	Na2Na lire Cs, KVF	Cs.NaVF,	Kb2KVF6 Rb,NaVF	Rb_LiVF,	$ m K_2KVF_6$	K ₂ NaVF	(NH4)2(NH4)VF6	Cs, KCrF,	Cs ₂ NaCrF ₆	Rb2KCrF,	Rb,LiCrF,	KzKcrF, KzKcrF,

| Bo2 | High temperature form

. p	. 275]

Magnetic Data	in 3.3.4, Tab.	•																											1
Remarks		Prop. [<i>Sh28</i>]	Magnetic properties. $b^* = 4.95 \text{u}$ [$Pe2$]		P&S [H016a]	Hex (12L)		121)	(177)		P&S [Mi5], magnetic properties, $92 < T < 296$ °K,	$n_{\text{eff}} = 5.65, \ \Theta_p = -2 \ \text{Nr}[F11]$ Magnetic properties, $93 < T < 293 \ \text{°K}$,	$n_{\rm eff} = 6.00$, $\Theta_{\rm p} = 0$ °K [Fi1]	Low temperature form	$F \approx 5 [5133, Kl6]$; magnetic properties, $92 \times 7 \times 294$ °K $\approx 2.2 \times 86$ $\approx 2.2 \times 12$	Magnetic properties, $90 < T < 290$ °K,	$n_{\text{eff}} = 5.28$, $\Theta_{\text{p}} = +2$ °K [$Kl6$] P&S[$Ho/3$], magnetic properties $90 < T < 290$ °K	$n_{\text{eff}} = 5.48, \Theta_{\text{p}} = -2^{\circ} \text{ K} [K16]$	P&S [Me27, Hol3], magnetic properties, $73 - 7 - 300$ % $31 - 62$ 6 5 9	$(5 < 1 < 500 \text{ K})$, $n_{\text{eff}} = 5.55$, $\Theta_{\text{p}} = -10 \text{ K}$. [Co23, K16]	t de la companya de l	Freudocubic, $F \propto 2 [Holo]$, magnetic properties, $90 < T < 290$ °K, $n_{\rm eff} = 5.39$, $\Theta_{\rm n} = -5$ °K	$[Kl\delta]$ 0.000	$F \propto 5 [M to]$, inaginetic properties, $90 < 1 < 295$ TV, does not obey Curie. Weiss law [$Kl2/Kl3/M to$ 20]	Z	_			
Ref.		Kn5 Vo1	Pa6a Pe2	Kn4	Mi2 Ba5a	Basa	Ba5a	Basa	Bo2	Kn5	Cr5a	Mi2		5133	Fay	K16	K16		K16		Me27	K10	0,0	700	K16	Ho16a	Kn2	3520 Ho16	
angle		°06≈ β									$\beta = 90^{\circ} 28^{\circ}$																		
o A		7.878	16.60	8.577		30.40		70 77	77.07		7.925			9.30															-
<i>b</i>		5.679									5.719																		
PΨ	ontinued)	8.266	9.01	8.171	10.46	6.260	8.88 8.87	8.47	3.691 8.58	8.323	5.506	8.88		6.39	9.10	9.23	8.90		8.57		8.22	16./	0	† † †	8.50	8.975	8.240	9.175	
Sym	F-1, Cl-1 (continued)	υ¤	υF	· [+ ·	ပပ	H	ပ္ပ	ပ္	ų ο	ပ	ĭ	v		[ပ	U	Ú)	ပ		O (ر	C	ر	ပ	ပ (ی ر	υO	
Compound	$A_2^{\dagger}B^{\dagger}B^{3\dagger}X_6; X = F^{-}$	K2NaCrF, Na,NaCrF,	(NH ₄) ₂ (NH ₄)CrF ₆ K.KMnF.	K ₂ NaMnF ₆	Cs.CsFeF, Cs. KFeF.	Cs.NaFeFe	Rb,RbFeF, Rb,KFeF,	Rb NaFeF	K,KFeF	K ₂ NaFeF ₆	Na ₂ NaFeF ₆	Li,LiFeF,	,	(NH ₄) ₂ (NH ₄)FeF ₈		Cs,CsCoF,	Rh. RhCoF.		K2KCoF6		K2NaCoF	Na ₂ NaCoF ₆	17 TABLE	K2MINIF ₆	K2KCuF	Cs.KGaF	K ₂ NaGaF ₆	CS2KAgF,	

 \mathbf{R}

S.S. with $x = Pb_2NbMnO_6$; cubic $\geq 50\%$	
Ha32	
$\alpha = 90^{\circ} 12'$	
3.933	
, H	
nTiO,	

Magnetic Data	in 3.3.4, Tab.														-										
Remarks				$P\&S [Ro20], Eu^{3+}$ fluorescence $[B114]$, S.S. with: Ni and optical properties $[Re4a]$	Slight distortion Slight distortion	Some question on atom positions Optical properties	-	See LaMnO ₃ systems for magnetic properties See LaMnO ₃ systems for magnetic properties, P&S	[Fuz] See LaMnO ₃ systems for magnetic properties		S.S. with Ni and optical properties [Re4a]	Eu^{3+} fluorescence [$Bl14$]	Semiconducting, $\Delta E = 0.046 \text{ eV}$	Semiconducting, $\Delta E = 0.12 \text{eV}$		Optical properties		Discussion of Bases	Disproportionates $[Du23u]$ "Complex magnetic properties" $[Bl7]$, $P\&S[Bl8]$		"Complex magnetic properties" [BI7]	Complex magnetic properties. [BI/], F&S [Bi8] "Complex magnetic properties." [BI7]		P&S[Vi3, Ve3], dielectric properties $[Vi2b]Cubic > 320 °C$	
Ref.		B18 B18 B18		Ag1	Ro20 Ro20	Su5 Re4a	B17	B17 B17	B17	Ro20 Re4a	Ra1	Ka1 Bl1a	Gas	Gas	Gas	Re4a Ba25a	Ba25a	Ba25a	Gas	Gas	B18	Ga.5 B18		Ve2 Ve2	
angle																						$\gamma = 86^{\circ} 56'$			-
o Å												7.92					1	7.968			7.92	7.72		8.622	* · · · · · · · · · · · · · · · · · · ·
b Å												5.76									2.60	5.60		6.180	_
γa	(Đ)	3.92 3.93 3.94		3.96	3.90	3.98 3.98 833				3.90	3.88 4.06	4.174 5.59	7.91	7.90	7.97	4.02 7.926	7.908	5.611	7.92	7.86	5.60	5.80		6.123	
Sym	(continue	000		O .	υc) () ())			υc	υO	υ O	ပ (ں ر	<u>၂</u>	ပ ပ	0	L	O	ပ	0	シ 翼		0 U	
Compound	(A ²⁺ A ³⁺) (B ³⁺ B ⁴⁺)O, (continued)	SrLaFeTiO, SrLaMnIrO, SrLaFeIrO,	A2+BBO	La2MgTiO,	Nd ₂ MgTiO ₆	Bi_MgTiO,	La,MgMnO,		La,CuMnO,			La ₂ CaZrO ₆ La ₃ LiNbO ₄	н,	La ₂ MnKuO ₆ La ₂ NiRuO ₆	La_ZnRuO	LagNio, Mgo, SnO	La2NiReO	La.CoReO,	LazFeReO, LasMgIrO.	La, Mulro	La_CoIrO	La ₂ NiIrO ₆ La ₂ CuIrO ₆	A2+BV5+O,	Ba ₂ BiVO ₆	

7 7
Ke
nnatio
3
1
1
1
ı
Γ
1

Magnetic Data	in 3.3.4, Tab.	` v	v	\$
Remarks		P&S [Ag1, Br16] P&S [Ag1] P&S [Ga13, Fi10, Ag1]	P&S $[Fi10]$ P&S $[Ga1]$ P&S $[Br16]$, cubic $T > 300$ °C $[Fi10]$ Probably ordered. Probably ordered, cubic $T > 300$ °C $[Fi10]$ P&S $[Br16]$, cubic $T > 300$ °C $[Fi10]$ P&S $[Br16]$, cubic $T > 300$ °C $[Fi10]$ P&S $[Br16]$, fluorescences $[B111, Ni1, B114]$ Probably ordered. P&S $[Br16]$	P&S [Vi3, Ve3], dielectric properties [Vi2b] P&S [SI1] P&S [Br14] P&S [Ku12], cubic $T > 200$ °C [Ku12] P&S [Ga13, Ku12] T = 250 °C, cubic $T \ge 250$ °C Cubic $T > 630$ °C P&S [Br14]
Ref.		Fi10 Ch10 Ha32 Ga1 B18 B18 Ga1	By 16 By 16 Ga 1 Ga 1 Ga 1 Ga 1 Ga 1 Ga 1 Sin 1 S	Ve2 Fi10 Ga13 Ch10 Bl8 Ku6 Ku6 Ku6 Ku6 Ku14 Ga13 Fi10
angle				$\alpha = 60^{\circ} 21^{\circ}$ $\alpha \approx 90^{\circ}$ $\alpha = 59^{\circ} 51^{\circ}$
0 A			8.690	3.980
b A	•			
A A		8.220 4.051 4.090 4.057 4.06 4.1 8.54	8.8 8.8 8.5 4.0 8.8 8.8 8.8 8.2 4.0 8.8 8.8 8.5 4.0 8.0 8.5 4.0 8.8 8.5 4.0 8.8 8.5 4.0 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8	6.046 6.046 7.784 7.784 7.87 3.965 3.968 3.968 3.9477 8.34 8.34
Sym		000000	000000000000000000000000000000000000000) # O O O O M H O O O O M O
Compound	A2+BNb5+O6	Ba ₂ ScNbO ₆ Ba ₂ VNbO ₆ Ba ₂ MnNbO ₆ Ba ₂ FeNbO ₆ Ba ₂ CoNbO ₆ Ba ₂ NiNbO ₆	Ba, TNDO, Ba, RhNDO, Ba, EnNDO, Ba, EnNDO, Ba, EnNDO, Ba, EnNDO, Ba, PrNDO, Ba, TNNDO,	Sracenbooks Sracen

Magnetic Data	in 3.3.4, Tab.											ح	· •	,				9				-												9
Remarks			P&S[Ku12]	,						Slight distortion	Cubic $T > 540$ °C	0 040 / 7 01000			Ordered perovskite (Eu³+ fluorescence) [B114]							Possibly lower symmetry	Possibly lower symmetry								Detect pyrochlore type $F \propto S[AgI, Ve4]$ Dielectric properties [103. Sm18. Te8e] S.S.	stal growth [Possible rhombohedral distortion	P&S [Ha32], S.S. with Fe and PbTiO ₃ [Ha31]
Ref.		Ku12 Ku12	Fi10	Fi10	Fi10	Fi10	Fi10	Fi10	Fi10	Fi10	Ku12	B18	B18	B18	į	F18	F1.8	Ha32	Fi8	F18	F18	F:8	F:8	Fi8	F18	Fi8	F18	F18	F18	118	F111 Is2		Tot E:11	Fill
angle			- []	$\beta = 90^{\circ} 12'$	I	11	11	= 90°	$\beta = 90^{\circ} 4'$															$\beta = 90^{\circ} 10'$	$\beta = 90^{\circ} 12'$									·
o A		8.431	8.30	8.30	8.28	8.27	8.26	8.23	8.23					8.28	ì	7.614	3.858	7.74	3.881	8.046	7.913	8.116	8.104	8.090	8.080	8.072	8.062	8.050	8.020	8.000	4.083			
b Å			5.94	5.91	5.90	5.88	5.87	5.86	5.84							5.408 5.51	5.494	5.55	5.551	5.819	5.715	5.866	5.858	5.860	5.841	5.830	5.819	5.812	5.794	5.70%				
γ		5.822	5.85	5.84	5.83	5.82	5.81	5.81	5.80	8.20	8.190 8.190	7.99	7.95	7.80	0	5.382	5.418	5.44	5.451	5.580	5.532	5.623	5.612	5.590	5.572	5.571	5.580	5.580	5.575	10.57	4.074	(4.060	4.023
Sym	ed)	[+ [+	×	M	M	M	×	×	×	O (ی ر	ပ	Ü	H	() C	0	0	0	0 0) C	0		×	M	0 (0 (O (0 () C) [(ပ (ာပ
Compound	A ₂ ² +BNb ⁶ +O ₆ (continued)	Sr ₂ PrNbO ₆ Sr ₃ NdNbO ₈	Sr, SmNbO	Sr.EuNbO.	Sr ₂ GdNbO,	Sr ₂ TbNbO ₈	Sr ₂ DyNbO ₆	Sr ₂ HoNbO ₆	Sr2ErNbO	SrgTmNbO,	Sr.I.mNbO.	SrLaCoNbO	SrLaNiNbO,	SrLaCuNbO	La_LiNbO	CarAINDO,	Ca.CrNbO.	Ca2MnNbO	Ca ₂ FeNbO ₆	Carry NbO	Calinibo Calianho	Ca, Prindo,	CarNdNbO	Ca ₂ SmNbO ₆	Ca ₂ GdNbO ₆	Ca ₂ TbNbO ₆	Ca ₂ DyNbO,	Ca ₂ HoNbU	Ca_ErNbO,	Ca2 i Din DO	Pb_ScNbO	, ,	Pb. Cr., Cr., RbO,	Pb ₂ MnNbO ₈

Magnetic Data	in 3.3.4, Tab.	9	99				9 \	9			9			9	9 9	9	
Remarks		 Kul0 P&S [Ro8], S.S. with BiFeO₃ [Sm12, Is8, Yu2], complete structure [Pl3], crystal growth [Ga5], dielectric properties [Kh8, Sm25, Sm16, Bo8, Sh32, Sk1, Sh33], optical spectra [Pi5], B site contains [V.0, S. with T.5 [Sk33] 	Dielectric properties $[Kul0, Agl, Ve4]$ Dielectric properties $[Kul0, Agl, Ve4]$ Dielectric properties $[Kul0]$ with 5% Ba $[Sh32]$ High pressure preparation, no dimension $[Tol1a]$	Pyrochlore type Dielectric properties $[Kul0]$ Dielectric properties $[Kul0]$	Cubic $T > 280 ^{\circ}$ C, dielectric properties [Sm25, Ku9, Ku10, Ag1, Is17], S.S. with PbFe _{2/3} W _{1/3} O ₃ [To5,	Lol1, $Kol1$] Cubic $T > 280$ °C, dielectric properties [$Ku9, Ku10, r_{c17}$]	Defect pyrochlore type Dielectric properties [Ve4, Vi5] Dielectric properties [Ve4, Vi5]	Dielectric properties [$Ve4$, $Vi5$] Dielectric properties [$Ve4$, $Vi5$] Dielectric properties [$Ve4$, $Vi5$, $Ro8$, $Ve3$]		Not perovskite $[Bl8]$ Not perovskite $[Bl8]$	Hex $(6L)$, P&S $[Sl\acute{6}, Bl\emph{3}]$ Hex $(6L)$	Not perovskite $[Bl8]$	P&S[B13, B18]	P&S [<i>Sl6, Bl3</i>]	12 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	F&3 [310, 207]	Not single phase (no dimensions)
Ref.		Ku10	Ros Ku10	Fi11 Ku9 Ku9	Ku10 Fi11	Ku9	V:3 V:5 V:5	Vi5 Vi5 Ro8		915	B18 B18	R18	918	B18 B18	B18	B18	B18
angle		$\alpha = 89^{\circ} 55'$					$\beta = 90^{\circ} 29^{\circ}$										
o A				8.21	8.178	8.176	10.777				14.22	14.20	07:+1	•	8.08		
0 *A				5.91	5.936 5.918	5.902	10.643										
p • ₹		4.014	8.084 4.030	10.65 4.110 5.86	5.858	5.850	10.777 4.018 4.020	4.018 4.028 4.060		8.197	5.79	1 0 1 :	8.269	8.44	7.86	7.90	2
Sym	(pa	ᅜ	υυ	ပပင	00	0	×oo	000		O	出口	: :	ťυ	υ c) [-1	υc) [-1
Compound	A2+BNb5+Og (continued)	Pb ₂ FeNbO ₆	Pb,CoNbO, Pb,NiNbO, Pb, Cs,NbO	Pb, YNbO, Pb, InNbO, Pb, HoNbO.	Pb,TmNbO, Pb,YbNbO,	Pb_2LuNbO_6	Pb ₂ BiNbO ₆ Pb ₂ Mg _{0.8} Mn _{0.8} NbO ₆ Pb ₂ Co _{6,8} Mn _{0.8} NbO ₆	Pb ₂ Nio, Mno, NbO, Pb ₂ Zno, Mno, NbO, Pb ₂ Cdo, Mno, NbO	A2+BSb6+Og	Ba ₂ ScSbO ₆ Ba ₂ CrSbO ₆	Ba ₂ FeSbO ₆	Ba ₂ NiSbO ₆	Ba ₂ KhSbO ₆ Ba ₃ InSbO ₆	Ba ₂ GdSbO ₆	Sr ₂ MnSbO ₆	Sr ₂ FeSbO ₆	Sr ₂ NiSbO ₆

				>
ViSbO,	 	B18	Not single phase (no dimensions)	

Magnetic Data	in 3.3.4, Tab. 6	» »							
Remarks	Eu³+ fluorescence, no dimensions		No compound $[Ag1, Sm8]$ Dielectric properties $[Ag1, Br13, Br14]$, P&S	P&S [Ch10] Hex (6L) no dimensions P&S [Sh1] P&S [Ga13], dielectric properties [Ag1], S.S. with Ratio [Na9]	P&S [Ag1, By13, By14, Fi5, La9], doped with Nd, Sm Yb [Ga15]	P&S [AgI , $GaIS$] doped with Nd, Sm, Yb [$GaIS$] P&S [$BrIS$] P&S [$BrIS$] oped with Nd [$GaIS$], cubic > 300 °C [$FSIS$]	P&S $[Br13, Fi5]$ cubic $T > 300$ °C $[Fi5]$ P&S $[Br13, Fi5]$ cubic $T > 300$ °C $[Fi5]$ P&S $[Br13, Fi5]$ cubic $T > 300$ °C $[Fi5]$ P&S $[Ga15]$ Doped with Nd $[Ga15]$	P&S [Ga15] P&S [Ga15] P&S [Ga15] P&S [Ga15] P&S [Ga15] P&S [Ga15] P&S [Ga15], dielectric properties [Ag1] P&S [Ga15], doped with Nd [Ga15]	Dielectric properties [$Vi3$, $Ve3$] • P & S [$Sl1$], B-B' ordering [$Sl1$]
Ref.	S16 B18 B18 B114	B18 B18	Fi10	Sti Sti Fi5 Fi5	SII Fi10	Fi10 Ga13 Ga15	Fi10 Fi10 Fi10 Fi10	Fi10 Fi10 Fi10 Fi10 Fi10	S11 Ve2 Fi10
angle						$\alpha = 60^{\circ} 25'$	$\alpha = 60^{\circ} 10'$ $\alpha = 60^{\circ} 4'$ $\alpha = 60^{\circ} 4'$		$\alpha = 60^{\circ} 15^{\circ}$
o •A	7.91 7.99 7.74	8.35							
δÅ	5.77								
P a	7.84 5.55 5.47	7.99 7.93 7.80	8.220	8.104 4.076 4.048	8.152 8.424	8.282 8.70 6.07	6.05 6.04 6.01 8.486 8.470	8.440 8.420 8.398 8.388 8.378 8.354	8.42 6.047 7.786
Sym	1 _ `	оон ———	U 	0\#00	υυ	OOK	まままら り	000000	೧೩೧
Compound	A ₂ +BSb ⁵ +O ₆ (continued) Sr ₂ GaSbO ₆ Sr ₂ RhSbO ₆ Ca ₂ FeSbO ₆ SrLaMgSbO ₆	SrLaCoSbO ₆ SrLaNiSbO ₆ SrLaCuSbO ₆	A½+BTa5+O, Ba2AITaO, Ba2ScTaO,	Ba ₂ VTaO, Ba ₂ CrTaO, Ba ₂ MnTaO, Ba ₂ FeTaO,	Ba ₂ NiTaO ₆ Ba ₂ YTaO ₆	Ba ₂ InTaO ₆ Ba ₂ BaTaO _{6.6} Ba ₂ LaTaO ₆	Ba ₂ PrTaO ₆ Ba ₂ NdTaO ₆ Ba ₂ SmTaO ₆ Ba ₂ EuTaO ₆ Ba ₂ GdTaO ₆	Ba,TbTaO, Ba,DyTaO, Ba,HoTaO, Ba,ErTaO, Ba,TmTaO, Ba,TmTaO, Ba,ThTaO,	Ba ₂ TITaO, Ba ₂ BiTaO, Sr ₂ AITaO,

Ref

Magnetic Data	in 3.3.4, Tab.	9				99		
Remarks		P&S [Ro20], S.S. with Fe [Na7] P&S [Ku12, S11, Na5, Na6, Na7], B-B' ordering [S11, Be5], S.S. with SrTiO, and Ba ₂ FeTaO, [Na5,	B(s, S, S), with BaTiO ₈ [Na6] Cubic at 250 °C [Ku7, Na5, Na6] P&S [Br13]	P&S [S11] P&S [B+13] P&S [Ku12] P&S [Ku12] P&S [Ku12]		Slight distortion Slight distortion	P&S[<i>S11</i>]	Possibly lower symmetry Possibly lower symmetry
Ref.		Ch10 Na7 Ku12 Ku7	Ku7 St1 Ga13 Ku12	St1 Fi10 Ku12 Fi10 Fi10	Fi10 Fi10 Fi10 Fi10 Fi10	Fi10 Ku12 Fi10 B18	His 8	Н 11 18 Н 11 18 11 18 11 8
angle			α = 59° 46'	11 11 11	$\beta = 90^{\circ} 12^{\circ}$ $\beta = 90^{\circ} 13^{\circ}$ $\beta = 90^{\circ} 9^{\circ}$ $\beta = 90^{\circ} 8^{\circ}$ $\beta = 90^{\circ} 8^{\circ}$	-		
, ¢	-	3.981		8.387 8.35 8.34 8.31	8.29 8.29 8.28 8.28 8.23 8.23		8.28 7.612 7.76 3.857 3.873 3.880 8.044	7.924 8.146 8.116 8.106 8.096
o A				5.98 5.98 5.93	5.90 5.88 5.87 5.85 48		5.407 5.49 5.491 5.571 5.560	5.867 5.867 5.857 5.853
<i>p</i> • <i>a</i>	-	3.967 3.94 3.994 3.960	3.973 7.892 8.34 8.34	5.853 5.853 5.87 5.86 5.86	2 2 2 2 3 3 4 4 8 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8.20 8.196 8.18 7.99	7.95 7.80 7.80 5.381 5.45 5.462 5.451	5.531 5.654 5.629 5.616 5.606
Sym	- 6	OOOH	000	ZZZHOO;	ZZZZZ	3 0000	UH00000	00000
Compound	10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Aşıbıar Oğ (Continucci) Sr ₂ VTaOç Sr ₂ CrTaOç Sr ₂ MnTaOç Sr ₂ FeTaO _c	Sr ₂ GaTaO,	Sr ₂ X 140, Sr ₂ RhTaO, Sr ₂ InTaO, Sr ₂ PrTaO, Sr ₂ PrTaO, Sr ₂ CraTaO,	Srzuntack Srzeutack Srzedtack Srztbtack Srzbytack Srzhotack	Srzerlade Srztmtade Srzybtade Srztutade SrtaCotade	Srlanitao, Srlacutao, Ca ₂ Altao, Ca ₂ VTaO, Ca ₂ CrlaO, Ca ₂ MnTaO,	Ca, Y 1aO, Ca, InTaO, Ca, LaTaO, Ca, PrTaO, Ca, NdTaO, Ca, SmTaO,

rossibly lower symmetry Possibly lower symmetry

5.853

5.606

0

 $Ca_2 Sm TaO_6$

Ref.	D.	2751
MCI.	μ.	2/3

Magnetic Data	in 3.3.4, Tab.	00	9 9
Remarks	Defect pyrochlore type, P&S [Ag1] P&S [Is2, Ag1], crystal growth [Ga5], dielectric properties [5m18] Defect pyrochlore type, 5% Sr for Pb gives	perovskite $[Sh32]$ P&S $[Ag1]$, crystal growth $[Ga5]$, Prop. $[Sh32]$ Dielectric properties $[Ku11, Sh32]$ Defect pyrochlore type Defect pyrochlore type Defect pyrochlore type Defect pyrochlore type Dielectric properties $[Ag1, Is17, Fi11]$ Cubic $T > 280$ °C; dielectric properties $[Is17]$ Distorted recognition of $[Is17]$	Dielectric properties [Vi5, Ve4] Dielectric properties [Vi5, Ve4] No dimensions, Bi³+-Bi⁵+ Ce⁴+ (?)
Ref.	Fi8 Fi8 Fi8 Fi8 Fi11 Ga5	GaS Ku11 Fi11 Fi11 Fi11 Ku9 Vi3	V15
angle	$\beta = 90^{\circ} 12'$ $\beta = 90^{\circ} 12'$		
o A	8.080 8.076 8.054 8.033 8.002	8.22 8.214 10.816	
b A	5.841 5.833 5.820 5.796 5.772	5.90	
Ą	5.572 5.574 5.582 5.586 5.586 5.570 10.51 4.080	4.011 4.038 10.70 10.75 10.68 10.70 5.85 5.848 10.686 4.015	Pu ^{b+} 4.009 Pu ^{b+} 8.759 8.860 8.932 8.885 8.885 8.8862 8.8862 8.8862 8.8862 8.8862 8.8862 8.8863 8.8863 8.8863 8.8863 8.8863 8.8863 8.8863 8.8863 8.8863 8.8863 8.8863 8.8863 8.8863 8.8863
Sym	(g) (G	00000000000	+*
Compound	A ² +BTa ³ +O ₆ (continued) Ca ₂ CdTaO ₆ Ca ₂ TbTaO ₆ Ca ₂ DyTaO ₆ Ca ₂ HoTaO ₆ Ca ₂ YbTaO ₆ Ca ₂ YbTaO ₆ Pb ₂ AlTaO ₆ Pb ₂ AlTaO ₆	Pb, FeTaO, Pb, CoTaO, Pb, YTaO, Pb, PTaO, Pb, NdTaO, Pb, XbTaO, Pb, YbTaO, Pb, LuTaO, Pb, LuTaO, Pb, LinTaO, Pb, Mm, SaO,	A2+BB'O, B' = Bi+ Ba2LaBiO, Ba2BiBiO, Ba2BiBiO, Ba2SCPaO, Ba2BaPaO, Ba2APaO, Ba2BaPaO, Ba2CPaO,

[Lit. S. 275

Magnetic Data	in 3.3.4, Tab.	000 0 O
Remarks		Probably ordered and Ca [$Ga12$, $Na4$], S.S. with Ba and Ca [$Ga12$], neutron diffraction [$Na11$] P& S [$Br14$] cubic at 320 °C; no dielectric anomaly P& S [$Br14$], semiconducting, $\Delta E = 0.78 \text{ eV} \le 181 \text{ °C} \le 1.30 \text{ eV} [No1]$, S.S. with Ba, cubic at 22%, Ba [$No1$, $No3$] Cubic at 230 °C [$Ku8$, $No3$], no dielectric anomaly [$Ku8$]
Ref.	Ke5 Ke5 Ke5 Ke5 Ke5 Ke5 Ke5 Aw2 Aw2 Aw2 Aw2 Aw2 Aw2 Aw2 Aw2	By 14 By 14 By 14 Ga 12 Ku 8 Ku 8 Ku 8 Ku 8 Ku 8
angle		
v V	A .	7.909 7.940 7.886 7.966
b A		·
<i>s</i> •<	၂၂ ကွဲ ထွဲ ထွဲ ထွဲ ထွဲ ထွဲ ထွဲ ထွဲ ထွဲ ထွဲ ထ	4.022 3.91 7.98 7.888 5.581 7.918 5.560 7.878 7.954
Sym	· · ·	00000 404 0 40
Compound	Ai+BB'O ₆ ; B' = Bi ⁺ + Ba ₂ DyPaO ₆ Ba ₂ HoPaO ₆ Ba ₂ ErPaO ₆ Ba ₂ TmPaO ₆ Ba ₂ TuPaO ₆ Ba ₂ TuPuO ₆	Ba ₂ NiMoO ₆ Sr ₂ CriMoO ₆ Sr ₂ MnMoO ₆ Sr ₂ FeMoO ₆ Sr ₂ NiMoO ₆ Sr ₂ NiMoO ₆

Magnetic Data	in 3.3.4, Tab. 6 6		v v v .	999
Ma	—	-		
Remarks		P& S [Ba26, Re4a] P& S [Ba26], S.S. with Ni [Re4a] Optical properties and S. S. with Ba Optical properties	P& S [Be18], dielectric properties [Ag1] P& S [S132], S.S. with Ni [Re4a] No perovskite P& S [Br14], Prop., semiconducting, $\Delta E = 0.81 \text{ eV}$ [Bo1], neutron diffraction [Co31] P& S [Br14, Ag1], S.S. with Sr [No2], neutron diffraction [Co31], optical properties [Re4a] P& S [Ra12, Ve2, Ve3], complete structure [P13] P& S [Re18] P& S [Be18] Slightly distorted; cubic $T > 805 ^{\circ}\text{C} [\text{Ch4}]$ P& S [Be18] Distorted Composition questionable Distorted Composition questionable P& S [S132], distorted	Distorted Prop. [<i>B14</i>] Prop. [<i>B14</i>]
Ref.	Pa7 Pa7	S16 S16 Ba26 Ba26 Ba26 Re4a Re4b B11a	S132 Be 18 Fr 14 Fr 14 Fr 14 Fr 14 Fr 14 Be 18 S132 S132 S132 Be 18 Be 18 Be 18	Bers Pa7 Bis Bis
angle	·			
<i>o</i> •4	7.70	8.465	8.61	
ð Ā	5.49 5.53	5.77		
A A	5.36	8.13 8.393 8.08 7.94 7.955 3.95 7.680 7.680	8.099 8.390 8.133 8.098 8.116 8.53 8.62 8.383 8.387 8.387 8.38 7.8	7.82 8.01 7.96
Sym	led) O	0000000000	00 00 0 H000000000000	>000
Compound	Ag+BMo ⁶⁺ O ₆ (continued) Ca ₂ CrMoO ₆ Ca ₂ FeMoO ₆	Ai+BTe'+O, Ba,MgTeO, Ba,CaTeO, BaPbMgTeO, SrpMgTeO, SrpMgTeO, SrpNTeO, Sr2CuTeO, CarCaTeO, Pb,MgTeO,	AiTBWOTU BarMgWO BarCaWO, BarCaWO, BarCaWO, BarCoWO, BarCaWO, BarCaWO, BarCaWO, BarCaWO, BarCaWO, BarCaWO, BarCaWO, BarCaWO, BarCaWO, BarCaWO, BarCaWO,	Sr ₂ CaWO ₆ Sr ₂ MnWO ₆ Sr ₂ FeWO ₆

Magnetic Data	in 3.3.4, Tab.	9	9			9	<u> </u>							9	, o							9 9	9		ν.	>			
Remarks		P&S [Br14], Prop. [Not, Ku8, B12, B14]	P&S [Br14], Prop [No1, B12, B14, No2, Ve1, No2,	Re4a], S.S. with LaFeO ₃ [$Sm23$], S.S. with $Re4a$]	$D_{c} = [1002], E_{c} = [1007], E_{c} = [1007], E_{c} = [1007], E_{c} = [1007]$	P&S[Ka12], dielectric properties [Ve2]	P&S $[Ku8, Be18]$, S.S. with Ba, cubic > 40% Ba	$T \approx 430$ °C, cubic $T > 430$ °C [Ku8, Fr14], no	dielectric anomaly $[Ku\delta]$ Distorted, P & S[Si32]; cubic $T > 1100$ °C, S.S. with	Ca [<i>Ch3</i>]	Distorted, P&S [S/32]	Distorted, F & S [3:22]	Distorted, P&S [Be18]; not cubic $T < 1500$ °K, S.S.	with Sr [Cn2, Cn4]	Prop. [Bl2, Ki7]	Optical properties $\lfloor Re4a \rfloor$	Dielectric properties [Sm8, Ag1, Sm13, Kl15, Mila,	Kh6, St42], piezoelectric properties, S.S. with	11, 2r [3574], 5.5. With Cd [1877], 3.3. With PhFe. W. O. [5m10] S.S. with	PbTiO ₃ , Ca ₂ MgWO ₆ , Pb ₃ MgNb ₂ O ₉ [Sm20, St35]	Distorted, dielectric properties [Ag1]	Prop. [$Ve2$, $Ve4$, $Ro\delta$] Prop. [$Ve4$] Prop. no cell dimensions [$Ve4$]	P&S [Fi11, Be18], Prop. [Te13, Bo10, Ki7, Fi6],	B site ordering $[Yu9]$, S.S. with BaTiO ₃ $[Io2]$	$T \approx 20$ °C, cubic $T > 20$ °C	Defective properties, $F \propto 5 [1011a, 1011b]$ T = 173 °K = tetragonal below 290 °K	Distorted, dielectric properties [Roo], S.S. with Mg	[Is15]	Cubic at 400 °C, transformations [$Po\delta$], 5.5. with Pb (Li _{1/3} Nb _{1/3} W _{1/3})O ₃ [$Di5$]
Ref.		Fr14	Fr14		Ku8	B18	Fr14	Ku8	Be18		Be18	Be18 C+22	St32	- r	Fa/ B18	B18	Be8				Be8	Ve3	Bo10		Fi6	No6	Be18		Fi7
angle																													
o •₹		7.98	7.91			8.40	8.01								7.70	7.70						8.066	9.976			1	076.7		
φ¥	-													!	5.47	5.55						5.756	5.676						
p •A	-	7.89	7.904)	7 908	7.66	7.92	7.956	ď		7.87	 1	8.02		5.35 5.43	5.40	0	S			4.2	5.736	5.661)))	8.017	7.997	8.006	:	4.15
Sym			υ F	1		—	E		, ()	ပ	ပ	၁ ပ		00	0	ن)			ပ	0		· 	O	<u>၂</u>	((-) 	υ —
Compound	A2+RW8+O. (continued)	Sr ₂ CoWO ₆	Sr.NiWO	90 11 17 610		Sr.CuWO.	Sr,ZnWO		O/11-3 -3	Sr2SIWO6	SrCaMgWO	SrCaCaWO	Ca_2MgWO_6 Ca_2CaWO_6		Ca.CoWO.	Ca2NiWO,	Ca ₂ CuWO ₆	L Uzivig w Og			Pb,CaWO,	Pb2MnWOg	Pb_FeWO	9)		Pb2NiWO,	Pb,NiWO,	10204 Of	Pb ₂ CdWO,

FD (L11/3 ND1/3 W1/3) U3 [1717]

Magnetic Data	in 3.3.4, Tab.		9 \	۰ ۰					ý					9	9 .		. 9					-					
Remarks		Dielectric properties, no cell dimensions Dielectric properties, no cell dimensions Dielectric properties, no cell dimensions	Dielectric properties [Vi5, Ve4]	Dielectric properties $[V15, Ve4]$ No cell dimensions, Prop. $[Vi5]$	Dielectric properties [Vi5, Ve2, Ve3, Ve4]	Dielectric properties [Vi5]	Dielectric properties $[Ve2, Ve3, Ve4]$ Dielectric properties, no cell dimensions	Dielectric properties, no cell dimensions	Dielectric properties [Ve2, Ve3, Ve4] Dielectric properties [Ve4]			P&S [Lo2, So18], single crystal [S17]	P&S [L02, 3018]	P&S[Lo2, Wa15], single crystal + Prop. [S17]	P&S [Lo2, Wa15], single crystal + Prop. [St7],	$[Ba25a]$ suggests $Ba_2Fe_{1+x}Re_{1-x}O_6$ $P\&S[I_{0,2}]Wa15]$ single crystal $+$ Prop [SI7]	P&S [Lo2], single crystal + Prop. [S17]	P&S [Lo2]	P&S [Sc18]	D % G [7.2]	P&S [Sc18]	P&S [Sc18]	Prep. 900 °C, a_0 increases with prep. temperature suggesting $\mathrm{Ba_2Re_1^5+_xRe_x^4+La_1xBa_xO_6}$;			Prop. [Lo2], P&S [Sc18]	
Ref.		Ve4 Ve4 Ve4	Vi5	715	Ve3 Ve3	715	Ve3 Ve4	Ve4 Ve4	Ve3 Ro8	-		81S	818	81S	81S	875	81S	81S	81S	815	818	81S	Ba25a	81S	Ba25a Ra25a	818	Ba25a
angle																											
o A			8.104	8.018						_									8.43			8.33					
<i>b</i>												,															
ā			8.202	8.082	8.008	8.04	4.100	-	4.124			8.082	8.356	8.18	8.05	8 086	8.04	8.106	8.60	8.372	8.258 8.258	8.65	8.547	8.51	8.458 8.438	8.431	8.399
Sym	(þ;		Н	Η	υ	ပ	ပ		υc	- > ;	Re ⁶⁺	<u>ی</u>	<u>ن</u> د	၂ ပ	ပ) U	ပ	£4	O (ی ر) [O	U	٥٠) U	o ·
Compound	A ₂ +BW ⁶ +O ₆ (continued)	Pb ₂ Na _{0.6} Sc _{0.6} WO ₆ Pb ₂ Na _{0.6} Fe _{0.5} WO ₆	Pb2Mg0.8 Mn0.8 WO	Pb ₂ Co _{3.5} Mn _{3.5} WO ₆	Pb ₂ Lio.Fe _{0.6} WO	Pb_Lh., Co., WC, Pb_Li, La, WO,	Pb ₂ Li _{0.5} Yb _{0.5} WO ₆ Ph ₁ TiMnWO.	Pb2Lio.33Zro.67WO	Fb2Lb.33.710.67 W.O. Pb2 YbTio.8 Wo.60.	LU2LETATHO.5 VV 0.5 C6	A2+BReO, Res+ and Res+	Ba ₂ MgReO ₆	Ba ₂ CaReO ₆	Ba,MnReO,	Ba ₂ FeReO ₈	ر. د. د.	Ba,NiReO,	Ba,ZnReO,	Ba,SrReO,	Ba ₂ YReO	Ba,CdKeO,	Ba, BaReO,	BarLaReO	Ba,NdReO,	Ba_SmReO	Ba,GdReO,	Ba ₂ TbReO ₆

Ŕ

Magnetic Data	in 3.3.4, Tab.		· •	00 0 0 0 0
Remarks		Prop. [Lo2], P&S [Sc18] $x = 1.2$, small positive deviation from Vegard's law Prop. [S18, Lo2]	Single crystal [St/], Prep. [Sc/8] P&S [Sc/8] distorted distorted P&S [Lo2, Wa15] P&S [Sc/8]	P&S [Sc18] P&S [Sc18] P&S [L02]
Ref.		Ba25a Ba25a S18 Ba25a Ba25a Ba25a	. 518 518 518 518 518 518 518 518 518 518	S18 Ba25b S18 S18 S18 S18 S18 S18
angle			·	
<i>o •</i> 4	-	·	7.94 8.21 7.89 7.98 7.92 8.01 8.13	7.77 8.05 7.86 7.67 7.67 7.82 7.69
b A	_		5.85	5.56 5.63 5.63 5.53 5.53
<i>a</i> • △	tinued)	8.391 8.375 8.354 8.329 8.230	7.88 8.02 7.82 7.82 7.86 7.88 7.88 7.85 7.85 7.85	8.071 8.239 8.233 8.210 8.210 8.181 8.167 8.155 5.48 5.49 5.54 5.54 5.49
Sym	Re ⁶⁺ (con	00000	H0000HHHH0H00	00000000000000
Compound	A ² +BReO ₆ , Re ⁵⁺ and Re ⁶⁺ (continued)	Ba ₂ DyReO, Ba ₂ HoReO, Ba ₂ ErReO, Ba ₂ TmReO, Ba ₃ YbReO, Ba _{2-x} Sr ₂ YbReO,	BayYReO, SrimgReO, SricaReO, SricaReO, SricreO, SricaReO, SricaReO, SrianReO, SrianReO, SricaReO, SricaReO, SricaReO,	Sr. InRed, Sr. InRed, Sr. InRed, Sr. DyRed, Sr. Phred, Sr. Phred, Sr. Ybred, Ca. Cared, Ca. Cared, Ca. Crred, Ca. Crred, Ca. Crred, Ca. Crred, Ca. Cored, Ca. Cored,

		1	
ζ3	perovskite	structur	

Ref* and Ref* (continued) S.55 7.67 S.19			đ	А	A	D .	1001.	remarks	Data
0 5.45 5.55 7.67 5.88 0 5.64 5.77 7.99 5.88 0 5.64 5.77 7.99 5.88 0 5.64 5.77 8.008 8.08 0 5.67 5.75 8.008 8.08 0 5.67 5.75 8.008 8.08 0 8.36 8.008 8.008 8.08 0 8.27 14.1 8.08 8.18 0 8.27 14.1 8.18 8.18 0 8.27 8.28 8.18 8.28 8.18 0 8.24 8.34 8.34 8.18 8.18 0 8.32 8.24 8.38 8.18 8.18 8.18 0 8.34 5.59 7.70 8.18 8.18 8.18 0 8.34 5.59 7.70 8.15 8.15 8.15 0 8.27 8.25 8.25 8.25 8.25 8.25 8.25 0 8.24 5.59	BReOg, Reb+ ar	id Re ⁶⁺ (cc	ntinued)						in 3.3.4, Tab.
C 8.08 C 8.362 H 5.82 H 5.82 H 5.82 H 5.82 H 5.82 H 6.57 S.88 T 7.92 S.88 T 7.92 S.88 T 7.92 S.88 T 7.92 S.88 S.89	NiReO, CdReO, Mr.P.O	000	5.45	5.55 5.77 77.3	7.67 7.99 8 024		S18 S18 Po8	Claim Wn2+ Reft Pron [Rog Ro11]	
C 8.362 C 8.152 H 5.82 H 5.82 H 6.805 C 8.152 H 7.70 C 8.152 H 14.1 S.18 S.18 S.18 S.18 S.18 S.18 S.18 S.	MnReO	-	5.67	5.75	8.008		Ro8	Claim Mn ⁸⁺ - Re ⁵⁺ , Prop. [Ro8, Ve4]	9
C 8.08 C 8.362 H 5.82 H 5.82 H 5.82 H 5.82 H 5.82 H 8.24 H 5.76 H 8.24 H 7.92 C 8.02 C 8.02 C 7.84 C 7.85 C 7.85 C 8.03 C 8.0	BOsO								
H 5.76 H 5.82 H 5.82 H 5.82 H 5.82 H 5.82 I 4.1 S.76 S.8325 C 8.225 C 8.224 S.84 S.72 S.88 C 7.84 C 7.85 C 8.832 C 8.832 C 8.843 C 7.85 C 8.849 C 8.852 C 8.853 C 8.85	MgOsO,	ပ —	8.08				815		
H 5.82 14.2 5.76 14.1 5.76 14.1 5.82 5.88 5.79 5.88 5.79 5.88 5.79 5.89 5.89 5.89 5.89 5.89 5.89 5.89 5.8	, C.C.S.) ပ —	8.152				518		o
H 5.76	MnOsO	H	5.82		14.2		818	Hex (6L)	
T 8.43 C 8.225 C 8.224 R.66 T 7.92 C 8.02 C 7.85 T 7.85 T 7.85 C 8.02 C 8.06 C 8.38	FeOsO	Ηc	5.76		14.1		818	Hex (6L)	
C 8.325 C 8.224 B 8.34 C 8.224 B 8.34 C 8.224 B 8.34 C 8.224 B 8.34 C 8.224 B 8.34 C 7.86 C 7.87 C 7.85 C 7.87 C 8.38 C 7.87 C 8.38 C 7.87 C 8.38 C 7.87 C 8.38 C 8.38 C 7.87 C 8.38 C 8.38 C 7.87 C 8.38 C 7.87 C 8.38 C 7.87 C 8.38 C 7.87 C 8.38 C 8.38 C 8.38 C 8.47 C 8.38 C 8.49 C 8.38 C 8.49 C 8.38 C 8.40 C 8.38 C 8.40 C 8.38 C 8.40 C 8.38 C 8.40 C 8.38 C 8.40 C 8.40	STOSO, STOSO	⊣ د	8.033		8.72		878		-
C 8.224 8.34 8.34 8.38 8.38 8.38 8.38 8.38 8.28 8.28 8.28	OSOP)	٠,٥	8.325		1		818		
T 7.86 7.92 8.34 8.18 8.12 8.18 8.12 8.18 8.18 8.18 8.18	$_{ m nOsO_6}$	Ų E	8.224		,		818		
C 8.21	BaOsO,	[- -]	8.66 7.86		8.34		818		
C 8.02 C 7.84 C 7.85 T 7.85 T 7.92 S18 S18 C 8.32 S18 S18 O 5.73 S.80 O 5.47 C 8.82 C 8.849 C 8.849 C 8.85 C 8.85	Argoso. CaOso.	ر -	8.21		7		818	Distorted	
C 7.84 S18	ScOsO	<u>ပ</u>	8.02				818	Distorted	
T 7.86 7.92 8.18 8.12 8.18 8.18 8.12 8.18 8.18 8.1	CrOsO	ပ ပ	7.84				818	Distorted	
C 7.82 8.12 8.18 T 8.32 8.12 8.18 C 8.06 7.87 8.18 O 5.38 5.47 7.66 8.18 O 5.47 7.66 8.18 8.18 C 8.82 7.70 8.18 8.18 C 8.381 8.19 8.15 8.15 C 8.297 8.29 8.15 8.15 C 8.312 8.35 8.15 C 8.312 8.15 8.15 C 8.312 8.15 8.15 C 8.372 8.372 8.15	COSO.	→	7.86		7.92		S18		
T 8.32 8.12 8.18 8.18 8.18 8.18 8.18 8.19 8.18 8.18	GaOsO,	. O	7.82				818		
C 8.381 5.59 7.70 5.88 5.89 7.87 5.89 5.89 7.70 5.89 5.89 5.89 7.70 5.89 5.89 5.89 7.70 5.89 5.89 5.89 5.89 5.89 5.89 5.89 5.89	SrOsO,	<u></u>	8.32		8.12		818		
C 8.381 5.59 7.70 5.88 5.47 7.66 5.88 5.47 7.70 5.88 5.88 5.89 7.70 5.89 5.89 5.89 5.89 5.89 5.89 5.89 5.89) C	200	08 1	7 87		010		
C 8.882 Awrited Size Size Size Size Size Size Size Size	caoso. Croso.	0	5.38	5.47	7.66		818		
C 8.381 S15 C 8.67 S15 C 8.67 S15 C 8.05 C 8.297 S15 C 8.312 S15	CoOsO	0	5.47	5.59	7.70		818		
C 8.82 Awr 1 Sis	BUO,						•		
C 8.381 C 8.67 S15 S15 S16 S16 S17 S17 S18 S18 S18 S18 S18 S18 S18 S18	BeUO	<u>၂</u>	8.82				Aw1	Doubtful	_
C 8.49 SIS SIS SIS SIS SIS SIS SIS SIS SIS SI	MgUO	ပ ပ	8.381				S15 S15	Distorted D&S[Rud]	
C 8.297 Aw1 C 8.297 S15 C 8.52 C 8.312 S15 C 8.372	2010 S110) (J	8.49				212	יייייייייייייייייייייייייייייייייייייי	
C 8.297 Sl5	TiUO	· O	8.05				Aw1	Ti4+	
C 8.52 Sl5	cruo,	ပ	8.297				S15	Also prepared as Hex (6L)	
000 000 000 000 000 000 000 000 000 00	MnUO	O (8.52				S15	P&S[Awt]	•
4/00	Barreuo. Bacouto.	ں ر	8.312				S15 S15	Frop. $[Dis]$	9

Ref.

Remarks
a b c anola Ref.

Magnetic Data	Tab. Tab. 6
Remarks	Optical properties [Re4a] Doubtful Distorted, P&S [Ru4] Distorted Hex (6L) Complete structure determined, P&S [S15, Ru4] Distorted Ce4+ Distorted Di
Ref.	SSIS SSIS SSIS SSIS SSIS SSIS SSIS SSI
angle	$eta=90^\circ$ 11'
o A	8.84 8.64 8.943 8.943 8.46 8.46 8.36
b Å	6.06
Þ. a	8.336 8.336 8.336 8.337 8.337 8.335 8.335 8.335 8.336 8.337 8.336 8.337 8.336
Sym	OHOOOOHOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
Compound	Až+BUO, (continued) BazNiUO, BazCuUO, BazCuUO, BazTuUO, BazTuO, BazTuO, BazTuO, BazLuO, BazLu

Magnetic Data	in 3.3.4, Tab.	·
Remarks	Complete structure determined, P&S [<i>S15, Ru4, Be25, Ip1</i>] Not perovskite Not perovskite	P& S [Ke9] P& S [Ke9] P& S [Ke9] Distorted, P& S [Ke9] P& S [Ke9] P& S [Ke9] Not able to be made [Wa16] S.S. with Na [S14] Distorted S.S. with Re [S18] Distorted
Ref.	Ri4	VV a 16 VV a 1
angle	$\beta = 90^{\circ} 33^{\circ}$	
o A	8.301	
b À	5.958	
ъ. Ф.	M 5.728 O 13.71 C 8.799 C 8.860 C 8.735 C 8.840 C 8.840 C 8.840 C 8.840	8.092 8.092 8.092 8.118 8.118 7.87 7.83 7.83 8.13 8.13 8.13 8.282 8.282 8.282 8.33 8.33
Sym	+ t	
Compound	n d	Ba_LiTCO, Ba_LiTCO, Ba_LiTCO, Sr_LiTCO, Sr_LiTCO, Ca_LiTCO, Ba_LiReO, Sr_LiReO, Sr_LiReO, Sr_LiReO, Sr_LiReO, Sr_LiReO, Sr_LiOSO, Sr_LiO

Re

	Magnetic Data	Tab. 1.3.4,
Fig. 1c)	Remarks	P&S [Ga13, B18], see Fig. 1 (c) See Fig. 1 (c) P&S [Ro20, Ag1], dielectric properties [Sm8], optical properties [Re4a] Dielectric properties [Ka12, Ve3] Cubic > 653 °K P&S [Ga13, Ag1] P&S [Ga13, Ag1] P&S [Ga13, Ag1] P&S [Ga13, Ref] P&S [G
netry see	Ref.	Gay Gay Gay Gay Gay Gay Gay Gay Gay Gay
Tab. 2c. A ₃ BB ₂ O ₉ (for H symmetry see Fig. 1c)	angle	
Tab. 2c. A ₃ BB	<i>o •</i> 4	7.08 7.25 7.25 8.0 8.40 6.98 7.16 4.018 6.90 ;
	b A	
	a Å	5.77 5.92 4.085 4.09 4.094 8.166 4.094 4.168 6.01 6.01 5.66 5.76 5.66 5.76 5.66 4.089 3.88 5.66 4.089 4.05 4.05 8.246
	Sym	しいり いい いばま 其いよばばいばいいい しつ こうりばば
	Compound	A ₃ BB ₂ ² +0, Ba ₃ MgNb ₂ 0, Ba ₃ CaNb ₂ 0, Ba ₃ CaNb ₂ 0, Ba ₃ CoNb ₂ 0, Ba ₃ PbNb ₂ 0, Sr ₃ MgNb ₂ 0, Sr ₃ CaNb ₂ 0, Ca ₃ CaNb ₂ 0, Ca ₃ CaNb ₂ 0, Pb ₃ MnNb ₂ 0, Pb ₃ CoNb ₂ 0,

Magnetic Data	in 3.3.4, Tab.	·	-																															
Remarks	roperties $84 < T < 948$ $^{\circ}{ m K},$	$\Theta_{N} = 390 \text{ °K } [Ca2]$ Hex (6L)	Hex (6L)	Hex $(6L)$, optical properties of S.S. with Sr and	Nb [Re4a]	Hex (6L)	Hex (6L)			Cell probably doubled, optical properties [Re4a]	Optical properties [Re4b]			Crystal growth [Ga7], see Fig. 1(c)	P&S [Ga8], crystal growth [Ga7], see Fig. 1(c)	See Fig. I(C)	P&S (Ro20) see Fig. 1(c)	P & S [Ro20], crystal growth $[Ga7]$, optical properties	[Re4a], see Fig. 1(c)	P, S + Prop. [Ve2, Ve3]	P&S [Ga13], crystal growth [Ga7], see Fig. 1(c)	$F \approx 5 [Ga13]$, see Fig. 1 (c)	See Fig. 1(c)	3cd 1.18: 1 (c)		P&S [Ro20], see Fig. 1(c)	See Fig. 1(c)	P&S [Ga13], see Fig. 1(c)	P&S [Ga13], see Fig. 1(c)	P, S + Prop. [Ve2, Ve3]	P&S [Ga13], see Fig. 1(c)	Frep. $[Ag_I]$, electrooptic effect $[Smz9a]$	Pren. [491]	
Ref.	Ca2	B18	B18	B18		B18	B18	B18	B18	D10 Re4a	B18	B18	B18	Ga10	Ga10	5a70	Ga13	Ga 10) ; ;	Ka12	Ga10	5a11	5a10	Ga 10	Ga13	Ga10	Ga10	Ga10	Ga10	Ka12	Ga10	B05	B05	131
angle																																		
o 4		14.26	14.84	14.35		14.22	15.9				8.19	8.34	8.00	7.067	7.284	7.127	7 082	7.092	100.7	8.432	7.097	7.47	90.0	8.03		6.951	7.096	6.937	6.923	8.248	6.951			
b A												5.80	5.68																		•			
z •4		, 0	5.99	5.84		5.82	6.15 6.09	7.96	8.17	7.99	0.70 0.00	7.04	5.62	5.782	5.895	5.819	4.10	5.770	3.730	8.132	5.782	5.95	4.167	6.10	4.230	4.00	5.764	5.630	5.607	7.860	5.664	4.03	20.4	4.02
Sym	- =		ı H	нн		田;	I I	(ပ	U	<u>၂</u>	۱ د	٦ () C	э	Ħ	Ħ	ပ ;	ヸ :	=	Н	Ħ	Ħ	υ¦	H (ى ر	# כ	;	: #	Ħ	H	Ħ	ပ (ပ (ر
Compound	A ₃ BB ₂ +O ₉ (continued)	Daying rule 0	Ba,MgSb,O, Ba,CaSb,O,	BasCoSbsOs Bas NiSbsOs	602000000000000000000000000000000000000	Ba,CuSb,O,	Ba ₃ SrSb ₂ O ₃ Ba BaSh O	Sr.MgSb.O.	SrsCaSb2O	Sr ₃ CoSb ₂ O ₉	Sr ₃ NiSb ₂ O ₃	Sracuspace Crass Co	Strange Ch	Ba. Mr Ta. O.	Ba,CaTa,O	Ba ₃ MnTa ₂ O ₃	Ba, Fe Ta, O,	Ba ₃ CoTa ₂ O ₅	Ba ₃ NiIa ₂ O ₉	Ba,CuTa,O,	Ba,ZnTa,O,	Ba,SrTa,O,	Ba ₃ CdTa ₂ O ₉	Ba,BaTa,O,	BagPbTagO	Baszno., No., 1a20,	Sr CaTa O	Sr.CoTa.O.	Sr,NiTa,O,	Sr.CuTa,O.	Sr ₃ ZnTa ₂ O ₉	Pb3MgTa2O9	Pb ₃ CoTa ₂ O ₃	$Pb_3NiTa_2O_9$

R

). I	AD	;	3 -			KIL													ι~	1t. S.	
Magnetic Data	in 3.3.4, Tab.																-				_		-					9	9	
Remarks				Hex (6L)	Hex (6L)	P & S [Vi3, Ve3], dielectric properties [Vi2b]	2. nnc < 7		Defect pyrochlore type $P \& S [Ga15]$ dielectric properties $[Ka12]$	Hex (6L)	Hex (6L)	Hex (6L)	(19) xeH	Structure + Prop. [Ka12]			2,00	$F \propto 5 \lfloor Bi \delta \rfloor$ Structure $+ \text{ Prop. } [Ka12]$	Probably ordered	`	No cell dimensions	No cell dillicinsions Dielectric properties [Vi3 Ve3 Vi2b]			$P\&S[Bl8]$, S.S. with $Sr_3Fe_2UO_b[Se6a]$		Dielectric properties [Ved Ved Ved Tot]	No cell dimensions, Prop. [Ve4, Ro8], S.S. with	PbTiO ₃ [Di5a] Prop. [Ag1, Ro8, Sm10, Sm16, Sm28, To5, To11,	1613, F11, K16], B site ordering [Yu9] Defect pyrochlore type
Ref.		B18 B18		Pa7	B18 Ka12	Ve2	V120 Ka12	Ka12	Vi3 Fv14	Pa7	B18	B18	5415 R18	Gals	B18	Ga15	5415	Ga15	Ka12	Ga15	Ga15	0417	Ka12	Ka12	Ga15	B18	510	R08	Ro8	Vi3
angle							$\alpha = 89^{\circ} 50^{\circ}$															~ - 60° 23'	l li	$\alpha = 89^{\circ} 53'$						
9 · A		7.89		14.02	14.08	8.642			11.452	14.35	14.08	14.10	14 15												3.951					10.799
Ą	•	5.58				6.184																								
a Å		5.58 5.57		5.72	5.74 4.168	6.148	4.3/	4.090	11.262	5.75	5.74	5.74	8.3/4 5.74	8.321	8.58	8.513	8.605	8.411 8.386	4.252	8.386		6 131	4.098	4.095	3.945	7.91	7.90 9.134	+C1.0	4.02	10.637
Sym	-	00		H	Ж O	00	ب د	ပ	ΗC	H	H	Ηc	# د	(ပ	O	ပ (၁ (၁ ပ	ာ ပ —	ပ		ρ	4 14	Ж	H	ပ (ى د)	ပ	T
Compound	$La_3Co_2B^5+O_9$	La ₃ Co ₂ NbO ₃ La ₃ Co ₂ SbO ₃	A ₃ B ₂ B ⁶ +O ₉	Ba ₃ Cr ₂ MoO ₉	Ba,Fe,MoO, Ba,In,MoO,	Ba ₃ Bi ₂ MoO,	Ba.LiNbMoO.	Ba,LiTaMoO,	Pb ₃ Bi ₂ MoO, B ₃ Sc WO	Ba ₃ Cr ₂ WO ₆	$Ba_3Fe_2WO_9$	Ba,Co,WO,	Bas Y w V y	Ba,In,WO,	Ba <u>s</u> La, WO,	Ba ₃ Nd ₂ WO ₉	BasEus WO,	Bascd WO	Ba, Ho, WO,	Ba ₃ Er, WO,	$Ba_3Yb_2WO_3$	Bartuz WO	Ba,LinbWO.	BalLiTaWO	Sr ₃ Fe ₂ WO ₉	SrLa ₂ Mg ₂ WO,	SrLa ₂ Co ₂ WO ₃	$Pb_3Mn_2WO_3$	Pb ₃ Fe ₂ WO,	Pb,Bi2WO,

in 3.3.4, Tab.

wasou py sociation by po	Remarks		No cell dimensions No cell dimensions	No cell dimensions	FIOP. ['87, R08] No cell dimensions	Dielectric properties [Ve2, Ve4, Vi5]	Diefectric properties [VeZ , Veq] [Hex (61.)	Hex(6L)				Hew (61)	D&S (02)	Slight distortion			Prop. [Be51], S.S. with Sr ₃ Fe ₂ WO, [Se6a]
1 741	Ref.		Ve4 Ve4	Ve4	Ve4	Vi5	518	81S	81S	81S	218	515	515	S15	S15	S15	Ro14
	angle																
1 771.01	Å			0 730	0.7.0	0	13.8	14.10				14.6) :				
	b A			90		7 6 7	7.0.0										
10.001	Å	-		08 1	8	8.090	5.70	5.81	8.015	7.890	67.8	5.83	8.232	8.70	8.512	8.00	8.066
1	Sym	q)		C	>	ပ (H	出	ပ (—	ပ (ی ر) H	ပ	ပ	ပ	ပ	ပ
l ruspis vv ∪ ₉	Compound	A ₃ B ₂ B ⁶ +O ₉ (continued)	Pb ₃ CrMnWO ₆	PorfemnWO,	Pb ₃ CoFeWO,	PbgLiNbWO,	L 03Cu4/31/02/31/09 Ba3Cr,ReO	Ba ₃ Fe ₃ ReO	Sr ₃ Cr ₂ ReO,	SraFerReO,	SightareO						Sr ₃ Fe ₂ UO,

Э									
ngo					Tab, 2d	Tab, 2d. $A^{2+}(B_xB_y^{\dagger}B_z^{\dagger})O_3$	03		
	Compound	Sym	a Å	<i>b</i>	ν¢	angle	Ref.	Remarks	Magnetic Data
189	Ba[Zho,2Feo,2Tao,9]Os Ba[Zho,2Feo,2Tao,9]Os Sr[Zho,2Feo,2Tao,10]os Ba[Lho,28Nbo,78]Os Ba[Nao,28Nbo,78]Os Ba[Nao,28Tao,78]Os Sr[Nao,28Tao,78]Os Sr[Nao,28Tao,78]Os Sr[Nao,28Tao,78]Os Ba[Feo,78Nbo,28]Oz,78 Ba[Feo,78Nbo,28]Oz,78 Sr[Feo,7Nbo,28]Oz,78 Sr[Feo,7Nbo,28]Oz,8 Ba[Feo,7Nbo,28]Oz,8 Ba[Co,1,Co,27Ta4,7]Os Ba[Co,1,Co,27Ta4,7]Os Ba[Co,1,Co,27Ta4,7]Os Ba[Nao,4Wo,6]Os	0000000000000	4.08 4.08 4.01 4.01 4.107 4.137 4.05 4.07 4.08 4.08 4.09 4.09 4.09 4.09			·	Ga13 Ga13 Ga13 Ka12 Ga6 Ga13 Ga13 Ga13 Ka12		

T

Re

3.2 Descriptions of perovskite-related structures

3.2.1 A-cation vacancies

3.2.1.1 No A cations

Because a skeleton of shared-corner octahedra is stable, it is possible to remove all the A cations from the perovskite structure without collapsing the BX, subarray. In the case of ReO, for example, the structure remains cubic. However, a partial or a complete collapse of the skeleton is found in many \square BX $_{f s}$ compounds. The completely collapsed structure has hexagonal-close-packed X layers with one-third of the octahedral sites occupied by B atoms, as indicated in Fig. 19. This results in a simple-cubic array of B cations with corner-shared octahedra having a B-X-B angle of 132°. For comparison, Fig. 19 also shows the corner-shared octahedra across a close-packed [X3 plane of the cubic [ReO3 structure, where the B-X-B angle is 180°. It is possible to go from one structure to the other by a simple increase of the B-X-B angle, the B cations forming a simple-cubic array in all structures. In the partially collapsed structure, represented by CrF₃, and B-X-B angle is intermediate, ≈ 150°. Trifluorides of the first-row transition metals have the partially collapsed structure, those of the second- and third-row transition metals have the ReO_3 structure where the number of outer d electrons per cation is ≤ 3 , but the completely collapsed structure where it is ≥ 6 . The B cations of the latter group either have no atomic moment (Rh^{III} and Ir^{III} have $t_{2g}^6 e_g^6$) or disproportionate into magnetic and nonmagnetic ions (Pd²⁺, $t_{2g}^6 e_g^2$ and Pd^{IV}, $t_{2g}^6 e_g^6$), so that there are no magnetic interactions between neighboring cations. The other trifluorides, on the other hand, are all antiferromagnetic, and coupling between like atoms of the second and third long periods is stronger than that between like atoms of the first long period. Since the B-X-B superexchange interaction is enhanced by a larger B-X-B angle, it is reasonable to assume that the interactions between neighboring B cations stabilizes the ReO₃ structure. These interactions may be either weaker interactions between localized electrons, as in the magnetic fluorides, or stronger interactions, as in metallic ReO₃. In this connection, stabilization of the cubic structure in the tungsten bronzes $A_x^{\text{tm}}WO_3$ for mx > 0.3 is significant. The conduction electrons introduce cation-anion-cation interactions while simultaneously reducing the energy gained by a ferroelectric distortion.

Electron-ordering distortions may be superposed on the array of corner-shared octahedra. MnF₃, for example, exhibits the Jahn-Teller distortions shown in Fig. 10(a) superposed on the partially collapsed structure. WO₃, on the other hand, exhibits several low-temperature phases characteristic of an interplay of antiferroelectric distortions and different degrees of the collapse of the B-X-B angle.

3.2.1.2 The bronze structures

Although \square BX₃ compounds with the ReO₃ structure and cubic ABX₃ compounds have the same BX₃ array, complete solid solutions $\square_x A_{1-x}BX_3$, $0 \le x \le 1$, are not possible. Although there is no ordering of the vacancies for larger x, except for Na_{0.75}WO₃ [At1], for smaller x there is ordering accompanied by a collapse of the BX₃ array within basal planes perpendicular to a unique axis. Such a collapse creates the tetragonal and hexagonal tunnel structures of Fig. 20. The tetragonal structure contains three types of tunnels, one containing cubic, twelve-coordinated A' sites, one containing pentagonal-prism, fifteen-coordinated A'' sites, and one small tunnel containing nine-coordinated A''' sites, which are only occupied by Li⁺ ions. Without Li⁺ ions, all these sites are filled at $A'_{0.2}A''_{0.4}BX_3$. This phase, which may occur for a

Fig. 19. Projections on B-cation planes of two BX₃ structures. Triangles in full and dotted lines represent faces of octahedra below or above the B-cation plane. a) Cubic ReO₃ structure DO₃. Arrows indicate cooperative atomic motions that collapse the structure. b) Completely collapsed RhF₃ structure.

Fig. 20. Bronze structures found in $A_x \square_{1-x} BX_3$ systems. a) Tetragonal (II) structure occurring for $x \le 0.6$. b) Hexagonal structure occurring for $x \le 0.33$ [Wa1].

range of $x \le 0.6$, is labelled tetragonal (II) in Tab. 3 to distinguish it from the antiferroelectric tetragonal (I) phase of WO₃. The hexagonal structure contains hexagonal-prism, eighteen-coordinated A sites and is restricted to the range of composition $x \le 0.33$. An orthorhombic tunnel structure has also been identified for AB₂O₅ compounds [Ga15a].

Tab. 3. Color vs. x for Na_xWO_3 and compositional ranges for the bronze structures in the $A_x^{1+}WO_3$ perovskites. Adapted from [Di3]

Fig. 21. Projections onto (110) planes of a) cubic perovskite and b) brownmillerite structures. Brownmillerite structure is formed by removing alternate [110] strings of oxygen from central row of a) and regrouping remaining oxygen into the tetrahedra shown in b) [Wat].

3.2.2 Anion-deficient compounds

3.2.2.1 Compounds ABX_{3-x}

Several systems ABX_{3-x} , where $0 \le x \le 0.5$, have been reported as anion-deficient perovskites. $SrTiO_{2.5}$ and $SrVO_{2.5}$, for example, both give simple x-ray powder patterns in qualitative agreement with the assumption of a perovskite structure having one-sixth of the anions missing at random. Further, the homogeneity range of $SrTiO_{3-x}$ is reported [Wa1] to extend over $0 \le x \le 0.5$ without any change of lattice parameter. However, if an anion is removed from a close packed structure, the metal atoms to which it was formerly bonded will have highly unsymmetrical coordination, and some local rearrangement of the anion can be expected. The nature of this local rearrangement depends upon the character of the B cation. In order to learn what rearrangements may occur locally, it is necessary to examine those special cases where long-range order occurs, since local changes of cation coordination are difficult to detect by x-ray diffraction and have not been investigated by other methods.

In the system $SrFe_{12}^3 + Fe_{122}^4 O_{3-x}$, $0 \le x \le 0.5$, it is known that the Fe^{3+} ions are stable in either tetrahedral or octahedral coordination. Therefore, it is reasonable to anticipate the creation of fourfould coordination about half of the Fe^{3+} ions in the system. This is possible because the d electrons of Fe^{3+} ions are localized, so that Fe^{3+} and Fe^{4+} ions are distinguishable, even though the d electrons of the end member $SrFe^{4+}O_3$ appear to be collective. Support for the creation of tetrahedral sites, as well as a suggestion of how the tetrahedra might be arranged, is given by $Ca_2Fe_2O_5$, which has the brownmillerite structure [Be41] of Fig. 21. Within every other (001) BX_2 plane of the cubic perovskite, alternate [110] rows of anions are removed. The remaining anions in these planes are displaced alternately along [110] and [110] directions toward the anion vacancies, the B cations shifting slightly also to maintain equal B-X distances with all four near-neighbor anions. The result is fourfold coordination for all B cations in these (001) BX_2 planes, sixfold coordination for all B cations in the alternate (001) BX_2 planes.

The x-ray pattern of $K_2Ti_2O_5$ has a strong resemblance to that of perovskite. However, $KTiO_{2.5}$ is not an anion-deficient perovskite, but is completely ordered, each Ti^4 ion having five oxygen near neighbors forming a trigonal bipyramid [An3]. It has little similarity to perovskite.

The oxygen-deficient, tetragonal compounds $(\mathbf{Ba}_{2x}\mathbf{Bi}_{1-2x})\mathbf{BiO}_{3-x}$, 0.22 < x < 0.5, retain an octahedral grouping for Bi in the B sites, but the A positions have only six oxygen near neighbors, two each at 2.7, 3.1 and 3.6 Å [Au1].

These examples indicate that a variety of orderings must occur in anion-deficient perovskites. Further structural work needs to be done.

3.2.2.2 Alloys $M^cX_{1-x}M_3^f$

3.2.2.3 Shear structures $\bigcap BO_{3-x}$ Ranges of composition have been reported for BO_{3-x} , where B = Mo or W. Magnéli [Ma14] has shown that these compositional ranges consist of a series of discrete phases having an x-ray diffraction

pattern dominated by a cubic ReO_s-type (DO_s) subcell, but exhibiting superlattice lines. The superlattice of any discrete phase is not due to an ordering of anion vacancies within this basic structure, but to a regular interruption of the DO, structure by planes of discontinuity across which octahedra share edges

rather than corners. In these structures the oxygen vacancies condense into regularly spaced planes and are then eliminated by a shear displacement of the type shown schematically in Fig. 22. These "shear" planes may be constituted in different ways: For the series of phases B_nO_{3n-2}, six octahedra in a group share edges, and for the phases B_nO_{3n-1} groups of four octahedra share edges. In both cases the discontinuities continue in two dimensions throughout the structure where they separate DO_0 blocks n octa-

hedra thick. The β -WO_{3-x} phases, $0.10 \le x \le 0.17$, belong to the series B_nO_{3n-2} with $12 < n \le 20$. The observed compositional range (W, Mo)O_{3-x}, $0.07 \le x \le 0.12$, contains six discrete B_nO_{3n-1} phases corresponding to n = 8, 9, 10, 11, 12, and 14 [Ma17a]. The origin of the shear planes appears to be an

interplay between electrostatic and elastic forces: Electrostatic repulsive energies between B cations

sharing common octahedral-site edges is minimized by cationic displacements (of ferroelectric type) away

from the center of symmetry of the interstice and the shared octahedral edge. These displacements can be cooperative, costing a minimum of elastic energy, if the shared edges are coplanar. The origin of the regular spacing between planes is not established. Presumably it is primarily due to elastic energy,

3.2.3 Structures deficient in B cations 3.2.3.1 Bismuth compounds Bismuth compounds with chemical formula $(\mathrm{Bi}_2\mathrm{A}_{m-2})\mathrm{B}_{m-1}\mathrm{O}_{3m}$ have the structural formula $(\text{Bi}_2\text{O}_2)^{2+}(\text{A}_{n-1}\text{B}_n\text{O}_{3n+1})^{2-}$, n=m-1. These compounds consist of a regular intergrowth of the perovskite structure with Bi2O2 sheets consisting of BiO4 square pyramids sharing edges [Au2], as indicated in Fig. 23. Between the Bi_2O_2 sheets are n layers of corner-shared octahedra and (n-1) layers of perovskitetype A cations in the twelve-coordinated interstices. Where n=1, the pyramidal sheets alternate with

although collective-electron effects [Go11] probably play a contributing role.

Since the alloys $M^{c}XM_{s}^{f}$ are generally considered to represent interstitial X atoms in an ordered, facecentered-cubic MeMs alloy, it is not surprising that the phase is stable over a considerable range of anion deficiency. Since these alloys are metallic, it is probable that the X-atom vacancies are randomly distriir la

а

Ţ Ţ

t

to form configuration b) [Wa1].

Fig. 23. One half of the pseudo-tetragonal unit cell of $Bi_4Ti_5O_{18}$ (from $z \approx 0.25$

)up

has

/ay

be

the

Ref. p. 275]

single octahedral layers, and no sites are available for A cations. This particular phase has been prepared in a large number of oxides and oxyfluorides, where B = Ti, Nb, Ta and the O/F ratio depends upon the valencies of the A and B cations (see Tab. 4).

Many of these compounds are reported to exhibit ferroelectric distortions within the perovskite layers, and they will certainly be important for technical applications in the future.

3.2.3.2 Hexagonal $A_n B_{n-1} X_{3n}$ structures

As shown in Fig. 1(c), the cubic perovskite may be indexed on an hexagonal basis. It consists of cubic stacking of close-packed AX, layers with B cations in the all-anion octahedral interstices. Within a (110) plane, B-cation octahedra share common corners as shown schematically in Fig. 3(a). In the Ba₅Ta₄O₁₅ structure [Ga5a], the stacking sequence of the AX, layers is a-b-c-b-c-a, as shown in Fig. 24, and the B-cation vacancies are where the stacking is hexagonal. Thus the structure consists of perovskite blocks n AX, layers and (n-1) B layers thick, separated by a stacking fault at a layer of B-cation vacancies. These hexagonal structures appear to be stabilized where the tolerance factor is t > 1.

3.2.3.3 AX \cdot (ABX₃)_n structures

Materials having compositions intermediate between ABX3 and A2BX4 may have similar diffraction patterns. However, this compositional region contains several phases having the structural formula $AX \cdot (ABX_3)_n$. Each phase contains perovskite sheets n units thick separated by AX (NaCl-type) sheets. The limiting composition A_2BX_4 , corresponding to n=1, is shown in Fig. 25. It is important for the theory of magnetism because, if A is nonmagnetic, then by symmetry there is no net molecular field within an antiferromagnetic layer from cations in adjacent antiferromagnetic layers. This permits the study of two-dimensional antiferromagnetism. The A₂BX₄ structure also permits the study of B²⁺ cations in oxides with a smaller B-X-B separation (hence stronger interaction) than is found in the BO compounds with rocksalt structure. The possible significance of this is illustrated by La₂NiO₄. The Ni²⁺ electrons of e_g symmetry appear to be collective in La2NiO4, localized in NiO.

Fig. 24. Schematic (110) projection of the Ba₅Ta₄O₁₅ structure. Horizontal lines refer to BaO, close-packed layers with stacking a, b, or c.

Fig. 25. Comparison of ABX₃ and A₂BX₄ structures [Tr1].

3.2.4 Data: Crystallographic properties of non-ABX₃ compounds of composition A_zBX₃, $\square BX_3$, $(AX)_n(ABX)_m$ and $Bi_2O_2(A_{n-1}B_nO_{3n+1})$ with perovskite-related structure (Tab. 4)

Tab. 4.

See Fig. 20(a) for the tetragonal II bronze structure with $a \approx 12.5$ Å, $c \approx 4$ Å and Fig. 20(b) for the hexagonal bronze structure with $a \approx 7.4$ Å, $c \approx 7.5$ Å.

Within any section, the compounds are ordered by B-cation atomic number, and the order of the sections is as follows:

Tab. $4a - A_xBX_3$

 A_xBO_3 ; B = Nb, Mo, Ta, W, Re

 $A_x \text{FeF}_3$

Tab. 4b - □ BX,

Tab. 4c — [] BB'X₆

Tab. $4d - (AX)_n (ABX_3)_m$ $X = F^{-1}, Cl^{-1}; B^{2+} = Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd$

 $X = O^{-2}$; B = Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Ga, Ge, Zr, Nb, Mo, Tc, Ru, Rh, Sn, Hf, Ir, Pb, U

Tab. 4e - $Bi_2O_2(A_{n-1}B_nO_{3n+1})$

n = 3; B = Nb, Ti n = 4, 5 and 8; B = Tin = 1; B = Mo, W n=2; B = Nb, Ta

R

For abbr	For abbr	For abbr	For abbr	لم ا	For abbreviations, see p. 131.	p. 131.		
				Tab. 4	Tab. 4a. A _x BX ₃ compounds	spuno		
Compound	Sym	Α	b A	o A	angle	Ref.	Remarks	Magnetic Data
A,NbO,								in 3.3.4, Tab.
Bao, s NbOs	0	12.17	20.5	7.87		Fr16	Structure and review [Ga15a], S. S. with (Pb, Ca, Sr) _{0.5} NbO ₃ [Su4c, Fr1b, Is3a], dielectric	
Ba. NbO.	ŀ	12.60		3.95		Ga14	properties [Giv]	
Sr. sk NbOs	. O C	3.981				Ri3 Ri3	Studied $x = 0.5 \cdots 1.0$	
Srock NbOs	000	11.021	7.33	5.604		He12a He12a		
Pb _{0.8} NbO ₃	0	17.51	17.81	7.72		Fr2a	Dielectric properties [Go20, Su4b],	
							5.3. with (Jea, 31)71226 [Dustri, 1717, 322, Kry7, Smith Ga, Sud-Gl, P&S [Rolfod], S.S. with Ti, 7r. Sn [Sud-Sud-Sud-Sud-Sud-Sud-Sud-Sud-Sud-Sud-	
	,					F. 12	Rb, Cs. [2017], Survey, Sur46] Drug T / 1250 °C	
	¥ (-	8.004 12.46		3.907	α = 30 30	Fr2a	T = 570 °C	
$\mathrm{La_{0.33}NbO_{3}}$	0	3.911	3.917	7.908		Iy1	P&S [Ke8, Ro13, Sa6a]; dielectric properties, S.S.	
Ce, 3NbO,	0	3.901	3.917	7.886		Iyı	P&S [Ke8, Ro13]	
Ce,25NbO3	0	3.881	3.897	7.843		K010		
Pro. 33 NbO3	00	3.891	3.915	7.862		131	P&S [Ke8, Ro13] P&S [Ke8 Ro13]	
Indo.ssINDO.	>	0.010	200	2		Ro13	$(Ln = Sm \cdots Lu)$ not able to be prepared	
Tho.28 NbOs	H	7.783		7.837		Keb	P&S [$Ko10$], detailed structure [$Tr7$]	
Pa _{0.25} NbO ₃	H F	7.75		7.792		Ke6	P&S [K010]	
No. 2517503	· (-	7.69		7.76		Ke6		
Pu, "NbO,	· [-	7.67		7.74		Ke6		
Am _{0.33} NbO ₃	Ţ	3.819		7.835		Ke8		
BarKNb,O15	[12.55		4.019		Bu5a	$T_{\rm melt} = 1395 {\rm °C}$	
Ba2NaNb6O16	0	17.626	17.592	3.995		Va13	Sm6a, Bu5a, Va11a, Raman effect [Bu4b];	
							S. S. with K [Bu5a], Sr [Va11a]; elastic proper-	
$\mathrm{Sr_{2}KNb_{6}O_{16}}$	Ħ	13.47		3.942		Gila	these $[Sp0]$, presoned the properties $[mu/u]$. Dielectric + optical properties $[Gi/a, Bu/5]$	
						_		

K2HoNb6018 K,YNb,O16

K,Lanb,O, K,Cenb,O, K,Prnb,O, K,Ndnb,O, K,Smnb,O, K,Eunb,O, K,Eunb,O, K,Gdnb,O, K,Tbnb,O, K,Tbnb,O,

Compound

 $\mathrm{Sr_2NaNb_6O_{15}}$ $\mathrm{Na_2LaNb_6O_{15}}$

Na₂BiNb₅O₁₅ $K_a\hat{L}_{i_2}Nb_s\hat{O}_{1s}$ K₂BiNb₅O₁₅ Rb₂LaNb₅O₁₆ Ba₆(Ti₂Nb₅)O₃₀ Ba₆(Zr₂Nb₅)O₃₀ Ba₆(FeNb₅)O₃₀

 $Sr_6(FeNb_9)O_{30}$ $A_8(B_xNb_{10-x})O_{30}$

 $K_{0.93}MoO_3$

High pressure preparation, metallic conductivity,

P&S[Ch16]

Bi6

Bi6

7.683

Bi6 Bi6

3.859

3.920 12.32

SH

K_{0.89}MoO₃ K_{0.8}MoO₃

3.917 7.321

Ή C

Rb_{0.27}MoO₃

A_xMoO₃

High pressure preparation, metallic conductivity. High pressure preparation, metallic conductivity, High pressure preparation, metallic conductivity, P & S [Ch1b]

 $\Theta_{cs} = 4.2 \text{ °K } [\hat{S}1/a]$

R

Magnetic Data	Tab. Tab.
Remarks	"Blue Mo bronze"; Prep. [Wol0], metallic conductivity [Bo20], structural discussion [St22] Red by bronze"; Prep. [Wol0]. Semiconducting [Bo20], structural discussion [St22] High pressure preparation, $\Theta_{cs} < 1.3$ °K [St7a] Early [Ga15a] Dielectric properties, P&S [Is2a] Review [Ga15a] P&S [Ke8, Ro13, Prep. [Sa6a] P&S [Ke8, Ro13], Prep. [Sa6a] P&S [Ke8, Ro13] P&S [Ke100] P&S [Ko10]
Ref.	G72 S124 S124 Bi6 Bi6 Ga14 Ga14 Is9
angle	$\beta = 117^{\circ} 32' Gr2$ $\beta = 92^{\circ} 34' St2'$ $Bi6$ $Bi6$ $St22$ $St22$ $St32$ $St32$ $St32$ $St4$ $St3$ $St4$ $St4$ $St8$
o A	9.855 6.387 6.387 12.95 3.90 3.90 7.757 7.788 7.913 7.829 7.785 7.792 7.780 7.756 7.757 7.758 7.756 7.773 7.758 3.839 7.758 7.773 7.758
b A	7.560 7.723 7.723 17.695 17.695 3.910 3.916 3.896 3.885 7.749
Ą	18.249 14.278 3.853 3.853 3.847 9.57 12.60 21.14 12.41 3.886 17.71 7.522 3.918 3.876 3.882 3.876 3.876 3.876 3.876 3.877 3.877 3.877 3.877 3.877 3.877 3.877 3.877 3.877 3.877 3.877 3.877 3.877 3.877 7.77 7.77 7.77 7.739 7.770 7.750 7.770 7.770 7.750 7.770 7.750 7.770 7.750 7.770 7.760 7.770 7.770 7.770 7.760 7.770 7.770 7.770 7.770 7.770 7.770 7.770 7.770 7.770 7.770 7.770 7.770 7.770 7.770 7.760 7.770 7.770 7.770 7.760 7.770 7.770 7.760 7.760 7.770 7.770 7.770 7.760 7.77
Sym	HHHHHHHHHHHHOOOOHHHHHOOOH HH KOU K K
Compound	A _x MoO ₃ (continued) K _{0.28} MoO ₃ Na _{0.95} MoO ₃ Na _{0.95} MoO ₃ Na _{0.15} MoO ₃ Na _{0.15} MoO ₃ Na _{0.15} MoO ₃ Na _{0.15} MoO ₃ Sr _{0.15} TaO ₃ Ba _{0.5} TaO ₃ Sr _{0.5} TaO ₃ Sr _{0.5} TaO ₃ Sr _{0.5} TaO ₃ Ea _{0.5} TaO ₃ Ca _{0.5} TaO ₃ Ph _{0.5} TaO ₃ Ca _{0.5} Ca _{0.5} Ca Ca _{0.5}

Magnetic Data	in 3.3.4,																											
Remarks			$ F \propto 3 [Mal/]$, metallic conduction and magnetic susceptibility $ Si7, Si9 $, optical properties $ Do6 $	Superconductivity, $\Theta_{og} = 1.98$ °K [S \hat{w} 3], thermal expansion to 070 °C [W of 8]	Superconductivity 2.2 °K $\geq \Theta_{cs}[GiI]$		High pressure preparation (metallic conductivity), $P\&S[Ch1b]$	Magnetic susceptibility ($x = 0.53$) [Ku5], electric	properties $(x = 0.5)$ and $0.05)$ [3,42], thermal expansion to 750 °C $(x = 0.3 \cdots 0.55)$ [We15]	Electric + magnetic properties [Sh8, Si9, Si7], S.S.	with $L1[Ba71]$, S.S. with $Na[B78]$, $P & S[Ma12]$, $Ma17$, $De19$, review [Di3. $Ma18$, $Ma18$, Si9]	Superconductivity, Θ_{00} (Hex) = 0.5 °IK,	$C_{\infty}(1etr.) = 1.5 \text{ In } [3w_{2}], \text{ magnetic properties}$ [Ku5, Fu1, Gr8, St43]	$a = (0.0819 \times + 3.7846) \text{ Å} [Br22, We2]; \text{ cubic,}$	0.26 < x < 1.0; early preparation [Bo17, Wr1,	Si39 Vas Dek Has Ry8 Had Rik (213), 5138,	neutron diffraction (0.56 < x < 0.86) [At1]:	electrical properties [Hu8, Hu9, Hu10, Mu3,	Mu4, Br21, Fu1, Ga21], reviews [Di3, Ma15,	Ma18, Ri1, Si7, optical properties [Di3a]		[Br22, Da3], NMR [x = 0.10, tetragonal I [Ri1]; thermal properties	electrostatic energy calculated $\{Sm_0\}$,	Metallic conductivity, superconducting $\Theta_{ca} < 1$	1.3 TK [G11] Magnetic properties. Pauli paramagnetic or dia-	magnetic [Si10, Co17], metallic conductivity	[Co17, Si10, Si7, Sh8], P&S [Ma19, Ma16, S140] Review [Di3]
Ref.		Ma17 Ma17	717	We15	Gi1	Ne8a	B10	We15		We15		Ba11		Br22						Ma13	7	,	Ma16		Gi1	Si10		Co17
angle																												
A C		7.63	40.7	7.516	7.525	6.36		3.845		7.513		7.515								3.748	2	0	3.895		7.554			
b A																												
¥ a		7.42	006.7	7.394	7.395	7.60	2.720	12.326		7.385		7.370		3.8						12.094		070	5.248		7.405	3.715		3.718
Sym			4	Ħ	н	۲ (ر	Ц		Ħ		Ħ		ပ						H		F	-		Н	U		U
Compound	A_xWO_3	Cs _{0.32} WO ₃ Cs _{0.30} WO ₃	IKD _{0.32} W O ₃	$\mathrm{Rb}_{0.27}\mathrm{WO}_3$	(NH4)0.33WO3	(NH4)0.06WO3	No.9 W U ₃	K _{0.55} WO ₃		K _{0.3} WO ₃		K _{0.13} WO ₃		Na_xWO_3											$\mathrm{Li_{0.30}WO_3}$	Lio.394WO3		Li _{0.88} WO ₃

Goodenough/Longo

Ref.

Magnetic

				3,2	Pero	wskit-	ähnlı	che Str	uktu	ren				ĮL.	it. S	. 275
Magnetic Data	in 3.3.4, Tab.															
Remarks		I. R. spectra [Si7a] Structure determination by x-ray and neutron dif-	Iraction, 1. K. spectra $[5i/a]$ I. R. spectra $[Si/a]$ $x = 0 \cdots 0.13$; $\chi_{\rm m} = 20 \cdot 10^{-6}$ emu/mole, Novel preparation $[Cof6]$: superconductivity $x = 0.13$	$\theta_{\rm cs} = 1.9 ^{\circ} {\rm K} [Sw4]$ $\theta_{\rm cs} = 1.9 ^{\circ} {\rm K} [Sw4]$ Metallic conductivity, $\varkappa = 0.02$, $0 < \varkappa < 0.01$ (monoclinic); $0.01 < \varkappa < 0.03$ (orthorhombic), studied as function of T	[Va2, Va4] $x = 0.035, 0.03 \le x < 0.40 \text{ (tetragonal)};$	0.04 < x < 0.093 (two phase) $x = 0.10, 0.095 \le x < 0.105$ (tetragonal); $0.105 \le x < 0.125$ (cubic $a = 3.790 \text{ Å}$);	x > 0.125 (two phase) Metallic conductivity, superconducting $\Theta_{00} < 0.000$	Superconducting $\Theta_{os} < 1.3$ °K [Git] $x = 0.057 - 0.16 \text{ model}$ ett.	Novel preparation [C010] Cubic, $(x = 0.08 \cdots 0.19)$, metallic conductivity $[Sh6]$	$n_{eff} = 2.5$, all rare-earth bronzes blue-violet $n_{eff} = 3.6$	$n_{\text{eff}} = 1.6$ (temperature dependent), crystal growth [Co14]	$n_{\rm eff} = 3.4$ (temperature dependent), P&S [Sh6]	$n_{\text{eff}} = 7.9$, crystal growth [Co14], P&S [Sh6], relation of a vs. x [We2]	$n_{\text{eff}} = 9.6$ $n_{\text{eff}} = 10.6$	$n_{\text{eff}} = 10.6, \text{ P\&S } [Sh6]$	$n_{\text{eff}} = 7.5$, crystal growth [Co14]
Ref.		Co17 G11 Di2	G11 Co19	Co19 Va2	Va2	Va2	Gil	Gi1 Be30	Br23 Br23	082	0s2	0s2 0s2 0s2	082	0s2 0s2	052	0.82
angle																
o •A		3.88	3.84 3.843	3.840	3.854	3.832	7.581	3.767	3.789) }						
b A			7.502	7.420												
Α		3.723 3.755 5.22	7.247	12.12 7.340	5.240	5.292	7.430	12.241	3.829	3.828	3.817	3.828 3.815 3.808	3.810	3.808	3.801	3.794
Sym	:	OOH	OŢ	10	Н	Ή	H	HHE	- O F	000) U	000	υ	ပပ	00	υ
Compound	A _x WO ₃ (continued)	Lh.08 WO3 Ho.5 WO3 Ho.23 WO3	H _{0.1} WO ₃ Ba _{0.12} WO ₃	$\mathrm{Ba}_{0.10}\mathrm{Na}_{0.33}\mathrm{WO}_{3}$ $\mathrm{Ca}_{x}\mathrm{WO}_{3}$			Sn _{0.24} WO ₃	Sn _{0.19} WO ₃ Pb _{0.17} WO ₃	La _{0.08} WO ₃ La _{0.08} WO ₃	Ce, WO Pro, WO Nd. WO	$Sm_{0.1}WO_3$	Eu _{0.16} WO ₃ Eu _{0.10} WO ₃ Eu,WO ₂	$Gd_{0.1}WO_3$	Tb _{0.1} WO ₃ Dy _{0.1} WO ₃	Ho,1WO,	Tm _{0.1} WO ₃

 $| n_{eff} = 7.5$, crystal growth [Co14]

Magnetic Data	in 3.3.4, Tab.		
Remarks	neff = 4.5 neff = 0 Tetr. $x < 0.09$, metallic conductivity $[Sh6]$ $x = 0.015$, $0.010 < x < 0.030$ orthorhombic; $0.030 < x < 0.105$, two phase; studied as function of $T[Va4]$ $0.105 < x \le 0.135$; $x > 0.135$, two phase Semiconducting $\approx 0.15 \text{ eV}$ Magnetic susceptibility $\chi_m = 34 \cdot 10^{-6} \text{ emu/mole}$ $x = 0.005$, $0.005 \le x < 0.02 \text{ orthorhombic}$ $x = 0.020$, $0.02 \le x < 0.04 \text{ tetragonal}$ $x = 0.020$, $0.02 \le x < 0.04 \text{ tetragonal}$ $x = 0.000$, $0.02 \le x < 0.04 \text{ tetragonal}$ $x = 0.000$, $0.03 \le x < 0.04 \text{ tetragonal}$ $x = 0.000$, 0.05 , $x = 0.04$ inetallic conductivity, weak diamagnetism $x = 0.000$, 0.05 , $x = 0.04$	Metallic conductivity High pressure preparation, $\theta_{os} = 3.6$ °K [S17a] Metallic, $\theta_{os} < 1.3$ °K, P&S [S12]	Hex $(x = 0.18 \cdots 0.30)$; P&S [De13a] $(x = 0.95 \cdots 1.0)$ cubic $(x = 0.40 \cdots 0.60)$ tetr $(x = 0.18 \cdots 0.25)$ hex $x = 0.0 \cdots 0.16$; P&S [De13a] Hex $(x = 0.20 \cdots 0.31)$; P&S [De13a]
Ref.	052 052 052 052 P010 C018 C018 Va3 Va3 Va3 Va3 Va3 Va3 Va3 Ga4 Ga4 Ga4 Ga4 Ga4	S12 Ch1b S17a	Tr1 De11 De11 Tr1 Tr1
angle	$\alpha = 134^{\circ} 45^{\circ}$ $\beta = 91^{\circ} 40^{\circ}$ $\gamma = 93^{\circ} 37^{\circ}$		α = 59°
V • €	3.850 3.784 7.74 4.88 7.35 3.867 3.863 7.56 12.80 7.756 7.756 3.90 3.90	7.485	7.53 3.936 7.510 7.52
<i>b</i> À	7.476 5.440 3.88 6.65 7.532		
Þ a	3.791 3.788 3.800 7.368 5.387 3.73 5.85 5.244 5.233 7.316 7.50 7.50 7.50 7.33 7.342 7.342 7.333 12.36	3.895 7.318 3.825	7.36 4.113 12.60 7.385 5.37 7.35
Sym	0000 00H HHH 00HHHH	O H L	НОНЕКЕ
Compound	AzWO3 (continued) Ybo.1WO3 Luo.1WO3 Ybo.4WO3 AlzWO3 AlzWO3 AlzWO3 Cuo.23WO3 Cuo.23WO3 Ino.33WO3 Ino.33WO3 Ino.33WO3 Uo.33WO3 Uo.33WO3 Vo.135WO3 Ko.3(Tao.3Wo,7)O3 Ko.3(Tao.3Wo,7)O3 Ko.3(Tao.3Wo,7)O3 Ko.3(Tao.3Wo,7)O3 Ko.3(Tao.3Wo,7)O3 Ko.3(Tao.3Wo,7)O3 Ko.3(Tao.3Wo,7)O3 Ko.3(Tao.3Wo,7)O3	Kro.gReO3 Kro.gReO3 Naro.gReO3	Azrers Rb _{0.29} FeF ₃ K _{0.88} FeF ₃ K _{0.88} FeF ₃ K _{0.25} FeF ₃ Na _{0.11} FeF ₃ Tl _{0.30} FeF ₃

R

1	1.0																											
	Magnetic Data	in 3.3.4,	3		9	٧	9		9	9	,	9		9	9	9		9			9							
	Remarks				P&S[Eh2]	Neutron diffraction ($Wo13$)	Prop. [Bi7, Ha11, Ha12, Bo33, Ra9], structure	[Ja3], neutron diffraction $[Wo13]$ 300 °C	Neutron diffraction [Wol3], Prop. [Bo33, Bo34,	Ny1, $Kl5$, $He10$, $Sm1$] Neutron diffraction [$Wo13$], $Prop.$ [$Bi7$, $Sh5$, $We17$.	Bull, crystal transformation [Cr5]	P&S $\lceil Mul \rceil$		P&S [<i>Sc2</i>], "doubtful"	Neutron diffraction [$Wi6$], P&S [$La7$]	Neutron diffraction [Wi6]		Neutron diffraction [$Wi6$], Prop. [$Ba19$, $Ba20$, $Ny1$, $Ei3$		Prep. $[Lo8]$	Prop. [Ny1], "doubtful"	Structure [Br1, Ta15], neutron diffraction [Lo6].	Prop. [Cr7, Cr8, Ta15, Co16, Be22, Iw2, De16, Ke10], optical properties [Di3a], phase trans-	iormations [Feda]	P&S, [Me11, Bi4, Bi5], crystal growth [Fe21],	Prop. [S12, Fe21, Fe10, Gu6a], structure vs. oxy-gen content [S12], DeHaas-Van Albhen effect	[Ma27a], NMR $[Na11a]$ P&S $[Ro2]$	P&S[En2]
spunodu	Ref.		Ke20	No10	Si2 1703	Ja2a	Kn2	Kn2	He9	He11	H-111	Br6	Eh3	Eh4 Fy15	Gu8	He11	Hell	Hell	Mul	Du2	Gu8 Fr15	L06		215	512		He11	Wa6
4b. BX ₃ compounds	angle			$\alpha = 59^{\circ} 32^{\circ}$	$\alpha = 58^{\circ} 53^{\circ}$	11		$\alpha = 56^{\circ} 37^{\circ}$		$\alpha = 58^{\circ} 0'$		$\alpha = 57^{\circ} 30^{\circ}$				II	$\alpha = 54^{\circ} 25'$	11	$\alpha = 56^{\circ} 15^{\circ}$	11		$\beta = 90^{\circ} 55'$					$\alpha = 54^{\circ} 8'$	
Tab. 4b.	o A						*		13.448													7.688						
	b A								5.037													7.539						
	Ą		5.029	5.708	3.798	5.373	5.2643	5.332	8.904	5.362	5.279	5.20	3.96	3.903 3.902	3.8985	5.408	5.330	7.3634	5.722	5.180	3.9012 3.896	7.297		3.7574	3.7477		5.418	4.156
	Sym	!	K 1	4 P	4 U	ĸ	~	Ж	×	R		2	<u>.</u>	ں ں	O	K 1	μ	4	ਲ	꿈	ပပ	M		ပ	ပ		요 :	υ Ο
	Compound	į	AIF	JCF.	TiOF2	VF_3	Cir.		$ $ MnF $_3$	FeF	CoF,	GaF	ZrF3	NbO ₂ F	MoF	- KuF ₃ - BhF	PdF.	es 4 1	InF	TeO ₃	${f TaO_2F}$	wo,		Re _{0.83} W _{0.67} O ₃	ReO ₃		IrF3	°00

$\alpha = 54^{\circ} \text{ B} \qquad Hell \qquad F \propto 5 [\text{En2}]$ $Wa6 \qquad P \approx S [\text{En2}]$	
# ర	
5.418 4.156	
C	

	Magnetic Data	1ab. Tab.
	Remarks	Structural review [$Gi2$, $Ke11$, $Co29$] P& S [$Co29$] Magnetic properties $80 < T < 300$ °K, $n_{\rm eff} = 1.66$, $\Theta_{\rm p} = -218$ °K [$Ha18$] P& S [$Hu7$] Magnetic properties, $n_{\rm eff} = 2.82$, $\Theta_{\rm p} = 31$ °K [$Ba21$] Magnetic properties, $n_{\rm eff} = 2.98$, $\Theta_{\rm p} = 28$ °K [$Ba21$] Magnetic properties, $n_{\rm eff} = 2.72$, $\Theta_{\rm p} = 1.2$ °K [$Ba21$] Magnetic properties, $n_{\rm eff} = 2.72$, $\Theta_{\rm p} = 1.2$ °K [$Ba21$] P& S [$Sc22$] Complete structure; P& S [$Ke11$] P& S [$Co29$] Magnetic properties $80 < T < 300$ °K, $n_{\rm eff} = 0.5$, $\Theta_{\rm p} = -125$ [$Ha18$] P& S [$Pe1$]; magnetic properties $80 < T < 300$ °K, $n_{\rm eff} = 1.57$, $\Theta_{\rm p} = -100$ °K [$Ha19$]
spunodu	Ref.	Ke11 Ke11 Ho14 Ho14 Ho14 Ke11 Ed3 Bo18 Ba21 Ba21 Ba21 Ba21 Ke11 Ke11 Ke11 Ke11 Ke11 Ho18
c. 🛘 BB'X, compounds	angle	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Tab. 4c.	o A	
	<i>b</i> .	
	a À	5.63 5.63 5.26 5.26 6.25 6.30
	Sym	
	Compound	BB'Xe NaVFe LiVFe CaMnFe MgMnFe NaNbFe LiNbFe NaTCFe NaTCFe CaHTFe CaHTFe NaTaFe LiTaFe NaTaFe LiTaFe NaOSFe LiOSFe NaOSFE LiOSFE CaPbFe

																										•		. 41.
	Magnetic Data	in 3.3.4,							9		9			9	9	٧	o v	9		9 '	۰ ۰	9	1	9	~	9		
S1	Remarks		No cell dimensions [$Be22a$]	P&S [Wi12], S.S. with K ₂ NiF ₄ [We20]		Not K ₂ NiF ₄ type		Possibly distored K ₂ NiF ₄ [Se2]	K,NiF, type	$F \approx 5 [Vo1]$, Frop. [De20, Br3] $F \approx 5 [Vo1, Co25]$, Prop. [De20, Co15]				P&S[Ruj, Ru8]	Prop. [Ru8, Sr3, Sr2, Va1, Le8], dielectric proper-	ties [<i>La1a</i>] D&S [<i>Ru, 3 Bus</i>]	Prop. $[Rus]$	Prop. [Sr2, Go26, De20, Rus, Tis, We20], dielectric	properties $[La1b]$, neutron diffraction $[Pl4, Pl5, Pl6, Pl7, Le6, Le7]$		D & C [Du 3] continul managed [Co 100]	Fig. [$Ru6$], Optical properties [$Scr0a$] Prop. [$Ru6$, $Va1$], P&S [$Kn1$, $Gu1a$]	P&S [Ru3] -not K,NiF, type	P&S[Ru3]	Dron [De 20 Ro15 Ko8] Dran [Be 7]	Prop. [De20, Bo15, Ko8], Prep. [Re7]	P&S [Sc10]	
punoduo	Ref.			Ba! Re6	Ch8a 1701	101	Se2 Se2	Co25	Le7	C025 Br5	Tr1	De12	De12 Vo1	Ru6	Ru6	<i>5"6</i>	Rus	Ba10		Ru8	ממע	Rub	Ba3	Rub	N 13	W:9	Ba1	Sc10 Br12
(AX) _n (ABN ₃) _m compounds	angle					$\beta = 87^{\circ} 12'$																	$\beta = 87^{\circ} 30'$					
Tab. 4d.	c Å			13.706	13.88	5.657	16.46	14.63	6	13.14	13.38	12.98	21.15 13.91	13.67	13.08	14.05	13.71	13.076		13.78	14.22	12.72	5.601	13.66	12.40	21.18	13.67	13.05 21.2 2
	<i>b</i>					9.533																	9.354		7.54	7.47		
	a À		200 8	4.033 3.955	4.07	3.344	5.215 5.143	4.31	000	4.20	4.20	4.140	4.130 4.194	4.135	4.07	4 11	4.087	4.006		4.08	4.031	4.145	3.261	4.199	7.30	7.35	4.125	4.02
	Sym		f	- [[H F	××	HH	Н	HE	- [-	H	(H E	(Н	⊱	Ę-	· [-	Η		[- (-	- (H	Z (C	00	0	₩ 6	- (H
	Compound	Halides	Cs ₂ MgF ₄	K2MgF4	(NH4)2MgF4 Ti_MgF.	Na ₂ CrF	Cs.crcl, Rb,crcl,	K,ČrCl, Cs,MnF,	Cs ₂ MnCl	K_2MnF_4	Rb ₂ FeF ₄	K2FeF	Narear, Tlarer,	Rb2CoF4	K2CoF4	TI,CoF.	Rb,NiF	K_2NiF_4		(NH4)2NiF4	Rh.Cuf	K2CuF4	Na ₂ CuF	112CuF	CH, NH, CuCl.	(C2H6NH3)2CuCl	$ Rb_2 ZnF_4 $	$K_3Z_{n_2}F_{\gamma}$

27.	5 7
Br12	
1.22	

	5.2 Perovskite-related structures
Magnètic Data	in 3.3.4, Tab
Remarks	Prep. [Co26, Co27a] Prep. [Co26, Co27a] Prep. [Co26, Co27a] Eu³+fluorescence [Ni1] P& S [Ru1, Br11, Lu2, Po9, Ha19a], Eu³+fluorescence [Ni1] P& S [Ro17] P& S [Ro17] (Na and Ln ordered). Fluorescence: Eu [B112a] Fluorescence: Eu [B112a] Fluorescence: Eu [B112a] P& S [Mc1b] P& S [Mc1b] P& S [Mc1b] P& S [Ru1, Br11]
Ref	Cv3 Vo1 Co27a Co27a Co27a Co27a Si3 Si3 Si3 Ru2
angle	
У . С	13.97 14.10 13.98 22.71 16.88 12.58 12.58 12.59 12.46 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.53 12.65
b A	5.426
Þ, a	4.14 4.114 4.4105 4.4105 5.26 3.30 3.75 3.30 3.77 3.77 3.77 3.88 3.88 3.88 3.88 3.88
Sym	
Compound	Halides (continued) (NH4), ZnF, Tl, ZnF, Rb, CdF, Rb, CdF, K, CdF, K, CdF, K, Cd, F, Cs, CdCl, Oxides Sr, Ti, O, NaLaTiO, NaLaTiO, NaLaTiO, NaSMTIO, NaSWTIO, NaSWTIO, NaSWTIO, NaSYTIO, Sr, Labo, Sr, Labo, Sr, Feo, O, Sr, Feo, O, Sr, Feo, O,

Re

Magnetic Data	in 3.3.4, Tab.	9	9	999	000	9							9		9					
Remarks	* - 1 Dran [3/407]	A = 1, 110p. [ma/] Prop. [As6]	Prep. [Fo1, Fo3] substitution of Sr [Sr2, Go6]	Prop. [<i>Sr2, Go26</i>]	P&S [Fo1, Fo3], Prop. [Sm34, Sm24] Prop. [Sm34] Prop. [Sm34, Sm24]		Prep. $[Fr25, Fo1, Fo3]$ at 420 °C, tetr. $T > 250$ °C	P&S[F*25]	F & 3 [FY2.7] D & S [Fy.75]	100 kbars, 900 °C required, P&S [Ri8b]	P&S [Sc18a]		P&S [Sc16], Prop. [Ro2a]		Prop. [Ca2]		P&S[Wa2]	$F \propto S WaZ $ Not $K_2 NiF_4$ type, $[We8]$		
Ref.	070	Ga3 B19	Ra2 B19	B19 B19	Ra2 Fo1	B19 B19	Lo1c Lo1c	Fr25 Fo1	FV25	B19 Re2	Sc18a Pe3	Pe3 Pe3	Ga2 Ba10	Ke9 Ke9	Ra6 Ra6	61 <i>B</i>	We8	7 es	Sc18a Sc18a	
angle					•															
0 A	730.00	12.98	12.50 12.66 12.58	12.58	12.652	12.51	13.17	12.23	11.92	12.71	13.48	20.94	12.67 12.84	13.40	12.74	12.78	13.27	12.53	13.45 12.52	
b A			5.539				5.41					5.808 5.814								
Ą	000	3.86 3.86 3.86	3.80 5.482 3.77	3.82	3.855	3.80	5.36	3.96	3.91	3.84	5.801	5.798	3.96	4.011	3.870	3.92	4.130	4.037	4.161	
Sym	- F		H O H	. [-] [-]	· [- [-	<u></u>	0 н	HHI	- (- (-	- [· [+ [+	00	· [-]	ΗН	<u></u>	· (-	Η	Ţ	нн	
Compound	Oxides (continued)	Sr ₂ Fe ₂ O ₃ F Sr ₂ FeO ₃ F SrLaFeO ₃	SrLaCoO, La ₂ CoO, La.Co., Li., O.	La., Sr., Co., Mgs., O.	La,NiO, Pr ₂ NiO, Nd,NiO,	SrĽaNiO. ĽasNis Ľis O.	La ₂ CuO ₄	Pr ₂ CuO ₄ Nd ₂ CuO ₄	Sm ₂ CuO ₂ Eu ₂ CuO ₄	SrLaGaO,	Ba ₂ ZrO ₄ Sr,ZrO,	Sr ₃ Zr ₂ O,	K.NbO,F Sr,MoO,	Barro.	Sr ₂ RuO ₄	SrLaRhO,	Ba ₂ SnO ₄	Sr ₂ SnO ₄ Ca,SnO,	Ba,HfO, Sr,HfO,	

[0	1 .	5.2 Telovanie-leated structure	
Magnetic Data	in 3.3.4, Tab. 6		
Remarks	Prop. [Ro2a] Not K_2 NiF, type P & S [Wa2] A = Sr + Ca, not K_2 NiF, type		
ef.			
Ref.	Ra7 Ba5a We8 We8 We8 Ko11 Ko11	. bage	
angle		Tab. 4e: see next page	
o A	12.92 3.195 13.30 14.79 13.83 13.10	Tab	
b A	5.97		
Αa	3.89 9.423 4.296 4.38 4.335 5.795		
Sym	HHH HHHO		-
Compound	Oxides (continued) Sr ₂ IrO ₄ Ca ₂ IrO ₄ Ba ₂ PbO ₄ A ₂ PbO ₄ Cs ₂ UO ₄ Rb ₂ UO ₄ Rk ₂ UO ₄ K ₂ UO ₄		

Rei

te lir

> m pa

sı – uı

di D

			3.2 Perowskit-anniiche Strukturen	Lit. 5. 2/5
	Magnetic Data	in 3.3.4, Tab.		
spunoc	Remarks		P&S [$Ze3$] P&S [$Su3$], S.S. with Sr and Ca [$Sm19$] P&S [$Sm19$; $Su3$] P&S [$Sm19$; $Su3$] P&S [$Sm19$; $Su3$] P&S [$Su2$; $Su3$], dielectric properties [$Is3$] P&S [$Su2$; $Su3$], S.S. with Ba and Sr [$Sm19$], dielectric properties [$Sm19$, $Is3$] P&S [$Sm19$; $Su3$] P&S [$Su3$, $Sm19$], dielectric properties [$Is11b$] P&S [$Su3$, $Sm19$], dielectric properties [$Is11b$] P&S [$Su3$, $Sm19$], dielectric properties [$Is11b$] P&S [$Su3$, $Sm19$, $Au4$, $Is6$, $Su2$] P&S [$Su3$, $Sm19$] P&S [$Su3$, $Su3$] P&S [$Su3$, $Ha9$], structure determination [$Ne9$] P&S [$Su3$, $Ha9$], structure determination [$Ne9$] P&S [$Su3$, $Ha9$], tetr. at 310 °C [$Is6$]	Probably orthorhombic P&S [Su]
ı) compou	Ref.		BB110 Auu2 Auu2 Auu2 Auu2 Suu4	1s12 Su4 Su4 Su4 Is12
$\mathrm{Bi_2O_2}(\mathrm{A_{n-1}B_nO_{sn+1}})$ compounds	angle			
Tab. 4e. Bi ₂	c Å		16.24 16.24 16.24 25.55 25.05 25.05 25.05 25.06 25.06 25.06 25.06 25.06 25.06 25.06 25.08 25.08 33.55 33.55 41.35 41.35 41.35 41.15	50.185 48.80 49.70 76.20
	b Å		5.50 5.50 5.50 5.50 5.50 5.50 6.50 6.50	5.500
	<i>p</i> • ₹		5.49 5.533 5.533 5.533 5.534 5.535 5.535 5.535 5.535 5.535 5.535 5.535 5.540 5.540 5.540 5.540 5.540 5.540 6.5	5.490 5.461 5.461 5.491
	Sym	-	000000 нооооноооно оннонно	0000
	Compound		Bi²MoO, Bi²WO, BaBi²Nb²O, SrBi²Nb²O, CaBi²Nb²O, CaBi²Nb²O, PbBi²Nb²O, Na₀,Bi².kNb²O, BaBi²Ta²O, SrBi²Ta²O, SrBi²Ta²O, Bi³NbTiO, Bi³NbTiO, BaBi¬Ti²NbO₁² BaBi¬Ti²O¹³ Bi¬Ti²¬Co¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬	Da ₂ D ₄ T ₁ 5O ₁₈ Ba ₂ Bi ₄ Ti ₅ C ₁₈ Sr ₂ Bi ₄ Ti ₅ O ₁₈ Pb ₂ Bi ₄ Ti ₅ O ₁₈ Ba ₆ Bi ₄ Ti ₅ Fe ₅ O ₂₇

Fig. 872. CaBi₂Ta₂O₆ (ceramics). × vs. T [61S11].

Fig. 873. $SrBi_2Nb_2O_3$ (ceramics). \varkappa vs. T [62S17].

Fig. 874. SrBi₂Ta₂O₂ (ceramics). × vs. T [62S17].

Fig. 875. $BaBi_{g}Nb_{g}O_{g}$ (ceramics). \varkappa vs. T [62S17].

Fig. 877. $PbBi_1Nb_2O_3$. Schematic drawing of crystal structure. One half of the pseudotetragonal unit cell from $z \sim 0.25$ to $z \sim 0.75$ is given. A denotes the perovskite layer $PbNb_2O_3^{3-}$, B denotes a unit of hypothetical perovskite structure $PbNbO_3$ and C denotes (Bi_2O_3)²⁺ layers [62S15].

Fig. 876. BaBi₂Ta₂O₃ (ceramics). * vs. T [62S17].

 $\bigcirc 0$

Fig. 890. BaBi₄Ti₄O₁₈. Schematic drawing of crystal structure. One half of the pseudotetragonal unit cell from $s \approx 0.25$ to $s \approx 0.75$ is given. A denotes the perovskite layer BaBi₄Ti₄O₁₇, B denotes a unit of hypothetical perovskite structure (Ba, Bi)TiO₂, C denotes (Bi₄O₂)²⁺ layers [62515].

Fig. 892. $BaBi_4Ti_4O_{15}$, $Ba_5Bi_4Ti_5O_{15}$, $Bi_4Ti_5O_{15}$. t_5 vs. 1/E. [62F1]. t_8 : switching time.

Fig. 891. BaBi₄Ti₄O₁₅ (ceramics). × vs. T [61S15].

Fig. 893. PbBi₄Ti₄O₁₆ (ceramics). \varkappa vs. T [61S15].

Fig. 894. SrBi₄Ti₄O₁₈ (ceramics). × vs. T [62S17].

Fig. 895. CaBi $_4$ Ti $_4$ O $_{18}$ (ceramics). \varkappa vs. $T^{*}[61S11]$.

Fig. 896. Ba₂Bi₄Ti₅O₁₈. Schematic drawing of the crystal structure. One for the tetragonal unit cell from r=0.25 to r=0.75 is given. A denotes the perovskitic layer of Ba₂Bi₂Ti₅O₁₈, B denotes a unit cell of the hypothetical perovskite structure (Ba, Bi)TiO₂, and C denotes the layers of (Bi₂O₂)²⁺ [62A5].

Fig. 898. Ba₂Bi₄Ti₅O₁₄. x' and x" vs. T [62A5].

Fig. 900. Sr₂Bi₄Ti₅O₁₈ (ceramics). × vs. T [62S17].

Fig. 897. $Ba_4Bi_4Ti_4O_{14}$. Lattice parameters vs. T [6315].

Fig. 899. Pb.Bi.Ti.O. (ceramics). x vs. T [62517].

Fig. 901. Bi₂Ti₄O₁₁. Schematic projection of structure on (010)₂[65]4].

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:		
□ BLACK BORDERS		
☑ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES		
☐ FADED TEXT OR DRAWING		
☑ BLURRED OR ILLEGIBLE TEXT OR DRAWING		
☐ SKEWED/SLANTED IMAGES		
☑ COLOR OR BLACK AND WHITE PHOTOGRAPHS		
☐ GRAY SCALE DOCUMENTS		
☐ LINES OR MARKS ON ORIGINAL DOCUMENT		
\square REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY		
□ other.		

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.