Offline POMDP Algorithms

	Name	5	A	O
Survey of Point Based POMDP Solvers	Exact VI	D (10)	D	\triangleright
	PBVI		,	`
	Perseus	(((
	HSVI		((
	SARSOP & Use	(10,000)		\
	MCVI	C	D	D/C

Infinite-Horizon POMDP Value Iteration

Point-Based Value Iteration (PBVI)

Original PBVI

```
B \leftarrow b_0
loop
    for b \in B
         \Gamma \leftarrow \Gamma \cup \{ \text{point\_backup}(\Gamma, b) \}
    for b \in B
         	ilde{B} \leftarrow \{	au(b,a,o): a \in A, o \in O\}
        B' \leftarrow B' \cup \left\{ egin{array}{c} rgmax & \|B,b'\| \ b' \in 	ilde{B} & \end{array} 
ight\}
     B \leftarrow B \cup B'
```


PERSEUS: Randomly Selected Beliefs

Two Phases:

- 1. Random Exploration
- 2. Value Backup 🐓

Random Exploration:

$$B \leftarrow \emptyset$$
 $b \leftarrow b_0$
 $\mathsf{loop\ until}\ |B| = n$
 $a \leftarrow \mathsf{rand}(A)$
 $o \leftarrow \mathsf{rand}(P(o\mid b, a))$
 $b \leftarrow au(b, a, o)$
 $B = B \cup \{b\}$

Heuristic Search Value Iteration (HSVI)

while
$$\overline{V}(b_0) - \underline{V}(b_0) > \epsilon$$
 explore $(b_0, 0)$ function explore (b, t) if $\overline{V}(b) - \underline{V}(b) > \epsilon \gamma^t$
$$a^* = \operatorname*{argmax}_a \overline{Q}(b, a) \leftarrow \operatorname*{argmax}_b \overline{Q}(b, a) \leftarrow \operatorname*{argmax}_b \overline{Q}(b, a^*, o) - \underline{V}(\tau(b, a^*, o)) - \epsilon \gamma^t)$$
 explore $(\tau(b, a^*, o^*), t + 1)$
$$\underline{\Gamma} \leftarrow \underline{\Gamma} \cup \operatorname{point_backup}(\underline{\Gamma}, b) \leftarrow \operatorname{bound}_b \overline{V}(b) = B_b[\overline{V}(b)] \leftarrow \operatorname{Upper}_b \overline{Bound}_b$$

Sawtooth Upper Bounds

$$V(b) = \max_{\alpha} \alpha^{T} b$$

Finding the points
to interpolate between
requires solving
a linear program

SARSOP

Successive Approximation of Reachable Space under Optimal Policies

if
$$\overline{Q}(b,a') \leq \overline{Q}(b,a^2)$$

then prune all b
below (b,a') from B

Instead of pruning a that are dominated over whole belief space, prrune a dominated over B

Policy Graphs

Monte Carlo Value Iteration (MCVI)