DIC L11: Inverter (1)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

2.4. Nonideal IV (12)

- Threshold voltage (Body effect)
 - It is given by

$$V_t = \frac{\sqrt{2\epsilon_{si}qN_A}}{C_{ox}}\sqrt{\phi_s + V_{sb}} + V_{FB} + \phi_s$$
Positive for negative V_b

$$\gamma, \text{ Eq. (2.37)} \qquad \phi_s = 2v_T\log\frac{N_A}{n_i}, \text{ Eq. (2.36)}$$

Written as

$$V_t = V_{t0} + \gamma \left(\sqrt{\phi_s + V_{sb}} - \sqrt{\phi_s} \right)$$

GIST Lecture on October 22, 2019

2.4. Nonideal IV (13)

- Leakage
 - Subthreshold slope
 - DIBL
 - Drain-induced barrier lowering
 - GIDL
 - Gate-induced drain leakage

2.5. DC transfer (1)

A CMOS inverter

- The transistor is a switch with an infinite off-resistance and a finite on-resistance. V_{DD} - V_{DD}

2.5. DC transfer (2)

- Important properties (Taken from Rabaey's book)
 - The HIGH and LOW output levels equal V_{DD} and GND, respectively.
 - The logic levels are not dependent upon the relative device sizes, so that the transistors can be minimum size. (Ratioless)
 - A well-designed CMOS inverter has a low output impedance.
 - The input resistance of the CMOS inverter is extremely high.
 - The absence of current flow between V_{DD} and GND means that the gate does not consume any static power.

2.5. DC transfer (3)

- Intel 4004
 - In 1971, the first microprocessor was released.
 - It has about 2300 transistors.
 - It was designed by Federico Faggin.
 - Masatoshi Shima helped him.
- It was implemented in a pure NMOS tech.

(4004)

Die size: 12 mm²

Min. feature size: 10 micron Max. clock speed: 740 kHz

Federico Faggin (Wikipedia)

2.5. DC transfer (4)

- NMOS
 - It is turned on at HIGH input voltages

Cutoff	Linear	Saturated
$V_{gsn} < V_{tn}$	$V_{gsn} > V_{tn}$	$V_{gsn} > V_{tn}$
$V_{in} < V_{tn}$	$V_{in} > V_{tn}$	$V_{in} > V_{tn}$
	$V_{dsn} < V_{gsn} - V_{tn}$	$V_{dsn} > V_{gsn} - V_{tn}$
	$V_{out} < V_{in} - V_{tn}$	$V_{out} > V_{in} - V_{tn}$

Table 2.2

2.5. DC transfer (5)

- PMOS
 - It is turned on at LOW gate voltages.

Cutoff	Linear	Saturated
$V_{gsp} > V_{tp}$	$V_{gsp} < V_{tp}$	$V_{gsp} < V_{tp}$
$V_{in} > V_{DD} + V_{tp}$	$V_{in} < V_{DD} + V_{tp}$	$V_{in} < V_{DD} + V_{tp}$
	$V_{dsp} > V_{gsp} - V_{tp}$	$V_{\rm dsp} < V_{\rm gsp} - V_{\rm tp}$
	$V_{out} > V_{in} - V_{tp}$	$V_{out} < V_{in} - V_{tp}$

Table 2.2

2.5. DC transfer (6)

 Two curves are drawn together. V_{gsn5} V_{gsn4} V_{gsn3} V_{gsn2} $\mathsf{V}_{\mathsf{gsn1}}$ V_{gsp2} V_{DD} V_{dsn} V_{gsp3} V_{gsp4} $V_{gsp5} \\$

GIST Lecture on October 22, 2019

2.5. DC transfer (7)

Same graph, but in terms of V_{in} and V_{out}

2.5. DC transfer (8)

- Operating regions
 - We have five points. Indentify the operational modes of transistors.

GIST Lecture on October 22, 2019

2.5. DC transfer (9)

- Input threshold, V_{inv} (or swithcing threshold)
 - When $V_{in} = V_{out} = V_{inv}$
- Beta ratio
 - Skewed
 - HI-skewed, $\frac{\beta_p}{\beta_n} > 1$
 - Stronger PMOS
 - LO-skewed, $\frac{\beta_p}{\beta_n}$ < 1
 - Weaker PMOS

