UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Finančna matematika – 1. stopnja

Anej Rozman Sestavljeni Poissonov proces in njegova uporaba v financah

Delo diplomskega seminarja

Mentor: doc. dr. Martin Raič

Kazalo

1. Uvod	5
2. Sestavljena Poissonova porazdelitev	6
2.1. Porazdelitev	6
2.2. Rodovne, momentno-rodovne in karakteristične funkcije	7
2.3. Panjerjeva rekurzivna shema	10
3. Sestavljeni Poissonov proces	13
3.1. Osnovne lastnosti	14
3.2. Markiranje sestavljenega Poissonovega procesa	17
3.3. Neskončna deljivost	20
4. Cramér–Lundbergov model	23
4.1. Proces tveganja in verjetnost propada	23
4.2. Lahkorepe porazdelitve	27
4.3. Težkorepe porazdelitve	36
5. Priloga	41
Slovar strokovnih izrazov	46
Literatura	46

Sestavljeni Poissonov proces in njegova uporaba v financah

POVZETEK

V prvem delu diplome najprej definiramo sestavljeno Poissonovo porazdelitev in izpeljemo obliko njenih rodovnih funkcij, obravnavamo njeno povezavo s splošnimi porazdelitvami in izpeljemo Panjerejevo rekurzivno shemo. Nato definiramo sestavljeni Poissonov proces in pokažemo nekaj osnovnih lastnosti kot je neodvisnost in stacionarnost prirastkov. Izpeljemo nekaj rezultatov, ki jih dobimo, ko sestavljeni Poissonov proces markiramo in ga obravnavamo kot gradnik neskončno deljivih procesov ti. Lévijevih procesov. V drugem delu diplome obravnavamo aplikacijo sestavljenega Poissonovega procesa v Cramér–Lundbergovem modelu. Definiramo verjetnost propada in obravnavamo njeno obnašanje v odvisnoti od začetnega kapitala. Dokažemo Lundbergovo neenakost in asimptotično obnašanje verjetnosti propada, ko zahtevke modeliramo z lahkorepimi in težkorepimi porazdelitvami. Obnašanje verjetnosti propada na koncu praktično prikažemo z večkratkim simuliranjem procesa tveganja.

Compound Poisson process and its application in finance

Abstract

In the first part of the thesis, we define the compound Poisson distribution and derive the form of its generating functions, discuss its connection with general distributions, and derive the Panjer recursion scheme. We then define the compound Poisson process and show some basic properties such as the independence and stationarity of increments. We derive some results of the marked compound Poisson process and consider it as a building block of infinitely divisible processes i.e. Lévy processes. In the second part of the thesis, we consider the application of the compound Poisson process in the Cramér–Lundberg model. We define the probability of ruin and consider its behavior depending on the initial capital. We prove the Lundberg inequality and the asymptotic behavior of the probability of ruin when the claims are modeled by light-tailed and heavy-tailed distributions. We practically demonstrate the behavior of the probability of ruin by repeatedly simulating the risk process.

Math. Subj. Class. (2020): 60G07 60G20 60G51

Ključne besede: slučajni proces, sestavljena Poissonova porazdelitev, Panjerjeva rekurzivna shema, sestavljeni Poissonov proces, markiranje, neskončna deljivost, Cramér–Lundbergov model, Verjetnost propada, lahkorepa porazdelitev, težkorepa porazdelitev

Keywords: stochastic process, compound Poisson distribution, Panjer recursion scheme, compound Poisson process, space-time decomposition, infinite divisibility, Cramér–Lundberg model, probability of ruin, light-tailed distribution, heavy-tailed distribution

Zahvala

V nastajanju :)

1. Uvod

Na različnih področjih, kot so finance, telekomunikacija in predvsem zavarovalništvo, se je v zadnjem stoletju pojavila potreba po modeliranju raznih pojavov oziroma procesov. Eden najpreprostejših primerov je modeliranje števila dogodkov v nekem časovnem intervalu. Konkretno si zamislimo, da zavarovalnica želi modelirati število ljudi, ki bodo v enem dnevu vložili zahtevek za avtomobilsko zavarovanje. Tovrstne procese standardno modeliramo s homogenim Poissonovim procesom oziroma v splošnem s procesi štetja. V delu privzamemo, da je bralec s temi temami že seznanjen, saj služijo kot osnova za teorijo, ki jo izpeljemo. Na nekatere ključne definicije in rezultate, ki jih bomo uporabljali bodo posebej označene kot (5.1). Bralec jih nato lahko najde v prilogi.

V praksi zavarovalnico redko zanima število zahtevkov, veliko bolj pomembno je, kolikšno škodo bo morala poplačati v enem dvnevu. Seveda ne moremo privzeti, da so vsi zahtevki enaki. Škoda, ki nastane v prometni nesreči, je v večini primerov precej večja od tiste, ki nastane, če oseba poškoduje vrata avtomobila. Potrebe po modeliranju takih procesov v zavarovalništvu so nas pripeljale do razvoja teorije sestavljenih procesov.

Ideja je, da vsak prihod v procesu štetja obtežimo z neko slučajno spremenljivko, ki predstavlja višino škode enega zahtevka. Te vrednosti skozi čas seštevamo in tako dobimo oceno za kumulativno škodo, ki jo zavarovalnica mora poplačati v nekem časovnem intervalu.

SLIKA 1. Primer trajektorije sestavljenega Poissonovega procesa z intenzivnostjo $\lambda=0.1$ in eksponentno porazdeljenimi zahtevki $X_i\sim \mathrm{Exp}(20)$.

Na sliki 1 je prikazan primer trajektorije sestavljenega Poissonovega procesa, ki je poseben primer splošnega sestavljenega procesa in osrednja tema dela.

V prvem delu diplome se bomo ostredotočili na sestavljeno Poissonovo porazdelitev in pokazali njene glavne lastnosti, ki bodo ključnega pomena pri obravnavi sestavljenega Poissonovega procesa. Izpeljali bomo osnovne lastnosti procesa, ki jih bomo skozi delo uporabljali in nekaj zanimivih tem kot so markiranje in neskončna deljivost.

V drugem delu diplome pa se bomo posvetili Cramér–Lundbergovem modelu, ki temelji na teoriji sestavljenega Poissonovega procesa in je osnovni model v teoriji tveganja. Obravnavali bomo predvsem verjentnost propada zavarovalnice. Na koncu bomo dokazali dva zanimiva izreka o asimptotičnem obnašanju verjetnosti propada ko modeliramo različne vrste zahtevkov.

2. Sestavljena Poissonova porazdelitev

Razdelek je prirejen po [1], [2] in [4].

Sestavljena Poissonova porazdelitev je osnovni gradnik za sestavljeni Poissonov proces, ki ga obravnavamo v naslednjem razdelku. Lastnosti, ki jih dokažemo so direktno prenosljve na sam proces. Obravnavamo porazdelitev in kako te pridemo, rodovne funkcije, zanimive rezultate v povezavi s splošnmi slučajnimi spremenljivkami in Panjerjevo rekurzivno shemo, ki jo prikažemo na praktičnem zgledu.

Definicija 2.1. Naj bo $N \sim \text{Pois}(\lambda)$ za $\lambda > 0$ in X_1, X_2, \ldots zaporedje neodvisnih (med seboj in N) enako porazdeljenih slučajnih spremenljivk. Potem pravimo, da ima slučajna spremenljivka

$$S = \sum_{i=1}^{N} X_i$$

sestavljeno Poissonovo porazdelitev.

Opomba 2.2. V primeru, ko so $X_i = 1$ za vsak $i \in \mathbb{N}$, je $S \sim \text{Pois}(\lambda)$.

Opomba 2.3. V splošnem lahko obravnavamo sestavljene porazdelitve kjer je N poljubna slučajna spremenljivka, ki zavzema vrednosti v \mathbb{N}_0 . Konkreten primer nas zanima zaradi njegove povezave s sestavljenim Poissonovim procesom. V nadaljevanju bomo uporabljali oznako

$$S_0 = 0$$
 in $S_k = \sum_{i=1}^k X_i$ za $k \in \mathbb{N}$;

opazimo, da se brezpogojna porazdelitev slučajne spremenljivke S_k ujema s pogojno porazdelitvijo slučajne spremenljivke $S \mid \{N=k\}.$

2.1. **Porazdelitev.** Z uporabo izreka o popolni verjetnosti s pogojevanjem na N pridemo do formule za porazdelitev slučajne spremenljivke S. Za $x \in \mathbb{R}$ velja

$$F_{S}(x) = \mathbb{P}(S \le x) = \sum_{k=0}^{\infty} \mathbb{P}(S \le x \mid N = k) \mathbb{P}(N = k)$$
$$= \sum_{k=0}^{\infty} \mathbb{P}(S_{k} \le x) \mathbb{P}(N = k)$$
$$= \sum_{k=0}^{\infty} F_{X_{1}}^{*k}(x) \frac{\lambda^{k}}{k!} e^{-\lambda},$$

kjer je $F_{X_1}^{*k}(x)\ k$ -ta konvolucija (5.2) funkcije $F_{X_1}.$

Zgled 2.4. Poglejmo enega enostavnejših primerov, ko so X_1, X_2, \ldots porazdeljene kot

$$X_1 \sim \operatorname{Exp}(a)$$
, torej z gostoto $f_{X_1}(x) = ae^{-ax} \mathbb{1}_{(0,\infty)}(x)$,

kjer je a > 0. Vemo, da je k-ta konvolucija porazdelitve slučajne spremenljivke X_1 porazdelitev Gamma(k, a) in ima gostoto

$$f_{X_1+\dots+X_k}(x) = \frac{1}{\Gamma(k)} a^k x^{k-1} e^{-ax} \mathbb{1}_{(0,\infty)}(x).$$

Za s>0velja

$$F_{S}(s) = \sum_{k=0}^{\infty} \int_{0}^{s} \frac{1}{\Gamma(k)} a^{k} x^{k-1} e^{-ax} dx \frac{(\lambda)^{k}}{k!} e^{-\lambda}$$
 Tonelli (5.20)
$$= \int_{0}^{s} \sum_{k=0}^{\infty} \frac{1}{(k-1)!k!} (a\lambda)^{k} x^{k-1} e^{-(ax+\lambda)} dx.$$

Vidimo, da lahko že celo v primeru, ko poznamo eksplicitno formulo za $F_{X_1}^{*k}$, težko pridemo do porazdelitve slučajne spremenljivke S v zaključeni obliki. V praksi se zato poslužujemo numeričnega ocenjevanja.

2.2. Rodovne, momentno-rodovne in karakteristične funkcije. Ključno orodje pri dokazovanju lastnosti slučajnih spremenljivk so rodovne funckije (5.1), saj nam pomagajo pri obravnavi vsot neodvisnih slučajnih spremenljivk in (če obstajajo) popolnoma določajo njihovo porazdelitev.

Trditev 2.5. Naj bo $N \sim Pois(\lambda)$ za $\lambda > 0$ in X_1, X_2, \ldots zaporedje neodvisnih (med seboj in N) enako porazdeljenih slučajnih spremenljivk z momentno-rodovno funkcijo M_{X_1} . Potem ima za $u \in \mathbb{R}$ momentno-rodovna funkcija $S = \sum_{i=1}^{N} X_i$ obliko

$$M_S(u) = e^{\lambda \left(M_{X_1}(u) - 1\right)}.$$

Dokaz. Velja

$$\varphi_{S}(u) = \mathbb{E} \left[\exp \left[uS \mid N = k \right] \right] \mathbb{P} (N = k)$$

$$= \sum_{k=0}^{\infty} \mathbb{E} \left[\exp \left[uS \mid N = k \right] \right] \mathbb{P} (N = k)$$

$$= \sum_{k=0}^{\infty} \mathbb{E} \left[e^{uX_{1}} \right]^{k} \frac{\lambda^{k}}{k!} e^{-\lambda}$$

$$= e^{-\lambda} \sum_{k=0}^{\infty} \frac{(M_{X_{1}}(u)\lambda)^{k}}{k!}$$

$$= e^{\lambda (M_{X_{1}}(u)-1)}.$$
(1)

Posledica 2.6. Rodovna in karakteristična funkcija $S = \sum_{i=1}^{N} X_i$ imata obliko

$$G_S(u) = e^{\lambda (G_{X_1}(u)-1)}, \quad in \quad \varphi_S(u) = e^{\lambda (\varphi_{X_1}(u)-1)}.$$

Dokaz. V splošnem velja, da je karakteristična funkcija neke slučajne spremenljivke X enaka njeni momentno-rodovni funckij izvrednoteni v iu za $u \in \mathbb{R}$, torej $\varphi_X(u) = M_X(iu)$. Rodovna funkcija pa je enaka momentno-rodovni funkciji izvrednoteni v $\ln(u)$ za u > 0, torej $G_X(u) = M_X(\ln(u))$, če obstajata.

V nadaljevanju bomo uporabljali predvsem karakteristično funkcijo φ_S , saj je ta vedno definirana za vsak $u \in \mathbb{R}$. Prav nam bo prišla tudi naslednja povezava med φ_S in G_N .

Lema 2.7. Karakteristično funkcijo φ_S lahko izrazimo kot kompozitum rodovne funkcije G_N in karateristične funkcije φ_{X_1} .

$$\varphi_S(u) = G_N(\varphi_{X_1}(u)).$$

Dokaz. Po enačbi (1) iz trditve 2.5 za $u \in \mathbb{R}$ velja

$$\varphi_S(u) = \sum_{k=0}^{\infty} \varphi_{X_1}(u)^n \frac{\lambda^k}{k!} e^{-\lambda}$$
$$= G_N(\varphi_{X_1}(u)).$$

Vemo, da za neodvisne slučajne spremenljivke X_1, \ldots, X_n , ki so porazdeljene kot $X_1 \sim \operatorname{Pois}(\lambda_1), \ldots, X_n \sim \operatorname{Pois}(\lambda_n)$, velja, da je njihova vsota $S = \sum_{i=1}^n X_i$ porazdeljena kot $S \sim \operatorname{Pois}(\lambda)$, kjer je $\lambda = \sum_{i=1}^n \lambda_i$. Izkaže se, da ima sestavljena Poissonova porazdelitev podobno lastnost.

Definicija 2.8. Naj bo $(\lambda_k)_{k\in\mathbb{N}}$ zaporedje pozitivnih realnih števil, za katerega velja $\sum_{k=1}^{\infty} \lambda_k = 1$. Naj bodo F_1, F_2, \ldots porazdelitvene funkcije realnih slučajnih spremenljivk X_1, X_2, \ldots Potem

$$F = \sum_{k=1}^{\infty} \lambda_k F_k$$

pravimo mešanica porazdelitev F_1, F_2, \ldots

Očitno je F porazdelitvena funkcija. Če definiramo

$$I \sim \begin{pmatrix} 1 & 2 & 3 & \dots \\ \lambda_1 & \lambda_2 & \lambda_3 & \dots \end{pmatrix},$$

vidimo, da je F porazdelitev slučajne spremenljivke $X = \mathbbm{1}_{\{I=1\}} X_1 + \cdots + \mathbbm{1}_{\{I=n\}} X_n$, kar enostavno pokažemo z uporabo zakona o popolni verjentnosti. Za poljuben $n \in \mathbb{N}$ in $x \in \mathbb{R}$ velja

$$\mathbb{P}(X \le x) = \sum_{k=1}^{n} \mathbb{P}(X \le x \mid I = k) \mathbb{P}(I = k)$$
$$= \sum_{k=1}^{n} \mathbb{P}(X_k \le x) \lambda_k$$

$$= \sum_{k=1}^{n} F_k(x) \lambda_k.$$

Z enakim argumentom lahko pokažemo, da je $\varphi_X(u) = \sum_{k=1}^{\infty} \lambda_k \varphi_{X_k}(u)$.

Trditev 2.9. Naj imajo neodvisne slučajne spremenljivke $S^{(1)}, \ldots, S^{(n)}$ sestavljeno Poissonovo porazdelitev, torej

$$S^{(k)} = \sum_{i=1}^{N_k} X_i^{(k)}$$
 za $k = 1, \dots, n$,

kjer je $N_k \sim Pois(\lambda_k)$ za $\lambda_k > 0$ in za vsak k = 1, ..., n je $(X_i^{(k)})_{i \in \mathbb{N}}$ zaporedje neodvisnih enako porazdeljenih slučajnih spremenljivk. Potem velja

$$S = \sum_{k=1}^{n} S^{(k)} \sim \sum_{i=1}^{N} Y_i,$$

kjer je $N \sim Pois(\lambda)$ s parametrom $\lambda = \sum_{k=1}^n \lambda_k$ in $(Y_i)_{i \in \mathbb{N}}$ zaporedje neodvisnih enako porazdeljenih slučajnih spremenljivk z mešano porazdelitvijo

$$F_{Y_1} = \sum_{k=1}^n \frac{\lambda_k}{\lambda} F_{X_1^{(k)}}.$$

Dokaz. Karakteristična funkcija $S^{(k)}$ ima obliko

$$\varphi_{S^{(k)}}(u) = e^{\lambda_k \left(\varphi_{X_1^{(k)}}(u)-1\right)}.$$

Ker so $S^{(1)}, \ldots, S^{(n)}$ neodvisne, velja

$$\varphi_{S}(u) = \prod_{k=1}^{n} \varphi_{S^{(k)}}(u)$$

$$= \prod_{k=1}^{n} \exp\left[\lambda_{k} \left(\varphi_{X_{1}^{(k)}}(u) - 1\right)\right]$$

$$= \exp\left[\lambda \left(\sum_{k=1}^{n} \frac{\lambda_{k}}{\lambda} \varphi_{X_{1}^{(k)}}(u) - 1\right)\right].$$

Po izreku o enoličnosti (5.16) sledi $S \sim \sum_{i=1}^{N} Y_i$.

Na podoben način pokažemo, kako se sestavljena Poissonova porazdelitev izraža v primeru, ko so slučajne spremenljivke X_i diskretno porazdeljene.

Trditev 2.10. Naj bo $N \sim Pois(\lambda)$ za $\lambda > 0$ in $X_1, X_2, \dots X_n$ neodvisne s.s. (neodvisne med sabo in od N) enako porazdeljene po shemi

$$\begin{pmatrix} a_1 & a_2 & a_3 \dots \\ \frac{\lambda_1}{\lambda} & \frac{\lambda_2}{\lambda} & \frac{\lambda_3}{\lambda} \dots \end{pmatrix},$$

kjer je $(a_n)_{n\in\mathbb{N}}$ poljubno zaporedje realnih števil in $(\lambda_n)_{n\in\mathbb{N}}$ zaporedje pozitivnih realnih števil za katerega velja $\sum_{i=1}^{\infty} \lambda_i = \lambda$. Potem velja

$$\sum_{j=1}^{\infty} a_j Y_j \sim \sum_{j=1}^{N} X_j,$$

kjer so Y_1, Y_2, \ldots neodvisne slučajne spremenljivke porazdeljene kot $Pois(\lambda_1), Pois(\lambda_2), \ldots$

Dokaz. S $\varphi_{Z_n}(u)$ označimo karakteristično funkcijo slučajne spremenljivke $Z_n:=a_1Y_1+a_2Y_2+\cdots+a_nY_n$ in s $\varphi_Z(u)$ karakteristično funkcijo $Z:=\sum_{j=1}^N X_j$. Po neodvisnosti velja

$$\varphi_{Z_n}(u) = \prod_{j=1}^n \varphi_{Y_j}(a_j u)$$

$$= \prod_{j=1}^n \exp\left[\lambda_j \left(e^{a_j i u} - 1\right)\right]$$

$$= \exp\left[\sum_{j=1}^n \lambda_j \left(e^{a_j i u} - 1\right)\right].$$

Po lemi 2.7 velja

$$\varphi_{Z}(u) = G_{N} (\varphi_{X_{1}}(u))$$

$$= \exp \left[\lambda (\varphi_{X_{1}}(u) - 1)\right]$$

$$= \exp \left[\lambda \left(\sum_{j=1}^{\infty} \frac{\lambda_{j}}{\lambda} e^{a_{j}iu} - 1\right)\right]$$

$$= \exp \left[\sum_{j=1}^{\infty} \lambda_{j} (e^{a_{j}iu} - 1)\right].$$

Vidimo, da zaporedje $\varphi_{Z_n}(u)$ za vsak $u \in \mathbb{R}$ po točkah konvergira k $\varphi_Z(u)$, torej

$$\varphi_{Z_n} \xrightarrow{n \to \infty} \varphi_Z$$

po Lévijevem izreku o kontinuiteti (5.17) velja $Z_n \xrightarrow[n \to \infty]{d} Z$.

Rezultat je zanimiv predvsem zato, ker nam za razliko od trditve 2.9 pove, da lahko slučajno vsoto izrazimo kot linearno kombinacijo oziroma vrsto Poissonovih slučajnih spremenljivk.

2.3. Panjerjeva rekurzivna shema. Poglejmo si popularno metodo za numerično ocenjevanje sestavljene Poissonove porazdelitve v praksi. Kot smo videli v zgledu 2.4, je računanje eksplicitne porazdelitve S v končni obliki v splošnem nemogoče. Izkaže pa se, da jo je v posebnih primerih vselej mogoče rekurzivno izraziti in ustrezno posplošiti na širši razred porazdelitev.

Trditev 2.11. (Panjer) Naj bo N diskretna slučajna spremenljivka, za katero velja

$$\mathbb{P}(N=n) = \left(a + \frac{b}{n}\right) \mathbb{P}(N=n-1) \quad za \ n \in \mathbb{N} \ in \ a, b \in \mathbb{R}.$$

Naj bo X_1, X_2, \ldots zaporedje neodvisnih in enako porazdeljenih slučajnih spremenljivk, ki zavzemajo vrednosti v \mathbb{N}_0 . Potem za $S = \sum_{i=1}^N X_i$ velja

$$\mathbb{P}(S=0) = \begin{cases} \mathbb{P}(N=0), & \text{\'e } \mathbb{P}(X_1=0) = 0, \\ \mathbb{E}\left[\mathbb{P}(X_1=0)^N\right], & \text{sicer}, \end{cases}$$

 $in \ za \ n \in \mathbb{N} \ velja$

$$\mathbb{P}\left(S=n\right) = \frac{1}{1 - a\mathbb{P}\left(X_1 = 0\right)} \sum_{k=1}^{n} \left(a + \frac{bk}{n}\right) \mathbb{P}\left(X_1 = k\right) \mathbb{P}\left(S = n - k\right). \tag{2}$$

Dokaz. Prvo se osredotočimo na primer n=0. Velja

$$\mathbb{P}(S=0) = \mathbb{P}(N=0) + \mathbb{P}(S=0, N > 0).$$

Če velja $\mathbb{P}(X_1=0)=0$, je enakost očitna. Če velja $\mathbb{P}(X_1=0)>0$, po zakonu za popolno pričakovano vrednost računamo

$$\mathbb{P}(S=0) = \mathbb{P}(N=0) + \sum_{k=1}^{\infty} \mathbb{P}(S=0, N > 0 \mid N=k) \, \mathbb{P}(N=k)$$

$$= \mathbb{P}(N=0) + \sum_{k=1}^{\infty} \mathbb{P}(S_k=0) \, \mathbb{P}(N=k)$$

$$= \mathbb{P}(N=0) + \sum_{k=1}^{\infty} \mathbb{P}(X_1=0)^k \, \mathbb{P}(N=k)$$

$$= \mathbb{E}\left[\mathbb{P}(X_1=0)^N\right].$$

Za $n \in \mathbb{N}$ velja

$$\mathbb{P}(S=n) = \sum_{k=1}^{\infty} \mathbb{P}(S_k = n) \mathbb{P}(N = k)$$
$$= \sum_{k=1}^{\infty} \mathbb{P}(S_k = n) \left(a + \frac{b}{k}\right) \mathbb{P}(N = k - 1). \tag{3}$$

Ce sedaj upoštevamo, da so X_i neodvisne in enako porazdeljene, opazimo, da velja

$$1 = \mathbb{E}\left[\frac{S_k}{S_k} \mid S_k\right] = \sum_{i=1}^k \mathbb{E}\left[\frac{X_i}{S_k} \mid S_k\right] = k\mathbb{E}\left[\frac{X_1}{S_k} \mid S_k\right],$$

torej je

$$\mathbb{E}\left[\frac{X_1}{S_k} \mid S_k\right] = \frac{1}{k}$$

in posledično

$$\mathbb{E}\left[a + \frac{bX_1}{n} \mid S_k = n\right] = a + \frac{b}{k}.\tag{4}$$

Nadaljno velja

$$\mathbb{E}\left[a + \frac{bX_1}{n} \mid S_k = n\right]$$

$$= \sum_{i=0}^{n} \left(a + \frac{bi}{n} \right) \mathbb{P} \left(X_1 = i \mid S_k = n \right)$$

$$= \sum_{i=0}^{n} \left(a + \frac{bi}{n} \right) \frac{\mathbb{P} \left(X_1 = i, S_k - X_1 = n - i \right)}{\mathbb{P} \left(S_k = n \right)}$$

$$= \sum_{i=0}^{n} \left(a + \frac{bi}{n} \right) \frac{\mathbb{P} \left(X_1 = i \right) \mathbb{P} \left(S_{k-1} = n - i \right)}{\mathbb{P} \left(S_k = n \right)}$$

$$(5)$$

Če sedaj vstavimo enakost (4) v (3) in upoštevamo (5), dobimo

$$\mathbb{P}(S=n) = \sum_{k=1}^{\infty} \sum_{i=0}^{n} \left(a + \frac{bi}{n} \right) \mathbb{P}(X_1=i) \mathbb{P}(S_{k-1}=n-i) \mathbb{P}(N=k-1).$$

Po Tonellijevem izreku (5.20) lahko zamenjamo vrstni red vsot, da dobimo

$$\mathbb{P}(S=n) = \sum_{i=0}^{n} \left(a + \frac{b}{n}\right) \mathbb{P}(X_1 = i) \sum_{k=1}^{\infty} \mathbb{P}(S_{k-1} = n - i) \mathbb{P}(N = k - 1)$$
$$= \sum_{i=0}^{n} \left(a + \frac{b}{n}\right) \mathbb{P}(X_1 = i) \mathbb{P}(S = n - i).$$

Izpostavimo prvi člen vsote in izraz preoblikujemo.

$$\mathbb{P}(S=n) = a\mathbb{P}(X_1=0)\mathbb{P}(S=n) + \sum_{i=1}^n \left(a + \frac{b}{n}\right)\mathbb{P}(X_1=i)\mathbb{P}(S=n-i),$$

$$\mathbb{P}(S=n) = \frac{1}{1 - a\mathbb{P}(X_1=0)} \sum_{i=1}^n \left(a + \frac{b}{n}\right)\mathbb{P}(X_1=i)\mathbb{P}(S=n-i).$$

S tem je trditev dokazana.

Opomba 2.12. Izkaže se, da le tri porazdelitve ustrezajo pogojem iz trditve 2.11. Te so $\operatorname{Pois}(\lambda)$, $\operatorname{Bin}(p)$ in $\operatorname{NegBin}(r,p)$. Pravimo jim porazdelitve Panjerjevega razreda. V primeru $N \sim \operatorname{Pois}(\lambda)$ za $n \in \mathbb{N}$, a = 0 in $b = \lambda$ velja $\mathbb{P}(N = n) = \frac{\lambda^n}{n!}e^{-\lambda} = (0 + \frac{\lambda}{n})\mathbb{P}(N = n - 1)$. Tudi v ostalih primerih (argument je podan v [4] na strani 122) se izkaže, da je a < 1, tako da je enačba (2) res dobro definirana.

Opomba 2.13. Zahtevo, da X_i zavzemajo vrednosti v \mathbb{N}_0 se splača posplošiti, tako da zahtevamo le, da X_i zavzemajo vrednosti v $h\mathbb{N}_0$ za neki h > 0. V tem primeru zapišemo $S = h \sum_{i=1}^{N} \frac{X_i}{h}$ in tako rekurzivna zveza velja za $\frac{S}{h}$. Tako lahko aproksimiramo splošne slučajne spremenljivke, ki zavzemajo vrednosti v $[0, \infty)$, poljubno natančno.

Zgled 2.14. (Nadaljevanje zgleda 2.4) Recimo, da imamo konkretni porazdeltivi $N \sim \text{Pois}(9)$ in $X_i \sim \text{Exp}(\frac{1}{\pi})$. S stopničastima funkcijama F_h^u in F_h^l aproksimiramo porazdelitveno funkcijo F_{X_1} za vrednosti $h \in \{1, 0, 1\}$. (Aproksimacije so na sliki 2 in so obarvane; F_1^u modra, $F_{0,1}^u$ rdeča, F_1^l vijolična in $F_{0,1}^l$ oranžna). Za vsak $n \in \mathbb{N}$ velja $F_h^u(x) = F_{X_1}((n+1)h)$ za $x \in [nh, (n+1)h)$ in $F_h^l(x) = F_{X_1}(nh)$ za $x \in [nh, (n+1)h)$. S Panjerjevo rekurzivno shemo izračunamo približke porazdelitvene funkcije slučajne spremenljivke S na intervalu [0, 60].

SLIKA 2. Aproksimacija porazdelitve S s Panjerjevo rekurzivno shemo.

Vidimo, da že za h=0,1 dobimo zelo natančno aproksimacijo porazdelitve. Danes Panjerjeva metoda predstavlja alternativo Monte Carlo metodam. Njena glavna prednost je, da z manjšanjem koraka h dosežemo poljubno natančno točno aproksimacijo neke porazdelitve. Monte Carlo metode so bolj splošne, saj temeljijo zgolj na ponavljanju simulacij in se lahko uporabljajo za modeliranje bolj zapletenih porazdelitev, ki ne zadovoljujejo pogojev trditve 2.11 ali njene posplošitve v opombi 2.12.

3. Sestavljeni Poissonov proces

Razdelek je prirejen po [1], [2], in [3].

Sedaj se posvetimo študiranju sestavljenega Poissonovega procesa. Bralec lahko najde osnovne definicije splošnih slučajnih procesov, s katerimi delamo, med definicijama (5.3) in (5.8) v prilogi. Najprej dokažemo in izpeljemo nekaj osnovnih lastnosti procesa kot so neodvisnot in stacionarnost prirastov, pričakovana vrednost in varianca. Obravnavamo markiranje procesa glede čas in njegovo vrednost. Na koncu predstavimo nekaj splošne teorije procesov z neodvisnimi in stacionarnimi prirastki in kako je ta tesno povezana s sestavljenim Poissonovim procesom

Ker sestavljeni Poissonov proces temelji na homogenenem Poissonovem procesu, najprej podamo definicijo s katero bomo delali.

Definicija 3.1. Naj bo $\lambda > 0$. Slučajnemu procesu $(N_t)_{t \geq 0}$, definiranem na verjetnostnem prostoru $(\Omega, \mathcal{F}, \mathbb{P})$ z vrednostmi v \mathbb{N}_0 , pravimo homogeni Poissonov proces z intenzivnostjo λ , če zadošča naslednjim pogojem:

- (1) $N_0 = 0$ P-skoraj gotovo.
- (2) $(N_t)_{t\geq 0}$ ima neodvisne in stacionarne prirastke,
- (3) Za $0 \le s < t$ velja $N_t N_s \sim \text{Pois}(\lambda(t-s)),$

Opomba 3.2. V delu bomo z V_n označevali čas n-tega prihoda v homogenem Poissonovem procesu in s T_n n-ti medprihodni čas. Za medprihodne čase velja, da so neodivsni in enako porazdeljeni, kot $T_1 \sim \text{Exp}(\lambda)$. Ta lastnost je tudi alternativna definicija procesa, kot poseben primer prenovitvenega procesa. Bralec lahko najde dokaz ekvivalence v [7] na strani ...

Definicija 3.3. Naj bo $(N_t)_{t\geq 0}$ homogeni Poissonov proces z intenzivnostjo λ . Naj bo $(X_i)_{i\geq 1}$ zaporedje neodvisnih (med sabo in $(N_t)_{t\geq 0}$) in enako porazdeljenih slučajnih spremenljivk z vrednostmi v \mathbb{R} . Potem je sestavljeni Poissonov proces $(S_t)_{t\geq 0}$ definiran kot družina slučajnih spremenljivk

$$S_t = \sum_{i=1}^{N_t} X_i, \quad t \ge 0.$$

Opomba 3.4. Vidimo, da je sestavljeni Poissonov proces naravna posplošitev homogenega Poissonovega procesa, saj če za X_i vzamemo konstantno funkcijo $X_i = 1$ za vsak i, dobimo ravno HPP(λ). Bolj v splošnem, če je $X_i = \alpha$ deterministična funkcija, potem velja $S_t = \alpha N_t$.

V nadaljevanju bomo homogen Poissonov proces z intenzivnostjo $\lambda > 0$ označevali s HPP(λ) ali naborom slučajnih spremenljivk $(N_t)_{t\geq 0}$ (angl. Homogeneous Poisson Process), sestavljeni Poissonov proces pa s CPP ali naborom slučajnih spremenljivk $(S_t)_{t\geq 0}$ (angl. Compound Poisson Process), kjer prihodi sledijo nekem HPP(λ).

3.1. **Osnovne lastnosti.** Pri študiranju slučajnih procesov nas najprej zanimajo neke osnovne lastnosti, s katerimi je lažje delati kot z neštevnim naborom slučajnih spremenljivk in s pomočjo katerih lahko pokažemo globje rezultate o procesu.

Trditev 3.5. Naj bo $(X_t)_{t\geq 0}$ slučajni proces na $(\Omega, \mathcal{F}, \mathbb{P})$. $(X_t)_{t\geq 0}$ ima neodvisne in stacionarne prirastke natanko tedaj, ko za poljubna realna števila $0 \leq t_1 < t_2 < \ldots < t_n < t_{n+1} < \infty$ velja

$$X_{t_{n+1}} - X_{t_n} \mid X_0, X_{t_1}, \dots, X_{t_n} \sim X_{t_{n+1}-t_n}.$$
 (6)

 $Dokaz. \ (\Rightarrow):$ Recimo, da ima $(X_t)_{t\geq 0}$ neodvisne in stacionarne prirastke. Za poljubna realna števila $0\leq t_1< t_2<\ldots< t_n< t_{n+1}<\infty$ nas zanima porazdelitev slučajne spremenljivke $X_{t_{n+1}}-X_{t_n}\mid X_0,X_{t_1},\ldots,X_{t_n}.$ Po trditvi (5.9) vemo, da je ta enaka porazdelitvi slučajne spremenljivke $X_{t_{n+1}}-X_{t_n}\mid g(X_0,X_{t_1},\ldots,X_{t_n})$ za poljubno borelovo funkcijo $g:\mathbb{R}^{n+1}\to\mathbb{R}^{n+1},$ ki jo definiramo na sledeč način:

$$g(x_0, x_1, \dots, x_n) = (g_0, g_1, \dots, g_n),$$

$$g_0 = x_0,$$

$$g_1 = x_1 - x_0,$$

$$\vdots$$

$$g_n = x_n - x_{n-1}.$$

g je očitno merljiva, saj jo definiramo le z odštevanjem. Vidimo, da je

$$g(X_0, X_{t_1}, \dots, X_{t_n}) = (X_0, X_{t_1} - X_0, \dots, X_{t_n} - X_{t_{n-1}}).$$

Po neodvisnosti prirastkov $(X_t)_{t\geq 0}$ sledi, da je porazdelitev slučajne spremenljivke $X_{t_{n+1}}-X_{t_n}$ neodvisna od slučajnega vektorja $(X_0,X_{t_1}-X_{t_2},\ldots,X_{t_n}-X_{t_{n-1}})$. Po stacionarnosti prirastkov $(X_t)_{t>0}$ nato sledi veljavnost (6).

(⇐) : Recimo, da za poljubna realna števila $0 \le t_1 < t_2 < \ldots < t_n < t_{n+1} < \infty$ velja (6). Pri tem dokazu ne vem, kako bi to korektno argumentiral.

Trditev 3.6. CPP ima neodvisne in stacionarne prirastke.

Dokaz. Po trditvi 3.5 je dovolj pokazati, da za poljubna realna števila $0 \le t_1 < t_2 < \ldots < t_n < t_{n+1}$ velja

$$S_{t_{n+1}} - S_{t_n} \mid S_{t_1}, \dots, S_{t_n} \sim S_{t_{n+1}-t_n}.$$

Naj bodo $k_1, \ldots, k_n \in \mathbb{N}_0$ in $k_1 \leq \cdots \leq k_n$. Na dogodku $\{N_{t_n} = k_n\}$ velja

$$S_{t_{n+1}} - S_{t_n} = \sum_{i=k_n+1}^{k_n + N_{t_{n+1}} - N_{t_n}} X_i,$$

zato je

$$S_{t_{n+1}} - S_{t_n} \mid N_{t_1} = k_1, \dots, N_{t_n} = k_n, X_1, \dots, X_{k_n}$$

$$\sim \sum_{i=k_n+1}^{k_n+N_{t_{n+1}}-N_{t_n}} X_i \mid N_{t_1} = k_1, \dots, N_{t_n} = k_n, X_1, \dots, X_{k_n}.$$

Ker pa so $X_1, \ldots, X_{k_n}, N_{t_2} - N_{t_1}, \ldots, N_{t_n} - N_{t_{n-1}}$ neodvisne, sledi, da sta neodvisna tudi vektorja

$$(N_{t_1}, N_{t_2} - N_{t_1}, \dots, N_{t_n} - N_{t_{n-1}}, X_1, \dots, X_{k_n})$$
 in $(N_{t_{n+1}} - N_{t_n} X_{k_n+1}, \dots)$,

z njima pa tudi vektor $(N_{t_1},\dots,N_{t_n},X_1,\dots,X_{k_n})$ in slučajna spremenljivka $\sum_{i=k_n+1}^{k_n+N_{t_{n+1}}-N_{t_n}} X_i$. Torej je

$$S_{t_{n+1}} - S_{t_n} \mid N_{t_1} = k_1, \dots, N_{t_n} = k_n, X_1, \dots, X_{k_n} \sim \sum_{i=k_n+1}^{k_n+N_{t_{n+1}}-N_{t_n}} X_i.$$

Vemo, da po stacionarnosti prirastkov HPP velja $N_{t_{n+1}}-N_{t_n}\sim N_{t_{n+1}-t_n}$. Ker pa je zaporedje $X_{k_n+1},X_{k_n+2},\ldots$ neodvisno od $N_{t_{n+1}}-N_{t_n}$, zaporedje X_1,X_2,\ldots neodvisno od $N_{t_{n+1}-t_n}$ ter ker sta zaporedji X_1,X_2,\ldots in $X_{k_n+1},X_{k_n+2},\ldots$ enako porazdeljeni, je tudi

$$N_{t_{n+1}} - N_{t_n}; X_{k_n+1}, X_{k_n+2}, \dots \sim N_{t_{n+1}-t_n}; X_1, X_2, \dots$$

in zato tudi

$$S_{t_{n+1}} - S_{t_n} \mid N_{t_1} = k_1, \dots, N_{t_n} = k_n, X_1, \dots, X_{k_n}$$

$$\sim \sum_{i=k_n+1}^{k_n+N_{t_{n+1}}-N_{t_n}} X_i = \sum_{i=1}^{N_{t_{n+1}}-t_n} X_i = S_{t_{n+1}-t_n}.$$

Potem pa je tudi

$$S_{t_{n+1}} - S_{t_n} \mid N_{t_1} = k_1, \dots, N_{t_n} = k_n, \sum_{i=1}^{k_1} X_i, \dots, \sum_{i=k_{n-1}+1}^{k_n} X_i \sim S_{t_{n+1}-t_n},$$

ker na dogodku $\{N_{t_1}=k_1,\ldots,N_{t_n}=k_n\}$ velja

$$\sum_{i=1}^{k_1} X_i = S_{t_1}, \dots, \sum_{i=k_{n-1}+1}^{k_n} X_i = S_{t_n} - S_{t_{n-1}},$$

je končno

$$S_{t_{n+1}} - S_{t_n} \mid N_{t_1} = k_1, \dots, N_{t_n} = k_n, S_{t_1}, \dots, S_{t_n} - S_{t_{n-1}} \sim S_{t_{n+1}-t_n}$$

oziroma

$$S_{t_{n+1}} - S_{t_n} \mid N_{t_1}, \dots, N_{t_n}, S_{t_1}, \dots, S_{t_n} - S_{t_{n-1}} \sim S_{t_{n+1}-t_n}$$

in po trditvi (5.9) velja

$$S_{t_{n+1}} - S_{t_n} \mid S_{t_1}, \dots, S_{t_n} - S_{t_{n-1}} \sim S_{t_{n+1}-t_n}.$$

Opomba 3.7. Podobno kot v opombi 2.3 bomo od zdaj naprej za $t \geq 0$ in $k \in \mathbb{N}_0$ pogojno porazdelitev $S_t \mid \{N_t = k\}$ označevali s

$$S_{t,0} = 0$$
 in $S_{t,k} = \sum_{i=1}^{k} X_i$ za $k \in \mathbb{N}$.

Trditev 3.8. Naj bo $(S_t)_{t\geq 0}$ CPP in naj bosta $\mu = \mathbb{E}[X_i] < \infty$ pričakovana vrednost in $\sigma^2 = \mathbb{V}$ ar $[X_i] < \infty$ varianca slučajnih spremenljivk X_i . Potem sta za $t \geq 0$ pričakovana vrednost in varianca S_t enaki

$$\mathbb{E}[S_t] = \mu \lambda t$$
 in \mathbb{V} ar $[S_t] = \lambda t \left(\sigma^2 + \mu^2\right)$.

Dokaz. Za $t \geq 0$ in $k \in \mathbb{N}_0$ velja

$$\mathbb{E}\left[S_t \mid N_t = k\right] = \mathbb{E}\left[S_{t,k}\right] = k\mu \quad \text{in} \quad \mathbb{V}\text{ar}\left[S_t \mid N_t = k\right] = \mathbb{V}\text{ar}\left[S_{t,k}\right] = k\sigma^2.$$

Po formuli za popolno pričakovano vrednost velja $\mathbb{E}[S_t \mid \mathbb{E}[S_t \mid N_t]]$. Torej

$$\mathbb{E}\left[S_{t}\right] = \mathbb{E}\left[\mathbb{E}\left[S_{t} \mid N_{t}\right]\right] = \mathbb{E}\left[\mu N_{t}\right] = \mu \lambda t.$$

Prek formule \mathbb{V} ar $[S_t] = \mathbb{E} \left[\mathbb{V}$ ar $[S_t \mid N_t] \right] + \mathbb{V}$ ar $\left[\mathbb{E} \left[S_t \mid N_t \right] \right]$ računamo

$$\mathbb{E}\left[\operatorname{\mathbb{V}ar}\left[S_{t}\mid N_{t}\right]\right] = \mathbb{E}\left[\operatorname{\mathbb{V}ar}\left[X_{i}\right]N_{t}\right] = \sigma^{2}\lambda t$$

in

$$\operatorname{Var}\left[\mathbb{E}\left[S_{t}\mid N_{t}\right]\right] = \operatorname{Var}\left[\mathbb{E}\left[X_{i}\right]N_{t}\right] = \mu^{2}\lambda t.$$

Če enačbi sestejemo, dobimo $\operatorname{Var}[S_t] = \lambda t \, (\sigma^2 + \mu^2).$

Zgled 3.9. Poglejmo si primer ko je zaporedje $(X_i)_{i\in\mathbb{N}}$ porazdeljeno kot $X_1 \sim N(2,42)$ Tedaj za $t \geq 0$ velja $\mathbb{E}[S_t] = 2t$ in \mathbb{V} ar $[S_t] = t(2^2 + 42^2) = 1768t$ ter $\sigma_{S_t} = \sqrt{1768t}$. Simuliramo 10 realizacij CPP do časa T = 1000, ki jih prikažemo na sliki 3 skupaj s funkcijami $t \mapsto \mathbb{E}[S_t]$ in $t \mapsto \mathbb{E}[S_t] \pm 3\sigma_{S_t}$.

SLIKA 3. Trajektorije CPP s funckijami $t \mapsto \mathbb{E}[S_t]$ in $t \mapsto \mathbb{E}[S_t] \pm 3\sigma_{S_t}$

 \Diamond

3.2. Markiranje sestavljenega Poissonovega procesa. V trditvi 2.9 smo pokazali, da ima vsota neodvisnih sestavljenih Poissonovih porazdelitev spet sestavljeno Poissonovo porazdelitev. Podobno lahko CPP razdelimo na več neodvisnih sestavljenih Poissonovih procesov, tako da ga markiramo glede na čas in vrednost posameznega prihoda.

Izrek 3.10. (o markiranju) Naj bo $(S_t)_{t\geq 0}$ CPP. Naj bo A_1, \ldots, A_n disjunktna particija množice $[0, \infty) \times \mathbb{R}$. Potem so za fiksen $t \geq 0$ slučajne spremenljivke

$$S_t^{(j)} = \sum_{i=1}^{N_t} X_i \mathbb{1}_{A_j} (V_i, X_i), \quad j = 1, \dots, n$$
 (7)

 $med\ seboj\ neodvisne.\ \check{S}e\ ve\check{c},\ za\ vsak\ j=1,\ldots,n\ ima$

$$S_t^{(j)} \sim \sum_{i=1}^{N_t} X_i \mathbb{1}_{A_j} (U_i, X_i)$$

sestavljeno Poissonovo porazdelitev, kjer je $(U_i)_{i\in\mathbb{N}}$ zaporedje neodvisnih (med sabo, N_t in $(X_i)_{i\in\mathbb{N}}$) in enako porazdeljenih slučajnih spremenljivk kot $U_1 \sim U([0,t])$.

Dokaz. Za splošen HPP(λ) velja lasntost vrstilnih statistik (5.21), torej

$$(V_1, \ldots, V_k \mid N_t = k) \sim (U_{(1)}, \ldots, U_{(k)}), \quad k \in \mathbb{N}.$$

Tako lahko za $j \in \{1, ..., n\}$ vsoto (7), pogojno na dogodek $\{N_t = k\}$, zapišemo kot

$$S_t^{(j)} \mid \{N_t = k\} \sim \sum_{i=1}^k X_i \mathbb{1}_{A_j} (U_{(i)}, X_i).$$

Vrstni red sumandov je nepomemben. Z upoštevanjem neodvisnosti in enake porazdeljenosti X_i , pogojno porazdelitev $S_t^{(j)} \mid \{N_t = k\}$ zapišemo kot

$$S_t^{(j)} \mid \{N_t = k\} \sim \sum_{i=1}^k X_i \mathbb{1}_{A_j} (U_i, X_i).$$

(Bolj natančen argument bralec lahko najde v [4] na strani 28.) Sedaj si poglejmo skupno karakteristično funkcijo slučajnega vektorja $(S_t^{(1)}, \ldots, S_t^{(n)})$.

$$\varphi_{S_t^{(1)},\dots,S_t^{(n)}}(u_1,\dots, u_n) = \mathbb{E}\left[\exp\left[iu_1S_t^{(1)} + \dots + iu_nS_t^{(n)}\right]\right]$$

$$= \sum_{k=0}^{\infty} \mathbb{E}\left[\exp\left[iu_1S_t^{(1)} + \dots + iu_nS_t^{(n)}\right] \middle| N_t = k\right] \mathbb{P}(N_t = k)$$

$$= \sum_{k=0}^{\infty} \mathbb{E}\left[\exp\left[\sum_{j=1}^n iu_j\sum_{i=1}^k X_i\mathbb{1}_{A_j}\left(U_i, X_i\right)\right]\right] \mathbb{P}(N_t = k)$$

$$= \sum_{k=0}^{\infty} \mathbb{E}\left[\exp\left[\sum_{i=1}^k \sum_{j=1}^n iu_jX_i\mathbb{1}_{A_j}\left(U_i, X_i\right)\right]\right] \mathbb{P}(N_t = k)$$

$$= \mathbb{E}\left[\exp\left[\sum_{i=1}^{N_t} \sum_{j=1}^n iu_jX_i\mathbb{1}_{A_j}\left(U_i, X_i\right)\right]\right].$$

Opazimo, da imamo v eksponentu sestavljeno Poissonovo vsoto, za katero poznamo obliko karakteristične funckcije iz posledice 2.6. Za namene berljivosti označimo eksponent karakteristčne funkcije kot

$$\varphi_{S_t^{(1)},\dots,S_t^{(n)}}(u_1,\dots,u_n) = e^{g(u_1,\dots,u_n)},$$

$$g(u_1,\dots,u_n) = \lambda t \left(\mathbb{E}\left[\exp\left[\sum_{j=1}^n i u_j X_1 \mathbb{1}_{A_j} (U_1, X_1) \right] \right] - 1 \right). \tag{8}$$

Ker so množice A_i disjunktne, lahko (i) izrazimo kot integral¹, da dobimo

$$(i) = \int_{[0,\infty)\times\mathbb{R}} e^{\sum_{j=1}^{n} iu_{j}x\mathbb{1}_{A_{j}}(u,x)} dF_{U_{1}}(u)dF_{X_{1}}(x)$$

$$= \int_{[0,\infty)\times\mathbb{R}} \prod_{j=1}^{n} e^{iu_{j}x\mathbb{1}_{A_{j}}(u,x)} dF_{U_{1}}(u)dF_{X_{1}}(x)$$

$$= \sum_{j=1}^{n} \left(\int_{[0,\infty)\times\mathbb{R}} e^{iu_{j}x\mathbb{1}_{A_{j}}(u,x)} dF_{U_{1}}(u)dF_{X_{1}}(x) \right)$$

¹ V delu integral s takšnim zapisom območja integracije označuje Lebesgueov integral po Lebesgueovi ali Lebesgue-Stieltjesovi meri porojeni z ustrezno porazdelitveno funkcijo.

$$-\int_{([0,\infty)\times\mathbb{R})\backslash A_j} dF_{U_1}(u)dF_{X_1}(x)\bigg).$$

Enačbo (8) tako poenostavimo

$$\lambda t \left(\left(\sum_{j=1}^{n} \left(\mathbb{E} \left[\exp \left(i u_j X_1 \mathbb{1}_{A_j} (U_1, X_1) \right) \right] - (1 - \mathbb{P} \left((U_1, X_1) \in A_j) \right) \right) \right) - 1 \right)$$

$$= \lambda t \sum_{j=1}^{n} \left(\mathbb{E} \left[\exp \left[i u_j X_1 \mathbb{1}_{A_j} (U_1, X_1) \right] \right] - 1 \right)$$

$$(9)$$

in vidimo, da je (9) ravno vsota eksponentov karakterističnih funkcij $\varphi_{S_t^{(j)}}$. Tako sledi, da so slučajne spremenljivke $S_t^{(1)},\dots,S_t^{(n)}$ neodvisne in po obliki karakteristične funckcije vidimo, da so res porazdeljene sestavljeno Poissonovo.

Izrek o markiranju CPP ima vrsto uporabnih posledic. Direktno nam poda enostaven alternativen dokaz za neodvisnost prirastkov.

Posledica 3.11. CPP ima neodvisne prirastke.

Dokaz. Naj bo A_1, \ldots, A_n disjunktna particija množice $[0, \infty) \times \mathbb{R}$ za realna števila $0 = t_0 \le t_1 < \cdots < t_n < t < \infty$ defniriana kot

$$A_1 = [0, t_1) \times \mathbb{R}, \quad A_j = [t_{j-1}, t_j) \times \mathbb{R}, \quad \text{za } j = 2, \dots, n \quad \text{in} \quad A_{n+1} = [t_n, \infty) \times \mathbb{R}.$$

Potem so po izreku o markiranju slučajne spremenljivke $S_t^{(1)}, \ldots, S_t^{(n)}$ neodvisne in enako porazdeljene kot

$$S_t^{(j)} \sim \sum_{i=1}^{N_t} X_i \mathbb{1}_{A_j} (U_i, X_i) \sim \sum_{i=N_{t_{j-1}}+1}^{N_{t_j}} X_i \sim S_{t_j} - S_{t_{j-1}} \quad \text{za } j = 1, \dots, n.$$

Posledica 3.12. Če v predpostavkah izreka o markiranju CPP sprostimo $t \geq 0$, so procesi $(S_t^{(j)})_{t\geq 0}$ med seboj neodivisni in imajo neodivisne prirastke.

Dokaz. Najprej fiksiramo $j=1,\ldots,n$ in pokažemo, da ima $(S_t^{(j)})_{t\geq 0}$ neodivsne prirastke, z enakim argumentom kot v prejšnji posledici. Za realna števila $0=t_0< t_1<\cdots< t_m< t\infty$ definiramo $\Delta_k=[t_{k-1},t_k)$ in množice

$$A_k^* = A_j \cap (\Delta_k \times \mathbb{R}), \quad k = 1, \dots, m.$$

Po izreku o markiranju so slučajne spremenljivke

$$\sum_{i=1}^{N_t} X_i \mathbb{1}_{A_k^*} (V_i, X_i) \sim \sum_{i=N_{t_{k-1}}+1}^{N_{t_k}} X_i \mathbb{1}_{A_j} (V_i, X_i) = S_{t_k}^{(j)} - S_{t_{k-1}}^{(j)}$$

med seboj neodvisne. Neodvisnost procesov $(S_t^{(1)})_{t\geq 0},\ldots, (S_t^{(n)})_{t\geq 0}$ pokažemo po definiciji (5.8). Za $j=1,\ldots,n$ in $m_j\in\mathbb{N}$ naj bodo $0=t_0^{(j)}< t_1^{(j)}<\cdots< t_{m_j}^{(j)}<\infty$ poljubni nabori realnih števil. Definiramo $\Delta_k^{(j)}=[t_{k-1}^{(j)},t_k^{(j)})$ in množice

$$A_k^{*(j)} = A_j \cap \left(\Delta_k^{(j)} \times \mathbb{R}\right), \quad j = 1, \dots, n, \quad k = 1, \dots, m_j,$$

ki so očitno disjunktna particija množice $[0,\infty) \times \mathbb{R}$ za vsak $j=1,\ldots,n$. Naj bo $t=\max_{j=1,\ldots,n}t_{m_j}$. Po izreku o markiranju so prirastki porazdeljeni kot

$$\sum_{i=1}^{N_t} X_i \mathbb{1}_{A_k^{*(j)}}(U_i, X_i) \sim S_{t_k^{(j)}}^{(j)} - S_{t_{k-1}^{(j)}}^{(j)}, \quad j = 1, \dots, n, \quad k = 1, \dots, m_j$$

in med seboj neodvisni. Podobno kot v trditvi 3.5 za $j=1,\ldots,n$ lahko tvorimo borelovo funkcijo $g_j: \mathbb{R}^{m_j+1} \to \mathbb{R}^{m_j+1}$, da velja

$$g_j\left(S_{t_1^{(j)}}^{(j)} - S_{t_0^{(j)}}^{(j)}, \dots, S_{t_{m_j}^{(j)}}^{(j)} - S_{t_{m_j-1}^{(j)}}^{(j)}\right) = \left(S_{t_0^{(j)}}^{(j)}, \dots, S_{t_{m_j}^{(j)}}^{(j)}\right).$$

in ker so prirastki med seboj neodivsni smo tako po definiciji pokazali neodvisnost procesov $(S_t^{(1)})_{t\geq 0},\ldots, (S_t^{(n)})_{t\geq 0}$.

 \Diamond

3.3. **Neskončna deljivost.** Koncept neskončne deljivosti je temeljni pri študiranju slučajnih procesov, saj z neskončno deljivimi porazdelitvami karakteriziramo enega najsplošnejših slučajnih procesov t.i. Lévyjevih procesov.

Definicija 3.13. Naj bo X slučajna spremenljivka. Pravimo, da je X neskončno deljiva, če za vsak $n \in \mathbb{N}$ obstajajo neodvisne enako porazdeljene slučajne spremenljivke X_1, \ldots, X_n , da velja

$$X \sim X_1 + X_2 + \dots + X_n.$$

Ekvivalento lahko definiramo neskončno deljivost prek karakteristične funkcije. Pravimo, da je slučajna spremenljivka X neskončno deljiva, če je za vsak $n \in \mathbb{N}$ funkcija $(\varphi_X(u))^{\frac{1}{n}}$ karakteristična funkcija neke slučajne spremenljivke. Funkcijo $x \mapsto x^{\frac{1}{n}}$ razumemo v kompleksnem smislu.

Zgled 3.14. Naj bo $X \sim \operatorname{Pois}(\lambda)$. Potem je X neskončno deljiva. To neposredno sledi iz lastnsoti, da za $n \in \mathbb{N}$ velja $X \sim Y_1 + \cdots + Y_n$ kjer so $Y_i \sim \operatorname{Pois}(\frac{\lambda}{n})$ neodvisne enako porazdeljene. Alternativno neskončno deljivost pokažemo s karakteristično funkcijo. Za $n \in \mathbb{N}$ in $u \in \mathbb{R}$ velja $\varphi_{Y_1 + Y_2 + \cdots + Y_n}(u) = \varphi_{Y_1}(u)^n$.

$$\varphi_{Y_1+Y_2+\dots+Y_n}(u) = (\varphi_{Y_1}(u))^n = \left(e^{\frac{\lambda}{n}(e^{iu}-1)}\right)^n = e^{\lambda(e^{iu}-1)} = \varphi_X(u).$$

Trditev 3.15. Naj bo $S = \sum_{i=1}^{N} X_i$ slučajna spremenljivka, porazdeljena sestavljeno Poissonovo. Potem je S neskončno deljiva.

Dokaz. Za $n \in \mathbb{N}$ definiramo neodivsne enako porazdeljene slučajne spremenljivke $S^{(1)}, \ldots, S^{(n)}$ kot

$$S^{(j)} = \sum_{i=1}^{M} X_i, \quad j = 1, \dots, n,$$

kjer je $M \sim \operatorname{Pois}(\frac{\lambda}{n})$. Po trditvi 2.9 je $S^{(1)} + \cdots + S^{(n)} \sim S$. Alternativno lahko neskončno deljivost pokažemo s karakteristično funkcijo. Vemo, da je karakteristična funkcija S za $u \in \mathbb{R}$ enaka

$$\varphi_S(u) = \varphi_N(\varphi_{X_1}(u)) = e^{\lambda(\varphi_X(u)-1)}.$$

Potem za $n \in \mathbb{N}$ velja

$$\varphi_S(u) = \left(e^{\frac{\lambda}{n}\left(\varphi_{X_1}(u)-1\right)}\right)^n$$

in vidimo, da je fukcija $u \mapsto e^{\frac{\lambda}{n}(\varphi_{X_1}(u)-1)}$ karakteristična funckija slučajne spremenliivke $S^{(1)}$.

Enostavno smo pokazali, da sta Poissonova in sestavljena Poissonova porazdelitev neskončno deljivi. Naslednji rezultat je precej bolj zahteven in z njim nakažemo, zakaj je sestavljena Poissonova porazdralitev temeljna pri obravnavi neskončno deljivih porazdelitev.

Trditev 3.16. Naj bo S slučajna spremenljivka, ki zavzame vrednosti v \mathbb{N}_0 in je neskončno deljiva. Potem ima S sestavljeno Poissonovo porazdelitev.

Dokaz. Označimo rodovno funkcijo S z

$$G_S(u) = \sum_{k=0}^{\infty} \underbrace{\mathbb{P}(S=k)}_{p_k} u^k.$$

Pokazali bomo, da je $G_S(u)$ enaka rodovni funkciji neke slučajne spremenljivke, ki ima sestavljeno Poissonovo porazdelitev. Ker za nenegativne celoštevilske slučajne spremenljivke velja $\mathbb{P}(S=k) = \frac{G_S^{(k)}(0)}{k!}$, bo to pomenilo, da je S sestavljeno Poissonova, saj v tem primeru rodovna funkcija določa porazdelitev S. Ker je S neskončno deljiva potem je za vsak $n \in \mathbb{N}$

$$G_{S_n}(u) := (G_S(u))^{\frac{1}{n}} = \sum_{k=0}^{\infty} \underbrace{\mathbb{P}\left(S^{(n)} = k\right)}_{p_{k_n}} u^k$$

rodovna funkcija neke slučajne spremenljivke $S^{(n)}$ in za vsak $u \in \mathbb{R}$ velja enakost

$$G_{S^{(n)}}(u) = (G_{S^{(1)}}(u))^n$$
 oziroma $\sum_{k=0}^{\infty} p_k u^k = \left(\sum_{k=0}^{\infty} p_{k_n} u^k\right)^n$.

Če razširimo desno stran enačbe in predpostavimo $p_0 = 0$, dobimo, da mora biti $p_{0n} = 0$ in posledično tudi $p_1 = p_2 = \cdots = p_{n-1} = 0$. Ker to velja za poljuben $n \in \mathbb{N}$ dobimo, da je $G_S(u) = 0$, kar pa je protislovje. Torej $p_0 > 0$ in zagotovo $G_S(u) > 0$

za
$$u \in [0, 1]$$
. Za $u \in [0, 1]$ velja tudi $\lim_{n \to \infty} \left(\frac{G_S(u)}{p_0} \right)^{\frac{1}{n}} = 1$. Velja $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$.

$$\ln\left(\left(\frac{G_S(u)}{p_0}\right)^{\frac{1}{n}}\right) = \ln\left(1 + \left(\left(\frac{G_S(u)}{p_0}\right)^{\frac{1}{n}} - 1\right)\right) \approx \left(\frac{G_S(u)}{p_0}\right)^{\frac{1}{n}} - 1 \text{ ko } n \to \infty.$$

Za u = 1 dobimo

$$\ln\left(\left(\frac{1}{p_0}\right)^{\frac{1}{n}}\right) \approx \left(\frac{1}{p_0}\right)^{\frac{1}{p_0}} - 1 \text{ ko } n \to \infty.$$

Sedaj navedemo nekaj ključncih rezultatov, ki ilustrirajo pomembnost sestavljene Poissonove porazdelitve in sestavljenega Poissonovega procesa v bolj splošni teoriji slučajnih procesov. Dokazi trditev in izrekov presegajo delo in bralec jih lahko najde v knjigi [10] ki je izključno namenjena teoriji neskončno deljivih porazdelitev.

Trditev 3.16 posplošimo na vse neskončno deljive slučajne spremenljivke s tem, da zahtevamo le konvergenco v porazdelitvi (5.14).

Trditev 3.17. Naj ima slučajna spremenljivka S neskončno deljivo porazdelitev. Potem obstaja zaporedje slučajnih spremenljivk $(S_n)_{n\in\mathbb{N}}$, ki imajo sestavljeno Poissonovo porazdelitev in konvergirajo proti S v porazdelitvi.

Dokaz. Dokaz lahko bralec najde v [7] na strani

Do sedaj smo večkrat omenili Lévijeve procese. Definiramo jih na sledeč način.

Definicija 3.18. Slučajnemu procesu $(X_t)_{t\geq 0}$ definiranem na verjetnostnemu prostoru $(\Omega, \mathcal{F}, \mathbb{P})$ pravimo $L\acute{e}vijev$ proces, če zadošča naslednjim pogojem:

- (1) $\mathbb{P}(X_0 = 0) = 1$.
- (2) Trajektorije $(X_t)_{t\geq 0}$ so \mathbb{P} -skoraj gotovo zvezne z desne z levimi limitami (cádlág).
- (3) $(X_t)_{t>0}$ ima neodvisne in stacionarne prirastke.

Takoj vidimo, da homogeni in sestavljeni Poissonov proces zadoščata prvemu in tretjemu pogoju. Izkaže se, da imata tudi cádlág trajektorije in sta torej Lévijeva procesa. Naslednji izrek nam pove, da Lévijeve procese karakteriziramo z neskončno deljivimi porazdelitvami.

Izrek 3.19. Naj bo $(X_t)_{t\geq 0}$ Lévijev proces z vrednostmi v \mathbb{R} , potem je za fiksen $t\geq 0$ slučajna spremenljivka X_t neskončno deljiva. Obratno, če je slučajna spremenljivka X neskončno deljiva, obstaja Lévijev proces $(X_t)_{t\geq 0}$ na \mathbb{R} , da za t=1 velja $X_1 \sim X$. Če sta $(X_t)_{t\geq 0}$ in $(Y_t)_{t\geq 0}$ dva Lévijeva procesa z vrednostmi V \mathbb{R} in velja $X_1 \sim Y_1$, potem sta procesa enako porazdeljena.

Dokaz. Dokaz izreka lahko bralec najde v [10] na strani 35.

Tako kot lahko poljubno neskončno deljivo porazdelitev dobimo z limito sestavljenih Poissonovih se podobno izkaže, da poljuben Lévijev proces izrazimo kot vsoto sestavljenega Poissonovega procesa in Brownovega gibanja². To je posledica Lévy-Hinčinove formule za karateristično funkcijo Lévijevih procesov kateri je namenjeno drugo poglavje knjige [10]. Izkaže se, da za poljuben Lévijev proces $(X_t)_{t\geq 0}$ obstajata enolično določeni števili $\gamma \in \mathbb{R}$ in $\sigma > 0$ ter končna mera ν na \mathbb{R} za katero velja $\nu(\{0\}) = 0$, ki popolnoma določajo njegovo porazdelitev. Tedaj velja

$$X_t = \gamma t + \sigma B_t + S_t, \qquad t \ge 0,$$

kjer je $(S_t)_{t\geq 0}$ sestavljen Poissonov proces z intenzivnostjo $\lambda=\nu(\{\mathbb{R}\})$ in kjer imajo X_i porazdelitev $\frac{\nu(\{B\})}{\lambda}$, kjer je B poljubna Borelova množica. V tem razdleku smo si pogledali nekoliko bolj napredno in nadvse zanimivo teorijo

V tem razdleku smo si pogledali nekoliko bolj napredno in nadvse zanimivo teorijo slučajnih procesov ter njeno povezavo s sestavljenim Poissonovim procesom. Snov pa tehnično presega dodiplomsko raven in zato ne bomo nadaljevali v tej smeri. V drugem delu diplome se bomo raje posvetili praktičnemu primeru uporabe sestavljenega Poissonovega procesa v zavarovalništvu.

² Brownovo gibanje $(B_t)_{t\geq 0}$ je Lévijev proces kjer poleg zahtev (1) in (3) dodatno zahtevamo, da za $t\geq 0$ velja $B_t\sim N(0,t)$ in da ima proces zvezne trajektorije (posledično so seveda cádlág).

4. Cramér-Lundbergov model

Razdelek je prirejen po [3], [4], [5] in [9].

V tem razdelku obravnavamo najbolj intenzivno raziskan model v teoriji propada, običajno imenovan Cramér-Lundbergov model. V svoji najosnovnejši obliki ga je v zgodnjih 1900. letih izpeljal švedski aktuar Filip Lundberg, da bi ocenil ranljivost zavarovalnice za propad. Čeprav je model v svoji ideji dokaj preprost, zajema bistvo povezave ravni rezerv zavarovalnice in njene izpostavljenosti tveganju, kar je razlog, zakaj je postal temeljni merilni model v teoriji propada. V preteklem stoletju je bilo razvitih veliko tehnik za analizo Cramér-Lundbergovega modela, ki so se večinoma osredotočale na kvantifikacijo verjetnosti propada zavarovalnice. V razdelku definiramo model in izpeljemo Lundbergovo neenakost ter asimptotično obnašanje verjetnosti propada v primeru, ko zavarovalniške zahtevke modeliramo z lahkorepimi in težkorepimi porazdelitvami. V zgledih pokažemo, kako do rezultatov, ki nam jih zagotavlja teorija, pridemo v praksi z Monte Carlo simulacijami procesa tveganja.

4.1. Proces tveganja in verjetnost propada.

Definicija 4.1. Naj bo $(S_t)_{t\geq 0}$ CPP, kjer so slučajne spremenljivke $(X_i)_{i\in\mathbb{N}}$, ki jih seštevamo s.g. nenegativne. *Proces tveganja* v Cramér-Lundbergovem modelu definiramo kot družino slučajnih spremenljivk

$$U_t = u + p(t) - S_t, \quad t \ge 0,$$

kjer je $u \ge 0$ začetni kapital zavarovalnice³ in p(t) funkcija prihodkov iz premij.

Opomba 4.2. V resnici lahko veliko lastnosti procesa tveganja izpeljemo brez predpostavke, da prihodi zahtevkov v $(S_t)_{t\geq 0}$ sledijo homogenemu Poissonovemu procesu, ampak lahko privzamemo, da sledijo splošnemu prenovitvenemu procesu (5.24). Zato bomo pri dokazovanju nekaterih rezultatov medprihodne čase zahtevkov T_i obravnavali v splošnem, ne da bi predpostavili, da so eksponentno porazdeljeni.

Vrednost U_t predstavlja kapital zavarovalnice ob času $t \geq 0$. Standardno je vzeti deterministično funkcijo p(t) = ct, kjer je c > 0 stopnja prihodkov premij. Uporaba linearne funkcije za modeliranje premijskega dohodka v Cramér-Lundbergovem modelu ponuja realističen približek zato, ker zavarovalnice pogosto doživljajo stabilno povečevanje premijskega dohodka skozi čas. Poleg tega je izbira linearne funkcije preprosta, zato bomo v nadaljevanju privzeli p(t) = ct. Poglejmo si realizaciji procesa tveganja, ko so zahtevki X_i porazdeljeni Weibullovo (5.10) z različnimi parametri.

Zgled 4.3. Naj bo $(U_t)_{t\geq 0}$ proces tveganja v Cramér-Lundbergovem modelu z začetnim kapitalom u=1000 in p(t)=200t ter intenzivnostjo prihodov zahtevkov $\lambda=1$. Naj bodo v prvem primeru (rdeča) zahtevki porazdeljeni kot $X_i \sim \text{Weibull}(2,434)$ in v drugem primeru (modra) kot $Y_i \sim \text{Weibull}(\frac{1}{4},16)$.

 $^{^3}$ Proces tveganja vedno gledamo v odvisnoti od začetnega kapitala u, zato za fiksen $u \geq 0$ pripadajočo verjentnost označimo s $\mathbb{P}_u.$

Realizacija procesa tveganja z Weibullovo porazdeljenimi zahtevki

Slika 4. Realizaciji procesa tveganja

Pri obeh realizacijah vidimo, da proces tveganja v nekem trenutku pade pod 0 (tam ga tudi ustavimo). Čeprav je pričakova vrednost $\mathbb{E}\left[Y_i\right]=384\approx\mathbb{E}\left[X_i\right]=217\sqrt{\pi}\approx 384,62$ opazimo bistveno razliko med realizacijama. V rdečem primeru proces pade pod 0 po več zaporednih manjših izgubah, v modrem primeru pa po eni zelo veliki izgubi. V nadaljevanju bomo primera ločili, ampak pred tem definirajmo osnovne pojme, ki jih bomo obravnavali v razdelku.

Definicija 4.4. Propad definiramo kot dogodek, da proces tveganja $(U_t)_{t\geq 0}$ kadarkoli pade pod 0. Torej

$$\{U_t < 0 \text{ za } t \ge 0\}$$

in času ustavljanja

$$T = \inf\{t \ge 0 \mid U_t < 0\},\$$

pravimo čas propada. Seveda med dogodkoma velja enakost

$$\{U_t < 0 \text{ za } t \ge 0\} = \{T < \infty\}.$$

Definicija 4.5. Verjetnost propada definiramo kot funkcijo $\psi(u):(0,\infty)\to[0,1]$ s predpisom

$$\psi(u) = \mathbb{P}_u(T < \infty).$$

Definicija 4.6. Po konstrukciji procesa tveganja $(U_t)_{t\geq 0}$ je verjentnost propada mogoča le ob prihodih zahtevkov. Z V_n označimo čas, ob katerem prispe n-ti zahtevek, in definiramo ogrodje procesa tveganja kot $(U_{V_n})_{n\in\mathbb{N}}$.

Trditev 4.7. Naj bo $(U_t)_{t\geq 0}$ proces tveganja v Cramér-Lundbergovem modelu in $(U_{V_n})_{n\in\mathbb{N}}$ njegovo ogrodje ter $T_n:=V_n-V_{n-1}$ medprihodni čas n-tega zahtevka $(V_0=T_0=0)$. Potem velja

$$\psi(u) = \mathbb{P}\left(\sup_{n \in \mathbb{N}} Z_n > u\right),\,$$

kjer je $Z_n = \sum_{i=1}^n Y_i$ kumulativna izguba po n zahtevkih in $Y_i = X_i - cT_i$ izguba i-tega prihoda.

Dokaz. S pomočjo ogrodja procesa tveganja lahko dogodek propada zapišemo kot

$$\begin{split} \left\{ U_t < 0 \text{ za } t \geq 0 \right\} &= \left\{ \inf_{t \geq 0} U_t < 0 \right\} \\ &= \left\{ \inf_{n \in \mathbb{N}} U_{V_n} < 0 \right\} \\ &= \left\{ \inf_{n \in \mathbb{N}} \left\{ u + p(V_n) - S_{V_n} \right\} < 0 \right\} \\ &= \left\{ \inf_{n \in \mathbb{N}} \left\{ u + cV_n - \sum_{i=1}^n X_i \right\} < 0 \right\} \\ &= \left\{ \inf_{n \in \mathbb{N}} \left\{ -Z_n \right\} < -u \right\} \\ &= \left\{ \sup_{n \in \mathbb{N}} Z_n > u \right\}, \end{split}$$

kar nam da želeno enakost.

Tako verjetnost propada prevedemo na prehodno verjetnost diskretnega slučajnega sprehoda $(Z_n)_{n\in\mathbb{N}}$. V nadaljevanju nas bo predvsem zanimalo asimptotično vedenje $\psi(u)$, ko gre $u\to\infty$. Cilj obravnavanja verjetnosti propada v Cramér–Lundbergovem modelu je, da se izognemo skoraj gotovemu propadu oziroma, da je verjetnost, da kumulativna izguba $(Z_n)_{n\in\mathbb{N}}$ preseže u tako majhna, da lahko v praksi dogodek propada izključimo.

Trditev 4.8. Naj bo $(Z_n)_{n\in\mathbb{N}}$ zaporedje slučajnih spremenljivk, definirano kot $Z_n = \sum_{i=1}^n Y_i$ za neodvisne in enako porazdeljene slučajne spremenljivke Y_i z $\mathbb{E}[Y_i] < \infty$. Če velja $\mathbb{E}[Y_i] \geq 0$, za vsak u > 0 velja

$$\mathbb{P}\left(\sup_{n\in\mathbb{N}} Z_n > u\right) = 1.$$

Dokaz. Zaporedje slučajnih spremenljivk $(Y_i)_{i\in\mathbb{N}}$ zadošča predpostavkam krepkega zakona velikih števil (5.15), torej velja

$$\frac{Y_1 + Y_2 + \cdots Y_n}{n} = \frac{Z_n}{n} \xrightarrow[n \to \infty]{s.g.} \mathbb{E}\left[Y_n\right].$$

Torej bo Z_n v primeru, ko je $\mathbb{E}[Y_n] > 0$, skoraj gotovo asimptotično linearno naraščal proti ∞ kot $\mathbb{E}[Y_n] n$ in bo za poljuben u > 0 veljalo

$$\mathbb{P}\left(\sup_{n\in\mathbb{N}} Z_n > u\right) = 1.$$

Dokaz za primer, ko je $\mathbb{E}[Y_n] = 0$ je precej bolj tehničen in ne preveč informativen, zato ga bomo izpustili. Izkaže se, da obstajata neki podzaporedji $(n_k)_{k \in \mathbb{N}}$ in $(m_k)_{k \in \mathbb{N}}$, za kateri gre $Z_{n_k} \xrightarrow[k \to \infty]{s.g.} \infty$ in $Z_{m_k} \xrightarrow[k \to \infty]{s.g.} -\infty$. Dokaz lahko bralec najde v [6] v poglavju 4.

Opomba 4.9. Iz trditve 4.8 (ob predpostavkah $\mathbb{E}[X_i] < \infty$ in $\mathbb{E}[T_i] < \infty$) sledi, da moramo premijo (in s tem c) izbrati tako, da bo $\mathbb{E}[Y_i] < 0$, saj bo tako $Z_n \xrightarrow[n \to \infty]{s.g.} -\infty$ in je to edini primer, ko lahko upamo, da verjetnost propada ne bo enaka 1.

Definicija 4.10. Pravimo, da proces tveganja $(U_t)_{t\geq 0}$ v Cramér-Lundbergovem modelu zadošča pogoju neto zaslužka (ang. net profit condition), če velja

$$c > \frac{\mathbb{E}[X_1]}{\mathbb{E}[T_1]}$$
, oziroma $c = (1+\rho)\frac{\mathbb{E}[X_1]}{\mathbb{E}[T_1]}$ za $\rho > 0$.

Pogoj bomo v nadaljenvanju imenovali NPC.

Zahteva NPC za analizo poslovanja zavarovalnice je dokaj intuitivna, saj pove, da mora biti v nekem časovnem intervalu pričakovani dohodek iz premij večji od pričakovanega izplačila zahtevkov.

Definicija 4.11. Pravimo, da ima slučajna spremenljivka X lahkorepo porazdelitev, če za nek $\varepsilon > 0$ velja

$$\mathbb{E}\left[e^{uX}\right] = M_X(u) < \infty \quad \text{za } u \in (-\varepsilon, \varepsilon).$$

Sicer pravimo, da ima X težkorepo porazdelitev.

Opomba 4.12. V razdelku večinoma delamo z nenegativnimi slučajnimi spremenljivkami. Za te momentno-rodovna funckija vedno obstaja vsaj na intervalu $(-\infty, 0]$.

Zgled 4.13. (Nadaljevanje zgleda 4.3) V zgledu 4.3 smo obravnavali proces tveganja v Cramér–Lundbergovem modelu, kjer so zahtevki (rdeča) $X_i \sim \text{Weibull}(2,434)$ in (modra) $Y_i \sim \text{Weibull}(\frac{1}{4},16)$. Opazili smo, da je v prvem primeru propad posledica več manjših izgub, v drugem pa ene velike izgube. To je značilnost težkorepih porazdelitev. Za Weibullovo porazdelitev velja, da ima za parameter $a \geq 1$ lahek, za a < 1 pa težak rep.

Dokaz. Momentno-rodovna funkcija $X \sim \text{Weibull}(a, b)$ je enaka

$$M_X(u) = \int_0^\infty e^{ux} \frac{a}{b} \left(\frac{x}{b}\right)^{a-1} e^{-\left(\frac{x}{b}\right)^a} dx \qquad \left(y = \frac{x}{b}, \ dy = \frac{dx}{b}\right)$$
$$= a \int_0^\infty e^{uby} y^{a-1} e^{-y^a} dy.$$

Vidimo, da na spodnji meji 0 ni težav za noben a>0, medtem ko v neskončnosti za $a\in(0,1)$ integral divergira, saj se eksponent poenostavi v $y^a(uby^{1-a}-1)\xrightarrow{y\to\infty}\infty$. Če v nadaljevanju predpostavimo $a\geq 1$ in uvedemo $z=y^a$ $(dz=ay^{a-1}dy)$ pa lahko pridemo do naslednje oblike za momentno rodovno funkcijo X.

$$M_X(u) = \int_0^\infty e^{ubz^{\frac{1}{a}}} e^{-z} dz$$

$$= \int_0^\infty \sum_{k=0}^\infty \frac{(ubz^{\frac{1}{a}})^k}{k!} e^{-z} dz \qquad \text{Tonelli (5.20)}$$

$$= \sum_{k=0}^\infty \frac{(ub)^k}{k!} \int_0^\infty z^{\frac{k}{a}} e^{-z} dz$$

$$= \sum_{k=0}^\infty \frac{(ub)^k}{k!} \Gamma\left(\frac{k}{a} + 1\right).$$

 \Diamond

4.2. Lahkorepe porazdelitve. Od sedaj naprej bomo predpostavili, da je $(S_t)_{t\geq 0}$ v procesu tveganja $(U_t)_{t\geq 0}$ CPP. Najprej se bomo omejili na primer, ko ima porazdelitev slučajnih spremenljivk X_i , ki jih seštevamo v CPP lahek rep, saj je bila osnovna teorija, ki sta jo razvila Cramér in Lundberg, izpeljana pod to predpostavko.

4.2.1. Lundbergova neenakost.

Opomba 4.14. V praksi z lahkorepnimi porazdelitvami modeliramo zahtevke, kjer verjentosti ekstremnih dogodkov (torej zelo velikih zahtevkov) eksponentno pada proti 0. To neposredno sledi iz definicije 4.11 in neenakosti Markova (5.13), saj za vsak x > 0 in $u \in (-\varepsilon, \varepsilon)$ velja

$$\mathbb{P}\left(X>x\right)=\mathbb{P}\left(e^{uX}>e^{ux}\right)\leq\frac{\mathbb{E}\left[e^{uX}\right]}{e^{ux}}.$$

Definicija 4.15. Naj velja, da ima slučajna spremenljivka $Y_1 = X_1 - cT_1$ iz trditve 4.7 lahek rep. Če obstaja enoličen $\ell > 0$, za katerega velja

$$M_{Y_1}(\ell) = 1,$$

temu številu pravimo Lundbergov koeficient.

Trditev 4.16. Brž ko Lundbergov koeficient ℓ (pod predpostavkami definicije 4.15 in pogoja NPC) obstaja, je enolično določen.

Dokaz. Zaradi konveksnosti eksponentne funkcije je množica $I = \{u \in \mathbb{R} \mid M_{Y_1}(u) < \infty\}$ konveksna, torej je I interval, poltrak ali kar cela realna os. Po predpostavki obstaja pozitiven $\ell \in I$ za katerega vejla $M_{Y_1}(\ell) = 1$. Ker ima Y_1 lahek rep, obstaja $\varepsilon > 0$, da je $M_{Y_1}(u) < \infty$ za $u \in (-\varepsilon, \varepsilon) \subseteq I$. Ker velja $M_{Y_1}(0) = 1$ in $M'_{Y_1}(0) = \mathbb{E}[Y_1] < 0$ (zaradi pogoja NPC) ter $M''_{Y_1}(u) = \mathbb{E}[Y_1^2 e^{Y_1 u}] > 0$ ($Y_1 \neq 0$ skoraj gotovo) za u > 0, je M_{Y_1} zvezna konveksna funkcija na I, kjer v okolici ničle pada. Tako je ℓ zaradi konveksnosti M_{Y_1} enolično določen. □

Izrek 4.17. (Lundbergova neenakost) Naj bo $(U_t)_{t\geq 0}$ proces tveganja v Cramér–Lundbergovem modelu, ki zadošča NPC in zanj obstaja Lundbergov koeficient ℓ . Potem za vsak u>0 velja

$$\psi(u) \le e^{-\ell u}.$$

Dokaz. Neenakost bomo dokazali z indukcijo. Za u>0 in $n\in\mathbb{N}$ definiramo

$$\psi_n(u) = \mathbb{P}\left(\max_{1 \le k \le n} Z_k > u\right),$$

kjer je $Z_k = \sum_{i=1}^k Y_i$ kumulativna izguba po k zahtevkih enako definirana kot v trditvi 4.7. Vidimo, da je (po zveznosti $\mathbb P$ od spodaj) $\psi(u) = \lim_{n\to\infty} \psi_n(u)$, torej moramo pokazati, da za vsak $n \in \mathbb N$ velja $\psi_n(u) \leq e^{-\ell u}$. (n=1): Uporabimo neenakost Markova in dobimo

$$\psi_1(u) = \mathbb{P}\left(e^{\ell Z_1} > e^{\ell u}\right) \le \frac{M_{Z_1}(\ell)}{e^{\ell u}} = e^{-\ell u}$$

 $(n \to n+1)$: S F_{Y_1} označimo porazdelitveno funkcijo slučajne spremenljivke $Y_1.$ Potem velja

$$\psi_{n+1}(u) = \mathbb{P}\left(\max_{1 \le k \le n+1} Z_k > u\right)$$

$$= \underbrace{\mathbb{P}\left(Y_1 > u\right)}_{(i)} + \underbrace{\mathbb{P}\left(\max_{2 \le k \le n+1} \left\{Y_1 + (Z_k - Y_1)\right\} > u, Y_1 \le u\right)}_{(ii)}$$

Najprej se posvetimo (ii). Po indukcijski predpostavki velja

$$(ii) = \int_{(-\infty,u]} \mathbb{P}\left(\max_{1 \le k \le n} \left\{x + Z_k\right\} > u\right) dF_{Y_1}(x)$$

$$= \int_{(-\infty,u]} \mathbb{P}\left(\max_{1 \le k \le n} Z_k > u - x\right) dF_{Y_1}(x)$$

$$= \int_{(-\infty,u]} \psi_n(u - x) dF_{Y_1}(x)$$

$$\stackrel{\text{I.P.}}{\le} \int_{(-\infty,u]} e^{-\ell(u-x)} dF_{Y_1}(x).$$

Za oceno (i) kot v primeru n=1 uporabimo neenakost Markova in dobimo

$$(i) = \psi_1(u) \le \frac{M_{Z_1}(\ell)}{e^{\ell u}} = \int_{(u,\infty)} e^{-\ell(u-x)} dF_{Y_1}(x).$$

Ce torej seštejemo (i) in (ii) dobimo željeno oceno

$$\psi_{n+1}(u) \le \int_{\mathbb{R}} e^{-\ell(u-x)} dF_{Y_1}(x)$$
$$= e^{-\ell u} M_{Y_1}(\ell)$$
$$= e^{-\ell u}.$$

Opomba 4.18. Iz izreka 4.17 je razvidno, da lahko v praksi z dovolj visokim začetnim kapitalom u verjetnost propada zadovoljivo omejimo blizu 0. Seveda je meja

odvisna tudi od Lundbergovega koeficienta ℓ in krepko temelji na predpostavki lahkorepih porazdelitev, ki pa v praksi pogosto niso izpolnjene.

Zgled 4.19. Naj bo $(U_t)_{t\geq 0}$ proces tveganja v Cramér–Lundbergovem modelu, ki zadošča NPC. Naj nadalje velja, da so zahtevki neodvisno eksponentno porazdeljeni s parametrom $\mu > 0$. Vemo, da ima momentno rodovna funkcija X_1 obliko

$$M_{X_1}(u) = \frac{\mu}{\mu - u} \quad \text{za } u < \mu.$$

Tako dobimo, da ima momentno rodovna funkcija $Y_1 = X_1 - cT_1$ obliko

$$M_{Y_1}(u) = M_{X_1}(u)M_{T_1}(-cu) = \frac{\mu}{\mu - u} \frac{\lambda}{\lambda + cu}$$
 za $u \in (-\frac{\lambda}{c}, \mu)$.

Sedaj lahko izračunamo Lundbergov koeficient ℓ

$$M_{Y_1}(\ell) = 1,$$

$$\frac{\mu}{\mu - \ell} \frac{\lambda}{\lambda + c\ell} = 1,$$

$$\mu \lambda = (\mu - \ell)(\lambda + c\ell),$$

$$\mu \lambda = \mu \lambda - \ell \lambda + \mu c - c\ell^2,$$

$$0 = \mu c - c\ell - \lambda.$$

Dobimo

$$\ell = \mu - \frac{\lambda}{c}.\tag{10}$$

Velja $\ell \in (0, \mu)$, saj v našem modelu velja pogoj NPC,

$$\frac{\mathbb{E}[X_1]}{\mathbb{E}[T_1]} = \frac{\lambda}{\mu} < c \iff \mu > \frac{\lambda}{c}.$$

Če uporabimo alternativno formulacijo NPC pogoja, dobimo

$$c = (1+\rho)\frac{\lambda}{\mu} \quad \Rightarrow \quad \ell = \mu - \frac{\lambda}{(1+\rho)\frac{\lambda}{\mu}} = \mu\left(\frac{\rho}{1+\rho}\right).$$
 (11)

Tako dobimo zgornjo mejo za verjetnost propada

$$\psi(u) \le e^{-\ell u} = e^{-\mu u \left(\frac{\rho}{1+\rho}\right)}$$

in vidimo, da povečanje stopnje prihodkov premij čez neko mejo ne bistveno vpliva na oceno, saj

$$\lim_{\rho \to \infty} e^{-\mu u \left(\frac{\rho}{1+\rho}\right)} = e^{-\mu u}.$$

V nadaljevanju bomo videli, da je Lundbergova neenakost v primeru eksponentno porazdeljenih zahtevkov skoraj točna vrednost verjetnosti propada, zgrešena le za konstanto. V splošnem pa je zelo težko določiti Lundbergov koeficient kot funkcijo parametrov porazdelitev X_1 in T_1 in zato uporabljamo numerične metode za njegovo aproksimacijo kot na primer Monte Carlo simulacije.

4.2.2. Asimptotika verjetnosti propada. Sedaj se posvetimo vprašanju, kako se obnaša verjetnost propada v Cramér–Lundbergovem modelu, ko gre $u \to \infty$, in izpeljemo enega temeljnih rezultatov v teoriji tveganja.

Definicija 4.20. Za lažjo notacijo v nadaljevanju definiramo funkcijo *verjetnosti* preživetja kot $\theta(u): (0, \infty) \to [0, 1]$ s predpisom

$$\theta(u) = \mathbb{P}_u (T = \infty) = 1 - \psi(u).$$

Lema 4.21. (Integralska enačba za verjetnost preživetja) Naj bo $(U_t)_{t\geq 0}$ proces tveganja v Cramér–Lundbergovem modelu, ki zadošča NPC, ter naj velja $\mathbb{E}\left[X_1\right]<\infty$ in, da imajo slučajne spremenljivke $(X_i)_{i\in\mathbb{N}}$ gostoto. Potem θ zadošca naslednji enakosti

$$\theta(u) = \theta(0) + \frac{1}{(1+\rho)\mathbb{E}[X_1]} \int_{(0,u]} (1 - F_{X_1}(x)) \theta(u - x) dx.$$
 (12)

Dokaz. Po trditvi 4.7 velja

$$\psi(u) = \mathbb{P}\left(\sup_{n \in \mathbb{N}} Z_n > u\right),\,$$

kjer je $Z_n = \sum_{i=1}^n Y_i$ in $Y_i = X_i - cT_i$. Torej je

$$\theta(u) = \mathbb{P}\left(\sup_{n \in \mathbb{N}} Z_n \le u\right)$$

$$= \mathbb{P}\left(\left\{Z_n \le u \text{ za } \forall n \in \mathbb{N}\right\}\right)$$

$$= \mathbb{P}\left(\left\{Y_1 \le u\right\} \cap \left\{Z_n - Y_1 \le u - Y_1 \text{ za } \forall n \ge 2\right\}\right)$$

$$= \mathbb{E}\left[\mathbb{1}_{\left\{Y_1 \le u\right\}} \mathbb{P}\left(\left\{Z_n - Y_1 \le u - Y_1 \text{ za } \forall n \ge 2\right\} \mid Y_1\right)\right].$$

Sedaj upoštevamo, da je $Y_1 = X_1 - cT_1$ in je torej dogodek $\{Y_1 \leq u\}$ enak dogodku $\{X_1 \leq u + cT_1\}$. Poleg tega velja, da je $(Z_n - Y_1 \mid Y_1)_{n \geq 2} \sim (Z_n)_{n \in \mathbb{N}}$, saj so Y_i neodvisne in enako porazdeljene slučajne spremenljivke. Upoštevamo še, da je T_1 medprihodni čas v HPP(λ) in dobimo

$$\theta(u) = \int_{(0,\infty)} \int_{(0,u+ct]} \mathbb{P}\left(\left\{Z_n \le u - (x - ct) \mid n \in \mathbb{N}\right\}\right) dF_{X_1}(x) dF_{T_1}(t)$$

$$= \int_{(0,\infty)} \int_{(0,u+ct]} \theta(u - x + ct) dF_{X_1}(x) \lambda e^{-\lambda t} dt.$$

Uvedemo novo spremenljivko z=u+ct (torej $t=\frac{z-u}{c}$ in $dt=\frac{dz}{c})$ in dobimo

$$\theta(u) = \frac{\lambda}{c} e^{\frac{\lambda u}{c}} \int_{(u,\infty)} e^{-\frac{\lambda z}{c}} \underbrace{\int_{(0,z)} \theta(z-x) dF_{X_1}(x)}_{g(z)} dz.$$

Ker ima porazdelitev F_{X_1} gostoto in je θ zvezna omejena funkcija, sledi, da je funkcija g zvezna in jo lahko (po osnovnem izreku analize) odvajamo, da dobimo

$$\theta'(u) = \frac{\lambda}{c}\theta(u) - \frac{\lambda}{c} \int_{(0,u)} \theta(u-x) dF_{X_1}(x).$$

Če sedaj obe strani integriramo po u, dobimo

$$\int_{(0,t]} \theta'(u) du = \frac{\lambda}{c} \int_{(0,t]} \theta(u) du - \underbrace{\frac{\lambda}{c} \int_{(0,t]} \underbrace{\int_{(0,u]} \theta(u-x) dF_{X_1}(x)}_{(i)} du}_{(i)}.$$
 (13)

Na integralu (i) uporabimo per partes $(\alpha = \theta(u - x))$ in $d\beta = dF_{X_1}(x)$ ter upoštevamo, da ima F_{X_1} gostoto.

$$(i) = \left(\theta(u-x)F_{X_1}(x)\right)\Big|_0^u + \int_{(0,u)} \theta'(u-x)F_{X_1}(x)dx$$
$$= \theta(0)F_{X_1}(u) - \int_{(0,u)} \theta'(u-x)F_{X_1}(x)dx.$$

Upoštevamo, da je $F_{X_1}(0) = 0$, saj je $X_1 > 0$ skoraj gotovo. Vstavimo (i) v (ii) in dobimo

$$(ii) = -\frac{\lambda}{c} \int_{(0,t]} \theta(0) F_{X_1}(u) du - \frac{\lambda}{c} \int_{(0,t]} \int_{(0,u]} \theta'(u-x) F_{X_1}(x) dx du.$$

Po Tonellijevem izreku (5.20) lahko zamenjamo vrstni red integracije.

$$(ii) = -\frac{\lambda}{c} \int_{(0,t]} \theta(0) F_{X_1}(u) du - \frac{\lambda}{c} \int_{(0,t]} F_{X_1}(x) \int_{[x,t]} \theta'(u-x) du dx$$

$$= -\frac{\lambda}{c} \int_{(0,t]} \theta(0) F_{X_1}(u) du - \frac{\lambda}{c} \int_{(0,t]} F_{X_1}(x) (\theta(t-x) - \theta(0)) dx.$$

$$= -\frac{\lambda}{c} \int_{(0,t]} F_{X_1}(x) \theta(t-x) dx.$$

Vstavimo (ii) v enačbo (13) in dobimo

$$\theta(t) - \theta(0) = \frac{\lambda}{c} \int_{(0,t]} \theta(u) du - \frac{\lambda}{c} \int_{(0,t]} F_{X_1}(x) \theta(t-x) dx,$$

$$\theta(t) = \theta(0) + \frac{\lambda}{c} \int_{(0,t]} (1 - F_{X_1}(x)) \theta(t-x) dx.$$

Če sedaj upoštevamo enakost

$$\frac{\lambda}{c} = \frac{1}{1+\rho} \frac{1}{\mathbb{E}\left[X_1\right]}$$

in zamenjamo oznako spremenljivke $t\mapsto u$, dobimo želeno enakost (12).

Opomba 4.22. Enačbo (12) lahko zapišemo v obliki

$$\theta(u) = \theta(0) + \frac{1}{1+\rho} \int_{(0,u]} \theta(u-x) d\overline{F}_{X_1}(x), \tag{14}$$

kjer je \overline{F}_{X_1} porazdelitev integriranega repa (5.23) slučajne spremenljivke X_1 .

Opomba 4.23. Konstanto $\theta(0)$, ki se pojavi v (12) in (14), lahko izračunamo. Ker c zadošča NPC, po argumentu v dokazu trditve 4.8 velja

$$Z_n \xrightarrow[n \to \infty]{s.g.} -\infty.$$

Po zveznosti P od spodaj sledi

$$\lim_{u \to \infty} \mathbb{P}\left(\sup_{n \in \mathbb{N}} Z_n \le u\right) = \mathbb{P}\left(\sup_{n \in \mathbb{N}} Z_n \le \infty\right) = 1.$$

Če torej v enačbi (14) pošljemo $u \to \infty$, dobimo

$$\lim_{u \to \infty} \theta(u) = 1 = \theta(0) + \frac{1}{1+\rho} \lim_{u \to \infty} \int_{(0,\infty)} \mathbb{1}_{(0,u]}(x)\theta(u-x)d\overline{F}_{X_1}(x).$$

Po izreku o monotoni konvergenci (5.18) sledi

$$1 = \theta(0) + \frac{1}{1+\rho} \int_{(0,\infty)} 1 d\overline{F}_{X_1}(x)$$
$$= \theta(0) + \frac{1}{1+\rho}.$$

Torej je $\theta(0) = \frac{\rho}{1+\rho}$. Enakost upoštevamo v enačbi (14) in dobimo

$$\theta(u) = \frac{\rho}{1+\rho} + \frac{1}{1+\rho} \int_{(0,u]} \theta(u-x) d\overline{F}_{X_1}(x). \tag{15}$$

Izrek 4.24. (Asimptotika verjetnosti propada, lahkorepe porazdelitve) Naj bo $(U_t)_{t\geq 0}$ proces tveganja v Cramér-Lundbergovem modelu, ki zadošča NPC in naj zanj obstaja Lundbergov koeficient ℓ . Naj imajo slučajne spremenljivke $(X_i)_{i\in\mathbb{N}}$ gostoto. Potem obstaja konstanta C>0, za katero velja

$$\lim_{u \to \infty} e^{\ell u} \psi(u) = C.$$

Dokaz. Najprej preoblikujemo enačbo (15), tako da upoštevamo $\theta = 1 - \psi$

$$1 - \psi(u) = \frac{\rho}{1 + \rho} + \frac{1}{1 + \rho} \int_{(0,u]} \left(1 - \psi(u - x) \right) d\overline{F}_{X_1}(x),$$

$$\psi(u) = \frac{1}{1 + \rho} \left(1 - \overline{F}_{X_1}(u) \right) + \frac{1}{1 + \rho} \int_{(0,u]} \psi(u - x) d\overline{F}_{X_1}(x).$$

Za lažjo notacijo uvedemo oznako $q = \frac{1}{1+\rho}$ in dobimo

$$\psi(u) = q\left(1 - \overline{F}_{X_1}(u)\right) + \int_{(0,u]} \psi(u - x) d\left(q\overline{F}_{X_1}(x)\right). \tag{16}$$

Vidimo, da ima enačba (16) obliko prenovitvene enačbe (5.25) z bistveno razliko, da $q\overline{F}_{X_1}$ ni verjetnostna mera, saj velja $\lim_{x\to\infty} q\overline{F}_{X_1}(x) = q < 1$. Enačbi (16) pravimo

defektna prenovitvena enačba. Za x>0 definiramo funkcijo F_ℓ kot Esscherjevo transformacijo funkcije $q\overline{F}_{X_1}$.

$$F_{\ell}(x) = \int_{(0,x]} e^{\ell y} d(q \overline{F}_{X_1}(y)) = \frac{q}{\mathbb{E}[X_1]} \int_{(0,x]} e^{\ell y} (1 - F_{X_1}(y)) dy,$$

Pokažimo, da je F_{ℓ} porazdelitvena funkcija. Očitno je naraščajoča in velja

$$\lim_{x \to \infty} F_{\ell}(x) = \frac{q}{\mathbb{E}[X_{1}]} \int_{(0,\infty)} e^{\ell y} (1 - F_{X_{1}}(y)) dy \qquad (\alpha = 1 - F_{X_{1}}(y), \ d\beta = e^{\ell y} dy)$$

$$= \frac{q}{\mathbb{E}[X_{1}]} \left(\left(\frac{(1 - F_{X_{1}}(y)) e^{\ell y}}{\ell} \right) \Big|_{0}^{\infty} + \frac{1}{\ell} \int_{(0,\infty)} e^{\ell y} f_{X_{1}}(y) dy \right)$$

$$= \frac{q}{\mathbb{E}[X_{1}]} \frac{1}{\ell} \left(\mathbb{E}[e^{\ell X_{1}}] - 1 \right).$$

Sedaj upoštevamo, da je $q=\frac{1}{1+\rho}=\frac{\mathbb{E}[X_1]}{c\mathbb{E}[T_1]}$, definicijo Lundbergovega koeficienta ter dejstvo, da je $T_1\sim \operatorname{Exp}(\lambda)$ medprihodni čas v HPP (λ) , da dobimo

$$\lim_{x \to \infty} F_{\ell}(x) = \frac{\mathbb{E}\left[e^{\ell X_1}\right] - 1}{c\ell \, \mathbb{E}\left[T_1\right]}$$
$$= \frac{\frac{\lambda + c\ell}{\lambda} - 1}{c\ell^{\frac{1}{\lambda}}} = 1.$$

Če torej enačbo (16) pomnožimo z $e^{\ell u}$, dobimo

$$e^{\ell u}\psi(u) = qe^{\ell u} \left(1 - \overline{F}_{X_1}(u)\right) + \int_{(0,u]} e^{\ell(u-x)} \psi(u-x) e^{\ell x} d\left(q\overline{F}_{X_1}(x)\right)$$
$$= qe^{\ell u} \left(1 - \overline{F}_{X_1}(u)\right) + \int_{(0,u]} e^{\ell(u-x)} \psi(u-x) dF_{\ell}(x). \tag{17}$$

Vidimo, da sedaj enačba (17) ustreza obliki prenovitvene enačbe za par $(qe^{\ell u}(1-\overline{F}_{X_1}(u)), F_{\ell})$ in ker je funkcija $u \mapsto qe^{\ell u}(1-\overline{F}_{X_1}(u))$ omejena na končnih intervalih in F_{ℓ} nearitmetična, lahko uporabimo Smithov ključni prenovitveni izrek (5.28), da dobimo rešitev

$$e^{\ell u}\psi(u) = qe^{\ell u} \left(1 - \overline{F}_{X_1}(u)\right) + q \int_{(0,u]} e^{\ell(u-x)} \left(1 - \overline{F}_{X_1}(u-x)\right) dM^{\ell}(x), \tag{18}$$

kjer je M^{ℓ} prenovitvena mera prenovitvenega procesa z medprihodnimi časi, ki imajo porazdelitveno funkcijo F_{ℓ} . V splošnem M^{ℓ} težko določimo. Če pa je $u\mapsto qe^{\ell u}(1-\overline{F}_{X_1}(u))$ direktno Riemannovo integrabilna (5.26), nam Smithov izrek da asimptotično vedenje rešitve (18), ko gre $u\to\infty$. Direktno Riemannovo integrabilnost preverimo tako, da upoštevamo

$$\int_{(0,\infty)} x e^{\ell x} (1 - \overline{F}_{X_1}(x)) dx < \infty,$$

in funkcijo $u\mapsto qe^{\ell u}(1-\overline{F}_{X_1}(u))$ zapišemo kot

$$qe^{\ell u}(1 - \overline{F}_{X_1}(u)) = q \int_{(u,\infty)} e^{\ell x} d\overline{F}_{X_1}(x) - q\ell \int_{(u,\infty)} (1 - \overline{F}_{X_1}(x))e^{\ell x} dx$$

Tako vidimo, da je $u\mapsto qe^{\ell u}(1-\overline{F}_{X_1}(u))$ razlika dveh nenaraščajočih Riemannovo integrabilnih funkcij in je zato po kriteriju (5.27) direktno Riemannovo integrabilna. Dobimo

$$C = \lim_{u \to \infty} e^{\ell u} \psi(u) = \frac{q}{\alpha} \int_{(0,\infty)} e^{\ell x} (1 - \overline{F}_{X_1}(x)) dx, \tag{19}$$

kjer je $\alpha = \int_{(0,\infty)} x dF_{\ell}(x)$. S tem je izrek dokazan.

Opomba 4.25. Izrek 4.24 nam pove, da v primeru zahtevkov z lahkorepimi porazdelitvami verjentost propada asimptotično točno eksponentno pada proti 0, s tem ko začetni kapital u raste čez vse meje.

Zgled 4.26. (Nadaljevanje zgleda 4.19) Vemo, da rešitve prenovitvene enačbe (18) iz izreka 4.24 v splošnem ne moremo eksplicitno izračuanti. V zgledu 4.19 pa smo privzeli, da zahtevke modeliramo z eksponentno porazdelitvijo, torej $X_i \sim \text{Exp}(\mu)$. V tem primeru se izkaže, da lahko eksplicitno izračunamo verjetnost propada. Če si pogledamo enačbo (18), vidimo, da moramo izračunati le porazdelitev integriranega repa $\overline{F}_{X_1}(u)$ in prenovitveno mero Esscherjeve transformacije F_{ℓ} . Za eksponentno porazdelitev velja

$$\overline{F}_{X_1}(u) = \frac{1}{\mathbb{E}[X_1]} \int_{(0,u)} (1 - F_{X_1}(t)) dt$$

$$= \mu \int_{(0,u)} e^{-\mu t} dt$$

$$= F_{X_1}(u),$$

saj je pozabljiva. Prenovitveno mero Esscherjeve transformacije pa dobimo tako, da najprej izračunamo porazdelitveno funkcijo F_{ℓ} podano v enačbi (14).

$$F_{\ell}(u) = \frac{q}{\mathbb{E}[X_1]} \int_{(0,u]} e^{\ell x} (1 - F_{X_1}(x)) dx$$
$$= \frac{\mu}{1 + \rho} \int_{(0,u]} e^{-x(\mu - \ell)} dx.$$

Upoštevamo rezultat (11), torej $\ell = \mu\left(\frac{\rho}{1-\rho}\right)$ in vidimo, da je F_{ℓ} porazdelitvena funkcija eksponentne slučajne spremenljivke s parametrom $\frac{\mu}{1+\rho}$ oziroma μq . Torej je prenovitvena mera $M^{\ell}(t)$ preprosto pričakovano število prihodov do časa t v HPP (μq) , torej $M^{\ell}(t) = \mu qt$. Če vstavimo rezultata v enačbo (18), dobimo

$$\begin{split} e^{\ell u}\psi(u) &= qe^{\ell u}e^{-\mu u} + q\int_{(0,u]} e^{\ell(u-x)}e^{-\mu(u-x)}dM^{\ell}(x) \\ &= qe^{-u(\mu-\ell)} + \mu q^2 \int_{(0,u]} e^{-(\mu-\ell)(u-x)}dx \\ &= qe^{-u(\mu-\ell)} + \mu q^2 \frac{1}{\mu-\ell} \left(1 - e^{-u(\mu-\ell)}\right) \\ &= qe^{-u(\mu-\ell)} + \frac{\mu}{(1+\rho)^2} \frac{1+\rho}{\mu} \left(1 - e^{-u(\mu-\ell)}\right) \end{split}$$

$$= qe^{-u(\mu-\ell)} + q\left(1 - e^{-u(\mu-\ell)}\right)$$
$$= q = \frac{1}{1+\rho}.$$

Končno dobimo, da je verjetnost propada enaka

$$\psi(u) = \frac{1}{1+\rho} e^{-\ell u}.$$
 (20)

 \Diamond

Vidimo, da se $\psi(u)$ z oceno, ki jo dobimo z Lundbergovo neenakostjo v zgledu 4.19, res razlikuje le za konstanto $\frac{1}{1+\rho}$. To je seveda zelo poseben primer, ko lahko vse količine izračunamo eksplicitno. Pokažimo, kako bi do približkov funkcije $\psi(u)$ v praksi lahko prišli z Monte Carlo simulacijami.

Zgled 4.27. Kot v zgledu 4.19 predpostavimo, da so zahtevki porazdeljeni eksponentno, torej $X_i \sim \text{Exp}(\mu)$. Recimo, da je intenzivnost prihodov zahtevkov $\lambda = 1$, stopnja prihodkov premij c = 1500 in pričakovana vrednost zahtevkov $1000 \in$, torej $\mu = \frac{1}{1000}$. Potem lahko verjetnost propada eksplicitno izračunamo po formuli (20). Prvo izračuamo ρ po formuli (11), in ℓ po (10), torej

$$\begin{split} \rho &= \frac{c\mu}{\lambda} - 1 \\ &= \frac{1500 \cdot \frac{1}{1000}}{1} - 1 = \frac{1}{2}, \end{split}$$

$$\ell = \mu - \frac{\lambda}{c}$$

$$= \frac{1}{1000} - \frac{1}{1500} = \frac{1}{3000}.$$

Vsatvimo vrednosti v (20) in dobimo

$$\psi(u) = \frac{2}{3}e^{-\frac{u}{3000}}.$$

Sedaj definiramo zaporedje $(u_n)_{n=1}^{50}$ s predpisom $u_n = 500n$ in za vsak n simuliramo 10,50 in 100 realizacij procesa tveganja, bodisi do časa T = 1000 bodisi dokler ne propade in za vsak n izračunamo približek za verjetnost propada kot delež propadlih realizacij z vsemi. Aproksimacijo $\psi(u)$ prikažemo na sliki 5.

SLIKA 5. Aproksimacija verjetnosti propada $\psi(u)$ z Monte Carlo simulacijami.

Kot vidimo, se približki z naraščajocim številom simulacij približujejo funckciji $\psi(u)$, ampak, za res dobro aproksimacijo, bi morali to število krepko povečati, saj na primer za vrednost u=16000 pride $\psi(16000)\approx 0,0032186334$, kar je približno 0.3% in v praksi ni zanemarljivo, ampak v naši simulaciji nobena realizacija procesa tveganja ni padla pod 0.

4.3. **Težkorepe porazdelitve.** Rezultati, ki smo jih izpeljali v prejšnjem razdelku, temeljijo na predpostavki zahtevkov z lahkorepimi porazdelitvami, kar interpretiramo, kot da je verjetnost zahtevkov, ki zelo odstopajo od povprečja, zelo majhna. V praksi pa se pogosto zgodi, da ta predpostavka ni izpolnjena in pojavi se vprašanje, ali lahko še vedno kaj povemo o asimptotiki verjetnosti propada. Izkaže se, da v primeru, ko je porazdelitev integriranega repa zahtevkov subeksponentna, ta točno določa asimptotično vedenje verjetnosti propada.

Subeksponentne porazdelitve so poseben razred težkorepih porazdelitev, ki ga lahko definiramo na več načinov. Za naše namene bo najbolj uporabna naslednja definicija iz [9].

Definicija 4.28. Verjetnostna porazdelitev na $[0, \infty)$ je *subeksponentna*, če za vsak $n \geq 2$ in neodvisne slučajne spremenljivke X_1, \ldots, X_n s to porazdelitvijo velja

$$\lim_{x \to \infty} \frac{\mathbb{P}(X_1 + \dots + X_n > x)}{\mathbb{P}(X_1 > x)} = n.$$

Opomba 4.29. Ekvivalentna in bolj intuitivna definicija subeksponentne porazdelitve je, da velja

$$\lim_{x \to \infty} \frac{\mathbb{P}(X_1 + \dots + X_n > x)}{\mathbb{P}(\max\{X_1, \dots, X_n\} > x)} = 1 \quad \text{za vsak} \quad n \ge 2,$$

kar pomeni, da je repna porazdelitev vsote n-tih slučajnih spremenljivk asimptotično primerljiva s porazdelitvijo največje. Dokaz ekvivalence lahko bralec najde v [9] na strani 437.

Lema 4.30. Naj bo F_{X_1} subeksponentna porazdelitvena funkcija nenegativne slučajne spremenljivke X_1 . Potem za vsak $\varepsilon > 0$ obstaja pozitivna konstanta $K(\varepsilon) < \infty$, da za vsak n > 2 velja

$$\frac{\mathbb{P}(X_1 + \dots + X_n > x)}{\mathbb{P}(X_1 > x)} \le K(\varepsilon)(1 + \varepsilon)^n, \quad x \ge 0.$$

Dokaz. Fiksiramo $n\geq 2$ in $x\geq 0.$ Ulomek preoblikujemo

$$\frac{\mathbb{P}(X_1 + \dots + X_n > x)}{\mathbb{P}(X_1 > x)} = \frac{(1 - F_{X_1}^{*n}(x)) + F_{X_1}(x) - F_{X_1}(x)}{1 - F_{X_1}(x)}$$
$$= 1 + \frac{F_{X_1}(x) - F_{X_1}^{*n}(x)}{1 - F_{X_1}(x)}.$$

Naj bo $a_n=\sup_{x\geq 0}\biggl\{1+\frac{F_{X_1}(x)-F_{X_1}^{*n}(x)}{1-F_{X_1}(x)}\biggr\}.$ Za konstanto $M\in(0,\infty)$ lahko ocenimo

$$a_{n+1} \leq 1 + \sup_{0 \leq x \leq M} \int_{(0,x]} \frac{1 - F_{X_1}^{*n}(x - y)}{1 - F_{X_1}(x)} dF_{X_1}(y)$$

$$+ \sup_{x \geq M} \int_{(0,x]} \frac{1 - F_{X_1}^{*n}(x - y)}{1 - F_{X_1}(x - y)} \frac{1 - F_{X_1}(x - y)}{1 - F_{X_1}}(x) dF_{X_1}(y)$$

$$\leq 1 + T + a_n \sup_{x \geq M} \frac{F_{X_1}(x) - F_{X_1}^{*2}(x)}{1 - F_{X_1}(x)},$$

kjer je $T=(1-F_{X_1})^{-1}(M)<\infty$. Ker je F_{X_1} subeksponentna lahko za vsak $\varepsilon>0$ izberemo tak M, da velja

$$a_{n+1} \le 1 + T + a_n(1 + \varepsilon)$$

in tako dobimo želeno oceno

$$a_n \le \underbrace{(1+T)\frac{1}{\varepsilon}}_{K(\varepsilon)} (1+\varepsilon)^n.$$

Izrek 4.31. (Asimptotika verjetnosti propada, težkorepe porazdelitve) Naj bo $(U_t)_{t\geq 0}$ proces tveganja v Cramér-Lundbergovem modelu, ki zadošča NPC in naj bodo zahtevki $(X_i)_{i\in\mathbb{N}}$ neodvisni in enako porazdeljeni z gostoto f_X , pričakovano vrednostjo $\mathbb{E}\left[X\right]<\infty$ in naj bo \overline{F}_{X_1} subeksponentna. Potem za verjetnost propada $\psi(u)$ velja

$$\lim_{u \to \infty} \frac{\psi(u)}{1 - \overline{F}_{X_1}(u)} = \frac{1}{\rho}.$$
 (21)

37

Dokaz. Najprej pokažimo, da lahko verjetnost preživetja iz leme 4.21 predstavimo kot porazdelitveno funkcijo sestavljene geometrijske porazdelitve (5.11). Če definiramo $G \sim \operatorname{Geom}(\frac{\rho}{1+\rho})$ in zaporedje neodvisnih enako porazdeljenih slučajnih spremenljivk $(\overline{X}_i)_{i\in\mathbb{N}}$ s porazdelitveno funkcijo \overline{F}_{X_1} , bomo pokazali, da porazdelitvena funkcija F_C slučajne spremenljivke $C = \sum_{i=1}^G \overline{X}_i$ zadošča enačbi

$$F_C(u) = \frac{\rho}{1+\rho} + \frac{1}{1+\rho} \int_{(0,u]} F_C(u-x) d\overline{F}_{X_1}(x), \tag{22}$$

ki je natanko enačba (15) iz leme 4.21. Porazdelitvena funkcija F_C ima obliko

$$\mathbb{P}(C \le u) = \mathbb{P}(G = 0) + \sum_{n=1}^{\infty} \mathbb{P}(G = n) \mathbb{P}(\overline{X}_1 + \dots + \overline{X}_n \le u)$$

$$= \frac{\rho}{1+\rho} + \frac{\rho}{1+\rho} \sum_{n=1}^{\infty} \frac{1}{(1+\rho)^n} \mathbb{P}(\overline{X}_1 + \dots + \overline{X}_n \le u). \tag{23}$$

Za preglednost ponovno uvedemo oznako $q=\frac{1}{1+\rho}$ in $p=\frac{\rho}{1+\rho}$ in enačbo (23) preoblikujemo

$$\mathbb{P}(C \leq u) = p + qp\overline{F}_{X_1}(u) + p\sum_{n=2}^{\infty} q^n \mathbb{P}\left(\overline{X}_1 + \dots + \overline{X}_n \leq u\right)$$

$$= p + qp\overline{F}_{X_1}(u) + qp\sum_{n=2}^{\infty} q^{n-1} \int_{(0,u]} \mathbb{P}\left(x + \overline{X}_2 + \dots + \overline{X}_n \leq u\right) d\overline{F}_{X_1}(x)$$

$$= p + q \int_{(0,u]} p \left[1 + \sum_{n=2}^{\infty} q^{n-1} \mathbb{P}\left(\overline{X}_2 + \dots + \overline{X}_n \leq u - x\right)\right] d\overline{F}_{X_1}(x)$$

$$= p + q \int_{(0,u]} \mathbb{P}\left(C \leq u - x\right) d\overline{F}_{X_1}(x).$$

Vidimo, da F_C zadošča enačbi (15), torej je res $F_C=\theta$. Limito $\lim_{u\to\infty}\frac{\psi(u)}{1-\overline{F}_{X_1}(u)}$ lahko tako zapišemo kot

$$\lim_{u \to \infty} \frac{\psi(u)}{1 - \overline{F}_{X_1}(u)} = \lim_{u \to \infty} p \sum_{n=1}^{\infty} q^n \frac{\mathbb{P}\left(X_1 + \dots + X_n > u\right)}{1 - \overline{F}_{X_1}(u)}.$$

Če vzamemo $\varepsilon < \frac{1}{q} - 1,$ lahko po lemi 4.30 zaporedje funkcij

$$f_k(n) = \frac{\mathbb{P}\left(\overline{X}_1 + \dots + \overline{X}_n > u_k\right)}{1 - \overline{F}_{X_1}(u_k)}, \quad n \ge 2, \ k \in \mathbb{N},$$

omejimo z integrabilno funkcijo $K(\varepsilon)(1+\varepsilon)^n$ za vsak $n \geq 2$ (glede na mero, ki šteje). Limito $u \to \infty$ po realnih številih nadomestimo z limito po zaporedjih pozitivnih števil $u_k \xrightarrow{k \to \infty} \infty$. Tako lahko po Lebesgueovem izreku o dominirani konvergenci (5.19) zamenjanmo vrstni red limite in vsote. Ker je \overline{F}_{X_1} subeksponentna, za vsak $n \in \mathbb{N}$ velja

$$\lim_{u \to \infty} \frac{\mathbb{P}\left(\overline{X}_1 + \dots + \overline{X}_n > u\right)}{1 - \overline{F}_{X_1}(u)} = n.$$

Končno je

$$\lim_{u \to \infty} \frac{\psi(u)}{1 - \overline{F}_{X_1}(u)} = p \sum_{n=1}^{\infty} q^n n = \frac{1}{\rho}.$$

Opomba 4.32. Pokažemo lahko tudi, da je F_C edina porazdelitvena funkcija, ki zadošča (15) v razredu funkcij

$$\mathscr{F}=\{F\mid F:\mathbb{R}\to [0,\infty) \text{ omejena, nepadajoča, zvezna z desne}$$
in za $x<0:F(x)=0\}.$

Trditev sledi direktno iz lastnosti Laplace-Stieltjesove transformacije, saj lahko vsak $F \in \mathcal{F}$ zapišemo kot aF_X za primerno konstanto $a \geq 0$ in porazdelitveno funkcijo neke nenegativne slučajne spremenljivke X. Bolj formalen dokaz lahko bralec najde v [4] na strani 173.

Zgled 4.33. Naj bo $(U_t)_{t\geq 0}$ proces tveganja v Cramér–Lundbergovem modelu, ki zadošča NPC. Naj nadalje velja, da so zahtevki neodvisni Weibullovo porazdeljeni s parametroma $a=\frac{1}{4}$ in b=16, torej $X_i\sim \text{Weibull}(\frac{1}{4},16)$. Dokaz, da je \overline{F}_{X_1} subeksponentna porazdelitvena funkcija, lahko bralec najde v [9] na strani 444. Recimo, da je intenzivnost prihodov zahtevkov $\lambda=1$ in stopnja prihodkov premij c=500. Podobno kot v zgledu 4.27 z Monte Carlo simulacijami pokažimo, da verjetnost propada res pada proti 0 z enakim redom konvergence kot rep \overline{F}_{X_1} , ko gre $u\to\infty$. Porazdelitev integriranega repa \overline{F}_{X_1} ima obliko

$$\overline{F}_{X_1}(u) = \frac{1}{\mathbb{E}[X_1]} \int_{(0,u]} e^{-\left(\frac{x}{16}\right)^{1/4}} dx.$$

Iz zgleda 4.3 vemo, da je $\mathbb{E}[X_1]=384$. Z uvedbo nove spremenljivke $z=x^{1/4}(dz=\frac{1}{4x^{3/4}}dx)$ z nekaj računanja dobimo

$$\overline{F}_{X_1}(u) = 1 - \frac{\left(u^{3/4} + 6\sqrt{u} + 24\sqrt[4]{u} + 48\right)e^{-\sqrt[4]{u}/2}}{48}$$

Izračunamo še

$$\rho = \frac{c\mathbb{E}[T_1]}{\mathbb{E}[X_1]} - 1 = \frac{500}{384} - 1 \approx 0.3020833.$$

Po izreku 4.31 razmerje $\frac{\psi(u)}{1-\overline{F}_{X_1}(u)}$ konvergira proti $\frac{1}{\rho} \approx 3.3103451$. Zaporedje $(u_n)_{n=1}^{50}$, definirano kot $u_n = 2000n$ za vsak n, podobno kot v zgledu 4.27 simuliramo 10, 100 in 250 realizacij procesa tveganja in za vsak n izračunamo približek za razmerje $\frac{\psi(u_n)}{1-\overline{F}_{X_1}(u_n)}$. Rezultate prikažemo na sliki 6.

SLIKA 6. Aproksimacija verjetnosti propada $\psi(u)$ z Monte Carlo simulacijami (modra) in točna vrednost funkcije (rdeča).

Vidimo, da razmerje vizualno res konvergira proti $\frac{1}{\rho},$ ampak seveda bi za boljšo natančnost morali povečati začetni kapital u in število simulacij. \diamondsuit

5. Priloga

Dostavek je namenjen predvsem za dodatne definicije in trditve, ki so bile izpušcene v glavnem za namene preglednosti besedila. V primeru, da bralec potrebuje osvežiti določene pojme, jih večino lahko najde v tem razdelku.

Definicija 5.1. Naj bo X slučajna spremenljivka. Potem so za $u \in \mathbb{R}$ njena rodovna funkcija, $momentno\ rodovna\ funkcija$ in $karakteristična\ funkcija$ definirane kot

$$G_X(u) = \mathbb{E}\left[u^X\right], \quad M_X(u) = \mathbb{E}\left[e^{uX}\right], \quad \varphi_X(u) = \mathbb{E}\left[e^{iuX}\right],$$

če upanja obstajajo.

Definicija 5.2. Naj bosta F in G porazdelitveni funkciji dveh neodvisnih nenegativnih slučajnih spremenljivk X in Y. Konvoulicjo funkcij F in G definiramo kot Lebesgue-Stieltjesov integral

$$(F * G)(t) = \int_{[0,t]} F(t-x) \, dG(x) = \int_{[0,t]} G(t-x) \, dF(x).$$

Konovlucija (F * G) se ujema s porazdelitveno funkcijo vsote X + Y, kar lahko enostavno pokažemo z uporabo transformacijske formule. Za neodvisne in enako porazdeljene nenegativne slučajne spremenljivke X_1, X_2, \ldots, X_n s porazdelitveno funkcijo F_{X_1} rekurzivno definiramo k-to konvoulicijo kot

$$F_{X_1}^{*k}(t) = (F_{X_1} * \cdots * F_{X_1})(t) = \int_{[0,t]} F_{X_1}^{*(k-1)}(t-x) \, dF_{X_1}(x),$$

ki se prav tako ujema s porazdelitveno funkcijo vsote $X_1 + X_2 + \cdots + X_n$.

Definicija 5.3. Naj bo $(\Omega, \mathcal{F}, \mathbb{P})$ verjetnostni prostor in naj bo $T \neq \emptyset$ neprazna indeksna množica ter (E, Σ) merljiv prostor. *Slučajni proces*, parametriziran s T, je družina slučajnih elementov $X_t : \Omega \to E$, ki so (\mathcal{F}, Σ) -merljivi za vsak $t \in T$.

Opomba 5.4. V delu se bomo omejili na primer, ko T predstavlja čas, torej $T = [0, \infty)$ in da slučajne spremenljivke zavzemajo vrednosti v realnih številih, torej $(E, \Sigma) = (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$, kjer $\mathcal{B}_{\mathbb{R}}$ predstavlja Borelovo σ -algebro na \mathbb{R} .

Definicija 5.5. Za fiksen $\omega \in \Omega$ je preslikava $[0, \infty) \to \mathbb{R}$; $t \mapsto X_t(\omega)$ trajektorija oziroma realizacija slučajnega procesa $(X_t)_{t\geq 0}$. Tako lahko slučajni proces gledamo kot predpis, ki vsakemu elementu vzorčnega prostora Ω priredi slučajno funkcijo $(X_t(\omega))_{t\geq 0}: [0,\infty) \to \mathbb{R}$.

Definicija 5.6. Naj bo $(X_t)_{t\geq 0}$ slučajni proces. Potem za s < t definiramo prirastek $procesa X_t - X_s$ na intervalu [s,t]. Proces $(X_t)_{t\geq 0}$ ima neodvisne prirastke, če so za vsak nabor realnih števil $0 \le t_1 < t_2 < \ldots < t_n < \infty$ prirastki

$$X_{t_2} - X_{t_1}, \ X_{t_3} - X_{t_2}, \ \dots, \ X_{t_n} - X_{t_{n-1}}$$

med seboj neodvisni.

Definicija 5.7. Naj bo $(X_t)_{t\geq 0}$ slučajni proces. Potem pravimo, da ima proces stacionarne prirastke, če za vsak s < t in vsak h > 0 velja, da ima $X_{t+h} - X_{s+h}$ enako porazdelitev kot $X_t - X_s$.

Definicija 5.8. Naj bosta $(X_t)_{t\geq 0}$ in $(Y_t)_{t\geq 0}$ slučajna procesa ne nujno definirana na istem verjetnostnem prostoru. Pravimo, da sta $(X_t)_{t\geq 0}$ in $(Y_t)_{t\geq 0}$ neodvisna, če sta za vsak par $k,j\in\mathbb{N}$ in končen nabor realnih števil $0\leq t_1< t_2<\ldots< t_{n_k}<\infty$ in $0\leq$

 $t_1 < t_2 < \ldots < t_{n_j} < \infty$ slučajna vektorja $(X_{t_1}, X_{t_2}, \ldots, X_{t_{n_k}})$ in $(Y_{t_1}, Y_{t_2}, \ldots, Y_{t_{n_j}})$ neodvisna. Po drugi strani, če velja $(X_{t_1}, X_{t_2}, \ldots, X_{t_{n_k}}) \sim (Y_{t_1}, Y_{t_2}, \ldots, Y_{t_{n_j}})$ sta procesa enako porazdeljena.

Trditev 5.9. Naj bodo X, Y in Z slučajne spremenljivke ter g in h poljubni borelovi funkciji. Če velja $X \mid Z \sim Y$, velja tudi $X \mid Z \sim X \mid g(Z) \sim Y$. Splošneje, če je $X \mid Z \sim Y \mid h(g(Z))$, je tudi $X \mid Z \sim X \mid g(Z) \sim Y \mid h(g(Z))$.

Dokaz. $X \mid Z \sim Y$ pomeni, da ima X pogojno na $\sigma(Z)$ vedno isto porazdelitev, potem pa mora biti to tudi brezpogojna porazdelitev, prav tako pa tudi pogojna porazdelitev glede na manjšo σ-algebro $\sigma(g(Z))$. Nadalje je X neodvisna od $\sigma(Z)$, potem pa mora biti neodvisna tudi od manjše σ-algebre $\sigma(g(Z))$. Pri splošnejši različici uporabimo enak argument za σ-algebro $\sigma(h(g(Z)))$.

Definicija 5.10. Slučajna spremenljivka X ima Weibullovo porazdelitev s parametroma a, b > 0, če ima njena porazdelitvena funkcija obliko

$$F_X(x) = 1 - e^{-\left(\frac{x}{b}\right)^a}$$
 za $x \ge 0$

oziroma gostota obliko

$$f_X(x) = \left(\frac{a}{b}\right) \left(\frac{x}{b}\right)^{a-1} e^{-\left(\frac{x}{b}\right)^a}$$
 za $x \ge 0$.

Definicija 5.11. Naj bo $(X_i)_{i\in\mathbb{N}}$ zaporedje neodvisnih enako porazdeljenih slučajnih spremenljivk in $G \sim \text{Geom}(p)$ geometrijsko porazdeljena slučajna spremenljivka parametrom $p \in (0,1)$ in funkcijo verjetnosti $P(G=k) = p(1-p)^k$ za $k \in \mathbb{N}_0$. Naj bo G neodvisna od X_i za vsak $i \in \mathbb{N}$. Potem pravimo, da ima slučajna spremenljivka

$$C = \sum_{i=1}^{G} X_i$$

sestavljeno geometrijsko porazdelitev.

Trditev 5.12. Naj bo X nenegativna slučajna spremenljivka na verjetnostnem prostoru $(\Omega, \mathcal{F}, \mathbb{P})$, ki ima prvi moment. Potem velja

$$\mathbb{E}[X] = \int_{(0,\infty)} (1 - F_X(x)) dx.$$

Dokaz. Vsako število $X \geq 0$ lahko zapišemo kot

$$X = \int_{(0,\infty)} \mathbb{1}_{\{x < X\}} dx = \int_{(0,\infty)} \mathbb{1}_{\{X < x\}} dx.$$

Če sedaj uporabimo Fubinijev izrek, dobimo

$$\mathbb{E}[X] = \mathbb{E}\left[\int_{(0,\infty)} \mathbb{1}_{\{X < x\}} dx\right]$$
$$= \int_{(0,\infty)} \mathbb{E}\left[\mathbb{1}_{\{X < x\}}\right] dx$$
$$= \int_{(0,\infty)} (1 - \mathbb{P}(X > x)) dx$$

Trditev 5.13. (Neenakost Markova) Naj bo X nenegativna slučajna spremenljivka. Potem za x > 0 velja

$$\mathbb{P}\left(X \ge x\right) \le \frac{\mathbb{E}\left[X\right]}{x}.$$

Dokaz. Naj bo x > 0. Velja

$$x\mathbb{1}_{\left\{ X\geq x\right\} }\leq X\iff x\mathbb{P}\left(X\geq x\right) \leq \mathbb{E}\left[X\right] .$$

Definicija 5.14. Naj bo X_1, X_2, \ldots zaporedje slučajnih spremenljivk s porazdelitvenimi funkcijami F_{X_1}, F_{X_2}, \ldots in naj bo X slučajna spremenljivka s porazdelitveno funkcijo F_X . Pravimo da zaporedje $(X_n)_{n\in\mathbb{N}}$ konvergira v porazdelitvi k slučajni spremenljivki X, če za vsak $x\in\mathbb{R}$ v katerem je F_X zvezna, velja

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x).$$

Izrek 5.15. (Krepki zakon velikih števil) Naj bo $(X_n)_{n\in\mathbb{N}}$ zaporedje neodvisnih enako porazdeljenih slučajnih spremenljivk na verjetnostnem prostoru $(\Omega, \mathcal{F}, \mathbb{P})$ s pričakovano vrednostjo $\mathbb{E}[X_i] = \mu < \infty$. Potem velja

$$\frac{X_1 + X_2 + \dots + X_n}{n} \xrightarrow[n \to \infty]{s.g.} \mu.$$

Dokaz. Dokaz izreka lahko bralec najde v [7].

Izrek 5.16. (Izrek o enoličnosti) Naj bosta X in Y slučajni spremenljivki, ne nujno definirani na istem verjetnostnem prostoru. Če za vsak $u \in \mathbb{R}$ velja $\varphi_X(u) = \varphi_Y(u)$, imata X in Y enako porazdelitev.

Dokaz. Dokaz izreka lahko bralec najde v [7].

Izrek 5.17. (Lévijev izrek o kontinuiteti) Naj bo $(X_n)_{n\in\mathbb{N}}$ zaporedje slučajnih spremenljivk (ne nujno na istem verjetnostnem prostoru) in X še ena slučajna spremenljivka. Potem za vsak $u \in \mathbb{R}$ velja

$$\varphi_{X_n}(u) \xrightarrow{n \to \infty} \varphi_X(u)$$

natanko tedaj, ko velja

$$X_n \xrightarrow[n\to\infty]{d} X.$$

Dokaz. Dokaz izreka lahko bralec najde v [7].

Izrek 5.18. (Lebesgueov izrek o monotoni konvergenci) Naj bo X_1, X_2, \ldots zaporedje nenegativnih slučajnih spremenljivk na verjetnostnem prostoru $(\Omega, \mathcal{F}, \mathbb{P})$ in naj bo $X := \lim_{n\to\infty} X_n$ njihova limita. Naj za vsak $\omega \in \Omega$ velja $X_1(\omega) \leq X_2(\omega) \leq \ldots$ Potem velja

$$\lim_{n\to\infty} \mathbb{E}\left[X_n\right] = \mathbb{E}\left[\lim_{n\to\infty} X_n\right] = \mathbb{E}\left[X\right].$$

Dokaz. Dokaz izreka lahko bralec najde v [7].

Izrek 5.19. (Lebesgueov izrek o dominirani konvergenci) Naj bo X_1, X_2, \ldots zaporedje slučajnih spremenljivk na verjetnostnem prostoru $(\Omega, \mathcal{F}, \mathbb{P})$ in naj bo $X := \lim_{n\to\infty} X_n$ njihova limita. Naj bo Y slučajna spremenljivka definirana na istem verjetnostnem prostoru z $\mathbb{E}[Y] < \infty$ in naj za vsak $n \in \mathbb{N}$ in vsak $\omega \in \Omega$ velja $|X_n(\omega)| \leq Y(\omega)$. Potem je X integrabilna in velja

$$\lim_{n\to\infty} \mathbb{E}\left[X_n\right] = \mathbb{E}\left[\lim_{n\to\infty} X_n\right] = \mathbb{E}\left[X\right].$$

Dokaz. Dokaz izreka lahko bralec najde v [7].

Izrek 5.20. (Tonellijev izrek) Naj bosta X in Y slučajni spremenljivki definirani vsaka na svojem verjentnostnem prostoru in naj imata vsaka svojo gostoto f_X in f_Y glede na Lebesgueovo mero. Potem velja

$$\int_{\mathbb{R}^2} f_{X,Y}(x,y) \mathcal{L}^2(dx,dy) = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f_{X,Y}(x,y) dx \right) dy = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f_{X,Y}(x,y) dy \right) dx.$$

Dokaz. Dokaz izreka lahko bralec najde v [7].

Trditev 5.21. (Lastnost vrstilnih statistik) Naj bo $(N_t)_{t\geq 0}$ homogeni Poissonov proces z intenzivnostjo $\lambda > 0$. Za $k \in \mathbb{N}$ je pogojno na dogodek $\{N_t = k\}$ vektor časov prihodov porazdeljen kot

$$(V_1,\ldots,V_k) \mid \{N_t=k\} \sim (U_{(1)},\ldots,U_{(k)}),$$

kjer je $(U_{(1)}, \ldots, U_{(k)})$ vektor vrstilnih statistik vektorja (U_1, \ldots, U_k) neodvisnih enako porazdeljenih slučajnih spremenljivk $U_i \sim U([0,t])$.

Dokaz. Dokaz trditve lahko bralec najde v [4] na strani 24.

Definicija 5.22. Naj bo X nenegativna slučajna spremenljivka in F_X njena porazdelitvena funkcija. Potem za $u \in \mathbb{R}$ Laplace-Stieltjesovo transformacijo porazdelitve F_X definiramo kot

$$\hat{F}_X(u) = \int_{[0,\infty)} e^{-ux} dF_X(x).$$

Definicija 5.23. Naj bo F porazdelitvena funkcija neke nenegativne slučajne spremenljivke s prvim momentom. *Porazdelitev integriranega repa* te slučajne spremenljivke je porazdelitve s porazdelitveno funkcijo

$$\overline{F}(x) = \frac{1}{\mathbb{E}[X]} \int_0^x (1 - F(t)) dt.$$

Definicija 5.24. Prenovitveni proces na verjetnostnem protoru $(\Omega, \mathcal{F}, \mathbb{P})$ je slučajni proces, določen z zaporedjem neodvisnih enako porazdeljenih medprihodnih časov $(T_n)_{n\in\mathbb{N}}$, ki zavzamejo vrednosti v $\mathbb{R}^+ \cup \{\infty\}$, in sicer je podan z zvezo

$$N_t = \sum_{n=1}^{\infty} \mathbb{1}_{\{S_n \le t\}},$$

kjer je $S_n = T_1 + T_2 + \cdots + T_n$ čas n-tega prihoda. Pripadajočo prenovitveno mero prenovitvenega procesa definiramo kot $M(t) = \mathbb{E}[N_t]$ za t > 0.

Definicija 5.25. Prenovitvena enačba je enačba oblike

$$f(t) = g(t) + \int_{[0,t]} f(t-s)dF(s), \quad t \ge 0,$$

kjer sta neznana funkcija f in znana funckija g definirani na \mathbb{R}^+ , F pa je porazdelitvna funkcija neke pozitivne slučajne spremenljivke X. Prenovitveno enačbo predstavimo s parom (g, F).

Definicija 5.26. Za nenegativno merljivo funkcijo $f:[0,\infty)\to [0,\infty)$ pravimo, da je direktno Riemannovo integrabilna (d.R.i.), če za vsak $\delta>0$ velja

$$\sum_{k\geq 0} \left(\sup_{t\in [k\delta,(k+1)\delta)} f(t) \right) < \infty \quad \text{in}$$

$$\lim_{\delta \downarrow 0} \delta \sum_{k \ge 0} \left(\sup_{t \in [k\delta, (k+1)\delta)} f(t) \right) = \lim_{\delta \downarrow 0} \delta \sum_{k \ge 0} \left(\inf_{t \in [k\delta, (k+1)\delta)} f(t) \right)$$
 (24)

Če f zadošča navedenima zahtevama, definiramo njen direktni Riemannov integral

d.R.i.
$$\int_0^\infty f(t) dt$$

kot limito (24). Funkcija f poljubnega predznaka je d.R.i., če sta le-taki $f^+ = \max\{f,0\}$ in $f^- = \max\{-f,0\}$, pri čemer je

d.R.i.
$$\int_0^\infty f(t) dt = \text{d.R.i.} \int_0^\infty f^+(t) dt - \text{d.R.i.} \int_0^\infty f^-(t) dt$$
.

Trditev 5.27. (Kriterij za direktno Riemannovo integrabilnost) Naj bo $f \geq 0$ nenaraščajoča funkcija. Potem je f direktno Riemannovo integrabilna natanko tedaj, ko je posplošeno Riemannovo integrabilna. Tedaj je njen direktni Riemannov integral enak posplošenemu.

Dokaz. Dokaz trditve lahko bralec najde v [8] na strani 235. \Box

Izrek 5.28. (Smithov ključni prenovitveni izrek) Če je funkcija g iz prenovitvene enačbe (g, F) (definicija 5.25) omejena na končnih intervalih ter X ima prvi moment in ni aritmetična ($\nexists a \in \mathbb{R} : \mathbb{P}(X \in \mathbb{Z}a) = 1$), je

$$f(t) = g(t) + \int_{[0,t]} g(t-s)dM(s), \quad t \ge 0,$$

enolična rešitev te enačbe. Funkcija M je prenovitvena mera prenovitvenega procesa z medprihodno porazdelitvijo F. Če je dodatno funkcija g direktno Riemannovo integrabilna velja

$$\lim_{t \to \infty} f(t) = \frac{1}{\mathbb{E}[X]} \int_{(0,\infty)} g(t) dt.$$

Dokaz. Dokaz izreka lahko bralec najde v [8] na strani 237.

SLOVAR STROKOVNIH IZRAZOV

sestavljeni procesi compound processes
sestavljeni Poissonov proces compound Poisson process
markiranje procesa space-time decomposition of process
neskončna deljivost infinite divisibility
proces tveganja risk process
verjetnost propada probability of ruin
ogrodje procesa tveganja skeleton process
lahkorepa porazdelitev light-tailed distribution
težkorepa porazdelitev heavy-tailed distribution
subeksponentna porazdelitev subexponential distribution
prenovitveni proces renewal process
defektna prenovitvena enačba defective renewal equation
prenovitvena mera renewal function

LITERATURA

- [1] S.E. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models, Springer, (2004).
- [2] S.M. Ross, Stochatic Processes: Second Edition, Wiley, (1996).
- [3] P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling Extremal Events: For Insurance and Finance, Springer, (1997).
- [4] T. Mikosch, Non-Life Insurance Mathematics: An Introduction with the Poisson Process, Second Edition, Springer, (2009).
- [5] M. Mandjes, O. Boxma, The Cramér-Lundberg model and its variants, Springer, (2023).
- [6] F. Spitzer, Principles of Random Walk. Second Edition, Springer, (1976).
- [7] B. Fristedt, L. Gray, A Modern Approach to Probability Theory, Springer, (1996).
- [8] S.I. Resnick, Adventures in Stochastic Processes, Birkhäuser, (1992).
- [9] R.J. Adler, R.E. Feldman, A practical guide to heavy tails: statistical techniques and applications, Birkhäuser, (1998).
- [10] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, (1999).