Satellite Image Classification.

Team Members

Nagwa Mohamed

Reem Raft Sadik

Heba Allah

Machine Learning Engineer SHR1_AIS5_M1e

• Introduction.

• Week1.

• Week2.

• Week3.

Week2

Introduction

he project idea is to make a high-resolution classification of four categories of images taken by satellites. These images are green areas, desert, water and cloudy. This helps in making decisions in various fields, including:

- 1.*Environmental Monitoring:* Tracks changes such as desertification, deforestation, and climate patterns.
 - 2 *Agriculture Management:* Monitors crop health, estimates production, and assists in water resource management.
 - 3. *Urban Planning:* Assesses urban expansion and infrastructure development.
 - 4. *Natural Resources:* Aids in locating resources and monitoring mining activities.
 - 5. *Disaster Management:* Evaluates damage from natural disasters and supports emergency response.
 - 6. *Marine Surveying:* Monitors sea level changes and coastal conditions.
 - 7. *Security and Defense:* Used for military surveillance and border monitoring.
 - 8. *Biodiversity Conservation:* Monitors habitats and assesses the impact of human activities on wildlife.

Week 1

1-Data Collection:

Collecting The Data Set From Kaggle.

2-Data Preprocessing:

Data resize

> Data Normalization

Label encoding

One Hot encoding

Data
Augmentation

Week1 *Data Preprocessing*

Create an Empty
Defineth Research Classes
Initialize a List for Data

Storage Loop Through Each Label ConvertebeyList to a residetafagese coaver images into

Week1

Data Preprocessing

normalizing the pixels Label

Encoding-Hot

Vandading Split & Test Split

data

augmentation display data to ensure that all this ok after spliting

week display data to ensure that all this ok after spliting

week

display data to ensure that all this ok after spliting

Week Augmentation

week

Data Science and Machine Learning

Highest number of images:

cloudy

and

green_area.

Exploratory Data Analysis" EDA"

Symmetrical Distribution

The **Cloudy** class has a **balanced** range of pixel intensities.

Peak at Mid-range Pixel Values

Exploratory Data Analysis" EDA"

Multimodal Distribution.

The **Desert** class covers a **wider range** of pixel intensities.

Peaks at Various Intensities.

Exploratory Data Analysis" EDA"

Bimodal Distribution

Absence of High Intensity Values

Exploratory Data Analysis"EDA"

LEFT-SKEWED

skewed heavily toward the lower pixel values

The Model

Traning -Test split.

Model Building

Traning The Model

COMPARE ALGORITHMS

KNN Training Time : 0.01 seconds

KNN Accuracy : 0.8606921029281278

Precision : 0.8867238524159108

Recall : 0.8606921029281278

Random Forest Training Time: 7.97 seconds

Random Forest Accuracy : 0.9449866903283053

Precision : 0.9455240326318799

Recall : 0.9449866903283053

Decision Tree Training Time: 5.75 seconds

Decision Tree Accuracy : 0.8970718722271517

Precision : 0.8978447259992156

Recall : 0.8970718722271517

SVM Training Time : 6.99 seconds

SVM Accuracy : 0.8979591836734694

Precision : 0.904094800846262

Recall : 0.8979591836734694

XGBoost Training Time : 51.58 seconds

XGBoost Accuracy : 0.9485359361135759

Precision : 0.9488579404376293

Recall : 0.9485359361135759

CNN Model Confusion Matrix Before Augmentation

CNN Model Confusion Matrix After Augmentation

	precision	recall	f1-score	support	
0	0.98	0.99	0.99	328	
1	0.98	0.98	0.98	227	
2	0.97	0.96	0.96	284	
3	0.96	0.97	0.96	288	
accuracy			0.97	1127	
macro avg	0.97	0.97	0.97	1127	
weighted avg	0.97	0.97	0.97	1127	

Training and validation Accuracy & loss

CNN model Test

Model Prediction: green_area Actual Class: green_area week 3

MODEL DEPLOYMENT

