

Contenido

ntroducción	2
.0.0 Configuración de redes LAN	2
1.1.0 Ejercicio 1 (RED LAN SIMPLE)	2
1.1.1 Tipología	3
1.1.1 ROUTER 4331	3
1.1.2 Comandos	3
1.1.3 Descargar el ejemplo Archivo (PKT)	5
1.2.0 Ejemplo 2 (DHCP Dos VLANS)	5
1.2.1 Topología	5
1.2.2 ROUTER DHCP VLAN 10 IPv4	6
1.2.3 CONFIGURACIÓN HOSTS VLAN10	7
1.2.4 ROUTER DHCP VLAN 10 IPv6	7
1.2.5 CONFIGURACIÓN HOSTS VLAN10	7
1.2.6 Ejemplo Práctico Ejemplo 2 Descarga	8
1.3.0 Ejemplo Tres VLANS Cruzadas	8
1.3.1 Tipología	8
1.3.2 Configuración SWITCH1 y SWITCH2	8
1.3.3 Ruta por default	9

Introducción

Proyectos realizados en el simulador de redes de CISCO. A lo largo de este trabajo se verán temas relacionados con los conceptos más importantes de las redes de computadoras (Voip, rutas estáticas, rutas dinámicas, redundancias, Switching, capas, etcétera).

1.0.0 Configuración de redes LAN

Para comenzar vamos a realizar ejemplos sencillos de como configurar redes de área local utilizando SWITCHES, ROUTERS y algunos hosts conectados a los dispositivos antes mencionados.

En el primer ejemplo vamos a ver de que forma realizar lo propuesto anteriormente a través de un SWITCH modelo 2960 y un ROUTER 4331 con la configuración estática de las IP de los hosts.

El objetivo es definir distintas VLAN y distribuirlas por los puertos de diferentes SWITCHES con las configuraciones pertinentes para que puedan comunicarse entre sí.

Todos los ejemplos menos el primero van a utilizar la configuración dinámica de las direcciones IPv4 e IPv6, y generando esquemas de red con VLANS cruzadas a través de rutas estáticas para incrementar la dificultad de los ejercicios.

1.1.0 Ejercicio 1 (RED LAN SIMPLE)

En este ejercicio de configurará una red simple con un ROUTER 4331, un SWTCH 2960 y dos hosts conectados a través de la VLAN 1 por defecto del SWITCH.

Cada puerto del SWITCH va a estar dedicado al tráfico proveniente de la VLAN 1 y en los hosts se configurará de manera estática cada una de las IP en su versión 4.

1.1.1 Tipología

Ejemplo simple de una red lan con un SWITCH y un ROUTER 4331

Ilustración 1 LAN EJ1 Topología

1.1.1 ROUTER 4331

La interfaz Gi0/0/0 del ROUTER va utilizar el protocolo IEEE 802.1Q ¹ que permite dividir lógicamente la interfaz de ROUTER para direccionar tramas de distintas VLAN a los puertos asignados para las mismas en el o los SWTCHES.

En la imagen se puede observar en las anotaciones que la IP de ROUTER es la 160.15.1.158/28 y el comando *encapsulation dot1q 1* de la sub-interfaz Gi0/0/0.1.

1.1.2 Comandos

• Desde la configuración cli del ROUTER

Router1 > enable // Modo Usuario
R# Configure Terminal // Acceder a la configuración
Router1 (Config) # hostname R1 // Asignarle un nombre al Disp.
R1(Config)# Interfaz g0/0/0.1 // Accede a la sub-interfaz 1
R1(config-subif)# IP address 160.15.1.158 255.255.255..240

 Le asigna una IP a la sub-interfaz /28

Do wr // Guarda los cambios

FEDERICO MANZANO

¹ IA GOOGLE: El 802.1Q es el estándar IEEE para redes locales virtuales (VLAN), que permite a múltiples redes segmentar lógicamente una única red Ethernet física mediante la adición de una "etiqueta" a las tramas de datos.

- Desde la configuración del SWITCH
 - Switch > enable
 - Switch # Conf t
 - Switch (Conf)# HO SW1
 - SW1 (Conf)# int g0/1
 - SW1 (Conf-if)# switch port mode trunk //Permite el tráfico de varias VLANs
 - SW1(Conf-if)# int range f0/1-2
 - SW1 (config-if-range) # switchport access vlan 1 // Por defecto no hace falta este comando igual lo agrego. Le estamos diciendo que el puerto 1-2 del SWITCH 1 va a recibir y enviar tramas TAGGING ²de la Vlan 1

Ahora solo queda la configuración de los Hosts que se van a comunicar, en este caso para ser el primer ejemplo, las tramas que utilicen para llevar a cabo la comunicación van a ser UNTAGGING (No van a necesitar a la puerta de enlace).

HOST 1

Ilustración 2 LAN Ejemplo 1 Conf. Host1

HOST 2

_

² IA GOOGLE: mientras que el tagging (o etiquetado) es un proceso que añade información, como las etiquetas VLAN, a esas tramas para organizar y segregar el tráfico dentro de la red

REDES DE COMPUTADORAS

TEST DE COMUNICACIÓN

El mensaje ICMP dice que estado del mensaje fue entregado correctamente.

1.1.3 Descargar el ejemplo Archivo (PKT)

1.2.0 Ejemplo 2 (DHCP Dos VLANS)

En este ejemplo se configurarán dos VLANS a un SWITCH de capa dos del modelo OSI modelo 2960 de CISCO, un ROUTER 4337 de la misma marca y cuatro hosts de los cuales dos pertenecerán a la VLAN 10 (No default) y la VLAN 20 (No Default).

Para la asignación de las IP se utilizará el ROUTER para la configuración dinámica de las direcciones antes mencionadas.

1.2.1 Topología

Para la asignación de IP y la división lógica de la interfaz de ROUTER volver a ver el siguiente enlace <u>Configuración del ROUTER</u>. Una vez establecida la IP del ROUTER y las sub-interfaces pertinentes 10 y 20 es necesario la configuración DHCP, que permitirá la asignación dinámica de las direcciones IP.

1.2.2 ROUTER DHCP VLAN 10 IPv4

Dirección de red de VLAN10: 160.15.10.144/28

- Configuración DHCPv4
 - R1 (Conf)# ip dhcp pool (NOMBRE DEL POOL)
 - o R1 (dhcp-config)# network 160.15.10.144 255.255.255.240
 - o R1 (dhcp-config)# default-router 160.15.10.158
 - o R1 (dhcp-config)# exit
 - o R1(Conf)# Interface G10/0/0
 - o R1(Conf-if)# no shutdown
 - o R1(Conf-if)# do wr
- Configuración del SWITCH para la VLAN 10
 - SW1(Conf)# vlan 10
 - SW1(Conf)# name VLAN10
 - o SW1(Conf)# int range f0/1-4
 - SW1(conf-range-if)# switchport access vlan 10
 - SW1(conf-range-if)# do wr

1.2.3 CONFIGURACIÓN HOSTS VLAN10

Nombre	IP	DG	Máscara
PC0	160.15.10.145	160.15.10.158	255.255.255.240
PC1	160.15.10.146	160.15.10.158	255.255.255.240
PC2	160.15.10.147	160.15.10.158	255.255.255.240
PC3	160.15.10.148	160.15.10.158	255.255.255.240

1.2.4 ROUTER DHCP VLAN 10 IPv6

Dirección de red de VLAN10: 2000:CAFE:CAFE:10::/64

- Configuración DHCPv4
 - o R1 (Conf)# ip dhcp pool (NOMBRE DEL POOL)
 - o R1 (dhcp-config)# address prefix 2000:CAFE:CAFE::10/64
 - o R1 (dhcp-config)# exit
 - o R1(Conf)# Interface G0/0/0.10
 - o R1(Conf-Subif)# ip dhcp server (NOMBRE DEL POOL)
 - o R1(Conf-if)# do wr

1.2.5 CONFIGURACIÓN HOSTS VLAN10

Nombre	IP	DG	Máscara
PC0	2000:CAFÉ:CAFÉ::10::1	FE80:CAFÉ:CAFÉ::10::	/64
PC1	2000:CAFÉ:CAFÉ::10::2	FE80:CAFÉ:CAFÉ::10::	/64
PC2	2000:CAFÉ:CAFÉ::10::3	FE80:CAFÉ:CAFÉ::10::	/64
PC3	2000:CAFÉ:CAFÉ::10::4	FE80:CAFÉ:CAFÉ::10::	/64

La configuración de la VLAN 20 es igual que la VLAN 10, se le deja al lector esa responsabilidad como ejercicio didáctico.

1.2.6 Ejemplo Práctico Ejemplo 2 Descarga

1.3.0 Ejemplo Tres VLANS Cruzadas

En este ejercicio se toman dos ROUTERS 4331 en los cuales cada uno de ellos va a ser servidor de IP de las dos VLANS utilizadas.

Para este apartado las VLANS son la 10 y la 20, la red es una sub-red de:

- VLAN 10 160.15.10.144/28
- VLAN 20 160.15.20.144/28

1.3.1 Tipología

Como se observa en la imagen anterior el R1 configura las IP de los PC3, PC4 y PC5, mientras que el R2 configura las PC0, PC1 y PC2.

Para la configuración DHCP de los ROUTERS ver el apartado dedicado al tema dentro de este documento.

- Configuración DHCPv4
- Configuración DHCPv6

1.3.2 Configuración SWITCH1 y SWITCH2

La diferencia con los ejemplos anteriores es necesario conectar los dos SWITCHES a través de un puerto configurado en modo TRUNK que permite que el tráfico de diferentes VLANS pase por él.

Ver configuración del SWITCH

REDES DE COMPUTADORAS

Para la comunicación de ambos SWITCHES tomamos el puerto Gi/0/2 de ambos SWITCHES

- SW1(Conf-if)# switchport mode trunk
- SW2(Conf-if)# switchport mode trunk

1.3.3 Ruta por default