OPTIMIZACIÓN

Primer Cuatrimestre 2025

Ejercicios para pensar

Condiciones de KKT

Ejercicio 1 Consideremos el siguiente problema de minimización

$$\min f(x) = c^t x$$

$$s.a \ Ax = 0$$

$$||x|| < 1$$

donde $A \in \mathbb{R}^{m \times n}$ (con m < n) y $\| \cdot \|$ denota la norma euclídea.

- (a) Buscar las condiciones de KKT.
- (b) Probar que $Ac + AA^t\lambda = 0$, donde λ es el multiplicador de Lagrange.
- (c) Probar que si $c + A^t \lambda \neq 0$ donde λ satisface

$$AA^t\lambda + Ac = 0.$$

entonces el mínimo está dado por

$$x^* = -\frac{c + A^t \lambda}{\|c + A^t \lambda\|}.$$

Ejercicio 2 Consideremos el siguiente problema:

$$\min f(x) = \frac{1}{2}x^t H x + x^t p$$

$$s.a \ Ax = b$$

con H definida positiva y $A \in \mathbb{R}^{k \times n}$, donde rg(A) = k.

- (a) Resolver el problema usando condiciones de KKT.
- (b) Supongamos que \mathbf{x}^* es el mínimo hallado en el ítem a). ¿Es un mínimo global?.

Sugerencia: Si A_1 es una matriz definida positiva en $\mathbb{R}^{n \times n}$ y A_2 es una matriz con $rg(A_2) = k$ entonces la matriz $\begin{bmatrix} A_1 & A_2^t \\ A_2 & \theta \end{bmatrix}$ es no singular.

Ejercicio 3 Resolver utilizando las condiciones KKT el siguiente problema de maximización con restricciones:

$$\max f(x,y) = -(x-2)^2 - 2(y-1)^2$$
 sujeto a:
$$x+4y \leq 0,$$

$$x \geq y.$$