Machine Learning Algorithms for Optical Fiber Telecoms

Dr. Elias Giacoumidis 26 March 2018

Personal background

- Bangor University, Wales, UK (PhD)
 - Optical transmission for >40-Gb/s local and access networks
- Athens Information Technology centre, Athens, Greece
 - Passive optical networks (PONs)
- Telecom Paris-Tech, France (collaboration with France Telecom-Orange Labs)
 - Coherent optical communications for >100-Gb/s multi-channels
- Aston University, UK
 - Digital signal processing (DSP)-based fibre nonlinearity compensation
- University of Sydney, Sydney, Australia
 - Machine learning DSP for optical commun. and photonic-chip applications
- Dublin City University (DCU), Ireland (visiting researcher at Xilinx-Ireland)
 - Real-time machine learning DSP for optical communications

Machine learning for optical communications

Apply

Machine Learning

- DET, KDE, GMM
- PCA, ICA
- IS, MCMC
- HMM (EKF, UKF, PF)
- ANN (MLP, HNN, RBM, CNN, RNN)
- SVM (kernel: polynomial, RBF, sigmoid)
- Deep learning (DBN, etc.)

Optical Communications

- Linearity: CD, PMD
- Nonlinearity: SPM, XPM, XPolM, FWM
- Nonlinear equalization
- Polarization recovery
- Carrier phase recovery
- Nonlinear capacity analysis
- Coded-modulation design

Photonics: machine learning under the spotlight

Typical optical communication system

DSP importance in optical communications

Constellation diagrams for modulation

Constellation diagram

Q (quadrature or imaginary part) O value Phase I (in-phase or real part) B O C

1) Information is in amplitude

2) Information is in phase

Time domain waveforms

We have constructed 4 vectors

→ One vector postition in the complex plane codes 2 bits

DSP receiver design with machine learning

DSP Receiver processing:

Synchronization

Optical carrier frequency offset compensation

Linear Equalization & Machine Learning

Data Recovery

Clustering-based machine learning

K-means

Fuzzy-logic c-means

Algorithm: k-means, Distance Metric: Euclidean Distance

Fuzzy-logic c-means

MD: Membership Degree

Received constellation diagrams for 16-QAM

No equalization

Linear equalization hard decision
boundaries

Machine learning soft decision/nonlinear boundaries

Alternative design for 16 clusters

Single-step: 1 group of 4 clusters & 6 groups of 2 clusters

CASE-2

Shapes of constellation diagrams

Transceiver setup

Nonlinear distortion

Optical fiber

Artificial Neural Network design

ANN: Artificial Neural Network

 $\varphi_{k,i}(x)$ = nonlinear transformations of subcarrier k

N =level of constellation mapping

w = weights

e = error

s = signal

MMSE = minimum-mean square-error

$$e(k) = s(k) - \hat{s}(k)$$

$$\hat{s}(k) = \sum_{i=1}^{N} w_{k,i} \varphi_{k,i}(s(k))$$

Why machine learning is good for us?

Deterministic techniques

- Machine Learning tackles stochastic noises in optical networks without knowledge of the fibre link parameters (versatile learning).
- It has benefit over wireless systems because optical link has stable parameters.

[1] E. Giacoumidis et al, OSA Opt. Let. 12, 123 (2016) [2] E. Giacoumidis et al, IEEE JLT 10, 234 (2017)

Complexity comparison (Number of operations)

Comparison with benchmark technologies

Nonlinear compensation techniques:

- Digital back propagation (DBP)
- Optical phase conjugation (OPC)
- Phase conjugated twin wave (PC-TW)

Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit

Xiang Liu*, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach and S. Chandrasekhar

	DBP	OPC	PC-TW	Proposed
Performance	✓	✓	✓	✓
Complexity	<u>(;)</u>	<u> </u>	✓	✓
WDM links	<u>•</u>	✓	✓	✓
Links with ROADM	<u>u</u>	*	<u> </u>	✓
Overhead	✓	✓	(9)	✓
Flexibility	✓	<u> </u>	✓	√

Limited benefit

Challenge

Crucial points

Real-time signal processing on FPGA

areas where errors are most likely

3D deep learning?

Thank you for your attention !!!

