Tutoraggio di Fisica 3

2025 - Corso A - 3

17 Il campo magnetico in una regione di spazio ha la seguente espressione (lo spazio è misurato in m, il tempo in s):

$$\mathbf{B}(x, y, z, t) = 2 \cdot 10^{-6} (\mathbf{u}_x + 2\mathbf{u}_y) \cos ((2x - y + 2z) \cdot 10^{-3} - 6 \cdot 10^5 t) \text{ T}.$$

- (a) Dimostrare che si tratta di un'onda; calcolarne la velocità di propagazione, la lunghezza d'onda e la frequenza.
- (b) Assumendo che **B** sia il campo magnetico di un'onda e.m., calcolare il campo elettrico ed il vettore di Poynting; specificare lo stato di polarizzazione.
 - (c) Calcolare l'intensità media dell'onda.
- Un'onda radio piana di frequenza $\nu = 500$ kHz si propaga nell'acqua $(n \simeq 9)$ parallelamente all'asse z ed è polarizzata linearmente con il campo elettrico parallelo all'asse x; la potenza media trasmessa per unità di superficie è 30 W/m².
 - (a) Qual è la lunghezza d'onda?
 - (b) Quali sono i valori efficaci del campo elettrico e dell'induzione magnetica associati all'onda?
- 19 Un'onda elettromagnetica piana, che si propaga nel vuoto, ha il campo elettrico dato dall'espressione

$$\vec{E} = E_x \hat{u}_x \sin(kz - \omega t) + E_y \hat{u}_y \sin(kz - \omega t + \varphi) ,$$

con $E_x = \mathcal{E} = 60.0 \text{ V/m}.$

- (a) Se l'onda e.m. ha polarizzazione lineare con \vec{E} parallelo al versore $\hat{n} = \frac{1}{2}\hat{u}_x + \frac{\sqrt{3}}{2}\hat{u}_y$, calcolare E_y e φ e l'intensità dell'onda (mediata nel tempo).
- (b) Se l'onda e.m. ha polarizzazione circolare, calcolare E_y e φ e l'intensità dell'onda (mediata nel tempo).
 - (c) Se $E_y = E_x$ e $\varphi = \frac{\pi}{4}$, qual è lo stato di polarizzazione dell'onda e quanto vale la sua intensità?
- 20 Un'onda elettromagnetica piana si propaga nel vuoto. Il modulo del vettore di Poynting è dato dall'espressione:

$$S = S_0 \cos^2\left(x + y + \sqrt{2}z - \omega t\right)$$

dove $S_0 = 50.0 \text{ W/m}^2$, x, y, z sono misurati in metri, t in secondi.

- (a) Calcolare il vettore d'onda e la frequenza dell'onda
- (b) Scrivere le espressioni dei campi elettrico e magnetico sapendo che \vec{E} è parallelo al vettore $\hat{u}_x \hat{u}_y$ (usare il valore approssimato $c = 3 \cdot 10^8$ m/s).
- 21 Pressione di radiazione. Forza su una superficie

Si consideri una superficie piana di area A su cui incide, ad angolo θ , una radiazione e.m. piana. Dimostrare che la forza agente su tale superficie, dovuta alla pressione di radiazione, è:

- (a) $F_{\rm ass} = \frac{I}{c} A \cos \theta$, nel caso di superficie perfettamente assorbente.
- (b) $F_{\text{rifl}} = 2 \frac{I}{2} A \cos^2 \theta$, nel caso di superficie perfettamente riflettente.

Calcolare, in entrambi i casi, anche la pressione di radiazione.

Si consideri ora una superficie sferica di raggio R.

(c) Dimostrare che la forza agente sulla superficie sferica è

$$F_{\text{sfera}} = \pi R^2 \frac{I}{c}$$

sia nel caso di superficie perfettamente assorbente che perfettamente riflettente.

- Una cellula fotoelettrica con catodo di potassio è inserita in un circuito nel quale, mediante un potenziometro, si può applicare una d.d.p. V tra il catodo C e l'anodo A; l'intensità della corrente I è letta con il galvanometro G. Se si illumina il catodo con la luce gialla prodotta da una lampada al sodio ($\lambda_1 = 589$ nm) si nota che il valore minimo $V_{min,1}$ per cui I = 0 è 0.361 V; illuminandolo con una lampada al mercurio ($\lambda_2 = 253.7$ nm), si trova $V_{min,2} = 3.146$ V. Assumendo nota la carica dell'elettrone calcolare la costante di Planck h, il lavoro di estrazione L_e del potassio, la lunghezza d'onda massima λ_0 , ovvero la frequenza minima ν_0 , capace di produrre effetto fotoelettrico sul potassio. Calcolare infine l'energia cinetica massima T_{max} e la velocità massima v_{max} con cui l'elettrone esce dal potassio nei due casi (massa dell'elettrone: $m_e = 9.109 \cdot 10^{-31}$ kg).
- 23 Un fotone di energia $\epsilon = 500 \text{ keV}$, viene diffuso ad un angolo $\theta = 60^{\circ}$ da un protone a riposo (massa $m_p = 1.673 \cdot 10^{-27} \text{ kg}$). Determinare la lunghezza d'onda del fotone finale e la velocità del protone finale (si usi l'approssimazione non relativistica).

Facoltativo (dopo le lezioni di Relatività!)

Ripetere il calcolo per un fotone della stessa energia ed un elettrone a riposo ($m_e = 9.11 \cdot 10^{-31}$ kg). Confrontare i risultati ottenuti per la velocità finale, sia per il protone che per l'elettrone, con le formule esatte (relativistiche) e con l'approssimazione non relativistica e valutare quando quest'ultima è accettabile.

(costante di Planck: $h = 6.626 \cdot 10^{-34} \text{ Js}, 1 \text{ eV} = 1.602 \cdot 10^{-19} \text{ J}$).

- 24 Consideriamo un modello classico dell'atomo di idrogeno, in cui l'elettrone (carica $e = 1.602 \cdot 10^{-19}$ C, massa $m = 9.109 \cdot 10^{-31}$ kg) compie un'orbita circolare di raggio $r_0 = 0.53 \cdot 10^{-10}$ m attorno al protone (di massa molto maggiore). A causa dell'accelerazione a cui è sottoposto, l'elettrone emette onde e.m., la sua energia perciò diminuisce ed il raggio dell'orbita cambia.
 - (a) Calcolare velocità e accelerazione dell'elettrone, la sua energia totale e la potenza emessa per irraggiamento in funzione della distanza r dal protone (trascurare la componente radiale della velocità).
 - (b) Ricavare un'equazione differenziale che determini la variazione di r nel tempo.
 - (c) Risolvere l'equazione diferenziale trovata, con la condizione iniziale $r(0) = r_0$.
 - (d) Calcolare in quanto tempo il raggio dell'orbita dell'elettrone si annulla.
 - (e) Quale conseguenza possiamo ricavare da questo risultato?

Risultati _

- 17. (a) $v = 2 \cdot 10^8 \text{ m/s}$, $\lambda = 2.09 \text{ km}$, $\nu = 9.55 \cdot 10^4 \text{ Hz}$; (b) posto $\alpha = (2x y + 2z) \cdot 10^{-3} 6 \cdot 10^5 t$: $\mathbf{E} = 894 \left(\frac{4}{3\sqrt{5}}\mathbf{u}_x \frac{2}{3\sqrt{5}}\mathbf{u}_y \frac{5}{3\sqrt{5}}\mathbf{u}_z\right) \cos \alpha \text{ V/m}$, $\mathbf{S} = 3.18 \cdot 10^3 \left(\frac{2}{3}\mathbf{u}_x \frac{1}{3}\mathbf{u}_y + \frac{2}{3}\mathbf{u}_z\right) \cos^2 \alpha \text{ W/m}^2$; polarizzazione lineare; (c) $\bar{I} = 1.59 \cdot 10^3 \text{ W/m}^2$.
- **18.** (a) $\lambda = 66.6 \text{ m}$, (b) $E_{\text{eff}} = \sqrt{\mu_0 v \bar{I}} = 35.4 \text{ V/m}$, $B_{\text{eff}} = \frac{E_{\text{eff}}}{v} = 1.06 \cdot 10^{-6} \text{ T}$
- 19. a) $\varphi = 0$, $E_y = \sqrt{3}\mathcal{E} = 103.9 \text{ V/m}$, $I = 2\varepsilon_0 c \mathcal{E}^2 = 19.1 \text{ W/m}^2$; b) $\varphi = \pm \frac{\pi}{2}$, $E_y = \mathcal{E} = 60.0 \text{ V/m}$, $I = \varepsilon_0 c \mathcal{E}^2 = 9.6 \text{ W/m}^2$; c) polarizzazione ellittica (gli assi dell'ellisse sono sulle rette $y = \pm x$), $I = \varepsilon_0 c \mathcal{E}^2 = 9.6 \text{ W/m}^2$.
- **20.** a) $\vec{k} = (\hat{u}_x + \hat{u}_y + \sqrt{2}\hat{u}_z) \text{ rad/m}, \ \omega = 6 \cdot 10^8 \text{ rad/s}, \ \nu = 9.55 \cdot 10^7 \text{ Hz};$ b) $E_0 = \sqrt{S_0/(\varepsilon_0 c)} = 137.2 \text{ V/m}, \ \vec{E} = 97.0(\hat{u}_x - \hat{u}_y) \cos\left(x + y + \sqrt{2}z - 6 \cdot 10^8t\right) \text{ V/m},$ $\vec{B} = 2.29 \cdot 10^{-7} (\hat{u}_x + \hat{u}_y - \sqrt{2}\hat{u}_z) \cos\left(x + y + \sqrt{2}z - 6 \cdot 10^8t\right) \text{ T}.$
- 21. Vedere la guida alla soluzione
- **22.** $h = 6.63 \cdot 10^{-34} \text{ Js}, \quad L_e = 2.8 \cdot 10^{-19} \text{ J} = 1.7 \text{ eV}$ $\nu_0 = 4.22 \cdot 10^{14} \text{ Hz}, \quad \lambda_0 = c/\nu_0 = 0.71 \mu\text{m}.$ $T_{max,1} = 5.78 \cdot 10^{-20} \text{ J}, \ v_{max,1} = 3.56 \cdot 10^5 \text{ m/s}$ $T_{max,2} = 5.04 \cdot 10^{-19} \text{ J}, \ v_{max,2} = 1.05 \cdot 10^6 \text{ m/s}$
- **23.** Per il protone: $\lambda' = 2.48 \cdot 10^{-12} \text{ m}, v_f = 1.6 \cdot 10^5 \text{ m/s}.$ Per l'elettrone: $\lambda' = 3.69 \cdot 10^{-12} \text{ m}, \text{ (calcolo relativistico) } v_f = 1.96 \cdot 10^8 \text{ m/s}$
- **24.** Posto, per comodità, $\kappa = \frac{e^2}{4\pi\varepsilon_0}$: a) $v = \sqrt{\frac{\kappa}{mr}}$, $a = \frac{v^2}{r} = \frac{\kappa}{mr^2}$, $U(r) = -\frac{\kappa}{2r}$, $P(r) = \frac{2\kappa^3}{3c^3m^2r^4}$; b) $\frac{dr}{dt} = \frac{dr}{dU}\frac{dU}{dt} = -\frac{4\kappa^2}{3c^3m^2r^2}$; c) $r(t) = \sqrt[3]{r_0^3 \frac{4\kappa^2}{c^3m^2}t}$; d) $t_0 = \frac{r_0^3m^2c^3}{4\kappa^2} = 1.56 \cdot 10^{-11}$ s.