# 普通物理学实验 II 电子实验报告

| 指导教师: _ | 张建华 |
|---------|-----|
|         |     |

 班级:
 混合 2305 班

 姓名:
 窦雨晨

 学号:
 3230106104

实验日期: <u>2024</u>年 <u>12</u>月 <u>4</u>日 星期 <u>三</u> 上 / 下 午

浙江大学物理实验教学中心

## 一、实验综述

#### 【实验背景】

[热电偶]通常是利用两种不同金属材料(一般选取贵重金属,如铜、银、金等)焊接起来制作成的热端元件,能把温度信号转换成热电动势信号,通过电气仪表转换成被测介质的温度。

其测温的基本原理是两种不同成分的材质导体组成闭合回路,如图 1(a) 所示,由 A(单线表示)和 B(双线表示)两种不同金属材料的导体两端相互紧密地连接在一起,组成一个闭合回路。当两接点温度不等(T>T<sub>0</sub>)时,回路中就会产生电动势,从而形成电流,即塞贝克效应/热电效应,热电偶就是利用这一效应来工作的: <u>当电偶两端存在温度梯度时,回路中就会有电流流过,此时两端之间就存在电动势——热电动势。</u>



图 1 热电偶原理

上述两种不同导体的组合称为<u>热电偶</u>。A、B 两种导体称为<u>热电极</u>。两个接点分别称为: <u>工作端/热端(T)</u>,测量时至于被测温度场中; <u>自由端/冷端(T。</u>),一般要求测量过程中恒定在某一温度。在自由端温度为 0  $\mathbb{C}$  的条件下,根据热电动势与温度的函数关系,可以制成<u>热电偶分度表</u>。(不同的热电偶具有不同的分度表。)

热电偶满足的基本定律有:①热电势仅取决于热电偶的材料(材质要求均匀)与两个连接点的温度,和温度分布及热电极的尺寸、形状等无关;②在 A、B 材料组成的热电偶回路中接入第三导体 C,只要其两端温度相同,则对回路总电动势无影响(实际测温中需要在回路中接入导线和测量仪表,即等价于此,常采用图 2 中的两种接法);③热电偶的输出电压与温度成非线性关系(具体关系由热电偶特性分度表给出,在冷端温度不为 0℃的情况下,通过一定修正也可得到温度值)。



图 2 热电偶接线示意图

热电偶结构简单,测量准确度较高,测温范围一般为-50℃<sup>~</sup>1600℃。各种热电偶的外形可能因需要而极不相同,但基本结构大致相同,通常都由热电极、绝缘套保护管、接线盒等主要部分组成,与显示仪表、记录仪表及电子调节器配套使用。热电偶在温度相关的测量中应用极为广泛,本实验的温度测定即采用热电偶完成。

#### 【实验原理】



图 3 理想的无限大不良导体平板

如上图 3, 一无限大不良导体平板厚度为 2d, 初始温度为 t<sub>o</sub>, 在平板两端同时施加均匀的、

指向中心面的热流密度  $q_o$ 。以试样中心为坐标原点,则平板各处的温度  $t(x,\tau)$ 随加热时间  $\tau$  变化的数学表达式如下:

$$\begin{cases}
\frac{\partial t(x,\tau)}{\partial \tau} = a \frac{\partial^2 t(x,\tau)}{\partial x^2} \\
\frac{\partial t(d,\tau)}{\partial x} = \frac{q_c}{\lambda} \frac{\partial t(0,\tau)}{\partial x} = 0 \\
\frac{\partial t(0,\tau)}{\partial x} = 0
\end{cases} \tag{1}$$

式中 $a = \lambda/\rho c$ ,  $\lambda$  为材料的导热系数,  $\rho$  为材料的密度, c 为材料的比热。上述方程(1)的解为:

$$t(x,\tau) = t_0 + \frac{q_c}{\lambda} \left( \frac{a}{d} \tau + \frac{1}{2d} x^2 - \frac{d}{6} + \frac{2d}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} \cos \frac{n\pi}{d} x \cdot e^{-\frac{an^2 \pi^2}{d^2} \tau} \right)$$
(2)

观察到,(2)中的级数求和项由于指数衰减的缘故,会随加热时间的增加而逐渐减小,而对(2)式的结果影响较小。定量分析表明,当 $\frac{a\tau}{d^2} > 0.5$ 以后,该级数求和项可以忽略,则(2)式可简写为:

$$t(x,\tau) = t_0 + \frac{q_c}{\lambda} \left[ \frac{a}{d} \tau + \frac{x^2}{2d} - \frac{d}{6} \right]$$
(3)

这时,在试样中心x=0处有:

$$t(x,\tau) = t_0 + \frac{q_c}{\lambda} \left[ \frac{a}{d} \tau - \frac{d}{6} \right] \tag{4}$$

在试件加热面 $x = \pm d$ 处有:

$$t(x,\tau) = t_0 + \frac{q_c}{\lambda} \left[ \frac{a}{d} \tau + \frac{d}{3} \right] \tag{5}$$

由式(4)和(5)可见,在试件中心面和加热面处温度和加热时间成线性关系,温升率均为:

此时加热面和中心面间的温度差为:

$$\Delta t = t(d, \tau) - t(0, \tau) = \frac{1}{2} \frac{q_c d}{\lambda} \tag{7}$$

由式(7)可以看出,此时加热面和中心面间的温度差  $\Delta$  t 和加热时间  $\tau$  没有直接关系,而是保持恒定。

<u>系统各处的温度和时间呈线性关系,温升速率也相同,我们称此种状态为[准稳态]。</u> 当系统达到准稳态时,由式(7)可得:

导热系数
$$\lambda = \frac{q_c d}{2\Delta t}$$
 (8)

此外,在进入准稳态后,由比热的定义和能量守恒关系,可计算出该物质的比热:

热流密度
$$q_c = c\rho d \frac{\partial t}{\partial \tau}$$

⇒比热容
$$c = \frac{q_c}{\rho d \frac{\partial t}{\partial \tau}}$$
 (9)

式中 $\frac{\partial t}{\partial \tau}$ 为准稳态条件下试件中心面的温升速率(进入准稳态后各点的温升速率是相同的)。

由以上分析可以得到结论: <u>只要在上述模型中测量出系统进入准稳态后加热面和中心面的</u> <u>温度差和中心面的温升速率,即可由式(8)和式(9)得到待测材料的比热和导热系数</u>。

综上,我们可以使用本次实验装置,根据以上实验原理,进行<u>对有机玻璃和橡胶两种样品</u>的导热系数和比热测量。

## 二、修正量计算

1. 修正系数 A=0.818:

样品长 90mm,宽 90mm,厚 10mm 上表面面积  $S_{\perp}$ =90×90=8100mm<sup>2</sup> 下表面面积  $S_{\parallel}$ =90×90=8100mm<sup>2</sup> 侧面积  $S_{\parallel}$ =90×10×4=3600mm<sup>2</sup>

$$A = \frac{S_{\perp} + S_{\top}}{S_{\perp} + S_{\top} + S_{\top}} = \frac{16200}{19800} = 0.818$$

2. 比热修正系数 B<sub>1</sub>=0. 556:

为确保导热的均匀性和稳定性,测试样品中增加了铜板,故需要引入一个比热修正系数  $B_1$ 。铜板的质量为 270g,比热为 390J/kg/K

测试样品的质量为 94g, 比热为 1400 J/kg/K

$$B_1 = \frac{94 \times 1400}{94 \times 1400 + 270 \times 390} = \frac{131600}{131600 + 105300} = 0.556$$

3. 散热修正电压 B。=0.002mV:

当系统温度高于环境温度时,系统会向外界散热,因此引入一个散热修正电压  $B_2$ ,经过多次测量,当样品处于准稳态时,系统每分钟的散热产生的温差电势为 0.002mV,即  $B_2=0.002mV$ 。

# 三、实验内容

#### 实验一: 有机玻璃样品的导热系数和比热测量

实验开始前测试样品已安装好。

- 1. 打开主机电源, 预热仪器 10 分钟左右。
- 2. 按下"电压切换"按钮,切换到"加热电压"显示状态,旋转"加热电压调节"旋钮至 18.00V。
- 3. 弹出"电压切换"按钮,切换到"热电势"档位,弹出"热电势切换"按钮,切换到"温差"档位,将此时"温差"的数值记录在表 1 中(实验数据处理时进行补偿)。
- 4. 按下"加热开关"按钮,同时计时器开始计时,按表 1 的时间要求读取数据并记录在表 1 中。读数时,先按下"热电势切换"按钮,读到温差热电势  $V_t$ ; 弹出"热电势切换"按钮,30 秒后再读中心面热电势  $V_t$ ; 等待 30 秒后又读  $V_t$ …如此循环直到 25 分钟后实验结束。

5. 测量结束,弹出"加热开关"按钮,同时计时器停止计时。

## (一) 实验数据记录

实验数据记录如下表 1。

| 样品参数               |                              |           |            |           |                 |                 |                                                                |  |  |  |
|--------------------|------------------------------|-----------|------------|-----------|-----------------|-----------------|----------------------------------------------------------------|--|--|--|
| 长度: 90mm     宽度: 9 |                              |           |            | (d): 10mm | 密月              | 度(ρ): 1160kg/m³ |                                                                |  |  |  |
| 加热电压(U): 18.00V    |                              |           | 加热器电阻值(r): |           |                 | : 110 Ω         |                                                                |  |  |  |
| 时间<br>τ(分:秒)       | 温差热电势<br>V <sub>t</sub> (mV) |           | 时间 (分:秒)   |           | 中心面热电势<br>V(mV) |                 | 中心面上每分钟<br>上升的热电势<br>Δ V=V <sub>n+1</sub> -V <sub>n</sub> (mV) |  |  |  |
| 00:00              |                              | -0.011 00 |            | :00       | 0.021           |                 | \                                                              |  |  |  |
| 00:30              |                              | 0.013     | 01:00      |           | 0.022           |                 | 0.001                                                          |  |  |  |
| 01:30              |                              | 0.043     |            | :00       | 0.025           |                 | 0.003                                                          |  |  |  |
| 02:30              |                              | 0.066     |            | :00       | 0.030           |                 | 0.005                                                          |  |  |  |
| 03:30              | 0.079                        |           | 04:00      |           | 0.037           |                 | 0.007                                                          |  |  |  |
| 04:30              | 0.091                        |           | 05:00      |           | 0.046           |                 | 0.009                                                          |  |  |  |
| 05:30              | 0.098                        |           | 06:00      |           | 0.056           |                 | 0.010                                                          |  |  |  |
| 06:30              | 0.102                        |           | 07:00      |           | 0.066           |                 | 0.010                                                          |  |  |  |
| 07:30              | 0. 105                       |           | 08:00      |           | 0.077           |                 | 0. 011                                                         |  |  |  |
| 08:30              | 0. 107                       |           | 09:00      |           | 0.087           |                 | 0.010                                                          |  |  |  |
| 09:30              |                              | 0.109     |            | :00       | 0.098           |                 | 0.011                                                          |  |  |  |
| 10:30              |                              | 0.110     |            | :00       | 0.109           |                 | 0. 011                                                         |  |  |  |
| 11:30              |                              | 0.112     |            | :00       | 0.119           |                 | 0.010                                                          |  |  |  |
| 12:30              |                              | 0.113     |            | :00       | 0.129           |                 | 0.010                                                          |  |  |  |
| 13:30              |                              | 0.114     | 14:        | :00       | 0.140           |                 | 0. 011                                                         |  |  |  |
| 14:30              |                              | 0.115     | 15:        | :00       | 0.150           |                 | 0.010                                                          |  |  |  |
| 15:30              |                              | 0.116     | 16:        | :00       | 0.160           |                 | 0.010                                                          |  |  |  |
| 16:30              |                              | 0.116     | 17:        | :00       | 0.170           |                 | 0.010                                                          |  |  |  |
| 17:30              |                              | 0.117     | 18:        | :00       | 0.180           |                 | 0.010                                                          |  |  |  |
| 18:30              |                              | 0. 117    | 19:        | :00       | 0. 190          |                 | 0.010                                                          |  |  |  |
| 19:30              |                              | 0.118     | 20:        | :00       | 0. 199          |                 | 0.009                                                          |  |  |  |
| 20:30              |                              | 0.118     | 21:00      |           | 0.208           |                 | 0.009                                                          |  |  |  |
| 21:30              |                              | 0.119     | 22:00      |           | 0. 218          |                 | 0.010                                                          |  |  |  |
| 22:30              |                              | 0.119     | 23:00      |           | 0. 226          |                 | 0.008                                                          |  |  |  |
| 23:30              |                              | 0.120     | 24:        | :00       | 0. 235          |                 | 0.009                                                          |  |  |  |
| 24:30              | 24:30 0.120                  |           | 25:        | :00       | 0. 243          |                 | 0.008                                                          |  |  |  |

表 1 有机玻璃样品实验数据

## (二) 实验数据处理

1. 根据表 1 中的数据,绘制  $\tau$  -V<sub>τ</sub> 曲线和  $\tau$  -V 曲线如下图 4。

#### τ-Vt与τ-V图像



图 4 有机玻璃样品的 τ-V<sub>τ</sub>曲线和 τ-V 曲线

- 2. 根据表 1 中的数据可知,加热面与中心面之间的温差热电势  $V_t$  在第 <u>17</u>分钟到第 <u>24</u>分钟较稳定,选择这段时间内的 5 个数据为对象,计算平均值  $\overline{V_t}$   $V_{t0}$  = <u>0.1304</u> (mV),其中  $V_{t0}$  是未加热时的温差热电势。
- 3. 根据表 1 中的数据可知,中心面上每分钟上升的热电势  $\Delta V$  在第  $\underline{6}$  分钟到第  $\underline{18}$  分钟时间段较为稳定,选该时间段内的 5 个数据为对象,计算平均值  $\overline{\Delta V}$  +  $B_2$  =  $\underline{0.0124}$  (mV)。
- 4. 铜-康铜热电偶的热电常数为 0. 04mV/K,即每差 1℃,温差热电势为 0. 04mV。据此,可将温度差和升温速率的电压值(即上一步中计算出的 $\overline{V}_{\rm t}$ - $V_{\rm t0}$ 和 $\overline{\Delta V}$ + $\mathbf{B}_{\rm 2}$ )分别换算为温度值:

加热面与中心面之间的温度差 
$$\Delta t = \frac{\overline{V_t} - V_{t0}}{0.04} = \underline{3.26}$$
 (K)

中心面的升温速率 
$$\frac{\partial t}{\partial \tau} = \frac{\overline{\Delta V} + B_2}{60 \times 0.04} = \underline{0.00517} (\text{K/s})$$

5. 根据式(8)和式(9)计算有机玻璃的导热系数和比热容,并进行修正:

①导热系数 
$$\lambda = \frac{q_c d}{2\Delta t} = \frac{V^2 d}{4Fr\Delta t} = \frac{(18\text{V})^2 \times 0.01\text{m}}{4 \times 0.0081\text{m}^2 \times 110\Omega \times 3.26\text{K}} = 0.278 \left(\text{W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}\right)$$

修正后为 $\lambda' = A \times \lambda = 0.818 \times 0.278 = 0.227 (W \cdot m^{-1} \cdot K^{-1})$ 

相对误差 
$$\delta = \frac{\left|\lambda' - \lambda_0\right|}{\lambda_0} \times 100\% = \frac{\left|0.227 - 0.21\right|}{0.21} \times 100\% = 8\%$$

②比热容 
$$c = \frac{q_c}{\rho d \frac{\partial t}{\partial \tau}} = \frac{V^2}{2 Fr \rho d \frac{\partial t}{\partial \tau}}$$

$$=\frac{\left(18\,V\right)^{2}}{2\times0.0081\,m^{2}\times110\,\Omega\times1160\;kg\;/\;m^{3}\times0.01\,m\times0.00517\;K\;/\;s}=3032\left(J\cdot kg^{-1}\cdot K\right)$$

修正后为 
$$c' = A \times B_1 \times c = 0.818 \times 0.556 \times 3032 = 1379 \left( J \cdot kg^{-1} \cdot K \right)$$

相对误差
$$\delta = \frac{\left|c'-c_0\right|}{c_0} \times 100\% = \frac{\left|1379-1400\right|}{1400} \times 100\% = 1.5\%$$

## 实验二:橡胶样品的导热系数和比热测量

步骤同实验一,仅所测的样品发生变化。

## (一) 实验数据记录

实验数据记录如下表 2。

|                 |                              | 样品           | <br>参数          |                 |    |                                                                |  |
|-----------------|------------------------------|--------------|-----------------|-----------------|----|----------------------------------------------------------------|--|
| 长度: 90mm 宽度: 9  |                              | Omm 厚度(d): 1 |                 | (d): 10mm       | 密度 | (ρ): 1200kg/m³                                                 |  |
| 加热电压(U): 18.00V |                              |              | 加热器电阻值(r): 110Ω |                 |    |                                                                |  |
| 时间<br>τ (分:秒)   | 温差热电势<br>V <sub>t</sub> (mV) | 时i<br>(分:    |                 | 中心面热电势<br>V(mV) |    | 中心面上每分钟<br>上升的热电势<br>Δ V=V <sub>n+1</sub> -V <sub>n</sub> (mV) |  |
| 00:00           | -0.004                       | 00:00        |                 | 0.011           |    | \                                                              |  |
| 00:30           | 0.021                        | 01:          | 00              | 0.012           |    | 0.001                                                          |  |
| 01:30           | 0.053                        | 02:00        |                 | 0.015           |    | 0.003                                                          |  |
| 02:30           | 0.071                        | 03:          | 00              | 0.020           |    | 0.005                                                          |  |
| 03:30           | 0.082                        | 04:00        |                 | 0.027           |    | 0.007                                                          |  |
| 04:30           | 0.091                        | 05:00        |                 | 0.038           |    | 0.009                                                          |  |
| 05:30           | 0.096                        | 06:00        |                 | 0.048           |    | 0.010                                                          |  |
| 06:30           | 0.100                        | 07:00        |                 | 0.058           |    | 0.010                                                          |  |
| 07:30           | 0.103                        | 08:00        |                 | 0.069           |    | 0.011                                                          |  |
| 08:30           | 0.105                        | 09:00        |                 | 0.080           |    | 0. 011                                                         |  |
| 09:30           | 0.106                        | 10:00        |                 | 0.092           |    | 0.012                                                          |  |
| 10:30           | 0. 107                       | 11:00        |                 | 0. 103          |    | 0. 011                                                         |  |
| 11:30           | 0.108                        | 12:00        |                 | 0.115           |    | 0. 012                                                         |  |
| 12:30           | 0.108                        | 13:00        |                 | 0. 126          |    | 0.011                                                          |  |
| 13:30           | 0.109                        | 14:00        |                 | 0. 136          |    | 0.010                                                          |  |
| 14:30           | 0.109                        | 15:00        |                 | 0. 146          |    | 0.010                                                          |  |
| 15:30           | 0.110                        | 16:00        |                 | 0. 156          |    | 0.010                                                          |  |
| 16:30           | 0.110                        | 17:00        |                 | 0. 167          |    | 0.011                                                          |  |
| 17:30           | 0.110                        | 18:00        |                 | 0.178           |    | 0.011                                                          |  |
| 18:30           | 0.110                        | 19:00        |                 | 0. 189          |    | 0.011                                                          |  |
| 19:30           | 0.110                        | 20:00        |                 | 0. 200          |    | 0. 011                                                         |  |
| 20:30           | 0.111                        | 21:00        |                 | 0. 210          |    | 0.010                                                          |  |
| 21:30           | 0.111                        | 22:00        |                 | 0. 220          |    | 0.010                                                          |  |
| 22:30           | 0.111                        | 23:00        |                 | 0. 229          |    | 0.009                                                          |  |
| 23:30           | 0.111                        | 24:00        |                 | 0. 238          |    | 0.009                                                          |  |
| 24:30           | 0.111                        | 25:          |                 | 0. 248          |    | 0.010                                                          |  |

表 2 橡胶样品实验数据

#### (二) 实验数据处理

1. 根据表 2 中的数据,绘制 τ-V<sub>τ</sub>曲线和 τ-V 曲线如下图 5。

#### τ-Vt与τ-V图像



**→** T-Vt图像 <del>→</del> T-V图像

图 5 橡胶样品的τ-V<sub>τ</sub>曲线和τ-V 曲线

- 2. 根据表 2 中的数据可知,加热面与中心面之间的温差热电势  $V_t$  在第 <u>16</u>分钟到第 <u>24</u>分钟较稳定,选择这段时间内的 5 个数据为对象,计算平均值  $\overline{V_t}$   $V_{t0}$  = <u>0.1146</u> (mV),其中  $V_{t0}$  是未加热时的温差热电势。
- 3. 根据表 2 中的数据可知,中心面上每分钟上升的热电势  $\Delta V$  在第  $\underline{14}$  分钟到第  $\underline{21}$  分钟时间段较为稳定,选该时间段内的 5 个数据为对象,计算平均值  $\overline{\Delta V}$  +  $B_2$  =  $\underline{0.0122}$  (mV)。
- 4. 铜-康铜热电偶的热电常数为 0. 04mV/K,即每差 1℃,温差热电势为 0. 04mV。据此,可将温度差和升温速率的电压值(即上一步中计算出的 $\overline{V_{\rm t}}$  - $V_{\rm t0}$  和 $\overline{\Delta V}$  +  $\mathbf{B}_2$  )分别换算为温度值:

加热面与中心面之间的温度差 
$$\Delta t = \frac{\overline{V_t} - V_{t0}}{0.04} = \underline{2.865}$$
 (K)

中心面的升温速率 
$$\frac{\partial t}{\partial \tau} = \frac{\overline{\Delta V} + B_2}{60 \times 0.04} = \underline{0.00508} \, (\text{K/s})$$

5. 根据式(8)和式(9)计算橡胶的导热系数和比热容,并进行修正:

①导热系数 
$$\lambda = \frac{q_c d}{2\Delta t} = \frac{V^2 d}{4Fr\Delta t} = \frac{\left(18\text{V}\right)^2 \times 0.01\text{m}}{4 \times 0.0081\text{m}^2 \times 110\Omega \times 2.865\text{K}} = 0.317 \left(\text{W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}\right)$$

修正后为 $\lambda' = A \times \lambda = 0.818 \times 0.317 = 0.259 (W \cdot m^{-1} \cdot K^{-1})$ 

相对误差 
$$\delta = \frac{|\lambda' - \lambda_0|}{\lambda_0} \times 100\% = \frac{|0.259 - 0.25|}{0.25} \times 100\% = 3.6\%$$

②比热容 
$$c = \frac{q_c}{\rho d \frac{\partial t}{\partial \tau}} = \frac{V^2}{2Fr\rho d \frac{\partial t}{\partial \tau}}$$

$$=\frac{\left(18\,V\right)^{2}}{2\times0.0081\,m^{2}\times110\,\Omega\times1200\,kg\,/\,m^{3}\times0.01\,m\times0.00508\;K\,/\,s}=2982\left(J\cdot kg^{-1}\cdot K\right)$$

修正后为 
$$c' = A \times B_1 \times c = 0.818 \times 0.556 \times 2982 = 1356 \left( J \cdot kg^{-1} \cdot K \right)$$

相对误差 
$$\delta = \frac{\left|c'-c_0\right|}{c_0} \times 100\% = \frac{\left|1356-1400\right|}{1400} \times 100\% = 3.1\%$$

## 四、实验拓展

1. 简述塞贝克效应。

塞贝克效应指,在两种不同导体材料的接触点上,当两接点处的温度不同时,材料中的自由带脑子会因为热扩散而从热端移动到冷端,从而在两点间产生电势差。这个电动势与所用材料的性质相关,并与两点温差成正比。塞贝克效应是热电现象的一种,通常用于热电发电和温度测量。

可以结合激光闪光法和热图像成像技术,利用光学知识测量导热系数。

【实验原理】激光闪光法:通过短时间高强度激光脉冲加热材料表面,并通过检测材料背面温度随时间的变化,来计算材料的热扩散率,从而计算出导热系数的实验方法。实验利用红外热像仪监测材料的温度变化,并通过分析温度曲线反推材料的导热系数。

【实验方法】选取合适的待测材料,并处理成薄片状样品。选择合适波长的近红外激光,使脉冲宽度在毫秒级或微秒级,以保证瞬时加热样品。利用激光脉冲照射样品的一侧,激光脉冲的能量将样品表面加热(能量要控制合适,避免才来哦因过度加热而损坏),使用红外热像仪检测样品背面温度随时间的变化。根据温度-时间数据,使用热扩散方程,拟合求得热扩散率,并由材料的比热容和密度,利用公式计算出导热系数。



## 五、误差分析和心得体会

#### 【误差分析】

- 1. 本实验中需要自行操作的部分较少,故实验误差较大程度上来源于成品仪器本身的系统误差, 在仪器被反复使用,不断老化的过程中,加大了误差。
- 2. 在测量读数的过程中,常常会出现在应读数时,数字正在不停跳变的情况,会带来误差。
- 3. 在实验过程中,加热电压会发生波动,造成一定误差。
- 4. 在做有机玻璃样品的实验时,起初没有完全理解实验操作,因而不得不在仪器已经开始加热一分钟后,断电并重新开始实验,虽然等待了一段时间后才重新开始实验,但之前的加热过程有可能对实验数据产生一定影响,造成误差。

#### 【心得体会】

在本次实验中,我主要学习了利用准稳态条件测量材料的比热和导热系数的方法,对热电 偶等知识也有了更深的认识。本次实验的操作和数据记录的过程很简单,相较而言数据处理的 过程较为复杂,从中我对物理量的修正有了进一步了解。