1 Билет 5. Автономные системы дифференциальных уравнений

1.1 Основные определения

Система ДУ вида:

$$\frac{dx^i}{dt} = f^i(x^1, ..., x^n); \quad \frac{d\vec{x}}{dt} = \vec{f}(\vec{x}); \quad \dot{x}^i = f^i(\vec{x}) \qquad i = \overline{1, n}$$

$$\tag{1}$$

Называется автономной системой ДУ, если $\vec{f} = \{f_i(x^1,...,x^n)\},\ i = \overline{1,n}$ не зависит явно от аргумента $t;\ x^j = x^j(t),\ j = \overline{1,n}$ являются интегральными кривыми (1). $\vec{x}(t) = \{x^j(t)\} \in \mathbb{R}^{n+1} = t \times \mathbb{R}^n$

Определение 1.1. Пусть $\vec{x}(t)$ является решением (1). Кривая γ в \mathbb{R}^n называется фазовой траекторией (1). Само \mathbb{R}^n называется фазовым пространством (1).

$$\gamma = \begin{cases}
 x^1 = x^1(t) \\
 x^2 = x^2(t) \\
 \dots \\
 x^n = x^n(t)
\end{cases}$$
(2)

Будем предполагать, что $\vec{f} = \{f^i(x^1, ..., x^n)\} \in D \subset \mathbb{R}^n, i = \overline{1, n}$ непрерывно дифференцируемые функции по всей совокупности переменных.

Теорема 1.1. Если $\varphi(t)$ решение (1), то $\varphi(t+\tau)$ $\forall \tau = const \in \mathbb{R}$ тоже решение (1)

Доказательство.

Пусть
$$u=t+\tau$$
 : $\frac{d(\varphi(t+\tau))}{dt}=|t+\tau=u|=\frac{d\varphi(u)}{du}\frac{du}{dt}=\frac{d\varphi(u)}{dt}=f(\varphi(u))=f(\varphi(t+\tau))-$ — т.е. $\varphi(t+\tau)$ - решение

Следствие 1.1.1. Пусть $\vec{\varphi}(t_0, \vec{x}_0)$ - решение (1), такое что $\vec{\varphi}(t, t_0, \vec{x}_0) = \vec{x}_0$. В силу доказанной теоремы $\vec{\varphi}(t+\tau, t_0+\tau, \vec{x}_0)$ тоже решение (1). (Формально заменяем $t+\tau$ на u, $t_0+\tau$ на u_0), причём $\vec{\varphi}(t_0+\tau, t_0+\tau, \vec{x}_0) = \vec{x}_0$. Тогда, если $\vec{f}(x^1,...,x^n)$ является непрерывной функцией n переменных вместе c $\frac{\partial \vec{f}}{\partial x_i}$, то показанные решения совпадают по основной теореме.

$$\vec{\varphi}(t+\tau,t_0+\tau,\vec{x}_0) \equiv \vec{\varphi}(t,t_0,\vec{x}_0)$$
. Положим, в силу произвольности $\tau,\, \tau=-t_0 \Rightarrow \vec{\varphi}(t,t_0,\vec{x}_0) = \vec{\varphi}(t-t_0,0,\vec{x}_0) = \vec{\varphi}(t-t_0,\vec{x}_0)$

T.о. положение движущейся по фазовой траектории точки определяется начальным положением \vec{x}_0 в момент времени t_0 и длительностью $t-t_0$, отсчитываемого от начального момента времени t_0 , но не самим этим моментом. (T.e. начальный момент не существенен и можно положить его равным нулю).

Теорема 1.2. Фазовые траектории либо не имеют общих точек, либо совпадают

Доказательство.

Пусть $\varphi(t)\psi(t)$ - решения (1), причём $x_0=\varphi(t_1)=\psi(t_2)$ Рассмотрим $\chi(t)=\psi(t+(t_2-t_1)),$ согласно предыдущей теореме $\chi(t)$ тоже явл. реш. (1), причём $\chi(t_1)\stackrel{\text{по постр.}}{=} x_0=\psi(t_2)=$ $=\varphi(t_1)\Rightarrow$ По основной теореме $\varphi(t)\equiv\chi(t)\stackrel{def}{=}\psi(t+(t_2-t_1))\Rightarrow$ траектории $\varphi(t)$ и $\psi(t)$ совпали.

Согласно доказаному можно считать, что фазовое пространство (1) "склеено"из фазовых траекторий.

1.2 Типы фазовых траекторий

Определение 1.2. Точка $\vec{a} \in \mathbb{R}^n$ называется положением равновесия (1), если $\vec{f}(\vec{a}) = 0$ $(f^i(a^1,...,a^n) = 0, \ i = \overline{1,n})$

Утверждение 1.1. Если $\vec{a} \in \mathbb{R}^n$ - положение равновесия (1), то $\vec{x}(t) = \vec{a}, -\infty < t < +\infty$ является решением (1)

Доказательство.

$$\vec{x}(t) \equiv \vec{a} \stackrel{(1)}{\Rightarrow} 0 = \frac{d\vec{x}}{dt} = \frac{d\vec{a}}{t} = f(\vec{a}) = 0 \Rightarrow$$
 удовлетворяет (1)

Т.о. точка равновесия $\vec{a} \in \mathbb{R}^n$ является фазовой траекторией (1)

Следствие 1.2.1. Решение (1) не может прийти в положение равновесия за конечное время.

Доказательство.

Пусть это не так и фазовая траектория пришла в положение равновесия за конечное время. Т.о., т.к. положение равновесия тоже является фазовой траекторией, то они пересекаются, что невозможно \Rightarrow противоречие

Теорема 1.3. Фазовые траектории принадлежат одному из трёх типов:

- 1. Точка (равновесия)
- 2. Фазовая траектория, отличная от точки, есть гладкая кривая
- 3. Замкнутая кривая(цикл) периодическая

1.3 Групповые свойства автономных систем

1.
$$\vec{\varphi}(t_1 + t_2, \vec{x}_0) = \varphi(t_2, \vec{\varphi}(t_1, \vec{x}_0)) = \vec{\varphi}(t_1, \vec{\varphi}(t_2, \vec{x}_0))$$

Доказательство.

Рассмотрим $\vec{\varphi}(t, \vec{\varphi}(t_1, \vec{x}_0))$ - решение (1); $\vec{\varphi}(t + t_1; \vec{x}_0)$ - тоже решение (1)

$$\vec{\varphi}(0, \vec{\varphi}(t_1, \vec{x}_0)) = \vec{\varphi}(t_1, \vec{x}_0)$$

$$\vec{\varphi}(0 + t_1, \vec{x}_0) = \vec{\varphi}(t_1, \vec{x}_0)$$

$$\xrightarrow{\text{основная теорема}} \vec{\varphi}(t + t_1; \vec{x}_0) \equiv \vec{\varphi}(t, \vec{\varphi}(t_1, \vec{x}_0))$$

Аналогично, $\vec{\varphi}(t+t_2,\vec{x}_0) \equiv \vec{\varphi}(t,\vec{\varphi}(t_2,\vec{x}_0))$

$$2. \ \vec{\varphi}(-t; \vec{\varphi}(t, \vec{x}_0)) = \vec{x}_0$$

Доказательство.

Из 1):
$$\vec{\varphi}(t+\tau,\vec{x}_0) = \vec{\varphi}(\tau,\vec{\varphi}(t,\vec{x}_0))$$
. В силу произвольности τ при $\tau = -t$: $\vec{\varphi}(-t,\vec{\varphi}(t,\vec{x}_0)) \stackrel{1)}{=} \vec{\varphi}(0,\vec{x}_0) = \vec{x}_0$

1.4 Понятия фазового потока и фазового объема

Определение 1.3. Рассматриваем давно привычную нам систему $\frac{d\vec{x}}{dt} = \vec{f}(\vec{x})$.

Пусть $\mathscr{D} \subset \mathbb{R}^n$ – это область в ее фазовом пространстве. Возъмем произвольную точку $\vec{x}_0 \in \mathscr{D}$ и выпустим из нее фазовую траекторию. Таким образом, с течением времени t мы будем двигаться по этой траектории. Обозначим точку на данной траектории в момент времени t как $g^t \vec{x}_0$.

Теперь можно определить преобразование области $\mathscr{D}: \forall \vec{x}_0 \in \mathscr{D}$ сделаем отображение $\vec{x}_0 \to g^t \vec{x}_0$. Получаем $\mathscr{D} \to g^t \mathscr{D}$. Другими словами, каждую точку \mathscr{D} сносим по фазовой траектории на время t.

Так вот преобразование q^t и называется фазовым потоком.

Перечислим несколько полезных свойств введенного нами фазового потока:

- $g^{t_1+t_2} = g^{t_1} \cdot g^{t_2} = g^{t_2} \cdot g^{t_1};$
- $g^t \cdot g^{-t} = g^{-t} \cdot g^t = \text{Id}$ тождественное преобразование;
- Фазовый поток является группой;
- И еще сильнее, фазовый поток однопараметрическая группа, то есть каждому числу $t \in \mathbb{R}$ соответствует единственное преобразование $g^t: \mathscr{D} \to g^t \mathscr{D}$.

Определение 1.4. Пусть у нас опять есть область \mathscr{D} фазового пространства \mathbb{R}^n . Подействуем на \mathscr{D} фазовым потоком g^t . Тогда $\mathscr{D}(t) = g^t \mathscr{D}$ и $\vec{x} = g^t \vec{x}_0$. Определим следующую величину как фазовый объем:

$$V_{\mathscr{D}}(t) = \int_{\mathscr{D}(t)} d\vec{x} = \int_{g^t \mathscr{D}} d(g^t \vec{x}_0).$$

1.5 Теорема Лиувилля

Теорема 1.4. В автономной системе дифференциальных уравнений $\frac{d\vec{x}}{dt} = \vec{f}(\vec{x})$ производная фазового объема $V_{\mathscr{D}}(t)$ области $\mathscr{D} \subset \mathbb{R}^n$ фазового пространства может быть вычислена по формуле:

$$\frac{dV_{\mathscr{D}}(t)}{dt} = \int\limits_{\mathscr{Q}} \operatorname{div} \vec{f} \cdot d\vec{y},$$

где
$$\operatorname{div} \vec{f} = \sum_{i=1}^n \frac{\partial f^i}{\partial x^i}$$
 – дивергенция \vec{f} , а $\vec{y} = \vec{x}(0)$.

Доказательство.

Докажем, что производная равна этому при t=0, а в силу автономности системы это будет верно в каждой точке.

Пишем производную по определению: $\frac{dV_{\mathscr{D}}}{dt}(0) = \lim_{t \to 0} \frac{V_{\mathscr{D}}(t) - V_{\mathscr{D}}(0)}{t}.$

Из системы имеем $\vec{x} = \vec{y} + \int_{0}^{t} \vec{f}(\tau) d\tau$.

При малых значениях t получаем следующее: $x^i = y^i + f^i(\vec{y})t + o(t), t \to 0.$

На все это дело можно смотреть как на замену координат $x^i \longrightarrow y^i$. Тогда получаем следующее выражение для фазового объема:

$$V_{\mathscr{D}}(t) = \int\limits_{\mathscr{D}(t)} d\vec{x} \xrightarrow{\mathscr{D}(0) = \mathscr{D}} \int\limits_{\mathscr{D}} |J| d\vec{y},$$

где $J=rac{\partial(x^1,x^2,\ldots,x^n)}{\partial(y^1,y^2,\ldots,y^n)}$ – якобиан преобразования.

Посчитаем этот якобиан

$$J = \begin{vmatrix} 1 + \frac{\partial f^1}{\partial y^1}t & \frac{\partial f^1}{\partial y^2}t & \cdots & \frac{\partial f^1}{\partial y^n}t \\ \frac{\partial f^2}{\partial y^1}t & 1 + \frac{\partial f^2}{\partial y^2}t & \cdots & \frac{\partial f^2}{\partial y^n}t \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f^n}{\partial y^1}t & \frac{\partial f^n}{\partial y^2}t & \cdots & 1 + \frac{\partial f^n}{\partial y^n}t \end{vmatrix} = \left(1 + \frac{\partial f^1}{\partial y^1}t\right)\left(1 + \frac{\partial f^2}{\partial y^2}t\right)\dots\left(1 + \frac{\partial f^n}{\partial y^n}t\right) + o(t).$$

Здесь мы все, что имеет множители t^2, t^3, \dots, t^n , завернули в o(t). Однако если раскрыть скобки, то такие слагаемые все еще остаются. Раскроем эти скобки и опять впихнем все ненужное в o(t):

$$J = 1 + \left(\frac{\partial f^1}{\partial y^1} + \frac{\partial f^2}{\partial y^2} + \dots + \frac{\partial f^n}{\partial y^n}\right)t + o(t) = 1 + t\operatorname{div}\vec{f} + o(t).$$

Ну, а теперь считаем эту производную:

$$\frac{dV_{\mathscr{D}}}{dt} = \lim_{t \to 0} \frac{V_{\mathscr{D}}(t) - V_{\mathscr{D}}(0)}{t} = \lim_{t \to 0} \frac{\int_{\mathscr{D}} \left(1 + t \operatorname{div} \vec{f} + o(t)\right) d\vec{y} - \int_{\mathscr{D}} d\vec{y}}{t} = \int_{\mathscr{D}} \operatorname{div} \vec{f} \cdot d\vec{y}.$$

1.6 Теорема Пуанкаре

Теорема 1.5. Пускай g^t - непрерывное взаимнооднозначное отображение, сохраняющее фазовый объем и переводящее ограниченную область $\mathscr D$ саму в себя, то есть $g^t\mathscr D=\mathscr D$. Тогда:

$$\forall x_0 \in \mathscr{D} \longmapsto \forall U(x_0) \ \exists \overline{x} \in U(x_0) : g^n \overline{x} \in U(x_0) \ (n = t_0),$$

 $rde\ U(x_0)$ – некоторая окрестность точки x_0 .

Другими словами, для любой окрестности U любой точки x_0 области $\mathscr D$ найдется точка $\overline x$, возвращающаяся обратно в эту же окрестность.